기계학습이란

정의

- 학습
 - o 경험의 결과로 나타나는, 비교적 지속적인 행동의 변화나 그 잠재력의 변화 또는 지식을 습득하는 과정
- 기계학습
 - 사무엘(인공지능 초창기), 컴퓨터가 **경험을 통해 학습**할 수 있도록 프로그래밍할 수 있다면, 세세하게 프로그래밍해야하는 번거로움에서 벗어날 수 있다

현대적 정의

- 어떤 컴퓨터그램이 T라는 작업을 수행할 때, 경험을 통해 성능이 개선된다면 이 프로그램은 학습을 한다고 말할 수 있음
 - o **최적의 알고리즘**을 찾는 행위
 - 경험 E를 통해, 주어진 작업 T에 대한 성능 P의 향상
- 사례 데이터, 즉 과거 경험을 이용하여 성능 기준을 최적화하도록 프로그래밍 하는 작업
- 성능을 개선하거나 정확하게 예측하기 위해 경험을 이용하는 계산학 방법들

기계학습 VS 전통적인 프로그래밍

지식기반 ▶ 기계학습 대전환

- 인공지능의 탄생
 - ㅇ 컴퓨터의 뛰어난 능력
 - 사람이 어려워하는 일을 아주 쉽게 수행한다
 - ㅇ 컴퓨터에 대한 기대감
 - 사람이 쉽게하는 일도 컴퓨터가 할 수 있지 않을까?
 - 1950년대에 '인공지능' 개념 첫 등장
- 초창기: 지식기반 방식
 - o 경험적인 지식 혹은 사실을 인위적으로 컴퓨터에 부여하여 학습
- 큰깨달음
 - 지식기반의 한계
 - o 사람은 변화가 심한 장면을 아주 쉽게 인식하지만, **왜 그렇게 인식**하는지 서술하지는 못함
- 주도권 전환
 - ㅇ 지식 기반 ▶ 기계학습
 - ο 데이터 중심 접근방식

개념

- 교사학습의 예
 - o 가로축은 **시간**, 세로축은 **이동체**의 위치
 - ㅇ 관측한 4개의 점이 데이터
- 예측 문제
 - o 임의의 시간이 주어질 때, **이동체의 위치**는?
 - ㅇ 회귀문제와 분류문제
 - 회귀 : 목표치가 실수
 - 분류: 목표치가 부류 혹은 종류의 값
- 훈련집합
 - ㅇ 가로축은 특징, 세로축은 목표치
 - o 관측한 4개의 점이 **훈련집합**

훈련집합:
$$\mathbb{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}, \quad \mathbb{Y} = \{y_1, y_2, \dots, y_n\}$$
 (1.1)

- 관찰된 데이터를 어떻게 설명할 것인가?
 - o 눈대중으로 봤을 때 점들이 직선을 이룬다 ▶ 모델로 **직선을 선택을 가정**
 - ㅇ 직선 모델의 수식
 - y = wx + b (매개변수 w, b)
- 기계학습은
 - o 가장 정확하게 예측할 수 있는 **최적의 매개변수**를 찾는 작업
 - o 처음에는 최적값을 모르니 **임의의 값**에서 시작, 점점 성능을 개선해 **최적에 도달**

- o f1 ▶ f2 ▶ f3 (성능개선)
 - $\mathbf{w} = 0.5, b = 2$
- 학습을 마치면
 - 새로운 특징(x값)에 대응되는 목표치(y값)의 예측에 사용
 - o y = 0.5x + 2 ▶ x가 10일때 y가 7이라고 예측
- 궁극적인 목표
 - 훈련집합에 없는 **새로운 샘플**에 대한 **오류 최소화**
 - 새로움 샘플 집합 = 테스트 집합(**Test Set**)
 - o 일반화 능력: 테스트 집합에 대한 높은 성능
- 필수요소
 - o 내, 외부적 **규칙 존재**
 - 수학적으로 설명 불가능
 - o **데이터**가 있어야 함

사람 VS 기계 학습

7 준	사람의 학습	기계 학습
학습 과정	능동적	수동적
데이터 형식	자연에 존재하는 그대로	일정한 형식에 맞추어 사람이 준비함
동시에 학습 가능한 과업 수	자연스럽게 여러 과업을 학습	하나의 과업만 기능
학습 원리에 대한 지식	매우 제한적으로 알려져 있음	모든 과정이 밝혀져 있음
수학 의존도	매우 낮음	매우 높음
성능 평가	경우에 따라 객관적이거나 주관적	객관적(수치로 평가, 예를 들어 정확률 99.8%)
역사	수백만 년	60년 가량

특징공간에 대한 이해

1차원과 2차원 특징공간

• 1차원 특징공간

(a) 1차원 특징 공간(왼쪽: 특징과 목푯값을 축으로 표시, 오른쪽: 특징만 축으로 표시)

• 2차원 특징공간

(b) 2차원 특징 공간(왼쪽: 특징 벡터와 목푯값을 축으로 표시, 오른쪽: 특징 벡터만 축으로 표시)

○ 특징 **벡터 표기**

$$\mathbf{x} = (x_1, x_2)^{\mathrm{T}}$$

ㅇ 예시

■ x = (몸무게,키)^T, y = 장타율

다차원 특징공간

- x값(특징)의 종류가 몇개인지에 따라 d차원
 - 모든 데이터는 **특징공간 안에 존재**한다
- d-차원 데이터
 - ㅇ 특징 벡터 표기

$$\mathbf{x} = (x_1, x_2, \dots, x_d)^{\mathrm{T}}$$

- ㅇ 학습모델
 - 직선 모델인 경우: 매개변수 수 = d+1

$$y = \underline{w_1}x_1 + \underline{w_2}x_2 + \dots + \underline{w_d}x_d + \underline{b}$$

■ 2차 곡선 모델인 경우: 매개변수 수 = d^2 + d + 1

$$y = \underline{w_1}x_1^2 + \underline{w_2}x_2^2 + \dots + \underline{w_d}x_d^2 + \underline{w_{d+1}}x_1x_2 + \dots + \underline{w_d}x_{d-1}x_d + \underline{w_d}x_{d+1}x_1 + \dots + \underline{w_d}x_{d+1}x_d + b$$

■ 최적화를 잘 해야 함

특징공간 변환과 표현문제

- 선형 분리 불가능한 원래 특징 공간
 - 직선모델 적용시 **정확도 75프로 한계**

- (a) 원래 특징 공간
- (b) 분류에 더 유리하도록 변환된 새로운 특징 공간

- XOR 문제
- **좌표계를 변형시켜** 선형에 가깝게 만든다
- 표현문제의 예

- 식으로 변환된 새로운 특징 공간
 - o 공간변환을 통해 직선 모델로 100% 정확도

원래 특징 벡터
$$\mathbf{x} = (x_1, x_2)^{\mathrm{T}} \rightarrow$$
 변환된 특징 벡터 $\mathbf{x}' = \left(\frac{x_1}{2x_1x_2 + 0.5}, \frac{x_2}{2x_1x_2 + 0.5}\right)^{\mathrm{T}}$ (1.6) $\mathbf{a} = (0,0)^{\mathrm{T}} \rightarrow \mathbf{a}' = (0,0)^{\mathrm{T}}$ $\mathbf{b} = (1,0)^{\mathrm{T}} \rightarrow \mathbf{b}' = (2,0)^{\mathrm{T}}$ $\mathbf{c} = (0,1)^{\mathrm{T}} \rightarrow \mathbf{c}' = (0,2)^{\mathrm{T}}$ $\mathbf{d} = (1,1)^{\mathrm{T}} \rightarrow \mathbf{d}' = (0.4,0.4)^{\mathrm{T}}$

- 표현학습
 - 좋은 **특징 공간을 자동으로 찾는 작업**
 - 딥러닝(Deep Learning)
 - 다수의 은닉층을 가진 신경망을 이용하여 최적의 계층적인 특징 공간을 찾아냄
 - 아래쪽 은닉층은 **저급 특징**(선, 구석점 등), 위쪽은 **고급 특징**(얼굴, 바퀴 등) 추출

- 차원에 대한 몇가지 설명
 - 거리 : 차원에 무관하게 수식 적용 가능
 - 보통 2~3차원의 **저차원에서 식을 고안해 고차원으로 확장 적용**
- 차원의 저주(Curse of dimensionality)
 - ㅇ 차원이 높아짐에 따라 발생하는 현실적인 문제들
 - 차원이 크면 클수록 **데이터가 더 많이 필요**하다

데이터에 대한 이해

• 과학 기술의 정립 과정

- 기계 학습
 - ㅇ 기계 학습이 푸는 문제는 훨씬 복잡함
 - o 단순한 수학 공식으로 표현 불가능
 - ㅇ 데이터로부터 자동으로 학습 모델을 찾아내는 과정이 필수적
 - 데이터 수집 및 전처리가 중요

데이터 생성 과정

- 데이터 생성 과정을 완전히 아는 인위적 상황의 예제 (가상)
 - 예) 두 개 주사위를 던져 나온 눈의 합을 x라 할 때, $y=(x-7)^2+1$ 점을 받는 게임 이런 상황을 '데이터 생성 과정을 완전히 알고 있다'고 말함
 - x를 알면 정확히 y를 예측할 수 있음
 - 실제 주사위를 던져 ※ = {3,10,8,5}를 얻었다면, ¥ = {17,10,2,5}
 - x의 발생 확률 P(x)를 정확히 알 수 있음
 - P(x)를 알고 있으므로, 새로운 데이터 생성 가능
- 실제 기계 학습 문제 (현실)

- 데이터 생성 과정을 알 수 없음
- 주어진 훈련집함 X, Y로 예측 모델 또는 생성 모델을 **근사 추정**만 가능

데이터의 중요성

- 데이터의 양과 질
 - ㅇ 주어진 응용에 맞는 충분히 다양한 데이터를 충분한 양만큼 수집
 - 추정 정확도 높아짐
 - 환경 파악과 그에 맞는 데이터 확보는 아주 중요
 - ㅇ 데이터의 양과 학습 모델의 성능 경향성

- 공개 데이터
 - ㅇ 기계 학습의 초파리로 여겨지는 3가지 데이터베이스
 - Iris: 1936년 통계학자 피셔 교수가 3종의 붓꽃을 50종씩 채취하여 만든 데이터
 - MNIST: NIST에서 수집한 필기 숫자 데이터베이스
 - ImageNet : WordNet의 단어 계층 분류를 그대로 따라 부류마다 수백수천개의 영상 수 집
 - o 위키피디아 'list of datasets for machine learning research' 검색
 - UCI Repository

데이터베이스 크기와 기계 학습 성능

- 데이터베이스의 왜소한 크기 : 차원의 저주와 관련
 - o MNIST는 고작 6만개의 샘플을 가짐
- 왜소한 양의 데이터베이스로 높은 성능을 달성하는 법
 - ㅇ 방대한 공간에서 실제 데이터가 발생하는 곳은 매우 작은 부분 공간
 - o 데이터 희소 특성 가정
 - 희소한 샘플의 발생 확률은 0에 가깝다
 - ㅇ 매니폴드 가정(Manifold Hypothesis)
 - 대부분의 실제 고차원 데이터집합이 더 낮은 저차원 매니폴드에 가깝게 놓여 있음

■ 일정한 규칙에 따라 매끄럽게 변화

데이터 가시화

- 4차원 이상의 초공간은 한꺼번에 가시화 불가능
- 여러가지 가시화 기법 존재
 - ㅇ 2개씩 조합하여 여러 개의 그래프 그림

ㅇ 고차원 공간을 저차원으로 변환

간단한 기계 학습의 예

● 선형 회귀(Linear Regression) 문제

- ㅇ 직선 모델, 두개의 매개변수
- \circ y = wx + b
- 목적 함수(Objective Function) 또는 비용 함수(Cost Function)

- 식 (1.8)은 선형 회귀를 위한 목적 함수
 - $f_{\Theta}(\mathbf{x}_i)$ 는 예측함수의 예측 출력, y_i 는 예측함수가 맞추어야 하는 실제 목표치
 - f_Θ(x_i) y_i는 오차error 혹은 손실loss
 - 식 (1.8)을 평균제곱오차MSE(mean squared error)라 부름

$$J(\Theta) = \frac{1}{n} \sum_{i=1}^{n} (f_{\Theta}(\mathbf{x}_i) - y_i)^2$$
 (1.8)

- 처음에는 최적 매개변수 값을 알 수 없으므로 임의의 난수로 $\Theta_1 = (w_1, b_1)^{\mathsf{T}}$ 설정 \rightarrow $\Theta_2 = (w_2, b_2)^{\mathsf{T}}$ 로 개선 \rightarrow $\Theta_3 = (w_3, b_3)^{\mathsf{T}}$ 로 개선 \rightarrow Θ_3 는 최적해 $\widehat{\Theta}$
 - 이때 J(Θ₁) > J(Θ₂) > J(Θ₃)
 - ㅇ 예제
 - 훈련집합 $\mathbb{X} = \{x_1 = (2.0), x_2 = (4.0), x_3 = (6.0), x_4 = (8.0)\},$ $\mathbb{Y} = \{y_1 = 3.0, y_2 = 4.0, y_3 = 5.0, y_4 = 6.0\}$
 - 초기 직선의 매개변수 0₁ = (0.1,4.0)^T라 가정

$$\mathbf{x}_{1}, \mathbf{y}_{1} \rightarrow (f_{\Theta_{1}}(2.0) - 3.0)^{2} = ((0.1 * 2.0 + 4.0) - 3.0)^{2} = 1.44$$

$$\mathbf{x}_{2}, \mathbf{y}_{2} \rightarrow (f_{\Theta_{1}}(4.0) - 4.0)^{2} = ((0.1 * 4.0 + 4.0) - 4.0)^{2} = 0.16$$

$$\mathbf{x}_{3}, \mathbf{y}_{3} \rightarrow (f_{\Theta_{1}}(6.0) - 5.0)^{2} = ((0.1 * 6.0 + 4.0) - 5.0)^{2} = 0.16$$

$$\mathbf{x}_{4}, \mathbf{y}_{4} \rightarrow (f_{\Theta_{1}}(8.0) - 6.0)^{2} = ((0.1 * 8.0 + 4.0) - 6.0)^{2} = 1.44$$

 Θ_1 을 개선하여 $\Theta_2 = (0.8,0.0)^{T}$ 가 되었다고 가정

$$\mathbf{x}_{1}, \mathbf{y}_{1} \rightarrow (f_{\Theta_{2}}(2.0) - 3.0)^{2} = ((0.8 * 2.0 + 0.0) - 3.0)^{2} = 1.96$$
 $\mathbf{x}_{2}, \mathbf{y}_{2} \rightarrow (f_{\Theta_{2}}(4.0) - 4.0)^{2} = ((0.8 * 4.0 + 0.0) - 4.0)^{2} = 0.64$
 $\mathbf{x}_{3}, \mathbf{y}_{3} \rightarrow (f_{\Theta_{2}}(6.0) - 5.0)^{2} = ((0.8 * 6.0 + 0.0) - 5.0)^{2} = 0.04$

$$\mathbf{x}_{4}, \mathbf{y}_{4} \rightarrow (f_{\Theta_{2}}(8.0) - 6.0)^{2} = ((0.8 * 8.0 + 0.0) - 6.0)^{2} = 0.16$$

- 다음으로 $Θ_2$ 를 개선하여 $Θ_3 = (0.5,2.0)$ ^T가 되었다고 가정
- 이때 J(∅₃) = 0.0이 되어 ∅₃은 최적값 ⑥ 이 됨

선형 회귀 문제와 매개변수 최적화 관계의 예

• 기계학습이 할 일을 공식화하면

$$\widehat{\Theta} = \underset{\Theta}{\operatorname{argmin}} J(\Theta) \tag{1.9}$$

- ㅇ 작은 개선을 반복하여 최적의 해를 찾아가는 수치적 방법으로 식 (1.9)를 품
- ㅇ 알고리즘 형식

```
    알고리즘 1-1
    기계 확습 알고리즘

    입력: 훈련집합 ※와 ♥

    출력: 최적의 매개변수 Θ

    1
    난수를 생성하여 초기 해 Θ₁을 설정한다.

    2
    t=1

    3
    while (J(Θt)가 Θ.Θ에 충분히 가깝지 않음) // 수렴 여부 검사

    4
    J(Θt)가 작아지는 방향 ΔΘt를 구한다. // ΔΘt는 주로 미분을 사용하여 구함

    5
    Θt+1 = Θt + ΔΘt

    6
    t=t+1

    7
    Θ = Θt
```

- 좀 더 현실적인 상황
 - 실제 세계는 선형이 아니며 잡음이 섞임 ▶ 비선형 모델이 필요함

그림 1-12 선형 모델의 한계

- 기계학습 요소
 - o 카드 승인 예제

feature	value		
age gender annual salary years in residence years in job current debt	23 years female \$30,000 1 year 1 year \$15,000	→	Not Approved

■ 요소

요소	기호	카드 승인 예제
input	x	customer application
output	y	approve or deny
target distribution	f = P(y x)	ideal credit approval formula
data	$(\mathtt{x}_{1},y_{1}),(\mathtt{x}_{2},y_{2}),,(\mathtt{x}_{N},y_{N})$	historical records
hypothesis	$g:\mathcal{X} o \mathcal{Y}$	formula to be used

• 기계학습 설정

ㅇ 교사학습

모델 선택

과소적합과 과잉적합

그림 1-13 과소적합과 과잉적합 현상

- 1차 모델은 과소적합
 - ㅇ 모델의 용량이 작아 오차가 클 수 밖에 없는 현상
- 2,3,4,12차 모델은 비선형 모델을 사용
 - ㅇ 다항식 곡선을 선택
 - ㅇ 1차에 비해 오차가 크게 감소
- 과잉 적합
 - o 12차 다항식 곡선을 채택하면 **훈련집합에 대해 거의 완벽하게 근사화**
 - o 하지만 **새로운 데이터를 예측**할 때 큰 문제 발생
 - 모델의 용량이 크기 때문, 학습 과정에서 잡음까지 수용 ▶ 과잉적합 현상
 - 훈련집합에 과몰입해서 단순 암기했기 때문
 - ㅇ 적절한 용량의 모델을 선택하는 모델 선택 작업이 필요
- 비교 관찰
 - ㅇ 1~2차 : 훈련집합 / 테스트집합 모두 낮은 성능 ▶ 과소적합
 - 12차: 훈련집합에 높은 성능, 테스트집합에 낮은 성능 ▶ 과잉적합(낮은 일반화 능력)
 - 3~4차 : 훈련집합 / 테스트집합 모두 높은 성능 ▶ 적합 모델(높은 일반화 능력)
- 모델의 일반화 능력과 용량 관계

• 세가지 모델 적합도 예

바이어스와 분산

- 훈련집합을 여러 번 수집하여 1차~12차에 적용하는 실험
 - 2차는 매번 큰 오차(바이어스가 크다), 하지만 비슷한 모델을 얻음(분산이 낮다)
 - 12차는 매번 작은 오차(바이어스가 작다), 하지만 크게 다른 모델을 얻음(분산이 높다)
 - o 일반적으로 용량이 작은 모델은 바이어스가 크고, 분산이 작음
 - o 일반적으로 용량이 큰 모델은 바이어스가 작고, 분산은 큼
 - o 바이어스와 분산은 **트레이드오프 관계**
- 기계학습의 목표
 - ㅇ 낮은 바이어스와 낮은 분산을 가진 예측 모델을 만드는 것이 목표

그림 1-16 바이어스와 분산

- 하지만 바이어스와 분산은 트레이드오프 관계
- 바이어스 희생을 최소로 유지하며 분산을 최대로 낮추는 전략 필요
- 바이어스와 분산의 관계
 - 용량 증가 ▶ 바이어스 감소, 분산 증가 경향
 - o 일반화 오차 성능은 U형의 곡선을 가짐

검증집합과 교차검증을 이용한 모델 선택 알고리즘

- 검증집합을 이용한 모델 선택
 - 훈련집합과 테스트집합과 다른 별도의 검증집합(Validation Set)을 가진 상황

알고리즘 1-2 검증집합을 이용한 모델 선택

입력: 모델집합 Ω , 훈련집합, 검증집합, 테스트집합

출력: 최적 모델과 성능

- 1 for (Ω에 있는 각각의 모델)
- 2 모델을 훈련집합으로 학습시킨다.
- 3 검증집합으로 학습된 모델의 성능을 측정한다. // 검증 성능 측정
- 4 기장 높은 성능을 보인 모델을 선택한다.
- 5 테스트집합으로 선택된 모델의 성능을 측정한다.

- 교차검증(Cross Validation)
 - 비용 문제로 별도의 **검증집합이 없는 상황**에 유용한 모델 선택 기법
 - ㅇ 훈련집합을 등분하여, 학습과 평가 과정을 여러 번 반복한 후 평균 사용

알고리즘 1-3 교차검증에 의한 모델 선택

입력: 모델집합 Ω , 훈련집합, 테스트집합, 그룹 개수 k

출력: 최적 모델과 성능

- 1 훈련집합을 k개의 그룹으로 등분한다.
- 2 for (Ω에 있는 각각의 모델)
- 3 for (i=1 to k)
- 4 *i*번째 그룹을 제외한 *k*-1개 그룹으로 모델을 학습시킨다.
- 5 학습된 모델의 성능을 i번째 그룹으로 측정한다.
- 6 /개 성능을 평균하여 해당 모델의 성능으로 취한다.
- 7 가장 높은 성능을 보인 모델을 선택한다.
- 8 테스트집합으로 선택된 모델의 성능을 측정한다.

ㅇ 10겹 교차검증

- 부트스트랩(bootstrap)
 - 임의의 복원 추출 샘플링(Sampling with replacement) 반복
 - 데이터 분포가 불균형일 때 적용

알고리즘 1-4 부트스트랩을 이용한 모델 선택

입력: 모델집합 Ω , 훈련집합, 테스트집합, 샘플링 비율 $\rho(0 < \rho \le 1)$. 반복횟수 T

출력: 최적 모델과 성능

1 for (Ω에 있는 각각의 모델)

for (i=1 to 7)

2

3

훈련집합 X에서 pn개 샘플을 뽑아 새로운 훈련집합 X'를 구성한다. 이때 대치를 허용한다.

X'로 모델을 학습시킨다.

X — X'를 이용하여 학습된 모델의 성능을 측정한다.

7개 성능을 평균하여 해당 모델의 성능으로 취한다.

7 가장 높은 성능을 보인 모델을 선택한다.

8 테스트집합으로 선택된 모델의 성능을 측정한다.

모델 선택의 한계와 현실적인 해결책

- 알고리즘 1-2, 1-3, 1-4에서 모델 집합 Ω
 - ο 서로 다른 차수의 다항식이 Ω인 셈
 - o 현실에서는 학습 모델들이 아주 다양함
 - 신경망, 강화학습, 확률 그래피컬 모델, 서포트 벡터 머신, 트리 분류기 등
- 현실에서는 경험으로 큰 틀을 선택한 후
 - o 모델 선택 알고리즘으로 세부 모델을 선택하는 전략 사용
 - o 경험적인 접근 방법
 - 어느 정도 우리가 하는 일은 항상 둥근 홈(우리가 선택한 모델)에 네모 막대기(데이터 생성 과정)를 끼워 넣는 것이라고 말할 수 있다
- 현대 기계 학습의 전략
 - 용량이 충분히 큰 모델을 선택 한 후, 선택한 모델이 정상을 벗어나지 않도록 여러가지 규제 기법 적용

규제

데이터 확대

• 데이터를 더 많이 수집하면 일반화 능력이 향상 됨

• 훈련집합의 크기가 오차 성능에 미치는 영향 예

- 데이터 수집은 많은 비용이 듦
 - 검증자료(Ground Truth)를 사람이 일일이 표식(Labeling)을 해야 함
- 인위적으로 데이터 확대(Data Augmentation)
 - o 훈련집합에 있는 샘플을 **변형**함
 - 약간 회전 또는 왜곡(원 데이터의 부류 소속등의 고유 특성은 변하지 않게 해야 함)

가중치 감쇠

- 가중치를 작게 조절하는 기법
 - ㅇ 개선된 목적함수를 이용하여 가중치를 작게 조절하는 규제 기법

그림 1-18 가중치 감쇠에 의한 규제 효과

[그림 1-18(a)]의 12차 곡선은 가중치가 매우 큼 $y = 1005.7x^{12} - 27774.4x^{11} + \dots - 22852612.5x^{1} - 12.8$

- 두 번째 항이 규제 항으로서 가중치 크기를 작게 유지해줌
- 가중치 감쇠를 가진 선형 회귀 예

- λ는 주어진 가중치의 우선 혹은 선호 정도를 제어
 - λ=0: 선호도 없음
 - 큰 λ 는 가중치가 더 작아지도록 함

기계 학습 유형

지도 방식에 따른 유형

- 지도학습(Supervised Learning)
 - 특징 벡터 X와 목표치 Y(정답 있음)가 모두 주어진 상황
 - 회귀(Regression)와 분류(Classification) 문제로 구분
- 비지도학습(Unsupervised Learning)
 - 특징 벡터 X는 주어지는데 목표치 Y(정답 없음)가 주어지지 않는 상황
 - o 군집화(Clustering) 과업 (고객 성향에 따른 맞춤 홍보 응용 등)
 - 밀도 추정(Density Estimation), 특징 공간 변환 과업
- 강화학습(Reinforcement Learning)
 - 목표치가 주어지는데, 지도 학습과 다른 형태(보상 Reward)
 - ㅇ 예시) 바둑

- 수를 두는 행위가 샘플, 게임이 끝나면 목표치 하나 부여(이기면 1, 지면 -1)
- 게임을 구성한 샘플들 각각에 목표치를 나눠준다
- 준지도학습(Semi-supervised Learning)
 - 일부는 X와 Y를 모두 가지지만, 나머지는 X만 가진 상황
 - 최근, 대부분의 데이터가 X의 수집은 쉬우나 Y는 수작업이 필요하여 중용성이 부각됨

다양한 기준에 따른 유형

- 오프라인 학습과 온라인 학습
 - ㅇ 보통은 오프라인 학습
 - o 온라인 학습은 IoT 등에서 추가로 발생하는 데이터 샘플을 가지고 점증적 학습 수행
- 결정론적 학습(Deterministic Learning)과 확률적 학습(Stochastic Learning)
 - ㅇ 결정록적 학습에서는 같은 데이터를 가지고 다시 학습하면 같은 예측 모델 생성
 - 확률적 학습에서는 학습과정에서 확률 분포를 사용, 같은 데이터로 다시 학습하면 다른 예측 모델 생성
- 분별 모델과 생성 모델(Generative Models)
 - 분별 모델은 부류 예측에만 관심, 즉 P(y|x)의 추정에 관심
 - 생성 모델은 P(x) 또는 P(x|y)를 추정함
 - 새로운 샘플을 **생성**할 수 있음

기계 학습의 과거와 현재, 미래

인공지능과 기계 학습의 간략한 역사

1843 1950	에이더 "… 해석엔진은 꽤 복잡한 곡을 작곡할 수도 있다."라는 논문 발표[Ada1843] 인공지능 여부를 판별하는 튜링 테스트[Turing1950]
1956	최초의 인공지능 학술대회인 다트머스 콘퍼런스 개최 '인공지능'용어 탄생[McCarthy1955]
1958	로젠블렛이 퍼셉트론 제안[Rosenblatt1958]
1300	인공지능 언어 Lisp 탄생
1959	사무엘이 기계 학습을 이용한 체커 게임 프로그램 개발[Samuel1959]
1969	지수철이 기계 역납을 이용한 제기 계담 프로그램 개월[Samuansos] 민스키가 퍼셉트론의 과대포장 지적. 신경망 내리막길 시작[Minsky1969]
1909	레스키가 파업트론의 파네포장 지역, 신경장 테디릭을 지역[Millisky1909] 제1회 IJCA International Joint Conference on Artificial Intelligence 개최
1972	인공지능 언어 Prolog 탄생
1973	Lighthill 보고서로 인해 인공지능 내리막길, 인공지능 겨울Awinter 시작
1974	웨어보스가 오류 역전파 알고리즘을 기계 학습에 도입[Werbos1974]
1975경	의료진단 전문가 시스템 Mycin - 인공지능에 대한 관심 부활
1979	「IEEE Transactions on Pattern Analysis and Machine Intelligence」저널 발간
1980	제1회 ICMLInternational Conference on Machine Learning 개최
1300	후쿠시마가 NeoCognitron 제안[Fukushima1980]
1986	「Machine Learning」저널 발간
1000	「Parallel Distributed Processing」 출간
	다층 퍼셉트론으로 신경망 부활
1987	Lisp 머신의 시장 붕괴로 제2의 인공지능 겨울
	UCI 리포지토리 서비스 시작
1000	NIPSNeural Information Processing Systems 콘퍼런스 시작
1989	「Neural Computation」저널 발간
1993	R 언어 탄생
1997	IBM 딥블루가 세계 체스 챔피언인 카스파로프 이김
	LSTMLong short-term memory 개발됨
	SVM이 MNIST 인식 성능에서 신경망 추월
1998	르쿤이 CNN의 실용적인 학습 알고리즘 제앤(LeCun1998)
	Neural Networks: Tricks of the Trade』출간
1999	NMDIA 사에서 GPU 공개
2000	「Journal of Machine Learning Research」저널 발간
	OpenCV 최초 공개
2004	제1회 그랜드 챌린지(자율 주행)
2006	충별학습 탄생[Hinton2006a]
2007경	딥러닝이 MNIST 인식 성능에서 SVM 추월
2007	GPU 프로그래밍 라이브러리인 CUDA 공개
	어번 챌린지(도심 자율 주행)
	Scikit-leam 라이브러리 최초 공개
2009	Theano 서비스 시작
2010	mageNet 탄생
	제1회 ILSVRC 대회
2011	IBM 왓슨이 제퍼디 우승자 꺾음
2012	MNIST에 대해 0.23% 오류율 달성
(AlexNet 발표 (3회 ILSVRC 우승)
2013	제1호 ICLRInternational Conference on Learning Representations 개최
2014	Caffe 서비스 시작
2015	TensorFlow 서비스 시작

AL -131

OpenAl 장립

2016 알파고와 이세돌의 바둑 대회에서 알파고 승리[Silver2016]

「Deep Learning』출간

2017 알파고 제로[Silver2017]

• 주요 연구 및 사건

• 인공신경망의 역사

o 1940-60 : 인공두뇌학(Cybernetics)

o 1980-90 : 결합설(Connectionism, Parallel distributed processing)

ㅇ 2006-현재 : 딥러닝

■ 인공신경망의 역사적인 급증

기술 추세

- 딥러닝은 인공지능 시현에 핵심 기술
- 기계 학습 알고리즘과 응용의 다양화
- 서로 다른 알고리즘과 응용의 융합
- 딥러닝이 기계 학습의 주류
- 표현 학습이 중요해짐

사회적 전망

- 미래의 직업 변화
 - ㅇ 시의적절하고 심사숙고 해야 할 객관적 담론
- 기계가 사람을 지배할지 모른다는 두려움
 - ㅇ 쓸데없는 과장에 불과
 - ㅇ 현재 인공지능은 온통 수학과 컴퓨터 알고리즘 단계
- 인공지능의 단계

초인공지능(Super AI)

인공지능의 발전이 가속화되어 모든 인류의 지성을 합친 것보다 더 뛰어난 인공지능

강인공지능 (Strong AI = 인공일반지능)

인간이 할 수 있는 어떠한 지적인 업무도 성 공적으로 해낼 수 있는 (가상적인) 기계의 지능

<mark>인간다운 인공자</mark> 인간의 오감을 인 거대하고 이려운

- 5월 중 상해 모든 시스템을 스마트하게 변화 데이터 활용 소밀, 인공지능 과외교사 보편화 제 / 정부, 국가 기본제도와 운영 변화 는기계에 의한 초자능 시대 진입

약인공지능 (Weak AI)

인간이 지시한 명령의 를 안에서만 일하기 때문에 예측과 관리가 용이

<u>최근, 약인공자능의 빠른 발진</u> 특정 분야의 일만 할 수 있도록 절계됨 → 종합적 판단에 한계를 보인