Projeto 4 - Atominator

Artemis Lyrae Oliveira - RA 159613 George Augusto Belisário Marques - RA 135870 Raphael Henrique Evangelista - RA 157102 Universidade Estadual de Campinas - Instituto de Artes CS405 - Educação e Tecnologia Docente: Dr. José Armando Valente

1. Introdução

O desenvolvimento de um software educativo não é tarefa tão simples quanto possa parecer de início. Um dos principais cuidados a serem tomados em tal empreitada diz respeito à preocupação por se apoiar em uma base teórica sólida que permita uma reflexão aprofundada sobre qual papel deve ser incutido ao software e como garantir que seu uso possibilite de fato o aprendizado, base esta que foi adquirida no decorrer deste semestre a partir de discussões sobre nomes como Piaget, Vygotsky e Freire, na disciplina de Educação e Tecnologia (CS405).

Uma preocupação constante na elaboração do protótipo apresentado a seguir se encontra em pensar um aplicativo que siga a abordagem construcionista, ou seja, em que a tecnologia não sirva como mero instrumento de transmissão da informação para o aluno (o que se aproxima da teoria instrucionista tão comumente vista nas escolas); a intenção é que o suporte tecnológico cumpra o papel defendido por Seymour Papert (apud VALENTE, 1993) enquanto ferramenta operacional que permite ao aprendiz a construção de seu próprio conhecimento a partir da interação e criatividade, sob mediação do educador.

No planejamento do protótipo, nos atentamos particularmente à maneira como o software leva o aluno a passar pelas etapas de descrição, execução, reflexão e depuração, condizentes ao processo de espiral de aprendizagem descrito por José Valente (2002) em "A Espiral da Aprendizagem e as Tecnologias da Informação e Comunicação: repensando conceitos". Dessa forma, o aprendiz poderá observar os efeitos da mistura de diferentes elementos químicos, experimentar diferentes combinações e analisar seus resultados, e por último comparar os experimentos com situações da vida real. Cada etapa deve ser feita com o acompanhamento do professor, por dentro de uma proposta de ensino horizontal onde o aprendiz domina as ferramentas necessárias para construir o próprio conhecimento, não como objeto do processo mas sim como sujeito, auxiliado pelo educador e calcado em seu trajeto pessoal, aproximando-se do modelo de ensino defendido por Paulo Freire (2010).

A ideia do aplicativo é que, a partir de uma tela inicial apresentando dois elementos

químicos básicos (hidrogênio e oxigênio), o aluno possa uni-los de maneira a criar novas

substâncias. O jogo deverá ser usado em paralelo às aulas aplicadas em sala pelo educador, e

à medida que as aulas avançam, novos elementos, tanto químicos quanto físicos (por

exemplo, calor) serão desbloqueados para que novas substâncias possam ser criadas. Assim,

começando com a "descoberta" da fórmula da água, o aprendiz poderá avançar no decorrer

do curso rumo à elaboração de hidrocarbonetos e outras moléculas mais complexas. Como

exercícios, que poderão ou não ser cobrados em sala de aula, o jogo apresentará "desafios" de

substâncias a serem criadas pelo aprendiz, que por sua vez serão usadas para a criação de

substâncias futuras em desafios futuros, sempre com a preocupação de apresentar amostras

visuais das reacões e substâncias em seu uso na vida real.

A proposta é, portanto, que o software seja usado no ensino de ciências química e

física, podendo também auxiliar no ensino de biologia a nível molecular, voltando-se

portanto para alunos de Ensino Médio e Técnico. O jogo deverá possibilitar ao aluno o

aprofundamento em temas vistos em anos anteriores na escola, assim como facilitar a

assimilação de novos conteúdos. Tendo esse propósito em mente, uma versão mais

simplificada do aplicativo pode ser elaborada de forma a ser aplicável para alunos de Ensino

Fundamental II em aulas de ciências.

2. O protótipo

Nome: Atominator

Conteúdo: Física e química.

Local de uso: Escolas de Ensino Médio e Técnico (ambiente de aprendizagem formal).

Função: A partir da simulação interativa de reações entre diferentes elementos e substâncias

apresentados e criados no decorrer do jogo, o aplicativo funcionará como uma ferramenta de

assimilação e aprofundamento do conteúdo ensinado em aulas de química e física.

Suporte: O programa deverá ser desenvolvido na linguagem HTML5, possibilitando seu

funcionamento em qualquer navegador presente em desktops (caso o programa seja utilizado

durante aulas em laboratórios de informáticas). A linguagem também é compatível caso

exista algum interesse em desenvolver uma versão para smartphones e tablets.

Interface: O programa deverá conter três abas principais:

- a) A primeira apresentará um tutorial de execução do jogo, com exemplos simples de reações entre elementos;
- A segunda, de experimentação, permitirá ao aprendiz a realização livre de junção entre elementos e substâncias, que poderão ou não resultar em reações físicas e/ou químicas;
- c) A terceira consistirá em propostas de desafíos para que o aluno elabore determinadas substâncias, as quais serão necessárias para a elaboração de substâncias futuras, e portanto para o avanço do jogo como um todo.

A cada nova reação e substância criadas, o programa apresentará exemplos visuais de seu uso na vida real, de forma que a pertinência daquele conhecimento se torne mais evidente para o aluno, que poderá aplicá-lo em prática no seu dia a dia. Além disso, no menu principal o aprendiz terá acesso a um catálogo listando todas as reações e substâncias já criadas (com destaque nas que foram solicitadas em desafios), na ordem cronológica de realização e em formato de árvore para facilitar a compreensão do processo. Também estarão listadas em separado todas as tentativas de fusão de itens que não resultaram em reações, para que o usuário possa analisar seus erros, investigando premissas como "por que X reage com Y mas não reage com Z?".

Como o aplicativo deverá ser usado: O acompanhamento do professor se faz necessário para esclarecer dúvidas, auxiliar em momentos de dificuldade e verificar a assimilação de conhecimento do aprendiz. Além disso, o protótipo não se propõe a substituir a aula em sala, mas sim a ser um adicional a ela, podendo ser usado tanto em sala quando em tarefas a serem executadas em casa e apresentadas posteriormente ao educador. A ideia é que o avanço do jogo ocorra em paralelo ao decorrer das aulas, com novos elementos, substâncias e reações sendo desbloqueados à medida que são apresentados pelo professor.

Material de apoio: Serão os livros didáticos presentes no ensino médio ou wikis da internet, e terão a função de, junto da mediação do educador, retirar dúvidas mais específicas como qual a estrutura da molécula que se está buscando montar, ou mesmo questões mais básicas sobre a lógica de funcionamento das moléculas e como pequenas alterações na ordem dos átomos produzem substâncias diferentes.

Proposta de mecanismo de certificação de que houve assimilação do conhecimento: Uma apresentação em sala no final do curso, relatando o trajeto percorrido pelo aprendiz no processo cronológico de criação das substâncias que conseguiu elaborar com o programa,

usando como base a lista catalogada no software e fazendo apontamentos de onde teve dificuldades e facilidades, concluindo numa explicação da lógica por trás da ordem de realização das reações no decorrer do jogo.

3. Considerações finais

O Atonimator favorece o estilo de construção de conhecimento visual e prático, tanto por conta de sua interface quanto pela forma como deve ser executado. Por isso e também por conta do formato como propomos seu conteúdo e funcionamento, sugere-se que seja usado junto da aula teórica em sala, a qual tende para outros estilos de aprendizagem.

Um aspecto importante do jogo está em sua proposta de uma forma de ensino horizontal, posto que a presença do professor se faz necessária não como detentor da informação, mas sim como mediador e orientador, possibilitando que haja uma relação de troca entre educador e aprendiz. Outro ponto positivo é que, por apresentar o uso prático das reações e substâncias descobertas na simulação, o jogo facilita a compreensão e estimula o aprendiz a aplicar o conhecimento apreendido no seu dia a dia, o que pode inclusive ser uma forma de comprovar a efetividade do ensino.

Um elemento que precisa ser mais afinado para o desenvolvimento do Atominator diz respeito à participação do educador: deve ficar a cargo dele o desbloqueio de novos elementos no jogo, ou os elementos deverão se desbloquear automaticamente conforme o aluno avança no jogo? A preocupação por garantir que o professor esteja presente como ponte e não como detentor da informação nos traz questionamentos nesse sentido, aos quais julgamos necessitar de maior embasamento teórico para apresentar respostas.

Uma sugestão para o uso do software é que ele seja acompanhado também de aulas práticas em laboratório de química e física, para uma maior familiarização com os conceitos, posto que é uma forma de aprendizado mais prática. A vantagem do software em relação ao laboratório está na possibilidade de se criar substâncias cuja elaboração em laboratório é inviável, seja por falta de recursos, seja por possíveis riscos envolvidos na realização do experimento. No entanto, considerando a precariedade do ensino público brasileiro, em que laboratórios são praticamente inexistentes nas escolas, entendemos a inviabilidade dessa sugestão.

Aqui entramos no principal desafio em relação ao protótipo: sua distribuição. Em um país onde a educação sofre cada dia mais ataques, ainda mais agora com medidas como a

reforma no Ensino Médio do governo golpista de Temer, como fazer com que o Atominator alcance as escolas públicas e garantir que tanto os alunos quanto os educadores disponham do suporte e do conhecimento técnico necessário para operá-lo? Pensar em maneiras de garantir um custo de produção mínimo sem comprometer seu funcionamento e em um suporte tecnológico o mais amplo possível são questões fundamentais no esforço por garantir que o software não se faça presente apenas nas escolas particulares, entendendo isso como parte de uma luta maior pela democratização do conhecimento.

4. Referências

FREIRE, P. Pedagogia do oprimido. Rio de Janeiro: Paz e Terra, 2010.

VALENTE, J. A. A espiral de aprendizagem e as tecnologias de informação e comunicação: repensando conceitos. In: JOLY, M. C. *A tecnologia no ensino*: implicações para a aprendizagem. São Paulo: Casa do Psicólogo Editora, 2002.

_____. Diferentes usos do computador na educação. In: *Computadores e conhecimento*: repensando a educação. 1ª ed. Campinas: NIED-Unicamp, 1993.