Statistica descrittiva

indici

indici (o misure) di posizione

media campionaria di n osservazioni $x_1, x_2, ..., x_n$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

per k campioni x_i ripetuti ciascuno con frequenza f_i

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{k} x_i f_i$$

proprietà

Posto $y_i = a x_i + b : \bar{y} = a \bar{x}$

mediana m di n osservazioni $x_1 \le x_2 \le ... \le x_n$

se n è dispari: $m = x_{(n+1)/2}$ se n è pari: $m = \frac{x_{n/2} + x_{(n/2)+1}}{2}$

moda

punto di massimo della distribuzione di frequenza una distribuzione con un solo punto di massimo è detta unimodale una distribuzione con più punti di massimo è detta plurimodale

indici di dispersione

varianza di n osservazioni $x_1, x_2, ..., x_n$

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

per k campioni x_i ripetuti ciascuno con frequenza f_i

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{k} (x_i - \bar{x})^2 f_i = (\frac{1}{n} \sum_{i=1}^{k} x_i^2 f_i) - (\bar{x})^2$$

proprieta

posto $y_i = a x_i + b : \sigma_v^2 = a^2 \sigma_x^2$

deviazione standard o scarto quadratico medio

range di n osservazioni $x_{1 \le x_{2 \le ... \le x_n}$

differenza tra massima e minima osservazione $range = x_n - x_1$

p-esimo quantile (o 100p-esimo percentile) di di n osservazioni $x_1 \le x_2 \le ... \le x_n$

 $p \in \mathbb{R}(0,1)$, si considera il numero np

se np non è intero: k è l'intero successivo , $Q_p = x_k$

se np è intero: k = np, $Q_p = \frac{x_k + x_{k+1}}{2}$

quartili

 Q_I primo quartile: quantile per p = 0.25

 Q_2 secondo quartile: quantile per p = 0.5 (= mediana)

 Q_3 terzo quartile: quantile per p = 0.75

differenza interquartile (IQR – InterQuartile Range)

$$IQR = Q_3 - Q_1$$

indici di forma

coefficiente di asimmetria (skewness)

$$sk = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{\sigma} \right)^{s}$$

se vale zero indica che la distribuzione è simmetrica rispetto alla media se positivo denota una coda verso destra

se negativo denota una coda verso sinistra

coefficiente di curtosi

$$curt = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{\sigma} \right)^4$$

misura quanto la distribuzione è appuntita

<u>correlazioni</u>

covarianza

di n osservazioni congiunte di 2 variabili $\{(x_1,y_1), (x_2,y_2), ..., (x_n,y_n)\}$:

$$\sigma_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = (\frac{1}{n} \sum_{i=1}^{n} x_i y_i) - \bar{x} \bar{y}$$

se $\sigma_{xy} > 0$ x e y sono direttamente correlate: a valori grandi (piccoli) di x corrispondo valori grandi (piccoli) di y;

se σ_{xy} <0 x e y sono inversamente correlate: a valori grandi (piccoli) di x corrispondo valori piccoli (grandi) di y; se σ_{xy} =0 x e y sono incorrelate;

coefficiente di correlazione

$$\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y} \; ; \; -1 \leq \rho_{xy} \leq 1$$

indice normalizzato, adimensionale ed invariante per trasformazioni lineari delle variabili

regressione lineare

retta $y = \hat{a} x + \hat{b}$ che meglio approssima la nuvola di punti (x_i, y_i)

$$\hat{a} = \frac{\sigma_{xy}}{\sigma_x^2}$$
; $\hat{b} = \bar{y} - \bar{x} \frac{\sigma_{xy}}{\sigma_x^2}$

valori stimati

$$\hat{\mathbf{y}}_i = \hat{a} \mathbf{x}_i + \hat{b}$$

rappresentano i valori stimati di y a partire dalla retta di regressione lineare

residui

$$r_i = y_i - \hat{y}_i$$

differenza tra i valori reali e stimati

valore previsto

$$\hat{y}_0 = \hat{a} x_0 + \hat{b}$$

 x_0 è un valore diverso dai valori x_i già osservati

cambiamento di scala

$$\log(y) = \hat{a}\log(x) + \hat{b}$$

devianza totale

$$DEV_{TOT} = DEV_{REG} + DEV_{RES} = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

$$DEV_{REG} = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$
; $DEV_{RES} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

coefficiente di determinazione

$$R^{2} = \frac{DEV_{REG}}{DEV_{TOT}} = 1 - \frac{DEV_{RES}}{DEV_{TOT}} = \frac{\sigma_{\hat{y}}^{2}}{\sigma_{y}^{2}} \; ; \; 0 \le R^{2} \le 1$$

tanto più esso si avvicina ad uno tanto più la funzione di regressione trovata è buona.

Probabilità

definizioni

eventi elementari

tutti i possibili esiti di un esperimento aleatorio

evento

ogni sottoinsieme di uno spazio campionario discreto Ω

spazio campionario

insieme di tutti gli eventi elementari; può essere:

se gli elementi sono un numero finito o un'infinità numerabile $P(\{\boldsymbol{\omega}_k\}) = p_k$

continuo

se è più numeroso (ad esempio: tutti i numeri reali in un certo intervallo)

linguaggio

eventi
evento certo
evento impossibile
l'evento si verifica
l'evento non si verifica
si verifica almeno uno dei due eventi
gli eventi si verificano simultaneamente
si verifica A e non si verifica B
gli eventi sono incompatibili
B implica A

proprietà eventi A, B, C sottoinsiemi di Ω

 $A \cup A = A$

 $A \cap A = A$

 $A \cup B = B \cup A$

 $A \cap B = B \cap A$

 $A \cup (B \cup C) = (A \cup C) \cup C$

 $A \cap (B \cap C) = (A \cap C) \cap C$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

 $A \cup \emptyset = A$

 $A \cap \emptyset = \emptyset$

 $A \cup \Omega = \Omega$

 $A \cap \Omega = A$

 $A \cup \bar{A} = \Omega$ $A \cap \bar{A} = \emptyset$

 $(\bar{A \cup B}) = \bar{A} \cap \bar{B}$

 $(A \cap B) = \bar{A} \cup \bar{B}$

 $(\bar{A})=A$

probabilità su Ω

 $P: P(\Omega) \rightarrow [0,1]$

proprietà

 $P(\Omega)=1$

 $P(\emptyset)=0$

 $P(\bar{A})=1-P(A)$

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

 $P\big(\cup_{n=1}^{\infty}A_n\big)=\sum_{i=1}^{\infty}P(A_i) \ , \ con \ A_i\cap A_j=\varnothing \ sei \neq j$

probabilità classica

la probabilità di un evento è il rapporto dei casi favorevoli ed il numero dei casi possibili

posto Ω di N elementi ω_k (k = 1, 2, ..., N) e

 $P(\{\omega_k\}) = p$, (eventi elementari equiprobabili), A evento

$$P(A) = \sum_{\omega_k \in A} P(\{\omega_k\}) = p|A| = \frac{|A|}{N} = \frac{|A|}{|\Omega|}$$

|A| èil numero di elementi di A

permutazione di n oggetti

è ogni allineamento di n oggetti distinti in n caselle $P_{n} = n! = n(n-1)(n-2)\cdots 3\cdot 2$

proprietà di n! (n fattoriale)

0! = 1

$$\frac{n!}{n} = (n-1)!$$

$$\frac{n!}{m!} = n(n-1)(n-2)\cdots(m+1)$$
, con $m < n$

disposizione di n oggetti in k posti

è ogni allineamento di k oggetti scelti tra n oggetti distinti in k posti $D_{n,k} = n(n-1)(n-2)\cdots(n-k+1)$, $con 1 \le k \le n$ $D_{n,n} = P_n = n!$

disposizione con ripetizione di n oggetti in k

posti è ogni allineamento di k oggetti scelti tra n oggetti e ripetibili, in k posti

combinazione di n oggetti di classe k

è ogni sottoinsieme di k elementi dell'insieme di n oggetti (modi per scegliere k oggetti tra n)

$$C_{n,k} = \frac{D_{n,k}}{P_k} = \binom{n}{k} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k!} ,$$

coefficiente Binomiale

 $D_{n,k}^* = n^k$, $con k \ge 1$

$$\binom{n}{k} = \binom{n}{n-k} = C_{n,k} ; \binom{n}{1} = n ; \binom{n}{0} = \binom{n}{n} = 1$$

combinazione con ripetizione di k oggetti scelti

ogni gruppo formato di k oggetti scelti fra n, che possono essere ripetuti (modi per disporre k oggetti uguali in n posti)

$$C_{n,k}^* = {n+k-1 \choose k} = {n+k-1 \choose n-1}$$

permutazione con ripetizione di n oggetti uguali fra loro a gruppi

(allineamento in n posti di n oggetti)

$$P_{k_1,k_2,...k_r}^* = \frac{n!}{k_1! k_2! ... k_r!}$$

probabilità condizionata

probabilità dell'evento A, condizionata a B

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

proprietà

$$P(A \cap B) = P(B \cap A) = P(A|B)PB = P(B|A)P(A)$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(\bar{A}|B) = 1 - P(A|B)$$

probabilità totali

$$\begin{split} P(A) = & \sum_{j=1}^{n} P(A|B_{j}) \cdot P(B_{j}) \;\;, \\ con \cup_{j=1}^{n} B_{j} = \Omega \;\;, \; B_{i} \cap B_{j} = \varnothing \; per \, i \neq j \;\;, \;\; P(B_{j}) \neq 0 \; per \; ogni \; j \\ caso \; notevole: \\ P(A) = & P(A|B) P(B) + P(A|\bar{B}) P(\bar{B}) \;\;, \\ con \{B, \bar{B}\} \; partizione \; di \; \Omega \end{split}$$

formula di Bayes

$$P(B_k|A) = \frac{P(A|B_k)P(B_k)}{\sum_{j=1}^{n} P(A|B_j) \cdot P(B_j)}, \quad perognik$$

indipendenza di eventi

eventi A, B indipendenti

lo sono se soddisfano una delle seguenti condizioni $P(A \cap B) = P(A) \cdot P(B)$ P(A|B) = P(A) P(B|A) = P(B)

famiglia di eventi indipendenti

n eventi $A_1, A_2, ..., A_n$ costituiscono una famiglia di eventi indipendenti se per ogni sottofamiglia di r eventi ($2 \le r \le n$), la probabilità di intersezione di questi r eventi è uguale al prodotto delle probabilità di ciascuno di essi:

$$P(A_i \cap A_j) = P(A_i)P(A_j)$$
, per ogni coppia di indici $i \neq j$
 $P(A_i \cap A_j \cap ... \cap A_n) = P(A_i)P(A_j)...P(A_n)$

data una famiglia di eventi indipendenti, anche sostituendo alcuni A_i con i complementari \bar{A}_i , rimane una famiglia di eventi indipendenti.

Affidabilità di un sistema

componenti in serie

il sistema funziona se e solo se funzionano tutti i componenti

affidabilità (probabilità che il sistema funzioni) $a = a_1 \cdot a_2 \cdots a_n$

componenti in parallelo

il sistema funziona se e solo se funziona almeno un componente

affidabilità (probabilità che il sistema funzioni) $a=1-(1-a_1)\cdot (1-a_2)\cdots (1-a_n)$

variabili aleatorie e modelli probabilistici variabili aleatorie

variabile aleatoria (v.a.) discreta

è una qualunque funzione:

 $X: \Omega \to \mathbb{R}$ $(X \in I)$, $con I \subseteq \mathbb{R}$ è un'abbreviazione di $\{\omega \in \Omega : X(\omega) \in I\}$

legge (o distribuzione) di una v.a.

applicazione che associa ad ogni intervallo $I \subseteq \mathbb{R}$ il numero: $P(X \in I) = P\{\omega \in \Omega : X(\omega) \in I\}$

densità discreta di X

funzione che ad ogni valore assunto da X associa la probabilità che X assuma quel valore

$$p_X(x_k) = P(X = x_k)$$

proprietà

probabilità dell'evento $X \in I$:

$$P(X \in I) = \sum_{x_k \in I} p_X(x_k)$$
, purché la serie converga

v.a. indipendenti

se scelti n intervalli $I_1, I_2, \dots, I_n \subseteq \mathbb{R}$ si ha $P(X_1 \in I_1, X_2 \in I_2, \dots, X_n \in I_n) = P(X_1 \in I_1) \cdot P(X_2 \in I_2) \cdots P(X_n \in I_n)$

valore atteso, o media, o speranza matematica

$$\mu_X = EX = \sum_k x_k p_X(x_k) \text{ , per X discreta}$$

$$\mu_X = EX = \int_X t \cdot f_X(t) dt \text{ , per X continua}$$

proprietà

$$E(aX+b) = a(EX) + b, con a, b \in \mathbb{R}$$

$$E(X_1 + X_2 + ... + X_n) = EX_1 + EX_2 + ... + EX_n$$

$$E(X_1 \cdot X_2 \cdot ... \cdot X_n) = EX_1 \cdot EX_2 \cdot ... \cdot EX_n,$$

$$con X_1, X_2, ..., X_n v.a. indipendenti$$

$$Ef(X) = \sum_{k} f(x_k) p_X(x_k)$$
 , purché la serie converga

$$E(aX_1+b) = aEX_1+b \ , \ per \ ognia \ , b \in \mathbb{R} \ (per \ v.a. \ continue)$$

$$E(g(X_1)) = \int_{\mathbb{R}} g(t) f_{X_1}(t) dt \text{ , } perg: \mathbb{R} \rightarrow \mathbb{R} \text{ (per v.a. continue)}$$

varianza

X v.a. discreta:

$$\sigma_X^2 = VarX = E((X - EX)^2) = E(X^2) - (EX)^2$$

X v.a. continua:

$$\sigma_X^2 = VarX = E(X^2) - (EX)^2 = \int_{\mathbb{R}} t^2 f_X(t) dt - (\int_{\mathbb{R}} t f_X(t) dt)^2$$

proprietà

 $VarX \ge 0$

$$VarX = E(X^2) - (EX)^2$$

Var(c)=0, per ogni costante c

 $Var(aX+b)=a^2VarX$, per ogni a, $b \in \mathbb{R}$

$$\begin{aligned} & \textit{VarX} = \sum_{k} (x_k - EX)^2 \; p_X(x_k) = (\sum_{k} x_k^2 \; p_X(x_k)) - (EX)^2 \\ & \textit{Var} \left(X_1 + X_2 + \ldots + X_n \right) = \textit{VarX}_1 + \textit{VarX}_2 + \ldots + \textit{VarX}_n \; , \\ & \textit{con} \; X_i \textit{indipendenti} \end{aligned}$$

deviazione standard o scarto quadratico medio

$$\sigma_{V} = \sqrt{\sigma_{V}^{2}} = \sqrt{VarX}$$

covarianza

 $Cov(X,Y) = E((X-EX)\cdot(Y-EY)) = E(XY) - EX\cdot EY,$ con X, Y v.a. con varianza finita

proprietà

Cov(X, X) = VarXCov(X,c)=0 , perognicostantecCov(X, Y) = Cov(Y, X)Cov(X+Y,Z)=Cov(X,Z)+Cov(Y,Z)Cov(Y, Y+Z) = Cov(X, Y) + Cov(X, Z)Cov(aX, Y) = aCov(X, Y)Cov(X, aY) = aCov(X, Y)Var(X+Y) = VarX + VarY + 2Cov(X,Y) $|Cov(X,Y)| \le \sqrt{VarX \cdot VarY}$ (dis. Cauchy – Swartz)

correlazione

due v.a. con varianza finita si dicono incorrelate se: Cov(X,Y)=0in tal caso:

Var(X+Y) = Var(X) + Var(Y)

coefficiente di correlazione di X, Y

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_{X} \cdot \sigma_{Y}} = \frac{Cov(X, Y)}{\sqrt{VarX \cdot VarY}} , dove - 1 \le \rho_{XY} \le 1$$

se ρ_{XY} è vicino a zero: X e Y sono quasi indipendenti

se ρ_{XY} è positivo: ad X grande corrisponderà in genere una Y grande se ρ_{XY} è negativo: ad X grande corrisponderà in genere una Y piccola

se $\rho_{XY} = \pm 1$ le v.a. sono una funzione lineare dell'altra: Y = aX + b

standardizzata di X

è una v.a. ottenuta da una v.a. X con media e varianza finite:

$$X^* = \frac{X - \mu_X}{\sigma_X}$$
$$EX^* = 0 \cdot Var X^* = 1$$

disuguaglianza di Cebicev

sia X una v.a. di valore atteso μ_X e varianza σ_X^2 finite, allora per

$$P(|X - \mu_X| \ge \delta \sigma_X) \le \frac{1}{\delta^2}$$
, ovvero

$$P(|X - \mu_X| < \delta \,\sigma_X) = P(\mu_X - \delta \,\sigma_X < X < \mu_X + \delta \,\sigma_X) \ge 1 - \frac{1}{\delta^2}$$

processo di Bernoulli

sequenza di esperimenti di Bernoulli indipendenti di uguale parametro

esperimento bernulliano o prova di Bernoulli

è un esperimento aleatorio che può avere solo due esiti possibili:

- successo: con probabilità p
- insuccesso: con probabilità (1-p)

p è il parametro della prova di Bernoulli

processo di Bernoulli limitato

il numero di prove è finito

bernulliana di parametro p

$$X \sim B(p)$$

descrive l'esito di ogni prova di Bernoulli

$$p_X(1) = p$$
; $p_X(0) = 1 - p$
 $EX = p$; $VarX = p(1-p)$

la probabilità di ottenere, in n prove, una particolare sequenza di k successi e (n-k) insuccessi è:

$$p^{k} \left(1-p\right)^{n-k}$$

la probabilità di ottenere, in n prove, almeno un successo è:

$$1-(1-p)^n$$

Binomiale di parametri n e p

$$X \sim B(n, p)$$

conta il numero complessivo di successi ottenuti in n prove (estrazione con reimissione)

$$\begin{aligned} p_X(k) &= \binom{n}{k} p^k (1-p)^{n-k}, & k = 0, 1, 2, \dots, n \\ EX &= np \; ; & VarX &= np(1-p) \\ sk(X) &= \frac{1-2p}{\sqrt{np(1-np)}} \; ; & curt(X) &= 3 + \frac{1-6p(1-p)}{np(1-p)} \end{aligned}$$

$$EX = np$$
; $VarX = np(1-p)$
 $Sk(X) = \frac{1-2p}{}$: $curt(X) = 3 + \frac{1-6p(1-p)}{}$

il numero di oggetti di tipo K che si trovano in un campione di n oggetti estratti con reimmissione da un insieme di N oggetti che contiene K oggetti di un tipo e (N-K) oggetti di un'altro è:

$$X \sim B(n, \frac{K}{N})$$

processo di Bernoulli illimitato

sequenza infinita di prove

Binomiale negativa di parametri -n e p

$$X \sim B(-n, p)$$

conta il numero di insuccessi che si ottengono prima di ottenere n

$$p_{X}(k) = {n+k-1 \choose k} p^{n} (1-p)^{k}, \quad k = 0,1,2,...$$

$$EX = n \frac{1-p}{p}; \quad VarX = n \frac{1-p}{p^{2}}$$

il numero Y di prove necessarie per ottenere n success

$$P(Y=k) = P(X+n=k) = P(X=k-n) = {k-1 \choose k-n} p^{n} (1-p)^{k-n},$$

$$per k = n, n+1, n+2.$$

Geometrica di parametro p

$$X \sim G(p)$$

conta il numero di prove necessarie per ottenere il primo successo

$$p_X(k) = p(1-p)^{k-1}$$
, per $k = 1,2,3,...$

$$EX = \frac{1}{p}$$
; $VarX = \frac{1-p}{p^2}$

Geometrica traslata di parametro p

$$X \sim G'(p)$$

conta il numero di insuccessi prima del primo successo

$$p_X(k) = p(1-p)^k$$
, $per k = 0,1,2,...$

$$EX = \frac{1-p}{p}$$
; $VarX = \frac{1-p}{p^2}$

Ipergeometrica di parametri (N, K, n)

$$X \sim G(N, K, n)$$
 , $con N \ge k$; $N \ge n$

conta il numero di oggetti di tipo K che si trovano in un campione di n oggetti estratti senza reimmissione da un insieme di N oggetti che contiene K oggetti di un tipo e (N-K) oggetti di un altro.

$$p_{X}(k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}, \ con0 \le k \le n \ ; \ k \le K \ ; \ (n-k) \le (N-K)$$

$$EX = n\frac{K}{N}$$
; $VarX = n\frac{K}{N}\left(1 - \frac{K}{N}\right)\left(\frac{N-n}{N-1}\right)$

approssimazione Binomiale

per N (e quindi K) molto grandi (N > 10n) è come se estraessimo con

$$X \sim G(N, K, n) \rightarrow X \sim B(n, \frac{K}{N})$$
, per $N \rightarrow \infty$

$$\begin{aligned} p_X(k) &\to \binom{n}{k} p^k (1-p)^{n-k} , per N \to \infty , p = \frac{K}{N} \\ EX &= np ; Var X = np (1-p) \left(\frac{N-n}{N-1}\right) \end{aligned}$$

$$\left(\frac{N-n}{N-1}\right)$$
 (fattore di correzione per la popolazione finita (< 1))

Poisson di parametro $\lambda > 0$

$$Y \sim P_0(\lambda)$$
, $con\lambda > 0$

permette di descrivere quantitativamente situazioni in cui non abbiamo accesso ai valori di N e p, ma possediamo un unica informazione numerica: il parametro λ (numero medio di arrivi)

$$p_{Y}(k) = e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad per \ k = 0, 1, 2, \dots$$

$$EY = \lambda \quad ; \quad VarY = \lambda$$

$$sk(X) = \frac{1}{\sqrt{\lambda}} \quad ; \quad curt(X) = 3 + \frac{1}{\lambda}$$

proprietà

se
$$X_i \sim P_0(\lambda_i)$$
 allora:
 $X_1 + X_2 + ... + X_n \sim P_0(\lambda_1 + \lambda_2 + ... + \lambda_n)$

approssimazione della Binomiale

per N molto grande e p molto piccolo:

$$X \sim B(N, p) \rightarrow Y \sim P_0(Np)$$
, $P(X=k) \rightarrow P(Y=k)$

processo Poisson di intensità v

permette di calcolare probabilità di eventi che accadono in un certo intervallo di tempo diverso da quello su cui abbiamo informazioni di

posto $\lambda = vt$ con v numero medio di arrivi nell'unità di tempo, il numero X_t di arrivi nell'intervallo di tempo [0, t] è dato da

$$p_{X_i}(k) = e^{-\nu t} \frac{(\nu t)^k}{k!}$$
, $per k = 0,1,2,...$
 $EX_i = \nu t : VarX_i = \nu t$

variabili aleatorie continue

densità continua f_x

determina la legge della v.a. continua X; è una densità di probabilità

$$P(X \in I) \equiv \int_{I} f_{x}(t) dt$$
 , $con I \subseteq \mathbb{R}$

$$f_x : \mathbb{R} \to \mathbb{R} \ ; \ f_x(t) \ge 0 \ , \ \operatorname{perognit} \in \mathbb{R} \ ; \ \int_{\mathbb{R}} f_x(t) dt = 1$$

proprietà

P(X=t)=0, per ogni $t \in \mathbb{R}$ (la probabilità che assuma un valore fissato è nulla (integrale di un punto))

$$P(X \le a) = P(X < a)$$

$$P(a \le X < b) = P(a < X < b)$$

esempi di densità continue

densità uniforme

$$f_{X}(t) = \frac{1}{b-a} I_{(a,b)}(t) , a, b \in \mathbb{R}, a < b$$

$$con I_{(a,b)}(t) = 1 , pert \in (a,b)$$

$$I_{(a,b)}(t) = 0 , pert \notin (a,b)$$
 (funzione indicatrice)
$$P(X \in J) = \int_{\mathbb{R}} \frac{1}{b-a} I_{(a,b)}(t) dt = \frac{1}{b-a} |(a,b) \cap J|$$

densità di Cauchy

$$f_X(t) = \frac{1}{\pi (1+t^2)}$$

$$P(a < X < b) = \int_a^b \frac{1}{\pi (1+t^2)} = 1/\pi (\arctan(b) - \arctan(a))$$

densità Normale Standard

"curva a campana" di Gauss, o curva degli errori

$$f_X(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}$$

$$P(a < X < b) = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

funzione di ripartizione di X (f.d.r.)

equivale alla densità discreta nel caso continuo

$$\hat{F}_X(t)$$
: $\mathbb{R} \rightarrow [0,1]$

$$F_X(t) = P(X \le t)$$
 , $perognit \in \mathbb{R}$

$$F_X(t) = \int_{-\infty}^{t} f_X(y) dy$$
, per X continua

$$F_X(t) = \sum_{x_i \le t} p_X(x_k)$$
 , per X discreta

proprietà

$$set_1 < t_2$$
, $(X \le t_1) \subseteq (X \le t_2)$, $P(X \le t_1) \le P(X \le t_2)$, $(F_X(t) \ \hat{e} \ monotona \ crescente)$
 $F_X(t) \to 1$ $pert \to +\infty$
 $F_X(t) \to 0$ $pert \to -\infty$

$$F_X(t) \rightarrow 1$$
 per $t \rightarrow +\infty$

$$F_X(t) \rightarrow 0 \quad pert \rightarrow -\infty$$

$$F_X(t) \rightarrow 0$$
 per $t \rightarrow -\infty$
 $F_X(b) - F_X(a) = P(X \le b) - P(X \le a) = P(a < X \le b)$

$$cona,b \in \mathbb{R}$$
 , $a < b$

la f.d.r. di una v.a. continua è sempre una funzione continua nei punti in cui la densità è continua; in questi punti è derivabile: $F_{X}(t) = f_{X}(t)$

quantile α -esimo (q_{α})

$$P(X \leq q_{\alpha}) = \alpha$$
 , con $q_{\alpha} \in (a,b) \subseteq \mathbb{R}$, $\alpha \in (0,1)$

variabili aleatorie legate al processo di **Poisson**

legge Esponenziale di parametro v

$$Y \sim Esp(v)$$
 , $con v > 0$

misura l'istante del primo arrivo in un processo di Poisson X_t di intensità v, o il tempo di attesa tra due arrivi successivi;

è l'unico modello adeguato a rappresentare il tempo di vita di un apparecchio non soggetto ad usura $F_Y(t)=1-\mathrm{e}^{-\nu t}$, $per\ t>0$

$$F_Y(t)=1-e^{-vt}$$
, per $t>0$
 $F_Y(t)=0$, per $t\le 0$

$$f_{y}(t)=ve^{-vt}$$
, per $t>0$
 $f_{y}(t)=0$, per $t<0$

$$f_{v}(t)=0$$
 , per $t<0$

$$E(Y) = \frac{1}{v}$$
; $Var Y = \frac{1}{v^2}$

$$sk(X)=2$$
; $curt(X)=9$

stimatore non distorto per legge Esponenziale

$$U = T \frac{n-1}{n} = \frac{n-1}{\sum_{i=1}^{n} X_{i}}$$

$$\hat{v} = \frac{n-1}{\sum_{i=1}^{n} X_i} = \frac{n-1}{n} \frac{1}{\bar{X}_n} , (stima \, di \, v)$$

legge Gamma di parametri n (intero positivo) e v (intero positivo)

$$Y \sim \Gamma(n, \nu)$$

misura l'istante dell'ennesimo arrivo in un processo di Poisson X_t di

$$F_{Y}(t) = 1 - \sum_{k=0}^{n-1} e^{-\nu t} \frac{(\nu t)^{k}}{k!}$$
, per $t > 0$

$$F_{v}(t)=0$$
, per $t \leq 0$

$$f_{Y}(t) = v e^{-vt} \frac{(vt)^{n-1}}{(n-1)!} = C_{n,v} t^{n-1} e^{-vt}$$
, per $t > 0$,

$$f_{Y}(t)=0$$
 , per $t<0$

$$C_{n,\nu} = \frac{\nu^n}{(n-1)!}$$

$$E(Y) = \frac{n}{v}$$
; $Var Y = \frac{n}{v^2}$

legge Gamma di parametri r e ν (reali positivi)

$$Y \sim \Gamma(r, \nu)$$

descrive il tempo di vita di un apparecchio la cui propensione al guasto cresce col tempo, fino al limite v

$$f_{Y}(t) = C_{r,v} t^{r-1} e^{-vt}$$
, per $t > 0$

$$f_{y}(t)=0$$
 , per $t<0$

$$E(Y) = \frac{r}{v}$$
; $Var Y = \frac{r}{v^2}$

assenza di memoria

$$P(Y \ge T - t | Y \ge T) = P(Y \ge t)$$

$$P(Y \ge T + t) = P(Y \ge t) \cdot P(Y \ge T)$$

se una v.a. continua soddisfa questa proprietà, allora ha legge Esponenziale se è continua e legge Geometrica traslata se discreta

istantaneous failure rate (propensione istantanea al guasto)

$$Z(t) = \frac{f_{Y}(t)}{1 - F_{Y}(t)}$$

per la legge Esponenziale:

$$Z(t)=v$$
, $pert>0$

per la legge Gamma:

$$Z(t) = C_n \frac{t^{n-1}}{\sum_{k=0}^{n-1} \frac{(v t)^k}{k!}} = \frac{v^n}{(n-1)!} \frac{t^{n-1}}{\sum_{k=0}^{n-1} \frac{(v t)^k}{k!}}$$

densità di Weibull

utile a rappresentare il tempo di vita di un apparecchio

posto
$$Z(t) = c t^{\beta}$$
 si trova:
 $F_Y(t) = 1 - e^{\frac{-c t^{\beta+1}}{\beta+1}}$, $con \beta > -1$
 $f_Y(t) = c t^{\beta} e^{\frac{-c t^{\beta+1}}{\beta+1}}$

$$f(t) = c t^{\beta} \frac{-c t^{\beta+1}}{\beta+1}$$

se $\beta > 0$ l'apparecchio invecchia

se $-1 < \beta < 0$ l'apparecchio migliora col tempo

se $\beta = 0$ si ritrova la legge Esponenziale

modello Normale

legge Normale standard

$$Z \sim N(0,1)$$

$$F_Z(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{\frac{-y^2}{2}} dy \equiv \Phi(t)$$

$$f_Z(t) = \frac{1}{\sqrt{2\pi}} e^{\frac{-t^2}{2}} \equiv \varphi(t)$$

$$E(Z)=0$$
; $Var Z=1$

proprietà

$$\Phi(-t)=1-\Phi(t)$$
 , (simmetria)

calcoli con i quantili

posto z_{α} quantile α -esimo della legge Normale standard:

$$z_{\alpha} = -z_{1-\alpha}$$

$$P(Z < z_{\alpha}) = \alpha$$

$$P(Z>z_{1-\alpha})=\alpha$$

$$P(|Z| > z_{1-\alpha/2}) = \alpha$$

$$P(|(Z)| < z_{(1+\alpha)/2}) = \alpha$$

legge Normale (o gaussiana) di media μ e varianza σ²

$$X \sim N(\mu, \sigma^2)$$

rappresenta bene gli errori di approssimazione

$$F_X(t) = \Phi(\frac{t-\mu}{\sigma})$$

$$f_X(t) = \frac{1}{\sigma} \varphi(\frac{t-\mu}{\sigma}) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(t-\mu)^2}{2\sigma^2}}$$

$$EX = \mu$$
; $Var X = \sigma$

$$sk(X)=0$$
; $curt(X)=3$

la v.a.
$$Z = \frac{X - \mu}{\sigma}$$
 ha legge Normale standard

posto $X_1 \sim N(\mu_1 \sigma_1^2)$, $X_2 \sim N(\mu_2 \sigma_2^2)$ indipendenti:

$$X_1 + X_2 \sim N(\mu_1 + \mu_2 \sigma_1^2 + \sigma_2^2)$$

posto $a.b \in \mathbb{R}$:

$$aX_1 + b \sim N(a \mu_1 + b, a^2 \sigma_1^2)$$

relazione tra legge Normale e legge Normale standard

$$Z \sim N(0.1) \Rightarrow \sigma Z + \mu \sim N(\mu, \sigma^2)$$

$$X \sim N(\mu, \sigma^2) \Rightarrow \frac{X - \mu}{\sigma} \sim N(0, 1)$$

errori

Y = misura di una grandezza fisica

v = valore vero

 $X = errore\ di\ misura$

 μ =errore sistematico

 E_c =errore casuale

 $\sigma^2 = inacuratezza della misura$

$$X \sim N(\mu, \sigma^2)$$
, $X = \mu + E_c$

$$E_{\alpha} \sim N(0, \sigma^2)$$

$$E(E_c)=0$$

$$EY = v + \mu$$

media campionaria

se $X \sim N(\mu, \sigma^2)$ sono v.a. indipendenti ed identicamente

distribuite (i.i.d.):

$$\bar{X}_n \sim N(\mu, \frac{\sigma^2}{n})$$

$$E \bar{X}_n = \mu \; ; \; Var \bar{X}_n = \frac{\sigma^2}{n}$$

media campionaria standardizzata

$$S_n^* = \frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}}$$
, $n = 1, 2, 3, ...$

teorema del limite centrale

$$P(S_n^* \le t) \rightarrow \Phi(t) \quad per \quad n \rightarrow \infty \quad , \quad t \in \mathbb{R}$$

approssimazione Normale

Date X_i v.a.i.i.d., $EX_i = \mu$, $VarXi = \sigma^2$ con n abbastanza grande:

$$\bar{X}_{n} \simeq N(\mu, \frac{\sigma^{2}}{n}) \text{ ossia } P(\bar{X}_{n} < t) \simeq \Phi\left(\sqrt{n}\left(\frac{t-\mu}{\sigma}\right)\right)$$

$$\sum_{i=1}^{n} X_{i} \simeq N(n\mu, n\sigma^{2}) \text{ ossia } P(\sum_{i=1}^{n} X_{i} < t) \simeq \Phi\left(\frac{t-n\mu}{\sqrt{n\sigma}}\right)$$

approssimazione Normale di Gamma per n grande:

$$Y \sim \Gamma(n, \lambda)$$

$$Y \simeq N(\frac{n}{\lambda}, \frac{n}{\lambda^2})$$

$$F_{Y}(t) = P(Y < t) \simeq \Phi\left(\frac{\lambda t - n}{\sqrt{n}}\right)$$

approssimazione Normale della Binomiale:

approssimazione utile in problemi di campionamento

$$\widehat{NOTA}$$
: vale se: $np > 5$; $n(1-p) > 5$

$$Y \sim B(n, p)$$

$$Y \simeq N(np, np(1-p))$$

$$F_{Y}(t) = P(Y \le t) \simeq \Phi\left(\frac{t - np}{\sqrt{np(1 - p)}}\right) , (per v.a. continua)$$

$$F_{Y}(k) = P(Y \le k) \simeq \Phi\left(\frac{k + 0.5 - np}{\sqrt{np(1-p)}}\right)$$
,

$$k=0,1,2,\ldots,n$$
 , (per v.a. discreta)

momenti ed indici di forma per v.a.

momento r-esimo di X

$$\mu_r = E(X^r)$$

$$\mu'_r = \sum_k x_k^r p_X(x_k)$$
, per X discreta

$$\mu_r = \int_{\Omega} x^r f_X(x) dx$$
, per X continua

momento r-esimo centrato di X

$$\mu_r = E((X - EX)^r)$$

$$\mu_r = \sum_k (x_k - \mu)^r p_X(x_k)$$
, con $\mu = EX$, per X discreta

$$\mu_r = \int_{\mathbb{R}} (x - \mu)^r f_X(x) dx$$
, per X continua

coefficiente di asimmetria (skewness) di una v.a. X con μ ' $_3$ finito

misura l'assimetria di X rispetto al valore atteso

$$sk(X) = \frac{\mu_3}{\mu_2^{3/2}} = E\left[\left(\frac{X - \mu}{\sigma}\right)^3\right]$$

coefficiente di curtosi di una v.a. X con μ'4 finito

misura quanto la densità di X sia appuntita

$$curt(X) = \frac{\mu_4}{\mu_2^2} = E\left[\left(\frac{X - \mu}{\sigma}\right)^4\right], \quad \mu = EX, \quad \sigma^2 = Var X$$

statistica inferenziale

campionamento e stime

definizioni

modello statistico

famiglia di leggi di v.a., dipendenti da uno o più parametri incogniti: $\{p_X(x;\underline{\vartheta}):\underline{\vartheta}\!\in\!I\}$

 $\underline{9}$ è un vettore di parametri

campione casuale di ampiezza n

estratto da una popolazione di densità $p_X(x;\underline{\theta})$ è una ennupla di v.a. indipendenti e identicamente distribuite (i.i.d) $(X_{1_1}X_{2_1},\ldots,X_n)$, ciascuna avente legge $p_X(x;\underline{\theta})$.

stima di parametri e stimatori

stima puntuale dei parametri

stimare il valore vero del parametro (o dei parametri) a partire dal campione casuale

stima del parametro p della popolazione bernulliana

 $\hat{p} = \bar{x}_n$, con x_i valori effettivamente osservati

statistica T

è una qualsiasi v.a. T funzione del campione casuale (X_1, X_2, \ldots, X_n) di ampiezza n estratto da una popolazione di legge $p_X(x, \theta)$:

$$T = f(X_1 X_2 ..., X_n)$$
, $con f: \mathbb{R}^n \to \mathbb{R}$

stimatore del parametro &

statistica che viene usata per stimare il valore del parametro ϑ è **corretto (non distorto)** se $ET = \vartheta$ altrimenti è detto **distorto**

stima del parametro ϑ

 $\hat{\theta} = f(x_1, x_2, ..., x_n)$, calcolato a campionamento eseguito

stimatore consistente

 $var T_n \rightarrow 0 \ per \ n \rightarrow \infty$, $con T_n stimatore corretto di 9$

valore atteso della media campionaria

$$EX_n = \mu$$

varianza della media campionaria

$$Var \bar{X}_n = \frac{\sigma^2}{n}$$

legge dei grandi numeri

$$P\{|\bar{X}_n - \mu| > \epsilon\} \rightarrow 0 \text{ , } per n \rightarrow \infty$$

stime

stima di $\sigma^2 = h(\theta)$

$$S_n^2 \equiv \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \bar{X}_n \right)^2$$
, (varianza campionaria)

a campionamento effettuato:

$$s_n^2 \equiv \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x_n})^2 = \frac{1}{n-1} \sum_{i=1}^n x_i^2 - \frac{n}{n-1} (\bar{x_n})^2$$

stima popolazione Normale

$$\hat{\mu} = \bar{x}_n$$

$$\hat{\sigma}^2 = s^2$$

se µ è nota

$$\hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \mu)^{2}$$

stima popolazione Gamma

$$\hat{\lambda} = \frac{\bar{x}_n}{s_n^2} \; ; \; \hat{r} = \frac{\bar{x}_n^2}{s_n^2}$$

leggi

legge Chi quadro con n gradi di libertà

$$Y \sim X^2(n) \equiv Y \sim \Gamma(\frac{n}{2}, \frac{1}{2})$$

 $X_{i} \ sono \ v.a.$ indipendenti, ciascuna di legge N(0,1)

$$f_{Y}(t) = c_{n}t^{\frac{n}{2}-1}e^{-\frac{t}{2}}, per t > 0$$

 $f_{Y}(t) = 0, per t < 0$
 $EY = n; Var Y = 2n$

proprietà

posto $Y_1 \sim X^2(n_1)$, $Y_2 \sim X^2(n_2)$ indipendenti:

$$Y_1 + Y_2 \sim X^2(n_1 + n_2)$$

intervallo a cui una v.a. di legge Chi quadro appartiene con probabilità

$$P\left(X_{\frac{1-\alpha}{2}}^{2}(n) < Y < X_{\frac{1+\alpha}{2}}^{2}(n)\right) = \alpha$$

approssimazione Normale di Chi quadro per n grande

$$X^{2}(n) \simeq N(n, 2n)$$
, per n grande
 $P(Y < t) \simeq \Phi\left(\frac{t-n}{\sqrt{2n}}\right)$

$$P(Y < t) \simeq \Phi \left(\frac{1}{\sqrt{2n}} \right)$$

$$V^{2}(n) \simeq \pi \sqrt{\frac{2n}{n}} + n$$

$X_{\alpha}^{2}(n) \simeq z_{\alpha} \sqrt{2n} + n$

approssimazioni

Sia X_i , X_2 ,..., X_n un campione casuale estratto da una popolazione di legge $N(\mu, \sigma^2)$, allora:

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right) \sim X^2(n)$$

$$\sum_{i=1}^{n} \left(\frac{X_i - \bar{X}_n}{\sigma} \right) \sim X^2(n-1)$$

$$\frac{(n-1)S_n^2}{\sigma^2} \sim X^2(n-1)$$

 S^{2} , e \bar{X} , sono tra loro indipendenti

legge t di student a n gradi di libertà

$$T \sim t(n)$$
; con $T = \frac{Z}{\sqrt{Y/n}}$, $Z \sim N(0,1)$, $Y \sim X^{2}(n)$
 $f_{T}(t) = c_{n} \left(1 + \frac{t^{2}}{n}\right)^{-\frac{(n+1)}{2}}$, $per t \in \mathbb{R}$

ET = 0, (tranne per n = 1 per cui non esiste finito)

per $t \rightarrow \infty$ la t di student tende alla Normale standard

approssimazioni

Sia X_1, X_2, \dots, X_n un campione casuale estratto da una popolazione

di legge
$$N(\mu, \sigma^2)$$
, allora: $\frac{\overline{X}_n - \mu}{\sqrt{S^2 I n}} \sim t(n-1)$

calcoli con i quantili

posto $t_{\alpha}(n)$ quantile α -esimo della legge t(n):

$$P(T < t_{\alpha}(n)) = \alpha$$

$$P(T>t_{1-\alpha}(n))=\alpha$$

$$P(|T| > t_{1-\alpha/2}(n)) = \alpha$$

$$P(|(T)| < t_{(1+\alpha)/2}(n)) = \alpha$$

$$t_{\frac{1-\alpha}{2}}(n-1) \approx z_{\frac{1+\alpha}{2}}$$
, approssimazione per n>120

approssimazione di quantili tramite interpolazione lineare

v = mx + q ,

equazione della retta che passa per i punti $\{q_1 t_{\alpha}(q_1)\}, \{q_2 t_{\alpha}(q_2)\}$

$$t_{\alpha}(x) \! = \! t_{\alpha}(q_{\scriptscriptstyle 1}) \! - \! \frac{t_{\alpha}(q_{\scriptscriptstyle 2}) \! - \! t_{\alpha}(q_{\scriptscriptstyle 1})}{q_{\scriptscriptstyle 2} \! - \! q_{\scriptscriptstyle 1}}(x \! - \! q_{\scriptscriptstyle 1}) \ , \ con \ q_{\scriptscriptstyle 1} \! < \! x \! < \! q_{\scriptscriptstyle 2}$$

legge di fisher con m e n gradi di libertà

$$X \sim F(m,n)$$
; $con X = \frac{U/m}{V/n}$, $U \sim X^2(m)$, $V \sim X^2(n)$

proprietà

$$\frac{1}{X} \sim F(n, m)$$

$$P(X < F_{\alpha}(m, n)) = \alpha$$

$$P(\frac{1}{X} < \frac{1}{F_{\alpha}(m, n)}) = 1 - \alpha$$

$$\frac{1}{F_{\alpha}(m, n)} = F_{1-\alpha}(n, m)$$

$$\frac{S_{1}^{2}}{S_{2}^{2}} = F(m-1, n-1)$$

intervallo di confidenza al livello del 100α% per

Sia (X_1, X_2, \dots, X_n) un campione casuale estratto da una popolazione di densità $f(x; \underline{\theta})$; siano $T_1 = t_1(X_1, X_2, ..., X_n)$, $T_2 = t_2(X_1, X_2, ..., X_n)$ due statistiche, e sia $h(\underline{\theta})$ una funzione del parametro che si vuole stimare; fissato un numero $\alpha \in (0,1)$, l'intervallo aleatorio (T1, T2) si dice intervallo di confidenza al 100α% per $h(\underline{\vartheta})$ se:

$$P^{\underline{\vartheta}}(T_1 < h(\underline{\vartheta}) < T_2) = \alpha$$

a campionamento eseguito l'intervallo (t₁,t₂) si dice "calcolato al

 $h(\vartheta)$ appartiene all'intervallo (t_1, t_2) con una confidenza del 100 α %; t₁ e t₂ sono detti limiti di confidenza

intervallo di confidenza per la media

(di una popolazione Normale o popolazione qualsiasi con n grande

$$\hat{\mu} = \bar{X}_n \pm z_{(1+\alpha)/2} \frac{\sigma}{\sqrt{n}} = \bar{X}_n \pm E$$
 , (convarianza nota)

$$\hat{\mu} = \bar{X}_n \pm t_{\underbrace{(1+\alpha)}}(n-1)\sqrt{\frac{S_n^2}{n}} , (con \, varianza \, incognita)$$

stima dell'ampiezza per limitare l'errore E₀

$$n=t_{(1+\alpha)/2}^2(n-1)\frac{\sigma^2}{E_0^2}$$
 , (convarianza nota)

intervallo di confidenza per la frequenza p

valido per una popolazione bernoulliana e per grandi campioni $(n \ge 30)$

$$\hat{p} = \bar{X}_n \pm z_{(1+\alpha)/2} \sqrt{\frac{\bar{X}_n (1 - \bar{X}_n)}{n}} \; ; \; se: n \, \bar{x}_n > 5 \; , \; n(1 - \bar{x}_n) > 5$$

stima dell'ampiezza per limitare l'errore E₀

$$n = \left(\frac{z_{(1+\alpha)/2}}{2E_0}\right)^2$$

 E_0 corrisponde a metà dell'intervallo di confidenza.

test di ipotesi

ipotesi statistica

è un'asserzione sul valore vero di un parametro incognito; si dice **semplice** se specifica completamente il valore del parametro, altrimenti si dice **composta**

ipotesi nulla Ho

$$H_0: \underline{9} \in \Theta_0$$

ipotesi che si ritiene vera "fino a prova contraria";

rifiuteremo H₀ solo se i dati campionari forniranno una forte evidenza statistica contro di essa

ipotesi alternativa H₁

$$H_1: \underline{9} \notin \Theta_0$$

ipotesi vera solo se H₀ è falsa

errore di tipo I

rifiutiamo H0 quando è vera; questo è considerato l'errore più grave

errore di tipo II

accettiamo H0 quando è falsa

regione critica o regione di rifiuto

è l'insieme R dei possibili risultati campionari che portano a riffutare H_0 data la **regola di decisione**: $sirifiuti H_0 seT(X_1, X_2, \dots, X_n) \in I$:

 $R = \{(x_1, x_2, \dots, x_n) : T(x_1, x_2, \dots, x_n) \in I\}$ la probabilità di riffutare H_0 prima del campionamento:

$$P^{\underline{\vartheta}}(T(X_1 X_2 ..., X_n) \in I)$$

ampiezza del test (o livello di significatività)

$$\alpha = \sup_{\theta \in \Theta_0} P^{\underline{\theta}} (T(X_1, X_2, ..., X_n) \in I)$$

rappresenta la massima probabilità di rifiutare l'ipotesi nulla quando questa è vera;

va stabilito piccolo a priori prima di eseguire il campionamento

p-value

numero pari al minimo livello di significatività a cui i dati campionari consentono di rifiutare l'ipotesi nulla;

se p-value = 0 siamo praticamente certi di non sbagliare

varianza campionaria pesata

media pesata delle varianze campionarie di due campioni n, m

$$S^{2} = \frac{(n-1)S_{X}^{2} + (m-1)S_{Y}^{2}}{n+m-2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X}_{n}) + \sum_{i=1}^{n} (Y_{i} - \bar{Y}_{n})}{n+m-2}$$

test sulla media di una popolazione Normale di varianza nota

$$z = \frac{\bar{x}_n - \mu_0}{\sigma I \sqrt{n}}$$

H_{θ}	H_1	rifiutare H_0 se
$\mu = \mu_0$	$\mu \neq \mu_0$	$ z > z_{1-\alpha/2}$
$\mu \leq \mu_0$	$\mu > \mu_0$	$z > z_{1-\alpha}$
$\mu \ge \mu_0$	$\mu < \mu_0$	$z < -z_{1-\alpha}$

test sulla media di una popolazione Normale di varianza incognita

$$t = \frac{\bar{x}_n - \mu_0}{s_n / \sqrt{n}}$$

H_{θ}	H_1	rifiutare H₀ se		
$\mu = \mu_0$	$\mu \neq \mu_0$	$ t > t_{1-\alpha/2}(n-1)$		
$\mu \leq \mu_0$	$\mu > \mu_0$	$t > t_{1-\alpha}(n-1)$		
$\mu \ge \mu_0$	$\mu < \mu_0$	$t < -t_{1-\alpha}(n-1)$		

test sulla frequenza p di una popolazione bernoulliana

$$z = \frac{\bar{x_n} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

H_{θ}	H_1	rifiutare H₀ se
$p=p_0$	$p \neq p_0$	$ z >z_{1-\alpha/2}$
$p \le p_0$	$p > p_0$	$z > z_{1-\alpha}$
$p \ge p_0$	$p < p_0$	$z < -z_{1-\alpha}$

test sulla differenza di due medie con varianze note

estraiamo due campioni n,m da due popolazioni normali indipendenti con varianze note;

questo test non va usato quando una varianza è almeno 4 volte l'altra

$$z = \frac{\bar{X}_n - \bar{Y}_m - \epsilon}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{n}}}$$

H_{θ}	H_1	rifiutare H_{θ} se
$\mu_X = \mu_Y + \delta$	$\mu_X \neq \mu_Y + \delta$	$ z > z_{1-\alpha/2}$
$\mu_X \leq \mu_Y + \delta$	$\mu_X > \mu_Y + \delta$	$z > z_{1-\alpha}$
$\mu_X \ge \mu_Y + \delta$	$\mu_X < \mu_Y + \delta$	$z < -z_{1-\alpha}$

test sulla differenza di due medie con varianze incognite

estraiamo due campioni n, m da due popolazioni normali indipendenti con varianze incognite;

questo test non va usato quando una varianza è almeno 4 volte l'altra

$$= \frac{X_n - Y_n - \delta}{\sqrt{\frac{1}{n} + \frac{1}{m}} \sqrt{\frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2}}}$$

H_{θ}	H_1	rifiutare H₀ se
$\mu_X = \mu_Y + \delta$	$\mu_X \neq \mu_Y + \delta$	$ t > t_{1-\alpha/2}(n+m-2)$
$\mu_X \leq \mu_Y + \delta$	$\mu_X > \mu_Y + \delta$	$t > t_{1-\alpha}(n+m-2)$
$\mu_X \ge \mu_Y + \delta$	$\mu_X < \mu_Y + \delta$	$t < -t_{1-\alpha}(n+m-2)$

nel caso di campioni osservazioni accoppiate si considerano le differenze delle medie

test su due frequenze di due popolazioni bernoulliane indipendenti

estraiamo due campioni n, m da due popolazioni bernoulliane indipendenti $X \sim B(p_1)$, $Y \sim B(p_2)$;

questa procedura è valida se $\sum_{i=1}^{n} x_i > 5$; $\sum_{i=1}^{m} y_i > 5$

$$z = \frac{\bar{x_n} - \bar{y_m}}{\sqrt{\hat{p}(1-\hat{p})(\frac{1}{n} + \frac{1}{m})}} \quad con \quad \hat{p} = \frac{n\,\bar{x_n} + m\,\bar{y_m}}{n+m}$$

H_{θ}	H_1	rifiutare H_{θ} se
$p_1 = p_2$	$p_1 \neq p_2$	$ z > z_{1-\alpha/2}$
$p_1 \leq p_2$	$p_1 > p_2$	$z > z_{1-\alpha}$
$p_1 \ge p_2$	$p_1 < p_2$	$z < -z_{1-\alpha}$

inferenze su una varianza

$$X^2 = \frac{(n-1)s_n^2}{\sigma_0^2}$$

H_{θ}	H_1	rifiutare H_0 se
$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$X^2 > X_{1-\alpha/2}^2(n-1)$ o $X^2 < X_{\alpha/2}^2(n-1)$
$\sigma^2 \leq \sigma_0^2$	$\sigma^2 > \sigma_0^2$	$X^2 > X_{1-\alpha}^2(n-1)$
$\sigma^2 \ge \sigma_0^2$	$\sigma^2 < \sigma_0^2$	$X^2 < X_{\alpha}^2(n-1)$

intervallo di confidenza

$$\left(\frac{(n-1)s_n^2}{X_{\frac{1-\alpha}{2}}^2(n-1)}, \frac{(n-1)s_n^2}{X_{\frac{1-\alpha}{2}}^2(n-1)}\right)$$

inferenze su due varianze

estraiamo due campioni n, m da due popolazioni normali indipendenti con medie incognite;

$$F = \frac{s_X^2}{s_y^2}$$

H_{θ}	H_1	rifiutare H_{θ} se
$\sigma_X^2 = \sigma_Y^2$	$\sigma_X^2 \neq \sigma_Y^2$	$F > F_{1-\alpha/2}(n-1, m-1)$ $F < F_{\alpha/2}(n-1, m-1)$
		$F < F_{\alpha/2}(n-1, m-1)$
$\sigma_X^2 \leq \sigma_Y^2$	$\sigma_X^2 > \sigma_Y^2$	$F > F_{1-\alpha}(n-1, m-1)$
$\sigma_X^2 \ge \sigma_Y^2$	$\sigma_X^2 \leq \sigma_Y^2$	$F < F_{1-\alpha}(n-1, m-1)$

intervallo di confidenza

$$\left(\frac{1}{F_{\frac{1+\alpha}{2}}(n-1,m-1)} \frac{s_X^2}{s_Y^2}, \frac{1}{F_{\frac{1-\alpha}{2}}(n-1,m-1)} \frac{s_X^2}{s_Y^2}\right)$$

test Chi quadro di adattamento

ha lo scopo di verificare se certi dati empirici si adattino bene ad una distribuzione teorica assegnata;

si costruisce la seguente tabella:

classi	A_1	A_2		A_k	$\sum_{i=1}^{k}$
freq. rel. attese	p_1	p_2		p_{k}	1
freq. ass. attese	np_1	np_2		np_k	n
freq. ass. osservate	N_{1}	N_2	•••	N_{k}	n
scarti quad. pesati	$\frac{(np_1 - N_1)^2}{np_1}$	$\frac{(np_2 - N_2)^2}{np_2}$		$\frac{(np_k - N_k)^2}{np_k}$	Q

le classi andranno accorpate in maniera tale che le frequenze assolute attese siano tutte maggiori o uguali a 5;

Chi quadro calcolato dal campione:

$$Q = \sum_{i=1}^{k} \frac{\left(np_i - N_i\right)^2}{np_i}$$

 $Q \rightarrow X^2(k-1)$ per $n \rightarrow \infty$, con p_i assegnate a priori $Q \rightarrow X^{2}(k-1-r)$ per $n \rightarrow \infty$, con p_icalcolate dopo aver stimato r parametri incogniti

fissato α , si stabilisce la regola di decisione:

si rifiuti H_0 se $Q > X_{1-\alpha}^2(k-1-r)$ (si calcola tramite tabelle) il p-value corrispondente al valore Q è:

$$\alpha = P(X > Q)$$
, con $X \sim X^2(k-1-r)$

test Chi quadro di indipendenza

verifica l'indipendenza o meno di due variabili;

si costruisce una tabella di contingenza di rs classi:

	A_1	A_2	 A_r	Tot.
B_1	n_{11}	n_{21}	 n_{rl}	$n_{\cdot 1}$
B_2	n_{12}	n_{22}	 n_{rl}	$n_{\cdot 2}$
		•••	 	
B_{s}	n_{ls}	n_{2s}	 n_{rs}	$n_{\cdot s}$
Tot.	$n_{1.}$	n_2 .	 n_{r}	n

si costruisce una tabella di rs classi:

	A_1	A_2	 A_r
B_1	$\frac{n_1 \cdot n_1}{n}$	$\frac{n_2 \cdot n_1}{n}$	 $\frac{n_r \cdot n_1}{n}$
B_2	$\frac{n_1 \cdot n_2}{n}$	$\frac{n_2 \cdot n_2}{n}$	 $\frac{n_r \cdot n_2}{n}$
	•••		
B_s	$\frac{n_1 \cdot n_s}{n}$	$\frac{n_2 \cdot n_s}{n}$	 $\frac{n_r \cdot n_s}{n}$

ciascuna delle frequenze attese deve essere: $\frac{n_i \cdot n_{i,j}}{n} \ge 5$

si calcola il chi-quadro:

$$Q = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{\left(n_{ij} - \frac{n_{i} \cdot n_{\cdot j}}{n}\right)}{\frac{n_{i} \cdot n_{\cdot j}}{n}}$$

fissato α , si stabilisce la regola di decisione: si rifiuti H_0 se $Q > X_{1-\alpha}^{2}((r-1)(s-1))$

(si calcola tramite tabelle)

il p-value corrispondente al valore Q è:

$$\alpha = P(X > Q)$$
, $con X \sim X^{2}((r-1)(s-1))$