Apuntes sobre el teorema de la raíz primitiva

Mauricio GUILLERMO

02.06.2018

Notación 0.1. En este tema, adoptaremos las siguientes notaciones:

- $[x]_n$ es la clase de equivalencia de x módulo n.
- $|x|_n$ es el orden de $[x]_n$ (con $[x]_n \in \mathbb{Z}_n^*$).

Recordamos algunas definiciones y resultados relacionados:

Definición 0.2. Sea $n \in \mathbb{N}$, $n \neq 0$.

- 1. El grupo multiplicativo módulo n es $\mathbb{Z}_n^* := \{h \in \mathbb{Z}_n \mid h \text{ es invertible en } \mathbb{Z}_n\}^1$.
- 2. Una raíz primitiva módulo n es un elemento $r \in \mathbb{Z}_n$ que es un generador de \mathbb{Z}_n^* ; esto es: $\langle r \rangle = \mathbb{Z}_n^*$. Dado un entero $g \in \mathbb{Z}$, diremos que es raíz primitiva módulo n si $r := [g]_n \in \mathbb{Z}_n^*$ lo es.
- Los elementos invertibles de \mathbb{Z}_n son las clases módulo n de los enteros coprimos con n. Esto es: $\mathbb{Z}_n^* = \{[x]_n \mid \gcd(x,n) = 1\}$.
- Si p es un primo, entonces $\mathbb{Z}_p^* = \{[1]_p, \dots, [p-1]_p\}$. Como todos los elementos no nulos de \mathbb{Z}_p son invertibles, entonces $(\mathbb{Z}_p, +, \cdot, [0]_p, [1]_p)$ es un cuerpo.
- Por lo anterior, si p es primo y $x \cdot y \equiv_p 0$, entonces $x \equiv_p 0$ o $y \equiv_p 0$. Esto no es cierto si el módulo no es primo: $2 \cdot 2 \equiv_4 0$, pero $2 \not\equiv_4 0$.
- $(\mathbb{Z}_n^*, \cdot, [1]_n)$ es un grupo. De ahí el llamarlo grupo multiplicativo: es un grupo con la multiplicación.
- El orden de \mathbb{Z}_n^* es $|\mathbb{Z}_n^*| = \varphi(n)$, donde φ es la función de Euler.
- Si g es una raíz primitiva módulo n, entonces $\mathbb{Z}_n^* = \langle g \rangle = \{g^0, \dots, g^{\varphi(n)-1}\}.$
- Si g es raíz primitiva módulo n, entonces $\Psi_g(m) := g^m$ define un isomorfismo Ψ_g entre $(\mathbb{Z}_{\varphi(n)}, +, [0]_{\varphi(n)})$ y $(\mathbb{Z}_n^*, \cdot, [1]_n)$.
- Sea (G, \cdot, e) un grupo, sean $a, b \in G$ de respectivos órdenes finitos o(a) y o(b). Si además a y b conmutan (esto es, si $a \cdot b = b \cdot a$) y o(a) y o(b) son coprimos; entonces $a \cdot b$ tiene orden o(a)o(b).

 $^{^{1}\}mathrm{En}$ las notas de Pereira, Qureshi & Rama se lo denota U(n)

1 Estructura general de la prueba

El teorema de la raíz primitiva establece una condición necesaria y suficiente para que un módulo admita raíz primitiva:

Teorema 1.1. \mathbb{Z}_n admite una raíz primitiva si y sólo si n satisface una de las siguientes:

- 1. n = 2 o n = 4.
- 2. Existen un primo impar p y un natural positivo k tales que $n = p^k$.
- 3. Existen un primo impar p y un natural positivo k tales que $n = 2.p^k$.

Para demostrar este teorema procedemos siguiendo el siguiente plan:

- 1. El directo es el ejercicio 7c del práctico 8.
- 2. El recíproco es una prueba por casos:
 - (a) Los casos n=2 y n=4 del item 1. son inmediatos. Basta con observar que:
 - $[1]_2$ es un generador de $\mathbb{Z}_2^* = \{[1]_2\}.$
 - $[3]_4$ es un generador de $\mathbb{Z}_4^* = \{[1]_4, [3]_4\}.$
 - (b) El caso n=p con p primo impar corresponde al item 2. con k=1. Procedemos según el siguiente plan:
 - Observamos que $\varphi(p) = p 1$, de modo que buscamos $g \in \mathbb{Z}$ de orden $|g|_n = p 1$. Descomponemos p 1 en factores primos, obteniendo: $p 1 = \prod_{i=1}^k p_i^{\alpha_i}$.
 - Mediante dos lemas técnicos, probamos que para cada i existe un elemento $g_i \in \mathbb{Z}$ de orden $|g_i|_n = p_i^{\alpha_i}$.
 - Como los órdenes de estos elementos son dos a dos coprimos y el grupo es conmutativo, $g := \prod_{i=1}^k g_i$ tiene orden $|g|_n = \prod_{i=1}^k p_i^{\alpha_i} = p-1$, lo cual concluye la prueba.
 - (c) El caso $n=p^k$ con $k\neq 1$. La prueba da explícitamente una raíz primitiva módulo p^k a partir de $g\in \mathbb{Z}$ raíz primitiva módulo p:
 - i. Si $g^{p-1} \not\equiv_{p^2} 1$, entonces g es raíz primitiva módulo p^k para todo k natural positivo.
 - ii. Si $g^{p-1} \equiv_{p^2} 1$, entonces g+p es raíz primitiva módulo p y además –se prueba– satisface $(g+p)^{p-1} \not\equiv_{p^2} 1$. Entonces, aplicando el caso anterior, g+p es raíz primitiva módulo p^k para todo k natural positivo.
 - (d) Sea ahora $n=2.p^k$ con p primo impar y k un natural positivo. La prueba da explícitamente una raíz primitiva módulo $2.p^k$ a partir de $g \in \mathbb{Z}$ raíz primitiva módulo p^k :
 - i. Si g es impar, entonces g es raíz primitiva módulo $2.p^k$.
 - ii. Si g es par, entonces $g+p^k$ es impar y es raíz primitiva módulo p^k , de modo que, aplicando el caso anterior, $g+p^k$ es raíz primitiva módulo $2.p^k$.

1.1 Existencia de una raíz primitiva módulo p con p primo impar.

Observación 1.2. Todo polinomio $f(x) = \sum_{i=0}^m a_i \cdot x^i$ de coeficientes enteros define un polinomio de coeficientes en \mathbb{Z}_n , que es $\widehat{f}(x) := \sum_{i=0}^m [a_i]_n \cdot x^i$. Como las operaciones de suma y producto en \mathbb{Z} son compatibles con la relación de equivalencia \equiv_n , entonces para todo entero $x \in \mathbb{Z}$ tenemos:

$$\widehat{f}([x]_n) = \sum_{i=0}^m [a_i]_n \cdot [x]_n^i = [\sum_{i=0}^m a_i \cdot x^i]_n = [f(x)]_n$$

Recíprocamente, un polinomio con coeficientes en \mathbb{Z}_n es de la forma \widehat{f} para algún polinomio f a coeficientes enteros (de hecho, para infinitos f).

En \mathbb{R} sabemos que un polinomio de grado m tiene a lo sumo m raíces reales. En \mathbb{Z}_n esto puede no ser cierto: $\widehat{f}(x) = [2]_4 \cdot x$ es un polinomio de grado 1 en \mathbb{Z}_4 , que admite raíces $[0]_4$ y $[2]_4$. A continuación veremos que esto no puede suceder si el módulo es primo:

Lema 1.3. Sea p primo. Sea $f(x) = \sum_{i=0}^{m} a_i \cdot x^i$ un polinomio con coeficientes en \mathbb{Z} . Entonces, si $a_m \not\equiv_p 0$, \widehat{f} tiene a lo sumo m raíces en \mathbb{Z}_p .

Demostración: Observación: La tesis también dice que si \widehat{f} admite más de m raíces, entonces es el polinomio nulo de \mathbb{Z}_p , es decir, todos sus coeficientes son nulos (en \mathbb{Z}_p).

Probamos el resultado por inducción en m:

- Si m = 0, entonces $f(x) = a_0$ con $a_0 \not\equiv_p 0$. Entonces, \widehat{f} tiene cero raíces en \mathbb{Z}_p porque es una constante no nula.
- Supongamos que el resultado es válido para los polinomios en de grado menor que m y probemos que es válido para los polinomios de grado m. Sea $f(x) = \sum_{i=0}^{m} a_i \cdot x^i$ con $a_m \not\equiv_p 0$.

Si f tiene menos de m raíces, entonces el resultado está probado. Supongamos que tiene al menos m raíces distintas z_1, \ldots, z_m y probemos que no tiene más.

Sea $g(x) = a_m(x-z_1)\cdots(x-z_m) = a_m\cdot \Pi_{i=0}^m(x-z_i)$. Este polinomio tiene grado m y su coeficiente de grado m es a_m . Definimos h(x) = f(x) - g(x), que es un polinomio de grado menor que m. Como \widehat{g} admite al menos las m raíces en \mathbb{Z}_p que admite \widehat{f} , entonces \widehat{h} también. Por ser de grado menor que m, por la hipótesis de inducción y la observación, \widehat{h} es el polinomio nulo (en \mathbb{Z}_p). Concluimos que $\widehat{f} = \widehat{g} + \widehat{h} = \widehat{g}$ (igualdad de polinomios en \mathbb{Z}_p).

Como p es primo, $g(x) = a_m(x-z_1)\cdots(x-z_m) \equiv_p 0$ si y sólo si $x-z_i \equiv_p 0$ para algún i. En definitiva, las únicas raíces de \widehat{f} en \mathbb{Z}_p son las de \widehat{g} (porque $\widehat{f} = \widehat{g}$), que son z_1, \ldots, z_m .

Lema 1.4. Sean p primo, $d \mid (p-1)$ y $f(x) = x^d - 1$. Entonces \widehat{f} tiene exactamente d raíces en \mathbb{Z}_p .

Demostración: Sea $k\in\mathbb{Z}$ tal que p-1=dk. Mediante la fórmula

$$y^{k} - 1 = (y - 1)(1 + \dots + y^{k-1}) = (y - 1)\sum_{i=0}^{k-1} y^{i}$$

substituyendo $y := x^d$ expresamos:

$$\underbrace{x^{p-1} - 1}_{g(x)} = \underbrace{(x^d - 1)}_{f(x)} \underbrace{\sum_{i=0}^{k-1} x^{di}}_{h(x)}$$

Sean F, G y H respectivamente los conjuntos de raíces de \widehat{f} , \widehat{g} y \widehat{h} (en \mathbb{Z}_p). Por ser p primo y $g(x) = f(x) \cdot h(x)$, entonces $G = F \cup H$.

Por el teorema de Euler, #G=p-1. Por el Lema 1.3, # $F\leq d$ y # $H\leq d(k-1)$. Entonces:

$$p-1 = \#G \le \#F + \#H \le d + (k-1)d = dk = p-1$$

Entonces, los \leq son igualdades y debe ser #F = d.

Corolario 1.5. Sean p y p_i primos tales que $p_i^{\alpha_i} \mid (p-1)$, con $\alpha_i \neq 0$. Entonces existe $g_i \in \mathbb{Z}$ tal que $|g_i|_p = p_i^{\alpha_i}$.

Demostración: Sean R y S respectivamente los conjuntos de raíces de $x^{(p_i^{\alpha_i})} - 1$ y $x^{(p_i^{\alpha_i-1})} - 1$ en \mathbb{Z}_p . Por el Lema 1.4, $\#R = p_i^{\alpha_i}$ y $\#S = p_i^{\alpha_i-1}$. Entonces, $R \setminus S \neq \emptyset$ y concluimos que existe g_i tal que:

1.
$$g_i^{(p_i^{\alpha_i})} \equiv_p 1$$

2.
$$g_i^{(p_i^{\alpha_i-1})} \not\equiv_p 1$$

Por 1., $|g_i|_p \mid p_i^{\alpha_i}$. Entonces $|g_i|_p = p_i^{\beta_i}$ para algún $\beta_i \leq \alpha_i$. Por 2. $\beta_i > \alpha_i - 1$ y entonces $|g_i|_p = p_i^{\alpha_i}$.

Aplicando el plan del item (b) del Teorema 1.1, se resuelve este caso.

1.2 Construcción de una raíz primitiva módulo p^k con k > 1 a partir de una raíz primitiva módulo p; siendo p un primo impar.

Para hacer esta construcción, empezamos por enunciar y probar un lema técnico:

Lema 1.6. Sea p primo impar y sea $g \in \mathbb{Z}$ una raíz primitiva módulo p. Supongamos que $g^{p-1} \not\equiv_{p^2} 1$. Entonces para todo $k \in \mathbb{N}$, k > 1, se tiene que $g^{\varphi(p^k)} \not\equiv_{p^{k+1}} 1$.

Demostración: La prueba es por inducción en k.

<u>Base inductiva</u>: El caso k=1 (base inductiva) es la hipótesis, ya que $\varphi(p)=p-1$.

Paso inductivo: Supongamos que $g^{\varphi(p^k)}\not\equiv_{p^{k+1}}1$. La función de Euler cumple que $\varphi(p^{k+1})=p^{k+1}-p^k=p$ $(p^k-p^{k-1})=p$ $\varphi(p^k)$. Entonces $g^{\varphi(p^{k+1})}=(g^{\varphi(p^k)})^p$.

Por el teorema de Euler, sabemos que $g^{\varphi(p^k)} \equiv_{p^k} 1$, de modo que $g^{\varphi(p^k)} = 1 + m.p^k$ para algún $m \in \mathbb{Z}$. Por la hipótesis de inducción, $1 + mp^k \not\equiv_{p^{k+1}} 1$, de donde deducimos que $p \not\mid m$.

Aplicando la fórmula del binomio de Newton:

$$g^{\varphi(p^{k+1})} = (1 + mp^k)^p = \sum_{i=0}^p \binom{p}{i} 1^{p-i} (mp^k)^i = \sum_{i=0}^p \binom{p}{i} m^i p^{ki}$$

Donde $\binom{p}{i} = \frac{p!}{i!(p-i)!}$. En particular, $\binom{p}{0} = 1$ y $\binom{p}{1} = p$. Tenemos:

$$g^{\varphi(p^{k+1})} = \underbrace{1}_{i=0} + \underbrace{mp^{k+1}}_{i=1} + \underbrace{\sum_{i=2}^{p} \binom{p}{i} m^{i} p^{ki}}_{i > 2}$$

Probaremos que todos los sumandos con $i \ge 2$ son nulos módulo p^{k+2} :

- $\underline{2 \leq i < p}$: $ki \geq k.2 = k+k \geq k+1$. Entonces, $p^{k+1} \mid p^{ki}$. Además, $p \mid \binom{p}{i}$ porque 0 < i < p (ejercicio 19 del práctico 3). Entonces, si $2 \leq i < p$, tenemos que $p^{k+2} \mid \binom{p}{i} m^i p^{ki}$.
- Para i = p: $k.p \ge k.3 = k + k + k \ge k + 2$. Entonces $p^{k+2} \mid p^{k.p}$ y por lotanto, $p^{k+2} \mid \binom{p}{p} m^p p^{k.p} = m^p p^{kp}$, que es el último sumando del desarrollo.

Concluimos que
$$g^{\varphi(p^{k+1})} \equiv_{p^{k+2}} 1 + mp^{k+1} \not\equiv_{p^{k+2}} 1$$
 porque vimos que $p \not\mid m$. \square

Ahora, podemos probar el algoritmo de obtención de una raíz primitiva módulo p^k a partir de una raíz primitiva módulo p que enunciamos al principio:

Lema 1.7.

Sea p primo impar y sea g una raíz primitiva módulo p. Se tiene que:

- 1. Si $g^{p-1} \not\equiv_{p^2} 1$, entonces g es raíz primitiva módulo p^k , para todo $k \ge 1$.
- 2. Si $g^{p-1} \equiv_{p^2} 1$, entonces g+p es raíz primitiva módulo p^k para todo $k \geq 1$.

Demostración:

1. Basta con probar $|g|_{p^k} = \varphi(p^k) = p^{k-1}(p-1)$ para todo $k \ge 1$ (recordar: $|g|_{p^k}$ es el orden de g como elemento de $\mathbb{Z}_{p^k}^*$).

<u>Base inductiva</u>: Por hipótesis, esta afirmación es cierta para k=1, ya que g es raíz primitiva módulo p.

<u>Paso inductivo</u>: Supongamos que $|g|_{p^k}=\varphi(p^k)$ (hipótesis de inducción). Sea $m:=|g|_{p^{k+1}}$. Basta con probar que $m=\varphi(p^{k+1})$.

Por una parte, $g^m \equiv_{p^{k+1}} 1$, de donde, en particular, $g^m \equiv_{p^k} 1$. De aquí por la hipótesis de inducción, concluimos que $p^{k-1}(p-1) = \varphi(p^k) \mid m$.

Por otra parte, por el teorema de Euler $g^{\varphi(p^{k+1})} \equiv_{p^{k+1}} 1$. Entonces $m \mid \varphi(p^{k+1}) = p^k(p-1)$.

Deducimos que $p^{k-1}(p-1)$ m $p^k(p-1)$. Existen dos posibilidades:

- $m = p^{k-1}(p-1) = \varphi(p^k)$. Entonces, $g^{\varphi(p^k)} \equiv_{p^{k+1}} 1$. Esto contradice el lema 1.6.
- $m = p^k(p-1) = \varphi(p^{k+1})$, que es lo que queríamos demostrar.
- 2. Consideramos $g+p\equiv_p g$ y, por lo tanto, es raíz primitiva módulo p. Basta entonces con probar que $(g+p)^{p-1}\not\equiv_{p^2} 1$ y aplicar el caso anterior a g+p. Para probar esto, aplicamos de nuevo la fórmula del binomio de Newton a $(g+p)^{p-1}$:

$$(g+p)^{p-1} = \sum_{i=0}^{p-1} \binom{p-1}{i} p^i g^{p-1-i} = \underbrace{g^{p-1}}_{i=0} + \underbrace{(p-1)pg^{p-2}}_{i=1} + \underbrace{\sum_{i=1}^{p-1} \binom{p-1}{i} p^i g^{p-1-i}}_{i \ge 2}$$

Para todo $i\geq 2$ el término $\binom{p-1}{i}p^ig^{p-1-i}$ contiene un factor p^2 , de modo que $\sum_{i\geq 2}^{p-1} \binom{p-1}{i}p^ig^{p-1-i}\equiv_{p^2}0$.

Deducimos que $(g+p)^{p-1} \equiv_{p^2} g^{p-1} + p(p-1)g^{p-2} = g^{p-1} + p^2g^{p-2} - pg^{p-2} \equiv_{p^2} 1 - pg^{p-2}$ (puesto que $g^{p-1} \equiv_{p^2} 1$ y $p^2g^{p-2} \equiv_{p^2} 0$). Como $p \nmid g$ (porque $[g]_p \in \mathbb{Z}_p^*$), entonces $(g+p)^{p-1} \not\equiv_{p^2} 1$.

1.3 construcción de una raíz primitiva módulo $2.p^k$ a partir de una raíz primitiva módulo p^k ; siendo p un primo impar y k un entero positivo.

Lema 1.8. Sea p un primo impar, k un entero positivo y sea $g \in \mathbb{Z}$ una raíz primitiva módulo p^k . Entonces:

- 1. Si g es impar, entonces g es raíz primitiva módulo $2p^k$.
- 2. Si g es par, entonces $g + p^k$ es raíz primitiva módulo $2p^k$.

Demostración: Comenzamos por observar que, dado que 2 y p^k son coprimos, para todo entero positivo m, la ecuación $g^m \equiv_{2p^k} 1$ equivale al sistema de

congruencias
$$\begin{cases} g^m \equiv_{p^k} & 1 \\ g^m \equiv_2 & 1 \end{cases}$$
. Por otra parte, $\varphi(2.p^k) = \varphi(2)\varphi(p^k) = \varphi(p^k)$. Bus-

camos un elemento de \mathbb{Z}_{2p^k} de orden $\varphi(p^k)$ pero en $2p^k$.

Sea g es raíz primitiva módulo p^k . Entonces se presentan dos casos:

- 1. Supongamos que g es impar. Entonces: $g^m \equiv_2 1$ para todo m entero positivo, de donde $g^m \equiv_{2p^k 1}$ si y sólo si $g^m \equiv_{p^k} 1$. concluimos entonces que $|g|_{2p^k} = |g|_{p^k} = \varphi(p^k) = \varphi(2p^k)$, lo que implica que g es raíz primitiva módulo $2p^k$.
- 2. Supongamos que g es par. En ese caso, $g+p^k\equiv_{p^k}g$, de modo que $g+p^k$ es una raíz primtiva módulo p^k . Además, $g+p^k$ es impar (puesto que g es impar), de modo que $g+p^k$ está en las condiciones del caso 1. y, por consecuencia, es raíz primitiva módulo $2p^k$.

Referencias

- Notas De Matemática Discreta 2 de Mariana Pereira, Claudio Qureshi y Gustavo Rama, corregidas por Marcelo Lanzilotta (en el sitio EVA del curso).
- The Primitive Root Theorem Amin Witno. Universidad de Philadelphia. https://www.philadelphia.edu.jo/math/witno/notes/won5.pdf