习题课提纲

- 一、热设计与热管理
- 二、磁性元件
- 三、门极驱动电路

习题课提纲

- 一、热设计与热管理
- 二、磁性元件
- 三、门极驱动电路

> 习题1

双层窗由两块4mm厚玻璃间隔1cm构成。玻璃热阻率为100℃·cm/W,空气的热阻率为3050℃·cm/W。若室内温度为25℃,室外温度为0℃,则每平方米传导的热功率是多少?

> 习题2

两个相同器件放置在同一个散热器上。器件PN结-管壳间热阻 $R_{\theta j C} = 1.2^{\circ}C/W$,绝缘片热阻 $R_{\theta CS}$ 为 $0.2^{\circ}C/W$,散热器与空气间的热阻 $R_{\theta SA}$ 为 $0.8^{\circ}C/W$,求:

- a. 绘出分析用热模型;
- b. 若两个器件功耗相同,环境温度T_A=40℃,器件最高结温 T_{jmax}=150℃,器件的允许功耗是多少瓦?
 - c. 若只有一个器件工作,则器件的允许功耗是多少瓦?

> 习题3

一个TO3封装器件, $R_{\theta j C}$ =1.0℃/W,安装在散热器上。已知,绝缘片厚度0.1mm,其热阻率为635℃·cm/W,TO3底座面积约5cm², $R_{\theta S A}$ 为2℃/W, T_{Δ} =75℃.求:

- a. 绘出分析用热模型;
- b. 若T_{imax}=150℃,求最大允许功耗。
- > 3(b) $R_{CS} = 6.35 \times 0.1 \times 10^{-3}/(5 \times 10^{-4})$ $R_{CS} = 1.27^{\circ}\text{C/W}$

$$P_{max} = \frac{T_{jmax} - T_A}{R_{jc} + R_{cs} + R_{SA}} = 17.56W$$

> 习题4(*)

一个结型整流二极管,PN结截面为 $0.25cm \times 0.25cm$,厚0.05cm,功耗可认为发生在PN结中央,引线直径2mm,为铜线,长度各1cm安装在 $T_A=75$ °C的材料上。若 $T_{jmax}=225$ °C,硅的热阻率为1.2°C·cm/W,铜的热阻率为0.25°C·cm/W。求:绘出分析用热模型并计算最大允许功耗。

$$R_{PN} = \frac{1.2 \times 10^{-2} \times 0.05 \times 10^{-2}}{0.25 \times 0.25 \times 10^{-4}} = 0.96 \text{°C/W}$$

$$R_{Cu} = \frac{0.25 \times 10^{-2} \times 1 \times 10^{-2}}{\pi \times 1 \times 1 \times 10^{-6}} = 7.96 \text{°C/W}$$

$$P_{max} = \frac{T_{jmax} - T_A}{0.5(0.5R_{PN} + R_{cu})} = 35.55W$$

> 习题5

IRF440的工作结温已经稳定在125℃,过流保护动作时间为50us。求当结温≤150℃时允许的最大功耗和最大电流值。已知 $R_{\theta j S}$ =0.83℃/W,150℃时器件内阻为1.8欧。提示:查单脉冲热阻曲线。

> 习题5

IRF440的工作结温已经稳定在125℃,过流保护动作时间为50us。求当结温≤150℃时允许的最大功耗和最大电流值。已知 $R_{\theta j S}$ =0.83℃/W,150℃时器件内阻为1.8欧。提示:查单脉冲热阻曲线。

以单脉冲曲线为例, 查表可得:

$$Z_{\theta jc}$$
=0.02

$$P_{max} = \frac{T_{jmax} - T_A}{Z_{\theta jc} R_{\theta jc}} = \frac{150 - 125}{0.83 \times 0.02} = 1560W$$

$$I_{max} = \sqrt{\frac{P_{max}}{R}} = 28.93A$$