Architettura degli Elaboratori

ESAME 10 Dicembre 2018 – COMPITO 1 – FILE DISPARI

Motivare TUTTE le risposte con spiegazioni, passaggi e calcoli. Il solo risultato finale non sarà considerato sufficiente in fase di valutazione.

Esenzioni: gli studenti

- iscritti alla laurea DM 270 (esame di Architettura degli Elaboratori da 9 CFU con Laboratorio) devono risolvere tutti gli esercizi;
- che hanno già 2 CFU riconosciuti non devono risolvere gli esercizi 1, 2.
- che si trovano in condizioni diverse devono rivolgersi ai docenti.

Esercizio 1 (3 punti):

Dati i numeri:

a.100111

e

a.001101

effettuarne la somma binaria usando la rappresentazione in base 2 per numeri senza segno ed usando la codifica in complemento a 2 per i numeri relativi. In entrambi i casi, specificare il numero decimale corrispondente agli addendi ed al risultato.

Esercizio 2 (3 punti):

Dato il numero -3.125 ricavare la sua codifica secondo lo standard IEEE 754 in precisione singola.

Esercizio 3 (3 punti):

Dimostrare la verità o la falsità della seguente identità :

$$(NOT(A) NOR NOT(B)) AND C = (A AND B) OR C$$

usando la tabella di verità presente nel modulo risposte o altri metodi.

Esercizio 4 (3 punti):

Disegnare la rete logica che ne realizza il circuito sommatore completo (full adder) a 4 bit utilizzando come componente elementare il sommatore completo a 1 bit.

Esercizio 5 (3 punti):

Con riferimento all'interprete micro-programmato Mic-1, quali delle seguenti affermazioni sono vere?

- A. Durante l'esecuzione della micro-istruzione Main1 viene sempre richiesto il fetch dell'argomento dell'istruzione in esecuzione;
- B. Durante l'esecuzione della micro-istruzione Main1 può essere richiesto il fetch del codice operativo della prossima micro-istruzione;
- C. Durante l'esecuzione di una micro-istruzione che contenga che richieda una lettura dalla memoria (rd), nessuna altra lettura dalla memoria o scrittura verso la memoria deve essere già in corso:
- D. Il valore dei flag N e Z dell'ALU non sono alterati dalla micro-istruzione MDR=TOS;

Esercizio 6 (3 punti):

Si risponda a solo una delle seguenti domande (la scelta è libera):

Domanda 1) Quali delle seguenti affermazioni sono vere? Nell'indirizzamento immediato l'istruzione contiene:

- 1. l'operando stesso
- 2. l'indirizzo di un registro che contiene un operando
- 3. l'indirizzo completo in memoria di un operando
- 4. l'indirizzo in memoria dove si trova l'indirizzo di un operando

Domanda 2) Nell'ambito delle memorie cache, si descriva come un indirizzo di memoria viene tradotto in un indirizzo di cache organizzata secondo il metodo diretto.

Esercizio 7 (3 punti):

Nell'ambito dell'architettura MIC-1 si descriva la relazione fra gli indirizzi nel control store delle due micro-istruzioni raggiungibili come destinazioni alternative di una istruzione di tipo jump (JAMN e/o JAMZ uguali ad 1).

Esercizio 8 (3 punti)

Nel contesto di un assemblatore a 2 passi, si descriva brevemente le funzioni effettuate nel primo e nel secondo passo.

Esercizio 9 - laboratorio (4 punti)

Utilizzando il linguaggio assemblativo nel formato JAS visto in laboratorio, scrivere un metodo COMP1 con 3 parametri formali (chiamateli X, Y e K) che restituisca al chiamante il piu' grande tra X e Y se l'espressione 2X+Y-K è negativa, oppure, in caso contrario, che restituisca il piu' piccolo tra X e Y. Scrivere anche il main contenente il codice che realizzi la chiamata di tale metodo con parametri attuali rispettivamente -10, 4, 3 (in notazione decimale) e che scriva il risultato restituito dal metodo in una sua variabile locale chiamata value. Si limiti al minimo l'introduzione di variabili inutili.

Esercizio 10 - laboratorio (4 punti)

Scrivere il microcodice MIC1 dell'istruzione senza operandi **LOCAND**, che scrive sulla cima dello stack il risultato dell'AND bit-a-bit tra le due variabili locali con scostamento 1 e 2 da LV, assumendo che tale microcodice vada a modificare il microinterprete. Si descrivano quindi anche quali modifiche devono essere fatte al file di configurazione dell'emulatore Mic1MMV e al codice del microinterprete stesso affinché l'emulatore possa eseguire un programma IJVM (.jas) contenente l'istruzione **LOCAND**.