(20)

Dynamic Programming - 0/1 Knapsack problem

- Given a knapsack with maximum capacity W, and a set S consisting of n items
- Each item i has some weight w_i and benefit value b_i (all w_i and W are integer values)

<u>Problem</u>: How to pack the knapsack to achieve maximum total value of packed items?

Items are indivisible; you either take an item or not, The problem is called a "0-1" problem, because each item must be entirely accepted or rejected.

Problem in other words, is to find:

$$\max \sum_{i \in T} b_i \text{ subject to } \sum_{i \in T} w_i \leq W$$

Where b_i is the benefit/profit provided by each item i and w_i is the weight of each item i .

Let's first solve this problem with a straightforward algorithm - brute force method:

- Since there are n items, there are 2^n possible combinations of items.
- We go through all combinations and find the one with maximum value and with total weight less or equal to W
- Running time will be $O(2^n)$

Dynamic programming approach:

We can do better with an algorithm based on dynamic programming, We need to carefully identify the sub-problems

Defining a sub-problem:

Let's try this:

If items are labeled 1..n, then a sub-problem would be to find an optimal solution for S_k = {items labeled 1, 2, .. k}

But, in this case, the final solution final solution (S_n) cannot be described in terms of subproblems (S_k).

To illustrate this, consider the following example:

tem	Weight	Value
10	3	10
I1	8	4
I2	9	9
I3	8	11

The maximum weight the knapsack can hold is 20.

The best set of items from { I0, I1, I2} is {I0, I1, I2} but the best set of items from {I0, I1, I2, I3} is {I0, I2, I3} .

In this example, note that this optimal solution, $\{I0,\ I2,I3\}$, does NOT build upon the previous optimal solution, $\{I0,\ I1,I2\}$.

(Instead it builds upon the solution, $\{I0,\ I2\}$, which is really the optimal subset of $\{I0,\ I1,\ I2\}$ with weight 12 or less.)

So our definition of a sub-problem is flawed and we need another one!

Let's add another parameter: w, which will represent the maximum weight for each subset of items

The sub-problem then will be to compute V[k,w], i.e., to find an optimal solution for $S_k = \{I0,\ I1,\ I2...,\ Ik\}$ in a knapsack of size 'w'

Assuming knowing V[i, j], where i=0,1, 2, ... k-1, j=0,1,2, ...w,

how to derive V[k,w]?

Recursive Formula for sub-problems:

$$V[k, w] = \begin{cases} V[k-1, w] & \text{if } w_k > w \\ \max\{V[k-1, w], V[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

It means, that the best subset of S_k that has total weight w is:

- 1) the best subset of S_{k-1} that has total weight $\leq w$, or
- 2) the best subset of S_{k-1} that has total weight $\leq w$ -wk plus the item k

The best subset of S_k that has the total weight $\leq w$, either contains item k or not.

First case: $w_k > w$. Item k can't be part of the solution, since if it was, the total weight would be greater than w, which is unacceptable.

Second case: $W_k \le w$. Then the item k can be in the solution, and we choose the case with greater value.

```
 \begin{array}{l} \textbf{0-1 Knapsack Algorithm} \\ \text{for } \textbf{w} := 0 \text{ to } \textbf{W} \\ & V[0, \textbf{w}] = 0; \\ \text{for } \textbf{i} := 1 \text{ to n} \\ & V[\textbf{i}, 0] = 0; \\ \text{for } \textbf{w} := 0 \text{ to } \textbf{W} \\ \\ & \text{if } \textbf{w}_{\textbf{i}} <= \textbf{w} \\ & \text{ } \# \text{ } \#
```

The running time of the algorithm is : O(n*W), Remember that the brute-force algorithm takes $O(2^n)$

Example of 0/1 Knapsack using dynamic programming: n = 4 (number of elements) W = 5 (max weight)

Elements	weight	benefit
I,	2	3
I,	3	4
I ₃	4	5
I ₄	5	6

\W	0	1	2	3	4	5
)	0	0	0	0	0	0
						* -
					- 12	
. [

for
$$w := 0$$
 to W
 $V[0,w] = 0$
for $i := 1$ to n
 $V[i,0] = 0$

i\V	V 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	10				
2	. 0					
3	0					
4	0					

Items: 1: (2,3) 2: (3,4) 3: (4,5) 4: (5,6)

b_i=3 w_i=2 w=1

 $w-w_i = -1$

$$\begin{split} & \text{if } w_i <= w \, / \! / \text{ item i can be part of the solution} \\ & \text{if } b_i + V[i\text{-}1, w\text{-}w_i] > V[i\text{-}1, w] \\ & V[i, w] = b_i + V[i\text{-}1, w\text{-}w_i] \\ & \text{else} \\ & V[i, w] = V[i\text{-}1, w] \\ & \text{else } V[i, w] = V[i\text{-}1, w] \, / \! / w_i > w \end{split}$$

	Items:	
	1: (2,3)	
	2: (3,4)	
	3: (4,5)	
1	4: (5,6)	

$i \setminus V$	V 0	1	2	3	1	-
0	0 ~	0	0	0	0	0
1	0	0	3			0
2	0					
3	0					
4	0					

$$\begin{aligned} &\text{if } \mathbf{w_i} <= \mathbf{w} \text{ // item i can be part of the solution} \\ &\text{if } \mathbf{b_i} + \mathbf{V[i\text{-}1, w\text{-}w_i]} > \mathbf{V[i\text{-}1, w]} \\ &\mathbf{V[i\text{-}w]} = \mathbf{b_i} + \mathbf{V[i\text{-}1, w\text{-}w_i]} \\ &\text{else} \end{aligned}$$

$$V[i,w] = V[i-1,w]$$
else $V[i,w] = V[i-1,w] // w_i > w$

Items: 1: (2,3)

 $w-w_i = 0$

2: (3,4)

3: (4,5)

i=1 4: (5,6)

 $b_i=3$ $w_i=2$

w=3

 $w-w_i = 1$

Likewise, continue calculating until V[4,5]

.,								Items: 1: (2,3) 2: (3,4) 3: (4,5)
i\W	0	1	2	3	4	5	i=4	4: (5,6)
0	0	0	0	0	0	0		(-,0)
1	0	0	3	3	3	3	$b_i=6$ $w_i=5$	
2	0	0	3	4	4	7	$w_i = 5$ w = 5	
3	0	0	3	4	5	.7	W- W	
4	0	0	3	4	5	+ 7	VV - VV	i-0
		if b _i + \ V[i,v] else V[i,v]	$V[i-1,w-1] = b_i + V[i-1]$	w _i] > V[i V[i-1,w	i-1,w] - w _i]	solution		

This algorithm only finds the max possible value that can be carried in the knapsack i.e., the value in V[n,W]

To know the items that make this maximum value, an addition to this algorithm is necessary

How to find actual Knapsack Items?

- All of the information we need is in the table.
- V[n,W] is the maximal value of items that can be placed in the Knapsack.
- Algorithm to choose items that can be included in the final solution:

```
i=n, k=W; while I, k>0 {    if V[i,k] \neq V[i-1,k] then    i=i-1; \ k=k-w_i; \ // \text{mark the } i^{\text{th}} item as in the knapsack else    i=i-1;    // Assume the i^{\text{th}} item is not in the knapsack }
```

Finding the Items (1)

i\W	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	(7)
4	0	0	3	4	5	7

i=n, k=W while i,k > 0 if $V[i,k] \neq V[i-l,k]$ then mark the ith item as in the knapsack i = i-l, $k = k-w_i$ else i = i-l

Finding the Items (2)

i\W	0	_ 1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

i=n, k=W while i,k > 0 if $V[i,k] \neq V[i-l,k]$ then mark the i^{th} item as in the knapsack i = i-l, $k = k-w_i$ else i = i-l 1: (2,3) 2: (3,4) 3: (4,5) 4: (5,6) k=5 $b_i=6$ $w_i=5$ V[i,k]=7V[i-l,k]=7

Items: 1: (2,3)

2: (3,4) 3: (4,5) 4: (5,6)

i=3 4: (k=5 $b_i=5$ $w_i=4$ V[i,k] = 7 V[i-1,k] = 7

Items:

Finding the Items (3)

$i\backslash W$	7					
1\ W	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3 -	3	3	(3)
(2)	0	0	3	4	4	+7/
3	0	0	3	4	5	7
4	0	0	3	4	5	7

```
i=n, k=W

while i,k > 0

if V[i,k] \neq V[i-l,k] then

mark the ith item as in the knapsack

i = i-l, k = k-w_i

else

i = i-l
```

Finding the Items (4)

"\ **	r					
i\W	0	1	2	3	4	5
0	0	0	(0)	0	0	0
1)	0	0	3	3	3	3
2)	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

i=n, k=W while i,k > 0 if $V[i,k] \neq V[i-1,k]$ then mark the i^{th} item as in the knapsack $i = i-1, k = k-w_i$ else i = i-1 Items:

Items:

1: (2,3) 2: (3,4) 3: (4,5)

4: (5,6)

1: (2,3) 2: (3,4)

i=2

k=5 $b_{i}=4$ $w_{i}=3$ V[i,k] = 7 V[i-l,k] = 3 $k - w_{i}=2$

3: (4,5) 4: (5,6)

i=1 4: (5,6) k=2

 $b_i=3$

 $w_i=2$ V[i,k] = 3

V[i-l,k] = 0 $k - w_i = 0$

Finding the Items (6)

$i\backslash W$	0	1	2	3	4	5
0	0	0	0	0	0	0
\bigcirc	0	0	3	3	3	3
\bigcirc	0	0	3	4	4	7
3	0	0.	3	4	5	7
4	0	0	3	4	5	7

i=n, k=W
while i,k > 0
if
$$V[i,k] \neq V[i-1,k]$$
 then
mark the n^{th} item as in the knapsack
 $i=i-1, k=k-w_i$
else
 $i=i-l$

Items:

1: (2,3) 2: (3,4)

3: (4,5)

4: (5,6)

The optimal knapsack should contain {1, 2}

i=0

 $k=0^{l}$

Conclusion

Dynamic programming is a useful technique of solving certain kind of problems

When the solution can be recursively described in terms of partial solutions, we can store these partial solutions and re-use them as necessary (memorization)

Running time of dynamic programming algorithm vs. naïve algorithm:

Knapsack problem: O(W*n) vs. O(2n)