

Positive voltage regulators

Datasheet - production data

Features

- Output current to 0.5 A
- Output voltages of 5; 6; 8; 9; 12; 15; 24 V
- Thermal overload protection
- Short circuit protection
- Output transition SOA protection

Description

The L78MxxC series of three-terminal positive regulators is available in TO-220, TO-220FP, DPAK and IPAK packages and with several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shutdown and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 0.5 A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.

Table 1. Device summary

Part numbers	Order codes						
Part numbers	TO-220	TO-220 ⁽¹⁾	TO-220FP	DPAK	IPAK	voltages	
L78M05C	L78M05CV	L78M05CV-DG	L78M05CP	L78M05CDT-TR	L78M05CDT-1	5 V	
L78M06C				L78M06CDT-TR		6 V	
L78M08C	L78M08CV	L78M08CV-DG		L78M08CDT-TR		8 V	
L78M09C	L78M09CV	L78M09CV-DG		L78M09CDT-TR		9 V	
L78M12C	L78M12CV	L78M12CV-DG		L78M12CDT-TR		12 V	
L78M15C	L78M15CV	L78M15CV-DG		L78M15CDT-TR		15 V	
L78M24C	L78M24CV	L78M24CV-DG		L78M24CDT-TR		24 V	

^{1.} TO-220 Dual Gauge frame

Contents L78MxxC

Contents

1	Diagram 3
2	Pin configuration4
3	Maximum ratings
4	Test circuits 6
5	Electrical characteristics
6	Typical performance
7	Package mechanical data
8	Revision history

L78MxxC Diagram

1 Diagram

Figure 1. Block diagram

Pin configuration L78MxxC

2 Pin configuration

Figure 2. Pin connections (top view)

Figure 3. Schematic diagram

L78MxxC Maximum ratings

3 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter		Value	Unit
V	DC input voltage	for $V_O = 5$ to 18 V	35	V
V _I	DC input voltage	for V _O = 20, 24 V	40	V
Io	Output current		Internally limited	mA
P _D	Power dissipation		Internally limited	mW
T _{STG}	Storage temperature range		- 65 to 150	°C
T _{OP}	Operating junction temperature range		0 to 150	°C

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 3. Thermal data

Symbol	Parameter	TO-220	TO-220FP	DPAK	IPAK	Unit
R _{thJC}	Thermal resistance junction-case	5	5	8		°C/W
R _{thJA}	Thermal resistance junction-ambient	50	60	100		°C/W

Figure 4. Application circuit

Test circuits L78MxxC

4 Test circuits

Figure 5. DC parameter

Figure 6. Load regulation

Figure 7. Ripple rejection

6/30 DocID2146 Rev 19

5 Electrical characteristics

Refer to the test circuits, T_J = 25 °C, V_I = 10 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 4. Electrical characteristics of L78M05C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		4.8	5	5.2	V
Vo	Output voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}, V_{I} = 7 \text{ to } 20 \text{ V}$	4.75	5	5.25	V
ΔV _O	Line regulation	$V_1 = 7 \text{ to } 25 \text{ V}, I_0 = 200 \text{ mA}$			100	- mV
ΔVO	Line regulation	$V_{I} = 8 \text{ to } 25 \text{ V}, I_{O} = 200 \text{ mA}$			50	IIIV
A\/ -	Load regulation	I_O = 5 to 500 mA, T_J = 25 °C			100	- mV
ΔV _O	Load regulation	I_O = 5 to 200 mA, T_J = 25 °C			50	IIIV
I _d	Quiescent current				6	mA
Al	Quiescent current change	I _O = 5 to 350 mA			0.5	- mA
Δl _d	Quiescent current change	$I_O = 200 \text{ mA}, V_I = 8 \text{ to } 25 \text{ V}$			0.8	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ to 125 °C		-0.5		mV/°C
SVR	Supply voltage rejection	$V_1 = 8 \text{ to } 18 \text{ V}, f = 120 \text{ Hz}, I_O = 300 \text{ mA}$	62			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		40		μV
V _d	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		300		mA

Electrical characteristics L78MxxC

Refer to the test circuits, T $_J$ = 25 °C, V $_I$ = 11 V, I $_O$ = 350 mA, C $_I$ = 0.33 $\mu F,$ C $_O$ = 0.1 μF unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		5.75	6	6.25	V
Vo	Output voltage	$I_O = 5 \text{ to } 350 \text{ mA}, V_I = 8 \text{ to } 21 \text{ V}$	5.7	6	6.3	V
A\/ .	Line regulation	$V_1 = 8 \text{ to } 25 \text{ V}, I_O = 200 \text{ mA}$			100	mV
ΔV _O	Line regulation	V _I = 9 to 25 V, I _O = 200 mA			50	IIIV
ΔV _O	Load regulation	I_O = 5 to 500 mA, T_J = 25 °C			120	mV
7,0	Load regulation	I_O = 5 to 200 mA, T_J = 25 °C			60	IIIV
I _d	Quiescent current				6	mA
AI.	Quiescent current change	I _O = 5 to 350 mA			0.5	mA
Δl _d	Quiescent current change	$I_{O} = 200 \text{ mA}, V_{I} = 9 \text{ to } 25 \text{ V}$			0.8	ША
$\Delta V_O/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ to 125 °C		-0.5		mV/°C
SVR	Supply voltage rejection	$V_1 = 9 \text{ to } 19 \text{ V}, f = 120 \text{ Hz}, I_O = 300 \text{ mA}$	59			dB

Table 5. Electrical characteristics of L78M06C

Refer to the test circuits, T_J = 25 °C, V_I = 14 V, I_O = 350 mA, C_I = 0.33 μF , C_O = 0.1 μF unless otherwise specified.

45

2

270

μV

٧

mΑ

Table 6. Electrical characteristics of L78M08C

B = 10 Hz to 100 kHz

 $V_{I} = 35 \text{ V}$

eΝ

 V_{d}

 I_{sc}

Output noise voltage

Short circuit current

Dropout voltage

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		7.7	8	8.3	V
Vo	Output voltage	$I_O = 5 \text{ to } 350 \text{ mA}, V_I = 10.5 \text{ to } 23 \text{ V}$	7.6	8	8.4	V
ΔV _O	Line regulation	$V_{I} = 10.5 \text{ to } 25 \text{ V}, I_{O} = 200 \text{ mA}$			100	mV
ΔνΟ	Line regulation	V _I = 11 to 25 V, I _O = 200 mA			50	1111
۸\/ .	Load regulation	$I_O = 5$ to 500 mA, $T_J = 25$ °C			160	mV
ΔV _O	Load regulation	$I_O = 5$ to 200 mA, $T_J = 25$ °C			80	IIIV
I _d	Quiescent current				6	mA
Al	Quiescent current change	I _O = 5 to 350 mA			0.5	mA
Δl _d	Quiescent current change	$I_{O} = 200 \text{ mA}, V_{I} = 10.5 \text{ to } 25 \text{ V}$			0.8	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ to 125 °C		-0.5		mV/°C
SVR	Supply voltage rejection	V _I = 11.5 to 21.5 V, f = 120 Hz, I _O = 300 mA	56			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		52		μV
V _d	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		250		mA

8/30 DocID2146 Rev 19

Refer to the test circuits, T_J = 25 °C, V_I = 15 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 7. Electrical characteristics of L78M09C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		8.65	9	9.35	V
Vo	Output voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}, V_{I} = 11.5 \text{ to } 24 \text{ V}$	8.55	9	9.45	V
41/	Line regulation	V _I = 11.5 to 25 V, I _O = 200 mA			100	mV
ΔV_{O}	Line regulation	V _I = 12 to 25 V, I _O = 200 mA			50	IIIV
41/	Load regulation	I _O = 5 to 500 mA, T _J = 25 °C			180	mV
ΔV_{O}	Load regulation	I _O = 5 to 200 mA, T _J = 25 °C			90	IIIV
I _d	Quiescent current				6	mA
41	Quiescent current change	I _O = 5 to 350 mA			0.5	A
∆l _d	Quiescent current change	I _O = 200 mA, V _I = 11.5 to 25 V			0.8	- mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA, T _J = 0 to 125 °C		-0.5		mV/°C
SVR	Supply voltage rejection	V _I = 12.5 to 23 V, f = 120 Hz, I _O = 300 mA	56			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		58		μV
V _d	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		250		mA

Refer to the test circuits, T_J = 25 °C, V_I = 19 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 8. Electrical characteristics of L78M12C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		11.5	12	12.5	V
Vo	Output voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}, V_{I} = 14.5 \text{ to } 27 \text{ V}$	11.4	12	12.6	V
A\/ .	Line regulation	V _I = 14.5 to 30 V, I _O = 200 mA			100	mV
ΔV _O	Line regulation	V _I = 16 to 30 V, I _O = 200 mA			50	IIIV
ΔV _O	Load regulation	I_O = 5 to 500 mA, T_J = 25 °C			240	mV
740	Load regulation	I_O = 5 to 200 mA, T_J = 25 °C			120	IIIV
I _d	Quiescent current				6	mA
A1 .	Quiescent current change	I _O = 5 to 350 mA			0.5	mA.
Δl _d	Quiescent current change	I_{O} = 200 mA, V_{I} = 14.5 to 30 V			0.8	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ to 125 °C		-1		mV/°C
SVR	Supply voltage rejection	$V_1 = 15 \text{ to } 25 \text{ V}, f = 120 \text{ Hz}, I_0 = 300 \text{ mA}$	55			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		75		μV
V _d	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		240		mA

Electrical characteristics L78MxxC

Refer to the test circuits, T $_J$ = 25 °C, V $_I$ = 23 V, I $_O$ = 350 mA, C $_I$ = 0.33 $\mu F,$ C $_O$ = 0.1 μF unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		14.4	15	15.6	V
Vo	Output voltage	$I_O = 5 \text{ to } 350 \text{ mA}, V_I = 17.5 \text{ to } 30 \text{ V}$	14.25	15	15.75	V
4)/	Line regulation	V _I = 17.5 to 30 V, I _O = 200 mA			100	mV
ΔV _O	Line regulation	V _I = 20 to 30 V, I _O = 200 mA			50	IIIV
ΔV _O	Load regulation	I_O = 5 to 500 mA, T_J = 25 °C			300	mV
ΔνΟ	Load regulation	I_O = 5 to 200 mA, T_J = 25 °C			150	IIIV
I _d	Quiescent current				6	mA
Al	Quiescent current change	I _O = 5 to 350 mA			0.5	mA
Δl _d	Quiescent current change	I _O = 200 mA, V _I = 17.5 to 30 V			0.8	IIIA
$\Delta V_O/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ to 125 °C		-1		mV/°C
SVR	Supply voltage rejection	V _I = 18.5 to 28.5 V, f = 120 Hz, I _O = 300 mA	54			dB

Table 9. Electrical characteristics of L78M15C

Refer to the test circuits, T_J = 25 °C, V_I = 23 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

90

2

240

μV

٧

mΑ

Table 10. Electrical characteristics of L78M24C

B = 10 Hz to 100 kHz

 $V_{I} = 35 \text{ V}$

eΝ

 V_{d}

 I_{sc}

Output noise voltage

Short circuit current

Dropout voltage

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		23	24	25	V
Vo	Output voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}, V_{I} = 27 \text{ to } 38 \text{ V}$	22.8	24	25.2	V
ΔV _O	Line regulation	$V_{I} = 27 \text{ to } 38 \text{ V}, I_{O} = 200 \text{ mA}$			100	mV
ΔνΟ	Line regulation	$V_{I} = 28 \text{ to } 38 \text{ V}, I_{O} = 200 \text{ mA}$			50	IIIV
ΔV _O	Load regulation	I_O = 5 to 500 mA, T_J = 25 °C			480	mV
740	Load regulation	I_O = 5 to 200 mA, T_J = 25 °C			240	IIIV
I _d	Quiescent current				6	mA
Δl _d	Quiescent current change	I _O = 5 to 350 mA			0.5	- mA
Δid	Quiescent current change	I_{O} = 200 mA, V_{I} = 27 to 38 V			8.0	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ to 125 °C		-1.2		mV/°C
SVR	Supply voltage rejection	$V_1 = 28 \text{ to } 38 \text{ V}, f = 120 \text{ Hz}, I_0 = 300 \text{ mA}$	50			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		170		μV
V _d	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		240		mA

10/30 DocID2146 Rev 19

L78MxxC **Typical performance**

Typical performance 6

Figure 8. Dropout voltage vs. junction temp.

Figure 9. Dropout characteristics

 $V_0(V)$ V_O=5V T_J=25°C L78M05 l₀=40mA $I_0=0$ I₀=100mA 6 $V_1(V)$

Figure 10. Peak output current vs. input-output differential voltage

Figure 11. Output voltage vs. junction temperature

Figure 12. Supply voltage rejection vs. frequency

Figure 13. Quiescent current vs. junction temperature

Figure 14. Load transient response

Figure 15. Line transient response

Figure 16. Quiescent current vs. input voltage

Figure 17. Fixed output regulator

- 1. To specify an output voltage, substitute voltage value for "XX".
- 2. Although no output capacitor is need for stability, it does improve transient response.
- 3. Required if regulator is locate an appreciable distance from power supply filter.

L78MxxC **Typical performance**

L78MXX 0.33μF 0.1µF $I_0 = V_{XX}/R_1 + I_d$

Figure 18. Constant current regulator

Figure 19. Circuit for increasing output voltage

V_I 0----L78MXX 0.33µF 0.1µF LS141 10ΚΩ _ CS22370

Figure 20. Adjustable output regulator (7 to 30 V)

Typical performance L78MxxC

 $V_{0}=V_{XX}R_{4}/R_{1}$ $V_{0}=V_{XX}R_{4}/R_{1}$

Figure 21. 0.5 to 10 V regulator

Figure 22. High current voltage regulator

Figure 23. High output current with short circuit protection

CS22380

L78MxxC Typical performance

Figure 24. Tracking voltage regulator

Figure 25. High input voltage circuit

Figure 26. Reducing power dissipation with dropping resistor

Typical performance L78MxxC

Figure 27. Power AM modulator (unity voltage gain, $I_0 \le 0.5$)

Note: The circuit performs well up to 100 kHz.

Figure 28. Adjustable output voltage with temperature compensation

Note: Q_2 is connected as a diode in order to compensate the variation of the Q_1 V_{BE} with the temperature. C allows a slow rise time of the V_0 .

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 11. TO-220 mechanical data

	Туре	STD - ST Dual (Sauge	Type S	STD - ST Single	Gauge
Dim.		mm.			mm.	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	4.40		4.60	4.40		4.60
b	0.61		0.88	0.61		0.88
b1	1.14		1.70	1.14		1.70
С	0.48		0.70	0.48		0.70
D	15.25		15.75	15.25		15.75
D1		1.27				
E	10.00		10.40	10.00		10.40
е	2.40		2.70	2.40		2.70
e1	4.95		5.15	4.95		5.15
F	1.23		1.32	0.51		0.60
H1	6.20		6.60	6.20		6.60
J1	2.40		2.72	2.40		2.72
L	13.00		14.00	13.00		14.00
L1	3.50		3.93	3.50		3.93
L20		16.40			16.40	
L30		28.90			28.90	
ØP	3.75		3.85	3.75		3.85
Q	2.65		2.95	2.65		2.95

In spite of some difference in tolerances, the packages are compatible.

Figure 29. Drawing dimension TO-220 (type STD-ST Dual Gauge)

Note: 1 Maximum resin gate protrusion: 0.5 mm.

2 Resin gate position is accepted in each of the two positions shown on the drawing, or their symmetrical.

18/30 DocID2146 Rev 19

Figure 30. Drawing dimension TO-220 (type STD-ST Single Gauge)

Figure 31. Drawing dimension tube for TO-220 Dual Gauge (mm.)

Figure 32. Drawing dimension tube for TO-220 Single Gauge (mm.)

20/30 DocID2146 Rev 19

TO-220FP mechanical data

Dim.	mm.			inch.		
	Min.	Тур	Max.	Min.	Тур.	Max.
Α	4.40		4.60	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.70	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.50	0.045		0.059
F2	1.15		1.50	0.045		0.059
G	4.95		5.2	0.194		0.204
G1	2.4		2.7	0.094		0.106
Н	10.0		10.40	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L5	2.9		3.6	0.114		0.142
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
DIA.	3		3.2	0.118		0.126

Figure 33. Drawing dimension DPAK (type STD-ST)

Note: 1 Max resin gate protrusion: 0.5 mm.

2 Max resin protrusion: 0.25 mm.

Figure 34. Drawing dimension DPAK (type FUJITSU-subcon.)

Figure 35. Drawing dimension DPAK (type IDS-subcon.)

Table 12. DPAK mechanical data

	1	ype STD-S	Т	Type FUJITSU-Subcon. Type IDS-Subcor			con		
Dim.	mm.			mm.			mm.		
	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.20		2.40	2.25	2.30	2.35	2.19		2.38
A1	0.90		1.10	0.96		1.06	0.89		1.14
A2	0.03		0.23	0		0.10	0.03		0.23
b	0.64		0.90	0.76		0.86	0.64		0.88
b4	5.20		5.40	5.28		5.38	5.21		5.46
С	0.45		0.60	0.46		0.56	0.46		0.58
c2	0.48		0.60	0.46		0.56	0.46		0.58
D	6.00		6.20	6.05		6.15	5.97		6.22
D1		5.10		5.27		5.47		5.20	
Е	6.40		6.60	6.55	6.60	6.65	6.35		6.73
E1		4.70			4.77			4.70	
е		2.28		2.23	2.28	2.33		2.28	
e1	4.40		4.60				4.51		4.61
Н	9.35		10.10	9.90		10.30	9.40		10.42
L	1.00			1.40		1.60	0.90		
L1		2.80					2.50		2.65
L2		0.80		1.03		1.13	0.89		1.27
L4	0.60		1.00	0.70		0.90	0.64		1.02
R		0.20			0.40			0.20	
V2	0°		8°	0°		8°	0°		8°

Note: The DPAK package coming from the two subcontractors (Fujitsu and IDS) are fully compatible with the ST's package suggested footprint.

B C D E F

Figure 36. DPAK footprint recommended data

Table 13. Footprint data

Values					
Dim.	mm.	inch.			
А	6.70	0.264			
В	6.70	0.64			
С	1.8	0.070			
D	3.0	0.118			
Е	1.60	0.063			
F	2.30	0.091			
G	2.30	0.091			

IPAK mechanical data

Dim.		mm.		inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
В	0.64		0.9	0.025		0.035
B2	5.2		5.4	0.204		0.212
В3			0.95			0.037
B5		0.3			0.012	
B6			0.95			0.037
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
E	6.4		6.6	0.252		0.260
G	4.4		4.6	0.173		0.181
Н	15.9		16.3	0.626		0.641
L	9		9.4	0.354		0.370
L1	0.8		1.2	0.031		0.047
L2		0.8	1		0.031	0.039

Dim.	mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.80	6.90	7.00	0.268	0.272	0.2.76
Во	10.40	10.50	10.60	0.409	0.413	0.417
Ko	2.55	2.65	2.75	0.100	0.104	0.105
Po	3.9	4.0	4.1	0.153	0.157	0.161
Р	7.9	8.0	8.1	0.311	0.315	0.319

L78MxxC Revision history

8 Revision history

Table 14. Document revision history

Date	Revision	Changes
21-Jun-2004	6	Document updating.
30-Aug-2006	7	Order codes updated.
29-Nov-2006	8	DPAK mechanical data updated and add footprint data.
06-Jun-2007	9	Order codes updated.
10-Dec-2007	10	Added Table 1.
19-Feb-2008	11	Modified: Table 1 on page 1.
15-Jul-2008	12	Modified: Table 1 on page 1 and Table 14 on page 29.
07-Apr-2009	13	Modified: Figure 9 on page 11 and Figure 15 on page 12.
14-Jun-2010	14	Added: Table 11 on page 17, Figure 29 on page 18, Figure 30 on page 19, Figure 31 and Figure 32 on page 20.
11-Nov-2010	15	Modified: R _{thJC} value for TO-220 <i>Table 3 on page 5</i> .
08-Feb-2012	16	Added: order codes L78M05CV-DG, L78M12CV-DG and L78M15CV-DG Table 1 on page 1.
09-Mar-2012	17	Added: order codes L78M08CV-DG and L78M09CV-DG Table 1 on page 1.
15-May-2012	18	Added: order codes L78M24CV-DG Table 1 on page 1.
19-Apr-2013	19	Removed: Available on request footnote 2 Table 1 on page 1.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

30/30 DocID2146 Rev 19

