DEPARTAMENTO DE MATEMÁTICA DA UNIVERSIDADE DE COIMBRA

Álgebra Linear e Geometria Analítica

Mestrado Integrado em Eng. Electrotécnica e de Computadores

Ano lectivo 2013/2014 Folha 2

- 16. Em cada uma das alíneas dê exemplos de matrizes reais 2×2 com a propriedade indicada.
 - (a) $A^2 = -I$.
 - (b) $A^2 = 0$, sendo A não nula.
 - (c) AB = 0, não tendo A nem B nenhum elemento nulo.
- 17. Designe-se por v_j a coluna j de $A_{m \times n}$, j = 1, ..., n. Dada a matriz-coluna $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$, verifique que $Ax = x_1v_1 + x_2v_2 + \cdots + x_nv_n$.
- 18. Sejam $A \in B$ matrizes $m \times n$. Prove que, se Av = Bv para todo o vector-coluna $v \ n \times 1$, então A = B. (Sugestão: Que conclusões tira se v for, por exemplo, o vector com a primeira componente igual a 1 e as restantes iguais a 0 ?)
- 19. Sejam $A \in B$ duas matrizes quadradas de ordem n. Prove que
 - (a) se A é invertível, então a sua inversa é única;
 - (b) se A e B são ambas invertíveis, então a matriz produto AB também é invertível e $(AB)^{-1} = B^{-1}A^{-1}$;
 - (c) se A é invertível e a sua inversa é A^{-1} , então A^k $(k \in \mathbb{N})$ é invertível e $(A^k)^{-1} = (A^{-1})^k$;
 - (d) se A é invertível e C é uma matriz $n \times p$ tal que $AC = 0_{n \times p}$ $(0_{n \times p}$ a matriz nula $n \times p)$ então $C = 0_{n \times p}$;
 - (e) se A é invertível e D é uma matriz $m \times n$ tal que $DA = 0_{m \times n}$, então $D = 0_{m \times n}$;
 - (f) se A é invertível e AC = AD (C e D matrizes $n \times p$), então C = D;
 - (g) se Aé invertível e EA=FA (Ee F matrizes $m\times n),$ então E=F;
 - (h) se A é invertível e α é um número não nulo, então a matriz αA é invertível e

$$(\alpha A)^{-1} = \frac{1}{\alpha} A^{-1}.$$

- 20. Calcule os produtos $AB \in BA$ nos seguintes casos:
 - (a) $A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$; (b) $A = \begin{bmatrix} i & 1 \\ 0 & i \end{bmatrix}$, $B = \begin{bmatrix} -i & 1 \\ 0 & -i \end{bmatrix}$;
 - (c) $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, $B = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$.
- 21. (a) Mostre que a inversa da matriz $\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$ é a matriz $\begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix}$.
 - (b) Calcule $\begin{bmatrix} 17 & -6 \\ 35 & -12 \end{bmatrix}^5$ usando a igualdade

$$\left[\begin{array}{cc} 17 & -6 \\ 35 & -12 \end{array}\right] = \left[\begin{array}{cc} 2 & 3 \\ 5 & 7 \end{array}\right] \left[\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array}\right] \left[\begin{array}{cc} -7 & 3 \\ 5 & -2 \end{array}\right].$$

- 22. Dê exemplos não triviais (isto é, $\neq I$ e $\neq -I$) de matrizes 2×2 que sejam inversas de si próprias.
- 23. Prove que, se A comuta com B e esta é invertível, então A também comuta com B^{-1} .
- 24. Suponha que A é uma matriz invertível e que

$$A^{-1} = \left[\begin{array}{rrr} 1 & 0 & 2 \\ 1 & 2 & 1 \\ 3 & 5 & 3 \end{array} \right].$$

Determine X tal que: (a) $AX = 0_{3\times 3}$;

(b)
$$XA = 0_{2\times 3};$$

(b)
$$XA = 0_{2\times 3}$$
; (c) $AX = \begin{bmatrix} 2 & -1 \\ 1 & 0 \\ 0 & -3 \end{bmatrix}$.

25. Mostre que as seguintes matrizes não são invertíveis

$$\begin{array}{c|cccc}
(a) & 1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}$$

(b)
$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
; (b) $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$; (c) $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$; (d) $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 0 \\ 2 & 4 & 6 & 8 \\ 1 & 0 & 0 & 0 \end{bmatrix}$.

$$(d) \left[\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 0 \\ 2 & 4 & 6 & 8 \\ 1 & 0 & 0 & 0 \end{array} \right]$$

26. Seja A uma matriz quadrada qualquer. Suponhamos que existe um número natural k tal que $A^k = 0$ (matriz nula). Mostre que, então I - A é invertível tendo-se

$$(I-A)^{-1} = I + A + A^2 + \dots + A^{k-1}$$

- 27. Usando o exercício anterior, calcule $\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}^{-1}$.
- 28. Considere as matrizes A, $B \in C$ tais que

$$AB = \begin{bmatrix} 0 & 5 \\ 4 & 10 \\ 6 & 14 \end{bmatrix} \qquad \text{e} \quad AC = \begin{bmatrix} 2 & -2 \\ 8 & 0 \\ 14 & 0 \end{bmatrix}.$$

Calcule $(AC)^T$, B^TA^T e $(ACB^T)A^T$.

- 29. Sendo A quadrada, mostre que $A + A^T$ é simétrica. E $A A^T$?
- 30. Seja A uma matriz $m \times n$. Prove que as matrizes $A^T A$ e AA^T são simétricas. Dê um exemplo que mostre que estes dois produtos podem ser diferentes, mesmo que A seja quadrada.
- 31. Sejam $A n \times n$ e $S n \times m$, com A simétrica. Mostre que $S^T A S$ é simétrica.
- 32. Mostre que a inversa de uma matriz simétrica invertível é também simétrica.
- 33. Uma matriz quadrada diz-se ortogonal se for invertível e a sua inversa coincidir com a sua transposta. Verifique que as seguintes matrizes reais são ortogonais:

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \quad e \quad \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} \quad (\theta \in \mathbb{R}).$$

(Observação: É possível mostrar que uma matriz ortogonal real 2×2 possui necessariamente uma das duas formas anteriores.)

- 34. Escreva todas as matrizes de permutação 3×3 , incluindo P = I, e para cada uma identifique a sua inversa (que também é uma matriz de permutação).
- 35. Mostre que toda a matriz de permutação é ortogonal.