Reg. No.: 22BCE5181

Name : Sharon Byjn

Continuous Assessment Test-I January 2025

Programme	: B.Tech CSE	Semester	: Winter 2024 – 2025		
		Code	: BCSE309L		
Course	: Cryptography and Network Security	Class Nbr	CH2024250502097 CH2024250501819 : CH2024250501825 CH2024250501834		
Faculty	: Dr. SUBBULAKSHMI P Dr. VATCHALA S Dr. KARTHIKA V Dr. BALASARASWATHI V R	Slot	: B1+TB1		
Time	: 1 ½ Hours	Max. Marks	: 50		

Answer all Questions

1.	i)	Use a suitable theorem to simplify and find the value of x in the given congruence: $x^{4567} \equiv 13$							
		mod 17. (6 marks)							
	ii)	Find the last 2 decimal digits of 2 ¹⁰⁰ . (4 marks)							
2.	i)	Find all solutions x, if they exist, to the system of equivalences: $2x \equiv 6 \mod 14$ $3x \equiv 9 \mod 15$ $5x \equiv 20 \mod 60$ (8 marks)							
	ii)	Three alarms ring at different intervals: • Alarm 1 rings every 8 minutes. • Alarm 2 rings every 14 minutes. • Alarm 3 rings every 18 minutes. All alarms last rang together 5 minutes ago. Write relevant congruences for the same to describe it better. (2 marks)							
3.	i)	Sunil is a cryptographer working on securing a communication channel between two parties, Alice and Bob. The two parties want to use a key exchange protocol to share a secret key over an insecure channel securely. Alice and Bob are using a key exchange protocol with the following parameters: prime modulus p=19, generator g=2. (a) Determine Alice's private key a , such that: $g^a \equiv 12 \pmod{p}$ (b) Determine Bob's private key b , such that: $g^b \equiv 18 \pmod{p}$							
	ii)	Calculate the order of each invertible element in mod 7. (4 marks)							

4. i) Assume that you are working as a cryptography engineer for a government organization that needs to protect classified communications. The organization chooses the Advanced Encryption Standard (AES)-128 encryption standard to achieve this. The AES-128 requires an initial key of 128 bits; divided into 4 words to generate round keys for encryption. Generate the first five words, i.e., w0 to w5 using the following initial key:

54 68 61 74 73 20 6D 79 20 4B 75 6E 67 2F 46 75

The S-box values are given as follows:

Accessory of the Paris of the P	54	68	61	74	73	20	6D	79	20	4B	75	6E	67	2F	46	75
The second second	20	45	EF	92	8F	В7	3C	В6	В7	В3	9D	9F	85	4E	5A	9D

(8 marks)

- ii) Compute the output of the shift rows transformation for the following sequence of input bytes: 54 77 6F 20 4F 6E 65 20 4E 69 6E 65 20 54 77 6F (2 Marks)
- 5. Alice and Bob decided to use a toy version of RC4 for secure communication. Instead of the full 256-byte state array used in the standard RC4, they used a smaller version with 3x2 bits to simplify the process. In this version, the state array S can take values from 0 to 5.
 - (a) Perform the initial permutation of the state array S using the key K= [3,1,4]. (3 Marks)
 - (b) Given the plaintext P=[5,2,4,0], generate the key stream and compute the ciphertext.

(7 Marks)