

Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital IMD0121 –Arquitetura de Computadores

Combinação de Portas Lógicas

Prof. Gustavo Girão girao@imd.ufrn.br

Baseado no material do Prof. Ricardo Weber (UFRGS)

Apresentação

- Nesta aula veremos alguns tipos de portas lógicas obtidas a partir da combinação das portas lógicas básicas (OR, AND e NOT): portas NAND, NOR, XOR e XNOR.
- Estudaremos também porque todos os circuitos lógicos podem ser implementados utilizando apenas portas lógicas NAND e NOR.

Objetivos

- Criar novas portas lógicas a partir das portas lógicas básicas;
- Testar a universalidade das portas lógicas NAND e NOR;
- Aprender a montar o circuito XOR e XNOR utilizando portas lógicas
- básicas e portas NAND e NOR.

- Regras para avaliação de uma expressão booleana:
 - Executar todas as inversões de termos individuais.
 - Realizar todas as operações dentro de parêntesis.
 - Realizar a operação AND antes de uma operação OR, a menos que os parêntesis indiquem o contrário.
 - Sempre que uma expressão tiver uma barra sobre ela, realizar as operações no interior da expressão e depois inverter o resultado.

- Uma maneira de analisar um circuito composto por várias portas lógicas é usar uma tabela-verdade.
- Ela permite analisar uma porta ou uma combinação lógica de uma só vez.
- Ela também permite verificar novamente seu trabalho.
- Ao terminar, você tem um quadro de enorme benefício para solucionar o circuito lógico.

 O primeiro passo, após listar todas as combinações de entradas, é criar uma coluna na tabela-verdade para cada sinal intermediário (nó).

	Α	В	С	<u>u</u> = A	v= AB	X= V+W
I	0	0	0	1		
l	0	0	1	1		
I	0	1	0	1		
I	0	1	1	1		
l	1	0	0	0		
l	1	0	1	0		
	1	1	0	0		
	1	1	1	0		

O nó *U* foi preenchido como complemento de *A.*

 O próximo passo é preencher os valores para a coluna v.

П	Λ	Г	_		.,		.,
	Α	В	O	<u>u=</u> A	v= AB	w= BC	X= V+W
	0	0	0	1	0		
	0	0	1	1	0		
	0	1	0	1	1		
	0	1	1	1	1		
	1	0	0	0	0		
	1	0	1	0	0		
	1	1	0	0	0		
	1	1	1	0	0		

 $v = \overline{A}B$ O nó v deve ser ALTO quando A (nó u) é BAIXO e B é ALTO.

 O terceiro passo é determinar os valores do nó w, o produto lógico de BC.

А	В	С	<u>u</u> = A	v= AB	w= BC	X= V+W
0	0	0	1	0	0	
0	0	1	1	0	0	
0	1	0	1	1	0	
0	1	1	1	1	1	
1	0	0	0	0	0	
1	0	1	0	0	0	
1	1	0	0	0	0	
1	1	1	0	0	1	

A coluna é ALTO sempre que B é ALTO e C é ALTO.

 Logicamente, a etapa final é a combinação das colunas V e W para descobrir a saída x.

Α	В	С	<u>u</u> = A	<u>v</u> = AB	w= BC	X= V+W
0	0	0	1	0	0	0
0	0	1	1	0	0	0
0	1	0	1	1	0	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	0	0	0
1	1	1	0	0	1	1

Desde que x=v+w, a saída x será ALTO quando v OU w for ALTO.

Níveis lógicos de saída podem ser determinados diretamente a partir de um diagrama de circuito.

As saídas de cada porta são percebidas até que a saída final seja encontrada.

Questão para revisão

Implementando Circuitos a partir de Expressões Booleanas

• É importante saber desenhar um circuito lógico de uma expressão booleana.

A expressão $X = A \cdot B \cdot C$ poderia ser desenhada como três entradas de uma porta AND.

Um circuito definido por X = A + B usaria duas entradas de uma porta OR com um INVERSOR em uma das entradas.

Implementando Circuitos a partir de Expressões Booleanas

Um circuito com saída y = AC + BC + ABC contém três termos sobre os quais é aplicada a operação OR...

...e requer uma porta OR de três entradas.

Implementando Circuitos a partir de Expressões Booleanas

- Cada entrada da porta OR é um termo do produto AND.
- Uma porta AND com entradas adequadas pode ser usada para gerar cada um desses termos.

Implementando Circuitos a partir de Booleanas

Expressões

■ Diagrama <u>de</u> circuito para implementar x = (A + B)(B + C).

- As portas OR, AND e NOT podem ser combinadas para formar outras portas lógicas
- Porta NAND:
 - É uma combinação de porta AND com porta NOT

Tar	Tabela Verdade				
A	В	X			
0	0	1			
0	1	1			
1	0	1			
1	1	0			

Saída de onda de uma porta NAND para entrada de onda

Porta NOR:

É uma combinação de porta OR com porta NOT

$$A \rightarrow B \rightarrow X = (\overline{A + B})$$

$$A - B - X = (A + B)$$

Tac	labela verdade				
A	В	X			
0	0	1			
0	1	0			
1	0	0			
1	1	0			

Tabala Wandada

Saída de onda de uma porta NOR para entrada de onda.

 Circuito lógico com a expressão x = AB • (C + D) usando apenas NOR e NAND.

- As portas lógicas AND, OR e NOT podem ser implementadas utilizando apenas portas lógicas NAND ou NOR
- Por isso, podemos concluir:
 - Qualquer circuito pode ser implementado a partir de portas lógicas NAND e NOR
- Vantagem:
 - As portas NAND e NOR requerem menos transistores do que as portas AND e OR
 - E portas NAND requerem menos transistores do que as NOR
- Veremos mais disto nas próximas aulas

Porta NOT

- Utilizando portas NAND:
 - ♦ Vendo a tabela, considerando as entradas A e B iguais, sabese que só é invertida a saída nas linhas 1 e 4
- O Utilizando portas NOR:
 - ♦ Vendo a tabela, considerando as entradas A e B iguais, sabese que só é invertida a saída nas linhas 1 e 4

Tab	Tabela Verdade NAND				
A	В	X			
0	0	1			
0	1	1			
1	0	1			
1	1	0			

Tabela Verdade NOR				
A	В	X		
0	0	1		
0	1	0		
1	0	0		
1	1	0		

Tab	Tabela Verdade NAND				
A	В	X			
0	0	1			
0	1	1			
1	0	1			
1	1	0			

Tab	Tabela Verdade NOR				
A	В	X			
0	0	1			
0	1	0			
1	0	0			
1	1	0			

- Porta AND
 - Existe uma propriedade da Algebra Booleana que demonstra que A é equivalente a A. Logo:
 - O Utilizando portas NAND:
 - ♦ Coloca-se um inversor na saída da porta NAND

- Utilizando portas NOR:
 - Vendo as tabelas, sabe-se que as saídas são iguais a '1' nas linhas 1 e 4
 - As entradas devem ser invertidas

Tab	Tabela Verdade AND				
Α	В	X			
0	0	0			
0	1	0			
1	0	0			
1	1	1			

labela verdade NOR				
A	В	X		
0	0	1		
0	1	0		
1	0	0		
1	1	0		

Tabala Vandada NOD

- Porta OR
 - Utilizando portas NAND:
 - Vendo as tabelas, sabe-se que as saídas são iguais a '0' nas linhas 1 na tabela do OR e 4 na tabela da NAND
 - As entradas devem ser invertidas

Tabela Verdade OR			
Α	В	X	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Tabela Verdade NAND			
Α	В	X	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

- Porta OR
 - O Utilizando portas NOR:
 - ♦ Coloca-se um inversor na saída da porta NOR

Redesenhe o circuito usando apenas portas NAND

Redesenhe o circuito usando apenas portas NAND

Universalidade de Portas

Redesenhe o circuito usando apenas portas NAND

Universalidade de Portas

Redesenhe o circuito usando apenas portas NAND

Universalidade de Portas

Redesenhe o circuito usando apenas portas NAND

- Porta XOR:
 - Conhecido como OU exclusivo
 - Na porta XOR de duas entradas
 - ♦ Saída = '1': entradas diferentes
 - ♦ Saída = '0': entradas iguais

$$X = A \oplus B$$

labela verdade				
Α	В	X		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

Tabela Verdade

Porta XOR:

- Como representar a porta XOR com portas lógicas básicas?
- Conhecemos a tabela-verdade.
- Como definir a equação booleana a partir da tabelaverdade?

- Porta XOR:
 - Como representar a porta XOR com portas lógicas básicas?
 - Conhecemos a tabela-verdade.
 - Como definir a equação booleana a partir da tabelaverdade?
 - Utilizando MAXTERMOS ou MINTERMOS

	Tabela Verdade				
A B X Mintermos			Maxtermos		
0	0	0	A.B	A + B	
0	1	1	A.B	A + B	
1	0	1	A.B	A + B	
1	1	0	A.B	A + B	

- Porta XOR:
 - Como representar a porta XOR com portas lógicas básicas?
 - Conhecemos a tabela-verdade.
 - Como definir a equação booleana a partir da tabelaverdade?
 - Utilizando MAXTERMOS ou MINTERMOS

	Tabela Verdade				
Α	В	X	Maxtermos		
0	0	0	A.B	A + B	
0	1	1	A.B	A + B	
1	0	1	A.B	A + B	
1	1	0	A.B	A+B	

Mintermos: $X = \bar{A}.B + A.\bar{B}$

Maxtermos: $X = (A + B).(\bar{A} + \bar{B})$

Porta XOR

Mintermos: $X = \bar{A}.B + A.\bar{B}$

Maxtermos: $X = (A + B).(\bar{A} + \bar{B})$

(k) Utilizando mintermos

Utilizando maxtermos

Como implementamos uma XOR com NANDS? E Com NORs?

- Porta XOR
 - Ocomo funciona a porta XOR com mais de duas entradas?
 - Funciona como um detector de paridades
 - ♦ Saída = '1': o número de entradas iguais a '1' é ímpar
 - ♦ Saída = '0': o número de entradas iguais a '1' é par
 - O termo OU exclusivo funciona apenas para portas XOR com duas entradas
 - Como fica a tabela verdade?

Combinação de Portas Logicas

T-1-1-17-1-1-1

Tabela Verdade				
A	В	C	X	
0	0	0	?	
0	0	1	?	
0	1	0	?	
0	1	1	?	
1	0	0	?	
1	0	1	?	
1	1	0	?	
1	1	1	?	

- Porta XNOR:
 - Na porta XNOR de duas entradas
 - ♦ Saída = '0': entradas diferentes
 - ♦ Saída = '1': entradas iguais

$$X = \overline{A \oplus B}$$

Tabela Verdade				
A B X				
0	0	1		
0	1	0		
1	0	0		
1	1	1		

- Porta XNOR:
 - Como representar a porta XNOR com portas lógicas básicas?
 - Conhecemos a tabela-verdade.
 - o Como definir a equação booleana a partir da tabela-verdade?
 - Utilizando MAXTERMOS ou MINTERMOS

	Tabela Verdade				
Α	В	X	Mintermos	Maxtermos	
0	0	1	A.B	A + B	
0	1	0	A.B	A + B	
1	0	0	A.B	A + B	
1	1	1	A.B	A + B	

- Porta XNOR:
 - Como representar a porta XNOR com portas lógicas básicas?
 - Conhecemos a tabela-verdade.
 - Como definir a equação booleana a partir da tabela-verdade?
 - Utilizando MAXTERMOS ou MINTERMOS

	Tabela Verdade				
Α	В	X	Mintermos	Maxtermos	
0	0	1	A.B	A + B	
0	1	0	A.B	A + B	
1	0	0	A.B	A + B	
1	1	1	A.B	A + B	

Mintermos: $X = \bar{A}.\bar{B} + A.B$

Maxtermos: $X = (A + \bar{B}).(\bar{A} + B)$

Mintermos: $X = \bar{A}.\bar{B} + A.B$

Maxtermos: $X = (A + \bar{B}).(\bar{A} + B)$

Mintermos: $X = \bar{A}.\bar{B} + A.B$

Maxtermos: $X = (A + \bar{B}).(\bar{A} + B)$

(n) Utilizando maxtermos

- Porta XNOR
 - Como funciona a porta XNOR com mais de duas entradas?
 - Funciona como um detector de paridades
 - ♦ Saída = '0': o número de entradas iguais a '1' é ímpar
 - ♦ Saída = '1': o número de entradas iguais a '1' é par
 - Como fica a tabela verdade com três entradas?

Tabela Verdade				
Α	В	C	X	
0	0	0	?	
0	0	1	?	
0	1	0	?	
0	1	1	?	
1	0	0	?	
1	0	1	?	
1	1	0	?	
1	1	1	?	

Tabela Verdade					
Α	A B C X				
0	0	0	1		
0	0	1	0		
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	1		
1	1	0	1		
1	1	1	0		

Referências

- STALLINGS, William. Arquitetura e organização de computadores. 10. ed. São Paulo: Pearson, 2017. 814 p.
 - Capítulo 9
- TOCCI, Ronald J; Widmer, Neal S. Sistemas Digitais: principios e Aplicações. 11. ed. São Paulo SP: Pearson, 2011, 817 p. ISBN 9788576050957
 - Capitulo 1

 PATTERSON, David A; HENNESSY, John L. Organização e projeto de computadores: A interface HARDWARE/SOFTWARE. Rio de Janeiro: Elsevier, 2005, 3ª edição.

Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital IMD0121 –Arquitetura de Computadores

Combinação de Portas Lógicas

Prof. Gustavo Girão girao@imd.ufrn.br

Baseado no material do Prof. Ricardo Weber (UFRGS)