

Выполнил:

Лаврентьев М. П.

Руководители: д.х.н., профессор Сыроежко А. М. (СПбГТИ(ТУ)) к.т.н. Герасимов А. М. (НПО «Механобр-техника»)

Исследование термической обработки энергетических углей является актуальным научным направлением

- Энергетические угли в России испытывают конкуренцию с природным газом
- Инфраструктурные ограничения и удаленность угледобывающих/перерабатывающих предприятий делают использование некачественных углей нерентабельным
- Критикуется безопасность использования угля в энергетике
- Снижаются темпы развития Китая, также стратегия этой страны направлена на самообеспечение углем
- Запасы угля огромны
- Полукоксы углей находят применение в качестве сорбентов, углеродных восстановителей, носителей катализаторов, материалов специального назначения
- Жидкие и газообразные продукты полукоксования применяются как топливо и как сырье химических производств
- В Россию импортируется большая доля активированных углей

Перспективно развивать переработку угля в ценные химические продукты и углеродные материалы и экспортировать не сырой уголь, а продукты с высокой добавленной стоимостью

Целью данной дипломной работы является...

Изучение структурных изменений, происходящих в угле марки Д (длиннопламенный) Кузнецкого бассейна при его термической переработке в режиме полукоксования, комплексом физико-химических методов анализа

Характеристика исследуемого угля

Для исследования был взят каменный уголь марки Д Караканского месторождения Кузнецкого бассейна.

Основные петрографические виды литотипов: Витрен, кларен-дюрен с преобладанием витрена. Образцы обладают незначительной трещеневатостью.

Элементный и технический анализ исходного угля						
Характеристика	Значение					
Содержание С, %	78,0					
Содержание Н, %	4,3					
Содержание N, %	1,7					
Содержание О, %	15,5					
Содержание S, %	0,5					
Высшая теплота сгорания Q ^{saf} , МДж/кг	31,8					
Влага W ^a , %	1,8					
Зольность А ^d , %	14,8					
Выход летучих V ^a , %	34,7					

Полукоксование Караканского каменного угля марки Д

Режим полукоксования в реторте Фишера:

Нагрев 10 °C в 1 мин

Выдерживание угля при заданной температуре – 30 минут

Полукоксование Караканского каменного угля марки Д

Режим полукоксования в реторте Фишера:

Нагрев 10 °C в 1 мин

Выдерживание угля при заданной температуре – 30 минут

При нагреве свыше 550 °C выходы продуктов полукоксования меняются незначительно

Полукоксование Караканского каменного угля марки Д

Режим полукоксования в реторте Фишера:

Нагрев 10 °C в 1 мин

Выдерживание угля при заданной температуре – 30 минут

Технический и элементный анализ полукоксов и исходного угля											
Образец	С, %	Н, %	N, %	S, %	Ο, %	Высшая теплота сгорания Q ^{saf} , МДж/кг	Влага W ^a , %	Зольность А ^d , %	Выход летучих V ^a , %		
Исходный уголь	78,0	4,3	1,7	0,5	15,5	31,8	1,8	14,8	34,7		
Полукокс, 450 °C	85,9	4,1	1,9	0,3	7,8	34,0	0,5	20,5	21,6		
Полукокс, 500 °C	87,2	3,9	2,0	0,2	6,7	34,2	0,3	22,6	14,6		
Полукокс, 550 °C	90,1	3,6	2,1	0,2	4,0	34,8	0,3	25,9	10,3		
Полукокс, 600 °C	91,1	3,3	2,1	0,2	3,3	35,1	0,2	29,9	9,8		

Наиболее значимые изменения в составе угля произошли при нагреве до 550 °C. При дальнейшем нагреве изменения не столь существенны.

Исследование процесса пиролиза угля

Дериватография угля произведена на приборе Shimadzu DTG-60H. Нагрев до 1100 °C велся со скоростью 10 °C в 1 минуту.

- Внешняя и частично внутренняя влага испарилась в интервале температур 20-140 °C
- Максимальная интенсивность процессов пиролиза наблюдается при 523,62 °C
- Тепловой эффект процессов пиролиза экзотермический с максимумом при 520,14 °C

Рентгенофазовый анализ был проведен на рентгеновском дифрактометре Rigaku SmartLab с медным анодом и углом поворота 5-100 градусов.

- Основа зольной части каолинит с примесями кальцита
- Полукоксование увеличивает высоту стопок кристаллита графита
- Каолинит разлагается при 450-500
 °C с образованием кварца SiO₂,
 который при 550 °C превращается в аморфный кремнезем
- Сера представлена преимущественно примесью пирита FeS₂
- Незначительная примесь Cl-Br органики улетучивается при 450-500 °C

Исследование внутренней структуры образцов было произведено на рентгеновском томографе SkyScan 1173.

- Доля аморфной составляющей за счет удаления наиболее легких компонентов снизилась с 73,6 % у исходного угля до 59, 2 % у обработанного при 550 °C.
- Доля минеральной части при полукоксовании незначительно повысилась с 24,2% до 26,5 %.
- Коэффициент пористости исходного угля с 2,25 % вырос до 14,3 % после термообработки при 550 °C.

Визуально изменение порового пространства угля марки Д Караканского месторождения можно оценить по 3D изображениям, полученным на рентгеновском томографе

Изменение пор угля в процессе пиролиза идет по пути роста их числа и размера с последующим объединением в более крупные полости

Выводы по работе

- Интервал температур 500-550 °C оптимален для проведения полукоксования каменного угля марки Д Караканского месторождения: на него приходится максимумы интенсивности деструктивных процессов.
- В результате полукоксования снизилась доля аморфной части более чем на 14 %, в основном за счет более легких органических компонентов.
- Пиролиз угля привел к увеличению высоты стопок кристаллитов графита.
- Минеральная часть угля была представлена в основном каолинитом. Под действием температуры его кристаллическая структура разрушалась с образованием криптокристаллического кварца, который затем превращался в аморфный кремнезем.
- Пиролиз привел к значительному изменению структуры пор. В исследуемых образцах возникли поверхностные и внутренние полости и трещины.
- Наибольший коэффициент пористости обнаружился у полукокса, полученного при 550 °С, однако в интервале температур обработки угля 500-550 °С произошло резкое уменьшение мелких пор за счет образования больших полостей более 100 мкм.
- Структурные изменения угля при термической обработке позволяют рассматривать полукоксование как подготовительный этап перед сухим обогащением угля по технологии, разрабатываемой в НПО «Механобр-техника».

Приложение. Структура угля и полукоксов

		Исследуемый образец					
Показатель		исходный уголь	полукокс, 450 °C	полукокс, 500 °C	полукокс, 550°C		
Состав,	Органические вещества	73,6	62,6	59,2	59,2		
% об	Минеральные компоненты	24,2	25,8	27,2	26,5		
Плотность пор $* P_{пл}$, шт/мм 3		1314	692	692	564		
Коэффициент пористости К _п , %		2,2	11,6	13,6	14,3		
	0 – 10 mkm	54,72	9,19	8,13	6,61		
	10 – 50 мкм	30,26	65,00	60,48	37,58		
Доля пор определенного размера, %	50 – 100 mkm	5,04	15,88	15,23	17,15		
	100 – 250 мкм	9,98	8,93	7,23	17,92		
	250 – 500 мкм	-	1,00	5,63	9,94		
	более 500 мкм	-	-	3,30	10,80		
Медианный размер пор Md _п , мкм		9,5	27,0	31,0	61,3		
Доля пор определенной формы, %	Округлая (K _ф =1-0,8)	5,51	6,40	6,77	5,57		
	Эллипсоидная (К _ф =0,8-0,5)	29,31	32,65	36,24	25,75		
	Дисковидная (К _ф =0,5-0,2)	45,59	52,95	49,5	47,27		
	Щелевидная (К _ф =0-0,2)	19,59	8,00	7,49	21,41		
Удельная поверхность пор S _{уд} , 1/мм		19,7	67,9	39,9	79,5		