

CHAPITRE 2: INTERPOLATION POLYNOMIALE ET APPROXIMATION

Estimation de l'erreur d'interpolation

Dans le cas où les points (x_i, y_i) , $i \in \{0, \dots, n\}$ sont définies à partir d'une fonction f $(f(x_i) = y_i)$, le résultat suivant permet d'estimer l'erreur d'interpolation en un point quelconque.

Soient $x_0 < x_1 < \cdots < x_n$ des nombres réels, f une fonction de classe C^{n+1} sur $[x_0, x_n]$ et P_n le polynôme d'interpolation des points (x_i, y_i) , $i \in \{0, \cdots, n\}$ avec $f(x_i) = y_i$. L'erreur d'interpolation $E_n(x) = |f(x) - P_n(x)|$ en $x \in [x_0, x_n]$ vérifie

$$E_n(x) \le \frac{\max_{t \in [x_0, x_n]} |f^{(n+1)}(t)|}{(n+1)!} \prod_{i=0}^n |x - x_i|.$$

Exercice

Soient f la fonction définie sur $[0, \frac{2}{3}]$ par $f(x) = e^{2x}$, les points $x_0 = 0$, $x_1 = \frac{1}{3}$ et $x_2 = \frac{2}{3}$ et P_2 le le polynôme d'interpolation de f en ces points.

Estimer l'erreur d'interpolation en tout point $x \in [x_0, x_2]$.

Solution

Comme f est de classe C^3 sur $[x_0, x_2]$ alors, d'après le théorème de l'estimation de l'erreur d'interpolation, $\forall x \in [x_0, x_2]$,

$$E(x) = |f(x) - P(x)| \le \frac{\max_{t \in [x_0, x_2]} |f^{(3)}(t)|}{3!} |x - x_0| |x - x_1| |x - x_2|.$$

Solution

Comme f est de classe C^3 sur $[x_0, x_2]$ alors, d'après le théorème de l'estimation de l'erreur d'interpolation, $\forall x \in [x_0, x_2]$,

$$E(x) = |f(x) - P(x)| \le \frac{\max_{t \in [x_0, x_2]} |f^{(3)}(t)|}{3!} |x - x_0| |x - x_1| |x - x_2|.$$

En calculant les dérivées successives de f jusqu'à l'ordre 3, on aura

$$f'(t) = 2e^{2t}$$
, $f''(t) = 4e^{2t}$, $f^{(3)}(t) = 8e^{2t}$.

Solution

Comme f est de classe C^3 sur $[x_0, x_2]$ alors, d'après le théorème de l'estimation de l'erreur d'interpolation, $\forall x \in [x_0, x_2]$,

$$E(x) = |f(x) - P(x)| \le \frac{\max_{t \in [x_0, x_2]} |f^{(3)}(t)|}{3!} |x - x_0| |x - x_1| |x - x_2|.$$

En calculant les dérivées successives de f jusqu'à l'ordre 3, on aura

$$f'(t) = 2e^{2t}$$
, $f''(t) = 4e^{2t}$, $f^{(3)}(t) = 8e^{2t}$.

Vu que $\max_{t \in [x_0, x_2]} |f^{(3)}(t)| = 8e^{\frac{4}{3}}$, on obtient

$$E(x) \le \frac{4e^{\frac{4}{3}}}{3}|x|\left|x - \frac{1}{3}\right|\left|x - \frac{2}{3}\right|.$$

Equipe AN Analyse Numérique ESPRIT