Universidade Federal de Mato Grosso do Sul

Faculdade de Computação Inteligência Artificial Prof. Edson Takashi Matsubara

Lista de Exercícios 1

- 1. Por que a indução nem sempre gera hipóteses verdadeiras?
- 2. Na década de 80, a inteligência artificial era representado principalmente pelos sistemas especialistas e sistemas baseados em conhecimento. Nesses sistemas um especialista de domínio trabalhava em conjunto com um engenheiro de conhecimento que em conjunto trabalhavam para representar o conhecimento. O que muda com o uso de aprendizado de máquina?
- 3. Qual é a diferença entre aprendizado supervisionado e não-supervisionado?
- 4. Qual é a diferença entre classificação e regressão?
- 5. Qual a diferença entre conjunto de treinamento e teste?
- 6. O que é melhor, obter um algoritmo que seja melhor no conjunto de treinamento ou no conjunto de teste? Por quê? Dê um exemplo real na sua justificativa.
- 7. O uso de k = 1 pode levar à classificações incorretas caso existam exemplos com ruído no conjunto de treinamento. Explique por quê?
- 8. Por que a normalização dos valores é de grande importância para o K-NN? Dê um exemplo que se torna evidente a necessidade de normalização dos valores.
- 9. Por que deve-se transformar atributos nominais em atributos numéricos quando se utiliza K-NN? Explique uma maneira de realizar a conversão de atributos nominais em atributos numéricos.
- Apresente situações onde é evidente que o K-NN com pesos é melhor que o K-NN tradicional.
- 11. Por que KNN não é indicado para ser utilizado em conjunto de dados com muitos atributos?
- 12. Por que KNN também não é indicado para ser utilizado com conjunto com muitos exemplos de treinamento? Como solucionar esse problema?
- 13. O que é a estimação de máxima verosimilhança?
- 14. Calcule

$$\theta = \arg\max_{\theta} \theta^h (1 - \theta)^{m - h} \tag{1}$$

- 15. Calcule o gradiende das seguintes funções:
 - (a) $f(x) = x^2 + 2$
 - (b) $f(x) = (x-2)^2$
 - (c) $f(x, y, z) = x^3 + y^2 + z$
 - (d) $g(z) = \frac{1}{1+e^{-z}}$
- 16. Faça 3 iterações do método de gradiente descendente para cada função utilizando valores arbitrários para x,y e z.
- 17. Dado que

$$h_{\theta}(x^{(i)}) = \sum_{k=0}^{n} \theta_k x_k^{(i)}$$
 (2)

 \mathbf{e}

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
(3)

calcule $\frac{\partial}{\partial \theta_j} J(\theta)$ e mostre a regra de atualização de θ_j .

- 18. Considere os pontos (0,2) e (5,4). Encontre a reta utilizando regressão linear que fique próxima aos pontos.
- 19. Considere a Tabela 1. Utilizando regressão logística encontre a reta que

Table 1: Pesos e alturas
altura peso sexo

1.50 40 feminino

	_	
1.50	40	feminino
1.51	42	masculino
1.60	60	feminino
1.61	62	masculino

separa homens e mulheres.

- 20. Mostre a equivalência do perceptron e o algoritmo de regressão logística.
- 21. Faça duas iterações do algoritmo de perceptron na tabela verdado do AND.
- 22. Faça duas iterações do algoritmo de perceptron na tabela verdado do OR.
- 23. Explique a função do bias no perceptron.
- Explique porque a regressão logística não consegue aprender a tabela verdade do XOR.
- 25. Considere o conjunto de dados palestra apresentado na Tabela 2. Induza uma árvore de decisão utilizando ganho de informação. Mostre todas as contas e detalhes da indução desta árvore.

Table 2: Conjunto de dados palestra

palestra	relevancia	comida	distancia	brinde	classe
1	alta	sim	perto	sim	sim
2	alta	não	perto	não	$_{ m sim}$
3	alta	sim	perto	sim	$_{ m sim}$
4	alta	não	perto	não	$_{ m sim}$
5	alta	sim	perto	sim	$_{ m sim}$
6	alta	não	perto	não	$_{ m sim}$
7	alta	sim	perto	$_{ m sim}$	não
8	alta	não	longe	não	$_{ m sim}$
9	alta	sim	longe	sim	não
10	alta	não	longe	não	não
11	baixa	sim	perto	$_{ m sim}$	$_{ m sim}$
12	baixa	sim	longe	não	$_{ m sim}$
13	baixa	sim	perto	$_{ m sim}$	$_{ m sim}$
14	baixa	sim	longe	não	não
15	baixa	não	perto	$_{ m sim}$	não
16	baixa	não	longe	não	não
17	baixa	não	perto	$_{ m sim}$	não
18	baixa	não	longe	não	não
19	baixa	não	perto	$_{ m sim}$	não
20	baixa	não	longe	não	não

- 26. Qual é a vantagem de se utilizar razão de ganho?
- 27. Transforme a árvore induzida em um conjunto de regras.
- 28. Qual é a importância de realizar poda em árvores de decisão?
- 29. Ainda utilizando o mesmo conjunto de dados, induza um conjunto de regras utilizando a ordered rules e non-ordered rules.
- 30. Por que no aprendizado de regras se faz necessário o uso de uma regra padrão (regra default)?
- 31. Por que pode-se converter uma árvore de decisão em regras mas não se pode converter regras em árvores de decisão? Dê exemplos.
- 32. Para que serve a correção de laplace? Dê exemplos.
- 33. Considere uma regra R que cobre 10 exemplos dos quais 9 exemplos estão classificados corretamente. Agora considere uma poda nesta mesma regra que faz a regra cobrir 20 exemplos dos quais 17 deles estão corretos. Calcule o erro pessimista (perr) de ambos os casos e veja se a poda pode melhorar ou piorar a classificação dos exemplos.
- 34. Quais são as propriedades para uma função $d: X \times X \to R$ seja considerado uma medida de distância.
- 35. Verifique se as funções abaixo podem ser consideradas medidas de distância:
 - (a) produto escalar de dois vetores;

- (b) coseno entre dois vetores;
- (c) seno entre dois vetores;
- (d) a diferença de número de caracteres entre duas cadeias de caracteres;
- (e) o módulo da diferença de número de caracteres entre duas cadeias de caracteres.
- 36. Considere a Tabela 3 Faça o agrupamento hierárquico utilizando a distância

Table 3: Conjunto agrupamento

id	x_1	x_2
A	10	11
В	11	11
С	20	15
D	21	17
Е	15	15
F	40	5

de manhattan com ligação simples, completa e média de grupo.

- 37. Qual é o provável outlier do deste conjunto de dados?
- 38. Faça agrupamento por K-médias utilizando a Tabela 3. Faça para $\mathbf{K}=2,3,4$
- 39. O agrupamento por K-médias consegue representar agrupamentos não esféricos? E o hierárquico? Explique e dê exemplos.
- 40. Utilize a regra do cotovelo para verificar qual é a provavel quantidade de clusters utilizando agrupamento hierárquico e agrupamento por k-médias.