PM-592 Final Project

Jaxon Abercrombie

12/10/2021

Functions

```
lrt.func <- function(model){</pre>
 model %>%
    anova(test = "LRT")
}
fp.func <- function(variable2){</pre>
 mfp(death ~ fp(variable2), data = heartfailure, family = binomial)
plot_resid_lev_logistic <- function(model)</pre>
 resp <- names(model.frame(model))[1]</pre>
 title <- paste("Outlier and Leverage Diagnostics for",
                  resp)
 g <- dx(model, byCov=T) %>%
   rownames_to_column() %>%
    as tibble()
  lthresh <- round(mean(g$h, na.rm=T)*2, 3)</pre>
  ann_label <- paste("Threshold:", lthresh)</pre>
  f <- g[,c("rowname", "h", "dChisq", "dDev", "dBhat", "sPr")]</pre>
  f$numinf <- as.integer(</pre>
    (f$dChisq > 4) + (f$dDev > 4) + (f$dBhat > 1)
  f$obs <- case_when(
    (f$h > lthresh) & (abs(f$sPr) > 2) ~ "Influence",
    (f$h > lthresh) ~ "Leverage",
    (abs(f$sPr) > 2) ~ "Outlier",
    TRUE ~ "Normal"
  f$txt <- ifelse(f$obs == "Normal", NA, f$rowname)</pre>
    ggplot(f, aes(h, sPr, label = txt)) +
    geom_point(shape = 1, aes(colour = obs, size = 0.5+0.25*numinf)) +
    scale_colour_manual(values=c("Influence" = "red", "Outlier" = "maroon",
                                   "Leverage" = "darkgreen", "Normal" = "blue")) +
    labs(colour = "Observation",
         x = "Leverage",
         y = "Pearson's Residual",
```

Data Section

```
# Load in Dataset
heartfailure <- read.csv("heartfailure.csv")</pre>
# Clean, Wrangle, and Explore Data
names(heartfailure)[13] <- "death"</pre>
names(heartfailure) # examine variable names and decide which are of interest
## [1] "age"
                                    "anaemia"
## [3] "creatinine_phosphokinase" "diabetes"
## [5] "ejection_fraction"
                                   "high_blood_pressure"
## [7] "platelets"
                                   "serum_creatinine"
## [9] "serum_sodium"
                                   "sex"
## [11] "smoking"
                                    "time"
## [13] "death"
dim(heartfailure) # check dimensions to make sure they match source website
## [1] 299 13
sum(is.na(heartfailure)) # ensure there are no cells with NA
## [1] O
# Summary statistics found in Table 1 in later code chunk
```

Model Building Code and Output - Univariate

```
## MAIN INDEPENDENT CONTINUOUS VARIABLES FIRST

# Creatinine Phosphokinase
cp.m <- glm(death ~ creatinine_phosphokinase,</pre>
```

```
family = binomial, data = heartfailure)
summary(cp.m)
##
## Call:
## glm(formula = death ~ creatinine_phosphokinase, family = binomial,
       data = heartfailure)
##
## Deviance Residuals:
      Min
                10
                    Median
                                  3Q
                                          Max
## -1.1141 -0.8792 -0.8573 1.5084
                                       1.5411
## Coefficients:
##
                             Estimate Std. Error z value Pr(>|z|)
                           -0.8265731 0.1447064 -5.712 1.12e-08 ***
## (Intercept)
## creatinine_phosphokinase 0.0001297 0.0001218
                                                  1.065
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 375.35 on 298 degrees of freedom
## Residual deviance: 374.23 on 297 degrees of freedom
## AIC: 378.23
##
## Number of Fisher Scoring iterations: 4
mfp(death ~ fp(creatinine_phosphokinase),
   data = heartfailure, family = binomial)
## Call:
## mfp(formula = death ~ fp(creatinine_phosphokinase), data = heartfailure,
      family = binomial)
##
##
## Deviance table:
            Resid. Dev
## Null model
                375.3488
## Linear model 374.2305
## Final model
                374.2305
##
## Fractional polynomials:
                           df.initial select alpha df.final power1 power2
## creatinine_phosphokinase
                                    4 1 0.05
                                                          1
                                                                 1
##
##
## Transformations of covariates:
                                                        formula
## creatinine_phosphokinase I((creatinine_phosphokinase/1000)^1)
## Rescaled coefficients:
##
                   Intercept creatinine_phosphokinase.1
                                               0.0001297
##
                  -0.8265731
##
```

```
## Degrees of Freedom: 298 Total (i.e. Null); 297 Residual
## Null Deviance:
                        375.3
## Residual Deviance: 374.2
                                AIC: 378.2
lrt.func(cp.m)
## Analysis of Deviance Table
##
## Model: binomial, link: logit
## Response: death
##
## Terms added sequentially (first to last)
##
##
##
                            Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL
                                              298
                                                      375.35
## creatinine_phosphokinase 1
                                 1.1182
                                              297
                                                      374.23
                                                               0.2903
# Ejection Fraction
ef.m <- glm(death ~ ejection_fraction,</pre>
            family = binomial, data = heartfailure)
summary(ef.m)
##
## Call:
## glm(formula = death ~ ejection_fraction, family = binomial, data = heartfailure)
## Deviance Residuals:
      Min
                10
                     Median
                                   3Q
                                           Max
## -1.3320 -0.9146 -0.7201
                               1.2173
                                        2.3205
## Coefficients:
                     Estimate Std. Error z value Pr(>|z|)
                                           2.834 0.00459 **
## (Intercept)
                      1.31169
                                 0.46278
## ejection_fraction -0.05620
                                 0.01258 -4.468 7.88e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
      Null deviance: 375.35 on 298 degrees of freedom
## Residual deviance: 351.97 on 297 degrees of freedom
## AIC: 355.97
## Number of Fisher Scoring iterations: 4
mfp(death ~ fp(ejection_fraction),
   data = heartfailure, family = binomial)
## mfp(formula = death ~ fp(ejection_fraction), data = heartfailure,
##
       family = binomial)
##
## Deviance table:
```

```
Resid. Dev
## Null model
                 375.3488
## Linear model 351.9682
## Final model
                 334.7072
## Fractional polynomials:
                     df.initial select alpha df.final power1 power2
                                     1 0.05
## ejection_fraction
                              4
##
##
## Transformations of covariates:
## ejection_fraction I((ejection_fraction/100)^-2)
## Rescaled coefficients:
##
            Intercept ejection_fraction.1
##
                -1.969
                                   1256.112
##
## Degrees of Freedom: 298 Total (i.e. Null); 297 Residual
## Null Deviance:
                        375.3
## Residual Deviance: 334.7
                                AIC: 338.7
heartfailure <-
 heartfailure %>%
  mutate(ef.fp = (1/sqrt(ejection_fraction))) # mutate based on fp output
glm(death ~ ef.fp, family = binomial, data = heartfailure) %>%
anova(test = "LRT")
## Analysis of Deviance Table
## Model: binomial, link: logit
## Response: death
## Terms added sequentially (first to last)
##
##
        Df Deviance Resid. Df Resid. Dev Pr(>Chi)
                           298
## NULL
                                   375.35
                           297
                                   340.74 4.038e-09 ***
## ef.fp 1 34.605
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
ef.m2 <- glm(death ~ ef.fp,
            family = binomial, data = heartfailure) # new model with transformation
lrt.func(ef.m2)
## Analysis of Deviance Table
## Model: binomial, link: logit
## Response: death
## Terms added sequentially (first to last)
##
##
```

```
Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL
                          298
                               375.35
## ef.fp 1 34.605
                          297
                                  340.74 4.038e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Platelets
platelets.m <- glm(death ~ platelets,</pre>
           family = binomial, data = heartfailure)
summary(platelets.m)
##
## Call:
## glm(formula = death ~ platelets, family = binomial, data = heartfailure)
##
## Deviance Residuals:
                    Median
      Min
           1Q
                                  3Q
                                          Max
## -0.9794 -0.8908 -0.8644 1.4731
                                       1.6882
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.573e-01 3.632e-01 -1.259
## platelets -1.115e-06 1.316e-06 -0.847
                                               0.397
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 375.35 on 298 degrees of freedom
## Residual deviance: 374.61 on 297 degrees of freedom
## AIC: 378.61
## Number of Fisher Scoring iterations: 4
mfp(death ~ fp(platelets),
   data = heartfailure, family = binomial)
## mfp(formula = death ~ fp(platelets), data = heartfailure, family = binomial)
##
##
## Deviance table:
            Resid. Dev
## Null model
                375.3488
## Linear model 374.611
## Final model 374.611
## Fractional polynomials:
           df.initial select alpha df.final power1 power2
## platelets
                    4
                          1 0.05
                                         1
##
##
## Transformations of covariates:
## platelets I((platelets/1e+05)^1)
## Rescaled coefficients:
```

```
Intercept platelets.1
## -4.573e-01 -1.115e-06
##
## Degrees of Freedom: 298 Total (i.e. Null); 297 Residual
## Null Deviance:
                        375.3
## Residual Deviance: 374.6
                                AIC: 378.6
lrt.func(platelets.m)
## Analysis of Deviance Table
## Model: binomial, link: logit
## Response: death
## Terms added sequentially (first to last)
##
             Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL
                               298
                                       375.35
## platelets 1 0.73778
                                       374.61
                               297
                                                0.3904
# Serum Creatinine
sc.m <- glm(death ~ serum_creatinine,</pre>
           family = binomial, data = heartfailure)
summary(sc.m)
##
## Call:
## glm(formula = death ~ serum_creatinine, family = binomial, data = heartfailure)
##
## Deviance Residuals:
       Min
                1Q
                    Median
                                   3Q
                                           Max
## -2.5213 -0.7966 -0.7417
                              1.2644
                                        1.7990
##
## Coefficients:
##
                    Estimate Std. Error z value Pr(>|z|)
                                0.2939 -6.438 1.21e-10 ***
                    -1.8917
## (Intercept)
                     0.8242
                                 0.1972 4.180 2.91e-05 ***
## serum_creatinine
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 375.35 on 298 degrees of freedom
## Residual deviance: 347.25 on 297 degrees of freedom
## AIC: 351.25
## Number of Fisher Scoring iterations: 5
mfp(death ~ fp(serum_creatinine),
   data = heartfailure, family = binomial)
## Call:
## mfp(formula = death ~ fp(serum_creatinine), data = heartfailure,
       family = binomial)
```

```
##
##
## Deviance table:
           Resid. Dev
## Null model
                375.3488
## Linear model 347.2521
## Final model
                333.4361
## Fractional polynomials:
                    df.initial select alpha df.final power1 power2
## serum_creatinine
                            4
                               1 0.05
                                                  2
                                                        -1
##
##
## Transformations of covariates:
## serum_creatinine I(serum_creatinine^-1)
##
## Rescaled coefficients:
##
            Intercept serum_creatinine.1
##
                1.642
##
## Degrees of Freedom: 298 Total (i.e. Null); 297 Residual
## Null Deviance:
                       375.3
## Residual Deviance: 333.4
                               AIC: 337.4
heartfailure <-
 heartfailure %>%
  mutate(sc.fp = (1/serum_creatinine)) # mutate based on fp output
glm(death ~ sc.fp, family = binomial, data = heartfailure) %>%
  anova(test = "LRT")
## Analysis of Deviance Table
##
## Model: binomial, link: logit
## Response: death
## Terms added sequentially (first to last)
##
##
##
        Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL
                           298
                                  375.35
                                  333.44 9.544e-11 ***
## sc.fp 1 41.913
                           297
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
sc.m2 <- glm(death ~ sc.fp,
            family = binomial, data = heartfailure) # new model with transformation
lrt.func(sc.m)
## Analysis of Deviance Table
## Model: binomial, link: logit
## Response: death
##
```

```
## Terms added sequentially (first to last)
##
##
##
                   Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL
                                     298
                                             375.35
## serum creatinine 1
                                     297
                                             347.25 1.154e-07 ***
                        28.097
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Serum Sodium
ss.m <- glm(death ~ serum_sodium,
           family = binomial, data = heartfailure)
summary(ss.m)
##
## Call:
## glm(formula = death ~ serum_sodium, family = binomial, data = heartfailure)
## Deviance Residuals:
      Min
                1Q
                    Median
                                  3Q
                                          Max
## -1.8459 -0.8928 -0.7582
                             1.3197
                                       1.9231
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 12.39442
                           4.07264
                                   3.043 0.00234 **
                           0.02989 -3.224 0.00126 **
## serum_sodium -0.09639
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 375.35 on 298 degrees of freedom
## Residual deviance: 364.02 on 297 degrees of freedom
## AIC: 368.02
## Number of Fisher Scoring iterations: 4
mfp(death ~ fp(serum_sodium),
   data = heartfailure, family = binomial)
## mfp(formula = death ~ fp(serum_sodium), data = heartfailure,
      family = binomial)
##
##
## Deviance table:
            Resid. Dev
                375.3488
## Null model
## Linear model 364.0221
## Final model
                364.0221
##
## Fractional polynomials:
               df.initial select alpha df.final power1 power2
## serum_sodium
                           1 0.05
##
```

```
##
## Transformations of covariates:
## serum_sodium I((serum_sodium/100)^1)
##
## Rescaled coefficients:
       Intercept serum_sodium.1
                       -0.09639
##
        12.39442
##
## Degrees of Freedom: 298 Total (i.e. Null); 297 Residual
## Null Deviance:
                      375.3
## Residual Deviance: 364 AIC: 368
lrt.func(ss.m)
## Analysis of Deviance Table
##
## Model: binomial, link: logit
## Response: death
##
## Terms added sequentially (first to last)
##
##
##
               Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL
                                 298
                                         375.35
                                 297
                                         364.02 0.000764 ***
## serum_sodium 1 11.327
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## BINOMIAL VARIABLES AFTER
# Anaemia
anaemia.m <- glm(death ~ anaemia,
           family = binomial, data = heartfailure)
summary(anaemia.m)
##
## glm(formula = death ~ anaemia, family = binomial, data = heartfailure)
## Deviance Residuals:
           1Q Median
                                  3Q
      Min
                                          Max
## -0.9391 -0.9391 -0.8346
                            1.4361
                                       1.5645
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.8755
                           0.1683 -5.201 1.98e-07 ***
## anaemia
                0.2853
                           0.2492 1.145
                                             0.252
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 375.35 on 298 degrees of freedom
## Residual deviance: 374.04 on 297 degrees of freedom
## AIC: 378.04
```

```
##
## Number of Fisher Scoring iterations: 4
lrt.func(anaemia.m)
## Analysis of Deviance Table
## Model: binomial, link: logit
##
## Response: death
## Terms added sequentially (first to last)
##
##
##
           Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL
                             298
                                     375.35
## anaemia 1
                1.3086
                             297
                                     374.04
                                              0.2527
# High Blood Pressure
hbp.m <- glm(death ~ high_blood_pressure,</pre>
            family = binomial, data = heartfailure)
summary(hbp.m)
##
## Call:
## glm(formula = death ~ high_blood_pressure, family = binomial,
       data = heartfailure)
##
## Deviance Residuals:
       Min
                     Median
            1Q
                                   3Q
                                           Max
## -0.9636 -0.8341 -0.8341
                               1.4074
                                        1.5651
##
## Coefficients:
                       Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                        -0.8769
                                    0.1576 -5.564 2.64e-08 ***
## high_blood_pressure   0.3508
                                    0.2562 1.369
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 375.35 on 298 degrees of freedom
## Residual deviance: 373.49 on 297 degrees of freedom
## AIC: 377.49
## Number of Fisher Scoring iterations: 4
lrt.func(hbp.m)
## Analysis of Deviance Table
## Model: binomial, link: logit
##
## Response: death
## Terms added sequentially (first to last)
```

```
##
##
##
                       Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL
                                                 375.35
                                         298
## high_blood_pressure 1
                            1.863
                                         297
                                                 373.49
                                                          0.1723
## POTENTIAL CONFOUNDERS AND EFFECT MODIFIERS LAST
# Age
age.m <- glm(death ~ age, family = binomial, data = heartfailure)
summary(age.m)
##
## Call:
## glm(formula = death ~ age, family = binomial, data = heartfailure)
##
## Deviance Residuals:
                     Median
      Min
                1Q
                                   3Q
                                           Max
## -1.4276 -0.8993 -0.6922
                             1.2344
                                        1.9251
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.65433
                          0.70662 -5.172 2.32e-07 ***
                                   4.241 2.23e-05 ***
## age
               0.04695
                          0.01107
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 375.35 on 298 degrees of freedom
## Residual deviance: 355.99 on 297 degrees of freedom
## AIC: 359.99
## Number of Fisher Scoring iterations: 4
mfp(death ~ fp(age),
   data = heartfailure, family = binomial)
## mfp(formula = death ~ fp(age), data = heartfailure, family = binomial)
##
##
## Deviance table:
            Resid. Dev
## Null model
                375.3488
## Linear model 355.9928
## Final model
                 355.9928
## Fractional polynomials:
      df.initial select alpha df.final power1 power2
                      1 0.05
## age
               4
                                     1
##
##
## Transformations of covariates:
             formula
## age I((age/100)^1)
```

```
##
## Rescaled coefficients:
## Intercept
                 age.1
## -3.65433
               0.04695
## Degrees of Freedom: 298 Total (i.e. Null); 297 Residual
## Null Deviance:
                       375.3
## Residual Deviance: 356 AIC: 360
lrt.func(age.m)
## Analysis of Deviance Table
## Model: binomial, link: logit
## Response: death
## Terms added sequentially (first to last)
##
       Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL
                         298
                                 375.35
## age
       1 19.356
                         297
                                 355.99 1.085e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
sex.m <- glm(death ~ sex,</pre>
           family = binomial, data = heartfailure)
summary(sex.m)
##
## glm(formula = death ~ sex, family = binomial, data = heartfailure)
##
## Deviance Residuals:
      Min
           1Q
                    Median
                                  3Q
                                          Max
## -0.8846 -0.8776 -0.8776 1.5017
                                       1.5105
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.73632
                          0.20856 -3.531 0.000415 ***
              -0.01935
                          0.25923 -0.075 0.940504
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 375.35 on 298 degrees of freedom
## Residual deviance: 375.34 on 297 degrees of freedom
## AIC: 379.34
## Number of Fisher Scoring iterations: 4
```

```
lrt.func(sex.m)
## Analysis of Deviance Table
## Model: binomial, link: logit
## Response: death
##
## Terms added sequentially (first to last)
##
##
##
       Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL
                           298
                                   375.35
## sex
        1 0.0055669
                           297
                                   375.34
                                          0.9405
# Diabetes
diabetes.m <- glm(death ~ diabetes,</pre>
            family = binomial, data = heartfailure)
summary(diabetes.m)
##
## Call:
## glm(formula = death ~ diabetes, family = binomial, data = heartfailure)
## Deviance Residuals:
      Min
                1Q
                     Median
                                   3Q
## -0.8813 -0.8813 -0.8782
                             1.5058
                                        1.5096
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.745333   0.162270   -4.593   4.37e-06 ***
## diabetes -0.008439
                          0.251190 -0.034
                                               0.973
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 375.35 on 298 degrees of freedom
## Residual deviance: 375.35 on 297 degrees of freedom
## AIC: 379.35
## Number of Fisher Scoring iterations: 4
lrt.func(diabetes.m)
## Analysis of Deviance Table
## Model: binomial, link: logit
##
## Response: death
##
## Terms added sequentially (first to last)
##
##
           Df Deviance Resid. Df Resid. Dev Pr(>Chi)
##
```

```
## NULL
                               298
                                       375.35
## diabetes 1 0.0011289
                               297
                                       375.35
                                               0.9732
# Smoking
smoke.m <- glm(death ~ smoking,</pre>
            family = binomial, data = heartfailure)
summary(smoke.m)
##
## Call:
## glm(formula = death ~ smoking, family = binomial, data = heartfailure)
## Deviance Residuals:
      Min
                 1Q
                      Median
                                   3Q
                                           Max
## -0.8868 -0.8868 -0.8657
                               1.4990
                                        1.5252
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.73033
                           0.14984 -4.874 1.09e-06 ***
## smoking
              -0.05813
                           0.26634 -0.218
                                              0.827
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 375.35 on 298 degrees of freedom
##
## Residual deviance: 375.30 on 297 degrees of freedom
## AIC: 379.3
## Number of Fisher Scoring iterations: 4
lrt.func(smoke.m)
## Analysis of Deviance Table
## Model: binomial, link: logit
##
## Response: death
##
## Terms added sequentially (first to last)
##
##
           Df Deviance Resid. Df Resid. Dev Pr(>Chi)
##
## NULL
                             298
                                     375.35
## smoking 1 0.047765
                             297
                                     375.30
                                               0.827
```

Model Building and Output - Multivariate

```
# Based on the univariate analyses and clinical signficance of variables, the preliminary final model b

pfm1 <- glm(death ~ anaemia + creatinine_phosphokinase + ef.fp +
```

```
high_blood_pressure + platelets + sc.fp + serum_sodium,
            family = binomial, data = heartfailure)
summary(pfm1)
##
## Call:
## glm(formula = death ~ anaemia + creatinine_phosphokinase + ef.fp +
      high_blood_pressure + platelets + sc.fp + serum_sodium, family = binomial,
##
       data = heartfailure)
##
## Deviance Residuals:
      Min
                10
                    Median
                                  3Q
                                          Max
## -1.8833 -0.7409 -0.4846
                              0.8203
                                        2.8623
##
## Coefficients:
                             Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                            1.349e+00 4.683e+00
                                                  0.288 0.7732
## anaemia
                            5.014e-01 2.980e-01
                                                   1.683 0.0924
## creatinine_phosphokinase 2.871e-04 1.404e-04
                                                  2.045 0.0408 *
## ef.fp
                            2.532e+01 5.500e+00
                                                  4.603 4.16e-06 ***
## high_blood_pressure
                           6.282e-01 3.039e-01
                                                   2.067
                                                           0.0388 *
                           -4.790e-07 1.524e-06 -0.314
## platelets
                                                           0.7533
## sc.fp
                           -2.753e+00 5.260e-01 -5.233 1.67e-07 ***
## serum sodium
                           -3.370e-02 3.338e-02 -1.010
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 375.35 on 298 degrees of freedom
## Residual deviance: 296.42 on 291 degrees of freedom
## AIC: 312.42
## Number of Fisher Scoring iterations: 4
# The first preliminary final model indicates statistical significance with creat. phos., ef.fp, hbp, p
# Adding diabetes (potential confounder)
pfm1.diabetes <- glm(death ~ anaemia + creatinine_phosphokinase + ef.fp +
             high_blood_pressure + platelets + sc.fp + serum_sodium + diabetes,
            family = binomial, data = heartfailure)
summary(pfm1)
##
## Call:
  glm(formula = death ~ anaemia + creatinine_phosphokinase + ef.fp +
      high_blood_pressure + platelets + sc.fp + serum_sodium, family = binomial,
##
       data = heartfailure)
##
## Deviance Residuals:
##
      Min
                1Q
                    Median
                                  3Q
                                          Max
## -1.8833 -0.7409 -0.4846
                              0.8203
                                       2.8623
##
## Coefficients:
                             Estimate Std. Error z value Pr(>|z|)
##
```

```
## (Intercept)
                            1.349e+00 4.683e+00
                                                  0.288
                                                           0.7732
                            5.014e-01 2.980e-01
                                                           0.0924
## anaemia
                                                  1.683
                                                           0.0408 *
## creatinine_phosphokinase 2.871e-04 1.404e-04 2.045
                            2.532e+01 5.500e+00
                                                 4.603 4.16e-06 ***
## ef.fp
## high_blood_pressure
                            6.282e-01 3.039e-01
                                                  2.067
                                                           0.0388 *
## platelets
                           -4.790e-07 1.524e-06 -0.314
                                                           0.7533
## sc.fp
                           -2.753e+00 5.260e-01 -5.233 1.67e-07 ***
## serum_sodium
                           -3.370e-02 3.338e-02 -1.010
                                                           0.3126
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
      Null deviance: 375.35 on 298 degrees of freedom
##
## Residual deviance: 296.42 on 291 degrees of freedom
## AIC: 312.42
## Number of Fisher Scoring iterations: 4
summary(pfm1.diabetes)
##
## Call:
## glm(formula = death ~ anaemia + creatinine_phosphokinase + ef.fp +
      high_blood_pressure + platelets + sc.fp + serum_sodium +
      diabetes, family = binomial, data = heartfailure)
##
##
## Deviance Residuals:
                    Median
      Min
                10
                                  3Q
                                          Max
## -1.8792 -0.7400 -0.4832
                              0.8196
                                       2.8662
##
## Coefficients:
                             Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                            1.307e+00 4.709e+00 0.278 0.7813
## anaemia
                            5.017e-01 2.980e-01
                                                  1.684
                                                           0.0922
## creatinine_phosphokinase 2.875e-04 1.405e-04
                                                 2.045
                                                           0.0408 *
                            2.533e+01 5.503e+00
                                                 4.603 4.16e-06 ***
## ef.fp
## high_blood_pressure
                            6.291e-01 3.041e-01
                                                  2.068
                                                           0.0386 *
                                                           0.7480
## platelets
                           -4.913e-07 1.529e-06 -0.321
## sc.fp
                           -2.753e+00 5.260e-01
                                                 -5.234 1.66e-07 ***
## serum sodium
                           -3.346e-02 3.349e-02
                                                 -0.999
                                                           0.3177
## diabetes
                            2.529e-02 2.926e-01
                                                  0.086
                                                           0.9311
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 375.35 on 298 degrees of freedom
## Residual deviance: 296.42 on 290 degrees of freedom
## AIC: 314.42
## Number of Fisher Scoring iterations: 4
# Adding smoking (potential confounder)
pfm1.smoke <- glm(death ~ anaemia + creatinine_phosphokinase + ef.fp +</pre>
```

```
high_blood_pressure + platelets + sc.fp + serum_sodium + smoking,
           family = binomial, data = heartfailure)
summary(pfm1)
##
## Call:
## glm(formula = death ~ anaemia + creatinine_phosphokinase + ef.fp +
      high_blood_pressure + platelets + sc.fp + serum_sodium, family = binomial,
##
      data = heartfailure)
##
## Deviance Residuals:
      Min
                1Q
                     Median
                                  3Q
                                          Max
## -1.8833 -0.7409 -0.4846
                              0.8203
                                       2.8623
##
## Coefficients:
##
                             Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                            1.349e+00 4.683e+00
                                                 0.288 0.7732
## anaemia
                            5.014e-01 2.980e-01
                                                   1.683 0.0924
## creatinine_phosphokinase 2.871e-04 1.404e-04
                                                  2.045 0.0408 *
                                                 4.603 4.16e-06 ***
## ef.fp
                            2.532e+01 5.500e+00
## high_blood_pressure
                            6.282e-01 3.039e-01
                                                   2.067
                                                           0.0388 *
                           -4.790e-07 1.524e-06 -0.314
## platelets
                                                           0.7533
## sc.fp
                           -2.753e+00 5.260e-01 -5.233 1.67e-07 ***
## serum sodium
                           -3.370e-02 3.338e-02 -1.010
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 375.35 on 298 degrees of freedom
## Residual deviance: 296.42 on 291 degrees of freedom
## AIC: 312.42
## Number of Fisher Scoring iterations: 4
summary(pfm1.smoke)
##
## Call:
## glm(formula = death ~ anaemia + creatinine_phosphokinase + ef.fp +
##
      high_blood_pressure + platelets + sc.fp + serum_sodium +
      smoking, family = binomial, data = heartfailure)
##
##
## Deviance Residuals:
      Min
                1Q
##
                    Median
                                  3Q
                                          Max
## -1.8844 -0.7406 -0.4844 0.8205
                                       2.8628
##
## Coefficients:
                             Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                            1.349e+00 4.683e+00
                                                   0.288
                                                           0.7732
## anaemia
                            5.017e-01
                                       2.996e-01
                                                   1.675
                                                           0.0940 .
## creatinine_phosphokinase 2.871e-04 1.404e-04
                                                   2.045
                                                           0.0408 *
## ef.fp
                            2.532e+01 5.514e+00
                                                   4.591 4.41e-06 ***
                                                   2.062 0.0392 *
## high_blood_pressure
                            6.284e-01 3.047e-01
```

```
## platelets
                           -4.794e-07 1.524e-06 -0.315
                           -2.753e+00 5.267e-01 -5.227 1.72e-07 ***
## sc.fp
## serum sodium
                           -3.370e-02 3.338e-02 -1.010
                                                           0.3126
                            3.547e-03 3.120e-01
                                                   0.011
                                                           0.9909
## smoking
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 375.35 on 298 degrees of freedom
## Residual deviance: 296.42 on 290 degrees of freedom
## AIC: 314.42
## Number of Fisher Scoring iterations: 4
# Adding age (potential effect modifier)
median(heartfailure$age)
## [1] 60
age.young <-
 heartfailure %>%
 filter(age < 60)
age.older <-
 heartfailure %>%
 filter(age >= 60)
pfm1.ageY <-
 glm(death ~ anaemia + creatinine_phosphokinase + ef.fp +
             high_blood_pressure + platelets + sc.fp + serum_sodium + smoking,
           family = binomial, data = age.young)
summary(pfm1.ageY)
##
## Call:
## glm(formula = death ~ anaemia + creatinine_phosphokinase + ef.fp +
##
      high_blood_pressure + platelets + sc.fp + serum_sodium +
##
      smoking, family = binomial, data = age.young)
##
## Deviance Residuals:
       Min
                  1Q
                        Median
                                      3Q
                                               Max
## -1.97226 -0.55684 -0.27100 -0.08014
                                           3.10817
##
## Coefficients:
##
                             Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                            9.825e+00 9.205e+00 1.067 0.285814
                            7.691e-01 5.954e-01
                                                   1.292 0.196464
## anaemia
                                                  2.291 0.021940 *
## creatinine_phosphokinase 5.892e-04 2.571e-04
## ef.fp
                            4.044e+01 1.116e+01
                                                 3.625 0.000289 ***
## high_blood_pressure
                            7.567e-01 5.745e-01
                                                  1.317 0.187793
                           -2.199e-06 3.349e-06 -0.657 0.511352
## platelets
## sc.fp
                           -3.061e+00 1.030e+00 -2.971 0.002966 **
## serum_sodium
                           -1.140e-01 6.831e-02 -1.668 0.095233 .
## smoking
                           -8.868e-01 6.441e-01 -1.377 0.168570
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 142.271 on 128 degrees of freedom
##
## Residual deviance: 88.957 on 120 degrees of freedom
## AIC: 106.96
## Number of Fisher Scoring iterations: 6
pfm1.age0 <-
 glm(death ~ anaemia + creatinine_phosphokinase + ef.fp +
             high_blood_pressure + platelets + sc.fp + serum_sodium + smoking,
           family = binomial, data = age.older)
summary(pfm1.age0)
##
## Call:
## glm(formula = death ~ anaemia + creatinine_phosphokinase + ef.fp +
      high_blood_pressure + platelets + sc.fp + serum_sodium +
##
      smoking, family = binomial, data = age.older)
##
## Deviance Residuals:
      Min
                1Q
                    Median
                                  30
                                          Max
## -1.9343 -0.8435 -0.5758 1.0160
                                       2.1319
##
## Coefficients:
##
                             Estimate Std. Error z value Pr(>|z|)
                           -1.868e+00 5.506e+00 -0.339 0.734404
## (Intercept)
                                                  1.088 0.276778
## anaemia
                            4.038e-01 3.713e-01
## creatinine_phosphokinase 3.675e-05 2.300e-04
                                                 0.160 0.873044
## ef.fp
                           1.950e+01 6.765e+00
                                                 2.882 0.003947 **
## high_blood_pressure
                            3.719e-01 3.774e-01
                                                 0.985 0.324379
## platelets
                           1.334e-06 2.005e-06
                                                  0.665 0.506045
## sc.fp
                           -2.504e+00 6.674e-01 -3.752 0.000175 ***
## serum_sodium
                           -5.364e-03 3.826e-02 -0.140 0.888507
                            4.598e-01 3.850e-01
                                                  1.194 0.232428
## smoking
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 226.17 on 169 degrees of freedom
## Residual deviance: 191.61 on 161 degrees of freedom
## AIC: 209.61
##
## Number of Fisher Scoring iterations: 4
# Adding sex (potential effect modifier)
sex.male <-
 heartfailure %>%
 filter(sex == 1)
sex.female <-
```

```
heartfailure %>%
  filter(sex == 0)
pfm1.sexM <-
  glm(death ~ anaemia + creatinine_phosphokinase + ef.fp +
             high_blood_pressure + platelets + sc.fp + serum_sodium + smoking,
           family = binomial, data = sex.male)
summary(pfm1.sexM)
##
## Call:
## glm(formula = death ~ anaemia + creatinine_phosphokinase + ef.fp +
      high_blood_pressure + platelets + sc.fp + serum_sodium +
##
       smoking, family = binomial, data = sex.male)
##
## Deviance Residuals:
      Min
               1Q
                    Median
                                  3Q
                                          Max
## -1.8097 -0.7436 -0.4677
                              0.7344
                                       2.2659
##
## Coefficients:
##
                            Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                           -1.225e-01 6.153e+00 -0.020 0.98411
## anaemia
                            3.342e-01 3.756e-01 0.890 0.37350
## creatinine_phosphokinase 2.213e-04 1.516e-04 1.460 0.14432
                            3.218e+01 7.107e+00 4.529 5.94e-06 ***
## ef.fp
## high_blood_pressure 5.805e-01 3.934e-01 1.476 0.14003
## platelets
                           1.353e-06 1.868e-06 0.724 0.46888
                          -2.119e+00 6.459e-01 -3.280 0.00104 **
## sc.fp
## serum sodium
                           -3.848e-02 4.384e-02 -0.878 0.38014
## smoking
                           -6.398e-02 3.630e-01 -0.176 0.86008
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 243.10 on 193 degrees of freedom
## Residual deviance: 192.44 on 185 degrees of freedom
## AIC: 210.44
##
## Number of Fisher Scoring iterations: 4
pfm1.sexF <-
  glm(death ~ anaemia + creatinine_phosphokinase + ef.fp +
             high_blood_pressure + platelets + sc.fp + serum_sodium + smoking,
           family = binomial, data = sex.female)
summary(pfm1.sexF)
##
## Call:
## glm(formula = death ~ anaemia + creatinine_phosphokinase + ef.fp +
##
       high_blood_pressure + platelets + sc.fp + serum_sodium +
##
       smoking, family = binomial, data = sex.female)
##
## Deviance Residuals:
```

```
Median
                                 3Q
                                         Max
                1Q
## -1.9515 -0.6982 -0.3805
                             0.5188
                                      3.1551
##
## Coefficients:
                            Estimate Std. Error z value Pr(>|z|)
                           3.543e+00 8.334e+00 0.425 0.670758
## (Intercept)
                           1.046e+00 5.759e-01 1.816 0.069337 .
## anaemia
## creatinine_phosphokinase 7.583e-04 5.310e-04 1.428 0.153290
## ef.fp
                           1.471e+01 1.011e+01
                                                  1.456 0.145448
## high_blood_pressure
                           7.819e-01 5.640e-01
                                                 1.386 0.165604
## platelets
                          -5.195e-06 3.227e-06 -1.610 0.107391
## sc.fp
                          -4.503e+00 1.185e+00 -3.802 0.000144 ***
## serum_sodium
                          -2.041e-02 6.107e-02 -0.334 0.738296
## smoking
                           2.552e+00 1.739e+00
                                                1.467 0.142311
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 132.239 on 104 degrees of freedom
## Residual deviance: 90.573 on 96 degrees of freedom
## AIC: 108.57
##
## Number of Fisher Scoring iterations: 5
```

Assessing Final Model

```
# Run best subset with chosen independent variables
best_subset <- glmulti(death ~ anaemia +</pre>
          age:creatinine_phosphokinase + sex:ef.fp +
          high_blood_pressure + platelets +
          sc.fp + serum_sodium + age + sex,
        data = heartfailure, level = 1,
        family = binomial, crit="aicc",
        confsetsize=128)
## Initialization...
## TASK: Exhaustive screening of candidate set.
## Fitting...
##
## After 50 models:
## Best model: death~1+high_blood_pressure+sc.fp+age
## Crit= 329.330641465575
## Mean crit= 352.471555567521
```

IC profile

After 100 models:

Best model: death~1+high_blood_pressure+sc.fp+serum_sodium+age

Crit= 328.065696808995

Mean crit= 352.438739590334

IC profile


```
##
## After 150 models:
## Best model: death~1+high_blood_pressure+sc.fp+serum_sodium+age
## Crit= 328.065696808995
## Mean crit= 350.753830320583
```

IC profile

Completed.

```
weightable(best_subset) %>%
head()
```

```
##
                                                                         model
## 1
                 death ~ 1 + high_blood_pressure + sc.fp + serum_sodium + age
       death ~ 1 + anaemia + high_blood_pressure + sc.fp + serum_sodium + age
## 3
                                       death ~ 1 + sc.fp + serum_sodium + age
## 4
                                death ~ 1 + high_blood_pressure + sc.fp + age
## 5
                             death ~ 1 + anaemia + sc.fp + serum sodium + age
## 6 death ~ 1 + high_blood_pressure + platelets + sc.fp + serum_sodium + age
         aicc
                 weights
## 1 328.0657 0.12190076
## 2 328.9038 0.08016977
## 3 329.1501 0.07087948
## 4 329.3306 0.06476303
## 5 329.7931 0.05139272
## 6 329.8717 0.04941342
```

```
sex:ef.fp, data = heartfailure, family = binomial)
summary(final.m)
##
## Call:
## glm(formula = death ~ 1 + age + anaemia + creatinine_phosphokinase +
      ef.fp + high_blood_pressure + sc.fp + sex + age:creatinine_phosphokinase +
##
      sex:ef.fp, family = binomial, data = heartfailure)
##
## Deviance Residuals:
##
      Min
                10
                     Median
                                  3Q
                                          Max
## -2.0053 -0.7340 -0.3983 0.7656
                                       2.9499
##
## Coefficients:
##
                                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                               -6.312e+00 1.995e+00 -3.164 0.001559 **
## age
                                6.032e-02 1.565e-02 3.855 0.000116 ***
                                4.733e-01 3.099e-01
                                                      1.527 0.126698
## anaemia
## creatinine_phosphokinase
                                1.029e-03 6.275e-04 1.640 0.100967
                                2.092e+01 8.898e+00 2.351 0.018737 *
## ef.fp
                                5.286e-01 3.230e-01
                                                     1.637 0.101682
## high_blood_pressure
                               -2.559e+00 5.353e-01 -4.780 1.76e-06 ***
## sc.fp
## sex
                               -3.408e+00 1.983e+00 -1.719 0.085598 .
## age:creatinine_phosphokinase -1.153e-05 1.003e-05 -1.149 0.250393
                                                      1.534 0.125040
## ef.fp:sex
                                1.762e+01 1.149e+01
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 375.35 on 298 degrees of freedom
## Residual deviance: 277.40 on 289 degrees of freedom
## AIC: 297.4
##
## Number of Fisher Scoring iterations: 5
# Goodness of Fit, Fit Statistics, and Pseudo-R2
ResourceSelection::hoslem.test(final.m$y, fitted(final.m), g=20)
##
## Hosmer and Lemeshow goodness of fit (GOF) test
## data: final.m$y, fitted(final.m)
## X-squared = 11.804, df = 18, p-value = 0.8572
ResourceSelection::hoslem.test(final.m$y, fitted(final.m), g=20) %>%
 {cbind(
    .$observed,
    .$expected
)}
##
                   y0 y1
                             yhat0
                                        yhat1
## [0.00594.0.0325] 14 1 14.749429 0.2505709
## (0.0325,0.0463] 14 1 14.399831 0.6001693
## (0.0463,0.0568] 14 1 14.227118 0.7728816
```

```
## (0.0568,0.0789] 14 1 13.987733 1.0122670
## (0.0789,0.0992] 14 1 13.667628 1.3323717
## (0.0992,0.12]
                   15 0 13.342286 1.6577140
## (0.12,0.157]
                   13 2 12.874042 2.1259584
## (0.157,0.182]
                   13 2 12.399200 2.6007996
## (0.182,0.213]
                   13 2 12.036177 2.9638234
## (0.213,0.255]
                    9 6 11.434302 3.5656978
## (0.255,0.276]
                   12 2 10.306556 3.6934437
## (0.276,0.313]
                   11 4 10.615802 4.3841980
## (0.313,0.374]
                   10 5 9.866116 5.1338835
## (0.374,0.445]
                    7 8 8.852567 6.1474329
                    7 8 7.834036 7.1659642
## (0.445,0.511]
## (0.511,0.57]
                    9 6 7.014978 7.9850217
## (0.57,0.652]
                    4 11 5.708060 9.2919396
## (0.652,0.719]
                    4 11 4.639655 10.3603450
## (0.719,0.808]
                    4 11
                          3.437842 11.5621581
                    2 13 1.606641 13.3933595
## (0.808,0.985]
DescTools::PseudoR2(final.m)
## McFadden
## 0.2609575
# Assumptions, Diagnostics, and Influential Observations
mfp(death ~ 1 + fp(age) + fp(anaemia) + fp(creatinine_phosphokinase) +
      fp(ef.fp) + fp(high_blood_pressure) + fp(sc.fp) + fp(sex),
    data = heartfailure, family = binomial)
## mfp(formula = death ~ 1 + fp(age) + fp(anaemia) + fp(creatinine_phosphokinase) +
       fp(ef.fp) + fp(high_blood_pressure) + fp(sc.fp) + fp(sex),
##
       data = heartfailure, family = binomial)
##
##
##
## Deviance table:
            Resid. Dev
## Null model
                 375.3488
## Linear model
                281.1596
## Final model
                 281.1596
## Fractional polynomials:
                            df.initial select alpha df.final power1 power2
## ef.fp
                                           1 0.05
                                                          1
                                    4
## sc.fp
                                    4
                                           1 0.05
                                                          1
                                                                 1
                                           1 0.05
                                    4
                                                          1
## age
                                                                 1
## creatinine_phosphokinase
                                    4
                                           1 0.05
                                                          1
                                                                 1
## high_blood_pressure
                                    4
                                           1 0.05
                                                          1
                                                                 1
## anaemia
                                           1 0.05
                                                          1
                                                                 1
                                           1 0.05
## sex
                                                          1
##
##
## Transformations of covariates:
##
                                                         formula
                                                  I((age/100)^1)
## age
## anaemia
                                                I((anaemia+1)^1)
## creatinine_phosphokinase I((creatinine_phosphokinase/1000)^1)
```

```
## ef.fp
                                                  I((ef.fp/0.1)^1)
                                     I((high_blood_pressure+1)^1)
## high_blood_pressure
## sc.fp
                                                        I(sc.fp^1)
## sex
                                                      I((sex+1)^1)
## Re-Scaling:
## Non-positive values in some of the covariates. No re-scaling was performed.
## Coefficients:
##
                    Intercept
                                                    ef.fp.1
##
                      -8.0402
                                                    3.1507
##
                      sc.fp.1
                                                     age.1
##
                      -2.5465
                                                     5.0940
## creatinine_phosphokinase.1
                                     high_blood_pressure.1
##
                       0.3407
                                                     0.4994
##
                    anaemia.1
                                                      sex.1
##
                       0.4529
                                                    -0.4008
##
## Degrees of Freedom: 298 Total (i.e. Null); 291 Residual
## Null Deviance:
                        375.3
## Residual Deviance: 281.2
                                 AIC: 297.2
DescTools::VIF(final.m)
##
                             age
                                                       anaemia
##
                       1.486252
                                                      1.083453
##
       creatinine_phosphokinase
                                                         ef.fp
                                                      2.602849
##
                      19.407158
##
            high_blood_pressure
                                                         sc.fp
##
                       1.087496
                                                      1.064987
##
                             sex age:creatinine_phosphokinase
##
                      42.058269
                                                    19.149740
##
                      ef.fp:sex
##
                      46.272660
plot_resid_lev_logistic(final.m)
```

Warning: Removed 272 rows containing missing values (geom_text).

Outlier and Leverage Diagnostics for death

Tables

```
# Table 1 - summary statistics for variables
options(scipen = 999)
sumTable <- heartfailure %>%
  select(age, anaemia, creatinine_phosphokinase, diabetes, ejection_fraction,
         high_blood_pressure, platelets, serum_creatinine, serum_sodium, sex,
         smoking, death) %>%
 psych::describe(quant = c(.1,.25,.5,.75,.90), skew = FALSE, trim = 0)
sumTable %>%
 kbl(digits = 2) %>%
 kable_classic_2(full_width = F)
# Table 2.1 - univariate analysis table
stargazer(age.m, anaemia.m, cp.m, diabetes.m, ef.m2, hbp.m,
          ci=TRUE, ci.level=0.95,
          type = "text", align=TRUE,
          title = "Univariate Regression Results for Outcome of Death",
          omit.stat=c("LL","f"), p.auto = TRUE)
```

	vars	n	mean	sd	\min	max	range	se	Q0.1	
age	1	299	60.83	11.89	40.0	95.0	55.0	0.69	45.0	
anaemia	2	299	0.43	0.50	0.0	1.0	1.0	0.03	0.0	
creatinine_phosphokinase	3	299	581.84	970.29	23.0	7861.0	7838.0	56.11	67.6	
diabetes	4	299	0.42	0.49	0.0	1.0	1.0	0.03	0.0	
ejection_fraction	5	299	38.08	11.83	14.0	80.0	66.0	0.68	25.0	
high_blood_pressure	6	299	0.35	0.48	0.0	1.0	1.0	0.03	0.0	
platelets	7	299	263358.03	97804.24	25100.0	850000.0	824900.0	5656.17	153000.0	2
serum_creatinine	8	299	1.39	1.03	0.5	9.4	8.9	0.06	0.8	
serum_sodium	9	299	136.63	4.41	113.0	148.0	35.0	0.26	132.0	
sex	10	299	0.65	0.48	0.0	1.0	1.0	0.03	0.0	
smoking	11	299	0.32	0.47	0.0	1.0	1.0	0.03	0.0	
death	12	299	0.32	0.47	0.0	1.0	1.0	0.03	0.0	

```
## Univariate Regression Results for Outcome of Death
                                                                   Dependent variable:
##
                                                (2)
                             0.047***
## age
##
                            (0.025, 0.069)
## anaemia
                                                 0.285
                                            (-0.203, 0.774)
                                                                 0.0001
## creatinine_phosphokinase
##
                                                            (-0.0001, 0.0004)
##
                                                                                   -0.008
## diabetes
##
                                                                              (-0.501, 0.484)
## ef.fp
                                                                                                 27.
                                                                                               (17.87)
## high_blood_pressure
##
                                             -0.875***
                                                               -0.827***
                              -3.654***
                                                                                -0.745***
                                                                                                 -5.
## Constant
##
                           (-5.039, -2.269) (-1.205, -0.546) (-1.110, -0.543) (-1.063, -0.427) (-7.28)
                               299
## Observations
                                                 299
                                                                  299
## Akaike Inf. Crit.
                               359.993
                                               378.040
                                                                 378.231
                                                                                  379.348
                                                                                                  34
## Note:
# Table 2.2 - univariate analysis table
stargazer(platelets.m, sc.m2,ss.m, sex.m, smoke.m,
         ci=TRUE, ci.level=0.95,
         type = "text", align=TRUE,
```

title = "Univariate Regression Results for Outcome of Death Pt II",

```
omit.stat=c("LL","f"), p.auto = TRUE)
## Univariate Regression Results for Outcome of Death Pt II
                                          Dependent variable:
##
##
                                               death
                                              (3)
##
                     (1)
                              (2)
                                                            (4)
                                                                          (5)
## platelets
                   -0.00000
               (-0.00000, 0.00000)
##
                                 -2.820***
## sc.fp
##
                               (-3.763, -1.877)
##
## serum_sodium
                                              -0.096***
                                            (-0.155, -0.038)
##
                                                             -0.019
## sex
                                                         (-0.527, 0.489)
##
##
## smoking
                                                                          -0.058
##
                                                                      (-0.580, 0.4)
##
                    -0.457
                                                                        -0.730**
## Constant
                                 1.642***
                                            12.394***
                                                          -0.736***
                (-1.169, 0.255) (0.829, 2.455) (4.412, 20.377) (-1.145, -0.328) (-1.024, -0.328)
##
## -----
                      299
                                   299
                                               299
                                                             299
## Observations
                                                                           299
                   378.611
                                                           379.343
## Akaike Inf. Crit.
                                 337.436
                                              368.022
                                                                       379.301
_____
## Note:
                                                              *p<0.1; **p<0.05; ***p
# Table 3 - final model table
stargazer(final.m,
       ci=TRUE, ci.level=0.95,
       type = "text", align=TRUE,
       title = "Final Model",
       omit.stat=c("LL","f"), p.auto = TRUE)
## Final Model
##
                           Dependent variable:
##
##
                                death
                               0.060***
##
                             (0.030, 0.091)
##
## anaemia
                                0.473
##
                            (-0.134, 1.081)
##
```

```
## creatinine_phosphokinase
                                   0.001
##
                              (-0.0002, 0.002)
##
## ef.fp
                                 20.917**
                               (3.477, 38.357)
##
##
                                   0.529
## high_blood_pressure
                               (-0.104, 1.162)
##
##
## sc.fp
                                 -2.559***
                              (-3.608, -1.509)
##
## sex
                                  -3.408*
                               (-7.294, 0.478)
##
##
## age:creatinine_phosphokinase
                                 -0.00001
##
                             (-0.00003, 0.00001)
##
## ef.fp:sex
                                  17.621
                              (-4.894, 40.136)
##
##
## Constant
                                 -6.312***
##
                              (-10.222, -2.401)
## -----
## Observations
                                   299
## Akaike Inf. Crit.
                                297.399
*p<0.1; **p<0.05; ***p<0.01
## Note:
```