Команда 37. Прогнозирование тем и рейтинга статей с habr.ru

Состав команды:

- Караулов Виталий (EDA, ML-Baseline, Service)
- Мясникова Ангелина (EDA, ML-Baseline, Service)
- Писцов Георгий (EDA, ML-Baseline, Service)
- Сопельник Дмитрий (Парсинг, EDA, ML-Baseline, Service)

Куратор проекта:

Чуприн Александр

Цель проекта

 Разработка сервиса с внедрением обученных ML/DL-моделей для предсказания тематики и рейтинга статей на основе данных, собранных с habr.ru

Задачи:

- Парсинг статей с habr.ru
- Предобработка данных и EDA
- Построение бейзлайна ML-модели
- Создание MVP-сервиса на основе Streamlit и FastAPI
- Улучшение бейзлайна (мы находимся здесь)
- Доработка ML-решения и внедрение DL
- Доработка сервиса

Собранный датасет, его обработка

	Title	Author	Publication_date	Hubs	Tags	Content	Comments	Views	URL	Reading_time	Images_links	Individ/Company	Rating	Positive/Negative	Bookmarks_cnt
0	Лечение приступов лени	complex	2009-08-03 14:34:35+00:00	GTD	лень, учись работать, самомотивация, мотивация	Пора лишать девственности свой бложик.\nТак как это происходит сегодня, в по	67	6800	https://habr.com/ru/articles/66091/	2.0		individual	4	positive	25.0
1	Как я работал по два часа в день	Konovalov	2009-07-30 13:50:03+00:00	GTD	тайм-менеджмент, timemanagement, работа, эффективность, организация дел	Когда я только перешёл от офисной работы к домашней, первое время был на сед	99	21000	https://habr.com/ru/articles/65783/	3.0		individual	193	positive	114.0

Размер исходного датасета

1 df.shape

(285499, 15)

Текстовые колонки (Title, Author, Hubs, Tags, Content) были преобразованы так:

- Удалены лишние символы: html-тэги, специальные символы, цифры, лишние пробелы
- Удалены стоп-слова
- Слова приведены к нижнему регистру
- Проведена лемматизация и токенизация

EDA. Тексты статей

EDA. Тексты статей

Пример статьи с околонулевой длиной текста

Самая длинная статья в датасете (197359 символов)

EDA. Тексты статей

EDA. Облако слов текстов статей

EDA. Облака слов заголовков и тегов

EDA. Итоговый вид датасета и распределение классов

	author	publication_date	hubs	comments	views	url	reading_time	individ/company	bookmarks_cnt	text_length	tags_tokens	title_tokens	rating_new	text_tokens	text_pos_tags
() complex	2009-08-03 14:34:35+00:00	GTD	67	6800	https://habr.com/ru/articles/66091/	2.0	individual	25.0	2027	['лень' 'учись' 'работать' 'самомотивация' 'мотивация']	['лечение' 'приступ' 'лень']	4.0	['лишать' 'девственность' 'бложик' 'происходить' 'сегодня' 'понедельник' 'д	[NOUN, VERB, NOUN, DET, NOUN, ADV, SCONJ, PRON, VERB, ADV, ADP, NOUN, ADP, N
1	popotam2	2009-07-15 20:24:31+00:00	GTD	13	3100	https://habr.com/ru/articles/64586/	1.0	individual	6.0	424	['развитие' 'работоспособность' 'организация' 'дело' 'дело']	['организация' 'рабочий' 'время' 'помощь' 'цвет']	1.0	['предлагать' 'вариант' 'сделать' 'организованный' 'успеть' 'сделать' 'кале	[VERB, ADV, NUM, NOUN, VERB, PRON, ADV, ADJ, CCONJ, PRON, VERB, PRON, VERB,

Размер итогового датасета

df.shape (282640, 15)

Распределение классов в хабах и рейтинге

hubs						
Чулан	27888	rating_level				
Программирование	19469					
Информационная безопасность	16627	1	110927			
Веб-разработка	16320	200				
Научно-популярное	13431	0	75106			
		2	F7207			
Блог компании «Медиа Грус»	1		57297			
Блог компании Fixico	1	-1	7460			
Блог компании iRuPay	1	-1	7468			
Блог компании Чистилка	1	~	2570			
Блог компании Indexisto	1	-2	3578			
Name: count Length: 2255 d	type: int64					

ML. Распределение классов в хабах (темах)

После удаления редких классов всего осталось 58 хабов (тем)

ML. Метрики лучших моделей

Хабы - TfidfVectorizer + OneVsRestClassifier(LinearSVC):

```
micro - {'Precision': 0.3828, 'Recall': 0.7205, 'F1-Score': 0.4999, 'Hamming Loss': 0.0167} macro - {'Precision': 0.377, 'Recall': 0.7084, 'F1-Score': 0.4766, 'Hamming Loss': 0.0167} weighted - {'Precision': 0.4405, 'Recall': 0.7205, 'F1-Score': 0.5361, 'Hamming Loss': 0.0167}
```

Рейтинг - TfidfVectorizer + Logistic Regression:

```
micro - {'Precision': 0.496, 'Recall': 0.496, 'F1-Score': 0.496, 'Hamming Loss': 0.504} macro - {'Precision': 0.2889, 'Recall': 0.4111, 'F1-Score': 0.288, 'Hamming Loss': 0.504} weighted - {'Precision': 0.5604, 'Recall': 0.496, 'F1-Score': 0.5173, 'Hamming Loss': 0.504}
```

Нелинейные модели. Хабы

Для предсказания хабов статей попробовали использовать все признаки датасета, а не только текст. Результаты на 10% датасета:

• Случайный лес показал крайне низкие результаты:

```
micro - {'Precision': 0.0352, 'Recall': 0.0009, 'F1-Score': 0.0017, 'Hamming Loss': 0.0221} macro - {'Precision': 0.0177, 'Recall': 0.0005, 'F1-Score': 0.001, 'Hamming Loss': 0.0221} weighted - {'Precision': 0.0278, 'Recall': 0.0009, 'F1-Score': 0.0017, 'Hamming Loss': 0.0221}
```

- Бустинг не смог обучиться, не сошелся по времени
- KNeighborsClassifier показал низкие результаты и переобучился:

```
micro - {'Precision': 0.2904, 'Recall': 0.5341, 'F1-Score': 0.3763, 'Hamming Loss': 0.0212} macro - {'Precision': 0.2835, 'Recall': 0.5242, 'F1-Score': 0.3579, 'Hamming Loss': 0.0212} weighted - {'Precision': 0.3218, 'Recall': 0.5341, 'F1-Score': 0.395, 'Hamming Loss': 0.0212}
```

• Оставили (OneVSRescClassifier + SVC) и подобрали параметры с помощью оптуны

Нелинейные модели. Сравнение моделей для хабов

Лучшая бейзлайн-модель с предыдущего чекпоинта, обученная только на основе текстов TfidfVectorizer + OneVsRestClassifier(LinearSVC):

```
micro - {'Precision': 0.3828, 'Recall': 0.7205, 'F1-Score': 0.4999, 'Hamming Loss': 0.0167} macro - {'Precision': 0.377, 'Recall': 0.7084, 'F1-Score': 0.4766, 'Hamming Loss': 0.0167} weighted - {'Precision': 0.4405, 'Recall': 0.7205, 'F1-Score': 0.5361, 'Hamming Loss': 0.0167}
```

Модель на основе всех признаков датасета

TfidfVectorizer + OneVsRestClassifier(LinearSVC) + optuna

```
micro - Precision': 0.3424, 'Recall': 0.7851, 'F1-Score': 0.4768, 'Hamming Loss': 0.0374} macro - {'Precision': 0.3599, 'Recall': 0.7647, 'F1-Score': 0.4818, 'Hamming Loss': 0.0374} weighted - {'Precision': 0.3755, 'Recall': 0.7851, 'F1-Score': 0.5006, 'Hamming Loss': 0.0374}
```

Итог:

- снижение precision, f1-score, увеличение hamming loss
- для задачи предсказания тем статей более предпочтительной является модель, полученная на

прошлом этапе базового бейзлайна

Нелинейные модели. BERT для хабов

Лучшая модель на предыдущем чекпоинте, обученная только на основе текстов TfidfVectorizer + OneVsRestClassifier(LinearSVC):

```
micro - {'Precision': 0.3828, 'Recall': 0.7205, 'F1-Score': 0.4999, 'Hamming Loss': 0.0167} macro - {'Precision': 0.377, 'Recall': 0.7084, 'F1-Score': 0.4766, 'Hamming Loss': 0.0167} weighted - {'Precision': 0.4405, 'Recall': 0.7205, 'F1-Score': 0.5361, 'Hamming Loss': 0.0167}
```

BERT, обученный на сырых текстах (без предобработки):

```
micro - {'Precision': 0.1423, 'Recall': 0.7347, 'F1-Score': 0.2385, 'Hamming Loss': 0.0196} macro - {'Precision': 0.1272, 'Recall': 0.5807, 'F1-Score': 0.1845, 'Hamming Loss': 0.0196} weighted - {'Precision': 0.301, 'Recall': 0.7347, 'F1-Score': 0.4062, 'Hamming Loss': 0.0196}
```

Итог: снижение precision и f1-score

Нелинейные модели. Рейтинг

На 10% от исходного датасета попробовали:

- LGBMClassifier
- XGBClassifier заняло в несколько раз больше времени, чем LGBMClassifier, при этом все метрики ухудшились
- DecisionTreeClassifier дал результат чуть лучше, чем лучший по линейной модели
- CatBoostClassifier, его обучения занимает неприлично долго времени по сравнению с другими бустингами, не будем его использовать для нашей задачи
- KNeighborsClassifier показал низкий результат

Лучше всего себя показал себя LGBMClassifier, поэтому взяли его за основу для полного датасета

Нелинейные модели. Сравнение моделей для рейтинга

Лучшая модель, полученная на предыдущем чекпоинте:

Рейтинг - TfidfVectorizer + Logistic Regression:

```
micro - {'Precision': 0.496, 'Recall': 0.496, 'F1-Score': 0.496, 'Hamming Loss': 0.504} macro - {'Precision': 0.2889, 'Recall': 0.4111, 'F1-Score': 0.288, 'Hamming Loss': 0.504} weighted - {'Precision': 0.5604, 'Recall': 0.496, 'F1-Score': 0.5173, 'Hamming Loss': 0.504}
```

LGBMClassifier:

Рейтинг - LGBMClassifier:

```
micro - {'Precision': 0.6497, 'Recall': 0.6497, 'F1-Score': 0.6497, 'Hamming Loss': 0.3503} macro - {'Precision': 0.6049, 'Recall': 0.4126, 'F1-Score': 0.4225, 'Hamming Loss': 0.3503} weighted - {'Precision': 0.65, 'Recall': 0.6497, 'F1-Score': 0.6367, 'Hamming Loss': 0.3503}
```

Итог:

- Poct precision, recall и уменьшение hamming loss для LGBMClassifier
- Добавление признаков явно помогает модели лучше дифференцировать статьи по рейтингу, однако перекос в качестве по разным классам (разница между макро- и микро-F1-score) остаётся

MVP-сервис. Демонстрация работы

