B-Spline methods for the design of smooth spatial paths with obstacle avoidance

Stefano MARTINA stefano.martina@stud.unifi.it

15 July 2016

Voronoi diagrams

Input: Set of points in plane (or space) called sites

Output: partition of the plane (or space) such that each point of a region is closer to a certain site respect to others

Voronoi diagrams

Input: Set of points in plane (or space) called sites

Output: partition of the plane (or space) such that each point of a region is closer to a certain site respect to others

- Piecewise polynomial parametric curves $\mathbf{S}: [a, b] \to \mathbb{E}^3$ $\mathbf{S}(u) = \sum_{i=0}^{n} \mathbf{v}_i \cdot N_{i,m+1}(u)$
- Prescribed regularity
- ✓ Follow the shape of a control poligon
- ✓ Can interpolate the extremes of control polygon

- ✓ Piecewise polynomial parametric curves \boldsymbol{S} : $[a,b] \to \mathbb{E}^3$ $\boldsymbol{\mathsf{S}}(u) = \sum_{i=0}^n \boldsymbol{\mathsf{v}_i} \cdot N_{i,m+1}(u)$
- Prescribed regularity
- ✓ Follow the shape of a control poligon
- ✓ Can interpolate the extremes of control polygon

- ✓ Piecewise polynomial parametric curves \boldsymbol{S} : $[a,b] \to \mathbb{E}^3$ $\boldsymbol{S}(u) = \sum_{i=0}^n \boldsymbol{v_i} \cdot N_{i,m+1}(u)$
- ✔ Prescribed regularity
- ✓ Follow the shape of a control poligon
- ✓ Can interpolate the extremes of control polygon

- \checkmark Piecewise polynomial parametric curves $S: [a, b] \to \mathbb{E}^3$ $S(u) = \sum_{i=0}^{n} v_i \cdot N_{i,m+1}(u)$
- ✓ Prescribed regularity
- ✓ Follow the shape of a control poligon
- ✓ Can interpolate the extremes of control polygon

3 / 19

- ✓ Piecewise polynomial parametric curves $\mathbf{S}: [a, b] \to \mathbb{E}^3$ $\mathbf{S}(u) = \sum_{i=0}^{n} \mathbf{v_i} \cdot N_{i,m+1}(u)$
- ✓ Prescribed regularity
- ✓ Follow the shape of a control poligon
- ✓ Can interpolate the extremes of control polygon

Idea

- ✓ Use a B-Spline that
 - ▶ interpolate the start and end
 - Shortest path as control polygon

Idea

- ✓ Use a B-Spline that
 - interpolate the start and end
 - Shortest path as control polygon

Idea

- ✓ Use a B-Spline that
 - interpolate the start and end
 - Shortest path as control polygon

Idea

- ✓ Use a B-Spline that
 - interpolate the start and end
 - ► Shortest path as control polygon

- ✓ Control polygon obstacle-free by construction
 - (because is pruned of arcs that cross obstacles)
- Curve may intersect an obstacle

- ✓ Control polygon obstacle-free by construction
 - ▶ (because is pruned of arcs that cross obstacles)
- Curve may intersect an obstacle

- ✓ Control polygon obstacle-free by construction
 - (because is pruned of arcs that cross obstacles)
- Curve may intersect an obstacle

- ✓ Control polygon obstacle-free by construction
 - ▶ (because is pruned of arcs that cross obstacles)
- Curve may intersect an obstacle

✓ A B-Spline of degree m is contained inside the union of convex hulls of m+1 consecutive vertices

- ✓ Use a quadratic B-Spline to smooth the path
- ✓ Achieve convex hulls free from intersection with obstacles

✓ A B-Spline of degree m is contained inside the union of convex hulls of m+1 consecutive vertices

- ✓ Use a quadratic B-Spline to smooth the path
- ✓ Achieve convex hulls free from intersection with obstacles

✓ A B-Spline of degree m is contained inside the union of convex hulls of m+1 consecutive vertices

- ✓ Use a quadratic B-Spline to smooth the path
- ✓ Achieve convex hulls free from intersection with obstacles

✓ A B-Spline of degree m is contained inside the union of convex hulls of m+1 consecutive vertices

- ✓ Use a quadratic B-Spline to smooth the path
- ✓ Achieve convex hulls free from intersection with obstacles

Graph transformation $(G \rightarrow G_t)$

- ✓ Triples (a, b, c) of neighboring nodes in G become nodes in G_t
- Arcs in G_t between triples in the form $(a, b, c) \rightarrow (b, c, d)$ weighted with the distance of the edge $a \leftrightarrow b$ in G
- ✓ Prune all the triples that intersect an obstacle
- ✓ Shortest path in the remaining triples

Martina Stefano (Uni. Firenze)

Graph transformation $(G \rightarrow G_t)$

- ✓ Triples (a, b, c) of neighboring nodes in G become nodes in G_t
- \checkmark Arcs in G_t between triples in the form $(a, b, c) \rightarrow (b, c, d)$

weighted with the distance of the edge $a \leftrightarrow b$ in G

- ✓ Prune all the triples that intersect an obstacle
- ✓ Shortest path in the remaining triples

- ✓ Triples (a, b, c) of neighboring nodes in G become nodes in G_t
- \checkmark Arcs in G_t between triples in the form $(a, b, c) \rightarrow (b, c, d)$
 - weighted with the distance of the edge $a \leftrightarrow b$ in G
- ✓ Prune all the triples that intersect an obstacle
- ✓ Shortest path in the remaining triples

- ✓ Triples (a, b, c) of neighboring nodes in G become nodes in G_t
- \checkmark Arcs in G_t between triples in the form $(a, b, c) \rightarrow (b, c, d)$
 - weighted with the distance of the edge $a \leftrightarrow b$ in G
- ✓ Prune all the triples that intersect an obstacle
- ✓ Shortest path in the remaining triples

- ✓ Triples (a, b, c) of neighboring nodes in G become nodes in G_t
- \checkmark Arcs in G_t between triples in the form $(a, b, c) \rightarrow (b, c, d)$
 - weighted with the distance of the edge $a \leftrightarrow b$ in G
- ✓ Prune all the triples that intersect an obstacle
- ✓ Shortest path in the remaining triples

- ✓ Triples (a, b, c) of neighboring nodes in G become nodes in G_t
- \checkmark Arcs in G_t between triples in the form $(a, b, c) \rightarrow (b, c, d)$
 - weighted with the distance of the edge $a \leftrightarrow b$ in G
- ✓ Prune all the triples that intersect an obstacle
- ✓ Shortest path in the remaining triples

Description	Cost
Creation of G	$\mathcal{O}(O \log O)$
Pruning of G	$\mathcal{O}(k O ^2)$
Creation of G_t	$O(k^3 O)$
Pruning of G_t	$\mathcal{O}(O ^2k^2)$
Routing in G_t	$\left \mathcal{O}(k^3 O + k^2 O \log(k^2 O) \right $
Total	$\mathcal{O}(k^2 O ^2 + k^3 O)$
Total (k constant)	$\mathcal{O}(\mathcal{O} ^2)$

- O set of obstacles
- ✓ k maximum degree in G
- ✓ Scene construction
 - \triangleright $\mathcal{O}(|\mathcal{O}|^2)$
- ✓ Routing
 - $\triangleright \mathcal{O}(|O|\log|O|)$
 - (same of Dijkstra with constant degree)

Description	Cost
Creation of G	$\mathcal{O}(O \log O)$
Pruning of G	$O(k O ^2)$
Creation of G_t	$O(k^3 O)$
Pruning of G_t	$O(O ^2k^2)$
Routing in G_t	$\left \mathcal{O}(k^3 O + k^2 O \log(k^2 O) \right $
Total	$\mathcal{O}(k^2 O ^2 + k^3 O)$
Total (k constant)	$\mathcal{O}(\mathcal{O} ^2)$

- ✓ O set of obstacles
- ✓ k maximum degree in G
- Scene construction
 - $ightharpoonup \mathcal{O}(|O|^2)$
- ✓ Routing
 - $\triangleright \mathcal{O}(|O|\log|O|)$
 - (same of Dijkstra with constant degree)

Description	Cost
Creation of G	$\mathcal{O}(O \log O)$
Pruning of G	$\mathcal{O}(k O ^2)$
Creation of G_t	$\mathcal{O}(k^3 O)$
Pruning of G_t	$\mathcal{O}(O ^2k^2)$
Routing in G_t	$\mathcal{O}(k^3 O +k^2 O \log(k^2 O)$
Total	$\mathcal{O}(k^2 O ^2 + k^3 O)$
Total (k constant)	$\mathcal{O}(\mathcal{O} ^2)$

- ✓ O set of obstacles
- ✓ k maximum degree in G
- Scene construction
 - $\triangleright \mathcal{O}(|\mathcal{O}|^2)$
- ✓ Routing
 - $\triangleright \mathcal{O}(|O|\log|O|)$
 - (same of Dijkstra with constant degree)

Description	Cost
Creation of G	$\mathcal{O}(O \log O)$
Pruning of G	$\mathcal{O}(k O ^2)$
Creation of G_t	$O(k^3 O)$
Pruning of G_t	$\mathcal{O}(O ^2k^2)$
Routing in G_t	$\left \mathcal{O}(k^3 O + k^2 O \log(k^2 O) \right $
Total	$\mathcal{O}(k^2 O ^2 + k^3 O)$
Total (k constant)	$\mathcal{O}(\mathcal{O} ^2)$

- ✓ O set of obstacles
- ✓ k maximum degree in G
- Scene construction
 - $\triangleright \mathcal{O}(|\mathcal{O}|^2)$
- ✓ Routing
 - $\triangleright \mathcal{O}(|O|\log|O|)$
 - (same of Dijkstra with constant degree)

Description	Cost
Creation of G	$\mathcal{O}(O \log O)$
Pruning of G	$\mathcal{O}(k O ^2)$
Creation of G_t	$O(k^3 O)$
Pruning of G_t	$\mathcal{O}(O ^2k^2)$
Routing in G_t	$\left \mathcal{O}(k^3 O + k^2 O \log(k^2 O) \right $
Total	$\mathcal{O}(k^2 O ^2 + k^3 O)$
Total (k constant)	$\mathcal{O}(\mathcal{O} ^2)$

- ✓ O set of obstacles
- ✓ k maximum degree in G
- Scene construction
 - $ightharpoonup \mathcal{O}(|O|^2)$
- ✓ Routing
 - $\triangleright \mathcal{O}(|O|\log|O|)$
 - (same of Dijkstra with constant degree)

Description	Cost
Creation of G	$\mathcal{O}(O \log O)$
Pruning of G	$\mathcal{O}(k O ^2)$
Creation of G_t	$O(k^3 O)$
Pruning of G_t	$\mathcal{O}(O ^2k^2)$
Routing in G_t	$\left \mathcal{O}(k^3 O + k^2 O \log(k^2 O) \right $
Total	$\mathcal{O}(k^2 O ^2 + k^3 O)$
Total (k constant)	$\mathcal{O}(\mathcal{O} ^2)$

- ✓ O set of obstacles
- ✓ k maximum degree in G
- Scene construction
 - \triangleright $\mathcal{O}(|\mathcal{O}|^2)$
- ✓ Routing
 - $\triangleright \mathcal{O}(|O|\log|O|)$
 - (same of Dijkstra with constant degree)

Reason

- ✓ First implementation interesting
- **x** but rejects many paths
- ✓ Shortest path on G
- ✓ Add aligned control vertices when an obstacle intersects a triple

Reason

- ✓ First implementation interesting
- ✗ but rejects many paths
- ✓ Shortest path on G
- ✓ Add aligned control vertices when an obstacle intersects a triple

Reason

- ✓ First implementation interesting
- ✗ but rejects many paths
- ✓ Shortest path on G
- ✓ Add aligned control vertices when an obstacle intersects a triple

Reason

- ✓ First implementation interesting
- ✗ but rejects many paths
- ✓ Shortest path on G
- ✓ Add aligned control vertices when an obstacle intersects a triple

Reason

- ✓ First implementation interesting
- ✗ but rejects many paths
- ✓ Shortest path on G
- ✓ Add aligned control vertices when an obstacle intersects a triple

Reason

- ✓ First implementation interesting
- ✗ but rejects many paths
- ✓ Shortest path on G
- ✓ Add aligned control vertices when an obstacle intersects a triple

Description	Cost
Creation of G	$\mathcal{O}(O \log O)$
Pruning of G	$\mathcal{O}(k O ^2)$
Routing in G	$O(k O + O \log O)$
Path cleaning	$\mathcal{O}(P \cdot O) = \mathcal{O}(O ^2)$
Total	$\mathcal{O}(k O ^2)$
Total (k costant)	$\mathcal{O}(\mathcal{O} ^2)$

- O set of obstacles
- ✓ k maximum degree in G
- P set of control vertices
- ✓ Scene construction
 - $\triangleright \mathcal{O}(|\mathcal{O}|^2)$
- ✓ Routing
 - $\triangleright \mathcal{O}(|O|\log|O| + |P||O|)$

Description	Cost
Creation of G	$\mathcal{O}(O \log O)$
Pruning of G	$\mathcal{O}(k O ^2)$
Routing in G	$O(k O + O \log O)$
Path cleaning	$\mathcal{O}(P \cdot O) = \mathcal{O}(O ^2)$
Total	$\mathcal{O}(k O ^2)$
Total (k costant)	$\mathcal{O}(\mathcal{O} ^2)$

- ✓ O set of obstacles
- ✓ k maximum degree in G
- P set of control vertices
- ✓ Scene construction
 - $\triangleright \mathcal{O}(|\mathcal{O}|^2)$
- ✔ Routing
 - $\triangleright \mathcal{O}(|O|\log|O| + |P||O|)$

Description	Cost
Creation of G	$\mathcal{O}(O \log O)$
Pruning of G	$\mathcal{O}(k O ^2)$
Routing in G	$O(k O + O \log O)$
Path cleaning	$ \mathcal{O}(P \cdot O) = \mathcal{O}(O ^2) $
Total	$\mathcal{O}(k O ^2)$
Total (k costant)	$\mathcal{O}(\mathcal{O} ^2)$

- ✓ O set of obstacles
- ✓ k maximum degree in G
- P set of control vertices
- ✓ Scene construction
 - $\triangleright \mathcal{O}(|\mathcal{O}|^2)$
- ✔ Routing
 - $\triangleright \mathcal{O}(|O|\log|O| + |P||O|)$

Description	Cost
Creation of G	$\mathcal{O}(O \log O)$
Pruning of G	$\mathcal{O}(k O ^2)$
Routing in G	$O(k O + O \log O)$
Path cleaning	$ \mid \mathcal{O}(P \cdot O) = \mathcal{O}(O ^2) \mid $
Total	$\mathcal{O}(k O ^2)$
Total (k costant)	$\mathcal{O}(\mathcal{O} ^2)$

- ✓ O set of obstacles
- ✓ k maximum degree in G
- P set of control vertices
- ✓ Scene construction
 - $\triangleright \mathcal{O}(|\mathcal{O}|^2)$
- ✔ Routing
 - $\triangleright \mathcal{O}(|O|\log|O| + |P||O|)$

Description	Cost
Creation of G	$\mathcal{O}(O \log O)$
Pruning of G	$\mathcal{O}(k O ^2)$
Routing in G	$O(k O + O \log O)$
Path cleaning	$\mathcal{O}(P \cdot O) = \mathcal{O}(O ^2)$
Total	$\mathcal{O}(k O ^2)$
Total (k costant)	$\mathcal{O}(\mathcal{O} ^2)$

- ✓ O set of obstacles
- ✓ k maximum degree in G
- P set of control vertices
- ✓ Scene construction
 - $\triangleright \mathcal{O}(|\mathcal{O}|^2)$
- ✓ Routing
 - $\triangleright \mathcal{O}(|O|\log|O| + |P||O|)$

Description	Cost
Creation of G	$\mathcal{O}(O \log O)$
Pruning of G	$\mathcal{O}(k O ^2)$
Routing in G	$O(k O + O \log O)$
Path cleaning	$\mathcal{O}(P \cdot O) = \mathcal{O}(O ^2)$
Total	$\mathcal{O}(k O ^2)$
Total (k costant)	$\mathcal{O}(\mathcal{O} ^2)$

- ✓ O set of obstacles
- ✓ k maximum degree in G
- P set of control vertices
- ✓ Scene construction
 - $\triangleright \mathcal{O}(|\mathcal{O}|^2)$
- ✓ Routing
 - $O(|O| \log |O| + |P| |O|)$

Continuity

- ✓ Using quadratic B-Splines means C¹ continuity
- × Not enough
- $f{x}$ If we increase the B-Spline degree ightarrow convex hull not planar anymore
 - convex hull formed of union of tetrahedra

- ✓ Add aligned vertices in control polygon
 - then increase the degree

Continuity

- ✓ Using quadratic B-Splines means C¹ continuity
- × Not enough
- $f{x}$ If we increase the B-Spline degree ightarrow convex hull not planar anymore
 - convex hull formed of union of tetrahedra

- Add aligned vertices in control polygon
 - then increase the degree

Continuity

- ✓ Using quadratic B-Splines means C¹ continuity
- × Not enough
- X If we increase the B-Spline degree \rightarrow convex hull not planar anymore
 - convex hull formed of union of tetrahedra

- Add aligned vertices in control polygon
 - then increase the degree

Continuity

- ✓ Using quadratic B-Splines means C¹ continuity
- × Not enough
- X If we increase the B-Spline degree \rightarrow convex hull not planar anymore
 - convex hull formed of union of tetrahedra

- Add aligned vertices in control polygon
 - then increase the degree

Continuity

- ✓ Using quadratic B-Splines means C¹ continuity
- × Not enough
- X If we increase the B-Spline degree \rightarrow convex hull not planar anymore
 - convex hull formed of union of tetrahedra

- ✓ Add aligned vertices in control polygon
 - then increase the degree

Continuity

- ✓ Using quadratic B-Splines means C¹ continuity
- × Not enough
- X If we increase the B-Spline degree \rightarrow convex hull not planar anymore
 - convex hull formed of union of tetrahedra

- ✓ Add aligned vertices in control polygon
 - then increase the degree

Example: quadratic to quartic (m=2 \rightarrow m=4)

✓ Add 2 vertices per edge

Example: quadratic to quartic (m=2 \rightarrow m=4)

✓ Add 2 vertices per edge

Example: quadratic to quartic (m=2 \rightarrow m=4)

✓ Add 2 vertices per edge

- ✓ Simplify the control polygon
- ✓ Remove useless turns
- \checkmark For each triple (a, b, c) of consecutive points in path
- ✓ If no obstacles intersect the triangle → the triple is simplified to a single edge (a, c)
- After simplification, new neighbouring triples need to be obstacle-free

- ✓ Simplify the control polygon
- Remove useless turns
- \checkmark For each triple (a, b, c) of consecutive points in path
- ✓ If no obstacles intersect the triangle → the triple is simplified to a single edge (a, c)
- After simplification, new neighbouring triples need to be obstacle-free

- ✓ Simplify the control polygon
- Remove useless turns
- \checkmark For each triple (a, b, c) of consecutive points in path
- ✓ If no obstacles intersect the triangle → the triple is simplified to a single edge (a, c)
- After simplification, new neighbouring triples need to be obstacle-freed

- ✓ Simplify the control polygon
- Remove useless turns
- \checkmark For each triple (a, b, c) of consecutive points in path
- ✓ If no obstacles intersect the triangle → the triple is simplified to a single edge (a, c)
- After simplification, new neighbouring triples need to be obstacle-free

- ✓ Simplify the control polygon
- Remove useless turns
- \checkmark For each triple (a, b, c) of consecutive points in path
- ✓ If no obstacles intersect the triangle \rightarrow the triple is simplified to a single edge (a, c)
- After simplification, new neighbouring triples need to be obstacle-free

- ✓ Simplify the control polygon
- Remove useless turns
- \checkmark For each triple (a, b, c) of consecutive points in path
- ✓ If no obstacles intersect the triangle \rightarrow the triple is simplified to a single edge (a, c)
- After simplification, new neighbouring triples need to be obstacle-free

Problem

- ✓ Relax constraint: $L(P, \lambda) = gain(P) + \lambda \cdot constraint(P)$
- ✓ Saddle point $L(P^*, \lambda) \le L(P^*, \lambda^*) \le L(P, \lambda^*)$
- ✓ Simulated annealing finds saddle point that minimizes gain

- x slower respect to the other methods
- **x** gain and constraint are calculated in a discrete way

Problem

- ✓ Relax constraint: $L(P, \lambda) = gain(P) + \lambda \cdot constraint(P)$
- ✓ Saddle point $L(P^*, \lambda) \le L(P^*, \lambda^*) \le L(P, \lambda^*)$
- ✓ Simulated annealing finds saddle point that minimizes gain

- x slower respect to the other methods
- **x** gain and constraint are calculated in a discrete way

Problem

- ✓ Relax constraint: $L(P, \lambda) = gain(P) + \lambda \cdot constraint(P)$
- ✓ Saddle point $L(P^*, \lambda) \le L(P^*, \lambda^*) \le L(P, \lambda^*)$
- Simulated annealing finds saddle point that minimizes gain

- x slower respect to the other methods
- **X** gain and constraint are calculated in a discrete way

Problem

- ✓ Relax constraint: $L(P, \lambda) = gain(P) + \lambda \cdot constraint(P)$
- ✓ Saddle point $L(P^*, \lambda) \le L(P^*, \lambda^*) \le L(P, \lambda^*)$
- ✓ Simulated annealing finds saddle point that minimizes gain

- x slower respect to the other methods
- **X** gain and constraint are calculated in a discrete way

Problem

- ✓ Relax constraint: $L(P, \lambda) = gain(P) + \lambda \cdot constraint(P)$
- ✓ Saddle point $L(P^*, \lambda) \le L(P^*, \lambda^*) \le L(P, \lambda^*)$
- ✓ Simulated annealing finds saddle point that minimizes gain

- **X** slower respect to the other methods
- **x** gain and constraint are calculated in a discrete way

Problem

- ✓ Relax constraint: $L(P, \lambda) = gain(P) + \lambda \cdot constraint(P)$
- ✓ Saddle point $L(P^*, \lambda) \le L(P^*, \lambda^*) \le L(P, \lambda^*)$
- ✓ Simulated annealing finds saddle point that minimizes gain

- x slower respect to the other methods
- **x** gain and constraint are calculated in a discrete way

Technologies

Technologies

Technologies

NetworkX

Technologies

NetworkX

✓ Method 1, no post processing

✓ Method 2, no post processing

✓ Method 1, with post processing

✓ Method 2, with post processing

- ✓ Change underlying structure
 - different attach point
 - visibility graph
 - ► rapidly exploring random tree (RRT)
 - ▶ other . . .
- ✓ Improve degree increase
 - without aligned vertices
 - like second solution but with quadruple/quintuples of vertices
- Improve post processing
 - make a symmetric algorithm
- Another optimization process
 - output of other solutions as initial state
 - moves in a restricted space

- ✓ Change underlying structure
 - different attach point
 - visibility graph
 - ► rapidly exploring random tree (RRT)
 - ▶ other . .
- ✓ Improve degree increase
 - without aligned vertices
 - like second solution but with quadruple/quintuples of vertices
- Improve post processing
 - make a symmetric algorithm
- ✓ Another optimization process
 - output of other solutions as initial state
 - moves in a restricted space

- ✓ Change underlying structure
 - different attach point
 - visibility graph
 - ► rapidly exploring random tree (RRT)
 - ▶ other . . .
- Improve degree increase
 - without aligned vertices
 - like second solution but with quadruple/quintuples of vertices
- Improve post processing
 - make a symmetric algorithm
- ✓ Another optimization process
 - output of other solutions as initial state
 - moves in a restricted space

- Change underlying structure
 - ► different attach point
 - visibility graph
 - rapidly exploring random tree (RRT)
 - ▶ other . . .
- ✓ Improve degree increase
 - without aligned vertices
 - like second solution but with quadruple/quintuples of vertices
- Improve post processing
 - make a symmetric algorithm
- ✓ Another optimization process
 - output of other solutions as initial state
 - moves in a restricted space

- ✓ Change underlying structure
 - ► different attach point
 - visibility graph
 - rapidly exploring random tree (RRT)
 - ▶ other . . .
- ✓ Improve degree increase
 - without aligned vertices
 - like second solution but with quadruple/quintuples of vertices
- Improve post processing
 - make a symmetric algorithm
- Another optimization process
 - output of other solutions as initial state
 - moves in a restricted space

- ✓ Change underlying structure
 - ► different attach point
 - visibility graph
 - rapidly exploring random tree (RRT)
 - ▶ other . . .
- ✓ Improve degree increase
 - without aligned vertices
 - like second solution but with quadruple/quintuples of vertices
- Improve post processing
 - make a symmetric algorithm
- Another optimization process
 - output of other solutions as initial state
 - moves in a restricted space

- ✓ Change underlying structure
 - different attach point
 - visibility graph
 - rapidly exploring random tree (RRT)
 - ▶ other . . .
- ✓ Improve degree increase
 - without aligned vertices
 - like second solution but with quadruple/quintuples of vertices
- Improve post processing
 - make a symmetric algorithm
- ✓ Another optimization process
 - output of other solutions as initial state
 - moves in a restricted space

- Change underlying structure
 - different attach point
 - visibility graph
 - rapidly exploring random tree (RRT)
 - ▶ other . . .
- ✓ Improve degree increase
 - without aligned vertices
 - like second solution but with quadruple/quintuples of vertices
- Improve post processing
 - make a symmetric algorithm
- Another optimization process
 - output of other solutions as initial state
 - moves in a restricted space

- ✓ Change underlying structure
 - different attach point
 - visibility graph
 - rapidly exploring random tree (RRT)
 - ▶ other . . .
- ✓ Improve degree increase
 - without aligned vertices
 - like second solution but with quadruple/quintuples of vertices
- ✓ Improve post processing
 - make a symmetric algorithm
- Another optimization process
 - output of other solutions as initial state
 - moves in a restricted space

- ✓ Change underlying structure
 - different attach point
 - visibility graph
 - rapidly exploring random tree (RRT)
 - other . . .
- ✓ Improve degree increase
 - without aligned vertices
 - like second solution but with quadruple/quintuples of vertices
- ✓ Improve post processing
 - make a symmetric algorithm
- Another optimization process
 - output of other solutions as initial state
 - moves in a restricted space

- ✓ Change underlying structure
 - different attach point
 - visibility graph
 - rapidly exploring random tree (RRT)
 - ▶ other . . .
- ✓ Improve degree increase
 - without aligned vertices
 - like second solution but with quadruple/quintuples of vertices
- Improve post processing
 - make a symmetric algorithm
- ✓ Another optimization process
 - output of other solutions as initial state
 - moves in a restricted space

- ✓ Change underlying structure
 - different attach point
 - visibility graph
 - rapidly exploring random tree (RRT)
 - ▶ other . . .
- ✓ Improve degree increase
 - without aligned vertices
 - like second solution but with quadruple/quintuples of vertices
- Improve post processing
 - make a symmetric algorithm
- ✓ Another optimization process
 - output of other solutions as initial state
 - moves in a restricted space

- ✓ Change underlying structure
 - different attach point
 - visibility graph
 - rapidly exploring random tree (RRT)
 - ▶ other . . .
- ✓ Improve degree increase
 - without aligned vertices
 - like second solution but with quadruple/quintuples of vertices
- ✓ Improve post processing
 - make a symmetric algorithm
- ✓ Another optimization process
 - output of other solutions as initial state
 - moves in a restricted space

Questions? Thank you!

Questions? Thank you!

- ✓ Degree m
- Extended partition (of parametric space [a, b])

$$T = \{t_0, \dots, t_{m-1}, t_m, \dots, t_{n+1}, t_{n+2}, \dots, t_{n+m+1}\}$$

$$t_0 \le \dots \le t_{m-1} \le t_m \equiv s\} < \dots < t_{n+1} \equiv b\} \le t_{n+2} \le \dots \le t_{n+m+1}$$

$$\omega_{i,r}(u) = \begin{cases} rac{t-t_i}{t_{i+r}-t_i}, & ext{if } t_i
eq t_{i+r} \\ 0, & ext{otherwise} \end{cases}$$

✓ B-spline curve $S : [a, b] \subset \mathbb{R} \to \mathbb{E}^d$

$$\mathbf{S}(u) = \sum_{i=0}^{n} \mathbf{v}_i \cdot N_{i,m+1}(u)$$

- Degree *m*
- Extended partition (of parametric space [a, b])

$$T = \{t_0, \dots, t_{m-1}, t_m, \dots, t_{n+1}, t_{n+2}, \dots, t_{n+m+1}\}$$

$$t_0 \le \dots \le t_{m-1} \le t_m (\equiv a) < \dots < t_{n+1} (\equiv b) \le t_{n+2} \le \dots \le t_{n+m+1}$$

$$\omega_{i,r}(u) = \begin{cases} \frac{t - t_i}{t_{i+r} - t_i}, & \text{if } t_i \neq t_{i+r} \\ 0, & \text{otherwise} \end{cases}$$

✓ B-spline curve $S:[a,b] \subset \mathbb{R} \to \mathbb{E}^d$

$$\mathbf{S}(u) = \sum_{i=0}^{m} \mathbf{v_i} \cdot N_{i,m+1}(u)$$

- ✓ Degree m
- \checkmark Extended partition (of parametric space [a, b])

$$T = \{t_0, \dots, t_{m-1}, t_m, \dots, t_{n+1}, t_{n+2}, \dots, t_{n+m+1}\}$$

$$t_0 \le \dots \le t_{m-1} \le t_m (\equiv a) < \dots < t_{n+1} (\equiv b) \le t_{n+2} \le \dots \le t_{n+m+1}$$

✓ n+1 basis (of $S_{m,\tau}=P_{m,\tau}\cap C^{m-1}$)

$$\begin{split} & \textit{N}_{i,1}(\textit{u}) = \begin{cases} 1, & \text{if} \quad t_i \leq t < t_{i+1} \\ 0, & \text{otherwise} \end{cases} & i = 0, \ldots, n+m \\ & \textit{N}_{i,r}(\textit{u}) = \omega_{i,r-1}(\textit{u}) \cdot \textit{N}_{i,r-1}(\textit{u}) + (1 - \omega_{i+1,r-1}(\textit{u})) \cdot \textit{N}_{i+1,r-1}(\textit{u}) \\ & i = 0, \ldots, n+m+1-3, \ r = 2, \ldots, m+1 \end{cases} \end{split}$$

$$\omega_{i,r}(u) = \begin{cases} rac{t-t_i}{t_{i+r}-t_i}, & ext{if } t_i
eq t_{i+r} \\ 0, & ext{otherwise} \end{cases}$$

 \checkmark B-spline curve S: [a,b] ⊂ \mathbb{R} \rightarrow \mathbb{E}^d

$$\mathbf{S}(u) = \sum_{i=0}^{n} \mathbf{v_i} \cdot N_{i,m+1}(u)$$

- Degree *m*
- \checkmark Extended partition (of parametric space [a, b])

$$T = \{t_0, \dots, t_{m-1}, t_m, \dots, t_{n+1}, t_{n+2}, \dots, t_{n+m+1}\}$$

$$t_0 \le \dots \le t_{m-1} \le t_m (\equiv a) < \dots < t_{n+1} (\equiv b) \le t_{n+2} \le \dots \le t_{n+m+1}$$

 \checkmark n+1 basis (of $S_{m,\tau}=P_{m,\tau}\cap C^{m-1}$)

$$N_{i,1}(u) = \begin{cases}
1, & \text{if } t_i \le t < t_{i+1} \\
0, & \text{otherwise} \end{cases} i = 0, \dots, n+m \\
N_{i,r}(u) = \omega_{i,r-1}(u) \cdot N_{i,r-1}(u) + (1 - \omega_{i+1,r-1}(u)) \cdot N_{i+1,r-1}(u)$$

$$i=0,...,n+m+1-3, r=2,...,m+1$$

$$\omega_{i,r}(u) = \begin{cases} rac{t-t_i}{t_{i+r}-t_i}, & ext{if } t_i
eq t_{i+r} \\ 0, & ext{otherwise} \end{cases}$$

✓ B-spline curve $S: [a, b] \subset \mathbb{R} \to \mathbb{E}^d$

$$S(u) = \sum_{i=0}^{n} \mathbf{v}_{i} \cdot N_{i,m+1}(u)$$

- ✓ Interpolates extremes if $t_0 = \cdots = t_m$ and $t_{n+1} = \cdots = t_{n+m+1}$
- ightharpoonup Continuity C^{m-1} between polynomials
- \checkmark Contained in convex hulls of m+1 consecutive vertices

- ✓ Touches segment between *m* aligned vertices
- \checkmark Lays in segment between m+1 aligned vertices

$$\kappa(u) = \frac{\left\|\dot{\mathbf{S}}(u) \wedge \ddot{\mathbf{S}}(u)\right\|_{2}^{3}}{\left\|\dot{\mathbf{S}}(u)\right\|_{2}^{3}}$$

$$\tau(u) = \frac{\det\left[\dot{\mathbf{S}}(u), \ddot{\mathbf{S}}(u), \ddot{\mathbf{S}}(u)\right]}{\left\|\dot{\mathbf{S}}(u) \wedge \ddot{\mathbf{S}}(u)\right\|_{2}} = \frac{\left(\dot{\mathbf{S}}(u) \wedge \ddot{\mathbf{S}}(u)\right) \cdot \ddot{\mathbf{S}}(u)}{\left\|\dot{\mathbf{S}}(u) \wedge \ddot{\mathbf{S}}(u)\right\|_{2}}$$

- ✓ Interpolates extremes if $t_0 = \cdots = t_m$ and $t_{n+1} = \cdots = t_{n+m+1}$
- \checkmark Continuity C^{m-1} between polynomials
- \checkmark Contained in convex hulls of m+1 consecutive vertices

- ✓ Touches segment between *m* aligned vertices
- \checkmark Lays in segment between m+1 aligned vertices

$$\kappa(u) = \frac{\left\|\dot{\mathbf{S}}(u) \wedge \ddot{\mathbf{S}}(u)\right\|_{2}}{\left\|\dot{\mathbf{S}}(u)\right\|_{2}^{3}}$$

$$\tau(u) = \frac{\det\left[\dot{\mathbf{S}}(u), \ddot{\mathbf{S}}(u), \ddot{\mathbf{S}}(u)\right]}{\left\|\dot{\mathbf{S}}(u) \wedge \ddot{\mathbf{S}}(u)\right\|_{2}} = \frac{\left(\dot{\mathbf{S}}(u) \wedge \ddot{\mathbf{S}}(u)\right) \cdot \ddot{\mathbf{S}}(u)}{\left\|\dot{\mathbf{S}}(u) \wedge \ddot{\mathbf{S}}(u)\right\|_{2}}$$

- ✓ Interpolates extremes if $t_0 = \cdots = t_m$ and $t_{n+1} = \cdots = t_{n+m+1}$
- \checkmark Continuity C^{m-1} between polynomials
- \checkmark Contained in convex hulls of m+1 consecutive vertices

- ✓ Touches segment between *m* aligned vertices
- \checkmark Lays in segment between m+1 aligned vertices

$$\kappa(u) = \frac{\left\|\dot{\boldsymbol{S}}(u) \wedge \ddot{\boldsymbol{S}}(u)\right\|_{2}}{\left\|\dot{\boldsymbol{S}}(u)\right\|_{2}^{3}}$$

$$\tau(u) = \frac{\det\left[\dot{\boldsymbol{S}}(u), \ddot{\boldsymbol{S}}(u), \ddot{\boldsymbol{S}}(u)\right]}{\left\|\dot{\boldsymbol{S}}(u) \wedge \ddot{\boldsymbol{S}}(u)\right\|_{2}} = \frac{\left(\dot{\boldsymbol{S}}(u) \wedge \ddot{\boldsymbol{S}}(u)\right) \cdot \ddot{\boldsymbol{S}}(u)}{\left\|\dot{\boldsymbol{S}}(u) \wedge \ddot{\boldsymbol{S}}(u)\right\|_{2}}$$

- ✓ Interpolates extremes if $t_0 = \cdots = t_m$ and $t_{n+1} = \cdots = t_{n+m+1}$
- \checkmark Continuity C^{m-1} between polynomials
- \checkmark Contained in convex hulls of m+1 consecutive vertices

- ✓ Touches segment between m aligned vertices
- \checkmark Lays in segment between m+1 aligned vertices

$$\kappa(u) = \frac{\left\|\dot{\boldsymbol{S}}(u) \wedge \ddot{\boldsymbol{S}}(u)\right\|_{2}^{3}}{\left\|\dot{\boldsymbol{S}}(u)\right\|_{2}^{3}}$$

$$\tau(u) = \frac{\det\left[\dot{\boldsymbol{S}}(u), \ddot{\boldsymbol{S}}(u), \ddot{\boldsymbol{S}}(u)\right]}{\left\|\dot{\boldsymbol{S}}(u) \wedge \ddot{\boldsymbol{S}}(u)\right\|_{2}} = \frac{\left(\dot{\boldsymbol{S}}(u) \wedge \ddot{\boldsymbol{S}}(u)\right) \cdot \ddot{\boldsymbol{S}}(u)}{\left\|\dot{\boldsymbol{S}}(u) \wedge \ddot{\boldsymbol{S}}(u)\right\|_{2}}$$

- ✓ Interpolates extremes if $t_0 = \cdots = t_m$ and $t_{n+1} = \cdots = t_{n+m+1}$
- \checkmark Continuity C^{m-1} between polynomials
- \checkmark Contained in convex hulls of m+1 consecutive vertices

- ✓ Touches segment between m aligned vertices
- ✓ Lays in segment between m+1 aligned vertices

$$\kappa(u) = \frac{\left\|\dot{\boldsymbol{S}}(u) \wedge \ddot{\boldsymbol{S}}(u)\right\|_{2}}{\left\|\dot{\boldsymbol{S}}(u)\right\|_{2}^{3}}$$

$$\tau(u) = \frac{\det\left[\dot{\boldsymbol{S}}(u), \ddot{\boldsymbol{S}}(u), \ddot{\boldsymbol{S}}(u)\right]}{\left\|\dot{\boldsymbol{S}}(u) \wedge \ddot{\boldsymbol{S}}(u)\right\|_{2}} = \frac{\left(\dot{\boldsymbol{S}}(u) \wedge \ddot{\boldsymbol{S}}(u)\right) \cdot \ddot{\boldsymbol{S}}(u)}{\left\|\dot{\boldsymbol{S}}(u) \wedge \ddot{\boldsymbol{S}}(u)\right\|_{2}}$$

- ✓ Interpolates extremes if $t_0 = \cdots = t_m$ and $t_{n+1} = \cdots = t_{n+m+1}$
- \checkmark Continuity C^{m-1} between polynomials
- \checkmark Contained in convex hulls of m+1 consecutive vertices

- ✓ Touches segment between m aligned vertices
- ✓ Lays in segment between m+1 aligned vertices

$$\kappa(u) = \frac{\left\|\dot{\mathbf{S}}(u) \wedge \ddot{\mathbf{S}}(u)\right\|_{2}}{\left\|\dot{\mathbf{S}}(u)\right\|_{2}^{3}}$$

$$\tau(u) = \frac{\det\left[\dot{\mathbf{S}}(u), \ddot{\mathbf{S}}(u), \ddot{\mathbf{S}}(u)\right]}{\left\|\dot{\mathbf{S}}(u) \wedge \ddot{\mathbf{S}}(u)\right\|_{2}} = \frac{\left(\dot{\mathbf{S}}(u) \wedge \ddot{\mathbf{S}}(u)\right) \cdot \ddot{\mathbf{S}}(u)}{\left\|\dot{\mathbf{S}}(u) \wedge \ddot{\mathbf{S}}(u)\right\|_{2}}$$

Main problem

- 1. Distribute points in obstacles surfaces
 - and bounding box
- 2. Voronoi diagram using those points
- 3. Transform Voronoi diagram in graph
 - ▶ cells vertices → nodes
 - ightharpoonup cells edges ightarrow arcs (infinite edges ignored)
- 4. Prune arcs that cross obstacles
- Attach start and end
- 6. Shortest path from start to end
 - ▶ Dijkstra's algorithm

Main problem

- 1. Distribute points in obstacles surfaces
 - and bounding box
- 2. Voronoi diagram using those points
- 3. Transform Voronoi diagram in graph
 - ▶ cells vertices → nodes
 - ightharpoonup cells edges ightarrow arcs (infinite edges ignored)
- 4. Prune arcs that cross obstacles
- Attach start and end
- 6. Shortest path from start to end
 - ▶ Dijkstra's algorithm

Main problem

- 1. Distribute points in obstacles surfaces
 - and bounding box
- 2. Voronoi diagram using those points
- 3. Transform Voronoi diagram in graph
 - ▶ cells vertices → nodes
 - ightharpoonup cells edges ightarrow arcs (infinite edges ignored)
- 4. Prune arcs that cross obstacles
- Attach start and end
- 6. Shortest path from start to end
 - ▶ Dijkstra's algorithm

Main problem

- 1. Distribute points in obstacles surfaces
 - and bounding box
- 2. Voronoi diagram using those points
- 3. Transform Voronoi diagram in graph
 - ▶ cells vertices → nodes
 - ▶ cells edges → arcs (infinite edges ignored)
- 4. Prune arcs that cross obstacles
- Attach start and end
- 6. Shortest path from start to end
 - Dijkstra's algorithm

Main problem

- 1. Distribute points in obstacles surfaces
 - and bounding box
- 2. Voronoi diagram using those points
- 3. Transform Voronoi diagram in graph
 - ▶ cells vertices → nodes
 - ▶ cells edges → arcs (infinite edges ignored)
- 4. Prune arcs that cross obstacles
- Attach start and end
- 6. Shortest path from start to end
 - ▶ Dijkstra's algorithm

Main problem

- 1. Distribute points in obstacles surfaces
 - and bounding box
- 2. Voronoi diagram using those points
- 3. Transform Voronoi diagram in graph
 - ▶ cells vertices → nodes
 - ▶ cells edges → arcs (infinite edges ignored)
- 4. Prune arcs that cross obstacles
- 5. Attach start and end
- 6. Shortest path from start to end
 - ▶ Dijkstra's algorithm

Main problem

- 1. Distribute points in obstacles surfaces
 - and bounding box
- 2. Voronoi diagram using those points
- 3. Transform Voronoi diagram in graph
 - ▶ cells vertices → nodes
 - cells edges → arcs (infinite edges ignored)
- 4. Prune arcs that cross obstacles
- 5. Attach start and end
- 6. Shortest path from start to end
 - Dijkstra's algorithm

Intersection segment-triangle

$$\begin{cases} \alpha \mathbf{a_2} + \beta \mathbf{b_2} = \gamma \mathbf{a_1} + \delta \mathbf{b_1} + \zeta \mathbf{c_1} \\ \alpha + \beta = 1 \\ \gamma + \delta + \zeta = 1 \end{cases}$$
$$\begin{cases} \alpha \geq 0 \\ \beta \geq 0 \\ \gamma \geq 0 \\ \delta \geq 0 \\ \zeta > 0. \end{cases}$$