### 第二章 玻尔原子模型

- 1.1 黑体辐射
- 1.2 光电效应
- 1.3 卢瑟福原子模型
- 1.4 原子光谱
- 1.5 波尔原子模型

### 1.1 黑体辐射

十九世纪末期,物理学各个分支的发展都已日臻完善,并不断取得新的成就。

首先在**牛顿力学**基础上,哈密顿和拉格朗日等人建立起来的分析力学,几乎达到无懈可击的地步,海王星的发现充分表明了牛顿力学是完美无缺的。

其次,通过克劳修斯、玻耳兹曼和吉布斯等人的巨大努力,建 立了体系完整而又严密的**热力学和统计力学**,并且应用越来越 广泛。

由安培、法拉第和麦克斯韦等人对电磁现象进行的深入而系统的研究,为电动力学奠定了坚实的基础,特别是由麦克斯韦的电磁场方程组预言了电磁波的存在,随即被赫兹的实验所证实。

后来又把惠更斯和菲涅耳所建立的光学也纳入了电动力学的范畴。

### 开尔文的演讲

- Nineteenth-Century Clouds over the Dynamical Theory of Heat and Light (1900)
- The beauty and clearness of the dynamical theory, which asserts heat and light to be modes of motion, is at present obscured by two clouds.



Lord Kelvin

## 物理世界上空的乌云





物理世界上空的两朵乌云

### 6.1 黑体辐射

- 物体的温度与环境温度有差异时,两者 之间将有能量交换,热辐射是能量交换 的一种方式。
- 物体以电磁波的形式向外辐射能量,或吸收辐照到其表面的能量
- 分子(含有带电粒子)的热运动使物体辐射电磁波。这种辐射**与温度有关**,称为**热辐射**。



辐射谱密度、辐射本领:温度为T时,频率 v附近单位频率间隔内的辐射能量,亦称单 色辐出度。

 $E(\nu,T)$ 

**辐射通量**:温度为*T*时,频率*v*附近d*v*频率间隔内的辐射能量。

$$d\Phi(\nu, T) = E(\nu, T) d\nu$$

• 吸收本领、吸收比: 照射到物体上的通量

$$\mathrm{d}\Phi(\nu,T)$$
  
其中被物体吸收的通量  $\mathrm{d}\Phi'(\nu,T)$  //

$$A(\nu,T) = \frac{\mathrm{d}\Phi'(\nu,T)}{\mathrm{d}\Phi(\nu,T)}$$
 称为吸收本领或吸收比

## 物体间的热交换

- 与外界隔绝的几个物体,起初温度 各不相同
- 假设相互间只能以热辐射的形式交换能量
- 每一个物体向外辐射能量,也吸收其它物体辐射到其表面的能量
- 温度低的,辐射小,吸收大;温度高的,辐射大,吸收小



- 经过一个过程后,所有物体的温度相同,达到热平衡
- 热平衡时,每一个物体辐射的能量等于其吸收的能量
- 热平衡状态下, 吸收本领大, 辐射本领也大
- 基尔霍夫热辐射定律: 热平衡状态 下物体的辐射本领与吸收本领成正 比,比值只与*T*, v有关。





 $\frac{E(\nu,T)}{A(\nu,T)} = f(\nu,T)$  吸收大,辐射也大。





 $f(\nu,T)$  是普适函数,与物质无关

应当通过实验测量 f(v,T)

必须同时测量 E(v,T)和A(v,T)

如果让  $A(\nu,T) \equiv 1$  则  $f(\nu,T) \equiv E(\nu,T)$ 

 $A(\nu,T) \equiv 1$ 的物体,称为绝对黑体

### 绝对黑体

• 一个开有小孔的空腔,对射入其中的光几乎可以全部吸收



• 等效于绝对黑体

测量空腔开口处的 辐射本领 E(v,T)

• 即可以得到

$$f(v,T) = E(v,T)$$

# 测量黑体辐射的实验装置



### 黑体辐射的定律

- 1、Stefan-Boltzmann定律(1879年、1884年)
- 2、Wien位移定律(1893年)
- 3、Rayleigh-Jeans定律(1900年,1905年)



Stefan Wien Rayleigh Jeans

# 1、Stefan-Boltzmann定律

辐射的总能量,即曲线下的面积与**T**<sup>4</sup>成正比

$$\Phi(T) = \int_{0}^{\infty} E(v, T) dv = \sigma T^{4} \int_{0}^{\infty} \frac{1}{1000} dv$$

$$\sigma = 5.67032 \times 10^{-18} \text{ W/m}^{2} \text{K}^{4}$$

8000 - 6000K 6000 - 5500K 4000 - 2000 - 4000K 0 200 400 600 800 1000 1200 1400 1600 1800 2000 λ, nm

Stefan-Boltzmann常数

### 2、Wien位移定律

• 曲线的极大值满足

$$T\lambda_m = b$$

$$b = 2.8978 \times 10^{-3} \,\mathrm{mK}$$



$$T = b / \lambda_m$$

用于测量温度

$$r_0(\lambda, T) = \frac{c_1}{\lambda^5} \exp\left(-\frac{c_2}{\lambda T}\right)$$

### 3、Rayleigh-Jeans定律(1900年, 1905年)

# 普朗克能量子假说

- 1900年提出, 1918年获Nobel奖
- 空腔中的驻波是一系列的谐振子,只能取一些分立的能量,即  $\varepsilon = 0, \varepsilon_0, 2\varepsilon_0, 3\varepsilon_0, 4\varepsilon_0 \cdots$

$$\varepsilon_0 = h \nu$$
  $h = 6.63 \times 10^{-34} Js$ 

#### 黑体的辐射本领为

$$E(v,T) = \frac{2\pi}{c^2} v^2 \frac{hv}{e^{\frac{hv}{kT}} - 1} = \frac{2\pi h}{c^2} \frac{v^3}{e^{\frac{hv}{kT}} - 1}$$

$$E(v,T) = \frac{2\pi h}{c^2} \frac{v^3}{\frac{hv}{e^{kT}} - 1}$$

长波段 
$$h\nu \ll kT$$
  $\frac{1}{e^{\frac{h\nu}{kT}}-1} \approx \frac{1}{1+\frac{h\nu}{kT}-1} = \frac{kT}{h\nu}$ 



$$E(v,T) = \frac{2\pi}{c^2}v^2kT$$
 与Rayleigh-Jeans定律符合

短波段 
$$hv >> kT$$
 
$$\frac{v}{e^{\frac{hv}{kT}} - 1} \approx v \frac{1}{e^{\frac{hv}{kT}}} = ve^{-\frac{hv}{kT}}$$

$$E(v,T) = \frac{2\pi}{c^2}hv^2\frac{v}{e^{\frac{hv}{kT}}-1} = \frac{2\pi}{c^2}hv^3e^{-\frac{hv}{kT}}$$
 与实验结果一致

### 1.2 光电效应

- 在光的照射下,材料的电性质发生变化
- 1839年,Alexandre Edmond Becquerel注意到了在导电液体中的电极,受到光的照射,会产生电流
- 1873年,英国的电力工程师Willoughby Smith(1828~1891)也发现硒在光照下会成为电的导体。
- 现代意义上的光电效应是赫兹在1887年进行电磁波实验过程中发现的。

# 赫兹对光电效应的观察

- 一对电火花隙放在一个带有玻璃观察窗的暗盒中
- 放电时,两极间火花的长度变短了, 将玻璃板移开之后,电极间的火花又 变长了。用石英代替普通玻璃板后, 火花的长度则没有缩短。
- 赫兹认为,紫外辐射会导致电荷在电火花隙间跳跃,即会导致电荷产生



# 光电效应的实验研究装置



### 光电效应的实验规律

- 存在饱和电流,与光强成正比;
- 存在反向截止电压,跟光强无关;
- 存在截止频率,与材料属性有关;
- 驰豫时间极短,不超过 $10^{-9}s$ 。

# 爱因斯坦光量子

- 1905年,爱因斯坦用光量子假设进行了解释
- (1) 电磁辐射由以光速c 运动的局限于空间某一小范围的光量子(光子)组成,每一个光量子的能量  $\varepsilon$  与辐射频率 $\nu$  的关系为  $\varepsilon = h\nu$ (其中h 是普朗克常数)。
- (2) 光量子具有"整体性", 一个光子只能整个地被电子吸收或放出。



Albert Einstein 1879~1955 **1905**年用光量子假说 解释光电效应



逸出功与极限频率  $\nu_0$  之间的关系为  $W = h\nu_0$ 

$$K_{max} = h\nu - W = h\left(\nu - \nu_0\right)$$

光频率必须大于或等于极限频率,光电效应才能发生。截止电压与光电子的最大动能有关,与辐照度无关。所有发射出来的光电子都被聚集于集电极时,电流会达到饱和值。给定适当光频率与适当电压,调整辐照度,则辐照度越大,电流越大,饱和电流也越大。



普朗克授予爱因斯坦 "马克斯-普朗克奖章", 1929年6月28日,柏林

# 康普顿效应

- Compton散射(1921年)
- 散射光中,一部分波长不变,是相干散射;另一部分波长变长,是非相干散射
- 在不同的角度上,非相干散射的波长改变不同
- 在同一角度上,不同的元素非相干散射所占的比例不同
- 上述实验现象称作康普顿效应



Arthur Holly Compton 1892~1962 1921年在实验中证 明了X射线的粒子性



\*X射线光子在与电子的碰撞过程中, 动量和能量是守恒的,弹性散射



$$\Delta \lambda = \lambda_C (1 - \cos \theta)$$

$$\lambda_{c} = \frac{h}{m_{0}c} = 0.0242621 \mathring{A}$$
 Compton波长,对应于静止电子的波长

# de Broglie的物质波

- de Broglie将Einstein的光量子概念推 广,提出了物质波的概念(1924年)
- 所有的波都具有粒子性
- 所有的粒子都具有波动性
- $\lambda = h/p$
- $p = mv/(1-v^2/c^2)^{1/2}$
- 不能将物质的运动和波的传播分开。



Prince Louis-victor de Broglie 1892-1987

• 宏观粒子的波动性

• 如果波长太小,用现有仪器无法分辨物理量的周期性变化









宏观微粒 
$$p = mv = (1 \times 10^{-6} \text{kg})(1 \times 10^{-6} \text{m/s}) = 1 \times 10^{-12} \text{Js/m}$$
  
 $\lambda = h/p = 6.63 \times 10^{-34} \text{Js/}(1 \times 10^{-12} \text{Js/m}) \approx 10^{-22} \text{m}$ 

# 波粒二象性是量子力学的基础

- 波粒二象性是建立在物理实验、特别是光学实验的基础之上的
- 从波粒二象性出发,可以自然得到物质的量子态
- 不确定关系、态叠加原理、 Schrödinger方程, ......
- 光学是经典物理学向近代物理学(Modern Physics,包括量子论和相对论)过渡和发展的组带和桥梁

- 18. 热核爆炸中火球的温度可达10<sup>7</sup>K,
  - (1) 求辐射最强的波长;
  - (2) 这种波长的光子能量是多少?

### 1.3卢瑟福原子模型

固态,液态,气态,等离子态

 $\bigcap$ 

分子, 离子, 原子集团

 $\bigcap$ 

原子 原子是物质结构的一个层次



电子,原子核(质子、中子)



基本粒子

### 一、古代关于物质结构的观点

- 1、不可无限分割,存在最小的结构单元
- "端,体之无序最前者也。"——《墨子》。
- 序: 次序、大小; 最前: 最初始的。
- 端是物质的最小结构单元。
- "其小无内,谓之小一"——惠子。
- ατομα,希腊文"不可分割的"——德谟克利特。
- atom,旧译"莫破",即原子。

- 2、可以无限分割,物质是连续的
- "一尺之棰, 日取其半, 万世不竭。" ——公孙龙
- 物质是连续的,可以无限地分割——亚里士多德
- 这一观点从数学上看是正取的;
- 从哲学上看似乎也是正确的;
- 但从物理上看,缺乏实验依据,所以没有物理思想。

### 二、近代原子观的建立

- 起始于对物质化学性质的研究
- 1806年, Proust (法): 化合物的分子定组成定律。
- 1807年,John Dalton (1766–1844) (英): 倍比定律, 最先提出原子论。
- 1808年,Gay-Lussac(法): 化合体积定律。
- 1811年,Amedeo Avogadro (1776–1856)(意): Avogadro定律。
- 1826年,Brown(英): Brown运动。
- 1833年,Faraday (英): 电解定律。
- 1869年,Менделеев(俄): 元素周期律。
- 从化学上提出了单个原子的存在。

### 三、原子的质量和体积

- 1、原子的质量
- 可以由原子量和由Avogadro定律计算
- Avogadro常数Na: 1mol的原子的数量
- •原子量A: 1mol的原子的质量
- 一个原子的质量

$$M = \frac{A}{N_A}$$

$$N_A = 6.022 \times 10^{23} / \text{mol}$$

- 2、原子的体积
- (1) 可以由密排晶体计算

立方密排





每个原子在固体中所占的体积为  $8r^3$ 

固体质量密度 
$$\rho = \frac{M}{V} = \frac{A/N_A}{8r^3}$$
 原子半径 
$$r = \sqrt[3]{\frac{A}{8N_A\rho}}$$

### 六角密排



$$\frac{\sqrt{6}r}{3}$$
 $2r$ 
 $2r$ 

六棱柱的高 
$$2\sqrt{(2r)^2 - (\frac{2}{3}\sqrt{3}r)^2} = \frac{4\sqrt{6}}{3}r$$
 底边长  $2r$ 

每个原子所占的体积 
$$6 \times \frac{1}{2} \times 2r \times \sqrt{3}r \times \frac{4\sqrt{6}}{3}r/6 = 4\sqrt{2}r^3$$

质量密度 
$$\rho = \frac{M}{V} = \frac{A/N_A}{4\sqrt{2}r^3}$$

$$r \sim \sqrt[3]{\frac{A}{4\sqrt{2}\rho N_A}} \sim 10^{-10} \,\mathrm{m} = 1\,\mathrm{\mathring{A}}$$

• (2) 可以由气体分子运动论算出



• (3) 由von de Waals定律算出

$$(p + \frac{a}{V})(V - b) = RT$$

• 其中 
$$b=4V_a$$

$$V_a$$
 原子体积

### 原子物理时代的序曲

- X射线的发现: 1895年
- Zeeman效应、放射性的发现: 1896年
- 电子的发现: 1897年
- 放射性元素镭、钋的发现: 1898年



### 电子的发现

- 1897年,剑桥大学,卡文迪许实验室,J.J.Thomson
- 发现真空放电管中阴极射线在电场、磁场中的偏转
- •测出了阴极射线的荷质比: e/me
- 注意到 (e/me) >1000 (ен/mн)
- 阴极射线不是离子束,而是电子束。



Sir Joseph Thomon 1856-1940 1897年发现电子

# Thomson的实验装置







• 1910年,Millikan油滴实验测出 单个电子的电荷

$$e = 4.803242(14) \times 10^{-10}$$
esu  
= 1.6021892(46)×10<sup>-19</sup>c

• 由此, 计算出电子的质量

$$m_{\rm p} / m_{\rm e} = 1836.15152(70)$$
  
 $m_{\rm p} = 1.6726231(10) \times 10^{-24} \,\mathrm{g}$   
 $m_{\rm e} = 9.109534(47) \times 10^{-28} \,\mathrm{g}$ 



Robert Andrews Millikan 1868~1953 1910年测量了单个电子的电荷 1916年发表了光电效应实验结果

### Thomson的原子模型

- 葡萄干布丁模型,或西瓜模型
- 原子为一胶状球体
- 正电荷均匀分布其中
- 电子分布于其中一系列环上,第一环5个,第二环10个,.....



- ·但在1903年,Lenard发现电子很容易穿透原子
- 1909年,Rutherford、Geiger和Marsden发现,用α 粒子轰击原子时,有1/8000的几率被反射,即散射角大于90度。
- "原子好像是空的"
- Thomson模型受到挑战



### Geiger-Marsden实验装置



• 简单的估算证明,Thomson模型不成立

$$\boldsymbol{\Theta}^{R \sim 1 \text{ A}} = 3 \times 10^{-5} \frac{Z}{E_{\alpha}}$$

对Au,Z=79,取 $E_{\alpha}=5$ MeV

$$\theta < 10^{-3}$$

若要产生大角度散射,必须经过多次碰撞,但其几率极小。

理论上,
$$\theta = \frac{\pi}{2}$$
的几率为 $10^{-3500}$  而实验上却不小于 $1/8000$ 

Thomson模型是不正确的!

### Rutherford模型

•原子为核式结构,正电荷集中于原子中心,仅仅占原子半径的1/10000,电子分布于核外。





Ernest Rutherford 1871~1937 1911年建立原子的核式模型

### Rutherford散射公式\*\*



上两式两端相乘,注意到角动量是守恒量

$$2Mv_0^2b\sin\frac{\theta}{2} = \int_0^\infty Fr^2\cos\alpha\dot{\alpha}dt$$

$$= \int_{-\frac{\pi-\theta}{2}}^{\frac{\pi-\theta}{2}} Fr^2 \cos \alpha d\alpha = \int_{-\frac{\pi-\theta}{2}}^{\frac{\pi-\theta}{2}} \frac{z_1 Ze^2}{4\pi\varepsilon_0} \cos \alpha d\alpha$$

$$=\frac{z_1 Z e^2}{4\pi\varepsilon_0} 2\cos\frac{\theta}{2}$$

$$\cot \frac{\theta}{2} = \frac{4\pi\varepsilon_0}{z_1 Z e^2} M v_0^2 b \qquad 库仑散射公式$$

$$\cot \frac{\theta}{2} = \frac{4\pi\varepsilon_0}{z_1 Z e^2} M v_0^2 b \Rightarrow b = \frac{e^2}{4\pi\varepsilon_0} \frac{z_1 Z}{M v_0^2} \cot \frac{\theta}{2}$$

$$b = \frac{1}{2} \frac{e^2}{4\pi\varepsilon_0} \frac{z_1 Z}{\frac{1}{2} m v_0^2} \cot \frac{\theta}{2}$$

$$= \frac{e^2}{4\pi\varepsilon_0} \frac{z_1 Z}{\frac{1}{2}Mv_0^2} = \frac{e^2}{4\pi\varepsilon_0} \frac{z_1 Z}{E} \quad a: 库仑因子$$

$$b = \frac{a}{2}\cot\frac{\theta}{2}$$

b:又称碰撞参数

### Rutherford散射公式

• 瞄准距离在b和b-db间的入射 $\alpha$ 粒子,都被散射到 $\theta$ 与 $\theta$ +d $\theta$ 间的立体角内(空心圆锥立体角)



$$d\Omega = 4\pi \sin \frac{\theta}{2} \cos \frac{\theta}{2} d\theta \qquad b = \frac{a}{2} \cot \frac{\theta}{2}$$

$$d\sigma = 2\pi b |db| = \frac{\pi}{4} \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2 \left(\frac{z_1 Z}{E}\right)^2 \frac{\cos\frac{\theta}{2}}{\sin^3\frac{\theta}{2}} d\theta$$

$$d\sigma = \frac{1}{16} \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2 \left(\frac{z_1 Z}{E}\right)^2 \frac{d\Omega}{\sin^4 \frac{\theta}{2}}$$

Rutherford散射公式

但是,公式中圆环的面积 $d\sigma$ 是无法测量的





箔上总原子数为 N' = NAt



$$\frac{\mathrm{d}n}{n} = \frac{N'\mathrm{d}\sigma}{A} = Nt\mathrm{d}\sigma$$

被散射到dΩ立体角内的α粒子数为

$$dn = nNtd\sigma$$

#### 代入Rutherford散射公式

$$d\sigma = \frac{1}{16} \left( \frac{e^2}{4\pi\varepsilon_0} \right)^2 \left( \frac{z_1 Z}{E} \right)^2 \frac{d\Omega}{\sin^4 \frac{\theta}{2}}$$

可得到散射的粒子数dn

$$dn = nNt d\sigma \qquad d\sigma = \frac{1}{16} \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2 \left(\frac{z_1 Z}{E}\right)^2 \frac{d\Omega}{\sin^4 \frac{\theta}{2}}$$

$$\frac{\mathrm{d}n}{\mathrm{d}\Omega}\sin^4\frac{\theta}{2} = \frac{Nnt}{16} \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2 \left(\frac{z_1Z}{E}\right)^2 = \text{const.}$$

实验中,探测器对散射粒子所张的立体角是常数



| $\theta$ (deg) | $\mathrm{d}n'$ | $1/\sin^4(\theta/2)$ | $dn'\sin^4(\theta/2)$ |
|----------------|----------------|----------------------|-----------------------|
| 150            | 33.1           | 1.15                 | 28.8                  |
| 135            | 43.0           | 1.38                 | 31.2                  |
| 120            | 51.9           | 1.79                 | 29.0                  |
| 105            | 69.5           | 2.53                 | 27.5                  |
| 75             | 211            | 7.25                 | 29.1                  |
| 60             | 477            | 16.0                 | 29.8                  |
| 45             | 1435           | 46.6                 | 30.8                  |
| 34.5           | 3300           | 93.7                 | 35.3                  |
| 30             | 7800           | 223                  | 35.0                  |
| 22.5           | 27300          | 690                  | 39.6                  |
| 15             | 132000         | 3445                 | 38.4                  |

### 关于小角散射的问题

- 表中小角处的散射数值有较大的偏离
- 原因: 小角散射对应于较大的瞄准距离b; 此时入射的粒子距核较远, 在粒子与核之间有电子, 而电子所带的电荷对核的电场有屏蔽作用, 即粒子所感受到的有效电场要小。
- Rutherford散射公式中的核电荷数Z应当以有效核电荷数代替。



# 关于散射粒子数的计算

$$dn = \frac{Nnt}{16} \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2 \left(\frac{z_1 Z}{E}\right)^2 \frac{d\Omega}{\sin^4 \frac{\theta}{2}}$$



### 原子核大小的估算

- · 如果α粒子可以到达的与核的最小距离为rm
- 由能量守恒及角动量守恒

$$\begin{cases} \frac{1}{2}Mv_0^2 = \frac{1}{2}Mv'^2 + \frac{z_1Ze^2}{4\pi\varepsilon_0 r_m} \\ Mv_0b = Mv'r_m \end{cases}$$

$$\frac{1}{2}Mv_0^2 = \frac{1}{2}Mv_0^2 \frac{b^2}{r_m^2} + \frac{z_1 Ze^2}{4\pi\varepsilon_0 r_m}$$



$$b = \frac{e^2}{4\pi\varepsilon_0} \frac{z_1 Z}{M v_0^2} \cot \frac{\theta}{2}$$

$$r_{m}^{2} - \frac{2z_{1}Ze^{2}}{4\pi\varepsilon_{0}Mv_{0}^{2}}r_{m} - (\frac{z_{1}Ze^{2}}{4\pi\varepsilon_{0}Mv_{0}^{2}})^{2}\cot^{2}\frac{\theta}{2} = 0$$

$$r_{m}^{2} - \frac{2z_{1}Ze^{2}}{4\pi\varepsilon_{0}Mv_{0}^{2}}r_{m} + (\frac{z_{1}Ze^{2}}{4\pi\varepsilon_{0}Mv_{0}^{2}})^{2} = (\frac{z_{1}Ze^{2}}{4\pi\varepsilon_{0}Mv_{0}^{2}})^{2} \frac{1}{\sin^{2}\frac{\theta}{2}}$$

$$r_{m} = \frac{z_{1}Ze^{2}}{4\pi\varepsilon_{0}Mv_{0}^{2}}(1 \pm \frac{1}{\sin\frac{\theta}{2}}) = \frac{1}{2}\frac{z_{1}Ze^{2}}{4\pi\varepsilon_{0}E}(1 \pm \frac{1}{\sin\frac{\theta}{2}}) = \frac{a}{2}(1 \pm \frac{1}{\sin\frac{\theta}{2}})$$

$$r_{m} = \frac{z_{1}Ze^{2}}{4\pi\varepsilon_{0}} \frac{1}{Mv_{0}^{2}} (1 + \frac{1}{\sin\frac{\theta}{2}})$$

$$\theta = \pi$$
  $r_m \sim a \sim 10^{-14} \text{m} = 10 \text{fm}$ 

### 1.4 原子光谱

- 一、光谱
- 光谱是光强按频率或波长的分布。用函数表示为  $I=I(\lambda)$  ,或者 $I=I(\nu)$  。

Solar Spectrum



High Resolution Solar Spectrum

## 元素的光谱

- 1853年,瑞典物理学家埃格斯特朗(A. J. Ångström)最先从气体放电的光谱中确定了氢的Hα谱线,证明它就是夫琅和费在太阳光谱中发现的C线。除此之外,他还找到了氢原子光谱。另外三根在可见光波段内的谱线,即Hβ、Hγ、Hδ谱线,并精确测量了它们的波长。1868年,发表了标准太阳谱图表,记录了太阳光谱中上千条谱线的波长,以10<sup>2</sup>-10米为单位,精确到六位有效数字。现在常用的波长单位埃(1Å=10<sup>2</sup>-10m)就是以其姓氏而命名。
- 1859年,德国科学家**基尔霍夫**和**本生**研究了各种火焰和 火花的光谱,注意到每种元素都有其独特的光谱,他们 发明了**光谱分析法**,并用这种方法发现了新元素铯和铷。



### 吸收光谱与发射光谱

- 原子受到激发后,会发光,光谱由其特性决定
- •原子也会吸收光,从而在透射光谱中出现一系列的暗线
- 吸收光谱与发射光谱是对应的

氢原子的发射光谱

氢原子的吸收光谱

• 根据实验方法,可以分为发射光谱、吸收光谱、激发光谱,等等。



• 根据光谱的分布特征,可以分为线状光谱、带状光谱、连续光谱。



### 2、氢原子的光谱

- 1、氢原子受到激发后,可以发出线状光谱。
- 其中最著名的光谱线有以下四条

| 名称    | Hδ      | Нү      | Нβ      | Ηα      |
|-------|---------|---------|---------|---------|
| 波长(Å) | 4101.20 | 4340.10 | 4860.74 | 6562.10 |
| 颜色    | 紫       | 青       | 深绿      | 红       |

500 nm

### 氢的Balmer线系

连续光谱区

• Balmer发现,对于已知的4条氢的光谱线,可以用一个简单的公式表示其波长分布(1885年)

$$\lambda = B \frac{n^2}{n^2 - 4}$$
  $n = 3,4,5,\cdots$  Balmer公式  
其中  $B = 3645.6$  A  $n \to \infty, \lambda_\infty = B = 3645.6$  A 线系限波长  
 $H_\delta H_\gamma$   $H_\beta$   $H_\alpha$ 

Balmer线系

· Balmer公式也可以改写为如下形式(1896)

 $R_{\rm H} = 1.0967758 \times 10^7 \,\mathrm{m}^{-1}$ 



Johannes Robert Rydberg



线系限 紫外—— 可见

Ha

<sup>н</sup> Sweden ,1854-1919

# 氢原子的其它谱线系 • Lyman系 $\tilde{v} = R_{\rm H} [\frac{1}{1^2} - \frac{1}{n^2}], n = 2, 3, 4, \cdots$

$$\tilde{v} = R_{\rm H} \left[ \frac{1}{1^2} - \frac{1}{n^2} \right], n = 2, 3, 4, \dots$$

• Balmer
$$\tilde{x}$$
  $\tilde{v} = R_{\rm H} \left[ \frac{1}{2^2} - \frac{1}{n^2} \right], n = 3, 4, 5, \cdots$ 

• Paschen 
$$\tilde{\mathcal{V}} = R_{\mathrm{H}} \left[ \frac{1}{3^2} - \frac{1}{n^2} \right], n = 4, 5, 6, \dots$$

• Brackett
$$\tilde{x}$$
  $\tilde{v} = R_{\rm H} \left[ \frac{1}{\Delta^2} - \frac{1}{n^2} \right], n = 5, 6, 7, \cdots$ 

• Pfund
$$\tilde{x}$$
  $\tilde{v} = R_{\rm H} \left[ \frac{1}{5^2} - \frac{1}{n^2} \right], n = 6, 7, 8, \cdots$ 

• Humphreys  $\tilde{R}$   $\tilde{v} = R_{\rm H} \left[ \frac{1}{6^2} - \frac{1}{n^2} \right], n = 6, 7, 8, \cdots$ 

#### 赖曼系

| n             | 2    | 3    | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 8    |
|---------------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|------|
| $\lambda(nm)$ | 121. | 102. | 97. | 94. | 93. | 93. | 92. | 92. | 92. | 91. | 91.1 |
|               | 6    | 5    | 2   | 9   | 7   | 0   | 6   | 3   | 1   | 9   | 5    |

#### 巴尔末系

| n             | 3            | 4         | 5            | 6            | 7              | 8                | 9          | $\infty$ |
|---------------|--------------|-----------|--------------|--------------|----------------|------------------|------------|----------|
| Name          | $H_{\alpha}$ | $H_{eta}$ | $H_{\gamma}$ | $H_{\delta}$ | $H_{\epsilon}$ | ${ m H}_{\zeta}$ | $H_{\eta}$ |          |
| $\lambda(nm)$ | 656.3        | 486.1     | 434.1        | 410.2        | 397.0          | 388.9            | 383.5      | 364.6    |

#### 帕邢系

| n             | 4          | 5          | 6          | 7          | 8         | 9         | 10   | 11        | 12        | 13        | $\infty$  |
|---------------|------------|------------|------------|------------|-----------|-----------|------|-----------|-----------|-----------|-----------|
| $\lambda(nm)$ | 1874.<br>5 | 1281.<br>4 | 1093.<br>5 | 1004.<br>6 | 954.<br>3 | 922.<br>6 | 901. | 886.<br>0 | 874.<br>8 | 866.<br>2 | 820.<br>1 |

# 可以用通式表示为

$$\tilde{v} = R_{\rm H} \left[ \frac{1}{m^2} - \frac{1}{n^2} \right]$$
 $m = 1, 2, 3, \dots$ 
 $n = m + 1, m + 2, m + 3, \dots$ 

对于其中的每一个m, n=m+1, m+2, ...... 可以构成一个谱线系

上述方法称为"**组合法则**",即每一条光谱线的波数可以 表示为两个与整数有关的函数项的差。

$$\widetilde{v} = T(m) - T(n)$$
  $T(m) = \frac{R_{\text{H}}}{m^2}$   $T(n) = \frac{R_{\text{H}}}{n^2}$ 

T(m)、T(n)称为光谱项

如此简单的物理规律之后必定隐藏着简单的物理本质!

经典核式模型 (行星模型)的困难

• 核外电子在核的库仑场中运动, 受有心力作用

$$\frac{Ze^2}{4\pi\varepsilon_0 r^2} = \frac{m_e v^2}{r}$$

$$E = E_k + E_p = \frac{m_e v^2}{2} - \frac{Ze^2}{4\pi\varepsilon_0 r} = -\frac{1}{2} \frac{Ze^2}{4\pi\varepsilon_0 r}$$

轨道运动频率 
$$f = \frac{\mathrm{V}}{2\pi r} = \frac{e}{2\pi} \sqrt{\frac{Z}{4\pi \varepsilon m_{\mathrm{e}} r^3}}$$

- 按经典电磁学理论,带电粒子做加速运动,将向外辐射电磁波,其电磁辐射频率等于带电粒子运动频率。
- 则原子的光谱应当为连续谱。
- 由于向外辐射能量,原子的能量将不断减少,电子的轨道半径将不断缩小,最终将会落到核上,即所有原子将"崩塌"。
- 这与事实是矛盾的。
- 无法用经典的理论解释原子中核外电子的运动。

## 1.5 Bohr的氢原子模型(1913年)

- •根据氢原子的光谱和量子思想,提出三个基本假设
- 1、定态条件+分立轨道假设
- 核外电子只能处于一系列分立的轨道上,绕核转动;
- 电子在固定的轨道上运动时,不辐射电磁波,即原子处于一系列的定态。

+Ze

定态能量,能级 
$$E_n = -\frac{1}{2} \frac{Ze^2}{4\pi\varepsilon_0 r_n}$$

- 2、频率条件
- 电子可以在不同的轨道之间跃迁,或者说原子可以 在不同的能级之间跃迁,并以电磁波的形式辐射或 吸收能量





$$h \nu = \Delta E = E_n - E_m = \frac{1}{2} \frac{Ze^2}{4\pi \varepsilon_0} \left[ \frac{1}{r_m} - \frac{1}{r_n} \right]$$

$$h\nu = \frac{1}{2} \frac{Ze^2}{4\pi\varepsilon_0} \left[ \frac{1}{r_m} - \frac{1}{r_n} \right]$$

$$h v = h \frac{c}{\lambda} = hc \tilde{v} = \frac{1}{2} \frac{Ze^2}{4\pi\varepsilon_0} \left[ \frac{1}{r_m} - \frac{1}{r_n} \right]$$

$$\tilde{v} = \frac{1}{2} \frac{Ze^2}{4\pi\epsilon_0 hc} \left[ \frac{1}{r_m} - \frac{1}{r_n} \right] 与两个整数有关$$

而Rydberg方程为 
$$\tilde{v} = R\left[\frac{1}{m^2} - \frac{1}{n^2}\right]$$

两者有相同的形式

- 至此,Bohr的假设已经能够解释氢原子的光谱规律。
- •但其中的一些数值,如轨道半径、能量(能级)、 Rydberg常数等还无法确定,说明该理论还不完备
- 还需要有进一步的假设

- 3、角动量量子化假设
- 电子轨道运动的角动量是**量子化**的,只能取一些特定的数值。

$$P_{\phi} = m_{\rm e} \ v \ r_{n} = n \frac{h}{2\pi} = n\hbar \qquad n = 1, 2, 3, 4 \cdots$$

可以由此导出诸如轨道 半径、能量(能级)、 Rydberg常数,等等





乳存マナル n=1,2,3, n=1,2,3 .me 为电子的商品还是量 me c2~0.5/1X/106eV 7 - 456h 12 = aon2, ao 20,531,000 m 多个种选择是人们。Qo,400,900 Vn = Greate in = din d = 7,29736308 × 10-3 2/37 中子运动建度约为是建的方式更小

多百种态品 En不同音的的公方 En=- 5m2 mex2c2 n=1 海态 E,=- - - - - - 1364V 多原子系属 hOV = For- Em V= 2 mec (m2-n2) Ro = 2 mec = 1,09737 × 10m2 V= Rn (m2-n2) RSEVENTE Ro = 1,09677 × 10 m-1

角动量量子化 
$$m_{\rm e}$$
 v  $r_{n} = n\hbar$   $\Rightarrow m_{\rm e}$  v<sup>2</sup>  $r_{n}^{2} = \frac{(n\hbar)^{2}}{m}$ 

分立定态轨道 
$$\frac{Ze^2}{4\pi\varepsilon_0 r_n^2} = \frac{m_e v^2}{r_n} \Rightarrow m_e v^2 r_n = \frac{Ze^2}{4\pi\varepsilon_0}$$

$$\Rightarrow r_n = \frac{4\pi\varepsilon_0\hbar^2}{m_e e^2} \frac{n^2}{Z} \qquad a_1 = \frac{4\pi\varepsilon_0\hbar^2}{m_e e^2}$$

$$= 0.529166 \times 10^{-10} \text{ m} = 0.53 \text{ A}$$
 $\Rightarrow r_n = a_1 \frac{n^2}{Z}$ 
 $\Rightarrow r_n = a_1 \frac{n^2}{Z}$ 

$$E_n = -\frac{1}{2} \frac{Ze^2}{4\pi\varepsilon_0 r_n} = -\frac{2\pi^2 m_e e^4}{(4\pi\varepsilon_0)^2 h^2} \frac{Z^2}{n^2} = -13.6 \left(\frac{Z}{n}\right)^2 \text{ eV}$$

$$E_{n} = -\frac{2\pi^{2}m_{e}e^{4}}{(4\pi\varepsilon_{0})^{2}h^{2}}\frac{Z^{2}}{n^{2}} \qquad E_{n'} = -\frac{2\pi^{2}m_{e}e^{4}}{(4\pi\varepsilon_{0})^{2}h^{2}}\frac{Z^{2}}{n'^{2}}$$

$$\tilde{v} = \frac{E_n - E_{n'}}{hc} = \frac{2\pi^2 m_e e^4}{(4\pi\epsilon_0)^2 h^2} \left(\frac{Z^2}{n'^2} - \frac{Z^2}{n^2}\right) \frac{1}{hc}$$

$$= \frac{2\pi^2 m_{\rm e} e^4}{(4\pi\varepsilon_0)^2 h^3 c} \left[ \frac{1}{n'^2} - \frac{1}{n^2} \right] Z^2$$

与Rydberg方程联系起来,可以得到Rydberg常数

$$R = \frac{2\pi^2 m_{\rm e} e^4}{(4\pi\varepsilon_0)^2 h^3 c}$$
 理论值  $R = 1.0973731 \times 10^7 \,\mathrm{m}^{-1}$  实验值  $R_{\rm H} = 1.0967758 \times 10^7 \,\mathrm{m}^{-1}$ 

#### 符合得出人意料的好!

## Rydberg常数理论值与实验值的偏差

前面的推导是在假设核静止不动的前提下得到的 但核并非静止的, 所以应当采用质心坐标系 在有心力场的两体问题中,只需要用折合质 量代替电子的质量,则上述结论就对应于质 心系

$$\mu = \frac{Mm_{\rm e}}{M + m_{\rm e}}$$
  $M$ : 核质量;  $m_{\rm e}$ : 电子质量

$$R = \frac{4\pi^{3}\mu e^{4}}{(4\pi\varepsilon_{0})^{2}h^{3}c} = \frac{4\pi^{3}m_{e}e^{4}}{(4\pi\varepsilon_{0})^{2}h^{3}c}\frac{M}{M+m_{e}} = \frac{4\pi^{3}m_{e}e^{4}}{(4\pi\varepsilon_{0})^{2}h^{3}c}\frac{1}{1+m_{e}/M}$$

$$M >> m_{\rm e} \quad R_{\infty} = \frac{4\pi^3 m_{\rm e} e^4}{(4\pi\varepsilon_0)^2 h^3 c} \qquad R_A = R_{\infty} \frac{1}{1 + m_{\rm e}/M}$$

• 对于氢原子,*m<sub>e</sub>/M*=1/1836.15

$$R_A = R_\infty \frac{1}{1 + m_e / M} = 10973731 \times \frac{1}{1 + 1/1836.15} = 10967758 \,\mathrm{m}^{-1}$$

与实验值完全吻合



电子在轨道间跃迁时,原子在不同的能级间跃迁

# 氢原子的连续谱

- Balmer线系之外还有一个<u>连续光谱区</u>。
- 这是由非量子化轨道的电子跃迁而产生的。

当原子的能量较高时,体系的能量为正值。

电子距核较远时,只有动能;靠近时,同时有动能和势能。

$$E = \frac{1}{2} m_{e} v_{0}^{2} = \frac{1}{2} m_{e} v^{2} - \frac{Ze^{2}}{4\pi\varepsilon_{0}r}$$



向量子化轨道跃迁时

$$hv = E - E_n = \frac{1}{2}m_e v^2 - \frac{Ze^2}{4\pi\varepsilon_0 r} + \frac{hcR}{n^2}$$
 发出连续谱



# 类氢离子的光谱

- •一、类氢离子
- 只有一个核外电子的离子



 $H \qquad He^{+} \qquad Li^{++} \qquad Be^{+++}$ 

结构与氢原子类似

- HI HeII LiIII BeIV
- 二、Pickering线系
- 1897年,发现来自一个星体的谱线系与 Balmer线系相似



后来被证实是一价氦离子的谱线

• 
$$\Xi$$
,  $\not R \not R = -\frac{hcR_A}{n^2}Z^2$ 

$$\tilde{v} = \frac{E_n - E_m}{hc} = Z^2 R_A (\frac{1}{m^2} - \frac{1}{n^2}) = R_A [\frac{1}{(m/Z)^2} - \frac{1}{(n/Z)^2}]$$

$$= R_A [\frac{1}{2^2} - \frac{1}{(n/2)^2}]$$

$$Z = 2, m = 4$$

$$n = 6,7,8\cdots$$
  $n/2 = 3,3.5,4,4.5,\cdots$  半整数

$$\tilde{v}_{\text{Li}^{++}} = 3^2 R_{\text{Li}} \left[ \frac{1}{n_2^2} - \frac{1}{n_1^2} \right] = R_{\text{Li}} \left[ \frac{1}{(n_2/3)^2} - \frac{1}{(n_1/3)^2} \right]$$

$$\tilde{v}_{\text{Be}^{+++}} = 4^2 R_{\text{Be}} \left[ \frac{1}{n_2^2} - \frac{1}{n_1^2} \right] = R_{\text{Be}} \left[ \frac{1}{(n_2/4)^2} - \frac{1}{(n_1/4)^2} \right]$$

谱线位置蓝移

由Rydberg常数的变化产生

$$R_{\rm A} = R_{\infty} \frac{1}{1 + m_{\rm e}/M_{\rm A}}$$

由于核质量增大,Rydberg常数增大,光谱线蓝移

- •四、氘的发现(Urey, 1932年)
- 将4升液态氢在14K、53mmHg下蒸发,得到1毫升液态氢
- 在其中光谱中发现了极其相似的光谱线  $H_{\alpha}$ 包含两条很接近的谱线  $\{6562.79\text{ Å}, \Delta\lambda = 1.79\text{ Å}\}$   $\{6561.00\text{ Å}\}$
- 假定存在同位素  $M_H/M_D=1/2$

$$\frac{\lambda_{\rm H}}{\lambda_{\rm D}} = \frac{\tilde{v}_{\rm D}}{\tilde{v}_{\rm H}} = \frac{R_{\rm D}}{R_{\rm H}} = \frac{1 + m_{\rm e} / M_{\rm H}}{1 + m_{\rm e} / M_{\rm D}} = \frac{1 + 1 / 1836}{1 + 1 / (2 \times 1836)} = 1.000273$$

$$\frac{6562.79}{6561.00} = 1.000273$$

与实验结果一致 肯定了氘(D)的存在



Harold Clayton Urey 1893~ 1981 **1932**年发现了氘





Harold C. Whey.

# Franck-Hertz实验

- •除了光谱学方法之外,可以用其它方法证明原子中分立能级的存在(**1914**年)
- 1、基本思想
- 利用加速电子碰撞原子,使之激发。测量电子所损失的能量,即是原子所吸收的能量。

加速电子→原子 { →吸收能量,产生跃迁 →不能激发,不吸收能量

- 加速电子与原子碰撞。当电子能量较低时,原子内部不吸收电子的能量,两者之间是弹性碰撞
- 电子能量较高时,原子吸收电子能量
- 电子的动能被吸收,回路中电流降低
- 如果吸收后电子的动能仍很大,则电流随电压继续增大



James Franck, 1882~1964



Gustav Hertz ,1887~1975



## 2、Frank-Hertz实验

- 实验装置
- K:热阴极
- G:栅极
- A: 接收极
- KG空间:加速、碰 撞
- GA空间:动能足够 大的电子通过,到 达A极
- 测量接收极电流与加速电压间的关系





当电子的加速电压为4.9V时,即电子的动能达到4.9eV时,可以使Hg原子由于吸收电子的能量而从基态跃迁到最近的激发态,电子由于动能损失而无法到达阳极,回路中电流迅速降低。

### 4.9V为Hg的第一激发电势

# 波尔原子模型的问题

- 1.经典和量子并存
- 2.预言了发射和吸收光子的频率,但是 光谱线的强度、极化、选择定则不能 解释
- 3.无法解释更复杂的光谱现象

- 1. 已知氢原子的电离能为 13.6eV,求 $B^{4+}$ 离子从n=2能级跃迁到基态的辐射能量、波长。
- 2. 某种类氢离子的光谱中,已知属于同一线系得三条谱线波长为99.2nm、108.5nm和121.5nm。可以预言还有那些光谱线?
- 4. 要使处于基态的氢原子受激发后,能发射莱曼系最长波长的谱线,则至少需向氢原子提供多少能量?
- 6. 设氢原子原来是静止的。当氢原子从n = 4的态跃迁到基态时,给出原子的反冲速度、发射光子的波长,并与不考虑反冲时的光子波长对比。