Package 'paradigmEvo2023'

June 18, 2024

2 Contents

evolve_mplat	8
generate_arrangements	10
get_colours	10
get_row_joint_H	11
get_steps	11
get_weights	12
initialise_mplat	12
loglike2_trans	13
loglike_trans	13
match_rows	14
match_sorted_rows	14
mean_ignoring_diag	15
mplat_params	15
multicolourise	16
pivot_mplat_longer	16
plot_class_contrasts	
plot_evolution	
plot_exp_contrasts	
plot_H	
plot_mplat	19
plot_stats	20
plot_top2classes	
plot_turnover	
plot_U	22
power_dist	
repeat_row	
replicate_evo	
sample_power_dist	
scalar_mult_cols	
scalar_mult_rows	25
select_replacement_alleles	
shuffle_within_cols	
shuffle_within_rows	
sort_mat	
square_mat	28
str2ints	28
sum_row_mins	28
sum_row_mins_in_lower_triangle	29
unpack_evolution	29
update_long_mplat	30
update_mat	30
update_mplat	31
update_row_joint_H	31
which_is_sampled_max	32

33

Index

add_stats 3

 $\mathsf{add_stats}$

Add statistics to an evolution

Description

Add statistics to an evolution

Usage

```
add_stats(
  evolution,
  step_method = c("generation", "change"),
  skip_steps = 20,
  entropy_classwise = FALSE
)
```

Arguments

evolution A list, the output from evolve_mplat.

step_method A string, specifying the kind of steps to take through the evolution: by genera-

tion or by change.

skip_steps An integer, specifying how many steps to skip ahead each time.

Value

A list, the evolution including the stats

cluster_sort_mat

Cluster-sort the rows of a matrix

Description

Cluster-sort the rows of a matrix

Usage

```
cluster_sort_mat(m)
```

Arguments

m

A matrix

Value

A matrix

cluster_sort_order

Cluster order

Description

Cluster order

Usage

```
cluster_sort_order(m)
```

Arguments

m

A matrix

Value

A vector of integers, the sort order of rows.

compile_mean_hi_lo

Get mean and ribbon edges for plotting, for the column "value"

Description

Get mean and ribbon edges for plotting, for the column "value"

Usage

```
compile_mean_hi_lo(df)
```

Arguments

df

A dataframe with columns generation and value

Value

A dataframe with columns generation, upper, lower & mean_value

conflate_and_sum_wt 5

conflate_a	and_s	sum_v	иt
------------	-------	-------	----

Merge matrix rows that are identical outside of the first column; sum the first column when rows are merged

Description

Merge matrix rows that are identical outside of the first column; sum the first column when rows are merged

Usage

```
conflate_and_sum_wt(m, w)
```

Arguments

m A matrix

w A vector of weights

Value

A list, containing \$matrix and \$weight

count_arrangements

Count the number of ways to place p stones in an m x n grid, under the constraints that no row is empty; no column is empty; only one stone per cell; and cell (1,1) is filled.

Description

Count the number of ways to place p stones in an m x n grid, under the constraints that no row is empty; no column is empty; only one stone per cell; and cell (1,1) is filled.

Usage

```
count_arrangements(m, n, p)
```

Arguments

m	An integer. The number of grid rows.
n	An integer. The number of grid columns.
р	An integer. The number of stones

Value

An integer. The number of solutions.

count_arrangements_1j Count the number of ways to place p stones in an m x n grid, under the constraints that no row is empty; no column is empty; only one stone per cell; cell (1,1) is filled; and cell (1,j) must also be filled, for some j > 1. This indicates the how many times a cell (1,j) is filled, among all the solutions to the grid-filling constraints described for 'count_arrangements()'.

Description

Count the number of ways to place p stones in an m x n grid, under the constraints that no row is empty; no column is empty; only one stone per cell; cell (1,1) is filled; and cell (1,j) must also be filled, for some j > 1. This indicates the how many times a cell (1,j) is filled, among all the solutions to the grid-filling constraints described for 'count_arrangements()'.

Usage

```
count_arrangements_1j(m, n, p)
```

Arguments

m An integer. The number of grid rows.
 n An integer. The number of grid columns.
 p An integer. The number of stones

Value

An integer. The number of solutions.

```
count_arrangements_i1 Count the number of ways to place p stones in an m x n grid, under the constraints that no row is empty; no column is empty; only one stone per cell; cell (1,1) is filled; and cell (i,1) must also be filled, for some i > 1. This indicates the how many times a cell (i,1) is filled, among all the solutions to the grid-filling constraints described for 'count_arrangements()'.
```

Description

Count the number of ways to place p stones in an m x n grid, under the constraints that no row is empty; no column is empty; only one stone per cell; cell (1,1) is filled; and cell (i,1) must also be filled, for some i > 1. This indicates the how many times a cell (i,1) is filled, among all the solutions to the grid-filling constraints described for 'count_arrangements()'.

Usage

```
count_arrangements_i1(m, n, p)
```

count_arrangements_ij 7

Arguments

m An integer. The number of grid rows.

n An integer. The number of grid columns.

p An integer. The number of stones

Value

An integer. The number of solutions.

count_arrangements_ij Count the number of ways to place p stones in an m x n grid, under the constraints that no row is empty; no column is empty; only one stone per cell; cell (1,1) is filled; and cell (i,j) must also be filled, for some i > 1, j > 1. This indicates the how many times a cell (i,j) is filled, among all the solutions to the grid-filling constraints described for 'count_arrangements()'.

Description

Count the number of ways to place p stones in an m x n grid, under the constraints that no row is empty; no column is empty; only one stone per cell; cell (1,1) is filled; and cell (i,j) must also be filled, for some i > 1, j > 1. This indicates the how many times a cell (i,j) is filled, among all the solutions to the grid-filling constraints described for 'count_arrangements()'.

Usage

```
count_arrangements_ij(m, n, p)
```

Arguments

m An integer. The number of grid rows.

n An integer. The number of grid columns.

p An integer. The number of stones

Value

An integer. The number of solutions.

8 evolve_mplat

count_exponents

Count the number of unique values in rows or columns

Description

Count the number of unique values in rows or columns

Usage

```
count_exponents(m)
```

Arguments

```
m A matrix p_type A string
```

Value

A vector of counts

evolve_mplat

Simulate mplat evolution

Description

Simulate mplat evolution

Usage

```
evolve_mplat(
 x = NULL
 param_dict = mplat_params(),
 pivot_type = c("morphosite", "lexeme"),
 foci_lex_selector = c("uniform", "zipf"),
 foci_morphosite_selector = c("uniform", "zipf"),
 n_foci = 1,
 pivot_weighting = c("uniform", "zipf", "classwise"),
 pivot_use_proportion = 0,
 evidence_weighting = c("uniform", "zipf", "classwise"),
 evidence_use_proportion = 1,
 evidence_balance = 1/(neg_evidence_coeff + 1),
 neg_evidence_coeff = 0,
 change_classwise = FALSE,
 halt_method = c("n_generations", "quasi_stability"),
 halt_n = 5000,
 n_rep = 1
)
```

evolve_mplat 9

Arguments

x Either a list or a matrix. If a matrix, x is interpreted as an mplat representing

the initial state of the inflectional system; if a list, then a set of parameters to

generate that state using initialise_mplat().

pivot_type A string, giving the model type: morphosite pivot (as in A&M) or lexeme pivot

(as in Esher 2015)

foci_lex_selector

A string, giving the method for selecting the foci lexemes, which change.

foci_morphosite_selector

A string, giving the method for selecting the foci morphosites, which change.

n_foci An integer, giving the number of foci to change in a single generation.

pivot_weighting

A string, giving the method for weighting pivots; used either for sampling them, or weighting them when all are taken into account.

pivot_use_proportion

An numeric, giving the proportion of the available pivots to use. If set to 0, then just one pivot is used.

evidence_weighting

A string, giving the method for weighting evidence morphosites; used either for sampling them, or weighting them when all are taken into account.

evidence_use_proportion

An numeric, giving the proportion of the available evidence morphosites to use. If set to 0, just one is used.

evidence_balance

A numeric, between 0 and 1, giving the balance of negative evidence (max when 0) and positive evidence (max when 1).

neg_evidence_coeff

A non-negative numeric, an alternative parameterisation of evidence balance, giving negative evidence strength as a multiple of positive evidence.

change_classwise

A logical, whether to change whole classes at once.

halt_method A string, giving the method for choosing when to halt the simulation.

halt_n An integer, indicating either the total number of generations to evolve through

or the number of consecutive generations of quasi-stability before halting.

n_rep An integer, the number of repetitions of the simulation to perform

Value

A list, containing: containing: mplat_0; total_generations; a list of the model parameters; a list of final mplats; a dataframe of changes (with columns generation, foci_lex, foci_morphosite, a_new); a dataframe of statistics.

10 get_colours

generate_arrangements Generate the solutions to placing p stones in an m x n grid, under the constraints that no row is empty; no column is empty; only one stone per cell; and cell (1,1) is filled.

Description

Generate the solutions to placing p stones in an m x n grid, under the constraints that no row is empty; no column is empty; only one stone per cell; and cell (1,1) is filled.

Usage

```
generate_arrangements(m, n, p)
```

Arguments

m An integer. The number of grid rows.
 n An integer. The number of grid columns.
 p An integer. The number of stones

Value

A list of matrices. The solutions, where 1 =filled cell.

get_colours	Choose n brewer.pal colours, but allow $n < 4$, in which case choose
	more saturated end of the $n=4$ set

Description

Choose n brewer.pal colours, but allow n < 4, in which case choose more saturated end of the n=4 set

Usage

```
get_colours(n, col)
```

Arguments

n An integer, how many colours
col A string, the palette to choose from

Value

A vector of hex colour specifications

get_row_joint_H

get_row_joint_H

Get pairwise joint entropies of rows

Description

Get pairwise joint entropies of rows

Usage

```
get_row_joint_H(m)
```

Arguments

m

A matrix

Value

A matrix of numerics, the joint entropies.

get_steps

Get step rows and generations

Description

Get step rows and generations

Usage

```
get_steps(
  evolution,
  repetition = 1,
  step_method = c("generation", "change"),
  skip_steps
)
```

Arguments

evolution A list, the output from evolve_mplat.

repetition An integer. Which repetition to unpack.

step_method A string, specifying the kind of steps to take through the evolution: by genera-

tion or by change.

skip_steps An integer, specifying how many steps to skip ahead each time.

Value

A list.

12 initialise_mplat

get_weights

Uniform and zipf distribution

Description

Uniform and zipf distribution

Usage

```
get_weights(dist_type, n)
```

Arguments

dist_type A string, giving the distribution type

n An integer, the number of data points

Value

A vector of numerics of length n

initialise_mplat

Initialise a parametrically random mplat

Description

Initialise a parametrically random mplat

Usage

```
initialise_mplat(
  x = 50,
  polymorphies = rep(6, times = 8),
  allele_distribution = c("uniform", "zipfian"),
  class_distribution = c("uniform", "zipfian"),
  col_class_distribution = c("uniform", "zipfian"),
  max_classes = NULL,
  max_col_classes = NULL
)
```

Arguments

x Either an integer or a list. If a list, x is treated a list of parameters, else as the number of lexemes.

A numeric, giving the exponent of a powerlaw distribution for skewing the sampling from a morphosite's alleles. A value of 0 is uniform; a value of 1 is Zipfian.

loglike2_trans

class_distribution

A numeric, giving the exponent of a powerlaw distribution for skewing the repetitive sampling of lexical classes.

 $col_class_distribution$

A numeric, giving the exponent of a powerlaw distribution for skewing the repetitive sampling of morphosites, i.e., having multiple morphosites repeating the same pattern.

max_classes

An integer, placing an upper bound on the number of distinct classes sampled when class_distribution is not zero.

max_col_classes

An integer, placing an upper bound on the number of distinct morphosites sampled when col_class_distribution is not zero.

Value

A matrix, the mplat.

loglike2_trans

A log-like transformation for data that goes to 0

Description

A log-like transformation for data that goes to 0

Usage

loglike2_trans()

loglike_trans

A log-like transformation for data that goes to θ

Description

A log-like transformation for data that goes to 0

Usage

loglike_trans()

14 match_sorted_rows

match_rows

Which rows in a matrix are identical to a given vector

Description

Which rows in a matrix are identical to a given vector

Usage

```
match_rows(m, v)
```

Arguments

m A matrix

v A vector, of length ncol(m)

Value

A vector of row indices

match_sorted_rows

Which rows in matrix 1 are in matrix 2 Only works for sorted matrices!

Description

Which rows in matrix 1 are in matrix 2 Only works for sorted matrices!

Usage

```
match_sorted_rows(m1, m2)
```

Arguments

m1 A matrix m2 A martix

Value

A vector of row indices

mean_ignoring_diag

mean_ignoring_diag

Mean without diagonal

Description

Mean without diagonal

Usage

```
mean_ignoring_diag(m)
```

Arguments

m

A matrix

mplat_params

Make a list of mplat parameters

Description

Make a list of mplat parameters

Usage

```
mplat_params(
  n_lexemes = 50,
  polymorphies = rep(6, times = 8),
  allele_distribution = "uniform",
  class_distribution = "uniform",
  col_class_distribution = "uniform",
  max_classes = NULL,
  max_col_classes = NULL
)
```

Value

A list, of parameters for 'initialise_mplat()'

pivot_mplat_longer

multicolourise

Add multiple colours

Description

Add multiple colours

Usage

```
multicolourise(data, axis = c("columns", "rows"))
```

Arguments

data A matrix, giving an mplat or a dataframe giving a long form evo_df.

axis A string, indicating which axis to apply multicolour to.

Value

A list, containing the modified mplat and a vector of colours.

pivot_mplat_longer

Change mplat to a long format dataframe

Description

Change mplat to a long format dataframe

Usage

```
pivot_mplat_longer(mplat)
```

Arguments

mplat

A matrix

Value

A dataframe with columns lexeme, morphosite, allele

plot_class_contrasts 17

Description

Plot class contrast stats

Usage

```
plot_class_contrasts(
  evolution,
  y_limits = c(1, max(evolution$stats$n_classes)),
  y_breaks = c(1, 5, 20, 50, 100),
  step = c("generation", "change")
)
```

Arguments

evolution A list, the output from evolve_mplat.

y_limits A vector of two numerics. The y axis limits.

y_breaks A vector of numerics. The y axis tick mark locations.

step A string, specifying the kind of steps to take through the evolution: by generation or by change.

plot_evolution

Animate the evolution of a mplat

Description

Animate the evolution of a mplat

Usage

```
plot_evolution(
   evolution,
   which_rep = 1,
   step_method = c("generation", "change"),
   skip_steps = if (substr(step_method[1], 1, 1) == "g") {
      evolution$total_generations/100
} else {
        nrow(evolution$change)/100
},
   telic_order = FALSE,
   multicolour = FALSE,
   multicolour_axis = c("columns", "rows"),
   fps = 10
)
```

18 plot_exp_contrasts

Arguments

fps An integer

Value

A dataframe of the evolution in long form.

Description

Plot exponent contrast stats

Usage

```
plot_exp_contrasts(
  evolution,
  y_limits = c(1, 5),
  y_breaks = c(1, 1.5, 2, 3, 4, 5),
  step = c("generation", "change")
)
```

Arguments

evolution A list, the output from evolve_mplat.

y_limits A vector of two numerics. The y axis limits.

y_breaks A vector of numerics. The y axis tick mark locations.

step A string, specifying the kind of steps to take through the evolution: by generation or by change.

plot_H

plot_H

Plot entropy stats

Description

Plot entropy stats

Usage

```
plot_H(
    evolution,
    y_limits = c(0, 3),
    y_breaks = c(0, 0.05, 0.2, 0.5, 1, 3),
    step = c("generation", "change")
)
```

Arguments

evolution A list, the output from evolve_mplat.

y_limits A vector of two numerics. The y axis limits.

y_breaks A vector of numerics. The y axis tick mark locations.

step A string, specifying the kind of steps to take through the evolution: by generation or by change.

plot_mplat

Plot an mplat

Description

Plot an mplat

Usage

```
plot_mplat(
    x,
    cluster_lexemes = FALSE,
    cluster_morphosites = FALSE,
    multicolour = FALSE,
    multicolour_axis = c("columns", "rows")
)
```

Arguments

A matrix or a list. If a list, it is used as parameters for initialise_mplat(); if a matrix, then it is an mplot.

cluster_lexemes

A logical. Whether to sort the lexemes by similarity.

20 plot_stats

```
cluster_morphosites
```

A logical. Whether to sort the morphosites by similarity.

multicolour A logical. Whether to put column/rows in different colours.

multicolour_axis

A string, which axis to apply multicolour to.

Value

A ggplot raster plot.

plot_stats

Plot stats

Description

Plot stats

Usage

```
plot_stats(
   evolution,
   suppress_top2 = FALSE,
   turnover_limits = c(0, 200),
   turnover_breaks = c(0, 2, 8, 20, 50, 100, 200),
   classes_limits = c(1, 100),
   classes_breaks = c(1, 2, 4, 8, 20, 50, 100)
)
```

Arguments

evolution A list, the output from evolve_mplat.

suppress_top2 A logical, whether to suppress the plotting of the top 2 classes

turnover_limits

A vector of two numerics. The y axis limits for the plot of turnover

turnover_breaks

A vector of numerics. The y axis tick mark locations for the plot of turnover

classes_limits A vector of two numerics. The y axis limits for the plot of classes

classes_breaks A vector of numerics. The y axis tick mark locations for the plot of classes

plot_top2classes 21

plot_top2classes	Plot top two classes stats
prot_topzcrasscs	1 tot top two classes stats

Description

Plot top two classes stats

Usage

```
plot_top2classes(evolution, step = c("generation", "change"))
```

Arguments

evolution A list, the output from evolve_mplat.

step A string, specifying the kind of steps to take through the evolution: by genera-

tion or by change.

plot_turnover Plot class turnover stats

Description

Plot class turnover stats

Usage

```
plot_turnover(
   evolution,
   y_limits = c(0, 200),
   y_breaks = c(0, 2, 5, 20, 50, 100, 200),
   step = c("generation", "change")
)
```

Arguments

evolution A list, the output from evolve_mplat.

y_limits A vector of two numerics. The y axis limits.

y_breaks A vector of numerics. The y axis tick mark locations.

step A string, specifying the kind of steps to take through the evolution: by generation or by change.

power_dist

plot_U

Plot entropy stats

Description

Plot entropy stats

Usage

```
plot_U(
   evolution,
   y_limits = c(0, 1),
   y_breaks = c(0, 0.05, 0.2, 0.5, 1),
   step = c("generation", "change")
)
```

Arguments

evolution A list, the output from evolve_mplat.

y_limits A vector of two numerics. The y axis limits.

y_breaks A vector of numerics. The y axis tick mark locations.

step A string, specifying the kind of steps to take through the evolution: by genera-

tion or by change.

power_dist

Powerlaw distribution

Description

Powerlaw distribution

Usage

```
power_dist(n, exponent)
```

Arguments

n An integer, the number of items

exponent A numeric

repeat_row 23

repeat_row

Make a matrix of a repeated row

Description

Make a matrix of a repeated row

Usage

```
repeat_row(row, n)
```

Arguments

row A vector
n An integer

Value

A matrix

replicate_evo

Evaluate an expression n times, returning results in a list.

Description

Evaluate an expression n times, returning results in a list.

Usage

```
replicate_evo(n, expr)
```

Arguments

n An integer expr An expression

Value

A list

24 scalar_mult_cols

sample_power_dist

Powerlaw sample

Description

Powerlaw sample

Usage

```
sample_power_dist(n, size, exponent)
```

Arguments

n An interger, the number of levels to sample from, with replacement

size The sample size

exponent A numeric

scalar_mult_cols

Multiply each column by an amount

Description

Multiply each column by an amount

Usage

```
scalar_mult_cols(m, x)
```

Arguments

m A matrix

x A vector length ncol(m)

Value

A matrix

scalar_mult_rows 25

scalar_mult_rows

Multiply each row by an amount

Description

Multiply each row by an amount

Usage

```
scalar_mult_rows(m, x)
```

Arguments

```
m A matrix
```

x A vector length nrow(m)

Value

A matrix

```
select_replacement_alleles
```

Select replacement alleles according to the generalised substance or identity model

Description

Select replacement alleles according to the generalised substance or identity model

Usage

```
select_replacement_alleles(
  mplat,
  foci_loc_b,
  focus_loc_e,
  pivot_weighting,
  pivot_use_proportion,
  evidence_weighting,
  evidence_use_proportion,
  evidence_use_proportion,
  evidence_balance
)
```

26 shuffle_within_cols

Arguments

mplat A matrix of integers representing the current state of the inflectional system,

rotated so that pivots are in columns.

foci_loc_b A vector of integers, column indices for mplat giving the position of the foci.

focus_loc_e An integers, a row index for mplat giving the positions of the foci.

pivot_weighting

A string, giving the method for weighting pivots; used either for sampling them, or weighting them when all are taken into account.

pivot_use_proportion

A numeric, giving the proportion of the available pivots to use. If set to 0, then just one is used.

evidence_weighting

A string, giving the method for weighting evidence morposites; used either for sampling them, or weighting them when all are taken into account.

evidence_use_proportion

A numeric, giving the proportion of the available evidence morposites to use. If set to 0, then just one is used.

evidence_balance

A numeric, between 0 and 1, giving the balance of negative evidence (max when 0) and positive evidence (max when 1).

Value

A vector of integers, the replacements for foci

shuffle_within_cols Shuffle within columns

Description

Shuffle within columns

Usage

```
shuffle_within_cols(m, cols = 1:ncol(m))
```

Arguments

m A matrix.

cols A vector of integers, the columns to shuffle within.

Value

A matrix, with each. column's contents shuffled

shuffle_within_rows 27

shuffle_within_rows

Shuffle within rows

Description

Shuffle within rows

Usage

```
shuffle_within_rows(m, rows = 1:nrow(m))
```

Arguments

n A matrix.

rows A vector of integers, the rows to shuffle within.

Value

A matrix, with each row's contents shuffled.

 $sort_mat$

Sort a matrix by all columns, left to right

Description

Sort a matrix by all columns, left to right

Usage

```
sort_mat(m)
```

Arguments

m

A matrix

Value

A matrix, same as m but with rows sorted.

28 sum_row_mins

square_mat

Turn a vector into square matrix by repeating it either in every row or every column

Description

Turn a vector into square matrix by repeating it either in every row or every column

Usage

```
square_mat(rows, cols)
```

Arguments

rows A vector cols A vector

str2ints

Comma delimited string to vector of numerics

Description

Comma delimited string to vector of numerics

Usage

```
str2ints(s)
```

Arguments

S

A string

Value

A vector of numerics

sum_row_mins

Sum rows' minimums

Description

Sum rows' minimums

Usage

```
sum_row_mins(m)
```

Arguments

m

A matrix

Description

Sum rows' minimums in lower triangle

Usage

```
sum_row_mins_in_lower_triangle(m)
```

Arguments

m

A matrix

unpack_evolution

Unpack evolution

Description

Unpack evolution

Usage

```
unpack_evolution(
  evolution,
  repetition = 1,
  step_method = c("generation", "change"),
  skip_steps = 10
)
```

Arguments

 $\begin{array}{ll} \mbox{evolution} & \mbox{A list, the output from evolve_mplat.} \\ \mbox{repetition} & \mbox{An integer. Which repetition to unpack.} \end{array}$

step_method A string, specifying the kind of steps to take through the evolution: by genera-

tion or by change.

skip_steps An integer, specifying how many steps to skip ahead each time.

Value

A dataframe of the evolution in long form.

30 update_mat

update_long_mplat

Update longform mplat by one or more changes

Description

Update longform mplat by one or more changes

Usage

```
update_long_mplat(mplat, changes)
```

Arguments

mplat A dataframe changes A dataframe

Value

A dataframe, the mplat updated by the changes

update_mat

Replace m1 cells with non-na cells of m2

Description

Replace m1 cells with non-na cells of m2

Usage

```
update_mat(m1, m2)
```

Arguments

m1 A matrix
m2 A matrix

Value

A matrix

update_mplat 31

update_mplat

Update mplat by one or more changes

Description

Update mplat by one or more changes

Usage

```
update_mplat(mplat, changes)
```

Arguments

mplat A matrix changes A dataframe

Value

A list, the mplat updated by the changes; a vector of changed rows and a vector of changed columns

update_row_joint_H

Update pairwise joint entropies of rows

Description

Update pairwise joint entropies of rows

Usage

```
update_row_joint_H(h_mat, m, rows)
```

Arguments

h_mat A matrix of H

m A matrix, whose contents to get the entropy of.

rows A vector of integers, the rows to update.

Value

A matrix of numerics, the joint entropies.

which_is_sampled_max Which is the maximum value, sampling among equal top

Description

Which is the maximum value, sampling among equal top

Usage

```
which_is_sampled_max(x)
```

Arguments

x A vector of numerics

Value

A numeric

Index

add_stats, 3	<pre>sample_power_dist, 24 scalar_mult_cols, 24</pre>
<pre>cluster_sort_mat, 3</pre>	scalar_mult_rows, 25
cluster_sort_order, 4	select_replacement_alleles, 25
compile_mean_hi_lo, 4	shuffle_within_cols, 26
conflate_and_sum_wt, 5	shuffle_within_rows, 27
count_arrangements, 5	sort_mat, 27
count_arrangements_1j, 6	
count_arrangements_i1, 6	square_mat, 28
count_arrangements_ij, 7	str2ints, 28
	sum_row_mins, 28
count_exponents, 8	<pre>sum_row_mins_in_lower_triangle, 29</pre>
evolve_mplat, 8	unpack_evolution, 29
	update_long_mplat, 30
generate_arrangements, 10	update_mat, 30
get_colours, 10	update_mplat, 31
<pre>get_row_joint_H, 11</pre>	update_row_joint_H, 31
get_steps, 11	1,000
get_weights, 12	which_is_sampled_max, 32
initialise_mplat, 12	
loglike2_trans, 13	
loglike_trans, 13	
match_rows, 14	
match_sorted_rows, 14	
mean_ignoring_diag, 15	
mplat_params, 15	
multicolourise, 16	
pivot_mplat_longer, 16	
plot_class_contrasts, 17	
plot_evolution, 17	
plot_exp_contrasts, 18	
plot_H, 19	
plot_mplat, 19	
plot_stats, 20	
plot_top2classes, 21	
plot_turnover, 21	
plot_U, 22	
power_dist, 22	
repeat_row, 23	
replicate_evo, 23	