In the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

- 1 1. (canceled).
- 2. (currently amended) The method of claim 31 [[1]], including distributing symmetric
- 2 encryption keys for use in a plurality of communication sessions using respective pluralities of
- 3 exchanges, and using said associated session key in response to another request to initiate a
- 4 <u>communication session from a third station received by the first station</u> for first exchanges in the
- 5 respective pluralities of exchanges for initiating communication sessions in the plurality of
- 6 communication sessions initiated with the first station, during said particular session key
- 7 initiation interval, and using other session keys from the set of ephemeral session keys after
- 8 expiry of said <u>particular</u> session key initiation interval.
- 1 3. (previously presented) The method of claim 2, including associating a unique set of
- 2 intermediate data keys with each session key.
- 4. (currently amended) The method of claim 31 [[1]], including:
- 2 providing a buffer at the first station;
- storing the an ephemeral set of ephemeral session keys in the buffer; and for respective
- 4 session key lifetimes;
- 5 associating respective session key initiation intervals with said session keys stored in said
- 6 buffer;
- 7 using session keys from the set of session keys from said buffer as session keys in
- 8 response to requests received by said first station during said respective, associated session key
- 9 initiation intervals;
- removing session keys from said buffer upon expiry of [[the]] respective session key
- 11 lifetimes, said session key lifetimes being longer than the respective session key initiation
- intervals.

- 1 5. (canceled).
- 6. (currently amended) The method of claim 4, wherein the session key lifetimes have respective
- 2 lengths longer or equal to a time required for verification of mutual authentication using said first
- 3 and second sets of exchanges for the plurality of exchanges used to distribute the symmetric
- 4 encryption key for use in a communication session can be completed in expected circumstances.
- 7. (currently amended) The method of claim 4, wherein the session key lifetimes have respective
- 2 lengths which are a multiple M times a time required for verification of mutual authentication
- 3 using said first and second sets of exchanges for the plurality of exchanges used to distribute the
- 4 symmetric encryption key for use in a communication session can be completed in expected
- 5 circumstances, where M is less than or equal to 10.
- 1 8. (canceled).
- 9. (currently amended) The apparatus of claim [[8]] <u>34</u>, including logic to distribute symmetrie
- 2 encryption keys for use in a plurality of communication sessions using respective pluralities of
- 3 exchanges, and to use said associated session key in response to another request to initiate a
- 4 communication session from a third station received by the first station for first exchanges in the
- 5 respective pluralities of exchanges for distributing the symmetric encryption keys in the plurality
- 6 of communication sessions initiated with the first station, during said particular session key
- 7 initiation interval, and using other session keys from the set of ephemeral session keys after
- 8 expiry of said particular session key initiation interval.
- 1 10. (previously presented) The apparatus of claim 9, including logic to associate a unique set of
- 2 intermediate data keys with each session key.
- 1 11. (currently amended) The apparatus of claim [[8]] 34, including
- 2 a buffer at the first station;
- logic to store the an ephemeral set of ephemeral session keys in the buffer for respective
- 4 session key lifetimes, to associate respective session key initiation intervals with particular

- 5 session keys in said set of session keys stored in said buffer, to use session keys from said buffer
- 6 as session keys in response to requests received by said first station during said respective
- 7 session key initiation intervals, and to remove session keys in said set of ephemeral session keys
- 8 from said buffer after expiry of the respective session key lifetimes, said session key lifetimes
- 9 being longer than the respective session key initiation intervals.
- 1 12. (canceled).
- 1 13. (currently amended) The apparatus of claim 11, wherein the session key lifetimes have
- 2 respective lengths longer or equal to a time required <u>for verification of mutual authentication</u>
- 3 using said first and second sets of exchanges for the plurality of exchanges used to distribute the
- 4 secret encryption key for use in a communication session can be completed in expected
- 5 circumstances, and including logic to remove said session keys in said set of session keys from
- 6 said buffer after expiry of the session key lifetimes.
- 1 14. (currently amended) The apparatus of claim 11, wherein the session key lifetimes have
- 2 respective lengths which are a multiple M times a time required for verification of mutual
- 3 authentication using said first and second sets of exchanges for the plurality of exchanges used to
- 4 distribute the secret encryption key for use in a communication session can be completed in
- 5 expected circumstances, and including logic to remove said session keys in said set of session
- 6 keys from said buffer after expiry of the session key lifetimes.
- 1 15. (canceled).
- 1 16. (currently amended) The article of claim [[15]] <u>37</u>, wherein the instructions include logic to
- 2 distribute secret encryption keys for use in a plurality of communication sessions using
- 3 respective pluralities of exchanges, and to use said associated session key in response to another
- 4 request to initiate a communication session from a third station received by the first station for
- 5 first exchanges in the respective pluralities of exchanges for assigning secret encryption keys in
- 6 the plurality of communication sessions initiated with the first station, during said particular

- 7 session key initiation interval, and using other session keys from the set of ephemeral session
- 8 <u>keys</u> after expiry of said <u>particular</u> session key initiation interval.
- 1 17. (previously presented) The article of claim 16, wherein the instructions include logic to
- 2 associate a unique set of ephemeral intermediate data keys with each session key.
 - 18. (currently amended) The article of claim [[15]] 37, wherein
- 2 the first station includes a buffer; and
- the instructions include logic to store [[a]] the set of ephemeral session keys in the buffer
- 4 for respective session key lifetimes, to associate respective session key initiation intervals with
- 5 particular session keys in said set of session keys stored in said buffer, to use session keys from
- 6 said buffer as session keys in response to requests received by said first station during said
- 7 respective session key initiation intervals, and to remove session keys in said set of ephemeral
- 8 session keys from said buffer after expiry of the respective session key lifetimes, said session key
- 9 <u>lifetimes being longer than the respective session key initiation intervals.</u>
- 1 19. (canceled).

1

- 1 20. (currently amended) The article of claim 18, wherein the session key lifetimes have
- 2 respective lengths longer or equal to a time required for verification of mutual authentication
- 3 <u>using said first and second sets of exchanges</u> for the plurality of exchanges used to distribute the
- 4 secret encryption key for use in a communication session can be completed in expected
- 5 circumstances, and the instructions include logic to remove said session keys in said set of
- 6 session keys from said buffer after expiry of the session key lifetimes.
- 1 21. (currently amended) The article of claim 18, wherein the session key lifetimes have
- 2 respective lengths which are a multiple M times a time required for verification of mutual
- 3 authentication using said first and second sets of exchanges for the plurality of exchanges used to
- 4 distribute the secret encryption key for use in a communication session can be completed in
- 5 expected circumstances, and the instructions include logic to remove said session keys in said set
- 6 of session keys from said buffer after expiry of the session key lifetimes.

22-30. (canceled). 1

1	31. (new) A method for mutual authentication in communications between first and second
2	stations, comprising:
3	generating and storing a set of ephemeral session keys at the first station, ephemeral
4	session keys in the set being associated with respective session key initiation intervals, and being
5	discarded at a time later than expiration of the respective session key initiation intervals;
6	in response to a request to initiate a communication session received by the first station
7	during a particular session key initiation interval, selecting the associated session key;
8	sending a message carrying said associated session key to the second station, and
9	receiving a response from the second station including a digital identifier, the digital identifier
10	being information shared between the first station and the second station, or between the first
11	station and a user at the second station, the digital identifier being encrypted using said
12	associated session key to verify receipt of the session key by the second station and to identify
13	the second station or the user of the second station;
14	generating and storing, in the first station, a set of intermediate data keys, the set of
15	intermediate data keys including intermediate data key (i), for i = 1 to at least n, and being
16	discarded at a time later than expiration of the particular session key initiation interval;
17	executing a first set of exchanges including one or more exchanges with the second
18	station, after verifying in said first station receipt of the session key by the second station by
19	decrypting the digital identifier using the associated session key at the first station and positively
20	matching the decrypted digital identifier against an existing entry in a stored list of authorized
21	users, the first set of exchanges including
22	sending a message to the second station carrying intermediate data key (i) from said
23	set of intermediate data keys encrypted using the associated session key for a
24	first exchange in first set of exchanges and using the intermediate data key (i-
25	1) for subsequent exchanges in the first set of exchanges,
26	receiving a response from the second station including a hashed version of
27	intermediate data key (i) encrypted using intermediate data key (i), decrypting

the hashed version of the intermediate data key (i), calculating a hashed

version of intermediate data key (i) at the first station, and matching the

28

29

30	calculated hashed version and the received hashed version of intermediate data
31	key (i) to verify receipt by the second station of intermediate data key (i);
32	executing a second set of exchanges for mutual authentication after verifying in said first
33	station receipt of the intermediate data key (n-1) by the second station, including
34	sending a first message carrying intermediate data key (n) encrypted using a hashed
35	version of a first shared secret,
36	receiving a response from the second station carrying a hashed version of intermediate
37	data key (n) encrypted using a hashed version of the first shared secret, and
38	decrypting the hashed version of the intermediate data key (n), calculating a
39	hashed version of intermediate data key (n) at the first station, and matching
40	the calculated hashed version and the decrypted hashed version of intermediate
41	data key (n) to verify possession by the second station of the first shared
42	secret;
43	sending a second message carrying intermediate data key (n) encrypted using a hashed
44	version of a second shared secret; and
45	if the second station sends a response to the second message, carrying a hashed
46	version of intermediate data key (n) encrypted using a hashed version of the
47	second shared secret, after possession by the first station of the second shared
48	secret is verified at the second station, the verifying being accomplished at the
49	second station by decrypting the intermediate data key (n) from the second
50	message using the hashed version of the second shared secret, calculating a
51	hashed version of the intermediate data key (n), and matching the calculated
52	hashed version and the decrypted hashed version of intermediate data key (n)
53	to verify possession by the first station of the second shared secret, then
54	receiving the response from the second station, and decrypting the hashed version of
55	the intermediate data key (n) using the hashed version of the second shared
56	secret, calculating a hashed version of intermediate data key (n) at the first
57	station, and matching the calculated hashed version and the decrypted hashed
58	version of intermediate data key (n) at the first station to verify mutual
59	authentication of the first and second stations; and

60

61

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

if mutual authentication is verified at the first station, then sending a message indicating
successful authentication.

- 1 32. (new) The method of claim 31, wherein said message indicating successful authentication
- 2 carries a signal encrypted using intermediate data key (n-1) or using another prearranged one of
- 3 said intermediate data keys (i).
- 1 33. (new) The method of claim 31, including using intermediate data key (n) as a symmetrical
- 2 key to encrypt data during post-authentication in communications between the first and second
- 3 stations in the communication session.
- 1 34.(new) A data processing apparatus, comprising:
 - a processor associated with a first station, a communication interface adapted for connection to a communication medium, and memory storing instructions for execution by the data processor, the instructions including
 - logic to receive a request via the communication interface for initiation of a communication session between a first station and a second station;
 - logic to provide for mutual authentication in communications between the first station and a second station, comprising:
 - generating and storing a set of ephemeral session keys at the first station, ephemeral session keys in the set being associated with respective session key initiation intervals, and being discarded at a time later than expiration of the respective session key initiation intervals;
 - in response to a request to initiate a communication session received by the first station during a particular session key initiation interval, selecting the associated session key;
 - sending a message carrying said associated session key to the second station, and receiving a response from the second station including a digital identifier, the digital identifier being information shared between the first station and the second station, or between the first station and a user at the second station, the digital identifier being encrypted using said associated session key to verify receipt of the session key by the second station and to identify the second station or the user of the second station;

20	generating and storing, in the first station, a set of intermediate data keys, the set of
21	intermediate data keys including intermediate data key (i), for i = 1 to at least n, and being
22	discarded at a time later than expiration of the particular session key initiation interval;
23	executing a first set of exchanges including one or more exchanges with the second
24	station, after verifying in said first station receipt of the session key by the second station by
25	decrypting the digital identifier using the associated session key at the first station and positively
26	matching the decrypted digital identifier against an existing entry in a stored list of authorized
27	users, the first set of exchanges including
28	sending a message to the second station carrying intermediate data key (i) from said
29	set of intermediate data keys encrypted using the associated session key for a
30	first exchange in first set of exchanges and using the intermediate data key (i-
31	1) for subsequent exchanges in the first set of exchanges,
32	receiving a response from the second station including a hashed version of
33	intermediate data key (i) encrypted using intermediate data key (i), and
34	decrypting the hashed version of the intermediate data key (i), calculating a
35	hashed version of intermediate data key (i) at the first station, and matching the
36	calculated hashed version and the received hashed version of intermediate data
37	key (i) to verify receipt by the second station of intermediate data key (i);
38	executing a second set of exchanges for mutual authentication after verifying in said first
39	station receipt of the intermediate data key (n-1) by the second station, including
40	sending a first message carrying intermediate data key (n) encrypted using a hashed
41	version of a first shared secret,
42	receiving a response from the second station carrying a hashed version of intermediate
43	data key (n) encrypted using a hashed version of the first shared secret, and
44	decrypting the hashed version of the intermediate data key (n), calculating a
45	hashed version of intermediate data key (n) at the first station, and matching
46	the calculated hashed version and the decrypted hashed version of intermediate
47	data key (n) to verify possession by the second station of the first shared
48	secret;
49	sending a second message carrying intermediate data key (n) encrypted using a hashed
50	version of a second shared secret; and

if the second station sends a response to the second message, carrying a hashed
version of intermediate data key (n) encrypted using a hashed version of the
second shared secret, after possession by the first station of the second shared
secret is verified at the second station, the verifying being accomplished at the
second station by decrypting the intermediate data key (n) from the second
message using the hashed version of the second shared secret, calculating a
hashed version of the intermediate data key (n), and matching the calculated
hashed version and the decrypted hashed version of intermediate data key (n)
to verify possession by the first station of the second shared secret, then
receiving the response from the second station, and decrypting the hashed version of
the intermediate data key (n) using the hashed version of the second shared
secret, calculating a hashed version of intermediate data key (n) at the first
station, and matching the calculated hashed version and the decrypted hashed
version of intermediate data key (n) at the first station to verify mutual
authentication of the first and second stations; and
if mutual authentication is verified at the first station, then sending a message indicating
successful authentication.

- 1 35. (new) The apparatus of claim 34, wherein said message indicating successful authentication
- 2 carries a signal encrypted using intermediate data key (n-1) or using another prearranged one of
- 3 said intermediate data keys (i).
- 1 36. (new) The apparatus of claim 34, including using intermediate data key (n) as a symmetrical
- 2 key to encrypt data during post-authentication communications between the first and second
- 3 stations in the communication session.

2 37. (new) An article, comprising:

machine readable data storage medium having computer program instructions stored therein for establishing a communication session on a communication medium between a first data processing station and a second data processing station having access to the communication medium, said instructions comprising

7	logic to receive a request via the communication interface for initiation of a
8	communication session between a first station and a second station;
9	logic to provide for mutual authentication in communications between the first station
10	and a second station, comprising:
11	generating and storing a set of ephemeral session keys at the first station, ephemeral
12	session keys in the set being associated with respective session key initiation intervals, and being
13	discarded at a time later than expiration of the respective session key initiation intervals;
14	in response to a request to initiate a communication session received by the first station
15	during a particular session key initiation interval, selecting the associated session key;
16	sending a message carrying said associated session key to the second station, and
17	receiving a response from the second station including a digital identifier, the digital identifier
18	being information shared between the first station and the second station, or between the first
19	station and a user at the second station, the digital identifier being encrypted using said
20	associated session key to verify receipt of the session key by the second station and to identify
21	the second station or the user of the second station;
22	generating and storing, in the first station, a set of intermediate data keys, the set of
23	intermediate data keys including intermediate data key (i), for i = 1 to at least n, and being
24	discarded at a time later than expiration of the particular session key initiation interval;
25	executing a first set of exchanges including one or more exchanges with the second
26	station, after verifying in said first station receipt of the session key by the second station by
27	decrypting the digital identifier using the associated session key at the first station and positively
28	matching the decrypted digital identifier against an existing entry in a stored list of authorized
29	users, the first set of exchanges including
30	sending a message to the second station carrying intermediate data key (i) from said
31	set of intermediate data keys encrypted using the associated session key for a
32	first exchange in first set of exchanges and using the intermediate data key (i-
33	1) for subsequent exchanges in the first set of exchanges,
34	receiving a response from the second station including a hashed version of
35	intermediate data key (i) encrypted using intermediate data key (i), decrypting
36	the hashed version of the intermediate data key (i), calculating a hashed
37	version of intermediate data key (i) at the first station, and matching the

38	calculated hashed version and the received hashed version of intermediate data
39	key (i) to verify receipt by the second station of intermediate data key (i);
40	executing a second set of exchanges for mutual authentication after verifying in said first
41	station receipt of the intermediate data key (n-1) by the second station, including
42	sending a first message carrying intermediate data key (n) encrypted using a hashed
43	version of a first shared secret,
44	receiving a response from the second station carrying a hashed version of intermediate
45	data key (n) encrypted using a hashed version of the first shared secret, and
46	decrypting the hashed version of the intermediate data key (n), calculating a
47	hashed version of intermediate data key (n) at the first station, and matching
48	the calculated hashed version and the decrypted hashed version of intermediate
49	data key (n) to verify possession by the second station of the first shared
50	secret;
51	sending a second message carrying intermediate data key (n) encrypted using a hashed
52	version of a second shared secret; and
53	if the second station sends a response to the second message, carrying a hashed
54	version of intermediate data key (n) encrypted using a hashed version of the
55	second shared secret, after possession by the first station of the second shared
56	secret is verified at the second station, the verifying being accomplished at the
57	second station by decrypting the intermediate data key (n) from the second
58	message using the hashed version of the second shared secret, calculating a
59	hashed version of the intermediate data key (n), and matching the calculated
60	hashed version and the decrypted hashed version of intermediate data key (n)
61	to verify possession by the first station of the second shared secret, then
62	receiving the response from the second station, and decrypting the hashed version of
63	the intermediate data key (n) using the hashed version of the second shared
64	secret, calculating a hashed version of intermediate data key (n) at the first
65	station, and matching the calculated hashed version and the decrypted hashed
66	version of intermediate data key (n) at the first station to verify mutual
67	authentication of the first and second stations; and

- if mutual authentication is verified at the first station, then sending a message indicating successful authentication.
 - 1 38. (new) The apparatus of claim 37, wherein said message indicating successful authentication
- 2 carries a signal encrypted using intermediate data key (n-1) or using another prearranged one of
- 3 said intermediate data keys (i).
- 1 39. (new) The apparatus of claim 37, including using intermediate data key (n) as a symmetrical
- 2 key to encrypt data during post-authentication communications between the first and second
- 3 stations in the communication session.

///