Lecture 6 EN. 553.744 Prof. Luana Ruiz Today: community detection (topic of HWI, Wed.) -> recap SBM > spectral clustering → spectral embeddings -> contextual SBM -> GNNs for community detection

▶ The stochastic block model (recap)

An n-node SBM graph with C communities is

given by:

A~P (adjacency)

where: •) Y ∈ {0,1} nxc is community assignment matrix; if Yic = 1, node i belongs to comm. e

•) B is the matrix of intra & inter-comm. probabilities; BC, Cz is the edge probability for a node pour (i,j) s.t. Yin=1, Yin=1

(or symmetric → S·SBM!)

We say the SBM is balanced when all comms. have the same size (n/c); it is untalaced otherwise. → While B can take any value (as long as it's symmetric), aften:

$$B_{C_1C_2} = \begin{cases} P & \text{if } C_1 = C_2 \\ q & \text{if } C_1 \neq C_2 \end{cases}$$

· I.e., the probability of connecting to nodes in the
• I.e., the probability of connecting to nodes in the same community is the same for all comms; • the probability of connecting across communities is the same for all pairs $c_1, c_2 \le 1$
· the probability of connecting across communities is
the same for all pairs ci,cz w/ 9 + Cz
Consider the 2-community balanced SBM w/
Consider the 2-community balanced SBM w/ intra & intercommunity parameters p & q
B = [P 4]
B = { P 4 }
For an n-node graph, suppose the nodes are labeled
For an n-node graph, suppose the nodes are labeled such that the first n over in community 1, and the remaining n nodes are in community z.
and the remaining n males are in community z.
() a
Then, $y = \begin{bmatrix} 1 & 0 & 17 & n \\ 1 & 0 & 17 & n \end{bmatrix}$
Then, $y = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ \vdots & \vdots & 1 \end{bmatrix} \frac{n}{2}$ community 1
Then, $y = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ \vdots & \vdots & \vdots \\ 1 & 0 & 7 \end{bmatrix}$ a community 1
Then, $y = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ \vdots & \vdots & \vdots \end{bmatrix} \frac{n}{2}$ community 1: \vdots
Then, $y = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ \vdots & \vdots & \ddots \end{bmatrix} \frac{n}{2}$ community $\frac{1}{2}$
Then, $y = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ \vdots & \vdots & \ddots \end{bmatrix} \frac{n}{2}$ community $\frac{1}{2}$

Further, note:

$$= (p+q) \left[\begin{array}{c} 1 \\ \vdots \\ 1 \end{array}\right] \left[\begin{array}{c} 1 \\ \vdots \\ 1 \end{array}\right]$$

$$f(p-q) \begin{cases} 1 \\ \vdots \\ 1 \\ -1 \end{cases}$$

$$\lambda_z = p - q$$

The second eigenvector associated w/ the second largest eigenvalue (in abs. value) of E(A)=P

reveals the comm. assignment

This is the intuition behind spectral clustering;

For an arbitrary graph with adjacency matrix

A, we assume A = A spm $f \in W$ where E is

random roise $W \in E(E) = O$; since $E(A) = E(A \operatorname{spm}) = P$,

we can estimate the community assignment from

the eigenvectors of A, which is an unbiased estimator of P.

Spectral clustering

by what happens for C>2?

• the community assignment is a linear combination of the top C eigenvectors (in absolute value)

6, suppose we are given A and C. How to estimate Y?

The spectral clustering algorithm:

- 1) Diagonalize A = V_LVT
- 2 Order eigenvectors by decreasing eigenvalue magnitude

vi E IR

u; is the embedding of node; in R°

(in practice the indicator/0-1 loss is substituted for
the cross-entropy loss)
Spectral embeddings: $f(A) = B(V_c W)$
(1-layer)
WE the cre linear map 6 nonlinearity
6 nonlinearity
Gr can be thought of as an PCNN on
the C-dimensional embeddings uz,, un of
nodes in V
To find ft, i.e., with we solve (*) using gradient-descent methods
gradient-discent methods
Information-theoretic threshold
→ What happens when p ≈ g in the balanced
Nhat happens when $p \approx q$ in the balanced SBM with $C=2$?

When p=q, we actually have an Erdős-Rényi graph, in which the edge probability is constant for all nodes; there are no communities to distinguish

But even when pfq, there is a region around p=q where defection of communities is impossible in an information theoretic sense:

degree discrepancy 2(p+q) (signal-to-noise ratio)
in + subgraphs 2(p+q) and degree ("noise")

If $SNR < 1_n$, almost exact recovery $\int_{0}^{\infty} P\left(\frac{1}{n}\left(\left[\frac{1}{n}(A)\right]_{i}^{2} = y_{i}\right) = 1 - o(1)\right) = 1 - o(1)$

is impossible. Even with infinite time & resources, there is no algorithm that can recover the frue communities given A.

For the pf, check the works of Massoulié (2014)

Mossel (2014)

Abbe (survey)

E.g.: sparse graphs

$$P = \frac{a}{n} ; \quad q = \frac{b}{n}$$

$$\frac{|\mathcal{E}|}{n^2} \to 0 \quad \text{as } n \to \infty$$

(avg. degree vanishes)

$$SNR = \frac{\left(\frac{a}{n} - \frac{b}{n}\right)^{2}}{2\left(\frac{a+b}{n}\right)} = \frac{1}{2n} \frac{(\alpha-6)}{(\alpha+6)}$$