- **8** The quadratic equation $3x^2 kx 1 = 0$, where k is a positive integer, has roots α and β
 - (a) Show that $\alpha^2 + \beta^2 = \frac{k^2 + 6}{9}$

(3)

Given that $\alpha^4 + \beta^4 = \frac{466}{81}$

(b) find the value of k

(5)

(c) Hence form an equation, with integer coefficients, which has roots

$$\frac{\alpha^3 + \beta}{\beta}$$
 and $\frac{\beta^3 + \alpha}{\alpha}$

(6)

	Question 8 continued
	Question & continued
S AREA	
NATH	
RITE	
NOT WRITE IN	
DO	
A	
THIS AREA	
WRITEIN	
NOT	
DQ	
¥.	
IIS AR	
IN T	
WRITI	
O NOT WRITE IN THIS AREA	
Ď	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 8 continued	

