Bautista Neil Bryan M. BSCS - 4B CCST106

Comparison

Blurring, Noise Reduction, Edge Preservation, Artistic Effects, Sharpening

ASPECT	BLURRING	NOISE REDUCTI ON	EDGE PRESERVATION	ARTISTIC EFFECTS	SHARPENIN G
PURPOSE	Smoothens image by reducing details	Reduce random variations (noise) in the image	Maintains edges while performing other operations like smoothing	Enhances aesthetic or creative aspect of the image	Enhances edges and fine details in the image
TYPICAL FILTERS/ALGORIT HM	Gaussian Blur, Median Blur	Gaussian, Median, Bilateral, Non-Local Means	Bilateral Filter, Guided Filter	Oil Painting, Cartooning , Stylization	Unsharp Mask, High-Pass Filter
EFFECT ON EDGE	Softens edges	Can preserve or blur edges dependin g on the method	Maintains edge sharpness	Can vary—may soften or highlight edges	Enhances and makes edges more pronounced
EFFECT ON DETAILS	Reduces fine details	Reduces unwanted noise while aiming to keep details	Maintains important details while reducing noise	Transform s details for visual creativity	Enhances fine details and textures

COMMON APPLICATION	Defocusing, Background Softening	Image Denoising in Photograp hy	Medical Imaging, Computer Vision	Photo Editing, Filters in Social Media	Enhancing clarity in Photography
PARAMETER TUNING	Blur radius, kernel size	Filter strength , search window size	Smoothing vs. Edge preservation balance	Stylization intensity, stroke size	Strength, radius
COMPUTATIONAL	Low to Moderate	Moderate to High (dependin g on algorithm)	Moderate to High (edge-aware algorithms	Moderate to High	Low to Moderate
ARTIFACTS	Over-blurrin g may cause loss of important details	Over-smo othing may result in loss of details	May produce halo artifacts if not properly balanced	Can create unrealistic or overly processed look	Over-sharpe ning can introduce noise

Edge Detection Techniques:

Sobel edge detection is a simple and computationally efficient method. It's sensitive to noise and can produce double edges.

Laplacian edge detection is less sensitive to noise than Sobel edge detection but can be more susceptible to noise. It may also produce multiple edges for a single edge.

Prewitt edge detection is also a simple and computationally efficient method. It's like Sobel edge detection in terms of sensitivity to noise and the potential for double edges.

Canny edge detection is considered one of the most robust edge detection algorithms. It's less sensitive to noise than Sobel and Laplacian, and it can produce thin, continuous edges.

Comparison:

Sensitivity to Noise, Edge Thinness, Edge Continuity, Computational Efficiency

Algorithm	Sensitivity to Noise	Edge Thinness	Edge Continuity	Computational Efficiency
Canny Edge Detector	High	Good	Excellent	Medium
Sobel Edge Detector	Medium	Poor	Poor	High
Laplacian Edge Detector	High	Poor	Poor	High
LoG (Laplacian of Gaussian)	High	Good	Excellent	Low