Error Handling Syntax-Directed Translation Recursive Descent Parsing

CS143

Lecture 6

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications

Announcements

- PA1 & WA1
 - Due today at midnight

- PA2 & WA2
 - Assigned today

Outline

- Extensions of CFG for parsing
 - Precedence declarations
 - Error handling
 - Semantic actions
- Constructing an abstract syntax tree (AST)

Recursive descent parsing

Error Handling

- Purpose of the compiler is
 - To detect non-valid programs
 - To translate the valid ones
- Many kinds of possible errors

Error kind	Example (C)	Detected by
Lexical	\$	Lexer
Syntax	x *%	Parser
Semantic	int x; $y = x(3)$;	Type checker
Correctness	your favorite program	Tester/User

Syntax Error Handling

- Error handler should
 - Report errors accurately and clearly
 - Recover from an error quickly
 - Not slow down compilation of valid code

Good error handling is not easy to achieve

Syntax Error Recovery

- Approaches from simple to complex
 - Panic mode
 - Error productions
 - Automatic local or global correction

Not all are supported by all parser generators

Error Recovery: Panic Mode

Simplest, most popular method

- When an error is detected:
 - Discard tokens until one with a clear role is found
 - Continue from there

- Such tokens are called <u>synchronizing</u> tokens
 - Typically the statement or expression terminators

Error Recovery: Panic Mode (Cont.)

Consider the erroneous expression

$$(1 + + 2) + 3$$

- Panic-mode recovery:
 - Skip ahead to next integer and then continue
- Bison: use the special terminal error to describe how much input to skip

```
E \rightarrow int \mid E + E \mid (E) \mid error int \mid (error)
```

Error Recovery: Error Productions

- Idea: specify in the grammar known common mistakes
- Essentially promotes common errors to alternative syntax
- Example:
 - Write 5 x instead of 5 * x
 - Add the production E → ... I E E
- Disadvantage
 - Complicates the grammar

Error Recovery: Local and Global Correction

- Idea: find a correct "nearby" program
 - Try token insertions and deletions
 - Exhaustive search
- Disadvantages:
 - Hard to implement
 - Slows down parsing of correct programs
 - "Nearby" is not necessarily "the intended" program
 - Not supported by most tools

Syntax Error Recovery: Past and Present

Past

- Slow recompilation cycle (even once a day)
- Find as many errors in one cycle as possible
- Researchers could not let go of the topic

Present

- Quick recompilation cycle
- Users tend to correct one error/cycle
- Complex error recovery is less compelling
- Panic-mode seems enough

Abstract Syntax Trees

 So far a parser traces the derivation of a sequence of tokens

 The rest of the compiler needs a structural representation of the program

- Abstract syntax trees
 - Like parse trees but ignore some details
 - Abbreviated as AST

Abstract Syntax Trees (Cont.)

Consider the grammar

$$E \rightarrow int I (E) IE + E$$

And the string

$$5 + (2 + 3)$$

After lexical analysis (a list of tokens)

During parsing we build a parse tree ...

Example of Parse Tree

- Traces the operation of the parser
- Does capture the nesting structure
- But too much info
 - Parentheses
 - Single-successor nodes

Example of Abstract Syntax Tree

- Also captures the nesting structure
- But <u>abstracts</u> from the concrete syntax
 => more compact and easier to use
- An important data structure in a compiler

Semantic Actions Extension to CFGs

This is what we'll use to construct ASTs

- Each grammar symbol may have <u>attributes</u>
 - For terminal symbols (lexical tokens) attributes can be calculated by the lexer
- Each production may have an <u>action</u>
 - Written as $X \rightarrow Y_1 ... Y_n$ { action }
 - That can refer to or compute symbol attributes

Semantic Actions: Example

Consider the grammar

```
E \rightarrow int \mid E + E \mid (E)
```

- For each symbol X define an attribute X.val
 - For terminals, val is the associated lexeme
 - For non-terminals, val is the expression's value (and is computed from values of subexpressions)
- We annotate the grammar with actions:

```
E \rightarrow int \qquad \{ E.val = int.val \}
I E_1 + E_2 \qquad \{ E.val = E_1.val + E_2.val \}
I (E_1) \qquad \{ E.val = E_1.val \}
```

Semantic Actions: Example (Cont.)

- String: 5 + (2 + 3)
- Tokens: int₅ '+' '(' int₂ '+' int₃ ')'

Productions

$$E \rightarrow E_1 + E_2$$

$$E_1 \rightarrow int_5$$

$$E_2 \rightarrow (E_3)$$

$$E_3 \rightarrow E_4 + E_5$$

$$E_4 \rightarrow int_2$$

$$E_5 \rightarrow int_3$$

Equations

E.val =
$$E_1$$
.val + E_2 .val
 E_1 .val = int_5 .val = 5
 E_2 .val = E_3 .val
 E_3 .val = E_4 .val + E_5 .val
 E_4 .val = int_2 .val = 2
 E_5 .val = int_3 .val = 3

Semantic Actions: Notes

- Semantic actions specify a system of equations
- Declarative Style
 - Order of resolution is not specified
 - The parser figures it out
- Imperative Style
 - The order of evaluation is fixed
 - Important if the actions manipulate global state

Semantic Actions: Notes

- We'll explore actions as pure equations
 - But note bison has a fixed order of evaluation for actions

Example:

$$E_3$$
.val = E_4 .val + E_5 .val

- Must compute E_4 .val and E_5 .val before E_3 .val
- We say that E_3 val depends on E_4 val and E_5 val

Dependency Graph

- Each node labeled E has one slot for the val attribute
- Note the dependencies

Evaluating Attributes

- An attribute must be computed after all its successors in the dependency graph have been computed
 - In previous example attributes can be computed bottom-up
- Such an order exists when there are no cycles
 - Cyclically defined attributes are not legal

Dependency Graph

Semantic Actions: Notes (Cont.)

- Synthesized attributes
 - Calculated from attributes of descendents in the parse tree
 - E.val is a synthesized attribute
 - Can always be calculated in a bottom-up order
- Grammars with only synthesized attributes are called <u>S-attributed</u> grammars
 - Most common case

Inherited Attributes

Another kind of attribute

 Calculated from attributes of parent and/or siblings in the parse tree

Example: a line calculator

Semantic Actions: Notes (Cont.)

Semantic actions can be used to build ASTs

- And many other things as well
 - Also used for type checking, code generation, computation, ...
- Process is called <u>syntax-directed translation</u>
 - Substantial generalization over CFGs

Constructing an AST

- We first define the AST data type
 - Supplied by us for the project
- Consider an abstract tree type with two constructors:

Constructing an AST

- We define a synthesized attribute ast
 - Values of ast values are ASTs
 - We assume that int.lexval is the value of the integer lexeme
 - Computed using semantic actions

```
E \rightarrow int E.ast = mkleaf(int.lexval)

I E_1 + E_2 E.ast = mkplus(E_1.ast, E_2.ast)

I (E_1) E.ast = E_1.ast
```

Abstract Syntax Tree Example

- Consider the string int₅ '+' '(' int₂ '+' int₃ ')'
- A bottom-up evaluation of the ast attribute:

```
E.ast = mkplus(mkleaf(5),
mkplus(mkleaf(2), mkleaf(3))
```


Summary

- We can specify language syntax using CFG
- A parser will answer whether s ∈ L(G)
 - and will trace a parse tree
 - ... in whose productions we build an AST
 - ... that we pass on to the rest of the compiler

Intro to Top-Down Parsing: The Idea

- The parse tree is constructed
 - From the top
 - From left to right
- Terminals are seen in order of appearance in the token stream:

Consider the grammar

```
E \rightarrow T IT + E
T \rightarrow int I int * T I (E)
```

Token stream is: (int₅)

- Start with top-level non-terminal E
 - Try the rules for E in order

```
E \rightarrow TIT + E
T \rightarrow int \ l \ int \ * T \ l \ (E)
```

E

(int₅)


```
E \rightarrow TIT + E
T \rightarrow int | Iint * TI(E)
```

E | |

(int₅)


```
E \rightarrow TIT + E
T \rightarrow int I int * TI(E)
```


(int₅)

♠

```
E \rightarrow TIT + E
T \rightarrow int \ I int * TI(E)
```

E | |

(int₅)


```
E \rightarrow TIT + E
T \rightarrow int | Iint * TI (E)
```


(int₅)

```
E \rightarrow TIT + E
T \rightarrow int \ I int * TI (E)
```

E | | |

(int₅)


```
E \rightarrow TIT + E
T \rightarrow int I int * TI(E)
```


(int₅)


```
E \rightarrow TIT + E
T \rightarrow int I int * TI(E)
```


(int₅)

```
E \rightarrow TIT + E
T \rightarrow int | Iint * TI(E)
```


(int₅)

```
E \rightarrow TIT + E
T \rightarrow int I int * TI(E)
```



```
E \rightarrow TIT + E
T \rightarrow int I int * TI(E)
```



```
E \rightarrow TIT + E
T \rightarrow int I int * TI(E)
```


A Recursive Descent Parser: Preliminaries

- Let TOKEN be the type of tokens
 - Special tokens INT, OPEN, CLOSE, PLUS, TIMES
- Let the global next point to the next token

A (Limited) Recursive Descent Parser (2)

- Define boolean functions that check the token string for a match of
 - A given token terminal
 bool term(TOKEN tok) { return *next++ == tok; }
 The nth production of S:

```
bool S_n() \{ \dots \}
```

– Try all productions of S:

```
bool S() { ... }
```

A (Limited) Recursive Descent Parser (3)

- For production E → T
 bool E₁() { return T(); }
- For production E → T + E
 bool E₂() { return T() && term(PLUS) && E(); }
- For all productions of E (with backtracking)

```
bool E() {
    TOKEN *save = next;
    return (next = save, E_1())
    II (next = save, E_2()); }
```

A (Limited) Recursive Descent Parser (4)

Functions for non-terminal T

```
bool T<sub>1</sub>() { return term(INT); }
bool T<sub>2</sub>() { return term(INT) && term(TIMES) && T(); }
bool T<sub>3</sub>() { return term(OPEN) && E() && term(CLOSE); }
bool T() {
  TOKEN *save = next;
  return (next = save, T_1()
         II (next = save, T_2())
         II (next = save, T_3()); }
```

Recursive Descent Parsing. Notes.

- To start the parser
 - Initialize next to point to first token
 - Invoke E()
- Easy to implement by hand
 - But not completely general
 - Cannot backtrack once a production is successful
 - Works for grammars where at most one production can succeed for a non-terminal

Example

```
E \rightarrow T \mid T + E
                                                                                      ( int )
       T \rightarrow int \mid int * T \mid (E)
bool term(TOKEN tok) { return *next++ == tok; }
bool E_1() { return T(); }
bool E_2() { return T() && term(PLUS) && E(); }
bool E() {TOKEN *save = next; return (next = save, E_1())
                                           II (next = save, E_2()); }
bool T₁() { return term(INT); }
bool T<sub>2</sub>() { return term(INT) && term(TIMES) && T(); }
bool T<sub>3</sub>() { return term(OPEN) && E() && term(CLOSE); }
bool T() { TOKEN *save = next; return (next = save, T_1())
                                           II (next = save, T_2())
                                           II (next = save, T_3()); }
```

When Recursive Descent Does Not Work

Consider a production S → S a

```
bool S_1() { return S() && term(a); }
bool S() { return S_1(); }
```

- S() goes into an infinite loop
- A <u>left-recursive grammar</u> has a non-terminal S
 S → + Sα for some α
- Recursive descent does not work in such cases

Elimination of Left Recursion

Consider the left-recursive grammar

$$S \rightarrow S \alpha \mid \beta$$

• S generates all strings starting with a β and followed by a number of α

Can rewrite using right-recursion

$$S \rightarrow \beta S'$$

 $S' \rightarrow \alpha S' \mid \epsilon$

More Elimination of Left-Recursion

In general

$$S \rightarrow S \alpha_1 | \dots | S \alpha_n | \beta_1 | \dots | \beta_m$$

- All strings derived from S start with one of β_1, \ldots, β_m and continue with several instances of $\alpha_1, \ldots, \alpha_n$
- Rewrite as

$$S \rightarrow \beta_1 S' I \dots I \beta_m S'$$

 $S' \rightarrow \alpha_1 S' I \dots I \alpha_n S' I \epsilon$

General Left Recursion

The grammar

$$S \rightarrow A \alpha I \delta$$

 $A \rightarrow S \beta$

is also left-recursive because

$$S \rightarrow + S \beta \alpha$$

- This left-recursion can also be eliminated
- See Dragon Book for general algorithm
 - Section 4.3

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically
- Historically unpopular because of backtracking
 - Was thought to be too inefficient
 - In practice, with some tweaks, fast and simple on modern machines

Backtracking can be controlled by restricting the grammar