* Logistic Regression	
<u> </u>	Supervised learning
Eg. # of hours Studied -> Predict Pars or fail	
	Regression Classification
X(# hours) Pars/Fall	
	Logistic Regania.
2 0 Train 8 1 8 1 Newdate model 4 0 Acct eg Predict il a besson will brand but ba	Logi site Hegionia.
8 hundte →	> 1/.
5 D Woodal modal	70
Acc T	
eg Dredict of	
eg predict if a person will fraud/not frau	- d ·
Salary Age (k) (Years)	(1,0)
20 19	$(1,0)$ $Sp_{K,20} \rightarrow [modd] - 1/p$
22.5 20	
30	0
	_
Et Predict di abetichet	
	1.1.11
Choleshaf level dia	ubeles (1/0)
100	
250	85 -> [model - 1/b
80	0
70	0
et Cancer Not Cancer based on size	of tunor
Sup of his	Ca dul Nat (
size of runar	Canfey Not Concer
(· 2	0
S- L	
	O
~	
es Spam ham	
J Slam room	$\delta \cdot \cdot \cdot \cdot \cdot \rangle \rightarrow 2$
() - I - Committee ()	i fiction $\rightarrow 0 \mid \rho \rightarrow 2$ (ategories
multiday a	assification -> do > 2 categorie

$$\int_{0}^{\infty} \left(\theta_{0}, \theta_{1} \right)^{2} = - \int_{0}^{\infty} \left(\log \left(\ln \left(x \right)_{i} \right) - \left(1 - \int_{0}^{\infty} \left(\ln \left(x \right) \right) \right) \right)$$

 $J(\theta_0,\theta_1) = \int -\log(h_0(x_0)) \frac{1}{1+2} \frac{y_0^2-1}{y_0^2-1}$ [- (og (1-ho(x),) if y=0 To minimize the cost functions $J(\theta_0, \theta_1) \text{ by Changing Oo 20},$

> Convergence Algorithm
> Répeat until Couvergence $\theta_{j}: \theta_{j} - \lambda \delta J(\theta_{0}, \theta_{1})$

To get ofstand 8020,

 $h_{\theta}(x) = \frac{1}{1 + e^{(\theta_0 + \theta_1 x_1)}}$

for multiple variable

ho(x) = 1 (00 + 01 x1 + 02 x2 - 0 mun)

multivariate

logistic regression