Chapter 3

3.1

a)
$$\bar{x} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$
 b) $e_1 = y_1 - \bar{x}_1 \frac{1}{2} = [4, 0, -4]^4$ $e_2 = y_2 - \bar{x}_2 \frac{1}{2} = [-1, 1, 0]^4$

c) $L_{e_1} = \sqrt{32}$; $L_{e_2} = \sqrt{2}$

Let
$$\theta$$
 be the angle between e_1 and e_2 , then $\cos(\theta) = -4/\sqrt{32 \times 2} = -.5$
Therefore $\inf_{11} = L_{e_1}^2$ or $\inf_{11} = 32/3$; $\inf_{22} = L_{e_2}^2$ or $\inf_{23} = 2/3$; $\inf_{12} = e_1' e_2$ or $\inf_{12} = -4/3$. Also, $\inf_{12} = \cos(\theta) = -.5$. Consequently $\inf_{12} = \left[\frac{32/3}{-4/3}, \frac{-4/3}{-4/3}, \frac{1}{2/3}, \frac$

3.2

a)
$$\bar{x} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$
 b) $e_1 = \underline{y}_1 - \bar{x}_1 \cdot \underline{1} = [-1, 2, -1]$, $e_2 = \underline{y}_2 - \bar{x}_2 \cdot \underline{1} = [3, -3, 0]$

c)
$$L_{e_1} = \sqrt{6}$$
; $L_{e_2} = \sqrt{18}$
Let θ be the angle between e_1 and e_2 , then $\cos(\theta) = -9/\sqrt{6 \times 18} = -.866$.
Therefore $n \cdot s_{11} = L_{e_1}^2$ or $s_{11} = 6/3 = 2$; $n \cdot s_{22} = L_{e_2}^2$ or $s_{22} = -18/3 = 6$; $n \cdot s_{12} = e_1^4 \cdot e_2$ or $s_{12} = -9/3 = -3$. Also, $r_{12} = -18/3 = 6$; $n \cdot s_{12} = e_1^4 \cdot e_2$ or $s_{12} = -9/3 = -3$. Also, $r_{12} = -18/3 = 6$. Consequently $s_n = \begin{bmatrix} 2 & -3 \\ -3 & 6 \end{bmatrix}$ and $s_n = \begin{bmatrix} 1 & -.866 \\ -.866 & 1 \end{bmatrix}$

3.3
$$y_1 = [1, 4, 4]'; \bar{x}_1 = [3, 3, 3]; y_1 - \bar{x}_1 = [-2, 1, 1]'$$

Thus

$$y_1 = \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix} + \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} = \bar{x}_1 \cdot 1 + (y_1 - \bar{x}_1 \cdot 1)$$

3.5 a)
$$X' = \begin{bmatrix} 9 & 5 & 1 \\ 1 & 3 & 2 \end{bmatrix}$$
; $\bar{x} 1' = \begin{bmatrix} 5 & 5 & 5 \\ 2 & 2 & 2 \end{bmatrix}$

$$2 S = (X - \frac{1}{2})(X - \frac{1}{2})' = \begin{bmatrix} 4 & 0 & -4 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 0 & 1 \\ -4 & 0 \end{bmatrix} = \begin{bmatrix} 32 & -4 \\ -4 & 2 \end{bmatrix}$$

so
$$S = \begin{bmatrix} 16 & -2 \\ -2 & 1 \end{bmatrix}$$
 and $|S| = 12$

b)
$$X' = \begin{bmatrix} 3 & 6 & 3 \\ 4 & -2 & 1 \end{bmatrix}$$
; $\bar{x} 1' = \begin{bmatrix} 4 & 4 & 4 \\ 1 & 1 & 1 \end{bmatrix}$

$$2S = (X - 1 \overline{X}')'(X - 1 \overline{X}') = \begin{bmatrix} -1 & 2 & -1 \\ 3 & -3 & 0 \end{bmatrix} \begin{bmatrix} -1 & 3 \\ 2 & -3 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 6 & -9 \\ -9 & 18 \end{bmatrix}$$

so
$$S = \begin{bmatrix} 3 & -9/2 \\ -9/2 & 9 \end{bmatrix}$$
 and $|S| = 27/4$

3.6 a)
$$X' - 1 \overline{X'} = \begin{bmatrix} -3 & 0 & -3 \\ 0 & 1 & 1 \\ 3 & -1 & 2 \end{bmatrix}$$
. Thus $d'_1 = [-3, 0, -3]$,

$$d_2' = [0, 1, -1]$$
 and $d_3' = [-3, 1, 2]$.

Since $d_1 = d_2 = d_3$, the matrix of deviations is not of full rank.

b)
$$2S = (X - 1 \overline{x'})' (X - 1 \overline{x'}) = \begin{bmatrix} 18 & -3 & 15 \\ -3 & 2 & -1 \\ 15 & -1 & 14 \end{bmatrix}$$

So
$$S = \begin{bmatrix} 9 & -3/2 & 15/2 \\ -3/2 & 1 & -1/2 \\ 15/2 & -1/2 & 7 \end{bmatrix}$$

|S| = 0 (Verify). The 3 deviation vectors lie in a 2-dimensional subspace. The 3-dimensional volume enclosed by the deviation vectors is zero.

c) Total sample variance = 9 + 1 + 7 = 17.

3.7 All ellipses are centered at \bar{x} .

i) For
$$S = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}$$
, $S^{-1} = \begin{bmatrix} 5/9 & -4/9 \\ -4/9 & 5/9 \end{bmatrix}$

Eigenvalue-normalized eigenvector pairs for S⁻¹ are:

$$\lambda_1 = 1$$
, $e_1' = [.707, -.707]$
 $\lambda_2 = 1/9$, $e_2' = [.707, .707]$

Half lengths of axes of ellipse $(x-\bar{x})'S^{-1}(x-\bar{x}) \le 1$ are $1/\sqrt{\lambda_1} = 1$ and $1/\sqrt{\lambda_2} = 3$ respectively. The major axis of ellipse lies in the direction of e_2 ; the minor axis lies in the direction of e_1 .

ii) For
$$S = \begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix}$$
, $S^{-1} = \begin{bmatrix} 5/9 & 4/9 \\ 4/9 & 5/9 \end{bmatrix}$

Eigenvalue-normalized eigenvectors for S⁻¹ are:

$$\lambda_1 = 1$$
, $e_1' = [.707, .707]$
 $\lambda_2 = 1/9$, $e_2' = [.707, -.707]$

Half lengths of axes of ellipse $(x-\bar{x})^{1}S^{-1}(x-\bar{x}) \leq 1$ are, again, $1/\sqrt{\lambda_{1}}=1$ and $1/\sqrt{\lambda_{2}}=3$. The major axes of the ellipse lies in the direction of e_{2} ; the minor axis lies in the direction of e_{1} . Note that e_{2} here is e_{1} in part (i) above and e_{1} here is e_{2} in part (i) above.

iii) For
$$S = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$
, $S^{-1} = \begin{bmatrix} 1/3 & 0 \\ 0 & 1/3 \end{bmatrix}$

Eigenvalue-normalized eigenvector pairs for S⁻¹ are:

$$\lambda_1 = 1/3;$$
 $e_1' = [1, 0]$
 $\lambda_2 = 1/3,$ $e_2' = [0, 1]$

Half lengths of axes of ellipse $(x-\bar{x})^{1}S^{-1}(x-\bar{x}) \leq 1$ are equal and given by $1/\sqrt{\lambda_{1}} = 1/\sqrt{\lambda_{2}} = \sqrt{3}$. Major and minor axes of ellipse can be taken to lie in the directions of the coordinate axes. Here, the solid ellipse is, in fact, a solid sphere.

Notice for all three cases |S| = 9.

3.8 a) Total sample variance in both cases is 3.

b) For
$$S = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $|S| = 1$

For
$$S = \begin{bmatrix} 1 & -1/2 & -1/2 \\ -1/2 & 1 & -1/2 \\ -1/2 & -1/2 & 1 \end{bmatrix}$$
, $|S| = 0$

3.9 (a) We calculate $\bar{x} = [16, 18, 34]'$ and

$$m{X}_c = egin{bmatrix} -4 & -1 & -5 \ 2 & 2 & 4 \ -2 & -2 & -4 \ 4 & 0 & 4 \ 0 & 1 & 1 \end{bmatrix}$$
 and we notice $\operatorname{col}_1(\ m{X}_c) + \operatorname{col}_2(\ m{X}_c) = \operatorname{col}_1(\ m{X}_c)$

so a = [1, 1, -1]' gives $X_c a = 0$.

(b)

$$\mathbf{S} = \begin{bmatrix} 10 & 3 & 13 \\ 3 & 2.5 & 5.5 \\ 13 & 5.5 & 18.5 \end{bmatrix} \text{ so } |\mathbf{S}| = \begin{cases} 10(2.5)(18.5) & + & 39(15.5) & + & 39(15.5) \\ -(13)^2(2.5) & - & 9(18.5) & - & 55(5.5) & = 0 \end{cases}$$

As above in a)

$$\mathbf{S}\boldsymbol{a} = \begin{bmatrix} 10+3-13\\ 3+2.5-5.5\\ 13+5.5-18.5 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

- (c) Check.
- 3.10 (a) We calculate $\overline{x} = [5, 2, 3]'$ and

$$\boldsymbol{X}_{c} = \begin{bmatrix} -2 & -1 & -3 \\ 1 & 2 & 3 \\ -1 & 0 & -1 \\ 2 & -2 & 0 \\ 0 & 1 & 1 \end{bmatrix} \text{ and we notice } \operatorname{col}_{1}(\boldsymbol{X}_{c}) + \operatorname{col}_{2}(\boldsymbol{X}_{c}) = \operatorname{col}_{1}(\boldsymbol{X}_{c})$$

so a = [1, 1, -1]' gives $X_c a = 0$.

(b)

$$\mathbf{S} = \begin{bmatrix} 2.5 & 0 & 2.5 \\ 0 & 2.5 & 2.5 \\ 2.5 & 2.5 & 5 \end{bmatrix} \quad \text{so} \quad |\mathbf{S}| = \begin{cases} 5(2.5)^2 + 0 + 0 \\ -(2.5)^3 - 0 - (2.5)^3 = 0 \end{cases}$$

Using the save coefficient vector a as in Part a) Sa = 0.

(c) Setting Xa = 0,

so we must have $a_1 = a_3 = 0$ but then, by the first equation in the first set, $a_2 = 0$. The columns of the data matrix are linearly independent.

3.11
$$S = \begin{bmatrix} 14808 & 14213 \\ 14213 & 15538 \end{bmatrix}$$
 . Consequently

$$R = \begin{bmatrix} 1 & .9370 \\ .9370 & 1 \end{bmatrix}; D^{1/2} = \begin{bmatrix} 121.6881 & 0 \\ 0 & 124.6515 \end{bmatrix}$$

and
$$D^{-1/2} = \begin{bmatrix} .0082 & 0 \\ 0 & .0080 \end{bmatrix}$$

The relationships $R = D^{-1/2} S D^{-1/2}$ and $S = D^{1/2} R D^{1/2}$ can now be verified by direct matrix multiplication.

3.14 a) From first principles we have

$$b' \times 1 = \begin{bmatrix} 2 & 3 \end{bmatrix} \begin{bmatrix} 9 \\ 1 \end{bmatrix} = 21$$

Similarly $b' x_2 = 19$ and $b' x_3 = 8$ so

sample mean =
$$\frac{21+19+8}{3} = 16$$

sample variance =
$$\frac{(21-16)^2+(19-16)^2+(8-16)^2}{2}=49$$

Also
$$c' x_1 = [-1 \ 2] \begin{bmatrix} 9 \\ 1 \end{bmatrix} = -7; \quad c' x_2 = 1 \text{ and } c' x_3 = 3$$

SO

sample mean = -1

sample variance = 28

Finally sample covariance =
$$\frac{(21-16)(-7+1)+(19-16)(1+1)+(8-16)(3+1)}{2}$$
-28.

b)
$$\bar{x}' = \begin{bmatrix} 5 & 2 \end{bmatrix}$$
 and $S = \begin{bmatrix} 16 & -2 \\ -2 & 1 \end{bmatrix}$

Using (3-36)

sample mean of
$$b' = X = b' = [2 \quad 3] \begin{bmatrix} 5 \\ 2 \end{bmatrix} = 16$$

sample mean of $c' = X = [-1 \quad 2] \begin{bmatrix} 5 \\ 2 \end{bmatrix} = -1$

sample variance of $b' = X = b' = [2 \quad 3] \begin{bmatrix} 16 & -2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = 49$

sample variance of $c' = X = c' = [-1 \quad 2] \begin{bmatrix} 16 & -2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = 28$

sample covariance of b' X and c' X

$$= b'Sc = \begin{bmatrix} 2 & 3 \end{bmatrix} \begin{bmatrix} 16 & -2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = -28$$

Results same as those in part (a).

$$\bar{x} = \begin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix}$$
, $S = \begin{bmatrix} 13 & -2.5 & 1.5 \\ -2.5 & 1 & -1.5 \\ 1.5 & -1.5 & 3 \end{bmatrix}$

sample mean of b' X = 12sample mean of c' X = -1sample variance of b' X = 12sample variance of c' X = 43sample covariance of b' X and c' X = -3

$$= E(\overline{\Lambda\Lambda}_{1}) - \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda} - \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda} - E(\overline{\Lambda\Lambda}_{1}) - \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda} - \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda} + \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda}$$

$$= E(\overline{\Lambda\Lambda}_{1}) - E(\overline{\Lambda})\overline{\Lambda}_{1}^{\Lambda} - \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda} + \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda}$$

$$= E(\overline{\Lambda\Lambda}_{1}) - E(\overline{\Lambda})\overline{\Lambda}_{1}^{\Lambda} - \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda} + \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda}$$

$$= E(\overline{\Lambda\Lambda}_{1}) - E(\overline{\Lambda})\overline{\Lambda}_{1}^{\Lambda} - \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda} + \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda}$$
we have $E(\overline{\Lambda\Lambda}_{1}) = \frac{1}{4} + \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda}$.

3.18 (a) Let $y = x_1 + x_2 + x_3 + x_4$ be the total energy consumption. Then

$$\overline{y} = [1 \ 1 \ 1 \ 1]\overline{x} = 1.873$$

$$s_y^2 = [1 \ 1 \ 1 \ 1]S[1 \ 1 \ 1 \ 1]' = 3.913$$

(b) Let $y = x_1 - x_2$ be the excess of petroleum consumption over natural gas consumption. Then

$$\overline{y} = \begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix} \overline{x} = .258$$

 $s_y^2 = \begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix} S \begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix} = .154$