Date: Mar 13 Made by Eric

In this note, \mathbb{E} is always a field

Theorems

Theorem 1. Let \mathbb{E} be an extension of \mathbb{F} and let $\alpha \in \mathbb{E}$ be an algebraic element over \mathbb{F} . Let β be an element of $\mathbb{F}(\alpha)$

$$\beta$$
 is algebraic, and $deg(\beta, \mathbb{F}) \leq deg(\alpha, \mathbb{F})$

Proof. We first prove that $\mathbb{F}(\alpha)$ over \mathbb{F} with structure $*: \mathbb{F} \times \mathbb{F}(\alpha) \to \mathbb{F}(\alpha)$ defined by $(\gamma, v) = \gamma v$ constitute a vector space

Let δ, γ be elements of \mathbb{F} and let v, w be elements of $\mathbb{F}(\alpha)$

Let
$$deg(\alpha, \mathbb{F}) = n$$

Express v in the form of $c_{n-1}\alpha^{n-1} + \cdots + c_01$

$$\delta v = (\delta c_{n-1})\alpha^{n-1} + \dots + (\delta c_0)1 \in \mathbb{F}(\alpha)$$

 $\delta(\gamma v)=\delta\gamma v=(\delta\gamma)v=(\delta\gamma)v$ (Notice that the v after the second equator is in $\mathbb F$ and the v after third equator is in $\mathbb F(\alpha)$)

$$\delta(v+w) = \delta(v+w) = \delta v + \delta w$$

$$(\delta + \gamma)(v) = (\delta + \gamma)v = \gamma v + \delta v$$

1v = v (done)

We now prove $\{\alpha^{n-1}, \ldots, \alpha, 1\}$ is a basis for $\mathbb{F}(\alpha)$

Because $\deg(\alpha,\mathbb{F})=n$, we know there exists a polynomial f in $\mathbb{F}[x]$ of degree n such that $f(\alpha)=0$

For each element v in $\mathbb{F}(\alpha)$, we express v in the form of $g(\alpha)$ where $g \in \mathbb{F}[x]$

Do division algorithm on g with f. We have

$$g = qf + r$$

Where deg(r) < deg(f)

Because $f(\alpha)=0$, then we see $g(\alpha)=q(\alpha)f(\alpha)+r(\alpha)=r(\alpha)$

Because $\deg(r) < n$, we know $r(\alpha) \in \operatorname{span}(\{\alpha^{n-1}, \dots, \alpha, 1\})$

Assume $\{\alpha^{n-1},\ldots,\alpha,1\}$ is linearly dependent; that is, there exists a polynomial h of degree smaller than n and greater than 0 such that $h(\alpha)=0$

This CaC to that $deg(\alpha, \mathbb{F}) = n$ (done)

Immediately, we see $\{1,\beta,\beta^2,\ldots,\beta^n\}$ is linearly dependent, for that $\dim(\mathbb{F}(\alpha))=n< n+1$. Then we can construct a polynomial $l\in\mathbb{F}[x]$ of degree less than or equal to n such that $l(\beta)=0$