Домашнее задание 1

- **1.** Выразите операцию разности множеств «\» через операции пересечения « \cap » и симметрической разности « Δ ». Докажите формально получившееся тождество.
- **2.** Выразите операцию объединения множеств « \bigcup » через операции пересечения « \bigcap » и симметрической разности « Δ ». Докажите формально получившееся тождество.
- **3.** Верхним пределом последовательности множеств $\{A_n\}_{n=1}^{\infty}$ называется множество $\limsup A_n$, состоящее из точек, принадлежащих бесконечному числу множеств последовательности $\{A_n\}_{n=1}^{\infty}$. С помощью операций \bigcup и \bigcap выразите множество $\limsup A_n$ через множества A_n .
- **4.** Нижним пределом последовательности множеств $\{A_n\}_{n=1}^{\infty}$ называется множество liminf A_n , состоящее из точек, принадлежащих всем множествам последовательности $\{A_n\}_{n=1}^{\infty}$, кроме, быть может, конечного числа множеств. С помощью операций \bigcup и \bigcap выразите множество liminf A_n через множества A_n .
- **5.** Пусть $\Omega = \{ \blacktriangledown, \blacklozenge, \blacktriangle, \clubsuit \}$. Дополните следующие системы множеств так, чтобы они стали σ алгебрами с единицей Ω . Отметим, что в общем случае вы можете дополнить указанные системы до σ алгебр не единственным способом.
 - (a) $S_1 = \{\{ \mathbf{V}, \mathbf{A}, \mathbf{A} \}, \{\mathbf{A}, \mathbf{A} \} \};$
 - (b) $S_2 = \{\{\{\}\}\};$
 - (c) $S_3 = \{ \{ \mathbf{V}, \mathbf{A} \}, \{ \mathbf{A}, \mathbf{A} \} \};$
 - (d) $S_4 = \{\{ \mathbf{V}, \mathbf{A} \} \};$
 - (e) $S_5 = \{ \{ \mathbf{\Psi}, \mathbf{A} \}, \{ \mathbf{A} \} \} ;$
 - (f) $S_6 = \{\{\Psi, \blacktriangle\}, \{\clubsuit\}\}$.