Matemática Discreta 1 Recuperación Primer parcial	1 ^{er} Apellido:	12 de enero de 2018
Dpto. Matematica Aplicada TIC ETS Ingenieros Informáticos Universidad Politécnica de Madrid	2º Apellido: Nombre: Número de matrícula:	Tiempo 2 horas Nota:

Ejercicio 1 (8 puntos)

- a) Obtén el cardinal de D_{2107} , el conjunto de todos los divisores positivos de 2107.
- b) En el conjunto de los números naturales \mathbb{N} definimos la siguiente relación: dados $a, b \in \mathbb{N}$, decimos que aRb si $a|b^2$ ($a|b^2$ significa que "a divide a b^2 "). Razona qué propiedades (reflexiva, simétrica, antisimétrica, transitiva) cumple la relación y cuáles no.
- c) Dado los conjuntos $A = \{t \in \mathbb{Z}/-4 + 3t \ge 7\}$ y $B = \{t \in \mathbb{Z}/620 4t \ge 5\}$. Construye el conjunto $A \cap B$ y obtén su cardinal.

Solución:

- a) Para saber el cardinal de D_{2107} necesitamos encontrar los divisores primos de 2107, y para ello estudiamos si tiene algún divisor primo menor o igual que $\sqrt{2107} \approx 46$. Dividimos 2107 entre todos los primos menores o iguales que 46, que son: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41 y 43. Resultando 2107 = $7^2 \cdot 43$, así $|D_{2107}| = 3 \cdot 2 = 6$.
 - b) Reflexiva: $a|a^2 \Rightarrow aRa$, para cualquier $a \in \mathbb{N}$. Por tanto, R es reflexiva.

Simétrica: 2R8 ya que $2|8^2$, pero 8 R 2 ya que 8 no divide a 2^2 . Por tanto, R no simétrica.

Antisimétrica: 2R4 y 4R2 ya que $2|4^2$ y $4|2^2$, pero $2 \neq 4$. Por tanto, R no antisimétrica.

Transitiva: 2^4R2^2 ya que $2^4|(2^2)^2$ y 2^2R2 ya que $2^2|2^2$, pero $2^4 \not R$ 2 ya que 2^4 no divide a 2^2 . Por tanto, R no es transitiva.

c) Teniendo en cuenta que t solo puede tomar valores enteros, la condición del conjunto A es equivalente a que

$$3t \ge 11 \Leftrightarrow t \ge \frac{11}{3} \approx 3, 8 \Leftrightarrow t \ge 4.$$

Y la condición del conjunto B es equivalente a

$$4t \le 615 \Leftrightarrow t \le \frac{615}{4} \approx 153, 7 \Leftrightarrow t \le 153.$$

Por tanto, $A \cap B = \{t \in \mathbb{Z}/4 \le t \le 153\}$ y $|A \cap B| = 150$.

Ejercicio 2 (12 puntos)

Sea D_{104} el conjunto de todos los divisores positivos de 104, y sea | la relación de divisibilidad; es decir, a|b significa que "a divide a b".

- a) Dibuja el diagrama de Hasse del conjunto ordenado $(D_{104}, |)$.
- **b)** Obtén las cotas superiores e inferiores, supremo e ínfimo, máximo y mínimo, maximales y minimales, si los hay, del subconjunto $B = \{8, 26, 52\}$.
 - c) Razona si 26 y 8 tienen complementario en D_{104} . En caso afirmativo obténlos.
 - d) Razona si $(D_{104}, |)$ es un Álgebra de Boole.

Solución:

a)
$$104 = 2^3 \cdot 13$$
, $D_{104} = \{1, 2, 4, 8, 13, 26, 52, 104\}$.

b) $B = \{8, 26, 52\}$

Cotas superiores: {104}

Supremo: {104} Máximo: ∅

Maximales: $\{8, 52\}$

Cotas inferiores: $\{2,1\}$

Ínfimo: 2

Minimo: Ø

Minimales: $\{8, 26\}$

c) $mcd(2^3, 13) = 1$ y $mcm(2^3, 13) = 2^3 \cdot 13 = 104$. Por tanto, 13 es el complementario de 2^3 .

Veamos si 26 tiene complementario. Buscamos un $x \in D_{104}$ tal que $mcd(x, 2 \cdot 13) = 1$ y $mcm(x, 2 \cdot 13) = 104$. Como $\operatorname{mcd}(x, 2 \cdot 13) = 1$, el único $x \in D_{104}$ que lo cumple es x = 1, pero $\operatorname{mcm}(1, 2 \cdot 13) = 2 \cdot 13 \neq 104$. Por tanto, 26 no tiene complementario en D_{104} .

d) Como 26 no tiene complementario en D_{104} se tiene que $(D_{104}, |)$ no es Retículo complementario y por tanto no es 'Algebra de Boole.

Ejercicio 3 (8 puntos)

a) Obtén una expresión booleana en forma de "mínima suma de productos" para la función booleana cuyo conjunto de verdad es $S(f) = \{1110, 1010, 1011, 1001, 0011, 0001\}$. Resuelve utilizando uno de los dos métodos estudiados: Quine McCluskey o mapa de Karnaugh.

a)
$$xzt' + y't$$

	1110	1010	1011	1001	0011	0001
1-10	4	1				
101-		1	1			
-0-1			√	4	4	1

Ejercicio 4 (4 puntos)

Demuestra por inducción que para todo $n \ge 1$ se cumple la igualdad

$$\sum_{i=1}^{n} (8i+5) = (4n+9)n.$$

Solución:

- 1) Comprobamos la condición inicial: para n = 1 tenemos 8 + 5 = 13 y (4 + 9)1 = 13 que son iguales.
- 2) Hipótesis de Inducción: suponemos el resultado cierto para n = k, es decir, $\sum_{i=1}^{k} (8i + 5) = (4k + 9)k$.
- 3) Comprobemos que el resultado es cierto para n = k + 1 (utilizando la hipótesis de inducción)

$$\sum_{i=1}^{k+1} (8i+5) = \sum_{i=1}^{k} (8i+5) + (8(k+1)+5)$$

$$= (4k+9)k + 8k + 13 = 4k^2 + 17k + 13 = (k+1)(4k+13) = (k+1)(4(k+1)+9)$$

Luego aplicando el teorema de Inducción el resultado es cierto para todo $n \ge 1$.

Ejercicio 5 (8 puntos)

Considera la ecuación diofántica 192x + 72y = 504.

- a) Razona si tiene solución y en caso afirmativo, utilizando el Algoritmo de Euclides, escribe todas las soluciones enteras.
 - b) Razona si hay soluciones estrictamente positivas.

Solución:

a) En primer lugar, usamos el algoritmo de Euclides para calcular que mcd(192,72) = 24. En efecto,

$$192 = 2 \times 72 + 48,
72 = 1 \times 48 + 24,
48 = 2 \times 24.$$

Como mcd(192,72) = 24 divide al término independiente, tenemos que la ecuación diofántica 192x + 72y = 504 tiene soluciones enteras.

A continuación usaremos el Teorema de Bezout para encontrar una solución particular de la ecuación. Es decir, buscamos $p,q\in\mathbb{Z}$ tales que $192\times p+72\times q=24$. Para ello despejaremos los restos en el algoritmo de Euclides:

$$\begin{array}{rcl} 48 & = & 192 - 2 \times 72, \\ 24 & = & 72 - 1 \times 48. \end{array}$$

Y eliminamos todos los restos menos el último, el mcd(192,72) = 24.

$$\begin{array}{rcl} 24 & = & 72 - 1 \times 48 \\ 48 & = & 192 - 2 \times 72 \end{array} \right\} \quad \Rightarrow \quad 24 = -192 + 3 \times 72$$

Por tanto, (p,q)=(-1,3) es una solución de la ecuación 192x+72y=24. Y multiplicando por $\frac{504}{\gcd(192,72)}=21$, encontramos una solución particular

$$(x_0, y_0) = (-21, 63)$$

de la ecuación 192x + 72y = 504.

La solución general se encuentra añadiendo a la solución particular (x_0, y_0) un múltiplo entero del vector de soluciones

$$\frac{1}{\text{mcd}(192,72)}(72,-192) = (3,-8);$$

es decir, la solución general está dada por

$$\begin{cases} x = -21 + 3t, \\ y = 63 - 8t, \end{cases}$$

con $t \in \mathbb{Z}$.

b) Las condiciones para la existencia de soluciones estrictamente positivas es que -21+3t>0 y que 63-8t>0. Teniendo en cuenta que t solo puede tomar valores enteros, la primera condición es equivalente a que

$$3t > 21 \Leftrightarrow t > 7$$
.

Y la segunda condición es equivalente a

$$63 > 8t \Leftrightarrow t < \frac{63}{8} \approx 7, 8 \Leftrightarrow t \leq 7.$$

Como un entero no puede cumplir ambas condiciones simultaneamente, no hay soluciones enteras estrictamente positivas.