Complex Analysis Problems

D. Zack Garza

Wednesday $17^{\rm th}$ June, 2020

1	Integrals and Cauchy's Theorem		5
	1.1 1		5
	1.2 2		5
	1.3 3		5
	1.4 4		6
	1.5 5		6
	1.6 6		6
	1.7 7		6
	1.8 8		6
	1.9 9		6
	1.10 10	•	7
2	Liouville's Theorem, Power Series		7
	2.1 1		7
	2.2 2		7
	2.3 3		7
	2.4 4		7
	2.5 5 \ldots		8
	2.6 6		8
	2.7 7		8
	2.8 8		8
	2.9 9		8
	2.10 10		8
3	Spring 2020 Homework 1		8
4	Spring 2020 Homework 2		8
	4.1 Stein And Shakarchi		9
	4.1.1 2.6.1		9
	4.1.2 2.6.2		9
	4.1.3 $2.6.5$		9
	4.1.4 2.6.6		10
	4.1.5 $2.6.7$		10
	4.1.6 2.6.8		10
	$4.1.7 2.6.9 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $		10

		4.1.8	2.6.10										 	 							 10
		4.1.9	2.6.13										 	 							 11
		4 1 10	2.6.14																		11
		_	2.6.15																		
	4.0																				
	4.2		onal Pro																		
		4.2.1	1										 	 							 11
		4.2.2	2										 	 							 11
		4.2.3	3										 	 							 11
		4.2.4	4																		
		4.2.5	5																		
		-	-																		
		4.2.6	6										 	 							
		4.2.7	7										 	 							 12
		4.2.8	8										 	 							 12
		4.2.9	9 (Cau	chv's l	Form	nula	for	Ext	erior	Re	gion	s)									13
			10								_	,									
			11																		
		4.2.12	12										 	 			•				 13
		4.2.13	13										 	 							 13
5	Sprii	ng 2020) Home	work :	3																14
	5.1	Stein a	and Shal	karchi									 	 	_		_				 14
	3.1	5.1.1	3.8.1 .																		
		-																			
		5.1.2	3.8.2 .																		
		5.1.3	3.8.4 .																		
		5.1.4	3.8.5 .										 	 							 14
		5.1.5	3.8.6 .										 	 							 14
		5.1.6	3.8.7 .										 				_				 14
		5.1.7	3.8.8 .																		
		5.1.8	3.8.9 .																		
		5.1.9	3.8.10										 	 							
		5.1.10	3.8.14										 	 							 16
		5.1.11	3.8.15										 	 							 16
		5 1 12	3.8.17																		
		5.1.13																			
	F 0	00	0.00																		
	5.2		ms Fron																		
		5.2.1	1																		-
		5.2.2	2										 	 							 17
		5.2.3	3										 	 							 17
		5.2.4	4										 	 							 17
		5.2.5	5			-							 -			-		-	-	-	
		5.2.6																			
			6																		
		5.2.7	7										 	 	•		•		 ٠	•	 _
		5.2.8	8										 	 							 18
		5.2.9	9										 	 							 18
		5.2.10	10										 	 							 18
														 	-		-		 -		
		5.2.12											 •	 	•		•	•	 •	•	 _
		$5\ 2\ 13$	13																		10

	5.2.14 14	 	 	
	tra Questions from Jingzhi Tie			
6.1	Fall 2009			
	6.1.1 ?			
	6.1.2 ?			
	6.1.3 ?	 	 	
	6.1.4 ?	 	 	
	6.1.5 ?	 	 	
	6.1.6 ?	 	 	
	6.1.7 ?	 	 	
	6.1.8 ?	 	 	
	6.1.9 ?	 	 	
	6.1.10 ?			
	6.1.11 ?			
	6.1.12 ?			
	6.1.13 ?			
	6.1.14 ?			
	6.1.15 ?	 	 	
	6.1.16 ?	 	 	
	6.1.17 ?	 	 	
	6.1.18 ?	 	 	
	6.1.19 ?	 	 	
	6.1.20 ?	 	 	
5.2	Fall 2011	 	 	
	6.2.1 ?			
	6.2.2 ?			
	6.2.3 ?			
	6.2.4 ?			
	0.2.1	 	 	
	0.2.0			
	6.2.6 ?			
	6.2.7 ?	 	 	
	6.2.8 ?	 	 	
	6.2.9 ?	 	 	
	6.2.10 ?	 	 	
	6.2.11 ?	 	 	
	6.2.12 ?	 	 	
	6.2.13 ?	 	 	
	6.2.14 ?			
	6.2.15 ?			
	6.2.16 ?	 	 	
	6.2.18 ?	 	 	
	6.2.19 ?			
	6.2.20 ?	 	 	
3.3	Spring 2014	 	 	
	6.3.1 ?	 	 	
	6.3.2 ?			

	6.3.3 ?	 		 			 	 		 				. 27
	6.3.4 ?	 		 			 	 		 				. 28
	6.3.5 ?	 		 			 	 		 				. 28
	6.3.6 ?													
		 		 			 	 	 -	 	-		-	
		 		 			 	 	 -	 				
	6.3.12 ?	 		 			 	 	 -	 	-	 -	-	
6.4	Fall 2015													
0.4														
	6.4.1 ?													_
	6.4.4 ?													
	0.1.0	 		 			 	 		 	٠	 •	•	
	6.4.7 ?	 		 			 	 		 				. 31
	6.4.8 ?	 		 			 	 		 				. 31
	6.4.9 ?	 		 			 	 		 				. 32
	6.4.10 ?	 		 			 	 		 				. 32
	6.4.11 ?	 		 			 	 		 				. 32
	6.4.12 ?	 		 			 	 		 				. 32
	6.4.13 ?	 		 			 	 		 		 		. 32
	6.4.14 ?													
	6.4.15 ?													
	6.4.16 ?													
	6.4.17 ?													
	6.4.18 ?													
e E														
6.5														
	6.5.1 ?													
	6.5.3 ?	 		 			 	 	 •	 	•	 •	•	
														_
	6.5.5 ?	 		 			 	 		 	•	 •	•	
		 		 			 	 		 	٠	 •	•	
		 		 			 	 	 -	 	-	 -	-	
	6.5.8 ?	 		 			 	 		 				. 35
	6.5.9 ?	 		 			 	 		 				. 35
	6.5.10 ?	 		 			 	 		 				. 35
	6.5.11 ?	 		 			 	 		 				. 35
	6.5.12 ?	 		 			 	 		 				. 36
	6.5.13 ?	 		 			 	 		 				. 36
	_													
	6.5.17 ?													
	6.5.18 ?	 	• •	 	• •	• •	 • •	 • •	 •	 • •	•	 •	•	. 37
	U.U.U.IU									 	_	 		/

	6.5.19	?																						37
	6.5.20	?																						37
	6.5.21	?																						38
	6.5.22	?																						38
	6.5.23	?																						38
	6.5.24	?																						38
	6.5.25	?																						39
	6.5.26	?																						39
	6.5.27	?																						39
	6.5.28	?																						39
	6.5.29	?																						39
	6.5.30	?																						39
	6.5.31	?																						40
	6.5.32	?																						40
	6.5.33	?																						40
	6.5.34	?																						40
6.6	Fall 20	16																						40
	6.6.1	?																						40
	6.6.2	?																						41
	6.6.3	?																						41
	6.6.4	?																						41
	6.6.5	?																						42
	6.6.6	?																						42
	6.6.7	?																						42
	6.6.8	?																						42

1 Integrals and Cauchy's Theorem

1.1 1

Suppose $f,g:[0,1]\longrightarrow \mathbb{R}$ where f is Riemann integrable and for $x,y\in [0,1],$

$$|g(x) - g(y)| \le |f(x) - f(y)|.$$

Prove that g is Riemann integrable.

1.2 2

State and prove Green's Theorem for rectangles.

Then use it to prove Cauchy's Theory for functions that are analytic in a rectangle.

1.3 3

Suppose $\{f_n\}_{n\in\mathbb{N}}$ is a sequence of analytic functions on $\mathbb{D}^\circ := \{z \in \mathbb{C} \mid |z| < 1\}$.

Show that if $f_n \longrightarrow g$ for some $g: \mathbb{D}^{\circ} \longrightarrow \mathbb{C}$ uniformly on every compact $K \subset \mathbb{D}^{\circ}$, then g is analytic on \mathbb{D}° .

1.4 4

Suppose $\{f_n\}_{n\in\mathbb{N}}$ is a sequence of entire functions where

- $f_n \longrightarrow g$ pointwise for some $g: \mathbb{C} \longrightarrow \mathbb{C}$.
- On every line segment in \mathbb{C} , $f_n \longrightarrow g$ uniformly.

Show that

- \bullet g is entire, and
- $f_n \longrightarrow g$ uniformly on every compact subset of \mathbb{C} .

1.5 5

Prove that there is no sequence of polynomials that uniformly converge to $f(z) = \frac{1}{z}$ on S^1 .

1.6 6

Suppose that $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a continuous function that vanishes outside of some finite interval. For each $z \in \mathbb{C}$, define

$$g(z) = \int_{-\infty}^{\infty} f(t)e^{-izt} dt.$$

Show that g is entire.

1.7 7

Suppose $f: \mathbb{C} \longrightarrow \mathbb{C}$ is entire and

$$|f(z)| \le |z|^{\frac{1}{2}}$$
 when $|z| > 10$.

Prove that f is constant.

1.8 8

Let γ be a smooth curve joining two distinct points $a, b \in \mathbb{C}$.

Prove that the function

$$f(z) := \int_{\gamma} \frac{g(w)}{w - z} \, dw$$

is analytic in $\mathbb{C} \setminus \gamma$.

1.9 9

Suppose that $f: \mathbb{C} \longrightarrow \mathbb{C}$ is continuous everywhere and analytic on $\mathbb{C} \setminus \mathbb{R}$ and prove that f is entire.

1.10 10

Prove Liouville's theorem: suppose $f:\mathbb{C}\longrightarrow\mathbb{C}$ is entire and bounded. Use Cauchy's formula to prove that $f'\equiv 0$ and hence f is constant.

2 Liouville's Theorem, Power Series

2.1 1

Suppose f is analytic on a region Ω such that $\mathbb{D} \subseteq \Omega \subseteq \mathbb{C}$ and $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is a power series with radius of convergence exactly 1.

- a. Give an example of such an f that converges at every point of S^1 .
- b. Given an example of such an f which is analytic at 1 but $\sum_{n=0}^{\infty} a_n$ diverges.
- c. Prove that f can not be analytic at *every* point of S^1 .

2.2 2

Suppose f is entire and has Taylor series $\sum a_n z^n$ about 0.

- a. Express a_n as a contour integral along the circle |z| = R.
- b. Apply (a) to show that the above Taylor series converges uniformly on every bounded subset of \mathbb{C} .
- c. Determine those functions f for which the above Taylor series converges uniformly on all of \mathbb{C} .

2.3 3

Suppose D is a domain and f, g are analytic on D.

Prove that if fg = 0 on D, then either $f \equiv 0$ or $g \equiv 0$ on D.

2.4 4

Suppose f is analytic on \mathbb{D}° . Determine with proof which of the following are possible:

a.
$$f\left(\frac{1}{n}\right) = (-1)^n$$
 for each $n > 1$.

b.
$$f\left(\frac{1}{n}\right) = e^{-n}$$
 for each even integer $n > 1$ while $f\left(\frac{1}{n}\right) = 0$ for each odd integer $n > 1$.

c.
$$f\left(\frac{1}{n^2}\right) = \frac{1}{n}$$
 for each integer $n > 1$.

d.
$$f\left(\frac{1}{n}\right) = \frac{n-2}{n-1}$$
 for each integer $n > 1$.

2.5 5

Prove the Fundamental Theorem of Algebra (using complex analysis).

2.6 6

Find all entire functions that satisfy

$$|f(z)| \ge |z| \quad \forall z \in \mathbb{C}.$$

Prove this list is complete.

2.7 7

Suppose $\sum_{n=0}^{\infty} a_n z^n$ converges for some $z_0 \neq 0$.

- a. Prove that the series converges absolutely for each z with $|z| < |z|_0$.
- b. Suppose $0 < r < |z_0|$ and show that the series converges uniformly on $|z| \le r$.

2.8 8

Suppose f is entire and suppose that for some integer $n \geq 1$,

$$\lim_{z \to \infty} \frac{f(z)}{z^n} = 0.$$

Prove that f is a polynomial of degree at most n-1.

2.9 9

Find all entire functions satisfying

$$|f(z)| \le |z|^{\frac{1}{2}}$$
 for $|z| > 10$.

2.10 10

Prove that the following series converges uniformly on the set $\{z \mid \Im(z) < \ln 2\}$:

$$\sum_{n=1}^{\infty} \frac{\sin(nz)}{2^n}.$$

3 Spring 2020 Homework 1

4 Spring 2020 Homework 2

Note on notation: I sometimes use $f_x := \frac{\partial f}{\partial x}$ to denote partial derivatives, and $\partial_z^n f$ as $f^{(n)}(z)$.

4.1 Stein And Shakarchi

4.1.1 2.6.1

Show that

$$\int_0^\infty \sin\left(x^2\right) dx = \int_0^\infty \cos\left(x^2\right) dx = \frac{\sqrt{2\pi}}{4}.$$

Hint: integrate e^{-x^2} over the following contour, using the fact that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$:

4.1.2 2.6.2

Show that

$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

Hint: use the fact that this integral equals $\frac{1}{2i} \int_{-\infty}^{\infty} \frac{e^{ix}-1}{x} dx$, and integrate around an indented semicircle.

4.1.3 2.6.5

Suppose $f \in C^1_{\mathbb{C}}(\Omega)$ and $T \subset \Omega$ is a triangle with $T^{\circ} \subset \Omega$. Apply Green's theorem to show that $\int_T f(z) \ dz = 0$.

Assume that f' is continuous and prove Goursat's theorem.

Hint: Green's theorem states

$$\int_{T} F dx + G dy = \int_{T^{\circ}} \left(\frac{\partial G}{\partial x} - \frac{\partial F}{\partial y} \right) dx dy.$$

4.1.4 2.6.6

Suppose that f is holomorphic on a punctured open set $\Omega \setminus \{w_0\}$ and let $T \subset \Omega$ be a triangle containing w_0 . Prove that if f is bounded near w_0 , then $\int_T f(z) dz = 0$.

4.1.5 2.6.7

Suppose $f: \mathbb{D} \longrightarrow \mathbb{C}$ is holomorphic and let $d := \sup_{z,w \in \mathbb{D}} |f(z) - f(w)|$ be the diameter of the image of f. Show that $2|f'(0)| \le d$, and that equality holds iff f is linear, so $f(z) = a_1z + a_2$.

Hint:
$$2f'(0) = \frac{1}{2\pi i} \int_{|\xi| = r} \frac{f(\xi) - f(-\xi)}{\xi^2} d\xi$$
 whenever $0 < r < 1$.

4.1.6 2.6.8

Suppose that f is holomorphic on the strip $S = \{x + iy \mid x \in \mathbb{R}, -1 < y < 1\}$ with $|f(z)| \le A(1+|z|)^{\nu}$ for ν some fixed real number. Show that for all $z \in S$, for each integer $n \ge 0$ there exists an $A_n \ge 0$ such that $|f^{(n)}(x)| \le A_n(1+|x|)^{\nu}$ for all $x \in \mathbb{R}$.

Hint: Use the Cauchy inequalities.

4.1.7 2.6.9

Let $\Omega \subset \mathbb{C}$ be open and bounded and $\varphi : \Omega \longrightarrow \Omega$ holomorphic. Prove that if there exists a point $z_0 \in \Omega$ such that $\varphi(z_0) = z_0$ and $\varphi'(z_0) = 1$, then φ is linear.

Hint: assume $z_0 = 0$ (explain why this can be done) and write $\varphi(z) = z + a_n z^n + O(z^{n+1})$ near 0. Let $\varphi_k = \varphi \circ \varphi \circ \cdots \circ \varphi$ and prove that $\varphi_k(z) = z + k a_n z^n + O(z^{n+1})$. Apply Cauchy's inequalities and let $k \longrightarrow \infty$ to conclude.

4.1.8 2.6.10

Can every continuous function on $\overline{\mathbb{D}}$ be uniformly approximated by polynomials in the variable z?

Hint: compare to Weierstrass for the real interval.

4.1.9 2.6.13

Suppose f is analytic, defined on all of \mathbb{C} , and for each $z_0 \in \mathbb{C}$ there is at least one coefficient in the expansion $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$ is zero. Prove that f is a polynomial.

Hint: use the fact that $c_n n! = f^{(n)}(z_0)$ and use a countability argument.

4.1.10 2.6.14

Suppose that f is holomorphic in an open set containing \mathbb{D} except for a pole $z_0 \in \partial \mathbb{D}$. Let $\sum_{n=0}^{\infty} a_n z^n$ be the power series expansion of f in \mathbb{D} , and show that $\lim \frac{a_n}{a_{n+1}} = z_0$.

4.1.11 2.6.15

Suppose f is continuous and nonvanishing on $\overline{\mathbb{D}}$, and holomorphic in \mathbb{D} . Prove that if $|z| = 1 \implies |f(z)| = 1$, then f is constant.

Hint: Extend f to all of \mathbb{C} by $f(z) = 1/\overline{f(1/\overline{z})}$ for any |z| > 1, and argue as in the Schwarz reflection principle.

4.2 Additional Problems

4.2.1 1

Let $a_n \neq 0$ and show that

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = L \implies \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = L.$$

In particular, this shows that when applicable, the ratio test can be used to calculate the radius of convergence of a power series.

4.2.2 2

Let f be a power series centered at the origin. Prove that f has a power series expansion about any point in its disc of convergence.

4.2.3 3

Prove the following:

- a. $\sum_{n} nz^{n}$ does not converge at any point of S^{1}
- b. $\sum_{n=0}^{\infty} \frac{z^n}{n^2}$ converges at every point of S^1 .

c. $\sum_{n} \frac{z^n}{n}$ converges at every point of S^1 except z = 1.

4.2.4 4

Without using Cauchy's integral formula, show that if |a| < r < |b|, then

$$\int_{\gamma} \frac{dz}{(z-\alpha)(z-\beta)} = \frac{2\pi i}{\alpha - \beta}$$

where γ denotes the circle centered at the origin of radius r with positive orientation.

4.2.5 5

Assume f is continuous in the region $\{x+iy \mid x \geq x_0, \ 0 \leq y \leq b\}$, and the following limit exists independent of y:

$$\lim_{x \to +\infty} f(x + iy) = A.$$

Show that if $\gamma_x := \{z = x + it \mid 0 \le t \le b\}$, then

$$\lim_{x \longrightarrow +\infty} \int_{\gamma_x} f(z) \, dz = iAb.$$

4.2.6 6

Show by example that there exists a function f(z) that is holomorphic on $\{z \in \mathbb{C} \mid 0 < |z| < 1\}$ and for all r < 1,

$$\int_{|z|=r} f(z) \, dz = 0,$$

but f is not holomorphic at z = 0.

4.2.7 7

Let f be analytic on a region R and suppose $f'(z_0) \neq 0$ for some $z_0 \in R$. Show that if C is a circle of sufficiently small radius centered at z_0 , then

$$\frac{2\pi i}{f'(z_0)} = \int_C \frac{dz}{f(z) - f(z_0)}.$$

Hint: use the inverse function theorem.

4.2.8 8

Assume two functions $u, b : \mathbb{R}^2 \longrightarrow \mathbb{R}$ have continuous partial derivatives at (x_0, y_0) . Show that f := u + iv has derivative $f'(z_0)$ at $z_0 := x_0 + iy_0$ if and only if

$$\lim_{r \to 0} \frac{1}{\pi r^2} \int_{|z-z_0|=r} f(z) dz = 0.$$

4.2.9 9 (Cauchy's Formula for Exterior Regions)

Let γ be a piecewise smooth simple closed curve with interior Ω_1 and exterior Ω_2 . Assume f' exists in an open set containing γ and Ω_2 with $\lim_{z \to \infty} f(z) = A$. Show that

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi = \begin{cases} A, & \text{if } z \in \Omega_1 \\ -f(z) + A, & \text{if } z \in \Omega_2 \end{cases}.$$

4.2.10 10

Let f(z) be bounded and analytic in \mathbb{C} . Let $a \neq b$ be any fixed complex numbers. Show that the following limit exists:

$$\lim_{R \to \infty} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} dz.$$

Use this to show that f(z) must be constant.

4.2.11 11

Suppose f(z) is entire and

$$\lim_{z \longrightarrow \infty} \frac{f(z)}{z} = 0.$$

Show that f(z) is a constant.

4.2.12 12

Let f be analytic in a domain D and γ be a closed curve in D. For any $z_0 \in D$ not on γ , show that

$$\int_{\gamma} \frac{f'(z)}{(z - z_0)} dz = \int_{\gamma} \frac{f(z)}{(z - z_0)^2} dz.$$

Give a generalization of this result.

4.2.13 13

Compute

$$\int_{|z|=1} \left(z + \frac{1}{z}\right)^{2n} \frac{dz}{z}$$

and use it to show that

$$\in_0^{2\pi} \cos^{2n}(\theta) d\theta = 2\pi \left(\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \right).$$

5 Spring 2020 Homework 3

5.1 Stein and Shakarchi

5.1.1 3.8.1

Use the following formula to show that the complex zeros of $\sin(\pi z)$ are exactly the integers, and they are each of order 1:

$$\sin \pi z = \frac{e^{i\pi z} - e^{-i\pi z}}{2i}.$$

Calculate the residue of $\frac{1}{\sin(\pi z)}$ at $z = n \in \mathbb{Z}$.

5.1.2 3.8.2

Evaluate the integral

$$\int_{\mathbb{R}} \frac{dx}{1+x^4}.$$

What are the poles of $\frac{1}{1+z^4}$?

5.1.3 3.8.4

Show that

$$\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + a^2} dx = \pi e^{-a}, \quad \text{for all } a > 0.$$

5.1.4 3.8.5

Show that if $\xi \in \mathbb{R}$, then

$$\int_{-\infty}^{\infty} \frac{e^{-2\pi i x \xi}}{(1+x^2)^2} dx = \frac{\pi}{2} (1+2\pi |\xi|) e^{-2\pi |\xi|}.$$

5.1.5 3.8.6

Show that

$$\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^{n+1}} = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \cdot \pi.$$

5.1.6 3.8.7

Show that

$$\int_0^{2\pi} \frac{d\theta}{(a + \cos \theta)^2} = \frac{2\pi a}{(a^2 - 1)^{3/2}}, \text{ whenever } a > 1.$$

5.1.7 3.8.8

Show that if $a, b \in \mathbb{R}$ with a > |b|, then

$$\int_0^{2\pi} \frac{d\theta}{a + b\cos\theta} = \frac{2\pi}{\sqrt{a^2 - b^2}}.$$

5.1.8 3.8.9

Show that

$$\int_0^1 \log(\sin \pi x) dx = -\log 2.$$

Hint: use the following contour.

Figure 9. Contour in Exercise 9

5.1.9 3.8.10

Show that if a > 0, then

$$\int_0^\infty \frac{\log x}{x^2 + a^2} dx = \frac{\pi}{2a} \log a.$$

Hint: use the following contour.

)mplexMidterm.html

5.1.10 3.8.14

Prove that all entire functions that are injective are of the form f(z) = az + b with $a, b \in \mathbb{C}$ and $a \neq 0$.

Hint: Apply the Casorati-Weierstrass theorem to f(1/z).

5.1.11 3.8.15

Use the Cauchy inequalities or the maximum modulus principle to solve the following problems:

a. Prove that if f is an entire function that satisfies

$$\sup_{|z|=R} |f(z)| \le AR^k + B$$

for all R > 0, some integer $k \ge 0$, and some constants A, B > 0, then f is a polynomial of degree $\le k$.

b. Show that if f is holomorphic in the unit disc, is bounded, and converges uniformly to zero in the sector $\theta < \arg(z) < \varphi$ as $|z| \longrightarrow 0$, then $f \equiv 0$.

5.1.12 3.8.17

5.1.13 3.8.19

5.2 Problems From Tie

5.2.1 1

Prove that if f has two Laurent series expansions,

$$f(z) = \sum c_n(z-a)^n$$
 and $f(z) = \sum c'_n(z-a)^n$

then $c_n = c'_n$.

5.2.2 2

Find Laurent series expansions of

$$\frac{1}{1 - z^2} + \frac{1}{3 - z}$$

How many such expansions are there? In what domains are each valid?

5.2.3 3

Let P, Q be polynomials with no common zeros. Assume a is a root of Q. Find the principal part of P/Q at z = a in terms of P and Q if a is (1) a simple root, and (2) a double root.

5.2.4 4

Let f be non-constant, analytic in |z| > 0, where $f(z_n) = 0$ for infinitely many points z_n with $\lim_{n \to \infty} z_n = 0$.

Show that z = 0 is an essential singularity for f.

Example: $f(z) = \sin(1/z)$.

5.2.5 5

Show that if f is entire and $\lim_{z \to \infty} f(z) = \infty$, then f is a polynomial.

5.2.6 6

a. Show (without using 3.8.9 in the S&S) that

$$\int_0^{2\pi} \log \left| 1 - e^{i\theta} \right| \, d\theta = 0$$

b. Show that this identity is equivalent to S&S 3.8.9:

$$\int_0^1 \log(\sin(\pi x)) \ dx = -\log 2.$$

5.2.7 7

Let 0 < a < 4 and evaluate

$$\int_0^\infty \frac{x^{\alpha - 1}}{1 + x^3} \ dx$$

5.2.8 8

Prove the fundamental theorem of Algebra using

- a. Rouche's Theorem.
- b. The maximum modulus principle.

5.2.9 9

Let f be analytic in a region D and γ a rectifiable curve in D with interior in D. Prove that if f(z) is real for all $z \in \gamma$, then f is constant.

5.2.10 10

For a > 0, evaluate

$$\int_0^{\pi/2} \frac{d\theta}{a + \sin^2 \theta}$$

5.2.11 11

Find the number of roots of $p(z) = 4z^4 - 6z + 3$ in |z| < 1 and 1 < |z| < 2 respectively.

5.2.12 12

Prove that $z^4 + 2z^3 - 2z + 10$ has exactly one root in each open quadrant.

5.2.13 13

Prove that for a > 0, $z \tan z - a$ has only real roots.

5.2.14 14

Let f be nonzero, analytic on a bounded region Ω and continuous on its closure $\overline{\Omega}$. Show that if $|f(z)| \equiv M$ is constant for $z \in \partial \Omega$, then $f(z) \equiv M e^{i\theta}$ for some real constant θ .

6 Extra Questions from Jingzhi Tie

6.1 Fall 2009

6.1.1 ?

(2) Deduce Liouville's theorem from (1).

6.1.2 ?

Let \$f\$ be a continuous function in the region \$\$D=\{z \setminus abs\{z\}>R, 0\leq arg z\leq \theta \theta^{\theta}\ 1\leq \theta\\quad\text{where}\quad 1\leq \theta \leq 2\pi.\$\$ If there exists \$k\$ such that \$\displaystyle{\lim_{z\to\infty} zf(z)=k}\$ for \$z\$ in the region \$D\$. Show that \$\$\lim_{R'\to\infty} \int_{L} f(z) dz=i\theta k,\$\$ where \$L\$ is the part of the circle \$|z|=R'\$ which lies in the region \$D\$.

6.1.3 ?

Suppose that \$f\$ is an analytic function in the region \$D\$ which contains the point \$a\$. Let $\$F(z) = z-a-qf(z),\quad \text{where} ^q \ \text{is a complex parameter}. \$$$

- (1) Let $K\subset D$ be a circle with the center at point a and also we assume that $f(z)\to 0$ for $z\in K$. Prove that the function F has one and only one zero z=w on the closed disc $\int K$ whose boundary is the circle K if $\dim z \in K$ f(z-a) f(z).
- (2) Let G(z) be an analytic function on the disk \frac{K} . Apply the residue theorem to prove that $\frac{G(w)}{F'(w)}=\frac{1}{2\pi i} \int \frac{G(z)}{F(z)} dz,$ where w is the zero from (1).
- (3) If $z\in K$, prove that the function $\left(\frac{1}{F(z)}\right)$ can be represented as a convergent series with respect to q: $\left(\frac{1}{F(z)}\right)^{r}\left(\frac{1}{F(z)}\right)^{r+1}.$

6.1.4 ?

Evaluate $\frac{0}^{\int \int x^2+a^2} \ dx \ .$$

6.1.5 ?

Let f=u+iv be differentiable (i.e. f'(z) exists) with continuous partial derivatives at a point $z=re^{i\theta}$, $r\neq 0$. Show that

 $\$ \frac{\partial u}{\partial r}=\frac{1}{r}\frac{v}{\operatorname v}{\operatorname v}_{r} \ r=-\frac{1}{r}\frac{u}{\operatorname u}_{r}.

6.1.6 ?

Show that $\displaystyle \int_0^{\infty} \frac{x^{a-1}}{1+x^n} dx=\frac{\pi^{a-1}}{n\sin \frac{a\pi}{n}} \$ using complex analysis, 0< a< n. Here n is a positive integer.

6.1.7 ?

For s>0, the **gamma function** is defined by $\displaystyle{Gamma(s)=\int_0^{\inf y} e^{-t}t^{s-1} dt}$.

1. Show that the gamma function is analytic in the half-plane

Re (s)>0, and is still given there by the integral formula above.

- 2. Apply the formula in the previous question to show that $\frac{s}{\sigma(1-s)}=\frac{\pi(1-s)}{\sin \pi s}.$
- > Hint: You may need $\displaystyle \frac{1-s}=t \int_0^{\infty} e^{-vt}(vt)^{-s} dv} for $t>0$.

6.1.8 ?

Apply Rouché's Theorem to prove the Fundamental Theorem of Algebra: If $p_n(z) = a_0 + a_1z + \cdot a_{n-1}z^{n-1} + a_nz^n\cdot (a_n \neq 0)$ is a polynomial of degree n, then it has n zeros in \$\mathbb C\$.

6.1.9 ?

Suppose \$f\$ is entire and there exist \$A, R >0\$ and natural number \$N\$ such that $f(z) \neq A |z|^N \text{ for} |z| \geq R.$$ Show that

- (i) \$f\$ is a polynomial and
- (ii) the degree of \$f\$ is at least \$N\$.

6.1.10 ?

Let $f: {\mathbb C} \to {\mathbb C}$ be an injective analytic (also called *univalent*) function. Show that there exist complex numbers $a \neq 0$ and b such that f(z) = az + b.

6.1.11 ?

Let g be analytic for $|z|\leq 1$ and |g(z)|<1 for |z|=1.

- 1. Show that g has a unique fixed point in |z| < 1.
- 2. What happens if we replace |g(z)| < 1 with $|g(z)| \le 1$ for |z|=1? Give an example if (a) is not true or give an proof if (a) is still true.
- 3. What happens if we simply assume that \$f\$ is analytic for |z| < 1 and |f(z)| < 1 for |z| < 1? Suppose that f(z) not\equiv z\$. Can f have more than one fixed point in |z| < 1?
- > Hint: The map $\displaystyle \frac{\pi}{z}}\$ may be useful.

6.1.12 ?

Find a conformal map from $D = \{z : |z| < 1, |z - 1/2| > 1/2\}$ to the unit disk $Delta=\{z : |z|<1\}$.

6.1.13 ?

Let f(z) be entire and assume values of f(z) lie outside a *bounded* open set Ω . Show without using Picard's theorems that f(z) is a constant.

6.1.14 ?

- (1) Assume $\displaystyle f(z) = \sum_{n=0}^\infty c_n z^n converges in $|z| < R$. Show that for $r < R$, $$ \frac{1}{2 \pi^0} \int_0^2 \pi^{2n} |f(r e^{i \theta})|^2 d \theta = \sum_{n=0}^\infty |c_n|^2 r^{2n} ; .$$$
- (2) Deduce Liouville's theorem from (1).

6.1.15 ?

Let f(z) be entire and assume that $f(z) \leq M |z|^2$ outside some disk for some constant M. Show that f(z) is a polynomial in z of degree ≤ 2 .

6.1.16 ?

Let $a_n(z)$ be an analytic sequence in a domain D such that

 $\sum_{n=0}^{\infty} |a_n(z)| \text{ converges uniformly on bounded and closed sub-regions of } D. \text{ Show that } \sum_{n=0}^{\infty} |a'_n(z)|$ converges uniformly on bounded and closed sub-regions of D.

6.1.17 ?

Let f(z) be analytic in an open set Ω except possibly at a point z_0 inside Ω . Show that if f(z) is bounded in near z_0 , then $\dim x \in \Omega$, then $\dim x \in \Omega$.

6.1.18 ?

Assume \$f\$ is continuous in the region:

 $0 < |z - a| \le R$, $0 \le \arg(z - a) \le \beta_0$ $(0 < \beta_0 \le 2\pi)$ and the limit $\lim_{z \to a} (z - a) f(z) = A$ exists. Show that

$$\lim_{r \to 0} \int_{\gamma_r} f(z) dz = iA\beta_0 ,$$

where $\gamma_r := \{z \mid z = a + re^{it}, \ 0 \le t \le \beta_0\}.$

6.1.19 ?

Show that $f(z) = z^2$ is uniformly continuous in any open disk |z| < R, where R > 0 is fixed, but it is not uniformly continuous on \mathbb{C} .

6.1.20 ?

(1) Show that the function u=u(x,y) given by $u(x,y)=\frac{e^{ny}-e^{-ny}}{2n^2}\sin nx\quad \text{text}{for}\ n\in \mathbb{N}$ is the solution on $D=\{(x,y)\ |\ x^2+y^2<1\}$ of the Cauchy problem for the Laplace equation $\frac{2u}{partial\ ^2u}{partial\ ^2u}{partial\ ^2u}{partial\ y^2}=0,\quad u(x,0)=0,\quad \frac{rac}{partial\ u}{partial\ y}(x,0)=\frac{\sin nx}{n}.$ (2) Show that there exist points $(x,y)\in D$ such that $\frac{1}{n}.$

6.2 Fall 2011

6.2.1 ?

- (1) Assume $\phi(z) = \sum_{n=0}^\infty c_n z^n \cos |z| < R$. Show that for x < R, x < 1{2 \pi} \int_0^{2 \pi} |f(r e^{i \theta})|^2 d \theta = \sum_{n=0}^\infty |c_n|^2 r^{2n} \; .\$\$
- (2) Deduce Liouville's theorem from (1).

6.2.2 ?

Let \$f\$ be a continuous function in the region $\protect{\$}D=\{z\ | \ |z|>R, 0\leq \arg Z\leq \theta}\qquad 0\leq \theta \leq 2\pi. \protect{\$} If there exists k such that $\displaystyle{\lim_{z\to\infty} zf(z)=k}$ for z in the region D. Show that $$\lim_{R'\to\infty} \int theta k,$$ where L is the part of the circle $|z|=R'$ which lies in the region D.$

6.2.3 ?

Suppose that f is an analytic function in the region D which contains the point a. Let $F(z) = z-a-qf(z),\quad \text{where}\quad q \ \text{samples}$ parameter}.

(1) Let \$K\subset D\$ be a circle with the center at

point \$a\$ and also we assume that $f(z)\to 0$ for \$z\in K\$. Prove that the function \$F\$ has one and only one zero \$z=w\$ on the closed disc \frac{K} whose boundary is the circle \$K\$ if \$\displaystyle{ $|q|<\min_{z\in K} \frac{|z-a|}{|f(z)|}.}$

- (2) Let G(z) be an analytic function on the disk \frac{K} . Apply the residue theorem to prove that $\frac{G(w)}{F'(w)}=\frac{1}{2\pi i} \int G(z){F(z)} dz,} where w is the zero from (1).$
- (3) If $z\in K$, prove that the function $\displaystyle{\frac{1}{F(z)}}\$ can be represented as a convergent series with respect to $q: \displaystyle{\frac{1}{F(z)}=\sum_{n=0}^{\infty} \frac{qf(z)^n}{(z-a)^{n+1}}.}$

6.2.4 ?

Evaluate $\displaystyle \frac{0}^{\int \int x^2+a^2} \ dx }$.

6.2.5 ?

Let f=u+iv be differentiable (i.e. f'(z) exists) with continuous partial derivatives at a point $z=re^{i\theta}$, $r\in 0$. Show that $f=c(1){r}\frac{1}{r} r= 1 v}{partial v}{partial r}=-frac{1}{r}\frac{1}{r} r=1 v}{partial v}{partial r}=-frac{1}{r}\frac{1}{r}$

6.2.6 ?

Show that $\displaystyle \int_0^{infty \frac{x^{a-1}}{1+x^n}} dx=\frac{\pi^{a-1}}{n} \le n$ using complex analysis, 0< a< n. Here n is a positive integer.

6.2.7 ?

For s>0, the **gamma function** is defined by $\displaystyle{\Gamma(s)=\left(\frac{0^{\star} e^{-t}t^{s-1} dt}\right)}.$

- 1. Show that the gamma function is analytic in the half-plane Re (s)>0, and is still given there by the integral formula above.
- 2. Apply the formula in the previous question to show that $\frac{s}{\sigma(1-s)=\frac{\pi(1-s)}{\sin \pi s}.}$
- > Hint: You may need \$\displaystyle{\Gamma(1-s)=t \int_0^{\infty}e^{-vt}(vt)^{-s} dv}\$ for \$t>0\$.

6.2.8 ?

Apply Rouché's Theorem to prove the Fundamental Theorem of Algebra: If $p_n(z) = a_0 + a_1z + \cdot a_{n-1}z^{n-1} + a_nz^n\cdot (a_n \neq 0)$ is a polynomial of degree n, then it has n zeros in \$\mathbb C\$.

6.2.9 ?

Suppose \$f\$ is entire and there exist \$A, R >0\$ and natural number \$N\$ such that $f(z) \mid g \in A \mid z \mid N \mid f(z) \mid g \in R.$$ Show that (i) \$f\$ is a polynomial and (ii) the degree of \$f\$ is at least \$N\$.

6.2.10 ?

Let $f: \mathbb C} \rightarrow \mathbb C$ has an injective analytic (also called univalent) function. Show that there exist complex numbers $a \neq 0$ and b such that f(z) = az + b.

6.2.11 ?

Let g be analytic for $|z|\leq 1$ and |g(z)|<1 for |z|=1.

- Show that g has a unique fixed point in |z| < 1.
- What happens if we replace |g(z)| < 1 with $|g(z)| \le 1$ for |z|=1? Give an example if (a) is not true or give an proof if (a) is still true.
- What happens if we simply assume that \$f\$ is analytic for |z| < 1 and |f(z)| < 1 for |z| < 1? Suppose that f(z) \not\equiv z\$. Can f have more than one fixed point in |z| < 1?

> Hint: The map
\$\displaystyle{\psi_{\alpha}(z)=\frac{\alpha-z}{1-\bar{\alpha}z}}\$
> may be useful.

6.2.12 ?

Find a conformal map from $D = \{z : |z| < 1, |z - 1/2| > 1/2\}$ to the unit disk $Delta=\{z : |z|<1\}$.

6.2.13 ?

Let f(z) be entire and assume values of f(z) lie outside a *bounded* open set Ω . Show without using Picard's theorems that f(z) is a constant.

6.2.14 ?

Let f(z) be entire and assume values of f(z) lie outside a *bounded* open set Ω . Show without using Picard's theorems that f(z) is a constant.

6.2.15 ?

- (1) Assume $\displaystyle f(z) = \sum_{n=0}^\inf c_n z^n converges in $|z| < R$. Show that for $r < R$, $$ \frac{1}{2 \pi^0} \int_0^2 \pi^{2n} |f(r e^{i \theta})|^2 d \theta = \sum_{n=0}^\inf |c_n|^2 r^{2n} ; .$$$
- (2) Deduce Liouville's theorem from (1).

6.2.16 ?

Let f(z) be entire and assume that $f(z) \leq M |z|^2$ outside some disk for some constant M. Show that f(z) is a polynomial in z of degree |z|

6.2.17 ?

Let $a_n(z)$ be an analytic sequence in a domain D such that $\alpha_n(z) \le \sum_{n=0}^{\infty} |a_n(z)|$ converges uniformly on bounded and closed sub-regions of D. Show that $\alpha_n(z) \le \sum_{n=0}^{\infty} |a_n(z)|$ converges uniformly on bounded and closed sub-regions of D.

6.2.18 ?

Let f(z) be analytic in an open set Ω except possibly at a point z_0 inside Ω . Show that if f(z) is bounded in near z_0 , then $\dim z \in \Omega$, then $\dim z \in \Omega$.

6.2.19 ?

```
Assume $f$ is continuous in the region: 
 0<|z-a| \leq R, \ 0 \leq arg(z-a) \leq 0

($0 < \beta_0 \leq 2 \pi$) and the limit

$\displaystyle \lim_{z \rightarrow a} (z-a) f(z) = A$ exists. Show that

$$\lim_{r \rightarrow 0} \int_{\gamma_r} f(z) dz = i A \beta_0 \; , \; \;$$

where

$\gamma_r : = \{ z \; | \; z = a + r e^{it}, \; 0 \leq t \leq \beta_0 \}.$
```

6.2.20 ?

Show that $f(z) = z^2$ is uniformly continuous in any open disk |z| < R, where R>0 is fixed, but it is not uniformly continuous on \mathbb{C} .

- (1) Show that the function u=u(x,y) given by $u(x,y)=\frac{e^{ny}-e^{-ny}}{2n^2}\sin nx\quad \text{text}{for}\ n\in \mathbb{N}$ is the solution on $D=\{(x,y)\ |\ x^2+y^2<1\}$ of the Cauchy problem for the Laplace equation $\frac{2u}{partial\ ^2u}{partial\ ^2u}{partial\ ^2u}{partial\ y^2}=0,\quad u(x,0)=0,\quad \frac{rac}{partial\ u}{partial\ y}(x,0)=\frac{rac}{\sin\ nx}{n}.$
- (2) Show that there exist points $(x,y)\in D$ such that $\displaystyle \frac{1}{u(x,y)}=\inf y$.

6.3 Spring 2014

6.3.1 ?

The question provides some insight into Cauchy's theorem. Solve the problem without using the Cauchy theorem.

- 1. Evaluate the integral \$\displaystyle{\int_{\gamma} z^n dz}\$ for all integers \$n\$. Here \$\gamma\$ is any circle centered at the origin with the positive (counterclockwise) orientation.
- 2. Same question as (a), but with \$\gamma\$ any circle not containing the origin.
- 3. Show that if |a|<r|b|, then $\displaystyle \frac{dz}{(z-a)(z-b)} dz=\frac{2\pi i}{a-b}$. Here $\displaystyle \frac{dz}{(z-a)(z-b)} dz=\frac{2\pi i}{a-b}$. Here $\displaystyle \frac{dz}{(z-a)(z-b)} dz=\frac{2\pi i}{a-b}$.

6.3.2 ?

- (1) Assume the infinite series
 \$\displaystyle \sum_{n=0}^\infty c_n z^n\$ converges in \$|z| < R\$ and let \$f(z)\$ be the limit. Show that for \$r <R\$,
 \$\$\frac{1}{2 \pi} \int_0^{2 \pi} |f(r e^{i \cdot theta})|^2 d \theta = \sum_{n=0}^\infty |c_n|^2 r^{2n} \; .\$\$
- (2) Deduce Liouville's theorem from (1). Liouville's theorem: If f(z) is entire and bounded, then f is constant.

6.3.3 ?

Let \$f\$ be a continuous function in the region

 $\$ D=\{z\ | |z|>R, 0\leq \arg Z\leq \theta\}\quad\text{where}\quad 0\leq \theta \leq 2\pi.\$\$ If there exists \$k\$ such that \$\displaystyle{\lim_{z\to\infty} zf(z)=k}\$ for \$z\$ in the region \$D\$. Show that \$\$\lim_{R'\to\infty} \in L\$ is the part of the circle \$|z|=R'\$ which lies in the region \$D\$.

6.3.4 ?

Evaluate $\displaystyle \frac{0}^{\int \int x^2+a^2} \ dx }$.

6.3.5 ?

Let f=u+iv be differentiable (i.e. f'(z) exists) with continuous partial derivatives at a point $z=re^{i\theta}$, $r\neq 0$. Show that

6.3.6 ?

Show that $\displaystyle \int_0^{\infty} \frac{x^{a-1}}{1+x^n} dx=\frac{\pi^{n}}{n\sin \frac{a\pi}{n}} \$ using complex analysis, \$0< a < n\$. Here \$n\$ is a positive integer.

6.3.7 ?

For s>0, the **gamma function** is defined by $\displaystyle{Gamma(s)=\int_0^{\int_0^{t} e^{-t}t^{s-1} dt}$.

- Show that the gamma function is analytic in the half-plane \$\Re (s)>0\$, and is still given there by the integral formula above.
- Apply the formula in the previous question to show that \$\$\Gamma(s)\Gamma(1-s)=\frac{\pi}{\sin \pi s}.\$\$

> Hint: You may need $\displaystyle \frac{\mode{\mode{1-s}}=t \in 0^{\infty}}{e^{-vt}(vt)^{-s} dv}\$ for t>0.

6.3.8 ?

Apply Rouché's Theorem to prove the Fundamental Theorem of Algebra: If $p_n(z) = a_0 + a_1z + \cdot a_{n-1}z^{n-1} + a_nz^n\cdot (a_n \neq 0)$ is a polynomial of degree n, then it has n zeros in \$\mathbf C\$.

6.3.9 ?

Suppose \$f\$ is entire and there exist \$A, R >0\$ and natural number \$N\$ such that $f(z) \mid g \in A \mid z \mid N \mid f(z) \mid g \in R.$$ Show that (i) \$f\$ is a polynomial and (ii) the degree of \$f\$ is at least \$N\$.

6.3.10 ?

Let $f: {\mathbb C} \rightarrow \mathbb C$ hightarrow {\mathbb C}\$ be an injective analytic (also called univalent) function. Show that there exist complex numbers $a \neq 0$ and b\$ such that f(z) = az + b\$.

6.3.11 ?

Let g be analytic for $|z|\leq 1$ and |g(z)|<1 for |z|=1.

- Show that g has a unique fixed point in |z| < 1.
- What happens if we replace |g(z)| < 1 with $|g(z)| \le 1$ for |z|=1? Give an example if (a) is not true or give an proof if (a) is still true.
- What happens if we simply assume that \$f\$ is analytic for |z| < 1 and |f(z)| < 1 for |z| < 1? Suppose that f(z) not equiv z. Can f have more than one fixed point in |z| < 1?

> Hint: The map
\$\displaystyle{\psi_{\alpha}(z)=\frac{\alpha-z}{1-\bar{\alpha}z}}\$
> may be useful.

6.3.12 ?

Find a conformal map from $D = \{z : |z| < 1, |z - 1/2| > 1/2\}$ to the unit disk $\Delta = \{z : |z| < 1\}$.

6.4 Fall 2015

6.4.1 ?

Let $a_n \neq 0$ and assume that $\frac{1}{|a_n|} = L$. Show that $\frac{n+1}{|a_n|} = L$. Show that $\frac{n}{|a_n|} = L$. Show that $\lim_{n \rightarrow 0} \lim_{n \rightarrow 0} = L$. Show that $\lim_{n \rightarrow 0} \lim_{n \rightarrow 0} = L$. Show that $\lim_{n \rightarrow 0} \lim_{n \rightarrow 0} \lim_{n \rightarrow 0} = L$. Show that $\lim_{n \rightarrow 0} \lim_{n \rightarrow 0} \lim_{n$

convergence of a power series.

6.4.2 ?

- (a) Let \$z, w\$ be complex numbers, such that $\$ w \neq 1\$. Prove that \$\$\abs{\frac{w z}{1 \frac{w} z}} < 1 \; \; \mbox{if} \; |z| < 1 \; \mbox{and}\; |w| < 1,\$\$ and also that \$\$\abs{\frac{w z}{1 \frac{w} z}} = 1 \; \; \mbox{if} \; |z| = 1 \; \mbox{or}\; |w| = 1.\$\$
- (b) Prove that for fixed w in the unit disk \mathbb{D} , the mapping $F: z \geq \frac{w z}{1 \sqrt{y} z}$ satisfies the following conditions:
- (i) \$F\$ maps \$\mathbb D\$ to itself and is holomorphic.
- (ii) F\$ interchanges 0\$ and w\$, namely, F(0) = w\$ and F(w) = 0\$.
- (iii) |F(z)| = 1 if |z| = 1.
- (iv) \$F: {\mathbb D} \mapsto {\mathbb D}\$ is bijective.
- > Hint: Calculate \$F \circ F\$.

6.4.3 ?

```
Use n-1 = 0 to show that 2^{n-1} \sin\frac{pi}{n} \sinh \frac{2\pi}{n} = n; .$$
```

- > Hint: \$1 \cos 2 \theta = 2 \sin^2 \theta,\; \sin 2 \theta = 2 \sin \theta \cos \theta\$.

```
$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}
\; \; \; \text{and} \; \;
\frac{\partial v}{\partial r} = - \frac{1}{r} \frac{\partial u}{\partial \theta}$$
```

(b) Use these equations to show that the logarithm function defined by $\frac{z = \log r + i \cdot \frac{; \cdot }{mbox\{where} \cdot z = r e^{i \cdot theta } \cdot mbox\{with} \cdot ; - \pi < \cdot \frac{r}{s} is a holomorphic function in the region <math>\frac{r}{o}$. Also show that $\frac{s}{o}$ defined

above is not continuous in \$r>0\$.

6.4.4 ?

```
Assume $f$ is continuous in the region: $x \geq x_0, \; 0 \leq y \leq b$ and the limit $$\displaystyle \lim_{x \rightarrow + \infty} f(x + iy) = A$$ exists uniformly with respect to $y$ (independent of $y$). Show that $$\lim_{x \rightarrow + \infty} \int_{\gamma_x} f(z) dz = iA b \; , \; \;$$ where $\gamma_x : = \{ z \; | \; z = x + it, \; 0 \leq t \leq b\}.$
```

6.4.5 ?

```
(Cauchy's formula for "exterior" region) Let \alpha_1 be piecewise smooth simple closed curve with interior \Omega_1 and exterior \Omega_2. Assume f'(z) exists in an open set containing \alpha_2 and \Omega_2 are an extension \Omega_2 and \Omega_2 and \Omega_2 and \Omega_2 are an extension \Omega_2 and \Omega_2 and \Omega_2 and \Omega_2 are an extension \Omega_2 and \Omega_2 and \Omega_2 and \Omega_2 are an extension \Omega_2 and \Omega_2 and \Omega_2 are an extension \Omega_2 and \Omega_2 are an extension \Omega_2 and \Omega_2 and \Omega_2 are an extension \Omega_2 and \Omega_2 are an extension \Omega_2 and \Omega_2 and \Omega_2 are an extension \Omega_2 and \Omega_2 are an extension \Omega_2 and \Omega_2 are an extension \Omega_2 and \Omega_2 and \Omega_2 are an extension \Omega_2 and \Omega_2 are an extension \Omega_2 and \Omega_2 and \Omega_2 are an extension \Omega_2 and \Omega_2 are an
```

6.4.6 ?

Let f(z) be bounded and analytic in $\mathcal S$. Let $a \neq b$ be any fixed complex numbers. Show that the following limit exists $\lim_{R \to \infty} \lim_{z\to b} \int_{z-b} dz.$ Use this to show that f(z) must be a constant (Liouville's theorem).

6.4.7 ?

```
Prove by *justifying all steps* that for all $\xi \in {\mathbb C}$
we have $\displaystyle
e^{- \pi \xi^2} = \int_{- \infty}^\infty e^{- \pi x^2} e^{2 \pi i x \xi} dx \; .$

> Hint: You may use that fact in Example 1 on p. 42 of the textbook
without proof, i.e., you may assume the above is true for real
values of $\xi$.
```

6.4.8 ?

Suppose that f is holomorphic in an open set containing the closed unit disc, except for a pole at z_0 on the unit circle. Let $\$

 $\label{eq:continuous} $$ \%f(z) = \sum_{n = 1}^\infty z^n f(z) = \sum_{n = 1}^\infty c_n z^n $$ denote the power series in the open disc. Show that (1) $c_n \neq 0$ for all large enough n's, and (2) $$ displaystyle <math>\lim_{n \to \infty} x^n f(z) $$ f(z) f(z) f(z) f(z). $$$

6.4.9 ?

Let f(z) be a non-constant analytic function in |z|>0 such that $f(z_n) = 0$ for infinite many points z_n with $\lim_{n \to \infty} \inf z_n = 0$. Show that z=0 is an essential singularity for f(z). (An example of such a function is $f(z) = \sin (1/z)$.)

6.4.10 ?

Let f be entire and suppose that $\lim_{z \to f} f(z) = \inf_{z \to g} f(z)$. Show that f is a polynomial.

6.4.11 ?

Expand the following functions into Laurent series in the indicated regions:

6.4.12 ?

Assume f(z) is analytic in region D and Γ is a rectifiable curve in D with interior in D. Prove that if f(z) is real for all $z \in \Gamma$, then f(z) is a constant.

6.4.13 ?

Find the number of roots of $z^4 - 6z + 3 = 0$ in |z| < 1 and |z| < 2 respectively.

6.4.14 ?

Prove that $z^4 + 2z^3 - 2z + 10 = 0$ has exactly one root in each open quadrant.

6.4.15 ?

- (2) Show that the above is still true if Re(f(z)) > 0 is replaced with $\text{Re}(f(z)) \neq 0$.

6.4.16 ?

Assume f(z) is analytic in ${\mathbb D}$ and f(0)=0 and is not a rotation (i.e. $f(z) \neq e^{i \cdot theta} z$). Show that $\frac{n=1}^{i \cdot theta} z^{i}$ converges uniformly to an analytic function on compact subsets of $\frac{n+1}{z} = f(f^{n}(z))$.

6.4.17 ?

Let $f(z) = \sum_{n=0}^{\infty} c_n z^n$ be analytic and one-to-one in |z| < 1. For 0<r<1, let D_r be the disk |z|<r. Show that the area of $f(D_r)$ is finite and is given by $\sin_{n=1}^{\infty} c_n z^n$ (Note that in general the area of $f(D_1)$ is infinite.)

6.4.18 ?

Let $f(z) = \sum_{n=-\infty}^n c_n z^n$ be analytic and one-to-one in $r_0 < |z| < r_0 > r_0 < r_$

6.5 Spring 2015

6.5.1 ?

Let $a_n(z)$ be an analytic sequence in a domain D such that $\alpha_n(z) \le \sum_{n=0}^{\infty} |a_n(z)|$ converges uniformly on bounded and closed sub-regions of D. Show that $\alpha_n(z) \le \sum_{n=0}^{\infty} |a_n(z)|$ converges uniformly on bounded and closed sub-regions of D.

6.5.2 ?

Let f_n , f be analytic functions on the unit disk ${\mathbb D}$. Show that the following are equivalent.

- (i) $f_n(z)$ converges to f(z) uniformly on compact subsets in \mathbb{D} .
- (ii) $\int_{|z|=r} |f_n(z) f(z)| \ \ |dz| \$ converges to \$0\$ if \$0< r<1\$.

6.5.3 ?

Let \$f\$ and \$g\$ be non-zero analytic functions on a region Ω . Assume |f(z)| = |g(z)| for all \$z\$ in Ω . Show that $f(z) = e^{i \theta} g(z)$ in Ω some \$0 $e^{i \theta}$.

6.5.4 ?

Suppose \$f\$ is analytic in an open set containing the unit disc \$\$\mathbb{T}\$ and \$\$|f(z)| =1\$ when \$\$|z|\$=1. Show that either \$\$f(z) = e^{i \theta_s} for some \$\$\theta_s in \mathbb{R}\$ or there are finite number of \$z_k in \mathbb{D}, \$k \leq n\$ and \$\$\theta_s in \mathbb{R}\$ such that \$\$displaystyle \$f(z) = e^{i\theta_s} \prod_{k=1}^n \frac{z-z_k}{1 - \beta_s} , .\$\$

> Also cf. Stein et al, 1.4.7, 3.8.17

6.5.5 ?

- (1) Let p(z) be a polynomial, R>0 any positive number, and $m \neq 1$ an integer. Let $M_R = \sup \{ |z^{m} p(z) 1|: |z| = R \}$. Show that $M_R>1$.
- (2) Let $m \neq 1$ be an integer and $K = \{z \in \mathbb{R} : r \neq |z| \leq R \}$ where r< R. Show (i) using (1) as well as, (ii) without using (1) that there exists a positive number $\alpha = 0$ 0 such that for each polynomial p(z), $p(z) = z^{-m}|: z \in K \}$

6.5.6 ?

Let $\frac{1}{z^2 -1}$. Find all the Laurent series of f and describe the largest annuli in which these series are valid.

6.5.7 ?

Suppose \$f\$ is entire and there exist \$A, R >0\$ and natural number \$N\$ such that $|f(z)| \leq A |z|^N$ for $|z| \leq R$. Show that (i)

\$f\$ is a polynomial and (ii) the degree of \$f\$ is at most \$N\$.

6.5.8 ?

Suppose ff is entire and there exist A, R>0 and natural number N such that $|f(z)| \neq A |z|^N$ for $|z| \neq R$. Show that (i) ff is a polynomial and (ii) the degree of ff is at least N.

6.5.9 ?

- (1) Explicitly write down an example of a non-zero analytic function in |z|<1 which has infinitely zeros in |z|<1.
- (2) Why does not the phenomenon in (1) contradict the uniqueness theorem?

6.5.10 ?

- (1) Assume u is harmonic on open set 0 and z_n is a sequence in 0 such that $u(z_n) = 0$ and $\lim z_n \in 0$. Prove or disprove that u is identically zero. What if 0 is a region?
- (2) Assume \$u\$ is harmonic on open set \$0\$ and \$u(z) = 0\$ on a disc in \$0\$. Prove or disprove that \$u\$ is identically zero. What if \$0\$ is a region?
- (3) Formulate and prove a Schwarz reflection principle for harmonic functions
- > cf. Theorem 5.6 on p.60 of Stein et al.
- > Hint: Verify the mean value property for your new function obtained by Schwarz reflection principle.

6.5.11 ?

Let \$f\$ be holomorphic in a neighborhood of $D_r(z_0)$. Show that for any \$s<r\$, there exists a constant \$c>0\$ such that \$\$||f||_{(\in, s)} \leq ||f||_{(1, r)},\$\$ where \$\displaystyle ||f||_{((infty, s)} = \text{sup}_{z \in D_r(z_0)}||f(z)|\$ and \$\$\displaystyle ||f||_{(1, r)} = \int_{D_r(z_0)} ||f(z)||\$.

> Note: Exercise 3.8.20 on p.107 in Stein et al is a straightforward consequence of this stronger result using the integral form of the Cauchy-Schwarz inequality in real analysis.

6.5.12 ?

(1) Let \$f\$ be analytic in $\Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega$ with $\lim_{n \to \infty} x = a$. Show that for any $w \in \Omega$, there exists a sequence $z_n \in \Omega$ such that $\lim_{n \to \infty} x = a$.

(i)\$\displaystyle \int_0^\infty \frac{1}{(1 + x^n)^2} \, dx\$,

(2) Explain the similarity and difference between the above assertion and the Weierstrass-Casorati theorem.

6.5.13 ?

Compute the following integrals.

6.5.14 ?

Compute the following integrals.

```
\label{thm:continents} $$ \left( i \right) $$ \displaystyle \left( \int_0^\inf y \left( x_{x} \right)^2 \right), dx $$ (ii) $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ (iii) $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ (iii) $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ (iii) $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ (iii) $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ (iii) $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ (iii) $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \geq 2$ (iv) $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displaystyle \left( \int_0^\inf y \left( x_{x-1} \right)^2 \right), dx $$, $$ \displayst
```

\$a \in \mathbb C\$

6.5.15 ?

Let 0<r<1\$. Show that polynomials $p_n(z) = 1 + 2z + 3z^2 + \cdot 2 + 1$ \$ have no zeros in |z|<r\$ for all sufficiently large n\$'s.

6.5.16 ?

Let f be an analytic function on a region $\Omega.$ Show that f is a constant if there is a simple closed curve $\gamma.$ such that its image $f(\gamma.)$ is contained in the real axis.

6.5.17 ?

- (1) Show that $\displaystyle \frac{\pi^2}{\sin^2 \pi^2}$ and $\displaystyle \frac{g(z) = \sum_{n = -\infty}^{ \inf y} \frac{1}{(z-n)^2}}$ have the same principal part at each integer point.

6.5.18 ?

Let f(z) be an analytic function on $\$ (mathbb C} \backslash \{ z_0 \}\$, where z_0 is a fixed point. Assume that f(z) is bijective from $\$ (mathbb C} \backslash \{ z_0 \}\$ onto its image, and that f(z) is bounded outside $D_r(z_0)$, where r is some fixed positive number. Show that there exist a, b, c, $d \in \mathbb{C}$ with $a-bc \neq 0$, $c \neq 0$ such that $a+bc \neq 0$, $a+bc \neq 0$.

6.5.19 ?

Assume f(z) is analytic in $\frac{n}{2}$ and f(0)=0 and is not a rotation (i.e. $f(z) \neq e^{i \cdot z}$). Show that $\frac{n-1}^{i \cdot y}$ converges uniformly to an analytic function on compact subsets of $\frac{n+1}{z} = f(f^n)(z)$.

6.5.20 ?

Let \$f\$ be a non-constant analytic function on \$\mathbb D\$ with

6.5.21 ?

Find a conformal map

- 1. from $\{z: |z 1/2| > 1/2, \text{Re}\{z\} > 0 \}$ to $\{\text{mathbb H}\}$
- 2. from $\{z: |z 1/2| > 1/2, |z| < 1 \}$ to ∞
- 3. from the intersection of the disk $|z + i| < \sqrt{2}$ with ${\mathbb P}$ to ${\mathbb P}$.
- 4. from ${\mathbb D} \subset \mathbb C$, to ${\mathbb D} \subset \mathbb C$, the solution possible using Blaschke factor.
- 5. from $\{z: |z| < 1, \text{Re}(z) > 0 \}$ backslash (0, 1/2]\$ to $\$ to $\{x: |z| < 1, \text{Re}(z) > 0 \}$

6.5.22 ?

Let C and C be two circles and let $z_1 \in C$, $z_2 \in C$, $z'_1 \in C$, $z'_2 \in C$. Show that there is a unique fractional linear transformation f with f(C) = C and $f(z_1) = z'_1$, $f(z_2) = z'_2$.

6.5.23 ?

Assume $f_n \in H(\Omega)$ is a sequence of holomorphic functions on the region Ω that are uniformly bounded on compact subsets and $f \in H(\Omega)$ is such that the set $\Delta \in \Omega$ in $\Omega \in \Pi$ in $\Omega \in \Pi$ a limit point in $\Omega \in \Pi$. Show that $f_n \in \Pi$ converges to Π uniformly on compact subsets of $\Omega \in \Pi$.

6.5.24 ?

Let

- $\displaystyle \frac{1}{\pi c_{1}}\int_{\pi c_{1}}\int_{$

- $\displaystyle \frac{1}{\pi^2}\in D} \ |\psi'_{\alpha}| dx dy =\frac{1-|\alpha^2}{|\alpha^2} \ |\psi'_{\alpha}| dx dy =\frac{1-|\alpha^$

6.5.25 ?

6.5.26 ?

Let Ω be a simply connected open set and let γ be a simple closed contour in Ω and enclosing a bounded region U anticlockwise. Let $f: \Omega \$ be a holomorphic function and $\|f(z)\| \$ for all $z\in \Omega$. Prove that $\|f(z)\| \$ for all $z\in \Omega$.

6.5.27 ?

```
Compute the following integrals. (i) \displaystyle \int_0^{infty \frac{x^{a-1}}{1 + x^n} \, dx, $0< a < n$ (ii) \displaystyle \int_0^{infty \frac{1 + x^2}^2} \, dx
```

6.5.28 ?

```
Let 0<r<1$. Show that polynomials p_n(z) = 1 + 2z + 3z^2 + \cdot 2 + 1$ have no zeros in |z|<r$ for all sufficiently large n$'s.
```

6.5.29 ?

```
Let $f$ be holomorphic in a neighborhood of D_r(z_0). Show that for any $s<r$, there exists a constant $c>0$ such that $$\|f\|_{(\infty, s)} \leq c \|f\|_{(1, r)},$$ where $\displaystyle \|f\|_{(\infty, s)} = \text{sup}_{z \in D_s(z_0)}|f(z)|$ and $\displaystyle \|f\|_{(1, r)} = \int_{D_r(z_0)} |f(z)|dx dy$.
```

6.5.30 ?

```
Let \displaystyle \left\{ \sum_{\alpha \in \mathbb{Z}} 1-\bar{z} \right\}  with \displaystyle \left\{ \sum_{z \in \mathbb{Z}} 1-\bar{z} \right\}
```

- $\displaystyle \frac{1}{\pi c_{1}}\int \int_{\infty} |\phi D| \$ |\psi'_{\alpha}|^2 dx dy =1}\$.

- $\displaystyle \frac{1}{\pi c_{1}}\int \int {\mathbb D} |\pi_{\alpha}| dx dy =\frac{1-|\alpha^2}{|\alpha^2} .$

Prove that $\displaystyle \frac{1}{z}\left(z-\frac{1}{z}\right)$ is a conformal map from half disc $\left(z-\frac{1}{z}\right)$ to upper half plane $\frac{z-x+iy}{z}$.

6.5.31 ?

Let Ω be a simply connected open set and let γ be a simple closed contour in Ω and enclosing a bounded region U anticlockwise. Let $f: \Omega \times \Omega \$ be a holomorphic function and $f(z) \Omega \times \Omega \$ for all $z \in \Omega \$. Prove that $f(z) \subseteq \Omega \times \Omega \$

6.5.32 ?

Compute the following integrals. (i) $\star \sin^2 x^{a-1}$ + x^n \, dx\$, \$0< a < n\$ (ii) $\star \sin^2 x$ \\ int_0^\infty \\ frac{\log x}{(1 + x^2)^2}\, dx\$

6.5.33 ?

Let 0<r<1. Show that polynomials $p_n(z) = 1 + 2z + 3 z^2 + \cdot z^{n-1}$ have no zeros in |z|<r for all sufficiently large n.

6.5.34 ?

Let \$f\$ be holomorphic in a neighborhood of $D_r(z_0)$. Show that for any s<r, there exists a constant c>0 such that $|f|_{(\inf y, s)} \leq |f|_{(1, r)},$ where $|f|_{(\inf y, s)} = \cot \sup_{z \in D_r(z_0)} |f(z)|$ and $|f|_{(1, r)} = \cot D_r(z_0) |f(z)|$.

6.6 Fall 2016

6.6.1 ?

Let u(x,y) be harmonic and have continuous partial derivatives of order three in an open disc of radius R>0.

(a) Let two points (a,b), (x,y) in this disk be given. Show that the following integral is independent of the path in this disk joining these points:

 $\$v(x,y) = \int_{a,b}^{x,y} (-\frac u}{partial u}{\phi + \frac u}{partial u}{\phi .}$

- (b) \hfill
- (i) Prove that u(x,y)+iv(x,y) is an analytic function in this disc.
 - (ii) Prove that v(x,y) is harmonic in this disc.

6.6.2 ?

- (a) f(z) = u(x,y) + i v(x,y) be analytic in a domain $D\subset {\mathbb S}.$ Let $z_0=(x_0,y_0)$ be a point in $D\$ which is in the intersection of the curves $u(x,y) = c_1$ and $v(x,y) = c_2$, where c_1 and c_2 are constants. Suppose that $f'(z_0)\neq 0$. Prove that the lines tangent to these curves at z_0 are perpendicular.
- (b) Let $f(z)=z^2$ be defined in ${\mathbb C}$.
 - (i) Describe the
 level curves of \$\mbox{\textrm Re}{(f)}\$ and of \$\mbox{Im}{(f)}\$.

6.6.3 ?

- (a) $f: D\rightarrow C$ be a continuous function, where $D\rightarrow C$ is a domain.Let $\alpha D\rightarrow C$ be a smooth curve. Give a precise definition of the *complex line integral* ϕC
- (b) Assume that there exists a constant \$M\$ such that
 \$|f(\tau)|\leq M\$ for all \$\tau\in \mbox{\textrm Image}(\alpha\$). Prove
 that
 \$\$\big | \int_{\alpha} f \big |\leq M \times \mbox{\textrm length}(\alpha).\$\$
- (c) Let C_R be the circle |z|=R, described in the counterclockwise direction, where R>1. Provide an upper bound for $\int \int \int_{C_R} \frac{C_R}{\cos(z)} {z^2}$, which depends [only] underline on R and other constants.

6.6.4 ?

(a) Let Let $f:{\mathbb C}\to C$ be an entire function. Assume the existence of a non-negative integer m, and of positive constants L and R, such that for all z with |z|>R the inequality $|f(z)| \leq L |z|^m$ holds. Prove that f is a

polynomial of degree \$\leq m\$.

(b) Let \$f:{\mathbb C}\rightarrow {\mathbb C}\$ be an entire
function. Suppose that there exists a real number M such that for
all \$z\in {\mathbb C}\$ \$\$\mbox{\textrm Re} (f) \leq M.\$\$ Prove that \$f\$
must be a constant.

6.6.5 ?

Prove that all the roots of the complex polynomial $2^7 - 5z^3 + 12 = 0$ lie between the circles |z| = 1 and |z| = 2.

6.6.6 ?

(a) Let FF be an analytic function inside and on a simple closed curve CF, except for a pole of order $m\geq 1$ at z=a inside CF. Prove that

(b) Evaluate $\frac{C}\frac{e^{\tau_2+\pi^2}}{(\tau_2+\pi^2)^2}d\tau_3$ where \$C\$ is the circle |z|=4\$.

6.6.7 ?

Find the conformal map that takes the upper half-plane comformally onto the half-strip $\$ w=x+iy:\ -\pi/2<x<\pi/2\ y>0\}\$.

6.6.8 ?

Compute the integral $\star = \frac{e^{-2\pi ix}}{\int x^{e^{-2\pi ix}}}{\cosh x}dx}$ where $\star z^{e^{-2}}$.