1. Řešte úlohy týkající se interpolace.

Zvoleno zadání a) Napište Lagrangerův interpolační polynom L(x), který interpoluje hodnoty

x	1,2	1,8	2,5
f(x)	2,847	1,680	0,039

a použijte ho pro odhad f(1,5) a f(2,0).

Lagrangerova metoda konstrukce interpolačního polynomu sestává z dílčích konstrukcí fundamentálních polynomů n-tého stupňě $l_i(x)$, $i = 0, \ldots, n$, pro které platí

$$l_i(x_j) = \begin{cases} 0, & i \neq j, \\ 1, & i = j. \end{cases}$$

Kořeny každého takového fundamentálního polynomu $l_i(x)$ jsou pak $x_0, x_1, \ldots, x_{n-1}, x_n$, tedy platí

$$l_i(x) = C_i \cdot (x - x_0)(x - x_1) \dots (x - x_{i-1})(x - x_{i+1}) \dots (x - x_{n-1})(x - x_n), \tag{1}$$

přičemž podmínka $l_i(x_i) = 1$ bude splněna, pokud

$$C_i = \frac{1}{(x_i - x_0)(x_i - x_1)\dots(x - x_{i-1})(x - x_{i+1})\dots(x_i - x_{n-1})(x_i - x_n)}.$$
 (2)

Potom je fundamentální polynom $l_i(x)$

$$l_i(x) = \frac{(x - x_0)(x - x_1)\dots(x - x_{i-1})(x - x_{i+1})\dots(x - x_{n-1})(x - x_n)}{(x_i - x_0)(x_i - x_1)\dots(x - x_{i-1})(x - x_{i+1})\dots(x_i - x_{n-1})(x_i - x_n)}.$$
(3)

Tento polynom nabývá nulové hodnoty ve všech uzlech, kromě jediného, ve kterém nabývá hodnoty 1. Celková hodnota lineární kombinace fundamentálních polynomů v i-tém uzlu je určena pouze odpovídajícím i-tým fundamentálním polynomem $l_i(x)$, zbylé polynomy výsledek neovlivní. Lagrangerův interpolační polynom $L_n(x)$ má potom tvar

$$L_n(x) = \sum_{i=0}^{n} y_i l_i(x).$$
 (4)

1.1 Konstrukce Lagrangerova polynomu

Vytvoření odpovídajících fundamentálních polynomů ze zadané tabulky lze realizovat dosazením do rovnice (3):

$$l_0(x) = \frac{(x-1,8)(x-2,5)}{(1,2-1,8)(1,2-2,5)} = \frac{5}{39} \cdot (10x^2 - 43x + 45)$$

$$l_1(x) = \frac{(x-1,2)(x-2,5)}{(1,8-1,2)(1,8-2,5)} = -\frac{50}{21} \cdot (x^2 - 3,7x + 3)$$

$$l_2(x) = \frac{(x-1,2)(x-1,8)}{(2,5-1,2)(2,5-1,8)} = \frac{4}{91} \cdot (25x^2 - 75x + 54)$$

a jejich následné dosazení do vztahu (4) vede k získání výsledného Lagrangerova polynomu stupně n=2:

$$L_2 = 2,847 \cdot l_0(x) + 1,680 \cdot l_1(x) + 0,039 \cdot l_2(x)$$

$$L_2 = 2,847 \cdot \frac{5 \cdot (10x^2 - 43x + 45)}{39} + 1,680 \cdot \frac{-50 \cdot (x^2 - 3,7x + 3)}{21} + 0,039 \cdot \frac{4 \cdot (25x^2 - 75x + 54)}{91} + 0,000 \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot$$

Hledaný Lagrangerův interpolační polynom je $L_2(x) = -0,307143x^2 - 1,02357x + 4,51757$.

1.2 Odhad podle získaného Lagrangerova polynomu

Výpočet $L_2(x)$ pro zadané hodnoty f(1,5) a f(2,0):

$$L_2(1,5) = -0.307143 \cdot (1,5)^2 - 1.02357 \cdot (1,5) + 4.51757 = 2.29114$$

$$L_2(2,0) = -0.307143 \cdot (2)^2 - 1.02357 \cdot (2) + 4.51757 = \underline{1.24186}$$

Ověření v prostředí MATLAB s využitím funkce lagrange.m z N:\UKAZKY\Prazak\NUMA\B_cviceni\cv05\matlab:

```
>> x = [ 1.2 1.8 2.5 ];
>> y = [ 2.847 1.680 0.039 ];
>> u = [ 1.5 2.0 ];
>> v = lagrange(x, y, u)
v =
```

2.2911 1.2419

2. Řešte úlohy týkající se numerické integrace.

Zvoleno zadání c) Pomocí lichoběžníkového i Simpsonova pravidla určete aproximaci určitého integrálu

$$\int_0^1 \sqrt{\cos x} \, dx$$

Použijte n=10 a pro lichoběžníkové pravidlo odhadněte chybu.

Pomocné derivace:

$$f'(x) = \frac{1}{2} \cdot \frac{1}{\sqrt{\cos x}} \cdot (-\sin x) = -\frac{\sin x}{2 \cdot \sqrt{\cos x}}$$

$$f''(x) = -\frac{1}{2} \cdot \left(\frac{\sin x}{\sqrt{\cos x}}\right)' = -\frac{1}{2} \cdot \frac{\sqrt{\cos x}(\sin x)' - \sin x(\sqrt{\cos x})'}{\cos x}$$

$$f''(x) = -\frac{1}{2} \cdot \frac{\sqrt{\cos x} \cdot (-\sin x) - \left(\frac{(\cos x)'}{2 \cdot \sqrt{\cos x}}\right)}{\cos x} = \frac{1}{2} \cdot \frac{\frac{\sin x \cdot (-\sin x)}{2 \cdot \sqrt{\cos x}} - (\cos x)^{\frac{3}{2}}}{\cos x} = \frac{\sin^2 x - 2}{4 \cdot \cos^{\frac{3}{2}} x}$$

2.1 Lichoběžníkové pravidlo

Lichoběžníkové pravidlo nahrazuje na každém podintervalu $\langle x_{i-1}, x \rangle$ integrand f(x) Lagrangerovým polynomem tak, jak bylo popsáno v příkladě 1. Při $h = x_i - x_{x-1}$ pak pro každý subinterval platí

$$\int_{x_{i-1}}^{x_i} f(x) \, \mathrm{d}x \approx \int_{x_{i-1}}^{x_i} L_{i,1}(x) \, \mathrm{d}x,\tag{1}$$

po patřičné úpravě

$$\int_{x_{i-1}}^{x_i} f(x) \, \mathrm{d}x \approx \frac{h}{2} \left(f(x_{i-1}) + f(x) \right). \tag{2}$$

Pro celý interval $\langle a,b \rangle$ lze aproximaci vyjádřit ve tvaru

$$\int_{a}^{b} f(x) \, dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} f(x) \, dx \approx \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} L_{i,1}(x) \, dx, \tag{3}$$

$$\int_{a}^{b} f(x) \, dx \approx \frac{h}{2} \left[f(a) + 2 \cdot \sum_{i=2}^{n-1} f(x_i) + f(b) \right]$$
 (4)

Obecná chyba takto získané aproximace je rovna

$$R_{i,1}(f) = \frac{f''(\eta)}{2} \int_{x_{i-1}}^{x_i} (x - x_{i-1})(x - x_i) \, \mathrm{d}x$$
 (5)

pro určitá $\eta_i \in \langle x_{x-1}, x_i \rangle$. Pro celkový odhad chyby lze použít vztah

$$|\bar{R}_1(f)| \le n \frac{h^3}{12} \bar{M}_2 = \frac{\bar{M}_2}{12n^2} (b-a)^3.$$
 (6)

2.1.1 Aproximace určitého integrálu lichoběžníkovou metodou

Pro provedení výpočtu je třeba sestavit tabulku uzlů a funkčních hodnot v těchto uzlech. Uvažujeme-li lichoběžníkovou metodu jako ekvidistantní kvadraturní formuli, potom konstantní krok $h=\frac{b-a}{n}$ bude při n=10 na intervalu $\langle 0,1\rangle$ $h=\frac{1-0}{10}=0,1.$

i	x_i	$f(x) = \sqrt{\cos x}$	$f(x_i)$	$f''(x_i)$
0	0	$\sqrt{\cos 0}$	1	-0,5
1	0,1	$\sqrt{\cos 0, 1}$	0,997499	-0,5012599
2	0,2	$\sqrt{\cos 0, 2}$	0,9899831	-0,5051615
3	0,3	$\sqrt{\cos 0, 3}$	0,9774132	-0,5120885
4	0,4	$\sqrt{\cos 0, 4}$	0,9597192	-0,5227481
5	0,5	$\sqrt{\cos 0, 5}$	0,9367938	-0,5382926
6	0,6	$\sqrt{\cos 0, 6}$	0,9084798	-0,5605419
7	0,7	$\sqrt{\cos 0,7}$	0,8745526	-0,592389
8	0,8	$\sqrt{\cos 0, 8}$	0,8346896	-0,63857
9	0,9	$\sqrt{\cos 0, 9}$	0,7884225	-0,7072147
10	1	$\sqrt{\cos 1}$	0,7350526	$-0,8132473^*$

Získané výsledky je možné dosadit do vztahu (4):

$$\int_0^1 \sqrt{\cos x} \, dx \approx \frac{0,1}{2} \left[f(0) + 2 \cdot \sum_{i=2}^9 f(x_i) + f(10) \right]$$

 $=0,05\cdot [1+2\cdot (0,997499+0,9899831+\cdots +0,8346896+0,7884225)+0,7350526]=0,9135079\pm R_1(f)$

Ověření v prostředí R:

```
> x <- seq(0, 1, 0.1)
> fx <- sqrt(cos(x))
> 0.1/2*(fx[1]+2*sum(fx[c(2:10)])+fx[11])
[1] 0.9135079
```

2.1.2 Odhah chyby u lichoběžníkové metody

Odhad chyby dosazením do vztahu (6):

$$R_1(f) = \frac{\max(|f''(x_i)|)}{12 \cdot 10^2} (1 - 0)^3 = \frac{0.8132473}{120} = \underline{\pm 0.006777061}$$

Ověření v prostředí R:

```
> M2 <- max(abs(((sin(x))^2-2)/(4*(cos(x))^(3/2))))
> R1 <- (M2/(12*10^2))*(1-0)^3
> R1
[1] 0.0006777061
```

2.2 Simpsonovo pravidlo

Simpsonova metoda pracuje s parabolami, spočívá tedy v nahrazení integrandu f(x) v každém svém subintervalu polynomem druhého stupně. K sestavení každého takového polynomu je třeba znát právě tři body. Jako třetí bod je obyčejně použit střed každého subintervalu.

$$\int_{i}^{j} f(x) \, \mathrm{d}x \approx \int_{i}^{j} L_{2}(x) \, \mathrm{d}x \tag{1}$$

Při označení $i=s_0, \frac{j-i}{2}=s_1, j=s_2$ lze získat tvar

$$\int_{i}^{j} L_{2}(x) dx = \int_{i}^{j} \left[f(s_{0}) \frac{(x-s_{1})(x-s_{2})}{(s_{0}-s_{1})(s_{0}-s_{2})} + f(s_{1}) \frac{(x-s_{0})(x-s_{2})}{(s_{1}-s_{0})(s_{1}-s_{2})} + f(s_{2}) \frac{(x-s_{0})(x-s_{1})}{(s_{2}-s_{0})(s_{2}-s_{1})} \right] dx$$
 (2)

A po odpovídajících úpravách při $h = s_1 - s_0$

$$\int_{i}^{j} f(x) \, \mathrm{d}x \approx \frac{h}{3} \left[f(s_0) + 4 \cdot f(s_1) + f(s_2) \right] \tag{3}$$

Z uvedeného vztahu vyplývá, že interval $\langle a,b \rangle$ složeného pravidla musí být rozdělen na 2n stejných částí s podintervaly definovanými jako $\langle x_{2i-2},x_{2i} \rangle$ se středem $s_i=x_{2i-1}$ pro $i=1,\ldots,n$, přičemž $h=\frac{b-a}{2n}$.

$$\int_{a}^{b} f(x) \, dx \approx \sum_{i=1}^{n} \int_{x_{2i-2}}^{x_{2i}} L_{i,2}(x) \, dx = \frac{h}{3} \left[\sum_{i=1}^{n} \left(f(x_{2i-2}) + 4f(x_{2i-1}) + f(x_{2i}) \right) \right]$$
(4)

$$\int_{a}^{b} f(x) \, dx \approx \frac{h}{3} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_{2i}) + 4 \sum_{i=1}^{n} f(x_{2i-1}) + f(x_{2n}) \right]$$
 (5)

2.2.1 Aproximace určitého integrálu Simpsonovým pravidlem

Určení kroku $h = \frac{b-a}{2n}$ pro n = 10: $h = \frac{1-0}{2 \cdot 10} = 0,05$.

	1		1
x_{2i}	$f(x_{2i}) = \sqrt{\cos x_{2i}}$	x_{2i-1}	$f(x_{2i-1}) = \sqrt{\cos x_{2i-1}}$
$x_0 = 0$	1	$x_1 = 0,05$	0,9993749
$x_2 = 0, 1$	0,9974990	$x_3 = 0, 15$	0,9943697
$x_4 = 0, 2$	0,9899831	$x_5 = 0,25$	0,9843335
$x_6 = 0, 3$	0.9774132	$x_7 = 0,35$	0,9692124
$x_8 = 0, 4$	0,9597192	$x_9 = 0,45$	0,9489189
$x_{10} = 0, 5$	0,9367938	$x_{11} = 0,55$	0,9233225
$x_{12} = 0, 6$	0,9084798	$x_{13} = 0,65$	0,8922353
$x_{14} = 0,7$	0,8745526	$x_{15} = 0,75$	0,8553881
$x_{16} = 0, 8$	0,8346896	$x_{17} = 0.85$	0,8123935
$x_{18} = 0,9$	0,7884225	$x_{19} = 0,95$	0,7626815
$x_{20} = 1$	0,7350526		

Po dosazení hodnot do vztahu (5):

$$\int_0^1 f(x) \, dx \approx \frac{0.05}{3} \left[1 + 2 \sum_{i=1}^9 f(x_{2i}) + 4 \sum_{i=1}^{10} f(x_{2i-1}) + 0.7350526 \right]$$

$$\int_0^1 f(x) \, dx \approx \frac{0.05}{3} \left[1 + 2 \cdot 8.267553 + 4 \cdot 9.14223 + 0.7350526 \right] = \underbrace{0.9139847}_{\underline{\text{min}}}$$

Ověření v prostředí R:

```
> x <- seq(0, 1, 0.05)
> fx <- sqrt(cos(x))
> (0.05/3)*(fx[1]+2*sum(fx[seq(3,19,2)])+4*sum(fx[seq(2,20,2)])+fx[21])
[1] 0.9139847
```

3. Metodou nejmenších čtverců hledejte aproximační polynomy pro určené stupně.

Zvoleno zadání a) n=2

x	1	1,5	2	2,5	3
f(x)	0,837	0,192	-0,950	-1,095	1,344

Hledaný polynom bude ve tvaru $P_2(x) = a_0 + a_1 x + a_2 x^2$ a odpovídajcí systém normálních rovnic v zápisu skalárního součinu

$$(y,1) = a_0(1,1) + a_1(x,1) + a_2(x^2,1)$$

$$(y,x) = a_0(1,x) + a_1(x,x) + a_2(x^2,x)$$

$$(y,x^2) = a_0(1,x^2) + a_1(x,x^2) + a_2(x^2,x^2)$$

$$(1)$$

bude nabývat hodnot z tabulky:

$$(y,1) = 0,837 + 0,192 - 0,950 - 1,095 + 1,344 = 0,328$$

$$(y,x) = 0,837 + 0,288 - 1,9 - 2,7375 + 4,032 = 0,5195$$

$$(y,x^2) = 0,837 + 0,432 - 3,8 - 6,84375 + 12,096 = 2,72125$$

$$(1,1) = 1 + 1 + 1 + 1 + 1 = 5$$

$$(x,1) = (1,x) = 1 + 1,5 + 2 + 2,5 + 3 = 10$$

$$(x^2,1) = (1,x^2) = (x,x) = 1 + 2,25 + 4 + 6,25 + 9 = 22,5$$

$$(x,x^2) = (x^2,x) = 1 + 3,375 + 8 + 15,625 + 27 = 55$$

$$(x^2,x^2) = 1 + 5,0625 + 16 + 39,0625 + 81 = 142,125$$

Výsledná soustava normálních rovnic tedy bude mít po dosazení do (1) následující podobu:

$$0,328 = a_0 \cdot 5 + a_1 \cdot 10 + a_2 \cdot 22,5$$

$$0,5195 = a_0 \cdot 10 + a_1 \cdot 22,5 + a_2 \cdot 55$$

$$2,72125 = a_0 \cdot 22,5 + a_1 \cdot 55 + a_2 \cdot 142,125$$

$$(2)$$

function x = cramerSolve(A, b)

Soustavu lienárních algebraických rovnic (2) lze vyřešit například užitím Cramerova pravidla. Uvažujme následující funkci v prostředí MATLAB, která realizuje výpočet neznámých podle Cramerova pravidla a pracuje s předanou maticí A a sloupcovým vektorem pravých stran b.

```
[m n] = size(b);
v = zeros(m,1);
Ai = A;
for k=1:m
    Ai(:,k) = b;
    v(k) = det(Ai);
    Ai(:,k) = A(:,k);
end
detA = det(A);
x = v / detA;
A její následné zavolání s odpovídajícími argumenty:
>> A = [ 5 10 22.5; 10 22.5 55; 22.5 55 142.125 ]
>> b = [ 0.328 0.5195 2.72125 ]'
>> a = cramerSolve(A, b)
a =
    7.3398
   -8.2432
    2.0471
Hledaný polynom je tedy P_2 = 7,3398 - 8,2432x + 2,0471x^2.
```

 $Ov\check{e}\check{r}eni\ funkci\ polynomFit2.m\ z\ N:\UKAZKY\Prazak\NUMA\B_cviceni\cv06\matlab:$

```
>> x = [ 1 1.5 2 2.5 3 ];
>> y = [ 0.837 0.192 -0.95 -1.095 1.344 ];
>> ap = PolynomFit2(x, y, 2)
ap =

    7.3398
    -8.2432
    2.0471
```