Fundamentos: Estrutura Atômica

-10 01/2

Capítulo 2: Shackleford

Índice

- * Estrutura Atômica
- * Ligação Iônica
- * Ligação Covalente
- * Ligação Metálica
- * Interação de van der Waals
- * Classificação de acordo com a ligação química

Introdução

- * Ligação química: interação entre os átomos em um material
- * Critério de classificação dos materiais
- Determina as propriedades macroscópicas
- Ligação primária: envolve a transferência ou compartilhamento de elétrons (iônica, covalente e metálica)
- Ligação secundária: atração fraca entre átomos, sem participação dos elétrons (van der Waals)

Estrutura Atômica

- * Modelo semiclássico de Bohr
- * Elétrons (carga negativa) giram em torno do núcleo em órbitas circulares definidas
- * Núcleo: contém os prótons (carga positiva) e os nêutrons
- * Número de prótons define o elemento químico
- * Núcleo: contém quase toda a massa do átomo, mas ocupa uma pequena porção de seu volume

Estrutura Atômica

- * Número de nêutrons pode variar: isótopos
- * Número de prótons = número atômico
- * Ligações químicas envolvem apenas os orbitais eletrônicos
- Cada órbita eletrônica tem uma energia definida
- * Quando o elétron muda de órbita, ele ganha ou perde a diferença de energia entre as órbitas
- * Cada órbita (n) pode ter um número definido de elétrons, e é dividida em orbitais (s, p, d, f,...)

Estrutura Atômica

- * Cada elemento químico tem sua distribuição eletrônica característica no diagrama de Linus Pauling
- * Carbono: 1s²2s²2p²
- * Nas ligações químicas, os orbitais dos elétrons mais externos se deformam, assumindo uma forma mais simétrica, é a hibridização.
- * No caso do carbono: 1s²2s¹2p³, nesse caso chamado de hibridização sp³.

Contas

- * m_p = massa do próton = 1.66x10⁻²⁴ g = 1 amu
- * Massa do núcleo do C¹² (6 prótons e 6 nêutrons) = 12 amu.
- * $1 \text{ g} = 6.023 \text{x} 10^{24} \text{ amu} = \text{N}_{\text{a}} \text{ amu}$
- * N_a = número de Avogadro
- $m_e = 9.11 \times 10^{-28} \text{ g}$
- $q_p = carga do próton = -q_e = 1.6x10^{-19} C$

Ligação Iônica