VIENNA UNIVERSITY OF TECHNOLOGY

184.725 High Performance Computing

TU WIEN INFORMATICS

Exercise 2

Authors: Camilo Tello Fachin 12127084

Supervisor: Prof. Dr. Jesper Larsson Träff

December 17, 2022

Abstract

Here documented the results of exercise 2, the Programming part of High Performance Computing. A presentation for Marco Schmid MSc.

Contents

1	Exercise 1 - Implement A Benchmark Framework $1.1 \sum_{i=0}^d k^i \text{for } k>0 \ (\text{Ex}1.1) . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	1
2	Exercise 2 - Implement Linear Pipeline for MPI_Bcast and MPI_Reduce	2
3	Exercise 3 - Combining MPI Processes	3
4	Exercise 4 - Binary Tree Algorithms for MPI_Bcast and MPI_Reduce	4
5	Exercise 5 - Integrated, Improved Binary Tree Algorithm	5
6	Exercise 6 - Improvement with Sibling Leave Communication (BONUS)	6
7	Exercise 7 - Implemenetation and Benchmarking of Improved Version (BONUS)	7

1 Exercise 1 - Implement A Benchmark Framework

1.1 $\sum_{i=0}^{d} k^{i}$ for k > 0 (Ex1.1)

$$\sum_{i=0}^{d} k^{i} = \sum_{i=0}^{d} k^{i}$$

$$\sum_{i=0}^{d} k^{i} - k \sum_{i=0}^{d} k^{i} = \sum_{i=0}^{d} k^{i} - k \sum_{i=0}^{d} k^{i}$$

$$\sum_{i=0}^{d} k^{i} - k \sum_{i=0}^{d} k^{i} = \sum_{i=0}^{d} k^{i} - \sum_{i=1}^{d+1} k^{i}$$

$$\sum_{i=0}^{d} k^{i} (1 - k) = 1 - k^{d+1}$$

$$\sum_{i=0}^{d} k^{i} = \frac{k^{d+1} - 1}{k - 1}$$
(1)

2 Exercise 2 - Implement Linear Pipeline for MPI_Bcast and MPI_Reduce

Text for Ex2.

Figure 1: Complete (but unbalanced) binary tree of height d=4 with p=9 nodes.

3 Exercise 3 - Combining MPI Processes

Text for Ex3.

4 Exercise 4 - Binary Tree Algorithms for MPI_Bcast and MPI_Reduce

Text for Ex4.

Figure 2: Benchmark both algorithms - yarg32() is faster than yarg() for all feasible values of d

5 Exercise 5 - Integrated, Improved Binary Tree Algorithm

Text for Ex5.

$$\sum_{i=0}^{d} k^{i} = \sum_{i=0}^{d} k^{i}$$

$$\sum_{i=0}^{d} k^{i} - k \sum_{i=0}^{d} k^{i} = \sum_{i=0}^{d} k^{i} - k \sum_{i=0}^{d} k^{i}$$

$$\sum_{i=0}^{d} k^{i} - k \sum_{i=0}^{d} k^{i} = \sum_{i=0}^{d} k^{i} - \sum_{i=1}^{d+1} k^{i}$$

$$\sum_{i=0}^{d} k^{i} (1 - k) = 1 - k^{d+1}$$

$$\sum_{i=0}^{d} k^{i} = \frac{k^{d+1} - 1}{k - 1}$$
(2)

6 Exercise 6 - Improvement with Sibling Leave Communication (BONUS)

Text for Ex6.

7 Exercise 7 - Implementation and Benchmarking of Improved Version (BONUS)

Text for Ex7.