Linguagens Formais e Autômatos

Prof: Maurilio Martins Campano Júnior

- Mecanismo gerador que permite definir formalmente uma linguagem
- Através de uma gramática pode-se gerar todas as sentenças da linguagem definida por ela
- Modelo muito aplicado na definição de linguagens computacionais

- Formalmente uma gramática é uma quádrupla:
 - G = (V, T, P, S) onde:
 - V é um conjunto de símbolos não-terminais (ou variáveis)
 - T é um conjunto finito de símbolos terminais disjuntos de V
 - **P** é um conjunto finito de pares, denominados regras de produção tal que a primeira componente é a palavra de (VUT)⁺ e a segunda componente é a palavra (V U T)*
 - S é um elemento de V, denominado símbolo inicial, ou símbolo de partida

- Os símbolos de T equivalem aqueles que aparecem nos programas de uma linguagem de programação. É o alfabeto em cima do qual a linguagem é definida;
- Os elementos de V são símbolos auxiliares que são criados para permitir a definição das regras da linguagem. Eles correspondem à "categorias sintáticas" da linguagem definida:
 - Português: sentença, predicado, verbo, ...;
 - Pascal: programa, bloco, procedimento, ...;

- Uma regra de produção (α,β) é representada por $\alpha \to \beta$
- As regras de produção definem as condições de geração das sentenças
- A aplicação de uma regra de produção é denominada derivação
- Uma regra $\alpha \to \beta$ indica que α pode ser substituída por β sempre que α aparecer
- Enquanto houver símbolo não-terminal na cadeia em derivação, esta derivação não terá terminado

- O símbolo inicial é o símbolo através do qual deve iniciar o processo de derivação de uma sentença
- Observações:
 - $V \cap T = \emptyset$
 - Os elementos de T são os Terminais. Procuraremos representálos por letras minúsculas (a, b, c, d, ...)
 - Os elementos de V são os não-terminais. Procuraremos representá-los por letras maiúsculas (A, B, C, D, ...)
 - As cadeias mistas, isto é, aquelas que contém símbolos de V e símbolos de T serão representadas por letras gregas (α, β, ...)

- Exemplo:
 - $G1 = (\{S, A, B\}, \{a, b\}, P, S), onde:$
 - $P = \{ 1 \} S \rightarrow AB$ $2) A \rightarrow a$ $3) B \rightarrow b \}$

- Quais as cadeias terminais geradas por esta gramática?
- Qual a linguagem gerada pela gramática G1?
 - L(G1) = ?

- Exemplo:
 - $G1 = (\{S, A, B\}, \{a, b\}, P, S), onde:$
 - $P = \{ 1) S \rightarrow AB$ $2) A \rightarrow a$ $3) B \rightarrow b \}$

- Quais as cadeias terminais geradas por esta gramática?
- Qual a linguagem gerada pela gramática G1?
 - $L(G1) = \{ab\}$

- Exemplo:
 - $G2 = (\{A, B\}, \{a, b, c\}, P, A), onde:$
 - $P = \{ 1) A \rightarrow aB$ $2) B \rightarrow bB$ $3) B \rightarrow c \}$

- Quais as cadeias terminais geradas por esta gramática?
- Qual a linguagem gerada pela gramática G2?
 - L(G2) = ?

- Exemplo:
 - $G2 = (\{A, B\}, \{a, b, c\}, P, A), onde:$
 - $P = \{ 1) A \rightarrow aB$ $2) B \rightarrow bB$ $3) B \rightarrow c \}$

- Quais as cadeias terminais geradas por esta gramática?
- Qual a linguagem gerada pela gramática G2?
 - $L(G2) = \{ab^nc \mid n \ge 0\}$

- Exemplo:
 - $G3 = (\{S, A, B, C\}, \{a, b, c\}, P, S), onde:$
 - $P = \{ 1 \} S \rightarrow A$ $2) A \rightarrow BaC$ $3) B \rightarrow bB$ $4) B \rightarrow b$ $5) C \rightarrow cC$ $6) C \rightarrow c \}$
- Quais as cadeias terminais geradas por esta gramática?
- Qual a linguagem gerada pela gramática G3?
 - L(G2) = ?

- Exemplo:
 - $G3 = (\{S, A, B, C\}, \{a, b, c\}, P, S), onde:$
 - $P = \{ 1 \} S \rightarrow A$ $2) A \rightarrow BaC$ $3) B \rightarrow bB$ $4) B \rightarrow b$ $5) C \rightarrow cC$ $6) C \rightarrow c \}$
- Quais as cadeias terminais geradas por esta gramática?
- Qual a linguagem gerada pela gramática G3?
 - $L(G2) = \{b^mac^n \mid m, n \ge 1\}$

- G4 (subconjunto da língua portuguesa)
 - V = {Sentença, Sn, Sv, Artigo, Verbo, Substantivo, Complemento}
 - $T = \{\text{peixe, isca, mordeu, o, a}\}$
 - $P = \{ 1 \}$ Sentença \rightarrow Sn Sv
 - 2) Sn → Artigo Substantivo
 - 3) Sv \rightarrow Verbo Complemento
 - 4) Complemento → Artigo Substantivo
 - 5) Artigo \rightarrow o
 - 6) Artigo \rightarrow a
 - 7) Substantivo \rightarrow peixe
 - 8) Substantivo \rightarrow isca
 - 9) Verbo \rightarrow mordeu }
 - S = Sentença

- G5 Eliminando os problemas de concordância de gênero
 - V = {Sentença, Sn, Sv, ArtigoF, ArtigoM, Verbo, SubstantivoF, SubstantivoM, Complemento}
 - $T = \{\text{peixe, isca, mordeu, o, a}\}\$
 - $P = \{ 1 \}$ Sentença \rightarrow Sn Sv
 - 2) Sn \rightarrow ArtigoF SubstantivoF
 - 3) Sn → ArtigoM SubstantivoM
 - 4) $Sv \rightarrow Verbo Complemento$
 - 5) Complemento → ArtigoF SubstantivoF
 - 6) Complemento → ArtigoM SubstantivoM
 - 7) ArtigoF \rightarrow a
 - 8) ArtigoM \rightarrow o
 - 9) SubstantivoF \rightarrow isca
 - 10) SubstantivoM \rightarrow peixe
 - 11) Verbo \rightarrow mordeu }
 - S = Sentença

- Geração direta (⇒):
- Considere α , β , γ , $\delta \in (V \cup T)^*$
 - Uma cadeia $\alpha\gamma\beta$ gera diretamente (\Rightarrow) uma cadeia $\alpha\delta\beta$ sse:
 - $\gamma \rightarrow \delta \in P$
- Geração (*⇒**):
- Considere α , β , γ , $\delta \in (V \cup T)^*$
 - Uma cadeia α gera (\Rightarrow *) uma cadeia β sse:
 - $\exists \gamma 1, \gamma 2, ..., \gamma n$ tal que
 - $\alpha \Rightarrow \gamma 1 \Rightarrow \gamma 2 \Rightarrow \dots \Rightarrow \gamma n \Rightarrow \beta n \ge 0$

• Definições:

- Forma sentencial: uma cadeia $\alpha \in (V \cup T)^*$ é uma forma sentencial de uma gramática sse $S \Rightarrow^* \alpha$, ou seja, α é um "embrião" para alguma sentença gerada pela gramática, ou a própria sentença.
- Sentença: uma forma sentencial α , é uma sentença de G sse $\alpha \in T^*$. Portanto, as cadeias terminais geradas pela gramática são as sentenças de G.

- Exercícios:
 - Faça a gramática para as seguintes linguagens regulares:
 - $G_1 = \{b (ab)^n b \mid n \ge 0\}$

- Exercícios:
 - Faça a gramática para as seguintes linguagens regulares:

```
• G_1 = \{b \ (ab)^n b \mid n \ge 0\}

• G_1 = \{\{S, A\}, \{a,b\}, P, S\}, \text{ onde: } P = \{1\} S \rightarrow bA

2) A \rightarrow abA

3) A \rightarrow b
```

- Exercícios:
 - Faça a gramática para as seguintes linguagens regulares:
 - $G_2 = \{ba^nba \mid n \ge 0\}$

- Exercícios:
 - Faça a gramática para as seguintes linguagens regulares:

```
• G_2 = \{ba^nba \mid n \ge 0\}

• G_2 = \{\{S, A, B, C\}, \{a, b\}, P, S\}, \text{ onde: } P = \{1\} S \rightarrow bA

2) A \rightarrow aA

3) A \rightarrow ba
```