Exercicis

54. The law of cosines for a triangle can be written

$$a^2 = b^2 + c^2 - 2bc\cos\theta.$$

At time t_0 , $b_0 = 10$ inches, $c_0 = 15$ inches, $\theta_0 = \frac{1}{3}\pi$ radians.

- (a) Find a_0 (the length a at time t_0).
- (b) Find the rate of change of a with respect to b at time t_0 given that c and θ remain constant.
- (c) Use the rate you found in part (b) to estimate by a differential the change in *a* that results from a 1-inch decrease in *b*.
- (d) Find the rate of change of a with respect to θ at time t_0 given that b and c remain constant.
- (e) Find the rate of change of c with respect to θ at time t_0 given that a and b remain constant.