Homework-8

1. Let $F := (F_1, -, F_m) : IR^n \rightarrow IR^m$ be a smooth function. Let $\{S_i, i, j\}$ be the coordinates on $IR^n \land A \{ \}_i \}_j$ the coordinates in IR^m .

Compute F^*dy_i , $1 \le i \le m$.

2. Let f, g ∈ C[∞](H). Prove that d (fg) = fdg + gdf.

3. Prove that Lie groups and orientable.

4. Let d'm H=m, then HJR(H) =0, Y>m+1.

5. Let $\varphi_1, -\cdot, \varphi_p$ be 1-forms, $(x_1, -\cdot, x_p)$ vector fields

then $(\varphi_1 \Lambda - \cdot \Lambda \varphi_p)(x_1, -\cdot, x_p) = \sum_{sign(\sigma)} \varphi_1(x_{\sigma(s)}) \cdot \varphi_n(x_{\sigma(s)})$

6. Let whe a differential from that corw =0?

7. Consider $\varphi: \mathbb{R} \to \mathbb{R}^2 \setminus \{(0,0)\}^2$, $\varphi(\theta) = (\cos\theta, \sin\theta)$. Let ω be the differential $1-\text{form on } \mathbb{R}^2 \setminus \{(0,0)\}^2$, $\omega = -\frac{y}{\alpha^2 + y^2} dx + \frac{2}{\alpha^2 + y^2} dy$.

Compute the pull back $\phi^*\omega \in D^1(IR)$.

8. Consider IR^2 with polar coordinates (r, θ) and $\omega = (rsin \theta) dr \in D^1(IR^2)$. Compute $d\omega$.

9. Let 2, 3 GY be differential forms with $dd=6=d\beta=d\gamma$. What can you say about $d(\alpha \wedge \beta \wedge \gamma)$?

10. Let a be as in (7). Show that a is not exact.