Software Verification 2021/22

Inference Rules for Propositional Logic

Rules for intuitionistic logic

	turnomstic logic
Truth (\top)	Falsity (\bot)
$ [\top I]$ In Lean: trivial	$\frac{\perp}{A}$ [\perp E] In Lean: false.elim
No Truth-Elimination rule!	No false introduction rule!
$\operatorname{AND/Conjunction} (\wedge)$	$\mathrm{OR}/\mathrm{Disjunction} \; (\lor)$
$\frac{A \ , \ B}{A \wedge B}$ [\lambda I] In Lean: and intro	$\frac{A}{A \vee B}$ [$\vee I_{\mathrm{left}}$] In Lean: or.intro_left
$\cfrac{A \wedge B}{B}$ $[\land E_{ ext{right}}]$ In Lean: and.elim_right	$\frac{B}{A \vee B} \text{[\veeI_{right}$]} \text{In Lean: or.intro_right}$
$rac{A \wedge B}{A}$ [$\wedge E_{ m left}$] In Lean: and.elim_left	$\frac{A \vee B \;,\; A \vdash C \;,\; B \vdash C}{C} \qquad \qquad \text{[$\vee E$]} \\ \text{In Lean: or.elim}$
$\textbf{Implication} \ (\rightarrow)$	Negation (\neg)
$\frac{A \vdash B}{A \to B} [\to I] \text{In Lean: assume}$ $\frac{A \;,\; A \to B}{B} [\to E]$ $\frac{B}{B} [\to E]$ In Lean: juxtaposition: $f \;:\; A \;\rightarrow\; B,\; a \;:\; A \;\mid\; -f \; a \;:\; B$	$\frac{A \vdash \bot}{\neg A} [\neg I]$ In Lean: assume $\frac{A \ , \ \neg A}{\bot} [\neg E]$ In Lean: juxtaposition

Two additional (equivalent) rules for classical logic In Lean, use open classical to make these rules available.

Law of Excluded Middle	Double Negation Eliminiation
$\frac{-}{A \vee \neg A} \qquad \text{[EM]}$ In Lean: em	$rac{ eg A}{A}$ [DNE] In Lean: by_contradiction

Software Verification 2021/22

(Four extra) Inference Rules for Predicate Logic

For-all (\forall)	Exists (∃)
	$P(y)^1$
$\forall x \ P(x)$	•
$\frac{\forall x \ P(x)}{P(b)} [\forall E]$	$\frac{\exists x, P(x) \qquad B}{B} 1 \ [\exists E]$
Condition: b must not clash with any bound variables of P	Condition: y should not be free in B or any not-yet-discharged
	hypothesis
P(y)	
$\frac{P(y)}{\forall x \ P(x)} [\forall I]$	P(b)
$\forall x \ P(x)$	$\frac{P(b)}{\exists x \ P(x)} [\exists I]$
Condition: y must not be free in any not-yet-discharged	
hypothesis	Condition: b must not clash with any bound variables of P