ER to Relational Mapping

CMPUT 291

Entity Sets to Tables

Entity sets to tables.

CREATE TABLE Employees (sin CHAR(11), name CHAR(20), PRIMARY KEY (sin))

ER Model: Overview

- The "world" is described in terms of
 - Entities
 - Relationships
 - Attributes
- Constraints and Complications
 - Key constraints
 - · Participation constraints
 - · Set-valued attributes
 - Weak entities
 - ISA hierarchies

Relationship Sets to Tables

- Constraint: none.
- Attributes of the relation (table):
 - Key of every participating entity set (as foreign keys).
 - · All descriptive attributes

CREATE TABLE Works_On(
sin CHAR(1),
pid INTEGER,
since DATE,
PRIMARY KEY (sin, pid),
FOREIGN KEY (sin)
REFERENCES Employees,
FOREIGN KEY (pid)
REFERENCES Projects)

4

Relationships with Key Constraints

 Constraint: each employee works in at most one department.

- Map the relationship to a table:
 - What is the key now?

CREATE TABLE Works_In (
sin CHAR(11),
did CHAR(3),
since DATE,
PRIMARY KEY (sin),
FOREIGN KEY (sin) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)

Relationships with Key Constraints (Cont.)

- Constraint: each employee manages at most one department and each department is managed by at most one employee.
 - We can combine Manages with Departments.
 - We can also combine Manages with Employees.

CREATE TABLE Dept(
did CHAR(3),
dname CHAR(20),
budget INTEGER,
mgr CHAR(11),
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (mgr) REFERENCES Employees)

Relationships with Key Constraints (Cont.)

- Better mapping:
 - Since each employee can work in at most one department, we could instead combine Works_In and Employees.

CREATE TABLE Emp_Works(
sin CHAR(11),
name CHAR(20),
did CHAR(3),
since DATE,
PRIMARY KEY (sin),
FOREIGN KEY (did) REFERENCES Departments)

.

Review: Participation Constraints

- Does every project have a supervisor?
 - If so, this is a *participation constraint*: the participation of Projects in Supervises is said to be *total* (vs. *partial*).
 - ✓ Every *pid* value in Projects table must appear in a row of the Supervises table (with a non-null *sin* value!)

Participation Constraints


```
CREATE TABLE Proj_Supervises (
pid INTEGER,
pname CHAR(20),
budget REAL,
sin CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (pid),
FOREIGN KEY (sin) REFERENCES Employees
ON DELETE NO ACTION)
```


Set-Valued Attributes

CREATE TABLE Employees (
sin CHAR(11),
name CHAR(20),
hobby char(15),
PRIMARY KEY (sin, hobby))

- Cannot store more than one value in a field!
- What is the key of the relation?
 - sin cannot be a key!
- The same problem arises in mapping a relationship with a set-valued attribute.

Participation Constraints (Cont.)

How can we map Works_On relationship to a table and still keep the participation constraints?

 We can capture participation constraints involving one entity set in a binary relationship, but little else (without resorting to CHECK constraints).

Set-Valued Attributes (Cont)

- Can sin still reference employees?
- No. We cannot define sin as a foreign key any longer.

CREATE TABLE Works_On(
sin CHAR(1),
pid INTEGER,
since DATE,
PRIMARY KEY (sin, pid),
FOREIGN KEY (pid)
REFERENCES Projects,
FOREIGN KEY (sin)
REFERENCES Zmployees

12

Review: Weak Entities

- A weak entity can be identified uniquely only by considering the primary key of another (owner) entity.
 - · Owner entity set and weak entity set must participate in a one-to-many relationship set (1 owner, many weak entities).
 - · Weak entity set must have total participation in this identifying relationship set.

13

Review: ISA Hierarchies

Translating Weak Entity Sets

 Weak entity set and identifying relationship set are translated into a single table.

```
CREATE TABLE Dep_Policy (
 dname CHAR(20),
 age INTEGER,
 cost REAL,
 sin CHAR(11) NOT NULL,
 PRIMARY KEY (dname, sin),
 FOREIGN KEY (sin) REFERENCES Employees
   ON DELETE CASCADE)
```

 When the owner entity is deleted, all owned weak entities must also be deleted.

Translating ISA Hierarchies to Relations

- General approach: 3 relations
 - ✓ Employees(<u>sin</u>, name)
 - √ Hourly_Emps(sin, hourly_wages, hours_worked)
 - ✓ Contract Emps(sin, contract id)

CREATE TABLE Contract_Emps (sin CHAR(11) NOT NULL, contract_id CHAR(4), ON DELETE CASCADE)

- Alternative: Just Hourly Emps and Contract Emps
 - if Hourly_Emps and Contract_Emps Cover Employees.
 - ✓ Hourly_Emps(sin, name, hourly_wages, hours_worked).
 - ✓ Contract Emps(sin, name, contract id)

Exercise: Map to Relations

Relational Model: Summary

- A tabular representation of data.
- Simple and intuitive, currently the most widely used.
- Integrity constraints can be specified by the DBA, based on application semantics. DBMS checks for violations.
 - · Two important ICs: primary and foreign keys
 - · In addition, we always have domain constraints.
- Powerful and natural query languages exist.
- Rules to translate ER to relational model

Exercise: Answer

CREATE TABLE Policies (The key constraints allow

us to combine Purchaser with Policies and Beneficiary with Dependents.

policyid INTEGER,

cost REAL,

sin CHAR(11) NOT NULL,

ON DELETE CASCADE

CREATE TABLE Dependents (

 Participation constraints lead to **NOT NULL** constraints.

dname CHAR(20), age INTEGER, policyid INTEGER,

ON DELETE CASCADE

An ER diagram for the exercise presented earlier.

Map it into relations ...

An ER diagram for the exercise presented earlier.

21