

AIAA CFD Drag Prediction Workshop

Presenter: Dr. Uriel Goldberg

Metacomp Technologies, Inc.

Anaheim, CA June 9-10, 2001

Attributes of CFD++

Ability to handle all Cell types; e.g.:

Hexahedral Quadrilateral Triangle Line
Prism
Pyramid Line

Ability to handle all grids

Structured
Unstructured
Hybrid
Patched non-aligned
Overset
Meshes with gaps

Numerical Framework in CFD++

- Finite Volume Framework
- Spatial discretization
 - Multi-dimensional TVD scheme for inviscid terms
 - Non-decoupling non-limited face polynomials for viscous terms.
- Time Integration
 - Explicit Runge-Kutta schemes
 - Point Implicit with Multigrid relaxation
- Riemann Solvers

Physical Models

- Turbulence Models
 - 1,2, & 3 Eq. closures
 - Linear, Cubic
 - Advanced Wall Function
- LES and hybrid RANS/LES models
- Reacting flows
- Multi-phase

Computational Grid

- Utilized ICEM CFD Hexa
- 3.5 Million hexahedras
- cell height off the wall: 0.007mm
- cell growth rate: 1.21-1.30
- B.L. cells:20
- 8 hours to produce from IGES

DLR-F4 WING/BODY Flow Conditions

- Re = $3x10^6$ (based on Cref = 141.2 mm)
- M = 0.75
- T' = 0.2%
- turb. length scale <u>not specified</u>
- A.O.A -3 to 2 deg.
- Fully turbulent free air flow

DLR - F4 WING/BODY Solution

Realizable k-ε model

Case 1: solve-to-wall (STW), y+<2 (3.5M Hex)

• Case 2: wall function, $y^+=25$ (3.2M Hex)

Computer: SGI Origin 2000

Processors: 16 R12000 300 MHz

Run time: 20 hours wall clock

• Memory: 8.1GB

etacomp Technologies

DLR Wind Tunnel Test Geometry

DLR-F4 WING/BODY

Solution input affecting the results:

Inflow turbulence length-scale, \boldsymbol{l} , not specified

Used
$$\varepsilon = \frac{C_{\mu}^{3/4}}{\kappa} \frac{k^{3/2}}{l}$$

With
$$l = 1mm$$

CFD++'s ease of use aspects

- User-friendly, self-guiding GUI
- Aero Wizard sets up case based on Re
 & M
- Only B.C.s need to be specified

Conclusions

- CFD++ unstructured grid solver used to predict cases 1 (STW) and 2 (Wall function)
- STW and Wall function predictions are in excellent agreement at α = -0.335°
- All results, except C_m vs. C_l, follow the data trend
- Inflow turbulence specifications were inadequate

