Groupe symétrique – Déterminants – Espaces préhilbertiens réels – Espaces euclidiens

Questions de cours.

- 1. Énoncer et démontrer l'Inégalité de Cauchy-Schwarz dans un espace préhilbertien réel.
- 2. Énoncer et démontrer le Théorème de Pythagore généralisé.
- **3.** Soit E un espace préhilbertien réel, F un sous-espace vectoriel de E muni d'une base orthonormée (f_1, \ldots, f_r) . Donner l'expression de la projection orthogonale sur F (et la démontrer).

1 Groupe symétrique

Exercice 1.1 (*). Soit $n \in \mathbb{N}_{\geq 2}$. Montrer que $\mathfrak{S}_n = \langle (1\ 2), (1\ 2\ \cdots\ n) \rangle$.

Exercice 1.2 (*). Pour $n \in \mathbb{N}^*$, déterminer $Z(\mathfrak{S}_n) = \{ \sigma \in \mathfrak{S}_n, \ \forall \tau \in \mathfrak{S}_n, \ \sigma \tau = \tau \sigma \}$.

Exercice 1.3 (*). Soit $n \in \mathbb{N}^*$ et $p \leq n$. Soit $\sigma \in \mathfrak{S}_n$ un p-cycle. Donner une CNS sur $k \in \mathbb{Z}$ pour que σ^k soit un cycle.

Exercice 1.4 (\star) . Soit $n \in \mathbb{N}^*$. Caractériser puis dénombrer les involutions de \mathfrak{S}_n .

Exercice 1.5 (*). On fixe $n \in \mathbb{N}^*$. Pour $\sigma \in \mathfrak{S}_n$, un couple $(i,j) \in \{1,\ldots,n\}^2$ est appelé inversion de σ lorsque i < j et $\sigma(i) > \sigma(j)$. On note $\iota(\sigma)$ le nombre d'inversions de σ . Calculer le nombre moyen d'inversions d'une permutation, i.e. la quantité $\frac{1}{|\mathfrak{S}_n|} \sum_{\sigma \in \mathfrak{S}_n} \iota(\sigma)$.

Exercice 1.6 (*). Soit $n \in \mathbb{N}_{\geq 3}$. Montrer que le groupe engendré par les cycles de longueur 3 dans \mathfrak{S}_n est égal à \mathfrak{A}_n .

2 Déterminants

Exercice 2.1 (*). Soit $n \in \mathbb{N}^*$. Calculer les déterminants des matrices suivantes :

- 1. $A_1 = \left((-1)^{\max(i,j)} \right)_{1 \leq i,j \leq n} \in \mathbb{M}_n \left(\mathbb{R} \right).$
- **2.** $A_2 = (\min(i,j))_{1 \leq i,j \leq n} \in \mathbb{M}_n (\mathbb{R}).$
- 3. $A_3 = (\max(i,j))_{1 \le i,j \le n} \in \mathbb{M}_n(\mathbb{R}).$
- **4.** $A_4 = (|i-j|+1)_{1 \le i,j \le n} \in \mathbb{M}_n(\mathbb{R}).$
- **5.** $A_5 = (1 \delta_{i,j})_{1 \le i,j \le n} \in \mathbb{M}_n(\mathbb{R}).$
- **6.** $A_6 = E^{1,1} + (\text{sign}(j-i) \cdot j)_{1 \le i,j \le n} \in \mathbb{M}_n(\mathbb{R}), \ où \ \text{sign}(0) = 0 \ et \ \text{sign}(x) = \frac{x}{|x|} \ si \ x \ne 0.$

3 Espaces préhilbertiens réels

Exercice 3.1 (\star) . On se place dans $E = \mathcal{C}^1([0,1],\mathbb{R})$. On définit $[\cdot \mid \cdot]$ sur E^2 par :

$$\forall (f,g) \in E^2, [f \mid g] = f(0)g(0) + \int_0^1 f'(t)g'(t) dt.$$

Montrer que $[\cdot \mid \cdot]$ est un produit scalaire sur E.

Exercice 3.2 (*). Déterminer :

$$\inf_{(\alpha,\beta)\in\mathbb{R}^2} \int_0^{2\pi} \left(\alpha \sin t + \beta \cos t - e^t\right)^2 dt.$$

Exercice 3.3 (*). Soit $n \in \mathbb{N}$. On définit $(\cdot \mid \cdot)$ sur $\mathbb{R}_n[X]^2$ par :

$$\forall (P,Q) \in \mathbb{R}_n[X]^2, \ (P \mid Q) = \sum_{k=0}^n P(k)Q(k).$$

- **1.** Montrer que $(\cdot \mid \cdot)$ est un produit scalaire sur $\mathbb{R}_n[X]$.
- **2.** a. Vérifier qu'il existe une famille $(L_0, \ldots, L_n) \in \mathbb{R}_n[X]^{n+1}$ t.q.

$$\forall (k,\ell) \in \{0,\ldots,n\}^2, \ L_{\ell}(k) = \delta_{k,\ell}.$$

- **b.** Montrer que (L_0, \ldots, L_n) est une base orthonormée de $(\mathbb{R}_n[X], (\cdot \mid \cdot))$.
- **3.** Pour $\ell \in \{0, \ldots, n\}$, déterminer un réel $\lambda_{\ell} \in \mathbb{R}$ t.q. $L_{\ell} \lambda_{\ell} X^n \in \mathbb{R}_{n-1}[X]$.
- **4.** Déterminer $\mathbb{R}_{n-1}[X]^{\perp}$.
- **5.** En déduire que $d(X^n, \mathbb{R}_{n-1}[X]) = \frac{(n!)^3}{(2n)!}$

Exercice 3.4 (Centrale '14, \star). On se place dans $E = \mathcal{C}^1([-1,1],\mathbb{R})$. On définit $(\cdot \mid \cdot)$ sur E^2 par :

$$\forall (u, v) \in E^2, (u \mid v) = \int_{-1}^{1} u(t)v(t) dt.$$

1. Montrer que $(\cdot \mid \cdot)$ est un produit scalaire sur E.

On considère $F = \{ u \in E, u_{|[-1,0]} = 0 \}$ et $G = \{ u \in E, u_{|[0,1]} = 0 \}$.

- **2.** Montrer que $F^{\perp} = G$.
- **3.** A-t-on $E = F \oplus G$?

Exercice 3.5 (Mines '14, \star). On se place dans $E = \mathcal{C}^2([0,1],\mathbb{R})$. On définit $\langle \cdot | \cdot \rangle$ sur E^2 par :

$$\forall (f,g) \in E^2, \langle f \mid g \rangle = \int_0^1 (fg + f'g').$$

- **1.** Montrer que $\langle \cdot | \cdot \rangle$ est un produit scalaire sur E.
- **2.** Soit $V = \{ f \in E, f(0) = f(1) = 0 \}$ et $W = \{ f \in E, f = f'' \}$.
 - a. Quelles sont les dimensions de V et W?
 - **b.** Montrer que V et W sont supplémentaires et orthogonaux.
 - **c.** Expliciter la projection orthogonale sur V.

Espaces euclidiens

Exercice 4.1 (*). Soit F et G deux sous-espaces vectoriels d'un espace euclidien E.

- **1.** Montrer que :
 - **a.** $(E+F)^{\perp} = E^{\perp} \cap F^{\perp}$ **b.** $(E \cap F)^{\perp} = E^{\perp} + F^{\perp}$.
- 2. Que subsiste-t-il de ces égalités en dimension infinie?

Exercice 4.2 (*). On se place dans $\mathbb{M}_n(\mathbb{R})$. On définit $(\cdot \mid \cdot)$ sur $\mathbb{M}_n(\mathbb{R})$ par :

$$\forall (A, B) \in E^2, (A \mid B) = \operatorname{tr}({}^tBA).$$

- **1.** Montrer que $(\cdot \mid \cdot)$ est un produit scalaire sur $\mathbb{M}_n(\mathbb{R})$ pour lequel la base canonique est orthonormée. On note $\|\cdot\|$ la norme euclidienne associée à $(\cdot \mid \cdot)$.
 - **2.** Montrer que $\forall A \in \mathbb{M}_n(\mathbb{R})$, $|\operatorname{tr} A| \leq \sqrt{n} \|A\|$.
 - **3.** a. Déterminer $S_n(\mathbb{R})^{\perp}$, où $S_n(\mathbb{R})$ est l'espace des matrices symétriques.
 - **b.** Expliciter la projection orthogonale sur $S_n(\mathbb{R})$.
 - **4.** Soit $U \in \mathbb{M}_n(\mathbb{R})$. Donner une CNS pour que l'application $f_U : A \in \mathbb{M}_n(\mathbb{R}) \longmapsto AU \in \mathbb{M}_n(\mathbb{R})$ soit une isométrie (pour la norme $\|\cdot\|$).

Exercice 4.3 (Centrale '14, \star). Soit E un espace euclidien et $u \in E$ un vecteur unitaire. Pour quelles valeurs de $\alpha \in \mathbb{R}$ l'endomorphisme $f_{\alpha} : x \in E \longmapsto x - \alpha \langle u \mid x \rangle u$ est-il bijectif?

Exercice 4.4 (Mines '14, \star). Soit E un espace euclidien, F et G des sous-espaces vectoriels de E. Déterminer une CNS sur F et G pour que :

$$\forall x \in E, \ \|x\|^2 = d(x, F)^2 + d(x, G)^2.$$