Basics

NLP tasks

Learning goals

- Understand the different types of tasks (low- vs. high-level)
- Purely Linguistic tasks vs. more general classification tasks

CATEGORIZATION OF NLP TASKS

Distinction between:

- Language modeling
- Token-level classification
- Sequence-level classification
- Similarity / Retrieval
- Text generation

Connection to learning paradigms:

- Given the task, some learning paradigms are more suitable
- Tasks can be formulated differently to fit a given learning paradigm
- Amount of available (labeled) data might depend on task
- Presence/Absence of labels important to consider

LANGUAGE MODELING

Predict the next token:

$$P_{(w_1,w_2,\ldots,w_n)} = p(w_1)p(w_2|w_1)p(w_3|w_1,w_2)...p(w_n|w_1,w_2,..,w_{n-1})$$

$$= \prod_{i=1}^n p(w_i|w_1,...,w_{i-1})$$

$$S = \text{Where are we going}$$

$$Previous \ \text{words} \ \text{Word being} \ \text{Context})$$

$$Predicted$$

$$P(S) = P(Where) \times P(are \mid Where) \times P(we \mid Where are) \times P(going \mid Where are we)$$

► Source: The Gradient

©

CATEGORIZATION OF NLP TASKS

"Low-Level" tasks:

- Token-level Classification: Problems on a word/token level
- Modeling relationships between words/tokens

"High-Level" tasks:

- Sequence-level Classification: Problems on a sequence level
- Retrieval: Assess (semantic) similarity on document-level
- Producing sequences of text based on an input sequences, known as seq2seq tasks
- Note: The latter one is also an instance of a generation task

LOW-LEVEL: SEQUENCE TAGGING

POS-tagging (part of speech):

Example

Time flies like an arrow.

Fruit flies like a banana.

LOW-LEVEL: SEQUENCE TAGGING

POS-tagging (part of speech):

Example

Time flies like an arrow.

Fruit flies like a banana.

Example

Time_{NN} flies_{VBZ} like_{IN} an_{DT} arrow_{NN}.

Fruit_{NN} flies_{NN} like_{VB} a_{DT} banana_{NN}.

IN = Preposition or subordinating conjunction (conjunction here); VBZ = Verb, 3rd person singular present; DT = determiner; NN = singular noun

LOW-LEVEL: STRUCTURE PREDICTION

Chunking/Parsing:

Example

Example

LOW-LEVEL: SEMANTICS

Word sense disambiguation:

Example

Time flies like an arrow.

Fruit flies like a banana.

NAMED ENTITY RECOGNITION (NER)

Example

"... chancelor₀ Angela_{B-PER} Merkel_{I-PER} said₀ ..."

"BIO"-tagging

- B = Begin of entity, e.g., B-PER (person), B-LOC (location)
- I = "Inside" entity, e.g, I-PER, I-LOC
- 0 = Other (no entity)

NER AS TOKEN-LEVEL CLASSIFICATION

Pre-train/fine-tune:

HIGH-LEVEL NLP TASKS

- Information Extraction
 - search, event detection, textual entailment
- Writing Assistance
 - spell checking, grammar checking, auto-completion
- Text Classification
 - · spam, sentiment, author, plagiarism
- Natural language understanding
 - metaphor analysis, argumentation mining, question-answering
- Natural language generation
 - summarization, tutoring systems, chat bots
- Multilinguality
 - machine translation, cross-lingual information retrieval

SEQUENCE-LEVEL CLASSIFICATION

Notes:

- BERT is a popular model, no need to know further details now
- Output can also be non-binary, i.e. multi-class/-label

SEQUENCE-LEVEL CLASSIFICATION

Reformulation as generative task:

RETRIVAL (CF. PREVIOUS CHAPTER)

Document retrieval

GENERATION: MACHINE TRANSLATION

A brief History of Machine Translation

- Rule-Based Machine Translation (50s 80s)
 - Dictionaries + Grammatical Rules
- Example-Based Machine Translation (80s 90s)
 - First suggested by Makoto Nagao (1984)
 - Based on bilingual text corpora
- Statistical Machine Translation (90s 10s)
 - Mostly driven by IBM research
- Neural Machine Translation (10s now)
 - Based on neural networks (LSTMs, Transformers)

SEQ2SEQ MODELING

Figure 1: Our model reads an input sentence "ABC" and produces "WXYZ" as the output sentence. The model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the input sentence in reverse, because doing so introduces many short term dependencies in the data that make the optimization problem much easier.

► Source: Sutskever et al., 2014

Notes:

- In the meantime: Transformers replaced LSTMs
- Overall architecture (Encoder-Decoder) still used

SEQ2SEQ MODELING

Figure 1: Our model reads an input sentence "ABC" and produces "WXYZ" as the output sentence. The model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the input sentence in reverse, because doing so introduces many short term dependencies in the data that make the optimization problem much easier.

► Source: Sutskever et al., 2014

Used for:

- (Neural) Machine Translation
- Summarization
- Questions answering

TRADITIONAL BENCHMARKING: NLU

- Nine sentence- or sentence-pair language understanding tasks
- Public leaderboard, (still) very popular benchmark collection

Corpus	Train	Test	Task	Metrics	Domain		
Single-Sentence Tasks							
CoLA	8.5k	1k	acceptability	Matthews corr.	misc.		
SST-2	67k	1.8k	sentiment	acc.	movie reviews		
Similarity and Paraphrase Tasks							
MRPC	3.7k	1.7k	paraphrase	acc./F1	news		
STS-B	7k	1.4k	sentence similarity	Pearson/Spearman corr.	misc.		
QQP	364k	391k	paraphrase	acc./F1	social QA questions		
Inference Tasks							
MNLI	393k	20k	NLI	matched acc./mismatched acc.	misc.		
QNLI	105k	5.4k	QA/NLI	acc.	Wikipedia		
RTE	2.5k	3k	NLI	acc.	news, Wikipedia		
WNLI	634	146	coreference/NLI	acc.	fiction books		

Table 1: Task descriptions and statistics. All tasks are single sentence or sentence pair classification, except STS-B, which is a regression task. MNLI has three classes; all other classification tasks have two. Test sets shown in bold use labels that have never been made public in any form.

MORE CHALLENGING BENCHMARKS

WinoGrande

► Source: Sakaguchi et al., 2019

HellaSwag

Pick the best ending to the context.

How to catch dragonflies, Use a long-handled aerial net with a wide opening. Select an aerial net that is 18 inches (46 cm) in diameter or larger. Look for one with a nice long handle.

a) Loop 1 piece of ribbon over the handle. Place the hose or hose on	your feet. Move your body and	light one. Darker nets are more difficult for	d) If it's not strong enough for you to handle, use a hand held net with one end shorter than the other.
your net and tie the string	head forward when you lift up	dragonflies to see, making the net more difficult	The net should have holes in the bottom of the
securely.	your feet.	to avoid.	net.

➤ Source: Zellers et al., 2019

MORE CHALLENGING BENCHMARKS

LAMBADA

(5) Context: He shook his head, took a step back and held his hands up as he tried to smile without losing a cigarette. "Yes you can," Julia said in a reassuring voice. "I've already focused on my friend. You just have to click the shutter, on too, here."

Target sentence: He nodded sheepishly, through his cigarette away and took the _____.

Target word: camera

Language Modeling Broadened to Account for Discourse Aspects (Source: Paperno et al., 2016)

PIQA (Physical Intercation: Question Answering)

To separate egg whites from the yolk using a water bottle, you should...

- a. Squeeze the water bottle and press it against the yolk.
 Release, which creates suction and lifts the yolk.
- b. Place the water bottle and press it against the yolk. Keep pushing, which creates suction and lifts the yolk.

▶ Reasoning about Physical Commonsense in Natural Language (Source: Bisk et al., 2019)