Machine Learning

Justin Grimmer

Associate Professor Department of Political Science University of Chicago

February 26th, 2018

- Suppose we have N units, i = 1, ..., N.

- Suppose we have N units, i = 1, ..., N.
- Each unit receives treatment T_i (potentially vector valued)

- Suppose we have N units, i = 1, ..., N.
- Each unit receives treatment T_i (potentially vector valued)
- Suppose we have (potentially vector valued) response $\mathbf{Y}_i(\mathbf{T}_i)$

- Suppose we have N units, i = 1, ..., N.
- Each unit receives treatment T_i (potentially vector valued)
- Suppose we have (potentially vector valued) response $\mathbf{Y}_i(\mathbf{T}_i)$
 - Unit i's response to treatment T_i

- Suppose we have N units, i = 1, ..., N.
- Each unit receives treatment T_i (potentially vector valued)
- Suppose we have (potentially vector valued) response $\boldsymbol{Y}_i(\boldsymbol{T}_i)$
 - Unit i's response to treatment T_i
 - Function: maps from treatments to responses

- Suppose we have N units, i = 1, ..., N.
- Each unit receives treatment T_i (potentially vector valued)
- Suppose we have (potentially vector valued) response $\mathbf{Y}_i(\mathbf{T}_i)$
 - Unit i's response to treatment T_i
 - Function: maps from treatments to responses
- Fundamental problem of causal inference observe only one $m{Y}_i(m{T}_i)$

- Suppose we have N units, i = 1, ..., N.
- Each unit receives treatment T_i (potentially vector valued)
- Suppose we have (potentially vector valued) response $\mathbf{Y}_i(\mathbf{T}_i)$
 - Unit i's response to treatment T_i
 - Function: maps from treatments to responses
- Fundamental problem of causal inference observe only one $\boldsymbol{Y}_i(\boldsymbol{T}_i)$
- Quantity of interest:

- Suppose we have N units, i = 1, ..., N.
- Each unit receives treatment T_i (potentially vector valued)
- Suppose we have (potentially vector valued) response $\boldsymbol{Y}_i(\boldsymbol{T}_i)$
 - Unit i's response to treatment T_i
 - Function: maps from treatments to responses
- Fundamental problem of causal inference observe only one $\boldsymbol{Y}_i(\boldsymbol{T}_i)$
- Quantity of interest:
 - Simplest (yet very powerful) case $\leadsto T_i \in \{0,1\}, \; Y_i(T_i) \in \{0,1\}$

- Suppose we have N units, i = 1, ..., N.
- Each unit receives treatment T_i (potentially vector valued)
- Suppose we have (potentially vector valued) response $\boldsymbol{Y}_i(\boldsymbol{T}_i)$
 - Unit i's response to treatment T_i
 - Function: maps from treatments to responses
- Fundamental problem of causal inference observe only one $m{Y}_i(m{T}_i)$
- Quantity of interest:
 - Simplest (yet very powerful) case $\leadsto T_i \in \{0,1\}, \ Y_i(T_i) \in \{0,1\}$

$$ATE = E[Y(1) - Y(0)]$$

- Suppose we have N units, i = 1, ..., N.
- Each unit receives treatment T_i (potentially vector valued)
- Suppose we have (potentially vector valued) response $\boldsymbol{Y}_i(\boldsymbol{T}_i)$
 - Unit i's response to treatment T_i
 - Function: maps from treatments to responses
- Fundamental problem of causal inference observe only one $m{Y}_i(m{T}_i)$
- Quantity of interest:
 - Simplest (yet very powerful) case $\leadsto T_i \in \{0,1\}, \; Y_i(T_i) \in \{0,1\}$

$$ATE = E[Y(1) - Y(0)]$$

- Estimate with:

- Suppose we have N units, i = 1, ..., N.
- Each unit receives treatment T_i (potentially vector valued)
- Suppose we have (potentially vector valued) response $\boldsymbol{Y}_i(\boldsymbol{T}_i)$
 - Unit i's response to treatment T_i
 - Function: maps from treatments to responses
- Fundamental problem of causal inference observe only one $\boldsymbol{Y}_i(\boldsymbol{T}_i)$
- Quantity of interest:
 - Simplest (yet very powerful) case \leadsto $T_i \in \{0,1\}, \ Y_i(T_i) \in \{0,1\}$

$$ATE = E[Y(1) - Y(0)]$$

- Estimate with:

$$\widehat{ATE} = E[Y(1)|T=1] - E[Y(0)|T=0]$$

- Suppose we have N units, i = 1, ..., N.
- Each unit receives treatment T_i (potentially vector valued)
- Suppose we have (potentially vector valued) response $\boldsymbol{Y}_i(\boldsymbol{T}_i)$
 - Unit i's response to treatment T_i
 - Function: maps from treatments to responses
- Fundamental problem of causal inference observe only one $m{Y}_i(m{T}_i)$
- Quantity of interest:
 - Simplest (yet very powerful) case $\leadsto T_i \in \{0,1\}, \ Y_i(T_i) \in \{0,1\}$

$$ATE = E[Y(1) - Y(0)]$$

- Estimate with:

$$\widehat{ATE} = \frac{\sum_{i=1}^{N} I(T_i = 1) Y_i}{\sum_{i=1}^{N} I(T_i = 1)} - \frac{\sum_{i=1}^{N} I(T_i = 0) Y_i}{\sum_{i=1}^{N} I(T_i = 0)}$$

- Suppose we have N units, i = 1, ..., N.
- Each unit receives treatment T_i (potentially vector valued)
- Suppose we have (potentially vector valued) response $\boldsymbol{Y}_i(\boldsymbol{T}_i)$
 - Unit i's response to treatment T_i
 - Function: maps from treatments to responses
- Fundamental problem of causal inference observe only one $Y_i(T_i)$
- Quantity of interest:
 - Simplest (yet very powerful) case $\leadsto T_i \in \{0,1\}, \ Y_i(T_i) \in \{0,1\}$

$$ATE = E[Y(1) - Y(0)]$$

- Estimate with:

$$\widehat{\mathsf{ATE}} = \frac{\sum_{i=1}^{N} I(T_i = 1) Y_i}{\sum_{i=1}^{N} I(T_i = 1)} - \frac{\sum_{i=1}^{N} I(T_i = 0) Y_i}{\sum_{i=1}^{N} I(T_i = 0)}$$

Question: how do we accurately estimate quantities, like ATE?

Our Plan for the Day

- Experimental design
- Conditional average treatment effects
- Methods for estimating heterogeneous treatment effects

Rep. Harold "Hal" Rogers (KY-05) announced today that Kentucky is slated to receive \$962,500 to protect critical infrastructure- power plants, chemical facilities, stadiums, and other high-risk assets, through the U.S. Department of Homeland Security's buffer zone protection program

A federal grant will help keep the Brainerd Lakes Airport operating in winter weather. Today, Congressman Jim Oberstar announced that the Federal Aviation Administration (FAA) will award \$528,873 to the Brainerd airport. The funding will be used to purchase new snow removal and deicing equipment.

Congresswoman Darlene Hooley (OR-5) and Congressmen Earl Blumenauer (OR-3), David Wu (OR-1) and Greg Walden (OR-2) joined together today in announcing \$375,000 in federal funding for the Oregon Partnership to combat methamphetamine abuse in Oregon.

What information in credit claiming messages affect evaluations?

Experiment: vary the recipient of money and the action reported in credit claiming statement (and many other features)

Experiment: vary the recipient of money and the action reported in credit claiming statement (and many other features)

Treatments: type

- 1) Planned Parenthood
- 2) Parks
- 3) Gun Range
- 4) Fire Department
- 5) Police
- 6) Roads

Experiment: vary the recipient of money and the action reported in credit claiming statement (and many other features)

Treatments: type, stage

- 1) Will request
- 2) Requested
- 3) Secured

Experiment: vary the recipient of money and the action reported in credit claiming statement (and many other features)

Treatments: type, stage, money

- 1) \$50 Thousand
- 2) \$20 Million

Experiment: vary the recipient of money and the action reported in credit claiming statement (and many other features)

- Treatments: type, stage, money, collaboration
 - 1) Alone
 - 2) w/ Senate Democrat
 - 3) w/ Senate Republican

Experiment: vary the recipient of money and the action reported in credit claiming statement (and many other features)

Treatments: type, stage, money, collaboration, partisanship

- 1) Democrat
- 2) Republican

Experiment: vary the recipient of money and the action reported in credit claiming statement (and many other features)

Treatments: type, stage, money, collaboration, partisanship

Control Condition:

Advertising press release

Example Treatment:

Headline: Representative [blackbox] secured \$50 Thousand to purchase safety equipment for local firefighters

Body: Representative [blackbox] (Democrat) and Senator [blackbox], a Democrat, secured \$50 Thousand to purchase safety equipment for local firefighters.

Rep. [blackbox] said "This money will help our brave firefighters stay safe as they protect our businesses and homes"

Example Treatment:

Headline: Representative [blackbox] will request \$20 million for medical equipment at the local Planned Parenthood.

Body: Representative [blackbox] (Democrat), will request \$20 million for medical equipment at the local Planned Parenthood.

Rep. [blackbox] said "This money would help provide state of the art care for women in our community."

214 other conditions

214 other conditions

Dependent variable: Approve of representative

214 other conditions

Dependent variable: Approve of representative

Goal → measure effect of credit claiming content on approval ratings

214 other conditions

Dependent variable: Approve of representative

Goal → measure effect of credit claiming content on approval ratings Mechanics → Mechanical Turk sample (Findings are replicated in representative samples, using real representatives/senators)

- Participant i (i = 1, ..., N), has treatment assignment T_i

- Participant i (i = 1, ..., N), has treatment assignment T_i
- If $T_i = 0$ for control condition

- Participant i (i = 1, ..., N), has treatment assignment T_i
- If $T_i = 0$ for control condition
- $\mathbf{T}_i = (\mathsf{T}_{i,\mathsf{type}},\mathsf{T}_{i,\mathsf{stage}},\mathsf{T}_{i,\mathsf{money}},\mathsf{T}_{i,\mathsf{collab}},\mathsf{T}_{i,\mathsf{part.}})$

- Participant i (i = 1, ..., N), has treatment assignment T_i
- If $T_i = 0$ for control condition
- $\mathbf{T}_i = (\mathsf{T}_{i,\mathsf{type}},\mathsf{T}_{i,\mathsf{stage}},\mathsf{T}_{i,\mathsf{money}},\mathsf{T}_{i,\mathsf{collab.}},\mathsf{T}_{i,\mathsf{part.}})$
- $Y_i(\mathbf{T}_i)$: participant i's Approval decision under treatment \mathbf{T}_i

- Participant i (i = 1, ..., N), has treatment assignment T_i
- If $T_i = 0$ for control condition
- $\mathbf{T}_i = (\mathsf{T}_{i,\mathsf{type}},\mathsf{T}_{i,\mathsf{stage}},\mathsf{T}_{i,\mathsf{money}},\mathsf{T}_{i,\mathsf{collab.}},\mathsf{T}_{i,\mathsf{part.}})$
- $Y_i(\mathbf{T}_i)$: participant i's Approval decision under treatment \mathbf{T}_i
- Quantities of Interest

- Participant i (i = 1, ..., N), has treatment assignment T_i
- If $T_i = 0$ for control condition
- $\mathbf{T}_i = (\mathsf{T}_{i,\mathsf{type}}, \mathsf{T}_{i,\mathsf{stage}}, \mathsf{T}_{i,\mathsf{money}}, \mathsf{T}_{i,\mathsf{collab}}, \mathsf{T}_{i,\mathsf{part.}})$
- $Y_i(\mathbf{T}_i)$: participant i's Approval decision under treatment \mathbf{T}_i
- Quantities of Interest
- Effect of particular component of message:

- Participant i (i = 1, ..., N), has treatment assignment T_i
- If $T_i = 0$ for control condition
- $\mathbf{T}_i = (\mathsf{T}_{i,\mathsf{type}},\mathsf{T}_{i,\mathsf{stage}},\mathsf{T}_{i,\mathsf{money}},\mathsf{T}_{i,\mathsf{collab}},\mathsf{T}_{i,\mathsf{part.}})$
- $Y_i(\mathbf{T}_i)$: participant i's Approval decision under treatment \mathbf{T}_i
- Quantities of Interest
- Effect of particular component of message:
 - $T_{stage} = Secured$

- Participant i (i = 1, ..., N), has treatment assignment T_i
- If $T_i = 0$ for control condition
- $\mathbf{T}_i = (\mathsf{T}_{i,\mathsf{type}},\mathsf{T}_{i,\mathsf{stage}},\mathsf{T}_{i,\mathsf{money}},\mathsf{T}_{i,\mathsf{collab.}},\mathsf{T}_{i,\mathsf{part.}})$
- $Y_i(\mathbf{T}_i)$: participant i's Approval decision under treatment \mathbf{T}_i
- Quantities of Interest
- Effect of particular component of message:
 - $T_{stage} = Secured$
 - $T_{stage} = Requested$

- Participant i (i = 1, ..., N), has treatment assignment T_i
- If $T_i = 0$ for control condition
- $\mathbf{T}_i = (\mathsf{T}_{i,\mathsf{type}},\mathsf{T}_{i,\mathsf{stage}},\mathsf{T}_{i,\mathsf{money}},\mathsf{T}_{i,\mathsf{collab}},\mathsf{T}_{i,\mathsf{part.}})$
- $Y_i(\mathbf{T}_i)$: participant i's Approval decision under treatment \mathbf{T}_i
- Quantities of Interest
- Effect of particular component of message:
 - $T_{\text{stage}} = Secured$
 - $T_{stage} = Requested$
 - $T_{stage} = Will Request$

- Participant i (i = 1, ..., N), has treatment assignment T_i
- If $T_i = 0$ for control condition
- $\mathbf{T}_i = (\mathsf{T}_{i,\mathsf{type}}, \mathsf{T}_{i,\mathsf{stage}}, \mathsf{T}_{i,\mathsf{money}}, \mathsf{T}_{i,\mathsf{collab.}}, \mathsf{T}_{i,\mathsf{part.}})$
- $Y_i(\mathbf{T}_i)$: participant i's Approval decision under treatment \mathbf{T}_i
- Quantities of Interest
- Effect of particular component of message:
 - $T_{stage} = Secured$
 - $T_{stage} = Requested$
 - $T_{stage} = Will Request$
 - $T_i = k$

- Participant i (i = 1, ..., N), has treatment assignment T_i
- If $T_i = 0$ for control condition
- $\mathbf{T}_i = (\mathsf{T}_{i,\mathsf{type}},\mathsf{T}_{i,\mathsf{stage}},\mathsf{T}_{i,\mathsf{money}},\mathsf{T}_{i,\mathsf{collab}},\mathsf{T}_{i,\mathsf{part.}})$
- $Y_i(\mathbf{T}_i)$: participant i's Approval decision under treatment \mathbf{T}_i
- Quantities of Interest
- Marginal Average Treatment Effect (MATE $_{T_i=k}$)

- Participant i (i = 1, ..., N), has treatment assignment T_i
- If $T_i = 0$ for control condition
- $\mathbf{T}_i = (\mathsf{T}_{i,\mathsf{type}},\mathsf{T}_{i,\mathsf{stage}},\mathsf{T}_{i,\mathsf{money}},\mathsf{T}_{i,\mathsf{collab.}},\mathsf{T}_{i,\mathsf{part.}})$
- $Y_i(\mathbf{T}_i)$: participant i's Approval decision under treatment \mathbf{T}_i
- Quantities of Interest
- Marginal Average Treatment Effect (MATE $_{\mathsf{T}_i=k}$)

$$MATE_{T_{j}=k} = \int E[Y(T_{j}=k, \mathbf{T}_{-j}) - Y(0)]dF_{\mathbf{T}_{-j}|T_{j}=k}$$

- Participant i (i = 1, ..., N), has treatment assignment T_i
- If $T_i = 0$ for control condition
- $\mathbf{T}_i = (\mathsf{T}_{i,\mathsf{type}},\mathsf{T}_{i,\mathsf{stage}},\mathsf{T}_{i,\mathsf{money}},\mathsf{T}_{i,\mathsf{collab}},\mathsf{T}_{i,\mathsf{part.}})$
- $Y_i(\mathbf{T}_i)$: participant i's Approval decision under treatment \mathbf{T}_i
- Quantities of Interest
- Marginal Average Treatment Effect (MATE $_{\mathsf{T}_j=k}$)

$$MATE_{T_{j}=k} = \int E[Y(T_{j}=k, \mathbf{T}_{-j}) - Y(0)] dF_{\mathbf{T}_{-j}|T_{j}=k}$$

$$MATE_{T_{j}=k} = E[Y(T_{j}=k) - Y(0)]$$

- Participant i (i = 1, ..., N), has treatment assignment T_i
- If $T_i = 0$ for control condition
- $\mathbf{T}_i = (\mathsf{T}_{i,\mathsf{type}},\mathsf{T}_{i,\mathsf{stage}},\mathsf{T}_{i,\mathsf{money}},\mathsf{T}_{i,\mathsf{collab}},\mathsf{T}_{i,\mathsf{part.}})$
- $Y_i(\mathbf{T}_i)$: participant i's Approval decision under treatment \mathbf{T}_i
- Quantities of Interest
- Marginal Average Treatment Effect (MATE $_{\mathsf{T}_i=k}$)

$$MATE_{T_j=k} = E[Y(T_j = k)|T_j = k] - E[Y(0)|T = 0]$$

- Participant i (i = 1, ..., N), has treatment assignment T_i
- If $T_i = 0$ for control condition
- $\mathbf{T}_i = (\mathsf{T}_{i,\mathsf{type}}, \mathsf{T}_{i,\mathsf{stage}}, \mathsf{T}_{i,\mathsf{money}}, \mathsf{T}_{i,\mathsf{collab}}, \mathsf{T}_{i,\mathsf{part}})$
- $Y_i(\mathbf{T}_i)$: participant i's Approval decision under treatment \mathbf{T}_i
- Quantities of Interest
- Marginal Average Treatment Effect (MATE $_{T_i=k}$)

$$\begin{aligned} \mathsf{MATE}_{\mathsf{T}_{j}=k} &= \mathsf{E}[Y(\mathsf{T}_{j}=k)|\mathsf{T}_{j}=k] - \mathsf{E}[Y(0)|\mathsf{T}=0] \\ \mathsf{MATE}_{\mathsf{T}_{j}=k} &= \frac{\sum_{i=1}^{N} Y_{i} I(\mathsf{T}_{ij}=k)}{\sum_{i=1}^{N} I(\mathsf{T}_{ij}=k)} - \frac{\sum_{i=1}^{N} Y_{i} I(\mathsf{T}_{i}=0)}{\sum_{i=1}^{N} I(\mathsf{T}_{i}=0)} \end{aligned}$$

- Response may be conditional on respondent characteristics **x**

- Response may be conditional on respondent characteristics **x**
- For example $\mathbf{x} = (Conservative, Republican)$

- Response may be conditional on respondent characteristics **x**
- For example $\mathbf{x} = (Conservative, Republican)$
- Marginal Conditional Average Treatment Effect (MCATE $_{\mathsf{T}_i=k,\mathbf{x}}$)

- Response may be conditional on respondent characteristics ${\bf x}$
- For example $\mathbf{x} = (Conservative, Republican)$
- Marginal Conditional Average Treatment Effect (MCATE $_{\mathsf{T}_j=k,\mathbf{x}}$)

$$MCATE_{T_i=k,x} = E[Y(T_j=k) - Y(0)|x]$$

$$MCATE_{T_i=k,\mathbf{x}} = E[Y(T_j=k)|\mathbf{x}] - E[Y(0)|\mathbf{x}]$$

$$\begin{aligned} \mathsf{MCATE}_{\mathsf{T}_{j}=k,\mathbf{x}} &= & \mathsf{E}[Y(\mathsf{T}_{j}=k)|\mathbf{x}] - \mathsf{E}[Y(0)|\mathbf{x}] \\ \mathsf{MCATE}_{\mathsf{T}_{j}=k,\mathbf{x}} &= & \frac{\sum_{i=1}^{N} Y_{i} I(\mathsf{T}_{j}=k,\mathbf{x}_{i}=\mathbf{x})}{\sum_{i=1}^{N} I(\mathsf{T}_{i}=k,\mathbf{x}_{i}=\mathbf{x})} - \frac{\sum_{i=1}^{N} Y_{i} I(\mathsf{T}_{i}=0,\mathbf{x}_{i}=\mathbf{x})}{\sum_{i=1}^{N} I(\mathsf{T}_{i}=0,\mathbf{x}_{i}=\mathbf{x})} \end{aligned}$$

$$\begin{aligned} \mathsf{MCATE}_{\mathsf{T}_{j}=k,\mathbf{x}} &= & \mathsf{E}[Y(\mathsf{T}_{j}=k)|\mathbf{x}] - \mathsf{E}[Y(0)|\mathbf{x}] \\ \mathsf{MC}\widehat{\mathsf{ATE}}_{\mathsf{T}_{j}=k,\mathbf{x}} &= & & \frac{\sum_{i=1}^{N} Y_{i} I(\mathsf{T}_{j}=k,\mathbf{x}_{i}=\mathbf{x})}{\sum_{i=1}^{N} I(\mathsf{T}_{j}=k,\mathbf{x}_{i}=\mathbf{x})} - \frac{\sum_{i=1}^{N} Y_{i} I(\mathsf{T}_{i}=0,\mathbf{x}_{i}=\mathbf{x})}{\sum_{i=1}^{N} I(\mathsf{T}_{i}=0,\mathbf{x}_{i}=\mathbf{x})} \end{aligned}$$

 Curse of Dimensionality: highly variable estimates, (sometimes) empty strata

$$\begin{aligned} & \mathsf{MCATE}_{\mathsf{T}_{j}=k,\mathbf{x}} &= & \mathsf{E}[Y(\mathsf{T}_{j}=k)|\mathbf{x}] - \mathsf{E}[Y(0)|\mathbf{x}] \\ & \mathsf{MCATE}_{\mathsf{T}_{j}=k,\mathbf{x}} &= & \frac{\sum_{i=1}^{N} Y_{i} I(\mathsf{T}_{j}=k,\mathbf{x}_{i}=\mathbf{x})}{\sum_{i=1}^{N} I(\mathsf{T}_{j}=k,\mathbf{x}_{i}=\mathbf{x})} - \frac{\sum_{i=1}^{N} Y_{i} I(\mathsf{T}_{i}=0,\mathbf{x}_{i}=\mathbf{x})}{\sum_{i=1}^{N} I(\mathsf{T}_{i}=0,\mathbf{x}_{i}=\mathbf{x})} \end{aligned}$$

- Curse of Dimensionality: highly variable estimates, (sometimes) empty strata
- Separate systematic differences from noise → data and assumptions

$$\begin{aligned} \mathsf{MCATE}_{\mathsf{T}_j=k,\mathbf{x}} &=& \mathsf{E}[Y(\mathsf{T}_j=k)|\mathbf{x}] - \mathsf{E}[Y(0)|\mathbf{x}] \\ \mathsf{MC}\widehat{\mathsf{ATE}_{\mathsf{T}_j=k,\mathbf{x}}} &=& \frac{\sum_{i=1}^N Y_i I(\mathsf{T}_j=k,\mathbf{x}_i=\mathbf{x})}{\sum_{i=1}^N I(\mathsf{T}_j=k,\mathbf{x}_i=\mathbf{x})} - \frac{\sum_{i=1}^N Y_i I(\mathsf{T}_i=0,\mathbf{x}_i=\mathbf{x})}{\sum_{i=1}^N I(\mathsf{T}_i=0,\mathbf{x}_i=\mathbf{x})} \end{aligned}$$

- Curse of Dimensionality: highly variable estimates, (sometimes) empty strata
- Separate systematic differences from noise → data and assumptions Heterogeneous treatment effect methods

$$\begin{aligned} &\mathsf{MCATE}_{\mathsf{T}_j=k,\mathbf{x}} &=& \mathsf{E}[Y(\mathsf{T}_j=k)|\mathbf{x}] - \mathsf{E}[Y(0)|\mathbf{x}] \\ &\mathsf{MC}\widehat{\mathsf{ATE}_{\mathsf{T}_j=k,\mathbf{x}}} &=& \frac{\sum_{i=1}^N Y_i I(\mathsf{T}_j=k,\mathbf{x}_i=\mathbf{x})}{\sum_{i=1}^N I(\mathsf{T}_j=k,\mathbf{x}_i=\mathbf{x})} - \frac{\sum_{i=1}^N Y_i I(\mathsf{T}_i=0,\mathbf{x}_i=\mathbf{x})}{\sum_{i=1}^N I(\mathsf{T}_i=0,\mathbf{x}_i=\mathbf{x})} \end{aligned}$$

- Curse of Dimensionality: highly variable estimates, (sometimes) empty strata
- Separate systematic differences from noise → data and assumptions Heterogeneous treatment effect methods
 - LASSO, Find It (Imai and Ratkovic, 2013) → sparsity

$$\begin{aligned} & \mathsf{MCATE}_{\mathsf{T}_{j}=k,\mathbf{x}} &= & \mathsf{E}[Y(\mathsf{T}_{j}=k)|\mathbf{x}] - \mathsf{E}[Y(0)|\mathbf{x}] \\ & \mathsf{MCATE}_{\mathsf{T}_{j}=k,\mathbf{x}} &= & \frac{\sum_{i=1}^{N} Y_{i} I(\mathsf{T}_{j}=k,\mathbf{x}_{i}=\mathbf{x})}{\sum_{i=1}^{N} I(\mathsf{T}_{j}=k,\mathbf{x}_{i}=\mathbf{x})} - \frac{\sum_{i=1}^{N} Y_{i} I(\mathsf{T}_{i}=0,\mathbf{x}_{i}=\mathbf{x})}{\sum_{i=1}^{N} I(\mathsf{T}_{i}=0,\mathbf{x}_{i}=\mathbf{x})} \end{aligned}$$

- Curse of Dimensionality: highly variable estimates, (sometimes) empty strata
- Separate systematic differences from noise → data and assumptions Heterogeneous treatment effect methods
 - LASSO, Find It (Imai and Ratkovic, 2013) → sparsity
 - Ridge, KRLS (Hainmueller and Hazlett, 2013) → flexible surface, dense

$$\begin{aligned} &\mathsf{MCATE}_{\mathsf{T}_j=k,\mathbf{x}} &=& \mathsf{E}[Y(\mathsf{T}_j=k)|\mathbf{x}] - \mathsf{E}[Y(0)|\mathbf{x}] \\ &\mathsf{MC}\widehat{\mathsf{ATE}_{\mathsf{T}_j=k,\mathbf{x}}} &=& \frac{\sum_{i=1}^N Y_i I(\mathsf{T}_j=k,\mathbf{x}_i=\mathbf{x})}{\sum_{i=1}^N I(\mathsf{T}_j=k,\mathbf{x}_i=\mathbf{x})} - \frac{\sum_{i=1}^N Y_i I(\mathsf{T}_i=0,\mathbf{x}_i=\mathbf{x})}{\sum_{i=1}^N I(\mathsf{T}_i=0,\mathbf{x}_i=\mathbf{x})} \end{aligned}$$

- Curse of Dimensionality: highly variable estimates, (sometimes) empty strata
- Separate systematic differences from noise → data and assumptions Heterogeneous treatment effect methods
 - LASSO, Find It (Imai and Ratkovic, 2013) → sparsity
 - Ridge, KRLS (Hainmueller and Hazlett, 2013) → flexible surface, dense
 - Model m to estimate some function $g_m(T_i = k, x)$

$$\begin{aligned} \mathsf{MCATE}_{\mathsf{T}_j = k, \mathbf{x}} &= \mathsf{E}[Y(\mathsf{T}_j = k) | \mathbf{x}] - \mathsf{E}[Y(0) | \mathbf{x}] \\ \mathsf{MC}\widehat{\mathsf{ATE}}_{\mathsf{T}_j = k, \mathbf{x}} &= \widehat{g}_m(\mathsf{T}_j = k, \mathbf{x}) - \widehat{g}_m(0, \mathbf{x}) \end{aligned}$$

- Curse of Dimensionality: highly variable estimates, (sometimes) empty strata
- Separate systematic differences from noise → data and assumptions Heterogeneous treatment effect methods
 - LASSO, Find It (Imai and Ratkovic, 2013) → sparsity
 - Ridge, KRLS (Hainmueller and Hazlett, 2013) → flexible surface, dense
 - Model m to estimate some function $g_m(\mathsf{T}_j=k, \pmb{x})$
- Perform well: $g_m(T_j = k, x)$ accurately estimates response surface $(E[Y(T_j = k)|x])$

$$\begin{aligned} \mathsf{MCATE}_{\mathsf{T}_j = k, \mathbf{x}} &= \mathsf{E}[Y(\mathsf{T}_j = k) | \mathbf{x}] - \mathsf{E}[Y(0) | \mathbf{x}] \\ \mathsf{MC}\widehat{\mathsf{ATE}}_{\mathsf{T}_j = k, \mathbf{x}} &= \widehat{g}_m(\mathsf{T}_j = k, \mathbf{x}) - \widehat{g}_m(0, \mathbf{x}) \end{aligned}$$

- Curse of Dimensionality: highly variable estimates, (sometimes) empty strata
- Separate systematic differences from noise → data and assumptions Heterogeneous treatment effect methods
 - LASSO, Find It (Imai and Ratkovic, 2013) → sparsity
 - Ridge, KRLS (Hainmueller and Hazlett, 2013) → flexible surface, dense
 - Model m to estimate some function $g_m(\mathsf{T}_j=k, \pmb{x})$
- Perform well: $g_m(T_j = k, x)$ accurately estimates response surface $(E[Y(T_j = k)|x])$
- Perform well: accurate out of sample prediction and classification (van der Laan et al 2007, Raftery et al 2005)

$$\begin{aligned} \mathsf{MCATE}_{\mathsf{T}_j = k, \mathbf{x}} &= \mathsf{E}[Y(\mathsf{T}_j = k) | \mathbf{x}] - \mathsf{E}[Y(0) | \mathbf{x}] \\ \mathsf{MC}\widehat{\mathsf{ATE}}_{\mathsf{T}_j = k, \mathbf{x}} &= \widehat{g}_m(\mathsf{T}_j = k, \mathbf{x}) - \widehat{g}_m(0, \mathbf{x}) \end{aligned}$$

- Curse of Dimensionality: highly variable estimates, (sometimes) empty strata
- Separate systematic differences from noise → data and assumptions Heterogeneous treatment effect methods
 - LASSO, Find It (Imai and Ratkovic, 2013) → sparsity
 - Ridge, KRLS (Hainmueller and Hazlett, 2013) → flexible surface, dense
 - Model m to estimate some function $g_m(T_j = k, x)$
- Perform well: $g_m(T_j = k, \mathbf{x})$ accurately estimates response surface $(E[Y(T_j = k)|\mathbf{x}])$
- Perform well: accurate out of sample prediction and classification (van der Laan et al 2007, Raftery et al 2005)

Create ensemble: weighting methods by (unique) out of sample predictive performance

$$MC\widehat{ATE}_{\mathsf{T}_{j}=k,\mathbf{x}} = \sum_{m=1}^{M} \widehat{\pi}_{m}(\widehat{g}_{m}(\mathsf{T}_{j}=k,\mathbf{x}) - \widehat{g}_{m}(0,\mathbf{x}))$$

$$MC\widehat{\mathsf{ATE}}_{\mathsf{T}_j=k,\mathbf{x}} = \sum_{m=1}^{M} \widehat{\boldsymbol{\pi}}_m(\widehat{g}_m(\mathsf{T}_j=k,\mathbf{x}) - \widehat{g}_m(0,\mathbf{x}))$$

$$MC\widehat{\mathsf{ATE}}_{\mathsf{T}_j=k,\mathbf{x}} = \sum_{m=1}^M \widehat{\pi}_m(\widehat{g}_m(\mathsf{T}_j=k,\mathbf{x}) - \widehat{g}_m(0,\mathbf{x}))$$

- Suppose we have M (m = 1, ..., M) models.

$$MC\widehat{\mathsf{ATE}_{\mathsf{T}_j=k,\mathbf{x}}} = \sum_{m=1}^M \widehat{\pi}_m(\widehat{g}_m(\mathsf{T}_j=k,\mathbf{x}) - \widehat{g}_m(0,\mathbf{x}))$$

- Estimate weights $(\widehat{\pi}_m)$

$$MC\widehat{ATE}_{\mathsf{T}_j=k,\mathbf{x}} = \sum_{m=1}^{M} \widehat{\pi}_m(\widehat{g}_m(\mathsf{T}_j=k,\mathbf{x}) - \widehat{g}_m(0,\mathbf{x}))$$

- Estimate weights $(\widehat{\pi}_m)$
 - 10-fold cross validation: generate M out of sample predictions for each observation

$$MC\widehat{ATE}_{\mathsf{T}_j=k,\mathbf{x}} = \sum_{m=1}^{M} \widehat{\pi}_m(\widehat{g}_m(\mathsf{T}_j=k,\mathbf{x}) - \widehat{g}_m(0,\mathbf{x}))$$

- Estimate weights $(\widehat{\pi}_m)$
 - 10-fold cross validation: generate M out of sample predictions for each observation

$$\widehat{\mathbf{Y}}_i = (\widehat{Y}_{i1}, \widehat{Y}_{i2}, \dots, \widehat{Y}_{iM})$$

- Suppose we have M (m = 1, ..., M) models.

$$MC\widehat{ATE}_{\mathsf{T}_j=k,\mathbf{x}} = \sum_{m=1}^{M} \widehat{\pi}_m(\widehat{g}_m(\mathsf{T}_j=k,\mathbf{x}) - \widehat{g}_m(0,\mathbf{x}))$$

- Estimate weights $(\widehat{\pi}_m)$
 - 10-fold cross validation: generate M out of sample predictions for each observation

$$\widehat{\mathbf{Y}}_i = (\widehat{Y}_{i1}, \widehat{Y}_{i2}, \dots, \widehat{Y}_{iM})$$

- Estimate weights with constrained regression:

- Suppose we have M (m = 1, ..., M) models.

$$MC\widehat{ATE}_{\mathsf{T}_j=k,\mathbf{x}} = \sum_{m=1}^{M} \widehat{\pi}_m(\widehat{g}_m(\mathsf{T}_j=k,\mathbf{x}) - \widehat{g}_m(0,\mathbf{x}))$$

- Estimate weights $(\widehat{\pi}_m)$
 - 10-fold cross validation: generate M out of sample predictions for each observation

$$\widehat{\mathbf{Y}}_i = (\widehat{Y}_{i1}, \widehat{Y}_{i2}, \dots, \widehat{Y}_{iM})$$

- Estimate weights with constrained regression:

$$Y_i = \sum_{m=1}^{M} \pi_m \hat{Y}_{im} + \epsilon_i$$

- Suppose we have M (m = 1, ..., M) models.

$$MC\widehat{ATE}_{\mathsf{T}_j=k,\mathbf{x}} = \sum_{m=1}^{M} \widehat{\pi}_m(\widehat{g}_m(\mathsf{T}_j=k,\mathbf{x}) - \widehat{g}_m(0,\mathbf{x}))$$

- Estimate weights $(\widehat{\pi}_m)$
 - 10-fold cross validation: generate M out of sample predictions for each observation

$$\widehat{\mathbf{Y}}_i = (\widehat{Y}_{i1}, \widehat{Y}_{i2}, \dots, \widehat{Y}_{iM})$$

- Estimate weights with constrained regression:

$$Y_i = \sum_{m=1}^{M} \pi_m \hat{Y}_{im} + \epsilon_i$$

where we impose constraints: $\pi_m \geq 0$ and $\sum_{m=1}^{M} \pi_m = 1$.

- Suppose we have M (m = 1, ..., M) models.

$$\widehat{\mathsf{MCATE}_{\mathsf{T}_j=k,\mathbf{x}}} = \sum_{m=1}^M \widehat{\pi}_m(\widehat{g}_m(\mathsf{T}_j=k,\mathbf{x}) - \widehat{g}_m(0,\mathbf{x}))$$

- Estimate weights $(\widehat{\pi}_m)$
 - 10-fold cross validation: generate ${\it M}$ out of sample predictions for each observation

$$\widehat{\mathbf{Y}}_i = (\widehat{Y}_{i1}, \widehat{Y}_{i2}, \dots, \widehat{Y}_{iM})$$

- Estimate weights with constrained regression:

$$Y_i = \sum_{m=1}^{M} \pi_m \hat{Y}_{im} + \epsilon_i$$

where we impose constraints: $\pi_m \geq 0$ and $\sum_{m=1}^{M} \pi_m = 1$.

- Result $\widehat{\pi}_m$ for each method

- Suppose we have M (m = 1, ..., M) models.

$$MC\widehat{ATE}_{\mathsf{T}_j=k,\mathbf{x}} = \sum_{m=1}^{M} \widehat{\pi}_m(\widehat{g}_m(\mathsf{T}_j=k,\mathbf{x}) - \widehat{g}_m(0,\mathbf{x}))$$

- Estimate weights $(\widehat{\pi}_m)$
 - 10-fold cross validation: generate ${\it M}$ out of sample predictions for each observation

$$\widehat{\mathbf{Y}}_i = (\widehat{Y}_{i1}, \widehat{Y}_{i2}, \dots, \widehat{Y}_{iM})$$

- (Alternatively) Estimate weights from mixture model (EBMA) (Raftery et al 2005; Montgomery, Hollenback, Ward 2012) → EM, Gibbs, Variational Approximation

- Suppose we have M (m = 1, ..., M) models.

$$MC\widehat{ATE}_{T_j=k,\mathbf{x}} = \sum_{m=1}^{M} \widehat{\pi}_m(\widehat{g}_m(T_j=k,\mathbf{x}) - \widehat{g}_m(0,\mathbf{x}))$$

- Estimate weights $(\widehat{\pi}_m)$
- Estimate $\widehat{g}_m(\mathsf{T}_j=k,\mathbf{x}) \leadsto \mathsf{Apply}$ all M models to entire data set

- Suppose we have M (m = 1, ..., M) models.

$$MCA\widehat{\mathsf{TE}_{\mathsf{T}_j=k,\mathsf{x}_{\mathsf{new}}}} = \sum_{m=1}^{M} \widehat{\pi}_m(\widehat{g}_m(\mathsf{T}_j=k,\mathsf{x}_{\mathsf{new}}) - \widehat{g}_m(0,\mathsf{x}_{\mathsf{new}}))$$

- Estimate weights $(\widehat{\pi}_m)$
- Estimate $\widehat{g}_m(\mathsf{T}_j=k,\mathbf{x}) \leadsto \mathsf{Apply}$ all M models to entire data set
- Generate effects of interest (perhaps weighting to other population) \mathbf{x}_{new}

Monte Carlo Evidence

Monte Carlo Evidence

Monte Carlo Evidence

Ensembles outperform constituent methods \rightsquigarrow ensembles place weight on better performing method

Recall: experiment to assess effects of credit claiming on approval ↔ 1,074 participants (MTurk)

Recall: experiment to assess effects of credit claiming on approval \rightsquigarrow 1,074 participants (MTurk)

Apply ensemble method (7 constituent methods, 10 fold cross validation), including treatments and Partisanship and Ideology.

Recall: experiment to assess effects of credit claiming on approval \rightsquigarrow 1,074 participants (MTurk)

Apply ensemble method (7 constituent methods, 10 fold cross validation), including treatments and Partisanship and Ideology.

Positive weight on three methods:

Recall: experiment to assess effects of credit claiming on approval ↔ 1,074 participants (MTurk)

Apply ensemble method (7 constituent methods, 10 fold cross validation), including treatments and Partisanship and Ideology.

Positive weight on three methods:

1) LASSO (0.62)

Recall: experiment to assess effects of credit claiming on approval ↔ 1,074 participants (MTurk)

Apply ensemble method (7 constituent methods, 10 fold cross validation), including treatments and Partisanship and Ideology.

Positive weight on three methods:

- 1) LASSO (0.62)
- 2) KRLS (0.24)

Recall: experiment to assess effects of credit claiming on approval ↔ 1,074 participants (MTurk)

Apply ensemble method (7 constituent methods, 10 fold cross validation), including treatments and Partisanship and Ideology.

Positive weight on three methods:

- 1) LASSO (0.62)
- 2) KRLS (0.24)
- 3) Find it (0.14)

990

13 / 14

990

Treatment Effect

→ Constituents evaluate expenditures using qualitative information, rather than numerical facts

Issues with experimental design

- Treatments are conditional on what else is included: averaging other quantities \neq to excluding other quantities

- Treatments are conditional on what else is included: averaging other quantities \neq to excluding other quantities
- Potential for fishing is massive → pre analysis plan and split-sample design

- Treatments are conditional on what else is included: averaging other quantities \neq to excluding other quantities
- Potential for fishing is massive → pre analysis plan and split-sample design
- Assumption about the way information delivered:

- Treatments are conditional on what else is included: averaging other quantities \neq to excluding other quantities
- Potential for fishing is massive → pre analysis plan and split-sample design
- Assumption about the way information delivered:
 - 1) We know salient dimensions

- Treatments are conditional on what else is included: averaging other quantities \neq to excluding other quantities
- Potential for fishing is massive → pre analysis plan and split-sample design
- Assumption about the way information delivered:
 - 1) We know salient dimensions
 - 2) We're constructing effects that correspond with effects in reality

Issues with experimental design

- Treatments are conditional on what else is included: averaging other quantities \neq to excluding other quantities
- Potential for fishing is massive → pre analysis plan and split-sample design
- Assumption about the way information delivered:
 - 1) We know salient dimensions
 - 2) We're constructing effects that correspond with effects in reality

Wednesday's lecture will introduce discovery methods