

# Rechnernetze Kapitel 1: Einführung

## Prof. Dr. Wolfgang Mühlbauer

Fakultät für Informatik

wolfgang.muehlbauer@th-rosenheim.de

#### Wintersemester 2021/22

Folien basieren auf:

J. Kurose, K. Ross: Computer Networks - A Top-Down Approach
A. Tanenbaum, D. Wetherall: Computer Networks

#### Inhalt

- Aufbau des Internets
- Grundlagen der Datenübertragung
  - Paket- vs. Leitungsvermittlung
  - Delay, Paketverlust und Throughput
- Geschichte des Internets
- Schichtenmodell

#### Internet: Aufbau und Hardware



- Milliarden verbundener Geräte
  - Host = Endsystem
  - Netzapplikationen



- Kommunikationsverbindungen
  - Link
  - Glasfaser, Kupfer, Funk, Satellit



- Weiterleitende Geräte:
  - Router und Switches



## Internet: Organisation, Begriffe

#### "Netz der Netze"

- Internet Service Provider (ISP), Firmen, Universitäten
- Netze sind autonom.
- Netze tauschen Daten aus.

#### Protokolle

- Definieren Nachrichtenformate, Bedeutung und Reihenfolge der Nachrichten.
- Beispiele: TCP, IP, HTTP, Skype, 802.11

#### Internet Standards

- Definition von Protokollen.
- <u>RFC:</u> Request for Comments, spezifiziert durch Internet Engineering Task Force (IETF)



## Zugang im Heimnetz: Digital Subscriber Line (DSL)



- Kupferleitung transportiert Daten und klassische Telefonie
  - Zunehmend: Klassische Telefonie daten-basiert, also per VolPI
- DSL Modem
  - Übersetzt digitale Bitfolge in hochfrequente Töne
  - Früher: 0-4 kHz Sprache, 4-50 kHz Upstream Daten, 50 kHz- 1MHz Downstream Daten
- DSLAM: Digital Subscriber Line Access Multiplexer
  - Rückübersetzung in digitale Signale, Trennung von Daten und Sprache
  - In Vermittlungsstelle, zunehmend noch näher am Endnutzer

## Zugang im Heimnetz: Kabel



- CMTS: entspricht DSLAM bei DSL
- Daten und TV auf verschiedenen Frequenzen
- Endzugänge teilen sich Netz bis zum CMTS

## Innenansicht eines typischen Zugangsnetzes



## Publikums-Joker: Internetzugang (Single Choice)

#### Welche Aussage ist falsch?

- Telefonie findet heute fast ausschließlich per Voiceover-IP datenbasiert statt.
- B. Die DSL-Datenübertragung läuft über verdrillte Kupferleitungen.
- Internet-Download und Upload sind meist gleich schnell.
- D. Ein Kabelmodem oder DSL-Modem ist meist zugleich ein Router, der mehrere Teilnehmer mit Internet versorgen kann.



#### Internet: Netz der Netze



- "Tier-1"
  - Sehr gut verbundene Netze
  - Infrastruktur-Service: Anbinden kleinerer ISPs
  - Nationale und internationale Abdeckung
  - Beispiele: AT&T, Deutsche Telekom, Sprint
- Internet Exchange Point (IXP)
  - Treffpunkt / Kreuzung im Internet
  - Hier können Netze Daten austauschen

#### Content Provider Netzwerke

- Eigenes weltweites Netz, Anbieter von Daten
- Beispiele: Google, Microsoft, Akamai, Cloudflare
- Zugangsnetze / Internet Service Provider (ISP)
  - Zugang für Endkunden
  - Beispiele: Komro, MNet, Uninetz, Firmennetz usw.

#### **Inhalt**

- Aufbau des Internets
- Grundlagen der Datenübertragung
  - Paket- vs. Leitungsvermittlung
  - Delay, Paketverlust und
- Geschichte des Internets
- Schichtenmodell

## Leitungsvermittlung (engl. Circuit Switching)

- Benötigte Ressourcen müssen vorab reserviert werden.
  - Verbindung nur zulassen, falls ausreichend Kapzität.
  - Ansonsten: Ablehnen!
- Senden eines kontinuierlichen Datenstroms
  - Übertragungsrate ist "garantiert".
- Ggfs. werden Ressourcen verschwendet! Warum?



Jeder Link hat 4 Leitungen. Anruf bekommt die 2. Leitung im 1. Link und die 1. Leitung im 2. Link.

## Paketvermittlung (engl. Packet Switching)

- Host teilt gesamte Nachricht in kleine Pakete der Länge L auf.
- Host sendet Pakete unabhängig über Links / Router in Richtung
   Ziel
  - Je Link: Übertragung mit maximaler Übertragungsrate R (z.B. 100 Mbps)
    - Gleichzeitige Pakete müssen zeitlich hintereinander gesendet werden.
  - Je Router: Store-and-Forward
    - Jeder Router muss erst gesamtes Paket empfangen bevor er das Paket auf ausgehenden Link weiterleitet.



## Wie entsteht Paketverlust und -verzögerung?

- Router speichern Pakete in Puffer zwischen.
  - Paket muss warten bis es an der Reihe ist.
  - Eingangsrate kann zwischenzeitlich vorhandene Kapazität auf der Ausgangsverbindung überschreiten.



## Was verursacht Paketverzögerung?



http://www.ccs-labs.org/teaching/rn/animations/propagation/

#### Transmission Delay d<sub>trans</sub>:

- "Serialisierung", Paket auf die Reise schicken.
- L: Paketlänge(Bits)
- R: Bandbreite des Links (bps)
- o  $d_{\text{trans}} = L/R$

#### Propagation Delay d<sub>prop</sub>:

- Wieviel Zeit benötigt Bit für die Strecke?
- s: Länge des Links
- v: Ausbreitungsgeschwindigkeit im Übertragungsmedium (~2x10<sup>8</sup> m/sec)
- $d_{\text{prop}} = s/v$

*Nicht verwechseln* → Animation: <a href="http://www.ccs-labs.org/teaching/rn/animations/propagation/">http://www.ccs-labs.org/teaching/rn/animations/propagation/</a>

## Publikums-Joker: Paketverzögerung (Single-Choice)

Paketvermittlung: Eine Quelle sendet Pakete in Richtung Ziel. Alle Pakete folgen der gleichen Route. Welche der folgenden Delay-Komponenten *variiert*?



- A. Queuing delay d<sub>queue</sub>
- B. Transmission delay  $d_{trans}$
- c. Propagation delay  $d_{prop}$

## Begriffe: Delay, Jitter, Throughput

#### Delay, Latency

- Paketverzögerung
- Wie lange dauert es, bis Paket komplett von A nach B übertragen ist?
- o  $d_{proc}$ ,  $d_{queue}$ ,  $d_{trans}$ ,  $d_{prop}$

#### Jitter

Varianz der Laufzeit von Datenpaketen über die Zeit



#### Throughput

- Durchsatz, erzielte Datenrate.
- Der Flaschenhals R<sub>c</sub> bestimmt den Durchsatz.



## Einschub: Metrische Einheiten

| Prefix | Exp.            | prefix   | exp.             |
|--------|-----------------|----------|------------------|
| K(ilo) | 10 <sup>3</sup> | m(illi)  | 10 <sup>-3</sup> |
| M(ega) | 10 <sup>6</sup> | μ(micro) | 10-6             |
| G(iga) | 10 <sup>9</sup> | n(ano)   | 10-9             |

- Überblicherweise: 10er Potenzen für Datenraten, 2er Potenzen für Speicher
  - Beispiel Raten: 1 Mbps = 1,000,000 bps,
  - Beispiel Speicher: 1 KiB = 1024 bytes
- "B" is for bytes, "b" is for bits

## **Inhalt**

- Aufbau des Internets
- Grundlagen der Datenübertragung
  - Paket- vs. Leitungsvermittlung
  - Delay, Paketverlust und
- Geschichte des Internets
- Schichtenmodell

## Geschichte des Internets

- 1961: Theorie Paketvermittlung, Warteschlangentheorie
- 1967: Vorstellung des ARPANET Projekts (15 Knoten)
- 1970: ALOHAnet Satellitennetz in Hawaii
- 1972: Öffentliche Demo des ARPANET
- 1976: Ethernet bei Xerox PARC
- 1979: ARPANET hat 200 Knoten
- 1982: SMTP
- 1983: TCP/IP und DNS
- 1985: FTP und zunehmend neue nationale Netze (NSFnet, Minitel)
- 1991: NSF erlaubt kommerzielle Nutzung von NSFnet, Web (HTML, HTTP)
- 2000: Instant Messaging, P2P Anwendungen, Breitbandzugänge
- 2007: Apple iPhone, Entstehen sozialer Netze
- Aktuelle Trends
  - Konsolidierung: Riesige private Netze (Google, Microsoft)
  - Cloud-Anwendungen
  - Internet of Things
  - Videokonferenzen / Corona

0 ...



#### **Inhalt**

- Aufbau des Internets
- Grundlagen der Datenübertragung
  - Paket- vs. Leitungsvermittlung
  - Delay, Paketverlust und Throughput
- Geschichte des Internets
- Schichtenmodell

#### Motivation: Schichtenmodell

- Komplexität beherrschen!
  - Heterogene Netze, verschieden Organisationen.
  - Milliarden Hosts mit unterschiedlichen Eigenschaften.
- Hinzufügen neuer Features, ohne alles von vorne zu entwickeln?
- Wie kann notwendige Hardware, Treiber und Anwendungen modular entwickeln und programmieren?
- Lösung: Schichtenmodell
- Beispiele aus dem Alltag:
  - Versenden von Post
  - Philosoph, Übersetzer, Sekretär

## Philosoph, Übersetzer, Sekretär

- 2 Philosophen wollen miteinander diskutieren
  - 1 Philosoph spricht nur Englisch
  - 1 Philosoph spricht nur Französisch
- Beide Sekretärinnen sprechen Holländisch
- Protokolle auf den 3
   Schichten dienen unterschiedlichen Zwecken



#### Horizontale und vertikale Kommunikation

#### Horizontal:

 Jede Protokollinstanz spricht virtuell mit der Protokollinstanz auf gleicher Schicht gegenüber.

#### Vertikal: Jede Schicht

- verwendet die Services der Schicht darunter
- stellt nach oben einen "neuen"
   Service bereit (Service Access
   Point = SAP)



## Schichtenmodell: Implementierung durch Header

- Jede Schicht fügt an zu übertragende Nachricht ihren eigenen Header hinzu.
   Der Empfänger entfernt diesen Header wieder.
  - Header = Briefumschlag bzw. Steuerungsinformation
- Manche Schichten teilen (zu große) Nachrichten auch auf. Die Nachricht wird dann auf der Gegenseite wieder zusammengefügt...



#### TCP/IP Referenzmodell: Schichten des Internets

Der Internet TCP/IP Stack besteht aus nur 5 Schichten:



#### TCP/IP Schichtenmodell

- Schicht 5: Application Layer → Message
  - FTP, SMTP, HTTP, DNS
- Schicht 4: Transport Layer (Schicht 4) → Segment
  - TCP, UDP
  - Aufbau einer Verbindung zwischen Prozessen zweier Hosts
  - Evtl.: Erkennen und Behandeln von Paketverlusten und Überlastungen des Netzes
- □ Schicht 3: Network Layer (Schicht 3) → Datagramm
  - IPv4, IPv6, X.25
  - Ende-zu-Ende Verbindung zwischen Start- und Zielhost
  - Forwarding, Routing, Adressierung
- Schicht 2: Data Link Layer (Schicht 2) → Frame
  - Verschiedene Linktechniken: Ethernet, WLAN, PPP
  - Rahmenbildung, Fehlererkennung und –korrektur
  - Medienzugriff: Wer darf gerade den Link benutzen?
  - Evtl. Flusskontrolle: Empfänger nicht mit Daten überfluten
- Schicht 1: Physical Layer → Bits
  - Wie werden Bits übertragen? Frequenzen, Modulation, Spannungsverläufe
  - Übertragungsmedien (Kupfer, Glasfaser, Funk)

## **OSI Schichtenmodell**

- Referenzmodell der ITU/ISO für Datenkommunikation
  - Beliebige Datenkommunikation, nicht nur Internet.
- Zerlegung in 7 anstatt in 5 Schichten
- Zusätzlich: Presentation Layer (Schicht 6)
  - Semantik der übertragenen Kommunikation
  - Beispiel: Kompression, Verschlüsselung, Big Endian vs, Little Endian
- Zusätzlich: Session Layer (Schicht 5)
  - Sitzungsaufbau- und Sitzungsabbau
  - Synchronisierung zwischen beteiligten Prozessen (Setzen von Wiederaufsetzpunkten)
- Beide Schichten müssen im Internet ggfs. durch Anwendung nachimplementiert werden.

application presentation session transport network link physical

## Publikums-Joker: Schichtenmodell (Multiple-Choice)

Welche 3 Schichten des OSI-Modells werden im TCP/IP Schichtenmodell zusammengefasst?

- A. Session Layer
- B. Transport Layer
- C. Presentation Layer
- Application Layer
- E. Link Layer
- F. Network Layer



#### Wie funktioniert das Internet?

- Hausaufgabe: "Sendung mit der Maus"-Video schauen
  - https://www.youtube.com/watch?v=8PNRrOGJqUI

