Análisis Multivariado

ID 033521 - Clase 4901

Lina Maria Acosta Avena

Ciencia de Datos Departamento de Matemáticas Pontificia Universidad Javeriana

Semana 4(Parte 2): 05/08/24 - 10/08/24

1 / 44

Considere el problema de evaluar la igualdad (o diferencia) de medias multidimensional de **diferentes poblaciones**. Para esto, debemos considerar los siguientes casos:

- 1. Pareadas o medidas repetidas.

 Las p variables se evalúan en la misma unidad de muestreo en "dos" condiciones diferentes (por ejemplo, antes y después).
- 2. <u>Dos</u> poblaciones **independientes**.
- 3. <u>Más de dos</u> poblaciones **independientes**.

Considere que se quiere estudiar un tratamiento para bajar de peso, y que además del peso (X_1) se consideran la estatura (X_2) y la edad (X_3) de los participantes del estudio.

En este caso:

√ hay tres variables,

Considere que se quiere estudiar un tratamiento para bajar de peso, y que además del peso (X_1) se consideran la estatura (X_2) y la edad (X_3) de los participantes del estudio.

En este caso:

- √ hay tres variables,
- ✓ las variables estan involucradas en dos grupos/situaciones (antes y después del tratamiento) provienen de la misma población,
- √ habrá correlación entre las variables de los dos grupos, puesto que están medidas en la misma unidad de muestreo (participante),

√ el interés es comparar las medias de los dos grupos,

$$\begin{aligned} &\mathsf{H}_0: \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2 \\ &\mathsf{H}_1: \boldsymbol{\mu}_1 \neq \boldsymbol{\mu}_2 \end{aligned}$$

con

$$m{\mu}_1 = egin{bmatrix} \mu_{11} \\ \mu_{12} \\ \mu_{13} \end{bmatrix} \qquad ; \qquad m{\mu}_2 = egin{bmatrix} \mu_{21} \\ \mu_{22} \\ \mu_{23} \end{bmatrix}$$

siendo

- μ_{11} y μ_{21} la media de X_1 antes y después del tratamiento, respectivamente. \mathbf{X}_{2M}
- μ_{12} y μ_{22} la media de X_2 antes y después del tratamiento, respectivamente.
- μ_{13} y μ_{23} la media de X_3 antes y después del tratamiento, pectivamente.

Los registros podrian ser representados por:

Uni. Muestreo	Antes			Después		
Offi. Widestreo	X_1	X_2	<i>X</i> ₃	X_1	X_2	<i>X</i> ₃
1	X ₁₁₁	X ₁₁₂	X ₁₁₃	X ₂₁₁	X ₂₁₂	X ₂₁₃
2	X ₁₂₁	X ₁₂₂	X ₁₂₃	X ₂₂₁	X ₂₂₂	X ₂₂₃
÷	:	:	:	:	:	:
j	<i>X</i> _{1<i>j</i>1}	<i>X</i> _{1<i>j</i>2}	<i>X</i> _{1<i>j</i>3}	<i>X</i> 2 <i>j</i> 1	<i>X</i> 2 <i>j</i> 2	<i>X</i> _{2<i>j</i>3}
÷	:	:	:	:	:	:
n	<i>X</i> _{1<i>n</i>1}	<i>X</i> _{1<i>n</i>2}	<i>X</i> _{1<i>n</i>3}	<i>X</i> _{2<i>n</i>1}	<i>X</i> _{2<i>n</i>2}	<i>X</i> _{2<i>n</i>3}

Este es el contexto de muestras pareadas.

Suponga que tres variables X_1, X_2, X_3 fueron medidas en dos grupos: Mujeres y Hombres que se desean comparar

 $\mathsf{H}_0: oldsymbol{\mu}_{\mathrm{Mujeres}} = oldsymbol{\mu}_{\mathrm{Hombres}}$

 $\mathsf{H}_1: \boldsymbol{\mu}_{\mathrm{Mujeres}}
eq \boldsymbol{\mu}_{\mathrm{Hombres}}$

Si bien aquí también se mediran las **mismas tres variables en cada grupo**, éstos sería **independientes**. En este caso, las **muestras** son **independientes**.

Semestre 2430

$$f_{\mathbf{X}}\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix},\begin{bmatrix} \mu_{11}\\\mu_{12}\\\mu_{13}\end{bmatrix}\right)$$

Hombres

$$f_{\mathbf{X}}\left(\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}, \begin{bmatrix} \mu_{21}\\ \mu_{22}\\ \mu_{23} \end{bmatrix}\right)$$

Muestras Pareadas:

- Sea $\mathbf{X}_{11},\ldots,\mathbf{X}_{1n}$ vectores aleatorios $p\times 1$ de una población normal multivariada antes de un tratamiento con $\boldsymbol{\mu}_1=\mathsf{E}[\mathbf{X}_{1j}],\,j=1,\ldots,n.$
- Sea $\mathbf{X}_{21},\ldots,\mathbf{X}_{2n}$ vectores aleatorios $p\times 1$ de una población normal multivariada después de un tratamiento con $\boldsymbol{\mu}_2=\mathsf{E}[\mathbf{X}_{2j}],\ j=1,\ldots,n$.
- Asuma que X₁₁,..., X_{1n} y X₂₁,..., X_{2n} son muestras aleatorias de una misma población en diferentes situaciones, donde X_{1j} y X_{2j} están correlacionados, por ejemplo, vectores aleatorios de mediciones antes (X_{1j}) y después de un tratamiento (X_{2j}).

Etiquetamos las *p* mediciones dentro de la *j*-ésima unidad como:

```
X_{1i1} = variable 1 dentro del tratamiento 1
X_{1/2} = variable 2 dentro del tratamiento 1
X_{1ip} = variable p dentro del tratamiento 1
X_{2i1} = variable 1 dentro del tratamiento 2
X_{2i2} = variable 2 dentro del tratamiento 2
X_{2ip} = variable p dentro del tratamiento 2
```


Semestre 2430

Las observaciones multivariadas son evaluadas en la **misma unidad muestral** en **dos situaciones diferentes**:

$$\mathbf{X}_{1j} = egin{bmatrix} X_{1j1} \ X_{1j2} \ \vdots \ X_{1jp} \end{bmatrix} \hspace{1cm} ; \hspace{1cm} \mathbf{X}_{2j} = egin{bmatrix} X_{2j1} \ X_{2j2} \ \vdots \ X_{2jp} \end{bmatrix}$$

Suponga que el interés es verificar que el **tratamiento no produce ningún efecto**:

$$\mathsf{H}_0: \mu_1 = \mu_2$$
 ; $\mathsf{H}_0: \mu_D = \mu_1 - \mu_2 = \mathbf{0}$

11 / 44

Se pueden plantear las hipótesis

$$egin{aligned} \mathsf{H}_0: oldsymbol{\mu}_D = oldsymbol{\delta}_0 \ \mathsf{H}_1: oldsymbol{\mu}_D
eq oldsymbol{\delta}_0 \end{aligned}$$

siendo (en este caso) $\delta_0 = \mathbf{0}$, y cuya **estadistica de prueba** está dada por

$$n\left(\overline{\mathbf{D}}-\delta_0\right)^{ op} \mathbf{S}_D^{-1}\left(\overline{\mathbf{D}}-\delta_0\right) \overset{\mathsf{H}_0 \, \mathrm{verd.}}{\sim} \frac{(n-1)p}{n-p} F_{p,n-p}$$

donde

$$\overline{\mathbf{D}} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{D}_{j}$$

$$\overline{\mathbf{D}} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{D}_{j}$$
; $\mathbf{S}_{D} = \frac{1}{n-1} \sum_{j=1}^{n} \left(\mathbf{D}_{j} - \overline{\mathbf{D}} \right) \left(\mathbf{D}_{j} - \overline{\mathbf{D}} \right)^{\top}$

son respectivamente el vector de medias y la matriz de varianzas y covarianzas muestrales de las diferencias $\mathbf{D}_j = \mathbf{X}_{1j} - \mathbf{X}_{2j}$:

$$D_{j1} = X_{1j1} - X_{2j1}$$

$$D_{j2} = X_{1j2} - X_{2j2}$$

:

$$D_{jp} = X_{1jp} - X_{2jp}$$

$$\mathbf{D}_{j}^{\top}=[D_{j1},D_{j2},\cdots,D_{jp}]$$

Lina Maria Acosta Avena Análisis Multivariado

La **región** $(1-\alpha)100\,\%$ de **confianza**

$$\left\{ \boldsymbol{\delta}: \, n \left(\overline{\mathbf{D}} - \boldsymbol{\delta} \right)^{\top} \mathbf{S}_{D}^{-1} \left(\overline{\mathbf{D}} - \boldsymbol{\delta} \right) \leq \frac{(n-1)p}{n-p} F_{p,n-p}(\alpha) \right\}$$

El **intervalo** $(1 - \alpha)100\%$ de confianza **simultaneo** para diferencia de medias individuales δ_k :

$$\overline{D}_k \pm \sqrt{\frac{(n-1)p}{n-p}} F_{p,n-p}(\alpha) \sqrt{\frac{S_{Dkk}}{n}}$$

donde S_{Dkk} es la varianza de la k-ésima diferencia.

Lina Maria Acosta Avena

El **intervalo** $(1-\alpha)100\%$ de confianza **simultaneo Bonferroni** para diferencia de medias individuales δ_k :

$$\overline{D}_k \pm t_{n-1} \left(\frac{\alpha}{2p}\right) \sqrt{\frac{S_{Dkk}}{n}}$$

donde S_{Dkk} es la varianza de la k-ésima diferencia.

Example

Las plantas de tratamiento de aguas residuales municipales están obligadas por ley a controlar periódicamente sus descargas en ríos y arroyos. La preocupación por la confiabilidad de los datos de uno de estos programas de autocontrol llevó a un estudio en el que se dividieron muestras de efluentes y se enviaron a dos laboratorios para su análisis. La mitad de cada muestra fue enviada a el Laboratorio de Higiene del Estado de Wisconsin, y la otra mitad a un laboratorio comercial privado utilizado habitualmente en el programa de seguimiento. Se obtuvieron mediciones de la demanda bioquímica de oxígeno (DBO) y de sólidos suspendidos (SS), para n = 11divisiones de muestra, de los dos laboratorios.

Observación: Example 6.1 de Johnson and Wichern (2013), Applied Multivariate Statistical Analysis, pp. 276

Sample j	Commercial lab x_{1j1} (BOD) x_{1j2} (SS)		State lab of hygiene x_{2j1} (BOD) x_{2j2} (SS		
1	6	27	25	15	
2	6	23	28	13	
3	18	64	36	22	
4	8	44	35	29	
5	11	30	15	31	
6	34	75	44	64	
7	28	26	42	30	
8	71	124	54	64	
9	43	54	34	56	
10	33	30	29	20	
11	20	14	39	21	

¿Coinciden los análisis químicos de los dos laboratorios? Si existen diferencias, ¿cuál es su naturaleza?

17 / 44

Observación: El **primer subíndice** hace referencia al **laboratorio** que en este caso son los **tratamientos o situaciones**.

Observe que:

- se evalúan las mismas variables (BOD y SS) en cada condición (Commercial lab y State lab of hygiene).
- las muestras definen el emparejamiento o dependencia entre los dos conjuntos.
- El análisis se extiende a situaciones con dos conjuntos diferentes de variables.

El interés es probar las hipótesis

$$\mathsf{H}_0: oldsymbol{\mu}_1 = oldsymbol{\mu}_2$$

$$\mathsf{H}_1: oldsymbol{\mu}_1
eq oldsymbol{\mu}_2$$

donde

- μ_1 es el vector de medias (media de BOD y media SS) del laboratorio comercial.
- $m{\mu}_2$ es el vector de medias (media de BOD y media SS) del laboratorio de higiene del estado de Wisconsin.


```
# ---- Muestras Pareadas ---- #
X1j1 < -c(6,6,18,8,11,34,28,71,43,33,20)
                                                # X1 Lab 1
X1j2 < -c(27,23,64,44,30,75,26,124,54,30,14)
                                                # X2 Lab 1
X2i1 < -c(25,28,36,35,15,44,42,54,34,29,39)
                                                # X1 Lab 2
X2i2 < -c(15, 13, 22, 29, 31, 64, 30, 64, 56, 20, 21)
                                                # X2 Lab 2
X<-data.frame(X1j1,X1j2,X2j1,X2j2)</pre>
D_1<-X$X1_1-X$X2_1 # Dif. entre las X1 de los 2 lab.
Dj2<-X$X1j2-X$X2j2  # Dif. entre las X2 de los 2 lab.
Dbarra1<-mean(Dj1)
Dbarra2<-mean(Dj2)
Dbarra<-c(Dbarra1,Dbarra2)</pre>
```

```
SD<-matrix(c(var(Dj1),cov(Dj1,Dj2),
             cov(Dj1,Dj2), var(Dj2)), ncol=2)
T2<-11*t(Dbarra)%*%solve(SD)%*%Dbarra
> T2
          [,1]
[1,] 13.63931
Fc \leftarrow qf(0.05, 2,9,lower.tail = F)
vc<-((10*2)/9)*Fc
> vc
[1] 9.458877
¿Cuál es la conclusión?
```


Comparaciones de dos Poblaciones Normales Independientes

- Sea $\mathbf{X}_{11}, \dots, \mathbf{X}_{1n_1}$ vectores aleatorios $p \times 1$ de una población normal multivariada con $\boldsymbol{\mu}_1 = \mathsf{E}[\mathbf{X}_{1j}]$ y $\boldsymbol{\Sigma}_1$ $j = 1, \dots, n_1$.
- Sea $\mathbf{X}_{21},\ldots,\mathbf{X}_{2n}$ vectores aleatorios $p\times 1$ de una población normal multivariada con $\boldsymbol{\mu_2}=\mathsf{E}[\mathbf{X}_{2j}]$ y $\boldsymbol{\Sigma_2},\,j=1,\ldots,n_2.$
- Asuma que las poblaciones son independientes y que el interés es probar las hipótesis

$$\mathsf{H}_0: \mu_1 - \mu_2 = \delta_0 \ \mathsf{H}_1: \mu_1 - \mu_2
eq \delta_0$$

Observación: Aquí se debe tener en cuenta si las matrices Σ_1 y son **iguales o diferentes**.

• Asumiendo que $\Sigma_1 = \Sigma_2 = \Sigma$ (homocedásticidad u homogeneidad) y n_1 y n_2 pequeños, se rechaza H_0 a un nivel de significancia α si

$$\mathcal{T}_{obs}^2 = (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2 - \boldsymbol{\delta}_0)^{\top} \left[\left(\frac{1}{n_1} + \frac{1}{n_2} \right) \mathbf{S}_{pooled} \right]^{-1} (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2 - \boldsymbol{\delta}_0)$$

$$> \frac{(n_1+n_2-2)p}{n_1+n_2-p-1}F_{p,n_1+n_2-p-1}(\alpha)$$

donde

$$\overline{\mathbf{x}}_1 = \frac{1}{n_1} \sum_{j=1}^{n_1} \mathbf{x}_{1j}$$
 $\overline{\mathbf{x}}_2 = \frac{1}{n_2} \sum_{j=1}^{n_2} \mathbf{x}_{2j}$

$$\mathbf{S}_{pooled} = rac{n_1 - 1}{n_1 + n_2 - 2} \, \mathbf{S}_1 + rac{n_2 - 1}{n_1 + n_2 - 2} \, \mathbf{S}_2$$

$$\mathbf{S}_1 = rac{1}{n_1-1}\sum_{j=1}^{n_1} \left(\mathbf{x}_{1j} - \overline{\mathbf{x}}_1
ight) \left(\mathbf{x}_{1j} - \overline{\mathbf{x}}_1
ight)^{ op}$$

$$\mathbf{S}_2 = \frac{1}{n_2-1} \sum_{j=1}^{n_2} \left(\mathbf{x}_{2j} - \overline{\mathbf{x}}_2\right) \left(\mathbf{x}_{2j} - \overline{\mathbf{x}}_2\right)^{\top}$$

Los intervalos simultaneos de T^2

$$\overline{D_{K}} \pm \sqrt{\frac{(n_{1}+n_{2}-2)p}{n_{1}+n_{2}-p-1}} F_{p,n_{1}+n_{2}-p-1}(\alpha) \sqrt{\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right) S_{KK,pooled}}$$

Si las matrices de covarianzas de las dos poblaciones son diferentes (heterocedasticidad o heterogeneidad), Σ₁ ≠ Σ₂, y
 n₁-p y n₂-p grandes, se rechaza H₀ a un nivel de significancia α si

$$\mathcal{T}_{obs}^2 = \left(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2 - oldsymbol{\delta}_0
ight)^ op \left[rac{1}{n_1}\, \mathbf{S}_1 + rac{1}{n_2}\, \mathbf{S}_2
ight]^{-1} \left(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2 - oldsymbol{\delta}_0
ight)$$

$$>\chi_p^2(\alpha)$$

Semestre 2430

Para tamaños de muestra pequeños, la estadística está dada por

$$T^{*2} = \left[\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} - (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})\right]^{\top} \left[\frac{1}{n_{1}} \mathbf{S}_{1} + \frac{1}{n_{2}} \mathbf{S}_{2}\right]^{-1} \left[\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} - (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})\right]$$

$$\overset{\mathsf{H}_{0} \text{ verd.}}{\sim} \frac{vp}{v - p + 1} F_{p, v - p + 1}$$

donde

$$v = \frac{p + p^2}{\displaystyle\sum_{\mathit{i}=1}^2 \frac{1}{\mathit{n_i}} \left\{ \mathrm{traza} \left[\left(\frac{1}{\mathit{n_i}} \, \boldsymbol{S_\mathit{i}} \left(\frac{1}{\mathit{n_1}} \, \boldsymbol{S_\mathit{1}} + \frac{1}{\mathit{n_2}} \, \boldsymbol{S_\mathit{2}} \right)^{-1} \right)^2 \right] + \left(\mathrm{traza} \left[\frac{1}{\mathit{n_i}} \, \boldsymbol{S_\mathit{i}} \left(\frac{1}{\mathit{n_1}} \, \boldsymbol{S_\mathit{1}} + \frac{1}{\mathit{n_2}} \, \boldsymbol{S_\mathit{2}} \right)^{-1} \right] \right)^2 \right\}}$$

con mín $\{n_1, n_2\} \le v \le n_1 + n_2$. **Rechace** H_0 a un nivel de significancia α si

$$T^{*2} > \frac{vp}{v - p + 1} F_{p, v - p + 1}(\alpha)$$

Example

Considere que se tienen mediciones de productividad y altura de plantas de dos variedades:

Variedad A		Variedad B		
X_{11}	X_{12}	X_{21}	X_{22}	
5.7	2.1	4.4	1.8	
8.9	1.9	7,5	1.75	
6.2	1.98	5.4	1.78	
5.8	1.92	4.6	1.89	
6.8	2	5.9	1.9	
6.2	2.01			

Pruebe la **igualdad** del **vector medio** de las **dos variedades**, bajo **homocedasticidad**.

En este caso tenemos:

- Dos muestras de poblaciones independientes, variedad A y la variedad B.
- En cada muestra se miden dos características (variables)

	Variedad A		Variedad B	
	X ₁₁	X ₁₂	X ₂₁	X_{22}
	5.7	2.1	4.4	1.8
	8.9	1.9	7,5	1.75
	6.2	1.98	5.4	1.78
	5.8	1.92	4.6	1.89
	6.8	2	5.9	1.9
	6.2	2.01		
Media	6.6	1.985	5.56	1.824
Varianza	1.42	0.005	1.543	0.0045

Por lo tanto,

$$\overline{\mathbf{x}}_1 = \begin{bmatrix} 6.6\\1.985 \end{bmatrix}$$

$$\overline{\mathbf{x}}_2 = \begin{bmatrix} 5.56 \\ 1.824 \end{bmatrix}$$

$$\mathbf{S}_1 = \begin{bmatrix} 1.42 & -0.0504 \\ -0.0504 & 0.005 \end{bmatrix}$$

$$\mathbf{S}_2 = \begin{bmatrix} 1.543 & -0.037 \\ -0.037 & 0.0045 \end{bmatrix}$$

$$\mathbf{S}_{pooled} = \frac{6-1}{6+5-2} \begin{bmatrix} 1.42 & -0.0504 \\ -0.0504 & 0.005 \end{bmatrix} + \frac{5-1}{6+5-2} \begin{bmatrix} 1.543 & -0.037 \\ -0.037 & 0.0045 \end{bmatrix}$$

$$= \begin{bmatrix} 1.4745 & -0.0442 \\ -0.0442 & 0.0049 \end{bmatrix}$$

Luego,

$$T_{obs}^2 = \left[6.6 - 5.56 \quad 1.985 - 1.824\right] \left[\left(\frac{1}{6} + \frac{1}{5}\right)\mathbf{S}\right]^{-1} \left[\frac{6.6 - 5.56}{1.985 - 1.824}\right]$$

= 24.91803

$$\frac{(n_1+n_2-2)p}{n_1+n_2-p-1}F_{p,n_1+n_2-p-1}(\alpha) = \frac{(9)2}{8}4.45897 = 10.03268$$

Como

$$T_{obs}^2 = 24.91803 > 10.03268 = \frac{(n_1 + n_2 - 2)p}{n_1 + n_2 - p - 1} F_{p, n_1 + n_2 - p - 1}(\alpha)$$

Se rechaza H_0 : $\mu_A = \mu_B$.

Lina Maria Acosta Avena

Los intervalos simultáneos T²

$$6.6 - 5.56 \pm \sqrt{\frac{(9)2}{8}} F_{2,8}(0.05) \sqrt{\left(\frac{1}{6} + \frac{1}{5}\right) 1.47} = (-1.29, 3.37)$$

$$1.985 - 1.824 \pm \sqrt{\frac{(9)2}{8}} F_{2,8}(0.05) \sqrt{\left(\frac{1}{6} + \frac{1}{5}\right) 0.0049} = (0.0027, 0.295)$$

Imagine que:

- se tienen 3 o más grupos (g),
- dentro de **cada grupo** tiene un número de observaciones (n_i) ,
- en cada observación se tienen p variables.

Suponga que el interés es determinar si las medias poblacionales son iguales para todos los grupos.

Observación: Recuerde que la población está estratificada o clasificada (métodos, categorias, etapas, etc)

JAVERIAN STATE OF THE STATE OF

33 / 44

Comparaciones en más de dos Poblaciones Independientes

- $\mathbf{X}_{11}, \dots, \mathbf{X}_{1n_1}$ una muestra aleatoria de una población normal multivariada con $\boldsymbol{\mu}_1 = \mathsf{E}[\mathbf{X}_{1j}]$ y $\boldsymbol{\Sigma} = \mathsf{Var}[\mathbf{X}_{1j}]$ $j = 1, \dots, n_1$.
- $\mathbf{X}_{21},\ldots,\mathbf{X}_{2n_2}$ una muestra aleatoria de una población normal multivariada con $\boldsymbol{\mu}_2=\mathsf{E}[\mathbf{X}_{2j}]$ y $\boldsymbol{\Sigma}=\mathsf{Var}[\mathbf{X}_{2j}]$ $j=1,\ldots,n_g$.
- $\mathbf{X}_{g1}, \ldots, \mathbf{X}_{gn_g}$ una muestra aleatoria de una población normal multivariada con $\boldsymbol{\mu}_g = \mathsf{E}[\mathbf{X}_{gj}]$ y $\boldsymbol{\Sigma} = \mathsf{Var}[\mathbf{X}_{gj}]$ $j=1,\ldots,n_g$.
- Asuma que todas las poblaciones son independientes entre sí y que el interés es probar las hipótesis

$$\mathsf{H}_0: \mu_1 = \mu_2 = \dots = \mu_g = \mu$$

 $\mathsf{H}_1: \text{al menos un } \mu_i \text{ es diferente}$

Para probar esas hipótesis consideramos la reparametrización:

$$oldsymbol{\mu}_k = oldsymbol{\mu} + oldsymbol{ au}_k \qquad \qquad k = 1, \ldots, oldsymbol{g}$$

Por lo que basta probar

$$\mathsf{H}_0: oldsymbol{ au}_1 = oldsymbol{ au}_2 = \cdots = oldsymbol{ au}_g = oldsymbol{0}$$

 H_1 : al menos un $\boldsymbol{\tau}_k$ es diferente de $\mathbf{0}$

Observación: τ_k es el efecto del grupo k.

El modelo ANOVA multivariado (MANOVA) está dado por:

$$\mathsf{X}_{\mathit{k}\mathit{j}} = \mu + oldsymbol{ au}_\mathit{k} + oldsymbol{\epsilon}_{\mathit{k}\mathit{j}}$$

$$j=1,\ldots,n_k,\ k=1,\ldots,g.$$

Supuestos del modelo:

- $\epsilon_{kj} \stackrel{iid}{\sim} N(\mathbf{0}; \mathbf{\Sigma})$
- μ es la media general.
- τ_k es el **efecto** del k-ésimo **grupo**.
- $\sum_{k=1}^{g} n_k \boldsymbol{\tau}_k = \mathbf{0}$ (para garantizar la **identificabilidad** del modelo)

Lina Maria Acosta Avena

La tabla Manova queda dada por

Fuente de variación	Sumas de Cuadrados	Grados de Libertad
Tratamiento	В	g-1
Residuo	W	N-g
Total	Т	N-1

donde

• T es la suma de cuadrados total,

$$\mathcal{T} = \sum_{k=1}^{g} \sum_{j=1}^{n_k} \left(\mathbf{X}_{kj} - \overline{\mathbf{X}}
ight) \left(\mathbf{X}_{kj} - \overline{\mathbf{X}}
ight)^ op$$

• B es la suma de cuadrados entre los grupos

$$B = \sum_{k=1}^{g} n_k \left(\overline{\mathbf{X}}_k - \overline{\mathbf{X}} \right) \left(\overline{\mathbf{X}}_k - \overline{\mathbf{X}} \right)^{\mathsf{T}}$$

37 / 44

Análisis Multivariado Semestre 2430

• W es la suma de cuadrados dentro (intra) de los grupos

$$W = \sum_{k=1}^{g} \sum_{j=1}^{n_k} \left(\mathbf{X}_{kj} - \overline{\mathbf{X}}_k \right) \left(\mathbf{X}_{kj} - \overline{\mathbf{X}}_k \right)^{ op}$$

•
$$N = \sum_{k=1}^g n_k$$

Lo que se desea verificar es si W es pequeño con respecto a \mathcal{T} , esto es, si todas las medias pueden ser consideradas iguales, sobraría poco para el residuo. En consecuencia, para probar ésto, usamos la estadística Lambda de Wilk (Varianza Generalizada):

$$\Lambda^* = \frac{|W|}{|W+B|} = \frac{|W|}{|T|}$$

La distribución de Λ^* es complicada, depende del número de variables y del número de grupos. Se estudiaron algunos casos para los cuales existen tablas.

Example

Los datos Skulls del paquete heplots de R, contiene 150 observaciones y **5 variables** de cráneos egipcios de **cinco épocas**:

- epoch: época en que el cráneo fue atribuido. Es un factor ordenado con 5 niveles: c4000BC, c3300BC, c1850BC, c200BC, cAD150
- mB: largura máxima del cráneo.
- **bh**: altura de la base bregmática del cráneo.
- **bl**: longitud de la base alveolar del cráneo.
- nh: altura nasal del cráneo

El objetivo es comparar medias multidimensionales en los 5 grupos.

JAVERIANA Bogoti

Semestre 2430

Solución:

En este caso tenemos g = 5 grupos.

Considerando

- ullet Grupo 1 (c4000BC): $old X_1 \sim {\sf N}\left(oldsymbol{\mu}_1, oldsymbol{\Sigma}_1
 ight)$
- ullet Grupo 2 (c3300BC): $old X_2 \sim {\sf N}\left(oldsymbol{\mu}_1, oldsymbol{\Sigma}_2
 ight)$
- ullet Grupo 3 (c1850BC): $old X_3 \sim {\sf N}\left(oldsymbol{\mu}_1, oldsymbol{\Sigma}_3
 ight)$
- ullet Grupo 4 (c200BC): $old X_4 \sim {\sf N}\left(oldsymbol{\mu}_1, oldsymbol{\Sigma}_4
 ight)$
- ullet Grupo 5 (cAD150): $old X_5 \sim {\sf N}\left(oldsymbol{\mu}_1, oldsymbol{\Sigma}_5
 ight)$

el interés es probar

$$\mathsf{H}_0: \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2 = \boldsymbol{\mu}_3 = \boldsymbol{\mu}_4 = \boldsymbol{\mu}_5 = \boldsymbol{\mu}_5$$

 H_1 : al menos un μ_i es diferente


```
Fn R:
# ---- Ex. Datos Skulls ---- #
require(heplots)
data("Skulls")
require(mvShapiroTest)
# ---- Prueba de Normalidad Multivariada ---- #
mvShapiro.Test(as.matrix(Skulls[,2:5]))
Generalized Shapiro-Wilk test for Multivariate
```

Normality by Villasenor-Alva and Gonzalez-Estrada

```
data: as.matrix(Skulls[, 2:5])
MVW = 0.99212, p-value = 0.755
```


43 / 44

```
Df Wilks approx F num Df den Df Pr(>F)
epoch 4 0.66359 3.9009 16 434.45 7.01e-07 ***
Residuals 145
---
Signif. codes:
0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Observe que $p-{\bf valor}=7.01e-07$ es altamente significativo, por lo tanto que hay suficiente evidencia en la muestra para rechazar H_0 , así almenos un μ_i es diferente de los otros, $i=1,2,\ldots,5$.

Semestre 2430