MAT194F Calculus Midterm Test 9:00 - 10:45, 22 October 2015 105 minutes No calculators or aids Each question is worth 10 marks

1. Calculate f'(x) for:

(a)
$$f(x) = 5x + 2x^2$$

(b)
$$f(x) = \sin(-2x)$$
 (c) $f(x) = \tan\sqrt{x}$

(c)
$$f(x) = \tan \sqrt{x}$$

$$(d) f(x) = -2/x^2$$

(d)
$$f(x) = -2/x^2$$
 (e) $f(x) = \frac{2+3x-x^2/2}{7x^2-4}$

2. Evaluate the following limits if they exist. Do not use l'Hospital's Rule.

(a)
$$\lim_{x\to 0^+} \left(\frac{1}{x} - \frac{1}{|x|}\right)$$
 (b) $\lim_{x\to 2} \frac{x^2 - 4x + 4}{x^4 - 3x^2 - 4}$ (c) $\lim_{x\to 1} \frac{x^4 - 1}{x^3 - 1}$ (d) $\lim_{x\to 0} \frac{\sin 3x \sin 5x}{x^2}$ (e) $\lim_{x\to 0} \frac{\sin(x^2)}{x}$

(b)
$$\lim_{x \to 2} \frac{x^2 - 4x + 4}{x^4 - 3x^2 - 4}$$

(c)
$$\lim_{x\to 1} \frac{x^4-1}{x^3-1}$$

(d)
$$\lim_{x\to 0} \frac{\sin 3x \sin 5x}{x^2}$$

(e)
$$\lim_{x\to 0} \frac{\sin(x^2)}{x}$$

3. Provide $\delta - \varepsilon$ proofs for:

(a)
$$\lim_{x \to 5} x^2 = 25$$

(b)
$$\lim_{x \to 1/5} x^2 = 1/25$$

4. Sketch, indicating all important features:

(a)
$$y = \sin x + \sin |x|$$

(b)
$$y = \frac{\sqrt{x}}{1+\sqrt{x}}$$

- The radius of a sphere is increasing at a constant rate of 0.5 cm/s.
 - (a) There will be a time at which the volume of the sphere and the area of a cross-section through the centre of the sphere are increasing at the same rate. At this time, what is the radius of the sphere?
 - (b) At the time when the surface area of the sphere is increasing at a rate of 8π cm²/s, how fast is the volume of the sphere increasing?

Page one of two pages (turn this page over)

- 6. Consider the curve C defined implicitly by the equation cos(xy) = 1 + siny.
 - (a) Find dy/dx in terms of x and y.
 - (b) Is there a line that is tangent to both the curve C and the parabola $y = x^2$? If so, give the equation of one such line.

7.

- (a) Find the absolute maximum and minimum values of $f(x) = \sin x + \cos^2(x)$ on $[0, \pi]$ and state where they occur
- (b) Let $f(x) = x^3 + ax + b$, where a, b are real, unknown constants. For what values of a, b does a local maximum and minimum of f(x) exist? When they do exist, give their locations and values in terms of a, b.
- 8. Sketch, indicating all important features: $y = \sqrt{x^2 + x} x$.
- 9. (a) f, a real-valued function defined for all real x, is differentiable and satisfies $\lim_{x\to\infty}f'(x)=0. \text{ Prove } \lim_{x\to\infty}[f(x+1)-f(x)]=0.$
 - (b) g, a real-valued function defined for all real x, satisfies (i) g(x + y) = g(x) + g(y) + xy for all x, y and (ii) $\lim_{x \to 0} \frac{g(x)}{x} = 4$. Find g(0) and g'(0).
- 10. Evaluate the following limits if they exist. Do not use l'Hospital's Rule.

(a)
$$\lim_{x \to 1} \frac{\sqrt{x^2 + 3} - 2}{x^2 - x}$$

(a)
$$\lim_{x \to 1} \frac{\sqrt{x^2 + 3} - 2}{x^2 - x}$$
 (b) $\lim_{x \to -\infty} 2x^5 - 6x^4 + 1$ (c) $\lim_{x \to 0} \frac{|x - 1| - |2x + 1|}{3x}$

(c)
$$\lim_{x\to 0} \frac{|x-1|-|2x+1|}{3x}$$

- (d) $\lim_{x\to 1} f(x)$ where $f(x) = \begin{cases} x^2, & \text{if } x \text{ is of the form } \frac{1}{n}, n \in \{1, 2, 3, \dots\} \\ -x, & \text{otherwise} \end{cases}$
- (e) $\lim_{x\to\infty} \frac{2x^3-3}{3x^2-2} \sin\left(\frac{1}{x}\right)$