微积分 A(2) 期末试题参考答案

2020年6月8日

1. 已知 y = y(x), z = z(x) 是方程组 $\begin{cases} x^3 + y^3 - z^3 = 10 \\ x + y + z = 0 \end{cases}$ 在点 (1,1,-2) 附近确定的隐函数,求

y = y(x), z = z(x) 在 $x_0 = 1$ 点处的导数 y'(1), z'(1).

解: 方程组两端对 x 求导,有 $\begin{cases} 3x^2 + 3y^2y' - 3z^2z' = 0 \\ 1 + y' + z' = 0 \end{cases}$, \diamondsuit (x, y, z) = (1,1,-2) 得

$$\begin{cases} 3y'-12z'=-3\\ y'+z'=-1 \end{cases}$$
, 解得 $y'(1)=-1, z'(1)=0$.

2. 设 $f \in C^{(2)}(\mathbf{R})$, $z = f(x^2 + xy + y^2)$, 求 $\frac{\partial z}{\partial y}$ 和 $\frac{\partial^2 z}{\partial x \partial y}$ 在点 (1,1) 处的值。

$$z_{xy} = \frac{\partial}{\partial x} ((x+2y)f'(u)) = f'(u) + (x+2y)f''(u)u_x = f'(u) + (x+2y)(2x+y)f''(u),$$

 $z_{xy}(1,1) = f'(3) + 9f''(3).$

3. 求 $u = (\sin x)(\sin y)(\sin z)$ 在约束条件 $x + y + z = \frac{\pi}{2}(x > 0, y > 0, z > 0)$ 下的极值,并说明所求的极值是极大值,还是极小值。

解法一: $u = \sin x \sin y \sin \left(\frac{\pi}{2} - x - y\right) = \sin x \sin y \cos(x + y)$,

$$(x,y) \in D = \left\{ (x,y) : x,y > 0, x + y < \frac{\pi}{2} \right\}.$$

 $\Rightarrow 0 = u_x = \sin y (\cos x \cos(x+y) - \sin x \sin(x+y)) = \sin y \cos(2x+y),$

$$0 = u_y = \sin x \cos(x + 2y)$$
, $mathbb{H} = y = z = \frac{\pi}{6}$, $mathbb{H} = \frac{1}{8}$.

注意连续函数 \mathbf{u} 在有界闭区域 \overline{D} 上必有最值,而在 ∂D 上 $\mathbf{u}=0$ (最小值),因此上述驻点处必取最大值,当然也是极大值。

解法二: 令 $L(x, y, z, \lambda) = \sin x \sin y \sin z + \lambda \left(x + y + z - \frac{\pi}{2}\right)$.

4. 计算
$$\iint_{D} \left| \frac{y}{x} \right| dxdy$$
, 其中 $D = \{(x, y) | 1 \le x^2 + y^2 \le 2x \}$.

解: 使用极坐标代换,原式 =
$$2\int_0^{\pi/3} \tan\theta d\theta \int_1^{2\cos\theta} r dr = \int_0^{\pi/3} \tan\theta (4\cos^2\theta - 1) d\theta$$

= $\int_0^{\pi/3} (2\sin 2\theta - \tan\theta) d\theta = \frac{3}{2} - \ln 2$.

- 5. $\ \ \ \ \mathcal{U} = \{(x,y) \mid x > 0\} \ .$
- (I) 若 $A,B \in D$,L为D内连接 A,B 两点的逐段光滑的曲线,问 $\int_{L(A)}^{(B)} \frac{y dx x dy}{x^2 + 2y^2}$ 是否与路径L有 关? 说明理由;
- (II) 是否存在二元函数 z = z(x,y), 使得 $dz = \frac{ydx xdy}{x^2 + 2y^2}$? 若存在,求z(x,y);若不存在,说明理由。

解: (I) 记
$$P = \frac{y}{x^2 + 2y^2}, Q = \frac{-x}{x^2 + 2y^2},$$
有

$$P_{y} = \frac{(x^{2} + 2y^{2}) - y(4y)}{(x^{2} + 2y^{2})^{2}} = \frac{x^{2} - 2y^{2}}{(x^{2} + 2y^{2})^{2}}, Q_{x} = \frac{-(x^{2} + 2y^{2}) + x(2x)}{(x^{2} + 2y^{2})^{2}} = \frac{x^{2} - 2y^{2}}{(x^{2} + 2y^{2})^{2}}, P_{y} = Q_{x}.$$

由于 D 是单连通域, 因此题设积分在 D 内与路径无关。

(II) 注意到
$$dz = \frac{ydx - xdy}{x^2 + 2y^2} = \frac{ydx - xdy}{x^2} \frac{x^2}{x^2 + 2y^2} = -\frac{1}{1 + 2\left(\frac{y}{x}\right)^2} d\left(\frac{y}{x}\right)$$
, 所以

$$z = \int -\frac{1}{1+2\left(\frac{y}{x}\right)^2} d\left(\frac{y}{x}\right) = -\frac{1}{\sqrt{2}} \arctan\left(\frac{\sqrt{2}y}{x}\right) + C.$$

评注: 不可写作 $\frac{1}{\sqrt{2}} \arctan \left(\frac{x}{\sqrt{2}y} \right)$, 因为这个函数当 y=0 时不连续。但如分段加上不同的常

数使之连续则可以

解: 使用球坐标代换,原式 =
$$\int_0^1 r^2 \sqrt{1-r^3} dr \int_0^{\pi} \sin\theta d\theta \int_0^{2\pi} d\varphi = \frac{4\pi}{3} \int_0^1 \sqrt{1-t} dt = \frac{8\pi}{9}$$
.

7. 设
$$a > 1$$
, 有向曲线 $L^+: \begin{cases} x^2 + y^2 + z^2 = 2ax \\ x^2 + y^2 = 2x \end{cases}$ $(z \ge 0)$, 从 z 轴

正向看去,为逆时针方向。

解: 记
$$\vec{F} = (y^2 + z^2, z^2 + x^2, x^2 + y^2)$$
, 由 Stokes 公式得原式 = $\iint_S (\vec{\nabla} \times \vec{F}) \cdot d\vec{S}$, 这里 S 是

$$x^2 + y^2 + z^2 = 2ax$$
 被 $x^2 + y^2 = 2x$ 截下的区域上侧。

$$\vec{\nabla} \times \vec{F} = (2y - 2z, 2z - 2x, 2x - 2y)$$
,取S的法向 $\vec{n}_1 = (-z_x, -z_y, 1) = \left(\frac{x - a}{z}, \frac{y}{z}, 1\right)$,有

(这里 D:
$$x^2 + y^2 \le 2x$$
) 原式= $\iint_D (\vec{\nabla} \times \vec{F}) \cdot \vec{n}_1 dx dy = \iint_D 2a \left(1 - \frac{y}{z}\right) dx dy = 2a \iint_D dx dy = 2a \pi.$

- 8. 设 2π 周期函数 f(x) 满足 $f(x) = \begin{cases} 0, & -\pi < x \le 0, \\ x, & 0 < x \le \pi. \end{cases}$
 - (I) 求 f(x) 的形式 Fourier 级数;
 - (II) 利用 (I) 的结论求级数 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ 的和。

$$\mathfrak{M}\colon (1) \ a_0 = \frac{1}{\pi} \int_0^\pi x dx = \frac{\pi}{2}, a_n = \frac{1}{\pi} \int_0^\pi x \cos nx dx = \frac{(-1)^n - 1}{\pi n^2}, b_n = \frac{1}{\pi} \int_0^\pi x \sin nx dx = \frac{(-1)^{n-1}}{n}.$$

因此
$$f(x) \sim \frac{\pi}{4} + \sum_{n=1}^{\infty} \left(\frac{(-1)^n - 1}{\pi n^2} \cos nx + \frac{(-1)^{n-1}}{n} \sin nx \right)$$

(II) 令 \mathbf{x} =0, 由于 f 在 0 连续,上述傅里叶级数收敛到 f(0)=0,因此

$$0 = \frac{\pi}{4} + \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{\pi n^2} = \frac{\pi}{4} + \sum_{k=1}^{\infty} \frac{-2}{\pi (2k-1)^2}, \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} = \frac{\pi^2}{8}.$$

9. 设 $\Omega \subset \mathbf{R}^3$ 是包含原点的有界开区域,其边界 $\partial \Omega$ 是 $C^{(1)}$ 类光滑正则曲面。记 $\mathbf{r} = (x,y,z)$,

$$r = \sqrt{x^2 + y^2 + z^2} \ .$$

求证:
$$\frac{1}{2} \iint_{\varepsilon\Omega} \cos \langle \mathbf{r}, \mathbf{n} \rangle dS = \lim_{\varepsilon \to 0^+} \iiint_{\Omega_{\varepsilon}} \frac{\mathrm{d}x \mathrm{d}y \mathrm{d}z}{r}$$
, 其中 $\Omega_{\varepsilon} = \{(x, y, z) \in \Omega \mid \sqrt{x^2 + y^2 + z^2} \ge \varepsilon\}$, $\langle \mathbf{r}, \mathbf{n} \rangle$

表示向量 \mathbf{r} 与 $\partial\Omega$ 的单位外法向量 \mathbf{n} 的夹角。

证明: 由高斯公式有
$$\iint_{\partial\Omega_{\varepsilon}}\cos \langle \vec{r}, \vec{n} \rangle dS = \iint_{\partial\Omega_{\varepsilon}}\frac{\vec{r}\cdot\vec{n}}{r}dS = \iiint_{\Omega_{\varepsilon}}\frac{2}{r}dxdydz.$$

$$(\vec{\nabla} \cdot \frac{\vec{r}}{r} = \frac{\vec{\nabla} \cdot \vec{r}}{r} + \vec{\nabla} \left(\frac{1}{r}\right) \cdot \vec{r} = \frac{3}{r} - \frac{1}{r^2} \frac{\vec{r}}{r} \cdot \vec{r} = \frac{2}{r})$$

记
$$S_{\varepsilon}: r = \varepsilon$$
,有 $\iint_{S} \cos \langle \vec{r}, \vec{n} \rangle dS = \iint_{S} dS = 4\pi \varepsilon^{2}$.因此

$$\iiint_{\Omega_{\varepsilon}} \frac{1}{r} dx dy dz = \frac{1}{2} \left(\iint_{\partial\Omega} \cos \langle \vec{r}, \vec{n} \rangle dS - \iint_{S_{\varepsilon}} \cos \langle \vec{r}, \vec{n} \rangle dS \right) = \frac{1}{2} \iint_{\partial\Omega} \cos \langle \vec{r}, \vec{n} \rangle dS - 2\pi\varepsilon^{2},$$
令 $\varepsilon \to 0$ 即得结论。

10. 设
$$a_n \ge 0, n = 0, 1, 2, \cdots$$
,级数 $\sum_{n=0}^{\infty} a_n n!$ 收敛,记 $f(x) = \sum_{n=0}^{\infty} a_n x^n$ 。 求证:

(I) 级数
$$\sum_{n=0}^{\infty} a_n x^n$$
 的收敛半径 $R = +\infty$;

(II) 广义积分
$$\int_0^{+\infty} e^{-x} f(x) dx$$
 收敛,且 $\int_0^{+\infty} e^{-x} f(x) dx = \sum_{n=0}^{\infty} a_n n!$ 。

(提示:
$$\int_0^{+\infty} e^{-x} x^n dx = n!$$
)。

证明:(I)法一:由条件有 $a_n n! \to 0$,因此存在 N,当 n>N 时 $a_n < \frac{1}{n!}$, $|a_n x^n| < \frac{|x|^n}{n!}$.而 $\sum \frac{|x|^n}{n!}$ 收敛,因此 $\sum a_n x^n$ 绝对收敛。上述收敛性对任意实数 x 成立,因此收敛半径为 ∞ 。

法二: 任给实数 \mathbf{x} , $\sum |a_n x^n| = \sum a_n n! \frac{|\mathbf{x}|^n}{n!}$, 由于 $\sum a_n n!$ 收敛,而当 $n > |\mathbf{x}|$ 时, $\frac{|\mathbf{x}|^n}{n!}$ 关于 \mathbf{n} 递减有界,由阿贝尔判别法得到 $\sum |a_n x^n|$ 收敛,收敛半径为 ∞ 。

(II) 任给 A>0,当 $x \in [0,A]$ 时有 $|a_n x^n e^{-x}| \le a_n A^n$ 。由(I) $\sum a_n A^n$ 收敛,因此 $\sum a_n x^n e^{-x}$ 关于 $x \in [0,A]$ 一致收敛。因此,

$$\int_0^A e^{-x} f(x) dx = \int_0^A e^{-x} \sum_{n=0}^\infty a_n x^n dx = \sum_{n=0}^\infty a_n \int_0^A e^{-x} x^n dx < \sum_{n=0}^\infty a_n \int_0^{+\infty} e^{-x} x^n dx = \sum_{n=0}^\infty a_n n! < +\infty.$$

上式左边作为 A 的函数当 $A \to +\infty$ 时递增有上界,因此广义积分 $\int_0^{+\infty} e^{-x} f(x) dx$ 收敛。

记
$$g_N(x) = \sum_{n=0}^N a_n x^n e^{-x}$$
 ,则 $g_N(x)$ 在 $[0,+\infty)$ 上非负,逐点收敛到 $g(x) = e^{-x} f(x)$.

为证明题设等式成立, 只需 $R_N = \int_0^{+\infty} (g(x) - g_N(x)) dx \rightarrow 0$. 易知 $R_N \ge 0$.

$$\exists R_N = \int_0^A (g(x) - g_N(x)) dx + \int_A^{+\infty} (g(x) - g_N(x)) dx \le \int_0^A (g(x) - g_N(x)) dx + \int_A^{+\infty} g(x) dx. \Leftrightarrow$$

$$N \to \infty$$
 , 前面已证明右边第一项趋于 0, 因此 $\overline{\lim_{N \to \infty}} \, R_N \le \int_A^{+\infty} g(x) dx$. 再令 $A \to +\infty$, 有

 $R_N \to 0$. 结论得证。

评注:可以证明 $g_N(x)$ 在 $[0,+\infty)$ 上也是一致收敛到 g(x) 的。但一般来说,只有一致收敛性不

足以保证极限可以与无穷积分换序。例如, $f_n(x) = \begin{cases} \frac{1}{n}, 0 \le x \le n \\ 0, x > n \end{cases}$ 在 $[0,+\infty)$ 上一致收敛到 0,

 $\coprod \lim_{n \to \infty} \int_0^{+\infty} f_n(x) dx = 1 \neq 0.$

- 11. 附加题: 设0 .
 - (I) 证明函数项级数 $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^p}$ 关于 x 在区间 $[0,2\pi]$ 上收敛,但不一致收敛;
 - (II) 判断函数项级数 $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^p}$ 是否为某个连续的 2π 周期函数 f(x) 的形式 Fourier 级数,并说明理由。

解: (I) 当 x = 0 或 $x = 2\pi$ 时,每项都是 0,当然收敛。

对其他的 x,由于
$$\left| \sum_{n=1}^{N} \sin nx \right| = \left| \frac{\cos x - \cos \frac{2N+1}{2}x}{2\sin \frac{x}{2}} \right| \le \frac{1}{\left| \sin \frac{x}{2} \right|}$$
,而 $\frac{1}{n^p}$ 关于 n 递减趋于 0,由狄

利克雷判别法得到收敛性。

对任意正整数 N,取
$$x_0 = \frac{\pi}{6N}$$
,有 $\left| \sum_{n=N+1}^{2N} \frac{\sin nx_0}{n^p} \right| > \sin \frac{\pi}{6} \sum_{n=N+1}^{2N} \frac{1}{n^p} > \frac{1}{2} \frac{N}{(2N)^p} = \frac{N^{1-p}}{2^{p+1}} \ge \varepsilon_0$,这

里 $\varepsilon_0 = \frac{1}{2^{p+1}}$,由柯西准则得到不一致收敛。

(II) 否。如是,则 f(x) 作为连续函数当然可积而且平方可积。由 Parseval 等式,应当有

$$\frac{1}{\pi} \int_0^{2\pi} (f(x))^2 dx = \sum_{n=1}^{\infty} \frac{1}{n^{2p}}$$
,但上式右边发散,矛盾。

评注:可以证明题设级数是傅里叶级数,但其和函数并非平方可积。