

Mathématiques

Classe: BAC MATHS

Chapitre: Isométrie du plan

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

(5) 15 min

4 pt

On considère dans le plan orienté un triangle ABC rectangle en B tel que :

 $(\overrightarrow{AB}; \overrightarrow{AC}) \equiv \frac{\pi}{3} [2\pi]$. On désigne par C' et A' les points du plan tel que BCC' est un triangle rectangle direct et isocèle en B et BAA' est un triangle rectangle indirect isocèle en B.

But : Déterminer l'ensemble des isométrie f qui laissent invariant l'ensemble {B ;C ;C'}

- 1. Déterminer f lorsque : f(B)=B ; f(C)=C et f(C')=C'
- **2.** Montrer que $f(B) \neq C$
- **3.** a) Montrer que $f(B) \neq C'$
 - b) Déterminer alors l'ensemble des isométries f qui laissent invariant l'ensemble {B ;C ;C'}

Exercice 2

6 pt

On considère un carré ABCD indirect et les transformations f et g définies par:

$$f=S(DA) \circ S(CD) \circ S(BC) \circ S(AB)$$
 et $g=S(AB) \circ S(CD) \circ S(BC) \circ S(DA)$

- 1. Montrer que f et g sont deux isométries.
- **2.** Montrer que $g=f^{-1}$ puis caractériser f et g

Exercice 3

© 25 min

6 pt

Dans le plan orienté, on considère un triangle équilatéral ABC de sens direct. On note I=B*C, J=A*C, K=A*B, O le centre du cercle C circonscrit au triangle ABC.

 Δ est la perpendiculaire à (AB) en B;

Soit R_1 la rotation de centre C et d'angle $\frac{\pi}{3}$ et R_2 la rotation de centre O et d'angle $\frac{2\pi}{3}$.

- 1. a) Déterminer la droite Δ_1 tel que $R_1 = S_{\Delta_1} \circ S_{(OC)}$
 - b) Déterminer Δ_2 tel que $R_2 = S_{(OC)} \circ S_{\Delta_2}$.

- c) En déduire les éléments caractéristiques de $R_1 \circ R_2$.
- **2.** Caractériser les applications : $R_3 = S_{\Delta} \circ S_{(BC)}$ et $R_3 \circ R_1$.
- **3.** On pose $f = (R_1)^{-1} \circ t_{\overline{AB}}$.
 - a) Montrer que : $f = R_{\left(A; \frac{-\pi}{3}\right)}$
 - b) En déduire que $R_1 \circ R_{\left(A; \frac{-\pi}{3}\right)} = t_{\overline{AB}}$
 - c) Soit M un point du plan, $M = R_{\left(A; \frac{-\pi}{3}\right)}(M')$ et $M'' = R_1(M)$

Montrer que le quadrilatère ABM"M' est un parallélogramme.

Exercice 4

© 25 min

6 pt

ABC est un triangle isocèle rectangle en A tel que $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{2} [2\pi]$. On pose I = B * C, J = A * C et K = A * B.

Soit f une isométrie de P qui vérifie : f(A) = B et f(J) = K.

- 1. Montrer que f(C) = A.
- 2. a) Déterminer la nature et les caractéristiques de l'isométrie g définie par : g(A)= B ; g(C)= A et g(I)= I
 - b) Déterminer l'image de J par g.
- 3. Soit l'application $h = t_{\overline{B}} \circ S_{(KJ)}$.
 - a) Prouver que h est une isométrie vérifiant : h(A)=B et h(C)=A.
 - b) Déterminer le point I' = h(I).
- 4. a) Quelles sont les images possibles du triangle AIC par f?
 - b) Déterminer alors les isométries f de P qui vérifient : f(A) = B et f(J) = K.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000