Cambridge (CIE) A Level Chemistry

Gas/Liquid Chromatography

Contents

- * Gas/Liquid Chromatography
- * Interpreting Rf Values in GL Chromatography

Gas/Liquid Chromatography

Gas/Liquid Chromatography **Terminology**

- Gas-Liquid Chromatography (GLC) is used for analysing:
 - Gases
 - Volatile liquids
 - Solids in their vapour form
- The stationary phase:
 - This method uses a column for the stationary phase
 - A non-polar, long-chain, non-volatile hydrocarbon with a high boiling point is mounted onto a solid support
 - Small silica particles can be packed into a glass column to offer a large surface area
 - Sample gas particles travel through this phase and are able to separate well due to the large surface area
- The Mobile phase
 - An inert carrier gas (eg. Helium, Nitrogen) moves the sample molecules through the stationary phase

Retention times

- Once sample molecules reach the detector, their retention times are recorded
 - This is the time taken for a component to travel through the column
- The retention times are recorded on a chromatogram where each peak represents a volatile compound in the analysed sample
- Retention times are then compared with data book values to identify unknown molecules

An example gas chromatogram

THE RETENTION TIME OF EACH PEAK IS DEPENDENT ON THE TIME TAKEN FOR THE SAMPLE MOLECULES TO TRAVEL THROUGH THE GLC COLUMN

A gas chromatogram of a volatile sample compound has six peaks. Depending on each molecule's interaction with the stationary phase, each peak has its own retention time

Interpreting Rf Values in GL Chromatography

Interpreting Rf Values in GL Chromatography

Features of a gas-liquid chromatogram

- Peaks represent different molecules from the sample each roughly taking the shape of a triangle
- The area under each peak is the relative concentration of each component (the peak integration value)

Area under the peak = $\frac{1}{2}$ x base x height

• If the area under each peak is very small or too difficult to decipher, the height of the peaks are used for further analysis

Calculating areas under curves on a gas chromatogram

To find the area under each peak, treat each peak as a triangle - see the examples shown using blue triangles in the diagram

Percentage composition of a mixture

We can calculate the amount of a particular molecule in a sample by using an expression

• If a chromatogram shows peaks for alcohols A, B, C and D, to calculate the % composition of alcohol C, use this expression:

peak area (or height) of C (Approx.) % of alcohol $C = \frac{Pouz}{\text{sum of peak areas (or heights) of A, B, C}}$ and D

Explaining Retention Times

- Retention time is the time taken for a sample molecule to travel through the column, from the time it is inserted into the machine to the time it is detected
- Molecules in the gaseous mixture travel at different rates, therefore giving rise to different retention times
- Longer retention times are associated with:
 - Non-polar components in the mixture
 - They are more attracted to the non-polar liquid in the stationary phase
 - So non-polar molecules travel slower through the column
- Shorter retention times are associated with:
 - Polar components in the mixture that prefer to interact with the carrier gas
 - They are less attracted to the non-polar liquid in the stationary phase
 - So polar molecules travel faster through the column
 - These molecules may have lower boiling points and, therefore, are vapourised more readily

