Algebra and Number Theory Individual (5 problems)

- 1) Let G be a finite group. Assume that for any representation V of G over a field of characteristic zero, the character χ_V takes value in \mathbb{Q} . Assume g is an element in G such that $g^{2019} = 1$. Prove that g and g^{19} are conjugate in G.
- 2) Let p be a prime number, and let \mathbb{F}_p be the finite field with p elements. Let $F = \mathbb{F}_p(t)$ be the field of rational functions over \mathbb{F}_p . Consider all subfields C of F such that F/C is a finite Galois extension.
 - 1. Show that among such subfields, there is a smallest one C_0 , i.e., C_0 is contained in any other C.
 - 2. What is the degree of F/C_0 ?
- 3) Let $R \subset R'$ be an integral extension of commutative rings. Let \mathfrak{p}' be a prime ideal of R'. Prove that \mathfrak{p}' is a maximal ideal of R' if and only if $\mathfrak{p}' \cap R$ is a maximal ideal of R.
- 4) 1. Prove that $GL_n(\mathbb{C})$ is path-connected.
 - 2. Let

$$X = \{ A \in \operatorname{GL}_n(\mathbb{C}) \mid A^m = \operatorname{Id} \},$$

Describe the path-connected component of X and prove your answer.

5) The Fibonacci sequence is defined by

$$F_0 = 0$$
, $F_1 = 1$, $F_{n+2} = F_{n+1} + F_n$.

Let p be a prime number.

- 1. Show that if $p \equiv 1, 4 \pmod{5}$, then p divides F_{p-1} .
- 2. Let \mathbb{F}_{p^2} be the finite field of p^2 elements. Show that the norm map $N: \mathbb{F}_{p^2}^{\times} \to \mathbb{F}_p^{\times}$ is surjective, and deduce the cardinality of the kernel of N.
- 3. Show that if $p \equiv 2, 3 \pmod{5}$, then p divides F_{p+1} .