第 15 章 部分型付け(Part 3)

テキストの解答要約はこんな感じで引用表現にする(引用じゃないけど)

演習 15.6.3. [★★★ →→]

翻訳

部分型付け判断式の翻訳では、翻訳先にレコードが出現する S-RcdWidth, S-RcdDepth, S-RcdPerm をそれぞれタプルに置き換える必要がある。また、型付け導出の翻訳を考えると、T-Rcd, T-Proj の翻訳先をそれぞれタプルに置き換える必要がある。

翻訳の変更において行う作業は以下の2点である。

- レコードラベルの除去
- 射影において、ラベルの代わりに添え字を使う

上記の作業を機械的に行えばタプル向けの翻訳に切り替わるはず。

定理 15.6.2. の検査

[命題] \mathcal{D} :: $\Gamma \vdash \mathsf{t}$: T ならば $[[\Gamma]] \vdash [[\mathcal{D}]]$: $[[\mathsf{T}]]$

[証明] \mathcal{D} に関する単純な帰納法(をタプル向けに拡張)

- \mathcal{D} が T-Rcd のとき、 $\mathsf{t} = \{\mathsf{I}_i = \mathsf{t}_i{}^{i \in 1..n}\}, \mathsf{T} = \{\mathsf{I}_i : \mathsf{T}_i{}^{i \in 1..n}\}$
 - o 仮定より、各iに対して \mathcal{D}_i については所望の結果が得られる。つまり、
 - 各iに対して $[[\Gamma]]$ \vdash $[[\mathcal{D}_i]]$: $[[\mathsf{T}_i]]$
 - o(上記で省略したが) T-Rcd の翻訳結果は $\{[[\mathcal{D}_i]]^{i \in 1..n}\}$ である。ゆえに、直ちに所望の結果が得られる。
- *D* が T-Proj のとき、(そんなにやることが変わらないので略)
- \mathcal{D} が T-Sub のとき、補題 15.6.1 をタプル向けに拡張したものを用いる。
 - o ということで以下でその補題を検査する。

補題 15.6.1 の検査

[命題] \mathcal{C} :: $\mathsf{S} <$: T ならば $\vdash [[\mathcal{C}]] : [[\mathsf{S}]] \to [[\mathsf{T}]]$

[証明] C に関する単純な帰納法(をタプル向けに拡張)

- \mathcal{C} が S-RcdWidth のとき、 $\mathsf{S} = \{\mathsf{I}_i : \mathsf{T}_i{}^{i \in 1..n+k}\}, \mathsf{T} = \{\mathsf{I}_i : \mathsf{T}_i{}^{i \in 1..n}\}$
 - S-RcdWidth の翻訳結果は、 $\lambda r: \{[[T_i]]^{i \in 1..n+k}\}. \{r.i^{i \in 1..n}\}$ であり、 $[[S]] \rightarrow [[T]]$ になっている。
- \mathcal{C} が S-RcdDepth のとき、 $S = \{I_i : S_i^{i \in 1..n}\}, T = \{I_i : T_i^{i \in 1..n}\}$
 - o 仮定より、各 i に対して C_i :: S_i <: T_i つまり、各 i に対して \vdash $[[C_i]]$: $[[S_i]] \rightarrow [[T_i]]$
 - o S-RcdDepth の翻訳結果は、 $\lambda r: \{[[S_i]]^{i \in 1..n}\}.$ $\{[[C_i]](r.i)^{i \in 1..n}\}$ であり、 $[[S]] \rightarrow [[T]]$ になっている。
- $\mathcal C$ が S-RcdPerm のとき、 $\mathsf S = \{\mathsf k_j : \mathsf S_j \ ^{j \in 1..n}\}, \mathsf T = \{\mathsf I_i : \mathsf T_i \ ^{i \in 1..n}\}$
 - o 仮定より、 $\{k_i: S_i^{j \in 1..n}\}$ は $\{I_i: T_i^{i \in 1..n}\}$ の並べ替えである。

- \blacksquare つまり、任意の $i,j\in 1..n$ に対し、 $\mathbf{l}_i=\mathbf{k}_j$ が成立するような j を i に対応付ける関数 $f:1..n\to 1..n$ が存在する。
- 。 S-RcdPerm の翻訳結果は、 $\lambda \mathbf{r}:\{[[\mathsf{S}_k]]^{k\in 1..n}\}.$ $\{\mathsf{r.i}^{i\in 1..n}\}$ であり、 $[[\mathsf{S}]] \to [[\mathsf{T}]]$ になっている。
 - ただし、i は i=f(j) として得た i を項にしたもの。