Machine Learning

Lecture 6: Support Vector Machine

Feng Li

fli@sdu.edu.cn
https://funglee.github.io

School of Computer Science and Technology Shandong University

Fall 2017

Hyperplane

- Separates a *n*-dimensional space into two half-spaces
- ullet Defined by an outward pointing normal vector $\omega \in \mathbb{R}^n$
- Assumption: The hyperplane passes through origin. If not,
 - have a bias term b; we will then need both ω and b to define it
 - b>0 means moving it parallely along ω (b<0 means in opposite direction)

Support Vector Machine

- ullet A hyperplane based linear classifier defined by ω and b
- Prediction rule: $y = sign(\omega^T x + b)$
- Given: Training data $\{(x^{(i)},y^{(i)})\}_{i=1,\cdots,m}$
- ullet Goal: Learn ω and b that achieve the maximum margin
- For now, assume that entire training data are correctly classified by (ω, b)
 - Zero loss on the training examples (non-zero loss later)

Margin

- Hyperplane: $w^T x + b = 0$, where w is the normal vector
- ullet The margin $\gamma^{(i)}$ is the distance between $x^{(i)}$ and the hyperplane

$$w^T \left(x^{(i)} - \gamma^{(i)} \frac{w}{\|w\|} \right) + b = 0 \Rightarrow \gamma^{(i)} = \left(\frac{w}{\|w\|} \right)^T x^{(i)} + \frac{b}{\|w\|}$$

Margin

- Hyperplane: $w^T x + b = 0$, where w is the normal vector
- The margin $\gamma^{(i)}$ is the distance between $x^{(i)}$ and the hyperplane

$$w^T \left(x^{(i)} - \gamma^{(i)} \frac{w}{\|w\|} \right) + b = 0 \Rightarrow \gamma^{(i)} = \left(\frac{w}{\|w\|} \right)^T x^{(i)} + \frac{b}{\|w\|}$$

- Now, the margin is signed
 - If $y^{(i)}=1$, $\gamma^{(i)}\geq 0$; otherwise, $\gamma^{(i)}<0$

Margin

Geometric margin

$$\gamma^{(i)} = y^{(i)} \left(\left(\frac{w}{\|w\|} \right)^T x^{(i)} + \frac{b}{\|w\|} \right)$$

- Scaling (w,b) does not change $\gamma^{(i)}$
- With respect to the whole training set, the margin is written as

$$\gamma = \min_{i} \gamma^{(i)}$$

Maximizing The Margin

- The hyperplane actually serves as a decision boundary to differentiating positive labels from negative labels
- We make more confident decision if larger margin is given, i.e., the new data is further away from the hyperplane
- There exist a infinite number of hyperplanes, but which one is the best?

$$\max_{\gamma, w, b} \gamma$$

$$s.t. \ y^{(i)}(w^T x^{(i)} + b) \ge \gamma \|w\|, \ \forall i$$

where
$$\gamma = \min_i \gamma^{(i)} = \min_i \left\{ y^{(i)} \left(\left(\frac{w}{\|w\|} \right)^T x^{(i)} + \frac{b}{\|w\|} \right) \right\}$$

Maximizing The Margin

• Scaling (w,b) such that $\min_i\{y^{(i)}(w^Tx^{(i)}+b)\}=1$, the representation of the margin becomes $1/\|w\|$

$$\begin{aligned} & \max_{w,b} & 1/\|w\| \\ & s.t. & y^{(i)}(w^Tx^{(i)} + b) \ge 1, & \forall i \end{aligned}$$

Support Vector Machine (Primal Form)

• Maximizing $1/\|w\|$ is equivalent to minimizing $\|w\|^2 = w^T w$

$$\begin{aligned} & \min_{w,b} & w^T w \\ & s.t. & y^{(i)}(w^T x^{(i)} + b) \ge 1, & \forall i \end{aligned}$$

- This is a quadratic programming (QP) problem!
 - Interior point method
 (https://en.wikipedia.org/wiki/Interior-point_method)
 - Active set method
 (https://en.wikipedia.org/wiki/Active_set_method)
 - Gradient projection method
 (http://www.ifp.illinois.edu/~angelia/L13_constrained_gradient.pdf)
 - •
- Existing generic QP solvers is of low efficiency, especially in face of a large training set

Convex Optimization and Lagrange Duality Review

Considering the following optimization problem

$$\min_{w} f(w)$$

$$s.t. \quad g_i(w) \le 0, i = 1, \dots, k$$

$$h_j(w) = 0, j = 1, \dots, l$$

with variable $w \in \mathbb{R}^n$, domain \mathcal{D} , optimal value p^*

• Lagrangian: $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^k \times \mathbb{R}^l \to \mathbb{R}$, with $\mathbf{dom} \mathcal{L} = \mathcal{D} \times \mathbb{R}^k \times \mathbb{R}^l$

$$\mathcal{L}(w,\alpha,\beta) = f(w) + \sum_{i=1}^{k} \alpha_i g_i(w) + \sum_{j=1}^{l} \beta_j h_j(w)$$

- Weighted sum of objective and constraint functions
- α_i is Lagrange multiplier associated with $g_i(\omega) \leq 0$
- β_j is Lagrange multiplier associated with $h_j(\omega) = 0$

Lagrange Dual Function

• The Lagrange dual function $\mathcal{G}: \mathbb{R}^k imes \mathbb{R}^l o \mathbb{R}$

$$\mathcal{G}(\alpha, \beta) = \inf_{w \in \mathcal{D}} \mathcal{L}(w, \alpha, \beta)$$
$$= \inf_{w \in \mathcal{D}} \left(f(w) + \sum_{i=1}^{k} \alpha_i g_i(w) + \sum_{j=1}^{l} \beta_j h_j(w) \right)$$

 \mathcal{G} is concave, can be $-\infty$ for some α , β

• Lower bounds property: If $\alpha \succeq 0$, then $\mathcal{G}(\alpha, \beta) \leq p^*$ Proof: If $\tilde{\omega}$ is feasible and $\alpha \succeq 0$, then

$$f(\tilde{\omega}) \ge \mathcal{L}(\tilde{\omega}, \alpha, \beta) \ge \inf_{\omega \in \mathcal{D}} L(\omega, \alpha, \beta) = \mathcal{G}(\alpha, \beta)$$

minimizing over all feasible $\tilde{\omega}$ gives $p^* \geq \mathcal{G}(\alpha, \beta)$

Lagrange Dual Problem

Lagrange dual problem

$$\max_{\alpha,\beta} \quad \mathcal{G}(\alpha,\beta)$$
s.t. $\alpha \succeq 0, \ \forall i = 1, \dots, k$

- Find the best low bound on p^* , obtained from Lagrange dual function
- A convex optimization problem (optimal value denoted by d^*)
- α , β are dual feasible if $\alpha \succeq 0$, $(\alpha, \beta) \in \mathbf{dom} \ \mathcal{G}$
- Often simplified by making implicit constraint $(\alpha, \beta) \in \mathbf{dom} \ \mathcal{G}$ explicit

Weak Duality V.s. Strong Duality

- Weak duality: $d^* \leq p^*$
 - Always holds (for convex and nonconvex problems)
 - Can be sued to find nontrivial lower bounds for difficult problems
- Strong duality: $d^* = p^*$
 - Does not hold in general
 - (Usually) holds for convex problems
 - Conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's Constraint Qualification

Strong duality holds for a convex prblem

$$\min_{\omega} f(w)$$
s.t. $g_i(w) \le 0, i = 1, \dots, k$

$$Aw - b = 0$$

if it is strictly feasible, i.e.,

$$\exists \omega \in \mathbf{int} \mathcal{D} : g_i(\omega) < 0, i = 1, \cdots, m, Aw = b$$

Karush-Kuhn-Tucker (KKT) Conditions

- Let w^* and (α^*, β^*) by any primal and dual optimal points wither zero duality gap (i.e., the strong duality holds), the following conditions should be satisfied
 - Stationarity: Gradient of Lagrangian with respect to ω vanishes

$$\nabla f(w^*) + \sum_{i=1}^k \alpha_i \nabla g_i(w^*) + \sum_{j=1}^l \beta_j \nabla h_j(w^*) = 0$$

Primal feasibility

$$g_i(w^*) \le 0, \ \forall i = 1, \dots, k$$

 $h_j(w^*) = 0, \ \forall j = 1, \dots, l$

Dual feasibility

$$\alpha_i > 0, \ \forall i = 1, \cdots, k$$

Complementary slackness

$$\alpha_i g_i(w^*) = 0, \ \forall i = 1, \cdots, k$$

Optimal Margin Classifier

Primal problem formulation

$$\begin{aligned} & \min_{\omega,b} & \frac{1}{2} \|\omega\|^2 \\ & s.t. & y^{(i)}(\omega^T x^{(i)} + b) \geq 1, & \forall i \end{aligned}$$

• The Lagrangian

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{m} \alpha_i (y^{(i)}(w^T x^{(i)} + b) - 1)$$

Optimal Margin Classifier (Contd.)

• Calculate the Lagrange dual function $\mathcal{G}(\alpha) = \inf_{w,b} \mathcal{L}(w,b,\alpha)$

$$\nabla_{w} \mathcal{L}(w, b, \alpha) = w - \sum_{i=1}^{m} \alpha_{i} y^{(i)} x^{(i)} = 0 \quad \Rightarrow \quad w = \sum_{i=1}^{m} \alpha_{i} y^{(i)} x^{(i)}$$
$$\frac{\partial}{\partial b} \mathcal{L}(w, b, \alpha) = \sum_{i=1}^{m} \alpha_{i} y^{(i)} = 0$$

• The Lagrange dual function

$$\mathcal{G}(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y^{(i)} y^{(j)} \alpha_i \alpha_j (x^{(i)})^T x^{(j)}$$

with $\sum_{i=1}^{m} \alpha_i y^{(i)} = 0$ and $\alpha_i \geq 0$

Optimal Margin Classifier (Contd.)

Dual problem formulation

$$\begin{aligned} \max_{\alpha} \quad \mathcal{G}(\alpha) &= \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y^{(i)} y^{(j)} \alpha_i \alpha_j (x^{(i)})^T x^{(j)} \\ s.t. \quad \alpha_i &\geq 0 \quad \forall i \\ \sum_{i=1}^{m} \alpha_i y^{(i)} &= 0 \end{aligned}$$

- It is a convex optimization problem, so the strong duality $(p^* = d^*)$ holds and teh KKT conditions are respected
- ullet Quadratic Programming problem in lpha
 - Several off-the-shelf solvers exist to solve such QPs
 - Some examples: quadprog (MATLAB), CVXOPT, CPLEX, IPOPT, etc.

SVM: The Solution

• Once we have the α^* ,

$$w^* = \sum_{i=1}^{m} \alpha_i^* y^{(i)} x^{(i)}$$

• Given w^* , how to calculate the optimal value of b?

SVM: The Solution

• Since $\alpha_i^*(y^{(i)}(\omega^{*T}x^{(i)}+b^*)-1)=0$, for $\forall i$, we have

$$y^{(i)}(\omega^{*T}x^{(i)} + b^*) = 1$$

for $\{i : \alpha_i^* > 0\}$

• Then, for $\forall i$ such that $\alpha_i^* > 0$, we have

$$b^* = y^{(i)} - \omega^{*T} x^{(i)}$$

ullet For robustness, we calculated the optimal value for b by taking the average

$$b^* = \frac{\sum_{i:\alpha_i^*>0} (y^{(i)} - \omega^{*T} x^{(i)})}{\sum_{i=1}^m \mathbf{1}(\alpha_i^* > 0)}$$

SVM: The Solution (Contd.)

- Most α_i 's in the solution are zero (sparse solution)
 - According to KKT conditions, for the optimal α_i 's, $\alpha_i[1-y^{(i)}(w^Tx^{(i)}+b)]=0$
 - α_i is non-zero only if $x^{(i)}$ lies on the one of the two margin boundaries. i.e., for which $y^{(i)}(w^Tx^{(i)}+b)=1$
- These data samples are called support vector (i.e., support vectors "support" the margin boundaries)

• Redefine w

$$w = \sum_{s \in \mathcal{S}} \alpha_s y^{(s)} x^{(s)}$$

where S denotes the indices of the support vectors

Kernel Methods

 Motivation: Linear models (e.g., linear regression, linear SVM etc.) cannot reflect the nonlinear pattern in the data

- Kernels: Make linear model work in nonlinear settings
 - By mapping data to higher dimensions where it exhibits linear patterns
 - Apply the linear model in the new input space
 - Mapping is equivalent to changing the feature representation

Feature Mapping

Consider the following binary classification problem

- ullet Each sample is represented by a single feature x
- No linear separator exists for this data
- Now map each example as $x o \{x, x^2\}$
 - Each example now has two features ("derived" from the old representation)
- Data now becomes linearly separable in the new representation

• Linear in the new representation \equiv nonlinear in the old representation

Feature Mapping (Contd.)

Another example

- Each sample is defined by $x = \{x_1, x_2\}$
- No linear separator exists for this data
- Now map each example as $x=\{x_1,x_2\} \rightarrow z=\{x_1^2,\sqrt{2}x_1x_2,x_2^2\}$
 - Each example now has three features ("derived" from the old representation)
- Data now becomes linearly separable in the new representation

Feature Mapping (Contd.)

• Consider the follow feature mapping ϕ for an example $x=\{x_1,\cdots,x_n\}$

$$\phi: x \to \{x_1^2, x_2^2, \cdots, x_n^2, x_1 x_2, x_1 x_2, \cdots, x_1 x_n, \cdots, x_{n-1} x_n\}$$

- It is an example of a quadratic mapping
 - Each new feature uses a pair of the original features
- Problem: Mapping usually leads to the number of features blow up!
 - Computing the mapping itself can be inefficient, especially when the new space is very high dimensional
 - Storing and using these mappings in later computations can be expensive (e.g., we may have to compute inner products in a very high dimensional space)
 - Using the mapped representation could be inefficient too
- Thankfully, kernels help us avoid both these issues!
 - The mapping does not have to be explicitly computed
 - Computations with the mapped features remain efficient

Kernels as High Dimensional Feature Mapping

ullet Let's assume we are given a function K (kernel) that takes as inputs x and z

$$\begin{split} K(x,z) &= & (x^Tz)^2 \\ &= & (x_1z_1 + x_2z_2)^2 \\ &= & x_1^2z_1^2 + x_2^2z_2^2 + 2x_1x_2z_1z_2 \\ &= & (x_1^2,\sqrt{2}x_1x_2,x_2^2)^T(z_1^2,\sqrt{2}z_1z_2,z_2^2) \end{split}$$

ullet The above function K implicitly defines a mapping ϕ to a higher dim. space

$$\phi(x) = \{x_1^2, \sqrt{2}x_1x_2, x_2^2\}$$

- ullet Simply defining the kernel a certain way gives a higher dim. mapping ϕ
 - The mapping does not have to be explicitly computed
 - Computations with the mapped features remain efficient
- Moreover the kernel K(x,z) also computes the dot product $\phi(x)^T\phi(z)$

Kernels: Formal Definition

- ullet Each kernel K has an associated feature mapping ϕ
- ϕ takes input $x \in \mathcal{X}$ (input space) and maps it to \mathcal{F} (feature space)
- Kernel $K(x,z) = \phi(x)^T \phi(z)$ takes two inputs and gives their similarity in ${\mathcal F}$ space

$$\phi: \mathcal{X} \to \mathcal{F}$$
$$K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

- ullet needs to be a vector space with a dot product defined upon it
 - Also called a Hilbert Space
- Can just any function be used as a kernel function?
 - No. It must satisfy Mercer's Condition

Mercer's Condition

- For K to be a kernel function
 - ullet There must exist a Hilbert Space ${\mathcal F}$ for which K defines a dot product
 - The above is true if K is a positive definite function

$$\int \int f(x)K(x,z)f(z)dxdz > 0 \quad (\forall f \in L_2)$$

for all functions f that are "square integrable", i.e., $\int f^2(x) dx < \infty$

- Let K_1 and K_2 be two kernel functions then the followings are as well:
 - Direct sum: $K(x,z) = K_1(x,z) + K_2(x,z)$
 - Scalar product: $K(x,z) = \alpha K_1(x,z)$
 - Direct product: $K(x,z) = K_1(x,z)K_2(x,z)$
 - Kernels can also be constructed by composing these rules

The Kernel Matrix

- For K to be a kernel function
 - The kernel function K also defines the Kernel Matrix over the data (also denoted by K)
 - Given m samples $\{x^{(1)}, x^{(2)}, \cdots, x^{(m)}\}$, the (i, j)-th entry of K is defined as

$$K_{i,j} = K(x^{(i)}, x^{(j)}) = \phi(x^{(i)})^T \phi(x^{(j)})$$

- $K_{i,j}$: Similarity between the i-th and j-th example in the feature space \mathcal{F}
- ullet $K\colon m imes m$ matrix of pairwise similarities between samples in ${\mathcal F}$ space
- K is a symmetric matrix
- K is a positive definite matrix

Some Examples of Kernels

• Linear (trivial) Kernal:

$$K(x,z) = x^T z$$

• Quadratic Kernel

$$K(x,z) = (x^T z)^2$$
 or $(1 + x^T z)^2$

Polynomial Kernel (of degree d)

$$K(x,z) = (x^T z)^d$$
 or $(1 + x^T z)^d$

Gaussian Kernel

$$K(x,z) = \exp\left(-\frac{\|x-z\|^2}{2\sigma^2}\right)$$

Sigmoid Kernel

$$K(x, z) = \tanh(\alpha x^T + c)$$

Using Kernels

- Kernels can turn a linear model into a nonlinear one
- Kernel K(x,z) represents a dot product in some high dimensional feature space ${\mathcal F}$

$$K(x,z) = (x^T z)^2$$
 or $(1 + x^T z)^2$

- Any learning algorithm in which examples only appear as dot products $({x^{(i)}}^Tx^{(j)})$ can be kernelized (i.e., non-linearlized)
 - by replacing the ${x^{(i)}}^Tx^{(j)}$ terms by $\phi(x^{(i)})^T\phi(x^{(j)})=K(x^{(i)},x^{(j)})$
- Most learning algorithms are like that
 - SVM, linear regression, etc.
 - Many of the unsupervised learning algorithms too can be kernelized (e.g., K-means clustering, Principal Component Analysis, etc.)

Kernelized SVM Training

SVM dual Lagrangian

$$\max_{\alpha} \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} y^{(i)} y^{(j)} \alpha_{i} \alpha_{j} < x^{(i)}, x^{(j)} >$$
s.t. $\alpha_{i} \ge 0 \ (\forall i), \sum_{i=1}^{m} \alpha_{i} y^{(i)} = 0$

• Replacing $< x^{(i)}, x^{(j)} >$ by $\phi(x^{(i)})^T \phi(x^{(j)}) = K(x^{(i)}, x^{(j)}) = K_{ij}$

$$\max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y^{(i)} y^{(j)} \alpha_i \alpha_j K_{i,j}$$
s.t. $\alpha_i \ge 0 \ (\forall i), \sum_{i=1}^{m} \alpha_i y^{(i)} = 0$

- ullet SVM now learns a linear separator in the kernel defined feature space ${\cal F}$
 - ullet This corresponds to a non-linear separator in the original space ${\mathcal X}$

Kernelized SVM Prediction

• Prediction for a test example x (assume b = 0)

$$y = \operatorname{sign}(\omega^T x) = \operatorname{sign}\left(\sum_{s \in \mathcal{S}} \alpha_s y^{(s)} x^{(s)^T} x\right)$$

• Replacing each example with its feature mapped representation $(x o \phi(x))$

$$y = \operatorname{sign}\left(\sum_{s \in \mathcal{S}} \alpha_s y^{(s)} x^{(s)^T} x\right) = \operatorname{sign}\left(\sum_{s \in \mathcal{S}} \alpha_s y^{(s)} K(x^{(s)}, x)\right)$$

- Kernelized SVM needs the support vectors at the test time (except when you can write $\phi(x)$ as an explicit, reasonably-sized vector)
 - In the unkernelized version $\omega = \sum_{s \in \mathcal{S}} \alpha_s y^{(s)} x^{(s)}$ can be computed and stored as a $n \times 1$ vector, so the support vectors need not be stored

Regularized SVM

 We allow some training examples to be misclassified, and some training examples to fall within the margin region

ullet Recall that, for the separable case (training loss = 0), the constraints were

$$y^{(i)}(\omega^T x^{(i)} + b) \ge 1 \text{ for } \forall i$$

• For the non-separable case, we relax the above constraints as:

$$y^{(i)}(\omega^T x^{(i)} + b) \ge 1 - \xi_i \text{ for } \forall i$$

• ξ_i is called slack variable

- Non-separable case: We will allow misclassified training examples
 - But we want their number to be minimized, by minimizing the sum of the slack variables $\sum_i \xi_i$
- Reformulating the SVM problem by introducing slack variables ξ_i

$$\min_{w,b,\xi} \quad \frac{1}{2} ||w||^2 + C \sum_{i=1}^m \xi_i$$
s.t. $y^{(i)}(w^T x^{(i)} + b) \ge 1 - \xi_i, \quad \forall i = 1, \dots, m$
 $\xi_i \ge 0, \quad \forall i = 1, \dots, m$

- ullet The parameter C controls the relative weighting between the following two goals
 - Small $C \Rightarrow \|\omega\|^2/2$ dominates \Rightarrow prefer large margins
 - but allow potential large number of misclassified training examples
 - Large $C \Rightarrow C \sum_{i=1}^m \xi_i$ dominates \Rightarrow prefer small number of misclassified examples
 - at the expense of having a small margin

Lagrangian

$$\mathcal{L}(w, b, \xi, \alpha, r) = \frac{1}{2}w^T w + C\sum_{i=1}^m \xi_i - \sum_{i=1}^m \alpha_i [y^{(i)}(w^T x^{(i)} + b) - 1 + \xi_i] - \sum_{i=1}^m r_i \xi_i$$

KKT conditions

•
$$\nabla_w \mathcal{L}(w, b, \xi, \alpha, r) = 0 \Rightarrow w = \sum_{i=1}^m \alpha_i y^{(i)} x^{(i)}$$

•
$$\nabla_b \mathcal{L}(w, b, \xi, \alpha, r) = 0 \Rightarrow \sum_{i=1}^m \alpha_i y^{(i)} = 0$$

•
$$\nabla \xi_i \mathcal{L}(w, b, \xi, \alpha, r) = 0 \Rightarrow \alpha_i + r_i = C$$
, for $\forall i$

•
$$\alpha_i, r_i, \xi_i \geq 0$$
, for $\forall i$

•
$$y^{(i)}(w^Tx^{(i)} + b) + \xi_i - 1 \ge 0$$
, for $\forall i$

•
$$\alpha_i(y^{(i)}(w^Tx^{(i)}+b)+\xi_i-1)=0$$
, for $\forall i$

•
$$r_i \xi_i = 0$$
, for $\forall i$

Dual problem (derived according to the KKT conditions)

$$\max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y^{(i)} y^{(j)} \alpha_i \alpha_j < x^{(i)}, x^{(j)} >$$

$$s.t. \quad 0 \le \alpha_i \le C, \quad \forall i = 1, \cdots, m$$

$$\sum_{i=1}^{m} \alpha_i y^{(i)} = 0$$

Use existing QP solvers to address the above optimization problem

- Optimal values for α_i $(i=1,\cdots,m)$: α_i^*
- How to calculate the optimal values of w and b?
 - Use KKT conditions !

- Optimal values for α_i $(i=1,\cdots,m)$: α_i^*
- How to calculate the optimal values of w and b?
 - Since $w = \sum_{i=1}^{m} \alpha_i y^{(i)} x^{(i)}$, we have

$$w^* = \sum_{i=1}^{m} \alpha_i^* y^{(i)} x^{(i)}$$

• How about b?

• Since $\alpha_i + r_i = C$, for $\forall i$, we have

$$r_i = C - \alpha_i, \ \forall i$$

• Since $r_i \xi_i = 0$, for $\forall i$, we have

$$(C - \alpha_i)\xi_i = 0, \ \forall i$$

• For $\forall i$ such that $\alpha_i \neq C$, we have $\xi_i = 0$, and thus

$$\alpha_i(y^{(i)}(w^T x^{(i)} + b) - 1) = 0$$

for those i's

• For $\forall i$ such that $0 < \alpha_i < C$, we have

$$y^{(i)}(w^T x^{(i)} + b) = 1$$

for those *i*'s

Hence,

$$w^T x^{(i)} + b = y^{(i)}$$

for $\{i : 0 < \alpha_i < C\}$ • We finally calculate b as

$$b = \frac{\sum_{i:0 < \alpha_i < C} (y^{(i)} - w^T x^{(i)})}{\sum_{i=1}^m \mathbf{1}(0 < \alpha_i < C)}$$

- Some useful corollaries according to the KKT conditions
 - When $\alpha_i = 0$, $y^{(i)}(w^T x^{(i)} + b) \ge 1$
 - When $\alpha_i = C$, $y^{(i)}(w^T x^{(i)} + b) \le 1$
 - When $0 < \alpha_i < C$, $y^{(i)}(w^T x^{(i)} + b) = 1$

Coordinate Ascent Algorithm

Consider the following unconstrained optimization problem

$$\max_{\alpha} f(\alpha_1, \alpha_2, \cdots, \alpha_m)$$

- Repeat the following step until convergence
 - For each i, $\alpha_i = \arg\min_{\hat{\alpha}_i} f(\alpha_1, \dots, \alpha_{i-1}, \hat{\alpha}_i, \alpha_{i+1}, \dots, \alpha_m)$
- For some α_i , fix the other variables and re-optimize $f(\alpha)$ with respect to α_i

Sequential Minimal Optimization (SMO) Algorithm

- ullet Coordinate ascent algorithm cannot be applied since $\sum_{i=0}^m lpha_i y^{(i)} = 0$
- The basic idea of SMO Repeat the following steps until convergence
 - Select some pair of α_i and α_j to update next (using a heuristic that tries to pick the two that will allow us to make the biggest progress towards the global maximum)
 - Re-optimize $\mathcal{G}(\alpha)$ with respect to α_i and α_j , while holding all the other α_k 's $(k \neq i, j)$ fixed

• Take α_1 and α_2 for example

$$\alpha_1 y^{(1)} + \alpha_2 y^{(2)} = -\sum_{i=3}^{m} \alpha_k y^{(k)} = \zeta \quad \Rightarrow \quad \alpha_1 = (\zeta - \alpha_2 y^{(2)}) y^{(1)}$$

- Given α_1 , α_2 will be bounded by L and H such that $L \leq \alpha_2 \leq H$
 - If $y^{(1)}y^{(2)}=-1$, $H=\min(C,C+lpha_2-lpha_1)$ and $L=\max(0,lpha_2-lpha_1)$
 - If $y^{(1)}y^{(2)} = 1$, $H = \min(C, \alpha_1 + \alpha_2)$ and $L = \max(0, \alpha_1 + \alpha_2 C)$

Our objective function becomes

$$f(\alpha) = f(\alpha_1, \alpha_2) = f((\zeta - \alpha_2 y^{(2)}) y^{(1)}, \alpha_2, \alpha_3, \dots, \alpha_m)$$

Resolving the following optimization problem

$$\max_{\alpha_2} f((\zeta - \alpha_2 y^{(2)}) y^{(1)}, \alpha_2, \alpha_3, \cdots, \alpha_m)$$
s.t. $L \le \alpha_2 \le H$

where $\{\alpha_3,\cdots,\alpha_m\}$ are treated as constants

Solving

$$\frac{\partial}{\partial \alpha_2} f((\zeta - \alpha_2 y^{(2)}) y^{(1)}, \alpha_2) = 0$$

gives the updating rule for α_2 (without considering the corresponding constraints)

$$\alpha_2^+ = \alpha_2 + \frac{y^{(2)}(E_1 - E_2)}{K_{11} - 2K_{12} + K_{22}}$$

where

• $K_{i,j} = \langle x_i, x_j \rangle$ • $f_i = \sum_{i=1}^m y^{(i)} \alpha_j K_{i,j} + b$

• $E_i = f_i - u^{(i)}$

• $V_i = \sum_{i=3}^m y^{(i)} \alpha_i K_{i,j} = f_i - \sum_{i=1}^2 y^{(i)} \alpha_i K_{i,j} - b$

• Considering $L \leq \alpha_2 \leq H$, we have

$$\alpha_2 = \begin{cases} H & \text{if } \alpha_2^+ > H \\ \alpha_2^+ & \text{if } L \le \alpha_2^+ \le H \\ L & \text{if } \alpha_2^+ < L \end{cases}$$

- How about b?
 - When $\alpha_1 \in (0,C)$, $b^+ = (\alpha_1 \alpha_1^+)y^{(1)}K_{11} + (\alpha_2 \alpha_2^+)K_{12} E_1 + b = b_1$
 - When $\alpha_2 \in (0,C)$, $b^+ = (\alpha_1 \alpha_1^+)y^{(1)}K_{12} + (\alpha_2 \alpha_2^+)K_{22} E_2 + b = b_2$
 - When $\alpha_1, \alpha_2 \in (0, C)$, $b^+ = b_1 = b_2$
 - When $\alpha_1, \alpha_2 \in \{0, C\}, b^+ = (b_1 + b_2)/2$
- More details can be found at
 - J. Platt, Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines, Microsoft Research Technical Report, 1998.
 - https://www.microsoft.com/en-us/research/wp-content/uploads/2016/ 02/tr-98-14.pdf

Thanks!

Q & A