\equiv

2.5-D Map Inpainting

Machine Learning Based Image Synthesis

Benjamin Johnson, Vasudev Purohit CPSC 8810

Introduction

AUTOMOTIVE ENGINEERING

- Cluttered environments lead to occlusion
- Traditional planners assume free or occupied, neither being ideal
- Data driven inpainting has been shown to help

Polaris RZR Pro-R 4

What can we do better?

Costmap Inpainting

Introduction

Why is uncertainty quantification in in-painting important?

Deterministic decision-making

My map tells me that there is no rock behind the tree, I can move ahead with high speed!

Potentially Unsafe!

Stochastic decision-making

My map tells me that there is a 5% chance that there could be a rock behind the tree, I must move with caution!

MAT: Mask-Aware Transformer for Large Hole Image Inpainting [1]

[1] Li, W., Lin, Z., Zhou, K., Qi, L., Wang, Y., & Jia, J. (2022). Mat: Mask-aware transformer for large hole image inpainting. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition* (pp. 10758-10768).

- 5 stages of modified transformer block
- **Remove layer normalization**
- Fusion learning i.l.o. residual learning, thus avoiding unstable optimization

$$\mathbf{X}_{k,\ell}' = \text{FC}([\text{MCA}(\mathbf{X}_{k,\ell-1}), \mathbf{X}_{k,\ell-1}]),$$

$$\mathbf{X}_{k,\ell} = \mathrm{MLP}(\mathbf{X}'_{k,\ell})$$
.

MCA – Multi-Head Contextual Attention

- Identifies valid tokens
- Does not process all valid tokens at once
- Overlapping masks to maintain global relationships, but computationally cheaper

Preliminary Results – CelebHQ-256

Custom elevation data: Random "trees" smoothed with Gaussian filter

Ground Truth

Masks (representative)

In-painted

Results – Model #1

Creating Custom Masks

- Original masks are randomly generated per image
- Random masks don't correlate well with "missing" data in elevation maps – typically due to occlusion
- The mask should be correlated with the image
- Use ray-casting to generate new masks

Ray Casting (2D example)

FWD

cone

Results – Model #2.a

Ground Truth

Masks (correlated)

In-painted

Results – Model #2.b

\blacksquare

Results – Model 3

Statistics

Model	LPIPS	PSNR	SSIM	L1	FID
Celebs	0.2791	19.6982	0.8524	0.0536	162.12
Custom 1	0.2072	20.3282	0.8704	0.0436	69.20
Custom 2.a	0.9197	5.4545	0.4684	0.3587	478.22
Custom 2.b	0.1892	18.7609	0.8479	0.0486	103.78
Custom 3 (final)	0.0276	29.868	0.9768	0.0078	7.31

Inference Error and Uncertainty

- Ensemble N=500 inferences
- Pixel wise error and uncertainty

$$Var = \sqrt{\sum_{i} \frac{\bar{x} - \widehat{x_{i}}}{N}}$$

$$RMSE = \sqrt{\sum_{i} \frac{x_i - \widehat{x_i}}{N}}$$

Inference Error and Uncertainty

Drawbacks and Next Steps

- Variance or uncertainty is not necessarily a good measure of how good the reconstruction is. This could still lead to dangerous planning behavior.
- Train on real data
 - Original data was place holder data as access to ground truth data from test sight is not yet available
- Add a first-person perspective view image to condition the model in addition to the birds eye view and mask
 - Should help with contextual and semantic reasoning
- Validate on vehicle with planner in the loop