

- HAOT: A Python package for hypersonic aero-optics
- ₂ analysis
- ₃ Martin E. Liza ¹
- 1 The University of Arizona

DOI: 10.xxxxx/draft

Software

- Review 🗗
- Repository 🗗
- Archive □

Editor: Open Journals ♂

Reviewers:

@openjournals

Submitted: 01 January 1970 Published: unpublished

License

Authors of papers retain copyright and release the work under a Creative Commons Attribution 4.6 International License (CC BY 4.0).

Summary

- Hypersonic flows present a unique challenges due to the complex interplay of fluid dynamics, chemical reactions, and optical phenomena. As a signal from a Light Detection and Ranging (LiDAR) travels through a hypersonic flow field, the beam would be affected by the flow.
- HAOT is a Hypersonic Aerodynamics Optics Tools Python package developed to calculate the index of refraction of a hypersonic medium.

Statement of Need

Many techniques used to calculate optical properties are scatter in papers but there is not a local repo containing all this calculations, furthermore some of these calculations require the use of spectroscopy constants, which have been properly documented and added to the package.

Algorithms

- The HAOT pacakge, contains five modules: Modules: Arodynamics Optics Quantum Mechanics Constants Conversions
- Each module can be imported independed and the documentation explains in detail what each module does. Furthremore, docstrings have been added to the function and the description of each function can be seeing in an interactive python session. section shows the equation used
- to calculate the index of refraction. Where: ρ_s is the species density, ρ is the flow's density,
 - $_{23}$ and K_{s} is the specie's Gladstone-Dale constant.

$$n-1 = \rho \sum_{s=1}^N K_s \rho_s$$

$$n-1 = \rho \sum_{s=1}^N K_s \rho_s$$

24

Figure 1: Index of Refraction for a 5 species gas.

Figure 2: Species Gladstone-Dale constants for a 5 species gas.

- 25 and referenced from text using ??.
- ²⁶ A more extensive work showing the results of this pacakge was done by (Liza et al., 2023).

Acknowledgements

28 References

Liza, M., Tumuklu, O., & Hanquist, K. M. (2023, June). Nonequilibrium effects on aero-optics in hypersonic flows. *AIAA AVIATION 2023 Forum*. https://doi.org/10.2514/6.2023-3736