

TECNOLÓGICO NACIONAL DE MÉXICO INSTITUTO TECNOLÓGICO DE TLAXIACO

PRACTICA 6: CIRCUITOS ARITMETICOS Y LOGICOS

Presenta:

Cuevas Hernández Erik Israel-22620202

Osorio Ramírez Marlene Maricela-22620269

Sarmiento Ruiz Edgar Mauricio-22620066

Asignatura:

ARUQITECTURA DE COMPUTADORAS

Carrera:

INGENIERÍA EN SISTEMAS COMPUTACIONALES

Semestre:

QUINTO

Docente:

ING. EDWARD OSORIO SALINAS

Grupo:

5BS

TLAXIACO, OAXACA, A 28 DE NOVIEMBRE DE 2024.

"Educación, Ciencia y Tecnología, Progresos día con día" ®

Contenido

INTRODUCCION	3
OBJETIVOS	3
MATERIALES	3
DESARROLLO	4
4.1 CIRCUITO SUMADOR	4
4.1.1 IMPLEMETACION	4
4.1.2 TABLA DE VERDAD	4
4.2 CIRCUITO RESTADOR	5
4.2.1 IMPLEMENTACION	5
4.2.2 TABLA DE VERDAD	6
4. 3 CIRCUITO COMPARADOR	7
4.3.1 IMPLEMENTACION	7
4.3.2 TABLA DE VERDAD	8
CONCLUCIONES	8
REFRENCIAS	8

INTRODUCCION

LiveWare es un software el cual nos permite implementar circuitos eléctricos a traves de distintos componentes eléctricos digitales, operadores lógicos, etc. Este software nos es útil a la hora de representar ecuaciones lógicas, así como distintas operaciones aritméticas y lógicas.

LiveWire nos facilita la representación y la simulación de un circuito en la siguiente práctica, nos apoyamos de este software con la finalidad de implementar operaciones aritméticas a traves de compuertas lógicas como lo son: AND, OR, XOR, entre otras.

OBJETIVOS

El alumno implementara las operaciones de suma, resta, multiplicación y comparación de 4 bit, basadas en circuitos integrados de la familia TTL y/o tecnología MSI, para validar y comprobar su funcionamiento

MATERIALES

- Laptop
- Software de simulación de circuito digitales (Liveware)

DESARROLLO

4.1 CIRCUITO SUMADOR

4.1.1 IMPLEMETACION

Cada bit de salida de la suma (S_I) y el acarreo (C_i) se calculan utilizando las siguientes formulas

1. Bit de suma (S_i) :

$$S_i = A_i \oplus B_i \oplus C_{in_i}$$

Donde:

es la operación XOR (o exclusivo).

2. Bit de acarreo (C_{i+1}) :

$$C_{i+1} = (A_i * B_i) + (C_{in_i} * (A_i \oplus B_i))$$

Donde:

- *es la operación AND
- + es la operación OR

Usando LiveWire el circuito seria de la siguiente manera:

CIRCUITO SUMADOR

4.1.2 TABLA DE VERDAD

A_i	B_i	$C_{ m in}$	S_i	$C_{ m out}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

4.2 CIRCUITO RESTADOR

4.2.1 IMPLEMENTACION

El comparador de 4 bits evalúa los dos números bit por bit comenzando desde el bit más significativo $(A_3 y B_3)$ hasta el momento el menos significativo $(A_0 y B_0)$.

Operaciones fundamentales:

Función: El circuito realiza la resta de dos números binarios (A-BA - BA-B) mediante el complemento a 2 del sustraendo.

Operación paso a paso:

- Calcula el complemento a 1 del sustraendo (B).
- Suma el minuendo (A) con este complemento y un bit de acarreo de entrada.
- Obtiene la diferencia bit por bit (D) y los préstamos necesarios.

Resultados:

- Las salidas (D0 a D3) representan la diferencia en binario.
- Si se necesita un préstamo adicional, este se refleja en B(Bout).

4.2.2 TABLA DE VERDAD

A_i	B_i	$B_{ m in}$	D_i	$B_{ m out}$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

4. 3 CIRCUITO COMPARADOR

4.3.1 IMPLEMENTACION

- 1. Igualdad de un bit:
 - Para cada par de bits A_i y B_i , se utiliza una puerta XOR para verificar si son diferentes:

$$E_i = A_i \bigoplus B_i$$
 Donde $E_i = 0$ si $A_i = B_i$, y $E_i = 1$ si $A_i \neq Bi$.

2. Mayor o menor en un bit:

$$A_i > B_i$$
 se determina como:
 $G_i = A_i * Bi$
 $A_i < B_i$ se determina como:
 $Li = Ai \cdot Bi$

3. Condicional global:

A>B es el verdadero si algún G_i es verdadero y todos losbits mas significativos restantes son iguales.

A<B es el verdadero si algún l_i es verdadero y todos los bits mas significativos restantes son iguales.

A=B es verdadero si todos los bits de A y B son iguales (e3=E2=E1=E0=0).

4.3.2 TABLA DE VERDAD

$A_3A_2A_1A_0$	$B_3B_2B_1B_0$	A > B	A = B	A < B
0000	0000	0	1	0
0001	0000	1	0	0
0000	0001	0	0	1
0010	0010	0	1	0
1000	0111	1	0	0
0111	1000	0	0	1

CONCLUCIONES

Con esta practica implementamos varios circuitos este con la ayuda de la herramienta de LiveWire, con estos circuitos tuvimos la facilidad de interpretar el como funcionan diversos compontees a la hora de recrear circuitos lógicos o eléctricos, si bien estos circuitos pueden representar diversas operaciones para el caso de esta practica fueron las de suma, resta, multiplicación un comparador, estas al ser operaciones aritméticas y lógicas pudimos ocupara los componentes de AND, OR, XOR.

REFRENCIAS

Colin, N. A. P., & Ramos, J. Á. (2021, March 1). *Circuitos integrados compuertas lógicas*. Portal Académico del CCH. https://portalacademico.cch.unam.mx/cibernetica1/implementacion-de-circuitos-logicos/compuertas-logicas

Wikipedia contributors. (n.d.). *Circuito comparador*. Wikipedia, The Free Encyclopedia. https://es.wikipedia.org/w/index.php?title=Circuito_comparador&oldid=159478807

(N.d.). Umich.Mx. Retrieved September 2, 2024, from https://www.fie.umich.mx/lab-electronica/wp-content/uploads/sites/7/2021/10/Practica8-LEDI.pdf

