Finding holes in materials A first step toward better batteries

Matthieu Mottet IBM Research Zurich 07/11/2016

Motivation

Problem

Our Solution

The future of batteries

Battery 500 project

Practical specific energies for some rechargeable batteries, along with estimated driving distances and pack prices. *Nature Materials* **11**, 19–29 (2012)

The future of batteries

Under development

Available

Table 1
The physicochemical properties of some common solvents.

The physicochemical properties of some common sorvens.								_	
Solvent	FW	d, g cm ⁻³ (25 °C)	ε _r (25 °C)	η, mPa s (25 °C)	E _{homo} , eV	E_{lumo} , eV	mp, °C	bp, °C	fp, °C
Ethylene carbonate (EC)	88	1.32 (40 °C)	90 (40 °C)	1.9 (40 °C)	-12.86	1.51	36	238	143
Propylene carbonate (PC)	102	1.2	65	2.5	-12.72	1.52	-49	242	138
Dimethyl carbonate (DMC)	90	1.06	3.1	0.59	-12.85	1.88	5	90	17
Ethyl methyl carbonate (EMC)	104	1.01	3	0.65	-12.71	1.91	-53	108	23
Diethyl carbonate (DEC)	118	0.97	2.8	0.75	-12.59	1.93	-74	127	25

Green Energy & Environment, 1, 7

R&D

The future of batteries

Issues:

- × Safety
- × Stability
- × Environmental risk

Possible solutions:

- ✓ Ionic liquids
- ✓ Polymers/Gels
- √ Solid-state electrolytes

Practical specific energies for some rechargeable batteries, along with estimated driving distances and pack prices. *Nature Materials* **11**, 19–29 (2012)

Motivation

Problem

Our Solution

Did we miss it?

How to find it?

What do we need?

- LLZO: a case study
 - $\text{Li}_7\text{La}_3\text{Zr}_2\text{O}_{12}$

 Tetragonal structure at RT with highly connected Li network.

What do we need?

- LLZO: a case study
 - $Li_7La_3Zr_2O_{12}$

Cubic structure stabilized by doping among the best known candidates.

- A connected network of sites/holes is no guarantee!
- But a good place to start...

How to measure it

- List of channels, network
- Directionality
- Average/min/max section
-
- Barrier and potential profile

Motivation

Problem

Our Solution

Voronoi diagram

- 2. Filter based on the ionic radii of the neighbors and the particle size
- 3. Connect based on the ionic radii of the neighbors and the particle size
- 4. Constrain to minimum energy path/minimum barriers/...

Voronoi diagram

Getting started

http://github.com/mottetm/ibm-aim-2016

- 5 structures with conductive properties
- Follow the link for the radii

Files can be visualized with VESTA

Motivation

Problem

Our Solution

- Radii depends on:
 - Charge,
 - Coordination (how many neighbors, special arrangement),
 - Spin
- Find the charge and coordination programmatically.

Thank you for your attention Finding holes in materials

Matthieu Mottet IBM Research Zurich 07/11/2016

