

Drag Prediction Workshop II

The Metacomp Tech. team

represented by:

Uriel Goldberg

e-mail: ucg@metacomptech.com

Phone: (818)735-4883

Metacomp Technologies, Inc.

28632B Roadside Drive, # 255

Agoura Hills, CA 91301-3309

CFD++ Solver Information

- Basic Algorithm: finite volume cell-based mixedelement unstructured
 - Spatial Discretization: multi-dimensional TVD (inviscid terms), non-decoupling non-limited face polynomials (viscous terms)
- Time Integration: point implicit with multi-grid relaxation (for steady state)
 - Turbulence Model used: wall-distance-free realizable k-ε

Required Cases

CASE 1:

Hexahedral Mesh Single Point Grid Sensitivity Study

M=0.75, Re=3 M, C_L=0.5

W+B+P+N (α =0.632 deg.):

Coarse Mesh: 4.8 M

Medium Mesh: 8.5 M

Fine Mesh: 12.8 M

W+B (α =0.144 deg.):

Coarse Mesh: 5.5 M

Medium Mesh: 7.4 M

Fine Mesh: 9.6 M

CASE 2:

Drag Polars (W+B & W+B+P+N)

M=0.75, Re=3 M, α (deg.) = -3, -2, -1.5, -1, 0, 1, 1.5

Mesh Information for Case 2:

Field Cells: 7.4 M / 8.5 M

(WB / WBPN)

BL 1st Cell Size: 1.5-2.0E-6

m (y+<1, solve-to-wall)

BL Growth Rate: 1.23–1.28

BL Cells: ~20

Solution Information

Computer Platform: PIV Xeon 2.4 GHz

Number of Processors: 12

Run Time CPU: 144-160 Hrs.

Run Time Wall-Clock: 12-13 Hrs. (6-8 Hrs. for restarts)

Memory Requirements: ~18 GB

Forces converged in less than 400 time steps

Inflow turbulence levels:

Turbulence intensity: T'= 0.002 (from AGARD-AR-303)

Turbulence length-scale: = 0.6 mm (assumed)

Flow was allowed to transition naturally over the wing and fuselage.

Solution Information

Realizable (to the hilt) k-E closure

Positivity of Reynolds normal stresses: $\overline{u'_a u'_a} \ge 0$, $\alpha = 1 \text{ or } 2 \text{ or } 3 \implies k \ge 0$

 $\overline{u'_{\alpha}u'_{\beta}}^{2} \leq \overline{u'_{\alpha}u'_{\alpha}} \bullet \overline{u'_{\beta}u'_{\beta}} \Longrightarrow v_{t} \leq \frac{2k}{3|S|}$ **Schwartz inequality:**

Time- and velocity-scale realizability: $T_{\iota} \ge \sqrt{v/\epsilon}, \quad V_{\iota} \ge (v\epsilon)^{1/4}$

Topography-parameter-free formulation

Sensitizing to non-equilibrium flow

Increases in non-equilibrium near-wall regions, thereby reducing eddyviscosity. This improves prediction of backflows for example.

Forces

AIAA Drag Prediction Workshop II DLR-F6, Case 2: M=0.75, Re_c=3x10^6

Forces

Total Drag Increment

• W+B+P+N – W+B

		Medium		Exp.
ΔC_{Dtot}	0.0056	0.0049	0.0046	0.0043

Cp Plots

AIAA Drag Prediction Workshop II DLR-F6 W-B-P-N, alpha=1.0 deg., M=0.75, Re=3E6

DLR-F6 W-B-P-N, alpha=1.0 deg., M=0.75, Re=3E6 y/b=0.331 exp. data • CFD++

AIAA Drag Prediction Workshop II

AIAA Drag Prediction Workshop II DLR-F6 W-B-P-N, alpha=1.0 deg., M=0.75, Re=3E6

AIAA Drag Prediction Workshop II

Cp Plots

Contour Plots

Contour Plots

Separation bubble (courtesy: CEI)

Courtesy: CEI

Trailing Edge Separation

CFD++ Convergence

Conclusions

- CFD++ took less than 400 steps to converge forces & moments
- Fully turbulent computations with natural transition at L.E. regions
- Excellent polar predictions for both configurations
- Max. Cd deviation measured from polars:
 7 counts (WBPN), 5 counts (WB)
- Grid refinement led to improved results with CFD++

Summary

Together these elements contribute to the overall effectiveness of CFD++