Discrete Mathematics

prime, fundamental theorem of arithmetic, well-ordering property, division algorithm, ideal, great common divisor

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

Course Information

- Number theory: integers, ... (4)
 Combinatorics: counting, designs,... (2,6,8)
 Logic: propositions, predicates, proofs,... (1)
 Graph theory: graphs, trees, set systems ... (10,11)
 - **Discrete probability**: discrete distributions ···
 - Algebra: matrices, groups, rings and fields ...
 - Theoretical computer science: algorithms ···
 - Information theory: codes ···
 - ...

Textbook: Discrete Mathematics and Its Applications (8th edition) Kenneth H. Rosen

Course Information

Course Materials: Lecture slides, homework questions, ...

- Piazza: https://piazza.com/class/lsym5480jzg5xr/
- Blackboard: https://egate.shanghaitech.edu.cn/new/index.html

HW Submission: submit a soft copy (pdf/jpg) of HW solutions

• Gradescope: https://www.gradescope.com/courses/742757 (DPVK3Y)

Q&A: online Q&A, office hours, and tutorial sessions

- Online Q&As: post your questions to Piazza and get answers
- Instructor's Office hours: 20:00-21:00, Wednesday, SIST 2-202.i
- TAs' Tutorial Sessions: TBD

Evaluation:

- Attendance: 10% (random codes)
- Homework: 30% (no plagiarisms, firm deadline, ...)
- Midterm: 30% (on the first half of the course)
- Final Exam: 30% (on the second half of the course)

Elementary Number Theory

Divisibility

• primes, division algorithm, greatest common divisor, fundamental theorem of arithmetic

Congruences

• congruence, residue classes, Euler's theorem

Application (Public-key encryption)

• <u>RSA</u>, modular arithmetics, square and multiply, Euclidean algorithm, prime number generation, CRT

Application (Key exchange)

• groups, subgroups, cyclic groups, DLog, <u>Diffie-Hellman</u> key exchange

Divisibility

NOTATION: $\mathbb{N} = \{0,1,2,...\}; \mathbb{Z} = \{0,\pm 1,...\}; \mathbb{Q} \text{ (rational)}; \mathbb{R} \text{ (real)}$ **DEFINITION:** Let $a \in \mathbb{Z} \setminus \{0\}$ and let $b \in \mathbb{Z}$.

- a divides b: there is an integer $c \in \mathbb{Z}$ such that b = ac
 - a is a **divisor** of b; b is a **multiple** of a
 - $a \mid b : a \text{ divides } b ; a \nmid b : a \text{ does not divide } b$
- $n \in \{2,3,...\}$ is a **prime** if the only positive divisors of n are 1 and n
 - Example: 2,3,5,7,11,13,17,19,23,29, ... are all primes
- If $n \in \{2,3,...\}$ is not a prime, then n is called a **composite**
 - Example: n is composite iff $\exists a, b \in (1, n) \cap \mathbb{Z}$ such that n = ab

THEOREM (Fundamental Theorem of Arithmetic) Every

integer n > 1 can be uniquely written as $n = p_1^{e_1} \cdots p_r^{e_r}$, where $p_1 < \cdots < p_r$ are primes and $e_1, \dots, e_r \ge 1$.

• Euclid (300 BC)-> Al-Farisi (1319)-> Prestet (1689)->Euler (1770)->Legendre (1798)->Gauss (1801)

FTA Proof

Proof of existence: by mathematical induction on the integer n

- $n = 2: 2 = 2^1$ is a product of prime powers
- Induction hypothesis: suppose there is an integer k > 2 such that the theorem is true for all integer n such that $2 \le n < k$
- Prove the theorem is true for n = k
 - n = k is a prime
 - n = k is a product of prime powers
 - n = k is composite
 - There are integers n_1 , n_2 such that $1 < n_1$, $n_2 < n$ and $n = n_1 n_2$
 - By induction hypothesis, $n_1 = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ and $n_2 = q_1^{\beta_1} \cdots q_s^{\beta_s}$
 - $p_1, \dots, p_r, q_1, \dots, q_s$ are primes; $\alpha_1, \dots, \alpha_r, \beta_1, \dots, \beta_s \ge 1$
 - $n = n_1 n_2 = p_1^{\alpha_1} \cdots p_r^{\alpha_r} \cdot q_1^{\beta_1} \cdots q_s^{\beta_s}$ is a product of prime powers

Division Algorithm

- **The Well-Ordering Property:** Every non-empty subset of N (the set of nonnegative integers) has a least element.
- **THEOREM (Division Algorithm)** Let $a, b \in \mathbb{Z}$ and b > 0. Then there are unique $q, r \in \mathbb{Z}$ such that $0 \le r < b$ and a = bq + r.
 - **Existence:** Let $S = \{a bx : x \in \mathbb{Z} \text{ and } a bx \ge 0\}$. Then
 - $S \neq \emptyset$ and $S \subseteq \mathbb{N}$
 - *S* has a least element, say $r = a bq \ge 0$
 - If $r \ge b$, then $r b = a b(q + 1) \in S$ and r b < r.
 - The contradiction shows that $0 \le r < b$.
 - **Uniqueness:** Suppose that $q', r' \in \mathbb{Z}$, $0 \le r' < b$ and a = bq' + r'
 - Recall that a = bq + r, $0 \le r < b$.
 - Then $b(q q') = r' r \in (-b, b)$
 - It must be the case that q = q' and thus r = r'

Ideal

DEFINITION: Let $I \subseteq \mathbb{Z}$ be nonempty. I is called an **ideal** of \mathbb{Z} if

- $a, b \in I \Rightarrow a + b \in I$; and
- $a \in I$, $r \in \mathbb{Z} \Rightarrow ra \in I$
 - Example: $d\mathbb{Z} = \{0, \pm d, \pm 2d, ...\}$ is an ideal of \mathbb{Z} for all $d \in \mathbb{Z}$

THEOREM: Let I be an ideal of \mathbb{Z} . Then $\exists d \in \mathbb{Z}$ such that $I = d\mathbb{Z}$

- If $I = \{0\}$, then d = 0;
- Otherwise, let $S = \{a \in I : a > 0\}$.
 - $S \subseteq \mathbb{N}$ and $S \neq \emptyset$
 - due to well-ordering property, S has a least element, say $d \in S$.
 - $d\mathbb{Z} \subseteq I$
 - $d \in I \Rightarrow dr \in I$ for any $r \in \mathbb{Z}$
 - $I \subseteq d\mathbb{Z}$
 - $\forall x \in I, x = dq + r, 0 \le r < d$
 - $r = x dq \in I, 0 \le r < d$
 - r = 0 // otherwise, there is a contradiction
 - $x = dq \in d\mathbb{Z}$

Ideal

DEFINITION: Let I_1, I_2 be ideals of \mathbb{Z} . Then the **sum** of I_1 and I_2 is defined as $I_1 + I_2 = \{x + y : x \in I_1, y \in I_2\}$

THEOREM: If I_1 , I_2 are ideals of \mathbb{Z} , then $I_1 + I_2$ is an ideal of \mathbb{Z} .

- $\forall a, b \in I_1 + I_2, a + b \in I_1 + I_2$
 - $\exists x_1, x_2 \in I_1, y_1, y_2 \in I_2$ such that $a = x_1 + y_1; b = x_2 + y_2$
 - $a + b = (x_1 + x_2) + (y_1 + y_2) \in I_1 + I_2$
- $\forall a \in I_1 + I_2, r \in \mathbb{Z}, ra \in I_1 + I_2$
 - $\exists x \in I_1, y \in I_2$ such that a = x + y
 - $ra = (rx) + (ry) \in I_1 + I_2$

EXAMPLE: $3\mathbb{Z} + 5\mathbb{Z} = \mathbb{Z}$; $4\mathbb{Z} + 6\mathbb{Z} = 2\mathbb{Z}$

- $3\mathbb{Z} + 5\mathbb{Z} \subseteq \mathbb{Z}$: this is obvious
- $\mathbb{Z} \subseteq 3\mathbb{Z} + 5\mathbb{Z}$:
 - For every $n \in \mathbb{Z}$, $n = 3 \cdot (2n) + 5 \cdot (-n) \in 3\mathbb{Z} + 5\mathbb{Z}$

QUESTION: $a\mathbb{Z} + b\mathbb{Z} = ?$

Greatest Common Divisor

DEFINITION: Let $a, b \in \mathbb{Z}$ and at least one of them is nonzero.

- **common divisor**: an integer d such that d|a, d|b
- **greatest common divisor** gcd(a, b): the largest common divisor
 - relatively prime: gcd(a, b) = 1

THEOREM: Let $a, b \in \mathbb{Z}$ and at least one of them is nonzero.

Then $a\mathbb{Z} + b\mathbb{Z} = \gcd(a, b)\mathbb{Z}$.

- $\{a,b\} \neq \{0\} \Rightarrow a\mathbb{Z} + b\mathbb{Z} \neq \{0\}$
- There exists $d \in \mathbb{Z} \setminus \{0\}$ such that $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$. W.l.o.g., d > 0.
 - *d* is a common divisor of $a, b: a \cdot 1 + b \cdot 0 \in d\mathbb{Z}$
 - *d* is greatest: Suppose that *d'* is a common divisor of *a*, *b*
 - d'|a,d'|b
 - $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z} \Rightarrow d = as + bt$ for some integers s, t
 - d'|d and thus $d' \leq d$

THEOREM: There exist $s, t \in \mathbb{Z}$ such that gcd(a, b) = as + bt.