AMC Entertainment Holdings Inc Options Price

Group Members

	Name	Registration Number
1	Joy Kanyi	I07/
2	Kennedy Mwavu	I07/0807/2018
3	Nelvine Anyango	I07/
4	Rachael Kanini	I07/

Q1: Get Options Data

We used options data from NYSE's AMC Entertainment Holdings Inc with expiration date March 04 2022.

Table 1: Sample of a few rows of the cleaned data

	Market Price	
Strike	Call	Put
5.0	12.675	0.005
6.0	11.625	0.005
7.0	10.650	0.005
8.0	9.600	0.005
9.0	8.650	0.015
10.0	7.650	0.015
11.0	6.650	0.015
11.5	6.150	0.035
12.0	5.675	0.055
12.5	5.200	0.065
13.0	4.650	0.085
13.5	4.250	0.115
14.0	3.800	0.155
14.5	3.350	0.220
15.0	2.945	0.305
15.5	2.575	0.420
16.0	2.195	0.570
16.5	1.910	0.745
17.0	1.610	0.945
17.5	1.365	1.180

Q2: Plot Put and Call Options Vs Strike Price

Q3: Fit a Multiple Linear Regression Model and Estimate All Parameters

Results of the model are as follows:

```
##
## Call:
## lm(formula = Call ~ Put + Strike, data = market_prices)
##
## Residuals:
       Min
##
                  1Q
                      Median
                                    3Q
                                            Max
## -0.31242 -0.01398 0.01367 0.04093 0.12056
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.641607
                           0.057446
                                      307.1
                                              <2e-16 ***
                                      187.1
                                              <2e-16 ***
## Put
               0.996657
                           0.005328
## Strike
              -1.001114
                           0.004070 -246.0
                                              <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.08148 on 53 degrees of freedom
## Multiple R-squared: 0.9994, Adjusted R-squared: 0.9994
```

F-statistic: 4.588e+04 on 2 and 53 DF, p-value: < 2.2e-16

The estimated parameters are:

- $\beta_0 = 17.641607$
- $\beta_1 = 0.996657$
- $\beta_2 = -1.001114$

Check If Assumption Of Normality Over Residuals Is Valid

A graphical analysis of the residuals:

• A histogram of the residuals shows that most of the residuals are clustered around 0 (which is their mean theoretically) but there are some clustered around -0.13. Chances are the errors may not be normally distributed.

• A density plot of the residuals looks more of bimodal distribution:

• A qqplot of the residuals shows that majority of the points don't fall along the reference line, so we cannot assume normality:

Formal Test For Normality

We used the Shapiro-Wilk Test for normality:

```
##
## Shapiro-Wilk normality test
##
## data: error
## W = 0.87022, p-value = 2.292e-05
```

p-value < 0.05 implying that the distribution of the errors is significantly different from the normal distribution, hence we cannot assume normality.