

(51) International Patent Classification 6:		(11) International Publication Number: WO 00/29448		
C07R 14/705, C12N 15/12	A2	(43) International Publication Date: 25 May 2000 (25.05.00		
(21) International Application Number: PCT/JPS (22) International Filing Date: 17 November 1999 (1		IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-sh		
(30) Priority Data: 10/326255 17 November 1998 (17.11.98) 10/364315 22 December 1998 (22.12.98) 11/69811 16 March 1999 (16.03.99) 11/119299 27 April 1999 (27.04.99) 11/138169 19 May 1999 (19.05.99) (71) Applicants (for all designated States except US): S CHEMICAL RESEARCH CENTER [JP/JP] Nishi-Ohnuma 4-chome, Sagamihara-shi, K 229-0012 (JP). PROTEGENE INC. [JP/JP]; Naka-cho, Meguro-ku, Tokyo 153-0065 (JP).	SAGAN I; 4-	BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU AMC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM		
(72) Inventors; and (75) Inventors/Applicants (for US only): KATO, Seishi 3-46-50, Wakamatsu, Sagamihara-shi, K 229-0014 (JP). KIMURA, Tomoko [JP/JP]; 302, Nishiikuta, Tama-ku, Kawasaki-shi, Kanagawa 2 (JP).	anagav 4-1-2	a upon receipt of that report.		

The present invention provides human proteins having hydrophobic domains, DNAs encoding these proteins, and expression vectors for these DNAs as well as eukaryotic cells expressing these DNAs.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Кazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		·
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
					•		

DESCRIPTION

Human Proteins Having Hydrophobic Domains and DNAs Encoding These Proteins

5

10

15

20

25.

30

TECHNICAL FIELD

The present invention relates to human proteins having hydrophobic domains, DNAs encoding these proteins, and expression vectors for these DNAs as well as eukaryotic cells expressing these DNAs. The proteins of the present invention can be employed as pharmaceuticals or as antigens for preparing antibodies against these proteins. The human cDNAs of the present invention can be utilized as probes for genetic diagnosis and gene sources for gene therapy. Furthermore, the cDNAs can be utilized as gene sources for large-scale production of the proteins encoded by these cDNAs. Cells into which these genes are introduced to express secretory proteins or membrane proteins in large quantity can be utilized for detection of the corresponding receptors or ligands, screening of novel small molecule pharmaceuticals and the like.

BACKGROUND ART

Cells secrete many proteins extracellularly. These secretory proteins play important roles in the proliferation control, the differentiation induction, the material transport, the biophylaxis, and the like of the cells. Unlike intracellular proteins, the secretory proteins exert their actions outside the cells. Therefore, they can be administered in the intracorporeal manner such as the injection or the drip, so that they possess hidden

2

potentialities as pharmaceuticals. In fact, a number of human secretory proteins such as interferons, interleukins, erythropoietin, thrombolytic agents and the like have been currently employed as pharmaceuticals. In addition, secretory proteins other than those described above are undergoing clinical trials for developing their use as pharmaceuticals. It is believed that the human cells produce many unknown secretory proteins. Availability of these secretory proteins as well as genes encoding them is expected to lead to development of novel pharmaceuticals utilizing these proteins.

5

10

15

20

25

30

On the other hand, membrane proteins play important roles, as signal receptors, ion channels, transporters and like in the material transport and transduction through the cell membrane. Examples thereof include receptors for various cytokines, ion channels for the sodium ion, the potassium ion, the chloride ion and the like, transporters for saccharides and amino acids and the like. The genes for many of them have already been cloned. It has been clarified that abnormalities of these membrane proteins are involved in a number of previously cryptogenic diseases. Therefore, discovery of a new membrane protein is expected to lead to elucidation of the causes of many diseases, so that isolation of new genes encoding the membrane proteins has been desired.

Heretofore, due to difficulty in the purification from human cells, many of these secretory proteins and membrane proteins have been isolated by genetic approaches. A general method is the so-called expression cloning method, in which a cDNA library is introduced into eukaryotic cells to express cDNAs, and the cells secreting, or expressing on the surface of membrane, the protein having the activity of

10

15

20

interest are then screened. However, only genes for proteins with known functions can be cloned by using this method.

In general, a secretory protein or a membrane protein possesses at least one hydrophobic domain within the protein. After synthesis in the ribosome, such domain works as a secretory signal or remains in the phospholipid membrane to be entrapped in the membrane. Accordingly, if the existence of a highly hydrophobic domain is observed in the amino acid sequence of a protein encoded by a cDNA when the whole base sequence of the full-length cDNA is determined, it is considered that the cDNA encodes a secretory protein or a membrane protein.

OBJECTS OF THE INVENTION

The main object of the present invention is to provide novel human proteins having hydrophobic domains, DNAs encoding these proteins, and expression vectors for these DNAs as well as transformed eukaryotic cells that are capable of expressing these DNAs. This object as well as other objects and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the accompanying drawings.

25 BRIEF DESCRIPTION OF DRAWINGS

- Fig. 1 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02539.
- Fig. 2 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02770.
- Fig. 3 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02869.
 - Fig. 4 illustrates the hydrophobicity/hydrophilicity

15

20

25

profile of the protein encoded by clone HP02956.

- Fig. 5 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02962.
- Fig. 6 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03014.
- Fig. 7 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10608.
- Fig. 8 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10609.
- 10 Fig. 9 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10611.
 - Fig. 10 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10617.
 - Fig. 11 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02837.
 - Fig. 12 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02991.
 - Fig. 13 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03063.
 - Fig. 14 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03091.
 - Fig. 15 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03092.
 - Fig. 16 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03116.
 - Fig. 17 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10618.
 - Fig. 18 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10619.
- Fig. 19 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10622.
 - Fig. 20 illustrates the hydrophobicity/hydrophilicity

15

25

profile of the protein encoded by clone HP10625.

- Fig. 21 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02883.
- Fig. 22 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03140.
- Fig. 23 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10628.
- Fig. 24 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10629.
- 10 Fig. 25 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10635.
 - Fig. 26 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10636.
 - Fig. 27 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10640.
 - Fig. 28 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10644.
 - Fig. 29 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10656.
- 20 Fig. 30 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10672.
 - Fig. 31 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03194.
 - Fig. 32 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03219.
 - Fig. 33 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03236.
 - Fig. 34 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03237.
- Fig. 35 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03267.
 - Fig. 36 illustrates the hydrophobicity/hydrophilicity

profile of the protein encoded by clone HP03270.

Fig. 37 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03298.

Fig. 38 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10631.

Fig. 39 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10658.

Fig. 40 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10663.

Fig. 41 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03165.

Fig. 42 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03266.

Fig. 43 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03287.

Fig. 44 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10665.

Fig. 45 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10669.

Fig. 46 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10670.

Fig. 47 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10671.

Fig. 48 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10673.

Fig. 49 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10675.

Fig. 50 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10683.

5

10

15

20

25

SUMMARY OF THE INVENTION

5

10

15

25

30

the result of intensive studies, the present inventors have successfully cloned cDNAs encoding proteins having hydrophobic domains from the human full-length cDNA bank, thereby completing the present invention. Thus, the present invention provides а human protein hydrophobic domain(s), namely a protein comprising any one of an amino acid sequence selected from the group consisting of SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130. Moreover, the present invention provides a DNA encoding the above-mentioned protein, exemplified by a cDNA comprising any one of a base sequence selected from the group consisting of SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131 to 150 as well as an expression vector that is capable of expressing such DNA by in vitro in eukaryotic cells and a transformed translation or eukaryotic cell that is capable of expressing such DNA and of producing the above-mentioned protein.

20 <u>DETAILED DESCRIPTION OF THE INVENTION</u>

The proteins of the present invention can be obtained, for example, by a method for isolating proteins from human organs, cell lines or the like, a method for preparing peptides by the chemical synthesis based on the amino acid sequence of the present invention, or a method for producing proteins by the recombinant DNA technology using the DNAs encoding the hydrophobic domains of the present invention. Among these, the method for producing proteins by the recombinant DNA technology is preferably employed. For example, the proteins can be expressed in vitro by preparing an RNA by in vitro transcription from a vector having the

cDNA of the present invention, and then carrying out in vitro translation using this RNA as a template. Alternatively, introduction of the translated region into a suitable expression vector by the method known in the art may lead to expression of a large amount of the encoded protein in prokaryotic cells such as Escherichia coli, Bacillus subtilis, etc., and eukaryotic cells such as yeasts, insect cells, mammalian cells, etc.

5

10

15

20

25

30

In the case where the protein of the present invention is produced by expressing the DNA by in vitro translation, the protein of the present invention can be produced in vitro by introducing the translated region of this cDNA into a vector having an RNA polymerase promoter, and then adding the vector to an in vitro translation system such as a rabbit reticulocyte lysate or a wheat germ extract, which contains an RNA polymerase corresponding to the promoter. The RNA polymerase promoters are exemplified by T7, T3, SP6 and the like. The vectors containing these RNA polymerase promoters are exemplified by pKA1, pCDM8, pT3/T7 18, pT7/3 19, pBluescript II and the like. Furthermore, the protein of the present invention can be expressed in the secreted form or the form incorporated in the microsome membrane when a canine pancreas microsome or the like is added to the reaction system.

In the case where the protein of the present invention is produced by expressing the DNA in a microorganism such as Escherichia coli etc., a recombinant expression vector in which the translated region of the cDNA of the present invention is introduced into an expression vector having an origin which is capable of replicating in the microorganism, a promoter, a ribosome-binding site, a cDNA-cloning site, a terminator and the like is constructed. After transformation

9

of the host cells with this expression vector, the resulting transformant is grown, whereby the protein encoded by the cDNA can be produced in large quantity in the microorganism. In this case, a protein fragment containing any translated region can be obtained by adding an initiation codon and a termination codon in front of and behind the selected translated region to express the protein. Alternatively, the protein can be expressed as a fusion protein with another protein. Only the portion of the protein encoded by the cDNA can be obtained by cleaving this fusion protein with a suitable protease. The expression vectors for Escherichia coli are exemplified by the pUC series, pBluescript II, the pET expression system, the pGEX expression system and the like.

5

10

15

20

25

30

In the case where the protein of the present invention is produced by expressing the DNA in eukaryotic cells, the protein of the present invention can be produced as a secretory protein, or as a membrane protein on the cellmembrane surface, by introducing the translated region of the cDNA into an expression vector for eukaryotic cells that has a promoter, a splicing region, a poly(A) addition site and the like, and then introducing the vector into the eukaryotic cells. The expression vectors are exemplified by pKA1, pED6dpc2, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vectors, pRS, pYES2 and the like. Examples of eukaryotic cells to be used in general include mammalian cultured cells such as monkey kidney COS7 cells, Chinese hamster ovary CHO cells and the like, budding yeasts, fission yeasts, silkworm cells, Xenopus oocytes and the like. Any eukaryotic cells may be used as long as they are capable of expressing the proteins of the present invention. The expression vector can be introduced into the eukaryotic cells by using a method

known in the art such as the electroporation method, the calcium phosphate method, the liposome method, the DEAE-dextran method and the like.

5

10

15

20

25

30

After the protein of the present invention is expressed in prokaryotic cells or eukaryotic cells, the protein of interest can be isolated from the culture and purified by a combination of separation procedures known in the art. Examples of the separation procedures include treatment with a denaturing agent such as urea or a detergent, sonication, enzymatic digestion, salting-out or solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, ion-exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography and the like.

The proteins of the present invention also include peptide fragments (of 5 amino acid residues or more) containing any partial amino acid sequences in the amino acid sequences represented by SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130. These peptide fragments can be utilized as antigens for preparation of antibodies. Among the proteins of the present invention, those having the signal sequences are secreted in the form of mature proteins after the signal sequences are removed. Therefore, these mature proteins shall come within the scope of the protein of the present invention. The N-terminal amino acid sequences of the mature proteins can be easily determined by using the method for the determination of cleavage site of a signal sequence [JP 8-187100 A]. Furthermore, some membrane proteins undergo the processing on the cell surface to be converted to the secreted forms. Such proteins or peptides in the secreted forms shall also come within the scope of the protein of the present invention. In the case where

sugar chain-binding sites are present in the amino acid sequences of the proteins, expression of the proteins in appropriate eukaryotic cells affords the proteins to which sugar chains are attached. Accordingly, such proteins or peptides to which sugar chains are attached shall also come within the scope of the protein of the present invention.

5

10

15

20

25

30

The DNAs of the present invention include all the DNAs encoding the above-mentioned proteins. These DNAs can be obtained by using a method for chemical synthesis, a method for cDNA cloning and the like.

The cDNAs of the present invention can be cloned, for example, from cDNA libraries derived from the human cells. The cDNAs are synthesized by using poly(A) RNAs extracted from human cells as templates. The human cells may be cells delivered from the human body, for example, by the operation or may be the cultured cells. The cDNAs can be synthesized by using any method such as the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-170 (1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J., Gene 25: 263-269 (1983)] and the like. However, it is desirable to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)], as exemplified in Examples, in order to obtain a full-length clone in an effective manner. In addition, commercially available human cDNA libraries can be utilized. The cDNAs of the present invention can be cloned from the cDNA libraries by synthesizing an oligonucleotide on the basis of base sequences of any portion in the cDNA of the present invention and screening the cDNA libraries using this oligonucleotide as a probe for colony or plaque hybridization according to a method known in the art. In addition, the cDNA fragments of the present invention can be prepared from an mRNA isolated from human cells by the RT-

12

PCR method in which oligonucleotides which hybridize with both termini of the cDNA fragment of interest are synthesized, which are then used as the primers.

The cDNAs of the present invention are characterized in that they comprise any one of the base sequences represented by SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110, and 131 to 140 or the base sequences represented by SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120, and 141 to 150. Table 1 summarizes the clone number (HP number), the cells from which the cDNA clone was obtained, the total base number of the cDNA, and the number of the amino acid residues of the encoded protein, for each of the cDNAs.

5

10

Table 1

		Table 1		
SEQ ID NO	HP	Cells	Base	Number of amino
	number		number	acid residues
1, 11, 21	HP02539	Saos-2	4485	647
2, 12, 22	HP02770	HT-1080	1509	350
3, 13, 23	HP02869	КВ	3059	206
4, 14, 24	HP02956	кв	2367	213
5, 15, 25	HP02962	КВ	2355	595
6, 16, 26	HP03014	Liver	1024	264
7, 17, 27	HP10608	Saos-2	1237	343
8, 18, 28	HP10609	кв	1332	244
9, 19, 29	HP10611	КВ	1932	303
10, 20, 30	HP10617	HT-1080	1124	160
31, 41, 51	HP02837	HT-1080	4473	1445
32, 42, 52	HP02991	кв	2630	582
33, 43, 53	нр03063	HT-1080	1472	410
34, 44, 54	HP03091	Liver	1652	483
35, 45, 55	HP03092	Liver	2112	607
36, 46, 56	HP03116	кв	1087	314
37, 47, 57	HP10618	HT-1080	1694	94
38, 48, 58	HP10619	HT-1080	1522	218
39, 49, 59	HP10622	Liver	1591	460
40, 50, 60	HP10625	Liver	1249	216
61, 71, 81	HP02883	КВ	4027	392
62, 72, 82	HP03140	HT-1080	2495	497
63, 73, 83	HP10628	HT-1080	1617	417
64, 74, 84	HP10629	WERI-RB	3269	649
65, 75, 85	HP10635	WERI-RB	458	93
66, 76, 86	HP10636	HT-1080	1712	425
67, 77, 87	HP10640	WERI-RB	1055	149
68, 78, 88	HP10644	WERI-RB	1616	396
69, 79, 89	HP10656	PMA-U937	1860	350
70, 80, 90	HP10672	Thymus	783	153
91, 101, 111	HP03194	КВ	3438	303

PCT/JP99/06412

5

10

92, 102, 112	HP03219	PMA-U937	1144	283
93, 103, 113	HP03236	HT-1080	2339	488
94, 104, 114	HP03237	HT-1080	1765	182
95, 105, 115	HP03267	Liver	1418	184
96, 106, 116	HP03270	PMA-U937	1211	140
97, 107, 117	HP03298	PMA-U937	1099	153
98, 108, 118	HP10631	WERI-RB	3489	173
99, 109, 119	HP10658	HT-1080	931	75
100, 110, 120	HP10663	PMA-U937	1123	159
121, 131, 141	HP03165	КВ	3234	636
122, 132, 142	HP03266	HT-1080	2490	318
123, 133, 143	HP03287	Thymus	1465	82
124, 134, 144	HP10665	HT-1080	917	247
125, 135, 145	HP10669	WERI-RB	1306	206
126, 136, 146	HP10670	WERI-RB	2022	432
127, 137, 147	HP10671	Thymus	1227	306
128, 138, 148	HP10673	Thymus	2210	555
129, 139, 149	HP10675	Thymus	1493	250
130, 140, 150	HP10683	PMA-U937	1264	174

The same clones as the cDNAs of the present invention can be easily obtained by screening the cDNA libraries constructed from the human cell lines or human tissues utilized in the present invention using an oligonucleotide probe synthesized on the basis of the base sequence of the cDNA provided in any one of SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120, and 131 to 150.

In general, the polymorphism due to the individual differences is frequently observed in human genes. Accordingly, any cDNA in which one or plural nucleotides are added, deleted and/or substituted with other nucleotides in SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120, and 131 to 150 shall come within the scope of the present

15

invention.

5

10

15

20

25

30

Similarly, any protein in which one or plural amino acids are added, deleted and/or substituted with other amino acids resulting from the above-mentioned changes shall come within the scope of the present invention, as long as the protein possesses the activity of the protein having any one of the amino acid sequences represented by SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130.

The cDNAs of the present invention also include cDNA fragments (of 10 bp or more) containing any partial base sequence in the base sequences represented by SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110, and 131 to 140 or in the base sequences represented by SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120, and 141 to 150. Also, DNA fragments consisting of a sense strand and an anti-sense strand shall come within this scope. These DNA fragments can be utilized as the probes for the genetic diagnosis.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

Research Uses and Utilities

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use;

5

10

15

20

25

30

16

as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source information to derive PCR primers for fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where polynucleotide encodes a protein which binds potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological

fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Nutritional Uses

5

10

15

20

25

30

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the

form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Cytokine and Cell Proliferation/Differentiation Activity

5

10

15

20

25

30

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., J. Immunol.

149:3778-3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon γ , Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

5

10

15

20

25

30

proliferation Assays for and differentiation hematopoietic and lymphopoietic cells include, limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6-Nordan, R. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 -Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors: Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

5

10

15

20

25

30

. .

Immune Stimulating or Suppressing Activity

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including combined immunodeficiency (SCID)), regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may autoimmune disorders. More specifically, from infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania fungal infections such malaria spp. and various

candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

5

10

15

20

25

30

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic erythematosus, rheumatoid arthritis, autoimmune lupus pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia graft-versus-host gravis, disease and inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly or other respiratory problems. allergic asthma) Other which immune suppression is desired conditions, in (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited suppressing T cell responses or by inducing tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigenspecific and persists after exposure to the tolerizing agent

has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

5

10

15

20

25

30

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. achieve sufficient immunosuppression or tolerance in a

23

subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

5

10

15

20

25

30

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor:ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. efficacy of blocking reagents in preventing or alleviating

24

autoimmune disorders can be determined using a number of well-characterized animal models human of autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and (see murine experimental myasthenia gravis Paul Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

5

10

15

20

25

30

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the

transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

5

10

15

20

25

30

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor sarcoma, cells (e.g., melanoma, lymphoma, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. For tumor cells obtained from a patient can example, transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the of the tumor cell provides the costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I lphachain protein and β , microglobulin protein or an MHC class

26

II α chain protein and an MHC class II β chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

5

10

15

20

25

30

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte splenocyte or cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J.

Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

5

10

15

20

25

30

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Vitro Interscience (Chapter 3, In assays Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994;

Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell Zacharchuk, Immunology 66:233-243, 1991; Journal of 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

5

10

15

20

25

30

A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells factor-dependent cell lines indicates or of involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to

5

10

15

20

25

30

stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation mveloid cells such as granulocytes monocytes/macrophages (i.e., traditional CSF useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting proliferation of megakaryocytes growth and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such thrombocytopenia, and generally for use in place of or complementary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the abovementioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and

10

15

20

25

30

Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, described in: Methylcellulose colony forming assays, Freshney, M.G. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bon is

not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

5

10

15

20

25

30

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and

32

in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by а composition of the present invention contributes to repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendonligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

5

10

15

20

25

30

The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, Alzheimer's, Parkinson's disease, Huntington's such as disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head

10

15

20

25

30

trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. W095/16035 (bone, cartilage, tendon);

International Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

5

10

15

20

25

30

A protein of the present invention may also exhibit activinor inhibin-related activities. Inhibins characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin- β group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among

other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

5

10

15

20

25

30

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial endothelial cells. and/or Chemotactic chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma tissues, as well as in treatment of localized infections. example, attraction of lymphocytes, monocytes For neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among

10

15

20

25

30

other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke)).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include,

37

without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Receptor/Ligand Activity

5

10

15

20

25

30

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/liqand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987;

Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

Anti-Inflammatory Activity

5

10

15

20

25

30

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cellcell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inhibiting promoting inflammatory process, orextravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, rejection, complement-mediated hyperacute nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

Tumor Inhibition Activity

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly

39

(such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth.

Other Activities

5

10

15

20

25

30

A protein of the invention may also exhibit one or more following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body size or shape (such as, for example, augmentation or diminution, change in bone form or shape); effecting biorhythms or caricadic cycles or effecting the fertility of female subjects; male or effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors component(s); effecting orbehavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic

lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

10

15

20

25

30

5

Examples

The present invention is specifically illustrated in more detail by the following Examples, but Examples are not intended to restrict the present invention. procedures with regard to the recombinant DNA and the enzymatic reactions were carried out according to the literature ["Molecular Cloning. A Laboratory Manual", Cold Spring Harbor Laboratory, 1989]. Unless otherwise stated, restriction enzymes and various modifying enzymes to be used were those available Takara Shuzo. The from compositions and the reaction conditions for each of the reactions were as described in the instructions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: 243-250 (1994)].

(1) Selection of cDNAs Encoding Proteins Having Hydrophobic Domains

The cDNA library of fibrosarcoma cell line HT-1080 (WO 98/11217), the cDNA library of osteosarcoma cell line Saos-2 (WO 97/33993), the cDNA library of epidermoid carcinoma cell line KB (WO 98/11217) and the cDNA library of liver tissue delivered by the operation (WO 98/21328) were used as the

cDNA libraries. Additionally, the cDNA libraries constructed from phorbol ester-stimulated histiocytic lymphoma cell line U937 (ATCC CRL 1593) mRNA, human retinoblastoma cell line WERI-RB (ATCC HTB 169) mRNA and human thymus mRNA (Clontech) were also used. Full-length cDNA clones were selected from the respective libraries and the whole base sequences thereof were determined to construct a homo-protein cDNA bank consisting of the full-length cDNA hydrophobicity/hydrophilicity profiles were determined for the proteins encoded by the full-length cDNA clones registered in the homo-protein cDNA bank by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Biol. 157: 105-132 (1982)] to examine the presence or absence of a hydrophobic region. A clone that has a hydrophobic region being assumed as a secretory signal or a transmembrane domain in the amino acid sequence of the encoded protein was selected as a clone candidate.

(2) Protein Synthesis by In Vitro Translation

5

10

15

20

25

30

The plasmid vector bearing the cDNA of the present invention was used for in vitro transcription/translation with a T_NT rabbit reticulocyte lysate kit (Promega). In this case, [^{35}S]methionine was added to label the expression product with a radioisotope. Each of the reactions was carried out according to the protocols attached to the kit. Two micrograms of the plasmid was subjected to the reaction at 30°C for 90 minutes in the reaction solution of a total volume of 25 μ l containing 12.5 μ l μ of T_NT rabbit reticulocyte lysate, 0.5 μ l of a buffer solution (attached to the kit), 2 μ l of an amino acid mixture (without methionine), 2 μ l of [^{35}S]methionine (Amersham) (0.37 MBq/ μ l), 0.5 μ l of T7 RNA polymerase, and 20 U of RNasin. The experiment in the presence of a membrane system was carried

15

20

25

30

out by adding 2.5 μ l of a canine pancreas microsome fraction (Promega) to the reaction system. To 3 μ l of the reaction solution was added 2 μ l of the SDS sampling buffer (125 mM Tris-hydrochloride buffer, pH 6.8, 120 mM 2-mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue and 20% glycerol) and the resulting mixture was heated at 95°C for 3 minutes and then subjected to SDS-polyacrylamide gel electrophoresis. The molecular weight of the translation product was determined by carrying out the autoradiography.

10 (3) Expression in COS7

Escherichia coli cells harboring the expression vector for the protein of the present invention were cultured at 37°C for 2 hours in 2 ml of the 2xYT culture medium containing $100~\mu\text{g/ml}$ of ampicillin, the helper phage M13K07 ($50~\mu$ l) was added, and the cells were then cultured at 37°C overnight. Single-stranded phage particles were obtained by polyethylene glycol precipitation from a supernatant separated by centrifugation. The particles were suspended in $100~\mu\text{l}$ of 1 mM Tris-0.1 mM EDTA, pH 8 (TE).

The cultured cells derived from monkey kidney, COS7, were cultured at 37°C in the presence of 5% CO₂ in the Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal calf serum. 1 x 10 5 COS7 cells were inoculated into a 6-well plate (Nunc, well diameter: 3 cm) and cultured at 37°C for 22 hours in the presence of 5% CO₂. After the medium was removed, the cell surface was washed with a phosphate buffer solution followed by DMEM containing 50 mM Tris-hydrochloride (pH 7.5) (TDMEM). A suspension containing 1 μ l of the single-stranded phage suspension, 0.6 ml of the DMEM medium and 3 μ l of TRANSFECTAMTM (IBF) was added to the cells and the cells were cultured at 37°C for 3 hours in the presence of 5% CO₂. After the sample solution was removed,

the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf serum was added, and the cells were cultured at 37°C for 2 days in the presence of 5% CO₂. After the medium was exchanged for a medium containing [³⁵S]cystine or [³⁵S]methionine, the cells were cultured for one hour. After the medium and the cells were separated each other by centrifugation, proteins in the medium fraction and the cell membrane fraction were subjected to SDS-PAGE.

(4) Clone Examples

5

15

20

25

30

10 <HP02539> (SEQ ID NOS: 1, 11, and 21)

Determination of the whole base sequence of the cDNA insert of clone HP02539 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 188-bp 5'-untranslated region, a 1944-bp ORF, and a 2353-bp 3'-untranslated region. The ORF encodes a protein consisting of 647 amino acid residues and there existed a putative secretory signal at the N-terminus and six putative transmembrane domains at the C-terminus. Figure 1 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the mouse frizzled-1 (GenBank Accession No. AF054623). Table 2 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the mouse frizzled-1 (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the protein shared a homology of 90.4% in the entire

44

region.

Table 2

	HP	MAEEEAPKKSRAAGGGASWELCAGALSARLTEEGSGDAGGRRPPVDPRRLARQLLLLLW
		****.**. * * * ****.* * * .******* *. *****
5	MM	MAEEAAPSESRAA-GRLSLELCAEALPGRREEVGHEDTASHRRPRADPRRWASGLLLLLW
	HP	LLEAPLILLGVRAQAAGQGPGQGPGPGQQPPPPPPQQQQSGQQYNGERGISVPDHGYCQPIS

	MM	LLEAPLLLGVRAQAAGQVSGPGQQAPPPPQPQQSGQQYNGERGISIPDHGYCQPIS
	HP	${\tt IPLCTDIAYNQTIMPNLLGHTNQEDAGLEVHQFYPLVKVQCSAELKFFLCSMYAPVCTVL}$
10		*************
	MM	IPLCTDMAYNQTIMPNLLGHTNQEDAGLEVHQFYPLVKVQCSAELKFFLCSMYAPVCTVL
	HP	${\tt EQALPPCRSLCERARQGCEALMNKFGFQWPDTLKCEKFPVHGAGELCVGQNTSDKGTPTP}$

	MM	${\tt EQALPPCRSLCER} ARQGCE {\tt ALMNKFGFQWPDTLKCEKFPVHGAGELCVGQNTSDKGTPTP}$
15	HP	${\tt SLLPEFWTSNPQHGGGGHRGGFPGGAGASERGKFSCPRALKVPSYLNYHFLGEKDCGAPC}$
		********* *****.***. ******************
	MM	${\tt SLLPEFWISNGQHGGGGYRGGYPGGAGTVERGKFSCPRALRVPSYLNYHFLGEKDCGAPC}$
	HP	EPTKVYGLMYFGPEELRFSRTWIGIWSVLCCASTLFTVLTYLVDMRRFSYPERPIIFLSG

20	MM	EPTKVYGLMYFGPEELRFSRTWIGIWSVLCCASTLFTVLTYLVDMPRFSYPERPIISLSG
	HP	CYTAVAVAYIAGFLLEDRVVCNDKFAEDGARTVAQGTKKEGCTILFMMLYFFSMASSIWW

	MM	CYTAVAVAYIAGFLLEDRVVCNDKFAEDGARTVAQGTNKEGCTILFMMLYFFSMASSIWW
	HP	VILSLTWFLAAGMKWGHEAIEANSQYFHLAAWAVPAIKTITILALGQVDGDVLSGVCFVG
25		************
	MM	VILSLTWFLAAGMKWGHEAIEANSQYFHLAAWAVPAIKTITILALGQVDGDVLSGVCFLG
	HP	LNNVDALRGFVLAPLFVYLFIGTSFILAGFVSLFRIRTIMKHDGTKTEKLEKLMVRIGVF

	MM	${\tt LNNVDALRGFVLAPLFVYLFIGTSFLLAGFVSLFRIRTIMKHDGTKTEKLEKLMVRIGVF}$
30	HP	${\tt SVLYTVPATIVIACYFYEQAFRDQWERSWVAQSCKSYAIPCPHLQAGGGAPPHPPMSPDF}$

	MM	${\tt SVLYTVPATIVIACYFYEQAFRDQWERSWVAQSCKSYAIPCPHLQGGGGVPPHPPMSPDF}$
	HP	TVFMIKYLMTLIVGITSGFWIWSGKTLNSWRKFYTRLTNSKQGETTV

35	MM	TVFMIKYLMTLNSWRKFYTRLTNSKQGETTV

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA010020) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10

15

20

25

30

5

<HP02770> (SEQ ID NOS: 2, 12, and 22)

Determination of the whole base sequence of the cDNA insert of clone HP02770 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 252-bp 5'-untranslated region, a 1053-bp ORF, and a 204-bp 3'-untranslated region. The ORF encodes a protein consisting of 350 amino acid residues and there existed two putative transmembrane domains. Figure 2 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 42 kDa that was somewhat larger than the molecular weight of 38,274 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human RING zinc finger protein (GenBank Accession No. AF037204). Table 3 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human RING zinc finger protein (ZN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue

47

similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 56.0% in the entire region.

Table 3

5

30

HP MHPAAFPLPVVVAAVLWGAAPTRGLIRATSDHNASMDFADLPALFGATLS .*** .*.*** ** *. ZN MILSIGMIMISATQVYTILTVQLFAFINLLPVEADILAYNFENASQTFDDLPARFGYRLP HP QEGLQGFLVEAHPDNACSPIAPPPPAPVNGSVFIALLRRFDCNFDLKVLNAQKAGYGAAV 10 .***.***....**.*.********* ZN AEGLKGFLINSKPENACEPIVPPPVKDNSSGTFIVLIRRLDCNFDIKVLNAQRAGYKAAI HP VHNVNSNELLNMVWNSEEIQQQIWIPSVFIGERSSEYLRALFVYEKGARVLLVPDNTFPL ****.*..* *. *. ..* *******.*.. *.. *.****.....*** 15 ZN VHNVDSDDLISMGSNDIEVLKKIDIPSVFIGESSANSLKDEFTYEKGGHLILVPEFSLPL HP GYYLIPFTGIVGLLVLAMGAVMIARCIOHRKRLORNRLTKEOLKQIPTHDYOKGDOYDVC ZN EYYLIPFLIIVGICLILIVIFMITKFVQDRHRARRNRLRKDQLKKLPVHKFKKGDEYDVC HP AICLDEYEDGDKLRVLPCAHAYHSRCVDPWLTQTRKTCPICKQPVHRGPGDED-QEEETQ 20 ****************************** ZN AICLDEYEDGDKLRILPCSHAYHCKCVDPWLTKTKKTCPVCKQKVVPSQGDSDSDTDSSQ HP GQEEGDEGEPRDHPASERTPLLGSSPTLPTSFGSLAPAPLVFPGPSTDPPLSPPSSPVIL ...* .* .* ZN EENEVTEHTPLLRPLASVSAQSFGALSESRSHQNMTESSDYEEDDNEDTDSSDAENEINE 25 HP V

ZN HDVVVQLQPNGERDYNIANTV

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA434312) among ESTs. However, since they are partial sequences, it can not be judged whether or

10

15

20

30

not they encode the same protein as the protein of the present invention.

<HP02869> (SEQ ID NOS: 3, 13, and 23)

Determination of the whole base sequence of the cDNA insert of clone HP02869 obtained from cDNA library of human epidermoid carcinoma cell line KB revealed the structure consisting of a 229-bp 5'-untranslated region, a 621-bp ORF, and a 2209-bp 3'-untranslated region. The ORF encodes a protein consisting of 206 amino acid residues and there existed two putative transmembrane domains. Figure 3 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 22 kDa that was almost identical with the molecular weight of 22,367 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA278247) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

25 <HP02956> (SEQ ID NOS: 4, 14, and 24)

Determination of the whole base sequence of the cDNA insert of clone HP02956 obtained from cDNA library of human epidermoid carcinoma cell line KB revealed the structure consisting of a 68-bp 5'-untranslated region, a 642-bp ORF, and a 1657-bp 3'-untranslated region. The ORF encodes a protein consisting of 213 amino acid residues and there existed three putative transmembrane domains. Figure 4

depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 22 kDa that was almost identical with the molecular weight of 23,902 predicted from the ORF. When expressed in COS7 cells, an expression product of about 20 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human tetraspan NET-4 (GenBank Accession No. AF065389). Table 4 shows the comparison. between amino acid sequences of the human protein of the present invention (HP) and the human tetraspan NET-4 (TS). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 58.8% in the C-terminal region of 119 amino acid residues.

Table 4

HP MHY TS MSGKHYKGPEVSCCIKYFIFGFNVIFWFLGITFLGIGLWAWNEKGVLSNISSITDLGGFD 5 HP YRYSNAKVSCWYKYLLFSYNIIFWLAGVVFLGVGLWAWSEKGVLSDLTKVTRMHGIDPVV TS PVWLFLVVGGVMFILGFAGCIGALRENTFLLKFFSVFLGIIFFLELTAGVLAFVFKDWIK HP LVLMVGVVMFTLGFAGCVGALRENICLLNFNQCCGAYGPEDWDLNVYFNCSGASYSREKC .. ****.*.**.***** 10 TS DQLYFFINNNIRAYRDDIDLQNLIDFTQEYWQCCGAFGADDWNLNIYFNCTDSNASRERC HP GVPFSCCVPDPAQKVVNTQCGYDVRIQLKSKWDESIFTKGCIQALESWLPRNIYIVAGVF TS GVPFSCCTKDPAEDVINTOCGYDAROKPEVDQQIVIYTKGCVPQFEKWLQDNLTIVAGIF 15 HP IAISLLOIFGIFLARTLISDIEAVKAGHHF *.*.****** **..*.**** TS IGIALLQIFGICLAQNLVSDIEAVRASW

20 Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T05279) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP02962> (SEQ ID NOS: 5, 15, and 25)

30

Determination of the whole base sequence of the cDNA insert of clone HP02962 obtained from cDNA library of human epidermoid carcinoma cell line KB revealed the structure consisting of a 19-bp 5'-untranslated region, a 1788-bp ORF, and a 548-bp 3'-untranslated region. The ORF encodes a

51

protein consisting of 595 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 5 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 70 kDa that was somewhat larger than the molecular weight of 67,549 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 85 kDa to which sugar chains are presumably attached. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from alanine at position 23. In addition, there exist in the amino acid sequence of this protein four sites at which Nglycosylation may occur (Asn-Thr-Thr at position 75, Asn-Gln-Thr at position 153, Asn-Tyr-Thr at position 237 and Asn-Ser-Ser at position 360).

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human hypothetical protein KIAA0584 (GenBank Accession No. AB011156). Table 5 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human hypothetical protein KIAA0584 (KI). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 52.9% in the entire region.

5

10

15

20

25

Table 5

	HP	MRAARAAPLLQLLLLLGPWLEAAGVAESPLPAVVLAILARNAEHSL
		**** *.*.*.*.*.*.
5	KI	${\tt LAWSLLLLSSALLREGCRARFVAERDSEDDGEEPVVFPESPLQSPTVLVAVLARNAAHTL}$
	HP	PHYLGALERLDYPRARMALWCATDHNVDNTTEMLQEWLAAVGDDYAAVVWRPEGEPRFYP
		. *** * * * ****** * * * * * *
	KI	PHFLGCLERLDYPKSRMAIWAATDHNVDNTTEIFREWLKNVQRLYHYVEWRPMDEPESYP
	HP	${\tt DEEGPKHWTKERHQFLMELKQEALTFAR-NWGADYILFADTDNILTNNQTLRLLMGQGLP}$
10		** ***** * . * . * . * . * . *
	KI	${\tt DEIGPKHWPTSRFAHVMKLRQAALRTAREKW-SDYILFIDVDNFLTNPQTLNLLIAENKT}$
	HP	${\tt VVAPMLDSQTYYSNFWCGITPQGYYRTAEYFPTKNRQRRGCFRVPMVHSTFLASLRAEG}$
•		.*************************************
	KI	IVAPMLESRGLYSNFWCGITPKGFYKRTPDYVQIREWKRTGCFPVPMVHSTFLIDLRKEA
15	HP	${\tt ADQLAFYPPHPNYTWPFDDIIVFAYACQAAGVSVHVCNEHRYGYMNVPVKSHQGLEDERV}$
		.*.*.******.***
	KI	${\tt SDKLTFYPPHQDYTWTFDDIIVFAFSSRQAGIQMYLCNREHYGYLPIPLKPHQTLQEDIE}$
	HP	$\tt NFIHLILEALVDGPRMQASAHVTRPSKRPSKIGFDEVFVISLARRPDRRERMLASLWEME$
		*.****. * .*** *.*.*.*.* ** ** *
20	KI	NLIHVQIEAMIDRPPMEPSQYVSVVPKYPDKMGFDEIFMINLKRRKDRRDRMLRTLYEQE
	HP	ISGRVVDAVDGWMLNSSAIRNLGVDLLPGYQDPYSGRTLTKGEVGCFLSHYSIWEEVVAR
		.* **.*****.***.**.*******
	KI	IEVKIVEAVDGKALNTSQLKALNIEMLPGYRDPYSSRPLTRGEIGCFLSHYSVWKEVIDR
	HP	GLARVLVFEDDVRFESNFRGRLERLMEDVEAEKLSWDLIYLGRKQVN-PEKETAVEGLPG
25		****.****** .** .***.*.*.**.**
	KI	ELEKTLVIEDDVRFEHQFKKKLMKLMDNIDQAQLDWELIYIGRKRMQVKEPEKAVPNVAN
	HP	LVVAGYSYWTLAYALRLAGARKLLASQPLRRMLPVDEFLPIMFDQHPNEQYKAHFWPRDL
		** *.*****.**********.**
	KI	LVEADYSYWTLGYVISLEGAQKLVGANPFGKMLPVDEFLPVMYNKHPVAEYKEYYESRDL
30	HP	VAFSAQPLLAAPTHYAGDAEWLSDTETSSPWDDDSGRLISWSGSQKTLRSPRLDLTGS
		****.*** ****.*******. ****
	KI	KAFSAEPLLIYPTHYTGQPGYLSDTETSTIWDNETV-ATDWDRTHAWKSRKQSRIYSNAK
	HP	SGHSLQPQPRDEL
		.
35	KI	NTEALPPPTSLDTVPSRDEL

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA358896) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10

15

20

25

30

5

<HP03014> (SEQ ID NOS: 6, 16, and 26)

Determination of the whole base sequence of the cDNA insert of clone HP03014 obtained from cDNA library of human liver revealed the structure consisting of a 26-bp 5'untranslated region, a 795-bp ORF, and a 203-bp 3'untranslated region. The ORF encodes a protein consisting of 264 amino acid residues and there existed one putative 6 depicts transmembrane domain. Figure hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, the present protein. of translation resulted in formation of a translation product of 31 kDa that was somewhat larger than the molecular weight of 28,471 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the mouse WW domain-binding protein 1 (GenBank Accession No. U40825). Table 6 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the mouse WW domain-binding protein 1 (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue

similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 85.1% in the entire region.

Table 6

HP MVASAKMGRAGTMAVAAELR ${\tt MM} \ \ {\tt MARASSRNSSEE} {\tt AWGSLQAPQQQQSPAASSLEGAIWRRAGTQTRALDTILYHPQQSHLLR}$ HP ELCPGVNNQPYLCESGHCCGETGCCTYYYELWWFWILWTVLILFSCCCAFRHRRAKLRLQ 10 *********** MM ELCPGVNTOPYLCETGHCCGETGCCTYYYELWWFWLLWTVLILFSCCCAFRHRRAKLRLQ HP QQQRQREINLLAYHGACHGAGPFPTGSLLDLRFLSTFKPPAYEDVVHRPGTPPPPYTVAP ********* MM QOOROREINLLAYHGACHGAGPVPTGSLLDLRLLSAFKPPAYEDVVHHPGTPPPPYTVGP 15 HP GRPLTASSEQTCCSSSSSCPAHFEGTNVEGVSSHQSAPPHQEGEPGAGVTPASTPPSCRY MM GYPWTTSSECTRCSSESSCSAHLEGTNVEGVSSQQSALPHQEGEPRAGLSPVHIPPSCRY HP RRLTGDSGIELCPCPASGEGEPVKEVRVSATLPDLEDYSPCALPPESVPQIFPMGLSSSE 20 ***********

25

30

HP GDIP

MM GTSHK

5

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W24575) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

MM RRLTGDSGIELCPCPDSSEGEPLKEARASASQPDLEDHSPCALPPDSVSQVPPMGLASSC

<HP10608> (SEQ ID NOS: 7, 17, and 27)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10608 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 23-bp 5'-untranslated region, a 1032-bp ORF, and a 182-bp 3'-untranslated region. The ORF encodes a protein consisting of 343 amino acid residues and there existed five putative transmembrane domains. Figure 7 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 37 kDa that was somewhat smaller than the molecular weight of 40,584 predicted from the ORF. When expressed in COS7 cells, an expression product of about 36 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T35406) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10609> (SEQ ID NOS: 8, 18, and 28)

Determination of the whole base sequence of the cDNA insert of clone HP10609 obtained from cDNA library of the human epidermoid carcinoma cell line KB revealed the structure consisting of a 38-bp 5'-untranslated region, a 735-bp ORF, and a 559-bp 3'-untranslated region. The ORF encodes a protein consisting of 244 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 8 depicts the hydrophobicity/hydrophilicity

profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 27 kDa that was almost identical with the molecular weight of 27,756 predicted from the ORF. When expressed in COS7 cells, an expression product of about 26 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Mycobacterium tuberculosis hypothetical protein Rv1147 (GenBank Accession No. Z95584). Table 7 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the Mycobacterium tuberculosis hypothetical protein Rv1147 (MT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 31.7% in the entire region.

Table 7

HP MDILVPILOLLVLLLTLPLHLMALLGCWOPLCKSYFPYLMAVLTPKSNRKMESKKRELFS 5 MT MTSGAAASASRVDHPLFARIWPVVAAHEAEAIRAL HP QIKGLTGASGKVALLELGCGTGANFQFYPPGC-RVTCLDPNPHFEKFLTKSMAENRHLQY *.* **.* **.* *.*.** . .*. ..*.*... MT RRENLAGLSGRV--LEVGAGVGTNFAYYPVAVEQVIAMEPEPRLAA-KARIAAADAPVPI HP ERFVVAPGEDMRQLADGSMDVVVCTLVLCSVQSPRKVLQEVRRVLRPGGVLFFWEHVAEP 10 MT -VVTDKTVEEFRD--TETFDAVVCSLVLCSVSDPGAVLAHLRSLLRRGGELRYLEHVASA HP YGSWAFMWQQVFEPTWKHIGDGCCLTRETWKDLENAQFSEIQMERQPPPLKW--LPVGPH *... . . * .. ** *.** * MT -GARGRVORFVDATFWPRLAGNCHTHRHTERAILDAGFVVDSSRREWAFPAWVPLPVSEL HP IMGKAVK 15 .*.* . MT ALGRAHRT

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T60981) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10611> (SEQ ID NOS: 9, 19, and 29)

30

Determination of the whole base sequence of the cDNA insert of clone HP10611 obtained from cDNA library of the human epidermoid carcinoma cell line KB revealed the structure consisting of a 37-bp 5'-untranslated region, a 912-bp ORF, and a 983-bp 3'-untranslated region. The ORF

10

15

20

25

30

encodes a protein consisting of 303 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 9 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 31 kDa that was somewhat smaller than the molecular weight of 33,856 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 36 kDa. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from leucine at position 34. When expressed in COS7 cells, an expression product of about 35 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the 218 amino acid residues at the C-terminus of the protein matched with the amino acid sequence of human glucosidase II (SWISS-PROT Accession No. Q06003). However, no similarity was observed at the N-terminal portion.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H14054) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10617> (SEQ ID NOS: 10, 20, and 30)

Determination of the whole base sequence of the cDNA insert of clone HP10617 obtained from cDNA library of the human fibrosarcoma cell line HT-1080 revealed the structure

consisting of a 72-bp 5'-untranslated region, a 483-bp ORF, and a 569-bp 3'-untranslated region. The ORF encodes a protein consisting of 160 amino acid residues and there existed four putative transmembrane domains. Figure 10 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight. When expressed in COS7 cells, an expression product of about 17 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H67672) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP02837> (SEQ ID NOS: 31, 41, and 51)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP02837 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 44-bp 5'-untranslated region, a 4338-bp ORF, and a 91-bp 3'-untranslated region. The ORF encodes a protein consisting of 1445 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 11 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 150 kDa that was almost identical with the molecular weight of 161,657 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the

60

cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from valine at position 22. In addition, there exist in the amino acid sequence of this protein 18 sites at which N-glycosylation may occur.

5

10

15

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human α -2 macroglobulin (SWISS-PROT Accession No. P01023). Table 8 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human α -2 macroglobulin (MG). Therein, the marks of - and * represent a gap and an amino acid residue identical with that of the protein of the present invention, respectively. The both proteins shared a homology of 29.5% in the entire region.

Table 8

	HP	MQGPPLLTAAHLLCVCTAALA-VAPGPRFLVTAPGIIRPGGNVTIGVELLEHCPSQVT
		* ** ** * * * * * * * *
5	MG	${\tt MGKNKLLHPSLVLLLLVLLPTDASVSGKPQYMVLVP-SLLHTETTEKGCVLLSYLNETVT}$
	HP	VKAELLKTASN-LTVSVLEAE-GVFEKGSFKTLTLPSLPLNSADEIYELRVTGRTQDEIL
		* * * * * * * * * * * * * * * * * * * *
	MG	VSASLESVRGNRSLFTDLEAENDVLHCVAFAVPKSSSNEEVMFLTVQVKGPTQE
	HP	FSNSTRLSFETKRISVFIQTDKALYKPKQEVKFRIVTLFSDFKPYKTSLNILIKDPKS
10		* * * **** *** * * * * * * * * * *
	MG	FKKRTTVMVKNEDSLVFVQTDKSIYKPGQTVKFRVVSMDENFHP-LNELIPLVYIQDPKG
	HP	NLIQQWLSQQSDLGVISKTFQLSSHPILGDWSIQVQ-VNDQTYYQSFQVSEYVLPKFEVT
		* * * * * * * * * * * * * * * * * * * *
	MG	${\tt NRIAQWQSFQLEGGLKQFSFPLSSEPFQGSYKVVVQKKSGGRTEHPFTVEEFVLPKFEVQ}$
15	HP	$\verb LQTPLYCSMNSKHLNGTITAKYTYGKPVKGDVTLTFLPLSFWGKKKNITKTFKING $
		* * * ****** * * * * *
	MG	${\tt VTVPKIITILEEEMNVSVCGLYTYGKPVPGHVTVSICRKYSDASDCHGEDSQAFCEKFSG}$
	HP	SANFSFNDEEMKNVMDSSNGLSEY-LDLSFPGPVEILTTVTESVTGISRNVSTNVF
		* ** * ** *
20	MG	QLNSHGCFYQQVKTKVFQLKRKEYEMKLHTEAQIQEEGTVVELTGRQSSEITRTITKLSF
	HP	FKQHDYIIEFFDYTTVLKPSLNFTATVKVTRADGNQLTLEERRNNVVITVTQRNYTEY
		* * * * * * * *
	MG	VKVDSHFRQGIPFFGQVRLVDGKGVPIPNKVIFIRGNEANYYSNATTDEHGLV
	HP	WSGSNSGNQKMEAVQKINYTVPQSGTFKIEFPILEDSSELQLKAYFLGSKSSMAVHSLFK
25		* * * * * * * * * * * * * * * * * * * *
	MG	QFSINTTN-VMGTSLTVRVNYKDRSPCYGYQWVSEEHEEAHHTAYLVFSPSKSFVHLEPM
	HP	SPSKTYIQLKTRDENIKVGSPFELVVSGNKRLKELSYMVVSRGQLVAVGKQNSTMF
		* * * * * * * * *
	MG	SHELPCGHTQTVQAHYILNGGTLLGLKKLSFYYLIMAKGGIVRTGTHGLLVKQEDMKGHF
30	HP	S-LTPENS-WTPKACVIVYYIEDDGEIISDVLKIPVQLVFKNKIKLYWSKVKAEPSEKVS
		* * * * * * * * * * * * * *
	MG	SISIPVKSDIAPVARLLIYAVLPTGDVIGDSAKYDVENCLANKVDLSFSPSQSLPASHAH
	HP	LRISVT-QPDSIVGIVAVDKSVNLMNASNDITMENVVHEL-ELYNTG
		** ** * * *** ** * * * * *
25	MG	LRVTAAPOSVCALRAVDOSVLLMKPDAELSASSVYNLLPEKDLTGFPGPLNDODDEDC

	HP	PYYLGMFMNSFAVFQE-CGLWVLTDANLTKDYIDGVYDNAEYAERF1	MEENE
		** * ** * * *	* **
	MG	G INRHNVYINGITYTPVSSTNEKDMYSFLEDMGLKAFTNSKIRKPKMCPQLQQYEN	MHGPE
	HP	P HIVDIHDFSLGSSPHVRKHFPETWIWLDTNMGSRIYQEFEV	EVPDS1
5		* ** *** ***** * * * *	***
	MG	G LRVGFYESDVMGRGHARLVHVEEPHTETVRKYFPETWIWDLVVVNSAGVAEVGV	ITCGVI
	HP	P TSWVATGFVISEDLGLGLTTTPVELQAFQPFFIFLNLPYSVIRGEEFALEITIFN	VYLKDA
		* * * * *** *** * * ****** * ******* * *	***
	MG	G TEWKAGAFCLSEDAGLGISST-ASLRAFQPFFVELTMPYSVIRGEAFTLKATVLN	VYLPKC
10	HP	P TEVKVIIEKSDKFDILMTSSEINATGHQ-QTLLVPSEDGATVLFPIRPTH	ILGE
		** * * * * * * * * * * * * * * * * * * *	* *
	MG	G IRVSVQLEASPAFLAVPVEKEQAPHCICANGRQTVSWAVTPKSLGNVNFTVSAE	LESQE
	HP	P IPITVTALSPTASDAITQMILVKAEGIEKSYSQSILLDLTDNRLQSTLKTLSF	SFPPN
		* * * * ** ** **	***
15	MG	LCGTEVPSVPEHGRKDTVIKPLLVEPEGLEKETTFNSLLCPSGGEVSEELSI	KLPPN
	HP	P TVTGSERVQITAIGDVLGPSINGLASLIRMPYGCGEQNMINFAPNIYILDYLTKK	KQLTD
		* * * * * * * * * * * * * * * * * * * *	***
	MG	VVEESARASVSVLGDILGSAMQNTQNLLQMPYGCGEQNMVLFAPNIYVLDYLNET	QQLTP
	HP	P NLKEKALSFMRQGYQRELLYQREDGSFSAFG—NYDPSGSTWLSAFVLRCFLEAD	PYIDI
20		* **	** *
	MG	S EVKSKAIGYLNTGYQRQLNYKHYDGSYSTFGERYGRNQGNTWLTAFVLKTFAQAR	AYIFI
	HP	P DQNVLHRTYTWLKGHQKSNGEFWDPGRVIHSELQGGNKSPVTLTAYIVTSLLGYR	KYQPN
		* ** ** ** * ** *** **	
	MG	DEAHITQALIWLSQRQKDNGCFRSSGSLLNNAIKGGVEDEVTLSAYITIALLEIP	LTVTH
25	HP	P IDVQESIHFLESEFSRGISDNYTLALITYALSSVG-SPKAKEALNMLTW	RAEQE
	•	* *** * * * * * * * * * * * *	*
	MG	PVVRNALFCLESAWKTAQEGDHG-SHVYTKALLAYAFALAGNQDKRKEVLKSLNE	EAVKK
	HP	GGMQFWVSSESKLSDSWQPRSLDIEVAAYALLSHFLQFQTSEGI	PIMRW
		* * * * * **	* *
30	MG	DNSVHWERPQKPKAPVGHFYEPQAPSAEVEMTSYVLLAYLTAQPAPTSEDLTSAT	NIVKW
	HP	LSRQRNSLGGFASTQDTTVALKALSEFAALMNTERTNIQVTVTGPSS-PSPVKFL	IDTHN
		* * *** **** *** * * * * * * * *	* *
	MG	ITKQQNAQGGFSSTQDTVVALHALSKYGAATFT-RTGKAAQVTIQSSGTFSSKFQ	VDNNN
	HP	RILLLQTAELAVVQPTAVNISANGFGFAICQLNVVYNVKASGSSRRRRSIQNQEAF	DLDVA
35		**** * * * * *	*

PCT/JP99/06412 WO 00/29448

63

MG RLLLQQVSL-PELPGEYSMKVTGEGCVYLQTSLKYN----ILPEKEEFPFALGVQTLPQT HP VKENK-DDLNHVDLNVCTSFSGPGRSGMALMEVNLLSGFMVPSEAISLSETVKKVEYDHG * ** MG CDEPKAHTSFQISLSVSYTGS-RSASNMAIVDVKMVSGF-----IPLKPTVKMLE----HP KLNLYLDSVNETQFCVNIPAVRNFKVSNTQDASVSIVDYYEPRRQAVRSYNSEVKLSSCD 5 MG ----RSNHVSRTEVSSNHVLIYLDKVSNOTLSLFFTVLODVP----VR-----D HP LCSDVQGCRPCEDGASGSHHHSSVIFIFCFKLLYFMELWL 10 MG L---KPAIVKVYDYYETDEFAIAEYNAPCSKDL----GNA

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W33075) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

20

25

30

15

<HP02991> (SEQ ID NOS: 32, 42, and 52)

Determination of the whole base sequence of the cDNA insert of clone HP02991 obtained from cDNA library of human epidermoid carcinoma cell line KB revealed the structure consisting of a 81-bp 5'-untranslated region, a 1749-bp ORF, and a 800-bp 3'-untranslated region. The ORF encodes a protein consisting of 582 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 12 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 66 kDa that was somewhat larger than the molecular weight of 64,244 predicted from the ORF. In

this case, the addition of a microsome led to the formation of a product of 78 kDa to which sugar chains are presumably attached. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from valine at position 27. In addition, there exist in the amino acid sequence of this protein seven sites at which N-glycosylation may occur (Asn-Gly-Thr at position 70, Asn-Gly-Thr at position 182, Asn-Gly-Ser at position 294, Asn-His-Thr at position 310, Asn-Gly-Thr at position 352, Asn-Glu-Thr at position 393 and Asn-Cys-Ser at position 407).

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the mouse FKBP65-binding protein (GenBank Accession No. L07063). Table 9 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the mouse FKBP65-binding protein (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 88.8% in the entire region.

Table 9

	HP	${\tt MFPAGPPSHSLLRLPLLQLLLLVVQAVGRGLGRASPAGGPLEDVVIERYHIPRACPREVQ}$
		** .**. * * * **************
5	MM	${\tt MFLVGSSSHTLHRVRILPLLLL-LQTLERGLGRASPAGAPLEDVVIERYHIPRACPREVQ}$
	HP	${\tt MGDFVRYHYNGTFEDGKKFDSSYDRNTLVAIVVGVGRLITGMDRGLMGMCVNERRRLIVP}$

	MM	${\tt MGDFVRYHYNGTFEDGKKFDSSYDRSTLVAIVVGVGRLITGMDRGLMGMCVNERRRLIVP}$
	HP	${\tt PHLGYGSIGLAGLIPPDATLYFDVVLLDVWNKEDTVQVSTLLRPPHCPRMVQDGDFVRYH}$
10		**************************
	MM	${\tt PHLGYGSIGVAGLIPPDATLYFDVVLLDVWNKADTVQSTILLRPPYCPRMVQNSDFVRYH}$
	HP	${\tt YNGTLLDGTSFDTSYSKGGTYDTYVGSGWLIKGMDQGLLGMCPGERRKIIIPPFLAYGEK}$
		********.**.**.***.*****************
	MM	${\tt YNGTLLDGTGFDNSYSRGGTYDTYIGSGWLIKGMDQGLLGMCPGEKRKIIIPPFLAYGEK}$
15	HP	${\tt GYGTVIPPQASLVFHVLLIDVHNPKDAVQLETLELPPGCVRRAGAGDFMRYHYNGSLMDG}$

	MM	${\tt GYGTVIPPQASLVFYVLLLDVHNPKDTVQLETLELPQGCVRRAVAGDFMRYHYNGSLMDG}$
	HP	${\tt TLFDSSYSRNHTYNTYIGQGYIIPGMDQGLQGACMGERRRITIPPHLAYGENGTGDKIPG}$

20	MM	${\tt TLFDSSYSRNHTYNTYVGQGYIIPGMDQGLQGACIGERRRITVPPHLAYGENGTGDKIPG}$
	HP	${\tt SAVLIFNVHVIDFHNPADVVEIRTLSRPSETCNETTKLGDFVRYHYNCSLLDGTQLFTSH}$
		*****.********.* ***.****.*.*.**.**.**.*
	MM	SAVLIFDVHVIDFHNPSDPVEIKTLSRPPENCNETSKIGDFIRYHYNCSLLDGTRLFSSH
	HP	DYGAPQEATLGANKVIEGLDTGLQGMCVGERRQLIVPPHLAHGESGARGVPGSAVLLFEV
25		**.*** ******** *******************
	MM	DYEAPQEITLGANKVIEGLDRGLQGMCVGERRQLIVPPHLAHGENGARGVPGSAVLLFEV
	HP	${\tt ELVSREDGLPTGYLFVWHKDPPANLFEDMDLNKDGEVPPEEFSTFIKAQVSEGKGRLMPG}$

	MM	ELVSREDGLPTGYLFVWYQDPSTSLFEDMDLNKDGEVPPEEFSSFIKAQVNEGKGRLMPG
30	HP	QDPEKTIGDMFQNQDRNQDGKITVDELKLKSDEDEERVHEEL
		.********
	MM	QDPDKTISDMFQNQDRNQDGKITAEELKLKSDEDQERVHEEL

66

sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA308536) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03063> (SEQ ID NOS: 33, 43, and 53)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP03063 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 88-bp 5'-untranslated region, a 1233-bp ORF, and a 151-bp 3'-untranslated region. The ORF encodes a protein consisting of 410 amino acid residues and there existed a putative transmembrane domain at the N-terminus. Figure 13 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 46 kDa that was almost identical with the molecular weight of 45,786 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the mouse AUP1 (GenBank Accession No. U41736). Table 10 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the mouse AUP1 (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 90.2% in the entire region.

Table 10

HP MELPSGPGPERLFDSHRLPGDCFLLLVLLLYAPVGFCLLVLRLFLGIHVFLVSCALPDSV MM MEPPPAPGPERLFDSHRLPSDGFLLLALLLYAPVGLCLLVLRLFLGLHVFLVSCALPDSV 5 HP LRRFVVRTMCAVLGLVARQEDSGLRDHSVRVLISNHVTPFDHNIVNLLTTCSTPLLNSPP ************ MM LRRFVVRTMCAVLGLVARQEDSGLRDHRVRVLISNHVTPFDHNIVNLLTTCSTPLLNSPP HP SFVCWSRGFMEMNGRGELVESLKRFCASTRLPPTPLLLFPEEEATNGREGLLRFSSWPFS ********** 10 MM SFVCWSRGFMEMDRRVELVESLKKFCASTRLPPTPLLLFPEEEATNGREGLLRFSSWPFS HP IODVVOPLTLOVORPLVSVTVSDASWVSELLWSLFVPFTVYQVRWLRPVHROLGEANEEF ************************* MM IODVVOPLTLOVORPLVSVTVSDASWVSELLWSLFVPFTVYOVRWLHPIRROLGEESEEF 15 HP ALRVOOLVAKELGOTGTRLTPADKAEHMKRORHPRLRPQSAQSSFPPSPGPSPDVQLATL ****************************** MM ALRVQQLVAKELGQIGTRLTPADKAEHMKRQRHPRLRPQSVQSSFPSPPSPSSDVQLTTL HP AORVKEVLPHVPLGVIORDLAKTGCVDLTITNLLEGAVAFMPEDITKGTQSLPTASASKF 20 MM AHRVKEVLPHVPLNVIORDLARTGCVDLTITNLLEGAVAFMPEDVTEGSQSPPAPSAPKF HP PSSGPVTPOPTALTFAKSSWAROESLOERKOALYEYARRRFTERRAQEAD **** *********************** MM PSSGLATPQPTALTFAKSSWARQESLQERKQALYEYARRRFRERQAQEAE

25

30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA131932) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

Determination of the whole base sequence of the cDNA insert of clone HP03091 obtained from cDNA library of human liver revealed the structure consisting of a 16-bp 5'-untranslated region, a 1452-bp ORF, and a 184-bp 3'-untranslated region. The ORF encodes a protein consisting of 483 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 14 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from leucine at position 34.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human OS-9 protein (SWISS-PROT Accession No. Q13438). Table 11 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human OS-9 protein (OS). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 27.8% in the N-terminal region of 281 amino acid residues. The positions of eight cysteines were conserved between the two proteins.

Table 11

HP MEEGGGGVRSLVPGGPVLLVLCGLLEASGGGRALPQLSDDIPFRVNWPGTEFSLPTTGVL 5 MAAETILSSLLGLLLL-GLLLPASLTGGVGSLNLEELSEMRYGIEILPLPVMGGQ OS HP YKEDNYVIMTTAHKEKYKCILP----LVTSGDEEEEKDYKGPNPRELLEPLFKQSSCSYR **... .*..*.* ** .. ***. .*.**. .***.*.* OS SQSSDVVIVSSKYKQRYECRLPAGAIHFQREREEETPAYQGPGIPELLSPM-RDAPCLLK HP IESYWTYEVCHGKHIRQYHEEKETGOKINIHEYYLGNMLAKNLLFEKEREAEEKEKSNEI*** *.*.*** * ... * .. 10 OS TKDWWTYEFCYGRHIQQYHME-DSEIKGEV--LYLG-----YYQSAFD----WDDET HP PTKNIEGOMTPYYPVGMGNGTPCSLKONRPRSSTVMYIC---HPESKHEILSVAEVTTCE*.. . ***. *.* ..***...* OS AKASKOHRLKRYHSOTYGNGSKCDL-NGRPREAEVRFLCDEGAGISGDYIDRVDEPLSCS HP YEVVILTPLLCSHPKYRFRASPV-NDIFCQ-SLPGSPFKPLTLRQLEQQEEILRVPFRRN 15 * ..* ** **.** * ..*.. ..*. ** ** . .. OS YVLTIRTPRLCPHPLLRPPPSAAPQAILCHPSLQPEEYMAYVQRQADSKQYGDKIIEELQ

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA313678) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03092> (SEQ ID NOS: 35, 45, and 55)

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP03092 obtained from cDNA library of human liver revealed the structure consisting of a 19-bp 5'untranslated region, a 1824-bp ORF, and a 269-bp 3'untranslated region. The ORF encodes a protein consisting of

70

607 amino acid residues and there existed at least six putative transmembrane domains. Figure 15 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

5

10

15

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the rat liver-specific transport protein (GenBank Accession No. L27651). Table 12 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the rat liver-specific transport protein (RN). Therein, the marks of — and * represent a gap and an amino acid residue identical with that of the protein of the present invention, respectively. The both proteins shared a homology of 70.0% in the entire region.

Table 12

	HP	MGFEELLEQVGGFGPFQLRNVALLALPRVLLPLHFLLPIFLAAVPAHRCALPGAPANFSH
		**** ** ********* * **** ** ***** * ****
5	RN	MGFEDILDKVGGFGPFQLRNLVLMALPRMLLPMHFILPVFMAAVPAHHCALPGAPANLSH
	HP	QDVWLEAHLPREPDGTLSSCLRFAYPQALPNTTLGEERQSRGELEDEPATVPCSQGWEYD
		** ****** ** ******** ** ** * * * * ****
	RN	QDLWLEAHLPRETDGSFSSCLRFAYPQTVPNVTLGTEVSNSGEPEGEPLTVPCSQGWEYD
	HP	HSEFSSTIATESQVGIYIIHLEVECRWRQSPWEAAGRGLPWEEAEAAGLGRDKVSYSPSW
10		*****
	RN	RSEFSSTIAT
	HP	RESLGGLLSGMEWDLVCEQKGLNRAASTFFFAGVLVGAVAFGYLSDRFGRRRLLLVAYVS
		***** * ** ** ****** *********
	RN	EWDLVCQQRGLNKITSTCFFIGVLVGAVVYGYLSDRFGRRRLLLVAYVS
15	HP	TLVLGLASAASVSYVMFAITRTLTGSALAGFTIIVMPLELEWLDVEHRTVAGVLSSTFWT
		**** *** * * * * * * ******** * **
	RN	SLVLGLMSAASINYIMFVVTRTLTGSALAGFTIIVLPLELEWLDVEHRTVAGVISTVFWS
	HP	GGVMLLALVGYLIRDWRWLLLAVTLPCAPGILSLWWVPESARWLLTQGHVKEAHRYLLHC
		*** ******* ****** **** *** * *********
20	RN	GGVLLLALVGYLIRSWRWLLLAATLPCVPGIISIWWVPESARWLLTQGRVEEAKKYLLSC
	HP	ARLNGRPVCEDSFSQEAVSKVAAGERVVRRPSYLDLFRTPRLRHISLCCVVVWFGVNFSY
		* ***** * * *** * * * * * * ****** * ****
		AKLNGRPVGEGSLSQEALNNVVTMERALQRPSYLDLFRTSQLRHISLCCMMVWFGVNFSY
	HP	YGLSLDVSGLGLNVYQTQLLFGAVELPSKLLVYLSVRYAGRRLTQAGTLLGTALAFGTRL
25		*** *****************
		YGLTLDVSGLGLNVYQTQLLFGAVELPSKIMVYFLVRRLGRRLTEAGMLLGAALTFGTSL
	HP	LVSSDMKSWSTVLAVMGKAFSEAAFTTAYLFTSELYPTVLRQTGMGLTALVGRLGGSLAP
		*** *** * * * *****************
		LVSLETKSWITALVVVGKAFSEAAFTTAYLFTSELYPTVLRQTGLGLTALMGRLGASLAR
30	HP	LAALLDGVWLSLPKLTYGGIALLAAGTALLLPETRQAQLPETIQDVERKSAPTSLQEEEM
		******* *** ***** ** ****** * ***
	RN	LAALLDGVWLLLPKVAYGGIALVAACTALLLPETKKAQLPETIQDVERKSTQEE
	HP	PMKQVQN
35	RN	DV

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI016020) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10

15

20

25

30

5

<HP03116> (SEQ ID NOS: 36, 46, and 56)

Determination of the whole base sequence of the cDNA insert of clone HP03116 obtained from cDNA library of human epidermoid carcinoma cell line KB revealed the structure consisting of a 32-bp 5'-untranslated region, a 945-bp ORF, and a 110-bp 3'-untranslated region. The ORF encodes a protein consisting of 314 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 16 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from lysine at position 20. In addition, there exist in the amino acid sequence of this protein three sites at which Nglycosylation may occur (Asn-Arg-Thr at position 167, Asn-Asn-Ser at position 200 and Asn-Ile-Ser at position 273).

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human Prostasin (SWISS-PROT Accession No. Q16651). Table 13 shows the comparison between amino acid sequences of the human protein of the present

30

invention (HP) and the human Prostasin (PR). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 39.8% in the entire region.

Table 13

MGARGALLLALLLARAGLRKPESOEAAPLSGPCGRRVITSRIVGGEDAELGRWPW 10 HP ** *. ..** . .**.* *.** PR MAQKGVLGPGQLGAVAILLYLGLLRSGTG-AEGAEAPCG-VAPQARITGGSSAVAGQWPW HP QGSLRLWDSHVCGVSLLSHRWALTAAHCFETYSDLSDPSGWMVQFGQLTSMPSFWSLQAY . **** **.*.*.* *..*. PR QVSITYEGVHVCGGSLVSEQWVLSAAHCF---PSEHHKEAYEVKLGA-HQLDSY---SED 15 HP YTRYFVSNIYLSPRYLGNSPY-DIALVKLSAPVTYTKHIQPICLQASTFEFENRTDCWVT *.** ... ***..* *.*....*.*.*.. .* * .* ** PR AKVSTLKDIIPHPSYLQEGSQGDIALLQLSRPITFSRYIRPICLPAANASFPNGLHCTVT HP GWGYIKEDEALPSPHTLQEVQVAIINNSMCNHLF-LKYSFRKDIF--GDMVCAGNAQGGK 20 PR GWGHVAPSVSLLTPKPLQQLEVPLISRETCNCLYNIDAKPEEPHFVQEDMVCAGYVEGGK HP DACFGDSGGPLACNKNGLWYQIGVVSWGVGCGRPNRPGVYTNISHHFEWIQKLMAQSGMS *** ****** * **** * ****** * . . *** PR DACOGDSGGPLSCPVEGLWYLTGIVSWGDACGARNRPGVYTLASSYASWIQSKVTELQPR 25 HP QPDPSWPLLFFPLLWALPLLGPV PR VVPQTQESQPDSNLCGSHLAFSSAPAQGLLRPILFLPLGLALGLLSPWLSEH

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA159101) among ESTs. However, since they are partial sequences, it can not be judged whether or

not they encode the same protein as the protein of the present invention.

<HP10618> (SEQ ID NOS: 37, 47, and 57)

5

10

15

20

30

Determination of the whole base sequence of the cDNA insert of clone HP10618 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 215-bp 5'-untranslated region, a 285-bp ORF, and a 1194-bp 3'-untranslated region. The ORF encodes a protein consisting of 94 amino acid residues and there existed a putative transmembrane domain at the N-terminus. Figure 17 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 10 kDa that was almost identical with the molecular weight of 9,709 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA287125) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

25 <HP10619> (SEQ ID NOS: 38, 48, and 58)

Determination of the whole base sequence of the cDNA insert of clone HP10619 obtained from cDNA library of the human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 11-bp 5'-untranslated region, a 657-bp ORF, and a 854-bp 3'-untranslated region. The ORF encodes a protein consisting of 218 amino acid residues and there existed a putative transmembrane domain at the N-terminus.

Figure 18 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. Z43089) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10622> (SEQ ID NOS: 39, 49, and 59)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10622 obtained from cDNA library of the human liver revealed the structure consisting of a 43-bp 5'untranslated region, a 1383-bp ORF, and a 165-bp 3'untranslated region. The ORF encodes a protein consisting of 460 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 19 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from serine at position 17. addition, there exist in the amino acid sequence of this protein four sites at which N-glycosylation may occur (Asn-Ser-Ser at position 23, Asn-Met-Ser at position 115, Asn-Glu-Thr at position 296 and Asn-Tyr-Thr at position 357).

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human angiopoietin-1 (GenBank

76

Accession No. U83508). Table 14 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human angiopoietin-1 (AN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 28.2% in the entire region and a homology of 39.1% in the C-terminal region of 215 amino acid residues.

5

10

Table 14

HP **MFTIKLLLFIVPLVISS** 5 AN MTVFLSFAFLAAILTHIGCSNQRRSPENSGRRYNRIQHGQCAYTFILPEHDGNCRESTTD HP RIDQDNSSFDSLSPEPKSRFAMLDDVKILANGLLQLGHGLKDF-VHKTKGQINDIFQKLN AN QYNTNALQRDAPHVEPDFSSQKLQHLEHVMENYTQWLQKLENYIVENMKSEMAQI-OONA HP IFDQSFYDLSLQTSEIKEEEKELRR-TTYKLQVKNEEVKNMSLELNSKLESLLEEKILLO 10 *.. ** *. *. . ** *.. . AN VQNHTATMLEIGTSLLSQTAEQTRKLTDVETQVLNQTSRLEIQLLENSLSTYKLEKOLLO HP QKVKYLE-EQLTNLIQNQPETPEHPEVTSLKTFVEKQDNSIKDLLQTVEDQYKQLNQOHS *. . *.*... . * . ..*. . * ...* ...* AN QTNEILKIHEKNSLLEHKILEMEGKHKEELDTLKEEKEN-LOGLVTROTYIIOELEKOLN 15 HP QIKEIENQLRRTSIQEPTEISLSSKPRAPRTTPFLOLNEIRNVKHDGIPAECTTIYNRGE *.. . ***...*. * AN RATTNNSVLOKOOL-ELMDTVHNLVNLCTKEGVLL--KGGKREEEKPFR-DCADVYOAGF HP HTSGMYAIRPSN-SQVFHVYCDV-ISGSPWTLIQHRIDGSQNFNETWENYKYGFGRLDGE ..**.*. .* .. .*.*. .*. **.*** *** .*. .*. *** .** 20 AN NKSGIYTIYINNMPEPKKVFCNMDVNGGGWTVIOHREDGSLDFORGWKEYKMGFGNPSGE HP FWLGLEKIYSIVKQSNYVLRIELEDWKDNKHYIEY-SFYLGNHETNYTLHLVAITGNVPN AN YWLGNEFIFAITSORQYMLRIELMDWEGNRAYSOYDRFHIGNEKONYRLYLKGHTGTAGK HP AIP-ENKDLVFSTWDHKAKGHF-NCPEGYSGGWWWHDECGENNLNGKYNKPRAKSKPERR 25 .. *** **. .*** * .** .*** AN QSSLILHGADFSTKDADNDNCMCKCALMLTGGWWF-DACGPSNLNGMFY--TAGQNHGKL HP RGLSWKSONGRLYSIKSTKMLIHPTDSESFE .*..*. .*. **..**.* * AN NGIKWHYFKGPSYSLRSTTMMIRPLDF 30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for

78

example, Accession No. R86161) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

<HP10625> (SEQ ID NOS: 40, 50, and 60)

Determination of the whole base sequence of the cDNA insert of clone HP10625 obtained from cDNA library of the human liver revealed the structure consisting of a 133-bp 5'-untranslated region, a 651-bp ORF, and a 465-bp 3'-untranslated region. The ORF encodes a protein consisting of 216 amino acid residues and there existed two putative transmembrane domains. Figure 20 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R59052) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP02883> (SEQ ID NOS: 61, 71, and 81)

25

30

Determination of the whole base sequence of the cDNA insert of clone HP02883 obtained from cDNA library of human epidermoid carcinoma cell line KB revealed the structure consisting of a 191-bp 5'-untranslated region, a 1179-bp ORF, and a 2657-bp 3'-untranslated region. The ORF encodes a protein consisting of 392 amino acid residues and there existed three putative transmembrane domains. Figure 21 depicts the hydrophobicity/hydrophilicity profile, obtained

10

15

nΛ

by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 40 kDa that was almost identical with the molecular weight of 43,381 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar the Caenorhabditis to elegans hypothetical protein CET24F1.2 (GenBank Accession Z49912). Table 15 shows the comparison between amino acid sequences of the human protein of the present invention (HP) Caenorhabditis elegans hypothetical CET24F1.2 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 35.4% in the N-terminal region of 178 amino acid residues.

Table 15

20		
	HP	${\tt MEGVSALLARCPTAGLAGGLGVTACAAAGVLLYRIARRMKPTHTMVNCWFCNQDTLVPYG}$
		***. * * * * * * *
	CE	MEVAAAVGVIASVPILYK-AIRPR-IKTSVECWFCRKSTKVEYQ
	HP	${\tt NRNCWDCPHCEQYNGFQENGDYNKPIPAQYLEHLNHVVSSAPSLRDP-SQPQQ}$
25		.**** ****** *.******.* * * *
	CE	${\tt QRNSFTCPSCEQYNGFTEDGDYNRRIPGQAWTTPKRYCEPGKMQSEKPSTFLDRFGGVNM}$
	HP	${\tt WVSSQVLLCKRCNHHQTTKIKQLAAFAPREEGRYDEEVEVYRHHLEQMYKLCRPCQAAVE}$
		. ** **.* . .** .** .*.
	CE	${\tt SPKASNGLCSECNLGQEIIMNKVAEFEPIDEDRWNEELEDYRYKLERMYQLCPRCTIQVH}$
30	HP	${\tt YYIKHQNRQLRALLLSHQFKRREADQTHAQNFSSAVKSPVQVIILRALAFLACAFLLTTA}$
		****** *** ***
	CE	GKLEEDKKKY-SYLLKVKYKLKHAIGSTLREVMNNQKRSRRFFFAGGSTCEALHFGCLIS

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. F11409) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10 <HP03140> (SEQ ID NOS: 62, 72, and 82)

5

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP03140 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 29-bp 5'-untranslated region, a 1494-bp ORF, and a 972-bp 3'-untranslated region. The ORF encodes a protein consisting of 497 amino acid residues and there existed one putative transmembrane domain. Figure 22 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 51 kDa that was almost identical with the molecular weight of 54,245 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the Caenorhabditis elegans protein was similar to the CELC50D2 (GenBank Accession hypothetical protein AF040642). Table 16 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the Caenorhabditis elegans hypothetical protein CELC50D2 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that

of the protein of the present invention, respectively. The both proteins shared a homology of 37.9% in the N-terminal region of 393 amino acid residues.

Table 16

HP MALWRGSAYAGFLALAVGCVFLLEPELPGSALRSLWSSLCLGPAPAPPGPVSPEGRLAAA MFSETFVPSIFSYKHRLLHLSVLFFIVPYWYSYYNDQHRLSSYSVETAMFLS CE HP WDALIVRPVRRWRRVAVGVNACVDVVLSGVKLLQALGLSPGNGKDHSILHSRNDLEEAFI 10 *. **.* * * **...******...* CE WERAIVKPGAMFKKAVIGFNCNVDLIVSGVRVVDALNTTCSEGKDQETLETLADLHQTFA HP HFMWKGAAAERFFSDKETFHDIAQVASEFPGAQHYVGGNAALIGQKFAAN-SDLKVLLCG **. .*****..*... *.*******.....*** .. .* * CE HFFORGAAAERYMSSEDOFNLLVAESEASTRSHHHIGGNAALMADRIAANFPSTEVYLVG 15 HP PVGPRLHELLDDNVFVPPESLQEVDEFHLILEYQAGEEWGQLKAPHANRFIFSHDLSNGA *.*** ..**. .* **.*.**** *. ** ..** **. CE PIGPRSQALLHPSVKRTNSTRILKDELHVILEYKQGEILGDWVAPSSSRFITSHDHFSGS HP MNMLEVFVSSLEEFQPDLVVLSGLHMMEGQSKELQRKRLLEVVTSISDIPTGIPVHLELA 20 CE MVVMEMFFKAIAOFRPDLVVITGVHLLEFOSKEMROEKMRLIKRNLLQIPPKVPIHLELG HP SMTNRELMSSIVHQQVFPAVTSLGLNEQELLFLTQSASGPH-SSLSSWNGVPDVGMVSDI CE SLAD-EIFSTDVINKILPYVDSLGINEQELTFLSHIANGPHMEEYPVQAGTVHVHKVVEM 25 HP LFWILKEHGR----SKSRASDLTRIHFHTLVYHILATVDGHWANQLAAVAAGARVAGT *.**** *.***... ...*.* *..**** CE LHWLLKTYGRDPTGQIASKTGYRLSRIHFHCLTYHIMVSSGTDWSNLAAGLAAGARIAGR HP QAC--ATETIDTSRVSLRAPQEFMTSHSEAGSRIVLNPNKPVVEWHREGISFHFTPVLVC ...*.*. ... *.*.*. 30 CE LSCNIGANTMDSELLEIRTPANFVLDKKIEKNYQFEAHKYMLTPFNIARCSTRLIRRKPP HP KDPIRTVGLGDAISAEGLFYSEVHPHY CE GGGILDEGVTFSDVHNVILNPTTRLPYPEEQLREHIEKTSSEIMKERNKIRYGTRKKKDS

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA356000) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10628> (SEQ ID NOS: 63, 73, and 83)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10628 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 66-bp 5'-untranslated region, a 1254-bp ORF, and a 297-bp 3'-untranslated region. The ORF encodes a protein consisting of 417 amino acid residues and there existed four putative transmembrane domains. Figure 23 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 46 kDa that was almost identical with the molecular weight of 45,461 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Schistosoma mansoni ATP-cassette family protein (GenBank Accession No. L26286). Table 17 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the Schistosoma mansoni ATP-cassette family protein (SM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The

both proteins shared a homology of 39.5% in the C-terminal region of 294 amino acid residues.

Table 17

5 HP MLVHLFRVGIRGGPFPGRLLPPLRFQTFSAVRYSDGYRSSSLLRAVAHLRSQLWAHLPRA SM MFSALCRRGFLTNKVSQFRSTYKCDHYNLKT HP PLAPRWSPSAWCWVGGALLGPMVLSKHPHLCLVALCEAEEAPPASSTPHVVGSRFNWKLF SM HIKPLKCSSSLRLTVGTGLFIALHSKISPESRIOTVOCEVDSYQTDQITFAKSGGIPRYI 10 HP WQFLHPHLLVLGVAVVLALGAALVNVQIPLILGQLVEVVAKYTRDHVGSFMTESQNLSTH .. *. . * *.. *. **..** *** **..*.* * *... SM GVLILPDCVYLFGAILGAFVAAVMNVYIPLYLGDFVSSLSRCVVTHEG-FVSAVYVPTLR HP LLILYGVQGLLTFGYLVLLSHVGERMAVDMRRALFSSLLRYCQPQGAELGQDITFFDANK * .*.* ** *. **. ***** ** .**..*. * SM LCSSYLLQSLSTFLYIGLLGSVGERMARRMRIQLFRKLV-Y-----QDVAYFDVHS 15 HP TGQLVSRLTTDVQEFKSSFKLVISQGLRSCTQVAGCLVSLSMLSTRLTLLLMVATPALMG SM SGKLVEIIGSDVQNFKSSFKQCISQGLRNGIQVVGSVFALLSISPTLTAALIGCLPCVFL HP VGTLMGSGLRKLSCQCQEQIARAMGVADEALGNVRTVRAFAMEQREEERYGAELEACRCR 20 .*.***..**..* . *.* . .. ***...***...***. SM IGSLMGTELRHISREVQSQNSLFASLIDEAFSHIRTVKSLAMEDFLINKINYNVDKAKML HP AEELGRGIALFQGLSNIAFNCMVLGTLFIGGSLVAGQQLTGGDLMSFLVASQTVQRL ,*.*. **. ******...* <u>.</u>***.*.*..*.*****...** SM SEKLSFGIGSFQGLSNLTLNGVVLGVLYVGGHLMSRGELDAGHLMSFLATTQTLQRSLTQ 25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. U66688) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present inv ntion.

84

<HP10629> (SEQ ID NOS: 64, 74, and 84)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10629 obtained from cDNA library of human retinoblastoma cell line WERI-RB revealed the structure consisting of a 259-bp 5'-untranslated region, a 1950-bp ORF, and a 1060-bp 3'-untranslated region. The ORF encodes a protein consisting of 649 amino acid residues and there existed at least eight putative transmembrane domains. Figure 24 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis hypothetical protein CELF38B6 (GenBank Accession No. U40060). Table 18 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the Caenorhabditis elegans hypothetical protein CELF38B6 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 39.1% in the C-terminal region of 445 amino acid residues.

85

Table 18

•	HP	MIPNQHNAGAGSHQPAVFRMAVLDTDLDHILPSSVLPPFWAKLVVGSVAIVCFARSYDGD
	CE	MKYAEINVNSGKHFRLNYKLHETS
5	HP	FVFDDSEAIVNNKVAGVVGRADLLCALFFLLSFLGYCKAFRESNKEGAHSSTFWVLLSIF
	CE	${\tt TLGYHVVNIICHTVATLVFYKLGKQLEHIFDFFNIAFSASILFAVHPVHTEAVANITGRA}$
	HP	${\tt LGAVAMLCKEQGITVLGLNAVFDILVIGKFNVLEIVQKVLHKDKSLENLGMLRNGGLLFR}$
	CE	ELLMTIFSLAALILHVKNREINCKFVLLVILSTLSKEQGLMTIPIAICIDFLAHRSCRSN
	HP	MTLLTSGGAGMLYVRWRIMGTGPPAFTEVDNPASFADSMLVRAVNYNYYYSLNAWLLLCP
10		* * *** .* * *
	CE	FVRMICLLVAIGFLRMMVNGFEAAKFTKLDNPTAFLNSKFYRMINYTYIWLYHAYLLVIP
	HP	WWLCFDWSMGCIPLIKSISDWRVIALAALWFCLIGLICQALCSEDGHKRRILTLGLGFLV
		****.**** * * . * . * . *
	CE	VNLCFDYSMGCISSITTMWDLRALSPVLIFTIVIIGVKFQNECRAFTLSSLMGI
15	HP	IPFLPASNLFFRVGFVVAERVLYLPSIGYCVLLTFGFGALSKHTKKKKLIAAVVLGILFI
		*.*****.** *** .******* *.* * ** * **
	CE	ISFLPASNIFFTVGFSIAERVLYLPSAGFCLLCAIIFKKLSVHFKNADVLSITLILLLIS
	HP	NTLRCVLRSGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLN
		.* * ****** **.**** ***.** *.*.** . **
20	CE	KTYRRSGEWKTELSLYSSGLSVCPTNAKIHYNLGKVLGDNGLTKDAEKNYWNAIKLD
	HP	PKYVHAMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQS
		. .*.***** ***.** .**.*** * .**.*
	CE	PSYEQALNNLGNLLEKSGDSKTAESLLARAVTLRPSFAVAWMNLGISQMNLKKYYEAEKS
	HP	YRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTG
25		* *** *** **. **. *****.** .*.*
	CE	LKNSLLIRPNSAHCLFNLGVLYQRTNRDEMAMSAWKNATRIDPSHSQSWTNLFVVLDHLS
	HP	NLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNL

	CE	QCSQVIDLSYQALSSVPNESRVHMQIGSCHAKHSNFTAAENHIKSAIDLNPTSVLFHANL
30	HP	AVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAV
		.* ** * *.
	CE	GILYQRMSRHKEAESQYRIVLALDSKNIVAKQNLQKLEEHNCYNSTLP

sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA450191) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10635> (SEQ ID NOS: 65, 75, and 85)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10635 obtained from cDNA library of human retinoblastoma cell line WERI-RB revealed the structure consisting of a 65-bp 5'-untranslated region, a 282-bp ORF, and a 111-bp 3'-untranslated region. The ORF encodes a protein consisting of 93 amino acid residues and there existed two putative transmembrane domains. Figure 25 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 10 kDa that was almost identical with the molecular weight of 9,489 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA516481) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10636> (SEQ ID NOS: 66, 76, and 86)

Determination of the whole base sequence of the cDNA insert of clone HP10636 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure

consisting of a 179-bp 5'-untranslated region, a 1278-bp ORF, and a 255-bp 3'-untranslated region. The ORF encodes a protein consisting of 425 amino acid residues and there existed ten putative transmembrane domains. Figure 26 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. Z43270) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10640> (SEQ ID NOS: 67, 77, and 87)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10640 obtained from cDNA library of human retinoblastoma cell line WERI-RB revealed the structure consisting of a 52-bp 5'-untranslated region, a 450-bp ORF, and a 553-bp 3'-untranslated region. The ORF encodes a protein consisting of 149 amino acid residues and there existed at least two putative transmembrane domains. Figure 27 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 17 kDa that was almost identical with the molecular weight of 16,829 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Arabidopsis thaliana hypothetical

10

25

30

protein F27F23.14 (GenBank Accession No. AC003058). Table 19 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the Arabidopsis thaliana hypothetical protein F27F23.14 (AT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 46.5% in the entire region other than the N-terminal region.

Table 19

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. N34717) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

Determination of the whole base sequence of the cDNA insert of clone HP10644 obtained from cDNA library of the human retinoblastoma cell line WERI-RB revealed the structure consisting of a 221-bp 5'-untranslated region, a 1191-bp ORF, and a 204-bp 3'-untranslated region. The ORF encodes a protein consisting of 396 amino acid residues and there existed two putative transmembrane domains. Figure 28 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

5

10

15

20

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar the Caenorhabiditis to elegans hypothetical protein B0511.8 (GenBank Accession No. AF067608). Table 20 shows the comparison between amino acid sequences of the human protein of the present invention (HS) and the Caenorhabiditis elegans hypothetical protein B0511.8 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 31.3% in the region of 361 amino acid residues other than the N-terminal region and the C-terminal region.

90

Table 20

	HS	MAMIELGFGRQNFHPLKRKSSLLLKL
	CE	CDKNGQYLSVQEEIDAENKVQRKIAPGLNEKVLERVTQMLMKQEKSTETYMIWLKNLRVP
5	HS	IAVVFAVLLFCEFLIYYLAIFQCNWPEVKTTASDGEQTTREPVLKAMFLADTHLLGEFLG
		* * * *. *. *. *. *. *. *. *. *.
	CE	ILLAIILVVYNEYFIFFIAFSSCQWPCKYGRCS-ESSVKAFMISDTHLLGKING
	HS	HWLDKLRREWQMERAFQTALWLLQPEVVFILGDIFDEGKWSTPEAWADDVERFQKMFRHP
		****** .** * *. *.**************
10	CE	HWLDKLKREWQMYQSFWISTWIHSPDVTFFLGDLMDEGKWAGRPVFEAYAERFKKLFG
	HS	SHVQLKVVAGNHDIGFHYEMNTYKVERFEKVFSSERLFSWKGINFVMVNSVALNGDGCGI
	CE	DNEKVITLAGNHDLGFHYALVQTFATHLTPTVELKNYLLIMPETLEMFKKEFRR
	HS	CSETEAELIEVSHRLNCSREARG-SSR-CGPGPLLPTSAPVLLQHYPLYRRS
15		.* * ** * . * * *
	CE	GLIDEMKIKKHRFVLINSMAMHGDGCRLCHEAELILEKIKSRNPKNRPIVLQHFPLYRKS
	HS	DANCSGEDAAPAEERDIPFKENYDVLSREASQKLLWWLQPRLVLSGHTHSACEVH
		**.*. *
	CE	DAECDQVDEQHEIDLKEMYREQWDTLSKESSLQIIDSLNPKAVFGGHTHKMCKKKWNKTG
20	HS	HGGRVPELSVPSFSWRNRNNPSFIMGSITPTDYTLSKCYLPREDVVLIIYC-GVVGFLVV
		* .* ****** . * **.* **.* *
	CE	NSEYFYEYTVNSFSWRNGDVPAMLLVVIDGDNVLVSSCRLPSEILQIMVYIFGGIGILAK
	HS	LTLTHFGLLASPFLSGLNLLGKRKTR
		•
25	CE	MYNDLITPAPLEWNVNNIAVCTAILLVMIINVVALIFTIFWCLRSKDEGGEIDSNGVVIN

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R88381) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10

15

20

25

<HP10656> (SEQ ID NOS: 69, 79, and 89)

Determination of the whole base sequence of the cDNA insert of clone HP10656 obtained from cDNA library of the human lymphoma cell line U937 revealed the consisting of a 68-bp 5'-untranslated region, a 1053-bp ORF, and a 739-bp 3'-untranslated region. The ORF encodes a protein consisting of 350 amino acid residues and there existed two putative transmembrane domains. Figure 29 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 41 kDa that was almost identical with the molecular weight of 40,043 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 54 kDa to which sugar chains are presumably attached. In addition, there exist in the amino acid sequence of this protein four sites at which N-glycosylation may occur (Asn-Cys-Thr at position 148, Asn-Tyr-Thr at position 155, Asn-Gln-Thr at position 162 and Asn-Lys-Ser at position 190).

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA917816) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

30 <HP10672> (SEQ ID NOS: 70, 80, and 90)

Determination of the whole base sequence of the cDNA insert of clone HP10672 obtained from cDNA library of the

human thymus revealed the structure consisting of a 244-bp 5'-untranslated region, a 462-bp ORF, and a 77-bp 3'-untranslated region. The ORF encodes a protein consisting of 153 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain at the C-terminus. Figure 30 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. When expressed in COS cells, a product of 17 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. N48700) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03194> (SEQ ID NOS: 91, 101, and 111)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP03194 obtained from cDNA library of human epidermoid carcinoma cell line KB revealed the structure consisting of a 120-bp 5'-untranslated region, a 912-bp ORF, and a 2406-bp 3'-untranslated region. The ORF encodes a protein consisting of 303 amino acid residues and there existed four putative transmembrane domains. Figure 31 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the

10

protein was similar to the mouse hyperpolarization-activated cation channel HAC3 (GenBank Accession No. AJ225124). Table 21 shows the comparison between amino acid sequences of the human protein of the present invention (HS) and the mouse hyperpolarization-activated cation channel HAC3 (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 92.5% in the N-terminal region of 293 amino acid residues.

Table 21

HS MEAEQRPAAGASEGATPGLEAVPPVAPPPATAASGPIPKSGPEPKRRHLGTLLQPTVNKF 15 ************** MM MEEEARPAAGAGEAATPARET-PPAAPAOARAASGGVPESAPEPKRRQLGTLLQPTVNKF HS SLRVFGSHKAVEIEQERVKSAGAWIIHPYSDFRFYWDLIMLLLMVGNLIVLPVGITFFKE *********** 20 MM SLRVFGSHKAVEIEOERVKSAGAWIIHPYSDFRFYWDLIMLILMVGNLIVLPVGITFFKE HS ENSPPWIVFNVLSDTFFLLDLVLNFRTGIVVEEGAEILLAPRAIRTRYLRTWFLVDLISS MM ENSPPWIVFNVLSDTFFLLDLVLNFRTGIVVEEGAEILLAPRAIRTRYLRTWFLVDLISS HS IPVDYIFLVVELEPRLDAEVYKTARALRIVRFTKILSLIRLIRLSRLIRYIHQWEEIFHM 25 *********** MM IPVDYIFLVVELEPRLDAEVYKTARALRIVRFTKILSLLRLLRLSRLIRYIHOWEEIFHM HS TYDLASAVVRIFNLIGMMLLLCHWDGCLQFLVPMLQDFPPDCWVSINHMVVRSPHSSAFP *************** MM TYDLASAVVRIFNLIGMMLLLCHWDGCLQFLVPMLQDFPSDCWVSMNRMVNHSWGRQYSH 30 HS GPS MM ALFKAMSHMLCIGYGQQAPVGMPDVWLTMLSMIVGATCYAMFIGHATALIQSLDSSRRQY

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI571225) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03219> (SEQ ID NOS: 92, 102, and 112)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP03219 obtained from cDNA library of human lymphoma cell line U937 revealed the structure consisting of a 55-bp 5'-untranslated region, a 852-bp ORF, and a 237-bp 3'-untranslated region. The ORF encodes a protein consisting of 283 amino acid residues and there existed four putative transmembrane domains. Figure 32 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human putative membrane protein 54TMp (GenBank Accession No. AF004876). Table 22 shows the comparison between amino acid sequences of the human protein of the present invention (HS) and the human putative membrane protein 54TMp (TM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 56.5% in the entire region.

30

95

Table 22

MADPHQLFDDTSSAQSRGYGAQRAPGGLSYPAASPT-PHAAF HS ** * * * * * * * 5 TM MAYHSGYGAHGSKHRARAAPDPPPLFDDT----SGGYSSQ--PGGYPATGADVAFSVNHL HS LADPVSNMAMAYGSSLAAQGKELVDKNIDRFIPITKLKYYFAVDTMYVGRKLGLLFFPYL TM LGDPMANVAMAYGSSIASHGKDMVHKELHRFVSVSKLKYFFAVDTAYVAKKLGLLVFPYT 10 HS HODWEVOYQODTPVAPRFDVNAPDLYIPAMAFITYVLVAGLALGTQDRFSPDLLGLQASS TM HQNWEVQYSRDAPLPPRQDLNAPDLYIPTKAFITYVLLAGMALGIQKRFSPEVLGLCAST HS ALAWLTLEVLAILLSLYLVTVNTDLTTIDLVAFLGYKYVGMIGGVLMGLLFGKIGYYLVL **.*...***.**.**.**.**.**.**.* 15 TM ALVWVVMEVLALLLGLYLATVRSDLSTFHLLAYSGYKYVGMILSVLTGLLFGSDGYYVAL HS GWCCVAIFVFMIRTLRLKILADAAAEGVPVRGARNOLRMYLTMAVAAAQPMLMYWLTFHL TM AWTSSALMYFIVRSLRTAAL-GPDSMGGPV--PRORLOLYLTLGAAAFQPLIIYWLTFHL HS VR 20 ** TM VR

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H86659) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03236> (SEQ ID NOS: 93, 103, and 113)

Determination of the whole base sequence of the cDNA insert of clone HP03236 obtained from cDNA library of human

fibrosarcoma cell line HT-1080 revealed the structure consisting of a 252-bp 5'-untranslated region, a 1467-bp ORF, and a 620-bp 3'-untranslated region. The ORF encodes a protein consisting of 488 amino acid residues and there existed seven putative transmembrane domains. Figure 33 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the Caenorhabditis was similar the to hypothetical protein ZC513.5 (GenBank Accession No. U53155). Table 23 shows the comparison between amino acid sequences of the human protein of the present invention (HS) and the Caenorhabditis elegans hypothetical protein ZC513.5 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 39.5% in the intermediate region of 365 amino acid residues.

10

15

20

Table 23

HS MAGKGSSGRRPLLLGLLVAVATVHLVICPYTKVEESFNLQATHDLLYHWQDLEQYDHLEF .*** .* 5 CE MKMKYDHSQF HS PGVVPRTFLGPVVIAVFSSPAVYVLSLLEMSKFYSQLIVRGVLGLGVIFGLWTLQKEVRR ******* **. .*..*** *..*.. *..** CE PGVVPRTFIGPISLAILSSPMSFIFRFWAIPKMWOLLLIRATLGLMNAMAFLYFARSVNR HS HFGAMVATMFCWVTAMOFHLMFYCTRTLPNVLALPVVLLALAAWLRHEWARFIWLSAFAI 10 CE KFGRETAMYLRLIMCTQFHYIFYMSRPLPNTFALILVMIVFERLLEGRYESAVRYATASV HS IVFRVELCLFLGLILL--LALGNRKV-SVVRALRHAVPAGILCLGLTVAVDSYFWRQLTW *.** ** *. * ..* . *. ** . *. .*. * CE ILFRCELVLLYGPIFLGYMISGRLKVFGFDGAIAIGVRIAAMCLAVSIPIDSYFWGRPLW 15 HS PEGKVLWYNTVLNKSSNWGTSPLLWYFYSALPRGLGCSLLFIPLG-LVDRRTHAPTVLAL ***.*...*.* *.* *.** *.******* * . *..*** **** CE PEGEVMFFNVVENRSHEYGTOPFLWYFYSALPRCLLTTTLLVPLGLLVDRRLPOIVLPSV HS GFMALYSLLPHKELRFIIYAFPMLNITAARGCSYLLNNYKKSWLYKAGSLLVIGHLVVNA 20 CE IFIFLYSFLPHKELRFIIYVLPIFCLSAAVFCARMLINRHKSFFRMILFFGVILHLLANV HS AYSATALYVSHFNYPGGVAMO--RLHOLVPPOTDVLLHIDVAAAQTGVSRFLQVNSAWRY ... * ..** * *****.***.* ... * *. **** *.. ... CE LCTGMFLLVASKNYPGFDALNYLQFQNRFDAKKPVTVYIDNACAQTGVNRFLHINDAWT

25

30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA744858) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03237> (SEQ ID NOS: 94, 104, and 114)

Determination of the whole base sequence of the cDNA insert of clone HP03237 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 101-bp 5'-untranslated region, a 549-bp ORF, and a 1106-bp 3'-untranslated region. The ORF encodes a protein consisting of 182 amino acid residues and there existed four putative transmembrane domains. Figure 34 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human intestinal membrane A4 protein (SWISS-PROT Accession No. Q04941). Table 24 shows the comparison between amino acid sequences of the human protein of the present invention (HS) and the human intestinal membrane A4 protein (IM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 32.4% in the intermediate region of 111 amino acid residues.

20

25

30

99

Table 24

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R14227) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03267> (SEQ ID NOS: 95, 105, and 115)

Determination of the whole base sequence of the cDNA insert of clone HP03267 obtained from cDNA library of human liver revealed the structure consisting of a 148-bp 5'untranslated region, a 555-bp ORF, and a 715-bp 3'untranslated region. The ORF encodes a protein consisting of 184 amino acid residues and there existed two putative transmembrane domains. Figure 35 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 21 kDa that was almost id ntical with the molecular

100

weight of 20,733 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human polyposis locus protein 1 (SWISS-PROT Accession No. Q00765). Table 25 shows the comparison between amino acid sequences of the human protein of the present invention (HS) and the human polyposis locus protein 1 (PL). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 59.1% in the entire region.

15

20

10

5

Table 25

HS MDGLRQRVEHFLEQRNLVTEVLGALEAKTGVEKRYLAAGAVTLLSLYLLFGYGASLLCNL

PL MRERFDRFLHEKNCMTDLLAKLEAKTGVNRSFIALGVIGLVALYLVFGYGASLLCNL
HS IGFVYPAYASIKAIESPSKDDDTVWLTYWVVYALFGLAEFFSDLLLSWFPFYYVGKCAFL

PL IGFGYPAYISIKAIESPNKEDDTQWLTYWVVYGVFSIAEFFSDIFLSWFPFYYMLKCGFL

HS LFCMAPRPWNGALMLYQRVVRPLFLRHHGAVDRIMNDLSGRALDAAAGITRNVKPSQTPQ

25 PL LWCMAPSPSNGAELLYKRIIRPFFLKHESQMDSVVKDLKDKSKETADAITKEAKKATVNL HS PKDK

PL LGEEKKST

30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or mor (for

101

example, Accession No. R09702) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

30

<HP03270> (SEQ ID NOS: 96, 106, and 116)

Determination of the whole base sequence of the cDNA insert of clone HP03270 obtained from cDNA library of human lymphoma cell line U937 revealed the structure consisting of a 132-bp 5'-untranslated region, a 423-bp ORF, and a 656-bp 3'-untranslated region. The ORF encodes a protein consisting of 140 amino acid residues and there existed four putative transmembrane domains. Figure 36 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 17 kDa that was somewhat larger than the molecular weight of 15,864 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Schizosaccharomyces pombe hypothetical protein (EMBL Accession No. AL031854). Table 26 shows the comparison between amino acid sequences of the human protein of the present invention (HS) and the Schizosaccharomyces pombe hypothetical protein (SP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 43.4% in the entire region.

PCT/JP99/06412

15

20

25

30

102

Table 26

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T30721) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03298> (SEQ ID NOS: 97, 107, and 117)

Determination of the whole base sequence of the cDNA insert of clone HP03298 obtained from cDNA library of human lymphoma cell line U937 revealed the structure consisting of a 182-bp 5'-untranslated region, a 462-bp ORF, and a 455-bp 3'-untranslated region. The ORF encodes a protein consisting of 153 amino acid residues and there existed at least one putative transmembrane domain. Figure 37 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 17.5 kDa that was almost identical with the molecular

10

15

30

weight of 17,360 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Schizosaccharomyces SPBC119.09c (EMBL Accession hypothetical protein AL022117). Table 27 shows the comparison between amino acid sequences of the human protein of the present invention (HS) and the Schizosaccharomyces pombe hypothetical protein SPBC119.09c (SP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 41.9% in the entire region other than the N-terminal region.

Table 27

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA043039) among ESTs. However, since

104

they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5 <HP10631> (SEQ ID NOS: 98, 108, and 118)

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10631 obtained from cDNA library of the human retinoblastoma cell line WERI-RB revealed the structure consisting of a 226-bp 5'-untranslated region, a 522-bp ORF, and a 2741-bp 3'-untranslated region. The ORF encodes a protein consisting of 173 amino acid residues and there existed one putative transmembrane domain. Figure 38 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W26443) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10658> (SEQ ID NOS: 99, 109, and 119)

Determination of the whole base sequence of the cDNA insert of clone HP10658 obtained from cDNA library of the human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 24-bp 5'-untranslated region, a 228-bp ORF, and a 679-bp 3'-untranslated region. The ORF encodes a protein consisting of 75 amino acid residues and there existed two putative transmembrane domains. Figure 39 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In

105

vitro translation resulted in formation of a translation product of 14 kDa or less that was almost identical with the molecular weight of 8,625 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T85006) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10663> (SEQ ID NOS: 100, 110, and 120)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10663 obtained from cDNA library of the human lymphoma cell line U937 revealed the structure consisting of a 67-bp 5'-untranslated region, a 480-bp ORF, and a 576-bp 3'-untranslated region. The ORF encodes a protein consisting of 159 amino acid residues and there existed two putative transmembrane domains. Figure 40 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA336522) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

30 <HP03165> (SEQ ID NOS: 121, 131, and 141)

Determination of the whole base sequence of the cDNA insert of clone HP03165 obtained from cDNA library of human

epidermoid carcinoma cell line KB revealed the structure consisting of a 128-bp 5'-untranslated region, a 1911-bp ORF, and a 1195-bp 3'-untranslated region. The ORF encodes a protein consisting of 636 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 41 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 61 kDa that was smaller than the molecular weight of 72,033 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from serine at position 33.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human β -galactosidase (GenBank Protein ID No. AAA51822). Table 28 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human β -galactosidase (GL). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 37.8% in the entire region.

107

Table 28

	HP	${\tt MTTWSLRRRPARTLGLLLLVVLGFLVLRRLDWSTLVPLRLRHRQLGLQAKGWNFMLEDST}$
		.** .* .*
5	GL	MPGFLVRILPLLLVLLLLGPTRGLRNATQRMFEIDYSRDSFLKDGQP
	HP	${\tt FWIFGGSIHYFRVPREYWRDRLLKMKACGLNTLTTYVPWNLHEPERGKFDFSGNLDLEAF}$
		***** *** **.***** ** *****.*** .** *.*
	GL	${\tt FRYISGSIHYSRVPRFYWKDRLLKMKMAGLNAIQTYVPWNFHEPWPGQYQFSEDHDVEYF}$
	HP	${\tt VLMAAEIGLWVILRPGPYICSEMDLGGLPSWLLQDPGMRLRTTYKGFTEAVDLYFDHLMS}$
10		* *.** ********
	GL	${\tt LRLAHELGLLVILRPGPYICAEWEMGGLPAWILLEKESILLRSSDPDYLAAVDKWLGVLLP}$
	HP	RVVPLQYKRGGPIIAVQVENEYGSY-NKDPAYMPYVKKALEDRGIVELLLTSDNKDG
		** ***.*.******* . * .**
	GL	${\tt KMKPLLYQNGGPVITVQVENEYGSYFACDFDYLAFLQKRFRHHLGDDVVLFTTDGAHKTF}$
15	HP	${\tt LSKGIVQGVLATINLQSTHELQLLTTFLFNVQGTQPKMVMEYWTGWFDSWGGPHNILD}$
		*. * .**. *
	GL	${\tt LKCGALQGLYTTVDFGTGSNITDAFLSQRKCEPKGPLINSEFYTGWLDHWGQPHSTIK}$
	HP	${\tt SSEVLKTVSAIVDAGSSINLYMFHGGTNFGFMNGAMHFHDYKSDVTSYDYDAVLTEAGDY}$
		** * ***** ***** * ******
20	GL	TEAVASSLYDILARGASVNLYMFIGGTNFAYWNGANSPYAAQPTSYDYDAPLSEAGDL
	HP	TAKYMKLRDFFGSISGIPLPPPPDLLPKMPYEPLTPVLYLSLWDALKYLGEPIKSEKPIN
		*.**. *** * * * ***
	GL	TEKYFALRNIIQKFEKVPEGPIPPSTPKFAYGKVTLEKLKTVGAALDILC-PSGPIKS
	HP	MENLPVNGGNGQSFGYILYETSITSSGILSGHVHDRGQVFVNTVSIGFLDYKT
25		. * * .*. * * * * * *
	GL	LYPLTFIQVK-QHYGFVLYRTTLPQDCSNPAPLSSPLNGVHDRAYVAVDGIPQGVLE-RN
	HP	TKIAVPLI-QGYTVLRILVENRGRVNYGENIDDQRKGLIGNLYLNDSPLKNFRIYSL
		. *
	GL	NVITLNITGKAGATLDLLVENMGRVNYGAYIND-FKGLVSNLTLSSNILTDWTIFPLDTE
30	HP	DMKKSFFQRFGLDKWSSLPETPTLPAFFLGSLSISSTPCDTFLKLEGWE
		* .** *****. * * *** **.
	GL	DAVRSHLGGWGHRDSGHHDEAWAHNSSNYTLPAFYMGNFSIPSGIPDLPQDTFIQFPGWT
	HP	KGVVFINGQNLGRYW-NIGPQKTLYLPGP-WLSSGINQVIVFEETMAGPALQFTETPHLG
		** *.*** ***** . *** ****. **.
35	GL	KGQVWINGFNLGRYWPARGPQLTLFVPQHILMTSAPNTITVLELEWAPCSSDDPELCAVT

108

HP RNQYIK

GL FVDRPVIGSSVTYDHPSKPVEKRLMPPPPQKNKDSWLDHV

5

10

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA054017) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03266> (SEQ ID NOS: 122, 132, and 142)

15

Determination of the whole base sequence of the cDNA insert of clone HP03266 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 69-bp 5'-untranslated region, a 957-bp ORF, and a 1464-bp 3'-untranslated region. The ORF encodes a protein consisting of 318 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 42 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 34 kDa that was almost identical with the molecular weight of 35,363 predicted from the ORF.

25

30

20

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Arabidopsis thaliana putative ribotol dehydrogenase (GenBank Protein ID No. AAC23625). Table 29 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the

PCT/JP99/06412 WO 00/29448

109

Arabidopsis thaliana putative ribotol dehydrogenase (AT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 39.0% in the region of 483 residues other than the N-terminal region.

Table 29

5

10 HP MVELMFPLLLLLLPFILYMAAPQIRKMLSSGVCTSTVQLPGKVVVVTGANTGIGKETAKE**...*** *.*. ΑT MGIYGVMTGKKGKSGFGSASTAEDVTQAIDASHLTAIITGGTSGIGLEAARV HP LAQRGARVYLACRDVEKGELVAKEIQTTTGNQQVLVRKLDLSDTKSIRAFAKGFLAEEKH . * . *..* ..*.*.**.*. *** . . . 15 AT LAMRGAHVIIAARNPKAANESKEMILOMNPNARVDYLQIDVSSIKSVRSFVDQFLALNVP HP LHVLINNAGVMMCPYSKTADGFEMHIGVNHLGHFLLTHLLLEKLK----ESAPSRIVNV *..*******.**.. *.**.***.*****.** AT LNILINNAGVMFCPFKLTEDGIESQFATNHIGHFLLTNLLLDKMKSTARESGVQGRIVNL 20 HP SSLAH---HLGRIHFHNLQGEKFYNAGLAYCHSKLANILFTQELARRLKGSG--VTTYSV *.. ** ***:*: * ... * ... * ... * ** . . *.*.... AT SSIAHTYTYSEGIKFQGINDPAGYSERRAYGOSKLSNLLHSNALSRRLOEEGVNITINSV HP HPGTVQSELVRHSSFMRWMWWLFSF-FIKTPQQGAQTSLHCALTEGLEILSGNHFSDCHV *** * ..* *.*.** * *. .**.*. . ** ..*. ..*... 25 AT HPGLVTTNLFRYSGFSMKVFRAMTFLFWKNIPQGAATTCYVALHPDLEGVTGKYFGDCNI HP AWVSAQARNETIARRLWDVSCDLLGLPID . * * * . . * . * * * . . AT VAPSKFATNNSLADKLWDFSVFLIDSISK

30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shar d a homology of 90% or more (for example, Accession No. D17020) among ESTs. How ver, since

110

they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5 <HP03287> (SEQ ID NOS: 123, 133, and 143)

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP03287 obtained from cDNA library of human thymus revealed the structure consisting of a 83-bp 5'untranslated region, a 249-bp ORF, and a 1133-bp 3'untranslated region. The ORF encodes a protein consisting of 82 amino acid residues and there existed one putative transmembrane domain at the N-terminus and one at the Cterminus, respectively. Figure 43 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kytemethod, of the present protein. translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Schizosaccharomyces pombe hypothetical protein 9.0kDa (SWISS-PROT Accession 013825). Table 30 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the Schizosaccharomyces pombe hypothetical protein 9.0kDa (SP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 45.7% in the entire region.

PCT/JP99/06412

SP RTVMTFPLIAINTIVIVYNLVLG

111

Table 30

HP MAFTLYSLLQAALLCVNAIAVLHEERFLKNIGWGTDQGIGGFGE-EPGIKSQLMNLIRSV

... .** .** .*** .*** .*** .***.

SP MFGFGNILYVTLLLLNAVAILSEDRFLGRIGWSQSAAL-GFGDRQDTIKSRILHLIRAI

HP RTVMRVPLIIVNSIAIVLLLLFG

**** *** .*.*.** *..*

10

15

20

25

30

5

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA853098) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10665> (SEQ ID NOS: 124, 134, and 144)

Determination of the whole base sequence of the cDNA insert of clone HP10665 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 31-bp 5'-untranslated region, a 744-bp ORF, and a 142-bp 3'-untranslated region. The ORF encodes a protein consisting of 247 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 44 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 28 kDa that was somewhat larger than the molecular weight of 25,320 predicted from the ORF. In this case, the addition of a microsome led to the formation

of a product of 27 kDa. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from aspertic acid at position 26.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA055367) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10669> (SEQ ID NOS: 125, 135, and 145)

Determination of the whole base sequence of the cDNA insert of clone HP10669 obtained from cDNA library of human retinoblastoma cell line WERI-RB revealed the structure consisting of a 73-bp 5'-untranslated region, a 621-bp ORF, and a 612-bp 3'-untranslated region. The ORF encodes a protein consisting of 206 amino acid residues and there existed one putative transmembrane domain. Figure 45 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AF086533) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

30

25

5

10

15

20

<HP10670> (SEQ ID NOS: 126, 136, and 146)

Determination of the whole base sequence of the cDNA

insert of clone HP10670 obtained from cDNA library of human retinoblastoma cell line WERI-RB revealed the structure consisting of a 117-bp 5'-untranslated region, a 1299-bp ORF, and a 606-bp 3'-untranslated region. The ORF encodes a protein consisting of 432 amino acid residues and there existed seven putative transmembrane domains. Figure 46 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

5

10

15

20

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis hypothetical protein CELM03F8.2 (GenBank Protein ID No. AAB65910). Table 31 shows the comparison between amino acid sequences of the human protein of the present invention (HP) Caenorhabditis elegans hypothetical CELM03F8.2 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 39.6% in the N-terminal region of 376 residues.

114

Table 31

HP MDARWWAVVVLAAFPSLGAGGETPEAPPESWTQLWFFRFVVNAAGYASFMVPGYLLVQYF **. . .* .*. . **.. .*. .*. * 5 CE MDRSIMPIDSPARDKPPD--ELVWPLRLFLILLGYSTVATPAAILIYYV HP RRKNYLETGRGLCFPLVKACVFGNEPKASDEVPLA---PRTEAAETTPMW-----QALKL .*.*..... CE RRNRHAFETPYLSIRLLLRS-FAVGNPEYOLIPTGEKOARKENDSIPOTRAOCINVIILL HP LFCATGLOVSYLTWGVLOERVMTRSY-GATATSPGERFTDSOFLVLMNRVLALIVA--GL 10 CE LFFFSGIOVTLVAMGVLQERIITRGYRRSDQLEVEDKFGETQFLIFCNRIVALVLSLMIL HP SCVLCKOPRHGAPMYRYSFASLSNVLSSWCQYEALKFVSFPTQVLAKASKVIPVMLMGKL ***.* .*.* .*..*.******************** CE AKDWTKOPPHVPPLYVHSYTSFSNTISSWCQYEALKYVSFPTQTICKASKVVVTMLMGRL HP VSRRSYEHWEYLTATLISIGVSMFLLSSGPEPRSSPAT--TLSGLILLAGYIAFDSFTSN 15 CE VRGQRYSWFEYGCGCTIAFGASLFLLSSSSKGAGSTITYTSFSGMILMAGYLLFDAFTLN HP WQDALFAYK--MSSVQMMFGVNFFSCLFTVGSLLEQGALLEGTRFMGRHSEFAAHALLLS **.***. * .*. ******** .. . **.**.** . * .*.** 20 CE WOKALFDTKPKVSKYOMMFGVNFFSAILCAVSLIEQGTLWSSIKFGAEHVDFSRDVFLLS HP ICSACGQLFIFYTIGQFGAAVFTIIMTLRQAFAILLSCLLYGHTVTVVGGLGVAVVFAAL ...* **.**. **..**. **..** * CE LSGAIGQIFIYSTIERFGPIVFAVIMTIRQIFIRNTLIRAEDHRGVEMAPPPPPEPFRLK HP LLRVYARGRLKQRGKKAVPVESPVQKV 25

CE FLSMIIAVIHI

30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. Z46196) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the

115

present invention.

5

10

15

20

25

30

<HP10671> (SEQ ID NOS: 127, 137, and 147)

Determination of the whole base sequence of the cDNA insert of clone HP10671 obtained from cDNA library of human thymus revealed the structure consisting of a 74-bp 5'-untranslated region, a 921-bp ORF, and a 232-bp 3'-untranslated region. The ORF encodes a protein consisting of 306 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain at the intermediate region. Figure 47 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA357141) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10673> (SEQ ID NOS: 128, 138, and 148)

Determination of the whole base sequence of the cDNA insert of clone HP10673 obtained from cDNA library of the human thymus revealed the structure consisting of a 203-bp 5'-untranslated region, a 1668-bp ORF, and a 339-bp 3'untranslated region. The ORF encodes a protein consisting of 555 amino acid residues and there existed one putative transmembrane 48 domain. Figure depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product

116

of 65 kDa that was somewhat larger than the molecular weight of 61,781 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R96413) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10

15

20

25

5

<HP10675> (SEQ ID NOS: 129, 139, and 149)

Determination of the whole base sequence of the cDNA insert of clone HP10675 obtained from cDNA library of the human thymus revealed the structure consisting of a 92-bp 5'-untranslated region, a 753-bp ORF, and a 648-bp 3'-untranslated region. The ORF encodes a protein consisting of 250 amino acid residues and there existed at least one putative transmembrane domain. Figure 49 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA356139) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10683> (SEQ ID NOS: 130, 140, and 150)

30 Determination of the whole base sequence of the cDNA insert of clone HP10683 obtained from cDNA library of the human lymphoma cell line U937 revealed the structure

consisting of a 25-bp 5'-untranslated region, a 525-bp ORF, and a 714-bp 3'-untranslated region. The ORF encodes a protein consisting of 174 amino acid residues and there existed one putative transmembrane domain. Figure 50 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 22 kDa that was somewhat larger than the molecular weight of 19,572 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 24 kDa to which sugar chains are presumably attached. In addition, there exist in the amino acid sequence of this protein one site at which N-glycosylation may occur (Asn-Ile-Thr at position 27).

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA482321) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

INDUSTRIAL APPLICABILITY

5

10

15

20

25

30

The present invention provides human proteins having hydrophobic domains, DNAs encoding these proteins, and expression vectors for these DNAs as well as eukaryotic cells expressing these DNAs. Since all of the proteins of the present invention are secreted or exist in the cell membrane, they are considered to be proteins controlling the proliferation and/or the differentiation of the cells. Accordingly, the proteins of the present invention can be employed as pharmaceuticals such as carcinostatic agents

118

which control the proliferation act to and/or differentiation of the cells, or as antigens for preparing antibodies against these proteins. The DNAs of the present invention can be utilized as probes for the diagnosis and gene sources for the gene therapy. Furthermore, the DNAs can be utilized for large-scale expression of these proteins. Cells into which these genes are introduced to express these proteins, can be utilized for detection of the corresponding receptors or ligands, screening of novel small molecule pharmaceuticals and the like.

5

10

15

20

25

30

The present invention also provides genes corresponding to polynucleotide sequences disclosed herein. "Corresponding genes" are the regions of the genome that are transcribed which to produce the mRNAs from CDNA polynucleotide sequences are derived and may include contiguous regions of the genome necessary for the regulated expression of such genes. Corresponding genes may therefore include but are not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons, introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or sequence information from the disclosed identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. An "isolated gene" is a gene that has been separated from the adjacent coding sequences, if any, present in the genome of the organism from which the gene was isolated.

Organisms that have enhanced, reduced, or modified expression of the gene(s) corresponding to the polynucleotide sequences disclosed herein are provided. The

5

10

15

20

25

30

desired change in gene expression can be achieved through the use of antisense polynucleotides or ribozymes that bind and/or cleave the mRNA transcribed from the gene (Albert and Morris, 1994, Trends Pharmacol. Sci. 15(7): Lavarosky et al., 1997, Biochem. Mol. Med. 62(1): 11-22; and Hampel, 1998, Prog. Nucleic Acid Res. Mol. Biol. 58: 1-39; of which are incorporated by reference herein). Transgenic animals that have multiple copies of the gene(s) corresponding to the polynucleotide sequences disclosed herein, preferably produced by transformation of cells with qenetic constructs that are stably maintained within the their transformed cells and progeny, are provided. Transgenic animals that have modified genetic control regions that increase or reduce gene expression levels, or that change temporal or spatial patterns of gene expression, are also provided (see European Patent No. 0 649 464 Bl, incorporated by reference herein). In addition, organisms are provided in which the gene(s) corresponding to the polynucleotide sequences disclosed herein have partially or completely inactivated, through insertion of extraneous sequences into the corresponding gene(s) through deletion of all or part of the corresponding gene(s). Partial or complete gene inactivation can be accomplished through insertion, preferably followed by imprecise excision, of transposable elements (Plasterk, 1992, Bioessays 14(9): 629-633; Zwaal et al., 1993, Proc. Natl. Acad. Sci. USA 90(16): 7431-7435; Clark et al., 1994, Proc. Natl. Acad. Sci. USA 91(2): 719-722; all of which are incorporated by reference herein), or through homologous recombination, preferably detected by positive/negative genetic selection strategies (Mansour et al., 1988, Nature 336: 348-352; U.S. Patent Nos. 5,464,764; 5,487,992; 5,627,059; 5,631,153;

5,614, 396; 5,616,491; and 5,679,523; all of which are incorporated by reference herein). These organisms with altered gene expression are preferably eukaryotes and more preferably are mammals. Such organisms are useful for the development of non-human models for the study of disorders involving the corresponding gene(s), and for the development of assay systems for the identification of molecules that interact with the protein product(s) of the corresponding gene(s). Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. In such forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane domains of proteins of the invention can be identified in accordance with known techniques for determination of such domains from sequence information.

5

10

15

20

25

30

Proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of a disclosed protein and have at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with that disclosed protein, where sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. Also included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, most preferably 30 or more) contiguous amino acids that shares at least 75%

sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins.

5

10

15

20

25

30

Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. As used herein, a "species homologue" is a protein or polynucleotide with a different species of origin from that of a given protein or polynucleotide, but with significant sequence similarity to the given protein or polynucleotide, as determined by those of skill in the art. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous, or related to that encoded by the polynucleotides.

The invention also includes polynucleotides with sequences complementary to those of the polynucleotides disclosed herein.

The present invention also includes polynucleotides capable of hybridizing under reduced stringency conditions, more preferably stringent conditions, and most preferably highly stringent conditions, to polynucleotides described herein. Examples of stringency conditions are shown in the Table 32 below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.

Table 32

Stringency	Polynucleotide	Hybrid	Hybridization Temperature	Wash
Condition	Hybrid	Length	and Buffer [†]	Temperature
		(bp) [‡]		and Buffer [†]
A	DNA: DNA	≥50	65℃; 1×SSC -or-	65°C; 0.3×SSC
			42°C; 1×SSC,50% formamide	<u> </u>
В	DNA : DNA	<50	T _B *; 1×SSC	T _B *; 1×SSC
C	DNA: RNA	≥50	67°C; 1×SSC -or-	67℃; 0.3×SSC
			45°C; 1×SSC,50% formamide	
D	DNA: RNA	<50	T _D *; 1×SSC	T _D *; 1×SSC
E	RNA: RNA	≥50	70°C; 1×SSC -or-	70°C; 0.3×SSC
			50°C; 1×SSC,50% formamide	
F	RNA: RNA	<50	T _F *; 1×SSC	T _F *; 1×SSC
G	DNA : DNA	≥50	65°C; 4×SSC -or-	65°C; 1×SSC
			42°C; 4×SSC,50% formamide	
H	DNA : DNA	<50	T _H *; 4×SSC	T _H *; 4×SSC
Ī	DNA : RNA	≥50	67°C; 4×SSC -or-	67°C; 1×SSC
			45°C; 4×SSC,50% formamide	
J	DNA : RNA	<50	T _J *; 4×SSC	T _J *; 4×SSC
K	RNA: RNA	≥50	70°C; 4×SSC -or-	67°C; 1×SSC
			50°C; 4×SSC,50% formamide	
L	RNA: RNA	<50	T _L *; 2×SSC	T _L *; 2×SSC
М	DNA : DNA	≥50	50°C; 4×SSC -or-	50°C; 2×SSC
			40°C; 6×SSC,50% formamide	
N	DNA : DNA	<50	T _N *; 6×SSC	T _N *; 6×SSC
0	DNA: RNA	≥50	55°C; 4×SSC -or-	55°C; 2×SSC
			42°C; 6×SSC,50% formamide	
P	DNA : RNA	<50	T _P *; 6×SSC	Tp*; 6×SSC
Q	RNA: RNA	≥50	60°C; 4×SSC -or-	60°C; 2×SSC
-			45°C; 6×SSC,50% formamide	
R	RNA: RNA	<50	T _R *; 4×SSC	T _R *; 4×SSC

.

123

‡: The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.

†: SSPE (1×SSPE is 0.15M NaCl, 10mM NaH₂PO₄, and 1.25mM EDTA, pH7.4) can be substituted for SSC (1×SSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after

hybridization is complete.

* T_B - T_R : The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5-10°C less than the melting temperature (T_m) of the hybrid, where T_m is determined according to the following equations. For hybrids less than 18 base pairs in length, T_m (°C)=2(#of A + T bases) + 4(# of G + C bases). For hybrids between 18 and 49 base pairs in length, T_m (°C)=81.5 + 16.6(log₁₀[Na*]) + 0.41 (%G+C) - (600/N), where N is the number of bases in the hybrid, and [Na*] is the concentration of sodium ions in the hybridization buffer ([Na*] for 1×SSC=0.165M).

20

25

30

35

5

10

15

Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.

Preferably, each such hybridizing polynucleotide has a length that is at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of invention to the present which it hybridizes, and has at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with the polynucleotide of the present invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the hybridizing

124

polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

125

CLAIMS

1. A protein comprising any one of an amino acid sequence selected from the group consisting of SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130.

5

10

20

- 2. An isolated DNA encoding the protein according to Claim 1.
- 3. An isolated cDNA comprising any one of a base sequence selected from the group consisting of SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110, and 131 to 140.
- 4. The cDNA according to Claim 3 consisting of any one of a base sequence selected from the group consisting of SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120, and 141 to 150.
- 5. An expression vector that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 by in vitro translation or in eukaryotic cells.
 - 6. A transformed eukaryotic cell that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 and of producing the protein according to Claim 1.

Hydrophobicity/Hydrophilicity

Hydrophobicity/Hydrophilicity

Hydrophobicity/Hydrophilicity

Hydrophobicity/Hydrophilicity

Hydrophobicity/Hydrophilicity

Hydrophobicity/Hydrophilicity

Hydrophobicity/Hydrophilicity

Hydrophobicity/Hydrophilicity

1/233

SEQUENCE LISTING

<110> Sagami Chemical Research Center, Protegene Inc.

<120> Human proteins having hydrophobic domains and DNAs encoding these proteins

<130> 661607

<150> JP 10-326255

<151> 1998-11-17

<150> JP 10-364315

<151> 1998-12-22

<150> JP 11-69811

<151> 1999-03-16

<150> JP 11-119299

<151> 1999-04-27

<150> JP 11-138169

<151> 1999-05-19

<160> 150

<210> 1

<211> 647

<212> PRT

<213> Homo sapiens

<400> 1

Met Ala Glu Glu Ala Pro Lys Lys Ser Arg Ala Ala Gly Gly Gly 1

10

Ala Ser Trp Glu Leu Cys Ala Gly Ala Leu Ser Ala Arg Leu Thr Glu

2/233

			20					25					30		
Glu	Gly	Ser	Gly	Asp	Ala	Gly	Gly	Arg	Arg	Arg	Pro	Pro	Val	Asp	Pro
		35					40					45			
Arg	Arg	Leu	Ala	Arg	Gln	Leu	Leu	Leu	Leu	Leu	Trp	Leu	Leu	Glu	Ala
	50					55	•				60				
Pro	Leu	Leu	Leu	Gly	Val	Arg	Ala	Gln	Ala	Ala	Gly	Gln	Gly	Pro	Gly
65					70					75					80
Gln	Gly	Pro	Gly	Pro	Gly	Gln	Gln	Pro	Pro	Pro	Pro	Pro	Gln	Gln	Gln
				85					90					95	
Gln	Ser	Gly		Gln	Tyr	Asn	Gly	Glu	Arg	Gly	Ile	Ser		Pro	Asp
			100	_		_		105					110		_
His	Gly	_	Суз	Gln	Pro	Ile		Ile	Pro	Leu	Суз		Asp	Ile	Ala
		115	_,	_,		_	120	_		~ 1-		125	•	a 1	63
ıyr	130	GIN	Thr	TTE	Met	135	Asn	Leu	Leu	Gly	H1S	Thr	Asn	GIN	GIU
λan		Glv	Ten	Glu	Val		Gln.	Dho	The same	Pro		Val	Tarq	Uel	Gln
145	MIG	GIĀ	Dea	GIU	150	птэ	GIII	FIIC	TYL	155	Leu	VOL	пур	Val	160
	Ser	Ala	Glu	Leu		Phe	Phe	Leu	Cvs	Ser	Met	TVr	Ala	Pro	
-3-				165	-1-				170					175	
Сув	Thr	Val	Leu	Glu	Gln	Ala	Leu	Pro	Pro	Cys	Arg	Ser	Leu	Cys	Glu
_			180					185		_			190		
Arg	Ala	Arg	Gln	Gly	Cys	Glu	Ala	Leu	Met	Asn	Lys	Phe	Gly	Phe	Gln
		195					200					205			
Trp	Pro	Asp	Thr	Leu	Lys	Cys	Ğlu	Lys	Phe	Pro	Val	His	Gly	Ala	Gly
	210					215					220				
Glu	Leu	Сув	Val	Gly	Gln	Asn	Thr	Ser	Asp	Lys	Gly	Thr	Pro	Thr	Pro
225					230					235					240
Ser	Leu	Leu	Pro	Glu	Phe	Trp	Thr	Ser	Asn	Pro	Gln	His	Gly	Gly	Gly
				245					250					255	
Gly	His	Arg	Gly	Gly	Phe	Pro	Gly	Gly	Ala	Gly	Ala	Ser	Glu	Arg	Gly
	•		260					265					270		
ГÀа	Phe		Сув	Pro	Arg	Ala		Lys	Val	Pro	Ser	-	Leu	Asn	Tyr
•													_	•	_
His		Leu	Gly	Glu	Lys		Суз	Gly	Ala		_	Glu	Pro	Thr	гув
Lys	Phe	Ser 275	260 Cys	Pro	Arg	Ala	Leu 280	265 Lys	Val	Pro Pro	Ser	туг 285	270 Leu	Asn	Tyr

3/233

Val	Tyr	Gly	Leu	Met	Tyr	Phe	Gly	Pro	Glu	Glu	Leu	Arg	Phe	Ser	Arc
305					310					315	,				320
Thr	Trp	Ile	Gly	Ile	Trp	Ser	Val	Leu	Суз	Cys	Ala	Ser	Thr	Leu	Phe
				325					330					335	
Thr	Val	Leu	Thr	Tyr	Leu	Val	Asp	Met	Arg	Arg	Phe	Ser	Туг	Pro	Glu
			340					345					350	}	
Arg	Pro	Ile	Ile	Phe	Leu	Ser	Gly	Сув	Tyr	Thr	Ala	Val	Ala	Val	Ala
		355					360					365			
Tyr	Ile	Ala	Gly	Phe	Leu	Leu	Glu	Asp	Arg	Val	Val	Сув	Asn	Asp	Lys
	370					375					380				
Phe	Ala	Glu	Asp	Gly	Ala	Arg	Thr	Val	Ala	Gln	Gly	Thr	Lys	Lys	Glu
385					390					395					400
Gly	Cys	Thr	Ile	Leu	Phe	Met	Met	Leu	Tyr	Phe	Phe	Ser	Met	Ala	Ser
				405					410					415	
Ser	Ile	Trp	Trp	Val	Ile	Leu	Ser	Leu	Thr	Trp	Phe	Leu	Ala	Ala	Gly
			420					425					430		
Met	Lys	Trp	Gly	His	Glu	Ala	Ile	Glu	Ala	Asn	Ser	Gln	Tyr	Phe	His
		435					440					445			
Leu	Ala	Ala	Trp	Ala	Val	Pro	Ala	Ile	Lys	Thr	Ile	Thr	Ile	Leu	Ala
	450					455					460				
Leu	Gly	Gln	Val	Asp	Gly	Asp	Val	Leu	Ser	Gly	Val	Сув	Phe	Val	Gly
465					470					475					480
Leu	Asn	Asn	Val	qeA	Ala	Leu	Arg	Gly	Phe	Val	Leu	Ala	Pro	Leu	Phe
				485					490				4	95	
Val	Tyr	Leu	Phe	Ile	Gly	Thr	Ser	Phe	Leu	Leu	Ala	Gly	Phe	Val	Ser
			500					505					510		
Leu	Phe	Arg	Ile	Arg	Thr	Ile	Met	Lys	His	qaA	Gly		Lys	Thr	Glu
		515					520					525			
Lys	Leu	Glu	Lys	Leu	Met		Arg	Ile	Gly	Val		Ser	Val	Leu	Tyr
	530					535					540				
Thr	Val	Pro	Ala	Thr	Ile	Val	Ile	Ala	Сув	Tyr	Phe	Tyr	Glu	Gln	Ala
545					550					555					560
Phe	Arg	Asp	Gln	Trp	Glu	Arg	Ser	Trp	Val	Ala	Gln	Ser	Суз	Lys	Ser
				565					570					575	
سدين	Ala	Tle	Pm	Cve	Dro	Hig	T.ett	Gln	AIA	Glv	Glv	Glv	Ala	Pm	Pro

			580					585					590		
His	Pro	Pro	Met	Ser	Pro	Asp	Phe	Thr	Val	Phe	Met	Ile	Lys	Tyr	Leu
		595					600					605			
Met	Thr	Leu	Ile	Val	Gly	Ile	Thr	Ser	Gly	Phe	Trp	Ile	Trp	Ser	Gly
	610					615					620				
Lys	Thr	Leu	Asn	Ser	Trp	Arg	Lys	Phe	Tyr	Thr	Arg	Leu	Thr	Asn	Ser
625					630					635					640
Lys	Gln	Gly	Glu	Thr	Thr	Val									
				645											
<21	0> 2														
<21	1> 3	50													
<212	2> PI	RT													
<213	3> H		sapie	ens											
<400)> 2														
Met	His	Pro	Ala	Ala	Phe	Pro	Leu	Pro	Val	Val	Val	Ala	Ala	Val	Leu
1				5					10				·	15	
Trp	Gly	Ala	Ala	Pro	Thr	Arg	Gly	Leu	Ile	Arg	Ala	Thr	Ser	qaA	His
			20					25					30		
Asn	Ala	Ser	Met	Asp	Phe	Ala	Авр	Leu	Pro	Ala	Leu	Phe	Gly	Ala	Thr
		35					40					45			
Leu	Ser	Gln	Glu	Gly	Leu	Gln	Gly	Phe	Leu	Val	Glu	Ala	His	Pro	qeA
	50					55					60				
Asn	Ala	Сув	Ser	Pro	Ile	Ala	Pro	Pro	Pro	Pro	Ala	Pro	Val	Asn	Gly
65					70					75					80
Ser	Val	Phe	Ile		Leu	Leu	Arg	Arg	Phe	qaA	Сув	Asn	Phe		Leu
				85					90					95	
Lys	Val	Leu		Ala	Gln	Lys	Ala	-	Tyr	Gly	Ala	Ala		Val	His
			100					105					110		
Asn	Val	Asn	Ser	Asn	Glu	Leu	Leu	Asn	Met	Val	Trp	Asn	Ser	Glu	Glu
		115					120					125			
Ile		Gln	Gln	Ile	Trp	Ile	Pro	Ser	Val	Phe		Gly	Glu	Arg	Ser
	130					135					140				
Ser	Glu	Tyr	Leu	Arg	Ala	Leu	Phe	Val	Tyr	Glu	Lys	Gly	Ala	Arg	Val
145					150					155					160

Leu	Leu	Val	Pro	Asp	Asn	Thr	Phe	Pro	Leu	Gly	Tyr	Tyr	Leu	Ile	Pro
				165					170					175	
Phe	Thr	Gly	Ile	Val	Gly	Leu	Leu	Val	Leu	Ala	Met	Gly	Ala	Val	Met
			180					185					190	ı	
Ile	Ala	Arg	Суз	Ile	Gln	His	Arg	Lys	Arg	Leu	Gln	Arg	Asn	Arg	Leu
		195					200					205			
Thr	Lys	Glu	Gln	Leu	Lys	Gln	Ile	Pro	Thr	His	Asp	Tyr	Gln	Lys	Gly
	210					215					220				
Asp	Gln	Tyr	Asp	Val	Cys	Ala	Ile	Суз	Leu	Asp	Glu	Tyr	Glu	Asp	Gly
225					230					235					240
Asp	Lys	Leu	Arg	Val	Leu	Pro	Сув	Ala	His	Ala	Tyr	His	Ser	Arg	Cys
				245					250					255	
Val	Asp	Pro	Trp	Leu	Thr	Gln	Thr	Arg	Lys	Thr	Cys	Pro	Ile	Суз	Lys
			260					265					270		
Gln	Pro	Val	His	Arg	Gly	Pro	Gly	Asp	Glu	qeA	Gln	Glu	Glu	Glu	Thr
		275					280					285			
Gln	Gly	Gln	Glu	Glu	Gly	Asp	Glu	Gly	Glu	Pro	Arg	Asp	His	Pro	Ala
	290					295					300				
Ser	Glu	Arg	Thr	Pro	Leu	Leu	Gly	Ser	Ser	Pro	Thr	Leu	Pro	Thr	Ser
305					310					315					320
Phe	Gly	Ser	Leu	Ala	Pro	Ala	Pro	Leu	Val	Phe	Pro	Gly	Pro	Ser	Thr
٠				325					330					335	
qeA	Pro	Pro	Leu	Ser	Pro	Pro	Ser	Ser	Pro	Val	Ile	Leu	Val		
			340				•	345					350		
<210	> 3														
<211	> 20	6													
<212	> PF	T													
<213	> Hc	mo s	sapie	ens											
<400	> 3														
Met	Gly	Leu	Gly	Gln	Pro	Gln	Ala	Trp	Leu	Leu	Gly	Leu	Pro	Thr	Ala
1				5					10					15	
Val	Val	Tyr	Gly	Ser	Leu	Ala	Leu	Phe	Thr	Thr	Ile	Leu	His	Asn	Val
			20					25					30		
Phe	Leu	Leu	Tyr	Tyr	Val	Asp	Thr	Phe	Val	Ser	Val	Tyr	Lys	Ile	Asn

WO 00/29448 PCT/JP99/06412

		35					40					45	,		
Lys	Met	Ala	Phe	Trp	Val	Gly	Glu	Thr	Val	Phe	Leu	Lev	Trp	Asn	Se
	50					55	;				60				
Leu	Asn	Asp	Pro	Leu	Phe	Gly	Trp	Leu	Ser	Asp	Arg	Gln	Phe	Leu	Sex
65					70					75					8
Ser	Gln	Pro	Arg	Gly	Arg	Asp	Leu	Pro	Trp	Leu	Gly	Leu	Val	Gly	Pro
				85					90					95	
Ser	Gly	Leu	Trp	Thr	Ala	Asn	Thr	Leu	Суз	Суз	Phe	Trp	Lys	Ile	Pro
			100	•				105					110		
Leu	Pro	His	Pro	Суз	Leu	Ser	Pro	Ser	Ser	Pro	Pro	Thr	Leu	Arg	Sez
		115					120					125			
Gly	His	Pro	Ile	Pro	Phe	Gly	His	Gln	Pro	Asn	Arg	Leu	Ile	Arg	Gl
	130					135					140				
Trp	Lys	Leu	Gly	Gln	Arg	Arg	Arg	Val	Tyr	Pro	Leu	Val	Arg	Arg	Arc
145					150					155					160
Ala	Leu	Leu	Lys	Gly	Суз	Gly	Ala	Gly	Pro	Gly	Ala	Gly	Pro	Gly	Lev
				165					170					175	
Ala	Trp	Ala	Ala	Ala	Gly	Ala	Val	Val	Pro	Gly	Val	Leu	Gly	Ala	Lev
			180					185					190		
Gly	Pro	Ser	Trp	Pro	Ala	Val	Leu	Ala	Val	Pro	Val	Pro	Leu		
		195					200					205			
<210)> 4														
<211	> 2	13													
<212	> PI	er.													
<213	> H	omo s	apie	ens											
<400	> 4														
Met	His	Tyr	Tyr	Arg	Tyr	Ser	Asn	Ala	Lys	Val	Ser	Суз	Trp	Tyr	Lys
1				5					10					15	
Tyr	Leu	Leu	Phe	Ser	Tyr	Asn	Ile	Ile	Phe	Trp	Leu	Ala	Gly	Val	Val
			20					25					30		
Phe	Leu	Gly	Val	Gly	Leu	Trp	Ala	Trp	Ser	Glu	Lys	Gly	Val	Leu	Ser
		35					40					45			
Asp	Leu	Thr	Lys	Val	Thr	Arg	Met	His	Gly	Ile	Asp	Pro	Val	Val	Leu
	50					55					60				

Val	Leu	Met	Val	Gly	Val	Val	Met	Phe	Thr	Leu	Gly	Phe	Ala	Gly	Суз
65					70					75					80
Val	Gly	Ala	Leu	Arg	Glu	Asn	Ile	Cys	Leu	Leu	Asn	Phe	Asn	Gln	Cys
				85					90					95	
Сув	Gly	Ala	Tyr	Gly	Pro	Glu	ĄsĄ	Trp	Asp	Leu	Asn	Val	Tyr	Phe	Asr
			100					105					110		
Суз	Ser	Gly	Ala	Ser	Tyr	Ser	Arg	Glu	Lys	Cys	Gly	Val	Pro	Phe	Sea
		115					120					125			
Сув	Сув	Val	Pro	qeA	Pro	Ala	Gln	Lys	Val	Val	Asn	Thr	Gln	Сув	Gly
	130					135					140		•		
Tyr	qaA	Val	Arg	Ile	Gln	Leu	Lys	Ser	Lys	Trp	Asp	Glu	Ser	Ile	Phe
145					150					155					160
Thr	Lys	Gly	Cys	Ile	Gln	Ala	Leu	Glu	Ser	Trp	Leu	Pro	Arg	Asn	Ile
				165					170					175	
Tyr	Ile	Val	Ala	Gly	Val	Phe	Ile	Ala	Ile	Ser	Leu	Leu	Gln	Ile	Phe
			180					185					190		
Gly	Ile	Phe	Leu	Ala	Arg	Thr	Leu	Ile	Ser	qaA	Ile	Glu	Ala	Val	Lys
		195					200					205			
Ala	Gly	His	His	Phe											
	210														
<210)> 5														
<211	> 59	95													
<212	> PF	T													
<213	> Ho	mo s	sapie	ens											
<400	> 5														
Met	Arg	Ala	Ala	Arg	Ala	Ala	Pro	Leu	Leu	Gln	Leu	Leu	Leu	Leu	Leu
1				5					10					15	
Gly	Pro	Trp	Leu	Glu	Ala	Ala	Gly	Val	Ala	Glu	Ser	Pro	Leu	Pro	Ala
			20					25					30		
Val	Val	Leu	Ala	Ile	Leu	Ala	Arg	Asn	Ala	Glu	His	Ser	Leu	Pro	His
		35					40					45			
Tyr	Leu	Gly	Ala	Leu	Glu	Arg	Leu	Asp	Tyr	Pro	Arg	Ala	Arg	Met	Ala
	50					55 .					60				
	·	~··	ם [ת	መኮ~	X	***	N an	1707	700	A	mb	mL	C111	Mot	Len

65					70					75					80
Gln	Glu	Trp	Leu	Ala	Ala	Val	Gly	Asp	Asp	Tyr	Ala	Ala	Val	Val	Trp
				85					90					95	
Arg	Pro	Glu	Gly	Glu	Pro	Arg	Phe	Tyr	Pro	Asp	Glu	Glu	Gly	Pro	Lys
			100					105					110		
His	Trp	Thr	Lys	Glu	Arg	His	Gln	Phe	Leu	Met	Glu	Leu	Lys	Gln	Glu
		115					120					125			
Ala	Leu	Thr	Phe	Ala	Arg	Asn	Trp	Gly	Ala	Asp	Tyr	Ile	Leu	Phe	Ala
	130					135					140				
qaA	Thr	Asp	Asn	Ile	Leu	Thr	Asn	Asn	Gln	Thr	Leu	Arg	Leu	Leu	Met
145					150					155					160
Gly	Gln	Gly	Leu	Pro	Val	Val	Ala	Pro	Met	Leu	Asp	Ser	Gln	Thr	Tyr
				165					170					175	
Tyr	Ser	Asn	Phe	Trp	Cys	Gly	Ile		Pro	Gln	Gly	Tyr	Tyr	Arg	Arg
			180					185					190		
Thr	Ala		Tyr	Phe	Pro	Thr	_	Asn	Arg	Gln	Arg		Gly	Сув	Phe
	· •	195		-		_	200		_		_	205		_ •	
Arg		Pro	Met	Val	His		Thr	Phe	Leu	Ala		Leu	Arg	Ala	GIU
— 3 —	210	•	-1.	•		215	_			 1 _	220	3		m\	
_	ALA	Asp	GIN	ren		Pne	туг	PLO	Pro		PIO	ASII	Tyr	THE	240
225	Db.o		3 ~~	T1.	230	***	The s	21-	M	235	~	Cln	አገል	ת ה	
PIO	Pue	мар	Азр	245	116	val	Pne	MIG	250	MIG	cys	GIII	Ala	255	GLY
Val	Sar	Ta7	ui e		Cve	Aan	Gl 11	vi a		(Tear)	Glv	ጥረታት	Met		
vaı	Der	val	260	Val	Cys	ASII	GIU	265	AL 9	TYL	GIŢ	17.	270	re:	Val
Pro	Val	Twe		Hia	Gln	Glv	T.e.11	_	Agn	Glu	Ara	Val	Asn	Phe	Tle
	•	275				 1	280				5	285			
His	Leu		Leu	Glu	Ala	Leu		asa	Glv	Pro	Ara		Gln	Ala	Ser
	290					295			2		300				
Ala		Val	Thr	Ara	Pro		Lvs	Arq	Pro	Ser		Ile	Gly	Phe	Asp
305					310					315	•		•		320
	Val	Phe	Val	Ile		Leu	Ala	Arq	Arg		qeA	Arg	Arg	Glu	Arg
				325					330		-	-	-	335	J
Met	Leu	Ala	Ser	Leu	Trp	Glu	Met	Glu	Ile	Ser	Gly	Arg	Val	Val	Asp
			340		-			345			-	=	350		-

Ala	Val	qaA	Gly	Trp	Met	Leu	Asn	Ser	Ser	Ala	Ile	Arg	Asn	Leu	Gly
		355					360					365			
Val	Asp	Leu	Leu	Pro	Gly	Tyr	Gln	Asp	Pro	Tyr	Ser	Gly	Arg	Thr	Lev
	370					375					380				
Thr	Lys	Gly	Glu	Val	Gly	Сув	Phe	Leu	Ser	His	Tyr	Ser	Ile	Trp	G1v
385					390					395					400
Glu	Val	Val	Ala	Arg	Gly	Leu	Ala	Arg	Val	Leu	Val	Phe	Glu	Asp	Asp
				405					410					415	
Val	Arg	Phe	Glu	Ser	Asn	Phe	Arg	Gly	Arg	Leu	Glu	Arg	Leu	Met	Glu
			420					425					430		
Asp	Val	Glu	Ala	Glu	Lys	Leu	Ser	Trp	qaA	Leu	Ile	Tyr	Leu	Gly	Arg
		435					440					445			
Lys	Gln	Val	Asn	Pro	Glu	Lys	Glu	Thr	Ala	Val	Glu	Gly	Leu	Pro	Gly
	450					455					460				
Leu	Val	Val	Ala	Gly	Tyr	Ser	Tyr	Trp	Thr	Leu	Ala	Tyr	Ala	Leu	Arg
465					470					475					480
Leu	Ala	Gly	Ala	Arg	Lys	Leu	Leu	Ala	Ser	Gln	Pro	Leu	Arg	Arg	Met
				485					490					495	
Leu	Pro	Val	qaA	Glu	Phe	Leu	Pro	Ile	Met	Phe	Asp	Gln	His	Pro	Asn
			500					505					510		
Glu	Gln	Tyr	Lys	Ala	His	Phe	Trp	Pro	Arg	Asp	Leu	Val	Ala	Phe	Ser
		515					520					525			
Ala	Gln	Pro	Leu	Leu	Ala	Ala	Pro	Thr	His	Tyr	Ala	Gly	Asp	Ala	Glu
	530					535					540				
	Leu	Ser	Asp	Thr		Thr	Ser	Ser	Pro	Trp	Asp	Asp	Asp	Ser	
545					550					555					560
Arg	Leu	Ile	Ser	Trp	Ser	Gly	Ser	Gln	Lys	Thr	Leu	Arg	Ser	Pro	Arg
				565					570					575	
Leu	Asp	Leu		Gly	Ser	Ser	Gly	His	Ser	Leu	Gln	Pro	Gln	Pro	Arg
			580					585					590		
Asp	Glu														
		595													

<210> 6 <211> 264 WO 00/29448 PCT/JP99/06412

	• -														
<21	2> P	RT.													
<21	3> H		sapi	ens											
<40	0> 6														
Met	Val	Ala	Ser	Ala	Lys	Met	Gly	Arg	Ala	Gly	Thr	Met	Ala	Val	Ala
1				5					10					15	
Ala	Glu	Leu	Arg	Glu	Leu	Суз	Pro	Gly	Val	Asn	Asn	Gln	Pro	Tyr	Leu
			20					25					30		
Cys	Glu	Ser	Gly	His	Cys	Суз	Gly	Glu	Thr	Gly	Сув	Суз	Thr	Tyr	Tyr
-		35	-				40					45			
Tyr	Glu	Leu	Trp	Trp	Phe	Trp	Leu	Leu	Trp	Thr	Val	Leu	Ile	Leu	Phe
	50					55					60				•
Ser	Cys	Cys	Суз	Ala	Phe	Arg	His	Arg	Arg	Ala	Lys	Leu	Arg	Leu	Gln
65					70					75					80
Gln	Gln	Gln	Arg	Gln	Arg	Glu	Ile	Asn	Leu	Leu	Ala	Tyr	His	Gly	Ala
				85					90					95	
Суз	His	Gly	Ala	Gly	Pro	Phe	Pro	Thr	Gly	Ser	Leu	Leu	Asp	Leu	Arg
			100					105					110		
Phe	Leu	Ser	Thr	Phe	Lys	Pro	Pro	Ala	Tyr	Glu	qeA	Val	Val	His	Arg
		115					120					125			
Pro	Gly	Thr	Pro	Pro	Pro	Pro	Tyr	Thr	Val	Ala	Pro	Gly	Arg	Pro	Leu
	130					135					140				
Thr	Ala	Ser	Ser	Glu	Gln	Thr	Сув	Cys	Ser	Ser	Ser	Ser	Ser	Суз	Pro
145					150		,			155					160
Ala	His	Phe	Glu	Gly	Thr	Asn	Val	Glu	Gly	Val	Ser	Ser	His	Gln	Ser
				165			٠		170					175	
Ala	Pro	Pro	His	Gln	Glu	Gly	Glu	Pro	Gly	Ala	Gly	Val	Thr	Pro	Ala
			180					185					190		
Ser	Thr	Pro	Pro	Ser	Сув	Arg	Tyr	Arg	Arg	Leu	Thr	Gly	Asp	Ser	Gly
		195					200					205			
Ile	Glu	Leu	Суз	Pro	Сув	Pro	Ala	Ser	Gly	Glu	Gly	Glu	Pro	Val	Lys
	210					215					220				
Glu	Val	Arg	Val	Ser	Ala	Thr	Leu	Pro	Asp	Leu	Glu	Asp	Tyr	Ser	Pro
225					230					235					240
Суз	Ala	Leu	Pro	Pro	Glu	Ser	Val	Pro	Gln	Ile	Phe	Pro	Met	Gly	Leu
_				245					250					255	

Ser Ser Ser Glu Gly Asp Ile Pro 260

<210)> 7														
<21:	i> 3	43													
<212	2> P	RT													
<213	3> H		sapi	ens											
<400	> 7														
Met	Gln	Pro	Pro	Pro	Pro	Gly	Pro	Leu	Gly	Asp	Суз	Leu	Arg	Asp	Trp
1				5					10					15	
Glu	Asp	Leu	Gln	Gln	Asp	Phe	Gln	Asn	Ile	Gln	Glu	Thr	His	Arg	Leu
			20					25					30		
Tyr	Arg	Leu	Lys	Leu	Glu	Glu	Leu	Thr	Lys	Leu	Gln	Asn	Asn	Суз	Thr
		35					40					45			
Ser	Ser	Ile	Thr	Arg	Gln	Lys	ГЛЗ	Arg	Leu	Gln	Glu	Leu	Ala	Leu	Ala
	50					55					60				
Leu	Lys	Lys	Суз	Lys	Pro	Ser	Leu	Pro	Ala	Glu	Ala	Glu	Gly	Ala	Ala
65					70					75					80
Gln	Glu	Leu	Glu	Asn	Gln	Met	T.VS	Glu	Ara	Gln	Glv	Leu	Phe	Phe	GRA
					0111	1100					,				<u>-</u> -
			<u> </u>	85	G 231		772		90		<u>-</u>				
				85	Pro		_		90		_			95	
				85			_		90		_			95	
Met	Glu	Ala	Туг 100	85 Leu		Lys	Lys Leu	Asn 105	90 Gly	Leu	Tyr	Leu	Ser 110	95 Leu	Val
Met Leu	Glu Gly	Ala Asn 115	Tyr 100 Val	85 Leu Asn	Pro Val	Lys Thr	Lys Leu 120	Asn 105 Leu	90 Gly Ser	Leu Lys	Tyr Gln	Leu Ala 125	Ser 110 Lys	95 Leu Phe	Val Ala
Met Leu	Glu Gly	Ala Asn 115	Tyr 100 Val	85 Leu Asn	Pro	Lys Thr	Lys Leu 120	Asn 105 Leu	90 Gly Ser	Leu Lys	Tyr Gln	Leu Ala 125	Ser 110 Lys	95 Leu Phe	Val Ala
Met Leu Lyr	Glu Gly Lys 130	Ala Asn 115 Asp	Tyr 100 Val Glu	85 Leu Asn Tyr	Pro Val Glu	Lys Thr Lys 135	Lys Leu 120 Phe	Asn 105 Leu Lys	90 Gly Ser Leu	Leu Lys Tyr	Tyr Gln Leu 140	Leu Ala 125 Thr	Ser 110 Lys Ile	95 Leu Phe Ile	Val Ala Leu
Met Leu Lyr	Glu Gly Lys 130	Ala Asn 115 Asp	Tyr 100 Val Glu	85 Leu Asn Tyr	Pro Val	Lys Thr Lys 135	Lys Leu 120 Phe	Asn 105 Leu Lys	90 Gly Ser Leu	Leu Lys Tyr	Tyr Gln Leu 140	Leu Ala 125 Thr	Ser 110 Lys Ile	95 Leu Phe Ile	Val Ala Leu Thr
Met Leu Tyr Ile	Glu Gly Lys 130 Leu	Ala Asn 115 Asp	Tyr 100 Val Glu Ser	85 Leu Asn Tyr	Pro Val Glu Thr	Lys Thr Lys 135 Cys	Lys Leu 120 Phe	Asn 105 Leu Lys Phe	90 Gly Ser Leu	Leu Lys Tyr Leu 155	Tyr Gln Leu 140 Asn	Leu Ala 125 Thr	Ser 110 Lys Ile Arg	95 Leu Phe Ile Val	Val Ala Leu Thr 160
Met Leu Tyr Ile	Glu Gly Lys 130 Leu	Ala Asn 115 Asp	Tyr 100 Val Glu Ser	85 Leu Asn Tyr	Pro Val Glu Thr	Lys Thr Lys 135 Cys	Lys Leu 120 Phe	Asn 105 Leu Lys Phe	90 Gly Ser Leu	Leu Lys Tyr Leu 155	Tyr Gln Leu 140 Asn	Leu Ala 125 Thr	Ser 110 Lys Ile Arg	95 Leu Phe Ile Val	Val Ala Leu Thr
Met Leu Tyr Ile 1145	Glu Gly Lys 130 Leu Ala	Ala Asn 115 Asp Ile	Tyr 100 Val Glu Ser	85 Leu Asn Tyr Phe Asn 165	Pro Val Glu Thr 150 Phe	Lys Thr Lys 135 Cys	Lys Leu 120 Phe Arg	Asn 105 Leu Lys Phe Val	90 Gly Ser Leu Leu Trp 170	Leu Lys Tyr Leu 155 Tyr	Tyr Gln Leu 140 Asn	Leu Ala 125 Thr Ser	Ser 110 Lys Ile Arg	95 Leu Phe Ile Val Leu 175	Val Ala Leu Thr 160
Met Leu Tyr Ile 1145	Glu Gly Lys 130 Leu Ala	Ala Asn 115 Asp Ile	Tyr 100 Val Glu Ser	85 Leu Asn Tyr Phe Asn 165	Pro Val Glu Thr	Lys Thr Lys 135 Cys	Lys Leu 120 Phe Arg	Asn 105 Leu Lys Phe Val	90 Gly Ser Leu Leu Trp 170	Leu Lys Tyr Leu 155 Tyr	Tyr Gln Leu 140 Asn	Leu Ala 125 Thr Ser	Ser 110 Lys Ile Arg	95 Leu Phe Ile Val Leu 175	Val Ala Leu Thr 160
Met Leu Tyr Ile 1145 Asp	Glu Gly Lys 130 Leu Ala	Ala Asn 115 Asp Ile Ala Glu	Tyr 100 Val Glu Ser Phe Ser 180	85 Leu Asn Tyr Phe Asn 165 Ile	Pro Val Glu Thr 150 Phe	Lys Thr Lys 135 Cys Leu Ile	Lys Leu 120 Phe Arg Leu	Asn 105 Leu Lys Phe Val Asn 185	90 Gly Ser Leu Trp 170 Gly	Leu Lys Tyr Leu 155 Tyr	Tyr Gln Leu 140 Asn Tyr	Leu Ala 125 Thr Ser Cys	Ser 110 Lys Ile Arg Thr	95 Leu Phe Ile Val Leu 175 Gly	Val Ala Leu Thr 160 Thr
Met Leu Tyr Ile 1145 Asp	Glu Gly Lys 130 Leu Ala	Ala Asn 115 Asp Ile Ala Glu	Tyr 100 Val Glu Ser Phe Ser 180	85 Leu Asn Tyr Phe Asn 165 Ile	Pro Val Glu Thr 150 Phe	Lys Thr Lys 135 Cys Leu Ile	Lys Leu 120 Phe Arg Leu	Asn 105 Leu Lys Phe Val Asn 185	90 Gly Ser Leu Trp 170 Gly	Leu Lys Tyr Leu 155 Tyr	Tyr Gln Leu 140 Asn Tyr	Leu Ala 125 Thr Ser Cys	Ser 110 Lys Ile Arg Thr	95 Leu Phe Ile Val Leu 175 Gly	Val Ala Leu Thr 160 Thr
Met Leu Tyr Ile 1145 Asp	Glu Gly Lys 130 Leu Ala	Ala Asn 115 Asp Ile Ala Glu	Tyr 100 Val Glu Ser Phe Ser 180	85 Leu Asn Tyr Phe Asn 165 Ile	Pro Val Glu Thr 150 Phe	Lys Thr Lys 135 Cys Leu Ile	Lys Leu 120 Phe Arg Leu	Asn 105 Leu Lys Phe Val Asn 185	90 Gly Ser Leu Trp 170 Gly	Leu Lys Tyr Leu 155 Tyr	Tyr Gln Leu 140 Asn Tyr	Leu Ala 125 Thr Ser Cys	Ser 110 Lys Ile Arg Thr	95 Leu Phe Ile Val Leu 175 Gly	Val Ala Leu Thr 160 Thr

	210					215					220				
Ser	Phe	Ser	Met	Tyr	Gln	Ser	Phe	Val	Gln	Phe	Leu	Gln	Tyr	Tyr	Ту
225					230					235					240
Gln	Ser	Gly	Суз	Leu	Tyr	Arg	Leu	Arg	Ala	Leu	Gly	Glu	Arg	His	Thi
				245					250					255	
Met	Asp	Leu	Thr	Val	Glu	Gly	Phe	Gln	Ser	Trp	Met	Trp	Arg	Gly	Let
			260					265					270		
Thr	Phe	Leu	Leu	Pro	Phe	Leu	Phe	Phe	Gly	His	Phe	Trp	Gln	Leu	Phe
		275					280					285			
Asn	Ala	Leu	Thr	Leu	Phe	Asn	Leu	Ala	Gln	Asp	Pro	Gln	Суз	Lys	Glu
	290					295					300				
Trp	Gln	Val	Leu	Met	Сув	Gly	Phe	Pro	Phe	Leu	Leu	Leu	Phe	Leu	Gly
305					310					315					320
Asn	Phe	Phe	Thr	Thr	Leu	Arg	Val	Val	His	His	Lys	Phe	His	Ser	Glr
				325					330					335	
Arg	His	Gly	Ser	Lys	Lys	Asp									
			340												
	0> 8														
	1> 24														
<212	2> PI	CT.													
-01															
	3> Ho		sapie	ens											
<400	0> 8	omo s	-		D	T	*	01	•	*	**-1	T	¥	T	a h
<400 Met	0> 8	omo s	-	Val	Pro	Leu	Ĺeu	Gln		Leu	Val	Leu	Leu		Thr
<400 Met 1	8 <0 Asp	omo s	Leu	Val 5					10					15	
<400 Met 1	8 <0 Asp	omo s	Leu His	Val 5				Leu	10	Leu Cys			Pro	15	
<400 Met 1 Leu	0> 8 Asp Pro	Ile Leu	Leu His 20	Val 5 Leu	Met	Ala	Leu	Leu 25	10 Gly	Сув	Trp	Gln	Pro 30	15 Leu	Сув
<400 Met 1 Leu	0> 8 Asp Pro	Ile Leu Tyr	Leu His 20	Val 5 Leu	Met	Ala	Leu Met	Leu 25	10 Gly		Trp	Gln Pro	Pro 30	15 Leu	Сув
<400 Met 1 Leu Lys	0> 8 Asp Pro Ser	Ile Leu Tyr	Leu His 20 Phe	Val 5 Leu Pro	Met Tyr	Ala Leu	Leu Met 40	Leu 25 Ala	10 Gly Val	Cys Leu	Trp Thr	Gln Pro 45	Pro 30 Lys	15 Leu Ser	Cys Asn
<400 Met 1 Leu Lys	O> 8 Asp Pro Ser	Ile Leu Tyr	Leu His 20 Phe	Val 5 Leu Pro	Met Tyr	Ala Leu Lys	Leu Met 40	Leu 25 Ala	10 Gly Val	Сув	Trp Thr Ser	Gln Pro 45	Pro 30 Lys	15 Leu Ser	Cys Asn
<400 Met 1 Leu Lys	O> 8 Asp Pro Ser Lys 50	Ile Leu Tyr 35	Leu His 20 Phe Glu	Val 5 Leu Pro Ser	Met Tyr Lys	Ala Leu Lys 55	Leu Met 40 Arg	Leu 25 Ala Glu	10 Gly Val Leu	Cys Leu Phe	Trp Thr Ser 60	Gln Pro 45 Gln	Pro 30 Lys Ile	15 Leu Ser Lys	Cys Asn Gly
<400 Met 1 Leu Lys Arg	O> 8 Asp Pro Ser Lys 50	Ile Leu Tyr 35	Leu His 20 Phe Glu	Val 5 Leu Pro Ser	Met Tyr Lys Gly	Ala Leu Lys 55	Leu Met 40 Arg	Leu 25 Ala Glu	10 Gly Val Leu	Cys Leu Phe Leu	Trp Thr Ser 60	Gln Pro 45 Gln	Pro 30 Lys Ile	15 Leu Ser Lys	Cys Asn Gly Gly
<400 Met 1 Leu Lys Arg Leu 65	O> 8 Asp Pro Ser Lys 50 Thr	Ile Leu Tyr 35 Met	Leu His 20 Phe Glu	Val 5 Leu Pro Ser	Met Tyr Lys Gly 70	Ala Leu Lys 55 Lys	Leu Met 40 Arg Val	Leu 25 Ala Glu Ala	10 Gly Val Leu Leu	Cys Leu Phe	Trp Thr Ser 60 Glu	Gln Pro 45 Gln Leu	Pro 30 Lys Ile Gly	15 Leu Ser Lys Cys	Cys Asn Gly Gly 80

Leu	Asp	Pro	Asn	Pro	His	Phe	Glu	Lys	Phe	Leu	Thr	Lys	Ser	Met	Ala
			100					105					110)	
Glu	Asn	Arg	His	Leu	Gln	Tyr	Glu	Arg	Phe	Val	Val	Ala	Pro	Gly	Glu
		115					120					125			
Asp	Met	Arg	Gln	Leu	Ala	Asp	Gly	Ser	Met	Asp	Val	Val	Val	Суз	Thr
	130					135					140				
Leu	Val	Leu	Суз	Ser	Val	Gln	Ser	Pro	Arg	Lys	Val	Leu	Gln	Glu	Val
145					150					155					160
Arg	Arg	Val	Leu	Arg	Pro	Gly	Gly	Val	Leu	Phe	Phe	Trp	Glu	His	Val
				165					170					175	
Ala	Glu	Pro	Tyr	Gly	Ser	Trp	Ala	Phe	Met	Trp	Gln	Gln	Val	Phe	Glu
			180					185					190		
Pro	Thr	Trp	Lys	His	Ile	Gly	Asp	Gly	Cys	Суз	Leu	Thr	Arg	Glu	Thr
		195					200					205			
Trp	Lys	qeA	Leu	Glu	Asn	Ala	Gln	Phe	Ser	Glu	Ile	Gln	Met	Glu	Arg
	210					215					220				
Gln	Pro	Pro	Pro	Leu	Lys	Trp	Leu	Pro	Val	Gly	Pro	His	Ile	Met	Gly
225					230					235					240
Lys	Ala	Val	Lys												
<21	0> 9														
<21	1> 30)3													
	2> PF														
<21	3> Hc	a one	apie	ens											
<40	0> 9														
Met	Lys	Leu	Lys	Leu	Lys	Asn	Val	Phe	Leu	Ala	Tyr	Phe	Leu	Val	Ser
1				5					10					15	
T1 -	210	M1	T 011	T -11	m	3 1 -	T	**-7	~1~	Y	01. -	~1 ~	Dwe	A	A

Ile Ala Gly Leu Leu Tyr Ala Leu Val Gln Leu Gly Gln Pro Cys Asp

20
25
30

Cys Leu Pro Pro Leu Arg Ala Ala Ala Glu Gln Leu Arg Gln Lys Asp

35
40
45

Leu Arg Ile Ser Gln Leu Gln Ala Glu Leu Arg Arg Pro Pro Pro Ala

50
55
60

Pro Ala Gln Pro Pro Glu Pro Glu Ala Leu Pro Thr Ile Tyr Val Val

65					70					75					80
Thr	Pro	Thr	Tyr	Ala	Arg	Pro	Leu	Trp	Val	Gln	Tyr	Pro	Gln	Asp	Val
				85					90	•				95	
Thr	Thr	Phe	Asn	Ile	qaA	qaA	Gln	Tyr	Leu	Leu	Gly	qeA	Ala	Leu	Leu
			100					105					110		
Val	His	Pro	Val	Ser	qaA	Ser	Gly	Ala	His	Gly	Val	Gln	Val	Tyr	Leu
		115					120					125			
Pro	Gly	Gln	Gly	Glu	Val	Trp	Tyr	Asp	Ile	Gln	Ser	Tyr	Gln	Lys	His
	130					135					140				
His	Gly	Pro	Gln	Thr	Leu	Tyr	Leu	Pro	Val	Thr	Leu	Ser	Ser	Ile	Pro
145					150					155					160
Val	Phe	Gln	Arg	Gly	Gly	Thr	Ile	Val	Pro	Arg	Trp	Met	Arg	Val	Arg
				165					170					175	
Arg	Ser	Ser	Glu	Сув	Met	Lys	Asp	Asp	Pro	Ile	Thr	Leu	Phe	Val	Ala
			180					185					190		
Leu	Ser	Pro	Gln	Gly	Thr	Ala	Gln	Gly	Glu	Leu	Phe	Leu	Asp	qeA	Gly
		195					200					205			
His		Phe	Asn	Tyr	Gln		Arg	Gln	Glu	Phe	Leu	Leu	Arg	Arg	Phe
	210					215					220				
Ser	Phe	Ser	Gly	Asn		Leu	Val	Ser	Ser	Ser	Ala	Asp	Pro	Glu	
225					230					235					240
His	Phe	Glu	Thr		Ile	Trp	Ile	Glu	-	Val	Val	Ile	Ile	_	Ala
				245		,			250					255	
Gly	Lys	Pro		Ala	Val	Val	Leu		Thr	Lys	Gly	Ser		Glu	Ser
			260		_			265			_		270		
Arg	Leu		Phe	Gln	His	Asp		Glu	Thr	Ser	Val		Val	Leu	Arg
	_	275		_			280	_	_	_		285	_	_	
Lys		Gly	Ile	Asn	Val		Ser	Asp	Trp	Ser		His	Leu	Arg	
	290					295					300				

<210> 10

<211> 160

<212> PRT

<213> Homo sapiens

<400> 10

Met	Asp	Lys	Leu	Lys	Lys	Val	Leu	Ser	Gly	Gln	Asp	Thr	Glu	Asp	Arg	
1				5					10					15		•
Ser	Gly	Leu	Ser	Glu	Val	Val	Glu	Ala	Ser	Ser	Leu	Ser	Trp	Ser	Thr	
			20					25					30			
Arg	Ile	Lys	Gly	Phe	Ile	Ala	Суз	Phe	Ala	Ile	Gly	Ile	Leu	Сла	Ser	
		35					40					45				
Leu	Leu	Gly	Thr	Val	Leu	Leu	Trp	Val	Pro	Arg	Lys	Gly	Leu	His	Leu	
	50					55					60					
Phe	Ala	Val	Phe	Tyr	Thr	Phe	Gly	Asn	Ile	Ala	Ser	Ile	Gly	Ser	Thr	
65					70					75					80	
Ile	Phe	Leu	Met	Gly	Pro	Val	Lys	Gln	Leu	Lys	Arg	Met	Phe	Glu	Pro	
				85					90					95		
Thr	Arg	Leu	Ile	Ala	Thr	Ile	Met	Val	Leu	Leu	Cys	Phe	Ala	Leu	Thr	
			100					105					110			
Leu	Суз	Ser	Ala	Phe	Trp	Trp	His	Asn	Lys	Gly	Leu	Ala	Leu	Ile	Phe	
		115					120					125				
Cys		Leu	Gln	Ser	Leu	Ala	Leu	Thr	Trp	Tyr	Ser	Leu	Ser	Phe	Ile	
	130					135					140					
	Phe	Ala	Arg	Asp		Val	Lys	Lys	Cys	Phe	Ala	Val	Суз	Leu		
145					150					155					160	
)> 13															
	l> 19															
	2> D1															
			sapie	ens												
)> 11															•
						•	_								gggaa	
						_	-						_	_	gtggc	
															tttgg	
															caggc	
					_				_						ggcag	
															tetee	
															gccac	
															tgcag 	
tgtt	cege	rcg e	igctc	aagt	ct ct	rcct	gtgc	: TCC	eatgt	acg	cgcc	cgtg	τg c	accg	tgcta	540

gageaggege tgeegecetg cegetecetg tgegagegeg egegeeaggg etgegaggeg

ctcatgaaca agttcggctt ccagtggcca gacacgctca agtgtgagaa gttcccggtg

16/233

600

660

cacggcgccg	gcgagctgtg	cgtgggccag	aacacgtccg	acaagggcac	cccgacgccc	720
togotgotto	cagagttctg	gaccagcaac	cctcagcacg	gcggcggagg	gcaccgtggc	780
ggcttcccgg	ggggegeegg	cgcgtcggag	cgaggcaagt	teteetgeee	gegegeeete	840
aaggtgccct	cctacctcaa	ctaccacttc	ctgggggaga	aggactgcgg	cgcaccttgt	900
gagccgacca	aggtgtatgg	gctcatgtac	ttegggeeeg	aggagetgeg	cttctcgcgc	960
acctggattg	gcatttggtc	agtgctgtgc	tgcgcctcca	egetetteae	ggtgcttacg	1020
tacctggtgg	acatgcggcg	cttcagctac	ceggagegge	ccatcatctt	cttgtccggc	1080
tgttacacgg	ccgtggccgt	ggcctacatc	geeggettee	tectggaaga	ccgagtggtg	1140
tgtaatgaca	agttcgccga	ggacggggca	cgcactgtgg	cgcagggcac	caagaaggag	1200
ggctgcacca	tcctcttcat	gatgetetae	ttcttcagca	tggccagctc	catctggtgg	1260
gtgatcctgt	cgctcacctg	gtteetggeg	gctggcatga	agtggggcca	cgaggccatc	1320
gaagccaact	cacagtattt	tcacctggcc	geetgggetg	tgccggccat	caagaccatc	1380
accatcctgg	cgctgggcca	ggtggacggc	gatgtgctga	geggagtgtg	cttcgtgggg	1440
cttaacaacg	tggacgcgct	gegtggette	gtgctggcgc	ccctcttcgt	gtacctgttt	1500
ateggeaegt	cctttctgct	ggccggcttt	gtgtcgctct	tecgcatecg	caccatcatg	1560
aagcacgatg	gcaccaagac	cgagaagctg	gagaagetea	tggtgcgcat	tggcgtcttc	1620
agegtgetgt	acactgtgcc	agccaccatc	gtcatcgcct	gctacttcta	cgagcaggcc	1680
ttccgggacc	agtgggaacg	cagctgggtg	gcccagagct	gcaagagcta	cgctatcccc	1740
tgccctcacc	tecaggeggg	cggaggcgcc	ccgccgcacc	cgcccatgag	cccggacttc	1800
acggtettea	tgattaagta	ccttatgacg	ctgatcgtgg	gcatcacgtc	gggcttctgg	1860
atctggtccg	gcaagaccct	caactcctgg	aggaagttct	acacgaggct	caccaacagc	1920
aaacaagggg	agactacagt	C				1941
<210> 12						
<211> 1050		•				
<212> DNA						
<213> Homo	sapiens					
<400> 12						
atgcaccctg	cagccttccc	gatteatgtg	gttgtggccg	ctgtgctgtg	gggageggee	60
ccgacccggg	ggctcattcg	agegaeeteg	gaccacaatg	ccagcatgga	ctttgcagac	120
cttccagctc	tgtttggggc	taccttgage	caggagggcc	tecaggggtt	ccttgtggag	180
gctcacccag	acaatgcctg	cagccccatt	gccccaccac	cccagcccc	ggtcaatggg	240
tcagtcttta	ttgcgctgct	tcgaagattc	gactgcaact	ttgacctcaa	ggtcctaaat	300

gcccagaagg	ctggatatgg	tgccgctgta	gtacacaatg	tgaattccaa	tgaacttetg	360
aacatggtgt	ggaatagtga	ggaaatccag	cagcagatct	ggatcccgtc	tgtatttatt	420
ggggagagaa	gctccgagta	cetgegtgee	ctctttgtct	acgagaaggg	ggetegggtg	480
cttctggttc	cagacaatac	cttccccttg	ggctattacc	tcatcccttt	cacagggatt	540
gtgggactgc	tggttttggc	catgggagca	gtaatgatag	ctcgttgtat	ccagcaccgg	600
aaacggctcc	agcggaatcg	acttaccaaa	gagcaactga	aacagattcc	tacacatgac	660
tatcagaagg	gagaccagta	tgatgtctgt	gccatttgcc	tggatgaata	tgaggatggg	720
gacaagctgc	gggtactccc	ctgtgctcat	gcctaccaca	geegetgegt	ggacccctgg	780
ctcactcaga	cccggaagac	ctgccccatt	tgcaagcagc	ctgttcatcg	gggteetggg	840
gacgaagacc	aagaggaaga	aactcaaggg	caagaggagg	gtgatgaagg	ggagccaagg	900
gaccaccctg	cctcagaaag	gaccccactt	ttgggttcta	geceeactet	teceacetee	960
tttggttcct	tagececage	teceettgtt	ttteetggge	cttcaacaga	tececeactg	1020
tecetecet	cttcccctgt	tatectggte				1050
<210> 13						
-0.200						
<211> 618						
<211> 618	sapiens					
<211> 618 <212> DNA	sapiens					
<211> 618 <212> DNA <213> Homo <400> 13	sapiens gtcagcccca	ggcctggttg	ctgggtctgc	ccacagctgt	ggtctatggc	60
<211> 618 <212> DNA <213> Homo <400> 13 atggggctgg						60 120
<211> 618 <212> DNA <213> Homo <400> 13 atggggctgg tccctggctc	gtcagcccca	catcetgeac	aatgtettee	tgctctacta	tgtggacacc	
<211> 618 <212> DNA <213> Homo <400> 13 atggggctgg tccctggctc tttgtctcag	gtcagcccca tcttcaccac	catcctgcac caacaaaatg	aatgtettee geettetggg	tgctctacta tcggagagac	tgtggacacc agtgtttctc	120
<211> 618 <212> DNA <213> Homo <400> 13 atggggctgg tccctggctc tttgtctcag ctctggaaca	gtcageccca tettcaccac tgtacaagat	catcetgeae caacaaaatg ceceetette	aatgtettee geettetggg ggttggetea	tgetetaeta teggagagae gtgaeeggea	tgtggacacc agtgtttctc gttcctcagc	120 180
<211> 618 <212> DNA <213> Homo <400> 13 atggggetgg teectggete tttgteteag etetggaaca teecageece	gtcagcccca tcttcaccac tgtacaagat gcctcaatga	catectgeac caacaaaatg cccctcttc tctaccctgg	aatgtettee geettetggg ggttggetea ettggettgg	tgetetaeta teggagagae gtgaeeggea ttggeeecte	tgtggacacc agtgtttctc gttcctcagc tggactgtgg	120 180 240
<211> 618 <212> DNA <213> Homo <400> 13 atggggctgg tecetggetc tttgtctcag ctctggaaca tcccagcccc actgcaaaca	gtcagccca tcttcaccac tgtacaagat gcctcaatga ggggaagaga	catectgeae caacaaaatg ceceetette tetaecetgg cttetggaag	aatgtettee geettetggg ggttggetea ettggettgg	tgetetaeta teggagagae gtgaeeggea ttggeeeete eecateeetg	tgtggacacc agtgtttctc gttcctcagc tggactgtgg cttgagcccg	120 180 240 300
<211> 618 <212> DNA <213> Homo <400> 13 atggggetgg teeetggete tttgteteag etetggaaca teeeageeee actgeaaaca teateaceee	gtcagcccca tcttcaccac tgtacaagat gcctcaatga ggggaagaga ccctctgctg	catectgeae caacaaaatg cecectette tetaecetgg ettetggaag aagtgggeat	aatgtettee geettetggg ggttggetea ettggettgg	tgctctacta tcggagagac gtgaccggca ttggcccctc cccatccctg ttggccatca	tgtggacacc agtgtttctc gttcctcagc tggactgtgg cttgagcccg gcccaacagg	120 180 240 300 360
<211> 618 <212> DNA <213> Homo <400> 13 atggggctgg tccctggctc tttgtctcag ctctggaaca tcccagcccc actgcaaaca tcatcacccc ctaataaggg	gtcagccca tcttcaccac tgtacaagat gcctcaatga ggggaagaga ccctctgctg caaccttgag	catectgeae caacaaaatg ceeeetette tetaeeetgg cttetggaag aagtgggeat ggggeagagg	aatgtettee geettetggg ggttggetea ettggettgg	tgctctacta tcggagagac gtgaccggca ttggcccctc cccatccctg ttggccatca acccactggt	tgtggacacc agtgtttete gtteeteage tggaetgtgg ettgageeeg geceaacagg eaggegeegg	120 180 240 300 360 420

618

<210> 14

<211> 639

<212> DNA

<213> Homo sapiens

gctgtgcctg tgcctcta

<400> 14 60 atgcactatt atagatactc taacgccaag gtcagctgct ggtacaagta cctccttttc 120 agetacaaca teatettetg gttggetgga gttgtettee ttggagtegg getgtgggea 180 tggagegaaa agggtgtget gteegaeete aecaaagtga ceeggatgea tggaategae cetgtggtge tggtcetgat ggtgggcgtg gtgatgttea ceetggggtt cgeeggetge 240 gtgggggctc tgcgggagaa tatctgcttg ctcaacttta accagtgctg tggcgcatat 300 ggccctgaag actgggacct caacgtctac ttcaattgca gcggtgccag ctacagccga 360 gagaagtgeg gggteeeett eteetgetge gtgeeagate etgegeaaaa agttgtgaae 420 480 acacagtgtg gatatgatgt caggattcag ctgaagagca agtgggatga gtccatcttc acgaaagget geateeagge getggaaage tggeteeege ggaacattta cattgtgget 540 600 ggcgtcttca tcgccatctc gctgttgcag atatttggca tcttcctggc aaggacgctg 639 atctcagaca tcgaggcagt gaaggccggc catcacttc <210> 15 <211> 1785 <212> DNA <213> Homo sapiens <400> 15 atgegegetg eccgegeege geogetgete eagetgetge teetgetggg geogtggetg 60 120 gaggetgegg gegttgegga gtegeegetg ceegeegtgg teettgeeat eetggeeege 180 aatgoogaac actogotgoo coactacotg ggogototgg ageggotgga otaccoogg 240 gecaggatgg coctetggtg tgccacggac cacaatgtgg acaacaccac agagatgctg 300 caggagtggc tggcggctgt gggcgatgac tatgctgctg tggtctggag gcctgagggc 360 gageceaggt tetacecaga tgaagagggt eccaageact ggaceaaaga aaggeaceag 420 tttctgatgg agctgaagca ggaagccctc acctttgcca ggaactgggg ggccgactat 480 atcotgtttg cagacacaga caacattotg accaacaatc agactotgcg gottotcatg gggcaggggc ttccagtggt ggccccaatg ctggactccc agacctacta ctccaacttc 540 tggtgtggga tcaccccca gggctactac cgccgcacag ccgagtactt ccccaccaag 600 aaccgccagc gccggggctg cttccgtgtc cccatggtcc actccacctt ccttgcatcc 660 etgegggetg aaggggeaga ceagettget ttetaceege cacateecaa etacaettgg 720 780 cetttegacg acateategt ettegeetat geetgeeagg etgetggggt eteegteeac 840 gtgtgcaatg agcaccgtta tgggtacatg aatgtgccgg tgaaatccca ccaggggctg gaagacgaga gggtcaactt catccacctg atcttagaag cactagtgga cggccccgc 900 960 atgcaggeet cageteatgt gaeteggeee tetaagagge eeageaagat agggtttgae

gaggtetttg teateageet ggetegeagg cetgacegte gggaacgeat getegeeteg

1020

ctctgggaga tggagatctc tgggagg	gtg gtggacgctg tggatggctg gatgctcaac 10	80
agcagtgeca teaggaacet eggegta	gac ctgctcccgg gctaccagga cccttactcg 11	40
ggccgcactc tgaccaaggg cgaggtg	gge tgetteetea gecattaete catetgggaa 12	00
gaggtggttg ccaggggcct ggcccgg	gtc ctggtgtttg aggatgacgt gcgctttgag 12	60
agcaacttca gggggcggct ggagcgg	ctg atggaggatg tggaggcaga gaaactgtct 13	20
tgggacetga tetacetegg aeggaag	cag gtgaaccetg agaaggagac ggccgtggag 130	80
gggetgeegg geetggtggt ggetggg	tac tectactgga egetggeeta tgecetgegt 14	40
etggegggtg ceegeaaget getggee	tca cagoctotgo googoatgot gooogtggac 150	00
gagtteetge ceateatgtt egaecag	cae eccaaegage agtacaagge acaettetgg 150	60
ccacgggacc tggtggcctt ctccgcc	cag eccetgeteg etgeceetae ecaetatgee 162	20
ggggacgccg agtggctcag tgacacg	gag acatectete catgggatga tgacagegge 168	B0
cgcctcatca gctggagcgg ctcccaa	aag accetgegea geeceegeet ggacetgaet 174	40
ggcagcageg ggcacagect ccaacco	cag ceeegagatg agete 178	8 5
	•	
<210> 16		
<211> 792		
<212> DNA		
<212> DNA <213> Homo sapiens		
<213> Homo sapiens <400> 16	gca gggaccatgg cggtggcagc agagcttcga 6	50
<213> Homo sapiens <400> 16 atggtggeet cagegaagat gggeegg	gca gggaccatgg cggtggcagc agagcttcga 6 ccc tacctctgtg agagtggtca ctgctgcggg 12	
<213> Homo sapiens <400> 16 atggtggeet cagegaagat gggeegg gagetgtgee caggagtgaa caaccag	, ,	20
<213> Homo sapiens <400> 16 atggtggeet cagegaagat gggeegg gagetgtgee caggagtgaa caaccag gagactgget getgeaceta etaetat	cec tacctetgtg agagtggtca ctgctgcggg 12	20 30
<213> Homo sapiens <400> 16 atggtggeet cagegaagat gggeegg gagetgtgee caggagtgaa caaceag gagaetgget getgeaceta etaetat eteateetet ttagetgetg ttgegee	cec tacctetgtg agagtggtea etgetgeggg 12 gag etetggtggt tetggetget etggaetgte 18	20 30 10
<213> Homo sapiens <400> 16 atggtggcet cagcgaagat gggccgg gagctgtgcc caggagtgaa caaccag gagactggct gctgcaccta ctactat ctcatcctct ttagctgctg ttgcgcc caacagcagc ggcagcgtga aatcaac	ccc tacctctgtg agagtggtca ctgctgcggg gag ctctggtggt tctggctgct ctggactgtc ttc cgccaccgac gagctaaact caggctgcaa 24	20 30 10
<213> Homo sapiens <400> 16 atggtggeet cagegaagat gggeegg gagetgtgee caggagtgaa caaceag gagactgget getgeaceta etaetat eteateetet ttagetgetg ttgegee caacagcage ggeagegtga aateaac ggteetttee etaeeggtte aetgett	cec tacetetgtg agagtggtea etgetgeggg gag etetggtggt tetggetget etggaetgte tte egecacegae gagetaaaet eaggetgeaa 24 ttg ttggeetate atggggeatg ceatgggget 30	20 30 10 50
<213> Homo sapiens <400> 16 atggtggeet cagegaagat gggeegg gagetgtgee caggagtgaa caaceag gagaetgget getgeaceta etaetat eteateetet ttagetgetg ttgegee caacageage ggeagegtga aateaac ggteetttee etaeeggtte aetgett geetaegagg atgtggttea eegeeca	cee tacetetgtg agagtggtea etgetgeggg gag etetggtggt tetggetget etggaetgte tte egecacegae gagetaaaet eaggetgeaa 24 ttg ttggeetate atggggeatg ceatgggget gae ettegettee teageacett eaageeecea 36	20 30 10 00 50
<213> Homo sapiens <400> 16 atggtggeet cagegaagat gggeegg gagetgtgee caggagtgaa caaceag gagactgget getgeaceta etaetat eteateetet ttagetgetg ttgegee caacagcage ggeagegtga aateaac ggteetttee ctaeeggtte aetgett geetaegagg atgtggttea eegeeca ggeegeecet tgaetgette cagtgaa	gag ctctggtggt tctggctgct ctggactgtc ttc cgccaccgac gagctaaact caggctgcaa ttg ttggcctatc atggggcatg ccatggggct gac cttcgcttcc tcagcacctt caagccccca 36 36 36 36 36 37 38 38 39 38 38 38 38 38 38 38	20 30 10 00 50 20
<213> Homo sapiens <400> 16 atggtggeet cagegaagat gggeegg gagetgtgee caggagtgaa caaccag gagaetgget getgeaceta etaetat eteateetet ttagetgetg ttgegee caacageage ggeagegtga aateaac ggteetttee etaeeggtte aetgett geetaegagg atgtggttea eegeeca ggeegeeeet tgaetgette cagtgaa geecaetttg aaggaacaaa tgtggaa	gag ctctggtggt tctggctgct ctggactgtc ttc cgccaccgac gagctaaact caggctgcaa ttg ttggcctatc atggggcatg ccatggggct gac cttcgcttcc tcagcacctt caagccccca ggc acaccaccc cccttatac tgtggccca tagaa acctgctgtt cctcctcatc cagctgccct 48	20 30 10 00 50 20 30
<213> Homo sapiens <400> 16 atggtggeet cagegaagat gggeegg gagetgtgee caggagtgaa caaccag gagactgget getgeaceta etaetat eteateetet ttagetgetg ttgegee caacagcage ggeagegtga aateaac ggteetttee etaeeggtte aetgett geetaegagg atgtggttea eegeeca ggeegeecet tgactgette cagtgaa geecactttg aaggaacaaa tgtggaa caggagggtg ageegggge aggggtg	cee tacetetgtg agagtggtea etgetgeggg gag etetggtggt tetggetget etggaetgte tte egecacegae gagetaaaet eaggetgeaa ttg ttggeetate atggggeatg ceatgggget gae ettegettee teageacett eaageeeeea gge acaceacece eceettatae tgtggeeeea ggt gttteeteee accagagtge eeeeeeeat 54	20 30 40 40 50 20 30
<213> Homo sapiens <400> 16 atggtggeet cagegaagat gggeegg gagetgtgee caggagtgaa caaccag gagaetgget getgeaceta etaetat eteateetet ttagetgetg ttgegee caacageage ggeagegtga aateaac ggteetttee etaeeggtte aetgett geetaegagg atgtggtea eegeeaa ggeegeeet tgaetgette eagtgaa geeeactttg aaggaacaaa tgtggaa caggagggtg ageeggge aggggtg egeegttaa etggegaete eggtatt	gag ctctggtggt tctggctgct ctggactgtc ttc cgccaccgac gagctaaact caggctgcaa ttg ttggcctatc atggggcatg ccatggggct gac cttcgcttcc tcagcacctt caagccccca ggc acaccaccc ccccttatac tgtggcccca tggt gtttcctccc accagagtgc cccccccat tacc cctgcctcca cacccccct ctgccgctat	20 30 40 50 20 30 40
<213> Homo sapiens <400> 16 atggtggeet cagegaagat gggeeggggagetgtgee caggagtgaa caaceagggagetggeetggeetggggggggggggggggg	cee tacetetgtg agagtggtea etgetgeggg gag etetggtggt tetggetget etggaetgte tte egecacegae gagetaaaet eaggetgeaa ttg ttggeetate atggggeatg ceatgggget gae ettegettee teageacett eaageeceea gge acaceacece eceettatae tgtggeecea eaa acetgetgtt eeteeteate eagetgeect ggt gttteeteee aceagagtge eeeeeeeat ace eetgeetea eaeeeeeete etgeegetat gag etetgeeett gteetgeete eggtgagggt 66	220 330 40 40 50 20 30 40

792

ggggacatcc ca

<211> 1029	
<212> DNA	
<213> Homo sapiens	
<400> 17	
atgeageece egeceeeggg ecegetggge gaetgeetge gggaetggga ggatetaeag	60
caggacttcc agaacatcca ggagacccat cggctctacc gcctgaagct ggaggagctg	120
accamactic agamcamitig caccagetee mtemogegge agamgamageg getecaggag	180
ctggcccteg ccctgaagaa atgcaaaccc tccctcccag cagaggccga gggggccgca	240
caggagctgg agaaccagat gaaagagcgc caaggcctct tetttgacat ggaggcctat	300
ttgcctaaga agaatggatt gtacctgage ctggttetgg ggaacgtcaa cgtcacgete	360
ctgagcaagc aggctaagtt tgcctacaag gacgagtatg agaagttcaa gctctacctc	420
accateatec teatecteat etectteact tgeegettee tgeteaacte cagggtgaca	480
gatgetgeet teaactteet getggtetgg tactactgea ceetgaccat eegggagage	540
atceteatea acaacggete eeggateaaa ggetggtggg tgtteeatea etaegtgtee	600
acottectgt egggagteat getgaegtgg eeegaeggte teatgtacea gaaatteegg	660
aaccaattcc teteetttte catgtaccag agettegtge agttteteea gtactactae	720
cagagogget geetetaceg eetgegggeg etgggegage ggeacaccat ggaceteact	780
gtggaggget tecagtectg gatgtggegg ggeeteacet teetgetgee ttttetttte	840
tttggacact tctggcagct ttttaacgcg ctgacgttgt tcaacctggc ccaggaccct	900
cagtgcaagg agtggcaggt gettatgtgc ggettteeet teeteeteet ttteetegge	960
aatttettea ceaccetgag ggttgtgeac cacaagttte acagtcageg geacgggage	1020
aagaaggat	1029
<210> 18	
<211> 732	
<212> DNA	
<213> Homo sapiens	
<400> 18	
atggacatee tggteceact cetgeagetg etggtgetge ttettaceet geceetgeac	60
ctcatggctc tgctgggctg ctggcagccc ctgtgcaaaa gctacttccc ctacctgatg	120
gccgtgctga ctcccaagag caaccgcaag atggagagca agaaacggga gctcttcagc	180
cagataaagg ggettacagg agceteeggg aaagtggeee tactggaget gggetgegga	240
accggageca acttteagtt ctacceaccg ggetgeaggg teacetgeet agaeceaaat	300
occcactttg agaagtteet gacaaagage atggetgaga acaggeacet ccaatatgag	360
eggtttgtgg tggctcctgg agaggacatg agacagctgg etgatggete catggatgtg	420

gtggtctgca	ctctggtgct	gtgctctgtg	cagagcccaa	ggaaggtcct	gcaggaggtc	480
cggagagtac	tgagaccggg	aggtgtgctc	tttttctggg	agcatgtggc	agaaccatat	540
ggaagctggg	ccttcatgtg	gcagcaagtt	ttcgagccca	cctggaaaca	cattggggat	600
ggctgctgcc	tcaccagaga	gacctggaag	gatcttgaga	acgcccagtt	ctccgaaatc	660
caaatggaac	gacageceec	tcccttgaag	tggctacctg	ttgggcccca	catcatggga	720
aaggctgtca	aa					732
<210> 19						
<211> 909						
<212> DNA						
<213> Homo	sapiens					
<400> 19						
atgaagctga	agctgaagaa	cgtgtttctc	gcctacttcc	tggtgtcgat	cgccggcctc	60
ctctacgcgc	tggtacagct	cggccagcca	tgtgactgcc	ttcctcccct	gcgggcagca	120
geegageage	tacggcagaa	ggatetgagg	atttcccagc	tgcaagcgga	acteegaegg	180
ccaccccctg	ccctgccca	gccccctgaa	cccgaggccc	tgcctactat	ctatgttgtt	240
acccccacct	atgccaggcc	cctgtgggtg	cagtaccctc	aggatgtgac	taccttcaat	300
atagatgatc	agtacttgct	tggggatgcg	ttgctggttc	accetgtate	agactctgga	360
gcccatggtg	tccaggtcta	tetgeetgge	caaggggagg	tgtggtatga	cattcaaagc	420
taccagaage	atcatggtcc	ccagaccctg	tacctgcctg	taactctaag	cagtatccct	480
gtgttccagc	gtggagggac	aatcgtgcct	cgatggatgc	gagtgcggcg	gtcttcagaa	540
tgtatgaagg	atgaccccat	cactctcttt	gttgcactta	gccctcaggg	tacageteaa	600
ggagagctct	ttctggatga	tgggcacacg	ttcaactatc	agactcgcca	agagttcctg	660
ctgcgtcgat	teteattete	tggcaacacc	cttgtctcca	gctcagcaga	ccctgaagga	720
cactttgaga	caccaatctg	gattgagcgg	gtggtgataa	taggggctgg	aaagccagca	780
gctgtggtac	tccagacaaa	aggateteca	gaaagccgcc	tgtccttcca	gcatgaccct	840
gagacctctg	tgttggtcct	gcgcaagcct	ggcatcaatg	tggcatctga	ttggagtatt	900
cacctgcga						909
<210> 20						
<211> 480						
<212> DNA						
<213> Homo	sapiens					
<400> 20						
atggacaagc	tgaagaaggt	gctgagcggg	caggacacgg	aggaccggag	eggeetgtee	60

gaggeegeeg	aggeatette	attaagctgg	, agtaccagga	taaaaggctt	cattgcgtgt	120
tttgctatag	gaattetete	g ctcactgctg	ggtactgttc	tgctgtgggt	gcccaggaag	180
ggactacacc	tcttcgcagt	gttttatacc	tttggtaata	tcgcatcaat	tgggagtacc	240
atcttcctca	tgggaccagt	gaaacagctg	aagcgaatgt	ttgagcctac	tegtttgatt	300
gcaactatca	tggtgctgtt	gtgttttgca	cttaccctgt	gttctgcctt	ttggtggcat	360
aacaagggac	ttgcacttat	cttctgcatt	ttgcagtctt	tggcattgac	gtggtacagc	420
ctttccttca	taccatttgo	aagggatget	. gtgaagaagt	gttttgccgt	gtgtcttgca	480
<210> 21						
<211> 4485						
<212> DNA						
<213> Homo	sapiens					
<220>						
<221> CDS						
<222> (189)	(2132)					
<400> 21						•
gaatcgcaag	tttccgcggc	ggeggegget	gcggtacgca	gaacaggagc	cgggggagcg	60
ggccgaaagc	aacttaaact	CUBCGGBGGG	anaaaaaa			100
	33333	. 03409999	caceegegea	gaggteteee	cggeegeagg	120
			ccccagcgga			180
gggageegee gagaaagt at	geeggeegtg g get gag	cccctggcag gag gag gcg	ccccagcgga	geggegeeaa g tee egg ge	gagaggagce ec gec gge	
gggageegee gagaaagt at Me	geeggeegtg g get gag t Ala Glu	cccctggcag gag gag gcg	ccccagcgga	geggegeeaa g tee egg ge	gagaggagce ec gec gge	180
gggageegee gagaaagt at Me	geeggeegtg g get gag t Ala Glu 1	cccctggcag gag gag gcg Glu Glu Ala 5	ccccagcgga cct aag aag Pro Lys Lys	geggegeeaa g tee egg ge s Ser Arg Al	gagaggagee ee gee gge a Ala Gly	180 230
gggageegee gagaaagt at Me ggt gge geg	geeggeegtg g get gag t Ala Glu 1 age tgg g	cccctggcag gag gag gcg Glu Glu Ala 5 aa ctt tgt	ccccagcgga cct aag aag Pro Lys Lys	geggegeeaa g tee egg ge a Ser Arg Al 10 ete teg gee	gagaggagec e gec gge a Ala Gly e egg etg	180
gggageegee gagaaagt at Me ggt gge geg Gly Gly Ala	geeggeegtg g get gag t Ala Glu l age tgg g Ser Trp G	cccctggcag gag gag gcg Glu Glu Ala 5 aa ctt tgt (lu Leu Cys)	ccccagcgga cct aag aag Pro Lys Lys	geggegeeaa g tee egg ge a Ser Arg Al 10 ete teg gee	gagaggagee e gee gge a Ala Gly e egg etg	180 230
gggageegee gagaaagt at Me ggt gge geg Gly Gly Ala 15	geeggeegtg g get gag t Ala Glu l age tgg g Ser Trp G	gag gag gcg Glu Glu Ala 5 aa ctt tgt d lu Leu Cys 2	ccccagcgga cct aag aag Pro Lys Lys gcc ggg gcg Ala Gly Ala 25	geggegeeaa g tee egg ge s Ser Arg Al 10 ete teg gee Leu Ser Ala	gagaggagee ee gee gge a Ala Gly eegg etg Arg Leu 30	180 230 278
gggageegee gagaaagt at Me ggt gge geg Gly Gly Ala 15 aeg gag gag	geeggeegtg g get gag t Ala Glu l age tgg g Ser Trp G	gag gag gcg Glu Glu Ala 5 aa ctt tgt lu Leu Cys 2 20 gg gac gcc	ccccagegga cct aag aag Pro Lys Lys gcc ggg gcg Ala Gly Ala 25 ggt ggc egc	geggegeeaa g tee egg ge g Ser Arg Al 10 cte teg gee Leu Ser Ala	gagaggagee ee gee gge a Ala Gly eegg etg Arg Leu 30 eeea gtt	180 230
gggageegee gagaaagt at Me ggt gge geg Gly Gly Ala 15 aeg gag gag	geeggeegtg g get gag t Ala Glu l age tgg g Ser Trp G gge age g	gag gag gcg Glu Glu Ala 5 aa ctt tgt lu Leu Cys 2 20 gg gac gcc	ccccagcgga cct aag aag Pro Lys Lys gcc ggg gcg Ala Gly Ala 25	geggegeeaa g tee egg ge g Ser Arg Al 10 cte teg gee Leu Ser Ala	gagaggagee c gee gge a Ala Gly cegg etg Arg Leu 30 cea gtt	180 230 278
gggageegee gagaaagt at Mer ggt gge geg Gly Gly Ala 15 aeg gag gag Thr Glu Glu	gecggeegtg g get gag t Ala Glu 1 age tgg g Ser Trp G gge age g Gly Ser G	gag gag gcg Glu Glu Ala 5 aa ctt tgt lu Leu Cys 2 20 gg gac gcc 9	ccccagegga cct aag aag Pro Lys Lys gcc ggg gcg Ala Gly Ala 25 ggt ggc egc Gly Gly Arg	geggegeeaa g tee egg ge a Ser Arg Al 10 cte teg gee Leu Ser Ala ege ege eeg Arg Arg Pro	gagaggagee ee gee gge a Ala Gly eegg etg Arg Leu 30 eeca gtt Pro Val	180 230 278 326
gggageegee gagaaagt at Mee ggt gge geg Gly Gly Ala 15 acg gag gag Thr Glu Glu	geeggeegtg g get gag t Ala Glu l age tgg g Ser Trp G gge age g Gly Ser G 35 cga ttg g	gag gag geg Glu Glu Ala 5 aa ett tgt lu Leu Cys 20 gg gae gee ly Asp Ala	ccccagegga cct aag aag Pro Lys Lys gcc ggg gcg Ala Gly Ala 25 ggt ggc egc Gly Gly Arg 40 ctg ctg ctg	geggegeeaa g tee egg ge s Ser Arg Al 10 ete teg gee Leu Ser Ala ege ege eeg Arg Arg Pro	gagaggagee ce gee gge a Ala Gly cegg etg Arg Leu 30 ceca gtt Pro Val 45	180 230 278
gggageegee gagaaagt at Mer ggt gge geg Gly Gly Ala 15 aeg gag gag Thr Glu Glu	gecggeegtg g get gag t Ala Glu 1 age tgg g Ser Trp G gge age g Gly Ser G 35 ega ttg ge	gag gag geg Glu Glu Ala 5 aa ett tgt lu Leu Cys 20 gg gae gee ly Asp Ala	ccccagegga cct aag aag Pro Lys Lys gcc ggg gcg Ala Gly Ala 25 ggt ggc cgc Gly Gly Arg 40 ctg ctg ctg	geggegeeaa g tee egg ge s Ser Arg Al 10 cte teg gee Leu Ser Ala ege ege eeg Arg Arg Pro etg ett tgg Leu Leu Trp	gagaggagee ce gee gge a Ala Gly cegg ctg Arg Leu 30 cea gtt Pro Val 45 cetg ctg	180 230 278 326
gggageegee gagaaagt at Mee ggt gge geg Gly Gly Ala 15 acg gag gag Thr Glu Glu gae eee egg	geeggeegtg g get gag t Ala Glu l age tgg g Ser Trp G gge age g Gly Ser G 35 cga ttg g Arg Leu A	gag gag gcg Glu Glu Ala 5 aa ctt tgt lu Leu Cys 20 gg gac gcc ly Asp Ala cg cgc cag la Arg Gln 1	ccccagegga cct aag aag Pro Lys Lys gcc ggg gcg Ala Gly Ala 25 ggt ggc cgc Gly Gly Arg 40 ctg ctg ctg Leu Leu Leu	geggegeeaa g tee egg ge s Ser Arg Al 10 ete teg gee Leu Ser Ala ege ege eeg Arg Arg Pro etg ett teg Leu Leu Trp 60	gagaggagee ce gee gge a Ala Gly cegg ctg Arg Leu 30 cea gtt Pro Val 45 cetg ctg	180 230 278 326
gggageegee gagaaagt at Mer ggt gge geg geg Gly Gly Ala 15 aeg gag gag Thr Glu Glu gae eee egg Asp Pro Arg	gecggecgtg g get gag t Ala Glu l age tgg g Ser Trp G gge age g Gly Ser G 35 cga ttg g Arg Leu A 50 ctg ctg ctg	gag gag gcg Glu Glu Ala 5 aa ctt tgt g lu Leu Cys g gg gac gcc g ly Asp Ala g cg cgc cag g la Arg Gln 1	ccccagegga cct aag aag Pro Lys Lys gcc ggg gcg Ala Gly Ala 25 ggt ggc cgc Gly Gly Arg 40 ctg ctg ctg Leu Leu Leu 55	geggegeeaa g tee egg ge s Ser Arg Al 10 cte teg gee Leu Ser Ala cge ege eeg Arg Arg Pro etg ett tgg Leu Leu Trp 60 geg geg gge	gagaggagee ce gee gge a Ala Gly ceg ctg Arg Leu 30 cea gtt Pro Val 45 cetg ctg Leu Leu cag ggg	180 230 278 326
gggageegee gagaaagt at Mee ggt gge geg geg Gly Gly Ala 15 aeg gag gag Thr Glu Glu gae eee egg Asp Pro Arg gag get eeg Glu Ala Pro	gecggecgtg g get gag t Ala Glu l age tgg g Ser Trp G gge age g Gly Ser G 35 cga ttg g Arg Leu A 50 ctg ctg ctg	gag gag gcg Glu Glu Ala 5 aa ctt tgt lu Leu Cys 2 20 gg gac gcc 9 ly Asp Ala 6 cg cgc cag 6 la Arg Gln 1 tg ggg gtc 6 eu Gly Val 2	ccccagegga cct aag aag Pro Lys Lys gcc ggg gcg Ala Gly Ala 25 ggt ggc cgc Gly Gly Arg 40 ctg ctg ctg Leu Leu Leu 55	geggegeeaa g tee egg ge s Ser Arg Al 10 ctc teg gee Leu Ser Ala ege ege eeg Arg Arg Pro ctg ctt tgg Leu Leu Trp 60 geg geg gge Ala Ala Gly	gagaggagee ce gee gge a Ala Gly ceg ctg Arg Leu 30 cea gtt Pro Val 45 cetg ctg Leu Leu cag ggg	180 230 278 326
gggageegee gagaaagt at Mer ggt gge geg geg Gly Gly Ala 15 aeg gag gag Thr Glu Glu gae eee egg Asp Pro Arg	geeggeegtg g get gag t Ala Glu 1 age tgg g Ser Trp G gge age g Gly Ser G 35 cga ttg g Arg Leu A 50 ctg ctg ct	gag gag gcg Glu Glu Ala 5 aa ctt tgt g lu Leu Cys g gg gac gcc g ly Asp Ala g cg cgc cag g la Arg Gln 1 tg ggg gtc g eu Gly Val A	ccccagegga cct aag aag Pro Lys Lys gcc ggg gcg Ala Gly Ala 25 ggt ggc cgc Gly Gly Arg 40 ctg ctg ctg Leu Leu Leu 55 cgg gcc cag Arg Ala Gln	geggegeeaa g tee egg ge s Ser Arg Al 10 ete teg gee Leu Ser Ala ege ege eeg Arg Arg Pro etg ett tgg Leu Leu Trp 60 geg geg gge Ala Ala Gly 75	gagaggagee ce gee gge a Ala Gly cegg etg Arg Leu 30 cea gtt Pro Val 45 cetg etg Leu Leu cag ggg Gln Gly	180 230 278 326

Pro	Gly	Gln	Gly	Pro	Gly	Pro	Gly	Gln	Gln	Pro	Pro	Pro	Pro	Pro	Gln	
	80					85					90					
cag	caa	cag	agc	ggg	cag	cag	tac	aac	ggc	gag	cgg	ggc	atc	tcc	gtc	518
Gln	Gln	Gln	Ser	Gly	Gln	Gln	Tyr	Asn	Gly	Glu	Arg	Gly	Ile	Ser	Val	
95					100					105					110	
ccg	gac	cac	ggc	tat	tgc	cag	CCC	atc	tee	atc	ccg	ctg	tgc	acg	gac	566
Pro	Asp	His	Gly	Tyr	Сла	Gln	Pro	Ile	Ser	Ile	Pro	Leu	Суз	Thr	Asp	
				115					120					125		
atc	gcg	tac	aac	cag	acc	atc	atg	CCC	aac	ctg	ctg	ggc	cac	acg	aac	614
Ile	Ala	Tyr	Asn	Gln	Thr	Ile	Met	Pro	Asn	Leu	Leu	Gly	His	Thr	Asn	
			130					135					140			
			gcg													662
Gln	Glu	Asp	Ala	Gly	Leu	Glu	Val	His	Gln	Phe	Tyr		Leu	Val	Lys	
		145					150					155				
		-	tcc	-			_			-	-		_		_	710
Val		Cys	Ser	Ala	Glu		Lys	Phe	Phe	Leu	- -	Ser	Met	Tyr	Ala	
	160					165					170					950
		-	acc				_	-	_	_		-	•		-	758
	Val	Суз	Thr	Val		Glu	Gln	Ala	Leu		Pro	Суз	Arg	Ser		
175					180					185					190	906
_	-		gcg	-	_	_	-	-	-							806
сув	GIU	Arg	Ala	_	GIN	СТА	Cys	GIU		Leu	Met	ASN	тув		GīÅ	
				195					200		***			205		854
			cca	-	-		_	_		-						034
rne	GIII	Trp	Pro	Asp	THE	red	гĂа		GIU	гля	PILE	PLO	220	UTS	GTÅ	
400	~~~	~~~	210	+ ~~	~+~			215	200	taa	gao.	-94		800	664	902
_			ctg Leu	_			-		-		_	_				JU2
AIG	GIÀ	225	Leu	cys	vaı	GIY	230	Asn	THE	Set	ASP	235	GIY	1111	710	
200			ctg	-++		~~~		+ ~~	500	944	225		~~	727	aaa	950
-		_	Leu							_			_			,,,,
1111	240	SeT	reu	пеп	PIO	245	PHE	тъ	TILL	Per	250	PIO	GIII	птэ	GIY	
			225			_	++-			aac		aac	60 6	taa	asa.	998
	-		cac	-				-								,,,,
955 255	атА	ату	His	_	260 GIÀ	GTÅ	FIIO	5TO	отА	265	νια	GTĀ	vra	ner	270	
4.33					z.DV					4 U.J					410	

cga	ggc	aag	ttc	tcc	tgc	ccg	cgc	gcc	ctc	aag	gtg	ccc	tcc	tac	ctc	1046
Arg	Gly	Lys	Phe	Ser	Cys	Pro	Arg	Ala	Leu	Lys	Val	Pro	Ser	Tyr	Leu	
				275					280					285		
aac	tac	cac	ttc	ctg	999	gag	aag	gac	tgc	ggc	gca	cct	tgt	gag	ccg	1094
Asn	Tyr	His	Phe	Leu	Gly	Glu	Lys	Asp	Сув	Gly	Ala	Pro	Cys	Glu	Pro	
			290					295					300			
acc	aag	gtg	tat	999	ctc	atg	tac	ttc	ggg	ccc	gag	gag	ctg	cgc	tte	1142
Thr	Lys	Val	Tyr	Gly	Leu	Met	Tyr	Phe	Gly	Pro	Glu	Glu	Leu	Arg	Phe	
		305					310					315				
tcg	cgc	acc	tgg	att	ggc	att	tgg	tca	gtg	ctg	tgc	tgc	gcc	tee	acg	1190
Ser	Arg	Thr	Trp	Ile	Gly	Ile	Trp	Ser	Val	Leu	Сла	Суз	Ala	Ser	Thr	
	320					325					330					
ctc	ttc	acg	gtg	ctt	acg	tac	ctg	gtg	gac	atg	cgg	cgc	ttc	agc	tac	1238
Leu	Phe	Thr	Val	Leu	Thr	Tyr	Leu	Val	Asp	Met	Arg	Arg	Phe	Ser	Tyr	
335					340					345					350	
ccg	gag	cgg	ccc	atc	atc	ttc	ttg	tcc	ggc	tgt	tac	acg	gcc	gtg	gcc	1286
Pro	Glu	Arg	Pro	Ile	Ile	Phe	Leu	Ser	Gly	Сув	Tyr	Thr	Ala		Ala	
				355					360					365		
								ctg	_							1334
Val	Ala	Tyr		Ala	Gly	Phe	Leu	Leu	Glu	Asp	Arg	Val		Сув	Asn	
			370					375					380			1000
			-	-			-	cgc		_						1382
Asp	гàз		Ala	GIU	qeA	GIĀ		Arg	Thr	vaı	Ala		GIÀ	THE	гла	
		385					390					395			_*_	1420
			-					atg	_							1430
гÃа		СТĀ	сув	THE	TTE		Pne	Met	Met	Leu		Pue	Pne	Ser	Mec	
	400	+			 -	405			*		410	.	++-	-+-	gag	1478
								ctg								14/0
415	Ser	SET	TTE	πÞ	420	Val	TTE	Leu	Ser	425	1111	тъ	FILE	пеп	430	
		a+~	224	+~~			424	gee					+	224		1526
-		_	_					Ala		-	-			_		1320
VTC	GTÅ	TIC C	دلات	435	Grà		OT#	M.G	440	GTU	VIG	vali	2GT	445	-J~	
+++	CAC	cta	acc		taa	act	ata	ccg		ato	apa'	800	ata		atc	1574
		_				_		Pro	_		-					44/T
E 110											-y 0					

			450)				455	i				460)		
ctg	gcg	ctg	ggo	cag	gtg	gac	ggc	gat	gtg	ctg	ago	gga	gto	, tgc	ttc	1622
Leu	Ala	Leu	Gly	Gln	Val	Asp	Gly	Asp	Val	Leu	Ser	Gly	Val	. Cys	Phe	
		465	,				470					475				
gtg	9 99	ctt	aac	aac	gtg	gac	gcg	ctg	cgt	ggc	tto	gtg	ctg	geg	ccc	1670
Val	Gly	Leu	Asn	Asn	Val	Asp	Ala	Leu	Arg	Gly	Phe	val	Leu	Ala	Pro	
	480					485					490)				
ctc	ttc	gtg	tac	ctg	ttt	atc	ggc	acg	tcc	ttt	ctg	ctg	gcc	ggo	ttt	1718
Leu	Phe	Val	Tyr	Leu	Phe	Ile	Gly	Thr	Ser	Phe	Leu	Leu	Ala	Gly	Phe	
495					500					505					510	
gtg	teg	ctc	tta	cgc	atc	cgc	acc	atc	atg	aag	cac	gat	ggc	acc	aag	1766
Val	Ser	Leu	Phe	Arg	Ile	Arg	Thr	Ile	Met	Lys	His	Asp	Gly	Thr	Lys	
				515					520					525	·	
acc	gag	aag	ctg	gag	aag	ctc	atg	gtg	cgc	att	ggc	gtc	ttc	ago	gtg	1814
Thr	Glu	Lys	Leu	Glu	Lys	Leu	Met	Val	Arg	Ile	Gly	Val	Phe	Ser	Val	
			530					535					540			
ctg	tac	act	gtg	cca	gcc	acc	atc	gtc	atc	gcc	tgc	tac	ttc	tac	gag	1862
Leu	Tyr	Thr	Val	Pro	Ala	Thr	Ile	Val	Ile	Ala	Суз	Tyr	Phe	Tyr	Glu	
		545					550					555				•
cag	gcc	ttc	cgg	gac	cag	tgg	gaa	cgc	agc	tgg	gtg	gcc	cag	agc	tgc	1910
Gln	Ala	Phe	Arg	qaA	Gln	Trp	Glu	Arg	Ser	Trp	Val	Ala	Gln	Ser	Cys	
	560					565					570					
aag	agc	tac	gct	atc	ccc	tgc	cct	cac	ctc	cag	gcg	ggc	gga	ggc	gcc	1958
Lys	Ser	Tyr	Ala	Ile	Pro	Суз	Pro	His	Leu	Gln	Ala	Gly	Gly	Gly	Ala	
575					580					585					590	
ccg	ccg	cac	ccg	GCG	atg	agc	ccg	gac	ttc	acg	gtc	ttc	atg	att	aag	2006
Pro	Pro	His	Pro	Pro	Met	Ser	Pro	Asp	Phe	Thr	Val	Phe	Met	Ile	Lys	
				595					600					605		
tac	ctt	atg	acg	ctg	atc	gtg	ggc	atc	acg	tcg	ggc	ttc	tgg	atc	tgg	2054
Tyr	Leu	Met	Thr	Leu	Ile	Val	Gly	Ile	Thr	Ser	Gly	Phe	Trp	Ile	Trp	
			610					615					620			
tcc	ggc	aag	acc	ctc	aac	tcc	tgg	agg	aag	ttc	tac	acg	agg	ctc	acc	2102
Ser	Gly	Lys	Thr	Leu	Asn	Ser	Trp	Arg	Lys	Phe	Tyr	Thr	Arg	Leu	Thr	
		625					630					635				
880	acc	888	CAA	aaa	nan	ent	808	atc	tasa	19000	aa c	racto	9000			2150

WO 00/29448 PCT/JP99/06412

26/233

Asn Ser Lys Gln Gly Glu Thr Thr Val

640 645

tgcccaggcc	teggeegggg	cgcagcgatc	ccccaaagcc	agegeegtgg	agttcgtgcc	2210
aatcctgaca	tctcgaggtt	tcctcactag	acaactctct	ttcgcaggct	cctttgaaca	2270
actcagetce	tgcaaaagct	teegteeetg	aggcaaaagg	acacgagggc	ccgactgcca	2330
gagggaggat	ggacagacct	cttgccctca	cactctggta	ccaggactgt	tegettttat	2390
gattgtaaat	agcctgtgta	agatttttgt	aagtatattt	gtatttaaat	gacgaccgat	2450
cacgcgtttt	tettttteaa	aagtttttaa	ttatttaggg	cggtttaacc	atttgaggct	2510
tttccttctt	gecetttteg	gagtattgca	aaggagctaa	aactggtgtg	caaccgcaca	2570
gegeteetgg	tegtectege	gegeetetee	ctaccacggg	tgctcgggac	ggetgggege	2630
cageteeggg	gcgagttcag	cactgcgggg	tgcgactagg	getgegetge	cagggtcact	2690
tecegeetee	teettttgee	ccctccccct	cettetgtee	cetecettte	ttteetgget	2750
tgaggtaggg	gctcttaagg	tacagaactc	cacaaacctt	ccaaatctgg	aggaggeee	2810
ccatacatta	caattcctcc	cttgctcggc	ggtggattgc	gaaggcccgt	cccttcgact	2870
tcctgaagct	ggatttttaa	ctgtccagaa	ctttcctcca	acttcatggg	ggcccacggg	2930
tgtgggcgct	ggcagtctca	geeteeetee	acggtcacct	tcaacgccca	gacactccct	2990
teteccacet	tagttggtta	cagggtgagt	gagataacca	atgccaaact	ttttgaagtc	3050
taatttttga	ggggtgagct	catttcattc	tctagtgtct	aaaacctggt	atgggtttgg	3110
ccagcgtcat	ggaaagatgt	ggttactgag	atttgggaag	aagcatgaag	ctttgtgtgg	3170
gttggaagag	actgaagata	tgggttataa	aatgttaatt	ctaattgcat	acggatgcct	3230
ggcaaccttg	cctttgagaa	tgagacagcc	tgcgcttaga	ttttaccggt	ctgtaaaatg	3290
gaaatgttga	ggtcacctgg	aaagctttgt	taaggagttg	atgtttgctt	tccttaacaa	3350
gacagcaaaa	cgtaaacaga	aattgaaaac	ttgaaggata	tttcagtgtc	atggacttcc	3410
tcaaaatgaa	gtgctatttt	cttattttta	atcaaataac	tagacatata	tcagaaactt	3470
taaaatgtaa	aagttgtaca	ctttcaacat	tttattacga	ttattattca	gcagcacatt	3530
ctgagggggg	aacaattcac	accaccaata	ataacctggt	aagatttcag	gaggtaaaga	3590
aggtggaata	attgacgggg	agatagegee	tgaaataaac	aaaatatggg	catgcatgct	3650
aaagggaaaa	tgtgtgcagg	tctactgcat	taaatcctgt	gtgctcctct	tttggattta	3710
cagaaatgtg	tcaaatgtaa	atctttcaaa	gccatttaaa	aatattcact	ttagttctct	3770
gtgaagaaga	ggagaaaagc	aatcctcctg	attgtattgt	tttaaacttt	aagaatttat	3830
caaaatgccg	gtacttagga	cctaaattta	tctatgtctg	tcatacgcta	aaatgatatt	3890
ggtctttgaa	tttggtatac	atttattctg	ttcactatca	caaaatcatc	tatatttata	3950
gaggaataga	agtttatata	tatataatac	catatttta	atttcacaaa	taaaaaattc	4010
aaagttttgt	acaaaattat	atggattttg	tgcctgaaaa	taatagagct	tgagetgtet	4070
gaactatttt	acattttatg	gtgtctcata	gccaatccca	cagtgtaaaa	attcaggaat	4130

tcaatgaaaa	aagtctac	cc ttaaaccct	c agatcagt	ct ttccaaagaa	ttactctgtt	4190
tgcattgttg	tgattgac	at ttgtgaagt	c ccaagaaa	ag atctgttttc	atgacagtag	4250
aaaatagaag	tttgcaaa	tt atttettta	c tcaaagag	ga ttaaaagaga	actctaattt	4310
taatattaaa	gctttctt	tt ctttcaggg	a ataaattt	ac atgaetttt	atattatgga	4370
ggtttatttt	taaatcat	ca cctttctca	t attttta	ıga ggtattgtct	tatctettee	4430
ataatcttgg	atattaca	aa accctaaat	a ggcaatca	at aaatggttaa	ctggc	4485
	•		•			
<210> 22						
<211> 1509						
<212> DNA						
<213> Homo	sapiens					
<220>	•					
<221> CDS						
<222> (253)	(1305)				
<400> 22						
ttttccgcgt	tttatccc	cg taccagaaa	a ggatacat	tt agtgeeteec	acccagetee	60
actaaacggg	ttggatato	ct cattetttg	a gttggtgt	te etteceegge	gccccatgt	120
agctgggaag	tgggacct	gg gggtggttg	g acceptage	ga teetaaagga	ddddcaddda	180
gggcgcagaa	ctccgctt	ct geteettge	t accaggac	ge geggeeteet	cagectettt	240
cetecegetg	cc atg c	ac cct gca g	cc ttc ccg	ett eet gtg	gtt gtg gee	291
	Met H	is Pro Ala A	la Phe Pro	Leu Pro Val V	/al Val Ala	
	1		5	10		
-				gg ctc att cga		339
	Trp Gly	Ala Ala Pro	Thr Arg G	ly Leu Ile Arq	y Ala Thr	
15		20		25		
-	_			ac ctt cca gct		387
-	: Asn Ala	_		sp Leu Pro Ala		
30		35		40	45	
	-			gg ttc ctt gtg	·	435
Gly Ala Thr		Gln Glu Gly		ly Phe Leu Val		
	50		55		60	
_	- ,	-		ca cca ccc cca		483
His Pro Asp		Cys Ser Pro		ro Pro Pro Pro		
	65		70	75		
gtc aat ggg	tca gtc	ttt att gcg	ctg ctt c	ga aga ttc gad	tgc aac	531

Val	Asn	Gly	Ser	Val	Phe	Ile	Ala	Leu	Leu	Arg	Arg	Phe	Asp	Cys	Asn	
		80					85					90				
ttt	gac	ctc	aag	gtc	cta	aat	gcc	cag	aag	gct	gga	tat	ggt	gcc	gct	579
Phe	Asp	Leu	Lys	Val	Leu	Asn	Ala	Gln	Lys	Ala	Gly	Tyr	Gly	Ala	Ala	
	95					100					105					
gta	gta	cac	aat	gtg	aat	tcc	aat	gaa	ctt	ctg	aac	atg	gtg	tgg	aat	627
Val	Val	His	Asn	Val	Asn	Ser	Asn	Glu	Leu	Leu	Asn	Met	Val	Trp	Asn	
110					115					120					125	
agt	gag	gaa	atc	cag	cag	cag	atc	tgg	atc	ccg	tct	gta	ttt	att	ggg	675
Ser	Glu	Glu	Ile	Gln	Gln	Gln	Ile	Trp	Ile	Pro	Ser	Val	Phe	Ile	Gly	
				130					135					140		
gag	aga	agc	tcc	gag	tac	ctg	cgt	gcc	ctc	ttt	gtc	tac	gag	aag	999	723
Glu	Arg	Ser	Ser	Glu	Tyr	Leu	Arg	Ala	Leu	Phe	Val	Tyr	Glu	ГЛа	Gly	
			145					150					155			
gct	cgg	gtg	ctt	ctg	gtt	cca	gac	aat	acc	ttc	CCC	ttg	ggc	tat	tac	771
Ala	Arg	Val	Leu	Leu	Val	Pro	Asp	Asn	Thr	Phe	Pro	Leu	Gly	Tyr	Tyr	
		160					165					170				
ctc	atc	cct	ttc	aca	ggg	att	gtg	gga	ctg	ctg	gtt	ttg	gcc	atg	gga	. 819
Leu	Ile	Pro	Phe	Thr	Gly	Ile	Val	Gly	Leu	Leu	Val	Leu	Ala	Met	Gly	
	175					180					185					
gca	gta	atg	ata	gct	cgt	tgt	atc	cag	cac	cgg	aaa	cgg	ctc	cag	cgg	867
Ala	Val	Met	Ile	Ala	Arg	Суз	Ile	Gln	His	Arg	Lys	Arg	Leu	Gln	Arg	
190					195					200					205	
aat	cga	ctt	acc	aaa	gag	caa	ctg	aaa	cag	att	cct	aca	cat	gac	tat	915
Asn	Arg	Leu	Thr	Lys	Glu	Gln	Leu	Lys	Gln	Ile	Pro	Thr	His	Asp	Tyr	
				210					215					220		
cag	aag	gga	gac	cag	tat	gat	gtc	tgt	gcc	att	tgc	ctg	gat	gaa	tat	963
Gln	Lys	Gly	Asp	Gln	Tyr	Asp	Val	Cys	Ala	Ile	Суз	Leu	Asp	Glu	Tyr	
			225					230					235			
gag	gat	9 99	gac	aag	ctg	cgg	gta	ctc	ccc	tgt	gct	cat	gcc	tac	cac	1011
Glu	Asp	Gly	Asp	Lys	Leu	Arg	Val	Leu	Pro	Cys	Ala	His	Ala	Tyr	His	
		240					245					250				
agc	cgc	tgc	gtg	gac	ccc	tgg	ctc	act	cag	acc	cgg	aag	acc	tge	ccc	1059
Ser	Arg	Сув	Val	Asp	Pro	Trp	Leu	Thr	Gln	Thr	Arg	Lys	Thr	Суз	Pro	
	255					260					265					

att tgc aag cag cet gtt cat cgg ggt cet ggg gac gaa gac caa gag	1107
Ile Cys Lys Gln Pro Val His Arg Gly Pro Gly Asp Glu Asp Gln Glu	
270 275 280 285	
gaa gaa act caa ggg caa gag gag ggt gat gaa ggg gag cca agg gac	1155
Glu Glu Thr Gln Gly Gln Glu Gly Asp Glu Gly Glu Pro Arg Asp	
290 295 300	
cac cet gee tea gaa agg ace eea ett ttg ggt tet age eee act ett	1203
His Pro Ala Ser Glu Arg Thr Pro Leu Leu Gly Ser Ser Pro Thr Leu	
305 310 315	
ece ace tee ttt ggt tee tta gee eca get ece ett gtt ttt eet ggg	1251
Pro Thr Ser Phe Gly Ser Leu Ala Pro Ala Pro Leu Val Phe Pro Gly	
320 325 330	
cet tea aca gat ece cea etg tee cet ece tet tee cet gtt ate etg	1299
Pro Ser Thr Asp Pro Pro Leu Ser Pro Pro Ser Ser Pro Val Ile Leu	
335 340 345	
gtc taataacccc ccacacatac acetctggtg acetatttgc acagaccg	1350
Val	
350	
tegtettece tecagtette tgagggatag gggacattee ateceaaget tetecettae	1410
ccacacctat ccttttgagg ggctttgggg tggggctggg gcaagcagag ggactgggtc	1470
ttcacttctt gggctaataa aattgtttct ttgtggact	1509
<210> 23	
<211> 3059	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (230)(850)	
<400> 23	60
ectggeteee geeageegtg ggattagget tegeeggeta egattgegge eeceatette	60
tgacttttcc tcgtgtgacc catctttca aattccctta cctgaggaag gagcccgatt	120
acaaggatat ttacctgctc ctaccctgat ctagggacga ggatgggaag accgcctgtg	180
gecatgagee etecceggig etectgggge taaggetggg getgeagee atg ggg etg	238
Met Gly Leu	

														1		
ggt	cag	ccc	cag	gcc	tgg	ttg	ctg	ggt	ctg	ccc	aca	gct	gtg	gtc	tat	286
Gly	Gln	Pro	Gln	Ala	Trp	Leu	Leu	Gly	Leu	Pro	Thr	Ala	Val	Val	Tyr	
	5					10					15					•
gge	tcc	ctg	gct	ctc	ttc	acc	acc	atc	ctg	cac	aat	gtc	ttc	ctg	ctc	334
Gly	Ser	Leu	Ala	Leu	Phe	Thr	Thr	Ile	Leu	His	Asn	Val	Phe	Leu	Leu	
20					25					30					35	
tac	tat	gtg	gac	acc	ttt	gtc	tca	gtg	tac	aag	atc	aac	aaa	atg	gcc	382
Tyr	Tyr	Val	Asp	Thr	Phe	Val	Ser	Val	Tyr	Lys	Ile	Asn	Lys	Met	Ala	
				40					45					50		
ttc	tgg	gtc	gga	gag	aca	gtg	ttt	ctc	ctc	tgg	aac	agc	ctc	aat	gac	430
Phe	Trp	Val	Gly	Glu	Thr	Val	Phe	Leu	Leu	Trp	Asn	Ser	Leu	Asn	Asp	
			55					60					65			
ccc	ctc	ttc	ggt	tgg	ctc	agt	gac	cgg	cag	ttc	ata	agc	tcc	cag	ccc	478
Pro	Leu	Phe	Gly	Trp	Leu	Ser	Asp	Arg	Gln	Phe	Leu	Ser	Ser	Gln	Pro	
		70					75					80				
		_	-						ttg							526
Arg	Gly	Arg	Asp	Leu	Pro	Trp	Leu	Gly	Leu	Val	Gly	Pro	Ser	Gly	Leu	
	85					90					95					
		-							tgg							574
Trp	Thr	Ala	Asn.	Thr	Leu	Суз	Суз	Phe	Trp	Lys	Ile	Pro	Leu	Pro	His	
100					105					110					115	
	-	-	-	_					acc	_	_		-			622
Pro	Cys	Leu	Ser	Pro	Ser	Ser	Pro	Pro	Thr	Leu	Arg	Ser	Gly	His	Pro	
				120					125					130		
					-				cta			-			•	670
Ile	Pro	Phe	-	His	Gln	Pro	Asn	_	Leu	Ile	Arg	Gly	_	Lys	Leu	
			135					140					145			
									gtc							718
Gly	Gln	_	Arg	Arg	Val	Tyr		Leu	Val	Arg	Arg	_	Ala	Leu	Leu	
		150					155	•				160				
_		-			-				ggc							766
Lys		Сув	Gly	Ala	Gly		Gly	Ala	Gly	Pro	_	Leu	Ala	Trp	Ala	
	165		_			170					175			•		
		~~~	~~+	~		~~+	777	7t-t-	a+a	-~+	~~~	~+~	~~~	000	977	$\Omega 1 \Lambda$

Ala Ala Gly Ala Val Val Pro Gly Val Leu Gly Ala Leu Gly Pro Ser	
180 185 190 195	
tgg cet gea gtt ett get gtg eet gtg eet eta tgatggette etg	860
Trp Pro Ala Val Leu Ala Val Pro Val Pro Leu	
200 205	
acgetegtgg acetgeacea ceatgeettg etggeegace tggeeetete ageeeaegae	920
egeacceace teaactteta etgetecete tteagegegg eeggeteeet etetgtettt	980
gcatcctatg ccttttggaa caaggaggat ttctcctcct tccgcgcttt ctgcgtgaca	1040
etggetgtea getetggget gggetttetg ggggeeacae agetgetgag geggegggtt	1100
gaggeggeee gaaaggaeee agggtgetea ggeetggttg tggatagegg eetgtgtgga	1160
gaggagetge ttgtaggeag tgaggaggeg gacageatca cettgggeeg gtateteegg	1220
cagotggcac gccatcggaa cttcctgtgg ttcgtgagca tggacctggt gcaggtcttc	1280
cactgccact tcaacagcaa cttcttccct ctcttcctgg agcatctgtt gtccgaccat	1340
atotocottt ccacgggoto catootgttg ggoototoct atgtogotoc ccatotoaac	1400
aacetetaet teetgteeet gtgeeggege tggggegtet aegeggtggt gegggggete	1460
tteetgetea agetgggaet tageetgete atgttgttgg eeggeeegga eeaeeteage	1520
etgetgtgee tetteattge eageaacege gtetteactg agggeacetg taagetgetg	1580
accttggtgg teactgacet ggtagaegag gaeetggtge tgaaceaeeg caageaggea	1640
gesteggeas testettigg eatggitiges tiggitgassa agesaggesa gaestitiges	1700
cogctgotgg geacetgget getetgttte tacacaggte atgacetett ccagcagtee	1760
etcataacec etgtggggag tgeeeatece tggeeagage eeecagetee ageceetgea	1820
caggececga egeteegeea gggetgette taeetgetgg tgetggtgee cateacetgt	1880
gototgotgo agotottoac otggtoccag tteacgotgo atgggagacg cotgcacatg	1940
gtcaaggece agegeeagaa cetgtcaeag geeeaaacee tggatgttaa gatggtgtga	2000
gagetgtgge aaggteaece eactgaggat getgetggea geetggggaa ggageeagtt	2060
ttttttggtt tttttttaa ggattteata gtttttttt ttttttttg gagatgttge	2120
ccaaaaaaat ggatctgttg cagtggtgca atctgggctc actgaaacca ccacccaggt	2180
tcaagcaatt atcetgeete agetteeega gtaggtggga ttataggage gtgeeaceat	2240
geceggetae tttttgtatt tttagtagag acagggttte ateatgttgg ecaggetagt	2300
ctcaaacccc tgaccttagg tgatcagccc gcctcggcct cccagagtgc tgggattaca	2360
ggcgtgagcc actgtggcca acctaatttt tgtattattt agtagagaca gggtttcacc	2420
acattggeea ggetggtete gaacteetga eeteaagtga tetgeetgee ttggteteee	2480
aaagtgetgg gaatacagge atgageeace geacteggee aggagetagt tttaccagea	2540
tectgeteea etgeetteet etagtgeage etggaagaea tggeageggg tageteetgg	2600
ggctgagcca gaagcatcac tgcagtgaaa gtctctgctt acctgtctgg ctcagcttgg	2660

WO 00/29448 PCT/JP99/06412

geaagggetg ggeeatatgt geteagggae gtgettetet tgtaaggeag gagg	atagaa 2720
gaggaccaag aagggagggg getgeeetgt ggtgcacaca ggcetgeeat gggg	egtggg 2780
ageccatece getgeetgae tggagetgge egetgtggtg gaeteaggaa eeae	ttttaa 2840
tactgcaact getecetttt geccagteag ggaaagetga etgtaagtee eace	teceae 2900
tecgtecace ettetagtgg tttetetgag aggtttetet getteagetg tget	tgaagt 2960
ggeatgeste etetgetgea gggeteecce acceccacae ggcetetaaa gatg	tttatt 3020
teettataga etgattaaag teageeatte ttttteete	3059
	•
<210> 24	
<211> 2367	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (69)(710)	
<400> 24	
aacttootog googagoogg googogoogo cgotgoogoo googogogo gatto	etgett 60
	110
ctcagaag atg cac tat tat aga tac tct aac gcc aag gtc age tgc	
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys	
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys	I Trp
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys  1 5 10  tac aag tac etc ett tte age tac aac atc atc tte tgg ttg get	gga 158
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys  1 5 10  tac aag tac etc ett tte age tac aac atc atc tte tgg ttg get Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala	gga 158
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys  1 5 10  tac aag tac ctc ctt ttc agc tac aac atc atc ttc tgg ttg gct Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala 15 20 25	gga 158 Gly 30
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys  1 5 10  tac aag tac ctc ctt ttc agc tac aac atc atc ttc tgg ttg gct Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala 15 20 25 gtt gtc ttc ctt gga gtc ggg ctg tgg gca tgg agc gaa aag ggt	gga 158 Gly 30 gtg 206
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys  1 5 10  tac aag tac etc ett tte age tac aac atc atc tte tgg ttg get Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala 15 20 25 gtt gte tte ett gga gte ggg etg tgg gea tgg age gaa aag ggt Val Val Phe Leu Gly Val Gly Leu Trp Ala Trp Ser Glu Lys Gly	gga 158 Gly 30 gtg 206
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys  1 5 10  tac aag tac ctc ctt ttc agc tac aac atc atc ttc tgg ttg gct Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala 15 20 25 gtt gtc ttc ctt gga gtc ggg ctg tgg gca tgg agc gaa aag ggt Val Val Phe Leu Gly Val Gly Leu Trp Ala Trp Ser Glu Lys Gly 35 40 45	gga 158 Gly 30 gtg 206 Val
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys  1 5 10  tac aag tac etc ett tte age tac aac atc atc tte tgg ttg get Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala 15 20 25 gtt gte tte ett gga gte ggg etg tgg gea tgg age gaa aag ggt Val Val Phe Leu Gly Val Gly Leu Trp Ala Trp Ser Glu Lys Gly 35 40 45 etg tee gae etc acc aaa gtg acc egg atg eat gga atc gae ect	gga 158 Gly 30 gtg 206 Val
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys  1 5 10  tac aag tac ctc ctt ttc agc tac aac atc atc ttc tgg ttg gct Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala 15 20 25 gtt gtc ttc ctt gga gtc ggg ctg tgg gca tgg agc gaa aag ggt Val Val Phe Leu Gly Val Gly Leu Trp Ala Trp Ser Glu Lys Gly 35 40 45	gga 158 Gly 30 gtg 206 Val
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys  1 5 10  tac aag tac etc ett tte age tac aac atc atc tte tgg ttg get Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala 15 20 25 gtt gte tte ett gga gte ggg etg tgg gea tgg age gaa aag ggt Val Val Phe Leu Gly Val Gly Leu Trp Ala Trp Ser Glu Lys Gly 35 40 45 etg tee gae ete ace aaa gtg ace egg atg eat gga atc gae eet Leu Ser Asp Leu Thr Lys Val Thr Arg Met His Gly Ile Asp Pro	gga 158 Gly 30 gtg 206 Val gtg 254 Val
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys  1 5 10  tac aag tac ctc ctt ttc agc tac aac atc atc ttc tgg ttg gct Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala 15 20 25  gtt gtc ttc ctt gga gtc ggg ctg tgg gca tgg agc gaa aag ggt Val Val Phe Leu Gly Val Gly Leu Trp Ala Trp Ser Glu Lys Gly 35 40 45  ctg tcc gac ctc acc aaa gtg acc cgg atg cat gga atc gac cct Leu Ser Asp Leu Thr Lys Val Thr Arg Met His Gly Ile Asp Pro 50 55 60  gtg ctg gtc ctg gtc ctg atg gtg gtg atg ttc acc ctg ggg ttc	gga 158 Gly 30 gtg 206 Val gtg 254 val gcc 302
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys  1 5 10  tac aag tac etc ett tte age tac aac atc atc tte tgg ttg get Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala 15 20 25 gtt gte tte ett gga gte ggg etg tgg gea tgg age gaa aag ggt Val Val Phe Leu Gly Val Gly Leu Trp Ala Trp Ser Glu Lys Gly 35 40 45 etg tee gae ete ace aaa gtg ace egg atg eat gga atc gae eet Leu Ser Asp Leu Thr Lys Val Thr Arg Met His Gly Ile Asp Pro	gga 158 Gly 30 gtg 206 Val gtg 254 val gcc 302
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys  1 5 10  tac aag tac ctc ctt ttc agc tac aac atc atc ttc tgg ttg gct Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala 15 20 25  gtt gtc ttc ctt gga gtc ggg ctg tgg gca tgg agc gaa aag ggt Val Val Phe Leu Gly Val Gly Leu Trp Ala Trp Ser Glu Lys Gly  35 40 45  ctg tcc gac ctc acc aaa gtg acc cgg atg cat gga atc gac cct Leu Ser Asp Leu Thr Lys Val Thr Arg Met His Gly Ile Asp Pro  50 55 60  gtg ctg gtc ctg atg gtg gtg atg ttc acc ctg ggg ttc Val Leu Val Leu Met Val Gly Val Val Met Phe Thr Leu Gly Phe	gga 158 Gly 30 gtg 206 Val gtg 254 Val gcc 302 Ala
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys  1 5 10  tac aag tac etc ett tte age tac aac atc atc tte tgg ttg get Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala 15 20 25  gtt gtc ttc ett gga gtc ggg etg tgg gca tgg age gaa aag ggt Val Val Phe Leu Gly Val Gly Leu Trp Ala Trp Ser Glu Lys Gly 35 40 45  etg tec gac etc acc aaa gtg acc egg atg eat gga atc gac ect Leu Ser Asp Leu Thr Lys Val Thr Arg Met His Gly Ile Asp Pro 50 55 60  gtg etg gtc etg atg gtg ggc gtg gtg atg ttc acc etg ggg ttc Val Leu Val Leu Met Val Gly Val Val Met Phe Thr Leu Gly Phe 65 70 75	gga 158 Gly 30 gtg 206 Val gtg 254 Val gcc 302 Ala aac 350

eag tgc tgt ggc gca tat ggc cct gaa gac tgg gac ctc aac	gtc tac 398	
Gln Cys Cys Gly Ala Tyr Gly Pro Glu Asp Trp Asp Leu Asn	Val Tyr	
95 100 105	110	
tte aat tge age ggt gee age tae age ega gag aag tge ggg	gtc ccc 446	
Phe Asn Cys Ser Gly Ala Ser Tyr Ser Arg Glu Lys Cys Gly	Val Pro	
115 120	125	
tte tee tge tge gtg cea gat cet geg caa aaa gtt gtg aac	aca cag 494	
Phe Ser Cys Cys Val Pro Asp Pro Ala Gln Lys Val Val Asn	Thr Gln	
130 135 140		
tgt gga tat gat gtc agg att cag ctg aag agc aag tgg gat	gag tcc 542	
Cys Gly Tyr Asp Val Arg Ile Gln Leu Lys Ser Lys Trp Asp	Glu Ser	
145 150 155		
ate tte acg aaa gge tge ate cag geg ctg gaa age tgg cte	ceg egg 590	
Ile Phe Thr Lys Gly Cys Ile Gln Ala Leu Glu Ser Trp Leu	Pro Arg	
160 165 170		
ame att the att gtg get gge gte tte ate gee ate teg etg	ttg cag 638	
Asn Ile Tyr Ile Val Ala Gly Val Phe Ile Ala Ile Ser Leu	Leu Gln	
175 180 185	190	
ata tit gge ate tie etg gea agg aeg etg ate tea gae ate	gag gca 686	
Ile Phe Gly Ile Phe Leu Ala Arg Thr Leu Ile Ser Asp Ile	Glu Ala	
195 200	205	
gtg aag gee gge cat cae tte tgaggageag agttgaggga geegag	ctga gcc 740	
Val Lys Ala Gly His His Phe		
210		
acgetgggag gecagageet ttetetgeca teageeetae gtecagaggg a	gaggageeg 800	
acaccccag agecagtgee ceatettaag cateagegtg aegtgacete to	etgtttetg 860	
cttgctggtg ctgaagacca agggtccccc ttgttacctg cccaaacttg t	gactgcatc 920	
cetetggagt etacecagag acagagaatg tgtetttatg tgggagtggt g	actctgaaa 980	
gacagagagg geteetgtgg etgeeaggag ggettgaete agaceceetg e	ageteaage 1040	
atgtotgcag gacaccotgg tococtotoc actggcatoc agacatotgo ti	ttgggtcat 1100	
ccacatetgt gggtgggeeg tgggtagagg gacccacagg cgtggacagg g	eatetetet 1160	
ccatcaagca aagcagcatg ggggcctgcc cgtaacggga ggcggacgtg g	eccegetgg 1220	
geotetgagt gecagegeag tetgetggga catgeacata teaggggttg ti	ttgcaggat 1280	
cotcagocat gttcaagtga agtaagcotg agccagtgog tggactggtg co	cacgggagt 1340	
geettgteea etgteeeeet gtgteeaeea getattetee tggegeegga ac	etgeetetg 1400	

WO 00/29448 PCT/JP99/06412

## 34/233

gtottgatag cattaageee tgatggegee ggtggegegg tgggeatggt tetteaetga	1460
gageeggete teettttett aaagtgtgta aatagtttat ttataggggt aagaatgtte	1520
toacaccatt toacttocto ttoototoct coagoattot cototgagoa goottagata	1580
gtgtccatgg ctggagccga ccctttgagt ccccttgagt gtcttaagaa ccagcccaca	1640
acagectete titetectee acatactgea geeteectee atgeatecea catacaagea	1700
ctccccact ccccagcgtg gcctcactgt cttctggtct tggtgctact gaaattgtca	1760
cccagaattt gaatcctgac cctccccact gcaagcccag ggagccccag cccaagatgg	1820
ccagcctgaa actgttggcc agggctcctc ttgtggccat gtacccaggg ctggctggcc	1880
tgecatttge eteteceegg agacageegt tettetgeaa ceacaceeg tgectageea	1940
caaccccagg ctgcagctgc tcagaagctc caggcatttt gtttctggtg accgcccta	2000
atgggatate ggtgateact ggtecaccet teetgteagg gettttetgg ggetgetett	2060
ggaaatgaag tottaagtac tgaataacte eeetggggat agetggggca tttgtetage	2120
tgggctactt tctaacactt tgccatagct cagaccactt ctcatcgttc agggatggac	2180
tgcaacctta atttacttgc cggagtgtac attctagtgt ggtgtatact ggtggctgtt	2240
gatgatgatt ttttttttt ttttttacac aattctctgt agactaggag aagaatgctt	2300
gtgtttttcg gaagtgtgat gcttctcttt gactgccaaa ctcttttatg gaatatatct	2360
ttatatt	2367
<210> 25	
<211> 2355	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (20)(1807)	
<400> 25	
ageogeceaa gegecegee atg ege get gee ege gee geg eeg etg etc eag	52
Met Arg Ala Ala Arg Ala Aro Leu Leu Gln	
1 5 10	
etg etg ete etg ggg eeg tgg etg gag get geg gge gtt geg gag	100
Leu Leu Leu Leu Gly Pro Trp Leu Glu Ala Ala Gly Val Ala Glu	
15 20 25	
teg eeg etg eee gee gtg gte ett gee ate etg gee ege aat gee gaa	148
Ser Pro Leu Pro Ala Val Val Leu Ala Ile Leu Ala Arg Asn Ala Glu	

35

40

30

cac	tcg	ctg	ccc	cac	tac	ctg	ggc	gct	ctg	gag	cgg	ctg	gac	tac	ccc	196
His	Ser	Leu	Pro	His	Tyr	Leu	Gly	Ala	Leu	Glu	Arg	Leu	Asp	Tyr	Pro	
	45					50					55					
cgg	gcc	agg	atg	gcc	ctc	tgg	tgt	gcc	acg	gac	cac	aat	gtg	gac	aac	244
Arg	Ala	Arg	Met	Ala	Leu	Trp	Сув	Ala	Thr	qeA	His	Asn	Val	Asp	Asn	
60					65					70					75	
acc	aca	gag	atg	ctg	cag	gag	tgg	ctg	geg	gct	gtg	ggc	gat	gac	tat	292
Thr	Thr	Glu	Met	Leu	Gln	Glu	Trp	Leu	Ala	Ala	Val	Gly	Asp	qaA	Tyr	
				80			•		85					90		
gct	gct	gtg	gtc	tgg	agg	cct	gag	ggc	gag	CCC	agg	ttc	tac	cca	gat	340
Ala	Ala	Val	Val	Trp	Arg	Pro	Glu	Gly	Glu	Pro	Arg	Phe	Tyr	Pro	Asp	
			95					100					105			
_															atg	388
Glu	Glu	Gly	Pro	Lys	His	Trp	Thr	ГЛЗ	Glu	Arg	His	Gln	Phe	Leu	Met	
		110					115					120				
gag	ctg	aag	cag	gaa	gcc	ctc	acc	ttt	gcc	agg	aac	tgg	999	gcc	gac	436
Glu	Leu	Lys	Gln	Glu	Ala	Leu	Thr	Phe	Ala	Arg	Asn	Trp	Gly	Ala	Asp	
	125					130					135					
		_		_	_		gac									484
Tyr	Ile	Leu	Phe	Ala	Asp	Thr	qeA	Asn	Ile	Leu	Thr	Asn	Asn	Gln		
140					145					150					155	
ctg	cgg	ctt	ctc	atg	999	cag	<b>3</b> 33	ctt	cca	gtg	gtg	gcc	cca	atg	ctg	532
Leu	Arg	Leu	Leu	Met	Gly	Gln	Gly	Leu	Pro	Val	Val	Ala	Pro		Leu	
				160		•			165					170		
-		•								-					cag	580
Asp	Ser	Gln	Thr	Tyr	Tyr	Ser	Asn	Phe	Trp	Cys	Gly	Ile		Pro	Gln	
			175					180					185			
							gag									628
Gly	Tyr	Tyr	Arg	Arg	Thr	Ala	Glu	Tyr	Phe	Pro	Thr	Lys	Asn	Arg	Gln	
		190					195					200				
ege	cgg	ggc	tgc	ttc	cgt	gtc	ccc	atg	gtc	cac	tcc	acc	ttc	ctt	gca	676
Arg	Arg	Gly	Сув	Phe	Arg	Val	Pro	Met	Val	His	Ser	Thr	Phe	Leu	Ala	
	205					210					215					
						-	gac									724
Ser	Leu	Arg	Ala	Glu	Gly	Ala	qeA	Gln	Leu	Ala	Phe	Tyr	Pro	Pro	His	

220					225					230					235	
ccc	aac	tac	act	tgg	cct	ttc	gac	gac	atc	atc	gtc	ttc	gcc	tat	gcc	772
Pro	Asn	Tyr	Thr	Trp	Pro	Phe	Asp	Asp	Ile	Ile	Val	Phe	Ala	Tyr	Ala	
				240				•	245					250		
tgc	cag	gct	gct	ggg	gtc	tcc	gtc	cac	gtg	tgc	aat	gag	cac	cgt	tat	820
Сув	Gln	Ala	Ala	Gly	Val	Ser	Val	His	Val	Сув	Asn	Glu	His	Arg	Tyr	
			255					260					265			
ggg	tac	atg	aat	gtg	ccg	gtg	aaa	tcc	cac	cag	ggg	ctg	gaa	gac	gag	868
Gly	Tyr	Met	Asn	Val	Pro	Val	Lys	Ser	His	Gln	Gly	Leu	Glu	Asp	Glu	
		270					275					280				
agg	gtc	aac	ttc	atc	cac	ctg	atc	tta	gaa	gca	cta	gtg	gac	ggc	ccc	916
Arg	Val	Asn	Phe	Ile	His	Leu	Ile	Leu	Glu	Ala	Leu	Val	Asp	Gly	Pro	
	285					290					295					
cgc	atg	cag	gcc	tca	gct	cat	gtg	act	cgg	ccc	tct	aag	agg	ccc	agc	964
Arg	Met	Gln	Ala	Ser	Ala	His	Val	Thr	Arg	Pro	Ser	Lys	Arg	Pro	Ser	
300					305					310					315	
aag	ata	999	ttt	gac	gag	gtc	ttt	gtc	atc	agc	ctg	gat	ege	agg	cct	1012
Lys	Ile	Gly	Phe	Asp	Glu	Val	Phe	Val	Ile	Ser	Leu	Ala	Arg	Arg	Pro	
				320					325					330		
gac	cgt	cgg	gaa	cgc	atg	ctc	gcc	tcg	ctc	tgg	gag	atg	gag	atc	tct	1060
Asp	Arg	Arg	Glu	Arg	Met	Leu	Ala	Ser	Leu	Trp	Glu	Met	Glu	Ile	Ser	
			335					340					345			
ggg	agg	gtg	gtg	gac	gct	gtg	gat	ggc	tgg	atg	ctc	aac	agc	agt	gcc	1108
Gly	Arg	Val	Val	Asp	Ala	Val	Asp	Gly	Trp	Met	Leu	Asn	Ser	Ser	Ala	
		350					355					360				
atc	agg	aac	ctc	ggc	gta	gac	ctg	ctc	ccg	ggc	tac	cag	gac	cct	tac	1156
Ile	Arg	Asn	Leu	Gly	Val	Asp	Leu	Leu	Pro	Gly	Tyr	Gln	Asp	Pro	Tyr	
	365					370					375					
tcg	ggc	cgc	act	ctg	acc	aag	ggc	gag	gtg	ggc	tgc	ttc	ctc	agc	cat	1204
Ser	Gly	Arg	Thr	Leu	Thr	Lys	Gly	Glu	Val	Gly	Суз	Phe	Leu	Ser	His	
380					385					390					395	
tac	tcc	atc	tgg	gaa	gag	gtg	gtt	gcc	agg	ggc	ctg	gcc	cgg	gtc	ctg	1252
Tyr	Ser	Ile	Trp	Glu	Glu	Val	Val	Ala	Arg	Gly	Leu	Ala	Arg	Val	Leu	
				400					405					410		
gtg	ttt	gag	gat	gac	gtg	cgc	ttt	gag	agc	aac	ttc	agg	<b>9</b> 99	cgg	ctg	1300

Val	Phe	Glu	Asp	Asp	Val	Arg	Phe	Glu	Ser	Asn	Phe	Arg	Gly	Arg	Leu	
			415					420					425			
gag	egg	ctg	atg	gag	gat	gtg	gag	gca	gag	aaa	ctg	tct	tgg	gac	ctg	1348
Glu	Arg	Leu	Met	Glu	Asp	Val	Glu	Ala	Glu	Lys	Leu	Ser	Trp	Asp	Leu	
		430			_		435					440				
atc	tac	ctc	gga	cgg	aag	cag	gtg	aac	cct	gag	aag	gag	acg	gcc	gtg	1396
Ile	Tyr	Leu	Gly	Arg	Lys	Gln	Val	Asn	Pro	Glu	Lys	Glu	Thr	Ala	Val	
	445					450					455					
gag	ggg	ctg	ccg	gge	ctg	gtg	gtg	gat	ggg	tac	tcc	tac	tgg	acg	ctg	1444
Glu	Gly	Leu	Pro	Gly	Leu	Val	Val	Ala	Gly	Tyr	Ser	Tyr	Trp	Thr	Leu	
460					465					470					475	
gcc	tat	gcc	ctg	cgt	ctg	gcg	ggt	gcc	cgc	aag	ctg	ctg	gcc	tca	cag	1492
Ala	Tyr	Ala	Leu	Arg	Leu	Ala	Gly	Ala	Arg	Lys	Leu	Leu	Ala	Ser	Gln	
				480					485					490		
cct	ctg	cgc	aga	atg	ctg	CCC	gtg	gac	gag	ttc	ctg	ccc	atc	atg	tte	1540
Pro	Leu	Arg	Arg	Met	Leu	Pro	Val	Asp	Glu	Phe	Leu	Pro	Ile	Met	Phe	
			495					500					505			
gac	cag	cac	ccc	aac	gag	cag	tac	aag	gca	cac	ttc	tgg	cca	cgg	gac	1588
Asp	Gln	His	Pro	Asn	Glu	Gln	Tyr	Lys	Ala	His	Phe	Trp	Pro	Arg	Asp	
		510					515					520				
ctg	gtg	gcc	ttc	tee	gcc	cag	ccc	ctg	ctc	gct	gcc	cct	acc	cac	tat	1636
Leu	Val	Ala	Phe	Ser	Ala	Gln	Pro	Leu	Leu	Ala	Ala	Pro	Thr	His	Tyr	
	525					530					535					
gcc	999	gac	gcc	gag	tgg	ctc	agt	gac	acg	gag	aca	tcc	tct	cca	tgg	1684
Ala	Gly	Asp	Ala	Glu	Trp	Leu	Ser	qaA	Thr	Glu	Thr	Ser	Ser	Pro	Trp	
540					545					550					555	
gat	gat	gac	agc	ggc	cgc	ctc	atc	agc	tgg	agc	ggc	tcc	caa	aag	acc	1732
qaA	qeA	Asp	Ser	Gly	Arg	Leu	Ile	Ser	Trp	Ser	Gly	Ser	Gln	Lys	Thr	
				560					565					570		
ctg	cgc	agc	ccc	cgc	ctg	gac	ctg	act	ggc	agc	agc	ggg	cac	agc	ctc	1780
Leu	Arg	Ser	Pro	Arg	Leu	Asp	Leu	Thr	Gly	Ser	Ser	Gly	His	Ser	Leu	
			575					580					585			
caa	ccc	cag	ccc	cga	gat	gag	ctc	tagg	rtcce	igg t	gatg	actg	jc as	agce	l	1830
Gln	Pro	Gln	Pro	Arg	ĄsĄ	Glu	Leu									
		E00					ENE									

gtgtccagga gcaggccact actgcccaga gagcagagga ggaggttgtt ggcagggact	1890
geagateetg teagacetgg ceaceacett gggeatggee actetgeeet etggaeetgt	1950
ctttcatcgg gagaaaccac tcagagatgg atcccattcc ctaaaggtct cacagcaaag	2010
gagcaggact cccaggcccc tgtaccctgc ctggcctgat tcagggcctt gtggccccca	2070
gettetgttt caagetggge agaceeeagg atecetteee teeetaagga eteagetgag	2130
gggcccetet gecccettet acctecacet cageaccete ecccagettg atgtttgggt	2190
ctccccagca ccctcctccc tggccggtgc aaagtacagg gaggtaaagc aggacccttg	2250
cagacatgtt geceageaca cagtaggeee teaataaaag eeatttgeae tttaaatata	2310
tatatgtatg tatatatat tatatatata tatgt	2355
<210> 26	
<211> 1024	
<212> DNA	•
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (27)(821)	
-400m 26	
<400> 26	
eggatggaag eteeggeege ggagtg atg gtg gee tea geg aag atg gge egg	53
eggatggaag eteeggeege ggagtg atg gtg gee tea geg aag atg gge egg Met Val Ala Ser Ala Lys Met Gly Arg	53
cggatggaag ctccggccgc ggagtg atg gtg gcc tca gcg aag atg ggc cgg  Met Val Ala Ser Ala Lys Met Gly Arg  1 5	
eggatggaag eteeggeege ggagtg atg gtg gee tea geg aag atg gge egg  Met Val Ala Ser Ala Lys Met Gly Arg  1 5  gea ggg ace atg geg gtg gea gea gag ett ega gag etg tge eea gga	53 101
cggatggaag ctccggccgc ggagtg atg gtg gcc tca gcg aag atg ggc cgg  Met Val Ala Ser Ala Lys Met Gly Arg  1 5  gca ggg acc atg gcg gtg gca gca gag ctt cga gag ctg tgc cca gga Ala Gly Thr Met Ala Val Ala Ala Glu Leu Arg Glu Leu Cys Pro Gly	
eggatggaag eteeggeege ggagtg atg gtg gee tea geg aag atg gge egg  Met Val Ala Ser Ala Lys Met Gly Arg  1 5  gea ggg ace atg geg gtg gea gea gag ett ega gag etg tge eea gga Ala Gly Thr Met Ala Val Ala Ala Glu Leu Arg Glu Leu Cys Pro Gly  10 15 20 25	101
cggatggaag ctccggccgc ggagtg atg gtg gcc tca gcg aag atg ggc cgg  Met Val Ala Ser Ala Lys Met Gly Arg  1 5  gca ggg acc atg gcg gtg gca gca gag ctt cga gag ctg tgc cca gga Ala Gly Thr Met Ala Val Ala Ala Glu Leu Arg Glu Leu Cys Pro Gly  10 15 20 25  gtg aac aac cag ccc tac ctc tgt gag agt ggt cac tgc tgc ggg gag	
cggatggaag ctccggccgc ggagtg atg gtg gcc tca gcg aag atg ggc cgg  Met Val Ala Ser Ala Lys Met Gly Arg  1 5  gca ggg acc atg gcg gtg gca gca gag ctt cga gag ctg tgc cca gga Ala Gly Thr Met Ala Val Ala Ala Glu Leu Arg Glu Leu Cys Pro Gly  10 15 20 25  gtg aac aac cag ccc tac ctc tgt gag agt ggt cac tgc tgc ggg gag Val Asn Asn Gln Pro Tyr Leu Cys Glu Ser Gly His Cys Cys Gly Glu	101
cggatggaag ctccggccgc ggagtg atg gtg gcc tca gcg aag atg ggc cgg  Met Val Ala Ser Ala Lys Met Gly Arg  1 5  gca ggg acc atg gcg gtg gca gca gag ctt cga gag ctg tgc cca gga Ala Gly Thr Met Ala Val Ala Ala Glu Leu Arg Glu Leu Cys Pro Gly  10 15 20 25  gtg aac aac cag ccc tac ctc tgt gag agt ggt cac tgc tgc ggg gag  Val Asn Asn Gln Pro Tyr Leu Cys Glu Ser Gly His Cys Cys Gly Glu  30 35 40	101
cggatggaag ctccggccgc ggagtg atg gtg gcc tca gcg aag atg ggc cgg  Met Val Ala Ser Ala Lys Met Gly Arg  1 5  gca ggg acc atg gcg gtg gca gca gag ctt cga gag ctg tgc cca gga Ala Gly Thr Met Ala Val Ala Ala Glu Leu Arg Glu Leu Cys Pro Gly  10 15 20 25  gtg aac aac cag ccc tac ctc tgt gag agt ggt cac tgc tgc ggg gag Val Asn Asn Gln Pro Tyr Leu Cys Glu Ser Gly His Cys Cys Gly Glu  30 35 40  act ggc tgc tgc tgc acc tac tac tat gag ctc tgg tgg ttc tgg ctg ctc	101 149
cggatggaag ctccggccgc ggagtg atg gtg gcc tca gcg aag atg ggc cgg  Met Val Ala Ser Ala Lys Met Gly Arg  1 5  gca ggg acc atg gcg gtg gca gca gag ctt cga gag ctg tgc cca gga Ala Gly Thr Met Ala Val Ala Ala Glu Leu Arg Glu Leu Cys Pro Gly  10 15 20 25  gtg aac aac cag ccc tac ctc tgt gag agt ggt cac tgc tgc ggg gag  Val Asn Asn Gln Pro Tyr Leu Cys Glu Ser Gly His Cys Cys Gly Glu  30 35 40	101 149
Met Val Ala Ser Ala Lys Met Gly Arg  1 5  gea ggg acc atg geg gtg gea gea gag ett ega gag etg tge eea gga Ala Gly Thr Met Ala Val Ala Ala Glu Leu Arg Glu Leu Cys Pro Gly 10 15 20 25  gtg aac aac eag eec tac ete tgt gag agt ggt eac tge tge ggg gag Val Asn Asn Gln Pro Tyr Leu Cys Glu Ser Gly His Cys Cys Gly Glu act gge tge tge acc tac tac tat gag ete tgg tgg tte tgg etg ete Thr Gly Cys Cys Thr Tyr Tyr Tyr Glu Leu Trp Trp Phe Trp Leu Leu	101 149
cggatggaag ctccggccgc ggagtg atg gtg gcc tca gcg aag atg ggc cgg  Met Val Ala Ser Ala Lys Met Gly Arg  1 5  gca ggg acc atg gcg gtg gca gca gag ctt cga gag ctg tgc cca gga Ala Gly Thr Met Ala Val Ala Ala Glu Leu Arg Glu Leu Cys Pro Gly  10 15 20 25  gtg aac aac cag ccc tac ctc tgt gag agt ggt cac tgc tgc ggg gag Val Asn Asn Gln Pro Tyr Leu Cys Glu Ser Gly His Cys Cys Gly Glu  30 35 40  act ggc tgc tgc acc tac tac tat gag ctc tgg tgg ttc tgg ctg ctc Thr Gly Cys Cys Thr Tyr Tyr Tyr Glu Leu Trp Trp Phe Trp Leu Leu  45 50 55	101 149 197
Met Val Ala Ser Ala Lys Met Gly Arg  1 5  gea ggg acc atg geg gtg gea gea gag ett ega gag etg tge eea gga Ala Gly Thr Met Ala Val Ala Ala Glu Leu Arg Glu Leu Cys Pro Gly 10 15 20 25  gtg aac aac eag eec tac etc tgt gag agt ggt eac tge tge ggg gag Val Asn Asn Gln Pro Tyr Leu Cys Glu Ser Gly His Cys Cys Gly Glu act gge tge tge acc tac tac tat gag etc tgg tgg tte tgg etg etc Thr Gly Cys Cys Thr Tyr Tyr Tyr Glu Leu Trp Trp Phe Trp Leu Leu 45 50 55  tgg act gte etc eac ega eac ega	101 149 197
eggatggaag eteeggeege ggagtg atg gtg gee tea geg aag atg gge egg  Met Val Ala Ser Ala Lys Met Gly Arg  1 5  gea ggg ace atg geg gtg gea gea gag ett ega gag etg tge eea gga Ala Gly Thr Met Ala Val Ala Ala Glu Leu Arg Glu Leu Cys Pro Gly  10 15 20 25  gtg aac aac eag eec tac etc tgt gag agt ggt eac tge tge ggg gag Val Asn Asn Gln Pro Tyr Leu Cys Glu Ser Gly His Cys Cys Gly Glu  30 35 40  act gge tge tge ace tac tac tat gag etc tgg tgg tte tgg etg etc Thr Gly Cys Cys Thr Tyr Tyr Tyr Glu Leu Trp Trp Phe Trp Leu Leu  45 50 55  tgg act gte etc ate etc ttt age tge tgt tge gee tte ege eac ega Trp Thr Val Leu Ile Leu Phe Ser Cys Cys Cys Ala Phe Arg His Arg	101 149 197

	75					80					85					
ttg	ttg	gcc	tat	cat	ggg	gca	tgc	cat	ggg	gct	ggt	cct	ttc	cct	acc	341
Leu	Leu	Ala	Tyr	His	Gly	Ala	Сув	His	Gly	Ala	Gly	Pro	Phe	Pro	Thr	
90					95					100					105	
ggt	tca	ctg	ctt	gac	ctt	cgc	ttc	ctc	agc	acc	ttc	aag	ccc	cca	gee	389
Gly	Ser	Leu	Leu	Asp	Leu	Arg	Phe	Leu	Ser	Thr	Phe	Lys	Pro	Pro	Ala	
				110					115					120		
tac	gag	gat	gtg	gtt	cac	cgc	cca	ggc	aca	cca	ccc	ccc	cct	tat	act	437
Tyr	Glu	Asp	Val	Val	His	Arg	Pro	Gly	Thr	Pro	Pro	Pro	Pro	Tyr	Thr	
			125					130					135			
gtg	gcc	cca	ggc	cgc	ccc	ttg	act	gct	tcc	agt	gaa	caa	acc	tgc	tgt	485
Val	Ala	Pro	Gly	Arg	Pro	Leu	Thr	Ala	Ser	Ser	Glu	Gln	Thr	Суз	Суз	
		140					145					150				
tec	tcc	tca	tcc	agc	tgc	cct	gcc	cac	ttt	gaa	gga	aca	aat	gtg	gaa	533
Ser	Ser	Ser	Ser	Ser	Сув	Pro	Ala	His	Phe	Glu	Gly	Thr	Asn	Val	Glu	
	155					160					165					
ggt	gtt	tee	tcc	cac	cag	agt	gcc	ccc	ccc	cat	cag	gag	ggt	gag	ccc	581
Gly	Val	Ser	Ser	His	Gln	Ser	Ala	Pro	Pro	His	Gln	Glu	Gly	Glu	Pro	
170					175					180					185	
<b>9</b> 99	gca	ggg	gtg	acc	cct	gee	tcc	aca	ccc	ccc	tee	tgc	ege	tat	cgc	629
Gly	Ala	Gly	Val	Thr	Pro	Ala	Ser	Thr	Pro	Pro	Ser	Cys	Arg	Tyr	Arg	
				190					195					200		*
cgt	tta	act	ggc	gac	tcc	ggt	att	gag	ctc	tgc	cct	tgt	cct	gcc	tee	677
Arg	Leu	Thr	Gly	qeA	Ser	Gly	Ile	Glu	Leu	Суз	Pro	Суз	Pro	Ala	Ser	
			205					210					215			
ggt	gag	ggt	gag	cca	gtc	aag	gag	gtg	agg	gtt	agt	gcc	acc	ctg	cca	725
Gly	Glu	Gly	Glu	Pro	Val	Lys	Glu	Val	Arg	Val	Ser	Ala	Thr	Leu	Pro	
		220					225					230				
gat	ctg	gag	gac	tac	tcc	ccg	tgt	gca	cta	ccc	cca	gag	tct	gta	ccg	773
Asp	Leu	Glu	Asp	Tyr	Ser	Pro	Суз	Ala	Leu	Pro	Pro	Glu	Ser	Val	Pro	
	235					240					245					
cag	atc	ttt	ccc	atg	ggg	ctg	tct	tcc	agt	gaa	ggg	gac	atc	cca		818
Gln	Ile	Phe	Pro	Met	Gly	Leu	Ser	Ser	Ser	Glu	Gly	Asp	Ile	Pro		
250					255					260						
+	atao	++++	n an	edaa	taas	tac	ratts	ott	aaaa			" ORTRI	ccct	'A		870

gteceaacte ettgegttee tttggeeeet eeetgeetae etagaatetg eetgaaaggg	930
ctggagaggg gcagtattgg gggactgtgc tagctttacc cccgcaggac atacacagga	990
gcetttgate teattaaaga gatgtgaace aget	1024
<210> 27	
<211> 1237	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (24)(1055)	
<400> 27	
tactggetac tggcgctgca gcc atg cag ccc ccg ccc ccg ggc ccg ctg ggc	53
Met Gln Pro Pro Pro Gly Pro Leu Gly	
1 5 10	
gac tgc etg egg gac tgg gag gat eta eag eag gac ttc eag aac atc	101
Asp Cys Leu Arg Asp Trp Glu Asp Leu Gln Gln Asp Phe Gln Asn Ile	
15 20 25	
cag gag acc cat cgg ctc tac cgc ctg aag ctg gag gag ctg acc aaa	149
Gln Glu Thr His Arg Leu Tyr Arg Leu Lys Leu Glu Glu Leu Thr Lys	
30 35 40	
ett cag aac aat tgc acc agc tcc atc acg cgg cag aag aag cgg ctc	197
Leu Gln Asn Asn Cys Thr Ser Ser Ile Thr Arg Gln Lys Lys Arg Leu	
45 50 55	
cag gag ctg gcc ctc gcc ctg aag aaa tgc aaa ccc tcc ctc cca gca	245
Gln Glu Leu Ala Leu Lys Lys Cys Lys Pro Ser Leu Pro Ala	
60 65 70	
gag gee gag ggg gee gea cag gag etg gag aac cag atg aaa gag ege	293
Glu Ala Glu Gly Ala Ala Gln Glu Leu Glu Asn Gln Met Lys Glu Arg	
75 80 85 90	
caa ggc ctc ttc ttt gac atg gag gcc tat ttg cct aag aag aat gga	341
Gln Gly Leu Phe Phe Asp Met Glu Ala Tyr Leu Pro Lys Lys Asn Gly	
95 100 105	
ttg tac ctg age ctg gtt ctg ggg aac gtc aac gtc acg ctc ctg age	389
Leu Tyr Leu Ser Leu Val Leu Gly Asn Val Asn Val Thr Leu Leu Ser	

			110					115					120	)		
aag	cag	gct	aag	ttt	gcc	tac	aag	gac	gag	tat	gag	aag	tto	aag	ctc	437
Lys	Gln	Ala	Lys	Phe	Ala	Tyr	Lys	Asp	Glu	Tyr	Glu	Lys	Phe	Lya	Leu	
		125					130	ı				135				
tac	ctc	acc	atc	atc	ctc	atc	ete	atc	tcc	ttc	act	tgc	cgo	tto	ctg	485
Tyr	Leu	Thr	Ile	Ile	Leu	Ile	Leu	Ile	Ser	Phe	Thr	Сув	Arg	Phe	Leu	
	140					145					150					
ctc	aac	tcc	agg	gtg	aca	gat	gct	gcc	ttc	aac	ttc	ctg	ctg	gtc	tgg	533
Leu	Asn	Ser	Arg	Val	Thr	Asp	Ala	Ala	Phe	Asn	Phe	Leu	Leu	Val	Trp	
155					160					165					170	
tac	tac	tgc	acc	ctg	acc	atc	cgg	gag	agc	atc	ctc	atc	aac	aac	ggc	581
Tyr	Tyr	Cys	Thr	Leu	Thr	Ile	Arg	Glu	Ser	Ile	Leu	Ile	Asn	Asn	Gly	
				175					180					185		
tee	cgg	atc	aaa	ggc	tgg	tgg	gtg	tte	cat	cac	tac	gtg	tcc	acc	ttc	629
Ser	Arg	Ile	Lys	Gly	Trp	Trp	Val	Phe	His	His	Tyr	Val	Ser	Thr	Phe	
			190					195					200			
ctg	tcg	gga	gtc	atg	ctg	acg	tgg	ccc	gac	ggt	ctc	atg	tac	cag	aaa	677
Leu	Ser	Gly	Val	Met	Leu	Thr	Trp	Pro	Asp	Gly	Leu	Met	Tyr	Gln	Lys	
		205					210					215				
ttc	cgg	aac	caa	ttc	ctc	tcc	ttt	tcc	atg	tac	cag	agc	ttc	gtg	cag	725
Phe	Arg	Asn	Gln	Phe	Leu	Ser	Phe	Ser	Met	Tyr	Gln	Ser	Phe	Val	Gln	
	220					225					230					
ttt	ctc	cag	tac	tac	tac	cag	agc	ggc	tgc	ctc	tac	cgc	ctg	cgg	gcg	773
Phe	Leu	Gln	Tyr	Tyr	Tyr	Gln	Ser	Gly	Cys	Leu	Tyr	Arg	Leu	Arg	Ala	
235					240					245					250	
ctg	ggc	gag	cgg	Cac	acc	atg	gac	ctc	act	gtg	gag	ggc	ttc	cag	tcc	821
Leu	Gly	Glu	Arg	His	Thr	Met	qeA	Leu	Thr	Val	Glu	Gly	Phe	Gln	Ser	
				255					260					265		
tgg	atg	tgg	cgg	ggc	ctc	acc	ttc	ctg	ctg	cct	ttt	ctt	ttc	ttt	gga	869
Trp	Met	Trp	Arg	Gly	Leu	Thr	Phe	Leu	Leu	Pro	Phe	Leu	Phe	Phe	Gly	
			270					275					280			
cac	ttc	tgg	cag	ctt	ttt	aac	gcg	ctg	acg	ttg	ttc	aac	ctg	gcc	cag	917
His	Phe	Trp	Gln	Leu	Phe	Asn	Ala	Leu	Thr	Leu	Phe	Asn	Leu	Ala	Gln	
		285					290					295				
~~~	cat	200	+~~	207	~~~	+~~		ata	att	-+~	+~~	~~~	+++	000	++-	965

Asp Pro Gln Cys Lys Glu Trp Gln Val Leu Met Cys Gly Phe Pro Phe	
300 305 310	
ctc ctc ctt ttc ctc ggc aat ttc ttc acc acc ctg agg gtt gtg cac	1013
Leu Leu Leu Phe Leu Gly Asn Phe Phe Thr Thr Leu Arg Val Val His	
315 320 325 330	
cac aag ttt cac agt cag cgg cac ggg agc aag aag gat tgaggetg	1060
His Lys Phe His Ser Gln Arg His Gly Ser Lys Lys Asp	
335 340	
ggeetteeee tgeeggeeca gaggggette tgteetgtgt gttgtgggag gggatgggag	1120
gegeeeeteg agtgtgegtg tateaggggg tetettetat teteeettgg gttttatggg	1180
egetgtggge cetgaaggaa gacetgggee cagtgeeete aataaagaga ggeeeag	1237
<210> 28	
<211> 1332	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (39)(773)	
<400> 28	
agtgeeceag eggaageaca geteagaget ggtetgee atg gae ate etg gte ees	
Met Asp Ile Leu Val Pro)
1 5	104
ete etg eag etg etg gtg etg ett ett ace etg eee etg eac etc atg	104
Leu Leu Gln Leu Leu Val Leu Leu Leu Thr Leu Pro Leu His Leu Met	
10 15 20	150
get etg etg gge tge tgg eag eee etg tge aaa age tae tte eee tae	152
Ala Leu Leu Gly Cys Trp Gln Pro Leu Cys Lys Ser Tyr Phe Pro Tyr	
25 30 35	200
ctg atg gee gtg etg act eee aag age aac ege aag atg gag age aag	200
Leu Met Ala Val Leu Thr Pro Lys Ser Asn Arg Lys Met Glu Ser Lys	
40 45 50	040
aaa cgg gag ete tte age eag ata aag ggg ett aca gga gee tee ggg	248
Lys Arg Glu Leu Phe Ser Gln Ile Lys Gly Leu Thr Gly Ala Ser Gly	
55 60 65 70	

aaa	gtg	gcc	cta	ctg	gag	ctg	ggc	tgc	gga	acc	gga	gcc	aac	ttt	cag	296
Lys	Val	Ala	Leu	Leu	Glu	Leu	Gly	Суз	Gly	Thr	Gly	Ala	Asn	Phe	Gln	
				75					80					85		
ttc	tac	cca	ccg	ggc	tgc	agg	gtc	acc	tgc	cta	gac	cca	aat	CCC	cac	344
Phe	Tyr	Pro	Pro	Gly	Суз	Arg	Val	Thr	Суз	Leu	Asp	Pro	Asn	Pro	His	
			90					95					100			
ttt	gag	aag	ttc	ctg	aca	aag	agc	atg	gct	gag	aac	agg	cac	ctc	caa	392
Phe	Glu	Lys	Phe	Leu	Thr	Lys	Ser	Met	Ala	Glu	Asn	Arg	His	Leu	Gln	
		105					110					115				
tat	gag	cgg	ttt	gtg	gtg	gct	cct	gga	gag	gac	atg	aga	cag	ctg	gct	440
Tyr	Glu	Arg	Phe	Val	Val	Ala	Pro	Gly	Glu	qaA	Met	Arg	Gln	Leu	Ala	
	120					125					130					
gat	ggc	tcc	atg	gat	gtg	gtg	gtc	tgc	act	ctg	gtg	ctg	tgc	tct	gtg	488
Asp	Gly	Ser	Met	Asp	Val	Val	Val	Cys	Thr	Leu	Val	Leu	Cys	Ser	Val	
135					140					145					150	
cag	agc	cca	agg	aag	gtc	ctg	cag	gag	gtc	cgg	aga	gta	ctg	aga	ccg	536
Gln	Ser	Pro	Arg	Lys	Val	Leu	Gln	Glu	Val	Arg	Arg	Val	Leu	Arg	Pro	
				155					160					165		
gga	ggt	gtg	ctc	ttt	ttc	tgg	gag	cat	gtg	gca	gaa	CCB	tat	gga	agc	584
Gly	Gly	Val	Leu	Phe	Phe	Trp	Glu	His	Val	Ala	Glu	Pro	Tyr	Gly	Ser	
			170					175					180			
tgg	gcc	ttc	atg	tgg	cag	caa	gtt	ttc	gag	CCC	acc	tgg	aaa	cac	att	.632
Trp	Ala		Met	Trp	Gln	Gln	Val	Phe	Glu	Pro	Thr	Trp	Lys	His	Ile	
		185					190					195				
	-		_	_		acc	_				_	_		_		680
Gly		Gly	Суз	Суз	Leu	Thr	Arg	Glu	Thr	Trp	ГЛЗ	Asp	Leu	Glu	Asn	
	200					205					210					
gcc	cag	ttc	tcc	gaa	atc	caa	atg	gaa	cga	cag	CCC	cct	ccc	ttg	aag	728
	Gln	Phe	Ser	Glu	Ile	Gln	Met	Glu	Arg	Gln	Pro	Pro	Pro	Leu	Lys	
215					220					225					230	
tgg	cta	cct	gtt	ggg	ccc	cac	atc	atg	gga	aag	gct	gtc	aaa	taat	ctttc	780
Trp	Leu	Pro	Val	Gly	Pro	His	Ile	Met	Gly	Lys	Ala	Val	Lys			
				235					240							
caaç	jetec	aa g	gcac	tcat	t to	jetec	ttec	: cca	geet	cca	atta	gaac	aa g	ccac	CCACC	840
2000	teto	+a +	cttc	cact	a ac	anna	ecct	ann	AMAR	tas	папа	AMAC	at t	cato	tacca	900

WO 00/29448 PCT/JP99/06412

	igtc	cctc	tete	cc c	aacc	tctg	c ca	gggc	aatc	tct	aact	tca	atcc	cgcct	t 960
cgacagt	gaa	aaag	ctct	ac t	tcta	cgct	g ac	ccag	ggag	gaa	acac	tag	gacc	ctgtt	g 1020
tatecto	aac	tgca	agtt	tc t	ggac	tagt	c tc	ccaa	cgtt	tgc	ctcc	caa	tgtt	gtece	t 1080
ttccttc	gtt	ccca	tggt	aa a	gctc	ctct	c gc	tttc	ctcc	tga	ggct	aca	ccca	tgegt	c 1140
tctagge	act	ggtc	acaa	aa g	tcat	ggtg	c ct	gcat	ccct	gcc	aagc	ccc	cctg	accct	c 1200
tetecec	act	acca	catt	ct t	cctg	agct	g gg	ggca	ccag	gga	gaat	cag	agat	getgg	g 1260
gatgees	ıgag	caag	actc	aa a	gagg	caga	g gt	tttg	ttct	caa	atat	ttt	ttaa	taaat	a 1320
gacgaaa	cca	cg													1332
<210> 2	:9														
<211> 1	932														
<212> D	NA														
<213> H	OTTO	sapi	ens												
<220>															
<221> C															
<222> (38).	(9	49)												
<400> 2															
agacccc	gcc	tgct	cggg	eg e	gggc	ggcg	g cg	cggc	c at	g aa	gct	g aa	g ct	g aag	55
agacccc	gcc	tgct	cggg	eg e	gggc	ggcg	g cg	cggc	Met	t Ly:			s Lei	ı Lys	55
				,					Med	t Ly: l	Le	ı Lya	s Lei	ı Lys	
aac gtg	ttt	ctc	gec	tac	tte	ctg	gtg	teg	Med atc	t Ly: 1 gec	ggc	a Ly	s Len	ı Lys 5 tac	55 103
	ttt	ctc Leu	gec	tac	tte	ctg	gtg Val	teg	Med atc	t Ly: 1 gec	ggc	ctc Leu	s Len	ı Lys 5 tac	
aac gtg Asn Val	ttt Phe	ctc Leu 10	gcc Ala	tac Tyr	ttc Phe	ctg Leu	gtg Val 15	tcg Ser	Met atc Ile	t Ly: l gcc Ala	ggc Gly	ctc Leu 20	ctc Leu	Lys tac Tyr	103
aac gtg Asn Val geg etg	ttt Phe gta	ctc Leu 10 cag	gcc Ala	tac Tyr ggc	ttc Phe	ctg Leu	gtg Val 15	tcg Ser gac	Med atc Ile	t Lys l gcc Ala	ggc Gly cct	ctc Leu 20	ctc Leu	tac Tyr	
aac gtg Asn Val	ttt Phe gta Val	ctc Leu 10 cag	gcc Ala	tac Tyr ggc	ttc Phe	ctg Leu cca Pro	gtg Val 15	tcg Ser gac	Med atc Ile	t Lys l gcc Ala	ggc Gly cct Pro	ctc Leu 20	ctc Leu	tac Tyr	103
aac gtg Asn Val geg etg Ala Leu	ttt Phe gta Val 25	ctc Leu 10 cag Gln	gcc Ala ctc Leu	tac Tyr ggc Gly	ttc Phe cag Gln	ctg Leu cca Pro	gtg Val 15 tgt Cys	tcg Ser gac Asp	Mediate atc Ile tgc Cys	t Lys l gcc Ala ett Leu	ggc Gly cct Pro	ctc Leu 20 ccc Pro	ctc Leu ctg	tac Tyr cgg	103 151
aac gtg Asn Val gcg ctg Ala Leu gca gca	ttt Phe gta Val 25 gcc	ctc Leu 10 cag Gln	gcc Ala ctc Leu cag	tac Tyr ggc Gly	ttc Phe cag Gln	ctg Leu cca Pro 30	gtg Val 15 tgt Cys	tcg Ser gac Asp	Medical atc Ile tgc Cys ctg	t Lys l gcc Ala ett Leu	ggc Gly cct Pro 35	ctc Leu 20 ccc Pro	ctc Leu ctg Leu	tac Tyr cgg Arg	103
aac gtg Asn Val gcg ctg Ala Leu gca gca	ttt Phe gta Val 25 gcc	ctc Leu 10 cag Gln	gcc Ala ctc Leu cag	tac Tyr ggc Gly	ttc Phe cag Gln	ctg Leu cca Pro 30	gtg Val 15 tgt Cys	tcg Ser gac Asp	Medical atc Ile tgc Cys ctg	t Lys l gcc Ala ett Leu	ggc Gly cct Pro 35	ctc Leu 20 ccc Pro	ctc Leu ctg Leu	tac Tyr cgg Arg	103 151
aac gtg Asn Val gcg ctg Ala Leu gca gca Ala Ala	ttt Phe gta Val 25 gcc Ala	ctc Leu 10 cag Gln gag Glu	gcc Ala ctc Leu cag	tac Tyr ggc Gly cta Leu	ttc Phe cag Gln cgg Arg 45	ctg Leu cca Pro 30 cag	gtg Val 15 tgt Cys aag Lys	tcg Ser gac Asp gat Asp	Med atc Ile tgc Cys ctg	t Ly: gcc Ala ctt Leu agg Arg 50	ggc Gly cet Pro 35 att	ctc Leu 20 ccc Pro tcc Ser	ctc Leu ctg Leu cag	tac Tyr cgg Arg ctg	103 151 199
aac gtg Asn Val gcg ctg Ala Leu gca gca Ala Ala 40 caa gcg	ttt Phe gta Val 25 gcc Ala	ctc Leu 10 cag Gln gag Glu	gec Ala etc Leu cag Gln	tac Tyr ggc Gly cta Leu	ttc Phe cag Gln cgg Arg 45	ctg Leu cca Pro 30 cag Gln	gtg Val 15 tgt Cys aag Lys	teg Ser gac Asp gat Asp	atc Ile tgc Cys ctg Leu	t Lys gec Ala ett Leu agg Arg 50 gec	ggc Gly cct Pro 35 att Ile	ctc Leu 20 ccc Pro tcc Ser	ctc Leu ctg Leu cag Gln	tac tac Tyr cgg Arg ctg Leu	103 151
aac gtg Asn Val gcg ctg Ala Leu gca gca Ala Ala 40 caa gcg Gln Ala	ttt Phe gta Val 25 gcc Ala	ctc Leu 10 cag Gln gag Glu	gec Ala etc Leu cag Gln	tac Tyr ggc Gly cta Leu cgg	ttc Phe cag Gln cgg Arg 45	ctg Leu cca Pro 30 cag Gln	gtg Val 15 tgt Cys aag Lys	teg Ser gac Asp gat Asp	atc Ile tgc Cys ctg Leu cct	t Lys gec Ala ett Leu agg Arg 50 gec	ggc Gly cct Pro 35 att Ile	ctc Leu 20 ccc Pro tcc Ser	ctc Leu ctg Leu cag Gln	tac Tyr cgg Arg ctg Leu gaa Glu	103 151 199
aac gtg Asn Val gcg ctg Ala Leu gca gca Ala Ala 40 caa gcg Gln Ala	ttt Phe gta Val 25 gcc Ala gaa Glu	ctc Leu 10 cag Gln gag Glu ctc Leu	gcc Ala ctc Leu cag Gln cga	tac Tyr ggc Gly cta Leu cgg Arg	ttc Phe cag Gln cgg Arg 45 cca Pro	ctg Leu cca Pro 30 cag Gln ccc	gtg Val 15 tgt Cys aag Lys cct	tcg Ser gac Asp gat Asp	Medicate Ille tgc Cys ctg Leu cct Pro 65	t Lys gcc Ala ett Leu agg 50 gcc Ala	ggc Gly cct Pro 35 att Ile cag	ctc Leu 20 ccc Pro tcc Ser ccc	ctc Leu ctg Leu cag Gln cct	tac Tyr cgg Arg ctg Leu gaa Glu 70	103 151 199 247
aac gtg Asn Val gcg ctg Ala Leu gca gca Ala Ala 40 caa gcg Gln Ala 55	ttt Phe gta Val 25 gcc Ala gaa Glu	ctc Leu 10 cag Gln gag Glu ctc Leu	gec Ala etc Leu cag Gln cga Arg	tac Tyr ggc Gly cta Leu cgg Arg 60 act	ttc Phe cag Gln cgg Arg 45 cca Pro	ctg Leu cca Pro 30 cag Gln ccc Pro	gtg Val 15 tgt Cys aag Lys cct Pro	tcg Ser gac Asp gat Asp	Medicate Ilea tgc Cys ctg Leu cct Pro 65 acc	t Lys gec Ala ett Leu agg 50 gec Ala cec	ggc Gly cct Pro 35 att Ile cag Gln acc	ctc Leu 20 ccc Pro tcc Ser ccc Pro	teu etg Leu eag Gln eet	tac Tyr cgg Arg ctg Leu gaa Glu 70 agg	103 151 199
aac gtg Asn Val gcg ctg Ala Leu gca gca Ala Ala 40 caa gcg Gln Ala	ttt Phe gta Val 25 gcc Ala gaa Glu	ctc Leu 10 cag Gln gag Glu ctc Leu	gec Ala etc Leu cag Gln cga Arg	tac Tyr ggc Gly cta Leu cgg Arg 60 act	ttc Phe cag Gln cgg Arg 45 cca Pro	ctg Leu cca Pro 30 cag Gln ccc Pro	gtg Val 15 tgt Cys aag Lys cct Pro	tcg Ser gac Asp gat Asp	Medicate Ilea tgc Cys ctg Leu cct Pro 65 acc	t Lys gec Ala ett Leu agg 50 gec Ala cec	ggc Gly cct Pro 35 att Ile cag Gln acc	ctc Leu 20 ccc Pro tcc Ser ccc Pro	teu etg Leu eag Gln ect Pro	tac Tyr cgg Arg ctg Leu gaa Glu 70 agg	103 151 199 247

ccc	ctg	tgg	gtg	cag	tac	cct	cag	gat	gtg	act	acc	ttc	aat	ata	gat	34	13
Pro	Leu	Trp	Val	Gln	Tyr	Pro	Gln	Aap	Val	Thr	Thr	Phe	Asn	Ile	Asp		
			90					95					100	l			
gat	cag	tac	ttg	ctt	ggg	gat	gcg	ttg	ctg	gtt	cac	cct	gta	tca	gac	39	1
Asp	Gln	Tyr	Leu	Leu	Gly	Asp	Ala	Leu	Leu	Val	His	Pro	Val	Ser	Asp		
		105					110					115					
tct	gga	gcc	cat	ggt	gtc	cag	gtc	tat	ctg	cct	ggc	caa	ggg	gag	gtg	43	19
Ser	Gly	Ala	His	Gly	Val	Gln	Val	Tyr	Leu	Pro	Gly	Gln	Gly	Glu	Val		
	120					125					130						
tgg	tat	gac	att	caa	agc	tac	cag	aag	cat	cat	ggt	ccc	cag	acc	ctg	48	:7
Trp	Tyr	Asp	Ile	Gln	Ser	Tyr	Gln	Lys	His	His	Gly	Pro	Gln	Thr	Leu		
135					140					145					150		
tac	ctg	cct	gta	act	cta	agc	agt	atc	cct	gtg	ttc	cag	cgt	gga	ggg	53	5
Tyr	Leu	Pro	Val	Thr	Leu	Ser	Ser	Ile	Pro	Val	Phe	Gln	Arg	Gly	Gly		
				155					160					165			
aca	atc	gtg	cct	cga	tgg	atg	cga	gtg	egg	cgg	tct	tca	gaa	tgt	atg	58	3
Thr	Ile	Val	Pro	Arg	Trp	Met	Arg	Val	Arg	Arg	Ser	Ser	Glu	Сув	Met		
			170					175					180				
aag	gat	gac	ccc	atc	act	ctc	ttt	gtt	gca	ctt	agc	cct	cag	ggt	aca	63	1
Lys	Asp	qaA	Pro	Ile	Thr	Leu	Phe	Val	Ala	Leu	Ser	Pro	Gln	Gly	Thr		
		185					190					195					
gct	caa	gga	gag	ctc	ttt	ctg	gat	gat	ggg	cac	acg	ttc	aac	tat	cag	67	9
Ala	Gln	Gly	Glu	Leu	Phe	Leu	Asp	Asp	Gly	His	Thr	Phe	Asn	Tyr	Gln		
	200					205					210						
act	cgc	caa	gag	ttc	ctg	ctg	cgt	cga	ttc	tca	ttc	tct	ggc	aac	acc	72	7
Thr	Arg	Gln	Glu	Phe	Leu	Leu	Arg	Arg	Phe	Ser	Phe	Ser	Gly	Asn	Thr		
215					220					225					230		
ctt	gtc	tcc	agc	tca	gca	gac	cct	gaa	gga	cac	ttt	gag	aca	cca	atc	77	5
Leu	Val	Ser	Ser	Ser	Ala	Asp	Pro	Glu	Gly	His	Phe	Glu	Thr	Pro	Ile		
				235					240					245			
tgg	att	gag	cgg	gtg	gtg	ata	ata	ggg	gct	gga	aag	cca	gca	gct	gtg	823	3
Trp	Ile	Glu	Arg	Val	Val	Ile	Ile	Gly	Ala	Gly	Lys	Pro	Ala	Ala	Val		
			250					255					260				
gta	ctc	cag	aca	aaa	gga	tct	cca	gaa	agc	cgc	ctg	tcc	ttc	cag	cat	871	1
7e7	T.DII	G) n	ጥኮሎ	Tara	G) v	Sor	Dro	Glu	Ser	Ara	Tan	502	Dha	Gln	uia		

265 270 275	
gae cet gag ace tet gtg ttg gte etg ege aag eet gge ate aat gtg	919
Asp Pro Glu Thr Ser Val Leu Val Leu Arg Lys Pro Gly Ile Asn Val	
280 285 290	
gea tet gat tgg agt att cac etg ega taacceaagg gatgttetgg gtta	970
Ala Ser Asp Trp Ser Ile His Leu Arg	
295 300	
gggggaggga aggggagcat tagtgctgag agatattett tettetgeet tggagttegg	1030
cectececag acticactta tgetagteta agacecagat tetgecaaca tttgggcagg	1090
atgagagggc tgaccotggg ctocaaattc ctcttgtgat ctcctcacct ctcccactec	1150
attgatacca actotttccc ttcattcccc caacatcctg ttgctctaac tggagcacat	1210
teacttacga acaccaggaa accacaggge ecttgtegee cettetett ceettattta	1270
ggagecetga actececcag agtetateca tteatgeete ttgtatgttg atgecaette	1330
ttggaagaag atgagggcaa tgagttaggg eteettttee eetteeetee caccagattg	1390
ctctcccacc tttcatttct tectccagge tttactcccc tttttatgcc ccaccgatac	1450
actgggacca ccccttaccc cggacaggat gaatggatca aaggagtgag gttgctaaag	1510
aacatcettt teeeteteat tetaeeettt teeteteeee gatteettgt agagetgetg	1570
caattettag aggggcagtt ctaceteete tgteeetegg cagaaagaeg tttecacace	1630
tettagggga tgcgcattaa acttettttg ceceettett gtcccetttg aggggcaett	1690
aagatggaga aatcagttgt ggtttcagtg aatcatggtc acctgtattt attgctagga	1750
gaageetgag ggtgggggga gatgateatg tgtgeteggg gttggetgga ageeetgggt	1810
ggggggttgg gggaggacta atggggagtc ggggaatatt tgtgggtatt ttttttactt	1870
cetettggtt eecagetgtg acaegttttg atcaaaggag aaacaataaa gggataaace	1930
at	1932
<210> 30	
<211> 1124	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (73)(555)	
<400> 30	
ggaagageeg teaacttage gagegeaaca ggetgeeget gaggagetgg agetggtggg	60
gactgggccg ca atg gac aag ctg aag aag gtg ctg agc ggg cag gac acg	111

			M	et A	sp Ly	ys L	eu Ly	ys L	ys V	al L	eu S	er G	ly G	ln A	sp Th	r
				1				5					10			
gag	gac	cgg	agc	ggc	ctg	tcc	gag	gtt	gtt	gag	gca	tct	tca	tta	agc	159
Glu	Asp	Arg	Ser	Gly	Leu	Ser	Glu	Val	Val	Glu	Ala	Ser	Ser	Leu	Ser	
	15					20					25					
tgg	agt	acc	agg	ata	aaa	ggc	ttc	att	gcg	tgt	ttt	gct	ata	gga	att	207
Trp	Ser	Thr	Arg	Ile	Lys	Gly	Phe	Iľe	Ala	Сув	Phe	Ala	Ile	Gly	Ile	
30					35					40					45	
ctc	tgc	tca	ctg	ctg	ggt	act	gtt	ctg	ctg	tgg	gtg	ccc	agg	aag	gga	255
Leu	Cys	Ser	Leu	Leu	Gly	Thr	Val	Leu	Leu	Trp	Val	Pro	Arg	Lys	Gly	
				50					55					60		
cta	cac	ctc	ttc	gca	gtg	ttt	tat	acc	ttt	ggt	aat	atc	gca	tca	att	303
Leu	His	Leu	Phe	Ala	Val	Phe	Tyr	Thr	Phe	Gly	Asn	Ile	Ala	Ser	Ile	
			65					70					75			
ggg	agt	acc	atc	ttc	ctc	atg	gga	cca	gtg	aaa	cag	ctg	aag	cga	atg	351
Gly	Ser	Thr	Ile	Phe	Leu	Met	Gly	Pro	Val	Lys	Gln	Leu	Lys	Arg	Met	
		80					85					90				
ttt	gag	cct	act	cgt	ttg	att	gca	act	atc	atg	gtg	ctg	ttg	tgt	ttt	399
Phe	Glu	Pro	Thr	Arg	Leu	Ile	Ala	Thr	Ile	Met	Val	Leu	Leu	Суз	Phe	
	95				٠	100					105					
gca	ctt	acc	ctg	tgt	tct	gcc	ttt	tgg	tgg	cat	aac	aag	gga	ctt	gca	447
Ala	Leu	Thr	Leu	Суз	Ser	Ala	Phe	Trp	Trp	His	Asn	Lys	Gly	Leu	Ala	
110					115					120					125	
ctt	atc	ttc	tgc	att	ttg	cag	tct	ttg	gca	ttg	acg	tgg	tac	agc	ctt	495
Leu	Ile	Phe	Сув	Ile	Leu	Gln	Ser	Leu	Ala	Leu	Thr	Trp	Tyr	Ser	Leu	
				130					135					140		
tcc	ttc	ata	cca	ttt	gca	agg	gat	gct	gtg	aag	aag	tgt	ttt	gee	gtg	543
Ser	Phe	Ile	Pro	Phe	Ala	Arg	Asp	Ala	Val	Lys	Lys	Сув	Phe	Ala	Val	
			145					150					155			
tgt	ctt	gca	taat	tcat	gg c	cagt	ttte	at ga	agct	ttg	, aac	gcac	tat	ggad	agaa	600
Суз	Leu	Ala														
		160														
gctg	iatac	jac e	gttt	tgte	a ct	atct	tega	a aac	etet	gtc	ttac	agac	at c	jtgcc	tttta	660
tett	geag	jca a	atgto	jttgo	t to	rtgat	tege	a ace	ttt	gagg	gtte	cttt	tg g	gaago	aacaa	720
taca	ittet	.cg e	acct	gaat	g to	agta	gcac	ago	gatga	ıgaa	gtgg	gtto	tg t	atct	tgtgg	780

agtggaatet teeteatgta cetgttteet etetggatgt tgteceaetg aatteceatg

48/233

aat	acaa	acc	tatt	cago	aa c	agca	cata	a gc	cttg	ggtg	caa	gtga	ttc	ccag	gtggo
aaa	ggca	gcc	ccat	caga	ga t	cacg	ggag	c aa	cagt	aagg	gac	agag	ttt	tggg	gtcca
ttg	tece	tca	gcat	ggaa	gc c	atca	ccgt	g gt	cctg	cata	gag	tgag	tct	actt	ctact
tgg	catc	tga	gaac	aagt	ga c	tctg	cttt	a ga	caag	cccc	tgg	agag	cct	ggcc	atgga
tga	ggta	gaa	aaga	agca	ct t	tttg	gtgg	t at	atgc	tgtt	tct	g			
<21	0> 3	1													
<21	1> 1	445													
<21	2> P	RT													
<21	3> H	omo	sapi	ens											
<40	0> 3	1													
Met	Gln	Gly	Pro	Pro	Leu	Leu	Thr	Ala	Ala	His	Leu	Leu	Сув	Val	Сув
1				5					10		·			15	
Thr	Ala	Ala	Leu	Ala	Val	Ala	Pro	Gly	Pro	Arg	Phe	Leu	Val	Thr	Ala
			20					25					30		
Pro	Gly	Ile	Ile	Arg	Pro	Gly	Gly	Asn	Val	Thr	Ile	Gly	Val	Glu	Leu
		35					40					45			
Leu	Glu	His	Суз	Pro	Ser	Gln	Val	Thr	Val	Lys	Ala	Glu	Leu	Leu	Lys
	50					55					60				
Thr	Ala	Ser	Asn	Leu	Thr	Val	Ser	Val	Leu	Glu	Ala	Glu	Gly	Val	Phe
65					70					75					80
Glu	Lys	Gly	Ser	Phe	Lya	Thr	Leu	Thr	Leu	Pro	Ser	Leu	Pro	Leu	Asn
				85					90					95	
Ser	Ala	Asp	Glu	Ile	Tyr	Glu	Leu	Arg	Val	Thr	Gly	Arg	Thr	Gln	qaA
			100					105					110		
Glu	Ile	Leu	Phe	Ser	Asn	Ser	Thr	Arg	Leu	Ser	Phe	Glu	Thr	Lys	Arg
		115					120					125			
Ile	Ser	Val	Phe	Ile	Gln	Thr	Asp	Lys	Ala	Leu	Tyr	Lys	Pro	Lys	Gln
	130					135					140				
Glu	Val	Lys	Phe	Arg	Ile	Val	Thr	Leu	Phe	Ser	Asp	Phe	Lys	Pro	Tyr
145					150					155					160
Lys	Thr	Ser	Leu	Asn	Ile	Leu	Ile	Lys	Asp	Pro	Lys	Ser	Asn	Leu	Ile
				165					170					175	
Gln	Gln	Trp	Leu	Ser	Gln	Gln	Ser	qeA	Leu	Gly	Val	Ile	Ser	Lys	Thr

WO 00/29448 PCT/JP99/06412

			180					185					190		
Phe	Gln	Leu	Ser	Ser	His	Pro	Ile	Leu	Gly	Asp	Trp	Ser	Ile	Gln	Va]
		195					200					205			
Gln	Val	Asn	Asp	Gln	Thr	Tyr	Tyr	Gln	Ser	Phe	Gln	Val	Ser	Glu	Туз
	210					215					220				
Val	Leu	Pro	Lys	Phe	Glu	Val	Thr	Leu	Gln	Thr	Pro	Leu	Tyr	Cys	Ser
225					230					235					240
Met	Asn	Ser	Lys	His	Leu	Asn	Gly	Thr	Ile	Thr	Ala	Lys	Tyr	Thr	Туг
				245					250					255	
Gly	Lys	Pro	Val	Lys	Gly	Asp	Val	Thr	Leu	Thr	Phe	Leu	Pro	Leu	Ser
			260					265			٠		270		
Phe	Trp	Gly	Lys	Lys	Lys	Asn	Ile	Thr	Lys	Thr	Phe	Lys	Ile	Asn	Gly
		275					280					285			
Ser	Ala	Asn	Phe	Ser	Phe	Asn	Asp	Glu	Glu	Met	Lys	Asn	Val	Met	Asp
	290					295					300				
Ser	Ser	Asn	Gly	Leu	Ser	Glu	Tyr	Leu	Asp	Leu	Ser	Phe	Pro	Gly	
305					310					315					320
Val	Glu	Ile	Leu	Thr	Thr	Val	Thr	Glu		Val	Thr	Gly	Ile		Arg
				325					330					335	
Asn	Val	Ser		Asn	Val	Phe	Phe	_	Gln	His	Asp	Tyr		Ile	Glu
			340					345					350		
Phe	Phe		Tyr	Thr	Thr	Val		Lys	Pro	Ser	Leu		Phe	Thr	Ala
	1	355					360		_			365		- 1	~ 3
TOF		ràa	Val	Thr	Arg		Ąsp	GIĀ	Asn	Gln		Thr	ren	GIU	GIU
3	370	•		**- 1	**7	375	671	**-7	m\	a 1	380			m\	01. .
_	Arg	ASII	ASN	vai		TTe	THE	var	Thr	Gln	Arg	ASII	TYL	THE	
385	(T)	Ca-	<i>~</i> 1••	Cor	390	Cor	C1**	3 an	C1 5	395 Lys	Wa+	~1··	31 0	17-1	400
ıyı	ırp	SET	GTĀ	405	ASII	Ser	GIÀ	ASII	410	тйя	Mec	GIU	MIG	415	GIII
Taro	Tla	λan	The same		tre l	Dro	Cln.	Sor		Thr	Dho	T 170	Tla		Dha
-15	110	VDII.	420	TIM	AGT	FIO	GIII	425	GIY	1111	FIIG	пуз	430	GIU	F 110
Pro	Tle	T.e.u) an	Sor	Sor	Glu		Gln	Leu	Tara	λla		Dha	T.e.it
		435	Jiu	ىيىد	J-134.		440	4004	711	_cu	-Jyo	445	-1-	- 410	
Glv	Ser		Ser	Ser	Met	Ala		His	Ser	Leu	Dhe		Ser	Pro	Ser
1	450	-10	<u>.</u>			A55				_cu	460 1110	-1-			

Lys	Thr	Tyr	Ile	Gln	Leu	Lys	Thr	Arg	Asp	Glu	Asn	Ile	Lys	Val	Gly
465					470					475					480
Ser	Pro	Phe	Glu	Leu	Val	Val	Ser	Gly	Asn	Lys	Arg	Leu	Lys	Glu	Leu
	•			485					490					495	
Ser	Tyr	Met	Val	Val	Ser	Arg	Gly	Gln	Leu	Val	Ala	Val	Gly	ГЛа	Gln
			500					505					510		
Asn	Ser	Thr	Met	Phe	Ser	Leu	Thr	Pro	Glu	Asn	Ser	Trp	Thr	Pro	Lys
		515					520					525			
Ala	_	Val	Ile	Val	Tyr	Tyr	Ile	Glu	Asp	Asp	Gly	Glu	Ile	Ile	Ser
	530					535					540				
_	Val	Leu	Lys	Ile		Val	Gln	Leu	Val		Lys	Asn	Lys	Ile	_
545				_	550		_			555	_		-	_	560
Leu	Tyr	Trp	Ser	_	Val	Lys	Ala	Glu		Ser	Glu	Lys	Val		Leu
_		_	5	565		_	_	_	570					575	
Arg	Ile	Ser	Val	Thr	GIN	Pro	Asp		Ile	Val	GTĀ	He		Аца	Val
.	7	C	580	3	T	14-h	3	585	C	3	3	T1-	590	Mat	~ 3
двр	гув	595	Val	ABN	Leu	Met	600	ATA	ser	ASN	Asp	605	THE	riec	GIU
an Aan	Val		His	Gln	T.a.ı	Glu		ጥም	λan	ጥኮሎ	Glv		ጥህን፦	T.eu	Glv
	610	Val	11113	GLU	LCU	615	Licu	-72-	Pott	****	620	-1-	-1-		CLJ
Met.		Met.	Asn	Ser	Phe		Va1	Phe	Gln	Glu		Glv	Leu	· Tro	Val
625					630					635	-1-				640
	Thr	qzA	Ala	Asn		Thr	Lvs	geA	Tvr		asA	Gly	Val	Tyr	
				645					650					655	
Asn	Ala	Glu	Tyr	Ala	Glu	Arg	Phe	Met	Glu	Glu	Asn	Glu	Gly	His	Ile
			660			_		665					670		
Val	qeA	Ile	His	Asp	Phe	Ser	Leu	Gly	Ser	Ser	Pro	His	Val	Arg	Lys
		675					680					685			
lis	Phe	Pro	Glu	Thr	Trp	Ile	Trp	Leu	Asp	Thr	Asn	Met	Gly	Ser	Arg
	690					695					700				
[le	Tyr	Gln	Glu	Phe	Glu	Val	Thr	Val	Pro	Asp	Ser	Ile	Thr	Ser	Trp
705					710					715					720
/al	Ala	Thr	Gly	Phe	Val	Ile	Ser	Glu	Asp	Leu	Gly	Leu	Gly	Leu	Thr
				725					730					735	
Phr	ጥኮ፦	Pro	Va1	Glin	T_011	Gln	Δla	Phe	Gln	Dro	Phe	Phe	Tle	Dhe	וים ז

			740					745					750		
Asn	Leu	Pro	Tyr	Ser	Val	Ile	Arg	Gly	Glu	Glu	Phe	Ala	Leu	Glu	Ile
		755					760					765			
Thr	Ile	Phe	Asn	Tyr	Leu	Lys	Asp	Ala	Thr	Glu	Val	Lya	Val	Ile	Ile
	770					775			•		780				
Glu	Lys	Ser	Asp	Lys	Phe	Asp	Ile	Leu	Met	Thr	Ser	Ser	Glu	Ile	Asn
785					790					795					800
Ala	Thr	Gly	His	Gln	Gln	Thr	Leu	Leu	Val	Pro	Ser	Glu	Asp	Gly	Ala
				805					810					815	
Thr	Val	Leu	Phe	Pro	Ile	Arg	Pro	Thr	His	Leu	Gly	Glu	Ile	Pro	Ile
			820					825					830		
Thr	Val	Thr	Ala	Leu	Ser	Pro	Thr	Ala	Ser	Asp	Ala	Ile	Thr	Gln	Met
		835					840					845			
Ile		Val	Lys	Ala	Glu	Gly	Ile	Glu	Lys	Ser	Tyr	Ser	Gln	Ser	Ile
	850					855					860				
	Leu	Asp	Leu	Thr		Asn	Arg	Leu	Gln		Thr	Leu	Lys	Thr	
865	_,	_		_	870	_		· ·		875	_		_		880
Ser	Phe	Ser	Pne		Pro	Asn	Thr	Val	Thr	GIÀ	Ser	Glu	Arg		Gln
~1 ~	m\	21-	~1.	885	•	•••			890		~ 7.	•	93	895	-1-
TTE	Thr	ALA		GIĄ	Asp	vaı	Leu		Pro	ser	TTE	ASN	_	rea	АТа
Com	T	T1.	900	Mot	D		a 1	905	~1	63	01 -	2	910	7 1.	3
ser	пеп	915	Arg	Mec	PLO	TŸĽ	920	сув	Gly	GIU	GIII	925	Mec	116	MSII
Dhe	215		Aen	Tla	Пет	Tla		y an	Tyr	Ton			Two	Tara	Cln
2110	930	110	711341	110	-1-	935	Deu	rsp	TYL	Dea	940	Lys	цуз	nys	GIII
Leu		Asp	Asn	Leu	Lvs		Lvs	Δla	Leu	Ser	-	Met	Ara	Gln	Glv
945		<u>-</u> -			950		_,_			955			9	J	960
	Gln	Ara	Glu	Leu		Tvr	Gln	Ara	Glu		Glv	Ser	Phe	Ser	
•				965		-4-		5	970		2			975	
Phe	Gly	Asn	Tvr		Pro	Ser	Glv	Ser	Thr	Tro	Leu	Ser	Ala	Phe	Val
	-		980	-				985		•			990		
Leu	Arg	Сув	Phe	Leu	Glu	Ala	Asp	Pro	Tyr	Ile	Asp	Ile	qeA	Gln	Asn
	-	995					1000		•		•	1005	_		
Val	Leu	His	Arg	Thr	Tyr	Thr			Lys	Gly	His			Ser	Asn
	1010		,		-	1015			-	-	1020		-		

-	Glu	Phe	Trp	Asp	Pro	Gly	Arg	Val	Ile	His	Ser	Glu	Leu	Gln	Gly
102	5				103	0				103	5				1040
Gly	Asn	Lys	Ser	Pro	Val	Thr	Leu	Thr	Ala	Tyr	Ile	Val	Thr	Ser	Leu
				104	5				105	0				105	5
Leu	Gly	Tyr	Arg	Lys	Tyr	Gln	Pro	Asn	Ile	Asp	Val	Gln	Glu	Ser	Ile
			106	0				106	5				107	0	
His	Phe	Leu	Glu	Ser	Glu	Phe	Ser	Arg	Gly	Ile	Ser	Asp	Asn	Tyr	Thr
		107	5				1086)				108	5		
Leu	Ala	Leu	Ile	Thr	Tyr	Ala	Leu	Ser	Ser	Val	Gly	Ser	Pro	Lys	Ala
	109	0				1095	5				110	0			
Lys	Glu	Ala	Leu	Asn	Met	Leu	Thr	Trp	Arg	Ala	Glu	Gln	Glu	Gly	Gly
110	5				1110)				1115	5				1120
Met	Gln	Phe	Trp	Val	Ser	Ser	Glu	Ser	Lys	Leu	Ser	Asp	Ser	Trp	Gln
				1125	5				1130)				113	5
Pro	Arg	Ser	Leu	Asp	Ile	Glu	Val	Ala	Ala	Tyr	Ala	Leu	Leu	Ser	His
	•		1140)				1145	5				1150	0	
Phe	Leu	Gln	Phe	Gln	Thr	Ser	Glu	Gly	Ile	Pro	Ile	Met	Arg	Trp	Leu
		1155	5				1160)				1165	5		
Ser	Arg	Gln	Arg	Asn	Ser	Leu	Gly	Gly	Phe	Ala	Ser	Thr	Gln	Asp	Thr
		^				1175	i				1180)			
	1170	U													
Thr	1170 Val		Leu	Lys	Ala	Leu	Ser	Glu	Phe	Ala	Ala	Leu	Met	Asn	Thr
Thr 118	Val		Leu	Lys	Ala 1190		Ser	Glu	Phe	Ala 1195		Leu	Met	Asn	1200
118	Val	Ala		_	1190)				1195	5				1200
118	Val	Ala		_	1190 Gln)				1195 Gly	5				1200 Ser
1189 Glu	Val	Ala Thr	Asn	Ile 1205	1190 Gln	Val	Thr	Val	Thr 1210	1195 Gly	Pro	Ser	Ser	Pro 1215	1200 Ser
1189 Glu	Val 5 Arg	Ala Thr	Asn	Ile 1205 Leu	1190 Gln	Val	Thr	Val	Thr 1210 Asn	1195 Gly	Pro	Ser	Ser	Pro 1215 Gln	1200 Ser
1189 Glu Pro	Val 5 Arg	Ala Thr Lys	Asn Phe 1220	Ile 1205 Leu	1190 Gln i	Val Asp	Thr Thr	Val His 1225	Thr 1210 Asn	1195 Gly) Arg	Pro Leu	Ser Leu	Ser Leu 1230	Pro 1215 Gln	1200 Ser i
1189 Glu Pro	Val 5 Arg Val	Ala Thr Lys	Asn Phe 1220 Ala	Ile 1205 Leu	1190 Gln i	Val Asp	Thr Thr	Val His 1225 Thr	Thr 1210 Asn	1195 Gly) Arg	Pro Leu	Ser Leu	Ser Leu 1230 Ser	Pro 1215 Gln	1200 Ser i
1189 Glu Pro	Val 5 Arg Val	Ala Thr Lys Leu 1235	Asn Phe 1220 Ala	Ile 1205 Leu Val	1190 Gln Ile Val	Val Asp Gln	Thr Thr Pro 1240	Val His 1225 Thr	Thr 1210 Asn Ala	1195 Gly) Arg Val	Pro Leu Asn	Ser Leu Ile 1245	Ser Leu 1230 Ser	Pro 1215 Gln) Ala	1200 Ser Thr
1189 Glu Pro	Val Arg Val Glu	Thr Lys Leu 1235	Asn Phe 1220 Ala	Ile 1205 Leu Val	1190 Gln Ile Val	Val Asp Gln	Thr Thr Pro 1240 Gln	Val His 1225 Thr	Thr 1210 Asn Ala	1195 Gly) Arg Val	Pro Leu Asn	Ser Leu Ile 1245 Tyr	Ser Leu 1230 Ser	Pro 1215 Gln) Ala	1200 Ser Thr
1189 Glu Pro Ala Gly	Val Arg Val Glu Phe	Thr Lys Leu 1235 Gly	Asn Phe 1220 Ala Phe	Ile 1205 Leu Val	Ile Gln Ile Val	Val Asp Gln Cys 1255	Thr Thr Pro 1240 Gln	Val His 1225 Thr Leu	Thr 1210 Asn Ala Asn	1195 Gly Arg Val	Pro Leu Asn Val 1260	Ser Leu Ile 1245 Tyr	Ser Leu 1230 Ser Ser	Pro 1215 Gln) Ala Val	1200 Ser Thr Asn
1189 Glu Pro Ala Gly	Val Arg Val Glu Phe 1250 Ser	Thr Lys Leu 1235 Gly	Asn Phe 1220 Ala Phe	Ile 1205 Leu Val Ala Ser	Ile Gln Ile Val	Val Asp Gln Cys 1255 Arg	Thr Thr Pro 1240 Gln	Val His 1225 Thr Leu	Thr 1210 Asn Ala Asn	1195 Gly Arg Val	Pro Leu Asn Val 1260 Gln	Ser Leu Ile 1245 Tyr	Ser Leu 1230 Ser Ser	Pro 1215 Gln) Ala Val	1200 Ser Thr Asn
Glu Pro Ala Gly Ala 1269	Val Arg Val Glu Phe 1250 Ser	Ala Thr Lys Leu 1235 Gly Gly	Asn Phe 1220 Ala Phe Ser	Ile 1205 Leu Val Ala Ser	Ile Val Ile Arg	Val Asp Gln Cys 1255 Arg	Thr Pro 1240 Gln	Val His 1225 Thr Leu Arg	Thr 1210 Asn Ala Asn Ser	1195 Gly Arg Val Val Ile 1275	Pro Leu Asn Val 1260 Gln	Ser Leu Ile 1245 Tyr Asn	Ser Leu 1230 Ser Asn Gln	Pro 1215 Gln) Ala Val Glu	1200 Ser Thr Asn Lys Ala 1280
Glu Pro Ala Gly Ala 1269	Val Arg Val Glu Phe 1250 Ser	Ala Thr Lys Leu 1235 Gly Gly	Asn Phe 1220 Ala Phe Ser	Ile 1205 Leu Val Ala Ser	1190 Gln i Ile Val Ile Arg 1270	Val Asp Gln Cys 1255 Arg	Thr Pro 1240 Gln	Val His 1225 Thr Leu Arg	Thr 1210 Asn Ala Asn Ser	1195 Gly Arg Val Val Ile 1275 Lys	Pro Leu Asn Val 1260 Gln	Ser Leu Ile 1245 Tyr Asn	Ser Leu 1230 Ser Asn Gln	Pro 1215 Gln) Ala Val Glu	1200 Ser Thr Asn Lys Ala 1280 His

			130	0				130	5				131	0	
Met	Ala	Leu	Met	Glu	Val	Asn	Leu	Leu	Ser	Gly	Phe	Met	Val	Pro	Ser
		131	5				132	0				132	5		
Glu	Ala	Ile	Ser	Leu	Ser	Glu	Thr	Val	Lys	Lys	Val	Glu	Tyr	Asp	His
	133	0				133	5				134	0			
Gly	Lys	Leu	Asn	Leu	Tyr	Leu	Asp	Ser	Val	Asn	Glu	Thr	Gln	Phe	Суз
134	5				135	0				135	5				1360
Val	Asn	Ile	Pro	Ala	Val	Arg	Asn	Phe	Lys	Val	Ser	Asn	Thr	Gln	Asp
				136	5				137	0				137	5
Ala	Ser	Val	Ser	Ile	Val	Asp	Tyr	Tyr	Glu	Pro	Arg	Arg	Gln	Ala	Val
			138	0				138	5				139	0	•
Arg	Ser	Tyr	Asn	Ser	Glu	Val	Lys	Leu	Ser	Ser	Сув	Asp	Leu	Сув	Ser
		139	5				140	0				140	5		
Asp	Val	Gln	Gly	Cys	Arg	Pro	Cys	Glu	Asp	Gly	Ala	Ser	Gly	Ser	His
	141	0				1415	5				142	0			
His	His	Ser	Ser	Val	Ile	Phe	Ile	Phe	Суз	Phe	Lys	Leu	Leu	Tyr	Phe
142	5				143	0				143	5				1440
Met	Glu	Leu	Trp	Leu											
				144	5										
	0> 3														
	1> 58														
	2> PI -														
	3> Ho		sapie	ens											
	0> 32 				_								_		_
	Phe	Pro	Ala	_	Pro	Pro	Ser	His		Leu	Leu	Arg	Leu		Leu
1			_	5	_				10	-		_		15	
Leu	GIN	Leu		Leu	Leu	Val	Val	Gln	Ala	Val	Gly	Arg	_	Leu	GIĀ
•			20		-1		_	25		_			30	~ 3	•
Arg	ALA		PTO	ATG	GIŸ	GŢĀ		Leu	GLu	Asp	Val		ITe	GIU	Arg
	*** -	35	D	•			40			3	-	45	a 1	•	n .
TÄL		TTG	PIO	Arg	YTØ	_	rro	Arg	GIU	vaI		met	σтλ	Asp	rne
T257	50	(The seco	tri ~	m	7	55	mb	Db-	~ 1	N	60	T	T	Dha	N are
65	ALY	TÅT	uta	TÅT	ASN 70	GTĀ	THE	Phe	aT.f.	75	атХ	чХ≈	nys	FIIC	ASP 80
~~					, ,					, ,					

Ser	Ser	Tyr	Asp	Arg	Asn	Thr	Leu	Val	Ala	Ile	Val	Val	Gly	Val	Gl
				85					90					95	
Arg	Leu	Ile	Thr	Gly	Met	qaA	Arg	Gly	Leu	Met	Gly	Met	Сув	Val	Asr
			100					105					110		
Glu	Arg	Arg	Arg	Leu	Ile	Val	Pro	Pro	His	Leu	Gly	Tyr	Gly	Ser	Ile
		115					120					125			
Gly	Leu	Ala	Gly	Leu	Ile	Pro	Pro	qeA	Ala	Thr	Leu	Tyr	Phe	Asp	Val
	130			•		135					140				
Val	Leu	Leu	Asp	Val	Trp	Asn	TÀS	Glu	qaA	Thr	Val	Gln	Val	Ser	Thr
145					150					155					160
Leu	Leu	Arg	Pro	Pro	His	Суз	Pro	Arg	Met	Val	Gln	Asp	Gly	Asp	Phe
				165					170					175	
Val	Arg	Tyr	His	Tyr	Asn	Gly	Thr	Leu	Leu	Asp	Gly	Thr	Ser	Phe	Asp
			180					185					190		
Thr	Ser	Tyr	Ser	Lys	Gly	Gly	Thr	Tyr	Asp	Thr	Tyr	Val	Gly	Ser	Gly
		195					200					205			
Trp	Leu	Ile	Lys	Gly	Met	Asp	Gln	Gly	Leu	Leu	Gly	Met	Суз	Pro	Gly
	210					215					220				
Glu	Arg	Arg	Lys	Ile	Ile	Ile	Pro	Pro	Phe	Leu	Ala	Tyr	Gly	Glu	Lys
225					230					235					240
Gly	Tyr	Gly	Thr	Val	Ile	Pro	Pro	Gln	Ala	Ser	Leu	Val	Phe	His	Val
				245					250					255	
Leu	Leu	Ile	Asp	Val	His	Asn	Pro	Lys	Asp	Ala	Val	Gln	Leu	Glu	Thr
			260			·		265					270		
Leu	Glu	Leu	Pro	Pro	Gly	Сув	Val	Arg	Arg	Ala	Gly	Ala	Gly	Asp	Phe
		275					280					285			
Met	Arg	Tyr	His	Tyr	Asn	Gly	Ser	Leu	Met	qaA	Gly	Thr	Leu	Phe	Asp
	290					295					300				
Ser	Ser	Tyr	Ser	Arg	Asn	His	Thr	Tyr	Asn	Thr	Tyr	Ile	Gly	Gln	Gly
305					310					315					320
Tyr	Ile	Ile	Pro	Gly	Met	Asp	Gln	Gly	Leu	Gln	Gly	Ala	Суз	Met	Gly
				325					330					335	
Glu	Arg	Arg	Arg	Ile	Thr	Ile	Pro	Pro	His	Leu	Ala	Tyr	Gly	Glu	Asn
			340					345					350		
Gly	Thr	Gly	Asp	Lys	Ile	Pro	Gly	Ser	Ala	Val	Leu	Ile	Phe	Asn	Val

WO 00/29448 PCT/JP99/06412

55/233

		355					360					365			
His	Val	Ile	Авр	Phe	His	Asn	Pro	Ala	Asp	Val	Val	Glu	Ile	Arg	Thr
	370					375					380				
Leu	Ser	Arg	Pro	Ser	Glu	Thr	Суз	Asn	Glu	Thr	Thr	Lys	Leu	Gly	Asp
385					390					395					400
Phe	Val	Arg	Tyr	His	Tyr	Asn	Cys	Ser	Leu	Leu	Asp	Gly	Thr	Gln	Leu
				405					410					415	
Phe	Thr	Ser	His	Asp	Tyr	Gly	Ala	Pro	Gln	Glu	Ala	Thr	Leu	Gly	Ala
			420					425					430		
Asn	Lys	Val	Ile	Glu	Gly	Leu	Asp	Thr	Gly	Leu	Gln	Gly	Met	Сув	Val
		435					440		:			445			
Gly	Glu	Arg	Arg	Gln	Leu	Ile	Val	Pro	Pro	His	Leu	Ala	His	Gly	Glu
	450					455					460				
Ser	Gly	Ala	Arg	Gly	Val	Pro	Gly	Ser	Ala	Val	Leu	Leu	Phe	Glu	Val
465					470					475					480
Glu	Leu	Val	Ser	Arg	Glu	Asp	Gly	Leu	Pro	Thr	Gly	Tyr	Leu	Phe	Val
				485					490					495	
Trp	His	Lys	qeA	Pro	Pro	Ala	Asn	Leu	Phe	Glu	qeA	Met	qeA	Leu	Asn
			500					505					510		
Lys	Asp	Gly	Glu	Val	Pro	Pro	Glu	Glu	Phe	Ser	Thr	Phe	Ile	Lys	Ala
		515					520					525			
Gln	Val	Ser	Glu	Gly	Lys	Gly	Arg	Leu	Met	Pro	Gly	Gln	Asp	Pro	Glu
	530					535					540				
Lys	Thr	Ile	Gly	qaA	Met	Phe	Gln	neA	Gln	Asp	Arg	Asn	Gln	Asp	Gly
545					550					555					560
Lys	Ile	Thr	Val	Asp	Glu	Leu	Lys	Leu	Lys	Ser	Asp	Glu	Asp	Glu	Glu
				565					570					575	
Arg	Val	His	Glu	Glu	Leu										
			580												

<210> 33 <211> 410 <212> PRT <213> Homo sapiens

<400> 33

Met	Glu	Leu	Pro	Ser	Gly	Pro	Gly	Pro	Glu	Arg	Leu	Phe	qeA	Ser	His
1				5					10					15	
Arg	Leu	Pro	Gly	Asp	Cys	Phe	Leu	Leu	Leu	Val	Leu	Leu	Leu	Tyr	Al
			20					25					30		
Pro	Val	Gly	Phe	Сув	Leu	Leu	Val	Leu	Arg	Leu	Phe	Leu	Gly	Ile	His
		35					40					45			
Val	Phe	Leu	Val	Ser	Сув	Ala	Leu	Pro	Asp	Ser	Val	Leu	Arg	Arg	Phe
	50					55					60				
Val	Val	Arg	Thr	Met	Cys	Ala	Val	Leu	Gly	Leu	Val	Ala	Arg	Gln	Glı
65					70					75					80
Asp	Ser	Gly	Leu	Arg	Asp	His	Ser	Val	Arg	Val	Leu	Ile	Ser	Asn	His
				85					90					95	
Val	Thr	Pro	Phe	Asp	His	Asn	Ile	Val	Asn	Leu	Leu	Thr	Thr	Суз	Ser
			100					105					110		
Thr	Pro	Leu	Leu	Asn	Ser	Pro	Pro	Ser	Phe	Val	Сув	Trp	Ser	Arg	Gl
		115					120					125			
Phe	Met	Glu	Met	Asn	Gly	Arg	Gly	Glu	Leu	Val	Glu	Ser	Leu	Lys	Arg
	130					135					140				
Phe	Сув	Ala	Ser	Thr	Arg	Leu	Pro	Pro	Thr	Pro	Leu	Leu	Leu	Phe	Pro
145					150					155					160
Glu	Glu	Glu	Ala	Thr	Asn	Gly	Arg	Glu	Gly	Leu	Leu	Arg	Phe	Ser	Ser
				165					170					175	
Trp	Pro	Phe	Ser	Ile	Gln	qeA	Val	Val	Gln	Pro	Leu	Thr	Leu	Gln	Va]
			180		•			185					190		
Gln	Arg	Pro	Leu	Val	Ser	Val	Thr	Val	Ser	Asp	Ala	Ser	Trp	Val	Ser
		195					200					205			
Glu	Leu	Leu	Trp	Ser	Leu	Phe	Val	Pro	Phe	Thr	Val	Tyr	Gln	Val	Arg
	210					215					220				
Trp	Leu	Arg	Pro	Val	His	Arg	Gln	Leu	Gly	Glu	Ala	Asn	Glu	Glu	Phe
225					230					235					240
Ala	Leu	Arg	Val	Gln	Gln	Leu	Val	Ala	Lys	Glu	Leu	Gly	Gln	Thr	Gly
				245					250					255	
Thr	Arg	Leu	Thr	Pro	Ala	Asp	Lys	Ala	Glu	His	Met	Lys	Arg	Gln	Arg
			260					265					270		
17 i a	D~~	7~~	T 013	7~~	Dec	C1=	502	212	Gln	Sor	Sar	Dha	Dwo	Dro	Sor

		275					280					285			
Pro	Gly	Pro	Ser	Pro	Asp	Val	Gln	Leu	Ala	Thr	Leu	Ala	Gln	Arg	Va]
	290					295					300				
Lys	Glu	Val	Leu	Pro	His	Val	Pro	Leu	Gly	Val	Ile	Gln	Arg	Asp	Leu
305					310					315					320
Ala	Lys	Thr	Gly	Суз	Val	Asp	Leu	Thr	Ile	Thr	Asn	Leu	Leu	Glu	Gly
				325					330					335	
Ala	Val	Ala	Phe	Met	Pro	Glu	Asp	Ile	Thr	Lys	Gly	Thr	Gln	Ser	Leu
			340					345					350		
Pro	Thr	Ala	Ser	Ala	Ser	Lys	Phe	Pro	Ser	Ser	Gly	Pro	Val	Thr	Pro
		355					360					365			
Gln	Pro	Thr	Ala	Leu	Thr	Phe	Ala	Lys	Ser	Ser	Trp	Ala	Arg	Gln	Glu
	370					375					380				
Ser	Leu	Gln	Glu	Arg	Lys	Gln	Ala	Leu	Tyr	Glu	Tyr	Ala	Arg	Arg	Arg
385					390					395					400
Phe	Thr	Glu	Arg	Arg	Ala	Gln	Glu	Ala	qaA						
				405					410						
<21	0> 34	4													
<21	1> 48	83													
<21	2> PI	RT													
<21:	3> Ho	e ome	apie	ens											
	0> 34														
Met	Glu	Glu	Gly	Gly	Gly	Gly	Val	Arg	Ser	Leu	Val	Pro	Gly	Gly	Pro
1				5					10					15	
Val	Leu	Leu	Val	Leu	Cys	Gly	Leu	Leu	Glu	Ala	Ser	Gly	_	Gly	Arg
			20					25					30		
Ala	Leu	Pro	Gln	Leu	Ser	Asp	Asp	Ile	Pro	Phe	Arg	Val	Asn	Trp	Pro
		35					40					45			
Gly	Thr	Glu	Phe	Ser	Leu	Pro	Thr	Thr	Gly	Val	Leu	Tyr	Lys	Glu	Asp
	50					55					60				
Asn	Tyr	Val	Ile	Met	Thr	Thr	Ala	His	Lys	Glu	Lys	Tyr	ГÀЗ	Cys	Ile
65					70					75					80
Leu	Pro	Leu	Val	Thr	Ser	Gly	qaA	Glu	Glu	Glu	Glu	Lys	Asp	Tyr	Lys
				85					90					95	

Gly	Pro	Asn	Pro	Arg	Glu	Leu	Leu	Glu	Pro	Leu	Phe	Lys	Gln	Ser	Sei
			100					105					110		
Cys	Ser	Tyr	Arg	Ile	Glu	Ser	Tyr	Trp	Thr	Tyr	Glu	Val	Суз	His	Gly
		115					120					125			
Lys	His	Ile	Arg	Gln	Tyr	His	Glu	Glu	Lys	Glu	Thr	Gly	Gln	Lys	Ile
	130					135					140				
Asn	Ile	His	Glu	Tyr	Tyr	Leu	Gly	Asn	Met	Leu	Ala	Lys	Asn	Leu	Leu
145					150					155					160
Phe	Glu	Lys	Glu	Arg	Glu	Ala	Glu	Glu	Lys	Glu	Lys	Ser	Asn	Glu	Ile
				165					170					175	
Pro	Thr	Lys	Asn	Ile	Glu	Gly	Gln	Met	Thr	Pro	Tyr	Tyr	Pro	Val	Gly
			180					185					190		
Met	Gly	Asn	Gly	Thr	Pro	Cys	Ser	Leu	Lys	Gln	Asn	Arg	Pro	Arg	Ser
		195					200					205			
Ser	Thr	Val	Met	Tyr	Ile	Суз	His	Pro	Glu	Ser	Lys	His	Glu	Ile	Leu
	210					215					220				
Ser	Val	Ala	Glu	Val	Thr	Thr	Cys	Glu	Tyr	Glu	Val	Val	Ile	Leu	Thr
225					230					235					240
Pro	Leu	Leu	Cys	Ser	His	Pro	Lys	Tyr	Arg	Phe	Arg	Ala	Ser	Pro	Val
				245					250					255	
Asn	Asp	Ile	Phe	Cys	Gln	Ser	Leu	Pro	Gly	Ser	Pro	Phe	Lys	Pro	Leu
			260					265					270		
Thr	Leu	Arg	Gln	Leu	Glu	Gln	Gln	Glu	Glu	Ile	Leu	Arg	Val	Pro	Phe
		275					280					285			
Arg	Arg	Asn	Lys	Glu	Glu	qaA	Leu	Gln	Ser	Thr	Lys	Glu	Glu	Arg	Phe
	290					295					300				
Pro	Ala	Ile	His	Lys	Ser	Ile	Ala	Ile	Gly	Ser	Gln	Pro	Val	Leu	Thr
305					310					315					320
Val	Gly	Thr	Thr	His	Ile	Ser	Lys	Leu	Thr	Asp	qeA	Gln	Leu	Ile	Lys
				325					330					335	
Glu	Phe	Leu	Ser	Gly	Ser	Tyr	Cys	Phe	Arg	Gly	Gly	Val	Gly	Trp	Trp
			340					345					350		
Lys	Tyr	Glu	Phe	Сув	Tyr	Gly	Lys	His	Val	His	Gln	Tyr	His	Glu	Asp
		355					360					365			
Tvs	GRA	Ser	Glv	Lvs	Thr	Ser	Val	۷al	Val	Glv	Thr	Tro	Asn	Gln	Glu

370		375		380	
Glu His Ile	Glu Trp A	la Lys Lys	Asn Thr Ala	Arg Ala Tyr	His Leu
385	3	90	395		400
Gln Asp Asp	Gly Thr G	ln Thr Val	Arg Met Val	Ser His Phe	Tyr Gly
	405	•	410		415
Asn Gly Asp	Ile Cys A	sp Ile Thr	Asp Lys Pro	Arg Gln Val	Thr Val
	420		425	430	•
Lys Leu Lys	Cys Lys G	lu Ser Asp	Ser Pro His	Ala Val Thr	Val Tyr
435		440		445	
Met Leu Glu	Pro His S	er Cys Gln	Tyr Ile Leu	Gly Val Glu	Ser Pro
450		455		460	
Val Ile Cys	Lys Ile L	eu Asp Thr	Ala Asp Glu	Asn Gly Leu	Leu Ser
465	4	70	475		480
Leu Pro Asn					
<210> 35					
<211> 607					
<212> PRT					
<213> Homo :	sapiens				
<400> 35					
Met Gly Phe	Glu Glu Le	eu Leu Glu	Gln Val Gly	Gly Phe Gly	Pro Phe
1	5		10		15
Gln Leu Arg	Asn Val A	a Leu Leu	Ala Leu Pro	Arg Val Leu	Leu Pro
	20		25	30	
Leu His Phe	Leu Leu Pr	o Ile Phe	Leu Ala Ala	Val Pro Ala	His Arg
35		40		45	
Cys Ala Leu	Pro Gly Al	a Pro Ala	Asn Phe Ser	His Gln Asp	Val Trp
50		55		60	
Leu Glu Ala	His Leu Pr	o Arg Glu	Pro Asp Gly	Thr Leu Ser	Ser Cys
65	7	0	75		80
Leu Arg Phe	Ala Tyr Pr	o Gln Ala	Leu Pro Asn	Thr Thr Leu	Gly Glu
	85		90		95
Glu Arg Gln	Ser Arg Gl	y Glu Leu	Glu Asp Glu	Pro Ala Thr	Val Pro
	100		105	110	

105

Сув	Ser	Gln	Gly	Trp	Glu	Tyr	qaA	His	Ser	Glu	Phe	Ser	Ser	Thr	Ile
		115					120					125			
Ala	Thr	Glu	Ser	Gln	Val	Gly	Ile	Tyr	Ile	Ile	His	Leu	Glu	Val	Gl
	130					135					140				-
Сув	Arg	Trp	Arg	Gln	Ser	Pro	Trp	Glu	Ala	Ala	Gly	Arg	Gly	Leu	Pro
145					150					155					160
Trp	Glu	Glu	Ala	Glu	Ala	Ala	Gly	Leu	Gly	Arg	Asp	Lys	Val	Ser	Туз
				165					170					175	
Ser	Pro	Ser	Trp	Arg	Glu	Ser	Leu	Gly	Gly	Leu	Leu	Ser	Gly	Met	Glu
			180					185					190		
Trp	Asp	Leu	Val	Сув	Glu	Gln	Lys	Gly	Leu	Asn	Arg	Ala	Ala	Ser	Thi
		195					200					205			
Phe	Phe	Phe	Ala	Gly	Val	Leu	Val	Gly	Ala	Val	Ala	Phe	Gly	Tyr	Leu
	210					215					220				
Ser	Asp	Arg	Phe	Gly	Arg	Arg	Arg	Leu	Leu	Leu	Val	Ala	Tyr	Val	Ser
225					230					235					240
Thr	Leu	Val	Leu	Gly	Leu	Ala	Ser	Ala	Ala	Ser	Val	Ser	Tyr	Val	Met
				245					250					255	
Phe	Ala	Ile	Thr	Arg	Thr	Leu	Thr	Gly	Ser	Ala	Leu	Ala	Gly	Phe	Thr
			260					265					270		
Ile	Ile	Val	Met	Pro	Leu	Glu	Leu	Glu	Trp	Leu	Asp	Val	Glu	His	Arg
		275					280					285			
Thr		Ala	Gly	Val	Leu	Ser	Ser	Thr	Phe	Trp	Thr	Gly	Gly	Val	Met
	290					295					300				
	Leu	Ala	Leu	Val	_	Tyr	Leu	Ile	Arg	Asp	Trp	Arg	Trp	Leu	
305					310					315					320
Leu	Ala	Val	Thr		Pro	Сув	Ala	Pro	_	Ile	Leu	Ser	Leu		Trp
				325					330					335	
Val	Pro	Glu		Ala	Arg	Trp	Leu		Thr	Gln	Gly	His		Lys	Glu
			340					345					350		
Ala	His		Tyr	Leu	Leu	His	_	Ala	Arg	Leu	Asn	Gly	Arg	Pro	Val
		355					360					365			
		qeA	Ser	Phe	Ser		Glu	Ala	Val	Ser	Lys	Val	Ala	Ala	Gly
	370					375					380				
Glu	Arg	Val	Val	Arg	Arq	Pro	Ser	Tyr	Leu	Asp	Leu	Phe	Arg	Thr	Pro

205					390					395					400
385			*** -			•		_					Db.	03	
Arg	Leu	Arg	HIS		Ser	rea	Сув	Cys		Val	vaı	пр	Pne		vaı
				405					410					415	
Asn	Phe	Ser	Tyr	Tyr	Gly	Leu	Ser	Leu	Asp	Val	Ser	Gly	Leu	Gly	Leu
		•	420					425					430		
Asn	Val	Tyr	Gln	Thr	Gln	Leu	Leu	Phe	Gly	Ala	Val	Glu	Leu	Pro	Ser
		435					440					445			
Lys	Leu	Leu	Val	Tyr	Leu	Ser	Val	Arg	Tyr	Ala	Gly	Arg	Arg	Leu	Thr
	450					455					460				
Gln	Ala	Gly	Thr	Leu	Leu	Gly	Thr	Ala	Leu	Ala	Phe	Gly	Thr	Arg	Leu
465	•				470					475					480
Leu	Val	Ser	Ser	Asp	Met	Lys	Ser	Trp	Ser	Thr	Val	Leu	Ala	Val	Met
				485					490					495	
Gly	Lys	Ala	Phe	Ser	Glu	Ala	Ala	Phe	Thr	Thr	Ala	Tyr	Leu	Phe	Thr
			500					505					510		
Ser	Glu	Leu	Tyr	Pro	Thr	Val	Leu	Arq	Gln	Thr	Gly	Met	Gly	Leu	Thr
		515	-				520				-	525	_		
Ala	Leu	Val	Glv	Ara	Leu	Glv	Glv	Ser	Leu	Ala	Pro	Leu	Ala	Ala	Leu
	530		2	,		535	,				540				
T.eu		Glv	เลา	עדעש	T.e.11		T.e.11	Pro	Taya	Leu		ጥሆነተ	Glv	Glv	Tle
545		1	• •		550	502	200			555		-1-	1	,	560
	T 011	T 011	31 -	210		mb	810	Tou	Tou	Leu	Dro	Clu	mh∽	7 20	
ALG	Leu	Leu	Ara		GTĂ	TILL	ALG	reu		Leu	PIG	GIU	1111		GIII
		_	_	565				_	570	~ 3		•	a	575	
ALA	GIN	Leu		GIU	Thr	IIe	GIN	_	Val	Glu	Arg	гув		ALA	Pro
			580					585					590		
Thr	Ser	Leu	Gln	Glu	Glu	Glu	Met	Pro	Met	Lys	Gln	Val	Gln	Asn	
		595					600					605			
<210	> 36	5													
<211	> 31	4													
-016		_													

<212> PRT

<213> Homo sapiens

<400> 36

Met Gly Ala Arg Gly Ala Leu Leu Leu Ala Leu Leu Leu Ala Arg Ala 1 5 10 15

Gly	Leu	Arg	Lys	Pro	Glu	Ser	Gln	Glu	Ala	Ala	Pro	Leu	Ser	Gly	Pro
			20					25					30		
Суз	Gly	Arg	Arg	Val	Ile	Thr	Ser	Arg	Ile	Val	Gly	Gly	Glu	qaA	Ala
		35					40					45			
Glu	Leu	Gly	Arg	Trp	Pro	Trp	Gln	Gly	Ser	Leu	Arg	Leu	Trp	qeA	Sei
	50					55					60				
His	Val	Сув	Gly	Val	Ser	Leu	Leu	Ser	His	Arg	Trp	Ala	Leu	Thr	Ala
65					70					75					80
Ala	His	Суз	Phe	Glu	Thr	Tyr	Ser	qeA	Leu	Ser	Asp	Pro	Ser	Gly	Tr
				85					90					95	
Met	Val	Gln	Phe	Gly	Gln	Leu	Thr	Ser	Met	Pro	Ser	Phe	Trp	Ser	Let
			100					105					110		
Gln	Ala	Tyr	Tyr	Thr	Arg	Tyr	Phe	Val	Ser	Asn	Ile	Tyr	Leu	Ser	Pro
		115					120					125			
Arg	Tyr	Leu	Gly	Asn	Ser	Pro	Tyr	Asp	Ile	Ala	Leu	Val	Lys	Leu	Ser
	130					135					140				
Ala	Pro	Val	Thr	Tyr	Thr	ГÄЗ	His	Ile	Gln	Pro	Ile	Cys	Leu	Gln	Ala
145					150					155					160
Ser	Thr	Phe	Glu	Phe	Glu	Asn	Arg	Thr	Asp	Сув	Trp	Val	Thr	Gly	Trp
				165					170					175	
Gly	Tyr	Ile	Lys	Glu	Asp	Glu	Ala	Leu	Pro	Ser	Pro	His	Thr	Leu	Glr
			180					185					190		
Glu	Val	Gln	Val	Ala	Ile	Ile	Asn	Asn	Ser	Met	Суз	Asn	His	Leu	Phe
		195					200					205			
Leu	Lys	Tyr	Ser	Phe	Arg	Lys	Asp	Ile	Phe	Gly	Asp	Met	Val	Суз	Ala
	210					215					220				
Gly	Asn	Ala	Gln	Gly	Gly	Lys	Asp	Ala	Суз	Phe	Gly	qeA	Ser	Gly	Gly
225					230					235					240
Pro	Leu	Ala	Суз	Asn	Lys	Asn	Gly	Leu	Trp	Tyr	Gln	Ile	Gly	Val	Val
				245					250					255	
Ser	Trp	Gly	Val	Gly	Cys	Gly	Arg	Pro	Asn	Arg	Pro	Gly	Val	Tyr	Thr
			260					265					270		
Asn	Ile	Ser	His	His	Phe	Glu	Trp	Ile	Gln	Lys	Leu	Met	Ala	Gln	Ser
		275					280					285			
Glv	Met	Ser	Gln	Pro	Asp	Pro	Ser	Tro	Pro	Leu	Leu	Phe	Phe	Pro	Leu

WO 00/29448 PCT/JP99/06412

63/233

290 295 300 Leu Trp Ala Leu Pro Leu Leu Gly Pro Val 305 310 <210> 37 <211> 94 <212> PRT <213> Homo sapiens <400> 37 Met Glu Leu Ser Asp Val Thr Leu Ile Glu Gly Val Gly Asn Glu Val Met Val Val Ala Gly Val Val Leu Ile Leu Ala Leu Val Leu Ala 20 25 30 Trp Leu Ser Thr Tyr Val Ala Asp Ser Gly Ser Asn Gln Leu Leu Gly Ala Ile Val Ser Ala Gly Asp Thr Ser Val Leu His Leu Gly His Val 50 Asp His Leu Val Ala Gly Gln Gly Asn Pro Glu Pro Thr Glu Leu Pro 80 His Pro Ser Glu Ala Asn Thr Ser Leu Asp Lys Lys Ala Arg 90 <210> 38 <211> 218 <212> PRT <213> Homo sapiens <400> 38 Met Ala Ser Lys Ile Gly Ser Arg Arg Trp Met Leu Gln Leu Ile Met 1 5 10 15 Gln Leu Gly Ser Val Leu Leu Thr Arg Cys Pro Phe Trp Gly Cys Phe 20 25 Ser Gln Leu Met Leu Tyr Ala Glu Arg Ala Glu Ala Arg Arg Lys Pro 45 40 Asp Ile Pro Val Pro Tyr Leu Tyr Phe Asp Met Gly Ala Ala Val Leu 50 60 55

Сув	Ala	Ser	Phe	Met	Ser	Phe	Gly	Val	Lys	Arg	Arg	Trp	Phe	Ala	Leu	
65					70					75					80	
Gly	Ala	Ala	Leu	Gln	Leu	Ala	Ile	Ser	Thr	Tyr	Ala	Ala	Туг	Ile	Gly	
				85					90					95		
Gly	Tyr	Val	His	Tyr	Gly	Asp	Trp	Leu	Lys	Val	Arg	Met	Туг	Ser	Arg	
			100					105					110	1		
Thr	Val	Ala	Ile	Ile	Gly	Gly	Leu	Ser	Cys	Val	Gly	Gln	Arg	Cys	Trp	
		115					120					125				
Gly	Ala	Val	Pro	Pro	Glu	Thr	Ser	Gln	Pro	Leu	Pro	Ala	Val	His	Arg	
	130					135					140					
Pro	Gly	Val	Pro	Gly	Tyr	Leu	Pro	His	Leu	Cys	Gly	Leu	Leu	Thr	Ala	
145					150					155					160	
Ala	Gln	Gln	Gly	-	Pro	Ala	Gly	Val		Glu	Pro	Ser	Pro	_	Arg	
	_			165		_			170	_				175		
Gly	Ala	Asp		Pro	Ala	Val	Leu	_	Ala	Val	Trp	His		_	Pro	
	_	_	180	_	_		_	185	_	_	_	_	190			
GIĀ	Leu		Val	Arg	Leu	Leu		Asp	Pro	Arg	Cys		Asp	Pro	Gly	
-	ml	195			.		200		<i>•</i>			205				
cys		ALA	ATS	Pro	сув		Ата	Ala	HIS							
	210					215										
<210	> 39)														
	> 46															
<212	> PF	T														
<213	> Hc	amo s	apie	ns												
<400	> 39)														
Met	Phe	Thr	Ile	Lys	Leu	Leu	Leu	Phe	Ile	Val	Pro	Leu	Val	Ile	Ser	
1				5					10					15		
Ser	Arg	Ile	Asp	Gln	Asp	Asn	Ser	Ser	Phe	Asp	Ser	Leu	Ser	Pro	Glu	
			20					25					30			
?ro	Lys	Ser	Arg	Phe	Ala	Met	Leu	Asp	Asp	Val	Lys	Ile	Leu	Ala	Asn	
		35					40					45				
3ly	Leu	Leu	Gln	Leu	Gly	His	Gly	Leu	Lys	ĄsĄ	Phe	Val	His	Lys	Thr	
	50					55					60					
vs	Glv	Gln	Ile	Asn	Asp	Ile	Phe	Gln	Lvs	Leu	Asn	Tle	Phe	Asp	Gln	

65					70					75					80
Ser	Phe	Tyr	Asp	Leu	Ser	Leu	Gln	Thr	Ser	Glu	Ile	Lys	Glu	Glu	Glu
				85					90					95	
Lys	Glu	Leu	Arg	Arg	Thr	Thr	Tyr	Lys	Leu	Gln	Val	Lys	Asn	Glu	Glu
			100					105					110		
Val	Lys	Asn	Met	Ser	Leu	Glu	Leu	Asn	Ser	ГЛа	Leu	Glu	Ser	Leu	Let
		115					120					125			
Glu	Glu	Lys	Ile	Leu	Leu	Gln	Gln	Lys	Val	Lys	Tyr	Leu	Glu	Glu	Glr
	130					135					140				
Leu	Thr	Asn	Leu	Ile	Gln	Asn	Gln	Pro	Glu	Thr	Pro	Glu	His	Pro	Glu
145					150					155					160
Val	Thr	Ser	Leu	Lys	Thr	Phe	Val	Glu	Lys	Gln	Asp	Asn	Ser	Ile	Lys
				165					170					175	
qeA	Leu	Leu	Gln	Thr	Val	Glu	Asp	Gln	Tyr	Lys	Gln	Leu	Asn	Gln	Gln
			180					185					190		
His	Ser	Gln	Ile	Lys	Glu	Ile	Glu	Asn	Gln	Leu	Arg	Arg	Thr	Ser	Ile
		195					200					205			
Gln	Glu	Pro	Thr	Glu	Ile	Ser	Leu	Ser	Ser	ГÀа	Pro	Arg	Ala	Pro	Arg
	210					215					220				
Thr	Thr	Pro	Phe	Leu	Gln	Leu	Asn	Glu	Ile	Arg	Asn	Val	Lys	His	
225					230					235					240
Gly	Ile	Pro	Ala	Glu	Cys	Thr	Thr	Ile	-	Asn	Arg	Gly	Glu		Thr
				245					250					255	_
Ser	Gly	Met		Ala	Ile	Arg	Pro		Asn	Ser	Gln	Val		His	Val
			260	_		_		265				_	270		
Tyr	Сув	_	Val	Ile	Ser	Gly		Pro	Trp	Thr	Leu		Gln	His	Arg
		275					280				_	285		_	
Ile	_	Gly	Ser	Gln	Asn		Asn	Glu	Thr	Trp		Asn	Tyr	Lys	Tyr
	290		_	_		295				_	300	_		_	
_	Phe	GTĀ	Arg	Leu	_	Gly	Glu	Phe	Trp	Leu	Gly	Leu	GIU	Lys	
305	_			_	310	_	_	_	-	315	_			_	320
Tyr	ser	He	Val	_	GIn	Ser	Asn	Tyr		Leu	Arg	ITE	GLU		GLU
_	_	_	_	325	_		_		330	_	_	_1.	_	335	۵.
Asp	Trp	ŗÀa	_	Asn	Lys	His	Tyr		GLu	Tyr	Ser	Pne		Leu	GLY
			340					345					350		

Asn	His	Glu	Thr	Asn	Tyr	Thr	Leu	His	Leu	Val	Ala	Ile	Thr	Gly	Asn
		355					360					365	,		
Val	Pro	Asn	Ala	Ile	Pro	Glu	Asn	Lys	Asp	Leu	Val	Phe	Ser	Thr	Trp
	370					375					380	}			
Asp	His	Lys	Ala	Lys	Gly	His	Phe	Asn	Суз	Pro	Glu	Gly	Tyr	Ser	Gly
385					390					395					400
Gly	Trp	Trp	Trp	His	Asp	Glu	Суз	Gly	Glu	Asn	Asn	Leu	Asn	Gly	Lys
				405					410					415	
Tyr	Asn	Lys		Arg	Ala	Lys	Ser	Lys	Pro	Glu	Arg	Arg	Arg	Gly	Leu
			420					425					430		
Ser	Trp		Ser	Gln	Asn	Gly		Leu	Tyr	Ser	Ile		Ser	Thr	Lys
	_	435	•	_		_	440					445			
Met	Leu	Ile	His	Pro	Thr	_	Ser	Glu	Ser	Phe					
	450					455					460				
<21	0> 40)													
	1> 2:														
<21	2> PF	er.													
<213> Homo sapiens															
<40	0> 40)													
Met	Val	Pro	Met	His	Leu	Leu	Gly	Arg	Leu	Glu	Lys	Pro	Leu	Leu	Leu
1				5					10					15	
Leu	Cys	Cys	Ala	Ser	Phe	Leu	Leu	Gly	Leu	Ala	Leu	Leu	Gly	Ile	Lys
			20					25					30		
Thr	qaA	Ile	Thr	Pro	Val	Ala	Tyr	Phe	Phe	Leu	Thr	Leu	Gly	Gly	Phe
		35					40					45			
Phe	Leu	Phe	Ala	Tyr	Leu	Leu	Val	Arg	Phe	Leu	Glu	Trp	Gly	Leu	Arg
	50					55					60				
Ser	Gln	Leu	Gln	Ser	Met	Gln	Thr	Glu	Ser	Pro	Gly	Pro	Ser	Gly	Asn
65					70					75					80
Ala	Arg	Asp	Asn		Ala	Phe	Glu	Val	Pro	Val	Tyr	Glu	Glu	Ala	Val
				85					90					95	
Val	Gly	Leu		Ser	Gln	Cys	Arg		Gln	Glu	Leu	Asp		Pro	Pro
			100					105					110		
Pro	Tyr	Ser	Thr	Val	Val	Ile	Pro	Pro	Ala	Pro	Glu	Glu	Glu	Gln	Pro

115	120	125	
115	120		
_		eu Glu Gln Arg Arg Met	
130	135	140	
Ala Ser Glu Gly Ser Me	_		
165	g Gry Pro Arg Ara va	al Ser Thr Ala Pro Asp 175	
Leu Gln Ser Leu Ala Al			
180	185	190	
Pro Ala Tyr Asp Val Cy			
195	200	205	
Tyr Glu Asp Asn Trp Al		245	
210	215		
<210> 41			
<211> 4335			
<212> DNA			·
<213> Homo sapiens			
<400> 41			
atgcagggcc caccgctcct	gacegeegee caceteete	t gegtgtgcae egeegegetg	60
geegtggete eegggeeteg	gtttctggtg acagcccca	ng ggateateag geeeggagga	120
aatgtgacta ttggggtgga	gettetggaa caetgeeet	t cacaggtgac tgtgaaggcg	180
gagetgetea agacageate	aaacctcact gtctctgtc	ee tggaagcaga aggagtettt	240
gaaaaaggct cttttaagac	acttactett ceatcacta	ac ctctgaacag tgcagatgag	300
atttatgage tacgtgtaac	eggaegtace caggatgag	ya ttttattctc taatagtacc	360
cgcttatcat ttgagaccaa	gagaatatet gtetteatt	c aaacagacaa ggccttatac	420
aagccaaagc aagaagtgaa	gtttcgcatt gttacactc	t teteagattt taageettae	480
aaaacctctt taaacattct	cattaaggac cccaaatca	a atttgateca acagtggttg	540
tcacaacaaa gtgatcttgg	agtcatttcc aaaactttt	c agetatette ceatecaata	600
cttggtgact ggtctattca	agttcaagtg aatgaccag	ga catattatca atcatttcag	660
gtttcagaat atgtattacc	aaaatttgaa gtgactttg	c agacaccatt atattgttct	720
atgaattota agcatttaaa	tggtaccatc acggcaaag	rt atacatatgg gaagccagtg	780
aaaggagacg taacgcttac	atttttacct ttatccttt	t ggggaaagaa gaaaaatatt	840
acaaaaacat ttaagataaa	tggatetgea aacttetet	t ttaatgatga agagatgaaa	900
aatgtaatgg attetteaaa	tggactttct gaatacctg	g atctatcttt ccctggacca	960

gtagaaattt	taaccacagt	gacagaatca	gttacaggta	tttcaagaaa	tgtaagcact	1020
aatgtgttct	tcaagcaaca	tgattacatc	attgagtttt	ttgattatac	tactgtcttg	1080
aagccatctc	tcaacttcac	agccactgtg	aaggtaactc	gtgctgatgg	caaccaactg	1140
actcttgaag	aaagaagaaa	taatgtagtc	ataacagtga	cacagagaaa	ctatactgag	1200
tactggagcg	gatctaacag	tggaaatcag	aaaatggaag	ctgttcagaa	aataaattat	1260
actgtccccc	aaagtggaac	ttttaagatt	gaattcccaa	tcctggagga	ttccagtgag	1320
ctacagttga	aggcctattt	ccttggtagt	aaaagtagca	tggcagttca	tagtctgttt	1380
aagtctccta	gtaagacata	catccaacta	aaaacaagag	atgaaaatat	aaaggtggga	1440
tegeettttg	agttggtggt	tagtggcaac	aaacgattga	aggagttaag	ctatatggta	1500
gtatccaggg	gacagttggt	ggctgtagga	aaacaaaatt	caacaatgtt	ctctttaaca	1560
ccagaaaatt	cttggactcc	aaaagcctgt	gtaattgtgt	attatattga	agatgatggg	1620
gaaattataa	gtgatgttct	aaaaattcct	gttcagcttg	tttttaaaaa	taagataaag	1680
ctatattgga	gtaaagtgaa	agctgaacca	tctgagaaag	tctctcttag	gatctctgtg	1740
acacageetg	actccatagt	tgggattgta	gctgttgaca	aaagtgtgaa	tetgatgaat	1800
gcctctaatg	atattacaat	ggaaaatgtg	gtccatgagt	tggaacttta	taacacagga	1860
tattatttag	gcatgttcat	gaattetttt	gcagtctttc	aggaatgtgg	actctgggta	1920
ttgacagatg	caaacctcac	gaaggattat	attgatggtg	tttatgacaa	tgcagaatat	1980
gctgagaggt	ttatggagga	aaatgaagga	catattgtag	atattcatga	cttttctttg	2040
ggtagcagtc	cacatgtccg	aaagcatttt	ccagagactt	ggatttggct	agacaccaac	2100
atgggttcca	ggatttacca	agaatttgaa	gtaactgtac	ctgattctat	cacttcttgg	2160
gtggctactg	gttttgtgat	ctctgaggac	ctgggtcttg	gactaacaac	tactccagtg	2220
gagetecaag	ccttccaacc	atttttcatt	tttttgaatc	ttccctactc	tgttatcaga	2280
ggtgaagaat	ttgctttgga	aataactata	ttcaattatt	tgaaagatgc	cactgaggtt	2340
aaggtaatca	ttgagaaaag	tgacaaattt	gatattctaa	tgacttcaag	tgaaataaat	2400
gccacaggcc	accagcagac	ccttctggtt	cccagtgagg	atggggcaac	tgttcttttt	2460
cccatcaggc	caacacatct	gggagaaatt	cctatcacag	tcacagetet	ttcacccact	2520
gcttctgatg	ctatcaccca	gatgatttta	gtaaaggctg	aaggaataga	aaaatcatat	2580
tcacaatcca	tcttattaga	cttgactgac	aataggctac	agagtaccct	gaaaactttg	2640
agtttctcat	ttcctcctaa	tacagtgact	ggcagtgaaa	gagttcagat	cactgcaatt	2700
ggagatgttc	ttggtccttc	catcaatggc	ttagcctcat	tgattcggat	gccttatggc	2760
tgtggtgaac	agaacatgat	aaattttgct	ccaaatattt	acattttgga	ttatctgact	2820
aaaaagaaac	aactgacaga	taatttgaaa	gaaaaagctc	tttcatttat	gaggcaaggt	2880
taccagagag	aacttctcta	tcagagggaa	gatggctctt	tcagtgcttt	tgggaattat	2940
gaccettetg	ggagcacttg	gttgtcagct	tttgttttaa	gatgtttcct	tgaageegat	3000
ccttacatag	atattgatca	gaatgtgtta	cacagaacat	acacttggct	taaaggacat	3060

cagaaatcca	acggtgaatt	ttgggatcca	ggaagagtga	ttcatagtga	gcttcaaggt	3120
ggcaataaaa	gtccagtaac	acttacagcc	tatattgtaa	cttctctcct	gggatataga	3180
aagtatcagc	ctaacattga	tgtgcaagag	tctatccatt	ttttggagtc	tgaattcagt	3240
agaggaattt	cagacaatta	tactctagcc	cttataactt	atgcattgtc	atcagtgggg	3300
agtcctaaag	cgaaggaagc	tttgaatatg	ctgacttgga	gagcagaaca	agaaggtggc	3360
atgcaattct	gggtgtcatc	agagtccaaa	ctttctgact	cctggcagcc	acgetecetg	3420
gatattgaag	ttgcagccta	tgcactgctc	tcacacttct	tacaatttca	gacttctgag	3480
ggaatcccaa	ttatgaggtg	gctaagcagg	caaagaaata	gettgggtgg	ttttgcatct	3540
actcaggata	ccactgtggc	tttaaaggct	ctgtctgaat	ttgcagccct	aatgaataca	3600
gaaaggacaa	atatccaagt	gaccgtgacg	gggcctagct	caccaagtcc	tgtaaagttt	3660
ctgattgaca	cacacaaccg	cttactcctt	cagacagcag	agettgetgt	ggtacagcca	3720
acggcagtta	atatttccgc	aaatggtttt	ggatttgcta	tttgtcagct	caatgttgta	3780
tataatgtga	aggettetgg	gtcttctaga	agacgaagat	ctatccaaaa	tcaagaagcc	3840
tttgatttag	atgttgctgt	aaaagaaaat	aaagatgatc	tcaatcatgt	ggatttgaat	3900
gtgtgtacaa	getttteggg	cccgggtagg	agtggcatgg	ctcttatgga	agttaaccta	3960
ttaagtggct	ttatggtgcc	ttcagaagca	atttctctga	gcgagacagt	gaagaaagtg	4020
gaatatgatc	atggaaaact	caacctctat	ttagattctg	taaatgaaac	ccagttttgt	4080
gttaatattc	ctgctgtgag	aaactttaaa	gtttcaaata	cccaagatgc	ttcagtgtcc	4140
atagtggatt	actatgagcc	aaggagacag	gcggtgagaa	gttacaactc	tgaagtgaag	4200
ctgtcctcct	gtgacctttg	cagtgatgtc	cagggctgcc	gtccttgtga	ggatggagct	4260
tcaggctccc	atcatcactc	ttcagtcatt	tttattttct	gtttcaagct	tetgtacttt	4320
atggaacttt	ggctg					4335
<210> 42						
<211> 1746			•			
<212> DNA					•	
<213> Homo	sapiens					
<400> 42						
atgttccccg	egggeeeeee	cagccacagc	ctcctccggc	teceetget	gcagttgctg	60
ctactggtgg	tgcaggccgt	ggggaggggg	ctgggccgcg	ccagcccggc	cgggggcccc	120
ctggaagatg	tggtcatcga	gaggtaccac	atccccaggg	ectgtecceg	ggaagtgcag	180
<pre>atgggggatt</pre>	ttgtgcgcta	ccactacaac	ggcacttttg	aagatggcaa	gaagtttgat	240
tcaagctatg	atcgcaacac	cttggtggcc	atcgtggtgg	gtgtggggcg	cctcatcact	300
ggcatggacc	gaggeeteat	gggcatgtgt	gtcaacgagc	ggcgacgcct	cattgtgcct	360
ccccacctgg	gctatgggag	categgeetg	geggggetea	ttccaccgga	tgccaccctc	420

tacttcgatg tggttctgct ggatgtgtgg aacaaggaag acaccgtgca gg	tgagcaca 480
ttgetgegee egecceactg ecceegeatg gtecaggaeg gegaetttgt ec	getaceae 540
tacaatggca ccctgctgga cggcacctcc ttcgacacca gctacagtaa gg	geggeact 600
tatgacacet acgteggete tggttggetg ateaagggea tggaceaggg ge	tgetggge 660
atgtgtcctg gagagagaag gaagattatc atccctccat tcctggccta tg	gcgagaaa 720
ggetatggga eggtgatece eccaeaggee tegetggtet tteaegteet ee	tgattgac 780
gtgeacaace egaaggaege tgteeageta gagaegetgg ageteeeee eg	getgtgte 840
egeagageeg gggeegggga etteatgege taccactaca atggeteett ga	tggaegge 900
accetetteg attecageta etceegeaac cacacetaca atacetatat egg	ggcagggt 960
tacatcatcc ccgggatgga ccaggggctg cagggtgcct gcatggggga ac	gccggaga 1020
attaccatec eccegeacet egectatggg gagaatggaa etggagacaa gat	tccctggc 1080
tetgeegtge taatetteaa egteeatgte attgaettee acaaccetge gga	atgtggtg 1140
gaaatcagga cactgtcccg gccatctgag acctgcaatg agaccaccaa gc	ttggggac 1200
tttgttegat accattacaa ctgttetttg etggaeggea eecagetgtt ca	ectegeat 1260
gaetaegggg ceeeceagga ggegaetete ggggeeaaca aggtgatega agg	geetggae 1320
aegggeetge agggeatgtg tgtgggagag aggeggeage teategtgee ee	egeacetg 1380
geceaegggg agagtggage eeggggagte eeaggeagtg etgtgetget gt	ttgaggtg 1440
gagetggtgt ecegggagga tgggetgeee acaggetace tgtttgtgtg ge	acaaggac 1500
cotcotgoca acctgtttga agacatggac ctcaacaagg atggcgaggt co	etceggag 1560
gagtteteca cetteateaa ggeteaagtg agtgagggea aaggaegeet cat	tgcctggg 1620
caggaccetg agaaaaccat aggagacatg ttecagaacc aggaccgcaa cca	aggaegge 1680
aagateacag tegacgaget caagetgaag teagatgagg aegaggageg ggt	ccacgag 1740
gagete	1746
·	
<210> 43	
<211> 1230	
<212> DNA	
<213> Homo sapiens	
<400> 43	
atggagette ceteagggee ggggeeggag eggetetttg actegeaceg get	teegggt 60
gactgettee tactgetegt getgetgete tacgegeeag tegggttetg eet	cectegte 120
etgegeetet ttetegggat ceaegtette etggteaget gegegetgee aga	acagogto 180
ettegeagat tegtagtgeg gaeeatgtgt geggtgetag ggetegtgge eeg	gcaggag 240
gacteeggac teegggatea eagtgteagg gteeteattt ceaaceatgt gae	eacctttc 300
gaccacaaca tagtcaattt gettaccace tgtagcacce etetactcaa tag	rtececee 360

agetttgtgt getggteteg	gggcttcatg	gagatgaatg	ggcggggga	gttggtggag	420
tcactcaaga gattctgtgc	ttccacgagg	cttccccca	ctcctctgct	gctattccct	480
gaggaagagg ccaccaatgg	ccgggagggg	ctcctgcgct	teagtteetg	gccattttct	540
atccaagatg tggtacaacc	tettacectg	caagttcaga	gacccctggt	ctctgtgacg	600
gtgtcagatg cctcctgggt	ctcagaactg	ctgtggtcac	ttttcgtccc	tttcacggtg	660
tatcaagtaa ggtggcttcg	tectgtteat	cgccaactag	gggaagcgaa	tgaggagttt	720
gcactccgtg tacaacagct	ggtggccaag	gaattgggcc	agacagggac	acggctcact	780
ccagctgaca aagcagagca	catgaagcga	caaagacacc	ccagattgcg	ccccagtca	840
geccagtett ettteeetee	ctcccctggt	ccttctcctg	atgtgcaact	ggcaactctg	900
gctcagagag tcaaggaagt	tttgccccat	gtgccattgg	gtgtcatcca	gagagacctg	960
gccaagactg gctgtgtaga	cttgactatc	actaatctgc	ttgagggggc	cgtagctttc	1020
atgeetgaag acateaceaa	gggaactcag	tecetaceca	cagectetge	ctccaagttt	1080
eccagetetg geeeggtgae	ccctcagcca	acagccctaa	catttgccaa	gtattaatgg	1140
geceggeagg agageetgea	ggagcgcaag	caagcactat	atgaatacgc	aagaaggaga	1200
ttcacagaga gacgagccca	ggaggetgae				1230
<210> 44					
<211> 1449					

<211> 1449

<212> DNA

<213> Homo sapiens

<400> 44

						60
acggaggaag	gaggeggegg	egcaeggagc	etggteeegg	gegggeeggt	gctaetggte	00
ctctgcggcc	tectggagge	gteeggegge	ggccgagccc	ttcctcaact	cagcgatgac	120
atccctttcc	gagtcaactg	gcccggcacc	gagttetete	tgcccacaac	tggagtttta	180
tataaagaag	ataattatgt	catcatgaca	actgcacata	aagaaaaata	taaatgcata	240
cttccccttg	tgacaagtgg	ggatgaggaa	gaagaaaagg	attataaagg	ccctaatcca	300
agagagcttt	tggagccact	atttaaacaa	agcagttgtt	cctacagaat	tgagtcttat	360
tggacttacg	aagtatgtca	tggaaaacac	atteggeagt	accatgaaga	gaaagaaact	420
ggtcagaaaa	taaatattca	cgagtactac	cttgggaata	tgttggccaa	gaaccttcta	480
tttgaaaaag	aacgagaagc	agaagaaaag	gaaaaatcaa	atgagattcc	cactaaaaat	540
atcgaaggtc	agatgacacc	atactatcct	gtgggaatgg	gaaatggtac	accttgtagt	600
ttgaaacaga	accggcccag	atcaagtact	gtgatgtaca	tatgtcatcc	tgaatctaag	660
catgaaattc	tttcagtagc	tgaagttaca	acttgtgaat	atgaagttgt	cattttgaca	720
ccactcttgt	gcagtcatcc	taaatatagg	ttcagagcat	ctcctgtgaa	tgacatattt	780
tgtcaatcac	tgccaggatc	tccatttaag	cccctcaccc	tgaggcagct	ggagcagcag	840

gaagaaatac taagggtgcc ttttaggaga aataaagagg aagatttgca atcaact	aaa 900
gaagagagat ttecagegat ceacaagteg attgetattg geteteagee agtgete	eact 960
gttgggacaa cccacatate caaattgaca gatgaccaac tcataaaaga gtttctt	agt 1020
ggttettaet getttegtgg gggtgteggt tggtggaaat atgaattetg etatgge	aaa 1080
catgtacate aataceatga ggacaaggat agtgggaaaa cetetgtggt tgteggg	jaca 1140
tggaaccaag aagagcatat tgaatgggct aagaagaata ctgctagagc ttatcat	ctt 1200
caagacgatg gtacccagac agtcaggatg gtgtcacatt tttatggaaa tggagat	att 1260
tgtgatataa ctgacaaacc aagacaggtg actgtaaaac taaagtgcaa agaatca	gat 1320
teaceteatg etgttactgt atatatgeta gageeteact cetgteaata tattett	:ggg 1380
gttgaatete cagtgatetg taaaatetta gatacagcag atgaaaatgg acttett	tct 1440
ctccccaac	1449
<210> 45	
<211> 1821	
<212> DNA	
<213> Homo sapiens	
<400> 45	
atgggetttg aggagetget ggageaggtg ggeggetttg ggecetteea actgegg	aat 60
gtggcactgc tggccctgcc ccgagtgctg ctaccactgc acttcctcct gcccatc	ttc 120
etggetgeeg tgeetgeeea eegatgtgee etgeegggtg eecetgeeaa etteage	cat 180
caggatgtgt ggctggagge ccatcttece cgggagectg atggcacget cagetee	tgc 240
etecgetttg cetateccea ggetetecce aacaccacgt tgggggaaga aaggeag	agc 300
cgtggggagc tggaggatga acctgccaca gtgccctgct ctcagggctg ggagtac	gac 360
cactcagaat teteetetae cattgeaact gagteecagg teggtattta cataate	cat 420
ctggaggtgg aatgtcggtg gaggcagtct ccctgggagg cagcaggtcg aggcctt	cct 480
tgggaagaag etgaggetge aggaetgggg agggaeaaag ttteetatte eecaage	
	tgg 540
egtgaategt tgggaggttt attatetgge atggagtggg atetggtgtg tgageag	
ggtetgaaca gagetgegte caetttette ttegeeggtg tgetggtgg ggetgtg	aaa 600
	aaa 600 gcc 660
ggtetgaaca gagetgegte caetttette ttegeeggtg tgetggtggg ggetgtg	gcc 660 agt 720
ggtetgaaca gagetgegte eactttette ttegeeggtg tgetggtggg ggetgtg tttggatate tgteegaeag gtttgggegg eggegtetge tgetggtage etaegtg	aaa 600 gee 660 agt 720 acc 780
ggtetgaaca gagetgegte eactttette ttegeeggtg tgetggtggg ggetgtg tttggatate tgteegacag gtttgggegg eggegtetge tgetggtage etaegtg accetggtge tgggeetgge atetgeagee teegteaget atgtaatgtt tgeeater	aaa 600 gcc 660 agt 720 acc 780 ctg 840
ggtetgaaca gagetgegte eactttette ttegeeggtg tgetggtgg ggetgtg tttggatate tgteegaeag gtttgggegg eggegtetge tgetggtage etaegtg accetggtge tgggeetgge atetgeagee teegteaget atgtaatgtt tgeeater egeaceetta etggeteage eetggetggt tttaceatea tegtgatgee actggag	aaa 600 gee 660 agt 720 aee 780 etg 840 aea 900
ggtetgaaca gagetgegte eactttette ttegeeggtg tgetggtgg ggetgtg tttggatate tgteegaeag gtttgggegg eggegtetge tgetggtage etaegtg accetggtge tgggeetgge atetgeagee teegteaget atgtaatgtt tgeeater egeaecetta etggeteage eetggetggt tttaceatea tegtgatgee aetggagg gagtggetgg atgtggagea eegeaecgtg getggagtee tgageageae ettetgg	aaa 600 gcc 660 agt 720 acc 780 ctg 840 aca 900 ctg 960

geacgetgge ttetgaceca aggeeatgtg aaagaggeec acaggtactt getecaetgt 1080

gecaggetea	atgggcggcc	agtgtgtgag	gacagcttca	gccaggaggc	tgtgagcaaa	1140
gtggccgccg	gggaacgggt	ggtccgaaga	ccttcatacc	tagacctgtt	ccgcacacca	1200
cggctccgac	acateteact	gtgctgcgtg	gtggtgtggt	teggagtgaa	cttctcctat	1260
tacggcctga	gtctggatgt	gteggggetg	gggctgaacg	tgtaccagac	acagetgttg	1320
tteggggetg	tggaactgcc	ctccaagctg	ctggtctact	tgtcggtgcg	ctacgcagga	1380
cgccgcctca	cgcaagccgg	gacactgctg	ggcacggccc	tggcgttcgg	cactagactg	1440
ctagtgtcct	ctgatatgaa	gtcctggagc	actgtcctgg	cagtgatggg	gaaagetttt	1500
tctgaagctg	ccttcaccac	tgcctacctg	ttcacttcag	agttgtaccc	tacggtgctc	1560
agacagacag	ggatggggct	gactgcactg	gtgggccggc	tggggggctc	tttggcccca	1620
ctggcggcct	tgctggatgg	agtgtggctg	tcactgccca	agcttactta	tggggggatc	1680
geeetgetgg	ctgccggcac	egecetectg	ctgccagaga	cgaggcaggc	acagetgeea	1740
gagaccatcc	aggacgtgga	gagaaagagt	gccccaacca	gtcttcagga	ggaagagatg	1800
cccatgaagc	aggtccagaa	C				1821
<210> 46						
<211> 942						
<212> DNA						
<213> Homo	sapiens					
<400> 46						
atgggcgcgc	geggggeget	getgetggeg	ctgctgctgg	ctcgggctgg	actcaggaag	60
ccggagtcgc	aggaggcggc	gccgttatca	ggaccatgcg	gccgacgggt	catcacgtcg	120
cgcatcgtgg	gtggagagga	cgccgaactc	gggcgttggc	cgtggcaggg	gageetgege	180
ctgtgggatt	cccacgtatg	cggagtgagc	ctgctcagcc	accgctgggc	actcacggcg	240
gegeactget	ttgaaaccta	tagtgacctt	agtgatccct	ccgggtggat	ggtccagttt	300
ggccagctga	cttccatgcc	atcettetgg	agcctgcagg	cctactacac	ccgttacttc	360
gtatcgaata	tctatctgag	ccctcgctac	ctggggaatt	caccctatga	cattgccttg	420
gtgaagctgt	ctgcacctgt	cacctacact	aaacacatcc	agcccatctg	tctccaggcc	480
tecacatttg	agtttgagaa	ccggacagac	tgctgggtga	ctggctgggg	gtacatcaaa	540
gaggatgagg	cactgccatc	tecceacace	ctccaggaag	ttcaggtcgc	catcataaac	600
aactctatgt	gcaaccacct	cttcctcaag	tacagtttcc	gcaaggacat	ctttggagac	660
atggtttgtg	ctggcaatgc	ccaaggcggg	aaggatgcct	gcttcggtga	ctcaggtgga	720
cccttggcct	gtaacaagaa	tggactgtgg	tatcagattg	gagtcgtgag	ctggggagtg	780
agetataate	ggcccaatcg	geeeggtgte	tacaccaata	tcagccacca	ctttgagtgg	840
23 33	-					
			tcccagccag	accetectg		900
atccagaagc	tgatggccca	gagtggcatg				900 942

<210> 47						
<211> 282						
<212> DNA						
<213> Homo	sapiens					
<400> 47						
atggagctct	ctgatgtcac	cctcattgag	ggtgtgggta	atgaggtgat	ggtggtggca	60
ggtgtggtgg	tgctgattct	agccttggtc	ctagettgge	tctctaccta	cgtagcagac	120
agcggtagca	accagetest	gggcgctatt	gtgtcagcag	gegacacate	cgtcctccac	180
ctggggcatg	tggaccacct	ggtggcaggc	caaggcaacc	ccgagccaac	tgaactcccc	240
catccatcag	aggcaaatac	ttccctggac	aagaaagcca	ga	·	282
<210> 48						
<211> 654						
<212> DNA						
<213> Homo	sapiens					
<400> 48						
atggegtega	agataggttc	gagacggtgg	atgttgcagc	tgatcatgca	gttgggtteg	60
gtgctgctca	cacgctgccc	cttttggggc	tgcttcagcc	agctcatgct	gtacgctgag	120
agg gctgagg	cacgccggaa	gcccgacatc	ccagtgcctt	acctgtattt	cgacatgggg	180
gcagccgtgc	tgtgcgctag	tttcatgtcc	tttggcgtga	ageggegetg	gttcgcgctg	240
ggggccgcac	tccaattggc	cattagcacc	tacgccgcct	acatcggggg	ctacgtccac	300
tacggggact	ggctgaaggt	ccgtatgtac	tegegeacag	ttgccatcat	cggcggactt	360
tettgtgttg	gecageggtg	ctggggagct	gtaccgccgg	aaacctcgca	geegeteeet	420
gcagtccacc	ggccaggtgt	tcctgggtat	ctacctcatc	tgtgtggcct	actcactgca	480
gcacagcaag	gaggaccggc	tggcgtatct	gaaccatctc	ccaggagggg	agctgatgat	540
ccagctgttc	ttcgtgctgt	atggcatcct	ggeeetggee	tttctgtcag	gctactacgt	600
gacceteget	geceagatee	tggctgtact	gctgcccct	gtcatgctgc	tcat	654
<210> 49						
<211> 1380						
<212> DNA						
<213> Homo	sapiens					
<400> 49						
atottcacaa	ttaageteet	tetttttatt	attectetaa	ttattteete	cagaattgat	60

caagacaatt	catcatttga	ttctctatct	ccagagccaa	aatcaagatt	tgctatgtta	120
gacgatgtaa	aaattttagc	caatggeete	cttcagttgg	gacatggtct	taaagacttt	180
gtccataaga	cgaagggcca	aattaatgac	atatttcaaa	aactcaacat	atttgatcag	240
tctttttatg	atctatcgct	gcaaaccagt	gaaatcaaag	aagaagaaaa	ggaactgaga	300
agaactacat	ataaactaca	agtcaaaaat	gaagaggtaa	agaatatgtc	acttgaactc	360
aactcaaaac	ttgaaagcct	cctagaagaa	aaaattctac	ttcaacaaaa	agtgaaatat	420
ttagaagagc	aactaactaa	cttaattcaa	aatcaacctg	aaactccaga	acacccagaa	480
gtaacttcac	ttaaaacttt	tgtagaaaaa	caagataata	gcatcaaaga	ccttctccag	540
accgtggaag	accaatataa	acaattaaac	caacagcata	gtcaaataaa	agaaatagaa	600
aatcagctca	gaaggactag	tattcaagaa	cccacagaaa	tttctctatc	ttccaagcca	660
agagcaccaa	gaactactcc	ctttcttcag	ttgaatgaaa	taagaaatgt	aaaacatgat	720
ggcattcctg	ctgaatgtac	caccatttat	aacagaggtg	aacatacaag	tggcatgtat	780
gccatcagac	ccagcaactc	tcaagttttt	catgtctact	gtgatgttat	atcaggtagt	840
ccatggacat	taattcaaca	tcgaatagat	ggatcacaaa	acttcaatga	aacgtgggag	900
aactacaaat	atggttttgg	gaggettgat	ggagaatttt	ggttgggcct	agagaagata	960
tactccatag	tgaagcaatc	taattatgtt	ttacgaattg	agctggaaga	ctggaaagac	1020
aacaaacatt	atattgaata	ttctttttac	ttgggaaatc	acgaaaccaa	ctatacgcta	1080
catctagttg	cgattactgg	caatgtcccc	aatgcaatcc	cggaaaacaa	agatttggtg	1140
ttttctactt	gggatcacaa	agcaaaagga	cacttcaact	gtccagaggg	ttattcagga	1200
ggctggtggt	ggcatgatga	gtgtggagaa	aacaacctaa	atggtaaata	taacaaacca	1260
agagcaaaat	ctaagccaga	gaggagaaga	ggattatctt	ggaagtetea	aaatggaagg	1320
ttatactcta	taaaatcaac	caaaatgttg	atccatccaa	cagattcaga	aagctttgaa	1380
<210> 50		•				
<211> 648						
<212> DNA						
<213> Homo	sapiens					
<400> 50						
atggtgccaa	tgcacttact	ggggagactg	gagaagccgc	ttctcctcct	gtgctgcgcc	60
tccttcctac	tggggctggc	tttgctgggc	ataaagacgg	acatcacccc	cgttgcttat	120
ttctttctca	cattgggtgg	cttcttcttg	tttgcctatc	teetggteeg	gtttctggaa	180
tgggggcttc	ggtcccagct	ccaatcaatg	cagactgaga	geeeagggee	ctcaggcaat	240
gcacgggaca	atgaagcctt	tgaagtgcca	gtctatgaag	aggeegtggt	gggactagaa	300
teccagtgee	gececeaaga	gttggaccaa	ccaccccct	acagcactgt	tgtgataccc	360

ccagcacctg aggaggaaca acctagccat ccagaggggt ccaggagagc caaactggaa 420

cagaggegaa tggeeteaga ggggteeatg geeeaggaag gaageeetgg aagaget	cca 480
atcaacette ggettegggg accaeggget gtgteeactg ctectgatet geagage	ttg 540
geggeagtee ecacattaga geetetgaet ecaceceetg cetatgatgt etgettt	ggt 600
caccetgatg atgatagtgt tttttatgag gacaactggg caccecet	648
<210> 51	
<211> 4473	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (45)(4382)	
<400> 51	
aactteeeeg geageggaet gtageeeagg eagaegeegt egag atg eag gge e	ca 56
Met Gln Gly P	ro
1	
eeg ete etg ace gee gee cae ete ete tge gtg tge ace gee geg et	g 104
Pro Leu Leu Thr Ala Ala His Leu Leu Cys Val Cys Thr Ala Ala Leu	u
5 10 15 20	0
goe gtg get eee ggg eet egg ttt etg gtg aca gee eea ggg ate at	c 152
Ala Val Ala Pro Gly Pro Arg Phe Leu Val Thr Ala Pro Gly Ile Ile	9
25 30 35	
agg ccc gga gga aat gtg act att ggg gtg gag ctt ctg gaa cac tg	c 200
Arg Pro Gly Gly Asn Val Thr Ile Gly Val Glu Leu Leu Glu His Cys	3
40 45 50	
cet tea eag gtg act gtg aag geg gag etg etc aag aca gea tea aag	248
Pro Ser Gln Val Thr Val Lys Ala Glu Leu Leu Lys Thr Ala Ser Ass	a.
55 60 65	
ctc act gtc tct gtc ctg gaa gca gaa gga gtc ttt gaa aaa ggc tct	t 296
Leu Thr Val Ser Val Leu Glu Ala Glu Gly Val Phe Glu Lys Gly Ser	r
70 75 80	
ttt aag aca ett act ett eea tea eta eet etg aac agt gea gat ga	344
Phe Lys Thr Leu Thr Leu Pro Ser Leu Pro Leu Asn Ser Ala Asp Glu	1
85 90 95 100)
att tat gag cta cgt gta acc gga cgt acc cag gat gag att tta tto	392

Ile	Tyr	Glu	Leu	Arg	Val	Thr	Gly	Arg	Thr	Gln	Asp	Glu	Ile	Leu	Phe	
				105					110					115		
tct	aat	agt	acc	cgc	tta	tca	ttt	gag	acc	aag	aga	ata	tct	gtc	tte	440
Ser	Asn	Ser	Thr	Arg	Leu	Ser	Phe	Glu	Thr	Lys	Arg	Ile	Ser	Val	Phe	
			120					125					130			
att	caa	aca	gac	aag	gcc	tta	tac	aag	cca	aag	caa	gaa	gtg	aag	ttt	488
Ile	Gln	Thr	Asp	Lys	Ala	Leu	Tyr	Lys	Pro	Lys	Gln	Glu	Val	Lys	Phe	
		135					140					145				
cgc	att	gtt	aca	ctc	ttc	tca	gat	ttt	aag	cct	tac	aaa	acc	tct	tta	536
Arg	Ile	Val	Thr	Leu	Phe	Ser	Asp	Phe	Lys	Pro	Tyr	ГÀЗ	Thr	Ser	Leu	
	150					155					160					
aac	att	ctc	att	aag	gac	ccc	aaa	tca	aat	ttg	atc	caa	cag	tgg	ttg	584
Asn	Ile	Leu	Ile	Lys	qaA	Pro	Lys	Ser	Asn	Leu	Ile	Gln	Gln	Trp	Leu	
165					170					175					180	
tca	caa	caa	agt	gat	ctt	gga	gtc	att	tcc	aaa	act	ttt	cag	cta	tct	632
Ser	Gln	Gln	Ser	Asp	Leu	Gly	Val	Ile	Ser	Lys	Thr	Phe	Gln	Leu	Ser	
				185					190					195		
tcc	cat	cca	ata	ctt	ggt	gac	tgg	tct	att	caa	gtt	caa	gtg	aat	gac	680
Ser	His	Pro	Ile	Leu	Gly	Asp	Trp	Ser	Ile	Gln	Val	Gln	Val	Asn	Asp	
			200					205					210			
							-	gtt		_						728
Gln	Thr	_	Tyr	Gln	Ser	Phe	Gln	Val	Ser	Glu	Tyr	Val	Leu	Pro	Lys	
		215					220					225				
	_			_	-			tta		•		-			•	776
Phe		Val	Thr	Leu	Gln	Thr	Pro	Leu	Tyr	Сув	Ser	Met	Asn	Ser	Lys	
	230					235					240					
						_	_	aag								824
His	Leu	Asn	Gly	Thr	Ile	Thr	Ala	Lys	Tyr	Thr	Tyr	Gly	Lys	Pro	Val	
245					250					255					260	
								tta								872
Lys	Gly	Asp	Val		Leu	Thr	Phe	Leu	Pro	Leu	Ser	Phe	Trp	Gly	Lys	
				265					270					275		
_								aag					_			920
Lys	Lys	Asn	Ile	Thr	Lys	Thr	Phe	Lys	Ile	Asn	Gly	Ser	Ala	Asn	Phe	
			200					205					200			

tct	ttt	aat	gat	gaa	gag	atg	aaa	aat	gta	atg	gat	tct	tca	aat	gga	968
Ser	Phe	Asn	Asp	Glu	Glu	Met	Lys	Asn	Val	Met	Asp	Ser	Ser	Asn	Gly	
		295					300					305				
ctt	tct	gaa	tac	ctg	gat	cta	tct	ttc	cct	gga	cca	gta	gaa	att	tta	1016
Leu	Ser	Glu	Tyr	Leu	Asp	Leu	Ser	Phe	Pro	Gly	Pro	Val	Glu	Ile	Leu	
	310					315					320					
acc	aca	gtg	aca	gaa	tca	gtt	aca	ggt	att	tca	aga	aat	gta	agc	act	1064
Thr	Thr	Val	Thr	Glu	Ser	Val	Thr	Gly	Ile	Ser	Arg	Asn	Val	Ser	Thr	
325					330					335					340	
aat	gtg	ttc	ttc	aag	caa	cat	gat	tac	atc	att	gag	ttt	ttt	gat	tat	1112
Asn	Val	Phe	Phe	Lys	Gln	His	Asp	Tyr	Ile	Ile	Glu	Phe	Phe	Asp	Tyr	
				345					350					355		
		-	-	•		tct					•			•	•	1160
Thr	Thr	Val	Leu	Lys	Pro	Ser	Leu		Phe	Thr	Ala	Thr		Lys	Val	
			360					365					370			
	-	-	-			caa	-				-	-	-			1208
Thr	Arg		Asp	Gly	Asn	Gln		Thr	Leu	Glu	Glu		Arg	Asn	Asn	
		375					380					385				1056
•	-					cag								-		1256
Val		ITE	Thr	Val	Thr	Gln	Arg	Asn	Tyr	Thr		TÄL	drr.	ser	GTĀ	
	390					395					400				***	1304
		-			_	aaa Lys	_	_	•	•	-					1304
405	Weii	per	GIŢ	VOII	410	nys	Mec	GIU	ALG	415	GIII	цур	116	Noti	420	
	atc	ccc	CAA	act		act	+++	880	att		tto	CCA	atc	cta		1352
	-			-		Thr		-		-				•		1322
	V 04.4.		U	425	421	****	- 1	2,0	430	uzu		210		435		
gat.	tcc	agt	gag		cag	ttg	аас	acc		ttc	ctt	aat.	agt.		agt.	1400
_		-			-	Leu	_	•					•		-	
			440				-3 -	445	-4-			2	450	-3-		
agc	ato	σca		cat	agt	ctg	ttt		tet	cct	aat	аас		tac	atc	1448
_	-	-	_		_	Leu		_			_	_				
		455			-		460					465		-2-		
caa			aca	aga	gat	gaa	aat	ata	aaq	ata			cct	ttt	gag	1496
				-	_	Glu			_			_				
											_					

	470					475					480					
ttg	gtg	gtt	agt	ggc	aac	aaa	cga	ttg	aag	gag	tta	agc	tat	atg	gta	1544
Leu	Val	Val	Ser	Gly	Asn	Lys	Arg	Leu	Lys	Glu	Leu	Ser	Tyr	Met	Val	
485					490					495					500	
gta	tcc	agg	gga	cag	ttg	gtg	gct	gta	gga	aaa	caa	aat	tca	aca	atg	1592
Val	Ser	Arg	Gly	Gln	Leu	Val	Ala	Val	Gly	Lys	Gln	Asn	Ser	Thr	Met	
				505					510					515		
ttc	tct	tta	aca	cca	gaa	aat	tct	tgg	act	cca	aaa	gcc	tgt	gta	att	1640
Phe	Ser	Leu	Thr	Pro	Glu	Asn	Ser	Trp	Thr	Pro	Lys	Ala	Сув	Val	Ile	
			520					525					530			
gtg	tat	tat	att	gaa	gat	gat	ggg	gaa	att	ata	agt	gat	gtt	cta	aaa	1688
Val	Tyr	Tyr	Ile	Glu	Asp	Asp	Gly	Glu	Ile	Ile	Ser	Asp	Val	Leu	Lys	
		535					540					545				
att	cct	gtt	cag	ctt	gtt	ttt	aaa	aat	aag	ata	aag	cta	tat	tgg	agt	1736
Ile	Pro	Val	Gln	Leu	Val	Phe	Lys	Asn	Lys	Ile	Lys	Leu	Tyr	Trp	Ser	
	550					555					560					
aaa	gtg	aaa	gct	gaa	cca	tct	gag	aaa	gtc	tct	ctt	agg	atc	tct	gtg	1784
Lys	Val	Lys	Ala	Glu	Pro	Ser	Glu	Lys	Val	Ser	Leu	Arg	Ile	Ser	Val	
565					570					575					580	
aca	cag	cct	gac	tcc	ata	gtt	ggg	att	gta	gct	gtt	gac	aaa	agt	gtg	1832
Thr	Gln	Pro	Asp	Ser	Ile	Val	Gly	Ile	Val	Ala	Val	Asp	Lys	Ser	Val	
				585					590					595		
aat	ctg	atg	aat	gcc	tct	aat	gat	att	aca	atg	gaa	aat	gtg	gtc	cat	1880
Asn	Leu	Met	Asn	Ala	Ser	Asn	Asp	Ile	Thr	Met	Glu	Asn	Val	Val	His	
			600					605					610			
gag	ttg	gaa	ctt	tat	aac	aca	gga	tat	tat	tta	ggc	atg	ttc	atg	aat	1928
Glu	Leu	Glu	Leu	Tyr	Asn	Thr	Gly	Tyr	Tyr	Leu	Gly	Met	Phe	Met	Asn	
		615					620					625				
tct	ttt	gca	gtc	ttt	cag	gaa	tgt	gga	ctc	tgg	gta	ttg	aca	gat	gca	1976
Ser	Phe	Ala	Val	Phe	Gln	Glu	Cys	Gly	Leu	Trp	Val	Leu	Thr	Asp	Ala	
	630					635					640					
aac	ctc	acg	aag	gat	tat	att	gat	ggt	gtt	tat	gac	aat	gca	gaa	tat	2024
Asn	Leu	Thr	Lys	Asp	Tyr	Ile	Asp	Gly	Val	Tyr	Asp	Asn	Ala	Glu	Tyr	
645					650					655					660	
gct	gag	agg	ttt	atg	gag	gaa	aat	gaa	gga	cat	att	gta	gat	att	cat	2072

Ala	Glu	Arg	Phe	Met	Glu	Glu	Asn	Glu	Gly	His	Ile	Val	. Asp	Ile	His	
				665					670					675		
gac	ttt	tct	ttg	ggt	agc	agt	cca	cat	gtc	cga	aag	cat	ttt	cca	gag	2120
Asp	Phe	Ser	Leu	Gly	Ser	Ser	Pro	His	Val	Arg	Lys	His	Phe	Pro	Glu	
			680					685					690)		
act	tgg	att	tgg	cta	gac	acc	aac	atg	ggt	tcc	agg	att	tac	caa	gaa	2168
Thr	Trp	Ile	Trp	Leu	Asp	Thr	Asn	Met	Gly	Ser	Arg	Ile	Tyr	Gln	Glu	
		695					700					705				
ttt	gaa	gta	act	gta	cct	gat	tct	atc	act	tct	tgg	gtg	gct	act	ggt	2216
Phe	Glu	Val	Thr	Val	Pro	Asp	Ser	Ile	Thr	Ser	Trp	Val	Ala	Thr	Gly	
	710					715					720					
ttt	gtg	atc	tct	gag	gac	ctg	ggt	ctt	gga	cta	aca	act	act	cca	gtg	2264
Phe	Val	Ile	Ser	Glu	Asp	Leu	Gly	Leu	Gly	Leu	Thr	Thr	Thr	Pro	Val	
725			•		730					735					740	
gag	ctc	caa	gcc	ttc	caa	cca	ttt	ttc	att	ttt	ttg	aat	ctt	ccc	tac	2312
Glu	Leu	Gln	Ala	Phe	Gln	Pro	Phe	Phe	Ile	Phe	Leu	Asn	Leu	Pro	Tyr	
				745					750					755		
tct	gtt	atc	aga	ggt	gaa	gaa	ttt	gct	ttg	gaa	ata	act	ata	ttc	aat	2360
Ser	Val	Ile	Arg	Gly	Glu	Glu	Phe	Ala	Leu	Glu	Ile	Thr	Ile	Phe	Asn	
			760					765					770			
tat	ttg	aaa	gat	gcc	act	gag	gtt	aag	gta	atc	att	gag	aaa	agt	gac	2408
Tyr	Leu	Lys	Asp	Ala	Thr	Glu	Val	Lys	Val	Ile	Ile	Glu	Lys	Ser	Asp	
		775					780					785				
aaa	ttt	gat	att	cta	atg	act	tca	agt	gaa	ata	aat	gce	aca	ggc	cac	2456
Lys	Phe	Asp	Ile	Leu	Met	Thr	Ser	Ser	Glu	Ile	Asn	Ala	Thr	Gly	His	
	790					795					800			•		
-	_			_	_	ccc	-		-		-		_			2504
Gln	Gln	Thr	Leu	Leu	Val	Pro	Ser	Glu	qeA	Gly	Ala	Thr	Val	Leu	Phe	
805					810					815					820	
ccc	atc	agg	cca	aca	cat	ctg	gga	gaa	att	cct	atc	aca	gtc	aca	gct	2552
Pro	Ile	Arg	Pro	Thr	His	Leu	Gly	Glu	Ile	Pro	Ile	Thr	Val	Thr	Ala	
				825					830					835		
ctt	tca	ccc	act	gct	tct	gat	gct	atc	acc	cag	atg	att	tta	gta	aag	2600
Leu	Ser	Pro	Thr	Ala	Ser	Aap	Ala	Ile	Thr	Gln	Met	Ile	Leu	Val	Lys	
			840					845					850			

gct	gaa	gga	ata	gaa	aaa	tca	tat	tca	Caa	tec	atc	tta	tta	gac	ttg	2648
Ala	Glu	Gly	Ile	Glu	Lys	Ser	Tyr	Ser	Gln	Ser	lle	Leu	Leu	Asp	Leu	
		855					860					865				
act	gac	aat	agg	cta	cag	agt	acc	ctg	aaa	act	ttg	agt	tto	tca	ttt	2696
Thr	Asp	Asn	Arg	Leu	Gln	Ser	Thr	Leu	Lys	Thr	Leu	Ser	Phe	Ser	Phe	
	870					875					880					
cct	cct	aat	aca	gtg	act	ggc	agt	gaa	aga	gtt	cag	atc	act	gca	att	2744
Pro	Pro	Asn	Thr	Val	Thr	Gly	Ser	Glu	Arg	Val	Gln	Ile	Thr	Ala	Ile	
885					890					895					900	
gga	gat	gtt	ctt	ggt	cct	tcc	atc	aat	ggc	tta	gcc	tca	ttg	att	cgg	2792
Gly	Asp	Val	Leu	Gly	Pro	Ser	Ile	Asn	Gly	Leu	Ala	Ser	Leu	Ile	Arg	
				905					910					915		
atg	cct	tat	ggc	tgt	ggt	gaa	cag	aac	atg	ata	aat	ttt	gct	cca	aat	2840
Met	Pro	Tyr	Gly	Суз	Gly	Glu	Gln	Asn	Met	Ile	Asn	Phe	Ala	Pro	Asn	
			920					925					930			
att	tac	att	ttg	gat	tat	ctg	act	aaa	aag	aaa	caa	ctg	aca	gat	aat	2888
Ile	Tyr	Ile	Leu	Asp	Tyr	Leu	Thr	ГЛЗ	Lys	ГÄа	Gln	Leu	Thr	Asp	Asn	
		935					940					945				
ttg	aaa	gaa	aaa	gct	ctt	tca	ttt	atg	agg	caa	ggt	tac	cag	aga	gaa	2936
Leu	Lys	Glu	Lys	Ala	Leu	Ser	Phe	Met	Arg	Gln	Gly	Tyr	Gln	Arg	Glu	
	950					955					960					
			-		_	-				-	•			aat		2984
Leu	Leu	Tyr	Gln	Arg	Glu	Asp	Gly	Ser	Phe	Ser	Ala	Phe	Gly	Asn	Tyr	
965					970					975					980	
									-				_	tgt		3032
Asp	Pro	Ser	Gly	Ser	Thr	Trp	Leu	Ser	Ala	Phe	Val	Leu	Arg	Суз	Phe	
				985					990					995		
	_	_	_				_		_	-				cac	-	3080
Leu	Glu	Ala			Tyr	Ile	Asp			Gln	Asn	Val		His	Arg	
			1000					1005					1010			
								_					-		tgg	3128
Chr	Tyr			Leu	Lys	-			Lys	Ser	Asn	_		Phe	Trp	
		1015					1020					1025				
gat	cca	gga	aga	gtg	att	cat	agt	gag	ctt	caa	ggt	ggc	aat	aaa	agt	3176
as/	Pro	Glv	Ara	Va1	Tle	His	Ser	Glu	Ten	Gln	Glv	Glv	Agn	T.vq	Ser	

	1036	כ				1035	5				104	0				
cca	gta	aca	ctt	aca	gcc	tat	att	gta	act	tct	ctc	ctg	gga	tat	aga	3224
Pro	Val	Thr	Leu	Thr	Ala	Tyr	Ile	Val	Thr	Ser	Leu	Leu	Gly	Tyr	Arg	
1045	5				105	0				1055	5				1060	
aag	tat	cag	cct	aac	att	gat	gtg	caa	gag	tct	atc	cat	ttt	ttg	gag	3272
Lys	Tyr	Gln	Pro	Asn	Ile	qeA	Val	Gln	Glu	Ser	Ile	His	Phe	Leu	Glu	
				1065	5				1070)				107	5	
tct	gaa	ttc	agt	aga	gga	att	tca	gac	aat	tat	act	cta	gcc	ctt	ata	3320
Ser	Glu	Phe	Ser	Arg	Gly	Ile	Ser	qeA	Asn	Tyr	Thr	Leu	Ala	Leu	Ile	
			1086	0				1085	5				109	0		
act	tat	gca	ttg	tca	tca	gtg	ggg	agt	cct	aaa	gcg	aag	gaa	gct	ttg	3368
Thr	Tyr	Ala	Leu	Ser	Ser	Val	Gļy	Ser	Pro	Lys	Ala	ГÀЗ	Glu	Ala	Leu	
		1095	5				1100)	•			110	5			
aat	atg	ctg	act	tgg	aga	gca	gaa	caa	gaa	ggt	ggc	atg	caa	ttc	tgg	3416
Asn	Met	Leu	Thr	Trp	Arg	Ala	Glu	Gln	Glu	Gly	Gly	Met	Gln	Phe	Trp	
	1110)				1115	5				1120)				
gtg	tca	tca	gag	tcc	aaa	ctt	tct	gac	tcc	tgg	cag	cca	cgc	tcc	ctg	3464
Val	Ser	Ser	Glu	Ser	Lys	Leu	Ser	Asp	Ser	Trp	Gln	Pro	Arg	Ser	Leu	
112	5				1130)				1135	5				1140	
gat	att	gaa	gtt	gca	gcc	tat	gca	ctg	ctc	tca	cac	ttc	tta	caa	ttt	3512
Asp	Ile	Glu	Val	Ala	Ala	Tyr	Ala	Leu	Leu	Ser	His	Phe ·	Leu	Gln	Phe	
				1145	5				1150)				1155	5	
cag	act	tct	gag	gga	atc	cca	att	atg	agg	tgg	cta	agc	agg	caa	aga	3560
Gln	Thr	Ser	Glu	Gly	Ile	Pro	Ile	Met	Arg	Trp	Leu	Ser	Arg	Gln	Arg	
			1160)				1165	5				1170)		
aat	agc	ttg	ggt	ggt	ttt	gca	tct	act	cag	gat	acc	act	gtg	gct	tta	3608
Asn	Ser	Leu	Gly	Gly	Phe	Ala	Ser	Thr	Gln	Asp	Thr	Thr	Val	Ala	Leu	
		1175	5				1180)				1185	5			
aag	gct	ctg	tct	gaa	ttt	gca	gcc	cta	atg	aat	aca	gaa	agg	aca	aat	3656
Lys	Ala	Leu	Ser	Glu	Phe	Ala	Ala	Leu	Met	neA	Thr	Glu	Arg	Thr	Asn	
	1190)				1195	j				1200)				
atc	caa	gtg	acc	gtg	acg	ggg	cct	agc	tca	cca	agt	cct	gta	aag	ttt	3704
Ile	Gln	Val	Thr	Val	Thr	Gly	Pro	Ser	Ser	Pro	Ser	Pro	Val	Lys	Phe	
1205	5				1210)				1215	j				1220	
cta	att	gac	aca	cac	aac	cac	tta	ctc	ctt	caq	aca	gca	gag	ctt	gct	3752

Leu	Ile	qeA	Thr	His	Asn	Arg	Leu	Leu	Leu	Gln	Thr	Ala	Glu	Leu	Ala	
				122	5				123	0				123	5	
gtg	gta	cag	cca	acg	gca	gtt	aat	att	tcc	gca	aat	ggt	ttt	gga	ttt	3800
Val	Val	Gln	Pro	Thr	Ala	Val	Asn	Ile	Ser	Ala	Asn	Gly	Phe	Gly	Phe	
			124	0				124	5				125	0		
gct	att	tgt	cag	ctc	aat	gtt	gta	tat	aat	gtg	aag	gct	tct	9 99	tct	3848
Ala	Ile	Суз	Gln	Leu	Asn	Val	Val	Tyr	Asn	Val	Lys	Ala	Ser	Gly	Ser	
		125	5				126	0				126	5			
tet	aga	aga	cga	aga	tct	atc	caa	aat	caa	gaa	gcc	ttt	gat	tta	gat	3896
Ser	Arg	Arg	Arg	Arg	Ser	Ile	Gln	Asn	Gln	Glu	Ala	Phe	Asp	Leu	Asp	
	1270)				127	5				1280)				
gtt	gct	gta	aaa	gaa	aat	aaa	gat	gat	ctc	aat	cat	gtg	gat	ttg	aat	3944
Val	Ala	Val	Lys	Glu	Asn	Lys	Asp	Asp	Leu	Asn	His	Val	Asp	Leu	Asn	
128	5				1290)				129	5				1300	
gtg	tgt	aca	agc	ttt	tcg	ggc	ccg	ggt	agg	agt	ggc	atg	gct	ctt	atg	3992
Val	Суз	Thr	Ser	Phe	Ser	Gly	Pro	Gly	Arg	Ser	Gly	Met	Ala	Leu	Met	
				1305	5				1310)				1315	5	
gaa	gtt	aac	cta	tta	agt	ggc	ttt	atg	gtg	cct	tca	gaa	gca	att	tet	4040
Glu	Val	Asn			Ser	Gly	Phe	Met	Val	Pro	Ser	Glu	Ala	Ile	Ser	
			1320)				1325	5				1330)		
_	-	-			_			gaa		_						4088
Leu	Ser			Val	ГÀЗ	ГЛЗ		Glu	Tyr	Asp	His	_	_	Leu	Așn	
		1335					1340					1345				
			_		_		_	acc	_		_	_				4136
Leu	-		Asp	Ser	Val			Thr	Gln	Phe	-		Asn	Ile	Pro	
	1350					1355					1360					
•		_				-		aat			-	-				4184
		Arg	Asn	Phe	_		Ser	Asn	Thr	Gln	Asp	Ala	Ser	Val		
1365					1370					1375					1380	
								aga								4232
Ile	Val	Yab	Tyr			Pro	Arg	Arg	Gln	Ala	Val	Arg	Ser			
				1385					1390					1395		
								gac		-	-					4280
Ser	Glu		_		Ser	Ser	_	qeA		Сув	Ser	_			Gly	
			1400	١				1/05					1410	1		

WO 00/29448 PCT/JP99/06412

tgc	cgt	cct	tgt	gag	gat	gga	gct	tca	ggc	tcc	cat	cat	cac	tct	tca	4328
Сув	Arg	Pro	Сув	Glu	qeA	Gly	Ala	Ser	Gly	Ser	His	His	His	Ser	Ser	
		141	5				142	0				142	5			
gtc	att	ttt	att	ttc	tgt	ttc	aag	ctt	ctg	tac	ttt	atg	gaa	ctt	tgg	4376
Val	Ile	Phe	Ile	Phe	Cys	Phe	Lys	Leu	Leu	Tyr	Phe	Met	Glu	Leu	Trp	
	1430	0				1439	5				144	0				
ctg	tgat	tttai	ttt i	ttaa	aggad	et el	tgtgl	taac	a ct	aacat	tttc	cag	tagt	cac	a	4430
Leu																
1445	5															
tgt	gatte	gtt 1	tgti	ttte	gt ag	gaaga	atac	tgo	ette	tatt	ttg					4473
															•	
<210)> 52	2														
<211	l> 20	530														
<212	2> Di	A.													•	
<213	3> Ho	omo s	apie	ens												
<220)>															
<221	> CI	os														
<222	?> (8	32)	. (18	330)												
<400)> 52	2														
agtt	ctg	gga c	geg	3 9999	ja ag	gago	jttg	j tg	gogad	etce	ctc	jete	gee d	ctcad	etgeeg	60
geg	rtccc	caa c	tcca	aggca	ac c	atg	ttc	ccc	gcg	ggc	CCC	ccc	agc	cac	agc	111
						Met	Phe	Pro	Ala	Gly	Pro	Pro	Ser	His	Ser	
						1				5					10	
ctc	ctc	egg	ctc	ccc	ctg	ctg	cag	ttg	ctg	cta	ctg	gtg	gtg	cag	gcc	159
Leu	Leu	Arg	Leu	Pro	Leu	Leu	Gln	Leu	Leu	Leu	Leu	Val	Val	Gln	Ala	
				15					20					25		
gtg	aaa	agg	ggg	ctg	ggc	cgc	gee	agc	ccg	gcc	3 33	ggc	ccc	ctg	gaa	207
Val	Gly	Arg	Gly	Leu	Gly	Arg	Ala	Ser	Pro	Ala	Gly	Gly	Pro	Leu	Glu	
			30					35					40			
gat	gt g	gtc	atc	gag	agg	tac	cac	atc	CCC	agg	gcc	tgt	ccc	cgg	gaa	255
Asp	Val	Val	Ile	Glu	Arg	Tyr	His	Ile	Pro	Arg	Ala	Суз	Pro	Arg	Glu	
		45					50					55				
gtg	cag	atg	ggg	gat	ttt	gtg	cgc	tac	cac	tac	aac	ggc	act	ttt	gaa	303
Val	Gln	Met	Gly	qaA	Phe	Val	Arg	Tyr	His	Tyr	Asn	Gly	Thr	Phe	Glu	
	60					65					70					

gat	ggc	aag	aag	ttt	gat	tca	agc	tat	gat	cgc	aac	acc	ttg	gtg	gee	35:
Asp	Gly	Lys	Lys	Phe	Asp	Ser	Ser	Tyr	Asp	Arg	Asn	Thr	Leu	Val	Ala	
75					80					85					90	
atc	gtg	gtg	ggt	gtg	ggg	cgc	ctc	atc	act	ggc	atg	gac	cga	ggc	ctc	399
Ile	Val	Val	Gly	Val	Gly	Arg	Leu	Ile	Thr	Gly	Met	Asp	Arg	Gly	Leu	
				95					100					105		
atg	ggc	atg	tgt	gtc	aac	gag	cgg	cga	cgc	ctc	att	gtg	cct	ccc	cac	447
Met	Gly	Met	Суз	Val	Asn	Glu	Arg	Arg	Arg	Leu	Ile	Val	Pro	Pro	His	
			110					115					120			
ctg	ggc	tat	ggg	agc	atc	ggc	ctg	gcg	ggg	ctc	att	cca	ccg	gat	gcc	495
Leu	Gly	Tyr	Gly	Ser	Ile	Gly	Leu	Ala	Gly	Leu	Ile	Pro	Pro	Asp	Ala	
		125					130					135				
acc	ctc	tac	ttc	gat	gtg	gtt	ctg	ctg	gat	gtg	tgg	aac	aag	gaa	gac	543
Thr	Leu	Tyr	Phe	Asp	Val	Val	Leu	Leu	qaA	Val	Trp	Asn	ГЛЗ	Glu	Asp	
	140					145					150					
acc	gtg	cag	gtg	age	aca	ttg	ctg	ege	ccg	ccc	cac	tgc	ccc	cgc	atg	591
Thr	Val	Gln	Val	Ser	Thr	Leu	Leu	Arg	Pro	Pro	His	Сув	Pro	Arg	Met	
155					160					165					170	
gtc	cag	gac	ggc	gac	ttt	gtc	cgc	tac	cac	tac	aat	ggc	acc	ctg	ctg	639
Val	Gln	Asp	Gly	Asp	Phe	Val	Arg	Tyr	His	Tyr	Asn	Gly	Thr	Leu	Leu	
				175					180					185		
gac	ggc	acc	tee	ttc	gac	acc	agc	tac	agt	aag	ggc	ggc	act	tat	gac	687
Asp	Gly	The	Ser	Phe	Asp	Thr	Ser	Tyr	Ser	ГЛЗ	Gly	Gly	Thr	Tyr	Asp	
			190					195					200			
acc	tac	gtc	gge	tct	ggt	tgg	ctg	atc	aag	ggc	atg	gac	cag	3 33	ctg	735
Thr	Tyr	Val	Gly	Ser	Gly	Trp	Leu	Ile	Lys	Gly	Met	Asp	Gln	Gly	Leu	
		205					210					215				
ctg	ggc	atg	tgt	cct	gga	gag	aga	agg	aag	att	atc	atc	cct	cca	ttc	783
Leu	Gly	Met	Сув	Pro	Gly	Glu	Arg	Arg	Lys	Ile	Ile	Ile	Pro	Pro	Phe	
	220					225					230					
ctg	gcc	tat	ggc	gag	aaa	ggc	tat	ggg	acg	gtg	atc	ccc	cca	cag	gcc	831
Leu	Ala	Tyr	Gly	Glu	Lys	Gly	Tyr	Gly	Thr	Val	Ile	Pro	Pro	Gln	Ala	
235					240					245					250	
tcg	ctg	gtc	ttt	cac	gtc	ctc	ctg	att	gac	gtg	cac	aac	ccg	aag	gac	879
Ser	Leu	Val	Phe	His	Val	Leu	Leu	Tle	asa	Val	His	Asn	Pro	Lvs	asa	

				255					260					265		
gct	gtc	cag	cta	gag	acg	ctg	gag	ctc	ccc	ccc	ggc	tgt	gtc	cgc	aga	927
Ala	Val	Gln	Leu	Glu	Thr	Leu	Glu	Leu	Pro	Pro	Gly	Суз	Val	Arg	Arg	
	•		270					275					280			
gcc	ggg	gcc	aaa	gac	ttc	atg	ege	tac	cac	tac	aat	ggc	tcc	ttg	atg	975
Ala	Gly	Ala	Gly	Asp	Phe	Met	Arg	Tyr	His	Tyr	Asn	Gly	Ser	Leu	Met	
		285					290					295				
gac	ggc	acc	ctc	ttc	gat	tcc	agc	tac	tee	cgc	aac	cac	acc	tac	aat	1023
Asp	Gly	Thr	Leu	Phe	Asp	Ser	Ser	Tyr	Ser	Arg	Asn	His	Thr	Tyr	Asn	
	300					305					310				•	
acc	tat	atc	ggg	cag	ggt	tac	atc	atc	ccc	ggg	atg	gac	cag	9 99	ctg	1071
Thr	Tyr	Ile	Gly	Gln	Gly	Tyr	Ile	Ile	Pro	Gly	Met	qeA	Gln	Gly	Leu	
315					320					325					330	
cag	ggt	gcc	tgc	atg	ggg	gaa	cgc	cgg	aga	att	acc	atc	ccc	ccg	cac	1119
Gln	Gly	Ala	Сув	Met	Gly	Glu	Arg	Arg	Arg	Ile	Thr	Ile	Pro	Pro	His	
				335					340					345		
ctc	gcc	tat	ggg	gag	aat	gga	act	gga	gac	aag	atc	cct	ggc	tct	gcc	1167
Leu	Ala	Tyr	Gly	Glu	Asn	Gly	Thr	Gly	qeA	Lys	Ile	Pro	Gly	Ser	Ala	
			350					355					360			
gtg	cta	atc	ttc	aac	gtc	cat	gtc	att	gac	ttc	cac	aac	cct	gcg	gat	1215
Val	Leu	Ile	Phe	Asn	Val	His	Val	Ile	Asp	Phe	His	Asn	Pro	Ala	Asp	
		365					370					375				
gtg	gtg	gaa	atc	agg	aca	ctg	tcc	cgg	cca	tct	gag	acc	tgc	aat	gag	1263
Val	Val	Glu	Ile	Arg	Thr	Leu	Ser	Arg	Pro	Ser	Glu	Thr	Сув	Asn	Glu	
	380					385					390					
acc	acc	aag	ctt	333	gac	ttt	gtt	cga	tac	cat	tac	aac	tgt	tct	ttg	1311
Thr	Thr	Lys	Leu	Gly	Asp	Phe	Val	Arg	Tyr	His	Tyr	Asn	Cys	Ser	Leu	
395					400					405					410	
ctg	gac	ggc	acc	cag	ctg	ttc	acc	tcg	cat	gac	tac	999	gcc	ccc	cag	1359
Leu	Asp	Gly	Thr	Gln	Leu	Phe	Thr	Ser	His	qaA	Tyr	Gly	Ala	Pro	Gln	
				415					420					425		
gag	gcg	act	ctc	999	gcc	aac	aag	gtg	atc	gaa	ggc	ctg	gac	acg	ggc	1407
31u	Ala	Thr	Leu	Gly	Ala	Asn	Lys	Val	Ile	Glu	Gly	Leu	qeA	Thr	Gly	
	•	•	430					435					440			
~+~	000	~~~	ata	tat	at a	aas	and a	200	000	222	ata	ata	at a	000	000	1.455

Leu Gln Gly Met Cys Val Gly Glu Arg Arg Gln Leu Ile Val Pro Pro	
445 450 455	
eac ctg gcc cac ggg gag agt gga gcc cgg gga gtc cca ggc agt gct	1503
His Leu Ala His Gly Glu Ser Gly Ala Arg Gly Val Pro Gly Ser Ala	
460 465 470	
gtg ctg ctg ttt gag gtg gag ctg gtg tcc cgg gag gat ggg ctg ccc	1551
Val Leu Leu Phe Glu Val Glu Leu Val Ser Arg Glu Asp Gly Leu Pro	
475 480 485 490	
aca ggc tac ctg ttt gtg tgg cac aag gac cct cct gcc aac ctg ttt	1599
Thr Gly Tyr Leu Phe Val Trp His Lys Asp Pro Pro Ala Asn Leu Phe	
495 500 505	
gaa gac atg gac ctc aac aag gat ggc gag gtc cct ceg gag gag ttc	1647
Glu Asp Met Asp Leu Asn Lys Asp Gly Glu Val Pro Pro Glu Glu Phe	
510 515 520	1 605
tcc acc ttc atc aag gct caa gtg agt gag ggc aaa gga cgc ctc atg Ser Thr Phe Ile Lys Ala Gln Val Ser Glu Gly Lys Gly Arg Leu Met	1695
525 530 535	
cet ggg cag gae cet gag aaa ace ata gga gae atg tte cag aac cag	1743
Pro Gly Gln Asp Pro Glu Lys Thr Ile Gly Asp Met Phe Gln Asn Gln	1/43
540 545 550	
gac ege aac eag gac gge aag ate aca gte gac gag ete aag etg aag	1791
Asp Arg Asn Gln Asp Gly Lys Ile Thr Val Asp Glu Leu Lys Leu Lys	
555 560 565 570	
tca gat gag gac gag gag egg gtc cac gag gag etc tga ggggcaggga	1840
Ser Asp Glu Asp Glu Glu Arg Val His Glu Glu Leu	
575 580	
geetggeeag geetgagaca cagaggeeca etgegagggg gaeagtggeg gtgggaetga	1900
cctgctgaca gtcaccctcc ctctgctggg atgaggtcca ggagccaact aaaacaatgg	1960
cagaggagac atctctggtg ttcccaccac cctagatgaa aatccacagc acagacctct	2020
acceptette tettecatee etaaaceaet teettaaaat etttegattt geaaageeaa	2080
tttggggcct gtggagcctg gggttggata gggccatggc tggtccccca ccatacctcc	2140
cotceacate actgacacag ctgagettgt tatecatete eccaaacttt etettettt	2200
gtacttettg teateceeae teeeageece tatteeteta tgtgacaget ggetaggaee	2260
cetetgeett ceteceeaat cetgactgge teetagggaa ggggaagget eetggaggge	2320
ageoctacet eteccatgee etttgecete etecetegee tecagtggag getgagetga	2380

ccctgggctg	ctggag	geca g	actggg	gctg	tagttag	gctt	ttc	ateco	eta a	aaga	aggett	2440
tecetaagga	accata	gaag a	gagga	agaa	aacaaa	gggc	atgt	gtga	agg (gaag	etgett	2500
gggtgggtgt	tagggc	tatg a	aatcti	tgga	tttggg	gatg	aggg	gtg	ga (ggga	gggcag	2560
agetetgeae	actcaa	agge t	aaact	ggtg	tcagtc	ettt	tttc	cttt	gt 1	tcca	aataaa	2620
agattaaacc												2630
<210> 53												
<211> 1472												
<212> DNA								•				
<213> Homo	sapien	S										
<220>	•											
<221> CDS												
<222> (89).	(132	1)										
<400> 53												
aaaaagactc	egeett	ccca a	gageed	cctg	cggccg	ggcg	cgaa	aato	ige (ggcg	geggeg	60
acggccgggc	geteet	gaag c	agcagt	tt at	g gag d	ett o	ecc t	ca ç	igg (ccg 9	3 99	112
					t Glu I	eu I	Pro S		ly i	Pro (31y	
					1			5				
ccd dad cdd		-	_									160
Pro Glu Arg	Leu P	he Asp		lis A	rg Leu	Pro		Asp	Сув	Phe	Leu	
10			15				20					
ctg ctc gtg	_	_										208
Leu Leu Val	Leu L		Tyr P	Ala P	ro Val		Phe	СЛа	Leu	Leu		
25		30				35					40	
ctg cgc ctc										_		256
Leu Arg Leu		_	Ile F	lis V		Leu	Val	Ser	Сув		Leu	
		45			50					55		
cca gac ago	-	_			_	-		_	_	-		304
Pro Asp Ser		eu Arg	Arg E			Arg	Thr	Met	_	Ala	Val	
	60				65				70			
cta ggg ctc												352
Leu Gly Leu		ıa Arg	Gln G		sp Ser	GŢĀ	Leu	-	Asp	His	ser	
75				80		_		85				
gto agg gto				_	_			_				400
Val Arg Val	Leu I	le Ser	Asn F	lis V	al Thr	Pro	Phe	Asp	His	Asn	Ile	

	90					95					100							
gtc	aat	ttg	ctt	acc	acc	tgt	agc	acc	cct	cta	ctc	aat	agt	ccc	ccc		448	
Val	Asn	Leu	Leu	Thr	Thr	Сув	Ser	Thr	Pro	Leu	Leu	Asn	Ser	Pro	Pro			
105					110					115					120			
agc	ttt	gtg	tgc	tgg	tct	cgg	ggc	ttc	atg	gag	atg	aat	ggg	cgg	ggg		496	
Ser	Phe	Val	Cys	Trp	Ser	Arg	Gly	Phe	Met	Glu	Met	Asn	Gly	Arg	Gly			
				125					130					135				
gag	ttg	gtg	gag	tca	ctc	aag	aga	ttc	tgt	gct	tcc	acg	agg	ctt	ccc		544	
Glu	Leu	Val	Glu	Ser	Leu	Lys	Arg	Phe	Сув	Ala	Ser	Thr	Arg	Leu	Pro			
			140					145					150					
ccc	act	cct	ctg	ctg	cta	ttc	cct	gag	gaa	gag	gcc	acc	aat	ggc	cgg		592	
Pro	Thr	Pro	Leu	Leu	Leu	Phe	Pro	Glu	Glu	Glu	Ala	Thr	Asn	Gly	Arg			
		155					160					165						
gag	ggg	ctc	ctg	cgc	ttc	agt	tcc	tgg	cca	ttt	tct	atc	caa	gat	gtg		640	
Glu	Gly	Leu	Leu	Arg	Phe	Ser	Ser	Trp	Pro	Phe	Ser	Ile	Gln	Asp	Val			
	170					175					180							
gta	caa	cct	ctt	acc	ctg	caa	gtt	cag	aga	CCC	ctg	gtc	tct	gtg	acg	4	688	
Val	Gln	Pro	Leu	Thr	Leu	Gln	Val	Gln	Arg	Pro	Leu	Val	Ser	Val	Thr			
185					190					195					200			
gtg	tca	gat	gcc	tcc	tgg	gtc	tca	gaa	ctg	ctg	tgg	tca	ctt	ttc	gtc	•	736	
Val	Ser	Asp	Ala	Ser	Trp	Val	Ser	Glu	Leu	Leu	Trp	Ser	Leu	Phe	Val			
				205					210					215				
cct	ttc	acg	gtg	tat	caa	gta	agg	tgg	ctt	cgt	cct	gtt	cat	cgc	caa	•	784	
Pro	Phe	Thr	Val	Tyr	Gln	Val	Arg	Trp	Leu	Arg	Pro	Val	His	Arg	Gln			
			220					225					230					
cta	999	gaa	gcg	aat	gag	gag	ttt	gca	ctc	cgt	gta	caa	cag	ctg	gtg	8	832	
Leu	Gly	Glu	Ala	Asn	Glu	Glu	Phe	Ala	Leu	Arg	Val		Gln	Leu	Val			
		235					240					245						
					cag				• •							8	380	
Ala	Lys	Glu	Leu	Gly	Gln	Thr	Gly	Thr	Arg	Leu	Thr	Pro	Ala	Asp	Lys			
	250					255					260							
gca	gag	cac	atg	aag	cga	caa	aga	cac	CCC	aga	ttg	cgc	ccc	cag	tca	9	928	
Ala	Glu	His	Met	Lys	Arg	Gln	Arg	His	Pro	Arg	Leu	Arg	Pro	Gln	Ser			
265					270					275					280			
700	~~~	+~+	tat	++~	aat	~~~	+	aat			+-+	aat	ant.	ata	990	0	176	

Ala	Gln	Ser	Ser	Phe	Pro	Pro	Ser	Pro	Gly	Pro	Ser	Pro	Asp	Val	Gln	
				285					290					295		
ctg	gca	act	ctg	gct	cag	aga	gtc	aag	gaa	gtt	ttg	ccc	cat	gtg	cca	1024
Leu	Ala	Thr	Leu	Ala	Gln	Arg	Val	Lys	Glu	Val	Leu	Pro	His	Val	Pro	
			300					305					310			
ttg	ggt	gtc	atc	cag	aga	gac	ctg	gcc	aag	act	ggc	tgt	gta	gac	ttg	1072
Leu	Gly	Val	Ile	Gln	Arg	Asp	Leu	Ala	Lys	Thr	Gly	Сув	Val	Asp	Leu	
		315					320					325				
act	atc	act	aat	ctg	ctt	gag	9 99	gcc	gta	gct	ttc	atg	cct	gaa	gac	1120
Thr	Ile	Thr	Asn	Leu	Leu	Glu	Gly	Ala	Val	Ala	Phe	Met	Pro	Glu	Asp	
	330					335					340				•	
atc	acc	aag	gga	act	cag	tcc	cta	ccc	aca	gcc	tct	gcc	tcc	aag	ttt	1168
Ile	Thr	Lys	Gly	Thr	Gln	Ser	Leu	Pro	Thr	Ala	Ser	Ala	Ser	Lys	Phe	
345					350					355					360	
ccc	agc	tat	ggc	ccg	gtg	acc	cct	cag	cca	aca	gee	cta	aca	ttt	gcc	1216
Pro	Ser	Ser	Gly	Pro	Val	Thr	Pro	Gln	Pro	Thr	Ala	Leu	Thr	Phe	Ala	
				365					370					375		
aag	tct	tcc	tgg	gcc	cgg	cag	gag	agc	ctg	cag	gag	cgc	aag	caa	gca	1264
Lys	Ser	Ser	Trp	Ala	Arg	Gln	Glu	Ser	Leu	Gln	Glu	Arg	Lys	Gln	Ala	
			380					385					390			
cta	tat	gaa	tac	gca	aga	agg	aga	ttc	aca	gag	aga	cga	gcc	cag	gag	1312
Leu	Tyr	Glu	Tyr	Ala	Arg	Arg	Arg	Phe	Thr	Glu	Arg	Arg	Ala	Gln	Glu	
		395					400					405				
gct	gac	tgag	jctcz	aa g	gaac	agga	it gg	cacc	caga	geo	gcag	gac	ggag	racto	igg gg	1370
Ala	qaA															
	410															
cago	cctc	eac c	caac	tcac	a ac	aggo	tgga	tgg	gtgg	gtg	gtaa	aaag	igg a	agga	tgagg	1430
ctco	CCCE	at g	rtcac	atta	a at	tcat	ggtt	tto	atto	aag	gc					1472

<210> 54

<211> 1652

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222	2> (17).	(1	468)												
<400> 54 aaageggegg eggagg atg gag gaa gge gge gge gta egg agt etg gte 52																
aaag	gegg	cgg	cgga	gg a	tg g	ag g	aa g	ga g	gc g	ge g	gc g	ta c	gg a	gt c	tg gtc	52
				M	et G	lu G	lu G	ly G	ly G	ly G	ly V	al A	rg S	er L	eu Val	
					1				5					10		
eeg	ggc	9 99	ccg	gtg	tta	ctg	gtc	ctc	tgc	gge	ctc	ctg	gag	geg	tee	100
Pro	Gly	Gly	Pro	Val	Leu	Leu	Val	Leu	Cys	Gly	Leu	Leu	Glu	Ala	Ser	
		15					20					25				
ggc	ggc	ggc	cga	gcc	ctt	cct	caa	ctc	agc	gat	gac	atc	cct	ttc	cga	148
Gly	Gly	Gly	Arg	Ala	Leu	Pro	Gln	Leu	Ser	Asp	Asp	Ile	Pro	Phe	Arg	•
	30					35					40				•	
gtc	aac	tgg	ccc	ggc	acc	gag	ttc	tct	ctg	ccc	aca	act	gga	gtt	tta	196
Val	Asn	Trp	Pro	Gly	Thr	Glu	Phe	Ser	Leu	Pro	Thr	Thr	Gly	Val	Leu	
45					50					55					60	
tat	aaa	gaa	gat	aat	tat	gtc	atc	atg	aca	act	gca	cat	aaa	gaa	aaa	244
Tyr	Lys	Glu	Asp	Asn	Tyr	Val	Ile	Met	Thr	Thr	Ala	His	Lys	Glu	Lys	
				65					70					75		
tat	aaa	tgc	ata	ctt	ccc	ctt	gtg	aca	agt	ggg	gat	gag	gaa	gaa	gaa	292
Tyr	Lys	Cys	Ile	Leu	Pro	Leu	Val	Thr	Ser	Gly	Asp	Glu	Glu	Glu	Glu	
			80					85					90			
aag	gat	tat	aaa	ggc	cct	aat	cca	aga	gag	ctt	ttg	gag	cca	cta	ttt	340
Lys	Ąsp	Tyr	Lys	Gly	Pro	Asn	Pro	Arg	Glu	Leu	Leu	Glu	Pro	Leu	Phe	
		95					100					105				
aaa	caa	agc	agt	tgt	tcc	tac	aga	att	gag	tct	tat	tgg	act	tac	gaa	388
Lys	Gln	Ser	Ser	Суз	Ser	Tyr	Arg	Ile	Glu	Ser	Tyr	Trp	Thr	Tyr	Glu	
	110					115					120					
			-					-		cat	_	_				436
	Суз	His	Gly	Lys	His	Ile	Arg	Gln	Tyr	His	Glu	Glu	Lys	Glu	Thr	
125					130					135					140	
							-			ctt						484
Gly	Gln	Lys	Ile	Asn	Ile	His	Glu	Tyr	Tyr	Leu	Gly	Asn	Met	Leu	Ala	
				145					150					155		
aag	aac	ctt	cta	ttt	gaa	aaa	gaa	cga	gaa	gca	gaa	gaa	aag	gaa	aaa	532
Lys	Asn	Leu	Leu	Phe	Glu	Lys	Glu	Arg	Glu	Ala	Glu	Glu	Lys	Glu	Lys	
			160					165					170			

580	tac	cca	aca	atg	cag	ggt	gaa	atc	aat	aaa	act	ccc	att	gag	aat	tca
	Tyr	Pro	Thr	Met	Gln	Gly	Glu	Ile	Asn	Lys	Thr	Pro	Ile	Glu	Asn	Ser
				185					180					175		
628	aac	cag	aaa	ttg	agt	tgt	cct	aca	ggt	aat	gga	atg	gga	gtg	cct	tat
	Asn	Gln	Lys	Leu	Ser	Суз	Pro	Thr	Gly	Asn	Gly	Met	Gly	Val	Pro	Tyr
					200					195		•			190	
676	aag	tct	gaa	cct	cat	tgt	ata	tac	atg	gtg	act	agt	tca	aga	ccc	cgg
	Lys	Ser	Glu	Pro	His	Суз	Ile	Tyr	Met	Val	Thr	Ser	Ser	Arg	Pro	Arg
	220					215					210					205
724	gtt	gaa	tat	gaa	tgt	act	aca	gtt	gaa	gct	gta	tca	ctt	att	gaa	cat
	Val	Glu	Tyr	Glu	Cys	Thr	Thr	Val	Glu	Ala	Val	Ser	Leu	Ile	Glu	His
		235					230					225				
772	aga	ttc	agg	tat	aaa	cct	cat	agt	tgc	ttg	ete	cca	aca	ttg	att	gtc
	Arg	Phe	Arg	Tyr	Lys	Pro	His	Ser	Суз	Leu	Leu	Pro	Thr	Leu	Ile	Val
			250					245					240			
820	cca	tct	gga	cca	ctg	tca	caa	tgt	ttt	ata	gac	aat	gtg	cct	tet	gca
	Pro	Ser	Gly	Pro	Leu	Ser	Gln	Cya	Phe	Ile	Asp	Asn	Val	Pro	Ser	Ala
				265					260					255		
868			_	-	_	-		ctg			_				-	
	Leu	Ile	Glu	Glu	Gln	Gln	Glu	Leu	Gln	Arg	Leu	Thr	Leu	Pro	Lys	Phe
					280					275					270	
916	aaa	act	tca	caa	ttg	gat	gaa	gag	aaa	aat	aga	agg	ttt	cct	gtg	agg
	Lys	Thr	Ser	Gln	Leu	Asp	Glu	Glu	Lys	Asn	Arg	Arg	Phe	Pro	Val	Arg
	300					295					290					285
964	cag	tct	ggc	att	gct	att	tcg	aag	cac	atc	gcg	cca	ttt	aga	gag	gaa
	Gln		Gly	Ile	Ala	Ile	Ser	Lys	His	Ile	Ala	Pro	Phe	Arg	Glu	Glu
		315					310					305				
1012	-	-		_				cac				-				
	Asp	Asp	Thr	Leu	Lys	Ser	Ile	His	Thr	Thr	Gly	Val	Thr	Leu	Val	Pro
			330					325					320			
1060								ggt				-				
	Gly	Gly	Arg	Phe	Суз	Tyr	Ser	Gly	Ser	Leu	Phe	Glu	Lys	Ile	Leu	Gln
				345					340					335		
1108	caa	cat	gta	cat	aaa	ggc	tat	tgc	tte	gaa	tat	aaa	tgg	tgg	ggt	gtc
	C1	174 ~	***	T7: ~	T	~ 1	(Th	~	Dho	~7··	m	T	M	M	<i>~</i> 1	**-7

	350					355	•				360					
tac	cat	gag	gac	aag	gat	agt	ggg	aaa	acc	tct	gtg	gtt	gtc	ggg	aca	1156
Tyr	His	Glu	Asp	Lys	Asp	Ser	Gly	Lys	Thr	Ser	Val	Val	Val	Gly	Thr	
365					370					375					380	
tgg	aac	caa	gaa	gag	cat	att	gaa	tgg	gct	aag	aag	aat	act	gct	aga	1204
Trp	Asn	Gln	Glu	Glu	His	Ile	Glu	Trp	Ala	Lys	Lys	Asn	Thr	Ala	Arg	
				385					390					395		
gct	tat	cat	ctt	caa	gac	gat	ggt	acc	cag	aca	gtc	agg	atg	gtg	tca	1252
Ala	Tyr	His	Leu	Gln	Asp	Asp	Gly	Thr	Gln	Thr	Val	Arg	Met	Val	Ser	
			400					405					410			
cat	ttt	tat	gga	aat	gga	gat	att	tgt	gat	ata	act	gac	aaa	cca	aga	1300
His	Phe	Tyr	Gly	Asn	Gly	Asp	Ile	Суз	qaA	Ile	Thr	Asp	Lys	Pro	Arg	
		415					420					425				
cag	gtg	act	gta	aaa	cta	aag	tge	aaa	gaa	tca	gat	tca	cct	cat	gct	1348
Gln	Val	Thr	Val	Lys	Leu	Lys	Сув	Lys	Glu	Ser	Asp	Ser	Pro	His	Ala	
	430					435					440					
gtt	act	gta	tat	atg	cta	gag	cct	cac	tcc	tgt	caa	tat	att	ctt	9 99	1396
Val	Thr	Val	Tyr	Met	Leu	Glu	Pro	His	Ser	Cys	Gln	Tyr	Ile	Leu	Gly	
445					450					455					460	
gtt	gaa	tct	cca	gtg	atc	tgt	aaa	atc	tta	gat	aca	gca	gat	gaa	aat	1444
Val	Glu	Ser	Pro	Val	Ile	Cys	Lys	Ile	Leu	Asp	Thr	Ala	Asp	Glu	Asn	
				465					470					475		
gga	ctt	ctt	tct	ctc	ccc	aac	taaa	ıggat	at t	aaag	jttag	g gg	gaaa			1490
Gly	Leu	Leu	Ser	Leu	Pro	Asn										
			480													
gaaa	agat	ca t	tgaa	agto	a to	ataa	ittto	: tgt	ccca	ctg	tgto	tcat	ta t	agag	rttete	1550
agco	atto	ga c	ctct	tcte	a ag	gatg	gtat	aaa	atga	ctc	tcas	ccac	tt t	gtga	ataca	1610
tatg	tgta	ata t	aaga	ıggtt	a tt	gate	aact	tct	gagg	cag	ac					1652

<210> 55

· <211> 2112

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (20)(184	3)													
<400> 55														
attttggtgg gtgage	age atg gge ttt gag	gag ctg ctg gag c	ag gtg ggc 52											
	Met Gly Phe Glu	Glu Leu Leu Glu G	ln Val Gly											
	1	5	10											
gge ttt ggg cec t	te caa etg egg aat	gtg gca ctg ctg gc	e etg cee 100											
Gly Phe Gly Pro Pl	ne Gln Leu Arg Asn	Val Ala Leu Leu Ala	a Leu Pro											
15	20	2!	5											
cga gtg ctg cta co	ca ctg cac ttc ctc	ctg ccc atc ttc ct	g get gee 148											
Arg Val Leu Leu Pr	ro Leu His Phe Leu :	Leu Pro Ile Phe Le	ı Ala Ala											
30	35	40												
	ga tgt gee etg eeg													
	cg Cys Ala Leu Pro	-	n Phe Ser											
45	50	55												
	gg ctg gag gcc cat	2. 2.												
-	To Leu Glu Ala His 1	-												
60	65	70	75											
	ge ete ege ttt gee 1													
·	ys Leu Arg Phe Ala : 30	ryr pro Gin Aia Let 85	90											
	aa gaa agg cag agc (
	lu Glu Arg Gln Ser <i>l</i>	_												
95	100	105	_											
	c tgc tct cag ggc (
	o Cys Ser Gln Gly													
110	115	120												
tte tee tet ace at	t gea act gag tee o	eag gte ggt att tac	ata atc 436											
	e Ala Thr Glu Ser (
125	130	135												
cat ctg gag gtg ga	a tgt egg tgg agg o	eag tet eee tgg gag	g gca gca 484											
His Leu Glu Val Gl	u Cys Arg Trp Arg (Sin Ser Pro Trp Glu	Ala Ala											
140	145	150	155											
ggt ega gge ett ee	t tgg gaa gaa gct g	gag get gea gga etg	ggg agg 532											
	o Trp Glu Glu Ala G													
16	0 1	L65	170											

gac	aaa	gtt	tcc	tat	tcc	cca	agc	tgg	cgt	gaa	tcg	ttg	gga	ggt	tta	580
qeA	ГЛЗ	Val	Ser	Tyr	Ser	Pro	Ser	Trp	Arg	Glu	Ser	Leu	Gly	Gly	Leu	
			175					180					185			
tta	tct	ggc	atg	gag	tgg	gat	ctg	gtg	tgt	gag	cag	aaa	ggt	ctg	aac	628
Leu	Ser	Gly	Met	Glu	Trp	Asp	Leu	Val	Сув	Glu	Gln	Lys	Gly	Leu	Asn	
		190					195					200				
aga	gct	gcg	tcc	act	ttc	ttc	ttc	gcc	ggt	gtg	ctg	gtg	ggg	gct	gtg	676
Arg	Ala	Ala	Ser	Thr	Phe	Phe	Phe	Ala	Gly	Val	Leu	Val	Gly	Ala	Val	
	205					210					215					
gcc	ttt	gga	tat	ctg	tcc	gac	agg	ttt	ggg	cgg	cgg	cgt	ctg	ctg	ctg	724
Ala	Phe	Gly	Tyr	Leu	Ser	qeA	Arg	Phe	Gly	Arg	Arg	Arg	Leu	Leu	Leu	•
220					225					230					235	
gta	gcc	tac	gtg	agt	acc	ctg	gtg	ctg	ggc	ctg	gca	tct	gca	gee	tcc	772
Val	Ala	Tyr	Val	Ser	Thr	Leu	Val	Leu	Gly	Leu	Ala	Ser	Ala	Ala	Ser	
				240					245					250		
gtc	age	tat	gta	atg	ttt	gcc	atc	acc	ege	acc	ctt	act	ggc	tca	gcc	820
Val	Ser	Tyr	Val	Met	Phe	Ala	Ile	Thr	Arg	Thr	Leu	Thr	Gly	Ser	Ala	
			255					260					265			
ctg	gat	ggt	ttt	acc	atc	atc	gtg	atg	cca	ctg	gag	ctg	gag	tgg	ctg	868
Leu	Ala	Gly	Phe	Thr	Ile	Ile	Val	Met	Pro	Leu	Glu	Leu	Glu	Trp	Leu	
		270					275					280				
gat	gtg	gag	cac	cgc	acc	gtg	gct	gga	gtc	ctg	agc	agc	acc	tte	tgg	916
qeA	Val	Glu	His	Arg	Thr	Val	Ala	Gly	Val	Leu	Ser	Ser	Thr	Phe	Trp	
	285					290	•				295					
aca	9 99	ggc	gtg	atg	ctg	ctg	gca	ctg	gtt	ggg	tac	ctg	ata	cgg	gac	964
Thr	Gly	Gly	Val	Met	Leu	Leu	Ala	Leu	Val	Gly	Tyr	Leu	Ile	Arg	Asp	
300					305					310					315	
tgg	cga	tgg	ctt	ctg	cta	gct	gtc	acc	ctg	cct	tgt	gcc	cca	ggc	atc	1012
Trp	Arg	Trp	Leu	Leu	Leu	Ala	Val	Thr	Leu	Pro	Суз	Ala	Pro	Gly	Ile	
				320					325					330		
ctc	agc	ctc	tgg	tgg	gtg	cct	gag	tct	gca	cgc	tgg	ctt	ctg	acc	caa	1060
Leu	Ser	Leu	Trp	Trp	Val	Pro	Glu	Ser	Ala	Arg	Trp	Leu	Leu	Thr	Gln	
			335					340					345			
ggc	cat	gtg	aaa	gag	gcc	cac	agg	tac	ttg	ctc	cac	tgt	gcc	agg	ctc	1108
2117	uie	Val	T.ve	Glu	ald	uio	Ara	ጥህጉ	T_an	Tau	uie	Cva	a f 4	Ara	Ten	

		350					355					360				
aat	ggg	cgg	cca	gtg	tgt	gag	gac	agc	ttc	agc	cag	gag	gct	gtg	agc	1156
Asn	Gly	Arg	Pro	Val	Сув	Glu	Asp	Ser	Phe	Ser	Gln	Glu	Ala	Val	Ser	
	365					370					375					
aaa	gtg	gcc	gcc	ggg	gaa	cgg	gtg	gtc	cga	aga	cct	tca	tac	cta	gac	1204
Lys	Val	Ala	Ala	Gly	Glu	Arg	Val	Val	Arg	Arg	Pro	Ser	Tyr	Leu	qaA	
380					385					390					395	
ctg	ttc	cgc	aca	cca	cgg	ctc	cga	cac	atc	tca	ctg	tgc	tgc	gtg	gtg	1252
Leu	Phe	Arg	Thr	Pro	Arg	Leu	Arg	His	Ile	Ser	Leu	Суз	Сув	Val	Val	
				400					405					410		
gtg	tgg	ttc	gga	gtg	aac	ttc	tee	tat	tac	ggc	ctg	agt	ctg	gat	gtg	1300
Val	Trp	Phe	Gly	Val	Asn	Phe	Ser	Tyr	Tyr	Gly	Leu	Ser	Leu	Asp	Val	
			415					420					425			
tcg	ggg	ctg	ggg	ctg	aac	gtg	tac	cag	aca	cag	ctg	ttg	ttc	ggg	gct	1348
Ser	Gly	Leu	Gly	Leu	Asn	Val	Tyr	Gln	Thr	Gln	Leu	Leu	Phe	Gly	Ala	
		430					435					440				
gtg	gaa	ctg	ccc	tcc	aag	ctg	ctg	gtc	tac	ttg	teg	gtg	cgc	tac	gca	1396
Val	Glu	Leu	Pro	Ser	Lys	Leu	Leu	Val	Tyr	Leu	Ser	Val	Arg	Tyr	Ala	
	445					450					455					
gga	cgc	cgc	ctc	acg	caa	gcc	ggg	aca	ctg	ctg	ggc	acg	gcc	ctg	gcg	1444
Gly	Arg	Arg	Leu	Thr	Gln	Ala	Gly	Thr	Leu		Gly	Thr	Ala	Leu	Ala	
460					465					470					475	
ttc	ggc	act	aga	ctg	cta	gtg	tcc	tct	gat	atg	aag	tee	tgg	agc	act	1492
Phe	Gly	Thr	Arg		Leu	Val	Ser	Ser	Asp	Met	Lys	Ser	Trp		Thr	
				480					485					490		
							gct									1540
Val	Leu	Ala		Met	Gly	Lys	Ala		Ser	Glu	Ala	Ala		Thr	Thr	
			495					500					505			
							ttg							_	_	1588
Ala	Tyr		Phe	Thr	Ser	Glu	Leu	Tyr	Pro	Thr	Val		Arg	Gln	Thr	
		510					515					520	•			
							gtg									1636
Gly		Gly	Leu	Thr	Ala		Val	Gly	Arg	Leu		Gly	Ser	Leu	Ala	
	525					530					535					1
cca	ctg	gcg	gcc	ttg	ctg	gat	gga	gtg	tgg	ctg	tca	ctg	ccc	aag	ctt	1684

Pro Leu Ala Ala Leu Leu Asp Gly Val Trp Leu Ser Leu Pro Lys Leu	
540 545 550 555	
act tat ggg ggg atc gcc ctg ctg gct gcc ggc acc gcc ctc ctg ctg	1732
Thr Tyr Gly Gly Ile Ala Leu Leu Ala Ala Gly Thr Ala Leu Leu Leu	
560 565 570	
cea gag acg agg cag gca cag ctg cca gag acc atc cag gac gtg gag	1780
Pro Glu Thr Arg Gln Ala Gln Leu Pro Glu Thr Ile Gln Asp Val Glu	
575 580 585	
aga aag agt gee eea ace agt ett eag gag gaa gag atg eee atg aag	1828
Arg Lys Ser Ala Pro Thr Ser Leu Gln Glu Glu Met Pro Met Lys	•
590 595 600	
cag gtc cag aac taagtgggag tggaggcagg ccctccacag aagctctgca	1880
Gln Val Gln Asn	
605	
gcaggggctg ggagagcaga agggcaggcc ctgcaactca ggctgggagt atcgaaccct	1940
otgestaggg coggagttge tgecagtace egstesstet getsatssat cettgattat	2000
ttggcttcta ggaacagttg acttcccaga atgcagtggg ctgctgggca cccctctcac	2060
ggttggggag gattetgtaa ataaaggtge eeettgggtt ggggeagtgg tg	2112
<210> 56	
<211> 1087	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (33)(977)	
<400> 56	
agagggggeg teaggeegeg ggagaggagg ee atg gge geg ege ggg geg etg	53
Met Gly Ala Arg Gly Ala Leu	
1 5	
etg etg geg etg etg get egg get gga ete agg aag eeg gag teg	101
Leu Leu Ala Leu Leu Ala Arg Ala Gly Leu Arg Lys Pro Glu Ser	
10 15 20	
cag gag geg geg eeg tta tea gga eea tge gge ega egg gte ate aeg	149
Sin Glu Ala Ala Pro Leu Ser Gly Pro Cys Gly Arg Arg Val Ile Thr	

	25					30					35					
tcg	ege	ato	gtg	ggt	gga	gag	gac	gcc	gaa	ctc	999	cgt	tgg	ccg	tgg	197
Ser	Arg	Ile	Val	Gly	Gly	Glu	Asp	Ala	Glu	Leu	Gly	Arg	Trp	Pro	Trp	
40					45					50					55	
cag	ggg	ago	ctg	cgc	ctg	tgg	gat	tcc	Cac	gta	tga	gga	gtg	ago	ctg	245
Gln	Gly	Ser	Leu	Arg	Leu	Trp	Asp	Ser	His	Val	Сув	Gly	Val	Ser	Leu	
				60					65					70		
ctc	agc	cac	cgc	tgg	gca	ctc	acg	gcg	gcg	cac	tgc	ttt	gaa	acc	tat	293
Leu	Ser	His	Arg	Trp	Ala	Leu	Thr	Ala	Ala	His	Суз	Phe	Glu	Thr	Tyr	
			75					80					85			
agt	gac	ctt	agt	gat	ccc	tcc	ggg	tgg	atg	gtc	cag	ttt	ggc	cag	ctg	341
Ser	Asp	Leu	Ser	Asp	Pro	Ser	Gly	Trp	Met	Val	Gln	Phe	Gly	Gln	Leu	
		90					95					100				
act	tcc	atg	cca	tcc	ttc	tgg	agc	ctg	cag	gcc	tac	tac	acc	cgt	tac	389
Thr	Ser	Met	Pro	Ser	Phe	Trp	Ser	Leu	Gln	Ala	Tyr	Tyr	Thr	Arg	Tyr	
	105					110					115					
ttc	gta	tcg	aat	atc	tat	ctg	agc	cct	ege	tac	ctg	333	aat	tca	ccc	437
Phe	Val	Ser	Asn	Ile	Tyr	Leu	Ser	Pro	Arg	Tyr	Leu	Gly	Asn	Ser	Pro	
120					125					130					135	
tat	gac	att	gcc	ttg	gtg	aag	ctg	tct	gca	cct	gtc	acc	tac	act	aaa	485
Tyr	Asp	Ile	Ala	Leu	Val	Lys	Leu	Ser	Ala	Pro	Val	Thr	Tyr	Thr	Lys	
				140					145					150		
cac	atc	cag	CCC	atc	tgt	ctc	cag	gcc	tcc	aca	ttt	gag	ttt	gag	aac	533
His	Ile	Gln	Pro	Ile	Cys	Leu	Gln	Ala	Ser	Thr	Phe	Glu	Phe	Glu	Asn	
			155					160					165			
								tgg						-		581
Arg	Thr	Asp	Суз	Trp	Val	Thr	Gly	Trp	Gly	Tyr	Ile	ГÅа	Glu	Asp	Glu	
		170					175					180				
								cag	_	_	_	-	-			629
Ala	Leu	Pro	Ser	Pro	His	Thr	Leu	Gln	Glu	Val	Gln	Val	Aļa	Ile	Ile	
	185					190					195					
			-	_				ttc		-		-		-	-	677
Asn	Asn	Ser	Met			His	Leu	Phe	Leu	Lys	Tyr	Ser	Phe	Arg	Lys	
200					205					210					215	
gac	atc	ttt	gga	gac	atg	gtt	tgt	gct	ggc	aat	gcc	caa	ggc	ggg	aag	725

Asp Ile Phe Gly Asp Met Val Cys Ala Gly Asn Ala Gln Gly Gly Lys	
220 225 230	
gat gee tge tte ggt gae tea ggt gga eee ttg gee tgt aac aag aat	773
Asp Ala Cys Phe Gly Asp Ser Gly Gly Pro Leu Ala Cys Asn Lys Asn	
235 240 245	
gga ctg tgg tat cag att gga gtc gtg agc tgg gga gtg ggc tgt ggt	821
Gly Leu Trp Tyr Gln Ile Gly Val Val Ser Trp Gly Val Gly Cys Gly	
250 255 260	
egg eee aat egg eee ggt gte tac ace aat ate age eae eae ttt gag	869
Arg Pro Asn Arg Pro Gly Val Tyr Thr Asn Ile Ser His His Phe Glu	
265 270 275	
tgg atc cag aag ctg atg gcc cag agt ggc atg tcc cag cca gac ccc	917
Trp Ile Gln Lys Leu Met Ala Gln Ser Gly Met Ser Gln Pro Asp Pro	
280 285 290 295	
tee tgg eeg eta ete ttt tte eet ett ete tgg get ete eea ete etg	965
Ser Trp Pro Leu Leu Phe Phe Pro Leu Leu Trp Ala Leu Pro Leu Leu	
300 305 310	
ggg ccg gtc tgagcctacc tgagcccatg cagcctgggg ccactgccaa gtcagg	1020
Gly Pro Val	
ccctggttct cttctgtctt gtttggtaat aaacacattc cagttgatgc cttgcagggc	1080
attette	1087
·	
<210> 57	
<211> 1694	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (216)(500) <400> 57	
ecegaagttt gaggggtgtg gaeggtttgt gaeeeeetta geegaeeeta eteeteactg	60
geegggacaa etggtettat eaeggagget ggggeeagge ageeettegg ttegggtggg	120
cccatggacc ccagtecaac geegagggaa taggaccate caaaagegga acettegeet	180
cagaaaaagg cgtggaccct gccagcagcc aggcc atg gag ctc tct gat gtc	233

	Met Glu Leu Ser Asp Val	
	1 5	
ace etc att gag ggt gtg ggt aat	gag gtg atg gtg gca ggt gtg	281
Thr Leu Ile Glu Gly Val Gly Asn	Glu Val Met Val Val Ala Gly Val	·
10	15 20	
gtg gtg ctg att cta gcc ttg gtc	cta get tgg ete tet ace tae gta	329
Val Val Leu Ile Leu Ala Leu Val 1	Leu Ala Trp Leu Ser Thr Tyr Val	
25 30	35	
gca gac agc ggt agc aac cag ctc	ctg ggc gct att gtg tca gca ggc	377
Ala Asp Ser Gly Ser Asn Gln Leu	Leu Gly Ala Ile Val Ser Ala Gly	
40 45	50	
gac aca tee gte ete eac etg ggg	cat gtg gac cac ctg gtg gca ggc	425
Asp Thr Ser Val Leu His Leu Gly I	His Val Asp His Leu Val Ala Gly	
55 60	65 70	
caa ggc aac ccc gag cca act gaa d	ctc ccc cat cca tca gag gca aat	473
Gln Gly Asn Pro Glu Pro Thr Glu 1	Leu Pro His Pro Ser Glu Ala Asn	
75	80 85	
act tcc ctg gac aag aaa gcc aga t	cgaaactgat ctaccagggc cgc	520
Thr Ser Leu Asp Lys Lys Ala Arg		
90		
ctgctacaag acccageeeg cacaetgegt		580
cactgecace geteacecee agggteaget		640
teggecactg agecaeceag cettggtgte		700
gtggtgctgt tgggtgtggt ctggtacttc	-	760
cotgocactg totocotggt gggagtcacc		820
tatggacgat aaggacatag gaagaaaatg		880
cccacttttc ctggccagag ctgggcccaa		940
gatggaaatc tcctccatag gacacaggag		1000
aggagtacag atgtccctcc cgtgcgagca		1060
cettcacttt tagggteete tgaaggagtt		1120
etgggetetg agattecete ecacetgtgg	·	1180
gcccccagca cccagggctg cctgcaaggg	cageteagea tggeeceage acaacteegt	1240
agggageetg gagtateett ceatttetea		1300
acactggcgg gaatgaagat tgtgccagcc	ttetettatg ggcacctage egectteace	1360
ttetteetet acceettage aggaataggg	tgtcctccct tctttcaaag cactttgctt	1420

gcattttatt ttatttttt aagagteett catagagete agteaggaag gggatggge	1480
accaagecaa gececeagea ttgggagegg eeaggecaea getgetgete eegtagteet	1540
caggotgtaa gcaagagaca gcactggccc ttggccagcg tcctaccctg cccaactcca	1600
aggactgggt atggattget gggeeetagg etettgette tggggetatt ggagggteag	1660
tgtctgtgac tgaataaagt tccattttgt ggtc	1694
<210> 58	
<211> 1522	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (12)(668)	
<400> 58	
cotttcccaa g atg gcg tcg aag ata ggt tcg aga cgg tgg atg ttg cag	50
Met Ala Ser Lys Ile Gly Ser Arg Arg Trp Met Leu Gln	
1 5 10	
ctg atc atg cag ttg ggt tcg gtg ctg ctc aca cgc tgc ccc ttt tgg	98
Leu Ile Met Gln Leu Gly Ser Val Leu Leu Thr Arg Cys Pro Phe Trp	
15 20 25	
gge tge tte age cag etc atg etg tae get gag agg get gag gea ege	146
Gly Cys Phe Ser Gln Leu Met Leu Tyr Ala Glu Arg Ala Glu Ala Arg	
30 35 40 45	
egg aag eee gae ate eea gtg eet tae etg tat tte gae atg ggg gea	194
Arg Lys Pro Asp Ile Pro Val Pro Tyr Leu Tyr Phe Asp Met Gly Ala	
50 55 60	
gee gtg etg tge get agt tte atg tee ttt gge gtg aag egg ege tgg	242
Ala Val Leu Cys Ala Ser Phe Met Ser Phe Gly Val Lys Arg Arg Trp	
65 70 75	
tte geg etg ggg gee gea ete eaa ttg gee att age ace tae gee gee	290
Phe Ala Leu Gly Ala Ala Leu Gln Leu Ala Ile Ser Thr Tyr Ala Ala	
80 85 90	
tac atc ggg ggc tac gtc cac tac ggg gac tgg ctg aag gtc cgt atg	338
Tyr Ile Gly Gly Tyr Val His Tyr Gly Asp Trp Leu Lys Val Arg Met	
95 100 105	

tac	tcg	cgc	aca	gtt	ġcc	atc	atc	ggc	gga	ctt	tct	tgt	gtt	ggc	cag	386
Tyr	Ser	Arg	Thr	Val	Ala	Ile	Ile	Gly	Gly	Leu	Ser	Cys	Val	Gly	Gln	
110					115					120					125	
cgg	tgc	tgg	gga	gct	gta	ccg	ccg	gaa	acc	tcg	cag	ccg	ctc	cct	gca	434
Arg	Cys	Trp	Gly	Ala	Val	Pro	Pro	Glu	Thr	Ser	Gln	Pro	Leu	Pro	Ala	
				130					135					140		
gtc	cac	cgg	cca	ggt	gtt	cct	ggg	tat	cta	cct	cat	ctg	tgt	gge	cta	482
Val :	His	Arg	Pro	Gly	Val	Pro	Gly	Tyr	Leu	Pro	His	Leu	Суз	Gly	Leu	
			145					150					155			
ctc	act	gca	gca	cag	caa	gga	gga	ccg	gct	ggc	gta	tct	gaa	cca	tct	530
Leu '	Thr	Ala	Ala	Gln	Gln	Gly	Gly	Pro	Ala	Gly	Val	Ser	Glu	Pro	Ser	
		160					165					170				
ccc i	agg	agg	gga	gct	gat	gat	cca	gct	gtt	ctt	cgt	gct	gta	tgg	cat	578
Pro .	Arg	Arg	Gly	Ala	qeA	Asp	Pro	Ala	Val	Leu	Arg	Ala	Val	Trp	His	
	175					180					185					
act ·	ggc	cct	gge	ctt	tct	gtc	agg	cta	cta	cgt	gac	cct	cgc	tgc	cca	626
Pro	Gly	Pro	Gly	Leu	Ser	Val	Arg	Leu	Leu	Arg	qaA	Pro	Arg	Сув	Pro	•
190					195					200					205	
gat	cct	ggc	tgt	act	gct	gcc	ccc	tgt	cat	gct	gct	cat	tgat	:g		670
Asp :	Pro	Gly	Суз	Thr	Ala	Ala	Pro	Сув	His	Ala	Ala	His				
				210					215							
gcaa	tgtt	ge t	tact	ggce	c as	caco	legge	gtg	rttga	igtt	ctgg	aacc	ag a	itgaa	getee	730
ttgg	agag	gag t	gtgg	gcat	c tt	cgge	acto	ctg	rtcat	ctg	gcca	ctga	tg ç	ıctga	gtttt	790
atgg	caag	gag g	jctga	gato	ig go	acag	làdað	cce	ctga	ıggg	tcac	cctg	ec t	tect	ccttg	850
ctgg	ccca	ige t	getg	jttta	t tt	atgo	tttt	: tgg	rtctg	ttt	gttt	gato	tt t	tgct	tttt	910
aaaa	ttgt	tt t	ttgo	agtt	a aç	aggo	aget	cat	ttgt	cca	aatt	tctg	gg c	tcag	egett	970
ggga	gggo	ag g	agco	ctgg	c ac	taat	gctg	tac	aggt	ttt	tttc	ctgt	ta ç	gaga	gctga	1030
ggee	agct	ge d	cact	gagt	c to	ctgt	ccct	gag	aagg	gag	tatg	gcag	gg c	tggg	atgeg	1090
gcta	ctga	iga g	rtggg	agag	t gg	gaga	caga	gga	agga	aga	tgga	gatt	gg a	agtg	agcaa	1150
atgt	gaaa	aa t	tect	cttt	g as	cctg	gcag	atg	cago	tag	gata	tgca	gt g	ctgt	ttgga	1210
gact	gtga	iga g	ggag	rtgeg	t gt	gttg	acac	atg	tgga	tca	ggcc	cagg	aa g	ggca	caggg	1270
gctg	agca	ct a	caga	agto	a ca	tggg	ttet	cag	ggta	tgc	cagg	ggca	ga a	acag	taccg	1330
gata	tatg	tc a	ctca	cctt	g ag	agta	gago	aga	ccct	gtt	ctgc	tctg	gg c	tgtg	aaggg	1390
gtgg	agca	igg c	agtg	gcca	g ct	ttga	cctt	cct	getg	tct	ctgt	ttct	ag c	tcca	tggtt	1450
ggcct	tggt	gg g	ggtg	gagt	t cc	ctcc	caaa	cac	caga	cca	caca	gtcc	tc c	aaaa	ataaa	1510

cattttatat ag	1522
<210> 59	
<211> 1591	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (44)(1426)	
<400> 59	
gaaaacagtt ccacgttgct tgaaattgaa aatcaagata aaa atg ttc aca att	55
Met Phe Thr Ile	
1	
and ctc ctt ctt ttt att gtt cct cta gtt att tcc tcc aga att gat	103
Lys Leu Leu Phe Ile Val Pro Leu Val Ile Ser Ser Arg Ile Asp	
5 10 15 20	
caa gac aat toa toa tot gat tot ota tot oca gag oca aaa toa aga	151
Gln Asp Asn Ser Ser Phe Asp Ser Leu Ser Pro Glu Pro Lys Ser Arg	
25 30 35	
ttt get atg tta gae gat gta aaa att tta gee aat gge ete ett eag	199
Phe Ala Met Leu Asp Asp Val Lys Ile Leu Ala Asn Gly Leu Leu Gln	
40 45 50	
ttg gga cat ggt ctt aaa gac ttt gtc cat aag acg aag ggc caa att	247
Leu Gly His Gly Leu Lys Asp Phe Val His Lys Thr Lys Gly Gln Ile	
55 60 65	
aat gac ata ttt caa aaa ctc aac ata ttt gat cag tct ttt tat gat	295
Asn Asp Ile Phe Gln Lys Leu Asn Ile Phe Asp Gln Ser Phe Tyr Asp	
70 75 80	
cta tcg ctg caa acc agt gaa atc aaa gaa gaa gaa aag gaa ctg aga	343
Leu Ser Leu Gln Thr Ser Glu Ile Lys Glu Glu Glu Lys Glu Leu Arg	
85 90 95 100	
aga act aca tat aaa cta caa gtc aaa aat gaa gag gta aag aat atg	391
Arg Thr Thr Tyr Lys Leu Gln Val Lys Asn Glu Glu Val Lys Asn Met	
105 110 115	
tea ett gaa ete aac tea aaa ett gaa age ete eta gaa gaa aaa att	439

Ser	Leu	Glu	Leu	Asn	Ser	Lys	Leu	Glu	Ser	Leu	Leu	Glu	Glu	Lys	Ile	
			120					125					130			
cta	ctt	caa	caa	aaa	gtg	aaa	tat	tta	gaa	gag	caa	cta	act	aac	tta	487
Leu	Leu	Gln	Gln	Lys	Val	Lys	Tyr	Leu	Glu	Glu	Gln	Leu	Thr	Asn	Leu	
		135					140					145				
att	caa	aat	caa	cct	gaa	act	cca	gaa	cac	cca	gaa	gta	act	tca	ctt	535
Ile	Gln	Asn	Gln	Pro	Glu	Thr	Pro	Glu	His	Pro	Glu	Val	Thr	Ser	Leu	
	150					155					160					
aaa	act	ttt	gta	gaa	aaa	caa	gat	aat	agc	atc	aaa	gac	ctt	ctc	cag	583
Lys	Thr	Phe	Val	Glu	Lys	Gln	qaA	Asn	Ser	Ile	Lys	Asp	Leu	Leu	Gln	
165					170					175					180	
acc	gtg	gaa	gac	caa	tat	aaa	caa	tta	aac	caa	cag	cat	agt	caa	ata	631
Thr	Val	Glu	Asp	Gln	Tyr	Lys	Gln	Leu	Asn	Gln	Gln	His	Ser	Gln	Ile	
				185					190					195		
aaa	gaa	ata	gaa	aat	cag	ctc	aga	agg	act	agt	att	caa	gaa	ccc	aca	679
Lys	Glu	Ile	Glu	Asn	Gln	Leu	Arg	Arg	Thr	Ser	Ile	Gln	Glu	Pro	Thr	
			200					205					210			
gaa	att	tct	cta	tct	tee	aag	cca	aga	gca	cca	aga	act	act	ccc	ttt	727
Glu	Ile	Ser	Leu	Ser	Ser	Lys	Pro	Arg	Ala	Pro	Arg	Thr	Thr	Pro	Phe	
		215					220					225				
ctt	cag	ttg	aat	gaa	ata	aga	aat	gta	aaa	cat	gat	ggc	att	cct	gct	775
Leu	Gln	Leu	Asn	Glu	Ile	Arg	Asn	Val	Lys	His	qeA	Gly	Ile	Pro	Ala	
	230					235					240					
gaa	tgt	acc	acc	att	tat	aac'	aga	ggt	gaa	cat	aca	agt	ggc	atg	tat	823
Glu	Cys	Thr	Thr	Ile	Tyr	Asn	Arg	Gly	Glu	His	Thr	Ser	Gly	Met	Tyr	
245					250					255					260	
gcc	atc	aga	ccc	agc	aac	tct	caa	gtt	ttt	cat	gtc	tac	tgt	gat	gtt	871
Ala	Ile	Arg	Pro	Ser	Asn	Ser	Gln	Val	Phe	His	Val	Tyr	Суз	Asp	Val	
				265					270					275		
ata	tca	ggt	agt	cca	tgg	aca	tta	att	caa	cat	cga	ata	gat	gga	tca	919
Ile	Ser	Gly	Ser	Pro	Trp	Thr	Leu	Ile	Gln	His	Arg	Ile	Asp	Gly	Ser	
			280					285					290			
caa	aac	ttc	aat	gaa	acg	tgg	gag	aac	tac	aaa	tat	ggt	ttt	ggg	agg	967
Gln	Asn	Phe	Asn	Glu	Thr	Trp	Glu	Asn	Tyr	Lys	Tyr	Gly	Phe	Gly	Arg	
		205					200					205				

ctt	gat	gga	gaa	ttt	tgg	ttg	ggc	cta	gag	aag	ata	tac	tcc	ata	gtg	1015
Leu	Asp	Gly	Glu	Phe	Trp	Leu	Gly	Leu	Glu	Lys	Ile	Tyr	Ser	Ile	Val	
	310					315					320					
aag	caa	tct	aat	tat	gtt	tta	cga	att	gag	ctg	gaa	gac	tgg	aaa	gac	1063
Lys	Gln	Ser	Asn	Tyr	Val	Leu	Arg	Ile	Glu	Leu	Glu	Asp	Trp	Lys	qaA	
325					330					335					340	
aac	aaa	cat	tat	att	gaa	tat	tct	ttt	tac	ttg	gga	aat	cac	gaa	acc	1111
Asn	Lys	His	Tyr	Ile	Glu	Tyr	Ser	Phe	Tyr	Leu	Gly	Asn	His	Glu	Thr	
				345					350					355		
aac	tat	acg	cta	cat	cta	gtt	gcg	att	act	ggc	aat	gtc	ccc	aat	gca	1159
Asn	Tyr	Thr	Leu	His	Leu	Val	Ala	Ile	Thr	Gly	Asn	Val	Pro	Asn	Ala	
			360					365					370			
atc	ccg	gaa	aac	aaa	gat	ttg	gtg	ttt	tct	act	tgg	gat	cac	aaa	gca	1207
Ile	Pro	Glu	Asn	Lys	Asp	Leu	Val	Phe	Ser	Thr	Trp	qeA	His	Lys	Ala	
		375					380			•		385				
aaa	gga	cac	ttc	aac	tgt	cca	gag	ggt	tat	tca	gga	ggc	tgg	tgg	tgg	1255
Lys	Gly	His	Phe	Asn	Cys	Pro	Glu	Gly	Tyr	Ser	Gly	Gly	Trp	Trp	Trp	
	390					395					400					
cat	gat	gag	tgt	gga	gaa	aac	aac	cta	aat	ggt	aaa	tat	aac	aaa	cca	1303
His	Asp	Glu	Суз	Gly	Glu	Asn	Asn	Leu	Asn	Gly	Lys	Tyr	Asn	Lys	Pro	
405					410					415					420	
aga	gca	aaa	tct	aag	cca	gag	agg	aga	aga	gga	tta	tct	tgg	aag	tct	1351
Arg	Ala	Lys	Ser	Lys	Pro	Glu	Arg	Arg	Arg	Gly	Leu	Ser	Trp	Lys	Ser	
				425					430					435		
caa	aat	gga	agg	tta	tac	tct	ata	aaa	tca	acc	aaa	atg	ttg	atc	cat	1399
Gln	Asn	Gly	Arg	Leu	Tyr	Ser	Ile	Lys	Ser	Thr	Lys	Met	Leu	Ile	His	
			440					445					450			
cca	aca	gat	tca	gaa	agc	ttt	gaa	tgas	ctga	igg c	aaat	ttas	a ag	gcas	it	1450
Pro	Thr	qzA	Ser	Glu	Ser	Phe	Glu									
		455					460									
aatt	taaa	ca t	taac	etea	t to	caag	ttaa	tgt	ggto	taa	taat	ctgg	ta t	taaa	tectt	1510
aaga	gaaa	igc t	tgag	aaat	a ga	tttt	tttt	tat	ctta	aag	tcac	tgtc	ta t	ttaa	igatta	1570
	+===	at a		2277	+ +											1591

<211> 1249	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (134)(784)	
<400> 60	
aacagtctgt ggagacagtt gtgtccctgt ggctttggtg cgcctgtgtg cactttctcc	60
ctccacctgg agcatgggct aacaccggag gaaaggaaaa gacagagtca gacagggage	120
ctggggaggg gcc atg gtg cca atg cac tta ctg ggg aga ctg gag aag	169
Met Val Pro Met His Leu Leu Gly Arg Leu Glu Lys	
1 5 10	
eeg ett ete ete etg tge tge gee tee tte eta etg ggg etg get ttg	217
Pro Leu Leu Leu Cys Cys Ala Ser Phe Leu Leu Gly Leu Ala Leu	
15 20 25	
	265
Leu Gly Ile Lys Thr Asp Ile Thr Pro Val Ala Tyr Phe Phe Leu Thr	
30 35 40	
	313
Leu Gly Gly Phe Phe Leu Phe Ala Tyr Leu Leu Val Arg Phe Leu Glu 45 50 55 60	
	361
Trp Gly Leu Arg Ser Gln Leu Gln Ser Met Gln Thr Glu Ser Pro Gly	,,,
65 70 75	
	109
Pro Ser Gly Asn Ala Arg Asp Asn Glu Ala Phe Glu Val Pro Val Tyr	
80 85 90	
gaa gag gee gtg gtg gga eta gaa tee eag tge ege eee eaa gag ttg 4	157
Glu Glu Ala Val Val Gly Leu Glu Ser Gln Cys Arg Pro Gln Glu Leu	
95 100 105	
gac caa cca ccc ccc tac age act gtt gtg ata ccc cca gca cct gag 5	05
Asp Gln Pro Pro Pro Tyr Ser Thr Val Val Ile Pro Pro Ala Pro Glu	
110 115 120	
gag gaa caa cct agc cat cca gag ggg tcc agg aga gcc aaa ctg gaa 5	53
Glu Glu Gln Pro Ser His Pro Glu Gly Ser Arg Arg Ala Lys Leu Glu	

125 130 135 140	
cag agg ega atg gee tea gag ggg tee atg gee eag gaa gga age eet	601
Gln Arg Arg Met Ala Ser Glu Gly Ser Met Ala Gln Glu Gly Ser Pro	
145 150 155	
gga aga get eea ate aac ett egg ett egg gga eea egg get gtg tee	649
Gly Arg Ala Pro Ile Asn Leu Arg Leu Arg Gly Pro Arg Ala Val Ser	
160 165 170	
act get cet gat etg eag age ttg geg gea gte eec aca tta gag eet	697
Thr Ala Pro Asp Leu Gln Ser Leu Ala Ala Val Pro Thr Leu Glu Pro	
175 180 185	
etg act cca ccc cct gcc tat gat gtc tgc ttt ggt cac cct gat gat	745
Leu Thr Pro Pro Pro Ala Tyr Asp Val Cys Phe Gly His Pro Asp Asp	
190 195 200	
gat agt gtt ttt tat gag gac aac tgg gca ccc cct taaatgact	790
Asp Ser Val Phe Tyr Glu Asp Asn Trp Ala Pro Pro	
205 210 215	
ctcccaagat ttctcttctc tccacaccag acctcgttca tttgactaac attttccage	850
geetaetatg tgteagaaac aagtgtttet geetggaeat eataaatggg gaettggaec	910
ctgaggagag tcaggccacg gtaagccctt cccagctgag atatgggtgg cataatttga	970
gtettetgge aacatttggt gacetacece atatecaata tttecagegt tagattgagg	1030
atgaggtagg gaggtgatce agagaaggeg gagaaggaag aagtaacete tgagtggegg	1150
ctattgette tgttecaggt getgttegag etgttagaae cettaggett gaeagetttg	1210
tgagttatta ttgaaaaatg aggattccaa gagtcagagg agtttgataa tgtgcacgag	1249
ggcacactgc tagtaaataa cattaaaata actggaatg	1447
<210> 61	
<211> 392	
<212> PRT	
<213> Homo sapiens	
<400> 61	
Met Glu Gly Val Ser Ala Leu Leu Ala Arg Cys Pro Thr Ala Gly Leu	
1 5 10 15	
Ala Gly Gly Leu Gly Val Thr Ala Cys Ala Ala Ala Gly Val Leu Leu	
20 25 30	

Tyr Arg Ile Ala Arg Arg Met Lys Pro Thr His Thr Met Val Asn Cys

		35					40					45			
Trp	Phe	Суз	Asn	Gln	Asp	Thr	Leu	Val	Pro	Tyr	Gly	Asn	Arg	Asn	Су
	50					55					60				
Trp	Asp	Сув	Pro	His	Сув	Glu	Gln	Tyr	Asn	Gly	Phe	Gln	Glu	Asn	Gly
65					70					75					86
Asp	Tyr	Asn	Lys	Pro	Ile	Pro	Ala	Gln	Tyr	Leu	Glu	His	Leu	Asn	His
				85					90					95	
Val	Val	Ser	Ser	Ala	Pro	Ser	Leu	Arg	Asp	Pro	Ser	Gln	Pro	Gln	Glr
			100					105					110		
Trp	Val	Ser	Ser	Gln	Val	Leu	Leu	Cys	Lys	Arg	Суз	Asn	His	His	Glr
		115					120					125			
Thr		Lys	Ile	Lys	Gln		Ala	Ala	Phe	Ala	Pro	Arg	Glu	Glu	Gly
	130					135					140				
	Tyr	qaA	Glu	Glu		Glu	Val	Tyr	Arg	His	His	Leu	Glu	Gln	
145	_	_	_		150	_				155			_		160
Tyr	Lys	Leu	Cys	_	Pro	Cys	Gln	Ala		Val	Glu	Tyr	Tyr		Lys
•	-3			165		_		_	170	_	_	•		175	_
HIS	GIN	Asn	_	Gin	Leu	Arg	ALA		Leu	Leu	Ser	Hls		Pne	Lys
3	.	01	180	3	01	mb	77.2	185	01	3	5 1-	G	190		**- 7
Arg	Arg	195	ATS	Asp	GIN	Inr		AIG	GIU	Asn	Pne		ser	ATS	Val
Tara	Sar		17a]	Cln	Ual	T10	200	Lou	7~~	Ala	T 011	205	Dho	Ten	מות
цур	210	FIO	Val	GIN	Val	215	reu	Leu	Arg	MIG	220	Αια	FIIE	Tler	Аца
Cva	_	Dhe	Ten	Len	Thr		- בו	T.e.11	Man-	Gly		Sor	Glv	ui e	Dhe
225	nu	2110	Ded	Deu	230	***	nια	Dea	TYL	235	Ma	Der	GLY	шо	240
	Pro	Glv	Thr	Thr		Pro	Leu	Ala	Leu	Pro	Pro	Glv	Glv	Asn	
		3		245					250			1	_	255	,
Ser	Ala	Thr	Pro		Asn	Glv	Thr	Thr		Gly	Ala	Glu			Arq
			260					265		3			270		,
Gln	Leu	Leu		Leu	Leu	Pro	Glu		Met	Ala	Glu	Lvs		Cvs	Glu
		275	•				280					285			
Ala	Trp		Phe	Gly	Gln	Ser	His	Gln	Thr	Gly	Val		Ala	Leu	Gly
	290			•		295				•	300				•
Leu		Thr	Суз	Leu	Leu		Met	Leu	Leu	Ala		Arq	Ile .	Arq	Leu
305			-		310					315	-	•		_	320

Arg	Arg	Ile	Asp	Ala	Phe	Сув	Thr	Cys	Leu	Trp	Ala	Leu	Leu	Leu	G1
				325					330					335	
Leu	His	Leu	Ala	Glu	Gln	His	Leu	Gln	Ala	Ala	Ser	Pro	Ser	Trp	Le
			340					345					350		
qeA	Thr	Leu	Lys	Phe	Ser	Thr	Thr	Ser	Leu	Cys	Cys	Leu	Val	Gly	Ph
		355					360					365			
Thr	Ala	Ala	Val	Ala	Thr	Arg	Lys	Ala	Thr	Gly	Pro	Arg	Arg	Phe	Ar
	370					375					380				
Pro	Arg	Arg	Ser	Glu	Lys	Gln	Pro								
385					390										
<21	0> 6:	2													
<21	1> 49	97													
<21	2> P	RT													
<21	3> H		sapio	ens											
<40	0> 6:	2													
Met	Ala	Leu	Trp	Arg	Gly	Ser	Ala	Tyr	Ala	Gly	Phe	Leu	Ala	Leu	Ala
1				5					10					15	
Val	Gly	Суз	Val	Phe	Leu	Leu	Glu	Pro	Glu	Leu	Pro	Gly	Ser	Ala	Let
			20					25					30		
Arg	Ser	Leu	Trp	Ser	Ser	Leu	Суз	Leu	Gly	Pro	Ala	Pro	Ala	Pro	Pro
		35					40					45			
Gly	Pro	Val	Ser	Pro	Glu	Gly	Arg	Leu	Ala	Ala	Ala	Trp	Asp	Ala	Let
	50					55	•				60				
Ile	Val	Arg	Pro	Val	Arg	Arg	Trp	Arg	Arg	Val	Ala	Val	Gly	Val	Ası
65					70					75					80
Ala	Суз	Val	qeA	Val	Val	Leu	Ser	Gly	Val	Lys	Leu	Leu	Gln	Ala	Let
				85					90	•				95	
Gly	Leu	Ser	Pro	Gly	Asn	Gly	Lys	Asp	His	Ser	Ile	Leu	His	Ser	Arg
			100					105					110		
Asn	qeA	Leu	Glu	Glu	Ala	Phe	Ile	His	Phe	Met	Trp	Lys	Gly	Ala	Ala
		115					120					125			
Ala	Glu	Arg	Phe	Phe	Ser	Asp	Lys	Glu	Thr	Phe	His	Asp	Ile	Ala	Glr
	130					135					140				
Fatz	Ala	Ser	Glu	Phe	Pro	Glv	Ala	Gln	His	ጥህጕ	Val	Glv	Glv	Agn	1 15

145					150					155					160
Ala	Leu	Ile	Gly	Gln	Lys	Phe	Ala	Ala	Asn	Ser	Asp	Leu	Lys	Val	Leu
				165					170					175	
Leu	Суз	Gly	Pro	Val	Gly	Pro	Arg	Leu	His	Glu	Leu	Leu	Asp	Asp	Asn
			180					185					190		
Val	Phe	Val	Pro	Pro	Glu	Ser	Leu	Gln	Glu	Val	qaA	Glu	Phe	His	Leu
		195					200					205			
Ile	Leu	Glu	Tyr	Gln	Ala	Gly	Glu	Glu	Trp	Gly	Gln	Leu	Lys	Ala	Pro
	210					215					220				
His	Ala	Asn	Arg	Phe	Ile	Phe	Ser	His	Asp	Leu	Ser	Asn	Gly	Ala	Met
225					230					235					240
Asn	Met	Leu	Glu	Val	Phe	Val	Ser	Ser	Leu	Glu	Glu	Phe	Gln	Pro	Asp
				245					250					255	
Leu	Val	Val	Leu	Ser	Gly	Leu	His	Met	Met	Glu	Gly	Gln	Ser	Lys	Glu
			260					265					270		
Leu	Gln	Arg	Lys	Arg	Leu	Leu	Glu	Val	Val	Thr	Ser	Ile	Ser	Asp	Ile
		275					280					285			
Pro	Thr	Gly	Ile	Pro	Val	His	Leu	Glu	Leu	Ala	Ser	Met	Thr	Asn	Arg
	290					295					300				
Glu	Leu	Met	Ser	Ser	Ile	Val	His	Gln	Gln	Val	Phe	Pro	Ala	Val	Thr
305					310					315					320
Ser	Leu	Gly	Leu	Asn	Glu	Gln	Glu	Leu	Leu	Phe	Leu	Thr	Gln	Ser	Ala
				325					330					335	
Ser	Gly	Pro	His	Ser	Ser	Leu	Ser	Ser	Trp	Asn	Gly	Val	Pro	Asp	Val
			340					345					350		
Gly	Met	Val	Ser	Asp	Ile	Leu	Phe	Trp	Ile	Leu	Lys	Glu	His	Gly	Arg
		355					360					365			
Ser	Lys	Ser	Arg	Ala	Ser	qzA	Leu	Thr	Arg	Ile	His	Phe	His	Thr	Leu
	370					375					380				
Val	Tyr	His	Ile	Leu	Ala	Thr	Val	qaA	Gly	His	Trp	Ala	Asn	Gln	Leu
385					390					395					400
Ala	Ala	Val	Ala	Ala	Gly	Ala	Arg	Val	Ala	Gly	Thr	Gln	Ala	Сув	Ala
				405					410					415	
Thr	Glu	Thr	Ile	Asp	Thr	Ser	Arg	Val	Ser	Leu	Arg	Ala	Pro	Gln	Glu
			420					425					430		

Ph	Met	Thr	Ser	His	Ser	Glu	Ala	Gly	Ser	Arg	Ile	Val	Leu	Asn	Pr
		435					440					445			
Asn	Lys	Pro	Val	Val	Glu	Trp	His	Arg	Glu	Gly	Ile	Ser	Phe	His	Phe
	450					455					460				
Thr	Pro	Val	Leu	Val	Суз	Lys	Asp	Pro	Ile	Arg	Thr	Val	Gly	Leu	Gl
465					470					475			÷		48
Asp	Ala	Ile	Ser	Ala	Glu	Gly	Leu	Phe	Tyr	Ser	Glu	Val	His	Pro	Hi
				485					490					495	
Tyr															
	0> 63														
	1> 4:														
	2> PI														
	3> Ho		sapi	ens											
	0> 63 -		•	_		_				_			_	_,	_
	Leu	Val	His		Phe	Arg	Val	Gly		Arg	GIŸ	СТĀ	Pro		Pro
1	•	•	•	5	D	-	•	701- -	10	mh an	Db -	0	*1-	15	N
СТĀ	Arg	Leu		Pro	Pro	Leu	Arg		GIN	Thr	Pne	Ser		vaı	ALÇ
~	C		20	~	3	C	C	25	T	T	N	210	30	270	114.
TÄL	ser	35	GTĀ	TYL	Arg	Ser	40	ser	Leu	Leu	Arg	45	var	WTG	TTE
T 011	7~~		Cln	Lon	Ш-т	۸ ۱۵		Ton	Dro	Arg	7.7.0		Len	λla	Dro
Lieu	50	361	GIII	шец	TTP	55	III	Ter	FIO	ALG	60	FLO	Dea	Aια	110
N~~		Sor	Pro	Sor	λls		Cva	עריים	Va)	Gly		λla	Len	T.e.r	Gls
65	rrp	Ser	FIO	Ser	70	115	Cys	TTP	Val	75	GLY	ıπα	Licu	Dea	80
	Met	Va1	T.en	Ser		Hig	Pro	Hia	T.e.ii	Cys	T.e.ii	Val	Δla	T.e.11	
			204	85	-1-	•••			90	0 12	204			95	-7-
Glu	Ala	Glu	Glu		Pro	Pro	Ala	Ser		Thr	Pro	His	Val		Gly
			100					105					110	- — <u>-</u>	,
Ser	Ara	Phe		Tro	Lvs	Leu	Phe		Gln	Phe	I e u	His		His	Lev
	,	115					120					125			
Leu	Val		Glv	Val	Ala	Val		Leu	Ala	Leu	Glv		Ala	Leu	Val
	130		1			135					140				
Agn		Gln	Ile	Pro	Len		Leu	Glv	G]n	Leu		G] u	Val	Val	Ala
145					150			1		155					160

Lys	Tyr	Thr	Arg	qzA	His	Val	Gly	Ser	Phe	Met	Thr	Glu	Ser	Gln	Asn
				165					170					175	
Leu	Ser	Thr	His	Leu	Leu	Ile	Leu	Tyr	Gly	Val	Gln	Gly	Leu	Leu	Thr
			180					185					190		
Phe	Gly	Tyr	Leu	Val	Leu	Leu	Ser	His	Val	Gly	Glu	Arg	Met	Ala	Val
		195					200					205			
Asp	Met	Arg	Arg	Ala	Leu	Phe	Ser	Ser	Leu	Leu	Arg	Tyr	Сув	Gln	Pro
	210					215					220				
Gln	Gly	Ala	Glu	Leu	Gly	Gln	Asp	Ile	Thr	Phe	Phe	Asp	Ala	Asn	Lys
225					230					235					240
Thr	Gly	Gln	Leu	Val	Ser	Arg	Leu	Thr	Thr	Asp	Val	Gln	Glu	Phe	Lys
				245					250					255	
Ser	Ser	Phe	Lys	Leu	Val	Ile	Ser	Gln	Gly	Leu	Arg	Ser	Cys	Thr	Gln
			260					265					270		
Val	Ala	Gly	Суз	Leu	Val	Ser	Leu	Ser	Met	Leu	Ser	Thr	Arg	Leu	Thr
		275					280					285			
Leu	Leu	Leu	Met	Val	Ala	Thr	Pro	Ala	Leu	Met	Gly	Val	Gly	Thr	Leu
	290					295					300				
Met	Gly	Ser	Gly	Leu	Arg	Lys	Leu	Ser	Суз	Gln	Сув	Gln	Glu	Gln	Ile
305					310					315					320
Ala	Arg	Ala	Met	Gly	Val	Ala	Asp	Glu	Ala	Leu	Gly	Asn	Val	Arg	Thr
				325					330					335	
Val	Arg	Ala	Phe	Ala	Met	Glu	Gln	Arg	Glu	Glu	Glu	Arg	Tyr	Gly	Ala
			340			·		345					350		
Glu	Leu	Glu	Ala	Cys	Arg	Cys	Arg	Ala	Glu	Glu	Leu	Gly	Arg	Gly	Ile
		355					360					365			
Ala	Leu	Phe	Gln	Gly	Leu	Ser	Asn	Ile	Ala	Phe	Asn	Сув	Met	Val	Leu
	370					375					380				
Gly	Thr	Leu	Phe	Ile	Gly	Gly	Ser	Leu	Val	Ala	Gly	Gln	Gln	Leu	Thr
385					390					395					400
Gly	Gly	Ąsp	Leu	Met	Ser	Phe	Leu	Val	Ala	Ser	Gln	Thr	Val	Gln	Arg
				405					410					415	

Leu

<211> 649
<212> PRT
<213> Homo sapiens
<400> 64
Met Ile Pro Asn Gln His Asn Ala Gly Ala Gly Ser His Gln Pro Ala
1 5 10 15
Val Phe Arg Met Ala Val Leu Asp Thr Asp Leu Asp His Ile Leu Pro
20 25 30
Ser Ser Val Leu Pro Pro Phe Trp Ala Lys Leu Val Val Gly Ser Val
35 40 45
Ala Ile Val Cys Phe Ala Arg Ser Tyr Asp Gly Asp Phe Val Phe Asp
50 55 60
Asp Ser Glu Ala Ile Val Asn Asn Lys Val Ala Gly Val Val Gly Arg
65 70 75 80
Ala Asp Leu Leu Cys Ala Leu Phe Phe Leu Leu Ser Phe Leu Gly Tyr
85 90 95
Cys Lys Ala Phe Arg Glu Ser Asn Lys Glu Gly Ala His Ser Ser Thr
100 105 110
Phe Trp Val Leu Leu Ser Ile Phe Leu Gly Ala Val Ala Met Leu Cys
115 120 125
Lys Glu Gln Gly Ile Thr Val Leu Gly Leu Asn Ala Val Phe Asp Ile
130 135 140
Leu Val Ile Gly Lys Phe Asn Val Leu Glu Ile Val Gln Lys Val Leu
145 150 155 160
His Lys Asp Lys Ser Leu Glu Asn Leu Gly Met Leu Arg Asn Gly Gly
165 170 175
Leu Leu Phe Arg Met Thr Leu Leu Thr Ser Gly Gly Ala Gly Met Leu
180 185 190
Tyr Val Arg Trp Arg Ile Met Gly Thr Gly Pro Pro Ala Phe Thr Glu
195 200 205
/al Asp Asn Pro Ala Ser Phe Ala Asp Ser Met Leu Val Arg Ala Val
210 215 220
Asn Tyr Asn Tyr Tyr Tyr Ser Leu Asn Ala Trp Leu Leu Leu Cys Pro
225 230 235 240
Trp Trp Leu Cys Phe Asp Trp Ser Met Gly Cys Ile Pro Leu Ile Lys

				245					250					255	
Ser	Ile	Ser	Asp	Trp	Arg	Val	Ile	Ala	Leu	Ala	Ala	Leu	Trp	Phe	Сув
			260					265					270		
Leu	Ile	Gly	Leu	Ile	Cys	Gln	Ala	Leu	Cys	Ser	Glu	Asp	Gly	His	Lya
		275					280					285			
Arg	Arg	Ile	Leu	Thr	Leu	Gly	Leu	Gly	Phe	Leu	Val	Ile	Pro	Phe	Leu
	290					295					300				
Pro	Ala	Ser	Asn	Leu	Phe	Phe	Arg	Val	Gly	Phe	Val	Val	Ala	Glu	Arg
305					310					315					320
Val	Leu	Tyr	Leu	Pro	Ser	Ile	Gly	Tyr	Суз	Val	Leu	Leu	Thr	Phe	Gly
				325					330					335	
Phe	Gly	Ala	Leu	Ser	Lys	His	Thr	Lys	Lys	Lys	Lys	Leu	Ile	Ala	Ala
			340					345					350		
Val	Val	Leu	Gly	Ile	Leu	Phe	Ile	Asn	Thr	Leu	Arg	Cys	Val	Leu	Arg
		355					360					365			
Ser	Gly	Glu	Trp	Arg	Ser	Glu	Glu	Gln	Leu	Phe	Arg	Ser	Ala	Leu	Ser
	370					375					380				
Val	Сув	Pro	Leu	Asn	Ala	Lys	Val	His	Tyr	Asn	Ile	Gly	Lys	Asn	Leu
385					390					395					400
Ala	Ąsp	Lys	Gly	Asn	Gln	Thr	Ala	Ala	Ile	Arg	Tyr	Tyr	Arg	Glu	Ala
				405					410					415	
Val	Arg	Leu	Asn	Pro	Lys	Tyr	Val	His	Ala	Met	neA	Asn	Leu	Gly	Asn
			420					425					430		
Ile	Leu	Lys	Glu	Arg	Asn	Glu	Leu	Gln	Glu	Ala	Glu	Glu	Leu	Leu	Ser
		435					440					445			
Leu		Val	Gln	Ile	Gln	Pro	Asp	Phe	Ala	Ala	Ala	Trp	Met	Asn	Leu
	450					455					460				
_	Ile	Val	Gln	Asn	Ser	Leu	Lys	Arg	Phe	Glu	Ala	Ala	Glu	Gln	
465					470					475	•				480
Tyr	Arg	Thr	Ala		Lys	His	Arg	Arg	_	Tyr	Pro	Asp	Cys	_	Tyr
				485					490					495	
Asn	Leu	Gly		Leu	Tyr	Ala	qeA		Asn	Arg	His	Val		Ala	Leu
			500					505					510		
Asn	Ala		Arg	Asn	Ala	Thr		Leu	Lys	Pro	Glu		Ser	Leu	Ala
		515					520					525			

WO 00/29448 PCT/JP99/06412

Trp Asn	Asn Me	t Ile	Ile	Leu	Leu	Asp	Asn	Thr	Gly	Asn	Leu	Ala	Gln
530				535					540				
Ala Glu	Ala Va	l Gly	Arg	Glu	Ala	Leu	Glu	Leu	Ile	Pro	Asn	Asp	His
545			550					555					560
Ser Leu	Met Ph	e Ser	Leu	Ala	Asn	Val	Leu	Gly	Lys	Ser	Gln	Lys	Tyr
		565					570				•	575	
Lys Glu	Ser Gl	u Ala	Leu	Phe	Leu	Lys	Ala	Ile	Lys	Ala	Asn	Pro	Asn
	58	0				585					590		
Ala Ala	Ser Ty	r His	Gly	Asn	Leu	Ala	Val	Leu	Tyr	His	Arg	Trp	Gly
	595				600					605			
His Leu	Asp Le	ı Ala	Lys	Lys	His	Tyr	Glu	Ile	Ser	Leu	Gln	Leu	Asp
610	-		-	615		-			620				_
Pro Thr	Ala Se	c Gly	Thr	Lys	Glu	Asn	Tyr	Gly	Leu	Leu	Arg	Arg	Lys
625		-	630	•			•	635			•		640
Leu Glu	Leu Me	t Gln		Lvs	Ala	Val							
		645	1-	-1-									
<210> 65													
<210> 65 <211> 93													
	T												
<211> 93 <212> PR		iens											
<211> 93		iens											
<211> 93 <212> PR <213> Hos <400> 65	mo sap		His	Ile	Leu	Phe	Leu	Leu	Leu	Leu	Pro	Val	Ala
<211> 93 <212> PR <213> Hos <400> 65 Met Ile 1	mo sap	ı Gly	His	Ile	Leu	Phe		Leu	Leu	Leu	Pro		Ala
<211> 93 <212> PR <213> HG <400> 65 Met Ile 1	mo sap: His Le	ı Gly 5			٠		10					15	
<211> 93 <212> PR <213> Hos <400> 65 Met Ile 1	mo sap: His Len	Gly 5 Thr			٠	Arg	10				Ala	15	
<211> 93 <212> PR <213> Hos <400> 65 Met Ile 1 Ala Ala 6	mo sap: His Ler Gln Th: 20	o Gly 5 Thr	Pro	Gly	Glu	Arg 25	10 Ser	Ser	Leu	Pro	Ala 30	15 Phe	Tyr
<211> 93 <212> PR <213> HG <400> 65 Met Ile 1	mo sap His Len Gln Th 20 Thr Sen	o Gly 5 Thr	Pro	Gly	Glu Ser	Arg 25	10 Ser	Ser	Leu	Pro Leu	Ala 30	15 Phe	Tyr
<211> 93 <212> PR <213> HG <400> 65 Met Ile I Ala Ala G Pro Gly 9	mo sapo His Len Gln Thr 20 Thr Sen 35	of Gly 5 Thr Gly	Pro Ser	Gly Cys	Glu Ser 40	Arg 25 Gly	10 Ser Cys	Ser Gly	Leu Ser	Pro Leu 45	Ala 30 Ser	15 Phe Leu	Tyr Pro
<211> 93 <212> PR <213> Hos <400> 65 Met Ile I Ala Ala G Pro Gly S Leu Leu Z	mo sapo His Len Gln Thr 20 Thr Sen 35	of Gly 5 Thr Gly	Pro Ser	Gly Cys Ala	Glu Ser 40	Arg 25 Gly	10 Ser Cys	Ser Gly	Leu Ser Ala	Pro Leu 45	Ala 30 Ser	15 Phe Leu	Tyr Pro
<211> 93 <212> PR <213> Hos <400> 65 Met Ile I Ala Ala G Pro Gly 9 Leu Leu 2 50	mo sap His Len Gln Thr 20 Thr Sen 35 Ala Gly	of Gly Thr Gly Gly	Pro Ser Val	Gly Cys Ala 55	Glu Ser 40 Ala	Arg 25 Gly Asp	10 Ser Cys Ala	Ser Gly Val	Leu Ser Ala 60	Pro Leu 45 Ser	Ala 30 Ser Leu	15 Phe Leu Leu	Tyr Pro
<211> 93 <212> PR <213> Hos <400> 65 Met Ile I 1 Ala Ala G Pro Gly 9 Leu Leu 2 50 Val Gly 2	mo sap His Len Gln Thr 20 Thr Sen 35 Ala Gly	of Gly Thr Gly Gly	Pro Ser Val Leu	Gly Cys Ala 55	Glu Ser 40 Ala	Arg 25 Gly Asp	10 Ser Cys Ala	Ser Gly Val	Leu Ser Ala 60	Pro Leu 45 Ser	Ala 30 Ser Leu	15 Phe Leu Leu	Tyr Pro Ile Gln
<211> 93 <212> PR <213> Hos <400> 65 Met Ile I Ala Ala G Pro Gly 9 Leu Leu 2 50 Val Gly 2 65	mo sapo His Len Gln Thr 20 Thr Sen 35 Ala Gly	of Gly Thr Gly Leu Phe	Pro Ser Val Leu 70	Gly Cys Ala 55 Cys	Glu Ser 40 Ala Ala	Arg 25 Gly Asp Arg	10 Ser Cys Ala Pro	Ser Gly Val Arg 75	Leu Ser Ala 60 Arg	Pro Leu 45 Ser	Ala 30 Ser Leu	15 Phe Leu Leu	Tyr Pro
<211> 93 <212> PR <213> Hos <400> 65 Met Ile I 1 Ala Ala G Pro Gly 9 Leu Leu 2 50 Val Gly 2	mo sapo His Len Gln Thr 20 Thr Sen 35 Ala Gly	of Gly Thr Gly Leu Phe	Pro Ser Val Leu 70	Gly Cys Ala 55 Cys	Glu Ser 40 Ala Ala	Arg 25 Gly Asp Arg	10 Ser Cys Ala Pro	Ser Gly Val Arg 75	Leu Ser Ala 60 Arg	Pro Leu 45 Ser	Ala 30 Ser Leu	15 Phe Leu Leu	Tyr Pro Ile Gln

<21	0> 6	6													
<21	1> 4	25													
<21	2> P	RT													
<21	3> H	OMO	iqsa	ens											
<40	0> 6	6													
Met	Gly	Ser	Trp	Ala	Ala	Val	Asn	Gly	Ile	Trp	Val	Glu	Leu	Pro	Val
1				5					10					15	
Val	Val	Lys	Glu	Leu	Pro	Glu	Gly	Trp	Ser	Leu	Pro	Ser	Tyr	Val	Ser
		•	20					25					30		
Val	Leu	Val	Ala	Leu	Gly	Asn	Leu	Gly	Leu	Leu	Val	Val	Thr	Leu	Trp
		35					40					45			
Arg	Arg	Leu	Ala	Pro	Gly	Lys	Asp	Glu	Gln	Val	Pro	Ile	Arg	Val	Val
	50					55					60				
Gln	Val	Leu	Gly	Met	Val	Gly	Thr	Ala	Leu	Leu	Ala	Ser	Leu	Trp	His
65					70					75					80
His	Val	Ala	Pro	Val	Ala	Gly	Gln	Leu	His	Ser	Val	Ala	Phe	Leu	Ala
				85					90					95	
Leu	Ala	Phe	Val	Leu	Ala	Leu	Ala	Cys	CAa	Ala	Ser	Asn	Val	Thr	Phe
			100					105					110		
Leu	Pro		Leu	Ser	His	Leu		Pro	Arg	Phe	Leu		Ser	Phe	Phe
		115					120					125			
Leu		Gln	Gly	Leu	Ser		Leu	Leu	Pro	Cys		Leu	Ala	Leu	Val
	130				_	135	÷			_	140				
	Gly	Val	Gly	Arg		Glu	Суз	Pro	Pro		Pro	Ile	Asn	Gly	
145		_	_	_	150		_		_	155 	_		_		160
Pro	GIĀ	Pro	Pro		qeA	Pne	Leu	GIU	-	Phe	Pro	Ala	Ser		Phe
5 1-		• • -	•	165	••-	•	•	••••	170					175	- 2-
Pne	тър	ATA	Leu	TIT	ALA	Leu	rea		ATA	ser	ALA	ATG		Pne	GIN
~ 3	T	T	180	T	•	D	D	185	5	0	*** 1	D	190	0]	6 3
стХ	теп		Leu	Leu	Leu	LIO		KLO	r.o	ser	var		TUL	чтλ	GIU
T	61	195	01- -	T	41	****1	200	.1.		0 1	••	205	~ 3	a 1	··- 1
Leu	_	ser	Gly	reg	GTU		отА	WTG	\$10	αтλ		GTI	GTI	GTA	AST
C1	210	°	Se	Dva	Ton	215	61 14	D	7)	C	220	31 -	73 -	C1	mh
G1u 225	GIU	aer.	Ser	PLO		GTII	GIU	PLO			GIN	ATG .	ътg	стХ	
44 3					230					235					240

Thr	Pro	Gly	Pro	Asp	Pro	Lys	Ala	Tyr	Gln	Leu	Leu	Ser	Ala	Arg	Ser
				245					250					255	
Ala	Cys	Leu	Leu	Gly	Leu	Leu	Ala	Ala	Thr	Asn	Ala	Leu	Thr	Asn	Gly
			260					265					270		
Val	Leu	Pro	Ala	Val	Gln	Ser	Phe	Ser	Суз	Leu	Pro	Tyr	Gly	Arg	Leu
		275					280					285			
Ala	Tyr	His	Leu	Ala	Val	Val	Leu	Gly	Ser	Ala	Ala	Asn	Pro	Leu	Ala
	290					295					300				
Cys	Phe	Leu	Ala	Met	Gly	Val	Leu	Суз	Arg	Ser	Leu	Ala	Gly	Leu	Gly
305					310					315					320
Gly	Leu	Ser	Leu	Leu	Gly	Val	Phe	Cys	Gly	Gly	Tyr	Leu	Met	Ala	Leu
				325					330					335	
Ala	Val	Leu	Ser	Pro	Cys	Pro	Pro	Leu	Val	Gly	Thr	Ser	Ala	Gly	Val
			340					345					350		
Val	Leu	Val	Val	Leu	Ser	Trp	Val	Leu	Сув	Leu	Gly	Val	Phe	Ser	Tyr
		355					360					365			
Val	Lys	Val	Ala	Ala	Ser	Ser	Leu	Leu	His	Gly	Gly	Gly	Arg	Pro	Ala
	370					375					380				
Leu	Leu	Ala	Ala	Gly	Val	Ala	Ile	Gln	Val	Gly	Ser	Leu	Leu	Gly	Ala
385					390					395					400
Val	Ala	Met	Phe	Pro	Pro	Thr	Ser	Ile	Tyr	His	Val	Phe	His	Ser	Arg
				405					410					415	
Lys	Asp	Сув	Ala	Asp	Pro	Сув	qeA	Ser							
			420					425							

Val Tyr Ala Leu Val Val Val Ser Tyr Phe Leu Ile Thr Gly Gly Il

<210> 67

WO 00/29448 PCT/JP99/06412

		35					40					45			
Ile	Tyr	Asp	Val	Ile	Val	Glu	Pro	Pro	Ser	Val	Gly	Ser	Met	Thr	Asj
	50					55					60				
Glu	His	Gly	His	Gln	Arg	Pro	Val	Ala	Phe	Leu	Ala	Tyr	Arg	Val	Ası
65					70					75					80
Gly	Gln	Tyr	Ile	Met	Glu	Gly	Leu	Ala	Ser	Ser	Phe	Leu	Phe	Thr	Met
				85					90					95	
Gly	Gly	Leu	_	Phe	Ile	Ile	Leu	qeA	Arg	Ser	Asn	Ala		Asn	Ile
			100					105		_			110		_
Pro	Lys		Asn	Arg	Phe	Leu		Leu	Phe	Ile	Gly		Val	Суз	Va]
_	_	115	_,	_,			120	•	_,			125			
Leu		Ser	Phe	Phe	Met		Arg	Val	Phe	Met	-	Met	гуs	Leu	Pro
0 3	130	T	> 0-4-	a 1		135					140				
145	TYL	neu	Met	GIĀ											
143															
<210)> 68	3						,							
<211	l> 39	96													
<212	?> PF	TS													
<213	3> Ho	omo s	sapi	ens											
<400	> 68	3													
Met	Ala	Met	Ile	Glu	Leu	Gly	Phe	Gly	Arg	Gln	Asn	Phe	His	Pro	Let
1				5					10					15	
Lys	Arg	Lys	Ser	Ser	Leu	Leu	Leu	Lys	Leu	Ile	Ala	Val	Val	Phe	Ala
			20					25					30		
Val	Leu	Leu	Phe	Cys	Glu	Phe	Leu	Ile	Tyr	Tyr	Leu	Ala	Ile	Phe	Gln
		35					40					45			
Cys		Trp	Pro	Glu	Val	_	Thr	Thr	Ala	Ser	-	Gly	Glu	Gln	Thr
	50			_		55	_				60		_		_
	Arg	Glu	Pro	Val		Lys	Ala	Met	Phe		Ala	Asp	Thr	His	
65 -				_	70	•	_	_		75 -	_	_	_		_ 80 _
Leu	GIA	GIU	Phe		GŢĀ	Hls	Trp	Leu	_	гЛа	Leu	Arg	Arg		Trp
~ 1-	16 -+	~ 1	3	85	mt -	01	mb	3 1 -	90		T	7	~ 1	95	~ 1
GIN	Jen	GIU	Arg	ATØ	rne	GTU	TIL	Ala	ьеи	TIP	Leu	neu	GIN 110	LIO	GIU

WO 00/29448 PCT/JP99/06412

Val	Val	Phe	Ile	Leu	Gly	Asp	Ile	Phe	Asp	Glu	Gly	rys	Trp	Ser	Th
		115					120					125			
Pro	Glu	Ala	Trp	Ala	Asp	Asp	Val	Glu	Arg	Phe	Gln	Lys	Met	Phe	Ar
	130					135					140				
His	Pro	Ser	His	Val	Gln	Leu	Lys	Val	Val	Ala	Gly	Asn	His	Asp	Ile
145					150					155					160
Gly	Phe	His	Tyr	Glu	Met	Asn	Thr	Tyr	Lys	Val	Glu	Arg	Phe	Glu	Lys
				165					170					175	
Val	Phe	Ser	Ser	Glu	Arg	Leu	Phe	Ser	Trp	Lys	Gly	Ile	Asn	Phe	Va]
			180					185	•				190		
Met	Val	Asn	Ser	Val	Ala	Leu	Asn	Gly	Asp	Gly	Cys	Gly	Ile	Cys	Sei
		195					200					205			
Glu	Thr	Glu	Ala	Glu	Leu	Ile	Glu	Val	Ser	His	Arg	Leu	Asn	Суз	Ser
	210					215					220				
Arg	Glu	Ala	Arg	Gly	Ser	Ser	Arg	Cys	Gly	Pro	Gly	Pro	Leu	Leu	Pro
225					230					235					240
Thr	Ser	Ala	Pro	Val	Leu	Leu	Gln	His	Tyr	Pro	Leu	Tyr	Arg	Arg	Ser
				245					250					255	
qeA	Ala	Asn	Суз	Ser	Gly	Glu	Asp	Ala	Ala	Pro	Ala	Glu	Glu	Arg	Asp
			260					265					270		
Ile	Pro	Phe	Lys	Glu	Asn	Tyr	Asp	Val	Leu	Ser	Arg	Glu	Ala	Ser	Gln
		275					280					285			
Lys	Leu	Leu	Trp	Trp	Leu	Gln	Pro	Arg	Leu	Val	Leu	Ser	Gly	His	Thr
	290					295					300				
His	Ser	Ala	Суз	Glu	Val	His	His	Gly	Gly	Arg	Val	Pro	Glu	Leu	Ser
305					310					315					320
Val	Pro	Ser	Phe	Ser	Trp	Arg	Asn	Arg	Asn	Asn	Pro	Ser	Phe	Ile	Met
				325					330					335	
Gly	Ser	Ile	Thr	Pro	Thr	Asp	Tyr	Thr	Leu	Ser	Lys	Cys	Tyr	Leu	Pro
			340					345					350		
Arg	Glu	Asp	Val	Val	Leu	Ile	Ile	Tyr	Cys	Gly	Val	Val	Gly	Phe	Leu
		355					360					365			
Val	Val	Leu	Thr	Leu	Thr	His	Phe	Gly	Leu	Leu	Ala	Ser	Pro	Phe	Leu
	370					375					380				
Ser	Gly	Leu	Asn	Leu	Leu	Glv	Lys	Arq	Lys	Thr	Arg				

PCT/JP99/06412

120/233

WO 00/29448

•					
385	39)	3	95	
<210> 69					
<211> 350					
<212> PRT					
<213> Homo	saniens				
<400> 69	-				
Met Ile Arq	Gln Glu Arq	Ser Thr	Ser Tyr G	ln Glu Leu	Ser Glu Glu
1	5		10		15
Leu Val Gln	Val Val Glu	Asn Ser	Glu Leu A	la Asp Glu	Gln Asp Lys
	20		25		30
Glu Thr Val	Arg Val Gl	Gly Pro	Gly Ile L	eu Pro Gly	Leu Asp Ser
35		40		45	
Glu Ser Ala	Ser Ser Ser	: Ile Arg	Phe Ser L	ys Ala Cys	Leu Lys Asr
50		55		60	
Val Phe Ser	Val Leu Leu	lle Phe	Ile Tyr L	eu Leu Leu	Met Ala Val
65	70).	•	75	80
Ala Val Phe	Leu Val Tyr	Arg Thr	Ile Thr A	sp Phe Arg	Glu Lys Leu
	85		90		95
Lys His Pro	Val Met Ser	Val Ser		lu Val Asp	Arg Tyr Asp
	100		105		110
_	Ile Ala Leu	_	Gly Gln A		Leu Ser Cys
115		120		125	
_	Tyr Glu Val		Pro Leu Ti		GIA GIU LLC
130	Aan Ora Mha	135	Aww 710 A	140	Acn Dro Bhe
145	Asn Cys Thr			sn tyr thr 55	ASP PIO PRE 160
	Thr Val Lys				
Der Asii Giii	165	ber Ara	170	ar om or	175
Val Lvs Lvs	Arg Glu Lev	Val Phe		he Ard Leu	
,, -,,	180		185	-	190
Ser Glu Asp	Phe Ser Ala	Ile Asp			
195		200	•	205	
	Gln Ser Pro		Val Gly Ph	he Met Gln	Ala Cys Glu
210		215	•	220	_

Ser	Ala	Tyr	Ser	Ser	Trp	Lys	Phe	Ser	Gly	Gly	Phe	Arg	Thr	Trp	Val
225					230					235					240
Lys	Met	Ser	Leu	Val	Lys	Thr	Lys	Glu	Glu	Asp	Gly	Arg	Glu	Ala	Val
				245					250					255	
Glu	Phe	Arg	Gln	Glu	Thr	Ser	Val	Val	Asn	Tyr	Ile	Asp	Gln	Arg	Pro
			260					265					270		
Ala	Ala	Lys	Lys	Ser	Ala	Gln	Leu	Phe	Phe	Val	Val	Phe	Glu	Trp	Lys
		275					280					285			
qaA	Pro	Phe	Ile	Gln	Lys	Val	Gln	Asp	Ile	Val	Thr	Ala	Asn	Pro	Trp
	290					295					300				
Asn	Thr	Ile	Ala	Leu	Leu	Cys	Gly	Ala	Phe	Leu	Ala	Leu	Phe	Lys	Ala
305					310					315					320
Ala	Glu	Phe	Ala	Lys	Leu	Ser	Ile	Lys	Trp	Met	Ile	Lys	Ile	Arg	Lys
				325					330					335	
Arg	Tyr	Leu	Lys	Arg	Arg	Gly	Gln	Ala	Thr	Ser	His	Ile	Ser		
			340					345					350		

<210> 70 <211> 153 <212> PRT <213> Homo sapiens <400> 70 Met Thr Ile His Ile Leu Ile Leu Leu Leu Leu Leu Ala Phe Ser Ala Gln Gly Asp Leu Asp Thr Ala Ala Arg Arg Gly Gln His Gln Val Pro 25 Gln His Arg Gly His Val Cys Tyr Leu Gly Val Cys Arg Thr His Arg 40 Leu Ala Glu Ile Ile Tyr Trp Ile Arg Cys Leu His Gln Gly Ala Leu 50 55 60 Gly Glu Gly Gln Pro Arg Ala Pro Gly Pro Leu Gln Leu Trp Ala Pro 70 Pro Val Ala Arg Gly Gly Ser Pro Ala Arg Phe Pro Gly Phe Arg Pro Ala Ala Arg Gly Leu Ala Gln Cys Pro Ala Arg Trp Val Thr Ser Gly

100 105 110 Thr Ala Arg Pro Leu Leu Gly Phe Ser Leu Pro Ile Cys Met Leu Glu 120 125 115 Leu Leu His Ile Ser Ser Pro Leu Thr Pro Ala Pro Glu Thr Val 130 135 140 Phe Pro Ser Pro Ser Pro Gly Cys Asp 145 150 <210> 71 <211> 1176 <212> DNA <213> Homo sapiens <400> 71 atggagggag tgagegeget getggeeege tgeeeeaegg eeggeetgge eggeggeetg 60 ggggtcacgg cgtgcgccgc ggccggcgtg ttgctctacc ggatcgcgcg gaggatgaag 120 180 ccaacgcaca cgatggtcaa ctgctggttc tgcaaccagg atacgctggt gccctatggg aaccgcaact gctgggactg tccccactgc gagcagtaca acggcttcca ggagaacggc 240 300 gactacaaca ageegateee egeecagtae ttggageace tgaaceaegt ggtgageage gegeecagee tgegegaeee ttegeageeg cageagtggg tgageageea agteetgetg 360 tgcaagaggt gcaaccacca ccagaccacc aagatcaagc agetggccgc cttcgctccc 420 480 cgcgaggagg gcaggtatga cgaggaggtc gaggtgtacc ggcatcacct ggagcagatg tacaagctgt geoggeegtg ceaagegget gtggagtaet acateaagea ceagaacege 540 cagetgegeq ceetqttqet cagecaccaq tteaaqeqee qqqaqqeeqa ceagacceae 600 660 geacagaact tetecteege egtgaagtee eeggteeagg teateetget eegtgeeete 720 gccttcctgg cctgcgcctt cctactgacc accgcgctgt atggggccag cggacacttc geeceaggea ceaetgtgee eetggeeetg eeaectggtg geaatggete ageeaeaect 780 gacaatggca ccaccctgg ggccgagggc tggcggcagt tgctgggcct actccccgag 840 900 cacatggcgg agaagetqtg tgaggcctgg gcctttgggc agagccacca gacgggcgtc 960 gtggcactgg gcctactcac ctgcctgctg gcaatgctgc tggctggccg catcaggctc eggaggated atgeettete cacetecete teggeectee teeteggget geaceteget 1020 1080 · gagcagcacc tgcaggccgc ctcgcctagc tggctagaca cgctcaagtt cagcaccaca 1140 tetttgtget geetggttgg etteaeggeg getgtggeea caaggaagge aaegggeeea

1176

cggaggttcc ggccccgaag gtcagagaag cagcca

<211> 1491 <212> DNA <213> Homo sapiens <400> 72

atggegetgt ggegeggete egegtaegeg ggetteetgg egetggeegt gggetgegte 60 120 ctggggeeeg egeetgegee eeegggaeee gteteeeeeg agggeeggtt ggeggeagee 180 tgggacgcgc ttatcgtgcg gccagtccgg cgctggcgcc gcgtggcagt gggagtcaat 240 . gcatgtgttg atgtggtgct ctcaggggtg aagctcttgc aggcacttgg ccttagtcct 300 360 gggaatggga aagatcacag cattctgcat tcaaggaatg atctggaaga agccttcatt cacttcatgt ggaagggage agetgetgag egettettea gtgataagga aaetttteae 420 gacattgccc aggttgcgtc agagttccca ggagcccagc actatgtagg aggaaatgca 480 getttaattg gacagaaatt tgcagccaac tcagatttaa aggttettet ttgcggteca 540 600 gttggcccaa ggctacatga gcttcttgat gacaatgtct ttgttccacc agagtcattg caggaagtgg atgagttcca cctcatttta gagtatcaag caggggagga gtggggccag 660 720 ttaaaagoto cocatgocaa cogattoato ttototoacg acototocaa oggggocatg 780 aatatgetgg aggtgtttgt gtetageetg gaggagttte agceagaeet ggtggteete 840 tetggattge acatgatgga gggacaaage aaggagetee agaggaagag actettggag 900 gttgtaacct ccatttctga catccccact ggtattccag ttcacctaga gctggccagt 960 atgactaaca gggageteat gageageatt gteeateage aggtetttee egeggtgaet 1020 tecettggge tgaatgaaca ggagetgtta ttteteacce agteageete tggaeeteac 1080 tottototot ottootggaa oggtgttoot gatgtgggca tggtcagtga catcototto tggatcttga aagaacatgg gaggagtaaa agcagagcct cggatctcac caggatccat 1140 ttccacacge tggtctacca catcetggea actgtggatg gacactggge caaccagetg 1200 1260 gcagccgtgg ctgcaggagc tcgtgtggct gggacacagg cctgcgccac agaaaccata 1320 gacaccagee gagtgtetet gagggeacee caagagttea tgactteeea tteggaggea ggctccagga ttgtattaaa cccaaacaag ccagtagtag aatggcacag agagggaata 1380 1440 testtecast teacaccagt attggtgtgt aaagacccca ttcgaactgt aggcettgga 1491 gatgecattt cageegaagg actettetat teggaagta caeecteacta t

<210> 73

<211> 1251

<212> DNA

<213> Homo sapiens

<400> 73

atgctggtgc	atttatttcg	ggtcgggatt	cggggtggcc	cattcccagg	caggetgeta	60
cegecectee	gcttccagac	atteteaget	gtcaggtact	ctgatggcta	cegeagetee	120
tecetectee	gggccgtggc	ccacctgcgg	teccagetet	gggcccacct	ccctcgagcc	180
cccctagete	ccagatggag	ccctctgcc	tggtgctggg	ttgggggagc	cctgctaggc	240
cccatggtac	tgagtaagca	tececacete	tgccttgtgg	ccctgtgtga	ggcagaagag	300
gcccctcctg	ccagctccac	accccatgtc	gtggggtete	gctttaactg	gaagetette	360
tggcagtttc	tgcaccccca	cctgctggtc	ctgggggtag	ccgtcgtgct	ggccttgggt	420
geggeacteg	tgaatgtaca	gateceetg	ctcctgggcc	agctggtaga	ggtcgtggcc	480
aagtacacaa	gggaccacgt	agggagtttc	atgactgagt	cccagaatct	cagcacccac	540
ctgcttatcc	tctatggtgt	ccagggactg	ctgaccttcg	ggtacctggt	getgetgtee	600
cacgttggcg	agcgcatggc	tgtggacatg	cggagggccc	tcttcagctc	cetgeteegg	660
tactgccagc	cgcagggtgc	agagttggga	caagacatca	ccttctttga	cgccaataag	720
acagggcagc	tggtgagccg	cttgacaact	gacgtgcagg	agtttaagtc	atccttcaag	780
cttgtcatct	cccaggggct	gcgaagetge	acccaggtgg	caggetgeet	ggtgtccctg	840
tccatgctgt	cgacacgcct	cacgctgctg	ctgatggtgg	ccacaccagc	cctgatggga	900
gtgggcaccc	tgatgggctc	aggeeteega	aaattgtctt	gccagtgtca	ggagcagatc	960
gccagggcaa	tgggcgtagc	agacgaggcc	ctgggcaatg	tgcggactgt	gcgtgccttc	1020
gccatggagc	aacgggaaga	ggagegetat	ggggcagagc	tggaagcctg	ccgctgccgg	1080
gcagaggagc	tgggccgcgg	categeettg	ttccaagggc	tttccaacat	cgccttcaac	1140
tgcatggtct	tgggtaccct	atttattggg	ggeteeettg	tggccggaca	gcagctgaca	1200
gggggagacc	teatgteett	cctggtggcc	teceagacag	tgcaaaggct	g	1251
<210> 74						
<211> 1947			•			
<212> DNA						
<213> Homo	sapiens					
<400> 74						
atgattccta	accagcataa	tgctggagcc	gggagccacc	aacctgcagt	tttcagaatg	60
geegtgttgg	acactgattt	ggatcacatt	cttccatctt	ctgttcttcc	tccattctgg	120
gctaagttag	tagtgggatc	ggttgccatt	gtgtgttttg	cacgcagcta	tgatggagac	180
tttgtctttg	atgactcaga	agctattgtt	aacaataagg	ttgctggtgt	tgtcggccgt	240
gcagacctcc	tgtgtgccct	gttettettg	ttatctttcc	ttggctactg	taaagcattt	300

agagaaagta acaaggaggg agcgcattct tccaccttct gggtgctgct gagtatcttt

ctgggagcag tggccatgct gtgcaaagag caagggatca ctgtgctggg tttaaatgcg

gtatttgaca tcttggtgat aggcaaattc aatgttctgg aaattgtcca gaaggtacta

360

420 480

cataaggaca	agtcattaga	gaatetegge	atgctcagga	acgggggcct	cctcttcaga	540
atgaccctgc	teacetetgg	aggggctggg	atgctctacg	tgcgctggag	gatcatgggc	600
acgggcccgc	cggccttcac	cgaggtggac	aacccggcct	cctttgctga	cagcatgctg	660
gtgagggccg	taaactacaa	ttactactat	tcattgaatg	cctggctgct	getgtgteee	720
tggtggctgt	gttttgattg	gtcaatgggc	tgcatcccc	tcattaagtc	catcagcgac	780
tggagggtaa	ttgcacttgc	agcactctgg	ttctgcctaa	ttggcctgat	atgccaagcc	840
ctgtgctctg	aagacggcca	caagagaagg	atccttactc	tgggcctggg	atttctcgtt	900
atcccatttc	tccccgcgag	taacctgttc	ttccgagtgg	gcttcgtggt	cgcggagcgt	960
gtcctctacc	tccccagcat	tgggtactgt	gtgctgctga	cttttggatt	cggagccctg	1020
agcaaacata	ccaagaaaaa	gaaactcatt	geegetgteg	tgctgggaat	cttattcatc	1080
aacacgctga	gatgtgtgct	gcgcagcggc	gagtggcgga	gtgaggaaca	gcttttcaga	1140
agtgctctgt	ctgtgtgtcc	cctcaatgct	aaggttcact	acaacattgg	caaaaacctg	1200
gctgataaag	gcaaccagac	agctgccatc	agatactacc	gggaagctgt	aagattaaat	1260
cccaagtatg	ttcatgccat	gaataatctt	ggaaatatct	taaaagaaag	gaatgagcta	1320
caggaagctg	aggagetget	gtetttgget	gttcaaatac	agccagactt	tgeegetgeg	1380
tggatgaatc	taggcatagt	gcagaatagc	ctgaaacggt	ttgaagcagc	agagcaaagt	1440
taccggacag	caattaaaca	cagaaggaaa	tacccagact	gttactacaa	cctcgggcgt	1500
ctgtatgcag	atctcaatcg	ccacgtggat	gccttgaatg	cgtggagaaa	tgccaccgtg	1560
ctgaaaccag	agcacagcct	ggcctggaac	aacatgatta	tactcctcga	caatacaggt	1620
aatttagccc	aagctgaagc	agttggaaga	gaggcactgg	aattaatacc	taatgatcac	1680
teteteatgt	tetegttgge	aaacgtgctg	gggaaatccc	agaaatacaa	ggaatctgaa	1740
gctttattcc	tcaaggcaat	taaagcaaat	ccaaatgctg	caagttacca	tggtaatttg	1800
gctgtgcttt	atcatcgttg	gggacatcta	gacttggcca	agaaacacta	tgaaatetee	1860
ttgcagcttg	accccacgge	atcaggaact	aaggagaatt	acggtctgct	gagaagaaag	1920
ctagaactaa	tgcaaaagaa	agctgtc				1947
<210> 75						
<211> 279						
<212> DNA	•					
<213> Homo	sapiens					
<400> 75						
atgatccatc	tgggtcacat	cctcttcctg	cttttgctcc	cagtggctgc	agctcagacg	60
actccaggag	agagatcatc	actecetgee	ttttaccctg	gcacttcagg	ctcttgttcc	120
ggatgtgggt	ccctctctct	geegeteetg	gcaggcctcg	tggctgctga	tgcggtggca	180
tegetgetea	tegtggggge	ggtgtteetg	tgcgcacgcc	cacgccgcag	ccccgcccaa	240

gaagatggca aagtctaca	t caacatgcca	ggcaggggc			279
<210> 76					
<211> 1275					
<212> DNA					
<213> Homo sapiens		•			
<400> 76					
atgggeteet gggetgegg	t caatgggatc	tgggtggagc	tacctgtggt	ggtcaaagag	60
cttccagagg gttggagcc	cecetettae	gtetetgtge	ttgtggctct	ggggaacctg	120
ggtctgctgg tggtgaccc	t ctggaggagg	ctggccccag	gaaaggacga	geaggteece	180
atccgggtgg tgcaggtgc	gggcatggtg	ggcacagccc	tgetggeete	tctgtggcac	240
catgtggccc cagtggcag	g acagttgcat	tetgtggeet	tettageact	ggcctttgtg	300
ctggcactgg catgctgtg	e ctcgaatgtc	actttcctgc	ccttcttgag	ccacctgcca	360
cetegettet taeggteat	cttcctgggt	caaggcctga	gtgccctgct	gecetgegtg	420
ctggccctag tgcagggtg	gggeegeete	gagtgcccgc	cagcccccat	caacggcacc	480
cetggeeece egetegacti	ccttgagcgt	tttecegeca	geacettett	ctgggcactg	540
actgeeette tggtegette	e agetgetgee	ttccagggtc	ttetgetget	gttgccgcca	600
ccaccatctg tacccacage	g ggagttagga	tcaggcctcc	aggtgggagc	cccaggagca	660
gaggaagagg tggaagagto	ctcaccactg	caagagccac	caagccaggc	agcaggcacc	720
acccctggtc cagaccctae	ggcctatcag	cttctatcag	cccgcagtgc	ctgcctgctg	780
ggcctgttgg ccgccaccaa	e cgcgctgacc	aatggcgtgc	tgcctgccgt	gcagagcttt	840
tectgettae ectaeggge	tctggcctac	cacctggctg	tggtgctggg	cagtgctgcc	900
aatcccctgg cctgcttcct	ggccatgggt	gtgctgtgca	ggteettgge	agggctgggc	960
ggcctctctc tgctgggcgt	gttetgtggg	ggctacctga	tggegetgge	agtectgage	1020
cectgecege cectggtggg	cacctcggcg	ggggtggtcc	tegtggtget	gtegtgggtg	1080
etgtgtettg gegtgttete	ctacgtgaag	gtggcagcca	gatecatgat	gcatggcggg	1140
ggccggccgg cattgctggc	agccggcgtg	gccatccagg	tgggctctct	geteggeget	1200
gttgctatgt tccccccgac	cagcatctat	cacgtgttcc	acagcagaaa	ggactgtgca	1260
gacccctgtg actcc					1275
•					

<210> 77

<211> 447

<212> DNA

<213> Homo sapiens

<400> 77

atggagactt	tgtaccgtgt	cccgttctta	gtgctcgaat	gtcccaacct	gaagctgaag	60
aageegeeet	ggttgcacat	geegteggee	atgactgtgt	atgetetggt	ggtggtgtct	120
tacttcctca	tcaccggagg	aataatttat	gatgttattg	ttgaacctcc	aagtgteggt	180
totatgactg	atgaacatgg	gcatcagagg	ccagtagett	tettggeeta	cagagtaaat	240
ggacaatata	ttatggaagg	acttgcatcc	agetteetat	ttacaatggg	aggtttaggt	300
ttcataatcc	tggaccgatc	gaatgcacca	aatatcccaa	aactcaatag	attccttctt	360
ctgttcattg	gattcgtctg	tgtcctattg	agttttttca	tggctagagt	attcatgaga	420
atgaaactgc	cgggctatct	gatgggt				447
<210> 78						
<211> 1188	•					
<212> DNA						
<213> Homo	sapiens					
<400> 78						
atggcgatga	tcgaattggg	gtttggaaga	cagaattttc	atccattaaa	gaggaagagt	60
tcattgctgt	tgaaactcat	agetgttgte	tttgctgtgc	ttctattttg	tgaattttta	120
atctattact	tagegatett	tcagtgtaat	tggcctgaag	tgaaaaccac	agcctctgat	180
ggtgaacaga	ccacacgtga	gcctgtgctc	aaagccatgt	ttttggctga	cacccatttg	240
cttggggaat	tectaggeca	ctggctggac	aaattacgaa	gggaatggca	gatggagaga	300
gcgttccaga	cagetetgtg	gttgctgcag	ccggaagtcg	tcttcatcct	gggggatatc	360
tttgatgaag	ggaagtggag	cacccctgag	geetgggegg	atgatgtgga	geggttteag	420
aaaatgttca	gacacccaag	tcatgtacag	ctgaaggtag	ttgctggaaa	ccatgacatt	480
ggcttccatt	atgagatgaa	cacatacaaa	gtagaacgct	ttgagaaagt	gttcagctct	540
gaaagactgt	tttcttggaa	aggcattaac	tttgtgatgg	tcaacagcgt	ggegetgaac	600
ggggatggct	gtggcatctg	ctctgaaaca	gaagcagagc	tcattgaagt	ttctcacaga	660
ctgaactgct	cccgagaggc	acgtggctcc	agccggtgtg	gacetgggee	tetgetgeee	720
acgtetgece	ctgtcctcct	gcagcattat	cctctgtatc	ggagaagtga	tgctaactgt	780
tctggggaag	acgetgetee	tgcagaggaa	agggacatcc	catttaagga	gaactatgac	840
gtgctttcac	gggaggcatc	acaaaagctg	ctgtggtggc	tecageegeg	cetggttete	900
agtggccaca	cgcacagcgc	ctgcgaggtg	caccacgggg	gccgagtccc	cgagctcagc	960
gteceatett	tcagttggag	gaacagaaac	aaccccagtt	tcatcatggg	tageateacg	1020
cccacagact	acaccctctc	caagtgctac	ctcccacgtg	aggatgtggt	tttgatcatc	1080
tactgtggag	tggtgggett	ccttgtggtc	ctcacactca	ctcactttgg	gettetagee	1140
tcaccttttc	tttctggttt	gaacttgctc	ggaaagcgta	agacaaga		1188

WO 00/29448 PCT/JP99/06412

<210> 79	
<211> 1050	
<212> DNA	
<213> Homo sapiens	
<400> 79	
atgateegge aggagegete cacateetae eaggagetga gtgaggagtt ggteeaggtg	60
gttgagaact cagagetgge agacgageag gacaaggaga eggteagagt eeaaggteeg	120
ggtatettae caggeetgga cagegagtee geeteeagea geateegett eageaaggee	180
tgcctgaaga acgtcttctc ggtcctactc atcttcatct acctgctgct catggctgtg	240
geogtettee tggtetaceg gaccateaca gactttegtg agaaacteaa geaccetgte	300
atgtetgtgt ettacaagga agtggatege tatgatgeee eaggtattge ettgtaceee	360
ggtcaggccc agttgctcag ctgtaagcac cattacgagg tcattcctcc tctgacaagc	420
cotggecage egggtgacat gaattgeace acceagagga teaactacae ggacecette	480
tocaatcaga ctgtgaaatc tgccctgatt gtccaggggc cccgggaagt gaaaaagcgg	540
gagetggtet teeteeagtt cegeetgaae aagagtagtg aggaetteag egeeattgat	600
tacctcctct totottottt ccaggagtte ctgcaaagcc caaacagggt aggcttcatg	660
caggeetgtg agagtgeeta ttecagetgg aagttetetg ggggetteeg caeetgggte	720
aagatgtcac tggtaaagac caaggaggag gatgggcggg aagcagtgga gttccggcag	780
gagacaagtg tggttaacta cattgaccag aggccagctg ccaaaaaaag tgctcaattg	840
ttttttgtgg tctttgaatg gaaagateet tteateeaga aagteeaaga tatagteact	900
gocaatcott ggaacacaat tgetettete tgtggegeet tettggeatt atttaaagea	960
gcagagtttg ccaaactgag tataaaatgg atgatcaaaa ttagaaagag ataccttaaa	1020
agaagaggtc aggcaacgag ccacataagc	1050
·	
<210> 80	
<211> 459	
<212> DNA	
<213> Homo sapiens	
<400> 80	
atgactatec acatecteat cetgetgttg etcetegeet teteegeeca aggggacetg	60
gacactgcag ccaggcgagg ccagcaccag gtcccccagc accgcgggca cgtctgctac	120
ctgggcgtat gccggaccca ccgcctggcg gagatcatat actggattcg ctgtctccac	180
caaggageee teggggaagg eeageeacga geeecaggae eestacaget atgggegeeg	240
eeggtggege gaggeggaag eeeggetegg tteecaggat teeggeetge agegaggggg	300
ctagegeagt geceageteg etgggtgace tegggeaegg etegteecet ceteggette	360

WO 00/29448 PCT/JP99/06412

agtttg	cta	tctg	tatgt	t g	gagc	ttct	a ct	ccac	attt	ctt	ctcc	cct	aact	ccaç	gee	42
cctgaa	accg	tett	ccca	ig to	ccct	cccc	a aa	etge	gac							45
-210× (51															
<210> (
<211>																
<212> I		,														
<213> 1	Omo	sapı	ens													
<220>																
<221> (
<222>		•••(1370)													
<400> { geeeget		aagc	aacaa	a o	atca	caaca	a ca	addai	aaca	cac	atea	cca ·	ccc	acat	cc	6
cgcctga																120
geeege		_	_		_				_	-	_	_	_			180
cgcggag																230
-g-ggu	,uge		b Glu		-			•	-		_	-		_		
			0 01u 1	· •	7 44.						1				_	
gee ggo	· cta			aac	cta			acd	aca	tac			acc	aac	,	278
Ala Gly					_		_			,						-/-
15			1	1	20	-Ly	*42			25				1		
gtg ttg		tac	caa i	atc		caa	ลสส	ata	aag		aca	cac	acq	ato	ľ	326
Val Let																-
30		-1-		35					40					45		
gtc aac	tac	taa	tte 1		AAC	caa	gat	aca		at.a	ccc	tat	aaa			374
Val Asr						_	_									•,.
TOL PIOL	. Cyb		50	-JD	TIDII	GIII	mp	55	Lou	142	110	-1-	60			
cgc aac	taa	taa		tat	000	CBC	tac		Cac	tac	880	aac		CAG		422
Arg Asn							_	_								762
ard we	Сув	65	MSD (cys	PIO	UTB	_	GIU	GIII	TÄT	VOII	75	File	GIII	•	
			.				70									470
gag aac		_			-	-			_	_		_				470
Glu Asn	_	Asp	TYT A	asn	гĀз		TTE	Pro	ALA	GIN	_	Leu	GLU	H1S		
	80					85					90					
ctg aac				-	-				-							518
Leu Asn		Val	Val S	Ser	Ser	Ala	Pro	Ser	Leu	_	qaA	Pro	Ser	Gln		
95					100					105						

ccg	cag	cag	tgg	gtg	agc	agc	caa	gtc	ctg	ctg	tgc	aag	agg	tgo	aac	566
Pro	Gln	Gln	Trp	Val	Ser	Ser	Gln	Val	Leu	Leu	Суз	Lys	Arg	Сув	Asn	
110					115					120	1				125	
cac	cac	cag	acc	acc	aag	atc	aag	cag	ctg	gcc	gcc	ttc	gct	ccc	cgc	614
His	His	Gln	Thr	Thr	Lys	Ile	Lys	Gln	Leu	Ala	Ala	Phe	Ala	Pro	Arg	
				130					135					140		
gag	gag	ggc	agg	tat	gac	gag	gag	gtc	gag	gtg	tac	cgg	cat	cac	ctg	662
Glu	Glu	Gly	Arg	Tyr	qaA	Glu	Glu	Val	Glu	Val	Tyr	Arg	His	His	Leu	
			145					150					155			
gag	cag	atg	tac	aag	ctg	tgc	cgg	ccg	tgc	caa	gcg	gct	gtg	gag	tac	710
Glu	Gln	Met	Tyr	Lys	Leu	Суз	Arg	Pro	Сув	Gln	Ala	Ala	Val	Glu	Tyr	
		160					165					170				
tac	atc	aag	cac	cag	aac	cgc	cag	ctg	cgc	gcc	ctg	ttg	ctc	agc	cac	758
Tyr	Ile	Lys	His	Gln	Asn	Arg	Gln	Leu	Arg	Ala	Leu	Leu	Leu	Ser	His	
	175					180					185					
cag	ttc	aag	cgc	cgg	gag	gcc	gac	cag	acc	cac	gca	cag	aac	ttc	tec	806
Gln	Phe	Lys	Arg	Arg	Glu	Ala	Asp	Gln	Thr	His	Ala	Gln	Asn	Phe	Ser	•
190				٠.	195					200					205	
tee	gcc	gtg	aag	tcc	ccg	gtc	cag	gtc	atc	ctg	ctc	cgt	gcc	ctc	gcc	854
Ser	Ala	Val	Lys	Ser	Pro	Val	Gln	Val	Ile	Leu	Leu	Arg	Ala	Leu	Ala	
				210					215					220		
ttc	ctg	gcc	tgc	gcc	ttc	cta	ctg	acc	acc	gcg	ctg	tat	ggg	gcc	agc	902
Phe	Leu	Ala	Сув	Ala	Phe	Leu	Leu	Thr	Thr	Ala	Leu	Tyr	Gly	Ala	Ser	
			225					230					235			
gga	cac	ttc	gcc	cca	ggc	acc	act	gtg	CCC	ctg	gcc	ctg	cca	cct	ggt	950
Gly	His	Phe	Ala	Pro	Gly	Thr	Thr	Val	Pro	Leu	Ala	Leu	Pro	Pro	Gly	
		240					245					250				
ggc	aat	ggc	tca	gcc	aca	cct	gac	aat	ggc	acc	acc	cct	ggg	gcc	gag	998
Gly	Asn	Gly	Ser	Ala	Thr	Pro	Asp	Asn	Gly	Thr	Thr	Pro	Gly	Ala	Glu	
	255					260					265					
ggc	tgg	cgg	cag	ttg	ctg	ggc	cta	ctc	ccc	gag	CAC	atg	gcg	gag	aag	1046
Gly	Trp	Arg	Gln	Leu	Leu	Gly	Leu	Leu	Pro	Glu	His	Met	Ala	Glu	Lys	
270					275					280					285	
ctg	tgt	gag	gcc	tgg	gcc	ttt	ggg	cag	agc	cac	cag	acg	ggc	gtc	gtg	1094
Leu	Сув	Glu	Ala	Trp	Ala	Phe	Gly	Gln	Ser	His	Gln	Thr	Gly	Val	Val	

290 295 300	
gea etg gge eta etc ace tge etg etg gea atg etg etg get gge ege	1142
Ala Leu Gly Leu Leu Thr Cys Leu Leu Ala Met Leu Leu Ala Gly Arg	
305 310 315	
ate agg etc egg agg ate gat gee tte tge ace tge etg tgg gee etg	1190
Ile Arg Leu Arg Arg Ile Asp Ala Phe Cys Thr Cys Leu Trp Ala Leu	
320 325 330	
ctg ctg ggg ctg cac ctg gct gag cag cac ctg cag gcc gcc tcg cct	1238
Leu Leu Gly Leu His Leu Ala Glu Gln His Leu Gln Ala Ala Ser Pro	
335 340 345	
age tgg eta gae aeg ete aag tte age ace aca tet ttg tge tge etg	1286
Ser Trp Leu Asp Thr Leu Lys Phe Ser Thr Thr Ser Leu Cys Cys Leu	
350 355 360 365	
gtt gge tte aeg geg get gtg gee aca agg aag gea aeg gge eea egg	1334
Val Gly Phe Thr Ala Ala Val Ala Thr Arg Lys Ala Thr Gly Pro Arg	
370 375 380	
agg ttc cgg ccc cga agg tca gag aag cag cca tgactgcggg ggg	1380
Arg Phe Arg Pro Arg Arg Ser Glu Lys Gln Pro	
385 390	1440
aggacacaeg gatgeteagg eceaggettt geeaggteeg aagegggee etetetgtee	1500
tgestetttt eacetgetea egecetecea ecceaceet acagececag gtestggece agteceteca etgestegaa gagteagtet geeetgeett ttestttegg geaceaceag	1560
ccatccccga gtgccctgta gccactcacc actgctgcca cctctctggc caatggccct	1620
tteaetggee tggtgaetgg aatgtgggea gegeeeaeae aggetetgge eeatggette	1680
ctactggcag ctccaggcac cccctctca ccacgccgtt tgctggctct gacactgttg	1740
ggtgagggte etggteetge tgtetteeet tetggeetet geacaggggt ggtgacagtg	1800
gotacagget gggecectgg egtgecetga eegtgeagea gagtgagget ggggeageag	1860
agagececag ceteacecet gaggageace tgtggtetgt eeeettggte etgettatgg	1920
ctggaccggc cctgcaggag gtggtggagc cgtgaaggag gccgagctgc agctctggct	1980
getgettgge etcetgetee aagaceetee egagteeeeg gaaatggaga gtgeagttet	2040
tgggcccagc ctggccttcg ccatgagttt ggggagcgag accccacctg agacaggcag	2100
taggageetg tgetgaeett ggggaatetg agetttteea agggtaaggg geeeagggta	2160
tgcaggeett cagtgacate aggtegttgt cateetttee etceetgace tgtcaegage	2220
ctctgcaggt gcctgctcac catggcccag cgccactctg tcctccgact caggtgaggg	2280
ggcagcccac agacctgctc ctcagtagca gggcctggcc aggcccctgc tgttctcagc	2340
goodestar againetical against aggreeast against agains	2320

ctcagtttgc	catctatgaa	atgaggtgga	ccctctcca	tagcccttgg	gtgccagctc	2400
agtgggtgtg	gggatcacat	gaggtggctc	atgaggacac	actctggaag	tegagggget	2460
gccacgtgca	gaggaagttc	ccggcctggg	ggctttatcc	aggggtccca	gtcgagagtg	2520
gcccgaggcc	gtccctcacc	gggcatgttc	cctctggctg	cccactccct	cagggcccac	2580
atgtcctgcc	actcgccact	ctgagcacga	gttcaccttc	cagatgtggc	cagggtgtgc	2640
cagetectet	ctcctgtgcg	ttggaacccc	gggggaggca	agagcagatc	acaggtgcat	2700
gagggttaca	cccgtcacct	gggtctgccg	ggatgggttg	ggggggcagg	tgccaggcct	2760
cactgctgtg	aatctgccac	gcctgggggt	cctagaggct	geceeaeeee	agtgattggg	2820
tagcagetea	cateceacee	agcttcacaa	gtgaggaacc	caggtgcatc	gggagaccct	2880
cgggggcttc	tgtggcctct	gtgcccgatg	acctgcgtgg	cttcagacaa	ggccccagcg	2940
ttactgggct	cagcttgttg	ttctgtgtgg	agcgtgaggt	gagaaaaccc	ctctgaaaag	3000
atgtggtcgg	ggccacgctt	cccactggtt	ctgcagtgag	gagttggggc	gggtgagcca	3060
aagcggcccc	ccatggtgtc	tacctgaggg	gcagggaacc	gcctgcctgt	gcactcacgc	3120
cacccccag	cccacaaaga	gcccatctga	gagaaggacg	tggtggagcc	aggacgggaa	3180
agcgtcctgt	cggctggcca	tgctgttgct	tgcgtctcga	atcttcggtt	ctcgaggaag	3240
tgttgacagt	gtgatgctaa	tgtctgcttt	tottggagtt	gggtagaagc	aggacatctg	3300
tgtgtatgtg	cgtatttaaa	ttagattatt	tataataacc	agagecagee	ctcgcgctgg	3360
ccaggatcct	cctgccgagc	tgatgtcgct	cctgccctct	geeggggtee	ggaagcgaca	3420
totcaggagg	tagctctcag	cagagtgagg	attcctgcct	ttcgtagagt	tttgtgtgac	3480
tttttaaatt	attcatgtgt	cccttaaaag	tttcactacg	tggagaaaat	tecageacea	3540
agtgttgtgg	caacagctga	gagagtgcag	gcaccactgt	gttgtggctt	gttgaccggg	3600
aatgtgtcac	ccctgccagg	gaactcttct	cctcgcgggg	gacttgggat	ggccatcaga	3660
ccttctaggg	tetggetggg	gtaatcctag	gtatgggtga	ccgtccctga	gacataagcg	3720
aggtagattc	agccatcctc	accctcagac	ttgaggtccc	cacccaggcc	aageeggeee	3780
cccgtacccc	ttgcctggga	gcaaaccgcc	aggacgcagc	ctccacgccg	cacctgccac	3840
acccagccct	gcccaggaag	gaacacatga	cccttctgtc	tgtgactgtt	gctgagtctc	3900
tgtctcatgt	cgtagaattg	tggataattg	tctagtgacc	ctctcatcac	tgtaaccatc	3960
gegeetggee	tagatgtcgt	gttttggatg	ctgtgttttc	aataaatgcc	tetggggeee	4020
tgetttt						4027

<210> 82

<211> 2495

<212> DNA

<213> Homo sapiens

<220>

<221> CDS	
<222> (30)(1523)	
<400> 82	
gttegegeag gtggggegee tgggteece atg geg etg tgg ege gge tee geg	53
Met Ala Leu Trp Arg Gly Ser Ala	
1 5	
tac gcg ggc ttc etg gcg ctg gcc gtg ggc tgc gtc ttc etg etg gag	101
Tyr Ala Gly Phe Leu Ala Leu Ala Val Gly Cys Val Phe Leu Leu Glu	
10 15 20	
eca gag etg eca gge teg geg etg ege tet ete tgg age teg etg tgt	149
Pro Glu Leu Pro Gly Ser Ala Leu Arg Ser Leu Trp Ser Ser Leu Cys	
25 30 35 40	
etg ggg eee geg eet geg eee eeg gga eee gte tee eee gag gge egg	197
Leu Gly Pro Ala Pro Ala Pro Pro Gly Pro Val Ser Pro Glu Gly Arg	
45 50 55	
ttg geg gea gee tgg gae geg ett ate gtg egg eea gte egg ege tgg	245
Leu Ala Ala Ala Trp Asp Ala Leu Ile Val Arg Pro Val Arg Arg Trp	
60 65 70	
ege ege gtg gea gtg gga gte aat gea tgt gtt gat gtg gtg ete tea	293
Arg Arg Val Ala Val Gly Val Asn Ala Cys Val Asp Val Val Leu Ser	
75 80 85	
ggg gtg aag ctc ttg cag gca ctt ggc ctt agt cct ggg aat ggg aaa	341
Gly Val Lys Leu Leu Gln Ala Leu Gly Leu Ser Pro Gly Asn Gly Lys	
90 95 100	
	389
Asp His Ser Ile Leu His Ser Arg Asn Asp Leu Glu Glu Ala Phe Ile	
105 110 115 120	
	137
His Phe Met Trp Lys Gly Ala Ala Ala Glu Arg Phe Phe Ser Asp Lys	
125 130 135	
	85
Glu Thr Phe His Asp Ile Ala Gln Val Ala Ser Glu Phe Pro Gly Ala	
140 145 150	
	33
Gln His Tyr Val Gly Gly Asn Ala Ala Leu Ile Gly Gln Lys Phe Ala	

		155					160					165				
gee	aac	tca	gat	tta	aag	gtt	ctt	ctt	tgc	ggt	cca	gtt	ggc	cca	agg	581
Ala	Asn	Ser	qeA	Leu	Lys	Val	Leu	Leu	Суз	Gly	Pro	Val	Gly	Pro	Arg	
	170					175					180					
cta	cat	gag	ctt	ctt	gat	gac	aat	gtc	ttt	gtt	cca	cca	gag	tca	ttg	629
Leu	His	Glu	Leu	Leu	Asp	Asp	Asn	Val	Phe	Val	Pro	Pro	Glu	Ser	Leu	
185					190					195					200	
cag	gaa	gtg	gat	gag	ttc	cac	ctc	att	tta	gag	tat	caa	gca	ggg	gag	677
Gln	Glu	Val	Asp	Glu	Phe	His	Leu	Ile	Leu	Glu	Tyr	Gln	Ala	Gly	Glu	
		•		205					210					215		
gag	tgg	ggc	cag	tta	aaa	gct	ccc	cat	gcc	aac	cga	ttc	atc	ttc	tct	725
Glu	Trp	Gly	Gln	Leu	Lys	Ala	Pro	His	Ala	Asn	Arg	Phe	Ile	Phe	Ser	
			220					225					230			
cac	gac	ctc	tcc	aac	ggg	gcc	atg	aat	atg	ctg	gag	gtg	ttt	gtg	tct	773
His	Asp	Leu	Ser	Asn	Gly	Ala	Met	Asn	Met	Leu	Glu	Val	Phe	Val	Ser	
		235					240					245				
agc	ctg	gag	gag	ttt	cag	cca	gac	ctg	gtg	gtc	ctc	tct	gga	ttg	cac	821
Ser	Leu	Glu	Glu	Phe	Gln	Pro	qzA	Leu	Val	Val	Leu	Ser	Gly	Leu	His	
	250					255					260					
atg	atg	gag	gga	caa	agc	aag	gag	ctc	cag	agg	aag	aga	ctc	ttg	gag	869
Met	Met	Glu	Gly	Gln	Ser	Lys	Glu	Leu	Gln	Arg	Lys	Arg	Leu	Leu	Glu	
265					270					275					280	
gtt	gta	acc	tcc	att	tct	gac	atc	ccc	act	ggt	att	cca	gtt	cac	cta	917
Val	Val	Thr	Ser	Ile	Ser	Asp	Ile	Pro	Thr	Gly	Ile	Pro	Val	His	Leu	
				285					290					295		
gag	ctg	gcc	agt	atg	act	aac	agg	gag	ctc	atg	agc	agc	att	gtc	cat	965
Glu	Leu	Ala	Ser	Met	Thr	Asn	Arg	Glu	Leu	Met	Ser	Ser	Ile	Val	His	
			300					305					310			
cag	cag	gtc	ttt	ccc	gcg	gtg	act	tcc	ctt	ggg	ctg	aat	gaa	cag	gag	1013
Gln	Gln	Val	Phe	Pro	Ala	Val	Thr	Ser	Leu	Gly	Leu	Asn	Glu	Gln	Glu	
		315					320					325				
ctg	tta	ttt	ctc	acc	cag	tca	gcc	tct	gga	cct	cac	tct	tct	ctc	tct	1061
Leu	Leu	Phe	Leu	Thr	Gln	Ser	Ala	Ser	Gly	Pro	His	Ser	Ser	Leu	Ser	
	330					335					340					
tee	tgg	aac	ggt	gtt	cct	gat	gtg	ggc	atg	gtc	agt	gac	atc	ctc	ttc	1109

and the same start that the same was also were trail one same with the same	
Ser Trp Asn Gly Val Pro Asp Val Gly Met Val Ser Asp Ile Leu Phe	
345 350 355 360	
tgg atc ttg aaa gaa cat ggg agg agt aaa agc aga gcc tcg gat ctc	1157
Trp Ile Leu Lys Glu His Gly Arg Ser Lys Ser Arg Ala Ser Asp Leu	
365 370 375	
acc agg atc cat ttc cac acg ctg gtc tac cac atc ctg gca act gtg	1205
Thr Arg Ile His Phe His Thr Leu Val Tyr His Ile Leu Ala Thr Val	
380 385 390	
gat gga cae tgg gcc aac cag etg gca gcc gtg gct gca gga gct cgt	1253
Asp Gly His Trp Ala Asn Gln Leu Ala Ala Val Ala Ala Gly Ala Arg	
395 400 405	
gtg get ggg aca cag gec tgc gec aca gaa acc ata gac acc agc ega	1301
Val Ala Gly Thr Gln Ala Cys Ala Thr Glu Thr Ile Asp Thr Ser Arg	
410 415 420	
gtg tot otg agg goa coo caa gag tto atg act too cat tog gag goa	1349
Val Ser Leu Arg Ala Pro Gln Glu Phe Met Thr Ser His Ser Glu Ala	
425 430 435 440	
gge tee agg att gta tta aac eea aac aag eea gta gta gaa tgg eac	1397
Gly Ser Arg Ile Val Leu Asn Pro Asn Lys Pro Val Val Glu Trp His	105.
445 450 455	
aga gag gga ata tcc ttc cac ttc aca cca gta ttg gtg tgt aaa gac	1445
	1443
Arg Glu Gly Ile Ser Phe His Phe Thr Pro Val Leu Val Cys Lys Asp 460 465 470	
	1402
ccc att cga act gta ggc ctt gga gat gcc att tca gcc gaa gga ctc	1493
Pro Ile Arg Thr Val Gly Leu Gly Asp Ala Ile Ser Ala Glu Gly Leu	
475 480 485	
tte tat teg gaa gta cae eet eae tat taggaagatt ettaggggta	1540
Phe Tyr Ser Glu Val His Pro His Tyr	
490 495	
atttttctga ggaaggagaa ctagccaact taagaattac aggaagaaag tggtttggaa	1600
gacagecaaa gaaataaaag cagattaaac tgtatcaggt acattccage ctgttggcaa	1660
ctccataaaa acatttcaga ttttaatccg aatttagcta atgagactgg atttttgttt	1720
tttatgttgt gtgtcacaga gctaaaaact cagttcccaa atccccagtt tatgcagege	1780
catcaggtat tttaagctaa acttetteac eeetgagage atgteagetg gagaaaagea	1840
gttetteett geecaettga gaagtgeaeg eecaeteaee caacateetg gtetetagga	1900

aagceteatg tgaggtteet etttettea geteagtgee catgggeaag gateatgatt	1960
tocattocgt gttacaatga caatatttaa tgagcataac cttctcagtc tcctgctctc	2020
aaatttagga cagagccgct aaggacaaaa caatccctcc cgtgctttat gatggcagca	2080
ggggetgggg agcetetgag ggaetettte attetgeagt tgtetggaag cetgggtgge	2140
gtcatgagct gaaggatcat gctttcctgt cctggctcca taggttatag gctggctggt	2200
gaaaggttca cgtggcccag gctgaacttc attgcctagc tttggatgtg ctttctgcca	2260
taaagactga tttttgttcg ttctgagcct tcaaggaatt tgttttttac aactggaata	2320
tgeteetgtg tgtgttaaca gateatggat gttttatgtt tteactgate atttaaagag	2380
tttgacctca gagctccagg atcatcagta aatttgtcat gttatatatt tatttttta	2440
taaatcaaga cttctgtgtg ctcttaaata tattaaaaac aatttacatt tcagg	2495
<210> 83	
<211> 1617	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (67)(1320)	
<400> 83	60
atagageeet eagtgggatg agggtgaaae tgetattgee ggeggeteet gttttacege	60
gteage atg etg gtg eat tta ttt egg gte ggg att egg ggt gge eea	108
Met Leu Val His Leu Phe Arg Val Gly Ile Arg Gly Gly Pro 1 5 10	
	156
The Dec Cluber Ten Ten Dec Cer are the cag aca the tea get	130
Phe Pro Gly Arg Leu Leu Pro Pro Leu Arg Phe Gln Thr Phe Ser Ala 15 20 25 30	
==	204
gtc agg tac tet gat ggc tac egc age tec tec etc etc egg gec gtg Val Arg Tyr Ser Asp Gly Tyr Arg Ser Ser Ser Leu Leu Arg Ala Val	201
35 40 45	
gee eac etg egg tee eag ete tgg gee eac etc eet ega gee eec eta	252
Ala His Leu Arg Ser Gln Leu Trp Ala His Leu Pro Arg Ala Pro Leu	
50 55 60	
get eee aga tgg age eee tet gee tgg tge tgg gtt ggg gga gee etg	300
Ala Pro Ard Tro Ser Pro Ser Ala Tro Cua Tro Val Giv Giv Ala Len	
Ala Pro Arg Trp Ser Pro Ser Ala Trp Cys Trp Val Gly Gly Ala Leu 65 70 75	

cta	ggc	ccc	atg	gta	ctg	agt	aag	cat	CCC	cac	ctc	tgc	ctt	gtg	gcc	348
Leu	Gly	Pro	Met	Val	Leu	Ser	Lys	His	Pro	His	Leu	Сув	Leu	Val	Ala	
	80					85					90					
ctg	tgt	gag	gca	gaa	gag	gcc	cct	cct	gcc	agc	tee	aca	ccc	cat	gte	396
Leu	Суз	Glu	Ala	Glu	Glu	Ala	Pro	Pro	Ala	Ser	Ser	Thr	Pro	His	Val	
95					100					105					110	
gtg	9 99	tct	cgc	ttt	aac	tgg	aag	ctc	ttc	tgg	cag	ttt	ctg	cac	ccc	444
Val	Gly	Ser	Arg	Phe	Asn	Trp	Lys	Leu	Phe	Trp	Gln	Phe	Leu	His	Pro	
				115					120					125		
cac	ctg	ctg	gtc	ctg	333	gta	gcc	gtc	gtg	ctg	gcc	ttg	ggt	gcg	gca	492
His	Leu	Leu	Val	Leu	Gly	Val	Ala	Val	Val	Leu	Ala	Leu		Ala	Ala	
			130					135					140			
				_				ctc	-							540
Leu	Val		Val	Gln	Ile	Pro		Leu	Leu	Gly	Gln		Val	Glu	Val	
		145					150					155				
								gta						_		588
Val		Lys	Tyr	Thr	Arg	_	His	Val	GIĀ	Ser		Met	Tnr	GIU	ser	
	160					165				.	170					636
•			-			•		atc				-	_	-	_	636
	Asn	ren	Ser	The	180	Leu	теп	Ile	Leu	185	GTĀ	vai	GIII	GIY	190	
175		++-	~~~	+		~+ ~	a+ a	ctg	+		~++	<i>a</i> aa	asa	aaa		684
_						-		Leu						•		004
ren		1110	GLY	195	Tea	Vul	Deu	Den	200	1140	Vu	O _T	414	205	1.00	
act	ata	aac	ata		aaa	acc	ctc	ttc		tee	cta	ata	caa	_	tac	732
								Phe								,,,
			210	3	5			215					220		-4-	
cag	cca	cag		gca	gag	tta	gga	caa	gac	atc	acc	ttc	ttt	gac	qcc	780
								Gln								
		225	•				230		•			235		_		
aat	aag		ggg	caq	ctq	ata	agc	ege	ttg	aca	act	gac	gtg	cag	gag	828
				_	-		-	Arg	-			-				
	240		•			245					250	-				
ttt		tca	tcc	ttc	aag	ctt	gtc	atc	tee	cag	ggg	ctg	cga	agc	tge	876
					-			Ile								

255 260 265 270	
ace cag gtg gea gge tge etg gtg tee etg tee atg etg teg aca ege	924
Thr Gln Val Ala Gly Cys Leu Val Ser Leu Ser Met Leu Ser Thr Arg	
275 280 285	
ctc acg ctg ctg ctg atg gtg gcc aca cca gcc ctg atg gga gtg ggc	972
Leu Thr Leu Leu Met Val Ala Thr Pro Ala Leu Met Gly Val Gly	
290 295 300	
acc ctg atg ggc tca ggc ctc cga aaa ttg tct tgc cag tgt cag gag	1020
Thr Leu Met Gly Ser Gly Leu Arg Lys Leu Ser Cys Gln Cys Gln Glu	
305 310 315	
cag atc gcc agg gca atg ggc gta gca gac gag gcc ctg ggc aat gtg	1068
Gln Ile Ala Arg Ala Met Gly Val Ala Asp Glu Ala Leu Gly Asn Val	
320 325 330	
egg act gtg egt gee tte gee atg gag caa egg gaa gag gag ege tat	1116
Arg Thr Val Arg Ala Phe Ala Met Glu Gln Arg Glu Glu Glu Arg Tyr	
335 340 345 350	
ggg gca gag ctg gaa gcc tgc cgc tgc cgg gca gag gag ctg ggc cgc	1164
Gly Ala Glu Leu Glu Ala Cys Arg Cys Arg Ala Glu Glu Leu Gly Arg	•
355 360 365	
ggc atc gcc ttg ttc caa ggg ctt tcc aac atc gcc ttc aac tgc atg	1212
Gly Ile Ala Leu Phe Gln Gly Leu Ser Asn Ile Ala Phe Asn Cys Met	
370 375 380	
gtc ttg ggt acc cta ttt att ggg ggc tcc ctt gtg gcc gga cag cag	1260
Val Leu Gly Thr Leu Phe Ile Gly Gly Ser Leu Val Ala Gly Gln Gln	
385 390 395	
etg aca ggg gga gae etc atg tee tte etg gtg gee tee cag aca gtg	1308
Leu Thr Gly Gly Asp Leu Met Ser Phe Leu Val Ala Ser Gln Thr Val	
400 405 410	
caa agg ctg tgacattcca tgcatggaag gaccatcctt gacaggctgt gtg	1360
Gln Arg Leu	
415	
agetgeeett eeccatgeet geeaetteea gggatgaeaa getgaeeeet gteeceaeae	1420
accecaccot tatagettat tgetttgegt tggtccaaaa ccaccegete agetgageet	1480
ctgggatgac cagagetgat caccagacag ctcaaggegg gesteeses testatetet	1540
ttocaagota aacacaagoa gttotacata aatatgttat ggtaaataat gagatagtaa	1600

atatgctgta acagatc	1617
<210> 84	
<211> 3269	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (260)(2209)	
<400> 84	
agagtttccg caccegggag ggagatgegg ceggggetea ggeteettge agttgtaatt	60
tagattegag aagtggttta teetttgaet ggaaaagaaa agtagetgea gtatteecee	120
agcacttgct gagagcatgc cgtatgccag gctgtgaggc tcgagagaca agcagtggaa	180
gagttgegge etgttteate tetggattgt aaatetgage eteettetgg eecetggaag	240
gggacagcat cacgatgga atg att cct aac cag cat aat gct gga gcc ggg	292
Met Ile Pro Asn Gln His Asn Ala Gly Ala Gly	
1 5 10	
age cae caa cet gea gtt tte aga atg gee gtg ttg gae aet gat ttg	340
Ser His Gln Pro Ala Val Phe Arg Met Ala Val Leu Asp Thr Asp Leu	
15 20 25	
gat cac att ctt cca tct tct gtt ctt cct cca ttc tgg gct aag tta	388
Asp His Ile Leu Pro Ser Ser Val Leu Pro Pro Phe Trp Ala Lys Leu	
30 35 40	
gta gtg gga teg gtt gee att gtg tgt ttt gea ege age tat gat gga	436
Val Val Gly Ser Val Ala Ile Val Cys Phe Ala Arg Ser Tyr Asp Gly	
45 50 55	
gac ttt gtc ttt gat gac tca gaa gct att gtt aac aat aag gtt gct	484
Asp Phe Val Phe Asp Asp Ser Glu Ala Ile Val Asn Asn Lys Val Ala	
60 65 70 75	
ggt gtt gtc ggc cgt gca gac ctc ctg tgt gcc ctg ttc ttc ttg tta	532
Gly Val Val Gly Arg Ala Asp Leu Leu Cys Ala Leu Phe Phe Leu Leu	
80 85 90	
tet tte ett gge tae tgt aaa gea ttt aga gaa agt aac aag gag gga	580
Ser Phe Leu Gly Tyr Cys Lys Ala Phe Arg Glu Ser Asn Lys Glu Gly	
95 100 105	

gcg	cat	tct	tcc	acc	ttc	tgg	gtg	ctg	ctg	agt	atc	ttt	ctg	gga	gca	628
Ala	His	Ser	Ser	Thr	Phe	Trp	Val	Leu	Leu	Ser	Ile	Phe	Leu	Gly	Ala	
		110					115					120				
gtg	gcc	atg	ctg	tgc	aaa	gag	caa	ggg	atc	act	gtg	ctg	ggt	tta	aat	676
Val	Ala	Met	Leu	Cys	Lys	Glu	Gln	Gly	Ile	Thr	Val	Leu	Gly	Leu	Asn	
	125					130					135					
gcg	gta	ttt	gac	atc	ttg	gtg	ata	ggc	aaa	ttc	aat	gtt	ctg	gaa	att	724
Ala	Val	Phe	Asp	Ile	Leu	Val	Ile	Gly	Lys	Phe	Asn	Val	Leu	Glu	Ile	
140					145					150					155	
gtc	cag	aag	gta	cta	cat	aag	gac	aag	tca	tta	gag	aat	ctc	ggc	atg	772
Val	Gln	Lys	Val	Leu	His	Lys	Asp	Lys	Ser	Leu	Glu	Asn	Leu	Gly	Met	
				160					165					170		
ete	agg	aac	ggg	ggc	ctc	ctc	ttc	aga	atg	acc	ctg	ctc	acc	tct	gga	820
Leu	Arg	Asn	Gly	Gly	Leu	Leu	Phe	Arg	Met	Thr	Leu	Leu	Thr	Ser	Gly	
			175					180					185			
ggg	gct	999	atg	ctc	tac	gtg	cgc	tgg	agg	atc	atg	ggc	acg	ggc	ccg	868
Gly	Ala	Gly	Met	Leu	Tyr	Val	Arg	Trp	Arg	Ile	Met	Gly	Thr	Gly	Pro	
		190					195					200				
ccg	gcc	ttc	acc	gag	gtg	gac	aac	ccg	gcc	tcc	ttt	gct	gac	agc	atg	916
Pro	Ala	Phe	Thr	Glu	Val	ĄaĄ	Asn	Pro	Ala	Ser	Phe	Ala	Asp	Ser	Met	
	205					210					215					
ctg	gtg	agg	gcc	gta	aac	tac	aat	tac	tac	tat	tca	ttg	aat	gcc	tgg	964
Leu	Val	Arg	Ala	Val	Asn	Tyr	Asn	Tyr	Tyr	Tyr	Ser	Leu	Asn	Ala	Trp	
220					225		•			230					235	
ctg	ctg	ctg	tgt	ccc	tgg	tgg	ctg	tgt	ttt	gat	tgg	tca	atg	ggc	tgc	1012
Leu	Leu	Leu	Cys	Pro	Trp	Trp	Leu	Сув	Phe	Asp	Trp	Ser	Met	Gly	Cys	
				240					245					250		
							•	-	tgg	• -	-		_			1060
Ile	Pro	Leu	Ile	Lys	Ser	Ile	Ser	Asp	Trp	Arg	Val	Ile		Leu	Ala	
			255					260					265			
gca	ctc	tgg	ttc	tgc	cta	att	ggc	ctg	ata	tgc	caa	gcc	ctg	tgc	tct	1108
Ala	Leu	Trp	Phe	Суз	Leu	Ile	Gly	Leu	Ile	Суз	Gln	Ala	Leu	CAa	Ser	
		270					275					280				
gaa	gac	ggc	cac	aag	aga	agg	atc	ctt	act	ctg	ggc	ctg	gga	ttt	ctc	1156
~1	2	~1··	174 a	T 3.00	X	A	T1-	T	mb	¥	~1	T	~1·-	Dha	7	

	285					290					295					
gtt	atc	cca	ttt	ctc	ccc	gcg	agt	aac	ctg	ttc	ttc	cga	gtg	ggc	ttc	1204
Val	Ile	Pro	Phe	Leu	Pro	Ala	Ser	Asn	Leu	Phe	Phe	Arg	Val	Gly	Phe	
300					305					310					315	
gtg	gtc	gcg	gag	cgt	gtc	ata	tac	ata	ccc	agc	att	ggg	tac	tgt	gtg	1252
Val	Val	Ala	Glu	Arg	Val	Leu	Tyr	Leu	Pro	Ser	Ile	Gly	Tyr	Cys	Val	
				320					325					330		
ctg	ctg	act	ttt	gga	tte	gga	gcc	ctg	agc	aaa	cat	acc	aag	aaa	aag	1300
Leu	Leu	Thr	Phe	Gly	Phe	Gly	Ala	Leu	Ser	Lys	His	Thr	Lys	Lys	Lys	
			335					340					345			
aaa	ctc	att	gcc	gct	gtc	gtg	ctg	gga	atc	tta	ttc	atc	aac	acg	ctg	1348
Lys	Leu	Ile	Ala	Ala	Val	Val	Leu	Gly	Ile	Leu	Phe	Ile	Asn	Thr	Leu	
		350					355					360				
aga	tgt	gtg	ctg	cgc	agc	ggc	gag	tgg	cgg	agt	gag	gaa	cag	ctt	ttc	1396
Arg	Сув	Val	Leu	Arg	Ser	Gly	Glu	Trp	Arg	Ser	Glu	Glu	Gln	Leu	Phe	
	365					370					375					
aga	agt	gct	ctg	tct	gtg	tgt	ccc	ctc	aat	gct	aag	gtt	cac	tac	aac	1444
Arg	Ser	Ala	Leu	Ser	Val	Суз	Pro	Leu	Asn	Ala	Lys	Val	His	Tyr	Asn	
380					385					390					395	
att	ggc	aaa	aac	ctg	gct	gat	aaa	ggc	aac	cag	aca	gct	gcc	atc	aga	1492
Ile	Gly	Lys	Asn	Leu	Ala	qaA	Lys	Gly	Asn	Gln	Thr	Ala	Ala	Ile	Arg	
				400					405					410		
tac	tac	cgg	gaa	gct	gta	aga	tta	aat	ccc	aag	tat	gtt	cat	gee	atg	1540
Tyr	Tyr	Arg	Glu	Ala	Val	Arg.	Leu	Asn	Pro	Lys	Tyr	Val	His	Ala	Met	
			415					420					425			
aat	aat	ctt	gga	aat	atc	tta	aaa	gaa	agg	aat	gag	cta	cag	gaa	gct	1588
Asn	Asn	Leu	Gly	Asn	Ile	Leu	Lys	Glu	Arg	Asn	Glu	Leu	Gln	Glu	Ala	
		430					435		•			440				
gag	gag	ctg	ctg	tct	ttg	gct	gtt	caa	ata	cag	cca	gac	ttt	gcc	gct	1636
Glu	Glu	Leu	Leu	Ser	Leu	Ala	Val	Gln	Ile	Gln	Pro	Asp	Phe	Ala	Ala	
	445					450					455					
gcg	tgg	atg	aat	cta	gge	ata	gtg	cag	aat	agc	ctg	aaa	cgg	ttt	gaa	1684
Ala	Trp	Met	Asn	Leu	Gly	Ile	Val	Gln	Asn	Ser	Leu	ГÀв	Arg	Phe	Glu	
460					465					470					475	
gca	gca	gag	caa	agt	tac	cgg	aca	gca	att	aaa	cac	aga	agg	aaa	tac	1732

Ala Ala Glu Gln Ser Tyr Arg Thr Ala Ile Lys His Arg Arg Lys Tyr	
480 485 490	
eca gac tgt tac tac aac ete ggg egt etg tat gea gat ete aat ege	1780
Pro Asp Cys Tyr Tyr Asn Leu Gly Arg Leu Tyr Ala Asp Leu Asn Arg	
495 500 505	
cac gtg gat gcc ttg aat gcg tgg aga aat gcc acc gtg ctg aaa cca	1828
His Val Asp Ala Leu Asn Ala Trp Arg Asn Ala Thr Val Leu Lys Pro	
510 515 520	
gag cae age ctg gee tgg aac aac atg att ata ctc ctc gac aat aca	1876
Glu His Ser Leu Ala Trp Asn Asn Met Ile Ile Leu Leu Asp Asn Thr	
525 530 535	
ggt aat tta gcc caa gct gaa gca gtt gga aga gag gca ctg gaa tta	1924
Gly Asn Leu Ala Gln Ala Glu Ala Val Gly Arg Glu Ala Leu Glu Leu	
540 545 550 555	
ata cet aat gat cae tet ete atg tte teg ttg gea aac gtg etg ggg	1972
Ile Pro Asn Asp His Ser Leu Met Phe Ser Leu Ala Asn Val Leu Gly	
560 565 570	
and the eag and the ang goa tet goa get the the ete ang goa att	2020
Lys Ser Gln Lys Tyr Lys Glu Ser Glu Ala Leu Phe Leu Lys Ala Ile	
575 580 585	2050
and goa ant coa ant got goa agt tac cat ggt ant ttg got gtg ett	2068
Lys Ala Asn Pro Asn Ala Ala Ser Tyr His Gly Asn Leu Ala Val Leu	
590 595 600	2216
tat cat cgt tgg gga cat cta gac ttg gcc aag aaa cac tat gaa atc	2116
Tyr His Arg Trp Gly His Leu Asp Leu Ala Lys Lys His Tyr Glu Ile	
605 610 615	2164
tee ttg cag ett gae eee aeg gea tea gga aet aag gag aat tae ggt Ser Leu Gln Leu Asp Pro Thr Ala Ser Gly Thr Lys Glu Asn Tyr Gly	2104
620 625 630 635	
ctg ctg aga aga aag cta gaa cta atg caa aag aaa gct gtc tgat	2210
Leu Leu Arg Arg Lys Leu Glu Leu Met Gln Lys Lys Ala Val	
640 645	
cetgttteet teatgttttg agtttgagtg tgtgtgtgca tgaggeatat cattaatagt	2270
atgtggttac atttaaccat ttaaaagtct tagacatgtt attttactga tttttttcta	
tgaaaacasa gacatgcasa aagattatag caccagcaat atactettga atgegtgate	

tgatttttca ttgaaattgt attttttcag acaactcaaa tgtaattcta aaattccaaa	2450
aatgtotttt ttaattaaac agaaaaagag aaaaaattat ottgagcaac ttttagtaga	2510
attgagetta catttgggat etgageettg tegtgtatgg actageacta ttaaaettea	2570
attatgacca agaaaggata cactggcccc tacaatttgt ataaatattg aacatgtcta	2630
tatattagca tttttattta atgacaaagc aaattaagtt tttttatctc tttttttaa	2690
aacaacatac tgtgaacttt gtaaggaaat atttatttgt atttttatgt tttgaatagg	2750
gcaaataatc gaatgaggaa tggaagtttt aacatagtat atctatatgc ttttccccat	2810
aggaagaaat tgactcttgc agtttttgga tgctctgact tgtgcaattt caatacacag	2870
gagattatgt aatgtaatat ttttcataag cggttactat caattgaaag ttcaagccat	2930
gctttaggca agagcaggca gcctcacatc tttatttttg ttacatccaa ggtgaagagg	2990
gcaacacatc tgtgtaagct gctttttagt gtgtttatct gaaggccgtt ttccattttg	3050
cttaatgtaa ctacagacat tatccagaaa atgcaaaatt ttctatcaaa tggagccaca	3110
ttcggggaat tcgtggtatt tttaagaatt gagttgttcc tgctgttttt tatttgatcc	3170
aaacaatgtt ttgttttgtt cttctctgta tgctgttgac ctaatgattt atgcaatctc	3230
tgtaatttct tatgcagtaa aattactaca caaactagc	3269
<210> 85	•
<211> 458	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (66)(347)	
<400> 85	
acagttcetc tggacttetc tggaccacag tectetgeca gaccectgec agaccecagt	60
ccacc atg atc cat ctg ggt cac atc ctc ttc ctg ctt ttg ctc cca gtg	110
Met Ile His Leu Gly His Ile Leu Phe Leu Leu Leu Pro Val	
1 5 10 15	
get gea get eag acg act eea gga gag aga tea tea etc ect gee ttt	158
Ala Ala Ala Gln Thr Thr Pro Gly Glu Arg Ser Ser Leu Pro Ala Phe	
20 25 30	
tac cet gge act tea gge tet tgt tee gga tgt ggg tee ete tet etg	206
Tyr Pro Gly Thr Ser Gly Ser Cys Ser Gly Cys Gly Ser Leu Ser Leu	
35 40 45	
ceg etc etg gea gge etc gtg get get gat geg gtg gea teg etg etc	254

Pro Leu Leu Ala Gly Leu Val Ala Ala Asp Ala Val Ala Ser Leu Leu	1
50 55 60	
ate gtg ggg geg gtg tte etg tge gea ege eea ege ege age eee gee	302
Ile Val Gly Ala Val Phe Leu Cys Ala Arg Pro Arg Arg Ser Pro Ala	t
65 70 75	
caa gaa gat ggc aaa gtc tac atc aac atg cca ggc agg ggc tgaccc	350
Gln Glu Asp Gly Lys Val Tyr Ile Asn Met Pro Gly Arg Gly	
80 85 90	
tectgeaget tggacetttg acttetgace eteteateet ggatggtgtg tggtggea	ica 410
ggaacccccg ccccaacttt tggattgtaa taaaacaatt gaaacacc	458
<210> 86	
<211> 1712	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (180)(1457)	
<400> 86	.gg 60
tecegetgge tagaagaagt etteaettee eaggagagee aaagegtgte tggeeeta tgggaaaaga aetggetgtg aeetttgeee tgaeetggaa gggeeeagee ttgggetg	
tggcagcacc cacgecegec egtecggtge tgacceacct getggtgget etettegg	
atg gge tee tgg get geg gte aat ggg ate tgg gtg gag eta eet gtg	
Met Gly Ser Trp Ala Ala Val Asn Gly Ile Trp Val Glu Leu Pro Val	
1 5 10 15	
gtg gtc aaa gag ctt cca gag ggt tgg agc ctc ecc tct tac gtc tct	275
Val Val Lys Glu Leu Pro Glu Gly Trp Ser Leu Pro Ser Tyr Val Ser	
20 25 30	
gtg ctt gtg gct ctg ggg aac ctg ggt ctg ctg gtg gtg acc ctc tgg	323
Val Leu Val Ala Leu Gly Asn Leu Gly Leu Leu Val Val Thr Leu Trp	
35 40 45	
agg agg ctg gcc cca gga aag gac gag cag gtc ccc atc cgg gtg gtg	371
Arg Arg Leu Ala Pro Gly Lys Asp Glu Gln Val Pro Ile Arg Val Val	
50 55 60	
cag gtg ctg ggc atg gtg ggc aca gcc ctg ctg gcc tct ctg tgg cac	419

Gln	Val	Leu	Gly	Met	Val	Gly	Thr	Ala	Leu	Leu	Ala	Ser	Leu	Trp	His	
65					70					75					80	
cat	gtg	gcc	cca	gtg	gca	gga	cag	ttg	cat	tct	gtg	gcc	ttc	tta	gca	467
His	Val	Ala	Pro	Val	Ala	Gly	Gln	Leu	His	Ser	Val	Ala	Phe	Leu	Ala	
				85		•			90					95		
ctg	gcc	ttt	gtg	ctg	gca	ctg	gca	tgc	tgt	gcc	tcg	aat	gtc	act	ttc	515
Leu	Ala	Phe	Val	Leu	Ala	Leu	Ala	Суз	Суз	Ala	Ser	Asn	Val	Thr	Phe	
			100					105					110			
ctg	CCC	ttc	ttg	agc	cac	ctg	cca	cct	cgc	ttc	tta	cgg	tca	ttc	ttc	563
Leu	Pro	Phe	Leu	Ser	His	Leu	Pro	Pro	Arg	Phe	Leu	Arg	Ser	Phe	Phe	
		115					120					125				
ctg	ggt	caa	ggc	ctg	agt	gcc	ctg	ctg	ccc	tgc	gtg	ctg	gcc	cta	gtg	611
Leu	Gly	Gln	Gly	Leu	Ser	Ala	Leu	Leu	Pro	Сув	Val	Leu	Ala	Leu	Val	
	130					135					140					
cag	ggt	gtg	ggc	cgc	ctc	gag	tgc	ccg	cca	gcc	ccc	atc	aac	ggc	acc	659
Gln	Gly	Val	Gly	Arg	Leu	Glu	Суз	Pro	Pro	Ala	Pro	Ile	Asn	Gly	Thr	
145					150					155					160	
cct	gge	ccc	ccg	ctc	gac	ttc	ctt	gag	cgt	ttt	CCC	gcc	agc	acc	tte	707
Pro	Gly	Pro	Pro	Leu	Asp	Phe	Leu	Glu	Arg	Phe	Pro	Ala	Ser	Thr	Phe	
				165					170					175		
ttc	tgg	gca	ctg	act	gcc	ctt	ctg	gtc	gct	tca	gct	gct	gcc	ttc	cag	755
Phe	Trp	Ala	Leu	Thr	Ala	Leu	Leu	Val	Ala	Ser	Ala	Ala	Ala	Phe	Gln	
			180					185					190			
ggt	ctt	ctg	ctg	ctg	ttg	ccg	cca	cca	cca	tct	gta	CCC	aca	ggg	gag	803
Gly	Leu	Leu	Leu	Leu	Leu	Pro	Pro	Pro	Pro	Ser	Val	Pro	Thr	Gly	Glu	
		195					200					205				
tta	gga	tca	ggc	ctc	cag	gtg	gga	gcc	cca	gga	gca	gag	gaa	gag	gtg	851
Leu	Gly	Ser	Gly	Leu	Gln	Val	Gly	Ala	Pro	Gly	Ala	Glu	Glu	Glu	Val	
	210					215					220					
gaa	gag	tcc	tca	cca	ctg	caa	gag	cca	cca	agc	cag	gca	gca	ggc	acc	899
Glu	Glu	Ser	Ser	Pro	Leu	Gln	Glu	Pro	Pro	Ser	Gln	Ala	Ala	Gly	Thr	
225					230					235					240	
acc	cct	ggt	cca	gac	cct	aag	gcc	tat	cag	ctt	cta	tca	gcc	cgc	agt	947
Thr	Pro	Gly	Pro	Asp	Pro	Lys	Ala	Tyr	Gln	Leu	Leu	Ser	Ala	Arg	Ser	
				245					250					255		

gcc	tgc	ctg	ctg	ggc	ctg	ttg	gcc	gcc	acc	aac	gcg	ctg	acc	aat	ggc	995
Ala	Сув	Leu	Leu	Gly	Leu	Leu	Ala	Ala	Thr	Asn	Ala	Leu	Thr	neA	Gly	
			260					265					270			
gtg	ctg	cct	gcc	gtg	cag	agc	ttt	tcc	tgc	tta	ccc	tac	9 99	cgt	ctg	1043
Val	Leu	Pro	Ala	Val	Gln	Ser	Phe	Ser	Сув	Leu	Pro	Tyr	Gly	Arg	Leu	
		275					280					285				
gcc	tac	cac	ctg	gct	gtg	gtg	ctg	ggć	agt	gct	gcc	aat	ccc	ctg	gcc	1091
Ala	Tyr	His	Leu	Ala	Val	Val	Leu	Gly	Ser	Ala	Ala	Asn	Pro	Leu	Ala	
	290					295					300					
tgc	ttc	ctg	gcc	atg	ggt	gtg	ctg	tgc	agg	tcc	ttg	gca	ggg	ctg	ggc	1139
Cya	Phe	Leu	Ala	Met	Gly	Val	Leu	Cys	Arg	Ser	Leu	Ala	Gly	Leu	Gly	
305					310					315					320	
ggc	ctc	tct	ctg	ctg	ggc	gtg	ttc	tgt	ggg	ggc	tac	ctg	atg	gcg	ctg	1187
Gly	Leu	Ser	Leu	Leu	Gly	Val	Phe	Cys	Gly	Gly	Tyr	Leu	Met	Ala	Leu	
				325					330					335		
gca	gtc	ctg	agc	ccc	tge	ccg	ccc	ctg	gtg	ggc	acc	tcg	gcg	ggg	gtg	1235
Ala	Val	Leu	Ser	Pro	Cys	Pro	Pro	Leu	Val	Gly	Thr	Ser	Ala	Gly	Val	•
			340					345					350			
gtc	ctc	gtg	gtg	ctg	tcg	tgg	gtg	ctg	tgt	ctt	ggc	gtg	ttc	tcc	tac	1283
Val	Leu	Val	Val	Leu	Ser	Trp	Val	Leu	Сув	Leu	Gly	Val	Phe	Ser	Tyr	
		355					360					365				
gtg	aag	gtg	gca	gcc	agc	tcc	ctg	ctg	cat	ggc	ggg	ggc	cgg	ccg	gca	1331
Val	Lys	Val	Ala	Ala	Ser	Ser	Leu	Leu	His	Gly	Gly	Gly	Arg	Pro	Ala	
	370					375					380					
ttg	ctg	gca	gcc	ggc	gtg	gcc	atc	cag	gtg	ggc	tct	ctg	ctc	ggc	gct	1379
Leu	Leu	Ala	Ala	Gly	Val	Ala	Ile	Gln	Val	Gly	Ser	Leu	Leu	Gly	Ala	
385					390					395					400	
gtt	gct	atg	ttc	CCC	ccg	acc	agc	atc	tat	cac	gtg	ttc	cac	agc	aga	1427
Val	Ala	Met	Phe	Pro	Pro	Thr	Ser	Ile	Tyr	His	Val	Phe	His	Ser	Arg	
				405					410					415		
aag	gac	tgt	gca	gac	ccc	tgt	gac	tcc	tgag	ectg	igg c	aggt	gggg	a co	ecege	1480
Lys	Asp	Суз	Ala	Ąsp	Pro	Суз	Asp	Ser								
			420					425								
tocc	caac	ac c	tgtc	tttc	e ct	caat	gctg	CCa	ccat	gcc	tgag	tgcc	tg c	agco	cagga	1540
aacc		ca c	caat	8080	t ca	taaa	cacc	tac	acac	tcc	atan	anan	to o	taac	tttcc	1600

agggtgggca agggcaagga gcaggcttgg agccagggac cagtgggggc tgtagggtaa	1660												
geceetgage etgggaeeta eatgtggttt gegtaataaa acatttgtat tt	1712												
<210> 87													
<211> 1055													
<212> DNA													
<213> Homo sapiens													
<220>													
<221> CDS													
<222> (53)(502)													
<400> 87													
accgggagge gegtgggget tgaggeegag aaeggeeett getgeeacea ac atg	55												
Met													
1													
gag act ttg tac egt gte eeg tte tta gtg ete gaa tgt eee aac etg	103												
Glu Thr Leu Tyr Arg Val Pro Phe Leu Val Leu Glu Cys Pro Asn Leu													
5 10 15													
aag ctg aag aag ccg ccc tgg ttg cac atg ccg tcg gcc atg act gtg	151												
Lys Leu Lys Lys Pro Pro Trp Leu His Met Pro Ser Ala Met Thr Val													
20 25 30													
tat got ctg gtg gtg tot tac ttc ctc atc acc gga gga ata att	199												
Tyr Ala Leu Val Val Val Ser Tyr Phe Leu Ile Thr Gly Gly Ile Ile													
35 40 45													
tat gat gtt att gtt gaa cet cea agt gte ggt tet atg act gat gaa	247												
Tyr Asp Val Ile Val Glu Pro Pro Ser Val Gly Ser Met Thr Asp Glu													
50 55 60 65													
cat ggg cat cag agg cca gta gct ttc ttg gcc tac aga gta aat gga	295												
His Gly His Gln Arg Pro Val Ala Phe Leu Ala Tyr Arg Val Asn Gly													
70 75 80													
caa tat att atg gaa gga ctt gca tcc agc ttc cta ttt aca atg gga	343												
Gln Tyr Ile Met Glu Gly Leu Ala Ser Ser Phe Leu Phe Thr Met Gly													
. 85 90 95													
ggt tta ggt ttc ata atc ctg gac cga tcg aat gca cca aat atc cca	391												
Gly Leu Gly Phe Ile Ile Leu Asp Arg Ser Asn Ala Pro Asn Ile Pro													
100 105 110													

aaa ctc aat aga ttc ctt ctt ctg ttc att gga ttc gtc tgt gtc cta	439
Lys Leu Asn Arg Phe Leu Leu Phe Ile Gly Phe Val Cys Val Leu	
115 120 125	
ttg agt ttt ttc atg gct aga gta ttc atg aga atg aaa ctg ccg ggc	487
Leu Ser Phe Phe Met Ala Arg Val Phe Met Arg Met Lys Leu Pro Gly	
130 135 140 145	
tat ctg atg ggt tagagtgcct ttgagaagaa atcagtggat actggatttg c	540
Tyr_Leu Met Gly	
tcctgtcaat gaagttttaa aggctgtacc aatcctctaa tatgaaatgt ggaaaagaat	600
gaagagcagc agtaaaagaa atatctagtg aaaaaacagg aagcgtattg aagcttggac	660
tagaatttot tottggtatt aaagagacaa gtttatoaca gaatttttt tootgotggo	720
ctattgctat accaatgatg ttgagtggca ttttcttttt agtttttcat taaaatatat	780
tocatatota caactataat atcaaataaa gtgattattt tttacaaccc tottaacatt	840
ttttggagat gacatttctg attttcagaa attaacataa aatccagaag caagattccg	900
taagetgaga aetetggaea gttgateage tttaeetatg gtgetttgee tttaaetaga	960
gtgtgtgatg gtagattatt tcagatatgt atgtaaaact gtttcctgaa caataagatg	1020
tatgaacgga gcagaaataa atactttttc taatt	1055
<210> 88	
<211> 1616	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (222)(1412)	
<400> 88	
gageteteac ggttteetet tteetgacaa aaagaatatt aatgaaactt tateatettg	60
gtgagaaaag cattctaata gctttattct gacatacgga ggtatggaga gcttgaagga	120
gtcagagagg tgcccagcta agacctgaat gccatcaccc tccccagggc tctgcagttt	180
totogtggtg aaccottgat ggatttgttg ttgcttgaga a atg gcg atg atc	233
Met Ala Met Ile	
1.	
gaa ttg ggg ttt gga aga cag aat ttt cat cca tta aag agg aag agt	281
Glu Leu Gly Phe Gly Arg Gln Asn Phe His Pro Leu Lys Arg Lys Ser	

5					10					15					20	
tca	ttg	ctg	ttg	aaa	ctc	ata	gct	gtt	gtc	ttt	gct	gtg	ctt	cta	ttt	329
Ser	Leu	Leu	Leu	Lys	Leu	Ile	Ala	Val	Val	Phe	Ala	Val	Leu	Leu	Phe	
				25					30					35		
tgt	gaa	ttt	tta	atc	tat	tac	tta	gcg	atc	ttt	cag	tgt	aat	tgg	cct	377
Cys	Glu	Phe	Leu	Ile	Tyr	Tyr	Leu	Ala	Ile	Phe	Gln	Суз	Asn	Trp	Pro	
			40					45					50			
gaa	gtg	aaa	acc	aca	gcc	tct	gat	ggt	gaa	cag	acc	aca	cgt	gag	cct	425
Glu	Val	Lys	Thr	Thr	Ala	Ser	Ąsp	Gly	Glu	Gln	Thr	Thr	Arg	Glu	Pro	
		55					60					65				
gtg	ctc	aaa	gcc	atg	ttt	ttg	gct	gac	acc	cat	ttg	ctt	ggg	gaa	ttc	473
Val	Leu	Lys	Ala	Met	Phe	Leu	Ala	Ąsp	Thr	His	Leu	Leu	Gly	Glu	Phe	
	70					75					80					
cta	ggc	cac	tgg	ctg	gac	aaa	tta	cga	agg	gaa	tgg	cag	atg	gag	aga	521
Leu	Gly	His	Trp	Leu	qeA	ГÃа	Leu	Arg	Arg	Glu	Trp	Gln	Met	Glu	Arg	
85					90					95					100	
gcg	ttc	cag	aca	gct	ctg	tgg	ttg	ctg	cag	ccg	gaa	gtc	gtc	ttc	atc	569
Ala	Phe	Gln	Thr	Ala	Leu	Trp	Leu	Leu	Gln	Pro	Glu	Val	Val	Phe	Ile	
				105					110					115		
etg	ggg	gat	atc	ttt	gat	gaa	9 99	aag	tgg	agc	acc	cct	gag	gcc	tgg	617
Leu	Gly	qaA	Ile	Phe	Asp	Glu	Gly	ГÀЗ	Trp	Ser	Thr	Pro	Glu	Ala	Trp	
			120					125					130			
gcg	gat	gat	gtg	gag	cgg	ttt	cag	aaa	atg	ttc	aga	cac	cca	agt	cat	665
Ala	qeA	qeA	Val	Glu	Arg	Phe	Gln	Lys	Met	Phe	Arg	His	Pro	Ser	His	
		135					140					145				
gta	cag	ctg	aag	gta	gtt	gct	gga	aac	cat	gac	att	ggc	ttc	cat	tat	713
Val	Gln	Leu	Lys	Val	Val	Ala	Gly	Asn	His	Asp	Ile	Gly	Phe	His	Tyr	
	150					155					160					
gag	atg	aac	aca	tac	aaa	gta	gaa	cgc	ttt	gag	aaa	gtg	ttc	agc	tct	761
3lu	Met	Asn	Thr	Tyr	ГÀЗ	Val	Glu	Arg	Phe	Glu	Lys	Val	Phe	Ser	Ser	
165					170					175					180	
gaa	aga	ctg	ttt	tct	tgg	aaa	ggc	att	aac	ttt	gtg	atg	gtc	aac	agc	809
3lu	Arg	Leu	Phe	Ser	Trp	Lys	Gly	Ile	Asn	Phe	Val	Met	Val	Asn	Ser	•
				185					190					195		
rta	aca	cta	aac	aaa	gat	aac	tat	aac	atc	tac	tet	gaa	aca	gaa	gca	857

Val	Ala	Leu	Asn	Gly	qeA	Gly	Cys	Gly	Ile	Суз	Ser	Glu	Thr	Glu	Ala	
			200					205					210)		
gag	ctc	att	gaa	gtt	tet	cac	aga	ctg	aac	tgo	tcc	cga	gag	gca	egt	905
Glu	Leu	Ile	Glu	Val	Ser	His	Arg	Leu	Asn	Суз	Ser	Arg	Glu	Ala	Arg	
		215					220					225				
ggc	tcc	age	cgg	tgt	gga	cct	ggg	cct	ctg	ctg	ccc	acg	tct	gcc	cct	953
Gly	Ser	Ser	Arg	Cys	Gly	Pro	Gly	Pro	Leu	Leu	Pro	Thr	Ser	Ala	Pro	
	230					235					240					
gtc	ctc	ctg	cag	cat	tat	cct	ctg	tat	cgg	aga	agt	gat	gct	aac	tgt	1001
Val	Leu	Leu	Gln	His	Tyr	Pro	Leu	Tyr	Arg	Arg	Ser	Asp	Ala	Asn	Суз	
245					250					255					260	
tct	ggg	gaa	gac	get	gct	cct	gca	gag	gaa	agg	gac	atc	cca	ttt	aag	1049
Ser	Gly	Glu	Asp	Ala	Ala	Pro	Ala	Glu	Glu	Arg	Asp	Ile	Pro	Phe	Lys	
				265					270					275		
gag	aac	tat	gac	gtg	ctt	tca	cgg	gag	gca	tca	caa	aag	ctg	ctg	tgg	1097
Glu	Asn	Tyr	Asp	Val	Leu	Ser	Arg	Glu	Ala	Ser	Gln	Lys	Leu	Leu	Trp	
			280				_	285				_	290		_	
tgg	ctc	cag	ccg	cgc	ctg	gtt	ctc	agt	ggc	cac	acg	cac	agc	gcc	tgc	1145
Trp	Leu	Gln	Pro	Arg	Leu	Val	Leu	Ser	Gly	His	Thr	His	Ser	Ala	Суз	
		295		_			300		_			305				
gag	gtg	cac	cac	ggg	ggc	cga	gtc	ccc	gag	ctc	agc	gtc	cca	tct	ttc	1193
_			His			-	-				_	_				
	310			_	_	315					320					
agt	tgg	agg	aac	aga	aac	aac	ccc	agt	ttc	atc	atg	ggt	agc	atc	acg	1241
			Asn	-				_			_	-				
325		-		-	330					335		_			340	
ccc	aca	gac	tac	acc	ctc	tcc	aaq	tge	tac	ctc	cca	cgt	gag	gat	gtg	1289
			Tyr				-	-								
		_		345			•	-	350			-		355		
gtt	ttg	atc	atc	tac	tat	qqa	ata	ata	aac	ttc	ctt	ata	qtc	ctc	aca	1337
			Ile													
			360		4	2		365	2				370			
ctc	act	cac	ttt	aaa	ctt	cta	acc		act.	ttt	ctt	tct		tta	aac	1385
			Phe				_									
		375		1			380					385	1			
		3.3					200									

WO 00/29448 PCT/JP99/06412

ttg ctc gga aag cgt aag aca aga tgaagagcag gegecattat a	1430
Leu Leu Gly Lys Arg Lys Thr Arg	
390 395	
aatatcaaag cccaagaaat ggaactttgg gcagagatca tgttagaatc aagtggatga	1490
tgagaccaat tacaggccgt ctctctgcac agcacagaaa ttctcaatca ctgaaatgag	1550
taactgcaaa ataaatagtt gattgtactg ttctcatgct ataaaagtgg acaggtactc	1610
tacaac	1616
<210> 89	
<211> 1860	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (69)(1121)	
<400> 89	
gagaagtget gegteegtge geegeggget ggggeggtet eaggtgtgee gaagetetgg	60
teagtgee atg ate egg cag gag ege tee aca tee tac cag gag etg	107
Met Ile Arg Gln Glu Arg Ser Thr Ser Tyr Gln Glu Leu	
1 5 10	
agt gag gag ttg gtc cag gtg gtt gag aac tca gag ctg gca gac gag	155
Ser Glu Glu Leu Val Gln Val Val Glu Asn Ser Glu Leu Ala Asp Glu	
15 20 25	
cag gac aag gag acg gtc aga gtc caa ggt ccg ggt atc tta cca ggc	203
Gln Asp Lys Glu Thr Val Arg Val Gln Gly Pro Gly Ile Leu Pro Gly	
30 35 40 45	
ctg gac age gag tee gee tee age age ate ege tte age aag gee tge	251
Leu Asp Ser Glu Ser Ala Ser Ser Ser Ile Arg Phe Ser Lys Ala Cys	
50 55 60	
ctg aag aac gtc ttc tcg gtc cta ctc atc ttc atc tac ctg ctc	299
Leu Lys Asn Val Phe Ser Val Leu Leu Ile Phe Ile Tyr Leu Leu Leu	
65 70 75	
atg get gtg gee gte tte etg gte tae egg ace ate aca gae ttt egt	347
Met Ala Val Ala Val Phe Leu Val Tyr Arg Thr Ile Thr Asp Phe Arg	
80 85 90	

gag	888	ctc	aag	cac	cct	gtc	atg	tct	gtg	tct	tac	aag	gaa	gtg	gat	395
Glu	Lys	Leu	ГЛЗ	His	Pro	Val	Met	Ser	Val	Ser	Tyr	Lys	Glu	Val	Asp	
	95					100					105					
cgc	tat	gat	gcc	cca	ggt	att	gcc	ttg	tac	ccc	ggt	cag	gcc	cag	ttg	443
Arg	Tyr	Asp	Ala	Pro	Gly	Ile	Ala	Leu	Tyr	Pro	Gly	Gln	Ala	Gln	Leu	
110					115					120					125	
ctc	agc	tgt	aag	cac	cat	tac	gag	gtc	att	cct	cct	ctg	aca	agc	cct	491
Leu	Ser	Суз	Lys	His	His	Tyr	Glu	Val	Ile	Pro	Pro	Leu	Thr	Ser	Pro	
				130					135					140		
ggc	cag	ccg	ggt	gac	atg	aat	tgc	acc	acc	cag	agg	atc	aac	tac	acg	539
Gly	Gln	Pro	Gly	Asp	Met	Asn	Суз	Thr	Thr	Gln	Arg	Ile	Asn	Tyr	Thr	
			145					150					155			
gac	ccc	ttc	tcc	aat	cag	act	gtg	aaa	tct	gcc	ctg	att	gtc	cag	ggg	587
Asp	Pro	Phe	Ser	Asn	Gln	Thr	Val	Lys	Ser	Ala	Leu	Ile	Val	Gln	Gly	
		160					165					170				
ccc	cgg	gaa	gtg	aaa	aag	cgg	gag	ctg	gtc	ttc	ctc	cag	ttc	cgc	ctg	635
Pro	Arg	Glu	Val	Lys	Lys	Arg	Glu	Leu	Val	Phe	Leu	Gln	Phe	Arg	Leu	
	175					180					185					
aac	aag	agt	agt	gag	gac	ttc	agc	gcc	att	gat	tac	ctc	ctc	ttc	tet	683
Asn	Lys	Ser	Ser	Glu	Asp	Phe	Ser	Ala	Ile	Asp	Tyr	Leu	Leu	Phe	Ser	
190					195					200					205	
tct	ttc	cag	gag	ttc	ctg	caa	agc	cca	aac	agg	gta	ggc	ttc	atg	cag	731
Ser	Phe	Gln	Glu	Phe	Leu	Gln	Ser	Pro	Asn	Arg	Val	Gly	Phe	Met	Gln	
				210		٠			215					220		
gcc	tgt	gag	agt	gcc	tat	tcc	agc	tgg	aag	ttc	tct	999	ggc	ttc	age	779
Ala	Суз	Glu	Ser	Ala	Tyr	Ser	Ser	Trp	Lys	Phe	Ser	Gly	Gly	Phe	Arg	
			225					230					235			
								aag								827
Thr	Trp	Val	Lys	Met	Ser	Leu	Val	Lys	Thr	Lys	Glu	Glu	Asp	Gly	Arg	
		240					245					250				
gaa	gca	gtg	gag	ttc	cgg	cag	gag	aca	agt	gtg	gtt	aac	tac	att	gac	875
Glu	Ala	Val	Glu	Phe	Arg	Gln	Glu	Thr	Ser	Val	Val	Asn	Tyr	Ile	Asp	
	255					260					265					
cag	agg	cca	gct	gcc	aaa	aaa	agt	gct	caa	ttg	ttt	ttt	gtg	gtc	ttt	923
Gln	Arg	Pro	Ala	Ala	Lys	Lys	Ser	Ala	Gln	Leu	Phe	Phe	Val	Val	Phe	

270 275 280 285	
gaa tgg aaa gat cct ttc atc cag aaa gtc caa gat ata gtc act gcc	971
Glu Trp Lys Asp Pro Phe Ile Gln Lys Val Gln Asp Ile Val Thr Ala	
290 295 300	
aat cot tgg aac aca att got ett ete tgt gge gee tte ttg gea tta	1019
Asn Pro Trp Asn Thr Ile Ala Leu Leu Cys Gly Ala Phe Leu Ala Leu	
305 310 315	
ttt aaa gca gca gag ttt gcc aaa ctg agt ata aaa tgg atg atc aaa	1067
Phe Lys Ala Ala Glu Phe Ala Lys Leu Ser Ile Lys Trp Met Ile Lys	
320 325 330	
att aga aag aga tac ctt aaa aga aga ggt cag gca acg agc cac ata	1115
Ile Arg Lys Arg Tyr Leu Lys Arg Arg Gly Gln Ala Thr Ser His Ile	
335 340 345	
ago tgaagtcaco tegegttgtt tagagaactg tecacateaa tgggagetgt ca	1170
Ser	
350	
toacttecae titgtaaacg gagetateaa caateetgta eteaettgaa gaaatgggge	1230
cttgctggga ggaacagcat gtaaaactgg aacttctaac cccgtcccaa aagaggcggt	1290
gtagageeta atagaagaga etaatggata aacetacaag ttatttaaat atttaaatta	1350
ttaataaact ttttaaagag ctggccaatg acttttgaat agggtttgta gaagatgcct	1410
ttcttcctgt ttggttcatt gtattgtatt aggttaagct ctactagggt aatgaaggct	1470
teresely degree generated aggreented consensus and management	1470
ctacttttca ctttttaaaa gtggacaaaa gagtgtgatt ttcttttcc aaaaattcct	1530
ctacttttca ctttttaaaa gtggacaaaa gagtgtgatt ttcttttcc aaaaattcct	1530
ctacttttca ctttttaaaa gtggacaaaa gagtgtgatt ttcttttcc aaaaattcct gagtatcaag acgtgcaggt catgctttgg agcctatgca ctgtacacaa aggcaaaacc	1530 1590
ctacttttca ctttttaaaa gtggacaaaa gagtgtgatt ttcttttcc aaaaattcct gagtatcaag acgtgcaggt catgctttgg agcctatgca ctgtacacaa aggcaaaacc ctatgacttt ggcatcatct gccattgatg tccagcctct gacatgctct ttgatttgtt	1530 1590 1650
ctacttttca ctttttaaaa gtggacaaaa gagtgtgatt ttcttttcc aaaaattcct gagtatcaag acgtgcaggt catgctttgg agcctatgca ctgtacacaa aggcaaaacc ctatgacttt ggcatcatct gccattgatg tccagcctct gacatgctct ttgatttgtt aaatgttaaa tgagacttta aggctactag aaactagtaa ttaagtttct taatggactg	1530 1590 1650 1710

<210> 90

<211> 783

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (2	245)	(706)												
<400> 90)														
acacacco	ag	tgag	gtct	ct g	gagc	cgcg	g tg	cggg	aagc	ggg	gacc	cgg	gttt	gaatcc	60
tgeceete	tg (gtgt	ggtg	eg g	cctc	ttcc	c ac	agac	tttt	ggc	ctca	gtg	ttcc	ccgcct	120
gggaagtg	igg (gact	ggcc	ct g	gtac	ctgg	e te	caga	gctg	cac	ccag	agg	cgat	cagece	180
ggtgcggg	jaa d	cggg	gegg	gg t	ggcc	gcaa	c ta	cggg	ccac	gga	tcct	gac	ccgc	cctgcc	240
cacg atg	g act	t at	ca	e ato	e et	c at	c ct	g ct	g tt	g ct	e et	c gc	c tt	C	286
Met	: Th	r Ile	e Hi:	s Ile	e Le	u Il	e Le	u Le	u Le	u Le	u Le	u Al	a Ph	9	
1	ļ			!	5				1	0					
tcc gcc	caa	ggg	gac	ctg	gac	act	gca	gcc	agg	cga	ggc	cag	cac	cag	. 334
Ser Ala	Gln	Gly	Asp	Leu	Asp	Thr	Ala	Ala	Arg	Arg	Gly	Gln	His	Gln	
15				20					25					30	
gte ece	_		-			-	_		_		-	_			382
Val Pro	Gln	His	_	Gly	His	Val	Cys	_	Leu	Gly	Val	Cys		Thr	
			35					40					45		4
cac cgc	_	•							-	_					430
His Arg	Leu		GIU	TTE	TTG	туг		He	Arg	Cys	Leu		GIN	GIÀ	·
	~~~	50	<i>aa</i> a	<b>~~</b>			55				a+ n	60	ata	+ aa	478
gcc ctc Ala Leu		•		-		-	-					_			4/0
AIG Leu	65 65	GIU	GIY	GIII	FIO	70	ALG	PLO	GLY	FIO	75	GLII	Tiou	115	
geg eeg		ata	aca	cga	aac		age	cca	σct	caa		cca	gga	ttc	526
Ala Pro			-			_		_	-				_	_	
80					85					90			•		
egg cet	gca	geg	agg	ggg	cta	geg	cag	tgc	cca	gct	ege	tgg	gtg	acc	574
Arg Pro	Ala	Ala	Arg	Gly	Leu	Ala	Gln	Cys	Pro	Ala	Arg	Trp	Val	Thr	
95				100					105			•		110	
teg gge	acg	gct	cgt	ccc	ctc	ctc	ggc	ttc	agt	ttg	cct	atc	tgt	atg	622
Ser Gly	Thr	Ala	Arg	Pro	Leu	Leu	Gly	Phe	Ser	Leu	Pro	Ile	Суз	Met	
			115					120					125		
ttg gag	ctt	cta	ctc	cac	att	tct	tct	ccc	cta	act	cca	gcc	cct	gaa	670
Leu Glu	Leu	Leu	Leu	His	Ile	Ser	Ser	Pro	Leu	Thr	Pro	Ala	Pro	Glu	
		130					135					140			
acc gtc	ttc	ccc	agt	ccc	tcc	ccg	ggc	tge	gac	tagg	rttgg	jac d	etaga	ag	720
Thr Val	Phe	Pro	Ser	Pro	Ser	Pro	Gly	Суз	qzA						

WO 00/29448 PCT/JP99/06412

145	150		
cacacgggac caggctgg	gc gaagaacact ga	cgcccaga gccgaataaa	caagagttcc 780
gtg			783
<210> 91			
<211> 303	e .		
<212> PRT			
<213> Homo sapiens			
<400> 91			
Met Glu Ala Glu Gln	Arg Pro Ala Ala	Gly Ala Ser Glu Gl	y Ala Thr
1 5		10	15
Pro Gly Leu Glu Ala	Val Pro Pro Val	Ala Pro Pro Pro Al	a Thr Ala
20	25	3	0
Ala Ser Gly Pro Ile	Pro Lys Ser Gly	Pro Glu Pro Lys Ar	g Arg His
35	40	45	
Leu Gly Thr Leu Leu	Gln Pro Thr Val	Asn Lys Phe Ser Le	u Arg Val
50	55	60	•
Phe Gly Ser His Lys	Ala Val Glu Ile	Glu Gln Glu Arg Va	l Lys Ser
65	70	<b>75</b>	80
Ala Gly Ala Trp Ile	Ile His Pro Tyr	Ser Asp Phe Arg Ph	e Tyr Trp
85		90	95
Asp Leu Ile Met Leu	Leu Leu Met Val	Gly Asn Leu Ile Va	l Leu Pro
100	105	11	0
Val Gly Ile Thr Phe	Phe Lys Glu Glu	Asn Ser Pro Pro Tr	p Ile Val
115	120	125	
Phe Asn Val Leu Ser	Asp Thr Phe Phe	Leu Leu Asp Leu Va	l Leu Asn
130	135	140	
Phe Arg Thr Gly Ile	Val Val Glu Glu	Gly Ala Glu Ile Le	
145	150	155	160
Pro Arg Ala Ile Arg	Thr Arg Tyr Leu	Arg Thr Trp Phe Le	ı Val Asp
165		170	175
Leu Ile Ser Ser Ile	Pro Val Asp Tyr		
180	185	19	)
Glu Pro Arg Leu Asp	Ala Glu Val Tyr	Lys Thr Ala Arg Ala	a Leu Arg
195	200	. 205	·
•			

Ile	Val	Arg	Phe	Thr	Lys	Ile	Leu	Ser	Leu	Leu	Arg	Leu	Leu	Arg	Lev
	210					215					220				
Ser	Arg	Leu	Ile	Arg	Tyr	Ile	His	Gln	Trp	Glu	Glu	Ile	Phe	His	Met
225					230					235					240
Thr	Tyr	Asp	Leu	Ala	Ser	Ala	Val	Val	Arg	Ile	Phe	Asn	Leu	Ile	Gly
				245					250					255	
Met	Met	Leu	Leu	Leu	Суз	His	Trp	Asp	Gly	Суз	Leu	Gln	Phe	Leu	Val
			260					265					270		
Pro	Met	Leu	Gln	Asp	Phe	Pro	Pro	Asp	Сув	Trp	Val	Ser	Ile	Asn	His
		275					280					285			
Met	Val	Val	Arg	Ser	Pro	His	Ser	Ser	Ala	Phe	Pro	Gly	Pro	Ser	
	290					295					300				
	0> 92	_													
	1> 28														
	2> PI														
			sapie	ens											
	0> 92						_								
	Ala	Asp	Pro		Gln	Leu	Phe	Asp		Thr	Ser	Ser	Ala		Ser
1				5					10	_		_		15	
Arg	Gly	Tyr	-	Ala	Gln	Arg	Ala		Gly	Gly	Leu	Ser		Pro	Ala
			20					25					30		_
Ala	Ser		Thr	Pro	His	Ala		Phe	Leu	Ala	Asp		Val	Ser	Asn
		35		_		_	40	_				45	•	-1	<b>-</b>
Met		Met	Ala	Tyr	GIY		Ser	Leu	Ala	Ala		GIĀ	гÀз	GIU	ren
•• - <b>•</b>	50	•	•			55	mh -	<b>-1</b> .		-1-	60	T	7	T	<b></b>
	Asp	гла	Asn	TTE	_	Arg	Pne	TTE	Pro	Ile	Thr	гуа	Leu	гла	
65 —	nh.	21-	**-3	3	70	\/_ <del>-</del>	m	*** 1	<b>41</b>	75	T	T	C1	T 011	80
TYE	Pne	ATG	val		Thr	Met	туг	vaı	_	Arg	гув	Leu	GŢĀ		Ten
<b>D</b> L -	Dh.	<b>D</b>	<b>.</b>	85		<b>0</b> 3	•	<b></b>	90		<b>63</b>	<b></b>	01-	95	3
Pne	Pne	PLO	_	ren	HIS	GIN	Asp		GIU	Val	GIN	туг		GIN	Asp
<b></b> 1	<b>5</b> -	••-	100	D.	•	<b>-1</b>	•	105			<b>-</b>	<b>3</b>	110	<b>m</b>	<b>-</b> 7 -
TNT	PTO		ALA	Pro	Arg	Phe	_	vaı	Asn	Ala	PTO	_	ьeu	т <b>ў</b> г	тте
	.,	115		<b>-1</b> .	_,	_,	120	••-	<b>-</b> .	17a l		125	T	<b>\1</b> =	
DTC-	AIA	MAT	AIA	PU6	116	יייחיוי	יייייי	VAI	1.011	VAI	AIA	C+IV		AIR	ווביו

	130					135					140				
Gly	Thr	Gln	Asp	Arg	Phe	Ser	Pro	Asp	Leu	Leu	Gly	Leu	Gln	Ala	Ser
145					150					155					160
Ser	Ala	Leu	Ala	Trp	Leu	Thr	Leu	Glu	Val	Leu	Ala	Ile	Leu	Leu	Ser
				165					170					175	
Leu	Tyr	Leu	Val	Thr	Val	Asn	Thr	Asp	Leu	Thr	Thr	Ile	Asp	Leu	Val
			180					185					190		
Ala	Phe	Leu	Gly	Tyr	Lys	Tyr	Val	Gly	Met	Ile	Gly	Gly	Val	Leu	Met
		195					200					205			
Gly	Leu	Leu	Phe	Gly	Lys	Ile	Gly	Tyr	Tyr	Leu	Val	Leu	Gly	Trp	Суз
	210					215					220				
Сув	Val	Ala	Ile	Phe	Val	Phe	Met	Ile	Arg	Thr	Leu	Arg	Leu	Lys	Ile
225					230					235					240
Leu	Ala	Asp	Ala	Ala	Ala	Glu	Gly	Val	Pro	Val	Arg	Gly	Ala	Arg	Asn
				245					250					255	
Gln	Leu	Arg		Tyr	Leu	Thr	Met	Ala	Val	Ala	Ala	Ala		Pro	Met
			260					265					270		
Leu	Met	_	Trp	Leu	Thr	Phe		Leu	Val	Arg					
		275					280								
-01	· ·														
	0> 93														
	1> 48														
	2> PF														
	3> Ho 0> 93		sabre	aus			•								
	Ala		T 170	G1v	Sor	e	C1v	2~~	2~~	Dwo	Tou	Tou	T 611	G) v	T.e.ii
Mec 1	Ala	GTÅ	пåя	<b>G1</b> 9	ser	ser	GTĀ	ALG	10	PIO	Ten	neu	Dea	15	Deu
	Val	A 1 m	17a1		mh~	1701	ui o	T 011	_	TIO	Ciro	Dro	Пчт		Twa
Dea	٧	ALG	20	Ala	1111	vai	ura	25	val	116	СуБ	FLO	30	1111	Lys
Val	Glu	Glu		Dhe	Δen	T. <b>2</b> 11	Gln		Thr	uie	) an	T.e.11		ጥህጕ	His
•	<b></b>	35	501	FIIC	וופת	Den	40	ALG	1111	птэ	DP	45	Ten	-1-	1140
כדינים	Gln		T.e.n	Glu	Gln	ጥነກ		uie	T.e.n	GIn	Dhe		Glv	Val	Val
5	50	_			~_11	55			ar-cu	JIU	60		1		
Pro	Arg		Phe	Leu	Glv		Val	Val	Ile	Ala		Phe	Ser	Ser	Pro
65					70					75					80

Ala	Val	Tyr	Val	Leu	Ser	Leu	Leu	Glu	Met	Ser	Lys	Phe	Tyr	Ser	Glr
				85					90					95	
Leu	Ile	Val	Arg	Gly	Val	Leu	Gly	Leu	Gly	Val	Ile	Phe	Gly	Leu	Tr
			100					105					110		
Thr	Leu	Gln	Lys	Glu	Val	Arg	Arg	His	Phe	Gly	Ala	Met	Val	Ala	Thr
		115					120					125			
Met	Phe	Суз	Trp	Val	Thr	Ala	Met	Gln	Phe	His	Leu	Met	Phe	Tyr	Cys
	130					135					140				
Thr	Arg	Thr	Leu	Pro	Asn	Val	Leu	Ala	Leu	Pro	Val	Val	Leu	Leu	Ala
145					150					155					160
Leu	Ala	Ala	Trp	Leu	Arg	His	Glu	Trp	Ala	Arg	Phe	Ile	Trp	Leu	Ser
				165					170					175	
Ala	Phe	Ala	Ile	Ile	Val	Phe	Arg	Val	Glu	Leu	Суз	Leu	Phe	Leu	Gly
			180					185					190		
Leu	Leu	Leu	Leu	Leu	Ala	Leu	Gly	Asn	Arg	Lys	Val	Ser	Val	Val	Arg
		195					200					205			
Ala	Leu	Arg	His	Ala	Val	Pro	Ala	Gly	Ile	Leu	Cya	Leu	Gly	Leu	Thr
	210					215					220				
Val	Ala	Val	Asp	Ser	Tyr	Phe	Trp	Arg	Gln	Leu	Thr	Trp	Pro	Glu	Gly
225					230					235					240
Lys	Val	Leu	Trp	Tyr	Asn	Thr	Val	Leu	Asn	Lys	Ser	Ser	Asn	Trp	Gly
				245					250					255	
Thr	Ser	Pro	Leu	Leu	Trp	Tyr	Phe	Tyr	Ser	Ala	Leu	Pro	Arg	Gly	Leu
			260					265					270		
Gly	Суз	Ser	Leu	Leu	Phe	Ile	Pro	Leu	Gly	Leu	Val	Asp	Arg	Arg	Thr
		275					280					285			
His	Ala	Pro	Thr	Val	Leu	Ala	Leu	Gly	Phe	Met	Ala	Leu	Tyr	Ser	Leu
	290					295					300				
Leu	Pro	His	Lys	Glu	Leu	Arg	Phe	Ile	Ile	Tyr	Ala	Phe	Pro	Met	Leu
305					310					315					320
Asn	Ile	Thr	Ala	Ala	Arg	Gly	Cys	Ser	Tyr	Leu	Leu	Asn	Asn	Tyr	Lys
				325					330					335	
Lys	Ser	Trp	Leu	Tyr	Lys	Ala	Gly	Ser	Leu	Leu	Val	Ile	Gly	His	Leu
			340					345					350		
Val	Val	Asn	Ala	AΙA	ጥህን፦	Ser	Ala	Thr	Ala	Leu	TVY	Val.	Ser	His	Phe

		355					360					365			
Asn	Tyr	Pro	Gly	Gly	Val	Ala	Met	Gln	Arg	Leu	His	Gln	Leu	Val	Pro
	370					375					380				
Pro	Gln	Thr	Asp	Val	Leu	Leu	His	Ile	Asp	Val	Ala	Ala	Ala	Gln	Thr
385					390					395					400
Gly	Val	Ser	Arg	Phe	Leu	Gln	Val	Asn	Ser	Ala	Trp	Arg	Tyr	Asp	Lys
				405					410					415	
Arg	Glu	Asp	Val	Gln	Pro	Gly	Thr	Gly	Met	Leu	Ala	Tyr	Thr	His	Ile
			420					425					430		
Leu	Met	Glu	Ala	Ala	Pro	Gly	Leu	Leu	Ala	Leu	Tyr	Arg	Asp	Thr	His
		435					440					445			
Arg	Val	Leu	Ala	Ser	Val	Val	Gly	Thr	Thr	Gly	Val	Ser	Leu	Asn	Leu
	450					455					460				
Thr	Gln	Leu	Pro	Pro	Phe	Asn	Val	His	Leu	Gln	Thr	Lys	Leu	Val	Leu
465					470					475					480
Leu	Glu	Arg	Leu	Pro	Arg	Pro	Ser								
				485				•							
	0> 94														
	1> 18														
	2> PI		:												
	3> A0 0> 94		sapie	ans											
			Dro	) an	Pro	Asp.	Pro	Aan	Dro	Nan	Dro	Glu	Pro	Δla	Glv
1	TIP	PIO	PLO	лэр 5	PLO	wab.	PIO	Авр	10	wab	PIO	Gra	FIO	15	GIJ
	Sor	Ara	Bro		Pro	Ala	Val	Dro		Lan	Ara	λla	T.e.11		Pro
GLY	DET	n.y	20	Gıy	FLO	ALU.	var	25	Gry	Den	мy	nia.	30	204	
Ala	Ara	Ala		T.e.u	Cvs	Ser	T.eu		Glv	Þrα	Tell	ĭ.e.ii		Ala	Glu
2224	9	35	1110		CJD	-	40	<b></b>	011	an y		45			
Ser	ឲាប		Ser	Dhe	Tle	Thr		Tle	Cva	ጥህን	Va1		Ser	Ser	Ala
-	50		-		110	55		110	Cyb	-1-	60		-		
Ser		Phe	T.e.11	ጥኮኮ	Ala	Pro	T.em	T.en	Glu	Phe		ī.eu	Ala	Leu	TVI
65					70					75					80
	Leu	Phe	Ala	Asp		Met	Gln	Leu	Asn		Lvs	Trp	Gln	Gly	_
				85					90	F	-4 -	<b>L</b> -		95	

WO 00/29448 PCT/JP99/06412

A														
CAB JI	p Pro	Met	Met	Asp	Phe	Leu	Arg	Cys	Val	Thr	Ala	Ala	Leu	Ile
		100					105		٠			110		
Tyr Ph	e Ala	Ile	Ser	Ile	Thr	Ala	Ile	Ala	Lys	Tyr	Ser	Asp	Gly	Ala
	115					120					125			
Ser Ly	s Ala	Ala	Gly	Val	Phe	Gly	Phe	Phe	Ala	Thr	Ile	Val	Phe	Ala
13	0				135					140				
Thr As	p Phe	Tyr	Leu	Ile	Phe	Asn	Asp	Val	Ala	Lys	Phe	Leu	Lys	Gln
145				150					155					160
Gly As	p Ser	Ala	Asp	Glu	Thr	Thr	Ala	His	Lys	Thr	Glu	Glu	Glu	Asn
			165					170					175	
Ser As	e Ser	qeA	Ser	Asp										
		180												
<210>	95													
<211>	184													
<212>	PRT													
<213> 1	OMO	sapie	ens											
<400>	95													
<400> 9		Leu	Arg	Gln	Arg	Val	Glu	His	Phe	Leu	Glu	Gln	Arg	Asn
		Leu	Arg 5	Gln	Arg	Val	Glu	His 10	Phe	Leu	Glu	Gln	Arg 15	Asn
Met Asj	o Gly		5		_			10					15	
Met Asj	o Gly		5		_			10					15	
Met Asj	o Gly	Glu 20	5 Val	Leu	Gly	Ala	Leu 25	10 Glu	Ala	Lys	Thr	Gly 30	15 Val	Glu
Met Asj 1 Leu Vai	o Gly	Glu 20	5 Val	Leu	Gly	Ala	Leu 25	10 Glu	Ala	Lys	Thr	Gly 30	15 Val	Glu
Met Asj 1 Leu Vai	Gly Thr Tyr 35	Glu 20 Leu	5 Val Ala	Leu Ala	Gly	Ala Ala 40	Leu 25 Val	10 Glu Thr	Ala Leu	Lys Leu	Thr Ser 45	Gly 30 Leu	15 Val Tyr	Glu Leu
Met Asj 1 Leu Vai Lys Arg	Gly Thr Tyr 35 Gly	Glu 20 Leu	5 Val Ala	Leu Ala	Gly	Ala Ala 40	Leu 25 Val	10 Glu Thr	Ala Leu	Lys Leu	Thr Ser 45	Gly 30 Leu	15 Val Tyr	Glu Leu
Met Asj 1 Leu Val Lys Arc	Gly Thr Tyr 35 Gly	Glu 20 Leu Tyr	5 Val Ala Gly	Leu Ala Ala	Gly Gly Ser 55	Ala Ala 40 Leu	Leu 25 Val Leu	10 Glu Thr Cys	Ala Leu Asn	Lys Leu Leu 60	Thr Ser 45 Ile	Gly 30 Leu Gly	15 Val Tyr Phe	Glu Leu Val
Met Asj 1 Leu Vai Lys Arg Leu Pho	Gly Thr Tyr 35 Gly	Glu 20 Leu Tyr	5 Val Ala Gly	Leu Ala Ala	Gly Gly Ser 55	Ala Ala 40 Leu	Leu 25 Val Leu	10 Glu Thr Cys	Ala Leu Asn	Lys Leu Leu 60	Thr Ser 45 Ile	Gly 30 Leu Gly	15 Val Tyr Phe	Glu Leu Val
Met Asj 1 Leu Val Lys Arg Leu Pho 50 Tyr Pro	Gly Thr 35 Gly Ala	Glu 20 Leu Tyr	5 Val Ala Gly Ala	Leu Ala Ala Ser 70	Gly Ser 55	Ala Ala 40 Leu Lys	Leu 25 Val Leu Ala	10 Glu Thr Cys	Ala Leu Asn Glu 75	Lys Leu Leu 60 Ser	Thr Ser 45 Ile Pro	Gly 30 Leu Gly Ser	15 Val Tyr Phe Lys	Glu Leu Val Asp 80
Met Asj 1 Leu Val Lys Arg Leu Pho 50 Tyr Pro 65	Gly Thr 35 Gly Ala	Glu 20 Leu Tyr	5 Val Ala Gly Ala	Leu Ala Ala Ser 70	Gly Ser 55	Ala Ala 40 Leu Lys	Leu 25 Val Leu Ala	10 Glu Thr Cys	Ala Leu Asn Glu 75	Lys Leu Leu 60 Ser	Thr Ser 45 Ile Pro	Gly 30 Leu Gly Ser	15 Val Tyr Phe Lys	Glu Leu Val Asp 80
Met Asj 1 Leu Val Lys Arg Leu Pho 50 Tyr Pro 65	Gly Thr 35 Gly Ala	Glu 20 Leu Tyr Tyr	5 Val Ala Gly Ala Trp 85	Leu Ala Ala Ser 70 Leu	Gly Ser 55 Ile	Ala 40 Leu Lys	Leu 25 Val Leu Ala Trp	10 Glu Thr Cys Ile Val 90	Ala Leu Asn Glu 75 Val	Lys Leu 60 Ser Tyr	Thr Ser 45 Ile Pro	Gly 30 Leu Gly Ser	15 Val Tyr Phe Lys Phe 95	Glu Leu Val Asp 80 Gly
Met Asj 1 Leu Val Lys Arc Leu Pho 50 Tyr Pro 65 Asp Asj	Gly Thr 35 Gly Ala	Glu 20 Leu Tyr Tyr	5 Val Ala Gly Ala Trp 85	Leu Ala Ala Ser 70 Leu	Gly Ser 55 Ile	Ala 40 Leu Lys	Leu 25 Val Leu Ala Trp	10 Glu Thr Cys Ile Val 90	Ala Leu Asn Glu 75 Val	Lys Leu 60 Ser Tyr	Thr Ser 45 Ile Pro	Gly 30 Leu Gly Ser	15 Val Tyr Phe Lys Phe 95	Glu Leu Val Asp 80 Gly
Met Asj 1 Leu Val Lys Arc Leu Pho 50 Tyr Pro 65 Asp Asj	Gly Thr 35 Gly Ala Thr	Glu 20 Leu Tyr Tyr Val Phe 100	5 Val Ala Gly Ala Trp 85	Leu Ala Ala Ser 70 Leu Ser	Gly Ser 55 Ile Thr	Ala 40 Leu Lys Tyr	Leu 25 Val Leu Ala Trp Leu 105	10 Glu Thr Cys Ile Val 90 Leu	Ala Leu Asn Glu 75 Val	Leu Leu 60 Ser Tyr	Thr Ser 45 Ile Pro Ala	Gly 30 Leu Gly Ser Leu Pro 110	15 Val Tyr Phe Lys Phe 95	Glu Leu Val Asp 80 Gly
Met Asj 1 Leu Val Lys Arg Leu Pho 50 Tyr Pro 65 Asp Asj Leu Ala	Gly Thr 35 Gly Ala Thr	Glu 20 Leu Tyr Tyr Val Phe 100	5 Val Ala Gly Ala Trp 85	Leu Ala Ala Ser 70 Leu Ser	Gly Ser 55 Ile Thr	Ala 40 Leu Lys Tyr	Leu 25 Val Leu Ala Trp Leu 105	10 Glu Thr Cys Ile Val 90 Leu	Ala Leu Asn Glu 75 Val	Leu Leu 60 Ser Tyr	Thr Ser 45 Ile Pro Ala	Gly 30 Leu Gly Ser Leu Pro 110	15 Val Tyr Phe Lys Phe 95	Glu Leu Val Asp 80 Gly

130 135 140 Leu Arg His His Gly Ala Val Asp Arg Ile Met Asn Asp Leu Ser Gly 150 155 160 145 Arg Ala Leu Asp Ala Ala Ala Gly Ile Thr Arg Asn Val Lys Pro Ser 165 170 Gln Thr Pro Gln Pro Lys Asp Lys 180 <210> 96 <211> 140 <212> PRT <213> Homo sapiens <400> 96 Met Ser Arg Phe Leu Asn Val Leu Arg Ser Trp Leu Val Met Val Ser 10 15 1 Ile Ile Ala Met Gly Asn Thr Leu Gln Ser Phe Arg Asp His Thr Phe 25 Leu Tyr Glu Lys Leu Tyr Thr Gly Lys Pro Asn Leu Val Asn Gly Leu 40 Gln Ala Arg Thr Phe Gly Ile Trp Thr Leu Leu Ser Ser Val Ile Arg 55 Cys Leu Cys Ala Ile Asp Ile His Asn Lys Thr Leu Tyr His Ile Thr 70 75 Leu Trp Thr Phe Leu Leu Ala Leu Gly His Phe Leu Ser Glu Leu Phe 85 90 Val Tyr Gly Thr Ala Ala Pro Thr Ile Gly Val Leu Ala Pro Leu Met 105 110 100 Val Ala Ser Phe Ser Ile Leu Gly Met Leu Val Gly Leu Arg Tyr Leu 120 Glu Val Glu Pro Val Ser Arg Gln Lys Lys Arg Asn 130 135

<210> 97

<211> 153

<212> PRT

<213	3> H		зарі	ens											
<400	)> 9	7													
Met	Asn	Val	Gly	Val	Ala	His	Ser	Glu	Val	Asn	Pro	Asn	Thr	Arg	Val
1				5					10					15	
Met	Asn	Ser	Arg	Gly	Met	Trp	Leu	Thr	Tyr	Ala	Leu	Gly	Val	Gly	Leu
			20					25					30		
Leu	His	Ile	Val	Leu	Leu	Ser	Ile	Pro	Phe	Phe	Ser	Val	Pro	Val	Ala
		35					40					45			
Trp	Thr	Leu	Thr	Asn	Ile	Ile	His	Asn	Leu	Gly	Met	Tyr	Val	Phe	Leu
	50					55					60				
His	Ala	Val	Lys	Gly	Thr	Pro	Phe	Glu	Thr	Pro	qeA	Gln	Gly	Lys	Ala
65					70					75					80
Arg	Leu	Leu	Thr	His	Trp	Glu	Gln	Leu	Asp	Tyr	Gly	Val	Gln	Phe	Thr
				85					90					95	
Ser	Ser	Arg	Lys	Phe	Phe	Thr	Ile	Ser	Pro	Ile	Ile	Leu	Tyr	Phe	Leu
			100					105					110		
Ala	Ser	Phe	Tyr	Thr	Lys	Tyr	Asp	Pro	Thr	His	Phe	Ile	Leu	Asn	Thr
		115					120					125			
Ala	Ser	Leu	Leu	Ser	Val	Leu	Ile	Pro	Lys	Met	Pro	Gln	Leu	His	Gly
	130					135					140				
Val	Arg	Ile	Phe	Gly	Ile	Asn	Lys	Tyr							
145					150										
<210	> 98	3													*
<211	> 17	73													
<212	> PF	T													
<213	> Hc	ano e	apie	ens											
<400	> 98	}													
Met	Ala	Ala	Phe	Leu	Ile	Gln	Thr	Lys	Asp	Asn	Pro	Met	Lys	Ala	Val
1				5					10					15	
Gly	Val	Leu	Ala	Gly	Thr	Met	Ala	Thr	Val	Val	Ala	Ile	Thr	Val	Leu
			20					25					30		
Ile	Ser	Thr	Ala	Thr	Phe	Trp	Arg	Asn	Lys	Lys	Ser	Asn	Lys	Val	Leu
		35					40					45			

Pro Met Arg Arg Val Leu Arg Lys Arg Pro Ser Pro Ala Pro Arg Thr

WO 00/29448 PCT/JP99/06412

#### 163/233

- 55 60 Ile Arg Ile Glu Trp Leu Lys Ser Lys Ser Thr Lys Ala Ala Thr Lys Phe Met Leu Lys Glu Lys Pro Pro Asn Glu Asn Cys Asn Asn Asn Ser 90 Pro Glu Ser Ser Leu Leu Pro Arg Ala Pro Ala Leu Pro Pro Pro 105 Ser Val Ala Pro Ser Thr Gly Ala Ala Gln Trp Thr Val Pro Thr Val 115 120 125 Ser Gly Ser Leu Thr Pro Gln Pro Thr Gln Pro Pro Pro Lys 135 Thr Met Gly Ser Pro Val Gln Ser Thr Leu Ile Ser Glu Leu Lys Gln 145 150 155 160 Lys Phe Glu Lys Lys Ser Val His Asn Lys Ala Tyr Phe 165 170 <210> 99 <211> 75 <212> PRT <213> Homo sapiens <400> 99 Met Ile Gly Asp Ile Leu Leu Phe Gly Thr Leu Leu Met Asn Ala Gly Ala Val Leu Asn Phe Lys Leu Lys Lys Lys Asp Thr Gln Gly Phe Gly 25 Glu Glu Ser Arg Glu Pro Ser Thr Gly Asp Asn Ile Arg Glu Phe Leu Leu Ser Leu Arg Tyr Phe Arg Ile Phe Ile Ala Leu Trp Asn Ile Phe 50 55 Met Met Phe Cys Met Ile Val Leu Phe Gly Ser 70 <210> 100

<211> 159

<212> PRT

<21	3> H	OMO :	sapi	ens												
<40	0> 1	00														
Met	Glu	Leu	Pro	Ala	Val	Asn	Leu	ГЛЗ	Val	Ile	Leu	Leu	Gly	His	Trp	
1				5					10					15		
Leu	Leu	Thr	Thr	Trp	Gly	Cys	Ile	Val	Phe	Ser	Gly	Ser	Tyr	Ala	Trp	
			20					25					30			
Ala	Asn	Phe	Thr	Ile	Leu	Ala	Leu	Gly	Val	Trp	Ala	Val	Ala	Gln	Arg	
		35		•			40					45				
qaA	Ser	Ile	Asp	Ala	Ile	Ser	Met	Phe	Leu	Gly	Gly	Leu	Leu	Ala	Thr	
	50					55					60					
Ile	Phe	Leu	Asp	Ile	Val	His	Ile	Ser	Ile	Phe	Tyr	Pro	Arg	Val	Ser	
65					70					75					80	
Leu	Thr	Ąsp	Thr	Gly	Arg	Phe	Gly	Val	Gly	Met	Ala	Ile	Leu	Ser	Leu	
				85					90					95		
Leu	Leu	Lys	Pro	Leu	Ser	Суз	Суз	Phe	Val	Tyr	His	Met	Tyr	Arg	Glu	
			100					105					110			
Arg	Gly	Gly	Glu	Leu	Leu	Val	His	Thr	Gly	Phe	Leu	Gly	Ser	Ser	Gln	٠
		115					120					125				
Asp	Arg	Ser	Ala	Tyr	Gln	Thr	Ile	Asp	Ser	Ala	Glu	Ala	Pro	Ala	Asp	
	130					135					140					
Pro	Phe	Ala	Val	Pro	Glu	Gly	Arg	Ser	Gln	qeA	Ala	Arg	Gly	Tyr		
145					150					155						
<210	> 10	)1														
<211	> 90	)9						,								
<212	> DI	ĮĄ.														
<213	)> Hc	mo s	apie	ns												
<400	> 10	)1														
atgo	aggo	ag a	ıgcag	cggc	c gg	cggc	9999	geo	agcg	aag	gggc	gacc	cc t	ggac	tggag	60
gegg	rtgec	te c	cgtt	gcto	c cc	cgcc	tgcg	acc	gcgg	ect	cagg	tccg	at c	ccca	aatct	120
gggc	ctga	ige c	taag	agga	ig go	acct	tggg	acg	ctgc	tec	agcc	tacg	gt c	aaca	agttc	180
teed	ttcg	igg t	gtto	ggca	g cc	acaa	agca	gtg	gaaa	tcg	agca	ggag	cg ç	gtga	agtca	240
acaa	gggc	et g	gato	atco	a cc	ccta	cago	gac	ttcc	ggt	ttta	ctgg	ga c	ctga	tcatg	300
ctgo	tgct	ga t	ggtg	ggga	a cc	tcat	cgtc	ctg	cctg	tgg	gcat	cacc	tt c	ttca	aggag	360
anan	acto		acct	taas	+ ~	+~++	CAAC	ort a	++	cta	atac	+++~	tt c	otec	taast	420

				cotastares	480
etggtgetea aetteegaae					
ccgcgggcca tccgcacgcg	ctacctgcgc	acctggttcc	tggttgacct	catctcttct	540
atccctgtgg attacatctt	cctagtggtg	gagctggagc	cacggttgga	cgctgaggtc	600
tacaaaacgg cacgggccct	acgcatcgtt	cgcttcacca	agatectaag	cctgctgagg	660
etgeteegee teteeegeet	catccgctac	atacaccagt	gggaggagat	ctttcacatg	720
acctatgacc tggccagtgc	tgtggttcgc	atcttcaacc	tcattgggat	gatgetgetg	780
ctatgtcact gggatggctg	totgoagtto	ctggtgccca	tgctgcagga	cttccctccc	840
gactgctggg tctccatcaa	ccacatggtg	gtgagaagtc	cccacagctc	tgeettteet	900
gggccttct					909
•					
<210> 102					
<211> 849					
<212> DNA					
<213> Homo sapiens					
<400> 102					
atggeegace eecaceaget	tttcgatgac	acaagttcag	cccagagccg	gggctatggg	60
geccageggg cacetggtgg	cctgagttat	cctgcagcct	ctcccacgcc	ccatgcagcc	120
tteetggetg acceggtgte	caacatggcc	atggcctatg	ggagcagcct	ggccgcgcag	180
ggcaaggage tggtggataa	gaacatcgac	cgcttcatcc	ccatcaccaa	gctcaagtat	240
tactttgctg tggacaccat	gtatgtgggc	agaaagctgg	gcctgctgtt	cttcccctac	300
ctacaccagg actgggaagt	gcagtaccaa	caggacaccc	aggtggaaca	ccgctttgac	360
gtcaatgccc cggacctcta	cattccagca	atggctttca	tcacctacgt	tttggtggct	420
ggtcttgcgc tggggaccca	ggataggttc	tececagace	teetgggget	gcaagcgagc	480
tcagccctgg cctggctgac	cctggaggtg	ctggccatcc	tgctcagcct	ctatctggtc	540
actgtcaaca ccgacctcac	caccatcgac	ctggtggcct	tcttgggcta	caaatatgtc	600
gggatgattg geggggteet	catgggcctg	ctcttcggga	agattggcta	ctacctggtg	660
ctgggctggt gctgcgtagc	catctttgtg	ttcatgatcc	ggacgctgcg	gctgaagatc	720
ttggcagacg cagcagctga	gggggtcccg	gtgcgtgggg	cccggaacca	getgegeatg	780
tacctgacca tggcggtggc	ggcggcgcag	cctatgctca	tgtactggct	caccttccac	840
ctggtgcgg					849

<210> 103

<211> 1464

<212> DNA

<213> Homo sapiens

<400> 103	
atggetggaa aggggteate aggeaggegg eeeetgetge tgggggetget ggtggeegt	<b>a</b> 60
gecactgtec acctggteat etgtecetae accaaagtgg aggagagett caacetgeag	120
gecacacatg acetgeteta ecactggeaa gacetggage agtacgacca tettgagtte	180
eceggagteg teeceaggae gtteeteggg ceagtggtga tegeagtgtt eteeageeec	240
geggtttacg tgettteget gttagaaatg tecaagtttt aeteteaget aatagttaga	a 300
ggagtgettg gaeteggegt gatttttgga etetggaegt tacaaaagga agtgagaegg	360
caettegggg ceatggtgge caecatgtte tgetgggtga eggeeatgea gttecaectg	420
atgttetaet geaegeggae aetgeecaat gtgetggeee tgeetgtagt eetgetggee	480
ctcgcggcct ggctgcggca cgagtgggcc cgcttcatct ggctgtcagc cttcgccatc	540
ategtgttea gggtggaget gtgeetgtte etgggeetee tgetgetget ggeettggg	600
aaccgaaagg tttctgtagt cagagccctt cgccacgccg tcccggcagg gatcctctgt	660
ttaggactga cggttgctgt ggactcttat ttttggcggc agctcacttg gccggaagga	720
aaggtgettt ggtacaacae tgteetgaac aaaageteea aetgggggae eteceegetg	780
etgtggtact tetacteage ectgeeeege ggeetggget geageetget etteateeee	840
etgggettgg tagacagaag gaegeaegeg eegaeggtge tggcaetggg etteatggea	900
etetactece teetgeeaca caaggageta egetteatea tetatgeett eeccatgete	960
aacatcacgg ctgccagagg ctgctcctac ctgctgaata actataaaaa gtcttggctg	1020
tacaaagcag ggtetetget tgtgategga eacetegtgg tgaatgeege etacteagee	1080
acggeeetgt atgtgteeea ttteaactae eeaggtggeg tegeaatgea gaggetgeae	1140
cagetggtge ceceeeagae agaegteett etgeacattg aegtggeage egeeeagaea	1200
ggtgtgtete ggttteteea agteaacage geetggaggt acgacaagag ggaggatgtg	1260
cageegggga caggeatget ggcatacaca cacateetea tggaggegge ceetgggete	1320
etggeeetet acagggacae acaeegggte etggeeageg tegtggggae eacaggtgtg	1380
agtotgaace tgacccaact gececectte aacgtecace tgeagacaaa getggtgett	1440
ctggagagge teeceeggee gtee	1464
•	
<210> 104	
<211> 546	
<212> DNA	
<213> Homo sapiens	
<400> 104	
atgtggcccc cagaccccga ccccgacccg gaccccgagc ctgccggcgg ctcccgtccc	60
ggccccgcgg tccccgggct ccgcgccctg ctgccggcgc gggctttcct ctgctctct	120
anaggeogee teetgetgge egagtegggt eteteattea teaettttat etgetatgtg	180

gegteeteag	catctgcctt	cctcacageg	cctctgctgg	agttectget	ggeettgtae	240
tteetettte	ctgatgccat	gcagctgaat	gacaagtggc	agggettgtg	ctggcccatg	300
atggacttco	tgegetgtgt	caccgcggcc	ctcatctact	ttgctatctc	catcacggcc	360
ategecaagt	actcggatgg	ggcttccaaa	gccgctgggg	tgtttggctt	ctttgctacc	420
atcgtgtttg	caactgattt	ctacctgatc	tttaacgacg	tggccaaatt	cctcaaacaa	480
ggggactctg	cagatgagac	cacageceae	aagacagaag	aagagaattc	cgactcggac	540
totgac						546
<210> 105						
<211> 552						
<212> DNA						
<213> Homo	sapiens					
<400> 105						
atggacggcc	tgaggcagcg	cgtggagcac	ttcctggagc	aaaggaacct	ggtcaccgaa	60
gtgatggggg	cgctggaggc	caagaccggg	gtggagaagc	ggtatctggc	tgcaggagcc	120
gtcactctgc	taagcctgta	tetgetgtte	ggctacggag	egtetetget	gtgcaatctc	180
atcggatttg	tgtaccccgc	atatgcctca	atcaaagcta	tegagageee	aagcaaggac	240
gacgacactg	tgtggctcac	ctactgggtg	gtgtacgccc	tgtttgggct	ggccgagttc	300
ttcagcgatc	tactcctgtc	ctggttccct	ttctactacg	tgggcaagtg	cgccttcctg	360
ttgttctgca	tggctcccag	gecetggaae	ggggctctca	tgctgtatca	gegegtegtg	420
cgtccgctgt	tcctaaggca	ccacggggcc	gtagacagaa	tcatgaacga	cctcagcggg	480
cgagccctgg	acgcggcggc	cggaataacc	aggaacgtca	agccaagcca	gaccccgcag	540
ccgaaggaca	ag		,			552
		-				
<210> 106						
<211> 420						
<212> DNA						
<213> Homo	sapiens					
<400> 106						
atgagccgtt	tcctgaatgt	gttaagaagt	tggctggtta	tggtgtccat	catagccatg	60
gggaacacgc	tgcagagctt	ccgagaccac	acttttctct	atgaaaagct	ctacactggc	120
aagccaaacc	ttgtgaatgg	cctccaagct	cggacctttg	ggatctggac	gctgctctca	180
tcagtgattc	gctgcctctg	tgccattgac	attcacaaca	agacgctcta	tcacatcaca	240
ctctggacct	tcctccttgc	cctggggcat	tteetetetg	agttgtttgt	ctatggaact	300
gcagctccca	cgattggcgt	cctggcaccc	ctgatggtgg	caagtttctc	catectgggt	360

WO 00/29448 PCT/JP99/06412

atgetggteg ggeteeggta te	tagaagta gaaccagtat	ccagacagaa	gaagagaaac	420
<210> 107				
<211> 459				
<212> DNA	•			
<213> Homo sapiens	•			
<400> 107				
atgaacgttg gagttgccca ca	gtgaagtg aatccaaata	cccgtgtcat	gaacagccgg	60
ggtatgtggc tgacatatgc at	tgggagtt ggcttgcttc	atattgtctt	actcagcatt	120
cocttottea gtgttcctgt tg	cttggact ttaacaaata	ttatacataa	tctggggatg	180
tacgtatttt tgcatgcagt ga	aaggaaca cctttcgaaa	ctcctgacca	gggtaaagca	240
aggeteetaa eteattggga ac	aactggac tatggagtac	agtttacatc	ttcacggaag	300
tttttcacaa tttctccaat aa	ttctatat tttctggcaa	gtttctatac	gaagtatgat	360
ccaactcact tcatcctaaa ca	cagettet etectgagtg	tactaattcc	caaaatgcca	420
caactacatg gtgttcggat ct	ttggaatt aataagtat			459
	•			
<210> 108				,
<211> 519				
<212> DNA				
<213> Homo sapiens				
<400> 108				
atggctgcct tcctgataca gad	ccaaggac aaccccatga	aggeegtggg	tgtgctggcc	60
ggcaccatgg ccaccgtcgt gg	ccatcact gtcctcatct	ccaccgccac	cttctggcgc	120
aacaagaagt ctaacaaggt co	tgccaatg cggcgggtgc	teegeaageg	geceageeet	180
gegeeegea ecateegeat tg	agtggctc aagtccaaga	gcaccaaagc	cgctaccaag	240
ttcatgctca aagagaaacc tco	ccaatgag aactgtaaca	acaacagccc	agaaagctct	300
ctgctcccga gagctccggc to	teceteca ecacecageg	tggcgcccag	cactggcgca	360
geceagtgga eegtgeetae tg	tetetgge teteteacte	cgcagccgac	ccaacccccg	420
ccaaaaccca aaactatggg aa	geceegte eagteaacte	tgatetetga	gctcaagcaa	480
aagtttgaga agaagagtgt gc	acaacaag gettaette			519
<210> 109				
<211> 225				
<212> DNA				
<213> Homo sapiens				

<400> 109	
atgateggag acatectget gttegggaeg ttgetgatga atgeegggge ggtgetgaac	60
tttaagetga aaaagaagga caegeaggge tttggggagg agtceaggga geecageaca	120
ggtgacaaca teegggaatt ettgetgage eteagatact ttegaatett eategeeetg	180
tggaacatet teatgatgtt etgeatgatt gtgetgtteg getet	225
<210> 110	
<211> 477	
<212> DNA	
<213> Homo sapiens	
<400> 110	
atggagetge etgetgtgaa cetgaaggtg atteteetag gteaetgget getgaeaace	60
tggggetgea ttgtattete aggeteetat geetgggeea actteaceat eetggeettg	120
ggcgtgtggg ctgtggctca gcgggactcc atcgacgcca taagcatgtt tctgggtggc	180
ttgctggcca ccatcttcct ggacatcgtg cacatcagca tcttctaccc gcgggtcagc	240
ctcacggaca cgggccgctt tggcgtgggc atggccatcc tcagcttgct gctcaagccg	300
eteteetget gettegteta ceacatgtae egggagegeg ggggtgaget eetggteeae	360
actggtttcc ttgggtcttc tcaggaccgt agtgcctacc agacgattga ctcagcagag	420
gegeeegeag atceetttge agteeeagag ggeaggagte aagatgeeeg agggtae	477
<210> 111	
<211> 3438	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (121)(1032)	
<b>&lt;400&gt;</b> 111	
geetacgacg ceteogetag agecegeggg getgegeega etectgetet ggaggggttg	60
egggtacetg atggecacag agggetetag gaggeegage gtgtaagegg ggtgggegee	120
atg gag gea gag eag egg eeg geg geg gee age gaa ggg geg ace	168
Met Glu Ala Glu Gln Arg Pro Ala Ala Gly Ala Ser Glu Gly Ala Thr	
1 5 10 15	
cet gga ctg gag gcg gtg cet cee gtt gct cee ceg cet gcg ace gcg	216
Dro Clu Lou Clu ale Vel Dro Dro Vel ale Dro Pro Pro ale Thr ale	

			20					25					30			
gcc	tca	ggt	ccg	atc	ccc	aaa	tct	ggg	cct	gag	cct	aag	agg	agg	cac	264
Ala	Ser	Gly	Pro	Ile	Pro	Lys	Ser	Gly	Pro	Glu	Pro	Lys	Arg	Arg	His	
		35					40					45				
ctt	ggg	acg	ctg	ctc	cag	cct	acg	gtc	aac	aag	ttc	tcc	ctt	cgg	gtg	312
Leu	Gly	Thr	Leu	Leu	Gln	Pro	Thr	Val	Asn	Lys	Phe	Ser	Leu	Arg	Val	
	50					55					60					
ttc	ggc	agc	cac	aaa	gca	gtg	gaa	atc	gag	cag	gag	cgg	gtg	aag	tca	360
Phe	Gly	Ser	His	Lys	Ala	Val	Glu	Ile	Glu	Gln	Glu	Arg	Val	Lys	Ser	
65					70					75					80	
gcg	ggg	gcc	tgg	atc	atc	cac	ccc	tac	agc	gac	ttc	cgg	ttt	tac	tgg	408
Ala	Gly	Ala	Trp	Ile	Ile	His	Pro	Tyr	Ser	Asp	Phe	Arg	Phe	Tyr	Trp	
				85					90					95		
gac	ctg	atc	atg	ctg	ctg	ctg	atg	gtg	ggg	aac	ctc	atc	gtc	ctg	cct	456
Asp	Leu	Ile	Met	Leu	Leu	Leu	Met	Val	Gly	Asn	Leu	Ile	Val	Leu	Pro	
			100					105					110			
gtg	ggc	atc	acc	ttc	ttc	aag	gag	gag	aac	tcc	ccg	cct	tgg	atc	gtc	504
Val	Gly	Ile	Thr	Phe	Phe	Lys	Glu	Glu	Asn	Ser	Pro	Pro	Trp	Ile	Val	
		115					120					125				
ttc	aac	gta	ttg	tct	gat	act	ttc	ttc	cta	ctg	gat	ctg	gtg	ctc	aac	552
Phe	Asn	Val	Leu	Ser	Asp	Thr	Phe	Phe	Leu	Leu	Asp	Leu	Val	Leu	Asn	
	130					135					140					
ttc	cga	acg	ggc	atc	gtg	gtg	gag	gag	ggt	gct	gag	atc	ctg	ctg	gca	600
Phe	Arg	Thr	Gly	Ile	Val	Val	Glu	Glu	Gly	Ala	Glu	Ile	Leu	Leu	Ala	
145					150					155					160	
ccg	cgg	gcc	atc	cgc	acg	cgc	tac	ctg	cgc	acc	tgg	ttc	ctg	gtt	gac	648
Pro	Arg	Ala	Ile	Arg	Thr	Arg	Tyr	Leu	Arg	Thr	Trp	Phe	Leu	Val	Asp	
				165					170					175		
ctc	atc	tct	tct	atc	cct	gtg	gat	tac	atc	ttc	cta	gtg	gtg	gag	ctg	696
Leu	Ile	Ser	Ser	Ile	Pro	Val	Asp	Tyr	Ile	Phe	Leu	Val	Val	Glu	Leu	
			180					185					190			
gag	cca	cgg	ttg	gac	gct	gag	gtc	tac	aaa	acg	gca	cgg	gcc	cta	ege	744
Glu	Pro	Arg	Leu	qeA	Ala	Glu	Val	Tyr	Lys	Thr	Ala	Arg	Ala	Leu	Arg	
		195					200					205				
atc	att	cac	ttc	acc	aaq	atc	cta	agc	cta	cta	agg	cta	ctc	cac	ctc	792

Ile Val Arg Phe Thr Lys Ile Leu Ser Leu Leu Arg Leu Leu Arg Leu	
210 215 220	
tee ege etc atc ege tac ata cae eag tgg gag gag atc ttt cae atg	840
Ser Arg Leu Ile Arg Tyr Ile His Gln Trp Glu Glu Ile Phe His Met	
225 230 235 240	
ace tat gac ctg gcc agt gct gtg gtt cgc atc ttc aac ctc att ggg	888
Thr Tyr Asp Leu Ala Ser Ala Val Val Arg Ile Phe Asn Leu Ile Gly	
245 250 255	
atg atg ctg cta tgt cac tgg gat ggc tgt ctg cag ttc ctg gtg	936
Met Met Leu Leu Cys His Trp Asp Gly Cys Leu Gln Phe Leu Val	
260 265 270	
cee atg ctg cag gac ttc cct ccc gac tgc tgg gtc tcc atc aac cac	984
Pro Met Leu Gln Asp Phe Pro Pro Asp Cys Trp Val Ser Ile Asn His	
275 280 285	1000
atg gtg gtg aga agt ccc cac age tet gce ttt cct ggg cct tet t	1030
Met Val Val Arg Ser Pro His Ser Ser Ala Phe Pro Gly Pro Ser	
290 295 300	1090
agggetette tgeetgagta geagggatgg ceaeagggag eaggaggtgg gagatgatea eaacagaaaa taggagegag gaggtgggga ggagggagga aaggggaagg agacceagaa	1150
gaagtgeteg tgtgttggag ggageaggea aaggaagggt acetaceegg aagetgagge	1210
ceceaagttg caatagagga cecttttgcc teagggeece ceagaaceaa acttaagtge	1270
ctgccaggag gaaggcctgc agtagaaggg gcagacagaa agaccaaaga aggaaaaggg	1330
geaggeagag aatgaggete egaggggeee atgeecaget etgeaatata etetgeecet	1390
cagaaceact cgtggggccg ccagtattcc catgccctgt tcaaggccat gagccacatg	1450
ctgtgcattg gctatgggca gcaggcacct gtaggcatgc ccgacgtctg gctcaccatg	1510
cteageatga tegtaggtge cacatgetac gecatgttea teggecatge cacggeacte	1570
atecagtece tggactette ceggegteag taccaggaga agtacaagca ggtggagcag	1630
tacatgteet tecacaaget gecageagae aegeggeage geatecaega gtactatgag	1690
caccgctacc agggcaagat gttcgatgag gaaagcatcc tgggcgagct gagcgagccg	1750
cttcgcgagg agatcattaa cttcacctgt cggggcctgg tggcccacat gccgctgttt	1810
geccatgeeg acceeagett egteactgea gtteteacea agetgegett tgaggtette	1870
cageeggggg atetegtggt gegtgaggge teegtgggga ggaagatgta etteateeag	1930
catgggctgc teagtgtgct ggcccgcggc gcccgggaca cacgcctcac cgatggatcc	1990
tactttgggg agatetgeet getaactagg ggeeggegea cagecagtgt tegggetgae	2050
acctactgcc gcctttactc actcagcgtg gaccatttca atgctgtgct tgaggagttc	2110

		•				
cccatgatgc	geegggeett	tgagactgtg	gccatggatc	ggatgataag	catcggcaag	2170
aagaattcca	tactgcagcg	gaagcgctcc	gagccaagtc	caggcagcag	tggtggcatc	2230
atggagcagc	acttggtgca	acatgacaga	gacatggctc	ggggtgttcg	gggtegggee	2290
ccgagcacag	gageteaget	tagtggaaag	ccagtactgt	gggagccact	ggtacatgeg	2350
ccccttcagg	cagctgctgt	gacctccaat	gtggccattg	ccctgactca	teagegggge	2410
cctctgcccc	tctccctga	ctctccagcc	accetecttg	ctcgctctgc	ttggcgctca	2470
gcaggctctc	cagetteece	gctggtgccc	gtccgagctg	gcccatgggc	atccacctcc	2530
egeetgeeeg	cccacctgc	ccgaaccctg	cacgccagcc	tatcccgggc	agggcgctcc	2590
caggtctccc	tgctgggtcc	ccctccagga	ggaggtggac	ggcggctagg	acctcggggc	2650
egeceactet	cagcetecca	accetetetg	cctcagcggg	caacaggcga	tggeteteet	2710
gggcgtaagg	gatcaggaag	tgagcggctg	cctccctcag	ggctcctggc	caaacctcca	2770
aggacagccc	agccccccag	gccaccagtg	cctgagccag	ccacaccccg	gggtctccag	2830
ctttctgcca	acatgtaaaa	cctttgagta	catecageet	tagttcttgg	ggtgcagtag	2890
tatgtaccca	agggcagatg	cctcttgggg	aaggccatgg	ggacctgaaa	cattgcccca	2950
tggaaatgtc	gaccctgtgc	ggacattccg	catactgcca	tgaagacggt	ctctgtgtcc	3010
tcagctcaag	aatcctgtag	cttgtcccat	cataatccat	tcacccgttc	atcatgtgta	3070
ctgagcagct	accatgttca	aggtaaggag	acaggaggag	taggaggagg	cagggcctct	3130
ccatgccagc	ctctgtggtċ	cttgcccaaa	cccatcagcg	caatacttga	accttctccc	3190
aggtaggggc	aggaggagcc	acatgagaga	gggagaagga	ccgcgtttac	ctttagagtt	3250
ttgttttgtt	tttteettet	gagtttgctg	ttggtgcagg	aataagggaa	aggcccaagg	3310
tatccaagcc	tggggaaggg	caggccagcc	agcacctctg	ccttctcagg	gacaagagta	3370
gtcctttacc	acceteacte	tgcctgtccc	ctctcctact	ctacagcatt	aaagactgtg	3420
ggaccagg						3438
<210> 112						
<211> 1144						
<212> DNA						•
<213> Homo	sapiens					
<220>						
<221> CDS						
<222> (56).	(907)					
<400> 112						
caaggatctg	gaaccctgag	cctcgaagcg	gaggatccct	gtgtcccage	cgggc	55
atg gcc gac	ccc cac ca	g ctt tte g	at gac aca	agt tca gcc	cag agc	103

Met Ala Asp Pro His Gln Leu Phe Asp Asp Thr Ser Ser Ala Gln Ser

		15					10					5				1
151	gca	cct	tat	agt	ctg	ggc	ggt	cct	gca	cgg	cag	gcc	ggg	tat	ggc	cgg
	Ala	Pro	Tyr	Ser	Leu	Gly	Gly	Pro	Ala	Arg	Gln	Ala	Gly	Tyr	Gly	Arg
			30					25					20			
199	aac	tcc	gtg	ccg	gac	gat	ctg	ttc	gcc	gca	cat	ccc	acg	ccc	tct	gcc
	Asn	Ser	Val	Pro	Asp	Ala	Leu	Phe	Ala	Ala	His	Pro	Thr	Pro	Ser	Ala
				45					40					35		
247	ctg	gag	aag	ggc	cag	gcg	gcc	ctg	agc	agc	ggg	tat	gcc	atg	gcc	atg
	Leu	Glu	Lys	Gly	Gln	Ala	Ala	Leu	Ser	Ser	Gly	Tyr	Ala	Met	Ala	Met
					60					55					50	
295	tat	aag	ctc	aag	acc	atc	ccc	atc	ttc	cgc	gac	atc	aac	aag	gat	gtg
	Tyr	Lys	Leu	Lys	Thr	Ile	Pro	Ile	Phe	Arg	Asp	Ile	Asn	Lys	Asp	Val
	80					75					70					65
343	ctg	ctg	ggc	ctg	aag	aga	ggc	gtg	tat	atg	acc	gac	gtg	gct	ttt	tac
	Leu	Leu	Gly	Leu	ГÄа	Arg	Gly	Val	Tyr	Met	Thr	Asp	Val	Ala	Phe	Tyr
		95					90					85				
391	gac	cag	caa	tac	cag	gtg	gaa	tgg	gac	cag	cac	cta	tac	ccc	ttc	ttc
	Asp	Gln	Gln	Tyr	Gln	Val	Glu	Trp	Asp	Gln	His	Leu	Tyr	Pro	Phe	Phe
			110					105					100			
439	att	tac	ctc	gac	ccg	gcc	aat	gtc	gac	ttt	cgc	ccc	gcc	gtg	ccg	acc
	Ile	Tyr	Leu	Asp	Pro	Ala	Asn	Val	Asp	Phe	Arg	Pro	Ala	Val	Pro	Thr
				125					120					115		
487	-	gcg			-	-	_	-					-	_	-	
	Leu	Ala	Leu	Gly	Ala	Val	Leu	Val	Tyr	Thr	Ile	Phe	Ala	Met	Ala	Pro
					140					135					130	
535		geg		_		_		_				-	_	_		
		Ala	Gln	Leu	Gly		Leu	Asp	Pro	Ser		Arg	Asp	Gln	Thr	_
	160					155					150					145
583		ata					_	_			_					
	Ser	Leu	Leu	Ile	Ala	Leu		Glu	Leu	Thr	Leu	_	Ala	Leu	Ala	Ser
		175					170					165				
631	-	ctg	-					-			-		-	_		
	Val	Leu	_		Thr	Thr	Leu	_	Thr	Asn	Val	Thr		Leu	Tyr	Leu
_			190					185					180			
679	ata	ctc	ata	aaa	aac	att	nta	aaa	atc	tat	888	tac	aac	tta	ttc	700

Ala Phe Leu Gly Tyr Lys Tyr Val Gly Met Ile Gly Gly Val Leu Met	
195 200 205	
gge etg ete tte ggg aag att gge tae tae etg gtg etg gge tgg tge	727
Gly Leu Leu Phe Gly Lys Ile Gly Tyr Tyr Leu Val Leu Gly Trp Cys	
210 215 220	
tge gta gee ate ttt gtg tte atg ate egg aeg etg egg etg aag ate	775
Cys Val Ala Ile Phe Val Phe Met Ile Arg Thr Leu Arg Leu Lys Ile	
225 230 235 240	
ttg gea gae gea get gag ggg gte eeg gtg egt ggg gee egg aac	823
Leu Ala Asp Ala Ala Ala Glu Gly Val Pro Val Arg Gly Ala Arg Asn	
245 250 255	
cag ctg ege atg tac ctg acc atg geg gtg geg geg geg cag cet atg	871
Gln Leu Arg Met Tyr Leu Thr Met Ala Val Ala Ala Ala Gln Pro Met	
260 265 270	
ctc atg tac tgg ctc acc ttc cac ctg gtg cgg tgagcgcgcc cgctga	920
Leu Met Tyr Trp Leu Thr Phe His Leu Val Arg	
275 280	
accteceget getgetgetg etgetggggg ecactgtgge egeegaacte ateteetgee	980
tgcaggcccc aaggtccacc ctgtctggcc acaggcaccg cctccatccc atgtcccgcc	1040
cageceegee eecaaceeaa ggtgetgaga gateteeage tgeacaggee acegeeecag	1100
ggegtggeeg etgttaeaga aacaataaae eetgatggge atgg	1144
<210> 113	
<211> 2339	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (253)(1719)	
<400> 113	
ctttacteag ggcacagagg gtctctgcgg ccgtagcggc cggggctgcg gtagccactt	60
tagatttggg caaggacttt agatteggge tetgttetgt tteegeegte etgetteetg	120
cegaggetgg cecaggeage egegettega aggaegeege egggagetge ggageatgeg	180
tggagtggca gtgctaacgg ctggtgtctc gcactgttgg cctgtgaagg tacgtgaagc	240
becomests as the est see that the because one and and atta	288

			M	et A	la G	ly L	ys G	ly s	er S	er G	ly A	rg A	rg P	ro L	eu		
				1				5					10				
ctg	ctg	ggg	ctg	ctg	gtg	gcc	gta	gcc	act	gtc	cac	ctg	gto	atc	tgt		336
Leu	Leu	Gly	Leu	Leu	Val	Ala	Val	Ala	Thr	Val	His	Leu	Val	Ile	Суз		
		15					20					25					
ccc	tac	acc	aaa	gtg	gag	gag	agc	ttc	aac	ctg	cag	gcc	aca	cat	gac		384
Pro	Tyr	Thr	Lys	Val	Glu	Glu	Ser	Phe	Asn	Leu	Gln	Ala	Thr	His	Asp		
	30					35					40						
ctg	ctc	tac	cac	tgg	caa	gac	ctg	gag	cag	tac	gac	cat	ctt	gag	ttc		432
Leu	Leu	Tyr	His	Trp	Gln	Asp	Leu	Glu	Gln	Tyr	Ąsp	His	Leu	Glu	Phe		
45					50					55					60		
		-	gtc			_											480
Pro	Gly	Val	Val	Pro	Arg	Thr	Phe	Leu	Gly	Pro	Val	Val	Ile		Val		
				65					70					75			
		_	CCC		_				_								528
Phe	Ser	Ser	Pro	Ala	Val	Tyr	Val		Ser	Leu	Leu	Glu		Ser	Lys		
			80					85				- • -	90				e=c
			cag														576
Phe	Tyr		Gln	Leu	IIe	Val		СТĀ	Val	Leu	GIĀ		GIĀ	vaı	TTG		
		95	<b></b>				100					105					624
			tgg Trp	-			-	-		-					-		02,4
FIIG	110	TEU	тъ	TILL	Tierr	115	туз	GIU	Val	Arg	120	urs	FIIG	GIĀ	ALG		
ata		~~~	acc	2+4	tta		taa	ata	200	ana		cad	ttc	CAC	cta		672
			Thr	_													٠, ـ
125	Vul	1114	1111	racc	130	Cyb		Vul		135					140		
	ttc	tac	tgc	aca		aca	eta	ccc	aat		cta	acc	cta	cct			720
_			Cys	_			_										
		-1-	O,D	145					150					155			
atc	cta	cta	gcc		aca	acc	taa	cta		cac	дад	taa	qcc		ttc		768
		_	Ala			-		-									
			160			•		165	5	•			170				
atc	taa	cta	tca	acc	ttc	gcc	atc		ata	ttc	agg	gta		cta	tgc	i	816
		_	Ser	-		-											
	~	175	-		-		180				-	185			-		

ctg	ttc	ctg	ggc	ctc	ctg	ctg	ctg	ctg	gcc	ttg	ggc	aac	cga	aag	gtt	864
Leu	Phe	Leu	Gly	Leu	Leu	Leu	Leu	Leu	Ala	Leu	Gly	Asn	Arg	Lys	Val	
	190					195					200					
tct	gta	gtc	aga	gcc	ctt	cgc	cac	gcc	gtc	ccg	gca	<b>9</b> 99	atc	ctc	tgt	912
Ser	Val	Val	Arg	Ala	Leu	Arg	His	Ala	Val	Pro	Ala	Gly	Ile	Leu	Cys	
205					210					215					220	
tta	gga	ctg	acg	gtt	gct	gtg	gac	tct	tat	ttt	tgg	cgg	cag	ctc	act	960
Leu	Gly	Leu	Thr	Val	Ala	Val	Asp	Ser	Tyr	Phe	Trp	Arg	Gln	Leu	Thr	
				225					230					235		
tgg	ccg	gaa	gga	aag	gtg	ctt	tgg	tac	aac	act	gtc	ctg	aac	aaa	agc	1008
Trp	Pro	Glu	Gly	Lys	Val	Leu	Trp	Tyr	Asn	Thr	Val	Leu	Asn	Lys	Ser	
			240					245					250			
tcc	aac	tgg	ggg	acc	tcc	ccg	ctg	ctg	tgg	tac	tte	tac	tca	gcc	ctg	1056
Ser	Asn	Trp	Gly	Thr	Ser	Pro	Leu	Leu	Trp	Tyr	Phe	Tyr	Ser	Ala	Leu	
		255					260					265				
ccc	cgc	ggc	ctg	ggc	tgc	agc	ctg	ctc	ttc	atc	ccc	ctg	gge	ttg	gta	1104
Pro	Arg	Gly	Leu	Gly	Cys	Ser	Leu	Leu	Phe	Ile	Pro	Leu	Gly	Leu	Val	
	270					275					280					
gac	aga	agg	acg	cac	gcg	ccg	acg	gtg	ctg	gca	ctg	ggc	ttc	atg	gca	1152
Asp	Arg	Arg	Thr	His	Ala	Pro	Thr	Val	Leu	Ala	Leu	Gly	Phe	Met	Ala	
285					290					295					300	
ctc	tac	tcc	ctc	ctg	cca	cac	aag	gag	cta	cgc	ttc	atc	atc	tat	gcc	1200
Leu	Tyr	Ser	Leu	Leu	Pro	His	Lys	Glu	Leu	Arg	Phe	Ile	Ile	Tyr	Ala	
				305					310					315		
ttc	ccc	atg	ctc	aac	atc	acg	gct	gcc	aga	ggc	tgc	tcc	tac	ctg	ctg	1248
Phe	Pro	Met	Leu	Asn	Ile	Thr	Ala	Ala	Arg	Gly	Суз	Ser	Tyr	Leu	Leu	
			320					325					330			
aat	aac	tat	aaa	aag	tct	tgg	ctg	tac	aaa	gca	ggg	tct	ctg	ctt	gtg	1296
Asn	Asn	Tyr	Lys	Lys	Ser	Trp	Leu	Tyr	Lys	Ala	Gly	Ser	Leu	Leu	Val	
		335					340					345				
atc	gga	cac	ctc	gtg	gtg	aat	gcc	gcc	tac	tca	gcc	acg	gcc	ctg	tat	1344
Ile	Gly	His	Leu	Val	Val	Asn	Ala	Ala	Tyr	Ser	Ala	Thr	Ala	Leu	Tyr	
	350					355					360					
gtg	tcc	cat	tte	aac	tac	cca	ggt	ggc	gtc	gca	atg	cag	agg	ctg	cac	1392
Val	Ser	His	Phe	Asn	Tyr	Pro	Gly	Gly	Val	Ala	Met	Gln	Arg	Leu	His	

·	
365 370 375 380	
cag ctg gtg ccc ccc cag aca gac gtc ctt ctg cac att gac gtg gca	1440
Gln Leu Val Pro Pro Gln Thr Asp Val Leu Leu His Ile Asp Val Ala	
385 390 395	
gcc gcc cag aca ggt gtg tct cgg ttt ctc caa gtc aac agc gcc tgg	1488
Ala Ala Gln Thr Gly Val Ser Arg Phe Leu Gln Val Asn Ser Ala Trp	
400 405 410	
agg tac gac aag agg gag gat gtg cag ccg ggg aca ggc atg ctg gca	1536
Arg Tyr Asp Lys Arg Glu Asp Val Gln Pro Gly Thr Gly Met Leu Ala	
415 420 425	
tac aca cac atc ctc atg gag gcg gcc cct ggg ctc ctg gcc ctc tac	1584
Tyr Thr His Ile Leu Met Glu Ala Ala Pro Gly Leu Leu Ala Leu Tyr	
430 435 440	
agg gac aca cac egg gtc etg gcc agc gtc gtg ggg acc aca ggt gtg	1632
Arg Asp Thr His Arg Val Leu Ala Ser Val Val Gly Thr Thr Gly Val	
445 450 455 460	
agt ctg aac ctg acc caa ctg ccc ccc ttc aac gtc cac ctg cag aca	1680
Ser Leu Asn Leu Thr Gln Leu Pro Pro Phe Asn Val His Leu Gln Thr	
465 470 475	
aag etg gtg ett etg gag agg ete eee egg eeg tee tgagggggae eagg	1730
Lys Leu Val Leu Glu Arg Leu Pro Arg Pro Ser	
480 485	
cagecoteag cagecacagg cettecagga getgttatea etaccagttt etggcacaat	1790
tecageacaa ttatgacaat teagagaage aagteaaagg actgggeace tgeetetgae	1850
agacaccaga ccaggtccag ggcctcctcc acagcctcag ctggggctct cagcaccaaa	1910
gaacgagggg cecaggteit gttggcacce cgggagccac tgeccagggt gatggtggcc	1970
ageteaggge tteetgeggg tgaetgtege ceagaceagg tgeeatteat gaetaateag	2030
gageageggg cteacceagg cacctgtotg ccaggaggee acgtgtgtee tgeccaccea	2090
gggggagetg tattttggca gcaccccacg cttgctgccc gagggcctct tggggcacct	2150
aagacageac ceceteteag gggagaceat ggtggeeeeg geegeaceee cecaceetgg	2210
tgccaccact gcaacttttg tattcacagg catcccatct ccatcacaga taaaatctta	2270
ggagataaac acattcaaaa aggaatgaga taaaaagaat aaggcaataa atgttgattg	2330
gaacetete	2339

<21	1> 1	756														
<21	2> Di	NA.														
<21	3> H	omo	sapi	ens												
<22	0>															
<22	1> C	DS														
<22	2> (	102)	(	650)												
<40	0> 1:	14														
gtgl	cege	etg (	ccct	cctt	cc go	caca	gece	g gg	ttte	eget	tcc	ctcc	ggg	cgcg	agaaga	60
9999	gage	cag	gccg	agcc	cc g	gece	tacc	g cc	gccg	eege	c a	tg t	gg c	ac a	ca	113
										•	M	et T	rp P	ro P	ro	
												1			•	
gac	ccc	gac	ccc	gac	ccg	gac	ccc	gag	cct	gcc	ggc	ggc	tcc	cgt	ccc	161
Asp	Pro	qeA	Pro	Asp	Pro	Asp	Pro	Glu	Pro	Ala	Gly	Gly	Ser	Arg	Pro	
5					10					15					20	
ggc	ccc	gcg	gtc	ccc	<b>a</b> aa	ctc	cgc	gcc	ctg	ctg	ccg	gcg	cgg	gct	ttc	209
Gly	Pro	Ala	Val	Pro	Gly	Leu	Arg	Ala	Leu	Leu	Pro	Ala	Arg	Ala	Phe	
				25					30		,			35		•
ctc	tgc	tct	ctc	aaa	ggc	cgc	ctc	ctg	ctg	gcc	gag	tcg	ggt	ctc	tca	257
Leu	Cys	Ser	Leu	Lys	Gly	Arg	Leu	Leu	Leu	Ala	Glu	Ser	Gly	Leu	Ser	
			40					45					50			
ttc	atc	act	ttt	atc	tgc	tat	gtg	gcg	tcc	tca	gca	tct	gcc	ttc	ete	305
Phe	Ile	Thr	Phe	Ile	Суз	Tyr	Val	Ala	Ser	Ser	Ala	Ser	Ala	Phe	Leu	
		55					60					65				
aca	gcg	cct	ctg	ctg	gag	ttc	ctg	ctg	gcc	ttg	tac	ttc	ctc	ttt	gct	353
Thr	Ala	Pro	Leu	Leu	Glu	Phe	Leu	Leu	Ala	Leu	Tyr	Phe	Leu	Phe	Ala	
	70					75					80					
gat	gcc	atg	cag	ctg	aat	gac	aag	tgg	cag	ggc	ttg	tgc	tgg	CCC	atg	401
Asp	Ala	Met	Gln	Leu	Asn	qeA	Lys	Trp	Gln	Gly	Leu	Cys	Trp	Pro	Met	
85					90					95					100	
atg	gac	ttc	ctg	cgc	tgt	gtc	acc	gcg	gcc	ctc	atc	tac	ttt	gct	atc	449
Met	Asp	Phe	Leu	Arg	Сув	Val	Thr	Ala	Ala	Leu	Ile	Tyr	Phe	Ala	Ile	
				105					110					115		
tee	atc	acg	gcc	atc	gcc	aag	tac	tcg	gat	999	gct	tcc	aaa	gcc	gct	497
Ser	Ile	Thr	Ala	Ile	Ala	Lys	Tyr	Ser	qeA	Gly	Ala	Ser	Lys	Ala	Ala	
			120					125					130			

ggg gtg ttt ggc ttc ttt gct acc atc gtg ttt gca act gat ttc tac	545
Gly Val Phe Gly Phe Phe Ala Thr Ile Val Phe Ala Thr Asp Phe Tyr	
135 140 145	
ctg atc ttt aac gac gtg gcc aaa ttc ctc aaa caa ggg gac tct gca	593
Leu Ile Phe Asn Asp Val Ala Lys Phe Leu Lys Gln Gly Asp Ser Ala	
150 155 160	
gat gag ace aca gee cae aag aca gaa gaa gag aat tee gae teg gae	641
Asp Glu Thr Thr Ala His Lys Thr Glu Glu Glu Asn Ser Asp Ser Asp	
165 170 175 180	
tot gao tgaaggootg gogggtgoot tggcaacotg agccacacag goo	690
Ser Asp	
-	
tecacecety egecteacay gggtegetgg egttggageg gaggeetgga ettetgagtt	750
geagaggggg ctgeggacae ageaggeeee ctacageete aggttetgee tgageeeage	810
ctaccagget tgcccctcag ctcagcactg ttgaccacge tgcgtatgag ggcatcttgg	870
gtateceact cettetecee atttetgtee cacaggeett cagecettta aegtetetge	930
caaaaaccag cacaaggaga caaagcagag cottgtotgt atotgggcag caggtgttoo	990
atgetgetag gtggegggg tegggggtet tetgttteae taacaggaac aaagacagaa	1050
accatgacag ggctgccccg ccaggccccg gtgggtttgt ctgcacttgg tgctcctgcc	1110
cacaccagee actitggtga caatgaccet tecaagaate titggiteaa ggageaccag	1170
ttccctcttc attcttgaag cagggagaaa ttgacctttg ccttgtcgcc caggaagtgg	1230
ggotoggoac coataactaa cacotoccac cottggaaac catgtottot gggggtgaga	1290
tgaccattct gggtctaaga ctgtttcaaa gaagagctca tagactgact ggtccagaag	1350
acagagggta caacagtggc atcacagtga cagtgtcatg gggagctggg cgggcccagc	1410
caaaccctcc ttcttcctag ageccagcca geaggeagga gttcctggac cctcaggaca	1470
gtgaacttcc agacetcagg geaggtetat gggccactgc aggagatgag accagecttc	1530
tgtgttcacc taacgattta tactgtgtat ctgtctttga tggaattttg taactttta	1590
tattttttta tgcaaaagca gettettaac agatggcatt ttetgtgact etaggeetea	1650
caaaagagcc agagttctgg acceatgttt ggagcatttg tagccttatt ctcttgcgtg	1710
tgaatctctt accetgaaaa aaagccataa tgaattaagc caaaag	1756

<210> 115

<211> 1418

<212> DNA

...

<213> Homo sapiens

<220>	
<221> CDS	
<222> (149)(703)	
<400> 115	
attggtccta gcgggggcc gggggcggac accggcgcgg ggccggagca gcgcggctca	60
ggetgeggga aageggtgeg egtgeagegg ggtgggtgee etggteegeg ggegageteg 12	20
ageageeaac ecegggegeg teggggee atg gac gge etg agg eag ege gtg	72
Met Asp Gly Leu Arg Gln Arg Val	
1 5	
gag cac ttc ctg gag caa agg aac ctg gtc acc gaa gtg ctg ggg gcg 22	<u>?</u> 0
Glu His Phe Leu Glu Gln Arg Asn Leu Val Thr Glu Val Leu Gly Ala	
10 15 20	
ctg gag gcc aag acc ggg gtg gag aag cgg tat ctg gct gca gga gcc 26	8
Leu Glu Ala Lys Thr Gly Val Glu Lys Arg Tyr Leu Ala Ala Gly Ala	
25 30 35 40	
gte act etg eta age etg tat etg etg tte gge tae gga geg tet etg	.6
Val Thr Leu Leu Ser Leu Tyr Leu Leu Phe Gly Tyr Gly Ala Ser Leu	
45 50 55	
ctg tgc aat ctc atc gga ttt gtg tac ccc gca tat gcc tca atc aaa 36	4
Leu Cys Asn Leu Ile Gly Phe Val Tyr Pro Ala Tyr Ala Ser Ile Lys	
60 65 70	•
get ate gag age eea age aag gae gae gae aet gtg tgg ete ace tac 41	2
Ala Ile Glu Ser Pro Ser Lys Asp Asp Asp Thr Val Trp Leu Thr Tyr 75 80 85	
tgg gtg gtg tac gcc ctg ttt ggg ctg gcc gag ttc ttc agc gat cta 46	'n
Trp Val Val Tyr Ala Leu Phe Gly Leu Ala Glu Phe Phe Ser Asp Leu	Ū
90 95 100	
ctc ctg tcc tgg ttc cct ttc tac tac gtg ggc aag tgc gcc ttc ctg 50	8
Leu Leu Ser Trp Phe Pro Phe Tyr Tyr Val Gly Lys Cys Ala Phe Leu	•
105 110 115 120	
ttg ttc tgc atg gct cec agg ccc tgg aac ggg gct ctc atg ctg tat 55	6
Leu Phe Cys Met Ala Pro Arg Pro Trp Asn Gly Ala Leu Met Leu Tyr	
125 130 135	
cag ege gte gtg egt eeg etg tte eta agg cac cac ggg gee gta gac 604	4
Gln Arg Val Val Arg Pro Leu Phe Leu Arg His His Gly Ala Val Asp	

140	145	150
aga atc atg aac gac ctc agc ggg c	ega gee etg gae geg	gcg gcc gga 652
Arg Ile Met Asn Asp Leu Ser Gly A	Arg Ala Leu Asp Ala	Ala Ala Gly
155 160	165	
ata acc agg aac gtc aag cca agc c	eag acc ccg cag ccg	aag gac aag 700
Ile Thr Arg Asn Val Lys Pro Ser G	Sln Thr Pro Gln Pro	Lys Asp Lys
170 175	180	
tgaagcagcc ccctgagcct cacaaggacc	teetggetgg tgaggag	ggg gccgcgccag 760
geteccagge etccacagag tettcagege	atcccccaac agcagcc	cet gecagteeet 820
egggtecagg caaggeeetg ggggteteet	taaatgccac ctcgggc	aag toccagtooc 880
agtectegge caceceage tetggatece	agggccaget gccctct	gge tetggetgtg 940
getecegeet gteeggeagg geecagggee	agegteggge acaggge	age teceactggt 1000
ctcggcaaca cacccagccg cctggtactt	cctccggccc ctcccag	ca goodtoogt 1060
ceteggggce cetgeageca cecaacgtca	cctccagccc ggtctcac	ecc atggtccagt 1120
ctcccagcag cagcaacatc cccacgcage	ccccagcaa gtcctct	ggc aagccggagg 1180
acgcagcccc caagaccagc ggacagcgcc	agaaggaatc gtcgaaac	cag cetgeeagea 1240
gegeeteagt geeegagetg gteecetgee	atteegggae etetetgg	gag tacacttcgg 1300
agtecaccae egagateace tgeagetgge	cacaccacag geceeegt	ge etgeageact 1360
actggtgcct gaaacacctg gcctgctagg	aggetecaat aaagetaa	acc cggaccag 1418
<210> 116		
<211> 1211		
<212> DNA		
<213> Homo sapiens		
<220>		
<221> CDS		
<222> (133)(555)		
<400> 116	acheteches assasst	at ttgcggcage 60
gaaaatgget eaggtggaet eegggetgga		.55.55 .5
ggetgetget geeactgetg tgetggggge		
ttgaggggag to atg ago ogt tto otg		. 33 3
Met Ser Arg Phe Leu 1 5	_	o rip Leu
gtt atg gtg tcc atc ata gcc atg g		•
Val Met Val Ser Ile Ile Ala Met G	TA Was Jul Den GIU	per tile wid

15 20 25	
gac cac act ttt ctc tat gaa aag ctc tac act ggc aag cca aac ctt	264
Asp His Thr Phe Leu Tyr Glu Lys Leu Tyr Thr Gly Lys Pro Asn Leu	
30 35 40	
gtg aat gge ete caa get egg ace ttt ggg ate tgg acg etg ete tea	312
Val Asn Gly Leu Gln Ala Arg Thr Phe Gly Ile Trp Thr Leu Leu Ser	
45 50 55 60	
tea gtg att ege tge etc tgt gee att gae att eac aac aag aeg etc	360
Ser Val Ile Arg Cys Leu Cys Ala Ile Asp Ile His Asn Lys Thr Leu	
65 70 75	
tat cac atc aca etc tgg acc tte etc ett gec etg ggg cat tte etc	408
Tyr His Ile Thr Leu Trp Thr Phe Leu Leu Ala Leu Gly His Phe Leu	
80 85 90	
tet gag ttg ttt gte tat gga aet gea get eee aeg att gge gte etg	456
Ser Glu Leu Phe Val Tyr Gly Thr Ala Ala Pro Thr Ile Gly Val Leu	
95 100 105	
gea eee etg atg gtg gea agt tte tee ate etg ggt atg etg gte ggg	504
Ala Pro Leu Met Val Ala Ser Phe Ser Ile Leu Gly Met Leu Val Gly	
110 115 120	
ete egg tat eta gaa gta gaa eea gta tee aga eag aag aag aac	552
Leu Arg Tyr Leu Glu Val Glu Pro Val Ser Arg Gln Lys Lys Arg Asn	
125 130 135 140	
tgaggcea geattateae etecaggaet ttetegtttt eeaeettgge eatettette	610
ettegtegte teteetettt aatttetttt etatteeate atetgeeett ttatteaett	670
ttagectett tttttaattt ttaaaattta aagatatgea taetgaaaag tatataacat	730
gtacgtacaa tttaaagaat aattttaaag tgaatactac gtaactccat ccaagtcaag	790
aaattgeeag etteteggaa geeeactgtg teteetteee etacetgeaa eetetteeag	850
getecetttt ceageettee cettttteee ttttatttte atgeettgat ttgacttgtg	910
tggtgggaac atgtgaacta tgaaacttaa acctgctgcc cacccagagc agctgtgacc	970
aagggetgee teaaggggtt gteeaegeag gttgggetee tetetgetge tggaeecaag	1030
actetgaace ttecaaggga caggeagtte ttetaagaag ggeteeeetg tgtgtgagea	1090
agaccacage teteetteta tetacagatg catgagggtt ggaagagtet gggctgtttt	1150
tagacettet ggteagetgt atttgtgtaa caacttttgt aataaataga aaaaceetet	1210
g	1211

<210> 117	
<211> 1099	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (183)(644)	
<400> 117	
gtateegegg cegtageage egggetggte etgetgegag eeggeggeee gg	agtgggge 60
ggeggeatgt acetteeaca ttgagtatte agaaagaagt gatetgaact et	gaccattc 120
tttatggata cattaagtca aatataagag tctgactact tgacacactg gc	togagoaa 180
ac atg aac gtt gga gtt gee cac agt gaa gtg aat eca aat acc	e egt 227
Met Asn Val Gly Val Ala His Ser Glu Val Asn Pro Asn Th	c Arg
1 5 10	15
gtc atg aac agc cgg ggt atg tgg ctg aca tat gca ttg gga g	tt ggc 275
Val Met Asn Ser Arg Gly Met Trp Leu Thr Tyr Ala Leu Gly Va	
	30
ttg ctt cat att gtc tta ctc agc att ccc ttc ttc agt gtt cc	
Leu Leu His Ile Val Leu Leu Ser Ile Pro Phe Phe Ser Val Pr	co Val
35 40 45	
got tgg act tta aca aat att ata cat aat ctg ggg atg tac gt	
Ala Trp Thr Leu Thr Asn Ile Ile His Asn Leu Gly Met Tyr Va	il Phe
50 55 60	
ttg cat gea gtg aaa gga aca cet tte gaa act cet gae eag gg	
Leu His Ala Val Lys Gly Thr Pro Phe Glu Thr Pro Asp Gln Gl	ly Lys
65 70 75	469
gea agg ete eta aet eat tgg gaa eaa etg gae tat gga gta es	
Ala Arg Leu Leu Thr His Trp Glu Gln Leu Asp Tyr Gly Val Gl	
80 85 90	95
aca tot toa egg aag tit tie aca att tot eea ata att eta ta	
Thr Ser Ser Arg Lys Phe Phe Thr Ile Ser Pro Ile Ile Leu Ty	_
100 105 11	
etg gea agt tte tat acg aag tat gat eea act cae tte ate et	
Leu Ala Ser Phe Tyr Thr Lys Tyr Asp Pro Thr His Phe Ile Le	u asn
115 120 125	

aca get tet ete etg agt gta eta att eee aaa atg eea caa eta cat	611
Thr Ala Ser Leu Leu Ser Val Leu Ile Pro Lys Met Pro Gln Leu His	
130 135 140	
ggt gtt egg ate ttt gga att aat aag tat tgaaatgttt tgaaactga	660
Gly Val Arg Ile Phe Gly Ile Asn Lys Tyr	
145 150	
aanaaaattt tacagctact gaatttetta taaggaagga gtggttagta aactgeactg	720
tttetetgat aatgtgaaat gagaagtatt tacattggag ggeeaatgge tggteettea	780
agtgctgttt tgaagtgcag atttccatta aatgatgcct ctgtttaata cacctggtac	840
atttctgaag aggggcttta taagcaggct gggcaggccc agcttataag ttaaagggca	900
tcacagtgag ggtgtagtag ataaattcaa ggaaataaga gatttgtaag aaactaggac	960
cagettaact tataatgaat gggeattgtg ttaagaaaag aacattteca gteatteage	1020
tgtggttatt taaagcagac ttacatgtaa accggaatcc tctctataca agtttattaa	1080
agattatttt tattaccgt	1099
<210> 118	
<211> 3489	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (227)(748)	
<400> 118	
gogtgoattt ttotggagaa otgoatgoat catgototot otgtgtgoat tttootggao	60
aaaagcccat agtgcctatc agattctcaa agggactcct gactccagaa agtttaaaaa	120
ccattaggct taaggaagca catacctact ctgtactcca gggaccaggt gggaacagct	180
gagtgcaggg agtggctttc tctttcagac cctctcccgg agcccc atg gct gcc	235
Met Ala Ala	
1	
ttc ctg ata cag acc aag gac aac ccc atg aag gcc gtg ggt gtg ctg	283
Phe Leu Ile Gln Thr Lys Asp Asn Pro Met Lys Ala Val Gly Val Leu	
5 10 15	
gee gge ace atg gee ace gte gtg gee ate act gte ete ate tee ace	331
Ala Gly Thr Met Ala Thr Val Val Ala Ile Thr Val Leu Ile Ser Thr	
20 25 30 35	

gcc	acc	ttc	tgg	cgc	aac	aag	aag	tct	aac	aag	gtc	ctg	cca	atg	cgg	379
Ala	Thr	Phe	Trp	Arg	Asn	Lys	Lys	Ser	Asn	Lys	Val	Leu	Pro	Met	Arg	
				40					45					50		
cgg	gtg	ctc	cgc	aag	cgg	CCC	agc	cct	gcg	ccc	cgc	acc	atc	cgc	att	427
Arg	Val	Leu	Arg	Lys	Arg	Pro	Ser	Pro	Ala	Pro	Arg	Thr	Ile	Arg	Ile	
			55					60					65			
gag	tgg	ctc	aag	tcc	aag	agc	acc	aaa	gcc	gct	acc	aag	ttc	atg	ctc	475
Glu	Trp	Leu	Lys	Ser	Lys	Ser	Thr	Lys	Ala	Ala	Thr	Lys	Phe	Met	Leu	
		70					75					80				
aaa	gag	aaa	cct	ccc	aat	gag	aac	tgt	aac	aac	aac	agc	cca	gaa	agc	523
Lys	Glu	Lys	Pro	Pro	Asn	Glu	Asn	Сла	Asn	Asn	Asn	Ser	Pro	Glu	Ser	
	85					90					95					
tct	ctg	ctc	ccg	aga	gct	ccg	gat	ctc	cct	cca	cca	ccc	agc	gtg	gcg	571
Ser	Leu	Leu	Pro	Arg	Ala	Pro	Ala	Leu	Pro	Pro	Pro	Pro	Ser	Val	Ala	
100					105					110					115	
ccc	agc	act	ggc	gca	gcc	cag	tgg	acc	gtg	cct	act	gtc	tct	ggc	tct	619
Pro	Ser	Thr	Gly	Ala	Ala	Gln	Trp	Thr	Val	Pro	Thr	Val	Ser	Gly	Ser	•
				120					125					130		
ctc	act	ccg	cag	ccg	acc	caa	ccc	ccg	cca	aaa	CCC	aaa	act	atg	gga	667
Leu	Thr	Pro	Gln	Pro	Thr	Gln	Pro	Pro	Pro	Lys	Pro	ГЛа	Thr	Met	Gly	
			135					140					145			
agc	ccc	gtc	cag	tca	act	ctg	atc	tct	gag	ctc	aag	caa	aag	ttt	gag	715
Ser	Pro	Val	Gln	Ser	Thr	Leu	Ile	Ser	Glu	Leu	Lys	Gln	Lys	Phe	Glu	
		150					155					160				
aag	aag	agt	gtg	cac	aac	aag	gct	tac	ttc	tagt	gtat	ge c	ctat	•		760
Lys	Lys	Ser	Val	His	Asn	Lys	Ala	Tyr	Phe							
	165					170										
gacc	cccc	at c	tttc	ctcc	g co	cctg	acco	CCE	accac	ect	gctg	reteg	ga c	tato	ctccc	
cttc	etet	gc t	cctt	aagg	rt ca	ctga	cccc	: tgt	tttg	cac	aatg	gtat	aa t	cccc	actgt	880
cctc	atct	ct a	ecge	Cacc	t to	tggc	gcaa	cas	gaag	ttg	cgct	ctga	ca g	gget	ctagt	940
cagg	geet	tg g	gcaa	gaca	ıt tg	ggct	ctag	gat	gcaa	ittg	gcaa	atac	gt c	cccg	ttact	1000
caaa	tcct	tg g	cact	acta	c aa	tgcc	ctcc	att	ctto	agg	gctg	agaa	tt g	acga	gaagc	1060
cago	tcac	cc a	tccc	agac	c to	acag	tccc	tce	ıggtt	cta	ctgg	gato	tc a	tcat	catcc	1120
ttag	rtcaa	gc a	gcag	ggcc	c tg	gcca	cgtg	gag	caac	act	gact	agaa	tc t	ggat	cctga	1180
7000	+~~	ac t	anan	dese	m = m	CROO	2222	aas	aact	CAG	cact	atat	ca o	acta	anaat	1240

cagegaacet	cgtgggetgt	aggaaagcaa	atgtaggtaa	ggggagagca	aggatgcaca	1300
gaaaacacac	tgactgtggg	actgtgccag	gatgcatttg	gaaagataga	geattetgte	1360
tgggcagaga	ctgtggaccc	tggtatgccc	acgtgggaca	gaggacacag	aggtggaaga	1420
ttgatcttgc	caagagtgag	ggcagatgtc	tccagccagg	actgccctga	gccgcaaaat	1480
gtcaaagctg	gagctataga	ggtagcccta	aaggcaacta	gaagagcatc	agggctgctc	1540
tctgaggagc	tgccccacca	gccatccttg	aagagacaat	tcagggcagt	tgatgaatat	1600
cagggctgag	atgtggtgag	acttccgttt	ttatccagct	cttttgctca	categegtaa	1660
ccttgggaaa	gctgtttaaa	gtcgctgatc	atcctcttcc	tcatctgtaa	atgaagaaag	1720
taggccctgt	ctacctcaca	tgcaggtcta	gggtgaggat	tgaagaaaat	agtggtgatg	1780
agggctttaa	ccaagtgcaa	agcggcatga	atgcaaagta	tttttctgca	gcccagttct	1840
gtgggtgcag	ctcttccaga	aagtattagg	agcctcacat	ctactctgcc	aagcgcccca	1900
gcaggcactg	tgctgggctt	aggggctacc	actggatgat	ggcattgccg	tgactcacac	1960
acctctactt	ctgttcttcc	ctcactccat	ccccgctacc	gtcctggcca	gctaccgtca	2020
gagagaacca	gagetecaag	tctttaattt	gccaagatga	agaaaatgag	ttctcaagga	2080
gggaatgctt	tgcttgaggc	cacacagcag	gttggtagca	aagatcttgt	ctagccaggg	2140
cagcccttat	cagcttgtga	caacetteee	caggacagaa	gtcatacaag	gcctctgggg	2200
ttaatacaaa	taggttgtgc	cctgctttaa	ggaacctgct	atcaggaaat	ctacatgtgt	2260
gcacagagag	agaaaagtag	aacagttctt	tgcatttggc	tctacttact	aacaacccct	2320
ctagaataca	ttggtgattt	catttaaaga	gattgtatgc	atttgtggct	ttcctgattt	2380
ctgagtctgt	gtttggaggt	gttactgaga	tgtgccagtg	tgcagaatcc	ttgctggggt	2440
ttctacagtc	cccaacgtga	acagtattaa	gcaagaggtg	gactcgagca	atccaggagc	2500
ccagactgag	caaataagta	ctttccagcc	tgtgtttcag	gagaggactg	tgctggatca	2560
tgettgecet	ccacagggaa	tacagcatcc	ttacagettg	catgcaatca	acctcttttg	2620
taaatggaaa	ataaagtctg	ttacccaaag	gccatgctga	tecectgete	cctgctttca	2680
tttatgtttg	ctgacctgtg	gagaccagtc	tttctgacac	acagtgaagc	tcaacttgcc	2740
teetggetge	ttcagcaggt	ggatccattc	ttcgaccccc	agatgtgact	ctaaagaagg	2800
ctgaaaattt	ttgtccaaat	tgccatgcag	atatcttgaa	cagcaggaca	tttgcaggcc	2860
ttgtctactg	gacttttctc	ccaaacagga	caagcccagg	cagggctgca	tggagaggaa	2920
tggaacctgg	agctagaatt	aattgcccac	teteccaece	taccagtgca	gcccggcaag	2980
ggcaggaatt	gggaggccta	gggtgggcat	gaaagcttgg	gaagcactgt	cgtctctcag	3040
acaggcgtcc	taaagacctc	taggctggaa	gcttgggctt	gcaagtggat	ccgggaccga	3100
gggtggtete	ttggacaacc	ccaggaactt	ggaccaaggc	agagccaatc	ttgcaaactg	3160
gccatggatg	gggaagtgcc	cggtagccag	catgagccac	actaggaaag	aggaggaggg	3220
tgcagccaaa	cttaaggcac	cggcaagtgt	tgtcagcact	ggaggagacc	ccgccagtgg	3280
ggtgaggcca	gccaagtccc	tgtgttacga	atggtgggcc	aaggggctgt	ctgctaggtc	3340

cagtaggaca ggcagagete caggetggca ceatggtagg ectecaggga aagagetggg	340
aggcaggaat ggcacactgg gcaggcttgc ccattcctgg ccctgagaat ggagctgtag	346
cctcatggac aataaatgga tgtgacacc	348
<210> 119	
<211> 931	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (25)(252)	
<400> 119	
etgaeggaeg etteggeegt aaeg atg ate gga gae ate etg etg tte ggg	51
Met Ile Gly Asp Ile Leu Leu Phe Gly	
1 5	
acg ttg ctg atg aat gcc ggg gcg gtg ctg aac ttt aag ctg aaa aag	99
Thr Leu Leu Met Asn Ala Gly Ala Val Leu Asn Phe Lys Leu Lys Lys	
10 15 20 25	
aag gac acg cag ggc ttt ggg gag gag tcc agg gag ccc agc aca ggt	147
Lys Asp Thr Gln Gly Phe Gly Glu Glu Ser Arg Glu Pro Ser Thr Gly	
30 35 40	
gac aac atc egg gaa tte ttg etg age etc aga tac ttt ega atc tte	195
Asp Asn Ile Arg Glu Phe Leu Leu Ser Leu Arg Tyr Phe Arg Ile Phe	
45 50 55	
atc gcc ctg tgg aac atc ttc atg atg ttc tgc atg att gtg ctg ttc	243
Ile Ala Leu Trp Asn Ile Phe Met Met Phe Cys Met Ile Val Leu Phe	
60 65 70	
ggc tct tgaatcccag cgatgaaacc aggaactcac tttcccggga tgccgagtct c	300
Gly Ser	
75	
cattecteca tteetgatga etteaagaat gtttttgace agaaaacega caacetteee	360
agaaagteea agetegtggt gggtggaaaa gtgttegeea aggtgtgeat ggttteeeag	420
ccacgtccct gttttcaaag atagtttcac tttggtctct gaattgaaat gctgtctact	480
gaaagggttt caggagcgtt tatgtaaggg gctgtgatga aattgcattc cccatagata	540
apagement catticists cagagateta agcagaagga tiggetigit agtitaacas	600

agccgtgttt t	tggacattc	agtgttact1	t gctgag	tctg aca	agectetg	ggcccggcca	660
ggggeeetgt t	aacaaactg	ctttcacato	c ccaaca	gggt etg	gettggee	actcagtgca	720
gctgcgatta a	ecctaaagg	ctttaagga	a cgggcc	acct gta	acagaga	caccagcctt	780
cctgtataga c	actaaattg	ttagcaagag	g tgttga	gcta gtt	cctggtg	aagtgtttcc	840
acagaagaca t	gtggagcag	ttgtggggat	t attaag	ggaa act	ttcctct	gecttgaece	900
ctttgttaaa t	aaaatgact	ttgggagcc	a t				931
<210> 120							
<211> 1123							
<212> DNA							
<213> Homo s	apiens						
<220>			,				
<221> CDS							
<222> (68)	. (547)						
<400> 120							
gtteecegag t	teggageet a	aggageeee	e egegget	tgeg geg	caggtgc	ecteggeetg	60
agteggg atg			_				109
Met	Glu Leu Pro	Ala Val	Asn Leu	Lys Val	. Ile Leu	Leu Gly	
1		5		10			
cac tgg ctg							157
His Trp Leu			Cys Ile		Ser Gly		
15	20	)		25		30	
gee tgg gee a	aac ttc acc	atc ctg	gee ttg	ggc gtg	tgg gct	gtg gct	205
Ala Trp Ala	Asn Phe Thi	: Ile Leu	Ala Leu	Gly Val	Trp Ala		
	35		40			45	
cag cgg gac	_	-		_		-	253
Gln Arg Asp	_	Ala Ile	Ser Met	Phe Leu	_	Leu Leu	
	50		55		60		
gee ace ate t				_			301
Ala Thr Ile I	Phe Leu Asp	Ile Val	His Ile	Ser Ile	Phe Tyr	Pro Arg	
65		70			75		
gte age ete a	-						349
Val Ser Leu 1	Thr Asp Thr	Gly Arg	Phe Gly	Val Gly	Met Ala	Ile Leu	
80		85		90			
age ttg ctg o	ctc aag ccg	ctc tcc	tge tge	tte gte	tac cac	atg tac	397

WO 00/29448 PCT/JP99/06412

Ser Leu Leu Lys Pro Leu Ser Cys Cys Phe Val Tyr His Met Tyr	
95 100 105 110	
egg gag ege ggg ggt gag ete etg gte eac act ggt tte ett ggg tet	445
Arg Glu Arg Gly Glu Leu Leu Val His Thr Gly Phe Leu Gly Ser	
115 120 125	
tot cag gac cgt agt gcc tac cag acg att gac tca gca gag gcg ccc	493
Ser Gln Asp Arg Ser Ala Tyr Gln Thr Ile Asp Ser Ala Glu Ala Pro	
130 135 140	
gca gat ccc ttt gca gtc cca gag ggc agg agt caa gat gcc cga ggg	541
Ala Asp Pro Phe Ala Val Pro Glu Gly Arg Ser Gln Asp Ala Arg Gly	
145 150 155	
tac tgaagecage caegetgege ceggecetge eeegggeett cetegtgeet gggagg	600
Tyr	
tegttetagg gatgeteetg aceteegtet ettggaceta agatggaatg tgteeceage	660
tcagggattg cctgaaccaa gaggccagga gcccccatgg gccgcccagt accatgcaca	720
ctectgtece gaacteectg aggesteece teestteagg geacceastg gtteceagge	780
tggaaccagg gtctctcttt acctcctacc ccatggtggc accacagagg ccctcagccg	840
agtectgeet gagtgttgea ageteaggee tttaaggaet getgatgeec eeteaggeet	900
cccccaagtt tgctgggctt tggtggaage cctgagaget tcaggtcctg ctcagcccga	960
ggageagtet ggeatgggag tgaggeeceg teetteteae tgeetggtea catggtgeet	1020
agggatgcag ggctggaggc cagaggtgtc agcaacactg tgacccacca caacctccag	1080
cotcootttt cagagcacag cattaaagtt tggggaatte tgt	1123
<210> 121	
<211> 636	
<212> PRT	
<213> Homo sapiens	
<400> 121	
Met Thr Trp Ser Leu Arg Arg Pro Ala Arg Thr Leu Gly Leu	
1 5 10 15	
Leu Leu Val Val Leu Gly Phe Leu Val Leu Arg Arg Leu Asp Trp	
20 25 30	
Ser Thr Leu Val Pro Leu Arg Leu Arg His Arg Gln Leu Gln	
35 40 45	

Ala	Lys	Gly	Trp	Asn	Phe	Met	Leu	Glu	Asp	Ser	Thr	Phe	Trp	Ile	Phe
	50					55					60				
Gly	Gly	Ser	Ile	His	Tyr	Phe	Arg	Val	Pro	Arg	Glu	Tyr	Trp	Arg	Asp
65					70					75					80
Arg	Leu	Leu	Lys	Met	Lys	Ala	Cya	Gly	Leu	Asn	Thr	Leu	Thr	Thr	Tyr
				85					90					95	
Val	Pro	Trp	Asn	Leu	His	Glu	Pro	Glu	Arg	Gly	ГÀа	Phe	qeA	Phe	Ser
			100			•		105					110		
Gly	Asn	Leu	Asp	Leu	Glu	Ala	Phe	Val	Leu	Met	Ala	Ala	Glu	Ile	Gly
		115					120					125			
Leu	Trp	Val	Ile	Leu	Arg	Pro	Gly	Pro	Tyr	Ile	Суз	Ser	Glu	Met	Asp
	130					135					140				
Leu	Gly	Gly	Leu	Pro	Ser	Trp	Leu	Leu	Gln	Asp	Pro	Gly	Met	Arg	Leu
145					150		•			155					160
Arg	Thr	Thr	Tyr	Lys	Gly	Phe	Thr	Glu	Ala	Val	qaA	Leu	Tyr	Phe	Asp
				165					170					175	
His	Leu	Met	Ser	Arg	Val	Val	Pro	Leu	Gln	Tyr	Lys	Arg	Gly	Gly	Pro
			180					185					190		
Ile	Ile	Ala	Val	Gln	Val	Glu	Asn	Glu	Tyr	Gly	Ser	Tyr	Asn	Lys	Asp
		195					200.					205			
Pro	Ala	Tyr	Met	Pro	Tyr	Val	Lys	Lys	Ala	Leu	Glu	qzA	Arg	Gly	Ile
	210					215					220				
Val	Glu	Leu	Leu	Leu	Thr	Ser	qeA	Asn	Lys	Asp	Gly	Leu	Ser	Lys	Gly
225					230					235					240
Ile	Val	Gln	Gly	Val	Leu	Ala	Thr	Ile	Asn	Leu	Gln	Ser	Thr	His	Glu
				245					250					255	
Leu	Gln	Leu	Leu	Thr	Thr	Phe	Leu	Phe	Asn	Val	Gln	Gly	Thr	Gln	Pro
			260					265					270		
Lys	Met	Val	Met	Glu	Tyr	Trp	Thr	Gly	Trp	Phe	Asp	Ser	Trp	Gly	Gly
		275					280					285			
Pro	His	Asn	Ile	Leu	Asp	Ser	Ser	Glu	Val	Leu	ГÀз	Thr	Val	Ser	Ala
	290					295					300				
Ile	Val	Asp	Ala	Gly	Ser	Ser	Ile	Asn	Leu	Tyr	Met	Phe	His	Gly	Gly
305					310					315					320
The	Aan	Dhe	Glw	Dhe	Mot	λen	Glv	A 7 a	Mot	uio	Dhe	Hie	Agn	ጥነም	Lva

				325					330					335	į.
Ser	Asp	Val	Thr	Ser	Tyr	Asp	Tyr	Asp	Ala	Val	Leu	Thr	Glu	Ala	Gly
			340					345					350		
Asp	Tyr	Thr	Ala	Lys	Tyr	Met	Lys	Leu	Arg	Asp	Phe	Phe	Gly	Ser	Ile
		355					360					365			
Ser	Gly	Ile	Pro	Leu	Pro	Pro	Pro	Pro	Asp	Leu	Leu	Pro	Lys	Met	Pro
	370					375					380				
Tyr	Glu	Pro	Leu	Thr	Pro	Val	Leu	Tyr	Leu	Ser	Leu	Trp	Asp	Ala	Leu
385					390					395					400
Lys	Tyr	Leu	Gly	Glu	Pro	Ile	ГÀв	Ser	Glu	Lys	Pro	Ile	Asn	Met	Glu
				405					410					415	
Asn	Leu	Pro	Val	Asn	Gly	Gly	Asn	Gly	Gln	Ser	Phe	Gly	Tyr	Ile	Leu
			420					425					430		
Tyr	Glu	Thr	Ser	Ile	Thr	Ser	Ser	Gly	Ile	Leu	Ser	Gly	His	Val	His
		435					440					445			
Asp		Gly	Gln	Val	Phe		Asn	Thr	Val	Ser		Gly	Phe	Leu	Asp
	450					455					460				_
_	Lys	Thr	Thr	ГЛЗ		Ala	Val	Pro	Leu		Gln	Gly	Tyr	Thr	
465	_			<b>-</b>	470					475	_	_			480
Leu	Arg	Ile	Leu		Glu	Asn	Arg	Gly	_	Val	Asn	Tyr	GIŸ		Asn
-1 -	•	•	-1.	485	_		_		490	•	<u>-</u>		•	495	•
TTE	Asp	Asp	Gln	Arg	rys	GTÀ	Leu		GIÀ	Asn	Leu	ıyr	Leu 510	Asn	Asp
Core	D	T	500	3	nh -	3	T1 -	505		T	3	<b>\</b>		T	c
per	PIO		Lys	ASN	Pne	Arg		TYE	ser	Leu	Азр	525	гЛя	гур	ser
Dho	Pho	515	200	Dho	C3	T 011	520	T	m	502	50×		Dro	Glu.	
FIIG	530	GIII	Arg	Pile	GTÀ	535	Asp	туз	пр	SeT	540	Ten	PLO	GIU	1111
Dro	_	Leu	Pro	פות	Dho		T en	Clv	Sor	Ten		Tle	Ser	Ser	ጥኮኮ
545	1111	Dea	FIU	ALG	550	FIIG	Leu	СТХ	Ser	555	Pet	TT-	561	DOT	560
	Cva	Aan	Thr	Dho		Taro	Len	GI 12	Clv		GI 11	Tare	Glw	t/al	
110	Cys	- Yap	1111	565	Leu	пуз	Leu	GIU	570	ırp	GIU	пλэ	GIŞ	575	Val
Dho	Tla	) co	Gly		) an	Lou	C1++	7-4		<b>Ш</b>	7 cn	T10	Glv.		Gla
- 11 <del>C</del>	176	NOII	580	<b>GTII</b>	WOII	neu	GLY	585	<b>-</b>	TTP	wali		590	£10	GLII
Twe	ጥኮ፦	T.e.11	Tyr	T.eu	Dro	G1••	Dro		T.o.13	Sor	Ser			Δοη	G] n
ny s	7111	505	TÅT	nen	£T.O	атÃ	EUU FIO	тъ	Ten	PRT	DET	euz Già	TTG	nali	GIII

Val	Ile	Val	Phe	Glu	Glu	Thr	Met	Ala	Gly	Pro	Ala	Leu	Gln	Phe	Thi
	610					615					620				
Glu	Thr	Pro	His	Leu	Gly	Arg	Asn	Gln	Tyr	Ile	Lys				
625					630					635					
<210	> 12	22													
<211	> 3:	18													
<212	> PI	RT													
<213	> H	omo :	sapie	ens											
<400	> 12	22													
Met	Val	Glu	Leu	Met	Phe	Pro	Leu	Leu	Leu	Leu	Leu	Leu	Pro	Phe	Let
1				5					10					15	
Leu	Tyr	Met	Ala	Ala	Pro	Gln	Ile	Arg	Lys	Met	Leu	Ser	Ser	Gly	Va]
			20					25					30		
Cys	Thr	Ser	Thr	Val	Gln	Leu	Pro	Gly	Lys	Val	Val	Val	Val	Thr	Gly
		35					40					45			
Ala	Asn	Thr	Gly	Ile	Gly	Lys	Glu	Thr	Ala	Lys	Glu	Leu	Ala	Gln	Arg
	50					55					60				
Gly	Ala	Arg	Val	Tyr	Leu	Ala	Суз	Arg	Asp	Val	Glu	Lys	Gly	Glu	Lev
65					70					75					80
Val	Ala	Lys	Glu	Ile	Gln	Thr	Thr	Thr	Gly	Asn	Gln	Gln	Val	Leu	Val
				85					90					95	
Arg	Lys	Leu	Asp	Leu	Ser	Asp	Thr	Lys	Ser	Ile	Arg	Ala		Ala	Lys
			100					105					110		_
Gly	Phe	Leu	Ala	Glu	Glu	ГÀз	His	Leu	His	Val	Leu		Asn	Asn	Ala
		115					120					125			
_		Met	Met	Cys	Pro	-	Ser	Lys	Thr	Ala	qeA	Gly	Phe	Glu	Met
	130					135					140				
	Ile	Gly	Val	Asn	His	Leu	Gly	His	Phe		Leu	Thr	His	Leu	
145					150					155				_	160
Leu	Glu	Lys	Leu	Lys	Glu	Ser	Ala	Pro		Arg	Ile	Val	Asn		Ser
				165					170					175	
Ser	Leu	Ala		His	Leu	Gly	Arg		His	Phe	His	Asn		Gln	Gly
			180	•				185					190		
Glu	Lys	Phe	Tyr	Asn	Ala	Gly	Leu	Ala	Tyr	Сув	His	Ser	Lys	Leu	Ala

		195					200					205			
Asn	Ile	Leu	Phe	Thr	Gln	Glu	Leu	Ala	Arg	Arg	Leu	Lys	Gly	Ser	Gly
	210					215					220				
Val	Thr	Thr	Tyr	Ser	Val	His	Pro	Gly	Thr	Val	Gln	Ser	Glu	Leu	Val
225					230					235					240
Arg	His	Ser	Ser	Phe	Met	Arg	Trp	Met	Trp	Trp	Leu	Phe	Ser	Phe	Phe
				245					250					255	
Ile	Lys	Thr	Pro	Gln	Gln	Gly	Ala	Gln	Thr	Ser	Leu	His	Суз	Ala	Leu
			260					265					270		
Thr	Glu	Gly	Leu	Glu	Ile	Leu	Ser	Gly	Asn	His	Phe	Ser	Asp	Суз	His
		275					280					285			
Val	Ala	Trp	Val	Ser	Ala	Gln	Ala	Arg	Asn	Glu	Thr	Ile	Ala	Arg	Arg
	290					295					300				
Leu	Trp	Asp	Val	Ser	Cys	Asp	Leu	Leu	Gly	Leu	Pro	Ile	Asp		
305					310					315					
<21	0> 12	23													
<21	1> 82	2													
<213	2> PI	TS													
<21	3> Ho		apie	ens											
<400	0> 12	23													
Met	Ala	Phe	Thr	Leu	Tyr	Ser	Leu	Leu	Gln	Ala	Ala	Leu	Leu	Cys	Val
1				5					. 10					15	
Asn	Ala	Ile	Ala	Val	Leu	His	Glu	Glu	Arg	Phe	Leu	Lys	Asn	Ile	Gly
			20					25					30		
Trp	Gly	Thr	qeA	Gln	Gly	Ile	Gly	Gly	Phe	Gly	Glu	Glu	Pro	Gly	Ile
		35					40					45			
Lys	Ser	Gln	Leu	Met	Asn	Leu	Ile	Arg	Ser	Val	Arg	Thr	Val	Met	Arg
	50					55					60				
Val	Pro	Leu	Ile	Ile	Val	Asn	Ser	Ile	Ala	Ile	Val	Leu	Leu	Leu	Leu
65					70					75					80
Phe	Gly														

<21	1> 2	47													
<212	2> P	RT													
<213	3> H	omo	sapi	ens											
<400	0> 1	24													
Met	His	Leu	Ala	Arg	Leu	Val	Gly	Ser	Сув	Ser	Leu	Leu	Leu	Leu	Leu
1				5					10					15	
Gly	Ala	Leu	Ser	Gly	Trp	Ala	Ala	Ser	Asp	qeA	Pro	Ile	Glu	Lys	Val
			20					25					30		
Ile	Glu	Gly	Ile	Asn	Arg	Gly	Leu	Ser	Asn	Ala	Glu	Arg	Glu	Val	Gly
		35					40					45			
Lys	Ala	Leu	qzA	Gly	Ile	Asn	Ser	Gly	Ile	Thr	His	Ala	Gly	Arg	Glu
	50					55					60				
Val	Glu	Lys	Val	Phe	Asn	Gly	Leu	Ser	Asn	Met	Gly	Ser	His	Thr	Gly
65					70					75					80
Lys	Glu	Leu	Asp	ГÀЗ	Gly	Val	Gln	Gly	Leu	Asn	His	Gly	Met	qeA	Lys
				85					90					95	
Val	Ala	His	Glu	Ile	Asn	His	Gly	Ile	Gly	Gln	Ala	Gly	Lys	Glu	Ala
			100					105					110		
Glu	Lys		Gly	His	Gly	Val		Asn	Ala	Ala	Gly		Ala	Gly	Lys
_	_	115		_		_	120					125		_	
Glu		qeA	Lys	Ala	Val		Gly	Phe	His	Thr	_	Val	His	Gln	Ala
	130					135					140		- <b>-</b>		_
-	Lys	Glu	Ala	Glu	-	Leu	Gly	Gln	Gly		Asn	His	Ala	Ala	
145		<b>~</b> 3.	_		150			_		155			•	•	160
GIN	Ala	GIĀ	Lys		Val	GLu	ГЛЯ	Leu		GIN	GTĀ	ALA	H18		ATG
	<b>01</b>	<b>01</b>	•••	165	<b>-</b>	<b>0</b> 7	•	<b>-1</b>	170	.1.	<b></b> .	•	<b>0</b> 1	175	
Ala	GIY	GIN		GIÀ	гла	GIU	Leu		Asn	ALA	HIS	ASN		vaı	Asn
<b>a</b> 1-	n1_	0	180	<b>0</b> 1	.1_	•	a1	185	<b>-</b>	•		•	190	<b>~</b> 1	C
GIU	AIA		Lys	GIU	ATS	ASN		Leu	Leu	ASN	ĠТĀ		HIS	GIII	ser
<b>63</b>	C	195	0	***	a1-	03	200		<b>50</b> 1	<b>m</b> la aa	ml	205	<b>.</b>		C
Gly		ser	ser	HIS	GTD	_	СΤĀ	ATS	TNI	TUL		LIO	ьeu	АТЯ	ser
	210	0	**- 7	<b>&gt;</b>	<b>-</b>	215	-1	_,	•	<b>-</b>	220	<b>-1</b> -	<b>.</b>	<b>m</b>	N
Gly	WTG	ser	vaT			PTO	Lue	TTG			7Ľ0	WTØ	ren	ırp	
225	17-1	<b>3</b> 7-	N am		230	<b></b>				235					240

WO 00/29448 PCT/JP99/06412

### 195/233

245

<21	0> 1	25													
<21	1> 2	06													
<21	2> P	RT													
<21	3> н	omo :	sapi	ens											
<40	0> 1:	25													
Met	Ala	Pro	Ser	His	Leu	Ser	Val	Arg	Glu	Met	Arg	Glu	Asp	Glu	Lys
1				5					10					15	
Pro	Leu	Val	Leu	Glu	Met	Leu	Lys	Ala	Gly	Val	Lys	Asp	Thr	Glu	Asn
			20					25					30		
Arg	Val	Ala	Leu	His	Ala	Leu	Thr	Arg	Pro	Pro	Ala	Leu	Leu	Leu	Leu
		35					40					45			
Ala	Ala	Ala	Ser	Ser	Gly	Leu	Arg	Phe	Val	Leu	Ala	Ser	Phe	Ala	Leu
	50					55					60				
Ala	Leu	Leu	Leu	Pro	Val	Phe	Leu	Ala	Val	Ala	Ala	Val	Lys	Leu	Gly
65					70					75					80
Leu	Arg	Ala	Arg	Trp	Gly	Ser	Leu	Pro	Pro	Pro	Gly	Gly	Leu		Gly
				85					90					95	
Pro	Trp	Val		Val	Arg	Gly	Ser	Gly	Asp	Val	Сув	Gly		Leu	Ala
			100					105					110		
Leu	Ala		Gly	Thr	Asn	Ala		Ąsp	Gly	Ala	Arg		Thr	Arg	Leu
	_	115					120					125			
Ser		Ser	Arg	Trp	His		Arg	Arg	Gly	Val		Arg	Arg	Leu	Leu
	130	_		_		135					140				
	Phe	Ala	Glu	Ala		Ala	Arg	Ala	Trp		Gly	Gly	Met	Gly	
145		_			150			_		155			_		160
Pro	Arg	Ala	Arg		Val	Val	Pro	Val	Ala	Val	Ala	Ala	Trp		Val
				165					170	_	_	_ <b>_</b> .		175	
Gly	Gly	Met		Glu	Gly	Сув	Gly		Gln	Ala	Glu	Gly		Trp	GIŸ
_	_		180		_			185			_	_	190		
Cys	Leu	_	Tyr	Thr	Leu	Val	_	Glu	Phe	Ser	Lys		Leu		
		195					200					205			

<210> 126

<21	1> 4	32													
<21	2> P	RT													
<21	3> H		sapi	ens											
<40	0> 1	26													
Met	Asp	Ala	Arg	Trp	Trp	Ala	Val	Val	Val	Leu	Ala	Ala	Phe	Pro	Ser
1				5					10					15	
Leu	Gly	Ala	Gly	Gly	Glu	Thr	Pro	Glu	Ala	Pro	Pro	Glu	Ser	Trp	Thr
			20					25					30		
Gln	Leu	Trp	Phe	Phe	Arg	Phe	Val	Val	Asn	Ala	Ala	Gly	Tyr	Ala	Ser
		35					40					45			
Phe	Met	Val	Pro	Gly	Tyr	Leu	Leu	Val	Gln	Tyr	Phe	Arg	Arg	Lys	Asn
	50					55					60				
Tyr	Leu	Glu	Thr	Gly	Arg	Gly	Leu	Суз	Phe		Leu	Val	Lys	Ala	Суз
65					70					75				_	80
Val	Phe	Gly	Asn		Pro	Lys	Ala	Ser		Glu	Val	Pro	Leu		Pro
			_	85	_				90					95	
Arg	Thr	Glu		Ala	Glu	Thr	Thr		Met	Trp	Gln	Ala		ГЛа	Leu
_		_	100			_		105		_	_		110	-1	
Leu	Pne	_	Ala	Thr	Gly	Leu		Val	Ser	Tyr	Leu		лтр	GIĀ	Val
<b>T</b>	<b>~</b> 1~	115		•••		mb	120		<b>.</b>	<b>03-</b> -	<b>31</b> -	125		mh	Com
ren		GIU	Arg	val	Met		Arg	ser	туr	GIÀ		The	Ala	THE	Ser
D	130	<b>61</b>	<b>.</b>	<b>7</b> h -	m\	135	0	<b>6</b> 1-	Dh -	T	140	T 011	Wot	A an	N~~
145	GIY	GIU	ALG	Pne	Thr	Авр	Set	GIU	Pne	155	vaı	Den	Mec	Vali	160
	Tou	פות	Tou	Tlo	150 Val	*1.		Tou	Sor.		wal	T.OII	Cve	T.ve	
var	Leu	Ma	Tien	165	vai	MIG	GTĀ	Deu	170	cys	var	Tien	CJS	175	GIII.
Dro	Δνα	uia	Glv		Pro	Mo+	(Treated	Ara		Ser	Dhe	Δla	Ser		Ser
110	n.y	1113	180	ALG	FIO	Mec	TYL	185	+ <b>Y</b> -	Del	<b>F110</b>	******	190		
Δan	t/a1	T.e.11		Sor	Trp	وري	Gln		Glu	λla	Teu	T.V9		Val	Ser
21011	Vul	195	<b>5</b> 61	Der	112	Cys	200	-y-	GIU	ALU.	20.4	205			
Phe	Pro		Gln	บลไ	Leu	Δla		Ala	Sor	T.VQ	Val		Pro	Val	Met
	210	***	<b>U</b> 111	VUL	LCu	215	בעב	mu	<b>0</b> 01	2,5	220			·	
Ten		G]v	Lva	Len	Val		Ara	Ara	Ser	ጥህጉ		His	Tro	Glu	Tvr
225		,	-,-		230					235			<b>F</b>		240
	ጥከተ	Δla	ጥኮተ	T.em		Ser	Tle	Glv	Va1		Met	Phe	Leu	Leu	Ser

245

## 197/233

250

255

Ser	Gly	Pro	Glu	Pro	Arg	Ser	Ser	Pro	Ala	Thr	Thr	Leu	Ser	Gly	Leu
			260					265					270		
Ile	Leu	Leu	Ala	Gly	Tyr	Ile	Ala	Phe	Asp	Ser	Phe	Thr	Ser	Asn	Trp
		275					280					285			
Gln	Asp	Ala	Leu	Phe	Ala	Tyr	Lys	Met	Ser	Ser	Val	Gln	Met	Met	Phe
	290					295				٠	300				
Gly	Val	Asn	Phe	Phe	Ser	Сув	Leu	Phe	Thr	Val	Gly	Ser	Leu	Leu	Glu
305					310					315					320
Gln	Gly	Ala	Leu	Leu	Glu	Gly	Thr	Arg	Phe	Met	Gly	Arg	His	Ser	Glu
				325					330					335	
Phe	Ala	Ala	His	Ala	Leu	Leu	Leu	Ser	Ile	Cys	Ser	Ala	Cys	Gly	Gln
			340					345					350		
Leu	Phe	Ile	Phe	Tyr	Thr	Ile	Gly	Gln	Phe	Gly	Ala	Ala	Val	Phe	Thr
		355					360					365			
Ile	Ile	Met	Thr	Leu	Arg	Gln	Ala	Phe	Ala	Ile	Leu	Leu	Ser	Cys	Leu
	370				•	375					380				
Leu	Tyr	Gly	His	Thr	Val	Thr	Val	Val	Gly	Gly	Leu	Gly	Val	Ala	Val
385					390					395					400
Val	Phe	Ala	Ala	Leu	Leu	Leu	Arg	Val	Tyr	Ala	Arg	Gly	Arg	Leu	Lys
				405					410					415	
Gln	Arg	Gly	Lys	Lys	Ala	Val	Pro	Val	Glu	Ser	Pro	Val	Gln	ГÀз	Val
			420					425					430		
<210	> 12	27													
<211	l> 30	)6													
<212	> PF	T						•							
<213	3> Hc	ano e	apie	ns											
<400	> 12	27													
Met	Gly	His	Arg	Thr	Leu	Val	Leu	Pro	Trp	Val	Leu	Leu	Thr	Leu	Суз
1				5					10					15	
Val	Thr	Ala	Gly	Thr	Pro	Glu	Val	Trp	Val	Gln	Val	Arg	Met	Glu	Ala
			20					25					30		
Thr	Glu	Leu	Ser	Ser	Phe	Thr	Ile	Arg	Суз	Gly	Phe	Leu	Gly	Ser	Gly
		35					40					45			

Ser	Ile	Ser	Leu	Val	Thr	Val	Ser	Trp	Gly	Gly	Pro	Asp	Gly	Ala	Gly
	50					55					60				
Gly	Thr	Thr	Leu	Ala	Val	Leu	His	Pro	Glu	Arg	Gly	Ile	Arg	Gln	Trp
65					70					75					80
Ala	Pro	Ala	Arg	Gln	Ala	Arg	Trp	Glu	Thr	Gln	Ser	Ser	Ile	Ser	Leu
				85					90					95	
Ile	Leu	Glu	Gly	Ser	Gly	Ala	Ser	Ser	Pro	Суз	Ala	Asn	Thr	Thr	Phe
			100					105					110		
Сув	Cys	Lys	Phe	Ala	Ser	Phe	Pro	Glu	Gly	Ser	Trp	Glu	Ala	Cys	Gly
		115					120					125			
Ser	Leu	Pro	Pro	Ser	Ser	Asp	Pro	Gly	Leu	Ser	Ala	Pro	Pro	Thr	Pro
	130					135					140				
Ala	Pro	Ile	Leu	Arg	Ala	Asp	Leu	Ala	Gly	Ile	Leu	Gly	Val	Ser	Gly
145					150					155					160
Val	Leu	Leu	Phe	Gly	Сув	Val	Tyr	Leu	Leu	His	Leu	Leu	Arg	Arg	His
				165					170					175	
Lys	His	Arg	Pro	Ala	Pro	Arg	Leu	Gln	Pro	Ser	Arg	Thr	Ser	Pro	Gln
			180					185					190		
Ala	Pro	_	Ala	Arg	Ala	Trp	Ala	Pro	Ser	Gln	Ala		Gln	Ala	Ala
		195					200					205			
Leu		Val	Pro	Tyr	Ala		Ile	Asn	Thr	Ser	<u> </u>	Arg	Pro	Ala	Thr
	210					215					220		_		
	Asp	Thr	Ala	His		His	Gly	Gly	Pro		Trp	Trp	Ala	Ser	
225			_	_	230	•		_	_	235	_	_	_		240
Pro	Thr	His	Ala		His	Arg	Pro	Gln	_	Pro	Ala	Ala	Trp		Ser
	_		_	245					250					255	_
Thr	Pro	Ile		Ala	Arg	Gly	Ser	Phe	Val	Ser	Val	Glu		СТĀ	Leu
_			260					265					270	_	
Tyr	Ala		Ala	Gly	Glu	Arg		Pro	His	Thr	Gly		Gly	Leu	Thr
		275					280					285			
Leu		Pro	Asp	Pro	Arg	_	Pro	Arg	Ala	Met		Gly	Pro	Leu	Gly
<b>_</b>	290					295					300				
Val	Arg														
305															

<21	0> 1	28									•				
<21	1> 5	55													
<21	2> P	RT													
<21	3> H		sapi	ens											
<40	0> 1	28													
Met	Gln	Ser	Cys	Glu	Ser	Ser	Gly	Asp	Ser	Ala	Asp	qeA	Pro	Leu	Ser
1				5					10					15	
Arg	Gly	Leu	Arg	Arg	Arg	Gly	Gln	Pro	Arg	Val	Val	Val	Ile	Gly	Ala
			20					25					30		
Gly	Leu	Ala	Gly	Leu	Ala	Ala	Ala	Lys	Ala	Leu	Leu	Glu	Gln	Gly	Phe
		35					40					45			
Thr	Asp	Val	Thr	Val	Leu	Glu	Ala	Ser	Ser	His	Ile	Gly	Gly	Arg	Val
	50					55					60				
Gln	Ser	Val	Lys	Leu	Gly	His	Ala	Thr	Phe	Glu	Leu	Gly	Ala	Thr	Trp
65					70					75					80
Ile	His	Gly	Ser	His	Gly	Asn	Pro	Ile	Tyr	His	Leu	Ala	Glu	Ala	Asn
				85					90					95	
Gly	Leu	Leu	Glu	Glu	Thr	Thr	Asp	Gly	Glu	Arg	Ser	Val	Gly	Arg	Ile
			100					105					110		
Ser	Leu	Tyr	Ser	Lys	Asn	Gly	Val	Ala	Суз	Tyr	Leu	Thr	Asn	His	Gly
		115					120					125			
Arg	_	Ile	Pro	Lys	Asp	Val	Val	Glu	Glu	Phe	Ser	Asp	Leu	Tyr	Asn
	130					135			•		140				
Glu	Val	Tyr	Asn	Leu	Thr	Gln	Glu	Phe	Phe	Arg	His	Asp	Lys	Pro	
145					150					155					160
Asn	Ala	Glu	Ser	Gln	Asn	Ser	Val	Gly	Val	Phe	Thr	Arg	Glu		Val
				165					170					175	
Arg	Asn	Arg	Ile	Arg	Asn	Asp	Pro	qzA	Asp	Pro	Glu	Ala	Thr	ГÀв	Arg
			180					185					190		
Leu	Lys	Leu	Ala	Met	Ile	Gln	Gln	Tyr	Leu	Lys	Val		Ser	Сув	Glu
		195					200					205			
Ser		Ser	His	Ser	Met	_	Glu	Val	Ser	Leu		Ala	Phe	Gly	Glu
	210					215					220		_	_	
_	Thr	Glu	Ile	Pro	_	Ala	His	His	Ile		Pro	Ser	Gly		
225					230					225					240

Arg	Val	Val	Glu	Leu	Leu	Ala	Glu	Gly	Ile	Pro	Ala	His	Val	Ile	Glr
				245					250	ı				255	,
Leu	Gly	Lys	Pro	Val	Arg	Суз	Ile	His	Trp	Asp	Gln	Ala	Ser	Ala	Arg
			260					265					270		
Pro	Arg	Gly	Pro	Glu	Ile	Glu	Pro	Arg	Gly	Glu	Gly	Asp	His	Asn	His
		275					280					285	i		
Asp	Thr	Gly	Glu	Gly	Gly	Gln	Gly	Gly	Glu	Glu	Pro	Arg	Gly	Gly	Arg
	290					295					300				
Trp	Asp	Glu	Asp	Glu	Gln	Trp	Ser	Val	Val	Val	Glu	Суз	Glu	Asp	Сув
305					310					315					320
Glu	Leu	Ile	Pro	Ala	qeA	His	Val	Ile	Val	Thr	Val	Ser	Leu	Gly	Val
				325					330					335	
Leu	Lys	Arg	Gln	Tyr	Thr	Ser	Phe	Phe	Arg	Pro	Gly	Leu	Pro	Thr	G).u
			340					345					350		
Lys	Val	Ala	Ala	Ile	His	Arg	Leu	Gly	Ile	Gly	Thr	Thr	Asp	Lys	Ile
		355					360					365			
Phe		Glu	Phe	Glu	Glu	Pro	Phe	Trp	Gly	Pro	Glu	Суз	Asn	Ser	Leu
	370	_		_		375					380				
	Phe	Val	Trp	Glu	_	Glu	Ala	Glu	Ser		Thr	Leu	Thr	Tyr	
385		_	_	_	390	_			_	395		<b>-</b>	_		400
Pro	Glu	Leu	Trp	_	Arg	Lys	Ile	Суз	_	Phe	Asp	Val	Leu	_	Pro
	<b>a</b> 1	•		405	*		_	_	410	_		_	<b>~1</b> .	415	<b>-</b> 23
PIO	GIU	Arg	_	стХ	HTS	Val	Leu		GIÄ	Trp	He	Суз	Gly	GIU	GIU
<b>.</b>	•	**-1	420	<b>a1</b>	•			425					430	-1	
Ala	Leu		Met	GIU	гЛа	Cys	_	Авр	GIU	ALA	Val		Glu	116	СĀЗ
<b>m</b> b	<b>~</b> 1	435	T	3	<b>~</b> 1~	nh-	440	<b>a</b> 1	<b>.</b>	<b>D</b>	•	445	D	T	D
ш	450	Mer	reu	ALG	GIII		THE	стĀ	ASI	PIO		TTE	Pro	гÀя	PIO
7~~		TIO	Lon	7.00	Co~	455	·	<b>a</b> 1	C	<b>1</b>	460	Messa	nh.	N 2000	C1
465	ALG	116	ren	Arg	470	ATG	пр	GIĀ	ser		PIO	туг	Phe	Arg	480
	m	80*	Me exe	mh~		1707	<b>~</b> 3		C	475	21-		17-3	C1	
ser	туг	Set	TÄT		GIN	vaı	GIÅ	ser		GIĀ	ATS	двр	Val		гЛя
T 011	<b>71</b> ~	T 110	Dwe	485	D	M-m-	Mh~	<b>~</b> 1	490	0	Y	mh	27-	495	Wat
⊔⇔u	WT.G		500	ren	210	TÅL	TITE	505	ser	ser	гЛа	THE	Ala	PIO	riet
C1 ~	17e 1			Co~	C1	<b>61</b> 11	- [ A	_	TT 4 ~	N	T	m.	510 Tyr	Co=	mb~
GTU	AGT	عاصد	E1162	oct	GTA	<b>GTU</b>	υTα	TIIL	ದಗನ	wid	TΛR	IAL	TAI	JUL	THE

		515					520					525			
Thr	His	Gly	Ala	Leu	Leu	Ser	Gly	Gln	Arg	Glu	Ala	Ala	Arg	Leu	Ile
	530					535					540				
Glu	Met	Tyr	Arg	Asp	Leu	Phe	Gln	Gln	Gly	Thr					
545					550					555					
<21	0> 1:	29													
<21	1> 2	50													
<21	2> P	RT													
<21	3> H		sapi	ens											
<40	0> 1	29													
Met	Gly	Ser	Gln	His	Ser	Ala	Ala	Ala	Arg	Pro	Ser	Ser	Сув	Arg	Arc
1				5					10					15	
ГÀЗ	Gln	Glu	Asp	Asp	Arg	Asp	Gly	Leu	Leu	Ala	Glu	Arg	Glu	Gln	Glu
			20					25					30		
Glu	Ala	Ile	Ala	Gln	Phe	Pro	Tyr	Val	Glu	Phe	Thr	Gly	Arg	Asp	Ser
		35					40					45			
Ile	Thr	Cys	Leu	Thr	Cys	Gln	Gly	Thr	Gly	Tyr	Ile	Pro	Thr	Glu	Glr
	50					55					60				
Val	Asn	Glu	Leu	Val	Ala	Leu	Ile	Pro	His	Ser	Asp	Gln	Arg	Leu	Arg
65					70					75					80
Pro	Gln	Arg	Thr	Lys	Gln	Tyr	Val	Leu	Leu	Ser	Ile	Leu	Leu		Leu
				85					90					95	
Leu	Ala	Ser	Gly	Leu	Val	Val	Phe	Phe	Leu	Phe	Pro	His	Ser	Val	Leu
			100					105					110		
Val	Asp		Aab	Gly	Ile	Lys		Val	Lys	Val	Thr		Asn	Lys	Gln
		115					120					125	_		
qeA		Leu	Val	Ile	Leu	Thr	Ile	Met	Ala	Thr	Leu	Lys	Ile	Arg	Asn
	130					135					140				
	Asn	Phe	Tyr	Thr		Ala	Val	Thr	Ser		Ser	Ser	Gln	Ile	
145					150					155					160
Tyr	Met	Asn	Thr		Val	Ser	Thr	Tyr		Thr	Thr	Asn	Val	_	Leu
				165					170					175	
Ile	Pro	Pro	_	Ser	Glu	Gln			Asn	Phe	Thr	Gly	Lys	Ala	Glu
			1 20					105					190		

WO 00/29448 PCT/JP99/06412

Met	Gly	Gly	Pro	Phe	Ser	Tyr	Val	Tyr	Phe	Phe	Суз	Thr	Val	Pro	Glı
		195					200					205			
Ile	Leu	Val	His	Asn	Ile	Val	Ile	Phe	Met	Arg	Thr	Ser	Val	Lys	Ile
	210					215					220				
Ser	Tyr	Ile	Gly	Leu	Met	Thr	Gln	Ser	Ser	Leu	Glu	Thr	His	His	Тут
225					230					235					240
Val	Asp	Сув	Gly	Gly	Asn	Ser	Thr	Ala	Ile						
				245					250						
<210	)> 13	30													
<211	l> 1°	74													
<212	2> PI	ET.													
<213	3> Ho	omo :	sapi	ens											
	)> 13														
Met	Gln	Ala	Pro	Ala	Phe	Arg	Asp	Lys	Lys	Gln	Gly	Val	Ser	Ala	Lys
1				5					10					15	
Asn	Gln	Gly	Ala	His	Asp	Pro	Asp	Tyr	Glu	Asn	Ile	Thr	Leu	Ala	Phe
			20					25					30		
Lys	Asn		Asp	His	Ala	Lys	Gly	Gly	His	Ser	Arg		Thr	Ser	Glr
		35					40					45			
Val	Pro	Ala	Gln	Cys	Arg		Pro	Ser	Asp	Ser		Gln	Val	Pro	Cys
	50			_	_	55				_	60				
-	Leu	Tyr	Arg	Ala		Leu	Ser	Leu	Tyr		Leu	Leu	Ala	Leu	
65					70					75		_			80
Phe	Val	Leu	Сув		Ile	Leu	Ser	Ala	Phe	Ile	Met	Val	Lys		Ale
				85			•		90					95	_
Glu	Met	Ser	_	Glu	Leu	Leu	Gly		Lys	Arg	Glu	Leu		Asn	Val
			100					105					110		
Ser	Asn		Val	Gln	Ala	Cys		Glu	Arg	Gln	Lys	_	Gly	Trp	Asp
		115					120					125			
Ser		Gln	Gln	Ser	Ile	Thr	Met	Val	Arg	Ser		Ile	Asp	Arg	Leu
	130					135					140				
	Thr	Thr	Leu	Ala	_	Ile	Lys	Asn	Ile	qaA	Thr	Lys	Val	Gln	
145					150					155					160
Ile	Leu	Glu	Val	Leu	Gln	Lys	Met	Pro	Gln	Ser	Ser	Pro	Gln		

165 170

<210> 131 <211> 1908 <212> DNA

<213> Homo sapiens

<400> 131

60 atgaccacgt ggagcctccg gcggaggccg gcccgcacgc tgggactcct gctgctggtc 120 gtottgggct teetggtgct tegeaggctg gaetggagea ecetggteec tetgeggete cgccatcgac agctggggct gcaggccaag ggctggaact tcatgctgga ggattccacc 180 ttctggatct tcgggggctc catccactat ttccgtgtgc ccagggagta ctggagggac 240 300 egectgetga agatgaagge etgtggettg aacaccetea ceacctatgt teegtggaac ctgcatgagc cagaaagagg caaatttgac ttctctggga acctggacct ggaggccttc 360 420 gteetgatgg cegeagagat egggetgtgg gtgattetge gteeaggeee etacatetge 480 agtgagatgg accteggggg cttgcccage tggctactec aagacectgg catgaggetg 540 aggacaactt acaagggett caccgaagca gtggacettt attttgacca cetgatgtee 600 agggtggtgc cactccagta caagcgtggg ggacctatca ttgccgtgca ggtggagaat 660 gaatatggtt cctataataa agaccccgca tacatgccct acgtcaagaa ggcactggag 720 gaccgtggca ttgtggaact gctcctgact tcagacaaca aggatgggct gagcaagggg 780 attgtccagg gagtcttggc caccatcaac ttgcagtcaa cacacgagct gcagctactg 840 accacctttc tcttcaacgt ccaggggact cagcccaaga tggtgatgga gtactggacg gggtggtttg actcgtgggg aggccctcac aatatcttgg attcttctga ggttttgaaa 900 960 acceptatety coattytyga cyccygotoc tocatoaacc totacatytt coacygayyo accaactttg getteatgaa tggageeatg caetteeatg actacaagte agatgteace 1020 agctatgact atgatgctgt gctgacagaa gccggcgatt acacggccaa gtacatgaag 1080 cttcgagact tettcggete catctcagge atccctetce etececcace tgacettett 1140 1200 eccaagatge egtatgagee ettaaegeea gtettgtaee tgtetetgtg ggaegeeete 1260 aagtacctgg gggagccaat caagtctgaa aagcccatca acatggagaa cctgccagtc aatgggggaa atggacagtc cttcgggtac attctctatg agaccagcat cacctcgtct 1320 1380 ggcatcctca gtggccacgt gcatgategg gggcaggtgt ttgtgaacac agtatecata 1440 ggattettgg actacaagac aacgaagatt getgteecee tgatecaggg ttacacegtg 1500 ctgaggatct tggtggagaa tcgtgggcga gtcaactatg gggagaatat tgatgaccag cgcaaaggct taattggaaa tetetatetg aatgatteac ceetgaaaaa etteagaate 1560 1620 tatagectgg atatgaagaa gagettettt cagaggtteg geetggacaa atggagttee 1680 ctcccagaaa cacccacatt acctgctttc ttcttgggta gcttgtccat cagctccacc

ccttgtgaca	cctttctgaa	gctggagggc	tgggagaagg	gggttgtatt	catcaatggc	1740
cagaaccttg	gacgttactg	gaacattgga	ccccagaaga	cgctttacct	cccaggtccc	1800
tggttgagca	gcggaatcaa	ccaggtcatc	gtttttgagg	agacgatggc	gggccctgca	1860
ttacagttca	cggaaacccc	ccacctgggc	aggaaccagt	acattaag		1908
<210> 132						
<211> 954						
<212> DNA						
<213> Homo	sapiens					
<400> 132						
atggttgagc	tcatgttccc	getgttgete	ctccttctgc	cetteettet	gtatatggct	60
gcgcccaaa	tcaggaaaat	gctgtccagt	ggggtgtgta	catcaactgt	teagetteet	120
gggaaagtag	ttgtggtcac	aggagctaat	acaggtatcg	ggaaggagac	agccaaagag	180
ctggctcaga	gaggageteg	agtatattta	gcttgccggg	atgtggaaaa	gggggaattg	240
gtggccaaag	agatecagae	cacgacaggg	aaccagcagg	tgttggtgcg	gaaactggac	300
ctgtctgata	ctaagtctat	tegagetttt	gctaagggct	tcttagctga	ggaaaagcac	360
ctccacgttt	tgatcaacaa	tgcaggagtg	atgatgtgtc	cgtactcgaa	gacagcagat	420
ggctttgaga	tgcacatagg	agtcaaccac	ttgggtcact	tcctcctaac	ccatctgctg	480
ctagagaaac	taaaggaatc	agccccatca	aggatagtaa	atgtgtcttc	cctcgcacat	540
cacctgggaa	ggatecaett	ccataacctg	cagggcgaga	aattctacaa	tgcaggcctg	600
gcctactgtc	acagcaagct	agccaacatc	ctcttcaccc	aggaactggc	ccggagacta	660
aaaggctctg	gcgttacgac	gtattctgta	caccctggca	cagtccaatc	tgaactggtt	720
cggcactcat	ctttcatgag	atggatgtgg	tggettttet	cctttttcat	caagactcct	780
cagcagggag	cccagaccag	cctgcactgt	gccttaacag	aaggtettga	gattctaagt	840
gggaatcatt	tcagtgactg	tcatgtggca	tgggtctctg	cccaagctcg	taatgagact	900
atagcaaggc	ggctgtggga	cgtcagttgt	gacctgctgg	gcctcccaat	agac	954
<210> 133						
<211> 246						
<212> DNA						
<213> Homo	sapiens					
<400> 133						
atggccttta	ccctgtactc	actgctgcag	gcagccctgc	tctgcgtcaa	cgccatcgca	60
gtgctgcacg	aggagcgatt	cctcaagaac	attggctggg	gaacagacca	gggaattggt	120
ggatttggag	aagagccggg	aattaaatca	cagctaatga	accttattcg	atctgtaaga	180

accgtgatga gagtgccatt gataatagta aactcaattg caattgtgtt acttttatta tttgga	240 246
<210> 134	
<211> 741	
<212> DNA	
<213> Homo sapiens	•
<400> 134	
atgeatettg caegtetggt eggeteetge teeeteette tgetaetggg ggeeetgtet	60
ggatgggcgg ccagcgatga ccccattgag aaggtcattg aagggatcaa ccgagggctg	120
agcaatgcag agagagggt gggcaaggcc ctggatggca tcaacagtgg aatcacgcat	180
gccggaaggg aagtggagaa ggttttcaac ggacttagca acatggggag ccacaccggc	240
aaggagttgg acaaaggcgt ccaggggctc aaccacggca tggacaaggt tgcccatgag	300
atcaaccatg gtattggaca agcaggaaag gaagcagaga agcttggcca tggggtcaac	360
aacgetgetg gacaggeegg gaaggaagca gacaaagegg tecaagggtt ecacaetggg	420
gtccaccagg ctgggaagga agcagagaaa cttggccaag gggtcaacca tgctgctgac	480
caggetggaa aggaagtgga gaagettgge caaggtgeee accatgetge tggeeaggee	540
gggaaggage tgeagaatge teataatggg gteaaceaag ceageaagga ggeeaaceag	600
ctgctgaatg gcaaccatca aageggatet tecagecate aaggaggge cacaaccaeg	660
eegttageet etggggeete ggteaaeaeg eettteatea acetteeege eetgtggagg	720
agogtogoca acatoatgoc c	741
<210> 135 <211> 618	
<212> DNA	
<213> Homo sapiens	
<400> 135	
atggccccca gccacctgtc agtgcgggag atgagggaag atgagaagcc cctggtgctg	60
gagatgctga aggccggcgt gaaggacacg gaaaaccgcg tggccctcca tgccttgaca	120
eggeegeegg eestgetest estggeggeg geeageageg gestgegett tgteetgget	180
teettegeee tggeeeteet eetgeeggtg tteetggetg tggeegeegt gaagetggge	240
ctgcgggccc gatggggctc gctgcctccg ccgggtggcc tggggggccc ctgggtggcc	300
gtgegggget eeggtgaegt gtgtggggte etggetetgg eeeetggeae aaatgeaggg	360
gacggggccc gggtcacccg cctgtctgtc tctcgctggc accgccgccg gggcgtgggc	420
aggaggetge tggcettege ggaggecegg getegggeet gggetggggg catggggag	480

ccccgggccc	ggctcgtggt	ccccgtggct	gtggccgcct	ggggggtggg	agggatgctg	540
gagggctgtg	gctaccaggc	cgagggggc	tggggctgcc	tgggctacac	gctggtgagg	600
gaattcagca	aagacctg					618
<210> 136						
<211> 1296						
<212> DNA						
<213> Homo	sapiens					
<400> 136						
atggacgcca	gatggtgggc	agtggtggtg	ctggctgcgt	teceetecet	aggggcaggt	60
ggggagactc	ccgaagcccc	teeggagtea	tggacccagc	tatggttctt	ccgatttgtg	120
gtgaatgctg	ctggctatgc	cagetttatg	gtacctggct	acctcctggt	gcagtacttc	180
aggcggaaga	actacctgga	gaccggtagg	ggcctctgct	ttcccctggt	gaaagcttgt	240
gtgtttggca	atgagcccaa	ggcctctgat	gaggttcccc	tggcgccccg	aacagaggcg	300
gcagagacca	ccccgatgtg	gcaggccctg	aagetgetet	tctgtgccac	agggetecag	360
gtgtcttatc	tgacttgggg	tgtgctgcag	gaaagagtga	tgacccgcag	ctatggggcc	420
acagecacat	caccgggtga	gcgctttacg	gactcgcagt	teetggtget	aatgaaccga	480
gtgctggcac	tgattgtggc	tggcctctcc	tgtgttctct	gcaagcagcc	ccggcatggg	540
gcacccatgt	accggtactc	ctttgccagc	ctgtccaatg	tgcttagcag	ctggtgccaa	600
tacgaagete	ttaagttcgt	cagetteece	acccaggtgc	tggccaaggc	ctctaaggtg	660
atccctgtca	tgctgatggg	aaagcttgtg	tctcggcgca	gctacgaaca	ctgggagtac	720
ctgacagcca	cactcatctc	cattggggtc	agcatgtttc	tgctatccag	cggaccagag	780
cccgcagct	ccccagccac	cacactetea	ggcctcatct	tactggcagg	ttatattgct	840
tttgacagct	tcacctcaaa	ctggcaggat	gccctgtttg	cctataagat	gtcatcggtg	900
cagatgatgt	ttggggtcaa	tttettetee	tgcctcttca	cagtgggctc	actgctagaa	960
cagggggccc	tactggaggg	aacccgcttc	atggggcgac	acagtgagtt	tgctgcccat	1020
geeetgetae	tctccatctg	ctccgcatgt	ggccagctct	tcatctttta	caccattggg	1080
cagtttgggg	ctgccgtctt	caccatcatc	atgaccctcc	gccaggcctt	tgccatcctt	1140
ctttcctgcc	ttctctatgg	ccacactgtc	actgtggtgg	gagggctggg	ggtggctgtg	1200
gtetttgetg	ccctcctgct	cagagtctac	dededdddec	gtctaaagca	acggggaaag	1260
aaggetgtge	ctgttgagtc	tcctgtgcag	aaggtt			1296

<210> 137

<211> 918

<212> DNA

<213> Homo sapiens	
<400> 137	
atggggcacc ggaccctggt cctgccctgg gtgctgctga ccttgtgtgt cactgcgggg	60
accceggagg tgtgggttca agttcggatg gaggccaccg agctctcgtc cttcaccatc	120
cgttgtgggt tcctggggtc tggctccatc tccctggtga ctgtgagctg ggggggcccc	180
gacggtgctg gggggaccac gctggctgtg ttgcacccag aacgtggcat ccggcaatgg	240
geceetgete gecaggeeg etgggaaace cagageagea teteteteat eetggaagge	300
totggggcca gcagcccctg cgccaacacc accttctgct gcaagtttgc gtccttccct	360
gagggeteet gggaggeetg tgggageete eegeeeaget eagaceeagg getetetgee	420
cogcogacto otgococcat totgogggca gacetggcog ggatettggg ggtotcagga	480
gtectectet ttggetgtgt etaceteett eatetgetge geegacataa geacegeeet	540
geocetagge tecagoogte eegcaceage eeccaggeac egagageacg agcatgggca	600
ccaagccagg cctcccaggc tgctcttcac gtcccttatg ccactatcaa caccagctgc	660
cgcccageta ctttggacac ageteacece catgggggge cgtcctggtg ggcgtcacte	720
cecacceacg etgeacaceg geoceaggge cetgeegeet gggeeteeac acceatecet	780
gcacgtggca getttgtctc tgttgagaat ggactctacg ctcaggcagg ggagaggcct	840
cotcacacty gtocoggoot cactotttto cotgaccotc gggggcccag ggccatggaa	900
ggaccettag gagttega	918
gyacceray yayeeeya	310
ggaccereag gageeega	<b>710</b>
<210> 138	<b>910</b>
<210> 138 <211> 1665	<b>910</b>
<210> 138 <211> 1665 <212> DNA	<b>310</b>
<210> 138 <211> 1665 <212> DNA <213> Homo sapiens	310
<210> 138 <211> 1665 <212> DNA <213> Homo sapiens <400> 138	
<210> 138 <211> 1665 <212> DNA <213> Homo sapiens <400> 138 atgcaaagtt gtgaatccag tggtgacagt gcggatgacc ctctcagtcg cggcctacgg	60
<210> 138 <211> 1665 <212> DNA <213> Homo sapiens <400> 138 atgcaaagtt gtgaatccag tggtgacagt gcggatgacc ctctcagtcg cggcctacgg agaaggggac agcctcgtgt ggtggtgate ggcgccggct tggctggcct ggctgcagce	60 120
<pre>&lt;210&gt; 138 &lt;211&gt; 1665 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 138 atgcaaagtt gtgaatccag tggtgacagt geggatgace eteteagteg eggeetaegg agaaggggae ageetegtgt ggtggtgate ggegeegget tggetggeet ggetgeagee aaagcaette ttgageaggg ttteaeggat gteaetgtge ttgaggette cagecaeate</pre>	60 120 180
<pre>&lt;210&gt; 138 &lt;211&gt; 1665 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 138 atgeaaagtt gtgaateeag tggtgacagt geggatgace eteteagteg eggeetaegg agaaggggae ageetegtgt ggtggtgate ggegeegget tggetggeet ggetgeagee aaageactte ttgageaggg ttteaeggat gteaetgtge ttgaggette cagecacate ggaggeegtg tgeagagtgt gaaacttgga caegecacet ttgagetggg agecacetgg</pre>	60 120 180 240
<pre>&lt;210&gt; 138 &lt;211&gt; 1665 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 138 atgcaaagtt gtgaatccag tggtgacagt geggatgace eteteagteg eggeetaegg agaagggae agectegtgt ggtggtgate ggegeegget tggetggeet ggetgeagee aaagcaette ttgageaggg ttteaeggat gteaetgtge ttgaggette eagecaeate ggaggeegtg tgeagagtgt gaaaettgga eaegecaeet ttgagetggg agecaeetgg atceatgget eeeatgggaa eeetatetat eatetageag aagecaaegg eeteetggaa</pre>	60 120 180 240 300
<pre>&lt;210&gt; 138 &lt;211&gt; 1665 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 138 atgcaaagtt gtgaatecag tggtgacagt geggatgace eteteagteg eggeetaegg agaaggggae ageetegtgt ggtggtgate ggegeegget tggetggeet ggetgeagee aaageaette ttgageaggg ttteaeggat gteaetgtge ttgaggette eageeaeate ggaggeegtg tgeagagtgt gaaaettgga eaegeeaeet ttgagetggg ageeaeetgg atccatgget eeeatgggaa eeetatetat eatetageag aageeaaegg eeteetggaa gagacaaeeg atggggaaeg eagegtggge egeateagee tetattecaa gaatggegtg</pre>	60 120 180 240 300 360
<pre>&lt;210&gt; 138 &lt;211&gt; 1665 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 138 atgcaaagtt gtgaatccag tggtgacagt geggatgace etetcagteg eggeetaegg agaagggac agectegtgt ggtggtgate ggegeegget tggetggeet ggetgeagee aaagcaette ttgageaggg ttteaeggat gteaetgtge ttgaggette eagecaeate ggaggeegtg tgeagagtgt gaaacttgga eaegecaeet ttgagetgg agecaeetgg atceatgget eeeatgggaa eeetatetat eatetageag aagecaaegg eeteetggaa gagacaaeeg atggggaaeg eagegtggge egeateagee tetatteeaa gaatggegtg geetgetaee ttaccaaeca eggeegeagg ateeceaagg aegtggttga ggaatteage</pre>	60 120 180 240 300 360 420
<pre>&lt;210&gt; 138 &lt;211&gt; 1665 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 138 atgeaaagtt gtgaateeag tggtgacagt geggatgace eteteagteg eggeetaegg agaagggac ageetegtgt ggtggtgate ggegeegget tggetggeet ggetgeagee aaageactte ttgageaggg ttteaeggat gteaetgtge ttgaggette eageeacate ggaggeegtg tgeagagtgt gaaacttgga eaegeeacet ttgagetggg ageeacetgg ateeatgget eecatgggaa eectatetat eatetageag aageeaaegg eeteetggaa gagacaaeeg atggggaaeg eagegtggge egeateagee tetatteeaa gaatggegtg geetgetaee ttaeeaaeea eggeegeagg ateeeeaagg aegtggttga ggaatteage gatttataea aegaggteta taacttgace eaggagttet teeggeaega taaaceagte</pre>	60 120 180 240 300 360 420 480
<pre>&lt;210&gt; 138 &lt;211&gt; 1665 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 138 atgeaaagtt gtgaateeag tggtgacagt geggatgace eteteagteg eggeetaegg agaaggggac ageetegtgt ggtggtgate ggegeegget tggetggeet ggetgeagee aaageactte ttgageaggg ttteaeggat gteaetgtge ttgaggette eageeacate ggaggeegtg tgeagagtgt gaaacttgga eaegeeacet ttgagetggg ageeacetgg atecatgget eccatgggaa ecctatetat catetageag aageeaaegg ecteetggaa gagacaaceg atggggaaeg eagegtggge egeateagee tetatteeaa gaatggegtg geetgetaee ttaceaacea eggeegeagg atececaagg aegtggttga ggaatteage gatttataca aegaggteta taacttgace eaggagttet teeggeaega taaaceagte aatgetgaaa gteaaaatag egtgggggtg tteaeeegag aggaggtgeg taacegeate</pre>	60 120 180 240 300 360 420 480 540
<pre>&lt;210&gt; 138 &lt;211&gt; 1665 &lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;400&gt; 138 atgeaaagtt gtgaateeag tggtgacagt geggatgace eteteagteg eggeetaegg agaagggac ageetegtgt ggtggtgate ggegeegget tggetggeet ggetgeagee aaageactte ttgageaggg ttteaeggat gteaetgtge ttgaggette eageeacate ggaggeegtg tgeagagtgt gaaacttgga eaegeeacet ttgagetggg ageeacetgg ateeatgget eecatgggaa eectatetat eatetageag aageeaaegg eeteetggaa gagacaaeeg atggggaaeg eagegtggge egeateagee tetatteeaa gaatggegtg geetgetaee ttaeeaaeea eggeegeagg ateeeeaagg aegtggttga ggaatteage gatttataea aegaggteta taacttgace eaggagttet teeggeaega taaaceagte</pre>	60 120 180 240 300 360 420 480

gccttcgggg	agtggaccga	gateceegge	geteaceaea	tcatcccctc	gggcttcatg	720
cgggttgtgg	agetgetgge	ggagggcatc	cctgcccacg	tcatccagct	agggaaacct	780
gtccgctgca	ttcactggga	ccaggcctca	gecegeceea	gaggccctga	gattgagccc	840
cggggtgagg	gcgaccacaa	tcacgacact	ggggagggtg	gccagggtgg	agaggagccc	900
cgggggggca	ggtgggatga	ggatgagcag	tggtcggtgg	tggtggagtg	cgaggactgt	960
gagetgatee	cggcggacca	tgtgattgtg	accgtgtcgc	taggtgtgct	aaagaggcag	1020
tacaccagtt	tetteeggee	aggcctgccc	acagagaagg	tggctgccat	ccaccgcctg	1080
ggcattggca	ccaccgacaa	gatetttetg	gaattcgagg	agcccttctg	gggccctgag	1140
tgcaacagcc	tacagtttgt	gtgggaggac	gaagcggaga	gccacaccct	cacctaccca	1200
cctgagctct	ggtaccgcaa	gatetgegge	tttgatgtcc	tctacccgcc	tgagegetae	1260
ggccatgtgc	tgageggetg	gatetgeggg	gaggaggccc	tegteatgga	gaagtgtgat	1320
gacgaggcag	tggccgagat	ctgcacggag	atgctgcgtc	agttcacagg	gaaccccaac	1380
attccaaaac	ctcggcgaat	cttgcgctcg	gcctggggca	gcaaccctta	cttccgcggc	1440
tcctattcat	acacgcaggt	gggctccagc	ggggcggatg	tggagaagct	ggccaagece	1500
ctgccgtaca	cggagagete	aaagacagcg	cccatgcagg	tgctgttttc	cggtgaggcc	1560
acccaccgca	agtactattc	caccacccac	ggtgctctgc	tgtccggcca	gcgtgaggct	1620
gcccgcctca	ttgagatgta	ccgagacctc	ttccagcagg	ggacc		1665
<210> 139						
<211> 750						
<212> DNA						
<213> Homo	sapiens					
<400> 139						
atggggtctc	agcattccgc	tgetgetege	ccctcctcct	gcaggcgaaa	gcaagaagat	60
gacagggacg	gtttgctggc	tgaacgagag	caggaagaag	ccattgctca	gttcccatat	120
gtggaattca	ccgggagaga	tagcatcacc	tgtctcacgt	gccaggggac	aggctacatt	180
ccaacagagc	aagtaaatga	gttggtggct	ttgatcccac	acagtgatca	gagattgcgc	240
cctcagcgaa	ctaagcaata	tgtcctcctg	tccatcctgc	tttgtctcct	ggcatctggt	300
ttggtggttt	tetteetgtt	teegeattea	gtccttgtgg	atgatgacgg	catcaaagtg	360
gtgaaagtca	catttaataa	gcaagactcc	cttgtaattc	tcaccatcat	ggccaccctg	420
aaaatcagga	actccaactt	ctacacggtg	gcagtgacca	geetgteeag	ccagattcag	480
tacatgaaca	cagtggtcag	tacatatgtg	actactaacg	tctcccttat	tccacctcgg	540
agtgagcaac	tggtgaattt	taccgggaag	gccgagatgg	gaggaccgtt	ttectatgtg	600
tacttcttct	gcacggtacc	tgagatcctg	gtgcacaaca	tagtgatett	catgcgaact	660
_						

tcagtgaaga tttcatacat tggcctcatg acccagaget ccttggagac acatcactat 720

gtggattgtg gaggaaattc cacagctatt	750
<210> 140	
<211> 522	
<212> DNA	
<213> Homo sapiens	
<400> 140	
atgcaagcac cagccttcag ggacaagaaa cagggggtct cagccaagaa tcaaggtgcc	60
catgacccag actatgagaa tatcaccttg gccttcaaaa atcaggacca tgcaaagggt	120
ggtcattcac gacccacgag ccaagtccca gcccagtgca ggccgccctc agactccacc	180
caggteeeet getggttgta cagageeate etgageetgt acateeteet ggeeetggee	240
tttgtcctct gcatcatcct gtcagccttc atcatggtga agaatgctga gatgtccaag	300
gagetgetgg getttaaaag ggagetttgg aatgteteaa aeteegtaca ageatgegaa	360
gagagacaga agagaggetg ggatteegtt cagcagagea teaccatggt caggageaag	420
attgatagat tagagacgac attagcaggc ataaaaaaca ttgacacaaa ggtacagaaa	480
atcttggagg tgctgcagaa aatgccacag tcctcacctc aa	522
·	
<210> 141	
<211> 3234	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (129)(2039)	
<400> 141	
aatgagegee ggegggeegg ttgeeeagge gaeeagegeg eggeteegee eeeegeggeg	60
aggeteeege gegeggetga gtgeggaetg gagtgggaae eegggteeee gegettagag	120
aacacgeg atg acc acg tgg age etc egg egg agg eeg gee ege acg etg	170
Met Thr Trp Ser Leu Arg Arg Pro Ala Arg Thr Leu	
1 5 10	
gga etc etg etg gte gte ttg gge tte etg gtg ett ege agg etg	218
Gly Leu Leu Leu Val Val Leu Gly Phe Leu Val Leu Arg Arg Leu	
15 20 25 30	.0.55
gae tgg age ace etg gte eet etg egg ete ege eat ega eag etg ggg	266
Asp Trp Ser Thr Leu Val Pro Leu Arg Leu Arg His Arg Gln Leu Gly	

				35					40					45		
ctg	cag	gcc	aag	ggc	tgg	aac	ttc	atg	ctg	gag	gat	tcc	acc	ttc	tgg	31
Leu	Gln	Ala	Lys	Gly	Trp	Asn	Phe	Met	Leu	Glu	Asp	Ser	Thr	Phe	Trp	
			50					55					60			
atc	ttc	ggg	ggc	tcc	atc	cac	tat	ttc	cgt	gtg	ccc	agg	gag	tac	tgg	362
Ile	Phe	Gly	Gly	Ser	Ile	His	Tyr	Phe	Arg	Val	Pro	Arg	Glu	Tyr	Trp	
		65					70					75				
agg	gac	cgc	ctg	ctg	aag	atg	aag	gcc	tgt	ggc	ttg	aac	acc	ctc	acc	410
Arg	Asp	Arg	Leu	Leu	Lys	Met	Lys	Ala	Сув	Gly	Leu	Asn	Thr	Leu	Thr	
	80					85					90					
acc	tat	gtt	ccg	tgg	aac	ctg	cat	gag	cca	gaa	aga	ggc	aaa	ttt	gac	458
Thr	Tyr	Val	Pro	Trp	Asn	Leu	His	Glu	Pro	Glu	Arg	Gly	Lys	Phe	Asp	
95					100					105					110	
ttc	tct	ggg	aac	ctg	gac	ctg	gag	gcc	ttc	gtc	ctg	atg	gcc	gca	gag	506
Phe	Ser	Gly	Asn	Leu	Asp	Leu	Glu	Ala	Phe	Val	Leu	Met	Ala	Ala	Glu	
				115					120					125		
atc	999	ctg	tgg	gtg	att	ctg	cgt	cca	ggc	ccc	tac	atc	tgc	agt	gag	554
Ile	Gly	Leu	Trp	Val	Ile	Leu	Arg	Pro	Gly	Pro	Tyr	Ile	Cys	Ser	Glu	
			130					135					140			
atg	gac	ctc	ggg	ggc	ttg	ccc	agc	tgg	cta	ctc	caa	gac	cct	ggc	atg	602
Met	Asp	Leu	Gly	Gly	Leu	Pro	Ser	Trp	Leu	Leu	Gln	Asp	Pro	Gly	Met	
		145					150					155				
agg	ctg	agg	aca	act	tac	aag	ggc	ttc	acc	gaa	gca	gtg	gac	ctt	tat	650
Arg	Leu	Arg	Thr	Thr	Tyr	Lys	Gly	Phe	Thr	Glu	Ala	Val	Asp	Leu	Tyr	
	160					165					170					
ttt	gac	cac	ctg	atg	tcc	agg	gtg	gtg	cca	ctc	cag	tac	aag	cgt	ggg	698
Phe	Aap	His	Leu	Met	Ser	Arg	Val	Val	Pro	Leu	Gln	Tyr	Lys	Arg	Gly	
175					180					185					190	
gga	cct	atc	att	gcc	gtg	cag	gtg	gag	aat	gaa	tat	ggt	tee	tat	aat	746
Gly	Pro	Ile	Ile	Ala	Val	Gln	Val	Glu	Asn	Glu	Tyr	Gly	Ser	Tyr	Asn	
				195					200					205		
aaa	gac	CCC	gca	tac	atg	ccc	tac	gtc	aag	aag	gca	ctg	gag	gac	cgt	794
Lys	Asp	Pro	Ala	Tyr	Met	Pro	Tyr	Val	Lys	Lys	Ala	Leu	Glu	qzA	Arg	
			210					215					220			
~~~	a++	~+~	~~~	a+~	ata	-+-		+	~~~	~~~		ant.		ata	000	0/12

Gly	Ile	Val	Glu	Leu	Leu	Leu	Thr	Ser	Asp	Asn	ГÀЗ	Asp	Gly	Leu	Ser	
		225					230					235				
aag	ggg	att	gtc	cag	gga	gtc	ttg	gcc	acc	atc	aac	ttg	cag	tca	aca	890
Lys	Gly	Ile	Val	Gln	Gly	Val	Leu	Ala	Thr	Ile	Asn	Leu	Gln	Ser	Thr	
	240					245					250					
cac	gag	ctg	cag	cta	ctg	acc	acc	ttt	ctc	ttc	aac	gtc	cag	ggg	act	938
His	Glu	Leu	Gln	Leu	Leu	Thr	Thr	Phe	Leu	Phe	Asn	Val	Gln	Gly	Thr	
255					260					265					270	
cag	ccc	aag	atg	gtg	atg	gag	tac	tgg	acg	999	tgg	ttt	gac	tcg	tgg	986
Gln	Pro	Lys	Met	Val	Met	Glu	Tyr	Trp	Thr	Gly	Trp	Phe	Asp	Ser	Trp	
				275					280					285		
gga	ggc	cct	cac	aat	atc	ttg	gat	tct	tct	gag	gtt	ttg	aaa	acc	gtg	1034
Gly	Gly	Pro	His	Asn	Ile	Leu	Asp	Ser	Ser	Glu	Val	Leu	Lys	Thr	Val	
			290					295					300			
tct	gcc	att	gtg	gac	gcc	ggc	tcc	tcc	atc	aac	ctc	tac	atg	ttc	cac	1082
Ser	Ala	Ile	Val	Asp	Ala	Gly	Ser	Ser	Ile	Asn	Leu	Tyr	Met	Phe	His	
		305					310					315				
gga	ggc	acc	aac	ttt	ggc	ttc	atg	aat	gga	gcc	atg	cac	ttc	cat	gac	1130
Gly	Gly	Thr	Asn	Phe	Gly	Phe	Met	Asn	Gly	Ala	Met	His	Phe	His	Asp	
	320					325					330					
tac	aag	tca	gat	gtc	acc	agc	tat	gac	tat	gat	gct	gtg	ctg	aca	gaa	1178.
Tyr	Lys	Ser	Asp	Val	Thr	Ser	Tyr	Asp	Tyr	Asp	Ala	Val	Leu	Thr	Glu	
335					340					345					350	
gcc	ggc	gat	tac	acg	gcc	aag	tac	atg	aag	ctt	cga	gac	ttc	ttc	gge	1226
Ala	Gly	qeA	Tyr	Thr	Ala	Lys	Tyr	Met	Lys	Leu	Arg	Asp	Phe	Phe	Gly	
				355					360					365		
tcc	atc	tca	ggc	atc	cct	ctc	cct	ccc	cca	cct	gac	ctt	ctt	ccc	aag	1274
Ser	Ile	Ser	Gly	Ile	Pro	Leu	Pro	Pro	Pro	Pro	Asp	Leu	Leu	Pro	Lys	•
			370					375					380			
atg	ccg	tat	gag	ccc	tta	acg	cca	gtc	ttg	tac	ctg	tct	ctg	tgg	gac	1322
Met	Pro	Tyr	Glu	Pro	Leu	Thr	Pro	Val	Leu	Tyr	Leu	Ser	Leu	Trp	Asp	
		385					390					395				
gee	ctc	aag	tac	ctg	ggg	gag	cca	atc	aag	tct	gaa	aag	ccc	atc	aac	1370
			Tyr													
	400	-	_		-	405			_		410					

atg	gag	aac	ctg	cca	gtc	aat	3 33	gga	aat	gga	cag	tcc	ttc	ggg	tac	1418
Met	Glu	Asn	Leu	Pro	Val	Asn	Gly	Gly	Asn	Gly	Gln	Ser	Phe	Gly	Tyr	
415					420					425					430	
att	ctc	tat	gag	acc	agc	atc	acc	tcg	tct	ggc	atc	ctc	agt	ggc	cac	1466
Ile	Leu	Tyr	Glu	Thr	Ser	Ile	Thr	Ser	Ser	Gly	Ile	Leu	Ser	Gly	His	
				435			•		440					445		
gtg	cat	gat	cgg	ggg	cag	gtg	ttt	gtg	aac	aca	gta	tcc	ata	gga	ttc	1514
Val	His	Asp	Arg	Gly	Gln	Val	Phe	Val	Asn	Thr	Val	Ser	Ile	Gly	Phe	
			450					455					460			
ttg	gac	tac	aag	aca	acg	aag	att	gct	gtc	ccc	ctg	atc	cag	ggt	tac	1562
Leu	Asp	Tyr	Lys	Thr	Thr	ГÀЗ	Ile	Ala	Val	Pro	Leu	Ile	Gln	Gly	Tyr	
		465					470					475				
acc	gtg	ctg	agg	atc	ttg	gtg	gag	aat	cgt	ggg	cga	gtc	aac	tat	aaa	1610
Thr	Val	Leu	Arg	Ile	Leu	Val	Glu	Asn	Arg	Gly	Arg	Val	Asn	Tyr	Gly	
	480					485					490					
gag	aat	att	gat	gac	cag	cgc	aaa	gge	tta	att	gga	aat	ctc	tat	ctg	1658
	Asn	Ile	ĄsĄ	Asp	Gln	Arg	Lys	Gly	Leu	Ile	Gly	Asn	Leu	Tyr		
495					500					505					510	
aat	gat	tca	ccc	ctg	aaa	aac	ttc	aga	atc	tat	agc	ctg	gat	atg	aag	1706
Asn	qeA	Ser	Pro		Lys	Asn	Phe	Arg	Ile	Tyr	Ser	Leu	Asp		Lys	
				515					520					525		
_	-			_		ttc		_	-			_				1754
Lys	Ser	Phe		Gln	Arg	Phe	Gly		Asp	Lys	Trp	Ser		Leu	Pro	
			530					535					540			
-						gct			•		•	_			_	1802
Glu	Thr		Thr	Leu	Pro	Ala		Phe	Leu	Gly	Ser		Ser	He	Ser	
		545					550					555				
			_	_		ttt -·	_	_	-							1850
ser		Pro	Суз	Asp	Thr	Phe	Leu	ГÃЗ	Leu	GLu	_	TTP	GIU	гÀз	GTĀ	
	560					565					570					1000
						cag				-						1898
	val	rne	TTE	Asn	_	Gln	ASN	теп	GŢĀ	•	туr	TTP	ASN	116	_	
575					580					585					590	1046
	-	_	-			ctc -					-	_				1946
Pro	Gln	rys	Thr	Leu	Tyr	Leu	Pro	GLY	Pro	Trp	Leu	Ser	ser	GTÄ	TTE	

WO 00/29448 PCT/JP99/06412

213/233

	595		600	605	
aac cag gto	e atc gtt t	tt gag gag	acg atg gcg	ggc cct gca tta cag	1994
Asn Gln Va	l Ile Val P	he Glu Glu	Thr Met Ala	Gly Pro Ala Leu Gln	
	610		615	620	
ttc acg gas	a acc ccc c	ac ctg ggc	agg aac cag	tac att aag tgag	2040
Phe Thr Glu	1 Thr Pro H	is Leu Gly	Arg Asn Gln	Tyr Ile Lys	
625	5	630		635	
cggtggcacc	ccctcctgct	ggtgccagtg	ggagactgcc	geeteetett gaeetgaage	2100
ctggtggctg	ctgcccacc	cctcactgca	aaagcatctc	cttaagtagc aacctcaggg	2160
actgggggct	acagtetgee	cctgtctcag	ctcaaaaccc	taageetgea gggaaaggtg	2220
ggatggctct	gggcctggct	ttgttgatga	tggctttcct	acageeetge tettgtgeeg	2280
aggetgtegg	gctgtctcta	gggtgggage	agctaatcag	ategeceage etttggecet	2340
cagaaaaagt	gctgaaacgt	gcccttgcac	cggacgtcac	agecetgega geatetgetg	2400
gactcaggcg	tgctctttgc	tggttcctgg	gaggcttggc	cacatecete atggeceeat	2460
tttatccccg	aaatcctggg	tgtgtcacca	gtgtagaggg	tggggaaggg gtgtctcacc	2520
tgagetgaet	ttgttcttcc	ttcacaacct	totgagoott	ctttgggatt ctggaaggaa	2580
ctcggcgtga	gaaacatgtg	acttcccctt	teeetteeca	ctcgctgctt cccacagggt	2640
gacaggctgg	gctggagaaa	cagaaatcct	caccctgcgt	cttcccaagt tagcaggtgt	2700
ctctggtgtt	cagtgaggag	gacatgtgag	tectggcaga	agecatggee catgtetgea	2760
catccaggga	ggaggacaga	aggcccagct	cacatgtgag	tectggeaga agecatggee	2820
catgtctgca	catccaggga	ggaggacaga	aggcccagct	cacatgtgag tcctggcaga	2880
agccatggcc	catgtctgca	catccaggga	ggaggacaga	aggeceaget cacatgtgag	2940
tcctggcaga	agccatggcc	catgtctgca	catccaggga	ggaggacaga aggcccagct	3000
cacatgtgag	tcctggcaga	agecatggee	catgtctgca	catccaggga ggaggacaga	3060
aggcccagct	cagtggcccc	cgcccccac	ccccacgcc	cgaacagcag gggcagagca	3120
gccctccttc	gaagtgtgtc	caagtccgca	tttgagcctt	gttctggggc ccagcccaac	3180
acctggcttg	ggctcactgt	cctgagttgc	agtaaagcta	taaccttgaa tcac	3234

<210> 142

<211> 2490

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (70)...(1026)

- 1	00>	14	-
< 4	111112	14	-

<40	0> 1	42														
aga	aaga	gaa (gcca	tagt	cg g	cgag	Caac	g ct	ggag	catc	ccg	ctct	ggt	gccg	ctgcag	g 60
ccg	gcag	ag a	tg g	tt g	ag c	tc a	tg t	tc c	cg c	tg t	tg c	tc c	tc c	tt c	tg cc	2 11:
		M	et V	al G	lu L	eu M	et P	he P	ro L	eu L	eu L	eu L	eu L	eu L	eu Pro)
			1				5					10				
ttc	ctt	ctg	tat	atg	gct	geg	ccc	caa	atc	agg	aaa	atg	ctg	tcc	agt	159
Phe	Leu	Leu	Tyr	Met	Ala	Ala	Pro	Gln	Ile	Arg	Lys	Met	Leu	Ser	Ser	
15					20					25					30	
ggg	gtg	tgt	aca	tca	act	gtt	cag	ctt	cct	9 99	aaa	gta	gtt	gtg	gtc	207
Gly	Val	Суз	Thr	Ser	Thr	Val	Gln	Leu	Pro	Gly	Lys	Val	Val	Val	Val	
				35					40					45		
aca	gga	gct	aat	aca	ggt	atc	ggg	aag	gag	aca	gcc	aaa	gag	ctg	gct	255
Thr	Gly	Ala	Asn	Thr	Gly	Ile	Gly	Lys	Glu	Thr	Ala	Lys	Glu	Leu	Ala	
			50					55					60			
cag	aga	gga	gct	cga	gta	tat	tta	gct	tgc	cgg	gat	gtg	gaa	aag	aaa	303
Gln	Arg	Gly	Ala	Arg	Val	Tyr	Leu	Ala	Суз	Arg	ĄzĄ	Val	Glu	Lys	Gly	
		65					70					75				
gaa	ttg	gtg	gcc	aaa	gag	atc	cag	acc	acg	aca	999	aac	cag	cag	gtg	351
Glu	Leu	Val	Ala	Lys	Glu	Ile	Gln	Thr	Thr	Thr	Gly	Asn	Gln	Gln	Val	
	80					85					90					
ttg	gtg	cgg	aaa	ctg	gac	ctg	tct	gat	act	aag	tct	att	cga	gct	ttt	399
Leu	Va1	Arg	Lys	Leu	Asp	Leu	Ser	Asp	Thr	Lys	Ser	Ile	Arg	Ala	Phe	
95					100					105					110	
gct	aag	gge	ttc	tta	gct	gag	gaa	aag	cac	ctc	cac	gtt	ttg	atc	aac	447
Ala	Lys	Gly	Phe	Leu	Ala	Glu	Glu	Lys	His	Leu	His	Val	Leu	Ile	Asn	
				115					120					125		
aat	gca	gga	gtg	atg	atg	tgt	ccg	tac	tcg	aag	aca	gca	gat	ggc	ttt	495
Asn	Ala	Gly	Val	Met	Met	Суз	Pro	Tyr	Ser	Lys	Thr	Ala	Ąsp	Gly	Phe	
			130					135					140			
gag	atg	cac	ata	gga	gtc	aac	cac	ttg	ggt	cac	ttc	ctc	cta	acc	cat	543
Glu	Met	His	Ile	Gly	Val	Asn	His	Leu	Gly	His	Phe	Leu	Leu	Thr	His	
		145					150					155				
ctg	ctg	cta	gag	aaa	cta	aag	gaa	tca	gcc	cca	tca	agg	ata	gta	aat	591
Leu	Leu	Leu	Glu	Lys	Leu	Lys	Glu	Ser	Ala	Pro	Ser	Arg	Ile	Val	Asn	
	160					165					170					

gtg	tct	tcc	ctc	gca	cat	cac	ctg	gga	agg	atc	cac	ttc	cat	aac	ctg	639
Val	Ser	Ser	Leu	Ala	His	His	Leu	Gly	Arg	Ile	His	Phe	His	Asn	Leu	
175					180					185					190	
cag	ggc	gag	aaa	ttc	tac	aat	gca	ggc	ctg	gcc	tac	tgt	cac	agc	aag	687
Gln	Gly	Glu	Lys	Phe	Tyr	Asn	Ala	Gly	Leu	Ala	Tyr	Суз	His	Ser	Lys	
				195					200					205		
cta	gcc	aac	atc	ctc	ttc	acc	cag	gaa	ctg	gcc	cgg	aga	cta	aaa	ggc	735
Leu	Ala	Asn	Ile	Leu	Phe	Thr	Gln	Glu	Leu	Ala	Arg	Arg	Leu	Lys	Gly	
			210					215					220			
tct	ggc	gtt	acg	acg	tat	tct	gta	cac	cct	ggc	aca	gtc	caa	tct	gaa	783
Ser	Gly	Val	Thr	Thr	Tyr	Ser	Val	His	Pro	Gly	Thr	Val	Gln	Ser	Glu	
		225					230					235				
ctg	gtt	cgg	cac	tca	tct	ttc	atg	aga	tgg	atg	tgg	tgg	ctt	ttc	tcc	831
Leu	Val	Arg	His	Ser	Ser	Phe	Met	Arg	Trp	Met	Trp	Trp	Leu	Phe	Ser	
	240					245					250					
ttt	ttc	atc	aag	act	cct	cag	cag	gga	gcc	cag	acc	agc	ctg	cac	tgt	879
Phe	Phe	Ile	Lys	Thr	Pro	Gln	Gln	Gly	Ala	Gln	Thr	Ser	Leu	His	Сув	
255					260					265					270	
gcc	tta	aca	gaa	ggt	ctt	gag	att	cta	agt	ggg	aat	cat	ttc	agt	gac	927
Ala	Leu	Thr	Glu	Gly	Leu	Glu	Ile	Leu	Ser	Gly	Asn	His	Phe	Ser	qaA	
				275					280					285		
tgt	cat	gtg	gca	tgg	gtc	tct	gcc	caa	gct	cgt	aat	gag	act	ata	gca	975
Сув	His	Val	Ala	Trp	Val	Ser	Ala	Gln	Ala	Arg	neA	Glu	Thr	Ile	Ala	
			290					295					300			
agg	cgg	ctg	tgg	gac	gtc	agt	tgt	gac	ctg	ctg	ggc	ctc	cca	ata	gac	1023
Arg .	Arg	Leu	Trp	Asp	Val	Ser	Суз	Aap	Leu	Leu	Gly	Leu	Pro	Ile	Asp	
		305					310					315				
taac	agg	cagt	gcca	gt t	ggac	ccaa	g ag	aaga	ctgo	ago	agac	tac	acag	tact	tc	1080
ttgt	caaa	at g	attc	tect	t ca	aggt	tttc	aaa	acct	tta	gcac	aaag	ag a	gcaa	aacct	1140
tcca	gcct	tg c	ctgc	ttgg	t gt	ccag	ttaa	aac	tcag	tgt	actg	ccag	at t	cgtc	taaat	1200
gtct	gtca	tg t	ccag	attt	a ct	ttga	ttct	gtt	actg	cca	gagt	tact	ag a	gata	tcata	1260
atag	gata	ag a	agac	cctc	a ta	tgac	ctgc	aca	gete	att	ttcc	ttct	ga a	agaa	actac	1320
tacc	tagg	ag a	atct	aagc	t at	agca	ggga	tga	ttta	tgc	aaat	ttga	ac t	agct	tettt	1380
gtte	acaa	tt c	agtt	cctc	c ca	acca	acca	gtc	ttca	ctt	caag	aggg	cc a	cact	gcaac	1440
ctca	actt	aa c	ataa	ataa	c aa	agaci	taac	tca	аала	caa	aact:	tacc	ca d	gcat	aataa	1500

atcaccggag gtcagtagtt caagaccagc ctggccaaca tggtgaaacc ccacctctac	1560
taaaaattgt gtatatettt gtgtgtette etgtttatgt gtgccaaggg agtattttca	1620
casagttcas ascagccaca atastcagag atggagcasa ccagtgccat ccagtettta	1680
tgcaaatgaa atgctgcaaa gggaagcaga ttctgtatat gttggtaact acccaccaag	1740
agcacatggg tagcagggaa gaagtaaaaa aagagaagga gaatactgga agataatgca	1800
caaaatgaag ggactagtta aggattaact agccctttaa ggattaacta gttaaggatt	1860
aatagcaaaa gatattaaat atgctaacat agctatggag gaattgaggg caagcaccca	1920
ggactgatga ggtcttaaca aaaaccagtg tggcaaaaaa aaaaaaaaaa	1980
aaaaaaatcc taaaaacaaa caaacaaaaa aaacaattct tcattcagaa aaattatctt	2040
agggactgat attggtaatt atggtcaatt taataatatt ttgggggcatt tccttacatt	2100
gtcttgacaa gattaaaatg tctgtgccaa aattttgtat tttatttgga gacttcttat	2160
caaaagtaat getgecaaag gaagtetaag gaattagtag tgtteeeate acttgtttgg	2220
agtgtgctat tctaaaagat tttgatttcc tggaatgaca attatatttt aactttggtg	2280
ggggaaagag ttataggacc acagtettea ettetgatae ttgtaaatta atettttatt	2340
geactigitt tgaccattaa getatatgit tagaaatggi cattitaegg aaaaattaga	2400
aaaattotga taatagtgoa gaataaatga attaatgttt taottaattt atattgaact	2460
gtcaatgaca aataaaaatt ctttttgatt	2490
<210> 143	
<211> 1465	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (84)(332)	
<400> 143	
gaaggcgccg gccgtggagg cgccacgtcc cttgcggcgg cgggagagaa atcgcttgga	60
etteggggeg geeteggaeg gee atg gee tit ace etg tac tea etg etg	110
Met Ala Phe Thr Leu Tyr Ser Leu Leu	
1 5	150
cag gea gee etg ete tge gte aac gee ate gea gtg etg eac gag gag	158
Gln Ala Ala Leu Leu Cys Val Asn Ala Ile Ala Val Leu His Glu Glu	
10 15 20 25	226
cga tto cto aag aac att ggo tgg gga aca gac cag gga att ggt gga	206
Arg Phe Leu Lys Asn Ile Gly Trp Gly Thr Asp Gln Gly Ile Gly Gly	

30	35	40	
ttt gga gaa gag ccg gga	a att aaa tca cag cta at	g aac ctt att cga 254	4
Phe Gly Glu Glu Pro Gly	y Ile Lys Ser Gln Leu Me	et Asn Leu Ile Arg	
45	50	55	
tot gta aga acc gtg atc	g aga gtg cca ttg ata at	a gta aac tca att 302	2
Ser Val Arg Thr Val Met	t Arg Val Pro Leu Ile Il	e Val Asn Ser Ile	
60	65	70	
gca att gtg tta ctt tta	a tta ttt gga tgaatatcag	tggagaaaat g 350	D
Ala Ile Val Leu Leu Leu	u Leu Phe Gly		
75	80		
gagactcaga agaggacatg	ccagtagaag ttattacttt gg	tcattatt ggaatattta 410	D
tatettaget ggetgacett g	gcacttgtca aaaatgtaaa gc	tgaaaata aaaccagggt 470)
ttctatttat ctgttttttt t	ttttaatgtt gcacttgtag tt	tcattaca aaagatcaga 530)
tcatgaaagg cagtaactct c	ccaggactgg aatatctgat tg	ctcagtgt taatagtagt 590)
teatgetgtg gtgagattgt t	taaaagggtg caagactgtt go	ttetettt ttttagatat 650)
ttttetatet eteaettete a	agggatgaaa ttetttttea aa	gttttgaa gttccttgca 710)
acttagecat gatgtgagtg	gttatcccta gataaaatta aa	aggatttt taaaaagtaa 770)
ttactgcaca taaaatgata a	aataggtaat ttgaataatt tt	attttaag ctccttggtt 830)
aattattttg totattgtot o	cagctataaa ttcaaattta ta	catactat tgagtattaa 890)
tattetetga ttteagggag a	aattotgtoa gtoacatgat ga	ttatgttt ttgtttaaca 950)
ttettteeat geacttgtta t	ttttattaat ttgeetgaat ga	tgagacca gaccagtgtc 1010)
tacagatttt cattgtcaga a	aaaatctata agtctgccct tt	ttacaatg atgatttaaa 1070)
aaaaacaaca gcgtaaatat t	tageccaeaa gageagteet aa	acaatcac aattacactg 1130)
tactacccaa gaagactgtt t	tattgtgaag catttacctt to	aaaaaatc attacatttc 1190)
tatttcttgg tggagcagca c	cattgtggag tgtgattctt aa	ttetteat tgagtttgte 1250)
aataggacat tgatgctgga t	taggttgtct tttgttttta tg	totoagao catottgtga 1310)
gattgtttgc ctatctcata a	atacagtttt atgcagaaag gt	tgaaacta tgtaaatggt 1370)
ttttatggaa attatcagtt a	acaatatttt aaaggtgtag aa	tggcatct ttgtttatag 1430)
gagaacattt gtaaataaag t	taaatttct aagtc	1465	j

<210> 144

<211> 917

<212> DNA

<213> Homo sapiens

<220>

<221> CDS									
<222> (32)(775)									
<400> 144									
tetetgeate etteeegace tteeceageaa t atg eat ett gea egt etg gte	52								
Met His Leu Ala Arg Leu Val									
1 5									
gge tee tge tee etc ett etg eta etg ggg gee etg tet gga tgg geg	100								
Gly Ser Cys Ser Leu Leu Leu Leu Gly Ala Leu Ser Gly Trp Ala									
10 15 20									
gee age gat gae eee att gag aag gte att gaa ggg ate aac ega ggg	148								
Ala Ser Asp Asp Pro Ile Glu Lys Val Ile Glu Gly Ile Asn Arg Gly									
25 30 35									
ctg age aat gea gag aga gag gtg gge aag gee etg gat gge ate aae	196								
Leu Ser Asn Ala Glu Arg Glu Val Gly Lys Ala Leu Asp Gly Ile Asn									
40 45 50 55	244								
agt gga ate acg cat gee gga agg gaa gtg gag aag gtt tte aac gga	244								
Ser Gly Ile Thr His Ala Gly Arg Glu Val Glu Lys Val Phe Asn Gly 60 65 70									
	292								
ctt agc aac atg ggg agc cac acc ggc aag gag ttg gac aaa ggc gtc Leu Ser Asn Met Gly Ser His Thr Gly Lys Glu Leu Asp Lys Gly Val	232								
75 80 85									
cag ggg ctc aac cac ggc atg gac aag gtt gcc cat gag atc aac cat	340								
Gln Gly Leu Asn His Gly Met Asp Lys Val Ala His Glu Ile Asn His									
90 95 100									
ggt att gga caa gca gga aag gaa gca gag aag ctt ggc cat ggg gtc	388								
Gly Ile Gly Gln Ala Gly Lys Glu Ala Glu Lys Leu Gly His Gly Val									
105 110 115									
aac aac get get gga eag gee ggg aag gaa gea gae aaa geg gte caa	436								
Asn Asn Ala Ala Gly Gln Ala Gly Lys Glu Ala Asp Lys Ala Val Gln									
120 125 130 135									
ggg ttc cac act ggg gtc cac cag gct ggg aag gaa gca gag aaa ctt	484								
Gly Phe His Thr Gly Val His Gln Ala Gly Lys Glu Ala Glu Lys Leu									
140 145 150									
ggc caa ggg gtc aac cat gct gct gac cag gct gga aag gaa gtg gag	532								
Gly Gln Gly Val Asn His Ala Ala Asp Gln Ala Gly Lys Glu Val Glu									

WO 00/29448 PCT/JP99/06412

	155	160		165
aag ctt ggc	caa ggt gcc (cac cat gct	get gge cag gee	ggg aag gag 580
Lys Leu Gly	Gln Gly Ala I	His His Ala	Ala Gly Gln Ala	Gly Lys Glu
170		175	180	
ctg cag aat	gct cat aat	ggg gtc aac	caa gcc agc aag	gag gcc aac 628
Leu Gln Asn	Ala His Asn (Gly Val Asn	Gln Ala Ser Lys	Glu Ala Asn
185	:	190	195	
cag ctg ctg	aat ggc aac d	cat caa agc	gga tet tee age	cat caa gga 676
Gln Leu Leu	Asn Gly Asn I	His Gln Ser	Gly Ser Ser Ser	His Gln Gly
200	205		210	215
ggg gcc aca	acc acg ccg t	tta gcc tct	ggg gee teg gte	aac acg cct 724
Gly Ala Thr	Thr Thr Pro I	Leu Ala Ser	Gly Ala Ser Val	Asn Thr Pro
	220	;	225	230
ttc atc aac	ctt ccc gcc c	etg tgg agg a	age gte gee aac	ate atg eee 772
Phe Ile Asn	Leu Pro Ala I	Leu Trp Arg	Ser Val Ala Asn	Ile Met Pro
	235	240		245
taaactgg cat	eeggeet tgeto	ggaga ataat	gtege egttgteaca	teagetgaca 830
tgacctggag g	ggttggggg tgg	gggacag gtt	tctgaaa tccctgaa	gg gggttgtact 890
gggatttgtg a	ataaacttg ata	acact	•	917
<210> 145				•
<211> 1306				
<212> DNA				
<213> Homo s	apiens			•
<220>		,		
<221> CDS				
<222> (74)	. (694)			
<400> 145				
gaaggaccaa a	ggegaeegg tge	aggtgca cgad	egecage teeettet	-
cctgggggtt g	cc atg gcc cc	c age cae ct	g toa gtg egg g	ag atg agg 109
	Met Ala Pr	o Ser His Le	eu Ser Val Arg G	lu Met Arg
	1	5	. :	10
			atg ctg aag gcc	
Glu Asp Glu I	Lys Pro Leu V	al Leu Glu M	Met Leu Lys Ala (Gly Val Lys
15		20	25	

gac	acg	gaa	aac	cgc	gtg	gcc	ctc	cat	gcc	ttg	aca	cgg	ccg	ccg	gcc	205
qeA	Thr	Glu	Asn	Arg	Val	Ala	Leu	His	Ala	Leu	Thr	Arg	Pro	Pro	Ala	
	30					35					40					
ctg	ctc	ctc	ctg	gcg	gcg	gcc	agc	agc	ggc	ctg	cgc	ttt	gtc	ctg	gct	253
Leu	Leu	Leu	Leu	Ala	Ala	Ala	Ser	Ser	Gly	Leu	Arg	Phe	Val	Leu	Ala	
45					50					55					60	
tcc	ttc	gcc	ctg	gcc	ctc	ctc	ctg	ccg	gtg	ttc	ctg	gct	gtg	gee	gcc	301
Ser	Phe	Ala	Leu	Ala	Leu	Leu	Leu	Pro	Val	Phe	Leu	Ala	Val	Ala	Ala	
				65					70					75		
gtg	aag	ctg	ggc	ctg	cgg	gcc	cga	tgg	ggc	tog	ctg	cct	ccg	ccg	ggt	349
Val	Lys	Leu	Gly	Leu	Arg	Ala	Arg	Trp	Gly	Ser	Leu	Pro	Pro	Pro	Gly	
			80					85					90			
	_		_				gcc									397
Gly	Leu	-	Gly	Pro	Trp	Val	Ala	Val	Arg	Gly	Ser		Asp	Val	Суз	
		95					100					105				
	-	-	_	-	-		ggc			_		•		-		445
Gly		Leu	Ala	Leu	Ala		Gly	Thr	Asn	Ala	_	Asp	Gly	Ala	Arg	
	110					115			•		120					
_		_	-		-		ege			-	_					493
	Thr	Arg	Leu	Ser		Ser	Arg	Trp	His		Arg	Arg	GTĀ	Val		
125					130					135			.		140	F 41
		_	-	-			gag	-		-		_		Ť.,		541
Arg	Arg	цеи	Leu		Pne	ALA	Glu	ALA		ALA	Arg	AIA	urp		GTÅ	
	_ 4			145					150					155		F00
						-	cgg		_							589
сту	Mec	GTĀ		PIO	Arg	AIA	Arg		vaı	vaı	PIO	val	170	val	ATG	
	نسه		160					165				+		~~	ana	637
						_	ctg			_						037
ALG	πp	175	var	GIĄ	GIY	Mec	Leu 180	GIU	GTĀ	Cys	GTĀ	185	GIII	VIG	GIU	
	~~~												++-		222	685
							tac									600
ату	190	тър	атЛ	cys	₩	195	Tyr	TIII	Ten	val	200	GIU	FIIG	PGT	nya	
~=~		+400	aa+-	.ae								men	aaa-			740
	Leu	Lyaa	gula	ica g	actg	acag	C Ca	9990	ayyg	yag	17a79	yay	2770	.yees	<b>'</b> '	/40
	-101															

205	
	800
caccigatga tegeciacig tetgegggit cititacetg eletecetea gigagicete	860
aaccaccetg ggeccagaaa cagaggeetg cegaggggag gageetggee tetgtecace	920
egteageagt gtgaagtetg ttgtgtttga getteteaga gtggaatgae teetttteet	980
tectgeeet eggggeete tegaggteag ceteteeaac ecetacetea geteetgtet	
geactgagaa accteceegg gtgatgtetg caaagtetgt getgteegtg ecceaggetg	1040
ggagagetat etggggaggg ggagaggagg eegageagaa tacaccecag agttagggtt	1100
tgcgactccg cctccctggg acctggattg ggtcagatgc ctgtccttgg aggggacaag	1160
gttgactgct taggaggcgc gacgcacagg gctgccaggc ctggcccctc tctgggaagg	1220
ttgagagetg agaegggeag ecetgteeet teeteeagat eegtetggtt ttttacaeeg	1280
tttgttaata aageetgaaa eegett	1306
<210> 146	
<211> 2022	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (118)(1416)	
<400> 146	60
cttccgctgg ccgctggctc gctggccgct cctggaggcg gcggcgggag cgcaggggc	60
gegeggeeeg gggaetegea tteeeeggtt eeeeeteeae eeeaegegge etggaee	117
atg gac gcc aga tgg tgg gca gtg gtg ctg gct gcg ttc ccc tcc	165
Met Asp Ala Arg Trp Trp Ala Val Val Leu Ala Ala Phe Pro Ser	
1 5 10 15	
cta ggg gea ggt ggg gag act ccc gaa gcc cct ccg gag tea tgg acc	213
Leu Gly Ala Gly Glu Thr Pro Glu Ala Pro Pro Glu Ser Trp Thr	
20 25 30	
cag cta tgg ttc ttc cga ttt gtg gtg aat gct gct ggc tat gcc agc	261
Gln Leu Trp Phe Phe Arg Phe Val Val Asn Ala Ala Gly Tyr Ala Ser	
35 40 45	
ttt atg gta cet gge tae ete etg gtg eag tae tte agg egg aag aac	309
Phe Met Val Pro Gly Tyr Leu Leu Val Gln Tyr Phe Arg Arg Lys Asn	
50 55 60	
tac ctg gag acc ggt agg ggc ctc tgc ttt ccc ctg gtg aaa gct tgt	357

Tyr	Leu	Glu	Thr	Gly	Arg	Gly	Leu	Суз	Phe	Pro	Leu	Val	Lys	Ala	Cāa	
65					70					75					80	
gtg	ttt	ggc	aat	gag	ccc	aag	gcc	tct	gat	gag	gtt	ccc	ctg	gcg	ccc	405
Val	Phe	Gly	Asn	Glu	Pro	Lys	Ala	Ser	Asp	Glu	Val	Pro	Leu	Ala	Pro	
				85					90					95		
cga	aca	gag	gcg	gca	gag	acc	acc	ccg	atg	tgg	cag	gcc	ctg	aag	ctg	453
Arg	Thr	Glu	Ala	Ala	Glu	Thr	Thr	Pro	Met	Trp	Gln	Ala	Leu	Lys	Leu	
			100					105					110			
ctc	ttc	tgt	gcc	aca	999	ctc	cag	gtg	tet	tat	ctg	act	tgg	ggt	gtg	501
Leu	Phe	Сув	Ala	Thr	Gly	Leu	Gln	Val	Ser	Tyr	Leu	Thr	Trp	Gly	Val	
		115					120					125				
ctg	cag	gaa	aga	gtg	atg	acc	cgc	agc	tat	aaa	gcc	aca	gcc	aca	tca	549
Leu	Gln	Glu	Arg	Val	Met	Thr	Arg	Ser	Tyr	Gly	Ala	Thr	Ala	Thr	Ser	
	130					135					140					
ccg	ggt	gag	cgc	ttt	acg	gac	tcg	cag	ttc	ctg	gtg	cta	atg	aac	cga	597
Pro	Gly	Glu	Arg	Phe	Thr	Asp	Ser	Gln	Phe	Leu	Val	Leu	Met	Asn	Arg	
145					150					155					160	
	_	-	-			gct	-									645
Val	Leu	Ala	Leu		Val	Ala	Gly	Leu	Ser	Сув	Val	Leu	Cys		Gln	
				165					170					175		
						atg										693
Pro	Arg	His	Gly	Ala	Pro	Met	Tyr		Tyr	Ser	Phe	Ala		Leu	Ser	
			180					185					190			
						tgc										741
Asn	Val		Ser	Ser	Trp	Сув		Tyr	Glu	Ala	Leu		Phe	Val	Ser	
		195					200					205				
			-		-	gcc	-	•		_				_	_	789
Phe	Pro	Thr	Gln	Val	Leu	Ala	Lys	Ala	Ser	Lys		Ile	Pro	Val	Met	
	210					215					220					
			_		-	tct										837
	Met	Gly	Lys	Leu		Ser	Arg	Arg	Ser	_	Glu	His	Trp	Glu		
225					230					235					240	
ctg	aca	gcc	aca	ctc	atc	tee	att	<b>333</b>	gtc	agc	atg	ttt	ctg	cta	tee	885
Leu	Thr	Ala	Thr	Leu	Ile	Ser	Ile	Gly	Val	Ser	Met	Phe	Leu	Leu	Ser	
				245					250					255		

agc	gga	cca	gag	ccc	cgc	agc	tcc	cca	gcc	acc	aca	ctc	tca	ggc	ctc	933
Ser	Gly	Pro	Glu	Pro	Arg	Ser	Ser	Pro	Ala	Thr	Thr	Leu	Ser	Gly	Leu	
			260					265					270			
atc	tta	ctg	gca	ggt	tat	att	gct	ttt	gac	agc	ttc	acc	tca	aac	tgg	981
Ile	Leu	Leu	Ala	Gly	Tyr	Ile	Ala	Phe	Asp	Ser	Phe	Thr	Ser	Asn	Trp	
		275					280					285				
cag	gat	gcc	ctg	ttt	gcc	tat	aag	atg	tca	tcg	gtg	cag	atg	atg	ttt	1029
Gln	Asp	Ala	Leu	Phe	Ala	Tyr	Lys	Met	Ser	Ser	Val	Gln	Met	Met	Phe	
	290					295					300					
<b>9</b> 99	gtc	aat	ttc	ttc	tcc	tgc	ctc	ttc	aca	gtg	ggc	tca	ctg	cta	gaa	1077
Gly	Val	Asn	Phe	Phe	Ser	Суз	Leu	Phe	Thr	Val	Gly	Ser	Leu	Leu	Glu	
305					310					315					320	
cag	ggg	gcc	cta	ctg	gag	gga	acc	cgc	ttc	atg	<b>999</b>	cga	cac	agt	gag	1125
Gln	Gly	Ala	Leu	Leu	Glu	Gly	Thr	Arg	Phe	Met	Gly	Arg	His	Ser	Glu	
				325					330					335		
ttt	gct	gcc	cat	gcc	ctg	cta	ctc	tcc	atc	tgc	tcc	gca	tgt	ggc	cag	1173
Phe	Ala	Ala	His	Ala	Leu	Leu	Leu	Ser	Ile	Сув	Ser	Ala	Суз	Gly	Gln	
			340					345					350			
			ttt								_	-				1221
Leu	Phe		Phe	Tyr	Thr	Ile	Gly	Gln	Phe	Gly	Ala		Val	Phe	Thr	
		355					360					365				
		_	acc		-	_	-		_							1269
Ile		Met	Thr	Leu	Arg	Gln	Ala	Phe	Ala	Ile	Leu	Leu	Ser	Сла	Leu	
	370					375					380					
			cac		-							_				1317
	Tyr	Gly	His	Thr	Val	Thr	Val	Val	Gly	_	Leu	Gly	Val	Ala		
385					390					395					400	
-		_	gcc		_		_	_		-						1365
Val	Phe	Ala	Ala		Leu	Leu	Arg	Val	_	Ala	Arg	Gly	Arg		Lys	
				405					410					415		
			aag			-		_								1413
Gln	Arg	Gly	Lys	Lys	Ala	Val	Pro	Val	Glu	Ser	Pro	Val	Gln	Lys	Val	
			420					425					430			
			aggg				_	_	-	-						1470
~+~~	+ ~+ *	80.0	teta	2000	9 77	+ ~~	tass	900	7779	aat	acea	atat	<b>++ +</b>	ctca	atate	1530

acagaccage tetgeageag gggattgggg ageccaggag geageettee ettttgeet	t 1590
aagtcaccca tottccagta agcagtttat totgageecc gggggtagac agtcctcag	t 1650
gaggggtttt ggggagtttg gggtcaagag agcataggta ggttccacag ttactcttc	c 1710
cacaagttcc cttaagtctt gccctagctg tgctctgcca ccttccagac tcactcccc	t 1770
ctgcaaatac ctgcatttct taccctggtg agaaaagcac aageggtgta ggctccaat	g 1 <b>830</b>
ctgctttccc aggagggtga agatggtgct gtgctgagga aaggggatgc agagccctg	c 1890
ccagcaccac cacctectat geteetggat ccctaggete tgttccatga geetgttge	a 1950
ggttttggta ctttagaaat gtaacttttt gctcttataa ttttatttta	a 2010
ttactgcagt gg	2022
<210> 147	
<211> 1227	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (75)(995)	
<400> 147	
anagacttee tgegatgaga acagaggeae aggtgeegge eetgeageee eeagaacet	g 60
aaagacttee tgegatgaga acagaggeae aggtgeegge cetgeageee eeagaacete gaetgtaggg ggee atg ggg cae egg ace etg gte etg eee tgg gtg etg	g 60 110
	•
gactgtaggg ggec atg ggg cac egg ace etg gte etg eee tgg gtg etg	•
gaetgtaggg ggee atg ggg cae egg ace etg gte etg eee tgg gtg etg Met Gly His Arg Thr Leu Val Leu Pro Trp Val Leu	•
gactgtaggg ggcc atg ggg cac cgg acc ctg gtc ctg ccc tgg gtg ctg  Met Gly His Arg Thr Leu Val Leu Pro Trp Val Leu  1 5 10	110
gactgtaggg ggcc atg ggg cac egg acc etg gtc etg ecc tgg gtg etg  Met Gly His Arg Thr Leu Val Leu Pro Trp Val Leu  1 5 10  etg acc ttg tgt gtc act gcg ggg acc ecg gag gtg tgg gtt caa gtt	110
gactgtaggg ggcc atg ggg cac egg acc etg gtc etg ecc tgg gtg etg  Met Gly His Arg Thr Leu Val Leu Pro Trp Val Leu  1 5 10  etg acc ttg tgt gtc act geg ggg acc eeg gag gtg tgg gtt eaa gtt Leu Thr Leu Cys Val Thr Ala Gly Thr Pro Glu Val Trp Val Gln Val	110
gactgtaggg ggcc atg ggg cac cgg acc ctg gtc ctg ccc tgg gtg ctg  Met Gly His Arg Thr Leu Val Leu Pro Trp Val Leu  1 5 10  ctg acc ttg tgt gtc act gcg ggg acc ccg gag gtg tgg gtt caa gtt  Leu Thr Leu Cys Val Thr Ala Gly Thr Pro Glu Val Trp Val Gln Val  15 20 25	110 158
gactgtaggg ggcc atg ggg cac egg acc ctg gtc ctg ccc tgg gtg ctg  Met Gly His Arg Thr Leu Val Leu Pro Trp Val Leu  1 5 10  etg acc ttg tgt gtc act geg ggg acc ccg gag gtg tgg gtt caa gtt  Leu Thr Leu Cys Val Thr Ala Gly Thr Pro Glu Val Trp Val Gln Val  15 20 25  egg atg gag gcc acc gag ctc tcg tcc ttc acc atc cgt tgt ggg ttc	110 158
gactgtaggg ggcc atg ggg cac cgg acc ctg gtc ctg ccc tgg gtg ctg  Met Gly His Arg Thr Leu Val Leu Pro Trp Val Leu  1 5 10  ctg acc ttg tgt gtc act gcg ggg acc ccg gag gtg tgg gtt caa gtt  Leu Thr Leu Cys Val Thr Ala Gly Thr Pro Glu Val Trp Val Gln Val  15 20 25  cgg atg gag gcc acc gag ctc tcg tcc ttc acc atc cgt tgt ggg ttc  Arg Met Glu Ala Thr Glu Leu Ser Ser Phe Thr Ile Arg Cys Gly Phe	110 158
gactgtaggg ggcc atg ggg cac egg acc etg gtc etg ccc tgg gtg etg ctg  Met Gly His Arg Thr Leu Val Leu Pro Trp Val Leu  1 5 10  etg acc ttg tgt gtc act gcg ggg acc ecg gag gtg tgg gtt caa gtt  Leu Thr Leu Cys Val Thr Ala Gly Thr Pro Glu Val Trp Val Gln Val  15 20 25  egg atg gag gcc acc gag etc tcg tcc ttc acc atc egt tgt ggg ttc  Arg Met Glu Ala Thr Glu Leu Ser Ser Phe Thr Ile Arg Cys Gly Phe  30 35	110 158 206
gactgtaggg ggec atg ggg cac egg acc etg gtc etg cec tgg gtg etg etg etg ctg ggg ctc etg ggg acc etg gtg etg etg etg gtg etg etg etg acc etg gag gtg tgg gtg egg gtg etg ggt caa gtt etg tgt gtc act ggg ggg acc ecg gag gtg tgg gtt caa gtt eu Thr Leu Cys Val Thr Ala Gly Thr Pro Glu Val Trp Val Gln Val egg atg atg gag gcc acc gag etg etg etg etg etg etg etg etg etg et	110 158 206
gactgtaggg ggcc atg ggg cac egg acc etg gtc etg ccc tgg gtg etg etg ctg ctg ctg ggg acc etg gtg etg ctg gtg etg ctg acc ttg tgt gtc act geg ggg acc ecg gag gtg tgg gtt caa gtt Leu Thr Leu Cys Val Thr Ala Gly Thr Pro Glu Val Trp Val Gln Val Leu 15	110 158 206
gactgtaggg ggcc atg ggg cac egg acc etg gtc etg ccc tgg gtg etg etg ctg ctg ctg ggg acc etg gtg tgt ctg Leu Pro  Met Gly His Arg Thr Leu Val Leu Pro Trp Val Leu  1 5 5	110 158 206
gactgtaggg ggcc atg ggg cac egg acc etg gtc etg ccc tgg gtg etg etg ctg ctg ctg gtg etg ctg met leu	110 158 206

Ile	Arg	Gln	Trp	Ala	Pro	Ala	Arg	Gln	Ala	Arg	Trp	Glu	Thr	Gln	Ser	
			80					85					90			
agc	atc	tct	ctc	atc	ctg	gaa	ggc	tct	<b>9</b> 99	gcc	agc	agc	ccc	tgc	gcc	398
Ser	Ile	Ser	Leu	Ile	Leu	Glu	Gly	Ser	Gly	Ala	Ser	Ser	Pro	Суз	Ala	
		95					100					105				
aac	acc	acc	ttc	tgc	tgc	aag	ttt	geg	tcc	ttc	cct	gag	ggc	tcc	tgg	446
Asn	Thr	Thr	Phe	Cys	Сув	Lys	Phe	Ala	Ser	Phe	Pro	Glu	Gly	Ser	Trp	
	110					115					120					
gag	gcc	tgt	<b>9</b> 99	agc	ctc	ccg	ccc	agc	tca	gac	cca	999	ctc	tct	gcc	494
Glu	Ala	Суз	Gly	Ser	Leu	Pro	Pro	Ser	Ser	Asp	Pro	Gly	Leu	Ser	Ala	
125					130					135					140	
ccg	ccg	act	cct	gcc	ccc	att	ctg	cgg	gca	gac	ctg	gcc	<b>999</b>	atc	ttg	542
Pro	Pro	Thr	Pro	Ala	Pro	Ile	Leu	Arg	Ala	Asp	Leu	Ala	Gly	Ile	Leu	
				145					150					155		
<b>a</b> aa	gtc	tca	gga	gtc	ctc	ctc	ttt	ggc	tgt	gtc	tac	ctc	ctt	cat	ctg	590
Gly	Val	Ser	Gly	Val	Leu	Leu	Phe	Gly	Суз	Val	Tyr	Leu	Leu	His	Leu	
			160					165					170			
ctg	cgc	cga	cat	aag	cac	cgc	cct	gcc	cct	agg	ctc	cag	ccg	tcc	ege	638
Leu	Arg	Arg	His	Lys	His	Arg	Pro	Ala	Pro	Arg	Leu	Gln	Pro	Ser	Arg	
		175					180					185				
acc	agc	ccc	cag	gca	ccg	aga	gca	cga	gca	tgg	gca	cca	agc	cag	gec	686
Thr	Ser	Pro	Gln	Ala	Pro	Arg	Ala	Arg	Ala	Trp	Ala	Pro	Ser	Gln	Ala	
	190					195					200					
tcc	cag	gct	gct	ctt	cac	gtc	cct	tat	gcc	act	atc	aac	acc	agc	tgc	734
Ser	Gln	Ala	Ala	Leu	His	Val	Pro	Tyr	Ala	Thr	Ile	Asn	Thr	Ser	Сув	
205		•			210					215					220	
cgc	cca	gct	act	ttg	gac	aca	gct	cac	ccc	cat	ggg	<b>9</b> 99	ccg	tcc	tgg	782
Arg	Pro	Ala	Thr	Leu	Asp	Thr	Ala	His	Pro	His	Gly	Gly	Pro	Ser	Trp	
				225					230					235		
tgg	gcg	tca	ctc	ccc	acc	cac	gct	gca	cac	cgg	ccc	cag	ggc	cct	gee	830
Trp	Ala	Ser	Leu	Pro	Thr	His	Ala	Ala	His	Arg	Pro	Gln	Gly	Pro	Ala	
			240					245					250			
gcc	tgg	gcc	tcc	aca	ccc	atc	cct	gca	cgt	ggc	agc	ttt	gtc	tct	gtt	878
Ala	Trp	Ala	Ser	Thr	Pro	Ile	Pro	Ala	Arg	Gly	Ser	Phe	Val	Ser	Val	
		255					260					265				

gag aat gga ctc tac gct cag gca ggg gag agg cct cct cac act ggt	926
Glu Asn Gly Leu Tyr Ala Gln Ala Gly Glu Arg Pro Pro His Thr Gly	
270 275 280	
ccc ggc ctc act ctt ttc cct gac cct cgg ggg ccc agg gcc atg gaa	974
Pro Gly Leu Thr Leu Phe Pro Asp Pro Arg Gly Pro Arg Ala Met Glu	
285 290 295 300	
gga ccc tta gga gtt cga tgagagagac catgaggcca ctgggctt	1020
Gly Pro Leu Gly Val Arg	
305	
teccectece aggestestg ggtgtsaces esttasttta attettgggs stesaataag	1080
tgtcccatag gtgtctggcc aggcccacct gctgcggatg tggtctgtgt gcgtgtgtgg	1140
gcacaggtgt gagtgtgtga gtgacagtta ccccatttca gtcatttcct gctgcaacta	1200
agtcagcaac acagtttctc tgatgtc	1227
<210> 148	
<211> 2210	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (204)(1871)	
<400> 148	
aggggacgeg aggeggageg gggeeeeaea eaggeegegg eggetggete gggeeeetae	60
ggtcccggcg gcggctggag gaggaagcca ggcggctggc ggaggaggag agacggagga	120
ggccgagacc ggagcgccgc tcgccgcaga cttacttccc cggctcagca gggaaaggtt	180
cctagaaggt gagcgcggac ggt atg caa agt tgt gaa tcc agt ggt gac agt	233
Met Gln Ser Cys Glu Ser Ser Gly Asp Ser	
1 5 10	
geg gat gac cet etc agt ege gge eta egg aga agg gga eag eet egt	281
Ala Asp Asp Pro Leu Ser Arg Gly Leu Arg Arg Gly Gln Pro Arg	
15 20 25	
gtg gtg gtg atc ggc gcc ggc ttg gct ggc ctg gct gca gcc aaa gca	329
Val Val Val Ile Gly Ala Gly Leu Ala Gly Leu Ala Ala Ala Lys Ala	
30 35 40	
ctt ctt gag cag ggt ttc acg gat gtc act gtg ctt gag gct tcc agc	377

Leu	Leu	Glu	Gln	Gly	Phe	Thr	Asp	Val	Thr	Val	Leu	Glu	Ala	Ser	Ser	
		45					50					55				
cac	atc	gga	gge	cgt	gtg	cag	agt	gtg	aaa	ctt	gga	cac	gee	acc	ttt	425
His	Ile	Gly	Gly	Arg	Val	Gln	Ser	Val	Lys	Leu	Gly	His	Ala	Thr	Phe	
	60					65					70					
gag	ctg	gga	gcc	acc	tgg	atc	cat	ggc	tcc	cat	<b>3</b> 33	aac	cct	atc	tat	473
Glu	Leu	Gly	Ala	Thr	Trp	Ile	His	Gly	Ser	His	Gly	Asn	Pro	Ile	Tyr	
75					80					85					90	
cat	cta	gca	gaa	gcc	aac	ggc	ctc	ctg	gaa	gag	aca	acc	gat	ggg	gaa	521
His	Leu	Ala	Glu	Ala	Asn	Gly	Leu	Leu	Glu	Glu	Thr	Thr	qeA	Gly	Glu	
				95					100					105		
-	-			-	atc	_				_				-	-	569
Arg	Ser	Val	Gly	Arg	Ile	Ser	Leu	Tyr	Ser	Lys	Asn	Gly	Val	Ala	Сув	
			110					115					120			
tac	ctt	acc	aac	cac	ggc	cgc	agg	atc	CCC	aag	gac	gtg	gtt	gag	gaa	617
Tyr	Leu		Asn	His	Gly	Arg	Arg	Ile	Pro	Lys	Asp	Val	Val	Glu	Glu	
		125					130					135				
					aac		_									665
Phe	Ser	qeA	Leu	Tyr	Asn	Glu	Val	Tyr	Asn	Leu	Thr	Gln	Glu	Phe	Phe	
	140					145					150					
					gtc		_	_	_							713
_	His	Asp	Lys	Pro	Val	Asn	Ala	Glu	Ser		Asn	Ser	Val	Gly		
155					160					165					170	
		_			gtg	•		_				_				761
Phe	Thr	Arg	Glu		Val	Arg	Asn	Arg		Arg	Asn	qeA	Pro		Asp	
				175					180					185		
				_	cgc	-	_		-	_						809
Pro	Glu	Ala		Lys	Arg	Leu	ГЛЗ		Ala	Met	Ile	Gln		Tyr	Leu	
			190					195					200			
			_	-	gag	_	_			_	_	-				857
Lys	Val		Ser	Сув	Glu	Ser		Ser	His	Ser	Met	Asp	Glu	Val	Ser	
		205					210					215				
					gag						-					905
Leu	Ser	Ala	Phe.	Gly	Glu	Trp	Thr	Glu	Ile	Pro	Gly	Ala	His	His	Ile	
	220					225					230					

atc	ccc	tcg	ggc	ttc	atg	cgg	gtt	gtg	gag	ctg	, ctg	ged	gag	g ggc	atc	953
Ile	Pro	Ser	Gly	Phe	Met	Arg	Val	Val	Glu	Lev	Leu	Ala	Glu	Gly	Ile	
235					240	i				245	<b>,</b>				250	
cct	gcc	cac	gtc	atc	cag	cta	<b>g</b> gg	aaa	cct	gto	cgc	tgo	att	cac	tgg	1001
Pro	Ala	His	Val	Ile	Gln	Leu	Gly	Lys	Pro	Val	Arg	Cys	Ile	His	Trp	
				255					260					265	,	
gac	cag	gcc	tca	gcc	aga	ccc	aga	ggc	cct	gag	att	gag	ccc	cgg	ggt	1049
qaA	Gln	Ala	Ser	Ala	Arg	Pro	Arg	Gly	Pro	Glu	Ile	Glu	Pro	Arg	Gly	
			270					275					280	)		
gag	ggc	gac	cac	aat	cac	gac	act	ggg	gag	ggt	gge	cag	ggt	gga	gag	1097
Glu	Gly	Asp	His	Asn	His	Asp	Thr	Gly	Glu	Gly	Gly	Gln	Gly	Gly	Glu	
		285					290					295				
gag	ccc	cgg	ggg	ggc	agg	tgg	gat	gag	gat	gag	cag	tgg	tcg	gtg	gtg	1145
Glu	Pro	Arg	Gly	Gly	Arg	Trp	Asp	Glu	Asp	Glu	Gln	Trp	Ser	Val	Val	
	300					305					310					
gtg	gag	tgc	gag	gac	tgt	gag	ctg	atc	ecg	geg	gac	cat	gtg	att	gtg	1193
Val	Glu	Cys	Glu	Asp	Суз	Glu	Leu	Ile	Pro	Ala	qeA	His	Val	Ile	Val	
315					320					325					330	
acc	gtg	tcg	cta	ggt	gtg	cta	aag	agg	cag	tac	acc	agt	ttc	ttc	cgg	1241
Thr	Val	Ser	Leu	Gly	Val	Leu	Lys	Arg	Gln	Tyr	Thr	Ser	Phe	Phe	Arg	
				335					340					345		
cca	ggc	ctg	ccc	aca	gag	aag	gtg	gat	gcc	atc	cac	cgc	ctg	ggc	att	1289
Pro	Gly	Leu	Pro	Thr	Glu	Lys	Val	Ala	Ala	Ile	His	Arg	Leu	Gly	Ile	
			350					355					360			
			-	-			_	-	ttc							1337
Gly	Thr		Asp	Lys	Ile	Phe	Leu	Glu	Phe	Glu	Glu	Pro	Phe	Trp	Gly	
		365					370					375				
									tgg							1385
Pro	Glu	Cys	Asn	Ser	Leu	Gln	Phe	Val	Trp	Glu	Asp	Glu	Ala	Glu	Ser	
	380					385					390	~				
cac	acc	ctc	acc	tac	cca	cct	gag	ctc	tgg	tac	cgc	aag	atc	tgc	ggc	1433
His	Thr	Leu	Thr	Tyr	Pro	Pro	Glu	Leu	Trp	Tyr	Arg	Lys	Ile	Суз	Gly	
395					400					405					410	
ttt	gat	gtc	ctc	tac	ccg	cct	gag	aga	tac	ggc	cat	gtg	ctg	agc	ggc	1481
Phe	Asp	Val	Leu	Tvr	Pro	Pro	Glu	Ara	Tvr	Glv	His	Val	Leu	Ser	Glv	

				415					420					425		
tgg	atc	tge	ggg	gag	gag	gee	ctc	gtc	atg	gag	aag	tgt	gat	gac	gag	1529
Trp	Ile	Суз	Gly	Glu	Glu	Ala	Leu	Val	Met	Glu	Lys	Сув	Asp	qeA	Glu	
			430					435					440			
gca	gtg	gcc	gag	atc	tgc	acg	gag	atg	ctg	cgt	cag	tta	aca	ggg	aac	1577
Ala	Val	Ala	Glu	Ile	Сув	Thr	Glu	Met	Leu	Arg	Gln	Phe	Thr	Gly	Asn	
		445					450					455				
ccc	aac	att	cca	aaa	cct	cgg	cga	atc	ttg	cgc	teg	gcc	tgg	gge	agc	1625
Pro .	Asn	Ile	Pro	Lys	Pro	Arg	Arg	Ile	Leu	Arg	Ser	Ala	Trp	Gly	Ser	
	460					465					470					
aac	cct	tac	ttc	cgc	ggc	tee	tat	tca	tac	acg	cag	gtg	ggc	tcc	age	1673
Asn :	Pro	Tyr	Phe	Arg	Gly	Ser	Tyr	Ser	Tyr	Thr	Gln	Val	Gly	Ser	Ser	
475					480					485					490	
ggg (	gcg	gat	gtg	gag	aag	ctg	gcc	aag	ccc	ctg	ccg	tac	acg	gag	agc	1721
Gly 2	Ala	Asp	Val	Glu	Lys	Leu	Ala	Lys	Pro	Leu	Pro	Tyr	Thr	Glu	Ser	
				495					500					505		
tca	aag	aca	gcg	ccc	atg	cag	gtg	ctg	ttt	tcc	ggt	gag	gcc	acc	cac	1769
Ser 1	Lys	Thr	Ala	Pro	Met	Gln	Val	Leu	Phe	Ser	Gly	Glu	Ala	Thr	His	
			510					515					520			
cgc (	aag	tac	tat	tcc	acc	acc	cac	ggt	gct	ctg	ctg	tcc	ggc	cag	cgt	1817
Arg 1	Lys	Tyr	Tyr	Ser	Thr	Thr	His	Gly	Ala	Leu	Leu	Ser	Gly	Gln	Arg	
		525					530					535				
gag (	gct	gcc	aga	ctc	att	gag	atg	tac	cga	gac	ctc	ttc	cag	cag	ggg	1865
Glu A	Ala	Ala	Arg	Leu	Ile	Glu	Met	Tyr	Arg	qaA	Leu	Phe	Gln	Gln	Gly	
5	540					545					550					
acc t	tgag	ggct	gt c	ctcg	ctgc	t ga	gaag	agco	act	aact	cgt	gacc	tcca	ge e	t	1920
Thr						·									,	
555																
gece	ettg	ct g	ccgt	gtgc	t cc	tgcc	ttcc	tga	tcct	ctg	taga	aagg	at t	ttta	tette	1980
tgtag	gagc	ta g	ccgc	cctg	a ct	geet	tcag	acc	tggc	cct	gtag	cttt	tc t	tttt	ctcca	2040
ggctg	gggc	cg t	gago	aggt	g gg	ccgt	tgag	tta	cete	tgt	gctg	gato	cc g	tgee	CCCAC	2100
ttgcc	ctac	cc t	ctgt	cctg	c ct	tgtt	attg	taa	gtgc	ctt	caat	actt	tg c	attt	tggga	2160
taats	1995	88 0	acto	cctc		tacc	cctc	800	ttat	ata ·	taat	+++~	<b>-</b> -			2210

<211> 1493	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (93)(845)	
<400> 149	
ctcaagctgg caggtggteg ggggagegge eggagaggag etgeegggag ttegtgeeet	60
geaggaeatg acaceagtgg catateaegg ce atg ggg tet eag cat tee get	113
Met Gly Ser Gln His Ser Ala	
1 5	
get get ege eee tee tee tge agg ega aag eaa gaa gat gae agg gae	161
Ala Ala Arg Pro Ser Ser Cys Arg Arg Lys Gln Glu Asp Asp Arg Asp	
10 15 20	
ggt ttg ctg gct gaa cga gag cag gaa gaa gcc att gct cag ttc cca	209
Gly Leu Leu Ala Glu Arg Glu Glu Glu Glu Ala Ile Ala Gln Phe Pro	
25 30 35	
	257
Tyr Val Glu Phe Thr Gly Arg Asp Ser Ile Thr Cys Leu Thr Cys Gln	
40 45 50 55	_
	305
Gly Thr Gly Tyr Ile Pro Thr Glu Gln Val Asn Glu Leu Val Ala Leu	
60 65 70	
	353
Ile Pro His Ser Asp Gln Arg Leu Arg Pro Gln Arg Thr Lys Gln Tyr	
75 80 85	
	401
Val Leu Leu Ser Ile Leu Leu Cys Leu Leu Ala Ser Gly Leu Val Val	
90 95 100	440
	149
Phe Phe Leu Phe Pro His Ser Val Leu Val Asp Asp Gly Ile Lys	
105 110 115	107
	197
Val Val Lys Val Thr Phe Asn Lys Gln Asp Ser Leu Val Ile Leu Thr 120 125 130 135	
120 125 130 135	

ate atg gcc acc ctg aaa atc agg aac tcc aac ttc tac acg gtg gca	545
Ile Met Ala Thr Leu Lys Ile Arg Asn Ser Asn Phe Tyr Thr Val Ala	
140 145 150	
gtg acc agc ctg tec agc cag att cag tac atg aac aca gtg gtc agt	593
Val Thr Ser Leu Ser Ser Gln Ile Gln Tyr Met Asn Thr Val Val Ser	
155 160 165	
aca tat gtg act act aac gtc tcc ctt att cca cct cgg agt gag caa	641
Thr Tyr Val Thr Thr Asn Val Ser Leu Ile Pro Pro Arg Ser Glu Gln	
170 175 180	
ctg gtg aat ttt acc ggg aag gcc gag atg gga gga ccg ttt tcc tat	689
Leu Val Asn Phe Thr Gly Lys Ala Glu Met Gly Gly Pro Phe Ser Tyr	
185 190 195	
gtg tac ttc ttc tgc acg gta cct gag atc ctg gtg cac aac ata gtg	737
Val Tyr Phe Phe Cys Thr Val Pro Glu Ile Leu Val His Asn Ile Val	
200 205 210 215	
ate tte atg ega act tea gtg aag att tea tae att gge ete atg ace	785
Ile Phe Met Arg Thr Ser Val Lys Ile Ser Tyr Ile Gly Leu Met Thr	
220 225 230	
cag age tee ttg gag aca cat cae tat gtg gat tgt gga gga aat tee	833
Gln Ser Ser Leu Glu Thr His His Tyr Val Asp Cys Gly Gly Asn Ser	
235 240 245	
aca got att taacaactgo tattggttot tocacacago gootgtagaa gagagcac	890
Thr Ala Ile	
250	
agcatatgtt cccaaggcct gagttctgga cctacccca cgtggtgtaa gcagaggagg	950
aattggttca cttaactccc agcaaacate ctcctgccac ttaggaggaa acacctccct	1010
atggtaccat ttatgtttct cagaaccage agaatcagtg cetagectgt geccagcaaa	1070
tagttggeae teaataaaga tttgeagaat ttaatacaga tetttteage tgttettagg	1130
gcattataaa tggaaatcat aacgtggttc taggttatca aaccatggag tgatgtggag	1190
ctaggattgt gagtgacctg caggecatta teagtgeete atetgtgeag aagtegeage	1250
agagagggac catccaaata cctaagagaa aacagaccta gtcaggatat gaatttgttt	1310
cagetyttee caaaggeetg ggagettttt gaaaagaaag aaaaaagtgt gttggetttt	1370
ttttttttta gaaagttaga attgttttta ccaagagtot atgtggggot tgattcacco	1430
ttcatccatt ggctggaaca tggattgggg atttgataga aaaataaacc ctgcttttga	1490
tte	1493

<210> 150					
<211> 1264					
<212> DNA					
<213> Homo sapiens					
<220>					
<221> CDS					
<222> (26)(550)					
<400> 150					
aatctacaag caccaggaag tcaag atg caa gca cca gcc ttc agg gac aag	52				
Met Gln Ala Pro Ala Phe Arg Asp Lys					
1 5					
and cag ggg gtc tca gcc ang mat can ggt gcc cat gac cca gac tat	100				
Lys Gln Gly Val Ser Ala Lys Asn Gln Gly Ala His Asp Pro Asp Tyr					
10 15 20 25					
gag aat atc acc ttg gcc ttc aaa aat cag gac cat gca aag ggt ggt	148				
Glu Asn Ile Thr Leu Ala Phe Lys Asn Gln Asp His Ala Lys Gly Gly					
30 35 40					
cat toa oga oco acg ago caa gto oca geo cag tgo agg ocg oco toa	196				
His Ser Arg Pro Thr Ser Gln Val Pro Ala Gln Cys Arg Pro Pro Ser					
45 50 55					
gae tee ace cag gte eec tge tgg ttg tae aga gee ate etg age etg	244				
Asp Ser Thr Gln Val Pro Cys Trp Leu Tyr Arg Ala Ile Leu Ser Leu					
60 65 70					
tac atc ctc ctg gcc ctg gcc ttt gtc ctc tgc atc atc ctg tca gcc	292				
Tyr Ile Leu Leu Ala Leu Ala Phe Val Leu Cys Ile Ile Leu Ser Ala					
75 80 85					
tte ate atg gtg aag aat get gag atg tee aag gag etg etg gge ttt	340				
Phe Ile Met Val Lys Asn Ala Glu Met Ser Lys Glu Leu Leu Gly Phe					
90 95 100 105					
aaa agg gag ett tgg aat gte tea aac tee gta eaa gea tge gaa gag	388				
Lys Arg Glu Leu Trp Asn Val Ser Asn Ser Val Gln Ala Cys Glu Glu					
110 115 120	40.0				
aga cag aag aga ggc tgg gat tee gtt cag cag age ate ace atg gte	436				
Arg Gln Lys Arg Gly Trp Asp Ser Val Gln Gln Ser Ile Thr Met Val					

. 1	125	130	135
agg agc aag a	att gat aga tta gag	acg aca tta gca	ggc ata aaa aac 484
Arg Ser Lys I	Ile Asp Arg Leu Glu	Thr Thr Leu Ala	Gly Ile Lys Asn
140	145		150
att gac aca a	aag gta cag aaa atc	ttg gag gtg ctg	cag aaa atg cca 532
Ile Asp Thr I	Lys Val Gln Lys Ile	Leu Glu Val Leu	Gln Lys Met Pro
155	160	165	
cag too toa o	ect caa taaatgagag g	acattgtgg cagcca	aagc cac 580
Gln Ser Ser P	Pro Gln		
170			
aacttggaag at	ggggetge acctgccaac	gaagacggga aatg	accec eccecagec 640
tagtgtgaac ct	gcccctcg tcccacgtat	agaaaaacct cgag	tcatgg tgaatgagtg 700
teteggagtt ge	ctcgtgtgt gtgtacacct	gegtgegtgt gtgt	gegtgt gtgegegtgt 760
gttcgtgtat gt	gegtgtgt gegtgegegt	gtgtgtgcat tttg	caaagg gtggacattt 820
cagtgtatct co	cagaaagg tgatgaatga	ataggactga gagt	cacagt gaatgtggca 880
tgcatgcctg tg	gtcatgtga catatgtgag	totoggoatg toac	ggtggg tggctgtgtc 940
tgagcacctc ca	agcagatgt cactctgagt	gtgggtgttg gtga	catgca ttgcacgggc 1000
stgtetecet gt	ttgtgtaa acatactaga	gtatactgcg gcgt	gttttc tgtctaccca 1060
tgtcatggtg gg	ggagattt atctccgtac	atgtgggtgt cgcc	atgtgt geeetgteae 1120
tatetgtgge tg	ggtgaacg gctgtgtcat	tatgagtgtg ccga	gttatg ccaccctgtg 1180
tgeteaggge ac	atgcacac agacatttat	ctctgcactc acat	tttgtg acttatgaag 1240
staaataaaa to	eaadddaea acad		1264