Questão 8

•Item a
$$\xi_i \stackrel{iid}{\sim} \mathcal{N}(0,4)$$

Considerando os resultados mostrados na Figura 1 nota-se assimetria nas distribuições das estimativas, porém há uma concentração das estimativas em torno dos verdadeiros valores dos parâmetros, com uma maior variabilidade das estimativas do β_0 fato também observado nos intervalos de frequências de 95% presentes na coluna Interv.(95%) amostral da Tabela 1. Obtemos que os intervalos de confiança (IC's) gerados pela função lm() foram satifatórios considerando as estimativas do β_0 , contudo nas estimativas do β_1 os resultados foram absurdamente incompatíveis com o esperado, como mostrado na coluna $Prop.\ IC(95\%)\ lm()$ dado que estes resultados foram obtidos ajustando-se o modelo sob as suposições de normalidade, homocedásticidade e independência dos erros. A partir da coluna $Prop.\ Test.\ Hipot.$ podemos concluir que em todos os casos os testes de hipótese $C\beta=M$ foram satisfatórios com seus níveis de significância de 5%.

•Item b
$$\mathcal{V}(\xi_i) = \sigma^2 x_i$$

Com base nos dados mostrados na Figura 2 observa-se assimetria nas distribuições, bem como não há uma concentração das estimativas em torno dos verdadeiros valores dos parâmetros para as estimativas do β_0 e também com a semelhante maior variabilidade, fato também observado nos intervalos de frequências de 95% presentes na coluna Interv.(95%) amostral da Tabela 2. Obtemos que os IC's gerados pela função lm() foram satifatórios para ambos os parâmetros, considerando as amostras de tamanho 100 e a estimativa do β_1 com amostra de tamanho 50, como mostrado na coluna $Prop.\ IC(95\%)\ lm()$. A partir da coluna $Prop.\ Test.\ Hipot.$ podemos concluir que apenas os testes de hipótese $C\beta=M$ para amostras de tamanho 100 foram compatíveis com seus níveis de significância de 5%.

•Item c
$$\xi_i \stackrel{iid}{\sim} t_{(6)}$$

Segundo as informações contidas na Figura 3 nota-se assimetria nos histogramas. Junto a isso há uma concentração das estimativas em torno dos verdadeiros valores dos parâmetros. Continua presente a semelhante maior variabilidade das estimativas do β_0 , também observada nos intervalos de frequências de 95% presentes na coluna Interv.(95%) amostral da Tabela 3. Notável como os IC's gerados pela função lm() foram insatifatórios para o parâmetro β_0 como mostrado na coluna $Prop.\ IC(95\%)\ lm()$, adicionado dos dados da coluna $Prop.\ Test.\ Hipot.$ em que nenhum dos testes de hipótese $C\beta=M$ foi capaz de julgar a favor da hipótese nula, este último resultado consequentemente por causa das estimativas do β_0 .

•Item d
$$V(\xi_i) = 4$$
 e $Corre(\xi_i, \xi_i) = 0.90$ para $i \neq j$

Tendo em vista os resultados mostrados na Figura 4 observa-se assimetria nas distribuições das estimativas de ambos os parâmetros. Contudo há uma concentração das estimativas em torno dos verdadeiros valores dos parâmetros. Permanece presente a semelhante maior variabilidade das estimativas do β_0 , também observada nos intervalos de frequências de 95% presentes na coluna Interv.(95%) amostral da Tabela 4. Como no item anterior os IC's gerados pela função lm() foram insatifatórios para o parâmetro β_0 , nota-se pela coluna $Prop.\ IC(95\%)\ lm()$, adicionado dos dados da coluna $Prop.\ Test.\ Hipot$. em que a grande maioria dos testes de hipótese $C\beta=M$ julgaram contra a hipótese nula.

Parâmetros	Interv.(95%) amostral	Prop. IC(95%) lm()	Prop. Test. Hipot.	Tamanho amostral	Item
β_0	[-0,49 ; 2,54]	0,97	0,04	30	a
eta_0	[0.04; 2.08]	0,96	0,03	50	a
eta_0	[0,26; 1,63]	0,98	0,03	100	a
eta_1	[1,24; 1,79]	0,32	0,04	30	a
eta_1	[1,27; 1,76]	0,06	0,04	50	a
eta_1	[1,30;1,70]	0,00	0,03	100	a

Tabela 1: Intervalo de 95% dos quantis amostrais, proporções de IC's 95% resultado da função lm() que contém o verdadeiro valor do parâmetro e proporção de testes de hipóteses que rejeitam H_0

Figura 1: Distribuições amostrais das estimativas dos parâmetros do item a

Parâmetros	Interv.(95%) amostral	Prop. IC(95%) lm()	Prop. Test. Hipot.	Tamanho amostral	Item
β_0	[-14,43 ; 25,21]	0,93	0,09	30	b
β_0	[-14,21; 14,56]	0,93	0,07	50	b
eta_0	[-8,57; 11,23]	0,97	0,05	100	b
β_1	[-2,59; 5,91]	0,92	0,09	30	b
eta_1	[-2,98; 5,18]	0,98	0,07	50	b
β_1	[-1,45;3,97]	0,96	0,05	100	b

Tabela 2: Intervalos de 95% dos quantis amostrais, proporções de IC's 95% resultado da função lm() que contém o verdadeiro valor do parâmetro e proporção de testes de hipóteses que rejeitam H_0

Parâmetros	Interv.(95%) amostral	Prop. IC(95%) lm()	Prop. Test. Hipot.	Tamanho amostral	Item
$-\beta_0$	[2,35;3,28]	0,00	1	30	c
eta_0	[2,38;3,13]	0,00	1	50	c
eta_0	[2,47; 2,96]	0,00	1	100	c
eta_1	[1,35; 1,61]	0,96	1	30	c
eta_1	[1,42;1,57]	0,94	1	50	c
β_1	[1,44;1,57]	0,92	1	100	c

Tabela 3: Intervalos de 95% dos quantis amostrais, proporções de IC's 95% resultado da função lm() que contém o verdadeiro valor do parâmetro e proporção de testes de hipóteses que rejeitam H_0

Figura 2: Distribuições amostrais das estimativas dos parâmetros do item b

Parâmetros	Interv.(95%) amostral	Prop. IC(95%) lm()	Prop. Test. Hipot.	Tamanho amostral	Item
β_0	[-2,46;5,38]	0,07	0,94	30	d
eta_0	[-2,89; 4,06]	0,12	0,92	50	d
eta_0	[-2,54; 4,32]	0,03	0,95	100	d
β_1	[1,45; 1,55]	0,98	0,94	30	d
β_1	[1,46; 1,53]	0,98	0,92	50	d
eta_1	[1,47;1,53]	0,97	0,95	100	d

Tabela 4: Intervalos de 95% dos quantis amostrais, proporções de IC's 95% resultado da função lm() que contém o verdadeiro valor do parâmetro e proporção de testes de hipóteses que rejeitam H_0

Figura 3: Distribuições amostrais das estimativas dos parâmetros do item c

Figura 4: Distribuições amostrais das estimativas dos parâmetros do item d