Quantum Measurement Zeno Effect

Leon Oleschko 29.01.2025

Modeling Quantum Hardware: open dynamics and control
Universität Konstanz

No phenomenon is a real phenomenon until it is an observed phenomenon.

John Archibald Wheeler 1970

Historical Note

1900 Plank & Einstein: Blackbody Radiation 1920 Bohr, Heisenberg: Copenhagen interpretation Born: Probabilistic interpretation $P(m) = |\langle m | \psi \rangle|^2$ Schrödinger: Measurement Problem 1930 EPR Paradox 1932 von Neumann: Mathematical Foundations of Quantum Mechanics 1970 Decoherence Theory **Experimental Interest**

Projective Measurement

Measurement Operator
$$\hat{M}=\sum m|m\rangle$$
 on ψ :
$$p(m)=|\langle m|\psi\rangle|^2$$

$$\psi\xrightarrow{\text{Measuring }m}|m\rangle$$

Neglegting Normalization and Degenercy: POVM Measurement

Example: Superposition

$$H = \sigma_z$$
$$|\psi > \propto |\uparrow\rangle + |\downarrow\rangle$$

 $\Rightarrow \text{Superposition is stable}$

Example: Superposition

$$H = \sigma_z$$
$$|\psi > \propto |\uparrow\rangle + |\downarrow\rangle$$

 \Rightarrow Superposition is stable

$$M = \sigma_z$$

$$\Rightarrow p(\uparrow) = p(\downarrow)$$

Example: Decay

$$H = \sigma_z$$
$$|\psi > \propto |\uparrow\rangle$$
$$M = \sigma_z$$
$$J = \kappa \sigma_-$$

Example: Zeno

Zeno Effect

- Zeno of Elea (460 BCE): Arrow paradox
- Misra and Sudarshan (1977): "The Zeno's paradox in quantum theory"

"Quantum Zeno effect explains magnetic-sensitive radical-ion-pair reactions", Kominis 2009

Zeno Effect

- Zeno of Elea (460 BCE): Arrow paradox
- Misra and Sudarshan (1977): "The Zeno's paradox in quantum theory"
- Experimentally demonstrated (1990) with 5000 ⁹Be⁺ ions at 250 mK

FIG. 2. Diagram of the energy levels of ⁹Be⁺ in a magnetic field *B*. The states labeled 1, 2, and 3 correspond to those in Fig. 1.

FIG. 3. Graph of the experimental and calculated 1 → 2 transition probabilities as a function of the number of measurement pulses n. The decrease of the transition probabilities with increasing n demonstrates the quantum Zeno effect.

[&]quot;Quantum Zeno effect explains magnetic-sensitive radical-ion-pair reactions". Kominis 2009

Zeno Effect

- Zeno of Elea (460 BCE): Arrow paradox
- Misra and Sudarshan (1977): "The Zeno's paradox in quantum theory"
- Experimentally demonstrated (1990) with 5000 ⁹Be⁺ ions at 250 mK
- Used in Magnetometers and possibly birds

FIG. 2. Diagram of the energy levels of ⁹Be⁺ in a magnetic field *B*. The states labeled 1, 2, and 3 correspond to those in Fig. 1.

FIG. 3. Graph of the experimental and calculated 1 → 2 transition probabilities as a function of the number of measurement pulses n. The decrease of the transition probabilities with increasing n demonstrates the quantum Zeno effect.

[&]quot;Quantum Zeno effect explains magnetic-sensitive radical-ion-pair reactions". Kominis 2009

Trapped lons

FIG. 2. Diagram of the energy levels of $^9{\rm Be}^+$ in a magnetic field B. The states labeled 1, 2, and 3 correspond to those in Fig. 1.

- Trapped Ions
- Superconducting Qubits

- Trapped lons
- Superconducting Qubits
- Stern-Gerlach Experiment

- Trapped Ions
- Superconducting Qubits
- Stern-Gerlach Experiment
- Quantum Dot Charge Readout

- Trapped lons
- Superconducting Qubits
- Stern-Gerlach Experiment
- Quantum Dot Charge Readout

⇒ Used when the quantum wave function is collapsed into a classical result

Weak Measurement

Fig. 8.4 Detection of a classical force by monitoring the coordinate of an oscillator on which it acts.

Rabi Oscillations Setup

$$H = g (a^{\dagger}a)(\sigma^{+}\sigma^{-})$$

$$+ g_{s} (\sigma^{+} + \sigma^{-})$$

$$- i\beta(a^{\dagger} - a)$$

$$J = \kappa a$$

$$C = \sqrt{\kappa \eta} a$$

Coupling
Magnetic
Optic
Dissipation
Measurement

Time evolution

