Compact Microstrip Antennas

Prof. Girish Kumar

Electrical Engineering Department, IIT Bombay

gkumar@ee.iitb.ac.in (022) 2576 7436

Compact MSA

Size of the MSA is large at lower frequencies.

For RMSA, its effective length = $\lambda/2$.

- At 900 MHz, $\lambda/2 = 16.67$ cm and
- At 300 MHz, $\lambda/2 = 50.0$ cm

Size of the MSA can be reduced by using:

- 1. Substrate with higher ε_r but BW and η reduce.
- 2. Shorting Post at appropriate location.
- 3. Cutting Slots at appropriate location
- 4. Any combination of the above techniques

Compact Shorted Rectangular MSA

(a) Field distribution of the TM_{10} mode of RMSA of length $\approx \lambda/2$ and (b) shorted $\lambda/4$ RMSA.

Partially Shorted RMSA

where, L_e and W_e are the effective length and width in cm

Variation of Resonance Frequency with Shorting Ratio for Partially Shorted RMSA

L = W = 3.3 cm, $\varepsilon_r = 2.33$, h = 0.159 cm, $tan \delta = 0.001$, and x = 0.4 cm

Shorting	Experimental Results		Theoretic	Error in	
Ratio w _s /W	<i>f</i> ₀ (GHz)	$Z_{in}\left(\Omega\right)$	<i>f</i> ₀ (GHz)	$Z_{in}\left(\Omega\right)$	<i>f</i> ₀ (%)
0.1	0.881	528 + j2.8	0.893	535 – <i>j</i> 5	+1.24
0.2	1.028	300 - j0.5	1.025	282 – <i>j</i> 3	-0.27
0.3	1.126	212 + j1.3	1.123	179 – <i>j</i> 1	-0.25
0.4	1.206	142 – <i>j</i> 3.7	1.203	126 – <i>j</i> 4	-0.23
0.5	1.294	95.5 - j0.7	1.296	81.2 – <i>j</i> 2	+0.12
0.6	1.345	73.1 - j0.2	1.348	66.8 + j3	+0.20
0.7	1.393	59 + j0.3	1.389	59.6 + j2	-0.25
0.8	1.420	53.4 - j1.1	1.419	52.5 - j3	-0.06
0.9	1.440	51.9 - j1.7	1.436	50.9 - j.1	-0.25
1.0	1.447	50.7 - j0.0	1.442	50.1 + j0	-0.31

RMSA with Single Shorting Post

RMSA with a single shorting post at the (a) middle of the edge along the width (PIFA) and (b) corner

$$f_o = \frac{30}{4(L_e + W_e/2)\sqrt{\varepsilon_e}} \text{ GHz} \qquad f_o = \frac{30}{4(L_e + W_e)\sqrt{\varepsilon_e}} \text{ GHz}$$

Compact Shorted CMSA

(a) CMSA - voltage distribution for the fundamental TM_{11} mode, (b) shorted semi-circular MSA, (c) semi-circular MSA and (d) shorted 90° sectoral MSA.

Comparison of Different CMSA Configurations

Comparison of Different Variations of CMSA $(a = 3.0 \text{ cm}, \varepsilon_r = 2.33, h = 0.159 \text{ cm} \text{ and } tan \delta = 0.002)$

Variations of	x	f_o	BW	% BW	Area
CMSA	(cm)	(GHz)	(MHz)		(cm^2)
CMSA	0.9	1.866	25	1.3	28.27
SCMSA	0.7	1.863	18	0.9	14.13
Shorted SCMSA	0.65	1.788	22	1.2	14.13
Shorted 90°-	0.3	1.761	14	0.8	7.06
sectoral MSA					

TMSA and its Variations

TMSA and its variations (a)Equilateral TMSA, (b) shorted 60° -sector, (c) complement of shorted 60° -sector, (d) 30° - 60° - 90° TMSA, (e) shorted 30° -sector and (f) complement of shorted 30° -sector.

CMSA with Single Shorting Post

$$f_o = \frac{8.791}{a_{e1}\sqrt{\varepsilon_e}} \text{ GHz}$$

where, $a_{e1} = \pi a_e$ in cm and a_e is the effective radius of the CMSA.

C- Shaped MSA

(a) C-shaped MSA and its (b) Voltage Distribution

Effect of Slot Dimensions on the Performance of C-Shaped MSA

Effect of Slot Dimensions on the Performance of C-Shaped MSA (L = 6 cm, W = 4 cm, ϵ_r = 2.33, h = 0.159 cm and tan δ = 0.002)

$w \times l$	x	$\mathbf{f_o}$	BW	D	η
(cm, cm)	(cm)	(GHz)	(MHz)	(dB)	(%)
0 x 0	0.70	1.606	12	7.2	79
1 x 1	0.55	1.448	8	7.1	70
2 x 2	0.40	1.142	3	6.9	42
3 x 1	0.30	0.900	2	6.8	16
3 x 4	0.30	0.904	2	6.8	15

Shorted C- Shaped MSA

Resonance frequency of the C-shaped MSA is reduced by approximately half, when edge is fully shorted

H-Shaped MSA

Rectangular Ring MSA (RRMSA)

(a) RRMSA and (b) RRMSA with short.

Comparison of Various MSA Configurations with and without Slot

Comparison of Various MSA Configurations with and Without Slot $(L = 6 \text{ cm}, W = 4 \text{ cm}, \epsilon_r = 2.33, h = 0.159 \text{ cm}, \text{ and tan } \delta = 0.002)$

Type of MSA	Slot Dimensions $w \times I$ (cm)	f ₀ (GHz)	BW (MHz)	<i>D</i> (dB)	η (%)
Rectangular	0×0	1.606	12	7.2	79
C-shaped	3×1	0.900	2	6.8	16
H-shaped	1.5×1	1.061	2	6.9	32
Rectangular Ring	1.8×1.7	1.378	6	7.1	64

Broadband Gap Coupled Shorted 90°-Sectoral MSA

(a) Broadband gap-coupled shorted 90° sectoral MSA, and (b) Measured input impedance of (—) Gap-coupled shorted 90°-sector, and (---) CMSA

BW of gap-coupled shorted 90° sectoral MSA is 69 MHz at 1.358 GHz, whereas the BW of CMSA is 28 MHz at 1.375 GHz.

Broadband Gap Coupled Shorted RMSA

Radiating Edge Gap-Coupled Shorted RMSA

Ring Gap Coupled with Shorted MSA

Rectangular Ring Gap-Coupled to a Shorted RMSA Circular Ring Containing a Shorted CMSA

Gap Coupled Shorted C-Shaped MSA

(a) Three gap-coupled shorted C-shaped MSA and its (b) input impedance