- ✓ 梯度提升算法
 - ♂分类回归树 (CART)

 - **❷** GBDT优化思想
 - **❷** GBDT解决分类与回归问题

✓ 分类回归树

愛 数据集: $\left\{ \left(X^{(1)}, y^{(1)} \right), \left(X^{(2)}, y^{(2)} \right), \cdots, \left(X^{(m)}, y^{(m)} \right) \right\}$

愛 衡量的标准: $s^2 \cdot m = \left(y^{(1)} - \bar{y}\right)^2 + \left(y^{(2)} - \bar{y}\right)^2 + \dots + \left(y^{(m)} - \bar{y}\right)^2$

✓ Adaboost算法概述

数据集

第一次划分

更新权重

✓ Adaboost迭代过程

✓ Adaboost最终结果

৺ GB算法

- \mathscr{O} 优化的目标: $rg \min_{f(x)} \mathbb{E}_{x,y}[L(y,f(x))]$
- \mathscr{O} 结果依旧是需要迭代得出: $\hat{\theta} = \sum_{i=1}^{M} \hat{\theta}_i$

✓ GB算法

∅ 损失函数的选择:

Absolute loss (more robust to outliers) Huber loss (more robust to outliers)

$$L(y,F) = |y-F|$$

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2 & |y-F| \le \delta \\ \delta(|y-F|-\delta/2) & |y-F| > \delta \end{cases}$$

Уi	0.5	1.2	2	5*
$F(x_i)$	0.6	1.4	1.5	1.7
Square loss	0.005	0.02	0.125	5.445
Absolute loss	0.1	0.2	0.5	3.3
Huber loss($\delta = 0.5$)	0.005	0.02	0.125	1.525

✅ 梯度的思想

グ 找到最合适的参数:
$$(\rho_t, \theta_t) = \operatorname*{arg\,min}_{
ho, \theta} \mathbb{E}_{x,y}[L(y, \hat{f}(x) + \rho \cdot h(x, \theta))]$$

愛 残差的计算:
$$r_{it} = -\left[rac{\partial L(y_i, f(x_i))}{\partial f(x_i)}
ight]_{f(x) = \hat{f}(x)}$$

多数迭代:
$$\theta_t = \operatorname*{arg\,min}_{\theta} \sum_{i=1}^n (r_{it} - h(x_i, \theta))^2$$

少步长的选择:
$$ho_t = rg \min_{
ho} \; \sum_{i=1}^n L(y_i, \hat{f}\left(x_i\right) +
ho \cdot h(x_i, heta_t))$$

- ❤ GBDT的工作流程 $\{(x_i, y_i)\}_{i=1,...,n}$
 - \mathscr{O} (1) 初始化第一个方程: $\hat{f}(x) = \hat{f}_0, \hat{f}_0 = \gamma, \gamma \in \mathbb{R} \ \hat{f}_0 = \operatorname*{arg\,min}_{\gamma} \ \sum_{i=1}^n L(y_i, \gamma)$
 - ② (2) 每次迭代都要计算残差: $r_{it} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x) = \hat{f}(x)}$, for $i = 1, \dots, n$
 - \oslash (3) 以残差为目标构建回归方程: $\{(x_i,r_{it})\}_{i=1,\ldots,n}$
 - ② (4) 找到当前最合适的组合: $\rho_t = \underset{\rho}{\operatorname{arg\,min}} \sum_{i=1}^n L(y_i, \hat{f}(x_i) + \rho \cdot h(x_i, \theta))$
 - \mathcal{O} (5) 经过M次迭代后的结果: $\sum_{i=0}^{M} \hat{f}_i(x)$

❤ 回归任务实例

- ✓ 分类任务实例

 - ② 对于一个3分类的任务: $p_1 = exp(f_1(x)) / \sum_{k=1}^{3} exp(f_k(x))$
 - ❷ 这里我们可以训练3颗树(分别表示是不是第一类,是不是第二类。。。)

✓ 分类任务实例

$$f_{11}(x) = 0 - f_1(x)$$

② 如果当前样本属于第二类: $f_{22}(x) = 1 - f_{2}(x)$

$$f_{33}(x) = 0 - f_3(x)$$

Ø 下─轮的输入: $(x,f_{11}(x))$ $(x,f_{22}(x))$ $(x,f_{33}(x))$

② 当新来一个样本的时候: $f_1(x), f_2(x), f_3(x)$

✓ 分类任务实例

样本编号	花萼长度(cm)	花萼宽度(cm)	花瓣长度(cm)	花瓣宽度	花的种类
1	5.1	3.5	1.4	0.2	山鸢尾
2	4.9	3.0	1.4	0.2	山鸢尾
3	7.0	3.2	4.7	1.4	杂色鸢尾
4	6.4	3.2	4.5	1.5	杂色鸢尾
5	6.3	3.3	6.0	2.5	维吉尼亚鸢尾
6	5.8	2.7	5.1	1.9	维吉尼亚鸢尾

✓ GBDT迭代效果

✓ 可视化展示

http://arogozhnikov.github.io/2016/06/24/gradient boosting explained.html

http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html