CURSO 2021/2022

(a)
$$f_n(x) = \exp(-n x^2)$$
, sobre $[-1, 1]$

(b)
$$f_n(x) = x^{1/n}$$
, sobre [0, 1]

(c)
$$f_n(x) = \frac{x^n}{1+x^n}$$
, en $[0, 1-\varepsilon]$, en $[1-\varepsilon, 1+\varepsilon]$, y en $[1+\varepsilon, \infty)$.

(a)
$$f_n(x) = \exp(-n x^2)$$
, sobre $[-1, 1]$.
(b) $f_n(x) = x^{1/n}$, sobre $[0, 1]$.
(c) $f_n(x) = \frac{x^n}{1+x^n}$, en $[0, 1-\varepsilon]$, en $[1-\varepsilon, 1+\varepsilon]$, y en $[1+\varepsilon, \infty)$.
(d) $f_n(x) = \begin{cases} 0 & \text{si } x \le n, \\ x-n & \text{si } x \ge n, \end{cases}$ en cada $[a, b]$ y en \mathbb{R} .
(e) $f_n(x) = \frac{n x}{1+n^2 x^2}$, en $[-1, 1]$ y en $[1, \infty)$.
(f) $f_n(x) = x^{-n} e^x$, en $(1, \infty)$.

(e)
$$f_n(x) = \frac{n x}{1 + n^2 x^2}$$
, en $[-1, 1]$ y en $[1, \infty)$

(f)
$$f_n(x) = x^{-n} e^x$$
, en $(1, \infty)$

2.- Sea la sucesión $\{f_n\}_{n=1}^{\infty}$ de funciones en [0,1], dada por $f_n(x)=n^2$ x e^{-nx^2} .

- (a) Estudiar la convergencia puntual y uniforme de $\{f_n\}_{n=1}^{\infty}$.
- (b) Comprobar que a pesar de que $\{f_n\}_{n=1}^{\infty}$ converge puntualmente a una función integrable, y que cada f_n es integrable, se tiene $\lim_n \int_0^1 f_n = \infty$.

3.- Sea la sucesión $\{f_n\}_{n=1}^{\infty}$ de funciones en $\mathbb R$ dada por $f_n(x)=x\,e^{-nx^2}$. Probar que converge uniformemente a 0 en \mathbb{R} y que $f'_n(x)$ converge puntualmente en \mathbb{R} , pero que $\{f'_n\}$ no converge uniformemente en ningún intervalo que contenga propiamente a 0.

4.- Encontrar una sucesión de funciones continuas $\{f_n\}_{n=1}^{\infty}$ que converja uniformemente a f en $[0,\infty)$ y tales que existan $\lim_n \int_0^\infty f_n \ y \int_0^\infty f$, pero

$$\lim_{n\to\infty}\int_0^\infty f_n\neq\int_0^\infty f.$$

- 5.- Sea $f_n(x) = \cos^{2n}(\pi x)$ para $x \in \mathbb{R}$.
 - (a) Estudiar a qué función converge puntualmente la sucesión $\{f_n\}_{n=1}^{\infty}$ y si la convergencia es uniforme.
 - (b) Describir la función

$$g(x) = \lim_{k o \infty} \lim_{n o \infty} f_n(k!x).$$

- **6.-** Sean $\{f_n\}_{n=1}^{\infty}$ y $\{g_n\}_{n=1}^{\infty}$ dos sucesiones de funciones dadas por $f_n(x)=x^2+1/n$ y $g_n(x)=(nx)^{-1}$.
 - (a) Demostrar que ambas convergen uniformemente en $[1, \infty)$ y sin embargo la sucesión de término general $f_n g_n$
 - **(b)** Demostrar que a pesar de que $\{f_n\}_{n=1}^{\infty}$ converge uniformemente en \mathbb{R} a una función f, $\{f_n^2\}_{n=1}^{\infty}$ no converge uniformemente en \mathbb{R} a f^2 .

7.- Sea $\{f_n\}_{n=1}^{\infty}$ la sucesión de término general $f_n(x) = x/(1+nx^2)$. Comprobar que converge uniformemente a cierta f en \mathbb{R} y que se se verifica $\lim_n f'_n(x) = f'(x)$ para cualquier $x \neq 0$ pero no para x = 0.

8.- Encontrar una sucesión de funciones derivables en (-1,1) que converja uniformemente a f(x)=|x|.

9.- En este problema se va a probar por contradicción que $\pi \not\in \mathbb{Q}$ usando la sucesión de funciones $f_n(x) = x^n(1-x)$ $(x)^n/n!$ y las integrales $I_n = \int_0^1 a^{2n} f_n(x) \sin(\pi x) dx$.

- (a) Usando la convergencia uniforme, deducir que para cualquier a > 0 se cumple que $\lim_n I_n = 0$.
- **(b)** Probar que todas las derivadas de $f_n(x)$ en x = 0 y en x = 1 son números enteros.
- (c) Suponiendo $\pi=a/b$, $a,b\in\mathbb{Z}^+$, integrando por partes y empleando el apartado anterior, demostrar que
- (d) Usar que una sucesión de enteros estrictamente positivos no puede tener límite nulo, para llegar a una contradicción.
- 10.- Considerar la ecuación lineal

$$x' + a(t)x = 0,$$

donde a(t) es una función continua y periódica de periodo T.

- (a) Demostrar que si x(t) es solución, entonces y(t) = x(t+T) también lo es.
- **(b)** Demostrar que existe una constante C tal que x(t+T) = Cx(t) para todo t.
- (c) Encontrar la condición que debe satisfacer a(t) para que existan soluciones de período T, o de período 2T.
- (d) Si a(t) es constante, calcular su valor para que existan soluciones periódicas de período 2T.
- **11.-** Considerar la ecuación lineal con $r \in \mathbb{R}$, $r \neq 0$,

$$x' = rx + b(t),$$

donde b es una función periódica continua de período T > 0.

(a) Si r < 0, demostrar que la aplicación $F : \mathbb{R} \to \mathbb{R}$ definida por

$$F(\xi) = x(T, \xi),$$

donde $x(t,\xi)$ es la solución de la ecuación con dato inicial $x(0)=\xi$, tiene un único punto fijo ξ_0 . Para t>0, demostrar lo mismo considerando la aplicación $F(\xi)=x(-T,\xi)$. Demostrar en ambos casos que la solución $x(t, \xi_0)$ es una función periódica de período T.

(b) Demostrar que si r < 0 la solución periódica obtenida es asintóticamente estable (cualquier solución de la ecuación converge a ella cuando $t \to +\infty$).

12.- Considerar la ecuación lineal

$$x' = a(t)x + b(t),$$

donde a y b son funciones continuas y periódicas de período T>0.

- (a) Demostrar que que si una solución x(t) cumple que x(0) = x(T), entonces es periódica.
- (b) Demostrar que si $\alpha := \int_0^T a(s)ds \neq 0$, entonces existe una única solución periódica. (c) Demostrar que si además $\alpha < 0$ la solución periódica obtenida es asintóticamente estable.

13.- Sean $f: \mathbb{R} \to \mathbb{R}^n$ una función periódica de período T > 0 y A una matriz $n \times n$ real.

- (a) Demostrar que todo autovalor de e^A es de la forma e^{λ} , donde λ es un autovalor de A. Indicación: Usar las matrices de Jordan.
- (b) Supongamos que ningún autovalor de A tiene parte real nula. Demostrar que la ecuación X' = AX + f(t)tiene una única solución $X_p(t)$ de período T.
- (c) Supongamos que todos los autovalores de A tienen parte real negativa. Demostrar que toda solución de X' = AX + f(t) verifica

$$\lim_{t\to\infty}|X(t)-X_p(t)|=0,$$

siendo X_p la solución periódica de (b).