Tradução Dirigida por Sintaxe em Compiladores

A tradução dirigida por sintaxe é uma técnica fundamental no projeto de compiladores, especialmente nas fases intermediárias entre a análise sintática e a geração de código. Ela consiste na associação de ações semânticas com as regras gramaticais de uma linguagem formal, de modo que a tradução de um programa-fonte seja orientada pela estrutura sintática que ele possui. Em outras palavras, a SDT utiliza a árvore sintática construída durante a análise sintática como guia para gerar uma tradução do código-fonte (como código intermediário, código objeto ou até mesmo uma árvore de semântica abstrata).

1. Fundamentos

A base teórica da tradução dirigida por sintaxe está na **gramática livre de contexto** (GLC). A ideia principal é estender essa gramática com **atributos** e **ações semânticas**:

- Atributos: Valores que podem ser associados aos símbolos não-terminais e terminais da gramática.
- Ações semânticas: Blocos de código (em geral, em alguma linguagem de programação como C ou Java) que calculam os atributos ou executam outras tarefas (como gerar código) com base nesses atributos.

A tradução dirigida por sintaxe é, portanto, um tipo de **gramática dirigida por atributos (attribute grammar)**.

2. Tipos de Atributos

Existem dois tipos principais de atributos:

- Atributos sintetizados: Calculados a partir dos atributos dos filhos de um nó na árvore sintática.
 São comuns em gramáticas do tipo L-attributed, típicas de analisadores de descida recursiva.
- Atributos herdados: Calculados a partir dos atributos dos pais ou irmãos (contexto externo) na árvore sintática. Usados para passar informações top-down.

Exemplo:

PROFESSEUR: M.DA ROS

Considere uma regra da gramática para uma expressão aritmética:

```
E → E1 + T { E.val = E1.val + T.val }
```

Aqui, E. val, E1. val e T. val são atributos sintetizados que armazenam o valor da expressão.

3. Gramáticas Dirigidas por Sintaxe

Uma SDT pode ser embutida diretamente nas regras da gramática como ações semânticas, formando uma gramática dirigida por sintaxe. Essas ações podem ser:

- In-line: Escritas diretamente no meio da produção.
- Pós-produção: Escritas ao final da produção, mais comuns em ferramentas como Yacc ou Bison.

Exemplo com ação pós-produção:

```
S → id := E { print("Atribuição de valor: ", E.val) }
```

4. Modelos de Implementação

Existem dois modelos principais de tradução dirigida por sintaxe:

a) Tradução durante a análise sintática (on-the-fly)

É realizada enquanto a árvore sintática está sendo construída. Usada principalmente em analisadores LL(1) ou LR(1).

Vantagem: evita construir a árvore completa.

Desvantagem: limitações quanto ao uso de atributos herdados.

b) Tradução via árvore sintática anotada

Primeiro constrói-se a árvore de derivação ou árvore sintática abstrata (AST), e depois ela é percorrida em uma passagem posterior para executar as ações.

Vantagem: mais flexível, permite múltiplas passagens.

Desvantagem: requer mais memória.

5. Aplicações da Tradução Dirigida por Sintaxe

A SDT é usada em várias fases do compilador:

- Construção de árvores abstratas (ASTs): estrutura compacta e semanticamente significativa do código-fonte.
- Geração de código intermediário: por exemplo, tradução para código em 3 endereços.
- Verificação de tipos: assegura que os tipos de variáveis e expressões sejam compatíveis.
- Verificação semântica: por exemplo, verificar declaração prévia de variáveis.
- Geração de código final: transformar a AST ou representação intermediária em assembly.

6. Exemplo Prático

Para ilustrar, suponha a seguinte gramática e SDT:

```
E \rightarrow E1 + T { E.val = E1.val + T.val }

E \rightarrow T { E.val = T.val }

T \rightarrow \text{num} { T.val = num.lexval }
```

Dado o código de entrada 3 + 4, a árvore sintática terá nós com atributos val que serão computados durante a análise ou em uma passagem posterior:

```
E

/|\
E + T

| |

T num(4)

|

num(3)
```

A avaliação será:

```
T.val = 3
T.val = 4
E1.val = 3, T.val = 4 → E.val = 3 + 4 = 7
```

7. Ferramentas que Utilizam SDT

Ferramentas conhecidas que suportam SDT incluem:

- Yacc/Bison: para análise sintática LR, com ações semânticas em C.
- ANTLR: combina análise sintática e semântica com ações em várias linguagens.
- PLY (Python Lex-Yacc): implementa análise léxica e sintática com suporte a ações semânticas.

8. Vantagens e Desafios

Vantagens:

- Integração natural entre sintaxe e semântica.
- Modularidade: ações associadas diretamente a regras específicas.
- Possibilidade de reutilização da estrutura sintática para múltiplas finalidades.

Desafios:

- Atributos herdados podem complicar a implementação.
- Pode exigir múltiplas passagens em gramáticas mais complexas.
- A ordem de avaliação dos atributos precisa ser cuidadosamente controlada (especialmente em gramáticas com dependências cíclicas).

Síntese: Fase de Tradução Dirigida por Sintaxe

A tradução dirigida por sintaxe (Syntax-Directed Translation – SDT) é uma fase intermediária do compilador que relaciona a estrutura sintática do programa com seu significado semântico, guiando a geração de código ou análise semântica a partir da árvore sintática.

O que ela faz?

Ela **associa ações semânticas** às **regras da gramática** de uma linguagem de programação. Essas ações são responsáveis por:

- Calcular valores (ex: resultado de expressões)
- Verificar tipos
- Construir árvores abstratas (AST)
- · Gerar código intermediário

Como funciona?

Cada símbolo (como E, T, F) pode ter **atributos**, que são dados associados a ele, e cada produção da gramática tem **ações semânticas** que manipulam esses atributos. O processo pode ocorrer:

- Durante a análise sintática (ação embutida na derivação)
- Após construir a árvore (passagem posterior)

Tipos de atributos:

- Sintetizados: fluem de baixo para cima (usados para montar resultados de expressões, por exemplo).
- Herdados: fluem de cima para baixo (usados para passar contexto, como tipo de variável).

Exemplo simples:

Regra:

```
E → E + T { E.val = E.val + T.val }
```

Se E = 2 + 3, o valor final E_{\bullet} val será 5.

Em resumo:

Conceito	Função principal
SDT (Syntax-Directed Translation)	Controlar a tradução com base na estrutura sintática
Atributos	Guardar valores e contextos (sintetizados ou herdados)
Ações semânticas	Código que calcula ou verifica informações

Conceito	Função principal
Resultado	Código intermediário, AST, verificação semântica etc.

Por que é importante?

É nessa fase que o compilador **interpreta o que o programa realmente faz**, com base na sua forma gramatical. Sem ela, o compilador saberia **como o código é escrito**, mas não **o que ele significa**.

Conclusão

PROFESSEUR: M.DA ROS

A tradução dirigida por sintaxe representa uma ponte essencial entre a estrutura gramatical de uma linguagem de programação e a sua interpretação semântica. Ao associar atributos e ações às produções da gramática, os compiladores podem efetuar análises semânticas, otimizações e geração de código de forma organizada e eficiente. Seu uso é indispensável em compiladores modernos e continua sendo objeto de estudo tanto na academia quanto na indústria.