

Le TOP du top

Dynamix v2.0

Sommaire

- Retour sur la compétition
- Objectifs pour 2015
- Améliorations pour Dynamix v2.0
- Essais à venir

Cost event

- Cost report bien préparé
- Très peu d'erreurs
- Cost report apprécié des juges
- Etude de cas non préparée
- Mauvaise compréhension des attentes des juges

31^è / 44 59.19 / 100 points

Design event

- Bonne première voiture
- Travail de mécanicien
- Voiture pas assez homogène
- Réalisations d'essais
- Analyse des problèmes
- Supports mal utilisés
- Mauvais choix de supports

18^è / 44 106.20 / 150 points

Business event

- Pas de retour particulier
- Manque de chiffres
- Manque de préparation

24^è / 44 48.98 / 75 points

Vérifications techniques

- 4h de vérifications
- Petites modifications nécessaires
- De justesse à cause de la rampe d'injection secondaire
- De justesse au Tilt Test
- 107 dB au Noise Test
- 2ème essai au Brake Test

Practice

- Casse d'une chape de direction sur le porte-moyeu
- Tentative de réparation au poste à souder
- Fabrication d'une nouvelle pièce fonctionnelle
- Renfort de la pièce symétrique
- Validation par les juges

Skid-Pad

- Pilotes entraînés
- Temps similaire entre les deux pilotes

21 ^è / 44			
17.75 / 50	points		
5.529	S		

Accélération

Problème de démarrage

Autocross

- Pluie menaçante
- Départ du meilleur pilote sous la pluie
- Meilleur temps du second pilote sur le sec

Endurance

- Très physique pour les pilotes
- 22 km parcourus sans souci mécanique
- 1 point par tour effectué

Efficiency

- Non classé
- 4.1 litres consommés

Classement général:

24^è / 44 345.72 / 1000 points

Objectifs pour 2015

FSUK - Silverstone 2015

 \rightarrow 9 au 12 juillet

(Inscription validée)

Institution of MECHANICAL ENGINEERS

Objectif: Best Newcomer (si éligible)

Top 20

Objectifs pour 2015

Skid-Pad	Accélération	Sprint	Endurance	Efficiency
Top 25	Top 15	Top 30	Top 20	Top 25
20 / 50 pts	40 / 75 pts	40 / 150 pts	75 / 300 pts	35 / 100 pts
(5.4 s)	(4.2 s)			

Cost	Design	Business
Top 25	Top 50	Top 40
60 / 100 pts	80 / 150 pts	50 / 75 pts

Général			
Top 20			
400 / 1000 pts			

Améliorations

- Suspensions
- Direction
 - Chasse et angle de chasse
 - Cinématique de colonne
- Embrayage
- Calculateur DTA

Les contraintes

- Aucun changement apporté sur le châssis
- Limiter les usinages
- Eviter d'immobiliser la voiture

Suspensions : le problème

- Plongée importante au freinage
- Prise de roulis importante
- Manque de réactivité de la voiture
- Impossibilité de rabaisser la voiture
- → Raideurs des suspensions trop faibles

Suspensions: l'analyse

Raideur de la suspension à la roue :

Wheel rate =
$$\frac{Raideur\ ressort}{Motion\ ratio^{2}}$$

Pour les roues arrières →

Erreur de 19%

	v1 prévu	v1 mesuré
Motion ratio	1.52	2.23
Spring stiffness (lb/in)	225	380
Wheel rate (lb/in)	97	76
Wheel rate (N/m)	17 055	13 382
Tire rate (N/m)	91 000	91 000
Ride rate (N/m)	14 363	11 667
Roll rate (N.m/rad)	22 442	18 229
Frequency (Hz)	2.20	1.99

Suspensions: la solution choisie

Nouvelle cinématique de suspension

	v1 prévu	v1 mesuré	v2
Motion ratio	1.52	2.23	1.90
Spring stiffness (lb/in)	225	380	380
Wheel rate (lb/in)	97	76	105
Wheel rate (N/m)	17 055	13 382	18 434
Tire rate (N/m)	91 000	91 000 91 000	
Ride rate (N/m)	14 363	11 667	15 329
Roll rate (N.m/rad)	22 442	18 229	23 952
Frequency (Hz)	2.20	1.99	2.28

Essais

Nouveaux ressorts si besoin

Suspensions: la solution choisie

- Trous de réglages sur les basculeurs avant
- Choix de la raideur déterminée en essai
 - Réactivité
 - Prise de roulis
 - Equilibre avant/arrière en stationnaire (skid-pad)

Direction : le problème

- Direction très dure
- Fatigue rapide des pilotes

Essais

Direction: l'analyse

- Chasse et angle de chasse trop grand
 - → Génération d'un effort important

	v.1 mmáv	v1 mesuré		
	v1 prévu	gauche	droite	
Angle de chasse	5.75°	6.5°	7.5°	
Chasse (mm)	19	30	35	

- Cinématique de colonne non homo-cinétique
 - → Amplification de l'effort non constante

Cinétique de direction v1

Direction: la solution choisie

Nouveaux triangles inférieurs

11 mmó1111		v1 m	esuré	v2	
	v1 prévu	gauche	droite	v2	
Angle de chasse	5.75°	6.5°	7.5°	3.1° -	→
Chasse (mm)	19	30	35	14	

23

Direction: la solution choisie

- Nouvelle cinématique de colonne de direction
 - → Nouveaux cardans plus petits
 - → Cinématique homocinétique

Embrayage : le problème

- Articulations du manche d'embrayage trop faibles
 - → Desserrages + ballottement

- Pas de réglage
 - → Moins d'ergonomie

Conclusion

Embrayage: l'analyse

Vis pointeaux non adaptées à des efforts importants:

- Appui du genou lors du Skid Pad
- Hâte du pilote qui veut débrayer

Embrayage: la solution choisie

- Cas de charge de dimensionnement
 - Collier selon x dimensionné pour 250 N
 - Collier selon y dimensionné pour 150 N

Essais

Embrayage: la solution choisie

Démarche de dimensionnement

FS Italy 2014

Calculateur DTA: les objectifs

- Gain de performances : cartographie optimisée
- Suppression de la seconde rampe d'injection
- Optimisation du temps de changement de rapport
- Acquisition de données moteur

FS Italy 2014

Conclusion

Calculateur DTA: état d'avancement

- Calculateur câblé en parallèle
- Pas de sonde lambda : travail en boucle ouverte
- Gestion externe des coupures moteurs
- Premiers essais avec la map CBR600 FSAE DTA

Schéma électrique

Objectifs 2015

Calculateur DTA: travail restant

- Installation d'une sonde lambda
 - Faciliter la mise au point
- Mise au point sur banc de puissance
- Gestion des coupures d'allumage
 - Coupures moins brutales
 - Minimiser le temps de passage
- Installation d'un capteur vitesse
 - Launch control
 - Traction control

Autres modifications

- Retirer la bande thermique sur l'échappement
- Protéger la batterie
- Augmenter la course de pédale de frein
- Remplacer les chapes de direction
- Supprimer la rampe d'injection secondaire
- Passer le kit chaine en 520

Autres modifications

- Coller et caler du porte-couronne sur le différentiel
- Changer les disques d'embrayage si nécessaire
- Changer le ressort d'embrayage
- Remplacer la plaque pare-chaîne
- Combler l'espace entre la carrosserie et le fond plat
- Protéger le réservoir de la chaleur
- Ajuster le bump-steer

Conclusion

Les essais

Choix des pilotes

- Autocross/endurance
 - Répartition de freinage
 - Suspensions (ressorts)
 - Pressions, géométrie et amortissement
 - Traction control
- Skid-pad
 - Géométrie et pressions
- Accélération
 - Launch control

Conclusion

36