TUTORATO LOGICA MATEMATICA A.A. 2022/2023

ESERCIZI 2022.12.01

Esercizio 1. Si consideri un linguaggio \mathcal{L} del prim'ordine con un simbolo di predicato binario M. Sia \mathfrak{A}_0 la struttura per \mathcal{L} con insieme soggiacente $A_0 = \{3,5\}$ in cui $M(x,y) = "x \leq y"$. Siano u e w variabili e sia ν_0 una interpretazione delle variabili in A_0 tale che $\nu_0(u) = 3$, $\nu_0(w) = 5$. Per ciascuna formula φ tra le seguenti, si stabilisca

```
(i) se \mathfrak{A}_0, \nu_0 \vDash \varphi.
```

- (ii) se $\mathfrak{A}_0 \vDash \varphi$.
- (iii) se $\vDash \varphi$.
- (iv) se φ è soddisfacibile.

Le formule da considerare (con variabili libere contenute in $\{a, b\}$), sono:

- (1) $\forall x (M(u, x) \to M(x, w)).$
- (2) $\exists x \forall y M(x,y)$.
- (3) $\forall x M(u, x)$.
- $(4) \ \forall x M(w,x).$
- (5) $\exists x M(u, x)$.
- (6) $\forall x \forall y (M(x,y) \rightarrow \neg M(y,x)).$
- (7) $\neg (M(u, w) \leftrightarrow M(w, u)).$
- (8) $\forall x (M(w, x) \lor M(x, u)).$
- (9) $\forall x \exists y M(x, y)$.
- (10) $\exists x M(w, x)$.
- (11) $\forall x \exists y M(y, x)$.

Soluzione. (1). $\mathfrak{A}_0, \nu_0 \vDash \varphi$ perché la consequente in φ è sempre vera. $\mathfrak{A}_0 \not\vDash \varphi$; si consideri $\nu(u) = 5$ e $\nu(w) = 5$; si valuti in x = 5. $\not\vDash \varphi$ perché $\mathfrak{A}_0, \nu_0 \vDash \varphi$.

(2).
$$\mathfrak{A}_0, \nu_0 \models \varphi$$
: si valuti $x = 3$. $\mathfrak{A}_0 \models \varphi$: si valuti $x = 3$. $\not \models \varphi$: $A = \{*\} \in M^A = \varnothing$.

Esercizio 2. Mostrare che le seguenti formule sono soddisfacibili e non logicamente valide.

- $(1) (\forall x \exists y R(x,y)) \to \exists y R(y,y).$
- (2) $P(u) \vee \neg P(v)$.
- (3) $\forall x (R(x, u) \lor \neg R(u, x)).$
- (4) $(\exists x \exists y R(x,y)) \rightarrow \exists y R(y,y)$.
- (5) $\exists x (R(u,x) \vee \neg R(v,x)).$
- (6) $\exists x (R(a,x) \lor R(b,x)).$
- (7) $(\exists x P(x) \leftrightarrow \exists x Q(x)) \rightarrow (\exists x (P(x) \leftrightarrow Q(x))).$
- (8) $(\exists x (P(x) \to Q(x))) \to ((\exists x P(x)) \to (\exists x Q(x))).$

Date: 1 dicembre 2022.

Soluzione. (1). Soddisfacibile: $A = \{*\}, R = \{(*,*)\}.$

Non logicamente valido: Si consideri \mathbb{N} e la relazione <. Soluzione alternativa: Sia $A = \{a, b\}$, e $\mathbb{R}^A = \{(a, b), (b, a)\}$.

(2). Soddisfacibile: $A = \{*\}$. $P = \{*\}$.

Non logicamente valido: Sia $A = \{a, b\}$. $P = \{b\}$. $\nu(u) = a$, $\nu(v) = b$.

(3).

Non logicamente valido: $A = \{a, b\}$. $R^A = \{(a, b)\}$. $\nu(u) = a$. Per vedere che è falsa, si prenda x = b.

Esercizio 3. Nelle seguenti domande si consideri come linguaggio il linguaggio dei gruppi.

- (1) $\operatorname{Th}(\mathbb{Q}) = \operatorname{Th}(\mathbb{Z})$? (Consideriamo \mathbb{Q} e \mathbb{Z} come gruppi additivi.)
- (2) $S_{\mathbb{N}} \in \text{ModTh}(\{\text{gruppi ciclici}\})?$ $(S_{\mathbb{N}} \text{ è il gruppo di permutazioni su }\mathbb{N}.)$
- (3) Esiste un gruppo G tale che $Th(G) = Th(\{gruppi\})$?
- (4) (Questo è un po' più tecnico di teoria dei gruppi) $\mathbb{Z} \in \text{Th}(\{\text{ gruppi ciclici finiti }\})$?
- (5) (Questo è un po' più tecnico di teoria dei gruppi) Th({gruppi abeliani finiti}) = Th({gruppi ciclici finiti})?

Soluzione. (1) No. Si consideri $\forall x \exists y (x = y^2)$.

- (2) No. $S_{\mathbb{N}}$ non è abeliano, cioè non soddisfa $\forall x \forall y (xy = yx)$.
- (3) No. Per qualsiasi gruppo G, uno dei seguenti due enunciati sta in Th(G):
 - (a) $\forall x \forall y (x = y)$.
 - (b) $\neg(\forall x \forall y (x = y)).$

Però nessuno dei due enunciati sta in $Th(\{gruppi\}\}$. (In sostanza: Per ogni gruppo G, Th(G) è completa, ma $Th(\{gruppi\}\}$ non è completa.)

Esercizio 4. Mostrare che, per i gruppi, la proprietà di essere ciclico non è esprimibile al prim'ordine.

Soluzione. Ogni gruppo ciclico ha cardinalità al più numerabile. \mathbb{Z} è un gruppo ciclico di cardinalità numerabile. Se la ciclicità fosse esprimibile al prim'ordine, per Löwenheim-Skolem eisterebbe un gruppo ciclico di ogni cardinalità infinita, il che sarebbe un assurdo.

Esercizio 5. Mostra che le seguenti classi <u>non</u> sono assiomatizzabili al prim'ordine:

- (1) gruppi finiti;
- (2) gruppi di torsione (cioè $\forall x \; \exists n \in \mathbb{N} : x^n = 1$);
- (3) grafi connessi.

Nota che in (2) e (3) si utilizzano delle formule con variabili libere.

Soluzione. (1). Per il lemma 4.75 ("Se un insieme di enunciati Γ ha modelli finit di cardinalità arbitraria, allora Γ ha un modello infinito.) Supponiamo per assurdo che la classe dei gruppi finiti sia assomatizzabile al primo'ordine.

Allora esiste un insieme di formule chiuse T tale che i modelli di T sono esattamente i gruppi finiti. Consideriamo le seguenti formule.

$$\varphi_2 := \exists x_1 \exists x_2 : x_1 \neq x_2$$
$$\varphi_3 := \exists x_1 \exists x_2 \exists x_3 : x_1 \neq x_2, x_1 \neq x_3, x_2 \neq x_3$$

$$\varphi_n := \exists x_1, \dots, \exists x_n : \bigwedge_{1 \le i < j \le n} x_i \ne x_j$$
:

Sia
$$T' = T \cup \{\varphi_2, \varphi_3, \dots\}.$$

T' è finitamente soddisfacibile (considero il modello $\mathbb{Z}/(n\mathbb{Z})$ per n appropriato.) Per il teorema di compattezza, poichè abbiamo supposto che T è una teoria al prim'ordine, T' è soddisfacibile. Ma ciò è assurdo, perchè un modello di T' dev'essere per forza sia finito (perché contiene T) che infinito (poiché contiene $\{\varphi_1, \varphi_2, \varphi_3, \dots\}$).

(2). Consideriamo le seguenti formule (con x variabile libera).

$$\varphi_1 := x \neq 1;$$

$$\varphi_2 := x^2 \neq 1;$$

$$\varphi_3 := x^3 \neq 1$$

:

Supponiamo per assurdo che esiste un'assiomatizzazione T al prim'ordine dei gruppi di torsione.

Poniamo $T' := T \cup \{\varphi_1, \varphi_2, \varphi_3, \dots\}.$

T' è finitamente soddisfacibile (si consideri $\mathbb{Z}/(n\mathbb{Z})$). Perciò, per il teorema di compattezza, è soddisfacibile. (cioè esiste una struttura ed un'interpretazione ν tale che...)

(3). $\varphi_n :=$ la distanza da x a y è almeno n (cioè non esistono cammini da x a y di lunghezza meno di n). Ovvero:

$$\neg (\exists x_1 \dots \exists_{n-2} (\bigwedge_{1 \leq i < j \leq n} x_i \neq x_j) \land R(x, x_1) \land R(x_1, x_2) \land \dots \land R(x_{n-3}, x_{n-2}) \land R(x_{n-2}, y)).$$

Supponiamo per assurdo... (si procede come prima)

Note: per dimostrare la non assiomatizzabilità al prim'ordine di una certa properietà P, si utilizza spesso il teorema di compattezza; si scrive "non P" come una congiunzione di infiniti assiomi $\{\varphi_i\}_i$ al prim'ordine tali che ogni sottoinsieme finito di $\{\varphi_i\}_i$ non contraddice P (ma la loro congiunzione sì)...

Esercizio 6. Mostrare che la classe dei gruppi privi di torsione non è finitamente assiomatizzabile.

Soluzione. Per $n \geq 1$, sia $\varphi_n := \forall x((x \neq 1) \to (x^n \neq 1))$. Sia $\Sigma := \{\varphi_1, \varphi_2, \dots\}$. Sia $S \subseteq \Sigma$ finito, e mostriamo che $\text{Mod}(S) \neq \text{Mod}(\Sigma)$. Esiste $n \in \mathbb{N}$ tale che $S \subseteq \{\varphi_1, \dots, \varphi_n\}$.

Sia p primo, p > n. $C_p \in \text{Mod}S \setminus \text{Mod}(\Sigma)$.

Per Lemma 4.78, $\text{Mod}\Sigma$ non è finitamente assiomatizzabile.