# 几种常见小波的应用性能分析

#### 费佩燕 刘曙光

(西安工程科技学院 194 信箱 西安市金花南路 19 号 710048)

Email: L\_shuguang@yahoo.com

摘 要 本文给出了小波分析中几种常见小波函数,并对它们的性质进行了比较。 关键词 小波分析 小波基函数

#### 1 几种常见小波

小波选择的灵活性很大,许多函数都可以作为小波,这里介绍具有代表性的几种 小波。

# 1.1 Haar 小波[1]

Haar 小波是一种正交函数系,它是所有已知子波中最简单的小波,其表达式为:

$$\psi_H(t) = \begin{cases} 1, & 0 \le t < 1/2 \\ -1, & 1/2 \le t < 1 \\ 0, & \sharp \dot{\Sigma} \end{cases}$$
 (1)

对于 t 的平移, Haar 小波是正交的, 即

$$\int_{0}^{\infty} \psi_{H}(t)\psi_{H}(t-n)dt = 0, \qquad n = 0,\pm 1,\pm 2,\cdots$$
 (2)

如果引入一个简单的具有正交性的特征函数  $\chi(t)$ , 其定义域为 [0,1) 区间,即 I=[0,1),

$$\varphi(t) = \chi_{[0,1)}(t) = \begin{cases} 1 & 0 \le t < 1 \\ 0 & \text{#$\dot{z}$} \end{cases}$$
(3)

那么 Haar 小波  $\psi_H(t)$  就可以用特征函数  $\chi(t)$  表示如下:

$$\psi_{H}(t) = \chi_{\left[\frac{n-1}{2}, \frac{n}{2}\right]}(t) - \chi_{\left[\frac{n}{2}, \frac{n+1}{2}\right]}(t), \qquad n = 0, \pm 1, \pm 2, \tag{4}$$

对于一维离散采样信号,小波可以看成是完成差分运算,即给出与观测结果的平均值 不相等部分的差值。Haar 小波不是连续可微的,应用有限,一般多作为原理示意或 说明之用。

#### 1.2 Mexico 草帽小波<sup>[2]</sup>

Mexico 小波是 Gauss 函数  $e^{-t^2/2}$  的二阶导数,即  $\psi(t) = \frac{2}{\sqrt{3}} \pi^{-1/4} (1 - t^2) e^{-t^2/2}$  (5)

系数的选择主要是保证 $\psi(t)$ 的归一化,即 $\|\psi\|^2=1$ 。这个小波作为广泛使用的 Gauss 平滑函数的二阶导数,由于其波形与墨西哥草帽剖面轮廓线相似而得名。在视觉信息加工研究与边缘检测方面获得了较多得应用,因而也称作 Marr 小波。Mexico 小波是

实值小波,它的普遍形式是由 Gauss 分布的 m 阶导数给出

$$\psi_m(t) = (-1)^m \frac{d^m}{dt^m} (e^{-|x|^2/2}) \tag{6}$$

其相应的谱为

$$\hat{\Psi}_m(\omega) = m(i\omega)e^{-|\omega|^2/2} \tag{7}$$

显然使用最广泛的 Mexico 小波相当于式(6)中 m=2 的情形,它的 n 维形式是各向同性的,因而不能检测信号的不同方向。

用 Gauss 分布的差形成的 DOG 小波是 Mexico 小波的良好近似, 其表达式为:

$$\psi(t) = e^{-|t|^2/2} - \frac{1}{2}e^{-|t|^2/8} \tag{8}$$

其频谱表达式为:

$$\hat{\psi}(\omega) = \frac{1}{\sqrt{2\pi}} (e^{-|\omega|^2/2} - e^{-2|\omega|^2}) \tag{9}$$

#### 1.3 Morlet 小波<sup>[3]</sup>

Morlet 小波是最常用到的复值小波,由下式给出

$$\psi(t) = \pi^{-1/4} (e^{-i\omega_0 t} - e^{-\omega_0^2/2}) e^{-t^2/2}$$
(10)

通常可近似表示为

$$\psi(t) = \pi^{-1/4} e^{-i\omega_0 t} e^{-t^2/2} \qquad \omega_0 \ge 5$$
 (11)

因为它是复值小波,所以能提取被分析的时间过程或信号的幅值与相位信息。它的尺度函数不存在,且不具有正交性。Morlet 小波是地球物理过程和流体湍流的分析研究中经常使用的小波。

#### 1.4 Daubechies (dbN) 小波

Daubechies 函数是由世界著名的小波分析学者 Inrid Daubechies 构造的小波函数,除了 db1 (即 Haar 小波)外,其它小波没有明确的表达式,但转换函数 h 的平方模是很明确的。

• 假设 
$$P(y) = \sum_{k=0}^{N-1} C_k^{N-1+k} y^k$$
,其中  $C_k^{N-1+k}$  为二项式的系数,则有 
$$|m_0(\omega)|^2 = (\cos^2 \frac{\omega}{2})^N P(\sin^2 \frac{\omega}{2})$$
 (12)

其中  $m_0(\omega) = \frac{1}{\sqrt{2}} \sum_{k=0}^{N-1} h_k e^{-ik\omega}$ 

- 小波函数与尺度函数的有效支撑长度为 2N-1, 小波函数的消失矩阶数为 N;
- dbN 大多数不具有对称性;对于有些小波函数,不对称性是非常明显的;
- 正则性随序号 N 的增加而增加;
- 函数具有正交性:

Daubechies 小波函数提供了比 Haar 函数更有效的分析和综合。Daubechies 系数

中的小波基为 dbN, N 为序号, 且 N=1...10。

Daubechies 小波函数具体计算过程见[4]。

db4 和 db8 小波的尺度函数、小波函数的图形如下:



(b) db8 小波的尺度函数、小波函数的图形

-0.5

- 1

10

图 4 Daubechies 小波

15

#### 1.5 Biorthogonal (biorNr.Nd) 小波系

5

10

-0.5

- 1

Biorthogonal 函数的主要特征表现在具有线性相位性,它主要应用在信号与图像的重构中。通常的用法是采用一个小波函数进行分解,用另外一个小波函数进行重构。Biorthogonal 函数系通常表示为 biorNr.Nd 的形式:

Nr=1 Nd=1, 3, 5 Nr=2 Nd=2, 4, 6, 8 Nr=3 Nd=1, 3, 5, 7, 9 Nr=4 Nd=4 Nr=5 Nd=5 Nr=6 Nd=8

其中r表示重构,d表示分解。

双正交小波系没有具体的表达式和小波基,其具体算法参见[5,6]。

这里给出 bior2.4 和 bior4.4 小波(分别用于分解与重构)的尺度函数、小波函数、分解滤波器和重构滤波器的图形(如图 5)。



图 5 Biorthogonal 小波

# 1.6 Coiflet (coifN) 小波系

Coiflet 函数是由 Daubechies 构造的小波函数,它具有 CoifN (N=1, 2, 3, 4, 5) 一系列小波函数。Coiflet 具有比 dbN 更好的对称性。从支撑长度的角度看,coifN 具有和 db3N 和 sym3N 相同的支撑长度;从消失矩的数目来看,coifN 具有和 sym2N 相同的消失矩数目。

Coiflet 小波系没有具体的表达式和小波基, 其具体算法参见[7]。 这里给出 coif3 和 coif5 小波的尺度函数、小波函数的图形 (如图 6)。



(b) coif5 小波的尺度函数、小波函数的图形

图 6 Coiflet 小波

## 1.7 Symlets 小波系

Symlets 函数系是由 Daubechies 提出的,它近似对称的小波函数,是对 db 函数的一种改进。Symlets 函数系通常表示为 symN (N=2, 3, ..., 8)的形式。

与 Daubechies 相同, Symlets 小波系没有具体的表达式和小波基, 其具体算法 参见[8]。这里给出 sym4 和 sym8 小波的尺度函数、小波函数的图形:



## 2 几种小波的应用性能分析

| 夷 | 1 | 11.和 | 小中   | 池   | 色  | 应    | 田 | 性  | 能  | 分析    | ÷ |
|---|---|------|------|-----|----|------|---|----|----|-------|---|
| u |   | ノロか  | יעיז | אטי | נם | ,,,, | л | 77 | яи | 71 17 | 1 |

|        |      |            |                        | 7 - 7 - 1 - 1 - 1 - 1 | <del></del> |        |            |
|--------|------|------------|------------------------|-----------------------|-------------|--------|------------|
| 小波函数   | Haar | Daubechies | Biorthogonal           | Coiflets              | Symlets     | Morlet | Mexicanhat |
| 小波缩写名  | haar | db         | bior                   | coif                  | sym         | morl   | mexh       |
| 表示形式   | haar | dbN        | biorNr.Nd              | coifN                 | symN        | morl   | mexh       |
| 举例     | haar | db3        | bior2.4                | coif2                 | sym2,sym4   | morl   | mexh       |
| 正交性    | 有    | 有          | 无                      | 有                     | 有           | 无      | 无          |
| 双正交性   | 有    | 有          | 有                      | 有                     | 有           | 无      | 无          |
| 紧支性    | 有    | 有・         | 有                      | 有                     | 有           | 无      | 无          |
| 连续小波变换 | 可以   | 可以         | 可以                     | 可以                    | 可以          | 可以     | 可以         |
| 离散小波变换 | 可以   | 可以         | 可以                     | 可以                    | 可以          | 不可以    | 不可以        |
| 支撑长度   | 1    | 2N-1       | 重构: 2Nr+1<br>分解: 2Nd+1 | 6N-1                  | 2N-1        | 有限长度   | 有限长度       |
| 滤波器长度  | 2    | 2N         | max (2Nr+2Nd) +2       | 6N                    | 2N          | [-4,4] | [-5,5]     |
| 对称性    | 对称   | 近似对称       | 不对称                    | 近似对称                  | 近似对称        | 对称     | 对称         |

#### 参考文献

- 1 胡昌华,张军波,夏军等.基于 MATLAB 的系统分析与设计——小波分析.西安:西安电子科技大学出版社,1999
- 2 Mallat S. Wavelet for a vision. IEEE Proc. 1996, 84(4): 604-614
- 3 杨福生.小波变换的工程分析与应用[M].北京: 科学出版社, 1999
- 4 赵松年,熊小芸.子波分析与子波变换[M].北京:电子工业出版社,1996
- 5 程正兴.小波分析算法与应用[M].西安: 西安交通大学出版社, 1998
- 6 A.Cohen, Ingrid Daubechies and J.C. Feauveau. Biorthogonal Bases of Compactly Supported Wavelets. Communications on Pure and Applied Mathematics, 1992, 10(5): 485-560
- 7 Daubechies I.Ten lectures on wavelets. CBMS. SIAM, 1994, 61:258-261
- 8 Daubechies I.Ten lectures on wavelets. CBMS. SIAM, 1994, 61:194-202

第一作者简介: 费佩燕, 女, 1974 年 12 月生, 陕西省西安市人, 2001 年 3 月 毕业于西安工程科技学院测控技术与仪器专业, 获硕士学位, 现正在西安电子科技大 学攻读博士学位。主要从事计算机视觉与模式识别的研究, 已发表论文 10 余篇。