

トップエスイー ソフトウェア開発実践演習

ログ分析におけるマイクロサービスシステムの 異常検知技術に関する演習

佐々木拓哉(株式会社NTTデータ) 加藤雅也(富士通株式会社) 定行裕輔(NTTテクノクロス株式会社) 内田柊平(株式会社NTTデータアイ)

システムログの異常検知技術における問題点

モデルの評価用データセットの多様性の不足

- 1. 複雑な構造が想定されるマイクロサービスのオープンソースのデータセットが存在しない
- 2. ログのカテゴリに応じた改善方針の議論が 少なくマイクロサービス固有の改善が不明

データセット

●システム構築

マイクロサービスのログを収集するためにシステムを構築した。

●負荷をかけてログを収集

- ①CPU使用率が95%以上
- ②メモリ使用率が95%以上
- ③ノードダウン
- 4)ディスク使用率が100%

手法・ツールの適用による解決

- 1. システムの構築とデータセットの作成
 - PLGスタックを含んだKubeflowの構築
- 異常データの発生シナリオの検討
- 2. 作成したデータセットの評価結果に基づいた 分析プロセスの改善を実施
 - ・グルーピングと呼ばれる処理に着目

Logbertを使用した学習

●テンプレート作成

ログメッセージ内に含まれるタイムスタンプやログレベルなどのパラメータをマスクしテンプレートを作成した。

2022-12-24T10:48:24 info ads RDS: PUSH for node:metadata-writer-8bd8b7b66-chjk7.kubeflow resources:34 size:49.5kB

<*> info ads RDS: PUSH for node<*>metadata-writer<*>
resources:<*> size:<*>

●グルーピング

ノードIDを識別子としてログデータをノードごとにグループ化し、 固定長のログシーケンスを作成しました。

時刻1:ログメッセージ(Node1)

時刻3:ログメッセージ(Node1)

時刻6:ログメッセージ(Nodel)

時刻2:ログメッセージ(Node2)

時刻5:ログメッセージ(<mark>Node2</mark>)

時刻4:ログメッセージ(Node3)

異常検知結果

シーケンス数	適合率	再現率	F値
グルーピングなし セッションサイズ:40	0.857	0.551	0.671
グルーピングなし セッションサイズ:100	0.827	0.728	0.775
グルーピングあり セッションサイズ:40	0.896	0.762	0.823
グルーピングあり セッションサイズ:100	0.870	0.810	0.840

ノード単位のグループ分けを行うことで精度の向上が みられ、F値0.80程度のスコアを出すことができた。

今後の課題

● ハイパーパラメータの調整

今回の演習ではハイパーパラメータに関する調査が不十分で した。各種パラメータを調整することで精度改善につながると 考えている。

● 今回深く言及できなかったデータセット 作成したすべてのデータセットを試すことができなかったため、 今後はそのデータに対する分析が必要だと考えている。

● グルーピングの改善

作成したログには、グルーピングに使用できる情報ノード以外も含まれているため、それらも活用できると考えている。

● スペシャルトークンの活用

特定のログキーの出力状況を反映したスペシャルトークンを導入することで、精度改善の可能性があると考えている。