CS5154/6054 Final Exam, 12/7/2021

1. After df['year'] = df['date'].dt.year < 2020, X_train, X_test, Y_train, Y_test =

Key: bccacbda, bdbbbca, acbaabc, abcacbdc, dbcabad

a. $\alpha_i > 0$.

b. $y_i > 0$.

train_test_split(df['text'], df['year'], test_size=0.2), Y	_train has	
a. 1 values.	C.	13 values.
b. 2 values.	d.	no values.
Suppose confusion_matrix(Y_test, Y_pred) generate	s a 3x3 mat	rix [[10, 2, 0], [8, 6, 4], [0, 3, 7]]
for a test set of 40 data points. What is the accuracy	/ ?	
a. 11/40.	c.	23/40.
b. 19/40.	d.	25/40.
Let tfidf = TfidfVectorizer(min_df=10) and tfidf.fit(X_	_train). tfid	f.get_feature_names() returns
a. stopwords.	c.	the vocabulary.
b. bigrams.	d.	idfs.
Let model = MultinomialNB(). Which method trains	the model?	
a. model.fit()	c.	model.fit_transform().
b. model.transform().	d.	model.predict().
	(X, y), we ha	ave a linear classifier wx + b.
	r	model.coef_
-		model.intercept_
b. moder.support_vectors_	u.	model.intercept_
The margin learned by a linear SVC is		
• •		$min_i\{w_i\}.$
b. 2/ w .	d.	$\max_{i}\{w_i\}.$
The default kernel of svm.SVC is 'rbf', or radial basis mapping data to and return the innerproduct from	function. \	Jsing this kernel is equivalent to
a. a two-dimensional space.		
b. a six-dimensional space.		
•	of the input	data x.
d. an infinite-dimensional Hilbert space.	·	
The support vector machine is solved with quadratic	programm	ing on a dual problem and the
·		•
	 a. 1 values. b. 2 values. Suppose confusion_matrix(Y_test, Y_pred) generate for a test set of 40 data points. What is the accuracy a. 11/40. b. 19/40. Let tfidf = TfidfVectorizer(min_df=10) and tfidf.fit(X_a. stopwords. b. bigrams. Let model = MultinomialNB(). Which method trains a. model.fit() b. model.transform(). After model=svm.SVC(kernel='linear') and model.fitt How do we extract w from the model? a. model.classes_ b. model.support_vectors_ The margin learned by a linear SVC is a. w /2. b. 2/ w . The default kernel of svm.SVC is 'rbf', or radial basis mapping data to and return the innerproduct from a. a two-dimensional space. b. a six-dimensional space. c. a space of the same dimensionality as that of an infinite-dimensional Hilbert space. The support vector machine is solved with quadratic	b. 2 values. d. Suppose confusion_matrix(Y_test, Y_pred) generates a 3x3 mat for a test set of 40 data points. What is the accuracy? a. 11/40. c. b. 19/40. d. Let tfidf = TfidfVectorizer(min_df=10) and tfidf.fit(X_train). tfide a. stopwords. c. b. bigrams. d. Let model = MultinomialNB(). Which method trains the model? a. model.fit() c. b. model.transform(). d. After model=svm.SVC(kernel='linear') and model.fit(X, y), we have the model of the model. support_vectors_ d. The margin learned by a linear SVC is a. w /2. c. b. 2/ w . d. The default kernel of svm.SVC is 'rbf', or radial basis function. Unapping data to and return the innerproduct from a. a two-dimensional space. b. a six-dimensional space. c. a space of the same dimensionality as that of the input

c. $x_i > 0$.

 $d. \quad y_i x_i > 0.$

► Table 13.1 Data for parameter estimation examples.

	docID	words in document
training set	1	Chinese Beijing Chinese
	2	Chinese Chinese Shanghai
	3	Chinese Macao
	4	Tokyo Japan Chinese
test set	5	Chinese Chinese Tokyo Japan

Let us label the training set as docID {1, 2} for class1 and {3, 4} for class2.

9. 1	TrainMultino	omialNB	finds T	ct for c=clas	ss1 and t=Chi	nese to be
------	--------------	---------	---------	---------------	---------------	------------

- a. 2. c. 5. b. 4. d. 6.
- 10. With add-one smoothing, TrainMultinomialNB estimates P(Tokyo|class2) as
 - a. (1+1)/(2+6) = 2/8.
 - b. (1+1)/(3+6) = 2/9.
 - c. (1+1)/(4+6) = 2/10.
 - d. (1+1)/(5+6) = 2/11.
- 11. For multinomial NB, P(classi | d5) will be proportional to
 - a. a = P(Chinese | classj)P(Tokyo | classj)P(Japan | classj).
 - b. $b = P(Chinese | classj)^3 P(Tokyo | classj) P(Japan | classj)$.
 - c. a(1-P(Beijing | classj))(1-P(Shanghai | classj))(1-P(Macao | classj))
 - d. b(1-P(Beijing|classj))(1-P(Shanghai|classj))(1-P(Macao|classj))
- 12. TrainBernoulliNB finds N_{ct} for c=class1 and t=Chinese to be
 - a. 1. c. 3.
- b. 2. d. 4.
- 13. With add-one smoothing, TrainBernoulliNB estimates P(Tokyo|class2) as
 - a. (1+1)/(1+2) = 2/3.
 - b. (1+1)/(2+2) = 2/4.
 - c. (1+1)/(3+2) = 2/5.
 - d. (1+1)/(4+2) = 2/6.
- 14. For Bernoulli NB, P(classj|d5) will be proportional to
 - a. a = P(Chinese|classj)P(Tokyo|classj)P(Japan|classj).
 - b. b = P(Chinese | classj)³P(Tokyo | classj)P(Japan | classj).
 - c. a(1-P(Beijing | classj))(1-P(Shanghai | classj))(1-P(Macao | classj))
 - d. b(1-P(Beijing|classj))(1-P(Shanghai|classj))(1-P(Macao|classj))
- 15. When binarized MNB is used, the only T_{ct} that will be different is
 - a. c=class1 and t=Chinese.

c. c=class1 and t=Tokyo.

b. c=class2 and t=Chinese.

d. c=class2 and t=Tokyo.

- 16. When binarized MNB is used, P(classi|d5) will be proportional to
 - a. a = P(Chinese | classj)P(Tokyo | classj)P(Japan | classj).
 - b. $b = P(Chinese | classj)^3 P(Tokyo | classj) P(Japan | classj)$.
 - c. a(1-P(Beijing | classj))(1-P(Shanghai | classj))(1-P(Macao | classj))
 - d. b(1-P(Beijing|classj))(1-P(Shanghai|classj))(1-P(Macao|classj))
- 17. One way to explain a learned linear classifier wx + b is to exhibit features associated with
 - a. the most positive w values.
 - b. the most negative w values.
 - c. both the most positive and the most negative w values.
 - d. w values in the middle range.
- 18. One way to explain prediction errors from a model like SVC is to use predict_proba() to show that for a misclassified sample, the outcome probabilities to Y_test and Y_pred are
 - a. very different.
 - b. very similar.
 - c. both lower than other classes.
 - d. both zero.
- 19. Non-negative matrix factorization (NMF) approximates an n x m nonnegative document-term matrix C with the product of two non-negative matrices W (n x k) and H (k x m). If each of the k intermediate dimensions is a topic, then the prominent documents and terms associated with the topic are determined with
 - a. the most positive elements in a W column and an H row.
 - b. the most negative elements in a W column and an H row.
 - c. middle-range elements in a W column and an H row.
 - d. both the most positive and most negative elements in a W column and an H row.
- 20. NMF is often solved with an algorithm that alternates between finding the best H with W fixed and finding the best W with H fixed, each solved with
 - a. a non-negative least squares solver.
 - b. quadratic programming.
 - c. maximum likelihood estimation.
 - d. non-negative singular value decomposition.
- 21. sklearn.decomposition.TruncatedSVD() can perform SVD on the document-term matrix and then allow the user to retrieve the U (or the V) matrix, like the H matrix from NMF, from the attribute
 - a. singular_values_.

c. support_vectors_.

b. components_.

d. coef_.

- 22. Which sklearn.decomposition algorithm requires much more time than the others?
 - a. NMF.

c. LatentDirichletAllocation.

b. TruncatedSVD.

d. PCA.

b. term frequency	d. size of the bag of words			
 24. For the same C in Problem 23, what is a non-diagonal a. number of documents in which two given to b. number of terms two documents share c. number of terms occurring in one or both do number of documents containing one or both 	ocuments			
 25. The eigenvalues of CC^T are the a. singular values of C. b. square roots of the singular values of C. c. squares of the singular values of C. d. logarithms of the singular values of C. 				
26. Let SVD of C, the term-document matrix in Problem2-dimensional space with the first twoa. rows of U.	23, be $U\Sigma V^T$. Terms can be embedded into a c. rows of V.			
b. columns of U.	d. columns of V.			
 27. The k-means algorithm alternates between "centroid assignment". These steps indeed are a. TrainMultinomialNB and ApplyMultinomialN b. TrainBernoulliNB and ApplyBernoulliNB. c. TrainRocchio and ApplyRocchio. d. Train-kNN and Apply-kNN. 				
28. The k-means, as an unsupervised learning algorithm algorithm that repeatedly modifies the labels of the a. correctly classified.b. misclassified.	•			
 29. sklearn.metrics.cluster.contingency_matrix() takes two clusterings and generates the contingency table [[10, 2, 0], [8, 6, 4], [0, 3, 7]]. There are two ways to compute the purity: sum of row max or sum of column max (over the total, 40). a. In both case, purity is 23/40. b. In both case, purity is 25/40. c. purity is always symmetric. d. purity is not symmetric, as this example shows. 				
30. Which of the external criteria of clustering quality bea. normalized mutual informationb. Rand index	elow is not symmetric? c. the F5 measure d. the Fowlkes Mallows index			

23. Let C be the term-document incidence matrix (rows are terms). What is a diagonal entry of CC^T?

c. document length

a. document frequency

	a.	sqrt(AB).	c.	sqrt(AB)/TP.			
	b.	TP/sqrt(AB).	d.	sqrt(AB)/N.			
33.	After s	elector = sklearn.feature_selection.SelectKBest(chi2	, k=1	00), and selector.fit(X , y), the 100			
	selecte	d features can be printed through					
	a.	selector.transform(X).	c.	selector.get_support().			
	b.	selector.fit_transform(X, y).	d.	selector.get_params().			
34.	Featur	e selection in Problem 33 is different from Problem 3	17's 1	feature selection in that this			
	(Proble	blem 33) is					
	a.	before model training.					
	b.	during model training.					
	c.	after model training.					
	d.	only good for a specific type of models.					
35.	HITS m	akes the hub and authority scores of terms and doc	ume	nts of matrix C converge to			
	a.	Rand index.					
	b.	eigenvectors of CC ^T and C ^T C.					
	C.	singular values of C.					
	d.	the purity score.					
36.	Rows a	nd columns of a 0-1 matrix that have top hub and a	utho	rity scores after HITS may			
	repres	represent a submatrix					
	a.	dense with 1's.					
	b.	full of 0's.					
	c.	full of holes.					
	d.	with the same density as that of the matrix.					
37.	Multin	omialNB for two classes c and $^{\sim}$ c is a linear classifier	wx +	- b where w _t =			
	a.	$log(T_{ct}/T_{ct})$.					
	b.	$log((T_{ct}+1)/(T_{ct}+1)).$					
	c.	$log(P(c)/P(\sim c)).$					
	d.	$log(P(t c)/P(t \sim c)).$					

31. In computing the Rand index, we divide all pairs of data points into counts of TP, FP, FN, and TN where TP is the number of intra-cluster pairs in both clusterings, etc. It is easy to compute TP, A

32. The Fowlkes-Mallows index is defined as the geometric mean of the precision and recall and, in

c. (N-A-B+TP)/N.

d. (N-A-B+2TP)/N.

= TP+FP, B = TP+FN, and N = TP+FP+FN+TN. The Rand index (accuracy) is

a. TP/N.

b. (A+B)/N.

notations of Problem 31, is