Digital microsystems design

Outline

- Introduction
 - Prerequisites
 - Overview
 - Goal
 - Specific objectives
- Terms and definitions
- Technology
- Classification

- Design, build, use and program a digital system
 - Microprocessors (single, multiple)
 - Cores and threads
 - Mainboard
 - Buses
 - Memories
 - I/O interfaces

- Prerequisites
 - Programming languages
 - Native, not managed
 - Computer architecture
 - Digital logic
 - Digital circuits and signals

Hardware design track

LSD
$$\Rightarrow$$
 LD \Rightarrow AC \Rightarrow OC \Rightarrow DMD \Rightarrow ES \Rightarrow IoT \Rightarrow CCIOT \Rightarrow FIC CE

- Prerequisites
 - C programming language
 - Registers, buffers, memories, decoders, multiplexers, buses
 - Logic gates
 - Pipelines, caches

- How is a computer program executed by hardware?
 - How is a C program executed by a desktop computer or an embedded device?
 - How is a Java program executed by a server or by a mobile device?
 - Is there any difference between them?

 Understand the terms used by computers and processors manufacturers

Product Collection	7th Generation Intel® Core™ i5 Processors
Code Name	Products formerly Kaby Lake
Vertical Segment	Mobile
Processor Number	i5-7200U
Status	Launched
Launch Date ?	Q3'16
Lithography ?	14 nm
Recommended Customer Price ?	\$281.00
Performance	
# of Cores ?	2
# of Threads ?	4
Processor Base Frequency ?	2.50 GHz
Max Turbo Frequency ?	3.10 GHz
Cache ?	3 MB SmartCache
Bus Speed ?	4 GT/s OPI
TDP ?	15 W
Configurable TDP-up Frequency ?	2.70 GHz
Configurable TDP-up 🔞	25 W
Configurable TDP-down Frequency 🔞	800 MHz
Configurable TDP-down ?	7.5 W

 What is the interface between software code and hardware components?

Applications

Physical System

 What is the interface between software code and hardware components?

 What is the glue (interface) between software code and hardware components?

- How would you describe to a friend, the role of the microprocessor in a computer system?
 - The processor is like the brain of a person, being able to take decisions or control the behavior of the system (HW)

- Microprocessors and microcontrollers are part of every type of modern electronic and computing devices: computers, mobile devices, TV sets, multimedia, automotive, etc.
 - Microprocessors general purpose
 - Microcontrollers application specific, application oriented,
 embedded

Goal

 The discipline aims at providing students with knowledge needed to design a microprocessor-based system (both HW and low-level SW) and to understand how different systems' components are interconnected and application software are implemented and executed

Objectives

Specific objectives

- Acquiring the overview over the microprocessor internal components and their behavior and their external interfaces to the system
- Acquiring the capacity to analyze and design microprocessor-based systems
- Acquiring the ability to implement and test low level applications for x86 ISA and how they will impact the efficiency of high-level algorithms

Objectives

- x86, IA32, AMD64 processor architectures
- Specialized circuits
- Buses
- Memories
- Assembly language
- C language constraints and optimization

Terms

- Microprocessor architecture, microarchitecture
 - Internal structure of a microprocessor
- Instruction set architecture
 - Programming interface of a microprocessor

- Moore's law
 - The number of transistors on a given piece of silicon would double every 18

months (1965)

- 24 months (1975)

Moore's Law — The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are strongly linked to Moore's law.

• Which is the main factor that supported microprocessor advances?

Processor	Year	Transistors count	Pins count	Technology [µm]	V _{DD} [V]	F _{max} [MHz]	P _{max} [W]
4004	1971	2250	16	10	12	0.1	
8080	1974	4500	40	6	5	3	
8086	1978	29000	40	2	5	12	
80286	1982	134000	68	1.5	5	20	
80386	1985	275000	132	1	5	33	1.9
80486	1989	1200000	168	0.8	5 - 3.3	66	6
Pentium	1994	3100000	320	0.6 - 0.35	5 - 3.3	200	15
Pentium Pro	1997	5500000	387	0.35	3.3 - 2.9	300	47
Pentium 2	1998	7500000	242	0.25	3.3 - 2.1	500	27
Pentium 3	1999	9500000	242	0.18	3.3 - 1.3	1200	37
Pentium 4	2000	55000000	478	0.13	1.75 - 1.5	1500	57
Pentium 4	2001	55000000	478	0.13	1.75 - 1.5	2000	75
Itanium	2001	25000000		0.18	3.3	800	116
Pentium 4	2002	55000000	478	0.13	1.75 - 1.5	3000	81
Itanium 2	2002	220000000		0.18	3.3	1000	130

• Processor description on emag.ro

PROCESOR

Producator procesor	Intel®
Tip procesor	i5
Model procesor	7400
Numar nuclee	4
Numar thread-uri	4
Arhitectura	Kaby Lake
Frecventa nominala	3000 MHz
Frecventa Turbo Boost	3500 MHz
Cache	6144 KB
Tehnologie procesor	14 nm

 Which is the smallest physical component used to design a circuit?

Manufacturing technology of VLSI

- Manufacturing technology of VLSI circuits
 - Cross section of a MOS transistor

Fabrication process

Fabrication process

- Manufacturing technology of VLSI circuits
 - 3D view of a MOS transistor

nMOS Transistor gate oxide (poly) drain source (diffusion) base

Semiconductor manufacturing processes

```
10 μm – 1971
6 μm – 1974
3 μm – 1977
1.5 μm – 1981
1 μm – 1984
800 nm - 1987
600 nm - 1990
350 nm - 1993
250 nm - 1996
180 nm - 1999
130 nm - 2001
90 nm - 2003
65 nm - 2005
45 nm - 2007
32 nm - 2009
22 nm - 2012
14 nm - 2014
10 nm - 2016
7 nm - 2018
5 nm - 2020
Future
3 nm ~ 2022
2 nm ~ 2024
```

- Manufacturing technology of VLSI circuits
 - 3D view of a MOS transistor

Semiconductor manufacturing processes

10 μm – 1971 6 μm – 1974 3 μm – 1977 1.5 μm – 1981 1 μm – 1984 800 nm - 1987 600 nm - 1990 350 nm - 1993 250 nm - 1996 180 nm - 1999 130 nm - 2001 90 nm - 2003 65 nm - 2005 45 nm - 2007 32 nm - 2009 22 nm - 2012 14 nm - 2014 10 nm - 2016 7 nm - 2018 5 nm - 2020 Future 3 nm ~ 2022 2 nm ~ 2024

- Manufacturing technology of VLSI circuits
 - Top-down view over a MOS transistor

Semiconductor manufacturing processes

```
10 μm – 1971
6 μm – 1974
3 μm – 1977
1.5 μm – 1981
1 μm – 1984
800 nm - 1987
600 nm - 1990
350 nm - 1993
250 nm - 1996
180 nm - 1999
130 nm - 2001
90 nm - 2003
65 nm - 2005
45 nm - 2007
32 nm - 2009
22 nm - 2012
14 nm - 2014
10 nm - 2016
7 nm - 2018
5 nm - 2020
Future
3 nm ~ 2022
2 nm ~ 2024
```

- Moore's law was a prediction of VLSI circuits development using the semiconductor scaling process
- Scaling is the process of shrinking the physical basic units of an integrated circuit – the transistors

- Scaling objectives
 - Decrease the sizes of the transistors
 - Increase the frequency
 - Increase the number of transistors
- Consequence of increasing the number of transistors
 - Increase the power consumption
- As a solution to increasing power consumption
 - Decrease the circuit voltages
 - Decrease the threshold voltages

- Scaling benefits
 - Increase the number of transistors on the same area of the die
 - Decrease the power consumption of the circuit
 - Increase the operation frequency
- Technology scaling has been the mean by which Moore's Law was possible

- Scaling benefits
 - The same features at lower power consumption

- Scaling benefits
 - Increasing processing speed at the same power consumption

Scaling process

nMOS Transistor

• Scaling factor α :

- Alternation of processor development steps
 - Scaling/technology changing (~1year)
 - Architectural advances (~1year)

Technology

- Moore's law limits
 - Prolongation of development cycle
 - Process
 - Architecture
 - Optimization

Technology

- Moore's law limits
 - 2010 frequency
 - 2020 costs
 - 2025 size
 - Single atom transistor (University of New South Wales)
 - Validation of theoretical models

Technology

- Moore's law risks
 - Companies took the prediction as a law to be competitive on the market
 - Push innovation in one direction increase the performance
 - Intel Israel Centrino technology optimize for low power

- A digital microsystem is a microprocessor or microcontrollerbased computing system.
 - Computer systems
 - Embedded systems
 - Mobile systems

- A microprocessor is a general purpose programmable logical circuit
 - Can be used in general purpose computing devices
 - Can be programmed to run any type of application
- A microcontroller is an application specific programmable logical circuit dedicated to real-time, embedded applications
 - Application oriented processor
 - Domain specific processor

- Mobile processors are low power processors used in mobile systems
 - General purpose, simple processors
 - Low power, energy efficient

- Other types of processors
 - DSP Digital Signal Processor
 - GPU Graphics Processing Unit
 - FPU Floating Point Unit
 - TPU Tensor Processing Unit
 - ASIC Application Specific Integrated Circuit
- Soft-processors (soft cores)
 - FPGA synthetized

• What are the main parameters used to compare different systems?

Parameters

- Performance
- Number of processors
- Number of cores
- Interconnection network
- Memory hierarchies
- Granularity
 - Fine grain simple operations on large amount of data
 - Coarse grain complex operations on small amount of data

- Memory organization
 - UMA (Uniform Memory Access Model)
 - NORMA (No Remote Memory Access Model)
 - NUMA (Non-Uniform Memory Access Model)
 - COMA (Cache-Only Memory Access Model)

• UMA - Uniform Memory Access Model

P – CPU or CPU core CM – Cache memory MM – Main memory

- UMA (Uniform Memory Access)
 - Shared memory / global memory
 - Shared variables
 - Uniform access
 - Equal access to memory
 - The same access time
 - No mater which processor
 - Unique physical address space
 - Symmetric multi-processors (SMP)

• UMA - Uniform Memory Access Model

C – CPU core CM – Cache memory MM – Main memory

NORMA - No Remote Memory Access Model

P – CPU or CPU core CM – Cache memory MM – Main memory

- NORMA (No Remote Memory Access)
 - Distributed memory
 - Access to local memory only
 - No access to remote memory
 - Distinct address spaces for every processor
 - Inter-processors communication using messages (network, I/O)

- NUMA (Non-Uniform Memory Access)
 - Distributed-shared memory
 - Each processor has access to both local memory and remote memory
 - Non-uniform access to memory
 - Local memory low access times
 - Remote memory high access times
 - Unique virtual address space

• NUMA

P – CPU or CPU core CM – Cache memory MM – Main memory

• Hybrid UMA/NUMA - general

- Flynn
 - Instructions stream
 - Data stream
- Flynn taxonomy:
 - SISD (Single Instruction stream Single Data stream)
 - SIMD (Single Instruction stream Multiple Data stream)
 - MISD (Multiple Instruction stream Single Data stream)
 - MIMD (Multiple Instruction stream Multiple Data stream)

SISD

- Instructions are executed sequentially
- Micro-operations parallelism allowed (pipeline)
- Multiple functional units (math-coprocesor, graphic processor, I/O processor)

Figura 1.1 - Arhitectura von Neumann

• SISD

- UC command unit
- UE execution unit
- MM memory module
- SI instruction stream
- SD data stream

Figura 1.2 Arhitectura SISD

• SIMD

- One UC controls many UEs
- UEs execute simultaneously the same instruction on distinct data
- Large number of UEs (thousands)
- Applications having fine grain data processing

• SIMD

- Processors arrays
- Vector processors
- Graphical processors

Figura 1.3 Arhitectura SIMD

- MISD
 - The same data is processed by different UEs
 - Macro-pipeline
- Systolic arrays

Figura 1.4 Arhitectura MISD

- MIMD
 - Each UE has its own UC
 - Every UE executes instructions on local data

Figura 1.5 Arhitectura MIMD

- MIMD
 - Multi-processor servers
 - Multi-core processors
 - Computer networks
- Rack based servers
 - Blades
 - Hundreds of cores
 - Hundreds of GB of memory

- Extension of Flynn taxonomy
 - MIMD

- MIMD architectures can be further classified based on:
 - Inter-processor communication:
 - Shared memory or messages
 - Interconnection network
 - Bus or crossbar
 - Memory organization:
 - Shared or distributed
 - Coupling level between the nodes
 - Loosely or tightly

Flynn-Johnson taxonomy

- GMSV Global Memory / Shared Variables.
 - Multi-core/ multi-processor
- GMMP Global Memory / Message Passing
 - virtualization
- DMSV Distributed Memory / Shared Variables.
 - Distributed-shared memory/ middleware
- DMMP Distributed Memory / Message Passing.
 - Computer networks, distributed computing, grid

Tanenbaum taxonomy

- Interconnection network topologies
 - Static (ring, tree, hypercube, mesh)
 - Dynamic (bus, switches/crossbar)
- Coupling
 - Tightly coupled systems
 - Loosely coupled systems

Administrative

- Lab B414/B413 2h / week
 - Iasmina Gruicin, Marius Marcu
- Project B414 1h / week
 - Marius Marcu

10. Assessment

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in final mark
10.4 Lecture	Digital microsystem design fundaments	Written exam	25%
	Digital microsystem design applications	Written exam	25%
10.5 Seminar /labs	Solving the topics proposed during the laboratory	Laboratory deliverables presentation and questions	25%
	Semester project development and presentation	Project deliverables presentation and questions	25%

^{10.6} Minimal performance standards (minimal specific knowledge required for passing the exam, the means to assess mastering the specific knowledge)

- Overall microprocessor architecture and behavior; overall microprocessor system architecture and behavior
- Memory decoding, I/O decoding
- Connecting memory to CPU
- Connecting I/O to CPU

Summary

Summary

- Memory organization
 - UMA
 - NUMA
 - NORMA

Summary

- Flynn taxonomy
 - SISD
 - Harvard architecture
 - Princeton architecture
 - -SIMD
 - MISD
 - MIMD
 - GMSV
 - DMSV
 - GMMP
 - DMMP