EMC TEST REPORT

Report No.: 16070128-FCC-E Supersede Report No.:N/A

Applicant	SUPERSONIC INC			
Product Name	5.0" LTE smart phone			
Model No.	SV-150LTE			
	SV-250LTE	, SV-350LTE,		
Serial No.	SV-155LTE	, SV-255LTE,		
Seriai No.	SV-355LTE, SV-6LTE, SV-16LTE,			
	SV-36LTE,	SC-150LTE		
Test Standard	FCC Part 1	FCC Part 15 Subpart B Class B:2015, ANSI C63.4: 2014		
Test Date	Feb 04 to Feb 26, 2016			
Issue Date	Feb 26, 2016			
Test Result	Pass Fail			
Equipment complied with the specification				
Equipment did not comply with the specification				
Winnie.Z	Winnie Zheng David Huang			
Winnie Zhang		David	Huang	
Test Engineer		Checl	ked By	

This test report may be reproduced in full only

Test result presented in this test report is applicable to the tested sample only

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park
South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108

Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Test Report	16070128-FCC-E
Page	2 of 32

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report	16070128-FCC-E
Page	3 of 32

This page has been left blank intentionally.

Test Report	16070128-FCC-E
Page	4 of 32

CONTENTS

1	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	5
3.	TEST SITE INFORMATION	5
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5.	TEST SUMMARY	8
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
6.1	AC POWER LINE CONDUCTED EMISSIONS	9
6.2	RADIATED EMISSIONS	15
ANI	NEX A. TEST INSTRUMENT	21
ANI	NEX B. EUT AND TEST SETUP PHOTOGRAPHS	22
ANI	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT	28
ANI	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST	31
ANI	NEX E. DECLARATION OF SIMILARITY	32

Test Report	16070128-FCC-E
Page	5 of 32

1. Report Revision History

Report No.	Report Version	Description	Issue Date
16070128-FCC-E	NONE	Original	Feb 26, 2016

2. Customer information

Applicant Name	SUPERSONIC INC
Applicant Add	6555 BANDINI BOULEVARD COMMERCE CA 90040-3119 USA
Manufacturer	NCBC OVERSEA CO., LIMITED
Manufacturer Add	FLAT/RM A5 9/F SILVERCORP INT'L TOWER 707-713 NATHAN ROAD
	MONGKOK KLN HONGKONG

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES		
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park		
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China		
	518108		
FCC Test Site No.	718246		
IC Test Site No.	4842E-1		
Test Software	Radiated Emission Program-To Shenzhen v2.0		

Test Report	16070128-FCC-E
Page	6 of 32

4. Equipment under Test (EUT) Information

Description of EUT: 5.0" LTE smart phone

Main Model: SV-150LTE

SV-250LTE, SV-350LTE,

Serial Model: SV-155LTE, SV-255LTE,

SV-355LTE, SV-6LTE, SV-16LTE,

SV-36LTE, SC-150LTE

GSM850: -1 dBi PCS1900: 0 dBi

UMTS-FDD Band V: -1dBi UMTS-FDD Band II: 0 dBi

Bluetooth/BLE: 0 dBi

Antenna Gain: WIFI: 0 dBi

LTE Band 2: 0 dBi LTE Band 4: 0 dBi LTE Band 7: 1 dBi LTE Band 17: -1 dBi

GPS:0 dBi

Adapter:

Model: HJ-0501000B2-US

Input: AC 100-240V; 50/60Hz;0.15A

Output: DC 5.0V,1000mA

Input Power:

Battery:

Model: SV-150LTE Capacity: 2200mAh Voltage: 4.35V

Equipment Category: JBP

GSM / GPRS: GMSK

EGPRS: GMSK,8PSK

Type of Modulation: UMTS-FDD: QPSK, 16QAM

802.11b/g/n: DSSS, OFDM

Bluetooth: GFSK, π /4DQPSK, 8DPSK

Number of Channels:

Test Report	16070128-FCC-E
Page	7 of 32

BLE: GFSK

LTE Band: QPSK, 16QAM

GPS:BPSK

GSM850 TX: 824.2 ~ 848.8 MHz; RX: 869.2 ~ 893.8 MHz

PCS1900 TX: 1850.2 ~ 1909.8 MHz; RX: 1930.2 ~ 1989.8 MHz

UMTS-FDD Band V TX: 826.4 ~ 846.6 MHz; RX: 871.4 ~ 891.6 MHz

UMTS-FDD Band II TX:1852.4 \sim 1907.6 MHz;

RX: 1932.4 ~ 1987.6 MHz

WIFI:802.11b/g/n(20M): 2412-2472 MHz

RF Operating Frequency (ies): WIFI:802.11n(40M): 2422-2462 MHz

Bluetooth& BLE: 2402-2480 MHz

LTE Band 2 TX: $1852.5 \sim 1907.5$ MHz; RX: $1932.5 \sim 1987.5$ MHz LTE Band 4 TX: $1712.5 \sim 1752.5$ MHz; RX: $2112.5 \sim 2152.5$ MHz LTE Band 7 TX: $2502.5 \sim 2567.5$ MHz; RX: $2622.5 \sim 2687.5$ MHz LTE Band 17 TX: $706.5 \sim 713.5$ MHz; RX: $736.5 \sim 743.5$ MHz

GPS RX:1575.42 MHz

GSM 850: 124CH PCS1900: 299CH

UMTS-FDD Band V: 102CH
UMTS-FDD Band II: 277CH
WIFI:802.11b/g/n(20M): 13CH

WIFI:802.11n(40M):9CH

Bluetooth: 79CH

BLE: 40CH GPS:1CH

Port: Power Port, Earphone Port, USB Port

Trade Name : SHARPER VIEW

FCC ID: 2AC5R-SV-150LTE

Date EUT received: Feb 03, 2016

Test Date(s): Feb 04 to Feb 26, 2016

Test Report	16070128-FCC-E
Page	8 of 32

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.107; ANSI C63.4: 2014	AC Power Line Conducted Emissions	Compliance
§15.109; ANSI C63.4: 2014	Radiated Emissions	Compliance

Measurement Uncertainty

Emissions				
Test Item	Description	Uncertainty		
Band Edge and Radiated Spurious Emissions	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/-4.5dB		
-	-	-		

Test Report	16070128-FCC-E
Page	9 of 32

6. Measurements, Examination And Derived Results

6.1 AC Power Line Conducted Emissions

Temperature	25°C
Relative Humidity	53%
Atmospheric Pressure	1020mbar
Test date :	Feb 20, 2016
Tested By :	Winnie Zhang

Requirement(s):

Spec	Item	Requirement Applicable				
47CFR§15.	a)	For Low-power radio-freconnected to the public voltage that is conducted frequency or frequencies not exceed the limits in [mu] H/50 ohms line implower limit applies at the	\			
107		Frequency ranges	Limit (
		(MHz)	QP	Average		
		0.15 ~ 0.5	66 – 56	56 – 46		
		0.5 ~ 5	56	46		
		5 ~ 30 60 50				
Test Setup		Vertical Ground Reference Plane EUT Horizontal Ground Reference Plane				
	Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80cm from EUT and at least 80cm from other units and other metal planes support units.					
Procedure	 The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. The power supply for the EUT was fed through a 50Ω /50mH EUT LISN, connected to 					
	filtered mains.					

Test Report	16070128-FCC-E	
Page	10 of 32	

	3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss
	coaxial cable.
	4. All other supporting equipment were powered separately from another main supply.
	5. The EUT was switched on and allowed to warm up to its normal operating condition.
	6. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power)
	over the required frequency range using an EMI test receiver.
	7. High peaks, relative to the limit line, The EMI test receiver was then tuned to the
	selected frequencies and the necessary measurements made with a receiver bandwidth
	setting of 10 kHz.
	8. Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power).
Remark	
Result	Pass Fail

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Test Report	16070128-FCC-E
Page	11 of 32

Test Data

Phase Line Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB}	(dBuV)	(dBuV)	(dB)
1	L1	0.1835	36.60	QP	13.08	49.68	64.33	-14.65
2	L1	0.1835	19.03	AVG	13.08	32.11	54.33	-22.22
3	L1	0.2436	29.71	QP	12.85	42.56	61.97	-19.41
4	L1	0.2436	12.48	AVG	12.85	25.33	51.97	-26.64
5	L1	3.2652	31.76	QP	11.40	43.16	56.00	-12.84
6	L1	3.2652	22.69	AVG	11.40	34.09	46.00	-11.91
7	L1	3.5304	31.76	QP	11.40	43.16	56.00	-12.84
8	L1	3.5304	22.89	AVG	11.40	34.29	46.00	-11.71
9	L1	11.3343	30.59	QP	13.45	44.04	60.00	-15.96
10	L1	11.3343	23.67	AVG	13.45	37.12	50.00	-12.88
11	L1	14.8755	25.74	QP	14.13	39.87	60.00	-20.13
12	L1	14.8755	18.52	AVG	14.13	32.65	50.00	-17.35

Test Report	16070128-FCC-E
Page	12 of 32

Test Data

Phase Neutral Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	N	0.1773	37.97	QP	13.10	51.07	64.61	-13.54
2	Ν	0.1773	17.31	AVG	13.10	30.41	54.61	-24.20
3	Ν	0.2208	25.90	QP	12.94	38.84	62.79	-23.95
4	N	0.2208	16.33	AVG	12.94	29.27	52.79	-23.52
5	Ν	0.2748	30.61	QP	12.74	43.35	60.97	-17.62
6	Ν	0.2748	15.44	AVG	12.74	28.18	50.97	-22.79
7	Ν	3.1231	28.85	QP	11.67	40.52	56.00	-15.48
8	Ν	3.1231	19.57	AVG	11.67	31.24	46.00	-14.76
9	Ν	10.8702	28.49	QP	13.37	41.86	60.00	-18.14
10	Ν	10.8702	21.72	AVG	13.37	35.09	50.00	-14.91
11	N	17.5782	24.03	QP	14.64	38.67	60.00	-21.33
12	N	17.5782	17.77	AVG	14.64	32.41	50.00	-17.59

Test Report	16070128-FCC-E
Page	13 of 32

Test Data

Phase Line Plot at 240Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	L1	0.1890	37.36	QP	13.06	50.42	64.08	-13.66
2	L1	0.1890	23.04	AVG	13.06	36.10	54.08	-17.98
3	L1	0.3450	30.68	QP	12.48	43.16	59.08	-15.92
4	L1	0.3450	23.62	AVG	12.48	36.10	49.08	-12.98
5	L1	0.6492	23.49	QP	11.75	35.24	56.00	-20.76
6	L1	0.6492	11.84	AVG	11.75	23.59	46.00	-22.41
7	L1	2.9814	31.40	QP	11.40	42.80	56.00	-13.20
8	L1	2.9814	22.89	AVG	11.40	34.29	46.00	-11.71
9	L1	10.9248	32.68	QP	13.38	46.06	60.00	-13.94
10	L1	10.9248	25.92	AVG	13.38	39.30	50.00	-10.70
11	L1	17.3637	31.65	QP	14.60	46.25	60.00	-13.75
12	L1	17.3637	24.39	AVG	14.60	38.99	50.00	-11.01

Test Report	16070128-FCC-E
Page	14 of 32

Test Data

Phase Neutral Plot at 240Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB}	(dBuV)	(dBuV)	(dB)
1	N	0.1851	39.07	QP	13.07	52.14	64.25	-12.11
2	N	0.1851	26.64	AVG	13.07	39.71	54.25	-14.54
3	N	0.2319	29.30	QP	12.90	42.20	62.38	-20.18
4	N	0.2319	12.70	AVG	12.90	25.60	52.38	-26.78
5	N	0.3489	30.58	QP	12.46	43.04	58.99	-15.95
6	N	0.3489	23.53	AVG	12.46	35.99	48.99	-13.00
7	N	3.0975	30.98	QP	11.66	42.64	56.00	-13.36
8	N	3.0975	21.04	AVG	11.66	32.70	46.00	-13.30
9	N	11.0808	31.76	QP	13.41	45.17	60.00	-14.83
10	N	11.0808	24.55	AVG	13.41	37.96	50.00	-12.04
11	N	17.6445	29.93	QP	14.65	44.58	60.00	-15.42
12	N	17.6445	21.85	AVG	14.65	36.50	50.00	-13.50

Test Report	16070128-FCC-E
Page	15 of 32

6.2 Radiated Emissions

Temperature	25°C
Relative Humidity	53%
Atmospheric Pressure	1020mbar
Test date :	Feb 20, 2016
Tested By :	Winnie Zhang

Requirement(s):

Spec	Item	tem Requirement Applicable							
47CFR§15. 109(d)	a)	Except higher limit as specified elsewhere in other section, the emissions from the low-power radio-frequency devices shall not exceed the field strength levels specified in the following table and the level of any unwanted emissions shall not exceed the level of the fundamental emission. The tighter limit applies at the band edges Frequency range (MHz) Field Strength (µV/m) 30 - 88 100 88 - 216 150 216 960 200							
		Above 960	Ant. Tower 1-4m Variable						
Test Setup	Support Units Turn Table Social Soci								
		Test Re	eceiver						
	 The EUT was switched on and allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT 								
Procedure	characterization. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner:								
			ion (whichever gave the higher e	mission level					

Test Report	16070128-FCC-E
Page	16 of 32

		over a full rotation of the EUT) was chosen.						
	b.	The EUT was then rotated to the direction that gave the maximum						
		emission.						
	c.	Finally, the antenna height was adjusted to the height that gave the maximum						
		emission.						
	3. The re	solution bandwidth and video bandwidth of test receiver/spectrum analyzer is						
	120 kH	dz for Quasiy Peak detection at frequency below 1GHz.						
	4. The res	solution bandwidth of test receiver/spectrum analyzer is 1MHz and video						
	bandw	ridth is 3MHz with Peak detection for Peak measurement at frequency above						
	1GHz.							
	The r	esolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video						
	bandwidth with Peak detection for Average Measurement as below at frequency							
	above 1GHz.							
	■ 1 k	■ 1 kHz (Duty cycle < 98%) □ 10 Hz (Duty cycle > 98%)						
	5. Steps	2 and 3 were repeated for the next frequency point, until all selected frequency						
	points	were measured.						
Remark								
Remark								
Result	Pass	Fail						
	1							
Test Data	Yes	N/A						
Test Plot	Yes (See beld	ow) $\square_{N/A}$						

Test Report	16070128-FCC-E
Page	17 of 32

Below 1GHz

Test Data

Horizontal Polarity Plot @3m

No.	P/L	Frequency	Readin g	Detector	Corrected	Result	Limit	Margin	Height	Degree
		(MHz)	(dBuV/ m)		(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	Ι	41.7130	40.33	peak	-8.73	31.60	40.00	-8.40	100	19
2	Н	66.0342	42.71	peak	-13.89	28.82	40.00	-11.18	100	168
3	Н	127.6645	40.91	peak	-7.79	33.12	43.50	-10.38	100	171
4	Н	239.1473	46.43	peak	-9.09	37.34	46.00	-8.66	100	86
5	Н	478.8456	37.51	peak	-2.27	35.24	46.00	-10.76	100	356
6	Н	830.4002	32.84	peak	3.57	36.41	46.00	-9.59	100	75

Test Report	16070128-FCC-E
Page	18 of 32

Below 1GHz

Test Data

Vertical Polarity Plot @3m

No.	P/L	Frequency	Readin g	Detector	Corrected	Result	Limit	Margin	Height	Degree
		(MHz)	(dBuV/ m)		(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	>	41.7130	41.55	peak	-8.73	32.82	40.00	-7.18	100	250
2	V	58.8185	47.12	peak	-14.22	32.90	40.00	-7.10	100	235
3	٧	81.2117	47.06	peak	-13.71	33.35	40.00	-6.65	100	213
4	٧	126.3286	43.82	peak	-7.70	36.12	43.50	-7.38	100	146
5	٧	284.9767	42.23	peak	-7.59	34.64	46.00	-11.36	100	213
6	V	833.3171	35.68	peak	3.61	39.29	46.00	-6.71	100	47

Test Report	16070128-FCC-E
Page	19 of 32

Above 1GHz

90.0 dBuV/m

Test Data

Horizontal Polarity Plot @3m

No.	P/L	Frequency	Readin g	Detector	Corrected	Result	Limit	Margin	Height	Degree
		(MHz)	(dBuV/ m)		(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	Н	1070.458	49.07	peak	3.45	52.52	74.00	-21.48	100	316
2	Н	2552.543	48.31	peak	6.11	54.42	74.00	-19.58	100	221
3	Н	3268.571	47.64	peak	7.40	55.04	74.00	-18.96	100	165
4	Н	4163.019	48.33	peak	9.01	57.34	74.00	-16.66	100	176
5	Н	4400.794	47.63	peak	9.44	57.07	74.00	-16.93	100	44
6	Н	5605.076	49.20	peak	11.61	60.81	74.00	-13.19	100	138

Test Report	16070128-FCC-E
Page	20 of 32

Above 1GHz

Test Data

Vertical Polarity Plot @3m

No.	P/L	Frequency	Readin g	Detector	Corrected	Result	Limit	Margin	Height	Degree
		(MHz)	(dBuV/ m)		(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	V	1059.012	51.21	peak	3.43	54.64	74.00	-19.36	100	82
2	>	1491.172	56.91	peak	4.20	61.11	74.00	-12.89	100	203
3	٧	1693.466	53.83	peak	4.57	58.40	74.00	-15.60	100	129
4	٧	3868.158	47.96	peak	8.48	56.44	74.00	-17.56	100	344
5	V	4276.423	48.13	peak	9.22	57.35	74.00	-16.65	100	167
6	>	5615.128	49.71	peak	11.63	61.34	74.00	-12.66	100	181

Test Report	16070128-FCC-E
Page	21 of 32

Annex A. TEST INSTRUMENT

Instrument	Model	Serial#	Cal Date	Cal Due	In use		
AC Line Conducted Emissions							
EMI test receiver	ESCS30	8471241027	09/17/2015	09/16/2016	~		
Line Impedance Stabilization Network	LI-125A	191106	09/25/2015	09/24/2016	V		
Line Impedance Stabilization Network	LI-125A	191107	09/25/2015	09/24/2016	S		
LISN	ISN T800	34373	09/25/2015	09/24/2016	~		
Transient Limiter	LIT-153	531118	09/01/2015	08/31/2016	~		
Radiated Emissions							
EMI test receiver	ESL6	100262	09/17/2015	09/16/2016	~		
OPT 010 AMPLIFIER (0.1-1300MHz)	8447E	2727A02430	09/01/2015	08/31/2016	V		
Microwave Preamplifier (1 ~ 26.5GHz)	8449B	3008A02402	03/25/2015	03/24/2016	V		
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/21/2015	09/20/2016	V		
Double Ridge Horn Antenna	AH-118	71259	09/24/2015	09/23/2016	V		

Test Report	16070128-FCC-E
Page	22 of 32

Annex B. EUT And Test Setup Photographs

Annex B.i. Photograph: EUT External Photo

Test Report	16070128-FCC-E
Page	23 of 32

Test Report	16070128-FCC-E
Page	24 of 32

Annex B.ii. Photograph: EUT Internal Photo

Cover Off - Top View 1

Battery - Front View

Battery - Rear View

Mainbard without Shielding - Front View

Test Report	16070128-FCC-E
Page	25 of 32

3

Mainbard with Shielding - Rear View

Mainbard without Shielding - Rear View

LCD - Front View

LCD - Rear View

GSM/PCS/UMTS-FDD Antenna View

LTE - Antenna View

Test Report	16070128-FCC-E	
Page	26 of 32	

Test Report	16070128-FCC-E
Page	27 of 32

Annex B.iii. Photograph: Test Setup Photo

Conducted Emissions Test Setup - Front View

Conducted Emissions Test Setup - Side View

Radiated Emissions Test Setup Below 1GHz

Radiated Emissions Test Setup Above 1GHz

Test Report	16070128-FCC-E	
Page	28 of 32	

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.ii. TEST SET UP BLOCK

Test Report	16070128-FCC-E
Page	29 of 32

Block Configuration Diagram for Radiated Emissions

Test Report	16070128-FCC-E	
Page	30 of 32	

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
Lenovo	Laptop	E40	LR-1EHRX
GOLDWEB	Router	R102	1202032094
HP	Printer	VCVRA-1003	CN36M19JWX
DELL	Mouse	E100	912NMTUT41481

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
USB Cable	Un-shielding	No	2m	JX120051274
USB Cable	Un-shielding	No	2m	JX110725002
RJ45 Cable	Un-shielding	No	2m	KX156327541
Router Power cable	Un-shielding	No	2m	13274630Z
Printer Power cable	Un-shielding	No	2m	127581031

Test Report	16070128-FCC-E
Page	31 of 32

Annex D. User Manual / Block Diagram / Schematics / Partlist

N/A

Test Report	16070128-FCC-E
Page	32 of 32

Annex E. DECLARATION OF SIMILARITY

SUPERSONIC INC

To: SIEMIC ,775 Montague Expressway, Milpitas, CA 95035,USA

Declaration Letter

Dear Sir,

For our business issue and marketing requirement, we would like to list 10 model numbers on the FCC certificates and reports, as following:

Model No.: SV-150LTE, SV-250LTE, SV-350LTE, SV-155LTE, SV-255LTE AND SV-355LTE, SV-6LTE, SV-16LTE, SV-36LTE, SC-150LTE

We declare that, all the model PCB ,Antenna and Appearance shape , accessories are the same . The difference of these is listed as below:

Main Model No	Serial Model No	Difference
SV-150LTE	SV-250LTE, SV-350LTE, SV-155LTE, SV-255LTE, SV-355LTE, SV-6LTE, SV-16LTE, SV-36LTE, SC-150LTE	Different model name

Thank you!

Signature:

Printed name/title: David Gholiani

Address: 6555 BANDINI BOULEVARD COMMERCE CA 90040-3119 USA

Dand Stil