In this project, I wrote a software that plans a trajectory for the end-effector of the youBot, an omnidirectional mobile robot with a 5-DOF robotic arm, performs an odometry as the chassis moves and performs feedback control to drive the robot in the desired trajectory. The simulate planned trajectory in demonstrated in CoppeliaSim.

Milestone 1

Next_State.py - computes the configuration of the robot in the next time step. The function inputs the current robot configuration and joint speeds. Given A 12-vector representing the current configuration of the robot, a 9-vector of controls indicating the arm and wheel twist, a timestep Δt and a speed limit, output a 12-vector representing the configuration of the robot time Δt later. The function uses first-order Euler integration to calculate wheel and joint angles at the next time step.

Testing milestone 1:

To test the NextState function, I Simulated the following controls for 1 second and watch the results in the CoppeliaSim capstone scene.

```
max_ang_speed = 5
dt=0.01
Total time = 1 sec
Test 1: Driving the robot chassis forward
u=[0, 0, 0, 0, 0, 10, 10, 10, 10]
```

Test 2 : Sliding the robot chassis sideways u=[0, 0, 0, 0, 0, -10, 10, -10, 10]

Test 3: Spinning the robot chassis in counterclockwise direction u=[0, 0, 0, 0, 0, -10, 10, 10, -10]

To run the file: python code/next_state.py
The test results are in folder testing milestones results/milestone 1

Milestone 2

Trajectory_Generator.p y - generates the reference trajectory for the end-effector frame {e}. The function inputs the initial end-effector configuration, initial cube configuration, desired cube configuration, and number of configurations per second. The function outputs a matrix containing the end effector configuration at all time steps throughout the trajectory.

I am using gripper state as 0 = open

1 = close

THe trajectory can be divided into smaller goals:

- Initial to standoff position
- Standoff position to grasp position
- Closing the gripper
- Grasp to standoff position
- Standoff to goal position
- From goal position to final position
- open the gripper
- From final position to standoff position

Testing milestone 2:

total time of the motion in seconds=3

time-scaling method: considered fifth-order polynomial no of points (Start and stop) in the discrete representation of the trajectory:

For driving: 500 points

For picking/dropping: 100 points

The number of trajectory reference configurations per 0.01 seconds i.e k = 1 Input for the functions are :

The initial configuration of the end-effector in the reference trajectory: Tse_initial = np.array([[0, 0, 1, 0], [0, 1, 0, 0], [-1, 0, 0, 0.5], [0, 0, 0, 1]])

```
The cube's initial configuration: Tsc_initial = np.array([[1, 0, 0, 1], [0, 1, 0, 0], [0, 0, 1, 0.025], [0, 0, 0, 1]])
```

The cube's desired final configuration: $Tsc_goal = np.array([[0, 1, 0, 0], [-1, 0, 0, -1], [0, 0, 1, 0.025], [0, 0, 0, 1]])$

The end-effector's configuration relative to the cube when it is grasping the cube (the two frames located in the same coordinates, rotated about the y axis):

$$Tce_grasp = np.array([[-1/np.sqrt(2), 0, 1/np.sqrt(2), 0], [0, 1, 0, 0], [-1/np.sqrt(2), 0, -1/np.sqrt(2), 0], [0, 0, 0, 1]])$$

The end-effector's standoff configuration above the cube, before and after grasping, relative to the cube (the $\{e\}$ frame located 0.1m above the $\{c\}$ frame, rotated about the y axis):

$$Tce_standoff = np.array([[-1/np.sqrt(2), 0, 1/np.sqrt(2), 0], [0, 1, 0, 0], [-1/np.sqrt(2), 0, -1/np.sqrt(2), 0.1], [0, 0, 0, 1]])$$

To run the file: python code/generate_tracjectory.py

Results for the tests are in testing milestone results/milestone 2

Milestone 3

Feedback_Control.py - calculates the kinematic task-space feedforward plus feedback control law.

$$V(t) = [Ad_{X^{-1} - X_d}] V_d(t) + K_p X_{err} + K_i \int_0^t X_{err}(t) dt$$
$$[V_d] = \frac{1}{\Delta t} log(X^{-1} X_d)$$

V is the calculated end-effector twist

 V_d is the reference twist

X is the current end-effector configuration

 X_d is the desired end-effector configuration

 X_{err} is the error between the current end-effector configuration and the reference trajectory

 K_p is the proportional gain

 K_i is the integral gain

Once I calculated the end-effector twist, I needed to convert this to commanded wheel and arm joint speeds (u,θ) . To do so, I used the pseudoinverse of the jacobian matrix:

$$(\mathbf{u}, \mathbf{\theta}) = J_e^+(\mathbf{\theta})V$$

Testing milestone 3:

$$KP = 0$$

X = np.array([[0.170, 0, 0.985, 0.387]]) [0, 1, 0, 0], [-0.985, 0, 0.170, 0.570],[0, 0, 0, 1]])

end-effector reference configuration

end-effector reference configuration at the next timestep in the reference trajector $Xd_next = np.array([[0, 0, 1, 0.6],$

To run the file: python code/feedback_control.py

Results for the tests are in testing_milestone_results/milestone 3

Full code Python code generates a reference trajectory and uses a PI controller to follow the reference trajectory. Code outputs a csv file containing robotic configuration at each time step.

The results for this project can be split into 3 categories:

1.)Best: Planning and executing a motion without overshoot or steady-state error.

PI controller with feedback gains of Kp = 5.5 and Ki = 0.2

We can see that there is no overshoot, no steady-state error, and fast settling time with a little bump in between after which the plot PI again converges to 0

2.)Overshoot - Planning and executing a motion with overshoot but without steady-state error.

PI controller with feedback gains of Kp = 0.8 and Ki = 1

From the plot we can observe that there is an overshoot at the beginning of the motion and when there is a bump in between .The plot converges with no steady-state error

3.) NewTast results - Planning and executing the trajectory with different start and finish configuration and Kp=2.5, Ki=0.1

We can see that there is no overshoot, no steady-state error, and fast settling time with a little bump in between after which the plot PI again converges to 0

Additional:

Implementation of singularity avoidance :The tolerance option allows you to specify how close to zero a singular value must be to be treated as zero.

Tolerance =1e-3 added in Pinv : Je_inv = np.linalg.pinv(Je,rcond=1e-3)

Where roond is used to zero out small entries in a diagonal matrix with positive real values (singular values)

By treating small singular values (that are greater than the default tolerance) as zero, I want tol avoid having pseudoinverse matrices with unreasonably large entries

Implementation of self-collision avoidance

My testJointLimits function is checking for Joint 3 and Joint 4
I check joint limit before calculating Jacobian .If the joint value is higher than the joint limit, I make the column of that joint in Jacobian 0
After implementing the self-collision, controller values need to be further tuned to work properly. That is why the self-collision implementation code is commented out