Cálculo III Tarea 3

Rubén Pérez Palacios Lic. Computación Matemática Profesor: Fabián Augusto Pascual Domínguez

1 de enero de 2023

- 1. Probar usando la definición de conjunto compacto que
 - [0,1] es compacto en \mathbb{R} .

Sea $U = \bigcup_{\alpha \in \Lambda} U_{\alpha}$ una cubierta abierta de [0,1], y P el conjunto de puntos $p \in [0,1]$ tales que [0,x] puede ser cubierto por una cantidad finita de elementos de U, puesto que 0 es un conjunto finito entonces $0 \in P$, además como P es acotado entonces tiene un supremo s.

Sea $U_s \in U_\alpha$, $\alpha \in \Lambda$ un conjunto que contiene a s (el cual existe ya que U es una cubierta de [0,1]), al ser U_s abierto existe $s > \epsilon > 0$ tal que $(s - \epsilon, s] \subset U_s$, al ser s el supremo entonces $s - \epsilon \in P$ y existe una subcubierta finita de U que cubre a $[0, s - \epsilon]$ agregando U_s a esa subcubierta obtenemos que [0, s] puede ser cubierto por una subcubierta finita de U y por lo que $s \in P$.

Si x<1, y sea $U_s\in U_\alpha, \alpha\in\Lambda$ un conjunto que contiene a s (el cual existe ya que U es una cubierta de [0,1]) al ser U_s abierto existe $\epsilon>0$ tal que $[s,s+\epsilon)\subset U_s$, luego como $s\in P$ existe una subcubierta finita de U que cubre a [0,s] agregando U_s a ella obtenemos una subcubierta finita de U que cubre a $[0,s+\frac{\epsilon}{2}]$ y $s+\frac{\epsilon}{2}\in P$, lo cual es una contradicción ya que s es el supremos de P. Por lo que s=1.

Por lo tanto [0,1] es compacto.

- $\{0\} \times [0,1]$ no es compacto en \mathbb{R} .
- 2. Sea A un conjunto compacto en \mathbb{R}^p . Definimos

$$co(A) = \{\vec{z} = t\vec{x} + (1-t)\vec{y} \in \mathbb{R}^p | \vec{x}, \vec{y} \in A, t \in [0,1] \},$$

el cual se llama cubierta abierta convexa de A. Probar que co(A) es compacto en \mathbb{R}^p .

Demostración. Sea $\{z_n\}_{n=1}^{\infty} \subset A$. Para todo z_n existen $x_n, y_n \in A, t \in [0, 1]$ tales que

$$z_n = t\vec{x_n} + (1-t)\vec{y_n}.$$

Al ser A compacto entonces es secuencialmente compacto, por lo tanto existe

$$\{x_{n_m}\}_{m=1}^{\infty} \xrightarrow{m \to \infty} x \in A$$

y además

$$\left\{y_{n_{m_{l}}}\right\} \xrightarrow{l \to \infty} y \in A(\text{tambi\'en } x_{n_{m_{l}}} \xrightarrow{m \to \infty} x),$$

por lo que

$$z_{n_{m_1}} = t\vec{x_{n_{m_1}}} + (1-t)\vec{y_{n_{m_1}}} \xrightarrow{m \to \infty} t\vec{x} + (1-t)\vec{y} \in co(A)$$

por definición de co(A). Por lo que co(A) es secuencialmente compacto y por lo tanto concluimos que co(A) es compacto.

3. Conjuntos disconexos

a) Sean $A, B \subset \mathbb{R}^p$ cerrados tales que $A \cap B = 0$ y B acotado. Probar que existe un $\epsilon > 0$ tal que $\|\vec{x} - \vec{y}\| \ge \epsilon, \forall \vec{x} \in A, \vec{y} \in B$.

Demostración. Procederemos a demostrar por contradicción. Si $\forall \epsilon > 0$ existen $\vec{x} \in A, \vec{y} \in B$ tales que $\|\vec{x} - \vec{y}\| < \epsilon$ sean $\vec{x_n}, \vec{y_n}$ tales que $\|\vec{x} - \vec{y}\| < \frac{1}{n}$, notese que $\lim_{n \to \infty} d\left(\vec{x_n}, \vec{y_n}\right) = 0$. Al ser B cerrado y acotado entonces es compacto, por lo que también secuencialmente compacto, entonces existe una subsucesión $\{\vec{y_{n_m}}\}_{m=1}^{\infty}$ tal que $\lim_{m \to \infty} \vec{y_{n_m}} = \vec{y} \in B$ luego como $\vec{x_n} \in A$ y $d(\vec{y_n}, A) = \inf_{a \in A} \|\vec{y_n} - a\|$ entonces $d(y_n, A) = 0$, por el ejercicio 5 de la tarea pasada tenemos que d(y, A) = 0, lo cual es una contradicción ya que A es cerrado. \Box

- b) Dar un ejemplo en \mathbb{R} donde B no es acotado pero no se cumple la conclusión anterior. Sea $A = \mathbb{N}$ y $B = \left\{ n + \frac{1}{n} | n \in \mathbb{N} \right\}$, luego $\forall \epsilon > 0$ tenemos que por propiedad ariquimediana de los números reales existe n talque $\frac{1}{n} < \epsilon$ por lo que $\left| n - \left(n + \frac{1}{n} \right) \right| = \frac{1}{n} < \epsilon$, por lo que A y B no cumplen la concluisión de A.
- 4. Sea A un conjunto conexo de \mathbb{R}^n con más de un punto. Demostrar que $A \subset A'$.

Demostraci'on. Sea $a\in A$ y $b\in A\setminus\{a\}$ (ya que A tiene mas de un punto), al ser A conexo tenemos que

$$c = bt + (1 - t)a, t \in [0, 1] \subset A.$$

Si $\epsilon \ge ||b - a||$ entonces

$$b \in [B(a, \epsilon) \cap A] \setminus \{a\}$$
.

Si $0<\epsilon<\|b-a\|$ entonces $0<\frac{\epsilon}{2\|b-a\|}<1$ por lo que

$$b\frac{\epsilon}{2\|b-a\|} + \left(1 - \frac{\epsilon}{2\|b-a\|}\right)a \in A$$

luego

$$\left\|b\frac{\epsilon}{2\left\|b-a\right\|} + \left(1 - \frac{\epsilon}{2\left\|b-a\right\|}\right)a - a\right\| = \left\|(b-a)\frac{\epsilon}{2\left\|b-a\right\|}\right\| = \frac{\epsilon}{2} < \epsilon,$$

por lo que

$$b\frac{\epsilon}{2\left\|b-a\right\|}+\left(1-\frac{\epsilon}{2\left\|b-a\right\|}\right)a\in\left[B\left(a,\epsilon\right)\cap A\right]\setminus\left\{a\right\}.$$

Por lo que $a \in A'$, por lo tanto concluimos que $A \subset A'$.

5. Sea $\{F_n\}_{n=1}^{\infty}$ una sucesión decreciente de conjuntos compactos, conexos y que no son vacios de \mathbb{R}^p . Sea $F = \lim_{n \to \infty} F_n$. Demostrar que F es un conjunto compacto, conexo y que no es vacío.

Demostración. Puesto que $F = \bigcap_{n=1}^{\infty} F_n$ (ya que el límite de una sucesión creciente de conjuntos es la intersección de ellos), entonces $F \subset F_1$, por lo que F es acotado, ahora como F es la intersección arbitraria de conjuntos cerrados entonces F es cerrado. Además como F es no vació ya que de lo contario existiría un F_n talque es vacío lo cual es una contradicción.

Procederemos a demostrar por contradicción que F es conexo. si F es disconexo entonces existen $U, V \subset \mathbb{R}^p$ abiertos tales que $U \cap V = \emptyset, F \cap U \neq \emptyset \neq F \cap V$ y $F \subset U \cup V$. Sea $G_n = F_n \setminus (U \cup V)$, como F_n es decreciente también G_n lo es, además como F es compacto entonces para todo subcubierta de F_n existe una subcubierta finita que lo cubre y como $G_n \subset F_n$ entonces también subre a G_n por lo tanto G_n es compacto, además

$$\lim_{n\to\infty}G_n=\bigcap_{n=1}^\infty G_n=\bigcap_{n=1}^\infty F_n\setminus (U\cup V)=\emptyset.$$

por lo tanto existe un $G_n=\emptyset$ por lo que $F_n\subset U\cup V$, lo cual es una contradicción ya que F_n es conexo. Por lo tanto $\lim_{n\to\infty} F$ es conexo.