Analysis

Final Exam

Daniel Halmrast

March 21, 2018

Problem 1

Let $f_j \in L^1(I, \lambda^1)$ for I = (-1, 1), and suppose $f_j \to f$ almost everywhere.

Part i

Prove or disprove: if

$$||f_j||_{L^1} < M$$

for some constant M, then $||f_j - f|| \to 0$.

Proof. Consider the sequence $f_j = j\chi_{[0,\frac{1}{j}]}$. This converges pointwise almost everywhere to zero, but

$$||f_j - 0||_{L^1} = \int_{(-1,1)} j\chi_{[0,\frac{1}{j}]} d\lambda$$
$$= \int_{[0,\frac{1}{j}]} j = 1$$

which does not tend to zero.

Part II

Prove that if

$$||f_i||_{L^{1+\delta}} < M$$

for some $\delta > 0$, then $||f_j - f|| \to 0$.

Proof. Recall theorem 4 from the notes part 4, which states that for a sequence of functions f_j in L^1 on a finite measure space converging pointwise almost everywhere to f, then $||f_j - f|| \to 0$ if and only if the sequence $\{f_j\}$ is uniformly integrable.

So, we only need to show $\{f_j\}$ is uniformly integrable. So, fix $\varepsilon>0$. Let q be such that $\frac{1}{1+\delta}+\frac{1}{q}=1$ (in particular, q>1). Finally, fix δ' such that $M^{\frac{1}{1+\delta}}\delta'^{\frac{1}{q}}<\varepsilon$. Now, for any subset $E\subset I$ with $\mu(E)<\delta'$, we have by Holder's inequality

$$\int_{E} |f_{j}| d\lambda^{1} \leq \left(\int_{E} |f_{j}|^{1+\delta} d\lambda^{1} \right)^{\frac{1}{1+\delta}} \left(\int_{E} |1|^{q} d\lambda^{1} \right)^{\frac{1}{q}} \\
\leq M^{\frac{1}{1+\delta}} \mu(E)^{\frac{1}{q}} \\
\leq M^{\frac{1}{1+\delta}} \delta'^{\frac{1}{q}} \\
\leq \varepsilon$$

and so $\{f_j\}$ is uniformly bounded. Thus, $||f_j - f|| \to 0$, as desired.

PROBLEM 2

Let $1 \le p < \infty$, and let (x_n) be a sequence in $\ell^p, x_n = (x_{n1}, x_{n2}, \dots)$. Prove that $(x_n) \to 0$ weakly if and only if (x_n) is strongly bounded and for all $i, x_{ni} \to 0$.

Proof. Recall from homework 5 that for a Banach space X, a sequence (ϕ_j) in X^* converges weak-* if and only if it is strongly bounded, and there exists a dense subset $E \subset X$ for which $\phi_j(x)$ converges for all $x \in E$.

Setting q such that $(\ell^p)^* = \ell^q$, and setting $X = \ell^q$, we see that the sequence (x_n) in $\ell^p = (\ell^q)^*$ converges in weak-* (which is the same as weak convergence in the reflexive space ℓ^p) if and only if it is strongly bounded, and for some dense subset $E \subset \ell^q$ for which $(x_n)(y)$ converges for all $y \in E$.

(\Longrightarrow) Suppose first that $x_n \to 0$ weakly. By definition, this means that for all $y \in \ell^q$, $y(x_n) \to y(0) = 0$. In particular, setting $y = e_i$ the standard basis sequence with all zeros except a 1 in the *i*th place, we see that

$$e_i(x_n) = x_{ni} \to 0$$

as desired.

Furthermore, by the theorem stated above, (x_n) being weakly convergent implies it is strongly bounded. This completes this implication.

(\Leftarrow) Suppose (x_n) is such that it is strongly bounded, and $x_{ni} \to 0$ for all i. By the theorem above, we only need to show that $y(x_n) \to 0$ for all y in a dense subset $E \subset \ell^q$.

Again denoting e_i as the *i*th basis sequence, we see immediately that $e_i(x_n) \to 0$ for all *i*. Furthermore, this extends to all finite linear combinations of e_i . That is,

$$\left(\sum_{i=1}^{n} a_i e_i\right)(x_n) \to 0$$

where a_i are scalars. This is clear, since we know that $\lim(x_n + y_n) = \lim x_n + \lim y_n$ and $\lim ax_n = a \lim x_n$ for real sequences x_n . Applying this to the real sequences $e_i(x_n)$ achieves the desired result.

Thus, for any sequence y which can be written as a finite linear combination of e_i basis sequences, $y(x_n) \to 0$. We only need to show that the set of all finite linear combinations of basis sequences is dense in ℓ^q .

Denote the set of all finite linear combinations of e_i as E. Suppose $y = (y_1, y_2, \dots) \in \ell^q$. In particular, we know $||y||_q$ is finite, and so the tails $\sum_{i=N}^{\infty} y_i$ tend to zero. So, fix $\varepsilon > 0$, and choose N large enough so that $\sum_{i=N}^{\infty} |y_i| < \varepsilon$. Then, consider

$$y' = \sum_{i=1}^{N} y_i e_i = (y_1, y_2, \dots, y_N, 0, \dots)$$

which is clearly in E. Furthermore, we know from notes 3, part 11 that for any sequence x,

$$||x||_p \le ||x||_1$$

for $p \ge 1$. Thus,

$$||y' - y||_q \le ||y' - y||_1$$

$$= \sum_{i=1}^{\infty} |y_i' - y_1|$$

$$= \sum_{i=1}^{N} |y_i - y_i| + \sum_{i=N}^{\infty} |y_i|$$

$$= 0 + \sum_{i=N}^{\infty} |y_i|$$

$$< \varepsilon$$

Thus, for each $y \in \ell^q$, and each $\varepsilon > 0$, there is some $y' \in E$ such that $||y - y'||_q < \varepsilon$, which proves E is dense in ℓ^q .

Thus, the original sequence (x_n) converges on E a dense subset of ℓ^q , and since (x_n) is also bounded, this implies that (x_n) is weakly convergent as well.

Since $y(x_n) \to 0$ for all $y \in E$ a dense subset, by linearity we know that $y(x_n) \to 0$ for all $y \in \ell^q$, and thus $(x_n) \to 0$ weakly, as desired.

PROBLEM 3

Prove that for a linear operator $A: X \to X$ for a Banach space X the following are equivalent

- 1. A is continuous. That is, $x_n \to 0$ implies $Ax_n \to 0$.
- 2. if $x_n \to 0$ weakly, then $Ax_n \to 0$ weakly.
- 3. if $x_n \to 0$, then $Ax_n \to 0$ weakly.

Proof. (1 \Longrightarrow 2) Suppose A is continuous in the norm topology. We wish to show A is continuous with respect to the weak topology. This should be clear, however, since the weak topology is the initial topology with respect to X^* . That is, $A:Y\to X$ is continuous if and only if $\phi\circ A:Y\to\mathbb{R}$ is continuous for all ϕ .

Now, we show that $A:(X,\sigma(X^*))\to (X,\sigma(X^*))$ is continuous. To do so, we observe that for $\phi\in X^*$,

$$\phi \circ A : (X, \sigma(X^*)) \to \mathbb{R}$$

is continuous, since

$$\phi \circ A : (X, \|\cdot\|) \to \mathbb{R}$$

is continuous as the composition of continuous functions, and thus $\phi \circ A \in X^*$, and is therefore continuous with respect to $\sigma(X^*)$ the weak topology on X.

Thus, A is continuous from $(X, \sigma(X^*))$ to itself, and therefore preserves weak limits as desired.

 $(2 \implies 3)$ Suppose A preserves weak limits, and let $x_n \to 0$ strongly. This implies that $x_n \to 0$ weakly as well, and so by statement 2, $A(x_n) \to 0$ weakly as desired.

 $(3 \implies 1)$ Suppose A is such that if $x_n \to 0$, then $Ax_n \to 0$ weakly. That is, for all $\phi \in X^*$,

$$\phi(Ax_n) \to 0$$

Suppose for a contradiction that A is not continuous. That is, A is not bounded. So, let x_n be a sequence tending to zero with $Ax_n \to \infty$ (by unboundedness of A). We know that Ax_n weakly converges to zero, but the uniform boundedness principle will lead us to a contradiction.

Consider Ax_n as a sequence of bounded linear operators on X^* . Since Ax_n converges weakly to zero, the sequence $\phi(Ax_n) \to 0$ for all ϕ , and thus

$$\sup_{n} \|Ax_n(\phi)\| < \infty$$

for each ϕ . Thus, the uniform boundedness principle implies that

$$\sup_{n,\|\phi\|=1} \|Ax_n(\phi)\| = M < \infty$$

However, since

$$||x|| = \sup_{\|\phi\|=1} |\phi(x)|$$

(proved in an earlier homework), we know that

$$\sup_{n} \sup_{\|\phi\|=1} \|Ax_n(\phi)\| = \sup_{n} \|Ax_n\| < M$$

by properties of sup, and so the set $\{Ax_n\}$ is bounded, a contradiction. Thus, A must be continuous, as desired.