Universidad de la República Facultad de Ingeniería.

Solución Examen de Matemática Discreta II 17 de febrero de 2014

- 1. a) Sean a, b, n enteros positivos tales que d = mcd(a, n), con $d \neq 1$ y $d \mid b$ Hallar todas las soluciones de $ax \equiv b \mod (n)$. ¿Cuántas soluciones hay entre 1 y n?
 - b) Resolver la ecuación diofántica $2x \equiv 14 \mod(80)$.
 - c) Sea n el mayor natural mayor que 1 y menor que 80 que es solución de la ecuación de la parte anterior. Determinar cuántas raíces primitivas tiene U(n), y hallar la menor de todas.

Resolución:

- a) Como d = mcd(a, n), entonces, consideramos, $a' = \frac{a}{d}$ y $n' = \frac{n}{d}$. Recordemos que mcd(a', n') = 1. Definimos también $b_0 = \frac{b}{d} \in \mathbb{Z}$, pues $d \mid b$. Tenemos que $ax \equiv b \mod(n) \Leftrightarrow \text{existe } t \in \mathbb{Z}$ tal que ax b = tn. Esto se cumple si y solo si existe $t \in \mathbb{Z}$ tal que $a'x b_0 = tn'$ o sea si y solo si $a'x \equiv b_0 \mod(n')$. Como mcd(a', n') = 1, existe el inverso de a' en U(n'), y por lo tanto la ecuación anterior es equivalente a: $x \equiv (a')^{-1}b_0 \mod(n')$. O sea las soluciones de la ecuación inicial son de la forma: $x = (a')^{-1}b_0 + un'$, con $u \in \mathbb{Z}$.
 - El número de soluciones entre 1 y n las calculamos planteando: $1 \le \alpha + un' \le n = dn'$, siendo $\alpha = (a')^{-1}b_0$. La doble inecuación anterior es equivalente a: $\frac{1}{n'} \frac{\alpha}{n'} \le u \le d \frac{\alpha}{n'}$ con $u \in \mathbb{Z}$. Como $d \frac{\alpha}{n'} (\frac{1}{n'} \frac{\alpha}{n'}) = d \frac{1}{n'}$, en ese rango siempre encontramos d soluciones.
- b) Por lo visto arriba las soluciones son x = 7 + 40t con $t \in \mathbb{Z}$.
- c) Entre 1 y 80 tenemos las soluciones 7 y 47. Entonces n=47. Luego, U(47) tiene, por lo visto en teórico, $\phi(\phi(47))$ raíces primitivas, siendo ϕ la función de Euler. Entonces $\phi(\phi(47))=\phi(46)=\phi(2\times23)=\phi(23)=22$. La menor raíz primitiva de 47 es 5, pues $2^{23}\equiv 1 \mod(47)$ y también $3^{23}\equiv 1 \mod(47)$ (por lo tanto 2 y 3 no son raíces primitivas) y por su parte $5^{23}\not\equiv 1 \mod(47)$ y $5^2=25\not\equiv 1 \mod(47)$.
- 2. a) Sea $\sigma \in S_n$ y $\sigma = c_1 \dots c_n$ producto de ciclos disjuntos.
 - 1) Escribir $o(\sigma)$ en función de $o(c_1), \ldots, o(c_n)$
 - 2) Probar el resultado enunciado en 1).
 - b) Considerar \mathbb{Z}_{30} . Exhibir elementos $a, b \in \mathbb{Z}_{30}$ tales que o(a+b) < mcm(o(a), o(b)).
 - c) Dado (G, \cdot) grupo finito y $x, y \in G$ con xy = yx entonces, si a = o(x), b = o(y), m = mcm(a, b) y d = mcd(a, b), demostrar que $\frac{m}{d} |o(xy)|$ y que o(xy)|m.

Resolución:

- a) 1) Se tiene que $o(\sigma) = \text{mcm}(o(c_1), \dots, o(c_n))$. O sea el orden de la permutación σ es el menor entero positivo que es múltiplo de todos los órdenes de los ciclos c_1, c_2, \dots, c_n .
 - 2) Para demostrar la afirmación anterior llamemos $\beta = \text{mcm}(o(c_1), \dots, o(c_n))$. Tenemos que existen enteros positivos ν_i tal que $\beta = \nu_i \times o(c_i)$, para todo i = 1, 2, ..., n. Entonces $\sigma^{\beta} = (c_1 \dots c_n)^{\beta} = c_1^{\beta}.c_2^{\beta}.\dots.c_n^{\beta}$, porque, al ser ciclos disjuntos, conmutan entre sí. Luego, cada $c_i^{\beta} = c_i^{\nu_i \times o(c_i)} = (c_i^{o(c_i)})^{\nu_i} = (id)^{\nu_i} = \text{id}$, para todo i = 1, 2, ..., n. Por lo tanto $\sigma^{\beta} = \text{id}$ y esto implica que $o(\sigma) \mid \beta$.

Por el otro lado, como $\sigma = c_1 \dots c_n$, se tiene que $(c_1 \dots c_n)^{o(\sigma)} = \mathrm{id}$. Como son ciclos disjuntos, conmutan entre sí, por lo que se obtiene: $c_i^{o(\sigma)} = c_1^{o(\sigma)}.c_2^{o(\sigma)}.\cdots.c_{i-1}^{o(\sigma)}.c_{i+1}^{o(\sigma)}.\cdots.c_n^{o(\sigma)}$. La igualdad anterior es posible si y solo si para todo $i=1,\dots,n,$ $c_i^{o(\sigma)} = \mathrm{id} = c_1^{o(\sigma)}.c_2^{o(\sigma)}.\cdots.c_{i-1}^{o(\sigma)}.c_{i+1}^{o(\sigma)}.\cdots.c_n^{o(\sigma)}$ pues todos los ciclos son disjuntos. O sea que $o(c_i) \mid o(\sigma)$, para todo $i=1,2,\dots,n$, por lo tanto $\beta = \mathrm{mcm}(o(c_1),\dots,o(c_n)) \mid o(\sigma)$.

O sea, hemos probado que $o(\sigma) = \beta$.

- b) Es posible considerar muchas parejas que ejemplifiquen lo que se pide. Una pareja posible es: a = 10 y b = 5, pues o(10) = 3, o(5) = 6, mientras que o(10 + 5) = 2.
- c) Sean $a' = \frac{a}{d}$ y $b' = \frac{b}{d}$. Sabemos que m=mcm(a,b) = ab' = a'b. Consideramos $(xy)^m = x^m y^m$, pues x = y conmutan. Luego $(xy)^m = x^m y^m = (x^a)^{b'} (y^b)^{a'} = (id)^{b'} (id)^{a'} = id$. Por lo tanto $o(xy) \mid m$.

Para abreviar llamemos t = o(xy). Entonces id $= (xy)^t = x^t y^t$, con lo que tenemos que $x^t = y^{-t}$. Luego $x^{ta} = (x^t)^a = (x^a)^t = id$. Pero también: $x^{tb} = (x^t)^b = (y^{-t})^b = (y^b)^{-t} = id$. Como d = mcd(a, b), por el Lema de Bezout, existen α y β enteros tales que $d = \alpha a + \beta b$. Entonces $x^{td} = x^{t(\alpha a + \beta b)} = (x^{ta})^{\alpha}(x^{tb})^{\beta} = id$. O sea: $x^{td} = id$. Por lo tanto $a = o(x) \mid td$, o sea $a' \mid t$.

Análogamente se puede probar que $y^{td} = \text{id}$ con lo cual se concluye que $b = o(y) \mid td$, o sea $b' \mid t$. Pero, recordemos que $\operatorname{mcd}(a',b') = 1$, por lo que $a'b' \mid t$. Conculyendo: $\frac{m}{d} = a'b' \mid o(xy)$.

- 3. a) Calcular:
 - $41^{-1} \mod(71)$;
 - $-71^{-1} \mod(41)$.
 - b) Calcular 236³ mód(2911) y 317³ mód(2911). Sugerencia: usar el Teorema Chino del Resto.
 - c) Sean p = 41, q = 71 y n = p.q.
 - ¿El par (2911, 3) sirve como clave pública para RSA? Justifique.
 - Se usa Cifrado en Bloques para encriptar un texto. ¿Cuántos dígitos ha de tener cada bloque de entrada? ¿Cuántos dígitos ha de tener cada bloque de salida del texto encriptado?

7	\
d.)
w	,

A	В	С	D	Е	F	G	Н	Ι	J	K	L	M	N	Ñ	О	Р	Q	R	S	Т	U	V	W	X	Y	Z	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

En base a la tabla, encripte, usando RSA y Cifrado en Bloques el texto: CHIMBOLI.

Resolución:

a) Para buscar $41^{-1} \mod(71)$ necesitamos hallar $1 \le x \le 70$ tal que $41x \equiv 1 \mod(71)$. Como $41 \equiv -30 \mod(71)$, debemos resolver $30x \equiv -1 \mod(71) \Leftrightarrow 2 \times 3 \times 5 \times x \equiv -1 \mod(71) \Leftrightarrow 3 \times 5 \times x \equiv -36 \mod(71) \Leftrightarrow 3 \times 5 \times x \equiv 35 \mod(71) \Leftrightarrow 5 \times x \equiv 24 \times 35 \mod(71) \Leftrightarrow 5 \times x \equiv 59 \mod(71) \Leftrightarrow x \equiv 57 \times 59 \mod(71)$, pues 36 es el inverso de 2, 24 es el inverso de 3 y 57 es el inverso de 5 en U(71). Como $57 \times 59 \mod(71) \equiv 19 \times 3 \times 59 \mod(71) \equiv 19 \times 35 \mod(71) \equiv 19 \times 5 \times 7 \mod(71) \equiv 24 \times 7 \mod(71) \equiv 2 \times 12 \times 7 \mod(71) \equiv 2 \times 13 \mod(71) \equiv 26 \mod(71)$. Por lo tanto 26 es el inverso de 41 módulo 71. O sea existe $t \in \mathbb{Z}$, tal que $26 \times 41 - 1 = 71 \times t$. Como $26 \times 41 = 1066$, diviendo entre 71 se obtiene $t : 26 \times 41 = 15 \times 71 + 1$, por lo tanto $26 \times 41 + (-15) \times 71 = 1$. Luego tenemos los coeficientes de Bezout y los inversos que buscamos: -15 = 26 es el inverso de 71 módulo 41 y 26 es el inverso de 41 módulo 71.

b) Para calcular $236^3 \mod(2911)$ y $317^3 \mod(2911)$, observemos que $2911 = 41 \times 71$. Por lo tanto comenzamos resolviendo $236^3 \mod(41)$ y $236^3 \mod(71)$.

Tenemos que $236^3 \mod(41) \equiv 31^3 \mod(41) \equiv (-10)^3 \mod(41) \equiv (-10) \times 18 \mod(41) \equiv (-2) \times 5 \times 18 \mod(41) \equiv (-2) \times 8 \mod(41) \equiv 25 \mod(41)$.

Por su lado $236^3 \mod(71) \equiv 23^3 \mod(71) \equiv (48)^2 \times 23 \mod(71) \equiv 48 \times 2 \times 24 \times 23 \mod(71) \equiv 25 \times 24 \times 23 \mod(71) \equiv 25 \times 3 \times 8 \times 23 \mod(71) \equiv 4 \times 8 \times 23 \mod(71) \equiv 21 \times 8 \mod(71) \equiv 13 \times 2 \mod(71) \equiv 26 \mod(41).$

Luego, con lo obtenido hasta ahora, y lo calculado en el item anterior, por el teorema chino del resto, podemos concluir que: $236^3 = 25 \times 71 \times 26 + 26 \times 41 \times 26 \text{ mód}(2911)$. O sea, $236^3 \equiv 73866 \text{ mód}(2911) \equiv 1091 \text{ mód}(2911)$.

Con el mismo tipo de técnicas y apoyándonos nuevamente en el item anterior se puede calcular que $317^3 \equiv 2851 \text{ mód}(2911)$.

- c) El par (2911, 3) sirve como clave pública para RSA pues 2911= 41 × 71 siendo 41 y 71 números primos, y además el $mcd(3, \phi(2911)) = 1$, pues $\phi(2911) = 40 \times 70 = 2^4 \times 5^2 \times 7$ (donde ϕ es la función de Euler).
 - Como son 28 dígitos, buscamos $k \in \mathbb{N}$ tal que $28^k < n < 28^{k+1}$. Entonces k = 2. Por lo tanto los bloques de entrada tendrán 2 dígitos y los de salida tendrán 3.
- d) El texto encriptado es: DJIBK BEÑCUL.