1

Ð	α	\alpha	μ	\mu	σ	\sigma
	β	\beta	ν	\nu	ς	\varsigma
	χ	\chi	ω	\omega	\sum	\Sigma
	δ	\delta	Ω	\Omega	au	\tau
	Δ	\Delta	ϕ	\phi	θ	\theta
	ϵ	\epsilon	φ	\varphi	ϑ	\vartheta
	ε	\varepsilon	Φ	\Phi	Θ	\Theta
	η	\eta	π	\pi	v	\upsilon
	γ	\gamma	ϖ	\varpi	Υ	\Upsilon
	Γ	\Gamma	Π	\Pi	ξ	\xi
	ι	\iota	ψ	\psi	Ξ	\Xi
	κ	\kappa	Ψ	\Psi	ζ	\zeta
	λ	\lambda	ρ	\rho		
	Λ	\Lambda	ρ	\varrho		

These commands produce Greek letters suitable for mathematics. You can only use them within a math formula, so if you need a Greek letter within ordinary text you must enclose it in dollar signs (\$). TEX does not have commands for Greek letters that look like their roman counterparts, since you can get them by using those roman counterparts. For example, you can get a lowercase omicron in a formula by writing the letter 'o', i.e., '{\rm o}' or an uppercase beta ('B') by writing '{\rm B}'.

Don't confuse the following letters:

- \upsilon ('v'), {\rm v} ('v'), and \nu ('v').
- \varsigma (' ς ') and \zeta (' ζ ').

You can get slanted capital Greek letters by using the math italic ($\mbox{\sc mit}$) font.

TeX treats Greek letters as ordinary symbols when it's figuring how much space to put around them.

Example:

```
If $\rho$ and $\theta$ are both positive, then $f(\theta)
-{\mit \Gamma}_{\theta} < f(\rho)-{\mit \Gamma}_{\rho}$.
produces:</pre>
```

If ρ and θ are both positive, then $f(\theta) - \Gamma_{\theta} < f(\rho) - \Gamma_{\rho}$.