OBLICZANIE PRZYBLIŻONEJ WARTOŚĆ POCHODNEJ FUNKCJI F(X) W PUNKCIE X . . .

Natalia Luberda

OBLICZANIE POCHODNEJ FUNKCJI

$$f(x) = \sin x + \cos 3x$$

Korzystając ze wzoru

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

Wzór I: Przybliżona wartość pochodnej w punkcie x

Obliczamy wartość dla funkcji f(x) w punkcie x = 1 dla $h = 2^{-n}$ dla $n = 0,1,2, \ldots, 40$. Wykonamy obliczenia dla różnej precyzji zmiennych.

```
def f_precision(x):
    return np.sin(x) + np.cos(3 * x)
```

Float, Double, Long Double

Float

- Nazywany również single precision
- To typ zmiennoprzecinkowy z pojedynczą precyzją, który przechowuje liczby zmiennoprzecinkowe z około 7 cyframi dziesiętnymi.
- *Zajmuje 4 bajty pamięci.
- *Zakres wartości jakie może reprezentować to od około (+/-) 1.18 * 10⁻³⁸ do (+/-) 3.4 * 10³⁸

Double

- Nazywany również double precision
- To typ zmiennoprzecinkowy z podwójną precyzją, który przechowuje liczby zmiennoprzecinkowe z około 15 cyframi dziesiętnymi.
- *Zajmuje 8 bajtów pamięci.
- *Zakres wartości jakie może reprezentować to od około (+/-)2.23 * 10⁻³⁰⁸ do (+/-)1.8 * 10³⁰⁸

Long Double

- To typ
 zmiennoprzecinkowy z
 podwójną precyzją, który
 przechowuje liczby
 zmiennoprzecinkowe z
 około 18 cyframi
 dziesiętnymi.
- *Zajmuje od 8 do 16 bajtów pamięci.
- *Zakres wartości jakie może reprezentować to od około $(+/-)3.36*10^{-4932}$ do $(+/-)1.18*10^{4932}$

O

^{*}Zakres precyzji oraz liczba bajtów zajmowanych przez typy zmiennych zależy od architektury procesora oraz implementacji języka programowania lub biblioteki matematycznej.

Float

Wykres I: Przybliżone wartości funkcji f'(x) w punkcie x = 1 dla zmiennej typu float

Wykres przedstawia wartości przybliżenia pochodnej funkcji w punkcie x = 1 dla różnych h.

Tabela I: Wartość n, wartość h i przybliżone wartości funkcji f'(x) w punkcie x = 1 dla zmiennej typu float

n	h	result	n	l h	result
0	1	2,017989	21	4,77E-07	0,076642
1	0,5	1,870441	22	2,38E-07	0,076641
2	0,25	1,107787	23	1,19E-07	0,076641
3	0,125	0,623241	24	5,96E-08	0
4	0,0625	0,370399	25	2,98E-08	0
5	0,03125	0,243443	26	1,49E-08	0
6	0,015625	- 1	- 21	7,45E-09	0
7	0,007813	•	- 20	3,73E-09	0
8	0,003906	•	- 29	1,86E-09	0
9	0,001953	Ť	30	9,31E-10	0
10	0,000977	•	31	4,66E-10	0
11	0,000488	*	32	1	
12	•	*	22	1	
13		0,117223	34	1	
14	6,1E-05		25	1	
15			36	1	
16 17	7,63E-05	0,11577 0,115736	37	· ·	
18		0,113736	38	· ·	
19		0,107907		· 1	
20	9,54E-07	- 1	40	9,09E-13	0
20	3,34E-07	0,070044	40	3,03L-13	U

⁴

Double

Wykres II: Przybliżone wartości funkcji f'(x) w punkcie x = 1 dla zmiennej typu double

Wykres przedstawia wartości przybliżenia pochodnej funkcji w punkcie x = 1 dla różnych h. Tabela II: Wartość n, wartość h i przybliżone wartości funkcji f'(x) w punkcie x = 1 dla zmiennej typu double

n	h	result	n
0	1	2,017989	20
1	0,5	1,870441	2:
2	0,25	1,107787	22
3	0,125		23
4	0,0625		24
5		0,243443	25
6	0,015625		26
7	0,007813		27
8	0,003906		28
9	0,001953		29
10	0,000977		30
11	0,000488		33
12			32
13	0,000122		33
14	6,1E-05		34
15			35
16			36
	1,53E-05		37
17	7,63E-06		38
18			39
19	1,91E-06		
20	9,54E-07	0,116946	40

n	h h	result
20	9,54E-07	0,116946
21	4,77E-07	0,116944
22	2,38E-07	0,116943
23	1,19E-07	0,116943
24	5,96E-08	0,116943
25	2,98E-08	0,116942
26	1,49E-08	0,116942
27	7,45E-09	0,116942
28	3,73E-09	0,116942
29	1,86E-09	0,116942
30	9,31E-10	0,116942
31	4,66E-10	0,116942
32	2,33E-10	0,116942
33	1,16E-10	0,116941
34	5,82E-11	0,116941
35	2,91E-11	0,11694
36	1,46E-11	0,116943
37	7,28E-12	0,116928
38	3,64E-12	0,116943
39	1,82E-12	0,116882
40	9,09E-13	0,116821

5

Tabela III: Wartość n, wartość h i przybliżone wartości funkcji f'(x) w punkcie x = 1 dla zmiennej typu long double

Long Double

Wykres III: Przybliżone wartości funkcji f'(x) w punkcie x = 1 dla zmiennej typu long double

Wykres przedstawia wartości przybliżenia pochodnej funkcji w punkcie x = 1 dla różnych h.

n	h	result
0	1	2,017989
1	0,5	1,870441
2	0,25	1,107787
3	0,125	0,623241
4	0,0625	0,3704
5	0,03125	0,243443
6	0,015625	0,180098
7	0,007813	0,148491
8	0,003906	0,132709
9	0,001953	0,124824
10	0,000977	0,120882
11	0,000488	0,118912
12	0,000244	0,117927
13	0,000122	0,117435
14	6,1E-05	0,117189
15	3,05E-05	0,117065
16	1,53E-05	0,117004
17	7,63E-06	0,116973
18	3,81E-06	0,116958
19	1,91E-06	0,11695
20	9,54E-07	0,116946

n	h	result
21	4,8E-07	0,11694
22	2,4E-07	0,11694
23	1,2E-07	0,11694
24	6E-08	0,11694
25	3E-08	0,11694
26	1,5E-08	0,11694
27	7,5E-09	0,11694
28	3,7E-09	0,11694
29	1,9E-09	0,11694
30	9,3E-10	0,11694
31	4,7E-10	0,11694
32	2,3E-10	0,11694
33	1,2E-10	0,11694
34	5,8E-11	0,11694
35	2,9E-11	0,11694
36	1,5E-11	0,11694
37	7,3E-12	0,11693
38	3,6E-12	0,11694
39	1,8E-12	0,11688
40	9,1E-13	0,11682

Obliczenia dla różnej precyzji zmiennych *

Double Float

Typ zmiennoprzecinkowy z podwójną precyzją (double) jest bardziej dokładny niż typ z pojedynczą precyzją (float 32), ale zajmuje też więcej pamięci. W związku z tym, gdy zależy nam na dokładności obliczeń, warto użyć typu z podwójną precyzją.

Typ argumentów i wyników dla funkcji bibliotecznych wykorzystywanych w obliczeniach

Dla operacji arytmetycznych (takich jak dodawanie, odejmowanie, mnożenie, dzielenie), ważne jest również, aby mieć na uwadze typy zmiennych, z których dokonujemy operacji. Na przykład, jeśli dodajemy dwie liczby typu float, to wynik będzie również typu float. Jednak, jeśli dodajemy liczbę typu float i liczbę typu int, to wynik będzie typu float.

Przy wyborze funkcji bibliotecznych do obliczeń, należy zwrócić uwagę na ich dokładność i zakres działania. Na przykład, funkcja numpy.float32() pozwala na wykorzystanie typu zmiennej o mniejszej precyzji niż domyślny numpy.float64(), ale kosztem mniejszej dokładności. Z kolei, funkcje takie jak math.sin() czy math.cos() działają tylko na pojedynczych wartościach, a nie na tablicach, i zwracają wyniki typu float.

Jak wytłumaczyć, że od pewnego momentu zmniejszenie wartości h nie poprawia przybliżenia wartości pochodnej?

Gdy wartość h jest zbyt mała, to różnica między dwoma punktami może być zdominowana przez błędy numeryczne i wynik przybliżenia może stać się bardziej niedokładny, niż w przypadku nieco większej wartości h.

Dla wartości bardzo małych h, funkcja może być obliczana zbyt blisko punktu, w którym szukamy pochodnej, co może prowadzić do błędów numerycznych, takich jak utrata cyfr znaczących. W wyniku tego, zmniejszenie wartości h nie poprawia przybliżenia wartości pochodnej, a wręcz przeciwnie - powoduje, że błędy numeryczne stają się bardziej widoczne i zwiększają się..

Dlatego też, przy numerycznym przybliżaniu wartości pochodnej funkcji, warto dobrać wartość kroku h tak, aby minimalizować błąd zaokrąglenia, jednocześnie nie zmniejszając wartości h do takiego stopnia, że jego zmniejszenie nie przynosi już poprawy wyniku.

Jak zachowują się wartości 1+h?

Patrząc na podane wyniki w tabeli IV, V, VI widzimy iż problem jest bardziej po stronie małej wartości h niż f'(h+1) – f'(1), co może prowadzić do błędów numerycznych, takich jak utrata cyfr znaczących. h+1 przyjmuje wartość 1 co oznacza, że w danej precyzji nie ma różnicy między wartością h, a wartością 1.

Float – jak zachowuje się h+1?

Tabela IV: Wartość h+1 oraz wartość f(h+1) - f(1) dla zmiennej typu float

h+1	f`(h+1) - f`(1)	h+1		f (h+1) - f (1)
2	-0,62148875	1,000	001	2,017989636
1,5	1,093629003		1	2,017989397
1,25	1,819601059		1	2,017989397
1,125	1,994629264		1	2,017989159
1,0625	2,025476933		1	2,017989159
1,03125	2,026483297		1	2,017989159
1,015625	2,023414373		1	2,017989159
1,007813	2,020994902		1	2,017989159
1,003906	2,019565105		1	2,017989159
1,001953	2,01879549		1	2,017989159
1,000977	2,018396854		1	2,017989159
1,000488	2,018194199	-	1	2,017989159 2,017989159
1,000244	2,018091917		1	2,017989159
1,000122	2,018040657	-	1	2,017989159
1,000061	2,018014908		1	2,017989159
1,000031	2,018002033		1	2,017989159
1,000015	2,017995596		1	2,017989159
1,000008	2,017992497		1	2,017989159
1,000004	2,017990828		1	2,017989159
1,000002	2,017990112		1	2,017989159

^{*}Liczby zostały w exelu automatycznie zaokrąglone do 9 cyfr po przecinku

Double – jak zachowuje się h+1?

Tabela V: Wartość h+1 oraz wartość f (h+1) - f (1) dla zmiennej typu double

h+1	f`(h+1) - f`(1)
2	-0,621488742
1,5	1,093628974
1,25	1,819601053
1,125	1,994629293
1,0625	2,02547695
1,03125	2,026483236
1,015625	2,023414324
1,0078125	2,020994856
1,00390625	2,019565115
1,001953125	2,018795413
1,000976563	2,018396877
1,000488281	2,01819419
1,000244141	2,018091992
1,00012207	2,01804068
1,000061035	2,01801497
1,000030518	2,018002102
1,000015259	2,017995665
1,000007629	2,017992445
1,000003815	2,017990835
1,000001907	2,01799003

h+1	f`(h+1) - f`(1)
1,000000954	2,017989628
1,000000477	2,017989427
1,000000238	2,017989326
1,000000119	2,017989276
1,00000006	2,01798925
1,00000003	2,017989238
1,000000015	2,017989232
1,000000007	2,017989228
1,000000004	2,017989227
1,000000002	2,017989226
1,000000001	2,017989226
1	2,017989225
1	2,017989225
1	2,017989225
1	2,017989225
1	2,017989225
1	2,017989225
1	2,017989225
1	2,017989225
1	2,017989225
1	2,017989225

Long Double – jak zachowuje się h+1?

Tabela VI: Wartość h+1 oraz wartość f (h+1) - f (1) dla zmiennej typu long double

h+1	f`(h+1) - f`(1)	h+1	f'(h+1) - f'(1)
2	-0,621488742	1,000001	2,017989628
1,5	1,093628974	1	2,017989427
1,25	1,819601053	1	2,017989326
1,125	1,994629293	1	2,017989276
1,0625	2,02547695	1	2,01798925
1,03125	2,026483236	1	2,017989238
1,015625	2,023414324	1	2,017989232
1,007813	2,020994856	1	2,017989228
1,003906	2,019565115	1	2,017989227
1,001953	2,018795413	1	2,017989226
1,000977	2,018396877	1	2,017989226
1,000488	2,01819419	1	2,017989225
1,000244	2,018091992	1	2,017989225
1,000122	2,01804068	1	2,017989225
1,000122	2,01804008	1	2,017989225
		1	2,017989225
1,000031	2,018002102	1	2,017989225
1,000015	2,017995665	1	2,017989225
1,000008	2,017992445	1	2,017989225
1,000004	2,017990835	1	2,017989225
1,000002	2,01799003	1	2,017989225

^{*}Liczby zostały w exelu automatycznie zaokrąglone do 8/9 cyfr po przecinku

Float - obliczone przybliżenia pochodnej porównać z + dokładną wartością pochodnej.

Tabela VI: Wartość h, , przybliżoną wartość funkcji pochodnej dla danego h, jej prawdziwą wartość, różnice między wynikami oraz błąd względny dla wartości typu float.

III h ≎	■ approx_derivative ≎	■ true_derivative ÷	■ abs_error ÷	II rel_error ≎	II≣ h ÷	⊞ approx_derivative ≎	Щ true_derivative ≎	■ abs_error ÷	I⊞ rel_error ÷
1.000000000	2.0179891586	0.1169422492	1.9010468721	16.2562885284	0.0000004768	0.1250000000	0.1169422492	0.0080577508	0.0689036772
0.5000000000	1.8704413176	0.1169422492	1.7534990311	14.9945726395	0.0000002384	0.000000000	0.1169422492	0.1169422492	1.0000000000
0.2500000000	1.1077868938	0.1169422492	0.9908446670	8.4729404449	0.0000001192	0.000000000	0.1169422492	0.1169422492	1.0000000000
0.1250000000	0.6232409477	0.1169422492	0.5062987208	4.3294763565	0.0000000596	0.000000000	0.1169422492	0.1169422492	1.0000000000
0.0625000000	0.3703994751	0.1169422492	0.2534572184	2.1673707962	0.0000000298	0.000000000	0.1169422492	0.1169422492	1.0000000000
0.0312500000	0.2434425354	0.1169422492	0.1265002787	1.0817328691	0.000000149	0.000000000	0.1169422492	0.1169422492	1.0000000000
0.0156250000	0.1800994873	0.1169422492	0.0631572381	0.5400720239	0.0000000075	0.000000000	0.1169422492	0.1169422492	1.0000000000
0.0078125000	0.1484909058	0.1169422492	0.0315486565	0.2697798014	0.0000000037	0.000000000	0.1169422492	0.1169422492	1.0000000000
0.0039062500	0.1327056885	0.1169422492	0.0157634392	0.1347967833	0.0000000019	0.000000000	0.1169422492	0.1169422492	1.0000000000
0.0019531250	0.1248168945	0.1169422492	0.0078746453	0.0673379004	0.000000009	0.000000000	0.1169422492	0.1169422492	1.0000000000
0.0009765625	0.1208496094	0.1169422492	0.0039073601	0.0334127322	0.0000000005	0.000000000	0.1169422492	0.1169422492	1.0000000000
0.0004882812	0.1188964844	0.1169422492	0.0019542351	0.0167111121	0.0000000002	0.000000000	0.1169422492	0.1169422492	1.0000000000
0.0002441406	0.1176757812	0.1169422492	0.0007335320	0.0062726005	0.0000000001	0.000000000	0.1169422492	0.1169422492	1.0000000000
0.0001220703 0.0000610352	0.1171875000 0.1171875000	0.1169422492 0.1169422492	0.0002452508	0.0020971955	0.000000001	0.000000000	0.1169422492	0.1169422492	1.0000000000
0.0000305176	0.1152343750	0.1169422492	0.0017078742	0.0146044241	0.000000000	0.00000000	0.1169422492	0.1169422492	1.0000000000
0.0000152588	0.1171875000	0.1169422492	0.0002452508	0.0020971955	0.0000000000	0.000000000	0.1169422492	0.1169422492	1.0000000000
0.0000076294	0.1171875000	0.1169422492	0.0002452508	0.0020971955	0.000000000	0.000000000	0.1169422492	0.1169422492	1.0000000000
0.0000038147	0.1093750000	0.1169422492	0.0075672492	0.0647092834	0.0000000000	0.000000000	0.1169422492	0.1169422492	1.0000000000
0.0000019073	0.0937500000	0.1169422492	0.0231922492	0.1983222365	0.0000000000	0.000000000	0.1169422492	0.1169422492	1.0000000000
0.0000009537	0.0625000000	0.1169422492	0.0544422492	0.4655481577	0.0000000000	0.000000000	0.1169422492	0.1169422492	1.0000000000
0.0000007507	0.002300000	011107422472	0.00-1-1-22-1/2	0.1000101017	0.000000000	0.00000000	0.1107422472	0.1107422472	1.000000000

Tabelka reprezentuje wartość h, przybliżoną wartość funkcji pochodnej dla danego h, jej prawdziwą wartość, różnice między wynikami oraz błąd względny dla wartości typu float zaokrąglone do 10 miejsc po przecinku.

Float - obliczone przybliżenia pochodnej porównać z dokładną wartością pochodnej.

Wykres IV: Różnica między prawdziwym, a przybliżonym wynikiem f'(x) w punkcie x = 1 pod wartością bezwzgledna dla zmiennej typu float.

Wykres przedstawia różnice między prawdziwym a przybliżonym wynikiem f'(x) w punkcie x = 1 pod wartością bezwzględną dla zmiennej typu float.

Double - obliczone przybliżenia pochodnej porównać z dokładną wartością pochodnej.

Tabela VII: Wartość h, , przybliżoną wartość funkcji pochodnej dla danego h, jej prawdziwą wartość, różnice między wynikami oraz błąd względny dla wartości typu double

■ h ÷	I ∄ approx_derivative ≎	聞 true_derivative ≎	■ abs_error ÷	■ rel_error ÷	⊞ h≑	⊞ approx_derivative ≎	聞 true_derivative ≎	⊞ abs_error ≎	I⊞ rel_error ≎
1.0000000000	2.0179892253	0.1169422817	1.9010469436	16.2562840072	0.0000002384	0.1169432430	0.1169422817	0.0000009613	0.0000082200
0.5000000000	1.8704413979	0.1169422817	1.7534991162	14.9945690380	0.0000001192	0.1169427624	0.1169422817	0.0000004807	0.0000041106
0.2500000000	1.1077870952	0.1169422817	0.9908448135	8.4729389511	0.0000000596	0.1169425212	0.1169422817	0.0000002395	0.0000020480
0.1250000000	0.6232412793	0.1169422817	0.5062989976	4.3294776731	0.0000000298	0.1169423983	0.1169422817	0.0000001166	0.0000009967
0.0625000000	0.3704000662	0.1169422817	0.2534577845	2.1673750576	0.0000000149	0.1169423386	0.1169422817	0.0000000570	0.0000004871
0.0312500000	0.2434430744	0.1169422817	0.1265007927	1.0817369978	0.0000000075	0.1169423163	0.1169422817	0.0000000346	0.0000002959
0.0156250000	0.1800975633	0.1169422817	0.0631552816	0.5400551512			0.1169422817		
0.0078125000	0.1484913954	0.1169422817	0.0315491137	0.2697836337	0.0000000037	0.1169422865		0.0000000048	0.0000000411
0.0039062500	0.1327091143	0.1169422817	0.0157668326	0.1348257650	0.000000019	0.1169422269	0.1169422817	0.0000000548	0.0000004686
0.0019531250	0.1248236929	0.1169422817	0.0078814113	0.0673957369	0.000000009	0.1169421673	0.1169422817	0.0000001144	0.0000009783
0.0009765625	0.1208824768	0.1169422817	0.0039401951	0.0336935030	0.000000005	0.1169421673	0.1169422817	0.0000001144	0.0000009783
0.0004882812	0.1189122505	0.1169422817	0.0019699688	0.0168456503	0.0000000002	0.1169419289	0.1169422817	0.0000003528	0.0000030171
0.0002441406	0.1179272337	0.1169422817	0.0009849521	0.0084225486	0.0000000001	0.1169414520	0.1169422817	0.0000008297	0.0000070946
0.0001220703	0.1174347496	0.1169422817	0.0004924679	0.0042112050	0.0000000001	0.1169414520	0.1169422817	0.0000008297	0.0000070946
0.0000610352	0.1171885136	0.1169422817	0.0002462319	0.0021055852	0.0000000000	0.1169395447	0.1169422817	0.0000027370	0.0000234048
0.0000305176	0.1170653971	0.1169422817	0.0001231155	0.0010527882	0.0000000000	0.1169433594	0.1169422817	0.0000010777	0.0000092155
0.0000152588	0.1170038393	0.1169422817	0.0000615576	0.0005263930	0.0000000000	0.1169281006	0.1169422817	0.0000141811	0.0001212658
0.0000076294	0.1169730605	0.1169422817	0.0000307788	0.0002631963					
0.0000038147	0.1169576711	0.1169422817	0.0000153894	0.0001315981	0.000000000	0.1169433594	0.1169422817	0.0000010777	0.0000092155
0.0000019073	0.1169499764	0.1169422817	0.0000076947	0.0000657989	0.000000000	0.1168823242	0.1169422817	0.0000599575	0.0005127099
0.0000009537	0.1169461290	0.1169422817	0.0000038473	0.0000328993	0.000000000	0.1168212891	0.1169422817	0.0001209926	0.0010346354

Tabelka reprezentuje wartość h, przybliżoną wartość funkcji pochodnej dla danego h, jej prawdziwą wartość, różnice między wynikami oraz błąd względny dla wartości typu double z zaokrągleniem do 10 miejsc po przecinku.

Double - obliczone przybliżenia pochodnejporównać z dokładną wartością pochodnej.

Wykres V: Różnica między prawdziwym, a przybliżonym wynikiem f'(x) w punkcie x = 1 pod wartością bezwzgledna dla zmiennej typu double.

Wykres przedstawia różnice między prawdziwym a przybliżonym wynikiem f'(x) w punkcie x = 1 pod wartością bezwzględną dla zmiennej typu double.

Long Double - obliczone przybliżenia pochodnej porównać z odkładną wartością pochodnej.

Tabela VIII: Wartość h, , przybliżoną wartość funkcji pochodnej dla danego h, jej prawdziwą wartość, różnice między wynikami oraz błąd względny dla wartości typu long double.

■ h ‡	⊞ approx_derivative ≎	I ∄ true_derivative ≎	■ abs_error ÷	I≣ rel_error ≎	III h ÷	■ approx_derivative ≎	聞 true_derivative ≎	■ abs_error ÷	I⊞ rel_error ≎
1.0000000000	2.0179892253	0.1169422817	1.9010469436	16.2562840072	0.0000002384	0.1169432430	0.1169422817	0.0000009613	0.0000082200
0.500000000	1.8704413979	0.1169422817	1.7534991162	14.9945690380	0.0000001192	0.1169427624	0.1169422817	0.0000004807	0.0000041106
0.2500000000	1.1077870952	0.1169422817	0.9908448135	8.4729389511	0.0000000596	0.1169425212	0.1169422817	0.0000002395	0.0000020480
0.1250000000	0.6232412793	0.1169422817	0.5062989976	4.3294776731	0.0000000298	0.1169423983	0.1169422817	0.0000001166	0.0000009967
0.0625000000	0.3704000662	0.1169422817	0.2534577845	2.1673750576	0.0000000149	0.1169423386	0.1169422817	0.0000000570	0.0000004871
0.0312500000	0.2434430744	0.1169422817	0.1265007927	1.0817369978					
0.0156250000	0.1800975633	0.1169422817	0.0631552816	0.5400551512	0.0000000075	0.1169423163	0.1169422817	0.0000000346	0.0000002959
0.0078125000	0.1484913954	0.1169422817	0.0315491137	0.2697836337	0.000000037	0.1169422865	0.1169422817	0.0000000048	0.0000000411
0.0039062500	0.1327091143	0.1169422817	0.0157668326	0.1348257650	0.000000019	0.1169422269	0.1169422817	0.0000000548	0.0000004686
0.0019531250	0.1248236929	0.1169422817	0.0078814113	0.0673957369	0.000000009	0.1169421673	0.1169422817	0.0000001144	0.0000009783
0.0009765625	0.1208824768	0.1169422817	0.0039401951	0.0336935030	0.0000000005	0.1169421673	0.1169422817	0.0000001144	0.0000009783
0.0004882812	0.1189122505	0.1169422817	0.0019699688	0.0168456503	0.0000000002	0.1169419289	0.1169422817	0.0000003528	0.0000030171
0.0002441406	0.1179272337	0.1169422817	0.0009849521	0.0084225486	0.0000000001	0.1169414520	0.1169422817	0.0000008297	0.0000070946
0.0001220703	0.1174347496	0.1169422817	0.0004924679	0.0042112050	0.0000000001	0.1169414520	0.1169422817	0.0000008297	0.0000070946
0.0000610352	0.1171885136	0.1169422817	0.0002462319	0.0021055852					
0.0000305176	0.1170653971	0.1169422817	0.0001231155	0.0010527882	0.000000000	0.1169395447	0.1169422817	0.0000027370	0.0000234048
0.0000152588	0.1170038393	0.1169422817	0.0000615576	0.0005263930	0.000000000	0.1169433594	0.1169422817	0.0000010777	0.0000092155
0.0000076294	0.1169730605	0.1169422817	0.0000307788	0.0002631963	0.000000000	0.1169281006	0.1169422817	0.0000141811	0.0001212658
0.0000038147	0.1169576711	0.1169422817	0.0000153894	0.0001315981	0.000000000	0.1169433594	0.1169422817	0.0000010777	0.0000092155
0.0000019073	0.1169499764	0.1169422817	0.0000076947	0.0000657989	0.000000000	0.1168823242	0.1169422817	0.0000599575	0.0005127099
0.0000009537	0.1169461290	0.1169422817	0.0000038473	0.0000328993	0.0000000000	0.1168212891	0.1169422817	0.0001209926	0.0010346354

Tabelka reprezentuje wartość h, przybliżoną wartość funkcji pochodnej dla danego h, jej prawdziwą wartość, różnice między wynikami oraz błąd względny dla wartości typu long double z zaokrągleniem do 10 miejsc po przecinku.

Long Double - obliczone przybliżeniapochodnej porównać z dokładną wartością pochodnej.

Wykres VI: Różnica między prawdziwym, a przybliżonym wynikiem f'(x) w punkcie x = 1 pod wartością bezwzgledna dla zmiennej typu long double.

Wykres przedstawia różnice między prawdziwym a przybliżonym wynikiem f'(x) w punkcie x = 1 pod wartością bezwzględną dla zmiennej typu long double.

Porównanie błędów

Wykres VII: Różnica między prawdziwym, a przybliżonym wynikiem f'(x) w punkcie x = 1 pod wartościa bezwzgledna dla zmiennej typu float i double.

Wykres przedstawia różnice między przybliżeniem wartości f'(x), a jej prawdziwą wartością dla zmiennej typu float i double

Wykres VIII: Różnica między prawdziwym, a przybliżonym wynikiem f'(x) w punkcie x = 1 pod wartością bezwzględną dla zmiennej typu float, a long double.

Wykres przedstawia różnice między przybliżeniem wartości f'(x), a jej prawdziwą wartością dla zmiennej typu float, double i long double, z czego niestety różnica między long double, a double jest tak mała, że nachodzą na siebie.

Wnioski

Wykres błędów przedstawia zależność błędu bezwzględnego przybliżenia pochodnej od wartości kroku h.

Na wykresie można zauważyć, że dla małych wartości h błąd jest duży, ale wraz z zwiększaniem wartości kroku h błąd maleje, aż osiąga wartość graniczną.

W przypadku badania dokładności obliczeń numerycznych, ważne jest ustalenie optymalnej wartości kroku, dla której błąd jest minimalny.

Z wykresu można również wnioskować, że dla bardzo małych wartości h błąd zaczyna rosnąć, co może wynikać z ograniczeń związanych z reprezentacją liczb w komputerze.

DZIĘKUJE ZA UWAGĘ!

Natalia Luberda, Labolatorium 1

Użyte biblioteki w Pythonie 3.9: Math, pyplot, numpy,pandas,openpxl

Bibliografia:

Wykłady, https://en.wikipedia.org/ i wiele innych różnych źródeł z informacjami o użyciu odpowiednich bibliotek w Pythonie

Dane techniczne:

Komputer z systemem Windows 10 Procesor: Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz 2.11 GHz Pamieć RAM: 8 GB