MI-PB-7

Algebraická kryptoanalýza – základní principy. Řešení polynomiálních rovnic, Gröbnerovy báze.

Algebraická kryptoanalýza

Převod problému prolomení kryptosystému na problém vyřešení **soustavy polynomiálních rovnic** nad konečným tělesem

Uplatnění: hlavně symetrická kryptografie

Princip:

- Ze specifických vlastností šifry odvodit soustavu polynomiáních rovnic nad konečným tělesem
- Aplikace postupu pro řešení soustavy, vyvození tajného klíče

Problém:

Řešení soustavy polynomiálních rovnic nad konečným tělesem: NP-úplný problém

Získání soustavy rovnic:

- Soustava nad GF(2)
- Cíl: Co nejnižší stupně polynomů v soustavě
 - \circ Pokud pouze lineární rovnice \Rightarrow GEM s kubickou složitostí

Řešení soustavy:

- AES: soustava 8000 rovnic s 1600 proměnnými
- Neexistuje efektivní algoritmus
- Postupy řešení:
 - Guess-and-determine: uhodnout hodnoty vhodných proměnných, zbytek soustavy dopočítat jednodušeji
 - \circ **Linearizace**: výraz tvaru xy nahradit novou proměnnou z (po dopočítání nutná zkouška)
 - Groebnerovy báze: perspektivní

1 z 5

Groebnerovy báze

Ideál: Množina $I\subset k[x_1,...,x_n]$ je ideál, pokud:

- \bullet $0 \in I$
- ullet pokud $f,g\in I$, $f+g\in I$
- ullet pokud $g\in I$ a $h\in k[x_1,...,x_n]$, potom $hf\in I$

"Obal": Nechť $f_1,...,f_s$ polynomy v $k[x_1,...,x_n]$. Potom

$$0 < f_1, ..., f_s > = \left\{ \sum_{i=1}^s h_i f_i : h_1, ..., h_s \in k[x_1, ..., x_n]
ight\}$$

 $\langle f_1,...,f_s \rangle$ je ideál

Monomial ordering > na $k[x_1,...,x_n]$ je jakákoliv relace > na \mathbb{N}^n_0 , neboli jakákoliv relace nad množinou jednočlenů $x^\alpha,\alpha\in\mathbb{N}^n_0$, splňující:

- > je totální (nebo lineární) uspořádání
- ullet pokud lpha>eta a $\gamma\in\mathbb{N}_0^n$, potom $lpha+\gamma>eta+\gamma$
- ullet > je dobře uspořádávající na \mathbb{N}^n_0 -- každá neprázdná podmnožina \mathbb{N}^n_0 má nejmenší prvek vzhledem k >

Lexokografické uspořádání:

$$lpha=(lpha_1,...,lpha_n),eta=(eta_1,...,eta_n)\in\mathbb{N}_0^n.$$
 $lpha>_{lex}eta$, pokud v rozdílu $lpha-eta$ je nejlevější prvek kladný. Platí $x^lpha>_{lex}x^eta$, pokud $lpha>_{lex}eta$

Graded lexikografické uspořádání:

$$lpha=(lpha_1,...,lpha_n),eta=(eta_1,...,eta_n)\in\mathbb{N}_0^n.$$
 $lpha>_{qrlex}eta$, pokud:

$$|lpha|=\sum_{i=1}^nlpha_i>|eta|=\sum_{i=1}^neta_i ext{ nebo } |lpha|=|eta| ext{ a }lpha>_{lex}eta$$

(řazení podle celkového součtu, potom lexikografické řešení shod)

Příklad:

$$(2,3,4)>_{lex}(2,2,6)$$
, protože $lpha-eta=(0,1,-2)$

2 z 5 18.05.2020 18:26

$$\Rightarrow x^2y^3z^4>_{lex}x^2y^2z^6$$

Podoba Groebnerovy báze závisí na zvoleném uspořádání -- GRLEX je nejlepší z hlediska složitosti

Pokud $f=\sum_{lpha}a_{lpha}x^{lpha}$ nenulový polynom nad $k[x_1,...,x_n]$ a > monomiální uspořádání:

- ullet Multidegree f: $\mathrm{multideg}(f) = \mathrm{max}(lpha \in \mathbb{N}_0^n : a_lpha
 eq 0)$
- ullet Leading coefficient $f{:}\operatorname{LC}(f) = a_{\operatorname{multideg}(f)} \in k$
- ullet Leading monomial $f \colon \mathrm{LM}(f) = x^{\mathrm{multideg}(f)}$ (s koeficientem 1)
- ullet Leading term $f \colon \mathrm{LT}(f) = \mathrm{LC}(f) \cdot \mathrm{LM}(f)$

Příklad:

$$f=4xy^5+3x^2+xyz^4,>$$
lexikografické $\mathrm{multideg}(f)=(2,0,0)$ $\mathrm{LC}(f)=3$ $\mathrm{LM}(f)=x^2$ $\mathrm{LT}(f)=3x^2$

Pokud $I \in k[x_1,...,x_n]$ ideál jiný než $\{0\}$:

$$LT(I) = \{cx^lpha | \exists f \in I : \mathrm{LT}(f) = cx^lpha \}$$

 $(\operatorname{LT}(I)$ je množina leading termů prvků z I)

 $\langle \mathrm{LT}(I)
angle$ je ideál generovaný prvky $\mathrm{LT}(I)$

Groebnerova báze:

Konečná podmnožina $G=\{g_1,...,g_t\}$ ideálu I je Groebnerova báze (nebo standardní báze), pokud

$$\langle \operatorname{LT}(g_1),...,\operatorname{LT}(g_t) \rangle = \langle \operatorname{LT}(I) \rangle$$

Neformálně: $g_1,...,g_t\in I$ je Groebnerova báze I, právě když leading term libovolného prvku I je dělitelný jedním z $\mathrm{LT}(g_i)$

Vlastnosti GB:

- ullet Každý ideál $I\in k[x_1,...,x_n]$ jiný než $\{0\}$ má Groebnerovu bázi. Každá GB ideálu I je báze I
- Každý ideál $I\in k[x_1,...,x_n]$ má konečnou generující množinu. Tj.: $I=\langle g_1,...,g_t
 angle$ pro nějaká $g_1,...,g_t\in I$

Afinní varieta definovaná polynomy $f_1,...,f_m$:

3 z 5 18.05.2020 18:26

$$V(f_1,...,f_m)=\{(a_1,...,a_n)\in k^n: f_i(a_1,...,a_n)=0 orall 0 \leq i \leq m\}$$

ullet Pokud $f_1,...,f_s$ a $g_1,...,g_t$ jsou báze stejného ideálu nad $k[x_1,...,x_n]$ tak, že $\langle f_1,...,f_s
angle=\langle g_1,...,g_t
angle$, platí $V(f_1,...,f_s)=V(g_1,...,g_t)$

Pokud $G=\{g_1,...,g_t\}$ Groebnerova báze ideálu $I\subset k[x_1,...,x_n]$ a $f\in k[x_1,...,x_n]$, potom $f\in I$ právě když zbytek po dělení f bází G je nula.

Zbytek se značí $ar{f}^G$

(dělení polynomu ideálem: rozklad polynomu na $lpha \cdot g_1 + eta \cdot g_2 \cdot ... \cdot \gamma \cdot g_t$)

S-polynom:

 $f,g\in k[x_1,...,x_n]$ nenulové polynomy

- ullet Pokud $\operatorname{multideg}(f)=lpha$ a $\operatorname{multideg}(g)=eta$, pak x^γ , kde $\gamma=(\gamma_1,...,\gamma_n)$, kde $\gamma_i=\max(lpha_i,eta_i)$ je **nejmenší společný násobek** $\operatorname{LM}(f)$ a $\operatorname{LM}(g)$: $x^\gamma=\operatorname{LCM}(\operatorname{LM}(f),\operatorname{LM}(g))$
- S-polynom f a g:

$$S(f,g) = rac{x^{\gamma}}{\mathrm{LT}(f)} \cdot f - rac{x^{\gamma}}{\mathrm{LT}(g)} \cdot g$$

Příklad:

$$f=x^3y^2-x^2y^3+x$$
 $g=3x^4y+y^2$ Potom $\operatorname{multideg}(f)=(3,2),\operatorname{multideg}(g)=(4,1)$ $\Rightarrow \gamma=(4,2)$

$$S(f,g) = rac{x^4y^2}{x^3y^2} \cdot f - rac{x^4y^2}{3x^4y} \cdot g = x \cdot f - (1/3) \cdot y \cdot g = -x^3y^3 + x^2 - (1/3)y^3$$

Buchbergerovo kritérium:

I ideál polynomů. Potom báze $G=\{g_1,...,g_t\}$ v I je Groebnerova báze I, právě když pro všechny dvojice $i\neq j$ zbytek po dělení $S(g_i,g_j)$ bází G je nula (Jednoduchý důkaz, že báze je GB. Vede k algotimu konstrukce GB pro ideál)

Buchbergerův algoritmus:

 $I=\langle f_1,...,f_s
angle$ ideál polynomů

- Vstup: $F = (f_1, ..., f_s)$, (nějaká báze I)
- ullet Výstup: Groebnerova báze $G=(g_1,...,g_t)$ ideálu I, kde $\langle F
 angle = \langle G
 angle$

4 z 5 18.05.2020 18:26

```
G = F
opakuj:
    G' = G
    pro každou dvojici p,q z G', kde p != q:
        S = zbytek po dělení S(p,q) množinou G'
        pokud S != 0:
        G = G sjednoceno {S}
dokud G == G'
```

GB v algebraické kryptoanalýze:

- ullet Ze soustavy rovnic sestavit Groebnerovu bázi G Buchbergerovým algoritmem
- Soustava polynomiálních rovnic z G má stejnou množinu řešení jako původní soustava (řešení závisí pouze na generovaném ideálu -- **afinní variety** bází se rovnají)
- Řešení soustavy GB je jednodušší (proměnné se "oddělí od sebe" -- místo členů typu $3x^2y^9z^7$ obsahují rovnice více členů s pouze jednou proměnnou -- matematicky **nepodloženo**, někde jsem to četl)

5 z 5