銀行顧客の定期預金予測モデル

学部学科:経済学部経済学科

学年·組:2年9組

学籍番号:22106557

名前:河本薫子

提出日:2023/3/13

発表日:2023/3/16

目次

- 1. 予測モデル制作の目的・手順
- 2. 検証の流れ
- 3. 検証過程1~3
- 4. 特徴量抽出-予測·結果
- 5. 特徴量抽出-考察
- 6. 結論
- 7. 参考文献

予測モデル制作の目的・手順

目的

低コストで潜在顧客の属性を分析 定期預金の成約率 UP につなげる

モデルの要件定義

◆ 高精度

正解率 ⇒ 高く

AUC ⇒ 高<

※誤分類・潜在顧客の見逃しを防ぐ

※正解率:予測の的中割合/AUC:ROC曲線の曲線下面積

◆ 低い計算コスト

特徴量 ⇒ 減らす

※重要度の高い特徴量だけを抽出

※処理コストを減らし、スムーズな稼働を実現

制作手順

データ前処理

データセットの尺度を揃える

- ・カテゴリデータの one-hotエンコーディング
- •標準化

分類器の実装・性能評価

7種類の分類器の性能を比較

- ·LogisticRegression ·DecisionTree ·KNeighbor
- ·SVC ·RandomForest ·AdaBoost ·GradientBoost

工夫要素の追加

- ① オーバーサンプリング
- ② K分割交差検証
- ③ パラメータチューニング
- 4 特徴量抽出
- 多数決分類器

_

3

検証の流れ

検証過程

表1	評価·検証A	評価·検証B	評価·検証C	評価·検証D
平均正解率	89%	80%	91%	92%
平均再現率	38%	84%	92%	95%
平均AUC	67%	83%	94%	98%
チューニング 実装時間			3~12時間	1~2時間
課題	クラスの不均衡分布	分類器の性能を 最適化できていない	チューニングの 計算コストが大きい	多数決分類器では チューニングができない
対策	オーバーサンプリング	パラメータチューニング K分割交差検証	特徴量抽出 多数決分類器	

検証過程1

実装·性能評価 A

分類器名	正解率	再現率
LogisticRegression	90%	35%
DecisionTree	88%	47%
Kneighbor	89%	31%
SVC	90%	31%
RandomForest	90%	37%
AdaBoost	88%	47%
GradientBoost	91%	41%
平均値	89%	38%
表1	l l	

問題

正解率/AUCが 機能しない

原因

クラスが不均衡

クラスの不均衡を解消

預金者のサンプル数を増やし、2クラスのサンプル数をそろえる

実装·性能評価 B ~対策 I 実施後~

分類器名(res)	正解率	AUC
LogisticRegression	85%	91%
DecisionTree	89%	76%
Kneighbor	95%	82%
SVC	91%	91%
RandomForest	91%	88%
AdaBoost	74%	77%
GradientBoost	35%	84%
平均値	80%	84%

問題

正解率の低下

検証過程2

実装・性能評価 B ~課題と対策~

原因

- ・分類器のパラメータが最適化されていない
- ・汎化性能を正確に測定できない

対策Ⅱ:

・パラメータチューニング

分類器のパフォーマンスを最大化する組み合わせ を見つける

分類器のパラメータの組み合わせを変えて検証

·K分割層化検証(K=5)

モデルの性能をより正確に評価できる

データセットを複数に分割し、テストに使うセットを変えながら検証を繰り返す 計算コスト抑制のため K=5 に設定

実装·性能評価 C ~対策 I · II 実施後~

表1	分類器名(gs,kf)	正解率	AUC	チューニング 計算コスト
	LogisticRegression	85%	92%	2~5分
	DecisionTree	90%	90%	5~10分
	Kneighbor	95%	95%	5~10分
	SVC	91%	96%	600分~
	RandomForest	95%	99%	110~120分
	AdaBoost	90%	90%	10~20分
	GradientBoost	93%	99%	120~180分
	平均値	91%	94%	123分~

検証過程3

実装・性能評価 C ~課題と対策~

問題

アルゴリズム実行に時間がかかる

原因

計算コスト要因の存在

計算コスト要因	数を減らせるか	表1
サンプル数	×	
特徴量の種類	0	
K分割交差検証	Δ	
パラメータ候補	×	

→特徴量選択後の、モデルの性能低下に対処する必要

対策Ⅲ:

- ・重要度を基に特徴量抽出→計算コストを軽減
- ・多数決分類器の実装→誤分類のリスク最小化

多数決分類器:

分類器の過半数が予測するクラスを採択。誤分類があっても、その影響を抑える。 低性能分類器の影響を受けないよう、スコア上位のもののみを選ぶ。

実装·性能評価 D ~対策 I · II · III 実施後~

表2	分類器名	正解率	AUC	チューニングの計算コスト
	Kneighbor	90%	95%	3~4分
	RandomForest	92%	98%	90分
	GradientBoost	91%	98%	70分
	Majority Voting	94%	99%	チューニング不可

特徵量抽出-予測·結果

抽出される特徴量の予測

- ・預金者と非預金者の間で数値に大差がある特徴量 例:預金者の方が年収が高い
- ・カテゴリ変数以外の特徴量

カテゴリ変数は名義特徴量。ダミー変数化の際にモデルへの影響力が落ちる可能性

表1	yes	no	
age	41.672140	40.862165	
balance	1785.768237	1307.779822	
day	15.158816	15.925462	
pdays	69.066218	35.653802	
duration	532.955585	221.559108	
previous	1.159354	0.496456	
campaign	2.162853	2.845876	

- ·balance 顧客の年平均口座残高
- ・duration 銀行員と顧客の通話時間
- previous

過去に銀行と顧客が連絡をとった回数

- ・定期預金する顧客は預金残高が高め
- ・銀行と連絡をよく取り合う
- →直観に紐付いた予測

抽出結果 ~重要度の計算~

feat_label	best_feat	GradientBoost	AdaBoost	RandomForest	DecisionTree
duration	0.298468	0.430118	0.213523	0.278747	0.271485
campaign	0.114152	0.086445	0.199720	0.083890	0.086554
housing_yes	0.064979	0.077058	0.069613	0.065666	0.047579
balance	0.063488	0.036651	0.066806	0.069939	0.080556
day	0.057647	0.039003	0.063855	0.060905	0.066826
age	0.057371	0.031779	0.065499	0.057801	0.074405

0.067068

抽出特徴量 計6つ

duration

0.027398

- ·campaign
- balance
- ·day
- •housing_yes •age

・campaign 定期預金について 顧客と連絡をとった回数

contact unknown

·day

0.043680

- 直近に連絡を取ってからの 経過日数
- ・housing_yes 顧客の住宅ローン
- ・durationの重要度 が最も高く圧倒的

0.040871 0.039384

- ・抽出後のモデルの性能は高い
- →予測とは異なる特徴量もあるが 妥当な特徴量を選択できている

表2

特徵量抽出-考察

- ・campaign と duration の関係(左) campaign は短く、duration は長い方が 成約率は高い
- ・campaign と balance の関係(右) balanceの多寡に依らず、campaignが短い方が 成約率は高い

銀行と頻繁に・長く連絡を取っている顧客ほど、 定期預金の成約率は高い(預金残高は関係無い)

- ・60代以上の顧客とは頻繁に連絡を取っていない
- ・60代以上も20~50代同様、成約が取れている
- →60代以上にも中年層同様頻繁に連絡を取るべき

結論

より詳細な分析の提案

景気による成約率変動の可能性

消費者物価指数、雇用率などの景気指数導入

→成約集中時期に注目し、成約営業のタイミングを 絞り込み、営業コストを抑えられる

年収の成約率への影響

顧客の平均年収などの導入

→潜在顧客層を事前に絞り込める(年収が極端に 低ければ預金しない、など)

年収データによる順序特徴量の導入

職業別年収で職種をランク付け

- →データ前処理の段階で名義特徴量を順序特 徴量として扱える
- →特徴量を増やさず、計算コストを減らせる

実務への導入を見据えて

・実務では分析手法はビジネス要件によって異なる

今回

- ・多数決分類器などで計算コストが多少かさむ
- ・成約見込みの高い顧客を確実に拾いたい
- →潜在顧客を効率的に見つけ営業コストを抑える

再現率を上げる場合

- ・見込みのない顧客を誤分類してしまうリスク
- ・少しでも見込みある潜在顧客は1人残らず見つけたい
- →余分な営業コストを負ってでも成約数を増やす
- ・実務で発生する予算・人材の制約
- ・実務で求められる目標 に従って分析を変える必要

参考文献

・著者: Sebastian Raschka、 Vahid Mirjalili 『[第3版] Python 機械学習プログラミング 達人 データサイエンティストによる理論と実践』株式会社 インプレス 2020年10月 発行

・著者:Andreas C. Muller、Sarah Guido 『Pythonではじめる機械学習一scikit-learnで学ぶ 特徴量エンジニアリングと機械学習の基礎一』株式会 社オライリー・ジャパン 2017年5月発行