United States Department of Agriculture Agricultural Research Administration Bureau of Entomology and Plant Quarantine

OF PUCCINIA GRAMINIS TRITICI 1/

By E. C. Stakman, M. N. Levine, and W. Q. Loegering 2/

The last key for identifying physiologic races of <u>Puccinia</u> graminis tritici was issued January 1, 1938. It listed 162 races; the present key includes 189, as of January 1, 1944. The list easily could be expanded to more than 200 if minor but consistent characters were used for differentiation between races.

^{1/} Cooperative investigations between the United States Department of Agriculture and the Minnesota Agricultural Experiment Station. Paper No. 2148 of the Scientific Journal Series of the Minnesota Agricultural Experiment Station.

^{2/} E. C. Stakman, Chief, Division of Plant Pathology, University of Minnesota, and Agent, Division of Plant Disease Control, Bureau of Entomology and Plant Quarantine, Agricultural Research Administration, U. S. Department of Agriculture; M. N. Levine, Pathologist, Division of Cereal Crops and Diseases, Bureau of Plant Industry, Soils, and Agricultural Engineering; W. Q. Loegering, Agent, Division of Plant Disease Control, Bureau of Entomology and Plant Quarantine.

The Concept of Races and Biotypes

It is becoming increasingly evident that the biotype must be used as a basis for concepts regarding races. Although it is known that there are many biotypes, it would be impracticable to attempt to distinguish all of them as it would be necessary in many cases to compare closely related ones repeatedly, side by side, in order to distinguish between them. As determination of races is made in different places and at different times in the same place, there may be considerable variation in the infection types produced by a single biotype. Likewise, the effects of different environmental conditions may obscure minor differences between closely related biotypes. Therefore it seems best to group very closely related biotypes under the same race and recognise races only on the basis of major differences.

There appear to be almost imperceptible differences between some biotypes and perfectly obvious and consistent differences between others. For example, Reliance is considered immune from races 17 and 49; when inoculated with most isolates of these races, there is no externally visible effect. Occasional isolates, however, produce pronounced necrotic flecks. There is a somewhat greater difference between biotypes of race 59; they are essentially alike on all the differentials except Marquis, Reliance, and Kota, on which they differ as follows:

	Marquis	Reliance	Kota
Race 59	2	0	0;
Race 59A	2	2	0;
Race 59B	2+	2	2

In the key (table 3), race 59 is found as follows: Little Club, susceptible; Marquis, resistant; Reliance, resistant; Kota, resistant; Arnautha, resistant; Kubanka, mesothetic; Acme, susceptible; Einkorn, susceptible. As only three major classes of rust reactions are used, all three biotypes satisfy the requirements, and it seems best to consider them as belonging to the same race, which, then, produces infection types on Reliance and Kota ranging from 0 to 2.

Race 15 comprises two or more distinct biotypes also. All of the differentials except Khapli are susceptible, but there are different degrees of susceptibility. The infection types given in table 4 are an average of the types produced by many isolates over a period of years in the United States. Later, however, an isolate from Japan proved less virulent than most of those from the United States. It was tentatively called 15A. Then an isolate from Brazil was immediately recognized as being extraordinarily virulent and was therefore designated as 15B. Most of the isolates obtained from collections in the United States during the past several years are of the 15B type.

If the virulence of each race were given a numerical value, generous use of decimals would be necessary to represent slight differences between them. If, instead of mere conventional designations, 17 and 49 represented the virulence of these two races, respectively, as determined by the behavior of those isolates on which the numerical ratings were made originally, biotypes slightly more virulent might properly be designated as 17.1 and 49.1, respectively. Likewise, 59A could be represented by 59.2, and 59B by 59.5. And race 15 would comprise biotypes 14.7, 15, and 15.5.

The use of additional differential wheat varieties in identifying isolates of P. graminis tritici probably would reveal biotypes within some races that now seem very homogeneous. As an example, the differences between 15A and 15B are quantitative only. All differentials except Khapli are susceptible to both, but they are more susceptible to 15B. But Rival wheat is resistant to 15A and susceptible to 15B; and yet this is a difference in degree also; the difference between infection type 2 and type 3 or 4. If all infection types caused by all biotypes were seriated, they would range from 0 to 4++ and there would be 27 classes or infection types, without clear class intervals between most of them. The reaction classes recognized in the key-resistant, mesothetic, susceptible-are therefore rather broad classes; but to attempt to subdivide them for the determination of races would only lead to confusion and mistakes without serving a practical purpose.

The Differential Varieties

The differential wheat varieties used in identification of stem rust races are listed in table 1. They were selected almost 25 years ago, as representative of the behavior of a large number of varieties that were tested against the relatively few races discovered up to that time. As new wheat varieties were produced, they too have been tested; but no generally valuable new differentials were found, although some do enable recognition of differences that are not apparent on the standard differentials. Eventually it may be desirable to revise the list, but for the present there seems to be no pressing need for radical change. In any case there never could be complete assurance that an isolate identified as a certain race at a given time and place is genetically identical with another isolate identified at another time and place, unless all known wheat varieties were tested under controlled conditions—which obviously is not practicable.

The present system of identification of races, then, makes it possible to recognize similar but not necessarily identical biotypes or groups of biotypes. In the very nature of things, perfection cannot be attained. There are no type specimens; there are only records for comparing, as an example, the isolates of race 2 in 1943 with those of 1918. And yet those of 1943 fit the record of 1918 perfectly. Likewise, isolates obtained from foreign countries during the past few years often fit perfectly race descriptions made in the United States 20 years previously.

The system used, therefore, seems fairly adequate for comparisons in time and space-for determining geographical distribution and population trends of races. Nevertheless, the conventional determination of races is only a preliminary step in finding out what needs to be known.

To determine the practical importance of rust races at given times and places, it is necessary to determine, under various conditions, the reactions of wheat varieties of the region in question to the races that are prevalent or likely to become prevalent in that region. Naturally, studies should be made on adult plants as well as seedlings.

Obviously, the seed of the differentials should be absolutely pure; otherwise, confusion and sometimes erroneous conclusions are likely to result. In the past it has been difficult to maintain the purity of some varieties, either because of changes in the prevalence of agronomic strains in general or because of mechanical mixtures in the seed lots. As an example, Jenkin is given as an alternative differential. There are several lines of this variety, all of which do not react to rust exactly in the same manner. It has been virtually impossible for a number of years to obtain pure seed lots of Reliance and Kanred. Accordingly, occasional plants react quite differently from the remainder; in most seed lots there have been at least 5 percent of off-type plants. Every attempt should, of course, be made to maintain the purity of the differentials. This is just as important as the use of proper techniques in determining rust races.

Collection and Preservation of Samples

The techniques for collecting and inoculating are rather generally known; accordingly, only a brief summary is given here.

Collection of samples.—It is best to use glassine bags, about $\frac{1}{2}$ by 7 inches, for field collections. When several successive collections are made on a single trip, care must be taken to avoid contamination. Samples should be taken without touching the rusted portions. When plants are heavily and rather uniformly rusted, the best procedure is to cut several off and insert them part way into the glassine bag, then hold them, with the bag as protection, in one hand while they are cut to the required length with the other. Unless such precautions are taken, inoculum may easily be carried by the collector to contaminate subsequent collections. The open end of the envelope should be folded over only enough to hold the rusted material in place. If sealed too tightly, the material may mold, especially if green and succulent.

Preserving inoculum. -- Inoculum will retain its viability for several months if kept at moderate humidity in the dark at a temperature of about 5° C. Fluctuating temperatures should be avoided.

Inoculation Techniques

Growing plants for inoculation.—Plants for inoculation can be grown in 4-inch pots. It is best to sterilize the soil and disinfect the seed to prevent the development of root rots. There should be 15 to 20 properly spaced plants in each pot. It is best to grow these plants in a greenhouse room where no rust material is kept. Plants should be between 2 and 4 inches tall when inoculated.

Incubation chambers. -- A convenient chamber consists of three parts:
(1) a galvanized-iron pan, 22 inches in diameter and 4 inches deep; (2) a cylinder made of the same material, 1 foot high, with rolled edges, which should fit into the pan easily; (3) a top of glass enclosed in a square wooden frame, which can be placed on top of the cylinder. It is important that the upper rim of the cylinder be even, so that the glass top will cover it tightly and thus promote the development of a fine film of moisture on the plants. An incubating chamber of the above dimensions will hold 12 4-inch pots and thus accommodate a complete set of differentials.

Inoculations. -- If field collections contain too little rust to inoculate all differential hosts immediately, spore material is first increased by inoculating Little Club or Jenkin wheat, which are generally susceptible. When there is enough rust in a collection, all differentials are inoculated at the same time. The techniques are as follows:

For small numbers: Rub the leaves gently between moistened fingers, then spray with water, preferably distilled, to wet the plants thoroughly. It is best to use an atomizer for this purpose. Inoculum is removed from the rusted material with a special type of spatula, made by flattening the end of a dentist's explorer tool. Wet the spatula before using, in order to make the spores adhere. Then run the spatula gently over each leaf to be inoculated in such a way as to insure abundant and uniform distribution of spores. Obvious precautions should be taken to cleanse the hands and disinfect the spatula between successive sets of inoculations made with different collections or isolates.

Place the inoculated plants immediately in the pan of an incubation chamber, containing about 1/2 inch of water. Spray the plants gently with water and spray the inside of the cover and the cover thoroughly to provide high initial humidity. Put the cover in place and leave the pots in the chamber for 36 to 48 hours, preferably in a cool place, then remove them to the greenhouse bench. Abundant light and a temperature of about 70° F. favor optimum and characteristic development of rust.

When rust pustules appear, out off with a small pair of scissors all plant parts above the inoculated seedling leaves to facilitate observations.

For large numbers: Rub plants to be inoculated with moistened fingers and place the pots in incubation chambers. Spray the plants

with water to provide a fine film of moisture. Shake rusted material gently over the plants so that spores will drop off and fall on the plants; then brush the rusted material gently over the plants several times to insure adequate and uniform distribution of spores. Again spray gently, to replace moisture which has been brushed off in the inoculating process. Incubate in the usual manner. This method saves labor and provides for random distribution of spores, which is important when more than one race is present in a collection. It increases the danger of contamination, however, and is not recommended for precise work. On the other hand, it is useful when there already is considerable information regarding the races present in a region and when it is merely desired to find out their relative prevalence. Extensive use of check plants indicates that this method is safe if ordinary precautions are taken.

Isolation booths. -- To prevent spread of the rust from one series of differentials to others in the greenhouse, partitions of muslin or glass may be set up to form booths for each set of plants. This usually is sufficient to prevent contaminations, but it is a good practice to place non-inoculated check plants in incubators with the inoculated plants often enough to find out whether there is contamination, either from air-borne spores from outside or from rust in the greenhouse.

Use of the Key and Tables (Tables 2, 3, 4)

The key for the identification of rust races is an ordinary trichotomous key. It is necessary to decide only whether varieties are resistant, mesothetic, or susceptible, in order to identify races (table 3).

The principal difficulties are likely to be encountered with infection types 2 and X. The type 2 caused by many races, such as 19 and 59, is quite distinctive and could scarcely be confused with anything else. The type 2 caused by certain biotypes of race 38, however, may sometimes resemble type 3 or even type 4=, especially if the inoculated plants are exposed to rather high temperature and high light intensity. It is necessary, therefore, to know the range of type 2 in order to avoid mistakes. The same is true of type X. Under some conditions, and with some races, type X is perfectly distinct, but under exceptionally favorable conditions this type may become X++ and frequently be virtually indistinguishable from a type 4. This may seem somewhat confusing, particularly to those who have not had opportunity to become intimately acquainted with the range of infection types. It is suggested, therefore, that if an isolate does not fit the table, the above facts be kept in mind and attempt be made to find out what the race would be if a somewhat questionable type 4 were type 2. Moreover, if a certain isolate agrees in all particulars with the infection types given for a certain race, except for an X, it would be well to examine the material more closely or to repeat the inoculation.

The infection types given in table 4 are the means derived from averaging the types produced by a number of isolates of the race under a considerable range of conditions. From what has already been said about

closely related biotypes and the effect of environmental conditions, it probably is clear that infection types may fluctuate considerably about the mean.

As previously mentioned, it has been the practice of the writers not to recognize races except on the basis of differences in the major classes, that is, resistant, susceptible, or mesothetic. For exemple, if the infection type for Reliance for a given race is listed as 0, and an isolate agrees in all respects except that the infection type on this variety is 1 or 2 instead of 0, it is likely that the isolate represents a new biotype, which, however, the writers would be disinclined to consider as a separate race. A good example is race 59. As indicated in the footnote of table 4, there are three clearly recognizable biotypes, but the key does not distinguish between them.

The key and table 4 should be used with the above facts in mind. There often is a considerable range in infection type of a single biotype because of differences in environmental conditions. And some biotypes are so nearly alike that it seems best to consider them as a single race.

Field collections often contain a mixture of races, which can be detected on one or more of the differential varieties. Sometimes it is possible to identify the races even in a mixture because only certain races could cause the particular combination of infection types. For example, races 17 and 19 produce essentially the same infection types on all of the differentials except Marquis. Race 17 produces type 3 or 4 on Marquis, whereas 19 produces type 2. No other combination of known races produces this combination of infection types; consequently, it is possible to identify both races and to estimate the percentage of each in the collection. Identification is not always so easy, however, and it is then necessary to resort to isolations from single pustules of the various types represented.

Mixtures of races usually are most apparent on Marquis, the durums other than Kubanka and Acme, and on Einkorn and Vernal. On Marquis there often are type-2 and type-4 pustules. On the durums, Einkorn, and Vernal there often are type 1 and type 3 or 4. The mixtures are usually quite evident on the durums, and on Einkorn and Vernal, because there is a distinct difference between the infection types. But it is sometimes more difficult to detect mixtures on Marquis, because there sometimes is a tendency for heavy infection of type 4 to obscure that of type 2. Moreover, as pointed out previously, certain races that normally produce type 2 on Marquis may, under extremely favorable conditions, produce a type resembling 3 or 42. Occasionally mixtures may appear like type X, but the difference usually is apparent to anyone who has had considerable experience.

As it often is desired to learn not only which races are present in a collection but also the relative proportions of each, it is important first to inoculate with a random sample of the rust in collections. This random distribution of inoculum is best attained by the brushing method described under "Inoculation Techniques." It usually is possible to determine the proportions easily by visual inspection. As an example, mixtures of races 17 and 56 have been common in the United States in recent years. The infection types follow:

	LC	Ma	Rel	Ko	Arn	Mnd	Spm	Kub	Ao	Enk	Ver	Kpl
Race 17	44	4-3+	0 3+	3+ 3+	1= 1=	1=	1=	3++ 3+	3++ 3+	3 1=	1=	1=

It can be concluded that races 17 and 56 are present if the number of uredia on Reliance corresponds with the number of flecks or type-1 uredia on Arnautka, Mindum, Spelmar, and Einkorn, and if the number of type 3 or 4 uredia on Arnautka, Mindum and Spelmar corresponds with the number of similar uredia on Einkorn. It is then possible also to estimate the relative proportions of the two races in the collection.

The method of estimation and separation of races is described and illustrated more fully in "Physiologic Races of Puccinia graminis in the United States in 1939," by E. C. Stakman and W. Q. Loegering, U. S. Dept. Agr., Bur. Ent. and P. Q. E-522. The method is described in the next three paragraphs.

Figure 1 represents the results of inoculating the differential varieties of wheat with the rust as it was obtained from the field. There are two infection types on Marquis, types 4 and 2. Obviously, therefore, there are at least two races present. On Reliance there are type-1 pustules only, but the number is only about 33 percent of the total number of pustules on Marquis. On Arnautka, Mindum, Spelmar, and Einkorn the number of type-I pustules corresponds with the total number of pustules on Reliance. It seems likely, therefore, that the race causing the large pustules on Reliance is causing the small ones on the three durums and Einkorn. It would seem that it might also be producing the type-2 pustules on Marquis, but knowledge of races makes this seem doubtful. The most likely combinations would be races 17, 19, and 56, but this is not certain. Therefore, inoculations were made as indicated in the diagram, and the results prove that this surmise was correct. In this case, then, three isolations were made: Isolate I proved to be pure race 19; isolate II was pure race 56; and isolate III contained both race 19 and race 17, the only difference being that 17 produces type-4 pustules on Marquis and 19 produces type-2.

It turns out, then, that three isolates were obtained from this collection of rust. In a given collection the number of isolates or isolations corresponds with the number of races identified. In the illustration chosen, for example, several other methods could have been used for arriving at the same result. A limited number of the differential varieties, known as a "half series," could have been inoculated with rust from the type-1 pustules on the three durums or Einkorn (after increasing the rust on a susceptible variety to obtain enough incoulum), but race 56

would have been identified from these isolations as it was when transfers were made from Reliance. Even though race 56 had been obtained in several series of isolations from one collection, it still would count as one isolate.

A "half series" is shown in figure 1 and includes the varieties Marquis, Reliance, Kota, Arnautka, Kubanka, and Einkorn. From long experience it has been found that Arnautka, Mindum, and Spelmar react alike to practically all the common races of stem rust, as do Kubanka and Acme. Therefore, after observing similar mixtures of type-4 and type-1 pustules on Arnautka, Mindum, and Spelmar, and complete susceptibility on Kubanka and Acme, it is sufficient to inoculate one variety from each group. Arnautka and Kubanka are commonly used for this purpose. In the case of Vernal and Khapli, which were completely resistant in the illustrations used, it must be concluded that these two varieties are resistant to all races in the mixture and need not be tested further. If either of these varieties shows a mixture of two infection types, then that particular variety must be included in the "half series." If there is doubt in any case concerning an identification made on the basis of a "half series," the isolate is tested on a complete series of differentials.

Table 1.--Differential varieties of Triticum spp. used in identifying physiologic races of Puccinia graminis tritici

Triticum compactum

Little Club, C. I. No. 4066 h

Triticum vulgare

Marquis, C. I. No. 3641 Reliance, C. I. 7370b Kota, C. I. No. 5878

Triticum monococcum

Einkorn, C. I. 2433

Triticum durum

Arnautka, C. I. No. 11,93 Mindum, C. I. No. 5296 Spelmar, C. I. No. 6236 Kubanka, C. I. No. 2094 Acme, C. I. No. 5284

Triticum dicoccum

Vernal, C. I. No. 3686 Khapli, C. I. No. 4013

a C. I. : Cereal Investigations accession number.

b Certain lines of Jenkin, C. I. 5177, notably Hood, C. I. 11456, may be substituted for Little Club; and, generally, Kanred, C. I. 5146, for Reliance.

- Table 2.--Infection types produced by physiologic races of Puccinia graminis tritici on differential varieties of Triticum spp.
- (0) IMMUNE--No uredia developed; hypersensitive flecks sometimes present and designated by a semicolon, thus, 0;
- (1) VERY RESISTANT--Uredia minute; surrounded by distinct necrotic areas
- (2) MODERATELY RESISTANT -- Uredia small to medium; usually in green islands surrounded by a decidedly chlorotic or necrotic border
- (3) MODERATELY SUSCEPTIBLE--Uredia medium in size; coalescence infrequent; no necrosis, but chlorotic areas may be present, especially under unfavorable growing conditions
- (4) VERY SUSCEPTIBLE--Uredia large, and often coalescing; no necrosis, but chlorosis may be present under unfavorable growing conditions.
- (X) HETEROGENEOUS--Uredia variable, sometimes including all infection types and intergradations between them on the same leaf; no mechanical separation possible; on reincoulation small uredia may produce large ones, and vice versa

Relation of infection types to rust-reaction classes used in the analytical key, table 3

In the key, table 3, only three classes of rust reaction are used:

RESISTANT includes infection type 0, 1, and 2
MESOTHETIC includes infection type X
SUSCEPTIBLE includes infection types 3 and 4

Plus and minus signs are used to indicate variation within a given type: ++ and = indicate the upper and lower limits, respectively, of each type. The symbol ± indicates a variation between + and - for the type.

Table 3.--Key for identifying physiologic races of <u>Puccinia graminis tritici</u> on the basis of their pathogenicity on 12 differential varieties of Triticum spp.

Triticum spp.	
Physiologic	Races related to those
Reaction of differential varieties race (key	designated in key, but not
number)	necessarily interrelated
Little Club resistant	
Marquis resistant Arnautka resistant	
Arnautka susceptible	
Marquis susceptible	
Khapli resistant	
Khapli susceptible41	
Little Club mesothetic	
Marquis resistant	
Kubanka resistant	
Einkorn resistant	111
Einkorn susceptible	102
Kubanka mesothetic	69
Kubanka susceptible72	
Marguis mesothetic	121
Marquis susceptible	With Publish
Reliance resistant	21
Reliance susceptible	40
Little Club susceptible	
Marquis resistant	
Reliance resistant	
Kota resistant	
Arnautka resistant	
Kubanka resistant	
Acme resistant	
Einkorn resistantlll	47,50,70,71,105
Einkorn susceptible102	104,112,160,167,180
Acme susceptible2	48,59,73,162
Kubanka mesothetic	
Acme resistant	
Vernal resistant180	102,112,166,167
Vernal mesothetic167	102,180,182
Vernal susceptible182	167,181
Acme mesothetic50	47,111,159,186
Acme susceptible	
Einkorn resistant 139	50,186
Einkorn susceptible59	2,23,48,75,162
Kubanka susceptible	100
Acme resistant166	180
Acme susceptible	LIBRARY
Einkorn resistant Vernal resistant186	50,15 STATE PLANT BOAR
	50,155
Vernal susceptible27	
Einkorn susceptible Vernal resistant23	59,118
	68
Vernal susceptible69	1 00

Reaction of differential varieties Key Race	Related races
Arnautka mesothetic	
Acme mesothetic47	16,50,111
Acme susceptible48	2,14,59,73,178
Arnautka susceptible	
Mindum resistant6	178
Mindum mesothetic178	6,14,48
Mindum susceptible	
Kubanka resistant4	
Kubanka mesothetic45	55
Kubanka susceptible	
Einkorn resistant16	47,81,94
Einkorn susceptible	
Vernal resistant14	48,62,88,91,178
Vernal susceptible55	45,119
Kota susceptible	
Arnautka resistant	`
Kubanka mesothetic	
Vernal resistant140	105,155
Vernal susceptible65	
Kubanka susceptible145	
Arnautka susceptible	
Mindum resistant28	
Mindum susceptible	
Vernal resistant19	78,158
Vernal susceptible123	120
Reliance susceptible	
Kota resistant	
Arnautka resistant	
Kubanka resistant	
Acme resistant153	
Acme susceptible7	152,171,175
Kubanka mesothetic	1
Acme resistant66	
Acme susceptible	
Vernal resistant152	7,33,171,175
Vernal mesothetic175	7,51,152
Kubanka susceptible	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Vernal resistant35	152,172
Vernal susceptible51	175
Arnautka susceptible	
Mindum mesothetic	
Vernal resistant	10
Vernal susceptible89	85
Mindum susceptible	
Einkorn resistant95	
Einkorn susceptible	
Vernal resistant10	96,151
Vernal susceptible85	89
ATTEN PROCENTING	

Reaction of differential varieties Ke	y race Related races
Kota susceptible	
Arnautka resistant	
Einkorn resistant	173
Einkorn susceptible	
Vernal resistant	
Vernal susceptible	
Arnautka mesothetic	38 39
Arnautka susceptible	
Mindum mesothetic	174 98
Mindum susceptible	
Einkorn resistant	98 63,174
Einkorn susceptible	
Vernal resistant	
Vernal susceptible	115
Marquis mesothetic	
Reliance resistant	
Kota resistant	
Arnautka resistant	
Kubanka resistant	
Acme resistant Einkorn resistant	
Vernal resistant	77 70 313
Vernal mesothetic,,,,	
Einkorn susceptible	
Acme susceptible	
Kubanka mesothetic	103
Vernal resistant	112 43,102,180
Vernal susceptible	
Kubanka susceptible	
Arnautka mesothetic	
Arnautka susceptible	113
Einkorn resistant	
Vernal resistant	81 16,75,94
Vernal susceptible	
Einkorn susceptible	
Vernal resistant	88 14,24,62,91
Vernal susceptible	
Kota mesothetic	
Arnautka resistant	
Kubanka mesothetic	·
Acme resistant	168
Acme susceptible	
Kubanka susceptible	
Arnautka mesothetic	
Arnautka susceptible	
Einkorn resistent	94 16,21,81
Einkorn susceptible	
Kota susceptible	
Arnautka resistant	
Kubanka mesothetic	
Einkorn resistent	185 80
Einkorn susceptible	
Vernal resistant	
Vernal mesothetic	105 57,93,140,155

Reaction of differential varieties Key race	Related races
Kubanka susceptible	· h
Vernal resistant136	1,157
Vernal mesothetic157	57,136,154
Vernal susceptible154	57,157
Arnautka mesothetic149	9,30,76,85,120,150,156,15
Arnautka susceptible	3,00,10,00,120,100,100,10
Mindum mesothetic	9,120,149
Mindum susceptible	, , , , , , , , , , , , , , , , , , , ,
Vernal resistant78	17,19,73,158
Vernal mesothetic158	9,19,78,120,149
Vernal susceptible120	9,91,123,149,156,158
Reliance mesothetic	
Arnautka mesothetic	15
Arnautka susceptible62	11,14,88,96,114,179
Reliance susceptible	
Kota resistant	
Kubanka mesothetic	7,35,74,152,172
Kubanka susceptible	33,35,171
Kota mesothetic96	10,11,62,179
Kota susceptible	
Arnautka resistant84	82
Arnautka susceptible	
Mindum mesothetic	
Vernal resistant	11,179
Vernal susceptible106	15,87
Mindum susceptible	
Einkorn resistant65	34,98
Einkorn susceptible179	11,59,62,96,115
Marquis susceptible	
Reliance resistant	
Kota resistant	
Arnautka resistant	
Mindum resistant	
Kubanka resistant	
Vernal resistant54	
Vernal susceptible134	
Kubanka mesothetic45	112
Kubanka susceptible	
Einkorn resistant	
Vernal resistant135	,
Vernal susceptible79	
Einkorn susceptible	
Vernal resistant44	118
Vernal susceptible121	58
Mindum susceptible	
Arnautka susceptible	
Mindum resistant141	142
Mindum mesothetic142	24,141
382 3 4.23.7	
Mindum susceptible	
Kubanka resistant	55 46,117

Reaction of differential varieties Key race	Related races
Reaction of differential varieties Rey lace	Melated laces
Kubanka susceptible	
Einkorn resistant	
Vernal resistant75	81
Vernal susceptible184	169
Einkorn susceptible	100
Vernal resistant	•
Khapli resistant24	88,142
Khapli susceptible42	00,142
Vernal susceptible117	55,119
Kota mesothetic170	116
Kota susceptible	110
Arnautka resistant	
Kubanka resistant	49
Kubanka mesothetic	10
Acme mesothetic	
Vernal resistant128	1,29,61,159
Vernal mesothetic159	57,93,124,128
Acme susceptible	0.,00,222,220
Einkorn resistant	
Vernal resistant 49	60,176
Vernal susceptible80	183
Einkorn susceptible	100
Vernal resistant61	1,128,155,162
Vernal susceptible95	57,105,159
Kubanka susceptible	07,100,103
Acme mesothetic124	57,159
Acme susceptible	07,100
Einkorn resistant176	49,92
Einkorn susceptible	10,02
Vernal resistantl	61,128,136,155,162
Vernal susceptible57	95,105,124,154,157,159
Arnautka mesothetic	00,100,124,104,101,100
Acme mesothetic	
Vernal resistant29	17,128
Vernal susceptible30	9,149
Acme susceptible	9,85,149
Arnautka susceptible	0,00,140
Mindum resistant	
Mindum mesothetic	
Kubanka mesothetic90	21
Kubanka susceptible150	9,149
Mindum susceptible	(), _ , _ , _ , _ , _ , _ , _ , _ , _ ,
Kubanka resistant	
Vernal resistant5	57
Vernal susceptible8	
Kubanka mesothetic	5,17,73
Kubanka susceptible	,,,,,
Einkorn resistant	
Vernal resistant21	90,94,161
Vernal susceptible116	170
Einkorn susceptible	1.0
Vernal resistant17	29,57,75,78,85,114
ACTUAL LODIDUMIA	,01,10,10,00,111

Reaction of differential varieties Key	race Related races
Vernal mesothetic	
Vernal susceptible	
	156,158
Reliance mesothetic	114 11,17,62
Reliance susceptible	
Kota resistant	
Arnautka resistant	
Mindum resistant	
Kubanka mesothetic	
Einkorn resistant	• • • 64
Einkorn susceptible	E. 153
Vernal resistant	
Vernal susceptible	. 108
Kubanka susceptible	3 777
Acme resistant	
Acme susceptible	
Mindum susceptible	
Arnautka mesothetic	51 122
Mindum mesothetic	96
Mindum susceptible	
Einkorn resistant	
Vernal resistant	107
Vernal susceptible	
Einkorn susceptible	
Kota mesothetic	
Acme mesothetic	163 15,110
Acme susceptible	.129 40,143
Kota susceptible	
Arnautka resistant	
Mindum resistant	
Kubanka resistant	
Einkorn resistant	
Einkorn susceptible	3 36
Kubanka mesothetic	
Acme mesothetic Einkorn resistant	127 56,125,126
Einkorn susceptible	
Vernal resistant	101 18,56
Vernal susceptible	
Acme susceptible	
Einkorn resistant	
Vernal resistant	125 56,127,146
Vernal mesothetic	
Vernal susceptible	
Einkorn susceptible	
Vernal resistant	
Vernal mesothetic	82 36,52,84
Vernal susceptible	52 67,82
Kubanka susceptible	
Acme resistant	
Acme mesothetic	164 147

	Key race Related races
Reaction of differential varieties	Key race Related races
A	
Acme susceptible Einkorn resis	
	sistant56 125,127
	sceptible147 146,164
	eptible18 36,101
Mindum susceptible	95
Spelmar resistant.	
Spelmar susceptible	3
Arnautka mesothetic	100 74 107
Einkorn resistant	
Einkorn susceptible	
Arnautka susceptible Mindum resistant	19
Mindum mesothetic	
Mindum susceptible	10,100
Spelmar resistant.	187
Spelmar susceptible	
	nt13
Kubanka suscepti	
	nt100
Acme suscept:	
Einkorn re	
	resistant34 63,77,126
	mesothetic77 34,40
	susceptible40 77,129,144
	asceptible
	resistant11 32,62,96,110,113,114,179
	mesothetic110 11,15,163
	susceptible
	oli resistant15 87,106,110,163,188
	oli susceptible
	189

Table 4.—Mean infection types produced by physiologic races of <u>Puccinia graminis</u> tritici on differential varieties of Triticum spp.

			M	ean re	action	of di	fferen	tial v	variet:	Les		
Physiologic race	Little Club	Marquis	Reliance	Kota	Arnautka	Mindum	Spelmar	Kubanka	Acme	Kinkorn	Vernal	Khapli
1	4	4-	0	5+	1=	1	1=	3 +	3++	3	0;	1=
2	4	2=	2=	2=	1-	1	1=	1+	5++	5+	1-	0;
5	4	4-	4=	5+	1=	1=	1-	1+	5++	5+	1=	0;
4	4+	2-	1-	2+	4=	3+	3++	2	311	5++	1=	1=
5	4	4-	0;	3	4=	5++	3++	1++	3+	3	0;	0;
6 • • • • • •	4	2	1=	0;	3+	2=	2=	1	3+	3	0;	0;
7	4	2=	3 +	1=	1=	1++	1-	1	3++	3-	1	1-
8	4	4	0;	4-	4=	3++	4=	0;	3	3	4	0;
9	4	4-	0	3++	4-	4=	4=	4=	3++	3+	4+	1-
10	4+	2-	5++	2	4	4	4	3++	4-	3+	1=	1=
11	4-	4=	3++	3+	4=	4=	4=	3++	3++	3	1=	1=
12	4+	4-	4=	3+	4=	1.	1++	1++	5++	3++	1=	0;
13	4	4-	5++	5++	4 =	5++	3++	2-	5++	3	1	1=
14	4+	2-	1-	1++	3++	3++	3++	3++	3++	3	1=	0;
*15	4	4-	4=	3++	4=	4=	4=	5++	3++	3++	4+	1=
16	4-	2=	0	1	3++	3+	3 ++	3+	4=	1=	1=	1
17	4	4-	05	3+	4=	4=	4=	3++	3++	3	1=	1=
18	4	4-	4=	3++	1	1=	1-	3++	3++	3+	1-	1 <u>+</u>
19	4	2-	0;	3-	4=	4=	4=	3++	3++	5	0;	1=
20	4	4=	4=	4=	1++	1-	1++	3 ++	1++	3+	1=	1-
21	4	4	0	3++	4-	4-	4-	4=	3++	1=	0;	1=

	~						31.00					
Physiologic	4			Mean	react	ion of	dille	rential	varie	etles		
race	Little Club	Marquis	Reliance	Kota	Arnautka	Mindum	Spelmar	Kubanka	Acme	Einkorn	Vernal	Khapli
22	4+	4+	4	3	1	4	4-	0;	3+	3	1-	0;
23	4	2	1-	l=	1	l=	1-	3+	3++	3	0;	0;
24	4	4=	0;	2=	4=	4=	4=	3++	5+	5+	1=	0;
25	4	4	5+	3	1-	3	1=	3	3++	3	1=	1-
26	4	4	0;	3	4-	1=	5++	1=	4=	3	1-	1+
27	4=	2	0	0;	1=	1	1-	4=	3++	1=	4+	1++
28	4	2	0;	3	4-	1	4=	3	3	3	l=	0;
29	4	4-	0	3	X++	<u>X+</u>	X+	X	X+	3	1-	1-
30	4	4	0;	3++	X++	X <u>+</u>	X+	<u> </u>	X++	3+	4=	1
51	4+	4	3++	2-	X -	X+	<u>X+</u>	X	<u>X+</u>	3+	1-	1
32	4	4=	4=	3+	X +	X <u>+</u>	X <u>+</u>	X-	X+	3	1=	1-
35	4+	2	4	1+	1=	1-	1	4=	3++	3	1-	1
34	4+	4-	4-	4=	4	4=	4=	<u>4+</u>	3++	1=	0;	1 <u>+</u>
35	4	4=	3+	0;	1=	1-	1=	3+	3++	3	0;	1
36	4	4	4-	5++	1=	1=	0;	X	3++	3+	0;	1-
37	4	4-	0	3++	4=	4=	4=	X <u>+</u>	3+	3	1=	1-
58	4	2=	4-	3-	X +	X <u>+</u>	X+	X+	X++	4-	1=	1+
39	4-	2=	4=	3+	4+	3++	4-	4=	3++	4=	1=	1-
40	4+	4+	4	4+	4+	4+	4	4=	4	0;	4=	1=
41	2++	4	0	0;	4=	4	4+	4+	4-	4-	1-	4 ^C
42	4	4	1 <u>+</u>	0;	4+	4	4	4	4	4=	2=	4°
	4	3++	0	0;	0;	0;	0;	X	1	3	1	0;
	4	5++	0	0;	0;	0;	0;	3+	5+ v	3	1	0;
45	4	2	0	2-	4	4	4	X	X	3	3	1

Table 4, p. 3

Table 4,]	p. 5											
Physiolog	[A)	lean r	eactio	n of d	ifferer	ntial	variet	les		
race	Little Club	Marquis	Reliance	Kota	Arnautka	Mindum	Spelmer	Kubenka	Acme	Einkorn	Vernal	Khapli
46	4	3++	0	2-	4	4	4	1	1	3	3	1
47	4	2-	0	1 <u>+</u>	X-	X;	X++	X;	X <u>+</u>	1=	0;	1=
48	4+	1	0;	1+	X+	Χ=	X+	X+	4-	4=	1=	1+
49	4	4-	0	4=	1=	1-	0;	X=	3+	1-	0;	1=
50	4+	2+	0;	2++	1-	0;	0;	X=	X <u>+</u>	0;	0;	0;
51	4	2=	3+	0;	0;	0;	0;	4	3++	##+	4-	0;
52	4	4	4-	4	1=	1=	1=	X <u>+</u>	4	A. ara	4+	1-
* 53	4	2 <u>+</u>	0	1	4	4	4	4	4	24	<u>5±</u>	1
54	4	5++	Ö	0;	0;	0;	0;	1	3+	3	1	0;
55	4	4	0	2-	4	4	4	x	X	3	3	1
56	4	3 +	5+	5+	1=	1=	1=	3+	3+	1=	1=	1-
57	4	4-	0;	3+	1	1	1	4	3+	3	5	1
58	X+	X+	0	0;	1+	1=	1 <u>+</u>	4+	3+	3++	4+	1++
* 59	4+	2+	0	0;	1=	1=	1-	X-	3++	3+	1=	0;
60	4++	4++	0;	3++	0;	0;	0;	0;	3+	1 <u>+</u>	0;	1=
61	4+	4	0	3+	0;	0;	0;	X	4+	4	0;	0;
62	4	X <u>+</u>	X+	x	4	4	4	4	4	3++	0;	1-
63	4+	X++	4	3++	4+	4++	4+	4+	4 ⁿ⁺	1=	1=	0;
64	4++	4+	5++	1 <u>+</u>	1=	0;	1=	X <u>+</u>	5°+	1=	0;	1
65	4	2	0	3	0;	0;	0;	x	4	4	4	1
66	4	2	4	0;	0;	0;	0;	X+	1=	3	0	0
67	<u>4+</u>	4+	4	4	1 <u>+</u>	2=	2=	X=	X+	3-	44	1-
68	X+	2+	0	0;	1=	1+	1-	X++	4 <u>+</u>	4	4++	0;
* 69	3++	2+	0;	0;	0;	0;	0;	3+	4=	3	3++ ·	1=

	-	ande de antidestruc	Mc	on res	action	of di	fferen	iel w	and et i	0.5		
Physiologi race	Cittle Club	Marquis	Reliance		Arnautka		Spelmar	Kubanka		Einkown	าลา	p11
	Lit	Mar	Rel	Kota	Arm	Mindum	Spe	Kub	Асте	Ein	Vernal	Khap11
70	4+	X+	0;	0;	0;	0;	0;	0;	0	1=	<u>x+</u>	0;
71	4+	X-	Q	0;	0;	1=	0;	1=	0;	0;	0;	0;
72	X-	2	0;	0;	1 <u>+</u>	1#	1+	4+	4+	3+	3 <u>+</u>	X
73	4	X	0	X	X	X	X	X	3 <u>+</u>	4-	1	1
74	4	4-	3=	2+	0;	0;	0;	X-	3+	3 <u>+</u>	0;	1
75	4	3+	2+	0;	3+	3+	3+	4-	3+	1	0;	1
76	4	4-	0	3+	X	X	X	X	3+	3+	X-	ı
77	4	4	3=	3-	3_c	5-c	5-c	4-	5+	1 <u>+</u>	X	1
78	4	X	0	3=	3-c	3-c	2_c	3+	3+	5+	1	1
79	4	4-,	0	1-	1-	1-	1-	4-	3+	0;	3+	1
80	4	3_c	0	3-	0;	0;	0;	X-	3+	1-	3+	1
81	4	X	0	1+	4	4	4	4	4-	1-	1-	1-
82.,	4	3+	3 +	3+	0;	0;	0;	x	3+	3+	X	1
83	4	1+	3-	1-	3+	3+	3+	3+	3+	3 +	3 +	1
84	4	X	3-c	3-	0;	0;	0;	X	4	3+	X	1
85	4	4-	0	3 <u>+</u>	4-	4	4	4	4	3+	X	1
86	4	3 +	3+	1 <u>+</u>	3÷	X	X	X	3 +	3+	3+	1
87	4	4	4	3 <u>+</u>	4	Х	Х	X	3+	3+	4	1
88	4	X	0	1 <u>+</u>	4	4	4	4	4	3+	1	1
89	4	2	3+	0;	4	X	X	X	3 <u>+</u>	3+	3+	1
90	4	4	0	3 <u>+</u>	4	X	χ	X	3+	1	1	1
91	4	Х	0	Х	4	4	4	4-	5+	3+	X	1
92	4	X	0	X	1	1	1	4	4	1	1	1
93	4	3+	0	3=	0;	0;	0;	Х	3 <u>+</u>	3+	3+	1

Table 4, p.	5											
Physiologic	۾			Mean r	reaction	on of c	liffere	ntial	varie	ties		
race	Little Club	Marquis	Reliance	Kota	Arnautka	Mindum	Spelmer	Kubanka	Acme	Einkorn	Vernal	Khapli
94	4	X	0	X	4-	4-	4-	4-	3+	1	1	1
95	4	2	3 <u>+</u>	0;	4	4	4	4	3+	1	1	1
96	4	X	4	X	4	4	4	4	3+	3 +	1	1
97	4	3+	4	3+	0;	0;	0;	X	3	0;	3+	1
98	4	2=	4+	3+	4-	3++	3	4=	3-	1 <u>+</u>	1	1-
99	1+	X	3++	3	0;	2+	2++	4+	2+	2+	3++	3++
100	3 <u>+</u>	4	3 +	3=	3	3-	3=	4=	1	1 <u>+</u>	X <u>+</u>	1
101	4+	4++	4-	4 <u>+</u>	1	0;	0;	X+	X-	3	0;	1 <u>+</u>
102	<u>4+</u>	0;	1+	0;	0;	0;	1=	1=	0;	3+	0;	1=
103	X++	0	0;	0	0	0;	0;	0;	0;	2-	1=	0;
104	4	X=	0	0;	0;	0;	0;	0;	0;	3+	X+	0;
105	4	X-	0	3 <u>+</u>	0;	0;	0;	X-	3+	3	X	1=
106	4	X	3	3-	4	X	X	. X	3	5+	4-	1-
107	4	3+°	5-	0;	4	4	4	4	3	1-	0;	1-
108	4	4	4-	0;	1±	0;	0;	X +	4-	3	3+	1-
109	4	2 <u>+</u>	4	3-	1 <u>+</u>	1 <u>+</u>	1+	4	3-	3+	4	1
110	4	4-	5	3-	3+	3+	3+	3+	3+	3	X-	1
111	3±°	1-	0	0;	0;	0;	0;	0;	0;	1-	0;	1-
112	4	x	0	0;	0;	0;	0;	X-	0;	3	0;	1-
115	4	X	5=	3 <u>+</u>	3 <u>+</u>	X-	X-	X-	4	3+	0;	1
114	4	3+	X	3+	4	4	4	4	4-	3+	1-	1
115	4	2-	3=	3=	4-	4-	4	4-	4-	8+	3 <u>+</u>	1.
116	4	4-	0	3	4	4	4	4	4-	1	4-	1.
117	4	4-	0	0;	4	4-	4-	4-	4	3+	3+	1.

Table 4, p. 6

	T			Mean	reacti	on of	differ	ential	varie	ties		
Physiologic races	Little Club	Marquis	Reliance	Kota	Arnautka	Mindum	Spelmar	Kubenka	Аспе	Einkorn	Vernal	Khapli
118	4	X	0	1-	1-	1-	1-	4	4	3+	1-	1-
119	4	X	0	0;	4	4	4	4	4-	3+	5+	1-
120	4	x	0	3=	4	4	4	4	4-	3 +	3	1-
121	4	4-	0	03	1-	1-	1-	4	3+	3	3+	1
122	4-	3+	4-	0;	4	4	4	4	4-	3+	1-	1
125	4	2-	0	3-	3+	4-	4	4	4-	5+	5+	1
124	4	5- ^c	0	5=c	0;	0;	l≃	5 +	X	5	X-	1
125	4+	4	4	4	0;	0;	0;	X	4	1=	0;	1-
126	4=	4=	3+	3+	X+	X++	X +	X-	X	1 <u>+</u>	1=	1-
127	4-	4-	3++	3+	1=	1 <u>+</u>	1=	X	X	0;	0;	1-
128	4	3++	0;	3 <u>+</u>	1-	1=	1	X-	X <u>+</u>	5 <u>+</u>	1=	1-
129	4	4	4	x	4	4	4	4	4	1-	4	0
130	1-	2	0	0	4	4	4	4	4	3+	0	1-
131	1-	4	0	0	4	4	4	4	4	4+	1	1-
132	4	4	0	2	1	4	4	1	4	1	1	1
155	4	4	0	0	1	2	2	4	4	0	1	2
134	4	4	0	0;	0;	0;	0;	1	3	3	3	1
135	4	4	4	0;	0;	3	2	4	3	1	1	1
136	4	X	0	3=	0;	0;	0;	4-	4	4-	1-	1
137	4	4-	4-	0;	1-	1-	1-	3	1-	5-	X-	1
138	2	0;	0	0;	0;	0;	0;	0;	0;	1+	X-	0;
159	4 <u>+</u>	2+	1-	2+	1-	1=	1	X	4+	1=	1-	0;

				Hean	react	ion of	diffe	rentia	l vario	eties		
Physiologic race	Little Club	Marquis	Reliance	Kota	Arnautka	Mindum	Spelmar	Kubenke	Асле	Einkorn	Vernal	Khapli
140	4+	2-	1	4=	1 <u>+</u>	0;	1 <u>+</u>	X+	<u>4+</u>	4-	1 <u>+</u>	1 <u>+</u>
141	4	4	1+	0	4	1-	4	1+	4	4	1-	1+
142	4	4-	2	0	3++	X	4	X+	4	4	1	1++
143	4	4-	4	0	4-	4-	4-	4-	3++	2	5++	1=
144	I	4	4	5+	4-	4-	4-	4-	3++	1+	5++	1++
145	4	0	2	4	0;	0;	0;	4	4	0;	4	2
146	4+	4	4+	3++	1-	1 <u>+</u>	1=	<u> </u>	5++	1=	X+	1+
147	4++	4+	4	4 <u>+</u>	1=	1-	i	4+	4	1=	4 <u>+</u>	1 <u>+</u>
148	4	5+	3+	3+	1-	0;	0;	0;	3 <u>+</u>	1-	0;	1-
149	4	X +	0	3-	X+ ,	X	x	X	X	X	x	1-
150	4	3-	0	5-	5+	X	X	4-	X.	3+	3+	1-
151	4	1	3-	0;	4-	X	x	x	4-	3+	0;	1-
152	4	1+	3-	0;	1	0;	0;	X-	3+	3+	0;	1-
153	4-	1+	3	0;	0;	0	0	0;	0	0;	X-	0;
154	4	x	0	3=	1	0;	0;	4	4	3 <u>+</u>	4-	1
155	4	x	0	3=	1	0;	0;	X	4	3+	0;	1
156	4	X	0	3=	4	x	X+	3 +	4-	3 <u>+</u>	4-	1
157	4	x	0	3=	1-	0;	0;	4	4	3+	X	1-
158	4	x	0	5=	4	4-	4-	4-	4-	3+	x	1
159	4-	4	0	3++	ı	1=	1=	X++	X	4=	X <u>+</u>	1
160	<u>X+</u>	0;	0	0;	0;	0;	0;	1 <u>+</u>	0	3+	1	0;
161	X	4	0	3++	4=	4-	4	4=	5++	1=	0;	0;
162	4	X+	0;	X-	0;	0;	0;	X	3	3	0;	1,

						1							
				Mean	reacti	on of	diffe:	rential	vari	eties			_
Physiologic race	Little Club	Marquis	Reliance	Kota	Armautka	Mindum	Spelmar	Kubanka	Acne	Einkorn	Vernal	Khapli	
163	4-	4=	4-	X	4-	4	4	4-	X	3++	<u> </u>	1=	
164	4	4-	4=	3+	0;	0;	0;	3++	X=	1-	3+	0;	
165	4	X <u>+</u>	2	0;	X-	X-	X=	X <u>+</u>	X=	3	4-	1 <u>+</u>	
166	4-	1++	2 <u>+</u>	0;	1=	0;	0;	4-	0;	3+	1=	1-	
167	4	2-	2++	1-	0;	0;	0;	x	0;	3++	X	1	
168	4	X	0	X	0;	0;	0;	X	0;	3	3+	1=	
169	4	X	0	0	4	4	4	4	4	0;	3+	1	
170	4	4	1	x	4	4	4	4	4	0;	4	ı'	
171	4	X+	3-	0;	1	0;	0;	X-	3+	3+	0;	1-	
172	4	X	3-	2-	1-	0;	0;	4-	4	3	0;	1-	
173	4	2	4-	3-	0;	0;	0;	4	4-	1-	0;	1	
174 · · · ·	4	2	4-	3=	4-	X	X	4-	4-	1-	0;	1	
175	4	2+	4	1 <u>+</u>	1-	0;	0;	x	4-	3 <u>+</u>	X	1-	
176	4	4	0	4-	1-	1-	1-	4	4-	1	0;	1-	
177 · · · ·	4	2	4-	3-	1-	1-	1-	4-	3+	3	0;	1-	
178	4	1	0;	0;	4	X-	X	X+	4	3+	0;	1	
179	4	X	4	4-	4	4	4	4	4-	3+	1-	1-	
180 · · · ·	4+	2=	0;	1=	1 <u>+</u>	1=	1-	X <u>+</u>	1=	5+	0;	1 <u>+</u>	
181	4	X+	0;	0;	0;	0;	0;	X	1-	3 <u>+</u>	5+	0;	
182	4-	2++	2 <u>+</u>	0;	1++	1 <u>+</u>	1	X+	1	3	3	1 <u>+</u>	
183••••	4	X	0	3=	1-	0;	0;	X	4-	1-	4-	1-	
184	4	3	0	0;	3	3	3-	4=	4	1	4	1	
185	4	Х-	0	0;	1=	0;	1=	1=	4	1=	0;	1	

Table 4, p. 9

					Mean	reacti	on of	differe	ential	varie	ties	
Physiologic race	Little Club	Marquis	Reliance	Kota	Arnautka	Mindum	Spelmar	Kubanka	Acme	Einkorn	Vernal	Khapli
186	4	1	0	0;	1	0;	0;	4=	4=	1	0;	1
187	4	4	5	5	4-	5++	2	1++	1++	0	2	1
188	4	X +	X <u>+</u>	X <u>+</u>	X++	X++	X +	X+	X <u>+</u>	5+	3++	1 <u>+</u>
189	4	4	4	3+	4	4	4	4	4	4	4	4 ^c

Race 15A has a tendency to produce weaker infection than is represented by infection types recorded in the table; biotype B has a tendency to produce heavier infection than those recorded.

Race 53A has a tendency to produce type 2= on Reliance, and there is a tendency toward the production of type X on Armautka, Mindum, and Spelmar. This biotype may eventually be described as an independent race, depending on the results of thorough studies of the type-X infection.

Race 59A produces type 2 on Marquis and Reliance. Race 59B has a tendency to produce type 2+ on Marquis and type 2 on Reliance and on Kota.

Race 69A has a tendency to produce type X on Kubanka. Race 69B produces type 2 on Kota and type X on Kubanka. These two biotypes may eventually be described as a new race on the basis of the X reaction on Kubanka.

^{*} Infection types given in table 4 are produced by biotypes most frequently encountered up to the present. There may be some deviation from the recorded types when other closely related biotypes are encountered. The following are the most important examples:

FIGURE 1. DIAGRAM SHOWING METHOD OF ISOLATING
RACES FROM A MIXED FIELD COLLECTION

