

Indian Agricultural Research Institute, New Delhi.

MGIPC-S8-45 AR/52-8-6-53-1,000.

BEILSTEINS HANDBUCH DER ORGANISCHEN CHEMIE

VIERTE AUFLAGE

ZWEITES ERGÄNZUNGSWERK

DIE LITERATUR VON 1920-1929 UMFASSEND

HERAUSGEGEBEN UND BEARBEITET VON FRIEDRICH RICHTER

ACHTER BAND
ALS ERGANZUNG DES ACHTEN BANDES DES HAUPTWERKES

BERLIN · GÖTTINGEN · HEIDELBERG SPRINGER - VERLAG 1948

FRIEDRICH RICHTER Berlin, 1. 9. 1896

unter Mitarbeit von

GÜNTHER AMMERLAHN Berlin, 9. 7. 1902 RUDOLF OSTERTAG

Neufreistett (Bad.), 29.3.1897

HILDEGARD BÄRMANN
Leipzig, 23. 10. 1905
MARGARETE BAUMANN
Metz, 25. 1. 1904
ERNA BEGER
Breisach (Bad.), 3. 8. 1898
INGRID DELITZSCH
Bad Schwalbach, 1. 12. 1920
ANNELOTTE FRÖLICH
Friedrichswerth (Thür.), 15. 5. 1907
ILSE GAEDE
Stettin, 15. 11. 1901

KARL GRIMM
Köln, 5. 4. 1920
HERIBERT GROLL
Straubing, 26. 1. 1901
URSULA JACOBSHAGEN
Imbshausen (Hann.), 20. 12. 1920
MARIA KOBEL
Liegnitz (Schles.), 5. 8. 1897
ELISABETH MATERNE
Bentschen (Posen), 27. 11. 1895
HANS RICHTER
Berlin, 2. 5. 1901

547 B 424H

Inhalt.

Verzeichnis der Kürzungen für die Literatur-Quellen	VIII
Zeittafel für die wichtigsten Zeitschriften	
Weitere Abkürzungen	$\mathbf{X}\mathbf{X}\mathbf{X}$
Übertragung der griechischen Buchstaben in Zahlen	$\mathbf{X}\mathbf{X}\mathbf{X}$
Zusammenstellung der Zeichen für Maßeinheiten	XXXI
Erklärungen der Hinweise auf das Hauptwerk und die Ergänzungswerke	XXXI

2. Abteilung.

Isocyclische Verbindungen.

(Fortsetzung.)

III. Oxo-Verbindungen.

(Schluß.)

J. Oxy-oxo-Verbindungen.	d) Oxy-oxo-Verbindungen C _n H _{2n-8} O ₂ 33
1. Oxy-oxo-Verbindungen	Oxy-oxo-Verbindungen C ₇ H ₆ O ₂ 30 Salicylaldehyd 30
mit 2 Sauerstoffatomen.	Funktionelle Derivate des Salicyl-
mu z sawerwojjawomen.	aldahyda AC
a) Oxy-oxo-Verbindungen $C_nH_{2n-2}O_2$	Substitutionsprodukte des Salicyl-
Oxy-oxo-Verbindungen C ₅ H ₈ O ₂	oldobrida 44
(Cyclopentanolon)	Derivate von Schwefelanalogen des
Oxy-oxo-Verbindungen $C_6H_{10}O_2$	Saliowlaldohyda 54
(z. B. Cyclohexanolon)	m-Oxy-benzaldehyd
Oxy-oxo-Verbindungen $C_7H_{12}O_2$,	n Ovy hongoldshyd
$C_0H_{14}O_2$, $C_0H_{10}O_2$	Funktionalla Derivata dos n Ovy
Oxy-oxo-Verbindungen $C_{10}H_{16}O_2$	hangaldahyda (g. R. Anigaldahyd) 84
	Substitution spreadults dos n Ovu
0 14 44 4	benzaldehyds
	Schwefelanalogon des p-Oxy-benz-
	aldehyds
	Oxy-oxo-Verbindungen C.H.O.
	14 (z. B. Oxyacetophenone) 8
	Oxy-oxo-Verbindungen C ₂ H ₁₀ O ₂
Oxy-oxo-Verbindungen C ₁₀ H ₁₆ O ₂	(z. B. Oxypropiophenone, Oxy-
	phenylacetone)
	Oxy-oxo-Verbindungen C ₁₀ H ₁₂ O ₂
Oxy-oxo-Verbindungen $C_{13}H_{22}O_2$,	(z. B. Oxybutyrophenon, Oxybenzyl-
74-24-3	aceton, Trimethylsalicylaldehyd) . 11
	31 Oxy-oxo-Verbindungen $C_{11}H_{14}O_2$
Oxy-oxo-Verbindungen $C_7\bar{H}_8\bar{O}_2$,	(z. B. Thymotinaldehyd) 120
	31 Oxy-oxo-Verbindungen $C_{12}H_{16}O_2$ 13
Oxy-oxo-Verbindungen $C_0H_{10}O_0$	Oxy-oxo-Verbindungen $C_{13}H_{16}O_{2}$ 142
Oxy-oxo-Verbindungen $C_{10}H_{14}O_2$ usw.	Oxy-oxo-Verbindungen $C_{14}H_{20}O_2$ usw. 144

e)	Oxy-oxo-Verbindungen $C_nH_{2n-10}O_2$ 149	Oxy-oxo-Verbindungen C ₂₁ H ₁₆ O ₂
	Oxy-oxo-Verbindungen C ₉ H ₆ O ₃	(z. B. Oxyphenylchalkon) 253
	(z. B. Cumaraldehyde) 149	Oxy-oxo-Verbindungen C ₃₂ H ₁₈ O ₃ 254
	Oxy-oxo-Verbindungen C ₁₀ H ₁₀ O ₂	o) Oxy-oxo-Verbindungen C _n H _{2 n-28} O ₂ 256
	(z. B. Oxybenzylidenacetone) 153 Oxy-oxo-Verbindungen $C_{11}H_{12}O_2$ 158	Oxy-oxo-Verbindungen $C_{21}H_{14}O_{2}$
	Oxy-oxo-Verbindungen $C_{11}H_{12}O_2$ 158 Oxy-oxo-Verbindungen $C_{12}H_{14}O_2$ 162	(z. B. Benzoylanthranol) 256
	Oxy-oxo-Verbindungen $C_{13}H_{16}O_2$ usw. 164	Oxy-oxo-Verbindungen C ₂₂ H ₁₆ O ₂
		(z. B. Naphthoin) 257
"	Oxy-oxo-Verbindungen $C_nH_{2n-12}O_2$ 166 Oxy-oxo-Verbindungen $C_pH_sO_2$,	p) Oxy-oxo-Verbindungen C _n H _{2 n-30} O ₂ 258
	$C_{10}H_8O_2 \dots \dots$	q) Oxy-oxo-Verbindungen C _n H _{2 n-32} O ₂ 258
٠,	Oxy-oxo-Verbindungen $C_{11}H_{10}O_2$,	Oxy-oxo-Verbindungen C ₂₃ H ₁₄ O ₃
	$C_{12}H_{12}O_2$ usw	(z. B. Oxyphenylbenzanthron) 258
g)	$0xy - oxo - Verbindungen C_nH_{2n-14}O_2$ 171	Oxy-oxo-Verbindungen C ₂₅ H ₁₈ O ₂ ,
σ,	Oxy-oxo-Verbindungen C ₁₁ H ₈ O ₂	$C_{26}H_{20}O_2$, $C_{29}H_{26}O_2$, $C_{30}H_{26}O_3$ usw 259
	(z. B. Oxynaphthaldehyde) 171	r) $0xy - 0xo - Verbindungen C_nH_{2n-86}O_2$ 260
	Oxy-oxo-Verbindungen C ₁₂ H ₁₀ O ₂	Oxy-oxo-Verbindungen C ₂₇ H ₁₈ O ₂ 260
	(z. B. Acetonaphthole)	Oxy-oxo-Verbindungen C ₃₂ H ₃₈ O ₃ 260
	Oxy-oxo-Verbindungen C ₁₃ H ₁₂ O ₂ usw. 179	s) $0xy - oxo - Verbindungen C_nH_{2n-38}O_2$ 260
h)	Oxy-oxo-Verbindungen C _n H _{2 n-16} O ₂ 182	t) $0xy-0xo-Verbindungen C_nH_{2n-40}O_2$ 260
	Oxy-oxo-Verbindungen $C_{13}H_{10}O_2$ (z. B. Oxybenzophenone) 182	Oxy-oxo-Verbindungen $C_{29}H_{18}O_2$ 260
	Oxy-oxo-Verbindungen $C_{14}H_{12}O_2$	Oxy-oxo-Verbindungen C ₃₂ H ₂₄ O ₂ ,
	(z. B. Benzoin) 192	$C_{32}H_{26}O_2$
	Oxy-oxo-Verbindungen C ₁₅ H ₁₄ O ₂	u) Oxy-oxo-Verbindungen C ₁ H _{2 n-42} O ₂ 261
	(z. B. Oxyhydrochalkon) 202	Oxy-oxo-Verbindungen $C_{32}H_{22}O_{2}$, $C_{33}H_{24}O_{2}$, $C_{34}H_{26}O_{2}$, $C_{34}H_{26}O_{3}$
	Oxy-oxo-Verbindungen C ₁₅ H ₁₆ O ₂ usw. 209	0331124029 034112602
i)	Oxy-oxo-Verbindungen $C_nH_{2n-18}O_2$ 212	2. Oxy-oxo-Verbindungen
	Oxy-oxo-Verbindungen C ₁₃ H ₈ O ₂	mit 3 Sauerstoffatomen.
	(z. B. Oxyfluorenon) 212	•
	Oxy-oxo-Verbindungen $C_{14}H_{10}O_2$ (z. B. Oxyanthrone) 213	a) Oxy-oxo-Verbindungen C _n H _{2 n-2} O ₃ 262
	Oxy-oxo-Verbindungen C ₁₅ H ₁₂ O ₂	Oxy-oxo-Verbindungen $C_7H_{12}O_3$, $C_{10}H_{18}O_3$ 262
	(z. B. Oxychalkone) 217	b) $0xy - 0x0 - Verbindungen C_nH_{2n-4}O_3$ 262
	Oxy-oxo-Verbindungen $C_{16}H_{14}O_2$ 226	Oxy-oxo-Verbindungen $C_7H_{10}O_3$,
	Oxy-oxo-Verbindungen $C_{17}H_{16}O_2$ usw. 228	$C_{10}H_{16}O_3$ 262
k)	Oxy-oxo-Verbindungen $C_nH_{2n-20}O_2$ 230	c) Oxy-oxo-Verbindungen C _n H _{2 n-6} O ₃ 263
	Oxy-oxo-Verbindungen C ₁₅ H ₁₀ O ₂ ,	Oxy-oxo-Verbindungen C ₅ H ₄ O ₃ ,
	$C_{16}H_{12}O_2 \dots 230$	$C_6H_6O_8$, $C_{10}H_{14}O_8$, $C_{14}H_{22}O_8$ 263
• •	Oxy-oxo-Verbindungen $C_{17}H_{14}O_{2}$ 231 Oxy-oxo-Verbindungen $C_{18}H_{16}O_{2}$ usw. 233	d) Oxy-oxo-Verbindungen C _n H _{2n-8} O ₃ 264
'n		Oxy-oxo-Verbindungen $C_6H_4O_3$
1)	Oxy-oxo-Verbindungen $C_nH_{2n-22}O_2$ 234 Oxy-oxo-Verbindungen $C_{17}H_{13}O_2$	(z. B. Oxybenzochinone) 264
•	(z. B. Benzoylnaphthole) 234	Oxy-oxo-Verbindungen C ₇ H ₄ O ₃
	Oxy-oxo-Verbindungen C ₁₈ H ₁₄ O ₂ usw. 236	(z. B. 2.3-Dioxy-benzaldehyd, Re- sorcylaldehyd, Gentisinaldehyd,
'n	Oxy-oxo-Verbindungen C _n H _{2 n-24} O ₂ 237	Protocatechualdehyd, 3.5-Dioxy-
-,	Oxy-oxo-Verbindungen C ₁₇ H ₁₀ O ₂	benzaldehyd usw.)
	(z. B. Oxybenzanthrone) 237	Oxy-oxo-Verbindungen C ₈ H ₈ O ₃
	Oxy-oxo-Verbindungen $C_{18}H_{12}O_{2}$. 244	(z. B. Resacetophenon, Dioxy-
	Oxy-oxo-Verbindungen C ₁₉ H ₁₄ O ₂	phenylacetaldehyd usw.) 293
.*	(z. B. Oxyfuchson)	Oxy-oxo-Verbindungen C. H. O.
	(z. B. Phenylbenzoine) $\cdot \cdot \cdot$	Oxy-oxo-Verbindungen C ₁₀ H ₁₂ O ₃ (z. B. Dioxybutyrophenon, Oxy-
	Oxy-oxo-Verbindungen C ₂₁ H ₁₈ O ₂	thymochinon) 309
	(z. B. Benzylbenzoin) 248	Oxy-oxo-Verbindungen C ₁₁ H ₁₄ O ₃ 312
	Oxy-oxo-Verbindungen $C_{22}H_{20}O_2$ 250	Oxy-oxo-Verbindungen C ₁₂ H ₁₆ O ₃
٠,	Oxy-oxo-Verbindungen C ₂₇ H ₃₀ O ₂	(z. B. Dioxycaprophenon) 314
	(z. B. Thymolbenzein) 250	Oxy-oxo-Verbindungen C ₁₂ H ₁₈ O ₃ . 315
	Oxy-oxo-Verbindungen C _n H _{2 n-26} O ₂ 251	Oxy-oxo-Verbindungen C ₁₄ H ₂₀ O ₃ usw. 316
٠, ١	Oxy-oxo-Verbindungen C ₁₀ H ₁₂ O ₂ 251	e) Oxy-oxo-Verbindungen C _n H _{2n-10} O ₃ 321
	Oxy-oxo, Verbindungen C ₂₀ H ₁₄ O ₂	Oxy-oxo-Verbindungen C _e H _e O _s

	Oxy-oxo-Verbindungen C ₂ H ₈ O ₃	Oxy-oxo-Verbindungen C ₁₉ H ₁₈ O ₃	422
	(z. B. Dioxyzimtaklehyd, Dioxy-	Oxy-oxo-Verbindungen C ₂₁ H ₁₆ O ₃	423
	hydrindon) 321	(z. B. Benzoylbenzoin)	
	Oxy-oxo-Verbindungen C ₁₀ H ₁₀ O ₃		
	(s. B. Dioxybenzylidenaceton usw.) 325 Oxy-oxo-Verbindungen $C_{11}H_{12}O_3$ 329	o) Oxy-oxo-Verbindungen C _n H _{2 n-28} O ₃	420
	Oxy-oxo-Verbindungen $C_{12}H_{14}O_3$ 334	Oxy-oxo-Verbindungen C ₂₀ H ₁₂ O ₃	495
	Oxy-oxo-Verbindungen $C_{13}H_{16}O_{3}$ 335	(z. B. Oxydinaphthylchinon) Oxy-oxo-Verbindungen C ₂₁ H ₁₄ O ₂	425
	Oxy-oxo-Verbindungen C ₁₄ H ₁ ,O ₃ usw. 336	(z. B. Dioxydinaphthylketon)	425
f)	Oxy-oxo-Verbindungen C _n H _{2 n-12} O ₃ 338	Oxy-oxo-Verbindungen C ₂₂ H ₁₆ O ₃ usw.	
-,	Oxy-oxo-Verbindungen C ₉ H ₆ O ₃	1	
	(Oxyindandion) 338	p) $0xy - 0x0 - Verbindungen C_nH_{2n-30}O_3$ $0xy - 0x0 - Verbindungen C_{21}H_{12}O_3$	761
	Oxy-oxo-Verbindungen C ₁₀ H _e O ₈	(z. B. Oxybenzoylenanthron)	427
	(z. B. Oxystyrylglyoxal) 339	Oxy-oxo-Verbindungen $C_{23}H_{16}O_3$	407
	Oxy-oxo-Verbindungen $C_{11}H_{10}O_3$ 339		
	Oxy-oxo-Verbindungen C ₁₃ H ₁₃ O ₃ usw. 340	q) 0xy-oxo-Verbindungen C _n H _{2 n} -32O ₃	
g)	Oxy-oxo-Verbindungen C _n H _{2 n-14} O ₃ 341	r) Oxy-oxo-Verbindungen C _n H _{2 n-34} O ₃	
	Oxy-oxo-Verbindungen C ₁₀ H ₆ O ₃	s) $0xy - 0xo - Verbindungen C_nH_{2n-36}O_3$	
	(z. B. Oxynaphthochinone) 341 Oxy-oxo-Verbindungen C ₁₁ H ₈ O ₃	t) $0xy - oxo - Verbindungen C_nH_{2n-38}O_3$	430
	(z. B. Dioxynaphthaldehyde) 349	u) $0xy - 0x0 - Verbindungen C_nH_{2n-42}O_3$	43 0
	Oxy-oxo-Verbindungen C ₁₂ H ₁₀ O ₃ usw. 351	v) $0xy - oxo - Verbindungen C_nH_{2n-52}O_3$	43 0
h)	Oxy-oxo-Verbindungen $C_nH_{2n-16}O_3$ 352	, ,	
ш,	Oxy-oxo-Verbindungen $C_{13}H_{10}O_3$	3. Oxy-oxo-Verbindungen	
	(z. B. Dioxybenzophenone) 352	mit 4 Sauerstoffatomen.	
	Oxy-oxo-Verbindungen C ₁₄ H ₁₂ O ₃	a) $0xy - 0xo - Verbindungen C_nH_{2n-4}O_4$	121
	(z. B. Dioxydesoxybenzoin) 357		
	Oxy-oxo-Verbindungen C ₁₅ H ₁₄ O ₃	b) Oxy-oxo-Verbindungen C _n H _{2 n-6} O ₄	
	(z. B. Isolapachol und Lapachol) . 362	c) $0x_0 - 0xy - Verbindungen$ $C_nH_{2n-8}O_4$	432
• .	Oxy-oxo-Verbindungen $C_{16}H_{16}O_3$ usw. 366	Oxy-oxo-Verbindungen C ₆ H ₄ O ₄	432
1)	Oxy-oxo-Verbindungen C _n H _{2n-18} O ₃ 367	(Dioxybenzochinone) Oxy-oxo-Verbindungen C ₇ H ₆ O ₄	404
	Oxy-oxo-Verbindungen $C_{18}H_6O_3$ 367 Oxy-oxo-Verbindungen $C_{18}H_8O_3$	(Trioxybenzaldehyde)	435
	(z. B. Dioxyfluorenon) 367	Oxy-oxo-Verbindungen C ₈ H ₈ O ₄	
	Oxy-oxo-Verbindungen C ₁₄ H ₁₀ O ₃		439
	(z. B. Dioxyanthrone) 368	Oxy-oxo-Verbindungen $C_9H_{10}O_4$	448
	Oxy-oxo-Verbindungen $C_{15}H_{12}O_3$	Oxy-oxo-Verbindungen C ₁₀ H ₁₂ O ₄	
	(z. B. Dioxychalkone) 374	(z. B. Dioxythymochinon)	
	Oxy-oxo-Verbindungen $C_{16}H_{14}O_3$ usw. 384	Oxy-oxo-Verbindungen $C_{11}H_{14}O_4$ usw.	45 0
k)	Oxy-oxo-Verbindungen $C_nH_{2n-20}O_3$ 386	d) $0xy - 0xo - Verbindungen C_nH_{2n-10}O_4$	
	Oxy-oxo-Verbindungen $C_{14}H_8O_8$	Oxy-oxo-Verbindungen $C_7H_4O_4$	454
	(Oxyanthrachinone und Oxyphen-	Oxy-oxo-Verbindungen C ₈ H ₆ O ₄ und	455
	anthrenchinone)	$C_9H_8O_4$ (z. B. Trioxyzimtaldehyd) . Oxy-oxo-Verbindungen $C_{10}H_{10}O_4$ usw.	450 450
	Oxy-oxo-Verbindungen $C_{16}H_{12}O_3$		
	Oxy-oxo-Verbindungen $C_{17}H_{14}O_3$ 404	e) Oxy-oxo-Verbindungen C _n H _{2 n-12} O ₄	458
	Oxy-oxo-Verbindungen C ₁₈ H ₁₆ O ₃ usw. 408	Oxy-oxo-Verbindungen $C_9H_9O_4$ (z. B. Trioxyindenon)	458
D	Oxy-oxo-Verbindungen C _n H _{2 n-22} O ₃ 409	Oxy-oxo-Verbindungen $C_{10}H_8O_4$,	10 0
-,	Oxy-oxo-Verbindungen $C_{16}H_{10}O_3$ 409		459
	Uxy-oxo-Verbindungen $C_{12}H_{12}O_{2}$ 410	Oxy-oxo-Verbindungen $C_{12}H_{12}O_4$	
	Oxy-oxo-Verbindungen $C_{10}H_{10}O_{3}$ 411	f) Oxy-oxo-Verbindungen C _n H _{2 n-14} O ₄	
	Oxy-oxo-Verbindungen $C_{20}H_{18}O_3$ usw. 412	Oxy-oxo-Verbindungen C ₁₀ H ₆ O ₄	
n)	Oxy-oxo-Verbindungen CnH2n-24O3 415	(Dioxynaphthochinone)	461
	Oxy-oxo-Verbindungen $C_{17}H_{10}O_3$	Oxy-oxo-Verbindungen $C_{11}H_8O_4$,	
	(z. B. Dioxybenzanthrone) 415		465
	Oxy-oxo-Verbindungen C ₁₈ H ₁₄ O ₃	g) $0xy - 0xo - Verbindungen C_nH_{2n-16}O_4$	
	(z. B. Aurin)	Oxy-oxo-Verbindungen $C_{12}H_{2}O_{4}$	
	(z. B. Rosolsäure) $\cdot \cdot \cdot$	Oxy-oxo-Verbindungen C ₁₃ H ₁₀ O ₄	400
	Oxy-oxo-Verbindungen C ₂₁ H ₁₈ O ₃ usw. 420		466
m)	Oxy-exe-Verbindungen $C_nH_{2n-26}O_3$ 422	Oxy-oxo-Verbindungen $C_{14}H_{12}O_4$ (z. B. Trioxydesoxybenzoin)	160
-,	Oxy-oxo-Verbindungen C ₁₈ H ₁₀ O ₃ 422	Oxy-oxo-Verbindungen $C_{15}H_{14}O_4$	46 9
	(g. R. Orvnanhthaeanchinon) 499	(z R Triozyhydrochelkon)	474

4.1	Arr. are Washindsones C W	a) Arr. are Verkindensen A H A. 527
=,	Oxy-exe-Verbindungen C _n H _{2 n-18} O ₄ 473	e) Oxy-oxo-Verbindungen C _n H _{2 n-14} O ₅ 537
	Oxy-oxo-Verbindungen C ₁₂ H ₆ O ₄	Oxy-oxo-Verbindungen C ₁₀ H ₆ O ₅
	(Dioxyacenaphthenchinone) 473	(z. B. Trioxynaphthochinon) 537
	Oxy-oxo-Verbindungen C ₁₃ H ₈ O ₄	Oxy-oxo-Verbindungen $C_{11}H_8O_5$
,	(Trioxyfluorenon) 473	(z. B. Purpurigallin, Oxydroseron) . 538
	Oxy-oxo-Verbindungen C ₁₄ H ₁₀ O ₄	_ · ·
	(Dioxybenzile, Trioxyanthrone) 473	f) $0xy-0xo-Verbindungen C_nH_{2n-16}O_5$ 539
	Oxy-oxo-Verbindungen C ₁₅ H ₁₂ O ₄	Oxy-oxo-Verbindungen C ₁₂ H ₁₀ O ₅
	(a. D. Triorrahallione) 470	(z. B. Tetraoxybenzophenone) 539
	(z. B. Trioxychalkone) 479	Oxy-oxo-Verbindungen $C_{14}H_{12}O_5$
	Oxy-oxo-Verbindungen C ₁₆ H ₁₄ O ₄ usw. 485	(z. B. Trioxybenzoin) 541
n	Oxy-oxo-Verbindungen CnH2n-20O4 486	Oxy-oxo-Verbindungen C ₁₅ H ₁₄ O ₅
٠,	Ovy. ovo. Vorbindungen C H O 486	(Tetraoxyhydrochalkone) 542
	Oxy-oxo-Verbindungen C ₁₄ H ₈ O ₄ 486	
	Alizarin 487	Oxy-oxo-Verbindungen C ₁₆ H ₁₆ O ₅
	Chinizarin 492	(z. B. Shikonin und Alkannin) 543
	Anthrarufin 496	Oxy-oxo-Verbindungen $C_{17}H_{18}O_5$,
	Chrysazin 500	$C_{18}H_{30}O_5$ 545
	Hystazarin 504	
	Dioxyphenanthrenchinone 506	g) Oxy-oxo-Verbindungen C _n H _{2 n-18} O ₅ 545
~	Oxy-oxo-Verbindungen C ₁₅ H ₁₀ O ₄	Oxy-oxo-Verbindungen C ₁₃ H ₈ O ₅
		(Tetraoxyfluorenon) 545
	(z. B. Dioxymethylanthrachinon wie	Oxy-oxo-Verbindungen $C_{14}H_{10}O_5$
	Rubiadin, Chrysophansaure) 508	(z. B. Tetraoxyanthron) 546
	Oxy-oxo-Verbindungen $C_{16}H_{12}O_4$,	Oxy-oxo-Verbindungen $C_{15}H_{12}O_5$
	$C_{17}H_{14}O_4$ 511	(Tetraoxychalkone) 546
L \	Oxy-oxe-Verbindungen C _n H _{2 n-22} O ₄ 512	Oxy-oxo-Verbindungen C ₁₆ H ₁₄ O ₅ ,
		$C_{23}H_{28}O_5 \dots \dots$
1)	Oxy-oxo-Verbindungen $C_nH_{2n-24}O_4$ 513	f
	Oxy-oxo-Verbindungen $C_{17}H_{10}O_4$	h) $0xy - 0xo - Verbindungen C_nH_{2n-20}O_5 549$
	(z. B. Trioxybenzanthron) 513	Anthragallol 549
	Oxy-oxo-Verbindungen C ₁₈ H ₁₂ O ₄	Purpurin
	(z. B. Polyporsäure) 514	Oxyanthrarufin 554
	Oxy-oxo-Verbindungen C ₂₀ H ₁₆ O ₄ usw. 516	Flavopurpurin
		Anthrapurpurin
m)	Oxy-oxo-Verbindungen $C_nH_{2n-26}O_4$ 517	
	Oxy-oxo-Verbindungen C ₁₈ H ₁₀ O ₄	Oxychrysazin
	(z. B. Dioxynaphthacenchinone) 517	Trioxyphenanthrenchinone 558
	Oxy-oxo-Verbindungen $C_{22}H_{18}O_4$,	Oxy-oxo-Verbindungen $C_{15}H_{10}O_5$
	$\tilde{C}_{23}H_{20}O_4$	(z. B. Morindon, Aloeemodin) 559
m)	Oxy-oxo-Verbindungen C _n H _{2 n-28} O ₄ 518	Oxy-oxo-Verbindungen $C_{16}H_{12}O_5$ 565
-		Oxy-oxo-Verbindungen $C_{17}H_{14}O_5$ usw. 565
0)	Oxy-oxo-Verbindungen $C_nH_{2n-30}O_4$ 520	
P)	Oxy-oxo-Verbindungen $C_nH_{2n-32}O_4$ 521	i) Oxy-oxo-Verbindungen C _n H _{2 n-22} O ₅ 568
	Oxy-oxo-Verbindungen C _n H _{2 n-34} O ₄ 522	k) $0xy - 0xo - Verbindungen C_nH_{2n-24}O_5$ 570
		l) $0xy - oxo - Verbindungen C_nH_{2n-30}O_5$ 571
r)	Oxy-oxo-Verbindungen $C_nH_{2n-36}O_4$ 522	m) Oxy-oxo-Verbindungen C _n H _{2 n-32} O ₅ 571
8)	Oxy-exo-Verbindungen $C_nH_{2n-38}O_4$ 523	•
	Oxy-oxo-Verbindungen C _n H _{2 n-40} O ₄ 525	n) $0xy - oxo - Verbindungen C_nH_{2n-34}O_5 571$
	$0xy - 0xo - Verbindungen C_nH_{2n-42}O_4$ 526	5. Oxy-oxo - Verbindungen
V)	$0xy - oxo - Verbindungen C_nH_{2n-44}O_4$ 528	
	Oxy-oxo-Verbindungen C _{n2} H _{n-48} O ₄ 529	mit 6 Saverstoffatomen.
		a) $0xy - 0xo - Verbindungen C_nH_{2n-8}O_6$ 572
X)	Oxy-oxo-Verbindungen $C_nH_{2n-52}O_4$ 529	
		b) Oxy-oxo-Verbindungen C _n H _{2 n-10} O ₆
	4. Oxy-oxo-Verbindungen	(Rhodizonsäure) 572
		e) $Oxy - oxo - Verbindungen C_nH_{2n-12}O_6$ 573
	mit 5 Sauerstoffatomen.	d) Oxy-oxo-Verbindungen C _n H _{2n-16} O ₆ 573
a)	Oxy-oxo-Verbindungen C _n H _{2 n-2} O ₅ 532	
		e) $0xy - 0xo - Verbindungen C_nH_{2n-18}O_6$ 577
w)	$0xy - 0xo - Verbindungen C_nH_{2n-8}O_5$	Oxy-oxo-Verbindungen $C_{14}H_{16}O_6$
	(z. B. Krokonsäure, Tetraoxyaceto-	(z. B. Tetraoxybenzil) 577
	phenone, Tetrahydrohumulon) 532	Oxy-oxo-Verbindungen C ₁₅ H ₁₂ O ₆
e)	Oxy-oxe-Verbindungen C _n H _{2 n-10} O ₅ 535	(z. B. Pentaoxychalkone) 578
٠,	Oxy-oxo-Verbindungen $C_8H_6O_5$	Oxy-oxo-Verbindungen C ₂₂ H ₂₀ O ₆ 582
	(Trioxyphenylglyoxal) 535	f) $0xy - 0xo - Verbindungen C_nH_{2n-20}O_6$ 582
	Oxy-oxo-Verbindungen C ₁₀ H ₁₀ O ₅ usw. 535	Oxy-oxo-Verbindungen C ₁₄ H ₆ O ₆
d)	Oxy-oxa-Verbindungen C _n H _{2n-12} O ₅ 537	(Tetraoxyanthrachinone) 582
•	Humulon C. H.O 537	Oxy-oxo-Verbindungen C ₁₆ H ₁₂ O ₂ 587

b) Oxy-oxo-Verbindungen ChH2n-2406 588 Oxy-oxo-Verbindungen ChH2n-1608 604 Oxy-oxo-Verbindungen ClaH1nOs (z. B. Atromentin) 588 Oxy-oxo-Verbindungen ChH2n-2606 502 (k. B. Resaurin) 591 (b) Oxy-oxo-Verbindungen ChH2n-2606 503 (b) Oxy-oxo-Verbindungen ChH2n-2606 503 (b) Oxy-oxo-Verbindungen ChH2n-3606 503 (b) Oxy-oxo-Verbindungen ChH2n-3606 504 (Dioxypentacendichinone) 604 (D) Oxy-oxo-Verbindungen ChH2n-3606 504 (D) Oxy-oxo-Verbindungen ChH2n-3606 504 (D) Oxy-oxo-Verbindungen ChH2n-3606 504 (D) Oxy-oxo-Verbindungen ChH2n-3606 505 Oxy-oxo-Verbindungen ChH2n-3606 506 Oxy-oxo-Verbindungen ChH2n-3		$0xy$ -oxo-Verbindungen $C_nH_{2n-22}O_6$ 588	7. Oxy - oxo - Verbindungen
(z. B. Atromentin)	b)	Oxy-oxo-Verbindungen $C_nH_{2n-24}O_6$ 588	mit 8 Sauerstoffatomen.
0xy-oxo-Verbindungen C ₁₈ H ₁₄ O ₆ (z. B. Resaurin)		Oxy-oxo-Verbindungen C ₁₈ H ₁₂ O ₆	a) $Oxy - oxo - Verbindungen C_nH_{2n-16}O_8$ 604
(ž. B. Resaurin)		Oxy-oxo-Verbindungen CHO.	I The state of the
1) 0xy - 0xo - Verbindungen CnH2n-28O6 592		$(z. B. Resaurin) \dots 591$	
k) 0xy-oxo-Verbindungen CnH2n-28O6 593 1) 0xy-oxo-Verbindungen CnH2n-30O6 593 m) 0xy-oxo-Verbindungen CnH2n-32O6 593 n) 0xy-oxo-Verbindungen CnH2n-33O6 594 (Dioxypentacendichinone) . 594 o) 0xy-oxo-Verbindungen CnH2n-33O6 594 (Dioxypentacendichinone) . 594 o) 0xy-oxo-Verbindungen CnH2n-33O6 594 (Dioxy-oxo-Verbindungen CnH2n-33O6 594 (Dioxy-oxo-Verbindungen CnH2n-33O6 595 o) 0xy-oxo-Verbindungen CnH2n-33O6 (z. B. Gossypol) . 609 o) 0xy-oxo-Verbindungen CnH2n-33O6 (z. B. Gossypol) . 609 o) 0xy-oxo-Verbindungen CnnH2n-33O6 (z. B. Gossypol) . 609 o) 0xy-oxo-Verbindungen CnnH2n-406 (c. B. Tetraoxydihydrodianthron) . 609 o) 0xy-oxo-Verbindungen CnnH2n-406 (c. B. Tetraoxydihydrodianthron) . 609 o) 0xy-oxo-Verbindungen CnnH2n-406 (c. B. Tetraoxydihydrodianthron) . 609 o) 0xy-oxo-Verbindungen CnH2n-406 (c. B. Tetraoxydihydrodianthron) . 609 o) 0xy-oxo-Verbindungen CnH2n-500 (c. B. Tetraoxydihydrodianthron) . 609 o) 0xy-oxo-Verbindungen CnH2n-500 (c. B. Tetraoxydihydrodianthron) . 600 o) 0xy-oxo-Verbindungen CnH2n-500 (c. B. Tetraoxydihydrodianthron) . 600 o) 0xy-oxo-Verbindungen CnH2n-500 (c. B. Tetraoxydihydrodianthron) . 600 o) 0xy-oxo-Verbindungen Cn	i)	· ·	
(Tetracxyanthradichinone)			d) Oxy-exe-Verbindungen C _n H _{2 n-22} O ₈
1	l)	Oxy-oxo-Verbindungen C _n H _{2 n-30} O ₆ 593	(Tetraoxyanthradichinone) 606
(Dioxypentacendichinone)	m)	Oxy-oxo-Verbindungen $C_nH_{2n-32}O_6$ 593	e) Oxy-oxo-Verbindungen C _n H _{2 n-24} O ₈ 607
o) 0xy-0x0-Verbindungen C _n H ₂ n-38O ₆ 594 p) 0xy-0x0-Verbindungen C _n H ₂ n-38O ₆ 595 Oxy-0x0-Verbindungen C _{2s} H _{1s} O ₆ (z. B. Tetraoxydihydrodianthron) . 595 Oxy-0x0-Verbindungen C ₃₀ H _{2s} O ₆ . 596 q) 0xy-0x0-Verbindungen C ₁₀ H ₂ n-42O ₆ 596 Oxy-0x0-Verbindungen C _{2s} H _{1s} O ₆ (Dioxydianthrachinonyle) 596 Oxy-0x0-Verbindungen C ₃₃ H _{2s} O ₆ . 598 r) 0xy-0x0-Verbindungen C ₃₁ H _{2s} O ₆ . 598 s) 0xy-0x0-Verbindungen C ₁₀ H ₂ n-48O ₆ 600 t) 0xy-0x0-Verbindungen C ₁₁ H ₂ n-48O ₆ 600 t) 0xy-0x0-Verbindungen C ₁₁ H ₂ n-150O ₆ 600 t) 0xy-0x0-Verbindungen C ₁₁ H ₂ n-150O ₆ 600 t) 0xy-0x0-Verbindungen C ₁₁ H ₂ n-150O ₆ 600 t) 0xy-0x0-Verbindungen C ₁₁ H ₂ n-18O ₇ 601 e) 0xy-0x0-Verbindungen C ₁₁ H ₂ n-18O ₇ 601 d) 0xy-0x0-Verbindungen C ₁₁ H ₂ n-18O ₇ 601 e) 0xy-0x0-Verbindungen C ₁₁ H ₂ n-18O ₇ 601 d) 0xy-0x0-Verbindungen C ₁₁ H ₂ n-18O ₇ 601 e) 0xy-0x0-Verbindungen C ₁₁ H ₂ n-22O ₇ (Pentaoxyanthrachinon) 603 e) 0xy-0x0-Verbindungen C ₁₁ H ₂ n-22O ₇ (Trioxyanthradichinon) 603 e) 0xy-0x0-Verbindungen C ₁₁ H ₂ n-22O ₇ 604 Alphabetisches Register 612	n)	Oxy-oxo-Verbindungen C _n H _{2 n-34} O ₆ 594	f) $0xy - 0xo - Verbindungen C_nH_{2n-30}O_8$
Day - 0x0 - Verbindungen			, · · · · · · · · · · · · · · · · · · ·
Oxy-oxo-Verbindungen C ₃₈ H ₁₈ O ₆ (z. B. Tetraoxydihydrodianthron). 595 Oxy-oxo-Verbindungen C ₃₀ H ₂₀ G ₆ . 596 q) Oxy-oxo-Verbindungen C ₁₈ H ₁₄ O ₆ (Dioxydianthrachinonyle) 596 Oxy-oxo-Verbindungen C ₃₈ H ₁₄ O ₆ (Dioxydianthrachinonyle) 596 Oxy-oxo-Verbindungen C ₃₈ H ₂₀ G ₆ . 598 r) Oxy-oxo-Verbindungen C ₁₈ H ₂₁ O ₆ (Dioxydianthrachinonyle) 596 Oxy-oxo-Verbindungen C ₁₈ H ₂₁ O ₆ (Dioxydianthrachinonyle) 596 Oxy-oxo-Verbindungen C ₁₈ H ₂₁ O ₆ (Dioxydianthrachinonyle) 596 Oxy-oxo-Verbindungen C ₁₈ H ₂₁ O ₆ (Dioxydianthrachinonyle) 596 Oxy-oxo-Verbindungen C ₁₈ H ₂₁ O ₆ (Dioxydianthrachinonyle) 596 Oxy-oxo-Verbindungen C ₁₈ H ₂₁ O ₆ (Dioxydianthrachinonyle) 596 Oxy-oxo-Verbindungen C ₁₈ H ₂₁ O ₆ (Dioxydianthrachinonyle) 596 Oxy-oxo-Verbindungen C ₁₈ H ₂₁ O ₆ (Dioxydianthrachinonyle) 693 8. Oxy-oxo-Verbindungen mit 9 Sauerstoffatomen. Bis-dioxycinnamoyl-phloroglucin . 611 9. Oxy-oxo-Verbindungen mit 10 Sauerstoffatomen. Tetraacetylgossypolon 611 10. Oxy-oxo-Verbindungen mit 12 Sauerstoffatomen. Filixsäure C ₃₅ H ₄₀ O ₁₂ 611 11. Oxy-oxo-Verbindungen mit 16 Sauerstoffatomen. Filixsäure C ₃₅ H ₄₀ O ₁₂ 611 Alphabetisches Register	•	•	g) Oxy-oxo-Verbindungen C _n H _{2 n-38} O ₈
(z. B. Tetraoxydihydrodianthron) . 595 Oxy-oxo-Verbindungen C ₃₀ H ₂₀ O ₆ . 596 q) Oxy-oxo-Verbindungen C _n H _{2n-42} O ₆ 598 Oxy-oxo-Verbindungen C _{nsh} H ₄ O ₆ Oxy-oxo-Verbindungen C _{3s} H ₄ O ₆ . 598 r) Oxy-oxo-Verbindungen C _{3s} H ₄ O ₆ . 598 s) Oxy-oxo-Verbindungen C _n H _{2n-4} O ₆ 598 s) Oxy-oxo-Verbindungen C _n H _{2n-4} O ₆ 598 s) Oxy-oxo-Verbindungen C _n H _{2n-4} O ₆ 598 s) Oxy-oxo-Verbindungen C _n H _{2n-4} O ₆ 598 s) Oxy-oxo-Verbindungen C _n H _{2n-4} O ₆ 600 t) Oxy-oxo-Verbindungen C _n H _{2n-5} O ₆ 600 v) Oxy-oxo-Verbindungen C _n H _{2n-5} O ₆ 600 f) Oxy-oxo-Verbindungen C _n H _{2n-5} O ₆ 600 f) Oxy-oxo-Verbindungen C _n H _{2n-1} O ₆ 601 f) Oxy-oxo-Verbindungen C _n H _{2n-1} O ₆ 601 f) Oxy-oxo-Verbindungen C _n H _{2n-1} O ₆ 601 f) Oxy-oxo-Verbindungen C _n H _{2n-1} O ₆ 601 f) Oxy-oxo-Verbindungen C _n H _{2n-1} O ₆ 601 f) Oxy-oxo-Verbindungen C _n H _{2n-1} O ₆ 601 f) Oxy-oxo-Verbindungen C _n H _{2n-1} O ₆ 601 f) Oxy-oxo-Verbindungen C _n H _{2n-1} O ₆ 601 f) Oxy-oxo-Verbindungen C _n H _{2n-1} O ₆ 601 f) Oxy-oxo-Verbindungen C _n H _{2n-1} O ₆ 601 f) Oxy-oxo-Verbindungen C _n H _{2n-1} O ₆ 601 f) Oxy-oxo-Verbindungen C _n H _{2n-1} O ₆ 600 find thron) 603 f(Hexaoxydianthron) 603 f(Dializarin) 610 f) Oxy-oxo-Verbindungen C _n H _{2n-1} O ₆ 600 find thron) 603 f(Dializarin) 610 f) Oxy-oxo-Verbindungen C _n H _{2n-1} O ₆ 600 find thron) 603 f(Dializarin) 610 f) Oxy-oxo-Verbindungen C _n H _{2n-1} O ₆ 600 find thron) 600 f) Oxy-oxo-Verbindungen C _n H _{2n-1} O ₆ 600 find thron) 600 find thron) 600 find thron oxy-oxo-Verbindungen C _n H _{2n-1} O ₆ 601 for thron oxy-oxo-Verbindungen C _n H _{2n-1} O ₇ 601 for thron oxy-oxo-Verbindungen C _n H _{2n-1} O ₇ 601 for thron oxy-oxo-Verbindungen C _n H _{2n-1} O ₇ 601 for thron oxy-oxo-Verbindungen C _n H _{2n-1} O ₇ 601 for thron oxy-oxo-Verbindungen C _n H _{2n-1} O ₇ 601 for thron oxy-oxo-Verbindungen C _n H _{2n-1} O ₇ 601 for thron oxy-oxo-Verbindungen C _n H _{2n-1} O ₇ 601 for thron oxy-oxo-Verbindungen C _n H _{2n-1} O ₇ 601 for thron oxy-oxo-Verbi	P)	Oxy oxo Verbindungen C _n H _{2 n-38} U ₆ 595	
Oxy-oxo-Verbindungen C30H23O6 . 596 q) Oxy-oxo-Verbindungen C3H23-42O6 596 Oxy-oxo-Verbindungen C3H43O6 . 596 Oxy-oxo-Verbindungen C33H44O6 . 598 r) Oxy-oxo-Verbindungen C3H23-43O6 600 t) Oxy-oxo-Verbindungen C3H23-43O6 600 t) Oxy-oxo-Verbindungen C3H23-52O6 600 u) Oxy-oxo-Verbindungen C3H23-52O6 600 v) Oxy-oxo-Verbindungen C3H23-53O6 600 v) Oxy-oxo-Verbindungen C3H23-53O6 600 b) Oxy-oxo-Verbindungen C3H23-16O7 601 b) Oxy-oxo-Verbindungen C3H23-16O7 601 c) Oxy-oxo-Verbindungen C3H23-16O7 601 d) Oxy-oxo-Verbindungen C3H23-16O7 601 e) Oxy-oxo-Verbindungen C3H23-16O7 601 d) Oxy-oxo-Verbindungen C3H23-22O7 (Pentaoxyanthradichinon) . 603 d) Oxy-oxo-Verbindungen C3H23-22O7 (Trioxyanthradichinon) . 603 e) Oxy-oxo-Verbindungen C3H23-62O7 604 f) Oxy-oxo-Verbindungen C3H23-63O7 604 f) Oxy-oxo-Verb			
q) Oxy-oxo-Verbindungen $C_nH_{2n-4}2O_6$ 598 Oxy-oxo-Verbindungen $C_{n}H_{2n-4}2O_6$ (Dioxydianthrachinonyle) 596 Oxy-oxo-Verbindungen $C_{n}H_{2n-4}O_6$ 598 r) Oxy-oxo-Verbindungen $C_{n}H_{2n-4}O_6$ 598 8) Oxy-oxo-Verbindungen $C_{n}H_{2n-4}O_6$ 598 8) Oxy-oxo-Verbindungen $C_{n}H_{2n-4}O_6$ 600 t) Oxy-oxo-Verbindungen $C_{n}H_{2n-5}O_6$ 600 v) Oxy-oxo-Verbindungen $C_{n}H_{2n-5}O_6$ 600 v) Oxy-oxo-Verbindungen $C_{n}H_{2n-5}O_6$ 600 oxy-oxo-Verbindungen $C_{n}H_{2n-5}O_6$ 600 oxy-oxo-Verbindungen $C_{n}H_{2n-5}O_6$ 601 9. Oxy-oxo-Verbindungen $O_{n}H_{2n-5}O_6$ 601 oxy-oxo-Verbindungen $O_{n}H_{2n-5}O_6$ 601 oxy-oxo-Verbindungen $O_{n}H_{2n-5}O_6$ 601 9. Oxy-oxo-Verbindungen $O_{n}H_{2n-5}O_6$ 601 oxy-oxo-Verbindungen $O_{n}H_{2n-5}O_6$ 601 9. Oxy-oxo-Verbindungen $O_{n}H_{2n-5}O_6$ 601 10. Oxy-oxo-Verbindungen $O_{n}H_{2n-5}O_6$ 601 11. Oxy-oxo-Verbindungen $O_{n}H_{2n-5}O_0$ 602 11. Oxy-oxo-Verbindungen $O_{n}H_{2n-5}O_0$ 603 11. Oxy-oxo-Verbindungen $O_{n}H_{2n-5}O_0$ 604 11. Oxy-oxo-Verbindungen $O_{n}H_{2n-5}O_0$		Oxy-oxo-Verbindungen C ₃₀ H ₂₂ O ₆ 596	
Cycy-oxo-Verbindungen C ₂₈ H ₁₄ O ₆ (Dioxydianthrachinonyle) 596 Oxy-oxo-Verbindungen C ₃₈ H ₂₄ O ₆ . 598 r) Oxy-oxo-Verbindungen C _n H _{2 n-44} O ₆ 598 s) Oxy-oxo-Verbindungen C _n H _{2 n-48} O ₆ 600 t) Oxy-oxo-Verbindungen C _n H _{2 n-52} O ₆ 600 v) Oxy-oxo-Verbindungen C _n H _{2 n-58} O ₆ 600 v) Oxy-oxo-Verbindungen C _n H _{2 n-58} O ₆ 600 oxy-oxo-Verbindungen C _n H _{2 n-58} O ₆ 600 v) Oxy-oxo-Verbindungen C _n H _{2 n-16} O ₇ 601 a) Oxy-oxo-Verbindungen C _n H _{2 n-18} O ₇ 601 b) Oxy-oxo-Verbindungen C _n H _{2 n-18} O ₇ 601 c) Oxy-oxo-Verbindungen C _n H _{2 n-22} O ₇ (Pentaoxyanthradichinon) 603 d) Oxy-oxo-Verbindungen C _n H _{2 n-22} O ₇ (Trioxyanthradichinon) 603 e) Oxy-oxo-Verbindungen C _n H _{2 n-22} O ₇ 604 f) Oxy-oxo-Verbindungen C _n H _{2 n-62} O ₇ 604 f) Oxy-oxo-Verbindungen C _n H	q)	Oxy-oxo-Verbindungen C _n H _{2 n-42} O ₆ 596	(Dializarin) (Dializarin) (Dializarin)
Oxy-oxo-Verbindungen $C_{33}H_{24}O_6$ 598 r) Oxy-oxo-Verbindungen $C_{n}H_{2n-44}O_6$ 598 8) Oxy-oxo-Verbindungen $C_{n}H_{2n-48}O_6$ 600 t) Oxy-oxo-Verbindungen $C_{n}H_{2n-52}O_6$ 600 v) Oxy-oxo-Verbindungen $C_{n}H_{2n-58}O_6$ 600 v) Oxy-oxo-Verbindungen $C_{n}H_{2n-58}O_6$ 600 a) Oxy-oxo-Verbindungen $C_{n}H_{2n-58}O_6$ 600 b) Oxy-oxo-Verbindungen $C_{n}H_{2n-16}O_7$ 601 b) Oxy-oxo-Verbindungen $C_{n}H_{2n-16}O_7$ 601 c) Oxy-oxo-Verbindungen $C_{n}H_{2n-18}O_7$ 601 d) Oxy-oxo-Verbindungen $C_{n}H_{2n-20}O_7$ (Pentaoxyanthrachinon) 603 d) Oxy-oxo-Verbindungen $C_{n}H_{2n-30}O_7$ 604 f) Oxy-oxo-Verbindungen $C_{n}H_{2n-30}O_7$ 604 f) Oxy-oxo-Verbindungen $C_{n}H_{2n-62}O_7$ 604			1
8) Oxy-oxo-Verbindungen C _n H _{2 n-44} O ₆ 598 8) Oxy-oxo-Verbindungen C _n H _{2 n-52} O ₆ 600 t) Oxy-oxo-Verbindungen C _n H _{2 n-54} O ₆ 600 v) Oxy-oxo-Verbindungen C _n H _{2 n-58} O ₆ 600 v) Oxy-oxo-Verbindungen C _n H _{2 n-58} O ₆ 600 a) Oxy-oxo-Verbindungen C _n H _{2 n-16} O ₇ 601 b) Oxy-oxo-Verbindungen C _n H _{2 n-18} O ₇ 601 c) Oxy-oxo-Verbindungen C _n H _{2 n-22} O ₇ (Pentaoxyanthrachinon) 603 d) Oxy-oxo-Verbindungen C _n H _{2 n-30} O ₇ 604 f) Oxy-oxo-Verbindungen C _n H _{2 n-62}		(= ==== ===============================	n) Oxy - Oxo - versimumben Onitzn = 7808 010
8) $0xy - 0xo - Verbindungen C_nH_{2n-52}O_6$ 600 t) $0xy - 0xo - Verbindungen C_nH_{2n-54}O_6$ 600 v) $0xy - 0xo - Verbindungen C_nH_{2n-58}O_6$ 600 v) $0xy - 0xo - Verbindungen C_nH_{2n-58}O_6$ 600 and $0xy - 0xo - Verbindungen C_nH_{2n-16}O_7$ 601 b) $0xy - 0xo - Verbindungen C_nH_{2n-18}O_7$ 601 e) $0xy - 0xo - Verbindungen C_nH_{2n-20}O_7$ (Pentaoxyanthrachinon) 603 d) $0xy - 0xo - Verbindungen C_nH_{2n-30}O_7$ 604 f) $0xy - 0xo$	r)		8. Oxy - oyo - Verbindungen
t) Oxy-oxo-Verbindungen $C_nH_{2n-52}O_6$ 600 u) Oxy-oxo-Verbindungen $C_nH_{2n-54}O_6$ 600 v) Oxy-oxo-Verbindungen $C_nH_{2n-58}O_6$ 600 6. Oxy-oxo-Verbindungen 6. Oxy-oxo-Verbindungen mit 7 Sauerstoffatomen. a) Oxy-oxo-Verbindungen $C_nH_{2n-16}O_7$ 601 b) Oxy-oxo-Verbindungen $C_nH_{2n-18}O_7$ 601 c) Oxy-oxo-Verbindungen $C_nH_{2n-18}O_7$ 601 d) Oxy-oxo-Verbindungen $C_nH_{2n-20}O_7$ (Pentaoxyanthrachinon) 603 d) Oxy-oxo-Verbindungen $C_nH_{2n-22}O_7$ (Trioxyanthradichinon) 603 e) Oxy-oxo-Verbindungen $C_nH_{2n-30}O_7$ 604 f) Oxy-oxo-Verbindungen $C_nH_{2n-62}O_7$ 604	-	· · · · · · · · · · · · · · · · · · ·	
u) $0xy - 0xo - Verbindungen C_nH_{2n-58}O_6$ 600 v) $0xy - 0xo - Verbindungen C_nH_{2n-58}O_6$ 600 g. $0xy - 0xo - Verbindungen$ mit 10 Sauerstoffatomen. a) $0xy - 0xo - Verbindungen C_nH_{2n-16}O_7$ 601 b) $0xy - 0xo - Verbindungen C_nH_{2n-18}O_7$ 601 c) $0xy - 0xo - Verbindungen C_nH_{2n-20}O_7$ (Pentaoxyanthrachinon) 603 d) $0xy - 0xo - Verbindungen C_nH_{2n-22}O_7$ (Trioxyanthradichinon) 603 e) $0xy - 0xo - Verbindungen C_nH_{2n-30}O_7$ 604 f) $0xy - 0xo - Verbindungen C_nH_{2n-62}O_7$ 604 f) $0xy - 0xo - Verbindungen C$			••
v) Oxy-oxo-Verbindungen $C_nH_{2n-58}O_6$ 600 6. Oxy-oxo-Verbindungen mit 10 Sauerstoffatomen. a) Oxy-oxo-Verbindungen $C_nH_{2n-16}O_7$ 601 b) Oxy-oxo-Verbindungen $C_nH_{2n-18}O_7$ 601 c) Oxy-oxo-Verbindungen $C_nH_{2n-20}O_7$ (Pentaoxyanthrachinon) 603 d) Oxy-oxo-Verbindungen $C_nH_{2n-22}O_7$ (Trioxyanthradichinon) 603 e) Oxy-oxo-Verbindungen $C_nH_{2n-30}O_7$ 604 f) Oxy-oxo-Verbindungen $C_nH_{2n-30}O_7$ 604 f) Oxy-oxo-Verbindungen $C_nH_{2n-62}O_7$ 604			Dis-Gloxy chiniamoyi-phiotograchi ori
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			9. Oxy - oxo - Verbindungen
6. Oxy-oxo-Verbindungen mit 7 Sauerstoffatomen. a) Oxy-oxo-Verbindungen $C_nH_{2n-16}O_7$ 601 b) Oxy-oxo-Verbindungen $C_nH_{2n-18}O_7$ 601 c) Oxy-oxo-Verbindungen $C_nH_{2n-20}O_7$ (Pentaoxyanthrachinon) 603 d) Oxy-oxo-Verbindungen $C_nH_{2n-22}O_7$ (Trioxyanthradichinon) 603 e) Oxy-oxo-Verbindungen $C_nH_{2n-30}O_7$ 604 f) Oxy-oxo-Verbindungen $C_nH_{2n-30}O_7$ 604 f) Oxy-oxo-Verbindungen $C_nH_{2n-30}O_7$ 604 f) Oxy-oxo-Verbindungen $C_nH_{2n-62}O_7$ 604 f) Oxy-oxo-Verbindungen $C_nH_{2n-62}O_7$ 604 filmaron	٠,		
a) Oxy-oxo-Verbindungen $C_nH_{2n-16}O_7$ 601 b) Oxy-oxo-Verbindungen $C_nH_{2n-18}O_7$ 601 c) Oxy-oxo-Verbindungen $C_nH_{2n-20}O_7$ (Pentaoxyanthrachinon) 603 d) Oxy-oxo-Verbindungen $C_nH_{2n-22}O_7$ (Trioxyanthradichinon) 603 e) Oxy-oxo-Verbindungen $C_nH_{2n-30}O_7$ 604 f) Oxy-oxo-Verbindungen $C_nH_{2n-62}O_7$ 604		6. Oxy-oxo-Verbindungen	1
b) $0xy - 0xo - Verbindungen C_nH_{2n-18}O_7$ 601 c) $0xy - 0xo - Verbindungen C_nH_{2n-20}O_7$ (Pentaoxyanthrachinon) 603 d) $0xy - 0xo - Verbindungen C_nH_{2n-22}O_7$ (Trioxyanthradichinon) 603 e) $0xy - 0xo - Verbindungen C_nH_{2n-30}O_7$ 604 f) $0xy - 0xo - Verbindungen C_nH_{2n-62}O_7$ 605		mit 7 Saverstoffatomen.	1 coraccoyigossy poroir
b) $0xy - 0xo - Verbindungen C_nH_{2n-18}O_7$ 601 c) $0xy - 0xo - Verbindungen C_nH_{2n-20}O_7$ (Pentaoxyanthrachinon) 603 d) $0xy - 0xo - Verbindungen C_nH_{2n-22}O_7$ (Trioxyanthradichinon) 603 e) $0xy - 0xo - Verbindungen C_nH_{2n-30}O_7$ 604 f) $0xy - 0xo - Verbindungen C_nH_{2n-62}O_7$ 605	a)	Oxy-oxo-Verbindungen C _n H _{2 a-16} O ₇ 601	10. Oxy - oxo - Verbindungen
e) Oxy-oxo-Verbindungen $C_nH_{2n-20}O_7$ (Pentaoxyanthrachinon) 603 d) Oxy-oxo-Verbindungen $C_nH_{2n-22}O_7$ (Trioxyanthradichinon) 603 e) Oxy-oxo-Verbindungen $C_nH_{2n-30}O_7$ 604 f) Oxy-oxo-Verbindungen $C_nH_{2n-62}O_7$ 604 f) Oxy-oxo-Verbindungen $C_nH_{2n-62}O_7$ 604 filmaron			
(Pentaoxyanthrachinon) 603 d) Oxy-oxo-Verbindungen $C_nH_{2n-22}O_7$ (Trioxyanthradichinon) 603 e) Oxy-oxo-Verbindungen $C_nH_{2n-30}O_7$ 604 f) Oxy-oxo-Verbindungen $C_nH_{2n-62}O_7$ 604 f) Oxy-oxo-Verbindungen $C_nH_{2n-62}O_7$ 604 Alphabetisches Register	e)	Oxy-oxo-Verbindungen C _n H _{2 n-20} O ₇	
(Trioxyanthradichinon) 603 e) Oxy-oxo-Verbindungen $C_nH_{2n-30}O_7$ 604 f) Oxy-oxo-Verbindungen $C_nH_{2n-62}O_7$ 604 Filmaron		(Pentaoxyanthrachinon) 603	Finasadie C ₃₅ 1140C ₁₂
e) $0xy - 0x0 - Verbindungen C_nH_{2n-30}O_7$ 604 mit 16 Sauerstoffatomen. f) $0xy - 0x0 - Verbindungen C_nH_{2n-62}O_7$ 604 Filmaron	d)	Oxy-oxo-Verbindungen C _n H _{2 n-22} O ₇	11 Ory org Verbindungen
f) Oxy-oxo-Verbindungen C _n H _{2 n-62} O ₇ 604 Filmaron	٠,		
Alphabetisches Register			
NY 34 9	IJ	Unit - Unit - Verbindungen Unit 2 n - 6207 004	Fumaron
NY 34 9			
NY 34 9			
NY 34 9	Alp	habetisches Register	
	_	3.4 W 3 35 4 3 44	

Verzeichnis der Kürzungen für die Literatur-Quellen.

Kürzung	Titel
<i>A</i> .	Liebigs Annalen der Chemie
Aarsskr. Veterin Landboh.	Kongelige Veterinaer- og Landbohøjskole: Aarsskrift
Abh. Ges. Wiss. Göt- tingen	Abhandlungen der Gesellschaft der Wissenschaften zu Göttingen Mathematisch-physikalische Klasse
Abh. Kenntnis Kohle Abh. preuβ. Akad.	Gesammelte Abhandlungen zur Kenntnis der Kohle Abhandlungen der Preußischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse
Abh. sächs. Akad.	Abhandlungen der Mathematisch-physischen Klasse der Sächsischen Akademie der Wissenschaften
A. ch.	Annales de Chimie
Acta Acad. Abo. Acta chem. Szeged	Acta Academiae Aboensis, Ser. B: Mathematica et Physica Acta Litterarum ac Scientiarum Regiae Universitatis Hungaricae Francisco-Josephinae: Acta Chemica, Mineralogica et Physica Szeged
Acta Comment. Univ. dorpat.	Acta et Commentationes Universitatis Dorpatensis
Acta latviens. Chem.	Acta Universitatis Latviensis, Chem. Serie
Acta Lit. Sci. Szeged,	Acta Litterarum ac Scientiarum Regiae Universitatis Hungaricae
Sect. Med.	Francisco-Josephinae, Sectio Medicorum. Szeged
Acta med. scand.	Acta Medica Scandinavica
Acta physicoch.	Acta Physicochimica U.R.S.S.
Acta phys. polon.	Acta Physica Polonica
Acta phytoch.	Acta Phytochimica, Tokyo
Acta Polon. pharm. Acta Sch. med. Univ. Kioto	Acta Poloniae Pharmaceutica Acta Scholae Medicinalis Universitatis Imperialis in Kioto
Acta Soc. Sci. fenn.	Acta Societatis Scientiarum Fennicae
Am.	American Chemical Journal
Am. Dyest. Rep.	American Dyestuff Reporter
Am. J. Bot.	American Journal of Botany
Am. J. Cancer	American Journal of Cancer
Am. J. Diseases Child.	American Journal of Diseases of Children
Am. J. Hyg.	American Journal of Hygiene
Am. J. med. Sci.	American Journal of the Medical Sciences
Am. J. Pharm.	American Journal of Pharmacy
Am. J. Physiol.	American Journal of Physiology
Am. J. publ. Health	American Journal of Public Health
Am. J. Sci.	American Journal of Science
Am. Perfumer	American Perfumer and Essential Oil Review
Am. Petr. Inst. Quart.	American Petroleum Institute Quarterly
Am. Soc.	Journal of the American Chemical Society
Anal. Min. Romania	Analele Minelor din România. Annales des Mines de Roumanie
Analyst	Analyst. Cambridge
An. Asoc. quim. arg.	Anales de la Asociación Química Argentina
An. Farm. Bioquim.	Anales de Farmacia y Bioquímica. Buenos Aires
Ang. Ch.	Angewandte Chemie
Anilinokr. Promysl.	Anilinokrasočnaja Promyšlennost (russ.)
Ann. Acad. Sci. fenn.	Annales Academiae Scientiarum Fennicae
Ann. agron.	Annales Agronomiques
Ann. appl. Biol.	Annals of Applied Biology

Kürzung	Titel
Ann. Bolany	Annals of Botany
Ann. Brass. Dist.	Annales de la Brasserie et de la Distillerie
Ann. Chim. anal.	Annales de Chimie Analytique
Ann. Chim. anal. appl.	Annales de Chimie Analytique et de Chimie Appliquée
Ann. Chim. applic.	Annali di Chimica Applicata
Ann. Chim. farm.	Annali di Chimica Farmaceutica (Beilage zu Farmacista Italiano)
Ann. Falsificat.	Annales des Falsifications
Ann. Fermentat.	Annales des Fermentations
Ann. Inst. Pasteur	Annales de l'Institut Pasteur
Ann. internal Med.	Annals of Internal Medicine. Philadelphia
Ann. Off. Combust. liq.	Annales de l'Office National des Combustibles Liquides
Ann. Phys.	Annalen der Physik
Ann. Physiol. Physicoch. biol.	Annales de Physiologie et de Physicochimie Biologique
Ann. Physique	Annales de Physique
Ann. Rep. Progr. Chem.	Annual Reports on the Progress of Chemistry
Ann. Sci. agron. franç. étr.	Annales de la Science Agronomique Française et Etrangère
Ann. ecient. Univ. Jassy	Annales Scientifiques de l'Université de Jassy
Ann. Sci. nat. Bot.	Annales des Sciences Naturelles, Botanique
Ann. Soc. scient. Bru- xelles	Annales de la Société Scientifique de Bruxelles
Ann. Sperim. agrar.	Annali della Sperimentazione Agraria
Ann. Surv. am. Chem.	Annual Survey of American Chemistry
Ann. Univ. fenn. Abo.	Annales Universitatis Fennicae Aboensis
Ann. Zymol.	Annales de Zymologie
In. Soc. cient. arg.	Anales de la Sociedad Cientifica Argentina
In. Soc. españ.	Anales de la Sociedad Española de Física y Química
An. Soc. quím. arg. Anz. Akad. Krakau	Anales de la Sociedad Química Argentina Anzeiger der Akademie der Wissenschaften in Krakau, Mathe-
Anz. Akad. Wien	matisch-naturwissenschaftliche Klasse Anzeiger der Akademie der Wissenschaften in Wien, Mathematisch-
4 10	naturwissenschaftliche Klasse
1. P.	Amerikanisches Patent
pothZtg.	Apotheker-Zeitung
1 <i>r</i> .	Archiv der Pharmazie
Arb. biol. Reichsanst.	[und Berichte der Deutschen Pharmazeutischen Gesellschaft] Arbeiten aus der Biologischen Reichsanstalt für Land- und Forst-
	wirtschaft zu Berlin-Dahlem
1rb. dtsch. LandwGes.	Arbeiten der Deutschen Landwirtschafts-Gesellschaft
Irb. GesundhAmt Irb. med. Fak. Oka-	Arbeiten aus dem Reichsgesundheits-Amte
ya ma	Arbeiten aus der Medizinischen Fakultät Okayama
Irch. biol. Nauk	Archiv Biologiceskich Nauk (russ.). Archives des Sciences Biologiques
rch. Dermatol.	Archiv für Dermatologie und Syphilis
Irch. Farmacol. sperim.	Archivio di Farmacologia Sperimentale e Scienze Affini
Irch. Fisiol.	Archivio di Fisiologia. Firenze
rch. Gewerbe-Path.	Archiv für Gewerbepathologie und Gewerbehygiene
lrch. Hyg. Bakt.	Archiv für Hygiene und Bakteriologie
rch. internal Med.	Archives of Internal Medicine. Chicago
rch. int. Pharmacod.	Archives Internationales de Pharmacodynamie et de Thérapie
rch. int. Physiol. rch. Ist. biochim. ital.	Archives Internationales de Physiologie
rchinoum Chem. Farm.	Archivio dello Istituto Biochimico Italiano Archiwum Chemji i Farmacji. Warschau
rch. Kinderheilk.	Archiv für Kinderheilkunde
rch. Math. Naturvid.	Archiv for Mathematik og Naturvidenskab
rch. Mikrobiol.	Archiv für Mikrobiologie
rch. mikrosk. Anat.	Archiv für Mikroskopische Anatomie

Biochem. J.

Titel Kürzung Arch. néerl. Sci. exactes Archives Néerlandaises des Sciences Exactes et Naturelles, Serie III A: Sciences Exactes Arch. Path. Archives of Pathology Archivio di Patologia e Clinica Medica Archiv for Pharmaci og Chemi. Kopenhagen Arch. Patol. Clin. Arch. Pharm. Chemi Archives de Physique Biologique Arch. Phys. biol. Arch. Physiol. Arch. Rubbercult. Archiv für Anatomie und Physiologie Archief voor de Rubbercultuur in Nederlandsch-Indië Nederl.-Indië Arch. Schiffshyg. Archiv für Schiffs- und Tropenhygiene Arch. Sci. biol. Archivio di Scienze Biologiche Arch. Sci. phys. nat. Arch. Tierheilk. Archives des Sciences Physiques et Naturelles. Genf Archiv für Wissenschaftliche und Praktische Tierheilkunde Archiv für Verdauungskrankheiten, Stoffwechselpathologie und Arch. Verdauungskr. Diätetik Arh. Hem. Farm. Arhiv za Hemiju i Farmaciju. Archives de Chimie et de Pharmacie. Arh. Hem. Tehn. Arhiv za Hemiju i Tehnologiju. Archives de Chimie et de Technologie. Zagreb Arkiv för Kemi, Mineralogi och Geologi Ark. Kemi [NAUNYN-SCHMIEDEBERGS] Archiv für Experimentelle Pathologie Ar. Pth. und Pharmakologie Astrophys. J. Astrophysical Journal Atti della Reale Accademia delle Scienze di Torino, Classe di Atti Accad. Torino Scienze Fisiche, Matematiche e Naturali Atti Congr. naz. Chim. Atti del Congresso Nazionale di Chimica Industriale ind. Atti Congr. naz. Chim. Atti del Congresso Nazionale di Chimica Pura ed Applicata pura appl. Atti Ist. veneto Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti, Parte II: Scienze Matematiche e Naturali Australas, J. Pharm. Australasian Journal of Pharmacy. Melbourne Austral, chem. Inst. Australian Chemical Institute Journal and Proceedings J. Pr. Austral. J. Biol. med. Australian Journal of Experimental Biology and Medical Science Sci. Austral, Sci. Abstr. Australian Science Abstracts Avh. norske Vid.-Akad. Avhandlinger utgitt av det Norske Videnskaps-Akademi i Oslo, Matematisk-naturvidenskapelig Klasse Berichte der Deutschen Chemischen Gesellschaft Beiträge zur Physiologie Beitr. Physiol. Ber. dtsch. bot. Ges. Berichte der Deutschen Botanischen Gesellschaft Ber. dtsch. pharm. Ges. Ber. Forsch.-Inst. čsl. Berichte der Deutschen Pharmazeutischen Gesellschaft Bericht des Forschungsinstitutes der Čechoslovakischen Zucker-Zuckerind. industrie Ber. Ges. Kohlentech. Berichte der Gesellschaft für Kohlentechnik (Dortmund-Eving) Ber. Ohara-Inst. Berichte des Ohara-Instituts für Landwirtschaftliche Forschungen in Kurashiki, Provinz Okayama, Japan Ber. Physiol. Berichte über die gesamte Physiologie und Experimentelle Pharmakologie = Berichte über die gesamte Biologie, Abt. B Wissenschaftliche und Industrielle Berichte von ROURE-BERTRAND Ber. Roure-Bertrand Ber. sächs. Akad. Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-physische Klasse Bericht von Schimmel & Co. Miltitz b. Leipzig über Ätherische Öle, Ber. Schimmel Riechstoffe usw. Ber. schweiz, bot. Ges. Berichte der Schweizerischen Botanischen Gesellschaft Berichte über die Wissenschaftliche Biologie = Berichte über die gesamte Biologie, Abt. A Ber. wiss. Biol.

Biochemical Journal

Kürzung	Titel
Biochimija	Biochimija (russ.). Biochimia
Biochim, Terap. sperim.	Biochimica e Terapia Sperimentale
Biol. Bl.	Biological Bulletin
Biol. Medd. danske Vid. Selsk.	Biologiske Meddelelser udgivne af det Kongelige Danske Viden skabernes Selskab
Biol. Rev. Cambridge	Biological Reviews of the Cambridge Philosophical Society
Biol. Ž.	Biologieskij Žurnal <russ.> [Zeitschrift für Biologie. Journal de Biologie. Biologicheskij Zhurnal]</russ.>
Bio. Z.	Biochemische Zeitschrift
Bl. Dl. Anni Delminus	Bulletin de la Société Chimique de France
Bl. Acad. Belgique Bl. Acad. Cracovie	Academie Royale de Belgique: Bulletins de la Classe des Sciences Bulletin International de l'Academie des Sciences de Cracovie Classe des Sciences Mathématiques et Naturelles. 1918
Bl. Acad. polon.	Bulletin International de l'Académie Polonaise des Sciences et de Lettres, Classe des Sciences Mathematiques et Naturelles
Bl. Acad. yougosl.	Bulletin International de l'Académie Yougoslave des Sciences et des Beaux-Arts, Classe des Sciences Mathem. et Naturelles
Bl. agric. chem. Soc. Japan	Bulletin of the Agricultural Chemical Society of Japan
Bl. am. Inst. Mining Eng.	Bulletin of the American Institute of Mining and Metallurgical Engineers
Bl. am. phys. Soc.	Bulletin of the American Physical Society
Bl. Assoc. belge Chimistes	Bulletin de l'Association Belge des Chimistes
Bl. Assoc. Chimistes Bl. Assoc. Chimistes	Bulletin de l'Association des Chimistes. Paris Bulletin de l'Association des Chimistes de Sucrerie et de Distillerie
Sucr. Dist.	de France et des Colonies
Bl. Assoc. Techniciens Pétr.	Bulletin de l'Association Française des Techniciens du Pétrole
Bl. biol. France Belg. Bl. Biol. Méd. URSS	Bulletin Biologique de la France et de la Belgique
Bl. Bur. Mines	Bulletin de Biologie et de Médecine Expérimentale de l'URSS Bureau of Mines: Bulletin. Washington
Bl. Bur. Plant Ind.	US. Department of Agriculture, Bureau of Plant Industry, Washing ton Bulletin
Bl. chem. Soc. Japan	Bulletin of the Chemical Society of Japan
Bl. imp. Inst. Bl. Inst. Fermentat.	Bulletin of the Imperial Institute. London Bulletin de l'Association des Anciens Elèves de l'Institut Supérieu
Gand	des Fermentations de Gand
Bl. Inst. Pin	Bulletin de l'Institut du Pin
Bl. Inst. Refrig.	Bulletin of the International Institute of Refrigeration
Bl. Jardin bot. Buit.	Bulletin du Jardin Botanique de Buitenzorg
Bl. Johns Hopkins Hosp. Bl. Mat. grasses Mar- seille	Bulletin of the Johns Hopkins Hospital Bulletin des Matières Grasses de l'Institut Colonial de Marseille
Bl. nation. Res. Coun.	Bulletin of the National Research Council
Bl. phys. chem. Res.	Bulletin of the Institute of Physical and Chemical Research.
Tokyo Bl. Roure-Bertrand	Abstracts. Tokyo Bulletin Scientifique et Industriel de la Maison Roure-Bertrand Fils de Grasse
Bl. Sci. pharmacol.	Bulletin des Sciences Pharmacologiques
Bl. Sect. scient. Acad. roum.	Bulletin de la Section Scientifique de l'Académie Roumaine
Bl. Soc. chim. Belg.	Bulletin de la Société Chimique de Belgique
Bl. Soc. Chim. biol. Bl. Soc. Chim. ind.	Bulletin de la Société de Chimie Biologique Bulletin de la Société de Chimie Industrielle
Bl. Soc. franç. Min.	Bulletin de la Société Française de Mineralogie
Bl. Soc. franç. Phot.	Bulletin de la Société Française de Photographie et de Cinémato graphie
Bl. Soc. ind. Mulh.	Bulletin de la Société Industrielle de Mulhouse

Kürzung Titel Bulletin de la Société des Naturalistes de Moscou [Bjulleten Mos-Bl. Soc. Natural. kovskogo Obščestva Ispytatelej Prirody (russ.)] Moscou Bulletin de la Société Neuchâteloise des Sciences Naturelles Bl. Soc. neuchâtel. Sci. nat. Bl. Soc. roum. Phys. Bulletin de la Société Roumaine de Physique Bl. Soc. Sci. Poznań Bulletin de la Société des Amis des Sciences de Poznan Bulletin de la Société Vaudoise des Sciences Naturelles Bl. Soc. vaud. Sci. Bl. Trav. Pharm. Bulletin des Travaux de la Société de Pharmacie de Bordeaux BordeauxBl. Wagner Inst. Sci. Bulletin of the Wagner Free Institute of Science, Philadelphia Philad. Bodenk. Pflanzenernähr. Bodenkunde und Pflanzenernährung Bol. Inst. Med. exp. Boletín del Instituto de Medicina Experimental para el Estudio y Tratamiento del Cáncer, Buenos Aires Cáncer . Bolletino dell' Associazione Italiana delle Industrie, dello Zucchero Boll. Assoc. ital. Ind. e dell'Alcool Boll. chim.-farm. Bolletino Chimico-farmaceutico Boll. Soc. ital. Biol. Bollettino della Società Italiana di Biologia Sperimentale Boll. Soc. Natural. Bollettino della Società dei Naturalisti in Napoli Napoli Bot. Arch. Botanisches Archiv Bot. Gaz. Botanical Gazette **Botanical Review** Bot. Rev. B. Ph. P. Beiträge zur Chemischen Physiologie und Pathologie Brauer-Hopfen-Ztg. Allgemeine Brauer- und Hopfenzeitung Braunk. Bräuer-D'Ans Fortschritte in der Anorganisch-chemischen Industrie . . . Herausg. von A. Bräuer u. J. D'Ans Brennstoffch. Brennstoff-Chemie British Journal of Experimental Biology British Journal of Experimental Pathology British Medical Journal Brit. J. exp. Biol. Brit. J. exp. Path. Brit. med. J. Buletinul de Chimie Pură si Aplicată al Societății Române de Chimie Bulet. Buletinul Societății de Stiințe din Cluj Buletinul Societății de Chimie din România Bulet. Cluj Bulet. Soc. chim. Romania Bur. Stand. J. Res. Bureau of Standards. Journal of Research Chemisches Zentralblatt Canadian Chemistry and Metallurgy Canad. Chem. Met. Canad. J. Res. Canadian Journal of Research Caoutch. Guttap. Caoutchouc et Guttapercha Časopis Československého Lékárnictva Č. čsl. lékárn. Cell. Ind. Tokyo Cellulose Industry. Journal of the Cellulose Institute, Tokyo Cellulosech. Cellulosechemie Cereal Chem. Cereal Chemistry Ceylon Journal of Science Ceylon J. Sci. Chaleur Ind. Chaleur et Industrie Chemische Apparatur Ch. Apparatur Chem. Abstr. Chemical Abstracts Chem. Age London Chemical Age. London Chem. Age N. Y. Chemical Age New York Chem.-Analyst. Chemist-Analyst Chem. and Ind. Chemistry and Industry Chem. Bl. Chicago Chemical Bulletin. Chicago Chemistry (China) Chemical, Color & Oil Record Chemicals. New York Chem. China Chem. Color Oil Rec. Chemicale Chemické Listy pro Věde a Průmysl. Prag Chemical and Metallurgical Engineering Chem. Listy Chem. met. Eng. Chem. N. Chemical News and Journal of Industrial Science

Kürzung	Titel
Chem, Obzor	Chemický Obzor. Prag
Chem. Record-Age	Chemical Record-Age
Chem. Res. spec. Rep.	Department of Scientific and Industrial Research; Chemical Research: Special Reports
Chem. Reviews	Chemical Reviews. Baltimore
Chem. Trade J.	Chemical Trade Journal and Chemical Engineer
Chem. Weekb.	Chemisch Weekblad
Ch. Fab. Ch. I.	Chemische Fabrik Chemische Industrie
Ch. 1. Chim. et Ind.	Chimie et Industrie. Paris
Chimfarm. Promyšl.	Chimiko-farmacevtičeskaja Promyšlennost' (russ.)
Chimica e Ind.	Chimica e L'Industria. Mailand
Chim. tverd. Topl.	Chimija Tverdogo Topliva (russ.)
Chin. J. Physiol.	Chinese Journal of Physiology
Ch. Rdsch. Mitteleur. Balkan	Chemische Rundschau für Mitteleuropa und den Balkan
Ch. Tech.	Chemische Technik
Ch. Umschau Fette	Chemische Umschau auf dem Gebiet der Fette, Ole, Wachse und
Ch. Z.	Chemiker-Zeitung
Ch. Zelle Gewebe	Chemie der Zelle und Gewebe
Collect. Trav. chim.	Collection des Travaux Chimiques de Tchécoslovaquie
Tchécosl. Collegium	Collegium, Darmstadt
Colloid Symp. Mon.	Colloid Symposium Monograph
Comment. biol. Helsing- fors	Societas Scientiarum Fennica: Commentationes Biologicae. Hel- singfors
Comment. physmath.	Societas Scientiarum Fennica: Commentationes Physico-mathe-
Helsingfors Contrib. Boyce Thomp-	maticae. Helsingfors Contributions from Boyce Thompson Institute
son Inst. Contrib. Estudio Cienc.	Universidad Nacional de la Plata: Contribución al Estudio de las
fís. La Plata C. r.	Ciencias físicas y matemáticas Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences
C. r. Conf. int. Chim.	Comptes Rendus de la Conférence de l'Union Internationale de la Chimie
C. r. Congr. Chim. ind. C. r. Doklady	Congrès de Chimie Industrielle. Comptes Rendus Comptes Rendus (Doklady) de l'Académie des Sciences de l'U.R.S.S.
C. r. Soc. Biol. C. r. Soc. Phys. Genève	Comptes Rendus des Séances de la Société de Biologie Compte rendu des Séances de la Société de Physique et d'Histoire Naturelle de Genève
C. r. Trav. Carlsberg	Comptes Rendus des Travaux du Laboratoire Carlsberg
Cuir tech.	Cuir Technique. Paris
Curr. Sci.	Current Science. Bangalore
Danske Vid. Selsk. Skr.	Kongelige Danske Videnskabernes Selskabs Skrifter, Naturvidens- kabelig og Mathematisk Afdeling
Dansk Tidskr. Farm.	Dansk Tidsskrift for Farmaci
Desinf.	Desinfektion. Berlin
Doklady Akad. S.S.S.R.	Doklady Akademii Nauk S.S.S.R. (russ.) [Comptes Rendus de l'Académie des Sciences de l'Union des Républiques Soviétiques Socialistes]
Doklady ross. Akad.	Doklady Rossijskoj Akademii Nauk (russ.) [Comptes Rendus de l'Académie des Sciences de Russie]
D.R.P.	Deutsches Reichspatent
Disch. A poth. Ztg.	Deutsche Apotheker-Zeitung
Dtsch. Arch. klin. Med.	Deutsches Archiv für Klinische Medizin
Dtsch. Essigind. Dtsch. Färber-Ztg.	Deutsche Essigindustrie Deutsche Färber-Zeitung

Titel Kürzung Deutsche Medizinische Wochenschrift Dtsch. med. Wschr. Deutsche Parfümeriezeitung Dtsch. Parj.-Ztg. Dtoch. tierärztl. Wochr. Deutsche tierärztliche Wochenschrift Dtoch. Wollengew. Deutsches Wollen-Gewerbe Deutsche Zeitschrift für die gesamte Gerichtliche Medizin Deutsche Zuckerindustrie. Berlin Dtsch. Z. ger. Med. Dtsch. Zuckerind. Dublin J. med. Sci. Dublin Journal of Medical Science Dyer, Calico Printer Dyer, Calico Printer, Bleacher, Finisher and Textile Review Dyer, Text. Printer Dyer, Textile Printer, Bleacher and Finisher Electrotechnical Journal. Tokyo Electrotech. J. Endocrinology. Boston, Mass. Endocrin. Eng. Engineering. London Engineering and Mining Journal Engineering and Mining Journal-Press Eng. Mining J. Eng. Mining J.-Press Engineering and Mining World Englisches Patent Eng. Mining Wd. E. P. Enzymologia. Holland Enzymol. Erdöl Teer Erdől und Teer Ergebn. Enzymj. Ergebnisse der Enzymforschung Ergebn. exakt. Ergebnisse der exakten Naturwissenschaften Naturwiss. Ergebn. Physiol. Ergebnisse der Physiologie, Biologischen Chemie und Experimentellen Pharmakologie Ergebn. Vitamin-Ergebnisse der Vitamin- und Hormonforschung Hormonf. Ernährg. Pfl. Ernährung der Pflanze Exp. Stat. Rec. U. S. Department of Agriculture: Experiment Station Record Farbe und Lack Farbe Lack Farben-Ztg. Farben-Zeitung Farmacista ital. Farmacista Italiano Farmac. Z. Charkov Farmacevtičeskij Žurnal. Chaŕkov (russ.) Farmacija i Farmakologija (russ.) Farm. i Farmakol. Faserst. Spinnpf. Faserstoffe und Spinnpflanzen Fermentf. Fermentforschung Fettch. Úmschau Fettchemische Umschau Fette Seifen Fette und Seifen Finska Kemistsamí. Finska Kemistsamfundets Meddelanden Suomen Kemistiseuran Medd. Tiedonantoja] Fiziol. Ž. Fiziologičeskij Žurnal S.S.S.R. (russ.) [Journal of Physiology of U.S.S.R.1 Flora Flora oder Allgemeine Botanische Zeitung Fol. endocrin. japon. Folia Endocrinologica Japonica Folia Medica. Napoli Fol. med. Napoli Fol. pharmacol. japon. Folia Pharmacologica Japonica Food Manufacture Food Manut. Forh. norské Vidensk. Kongelige Norske Videnskabers Selskabs Forhandlinger Selsk. Forschg. Milchwirtsch. Forschungen auf dem Gebiete der Milchwirtschaft und des Molkereiwesens Molkereiw. Forschungsdienst Forschungsd. Fortschritte der Chemie Organischer Naturstoffe Fortsch. Čh. org. Naturst. Fortsch. Ch. Phys. Fortschritte der Chemie, Physik und Physikalischen Chemie Fortschritte der Landwirtschaft. Wien Fortsch. Landw. Fortsch. Med. Fortschritte der Medizin. Berlin Fortsch. Min. Fortschritte der Mineralogie, Kristallographie und Petrographie Fortsch. Therap. Fortschritte der Therapie F. P.Französisches Patent Fr.Zeitschrift für Analytische Chemie (begründet von Fresentus)

Kürzung	Titel
Frdl.	Fortschritte der Teerfarbenfabrikation und verwandter Industrie- zweige. Begonnen von P. Friedländer, fortgeführt von H. E. Fierz-David
Fruit Prod. J.	Fruit Products Journal
Fuel	Fuel in Science and Practice
Fukuoka Acta med.	Fukuoka Acta Medica
G.	Gazzetta Chimica Italiana
Gas J.	Gas Journal. London
Gas-Wasserjach	Gas- und Wasserfach
Geneesk. Tijdsch. NederlIndië	Geneeskundig Tijdschrift voor Nederlandsch-Indië
GesundhIng.	Gesundheitsingenieur
Giorn. Biol. appl.	Giornale di Biologia Applicata all Industria Chimica
Giorn. Biol. ind.	Giornale di Biologia Industriale, Agraria ed Alimentare
Giorn. Chim. ind. appl.	Giornale di Chimica Industriale ed Applicata
Giorn. Farm. Chim. Glasnik chem. Društva	Giornale di Farmacia, di Chimica e di Scienze Affini Glasnik Chemiskog Društva Kral'evine Jugoslavije [Bulletin de la
Jugosl.	Société Chimique du Royaume de Yougoslavie]
Glückauf	Glückauf
Godišnik Univ. Sofia	Godišnik na Sofijskija Universitet [Annuaire de l'Université de
Chimmi Tta	Sofia; Faculté Physicomathématique]
Gummi-Ztg.	Gummi-Zeitung
Н.	HOPPE-SEYLERS Zeitschrift für Physiologische Chemie
Halle Cuirs Spl.	La Halle aux Cuirs Supplément technique mensuel
Heil-Gewürz-Pfl.	Heil- und Gewürz-Pflanzen
Helv.	Helvetica Chimica Acta
Helv. phys. Acta Het Gas	Helvetica Physica Acta Het Gas Holland
Hvalrådets Skr.	Norske Videnskaps-Akademi i Oslo: Hvalrådets Skrifter. Scientific
	Results of Marine Biological Research
Ind. Chemist	Industrial Chemist and Chemical Manufacturer
Ind. chimica	L'Industria Chimica. Il Notiziario Chimico-industriale
Ind. chimique	L'Industrie Chimique
Ind. eng. Chem. Ind. eng. Chem. Anal.	Industrial and Engineering Chemistry [Industrial Edition]
Ind. eng. Chem. News	,, ,, ,, ,, Analytical Edition ,, ,, ,, ,, News Edition
Indian Forest Rec.	Indian Forest Records
Indian J. med. Res.	Indian Journal of Medical Research
Indian J. Phys.	Indian Journal of Physics and Proceedings of the Indian Association
Indian med. Gaz.	for the Cultivation of Science Indian Medical Gazette
India Rubber J.	India Rubber Journal
Ind. saccarif, ital.	L'Industria Saccarifera Italiana
Ing. Chimiste	L'Ingénieur Chimiste. Brüssel
Ing. VetAkad. Handl.	Ingeniörsvetenskapsakademiens Handlingar
Iowa Coll. J.	Iowa State College Journal of Science
Ir. J. med. Sci. Iron Age	Irish Journal of Medical Science
Izv. Akad. S.S.S.R.	Iron Age Izvestija Akademii Nauk S.S.S.R. \(\text{russ.} \) [Bulletin de l'Académie
	des Sciences de l'U.S.S.R. Classe des Sciences Mathématiques et Naturelles]
Izv. biol. Inst. Perm.	Izvestija Biologičeskogo Naučno-izsledovateľskogo Instituta i Bio-
Univ.	logičeskoj Stancii pri Permskom Gosudarstvennom Universitete
	\(\frac{\tangle}{\tangle}\) [Bulletin de l'Institut des Recherches Biologiques et de la
	- STATION MICHORIANA A CLUMINAMINA DA PARMI
Izv. imp. Akad. Petrog.	Station Biologique a l'Université de Perm] Izvestija Imperatorskoj Akademii Nauk < russ. > [Bulletin de l'Aca-

Kürzung	Titel	1-14
Izv. Inst. fizchim.	Izvestija Instituta Fiziko-chimičeskogo Analiza < russ.	> [Annale
Anal.	de l'Institut d'Analyse Physico-chimique]	
Izv. Inst. Platiny	Izvestija Instituta po Izučeniju Platiny (russ.) [Anna stitut du Platine]	les de l'In-
Izv. Ivanovo-Vozne-	Izvestija Ivanovo-Voznesenskogo Politechničeskogo Ins	tituta
sensk. politech. Inst.	\(\russ.\rangle\) [Bulletin de l'Institut Polytechnique à Ivanovo-V	
Izv. jugosl. Akad.	Jugoslavenska Akademija Znanosti i Umjetnosti u Za	
	vješča o Raspravama Matprirodoslovnoga Razreda	
	des Sciences et des Arts des Slaves de Sud de Zagreb: I	Julietin des
Izv. ross. Akad.	Travaux de la Classe Mathématique et Naturelle]	1' A on dámio
120. 1068. AMU.	Izvestija Rossijskoj Akademii Nauk (russ.) [Bulletin de des Sciences de Russie]	LACACEME
Izv. Sektora fizchim.	Akademija Nauk S.S.S.R., Institut Obščej i Neorganičesl	coi Chimii
Anal.	Izvestija Sektora Fiziko-chimičeskogo Analiza (russ.) (Institut
	de Chimie Générale: Annales du Secteur d'Analys chimique]	e Physico-
Izv. teplotech. Inst.	Izvestija Teplotechničeskogo Instituta (russ.)	Charles .
Izv. ural. politech. Inst.	Izvestija Uralskogo Politechničeskogo Instituta (russ.)	Annales
w. w. p.ccom z.com	de l'Institut Polytechnique de l'Oural	, [randoren
.	⟨Liebig-Kopps⟩ Jahresbericht über die Fortschritte de	r Chemie
I. agric. chem. Soc.	Journal of the Agricultural Chemical Society of Japan.	Abstracts
Japan		4 * *
I. agric. Res.	Journal of Agricultural Research	* * * * *
J. agric. Sci.	Journal of Agricultural Science	
. am. Leather Chem. Assoc.	Journal of the American Leather Chemists' Association	
I. am. med. Assoc.	Journal of the American Medical Association	
J. am. pharm. Assoc.	Journal of the American Pharmaceutical Association	
Japan. J. Chem.	Japanese Journal of Chemistry	
Japan. J. med. Sci.	Japanese Journal of Medical Sciences	2.17
apan. J. Phys.	Japanese Journal of Physics	1. 4.
apan med. Wd.	Japan Medical World	
. asiat. Soc. Bengal	Journal of the Asiatic Society of Bengal, Science	
I. Assoc. agric. Chemists	Journal of the Association of Official Agricultural Chen	usts
I. Bacteriol. Iber. chemtech.	Journal of Bacteriology. Baltimore	a partir
Reichsanst.	Jahresbericht der Chemisch-technischen Reichsanstalt	
ber. Pharm.	Jahresbericht der Pharmazie	
. Biochem. Tokyo	Journal of Biochemistry. Japan	
. biol. Chem.	Journal of Biological Chemistry. Baltimore	,
. Bioph. Tokyo	Journal of Biophysics. Tokyo	e englese
b. Radioakt. Elektr.	Jahrbuch der Radioaktivität und Elektronik	
b. wiss. Bot.	Jahrbücher für Wissenschaftliche Botanik	•
. Cancer Res.	Journal of Cancer Research	* * * \(\frac{1}{2} \)
. chem. Educ.	Journal of Chemical Education	10 to 10 to 10
. chem. Eng. China	Journal of Chemical Engineering. China	and the state of
. Chemotherapy	Journal of Chemotherapy and Advanced Therapeutics	
Therap.	Towns of Chamical Discours Now Now	
. chem. Physics	Journal of Chemical Physics. New York	The section of
. chem. Soc. Japan . Chim. phys.	Journal of the Chemical Society of Japan	or the second
. chin. chem. Soc.	Journal de Chimie Physique Journal of the Chinese Chemical Society	and the second
. Coll. Agric. Univ.	Journal of the College of Agriculture, Tokyo Imperial U	niversity
Tokyo		
.Coll.Eng.TokyoUniv.	Journal of the College of Engineering, Tokyo Imperial	University
.Coll.Sci.Univ.Tokyo	Journal of the College of Science, Imperial University	of Tokyo
. Dairy Sci.	Journal of Dairy Science	amial TT-:
. Departm. Agric.	Journal of the Department of Agriculture, Kyushu Imp	
Kyuchu Univ. . exp. Biol.	versity Journal of Experimental Biology	
. CAU. LIMB.	JOURNAL OF EXPERIMENTAL MINIMOV	

Kürzung	Titel
J. exp. Medicine	Journal of Experimental Medicine
J. Fabr. Sucre	Journal des Fabricants de Sucre
J. Fac. Eng. Tokyo Univ.	Journal of the Faculty of Engineering, Tokyo Imperial University
J. Fac. Sci. Hokkaido	Journal of the Faculty of Science, Hokkaido Imperial University
J. Fac. Sci. Univ. Tokyo	Journal of the Faculty of Science, Imperial University of Tokyo
J. Franklin Inst.	Journal of the Franklin Institute
J. Fuel Soc. Japan	Journal of the Fuel Society of Japan
J. Gasbel.	Journal für Gasbeleuchtung und Verwandte Beleuchtungsarten so- wie für Wasserversorgung
J. gen. Physiol.	Journal of General Physiology. Baltimore
J. Hyg.	Journal of Hygiene. London
J. Immunol.	Journal of Immunology
J. ind. eng. Chem.	Journal of Industrial and Engineering Chemistry
J. ind. Hyg.	Journal of Industrial Hygiene and Toxicology
J. indian. chem. Soc.	Journal of the Indian Chemical Society
J. indian chem. Soc. News	Journal of the Indian Chemical Society; Industrial and News Edition
J. indian Inst. Sci.	Journal of the Indian Institute of Science
J. infect. Diseases	Journal of Infectious Diseases
J. Inst. Brewing	Journal of the Institute of Brewing
J. Inst. Petr. Technol.	Journal of the Institution of Petroleum Technologists
J. Labor. clin. Med. J. Landw.	Journal of Laboratory and Clinical Medicine
J. makromol. Ch.	Journal für Landwirtschaft Journal für makromolekulare Chemie
J. Med. Bordeaux	Journal de Médecine de Bordeaux et du Sud-Ouest
J. metabol. Res.	Journal of Metabolic Research
J. Nutrit.	Journal of Nutrition
J. Oil Col. Chem. Assoc.	Journal of the Oil and Colour Chemists' Association
J. Oil Fat Ind.	Journal of Oil and Fat Industries
J. opt. Soc. Am.	Journal of the Optical Society of America
J. org. Chem.	Journal of Organic Chemistry
J. orient. Med.	Journal of Oriental Medicine
J. Path. Bact.	Journal of Pathology and Bacteriology
J. Pharmacol. exp. Therap.	Journal of Pharmacology and Experimental Therapeutics
J. Pharm. Als. Lorr.	Journal de Pharmacie d'Alsace et de Lorraine
J. Pharm. Belg.	Journal de Pharmacie de Belgique
J. Pharm. Chim.	Journal de Pharmacie et de Chimie
J. pharm. Soc. Japan	Journal of the Pharmaceutical Society of Japan
J. phys. Chem.	Journal of Physical Chemistry. Baltimore
J. Physiol.	Journal of Physiology. London
J. Physiol, Path.	Journal de Physiologie et de Pathologie Générale
J. Phys. Rad.	Journal de Physique et le Radium. Paris
J. Phys. théor. appl. J. pr.	Journal de Physique Théorique et Appliquée. Paris
J. Pr. Soc. N. S. Wales	Journal für Praktische Chemie Journal and Proceedings of the Royal Society of New South Wales
J. Pr. Soc. west. Australia	Journal and Proceedings of the Royal Society of Western Australia
J. Res. Bur. Stand. J. Rheol.	Journal of Research of the National Bureau of Standards Journal of Rheology
J. roy. tech. Coll.	Journal of the Royal Technical College. Glasgow
J. Sci. Assoc. Viziana- garam	Journal of the Science Association, Maharajah's College. Viziana- garam
J. Sci. Hiroshima	Journal of Science of the Hiroshima University, Series A
J. Soc. automot. Eng.	Journal of the Society of Automotive Engineers
J. Soc. chem. Ind.	Journal of the Society of Chemical Industry
	Journal of the Society of Chemical Industry, Japan. Supplemental
J. Soc. chem. Ind. Japan Spl.	Binding
Japan Spl. J. Soc. Dyers Col.	Binding Journal of the Society of Dyers and Colourists

Kürzung	Titel
J. Textile Inst.	Journal of Textile Institute. Manchester
J. Th.	Jahresbericht über die Fortschritte der Tierchemie oder der Physiologischen und Pathologischen Chemie
J. Tokyo chem. Soc.	Journal of the Tokyo Chemical Society
J. Univ. Bombay J. Urol. Baltim.	Journal of the University of Bombay Journal of Urology. Baltimore
J. Urol. méd.	Journal d'Urologie Médicale et Chirurgicale. Paris
J. Washington Acad.	Journal of the Washington Academy of Sciences
Kali	Kali, verwandte Salze und Erdöl
Kansas Univ. Sci. Bl. Kaučuk Rez.	Kansas University Science Bulletin Kaučuk i Rezina (russ.) [Caoutchouc and Rubber]
Kautschuk	Kautschuk. Berlin
Kimya Ann.	Kimya Annali (türk.) [Annales de Chimie]
Kis. Közlem.	Kisérletügyi Közlemények [Mitteilungen der Landwirtschaftlichen Versuchsstationen Ungarns]
Klepzigs Textil-Z.	Klepzigs Textil-Zeitschrift
Klin. Wechr.	Klinische Wochenschrift
Koks i Chim. Kō. Kwa. Za.	Koks i Chimija < russ. > Kögyö Kwagaku Zasshi < japan. > [Zeitschrift der Gesellschaft für
Koll. Beih.	Chemische Industrie] Kolloid-Beihefte (Ergänzungshefte zur Kolloid-Zeitschrift)
KollZ.	Kolloid-Zeitschrift
Koll. Žurnal	Kolloidnyj Žurnal. (russ.)
Kunsted.	Kunstseide
Kunsted. Zellw. Kunstet.	Kunstseide und Zellwolle Kunststoffe
Labor. Praktika	Laboratornaja Praktika (russ.) [La Pratique du Laboratoire]
La Nature	La Nature. Paris
Lancet	Lancet. London
Landolt-Börnst.	Landolt-Börnstein-Roth-Scheel: Physikalisch-Chemische Tabellen. 5. Aufl.
Landw. Jb.	Landwirtschaftliche Jahrbücher
Landw. Jb. Schweiz Le Cancer	Landwirtschaftliches Jahrbuch der Schweiz Le Cancer. Brüssel
Leipz. Monatschr. Textilind.	Leipziger Monatschrift für Textil-Industrie
Listy cukrovar.	Listy Cukrovarnické. Prag
Lotos	Lotos. Naturwissenschaftliche Zeitschrift. Prag
L. V. St.	Landwirtschaftliche Versuchsstationen
M.	Monatshefte für Chemie
Mag. chem. Folyóirat Mag. gyógysz. Társ.	Magyar Chemiai Folyóirat Magyar Gyógyszerésztudományi Társaság Értesitője [Berichte der
Ért.	Ungarischen Pharmazeutischen Gesellschaft]
Manufact. Chemist J.	Manufacturing Chemist and Pharmaceutical, Cosmetic and Photographic Trade Journal
Maslob. žir. Delo	Maslobojno-žirovoe Delo (russ.)
Mathjys. Medd.	Mathematisk-fysiske Meddelelser udgivne af det Kongelige Danske
danske Vid. Selsk. Mat. természettud.	Videnskabernes Selskab Matematikai és Természettudományi Értesitö. A Magyar Tudo-
Értesitö	mányos Akadémia III. Osztályának Folyóirata [Mathematischer u. Naturwissenschaftlicher Anzeiger d. Ungarischen Akademie der Wissenschaften]
Med. Ch. I. G.	Medizin und Chemie. Abhandlungen aus den Medizinisch-chemischen Forschungsstätten der I. G. Farbenindustrie AG.
Medd. Carlsberg	Meddelelser fra Carlsberg Laboratoriet
Medd. Ing. Vet. Akad.	Ingeniörs Vetenskaps Akademien: Meddelanden
Medd. VetAkad. Nobelinst.	Meddelanden fran K. Vetenskapsakademiens Nobelinstitut

Kürzung Titel Meded. Rijksinst. phar-Mededeelingen van het Rijks-Instituut voor Pharmacotherapeutisch macoth. Onderzoek Onderzoek Medizinische Klinik Med. Klinik Med. Welt Medizinische Welt. Berlin Melliand Textilb. MELLIAND Textilberichte Mém. Acad. Belg. 80 Académie Royale de Belgique, Classe des Sciences: Mémoires. Collection in —8° Mémoires de l'Académie des Sciences de l'Institut de France $M ilde{\epsilon} m$. Acad. Inst. France Mem. Accad. Ital. Reale Accademia d'Italia: Memorie della Classe di Scienze Fisiche, Matematiche e Naturali Atti dell'Accademia Nazionale dei Lincei: Memorie delle Classe di Mem. Accad. Lincei Scienze Fisiche, Matematiche e Naturali Memoirs of the College of Agriculture, Kyoto Imp. University, Chemical Series Mem. Coll. Agric. K yoto Mem. Coll. Eng. Kyoto Memoirs of the College of Engineering, Kyoto Imperial University Mem. Coll. Sci. Kyoto Memoirs of the College of Science, Kyoto Imperial University Mém. Poud. Mémorial des Poudres Mem. Pr. Manchester Memoirs and Proceedings of the Manchester Literary and Philo-Soc. sophical Society Memoirs of the Ryojun College of Engineering Mem. Ryojun Coll. Eng. Mercks Jber. E. Mercks Jahresbericht über Neuerungen auf den Gebieten der Pharmakotherapie und Pharmazie Metal Ind. London Metal Industry. London Metall Erz Metall und Erz Mikroch. Mikrochemie. Wien Mikroch. Acta Mikrochimica Acta Milchwirtsch. Forsch. Milchwirtschaftliche Forschungen Milchwirtsch. Zbl. Milchwirtschaftliches Zentralblatt Militärw. tech. Mitt. Militärwissenschaftliche und Technische Mitteilungen. Wien WienMining Met. Mining and Metallurgy Mineralogical Magazine and Journal of the Mineralogical Society Min. Mag. Min. petrogr. Mitt. Zeitschrift für Kristallographie, Mineralogie und Petrographie, Abt. B: Mineralogische und Petrographische Mitteilungen Min. Yearb. Bur. US Bureau of Mines: Minerals Yearbook Mines Mitt. Braunk.-Forschg. Mitteilungen der Gesellschaft für Braunkohlen- und Mineralölforschung an der Technischen Hochschule Berlin Berl. Mitt. dtsch. Materialpr.-Mitteilungen der Deutschen Materialprüfungsanstalten Anst. Mitt. Kaliforsch.-Anst. Mitteilungen der Kaliforschungsanstalt Mitt. Lebensmittel-Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und unters. Hyg. Mitt. Materialpr. Berl. Mitteilungen aus dem Materialprüfungsamt Mitt. med. Ges. Mitteilungen der Medizinischen Gesellschaft zu Okayama Okayama Mod. Plastics Modern Plastics Monatbull, Schw. Gas-Monatsbulletin des Schweizerischen Vereins von Gas- und Wasser-Wasserf. fachmännern Monath. Seide Kunstsd. Monatshefte für Seide und Kunstseide Monatschr. Kinderheilk. Monatsschrift für Kinderheilkunde Monatschr. Textilind. Monatschrift für Textil-Industrie Monit. Prod. chim. Moniteur des Produits Chimiques Monit. scient. Moniteur Scientifique du Docteur Quesneville Monthly Bl. agric. Sci. Monthly Bulletin of Agricultural Science and Practice

Münchener Medizinische Wochenschrift

Mathematisch-physikalische Klasse

Nachrichten von der Akademie der Wissenschaften zu Göttingen,

Münch. med. Wschr.

Nachr. Akad. Göttingen

Kürzung	Titel
Nachr. Ges. Wiss.	Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen,
Göttingen Nation. Cent. Univ. Sci.	Mathematisch-physikalische Klasse National Central University Science Reports. Nanking
Rep.	
Nation. Petr. News Nature	National Petroleum News Nature. London
Naturwiss.	Naturwissenschaften
Natuurw, Tijdech.	Natuurwetenschappelijk Tijdschrift
N. Cim. Nederl. Tijdsch.	Nuovo Cimento Nederlandsch Tijdschrift voor Geneeskunde
Geneesk.	•
Nederl, Tijdsch. Natuurk.	Nederlandsch Tijdschrift voor Natuurkunde
Neft. Chozjajstvo	Neftjanoe Chozjajstvo (russ.)
Nitrocell. Norsk geol. Tidskr.	Nitrocellulose Norsk Geologisk Tidsskrift
Nouv. Chim.	Nouvelles de la Chimie
Öf. Fi.	Öfversigt af Finska Vetenskaps-Societetens Förhandlingar, A: Mate-
Öle, Fette, Wachse	matik och Naturvetenskap Öle, Fette, Wachse, Seife, Kosmetik
Öl-Fett-Ind	Ol- und Fettindustrie. Wien
Öl-Fett-Ztg.	Allgemeine Öl- und Fettzeitung
Öl Kohle Öst. bot. Z.	Ol und Kohle Österreichische Botanische Zeitschrift
Öst. Chemiker-Ztg.	Österreichische Chemiker-Zeitung
Östung. Z. Zuckerind.	Osterreichisch-Ungarische Zeitschrift für Zuckerindustrie und Land-
Landw. Oil Fat Ind.	wirtschaft Oil and Fat Industries
Oil Gas J.	Oil and Gas Journal
Oil Soap	Oil and Soap
Oklahoma agric. Exp. Stat. Bl.	Oklahoma Agricultural Experiment Station: Bulletin
Org. Synth.	Organic Syntheses, New York,
Paper Trade J.	Paper Trade Journal
Papierf.	Papier-Fabrikant Parfums de France
Parf. France Parf. mod.	Parfumerie Moderne
Parfümeur Augsb.	Parfümeur. Beiblatt zur Seifensieder-Zeitung. Augsburg
ParfZtg. Wien	Parfümerie-Zeitung. Wien
P. C. H. Perfum, essent. Oil Rec.	Pharmazeutische Zentralhalle für Deutschland Perfumery and Essential Oil Record
Period Min.	Periodico di Mineralogia
Petr.	Petroleum. Berlin
Petr. Age Petr. Mag.	Petroleum Age Petroleum Magazine. Chicago
Petr. Technol.	Petroleum Technology
Petr. Times	Petroleum Times
Pflagers Arch. Physiol.	PFLÜGERS Archiv für die gesamte Physiologie des Menschen und der Tiere
Pharmacia	Pharmacia. Reval
Pharm. Acta Helv. Pharm. Ber.	Pharmaceutica Acta Helvetiae Pharmazeutische Berichte. Leverkusen, I. G.
Pharm. J.	Pharmacoutical Journal
Pharm, Monath.	Pharmazeutische Monatshefte
Pharm. Post Pharm. Presse	Pharmazeutische Post Pharmazeutische Presse
Pharm, Tijdschr. NederlIndië	Pharmaceutisch Tijdschrift voor Nederlandsch-Indië
ru actave. "I exclas	

Kürzung	Titel
Pharm. Ztg.	Pharmazeutische Zeitung
Ph. Ch.	Zeitschrift für Physikalische Chemie
Philippine J. Sci.	Philippine Journal of Science
Phil. Mag.	Philosophical Magazine
Phil. Trans.	Philosophical Transactions of the Royal Society of London
Phot. Ind.	Photographische Industrie
Phot. J.	Photographic Journal Photographische Korrespondenz
Phot. Korresp. Physica	Physica. Nederlandsch Tijdschrift voor Natuurkunde
Phys. Rev.	Physical Review
Phys. Z.	Physikalische Zeitschrift. Leipzig
Phys. Z. Sowjet.	Physikalische Zeitschrift der Sowjetunion
Physiol. Rev.	Physiological Reviews. Baltimore
Planta	Planta. Archiv für Wissenschaftliche Botanik = Zeitschrift für
DI . DI . I	Wissenschaftliche Biologie, Abt. E
Plant Physiol.	Plant Physiology Polisilinias Sociena Protice Rom
Policl. Sez. prat. Pr. Acad. Tokyo	Policlinico, Sezione Pratica. Rom Proceedings of the Imperial Academy. Tokyo
Prace Komisji lekar.	Poznańskie Towarzystwo Przyjaciól Nauk: Prace Komisji Lekar-
Poznań	skiej
Pr. Akad. Amsterdam	Proceedings Koninklijke Nederlandsche Akademie van Weten-
	schappen
Prakt. Desinf.	Praktischer Desinfektor
Pr. am. Acad. Arts Sci.	Proceedings of the American Academy of Arts and Sciences
Pr. Cambridge phil. Soc. Pr. chem. Soc.	Proceedings of the Cambridge Philosophical Society
Pr. Chem. Soc. Pr. Durham phil. Soc.	Proceedings of the Chemical Society. London Proceedings of the University of Durham Philosophical Society
Pr. Indiana Acad.	Proceedings of the Indiana Academy of Science
Pr. indian Acad.	Proceedings of the Indian Academy of Sciences
Pr. indian Assoc. Cult. Sci.	Proceedings of the Indian Association for the Cultivation of Science
Pr. indian Sci. Congr.	Proceedings of the Indian Science Congress
Pr. irish Acad.	Proceedings of the Royal Irish Academy
Pr. Leeds phil. lit. Soc.	Proceedings of the Leeds Philosophical and Literary Society, Scientific Section
Pr. nation. Acad. India	Proceedings of the National Academy of Sciences, India
Pr. nation. Acad. USA.	Proceedings of the National Academy of Sciences of the United States of America
Promyšl. org. Chim.	Promyšlennost' Organičeskoj Chimii (russ.)
Protopl.	Protoplasma
Pr. physmath. Soc. Japan	Proceedings of the Physico-mathematical Society of Japan
Pr. phys. Soc. London	Proceedings of the Physical Society, London
Pr. roy. canad. Inst.	Proceedings of the Royal Canadian Institute
Pr. roy. Inst. Gr. Britain	Proceedings of the Royal Institution of Great Britain
Pr. roy. Soc.	Proceedings of the Royal Society. London
Pr. roy. Soc. Edinburgh	Proceedings of the Royal Society of Edinburgh
Pr. roy. Soc. Med. Pr. roy. Soc. Queensland	Proceedings of the Royal Society of Medicine Proceedings of the Royal Society of Queensland
Pr. Soc. biol. Chemists India	Proceedings of the Society of Biological Chemists (India)
Pr. Soc. exp. Biol. Med.	Proceedings of the Society for Experimental Biology and Medicine
Przeg. chem.	Przeglad Chemiczny
Przem. chem.	Przemysł Chemiczny
Publ. Carnegie Inst.	Carnegie Institution of Washington: Publications
Publ. Health Rep.	U. S. Public Health Service: Public Health Reports
Quart. J. exp. Physiol.	Quarterly Journal of Experimental Physiology
Quart. J. Pharm.	Quarterly Journal of Pharmacy and Pharmacology
Pharmacol.	
Quím. Ind.	Química e Industria

Würzburg

Würzburg

Kürzung Titel Recueil des Travaux Chimiques des Pays-Bas R. A. L. Atti della Reale Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali: Rendiconti Rasāyanam (Journal for the Progress of Chemical Science) Rassegna di Clinica, Terapia e Scienze Affini Rasāyanam Rass. Clin. Terap. Rayon Rec. Rayon Record Rayon Textile Monthly Rayon Textile Monthly Rec. Trav. bot. néerl. Recueil des Travaux Botaniques Néerlandais Rend. Accad. Sci. fis. Rendiconto dell'Accademia delle Scienze Fisiche e Matematiche. Napoli Napoli Rend. Fac. Sci. Cagliari Rendiconti del Seminario della Facoltà di Scienze della R. Università di Cagliari Rend. Ist. lomb. Rendiconti dell' Istituto Lombardo di Scienze e Lettere Revista Brasileira de Chimica Rev. brasil. Chim. Rev. Chim. ind. Revue de Chimie Industrielle Rev. Chim. ind. Monit. Revue de Chimie Industrielle et Le Moniteur Scientifique Quesscient. neville Réunis Rev. Chim. pura appl. Rev. Fac. Cienc. quim. Revista de Chimica Pura e Applicada. Porto Revista de la Facultad de Ciencias Químicas, La Plata Rev. Fac. Sci. Istanbul Revue de la Faculté des Sciences de l'Université d'Istanbul Rev. gén. Bot. Revue Générale de Botanique Rev. gén. Caoutch. Revue Générale du Caoutchouc Rev. gén. Colloïdes Revue Générale des Collo des Rev. gén. Mat. col. Revue Générale des Matières Colorantes Rev. gén. Mat. plast. Revue Générale des Matières Plastiques Rev. gén. Sci. pures appl. Revue Générale des Sciences Pures et Appliquées Rev. Marques, Parf. Revue des Marques. Parfums de France France Rev. med. Suisse rom. Revue Médicale de la Suisse Romande Revue de la Parfumerie et des Industries s'y rattachant Rev. Parf. Rev. phys. Chem. Japan Review of Physical Chemistry of Japan Rev. Prod. chim. Revue des Produits Chimiques Rev. Quim. Farm. Revista de Quimica e Farmacia. Rio de Janeiro Rev. scient. Revue Scientifique Ric. scient. Progr. techn. Ricerca Scientifica ed il Progresso Tecnico nell'Economia Nazionale Econ. naz. Riechstoffind. Riechstoffindustrie und Kosmetik Rinascenza med. Rinascenza Medica. Napoli Riv. ital. Essence Prof. Rivista Italiana delle Èssence e Profumi Roczniki Chemji [Annales Societatis Chimicae Polonorum] Roczniki Chem. Roczniki Farmacji Roczniki Farm. Roczniki Nauk roln. Roczniki Nauk Rolniczych i Leśnych. [Polish Agricultural and Forest Annual Rubber Chem. Technol. Rubber Chemistry and Technology Russ. fiziol. Ž. Russkij Fiziologičeskij Žurnal (russ.) [Russian Physiological Jour-Sachar Sachar (russ.) [Sugar] [FÜHNFR-WIELANDS] Sammlung von Vergiftungsfällen Sitzungsberichte der Akademie der Wissenschaften, Wien, Mathe-Sammlg. Vergittungst. Sber. Akad. Wien matisch-naturwissenschaftliche Klasse Sber. bayr. Akad. Sitzungsberichte der Mathematisch-naturwissenschaftlichen Abteilung der Bayerischen Akademie der Wisserschaften Sber. Ges. Naturwiss. Sitzungsberichte der Gesellschaft zur Beförderung der gesamten Marburg Naturwissenschaften zu Marburg Sber. Heidelb. Akad. Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse Sber. naturj. Ges. Sitzungsberichte und Abhandlungen der Naturforschenden Gesell-Rostock schaft zu Rostock Sber. phys.-med. Ges. Sitzungsberichte der Physikalisch-medizinischen Gesellschaft zu

Kürzung	Titel
Sber. preuß. Akad.	Sitzungsberichte der Preußischen Akademie der Wissenschaften,
or /1 v t /1 t	Berlin, Physikalisch-mathematische Klasse
Sbornik čel. Akad.	Sborník Ceskoslovenské Akademie Zeměd lské [Annalen der Tsche-
zeměd.	choslowakischen Akademie der Landwirtschaft]
Schmerz Schultz Tab.	Schmerz, Narkose, Anästhesie Gustav Schultz: Farbstofftabellen. 7. Aufl. von Ludwig Leh-
Schull 140.	MANN.
Schweiz. ApothZtg.	Schweizerische Apotheker-Zeitung
Schweiz. Arch. Neurol. Psychiat.	Schweizer Archiv für Neurologie und Psychiatrie
Schweiz. med. Wechr.	Schweizerische Medizinische Wochenschrift
Schweiz. P.	Schweizer Patent
Schweiz. Wechr. Ch. Pharm.	Schweizerische Wochenschrift für Chemie und Pharmacie
Sci. Caltama	Science. New York
Sci. Culture Scient I roy Coll Sci	Science and Culture. Calcutta Scientific Journal of the Royal College of Science. London
Scient. J. roy. Coll. Sci. Scient. Pap. Bur. Stand.	Scientific Papers of the Bureau of Standards. Washington
Scient. Pap. Inst. phys.	Scientific Papers of the Institute of Physical and Chemical Re-
chem. Res.	search. Tokyo
Scient. Pr. roy. Dublin Soc.	Scientific Proceedings of the Royal Dublin Society
Sci. pharm.	Scientia Pharmaceutica (Beilage zu Pharmazeutische Presse). Wien
Sci. Rep. Inst. infect.	Scientific Reports from the Government Institute for Infectious
Diseases Sci. Rep. Tõhoku Univ.	Diseases. Tokyo Science Reports of the Tôhoku Imperial University
Sci. Rep. Tokyo	Science Reports of the Tokyo Bunrika Daigaku (Tokyo University
Bunrika Daigaku	of Literature and Science)
Seide	Seide. Krefeld
Seife	Seife. Wien
SeifensZtg.	Seifensieder-Zeitung
Silk J. Silk J. Rayon Wd.	Silk Journal Silk Journal and Rayon World
Silk Rayon	Silk & Rayon
Skand. Arch. Physiol.	Skandinavisches Archiv für Physiologie
Soc.	Journal of the Chemical Society. London
Soil Sci.	Soil Science. Baltimore
Sov. Sachar	Sovetskij Sachar (russ.)
Sperim. Spisy lék. Fak. Mas.	Sperimentale. Archivio di Biologia Normale e Patologica Spisy Lékarské Fakulty Masarykovy University, Brno [Publications
Univ.	de la Faculté de Médecine]
Spisy přírodov. Karl. Univ.	Spisy vydávané Přírodovědeckou Fakultou Karlovy University [Publications de la Faculté des Sciences de l'Université Charles.
Q	Praha]
Spisy přírodov. Mas. Univ.	Spisy vydávané Pŕírodovědeckou Fakultou Masarykovy University [Publications de la Faculté des Sciences de l'Université Masaryk.
Sprawozd. Chemji	Brno] Sprawozdania z Prac Dzialu Chemji Państwowego Zakładu Higjeny
Higjeny	[Bulletin des Travaux du Département de Chimie de l'Institut
Sprawozd. Inst. farm.	d'Hygiéne d'Etat. Warschau] Sprawozdania z Prac Państwowego Instytutu Farmaceutycznego [Bulletin des Travaux de l'Institut Pharmaceutique d'Etat]
Sprawozd. Tow. fizycz.	Sprawozdania i Prace Polskiego Towarzystwa Fizycznego [Comptes Rendus des Séances de la Société Polonaise de Physique]
Stahl Eisen	Stahl und Eisen
Staz. sperim. agrar. ital.	Stazione Sperimentali Agrarie Italiane
Südd. A pothZtg.	Süddeutsche Apotheker-Zeitung
Suomen Kem.	Suomen Kemistilebti [Acta Chemica Fennica]
Svensk farm. Tidskr.	Svensk Farmaceutisk Tidskrift
Svensk kem. Tidskr. Sv. VetAkad. Handl.	Svensk Kemisk Tidskrift Kongliga Svenska Vetenskaps-Akademiens Handlingar
··· / UPI-ALINGUI, AAUINUI,	and the provider of the provid

Univ. Philippines

Sci. Bl.

Titel Kürzung Tabačnaja Promy'lennost' SSSR (russ.) Tabač. Promyšl. Tech. Bl. N. Y. State New York State Agricultural Experiment Station: Technical agric. Exp. Station Bulletin Tech. Bl. Oklahoma Oklahoma Agricultural and Mechanical College; Agricultural Exagric. exp. Station periment Station: Technical Bulletin Technol, Rep. Tôhoku Technology Reports of the Tohoku Imperial University US Bureau of Mines: Technical Papers. Washington Tech. Pap. Bur. Mines Teintex Teintex. Paris Teknisk Tidskrift. Stockholm Tekn. Tidakr. Terapevt. Arch. Terapevtičeskij Archiv (russ.) Textile Colorist Textile Colorist. New York Textile Forschung Textile World. New York Therapie der Gegenwart Tidsskrift för Kjemi og Bergvesen Textile Forschg. Textile Wd. Therap. Gegenw. Tidskr. Kjemi Bergv. Tierernähr. Tierernährung. Leipzig Tôhoku J. exp. Med. Tôhoku Journal of Experimental Medicine Trans.am.electroch.Soc. Transactions of the American Electrochemical Society Trans. electroch. Soc. Transactions of the Electrochemical Society. New York Trans. Faraday Soc. Transactions of the Faraday Society Trans. Inst. Rubber Ind. Transactions of the Institution of the Rubber Industry Transactions of the Kansas Academy of Science Transactions of the Optical Society. London Trans. Kansas Acad. Trans. opt. Soc. Trans. Pr. NewZealand Transactions and Proceedings of the New Zealand Institute Inst. Trans.roy.Soc.Canada Transactions of the Royal Society of Canada Trans. roy. Soc. Edinb. Transactions of the Royal Society of Edinburgh Trans. roy. Soc. New Transactions and Proceedings of the Royal Society of New Zealand Zealand Trans. roy. Soc. Transactions of the Royal Society of South Africa S. Africa Trudy chim. farm. Inst. Naučno-techničeskij Otdel V.S.N.Ch.: Trudy Naučnogo Chimikofarmacevtičeskogo Instituta (russ.) [Transactions of the Scientific Chemical-pharmaceutical Institute] Trudy Inst. č. chim. Naučno-techničeskij Otdel V.S.N.Ch.: Trudy Instituta Čistych Chimičeskich Reaktivov (russ.) [Transactions of the Institute Reakt. for Pure Reagents] Naučno-techničeskoe Upravlenie V.S.N.Ch.: Trudy Gosudarstven-Trudy Inst. prikl. Chim. nogo Instituta Prikladnoj Chimii (russ.) [Transactions of the State Institute of Applied Chemistry] Trudy jubil. Mendeleev. Trudy Jubilejnogo Mendeleevskogo S-ezda (russ.) [Travaux du Congrès Mendeleev] Trudy Vsesojuznogo Mendeleevskogo S-ezda po Teoretičeskoj Trudy Mendeleev. S. i Prikladnoj Chimii Trudy Sibirskoj Sel'skochozjajstvennoj Akademii (russ.) [Trans-Trudy sibirsk. sel'skochoz. Akad. actions of the Siberian Akademy of Agriculture and Forestry] Trudy vitamin. Inst. Trudy Vsesojuznogo Naučno-issledovatel'skogo Vitaminnogo Instituta Narkompiščeproma S.S.S.R. (russ.) [Proceedings of the Scientific Institute for Vitamin Research of the People's Commissariat for Food Industry of the U.S.S.R.] Ukr. biochem. Z. Ukrainákij Biochemičnij Žurnal (ukr.) [Ukrainian Biochemical Ukr. chemič. Z. Ukrainskij Chemičnij Žurnal, Naukova Častina (ukr.) [Journal Chimique de l'Ukraïne, Partie Scientifique] Umschau Umschau in Wissenschaft und Technik Univ. Kansas Sci. Bl. University of Kansas Science Bulletin

University of the Philippines Natural and Applied Science Bulletin

Titel Kürzung Uppsala Läkaref. Förh. Uppsala Läkareförening Förhandlingar Uspechi Chim. [Chimičeskij Žurnal, Serija G:] Uspechi Chimii (russ.) Uspechi Fizičeskich Nauk (russ.) Uspechi Fiz. Verhandelingen der Koninklijke Akademie van Wetenschappen, Verh. Akad. Amsterdam Afdeeling Natuurkunde. Amsterdam Verhandlungen der Deutschen Physikalischen Gesellschaft Verh. dtech. phys. Ges. Verh. Ges. disch. Naturj. Verhandlungen der Gesellschaft Deutscher Naturforscher und Ärzte Verhandlungen der Naturforschenden Gesellschaft in Basel Verh. naturf. Ges. Basel Verh. phys.-med. Ges. Verhandlungen der Physikalisch-medizinischen Gesellschaft zu Würzburg Würzburg Veröff. wiss. Zentrallab. Veröffentlichungen des Wissenschaftlichen Zentral-Laboratoriums der Photographischen Abteilung — Agfa — der I. G. Agfa Verslag van de Gewone Vergadering der Afdeeling Natuurkunde, Versl. Akad. Amsterdam Nederlandsche Akademie van Wetenschappen [Bis 1924 Koninklijke Akademie van Wetenschappen te Amsterdam: Verslagen . . .] Verslagen en Mededeelingen der Koninklijke Akademie van Weten-Versl. Meded. Akad. Amsterdam schappen, Afdeeling Letterkunde. Amsterdam Věstník České Společnosti Nauk. Sitzungsberichte der Böhmischen Věstník čes. Spol. Nauk Gesellschaft der Wissenschaften. Mathematisch-naturwissenschaftliche Klasse Virch. Arch. path. Anat. [Vibohows] Archiv für Pathologische Anatomie und Physiologie und für Klinische Medizin Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich Vjschr. naturf. Ges. Zürich Vrač. Dělo Vračebnoe Dělo (russ.) Wasser Gas Wasser und Gas Wiadom. jarm. Wiadomości Farmaceutyczne Wien. klin. Wechr. Wiener Klinische Wochenschrift Wien. med. Wschr. Wiener Medizinische Wochenschrift Wien. pharm. Wechr. Wiener Pharmazeutische Wochenschrift Wiss. Ind. Wissenschaft und Industrie Wiss. Mitt. öst. Heil-Wissenschaftliche Mitteilungen der Österreichischen Heilmittelstelle mittelst. Wiss. Veröff. Siemens Wochbl. Papierf. Wissenschaftliche Veröffentlichungen aus den Siemens-Werken Wochenblatt für Papierfabrikation Wochenschrift für Brauerei Wechr. Brau. Z. Zeitschrift für Chemie Z. ang. Ch. Zeitschrift für Angewandte Chemie Z. angew. Entomol. Zeitschrift für Angewandte Entomologie Z. anorg. Ch. Zeitschrift für Anorganische und Allgemeine Chemie Zavodskaja Laboratorija (russ.) Zeitschrift für Biologie, München BIEDERMANNS Zentralblatt für Agrikulturchemie und rationellen Zavod. Labor. Z. Biol. Zbl. Agrikulturch. Landwirtschaftsbetrieb Zbl. Bakt. Parasitenk. Zentralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten Zentralblatt für Gewerbehygiene und Unfallverhütung Zbl. Gewerbehyg. Zbl. Gynäkol. Zentralblatt für Gynäkologie Zentralblatt für Innere Medizin. Leipzig Zbl. inn. Med. Zbl. Min. Zentralblatt für Mineralogie, Geologie und Paläontologie Zbl. Physiol. Zentralblatt für Physiologie Zbl. Zuckerind. Centralblatt für die Zuckerindustrie Z. Bot. Zeitschrift für Botanik Zeitschrift für das gesamte Brauwesen Žurnal Chimičeskoj Promyšlennosti (russ.) Z. Brauw. Z. chim. Promyšl. Z. dtsch. Öl-Fettind. Zeitschrift der Deutschen Öl- und Fettindustrie

Kürzung	Titel
Z. eksp. Biol.	Zurnal eksperimental'noj Biologii i Mediciny (russ.)
Z. eksp. teor. Fiz.	[Fizičeskij Žurnal, A:] Žurnal Eksperimental'noj i Teoretičeskoj Fiziki < russ. >
Z. El. Ch.	Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie
Zellst. Pap.	Zellstoff und Papier
Z. exp. Med.	Zeitschrift für die gesamte Experimentelle Medizin
Z. fiz. Chim.	[Chimičeskij Žurnal, Serija V.] Žurnal Fizičeskoj Chimii (russ.) [Journal of Physical Chemistry]
Z. Hyg. InfKr.	Zeitschrift für Hygiene und Infektionskrankheiten
Z. Immunitätsf. Therap.	Zeitschrift für Immunitätsforschung und Experimentelle Therapie
Z. Kälteind.	Zeitschrift für die gesamte Kälteindustrie
Z. Kinderheilk.	Zeitschrift für Kinderheilkunde
Z. klin. Med.	Zeitschrift für Klinische Medizin
Z. Kr.	Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie
Z. Kr. Ref.	Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie; Referatenteil
Z. Kr. Strukturber.	Zeitschrift für Kristallographie; Strukturbericht
Z. Krebsf.	Zeitschrift für Krebsforschung
Z. med. Ch.	Zeitschrift für Medizinische Chemie
Z. Mühlenw.	Zeitschrift für das gesamte Mühlenwesen
Z. Naturwiss. Ž. obšč. Chim.	Zeitschrift für die gesamte Naturwissenschaft
2. 008c. Crwn.	[Chimičeskij Zurnal, Serija A:] Zurnal Obščej Chimii (russ.) [Journal of General Chemistry]
Z. öst. ApothVerein	Zeitschrift des Allgemeinen Österreichischen Apotheker-Vereines
Z. Pflanzenernähr.	Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde
Z. Phys.	Zeitschrift für Physik
Z. physchem. Materialf.	Zeitschrift für Physikalisch-chemische Materialforschung. Prag
Z. Pilzk.	Zeitschrift für Pilzkunde
Z. prikl. Chim.	[Chimičeskij Žurnal, Serija B:] Žurnal Prikladnoj Chimii (russ.)
Z. prikl. Fiz.	Zurnal Prikladnoj Fiziki (russ.) Journal of Applied Physics
Z. rezin. Promyšl.	Zurnal Rezinovoj Promy lennosti (russ.) [Journal of the Rubber Industry (U.S.S.R.)]
Z. sach. Promyšl,	Zurnal Sacharnoj Promy lennosti (russ.)
Z. Schieβ-Sprengstoffw.	Zeitschrift für das gesamte Schieß- und Sprengstoffwesen
Z. Spiritusind.	Zeitschrift für Spiritusindustrie
Z. tech. Biol. Z. tech. Fiz.	Zeitschrift für Technische Biologie
	[Fiziceskij Zurnal, B:] Zurnal Techničeskoj Fiziki (russ.) Zeitschrift für Technische Physik
Z. tech. Phys. Z. Textilind.	Zeitschrift für die gesamte Textilindustrie
Z. Tierernähr.	Zeitschrift für Tierernährung und Futtermittelkunde
Z. Tierzüchtg.	Zeitschrift für Tierzüchtung und Züchtungsbiologie
Z. Unters. Lebensm.	Zeitschrift für Untersuchung der Lebensmittel
Z. Unters. Nahr Genuβm.	Zeitschrift für Untersuchung der Nahrungs- und Genußmittel
Z. Verein dtsch. Zucker- ind.	Zeitschrift des Vereins der Deutschen Zuckerindustrie
Z. Vitaminf.	Zeitschrift für Vitaminforschung. Bern
Z. Wirtschaftsgr.	Zeitschrift der Wirtschaftsgruppe Zuckerindustrie
Zuckerind. Z. wiss. Mikr.	Zeitschrift für Wissenschaftliche Mikroskopie und für Mikroskopi-
<i>a</i> n	sche Technik
Z. wiss. Phot.	Zeitschrift für Wissenschaftliche Photographie, Photophysik und Photochemie
Zymol. Chim. Coll.	Zymologica Chimica dei Colloidi e degli Zuccheri
Z. Zuckerind. Böhm.	Zeitschrift für Zuckerindustrie in Böhmen
Z. Zuckerind. Csl.	Zeitschrift für die Zuckerindustrie der Cechoslowakischen Republik
ж.	Zurnal Russkogo Fiziko-chimičeskogo Obščestva (russ.)

Zeittafel für die wichtigsten Zeitschriften.

	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910	11611	1912	1913
A. ch. Am. Soc.	624	320—325 25—27 27. 28 24	326—329 28—30 29. 30 25	330—337 [8] 1—3 31. 32 26	338—343 4—6 33.34 27	344—350 7—9 35.36 28	351—357 10—12 37. 38 29	358—363 13—15 39. 40 30	364—371 16—18 41. 42 31	372—377 19—21 43. 44 32	378—385 22—24 45. 46 33	386—394 25—27 47. 48 34	395—401 28—30 49. 50 35
Ann. Phys. Ar. B. Biochem. J.	[4] 4—6 239 34	240 35 35	10—12 241 36	13—15 242 37	16—18 243 38	19—21 244 39 1	22—24 245 40 2	25—27 246 41 3	28—30 247 42 4	31—33 248 43	34—36 249 44 5	37—39 250 45 6	40—42 251 46 7
Blo. Z. Chem. N. Ch. Z.	[3] 25. 26 83. 84 25	27. 28 85. 86 26	29.30 87.88 27	31. 32 89. 90 28	33. 34 91. 92 29	35.36 93.94 30	2—6 [4] 1. 2 95. 96 31	3. 4 97. 98 32	5. 6 99. 100 33	7. 8 7. 8 101. 102 34	30—37 9. 10 103. 104 35	38 47 11. 12 105. 106 36	48—57 13. 14 107. 108 37
o p	132, 133 40 31	134. 135 41 32	136. 137 42 42 33 42 42 42 43 43	138. 139 43 34	140. 141 44 35	142. 143 45 36	144. 145 46 37	146. 147 47 38	148. 149 48 39	150. 151 49 40	152, 153 50 41	164. 155 51 42	156, 157 52 43
J. ind. eng. Chem. J. biol. Chem. J. Chim. phys.	07 - Yo	8	5 - 28	3 6	64 6 6 6	4 H	2. 3. 3. 3. 5. 3.	4 4 8	5.6	60 C 00	8.8 8.8	76—82 10—12	83—88 5 13—16 11
J. Pharm. Chim. J. phys. Chem. J. pr.	[6] 13. 14 5 [2] 63. 64	15. 16 6 65. 66	17.18 7 67.68	19. 20 8 69. 70	21, 22 9 71, 72	23. 24 10 73. 74	25. 26 11 75. 76	27. 28 12 77. 78	29.30 13 79.80	[7] 1. 2 14 81. 82	3.4 15 83.84	5.6 16 85.86	7. 8 17 87. 88
Ph. Ch. Phys. Kev. Pr. roy. Soc. [A]	22 36—38 [1]12.13 67.68	23 39—41 14. 15 69. 70	24 42—46 16. 17	25 47—49 18. 19 72. 73	24 26 50—53 20.21 74—76	25 27 54—56 22. 23 77	28 28 57—60 24. 25 78. 79	29 61—64 26. 27 80. 81	65—69 28. 29 82	31 70—74 30. 31 83	32 75—77 32. 33 84. 85	33 78—80 34. 35 86. 87	34 81—85 [2] 1. 2 88
R. A. I. Soc. Z. ang. Ch. Z. anorg. Ch. Z. El. Ch. Z. Kr.	20 [5]10 79.80 14 26—28 7 34	21 11 81.82 15 29—32 8 8 35.36	22 12 12 83.84 16 33—37 9 37	23 13 13 17 17 10 10 38.39 36.39	24 14 14 87.88 18 13 43—47 11 40	25 15 16 19 19 12 12 41 41	26 16 91. 92 20 52—55 13 42. 43	27 17 93.94 21 56—60 14 44.45	28 18 95. 96 22 61—64 15 46	29 19. 97. 98 23 65—68 16 47 47	30 20 99.100 24 69—72 17 48.49	31 21 101. 102 25 73—78 18 50	32 22 103. 104 26 79—83 19 51. 52
**	3	*		ဗ္ဗ	37	28	8	4	4	3	3		4

1926	26 - 450 - 5.6 - 6
1925	41—445 3.4 3.4 3.4 4.7 76—78 3.4 1925 58 58 193 130.131 49 117 49 117 40 117 40 114—118 25.26 127.128 25.26 127.128 31 31 31 31
1924	135 - 446 [10] 1. 2 46 1924 - 25 1924 - 25 1924 - 25 1927 - 161 1928 - 161 29. 30 28. 29 28. 30 29.
1923	430 434 19. 20 19. 20 261 56 56 56 170 - 72 170 - 13 176 . 127 176 . 127 176 . 127 184 - 131 185 - 157 196 63 63. 63 63. 63 63. 63 63. 63 63. 63 63. 63 64. 63 65 - 67 77 . 28 77 . 28 77 . 28 77 . 28 77 . 28 77 . 28 77 . 28 78
1922	26 - 429 4 17. 18 17. 18 260 260 260 260 17. 18 260 18. 125 19. 20 100. 101 19. 20 100. 101 19. 20 100. 101 11 28 25. 26 26 26 27. 26 28 26 26 27. 26 28 28 29 20 20 20 20 20 20 20 20 20 20
1921	422—425 42 423—425 42 15.16 259 259 259 259 259 259 259 259
1920	420. 421 13. 14 13. 14 258 13. 14 258 13. 14 258 14 14 170. 171 3 3 3 100 39 44 112 41 44 112 41 44 112 41 44 112 41 41 41 41 41 41 41 41 41 41
1919	414—417 418 419 40 11. 12 256 257 58—60 9. 10 11. 12 256 257 58—60 9. 10 11. 12 256 257 28 23 24 25. 26 117 18. 119 42 101—103 104—107 1 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3
1918	414—417 9.10 9.10 256 55—57 9.10 256 11.7 14.2 11.7 16.16 16.16 101—103
1917	412. 413. 7.8 7.8 3.9 3.0 9.10 9.3 3.6 2.3 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3
1916	411 5.6 3.8 49—51 5.6 254 49 10 10 113.114 19.20 113.114 19.20 113.114 19.30 113.114 13.14 13.14 13.14 13.14 13.94 35 35 37 37 37 38 38 38 39 39 39 39 39 39 39 39 39 39
1915	407—410 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4
1914	402—406 36 36 19]1, 2 36 19]1, 2 252 252 47 8 47 8 18 18 19 109, 110 118 118 119, 10 118 12 13 14 89—92 33 44 89—92 33 44 89—92 12 17—19 12 13 13 13 14 89—88 86—88 86—88 86—88 86—89 33 33 34 35 36 47 89—92 36 66 17—19 18 18 18 18 18 18 18 18 18 18
	A. ch. A. ch. A. ch. Ann. Physique Ann. Physique B. Chem. J Biochem. J Bio. Z. Bl. Chem. N C. r C. r C. r H H H H H H H H H H H H H H H H H H H

1939	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1938	533—536 9. 10 60 61 51 31—33 9. 10 71 32 295—299 5 62 206. 207 111—114 68 221—256 21 30 122—126 31 122—126 32 122—26 21 36 27. 28 42 164—168 53. 54 164—168 53. 54 64 64 64 64 64 65 68 68 68 68 68 71 71 71 71 181. 182 38—41 63. 54 64 64 64 64 64 65 66 77 71 71 71 71 71 71 71 71 71
1937	26 527—532 533—536 55 7.8 9.10 50 60 60 60 60 60 60 60 60 60 60 60 60 60
1936	15—520 521—526 527—532 3.4 5.6 7.8 48 49 50 48 49 50 22—24 25—27 28—30 3.4 5.6 7.8 68 69 70 29 30 31 20 30 31 20 30 31 4 5.6 7.8 68 69 70 69 70 31 70 30 31 10 30 31 10 30 31 11 30 20 11 31 30 11 32 34 12 33 34 13 40 41 14 14 14 14 14 14 14 14 14 14 14 14 14 <t< td=""></t<>
1935	515—520 3.4 48 22—24 3.4 68 29 275—282 2 200. 201 100—103 1108—111 118—112 39 142. 143 142. 143 142. 143 143—152 28—30 47. 48 148—152 28—30 47. 48 148—152 28—30 47. 48 148—152 28—30 47. 48 47. 48 148—152 28—30 47. 48 148—152 28—30 47. 48 149—152 28—30 47. 48 149—162 140—92
1934	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1933	18 19.20 18 19.20 5 46 6 27 19 19.20 5 66 6 27 19 19.20 19 19.20 19 19.20 19 19.20 19 19.20 19 19.20 19 19.20 19 19.20 19 19.20 19 19.20 10 10.30 10 17.18 1 1 52 1 1 62 1 1 62 1 1 62 1 1 1 82 1 1 62 1 1 1 82 1 1 1 83 1 1 83 1 1 83 1 84 1 84 1 84 1 84 1 85 1
1932	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1931	485—491 44 15.16 53 44 8—11 15.16 64 64 64 64 64 64 64 65 142.143 142.143 142.143 142.143 142.143 142.143 142.143 143.14 143.14 150—93 13.14 35 13.14 37.38 13.14
1930	13. 14 52 43 47.7—484 4 13. 14 63 63 63 63 63 64 140. 191 79—82 60 60 190. 191 79—82 60 60 11. 12 34 11. 12 35. 36 60 60 60 60 60 60 60 60 60 6
1929	10 11 12 13 14 15 15 15 15 15 15 15
1928	
1927	451 459 460 10] 7.8 9 49 49 49 40 40 60 60 60 60 60 60
	A. ch. A. ch. A. ch. Ann. Soc. Ann. Phys. Ann. Phys. Ann. Phys. Bio. Z. Bio. Z. Bio. Z. C. r. C. r. Fr. G. H. Helv. Ind. eng. Chem. J. Diol. Chem. J. Phol. Chem. J. Phys. Chem. J. Phys. Chem. J. Ph. Ch. [A] R. A. L. Z. anorg. Ch. Z. anorg. Ch. Z. anorg. Ch. Z. El. Ch. Z. Kr. Z. obšč. Chim.

Weitere Abkürzungen.

		, ,	
absol.	= absolut	korr. =	korrigiert
8.C.	= alicyclisch		Siedepunkt
äther.	= ätherisch	Kp ₇₅₀ =	Siedepunkt unter
AGFA	= Aktien-Gesellschaft für		750 mm Druck
_	Anilinfabrikation		linear
akt.	= aktiv	m- (als Stellungs-	
alkal.	= alkalisch		: meta-
alkoh.	= alkoholisch	m- (als Konzen-	
ang.	= angular	trationsangabe)=	
Anm.	= Anmerkung		Minute
ar.	= aromatisch		Mitarbeiter
asymm.	= asymmetrisch		Molekulargewicht
AtGew.	= Atomgewicht	MolRefr. =	Molekularrefraktion
В.	= Bildung		meso-
Bac.	= Bacillus	n (in Verbindung	
Bact.	= Bacterium		Brechungsindex
BASF	= Badische Anilin- und	n- (in Verbindung	
	Sodafabrik	mit Namen) ==	normal
ber.	= berechnet	0- =	ortho-
bzw.	= beziehungsweise	optakt. =	optisch-aktiv
ca.	= circa	p- ==	para-
D	= Dichte		primär
$\mathbf{D}_{\bullet}^{\mathbf{so}}$	= Dichte bei 20°, bezogen	PrivMitt. =	Privatmitteilung
	auf Wasser von 4°		racemisch
Darst.	= Darstellung	RV =	Reduktionsvermögen
DielektrKonst.	= Dielektrizitäts-Kon-	8. =	Seite
	stante	s. =	siehe
ΔF	= Freie Energie	s. a. ==	siehe auch
⊿G	= Freie Enthalpie		siehe oben
${f E}$.	= Erstarrungspunkt	s. u. ==	siehe unten
Einw.	= Einwirkung		sekundär
EMK	= Elektromotorische Kraft		spezifisch
Ergw.	= Ergänzungswerk		Supplement
F	= Schmelzpunkt	Stde., Stdn. $=$	Stunde, Stunden
gem	= geminal-	stdg. =	stündig
Hptw.	= Hauptwerk	symm. ==	symmetrisch
inakt.	= inaktiv	Syst. Nr. ==	System-Nummer
$k (k_s, k_b)$	= elektrolytische Disso-	Temp. ==	Temperatur
,,	ziationskonstanten, bei		tertiär
	Ampholyten Dissozia-	Tl., Tle., Tln. =	Teil, Teile, Teilen
	tionskonstanten nach	V. ==	Vorkommen
	der klassischen Theorie	verd. =	verdünnt
$K(K_8, K_B)$	= elektrolytische Disso-	vgl. a. ==	vergleiche auch
	ziationskonstanten von	vic. =	vicinal
	Ampholyten nach der	Vol. =	Volumen
	Zwitterionentheorie	wäßr. ==	wäßrig
konz.	== konzentriert	Zers. =	Zersetzung

Übertragung der griechischen Buchstaben in Zahlen.

Zusammenstellung der Zeichen für Maßeinheiten.

```
m, cm, mm
m², cm², mm²
                     Meter, Zentimeter, Millimeter
                     Qudratmeter, Quadratzentimeter, Quadratmillimeter
Kubikmeter, Kubikzentimeter, Kubikmillimeter
m³, cm³, mm³
                     Tonne, Kilogramm, Gramm, Milligramm
t, kg, g, mg
Mol 
                     Gramm-Molekül (Mol.-Gew. in Gramm)
1
                = Liter
h
                = Stunde
                = Minute
min
                Sekunde
sec
                = Grad
grad
                = Celsiusgrad
0 K
                = Grad der absoluten Skala (Grad Kelvin)
cal
                     Grammcalorie (kleine Calorie)
                = Kilogrammcalorie (große Caloric)
kcal
                     gcm/sec<sup>2</sup>
dyn
                =
                = 10^{6} dyn
megadyn
                = dyn/cm^2
bar
megabar
                = 10^6 \, \mathrm{bar}
Torr
                = 1 \text{ mm Hg/cm}^2
Atm.
                = 760 mm Hg/cm<sup>2</sup>
                = 10^{-7} \text{ mm}
Å
                = 10<sup>-6</sup> mm
m\mu
                = 10^{-3} \text{ mm}
Amp.
                ==
                     Ampère
Milliamp.
                ==
                     Milliampère
Amp.-h
                     Ampère-Stunde
W
                     Watt
kW
                     Kilowatt
                ___
Wh
                = Wattstunde
kWh
                = Kilowattstunde
Coul.
                = Coulomb
Ω
                = Ohm
rez. Ohm
                = reziproke Ohm
                = Volt
Joule
                ===
                     Joule
                = Debye (10^{-18} \text{ el. st. e.} \times \text{cm})
```

Erklärung der Hinweise auf das Hauptwerk und die Ergänzungswerke.

- 1. Es bedeutet H Hauptwerk, E I Ergänzungswerk I, E II Ergänzungswerk II. Die Bandzahlen sind in arabischen Ziffern wiedergegeben und durch Fettdruck kenntlich gemacht.
- 2. In den Seitenüberschriften sind in Fettdruck die Seiten des Hauptwerks angegeben, zu denen die auf der betreffenden Seite des II. Ergänzungswerks befindlichen Ergänzungen gehören.
- 3. Berichtigungen zum Hauptwerk oder Ergänzungswerk I sind kursiv gedruckt.

ZWEITE ABTEILUNG ISOCYCLISCHE VERBINDUNGEN

(Fortsetzung)

		•	
			,
,			

III. Oxo-Verbindungen. (Schluß).

J. Oxy-oxo-Verbindungen.

1. Oxy-oxo-Verbindungen mit 2 Sauerstoffatomen.

a) Oxy-oxo-Verbindungen $C_n H_{2n-2} O_2$.

1. Oxy-oxo-Verbindungen $C_5H_8O_2$.

Cyclopentanol - (2) - on - (1) $C_5H_6O_2 = \frac{H_2C-CO}{H_2C\cdot CH_2}CH\cdot OH$ (E I 504). Das E I 504

beschriebene Praparat von Godchot, Taboury war nicht einheitlich (Staudinger, Ruzicka, Helv. 7, 380 Anm. 1). — B. Beim Hydrieren von Cyclopenten-(1)-ol-(2)-on-(3) in Wasser bei Gegenwart von kolloidem Palladium (Sr., R., Helv. 7, 380). — Flüssigkeit. Kp₁₀: 77—78°. — Geht bei längerem Aufbewahren in polymeres Cyclopentanol-(2)-on-(1) (F: 88—90°) über, das beim Erhitzen leicht depolymerisiert wird. Reduziert Fehlingsche Lösung oder ammoniakalische Silbernitrat-Lösung in der Kälte. Liefert bei der Reduktion mit Natriumamalgam in Kohlendioxyd-Atmosphäre Cyclopentanon. Bei 5-tägigem Schütteln mit Wasserstoff bei Gegenwart von Palladium entstehen nur Spuren von Cyclopentanon. Gibt keine Eisenchlorid-Reaktion

Acetat, 2-Acetoxy-cyclopentanon-(1) $C_7H_{10}O_3=CH_3\cdot CO\cdot O\cdot C_5H_7O$. Öl. $Kp_{19}\colon 103^\circ$ (Staudinger, Ruzioka, *Helv.* 7, 380). — Liefert beim Schütteln mit Wasserstoff in Gegenwart von Palladium Cyclopentanon.

2. Oxy-oxo-Verbindungen $C_4H_{10}O_2$.

1. Cyclohexanol-(2)-on-(1) $C_6H_{10}O_2$, Formel I (H 2; E I 504). Die unterschiedlichen Schmelzpunkte der in der Literatur beschriebenen Praparate sind nach BERGMANN, GIERTH (A. 448, 50) durch einen wechselnden Gehalt an 1.2-Oxido-cyclohexanol-(1) (Formel II) zu erklären 1). Cyclohexanol-(2)-on-(1) zeigt bei kryo- I. H.C. CH2. CH(OH)

skopischen Bestimmungen in Phenol und Eisessig einfaches Mol.-Gew.

I.
$$\mathbf{H}_{2}\mathbf{C}$$

$$C\mathbf{H}_{2} \cdot C\mathbf{H}(O\mathbf{H})$$

$$C\mathbf{H}_{2} \cdot C\mathbf{H}_{2} - C\mathbf{H}_{2}$$

$$C\mathbf{H}_{2} - C\mathbf{H}_{2}$$

$$C\mathbf{H}_{2} - C\mathbf{H}_{2}$$

$$C\mathbf{H}_{3} - C\mathbf{H}_{2}$$

(B., G., A. 448, 60). — B. Aus 2-Brom-cyclohexanon-(1) beim Schütteln mit Kalium-carbonat-Lösung (B., G., A. 448, 60). — Krystalle (aus Methanol); F: 108° (KÖTZ, RICHTER, J. pr. [2] 111, 394). Krystalle (aus Methanol oder Alkohol

oder durch Destillation unter vermindertem Druck); F: 130°; Kp_{0,4}: 50—56°; Kp₁₃: 83—86°; nⁿ_D (flüssig): 1,4711 (frisch H₂C) (B., G., A. 448, 60). — Reduziert Fehlingsche Lösung; durch vorangehendes Erhitzen mit 0,01 n - Salzsäure scheint der

Reduktionswert zu steigen (B., G., A. 448, 61). Liefert bei der Einw. von 1n-methylalkoholischer Salzsäure in der Kälte das dimere Methyllactolid obenstehender Formel (Syst. Nr. 2715; vgl. E I 504), beim Erhitzen im Rohr auf 100° 2-Methoxy-cyclohexanon-(1)

¹⁾ Die Überlegungen von BERGMANN, GIERTH sind nicht sonderlich überzeugend. Vermutlich liegen ähnliche Verhältnisse wie bei Acetoin vor, dessen feste Form dimer ist (vgl. z. B. LOWRY, BALDWIN, Soc. 1985, 705; DIRSCHERL, SCHÖLLIG, B. 71 [1938], 422). Über die Unwahrscheinlichkeit niedriggliedriger Lactolid-Ringe vgl. Späth, B. 74 [1941], 862. Zur Definition des Begriffs Lactolid s. HELFERICH, FRIES, B. 58, 1246.

(B., G., A. 448, 61). Analoge Umsetzungen finden mit homologen Alkoholen und mit Benzylalkohol statt (B., G.). — Benzoat C₁₂H₁₄O₂ s. E I 9, 80. — Phenylhydrazon C₁₂H₁₄ON₂. F: 121-121,50 (korr.) (B., G., A. 448, 61).

E I 504, Z. 9 v. u. statt "106°" lies "146°".

Methyläther, 2-Methoxy-cyclohexanon-(1) $C_7H_{12}O_2 = CH_2 \cdot O \cdot C_6H_6O$. Das Mol.-Gew. wurde kryoskopisch in Benzol und Phenol bestimmt. — B. Beim Erhitzen von Cyclohexanol-(2)on-(1) mit 1n-methylalkoholischer Salzsäure im Rohr auf 100° (BERGMANN, GIERTH, A. 448, 64). Aus dem dimeren Methyllactolid des Cyclohexanol-(2)-ons-(1) (Syst. Nr. 2715) beim Erhitzen mit wenig p-Toluolsulfonsäure auf 100° oder beim Erwärmen mit 4%iger methylalkoholischer Salzsäure im Rohr auf 100° (B., G., A. 448, 66). — Flüssigkeit von angenehm würzigem Geruch. Kp₁₄: 72—73°. D³.: 1,020. n³.: 1,4537. Ziemlich leicht löslich in Wasser, leicht in den üblichen organisch Mittelle (B., G.). — Bein Aufbewahren sinkt der Siedepunkt; pach Moneten seheiden sich Vermitelle und Aufbewahren sinkt der Siedepunkt; nach Monaten scheiden sich Krystalle vom Schmelzpunkt 144° ab. Reduziert Fehlingsche Lösung schon in der Kälte. Wird durch 1n-Salzsäure bei 100° schnell hydrolysiert. — Phenylhydrazon C₁₃H₁₆ON₂. F: 94—96° (Zers.!) (B., G., A. 448, 67). — 4-Nitro-phenylhydrazon C₁₃H₁₇O₃N₃. F: 126,5—127° (B., G., A. 448, 67).

Dimeres Methyllactolid des Cyclohexanol-(2)-ons-(1) C₁₄H₂₄O₄ s. Syst. Nr. 2715.

Äthyläther, 2 - Äthoxy - cyclohexanon - (1) $C_8H_{14}O_8 = C_2H_8 \cdot O \cdot C_6H_9O$. Das Mol. Gew. ist in Benzol und Phenol kryoskopisch bestimmt. — B. Beim Kochen von Cyclohexanol-(2)-on-(1) mit alkoh. Salzsäure (Bergmann, Gierth, A. 448, 69). — Flüssigkeit von würzigem Geruch. Kp_{14} : 80—83°. D_{4}^{m} : 1,0009; D_{4}^{m} : 0,9969. n_{D}^{m} : 1,4531; n_{D}^{m} : 1,4519. Leicht löslich in fast allen organischen Lösungsmitteln, schwer in Wasser. - Scheidet bei längerem Aufbewahren, namentlich in Gegenwart von p-Toluolsulfonsäure, bei 144-1470 schmelzende Krystalle aus. Reduziert Fehlingsche Lösung schon in der Kälte. Gibt mit Phenylhydrazin in Gegenwart von Essigsäure Cyclohexandion-(1.2) bis phenylhydrazon. — 4-Nitro-phenylhydrazon C₁₄H₁₉O₃N₃. F: 144⁰ (korr.).

Dimeres Athyllactolid des Cyclohexanol-(2)-ons-(1) C₁₆H₂₆O₄ s. Syst. Nr. 2715. Isoamyläther, 2-Isoamyloxy-cyclohexanon-(1) $C_{11}H_{20}O_2 = C_5H_{11}\cdot 0\cdot C_6H_4O$. B. Aus Cyclohexandiol-(1.2)-monoisoamyläther durch Oxydation mit Chromschwefelsäure (v. Braun, HAENSEL, ZOBEL, A. 462, 291 Anm.). — Schwach riechende Flüssigkeit. Kp₁₃: 116°. D¹₄: 0,9377. – Sehr beständig gegen Alkalien.

Phenyläther, 2 - Phenoxy - cyclohexanon - (1) $C_{12}H_{14}O_2 = C_6H_5 \cdot O \cdot C_6H_9O$. Zur Konstitution vgl. EBEL, Helv. 12, 5 und die Angaben von BERGMANN, GIEETH, A. 448, 69 über das Verhalten des entsprechenden Äthyläthers; hiernach dürfte entgegen Ebel der normale Phenyläther des Cyclohexanolons vorliegen (Beilstein-Redaktion). Mol.-Gew.-Bestimmung in Benzol: E. — B. Aus 2-Chlor-cyclohexanon-(1) durch Einw. von Natriumphenolat in Petroläther, Toluol oder Phenol unterhalb 84° (EBEL, Helv. 12, 10). — Krystalle (aus Ligroin). F: 64,5° (Berlblock). Löslich in heißem Wasser und heißem Petroläther, leicht löslich in den übrigen Lösungsmitteln. — Liefert mit Phenylhydrazin in 95% iger Essigsäure Cyclohexandion-(1.2)bis-phenylhydrazon (E.).

 β - Naphthyläther, 2 - β - Naphthyloxy - cyclohexanon - (1) $C_{1e}H_{1e}O_2 = C_{1o}H_7 \cdot O \cdot C_eH_9O$. Zur Konstitution vgl. die Angaben beim Phenyläther. — B. Beim Kochen von 2-Chlor-cyclohexanon-(1) mit Natrium- β -naphtholat in Toluol (EBEL, Helv. 12, 13). — Nadeln (aus Alkohol). F: 135° (Berlblock). — Liefert beim Aufbewahren mit konz. Schwefelsäure 5,6.7.8-Tetrahydro-2.3-benzo-diphenylenoxyd (Syst. Nr. 2371).

[2-Methoxy-phenyl]-äther, 2-[2-Methoxy-phenoxy]-cyclohexanon-(1) C₁₃H₁₆O₃ = CH₂·O·C₆H₄·O·C₆H₆O. Zur Konstituon vgl. die Angaben beim Phenyläther. Mol.-Gew.-Bestimmung in Campher: EBEL, Helv. 12, 12. — B. Beim Kochen von 2-Chlor-cyclohexanon-(1) C₁₃H₁₆O₃ = Chlor-cyclohexanon-(1) C₁₃H₁₆O₃ = Chlor-cy mit der Natriumverbindung des Guajacols in Toluol (E.). — Nadeln oder Prismen (aus Petroläther). F: 67,5° (Berlblock). Schwer löslich in Ather, löslich in den übrigen organischen Lösungsmitteln. — Beim Aufbewahren mit konz. Schwefelsäure entsteht 8-Methoxy-1.2.3.4tetrahydro-diphenylenoxyd (Syst. Nr. 2386). Liefert ein Semicarbazon (S. 5). Gibt mit Phenylhydrazin Cyclohexandion-(1.2)-bis-phenylhydrazon.

Acetat, 2-Acetoxy-cyclohexanon-(1) $C_8H_{12}O_5=CH_5\cdot CO\cdot O\cdot C_8H_5O$. B. Entsteht wahrscheinlich beim Aufbewahren von frisch destilliertem Cyclohexanol-(2)-on-(1) mit Acetanhydrid und Pyridin bei 20° (BERGMANN, GIERTH, A. 448, 71). In geringer Menge beim Kochen von 2-Brom-cyclohexanon-(1) mit Silberscetat in Eisessig (B., G.). — Nadeln (aus Ligroin). F: 41° bis 42°. Kp₁₂: 118°. — Reduziert Fehlingsche Lösung schon in der Kälte. — Phenylhydrazon C₁₄H₁₈O₂N₂. F: 97—98°.

2 - Isoamyloxy - cyclohexanon - (1) - oxim $C_{11}H_{41}O_8N=C_5H_{11}\cdot O\cdot C_6H_9:N\cdot OH, \quad Kp_{14}:155^o$ (v. Braun, Harnell, Zobel, A. 462, 291 Anm.).

2 - Isoamylexy - cyclohexanon - (1) - semicarbazon $C_{12}H_{12}O_2N_3=C_5H_{11}\cdot O\cdot C_6H_9:N\cdot NH\cdot CO\cdot NH_2\cdot F: 166°$ (v. Braun, Haensel, Zobel, A. 462, 291 Anm.).

Semicarbazon des 2-[2-Methoxy-phenoxy]-cyclohexanons-(1) $C_{14}H_{19}O_{2}N_{5}=CH_{8}\cdot O\cdot C_{6}H_{4}\cdot O\cdot C_{6}H_{9}\cdot N\cdot NH\cdot CO\cdot NH_{2}$. F: 159° (Berlblock) (EBEL, Helv. 12, 12).

2. Cyclohexanol-(3)-on-(1) $C_0H_{10}O_2 = H_2C < CH_2 - CH_2 - CH_2 > CO$.

Isoamyläther, 3-Isoamyloxy-cyclohexanon-(1) $C_{11}H_{20}O_3=C_5H_{11}\cdot O\cdot C_4H_2O$. B. Durch Oxydation von Cyclohexandiol-(1.3)-monoisoamyläther mit Chromschwefelsäure bei 60° (v. Braun, Haensel, Zobel, A. 462, 289). — Kp_{16} : 128—130°; D_1^{18} : 0,9421; n_2^{8} : 1,4518 (v. B., H., Z.). — Liefert beim Erwärmen mit wäßrigem oder besser mit alkoh. Alkali Isoamylalkohol und eine als Cyclohexen-(1)-on-(4) angesehene Verbindung (E II 7, 55) (v. B., H., Z.); vgl. dagegen Tiffeneau, Tchoubar, C. r. 212 [1941], 584). Reaktion mit Phenylhydrazin: v. B., H., Z., A. 462, 290 Anm. 2.

- 3-Isoamyloxy-cyclohexanon-(1)-oxim $C_{11}H_{21}O_2N=C_5H_{11}\cdot O\cdot C_6H_9:N\cdot OH.$ Zähes Öl. Kp_{12} : 162° (v. Braun, Haensel, Zobel, A. 462, 290).
- 3-Isoamyloxy-cyclohexanon-(1)-semicarbazon $C_{19}H_{22}O_2N_3=C_5H_{11}\cdot O\cdot C_6H_9:N\cdot NH\cdot CO\cdot NH_2$. Krystalle (aus Alkohol). F: 146° (v. Braun, Haensel, Zobel, A. 462, 290).
- 2-Chlor-cyclohexanol-(3)-on-(1) C₆H₉O₂Cl = H₂C CH₃CH₂CO. B. Aus Cyclohexen-(1)-on-(3) und unterchloriger Säure in Wasser (Kötz, Richter, J. pr. [2] 111, 399). Krystalle (aus Äther + Ligroin). F: 54—55°. Leicht löslich in Wasser, Alkohol und Äther, fast unlöslich in Ligroin. Geht bei mehrtägigem Aufbewahren sowie beim Erwärmen für sich im Vakuum oder mit 30% iger Schwefelsäure oder bei Einw. von Acetylierungsmitteln in 2-Chlor-cyclohexen-(1)-on-(3) oder 3-Chlor-cyclohexen-(1)-on-(4) (E II 7, 55) über.
 - 3. Cyclohexanol-(4)-on-(1) $C_0H_{10}O_2 = HO \cdot CH < CH_2 \cdot CH_2 \cdot CH_2 > CO$.

Methyläther, 4-Methoxy-cyclohexanon-(1) $C_7H_{12}O_2 = CH_3 \cdot O \cdot C_6H_9O$. B. Aus Cyclohexandiol-(1.4)-monomethyläther und Chromschwefelsäure unter Kühlung; Ausbeute 55% (Helfer, Helv. 7, 952). — Flüssigkeit. Kp₇₂₅: 200—201° (Zers.); Kp₉: 72°. Löslich in Wasser und organischen Lösungsmitteln. — Liefert mit Ameisensäureisoamylester und Natriumäthylat in absol. Äther unter Eiskühlung 5-Methoxy-1-oxymethylen-cyclohexanon-(2).

4-Methoxy-cyclohexanon-(1)-semicarbazon $C_8H_{16}O_2N_3=CH_3\cdot O\cdot C_6H_9:N\cdot NH\cdot CO\cdot NH_2$. F: 178° (Helfer, Helv. 7, 953).

4. 1-Methyl-cyclopentanol-(2)-on-(3) $C_6H_{10}O_2 = \frac{OC \cdot CH(OH)}{H_2C - CH_2}CH \cdot CH_3$ (E I 505).

B. In 50% iger Ausbeute durch Hydrierung von 1-Methyl-cyclopenten-(1)-ol-(2)-on-(3) (E II 7, 527) bei Gegenwart von Palladiumkohle in Wasser (Rojahn, Rühl, Ar. 1926, 226). — Öl von schwach brennendem, bitterem Geschmack. Kp₃₅: 97—98° (in Wasserstoff-Atmosphäre). Leicht löslich in Wasser, Äther und Alkohol, unlöslich in Petroläther. — Wird durch Luftsauerstoff teilweise in 1-Methyl-cyclopenten-(1)-ol-(2)-on-(3) zurückverwandelt. Gibt mit Alkalien eine gelbe Färbung. — Das Phenylhydrazon schmilzt bei 183—184°, das 4-Nitro-phenylosazon bei etwa 265°.

Methyläther, 2-Methoxy-1-methyl-cyclopentanon-(3) $C_7H_{12}O_2 = OC \cdot CH(O \cdot CH_3)$ $CH \cdot CH_3$. B. Beim Hydrieren von 2-Methoxy-1-methyl-cyclopenten-(1)-on-(3) in Gegenwart von Palladiumkohle in Wasser (ROJAHN, RÜHL, Ar. 1926, 236). — Nur als Semicarbazon isoliert.

Acetat, 2-Acetoxy-1-methyl-cyclopentanon-(3) $C_8H_{12}O_3 = OC \cdot CH(O \cdot CO \cdot CH_3)$ CH·CH₃. Öl. Kp_{44} : 120—130° (Rojahn, Rühl, Ar. 1926, 227).

2-Methoxy-1-methyl-cyclopentanon-(3)-semicarbazon $C_8H_{16}O_2N_3=CH_3\cdot O\cdot C_5H_6(CH_3):N\cdot NH\cdot CO\cdot NH_2.$ Krystalle. F: 206—207° (ROJAHN, RÜHL, Ar. 1926, 226).

5. 1 - Methyl - cyclopentanol - (4) - on - (3) C₃H₁₀O₂ = OC·CH₂ CH·CH₃. B.

Aus 1-Methyl-cyclopenten-(2)-ol-(3)-on-(4) (E II 7, 527) durch Reduktion mit Wasserstoff in Gegenwart von Palladium oder mit Zinkstaub und Eisessig oder Schwefelsäure (STAUDINGER,

RUMCKA, Helv. 7, 387). — Öl. Kp₁₈: 86°. Leicht löslich in Wasser und organischen Lösungsmitteln außer Petroläther. — Geht beim Aufbewahren in polymeres 1-Methyl-cyclopentanol-(4)-on-(3) ($C_0H_{10}O_2$)_x (Krystalle aus Äther + Petroläther; F: 85—86°; leicht löslich in Wasser und Äther, unlöslich in Petroläther) über, das sich bei der Destillation wieder depolymerisiert (Sr., R., Helv. 7, 387). Reduziert Fehlingsche Lösung und ammoniakalische Silbermerisiert (ST., R., Helv. 7, 387). Reduziert Fehlingsche Lösung und ammoniakalische Silbernitrat - Lösung in der Kälte (ST., R., Helv. 7, 387). Wird in alkoholisch-alkalischer Lösung durch Luft bei Zimmertemperatur allmählich, beim Kochen rasch in 1-Methyl-cyclopenten-(2)-ol-(3)-on-(4) zurückverwandelt (ST., R., Helv. 7, 387). Gibt mit der berechneten Menge Permanganat β -Methyl-glutarsäure (ST., R., Helv. 7, 388). Bei der Reduktion mit Natriumamalgam oder Aluminiumamalgam bildet sich 1-Methyl-cyclopentanon-(3) (ST., R., Helv. 7, 388). Liefert beim Erwärmen mit 20% iger Schwefelsäure auf dem Wasserbad 1-Methyl-cyclopenten-(2)-on-(4) (ST., R., Helv. 7, 390). Die Natriumverbindung liefert beim Kochen mit Allylbromid in absol. Ather 4-Allyloxy-1-methyl-cyclopentanon-(3) und andere nicht näher untersuchte Verbindungen (ST. R. Helv. 7, 435) — Gibt mit 4-Nitro-phenylbydragin-hydrochlorid in alkoh. Lögung in der (Sr., R., Helv. 7, 435). — Gibt mit 4-Nitro-phenylhydrazin-hydrochlorid in alkoh. Lösung in der Kälte das 4-Nitro-phenylhydrazon (F: 215—216°), in der Wärme das 4-Nitro-phenylosazon (F: 180°) (Sr., R., *Helv.* 7, 387). Gibt mit Eisenchlorid keine Farbreaktion (Sr., R., Helv. 7, 387).

Methyläther, 4-Methoxy-1-methyl-cyclopentanon-(3) $C_7H_{12}O_2 =$

OC·CH₂ CH·CH₂. B. Beim Kochen von 1-Methyl-cyclopentanol-(4)-on-(3) mit CH. O. HC. CH. methylalkoholischer Schwefelsäure (Staudinger, Ruzicka, Helv. 7, 388). Bei der Hydrierung von 3-Methoxy-1-methyl-cyclopenten-(2)-on-(4) in Gegenwart von Palladium (St., R., Helv. 7, 388). — Kp₁₄: 171—172°. Löslich in Petroläther. — Wird durch Wasserstoff bei Gegenwart von Palladium nicht weiter reduziert.

Äthyläther, 4-Äthoxy-1-methyl-cyclopentanon-(3) $C_8H_{14}O_2 =$

OC·CH₂ CH·CH₃. B. Beim Hydrieren von 3-Äthoxy-1-methyl-cyclopenten-(2)-on-(4) $C_2H_5 \cdot O \cdot HC \cdot CH_2$ in Gegenwart von Palladium (STAUDINGER, RUZICKA, Helv. 7, 389). Neben 4-Åthoxy-2-methylcyclopentanon-(5)-carbonsäure-(1)-äthylester beim Erwärmen von 2-Methyl-cyclopentanol-(4)-on-(5)-carbonsäure-(1)-äthylester mit alkoh. Schwefelsäure auf dem Wasserbad (St., R., Helv. 7, 384). — Öl. Kp_{1s}: 83—85°. — Gibt bei der Umsetzung mit Natrium und Allylbromid in Äther 3-Äthoxy-1-methyl-3-allyl-cyclopentanon-(4), mit Natriumamid und Allylbromid in Äther 1-Methyl-3-allyl-cyclopenten-(2)-on-(4) (Sr., R., Helv. 7, 436).

Allyläther, 4-Allyloxy-1-methyl-cyclopentanon-(3) $C_0H_{14}O_2 =$

OC. CH₃: CH·CH₃: O·HC·CH₃: B. Neben anderen Verbindungen beim Kochen der CH₃: CH·CH₃: O·HC·CH₃: O·HC·C

Acetat, 4-Acetoxy-1-methyl-cyclopentanon-(3) $^{\circ}C_{8}H_{12}O_{3} = CH_{3} \cdot CO \cdot O \cdot HC \cdot CH_{3}$ B. Aus 1-Methyl-cyclopentanol-(4)-on-(3) durch Einw. von Acetanhydrid (Staudinger, Ruzicka, Helv. 7, 389). Bei der Hydrierung von 3-Acetoxy-1-methyl-cyclopenten-(2)-on-(4) in Gegenwart von Palladium (St., R., Helv. 7, 389). — Öl. Kp₁₄: 109°. — Läßt sich durch Wasserstoff bei Gegenwart von Palladium nicht weiter reduzieren (St., R., Helv. 7, 388). — 4-Nitrophenylhydrazon C14H17O4N3. F: 1630 (STAUDINGER, RUZICKA, Helv. 7, 389).

4-Acetoxy-1-methyl-cyclopentanon-(3)-semicarbazon $C_bH_{1b}O_2N_3 = CH_a \cdot CO \cdot O \cdot C_bH_a(CH_a)$: N·NH·CO·NH₂. Krystalle (aus Benzol). É: 174º (STAUDINGER, RUZICKA, Helv. 7, 389). Leicht löslich in Wasser.

3 (oder 4) - Athoxy - 1.1 - dimethyl - cyclobutanon - (2) $C_0H_{14}O_0 = (CH_a)_0C < CO < CH_0 > CH \cdot O \cdot C_2H_5$ oder (CH₃) CH₄ CH₄ CH₅ CH₅ CH₆. Das Mol.-Gew. ist in Benzol kryoskopisch bestimmt. — B. Neben Polymerisationsprodukten des Dimethylketens durch Vermischen gleicher Teile Dimethylketen und Äthylvinyläther bei —80° in Stickstoffatmosphäre und 3—4-tägiges Aufbewahren bei —20° (Staudinger, Meyer, Helv. 7, 20). — Öl. Kp: 166—169°. D³: 0,9238. n_D : 1,4253. — Phenylhydrason $C_{14}H_{20}ON_2$. F: 70°.

3. Oxy-exe-Verbindengen $C_7H_{12}O_2$.

1 - Oxymethyl - cyclohexanon - (2) C₇H₁₂O₂ = H₂C CH₂· CH₂· CH₃· CH₄· CH₄· OH. B. Aus äquimolekularen Mengen Cyclohexanon und Formaldehyd-Lösung in Gegenwart von Kalkwasser unter Kühlung (Mannich, Beose, B. 56, 841). — Ol. Kp₁₆: 114—115°. — Empfindlich gegen Alkalien und Säuren. — Phenylhydrazon C₁₃H₁₆ON₂. F: 129°.

1-Acetoxymethyl-cyclohexanon-(2) $C_9H_{14}O_9 = CH_9 \cdot CO \cdot O \cdot CH_9 \cdot C_9H_9O$. B. Aus 1-Oxymethyl-cyclohexanon-(2) und Acetylchlorid in Pyridin + Chloroform erst in der Kälte, dann bei Zimmertemperatur (Mannich, Brose, B. 56, 842). — Öl. Kp_{18} : 134—136°. Löslich in Chloroform.

4. Oxy-oxo-Verbindungen $C_8H_{14}O_2$.

1-Acetyl-cyclohexanol-(1), Methyl-[1-oxy-cyclohexyl]-keton $C_8H_{14}O_2=H_1CCH_3\cdot CH_3\cdot COH_3\cdot COH_3\cdot CH_3\cdot COH_3\cdot COH_$

Methyl - [1 - oxy - cyclohexyl] - ketoxim $C_8H_{16}ON = HO \cdot C_6H_{10} \cdot C(:N \cdot OH) \cdot CH_3$. F: 94° bis 95° (Locquin, Sung, C. r. 176, 517). Kp_{11} : 146—147°.

Methyl-[1-oxy-cyclohexyl]-keton-semicarbazon $C_0H_{17}O_2N_3 = HO \cdot C_0H_{10} \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_3$ (E I 505). F: 217° (Quecksilberbad) (Locquin, Sung, C. r. 176, 517).

5. Oxy-oxo-Verbindungen C.H. O.

- 1. 1 Acetonyl cyclohexanol (1), [1 Oxy cyclohexyl] aceton $C_9H_{16}O_2 = H_2C \xrightarrow{CH_2 \cdot CH_2} C(OH) \cdot CH_2 \cdot CO \cdot CH_3$.
- [1-Methoxy-cyclohexyl]-aceton $C_{10}H_{18}O_2 = CH_2 \cdot O \cdot C_6H_{10} \cdot CH_2 \cdot CO \cdot CH_3$. B. In geringer Menge bei der Einw. von Natriummethylat-Lösung auf 1-Acetonyl-cyclohexen-(1) oder auf Cyclohexylidenaceton (Kon, Linstead, Soc. 1929, 1276).
- [1-Äthoxy-cyclohexyl]-aceton $C_{11}H_{20}O_3=C_3H_5\cdot O\cdot C_5H_{10}\cdot CH_2\cdot CO\cdot CH_3$. B. Analog der vorhergehenden Verbindung (Kon, Linstead, Soc. 1929, 1276).
- [1-Methoxy-cyclohexyl]-aceton-semicarbazon $C_{11}H_{21}O_2N_3=CH_3\cdot O\cdot C_6H_{10}\cdot CH_2\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_3$. Tafeln. F: 181—182° (Kon, Linstrad, Soc. 1929, 1276).
- [1-Äthoxy-cyclohexyl]-aceton-semicarbazon $C_{19}H_{29}O_2N_3=C_2H_5\cdot O\cdot C_4H_{10}\cdot CH_2\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_3$. Tafeln (aus Methanol). F: 174° (Kon, Linstean, Soc. 1929, 1276).
- 2. 1-Methyl-3-acetyl-cyclohexanol-(3), Methyl-[1-oxy-3-methyl-cyclohexyl]-keton $C_9H_{16}O_3=H_2CCH_1CH_3$ CH_2COH_3 CH_3 $CO+CH_3$. Rechtsdrehende Form. B. Aus linksdrehendem 1-Methyl-3-acetylenyl-cyclohexanol-(3) (E II 6, 100) durch Kochen mit Quecksilberoxyd und verd. Schwefelsäure (RUPE, A. 459, 215). Flüssigkeit von schwachem pfefferminzartigem Geruch. Kp_{10} : 105°. D_1^{∞} : 0,9991. $[\alpha]_D^{\infty}$: +4,58° (unverd.); Rotations-dispersion: RUPE.

Semicarbazon $C_{10}H_{19}O_2N_3 = CH_2 \cdot C_2H_9(OH) \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_3$ (E I 506). Nadeln (aus Alkohol). F: 210^9 (Zers.) (Ruff, A. 459, 216).

3. 1.1.2.2 - Tetramethyl - cyclopentanol - (4) - on - (3) bzw. 1.1.2.2 - Tetramethyl - cyclopentanol - (3) - on - (4) C₉H₁₆O₂ = (CH₃)₂C·CH₂ CH·OH bzw. (CH₃)₂C·CH₂ CCH₃ CCH

in Pyridin erhält man 3-Benzoyloxy-4-benzoyloximino-1.1.2.2-tetramethyl-tyclopentan and 4-Benzoyloxy-3-benzoyloximino-1.1.2.2-tetramethyl-cyclopentan (SH., Soc. 1928, 1669). — 4-Nitro-phenylhydrazon $C_{1b}H_{11}O_{3}N_{3}$. F: 223—224° (Zers.) (SH., Soc. 1928, 1666).

4 - Methoxy - 1.1.2.2 - tetramethyl - cyclopentanon - (3) C₁₀H₁₈O₃ = (CH₃)₂C·CO CH·O·CH₃. Zur Konstitution vgl. Ingold, Shopper, Soc. 1928, 379, 1869. — B. (CH₃)₂C·CH₃
Bei der Reduktion von 4-Methoxy-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5) mit Natrium-amalgam in siedendem Eisessig (I., Sh., Soc. 1928, 402). Neben 3-Methoxy-1.1.2.2-tetramethyl-cyclopentanon-(4) (?) bei der Einw. von Dimethylsulfat und 10% iger Natronlauge auf 1.1.2.2-Tetramethyl-cyclopentanol-(4)-on-(3) bzw. 1.1.2.2-Tetramethyl-cyclopentanol-(3)-on-(4) auf dem Wasserbad (Sh., Soc. 1928, 1670). In geringer Menge neben 4-Methoxy-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5) mit Zink und Eisessig (I., Sh., Soc. 1928, 402). — Ol. Kp₁₀: 88—90°; Kp₁₃₋₁₄: 90—92°; n¹⁵: 1,4574—1,4580 (I., Sh., Soc. 1928, 402; Sh., Soc. 1928, 1670). — Gibt bei der Reduktion mit Jodwasserstoffsäure 1.1.2.2-Tetramethyl-cyclopentanon-(4) (Sh., Soc. 1928, 1670). Liefert mit Brom in Chloroform je nach den Bedingungen 5.5-Dibrom-4-methoxy-1.1.2.2-tetramethyl-cyclopentanon-(3) (s. u.) oder Bromoxyphoron (S. 20) (Sh., Soc. 1928, 2363). Gibt bei der Umsetzung mit Hydroxylaminacetat in Alkohol und nachfolgenden Reduktion mit Natrium und Alkohol 3-Amino-1.1.2.2-tetramethyl-cyclopentan (I., Sh., Soc. 1928, 402; Sh., Soc. 1928, 1670).

4-Acetoxy-1.1.2.2-tetramethyl-cyclopentanon-(3) $C_{11}H_{18}O_3=(CH_3)_2C\cdot CO$ CH_3 . B. Beim Kochen von 4-Acetoxy-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5) oder dessen 3-Brom-Derivat mit Zinkstaub und Eisessig (Ingold, Shoffer, Soc. 1928, 397; Sh., Soc. 1928, 1666). — Kp_{10} : 120—121° (Sh.); Kp_{15-16} : 127° (I., Sh.). — Liefert beim Erhitzen mit wäßrig-alkoholischer Natronlauge 1.1.2.2-Tetramethyl-cyclopentanol-(4)-on-(3) bzw. 1.1.2.2-Tetramethyl-cyclopentanol-(3)-on-(4) (Sh., Soc. 1928, 1666). Gibt bei der Reduktion mit Natriumamalgam in siedendem Eisessig 1.1.2.2-Tetramethyl-cyclopentanon-(3) und wenig 1.1.2.2-Tetramethyl-cyclopentanon-(4) (I., Sh.).

- 4-Acetoxy-1.1.2.2-tetramethyl-cyclopentanon-(3)-oxim $C_{11}H_{19}O_3N=(CH_3)_2C\cdot C(:N\cdot OH)$ CH·O·CO·CH₃. Prismen (aus Ligroin). F: 93° (Ingold, Shopper, Soc. 1928, 1871). Liefert bei der Reduktion mit Natriumamalgam in heißem Eisessig 3-Amino-1.1.2.2-tetramethyl-cyclopentan. Hydrochlorid. Krystalle. F: 136—137° (Zers.).
- 5.5 Dibrom 4 methoxy 1.1.2.2 tetramethyl cyclopentanon (3) $C_{10}H_{16}O_8Br_2 = (CH_3)_2C CO$ (CH₃)₂C·CBr₂ CH·O·CH₃ (?). B. Bei langsamem Zufügen von 4 Atomen Brom zu einer Lösung von 4-Methoxy 1.1.2.2 tetramethyl cyclopentanon (3) (s. o.) in heißem Chloroform (Shoppee, Soc. 1928, 2363). Prismen (aus Ligroin). F: 99—100°. Zersetzt sich beim Aufbewahren unter Entwicklung von Brom. Wird von alkal. Permanganat-Lösung nicht angegriffen.
- 4. Oxyketon $C_9H_{16}O_2 = HO \cdot C_9H_{15}O$, Menthaketoalkohol. B. Das Semicarbazon des Acetats (s. u.) entsteht bei der Oxydation von [l-Menthyl]-acetat mit Chromessigsäure und nachfolgenden Umsetzung mit Semicarbazid; man erwärmt mit alkoh. Kalilauge und erhitzt das entstandene Semicarbazon (s. u.) mit 30% iger Salzsäure (MURAYAMA, TANAKA, J. pharm. Soc. Japan 48, 87; C. 1928 II, 653). Öl. Riecht ähnlich wie Zimtaldehyd.

Semicarbazon $C_{10}H_{10}O_2N_3=HO\cdot C_0H_{15}:N\cdot NH\cdot CO\cdot NH_2$. B. s. o. — Krystallin. F: 190° (Murayama, Tanaka, C. 1928 II, 653).

Semicarbazon des Acetats $C_{12}H_{21}O_3N_3=CH_3\cdot CO\cdot O\cdot C_9H_{15}:N\cdot NH\cdot CO\cdot NH_2$. B. s. o. — F: 189—190° (Murayama, Tanaka, C. 1928 II, 653).

6. Oxy-oxo-Verbindungen C₁₆H₁₈O₂.

1. 1 - Cyclohexyl - butanol - (1) - on - (3) $C_{10}H_{10}O_3 = C_0H_{11} \cdot CH(OH) \cdot CH_2 \cdot CO \cdot CH_3$. B. Aus Hexahydrobenzaldehyd und Aceton in 1 % iger Natronlauge, neben anderen Produkten (Kon, Soc. 1926, 1798). — Kp_{15} : 140—146°. D_2^{∞} : 0,9980. n_2^{∞} : 1,4760. — Gibt bei der Destillation bei Gegenwart von wenig Jod Methyl- $[\beta$ -cyclohexyliden-athyl]-keton, bei der Kinw. von Oxalsäure oder Kaliumdisulfat Hexahydrobenzylidenaceton; beim Erhitzen für sich bilden sich beide Verbindungen nebeneinander.

Semicarbazon $C_{11}H_{21}O_2N_3=C_8H_{11}\cdot CH(OH)\cdot CH_2\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_2$. Krystalle (aus Alkohol). Fr 171—1726 (Kon, Soc. 1926, 1798). Sehr schwer löslich. — Liefert bei der Behandlung mit Oxalsäure Hexahydrobenzylidenaceton.

- 2. 2-[1-Oxy-cyclohexyl]-butanon-(3), α-Methyl-α-[1-oxy-cyclohexyl]-aceton $C_{10}H_{18}O_2 = H_2CCH_2 \cdot CH_2 \cdot CH_2 \cdot C(OH) \cdot CH(CH_3) \cdot CO \cdot CH_2$. B. In geringer Menge bei der Umsetzung von Cyclohexanon mit der Magnesiumverbindung des Methyl-[α-chlor-āthyl]-ketons (GOUDET, PALLARD, Helv. 7, 639, 640). Nadeln (durch Sublimation). F: 123—124°. Sublimiert unter 20—30 mm Druck bei ca. 115°. Löslich in Alkohol, Äther, Chloroform, Essigester und anderen organischen Lösungsmitteln, schwer löslich in Äthylbromid. Gibt beim Erhitzen mit überschüssigem Brom in Chloroform ein Bromderivat, das bei 167° schmilzt und sich bei 173° zersetzt.
- 3. 1-Methyl-4-isopropyl-cyclohexanol-(1)-on-(2), p-Menthanol-(1)-on-(2), 1-Oxy-tetrahydrocarvon $C_{10}H_{18}O_3 = HO \cdot (CH_3)C \cdot CH_2 \cdot CH_2 \cdot CH \cdot CH(CH_3)_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot C$
- 3 Brom p menthanol (1) on (2) $C_{10}H_{17}O_2Br = HO \cdot (CH_3)C \cdot CHBr \cdot CH \cdot CH(CH_3)_2$. B. Aus inakt. 1.3-Dibrom-p-menthanon-(2) und 1 Mol Natriummethylat-Lösung (Wallach, A. 487, 157). Krystalle (aus Methanol). F: 92°. Gibt beim Erwärmen mit Alkali Diosphenol (E II 7, 540).

Acetat $C_{19}H_{19}O_3Br = CH_3 \cdot CO \cdot O \cdot C_9H_6OBr(CH_3) \cdot CH(CH_3)_2$. Nadeln (aus Methanol). F: 155° WALLA CH, A. 487, 157).

- $4. \quad 1-Methyl-4-isopropyl-cyclohexanol-(3)-on-(2), \ p-Menthanol-(3)-on-(2), \ 3-Oxy-tetrahydrocarvon \ C_{10}H_{18}O_2=CH_3\cdot HC < CO\cdot CH(OH) \\ CH_2 CH_2 CH_2 \cdot CH(CH_3)_2.$
- a) 3 Oxy tetrahydrocarvon A¹) C₁₀H₁₈O₂. B. Neben 3-Oxy-tetrahydrocarvon B und anderen Produkten bei der Hydrierung von Diosphenol bei Gegenwart von Platinschwarz in Äther (Cusmano, Boccucci, G. 53, 653; Cu., R. A. L. [5] 30 II, 225). Beim Sättigen der äther. Lösung mit Bromwasserstoff erhält man festes und flüssiges 3-Brom-p-menthanon-(2).

Semicarbazon $C_{11}H_{21}O_9N_3=(C_2H_7)(CH_3)C_6H_7(OH): N\cdot NH\cdot CO\cdot NH_2$. Prismen. F: 225° (Zers.) Cusmano, Boccucci, G. 53, 653). Sohwer löslich in Alkohol. — Wird am Licht gelblich.

- b) 3-Oxy-tetrahydrocarvon B¹) C₁₀H₁₈O₂ = CH₃·HC CO·CH(OH) CH·CH(CH₃)₂.

 B. s. bei 3-Oxy-tetrahydrocarvon A. Flüssigkeit von pfefferminzartigem Geruch. Kp: 234° (Cusmano, Boccucci, G. 53, 652; Cu., R. A. L. [5] 30 II, 225). Etwas löslich in kaltem Wasser.

 Beim Sättigen der äther. Lösung mit Bromwasserstoff erhält man festes und flüssiges 3-Brom-p-menthanon-(2).
- Oxim $C_{10}H_{10}O_2N = (C_3H_7)(CH_3)C_6H_7(OH):N\cdot OH$. Nadeln (aus verd. Alkohol). F: 120° bis 121° (Cusmano, Boccucci, G. 53, 654).

Semicarbazon $C_{11}H_{21}O_2N_3=(C_3H_7)(CH_2)C_9H_7(OH):N\cdot NH\cdot CO\cdot NH_2$. Tafeln. F: 180° bis 181° (Cusmano, Boccucci, G. 58, 653). Ziemlich leicht löslich in Alkohol.

- 5. Derivat des p-Menthanol-(1)-ons-(2) $C_{10}H_{18}O_2 = (HO)(CH_2)C < CO \cdot CH_2 > CH \cdot CH(CH_3)_2$ oder des p-Menthanol-(6)-ons-(2) $C_{10}H_{18}O_2 = CH_3 \cdot HC < CH_3 > CH \cdot CH(CH_3)_2$.
- 2.2'(oder 3.3')-Dioxo-1.1'(oder 2.2')-dimethyl-4.4'(oder 5.5')-diisopropyl-dicyclohexyl-sulfid, Carvotanacetonhydrosulfid $C_{20}H_{24}O_3S = \begin{bmatrix} C_3H_7 \cdot HC & CH_2 \cdot CO \\ CH_2 \cdot CH_2 \cdot CH_3 \end{bmatrix}_2S$ oder $\begin{bmatrix} H_2C & CO CH(CH_3) \\ CH(C_3H_7) \cdot CH_2 \end{bmatrix}_2S.$ Diese Konstitution kommt den H 7, 75, 76 beschriebenen Verbindungen von d., l- und dl-Carvotanaceton mit Schwefelwasserstoff zu; vgl. dazu die E H 7, 78 angegebene Literatur. Die inaktive Form schmilzt bei 205—207° (CHALLENGER, SMITH, PATON, Soc. 123, 1047).
- 2.2'(oder 3.3')-Dioxo-1.1'(oder 2.2')-dimethyl-4.4'(oder 5.5')-bis- $[\alpha.\beta$ -dibrom-isopropyl] dicyclohexylsulfid, Carvonhydrosulfidtetrabromid $C_{30}H_{30}O_3Br_4S=$ $[BrH_3C\cdot CBr(CH_3)\cdot HC\cdot CH_3\cdot CO C(CH_3)]_2$ S oder $[H_3C\cdot CO CH(CH_3)\cdot CH_2 \cdot CH_3\cdot C$

¹⁾ Die Bezeichnungen A und B wurden von der Beilstein-Redaktion zur leichteren Unterscheidung eingeführt.

6. 1-Methyl-4-isopropyl-cyclohexanol-(1)-on-(3), p-Menthanol-(1)-on-(3) $C_{10}H_{18}O_{1} = CH_{2} \times CCH_{2} \times CO \times CH_{2} \times CH$

2-Chlor-p-menthanol-(1)-on-(3), Piperiton-chlorhydrin $C_{10}H_{17}O_2Cl = CH_2 CHCl \cdot CO$ CH₂ CH₂ CH · CH(CH₃)₂. Inaktive Form 1). B. Durch Einw. einer wäßr. Chlorharnstoff · Lösung auf dl · Piperiton (E II 7, 75) in Aceton + Eisessig (Read, Mitarb., Soc. 1929, 2075). — Nadeln (aus Petroläther). Riecht schwach nach Minze. F: 101—102°. Leicht löslich in organischen Lösungsmitteln. — Beständig gegen siedende Chromessigsäure. Liefert bei der Reduktion mit Natriumamalgam in 55 % igem Alkohol oder mit Zinkstaub in Methanol dl · Piperiton. Gibt bei der Einw. von Natriummethylat-Lösung ein unreines methoxylhaltiges Produkt. Beim Erhitzen mit überschüssigem feuchtem Silberoxyd und folgenden Destillieren unter vermindertem Druck erhält man eine Verbindung $C_{10}H_{16}O_2$ (n_D^{17} : 1,4640; unlöslich in verd. Kalilauge; entfärbt Brom in Tetrachlorkohlenstoff).

7. Oxy-oxo-Verbindungen $C_{11}H_{20}O_2$.

- 1. 1-Methyl-2-oxymethyl-4-isopropyl-cyclohexanon-(3), 2-Oxymethyl-p-menthanon-(3), 2-Oxymethyl-menthon $C_{11}H_{20}O_2=$ $CH_2 \cdot HC \cdot CH(CH_2 \cdot OH) \cdot CO \cdot CH \cdot CH(CH_3)_2$. B. Beim Hydrieren von 2-Oxymethylen-menthon $CH_1 \cdot H_2 \cdot CH_3 \cdot$
- CH₃·HC CH₂·CH₂·CH·CH₃·CH·CH(CH₃)₂. B. Beim Hydrieren von 2-Oxymethylen-menthon (E II 7, 542) in Gegenwart von Nickel in Alkohol + Essigester + Wasser (Ruff, Gubler, Helv. 9, 585). Schwach nach Menthon riechende zähe Flüssigkeit. Schmeckt bitter-brennend. Kp₁₁: 129—130°. D²⁰: 0,9875. Löst sich bei Zimmertemperatur in ca. 80 Teilen Wasser, löslich in organischen Lösungsmitteln. Rohes Oxymethyl-menthon liefert bei der Destillation unter vermindertem Druck oberhalb 130° zwei (stereoisomere?) Dimenthonyläthane (E II 7, 565), 2-Methylen-menthon und etwas 2-Methyl-menthon; die beiden Dimenthonyläthane werden auch beim Erhitzen mit Natrium in wasserhaltigem Benzol erhalten. Gibt beim Erwärmen mit 75% iger Schwefelsäure, beim Behandeln mit Calciumchlorid oder bei der Einw. von Phosphortribromid und anschließender Destillation oder Behandlung des Reaktionsprodukts mit Kaliumjodid 2-Methylen-menthon. Beim Erwärmen mit Acetanhydrid auf dem Wasserbad entstehen 2-Acetoxymethyl-menthon und 2-Methylen-menthon. Das 4-Nitro-benzoat schmilzt bei 102—103°.

Formiat $C_{12}H_{20}O_3=(CH_3)(C_2H_7)C_0H_7O\cdot CH_2\cdot O\cdot CHO$. Öl von menthonartigem Geruch. Kp_{11} : 141—142° (Rupe, Gubler, Helv. 9, 587).

- Acetat, 2-Acetoxymethyl-menthon $C_{13}H_{22}O_3 = (CH_3)(C_3H_7)C_6H_7O \cdot CH_2 \cdot O \cdot CO \cdot CH_3$. B. Neben 2-Methylen-menthon aus 2-Oxymethyl-menthon und Acetanhydrid auf dem Wasserbad (Rupe, Gubler, Helv. 9, 587). Dickliche, schwach nach Menthon riechende Flüssigkeit. Kp₁₁: 147—148°. Liefert beim Verseifen 2-Methylen-menthon.
- 2. 5-Methyl-1-oxymethyl-2-isopropyl-cyclohexanon-(6), 3-Oxymethyl-p-menthanon-(2), 3-Oxymethyl-tetrahydrocarvon, $3-Oxymethyl-carvomen-thon <math>C_{11}H_{20}O_2=CH_3\cdot HC$ $CO\cdot CH(CH_2\cdot OH)$ $CH\cdot CH(CH_3)_2$. B. Neben anderen Verbindungen bei der Hydrierung von 3-Oxymethylen-tetrahydrocarvon (E II 7, 542) in 75% igem Alkohol bei Gegenwart von Nickel (Ruff, Schläfer, Helv. 11, 476). Dickliche Flüssigkeit von angenehm erfrischendem Geruch. Kp₁₁: 142°. D_1^{∞} : 0,9947. [α] $_{\rm D}^{\infty}$: —40,16°; Rotationsdispersion der unverdünnten Substanz: R., Sch. Liefert beim Erwärmen mit 75% iger Schwefelsäure auf dem Wasserbad 3-Methylen-tetrahydrocarvon.
- 3. 1.1.2.5 Tetramethyl 2 oxyacetyl cyclopentan, Oxymethyl [1.2.2.3 tetramethyl cyclopentyl] keton, Camphoylcarbinol $C_{11}H_{20}O_3=CH_{-1}HC\cdot C(CH_{-1})$
- CH₃·HC·C(CH₂)₂ C(CH₂)·CO·CH₂·OH. B. Beim Kochen des Acetats (s. u.) mit 1,5% iger H₂C CH₂

 methylalkoholischer Salzsäure; man reinigt über das Benzoat (RUPE, FEHLMANN, Helv. 9, 89). Schwach terpenartig riechendes Öl. Kp₁₁: 123° (R., F.). D₁²⁰: 1,0002 (R., PERRET, Helv. 9, 97, 98). [\(\alpha\)]\(\beta\): + 87,16° (unverdünnt); Rotationsdispersion der unverdünnten Substanz: R., P., Helv. 9, 98). Addiert Calciumchlorid unter Wärmeentwicklung (R., F., Helv. 9, 89—90). Gibt bei der Reduktion mit Aluminiumamalgam und feuchtem Äther oder mit Natriumamalgam in absol. Alkohol 1.1.2.5-Tetramethyl·2-acetyl-cyclopentan und wenig Campholglykol (E II 6, 757) R., F., Helv. 9, 90; R., P., Helv. 9, 100).
- Acetat C₁₂H₂₂O₂ = (CH₂)₄C₂H₅·CO·CH₂·O·CO·CH₂. B. Bei 16-stdg. Erhitzen von 1.1.2.5-Tetramethyl-2-bromacetyl-cyclopentan mit Eisessig und Kaliumacetat auf 140° (RUPE, FEHLMANN, Helv. 9, 89). Öl von angenehmem Geruch. Kp₁₀: 142° (R., Perret, Helv. 9, 98).

¹⁾ Über ein rechtsdrehendes Präparat vgl. READ, Mitarb., Soc. 1929, 2075.

 D_s^{∞} : 1,0256 (R., P.). [α] $_D^{\infty}$: + 63,28° (unverdünnt) (R., P.). Rotationsdispersion der unverdünnten Substanz: R., P., H_{elv} . 9, 98. — Liefert bei der Reduktion mit Natriumamalgam in wasserhaltigem Alkohol oder mit Natrium und absol. Alkohol Campholglykol (E II 6, 757) und 1.1.2.5-Tetramethyl-2-acetyl-cyclopentan (R., P., H_{elv} . 9, 100).

Propionat $C_{14}H_{24}O_3 = (CH_3)_4C_5H_5 \cdot CO \cdot CH_2 \cdot O \cdot CO \cdot C_5H_5$. Fast geruchloses, leicht bewegliches Öl. Kp_{11} : 157° (RUPE, PERRET, Helv. 9, 98). Dr. 1,0155. $[\alpha]_D^{\infty}$: +62,28°. Rotations-dispersion der unverdünnten Substanz: R., P., Helv. 9, 99.

Butyrat $C_{18}H_{26}O_3 = (CH_3)_4C_5H_5 \cdot CO \cdot CH_2 \cdot C_2 \cdot CO \cdot CH_2 \cdot C_2H_5$. Schwach aromatisch riechendes Öl. Kp_{11} : 167,5° (Rupe, Perret, Helv. 9, 99). D_4^m : 1,0021. [α] $_5^m$: +58,32° (unverdünnt); Rotationsdispersion der unverdünnten Substanz: R., P., Helv. 9, 99.

8. Oxy-oxo-Verbindungen C₁₂H₂₃O₂.

1. 1-Methyl-4-isopropyl-2-acetyl-cyclohexanol-(2), 2-Acetyl-p-menthanol-(2) $C_{12}H_{12}O_3=CH_2\cdot HC < C(OH)(CO\cdot CH_2)\cdot CH_2\cdot CH\cdot CH(CH_3)_3$. Links drehen de Form. B. Durch Erwärmen von linksdrehendem 1-Methyl-4-isopropyl-2-acetylenyl-cyclohexanol-(2) (E ll 6, 106) mit Quecksilberoxyd und verd. Schwefelsäure (Rupe, A. 459, 216). — Flüssigkeit von schwachem, an Tetrahydrocarvon erinnerndem Geruch. Kp₁₁: 126°. D. 2°: 0,9662. [α]5: —21,59° (unverdünnt); Rotationsdispersion der unverdünnten Substanz: R., A. 459, 217. Mit Wasserdampf flüchtig.

Semicarbazon $C_{13}H_{25}O_2N_3=CH_3\cdot C_0H_0(C_3H_7)(OH)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_3$. Nadeln (aus Alkohol). F: 212° (Zers.) (Rupe, A. 459, 217).

2. 1.1.2.5-Tetramethyl-2- $[\beta$ -oxy-propionyl]-cyclopentan, $[\beta$ -Oxy-äthyl]-[1.2.2.3-tetramethyl-cyclopentyl]-keton, Camphoylathylalkohol $C_{12}H_{12}O_{2}=CH_{-}HC\cdot C(CH_{-})$

CH₂·HC·C(CH₃)₂ C(CH₃)·CO·CH₂·CH₂·OH. B. Beim Hydrieren von Oxymethylen-camphol
methylketon (E II 7, 543) in 65% igem Alkohol bei Gegenwart von Nickel (RUPE, FEHLMANN,
Helv. 9, 96; RUPE, PERRET, Helv. 9, 108). — Diskliches Öl von schwachem Geruch. Kp₁₂: 143°
(R., P.). D₄²⁰: 0,9974 (R., P.). [\(\alpha\)]₁₀: +52,94° (R., P.). Rotationsdispersion: R., P., Helv. 9, 109.
Leicht löslich in organischen Lösungsmitteln, unlöslich in Wasser (R., P.). — Liefert beim Erwärmen mit 75% iger Schwefelsäure oder sirupöser Phosphorsäure, weniger gut bei der Einw. von kalter 75% iger oder 60% iger Schwefelsäure, warmer 40% iger Schwefelsäure oder methylalkoholischer
Kalilauge, polymeres Methylencampholmethylketon (E II 7, 115) (R., P., Helv. 9, 111). — Gibt
eine feste Verbindung mit Calciumchlorid. — Das 4-Nitro-benzoat schmilzt bei 51°, das
Phenylthiourethan bei 154° (R., P., Helv. 9, 109, 111).

Acetat $C_{14}H_{24}O_3 = (CH_3)_4C_5H_5 \cdot CO \cdot CH_2 \cdot CH_7 \cdot O \cdot CO \cdot CH_3$. Öl. Kp_{12} : 159° (Rupe, Perret, Helv. 9, 109). $D_4^{(0)}$: 1,0103. [α] $_B^{(0)}$: +43,35° (unverdünnt); Rotationsdispersion der unverdünnten Substanz: R., P., Helv. 9, 109. Leicht löslich in organischen Lösungsmitteln, unlöslich in Wasser.

Propionat $C_{15}H_{36}O_3 = (CH_3)_4C_5H_5 \cdot CO \cdot CH_2 \cdot CH_2 \cdot O \cdot CO \cdot C_2H_5$. Öl. Siedet im Hochvakuum bei 93—94°; Kp_{19} : 140° (Zers.) (Rupe, Perret, Helv. 9, 110). D_4^{∞} : 1,0006. $[\alpha]_5^{\infty}$: +42,48° (unverdünnt). Rotationsdispersion: R., P., Helv. 9, 110. Leicht löslich in organischen Lösungsmitteln, unlöslich in Wasser.

Butyrat $C_{10}H_{28}O_3 = (CH_3)_4C_5H_5\cdot CO\cdot CH_2\cdot CH_2\cdot O\cdot CO\cdot [CH_2]_3\cdot CH_3$. Öl. Siedet im Hochvakuum bei $104-106^0$ (RUPE, PERRET, Helv. 9, 110). D_4^{∞} : 0,9886. $[\alpha]_D^{\infty}$: $+40,64^0$. Rotations-dispersion: R., P., Helv. 9, 110. Leicht löslich in organischen Lösungsmitteln, unlöslich in Wasser. — Spaltet beim Aufbewahren langsam Buttersäure ab.

- a) Feste Form, α-Form C₁₂H₁₂O₂. Darstellung durch Reduktion von Mesityloxyd mit Aluminiumamalgam in feuchtem Äther (H 7, 141): VOGEL, Soc. 1927, 598. Krystalle (aus Petroläther + Äther). F: 45° (V.), 53—55° (LAW, Soc. 101 [1912], 1020). Beim Aufbewahren des Rohprodukts an der Luft bildet sich die flüssige Form (V.). Liefert bei der Oxydation mit Chromessigsäure Tetramethylbernsteinsäure (V.). Das Benzoat schmilzt bei 115° (V.).

Semicarbazen $C_{13}H_{25}O_2N_3 = CH_3 \cdot C(: N \cdot NH \cdot CO \cdot NH_2) \cdot C_5H_2(CH_3)_5 \cdot OH$. Prismen (aus Alkohol). F: 185° (VOGEL, Soc. 1927, 598).

b) Flüssige Form, \$\beta\text{Form C}_{12}\text{H}_{23}\text{O}_2\$. B. s. S. 11. — Kp₂₀: 122—124° (Vocat., Soc. 1927, 598). — Bei der Oxydation mit Chromessigsäure entsteht Tetramethylbernsteinsäure. Liefert bei der Oxydation mit Natriumhypobromit-Lösung geringe Mengen einer bei 122—123° schmelzenden Säure. Wird von Permanganat und Natriumhypoblorit nicht merklich angegriffen. Bei der Oxydation mit konz. Salpetersäure entsteht Oxalsäure. — Das Benzoat schmilzt bei 42°.

Semicarbazon $C_{13}H_{25}O_2N_3=CH_3\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot C_5H_3(CH_3)_5\cdot OH$. Krystalie (aus Methanol). F: 165° (Vogel, Soc. 1927, 599).

9. Oxy-oxo-Verbindungen $C_{13}H_{24}O_2$.

Semicarbazon $C_{14}H_{27}O_2N_3 = CH_3 \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot C_5H_5(CH_3)_2 \cdot C(CH_2)_2 \cdot OH$. Nadeln (aus Alkohol). F: 221—222° (Haller, Salmon-Legagneur, C. r. 180, 1623; S.-L., A. ch. [10] 8, 14).

10. Oxy-oxo-Verbindungen $C_{14}H_{26}O_2$.

Semicarbazon $C_{15}H_{20}O_2N_3$. Krystalle (aus Methanol). F: 171° (Ruzicka, van Veen, A. 476, 97). — Liefert beim Kochen mit Oxalsäure-Lösung das Keton $C_{14}H_{24}O$ (E II 7, 120) (R., van V., A. 476, 100). [Bärmann]

b) Oxy-oxo-Verbindungen $C_nH_{2n-4}O_2$.

1. Oxy-oxo-Verbindungen C₆H₈O₈.

1. 1 - Methyl - cyclopenten - (1) - ol - (2) - on - (3) $C_0H_8O_8 = \frac{OC \cdot C(OH)}{H_2C - CH_2}C \cdot CH_3$ ist desmotrop mit 1-Methyl-cyclopentandion-(2.3), E II 7, 527.

Methyläther, 2-Methoxy-1-methyl-cyclopenten-(1)-on-(3) $C_7H_{10}O_2 = OC \cdot C(O \cdot CH_3)$ $C \cdot CH_3$. B. Bei längerem Schütteln von 1-Methyl-cyclopentandion-(2.3) mit $H_2C - CH_3$ $C \cdot CH_3$. B. Bei längerem Schütteln von 1-Methyl-cyclopentandion-(2.3) mit Dimethylsulfat und 10 %iger Natronlauge (Rojahn, Rühl, Ar. 1926, 225). — Öl. Kp_{17} : 85—92°. Leicht löslich in Äther, Petroläther und warmem Wasser. — Ist nur kurze Zeit haltbar. Liefert bei der Hydrierung in Gegenwart von Palladiumkohle in Wasser 2-Methoxy-1-methyl-cyclopentanon-(3).

Allyläther, 2-Allyloxy-1-methyl-cyclopenten-(1)-on-(3) $C_9H_{19}O_3 = \frac{OC \cdot C(O \cdot U_8H_5)}{H_2O}C \cdot CH_2$. Konstitution nach Rojahn, Rühl, Ar. 1926, 217. — Gelbliches Öl. Kp₁: 87,5° (Staudinger, Ruzicka, Reuss, Ann. Acad. Sci. fenn. [A] 29, Nr. 17, S. 8; C. 1927 II, 2282). — Lagert sich beim Aufbewahren oder kurzen Erhitzen in ein nicht näher beschriebenes Methylallylcyclopentenolon um, das bei der Reduktion in 1-Methyl-3-allyl-cyclopentanol-(5)-on-(4)(?) (S. 16) übergeht (St., R., R.).

Acetat, 2-Acetoxy-1-methyl-cyclopenten-(1)-on-(3) C₈H₁₀O₈ = H₂C CH₂ C·CH₃ (E I 508). Konstitution nach ROJAHN, RÜHL, Ar. 1926, 217. — Das 4-Nitro-phenyl-hydrazon schmilzt bei 200—201° (ROJAHN, RÜHL, Ar. 1926, 224).

- 2 Methoxy 1 methyl cyclopenten (1) on (3) semicarbazon $C_9H_{18}O_2N_3=CH_3\cdot O\cdot C_9H_4(CH_9):N\cdot NH\cdot CO\cdot NH_2$. Krystelle (aus Methanol). F: 228—229° (ROJAHN, RÜHL, Ar. 1926. 225).
- 2-Methoxy-1-methyl-cyclopenten-(1)-on-(3)-guanylhydrazon $C_8H_{14}ON_4=CH_3\cdot O\cdot C_5H_4(CH_3):N\cdot NH\cdot C(:NH)\cdot NH_2.$ Nitrat $C_8H_{14}ON_4+HNO_3$. B. Aus 2-Methoxy-1-methyl-cyclopenten-(1)-on-(3) und Aminoguanidin-nitrat in sehr verd. Salpetersäure (ROJAHN, RÜHL, Ar. 1926, 225). Nadeln. Verfärbt sich bei 150°; zersetzt sich bei 231—232°.
- 2-Acetoxy-1-methyl-cyclopenten-(1)-on-(3)-guanyihydrazon $C_9H_{14}O_2N_4 = CH_3 \cdot CO \cdot O \cdot C_5H_4(CH_3):N \cdot NH \cdot C(:NH) \cdot NH_5.$ Nitrat $C_9H_{14}O_2N_4 + HNO_3$. B. Aus 2-Acetoxy-1-methyl-cyclopenten-(1)-on-(3) und Aminoguanidin-nitrat in sehr verd. Salpetersäure (ROJAHN, RÜHL, Ar. 1926, 224). Nadeln. F: 212—213°.
- 2. 1-Methyl-cyclopenten-(2)-ol-(3)-on-(4) $C_6H_8O_2 = \frac{\text{HO} \cdot \text{C:CH}}{\text{OC} \cdot \text{CH}_2} \text{CH} \cdot \text{CH}_3$ ist desmotrop mit 1-Methyl-cyclopentandion-(3.4), E II 7, 527.

Methyläther, 3-Methoxy-1-methyl-cyclopenten-(2)-on-(4) $C_7H_{10}O_2=CH_{-1}O\cdot C:CH$

CH₃·O·C: CH
OC·CH₂
CH·CH₃. B. Aus 1-Methyl-cyclopentandion-(3.4) durch Kochen mit Methyljodid und Natriummethylat-Lösung oder mit methylalkoholischer Schwefelsäure oder durch
Schütteln mit Dimethylsulfat und wäßr. Alkalilauge (STAUDINGER, RUZICKA, Helv. 7, 385, 386). —
Öl. Kp₁₅: 105—106°. — Liefert bei der Hydrierung in Gegenwart von kolloidem Palladium
4-Methoxy-1-methyl-cyclopentanon-(3).

Äthyläther, 3-Äthoxy-1-methyl-cyclopenten-(2)-on-(4) $C_8H_{12}O_2 =$

C₂H₅·O·C: CH OC·CH₂ CH·CH₃. B. Analog dem Methyläther (STAUDINGER, RUZICKA, Helv. 7, 386). — Ol. Kp₁₀: 112—113°. — Lagert sich beim Erhitzen mit Pyridin oder Chinolin auf 200° in 1-Methyl-2-äthyl-cyclopentandion-(3.4) (E II 7, 535) um. Liefert bei der Hydrierung in Gegenwart von Palladium 4-Äthoxy-1-methyl-cyclopentanon-(3).

Allyläther, 3-Allyloxy-1-methyl-cyclopenten-(2)-on-(4) $C_0H_{12}O_2 = CH_2: CH \cdot CH_2 \cdot O \cdot C : CH$ OC · CH₂: CH · CH₃. B. Durch Kochen von 1-Methyl-cyclopentandion-(3.4) mit

Allylbromid und Natriumallylat-Lösung oder besser mit Allylalkohol und etwas konz. Schwefelsäure (Staudinger, Ruziora, *Helv.* 7, 432). — Dünnflüssiges Öl. Kp_{0,75}: 76—77°. Unlöslich in Natronlauge. — Liefert bei der Ozonspaltung Formaldehyd. Gibt beim Kochen mit 20% iger Schwefelsäure 1-Methyl-cyclopentandion-(3.4). Beim Kochen mit verd. Natronlauge entsteht nicht ganz einheitliches 1-Methyl-2-propenyl-cyclopentandion-(3.4).

Geranyläther, 3-Geranyloxy-1-methyl-cyclopenten-(2)-on-(4) $C_{18}H_{24}O_2 = (CH_3)_2C:CH\cdot CH_2\cdot CH_2\cdot C(CH_3):CH\cdot CH_2\cdot O\cdot C:CH$ CH-CH₃. B. Beim Kochen von 1-Methyl-

cyclopentandion-(3.4) mit Geranylchlorid und Natriumäthylat-Lösung (STAUDINGER, RUZICKA, Helv. 7, 441). — Gelbliches Öl. Kp_{0,75}: 138—142°. — Lagert sich beim Erhitzen für sich oder mit Pyridin nicht um.

Acetat, 3-Acetoxy-1-methyl-cyclopenten-(2)-on-(4) $C_8H_{10}O_8 = CH_2 \cdot CO \cdot O \cdot C : CH_2 \cdot CO \cdot O \cdot C :$

OC·CH₂ CH·CH₃. B. Beim Erwärmen von 1-Methyl-cyclopentandion-(3.4) mit Acetanhydrid auf dem Wasserbad (Staudinger, Ruzicka, Helv. 7, 385). — Öl. Kp₁₂: 128—130°. — Liefert bei der Hydrierung in Gegenwart von Palladium 4-Acetoxy-1-methyl-cyclopentanon-(3). — 4-Nitro-phenylhydrazon. F: 185—186°.

3 - Methoxy - 1 - methyl - cyclopenten - (2) - on - (4) - semicarbazon $C_8H_{13}O_2N_3=CH_3\cdot O\cdot C_8H_4(CH_3):N\cdot NH\cdot CO\cdot NH_2$. F: 192° (Staudinger, Ruzicka, Helv. 7, 386).

2. Oxy-oxo-Verbindungen C, H10 O2.

1. 1-Methyl-cyclohexen-(2)-ol-(6)-on-(4) $C_7H_{10}O_2 = OC < CH \xrightarrow{CH} CH > CH \cdot CH_2$.

3.5 - Dibrom - 1 - nitro - 6 - methexy - 1 - methyl - cyclohexen - (2) - on - (4) $C_2H_2O_2NBr_2 = CH + CH_2O_2NBr_2 = CH_2O_$

OC CBr CH C CH₃. B. Analog der folgenden Verbindung (FRIES, OEHMEE, A. 462, 11). — Oktaeder (aus Eisessig), Nadeln (aus Bensin). F: 166° (Zers.). — Zersetzt sich

bei längerem Erhitzen in Lösung. Gibt bei der Reduktion mit Zinkstaub und konz. Salzsäure in Eisessig 3-Brom-4-oxy-toluol. Beim Behandeln mit Pyridin entstehen 5-Brom-3-nitro-4-oxy-toluol und 3.5.5-Tribrom-1-nitro-6-methoxy-1-methyl-cyclohexen-(2)-on-(4).

- 3.5-Dibrom 1 nitro 6- äthoxy 1 methyl cyclohexen (2) on (4) C₃H₃₁O₄NBr₂ = OC CBr CH₀·C₂H₅·CH₀·C₂H₅. B. Bei sehr kurzer Einw. von alkoh. Kalilauge auf 3.5-Dibrom 1 nitro 1 methyl cyclohexadien (2.5) on (4) (E II 7, 123) bei 0° (Fries, Orhmar, A. 462, 8). Krystalle (aus Alkohol oder Eisessig). F: 145° (Zers.). Schwer löslich in Benzin, ziemlich schwer in Alkohol, ziemlich leicht in Eisessig. Löst sich in warmer konzentrierter Schwefelsäure unter Zersetzung mit tiefbrauner Farbe; zersetzt sich auch beim Kochen mit Eisessig. Gibt beim Behandeln mit Bromwasserstoff Eisessig in der Kälte 5-Brom 3 nitro 4 oxy toluol. Bei gelindem Erwärmen mit Natronlauge entsteht 3.5 Dibrom 4 oxy 2 äthoxy toluol. Geht bei der Einw. von Pyridin bei gewöhnlicher Temperatur in 3.5.5 Tribrom 1 nitro 6 äthoxy 1 methyl cyclohexen (2) on (4) und 5 Brom 3 nitro 4 oxy toluol. über. Liefert bei der Reduktion mit Zinkstaub und konz. Salzsäure in Eisessig 3 Brom 4 oxy toluol.
- 3.5.5-Tribrom-1-nitro-6-methoxy-1-methyl-cyclohexen-(2)-on-(4) $C_8H_8O_4NBr_8 = OC CBr_2 CH_0 CH_3 CH_3$. B. Neben 5-Brom-3-nitro-4-oxy-toluol bei der Einw. von Pyridin auf 3.5-Dibrom-1-nitro-6-methoxy-1-methyl-cyclohexen-(2)-on-(4) (Fries, Oehmer, A. 462, 12). Prismen (aus Benzin oder Eisessig). F: 105° ; zersetzt sich bei ca. 125° . Zersetzt sich beim Erwärmen mit verd. Natronlauge. Gibt bei der Reduktion mit Zinkstaub und konz. Salzsäure in Eisessig 3.5-Dibrom-4-oxy-toluol.
- 3.5.5-Tribrom 1 nitro 6 äthoxy 1 methyl cyclohexen (2) on (4) C_bH₁₀O₄NBr₃ = OC CBr₂· CH(O·C₂H₅) CNO₂. B. Neben 5-Brom-3-nitro-4-oxy-toluol bei der Einw. von Pyridin auf 3.5-Dibrom-1-nitro-6-äthoxy-1-methyl-cyclohexen-(2)-on-(4) bei gewöhnlicher Temperatur (Fries, Oehmke, A. 462, 9). Krystalle (aus Hexan, Alkohol oder Eisessig). F: 92°; zersetzt sich bei ca. 112°. Leicht löslich in Benzol, ziemlich leicht in Eisessig und Petroläther schwerer in Alkohol. Löst sich in warmer verdünnter Natronlauge oder warmer konzentrierter Schwefelsäure unter Zersetzung. Gibt bei der Reduktion mit Zinkstaub und konz. Salzsäure in Eisessig 3.5-Dibrom-4-oxy-toluol.
- 2. 1-Oxymethylen-cyclohexanon-(2) $C_7H_{10}O_2 = H_2C < CH_2 \cdot CO < CH_2 \cdot CH_3 < CH_3 \cdot CH_3 < CH_3 \cdot CH_3 < CH_3 \cdot CH_3 < CH_3 < CH_3 \cdot CH_3 < CH$
- 1 Methoxymethylen cyclohexanon (2) $C_8H_{12}O_2 = H_2CCH_2 \cdot CO_2C:CH \cdot O \cdot CH_2$. B. Neben 1-Methyl-cyclohexanon-(2) bei der Einw. von Methyljodid auf das Natriumsalz des 1-Oxymethylen-cyclohexanons-(2) in absol. Alkohol (Sen, Ghosh, J. indian chem. Soc. 4, 478; C. 1928 I, 510).
- 1-Acetoxymethylen-cyclohexanon-(2) $C_{13}H_{12}O_3 = H_2CC_{CH_2}CH_2CH_2CH_2CH_2CH_3$ CH:CH·O·CO·CH₂ (E I 509). B. Durch Einw. von Acetylchlorid auf das Natriumsalz des 1-Oxymethylen-cyclohexanons-(2) in Äther (SEN, Mondal, J. indian chem. Soc. 5, 619, 626; C. 1929 I, 1101). Ol. Liefert bei der Hydrolyse Cyclohexanon.
- 1-Acetoxymethylen-cyclohexanon-(2)-semicarbazon $C_{10}H_{15}O_3N_5 = CH_3 \cdot CO \cdot O \cdot CH : C_6H_6 : N \cdot NH \cdot CO \cdot NH_2$. F: 182—184° (Sen, Mondal, J. indian chem. Soc. 5, 626; C. 1929 I, 1101).

3. Oxy-oxo-Verbindungen $C_8H_{12}O_2$.

1. 1.1 - Dimethyl - cyclohexen - (3) - ol - (3) - on - (5) $C_8H_{18}O_9 = HC < CO - CH_5 > C(CH_2)_2$. Vgl. 1.1-Dimethyl-cyclohexandion-(3.5), E II 7, 531.

Glyoxylsäure-bis-[5-oxo-3.3-dimethyl-cyclohexen-(6)-yl]-acetal $C_{18}H_{34}O_6=HO_2C\cdot CH O\cdot C CH_3\cdot C(CH_3)_2 CH_3$ (H 7). Ist als 2.6.2'.6'-Tetraoxo-4.4.4'.4'-tetramethyl-dicyclohexylessigaäure (Syst. Nr. 1355) zu formulieren (vgl. Vorländer, Fr. 77, 242 Anm. 2).

Hypechlorit des 4-Chlor-1.1-dimethyl-cyclohexen-(3)-ol-(3)-ons-(5) $C_8H_{10}O_2Cl_2 = ClC < COCl_2 CH_2 > C(CH_2)_2$ (H 7). Ist als 4.4-Dichlor-1.1-dimethyl-cyclohexendion-(3.5) (E II 7, 533) erkannt (Graham, Macherth, Soc. 121, 2804; vgl. Hibst, Macherth, Soc. 121, 2173).

- 2. 3 Methyl 1 oxymethylen cyclohexanon (2) $C_0H_{18}O_3 = H_1C \xrightarrow{CH(CH_3) \cdot CO} C: CH \cdot OH.$ Vgl. 3-Methyl-1-formyl-cyclohexanon-(2), E Π 7, 533.
- 3-Methyl-1-äthexymethylen-cyclohexanon-(2) $C_{10}H_{16}O_{2}=H_{16}C_{CH_{2}}\cdot CO$ $CH_{2}CH_{3}\cdot CO\cdot C_{2}H_{5}. B. Durch Äthylierung von 3-Methyl-1-oxymethylen-cyclohexanon-(2) (v. Auwers, Bahr, Frese, A. 441, 66). Gelbliches Öl von charakteristischem ätherischem Geruch. <math>Kp_{13}$: 117—119°. D_{4}^{13} : 1,0059. n_{α}^{14} : 1,4847; n_{87}^{16} : 1,4885; n_{β}^{15} : 1,4983. Wird durch Säuren leicht verseift; ist gegen Alkalien ziemlich beständig. Gibt mit Hydroxyl-aminhydrochlorid und Natriumcarbonat in eiskaltem Methanol das Monoxim des 3-Methyl-1-formyl-cyclohexanons-(2) (E II 7, 534).
- 3. 4-Methyl-1-oxymethylen-cyclohexanon-(2) $C_2H_{12}O_2 = CH_2 \cdot HC < CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_1 \cdot OH$. Vgl. 4-Methyl-1-formyl-cyclohexanon-(2), E II 7, 535.
- 4-Methyl-1-acetoxymethylen-cyclohexanon-(2) $C_{10}H_{16}O_3 = CH_3 \cdot HC \stackrel{CH_2}{\sim} CC_1 \cdot CH \cdot O \cdot CO \cdot CH_3$. B. Aus dem Natriumsalz des 4-Methyl-1-oxymethylen-cyclohexanons-(2) und Acetylchlorid in Äther (Sen, Mondal, J. indian chem. Soc. 5, 609 C. 1929 I, 1101). Viscoses Öl.
- 4. 1.1.3 Trimethyl cyclopenten (3) ol (4) on (2) $C_8H_{12}O_2 = CH_3 \cdot C \cdot CO$ $HO \cdot C \cdot CH_3$ c(CH₃)₂ ist desmotrop mit 1.1.3-Trimethyl-cyclopentandion-(2.4), E II 7, 535.
- Methyläther, 4-Methoxy-1.1.3-trimethyl-cyclopenten-(3)-on-(2) $C_9H_{14}O_2=CH_3\cdot C\cdot CO$ $C(CH_2)_2$. B. Neben 1.1.3.3-Tetramethyl-cyclopentandion-(2.4) bei der Einw.von Methyljodid auf 1.1.3-Trimethyl-cyclopentandion-(2.4) in Natriumäthylat-Lösung bei gewöhnlicher Temperatur (Le Peletier de Rosanbo, A.ch. [9] 19, 347). Nicht rein erhalten. Kp₁₅:110—113°.
- Acetat, 4-Acetoxy-1.1.3-trimethyl-cyclopenten-(3)-on-(2) $C_{10}H_{14}O_3 = CH_3 \cdot C \cdot CO$ $CH_3 \cdot C \cdot CO \cdot C \cdot CH_3 \cdot B.$ Beim Erwärmen von 1.1.3-Trimethyl-cyclopentandion-(2.4) mit Acetanhydrid auf dem Wasserbad (LE Peletier de Rosanbo, A.ch. [9] 19, 346). Kp₃₁: 124°.

4. Oxy-oxo-Verbindungen C.H.,O.

- 1. 2.4-Dimethyl-1-oxymethylen-cyclohexanon-(6) $C_9H_{14}O_2 = CH_3 \cdot HC \cdot CH_2 \cdot CH \cdot CH_3 \cdot C: CH \cdot OH$ ist desmotrop mit 2.4-Dimethyl-1-formyl-cyclohexanon-(6), E II 7, 537.
- 2.4-Dimethyl-1-methoxymethylen-cyclohexanon-(6) $C_{10}H_{16}O_{3} = CH_{3} \cdot HC \underbrace{CH_{3} \cdot CH(CH_{3})}_{CO} C: CH \cdot O \cdot CH_{3}$. Durch Methylierung von 2.4-Dimethyl-1-oxymethylen-cyclohexanon-(6) (v. Auwers, v. Sass, Witterindt, A. 444, 218). Öl. Kp₁₃: 117°.
- 2.4 Dimethyl 1 methoxymethylen cyclohexanon (6) [2 methyl semicarbazon] C₁₂H₃₁ON₃ = CH₃·O·CH:C₆H₄(CH₃)₃:N·N(CH₃)·CO·NH₃. B. Aus 2.4-Dimethyl-1-methoxymethylen-cyclohexanon-(6) und 2-Methyl-semicarbazid in Alkohol + Äther anfangs bei Zimmertemperatur, dann bei 30° (v. Auwers, v. Sass, Witterindt, A. 444, 219). Nicht ganz rein erhalten. Gelbes Öl. Gibt beim Kochen mit wäßrig-alkoholischer Schwefelsäure 1.4.6-Trimethyl-4.5.6.7-tetrahydro-indazol und geringe Mengen 2.4.6-Trimethyl-4.5.6.7-tetrahydro-indazol (?) (v. Au., v. S., W.; vgl. v. Au., Mitarb., A. 469, 62).
- 2. 1-Methyl-3-allyl-cyclopentanol-(3)-on-(4) C_pH₁₄O₂ = H₂C·CO C(OH)·CH₂·CH:CH₂. B. Bei 2-tägigem Schütteln von 3-Äthoxy-1-methyl-CH₃·HC·CH₂ C(OH)·CH₂·CH:CH₂. B. Bei 2-tägigem Schütteln von 3-Äthoxy-1-methyl-3-allyl-cyclopentanon-(4) mit konz. Salzsäure unter Luftabschluß (STAUDINGER, RUZICKA, Helv. 7, 437). Durch Umsetzung von 4-Benzoyloxy-1-methyl-cyclopentanon-(3) mit Natrium und Allylbromid in Äther und Verseifung des erhaltenen Esters mit kalter alkoholischer Natronlauge (Sr., R., Helv. 7, 438). Nicht rein erhalten. Siedet im Hochvakuum bei ca. 100°. Gibt mit Chrysanthemumsäure einen für Insekten ungiftigen Ester.

[Syst. Nr. 740

Äthyläther, 3-Äthexy-1-methyl-3-allyl-cyclopentanen-(4) C₁₁H₁₈O₂ = H₂C·CO C(O·C₂H₂)·CH₂·CH:CH₂. B. Durch Umsetzung von 4-Äthoxy-1-methyl-cyclo-CH₂·HC·CH₂ pentanon-(3) mit Natriumpulver und Allylbromid in Äther, zuletzt bei Siedetemperatur (Staudinger, Ruzicka, Helv. 7, 436). — Öl. Kp₁₂: 110°. — Gibt beim Schütteln mit konz. Salzsäure 1-Methyl-3-allyl-cyclopentanol-(3)-on-(4) und geringere Mengen 1-Methyl-3-allyl-cyclopenten-(2). on-(4), beim Kochen mit 20% iger Schwefelsäure nur die letztgenannte Verbindung.

- 3. 1-Methyl-3-allyl-cyclopentanol-(5)-on-(4) (?) $C_9H_{14}O_8=HO\cdot HC\cdot CO$ CH·CH₂·CH·CH₂(?). B. Aus 2-Allyloxy-1-methyl-cyclopenten-(1)-on-(3) durch CH₃·HC·CH₃·CH·CH₂ and nachfolgende Reduktion (Staudinger, Ruzicka, Reuss, Ann. Acad. Sci. fenn. [A] 29, Nr. 17, S. 8; C. 1927 II, 2282). Kp_{0,6}: 84—86°. Gibt mit Chrysanthemumsäure einen für Insekten ungiftigen Ester.
- 4. 1.1.2.2-Tetramethyl-cyclopenten-(3)-ol-(4)-on-(5) $C_9H_{14}O_2 = (CH_3)_2C \cdot CH$ $CCH_3)_2C \cdot CH$ $CCH_3)_3C \cdot CO$ CCH_3 $CCH_3)_3C \cdot CO$ CCH_3 CCH_3
- 4-Methoxy-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5), Methoxyphoron C₁₀H₁₆O₂ = (CH₃)₂C·CH C·O·CH₃. Zur Konstitution vgl. Ingold, Shopper, Soc. 1928, 372, 377, 1869. (CH₃)₂C·CO

 B. Durch Erwärmen von 2.2.3.3-Tetramethyl-bicyclo-[0.1.2]-pentanol-(1)-on-(5) (S. 18) mit Dimethylsulfat und 10% iger Natronlauge oder mit überschüssigem Methyljodid und 1 Mol Natriummethylat-Lösung auf dem Dampfbad (Ingold, Shopper, Soc. 1928, 389, 390). Entsteht als Hauptprodukt bei der Reduktion von 3-Brom-4-methoxy-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5) (S. 17) mit Zinkstaub und siedendem Eisessig (I., Sh., Soc. 1928, 390, 402). Ol; wurde einmal in Nadeln vom Schmelzpunkt 37° erhalten. Kp₃₁: 112—115°; Kp₁₈: 108—112°. n¹⁹_D: 1,4687. Entfärbt Brom in Chloroform und kalte alkalische Permanganat-Lösung; gibt mit Eisenchlorid keine Färbung (I., Sh., Soc. 1928, 390). Gibt bei der Reduktion mit Zinkstaub oder besser mit Natriumamalgam in siedendem Eisessig 4-Methoxy-1.1.2.2-tetramethyl-cyclopentanon-(3) (I., Sh., Soc. 1928, 390, 402). Bei der Reduktion mit siedender konzentrierter Jodwasserstoffsäure entsteht 1.1.2.2-Tetramethyl-cyclopentanon-(4) (I., Sh., Soc. 1928, 402). Liefert mit Brom in Chloroform bei gelindem Erwärmen 4-Brom-2.2.3.3-tetramethyl-bicyclo-[0.1.2]-pentanol-(1)-on-(5) (S. 20) (Shopper, Soc. 1928, 2362). Gibt mit Hydroxylamin unter nicht näher angegebenen Bedingungen das entsprechende Oxim (S. 17) (I., Sh., Soc. 1928, 390); beim Kochen mit überschüssigem Hydroxylaminhydrochlorid erhält man 1.1.2.2-Tetramethyl-cyclopentandion-(3.4)-dioxim (I., Sh., Soc. 1928, 1872).
- 4-[4-Brom-benzyloxy]-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5), p-Brom-benzyloxyphoron C₁₆H₁₉O₂Br = (CH₃)₂C·CH (CH₃)₂C·CO (CH₃·C₆H₄Br. Zur Konstitution vgl. Ingold, Shoppee, Soc. 1928, 372, 377, 1870. B. Beim Kochen von 2.2.3.3-Tetramethyl-bicyclo-[0.1.2]-pentanol-(1)-on-(5) (S. 18) mit 4-Brom-benzylbromid und Natriummethylat-Lösung (Ingold, Shoppee, Soc. 1928, 390). Durch Reduktion von 3-Brom-4-[4-brom-benzyloxy]-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5) (S. 18) mit Zinkstaub und siedendem Eisessig (I., Sh.). Prismen (aus Ligroin). F: 86° (I., Sh.), 86—87° (Sugden, Soc. 1928, 414). Dichte D'; zwischen 94,5° (1,220) und 153° (1,168) und Oberflächenspannung zwischen 96° (31,86 dyn/cm) und 154,5° (27,14 dyn/cm): Su. Parachor: Su. Entfärbt Permanganat in Aceton allmählich (I., Sh., Soc. 1928, 390). Gibt bei der Hydrierung in Gegenwart von Palladium-Bariumsulfat in Eisessig geringe Mengen einer bei 26—27° schmelzenden Substanz (I., Sh., Soc. 1928, 1872). Liefert beim Kochen mit konz. Jodwasserstoffsäure 1.1.2.2-Tetramethyl-cyclopentanon-(4) und 4-Brom-benzyljodid (I., Sh., Soc. 1928, 404). Wird durch Natriumamalgam und Eisessig nicht verändert (I., Sh., Soc. 1928, 404). Gibt bei der Einw. von 1,2 Mol Brom in siedendem Chloroform 4-Brom-2.2.3.3-tetramethyl-bicyclo-[0.1.2]-pentanol-(1)-on-(5) (S. 20); beim Behandeln mit Chinolinhydroperbromid in heißem Eisessig bei Gegenwart oder Abwesenheit von freiem Chinolin bildet sich 3-Brom-4-[4-brom-benzyloxy]-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5) (S. 8) (Sh., Soc. 1928, 2363, 2364).
- 4-Acetoxy-1,1.2.2-tetramethyl-cyclopenten-(3)-on-(5), Acetoxyphoron $C_{11}H_{10}O_8 = (CH_2)_2C\cdot CH_2$ COCOCH₂. Zur Konstitution vgl. Indolp, Shoppin, Soc. 1928, 372, 377, $(CH_3)_2C\cdot OO$ B. Aus 2.2.3.3-Tetramethyl-bicyclo-[0.1.2]-pentanol-(1)-on-(5) (S. 18) durch 1-stdg. Kochen mit Acetanhydrid (Indolp, Shoppin, Soc. 1928, 389) oder durch Behandlung mit Acetyl-

chlorid und Pyridin (I., Sh., Soc. 1928, 1873). Neben anderen Verbindungen bei der Reduktion von 3-Brom -4-acetoxy -1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5) (S. 18) mit Zinkstaub und siedendem Eisessig (I., Sh., Soc. 1928, 388; Sh., Soc. 1928, 1666). — Öl. Kp₁₈₋₁₆: 120° (I., Sh., Soc. 1928, 389); Kp₁₆: 120—121° (Sh., Soc. 1928, 2362); Kp₂: 109° (Sugden, Soc. 1928, 413). D. 109° (I., Sh., Soc. 1928, 339); Dichte zwischen 16° (1,024) und 78° (0,969): Su. Oberflächenspannung bei 16,5°: 32,64, bei 43,5°: 30,12, bei 61,5°: 28,29, bei 84°: 26,08 dyn/cm (Su.) Parachor: Su. n. 10°: 1,4549 (I., Sh.). — Entfärbt Brom in Chloroform und Permanganat in Aceton + Natriumdicarbonat-Lösung (I., Sh., Soc. 1928, 389). Gibt bei der Oxydation mit Kaliumferricyanid in wäßrig-alkoholischer Kaliumcarbonat-Lösung Tetramethylbernsteinsäure (I., Sh., Soc. 1928, 1870, 1873). Liefert bei der Reduktion mit Zinkstaub und siedendem Eisessig 4-Acetoxy-1.1.2.2-tetramethyl-cyclopentanon-(3) (I., Sh., Soc. 1928, 378, 397). Gibt beim Behandeln mit 1 Mol Brom in Chloroform bei 35° 4-Brom-2.2.3.3-tetramethyl-cyclo-[0.1.2]-pentanol-(1)-on-(5) (S. 20); dieses entsteht auch beim Erwärmen mit 1 Mol Chinolinhydroperbromid in Eisessig, während bei Ausführung der Reaktion in Gegenwart von 1 Mol Chinolin 3-Brom-4-acetoxy-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5) (S. 18) erhalten wird (Shopper, Soc. 1928, 2362, 2364).

- 4-Methoxy-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5)-oxim $C_{10}H_{17}O_2N=(CH_3)_2C$ —CH— $C\cdot O\cdot CH_3$. B. Aus 4-Methoxy-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5) und Hydroxylamin (Ingold, Shopper, Soc. 1928, 390). Siedet unter 22 mm Druck bei 140° bis 150°. Gibt bei der Reduktion mit Natrium und Alkohol 3-Amino-1.1.2.2-tetramethyl-cyclopentan (I., Sh., Soc. 1928, 380, 402).
- 4-[4-Brom-benzyloxy]-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5)-oxim C₁₆H₂₀O₂NBr = (CH₃)₂C CH CO·CH₂·C₆H₄Br. Zur Konstitution vgl. Ingold, Shoppee, Soc. 1928, (CH₃)₂C·C(:N·OH) B. Beim Kochen von 4-[4-Brom-benzyloxy]-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5) mit Hydroxylaminhydrochlorid und Natriumacetat in Alkohol (Ingold, Shoppee, Soc. 1928, 403). Nadeln (aus verd. Alkohol). F: 175°. Reduziert Fehlingsche Lösung. Gibt bei der Reduktion mit Natrium und Alkohol oder Natriumamalgam und Eisessig nur geringe Mengen Amin. Hydrochlorid C₁₆H₂₀O₂NBr+HCl. Krystalle. F: 133° (Zers.).
- $\begin{array}{l} \textbf{4-[4-Brom-benzyloxy]-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5)-oximacetat} \\ \textbf{C}_{18}\textbf{H}_{28}\textbf{O}_{3}\textbf{NBr} = & (\textbf{CH}_{3})_{2}\textbf{C} \cdot \textbf{C}(:\textbf{N} \cdot \textbf{O} \cdot \textbf{CO} \cdot \textbf{CH}_{3}) \\ \textbf{C} \cdot \textbf{O} \cdot \textbf{CH}_{2} \cdot \textbf{C}_{6}\textbf{H}_{4}\textbf{Br}. & B. & \text{Aus der vorangehenden} \\ \textbf{Verbindung und Acetylchlorid in Pyridin (Ingold, Shopper, Soc. 1928, 403).} & Prismen (aus verd. Alkohol). & \textbf{F}: 84^{\circ}. & \text{Gibt bei der Reduktion mit Natrium und siedendem Alkohol oder besser mit Natriumamalgam und siedendem Eisessig 3-Amino-1.1.2.2-tetramethyl-cyclopentanol-(4) (Schmelzpunkt des Pikrats: 215^{\circ}) und andere Produkte (I., Sh., Soc. 1928, 377, 403, 1872). \\ \end{array}$
- 3 Chlor 4 acetoxy 1.1.2.2 tetramethyl-cyclopenten-(3)-on-(5), Chloracetoxyphoron $C_{11}H_{16}O_3Cl = {(CH_3)_2C \cdot CCl \choose (CH_3)_2C \cdot CO} C \cdot O \cdot CO \cdot CH_3$. Zur Konstitution vgl. Ingold, Shoppee, Soc. 1928, 378, 1869. B. Durch Acetylierung von 4-Chlor-2.2.3.3-tetramethyl-bicyclo-[0.1.2]-pentanol-(1)-on-(5) (S. 19) (Ingold, Shoppee, Soc. 1928, 408). Prismen (aus verd. Alkohol). F: 47°.
- 3-Brom-1.1.2.2-tetramethyl-cyclopenten-(3)-ol-(4)-on-(5), BromoxyphoronC₉H₁₃O₂Br= $(CH_3)_2C \cdot CBr$ (CH₃)₂C· COH. Vgl. 4-Brom-2.2.3.3-tetramethyl-bicyclo-[0.1.2]-pentanol-(1)-on-(5), S. 20.
- 3-Brom-4-methoxy-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5), Brommethoxyphoron $C_{10}H_{15}O_2Br = \frac{(CH_3)_2C\cdot CD}{(CH_3)_2C\cdot CO}C\cdot O\cdot CH_3$. Zur Konstitution vgl. Ingold, Shopper, Soc. 1928, 372, 377, 1869. B. Aus 4-Brom-2.2.3.3-tetramethyl-bicyclo-[0.1.2]-pentanol-(1)-on-(5) (S. 20) durch Erhitzen mit 2 Mol Dimethylsulfat und überschüssiger Natronlauge, durch Behandlung des Silbersalzes mit überschüssigem Methyljodid in der Kälte oder am besten durch Kochen mit überschüssigem Methyljodid und 1 Mol Natriumäthylat-Lösung (I., Sh., Soc. 1928, 387). An verschiedenen Präparaten wurde gefunden: Kp₃: 95°; Kp₁₄: 120°; Kp₂₀: 130°; Kp₃₅: 133° (I., Sh.); D¼': 1,3203; D¾°: 1,3159 und 1,3167; D¾: 1,3162; n½: 1,5131—1,5148 (I., Sh.); Dichte zwischen 23,5° (1,314) und 80,5° (1,253) und Oberflächenspannung zwischen 13° (35,45 dyn/cm) und 89° (27,73 dyn/cm): Sugden, Soc. 1928, 413. Parachor: Su., Soc. 1928, 413, 414. Gibt bei der Einw. von Ozon in Chloroform und Behandlung der Ozonide mit Zinkstaub und Eisessi in Äther nicht rein erhaltenen γ -Oxy- α - α - β - β -tetramethyl-butyrolacton- γ -oarbonsäuremethylester $C_{10}H_{16}O_3$ (Kp₁₃: 155—165°), das entsprechende Methoxy-Derivat (Syst. Nr. 2624) und andere Produkte (I., Sh., Soc. 1928, 380 Anm., 381, 406). Bei der Oxydation mit Per-

OXY-OXO-VERBINDUNGEN CnH2n-4O2

manganat in Natriumdicarbonat-Lösung entsteht α' -Oxo- $\alpha.\alpha.\beta.\beta$ -tetramethyl-glutarszure bzw. γ -Oxy- $\alpha.\alpha.\beta.\beta$ -tetramethyl-butyrolacton- γ -carbonazure (E II 3, 494) (I., Sh., Soc. 1928, 406). Gibt bei der Reduktion mit Zinkstaub und Eisessig überwiegend 4-Methoxy-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5) neben 4-Methoxy-1.1.2.2-tetramethyl-cyclopentanon-(3) und anderen Produkten (I., Sh., Soc. 1928, 390, 402).

- 3-Brom-4-[4-nitro-benzyloxy]-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5) $C_{19}H_{18}O_4NBr = (CH_3)_2C \cdot CBr$ (CH₃)₂C -CO · CH₂ · C₆H₄ · NO₂ . B. Aus 4 · Brom 2. 2. 3. 3 · tetramethyl · bicyclo · [0. 1. 2]-pentanol-(1)-on-(5) und 4-Nitro-benzylbromid in Natriumāthylat-Lösung (Ingold, Shoppee, Soc. 1928, 388). Tafeln (aus Alkohol). F: 111°.
- 3-Brom-4-acetoxy-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5), Bromacetoxyphoron $(C_{13})_2C$ · CBr. $(CH_3)_2C$ · CO· CO· CH₃. Ist E I 510 als 4-Brom-1-acetoxy-2.2.3.3-tetramethyl-bicyclo-[0.1.2]-pentanon-(5) beschrieben; zur Konstitution vgl. Ingold, Shoppee, Soc. 1928, 378, 1869. B. Durch Erwärmen von 4-Acetoxy-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5) (8. 16) mit je 1 Mol Chinolinhydroperbromid und Chinolin in Eisessig (Shoppee, Soc. 1928, 2364). F: 73° (Sh.), 74° (I., Sh., Soc. 1928, 386). D₄³²: 1,256; D₄¹⁰: 1,234; D₄^{123,5}: 1,210 (Sugden, Soc. 1928, 413). Oberflächenspannung bei 80°: 29,45, bei 101°: 27,53, bei 120°: 25,84, bei 142,5°: 23,80 dyn/cm (Su.). Parachor: Su. Liefert beim Behandeln mit Ozon in Eisessig oder Chloroform und Zersetzen der Ozonide mit Zinkstaub und Eisessig in Äther oder mit siedendem Wasser Tetramethylbernsteinsäure und amorphe Produkte (I., Sh., Soc. 1928, 407). Bei der Oxydation mit Permanganat in Natriumdicarbonat-Lösung entsteht α΄-Οxο-α.α.β.β-tetramethyl-glutarsäure bzw. γ-Oxy-α.α.β.β-tetramethyl-butyrolacton-γ-carbonsäure (E II 8, 494) (I., Sh., Soc. 1928, 407). Gibt bei der Reduktion mit Zinkstaub und Eisessig je nach den Bedingungen 4-Acetoxy-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5) oder 4-Acetoxy-1.1.2.2-tetramethyl-cyclopentanon-(3) als Hauptprodukt (I., Sh., Soc. 1928, 388, 397, 1666); bei der Reduktion mit Natriumamalgam und Eisessig oder bei aufeinanderfolgender Reduktion mit Zinkstaub und Eisessig und mit Natriumamalgam in Eisessig erhält man 1.1.2.2-Tetramethyl-cyclopentanon-(3) (I., Sh., Soc. 1928, 398).
- 5. Cyclopentan [cyclopentanol-(4') on-(3')]-spiran-(1.1') (?), 1.1-Tetramethylen-cyclopentanol-(4)-on-(3) (?) $C_9H_{14}O_3 = \frac{H_2C \cdot CH_3 \cdot CH_2 \cdot CH_3 \cdot CH$

Semicarbazon $C_{10}H_{17}O_9N_8 = HO \cdot C_9H_{18} : N \cdot NH \cdot CO \cdot NH_2$. Krystalle (aus verd. Alkohol). F: 183—184° (Kon, Soc. 121, 525).

6. 2.2.3.3-Tetramethyl-bicyclo-[0.1.2]-pentanol-(1)-on-(5) bzw. 1.1.2.2-Tetramethyl-cyclopenten-(3)-ol-(4)-on-(5) C₂H₁₄O₂ = (CH₂)₂C-C(OH) CO bzw. (CH₂)₂C-CH CO D, Oxyphoron (E I 509). Zur Konstitution vgl. Ingold, Shoppher, Soc. (CH₂)₂C-CH CO D, Oxyphoron (E I 509). Zur Konstitution vgl. Ingold, Shoppher, Soc. 1928, 372, 1868; Sh., Soc. 1928, 1662, 2360. — B. Wird bei der Reduktion von "Bromacetoxyphoron" (s. o) mit Zinkstaub und Eisessig und nachfolgenden Verseifung (Francis, Willson,

Soc. 103 [1913], 2244) und bei der Reduktion von "Bromoxyphoron" (S. 20) mit Zinkstaub und Eisessig in höchstens 70% iger Ausbeute erhalten (Ingold, Shoppee, Soc. 1928, 388). — Gibt mit wäßrig-alkoholischer Eisenchlorid-Lösung eine stumpfe Rotfärbung (I., Sh., Soc. 1928, 388).

Liefert, bei der Oxydation mit Wasserstoffperoxyd in Socialisung bei gewähplicher

Liefert bei der Oxydation mit Wasserstoffperoxyd in Sodalösung bei gewöhnlicher Temperatur α.α.β.β-Tetramethyl-glutarsäure (Ingold, Shoppee, Soc. 1928, 407); bei der Oxydation mit Kaliumferricyanid und Kaliumcarbonat in wäßr. Alkohol entsteht Tetramethylbernsteinsäure (I., Sh., Soc. 1928, 1873). Entfärbt in kalter Chloroform-Lösung 2 Atome Brom unter Bildung von "Bromoxyphoron"; in Eisessig-Lösung werden 4 Atome Brom unter Bildung von "Bromoxyphoron"; in Eisessig-Lösung werden 4 Atome Brom unter Bildung von 5.5-Dibrom-1.1.2.2-tetramethyl-cyclopentandion-(3.4) aufgenommen (I., Sh., Soc. 1928, 408). Bei der Umsetzung mit Hydroxylaminhydrochlorid und Natriumacetat erhält man je nach den Bedingungen das α-Oxim oder das β-Oxim des 2.2.3.3-Tetramethyl-bicyclo-[0.1.2]-pentanol-(1)-ons-(5) (s. u.), niedrigerschmelzendes 1.1.2.2-Tetramethyl-cyclopentandion-(3.4)-dioxim (I., Sh., Soc. 1928, 376, 394, 395, 396, 399). Gibt beim Kochen mit Methyljodid und Natriummethylat-Lösung oder beim Behandeln mit Dimethylsulfat und Natronlauge 4-Methoxy-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5) (S. 16); analoge Verbindungen entstehen bei der Umsetzung mit 4-Brom-benzylbromid in Natriumäthylat-Lösung (I., Sh., Soc. 1928, 389, 390), mit siedendem Acetanhydrid oder mit Acetylchlorid in Pyridin (I., Sh., Soc. 1928, 389, 1873) und mit Benzoylchlorid in alkal. Lösung (Francis, Willson, Soc. 103 [1913], 2242; I., Sh., Soc. 1928, 389). Gibt beim Erwärmen mit Anilin auf 100° 1.1.2.2-Tetramethyl-bicyclo-[0.1.2]-pentanol-(1)-on-(5)-anil; reagiert analog mit N.N.-Dimethyl-p-phenylezdiamin (I., Sh., Soc. 1928, 396). Beim Kochen mit 1 Mol o-Phenylendiamin in Eisessig entsteht eine Verbindung C₁₈H₁₈N₂ (goldgelbe Nadeln aus verd. Alkohol; F: 100°) (I., Sh., Soc. 1928, 396). Liefert mit 2.4.6-Tribrom-benzol-diazoniumsulfat-(1) 1.1.2.2-Tetramethyl-cyclopenten-(3)-ol-(4)-on-(5) (Syst. Nr. 2068); reagiert analog mit 1-Carbäthoxy-benzol-diazoniumsulfat-(4) (Shoppee, Soc. 1928, 2364).

2.2.3.3-Tetramethyl-bicyclo-[0.1.2]-pentanol-(1)-on-(5)- α -oxim $C_9H_{19}O_2N$, s. nebenstehende Formel. Zur Konstitution und Konfiguration vgl. INGOLD, SHOPPEE, Soc. 1928, 374, 375. — B. Bei 40-stdg. Erwärmen von 2.2.3.3-Tetramethyl-bicyclo-[0.1.2]-pentanol-(1)-on-(5) mit

OH (CH₃)₂C-CH C:N (CH₃)₂C-CH OH

1 Mol Hydroxylaminhydrochlorid und 0,9 Mol Natriumacetat in 10% iger
Natronlauge auf 40° (I., Sh., Soc. 1928, 394). Bildung aus dem β-Oxim s. bei diesem. — Prismen
(aus Tetrachlorkohlenstoff + Ligroin) oder Tafeln mit 1 H₂O (aus Wasser); wird im Vakuum
wasserfrei. Schmilzt wasserfrei bei 96°, wasserhaltig bei 76—77°. Gibt mit Eisenchlorid keine
Färbung. — Gibt beim Ansäuern mit Salzsäure bei 0° das Hydrochlorid des α-Oxims (s. u.), beim
Behandeln mit Chlorwasserstoff in kaltem Äther das Hydrochlorid des β-Oxims (I., Sh., Soc. 1928,
394, 395). Liefert mit überschüssigem Hydroxylaminhydrochlorid und Natriumacetat in siedendem Alkohol 1.1.2.2-Tetramethyl-cyclopentandion-(3.4)-dioxim (I., Sh., Soc. 1928, 396). Bei
der Behandlung mit Acetylchlorid und Pyridin und nachfolgenden Reduktion mit Wasserstoff
und Palladium-Bariumsulfat in Eisessig, mit Natriumamalgam und Essigsäure in Alkohol oder
mit Natrium und siedendem Alkohol erhält man 4-Amino-1.1.2.2-tetramethyl-cyclopentan (I.,
Sh., Soc. 1928, 374, 397). — Hydrochlorid C₂H₁₅O₂N + HCl + CCl₄. Blättchen (aus Tetrachlorkohlenstoff + Ligroin). F: 174—175° (I., Sh., Soc. 1928, 394).

SH., Soc. 1928, 374, 397). — Hydrochlorid C₃H₁₅O₂N + HCl + CCl₄. Blättchen (aus Tetrachlorkohlenstoff + Ligroin). F: 174—175° (I., SH., Soc. 1928, 394).

Benzoylderivat C₁₆H₁₉O₃N = C₆H₅·CO·O·C₆H(CH₃)₄:N·OH oder HO·C₅H(CH₃)₄:N·O·CO·C₆H₅. Zur Konstitution vgl. Ingold, Shoppee, Soc. 1928, 1868. — Nadeln (aus verd. Alkohol). F: 134—135° (I., Sh., Soc. 1928, 395).

2.2.3.3-Tetramethyl-blcyclo-[0.1.2]-pentanol-(1)-on-(5)-β-oxim

C₉H₁₈O₂N, s. nebenstehende Formel. Zur Konstitution und Konfiguration
vgl. Ingold, Shopper, Soc. 1928, 374, 375. — B. Aus 2.2.3.3-Tetramethyl- (CH₃)₂C-C₁
bicyclo-[0.1.2]-pentanol-(1)-on-(5) bei kurzem Erwärmen mit 1 Mol Hydr- (CH₃)₂C-C₁
oxylaminhydrochlorid und überschüssigem Natriumacetat in wäßr. Methanol auf 40° und nachfolgendem ca. 12-stdg. Aufbewahren (I., Sh., Soc. 1928, 395). Das Hydrochlorid entsteht beim Behandeln des α-Oxims mit Chlorwasserstoff in kaltem Äther (I., Sh.). — Prismen (aus Chloroform + Ligroin). F: 114—115°. Gibt mit Eisenchlorid eine rotviolette Färbung. — Geht beim Kochen mit Wasser oder beim Auflösen des Hydrochlorids in Sodalösung und nachfolgenden Ansäuern in das α-Oxim über (I., Sh., Soc. 1928, 395). Beim Behandeln des Hydrochlorids mit Chlorwasserstoff in siedendem Äther entsteht 5.6-Dioxo-3.3.4.4-tetramethyl-piperidin (?) (I., Sh., Soc. 1928, 375, 395). — Hydrochlorid. F: 69—70° (I., Sh., Soc. 1928, 395).

4-Chlor-2.2.3.3-tetramethyl-bicyclo-[0.1.2]-pentanol-(1)-on-(5) bzw. 3-Chlor-1.1.2.2-tetramethyl-cyclopenten-(3)-ol-(4)-on-(5) $C_pH_{13}O_2Cl=\frac{(CH_3)_2C-C(OH)}{(CH_3)_2C-CCl}$ bzw. $CCH_3)_2C$ CO bzw. $CCH_3)_2C$ COH, Chloroxyphoron. Konstitution in Analogie zur entsprechenden Brom- CCH_3

verbindung (s. u.). — B. Durch Hydrolyse von α.α'-Dichlor-phoron (E II 1, 810) mit kons. Schwefelsäure (Ingold, Shopper, Soc. 1928, 408). — Nadeln (aus verd. Alkohol). F: 116°. — Gibt mit überschüssigem Chlor in Eisessig 5.5-Dichlor-1.1.2.2-tetramethyl-cyclopentandion-(3.4); reagiert analog mit Brom. Liefert bei der Acetylierung 3-Chlor-4-acetoxy-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5) (S. 17).

4-Brom-2.2.3.3-tetramethyl-bicyclo-[0.1.2]-pentanol-(1)-on-(5) bzw. 3-Brom-1.1.2.2-tetramethyl-cyclopenten - (3) - ol - (4) - on - (5) C₉H₁₃O₂Br = (CH₃)₂C - C(OH) (CH₃)₂C - CBr (CH₃)₃C - CBr (

Die E I 510 beschriebene Oxydation zu α'-Oxo-α.α.β.β-tetramethyl-glutarsäure (bzw. γ-Oxy-α.α.β.β-tetramethyl-butyrolacton-γ-carbonsäure, E II 3, 494) kann auch durch Behandlung mit Kaliumferricyanid in Kaliumcarbonat-Lösung bei 80° oder mit 6% igem Wasserstoffperoxyd bei Gegenwart von Kaliumcarbonat in Aceton ausgeführt werden (Ingold, Shopfree, Soc. 1928, 405). Bei der Oxydation mit Natriumchlorat und Osmiumtetroxyd in verd. Natronlauge bei 40° erhält man α.α.β.β-Tetramethyl-butyrolacton-γ-carbonsäure und geringere Mengen γ-Oxy-α.α.β.β-tetramethyl-butyrolacton-γ-carbonsäure (I., Sh., Soc. 1928, 404). Reduktion zu 1.1.2.2-Tetramethyl-cyclopentanon-(4) (E I 510) erfolgt auch bei der Einw. von amalgamiertem Zink und Salzsäure (I., Sh., Soc. 1928, 390, 391). Gibt bei der Reduktion mit Zinkstaub und Eisessig 2.2.3.3-Tetramethyl-bicyclo-[0.1.2]-pentanol-(1)-on-(5) (S. 18) (I., Sh., Soc. 1928, 388). Liefert mit Chlor in Eisessig 5-Chlor-5-brom-1.1.2.2-tetramethyl-cyclopentandion-(3.4) und geringe Mengen einer bei 197° schmelzenden Substanz (I., Sh., Soc. 1928, 409). Gibt beim Erhitzen mit Methyljodid und Natriumäthylat-Lösung oder mit Dimethylsulfat und Natronlauge oder beim Behandeln des Silbersalzes mit Methyljodid 3-Brom-4-methoxy-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5) (S. 17) (I., Sh., Soc. 1928, 387). Liefert mit 4-Brom-benzylbromid in siedender Natriumäthylat-Lösung 3-Brom-4-[4-brom-benzyloxy]-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5); bei der Einw. von 4-Brom-benzylbromid ard das Silbersalz entsteht daneben ein öliges Produkt, aus dem man bei aufeinanderfolgender Reduktion mit Zinkstaub und Eisessig, Überführung in das Oxim und Reduktion mit Natrium und siedendem Alkohol 3-Amino-1.1.2.2-tetramethyl-cyclopentan erhält (I., Sh., Soc. 1928, 388, 404). Gibt beim Kochen mit Kaliumcyanid in 50% igem Alkohol oder mit Silbercyanid in Ligroin geringe Mengen 1-Cyan-2.2.3.3-tetramethyl-cyclopentanol-(4)-on-(5) (Syst. Nr. 1398) (I., Sh., Soc. 1928, 388).

- 4-Brom-1-acetoxy-2.2.3.3-tetramethyl-bicyclo-[0.1.2]-pentanon-(5) $C_{11}H_{18}O_3Br = (CH_3)_2C-C(O\cdot CO\cdot CH_3)$ CO (E I 510). Vgl. 3-Brom-4-acetoxy-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5), S. 18.
- 4 Brom -1 [carbomethoxy oxy] 2.2.3.3 tetramethyl bicyclo [0.1.2] pentanon (5) $C_{11}H_{15}O_4Br = \frac{(CH_2)_2C C(O \cdot CO_2 \cdot CH_3)}{(CH_3)_2C CBr}CO$ (E I 510). Ist analog dem entsprechenden Acetat (S. 18) wahrscheinlich als 3 Brom 4 [carbomethoxy oxy] 1.1.2.2 tetramethyl cyclopenten (3) on (5) $\frac{(CH_3)_2C \cdot CBr}{(CH_3)_2C \cdot CDr}C \cdot O \cdot CO_2 \cdot CH_3$ zu formulieren.

5. Oxy-exo-Verbindungen C₁₀ H₁₄ O₂.

- 1. 1-Methyl-4-isopropyl-cyclohexen-(1)-ol-(2)-on-(3), p-Menthen-(1)-ol-(2)-on-(3), Buccocampher, Diosphenol $C_{10}H_{10}O_2=CH_2-CH_2-CH_2-CH_3-CH\cdot CH(CH_2)_2$ s. E II 7, 540.
- 2 Methoxy p menthen (1) on (3), Diosphenel methyläther $C_{11}H_{16}O_{2}=CH_{3}\cdot O\cdot C_{4}H_{5}O(CH_{2})\cdot CH(CH_{2})_{1}$ (H 9). B. Durch Behandlung von Diosphenol mit Dimethylsulfat und

Natronlauge, zuletzt unter gelindem Erwärmen (v. Auwers, B. 57, 1107). — Kp_{750} : 240—242°; Kp_{10} : 118—119°. $D_4^{16.5}$: 0,9930. $n_{\alpha}^{19.5}$: 1,4841; $n_{H_0}^{19.5}$: 1,4878; $n_{\beta}^{19.5}$: 1,4974; $n_{\gamma}^{19.5}$: 1,5060.

2-Åthoxy-p-menthen-(1)-on-(3), Diosphenol-äthyläther $C_{12}H_{10}O_2=C_2H_5\cdot O\cdot C_6H_5O(CH_8)\cdot CH(CH_8)_8$ (H 9). B. Analog der vorangehenden Verbindung (v. Auwers, B. 57, 1107). — Kp_{750} : 242—246°; Kp_{10} : 123—125°. D_4^{14} : 0,9825. n_{α}^{19} : 1,4841; $n_{H_6}^{19}$: 1,4879; n_{β}^{19} : 1,4974; n_{γ}^{19} : 1,5060.

2-Acetoxy-p-menthen-(1)-on-(3), Diosphenol-acetat $C_{12}H_{18}O_3 = CH_3 \cdot CO \cdot O \cdot C_6H_5O(CH_5) \cdot CH(CH_8)_3$ (H 9). Kp₁₂: 140—142° (v. Auwers, B. 57, 1108). $D_4^{16.6}$: 1,0415. $n_4^{16.6}$: 1,4803; $n_{H_0}^{14,6}$: 1,4838; $n_{B}^{14,6}$: 1,4923; $n_{Y}^{14,6}$: 1,5000.

2. 1-Methyl-4-isopropenyl-cyclohexanol-(3)-on-(2), p-Menthen-(8(9))-ol-(3)-on-(2) C₁₀H₁₀O₂ = CH₂·HC CH₂·CH₂·CH₂·CH₃·B. Bei der Oxydation der l-Isolimonen enthaltenden Kohlenwassettell-Fraktionen des amerikanischen Wurmsamender l-Isolimonen enthaltenden Kohlenwassettell-indlichten wird Channel (Hanne) ôls (von Chenopodium ambrosoides var. anthelminthicum) mit Chromschwefelsäure (Henry, PAGET, Soc. 127, 1656).

Semicarbazen C₁₁H₁₉O₂N₃ = H₂N·CO·NH·N: C₈H₇(OH)(CH₃)·C₃H₅. B. Aus p-Menthen-(8(9))-ol-(3)-on-(2) und Semicarbazid in wäßr. Essigsäure (Henry, Pager, Soc. 127, 1656). — Prismen mit 2CH₃·CO₂H (aus der Reaktions-Lösung erhalten und aus Alkohol krystallisiert), F: 157°. Lösungsmittelfreie Prismen (aus Alkohol oder Wasser), F: 204°. — Geht bei Hagerem Kochen mit Wasser in 3-Oxo-8-methyl-5-isopropenyl-3.4.5.6.7.8- H₂C CH Nh hexahydro-benzo-1.2.4-triazin (s. nebenstehende Formel; Syst. Nr. 3874)

3. 1-Methyl-4-isopropenyl-cyclohexanol-(1 oder 6)-on-(2), p-Menthen-(8(9))-ol-(1 oder 6)-on-(2) $C_{10}H_{16}O_2$, Formel I oder II.

$$I. \begin{array}{c} CH_3 \\ CH_2 \end{array} C \cdot HC \\ CH_2 \cdot CH_3 \end{array} C \cdot C(CH_3) \cdot OH \\ II. \begin{array}{c} CH_3 \\ CH_3 \end{array} C \cdot HC \\ CH_2 \cdot CH_3 \end{array} C \cdot HC \\ CH_2 \cdot CH(OH) \\ CH_3 \cdot CH \cdot CH_3 \\ CH_4 \cdot CH \cdot CH_3 \\ CH_4 \cdot CH \cdot CH_3 \\ CH_5 \cdot CH \cdot CH_3 \\ CH_5 \cdot CH \cdot CH_5 \\ CH_5 \cdot CH_5$$

2.2'(oder 3.3') - Dioxo-1.1'(oder 2.2')- dimethyl-4.4'(oder 5.5')-diisopropenyl-dicyclohexyl-

sulfid C₂₀H₃₀O₂S₂, Formel III oder IV.

a) Verbindung von d-Carvon mit Schwefelwasserstoff, d-Carvonhydrosulfid (H 7, 155; E I 7, 101). Zur Konstitution vgl. Challenger, Smith, Paton, Soc. 128, 1046; Hooper, Macbeth, Price, Soc. 1934, 1148; Padmanabhan, C. 1936 II, 798; vgl. a. Dulou, Bl. Inst. Pin 1934, 205; C. 1935 I, 2540. — Gibt mit Brom in Chloroform bei —15° Carvonhydrosulfid-tetrabromid (S. 9) (CHALLENGER, SMITH, PATON, Soc. 123, 1047, 1051). Zersetzt sich bei der Einw. von Chlor oder Brom in Chloroform bei Zimmertemperatur oder von Jod, Jodmonochlorid oder Jodmonobromid unter Abspaltung von Schwefelwasserstoff und Schwefel-Jodmonochiorid oder Jodmonobromid unter Abspaltung von Schwefelwasserstoff und Schwefelhalogeniden (CH., SM., P.). Abspaltung von Schwefelwasserstoff erfolgt auch bei der Behandlung mit Chlorwasserstoff in Eisessig, mit Quecksilber (II)-chlorid in Chloroform, mit Zink und Eisessig oder Salzsäure in der Kälte oder mit Zinkstaub und Ammoniumchlorid-Lösung in der Wärme und bei der Einw. von Methyljodid (CH., SM., P.). Bei der Umsetzung mit Hydroxylaminhydrochlorid in Methanol bei gewöhnlicher Temperatur bilden sich unter Entwicklung von Schwefelwasserstoff geringe Mengen Carvoxim (CH., SM., P.).

b) Verbindung von 1-Carvon mit Schwefelwasserstoff, 1-Carvonhydrosulfid (H.7.457, E.17.402). Zur Konstitution voll die Angeben im versugsbanden Abschmitt

sulfid (H 7, 157; EI 7, 102). Zur Konstitution vgl. die Angaben im vorangehenden Abschnitt.

4. 1.7.7-Trimethyl-bicyclo-[1.2.2]-heptanol-(3)-on-(2), Camphanol-(3)-on-(2), 3-Oxy-2-oxo-camphan, 3-Oxy-campher, α -Oxy-campher $C_{10}H_{16}O_{2}$, s. nebenstehende Formel. Der H 11 unter dieser Formel beschriebene $H_{*}C_{-}C(CH_{*})=CO$ 3-Oxy-campher vom Schmelzpunkt 203—2050 (α-Oxy-campher Br.-S., Bund, J. pr. [2] 181 [1931], 33; Br., J. pr. [2] 181, 50; vgl. Br., $H_2C-CH-CH-OH$ Ahrens, J. pr. [2] 112, 284; Br., J. pr. [2] 121, 153); der H 12 unter derselben Formel aufgeführte α -Oxy-campher vom Schmelzpunkt 212—213° (β -Oxy-campher von Manasse) ist als 2-Oxy-epicampher (S. 4) erkannt worden (Br., Br.-S., B. 62, 2214; Br.-S., Bund, J. pr. [2] 181, 33; Br., J. pr. [2] 181, 50). a) 3 - Oxy - d - campher vom Schmelzpunkt 198°, $\alpha - Oxy - d - campher$ $C_{10}H_{16}O_{2} = C_{0}H_{14} \stackrel{CO}{\downarrow_{1}} \stackrel{1}{\downarrow_{1}}$. B. Neben überwiegenden Mengen 5-Oxy-d-campher und

wenig 7¹-Oxy-d-campher bei der Verfütterung von d-Campher an Hunde und Hydrolyse der aus dem Harn isolierten Camphoglucuronsäuren mit verd. Mineralsäuren; läßt sich aus dem so erhaltenen d-Campherol (H 7, 110; E II 7, 98) durch wiederholtes Umkrystallisieren aus Ligroin isolieren (Ishtdate, J. pharm. Soc. Japan 48, 77; C. 1928 II, 654). Neben 2-Oxy-epicampher bei der Reduktion von [d-Campher]-chinon mit Zinkstaub und Eisessig oder mit amalgamiertem Aluminium und feuchtem Äther (Bredt, Ahrens, J. pr. [2] 112, 285; B., J. pr. [2] 121, 163; vgl. B., Bredt-Savelsberg, B. 62, 2214; vgl. a. Manasse, B. 30 [1897], 659; 35 [1902], 3812; Höchster Farbw., D. R. P. 91718; Frdl. 4, 1310; Forster, Shukla, Soc. 127, 1857, 1858). Trennung von 2-Oxy-epicampher erfolgt durch Verätherung mit methylalkoholischer Salzsäure in der Kälte, wobei 3-Oxy-d-campher unverändert bleibt, während 2-Oxy-epicampher in dimeren 2-Methoxy-epicampher übergeht, und nachfolgende Wasserdampfdestillation (B., A., J. pr. [2] 112, 296; B., J. pr. [2] 121, 164). Trennung über die Semicarbazone: B., A., J. pr. [2] 112, 297.

Krystalle (aus Pentan oder aus Äther beim Verdunsten). F: 197—198°; [a]15: +17,3° (Alkohol; c = 5) (Bredt, J. pr. [2] 121, 165). Mit Wasserdampf schwer flüchtig (B., J. pr. [2] 121, 164). Leicht löslich in den meisten Lösungsmitteln (Ishidate, C. 1928 II, 654). — Ist in reinem, trockenem Zustand beständig, zersetzt sich jedoch bisweilen ohne erkennbaren Grund unter Bildung von Campherchinon und Camphersäure (Bredt, J. pr. [2] 121, 163). Gibt bei der Oxydation Campherchinon, bei der Reduktion mit Natriumamalgam d-Campher (Ish.). Gibt mit Methylmagnesiumjodid in Äther eine Dioxy-Verbindung C₁₁H₂₀O₂ (Krystalle aus Pentan; F: 217—218') und geringere Mengen einer Dioxy-Verbindung C₁₁H₂₀O₃ (Krystalle aus sehr verd. Alkohol; F: 209—210°); beide Verbindungen spalten beim Kochen mit verd. Schwefelsäure Wasser ab und gehen in ein campherartig riechendes ungesättigtes Öl vom Siedepunkt 217—218° über (B., J. pr. [2] 121, 169). Zur Reaktion mit Methylmagnesiumjodid vgl. a. FORSTER, SHUKLA, Soc. 127, 1858.

Physiologisches Verhalten des «Oxy-camphers von Manasse: E. Pfankuch in J. Houben, Erstschritte des Heilstoffshemie 2 Abt. Rd J. [Rerlin Leipzig 1930]. S. 1285.

Physiologisches Verhalten des α -Oxy-camphers von Manasse: E. Pfankuch in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I [Berlin-Leipzig 1930], S. 1385. Die anthelminthische Wirkung ist erheblich schwächer als die des Camphers (da Costa, C. r. Soc. Biol. 96, 883; C. 1927 II, 120).

3-Oxy-d-campher gibt ein flüssiges Benzoat und ein bei 79—80° schmelzendes Benzolsulfonat (Bredt, J. pr. [2] 121, 171, 172); das saure Phthalat schmilzt bei 147° (Forster, Shukla, Soc. 127, 1859).

SHUKLA, Soc. 127, 1809).

3-Methoxy-d-campher C₁₁H₁₈O₃ = C₈H₁₄C_{H·O·CH₃}. B. Beim Kochen von α-Oxyd-campher mit Methanol unter Durchleiten von Chlorwasserstoff (Bredt, J. pr. [2] 121, 167). Neben dimerem 3-Methoxy-epicampher beim Behandeln eines Gemisches aus 3-Oxyd-campher und 2-Oxy-epicampher mit Thionylchlorid in Äther und nachfolgenden Kochen mit Methanol (Bredt, Ahrens, J. pr. [2] 112, 291). — Öl. Kp₁₅: 105—107° (B.); Kp₂: 70—72° (B., A.). D₄¹: 1,0202; n₁₅¹: 1,4743 (B.). Schwer löslich in Wasser, leicht in Pentan (B.). — Gibt mit Phenylmagnesiumbromid in siedendem Äther eine ölige Verbindung C₁₇H₂₄O₂ (Kp₂: 143—144°) (B., A., J. pr. [2] 112, 294).

(B., A., J. pr. [2] 112, 294). Die H 13 als 3-Methoxy-campher $C_{11}H_{18}O_2$ beschriebene Verbindung vom Schmelzpunkt 149—150° ist als dimerer 2-Methoxy-epicampher (Syst. Nr. 2717) erkannt worden (Bredt, Ahrens, J. pr. [2] 112, 276, 279; B., J. pr. [2] 131 [1931], 51).

- 3 Äthoxy d campher $C_{12}H_{20}O_3 = C_8H_{14}$ CO Co. 3-Äthoxy-d-campher hat vielleicht in der Verbindung $C_{12}H_{20}O_3$ (H 12) vorgelegen; die H 13 als 3-Äthoxy-campher beschriebene Verbindung ist vermutlich dimerer 2-Äthoxy-epicampher gewesen (vgl. Bredt, Ahrens, J. pr. [2] 112, 276, 279; B., J. pr. [2] 131 [1931], 51).
- 3-Acetoxy-d-campher $C_{12}H_{16}O_8 = C_8H_{14}$ $C_{H^+O^+CO^+CH_2}$. B. Beim Kochen von 3-Oxyd-campher mit Acetanhydrid und wiederholt über Kaliumhydroxyd und zuletzt über Kalium destilliertem Pyridin (Beedt, J. pr. [2] 121, 170). Derbe Krystalle (aus Pentan). F: 61—62°. Ein Gemisch mit gleichen Teilen 2-Acetoxy-epicampher schmilzt bei ca. 20°.

¹⁾ Ein stereoisomerer 3-Oxy-d-campher (F: 210—211°; [a]; +115,6° in Benzol; Semicarbazon, F: 199—201°) wird nach dem Literatur-Schlußtermin des Ergenzungswerks II [1. I. 1930] von Ruff, Müller (Helv. 24 [1941], 277 E; C. 1942 II, 288) beschrieben; als Nebenprodukt erhielten sie einen weiteren zu d-Campher reduzierbaren 3-Oxy-d-campher (F: 210—213°; [a]; +9,8°; Semicarbazon, F: 196—198°).

Di-[d-campheryi-(3)]-sulfit $C_{20}H_{20}O_5S=\begin{bmatrix}C_0H_{10}CO\\ CH_{10}C\end{bmatrix}$ SO. Beim Erwärmen von 3-Oxy-d-campher mit Thionylchlorid in Pyridin (Bredt, $J.\ pr.\ [2]$ 121, 172). — Krystalle (aus verd. Methanol). F: 130°.

3-Oxy-d-campher-semicarbazon $C_{11}H_{19}O_2N_3 = C_8H_{14} \stackrel{C: N\cdot NH\cdot CO\cdot NH_2}{CH\cdot OH}$ (H 12). Krystalle (aus Alkohol oder verd. Essigsäure). F: 183—184° (Bredt, J. pr. [2] 121, 165; Ishidate, J. pharm. Soc. Japan 48, 77; C. 1928 II, 654).

3-Methoxy-d-campher-semicarbazon $C_{12}H_{21}O_2N_3 = C_8H_{14} \stackrel{C: N\cdot NH\cdot CO\cdot NH_2}{\stackrel{C}{\subset} H\cdot O\cdot CH_2}$. Krystalle (aus verd. Methanol). F: 204° (Berl-Block) (B EDT, J. pr. [2] 121, 167). Fast unlöslich in Ligroin.

b) Inakt. 3-Oxy-campher, 3-Oxy-dl-campher, α -Oxy-dl-campher $C_{10}H_{16}O_{2}$, s. nebenstehende Formel. B. Durch Reduktion von dl-Campherchinon mit Zinkstaub und verd. Essigsäure bei 50—60°, neben 2-Oxy-dl-epicampher (Bredt, Ahrens, J. pr. [2] 112, 285; B., J. pr. [2] $H_{2}C$ —CH—CH-OH 121, 163, 165). — Krystalle (aus Äther beim Verdunsten). F: 200° (B.).

Semicarbazon $C_{11}H_{18}O_2N_3 = C_8H_{14}$ $C: N\cdot NH\cdot CO\cdot NH_2$. Nadeln (aus Methanol oder verd. Essigsäure). F: 182—183° (Bredt, J. pr. [2] 121, 166).

- 5. 1.7.7-Trimethyl-bicyclo-[1.2.2]-heptanol-(5)-on-(2), Camphanol-(5)-on-(2), 5-Oxy-2-oxo-camphan, 5-Oxy-campher, p-Oxy-campher C₁₀H₁₀O₂, s. nebenstehende Formel. Sterisch dem d-Campher entsprechende Form, 5-Oxy-d-campher. B. Neben isomeren Verbindungen bei der Verfütterung von d-Campher an Hunde und Hydrolyse der aus dem Harn isolierten Camphoglucuronsäuren mit verd. Mineralsäuren; läßt sich aus dem so erhaltenen d-Campherol (H 7, 110; E II 7, 98) durch wiederholtes Umkrystallisieren aus Ligroin isolieren (Ishidate, J. pharm. Soc. Japan 48, 77; 49, 56; C. 1928 II, 654; 1929 II, 422). Blättchen. F: 217—218°. Leicht löslich in Alkohol und Äther, schwerer in Petroläther, schwer in Wasser. [a]:: +41,3° (in Alkohol). Gibt bei der Oxydation mit Natriumdichromat in Eisessig d-Camphandion-(2.5) (E II 7, 57). Liefert bei der Reduktion mit Natriumamalgam in Wasser bei 50—60° d-Campher und Camphandiol-(2.5) (E II 6, 760).
- 5-Oxy-d-campher-semicarbazon $C_{11}H_{19}O_2N_3 = HO \cdot C_8H_{13} \cdot C: N \cdot NH \cdot CO \cdot NH_3$. Krystalle aus Alkohol). F: 233—235° (Ishidate, J. pharm. Soc. Japan 48, 77; C. 1928 II, 654).
- 6. 1^1 Oxy 1.7.7 trimethyl bicyclo [1.2.2] heptanon (2), Camphanol (1^1) Oxy campher, (2), Camphanol (2)

1¹- Mercapto - d - campher, β - Mercapto - d - campher, d - Campheryl - (1¹) - mercaptan, d-Campher-β-thiol, Thiolcampher C₁₀H₁₆OS, Formel II (H 13). Zur Konstitution vgl. Wedekind, Schenk, Stösser, B. 56, 642; Lipp, Lausberg, A. 436, 274; Burgess, Lowry, Soc. 127, 281; Loudon, Soc. 1938, 823. — B. Durch Reduktion von [d-Campher]-sulfinsäure-(1¹) mit Zinn und siedender konzentrierter Salzsäure (Drummond, Gibson, Soc. 1926, 3075). — AgC₁₀H₁₅OS + AgNO₃ + H₂O. Krystalle. Verkohlt bei 200—210° (D., G.). [α]¹⁸⁴₁₆₄₁: +21° (in Chloroform). Löslich in Äthylenbromid und heißem Alkohol, unlöslich in Benzol und Ligroin. — 2AgC₁₀H₁₅OS + AgNO₃ + H₂O. Gelb. Zersetzt sich oberhalb 230° ohne zu schmelzen (D., G.). [α]¹⁸⁶₁₆₄₁: +64° (in Chloroform). Sehr leicht löslich in Benzol, schwer in Alkohol. — CdBr·C₁₀H₁₅OS. Krystalle. Unlöslich in organischen Lösungsmitteln (D., G.). — 3C₁₀H₁₆OS +2 SnCl₂. Krystalle. F: 187° (D., G.). Löslich in Benzol und anderen organischen Lösungsmitteln. — Ni(C₁₀H₁₅OS)₂ + C₁₀H₁₆OS. Mahagonifarben. Unlöslich in Wasser, löslich in organischen Lösungsmitteln (D., G.).

 $\begin{aligned} \text{Di-[d-campheryl-(1^1)]-disulfid} & \text{C_{10}H}_{32}\text{O_2S}_2 = \underbrace{\text{OC}}_{\text{H_{12}}}\text{C_7H}_{12} \cdot \text{$CH}_4 \cdot \text{$S \cdot S \cdot CH}_2 \cdot \text{C_7H}_{12} \cdot \underbrace{\text{CO}}_{\text{$1 - C_7$H}_{12}} (\text{H } 13; \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} (\text{H } 13; \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} (\text{H } 13; \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} (\text{H } 13; \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} (\text{H } 13; \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} (\text{H } 13; \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} (\text{H } 13; \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} (\text{H } 13; \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} (\text{H } 13; \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} (\text{H } 13; \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} (\text{H } 13; \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} (\text{H } 13; \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} (\text{H } 13; \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} (\text{H } 13; \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} (\text{H } 13; \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} (\text{H } 13; \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} (\text{H } 13; \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} (\text{H } 13; \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} \cdot \text{CO}_{\text{$1 - C_7$H}_{12}} (\text{H } 13; \text{$CO$$ E I 512). B. Aus 11-Mercapto-d-campher durch Einw. von Kupfer(II)-chlorid (DRUMMOND, GIBSON, Soc. 1926, 3076). — F: 2220.

7. 1.7.7-Trimethyl-bicyclo-[1.2.2]-heptanol-(2)-on-(3), -C(CH₃)---CH · OH Camphanol-(2)-on-(3), 2-Oxy-3-oxo-camphan, 2-Oxyepicampher C₁₀H₁₆O₂, s. nebenstehende Formel. C(CH₃)₂

a) Rechtsdrehender 2-Oxy-epicampher, 2-Oxy-1-epi- H₂C-CH-CO campher') C₁₀H₁₆O₂, s. nebenstehende Formel. Diese Konstitution kommt dem H 12 als α-Oxy-campher vom Schmelzpunkt 212—213° beschriebenen α,β-Oxy-campher" von Manasse zu; 2-Oxy-epicampher ist auch im α-Oxy-campher von Manasse (H 11) in erheblichen Mengen enthalten (BEEDT, BREDT-SAVELSBERG, B. 62, 2214; Br.-S., Bund, J. pr. [2] 131 [1931], 33; Br., J. pr. [2] 131, 49; vgl. Br., Ahrens, J. pr. [2] 112, 274; Br., J. pr. [2] 121, 155, 163). — Zur Bildung bei der Reduktion von [d-Campher]-chinon vgl. die Angaben bei 3-Oxy-d-campher (S. 22); zur Isolierung behandelt man den bei der Verätherung des Reaktionsgemisches mit methylalkoholischer Salzsäure in der Kälte entstehenden dimeren 2-Methoxy-epicampher bei Zimmertemperatur mit konz. Salzsäure (Bredt, Ahrens, J. pr. [2] 112, 287; vgl. Manasse, B. 35 [1902], 3816). — Krystalle (aus Ligroin oder aus Äther beim Verdunsten). F: 211—212° (Br., A., J. pr. [2] 112, 288; Br., J. pr. [2] 121, 165). Kryoskopisches Verhalten in Benzol: Br., A., J. pr. [2] 112, 288; in Benzol und Bromoform: Karrer, Takashima, Helv. 8, 244. [a]³: +9,1° (Alkohol; c = 10) (Br.).

Wird durch Natriumamalgam in Wasser zu l-Epicampher reduziert (Bredt, Bredt-Savels-BERG, B. 62, 2216). Gibt bei längerem Erhitzen mit Brom in Gegenwart von Natriumacetat in Eisessig geringe Mengen Camphersäureanhydrid (FORSTER, SHUKLA, Soc. 127, 1858). Liefert mit Thionylchlorid in Äther dimeren 2-Chlor-l-epi-H₂C-CH----CX-O-CH-C(CH₃)-CH₂ campher (s. nebenstehende Formel [X = Cl]; Syst. Nr. 2672) (Bredt, Ahrens, J. pr. [2] 112, 289; vgl. B., Bredt-Savelsberg, B. 62, 2214; B., J. pr. [2] 131 [1931], 51). Gibt mit methylalkoholischer Salzsäure bei C(CH₃)2 C(CH₃)a H₂C-C(CH₃)-CH-O-CX-CHgewöhnlicher Temperatur dimeren 2-Methoxy-l-epicampher (s. obenstehende Formel [X = O·CH₄]; Syst. Nr. 2717) (B., A., J. pr. [2] 112, 286, 287; vgl. B.-S., B. 62, 2214; B., J. pr. [2] 181, 51; vgl. a. Manasse, B. 35 [1902], 3813). Bei der Einw. von Natrium in Ather und Behandlung der Natriumverbindung mit Methyljodid entsteht 2-Methoxy-l-epicampher (s. u.) (B., A., J. pr. [2] 112, 293). Liefert mit 4 Mol Methylmagnesium jodid in Åther, zuletzt bei Siedetemperatur, 3-Methyl-camphandiol-(2.3) (E II 6, 760) (B., J. pr. [2] 121, 168); bei der Reaktion mit Methylmagnesiumjodid wird 1 Mol Methan entwickelt (Forster, Shukla, Soc. 127, 1858).

Das Benzoat schmilzt bei 84—85° (Bredt, J. pr. [2] 121, 171), das saure Phthalat bei 164—165° (Forster, Shukla, Soc. 127, 1858), das Benzolsulfonat bei 110° (B.). Phenylhydrazon s. H 15, 187.

2 - Methoxy - 1 - epicampher $C_{11}H_{16}O_8 = C_8H_{14} \stackrel{CH \cdot O \cdot CH_8}{\downarrow_{CO}}$. Das Mol.-Gew. ist vaporimetrisch und in Benzol kryoskopisch bestimmt (BREDT, AHRENS, J. pr. [2] 112, 294). - B. Durch Umsetzung von 2-Oxy-l-epicampher mit Natrium in Ather und nachfolgende Einw. von

Methyljodid (B., A., J. pr. [2] 112, 293). Beim Kochen von dimerem 2-Methoxy-l-epicampher (Syst. Nr. 2717) mit Methanol unter Einleiten von Chlorwasserstoff (B., A., J. pr. [2] 112, 293; Bill of the state of the state

2 - Äthoxy - 1 - epicampher $C_{12}H_{20}O_2=C_8H_{14}$ CO

Dimerer 2-Athoxy-l-epicampher $C_{24}H_{40}O_4$ s. Syst. Nr. 2717. 2-Acetoxy-l-epicampher $C_{12}H_{18}O_2=C_8H_{14}$ $CH \cdot O \cdot CO \cdot CH_8$ Das Mol.-Gew. ist in

Benzol kryoskopisch bestimmt. — B. Bei kurzem Kochen von 2-Oxy-l-epicampher mit Acetanhydrid (Bredt, Ahrens, J. pr. [2] 112, 289; B., J. pr. [2] 121, 170). — Nadeln (aus Pentan). F: 61-62° (B.). Ein Gemisch mit gleichen Teilen 3-Acetoxy-d-campher schmilzt bei 20° (B.).

¹⁾ Entspricht sterisch dem d-Campher; vgl. E I 7, 86.

- schmelzenden 3-Oxy-camphers", H 12.
- pelzenden 3-Oxy-campuers , H 12.

 2-Oxy-l-epicampher-semicarbazon $C_{11}H_{19}O_2N_3 = C_8H_{14} C_{::N\cdot NH\cdot CO\cdot NH_2}^{CH\cdot OH}$ (vgl. H 12, Z. 3 v. u.). Krystalle (aus verd. Alkohol). F: 215—216° bei raschem Erhitzen im Berl-Block, 210-2110 bei langsamem Erhitzen (Bredt, J. pr. [2] 121, 165; vgl. Bredt, Ahrens, J. pr. [2] 112, 288). — Zersetzt sich weitgehend beim Erwärmen mit konz. Salzsäure (B., A.).
- 2-Methoxy-1-epicampher-semicarbazon $C_{12}H_{21}O_2N_3 = C_8H_{14} < \begin{array}{c} CH \cdot O \cdot CH_3 \\ C: N \cdot NH \cdot CO \cdot NH_2 \end{array}$ Krystalle (aus Ligroin). F: 124° (BREDT, J. pr. [2] 121, 166, 167).
- b) Inakt. 2-Oxy-epicampher, 2-Oxy-dl-epicampher $C_{10}H_{10}O_2 = C_8H_{14}$ CO in Konstitution val. Prepare Proper Co. Zur Konstitution vgl. Bredt, Bredt-Savelsberg, B. 62, 2214. — B. Neben 3-Oxy-dl-campher durch Reduktion von dl-Campherchinon mit Zinkstaub und verd. Essigsäure bei 50-60°

(Bredt, Ahrens, J. pr. [2] 112, 285; B., J. pr. [2] 121, 163). — F: 212—213° (B., J. pr. [2] 121, 165). — Liefert beim Behandeln mit methylalkoholischer Salzsäure bei Zimmertemperatur dimeren 2-Methoxy-dl-epicampher (Syst. Nr. 2717) (B., A., J. pr. [2] 112, 285). Gibt bei der Umsetzung mit 4 Mol Methylmagnesiumjodid in Äther ein bei 97—100° schmelzendes, mit Wasserdampf flüchtiges Produkt, das durch verd. Schwefelsäure in ein campherartig riechendes ungesättigtes Öl vom Siedepunkt 217—2180 umgewandelt wird (B., J. pr. [2] 121, 169).

- (aus Wasser). F: 215-216° (Berl-Block) (Bredt, J. pr. [2] 121, 165).
- 8. 1.7.7-Trimethyl-bicyclo-[1.2.2]-heptanol-(6)-on-(3), Camphanol-(6)-on-(3), 6-Oxy-3-oxo-camphan, 6-Oxy-epicampher $C_{10}H_{16}O_2$, s. nebenstehende Formel.
- a) Rechtsdrehende Endo-Form, 6-Oxy-l-epicampher, 5-Oxo-d-borneol, p-Ketoborneol C₁₀H₁₆O₂. Ist der Hauptbestandteil des H 7, 110 als Verbindung C₁₀H₁₆O₂ aus d-Campher beschriebenen Oxycamphers von Schrötter; zur Konstitution vgl. Bredt, Goeb, J. pr. [2] 101, 273, 277; zur Konfiguration vgl. die bei Borneol (E II 6, 80) zitierte Literatur. B. Durch Oxydation von [d-Bornyl]-acetat mit Chromtrioxyd in Eisessig bei 140° und Kochen des entstandenen Von [α-Bornyl]-acetat mit Chromtrioxyd in Eisessig bei 140° und Kochen des entstandenen Acetats (s. u.) mit Kaliumcarbonat-Lösung (BREDT, GOEB, J. pr. [2] 101, 284, 285; vgl. Schrötter, M. 2 [1881], 224); entsteht auf analoge Weise aus [d-Bornyl]-chloracetat und [d-Bornyl]-trichloracetat (MURAYAMA, OTSUKA, J. pharm. Soc. Japan 1927, Nr. 539, S. 9; C. 1927 II, 250). — Krystalle (aus Benzol). F: 237,5—238° (B., G., J. pr. [2] 101, 280, 291). [α]^{16.5}₁: +71,3° (Alkohol; p = 6,5) (B., G., J. pr. [2] 101, 277, 285). Schwer löslich in Pentan (B., G., J. pr. [2] 101, 277). Kryoskopisches Verhalten in Bromoform und Benzol: Karber, Takashima, Helv. 8, 244. — Gibt bei der Oxydation mit wäßr. Chromsäure-Lösung rechtsdrehendes Cambhandion (2.5) (5.0) codesampher. E. I. 7 557) (Brenz, Goeb, J. pr. [2] rechtsdrehendes Camphandion-(2.5) (5-Oxo-d-campher, E II 7, 557) (Bredt, Goeb, J. pr. [2] 101, 288). Wird beim Erwärmen mit Salpetersäure (D: 1,185) zu geringen Mengen Oxalsäure und anderen Produkten oxydiert (B., G., J. pr. [2] 101, 287). Liefert bei der Reduktion mit Natrium und siedendem Alkohol rechtsdrehendes Camphandiol-(2.5) (E II 6, 760) (B., G., J. pr. [2] 101, 290). Bleibt beim Kochen mit Zinkchlorid in Benzol größtenteils unverändert (B., G., J. pr. [2] 101, 280, 291). Gibt beim Behandeln mit Phosphorpentachlorid in Ligroin und nachfolgenden Zersetzen mit Wasser einen oberhalb 260° schmelzenden Phosphorsäureester (?) und geringe Mengen eines chlorhaltigen Produkts (B., G., J. pr. [2] 101, 282). Liefert ein schlecht krystallisierendes, bei ungefähr 110° schmelzendes Phenylurethan (B., G., J. pr. [2] 101, 286).

Physiologisches Verhalten des Oxycamphers von Schrötter: Leo, Dtsch. med. Wschr. 48, 378; C. 1922 III, 895; vgl. a. E. PFANKUCH in J. HOUBEN, Fortschritte der Heilstoffchemie,

2. Abt., Bd. I [Berlin-Leipzig 1930], S. 1387.

- 6-Acetoxy-1-epicampher, [5-Oxo-d-bornyl]-acetat $C_{12}H_{18}O_8 = CH_3 \cdot CO \cdot O \cdot C_8H_{13}$
- B. Neben wechselnden Mengen Campher bei der Oxydation von [d-Bornyl]-acetat mit Chromsäure in Eisessig bei 140°; Ausbeute 30—40°/ $_{0}$ der Theorie (BREDT, GOEB, $J.\ pr.\ [2]\ 101$, 284). —

Krystalle (aus Alkohol). F: 76—77°. Kp₁₈: 134—136°. $[\alpha]_{0}^{n}$: +87,4° (Alkohol; p = 16,7). — Gibt bei der Oxydation mit verd. Salpetersäure rechtsdrehendes Camphandion-(2.5) (B., G., J. pr. [2] 101, 283).

- 6-Chloracetoxy-1-epicampher, [5-Oxo-d-bornyl]-chloracetat $C_{12}H_{17}O_3Cl =$
- $CH_3Cl \cdot CO \cdot O \cdot C_8H_{13} \subset B$. Analog der vorangehenden Verbindung (MURAYAMA, OTSUKA,
- J. pharm. Soc. Japan 1927, Nr. 539, S. 9; C. 1927 II, 250). Krystalle. F: 85—86°.
 - 6-Trichloracetoxy-1-epicampher, [5-Oxo-d-bornyl]-trichloracetat C12H15O3Cl3 ==
- $CCl_3 \cdot CO \cdot O \cdot C_8H_{18}$ $CO^{11.2}$. B. Analog den vorangehenden Verbindungen (MURAYAMA, OTSUKA, J. pharm. Soc. Japan 1927, Nr. 539, S. 9; C. 1927 II, 250). — Krystelle. F: 77-79°.
- Bis [5-oxo-d-bornyl] sulfit $C_{20}H_{30}O_5S = \begin{bmatrix} H_2C \\ OC \end{bmatrix}C_9H_{13} \cdot O \end{bmatrix}$ SO. B. Aus 5-Oxo-d-borneol und Thionylchlorid in Äther (Bredt, Goeb, J. pr. [2] 101, 282, 291). Nadeln (aus Alkohol). F: 187°. Schwer löslich in Äther. Gibt ein bei ca. 200° schwelzendes Semicarbazon.
- 6-Oxy-l-epicampher-semicarbazon $C_{11}H_{19}O_2N_3 = HO \cdot C_8H_{18} C_{:N \cdot NH \cdot CO \cdot NH_3}^{CH_3}$ (aus wäßr. Alkohol). F: 222—224° (Zers.) (BREDT, GOEB, J. pr. [2] 101, 286). Löslich in Alkohol, unlöslich in Wasser. — Gibt beim Erhitzen mit Natriumäthylat-Lösung im Rohr auf 2008 d-Borneol.
 - 6 Acetoxy 1 epicampher semicarbazon $C_{13}H_{21}O_3N_3 =$
- CH₃· CO· O· C₈H₁₃· Ci : N· NH· CO· NH₂. Nadeln (aus Alkohol). F: 248° (unter geringer Zersetzung) (BREDT, GOEB, J. pr. [2] 101, 285).
 - 6-Chloracetoxy-1-epicampher-semicarbazon $C_{12}H_{20}O_3N_3Cl =$
- CH₂Cl·CO·O·C₈H₁₈Cl·N·NH·CO·NH₂. F: 228° (MURAYAMA, OTSUKA, J. pharm. Soc. Japan 1927, Nr. 539, S. 9; C. 1927,II, 250).
 - 6-Trichloracetoxy i epicampher semicarbazon $C_{13}H_{18}O_3N_3Cl_3 =$
- CCl₃·CO·O·C₈H₁₈·C·N·NH·CO·NH₂. F: 220° (MURAYAMA, OTSUKA, J. pharm. Soc. Japan 1927, Nr. 539, S. 9; C. 1927 II, 250).
- b) Inaktive Endo Form, 6 Oxy dl epicampher vom HO.HC-Schmelzpunkt 236°, 5 - Oxo - dl - borneol C₁₀H₁₆O₂, s. neben-C(CH₃)2 stehende Formel. B. Durch Verseifung von 5-Oxo-dl-bornylacetat mit siedender Kaliumcarbonat-Lösung (Bredt, Pinten, J. pr. [2] 119, 106). — Krystalle (aus Wasser). F: 236°. Löst sich bei 22° in Wasser zu 5,1%.

Dem dl-Borneol entsprechender 6 - Acetoxy - dl - epicampher, 5 - 0xo - dl - bornylacetat $C_{12}H_{18}O_3 = CH_3 \cdot CO \cdot O \cdot C_8H_{18} \underbrace{CO}_{CO}$ B. Durch Oxydation von dl-Bornylacetat mit Chromsaure in Eisessig + Acetanhydrid bei Zimmertemperatur (Bredt, Pinten, J. pr. [2] 119, 104). — Krystalle (aus Petrolather). F: 73-75°. Kp_{1.5}: 136-137°; Kp_{1.2}: 140-141°; Kp_{1.4}: 147°.

Semicarbazon des 5-0xo-dl-bornylacetats $C_{18}H_{21}O_8N_2 =$

- CH₂·CO·O·C₂H₁₃CH₂CH₂ Krystalle (aus Alkohol). F: 238° (Zers.) (Bredt, Pin-TEN, J. pr. [2] 119, 105).
- CH3 · CO · O · HC -- C(CH3) -- CHBr 2(?)-Brom-6-acetoxy-di-epicampher, [6(?)-Brom-5-oxo-di-bornyl]-acetat $C_{12}H_{17}O_2Br$, s. nebenstehende Formel. B. Aus 5-Oxo-dl-bornylacetat und Brom in Chloroform bei Zimmertemperatur (Bredt, Pinten, J. pr. [2] 119, 106). — Krystalle (aus Alkohol). F: 100—101°. Mit Wasserdampf flüchtig. — Spaltet leicht Bromwasserstoff ab.
- c) Inaktive Exo Form, 6 Oxy dl epicampher vom HO·HC-C(CH3)-CH2 Schmelzpunkt 242°, 5 - Oxo - isoborneol $C_{10}H_{16}O_{2}$, s. nebenstehende Formel. B. Aus dl-Isobornylacetat und aus dl-Isobo C(CH₃)3 trichloracetat durch Oxydation mit Chromsaure in Eiseasig und nachfolgende Hydrolyse (Murayama, Otsuka, Tanaka, J. pharm. Soc. Japan 1928, Nr. 5, S. 87; japan. Teil, S. 430, 431; C. 1928 II, 653; vgl. dagegen Bredt, Goeb, J. pr. [2] 101, 284 Anm.). — F: 242° (M., O., T.).

Dem di-Isoborneol entsprechender 6-Acetoxy-di-epicampher, 5-Oxo-di-isobornyl-acetat $C_{12}H_{18}O_3 = CH_3 \cdot CO \cdot O \cdot C_8H_{13} \cdot CO \cdot O \cdot C_8H_{18} \cdot D_8$. Aus di-Isobornylacetat durch Einw. von überschüssigem Ozon in Eisessig bei 60°, neben anderen Produkten (IKEDA, FUJITA, Scient. Pap. Inst. phys. chem. Res. 7, 18; C. 1928 I, 51). — Viscose Flüssigkeit von angenehmem Geruch. Kp₇₅₈: 258° (unter geringer Zersetzung); Kp₁₀: 150—155°. D_1^∞ : 1,0657. D_1^∞ : 1,4713.

Semicarbazon des 5-Oxo-di-isoborneois $C_{11}H_{19}O_2N_3 = HO \cdot C_8H_{13} \cdot \stackrel{CH_2}{C:N \cdot NH \cdot CO \cdot NH_2}$. B. Aus dem Semicarbazon des 5-Oxo-di-isobornylacetats (s. u.) durch Verseifung mit heißer Sodalösung (Ikeda, Fujita, Scient. Pap. Inst. phys. chem. Res. 7, 14; C. 1928 I, 51). — Prismen (aus Wasser). F: 227—228° (Zers.; Bad 170°). Löslich in heißem Wasser, Alkohol, Aceton und Eisessig, unlöslich in anderen Lösungsmitteln.

Semicarbazon des 5-0xo-di-isobornylacetats $C_{13}H_{21}O_3N_3 = CH_3 \cdot CO \cdot O \cdot C_8H_{12} \cdot CH_2$. Prismen (aus Toluol). F: 187° (IKEDA, FUJITA, Scient. Pap. Inst. phys. chem. Res. 7, 18; C. 1928 I, 51). Leicht löslich außer in Petroläther.

6. Oxy-oxo-Verbindungen $C_{11}H_{18}O_2$.

1. 1-Methyl-2-pentyl-cyclopenten-(1)-ol-(4)-on-(3), 1-Methyl-2-n-amyl-cyclopenten-(1)-ol-(4)-on-(3), Tetrahydropyrethrolon $C_{11}H_{18}O_2 =$

H₂C·C(CH₃) C·[CH₂]₄·CH₃. Zur Konstitution vgl. indessen den Artikel Pyrethrolon HO·HC—CO Co. C·[CH₂]₄·CH₃. Zur Konstitution vgl. indessen den Artikel Pyrethrolon (S. 134) ¹). — B. Durch Reduktion von Pyrethrolon mit 2 Mol Wasserstoff in Gegenwart von Palladium in Alkohol (Staudinger, Ruzicka, Helv. 7, 225). — Dickflüssiges, fast geruchloses Ol. Kp₁₀: 160—162°; Kp_{0,5}: 119°; Kp_{0,1}: 108—110° (St., R.). αⁿ₅: —11,32° (unverdünnt) (St., R.). Leicht löslich in organischen Lösungsmitteln außer Petroläther (St., R.). — Gibt bei der Oxydation mit wäßr. Permanganat-Lösung, anfangs bei 0°, n-Capronsäure, Oxalsäure, Bernsteinsäure und andere Produkte (St., R., Helv. 7, 227). Reduziert Fehlingsche Lösung in der Wärme, ammoniakalische Silbernitrat-Lösung in der Kälte (St., R., Helv. 7, 225). Bei der Hydrierung in Gegenwart von Palladium entsteht inakt. 1-Methyl-2-n-amyl-cyclopentanon-(3) (E II 7, 46) (St., R., Helv. 7, 237). Entfärbt Bromlösung bei längerer Einw. unter Entwicklung von Bromwasserstoff (St., R., Helv. 7, 225). Gibt mit Chrysanthemumsäure einen für Insekten ungiftigen Ester (St., R., Helv. 7, 225). — Das 4-Nitrophenylosazon C₂₃H₂₆O₄N₆ zersetzt sich oberhalb 350° (St., R., Helv. 7, 226).

Tetrahydropyrethrolon - methyläther $C_{12}H_{30}O_2 = H_3C \cdot C(CH_3)C \cdot [CH_2]_4 \cdot CH_3$. Aus Pyrethrolonmethyläther (Syst. Nr. 748) und 2 Mol Wasserstoff in Gegenwart von Palladium in Alkohol (Staudinger, Ruziora, Helv. 7, 227). — Bewegliches Öl. Kp₁₂: 128°. Leicht löslich in Petroläther. — Liefert bei weiterer Hydrierung inakt. 1-Methyl-2-n-amyl-cyclopentanon-(3) (St., R., Helv. 7, 227, 237).

Tetrahydropyrethrolon - acetat $C_{12}H_{20}O_3 = H_2C \cdot C(CH_3) C \cdot [CH_2]_4 \cdot CH_3$. Beim Erwärmen von Tetrahydropyrethrolon mit Acetanhydrid (STAUDINGER, RUZICKA, Helv. 7, 226). — Leicht bewegliches Öl. Kp_{0,17}: 110°. Leicht löslich in Petroläther. — Liefert bei weiterer Hydrierung in Gegenwart von Palladium inakt. 1-Methyl-2-n-amyl-cyclopentanon-(3) (Sr., R., Helv. 7, 226, 237).

Tetrahydropyrethrolon - semicarbazon $C_{12}H_{21}O_2N_3=C_5H_{11}\cdot C_5H_3(CH_3)$ (OH): $N\cdot NH\cdot CO\cdot NH_2$. Krystalle (aus Chloroform). F: 189—190° (Zers.) (STAUDINGER, RUZICKA, Helv. 7, 226). — Leicht löslich in Methanol, unlöslich in Benzol. — Gibt beim Erwärmen mit Kaliumdisulfat-Lösung ein bei 220° schmelzendes, durch Wasserabspaltung entstandenes Produkt und einen Ketonalkohol $C_{11}H_{18}O_2$ (?), dessen Semicarbazon $C_{12}H_{21}O_2N_3$ (?) bei 168° schmilzt.

¹⁾ Hiernach ist Tetrahydropyrethrolon als 1-Methyl-2-n-amyl-cyclopenten-(1)-on-(3)-ol-(5) HO·HC·C(CH₃) C·C₂H₁₁ su formulieren.

2. 1.2.7.7 - Tetramethyl - bicyclo - [1.2.2] - heptanol - (2) - on - (3), 2-Methylcamphanol-(2)-on-(3), 2-Oxy-2-methyl-epicampher C₁₁H₁₈O₂, Formel I.

Oxime $C_{11}H_{19}O_2N = C_8H_{14} \stackrel{C(OH)\cdot CH_3}{\stackrel{!}{C}: N\cdot OH}$ (H 15). Nach den Ergebnissen neuerer Untersuchungen ist dem α -Oxim die Konfiguration II, dem γ -Oxim die Konfiguration III zuzuerteilen (vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 1049, 1055, 1057). Das β -Oxim ist als Gemisch oder lockere Molekül-

verbindung aus α-Oxim und γ-Oxim erkannt worden (Forster, Rao, Soc. 1926, 2672).
α-Oxim (H 15). Konfiguration s. o. — B. Durch Einw. von Methylmagnesiumjodid auf unbeständigen α-Isonitrosocampher (E II 7, 554) in Äther (Forster, Rao, Soc. 1926, 2674). — Tafeln (aus verd. Alkohol). F: 181°. $[\alpha]_D$: +86,6° (in Chloroform); die Drehung fällt bei 24-stdg. Belichtung der Lösung auf +68,7°.

- 3. 1.7.7 Trimethyl 3 oxymethyl bicyclo [1.2.2] H₂C-C(CH₃)-CO heptanon-(2), 3 Oxymethyl d campher, [d-Camphe-ryl (3)] carbinol, Camphylcarbinol C₁₁H₁₈O₃, s. nebenstehende Formel (E I 513). Rotationsdispersion der unverdünnten H₂C-CH-CH₂·OH Substanz: Akermann, A. 420, 26; Rupe, Schaerer, Helv. 8, 854. Liefert beim Erhitzen mit gesättigtem wäßrigem oder alkoholischem Ammoniak auf 150—165° Bis-(d-campheryl-(3)-th-liefert). methyl]-amin und geringe Mengen 3-Methylen-d-campher (RUPE, KUSSMAUL, Helv. 3, 519).
- d Campheryl (3) carbinol [2 methyl 4'- phenyl trityläther] $C_{a7}H_{a8}O_a =$ CO
 C₈H₁₄CH·CH₂·O·C(C₆H₅)(C₆H₄·CH₂)·C₆H₅·C₆H₅

 B. Aus d-Campheryl-(3)-carbinol und Phenyl-o-tolyl-diphenylyl-ohlormethan pyridin, zuletzt auf dem Wasserbad (KARRER, 1988). The state of the s HELFENSTEIN, Helv. 11, 846). — Nadeln (aus Alkohol). F: 134° ; $[\alpha]_{\rm D}$: $+28,9^{\circ}$ (Benzol; p=1,5); nach 4maligem Umkrystallisieren steigt der Schmelzpunkt auf 148° , während die Drehung auf +13,9° zurückgeht. Leicht löslich in siedendem Alkohol und in anderen organischen Lösungsmitteln, unlöslich in Wasser. — Gibt beim Behandeln mit Chlorwasserstoff in eiskaltem Äther optisch inaktives Phenyl-o-tolyl-diphenylyl-chlormethan.
- 3 Formyloxymethyl d campher $C_{12}H_{18}O_8 = C_8H_{14}$ $CH \cdot CH_2 \cdot O \cdot CHO$ (H 513). $[\alpha]_D^{\infty}$: +18,1° (RUPE, SCHAERER, Helv. 8, 855). Rotationsdispersion in Benzol: R., Sch.
- 3 Acetoxymethyl d campher $C_{18}H_{20}O_3 = C_8H_{14}$ CO $CH \cdot CH_2 \cdot O \cdot CO \cdot CH_3$ $CH \cdot CH_3 \cdot O \cdot CO \cdot CH_3$ $CH \cdot CH_3 \cdot O \cdot CO \cdot CH_3$ $CH \cdot CH_3 \cdot O \cdot CO \cdot CH_3$ $CH \cdot CH_3 \cdot O \cdot CO \cdot CH_3$ +53,78° (unverdünnt), +25,9° (Benzol; p = 10); Rotationsdispersion der unverdünnten Substanz und der Lösung in Benzol: Akermann, A. 420, 26; Rupe, Schaerer, Helv. 8, 854, 855.
- 3 Propionyloxymethyl d campher $C_{14}H_{22}O_3 = C_8H_{14} \underbrace{CH \cdot CH_2 \cdot O \cdot CO \cdot C_2H_3}_{CH \cdot CH_2 \cdot O \cdot CO \cdot C_2H_3}$. B. Aus d-Campheryl-(3)-carbinol und Propionylbromid in Pyridin (RUPE, SCHAEREE, Helv. 8, 857, 858). — Wahrscheinlich nicht rein erhalten. Krystalle. Schmilzt unschaff bei 28—36°. Siedet im Hochvakuum bei 63°. An 2 Präparaten wurde gefunden D°: 1,0430; $[\alpha]_{\mathbb{B}}^{n}$: +55,4° (unterkühlt), +16,2° (Benzol; p = 10) und D°: 1,0420; $[\alpha]_{\mathbb{B}}^{n}$: +54,8° (unterkühlt), +17,2° (Benzol; p = 10). Rotationsdispersion in Substanz und in Benzol-Lösung: R., Sch. Leicht löslich in Alkohol, Ather und Benzol.
- shol, Ather and Benzol.

 3-Butyryloxymethyl-d-campher $C_{15}H_{24}O_8 = C_8H_{14} C_{CH} \cdot CH_2 \cdot O \cdot CO \cdot CH_2 \cdot C_2H_5$. B. Aus d-Campheryl-(3)-carbinol und Butyrylchlorid in Pyridin (RUPE, SCHARBEB, Helv. 8, 857, 860). — Flüssigkeit. Siedet im Hochvakuum bei 73°. D. 1,0254. [α] : +53,45° (unverdünnt), +33,4° (Benzol; p=10). Rotationsdispersion der unverdünnten Substanz und der Lösung in Benzol: R., Sch. Leicht löslich in Alkohol, Äther und Benzol.
- 3 Isobutyryloxymethyl d campher $C_{15}H_{24}O_3 = C_8H_{14}$ $CH \cdot CH_2 \cdot O \cdot CO \cdot CH(CH_3)_3$ Analog der vorangehenden Verbindung (Rufe, Schaerer, Helv. 8, 857, 859). — Flüssigkeit. Siedet im Hochvakuum bei 61°; erstarrt bei längerem Aufbewahren teilweise krystallinisch. Die festen Anteile zeigen den Schmelzpunkt 31,5 -33° ; $[\alpha]_{\rm D}$: $+23,5^{\circ}$ (Benzol; p = 10); an den flüssigen Anteilen wurde gefunden $D_{\rm I}^{\infty}$: 1,0217; $[\alpha]_{\rm D}^{\infty}$: $+56,2^{\circ}$. Rotationsdispersion der

festen Anteile (in Benzol) und der flüssigen Anteile (in Substanz): R., Sch. Leicht löslich in Alkohol, Ather und Benzol.

3 - n - Valeryloxymethyl - d - campher $C_{16}H_{26}O_8 = C_8H_{14}$ COAnalog den vorangehenden Verbindungen (Rufe, Schaerer, Helv.~8,~857,~860). — Flüssigkeit. Siedet im Hochvakuum bei 82°. $D_4^{\infty}:~1,0140.~[\alpha]_{15}^{\infty}:~449,18°$ (unverdünnt), +29,6° (Benzol; p=10). Rotationsdispersion in Substanz und in Benzol-Lösung: R., Sch. Leicht löslich in Alkohol, Ather und Benzol.

[d-Campheryl-(3)-methyl]-crotonat $C_{16}H_{22}O_3 = C_8H_{14}$ CO

CH·CH₂·O·CO·CH: CH·CH₃

B. Analog den vorangehenden Verbindungen (RUPE, SCHAERER, Helv. 8, 857, 864). — Nicht ganz rein erhalten. Flüssigkeit. Siedet im Hochvakuum bei 79°. D¹⁰; 1,0506. [α]²⁰: +56,520° (unverdünnt), $+34.3^{\circ}$ (Benzol; p=10). Rotations dispersion in Substanz and in Benzol-Lösung: R., Sch. Leicht löslich in Alkohol, Ather und Benzol.

[d-Campheryi-(3)-methyi]-sorbinat $C_{17}H_{24}O_3 =$

 C_8H_{14} $C_{H} \cdot CH_2 \cdot O \cdot CO \cdot CH \cdot CH \cdot CH \cdot CH_3$. B. Analog den vorangehenden Verbindungen (Rupe, Schaerer, Helv. 8, 857, 864). — Gelbe Flüssigkeit. Siedet im Hochvakuum bei 99° (unter geringer Zersetzung). Dr.: 1,0433. [α] $_{\rm D}^{\rm m}$: $+54,55^{\circ}$ (unverdünnt), $+33,9^{\circ}$ (Benzol; p = 10). Rotationsdispersion in Substanz und in Benzol-Lösung: R., Sch. Leicht löslich in Äther und Benzol, schwer in Alkohol. — Geht beim Aufbewahren in ein gelbes Harz über.

7. Oxy-oxo-Verbindungen $C_{13}H_{22}O_2$.

1.7.7-Trimethyl -3- $[\beta$ -oxy - propyl] - bicyclo-[1.2.2]-heptanon-(2), 3-[β-Oxy-propyl]-d-campher, β-[d-Campheryl-(3)]-isopropylalkohol,
Camphopropanol-(2) C₁₃H₁₂O₂, s. nebenstehende Formel.

a) Feste Form. B. Bei der thermischen Zersetzung der bei 115—120° schmelzenden

3- $[\beta$ -Oxy-propyl]-d-campher-carbonsaure-(3) (Syst. Nr. 1398) (Haller, Ramart-Lucas, C.r.174, 788). Aus dem dieser Säure entsprechenden 3- $[\beta$ -Oxy-propyl]-d-campher-carbonsäure-(3)lacton vom Schmelzpunkt 89-90 (Syst. Nr. 2477) beim Kochen mit Kalilauge (H., R.-L.).

Tafeln. F: 100—101°. Löslich in Alkohol und Åther, schwerer in Petroläther. [α]_D: +62,4° (in Alkohol). — Phenylurethan. F: 120—120,5°.

b) Flüssige Form. B. Bei der thermischen Zersetzung der bei 160—170° schmelzenden 3-[β-Oxy-propyl]-d-campher-carbonsäure-(3) (Haller, Ramaet-Lucas, C. r. 174, 786). Beim Kochen der 3-[β-Oxy-propyl]-d-campher-carbonsäure-(3)-lactone vom Schmelzpunkt 118° und vom Schmelzpunkt 141° mit alkoh. Kalilauge (H., R.-L., C. r. 173, 118). — Nicht krystallisierendes Ol. Kp₁₄: $162-164^{\circ}$; [α]_p: $+31,4^{\circ}$ (H., R.-L., C. r. 173, 118). — Phenylurethan. F: 116° bis 117° (H., R.-L., C. r. 178, 118).

8. Oxy-oxo-Verbindungen C14H24O2.

- 1. Ketonalkohol C₁₄H₂₄O₂ aus Elemol. Ist vielleicht als 1.1 · Dimethyl · 4 · [α · o x y · $HC: CH \cdot C(CH_3)_2$ isopropyl]-2-propionyl-cyclohexen-(5) lieren (vgl. Ruzicka, van Veen, A. 476, 79). — B. Neben anderen Produkten beim Behandeln von Elemol (E II 6, 108) mit Ozon in Petroläther oder Tetrachlorkohlenstoff unter Eiskühlung and Kochen des entstandenen Ozonids mit Wasser (Ruzicka, Pfriffer, Heb. 9, 855; R., van V., A. 476, 91). — Kp.: ca. 135°; Kp_{0,5}: 121—123° (R., Pf.); Kp_{0,5}: 125—135° (R., van V.). Liefert bei der Hydrierung bei Gegenwart von Platinschwarz in Essigester einen Ketonalkohol C₁₄H₂₀O₂ (S. 12) R., van V., A. 476, 91). Gibt beim Kochen mit Ameisensäure ein Keton C₁₄H₂₀O₂ (S. 12) R., van V., A. 476, 91). (E II 7, 143), geringe Mengen eines Kohlen wasserstoffes $C_{11}H_{18}$ oder $C_{18}H_{20}$ (Kp₁₈: $80-85^{\circ}$) und andere Produkte (R., Pr.). Bei der Umsetzung mit Semicarbazid entsteht ein amorphes Produkt (R., Pr.; R., VAN V.).
- 2. 1.2 Dicyclohexyl äthanolon, Dodekahydrobenzoin, Perhydrobenzoin $C_{14}H_{24}O_2 = C_6H_{11} \cdot CH(OH) \cdot CO \cdot C_6H_{11}$. Das Mol.-Gew. ist in Benzol kryoskopisch bestimmt. B. Neben geringeren Mengen Dodekahydrobenzil (E II 7, 564) bei 48-stdg. Einw. von Natriumdraht auf Cyclohexancarbonsäureäthylester in trockenem Äther (Danilow, Venus-Danilowa, B. \$2, 2665; 38. 61, 1672). Durch Reduktion von Dodekahydrobenzil mit Zinkspänen und wäßrig. alkoholischer Schwefelsaure oder besser mit Zinkspanen und 60-70% iger Essigsaure unter

gelindem Erwärmen (D., V.-D., B. 62, 2665, 2668). Beim Erhitzen von Dioyclohexylglykolaldehyd mit Alkohol und etwas konz. Schwefelsäure im Rohr auf 135° (D., V.-D., B. 62, 2661). — Kp₁₂: 168°; Kp₁₆: 164—165°; Kp₂: 141°. D°: 1,0205; D°: 1,0132; D°: 1,0101; n°: 1,4916 (D., V.-D., B. 62, 2666). — Wird bei Wasserbadtemperatur durch Fehlingsche Lösung oder besser durch konz. Salpetersäure unter Bildung von Dodekahydrobenzil oxydiert; beim Kochen mit Kupfersulfat und wäßrig-alkoholischer Kalilauge erhält man wenig Dodekahydrobenzil und Cyclohexancarbonsäure (D., V.-D., B. 62, 2663, 2667).

 $\begin{array}{ll} \textbf{0xim} \ \ C_{14}H_{25}O_{2}N = C_{6}H_{11}\cdot CH(OH)\cdot C(:N\cdot OH)\cdot C_{6}H_{11}. \ \ Nadeln \ (aus \ Alkohol). \ \ F: 117-118^{\circ} \\ (Danilow, \ Venus-Danilowa, \ B. \ 62, \ 2662; \ \ \text{$\%$.} \ 61, \ 1673). \end{array}$

Semicarbazon $C_{15}H_{47}O_2N_3=C_6H_{11}\cdot CH(OH)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot C_6H_{11}.$ a) $\alpha\cdot Semicarbazon$ B. Neben dem $\beta\cdot Semicarbazon$ aus Dodekahydrobenzoin und Semicarbazid in alkoh. Lösung (Danilow, Venus-Danilowa, B. 62, 2661, 2666; 28. 61, 1673).

Nadeln (aus Alkohol). F: 175—176°. Ziemlich schwer löslich in Alkohol. b) β-Semicarbazon. B. s. o. — Krystalle (aus Alkohol). F: 187—188° (Zers.) (Danilow, Venus-Danilowa, B. 62, 2662; ж. 61, 1673). In Alkohol leichter löslich als das α-Semicarbazon.

3. 1.1 - Dicyclohexyl - äthanol - (1) - al - (2), Oxy - dicyclohexyl - acetaldehyd, Dicyclohexylglykolaldehyd $C_{14}H_{24}O_2=(C_6H_{11})_3C(OH)\cdot CHO$.

- a) Krystallinische Form. Das Mol.-Gew. ist in Benzol kryoskopisch bestimmt. B. Neben der flüssigen Form (s. u.) beim Erhitzen von Dicyclohexylbromacetaldehyd mit Silberacetat und wäßr. Alkohol auf 100° im Rohr oder im Kohlendioxydstrom unter Rückfluß (Dawi-LOW, VENUS-DANLOWA, B. 62, 2653, 2658; 26. 61, 1661, 1667); relative Ausbeuten an krystallinischer und flüssiger Form bei Ausführung der Reaktion unter verschiedenen Bedingungen: D., V.-D. — Nadeln (aus Äther). F: 74,5°. Unlöslich in Wasser. — Lagert sich beim Erhitzen mit Alkohol und etwas konz. Schwefelsäure in Dodekahydrobenzoin (S. 19) um (D., V.-D., B. 62, 2661; 38. 61, 1672). Gibt bei der Oxydation mit Silberoxyd in 80% igem Alkohol bei 100° Dicyclohexylketon und Ameisensäure, mit Permanganat in wäßr. Pyridin Dicyclohexylglykolsäure und geringere Mengen Dicyclohexylketon.
- b) Ölige Form. Ist vielleicht als $(C_0H_{11})_2C_0$ CH-OH zu formulieren (DANILOW, VENUS-DANILOWA, B. 62, 2653; X. 61, 1661). — B. s. o. — Verhält sich bei der Oxydation mit Permanganat wie die krystallinische Form und liefert dasselbe Oxim und Semicarbazon.

Oxim $C_{14}H_{25}O_2N = (C_6H_{11})_2C(OH) \cdot CH : N \cdot OH$. B. Beim Erwärmen von Dicyclohexylbromacetaldehyd oder von krystallinischem oder flüssigem Dicyclohexylglykolaldehyd mit Hydroxylaminhydrochlorid und Soda in wäßr. Alkohol (Danilow, Venus-Danilowa, B. 62, 2657, 2659; \mathfrak{R} . 61, 1666). — Nadeln (aus Alkohol). Färbt sich bei 126° gelb; F: 143° (Zers.).

Semicarbazon $C_{15}H_{27}O_2N_3=(C_6H_{11})_2C(OH)\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. B. Beim Erwärmen von Dicyclohexylbromacetaldehyd oder von krystallinischem oder flüssigem Dicyclohexylglykolaldehyd mit Semicarbazidhydrochlorid und Kaliumacetat in wäßr. Alkohol (Danilow, Venus-Danilowa, B. 62, 2657, 2660; 36. 61, 1666). — Krystalle (aus Alkohol). Färbt sich bei 185° gelb; F: 215—218° (Zers.). Schwer löslich in kaltem Methanol und Alkohol und in Benzol.

4. 8-Oxo-10-methyl-2- $[\alpha$ -oxy-isopropyl]-dekahydronaphthalin, 10-Methyl-7- $[\alpha$ -oxyisopropyl]-dekalon-(1) C₁₄H₂₄O₃, s. nebenstehende Formel. Zur Zusammensetzung und Konstitution vgl. RUZICKA, WIND, KOOLHAAS, Helv. 14 [1931], 1133, 1180. - B. Neben anderen Produkten bei der Oxydation

von Eudesmol (Machilol; E II 6, 110) mit Permanganat in Aceton (TAKAGI, J. pharm. Soc. Japan 1924, Nr. 514, S. 1; C. 1925 I, 1715; Chem. Abstr. 1925, 1704) und bei der Behandlung von Eudesmol mit Ozon in Chloroform oder Petroläther und Zersetzung der Ozonide mit Wasser (TA.) oder Weiteroxydation der Ozonide mit Permanganat in Aceton (Ruzioka, Wind), Koolhaas, Helv. 14, 1142, 1186; vgl. R., Capato, A. 453, 74). Bei der Oxydation von β-Dioxydihydroeudesmol (Dioxydihydroendesmol (Dioxydihydroendesmol); E II 6, 1059) mit Permanganat in Aceton (TA.).

Krystalle (aus Petroläther). F: 118° (TA.), 119—120° (R., W., K., Helv. 14, 1142). [α]_D + 13.2°

Link and (in Lösung) (Ta.). Leicht löslich in Alkohol, Äther, Benzol und Aceton, löslich in heißem Petroläther; unlöslich in Alkalilauge (Ta.). — Liefert beim Kochen mit 90% iger Ameisensäure oder beim Erwärmen mit verd. Mineralsäuren 10-Methyl-7-isopropyliden-dekalon-(1) (E II 7, 142), vielleicht im Gemisch mit Isomeren mit anderer Lage der Doppelbindung (T.; R., C., A. 458, 76; R., K., W., Helv. 14, 1180).

Oxim $C_{14}H_{25}O_2N = (CH_2)_2C(OH) \cdot C_{10}H_{14}(CH_3):N \cdot OH$. F: 107-108° (TARAGI, J. pharm. Soc. Japan 1924, Nr. 514, S. 1; C. 1925 I, 1715; Chem. Abetr. 1925, 1704).

Semicarbazon $C_{16}H_{27}O_3N_3 = (CH_2)_2C(OH) \cdot C_{10}H_{14}(CH_2) : N \cdot NH \cdot CO \cdot NH_2$. Nadeln. F: 2216 (Takagi, J. pharm. Soc. Japan 1924, Nr. 514, S. 1; C. 1925 I, 1715; Chom. Abetr. 1925, 1704).

9. Oxy-exe-Verbindungen C₂₂H₄₀O₂.

 $\begin{array}{lll} \textbf{1.2-Bis-[5-methyl-2-isopropyl-cyclohexyl]-\"athanolon,} & \textbf{5.5'-Dimethyl-2.2-diisopropyl-dodekahydrobenzoin} & \textbf{C}_{12}\textbf{H}_{40}\textbf{O}_{3} = \\ \textbf{H}_{2}\textbf{C} & \textbf{C}\textbf{H}_{2}\textbf{C}\textbf{H}_{2}\textbf{C}\textbf{H}_{3} & \textbf{C}\textbf{H}_{2}\textbf{C}\textbf{H}_{3} & \textbf{C}\textbf{H}_{3}\textbf{C}\textbf{H}_{3} & \textbf{C}\textbf{H}_{3}\textbf{C}\textbf{H}_{3} & \textbf{C}\textbf{H}_{3}\textbf{C}\textbf{H}_{3}\textbf{C}\textbf{H}_{3} & \textbf{C}\textbf{H}_{3}\textbf{C}\textbf{$

c) Oxy-oxo-Verbindungen $C_nH_{2n-6}O_2$.

1. Oxy-oxo-Verbindungen C,H,O.

- 1. 1-Methyl-cyclohexadien-(2.5)-ol-(1)-on-(4), 4-Methyl-chinol, Toluchinol C₇H₈O₂ = OC CH:CH CH₂(H 17; E I 514). B. Beim Schütteln von 4-Azido-toluol mit 5 Tln. ca. 50% iger Schwefelsäure unter Zusatz von Quarzsand und Destillieren des neben anderen Produkten entstandenen Toluchinolimids mit Wasserdampf (BAMBERGER, BEUN, Helv. 6, 944). Ultraviolett-Absorptionsspektrum in Alkohol: Lipschttz, Mitarb., R. 43, 404.
- 1-Methoxy-1-methyl-cyclohexadien-(2.5)-on-(4), Toluchinol-methyläther $C_8H_{10}O_2=O:C_8H_4(CH_3)\cdot O\cdot CH_3$. B. Durch längeres Schütteln von 4-Azido-toluol mit 3 Gewichtsteilen methylalkoholischer Schwefelsäure (1 Vol. 100%ige Schwefelsäure + 2,3 Vol. Methanol) bei 13° bis 30° und Destillation des neben anderen Produkten entstandenen Toluchinol-methyläther-imids mit Wasserdampf (Bamberger, Brun, Helv. 7, 121). Blättchen von erfrischendem Geruch (aus Gasolin). F: 63,5—64°. Gibt mit 4-Nitro-phenylhydrazin 4'-Nitro-4-methyl-azobenzol.
- 1 Äthoxy 1 methyl cyclohexadien (2.5) on (4), Toluchinol-äthyläther $C_0H_{12}O_2=O:C_0H_4(CH_3)\cdot O\cdot C_2H_5$. B. Analog der vorangehenden Verbindung (Bamberger, Brun, Helv. 7, 120). Krystalle von erfrischendem Geruch (aus Gasolin). F: 52,5°. Liefert bei der Einw. von 4-Nitro-phenylhydrazin 4'-Nitro-4-methyl-azobenzol.
- 3.5 Dibrom 1 methyl cyclohexadien (2.5) ol (1) on (4), 2.6 Dibrom 4 methyl chinol, Dibrom toluchinol $C_7H_4O_2Br_2=OCC_{CBr:CH}$ CH3 (H 19). B. Man kocht das Dibrom methylchinitrol aus 2.6 Dibrom p-kresol (E II 7, 123) kurze Zeit mit Benzol; Ausbeute 50% (Fries, Oehmer, A. 462, 13). Verharzt bei längerer Einw. von alkoh. Alkalilauge.
- 2. 1 Methyl cyclohexadien (2.5) ol (2) on (4) $C_7H_8O_2 = OC < CH = CH > CH \cdot CH_3$.
- 3.5 Dibrom 1 nitro 2 āthoxy 1 methyl cyclohexadien (2.5) on (4) $C_9H_9O_4NBr_2 = OC CBr: C(O \cdot C_2H_5) CC_N^3$. B. Bei der Einw. von rauchender Salpetersäure auf 3.5 Dibrom 4-oxy 2 āthoxy toluol (Fries, Oehmer, A. 462, 13). Zersetzt sich gegen 75°. Geht bei Berührung mit Wasser oder Alkohol in 3-Brom-5-nitro-4-oxy 2 āthoxy toluol über.

2. Oxy-oxo-Verbindungen $C_8H_{10}O_2$.

- 1. 1.2-Dimethyl-cyclohexadien-(2.5)-ol-(1)-on-(4), 3.4-Dimethyl-chinol, o-Xylochinol $C_8H_{10}O_2=OCCH=C(CH_3)$ CH 201; E I 514). B. In geringer Menge neben anderen Produkten bei der elektrolytischen Oxydation von in 1n-Schwefelsäure emulgiertem 4-Oxy-o-xylol an einer Bleidioxyd-Anode (FICHTER, RINDERSPACHER, Helv. 10, 44). Lagert sich beim Kochen mit verd. Schwefelsäure in 2.5-Dioxy-m-xylol um.
- 2. 1.3-Dimethyl-cyclohexadien-(1.4)-ol-(3)-on-(6), 2.4-Dimethyl-chinol, m-Xylochinol C₈H₁₀O₃ = OC C(CH₈): CH CH CH CH₃ (H 22; E I 514). B. Entsteht neben anderen Produkten beim Behandeln von 4-Azido-m-xylol mit ca. 50% iger Schwefelsäure bei 65 oder mit alkoholischer oder methylalkoholischer Schwefelsäure bei Zimmertemperatur und Destillieren der Reaktionsprodukte mit Wasserdampf (Bamberger, Brun, Helv. 6, 946, 947; 7, 112, 114; Ba., Br., Hartmann, Helv. 7, 123, 126, 128; Brun, Dissert. [Zürich 1902], S. 14, 78; vgl. a. Bamberger, A. 424, 246, 269). Neben anderen Produkten bei der elektrolytischen Oxydation von 4-Oxy-m-xylol an einer Bleidioxyd-Anode in 1n-Schwefelsäure bei 20-25° (Fighter, Meyer, Helv. 8, 79, 81). Neben anderen Produkten bei 10-tägiger Einw. von Sulfomonopersäure auf 4-Amino-m-xylol in 2n-Schwefelsäure bei gelinder Wärme (F., Müller, Helv. 8, 293) und durch elektrolytische Oxydation von 4-Amino-m-xylol an Bleidioxyd- oder

Platinanoden in 2n-Schwefelsäure bei 22—25° und mehrtägiges Aufbewahren der Reaktionsprodukte (F., Mü., Helv. 8, 295, 296); bildet sich in analoger Weise auch bei der elektrolytischen Oxydation von 4-Methylamino-m-xylol und 4-Dimethylamino-m-xylol (F., Mü., Helv. 8, 299, 300). — Ultraviolett-Absorptionsspektrum in Alkohol: Lifschitz, Mitarb., R. 43, 404. — Die Oxydation zu 2.5-Dimethyl-benzochinon-(1.4) läßt sich außer durch Eisenchlorid (BAMBERGER, BRADY, B. 83 [1900], 3651) auch durch Behandlung mit Braunstein und verd. Schwefelsäure oder durch Erwärmen mit Salpetersäure bewirken (Ba., Brun, Helv. 7, 119). m-Xylochinol gibt mit etwas weniger als 1 Mol Anilin bei Gegenwart von etwas Natronlauge in verd. Alkohol 4-Anilino-1.3-dimethyl-cyclohexen-(1)-ol-(3)-on-(6) (Syst. Nr. 1877); bei 1¹/2 Jahre langem Aufbewahren einer Lösung von wasserfreiem m-Xylochinol in 2,5 Mol Anilin bildete sich das Hydrat des 4-Anilino-1.3-dimethyl-cyclohexen-(1)-ol-(3)-on-(6)-anils (Ba., B. 60, 978, 980).

Verbindung C₁₆H₁₆O₄ (H 23). B. In geringer Menge bei der Einw. von rauchender Schwefel-

saure auf 2.4-Dimethyl-chinol (BAMBERGER, BRUN, Helv. 7, 119).

- 3 Methoxy 1.3 dimethyl cyclohexadien (1.4) on (6), m Xylochinol methyläther $C_0H_{12}O_2 = OC < C(CH_3):CH < CH_3$ (H 23). B. Neben anderen Produkten bei mehrtägigem Schütteln von 4-Azido-m-xylol mit methylalkoholischer Schwefelsäure (1 Vol. 100% ige Schwefelsäure + 3 Vol. Methanol) bei 13—20° und Destillieren des Reaktionsprodukts mit Wasserdampf (Bamberger, Brun, Hartmann, Helv. 7, 123, 124, 125).
- 3-Äthoxy-1.3-dimethyl-cyclohexadien-(1.4)-on-(6), m-Xylochinol-äthyläther $C_{10}H_{14}O_{2}=OCC_{CH_{3}}$: CH₃: CH₄: CH₅: CH₅
- m-Xylochinol-imid, 2.4-Dimethyl-iminochinol, Imino-xylochinol C₈H₁₁ON = HN:CCH₃:CH CH₃:CH CH₄ (H 24). B. Neben anderen Produkten beim Behandeln von 4-Azido-m-xylol mit ca. 50% iger Schwefelsäure bei 65° oder mit alkoh. Schwefelsäure (1 Vol. konz. Schwefelsäure + 2 Vol. absol. Alkohol) bei Zimmertemperatur (Bamberger, Brun, Helv. 6, 947; 7, 116). Neben anderen Produkten bei der elektrolytischen Oxydation von 4-Amino-m-xylol an Bleidioxyd- oder Platin-Anoden in schwefelsaurer Lösung (Fichter, Müller, Helv. 8, 294, 296).
- m-Xylochinol-methyläther-imid $C_9H_{18}ON = HN:C \xrightarrow{C(CH_3):CH} CH_9 CH_3$ (H 24). B. Neben anderen Produkten beim Schütteln von 4-Azido-m-xylol mit methylalkoholischer Schwefelsäure (1 Vol konz. Schwefelsäure + 2 Vol. absol. Methanol) bei 13—20° (Bamberger, Brun, Hartmann, Helv. 7, 123).
- m-Xylochinol-äthyläther-imid $C_{10}H_{15}ON = HN: C \xrightarrow{C(CH_3): CH} C \xrightarrow{CH_3} (H 24)$. B. Neben anderen Produkten beim Schütteln von 4-Azido-m-xylol mit alkoh. Schwefelsäure (1 Vol. konz. Schwefelsäure + 2 Vol. absol. Alkohol) bei Zimmertemperatur (Bamberger, Brun, Helv. 7, 116; Ba., Br., Hartmann, Helv. 7, 128).

3. Oxy-oxo-Verbindungen C.H.12O2.

- 1. 1.2.3 Trimethyl cyclohexadien (3.6)-ol-(2)-on-(5), 3.4.5 Trimethylchinol $C_0H_{11}O_2=OC < CH:C(CH_3) > C < CH_3 > CH_3$.
- 4.6-Dibrom-1.2.3-trimethyl-cyclohexadien-(3.6)-ol-(2)-on-(5), 2.6-Dibrom-3.4.5-trimethyl-chinol, Dibrom hemellitylchinol $C_9H_{10}O_2Br_2=OC \xrightarrow{CBr:C(CH_9)}OH$. B. Bei kurzem Kochen von 4.6-Dibrom-2-nitro-1.2.3-trimethyl-cyclohexadien-(3.6)-on-(5) (E II 7, 126) mit Eisessig (v. Auwers, Saurwein, B. 55, 2385). Nadeln. F: 214—215°. Ziemlich leicht löslich in heißem Methanol, Alkohol und Eisessig, schwer in Benzol und Petroläther. Löst sich in wäßr. Alkalilaugen beim Erwärmen, leichter nach Verreiben mit Alkohol. Wird durch konz. Schwefelsäure in ein hochschmelzendes Produkt übergeführt (v. Au., S., B. 55, 2376).
- 4.6.2¹-Tribrom-1.2.3-tr¹methyl-cyclohexadien-(3.6)-ol-(2)-on-(5), 2.6-Dibrom-3.5-dimethyl-4-brommethyl-chinol, Tribrom hemellitylchinol C₉H₂O₂Br₃=OC CBr:C(CH₂) COH.

 B. Beim Erwärmen von 4.6.2¹-Tribrom-5-oxy-hemellitol (E II 6, 481) mit konz. Salpetersäure bis nahe zum Sieden (v. Auwers, Sauewein, B. 55, 2383). Nadeln (aus Benzol). F: 213°. Leicht löslich in Alkohol, ziemlich schwer in Eisessig, sohwer in Benzol und Benzin. Löst sich in wäßr. Alkalilaugen beim Erwärmen. Geht beim Behandeln mit wäßrig-methylalkoholischer Natronlauge in das Oxyd OC CBr:C(CH₂) (Syst. Nr. 2462) über.

- 4.6-Dinitro-1.2.3-trimethyl-cyclohexadien-(3.6)-ol-(2)-on-(5), 2.6-Dinitro-3.4.5-trimethyl-chinol, Dinitrohemellitylchinol $C_9H_{10}O_6N_2=OC C(NO_2):C(CH_2) COH_3$. B. Bei mehrstündigem Erwärmen von 2.4.6-Trinitro-1.2.3-trimethyl-cyclohexadien-(3.6)-on-(5) (E II 7, 127) mit Eisessig auf 50° (v. Auwers, Saurwein, B. 55, 2386). Nadeln (aus Benzol oder verd. Essigsäure). F: 213°. Leicht löslich in Alkohol, ziemlich schwer in Eisessig, schwer in kaltem Benzol, unlöslich in Petroläther. Löslich in Alkalien mit gelblicher Farbe, durch Säuren unverändert fäll 3r.
- 2. 1 Methyl 2 propenyl cyclopenten (2) ol (3) on (4) $C_0H_{12}O_2 = H_2C \cdot CH(CH_3)$ C·CH: CH·CH₃ ist desmotrop mit 1-Methyl-2-propenyl-cyclopentandion-(3.4), E II 7.547.

Methyläther, 3 - Methoxy - 1 - methyl - 2 - propenyl - cyclopenten - (2) - on - (4) C₁₀H₁₄O₂ = H₂C · CH(CH₃) C· CH:CH· CH₃. B. Beim Kochen von 1 - Methyl - 2 - propenyl - cyclopentan-OC· C(O· CH₃) Mit Methyljodid und Natriummethylat-Lösung (STAUDINGER, RUZICKA, Helv. 7, 430). — Öl. Kp₁₂: 127—128°. Unlöslich in Natronlauge. — Liefert bei der Reduktion mit Natriumamalgam wenig 1-Methyl-2-propyl-cyclopentanon-(4) und hochsiedende Produkte.

Acetat, 3-Acetoxy-1-methyl-2-propenyl-cyclopenten-(2)-on-(4) C₁₁H₁₄O₃ = H₂C — CH(CH₃) C·CH:CH·CH₃. B. Aus 1-Methyl-2-propenyl-cyclopentandion-(3.4) durch OC·C(O·CO·CH₃) C·CH:CH·CH₃. B. Aus 1-Methyl-2-propenyl-cyclopentandion-(3.4) durch längeres Erwärmen mit Acetanhydrid auf dem Wasserbad oder durch Einw. von Acetylchlorid in Pyridin (STAUDINGER, RUZICKA, Helv. 7, 429). — Öl. Kp_{0,5}: 108°. Unlöslich in Natronlauge. — Bei der Reduktion mit Zink und Schwefelsäure oder mit Aluminiumamalgam entstehen hochsiedende Produkte. Gibt mit Brom in Chloroform ein flüssiges Dibromid.

4. Oxy-oxo-Verbindungen $C_{10}H_{14}O_2$.

- 1. 1.1 Diäthyl cyclohexadien (2.4) ol (2) on (6) $C_{10}H_{14}O_{2} = HC \underbrace{CH : C(OH)}_{CH} \underbrace{C(C_{2}H_{5})_{2}}_{2}$.
- 3-Chlor-2-äthoxy-1.1-diäthyl-cyclohexadlen-(2.4)-on-(6) $C_{18}H_{17}O_{2}Cl = HC \xrightarrow{CCl:C(O \cdot C_{2}H_{5})} C(C_{2}H_{5})_{2}$. B. Neben anderen Produkten beim Erhitzen von 4-Chlor-resorcin mit Äthyljodid und Natriumäthylat-Lösung (FABRE, A. ch. [9] 18, 62). Nadeln (aus Alkohol). F: 25°. Kp₃₅: 153—157°. Leicht löslich in den meisten organischen Lösungsmitteln.
- 2. 1.1-Pentamethylen-cyclopenten-(2)-ol-(2)-on-(4) bzw. 1.1-Pentamethylen-cyclopenten-(3)-ol-(4)-on-(2) bzw. 5.5-Pentamethylen-bicyclo-[0.1.2]-pentanol-(4)-on-(2) $C_{10}H_{14}O_2$, Formel I bzw. II bzw. III bzw. weitere desmotrope Formen. Vgl. 1.1-Pentamethylen-cyclopentandion-(2.4), E II 7, 549.

- 3-Brom-1.1-pentamethylen-cyclopenten-(2)-ol-(2)-on-(4) $C_{10}H_{13}O_{3}Br=H_{2}CCH_{2}\cdot CH_{2}\cdot CH_$
- 1-Nitro 5.5 pentamethylen bicyclo [0.1.2] pentanol (4) on (2) $C_{10}H_{12}O_4N = H_2CCH_2 \cdot CH_3 \cdot CH_3$

5. Oxy-exo-Verbindungen $C_{11}H_{16}O_2$.

- H₂C-C(CH₂)-C:CH·OH 1. 1.7.7 - Trimethyl - 2 - oxymethylen-bicyclo-[1.2.2]-hep- I. tanon - (3), 2 - Oxymethylen camphanon - (3), 2 - Oxyme - H_2 C-CH - CO H_2 C-CH - C:CH - OH thylen-epicampher $C_{11}H_{16}O_2$, Formel I, ist desmotrop mit 2-Formyl-epicampher, E II 7, 560.
- 2. 1.7.7-Trimethyl-3-oxymethylen-bicyclo-[1.2.2]-heptanon-(2,, 3-Oxymethylen-camphanon-(2), 3-Oxymethylen-campher $C_{11}H_{16}O_{2}$, Formel II, ist desmotrop mit 3-Formyl-campher, E II 7, 561.
- a) 3-Oxymethylen-d-campher $C_{11}H_{16}O_2=C_8H_{14}$ $C_{::CH\cdot OH}$.
 3-Allyloxymethylen-d-campher $C_{14}H_{20}O_2=C_8H_{14}$ $C_{::CH\cdot O\cdot CH_2\cdot CH: CH_2}$.
 Verbrennungswärme bei konstantem Volumen: 1915,4 kcal/Mol (Roth, v. Auwers in Landolt-Börnst. E I, 871).

Anhydrid des 3 - Oxymethylen - d - camphers $C_{22}H_{30}O_3=C_8H_{14}$ $C_{:CH\cdot O\cdot CH:C}$ C_8H_{14} (H 29; E I 515). B. Beim Erwärmen von Trimethyl-[d-campheryliden-(3)-methyl]-ammoniumchlorid mit Sodalösung auf dem Wasserbad (RUPE, KUSSMAUL, Helv. 8, 536).

- 3 Äthylmercaptomethylen d campher $C_{13}H_{20}OS = C_8H_{14} \stackrel{CO}{\smile} : CH \cdot S \cdot C_2H_5$. Beim Kochen von 3-Chlormethylen-d-campher mit Natriumäthylmercaptid in Äther (Mann, Popp. Soc. 125, 917). — Grünliches Öl von schwachem Geruch. Erstarrt nicht bei —15°. Kp₁₇: 169° bis 171°. $D_4^{4.8}$: 1,0362. [α] $_{564,1}^{20}$: +361,2° (Chloroform; p=7,6). Rotations dispersion in Chloroform: M., P. — Gibt mit p-Toluolsulfonsäure-chloramid in heißer wäßrig-alkoholischer Lösung form: M., P. — Gibt into p-rotational discrete form: M., P. — Gibt into p-rotational discrete form: CO discrete form: CO discrete form: CO b) CO discrete form: CO discrete for
- 3-Äthylmercaptomethylen-i-campher $C_{13}H_{20}OS = C_8H_{14}C_{::CH\cdot S\cdot C_2H_5}$. B. Analog Äthylmercaptomethylen-d-campher (s. o.) (Mann, Pope, Soc. 125, 917). — Kp_{16} : 168—169°. D_4^{tb} : 1,0357. [α] $_{664,1}^{to}$: — 358,8° (Chloroform; c = 7.5); Rotationsdispersion in Chloroform: M., P.

6. Oxy-oxo-Verbindungen $C_{12}H_{18}O_{2}$.

2-Äthoxy-1.1.3-triäthyl-cyclohexadien-(2.4)-on-(6), Tetraäthylresorcin $C_{14}H_{24}O_2 =$ $HC \stackrel{C(C_3H_5):C(O \cdot C_2H_5)}{CH} \stackrel{C(C_2H_5)}{C} \stackrel{C(C_2H_5)_2}{C} \stackrel{(H 29)}{C} \stackrel{B.}{Neben}$ Neben anderen Produkten beim Erhitzen von Resorcin mit Äthyljodid in Natriummethylat-Lösung (FABRE, A. ch. [9] 18, 56, 59). - Kp46: 168-173°. D₄: 0,9744; D₁₀: 0,9729. n₁₁: 1,4980.

7. Oxy-oxo-Verbindungen $C_{14}H_{22}O_2$.

- 1. $1 Methyl 3.4 dipropenyl 2 acetyl cyclopentanol (1) <math>C_{14}H_{44}O_{4} =$ CH₃·CH:CH·HC·CH(CO·CH₃) CH₃. B. Bei der Reduktion von Crotylidenaceton (E II 1, 809) mit amalgamiertem Aluminium und feuchtem Äther (Evans, Farmer, Soc. 1928, 1647). — Etwas zähe Flüssigkeit. Kp33: 169—178°. Mit Wasserdampf flüchtig. — Nimmt bei der katalytischen Hydrierung 4 Atome Wasserstoff auf. Gibt beim Behandeln mit Ozon in Chloroform oder Eisessig und Zerlegen des Ozonids mit Wasser Acetaldehyd und einen öligen Aldehyd, der bei der Oxydation mit Chromessigsäure Bernsteinsäure liefert.
- 2. 10 Oxy 3 oxo 1.6 dimethyl 1.4 äthylendekahydronaphthalin, 9-Oxy-4.7-dimethyl-1.4-athy-len-dekalon-(2) C₁₄H₂₂O₂, s. nebenstehende Formel. B. Durch Hydrierung von 10-Oxy-3-oxo-1.6-dimethyl-1.4-athylen-/15-oktahydronaphthalin in Gegenwart von Platinschwarz in Alkohol CH₃ HC (RUZICKA, Helv. 3, 789). — Zähflüssiges Öl. Kp₁₂: cs. 200°.

8. Oxy-oxe-Verbindungen C₁₅H₂₄O₂.

d-Longifolon $C_{15}H_{24}O_3 = HO \cdot C_{15}H_{23}O$. Zur Konstitution vgl. Bradfield, Francis, Simonsen, Soc. 1934, 188. — B. Durch Reduktion von Longifolchinon (E II 7, 599) mit Zinkstaub und siedendem Eisessig, mit Zinkstaub und Ammoniak oder mit Natrium und Isoamylalkohol (Simonsen, Soc. 123, 2660, 2661). — Nadeln (aus verd. Alkohol oder Essigsäure). F: 115° bis 117°. [α] $_{0}^{\infty}$: + 100,8° (in Alkohol). Sehr leicht löslich in organischen Lösungsmitteln, unlöslich in Wessen Gording in ihr Scholen and Scholen a in Wasser. — Oxydiert sich in Substanz und in Lösung an der Luft sehr leicht unter Rückbildung von Longifolchinon. Wird durch Brom in trocknem Chloroform nicht verändert, in Gegenwart von Feuchtigkeit zu Longifolchinon oxydiert.

Acetylderivat $C_{17}H_{26}O_3 = CH_3 \cdot CO \cdot O \cdot C_{15}H_{23}O$. B. Durch Kochen von d-Longifolon mit Acetanhydrid oder besser durch Reduktion von d-Longifolchinon mit Zinkstaub und Acetanhydrid (Simonsen, Soc. 123, 2661). — Prismen (aus verd. Alkohol oder Essigsäure). F: 90-91°.

9. Oxy-oxo-Verbindungen C₁₇H₂₈O₂.

1. 1.7.7 - Trimethyl - 3 - [2 - oxy - hexahydrobenzyl] - bicyclo - [1.2.2] - heptanon-(2), 3-[2-Oxy-hexahydrobenzyl]-campher $C_{17}H_{18}O_{27}$. Formel I.

3-[2-Methoxy-hexahydrobenzyl]-d-campher, Hexahydromethylsaligenylcampher

C₁₈H₃₀O₂ = C₈H₁₄CO

CH₂·C₆H₁₀·O·CH₃

B. Bei der Hydrierung von 3-[2-Methoxy-benzyliden]-d-campher in Gegenwart von Platinschwarz in Eisessig (Détreie, Bl. [4] **33**, 1276). — Zähe Flüssigkeit. Kp₁₃: 185—190°. D²⁰: 0,99. $[\alpha]_D$: +54° (unverdünnt).

2. 1.7.7 - Trimethyl - 3 - [4 - oxy - hexahydrobenzyl] - bicyclo - [1.2.2] - heptanon-(2), 3-[4-Oxy-hexahydrobenzyl]-campher $C_{17}H_{18}O_{17}$, Formel II.

3-[4-Methoxy-hexahydrobenzyl]-d-campher, 3-Hexahydroanisyl-d-campher $C_{18}H_{20}O_2 =$ CO
C₈H₁₄CH·CH₂·C₄H₁₀·O·CH₃
B. Bei der Hydrierung von 3-Anisyliden-d-campher in Gegenwart von nicht sehr aktivem Platinschwarz in Eisessig (Détreie, Bl. [4] 33, 1277). — Kp₁₂: 185° bis 190°. D20: 0,98. [OSTERTAG]

d) Oxy-oxo-Verbindungen $C_nH_{2n-8}O_2$.

1. Oxy-oxo-Verbindungen $C_7H_6O_2$.

1. 2-Oxy-benzaldehyd, o-Oxy-benzaldehyd, Salicylaldehyd C₇H₆O₂, s. nebenstehende Formel (H 31; E I 515). Die in der Formel angegebene Stellungs
| Comparison of the state of the st

Bildung und Darstellung.

B. Zur Bildung aus Phenol und Chloroform in Natronlauge nach REIMER-TIEMANN (H 31) vgl. auch Hodgson, Jenkinson, Soc. 1929, 469, 1641. Bildet sich ferner neben anderen Verbindungen beim Erhitzen von Phenol mit Chlorpikrin und konz. Natronlauge (Beblingozzi, Dindungen beim Erhitzen von Phenol mit Chlorpikrin und konz. Natronlauge (Berlingozzi, Badolato, R. A. L. [5] 33 I, 292) oder mit Trichloressigsäure und 25 %iger Natronlauge (Van Alphen, R. 46, 144). In geringer Menge beim Erhitzen von Phenol mit N.N'-Diphenyl-formamidin auf 183° und Kochen des Reaktionsprodukts mit Natronlauge (Shoesmith, Haldane, Soc. 125, 2406). Über die Abhängigkeit der Ausbeute bei der elektrolytischen Reduktion von Salicylsäure an Quecksilberkathoden (Mettler, B. 41 [1908], 4150; H 31) von den Versuchsbedingungen vgl. Tesh, Lowy, Trans. am. electroch. Soc. 45, 40; C. 1924 II, 464; Rutowski, Korolew, Trudy chim.-jarm. Inst. 1928, 177; C. 1928 II, 2353. Salicylaldehyd entsteht neben anderen Verbindigen bei der Oxydation von Salicylaylaylazin mit Kalium-formanich in etaklom wäßkriem. Ammerick (Math. Gross, R. 50, 772) Reim Mochen was entsteht neben anderen verbindungen bei der Oxydation von Saloynydrazin int Kanum-ferricyanid in starkem wäßrigem Ammoniak (Kalb, Gross, B. 59, 733). Beim Kochen von 2-Oxy-benzylamin mit dem Kaliumsalz der Isatin-sulfonsäure-(5) in verd. Natronlauge unter Durchleiten von Luft (I. G. Farbenind., D.R.P. 494432; C. 1980 I, 3240; Frdl. 16, 421). Darstellung durch Hydrolyse von Kohlensäure-bis-[2-dichlormethyl-phenylester] (E I 516) mit Natronlauge: Copisarow, Soc. 1929, 589; mit Natriumacetat und Alkohol: Shoesmith,

Soc. 123, 2700. Technische Darstellung: A. Wagner, Die Riechstoffe und ihre Derivate. — Die Aldehyde, 3. Abt. [Wien-Leipzig 1930], S. 784; S. P. Schotz, Synthetic Organic Compounds [London 1925], S. 120.

Zur Reinigung trägt man Salicylaldehyd in alkoh. NaHSO₃-Lösung ein, filtriert, wäscht mit Alkohol und Ather, krystallisiert aus 10% igem Alkohol und zerlegt die NaHSO₃-Verbindung mit Sodalösung und Salzsäure (Carswell, Pfeifer, Am. Soc. 50, 1765).

Physikalische Eigenschaften.

E: +1,6°; Kp₇₅₁: 196,4—196,5°; Kp₂₅: 93°; D₁₀°: 1,1690 (Carswell, Pfeifer, Am. Soc. 50, 1766). n_D°: 1,5632 (McEwen, Soc. 123, 2286). Ultraviolett-Absorptionsspektrum von Salicylaldehyd in Chloroform und in Chloroform + Zinn(IV)-chlorid: Hantzsch, B. 55, 976. Lichtstreuung in Salicylaldehyd: Banerjee, Indian J. Phys. 2, 51; C. 1928 I, 1838. Beugung von Röntgenstrahlen in flüssigem Salicylaldehyd: Katz, Z. ang. Ch. 41, 332; Krishnamuett, Indian J. Phys. 2, 355; 3, 228; C. 1928 I, 2694; 1929 I, 840.

Salicylaldehyd ist mit flüssigem Schwefeldioxyd in allen Verhältnissen mischbar, in flüssigem Ammoniak schwer löslich; die Lösungen sind gelb (de Carli, G. 57, 351). Löslichkeitsdiagramme der binären Systeme mit Wasser und Benzol: Sidgwick, Allott, Soc. 123, 2821, 2822; mit Glycerin: McEwen, Soc. 123, 2285. Obere kritische Lösungstemperatur im System Glycerin-Salicylaldehyd: 176,6° (McE.). Zustandsdiagramme binärer Systeme mit Phenolen, die einfache Eutektika aufweisen, s. in der nachstehenden Tabelle. Dampfdruck, Viscosität und Oberflächenspannung binärer Gemische mit Äthylalkohol, Diäthyläther, Aceton und Benzol bei 17°: Weissenberger, Henke, Beegmann, M. 46, 474. Adsorption des Dampfes an Tierkohle: Alexjewski, 38. 55, 417; C. 1925 II, 642. — Salicylaldehyd hemmt die Autoxydation von Aldehyden, z. B. von Acetaldehyd, Acrolein, Benzaldehyd, Zimtaldehyd und Furfurol (Moureu, Dufraisse, C. r. 174, 259).

Schmelzdiagramme binarer Systeme mit Phenolen1).

Komponente	Eutektika Temp. Gew% °C Salicylaldehyd		Komponente	Eutektika Temp. Gew% C Salicylaidehyd	
Phenol α -Naphthol β -Naphth	-30 -20 -11 -7.5	53 60 82 97,5	Pyrogallol 2-Nitro-phenol 2.4-Dinitro-phenol Pikrinsäure *)	- 8 14 14 6,5	95 ca. 76 78 93.8

¹) Kremann, Zechner, M. 46, 179, 186—192. °) Unbeständige Additionsverbindungen $C_7H_6O_2+C_6H_3O_7N_3$ und $C_7H_6O_2+2C_6H_3O_7N_3$; Umwandlungspunkte bei 35° und 55°.

Chemisches und biochemisches Verhalten.

Photochemische Oxydation von Salicylaldehyd im Sonnenlicht bei Gegenwart von Uransalzen: Aloy, Valdiguié, Bl. [4] 37, 1139. Salicylaldehyd wird bei gewöhnlicher Temperatur durch festes Kaliumhydroxyd (Raikow, Raschtanow, C. 1902 I, 1212) und durch wäßrige oder alkoholische Kalilauge (Cannizaro, Bertagnini, A. 98 [1856], 192) nicht verändert; der beim Erhitzen mit festem Kaliumhydroxyd eintretende Zerfall in Salicylsäure und Wasserstoff (vgl. Piria, A. 30 [1839], 165) beginnt bereits bei 100—105° und läßt sich auch durch Erhitzen mit wasserfreiem Natriumhydroxyd oder Bariumhydroxyd auf 130° oder höhere Temperaturen bewirken (Lock, B. 61, 2235, 2236), während beim Erhitzen von Salicylaldehyd mit Lithiumhydroxyd bis auf 260° (Lock, B. 68 [1930], 554 Anm. 11) oder von Salicylaldehydkalium mit Natriumamid auf 250—270° (Lock, B. 61, 2237) keine Wasserstoffentwicklung bzw. Salicylsäurebildung erfolgt.

Katalytische Hydrierung zu Salicylalkohol (E I 516) erfolgt auch bei Gegenwart von Platinoxyd in Alkohol (Voorners, Adams, Am. Soc. 44, 1405) oder von Platinoxyd und Eisen(II)-chlorid in Alkohol (Carothers, Adams, Am. Soc. 46, 1680); bei Gegenwart von Platinom in Eisessig entstand o-Kresol (Windaus, Schiele, B. 56, 847). Geschwindigkeit der Hydrierung bei Gegenwart von Palladium(II)-oxyd oder Palladium(II)-oxyd + Eisen(II)-chlorid in Alkohol: Shriner, Adam. Soc. 46, 1688. Salicyladdehyd gibt bei der elektrolytischen Reduktion (vgl. H 32) in verd. Natronlauge bei Anwendung verschiedener Kathodenmaterialien 2.2'-Dioxyhydrobenzoin, in schwefelsaurer Lösung, am besten an Quecksilber-Kathoden, Salicylalkohol, in schwefelsaurer Lösung an Zinkamalgam-Kathoden o-Kresol (Shima, Mem. Coll. Sci. Kyoto [A] 11, 412; 12, 77; C. 1928 II, 2331; 1929 I, 2978).

Einw. von Natriumhypochlorit Lösung: Engeeldt, H. 121, 58. Geschwindigkeit der

Einw. von Natriumhypochlorit-Lösung: Engreldt, H. 121, 58. Geschwindigkeit der Bromierung zu 5-Brom-salicylaldehyd, 3.5-Dibrom-salicylaldehyd und 2.4.6-Tribrom-phenol in waßr. Lösung: Francis, Hill, Johnston, Am. Soc. 47, 2229; Fr., Am. Soc. 48, 1635; vgl. a. Fr.,

H., Am. Soc. 46, 2500, 2505. Bei der zur Bildung von 2.4.6-Tribrom-phenol führenden Einw. von überschüssigem Brom wird die Aldehydgruppe als Kohlenoxyd abgespalten (Fr., H., Am. Soc. 46, 2501). Über ein Kondensationsprodukt (Krystalle aus Anilin; zersetzt sich oberhalb 250°), das beim Erhitzen von Salicylaldehyd mit Brom erhalten wurde, vgl. Brewster, Am. Soc. 46, 2464. Salicylaldehyd liefert mit überschüssigem Jod in Kalilauge fast ausschließlich 2.4.6-Trijod-phenol (Windaus, Schiele, B. 56, 846). Gibt bei wiederholter Nitrierung mit rauchender Salpetersäure in Eisessig und mit Salpeterschwefelsäure unter Eiskühlung 3.5-Dinitro-salicylaldehyd (Lovett, Roberts, Soc. 1928, 1978).

Salicylaldehyd geht beim Erwärmen mit Thionylchlorid in Anhydrodisalicylaldehyd (S. 39) über (Lindemann, Forth, A. 485, 224). Gibt beim Kochen mit gelbem Schwefelammonium in Wasser + wenig Alkohol 2-Oxy-dithiobenzoesäure (Bruni, Levi, G. 54, 389; R. A. L. [5] 32 I, 5). Liefert in wäßrig-alkoholischer Essigsäure mit 1 Mol Quecksilber(II)-acetat die Acetate des 3 (?)-Hydroxymercuri-salicylaldehyds, des 5 (?)-Hydroxymercuri-salicylaldehyds und des 3.5-Bis hydroxymercuri-salicylaldehyds, mit 2 Mol Quecksilberacetat nur die letztgenannte Verbindung (Henry, Sharp, Soc. 121, 1056; Whitmore, Middleton, Am. Soc. 45, 1332). Setzt sich mit Vanadinoxytrichlorid in heftiger Reaktion unter Bildung eines unlöslichen Produkts um (Brown, Snyder, Am. Soc. 47, 2674). In 72%igem Alkohol gelöster Salicylaldehyd greift Metalle unter Bildung der entsprechenden Salze an (Zetzsche, Silbermann, Viell, Helv. 8, 598).

Liefert beim Erhitzen mit 2.4-Dinitro-toluol auf dem Dampfbad in Gegenwart von Piperidin 2'.4'-Dinitro-2-oxy-stilben (Gulland, Robinson, Soc. 127, 1503).

Beim Behandeln mit Methyläthylketon und Chlorwasserstoff in Äther entsteht 3-Methyl-2-[2-oxy-styryl]-benzopyryliumchlorid (Syst. Nr. 2407) (Dilthey, Mitarb., J. pr. [2] 114, 187; De, J. indian chem. Soc. 4, 138; C. 1927 II, 1701; vgl. Decker, v. Fellenberg, A. 364 [1909], 23); in wäßrig-alkoholischer Natronlauge erhält man mit Methyläthylketon je nach den Bedingungen farbloses Äthyl-[2-oxy-styryl]-keton oder gelbes Äthyl-[2-oxy-styryl]-keton und geringe Mengen einer bei 246—247° schmelzenden gelben Verbindung (McGookin, Sinclair, Soc. 127, 2542; Marui, Sci. Rep. Töhoku Univ. 17, 696; C. 1928 II, 1325; vgl. Decker, v. Fellenberg, A. 364 [1909], 24; Auwers, Voss, B. 42 [1909], 4423). Setzt sich mit Methylbenzyl-

$$I. \qquad \begin{array}{c} CH \\ C \\ C \\ C \\ C \\ C \\ C \\ CH \\ C_6H_5 \end{array} \qquad \begin{array}{c} C_6H_5 \\ C \\ C \\ C \\ C_6H_5 \end{array} \qquad \qquad \begin{array}{c} C \\ C \\ C \\ C \\ C_6H_5 \end{array} \qquad \qquad \begin{array}{c} C \\ C \\ C \\ C_6H_4 \\ C \\ C_6H_5 \end{array} \qquad \qquad \begin{array}{c} C \\ C \\ C \\ C_6H_4 \\ C_6H_5 \end{array} \qquad \qquad \begin{array}{c} C \\ C \\ C \\ C_6H_4 \\ C_6H_5 \\ C_6H_4 \\ C_6H_5 \\ C_6H_5 \\ C_6H_4 \\ C_6H_5 \\ C_6H_4 \\ C_6H_5 \\$$

keton in absol. Alkohol bei Gegenwart von Diäthylamin oder besser von Piperidin zu α-Phenylα-salicyliden-aceton um (Dickinson, Soc. 1926, 2237; Heilbron, Irving, Soc. 1929, 938); bei der Einw. auf 1 Mol Methylbenzylketon in kalter wäßrig-alkoholischer Natronlauge bilden sich fünf isomere Verbindungen C₄₁H₃₆O₄ (S. 40) und andere nicht näher untersuchte Produkte (DI., Soc. 1926, 2238). Zur Umwandlung in 2.3-Diphenyl-benzopyryliumsalz durch Umsetzung mit Desoxybenzoin (E I 517) vgl. noch Löwenbein, Rosenbaum, A. 448, 242; bei längerem Kochen von Salicylaldehyd mit Desoxybenzoin in alkoh. Natronlauge entsteht eine Verbindung (C₇H₆O₂)_x (S. 39) (Decker, Becker, B. 55, 392). Reagiert mit Dibenzylketon in Alkohol bei Gegenwart von Piperidin unter Bildung von Benzyl-[2-oxy-α-phenyl-styryl]keton; beim Sättigen alkoholischer Lösungen mit Chlorwasserstoff erhält man bei Anwendung von 1 Mol Dibenzylketon hauptsächlich 3-Phenyl-2-benzyliden-1.2-chromen (Formel I), bei Anwendung von 1 ₂ Mol Dibenzylketon Diphenyl-dibenzospiropyran (Formel II) (Dickinson, Heilbron, O'Brien, Soc. 1928, 2080, 2081). Kondensiert sich mit Dimethyldihydroresorein nach Vorländer (Fr. 77, 264) in kaltem Alkohol oder in heißem Eisessig zu einer Verbindung C₂₃H₂₆O₄ (F: 208°) (S. 39), nach BERNARDI (Ann. Chim. applic. 17, 164; C. 1927 II, 419) in 50% igem Alkohol zu Salicyliden-bis-dimethyldihydroresorcin (F: 208—209°) (Syst. Nr. 829). Salicylaldehyd gibt bei kurzem Erwärmen mit Phenanthrenchinon und konzentriertem wäßrigem Ammoniak auf dem Wasserbad 2-[2-Oxy-phenyl]-[phenanthreno-9'.10': 4.5-imidazol] (H 23, 474) (JAPP, STREATFEILD, Soc. 41 [1882], 146); beim Einleiten von Ammoniak in eine Lösung von Salicylaldehyd und Phenanthrenchinon in Isoamylalkohol bei 10—15° erhält man 2-[2-Öxy-phenyl]-[phenanthreno-9'.10': 4.5-oxazol] (Formel III; Syst. Nr. 4232) (Siecar, Ray, Soc. 127, 1049). Salicylaldehyd gibt mit Diphenacylsulfid bei Gegenwart von etwas Piperin in Alkohol

Salicylaldehyd gibt mit Diphenacylsulfid bei Gegenwart von etwas Piperin in Alkohol das Piperidinsalz des Disalicyliden-diphenacylsulfids (Syst. Nr. 780) (DILTHEY, B. 60, 1405). Bei mehrtägigem Aufbewahren von Salicylaldehyd mit farblosem Salicylidenaceton in 10% iger Natronlauge erhält man Disalicylidenaceton und Di-[1.2-chromen]-spiran (Syst. Nr. 2679; vgl. H 19, 57) (MCGOOKIN, HELLBRON, Soc. 125, 2102). Kondensiert sich nicht mit [2-Methoxybenzylidenaceton (HELLBRON, Buck, Soc. 119, 1514), mit 4-Oxybenzylidenaceton und mit Vanillylidenaceton (Buck, Hellbron, Soc. 121, 1097).

Gleichgewicht der Reaktion HO·C₆H₄·CHO + HCN \rightleftharpoons HO·C₆H₄·CH(OH)·CN in Alkohol bei 20°: Lapworth, Manser, Soc. 1928, 2546. Bei kurzer Einw. von 1 Mol Acetanhydrid (vgl.

E I 517) in Gegenwart von wenig konz. Schwefelsäure, Phosphorsäure, Salzsäure oder Trichloressigsaure bei 0° erhält man Anhydrodisalicylaldehyd (S. 29) (Adams, Fogler, Kreger, Am. Soc. 44, 1130). Gibt mit Benzyleyanid (vgl. H 36) auch beim Erwärmen in Gegenwart von etwas Piperidin auf dem Wasserbad 3-Phenyl-cumarin (Beand, Loehe, J. pr. [2] 169, 375). Gibt mit Thioharnstoff bei monatelangem Aufbewahren in salzsaurer Lösung, rascher in Gegenwart von Phosphoroxychlorid, das Hydrochlorid des S-[2.α-Dioxy-benzyl]-isothioharnstoffs (S. 5.) und eine Verbindung C₈H₈ON₈S (schmilzt nicht bis 205°) (TAYLOR, Soc. 121, 2269). Beim Einleiten von Chlorwasserstoff in eine Lösung von Salicylaldehyd und Thiobenzilsäure in Benzol bei Zimmertemperatur entsteht 4.4-Diphenyl-2-[2-oxy-phenyl]-oxthiolan-(1.3)-on-(5) (Formel IV) (BISTRZYCKI, BRENKEN, Helv. 8, 459). Liefert mit α-Methyl-acetessigester und Überchlorsäure in Äther beim Sättigen mit Chlorwasserstoff 3-Methyl-2-[2-oxy-styryl]-benzopyryliumperchlorat; reagiert analog mit α-Benzyl-acetessigester; bei Anwendung von α-Benzoyl-propionsäuremethylester erhält man 3-Methyl-2-phenylbenzopyryliumperchlorat (LÖWENBEIN, KATZ, B. 59, 1379; DE, J. indian chem. Soc. 4, 25; C. 1927 II, 433). Beim Einleiten von Chlorwasserstoff in eine eiskalte Lösung von Salicylaldehyd und Benzoylacetonitril in Eisessig erhält man 3-Benzoyl-cumarin (GHOSAL, J. indian chem. Šoc. 8, 106; C. 1926 II, 1646).

Gibt mit dem Zinksalz des 2-Amino-selenophenols in siedendem Eisessig 2-[2-Oxy-phenyl]-

benzselenazol (Bogert, Stull, Am. Soc. 49, 2014).
Salicylaldehyd liefert mit Methylendioxybenzosuberenon (Syst. Nr. 2743; vgl. E I 19, 672) und Chlorwasserstoff in Eisessig bei 0° das Oxoniumchlorid der Formel V (Syst. Nr. 2954) (Borsche, Roth, B. 54, 177). Das Kaliumsalz des Salicylaldehyds liefert beim Erwärmen mit 2-Methyl-3-bromacetyl-indol Cumaronyl-(2)-[2-methyl-indolyl-(3)]-keton (Syst. Nr. 4285) (Sanna, G. 59, 696).

Zur Disproportionierung und Oxydation durch das Schardingersche Enzym der Milch (E I 518) vgl. noch Bach, Nikolajew, Bio. Z. 169, 107; Wieland, Rosenfeld, A. 477 [1930], 42, 53, 58, 63. — Physiologisches Verhalten: E. Keeser in J. Housen, Fortschritte der Heil-

IV.
$$\begin{array}{c} (C_6H_5)_2C - 8 \\ OC \cdot O \cdot CH \cdot C_6H_4 \cdot OH \end{array} \qquad V. \qquad \begin{array}{c} Cl \cdot O \\ H_2C \\ O \cdot C_6H_4 \\ CH_2 \cdot CH_2 \end{array}$$

stoffchemie, 2. Abt., Bd. II [Berlin-Leipzig 1932], S. 253; vgl. a. Dadlez, C. r. Soc. Biol. 99, 1038; C. 1929 I, 107. Schädigender Einfluß auf die Keimung von Samen: Sigmund, Bio. Z. 146, 397; auf das Wachstum von Pflanzen: Skinner, J. Franklin Inst. 186, 165; C. 1920 I, 786.

Analytisches.

Salicylaldehyd gibt mit einer 10% igen Lösung von Quecksilber(II)-nitrat in rauchender Salpetersäure eine gelbe, über Rubinrot in Violettblau übergehende Färbung (GUGLIELMINETTI, Giorn. Farm. Chim. 75, 169; C. 1926 II, 1309). Gibt mit seleniger Säure oder ihren Salzen in konz. Schwefelsäure eine gelbgrüne, allmählich in Carmoisinrot übergehende Färbung (LEVINE, J. Labor. clin. Med. 11, 811; C. 1926 II, 925). Gibt in 4n-alkoholischer Salzsäure mit Brenzcatechin eine gelbgrüne, mit Resorein, Phloroglucin und Pyrogallol eine rote Färbung (VAN ITAL-LIE, HARMSMA, Pharm. Weekb. 61, 827; C. 1924 II, 1614). 5 cm³ einer sehr verd. Lösung von Salicylaldehyd geben mit 2 Tropfen einer 1% igen wäßrigen Lösung von Resorcin und 15 cm³ Schwefelsäure (80 Vol.-%) nach 2—5 Min. eine orange Färbung; die Reaktion tritt noch bei einer Verdünnung von 1:500000 auf (CROCKER, Ind. Eng. Chem. 17, 1159; C. 1926 I, 1461). Mit Benzidin in Eisessig erhält man eine intensiv gelbe Färbung (VAN ECK, *Pharm. Weekb.* 60, 1204; C. 1924 I, 434). Farbreaktion mit Pararosanilinschwefligsäure von verschiedenem Schwefeldioxyd-Gehalt: SHOESMITH, SOSSON, HETHERINGTON, Soc. 1927, 2222. Farbreaktionen von Salicylaldehyd mit Alkoholen und konz. Schwefelsäure: Ekkert, P. C. H. 69, 289; C. 1928 I, 2635; mit verschiedenen Phenolen in alkoh. Schwefelsäure: EKK., P.C.H. 68, 563; C. 1927 II, 2696; mit Cholesterin und mit Ergosterin in alkoh. Schwefelsäure: Ekk., P. C. H. 69, 98, 277; C. 1928 I, 1559, 2523; mit Glycyrrhizin und konz. Schwefelsäure: Bertolo, C. 1926 II, 76.

Nachweis durch Kupplung mit 4-Nitro-benzoldiazoniumchlorid in alkal. Lösung und Ermittlung der Lichtabsorption des entstehenden Farbstoffs in Aceton, Alkohol und Wasser: Wales, Palkin, Am. Soc. 48, 812. Mikrochemischer Nachweis mit Hilfe von Semicarbazid, 3-Nitro-benzhydrazid und 2- und 3-Nitro-phenylhydrazin: Griebel, Weiss, Mikroch. 5, 158; C. 1928 I, 385; zum mikrochemischen Nachweis vgl. a. Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 77. — Das 4-Nitro-benzoat C14H₂O₂N schmilzt bei 123° bis 1240 (Zetzsche, Silbermann, Vieli, Helv. 8, 602).

Empfindlichkeit der Geruchsprobe und verschiedener Farbreaktionen: CROCKER, Ind.

Eng. Chem. 17, 1159; C. 1926 I, 1461.

Zur quantitativen Bestimmung setzt man mit Phenylhydrazin um, zersetzt das überschüssige Phenylhydrazin mit Fehlingscher Lösung und mißt den hierbei entwickelten Stickstoff (ELLIS, Soc. 1927, 851).

Salze und additionelle Verbindungen des Salicylaldehyds.

Zur Konstitution der Salze vgl. Sidgwick, Brewer, Soc. 127, 2379. — Lithiumsalz $LiC_7H_5O_2 + 2H_2O$. Gelbe Tafeln (aus Alkohol). Gibt beim Erhitzen Wasser ab; schmilzt unscharf bei ca. 228° (Sidgwick, Brewer, Soc. 127, 2385). Löslich in Toluol; die Lösung ist farblos. — Natriumsalze: NaC₇H₅O₂ + C₇H₆O₂ (H 40; E I 518). Ist nach Sidgwick, Brewer (Soc. 127, 2385) gelb. Schwer löslich in Toluol mit gelber Farbe. Zerfällt beim Erhitzen für sich (Soc. 124, 238) geiß. Schwer Raisen im Toluof int geiser Fatte. Zertait beim Ermitzen im Salicylaldehyd und NaC₇H₅O₂. — NaC₇H₅O₂ (H 40).
 Unlöslich in Toluol (S., B.). — Kaliumsalze: KC₇H₅O₂ + C₇H₆O₂ (H 41). Schwer löslich in Toluol mit gelber Farbe (S., B.). Verhält sich beim Erhitzen wie das entsprechende Natriumsalz. — KC₇H₆O₂ (H 41). Unlöslich in Toluol (S., B.).
 Kupfersalz Cu(C₇H₅O₂)₂ (H 41). B. Aus Salicylaldehyd und Kupfer beim Erwärmen in 72% igem Alkohol (Zetzsche, Silbermann, Viell, Helv. 8, 600). Braungelbe Nadeln (aus Vield). I Beiten dem Chloroform unlöslich in Alkohol. Ather

Xylol). Löslich in siedendem Xylol und siedendem Chloroform, unlöslich in Alkohol, Ather, Ligroin und Wasser. — Magnesiumsalz Mg(C7H5O2)2. B. Aus Salicylaldehyd und Magnesium in Nitrobenzol + 72% igem Alkohol (Z., SI., V.). Grüngelb, wird bei 100° citronengelb. Unlöslich in allen gebräuchlichen Lösungsmitteln. Zersetzt sich beim Erhitzen. — Zinksalz Zn(C₇H₅O₃)₃. B. Aus Salicylaldehyd und Zinkstaub beim Erwärmen in 72% igem Alkohol (Z., Si., V.). Gelbe Nadeln (aus Chloroform). Unlöslich in den meisten Lösungsmitteln. Thallium(I)-salz TlC₇H₅O₃. Gelbe Nadeln (aus Alkohol). F: 186° (Zers.) (Menzies, Wilkins,

Soc. 125, 1149). Schwer löslich in Alkohol. — Salz des Dimethylthalliumhydroxyds s. u. Titan (IV)-salze: TiCl₂(C₇H₅O₂)₂ + HCl. B. Aus Salicylaldehyd und Titan(IV)-chlorid in Chloroform (Scagliarini, Tartarini, R. A. L. [6] 4, 322). Rotviolettes Krystallpulver. Zersetzt sich an der Luft nur langsam. — TiBr₂(C₇H₅O₂)₂ + HBr. Braun (Sc., Ta.). — Verbindung mit Zirkonium chlorid 2C₇H₆O₂ + ZrCl₄. B. Aus den Komponenten in wenig Äther bei —15° (Jantsch, J. pr. [2] 115, 19). Gelbes Krystallmehl (aus Äther). Ziemlich leicht löslich in Äther. Zersetzt sich bei Zimmertemperatur.

Eisen(II)-salz Fe(C₇H₅O₂)₂ (H 41). B. Aus Salicylaldehyd und Eisen(II)-disalicylat in wäßrig-alkoholischer Natronlauge (Zetzsche, Silbermann, Viell, Helv. 8, 601). Blauviolett.

F: 144°. Etwas löslich in wäßrigem und absolutem Alkohol. — Kobalt(II)-salz. B. Beim Erwärmen von Salicylaldehyd und Kobalt in 72% igem Alkohol (Z., S., V.). Gelbe Nadeln. Löslich. in siedendem Xylol und siedendem Chloroform, unlöslich in Alkohol, Äther, Ligroin und Wasser-

Verbindung mit Natrium - 2-nitro - phenolat $C_7H_4O_2 + NaC_6H_4O_3N$. Gelb (Sidg. WICK, BREWER, Soc. 127, 2385). Löst sich bei gelindem Erwärmen in Toluol mit gelber Farbe Zersetzt sich beim Erhitzen der festen Substanz oder der Lösung in Toluol unter Abscheidung von Natrium-2-nitro-phenolat. — Verbindung mit Kalium-2-nitro-phenolat $C_7H_4O_2+KC_6H_4O_3N$. Nicht ganz rein erhalten. Ockergelb. Zersetzt sich beim Umkrystallisieren aus Alkohol (S., B.). — Verbindungen mit Pikrinsäure s. in der Tabelle auf S. 36. — Ver-

bindung mit 6-Nitro-o-kresol-natrium C₇H₆O₂ + NaC₇H₆O₂N. Gelb (S., B., Soc. 127, 2386).

Dimethylthalliumsalz (CH₃)₂Tl·C₇H₅O₂. B. Beim Kochen von Salicylaldehyd mit Dimethylthalliumcarbonat in Benzol (Menzies, Mitarb., Soc. 1928, 1291). Citronengelbe Krystalle (aus Benzol). Sublimiert unter 20 mm Druck bei 160—170°. Leicht löslich in Benzol. Zersetzt sich bei 200°.

Umwandlungsprodukte von unbekannter Konstitution aus Salicylaidehyd.

Polymerer Salicylaldehyd (?) (C,H₆O₂)_x. B. Wurde bei längerem Kochen von Salicylaldehyd mit Desoxybenzoin in alkoh. Natronlauge erhalten (Deckee, Beckee, B. 55, 392). Blättchen (aus Wasser). F: 120—121°. Sehr leicht löslich in Alkohol, schwer in siedendem Wasser. Unlöslich in konz. Salzsäure, leicht löslich in kalter Natronlauge.

Anhydrodisalicylaldehyd, Disalicylaldehyd C₁₄H₁₀O₃ (H 41; E I 518). Zur Konstitution vgl. a. Lindemann, Forth, A. 485, 221. B. Aus Salicylaldehyd beim Erwärmen mit Thionylchlorid (L., F., A. 485, 224) und bei kurzer Einw von Acetanhydrid bei 0° in Gegenwart von wenig konzentrierter Schwefelsäure, Phosphorsäure, Salzsäure oder Trichloressigsäure bei 0º (Adams, Fogler, Kreger, Am. Soc. 44, 1127). — Nadeln (aus Alkohol). F: 130º (korr.) (A., F., K.).

Salicyliden - bis - dimethyldihydroresorcin-anhydrid, Salicylaldimethon-anhydrid C₂₃H₂₆O₄. B. Bei der Kondensation von Salicylaldehyd mit Dimethyldihydroresorcin in kaltem Alkohol oder in heißem Eisessig (VORLÄNDER, Fr. 77, 264). — Stäbchen (aus 70 %igem Alkohol). F: 2080 (korr.). Sehr leicht löslich in Chloroform, löslich in Aceton, Eisessig und Benzol, schwer löslich in Äther, Petroläther und Alkohol. Löst sich in verd. Alkalien und in Sodalösung. Die gesättigte alkoholische Lösung gibt mit Eisenchlorid eine violette Färbung. — Gibt ein Acetylderivat vom Schmelzpunkt 189-1919 und ein Benzoylderivat vom Schmelzpunkt 152-153°.

Verbindungen $C_{41}H_{24}O_4$. B. Die nachstehend beschriebenen (durch die Buchstaben A—E unterschiedenen) Verbindungen entstehen bei der Einw. von Salicylaldehyd auf 1 Mol Methylbenzylketon in mindestens 2 Mol wäßrig-alkoholischer Natronlauge bei 0 (Diominson, Soc. 1926, 2238). Trennung der Isomeren: Di.

a) Verbindung A. Bildet das Hauptprodukt der Reaktion. — Mikrokrystallines Pulver (aus Benzol, Schwefelkohlenstoff oder Tetrachlorkohlenstoff). F: 185° (Zers.) (Dickinson, Soc. 1926, 2239). Leicht löslich in Alkohol, ziemlich leicht in Benzol, unlöslich in Wasser und in kalten Alkalilaugen. — Geht bei der Einw. von wäßrig-alkoholischer Kalilauge in die Verbindung B über. Gibt mit Dimethylsulfat und 40% iger Kalilauge in Aceton die Verbindung C₄₈H₄₀O₄ vom Schmelzpunkt 135° (s. u.). Liefert ein nicht rein erhaltenes Disemicarbazon, das sich bei 230° zersetzt.

b) Verbindung B. Nadeln (aus Benzol), Rhomben (aus Alkohol). F: 2280 (Zers.) (DICKINSON, Soc. 1926, 2240). — Gibt mit Dimethylsulfat und Kalilauge in Aceton die Ver-

bindung C₄₃H₄₀O₄ vom Schmelzpunkt 135° (s. u.).
c) Verbindung C. Nadeln (aus Benzol oder Alkohol). F: 186° (Dickinson, Soc. 1926, 2240). Gibt mit der Verbindung A Schmelzpunktsdepression. — Geht beim Behandeln mit

wäßrig-alkoholischer Kalilauge in die Verbindung D über.

d) Verbindung D. Mikrokrystellines Pulver mit 1 C₆H₆ (aus Benzol). F: 209⁰ (Zers.) (Dickinson, Soc. 1926, 2240). — Geht beim Kochen mit Alkohol und etwas konz. Salzsäure in die Verbindung B über. Gibt mit Dimethylsulfat und Kalilauge in Aceton die Verbindung C₄₃H₄₀O₄ vom Schmelzpunkt 138° (s. u.).
e) Verbindung E. Gelbes mikrokrystallines Pulver (aus Benzol). F: 239° (Zers.)

(Dickinson, Soc. 1926, 2240). Unlöslich in Wasser, leicht löslich in kalter wäßriger Natron-

lauge mit roter Farbe.

Verbindung C₄₃H₄₀O₄ vom Schmelzpunkt 135°. B. Aus den Verbindungen C₄₁H₃₆O₄ (Nr. A und B) durch Einw. von Dimethylsulfat und 40% iger Kalilauge in Aceton (Dickinson, Soc. 1926, 2240). — Nadeln (aus Alkohol). F: 135°.

Verbindung $C_{43}H_{40}O_4$ vom Schmelzpunkt 138°. B. Entsteht analog der vorangehenden Verbindung aus der Verbindung $C_{41}H_{36}O_4$ (Nr. D) (Dickinson, Soc. 1926, 2240). — Nadeln (aus Alkohol). F: 138°. [Bärmann]

Funktionelle Derivate des Salicylaldehyds.

2-Methoxy-benzaldehyd, Salicylaldehydmethyläther, o-Anisaldehyd $C_8H_8O_2=CH_3\cdot O\cdot$ C₆H₄·CHO (H 43; E I 519). B. Entsteht aus Salicylaldehyd beim Kochen des Thallium (I)-salzes mit Methyljodid in Benzol (Fear, Menzies, Soc. 1926, 939) und beim Erhitzen mit Trimethylphenyl-ammoniumhydroxyd auf 125—130° (Rodionow, Fedorowa, Ar. 1928, 119). Neben 2-Methoxy-benzaldehyd-[2-methoxy-benzoylhydrazon] bei der Oxydation von 2-Methoxybenzhydrazid mit 2 Mol Kaliumferricyanid in wäßr. Ammoniak (KALB, GROSS, B. 59, 734). -Darstellung durch Behandlung von Salicylaldehyd mit Dimethylsulfat in alkal. Lösung (H 43; E I 519): Shoesmith, Connor, Soc. 1927, 2231; Garner, Sugden, Soc. 1927, 2882; Dickinson, Maeshall, Soc. 1929, 1496; vgl. a. Copisarow, Soc. 1929, 589. — F: 37° (korr.); Kp₂₀: 122° (GABNER, SUGDEN).

Beim Sättigen einer alkoh. Lösung von 2-Methoxy-benzaldehyd und Methylbenzylketon mit Chlorwasserstoff unter Eiskühlung erhält man je nach den Mengenverhältnissen das bei 145° schmelzende oder das bei 180° schmelzende 2-Phenyl-1.5-bis-[2-methoxy-phenyl]-pentadien-(1.4)-on-(3) oder 1-Phenyl-2.3-bis-[2-methoxy-phenyl]-cyclopenten-(1)-on-(5) (Syst. Nr. 785) (DIORINSON, Soc. 1926, 2238; HEILBRON, IRVING, Soc. 1929, 938, 941). Gleichgewicht der Reaktion $CH_3 \cdot O \cdot C_6H_4 \cdot CHO + HCN \rightleftharpoons CH_3 \cdot O \cdot C_6H_4 \cdot CH(OH) \cdot CN$ in Alkohol bei 20° : Lapworth, Manske, Soc. 1928, 2546. Gibt in 4n-alkoholischer Salzsäure mit 1% igen Lösungen von Resorcin und Pyrogallol eine rote, von Brenzcatechin eine gelbe, von Phloroglucin eine gelbrote Färbung (van Itallie, Harmsma, *Pharm. Weekb.* 61, 827; C. 1924 II, 1614). Farbreaktion mit Pararosanilinschwefligsäure von verschiedenem Schwefeldioxyd-Gehalt: Shoesmith, Sosson, HETHERINGTON, Soc. 1927, 2223. — 4 Nitro-phenylhydrazon. F: 206—208° (unter geringer Zersetzung) (KALB, GROSS, B. 59, 734).

Salicylaidehyd - methoxymethyläther $C_9H_{10}O_3=CH_2\cdot O\cdot CH_3\cdot O\cdot C_9H_4\cdot CHO$ (H 44). $Kp_9:128-129^6$ (Pauly, Wäscher, B. 56, 606). — Liefert bei der Kondensation mit Acetaldehyd in sehr verdünnter alkoholischer Kalilauge bei 60° 2-Methoxymethoxy-zimtaldehyd und harzige Produkte (P., W.; vgl. a. P., FEUERSTEIN, B. 62, 303 Anm. 18).

2-Formyl-phenoxyessigsäure $C_0H_0O_4 = OHC \cdot C_0H_4 \cdot O \cdot CH_2 \cdot CO_2H$ (H 45; E I 519). Liefert mit Phenylarsin in etwas konz. Salzsäure enthaltendem Aceton in Kohlendioxyd-Atmosphäre Phenyl-bis-[a-oxy-2-carboxymethoxy-benzyl]-arsin (Syst. Nr. 2304) (PALMER, ADAMS, Am. Soc. 44, 1366).

(?)

 $\begin{array}{lll} & \text{α-[2-Formyl-phenoxy]-propionsäure-$athylester} & C_{12}H_{14}O_4 = OHC\cdot C_6H_4\cdot O\cdot CH(CH_3)\cdot CO_2\cdot \\ & C_2H_5 & (E \text{ I 519}). & D_4^{16,5} : 1,1372 & (v. \text{ Auwers}, \text{ B. 60, 2138}). & n_{\alpha}^{16,5} : 1,5123; & n_{H^4}^{16,5} : 1,5175; & n_{\beta}^{16,5} : 1,5312; \\ & C_{12}H_{13}O_4 = OHC\cdot C_6H_4\cdot O\cdot CH(CH_3)\cdot CO_2\cdot \\ & C_{13}H_{14}O_4 = OHC\cdot C_6H_4\cdot O\cdot CH(CH_3)\cdot CO_2\cdot \\ & C_{14}H_{14}O_4 = OHC\cdot C_6H_4\cdot O\cdot CH(CH_3)\cdot CO_2\cdot \\ & C_{15}H_{15}O_4 = OHC\cdot C_6H_4\cdot O\cdot CH(CH_3)\cdot CO_2\cdot \\ & C_{15}H_{15}O_4 = OHC\cdot C_6H_4\cdot O\cdot CH(CH_3)\cdot CO_2\cdot \\ & C_{15}H_{15}O_4 = OHC\cdot C_6H_4\cdot O\cdot CH(CH_3)\cdot CO_2\cdot \\ & C_{15}H_{15}O_4 = OHC\cdot C_6H_4\cdot O\cdot CH(CH_3)\cdot CO_2\cdot \\ & C_{15}H_{15}O_4 = OHC\cdot C_6H_4\cdot O\cdot CH(CH_3)\cdot CO_2\cdot \\ & C_{15}H_{15}O_4 = OHC\cdot C_6H_4\cdot O\cdot CH(CH_3)\cdot CO_2\cdot \\ & C_{15}H_{15}O_4 = OHC\cdot C_6H_4\cdot O\cdot CH(CH_3)\cdot CO_2\cdot \\ & C_{15}H_{15}O_4 = OHC\cdot C_6H_4\cdot O\cdot CH(CH_3)\cdot CO_2\cdot \\ & C_{15}H_{15}O_4 = OHC\cdot C_6H_4\cdot O\cdot CH(CH_3)\cdot CO_2\cdot \\ & C_{15}H_{15}O_4 = OHC\cdot C_6H_4\cdot O\cdot CH(CH_3)\cdot CO_2\cdot \\ & C_{15}H_{15}O_4 = OHC\cdot C_6H_4\cdot O\cdot CH(CH_3)\cdot CO_2\cdot \\ & C_{15}H_{15}O_4 = OHC\cdot CH(CH_3)\cdot \\ & C_{15}H_{1$ n^{18,5}: 1,5443.

Salicylaidehyd-dimethylacetal $C_9H_{12}O_3 = HO \cdot C_6H_4 \cdot CH(O \cdot CH_3)_2$ (E I O·CH₃ 520). Liefert beim Erhitzen unter 0,5—1 mm Druck auf 130° in geringer CH-O Ausbeute das dimere Methyllactolid des Salicylaldehyds (s. nebenstehende Formel; Syst. Nr. 2721) (BERGMANN, v. LIPPMANN, A. 452, 138). O--- HC · O · CH₃

2-Acetoxy-benzylidendiacetat, Salicylaldehyd-triacetat $C_{13}H_{14}O_6=CH_3\cdot CO\cdot O\cdot C_6H_4\cdot CH(O\cdot CO\cdot CH_3)_8$ (H 45; E I 520). F: 100—101° (ADAMS, FOGLER, KREGER, Am. Soc. 44, 1131).

N-[$\alpha.\alpha.\beta$ -Trimethyl-allyl]-salicylisoaldoxim $C_{13}H_{17}O_2N=HO\cdot C_4H_4\cdot CH:N(:O)\cdot C(CH_3)_2\cdot C(CH_3):CH_3$. B. Aus Salicylaldehyd und dem Hydrochlorid des 3-Hydroxylamino-2.3-dimethylbutens-(1) in wäßrig-alkoholischer Natriumacetat-Lösung bei Zimmertemperatur (EARL, KENNER, Soc. 1927, 2142). — Krystalle (aus Alkohol). F: 53°.

Salicylidenaminoessigsäure, Salicylidenglycin $C_0H_0O_3N = HO \cdot C_0H_4 \cdot CH : N \cdot CH_2 \cdot CO_2H$. B. Das Bariumsalz entsteht aus Salicylaldehyd und Glykokoll in Gegenwart von Bariumhydroxyd oder besser Bariumacetat in Wasser bei — 50 (Bergmann, Ensslin, Zervas, B. 58, 1038, 1039). — Bariumsalz $Ba(C_0H_8O_3N)_2$. Citronengelbe Nadeln oder Prismen (aus verd. Alkohol) oder Blättchen (aus Wasser + Alkohol + Ather). Schwer löslich in kaltem, leichter in heißem Wasser. Färbt sich beim Aufbewahren am Licht manchmal tief orangegelb.

Salicyliden-glycyl-glycin, Salicylidendiglycin $C_{11}H_{12}O_4N_3 = HO \cdot C_6H_4 \cdot CH : N \cdot CH_2 \cdot CO \cdot NH \cdot CH_2 \cdot CO_2H$. B. Das Bariumsalz entsteht aus Salicylaldehyd und Glycylglycin bei Gegenwart von Bariumhydroxyd oder Bariumacetat in Wasser bei 0^0 (Bergmann, Ensslin, Zervas, B. 58, 1040). — Bariumsalz $Ba(C_{11}H_{11}O_4N_2)_2$. Gelbe Nadeln.

N.N'- Disalicyliden - I(—) - cystin $C_{20}H_{20}O_{6}N_{2}S_{2} = [HO \cdot C_{6}H_{4} \cdot CH : N \cdot CH(CO_{2}H) \cdot CH_{2} \cdot S -]_{2}$. B. Das Bariumsalz entsteht aus I(—)-Cystin und Salicylaldehyd in Barytwasser unter Kühlung (Bergmann, Zervas, H. 152, 288). — Bariumsalz $BaC_{20}H_{18}O_{6}N_{2}S_{2}$. Gelbe Nadeln.

Salicylidenamino-bernsteinsäure, N-Salicyliden-1-asparaginsäure $C_{11}H_{11}O_5N = HO \cdot C_6H_4 \cdot CH : N \cdot CH(CO_2H) \cdot CH_2 \cdot CO_2H$. B. In geringer Menge durch Einw. von Salicylaldehyd auf l-Asparaginsäure in Barytwasser bei 0° oder besser in Gegenwart von 2 Mol Brucin in 20% igem Alkohol (Bergmann, Ensslin, Zervas, B. 58, 1040). — Bariumsalz Ba $C_{11}H_9O_5N$. Gelbe, mikroskopische Nadeln. — Brucinsalz $C_{11}H_{11}O_5N + 2C_{22}H_{22}O_4N_2 + 10H_2O(7)$. Gelbe Prismen. Schmilzt wasserfrei bei 1450 (Zers.). Ziemlich schwer löslich in Wasser, leicht in Methanol unter Zersetzung.

 $\alpha\text{-Salicylidenamino-glutars} \\ \text{aure}, N\text{-Salicyliden-l(+)-glutamins} \\ \text{aure} \quad C_{12}H_{13}O_5N = HO\cdot C_6H_4\cdot CH: N\cdot CH(CO_2H)\cdot CH_2\cdot CO_2H. \ B. \ Durch Einw. \ von Salicylaldehyd auf l(+)-Glutamins \\ \text{aure} \quad in Barytwasser \quad oder \quad in Gegenwart \ von 2 \ Mol Brucin \quad in 20\% igem Alkohol bei 15—20° igem Al$ (Bergmann, Ensslin, Zervas, B. 58, 1042, 1043). — Bariumsalz Ba $\tilde{C}_{12}H_{11}O_5N$. Gelbe Nadeln. Leicht löslich in kaltem Wasser, schwer in Alkohol, sehr schwer in Ather. Gibt mit Silbernitrat einen hellbraunen Niederschlag. Gibt beim Erwärmen mit verd. Schwefelsäure Salicylaldehyd. — Brucinsalz $C_{12}H_{13}O_5N+2C_{23}H_{26}O_4N_2$. Lösungsmittelhaltige citronengelbe Blättchen (aus Methanol). F: 148° (Zers.).

N-Salicyliden-i(+)-iysin $C_{13}H_{18}O_3N_2 = HO \cdot C_6H_4 \cdot CH : N \cdot CH(CO_2H) \cdot [CH_2]_4 \cdot NH_2$ oder $HO \cdot C_6H_4 \cdot CH : N \cdot [CH_2]_4 \cdot CH(NH_2) \cdot CO_2H$. B. Aus 1(+)-Lysin-dihydrochlorid und Salicylaldehyd in Natroplayre (Parroy) I_1 and I_2 I_3 I_4 I_4 I_5 I_6 I_6 in Natronlauge (BERGMANN, ZERVAS, H. 152, 293). — Gelbe Nadeln.

2 - Methoxy - benzaldoxim - N - methyläther, N - Methyl - 2 - methoxy - isobenzaldoxim $C_9H_{11}O_2N=CH_3\cdot O\cdot C_9H_4\cdot CH:N(:O)\cdot CH_3$. Zur Konstitution vgl. die Angaben bei N-Methylisobenzaldoxim, E II 7, 162. — B. Aus 2-Methoxy-benzaldehyd und N-Methyl-hydroxylaminhydrochlorid in Natriumäthylat-Lösung (Brady, Dunn, Goldstein, Soc. 1926, 2391). Das Hydrojodid entsteht bei längerer Einw. von Methyljodid auf 2-Methoxy-α-benzaldoxim im Dunkeln (B., D., G., Soc. 1926, 2397). Neben 2-Methoxy-α-benzaldoxim-O-methyläther bei der Einw. von Dimethylsulfat auf 2-Methoxy-α-benzaldoxim in 2n-Natronlauge bei 20—25° (B., D., G., Soc. 1926, 2398; vgl. B., G., Soc. 1926, 2409). — Nadeln (aus Benzol + Petroläther). F: 85° (B., D., G., Soc. 1926, 2391). Leicht löslich in Wasser unter Bildung eines unbeständigen Hydrate vom Schmelzpunkt 27—28° (B., D., G., Soc. 1926, 2391). — Liefert beim Erwärmen mit Acetanhydrid und Verseifen des öligen Reaktionsprodukts mit alkoh. Kalilauge Methylamin und 2-Methoxy-benzoesäure (B., D., Soc. 1926, 2415). Liefert mit 2.4-Dinitro-phenylhydrazin-hydrochlorid in Wasser 2-Methoxy-benzaldehyd-[2.4-dinitro-phenylhydrazon] (B., Peakin, Soc. 1929, 479). — Hydrochlorid C₉H₁₁O₂N + HCl. Krystallpulver. Schmilzt bei 70—100°, zersetzt sich bei 151° (B., D., G., Soc. 1926, 2394). — Hydrojodid C₀H₁₁O₂N+HI. Gelbes Krystallpulver. F: 142° (Zers.) (B., D., G., Soc. 1926, 2397).

2-Oxy- α -benzaldoxim, 2-Oxy-benz-syn-aldoxim, Salicylaldoxim (in der Literatur auf Grund früherer Theorien auch als o-Oxy-benz-anti-aldoxim bezeichnet) $C_7H_7O_2N=HO\cdot C_6H_4\cdot CH$ (H 49; E I 520). Zur Konfiguration vgl. J. Meisenheimer, W. Theilacker

in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 978, 979. — Darstellung aus Salioylaldehyd und Hydroxylamin nach Lach (B. 16 [1883], 1782; H 49): Raiford, Clark, Am. Soc. 45, 1740). — Thermische Analyse des Systems mit 4-Chlor-1.3-dinitro-benzol s. u. — Reagiert nicht mit Pikrylchlorid in warmer Natriumäthylat-Lösung (Brady, Klein, Soc. 127, 847). — Reinheitsprüfung: E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 523.

Hydrochlorid. B. Beim Sättigen der Lösung von Salicylaldoxim in siedendem Benzol mit Chlorwasserstoff (Brady, Dunn, Soc. 123, 1801). F: 153° (Zers.). Liefert bei der Zersetzung

mit Sodalösung 2-Oxy-α-benzaldoxim zurück.

Verbindung mit 4-Chlor-1.3-dinitro-benzol C₇H₇O₄N + C₆H₃O₄N₄Cl. B. Beim Zusammenschmelzen der Komponenten; ist auch durch thermische Analyse nachgewiesen (Brady, Truszkowski, Soc. 125, 1096). Gelb, krystallinisch. F: 32—33°. Zerfällt beim Umkrystallisieren oder beim Behandeln mit 2 n-Natronlauge oder Sodalösung oder mit Dimethylanilin in die Komponenten. Bildet Eutektika mit 2-Oxy-a-benzaldoxim (F: ca. 27°; ca. 66 Mol-% Oxim) und mit 4-Chlor-1.3-dinitro-benzol (F: ca. 27°; 40 Mol-% Oxim); infolge der geringen Krystallisationsgeschwindigkeit der Additionsverbindung läßt sich auch das Eutektikum aus dem Oxim und 4-Chlor-1.3-dinitro-benzol (F: ca. 12°; ca. 53 Mol-% Oxim) nachweisen.

2-Oxy-benzaldoximacetat, Salicylaldehyd-acetyloxim C₀H₂O₃N = HO·C₄H₄·CH:N·O·CO·CH₂ (E I 520). Nadeln (aus Petroläther). F: 75° (LINDEMANN, THIELE, A. 449, 75). Löslich in kaltem Chloroform, in der Wärme leicht löslich in Methanol, Alkohol, Eisessig und Benzol, schwer in Benzin und Wasser. — Spaltet beim Erhitzen auf 120—150° Essigsäure ab; destilliert man den Rückstand unter vermindertem Druck, so erhält man Indoxazen C₄H₄ CH ON (Syst. Nr. 4195), während bei der Destillation unter gewöhnlichem Druck Salicylsäurenitril und 2.4.6-Tris-[2-oxy-phenyl]-1.3.5-triazin entstehen.

2-Methoxy- α -benzaldoxim, 2-Methoxy-benz-syn-aldoxim $C_8H_9O_2N=CH_3\cdot O\cdot C_8H_4\cdot CH$

(H 49 auf Grund älterer Literatur als o-Methoxy-benz-anti-aldoxim

bezeichnet). Zur Konfiguration vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 982. — B. Durch Einw. von 10% iger wäßriger Natronlauge oder 25% iger methylalkoholischer Kalilauge auf Bisnitrosyl-o-methoxybenzyl (s. bei 2-Methoxy-benzylhydroxylamin, Syst. Nr. 1937) (Brady, Bennett, Soc. 1927, 897). — F: 92° (Br., Be.). Die bei 18° gesättigte wäßrige Lösung enthält 0,880 g/l (Br., Peakin, Soc. 1929, 479). Elektrolytische Dissoziationskonstante k in Wasser bei 25°: 1,3×10⁻¹¹ (aus der Leitfähigkeit des Natriumsalzes berechnet) (Br., Goldstein, Soc. 1926, 1923), 1,5×10⁻¹¹ (aus der Verteilung zwischen wäßr. Natronlauge und Benzol berechnet) (Br., Chokshi, Soc. 1929, 950). Thermische Analyse des binären Systems mit 4-Chlor-1.3-dinitro-benzol: Brady, Truszkowski, Soc. 125, 1090, 1095.

Gibt bei längerer Einw. von Methyljodid im Dunkeln N-Methyl-2-methoxy-isobenzaldoximhydrojodid (Brady, Dunn, Goldstein, Soc. 1926, 2397). Liefert bei der Einw. von Dimethylsulfat in verd. Natronlauge bei 20—25° viel 2-Methoxy-α-benzaldoxim-O-methyläther und geringere Mengen N-Methyl-2-methoxy-isobenzaldoxim (B., D., G., Soc. 1926, 2398; vgl. B., G., Soc. 1926, 2409). Gibt mit 4-Chlor-1.3-dinitro-benzol in Gegenwart von 1 Mol Natrumäthylat in Alkohol 2-Methoxy-β-benzaldoxim-O-[2.4-dinitro-phenyläther] (Brady, T. Uszkowski, Soc. 123, 1092); reagiert analog mit Pikrylchlorid (B., Klein, Soc. 127, 846). Liefert mit Benzoylchlorid in kalter 2 n-Natronlauge 2-Methoxy-α-benzaldoxim-O-benzoat (Syst. Nr. 929) (B., McHugh, Soc. 127, 2421). Liefert bei der Einw. von Phenylisocyanat in Äther 2-Methoxy-α-benzaldoxim-O-carbonsäure-anilid (Syst. Nr. 1631) (B., MoHugh, Soc. 127, 2425); reagiert analog mit α-Naphthylisocyanat (B., Ridge, Soc. 128, 2173). Beim Koohen des Natriumsalzes mit Diphenylcarbamidsäure-chlorid in trocknem Chloroform entseht 2-Methoxy-β-benzaldoxim-O-carbonsäure-diphenylamid (Syst. Nr. 1639) (B., McH.). Liefert mit 2.4-Dinitrophenylhydrazin-hydrochlorid in Wasser bei 18° 2-Methoxy-benzaldehyd-[2.4-dinitro-phenylhydrazon] (B., Peakin, Soc. 1929, 479).

Hydrochlorid. B. Beim Sättigen der Lösung von 2-Methoxy-α-benzaldoxim in siedendem Benzol mit Chlorwasserstoff (Brady, Dunn, Soc. 123, 1801). Schmilzt bei 114°, zersetzt sich bei 130°. Liefert bei der Einw. von 2n-Natronlauge oder Sodalösung 2-Methoxy-α-benz-

aldoxim zurück.

- 2-Methoxy β benzaldoxim, 2-Methoxy benz anti aldoxim $C_0H_0O_2N=CH_0\cdot C\cdot C_0H_0\cdot CH$
- HO'N bezeichnet). Zur Konfiguration vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 982. B. In geringer Menge neben 2-Methoxy-α-benzaldoxim bei der Einw. von 10%iger wäßriger Natronlauge oder besser von 25%iger methylalkoholischer Kalilauge auf Bisnitrosyl-α-methoxybenzyl (s. bei 2-Methoxy-benzylhydroxyl-amin; Syst. Nr. 1937) (Brady, Bennett, Soc. 1927, 897). Prismen (aus wäßr. Aceton). F: 101° bis 102°; bei späteren Versuchen wurden niedrigerschmelzende Präparate erhalten. Sehr unbeständig; wandelt sich in einigen Tagen in 2-Methoxy-α-benzaldoxim um. Gibt mit alkoh.
- Acetanhydrid und nachfolgenden Verseifen mit Natronlauge etwas Ammoniak.

 2-Methoxy-α-benzaldoxim-0-methyläther, ο-Anisaldoximmethyläther C₉H₁₁O₂N = CH₂·O·C₆H₄·CH; N·O·CH₃ (H 49). B. Aus Salicylaldoxim und Dimethylsulfat in alkalischer Lösung (V. Auwers, B. 57, 465). Neben 2-Methoxy-benzaldoxim-N-methyläther bei der Einw. von Dimethylsulfat auf 2-Methoxy-α-benzaldoxim in 2n-Natronlauge bei 20—25° (Brady, Dunn, Goldstein, Soc. 1926, 2398; B., G., Soc. 1926, 2409). Kp₇₆₁: 241°; Kp₂₅: 138—139°.

(B., D., G.). $D_4^{18,6}$: 1,0934; $n_{\alpha}^{18,6}$: 1,5478; $n_{867,66}^{18,6}$: 1,5551; $n_{B}^{18,6}$: 1,5741; $n_{\gamma}^{18,6}$: 1,5929 (v. Au., B. 57, 466).

Eisenchlorid-Lösung eine orangerote Färbung. — Das rohe Oxim gibt beim Behandeln mit

- 2 Methoxy β benzaldoxim O [2.4 dinitro phenyläther], O [2.4 Dinitro phenyl]-2-methoxy- β -benzaldoxim $C_{14}H_{11}O_6N_3 = CH_3 \cdot O \cdot C_6H_4 \cdot CH : N \cdot O \cdot C_6H_3(NO_2)_2$. B. Aus äquimole-kularen Mengen 2-Methoxy- α -benzaldoxim und 4-Chlor-1.3-dinitro-benzol durch Einw. von warmer Natriumäthylat-Lösung oder von kalter 2n-Natronlauge (Brady, Truszkowski, Soc. 125, 1092, 1095). Nadeln (aus Aceton). F: 184° (Zers.). Liefert beim Erwärmen mit 6n-Natronlauge 2-Methoxy-benzoesäure.
- 2 Methoxy β benzaldoxim O pikryläther, O Pikryl 2 methoxy β benzaldoxim $C_{14}H_{10}O_8N_4 = CH_3 \cdot O \cdot C_6H_4 \cdot CH : N \cdot O \cdot C_6H_2(NO_2)_3$. B. Durch Einw. von Pikrylchlorid auf 2-Methoxy- α -benzaldoxim in warmer Natriumäthylat-Lösung (Brady, Klein, Soc. 127, 846). Blaßgelbe Prismen (aus Aceton). F: 153—154° (Zers.). Liefert beim Erwärmen mit 2n-Natronlauge 2-Methoxy-benzonitril und Pikrinsäure, beim Erwärmen mit konz. Salzsäure Salicylsäure und Pikrinsäure.
- 2-Methoxy- α -benzaldoxim-0-[4-nitro-benzyläther], 0-[4-Nitro-benzyl]-2-methoxy- α -benzaldoxim $C_{15}H_{14}O_4N = CH_3 \cdot O \cdot C_6H_4 \cdot CH : N \cdot O \cdot CH_2 \cdot C_6H_4 \cdot NO_2$. B. Beim Kochen von 2-Methoxy- α -benzaldoxim mit 4-Nitro-benzylbromid in Natriumäthylat-Lösung (Brady, Klein, Soc. 1927, 880). Blaßgelbe Prismen (aus Methanol). F: 88°. Geht bei der Einw. von ultraviolettem Licht in Benzol teilweise in 2-Methoxy- β -benzaldoxim-O-[4-nitro-benzyläther] über.
- 2-Methoxy- β -benzaldoxim-O-[4-nitro-benzyläther], O-[4-Nitro-benzyl]-2-methoxy- β -benzaldoxim $C_{15}H_{14}O_4N=CH_3\cdot O\cdot C_6H_4\cdot CH:N\cdot O\cdot CH_3\cdot C_6H_4\cdot NO_2$. B. Durch Einw. von ultraviolettem Licht auf 2-Methoxy- α -benzaldoxim-O-[4-nitro-benzyläther] in Benzol (Brady, Klein, Soc. 1927, 886). Öl. Gibt beim Behandeln mit Chlorwasserstoff in Chloroform 2-Methoxy- α -benzaldoxim-O-[4-nitro-benzyläther].
- 2-Methoxy- α -benzaldoxim-O-carbonsäureäthylester, O-Carbäthoxy-2-methoxy- α -benzaldoxim $C_{11}H_{13}O_4N=CH_3\cdot O\cdot C_0H_4\cdot CH:N\cdot O\cdot CO_2\cdot C_2H_5$. Zur Konfiguration vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 990. B. Aus 2-Methoxy- α -benzaldoxim und Chlorameisensäureäthylester in kalter 2 n-Natronlauge (Brady, McHugh, Soc. 123, 1194). Prismen (aus Petroläther). F: 52°. Gibt bei der Einw. von 2n-Natronlauge auf dem Wasserbad wieder 2-Methoxy- α -benzaldoxim.
- 2-Äthoxy-benzaldoxim $C_9H_{11}O_2N = C_2H_5 \cdot O \cdot C_8H_4 \cdot CH : N \cdot OH$ (H 50). Wird bei der Behandlung mit Chlorwasserstoff nicht in ein isomeres Öxim umgelagert (Brady, Cosson, Roper, Soc. 127, 2430).
- 2.2'-Dioxy-benzaldazin, Disalicylidenhydrazin, Salicylaldazin $C_{14}H_{12}O_2N_2 = HO \cdot C_6H_4 \cdot CH : N \cdot N : CH \cdot C_6H_4 \cdot OH (H 51; E I 520)$. Gibt bei der Hydrierung in Gegenwart von Palladium-Bariumsulfat in Eisessig 2-Oxy-benzylamin (ROSENMUND, PFANKUCH, B. 56, 2261).
- Butan-tricarbonsäure-(1.2.2)-tris-salicylidenhydrazid $C_{28}H_{28}O_6N_6 = HO \cdot C_6H_4 \cdot CH : N \cdot NH \cdot CO \cdot CH_6 \cdot C(C_8H_5)(CO \cdot NH \cdot N : CH \cdot C_6H_4 \cdot OH)_3$. B. Aus Butan-tricarbonsäure-(1.2.2)-trihydrazid und Salicylaldehyd (Curtus, Gund, J. pr. [2] 107, 185). Tafeln oder Prismen (aus Alkohol). F: 2120. Unlöslich in Wasser und Benzol, löslich in Alkohol und Eisessig.
- 1.5 Bis [2 oxy benzyliden] thiocarbohydrazid, 1.5 Disalicyliden thiocarbohydrazid $C_{15}H_{14}O_2N_4S = (HO \cdot C_8H_4 \cdot CH : N \cdot NH)_2CS$. B. Aus Salicylaldehyd und Thiocarbohydrazidhydrochlorid in verd. Alkohol (Guha, Dey, J. indian chem. Soc. 2, 236; C. 1926 I, 2692). Tafein (aus Aceton). F: 190° (Zers.). Löslich in Alkohol und Aceton, unlöslich in Äther, Benzol und Chloroform.

Salicylaidehyd - $[\beta$ - amine - āthylhydrazen], 1 - Amine - 2 - salicyldenhydrazine - āthan $C_9H_{12}ON_3 = HO \cdot C_9H_4 \cdot CH : N \cdot NH \cdot CH_2 \cdot CH_2 \cdot NH_2$. B. Durch Kondensation von Salicylaidehyd mit β - Amine - āthylhydrazin in alkal. Lösung (Sommer, Schulz, Nassau, Z. anorg. Ch. 147, 153). — Oxalat $C_9H_{12}ON_3 + H_4C_2O_4$. Zersetzt sich an feuchter Luft und beim Kochen mit Wasser. Reduziert Fehlingsche Lösung in der Kälte erst nach kängerem Aufbewahren.

Substitutionsprodukte des Salicylaldefiyds.

- 4-Fluor-2-oxy-benzaldehyd, 4-Fluor-salicylaldehyd C₇H₅O₂F, Formel I. B. Neben 2-Fluor-4-oxy-benzaldehyd beim Erhitzen von 3-Fluor-phenol mit Chloroform und Natronlauge (Hodgson, Nixon, Soc. 1929, 1635). Intensiv nußartig riechende Nadeln (aus Alkohol oder verd. Essigsäure). F: 69°. Sehr leicht flüchtig mit Wasserdampf. Leicht löslich in Wasser und den üblichen organischen Lösungsmitteln. Gibt mit Eisenchlorid-Lösung einen braunen Niederschlag. Liefert bei der Nitrierung je nach den Bedingungen 4-Fluor-5-nitro-salicylaldehyd oder 4-Fluor-3.5-dinitro-salicylaldehyd. Das 4-Nitro-phenylhydrazon schmilzt bei 248°. Natriumsalz. Gelb. Kupfersalz. Hellgrün. Chrom(III)-salz. Dunkelgrün.
- 4-Fluor-2-methoxy-benzaldehyd $C_8H_7O_2F=CH_3\cdot O\cdot C_6H_3F\cdot CHO$. B. Durch Kochen von 4-Fluor-salicylaldehyd mit Dimethylsulfat und Kaliumcarbonat in Xylol (Hodgson, Nixon, Soc. 1929, 1638). Nadeln (aus Petroläther). F: 530. Das 4 Nitro-phenylhydrazon CHO CHO

schmilzt bei 213°.

4-Fluor - 2-oxy-benzaldoxim, 4-Fluor - salicylaldoxim C₇H₆O₂NF = HO·C₆H₃F·CH: N·OH. Nadeln (aus Alkohol). F: 125° (Hodgson, Nixon, Soc. 1929, 1635). Leicht löslich in den üblichen o

I. OH II. OH III. OH

- Soc. 1929, 1635). Leicht löslich in den üblichen organischen Lösungsmitteln.
- 4-Fluor-2-methoxy-benzaldoxim $C_8H_8O_2NF=CH_3\cdot O\cdot C_6H_3F\cdot CH:N\cdot OH$. Nadeln (aus verd. Alkohol). F: 128° (Hodgson, Nixon, Soc. 1929, 1638).
- 4-Fluor-salicylaldehyd-semicarbazon $C_0H_0O_2N_3F = HO \cdot C_0H_3F \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Gelbe mikroskopische Nadeln (aus Eisessig). F: 236° (Hodgson, Nixon, Soc. 1929, 1635).
- 4-Fluor-2-methoxy-benzaldehyd-semicarbazon $C_9H_{10}O_2N_3F=CH_3\cdot O\cdot C_6H_3F\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Hellgelbe Nadeln (aus Alkohol). F: 162° (Hodgson, Nixon, Soc. 1929, 1638).
- 3-Chlor-2-oxy-benzaldehyd, 3-Chlor-salicylaldehyd $C_7H_5O_2Cl$, Formel II (E I 523). B. Durch Erwärmen von 2-Chlor-phenol mit Chloroform und Natronlauge, neben 3-Chlor-4-oxy-benzaldehyd (Davies, Rubenstein, Soc. 123, 2850; vgl. Hodgson, Jenkinson, Soc. 1929, 469). Nadeln (aus Methanol). F: 55° (D., R.). Leicht löslich in organischen Lösungsmitteln (D., R.). Liefert beim Erwärmen mit Salpetersäure (D: 1,42) in Eisessig auf 40—45° 3-Chlor-5-nitrosalicylaldehyd (D., R.).
- 3-Chlor-2-methoxy-benzaldehyd $C_8H_7O_2Cl=CH_3\cdot O\cdot C_6H_3Cl\cdot CHO$. B. Beim Behandeln von 3-Chlor-salicylaldehyd mit Methyljodid und Silberoxyd (Davies, Rubenstein, Soc. 123, 2842, 2851). Flüssigkeit. Erstarrt bei 0° zu farblosen Nadeln. Kp: ca. 255°. Oxydiert sich leicht an der Luft zu 3-Chlor-2-methoxy-benzoesäure. Liefert beim Eintragen in Salpeterschwefelsäure bei —10° 3-Chlor-5-nitro-2-methoxy-benzaldehyd.
- 4-Chlor-2-oxy-benzaldehyd, 4-Chlor-salicylaidehyd C₇H₅O₂Cl, Formel III. B. Neben 2-Chlor-4-oxy-benzaldehyd beim Erhitzen von 3-Chlor-phenol mit Chloroform, Calciumhydroxyd und Sodalösung oder mit Chloroform oder Bromoform und Natronlauge (Hodgson, Jenkinson, Soc. 1927, 1740; 1929, 469, 1641). Nußartig riechende Nadeln (aus Alkohol oder verd. Essigsäure). F: 52,5° (H., J., Soc. 1927, 1740). Leicht flüchtig mit Wasserdampf. Leicht löslich in organischen Lösungsmitteln, löslich in Wasser und schwefliger Säure. Liefert mit Salpetersäure je nach den Bedingungen 4-Chlor-5-nitro-salicylaldehyd oder 4-Chlor-3.5-dinitro-salicylaldehyd (H., J., Soc. 1928, 2273). Mit Eisenchlorid entsteht ein brauner Niederschlag. Das 4-Nitro-phenylhydrazon schmilzt bei 257° (H., J., Soc. 1927, 1741). Kupfersalz. Hellgrün. Chrom (III)-salz. Dunkelgrün.
- 4-Chlor-2-methoxy-benzaldehyd $C_8H_7O_2Cl = CH_8 \cdot O \cdot C_8H_9Cl \cdot CHO$. B. Entsteht in mäßiger Ausbeute durch Methylierung von 4-Chlor-salicylaldehyd (Hodgson, Jenkinson, Soc. 1927, 1741). Aus 4-Amino-2-methoxy-benzaldehyd nach Sandmeyer (H., J.). Nadeln (aus Alkohol). F: 74°. Leicht löslich in den üblichen organischen Lösungsmitteln. Gibt bei der Oxydation mit alkal. Permanganat Lösung 4-Chlor-2-methoxy-benzoesäure. 4-Nitro-phenylhydrazon $C_{14}H_{12}O_8N_3Cl$. F: 238°.
- 4-Chior-2-exy-benzaldoxim, 4-Chior-salicylaldoxim $C_7H_9O_2NCl = HO \cdot C_6H_9Cl \cdot CH : N \cdot OH$. Nadeln (aus Alkohol). F: 155° (Hodgson, Jenkinson, Soc. 1927, 1749). Leicht löslich in Alkohol und Eisessig, schwerer in Chloroform, ziemlich leicht in heißem Wasser. Leicht löslich in Alkalien.

- **4-Chlor 2-methoxy benzaldoxim** $C_8H_8O_2NCl = CH_3 \cdot O \cdot C_6H_8Cl \cdot CH : N \cdot OH$. Nadeln (aus Wasser). F: 132° (Hodgson, Jenkinson, Soc. 1927, 1741).
- 4 Chlor salicylaldehyd semicarbazon $C_8H_8O_4N_3Cl = HO \cdot C_8H_3Cl \cdot CH : N \cdot NH \cdot CO \cdot NH_9$. Gelbliche Krystallaggregate (aus Eisessig). F: 212° (Hodgson, Jenkinson, Soc. 1927, 1741). Ziemlich leicht löslich in Alkohol, leicht in Alkalilaugen.

4-Chlor-2-methoxy-benzaldehyd-semicarbazon $C_0H_{10}O_2N_3Cl=CH_3\cdot O\cdot C_6H_3Cl\cdot CH: N\cdot NH\cdot CO\cdot NH_2$. Fast farblose Tafeln (aus Eisessig). F: 228° (Hodgson, Jenkinson, Soc. 1927, 1741).

- 5-Chlor-2-oxy-benzaldehyd, 5-Chlor-salicylaldehyd C₇H₅O₃Cl, Formel IV (H 53). B. Durch Reduktion von 5-Chlor-salicylaëure mit Natriumamalgam und schwach saurer Na₂SO₃-Lösung in Gegenwart von Borsäure (Well, Traun, Marcel, B. 55, 2665). Nadeln (aus Benzol). F: 100° (Durrans, Soc. 123, 1426). Liefert bei der Oxydation mit Chromsäure wenig 5-Chlor-salicylaëure (D.). Gibt mit Salpetersäure (D: 1,4) in Eisessig bei 60—70° 5-Chlor-3(?)-nitrosalicylaldehyd (Lovett, Roberts, Soc. 1928, 1978).
- 4-Brom-2-oxy-benzaldehyd, 4-Brom-salicylaldehyd C₇H₅O₂Br, Formel V (H 54). B. Durch Erhitzen von 3-Brom-phenol mit Chloroform und Natronlauge oder Calciumhydroxyd + Sodalösung, neben 2-Brom-4-oxy-benzaldehyd (Hodgson, Jenkinson, Soc. 1927, 3041; 1929, 469, 1641). Gibt beim Erwärmen mit Acetanhydrid und wenig Schwefelsäure ein Gemisch aus Mono- und Triacetat (H., J., Soc. 1927, 3041). Liefert mit Salpetersäure je nach den Bedingungen 4-Brom-5-nitro-salicylaldehyd oder 4-Brom-3.5-dinitro-salicylaldehyd (H., J., Soc. 1928, 2277). Das Benzoat schmilzt bei 115°, das 4-Nitro-phenylhydrazon bei 258° (Zers.) (H., J., Soc. 1927, 3041, 3042).

- 4-Brom-2-methoxy-benzaldehyd $C_8H_7O_2Br=CH_3\cdot O\cdot C_8H_3Br\cdot CHO.$ B. Aus 4-Amino2-methoxy-benzaldehyd nach Sandmeyer (Hodgson, Jenkinson, Soc. 1927, 1741, 3042). Nadeln (aus Alkohol). F: 71°. Leicht löslich in organischen Lösungsmitteln. Gibt bei der Oxydation mit alkal. Permanganat-Lösung 4-Brom-2-methoxy-benzoesäure. 4-Nitrophenylhydrazon $C_{14}H_{12}O_3N_3Br$. F: 215°.
- 4-Brom-2-oxy-benzaldoxim, 4-Brom-salicylaldoxim $C_7H_6O_2NBr=HO\cdot C_9H_3Br\cdot CH:N\cdot OH$ (H 54). F: 168° (Hodgson, Jenkinson, Soc. 1927, 3041).
- 4-Brom-2-methoxy-benzaldoxim $C_8H_8O_2NBr=CH_3\cdot O\cdot C_6H_3Br\cdot CH:N\cdot OH$. Nadeln (aus Wasser). F: 1320 (Hodgson, Jenkinson, Soc. 1927, 3042).
- 4-Brom-salicylaidehyd-semicarbazon $C_8H_8O_2N_3Br=HO\cdot C_6H_3Br\cdot CH:N\cdot NH\cdot CO\cdot NH_2.$ F: 212° (Hodgson, Jenkinson, Soc. 1927, 3041).
- 4-Brom-2-methoxy-benzaldehyd-semicarbazon $C_9H_{10}O_2N_3Br=CH_3\cdot O\cdot C_6H_3Br\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. F: 224° (Hodgson, Jenkinson, Soc. 1927, 3042).
- 5-Brom-2-oxy-benzaldehyd, 5-Brom-salicylaldehyd C₇H₅O₂Br, Formel VI (H 54). B. Durch Reduktion von 5-Brom-salicylaëure mit Natriumamalgam und schwach saurer Na₂SO₃-Lösung in Gegenwart von Borsäure (Weil, Traun, Marcel, B. 55, 2665). Zur Darstellung durch Bromierung von Salicylaldehyd (H 54) vgl. Lindemann, Forth, A. 435, 224. Fluorescenz bei Bestrahlung mit Röntgenstrahlen: Newcomer, Am. Soc. 42, 2003. Die Alkalisalze lösen sich leicht in Wasser (L., F.).

Anhydro-bis-[5-brom-salicylaldehyd] C₁₄H₈O₃Br₂ (H 55). B. Beim Kochen von 5-Brom-salicylaldehyd mit Thionylchlorid (LINDEMANN, FORTH, A. 485, 224). — Prismen (aus Benzin). F: 167—168°. Leicht löslich in Äther und Benzol, schwerer in Benzin.

- 5-Brom-2-methoxy-benzaldehyd $C_8H_7O_2Br=CH_8\cdot O\cdot C_8H_3Br\cdot CHO$ (H 55). B. Beim Behandeln von 5-Brom-salicylaldehyd mit Dimethylsulfat in verd. Natronlauge (Wentworth, Brady, Soc. 117, 1043).
- **5-Brom-2-methoxy-benzaldexim** $C_8H_8O_3NBr=CH_3\cdot O\cdot C_8H_3Br\cdot CH:N\cdot OH$. Nadeln (aus Methanol). F: 109° (Wentworth, Brady, Soc. 117, 1044). Hydrochlorid $C_8H_8O_3NBr+HCl$. Gelbes Krystallpulver. F: 123° (Zers.).
- 5-Brom-2-methoxy-benzaldoxim-O-acetat C₁₀H₁₀O₂NBr = CH₃·O·C₆H₃Br·CH:N·O·CO·CH₂. Prismen (aus Alkohol). F: 102° (Wentworth, Brady, Soc. 117, 1044).
- 4-Fluor 3 brom 2-oxy benzaldehyd, 4-Fluor 3 brom salicylaldehyd C₇H₄O₂BrF, Formel VII. B. Neben 2-Fluor-3-brom-4-oxy-benzaldehyd beim Erhitzen von 3-Fluor-2-bromphenol mit Chloroform und Natronlauge (Hodgson, Nixon, Soc. 1929, 1637). Flüssigkeit.

Erstarrt nicht bis —20°. — Liefert bei der Einw. von Salpetersäure (D: 1,5) in Eisessig bei 100° 4-Fluor-3-brom-5-nitro-salicylaldehyd. — Das Phenylhydrazon schmilzt bei 138°, das 4-Nitro-phenylhydrazon bei 215°.

- 4-Fluor-5-brom-2-oxy-benzaldehyd, 4-Fluor-5-brom-salicylaldehyd C₇H₄O₂BrF, Formel VIII.

 B. Beim Behandeln von 3-Fluor-phenol mit Brom in Chloroform und Kochen des Reaktionsgemisches mit 20% iger Natronlauge (Hodgson, Nixon, Soc. 1929, 1637; vgl. H., Jenkinson, Soc. 1928, 2276). Nadeln (aus Petroläther). F: 81°. Flüchtig mit Wasserdampf. Liefert bei Einw von Diacetyl-orthosalpetersäure in Acetanhydrid bei 100° 4-Fluor-5-brom-3-nitrosalicylaldehyd. Das Phenylhydrazon schmilzt bei 166°, das 4-Nitro-phenylhydrazon bei 242°.
- 4-Chlor-3-brom-2-oxy-benzaldehyd, 4-Chlor-3-brom-salicylaidehyd C₇H₄O₂ClBr, Formel IX. B. Neben 2-Chlor-3-brom-4-oxy-benzaldehyd beim Erhitzen von 3 Chlor-2-brom-phenol mit Chloroform, Calciumhydroxyd und Sodalösung (Hodgson, Jenkinson, Soc. 1928, 2275; vgl. H., J., Soc. 1927, 1740). Nadeln. F: 124°. Ist langsam flüchtig mit Wasserdampf. Schwer löslich in Wasser, leicht in organischen Lösungsmitteln. Gibt mit Salpetersäure (D: 1,5) in Eisessig bei 60—65° 4-Chlor-3-brom-5-nitro-salicylaldehyd. Das Phenylhydrazon schmilzt bei 204°, das 4-Nitro-phenylhydrazon bei 298° (Zers.).
- 4-Chlor-5-brom-2-oxy-benzaldehýd, 4-Chlor-5-brom-salicylaldehyd C₇H₄O₂ClBr, Formel X. B. Durch Behandeln von 3-Chlor-phenol mit Brom in Chloroform und Kochen des Reaktionsgemisches mit 20% iger Natronlauge (Hodgson, Jenkinson, Soc. 1928, 2276). Nadeln (aus verd. Essigsäure). F: 125°. Flüchtig mit Wasserdampf. Liefert bei der Einw. von Diacetyl-orthosalpetersäure in Acetanhydrid bei 50° 4-Chlor-5-brom-3-nitro-salicylaldehyd. Das Phenylhydrazon schmilzt bei 200°, das 4-Nitro-phenylhydrazon bei 280° (Zers.).

$$VIII. \underset{\textbf{F}}{\underbrace{\text{CHO}}} \underbrace{\overset{\textbf{CHO}}{\circ}} \underbrace{\overset$$

- 3.4-Dibrom-2-oxy-benzaldehyd, 3.4-Dibrom-salicylaldehyd C₇H₄O₂Br₅, Formel XI. B. Neben 2.3-Dibrom-4-oxy-benzaldehyd beim Erhitzen von 2.3-Dibrom-phenol mit Chloroform und Natronlauge (Hodgson, Jenkinson, Soc. 1928, 2275). Nadeln. F: 129°. Ist mit Wasserdampf flüchtig. Liefert bei der Nitrierung in Eisessig 3.4-Dibrom-5-nitro-salicylaldehyd (H., J., Soc. 1928, 2278). —Das 4-Nitro-phenylhydrazon schmilzt bei 220°.
- 3.5-Dibrom-2-oxy-benzaldehyd, 3.5-Dibrom-salicylaldehyd C₇H₄O₂Br₂, Formel XII (H 55).

 B. Durch Reduktion von 3.5-Dibrom-salicylsäure mit Natriumamalgam und schwach saurer Na₂SO₃-Lösung in Gegenwart von Borsäure (Weil, Traun, Marcel, B. 55, 2665). Darstellung durch Bromierung von Salicylaldehyd in Eisessig unter Kühlung: Wentworth, Brady, Soc. 117, 1043; Brewster, Am. Soc. 46, 2464; in Gegenwart von Natriumacetat in Eisessig bei 50°: Lindemann, Forth, A. 485, 223. F: 86° (Dey, Row, Soc. 125, 560), 85° (W., Tr., M.; L., F.). Ziemlich leicht löslich in kaltem Äther und Benzol und in heißem Benzin, Alkohol und Eisessig (L., F.). Die kalte wäßrige Lösung ist gelb (Br.). Mit Wasserdampf flüchtig (Br.). Geht beim Kochen mit Thionylchlorid in Anhydro-bis [3.5-dibrom-salicylaldehyd] (s. u.)

Geht beim Kochen mit Thionylchlorid in Anhydro-bis-[3.5-dibrom-salicylaldehyd] (s. u.) über (Lindemann, Forth, A. 485, 223). Beim Erwärmen mit Phosphorpentachlorid in Benzol erhält man 3.5-Dibrom-2-oxy-benzylidenohlorid und eine schwer lösliche Verbindung (C₇H₃OClBr₃)x, die bei 220—225° schmilzt (L., F., A. 485, 221, 225); bei Anwendung von Phosphorpentabromid bilden sich 3.5-Dibrom-2-oxy-benzylidenbromid und Anhydro-bis-[3.5-dibrom-salicylaldehyd] (L., F., A. 485, 221, 225) Liefert beim Erhitzen mit α-Naphthylamin zunächst [3.5-Dibrom-salicyliden]-α-naphthylamin; bei längerem Erhitzen erfolgt weitgehende Zersetzung (Brewster, Am. Soc. 46, 2465). — Färbt die Haut hellgelb (Br.). — Natriumsalz. Enthält 1 Mol Krystallwasser (L., F.). Schwer löslich in kaltem, leichter in warmem Wasser und Alkohol (Br.).

An hydro-bis-[3.5-dibrom-salicylaldehyd] $C_{14}H_{16}O_3Br_4$. Das Mol.-Gew. wurde ebullioskopisch in Benzol bestimmt. — B. Aus 3.5-Dibrom-salicylaldehyd beim Kochen mit Thionylchlorid oder beim Erwärmen mit Phosphorpentabromid (Lindemann, Forth, A. 485, 223, 226). — Krystalle (aus Benzol). F: 243°. Schwer löslich in Äther und Benzin, löslich in siedendem Benzol.

- 3.5 Dibrom 2 methoxy benzaldehyd C₈H₆O₂Br₂ = CH₂·O·C₆H₂Br₂·CHO. B. Aus dem Natriumsalz des 3.5-Dibrom-salicylaldehyds beim Erwärmen mit Dimethylsulfat (Lindemann, Forth, A. 435, 224). Nadeln (aus Eisessig oder Alkohol). F: 97°. Leicht löslich in kaltem Benzol sowie in heißem Benzin, Alkohol und Eisessig.
- 3.5-Dibrom-2-acetoxy-benzaldehyd, 3.5-Dibrom-salicylaldehyd-monoacetat C₂H₄O₃Br₂ = CH₂·CO·O·C₆H₄Br₂·CHO (vgl. H·55). B. Beim Kochen von 3.5-Dibrom-salicylaldehyddriacetat mit Eisessig und etwas verd. Schwefelsäure (Lindrmann, Forth, A. 485, 223). Nadeln (aus Alkohol). F: 71°. Ziemlich leicht löslich in organischen Lösungsmitteln.

- 3.5 Dibrom 2 acetoxy benzylidendiacetat, 3.5 Dibrom salicylaldehyd triacetat C₁₃H₁₂O₆Br₅ = CH₃·CO·O·C₆H₂Br₅·CH(O·CO·CH₅)₂ (H 56). B. Zur Bildung durch Acetylierung von 3.5-Dibrom-salicylaldehyd vgl. Lindemann, Forth, A. 435, 223). Bei ca. 4-stdg. Erhitzen von 3.4.5 (oder 3.5.6)-Tribrom-salicylaldehyd (s. u.) mit Acetanhydrid und Natrium-acetat (Shono, J. Soc. chem. Ind. Japan Spl. 31, 252 B; C. 1929 I, 383). F: 99—100° (L., F.), 100—101° (Sh.). Ziemlich leicht löslich in organischen Lösungsmitteln (L., F.). Beim Kochen mit Eisessig und verd. Schwefelsäure entsteht 3.5-Dibrom-salicylaldehyd-monoacetat (L., F.).
- 3.5-Dibrom-2-oxy-benzaldimin, 3.5-Dibrom-salicylaldimin $C_7H_5ONBr_2=HO\cdot C_8H_2Br_2\cdot CH:$ NH. B. Beim Einleiten von Ammoniak in Lösungen von 3.5-Dibrom-2-oxy-benzylidenchlorid oder -bromid in Benzol (Lindemann, Forth, A. 485, 227). Gelb. Schwer löslich in Benzol und Benzin.
- 3.5 Dibrom 2 oxy α benzaldoxim, α 3.5 Dibrom salicylaldoxim $C_7H_5O_2NBr_2=HO\cdot C_6H_2Br_2\cdot CH$ Bezeichnung als α -Oxim und Konfiguration nach J. Meisenheimer, $N\cdot OH$
- W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 974, 982. B. Aus 3.5-Dibrom-salicylaldehyd und Hydroxylaminhydrochlorid in wäßrig-alkoholischer Natronlauge bei Zimmertemperatur (Wentworth, Brady, Soc. 117, 1043). Nadeln (aus Benzol). F: 204°. Gibt bei der Acetylierung 3.5-Dibrom-2-acetoxy-α-benzaldoxim-O-acetat.
- 3.5 Dibrom 2 oxy β benzaldoxim, β 3.5 Dibrom salicylaldoxim $C_7H_5O_2NBr_2=HO\cdot C_6H_2Br_2\cdot CH$ $HO\cdot N$. Bezeichnung als β -Oxim und Konfiguration nach J. Meisenheimer, W. Theil-HO·N
- HO·N

 ACKER in K. FREUDENBERG, Stereochemie [Leipzig-Wien 1933], S. 974, 982. B. Bei kurzem Kochen von 3.5-Dibrom-salicylaldehyd mit Hydroxylaminhydrochlorid in Alkohol (LINDEMANN, THIELE, A. 449, 73). Krystalle (aus Eisessig). F: 218—220°. Löslich in Alkohol und Eisessig, schwer löslich in Benzol. Löslich in konz. Schwefelsäure mit gelber Farbe. Gibt mit Acetanhydrid bei kurzem Erwärmen 3.5-Dibrom-2-oxy-β-benzaldoxim-O-acetat, bei 2-stdg. Kochen 3.5-Dibrom-2-acetoxy-benzonitril; beim Behandeln mit Acetanhydrid und etwas konz. Schwefelsäure bildet sich 3.5-Dibrom-2-acetoxy-β-benzaldoxim-O-acetat.
- 3.5-Dibrom-2-oxy- β -benzaldoxim-0-acetat $C_9H_7O_3NBr_2=HO\cdot C_6H_2Br_2\cdot CH:N\cdot O\cdot CO\cdot CH_2$. B. Aus 3.5-Dibrom-2-oxy- β -benzaldoxim durch kurzes Erwärmen mit Acetanhydrid oder durch Kochen mit Acetanhydrid in Eisessig (Lindemann, Thiele, A. 449, 74). Nadeln (aus Methanol). F: 146°. Zerfällt oberhalb des Schmelzpunkts in 3.5-Dibrom-salicylsäurenitril und Essigsäure. Bei der Hydrolyse mit Eisessig-Salzsäure oder alkoh. Natronlauge erhält man 3.5-Dibrom-2-oxy- β -benzaldoxim.
- 3.5-Dibrom-2-acetoxy- α -benzaldoxim-0-acetat $C_{11}H_{\bullet}O_{4}NBr_{2}=CH_{3}\cdot CO\cdot O\cdot C_{6}H_{2}Br_{2}\cdot CH: N\cdot O\cdot CO\cdot CH_{2}.$ B. Durch Acetylierung von 3.5-Dibrom-2-oxy- α -benzaldoxim (Wentworth, Brady, Soc. 117, 1043). Nadeln (aus Alkohol). F: 111,5°. Gibt bei der Hydrolyse mit 10% iger Natronlauge wieder 3.5-Dibrom-2-oxy- α -benzaldoxim.
- 3.5-Dibrom-2-acetoxy- β -benzaldoxim-0-acetat $C_{11}H_9O_4NBr_2=CH_3\cdot CO\cdot O\cdot C_6H_2Br_2\cdot CH: N\cdot O\cdot CO\cdot CH_3.$ B. Aus β -3.5-Dibrom-salicylaldoxim durch Einw. von Acetanhydrid und etwas konz. Schwefelsäure (Lindemann, Thiele, A. 449, 74). Nadeln (aus Benzol + Benzin). F: 150°. Löslich in Alkohol, Eisessig und Benzol. Unlöslich in verd. Alkalilaugen.
- 4.5-Dibrom-2-oxy-benzaldehyd, 4.5-Dibrom-salicylaldehyd C₁₃H₁₂O₆Br₂, Formel I. B. Beim Behandeln von 3-Brom-phenol mit Brom in Chloroform und Erhitzen des Reaktionsgemisches mit 20%iger Natronlauge (Hodson, Jenkinson, Soc. 1928, 2278). Nadeln. F: 132°. Liefert bei der Nitrierung 4.5-Dibrom-3-nitro-salicylaldehyd. Das 4-Nitro-phenylhydrazon schmilzt bei 266° (Zers.). Silbersalz. Gelb.
- 3.4.5 (eder 3.5.6)-Tribrom-2-oxy-benzaldehyd, 3.4.5 (oder 3.5.6)-Tribrom-salicylaldehyd C₇H₃O₂Br₃, Formel II oder III. B. Neben anderen Produkten bei der Bromierung der Verbindung C₁₆H₁₆O₂N aus Phenol (E II 6, 139) in wäßr. Lösung (Shono, J. Soc. chem. Ind. Japan Spl. 30, 140 B; 31, 252 B; C. 1928 II, 2133; 1929 I, 383). Hellgelbe Nadeln (aus Benzol). F: 91°. Beim Behandeln mit Chromtrioxyd in Eisessig erhält man 3.5-Dibrom-salicylaldehyd. Gibt bei der Reduktion mit Natriumamalgam 5-Brom-saligenin. Liefert mit Hydroxylamin-hydrochlorid in alkoh. Lösung ein bei 225° schmelzendes Dibrom-salicylaldoxim. Bei kurzem Erwärmen mit Acetanhydrid und Natriumacetat entsteht 3.4.5 (oder 3.5.6)-Tribrom-2-acetoxy-benzaldehyd, bei längerem Erhitzen 3.5-Dibrom-salicylaldehydtriacetat. Die

Lösungen in Alkalilaugen sind tiefgelb. Gibt mit Eisenchlorid eine purpurrote, mit Diazobenzolsulfonsäure eine fuchsinrote Färbung.

- 3.4.5(oder 3.5.6)-Tribrom-2-acetoxy-benzaldehyd $C_9H_5O_3Br_9=CH_3\cdot CO\cdot O\cdot C_6HBr_3\cdot CHO$. B. Bei kurzem Erwärmen von 3.4.5 (oder 3.5.6)-Tribrom-salicylaldehyd mit Acetanhydrid und Natriumacetat auf dem Wasserbad (Shono, J. Soc. chem. Ind. Japan Spl. 31, 253 B; C. 1929 I, 383). — Krystalle. F: 81—82°. Unlöslich in kalten Alkalilaugen.
- 3-Jod-2-oxy-benzaldehyd, 3-Jod-salicylaldehyd C₇H₅O₂I, Formel I. B. Bei der Einw. von Jod auf 3-Hydroxymercuri-salicylaldehyd in Chloroform (Whitmore, Middliton, Am. Soc. 45, 1332). — F: 55°.
- 4-Jod-2-oxy-benzaldehyd, 4-Jod-salicylaldehyd C₇H₈O₃I, Formel II. B. Neben 2-Jod-4-oxy-benzaldehyd beim Erhitzen von 3-Jod-phenol mit Chloroform, Calciumhydroxyd und Sodalösung (Hodgson, Jenkinson, Soc. 1927, 3043; vgl. H., J., Soc. 1929, 469, 1641). Nadeln (aus Alkohol oder verd. Essigsäure). F: 87°. Mit Wasserdampf langsam flüchtig. Liefert mit rauchender Salpetersäure in Eisessig bei 45° 4-Jod-5-nitro-salicylaldehyd und 4-Jod-3.5-dinitro-salicylaldehyd (H., J., Soc. 1928, 2278). 4-Nitro-phenylhydrazon C₁₃H₁₀O₃N₃I. F: 242° (Zers.) (H., J., Soc. 1927, 3043). Das Ammoniumsalz, die Alkalisalze und das Silbersals eind selb und kielt löglich in Wasser Kunfersolz Blaugrön salz sind gelb und leicht löslich in Wasser. - Kupfersalz. Blaugrün.

- 4-Jod-2-methoxy-benzaldehyd $C_8H_7O_2I=CH_3\cdot O\cdot C_8H_3I\cdot CHO$. B. Aus 4-Amino-2-methoxy-benzaldehyd nach Sandmeyer (Hodgson, Jenkinson, Soc. 1927, 3043). F: 85°. 4-Nitro-phenylhydrazon $C_{14}H_{12}O_3N_3I$. F: 238° (Zers.).
- 4 Jod 2 oxy benzaldoxim, 4 Jod salicylaldoxim $C_7H_4O_2NI = HO \cdot C_6H_3I \cdot CH : N \cdot OH$. F: 171° (Hodgson, Jenkinson, Soc. 1927, 3043).
- 4-Jod-2-methoxy-benzaidoxim $C_8H_8O_9NI = CH_3 \cdot O \cdot C_8H_8I \cdot CH : N \cdot OH$. F: 138° (Hodgson, JENKINSON, Soc. 1927, 3043).
- 4-Jod-salicylaldehyd-semicarbazon $C_8H_8O_8N_3I = HO \cdot C_6H_3I \cdot CH : N \cdot NH \cdot CO \cdot NH_4$. Blaßgelbe Nadeln. F: 2520 (Hodgson, Jenkinson, Soc. 1927, 3043).
- $\textbf{4-Jod-2-methoxy-benzaldehyd-semicarbazon} \quad C_{\textbf{9}}H_{10}O_{\textbf{2}}N_{\textbf{3}}I = CH_{\textbf{3}} \cdot O \cdot C_{\textbf{6}}H_{\textbf{3}}I \cdot CH : N \cdot NH \cdot CH_{\textbf{5}} \cdot CH_{\textbf$ CO·NH₂. F: 228° (Hodgson, Jenkinson, Soc. 1927, 3043).
- 5-Brom 4-jod-2-o xy-benzaldehyd, 5-Brom 4-jod-salicylaldehyd $C_7H_4O_2BrI$, Formel III. B. Durch Behandeln von 3-Jod-phenol mit Brom in Chloroform und Erhitzen des Reaktionsgemisches mit 20% iger Natronlauge (Hodgson, Jenkinson, Soc. 1928, 2279). — Gelbliche Nadeln (aus Alkohol). F: 117°. Ist langsam flüchtig mit Wasserdampf. — Das Phenylhydrazon schmilzt bei 151°, das 4-Nitro-phenylhydrazon bei 266° (Zers.). — Natriumsalz. Goldgelbe Krystalle. Sehr schwer löslich. - Silbersalz. Gelb.
- 3.5-Dijod-2-oxy-benzaldehyd, 3.5-Dijod-salicylaldehyd C₂H₄O₂I₂, Formel IV (H 56 als x.x-Dijod-2-oxy-benzaldehyd beschrieben). B. Beim Schütteln von 3.5-Bis-acetoxy-mercuri-salicylaldehyd (Syst. Nr. 2353) mit Jod-Kaliumjodid-Lösung (Henry, Sharp, Soc. 121, 1057). F: 107,5° (korr.) (H., Sh.). Gibt mit Permanganat in Aceton 3.5-Dijod-salicylsaure (H., Sh.). — Das Phenylhydrazon schmilzt bei 172,5—173,50 (korr.) (H., Sh.). Kupfersalz Cu(C₇H₃O₂I₂)₂. Pharmakologische Wirkung: Cherbuliez, Helv. 12, 920.
- 3-Nitro-2-oxy-benzaldehyd, 3-Nitro-salicylaldehyd $C_7H_5O_4N$, Formel V (H 56). F: 109—110° (Betti, Capacololi, G. 50 II, 279). Phenylhydrazon. F: 138°.
- 5-Nitro-2-oxy-benzaldehyd, 5-Nitro-salicylaldehyd C₇H₅O₄N, Formel VI (H 56; E I 523). B. Beim Kochen von 3.6-Dinitro-cumarin mit Na₂SO₃-Lösung (DEY, Row, Soc. 125, 558). — Phenylhydrazon. F: 1940 (Betti, Capacciòli, G. 50 II, 279).
- CHO CHO 5 - Nitro - 2 - athoxy - benzaidehyd $C_9H_9O_4N = C_9H_5 \cdot O$ C₈H₈(NO₃)·CHO (E I 523). B. Durch vorsichtiges Erwärmen · OH OH von dl-5-Nitro-2-athoxy-mandelsaure mit konz. Schwefelsaure auf 60-70° (CHATTAWAY, Soc. 1926, 2724).
- 5-Nitro-2-oxy-benzaidoxim, 5-Nitro-salicylaidoxim $C_7H_6O_6N_9$ $HO \cdot C_6H_9(NO_9) \cdot CH : N \cdot OH$. Nadeln (aus verd. Alkohol). F: 225° (Meisenheimer, Zimmermann, v. Kummer, A. 446, 227). —

Gibt mit Soda in wäßr. Alkohol ein tiefrotes Natriumsalz, das in der Kälte auskrystallisiert; beim Kochen der Lösung wird das Oxim nicht verändert.

N·OH. Zur Konfiguration $CH_3 \cdot O \cdot C_0H_3(NO_2) \cdot CH$ 5-Nitro-2-methoxy- α -benzaldoxim $C_8H_8O_4N_2=$

vgl. die Angaben im folgenden Artikel. — B. Durch Oximierung von 5-Nitro-2-methoxy-benzaldehyd (Brady, Manjunath, Soc. 125, 1066). — Tafeln (aus Alkohol). F: 183°. — Läßt sich nicht in ein isomeres Oxim umlagern (B., M.; B., Klein, Soc. 1927, 887 Anm.). Gibt mit 4-Nitrobenzylbromid in Natriumäthylat-Lösung O-[4-Nitro-benzyl]-5-nitro-2-methoxy-α-benzaldoxim (B., K., Soc. 1927, 881).

5-Nitro-2-methoxy- α -benzaldoxim-0-[4-nitro-benzyläther], 0-[4-Nitro-benzyl]-5-nitro-2-methoxy- α -benzaldoxim $C_{16}H_{18}O_6N_3= {CH_3\cdot O\cdot C_6H_3(NO_2)\cdot CH \over NO_2}$. Zur Konzultonia

 $\ddot{\mathbf{N}}\!\cdot\!\mathbf{O}\!\cdot\!\mathbf{C}\mathbf{H_2}\!\cdot\!\mathbf{C_6}\mathbf{H_4}\!\cdot\!\mathbf{NO_2}$

figuration vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 994. — B. Aus 5-Nitro-2-methoxy-a-benzaldoxim und 4-Nitro-benzylbromid in siedender Natriumäthylat-Lösung (Brady, Klein, Soc. 1927, 881). Aus 5-Nitro-2-methoxybenzaldehyd und O-[4-Nitro-benzyl]-hydroxylamin in heißer wäßrig-alkoholischer Salzsäure (B., K., Soc. 1927, 882). — Nadeln (aus Aceton). F: 149°. Wird durch Einw. von ultraviolettem Licht in Benzol in O-[4-Nitro-benzyl]-5-nitro-2-methoxy-β-benzaldoxim umgelagert.

benzyläther] in Benzol (Brady, Klein, Soc. 1927, 887). — Nadein (aus Aceton + Alkohol). F: 153°. — Wird durch Chlorwasserstoff in Chloroform wieder in 5-Nitro-2-methoxy-α-benzaldoxim-O-[4-nitro-benzyläther] übergeführt.

- 5-Nitro-2-methoxy- α -benzaldoxim-0-acetat $C_{10}H_{10}O_5N_3=CH_3\cdot O\cdot C_6H_3(NO_2)\cdot CH:N\cdot O\cdot CO\cdot CH_3$. B. Aus 5-Nitro-2-methoxy- α -benzaldoxim bei der Einw. von Acetanhydrid (Brady, MANJUNATH, Soc. 125, 1066). — Prismen (aus Alkohol). F: 160°. — Liefert bei der Hydrolyse mit 2n-Natronlauge wieder 5-Nitro-2-methoxy-a-benzaldoxim.
- 5-Nitro-2-äthoxy-benzaldehyd-semicarbazon $C_{10}H_{12}O_4N_4=C_2H_5\cdot O\cdot C_6H_3\cdot (NO_2)\cdot CH:N\cdot NH\cdot CO\cdot NH_2$ (E I 524). Ist monotrop dimorph; man erhält bei raschem Abkühlen von Lösungen in Alkohol, Eisessig oder Aceton die labile Form in gelblichen Prismen, die sich unter der Mutterlauge in die stabile Form umwandeln; die stabile Form wird auch bei sehr langsamem Abkühlen der alkoh. Lösung erhalten und bildet gelbe, monoklin prismatische Krystalle (Chattaway, Soc. 1926, 2725; Ch., Curjel, Soc. 1926, 3214). Beide Formen schmelzen bei 234° bis 235° (Zers.) (CH.). Dichte der stabilen Form D18.5: 1,437 (CH., CU.). Bei 20° lösen sich in 100 g Alkohol, Chloroform oder Aceton 0,10, 0,05 und 0,30 g der stabilen Form (CH., CU.).
- 4-Fluor-5-nitro-2-oxy-benzaldehyd, 4-Fluor-5-nitro-salicylaldehyd $C_7H_4O_4NF$, Formel VII. B. Durch Einw. von rauchender Salpetersäure auf 4-Fluor-salicylaldehyd in Eisessig anfangs

hei 18°, dann bei 60° (Hodgson, Nixon, Soc. 1929, 1635). — Gelbe Nadeln (aus Alkohol). F: 120°. Wenig flüchtig mit Wasserdampf. Liefert bei der Bromierung 4 - Fluor - 3 - brom - 5 - nitro - salicyl-

aldehyd. — Das Phenylhydrazon schmilzt bei 173° (Zers.), das 4-Nitro-phenylhydrazon bei 340° (Zers.).

5-Chlor-3-nitro-2-oxy-benzaldehyd, 5-Chlor-3-nitro-salicylaldehyd C, H4O4NCl, Formel VIII. B. Durch Einw. von Salpetersäure (D: 1,4) auf 5-Chlor-salicylaldehyd in Eisessig bei 60-70° (LOVETT, ROBERTS, Soc. 1928, 1978). — Gelbe Nadeln (aus Petrolather). F: 105-107°.

3-Chlor-5-nitro-2-oxy-benzaldehyd, 3-Chlor-5-nitro-salicylaldehyd $C_7H_4O_4NCl$, Formel IX. B. Beim Erwärmen von 3-Chlor-salicylaldehyd mit Salpetersäure (D: 1,42) in Eisessig auf 40° bis 45° (Davies, Rubenstein, Soc. 128, 2850). — Gelbe Nadeln (aus verd. Alkohol). F: 129°. -Gibt mit alkoh. Eisenchlorid-Lösung eine dunkelviolette Färbung.

3-Chlor-5-nitro-2-methoxy-benzaldehyd $C_0H_0O_4NCl = CH_3 \cdot O \cdot C_0H_3Cl(NO_2) \cdot CHO$. Beim Behandeln von 3-Chlor-5-nitro-salicylaldehyd mit Methyljodid und Silberoxyd (DAVIES, RUBEN-STEIN, Soc. 123, 2850). Bei der Einw. von Salpeterschwefelsäure auf 3-Chlor-2-methoxy-benzaldehyd bei —10° (D., R., Soc. 123, 2851). — Gelbliche Nadeln (aus Methanol). F: 90°; der Schmelzpunkt ändert sich beim Aufbewahren. — Liefert beim Erwärmen mit alkal. Permanganat-Lösung 3-Chlor-5-nitro-2-methoxy-benzoesaure.

OXY-OXO-VERBINDUNGEN C_nH_{2 n-8}O₂

4-Chlor-5-nitre-2-exy-benzeidehyd, 4-Chlor-5-nitre-salicylaidehyd C₇H₄O₄NCl, Formel I. B. Durch Einw. von rauchender Salpetersäure auf 4-Chlor-salicylaidehyd in Eisessig erst bei 18°, dann bei 60° (Hodson, Jenkinson, Soc. 1928, 2273). — Gelbliche Nadeln (aus Alkohol). F: 116°. Schwer löalich in Wasser und in Petroläther, leicht in anderen organischen Lösungsnitteln. — Reduziert nicht ammoniakalische Silbernitrat-Lösung und Fehlingsche Lösung. Liefert mit Brom in Eisessig 4-Chlor-3-brom-5-nitro-salicylaidehyd. — Das Phenylhydrazon schmilzt bei 188° (Zers.), das 4-Nitro-phenylhydrazon bei 294° (Zers.).

Semicarbazon $C_aH_7O_4N_4Cl=HO\cdot C_4H_3Cl\cdot (NO_3)\cdot CH:N\cdot NH\cdot CO\cdot NH_4$. Gelbliche Nadeln (aus verd. Essigsäure). Zersetzt sich oberhalb 300° (Hodgson, Jeneinson, Soc. 1928, 2273).

4-Brom-5-nitre-2-oxy-benzaldehyd, 4-Brom-5-nitre-salicylaldehyd C₇H₄O₄NBr, Formel II. B. Durch Einw. von 63% iger Salpetersäure auf 4-Brom-salicylaldehyd in Eisessig bei 35—40° (Hodgson, Jenkinson, Soc. 1928, 2277). — Hellgelbe Krystalle (aus Alkohol). F: 128°. Ist mit Wasserdampf flüchtig. Leicht löslich in heißem Wasser und in organischen Lösungsmitteln. — Liefert bei der Bromierung in Eisessig 3.4-Dibrom-5-nitro-salicylaldehyd. — Das Phenylhydrazon schmilzt bei 189°, das 4-Nitro-phenylhydrazon bei 301° (Zers.).

Semicarbazon $C_0H_2O_4N_4Br = HO \cdot C_0H_2Br(NO_2) \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Hellgelbe Nadeln. Zersetzt sich oberhalb 210° (Hodgson, Jenkinson, Soc. 1928, 2277).

4-Fluor-5-brom-3-nitro-2-oxy-benzaldehyd, 4-Fluor-5-brom-3-nitro-salicylaldehyd $C_7H_4O_4NFBr$, Formel III. B. Durch Einw. von Diacetyl-orthosalpetersäure auf 4-Fluor-5-brom-salicylaldehyd in Acetanhydrid bei 100° (Hodgson, Nixon, Soc. 1929, 1638). — Gelbliche Tafeln (aus verd. Alkohol). F: 115°. — Gibt ein rotes Natriumsalz. — Das Phenylhydrazon schmilzt bei 215°, das 4-Nitro-phenylhydrazon bei 258°.

- 4-Fluor-3-brom-5-nitro-2-oxy-benzaldehyd, 4-Fluor-3-brom-5-nitro-salicylaldehyd C₇H₃O₄NFBr, Formel IV. B. Durch Einw. von Salpetersäure (D: 1,5) auf 4-Fluor-3-brom-salicylaldehyd in Eisessig bei 100° (Hodgson, Nixon, Soc. 1929, 1637). Durch Bromierung von 4-Fluor-5-nitro-salicylaldehyd (H., N.). Gelbliche Nadeln (aus Eisessig). F: 151°. Das Phenylhydrazon schmilzt bei 193°, das 4-Nitro-phenylhydrazon bei 270° (Zers.).
- 4-Chlor-5-brom-3-nitro-2-oxy-benzaldehyd, 4-Chlor-5-brom-3-nitro-salicylaldehyd $C_7H_8O_4NClBr$, Formel V. B. Durch Einw. von Diacetyl-orthosalpetersäure auf 4-Chlor-5-brom-salicylaldehyd in Acetanhydrid bei 50° (Hodgson, Jenkinson, Soc. 1928, 2276). Hellgelbe Prismen (aus Alkohol). F: 116° . Gibt ein rotes Natriumsalz. Das Phenylhydrazon schmilzt bei 241° (Zers.).

- 4-Chlor-3-brom-5-nitro-2-oxy-benzaldehyd, 4-Chlor-3-brom-5-nitro-salicylaldehyd $C_7H_2O_4NClBr$, Formel VI. B. Durch Nitrierung von 4-Chlor-3-brom-2-oxy-benzaldehyd in Eisessig bei 60—65° (Hodgson, Jenkinson, Soc. 1928, 2275). Durch Einw. von Brom auf 4-Chlor-5-nitro-2-oxy-benzaldehyd in Eisessig (H., J., Soc. 1928, 2275). Gelbe Prismen (aus Alkohol). F: 137°. Das Phenylhydrazon schmilzt bei 229° (Zers.). Natriumsalz. Gelb. Schwer löslich in Sodalösung.
- 4.5-Dibrom-3-nitro-2-oxy-benzaldehyd, 4.5-Dibrom-3-nitro-salicylaldehyd C₇H₂O₄NBr₂, Formel VII. B. Durch Nitrierung von 4.5-Dibrom-2-oxy-benzaldehyd in Eisessig (Hodgson, Jeneinson, Soc. 1928, 2278). Hellgelbe Prismen (aus Alkohol). F: 118°. Das Phenylhydrazon schmilzt bei 236° (Zers.). Silbersalz. Tieforangefarben.
- 3.4-Dibrom-5-nitro-2-oxy-benzaldehyd, 3.4-Dibrom-5-nitro-salicylaldehyd C₇H₃O₄NBr₂, Formel VIII. B. Durch Nitrierung von 3.4-Dibrom-salicylaldehyd in Eisessig (Hodgson, Jenkinson, Soc. 1928, 2278). Durch Bromierung von 4-Brom-5-nitro-salicylaldehyd in Eisessig (H., J.). Gelbliche Nadeln (aus Alkohol). F: 114°.
- 4- Jod 5-nitre 2-oxy benzaldehyd, 4- Jod 5-nitre salicylaidehyd $C_7H_4O_4NI$, Formel IX. B. Durch Behandeln von 4- Jod-salicylaidehyd mit rauchender Salpetersäure in Eisessig, zuletzt

bei 45°, neben 4-Jod-3.5-dinitro-salicylaldehyd (Hodgson, Jenkinson, Soc. 1928, 2278). — Goldgelbe Nadeln (aus Alkohol). F: 118°. Ist mit Wasserdampf flüchtig. — Das Phenylhydrazon schmilzt bei 177° (Zers.), das 4-Nitro-phenylhydrazon bei 297° (Zers.). — Silbersalz. Gelb. Schwer löslich in Wasser.

Semicarbazon $C_8H_7O_4N_4I = HO \cdot C_4H_4I(NO_3) \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Gelbliche mikroskopische Nadeln. Zersetzt sich bei 230—240° (Hodgson, Jeneinson, Soc. 1928, 2279).

5-Brom-4-jod-3-nitro-2-oxy-benzaldehyd, 5-Brom-4-jod-3-nitro-salicylaldehyd C₇H₃O₄NBrI, Formel X. B. Durch Nitrierung von 5-Brom-4-jod-salicylaldehyd (Hodson, Jenkinson, Soc. 1928, 2279). — Goldgelbe Prismen (aus Alkohol). F: 153°. — Das Phenylhydrazon schmilzt bei 245° (Zers.). — Das Silbersalz ist orangefarben.

3-Brom-4-jod-5-nitro-2-oxy-benzaldehyd, 3-Brom-4-jod-5-nitro-salicylaldehyd $C_7H_3O_4NBrI$, Formel XI. B. Durch Nitrierung von 3-Brom-4-jod-salicylaldehyd (Hodgson, Jenkinson, Soc. 1928, 2279). — Hellgelbe Nadeln (aus Alkohol). F: 145°.

3.5-Dinitro-2-oxy-benzaldehyd, 3.5-Dinitro-salicylaidehyd C₇H₄O₆N₂, Formel XII. B. Man nitriert Salicylaidehyd mit rauchender Salpetersäure in Eisessig unterhalb 15° und trägt das erhaltene Gemisch von 3- und 5-Nitro-salicylaidehyd unter Kühlung mit Eis-Kochsalz-Gemisch in Salpeterschwefelsäure ein (Lovett, Roberts, Soc. 1928, 1978). — Gelbe Prismen (aus Benzol). F: 58—60°. — Liefert bei der Oxydation mit alkal. Permanganat-Lösung 3.5-Dinitro-salicylsäure.

$$X. \xrightarrow[I]{\text{CHO}} OH \\ XI. \xrightarrow[I]{\text{CHO}} O2N \cdot \bigcirc OH \\ O2N \cdot \bigcirc OH \\ XII. O2N \cdot \bigcirc OH \\ XIII. O2N \cdot \bigcirc OH \\ XIII.$$

4-Fluor-3.5-dinitro-2-oxy-benzaldehyd, 4-Fluor-3.5-dinitro-salicylaldehyd C₇H₃O₆N₂F, Formel XIII (X = F). B. Durch rasches Zufügen von 91 %iger Salpetersäure zu einer Lösung von 4-Fluor-salicylaldehyd in Eisessig und folgendes Erhitzen auf 100° (Hodgson, Nixon, Soc. 1929, 1636). — Gelbliche Nadeln (aus Benzol). F: 165°. — Reduziert Fehlingsche Lösung nicht. Gibt mit Bromwasser keinen Niederschlag. — Das Phenylhydrazon schmilzt bei 221°, das 4-Nitro-phenylhydrazon bei 254° (Zers.).

4-Chlor-3.5-dinitro-2-oxy-benzaldehyd, 4-Chlor-3.5-dinitro-salicylaldehyd $C_7H_3O_6N_2Cl$, Formel XIII (X = Cl). B. Analog 4-Fluor-3.5-dinitro-salicylaldehyd (Hodgson, Jenkinson, Soc. 1928, 2273). — Blaßgelbe Nadeln (aus Wasser). F: 153°. — Reduziert Fehlingsche Lösung nicht. Reagiert nicht mit Bromwasser. — Das Phenylhydrazon schmilzt bei 219°, das 4-Nitro-phenylhydrazon bei 286° (Zers.).

Semicarbazon $C_8H_8O_8N_5Cl = HO\cdot C_8HCl(NO_8)_8\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Hellgelbe mikroskopische Krystalle (aus verd. Essigsäure). F: 225° (Zers.) (Hodgson, Jenkinson, Soc. 1928, 2274).

4-Brom - 3.5-dinitro-2-oxy-benzaldehyd, 4-Brom - 3.5-dinitro-salicylaldehyd C₂H₃O₈N₃Br, Formel XIII (X = Br). B. Analog 4-Fluor-3.5-dinitro-salicylaldehyd (Hodgon, Jenkinson, Soc. 1928, 2277). — Tafeln (aus Alkohol), Nadeln (aus verd. Essigsäure). F: 143°. — Das Phenylhydrazon schmilzt bei 209° (Zers.), das 4-Nitro-phenylhydrazon bei 250° (Zers.).

Semicarbazon $C_9H_9O_9N_5Br=HO\cdot C_6HBr(NO_9)_3\cdot CH:N\cdot NH\cdot CO\cdot NH_3$. Hellge mikroskopische Nadeln. F: 224° (Zers.) (Hodgson, Jenkinson, Soc. 1928, 2277).

4-Jod-3.5-dinitro-2-oxy-benzaldehyd, 4-Jod-3.5-dinitro-salicylaldehyd C₇H₃O₈N₂I, Formel XIII (X = I). B. Durch Nitrierung von 4-Jod-salicylaldehyd in Eisessig bei 45°, neben 4-Jod-5-nitro-salicylaldehyd (Hodgson, Jeneinson, Soc. 1928, 2279). — Braune Nadeln (aus Alkohol). F: 160°. — Das Phenylhydrazon schmilzt bei 229° (Zers.), das 4-Nitro-phenylhydrazon bei 257° (Zers.). — Silbersalz. Hellorangefarben.

Semicarbazon $C_8H_8O_6N_5I = HO \cdot C_6HI(NO_2)_2 \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Bräunlichgelbe Nadeln. Zersetzt sich beim Erhitzen (Hodgson, Jenkinson, Soc. 1928, 2279).

Derivate von Schwefelanalogen des Salicylaldehyds.

2-Methylmercapto-benzaldehyd $C_8H_8OS = CH_3 \cdot S \cdot C_8H_4 \cdot CHO$. B. Aus 2-Mercapto-benzaldehyd (E I 524) und Dimethylsulfat in alkal. Lösung (Hodgson, Handley, Soc. 1928, 1884). — Das Phenylhydrazon schmilzt bei 138°.

5-Chlor - 2-methylmercapto - benzaldehyd C₃H₇OClS, s. nebenstehende Formel. B. Aus 5-Nitro-2-methylmercapto-benzaldehyd durch Reduktion mit Na₂S₃O₄, Diazotieren und Umsetzen der Diazoniumverbindung mit Kupfer(I)-chlorid-Lösung (Hodgson, Beard, Soc. 1927, 2427). — Krystalle (aus Alkohol). F: 65°. Leicht löslich in organischen Lösungsmitteln. Mit Wasserdampf flüchtig. — 4-Nitro-phenylhydrazon C₁₄H₁₂O₃N₃ClS. F: 246°.

- 5-Chior-2-methylmercapto-benzaldoxim C_0H_0 ONCIS = $CH_0 \cdot S \cdot C_0H_0$ Cl·CH:N·OH. Nadeln (aus Alkohol). F: 114° (Hodgson, Beard, Soc. 1927, 2427).
- 5-Nitro-2-methylmercapto-benzaldehyd C₃H₇O₃NS, s. nebenstehende
 Formel. B. Durch Behandlung einer alkoh. Suspension von 4.4'-Dinitro2.2'-diformyl-diphenyldisulfid mit Natriumsulfid in verd. Natronlauge bei 50—60° und nachfolgende Einw. von Dimethylsulfat in der Kälte (Hodgson, O₂N BEARD, Soc. 1927, 2425). Gelbliche Nadeln (aus verd. Essigsäure). F: 159—160°. 4-Nitro-phenylhydrazon C₁₄H₁₂O₄N₄S. F: 250—252°.
- 4.4'- Dinitro-diphenyldisulfid-dialdehyd-(2.2'), 4.4'- Dinitro-2.2'-diformyl-diphenyldisulfid $C_{14}H_8O_8N_2S_2=[OHC\cdot C_8H_8(NO_2)\cdot S--]_2$. В. Веіт Косhen von 6-Chlor-3-nitro-benzaldehyd mit Natriumdisulfid in verd. Alkohol (Fries, Brothuhn, B. 56, 1630, 1631; Hodgson, Beard, Soc. 1927, 2423). Blaßgelbe Nadeln (aus Nitrobenzol). F: 256° (F., Br.), 257° (H., Beard). Leicht löslich in siedendem Nitrobenzol, sohwer in anderen Lösungsmitteln (F., Br.). Löst sich in verd. Natronlauge nach Zusatz von Alkohol unter Zersetzung mit dunkelroter Farbe (F., Br.). Zersetzt sich beim Erhitzen explosionsartig unter Feuererscheinung (F., Br.). Gibt mit überschüßigem Brom in siedendem Tetrachlorkohlenstoff 4-Nitro-2-formyl-phenylschwefelbromid (F., Br.; F., A. 454, 273). Bis-4-nitro-phenylhydrazon. F: 283—284° (Zers.) (H., Beard, Soc. 1927, 2424).
- 4-Nitro-2-formyl-phenylschwefelbromid C₇H₄O₃NBrS = BrS·C₆H₃(NO₂)·CHO. B. Beim Kochen von 4.4′-Dinitro-2.2′-diformyl-diphenyldisulfid mit überschüssigem Brom in Tetrachlor-kohlenstoff (Fries, Brothuhn, B. 56, 1631; F., A. 454, 273). Krystalle (aus Benzol). F: 171° (F., B.). Ziemlich schwer löslich in Benzin. Die Lösung in kalter konzentrierter Schwefelsäure ist hellrot und wird beim Erwärmen rotviolett. Löst sich in Natronlauge unter Zersetzung mit tiefroter Farbe. Verändert sich langsam an feuchter Luft unter Bildung einer in Benzol schwer löslichen Verbindung (F., B.). Beim Eintragen von 20%igem Ammoniak in eine warme, gesättigte Lösung in Benzol entsteht 5-Nitro-1.2-benzisothiazol (s. nebenstehende Formel; Syst. Nr. 4195) (F., A. 454, 279; vgl. F., B.). Gibt mit Anilin in O2N CH

Benzol 2-Phenyl-5-nitro-1.2-benzisothiazoliumbromid (F., B.); reagiert analog mit p-Toluidin und mit 33% iger Methylamin - Lösung (F., A. 454, 273, 274).

Liefert mit Dimethylanilin in Benzol 4-Nitro-4'-dimethylamino-2-formyl-diphenylsulfid und etwas 4.4'-Dinitro-diphenyldisulfid-dialdehyd-(2.2') (F., B.).

- 4.4'- Dinitro-diphenyidisuifid-dialdehyd-(2.2')-bis-methylimid $C_{18}H_{14}O_4N_4S_2 = [CH_3 \cdot N : CH \cdot C_6H_3(NO_2) \cdot S_-]_3$. B. Durch Aufbewahren von 2-Methyl-5-nitro-1.2-benzisothiazoliumbromid in Sodalösung (Fries, A. 454, 277). Gelbliche Prismen oder benzolhaltige, an der Luft verwitternde Krystalle (aus Benzol). F: 165° (Zers.).
- 5 Nitro 2 methylmercapto benzaldoxim $C_8H_8O_3N_2S=CH_3\cdot S\cdot C_6H_8(NO_2)\cdot CH:N\cdot OH.$ Nadeln (aus Alkohol). F: 187° (Hoddson, Beard, Soc. 1927, 2425). Natriumsalz. Blaßgelb. Schwer löslich.
- 4.4' Dinitro diphenyldisulfid dialdehyd (2.2') dioxim $C_{14}H_{10}O_{6}N_{4}S_{2}=[HO\cdot N:CH\cdot C_{6}H_{3}(NO_{2})\cdot S-]_{2}$. Strohgelbes mikrokrystallines Pulver. Zersetzt sich heftig zwischen 140° und 160° (Hodgson, Beard, Soc. 1927, 2424). Unlöslich in Äther, ziemlich schwer löslich in Eisessig.
- S-[2. α -Dioxy-benzyl]-isothioharnstoff, Thiocarbamidsalicylaldehyd $C_0H_{10}O_2N_1S=HO\cdot C_0H_4\cdot CH(OH)\cdot S\cdot C(NH_2):NH.$ B. Das Hydrochlorid entsteht aus Thioharnstoff und Salicylaldehyd bei monatelangem Aufbewahren in salzsaurer Lösung oder bei 2-tägigem Aufbewahren in Gegenwart von Phosphoroxychlorid (Taylor, Soc. 121, 2269). Pikrat $C_0H_{10}O_2N_2S+C_0H_3O_7N_3$. Krystalle (aus Alkohol). F: 166—168° (Zers.).
- 2. 3-Oxy-benzaldehyd, m-Oxy-benzaldehyd C₇H₆O₃ = HO·C₆H₄·CHO (H 58; E I 524). B. Bei der Oxydation von 3-Oxy-benzoylhydrazin mit 2 Mol Kaliumferricyanid in wäßr. Ammoniak (Kalb, Gboss, B. 59, 733). Beim Kochen von Bis-[3-formyl-phenyl]-carbonat mit NaHSO₃·Lösung (Shoesmith, Soc. 123, 2701). Zur Darstellung aus 3-Nitro-benzaldehyd (H 58) bzw. aus den Nitrierungsprodukten des Benzaldehyds vgl. a. Hodgson, Beard, J. Soc. chem. Ind. 45, 91 T; C. 1926 II, 193; Helfer, Helv. 7, 947.

 F: 106,0° (korr.) (Sidgwick, Allott, Soc. 123, 2819). Verbennungswärme bei konstantem
- F: 106,0° (korr.) (Sidowick, Allott, Soc. 123, 2819). Verbrennungswärme bei konstantem Volumen: 789,4 kcal/Mol (Roth in Landolt-Börnst. H, 1597). Löslichkeitsdiagramm der binären Systeme mit Wasser und Benzol: Si., A., Soc. 123, 2821—2825. Kritische Lösungstemperatur des Systems mit Wasser: 66,2° (Si., A.). Löslich in Vanadiumoxytrichlorid (Brown, Snyder, Am. Soc. 47, 2674). Thermische Analyse von 3-Oxy-benzaldehyd enthaltenden binären Systemen, die Eutektika aufweisen, s. in der Tabelle auf S. 53; thermische Analyse der Systeme mit

Thermische Analyse binärer Systeme 1).

Komponente	Eutektika			Eutektika	
	Temp.	Gew% 3-Oxy-bens- aldehyd	Komponente	Temp.	Gew% 3-Oxy-benz- aldehyd
1.2-Dinitro-benzol	84 63 91 55 65,5 22 41 65,8	57 34 80 24 20 26 9	α-Naphthol β-Naphthol Brenzcatechin Resorcin Hydrochinon Pyrogallol Benzoesäure Salicylsäure	61,5 74 61 59 88 69 83	40 55 52,5 49 73 59 68 80

¹⁾ KREMANN, POGANTSCH, M. 44, 163.

2.4-Dinitro-phenol: Kremann, Pogantsch, M. 44, 165, 170; mit Pikrinsäure: Kr., P.; Rheinboldt, J. pr. [2] 111, 261. Wärmetönung der Auflösung in Benzol: Si., A., Soc. 123, 2825.

3-Oxy-benzaldehyd liefert beim Erwärmen mit 50% iger Natronlauge auf 50-60° fast quantitativ 3-Oxy-benzalkohol und 3-Oxy-benzoesäure; beim Erhitzen mit Kaliumhydroxyd und etwas Wasser auf 190—240° erhält man fast quantitativ unter Entwicklung der berechneten Menge Wasserstoff 3-Oxy-benzoesaure (Lock, B. 62, 1182; 66 [1933], 1761, 1762). Beim Einleiten von Chlor in eine Lösung von 3-Oxy-benzaldehyd in Eisessig erhält man zunächst 2-Chlor-3-oxy-benzaldehyd und wenig 6-Chlor-3-oxy-benzaldehyd, dann 2.6-Dichlor-3-oxy-benzaldehyd und wenig 4.6-Dichlor-3-oxy-benzaldehyd (Hodgson, Beard, Soc. 1926, 149, 152, 153; Brit. Dyestuffs Corp., Hodgson, E. P. 258060; C. 1927 II, 1899; Lock, M. 55 [1930], 309; National Aniline & Chemical Co., A. P. 1776803; C. 1931 I, 159); als Endprodukt der Reaktion bildet sich 2.4.6-Trichlor-3-oxy-benzaldehyd (Keause, Dissert. [Heidelberg 1898], S. 20; H., B.; N. A. & Ch. Co.). 3-Oxy-benzaldehyd liefert mit 1 Mol Brom in Chloroform außer 6-Brom-3-oxybenzaldehyd (E I 525) noch 4-Brom-3-oxy-benzaldehyd; in Tetrachlorkohlenstoff-Lösung entsteht nur 6-Brom-3-oxy-benzaldehyd (Ho., B., Soc. 127, 876, 877). Liefert beim Behandeln mit Jod und Kalilauge 4-Jod-3-oxy-benzoesäure (WINDAUS, SCHIELE, B. 56, 847). Beim Behandeln mit Kaliumpersulfat und Natronlauge bei 30-35° und Erhitzen des Reaktionsprodukts mit konz. Salzsäure auf 70° erhält man 2.5-Dioxy-benzaldehyd und andere Produkte (Ho., B., Soc. 1927, 2339). Gibt beim Kochen mit Quecksiber(II)-acetat in wäßrig-alkoholischer Essigsäure 2-Acetoxymercuri-3-oxy-benzaldehyd (Syst. Nr. 2353) (Henry, Sharp, Soc. 121, 1059; 125, 1051). Gleichgewicht der Reaktion $HO \cdot C_0H_1 \cdot CHO + HCN \rightleftharpoons HO \cdot C_0H_1 \cdot CH(OH) \cdot CN$ in Alkohol bei 20°: Lapworth, Manskr, Soc. 1928, 2546.

Physiologisches Verhalten: E. KEESER in J. HOUBEN, Fortschritte der Heilstoffchemie,

2. Abt., Bd. II [Berlin-Leipzig 1932], S. 252.

Farbreaktion mit fuchsinschwefliger Säure von verschiedenem Schwefligsäuregehalt: Shoesmith, Sosson, Hetherington, Soc. 1927, 2223. — Das Phenylhydrazon schmilzt bei 136° (Kalb, Gross, B. 59, 733), das 4-Nitro-phenylhydrazon bei 221—222° (Hodgson, Beard, J. Soc. chem. Ind. 45, 93 T; C. 1926 II, 193).

Die Salze sind in festem wasserfreien Zustand farblos, in wäßr. Lösung gelb (Hantzsch,

B. 89 [1906], 3088).

Funktionelle Derivate des 3-Oxy-benzaldehyds.

3-Methoxy-benzaldehyd $C_8H_8O_2 = CH_2 \cdot O \cdot C_4H_4 \cdot CHO (H 59; E I 525)$. B. Beim Erwärmen von 3-Oxy-benzaldehyd mit Trimethyl-phenyl-ammoniumhydroxyd in Methanol auf 125—130° (Rodionow, Fedorowa, Ar. 1928, 119). — Darstellung durch Methylierung von 3-Oxy-benzaldehyd mit Dimethylsulfat und Alkali (E I 525): Tröger, Fromm, J. pr. [2] 111, 232; Chakravarti, Haworth, Perkin, Soc. 1927, 2269. — Kp₁₈: 103° (Brand, Horn, J. pr. [2] 115, 374); Kp18: 109-1100 (HELFER, Helv. 7, 947).

Liefert bei der Einw. von 85 %iger Salpetersäure bei 20° 2-Nitro-3-methoxy-benzaldehyd und etwas 6-Nitro-3-methoxy-benzaldehyd (Hodgson, Beard, Soc. 1927, 2380; vgl. Ho., B., Soc. 1926, 154; TRÖGER, FROMM, J. pr. [2] 111, 232; TR., SABEWA, J. pr. [2] 117, 124; HINKEL, AYLING, MORGAN, Soc. 1932, 1115). Bei allmählichem Eintragen in ein Gemisch von Kaliumnitrat und konz. Schwefelsäure bei 0—5° entstehen 2.6-Dinitro-3-methoxy-benzaldehyd (F: 157°) und wenig 4.6-Dinitro-3-methoxy-benzaldehyd (F: 131°) (Ho., Beard, Soc. 1927, 2380; vgl. Tiemann, Ludwig, B. 15 [1882], 2055; Tr., Eicker, J. pr. [2] 116, 20). Gibt beim Behandeln

mit Nitromethan je nach den Bedingungen β -Nitro-3-methoxy-styrol (E II 6, 520) (Shoesmith, Connor, Soc. 1927, 2232; Gulland, Virden, Soc. 1929, 1796) oder 3-Methoxy-1- $[\beta$ -nitro- α -oxy-āthyl]-benzol (E II 6, 886) (G., V., Soc. 1929, 1795). Gleichgewicht der Reaktion CH₃·O·C₆H₄·CHO+HCN \rightleftharpoons CH₃·O·C₆H₄·CH(OH)·CN in Alkohol bei 20°: Lapworth, Manske, Soc. 1928, 2546. — Farbreaktion mit fuchsinschwefliger Säure von verschiedenem Schwefligsäuregehalt: Shoesmith, Sosson, Hetherington, Soc. 1927, 2223.

3-Carbäthoxyoxy-benzaldehyd $C_{10}H_{10}O_4=C_2H_5\cdot O\cdot CO\cdot O\cdot C_6H_4\cdot CHO$. B. Aus 3-Oxybenzaldehyd und Chlorameisensäureäthylester in verd. Natronlauge bei 30^0 (Mason, Soc. 127, 1197). — Viscoses Öl. Erstarrt nicht im Kältegemisch. Kp: $289-292^0$ (Zers.); Kp₈₀: $165-167^\circ$. D: 1,42. Unlöslich in Wasser. — Gibt beim Behandeln mit Salpeterschwefelsäure unterhalb 5^0 6-Nitro-3-carbäthoxyoxy-benzaldehyd und andere Produkte. Wird durch warme wäßrige Alkalien langsam hydrolysiert.

Bis-[3-formyl-phenyl]-carbonat, Carbonat des 3-Oxy-benzaldehyds $C_{15}H_{10}O_5 = OC[O\cdot C_6H_4\cdot CHO]_2$. B. Beim Einleiten von Phosgen in eine Lösung von 3-Oxy-benzaldehyd in verd. Natronlauge bei Gegenwart von Natriumcarbonat und Natriumchlorid unterhalb 40° (Mason, Soc. 127, 1196). Beim Kochen von Bis-[3-dichlormethyl-phenyl]-oarbonat mit 80% iger Ameisensäure, mit 80% iger Ameisensäure und wasserfreier Oxalsäure oder mit Natriumacetat in Alkohol (Shoesmith, Soc. 123, 2699, 2701). — Krystalle (aus Eisessig). F: 132—134° (M.). Schwer löslich in den meisten organischen Lösungsmitteln (M.). — Liefert bei der Einw. von Salpeterschwefelsäure bei 0—5° Bis-[4-nitro-3-formyl-phenyl]-oarbonat (S. 59) (M.). Bei der Hydrolyse mit siedender wäßriger NaHSO3-Lösung erhält man 3-Oxy-benzaldehyd (Sh.).

3-Formyl-phenoxyessigsäure $C_9H_8O_4 = HO_2C \cdot CH_2 \cdot O \cdot C_6H_4 \cdot CHO$ (H 60). Überführung in ein Harz durch Kondensation mit Phenol: Höchster Farbw., D.R.P. 362 382; C. 1928 II, 920; Frdl. 14, 1160.

$\textbf{3-Methoxy-}\alpha\textbf{-benzaldoxim, 3-Methoxy-benz-syn-aldoxim } C_8H_{\bullet}O_2N = \frac{CH_3 \cdot O \cdot C_6H_4 \cdot CH}{N \cdot OH}$

(in der Literatur teilweise als 3-Methoxy-benz-anti-aldoxim bezeichnet) (E I 525). Zur Konfiguration vgl. die Angaben bei α-Benzaldoxim, E II 7, 167. — F: 38—39° (BRADY, GOLDSTEIN, Soc. 1926, 1923). Elektrolytische Dissoziationskonstante k bei 25°: 2,6×10⁻¹¹ (aus der Leitfähigkeit des Natriumsalzes berechnet) (B., G., Soc. 1926, 1923). — Zum Verhalten gegen Chlorwasserstoff vgl. a. Brady, Dunn, Soc. 123, 1800. Das Hydrochlorid zersetzt sich bei jahrelangem Aufbewahren teilweise unter Bildung von 3-Methoxy-benzamid (B., D.). Über das Mengenverhältnis zwischen O-Methyläther und N-Methyläther bei der Einw. von Dimethylsulfat in alkal. Lösung unter verschiedenen Bedingungen vgl. B., G., Soc. 1926, 2409.

Substitutionsprodukte des 3-Oxy-benzaldehyds.

- 2-Chlor-3-oxy-benzaldehyd C₇H₅O₂Cl, s. nebenstehende Formel. B. Neben wenig 6-Chlor-3-oxy-benzaldehyd beim Einleiten von 1 Mol Chlor in eine Lösung von 3-Oxy-benzaldehyd in Eisessig (Hoddson, Beard, Soc. 1926, 149; Lock, M. 55 [1930], 309, 310; National Aniline & Chemical Co., A. P. 1776803; C. 1931 I, 159). Aus 2-Nitro-3-oxy-benzaldehyd durch Reduktion mit Na₂S₂O₄ in wäßr. Lösung auf dem Wasserbad, Diazotieren in salzsaurer Lösung bei 0° und nachfolgende Behandlung mit Kupfer(I)-chlorid (H., B., Soc. 1926, 150). Krystalle (aus verd. Essigsäure). F: 139,5° (H., B.), 139° (korr.) (L.). Mit Wasserdampf flüchtig (H., B.). Färbt sich an der Luft blaßrosa (H., B.) Liefert beim Einleiten von 1 Mol Chlor in Eisessig 2.6-Dichlor-3-oxy-benzaldehyd (H., B., Soc. 1926, 152). Gibt bei der Nitrierung je nach den Bedingungen 2-Chlor-4-nitro-3-oxy-benzaldehyd und 2-Chlor-6-nitro-3-oxy-benzaldehyd oder 2-Chlor-4.6-dinitro-3-oxy-benzaldehyd (H., B., Soc. 1926, 2032). Reizt zum Niesen (H., B., Soc. 1926, 148).
 - 4-Nitro-phenylhydrazon $C_{18}H_{10}O_2N_3Cl.$ F: 244—2450 (Hodgson, Beard, Soc. 1926, 150).
- 2-Chlor-3-methoxy-benzaldehyd $C_8H_7O_3Cl=CH_2\cdot O\cdot C_6H_3Cl\cdot CHO$. B. Analog 4-Brom-3-methoxy-benzaldehyd (S. 57) (Hodgson, Beard, Soc. 1926, 148, 153). Nadeln von weißdornartigem Geruch (aus verd. Alkohol). F: 57°. Sublimierbar. Leicht flüchtig mit Wasserdampf. Gibt bei der Oxydation mit heißer sodaalkalischer Permanganat-Lösung 2-Chlor-3-methoxy-benzoesäure (H., B., Soc. 1926, 150). Bei der Einw. von Kaliumnitrat in konz. Schwefelsäure bei 30—60° entstehen 2-Chlor-4-nitro-3-methoxy-benzaldehyd und 2-Chlor-6-nitro-3-methoxy-benzaldehyd (H., B., Soc. 1926, 2033). Das 4-Brom-phenylhydrazon schmilzt bei 155—156°, das 4-Nitro-phenylhydrazon bei 228—227° (H., B., Soc. 1926, 154).
- 2-Chlor-3-acetexy-benzaldehyd $C_0H_7O_3Cl=CH_3\cdot CO\cdot O\cdot C_0H_3Cl\cdot CHO$. Krystalle (aus Alkohol). F: 62° (Hodgson, Brand, Soc. 1926, 150).
- 2-Chlor-3-oxy-benzaldoxim $C_7H_6O_2NCl = HO \cdot C_6H_6Cl \cdot CH : N \cdot OH$. Nadeln (aus verd, Alkohol). F: 149° (Hodgson, Beard, Soc 1928, 150).

- 2-Chier-3-methoxy-benzaldoxim $C_0H_0O_2NCl=CH_0\cdot O\cdot C_0H_0Cl\cdot CH:N\cdot OH$. Nadeln (aus verd. Alkohol). F: 130,5° (Hodgson, Beard, Soc. 1926, 154).
- 2-Chlor-3-oxy-benzaldehyd-semicarbazon $C_oH_oO_2N_3Cl = HO \cdot C_oH_2Cl \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Blaßgelbe Nadeln. F: 236—237° (Hodgson, Beard, Soc. 1926, 150).
- 4-Chlor-3-oxy-benzaldehyd C₇H₅O₂Cl, s. nebenstehende Formel. B. Aus 4-Nitro-3-oxy-benzaldehyd durch Reduktion mit Na₂S₂O₄ in wäßr. Lösung bei 90°, Diazotieren in salzsaurer Lösung und Kochen mit Kupfer(I)-chlorid-Lösung (Hodgson, Beard, Soc. 1926, 150, 2033; vgl. H., B., Soc. 1927, 2377). Nicht rein erhalten. Nadeln (aus 50% iger Essigsäure). F: 121° (H., B., Soc. 1926, 150, 2033). Liefert beim Einleiten von 1 Mol Chlor in Eisessig 2.4-Dichlor-3-oxy-benzaldehyd (H., B., Soc. 1926, 153). Bei der Einw. von Salpetersäure (D: 1,3) in 50% iger Essigsäure bei 45—55° bildet sich 4-Chlor-2-nitro-3-oxy-benzaldehyd (H., B., Soc. 1926, 2033; vgl. H., B., Soc. 1927, 2378). Das 4-Nitro-phenylhydrazon C₁₃H₁₀O₃N₃Cl schmilzt bei 226—227° (H., B., Soc. 1926, 151).
- 4-Chlor-3-methoxy-benzaldehyd C₈H₇O₂Cl = CH₃·O·C₆H₃Cl·CHO. B. Analog 4-Brom-3-methoxy-benzaldehyd (S. 57) (Hodgson, Beard, Soc. 1926, 148, 154). Nadeln von weißdornartigem Geruch (aus verd. Alkohol). F: 52°. Sublimierbar. Leicht flüchtig mit Wasserdampf. Färbt sich beim Aufbewahren silbergrau. Das 4-Brom-phenylhydrazon schmilzt bei 134°, das 4-Nitro-phenylhydrazon bei 251° (H., B., Soc. 1926, 154).
- **4-Chlor-3-oxy-benzaldoxim** $C_7H_6O_2NCl = HO \cdot C_6H_3Cl \cdot CH : N \cdot OH$. Wasserhaltige Nadeln (aus verd. Alkohol). Gibt bei 106—110° Krystallwasser ab; schmilzt wasserfrei bei 126° (Hodgson, Beard, Soc. 1926, 150).
- 4-Chlor-3-methoxy-benzaldoxim $C_8H_8O_2NCl=CH_3\cdot O\cdot C_6H_3Cl\cdot CH:N\cdot OH.$ Nadeln. F: 98° bis 99° (Hodgson, Beard, Soc. 1926, 154).
- 4-Chlor-3-oxy-benzaldehyd-semicarbazon $C_8H_8O_2N_3Cl = HO \cdot C_6H_3Cl \cdot CH : N \cdot NH \cdot CO \cdot NH_2 \cdot Blaßgelbe Nadeln. F: 238—239° (Hodgson, Beard, Soc. 1926, 151).$
- 6-Chlor-3-oxy-benzaldehyd $C_7H_5O_2Cl$, s. nebenstehende Formel (E I 526).

 B. Neben viel 2-Chlor-3-oxy-benzaldehyd beim Einleiten von Chlor in eine
 Lösung von 3-Oxy-benzaldehyd in Eisessig (Hodgson, Beard, Soc. 1926, 149; Cl.
 LOCK, M. 55 [1930], 309; National Aniline & Chemical Co., A. P. 1776 803; C.
 1931 I, 159). In geringer Menge durch Reduktion von 6-Nitro-3-oxy-benzaldehyd mit Na₂S₂O₄ in wäßr. Lösung bei 90°, Diazotieren in salzsaurer Lösung und Behandlung mit Kupfer (I)-chlorid (H., B., Soc. 1926, 151). Aus diazotiertem 6-Chlor-3-amino-benzaldoxim durch Behandeln mit siedender verdünnter Schwefelsäure (H., B., Soc. 1926, 151). Nadeln (aus verd. Essigsäure). F: 111° (H., B.), 110,5—111,5° (N. A. & Ch. Co.). Schwer flüchtig mit Wasserdampf (H., B.). Liefert beim Einleiten von 1 Mol Chlor in Eisessig 2.6-Dichlor-3-oxy-benzaldehyd und etwas 4.6-Dichlor-3-oxy-benzaldehyd (H., B., Soc. 1926, 152). 4-Nitro-phenylhydrazon $C_{13}H_{10}O_3N_3$ Cl. F: 250—251° (Hodgson, Beard, Soc. 1926, 151, 152).
- 6-Chlor-3-methoxy-benzaldehyd $C_8H_7O_2Cl=CH_3\cdot O\cdot C_6H_3Cl\cdot CHO$ (E I 526). B. Analog 4-Brom-3-methoxy-benzaldehyd (S. 57) (Hodgson, Beard, Soc. 1926, 148, 154). Nadeln von weißdornartigem Geruch (aus verd. Alkohol). F: 62°. Sublimierbar. Leicht flüchtig mit Wasserdampf. Liefert bei der Oxydation mit Permanganat in alkal. Lösung 6-Chlor-3-methoxy-benzoesäure. Das 4-Brom-phenylhydrazon $C_{14}H_{12}ON_2ClBr$ schmilzt bei 100°, das 4-Nitro-phenylhydrazon $C_{14}H_{12}O_3N_3Cl$ bei 229° (H., B., Soc. 1926, 155).
- 6-Chior-3-oxy-benzaldoxim $C_7H_6O_2NCl=HO\cdot C_6H_3Cl\cdot CH:N\cdot OH$. Nadeln mit 1 H_2O (aus verd. Alkohol), wasserfreie Nadeln (aus absol. Alkohol). Schmilzt wasserfrei bei 146—1470 (Hodgson, Beard, Soc. 1926, 151).
- 6 Chlor 3 methoxy benzaldoxim $C_9H_9O_9NCl=CH_3\cdot O\cdot C_6H_3Cl\cdot CH:N\cdot OH$. Nadeln. F: 101,5° (Hodgson, Beard, Soc. 1926, 155).
- 6-Chlor-3-oxy-benzaldehyd-semicarbazon $C_9H_9O_2N_3Cl=HO\cdot C_9H_9Cl\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Blaßgelbe Nadeln. F: 236° (Hodgson, Beard, Soc. 1926, 152).
- 2.4-Dichlor-3-oxy-benzaldehyd C₇H₄O₂Cl₂, s. nebenstehende Formel. B. Beim Einleiten von 1 Mol Chlor in eine Lösung von 4-Chlor-3-oxy-benzaldehyd in Eisessig (Hodgson, Beard, Soc. 1926, 153). Aus 4-Chlor-2-nitro-3-oxy-benzaldehyd durch Reduktion und Austausch der Aminogruppe gegen Chlor (H., B., Soc. 1927, 2378). Krystalle (aus verd. Essigsäure). F: 141° (H., B., Soc. 1926, 153). Liefert bei der Einw. von Salpetersäure (D: 1,42) in Eisessig bei 65° 2.4-Dichlor-6-nitro-3-oxy-benzaldehyd (H., B., Soc. 1926, 2034). Reixt zum Niesen (H., B., Soc. 1926, 148). 4-Nitro-phenylhydrazon C₁₂H₂O₂N₃Cl₂. F: 277—278° (Zers.) (H., B., Soc. 1926, 153).

- 2.4-Dichlor-3-methoxy-benzaldehyd $C_8H_8O_2Cl_2 = CH_3 \cdot O \cdot C_8H_2Cl_2 \cdot CHO$. B. Durch Methylierung von 2.4-Dichlor-3-oxy-benzaldehyd (Hodgson, Beard, Soc. 1926, 148, 155). Riecht weißdornartig. F: 82°. Gibt bei der Oxydation mit Permanganat in alkal. Lösung 2.4-Dichlor-3-methoxy-benzoesäure. 4-Nitro-phenylhydrazon $C_{14}H_{11}O_3N_3Cl_2$. F: 258—260°.
- 2.4 Dichlor 3 oxy $benzaldoxim C_7H_5O_2NCl_2 = HO \cdot C_6H_2Cl_2 \cdot CH : N \cdot OH$. Nadeln (aus verd. Alkohol). F: 188° (Hodgson, Beard, Soc. 1926, 153).
- 2.6-Dichlor-3-oxy-benzaldehyd C₇H₄O₂Cl₂, s. nebenstehende Formel (E I 526 als x.x-Dichlor-3-oxy-benzaldehyd aufgeführt). B. Neben wenig 4.6-Dichlor-3-oxy-benzaldehyd beim Einleiten von 2 Mol Chlor in eine Lösung von 3-Oxy-Clbenzaldehyd in Eisessig (Hodgson, Beard, Soc. 1926, 152; Lock, M. 55 [1930], 309, 311; National Aniline & Chemical Co., A. P. 1776803; C. 1981 I, 159). Bei der Einw. von 1 Mol Chlor auf 2-Chlor-3-oxy-benzaldehyd und auf 6-Chlor-3-oxy-benzaldehyd in Eisessig (H., B., Soc. 1926, 152). Nadeln (aus Wasser). F: 140° (H., B., Soc. 1926, 152), 140,5° (korr.) (L.), 142—142,2° (N. A. & Ch. Co.). Liefert bei der Einw. von Salpetersaure (D: 1,42) in Eisessig bei 65° 2.6-Dichlor-4-nitro-3-oxy-benzaldehyd (H., B., Soc. 1926, 2035). Reizt zum Niesen (H., B., Soc. 1926, 148). 4-Nitro-phenylhydrazon C₁₃H₉O₃N₃Cl₂. F: 205—206° (H., B., Soc. 1926, 153).
- 2.6-Dichlor-3-methoxy-benzaldehyd $C_8H_6O_2Cl_2=CH_3\cdot O\cdot C_6H_2Cl_2\cdot CHO$. B. Durch Methylierung von 2.6-Dichlor-3-oxy-benzaldehyd (Hodgson, Beard, Soc. 1926, 148, 155). Riecht weißdornartig. F: 102^0 . Gibt bei der Oxydation mit Permanganat in alkal. Lösung 2.6-Dichlor-3-methoxy-benzoesäure. 4-Nitro-phenylhydrazon $C_{14}H_{11}O_3N_3Cl_2$. F: 214^0 bis 215^0 .
- 2.6 Dichlor 3 oxy benzaldoxim $C_7H_5O_2NCl_2=HO\cdot C_6H_2Cl_2\cdot CH:N\cdot OH$. Nadeln (aus verd. Alkohol). F: 174—175° (Hodgson, Beard, Soc. 1926, 152).

- 4.6 Dichlor 3 oxy benzaldehyd $C_7H_4O_2Cl_2$, Formel I (E I 526). B. s. o. im Artikel 2.6-Dichlor-3-oxy-benzaldehyd. Nadeln. F: 129° (Hodgson, Beard, Soc. 1926, 152). Reizt zum Niesen (H., B., Soc. 1926, 148).
- x.x-Dichlor-3-oxy-benzaldehyd $C_7H_4O_2Cl_2 = HO \cdot C_6H_2Cl_2 \cdot CHO$ (E I 526). Vgl. 2.6-Dichlor-3-oxy-benzaldehyd (s. o.).
- 2.4.6-Trichlor-3-oxy-benzaldehyd C,H₃O₂Cl₃, Formel II (H 61). F: 114° (Hodgson, Beard, Soc. 1926, 153), 115,5—116,5° (National Aniline & Chemical Co., A. P. 1776803; C. 1931 I, 159). Reizt zum Niesen (H., B., Soc. 1926, 148). Das 4-Nitro-phenylhydrazon C₁₃H₂O₃N₃Cl₃ schmilzt bei 272—273° (Zers.) (H., B., Soc. 1926, 153). Natriumsalz. Gelbe Nadeln. Schwer löslich in Wasser (H., B.).
- 2.4.6-Trichlor-3-methoxy-benzaldehyd $C_8H_5O_2Cl_3=CH_3\cdot O\cdot C_8HCl_3\cdot CHO$. B. Bei der Einw. von Dimethylsulfat auf 2.4.6-Trichlor-3-oxy-benzaldehyd (Hodgson, Beard, Soc. 1926, 148, 155). Nadeln von weißdornartigem Geruch (aus Alkohol). F: 76°. Langsam flüchtig mit Wasserdampf. Gibt bei der Oxydation mit Permanganat in alkal. Lösung 2.4.6-Trichlor-3-methoxy-benzoesäure.
- 2.4.6-Trichlor-3-oxy-benzaldoxim $C_7H_4O_2NCl_3=HO\cdot C_6HCl_3\cdot CH:N\cdot OH$ (H 61). F: 174° (Hodgson, Beard, Soc. 1926, 153).
- 2-Brom-3-oxy-benzaldehyd $C_7H_5O_2$ Br, Formel III. B. Aus 2-Nitro-3-oxy-benzaldehyd durch Reduktion mit $Na_2S_2O_4$ in wäßr. Lösung auf dem Wasserbad, Diazotieren in bromwasserstoffsaurer Lösung und Behandlung mit Kupfer(I)-bromid (Hodgson, Brard, Soc. 127, 878). F: 141—142°. 4-Nitro-phenylhydrazon $C_{13}H_{10}O_2N_3$ Br. F: 241° (H., B., Soc. 127, 881).
- 2-Brom-3-methoxy-benzaldehyd $C_8H_7O_2Br=CH_3\cdot O\cdot C_8H_3Br\cdot CHO$. B. Analog 4-Brom-3-methoxy-benzaldehyd (S. 57) (Hodgson, Beard, Soc. 127, 878, 879). Nadeln. F: 45—46°. Liefert bei der Oxydation mit Permanganat in heißer Sodalösung 2-Brom-3-methoxy-benzoesäure. 4-Nitro-phenylhydrazon $C_{14}H_{12}O_5N_3Br$. F: 206—208°.
- 2-Brom-3-oxy-benzaldoxim $C_7H_6O_2NBr = HO \cdot C_6H_3Br \cdot CH : N \cdot OH$. Nadeln (aus Wasser). F: 148° (Hodgson, Beard, Soc. 127, 879).
- 2 Brom 3 methoxy benzaldoxim $C_0H_0O_2NBr = CH_2 \cdot O \cdot C_0H_2Br \cdot CH : N \cdot OH$. Nadeln. F: 1480 (Hodgson, Brand, Soc. 127, 880).
- 4 Brom 3 oxy benzaldehyd C₇H₅O₂Br, Formel IV. B. Neben 6-Brom-3-oxy-benzaldehyd bei der Einw. von 1 Mol Brom auf 3-Oxy-benzaldehyd in Chloroform (Hodgson, Beard,

- Soc. 127, 876, 877). Aus 4-Nitro-3-oxy-benzaldehyd durch Reduktion mit Na₂S₂O₄ in wäßr. Lösung auf dem Wasserbad, Diazotieren in salzsaurer Lösung und nachfolgende Behandlung mit Kupfer(I)-bromid (H., B., Soc. 127, 878). F: 131,5°. Liefert bei der Einw. von 1 Mol Brom in Chloroform in der Wärme 4.6-Dibrom-3-oxy-benzaldehyd. 4-Nitro-phenylhydrazon C₁₃H₁₀O₃N₃Br. F: 210—212° (H., B., Soc. 127, 881).
- 4-Brom-3-methoxy-benzaldehyd $C_8H_7O_3Br = CH_3 \cdot O \cdot C_0H_3Br \cdot CHO$. B. Bei der Einw. von Dimethylsulfat auf 4-Brom-3-oxy-benzaldehyd in siedender 10% iger Natronlauge (Hodgson, Beard, Soc. 127, 878). Aus diazotiertem 4-Amino-3-methoxy-benzaldehyd durch Behandlung mit Kupfer (I)-bromid (H., B., Soc. 127, 879, 880). Krystalle (aus Alkohol). F: 74°. Gibt bei der Oxydation mit Permanganat in heißer Sodalösung 4-Brom-3-methoxy-benzoesäure. 4-Nitro-phenylhydrazon $C_{14}H_{12}O_3N_3Br$. F: 246° (H., B., Soc. 127, 881).
- 4-Brom-3-oxy-benzaldoxim $C_7H_6O_2NBr = HO \cdot C_6H_3Br \cdot CH : N \cdot OH$. Krystalle (aus Wasser). F: 173—174° (HODGSON, BEARD, Soc. 127, 879).
- 4-Brom-3-methoxy-benzaldoxim $C_8H_8O_2NBr = CH_3 \cdot O \cdot C_6H_3Br \cdot CH : N \cdot OH$. Nadeln. F: 94,5° (Hodgson, Beard, Soc. 127, 880).
- 6-Brom-3-oxy-benzaldehyd $C_7H_5O_2Br$, Formel V-(H 62; E I 526). B. Zur Bildung durch Bromierung von 3-Oxy-benzaldehyd (H 62) vgl. a. Hodgson, Beard, Soc. 127, 876, 877; 1926, 150. In geringer Menge aus 6-Nitro-3-oxy-benzaldehyd durch Reduktion mit $Na_2S_2O_4$ in währ. Lösung auf dem Wasserbad, Diazotieren in bromwasserstoffsaurer Lösung und nachfolgende Behandlung mit Kupfer(I)-bromid (H., B., Soc. 127, 878). Gibt mit I Mol Brom in warmem Chloroform 4.6-Dibrom-3-oxy-benzaldehyd (H., B., Soc. 127, 877). Liefert beim Erwärmen mit 50% iger Kalilauge auf 70° 6-Brom-3-oxy-benzylalkohol und 6-Brom-3-oxy-benzoesäure (Lock, B. 62, 1183). 4-Nitro-phenylhydrazon $C_{13}H_{10}O_3N_3$ Br. F: 240—243° (H., B., Soc. 127, 881).

$$V. \xrightarrow{Br} \underbrace{\bigcirc}_{OH} VI. \xrightarrow{Br} \underbrace{\bigcirc}_{Br} OH VII. \xrightarrow{Br} \underbrace{\bigcirc}_{Br} \underbrace{\bigcirc}_{Br} VIII. \underbrace{\bigcirc}_{OH} \underbrace{\bigcirc}_{OH}$$

- 6-Brom-3-methoxy-benzaldehyd $C_0H_7O_2Br=CH_2\cdot O\cdot C_0H_3Br\cdot CHO$ (E I 526). B. Analog 4-Brom-3-methoxy-benzaldehyd (s. o.) (Hodgson, Beard, Soc. 127, 878, 879). 4-Nitrophenylhydrazon $C_{14}H_{12}O_3N_3Br$. F: 225° (H., B., Soc. 127, 881).
- 6-Brom-3-oxy-benzaldoxim C₇H₆O₂NBr = HO·C₆H₈Br·CH:N·OH. Nadeln (aus Wasser). F: 157° (Hodgson, Beard, Soc. 127, 879). Natriumsalz. Blaßgelb.
- 6-Brom-3-methoxy-benzaldoxim $C_8H_8O_2NBr = CH_3 \cdot O \cdot C_6H_3Br \cdot CH : N \cdot OH$. Nadeln (au s verd. Alkohol). F: 127° (Hodgson, Beard, Soc. 127, 880).
- 4.6-Dibrom-3-oxy-benzaldehyd C₇H₄O₃Br₂, Formel VI. B. Beim Erhitzen von 4-Brom-3-oxy-benzaldehyd oder 6-Brom-3-oxy-benzaldehyd mit 1 Mol Brom in Chloroform (Hodgson, Beard, Soc. 127, 877; vgl. a. H. Davies, W. Davies, Soc. 1928, 604). Krystalle (aus verd. Essigsäure). F: 139° (H., B.; D., D.). Liefert mit der berechneten Menge Brom in Chloroform in der Wärme 2.4.6-Tribrom-3-oxy-benzaldehyd (H., B.; vgl. Lock, M. 55 [1930], 313). 4-Nitro-phenylhydrazon C₁₃H₉O₃N₃Br₂. F: 259—260° (Zers.) (H., B., Soc. 127, 881).
- 4.6-Dibrom-3-methoxy-benzaldehyd C₈H₄O₂Br₃ = CH₃·O·C₆H₂Br₃·CHO. B. Durch Einw. von Dimethylsulfat auf 4.6-Dibrom-3-oxy-benzaldehyd in wäßr. Natronlauge (Hodgson, Beard, Soc. 127, 879; vgl. a. H. Davies, W. Davies, Soc. 1928, 604). Krystalle (aus verd. Alkohol). F: 110° (H., B.; D., D.). Gibt bei der Oxydation mit Permanganat in heißer Sodalösung 4.6-Dibrom-3-methoxy-benzoesäure (H., B.).
- 4.6-Dibrom-3-oxy-benzaidoxim $C_7H_5O_2NBr_3 = HO \cdot C_6H_3Br_3 \cdot CH : N \cdot OH$. F: 243° (Hodgson, Beard, Soc. 127, 880).
- 2.4.6-Tribrom-3-oxy-benzaldehyd C₇H₃O₂Br₃, Formel VII (H 62). B. Bei langsamem Zusatz von überschüssigem Brom zu einer wäßr. Lösung von 3-Oxy-benzaldehyd bei 50° (Hodgson, Beard, Soc. 127, 876). Bei der Einw. von 1 Mol Brom auf 4.6-Dibrom-3-oxy-benzaldehyd in warmem Chloroform (H., B., Soc. 127, 877; vgl. Lock, M. 55 [1930], 313).—4-Nitro-phenylhydrazon. F: 229—230° (Zers.) (H., B., Soc. 127, 881).
- 2-Jod-3-oxy-benzaldehyd C₇H₈O₂I, Formel VIII. Zur Konstitution vgl. Henry, Sharp, Soc. 125, 1051. B. Bei der Einw. von Jod-Kaliumjodid-Lösung auf 2-Acetoxymercuri-3-oxy-benzaldehyd (Henry, Sharp, Soc. 121, 1059). Gelbe Nadeln (aus verd. Alkohol). F: 159° bis 160° (H., Sh., Soc. 121, 1059). Liefert beim Kochen mit Acetanhydrid und folgenden Behandeln mit Permanganat in Aceton 2-Jod-3-acetoxy-benzoesäure (H., Sh., Soc. 125, 1051). Reizt stark zum Niesen (H., Sh., Soc. 121, 1059).

- 2-Nitro-3-oxy-benzaldehyd C₇H₅O₄N, s. nebenstehende Formel (E I 527). Zur CHO Bildung durch Nitrierung von 3-Oxy-benzaldehyd (E I 527) vgl. Hodgson, Beard, Soc. 127, 877; Ho., Smith, Soc. 1987, 77. Prismen (aus Benzol). F: 157° (Henry, Sharp, Soc. 125, 1053; Ho., Sm.). Liefert bei weiterer Nitrierung je nach den Bedingungen 2.6-Dinitro-3-oxy-benzaldehyd (Ho., B., Soc. 1927, 2378; Ho., Sm., Soc. 1937, 76) oder 2.4.6-Trinitro-3-oxy-benzaldehyd (Ho., B., Soc. 1927, 2379). Mercurierung: Henry, Sharp. Das 4-Brom-phenylhydrazon schmilzt bei 194—195° (Zers.) (Hodgson, Beard, Soc. 1927, 2382), das 4-Nitro-phenylhydrazon bei 250° (Zers.) (Ho., Smith, Soc. 1937, 77). AgC₇H₄O₄N. Dunkelrote Nadeln. Löslich in kaltem Wasser (Ho., B., Soc. 127, 877).
- 2-Nitro-3-methoxy-benzaldehyd $C_8H_7O_4N=CH_3\cdot O\cdot C_6H_3(NO_2)\cdot CHO$ (H 62). Zur Bildung durch Nitrierung von 3-Methoxy-benzaldehyd (H 62) vgl. Hodgson, Beard, Soc. 1926, 154; 1927, 2380; Tröger, Fromm, J. pr. [2] 111, 232. Flüchtig mit Wasserdampf (H., B., Soc. 1926, 154). Bei der Einw. von 98% iger Salpetersäure bei 20° bildet sich 2.6-Dinitro-3-methoxy-benzaldehyd (H., B., Soc. 1927, 2381). Das 4-Brom-phenylhydrazon schmilzt bei 193—194°, das 4-Nitro-phenylhydrazon bei 222—223° (H., B., Soc. 1927, 2382).
- 2-Nitro-3-oxy-benzaldoxim $C_7H_6O_4N_2=HO\cdot C_6H_3(NO_2)\cdot CH:N\cdot OH.$ Gelbe Nadeln. F: 172,5° (Hodgson, Beard, Soc. 127, 879). Natriumsalz. Rot.

4-Nitro-3-oxy-benzaldehyd $C_7H_5O_4N$, s. nebenstehende Formel (H 62; E I 527). Zur Bildung bei der Nitrierung von 3-Oxy-benzaldehyd (H 62; E I 527) vgl. Hodgson, Beard, Soc. 127, 877; 1927, 2378; Lock, B. 62, 1184. — F: 134° (Henry, Sharp, Soc. 125, 1053). Mit Wasserdampf flüchtig (Ho., B., Soc. 1926, 2030).

○ OH CHO

Wird durch alkal. Permanganat-Lösung zu 4-Nitro-3-oxy-benzoesäure oxydiert (Henry, Sharp, Soc. 125, 1058). Gibt bei der Einw. von 50% iger Kalilauge bei 40° bis 45° nahezu ½ Mol 4-Nitro-3-oxy-benzoesäure, geringere Mengen 4-Nitro-3-oxy-benzylalkohol und andere Produkte (Lock, B. 62, 1184). Liefert beim Behandeln mit Salpetersäure (D: 1,51) bei 5—10° oder mit 1 Mol Kaliumnitrat in konz. Schwefelsäure 4.6-Dinitro-3-oxy-benzaldehyd und 2.4.6-Trinitro-3-oxy-benzaldehyd; bei Anwendung von 2 Mol Kaliumnitrat entsteht vorwiegend 2.4.6-Trinitro-3-oxy-benzaldehyd (Hodgson, Beard, Soc. 1927, 2378). Beim Kochen mit Quecksilber(II)-acetat und etwas Essigsäure in 50% igem Alkohol entstehen Salze des 4-Nitro-2(oder 6)-hydroxymercuri-3-oxy-benzaldehyds und des 4-Nitro-2.6-bis-hydroxymercuri-3-oxy-benzaldehyds (He., Sh., Soc. 125, 1055). — Das 4-Brom-phenylhydrazon schmilzt bei 179—180° (Hodgson, Beard, Soc. 1927, 2382), das 4-Nitro-phenylhydrazon bei 265—266° (Ho., B., Soc. 127, 881). — Silbersalz AgC₇H₄O₄N. Ziegelrote Tafeln. Fast unlöslich in kaltem Wasser (Ho., B., Soc. 127, 877).

- 4-Nitro-3-methoxy-benzaldehyd $C_8H_7O_4N=CH_3\cdot O\cdot C_8H_2(NO_2)\cdot CHO$ (H 63). Bei der Einw. von 98 % iger Salpetersäure bei 20° bildet sich 4.6-Dinitro-3-methoxy-benzaldehyd (Hodgson, Beard, Soc. 1927, 2381). Das 4-Brom-phenylhydrazon schmilzt bei 177—178°, das 4-Nitro-phenylhydrazon bei 257—258° (Hodgson, Beard, Soc. 1927, 2382).
- 4-Nitro-3-oxy-benzaldoxim $C_7H_6O_4N_2 = HO \cdot C_6H_3(NO_2) \cdot CH:N \cdot OH$. Gelbe Nadeln (aus Chloroform). F: 161° (v. Auwers, Schornstein, Fortsch. Ch. Phys. 18, Heft 2 [1924], S. 36), 164° (Hodgson, Beard, Soc. 127, 879). Leicht löslich in Alkohol, mäßig in Chloroform und Benzol, sehr schwer in Benzin (v. Au., Sch.). Natriumsalz. Rot. Schwer löslich in Wasser (H., B.).
- 6-Nitro-3-oxy-benzaldehyd C₇H₅O₄N, s. nebenstehende Formel (H 63; сно E I 527). B. Zur Bildung bei der Nitrierung von 3-Oxy-benzaldehyd (H 63; E I 527) vgl. Hodgson, Beard, Soc. 127, 877; Heilbron, Mitarb., Soc. 127, 2172. O₂N Beim Erwärmen von 6-Nitro-3-carbäthoxyoxy-benzaldehyd oder Bis-[4-nitro-OH 3-formyl-phenyl]-carbonat mit verd. Natronlauge auf dem Wasserbad (Mason, Soc. 127, 1197, 1198). — Gelbe Nadeln (aus Wasser oder Benzol). F: 170—171° (Henry, Sharp, Soc. 125, 1053). Unlöslich in Chloroform, Benzol und Toluol, schwer löslich in Wasser und Äther, löslich in Aceton, Eisessig, Nitrobenzol und Pyridin, leicht löslich in Methanol und Alkohol (M.). — Beim Erwärmen mit 50% iger Kalilauge auf 40—50° entsteht 6-Nitro-3-oxy-benzylalkohol (Lock, B. 62, 1184). Gibt bei der Nitrierung je nach den Bedingungen 2.6-Dinitro-3-oxy-benzaldehyd und 4.6-Dinitro-3-oxy-benzaldehyd oder 2.4.6-Trinitro-3-oxy-benzaldehyd (Ho., B., Soc. 1927, 2378, 2379). Gibt beim Kochen mit Quecksilber(II)-acetat und etwas Essigsäure in 50% igem Alkohol Salze des 6-Nitro-2(oder 4)-hydroxymercuri-3-oxy-benzaldehyds und des 6-Nitro-2.4-bis-hydroxymercuri-3-oxy-benzaldehyds (Henry, Sharp, Soc. 125, 1053). Das 4-Brom-phenylhydrazon schmilzt bei 214—215° (Hodgson, Beard, Soc. 1927, 2382). das 4-Nitro-phenylhydrazon C₁₃H₁₀O₅N₄ zersetzt sich bei 250° und schmilzt oberhalb 300° (Ho., B., Soc. 127, 880). — Silbersalz AgC₇H₄O₄N. Braungelbe Blättchen. Löslich in heißem Wasser unter Zersetzung (Ho., B., Soc. 127, 877).
- 6-Nitro-3-methoxy-benzaldehyd C₂H₇O₄N = CH₂·O·C₂H₂(NO₄)·CHO (H 63; E I 527).

 B. Zur Bildung durch Nitrierung von 3-Methoxy-benzaldehyd (H 63; E I 527) vgl. noch

HODGSON, BEARD, Soc. 1927, 2380. Bei der Einw. von Dimethylsulfat auf 6-Nitro-3-oxybenzaldehyd in verd. Alkalilauge bei 40° (MASON, Soc. 127, 1198) oder bei 60° (HEILBEON, Mitarb., Soc. 127, 2172). — Gelbe Krystalle (M.), farblose Nadeln (aus Alkohol) (HEI., Mitarb.). F: 82° (HEI., Mitarb.), 83—84° (M.). — Bei der Einw. von 98%iger Salpetersäure bei 20° bilden sich 2.6-Dinitro-3-methoxy-benzaldehyd und geringe Mengen 4.6-Dinitro-3-methoxy-benzaldehyd (Ho., B., Soc. 1927, 2381). — Das 4-Brom-phenylhydrazon schmilzt bei 235° bis 236°, das 4-Nitro-phenylhydrazon bei 281—283° (Ho., B., Soc. 1927, 2382).

6-Nitro-3-äthexy-benzaldehyd C₂H₂O₄N = C₂H₃·O·C₃H₃(NO₂)·CHO. B. Beim Erhitzen von 6-Nitro-3-oxy-benzaldehyd mit Methyljodid und Kaliumhydroxyd im Rohr auf 100° (MAFFEI, G. 59, 6). — Krystalle (aus Alkohol). F: 62°. Leicht löslich in organischen Lösungsmitteln.

6-Nitro-3-acetoxy-benzaldehyd $C_9H_7O_5N=CH_3\cdot CO\cdot O\cdot C_9H_3(NO_2)\cdot CHO$ (E I 527). Vgl. dazu Mason, Soc. 127, 1198.

6-Nitro-3-carbäthoxyoxy-benzaldehyd $C_{10}H_{\bullet}O_{\bullet}N=C_{2}H_{5}\cdot O_{2}C\cdot O\cdot C_{6}H_{3}(NO_{2})\cdot CHO$. B. Bei der Einw. von Salpeterschwefelsäure auf 3-Carbäthoxyoxy-benzaldehyd unterhalb 5°, neben anderen Produkten (Mason, Soc. 127, 1198). — Fast farblose Krystalle (aus Benzol + Petroläther). F: 63—65°. — Liefert beim Kochen mit verd. Natronlauge 6-Nitro-3-oxy-benzaldehyd.

Bis-[4-nitro-3-formyl-phenyl]-carbonat, Carbonat des 6-Nitro-3-oxy-benzaldehyds $C_{15}H_8O_9N_3=OC[O\cdot C_6H_3(NO_2)\cdot CHO]_2$ (E I 527). B. Bei der Einw. von Salpeterschwefelsäure auf Bis-[3-formyl-phenyl]-carbonat bei $0-5^0$ (Mason, Soc. 127, 1197). Schmilzt unter Zersetzung bei 194—198°. Unlöslich in heißem Alkohol, Tetrachloräthan, Aceton und Benzol, leicht löslich in heißem Eisessig. — Verfärbt sich am Licht. Zersetzt sich beim Lösen in heißem Nitrobenzol. Liefert beim Erhitzen mit 4%iger Natronlauge 6-Nitro-3-oxy-benzaldehyd.

6-Nitro-3-acetoxy-benzylidendiacetat, 6-Nitro-3-oxy-benzaldehyd-triacetat $C_{13}H_{12}O_8N=CH_3\cdot CO\cdot O\cdot C_6H_3(NO_2)\cdot CH(O\cdot CO\cdot CH_3)_2$. B. Durch Einw. von Acetanhydrid auf 6-Nitro-3-oxy-benzaldehyd in Gegenwart von etwas Schwefelsäure bei 40—50° (Mason, Soc. 127, 1199). — F: 120°.

6-Nitro-3-oxy-benzaldoxim $C_7H_6O_4N_2=HO\cdot C_6H_3(NO_2)\cdot CH:N\cdot OH$. Blaßgelbe Nadeln (aus Äther + Petroläther); F: 178—179° (Hodgson, Beard, Soc. 127, 879), 179—180° (Mason, Soc. 127, 1199). Krystalle (aus Wasser); F: 172° (H., B.). Sehr leicht löslich in Alkohol (M.). — Gibt nach Hodgson, Beard ein gelbes, nach Mason ein orangerotes Natriumsalz.

6-Nitro-3-äthoxy-benzaldoxim $C_0H_{10}O_4N_2=C_2H_5\cdot O\cdot C_0H_3(NO_2)\cdot CH:N\cdot OH.$ Blaßgelbe Krystalle (aus verd. Alkohol). F: 125° (MAFFEI, G. 59, 8).

6-Nitro-3-oxy-benzaldehyd-semicarbazon $C_9H_9O_4N_4=HO\cdot C_6H_3(NO_2)\cdot CH:N\cdot NH\cdot CO\cdot NH_4$. Blaßgelbe Krystalle. Zersetzt sich zwischen 245° und 260° (Mason, Soc. 127, 1199). Löslich in Alkohol. — Natriumsalz. Orangefarben.

4-Chlor-2-nitro-3-oxy-benzaldehyd $C_7H_4O_4NCl$, Formel I. Zur Konstitution vgl. Hodgson, Beard, Soc. 1927, 2378. — B. Aus nicht rein erhaltenem 4-Chlor-3-oxy-benzaldehyd bei der Einw. von Salpetersäure (D: 1,3) in

50% iger Essigsäure bei 45-55° (H., B., Soc. 1926, 2033, 2034). — Prismen (aus Eisessig). F: 175° (H., B., Soc. 1926, 2034). — Läßt sich durch Reduktion und Austausch der Aminogruppe gegen Chlor in

2.4-Dichlor-3-oxy-benzaldehyd überführen (H., B., Soc. 1927, 2378). Beim Behandeln mit Salpetersäure (D: 1,42) in Eisessig bei 65° bildet sich 4-Chlor-2.6-dinitro-3-oxy-benzaldehyd (H., B., Soc. 1926, 2031, 2035). — 4-Nitro-phenylhydrazon C₁₃H₉O₅N₄Cl. F: 275—276° (Zers.) (H., B., Soc. 1926, 2034). — Silbersalz AgC₇H₃O₄NCl. Orangefarbene Nadeln (aus Wasser) (H., B., Soc. 1926, 2034).

Semicarbazon $C_8H_7O_4N_4Cl = HO \cdot C_8H_3Cl(NO_2) \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Hellorangefarbene Nadeln (aus Alkohol). F: 265—266° (Zers.) (Hodgson, Beard, Soc. 1926, 2034).

6-Chlor-2-nitro-3-oxy-benzaldehyd C₇H₄O₄NCl, Formel II (E I 527). Gelbe Nadeln (aus verd. Essigsäure). F: 136° (Hodgson, Beard, Soc. 1926, 2034). — Liefert beim Behandeln mit Salpetersäure (D: 1,42) in Eisessig bei 65° 6-Chlor-2.4-dinitro-3-oxy-benzaldehyd. — 4-Nitro-phenylhydrazon C₁₃H₅O₄N₄Cl. F: 256—257° (Zers.). — AgC₇H₅O₄NCl. Ziegelrote Nadeln (aus Wasser). Leicht löslich in heißem Wasser.

Semicarbazon $C_0H_2O_4N_4Cl = HO \cdot C_0H_2Cl(NO_2) \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Gelbe Nadeln (aus Alkohol). F: 249—250° (Zers.) (Hodgson, Brard, Soc. 1926, 2034).

2-Chlor-4-nitro-3-oxy-benzaldehyd C₇H₄O₄NCl, Formel III. B. Neben 2-Chlor-6-nitro-3-oxy-benzaldehyd bei der Einw. von Salpetersäure (D: 1,3) auf 2-Chlor-3-oxy-benzaldehyd in 50% iger Essigsäure bei 45—55° (Hodgson, Beard, Soc. 1926, 2032, 2033; vgl. a. H., B., Soc. 1927, 2378). — Tiefgelbe Nadeln (aus Eisessig). F: 166° (H., B., Soc. 1926, 2032). Schwer

löslich in Wasser, leicht in Benzol und Chloroform. Flüchtig mit Wasserdampf. — Liefert beim Behandeln mit Salpetersäure (D: 1,42) in Eisessig bei 65° 2-Chlor-4.6-dinitro-3-oxy-benzaldehyd (H., B., Soc. 1926, 2031, 2035). — 4-Nitro-phenylhydrazon $C_{18}H_9O_5N_4Cl$. F: 294—295° (Zers.). — In heißem Wasser ist das Ammoniumsalz leichter löslich, das Silbersalz $AgC_7H_3O_4NCl$ (rote Nadeln aus Wasser) schwerer löslich als das entsprechende Salz des 2-Chlor-6-nitro-3-oxy-benzaldehyds.

- 2-Chlor-4-nitro-3-methoxy-benzaldehyd $C_8H_6O_4NCl = CH_3 \cdot O \cdot C_6H_4Cl(NO_2) \cdot CHO$. B. Bei kurzem Erhitzen von 2-Chlor-4-nitro-3-oxy-benzaldehyd mit Dimethylsulfat und Natrium-dicarbonat-Lösung (Hodgson, Beard, Soc. 1926, 2032). Neben 2-Chlor-6-nitro-3-methoxy-benzaldehyd beim Behandeln von 2-Chlor-3-methoxy-benzaldehyd mit Kaliumnitrat in konz. Schwefelsäure bei 30—60° (H., B., Soc. 1926, 2033). Nadeln (aus verd. Alkohol oder Essigsäure). F: 107°. Mit Wasserdampf flüchtig.
- 2-Chlor-4-nitro-3-oxy-benzaldoxim $C_7H_5O_4N_2Cl = HO \cdot C_6H_4Cl(NO_2) \cdot CH : N \cdot OH$. Gelbe Nadeln (aus Alkohol). F: 170° (Hodgson, Beard, Soc. 1926, 2032). Unlöslich in Wasser.
- 2-Chlor-4-nitro-3-oxy-benzaldehyd-semicarbazon $C_8H_7O_4N_4Cl = HO \cdot C_8H_9Cl(NO_2) \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Schwefelgelbe Nadeln (aus Alkohol). F: 271—272° (Zers.) (Hodgson, Beard, Soc. 1926, 2032).

6-Chlor-4-nitro-3-oxy-benzaldehyd $C_7H_4O_4NCl$, Formel IV (E I 527). Tiefgelbe Nadeln (aus Eisessig). F: 104° (Hodgson, Beard, Soc. 1926, 2034). — Liefert bei der Einw. von Salpetersäure (D: 1,42) in Eisessig bei 65° 6-Chlor-2.4-dinitro-3-oxy-benzaldehyd. — 4-Nitro-phenyl-hydrazon $C_{13}H_9O_5N_4Cl$. F: 284—286° (Zers.). — Silbersalz Ag $C_7H_8O_4NCl$. Braunrote Blättchen (aus Wasser). Schwer löslich in heißem Wasser.

Semicarbazon $C_8H_7O_4N_4Cl=HO\cdot C_4H_9Cl(NO_2)\cdot CH:N\cdot NH\cdot CO\cdot NH_9$. Gelbe Tafeln (aus Alkohol). F: 266—267° (Hodgson, Beard, Soc. 1926, 2034). Schwer löslich in heißem Alkohol.

- 2-Chlor-6-nitro-3-oxy-benzaldehyd $C_7H_4O_4NCl$, Formel V. B. s. im Artikel 2-Chlor-4-nitro-3-oxy-benzaldehyd, S. 59. Nadeln (aus Wasser). F: 153° (Hodgson, Beard, Soc. 1926, 2031, 2032). Leicht löslich in heißem Wasser, sohwer in Benzol und Chloroform. Nicht flüchtig mit Wasserdampf. Gibt beim Behandeln mit Salpetersäure (D: 1,42) in Eisessig bei 65° 2-Chlor-4.6-dinitro-3-oxy-benzaldehyd (H., B., Soc. 1926, 2031, 2035). 4-Nitro-phenyl-hydrazon $C_{13}H_9O_5N_4Cl$. F: 232—233°. In heißem Wasser ist das Ammoniumsalz schwerer löslich, das Silbersalz $AgC_7H_3O_4NCl$ (zimtbraune Nadeln aus Wasser) leichter löslich als das entsprechende Salz des 2-Chlor-4-nitro-3-oxy-benzaldehyds.
- 2-Chlor-6-nitro-3-methoxy-benzaldehyd $C_8H_6O_4NCl = CH_3 \cdot O \cdot C_8H_4Cl(NO_4) \cdot CHO$. B. Bei kurzem Kochen von 2-Chlor-6-nitro-3-oxy-benzaldehyd mit Dimethylsulfat und Natrium-dicarbonat-Losung (Hodgson, Beard, Soc. 1926, 2033). Eine weitere Bildung s. o. im Artikel 2-Chlor-4-nitro-3-methoxy-benzaldehyd. Nadeln (aus Eisessig). F: 134°. Nicht flüchtig mit Wasserdampf.
- 2-Chlor-6-nitro-3-oxy-benzaldoxim $C_7H_5O_4N_2Cl = HO \cdot C_6H_2Cl(NO_2) \cdot CH : N \cdot OH$. Nadeln (aus Chloroform). F: 175° (Hodgson, Beard, Soc. 1926, 2033). Sehr leicht löslich in Alkohol und Wasser.
- 2-Chlor-6-nitro-3-oxy-benzaldehyd-semicarbazon $C_8H_7O_4N_4Cl=HO\cdot C_6H_2Cl(NO_2)\cdot CH:N\cdot NH\cdot CO\cdot NH_2.$ Blaßgelbe Nadeln (aus Alkohol). F: 234° (Zers.) (Hodgson, Beard, Soc. 1926, 2032).
- 2.6-Dichlor-4-nitro-3-oxy-benzaidehyd C₇H₂O₄NCl₂, Formel VI. B. Bei der Einw. von Salpetersäure (D: 1,42) auf 2.6-Dichlor-3-oxy-benzaldehyd in Eisessig bei 65° (Hodgson, Brard, Soc. 1926, 2035). Gelbe Nadeln (aus verd. Essigsäure), Tafeln (aus Wasser). F: 80°. Mit Wasserdampf sehr langsam flüchtig. 4-Nitro-phenylhydrazon C₁₂H₂O₅N₄Cl₂. F: 279—280° (Zers.). Silbersalz AgC₇H₂O₄NCl₂. Rote Nadeln (aus Wasser).

Oxim $C_7H_4O_4N_2Cl_2 = HO \cdot C_6HCl_2(NO_2) \cdot CH : N \cdot OH$. Tiefgelbe Nadeln (aus verd. Alkohol). F: 195° (Hodgson, Beard, Soc. 1926, 2035).

Semicarbazon $C_8H_6O_4N_4Cl_2 = HO \cdot C_6HCl_2(NO_2) \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Heligelbe Blättchen (aus heißem Alkohol). F: 255—256° (HODGSON, BEARD, Soc. 1926, 2035).

2.4-Dichlor-6-nitro-3-oxy-benzaldehyd C₇H₃O₄NCl₂, Formel VII. B. Bei der Einw. von Salpetersäure (D: 1,42) auf 2.4-Dichlor-3-oxy-benzaldehyd in Eisessig bei 65° (Hodgson, Beard, Soc. 1926, 2034). — Nadeln (aus Eisessig oder Wasser). F: 107°. Löst sich in Eisessig oder heißem Wasser mit gelber Farbe. — 4-Nitro-phenylhydrazon C₁₂H₂O₅N₄Cl₂. F: 279—280°. —

Silbersalz AgC₇H₂O₄NCl₂. Blaßgelbe Nadeln. Unlöslich in Wasser (Hodgson, Beard, Soc. 1926, 2035).

Semica rbazon C₂H₂O₄N₄Cl₂ = HO·C₄HCl₂(NO₂)·CH:N·NH·CO·NH₂. Gelbe Nadeln mit 1 H₂O (aus verd. Alkohol). Erweicht bei 140—150° (Hodgson, Beard, Soc. 1926, 2035).

2.4-Dibrom-6-nitro-3-oxy-benzaldehyd C₇H₃O₄NBr₂, Formel VIII. B. Durch Bromierung von 6-Nitro-3-oxy-benzaldehyd, 4-Brom-6-nitro-3-oxy-benzaldehyd oder 2-Brom-4-nitro-3-oxy-benzaldehyd in alkoh. Lösung (Hodgson, Smith, Soc. 1931, 1501, 1505, 1507). Bei der Einw. von Salpetersäure auf 4.6-Dibrom-3-oxy-benzaldehyd und auf 2.4.6-Tribrom-3-oxy-benzaldehyd (Ho., Sm.). Bei der Einw. von Brom auf 6-Nitro-2.4-bis-hydroxymercuri-3-oxy-benzaldehyd, 4-Nitro-2.6-bis-hydroxymercuri-3-oxy-benzaldehyd oder 2-Nitro-4.6-bis-hydroxymercuri-3-oxy-benzaldehyd in Alkohol unter Kühlung (Henry, Sharp, Soc. 125, 1054, 1056, 1059; vgl. Ho., Sm., Soc. 1931, 1501). — Ist polymorph (Ho., Sm., Soc. 1931, 1502); man erhält bei der Krystallisation der Reaktionsprodukte aus Chloroform oder wäßr. Alkohol Rhomben oder Nadeln; F: 148° (Zers.); diese gehen bei mehrstündigem Kochen mit Xylol in Nadeln vom Schmelzpunkt 152,5° über, die sich bei 163° zersetzen; nach erneuter Krystallisation aus Chloroform wird der Schmelzpunkt 152,5° (unter sofortiger Zersetzung) gefunden; die beiden höherschmelzenden Modifikationen gehen bei 2-stdg. Kochen mit Wasser wieder in die niedrigerschmelzenden über (Ho., Sm., Soc. 1931, 1502). Das Präparat von Henry, Sharp bildete Prismen (aus Chloroform); F: 152,5° (korr.; Zers.). — Gibt bei der Oxydation mit alkal. Permanganat-Lösung 2.4-Dibrom-6-nitro-3-oxy-benzoesäure (He., Sh.).

4(oder 6)-Jod-2-nitro-3-oxy-benzaldehyd $C_7H_4O_4NI = HO \cdot C_6H_2I(NO_2) \cdot CHO$. B. Bei der Einw. von Jod-Kaliumjodid-Lösung auf 2-Nitro-4 (oder 6)-hydroxymercuri-3-oxy-benzaldehyd (Henry, Sharp, Soc. 125, 1060). — F: ca. 110°.

2 (oder 6)-Jod-4-nitro-3-oxy-benzaldehyd $C_7H_4O_4NI = HO \cdot C_6H_2I(NO_2) \cdot CHO$. B. Analog der vorangehenden Verbindung (Henry, Sharp, Soc. 125, 1058). — Gelbe Nadeln (aus Aceton oder Chloroform). F: 185° (korr.).

2 (oder 4)-Jod-6-nitro-3-oxy-benzaldehyd $C_7H_4O_4NI = HO \cdot C_6H_2I(NO_2) \cdot CHO$. B. Analog den vorangehenden Verbindungen (Henry, Sharp, Soc. 125, 1055). — Gelbe Prismen (aus Alkohol). F: 206° (korr.; Zers.). — Zersetzt sich beim Aufbewahren.

4.6-Dijod-2-nitro-3-oxy-benzaldehyd $C_7H_8O_4NI_2$, Formel IX. Zur Konstitution vgl. Hodgson, Smith, Soc. 1987, 77. — B. Bei der Einw. von Jod-Kaliumjodid-Lösung auf 2-Nitro-4.6-bis-hydroxymercuri-3-oxy-benzaldehyd (Henry, Sharp, Soc. 125, 1059). — Hellgelbe Nadeln (aus Chloroform). F: 154,5 $^{\circ}$ (korr.) (He., Sh.), 158 $^{\circ}$ (Ho., Sm.).

2.6-Dijod - 4-nitro - 3-oxy-benzaldehyd C₇H₃O₄NI₂, Formel X. B. Analog der vorangehenden Verbindung (Henry, Sharp, Soc. 125, 1057). — Gelbe Nadeln (aus Aceton). F: 122° (korr.). — Gibt bei der Oxydation mit alkal. Permanganat-Lösung 2.6-Dijod-4-nitro-3-oxy-benzoesäure.

2.4-Dijod-6-nitro-3-oxy-benzaldehyd C₇H₃O₄NI₂, Formel XI. B. Analog den vorangehenden Verbindungen (Henry, Sharp, Soc. 125, 1054). — Gelbe Prismen (aus Alkohol). F: 142° (korr.; Zers.). — Zersetzt sich beim Aufbewahren. — 2C₇H₃O₄NI₂ + HgI₂. Gelbe Nadeln (aus Alkohol). F: 184° (korr.; Zers.). Wird beim Aufbewahren dunkel.

0xim $C_7H_4O_4N_2I_2 = HO \cdot C_6HI_2(NO_2) \cdot CH : N \cdot OH$. F: 207—208° (korr.; Zers.) (Henry, Sharp, Soc. 125, 1055).

Semicarbazon $C_8H_6O_4N_4I_2=HO\cdot C_9HI_2(NO_2)\cdot CH:N\cdot NH\cdot CO\cdot NH_2.$ F: 214° (korr.; Zers.) (Henry, Sharp, Soc. 125, 1055).

2.6-Dinitro-3-oxy-benzaldehyd C₇H₄O₆N₃, Formel XII. B. Bei der Einw. von Salpetersäure (D: 1,42) auf 2-Nitro-3-oxy-benzaldehyd in Eisessig bei 70° (Hodgson, Brard, Soc. 1927, 2378; vgl. H., Smith, Soc. 1987, 76). Neben 4.6-Dinitro-3-oxy-benzaldehyd bei analoger Behandlung von 6-Nitro-3-oxy-benzaldehyd (H., B.; vgl. H., Smith, Soc. 1981, 1507). — Fast farblose Nadeln (aus verd. Essigsäure). F: 106°; in Wasser schwerer löslich als 4.6-Dinitro-3-oxy-benzaldehyd (H., Sm., Soc. 1981, 1507; vgl. H., B., Soc. 1927, 2379). — Das 4-Brom-phenylhydrazon schmilzt bei 249—250° (Zers.), das 4-Nitro-phenylhydrazon zersetzt sich bei

282—283° (H., B., Soc. 1927, 2379; vgl. H., Sm., Soc. 1981, 1507, 1508). — Ammoniumsalz. Dunkelorangefarben. Leicht löslich in Wasser (H., B.; vgl. H., Sm., Soc. 1981, 1507). — Natriumsalz. Orangefarben. Leicht löslich in Wasser (H., B.; vgl. H., Sm.).

2.6 - Dinitro - 3 - methoxy - benzaldehyd C₈H₄O₆N₃ = CH₃·O·C₄H₄(NO₈)₃·CHO (H 63 als x.x - Dinitro - 3 - methoxy - benzaldehyd vom Schmelzpunkt 155° aufgeführt). Zur Konstitution vgl. Hodgson, Beard, Soc. 1927, 2376; Tröger, Eicker, J. pr. [2] 116, 18. — B. Neben etwas 4.6-Dinitro - 3 - methoxy - benzaldehyd beim Behandeln von 3 - Methoxy - benzaldehyd mit Kaliumnitrat in konz. Schwefelsäure bei 0—5° oder von 6-Nitro - 3 - methoxy - benzaldehyd mit 98 % iger Salpetersäure bei 20° (H., B., Soc. 1927, 2380, 2381). Bei der Einw. von 98 % iger Salpetersäure auf 2-Nitro - 3 - methoxy - benzaldehyd bei 20° (H., B., Soc. 1927, 2381). — Prismen (aus Benzol). F: 157° (H., B.), 156° (T., Ei.). 5 g Substanz lösen sich in 60 g siedendem Benzol (H., B.); leicht löslich in Aceton und Chloroform (T., Ei.). — Liefert bei der Oxydation mit 1% iger Permanganat-Lösung (H., B.) oder mit Chromtrioxyd in Eisessig (T., Ei., J. pr. [2] 116, 31) 2.6-Dinitro-3 - methoxy - benzoesäure. Gibt beim Kochen mit 15% igem Ammoniak 2.4-Dinitro-anisol (T., Ei., J. pr. [2] 116, 31), beim Kochen mit 5% iger Natronlauge 2.4-Dinitro-anisol und 2.4-Dinitro-phenol (T., Ei.); Lock (B. 66 [1933], 1763) erhielt bei 1-stdg. Erwärmen mit 5% iger Natronlauge auf dem Wasserbad 2.4-Dinitro-phenol und Ameisensäure.

Phenylhydrazon $C_{14}H_{11}O_5N_4$. F: 185° (TRÖGER, EIGKER, J. pr. [2] 116, 29). — 4-Brom-phenylhydrazon $C_{14}H_{11}O_5N_4$ Br. F: 196—197° (Zers.) (Hodgson, Beard, Soc. 1927, 2381). — 4-Nitro-phenylhydrazon. Explodiert bei ca. 260° (H., B.).

Oxim $C_8H_7O_6N_3=CH_3\cdot O\cdot C_6H_2(NO_2)_2\cdot CH:N\cdot OH$. Schuppen (aus Alkohol). F: 165° (Tröger, Eicker, J. pr. [2] 116, 30). Unlöslich in Wasser, löslich in Alkohol und Äther.

Semicarbazon $C_9H_9O_8N_5=CH_3\cdot O\cdot C_6H_2(NO_9)_3\cdot CH:N\cdot NH\cdot CO\cdot NH_9$. Blaßgelbe Nadeln (aus verd. Alkohol). F: 225° (Tröger, Eicker, $J\cdot pr$. [2] 116, 29). Unlöslich in Wasser und Ligroin, löslich in Alkohol, Äther und Chloroform.

- 4.6 Dinitro 3 oxy benzaldehyd C₇H₄O₆N₂, s. nebenstehende Formel. B. Neben 2.4.6-Trinitro-3-oxy-benzaldehyd beim Behandeln von 4-Nitro-3-oxy-benzaldehyd mit 98% iger Salpetersäure bei 5—10° (Hodgson, Beard, Soc. 1927, 2378; H., Smtth, Soc. 1931, 1508). Neben 2.6-Dinitro-3-oxy-benzaldehyd bei der Einw. von Salpetersäure (D: 1,42) auf 6-Nitro-3-oxy-benzaldehyd in Eisessig bei 70° (H., B., Soc. 1927, 2378; vgl. H., Sm., Soc. 1931, 1507). Cremefarbige Krystallaggregate (aus Benzol + Ligroin). F: 104° (H., Sm., Soc. 1931, 1508). In Wasser lichter löslich als 2.6-Dinitro-3-oxy-benzaldehyd (H., B.). Das 4-Brom-phenylhydrazon schmilzt bei 166—167° (Zers.), das 4-Nitro-phenylhydrazon bei 240—242° (Hodgson, Beard, Soc. 1927, 2379; vgl. H., Smith, Soc. 1931, 1508). Ammoniumsalz. Dunkelorangefarben. Leicht löslich in Wasser (H., B., Soc. 1927, 2378). Natriumsalz. Gelb. Leicht löslich in Wasser (H., B., Soc. 1927, 2378).
- 4.6 Dinitro 3 methoxy benzaldehyd C₈H₈O₆N₂ = CH₃· O·C₆H₂(NO₂)₂· CHO. B. s. o. im Artikel 2.6-Dinitro-3-methoxy-benzaldehyd. Entsteht ferner bei der Einw. von 98 %iger Salpetersäure auf 4-Nitro-3-methoxy-benzaldehyd bei 20° (Hodgson, Beard, Soc. 1927, 2381). Prismen (aus Benzol). F: 131° (H., B.). 5 g lösen sich in 12 g siedendem Benzol; leicht löslich in siedendem Wasser (H., B.). Liefert bei der Oxydation mit Permanganat-Lösung 4.6-Dinitro-3-methoxy-benzoesäure (H., B.; vgl. Tröger, Eicker, J. pr. [2] 116, 26). Gibt beim Kochen mit 15 %igem Ammoniak 2.4-Dinitro-anisol, Jenne Kochen mit 5 %iger Natronlauge 2.4-Dinitro-anisol und 2.4-Dinitro-phenol (T., El., J. pr. [2] 116, 28, 31); Lock (B. 66 [1933], 1763) erhielt bei 1-stdg. Erwärmen mit 5 %iger Natronlauge 2.4-Dinitro-phenol und Ameisensäure. Das 4-Brom-phenylhydrazon schmilzt bei 254—256° (Zers.), das 4-Nitro-phenylhydrazon oberhalb 300° (Hodgson, Beaud, Soc. 1927, 2381).
- x.x Dinitro 3 methoxy benzaldehyd vom Schmelzpunkt 110° $C_8H_6O_6N_2=CH_3\cdot O\cdot C_6H_3(NO_2)_2\cdot CHO$ (H 63). Ist ein Gemisch aus 4.6-Dinitro-3-methoxy-benzaldehyd und 2.6-Dinitro-3-methoxy-benzaldehyd (Hodgson, Beard, Soc. 1927, 2376).
- x.x Dinitro 3 methoxy benzaldehyd vom Schmelzpunkt 155° $C_9H_4O_9N_9=CH_3\cdot O\cdot C_6H_2(NO_9)_3\cdot CHO$ (H 63). Ist als 2.6-Dinitro-3-methoxy-benzaldehyd (s. o.) erkannt worden (Hodgson, Beard, Soc. 1927, 2376; Teöger, Eickeb, J. pr. [2] 116, 18).
- 6-Chlor-2.4-dinitro-3-oxy-benzaldehyd C₇H₃O₈N₃Cl, Formel I auf S. 63. B. Bei der Einw. von Salpetersäure (D: 1,42) auf 6-Chlor-2-nitro-3-oxy-benzaldehyd oder auf 6-Chlor-4-nitro-3-oxy-benzaldehyd in Eisessig bei 65° (Hodgson, Beard, Soc. 1926, 2031, 2036). Gelbe Nadeln (aus verd. Essigsäure). F: 121,5°. 4-Nitro-phenylhydrazon C₁₂H₆O₇N₅Cl. F: 285° bis 286° (Zers.). Silbersalz. Tiefrot. Leicht löslich in Wasser.

Semicarbazon $C_8H_4O_4N_5Cl = HO \cdot C_4HCl(NO_2)_8 \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Gelbe Nadeln (aus Alkohol). F: 267—268° (Zers.) (Hodgson, Beard, Soc. 1926, 2036).

4-Chlor-2.6-dinitro-3-oxy-benzaldehyd (?) C₇H₃O₆N₃Cl, Formel II. B. Beim Behandeln von 4-Chlor-2-nitro-3-oxy-benzaldehyd mit Salpetersäure (D: 1,42) in Eisessig bei 65° (Hodgson, Beard, Soc. 1926, 2031, 2035; vgl. H., B., Soc. 1927, 2378). — Blaßgelbe Nadeln (aus Wasser). F: 118—119° (H., B., Soc. 1926, 2035). — Das 4-Nitro-phenylhydrazon explodiert bei 235—236°. — Silbersalz. Orangegelbe Nadeln (aus Wasser). Leicht löslich in Wasser.

Semicarbazon $C_0H_4O_0N_5Cl=HO\cdot C_0HCl(NO_9)_3\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Tiefgelbe Nadeln (aus verd. Alkohol). Explodiert bei ca. 200° (Hongson, Beard, Soc. 1926, 2036).

2-Chlor-4.6-dinitro-3-oxy-benzaldehyd C₇H₃O₈N₂Cl, Formel III. B. Bei der Einw. von Salpetersäure (D: 1,42) auf 2-Chlor-3-oxy-benzaldehyd, 2-Chlor-4-nitro-3-oxy-benzaldehyd oder 2-Chlor-6-nitro-3-oxy-benzaldehyd in Eisessig bei 65° (Hodgson, Beard, Soc. 1926, 2031, 2035).

— Blaßgelbe Nadeln (aus Eisessig). F: 110°. — Das 4-Nitro-phenylhydrazon schmilzt bei 277—279° (Zers.). — Ammoniumsalz. Löslich in Wasser. — Silbersalz. Orangefarbene Nadeln (aus Wasser). Leicht löslich in Wasser, Aceton und Alkohol.

Oxim $C_7H_4O_6N_5Cl = HO \cdot C_6HCl(NO_2)_2 \cdot CH : N \cdot OH$. Blaßgelbe Nadeln (aus Alkohol). F: 142° (Hodgson, Beard, Soc. 1926, 2035).

Semicarbazon $C_0H_0O_0N_5Cl = HO\cdot C_0HCl(NO_2)_2\cdot CH: N\cdot NH\cdot CO\cdot NH_2$. Gelbe Nadeln (aus verd. Alkohol). F: 240—242° (Zers.) (Hodgson, Beard, Soc. 1926, 2035).

2.4.6-Trinitro-3-oxy-benzaldehyd C₇H₃O₈N₃, Formel IV. B. Beim Behandeln von 6-Nitro-3-oxy-benzaldehyd mit Salpeterschwefelsäure bei 70—75° (Hodgson, Beard, Soc. 1927, 2379). Als Hauptprodukt bei der Einw. von 2 Mol Kaliumnitrat auf 4-Nitro-3-oxy-benzaldehyd in konz. Schwefelsäure (H., B., Soc. 1927, 2378). — Prismen (aus Benzol). F: 161—162° (Zers.). Leichter löslich in Wasser als Pikrinsäure. Gibt mit Alkalien tiefrote Lösungen. — Das 4-Bromphenylhydrazon explodiert bei 218—220°, das 4-Nitro-phenylhydrazon bei 228—230° (Hodgson, Beard, Soc. 1927, 2379). — Natriumsalz. Hellgelbe Nadeln.

Azin des 2.4.6-Trinitro-3-oxy-benzaldehyds, 2.4.6.2'.4'.6'-Hexanitro-3.3'-dioxy-benzaldazin $C_{14}H_4O_{14}N_8=[HO\cdot C_4H(NO_4)_3\cdot CH:N-]_2$. B. Durch Einw. von Hydrazinsulfat auf 2.4.6-Trinitro-3-oxy-benzaldehyd in heißer wäßriger Natronlauge (Hodgson, Beard, Soc. 1927, 2379). — Hellgelbe Nadeln. Explodiert heftig bei 150—160°. Leicht löslich in Alkohol und 50% iger Essigsäure, unlöslich in Benzol und Chloroform. Löslich in Alkalien mit roter Farbe.

Schwefelanaloga des 3-Oxy-benzaldehyds.

Amorpher polymerer 3-Methoxy-thiobenzaldehyd $(C_8H_8OS)_x = (CH_3 \cdot O \cdot C_6H_4 \cdot CHS)_x$ (H 64). H 64, Z. 9 v. o. statt "Durch 2-stdg. Erhitzen auf 160° oder durch 1-tägiges Erhitzen" lies: "Durch 3-stdg. Erhitzen auf 160° oder durch 1-tägiges Außbewahren". [MATERNE]

4 - Oxy - benzaldehyd, p - Oxy - benzaldehyd $C_7H_6O_2 = HO \cdot C_4H_4 \cdot CHO$ (H 64; E I 527). V. Über das Vorkommen in verschiedenen Xanthorrhoes-Harzen (H 64) vgl. Rennie, COOKE, FINLAYSON, Soc. 117, 341, 346. — B. Uber das Mengenverhältnis zwischen 2-Oxy-benzaldehyd und 4-Oxy-benzaldehyd bei der Umsetzung von Phenol mit Chloroform und Alkalilauge (H 64) vgl. Hodgson, Jenkinson, Soc. 1929, 469. 4-Oxy-benzaldehyd entsteht neben anderen Produkten beim Behandeln von Phenol mit Chlorpikrin und konz. Natronlauge erst bei 50-60°, dann bei Siedetemperatur (Berlingozzi, Badolato, R. A. L. [5] 83 I, 292) oder mit Trichloressigsäure und Natronlauge in der Wärme (van Alphen, R. 46, 144). In geringer Menge bei längerer Einw. von Proteus vulgaris auf l-Tyrosin in Ringerscher Lösung (Hirai, Bio. Z. 135, 303). F: 1160 (korr.) (Sidgwick, Allott, Soc. 123, 2819), 1170 (unkorr.) (Hirai, Bio. Z. 135, 303). Löslichkeitsdiagramm der binären Systeme mit Wasser und Benzol: S., A. Kritische Lösungstemperatur in Wasser: 64,4° (S., A.). Ultraviolett-Absorptionsspektrum von 4-Oxybenzaldehyd in Wasser bei verschiedenem pH: Stenström, Reinhard, J. phys. Chem. 29, 1480. - Gibt bei der elektrolytischen Reduktion in essigsaurer Lösung bei Gegenwart von Natriumacetat 4-Oxy-benzylalkohol; bei der elektrolytischen Reduktion an Zinkamalgam-Kathoden in wäßriger oder wäßrig-alkoholischer Schwefelsäure erhält man p-Kresol (vgl. a. E I 528) (Shima, Mem. Coll. Sci. Kyoto [A] 11, 417; 12, 78; C. 1928 II, 2331; 1929 I, 2978). Bleibt auch bei längerer Einw. von 50% iger Kalilauge im verschlossenen Gefäß unverändert (LOCK, B. 62, 1185). Geschwindigkeit der Bromierung (vgl. H 65) in wäßr. Lösung: Francis, Hill, Johnston,

Am. Soc. 47, 2220, 2229; Fa., Am. Soc. 48, 1634; vgl. a. Fa., Hill, Am. Soc. 46, 2500, 2505. Gibt mit überschüssiger Jod-Kaliumjodid-Lösung in verd. Kalilauge 2.4.6-Trijod-phenol (WIND-AUS, SCHIELE, B. 56, 847). 4-Oxy-benzaldehyd gibt beim Kochen mit 2 Mol Quecksilber(II)-acetat und etwas Essigsäure in verd. Alkohol Anhydro-[3-hydroxymercuri-5-acetoxymercuri-4-oxy-benzaldehyd] (Syst. Nr. 2353) (Henry, Sharp, Soc. 121, 1058).

Liefert beim Erwärmen mit Benzhydrylchlorid auf dem Wasserbad eine Verbindung

C₃₃H₂₇O₂Cl (s. u.); beim Erhitzen mit Benzhydrylbromid auf 100—110⁶ erhält man je nach der Reaktionsdauer eine Verbindung C₃₃H₂₇O₂Br (s. u.) oder 4-Oxy-3.5-dibenzhydryl-benzaldehyd (Busch, Knoll, B. 60, 2252, 2253).

4-Oxy-benzaldehyd gibt bei der Kondensation mit Aceton in wäßr. Natronlauge 4-Oxybenzylidenaceton (Nomura, Nozawa, Sci. Rep. Tohoku Univ. 7, 87; C. 1921 I, 1017; B CK, Heilbron, Soc. 121, 1100; Mannich, Merz, Ar. 1927, 21; McGookin, Sinclair, Soc. 1928, 1175) und geringe Mengen einer bei 2200 schmelzenden, gelben krystallinen Verbindung (McG., S.). Beim Erwärmen mit Methyläthylketon in 15% iger Alkalilauge auf dem Wasserbad erhält man Äthyl-[4-oxy-styryl]-keton (McGookin, Sinclair, Soc. 1928, 1175); sättigt man ein Gemisch aus 4-Oxy-benzaldehyd und Methyläthylketon in der Kälte mit Chlorwasserstoff, so bildet sich α-Methyl-α-[4-oxy-benzyliden]-aceton (Iwamoto, Bl. chem. Soc. Japan 2, 55; Soi. Rep. Tohoku Univ. 16, 531; C. 1927 I, 2730; II, 1471). Mit Acetylaceton in alkoh. Salzsäure entsteht Bis-[4-oxy-benzyliden]-aceton (Heller, B. 54, 1118). Kondensiert sich mit Dimethyldihydroresorcin (E II 7, 531) in alkoh. Lösung bei Zimmertemperatur unter Bildung von 4-Oxy-benzyliden-bis-dimethyldihydroresorcin (Syst. Nr. 829) (VORLÄNDER, Fr. 77, 263). Beim Sättigen einer Lösung von 4-Oxy-benzaldehyd und Salicylidenaceton in Ameisensäure mit Chlorwasserstoff bildet sich 2-[4-Oxy-styryl]-benzopyryliumchlorid (Syst. Nr. 2407) (Buck, Hellbron, Soc. 121, 1205).

Gleichgewicht der Reaktion $\text{HO} \cdot \text{C}_6\text{H}_4 \cdot \text{CHO} + \text{HCN} \rightleftharpoons \text{HO} \cdot \text{C}_6\text{H}_4 \cdot \text{CH}(\text{OH}) \cdot \text{CN}$ in Alkohol bei 20°: Lapworth, Manske, Soc. 1928, 2546. Beim Erhitzen mit Acetanhydrid und Natriumacetat erhält man 4-Acetoxy-zimtsäure, [4-Acetoxy-cinnamoyl]-[4-oxy-zimtsäure] und [4-Acetoxy-cinnamoyl]-[4-oxy-cinnamoyl]-[4-oxy-zimtsaure] (Ogawa, Bl. chem. Soc. Japan 2, 24;

C. 1927 I, 2068).

4-Oxy-benzaldehyd kondensiert sich mit 2-Amino-thiophenol in Eisessig zu 2-[4-Oxyphenyl]-benzthiazol (BOGERT, CORBITT, Am. Soc. 48, 787); reagiert analog mit 2-Amino-selenophenol (Bo., STULL, Am. Soc. 49, 2014). Gibt mit Phenylhydroxylamin N-Phenyl-4-oxy-isobenzaldoxim (Syst. Nr. 1604) (BAMBERGER, B. 57, 2086).

4-Oxy-benzaldehyd wird bei Verfütterung an Hühner vom Organismus in 4-Oxy-benzoesäure übergeführt (Crowdle, Sherwin, J. biol. Chem. 55, 17). Wirkt schwächer fäulnishemmend als Salicylaldehyd (Bokorny, zit. bei E. Keeser in J. Houben, Fortschritte der Heilstoff-

chemie, 2. Abt., Bd. II [Berlin-Leipzig 1932], S. 252).

Mikrochemischer Nachweis: Beh ens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 78. Nachweis durch Kupplung mit 4-Nitro-benzoldiazoniumchlorid in alkal. Lösung und spektroskopische Untersuchung des entstandenen Farbstoffs in Wasser, Alkohol und Aceton: Wales, Palkin, Am. Soc. 48, 812. Farbreaktionen mit Phenolen in alkoh. Salzsäure: VAN ITALLIE, HARMSMA, Pharm. Weekb. 61, 827; C. 1924 II, 1614; v. EULER, Ark. Kemi 8, Nr. 3, S. 35; C. 1921 I, 832. Farbreaktion mit Pararosanilinschwefligsäure von verschiedenem Schwefeldioxydgehalt: Shoesmith, Sosson, Hetherington, Soc. 1927, 2222. — 4-Nitro-phenylhydrazon. F: 262° (Hodgson, Cooper, Soc. 1929, 234); schmilzt nicht bis 300° (Hirai, Bio. Z. 135, 303).

Verbindung C₃₃H₂₇O₂Cl (vermutlich additionelle Verbindung aus 4-Oxy-3-benzhydryl-benzaldehyd und Benzhydrylchlorid). B. Aus 4-Oxy-benzaldehyd und Benzhydrylchlorid beim Erwärmen auf dem Wasserbad (Busch, Knoll, B. 60, 2253). — Hellgelbgrüne Blättchen (aus Benzol). Sintert gegen 165°, schmilzt unscharf gegen 180° (Zers.). — Geht beim Behandeln mit Alkohol in 4-Oxy-3.5-dibenzhydryl-benzaldehyd über.

Verbindung $C_{33}H_{27}O_2$ Br (vermutlich additionelle Verbindung aus 4-Oxy-3-benz-hydryl-benzaldehyd und Benzhydrylbromid). B. Aus 4-Oxy-benzaldehyd bei 1-stdg. Erhitzen mit Benzhydrylbromid auf 100—110° (Busch, Knoll, B. 60, 2252). — Schwärzlich violettrote Blättchen (aus Benzol). Schmilzt von 140° an unter Zersetzung. — Geht beim Kochen mit Benzol oder Erwärmen mit Alkohol oder Aceton in 4-Oxy-3.5-dibenzhydryl-benzaldehyd über.

Funktionelle Derivate des 4-Oxy-benzaldehyds.

4-Methoxy-benzaldehyd, Anisaldehyd, Aubépine $C_8H_8O_2$, s. nebenstehende Formel (H 67, E I 528). Die in der Formel angegebene Stellungsbezeichnung gilt für die von Anisaldehyd abgeleiteten Namen.

Vorkommen, Bildung und Darstellung.

V. Im ather. Ol aus dem Harzfluß von Boswellia serrata Roxb. (Roberts, C. 1924 I, 2641). Im ather. Ol aus Mimosen-Blüten (Walbaum, Rosenthal, J. pr. [2] 124, 71). — B. Beim Erhitzen von 4-Oxy-benzaldehyd mit Trimethyl-phenyl-ammoniumhydroxyd auf 125-130° (RODIONOW, FEDOROWA, Ar. 1928, 119). Beim Behandeln von Anisol mit Zinkcyanid und Chlorwasserstoff bei Gegenwart von Aluminiumchlorid in Benzol (Adams, Montgomery, Am. Soc. 46, 1520). In geringer Menge bei der Einw. von Zirkon(II)-cyanid und Zirkon(IV)-chlorid auf Anisol in Benzol (Krishnamurti, C. 1929 I, 2156). Neben anderen Produkten bei der elektrolytischen Oxydation von 4-Methoxy-toluol an Bleidioxyd-Anoden in verd. Schwefelsäure oder an Platinanoden in verd. Schwefelsäure, Natriumsulfat-Lösung oder Sodalösung (Fichter, RIS, Helv. 7, 803, 807, 808). Zur Bildung durch Einw. von Ozon auf Anethol (H 67; E I 528) vgl. Briner, v. Tscharner, Paillard, Helv. 8, 410. Entsteht ferner aus Anethol bei der elektrolytischen Oxydation in wäßr. Natriumsulfat-Lösung an einer Bleidioxyd-Anode bei 20°, neben anderen Produkten (Fichter, Christen, Helv. 8, 333) und bei der Oxydation mit verd. Chromschwefelsäure in Gegenwart von Kieselgur unterhalb 28° oder mit Natriumchlorat in Gegenwart von Osmiumtetroxyd in siedendem wäßrigem Aceton (Shoesmith, Soc. 123, 2702). Neben 4-Methoxy-mandelsäure bei der Einw. von verd. Alkalien auf Trichlormethyl-[4-methoxy-phenyl]-carbinol (Hébert, Bl. [4] 27, 52). Bei der Hydrierung von Anissäurechlorid in Xylol bei Gegenwart von Palladium-Bariumsulfat und geschwefeltem Chinolin (ROSENMUND, ZETZSCHE, B. 56, 1483). Durch Oxydation von 3-Nitro-4-anisylamino-benzol-sulfonsäure-(1) mit verd. Chromschwefelsäure unter Durchleiten von Wasserdampf (I. G. Farbenind., D.R.P. 482837; Frdl. 16, 422). — Zur technischen Darstellung vgl. A. WAGNER, Die Riechstoffe und ihre Derivate. Die Aldehyde [Wien-Leipzig 1929/30], S. 834.

Physikalische Eigenschaften.

Кр₇₆₀: 248,0° (GRIMM, РАТВІСК, *Am. Soc.* 45, 2799; НЕВЕВТ, *Bl.* [4] 27, 52), 249,5° (LECAT, *Ann. Soc. scient. Bruxelles* 48 I [1928], 120); Кр₈₆: 150° (НЕВЕВТ). D[№]: 1,1192 (ADKINS, BRODERICK, *Am. Soc.* 50, 500). n[∞]_D: 1,5703 (A., B.). Absorptionsspektrum im Ultrarot: Lecomte, *C. r.* 178, 1531; 180, 1482. Tesla-Luminescenz-Spektrum: Russell, Stewart, *Soc.* 1929, 2409; McVicker, Marsh, St., Am. Soc. 46, 1354. Beugung von Röntgenstrahlen in flüssigem Anisaldehyd: Krishnamurti, Indian J. Phys. 2, 355; C. 1928 I, 2694. Dielektr.-Konst. beim Siede-

punkt (248°): 10,38 (GRIMM, PATRICK, Am. Soc. 45, 2799).

1 Tl. Anisaldehyd löst sich bei 15° in 7 Tln. 50% igem Alkohol (Prins, R. 42, 26). Löslichkeit in Petroläther (Kp: 42—62° und Kp: 80—100°): Pr. Sehr leicht löslich in flüssigem Schwefeldioxyd und flüssigem Ammoniak mit gelber Farbe (DE CARLI, G. 57, 351). Anisa dehyd bildet azeotrope Gemische mit Brenzcatechin (Kp₇₆₀: ca. 253°; ca. 75% Anisaldehyd) und mit Isosafrol (Kp₇₆₀: 248,6°; ca. 60% Anisaldehyd) (Lecat, Ann. Soc. scient. Bruxelles 48 I [1928], 120, 122). Flüchtigkeit mit Wasserdampf: VIRTANEN, PULKKI, Am. Soc. 50, 3146; C. 1928 I, 167. Dichte und Brechungsindices von Lösungen in Alkohol bei 25°: ADKINS, BRODERICK, Am. Soc. 50, 500, 501. Elektrische Leitfähigkeit von Trimethyl-p-tolyl-ammoniumjodid in Anisaldehyd: CREIGHTON, WAY, J. Franklin Inst. 186 [1918], 686; C. 1920 III, 43.

Chemisches Verhalten.

Die Autoxydation wird durch Phenole beträchtlich verlangsamt (Moureu, Dufraisse, C. r. 174, 259). Anisaldehyd liefert bei der elektrolytischen Oxydation an einer Platinanode in schwefelsaurer Lösung Anissaure (Fighter, Ris, Helv. 7, 807). Anisaldehyd wird in Anisalkohol übergeführt durch Hydrierung bei Gegenwart von Nickel unter ca. 50 Atm. Druck (v. Braun, Bahn, Münch, B. 62, 2770), bei Gegenwart von Palladium-Bariumsulfat und Chinolin in Eisessig (ROSENMUND, JORDAN, B. 58, 162) oder bei Gegenwart von Platinschwarz (aus Platinoxyd) und Eisen(II)-chlorid in Alkohol unter 3 Atm. Druck (CAROTHERS, ADAMS, Am. Soc. 46, 1681). Faillebin (A. ch. [10] 4, 472) erhielt bei der Hydrierung bei Gegenwart von reinem Platinschwarz in Essigester fast ausschließlich Anisalkohol; bei Verwendung von eisenhaltigem Platinschwarz entstand daneben ein bei 230° (12 mm) siedendes Produkt, in dem vielleicht die Verbindung C₁₆H₁₈O₂ (E I 529) vorgelegen hat. Geschwindigkeit der Hydrierung bei Gegenwart von Palladium(II) oxyd, Palladium(II) oxyd + Eisen (II) chlorid und Platinschwarz + Eisen (II) chlorid in Alkohol: Shriner, Adams, Am. Soc. 46, 1687. Anisaldehyd gibt bei der Hydrierung der Gellegen (II) chlorid in Alkohol: Shriner, Adams, Am. Soc. 46, 1687. Anisaldehyd gibt bei der Gellegen (II) chlorid in Alkohol: Shriner (II) c elektrolytischen Reduktion an Zink-Kathoden Methyl-p-tolyl-äther (Shima, Mem. Coll. Sci. Kyoto [A] 12, 75; C. 1929 I, 2978). Bei der Einw. von geschmolzenem Aluminiumäthylat in Alkohol bei Zimmertemperatur entsteht Anisalkohol neben anderen Produkten, ebenso beim Kochen mit Magnesiumchlorid-athylat in Alkohol unter Durchleiten von Wasserstoff oder Stickstoff (MEERWEIN, SCHMIDT, A. 444, 233). Bei der Reduktion mit Chrom(II)-chlorid in Alkohol erhält man Isohydroanisoin (E II 6, 1130) (CONANT, CUTTER, Am. Soc. 48, 1027).

Anisaldehyd liefert beim Behandeln mit Chlor in Gegenwart von etwas Jod unter Kühlung

3-Chlor-anisaldehyd (Pfriffer, Segall, A. 460, 133). Bei der Einw. von Sulfurylchlorid ent-

steht 3.5-Dichlor-anisaldehyd (Durbans, Soc. 123, 1426). Gibt mit Brom in siedendem Eisessig 3.5-Dibrom-4-methoxy-benzoesäure (Lindemann, A. 431, 284). Anisaldehyd liefert beim Behandeln mit konz. Salpetersäure in Acetanhydrid bei —10° 3-Nitro-anisyliden-diacetat (DE Lange, R. 45, 46). Beim Behandeln mit Salpeterschwefelsäure etwas oberhalb 0° erhält man neben 3.5-Dinitro-anisaldehyd auch 2.4.6-Trinitro-anisol; die letztgenannte Verbindung entsteht ausschließlich, wenn die Reaktion bei 30° durchgeführt wird (DE L., R. 45, 47, 58). Kinetik der zu Hydroanisamid führenden Reaktion mit Ammoniak in alkoh. Lösung bei 200: Dobler, Ph. Ch. 101, 24. In Pyridin gelöster Anisaldehyd greift beim Durchleiten von Luft Kupfer an; Geschwindigkeit dieser Reaktion bei 30°: MOHLER, Helv. 8, 755. Reagiert heftig mit Vanadium-

oxychlorid unter Bildung eines unlöslichen Produkts (Brown, Snyder, Am. Soc. 47, 2674).

Beim Behandeln eines Gemisches von Anisaldehyd und Anisol mit Eisessig und konz. Schwefelsäure (vgl. H 69) entsteht neben 4.4'.4"-Trimethoxy-triphenylmethan auch 4.4'.4".4"-Tetramethoxy-tetraphenylmethan (Meisenheimer, Mitarb., A. 423, 104). Bei der Kondensation mit Methyläthylketon in verd. Natronlauge erhält man Äthyl-[4-methoxy-styryl]-keton; sättigt man ein Gemisch aus Anisaldehyd und Methyläthylketon mit Chlorwasserstoff in der Kälte, so bildet sich α-Methyl-α-anisyliden-aceton (Iwamoto, Bl. chem. Soc. Japan 2, 54, 55; Sci. Rep. Tôhoku Univ. 16, 535, 537; C. 1927 I, 2730; II, 1471). Anisaldehyd kondensiert sich mit

Diacetyl in 25%iger methylalkoholischer Kalilauge unterhalb —10° Kochen mit Acetophenon und wäßrigalkoholischer Natronlauge höher-

schmelzendes und niedrigerschmelzendes Anisylidendiacetophenon (DILTHEY, TAUCHER, B. 53, 255). Gibt beim Kochen mit Indandion (1.3) und wenig Piperidin in Alkohol 2-Anisylidenindandion-(1.3) und [4-Methoxy-phenyl]-dibindonyl-methan (Syst. Nr. 876) (IONESCU, SECAREANU, Bulet. Cluj 3, 274; C. 1927 II, 71). Mit Bindon (E II 7, 839) entsteht 2-Anisyliden-1.1-dibindonyl-indanon (3) (Syst. Nr. 888) (Io., Bl. [4] 48, 451). Anisaldehyd liefert beim Behandeln mit Diphenacylsulfid und wenig Piperidin das Piperidinsalz des $\alpha.\alpha'$ -Dibenzyliden-diphenacylsulfids (Dilthey, B. 60, 1405). Bei mehrtägigem Aufbewahren von Salicylidenaceton und Anisaldehyd in wäßrig-alkoholischer Natronlauge bildet sich Dianisylidenaceton (Heilbbon, Buck, Soc. 119, 1514).

Gleichgewicht der Reaktion $CH_3 \cdot O \cdot C_6H_4 \cdot CHO + HCN \Rightarrow CH_3 \cdot O \cdot C_6H_4 \cdot CH(OH) \cdot CN$ in Alkohol bei 20°: Lapworth, Manske, Soc. 1928, 2546; Geschwindigkeit dieser Reaktion bei Gegenwart von Alkali: ROSENTHALER, Fermentf. 5, 341; C. 1922 I, 1183. Reaktion mit Blausäure in Gegenwart von Emulsin s. u Anisaldehyd liefert mit 2,5 Mol Thiobenzoesäure unter Einleiten von Chlorwasserstoff bei 70° Anisaldehyd-dibenzoylmercaptal (Syst. Nr. 939) (BERGMANN, B. 53, 984). Beim Erhitzen mit Äthylidenmalonsäure-däthylester in Gegenwart von wenig konz. Schwefelsäure und folgenden Verseifen bildet sich 4-Methoxy-cinnamylidenmalonsäure (HIGGINBOTHAM, LAPWORTH, Soc. 121, 2828). Anisaldehyd gibt mit Benzoylmandelsäurenitril in Natriumäthylat-Lösung je nach den Bedingungen 4-Methoxy-benzoin-benzoat oder 4'-Methoxy-benzoin-benzoat oder ein Gemisch beider (GREENE, ROBINSON,

Soc. 121, 2189; Gr., Soc. 1926, 333).

Kryoskopische Untersuchung der Reaktion mit Anilin bei 30°: Oddo, Tognacchini, G. 52 II, 358. Anisaldehyd liefert mit Phenylarsin in Chlorwasserstoff enthaltendem Ather Phenylbis-[α-oxy-4-methoxy-benzyl]-arsin (Syst. Nr. 2304) (Palmer, Adams, Am. Soc. 44, 1365); beim Erhitzen mit Phenylarsin und Natriumacetat in Kohlendioxyd-Atmosphäre im Rohr auf dem Wasserbad erhält man Anisalkohol und Arsenobenzol (P., A., Am. Soc. 44, 1380).

Biochemisches Verhalten.

Anisaldehyd wird durch Bact. ascendens in Wasser in Gegenwart von Calciumcarbonat unter anaeroben Bedingungen bei 35—37° in Anisalkohol und Anissäure umgewandelt (Mozi-NARI, Bio. Z. 216, 213). Bei längerer Einw. von gärender Hefe auf Anisaldehyd bildet sich [4-Methoxy-phenyl]-acetyl-carbinol (nachgewiesen als 4-Nitro-phenylosazon) (NEUBERG, LIE-BERMANN, Bio. Z. 121, 324). Bei der Reaktion mit Blausäure in Gegenwart von Emulsin entsteht schwach rechtsdrehendes 4-Methoxy-mandelsäurenitril (Rosenthaler, Fermentf. 5, 335; C. 1922 I, 1183). Reduktion von Nitrat, Methylenblau, Clark-Indikatoren, Chinon oder 1.3-Dinitrobenzol durch Anisaldehyd in Gegenwart von Aldehydoxydase aus Kartoffeln: BERNHEIM, Biochem. J. 22, 346. — Anisaldehyd hemmt die Keimung von Samen (Sigmund, Bio. Z. 146, 390). Bacterioide Wirkung von Anisaldehyd: Penfold, Grant, J. Pr. Soc. N. S. Wales 58, 121; C. 1926 I, 3634.

Analytisches.

Anisaldehyd gibt mit wenig Resorein in 80% iger Schwefelsäure eine gelborange Färbung; die Reaktion tritt unter bestimmten Bedingungen noch bei einer Verdünnung von 1×10 suf

(CROCKER, Ind. Eng. Chem. 17, 1159; C. 1926 I, 1461). Empfindlichkeit weiterer Farbreaktionen und der Geruchsprobe: Cr. Anisaldehyd gibt mit Brenzcatechin, Resorcin, Pyrogallol und Phloroglucin in alkoh. Salzsäure rote Färbungen (van Itallie, Harmsma, Pharm. Weekb. 61, 828; C. 1924 II, 1614). Farbreaktionen mit Alkoholen und alkoh. Schwefelsäure: Ekkert, P.C.H. 69, 290; C. 1928 I, 2635; mit Phenolen in alkoh. Schwefelsäure: E., P.C.H. 68, 563; C. 1927 II, 2696; mit Cholesterin und Ergosterin in alkoh. Schwefelsäure: E., P.C.H. 69, 98, 276; C. 1928 I, 1559, 2523. Farbreaktion mit Pararosanilinschwefligsäure von verschiedenem Schwefeldioxyd-Gehalt: Shoesmith, Sosson, Hetherington, Soc. 1927, 2223. Bei der Einw. eines neutralisierten Gemisches von Dimethylgelb und Phenylhydrazin entsteht ein (nicht spezifischer) farbloser Niederschlag (Pittareill, C. 1920 IV, 616). Mikrochemischer Nachweis als Semicarbazon, 2- und 4-Nitro-phenylhydrazon und 3- und 4-Nitro-benzoylhydrazon: Griebel, Weiss, Mikroch. 5, 159; C. 1928 I, 385; zum mikrochemischen Nachweis vgl. a. Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 79. — Das 4-Nitro-phenylhydrazon schmilzt bei 160—161° (Hébert, Bl. [4] 27, 52).

- 4-Propyloxy-benzaldehyd $C_{10}H_{19}O_2=C_2H_5\cdot CH_2\cdot O\cdot C_8H_4\cdot CHO$. B. Beim Kochen von 4-Oxy-benzaldehyd mit Propylbromid in alkoh. Kalilauge (Stoermer, Wodarg, B. 61, 2327). Kp: 268°.
- 4-Butyloxy-benzaidehyd $C_{11}H_{14}O_3=CH_3\cdot [CH_2]_3\cdot O\cdot C_6H_4\cdot CHO.$ B. Analog der vorangehenden Verbindung (Stoermer, Wodarg, B. 61, 2328). Gelbliches Öl. Kp: 285°.
- 4 Isobutyloxy benzaldehyd $C_{11}H_{14}O_3 = (CH_3)_2CH \cdot CH_2 \cdot O \cdot C_0H_4 \cdot CHO$. B. Analog den vorangehenden Verbindungen (Stoermer, Wodard, B. 61, 2329). Gelbes Öl. Kp: 258°.
- 4-Hexadecyloxy-benzaldehyd, 4-Cetyloxy-benzaldehyd $C_{22}H_{38}O_2 = CH_3 \cdot [CH_2]_{15} \cdot O \cdot C_6H_4 \cdot CHO$. B. Analog den vorangehenden Verbindungen (Stoermer, Wodarg, B. 61, 2329). Schuppen (aus Alkohol). F: 19°. Das Phenylhydrazon schmilzt bei 89°.
- 4-Phenoxy-benzaldehyd, 4-Formyl-diphenyläther $C_{13}H_{10}O_2=C_6H_5\cdot O\cdot C_6H_4\cdot CHO$ (H 73). B. Man behandelt ein Gemisch aus Diphenyläther und Zinkcyanid in Benzol anfangs mit Chlorwasserstoff in der Kälte, dann mit Aluminiumehlorid und Chlorwasserstoff bei $40-45^\circ$ und kocht das Reaktionsgemisch mit überschüssiger 10%iger Salzsäure (Adams, Montgomery, Am. Soc. 46, 1521). Kp₂₀: $188-190^\circ$.
- 4-Benzyloxy-benzaldehyd $C_{14}H_{12}O_2=C_6H_5\cdot CH_2\cdot O\cdot C_6H_4\cdot CHO$ (H 73). B. Beim Kochen von 4-Oxy-benzaldehyd mit Benzylbromid in alkoh. Kalilauge (Stoermer, Wodarg, B. 61, 2329).
- 4-[4-Methoxy-phenoxy]-benzaldehyd, 4'-Methoxy-diphenyläther-aldehyd-(4) $C_{14}H_{12}O_3 = CH_3 \cdot O \cdot C_4H_4 \cdot O \cdot C_4H_4 \cdot CHO$. B. Bei der Oxydation von 4-[4-Methoxy-phenoxy]-zimtsäure mit Permanganat in heißer wäßrig-alkalischer Lösung (Harington, Biochem. J. 20, 308). Beim Behandeln von 4-Methoxy-diphenyläther mit Blausäure und Chlorwasserstoff bei Gegenwart von Aluminiumchlorid in Benzol, anfangs bei 0°, zuletzt bei 40—45° (H., Biochem. J. 20, 310). Nadeln oder Prismen (aus Petroläther). F: 60,5°. Liefert bei der Oxydation mit Permanganat 4-[4-Methoxy-phenoxy]-benzoesäure. Das Phenylhydrazon schmilzt bei 135—136°.
- 4-Methoxymethoxy-benzaldehyd $C_9H_{10}O_3=CH_3\cdot O\cdot CH_2\cdot O\cdot C_9H_4\cdot CHO$ (H 74). Kp₉: 132° bis 134° (Pauly, Wäscher, B..56, 607).
- 4-Carbomethoxyoxy-benzaldehyd $C_9H_8O_4=CH_3\cdot O_2C\cdot O\cdot C_6H_4\cdot CHO$ (vgl. E I 530). B. Beim Behandeln von 4-Oxy-benzaldehyd mit Chlorameisensäuremethylester in kalter verdünnter Natronlauge (Sonn, Bülow, B. 58, 1697). Nadeln (aus verd. Alkohol). F: 41—42°. Leicht löslich in Alkohol, Äther und Benzol.
- 4-Carbäthoxyoxy-benzaldehyd $C_{10}H_{10}O_4=C_2H_5\cdot O_2C\cdot O\cdot C_6H_4\cdot CHO$ (vgl. E I 530). B. Aus 4-Oxy-benzaldehyd und Chlorameisensäure-äthylester bei Gegenwart von Alkali (Shinoda, Sato, J. pharm. Soc. Japan 48, 117; C. 1929 I, 244). Krystalle. F: 26°. Kp₁₉₋₂₀: 170—173°.

Anisaldehyd-diäthylacetal $C_{12}H_{18}O_3=CH_3\cdot O\cdot C_gH_4\cdot CH(O\cdot C_2H_5)_2$ (H 74). B. Beim Aufbewahren von Anisaldehyd mit alkoh. Salzsäure oder beim Kochen von Anisaldehyd mit Alkohol in Gegenwart von Ammoniumchlorid (Haworth, Lapworth, Soc. 121, 81). — Gibt bei der Hydrierung in Gegenwart von Platin-Bariumsulfat (Kariyone, J. pharm. Soc. Japan 1925, Nr. 515, S. 2; C. 1925 I, 2377) oder bei Gegenwart von Palladiummohr in Eisessig p-Kresolmethyläther (Ka., Kimura, J. pharm. Soc. Japan 1928, 52; C. 1927 I, 1825).

4-Oxy-benzaldoxim-N-methyläther, N-Methyl-4-oxy-isobenzaldoxim $C_8H_0O_2N=HO\cdot C_6H_4\cdot CH:N(:O)\cdot CH_3$ s. H 27, 105.

Anisaldehyd -methylimid $C_9H_{11}ON = CH_3 \cdot O \cdot C_9H_4 \cdot CH : N \cdot CH_3$. B. Beim Erwärmen von Anisaldehyd mit Methylamin im Rohr auf 80—90° (KINDLER, A. 481, 225, 226; Ar. 1927, 408). —

Kp₁₈: 129—130° (korr.). — Liefert beim Erhitzen mit Schwefel im Rohr auf 160—180° N-Methyl-4-methoxy-thiobenzamid (K., A. 431, 226).

4-Methoxy-benzaldoxim-N-methyläther, Anisaldoxim-N-methyläther, N-Methyl-4-methoxy-isobenzaldoxim, N-Methyl-isoanisaldoxim $C_9H_{11}O_9N=CH_2\cdot O\cdot C_6H_4\cdot CH:N(:O)\cdot CH_3$ (H 27, 105). B. Beim Behandeln von Anisaldehyd mit N-Methyl-hydroxylamin in verd. Natronlauge (Brady, Dunn, Goldstein, Soc. 1926, 2392). Das Hydrojodid und das methylschwefelsaure Salz (s. u.) entstehen bei längerer Einw. von Methyljodid bzw. Dimethylsulfat auf α-Anisaldoxim im Dunkeln (B., D., G., Soc. 1926, 2395). Anisaldoxim-N-methyläther entsteht aus β-Anisaldoxim beim Behandeln mit Dimethylsulfat in verd. Natronlauge, neben wenig β-Anisaldoxim-O-methyläther (B., D., G., Soc. 1926, 2400). — Krystalle (aus Petroläther). F: 76° (B., D., G.). Nimmt an der Luft 1 H₂O auf; das aus Petroläther krystallisierbare Hydrat schmilzt bei 25° und gibt das Krystallwasser im Vakuum über Natriumhydroxyd ab (B., D., G.). — Wird beim Kochen mit 2 n-Natronlauge (B., D., G., Soc. 1926, 2403) und beim Abdampfen einer mit Weinsäure versetzten wäßrigen Lösung (Lindemann, Tsohang, B. 60, 1727) in Anisaldehyd und N-Methyl-hydroxylamin gespalten. Beim Erwärmen mit Acetanhydrid erhält man Anissäure-methylacetylamid (B., D., Soc. 1926, 2416). — Hydrochlorid C₂H₁₁O₂N + HCl. Krystallpulver. F: 175—179° (Zers.) (B., D., G., Soc. 1926, 2394). — Hydrojodid 2C₂H₁₁O₂N + HI. Krystalle. F: 160° (B., D., G., Soc. 1926, 2396). — Methylsulfat C₂H₁₁O₂N + CH₃· O·SO₃H. Krystalle. F: 89—90° (B., D., G., Soc. 1926, 2395).

Anisaidehyd-äthylimid $C_{10}H_{19}ON = CH_3 \cdot O \cdot C_6H_4 \cdot CH : N \cdot C_9H_5$. Liefert beim Behandeln mit Brenztraubensäure in Alkohol unter Kühlung α -Äthylimino- β -anisyliden-propionsäure (Skita, Wulff, A. 455, 35).

Hydroanisamid, Anishydramid $C_{24}H_{24}O_3N_2 = CH_3 \cdot O \cdot C_0H_4 \cdot CH(N: CH \cdot C_0H_4 \cdot O \cdot CH_3)_3$ (H 75; E I 530). Kinetik der Bildung aus Anisaldehyd und Ammoniak bei 20° in alkoh. Lösung: DOBLER, Ph. Ch. 101, 24.

- 4-Methoxy-benzaldoxim-N-carbonsäureamid, Anisaldoxim-N-carbonsäureamid, N-Aminoformyl-isoanisaldoxim $C_9H_{10}O_3N_2=CH_3\cdot O\cdot C_6H_4\cdot CH:N(:O)\cdot CO\cdot NH_2$ s. H 27, 107.
- 4-Oxy-benzaldoxim $C_7H_7O_2N=HO\cdot C_6H_4\cdot CH:N\cdot OH$ (H 76; E I 530). Liefert bei der Einw. von 4-Chlor-1.3-dinitro-benzol und Natriumäthylat-Lösung 4-Oxy-benzaldoxim-O-[2.4-dinitro-phenyläther] (Brady, Truszkowski, Soc. 125, 1092). Reagiert nicht mit Pikrylchlorid und Natriumäthylat-Lösung (Brady, Klein, Soc. 127, 847).
- 4-Oxy-benzaldoxim-O-[2.4-dinitro-phenyläther] $C_{13}H_9O_8N_8 = HO \cdot C_6H_4 \cdot CH : N \cdot O \cdot C_6H_5(NO_8)_8$. B. Beim Behandeln von 4-Oxy-benzaldoxim mit 4-Chlor-1.3-dinitro-benzol und Natriumäthylat-Lösung (Brady, Truszkowski, Soc. 125, 1092). Nadeln. F: 185° (Zers.). Liefert beim Erhitzen mit alkoh. Kalilauge 4-Oxy-benzonitril.
- $\begin{array}{l} \text{4-Methoxy-α-benzaldoxim, α-Anisaldoxim, 4-Methoxy-benz-syn-aldoxim, Anis-syn-aldoxim $C_8H_9O_8N$} = & \begin{array}{l} CH_3 \cdot O \cdot C_6H_4 \cdot CH \\ N \cdot OH \end{array} \end{array}$

anti-aldoxim bezeichnet). Zur Konfiguration vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 974, 978, 982. — Darst. Man löst 5 g Anisaldehyd in 10 cm³ absol. Alkohol, versetzt mit 3,5 g Hydroxylaminhydrochlorid und erwärmt einige Minuten (Lindemann, Tschang, B. 60, 1729). — F: 65° (Brady, Goldstein, Soc. 1926, 1923). Thermische Analyse des binären Systems mit 4-Chlor-1.3-dinitro-benzol s. S. 69. Elektrolytische Dissozianskonstante k in Wasser bei 25°: 1,2×10-11 (aus der Leitsthickeit des Natziumseless berechnet) (B. C.)

fähigkeit des Natriumsalzes berechnet) (B., G.).

α-Anisaldoxim geht bei 72-stündiger Ultraviolett-Bestrahlung in Benzol-Lösung in β-Anisaldoxim über (Brady, McHugh, Soc. 125, 551). Gibt beim Behandeln mit Chlorwasserstoff in Äther unterhalb —10° oder mit flüssigem Chlorwasserstoff α-Anisaldoxim-hydrochlorid (S. 69), beim Sättigen mit Chlorwasserstoff in siedendem Chloroform oder beim Verreiben mit konz. Salzsäure β-Anisaldoxim-hydrochlorid (S. 70) (Br., Dunn, Soc. 123, 1796; vgl. dagegen Brokmann, B. 23 [1890], 1687). Liefert bei kurzem Erhitzen mit konz. Schwefelsäure auf 100° β-Anisaldoxim-sulfat (Br., Whittehead, Soc. 1927, 2934). In Benzol gelöstes α-Anisaldoxim liefert bei der Oxydation mit Jod und Sodalösung Anisaldoxim-peroxyd (S. 71) (Robin, C. r. 171, 1151; A. ch. [9] 16, 94). Bei der Hydrierung in Gegenwart von Platinoxyd in Acetanhydrid erhält man N-[4-Methoxy-benzyl]-acetamid (Carothers, Biokyord, Hurwitz, Am. Soc. 49, 2912). Liefert bei der Reduktion mit Natriumamalgam und Eisessig in Alkohol bei ca. 60° Anisylamin und geringere Mengen Dianisylamin (Jones, Pyman, Soc. 127, 2592, 2596). Bei der Einw. von Salpeterschwefelsäure unterhalb 10° entsteht 3-Nitro-α-anisaldoxim (Br., Miller, Soc. 1928, 341).

α-Anisaldoxim liefert beim Zusammenschmelzen mit 4-Chlor-1.3-dinitro-benzol eine additionelle Verbindung (S. 69) (Brady, Truszkowski, Soc. 125, 1094). Beim Behandeln mit 4-Chlor-1.3-dinitro-benzol in warmer Natriumäthylat-Lösung erhält man O-[2.4-Dinitro-phenyl]-β-anis-

aldoxim (B., T., Soc. 125, 1091); analog verläuft die Reaktion mit Pikrylchlorid (B., Klein, Soc. 127, 846), während bei der Umsetzung mit 4-Nitro-benzylbromid in siedender Natriumäthylat-Lösung O-[4-Nitro-benzyl]-α-anisaldoxim erhalten wird (B., K., Soc. 1927, 880). α-Anisaldoxim liefert bei längerer Einw. von Methyljodid oder Dimethylsulfat im Dunkeln das Hydrojodid bzw. das methylschwefelsaure Salz des Anisaldoxim-N-methyläthers (S. 68) (B., Dunn, Goldstein, Soc. 1926, 2395); bei der Umsetzung mit Dimethylsulfat in verd. Natronlauge bei 20—25° entstehen α-Anisaldoxim-O-methyläther und weniger Anisaldoxim-N-methyläther (B., D., G., Soc. 1926, 2398; B., G., Soc. 1926, 2409). α-Anisaldoxim-O-methyläther erhält man auch beim Behandeln von α-Anisaldoxim mit Methyljodid und Silberoxyd in Methanol (Lindemann, Tschang, B. 60, 1729).

Liefert beim Kochen mit Kaliumcyanid in verd. Alkohol Anissäurenitril (Passerini, G. 56, 125). Beim Behandeln mit Benzoylchlorid in 2n-Natronlauge in der Kälte erhält man das Benzoat des α-Anisaldoxims (Syst. Nr. 929) (Brady, McHugh, Soc. 127, 2421). Bei der Einw. von Chlorameisensäure-äthylester in 2n-Natronlauge unter Kühlung entsteht O-Carbäthoxy-β-anisaldoxim (S. 71) (B., McH., Soc. 128, 1194). α-Anisaldoxim gibt beim Erhitzen mit Acetessigester in Gegenwart von Phosphorsäure auf dem Wasserbad 3-Methyl-4-anisyliden-isoxazolon-(5) (Syst. Nr. 4300) (Minunni, d'Urso, G. 59, 35; Fusco, Musante, G. 67 [1937], 254).

α-Anisaldoxim gibt mit Phenylisocyanat in wenig Äther ein bei 74° schmelzendes Produkt, das bei der Verseifung α-Anisaldoxim und Anissäure liefert und beim Kochen mit Alkohol in das Carbanilsäurederivat des α-Anisaldoxims (Syst. Nr. 1631) übergeführt wird (Brady, McHugh, Soc. 127, 2425). Beim Aufbewahren mit α-Naphthylisocyanat in Äther entsteht das α-Naphthylcarbamidsäure-Derivat des α-Anisaldoxims (B., Ridge, Soc. 128, 2171). Beim Behandeln des Natriumsalzes mit Diphenylcarbamidsäure-chlorid in siedendem Chloroform erhält man das Diphenylcarbamidsäure-Derivat des β-Anisaldoxims (Syst. Nr. 1639) (B., R., Soc. 123, 2168). α-Anisaldoxim wirkt auf Hefe, Pflanzenkeime und Kaltblüter stärker, auf Warmblüter

 α -Anisaldoxim wirkt auf Hefe, Pilanzenkeime und Kaltblüter stärker, auf Warmblüter schwächer giftig als β -Anisaldoxim (Lio, Arch. int. Pharmacod. 32, 461; Ber. Physiol. 40, 599;

C. 1927 II, 1725).

Hydrochlorid $C_9H_9O_2N+HCl.$ B. Aus α-Anisaldoxim beim Sättigen mit Chlorwasserstoff in Äther unterhalb -10° oder beim Behandeln mit flüssigem Chlorwasserstoff (Brady, Dunn, Soc. 123, 1796; vgl. dagegen Beckmann, B. 23 [1890], 1687). F: 134° (Zers.). Gibt mit β-Anisaldoxim-hydrochlorid keine Schmelzpunktsdepression. Geht beim Erhitzen auf dem Wasserbad sowie beim Kochen in Chloroform in β-Anisaldoxim-hydrochlorid über. Bei der Einw. von Sodalösung oder verd. Natronlauge entsteht α-Anisaldoxim. — Sulfat $C_8H_9O_2N+H_2SO_4$. Krystallpulver. F: 79—80° (B., Whitehead, Soc. 1927, 2937).

Verbindung mit 4-Chlor-1.3-dinitro-benzol $C_8H_9O_2N+C_8H_9O_4N_2Cl$. B. Beim Zusammenschmelzen von α -Anisaldoxim oder β -Anisaldoxim mit 4-Chlor-1.3-dinitro-benzol (Brady, Truszkowski, Soc. 125, 1089, 1094, 1095). Gelbe Nadeln (aus Benzol + Petroläther). F: 65°. Bildet bei ca. 45° schmelzende Eutektika mit 4-Chlor-1.3-dinitro-benzol (bei ca. 10 Mol-% α -Anisaldoxim) und mit α -Anisaldoxim (bei ca. 82 Mol-% α -Anisaldoxim). Wird durch 2n-Soda-

lösung unter Bildung von O-[2.4-Dinitro-phenyl]-β-anisaldoxim zersetzt.

4-Methoxy- β -benzaldoxim, β -Anisaldoxim, 4-Methoxy-benz-anti-aldoxim, Anis-anti-aldoxim $C_8H_9O_2N=CH_3\cdot O\cdot C_8H_4\cdot CH$ HO $\stackrel{\bullet}{N}$ (H 77; E I 531 auf Grund älterer Literatur als Anis-

syn-aldoxim bezeichnet). Zur Konfiguration vgl. die bei α-Anisaldoxim zitierte Literatur. — B. Bei 72-stündiger Ultraviolett-Bestrahlung von α-Anisaldoxim in Benzol (Brady, McHugh, Soc. 125, 551). Das Hydrochlorid (S. 70) entsteht aus α-Anisaldoxim beim Sättigen mit Chlorwasserstoff in Chloroform auf dem Wasserbad oder beim Verreiben mit konz. Salzsäure (B., Dunn, Soc. 123, 1796). Das Sulfat entsteht bei kurzem Erhitzen von α-Anisaldoxim mit konz. Schwefelsäure auf 100° (B., Whitehead, Soc. 1927, 2934). — Darst. Man kocht 5 g Anisaldehyd 1—2 Stdn. mit 3,5 g Hydroxylaminhydrochlorid in 10 cm³ absol. Alkohol (Lindemann,

TSCHANG, B. 60, 1729). — F: 1340 (B., TRUSZKOWSKI, Soc. 125, 1094).

β-Anisaldoxim liefert mit Methyljodid und Silberoxyd in Methanol unterhalb 10° β-Anisaldoxim-O-methyläther (Lindemann, Tschang, B. 60, 1729). Gibt beim Zusammenschmelzen mit 4-Chlor-1.3-dinitro-benzol die Verbindung von 4-Chlor-1.3-dinitro-benzol mit α-Anisaldoxim (s. o.) (Brady, Truszkowski, Soc. 125, 1089, 1095). Beim Erwärmen mit 4-Chlor-1.3-dinitro-benzol in Natriumäthylat-Lösung entsteht Anisaldehyd (B., T., Soc. 125, 1094). Beim Erwärmen mit Natriumäthylat-Lösung und folgenden Behandeln mit Pikrylchlorid in warmem Alkohol entstehen Anisaldehyd, Anissäurenitril und Pikrinsäure (B., Klein, Soc. 127, 849). β-Anisaldoxim liefert beim Behandeln mit 4-Nitro-benzylbromid und Silberoxyd in Benzol O-[4-Nitro-benzyl]-α-anisaldoxim; bei der Umsetzung des Natriumsalzes mit 4-Nitro-benzylbromid in Alkohol erhält man hauptsächlich N-[4-Nitro-benzyl]-isoanisaldoxim (Syst. Nr. 1702) und geringe Mengen O-[4-Nitro-benzyl]-β-anisaldoxim (B., K., Soc. 1927, 884, 890); die letztgenannte Verbindung entsteht ausschließlich bei der Einw. von 4-Nitro-benzylbromid auf das Silbersalz des β-Anisaldoxims (B., K., Soc. 1927, 884). Gibt bei der Umsetzung mit Dimethyl-

sulfat in verd. Natronlauge N-Methyl-isoanisaldoxim (S. 68) und wenig β -Anisaldoxim-O-methylāther (B., Dunn, Goldstein, Soc. 1926, 2400). β -Anisaldoxim liefert beim Kochen mit Kalium-cyanid in verd. Alkohol Anissäurenitril (Passerini, G. 56, 124). Gibt bei der Einw. von Benzoylchlorid in kalter 2n-Natronlauge das Benzoat des α -Anisaldoxims (Syst. Nr. 929) (Brady, McHugh, Soc. 127, 2421). Beim Schütteln einer Lösung in kalter 2n-Natronlauge mit einer ather. Lösung von Chlorameisensäureäthylester erhält man O-Carbäthoxy- β -anisaldoxim (S. 71); bei Abwesenheit von Äther bildet sich Anissäurenitril (B., MoH., Soc. 123, 1195, 1198). β -Anisaldoxim liefert bei der Einw. von α -Naphthylisocyanat in Äther das α -Naphthyl-carbamidsäure-Derivat des β -Anisaldoxims (B., Ridge, Soc. 123, 2171).

β-Anisaldoxim wirkt auf Hefe, Pflanzenkeime und Kaltblüter schwächer, auf Warmblüter stärker giftig als die α-Form (Lio, Arch. int. Pharmacod. 32, 461; Ber. Physiol. 40, 599;

C. 1927 II, 1725).

Hydrochlorid C₈H₉O₂N+HCl (H 77). B. Beim Einleiten von Chlorwasserstoff in eine Lösung von β-Anisaldoxim in Ather (Brady, Dunn, Soc. 123, 1797). Aus α-Anisaldoxim beim Sättigen mit Chlorwasserstoff in Chloroform auf dem Wasserbad oder beim Verreiben mit konz. Salzsäure (B., D., Soc. 123, 1796). Aus α-Anisaldoximhydrochlorid beim Erhitzen auf dem Wasserbad sowie beim Kochen mit Chloroform (B., D.). F: 136° (Zers.). Gibt mit α-Anisaldoximhydrochlorid keine Schmelzpunktsdepression.

- 4-Methoxy-α-benzaldoxim-0-methyläther, α-Anisaldoxim-0-methyläther, O-Methyl-α-anisaldoxim C₅H₁₁O₂N = CH₃·O·C₆H₄·CH:N·O·CH₃ (H 77 als Anis-anti-aldoxim-methyläther bezeichnet). B. Aus α-Anisaldoxim beim Behandeln mit Methyljodid und Silberoxyd in Methanol (Lindemann, Tschang, B. 60, 1729). Entsteht neben Anisaldoxim-N-methyläther bei der Einw. von Dimethylsulfat und Natronlauge auf α-Anisaldoxim (Brady, Dunn, Goldstein, Soc. 1926, 2398; vgl. a. B., G., Soc. 1926, 2409). Aus O-Methyl-β-anisaldoxim durch Behandeln mit Salzsäure (L., Tsch.). F: 43°; Kp₁₅: 129° (L., Tsch.). D^{44.2}₄: 1,0690; n^{45.2}₅: 1,5626 (L., Tsch.). Gibt beim Behandeln mit Salpeterschwefelsäure 3-Nitroα-anisaldoxim-O-methyläther und 3.5-Dinitro-α-anisaldoxim-O-methyläther (B., Miller, Soc. 1928, 341). 2C₅H₁₁O₂N + 2HCl + PtCl₄. Konnte nicht wieder erhalten werden (B., D., G., Soc. 1926, 2388).
- 4-Methoxy-β-benzaldoxim 0-methyläther, β-Anisaldoxim-0-methyläther, 0-Methyl-β-anisaldoxim $C_0H_{11}O_2N=CH_3\cdot O\cdot C_0H_4\cdot CH:N\cdot O\cdot CH_3$ (H 77 als Anis-syn-aldoxim-methyläther bezeichnet). B. Aus β-Anisaldoxim bei der Einw. von Methyljodid und Silberoxyd in Methanol unterhalb 10° (Lindemann, Tschang, B. 60, 1729). Neben überwiegenden Mengen N-Methyl-4-methoxy-isobenzaldoxim beim Behandeln von β-Anisaldoxim mit Dimethylsulfat in verd. Natronlauge (Brady, Dunn, Goldstein, Soc. 1926, 2400). Krystalle (aus Benzin). F: 36°; Kp₁₈: 129°; D₄^{a,2}: 1,0745; n^{6,3}: 1,5338; n^{6,3}: 1,5589 (L., Tsch.). Leicht löslich in Äther (B., D., G.). Geht beim Behandeln mit Salzsäure in O-Methyl-α-anisaldoxim über (L., Tsch.).
- 4-Methoxy-β-benzaldoxim-O-[2.4-dinitro-phenyläther], β-Anisaldoxim-O-[2.4-dinitro-phenyläther], O-[2.4-Dinitro-phenyl]-β-anisaldoxim $C_{14}H_{11}O_6N_3=CH_3\cdot O\cdot C_6H_4\cdot CH:N\cdot O\cdot C_8H_6(NO_3)_3$ (von Brady, Truszkowski, Soc. 125, 1091 auf Grund älterer Literatur als p-Methoxy-benz-syn-aldoxim-[2.4-dinitro-phenyläther] bezeichnet). B. Aus α-Anisaldoxim beim Behandeln mit 4-Chlor-1.3-dinitro-benzol in warmer Natriumäthylat-Lösung (Brady, Truszkowski, Soc. 125, 1091). Nadeln (aus Aceton). F: 174° (Zers.). Schwer löslich in siedendem Aceton. Liefert beim Erhitzen mit 6n-Natronlauge auf dem Wasserbad Anissäure, 2.4-Dinitro-phenol und Ammoniak.
- 4-Methoxy- β -benzaldoxim-O-pikryläther, β -Anisaldoxim-O-pikryläther, O-Pikryl- β -anisaldoxim $C_{14}H_{10}O_8N_4=CH_3\cdot O\cdot C_6H_4\cdot CH: N\cdot O\cdot C_6H_4\cdot (NO_2)_2$ (von Brady, Klein, Soc. 127, 846 auf Grund älterer Literatur als Pikryl-p-methoxy-benz-syn-aldoxim bezeichnet). B. Bei der Einw. von Pikrylchlorid auf die Natriumverbindung des α -Anisaldoxims in warmem Alkohol (Brady, Klein, Soc. 127, 846). Schwefelgelbe Nadeln (aus Aceton). F: 142—143° (Zers.). Liefert beim Erhitzen mit 2n-Natronlauge oder mit konz. Salzsäure auf dem Wasserbad Anissäure und Pikrinsäure.
- 4-Methoxy- α -benzaldoxim-O-[4-nitro-benzyläther], α -Anisaldoxim-O-[4-nitro-benzyläther], O-[4-Nitro-benzyl]- α -anisaldoxim $C_{18}H_{14}O_4N_2=CH_{\bullet}\cdot O\cdot C_6H_{\bullet}\cdot CH:N\cdot O\cdot CH_{2}\cdot C_6H_{\bullet}\cdot NO_2$. B. Beim Kochen von α -Anisaldoxim mit 4-Nitro-benzylbromid und Natriumäthylat-Lösung (Brady, Klein, Soc. 1927, 880). Aus β -Anisaldoxim beim Behandeln mit 4-Nitro-benzylbromid und Silberoxyd in Benzol (B., K., Soc. 1927, 884). Bei der Einw. von O-[4-Nitro-benzyl]-hydroxylamin auf Anisaldehyd in warmem Alkohol (B., K., Soc. 1927, 883). Beim Einleiten von Chlorwasserstoff in eine Lösung von β -Anisaldoxim-O-[4-nitro-benzyläther] in Chloroform (B., K., Soc. 1927, 887). Blaßgelbe Prismen (aus Aceton). F: 122° (B., K., Soc. 1927, 880). Bei der Bestrahlung mit ultraviolettem Licht in Benzol entstehen sehr geringe Mengen β -Anisaldoxim-O-[4-nitro-bensyläther] (B., K., Soc. 1927, 886).

- 4-Methoxy- β -benzaldoxim-0-[4-nitro-benzyläther], β -Anisaldoxim-0-[4-nitro-benzyläther], 0-[4-Nitro-benzyl]- β -anisaldoxim $C_{18}H_{14}O_4N_2=CH_3\cdot O\cdot C_8H_4\cdot CH:N\cdot O\cdot CH_2\cdot C_6H_4\cdot NO_4$. B. Durch Einw. von 4-Nitro-benzylbromid auf das Silbersalz des β -Anisaldoxims in Chloroform im Dunkeln (Brady, Klein, Soc. 1927, 884, 885). Neben überwiegenden Mengen N-[4-Nitro-benzyl]-isoanisaldoxim (Syst. Nr. 1702) bei der Einw. von 4-Nitro-benzylbromid auf das Natriumsalz des β -Anisaldoxims in Alkohol (B., K., Soc. 1927, 890). Nadeln (aus Methanol). F: 74° (B., K., Soc. 1927, 885). Geht beim Behandeln mit Chlorwasserstoff in Chloroform in α -Anisaldoxim-O-[4-nitro-benzyläther] über (B., K., Soc. 1927, 887).
- 4-Methoxy-β-benzaldoxim-O-carbonsäure-äthylester, β-Anisaldoxim-O-carbonsäure-äthylester, O-Carbāthoxy-β-anisaldoxim $C_{11}H_{12}O_4N=CH_3\cdot O\cdot C_6H_4\cdot CH:N\cdot O\cdot CO_2\cdot C_2H_6$ (von Brady, McHugh, Soc. 123, 1194 als Carbāthoxy-p-methoxy-benz-syn-aldoxim bezeichnet). B. Beim Behandeln von in 2n-Natronlauge gelöstem β-Anisaldoxim mit Chlorameisensäure-äthylester in Äther (Brady, McHugh, Soc. 123, 1195). Aus α-Anisaldoxim und Chlorameisensäureäthylester in kalter 2n-Natronlauge (B., McH., Soc. 123, 1194). Blättchen (aus Aceton + sehr verd. Alkohol). F: 74°. Liefert bei der Einw. von 2n-Natronlauge auf dem Wasserbad Anissäure und Ammoniak.
- 4-Methoxy- α -benzaldoxim-0- $[\beta$ -diāthylamino-āthylāther], α -Anisaldoxim- $[\beta$ -diāthylamino-āthylāther], 0- $[\beta$ -Diāthylamino-āthyl]- α -anisaldoxim $C_{14}H_{22}O_{2}N = CH_{3} \cdot 0 \cdot C_{6}H_{4} \cdot CH$: $N \cdot 0 \cdot CH_{2} \cdot CH_{2} \cdot N(C_{2}H_{5})_{2}$. B. Beim Kochen von α -Anisaldoxim mit β -Chlor-triāthylamin in Natriumāthylat-Lösung (I. G. Farbenind., D.R.P. 495336; Frdl. 16, 2914). Hydrochlorid. F: 145°. Leicht löslich in Wasser mit neutraler Reaktion.

$$I. \quad \begin{array}{c|c} O:N \longrightarrow C \cdot C_6H_4 \cdot O \cdot CH_3 \\ \hline CH_3 \cdot O \cdot C_6H_4 \cdot C \cdot O \cdot N \end{array} \qquad II. \quad \begin{array}{c|c} N \longrightarrow C \cdot C_6H_4 \cdot O \cdot CH_3 \\ \hline CH_3 \cdot O \cdot C_6H_4 \cdot C \cdot O \cdot N \end{array}$$

Anisaldoxim-peroxyd $C_{16}H_{16}O_4N_2=CH_3\cdot O\cdot C_4H_4\cdot CH:N(:O)\cdot O\cdot N:CH\cdot C_4H_4\cdot O\cdot CH_3$ (H 27, 107). B. Aus α -Anisaldoxim durch Behandeln mit Jod und Sodalösung in Benzol bei Zimmertemperatur (Robin, C. r. 171, 1151; A. ch. [9] 16, 94). — F: 119—120° (Zers.). Unlöslich in Wasser und in organischen Lösungsmitteln. — Macht aus Kaliumjodid in essigsaurer Lösung Jod frei. Geht beim Kochen mit Benzol in α -Anisaldoxim und 3.5-Bis-[4-methoxy-phenyl]-1.2.4-oxdiazol-4 (bzw. 4.5)-oxyd (Formel I bzw. II; Syst. Nr. 4533) über, das sich weiterhin in 3.5-Bis-[4-methoxy-phenyl]-1.2.4-oxdiazol, Anissäurenitril, Anissäure und Anisaldehyd umwandelt; das Oxdiazoloxyd und seine Umwandlungsprodukte entstehen auch bei wochenlanger Einw. von Jod und Sodalösung auf in Benzol suspendiertes Anisaldoximperoxyd.

- 4-Äthoxy- α -benzaldoxime $C_9H_{11}O_3N=C_2H_5\cdot O\cdot C_8H_4\cdot CH:N\cdot OH$ (H 78). Nach neueren Untersuchungen kommt dem α -Oxim (F: 118°) die Konfiguration III, dem β -Oxim (F: 157°) die Konfiguration IV zu (vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 982).
- 4-[4-Methoxy-phenoxy]-benzaldoxim $C_{14}H_{13}O_3N=CH_3\cdot O\cdot C_2H_4\cdot O\cdot C_6H_4\cdot CH: N\cdot OH.$ Blättchen (aus Petroläther). F: 74—75° (Harington, Biochem. J. 20, 308). Liefert beim Behandeln mit Phosphorpentachlorid in Äther in der Kälte 4'-Methoxy-4-cyan-diphenyläther.
- 4-Acetoxy- α -benzaldexime $C_9H_9O_3N=CH_3\cdot CO\cdot O\cdot C_6H_4\cdot CH:N\cdot OH$ (E I 531). Nach neueren Untersuchungen kommt dem α -Oxim (F: 114—115°) die Konfiguration V, dem β -Oxim (F: 131—132°) die Konfiguration VI zu (J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 982).

Dianisylidenhydrazin, Anisaldazin, 4.4'- Dimethoxy - benzaldazin, Dianisaldazin $C_{16}H_{16}O_2N_2 = CH_3 \cdot O \cdot C_6H_4 \cdot CH : N \cdot N : CH \cdot C_6H_4 \cdot O \cdot CH_3$ (H 80; E I 531). B. Das Chlorostannat (s. u.) entsteht bei der Einw. von Zinn(II)-chlorid in konz. Salzsäure auf Anetholnitrosochlorid (E II 6, 525) in Chloroform (Shoesmith, Slater, Soc. 127, 1490). — Die optischen Eigenschaften der anisotropen Schmelze entsprechen dem nematischen Zustand (Friedel, Ann. Physique [9] 18, 277, 450, 456; vgl. G. Szivessy in H. Geiger, K. Scheel, Handbuch der Physik, Bd. XX [Berlin 1928], S. 646). Lichtdurchlässigkeit im isotrop-flüssigen und nematischen Zustand: Riwlin, Arch. néerl. Sci. exactes 7, 95; C. 1924 I, 398. Zerstreuung von Röntgenstrahlen in der nematischen Phase: Hückel, Phys. Z. 22, 562; C. 1922 I, 524. Dielektr.-Konst. und elektrische Leitfähigkeit der nematischen Phase im Magnetfeld: Kast, Ann. Phys. [4] 78, 151, 157; zur Dielektr.-Konst. der nematischen Phase vgl. a. Zocher, Birstein, Ph. Ch. [A] 142, 188. Orientierung der nematischen Phase auf Glas im Magnetfeld: Freedericksz, Zolina, Trans. am. electroch. Soc. 55, 88, 92; C. 1929 II, 250. Über magnetische Suszeptibilität von Anisaldazin in festem und in nematischem Zustand vgl. Foex, Royer, C. r. 180, 1912.

Anisəldəzin löst sich in halogenierten Lösungsmitteln mit gelber Farbe (Rastelli, G. 54, 965). Gibt mit p-Toluylaldəzin ein anisotrop schmelzendes Gemisch (Walter, B. 58, 2306, 2307). C₁₆H₁₆O₂N₂+HCl. Gelbe Nadeln. F: 172°; zersetzt sich bei 177° (Shoesmith, Slater, Soc. 127, 1490). — 2C₁₆H₁₆O₂N₂+H₂SnCl₆. F: 259° (Zers.) (Sh., Sl.).

Anisaldehyd - semicarbazon C₂H₁₁O₂N₂ = CH₃·O·C₆H₄·CH:N·NH·CO·NH₄ (H 80; E I 532). F: 216—217° (korr.) (King, Murch, Soc. 127, 2641), 217° (Maquennescher Block) (Veibei, Bl. [4] 41, 1412). — Liefert beim Kochen mit Phenylhydrazin in Toluol oder Xylol Hydrazodicarbonamid und Anisaldehyd-phenylhydrazon; bei höherer Temperatur entsteht etwas Anisaldazin (Baird, Wilson, Soc. 1926, 2370).

Anisaldehyd - [4-oxy-benzolazoformylhydrazon] $C_{15}H_{14}O_5N_4 = CH_3 \cdot O \cdot C_4H_4 \cdot CH : N \cdot NH \cdot CO \cdot NH \cdot$

Anisaldehyd - [4 - methyl - thiosemicarbazon] C₁₀H₁₈ON₂S = CH₃· O·C₂H₄· CH:N·NH·CS· NH·CH₃. B. Bei der Einw. von Anisaldehyd auf 4-Methyl-thiosemicarbazid (Bose, J. indian chem. Soc. 2, 113; C. 1926 I, 1199). — Tafeln (aus Pyridin + Alkohol). F: 207°.

1.5-Dianisyliden-thiocarbohydrazid $C_{17}H_{18}O_2N_4S=(CH_3\cdot O\cdot C_8H_4\cdot CH:N\cdot NH)_2CS$. B. Aus Anisaldehyd und Thiocarbohydrazid in wäßrig-alkoholischer Salzsäure (Guha, Dev, J. indian chem. Soc. 2, 236; C. 1926 I, 2692). — Hellgelbe Tafeln (aus wäßr. Aceton). F: 158°. Unlöslich in Wasser, Äther und Chloroform, schwer löslich in siedendem Benzol.

Anisaldehyd-[2-methyl-semicarbazon] $C_{10}H_{13}O_2N_3=CH_3\cdot O\cdot C_6H_4\cdot CH:N\cdot N(CH_3)\cdot CO\cdot NH_2$ (H 80). Nadeln (aus verd. Alkohol). F: 192° (Backer, Mulder, R. 44, 1115). — Liefert beim Behandeln mit alkoh. Eisen (III) - chlorid - Lösung im Rohr bei 110—120° 3-Oxy-2-methyl-5-[4-methoxy-phenyl]-1.2.4-triazol.

l-Arabonsäure-anisylidenhydrazid ${}^{'}C_{19}H_{18}O_{6}N_{2}=CH_{3}\cdot O\cdot C_{6}H_{4}\cdot CH:N\cdot NH\cdot CO\cdot [CH(OH)]_{8}\cdot CH_{2}\cdot OH.$ B. Aus l-Arabonsäurehydrazid (E II 3, 304) und Anisaldehyd in wäßr. Lösung (Van Marle, R. 39, 558). — Krystalle (aus verd. Alkohol). F: 208° (Zers.). [α] $_{D}^{"}$: +81,7° (Pyridin).

Isosaccharinsäure - anisylidenhydrazid $C_{14}H_{20}O_6N_2=CH_3\cdot O\cdot C_6H_4\cdot CH:N\cdot NH\cdot CO\cdot C(OH)(CH_2\cdot OH)\cdot CH_2\cdot CH(OH)\cdot CH_3\cdot OH.$ B. Analog der vorangehenden Verbindung (VAN MARLE, R. 89, 557). — Blättchen mit $^1/_2$ H_2O (aus Wasser). F: 120—122° bei raschem Erhitzen, 135—138° (Zers.) bei langsamem Erhitzen. [α] $^{14}_D$: —36,2° (Pyridin). — Wird durch Wasser zersetzt.

- **d-Gluconsäure-anisylidenhydrazid** $C_{14}H_{20}O_7N_2=CH_2\cdot O\cdot C_6H_4\cdot CH:N\cdot NH\cdot CO\cdot [CH(OH)]_4\cdot CH_2\cdot OH.$ B. Analog den vorangehenden Verbindungen (van Marle, R. 39, 553). Blättchen (aus siedendem Wasser). F: 185° (Zers.). Schwer löslich in kaltem Wasser. [α] $_D^{15}:+54,0^{\circ}$ (Pyridin). Wird durch heißes Wasser zersetzt.
- 1-Gulonsäure-anisylidenhydrazid $C_{14}H_{20}O_7N_5 = CH_3 \cdot O \cdot C_6H_4 \cdot CH : N \cdot NH \cdot CO \cdot [CH(OH)]_4 \cdot CH_2 \cdot OH.$ B. Analog den vorangehenden Verbindungen (VAN MARLE, R. 39, 556). Blättchen. F: 176—177° (Zers.). [α] $_D^{a_1}$: —2,9° (Pyridin).
- d-Mannonsäure-anisylidenhydrazid $C_{14}H_{20}O_7N_2=CH_3\cdot O\cdot C_6H_4\cdot CH:N\cdot NH\cdot CO\cdot [CH(OH)]_4\cdot CH_2\cdot OH.$ B. Analog den vorangehenden Verbindungen (Van Marle, R. 39, 554). Krystalle (aus verd. Alkohol). F: 191° (Zers.). $[\alpha]_0^1:$ —18,8° (Pyridin). Zersetzt sich beim Aufbewahren.
- **d** Galaktonsäure anisylidenhydrazid $C_{14}H_{20}O_7N_3=CH_3\cdot O\cdot C_6H_4\cdot CH:N\cdot NH\cdot CO\cdot [CH(OH)]_4\cdot CH_2\cdot OH.$ B. Analog den vorangehenden Verbindungen (van Marle, R. 39, 555). Mikrokrystalline Masse (aus siedendem Wasser). F: 191° (Zers.). $[\alpha]_D^{16}:+67,7°$ (Pyridin). Wird am Licht gelb.

Ureidoessigsäure-anisylidenhydrazid, Hydantoinsäure-anisylidenhydrazid $C_{11}H_{14}O_{2}N_{4}=CH_{3}\cdot O\cdot C_{6}H_{4}\cdot CH:N\cdot NH\cdot CO\cdot CH_{3}\cdot NH\cdot CO\cdot NH_{2}$. B. Bei der Einw. von Anisaldehyd auf Hydantoinsäurehydrazid (E II 4, 796) in Wasser (Fosse, Hagene, Dubois, C. r. 178, 579). — Krystalle (aus Wasser). Schmilzt je nach der Geschwindigkeit des Erhitzens zwischen 220° und 227°.

4.4'- Diäthoxy- benzaldazin $C_{18}H_{20}O_{2}N_{2}=C_{2}H_{5}\cdot O\cdot C_{6}H_{6}\cdot CH:N\cdot N:CH\cdot C_{6}H_{4}\cdot O\cdot C_{2}H_{5}$ (H 80; E I 532). F: 172° (VORLÄNDER, Ph. Ch. 195, 242), 171° (FRIEDEL, Ann. Physique [9] 18, 456); die Schmelze ist bis 192° (V.), bis 195,5° (F.) nematisch (vgl. dazu FRIEDEL und die Angaben bei Anisaldazin, S. 71). Gibt mit p-Toluylaldazin ein anisotrop schmelzendes Gemisch (Walter, B. 58, 2306, 2307).

- 4-Athoxy benzaldehyd semicarbazon $C_{10}H_{18}O_2N_2=C_2H_5\cdot O\cdot C_6H_4\cdot CH:N\cdot NH\cdot CO\cdot NH_2$ (H 80). F: 202° (Zers.) (Stoermer, Wodarg, B. 61, 2326).
- CO·NH₂. F: 178-179° (Zers.) (STOERMER, WODARG, B. 61, 2327).
- CH: N·NH·CO·NH_a. Blattchen. F: 210-211° (HARINGTON, Biochem. J. 20, 308).
- 4.4'-Diacetoxy-benzaldazin C₁₈H₁₈O₄N₂ = CH₃·CO·O·C₆H₄·CH:N·N:CH·C₆H₄·O·CO·CH₃ (H 80). Die optischen Eigenschaften der anisotropen Schmelze entsprechen dem nematischen Zustand (FRIEDEL, Ann. Physique [9] 18, 458; vgl. a. die Angaben bei Anisaldazin, S. 71). Optisches Verhalten der nematischen Phase im starken Magnetfeld: Freedericksz, Repiewa, Z. Phys. 42, 540, 542; C. 1927 II, 7.

Substitutionsprodukte des 4-Oxy-benzaldehyds.

- 2-Fluor-4-oxy-benzaldehyd C₂H₅O₂F, s. nebenstehende Formel. B. Durch CHO Erhitzen von 3-Fluor-phenol mit Chloroform und Natronlauge, neben 4-Fluor-2-oxybenzaldehyd (Hodgson, Nixon, Soc. 1929, 1635). — Nadeln (aus Eisessig). F: 171°. Liefert beim Behandeln mit Salpetersäure in Eisessig je nach den Bedingungen 6-Fluor-3-nitro-4-oxy-benzaldehyd oder 2-Fluor-3.5-dinitro-4-oxy-benzaldehyd. — Gibt OH mit Eisen(III)-chlorid eine braunrote Färbung. — Das 4-Nitro-phenylhydrazon schmilzt bei 261°. — Natriumsalz. Nadeln (aus Wasser). Ziemlich leicht löslich in Wasser. — Kupfersalz. Hellgrün. - Chromsalz. Grün.
- 2-Fluor-4-methoxy-benzaldehyd, 2-Fluor-anisaldehyd $C_8H_7O_8F=CH_8\cdot O\cdot C_6H_8F\cdot CHO$. B. Beim Kochen von 2-Fluor-4-oxy-benzaldehyd mit Dimethylsulfat und Kaliumcarbonat in Xylol (Hodgson, Nixon, Soc. 1929, 1639). — Nadeln (aus Eisessig). F: 47°. — Das Phenylhydrazon schmilzt bei 101°, das 4-Nitro-phenylhydrazon bei 217°.
- 2-Fluor-4-oxy-benzaldoxim $C_7H_6O_2NF = HO \cdot C_6H_2F \cdot CH : N \cdot OH$. Tafeln (aus Alkohol). F: 151° (Hodgson, Nixon, Soc. 1929, 1635).
- 2-Fluor-anisaldoxim $C_8H_8O_2NF = CH_3 \cdot O \cdot C_6H_3F \cdot CH : N \cdot OH$. Nadeln. F: 95° (Hodgson, NIXON, Soc. 1929, 1639).
- 2-Fluor-4-oxy-benzaldehyd-semicarbazon $C_8H_8O_2N_2F = HO \cdot C_6H_2F \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Hellgelbe Tafeln (aus Alkohol oder verd. Essigsaure). F: 238º (Hodgson, Nixon, Soc. 1929, 1635).
- 2-Fluor-anisaldehyd-semicarbazon $C_9H_{10}O_9N_3F=CH_3\cdot O\cdot C_9H_3F\cdot CH:N\cdot NH\cdot CO\cdot NH_2.$ Nadeln. F: 228° (Hodgson, Nixon, Soc. 1929, 1639).
- 2-Chlor-4-oxy-benzaldehyd $C_7H_5O_2Cl$, s. nebenstehende Formel (H 81). B. In fast quantitativer Ausbeute durch Kochen von 2-Chlor-4-nitro-toluol mit Schwefel CHO und wäßrig-alkoholischer Natronlauge, Diazotieren des Reaktionsproduktes und CI nachfolgendes Kochen mit 40% iger Schwefelsäure (Hodgson, Jenkinson, Soc. 1927, 1742). Neben 4-Chlor-2-oxy-benzaldehyd beim Behandeln von 3-Chlor-phenol mit Chloroform, gelöschtem Kalk und Sodalösung (H., J., Soc. 1927, 1741). Über das Mengenverhältnis zwischen 2-Chlor-4-oxy-benzaldehyd und 4-Chlor-2-oxy-benzaldehyd bei der Einw. von Chloroform oder Bromoform auf 3-Chlor-phenol in siedender Natronlauge vgl. H., J., Soc. 1929, 469, 1641. — F: 147—148° (H., J., Soc. 1927, 1742). — Liefert beim Behandeln mit 63% iger Salpetersäure in Eisessig je nach den Bedingungen 6-Chlor-3-nitro-4-oxy-benzaldehyd oder 2-Chlor-3.5-dinitro-4-oxy-benzaldehyd (H., J., Soc. 1928, 2274). — Das 4-Nitrophenylhydrazon schmilzt bei 288° (Zers.) (H., J., Soc. 1927, 1742). — Kupfersalz. Hellgrün (H., J., Soc. 1927, 1742). — Chromsalz. Grün (H., J., Soc. 1927, 1742).
- 2-Chlor-4-methoxy-benzaldehyd, 2-Chlor-anisaldehyd $C_8H_7O_2Cl = CH_3 \cdot O \cdot C_8H_3Cl \cdot CHO$ (H 81). Riecht nach Weißdorn (Hodgson, Jenkinson, Soc. 1927, 3042). Unlöslich in Wasser. Das 4-Nitro-phenylhydrazon schmilzt bei 249° (Zers.) (H., J., Soc. 1927, 1742, 3042).
- 2-Chlor-4-acetoxy-benzaldehyd $C_0H_7O_3Cl=CH_3\cdot CO\cdot O\cdot C_6H_3Cl\cdot CHO$. Nadeln (aus verd. Essigsäure). F: 51,5° (Hodgson, Jenkinson, Soc. 1927, 1742).
- 2-Chlor-4-oxy-benzaldehyd-semicarbazon $C_8H_8O_2N_3Cl = HO \cdot C_6H_3Cl \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Gelbe Krystalle (aus Alkohol). F: 214° (Hodgson, Jenkinson, Soc. 1927, 1742).
- 2-Chlor-anisaldehyd-semicarbazon $C_9H_{10}O_2N_3Cl=CH_3\cdot O\cdot C_8H_3Cl\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Krystalle (aus Alkohol). F: 240° (Hodgson, Jenkinson, Soc. 1927, 1742, 3042).
- 3-Chlor-4-oxy-benzaldehyd $C_7H_4O_2Cl$, s. nebenstehende Formel (H 81). Uber Bildung durch Behandeln von 2-Chlor-phenol mit Chloroform und Natronlauge vgl. Hodgson, Jenkinson, Soc. 1929, 469.

ÓН

CHO

- 3-Chlor-4-methoxy-benzaldehyd, 3-Chlor-anisaidehyd C₂H₂O₂Cl = CH₂·O·C₂H₂Cl·CHO (H 81). B. Durch Chlorierung von Anisaldehyd in Gegenwart von etwas Jod unter Kühlung (Pfelffer, Segall, A. 460, 133). Nadeln (aus Äther + Petroläther). F: 62,5—63°.
- 3.5-Dichlor-4-oxy-benzaldehyd C₇H₄O₂Cl₂, Formel I (H 81). B. Beim Kochen von 3.5-Dichlor-anisaldehyd mit konz. Jodwasserstoffsäure (Durrans, Soc. 123, 1426). Aus 2.6-Dichlor-phenol 'durch Behandeln mit Chloroform in siedender Natronlauge (Hodgson, Jenkinson, Soc. 1929, 1641). Flüchtig mit Wasserdampf (H., J.).
- 3.5 Dichlor 4 methoxy benzaldehyd, 3.5 Dichlor anisaldehyd C₈H₆O₃Cl₂ = CH₃·O·C₆H₂Cl₂·CHO. B. Bei der Einw. von Sulfurylchlorid auf Anisaldehyd (Durrans, Soc. 123, 1426).
- Krystalle (aus Alkohol). F: 61,5°. Liefert bei der Oxydation mit Chromsaure 3.5-Dichloranissaure.
- 3.5-Dichlor-4-[4-methoxy-phenoxy]-benzaldehyd, 2.6-Dichlor-4-methoxy-diphenyläther-aldehyd-(4) $C_{14}H_{10}O_3Cl_2=CH_3\cdot O\cdot C_6H_4\cdot O\cdot C_6H_2Cl_2\cdot CHO$. B. Durch Reduktion von 2.6-Dichlor-4'-methoxy-4-oyan-diphenyläther mit Zinn(II)-chlorid und Chlorwasserstoff in Äther + Chloroform und Erhitzen des Reaktionsproduktes mit verd. Salzsäure (Schubgraf, Helv. 12, 413). Gibt beim Erhitzen mit Hippursäure, Natriumacetat und Acetanhydrid 2-Phenyl-4-[3.5-dichlor-4-(4-methoxy-phenoxy)-benzyliden]-oxazolon-(5).
- 2-Brom-4-oxy-benzaldehyd C₇H₅O₂Br, Formel II (H 82). B. Neben 4-Brom-2-oxy-benzaldehyd beim Kochen von 3-Brom-phenol mit Chloroform, gelöschtem Kalk und Sodalösung (Hodgson, Jenkinson, Soc. 1927, 3042). Über das Mengenverhältnis zwischen 2-Brom-4-oxy-benzaldehyd und 4-Brom-salicylaldehyd bei der Einw. von Chloroform oder Bromoform und Natronlauge auf 3-Brom-phenol vgl. H., J., Soc. 1929, 469, 1641. Liefert beim Behandeln mit 63%iger Salpetersäure in Eisessig je nach den Bedingungen 6-Brom-3-nitro-4-oxy-benzaldehyd oder 2-Brom-3.5-dinitro-4-oxy-benzaldehyd (H., J., Soc. 1928, 2277, 2278). Das 4-Nitro-phenylhydrazon schmilzt bei 274° (Zers.) (H., J., Soc. 1927, 3042).
- 2-Brom-4-methoxy-benzaldehyd, 2-Brom-anisaldehyd $C_8H_7O_2Br = CH_3 \cdot O \cdot C_6H_3Br \cdot CHO$. Nadeln (aus Alkohol). F: 77° (Hodgson, Jenkinson, Soc. 1927, 3042). Riecht nach Weißdorn. Mit Wasserdampf flüchtig. Unlöslich in Wasser. Das 4-Nitro-phenylhydrazon schmilzt bei 250° (Zers.).
- 2 Brom 4 oxy benzaldoxim $C_7H_6O_8NBr = HO \cdot C_6H_8Br \cdot CH : N \cdot OH$ (H 82). Nadeln. F: 184° (Hodgson, Jenkinson, Soc. 1927, 3042).
- 2-Brom-4-methoxy-benzaldoxim, 2-Brom-anisaldoxim $C_8H_8O_2NBr=CH_3\cdot O\cdot C_6H_2Br\cdot CH:N\cdot OH.$ F: 93° (Hodgson, Jenkinson, Soc. 1927, 3042).
- 2-Brom-4-oxy-benzaldehyd-semicarbazon $C_8H_8O_2N_3Br=HO\cdot C_6H_3Br\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. F: 212° (Hodgson, Jenkinson, Soc. 1927, 3042).
- 2-Brom-anisaldehyd-semicarbazon $C_9H_{10}O_2N_2Br=CH_3\cdot O\cdot C_9H_2Br\cdot CH:N\cdot NH\cdot CO\cdot NH_2.$ Nadeln. F: 232° (Hodgson, Jenkinson, Soc. 1927, 3042).
- 3-Brom-4-methoxy-benzaldehyd, 3-Brom-anisaldehyd C₈H₇O₂Br, s. nebenstehende Formel (H 82; E I 532). Darst. Durch Bromierung von Anisaldehyd in Schwefelkohlenstoff oder Tetrachlorkohlenstoff (Pfeiffer, Segall, A. 460, 135) oder bei Gegenwart von etwas Jod in siedendem Eisessig (Brady, Manjunath, Soc. 125, 1063). F: 53—54° (Pf., S.).
- 3-Brom-4-methoxy-benzaldoxim-N-methyläther, 3-Brom-anisaldoxim-N-methyläther, N-Methyl-3-brom-isoanisaldoxim $C_9H_{19}O_2NBr=CH_3\cdot O\cdot C_6H_3Br\cdot CH:N(:O)\cdot CH_3.$ B. Aus 3-Brom- β -anisaldoxim beim Behandeln mit Dimethylsulfat in verd. Kalilauge (Brady, Manjunath, Soc. 125, 1065). Entsteht in sehr geringer Menge neben 3-Brom- α -anisaldoxim-O-methyläther beim Behandeln von 3-Brom- α -anisaldoxim mit Dimethylsulfat in verd. Natronlauge (B., M.). Tafeln (aus Benzol + Petroläther). F: 108°.
- 3-Brom-p-methoxy-benz-anti-aldoxim bezeichnet. Zur Konfiguration vgl. J. Meisen-Heimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 974, 978, 982. — B. Durch Oximierung von 3-Brom-anisaldehyd (Brady, Manjunath, Soc. 125, 1064). — Nadeln (aus Alkohol). F: 118°. — Gibt mit Dimethylsulfat in verd. Natronlauge 3-Brom-α-anisaldoxim-O-methyläther (S. 75) und sehr geringe Mengen 3-Brom-anisaldoxim-N-methyläther (s. o.).

Das Natriumsalz liefert beim Erhitzen mit Benzylchlorid in Alkohol auf dem Wasserbad 3-Brom- α -anisaldoxim-O-benzyläther. 3-Brom- α -anisaldoxim gibt mit Acetanhydrid beim Erwärmen auf 30° 3-Brom- α -anisaldoxim-O-acetat, beim Kochen 3-Brom-4-methoxy-benzonitril. Bei mehrtägigem Aufbewahren mit Phenylisocyanat in Äther im Dunkeln entsteht neben dem Carbanilsäurederivat des 3-Brom- α -anisaldoxims auch das Carbanilsäurederivat des 3-Brom- β -anisaldoxims (Syst. Nr. 1631).

- $\begin{array}{ll} \textbf{3-Brom-4-methoxy-}\beta-benzaldoxim, & \textbf{3-Brom-}\beta-anisaldoxim, & \textbf{3-Brom-anis-anti-aldoxim} \\ \textbf{C}_8\textbf{H}_8\textbf{O}_2\textbf{NBr} = & \begin{array}{c} \textbf{CH}_3\textbf{D} \cdot \textbf{C}_6\textbf{H}_3\textbf{Br} \cdot \textbf{CH} \\ \textbf{HO} \cdot \textbf{N} \end{array}. & \textbf{Wird von Brady, Manjunath, Soc. 125, 1064 als 3-Brom-hove.} \end{array}$
- p-methoxy-benz-syn-aldoxim bezeichnet. Zur Konfiguration vgl. die Angaben bei der α -Form. B. Aus 3-Brom- α -anisaldoxim in sehr wenig konz. Salzsäure beim Sättigen mit Chlorwasserstoff und nachfolgenden Eintragen in überschüssige Sodalösung (Brady, Manjunath, Soc. 125, 1064). Tafeln (aus wäßr. Aceton). F: 134°. Gibt mit Dimethylsulfat in verd. Kalilauge 3-Brom-anisaldoxim-N-methyläther (s. o.). Liefert bei aufeinanderfolgender Behandlung mit kaltem Acetanhydrid und Sodalösung 3-Brom-4-methoxy-benzonitril. Bei der Einw. von Phenylisocyanat in Äther entsteht das Carbanilsäurederivat des 3-Brom- β -anisaldoxims.
- 3-Brom-4-methoxy- α -benzaldoxim-0-methyläther, 3-Brom- α -anisaldoxim-0-methyläther, 0-Methyl-3-brom- α -anisaldoxim $C_9H_{10}O_2NBr=CH_3\cdot O\cdot C_6H_3Br\cdot CH:N\cdot O\cdot CH_2$. B. Aus 3-Brom- α -anisaldoxim beim Behandeln mit Dimethylsulfat in verd. Natronlauge (Brady, Manjunath, Soc. 125, 1065). Tafeln (aus Alkohol). F: 76°.
- 3-Brom 4-methoxy- α -benzaldoxim-O-benzyläther, 3-Brom- α -anisaldoxim-O-benzyläther, 0-Benzyl-3-brom- α -anisaldoxim $C_{15}H_{14}O_2NBr=CH_3\cdot O\cdot C_6H_3Br\cdot CH:N\cdot O\cdot CH_2\cdot C_6H_5$. B. Aus dem Natriumsalz des 3-Brom- α -anisaldoxims und Benzylchlorid in Alkohol auf dem Wasserbad (Brady, Manjunath, Soc. 125, 1064). Tafeln (aus Alkohol). F: 82°.
- 3-Brom-4-methoxy- α -benzaldoxim-0-acetat, 3-Brom- α -anisaldoxim-0-acetat, 0-Acetyl-3-brom- α -anisaldoxim $C_{10}H_{10}O_3NBr=CH_3\cdot O\cdot C_6H_3Br\cdot CH:N\cdot O\cdot CO\cdot CH_3.$ B. Aus 3-Brom- α -anisaldoxim und Acetanhydrid bei 30° (Brady, Manjunath, Soc. 125, 1064). Tafeln (aus Alkohol). F: 82°.

2-Fluor-3-brom-4-oxy-benzaldehyd $C_7H_4O_2$ BrF, Formel I. B. Durch Erhitzen von 3-Fluor-2-brom-phenol mit Chloroform, gelöschtem Kalk und Sodalösung, neben 4-Fluor-3-brom-salicylaldehyd (Hodgson, Nixon, Soc. 1929, 1637). — Nadeln. F: 106°. Sehr wenig flüchtig mit Wasserdampf. — Das Phenylhydrazon schmilzt bei 85°, das 4-Nitro-phenylhydrazon bei 258° (Zers.).

Oxim $C_7H_5O_2NBrF = HO \cdot C_6H_2FBr \cdot CH : N \cdot OH$. Nadeln. F: 148° (Hodgson, Nixon, Soc. 1929, 1637).

Semicarbazon $C_8H_7O_2N_3BrF=HO\cdot C_6H_3BrF\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Hellgelbe Nadeln. F: 210° (Hodgson, Nixon, Soc. 1929, 1637).

- 2-Chlor-3-brom-4-oxy-benzaldehyd C₇H₄O₂ClBr, Formel II. B. Beim Erhitzen von 3-Chlor-2-brom-phenol mit Chloroform, gelöschtem Kalk und Sodalösung, neben 4-Chlor-3-brom-salicylaldehyd (Hodgson, Jenkinson, Soc. 1928, 2275; H., Nixon, Soc. 1929, 1637). Nadeln. F: 177° (H., J.). Sehr flüchtig mit Wasserdampf (H., J.). Schwer löslich in Wasser, leicht in den üblichen organischen Lösungsmitteln (H., J.). Liefert beim Behandeln mit Salpetersäure (D: 1,5) in Eisessig bei 30—40° 6-Chlor-5-brom-3-nitro-4-oxy-benzaldehyd (H., J.). Das 4-Nitro-phenylhydrazon schmilzt bei 253° (Zers.) (H., J.).
- 2.3-Dibrom-4-oxy-benzaldehyd C₇H₄O₂Br₂, Formel III. B. Durch Erhitzen von 2.3-Dibrom-phenol mit Chloroform, gelöschtem Kalk und Sodalösung, neben 3.4-Dibrom-salicylaldehyd (Hodgson, Jenkinson, Soc. 1928, 2275). Nadeln. F: 192°. Wenig flüchtig mit Wasserdampf. Das 4-Nitro-phenylhydrazon schmilzt bei 254° (Zers.).
- 3.5-Dibrom-4-oxy-benzaldehyd C₇H₄O₂Br₂, Formel IV (H 82). Darst. Durch Bromierung von 4-Oxy-benzaldehyd in Eisessig auf dem Wasserbad (LINDEMANN, A. 481, 283). F: 185°. Liefert beim Behandeln mit Acetanhydrid und konz. Schwefelsäure 3.5-Dibrom-4-acetoxy-benzylidendiacetat. Natriumsalz. Gelbes krystallines Pulver. Schwer löslich.
- 3.5 Dibrom 4 methoxy-benzaldehyd , 3.5 Dibrom anisaldehyd $C_4H_4O_4Br_2 = CH_3 \cdot O \cdot C_4H_4Br_2 \cdot CHO$. B. Aus dem Natriumsalz des 3.5 Dibrom 4 oxy-benzaldehyds und Dimethyl-

76

sulfat auf dem Wasserbad (LINDEMANN, A. 481, 284). — Nadeln (aus Benzin). Schmilzt bei 82—86°. Schwer löslich in Wasser, leicht in den meisten organischen Lösungsmitteln.

- 3.5 Dibrom 4 [4-methoxy-phenoxy] benzaldehyd, 2.6 Dibrom 4'-methoxy-diphenyläther-aldehyd-(4) $C_{14}H_{10}O_2Br_2 = CH_2 \cdot 0 \cdot C_4H_4 \cdot 0 \cdot C_4H_2Br_2 \cdot CHO$. B. Durch Reduktion von 2.6 Dibrom 4'-methoxy 4-cyan diphenyläther mit Zinn (II) chlorid und Chlorwasserstoff in Äther + Chloroform and Erhitzen des Reaktionsprodukts mit verd. Salzsäure (SCHUEGRAF, Helv. 12, 409). Kryandle (aus Eisessig). F: 98°.
- 3.5-Dibrom-4-acetoxy-benzaldehyd $C_0H_0O_3Br_2=CH_3\cdot CO\cdot O\cdot C_0H_2Br_2\cdot CHO$. B. Beim Kochen von 3.5-Dibrom-4-acetoxy-benzylidendiacetat mit verd. Salzsäure (LINDEMANN, A. 481, 283). Krystalle (aus Alkohol). F: 112°. Löslich in Eisessig.
- 3.5 Dibrom 4 acetoxy benzylidendiacetat $C_{19}H_{19}O_6Br_9 = CH_3 \cdot CO \cdot O \cdot C_6H_2Br_9 \cdot CH(O \cdot CO \cdot CH_9)_8$. B. Beim Behandeln von 3.5-Dibrom-4-oxy-benzaldehyd mit Acetanhydrid und konz. Schwefelsäure (Lindemann, A. 481, 283). Krystalle (aus Benzin). F: 125°.
- 3.5-Dibrom-4-oxy-benzaldoxim C₇H₅O₅NBr₅ = HO·C₆H₅Br₅·CH:N·OH (H 82). Wird von Wentworth, Brady, Soc. 117, 1042 und Brady, Dunn, Soc. 123, 1801 als 3.5-Dibrom-4-oxy-benz-anti-aldoxim bezeichnet; vgl. indessen J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 985. Nadeln (aus Alkohol). F: 199° (Wentworth, Brady, Soc. 117, 1042). Läßt sich nicht in ein isomeres Oxim umlagern (W., B.; B., Dunn, Soc. 123, 1801). Hydrochlorid C₇H₅O₅NBr₂ + HCl. Schmilzt bei 189°, zersetzt sich bei 195° (B., D.).
- 3.5-Dibrom-4-acetoxy-benzaldoxim-0-acetat $C_{11}H_9O_4NBr_2=CH_2\cdot CO\cdot O\cdot C_6H_9Br_2\cdot CH:N\cdot O\cdot CO\cdot CH_2$. B. Aus 3.5-Dibrom-4-oxy-benzaldoxim durch Einw. von Acetanhydrid und konz. Schwefelsäure (Wentworth, Brady, Soc. 117, 1042). Krystallpulver (aus Alkohol). F: 122°.
- 2- Jod-4-oxy-benzaldehyd C₇H₈O₂I, s. nebenstehende Formel. B. Beim Erhitzen von 3-Jod-phenol mit Chloroform, gelöschtem Kalk und Sodalösung, neben 4-Jod-salicylaldehyd (Hodgson, Jenkinson, Soc. 1927, 3043). Über das Mengenverhältnis zwischen 2-Jod-4-oxy-benzaldehyd und 4-Jod-salicylaldehyd bei der Einw. von Chloroform oder Bromoform und Natronlauge auf 3-Jod-phenol vgl. H., J., Soc. 1929, 469, 1641. Gelbliche Nadeln (aus Alkohol). F: 163° (H., J., Soc. 1927, 3043). Liefert bei der Nitrierung je nach den Bedingungen 6-Jod-3-nitro-4-oxy-benzaldehyd oder 2-Jod-3.5-dinitro-4-oxy-benzaldehyd (H., J., Soc. 1928, 2279). Das 4-Nitro-phenylhydrazon schmilzt bei 265° (Zers.) (H., J., Soc. 1927, 3043). Die Alkalisalze sind gelb, das Kupfersalz ist blaugrün (H., J., Soc. 1927, 3043).
- 2 Jod 4 methoxy benzaldehyd, 2 Jod anisaldehyd $C_8H_7O_2I=CH_2\cdot O\cdot C_8H_3I\cdot CHO$. Nadeln (aus Alkohol). Riecht schwach nach Weißdorn. F: 115° (Hodgson, Jenkinson, Soc. 1927, 3043). Flüchtig mit Wasserdampf. Das 4-Nitro-phenylhydrazon schmilzt bei 247° (Zers.).
- 2-Jod-4-oxy-benzaldoxim $C_7H_6O_2NI = HO \cdot C_6H_3I \cdot CH : N \cdot OH$. Nadeln. F: 155° (Hodg-80n, Jenkinson, Soc. 1927, 3043).
- 2-Jod-4-methoxy-benzaldoxim, 2-Jod-anisaldoxim $C_eH_eO_2NI = CH_a \cdot O \cdot C_eH_aI \cdot CH : N \cdot OH$. Nadeln. F: 101° (Hodgson, Jenkinson, Soc. 1927, 3043).
- 2-Jod-4-oxy-benzaldehyd-semicarbazon $C_0H_0O_2N_3I = HO \cdot C_0H_3I \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Gelbliche Tafeln. F: 232° (Zers.) (Hodgson, Jenkinson, Soc. 1927, 3043).
- 2 Jod anisaldehyd semicarbazon $C_9H_{10}O_9N_2I=CH_3\cdot O\cdot C_9H_3I\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Hellgelbe Nadeln. F: 211° (Hodgson, Jenkinson, Soc. 1927, 3043).
- 3-Brom-2-jod-4-oxy-benzaldehyd C₇H₄O₃BrI, Formel I. Hellgelbe Prismen (aus Alkohol). F: 204° (Hodgson, Jenkinson, Soc. 1928, 2280).
- 3.5-Dijod-4-oxy-benzaldehyd $C_7H_4O_2I_2$, Formel II (H 83). B. Beim Schütteln von Anhydro-[3-hydroxymercuri-5-acetoxymercuri-4-oxy-benzaldehyd] (Syst. Nr. 2353) mit Jod-Kalium-jodid-Lösung (Henry, Sharp, Soc. 121, 1058). Nadeln (aus Alkohol). F: 206,5° (korr.; Zers.).
- 3.5-Dijod 4-[4-methoxy-phenoxy]-benzaldehyd, 2.6-Dijod-4'-methoxy-diphenyläther aidehyd (4) $C_{14}H_{10}O_3I_2=CH_2\cdot O\cdot C_6H_2I_2\cdot CHO$. B. Durch Reduktion von 2.6-Dijod-4'-methoxy-4-cyan-diphenyläther mit Zinn(II)-chlorid und Chlorwasserstoff oh oxy-4-cyan-diphenyläther mit Zinn(II)-chlorid und Chlorwasserstoff oh oh oh oxy-4-cyan-diphenyläther mit Zinn(II)-chlorid und Elisessig). F: 121°. Unlöslich in Wasser, leicht löslich in den meisten organischen Lösungsmitteln außer Petroläther. Das Phenylhydrazon

schmilzt bei 175-176°.

- 3.5-Dijod-4-[3.5-dijod-4-methoxy-phenoxy]-benzaldehyd, 2.6.3'.5'-Tetrajod-4'-methoxy-diphenyläther-aldehyd-(4) C₁₄H₂O₂I₄, Formel III. B. Aus 3.5-Dijod-4-[3.5-dijod-4-methoxy-phenoxy]-zimtsäure beim Kochen des Kaliumsalzes mit Permanganat-Lösung (Harington, Barger, Biochem. J. 21, 174). Nadeln (aus Eisessig). F: 198°. Gibt bei weiterer Oxydation mit Permanganat in wäßr. Pyridin 2.6.3'.5'-Tetrajod-4'-methoxy-diphenyläther-carbonsäure-(4).
- 2-Nitro-4-methoxy-benzaldehyd, 2-Nitro-anisaldehyd $C_9H_7O_4N$, Formel IV. Farbreaktion mit pararosanilinschwefliger Säure von verschiedenem Schwefeldioxyd-Gehalt: Shoesmith, Sosson, Hetherington, Soc. 1927, 2223.

III.
$$c_{H_2} \cdot o \cdot \underbrace{\overset{\cdot}{i}}_{i} \cdot o \cdot \underbrace{\overset{\cdot}{c}_{Ho}}_{i} \cdot c_{Ho}$$
 IV. $\underbrace{\overset{\cdot}{o} \cdot v_{O_2}}_{o \cdot c_{H_3}}$ V. $\underbrace{\overset{\cdot}{o} \cdot v_{O_2}}_{o \cdot v_{O_2}}$

- 3-Nitro-4-oxy-benzaldehyd C₇H₅O₄N, Formel V (H 83). B. Aus 3-Nitro-4-oxy-benzylalkohol durch Oxydation mit der berechneten Menge Permanganat in verd. Kalilauge bei 90° bis 100° (FISHMAN, Am. Soc. 42, 2299). Nadeln (aus Wasser). F: 142° (F.). Gibt beim Behandeln mit Salpeterschwefelsäure Pikrinsäure; bei der Einw. von 98%iger Salpetersäure bei 5—10° entstehen 3.5-Dinitro-4-oxy-benzaldehyd und Pikrinsäure (Hodgson, Beard, Soc. 1927, 2379). Liefert beim Kochen mit Quecksilber(II)-acetat und etwas Essigsäure in 50%igem Alkohol 5-Nitro-3-acetoxymercuri-4-oxy-benzaldehyd (Syst. Nr. 2353) (Henry, Sharp, Soc. 125, 1052). Das Phenylhydrazon schmilzt bei 175—176° (Zers.), das 4-Brom-phenylhydrazon bei 192—193°, das 4-Nitro-phenylhydrazon bei 247—249° (Zers.) (Hodgson, Beard, Soc. 1927, 2380).
- 3-Nitro-4-methoxy-benzaldehyd, 3-Nitro-anisaldehyd C₈H₇O₄N = CH₃·O·C₈H₃(NO₂)·CHO (H 83; E I 533). B. Beim Kochen von 3-Nitro-anisylidendiacetat mit 5% iger Schwefelsäure (DE LANGE, R. 45, 46). Zur Darstellung durch Nitrierung von Anisaldehyd vgl. Pfeiffer, Segall, A. 460, 129; Mauthner, J. pr. [2] 104, 133. F: 86° (DE L.). Gibt mit Acetanhydrid 3-Nitro-anisylidendiacetat (DE L.). Farbreaktion mit Pararosanilinschwefligsäure von verschiedenem Schwefeldioxydgehalt: Shoesmith, Sosson, Hetherington, Soc. 1927, 2223.
- 3-Nitro-4-methoxy-benzylidendiacetat, 3-Nitro-anisylidendiacetat $C_{12}H_{13}O_7=CH_3\cdot O\cdot C_6H_3(NO_2)\cdot CH(O\cdot CO\cdot CH_3)_8$. B. Aus Anisaldehyd durch vorsichtiges Behandeln mit absoluter Salpetersäure in Acetanhydrid bei —10° (DE LANGE, R. 45, 46). Bei der Einw. von Acetanhydrid auf 3-Nitro-anisaldehyd (DE L.). Gelbe Blättchen (aus Benzol + Petroläther). F: 92°.
- 3-Nitro-4-methoxy-benzaldoxim-N-methyläther, 3-Nitro-anisaldoxim-N-methyläther, N-Methyl-3-nitro-isoanisaldoxim $C_0H_{10}O_4N_2=CH_3\cdot O\cdot C_0H_3(NO_2)\cdot CH:N(:O)\cdot CH_3.$ B. Aus 3-Nitro- β -anisaldoxim (s. u.) bei der Einw. von Dimethylsulfat in 2 n-Natronlauge (Brady, Manjunath, Soc. 125, 1063). Gelbe Prismen (aus Alkohol). F: 180°.
- 3-Nitro-4-oxy-benzaldoxim C₇H₆O₄N₂ = HO·C₆H₃(NO₂)·CH
 N·OH

 Truszkowski Sec. 198 2436 als 3-Nitro-4-oxy-benz anti-aldoxim bereichnet; yell

Truszkowski, Soc. 123, 2436 als 3-Nitro-4-oxy-benz-anti-aldoxim bezeichnet; vgl. indessen J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 985. — B. Bei längerem Erwärmen von 3-Nitro-4-dimethylamino-α-benzaldoxim-O-acetat mit 2n-Natronlauge auf dem Wasserbad (Brady, Truszkowski, Soc. 123, 2436).

- anti-aldoxim bezeichnet). Zur Konfiguration vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 974, 978, 982. B. Beim Behandeln von α-Anisaldoxim mit Salpeterschwefelsäure unterhalb 10° (Brady, Miller, Soc. 1928, 341). In geringer Menge neben anderen Produkten bei längerer Einw. von siedender 2n-Natronlauge auf das Carbanilsäurederivat des 3-Nitro-β-anisaldoxims (Syst. Nr. 1631) (B., Manjunath, Soc. 125, 1063). F: 166° (B., Ma., Soc. 125, 1061). Beim Sättigen einer Suspension in wenig konz. Salzsäure mit Chlorwasserstoff erhält man 3-Nitro-β-anisaldoxim (B., Ma., Soc. 125, 1062).
- $\begin{array}{lll} \textbf{3-Nitro-4-methoxy-}\beta-benzaldoxim, & \textbf{3-Nitro-}\beta-anisaldoxim, & \textbf{3-Nitro-anis-anti-aldoxim}\\ \textbf{C}_8\textbf{H}_8\textbf{O}_4\textbf{N}_8 & & & \textbf{CH}_3\cdot\textbf{O}\cdot\textbf{C}_4\textbf{H}_8(\textbf{NO}_8)\cdot\textbf{CH}\\ & & & \textbf{HO}\cdot\textbf{N} \end{array} \\ & & & & \textbf{HO}\cdot\textbf{N} \end{array} \\ \textbf{(H 84 auf Grund älterer Literatur als 3-Nitro-anis-syn-aldoxim beseichnet)}. & & \textbf{Zur Konfiguration vgl. die Angaben im vorangehenden Artikel.} \end{array}$
- syn-aldoxim bezeichnet). Zur Konfiguration vgl. die Angaben im vorangehenden Artikel.

 B. Aus 3-Nitro-α-anisaldoxim beim Behandeln mit Chlorwasserstoff in siedendem Chloroform oder besser beim Verreiben mit wenig konz. Salzsäure und Sättigen mit Chlorwasserstoff (Brady,

- Manjunath, Soc. 125, 1062). F: 164—166° (B., M.). Liefert beim Kochen mit Methyljodid und trocknem Silberoxyd 3-Nitro- β -anisaldoxim-O-methyläther (B., Dunn, Goldstein, Soc. 1926, 2402). Beim Behandeln mit 4-Nitro-benzylbromid in Natriumäthylat-Lösung erhält man 3-Nitro-anisaldoxim-N-[4-nitro-benzyläther] (Syst. Nr. 1702) und wenig 3-Nitro- β -anisaldoxim-O-[4-nitro-benzyläther] (s. u.) (B., Klein, Soc. 1927, 890).
- 3-Nitro-4-methoxy- α -benzaldoxim-0-methyläther, 3-Nitro- α -anisaldoxim-0-methyläther $C_9H_{10}O_4N_3=CH_3\cdot O\cdot C_6H_3(NO_2)\cdot CH:N\cdot O\cdot CH_3\cdot B$. Beim Behandeln von 0-Methyl- α -anisaldoxim (S. 70) mit Salpeterschwefelsäure unter Kühlung mit Wasser (Brady, Miller, Soc. 1928, 342). Aus 3-Nitro- α -anisaldoxim bei der Einw. von Dimethylsulfat in 2n-Natronlauge (B., Manjunath, Soc. 125, 1062). Tafeln (aus Alkohol). F: 120° (B., Ma.). Geht bei Bestrablung mit ultraviolettem Licht in Benzol teilweise in die β -Form über (B., Klein, Soc. 1927, 894).
- 3-Nitro-4-methoxy- β -benzaldoxim-0-methyläther, 3-Nitro- β -anisaldoxim-0-methyläther $C_9H_{10}O_4N_9=CH_3\cdot O\cdot C_6H_3(NO_2)\cdot CH:N\cdot O\cdot CH_3$. B. Beim Kochen von 3-Nitro- β -anisaldoxim mit Methyljodid und trocknem Silberoxyd (Brady, Dunn, Goldstein, Soc. 1926, 2402). Bildung aus der α -Form s. im vorangehenden Artikel. Hellgrüne Tafeln (aus Alkohol). F: 135°.
- 3-Nitro-4-methoxy-benzaldoxim-0-benzyläther, 3-Nitro-anisaldoxim-0-benzyläther $C_{15}H_{16}O_4N_2=CH_3\cdot O\cdot C_6H_3(NO_2)\cdot CH:N\cdot O\cdot CH_2\cdot C_6H_5$. Die H 84 auf Grund älterer Literatur als 3-Nitro-anis-anti-aldoxim-benzyläther und 3-Nitro-anis-syn-aldoxim-benzyläther bezeichneten Verbindungen entsprechen in der Konfiguration dem 3-Nitro- α -anisaldoxim bzw. dem 3-Nitro- β -anisaldoxim (S. 77) (vgl. die dort angegebene Literatur). 3-Nitro- β -anisaldoxim-O-benzyläther schmilzt bei 203° (Brady, Manjunath, Soc. 125, 1062).
- 3-Nitro-4-methoxy- α -benzaldoxim-0-[4-nitro-benzyläther], 3-Nitro- α -anisaldoxim-0-[4-nitro-benzyläther] $C_{18}H_{13}O_6N_3=CH_3\cdot O\cdot C_6H_3(NO_2)\cdot CH:N\cdot O\cdot CH_2\cdot C_6H_4\cdot NO_2$. Das Mol-Gew, wurde kryoskopisch in Campher bestimmt. B. Aus 3-Nitro- α -anisaldoxim und 4-Nitrobenzylbromid in siedender Natriumäthylat-Lösung (Brady, Klein, Soc. 1927, 881). Bei der Einw. von Chlorwasserstoff auf 3-Nitro- β -anisaldoxim-O-[4-nitro-benzyläther] in Chloroform (B., K., Soc. 1927, 887). Gelbe Prismen (aus Benzol). F: 105°; hellgelbes Krystallpulver (aus Isoamylalkohol). F: 117°. Geht bei Bestrahlung mit ultraviolettem Licht in Benzol in 3-Nitro- β -anisaldoxim-O-[4-nitro-benzyläther] über (B., K., Soc. 1927, 886).
- 3-Nitro-4-methoxy- β -benzaldoxim-0-[4-nitro-benzyläther], 3-Nitro- β -anisaldoxim-0-[4-nitro-benzyläther] $C_{18}H_{13}O_4N_3=CH_3\cdot O\cdot C_6H_3(NO_3)\cdot CH:N\cdot O\cdot CH_2\cdot C_6H_4\cdot NO_2$. Das Mol.-Gew. wurde kryoskopisch in Campher bestimmt. B. Aus dem Silbersalz des 3-Nitro- β -anisaldoxims beim Aufbewahren mit 4-Nitro-benzylbromid in Chloroform im Dunkeln (Brady, Klein, Soc. 1927, 885). Bei der Einw. von Silberoxyd auf eine Mischung aus 3-Nitro- β -anisaldoxim und 4-Nitro-benzylbromid in Benzol im Dunkeln anfangs bei Zimmertemperatur, zuletzt in der Siedehitze (B., K., Soc. 1927, 884). Aus 3-Nitro- α -anisaldoxim-O-[4-nitro-benzylāther] bei der Bestrahlung mit ultraviolettem Licht in Benzol (B., K., Soc. 1927, 886). Entsteht in geringer Menge neben 3-Nitro-anisaldoxim-N-[4-nitro-benzylāther] bei der Einw. von 4-Nitro-benzylbromid auf das Natriumsalz des 3-Nitro- β -anisaldoxims (B., K., Soc. 1927, 890). Nadeln (aus Alkohol + Aceton). F: 152° (B., K., Soc. 1927, 884). Geht bei der Einw. von Chlorwasserstoff in Chloroform in 3-Nitro- α -anisaldoxim-O-[4-nitro-benzylāther] über (B., K., Soc. 1927, 887).
- 3-Nitro-4-methoxy- α -benzaldoxim-0-acetat, 3-Nitro- α -anisaldoxim-0-acetat $C_{10}H_{10}O_5N_2=CH_3\cdot O\cdot C_6H_3(NO_2)\cdot CH:N\cdot O\cdot CO\cdot CH_3$. Wird von Brady, Manjunath, Soc. 125, 1061 als Acetyl-3-nitro-p-methoxy-benz-anti-aldoxim bezeichnet. Zur Konfiguration vgl. die Angaben bei 3-Nitro- α -anisaldoxim (8. 77). B. Beim Behandeln von 3-Nitro- α -anisaldoxim mit Acetanhydrid bei 30° (Brady, Manjunath, Soc. 125, 1061). Tafeln (aus Alkohol). F: 130°. Gibt bei der Hydrolyse mit heißer 2n-Natronlauge 3-Nitro- α -anisaldoxim.
- 3-Nitro-4-methoxy- β -benzaldoxim-0-acetat, 3-Nitro- β -anisaldoxim-0-acetat $C_{10}H_{10}O_5N_2=CH_3\cdot O\cdot C_6H_4(NO_2)\cdot CH:N\cdot O\cdot CO\cdot CH_3$. Wird von Brady, Manjunath, Soc. 125, 1062 als Acetyl-3-nitro-p-methoxy-benz-syn-aldoxim bezeichnet; zur Konfiguration vgl. die Angaben bei 3-Nitro- β -anisaldoxim (S. 77). B. Aus 3-Nitro- β -anisaldoxim bei der Einw. von Acetanhydrid (Brady, Manjunath, Soc. 125, 1062). Nadeln (aus Aceton + Wasser). F: 115°. Liefert mit 2n-Natronlauge bei gelindem Erwärmen 3-Nitro-anissäurenitril, beim Kochen 3-Nitro-anissäure und Ammoniak.
- 3.3'-Dinitro-4.4'-dimethoxy-benzaldazin, 3.3'-Dinitro-anisaldazin $C_{16}H_{16}O_6N_4=[CH_3\cdot O\cdot C_6H_3(NO_2)\cdot CH:N-]_2$. B. Aus 3-Nitro-anisaldehyd und Hydrazinsulfat in siedendem verdünntem Alkohol (DE LANGE, R. 45, 46). Gelbe Krystalle (aus Pyridin). F: 241°. Sehr schwer löslich in allen organischen Lösungsmitteln.
- 3-Nitro-anisaidehyd-semicarbazon $C_0H_{10}O_4N_4=CH_3O\cdot C_0H_3(NO_8)\cdot CH:N\cdot NH\cdot CO\cdot NH_8$. Gelbe Krystalle. F: 250° (DE LANGE, R. 45, 47). Schwer löslich in siedendem Alkohol, Aceton, Benzol und Petroläther.

6-Fluor-3-nitro-4-oxy-benzaldehyd $C_7H_4O_4NF$, Formel I (X = F). B. Bei der Einw. von rauchender Salpetersaure auf 2-Fluor-4-oxy-benzaldehyd in Eisessig anfangs bei 18°, dann bei 60° (Hodgson, Nixon, Soc. 1929, 1636). — Nadeln (aus Alkohol). F: 126°. Leicht flüchtig mit Wasserdampf. Gibt mit Alkalilaugen tiefgelbe Lösungen. — Das Phenylhydrazon schmilzt bei 153°, das 4-Nitro-phenylhydrazon bei 270° (Zers.).

 $\text{Oxim} \quad C_7 \text{H}_5 \text{O}_4 \text{N}_2 \text{F} = \text{HO} \cdot \text{C}_6 \text{H}_2 \text{F} (\text{NO}_2) \cdot \text{CH} : \text{N} \cdot \text{OH}. \quad \text{Gelbliche Nadeln.} \quad \text{F} : 132^\circ \text{ (Hodgson, In the National Content of the National C$ NIXON, Soc. 1929, 1636).

Semicarbazon $C_9H_7O_4N_4F = HO \cdot C_4H_2F(NO_2) \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Hellgelbe Nadeln (aus verd. Alkohol). F: 2580 (Zers.) (Hodgson, Nixon, Soc. 1929, 1636).

6-Chlor-3-nitro-4-oxy-benzaldehyd C₂H₄O₄NCl, Formel I (X = Cl). B. Aus 2-Chlor-4-oxybenzaldehyd durch Behandeln mit der gleichen Menge 63% iger Salpetersäure in Eisessig bei 35—40° (Hodgson, Jenkinson, Soc. 1928, 2274). — Nadeln (aus Alkohol). F: 125°. Flüchtig mit Wasserdampf. Schwer löslich in Wasser, ziemlich schwer in den meisten organischen Lösungsmitteln. — Liefert beim Behandeln mit Brom in Eisessig 6-Chlor-5-brom-3-nitro-4-oxy-benzaldehyd. — Das Phenylhydrazon schmilzt bei 166° (unter geringer Zersetzung), das 4-Nitrophenylhydrazon bei 2660 (Zers.).

Semicarbazon $C_8H_2O_4N_4Cl = HO \cdot C_8H_2Cl(NO_2) \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Hellorangefarbene Nadeln (aus verd. Essigsäure). F: 266° (Zers.) (Hodgson, Jenkinson, Soc. 1928, 2274).

6-Brom-3-nitro-4-oxy-benzaldehyd $C_7H_4O_4NBr$, Formel I (X = Br). B. Bei der Einw. von 63% iger Salpetersäure auf 2-Brom-4-oxy-benzaldehyd in Eisessig bei 35—40° (Hodgson, JENKINSON, Soc. 1928, 2277). — Hellgelbe Nadeln (aus Alkohol). F: 1310. Flüchtig mit Wasserdampf. Ziemlich leicht löslich in Wasser. — Das Phenylhydrazon schmilzt bei 1816 (Zers.), das 4-Nitro-phenylhydrazon bei 265° (Zers.). — Kupfersalz. Hellgrün. — Silbersalz. Orangerot.

Semicarbazon $C_8H_7O_4N_4Br = HO \cdot C_6H_2Br(NO_2) \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Hellorangefarbene Nadeln. F: 267° (Zers.) (Hodgson, Jenkinson, Soc. 1928, 2277).

6-Fluor-5-brom-3-nitro-4-oxy-benzaldehyd C₇H₃O₄NBrF, Formel II. B. Bei der Einw. von Salpetersäure (D: 1,5) auf 2-Fluor-3-brom-4-oxy-benzaldehyd in Eisessig bei 30-40° (Hodgson, Nixon, Soc. 1929, 1638). Aus 6-Fluor-3-nitro-4-oxy-benzaldehyd durch Bromierung (H., N.). — Hellgelbe Nadeln (aus Eisessig). F: 111°. — Das Phenylhydrazon schmilzt bei 166°, das 4-Nitro-phenylhydrazon bei 256° (Zers.).

Semicarbazon $C_8H_6O_4N_4BrF = HO\cdot C_6HFBr(NO_2)\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Hellgelbe Nadeln (aus Alkohol). F: 230° (Hodgson, Nixon, Soc. 1929, 1638).

- 6-Chlor-5-brom-3-nitro-4-oxy-benzaldehyd C₂H₃O₄NClBr, Formel III. B. Bei der Einw. von Salpetersäure (D: 1,5) auf 2-Chlor-3-brom-4-oxy-benzaldehyd in Eisessig bei 30-40° (Hodgson, Jenkinson, Soc. 1928, 2276). Aus 6-Chlor-3-nitro-4-oxy-benzaldehyd durch Bromierung (H., J.). — Goldgelbe Nadeln (aus Eisessig). F: 140°. — Das Phenylhydrazon schmilzt bei 205º (Zers.).
- 5.6-Dibrom-3-nitro-4-oxy-benzaldehyd C₇H₂O₄NBr₂, Formel IV. B. Aus 2.3-Dibrom-4-oxy-benzaldehyd durch Nitrierung (Hodgson, Jenkinson, Soc. 1928, 2278). Bei der Bromierung von 6-Brom-3-nitro-4-oxy-benzaldehyd (H., J.). — F: 155°. — Das Phenylhydrazon schmilzt bei 2040 (Zers.).
- 5-Jod-3-nitro-4-oxy-benzaldehyd C, H4O4NI, Formel V. B. Beim Schütteln von 3-Nitro-5-hydroxymercuri-4-oxy-benzaldehyd mit 5%iger Jod-Kaliumjodid-Lösung (Henry, Sharp, Soc. 125, 1053). — Gelbe Tafeln (aus Chloroform). F: 171—1720 (korr.). — Gibt bei der Oxydation mit alkal. Permanganat-Lösung 5-Jod-3-nitro-4-oxy-benzoesäure.
- 6-Jod-3-nitro-4-oxy-benzaldehyd C₇H₄O₄NI, Formel VI. B. Bei der Einw. von Diacetylorthosalpetersaure auf 2-Jod-4-oxy-benzaldehyd in Acetanhydrid bei 40—50° (Hodsson, Jen-kinson, Soc. 1928, 2279). — Prismen (aus Alkohol). F: 162°. Flüchtig mit Wasserdampf. — Das Phenylhydrazon schmilzt bei 204° (Zers.), das 4-Nitro-phenylhydrazon bei 273°. — Silbersalz. Örangefarben.

Semicarbazon $C_0H_7O_4N_4I = HO \cdot C_0H_2I(NO_2) \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Helibraune Nadeln. F: 211° (Zers.) (Hodgson, Jenkinson, Soc. 1928, 2280).

- 5-Brom-6-jod-3-nitro-4-oxy-benzaldehyd C,H,O4NBrI, Formel VII. Hellgelbe Nadeln (aus verd. Essigsäure). F: 178° (Hodgson, Jenkinson, Soc. 1928, 2280).
- 3.5-Dinitro-4-oxy-benzaldehyd $C_7H_4O_9N_2$, Formel VIII. B. Bei der Einw. von 98% iger Salpetersäure auf 3-Nitro-4-oxy-benzaldehyd bei 5—10°, neben Pikrinsäure (Hodgson, Beard, Soc. 1927, 2379). — Nadeln. F: 102—103°. Löslich in Wasser. — Das Phenylhydrazon schmilzt bei 203°, das 4-Brom-phenylhydrazon zersetzt sich bei 242—244°, das 4-Nitrophenylhydrazon bei 283-2840. - Natriumsalz. Hellorangefarben.
- 3.5 Dinitro 4 methoxy benzaldehyd , 3.5 Dinitro anisaldehyd $C_8H_8O_6N_2=CH_3\cdot O\cdot C_6H_8(NO_2)_3\cdot CHO$ (H 84). Zur Bildung bei der Nitrierung von Anisaldehyd (H 84) vgl. DE LANGE, R. 45, 47. — Liefert beim Behandeln mit alkoh. Ammoniak 3.5-Dinitro-4-amino-benzaldehyd; reagiert analog mit Methylamin in Alkohol.
- 3.5-Dinitro-4-methoxy- α -benzaldoxim-0-methyläther, 3.5-Dinitro- α -anisaldoxim-0-methyläther $C_0H_0O_6N_3=CH_2\cdot O\cdot C_0H_2(NO_2)_2\cdot CH:N\cdot O\cdot CH_3$. B. Beim Behandeln von O-Methyla-anisaldoxim mit Salpeterschwefelsäure unterhalb 30°, neben 3-Nitro- α -anisaldoxim-O-methyla-anisaldoxi äther (Brady, Miller, Soc. 1928, 341). — Nadeln (aus wäßr. Aceton). F: 129°.
- 3.5 Dinitro anisaldehyd semicarbazon $C_9H_9O_6N_5=CH_2\cdot O\cdot C_6H_3(NO_2)_2\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Gelbe Krystalle (aus Essigester). F: 188° (DE LANGE, R. 45, 48). Sohwer löslich in den meisten organischen Lösungsmitteln.
- 2 Fluor 3.5 dinitro 4 oxy benzaldehyd $C_7H_3O_6N_2F$, Formel IX (X = F). B. Durch raschen Zusatz von 91% iger Salpetersäure zu 2-Fluor-4-oxy-benzaldehyd in Eisessig und folgendes Erhitzen auf 100° (Hodgson, CHO CHO CHO CHO NIXON, Soc. 1929, 1636). — Hellgelbe Nadeln (aus Benzol). F: 138°. Ist nicht flüchtig mit Wasserdampf. Schwer löslich in kaltem, leicht Br in heißem Wasser. — Das Phenylhydrazon schmilzt bei 212°, das 4-Nitro-phenyl-VII. hydrazon bei 260° (Zers.).
 - сно CHO NO. VIII. IX.
- 2-Chlor-3.5-dinitro-4-oxy-benzaldehyd $C_7H_3O_6N_2Cl$, Formel IX (X = Cl). B. Beim Behandeln von 2-Chlor-4-oxy-benzaldehyd mit 2 Tln. 63% iger Salpetersäure in Eisessig bei 60° (Hodgson, Jenkinson, Soc. 1928, 2274). — Hellgelbe Prismen (aus Wasser). F: 93°. Ist nicht flüchtig mit Wasserdampf. Schwer löslich in kaltem, leicht in heißem Wasser. — Das Phenylhydrazon schmilzt bei 210° (Zers.), das 4-Nitro-phenylhydrazon bei 267° (Zers.).

Semicarbazon $C_8H_8O_8N_5Cl = HO\cdot C_8HCl(NO_8)_2\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Hellbraune mikroskopische Nadeln (aus verd. Essigsäure). F: 192° (Zers.) (Hodgson, Jenkinson, Soc. 1928, 2274).

2-Brom-3.5-dinitro-4-oxy-benzaldehyd $C_7H_3O_6N_2Br$, Formel IX (X = Br). B. Bei der Einw. von 63% iger Salpetersäure auf 2-Brom-4-oxy-benzaldehyd in Eisessig erst in der Kälte, dann bei 50º (Hodgson, Ĵenkinson, Soc. 1928, 2278). — Hellgelbe Prismen (aus Wasser). F: 110º. Ist nicht flüchtig mit Wasserdampf. Schwer löslich in Wasser. — Gibt mit Eisen (III)-chlorid-Lösung eine braune Färbung. — Das Phenylhydrazon schmilzt bei 1860 (Zers.), das 4-Nitrophenylhydrazon bei 248° (Zers.). - Silbersalz. Braun. Löslich in Wasser.

Semicarbazon $C_0H_0O_0N_5Br = HO \cdot C_0HBr(NO_1)_1 \cdot CH : N \cdot NH \cdot CO \cdot NH_1$. Orangefarbene Nadeln. F: 1880 (Zers.).

2-Jod-3.5-dinitro-4-oxy-benzaidehyd C₇H₃O₆N₃I, Formel IX (X = I). B. Aus 2-Jod-4-oxy-benzaidehyd durch Erhizen mit rauchender Salpetersäure in Eisessig (Hodgson, Jenkinson, Soc. 1928, 2280). — Gelbe Prismen. F: 162°. — Das Phenylhydrazon schmilzt bei 197° (Zers.), das 4-Nitro-phenylhydrazon bei 240° (Zers.). — Kupfersalz. Hellgrün. — Silbersalz. Gelb.

Semicarbazon $C_0H_0O_0N_5I=HO\cdot C_0HI(NO_2)_3\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Orangefarbene mikroskopische Nadeln. F: 205° (Zers.) (Hodgson, Jenkinson, Soc. 1928, 2280).

Schwefelanalogon des 4-Oxy-benzaldehyds.

3-Chlor-4-methylmercapto-benzaldehyd C₈H₇OClS, s. nebenstehende Formel. B. Aus 3-Nitro-4-methylmercapto-benzaldehyd durch Reduktion mit Na₃S₂O₄. Diazotieren und Umsetzen mit Kupfer(I)-chlorid (Hodgson, Beard, Soc. 1927, 2427). — Nadeln (aus Alkohol). F: 58—59°. Flüchtig mit Wasserdampf. Löslich in den üblichen organischen Lösungsmitteln. — Das 4-Nitro-phenylhydrazon schmilzt bei 222—223°.

CHO 8 · CH.

Oxim $C_8H_8ONCIS = CH_2 \cdot S \cdot C_8H_2CI \cdot CH : N \cdot OH$. Nadeln (aus Alkohol). F: 134° (Hodgson, BEARD, Soc. 1927, 2427).

3-Nitre-4-methylmercapto-benzaldehyd C₈H₇O₈NS, s. nebenstehende Formel. B. Durch Reduktion von 2.2'-Dinitro-4.4'-diformyl-diphenyldisulfid mit Natriumsulfid in wäßrig-alkoholischer Natronlauge bei 50—60° und Behandlung des mit Wasser verdünnten Reaktionsgemisches mit Dimethylsulfat in der Kälte (Hodgson, Beard, Soc. 1927, 2425). — Gelbe Tafeln (aus verd. Essigsäure). F: 141—142°. — Gibt mit konz. Schwefelsäure eine tiefrote, mit alkoh. Kalilauge eine blaßgelbe Färbung. — Das 4-Nitro-phenylhydrazon schmilzt bei 294—296° (Zera.).

CHO
.NO2

E I 533, Z. 5 v. u. statt ,,2.2'- Dinitro-diphenyldisulfid-dialdehyd- $(4.4')^4$ lies: ,,2.2'- Dinitro-diphenylsulfid-dialdehyd- $(4.4')^4$.

- 2.2'-Dinitre-4.4'-diformyl-diphenyldisulfid, 2.2'-Dinitro-diphenyldisulfid-dialdehyd-(4.4') $C_{14}H_0O_8N_3S_2 = OHC \cdot C_6H_3(NO_2) \cdot S \cdot S \cdot C_6H_3(NO_2) \cdot CHO$. B. Beim Kochen einer alkoh. Lösung von 4-Chlor-3-nitro-benzaldehyd mit Natriumdisulfid in Wasser (Hodgson, Beard, Soc. 1927, 2424). Hellgelbe Nadeln (aus Eisessig). F: 237—238°. Liefert bei der Reduktion mit Natriumsulfid in wäßrig-alkoholischer Natronlauge bei 50—60° und Behandlung des mit Wasser verdünnten Reaktionsgemisches mit Dimethylsulfat in der Kälte 3-Nitro-4-methylmercapto-benzaldehyd und 3-Nitroso-4-methylmercapto-benzylalkohol (?) (E II 6, 885). Das Bis-[4-nitro-phenylhydrazon] schmilzt bei 305—310° (unter Zersetzung).
- 3-Nitro-4-methylmercapto-benzaldoxim C₈H₈O₃N₂S = CH₃·S·C₆H₈(NO₃)·CH:N·OH. Gelbe Nadeln (aus Alkohol). F: 210° (Hodgson, Beard, Soc. 1927, 2426). Unlöslich in Wasser, sohwer in organischen Lösungsmitteln. Natriumsalz. Orangefarben. Löst sich in Wasser mit roter Farbe.
- 2.2' Dinitro diphenyldisulfid dialdehyd (4.4') dioxim $C_{14}H_{10}O_6N_4S_2=[HO\cdot N:CH\cdot C_6H_8(NO_2)\cdot S-]_s$. Gelbe Nadeln (aus Eisessig). F: 260—261° (HODGSON, BEARD, Soc. 1927, 2424). Sehr schwer löslich in den üblichen organischen Lösungsmitteln. Löslich in kalter wäßriger Natronlauge mit gelber, beim Aufbewahren über Grün in Rot übergehender Farbe; beim Zusatz von verd. Natronlauge zu einer heißen wäßrigen Suspension entsteht eine isomere Verbindung $C_{14}H_{10}O_6N_4S_2$ (s. u.).

Verbindung C₁₄H₁₀O₆N₄S₂ (s. u.).

Verbindung C₁₄H₁₀O₆N₄S₂. B. s. o. — Tiefgelbe Krystallaggregate (aus Alkohol). Sintert bei 160—170°; F: 230—232° (Zers.); explodiert beim Eintauchen in ein auf 170° erhitztes Bad (Hodgoon, Beard, Soc. 1927, 2425). In Eisessig, Aceton, Methanol und Alkohol leichter löslich

als 2.2'-Dinitro-diphenyldisulfid-dialdehyd-(4.4')-dioxim.

- 4. 1 Methylen cyclohexadien (2.5) ol (2) on (4), 2 Oxy benzo chinon-(1.4)-methid-(1) $C_7H_6O_1=OC \xrightarrow{CH:C(OH)}C:CH_1$.
- 3.5-Dibrom-2-methoxy-1-chlormethylen-cyclohexadien-(2.5)-on-(4), 3.5-Dibrom-2-methoxy-benzochinon-(1.4)-chlormethid-(1) $C_8H_8O_8Br_8Cl = OC CBr: C(O\cdot CH_8) C: CHCl.$ Das Mol.-Gew. wurde kryoskopisch in Benzol bestimmt. B. Beim Behandeln von in wenig Äther gelöstem 3.5-Dibrom-4-oxy-2-methoxy-benzylidenchlorid (E II 6, 860) mit wäßr. Natrium-acetat-Lösung (Lindemann, Forth, A. 485, 232). F: 98—100°. Unbeständig.
- 3.5-Dibrom-2-methoxy-1-brommethylen-cyclohexadien-(2.5)-on-(4), 3.5-Dibrom-2-methoxy-benzochinon-(1.4)-brommethid-(1) C₈H₈O₈Br₃ = OC CBr:C(O·CH₃) C:CHBr. Das Mol.-Gew. wurde kryoskopisch in Benzol bestimmt. B. Beim Behandeln von in wenig Äther gelöstem 3.5-Dibrom-4-oxy-2-methoxy-benzylidenbromid mit wäßr. Natriumacetat-Lösung (Lindemann, Forth, A. 435, 231). Gelbe Nadeln (aus Benzin). F: 78—79°; die Schmelze ist braunrot. Löst sich etwas in heißem Benzol, Benzin und Äther; die Lösungen verändern sich rasch. Geht bei der Einw. von Wasser unmittelbar, bei der Einw. von Ammoniak oder Alkalilauge über ein blaues Zwischenprodukt in 3.5-Dibrom-4-oxy-2-methoxy-benzaldehyd über.

2. Oxy-oxe-Verbindungen C,H,O,.

1. 2-Oxy-1-acetyl-benzol, Methyl-[2-oxy-phenyl]-keton, 2-Oxy-acetophenon, 2-Acetyl-phenol C₂H₆O₂ = HO·C₆H₄·CO·CH₂ (H 85; E I 534). Darst. durch Erhitzen von Phenylacetat mit Aluminiumchlorid (E I 534): Freudenberg, Orthner, B. 55, 1749; Rosenmund, Schnuer, A. 460, 88; vgl. a. v. Auwers, Mauss, A. 464, 293. — Kp: 218° (v. Au., Lechner, Bundesmann, B. 58, 41); Kp₂₂: 130—133° (Tasaki, Acta phytoch. 3, 267, 268; C. 1927 II, 1949); Kp₁₃: 91—92° (Fr., O.). Verbrennungswärme bei konstantem Volumen: 940,2 kcal/Mol (Roth, Banse in Landolt-Börnst. E II, 1639). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: Ta.

Liefert beim Erwärmen mit konz. Salpetersäuse und Risessig auf dem Wasserbad 3-Nitro-2-oxy-scetophenon und 3-Nitro-salioylsäure (Wrrrig, A. 448, 181). Beim Kochen mit Äthylacetat in Gegenwart von Natrium entsteht 2-Acetoacetyl-phenol (W., A. 446, 169). Bei 25-stdg. Kochen mit 2 Tln. Acetanhydrid und 1 Tl. Natriumacetat erhält man 2-Methyl-chromon, 4-Methyl-cumarin und 2-Methyl-3-acetyl-chromon (W., A. 446, 178).

- 2 Methoxy acetophenon $C_9H_{10}O_2 = CH_3 \cdot O \cdot C_9H_4 \cdot CO \cdot CH_3$ (H 85; E I 534). B. Neben 4-Methoxy-acetophenon und höher siedenden Produkten beim Leiten von Keten in eine Mischung von Anisol und Aluminiumchlorid in Schwefelkohlenstoff (Hurd, Am. Soc. 47, 2778). Kp: 239—240° (v. Auwers, Lechner, Bundesmann, B. 58, 41). $D_4^{19.7}$: 1,0897; $n_{\alpha}^{19.7}$: 1,5334; $n_{\alpha}^{19.7}$: 1,5394; $n_{\alpha}^{19.7}$: 1,5695 (v. Au., L., B.).
- 2-Oxy-acetophenon-oxim C₈H₉O₂N = HO·C₈H₄·C(CH₃):N·OH (H 86; E I 534). F: 117° (Lindemann, Thiele, A. 449, 77), 112—112,5° (v. Auwers, Lechner, Bundesmann, B. 58, 41). Beim Kochen mit der 20-fachen Menge 17—18% iger Salzsäure entsteht 2-Oxy-acetophenon (v. Au., Le., B.). Gibt mit Salpetersäure (D: 1,4) in Eisessig ein unbeständiges, in Nadeln krystallisierendes Nitrat, das bei ½-stdg. Aufbewahren des Reaktionsgemisches in 5-Nitro-2-oxy-acetophenon-oxim und wenig 3-Nitro-2-oxy-acetophenon-oxim übergeht (Lindemann, Romanoff, J. pr. [2] 122, 215, 220, 225).
- 2-Oxy-acetophenon-oximacetat C₁₀H₁₁O₃N = HO·C₈H₄·C(CH₃):N·O·CO·CH₃. B. Beim Behandeln von 2-Oxy-acetophenon-oxim mit überschüssigem Acetanhydrid bei Zimmertemperatur (Lindemann, Thiele, A. 449, 77). Spieße (aus Benzol). F: 146° (L., Th.). Löslich in heißem Alkohol und Eisessig (L., Th.). Zerfällt beim Erhitzen auf 160° in Essigsäure, 3-Methyl-indoxazen (Syst. Nr. 4195) und 2-Methyl-benzoxazol (Syst. Nr. 4195), das bei nachfolgendem Kochen des Reaktionsprodukts mit Salzsäure in 2-Amino-phenol übergeht (L., Th.; L., Romanoff, J. pr. [2] 122, 217, 218). Bei gelindem Erwärmen mit 1 Mol ca. 10 %iger Natronlauge erhält man 3-Methyl-indoxazen, bei Verwendung von überschüssiger Natronlauge entsteht 2-Oxy-acetophenon-oxim (L., Piokert, A. 456, 279). Gibt bei der Nitrierung mit konz. Salpetersäure in Eisessig 5-Nitro-2-oxy-acetophenon-oximacetat (L., R.).
- 2-Methoxy-acetophenon-oxim $C_0H_{11}O_2N=CH_3\cdot O\cdot C_0H_4\cdot C(CH_3):N\cdot OH$ (H 86). F: 96° bis 96,5° (v. Auwers, Lechner, Bundesmann, B. 58, 41). Liefert bei 1—1¹/₂-stdg. Kochen mit der 20-fachen Menge 17—18% iger Salzsäure ca. 40 Mol-% o-Anisidin und ca. 60 Mol-% 2-Methoxy-acetophenon.
- 5-Chlor-2-oxy-acetophenon, 4-Chlor-2-acetyl-phenol CaH2O2Cl, s. neben-CO · CH 2 stehende Formel (H 86). B. Beim Erhitzen von [4-Chlor-phenyl]-acetat mit Aluminium chlorid auf 120° (WITTIG, B. 57, 89; v. AUWERS, W., B. 57, 1275). -OH Gibt beim Kochen mit amalgamiertem Zink und Salzsäure 4-Chlor-2-äthyl-phenol Ci. (v. Au., W., B. 57, 1275). Kondensiert sich mit Ameisensäureester in Gegenwart von Natrium in der Kälte zu 5-Chlor-2-oxy-ω-formyl-acetophenon (W., A. 446, 197) und liefert in analoger Reaktion mit Essigester und Natrium 5-Chlor-2-oxy-benzoylaceton (W., B. 57, 94). Beim Kochen mit Acetylchlorid und Calciumchlorid entstehen 5-Chlor-2-acetoxy-acetophenon und 6-Chlor-2-methyl-3-acetyl-chromon (W., A. 446, 194). Gibt beim Erhitzen mit Acetanhydrid und Natriumacetat auf 160—170° 6-Chlor-4-methyl-cumarin und 6-Chlor-2-methyl-chromon (W., B. 57, 90) und reagiert analog mit Propionsäureanhydrid und Natrium-propionat bei 190° unter Bildung von 6-Chlor-3.4-dimethyl-cumarin und 6-Chlor-2-äthylchromon, während man beim Erhitzen mit Buttersäureanhydrid und Natriumbutyrat auf 190° 6-Chlor-2-propyl-3-butyryl-chromon und wenig 6-Chlor-4-methyl-3-äthyl-cumarin(?) erhält (W., A. 446, 194, 195). Gibt beim Erhitzen mit Benzoesäureanhydrid und Natriumbenzoat auf 210° 6-Chlor-flavon und 6-Chlor-3-benzoyl-flavon, beim Erhitzen mit Phenylessigsaureanhydrid und Natrium-phenylacetat auf 180° 6-Chlor-4-methyl-3-phenyl-cumarin (W., A. 446, 196, 198).
- 5-Chlor-2-methoxy-acetophenon, 4-Chlor-2-acetyl-anisol $C_9H_9O_3Cl = CH_3 \cdot O \cdot C_9H_8Cl \cdot CO \cdot CH_8$. Aus 4-Chlor-anisol und Acetylchlorid bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff, zuletzt auf dem Wasserbad, neben wenig 5-Chlor-2-oxy-acetophenon (WITTIG, B. 57, 93). Nadeln (aus Petroläther). F: 29—30°. Gibt beim Behandeln mit Essigester und Natrium 4-Chlor-2-acetoacetyl-anisol.
- 5 Chlor 2 acetoxy acetophenon C₁₀H₀O₅Cl = CH₀·CO·O·C₆H₃Cl·CO·CH₃. B. Beim Kochen von 5-Chlor-2-oxy-acetophenon mit Acetylchlorid und Calciumchlorid, neben 6-Chlor-2-methyl-3-acetyl-chromon (Wittig, A. 446, 194). Öl. Kp₁₆: 156—157°. Liefert beim Erhitzen mit Propionsäureanhydrid und Natriumpropionat auf 190° 6-Chlor-3.4-dimethyl-cumarin und 6-Chlor-2-äthyl-chromon.

83

 ω -Chlor-2-exy-acetophenon, 2-Chloracetyl-phènol $C_bH_7O_2Cl = HO \cdot C_bH_4 \cdot CO \cdot CH_2Cl$ (E I 535). Zur Bildung durch Erhitzen von Chloressigsäurephenylester mit Aluminiumchlorid (E I 535) vgl. Mamell, G. 56, 765; v. Auwers, B. 61, 419.

4.6-Dichlor-2-oxy-acetophenon, 3.5-Dichlor-2-acetyl-phenol C₈H₂O₂Cl₂, Formel I. B. Neben 2.6-Dichlor-4-oxy-acetophenon beim Behandeln von 3.5-Dichlor-anisol mit Acetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff, zuletzt bei Siedetemperatur (v. Auwers, Deines, Fortsch. Ch. Phys. 18 [1924/26], Heft 2, S. 32). — Nadeln (aus verd. Methanol). F: 49° bis 50°. Leicht löslich in den meisten organischen Lösungsmitteln.

 $0 \times im C_8H_7O_3NCl_2 = HO \cdot C_8H_2Cl_2 \cdot C(:N \cdot OH) \cdot CH_3$. Nadeln (aus verd. Methanol). F: 140° bis 141° (v. Auwers, Deines, Fortsch. Ch. Phys. 18 [1924/26], Heft 2, S. 32). Leicht löslich.

$$I. \overset{\text{CO} \cdot \text{CH}_3}{\bigodot} II. \overset{\text{CO} \cdot \text{CH}_3}{\bigotimes} \overset{\text{CO} \cdot \text{CH}_3}{\bigodot} IV. \overset{\text{CO} \cdot \text{CH}_3}{\bigodot} OH$$

 $5.\omega$ -Dichlor-2-oxy-acetophenon $C_8H_6O_2Cl_2=CH_2\cdot O\cdot C_6H_3Cl\cdot CO\cdot CH_2Cl$ (E I 535). Liefert beim Erhitzen mit Acetanhydrid und Natriumacetat 3.6-Dichlor-2-methyl-chromon und andere Produkte (Wittig, A. 446, 191).

4.6-Dibrom-2-oxy-acetophenon, 3.5-Dibrom-2-acetyl-phenol C₈H₆O₂Br₂, Formel II. B. Analog 4.6-Dichlor-2-oxy-acetophenon (s. o.). — Nadeln (aus verd. Methanol). F: 96—97° (v. Auwers, Deines, Fortsch. Ch. Phys. 18 [1924/26], Heft 2, S. 34). Leicht löslich in den meisten organischen Lösungsmitteln.

0xim $C_8H_7O_2NBr_2 = HO \cdot C_6H_2Br_2 \cdot C(:N \cdot OH) \cdot CH_3$. Krystalle (aus Benzol oder verd. Methanol). F: 139—140° (v. Auwers, Deines, Fortsch. Ch. Phys. 18 [1924/26], Heft 2, S. 34). Leicht löslich.

3-Nitro-2-oxy-acetophenon, 6-Nitro-2-acetyl-phenol C₈H₇O₄N, Formel III. B. Beim Erwärmen von 2-Oxy-acetophenon mit konz. Salpetersäure und Eisessig auf dem Wasserbad, neben 3-Nitro-salicylsäure (Wittig, A. 446, 181). Beim Kochen von 3-Nitro-2-oxy-acetophenon-oxim mit 20%iger Salzsäure (Lindemann, Romanoff, J. pr. [2] 122, 226). — Nadeln (aus sehr verd. Essigsäure oder verd. Methanol). F: 98,5—99,5° (W.), 89—90° (L., R.). Leicht löslich in kaltem Benzol, Eisessig und Äther, löslich in Alkohol, schwer löslich in siedendem Wasser und in Benzin, sehr schwer in Petroläther (W.; L., R.).

Oxim $C_8H_8O_4N_5 = HO \cdot C_6H_3(NO_2) \cdot C(:N \cdot OH) \cdot CH_3$. B. Neben überwiegenden Mengen 5-Nitro-2-oxy-acetophenon-oxim bei der Nitrierung von 2-Oxy-acetophenonoxim mit konz. Salpetersäure in Eisessig (Lindemann, Romanoff, J. pr. [2] 122, 215, 220, 225). — Nadeln (aus Benzol). F: 182°. — Wird an der Luft allmählich gelb.

Oximacetat $C_{10}H_{10}O_5N_2 = HO \cdot C_6H_3(NO_2) \cdot C(CH_3) : N \cdot O \cdot CO \cdot CH_3$. B. Bei der Nitrierung von 2-Oxy-acetophenon-oximacetat mit konz. Salpetersäure in Eisessig, neben 5-Nitro-2-oxy-acetophenon-oximacetat (Lindemann, Romanoff, J. pr. [2] 122, 221, 226). Beim Erwärmen von 3-Nitro-2-oxy-acetophenon-oxim mit Acetanhydrid (L., R.). — Nadeln (aus Benzol). F: 136—137°. Färbt sich an der Luft gelb. Löst sich in Alkalien mit rotbrauner Farbe und wird durch Säuren unverändert gefällt.

5-Nitro-2-oxy-acetophenon, 4-Nitro-2-acetyl-phenol C₈H₇O₄N, Formel IV. B. Beim Kochen von 5-Nitro-2-oxy-acetophenonoxim mit 20%iger Salzsäure (LINDEMANN, ROMANOFF, J. pr. [2] 122, 222). — Nadeln (aus verd. Essigsäure). F: 111—112°. Löslich in kaltem Alkohol, Eisessig und Benzol, schwer in Wasser. Die Lösungen in kaltem Wasser und Alkohol sind gelb und werden beim Ansäuern farblos.

Oxim $C_0H_0O_4N_2=HO\cdot C_0H_3(NO_2)\cdot C(:N\cdot OH)\cdot CH_3$. B. Durch Nitrierung von 2-Oxyacetophenonoxim mit konz. Salpetersäure in Eisessig, neben wenig 3-Nitro-2-oxy-acetophenonoxim (Lindemann, Romanoff, J. pr. [2] 122, 220). — Nadeln (aus Alkohol oder Benzol). F: 231°. Löslich in Alkohol, Benzol und Eisessig. — Färbt sich an der Luft allmählich gelb.

Oximacetat $C_{10}H_{10}O_5N_3 = HO \cdot C_6H_3(NO_3) \cdot C(CH_3) : N \cdot O \cdot CO \cdot CH_3$. B. Durch Nitrierung von 2-Oxy-acetophenon-oximacetat mit konz. Salpetersäure in Eisessig (LINDEMANN, ROMANOFF, J. pr. [2] 122, 221). Bei kurzem Kochen von 5-Nitro-2-oxy-acetophenonoxim mit Acetanhydrid (L., R.). — Krystalle (aus Benzol). F: 167°. Löslich in den meisten organischen Lösungsmitteln. — Färbt sich allmählich gelb. Gibt beim Erhitzen auf ca. 175—185° im Vakuum 5-Nitro-3-methyl-indoxazen; beim Erwärmen mit Sodalösung auf dem Wasserbad entstehen außerdem geringe Mengen 5-Nitro-2-oxy-acetophenonoxim.

ω-Chlor-5-nitro-2-oxy-acetophenon, 4-Nitro-2-chloracetyl-phenol C_oH_oO_cNCl, Formel V. B. Durch Nitrieren von 2-Chloracetyl-phenol mit konz. Salpetersäure in Eisessig auf dem Wasserbad (v. Auwers, Baum, Lorenz, J. pr. [2] 115, 103). — Prismen (aus Eisessig). F: 163° bis 164°. Löslich in Alkohol und Eisessig, schwer löslich in Benzin. — Liefert beim Kochen mit Natriumacetat in verd. Alkohol ein bei 210° schmelzendes Produkt.

ω.ω-Dichlor-3.5-dinitro-2-äthoxy-acetophenon C₁₀H₈O₆N₂Cl₃, Formel VI. B. Durch Einw. von alkoh. Kalilauge auf 6.8-Dinitro-2.4-bis-trichlormethyl-1.3-benzdioxin (Formel VII; Syst. Nr. 2672) unter Kühlung (Chattaway, Morris, Soc. 1927, 2016). — Gelbe Prismen (aus Alkohol). F: 82—84°. Leicht löslich in siedendem Alkohol. — Färbt sich am Sonnenlicht dunkel. Gibt bei der Oxydation mit Permanganat in siedendem Wasser 3.5-Dinitro-2-äthoxy-benzoesäure. Liefert beim Erhitzen mit 3.5-Dichlor-phenylhydrazin in Alkohol 3.5-Dinitro-2-äthoxy-phenylglyoxal_bis-[3.5-dichlor-phenylhydrazon].

- 2-Mercapto-acetophenon, 2-Acetyl-thiophenol $C_8H_8OS=HS\cdot C_6H_4\cdot CO\cdot CH_8$ (H 86; E I 535). B. Entsteht in geringer Menge neben anderen Produkten beim Erhitzen von $\alpha.\beta$ -Benzisothiazolon (Syst. Nr. 4277) mit Acetanhydrid und Kaliumacetat auf 120° (McClelland, Soc. 1929, 1591).
- 2-Rhodan-acetophenon C₉H₇ONS = NC·S·C₈H₄·CO·CH₃. B. Durch Umsetzung von diazotiertem 2-Amino-acetophenon mit Kalium-Kupfer(I)-rhodanid in Wasser (Arndt, Kirsch, Nachtwey, B. 59, 1078). Gelbliche, aromatisch riechende Nadeln (aus Ligroin). F: 60—61°. Gibt beim Kochen mit Zinkstaub und Salzsäure Thionaphthen, beim Kochen mit alkoh. Kalilauge 3-Oxy-thionaphthen.
- 2-Mercapto-acetophenon-semicarbazon $C_9H_{11}ON_9S = HS \cdot C_6H_4 \cdot C(CH_9) : N \cdot NH \cdot CO \cdot NH_9$. Nadeln (aus Alkohol). F: 235° (Zers.) (McClelland, Soc. 1929, 1591). Schwer löslich in Alkohol.
- 2. 3-Oxy-1-acetyl-benzol, Methyl-[3-oxy-phenyl]-keton, 3-Oxy-acetophenon, 3-Acetyl-phenol $C_8H_8O_8=H0\cdot C_8H_4\cdot C0\cdot CH_3$ (H 86; E I 535). Blättchen (aus Wasser). F: 94° (Tasaki, Acta phytoch. 8, 267, 268; C. 1927 II, 1949). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: T. Gibt mit Quecksilber(II)-acetat in heißem Wasser 4-Acetoxymercuri-3-oxy-acetophenon (Albert, D.R.P. 486495; C. 1930 I, 892; Frdl. 16, 2576).
- 3-Methoxy-acetophenon-oxim $C_pH_{11}O_2N=CH_3\cdot O\cdot C_eH_4\cdot C(:N\cdot OH)\cdot CH_2$. Öl. Kp.: 159° (v. Auwers, Lechner, Bundesmann, B. 58, 41). Leicht löslich in Säuren. Liefert beim Kochen mit der 20-fachen Menge 17—18% iger Salzsäure 3-Methoxy-acetophenon.
- 3. 4-Oxy-1-acetyl-benzol, Methyl-[4-oxy-phenyl]-keton, 4-Oxy-acetophenon, 4-Acetyl-phenol C₃H₈O₂ = HO·C₄H₄·CO·CH₃ (H 87; E I 536). B. u. Darst. Entsteht in ca. 70% iger Ausbeute beim Behandeln von Phenol mit Acetylchlorid und Aluminiumchlorid in Nitrobenzol (v. Auwers, Mauss, A. 460, 274), in ca. 33% iger Ausbeute beim Zufügen von Acetylchlorid zu einer mit Eisen(III)-chlorid versetzten Lösung von Phenol in Schwefelkohlenstoff (Irvine, Robinson, Soc. 1927, 2091; vgl. Nencei, Stoeber, B. 30, 1769). Neben wenig 4-Isopropyloxy-acetophenon bei der Einw. von Acetylchlorid und Aluminiumchlorid auf Isopropylphenyläther in Schwefelkohlenstoff (Bradley, Robinson, Soc. 1926, 2362). Aus Phenylacetat durch Sättigen mit Chlorwasserstoff und nachfolgende Einw. von Aluminiumchlorid (Minajew, Ж. 58, 735; C. 1927 I, 422) oder durch Einw. von Aluminiumchlorid in Nitrobenzol bei 20—25° (Rosenmund, Schnuer, A. 460, 88). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: Tasaki, Acta phytoch. 3, 267, 268; C. 1927 II, 1949; Hattori, Acta phytoch. 4, 69; C. 1928 II, 1092. Gibt bei der Einw. von Quecksilber(II)-acetat in Wasser, am besten in der Wärme, 3-Acetoxymercuri-4-oxy-acetophenon (Albert, D.R. P. 486495; C. 1930 I, 892; Frdl. 16, 2576).

Funktionelle Derivate des 4-Oxy-acetophenons.

4-Methoxy-acetophenon, 4-Acetyl-anisol, Methyl-[4-methoxy-phenyl]-keton, Methyl-p-anisyl-keton $C_0H_{10}O_2=CH_2\cdot O\cdot C_0H_4\cdot CO\cdot CH_3$ (H 87; E I 536). B. Bei der Autoxydation von Methyl-[4-methoxy-phenyl]-carbinol (Stobbe, Toepper, B. 57, 484 Anm. 6). Neben 2-Methoxy-acetophenon und höher siedenden Produkten beim Leiten von Keten in eine Mischung von Anisol und Aluminiumchlorid in Schwefelkohlenstoff (Hued, Am. Soc. 47, 2778). Bei der Einw. von sulfoessigsäurehaltigem Acetanhydrid auf Anisol unter Kühlung (Schweider, Meyer,

B. \$4, 1499). Durch Einw. von Methylzinkjodid auf Anissäurechlorid in Toluol (MAUTENEE, J. pr. [2] 103, 396). — Darst. Aus Anisol und Acetanhydrid bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff, zuletzt unter Erwärmen; Ausbeute 94—96% (Noller, Adams, Am. Soc. 46, 1892). Darstellung aus Anisol und Acetylchlorid in Gegenwart von Aluminiumchlorid (H 87; E I 536): BOGEET, CURTIN, Am. Soc. 45, 2163; PRATT, ROBINSON, WILLIAMS,

F: 39° (Pfeiffer, Haack, A. 460, 172), 37,5—38,5° (Straus, Grindel, A. 489, 290), 37° bis 38° (Schneider, Meyer, B. 54, 1500). Kp: 265° (korr.); Kp_{0,003}: 108° (Sch., M.); Kp₇₃₆: 264° (korr.); Kp₁₅: 139° (korr.) (Noller, Adams, Am. Soc. 46, 1893).

4-Methoxy-acetophenon gibt bei 24-stdg. Erwärmen mit Sulfoessigsäure in Eisessig auf 45—50° 1.3.5-Tris-[4-methoxy-phenyl]-benzol (Schneider, Seebach, B. 54, 2300). Liefert in Gegenwart von Palladium(II)-chlorid in Aceton bei 17—18° mit 2 Mol Wasserstoff 4-Äthyleiselbeit Amendung men 4 Mol Wasserstoff obbil men allegen and A Mol Wasserstoff obbil men anisol; bei Anwendung von 1 Mol Wasserstoff erhält man neben unverändertem 4-Methoxyacetophenon 4-Athyl-anisol und geringere Mengen Methyl-[4-methoxy-phenyl]-carbinol (STRAUS, GRINDEL, A. 489, 299). Methyl-[4-methoxy-phenyl]-carbinol entsteht auch bei der Reduktion GRINDEL, A. 455, 299). Methyl-[4-methoxy-pnenyl]-carbinol entsient such the der der Kedukton mit Magnesium in siedendem Methanol (Zechmeister, Rom, A. 468, 125). Wird von 95 %iger Schwefelsäure bei 80° nicht, von rauchender Schwefelsäure (15 % SO₃) bei Zimmertemperatur kaum angegriffen; Einw. von rauchender Schwefelsäure (30 % SO₃) bei 5° ergibt 4-Methoxy-acetophenon-sulfonsäure-(3) (BOGERT, CURTIN, Am. Soc. 45, 2163). Liefert mit Salpeterschwefelsäure bei 0° 3-Nitro-4-methoxy-acetophenon (B., C.). Reagiert mit Anisyliden. acetophenon und Eisen(III)-chlorid-hydrat in Acetanhydrid unter Bildung von 6-Phenyl-2.4-bis-[4-methoxy-phenyl]-pyryliumferrichlorid (DILTHEY, BURGER, B. 54, 827). Liefert beim Erhitzen mit Dimethylamin und Schwefel im Rohr auf 170-180° 4-Methoxy-phenylthioessigsäure-dimethylamid CH₃·O·C₄H₄·CH₃·CS·N(CH₃)₂; reagiert analog mit Diäthylamin (Kindler, A. 481, 225; D.R.P. 405675; C. 1925 I, 1529; Frdl. 14, 372).

Das Phenylhydrazon schmilzt bei 142° (Skraup, Guggenheimer, B. 58, 2491; Korczynski, Kierzek, G. 55, 365), das 4-Brom-phenylhydrazon bei 154° (K., K.).

Verbindung mit Aluminiumbromid C₉H₁₀O₂ + 2 AlBr₃. Krystalle. Liefert beim

- Kochen mit Benzol und folgenden Behandeln mit Wasser 4-Oxy-acetophenon (Pfelffer, HAACK, A. 460, 172).
- 4-Äthoxy-acetophenon $C_{10}H_{12}O_2=C_2H_5\cdot O\cdot C_6H_4\cdot CO\cdot CH_3$ (H 88). Ultraviolett-Absorptionsspektrum in Alkohol: Tasaki, *Acta phytoch.* 8, 267, 268; *C.* 1927 II, 1949.
- 4-Isopropyloxy-acetophenon $C_{11}H_{14}O_2 = (CH_3)_2CH \cdot O \cdot C_4H_4 \cdot CO \cdot CH_3$. B. Durch Einw. von Isopropyloromid auf das Natriumsalz des 4-Oxy-acetophenons in siedendem Isopropylalkohol (Bradley, Robinson, Soc. 1926, 2362). Neben überwiegenden Mengen 4-Oxy-acetophenon bei der Kondensation von Isopropylphenyläther mit Acetylchlorid bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (Br., R.). — Tafeln (aus Petroläther). F: 38—39°. Kp₁₈: 152—153°. Die Lösung in Schwefelsäure ist rot. — Liefert bei der Einw. von Benzoesäureäthylester und Natrium in Äther 4-Isopropyloxy-dibenzoylmethan.
- 4 Phenoxy acetophenon, 4 Acetyl diphenyläther $C_{14}H_{12}O_2 = C_6H_5 \cdot O \cdot C_6H_4 \cdot CO \cdot CH_3$ (H 88). Kp_{18} : 2000 (Dilthey, Mitarb., $J.\ pr.\ [2]\ 117,\ 351$).
- 4-[4-Nitro-phenoxy] acetophenon, 4'-Nitro-4-acetyl-diphenyläther $C_{14}H_{11}O_4N=O_2N$ -CeH4 · O · CeH4 · CO · CH4 · B. Bei der Einw. von Acetylchlorid oder Acetanhydrid und Aluminiumchlorid auf 4-Nitro-diphenyläther in Schwefelkohlenstoff (Dilthey, Mitarb., J. pr. [2] 117, 361). - Nadeln (aus Benzol + Petroläther). F: 82—83°. Löst sich in konz. Schwefelsäure mit grünstichig gelber Farbe.
- 4-p-Kresoxy-acetophenon, 4-Methyl-4'-acetyl-diphenyläther $C_{18}H_{14}O_{2}=CH_{3}\cdot C_{6}H_{4}\cdot O\cdot$ CeH4 · CO · CH3. B. Durch Einw. von Acetylchlorid und Aluminiumchlorid auf Phenyl-p-tolyläther in Schwefelkohlenstoff (Dilthey, Mitarb., J. pr. [2] 117, 359). — Krystalle (aus Ligroin). F: 53-54°. Löst sich in konz. Schwefelsäure mit schwach gelber Farbe.
- 4.4'- Diacetyl diphenyläther $C_{16}H_{14}O_3 = (CH_3 \cdot CO \cdot C_6H_4)_3O$. B. Neben 4-Phenoxy-acetophenon bei der Einw. von 2,5—3 Mol Acetylchlorid und 2 Mol Aluminiumchlorid auf Diphenylather in Schwefelkohlenstoff (Dilthey, Mitarb., J. pr. [2] 117, 350). Aus 4-Oxy-acetophenon durch Erhitzen des Kaliumsalzes mit 1 Mol 4-Brom-acetophenon und etwas Kupferpulver auf 240° (D., Mitarb.). — Blättchen (aus Alkohol). F: 100—101°. — Gibt mit konz. Schwefelsäure eine bräunlichgelbe Färbung.
- 4 Acetoxy acetophenon $C_{10}H_{10}O_3 = CH_3 \cdot CO \cdot O \cdot C_6H_4 \cdot CO \cdot CH_3$ (H 88). B. Aus dem Natriumsalz des 4-Oxy-acetophenons und Acetanhydrid in Wasser (Irvine, Robinson, Soc. 1927, 2091). — F: 54° (I., R.). Ultraviolett-Absorptionsspektrum in Alkohol: Tasari, Acta phytoch. 8, 273; C. 1927 II, 1949.
- 4-Methoxy-acetophenon-oxim $C_0H_{11}O_3N=CH_2\cdot O\cdot C_4H_4\cdot C(CH_3):N\cdot OH$ (E I 536). Liefert beim Kochen mit der 20-fachen Menge 17—18 % iger Salzsäure 4-Methoxy-acetophenon (v. Auwers, Lecenner, Bundesmann, B. 58, 41). — Natriumsalz. Prismen.

4-p-Kresoxy-acetophenon-oxim $C_{15}H_{15}O_2N=CH_3\cdot C_6H_4\cdot O\cdot C_6H_4\cdot C(CH_3):N\cdot OH.$ Krystalle (aus Alkohol). F: 130—131° (Dilthey, Mitarb., J. pr. [2] 117, 359).

Dioxim des 4.4'-Diacetyl-diphenyläthers $C_{1e}H_{1e}O_3N_2=[CH_3\cdot C(:N\cdot OH)\cdot C_eH_4]_2O$. Nadeln (aus Benzol). F: 182—183° (Dilthey, Mitarb., J. pr. [2] 117, 351). — Zersetzt sich beim Aufbewahren.

Substitutionsprodukte des 4-Oxy-acetophenons.

3-Chlor-4-oxy-acetophenon C₂H₇O₂Cl, s. nebenstehende Formel. Über die Bildung einer organischen Quecksilberverbindung bei der Einw. von Quecksilber(II)-acetat vgl. Albert, D.R.P. 482926; C. 1929 II, 2938; Frdl. 16, 2578.

ω-Chlor-4-oxy-acetophenon, 4-Chloracetyl-phenol C₈H₇O₂Cl = HO·C₆H₄·CO·OH CH₄Cl (H 88; E I 536). Zur Bildung durch Erhitzen von Chloressigsäurephenylester mit Aluminiumchlorid (E I 536) vgl. v. Auwers, B. 61, 419. — Darstellung durch Kondensation von Anisol mit Chloracetylchlorid in Gegenwart von Aluminiumchlorid (H 88): Robertson, Robinson, Soc. 1928, 1464. — Liefert beim Kochen mit Natriumazid in Alkohol ω-Azido-4-oxy-acetophenon (Fries, Saftien, B. 59, 1252). Beim Kochen mit Kaliumacetat, Eisessig und Alkohol erhält man 4-Oxy-ω-acetoxy-acetophenon, beim Erhitzen mit Kaliumacetat und Acetanhydrid auf dem Dampfbad entsteht 4.ω-Diacetoxy-acetophenon (R., R.).

 ω -Chlor-4-methoxy-acetophenon, 4-Chloracetyl-anisol $C_0H_0O_3Cl=CH_3\cdot O\cdot C_0H_4\cdot CO\cdot CH_3Cl$ (H 88; E I 536).

E I 536, Z. 2 v. u. statt "a-[p-Methoxy-benzolazo]-styrol (Syst. Nr. 2112)" lies "a-Benzolazo-4-methoxy-styrol (E I 16, 246)".

ω-Chlor-4-äthoxy-acetophenon, 4-Chloracetyl-phenetol $C_{10}H_{11}O_{2}Cl = C_{2}H_{5} \cdot O \cdot C_{6}H_{4} \cdot CO \cdot CH_{2}Cl$ (vgl. E I 537). B. In geringer Menge beim Sättigen einer Mischung von Phenetol, Chloracetonitril und Zinkehlorid in Äther mit Chlorwasserstoff und Behandeln des Reaktionsprodukts mit Wasser (Houben, Fischer, B. 60, 1771). — Krystalle (aus Methanol). F: 65—66,5°. Leicht löslich in Äther, Chloroform, Benzol, Aceton und Methanol, schwer in Benzin.

4.4'- Bis - chloracetyl - diphenyläther, Bis - [4-chloracetyl - phenyl] - äther $C_{10}H_{12}O_3Cl_2=(CH_2Cl\cdot CO\cdot C_6H_4)_2O$ (E I 537). Zur Bildung aus Diphenyläther und Chloracetylchlorid in Gegenwart von Aluminiumchlorid (Kunckell, C. 1918 I, 1768) vgl. Schering-Kaillbaum A. G., D.R.P 492321; C. 1930 I, 2796; Frdl. 16, 2830. — Krystalle (aus Alkohol). F: 102°.

ω-Chlor-4-acetoxy-acetophenon $C_{10}H_9O_3Cl = CH_3 \cdot CO \cdot O \cdot C_9H_4 \cdot CO \cdot CH_2Cl$ (Η 89). Liefert beim Kochen mit Kaliumacetat in Alkohol 4-Oxy-ω-acetoxy-acetophenon (Nolan, Pratt, Robinson, Soc. 1926, 1969).

2.6 - Dichlor - 4 - oxy- acetophenon, 3.5 - Dichlor - 4-acetyl - phenol C₂H₆O₂Cl₂, s. nebenstehende Formel. B. Neben 4.6-Dichlor-2-oxy-acetophenon beim Behandeln von 3.5-Dichlor-anisol mit Acetylchlorid und Aluminiumchlorid in Cl. Schwefelkohlenstoff, zuletzt bei Siedetemperatur (v. Auwers, Deines, Fortsch. Ch. Phys. 18 [1924/26], Heft 2, S. 32). — Nadeln (aus verd. Methanol). F: 117° bis 119°. Kaum löslich in Ligroin.

CI. CI

ω.ω.ω-Trichlor-4-oxy-acetophenon, 4-Trichloracetyl-phenol $C_8H_5O_2Cl_2$ — $HO\cdot C_6H_4\cdot CO\cdot CCl_3$. B. Aus Phenol und Trichloracetonitril bei Gegenwart von Aluminiumchlorid und Chlorwasserstoff in Chlorbenzol bei ca. 60° (HOUBEN, FISCHER, J. pr. [2] 123, 266; B. 66 [1933], 341, 343). — Blättchen (aus Benzin). F: 99—99,5°. $Kp_{0,5}$: 170°. Löslich in den meisten organischen Lösungsmitteln, sehr schwer löslich in Petroläther und in Wasser. Löst sich mit gelber Farbe in konz. Schwefelsäure, verd. Alkaliaugen, Alkalicarbonat-Lösungen, heißen Alkaliacetat-Lösungen und wäßr. Pyridin. — Wird durch Alkalien unter Bildung von Chloroform und 4-Oxy-benzoesäure zersetzt.

 $\omega.\omega.\omega$ -Trichlor-4-methoxy-acetophenon, 4-Trichloracetyl-anisol $C_9H_7O_3Cl_3=CH_3\cdot O\cdot C_9H_4\cdot CO\cdot CCl_3$. B. Beim Sättigen einer Mischung von Anisol, Trichloracetonitril und Zinkehlorid in wenig Äther mit Chlorwasserstoff und Behandeln des Reaktionsproduktes mit kaltem Wasser (Houben, Fischer, B. 60, 1767). — Krystalle (aus Petroläther). F: 33—34,5°. — Bei der Zersetzung mit Natronlauge entsteht Anissäure.

ω.ω.ω-Trichlor-4-äthoxy-acetophenon, 4-Trichloracetyl-phenetol $C_{10}H_9O_2Cl_3=C_2H_5$ · $O\cdot C_8H_4\cdot CO\cdot CCl_3$. B. Analog ω.ω.ω-Trichlor-4-methoxy-acetophenon (Houben, Fischer, B. 60, 1765). — Prismen (aus Petroläther). F: 63—64°. Löslich in den gebräuchlichen organischen Lösungsmitteln und in konz. Schwefelsäure, unlöslich in Wasser. — Liefert beim Erhitzen mit ca. 15% iger Natronlauge 4-Äthoxy-benzoesäure und Chloroform. Gibt mit konz. Schwefelsäure bei 80—100° ω.ω.ω-Trichlor-4-äthoxy-acetophenon-sulfonsäure-(2 oder 3).

ω-Brom-4-methoxy-acetophenon, 4-Bromacetyl-anisol, Brommethyl-[4-methoxy-phenyl]-keton, Brommethyl-p-anisyl-keton C₂H₄·O₂Br = CH₂·O·C₂H₄·CO·CH₂Br (H 89; E I 537).

- 87
- B. Beim Schütteln von [4-Methoxy-phenyl]-bromacetylen mit einem Gemisch von konz. Schwefelsäure und Eisessig (GRIGNARD, PERRICHON, A. ch. [10] 5, 20).
- ω-Brom-4-āthoxy-acetophenon, 4-Bromacetyl-phenetol $C_{10}H_{11}O_2Br = C_2H_5 \cdot O \cdot C_6H_4 \cdot CO \cdot CH_2Br$ (H 89). B. Analog ω-Chlor-4-āthoxy-acetophenon (S. 86) (Houben, Fischer, B. 60, 1771).
- 4.4'- Bis bromacetyl diphenyläther C₁₆H₁₂O₃Br₂ = (CH₂Br·O·C₆H₄)₂O. B. Bei langsamer Zugabe eines Gemisches aus Diphenyläther und Bromacetylchlorid zu fein gepulvertem Aluminiumchlorid (Schering-Kahlbaum A.G., D.R.P. 492321; C. 1930 I, 2796; Frdl. 16, 2830). Graues Krystallpulver (aus Alkohol). F: 110°.
- ω-Brom-4-methoxy-acetophenon-semicarbazon $C_{10}H_{12}O_2N_3Br = CH_2 \cdot O \cdot C_6H_4 \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_2Br$. F: ca. 165° (Zers.) (GRIGNARD, PERRICHON, A. ch. [10] 5, 20).
- 2.6 Dibrom 4 oxy acetophenon, 3.5-Dibrom - 4-acetyl-phenol C₂H₆O₃Br₂, Formel I. B. Analog 2.6-Dichlor-4-oxyacetophenon (S. 86) (v. Auwers, Deines, Fortech. Ch. Phys. 18 [1924/26], Heft 2, S. 34). — Blättchen (aus verd. Methanol). F: 141—142°.

- 3.5-Dibrom-4-oxy-acetophenon C₈H₆O₂Br₂, Formel II. B. Aus 4-Oxy-acetophenon und Brom in verd. Essigsäure (Priestley, Moness, J. org. Chem. 5, 358; C. 1941 I, 1021). Krystalle (aus Benzol). F: 181°. Das Phenylhydrazon schmilzt bei 147°.
- 3-Jodoso-4-oxy-acetophenon C₈H₇O₃I, Formel III. B. Beim Behandeln von frisch bereitetem 6-Methoxy-3-acetyl-phenyljodidchlorid mit 5n-Kalilauge (Bogert, Curtin, Am. Soc. 45, 2165). Blaßgelbe Nadeln (aus 50%igem Alkohol). F: 243° bei langsamem Erhitzen; zersetzt sich bei raschem Erhitzen plötzlich. Leicht löslich in Alkohol und Benzol, mäßig in Äther.
- 3-Jod-4-methoxy-acetophenon $C_9H_9O_2I=CH_3\cdot O\cdot C_6H_3I\cdot CO\cdot CH_3$ (E I 537). B. Aus 3-Amino-4-methoxy-acetophenon durch Diazotieren und Behandeln mit Kaliumjodid (BOGERT, CURTIN, Am. Soc. 45, 2164). Gelbe Nadeln (aus 50% iger Essigsäure). F: 103,6° (korr.). Leicht löslich in Alkohol, Chloroform, Äther und Eisessig. Färbt sich am Licht rasch bräunlich. Wird bei mehrstündigem Kochen mit alkoh. Kalilauge nicht verändert.
- 3-Jodoso-4-methoxy-acetophenon $C_0H_0O_3I=CH_3\cdot O\cdot C_6H_3(IO)\cdot CO\cdot CH_3$ (E I 537). B. Beim Behandeln von frisch bereitetem 6-Methoxy-3-acetyl-phenyljodidchlorid mit 5 n-Kalilauge (Boger, Curtin, Am. Soc. 45, 2165). Amorphe Masse. Zersetzt sich beim Erhitzen plötzlich. Dichlorid, 6-Methoxy-3-acetyl-phenyljodidchlorid $C_9H_9O_2Cl_2I=CH_3\cdot O\cdot C_9H_3(ICl_2)\cdot CO\cdot CH_3$. B. Beim Sättigen einer Lösung von 3-Jod-4-methoxy-acetophenon in Chloroform mit Chlor (B., C.). Gelbe Krystalle. Spaltet sehr rasch Chlor ab. Liefert beim Behandeln mit 5 n-Kalilauge 3-Jodoso-4-methoxy-acetophenon und 3-Jodoso-4-oxy-acetophenon.
- ω Nitro 4 methoxy acetophenon oxim $C_0H_{10}O_4N_3 = CH_3 \cdot O \cdot C_6H_4 \cdot C(:N \cdot OH) \cdot CH_2 \cdot NO_3$ (H 89). F: 112—113° (Panicker, Rao, Simonsen, J. indian Inst. Sci. [A] 9, 138; C. 1927 I, 653).
- 3-Azido-4-methoxy-acetophenon C₉H₉O₂N₃, s. nebenstehende Formel. B. Bei der Einw. von Ammoniak auf 6-Methoxy-3-acetyl-benzoldiazoniumperbromid in wäßr. Suspension (Bogert, Curtin, Am. Soc. 45, 2166). Blaß rötlichbraune Nadeln (aus verd. Alkohol). F: 87° (korr.; Zers.); explodiert bei raschem Erhitzen oberhalb des Schmelzpunktes. Leicht löslich in Alkohol, Benzol und Äther. Färbt sich beim Aufbewahren dunkel. Verharzt bei kurzem Erhitzen mit 25 %iger Schwefelsäure.
- ω -Azido-4-oxy-acetophenon $C_8H_7O_2N_3=HO\cdot C_6H_4\cdot CO\cdot CH_2\cdot N_3$. B. Durch Kochen von ω -Chlor-4-oxy-acetophenon mit Natriumazid in Alkohol (Fries, Saftien, B. 59, 1252). Gelbe Blättchen (aus Wasser). F: 136°. Leicht löslich in den üblichen Lösungsmitteln außer Benzin. Zersetzt sich beim Kochen mit Wasser und Säuren. Löst sich in Natronlauge unter Entwicklung von Stickstoff und Ammoniak.

Schwefel- und Selen-Analoga des 4-Oxy-acetophenons.

4-Mercapto-acetophenon, 4-Acetyl-thiophenol $C_8H_8OS = HS \cdot C_6H_4 \cdot CO \cdot CH_8$. B. Man setzt diazotiertes 4-Amino-acetophenon mit sodaalkalischer Äthylxanthogenat-Lösung um, erwärmt das Reaktionsprodukt bis zur Beendigung der Stickstoffentwicklung und verseift den erhaltenen Äthylxanthogensäure-[4-acetyl-phenylester] mit siedender alkoholischer Kalilauge (RIESS, FRANKFURTER, M. 50, 72). — Löslich in Äther.

- 4-Phenylmercapio-acetophenen, 4-Acetyl-diphenylsulfid $C_{14}H_{12}OS = C_0H_4 \cdot S \cdot C_0H_4 \cdot CO \cdot CH_3$. B. Man versetzt ein Gemisch aus Diphenylsulfid, Aluminiumchlorid und Schwefelkohlenstoff in der Kälte sehr langsam mit Acetylchlorid und erwärmt zum Schluß auf 60° (DILTHEY, Mitarb., J. pr. [2] 124, 108). Nadeln (aus Petroläther). F: 65°. Die Lösung in konz. Schwefelsäure ist orangegelb.
- 4.4'-Diacetyl-diphenylsulfid $C_{10}H_{14}O_2S = (CH_3 \cdot CO \cdot C_6H_4)_9S$. B. Aus Diphenylsulfid, überschüssigem Acetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff, zuletzt bei 60° (Dilthey, Mitarb., J. pr. [2] 124, 110). Blättchen (aus Ligroin). F: 90—91°. Die Lösung in konz. Schwefelsäure ist gelb.
- S-[4-Acetyl-phenyl]-thiogiykoisäure $C_{10}H_{10}O_3S=CH_3\cdot CO\cdot C_6H_4\cdot S\cdot CH_2\cdot CO_2H$. B. Aus 4-Mercapto-acetophenon und Chloressigsäure in alkal. Lösung auf dem Wasserbad (RIESS, Frankfurter, M. 50, 72). Nadeln (aus Wasser). F: 155—156°. Löslich in verd. Alkohol, fast unlöslich in kaltem Wasser.
- 4.4' Diacetyl diphenyl selenid $C_{16}H_{14}O_2Se = (CH_3 \cdot CO \cdot C_6H_4)_2Se$. B. Aus Diphenyl-selenid, überschüssigem Acetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff, zufetzt auf dem Wasserbad (Dilthey, Mitarb., J. pr. [2] 124, 118). Blättchen (aus Methanol). F: 91° bis 92°. Die Lösung in konz. Schwefelsäure ist orangerot. Liefert beim Kochen mit Permanganat in alkal. Lösung Diphenylselenon-dicarbonsäure-(4.4').
- 4. Oxymethyl-phenyl-keton, ω -Oxy-acetophenon, Benzoylcarbinol, Phenacylalkohol $C_8H_8O_2=C_4H_4\cdot CO\cdot CH_2\cdot OH$ (H 90; E I 538). Darstellung durch Kochen von ω -Brom-acetophenon mit Bariumcarbonat und Wasser nach O. Fischer, Busch (B. 24, 2680; H 90): Roberson, Robinson, Soc. 1927, 244 Anm. F: 86—87°; Kp₁₂: 124—126°; D₄^{m,1}: 1,0963; n_{α}^{m,1}: 1,5232; n_{α}^{m,1}: 1,5286; n_{α}^{m,1}: 1,5427 (v. Auwers, Mauss, Bio. Z. 192, 220, 228). Gibt beim Erwärmen mit 2-Methoxy-phenylmagnesiumbromid in Äther α -Phenyl- α -[2-methoxy-phenyl]-āthylenglykol und wenig α -Phenyl- α -[2-methoxy-phenyl]-āthylenoxyd (Stoermer, Frick, B. 54, 25, 28).

Funktionelle Derivate des w-Oxy-acetophenons.

- ω- Methoxy acetophenon, Methylphenacyläther $C_9H_{10}O_2=C_9H_5\cdot CO\cdot CH_2\cdot O\cdot CH_3$. Beim Behandeln von Methoxyacetonitril mit Phenylmagnesiumbromid in Äther und Zersetzen des Reaktionsproduktes mit Eis und verd. Schwefelsäure (Pratt, Robinson, Soc. 123, 748; Dufraisse, Chaux, Bl. [4] 39, 446). In geringer Menge durch Umsetzung von Natrium-α.γ-dimethoxy-acetessigsäureäthylester mit Benzoylchlorid und Kochen des Reaktionsproduktes mit verd. Natronlauge (P., R., Soc. 127, 169). Erstarrt in Kältemischung krystallinisch; F: 7—8° (D., Ch.). Kp₇₆₀: 228—230°; Kp₁₅: 118—120° (P., R., Soc. 123, 748); Kp₁₅: 115—116° (Malkin, R., Soc. 127, 377); Kp₁₃: 117—118° (D., Ch.). D₁¹⁶: 1,696; D₁^{11,2}: 1,093 (D., Ch.). n₂^{16,2}: 1,5338 (D., Ch.); n₂: 1,5416 (P., R., Soc. 128, 748). Leicht löslich in den meisten organischen Lösungsmitteln (P., R., Soc. 123, 748). Färbt sich an der Luft gelb (D., Ch.). Gibt mit Benzaldehyd in wäßrig-alkoholischer Natronlauge ω-Methoxy-ω-benzyliden-acetophenon (M., R., Soc. 127, 372). Liefert bei kurzem Erwärmen mit Phenylhydrazin und nachfolgendem Kochen mit Eisessig 3-Methoxy-2-phenyl-indol (Robinson, Thornley, Soc. 1926, 3144). Beim Erwärmen mit 6-Amino-piperonal und etwas Kaliumhydroxyd in Methanol entsteht nicht näher beschriebenes 3-Methoxy-6.7-methylendioxy-2-phenyl-chinolin, das in verd. Essigsäure mit violetter Fluorescenz löslich ist (Pratt, R., Soc. 128, 748).
- ω-Äthoxy acetophenon, Äthylphenacyläther $C_{10}H_{12}O_3 = C_6H_5 \cdot CO \cdot CH_2 \cdot O \cdot C_2H_5$ (H 90). Zur Bildung aus Äthoxyacetonitril und Phenylmagnesiumbromid (H 90) vgl. Dufraise, Chaux, Bl. [4] 39, 450. Erstarrt in Kältemischung krystallinisch. F: 8—9°. Kp₃₋₄: 99—100°; Kp₁₃: 124—125°. D₄¹³: 1,059; D₄¹³: 1,056. n₂²⁰: 1,5222.
- ω- Cyclohexyloxy acetophenon, Cyclohexylphenacyläther $C_{14}H_{18}O_2 = C_6H_5 \cdot CO \cdot CH_2 \cdot O \cdot C_6H_{11}$. B. Durch Umsetzung von Cyclohexyloxyacetonitril mit Phenylmagnesiumbromid in siedendem Äther und Zersetzung des Reaktionsproduktes mit Eis und verd. Schwefelsäure (Palfray, Sabetay, Bl. [4] 43, 902). Gelbliches viscoses Öl von bitterem Geschmack. Kp₁₄: 178°. D²⁰: 1,071. n_D^{20} : 1,5365. Reduziert ammoniakalische Silbernitrat-Lösung; in der Wärme wird auch Fehlingsche Lösung langsam reduziert.
- ω-Phenoxy-acetophenon, Phenylphenacyläther $C_{14}H_{12}O_9 = C_6H_5 \cdot CO \cdot CH_3 \cdot O \cdot C_6H_5$ (H 91). Konnte nach den Angaben von Stoermer, Atenstädt (B. 35, 3562 Anm.) nicht erhalten werden (Higginbotham, Stephen, Soc. 117, 1535).
- ω -[3-Nitro-phenoxy]-acetophenon $C_{1d}H_{11}O_4N=C_0H_d\cdot CO\cdot CH_d\cdot C\cdot C_0H_d\cdot NO_g$. B. Beim Erhitzen von 3-Nitro-phenol-natrium mit ω -Chlor-acetophenon (Arnall, Soc. 125, 816). Blaßgelbe Krystalle (aus verd. Alkohol). F: 127°.

- 2 Phenacyloxy benzylbromid $C_{15}H_{18}O_2Br = C_5H_5 \cdot CO \cdot CH_2 \cdot O \cdot C_5H_4 \cdot CH_2Br$. B. Durch Sättigen einer Lösung von Saligenin-2-phenacyläther in Eisessig mit Bromwasserstoff (Freudenberg, Fikertscher, Harder, A. 441, 177). Nadeln (aus Ligroin). F: 93°. Leicht löslich in Benzol, Chloroform und Pyridin, ziemlich schwer in kaltem Alkohol, Methanol, Ligroin und Äther. Die Lösung in konz. Schwefelsäure ist dunkelrot.
- ω -[2-Methoxy-phenoxy]-acetophenon, Guajacol-phenacyläther $C_{15}H_{14}O_3=C_6H_5\cdot CO\cdot CH_2\cdot O\cdot C_6H_4\cdot O\cdot CH_3$ (H 91). B. Beim Erhitzen von Guajacolkalium mit ω -Brom-acetophenon in Heptan (Winkelblech, J. am. pharm. Assoc. 18, 619; C. 1924 II, 2838. Krystalle (aus Alkohol). F: 104°.
- ω-[3-Methoxy-phenoxy]-acetophenon, Resorcin-methyläther-phenacyläther $C_{15}H_{14}O_3=C_6H_5\cdot CO\cdot CH_5\cdot O\cdot C_6H_4\cdot O\cdot CH_3$. B. Durch Kochen von ω-Brom-acetophenon und Resorcin-monomethyläther mit Kaliumcarbonat in Aceton (Freudenberg, Fikentscher, Harder, A. 441, 177) oder mit 20%iger Natronlauge in Aceton (Baker, Pollard, Robinson, Soc. 1929, 1470). Prismen (aus Methanol), Nadeln (aus Alkohol). F: 85—86° (Fr., Fr., H.; B., P., R.). Schwer löslich in Petroläther, leicht in den üblichen organischen Lösungsmitteln (B., P., R.). Löst sich in konz. Schwefelsäure bei —5° orangefarben mit grüner Fluorescenz; beim Verdünnen der Lösung mit Wasser scheidet sich 6-Methoxy-3-phenyl-cumaron aus (B., P., R.).
- 2-Phenacylexy-benzylalkohol, Saligenin-2-phenacyläther $C_{15}H_{14}O_3=C_6H_5\cdot CO\cdot CH_2\cdot O\cdot C_6H_4\cdot CH_2\cdot OH$. Beim Kochen von Salicylalkohol mit ω -Brom-acetophenon und Kalium-carbonat in Aceton (Freudenberg, Fikentscher, Harder, A. 441, 476). Prismen (aus verd. Methanol). F: 86—87°. Sehr leicht löslich in Aceton, Essigester, Pyridin und Benzol, schwer in kaltem Alkohol, sehr schwer in Äther und Tetrachlorkohlenstoff, unlöslich in Ligroin. Löst sich in konz. Schwefelsäure mit weinroter Farbe.

Phloroglucin - dimethyläther - phenacyläther $C_{16}H_{16}O_4 = C_6H_5 \cdot CO \cdot CH_2 \cdot O \cdot C_6H_3 (O \cdot CH_3)_2$. B. Aus Phloroglucindimethyläther und ω -Brom-acetophenon in Gegenwart von Kaliumearbonat in siedendem Aceton (Freudenberg, Orthner, Fikentscher, A. 436, 296). — Krystalle (aus Methanol). F: 89°.

ω-Acetoxy-acetophenon, Benzoylcarbinol-acetat, Phenacylacetat $C_{10}H_{10}O_3 = CH_3 \cdot CO_2 \cdot CH_2 \cdot CO \cdot C_6H_5$ (H 92). B. Durch Einw. von Bleitetraacetat auf Acetophenon in Eisessig bei 80—90° (Dimeoth, Schweizer, B. 56, 1380). Beim Erwärmen von ω-Diazo-acetophenon mit Eisessig (Bradley, Robinson, Soc. 1928, 1317). — Tafeln (aus Petroläther). F: 48—49° (Br., Ro.), 49° (Rather, Reid, Am. Soc. 43, 630), 49—50° (v. Auwers, Mauss, Bio. Z. 192, 219). Kρ₁₀: 150—152° (v. Au., M., Bio. Z. 192, 219). D₂^{4,7} 1,1169; $n_{\alpha}^{\alpha,7}$: 1,5036; $n_{\alpha}^{4,7}$: 1,5084; $n_{\gamma}^{\alpha,7}$: 1,5206 (v. Au., M., Bio. Z. 192, 228). — Reduziert Fehlingsche Lösung in der Kälte (Br., Ro.).

Fumarsäurediphenacylester $C_{20}H_{16}O_6=C_6H_5\cdot CO\cdot CH_2\cdot O_2C\cdot CH:CH\cdot CO_2\cdot CH_2\cdot CO\cdot C_6H_5$ (E I 538). Krystalle (aus Eisessig). F: 204—205° (korr.) (VAN DUIN, R. 47, 734).

Maleinsäurediphenacylester $C_{20}H_{16}O_6=C_6H_5\cdot CO\cdot CH_2\cdot O_2C\cdot CH:CH\cdot CO_2\cdot CH_2\cdot CO\cdot C_6H_5$ (E I 538). Krystalle (aus verd. Essigsäure). F: 128—129 $^{\circ}$ (korr.) (van Duin, R. 47, 734).

Citronensäuretriphenacylester $C_{30}H_{30}O_{10} = (C_6H_5 \cdot CO \cdot CH_2 \cdot O_2C \cdot CH_2)_2C(OH) \cdot CO_2 \cdot CH_2 \cdot CO \cdot C_6H_5$ (E I 539). Krystalle (aus Alkohol). F: 105° (Kremers, Hall, J. biol. Chem. 41, 16).

Diphenacylester der inakt. Cysteinsäure $C_{19}H_{19}O_7NS = C_6H_5 \cdot CO \cdot CH_2 \cdot O \cdot CO \cdot CH(NH_2) \cdot CH_2 \cdot SO_2 \cdot O \cdot CH_3 \cdot CO \cdot C_6H_5$. B. Beim Kochen von inakt. Cysteinsäure (E II 4, 951) mit Phenacylbromid und Soda in verd. Alkohol (Gortner, Hoffmann, J. biol. Chem. 72, 436). — Tafeln. F: 210° (unkorr.).

Diphenacylester der akt. Cysteinsäure $C_{19}H_{19}O_7NS = C_6H_5 \cdot CO \cdot CH_2 \cdot O \cdot CO \cdot CH(NH_2) \cdot CH_2 \cdot SO_2 \cdot O \cdot CH_3 \cdot CO \cdot C_6H_5$. B. Beim Kochen von akt. Cysteinsäure (E II 4, 951) mit Phenacylbromid und Soda in verd. Alkohol (Goberner, Hoffmann, J. biol. Chem. 72, 436). — Nadeln oder Prismen (aus verd. Alkohol). F: 203—204° (unkorr.).

- 1.2-Dioxy-1-phenyl-äthan-phosphonsäure-(1) $C_8H_{11}O_5P=C_6H_5\cdot C(OH)(PO_3H_2)\cdot CH_3\cdot OH$. B. Beim Eindampfen einer wäßr. Lösung von 1.2-Dibrom-1-phenyl-äthan-phosphonsäure-(1) (E II 7, 221) (Conant, Coyne, Am. Soc. 44, 2534). Krystalle (aus Aceton oder Äther + Tetrachlorkohlenstoff). F: 143—145°.
- ω -Oxy-acetophenon-semicarbazon, Benzoylcarbinol-semicarbazon $C_9H_{11}O_2N_3=C_8H_5$ · $C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_2\cdot OH$ (H 93). B. Bei kurzem Erwärmen von ω -Acetoxy-acetophenon-semicarbazon mit alkoh. Alkalilauge (v. Auwers, Mauss, Bio. Z. 192, 219). Nadeln (aus Alkohol). F: 146—146,5°.
- ω-Methoxy-acetophenen-semicarbazon $C_{10}H_{18}O_2N_3 = C_6H_5 \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_2 \cdot O \cdot CH_3$.

 a) Prāparat von Dufraisse, Chaux. Krystalle (aus Benzol). F: 128—127° (Dufraisse, Chaux, Bl. [4] **39**, 447).

- b) Praparat von Pratt, Robinson. Nadeln (aus Alkohol). F: 85° (Pratt, Robinson, Soc. 123, 748).
- ω -Cyclohexyloxy-acetophenon-hydrazon $C_{14}H_{20}ON_2=C_0H_5\cdot C(:N\cdot NH_2)\cdot CH_2\cdot O\cdot C_0H_{11}$. Prismen (aus verd. Methanol). F: 113° (Maquennescher Block) (Palfray, Sabetay, Bl. [4] 43, 903). Löslich in Benzol, Äther und Chloroform sowie in heißem Methanol, Alkohol und Eisessig. Zersetzt sich am Licht unter Gelbfärbung.
- ω Cyclohexyloxy acetophenon semicarbazon $C_{15}H_{21}O_2N_3=C_6H_5\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_2\cdot O\cdot C_6H_{11}$. Krystalle (aus 50% igem Methanol). F: 123° (Palfray, Sabetay, Bl. [4] 48, 903).
- ω Acetoxy acetophenon semicarbazon, Semicarbazon des Benzoylcarbinol acetats $C_{11}H_{19}O_3N_3=C_6H_5\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_2\cdot O\cdot CO\cdot CH_3$. B. Aus Benzoylcarbinol acetat, Semicarbazidhydrochlorid und Natriumacetat in verd. Alkohol bei $40-50^\circ$ (v. Auwers, Mauss, Bio, Z. 192, 220). Blättchen (aus Alkohol). F: $148-149^\circ$. Ziemlich leicht löslich in Eisessig, Aceton und Benzol, etwas schwerer in Alkohol.

Substitutionsprodukte des w-Oxy-acetophenons.

- 4 Chlor ω oxy acetophenon, 4 Chlor benzoylcarbinol, 4 Chlor phenacylalkohol $C_8H_7O_2Cl=C_6H_4Cl\cdot CO\cdot CH_2\cdot OH$ (E I 539). Krystalle (aus Alkohol). F: 122,4° (JUDEFIND, REID, $Am.\ Soc.\ 42$, 1054). Leicht löslich in Äther, heißem Wasser und heißem Alkohol.
- 4-Chlor- ω -acetoxy-acetophenon, [4-Chlor-phenacyl]-acetat $C_{10}H_9O_3Cl=CH_3\cdot CO_2\cdot CH_2\cdot CO\cdot C_6H_4Cl$ (E I 539). B. Durch Kochen von 4-Chlor- ω -brom-acetophenon mit Natriumacetat in verd. Alkohol (Rather, Reid, Am. Soc. 41 [1919], 78; Judefind, Reid, Am. Soc. 42, 1047). Krystalle (aus verd. Alkohol). F: 67,2° (J., R.). Löslichkeit in 31 %igem Alkohol: J., R.

Bernsteinsäure-bis-[4-chlor-phenacylester], Bis-[4-chlor-phenacyl]-succinat $C_{20}H_{16}O_6Cl_2=[C_6H_4Cl\cdot CO\cdot CH_2\cdot O_2C\cdot CH_2-]_2$. Krystalle (aus Alkohol). F: 197,5° (JUDEFIND, REID, Am. Soc. 42, 1047). Löslichkeit in 95% igem Alkohol: J., R.

Tricarballylsäure - tris - [4 - chlor - phenacylester] $C_{30}H_{23}O_9Cl_3 = (C_6H_4Cl \cdot CO \cdot CH_2 \cdot O_2C \cdot CH_4)_2CH \cdot CO_2 \cdot CH_2 \cdot CO \cdot C_8H_4Cl$. Krystalle (aus Alkohol). F: 125,6° (JUDEFIND, R. ID, Am. Soc. 42, 1047). Löslichkeit in 95% igem Alkohol: J., R.

Aconitsäure-tris-[4-chlor-phenacylester] $C_{30}H_{21}O_9Cl_3 = C_6H_4Cl\cdot CO\cdot CH_2\cdot O_3C\cdot CH_2\cdot C(CO_2\cdot CH_2\cdot CO\cdot C_6H_4Cl): CH\cdot CO_2\cdot CH_3\cdot CO\cdot C_6H_4Cl).$ Krystalle (aus Ålkohol). F: 169° (Judefind, Reid, Am. Soc. 42, 1047). Löslichkeit in 95%igem Alkohol: J., R.

Äthoxyessigsäure - [4-chlor-phenacylester], O-Äthyl-glykolsäure-[4-chlor-phenacylester] $C_{12}H_{13}O_4Cl = C_2H_5 \cdot O \cdot CH_2 \cdot CO_2 \cdot CH_2 \cdot CO \cdot C_6H_4Cl$. Krystalle (aus verd. Alkohol). F: 94,4° (JUDEFIND, REID, Am. Soc. 42, 1047). Löslichkeit in 27% igem Alkohol: J., R.

Traubensäure - bis - [4 - chlor - phenacylester] $C_{20}H_{16}O_8Cl_2 = [C_6H_4Cl \cdot CO \cdot CH_2 \cdot O_2C \cdot CH(OH)-]_2$. Krystalle. Zersetzt sich bei 180–190° (JUDEFIND, REID, Am. Soc. 42, 1052).

- Asparaginsäure-bis-[4-chlor-phenacylester] $C_{20}H_{17}O_{6}NCl_{2} = C_{6}H_{4}Cl \cdot CO \cdot CH_{2} \cdot O_{2}C \cdot CH_{2} \cdot CH_{17}O_{6}NCl_{2} = C_{6}H_{4}Cl \cdot CO \cdot CH_{2} \cdot CH_{$
- 4-Brom-ω-oxy-acetophenon, 4-Brom-benzoylcarbinol, 4-Brom-phenacylalkohol $C_8H_7O_2Br = C_6H_4Br\cdot CO\cdot CH_2\cdot OH$. B. Durch Kochen von [4-Brom-phenacyl]-acetat mit Bariumcarbonat in Wasser (Judefind, Reid, Am. Soc. 42, 1054). Krystalle (aus Alkohol). F: 136,6°. Leicht löslich in Äther, heißem Wasser und heißem Alkohol.
- 4-Brom-ω-acetoxy-acetophenon, [4-Brom-phenacyl]-acetat $C_{10}H_{9}O_{3}Br = CH_{3} \cdot CO_{3} \cdot CH_{2} \cdot CO \cdot C_{6}H_{4}Br$. B. Aus 4.ω-Dibrom-acetophenon und Natriumacetat in siedendem verdünntem Alkohol (Judefind, Reid, Am. Soc. 42, 1048). Krystalle (aus wäßr. Alkohol). F: 85°. Löslichkeit in 40% igem Alkohol: J., R.
- [4-Brom-phenacyl]-propionat, Propionsäure-[4-brom-phenacylester] $C_{11}H_{11}O_3Br=C_2H_5$: $CO_2 \cdot CH_2 \cdot CO \cdot C_8H_4Br$. Krystalle (aus verd. Alkohol). F: 59° (JUDEFIND, REID, Am. Soc. 42, 1049). Löslichkeit in 41 %igem Alkohol: J., R.
- [4-Brom-phenacyl]-butyrat, Buttersäure-[4-brom-phenacylester] $C_{12}H_{19}O_3Br=C_2H_5$: $CH_2\cdot CO_2\cdot CH_2\cdot CO\cdot C_6H_4$ Br. Krystalle (aus verd. Alkohol). F: 63,2° (JUDEFIND, REID, Am. Soc. 42, 1048). Löslichkeit in 61 % igem Alkohol: J., R.
- [4-Brom-phenacyl]-isobutyrat, Isobuttersäure-[4-brom-phenacylester] $C_{12}H_{13}O_3Br=(CH_3)_2CH\cdot CO_2\cdot CH_2\cdot CO\cdot C_6H_4Br.$ Stäbchen (aus verd. Alkohol). F: 76,8° (JUDEFIND, REID, Am. Soc. 42, 1048), 76,5—76,8° (CLARK, J. biol. Chem. 77, 85). Löslichkeit in 67% igem Alkohol: J., R.
- [4-Brom-phenacyl]-n-valerianat, n-Valerians Eure-[4-brom-phenacylester] $C_{12}H_{15}O_3Br=CH_3\cdot [CH_4]_3\cdot CO_2\cdot CH_2\cdot CO\cdot C_6H_4Br.$ Krystalle (aus verd. Alkohol). F: 63,6° (JUDEFIND, REID, Am. Soc. 42, 1050). Löslichkeit in 67% igem Alkohol: J., R.

91

[4-Brom-phenacyl]-isovalerianat, Isovaleriansäure-[4-brom-phenacylester] $C_{12}H_{18}O_3Br = (CH_2)_2CH \cdot CH_2 \cdot CO_2 \cdot CH_2 \cdot CO \cdot C_2H_4$ Br. Krystalle (aus verd. Alkohol). F: 68° (JUDEFIND, REJD, Am. Soc. 42, 1050). Löslichkeit in 40% igem Alkohol: J., R.

[4-Brom-phenacyl]-n-capronat, n-Capronsäure-[4-brom-phenacylester] $C_{14}H_{17}O_3Br=CH_3\cdot[CH_2]_4\cdot CO_3\cdot CH_4\cdot CO\cdot C_4H_4$ Br. Krystalle (aus verd. Alkohol). F: 71,6° (JUDEFIND, REID, Am. Soc. 42, 1048). Löslichkeit in 61% igem Alkohol: J., R.

Caprylsäure - [4 - brom - phenacylester] $C_{16}H_{21}O_3Br = CH_2 \cdot [CH_2]_6 \cdot CO_2 \cdot CH_2 \cdot CO \cdot C_6H_4Br$. Krystalle (aus verd. Alkohol). F: 65,5° (Judefind, Reid, Am. Sec. 42, 1048). Löslichkeit in 63% igem Alkohol: J., R.

Caprinsäure - [4-brom - phenacylester] $C_{18}H_{25}O_8Br = CH_3 \cdot [CH_2]_8 \cdot CO_2 \cdot CH_2 \cdot CO \cdot C_6H_4Br$. Krystalle (aus verd. Alkohol). F: 66,0° (Judefind, Reid, Am. Soc. 42, 1048). Löslichkeit in 80% igem Alkohol: J., R.

[4-Brom-phenacyl]-paimitat, Paimitinsäure-[4-brom-phenacylester] $C_{24}H_{37}O_3Br = CH_3 \cdot [CH_2]_{14} \cdot CO_2 \cdot CH_2 \cdot CO_4 \cdot H_4Br$. Krystalle (aus Alkohol). F: 81,5° (JUDEFIND, REID, Am. Soc. 42, 1049). Löslichkeit in 83% igem Alkohol: J., R.

[4-Brom-phenacyl]-margarat, Margarinsäure-[4-brom-phenacylester] $C_{25}H_{39}O_3Br=CH_3\cdot [CH_2]_{15}\cdot CO_3\cdot CH_2\cdot CO\cdot C_6H_4Br$. Krystalle (aus Alkohol). F: 78,2° (JUDEFIND, REID, Am. Soc. 42, 1049). Löslichkeit in 91 % igem Alkohol: J., R.

[4-Brom-phenacyl]-stearat, Stearinsäure-[4-brom-phenacylester] $C_{26}H_{41}O_3Br=CH_3\cdot [CH_2]_{16}\cdot CO_3\cdot CH_2\cdot CO\cdot C_6H_4Br.$ Krystalle (aus verd. Alkohol). F: 78,5° (Judefind, Reid, Am. Soc. 42, 1049). Löslichkeit in 87%igem Alkohol: J., R.

Crotonsäure - [4 - brom - phenacylester] $C_{12}H_{11}O_3Br = CH_3 \cdot CH \cdot CO_4 \cdot CH_2 \cdot CO \cdot C_9H_4Br$. Tafeln (aus Benzol + Petroläther). F: 95 — 96° (v. Auwers, A. 482, 59). Leicht löslich in Aceton, Chloroform, Eisessig und Benzol, löslich in Methanol und Alkohol, schwer löslich in Petroläther. — Wird durch siedendes Wasser oder durch heiße wasserhaltige Lösungsmittel zum Teil verseift.

Isocrotonsäure-[4-brom-phenacylester] $C_{12}H_{11}O_3Br=CH_3\cdot CH:CH\cdot CO_2\cdot CH_2\cdot CO\cdot C_6H_4Br$. Blättchen (aus Benzol + Petroläther). F: 80,5—81,5° (v. Auwers, A. 482, 61). Leicht löslich in Aceton, Chloroform, Eisessig und Benzol, löslich in Methanol und Alkohol, schwer löslich in Leichtbenzin und Petroläther.

 \varDelta^{α} -Pentensäure-[4-brom-phenacylester], β -Äthyl-acrylsäure-[4-brom-phenacylester] $C_{13}H_{13}O_3Br=CH_3\cdot CH_2\cdot CH\cdot CO_2\cdot CH_2\cdot CO\cdot C_6H_4Br$. Blättchen (aus Benzol + Petroläther). F: 67—68° (v. Auwers, A. 482, 65). Leicht löslich in Aceton, Chloroform, Eisessig und Benzol, löslich in Methanol und Alkohol, schwer löslich in Petroläther. — Wird durch siedendes Wasser und heiße wasserhaltige Lösungsmittel zum Teil verseift.

 Δ^{β} - Pentensäure - [4-brom-phenacylester], β -Äthyliden-propionsäure-[4-brom-phenacylester] $C_{13}H_{13}O_3Br=CH_3\cdot CH:CH\cdot CH_2\cdot CO_3\cdot CH_3\cdot CO\cdot C_6H_4Br$. Blättchen (aus Benzol + Petroläther). F: 87–88° (v. Auwers, A. 432, 69). Leicht löslich in organischen Lösungsmitteln außer Petroläther.

 A^{β} -Dihydrosorbinsäure-[4-brom-phenacylester] $C_{14}H_{15}O_3Br=CH_3\cdot CH_2\cdot CH_2\cdot CH_1\cdot CH_2\cdot CO_2\cdot CH_2\cdot CO\cdot C_4H_4Br$. Blättchen (aus Petroläther). F: 63—65° (v. Auwers, Heyna, A. 434, 150). Schwer löslich in Petroläther, mäßig in Alkohol und Methanol, leicht in anderen organischen Lösungsmitteln.

 β -Isopropyl-acrylsäure-[4-brom-phenacylester], \varDelta^{α} -Isohexensäure-[4-brom-phenacylester] $C_{14}H_{15}O_3Br=(CH_5)_2CH\cdot CH:CH\cdot CO_3\cdot CH_2\cdot CO\cdot C_0H_4Br.$ Blättchen (aus Benzol + Ligroin). F: 71—72° (v. Auwers, A. 432, 75).

α-Methyl- \varDelta^{β} - hexensäure-[4-brom-phenacylester], Héxen-(3)-carbonsäure-(2)-[4-brom-phenacylester] $C_{15}H_{17}O_3Br=CH_3\cdot CH_3\cdot CH_2\cdot CH\cdot CH(CH_3)\cdot CO_3\cdot CH_3\cdot CO\cdot C_4H_4Br$. Nadeln (aus Petroläther). F: 41—42° (v.Auwers, Heyna, A. 434, 158).

Isoamylidenessigsäure-[4-brom-phenacylester], Δ^{α} -Isoheptensäure-[4-brom-phenacylester] $C_{15}H_{17}O_3Br = (CH_s)_2CH \cdot CH_2 \cdot CH \cdot CO_2 \cdot CH_2 \cdot CO \cdot C_5H_4Br$. Blättchen (aus Benzol + Ligroin). F: 87—88° (v. Auwers, A. 482, 80).

α-Äthyl- Δ^{β} -hexensäure-[4-brom-phenacylester], Hepten-(4)-carbonsäure-(3)-[4-brom-phenacylester] $C_{16}H_{19}O_3Br=CH_3\cdot CH_2\cdot CH\cdot CH\cdot CH\cdot CH\cdot CH_3\cdot CO_3\cdot CH_3\cdot CO\cdot C_6H_4Br$. Blättchen (aus Petroläther). F: 34° (v. Auwers, Heyna, A. 484, 160).

Erucasăure - [4 - brom - phenacylester] $C_{20}H_{47}O_3Br = CH_2 \cdot [CH_2]_7 \cdot CH \cdot CH \cdot [CH_2]_{11} \cdot CO_2 \cdot CH_4 \cdot CO \cdot C_4H_4Br$. Krystalle (aus verd. Alkohol). F: 61° (JUDEFIND, REID, Am. Soc. 42, 1048). Löslichkeit in 88% igem Alkohol: J., R.

Serbinsäure - [4-brom-phenacylester] $C_{14}H_{19}O_3Br=CH_2\cdot CH\cdot CH\cdot CH\cdot CH\cdot CO_2\cdot CH_2\cdot CO\cdot C_0H_4Br.$ Krystalle (aus verd. Alkohol). F: 129° (JUDEFIND, REID, Am. Soc. 42, 1049). Löslichkeit in 63 % igem Alkohol: J., R.

Bernsteinsäure-bis-[4-brom-phenacylester], Bis-[4-brom-phenacyl]-succlast $C_{10}H_{10}O_{0}Br_{2}$ = [C₀H₄Br·CO·CH₂·O₂C·CH₄-]₂. Krystalle (aus Alkohol). F: 211⁰ (JUDEFIND, REID, Am. Soc. 42, 1050). Löslichkeit in 95 %igem Alkohol: J., R.

Sebacinsäure - bis - [4-brom - phenacylester] $C_{be}H_{20}O_{e}Br_{g} = C_{e}H_{4}Br \cdot CO \cdot CH_{2} \cdot O_{2}C \cdot [CH_{2}]_{e} \cdot CO_{2} \cdot CH_{2} \cdot CO \cdot C_{e}H_{4}Br$. Krystalle (aus Alkohol). F: 147° (Judefind, Reid, Am. Soc. 42, 1049). Löslichkeit in 95%igem Alkohol: J., R.

Maleinsäure - bis - [4 - brom - phenacylester] $C_{20}H_{14}O_{0}Br_{2} = [C_{0}H_{4}Br\cdot CO\cdot CH_{2}\cdot O_{2}C\cdot CH =]_{8}$. Krystalle (aus Alkohol). Zersetzt sich bei 168—170° (JUDEFIND, REID, Am. Soc. 42, 1052). Löslichkeit in 95 %igem Alkohol: J., R.

Tricarballylsäure - tris - [4 -brom - phenacylester] $C_{30}H_{23}O_0Br_3 = (C_0H_4Br \cdot CO \cdot CH_2 \cdot O_2C \cdot CH_4)_2CH \cdot CO_2 \cdot CH_2 \cdot CO \cdot C_0H_4Br$. Krystalle (aus Alkohol). F: 138,2° (Judefind, Reid, Am. Soc. 42, 1050). Löslichkeit in 95%igem Alkohol: J., R.

Aconitsäure - tris - [4 - brom - phenacylester] $C_{30}H_{21}O_{9}Br_{3} = C_{6}H_{4}Br \cdot CO \cdot CH_{2} \cdot O_{3}C \cdot CH_{3} \cdot C(CO_{3} \cdot CH_{2} \cdot CO \cdot C_{6}H_{4}Br) \cdot CH \cdot CO_{2} \cdot CH_{2} \cdot CO \cdot C_{6}H_{4}Br$. Krystalle (aus Alkohol). F: 186° (Judefind, Reid, Am. Soc. 42, 1048). Löslichkeit in 95% igem Alkohol: J., R.

Glykolsäure - [4-brom - phenacylester] $C_{10}H_9O_4Br = C_6H_4Br \cdot CO \cdot CH_2 \cdot O_5C \cdot CH_5 \cdot OH$. Krystalle (aus verd. Alkohol). F: 138° (JUDEFIND, REID, Am. Soc. 42, 1049). Löslichkeit in 47% igem Alkohol: J., R.

Äthoxyessigsäure-[4-brom-phenacylester], O-Äthyl-glykolsäure-[4-brom-phenacylester] $C_{12}H_{13}O_4Br=C_6H_4Br\cdot CO\cdot CH_2\cdot O_2C\cdot CH_2\cdot O_2C_2H_5$. Krystalle (aus verd. Alkohol). F: 104,8° (Judefind, Reid, Am. Soc. 42, 1048). Löslichkeit in 47%igem Alkohol: J., R.

Butylmercaptoessigsäure - [4 - brom - phenacylester], S-Butyl - thioglykoisäure - [4 - brom-phenacylester] $C_{14}H_{17}O_3BrS = C_6H_4Br\cdot CO\cdot CH_2\cdot O_2C\cdot CH_2\cdot S\cdot C_4H_6$. F: 95° (UYEDA, RED, Am. Soc. 42, 2386).

- di-Milchsäure [4-brom phenacylester], [4-Brom phenacyl] di-lactat $C_{11}H_{11}O_4Br=C_0H_4Br\cdot CO\cdot CH_2\cdot O_2C\cdot CH(OH)\cdot CH_2$. Krystalie (aus verd. Alkohol). F: 112,8° (JUDEFIND, Reid), Am. Soc. 42, 1049). Löslichkeit in 19% igem Alkohol; J., R.
- d(+) Weinsäure bis [4 brom phenacylester] C₂₀H₁₆O₈Br₂ = C₆H₄Br · CO · CH₂·O₂C·CH(OH)—]₂. Krystalle (aus Alkohol). Zersetzt sich bei 210—215° (JUDEFIND, REID, Am. Soc. 42, 1052). Löslichkeit in 95% igem Alkohol: J., R.
- di-Weinsäure-bis-[4-brom-phenacylester], Traubensäure-bis-[4-brom-phenacylester] $C_{20}H_{16}O_8Br_2=[C_6H_4Br\cdot CO\cdot CH_2\cdot O_2C\cdot CH(OH)-]_2$. Krystalle (aus Alkohol). Zersetzt sich bei 204—2060 (Judefind, Reid, Am. Soc. 42, 1052). Löslichkeit in 95% igem Alkohol: J., R.

Citronensäure-tris-[4-brom-phenacylester] $C_{30}H_{23}O_{10}Br_3 = [C_6H_4Br\cdot CO\cdot CH_2\cdot O_2C\cdot CH_3]_2\cdot C(OH)\cdot CO_2\cdot CH_2\cdot CO\cdot C_6H_4Br$. Krystalle (aus Alkohol). F: 148° (JUDEFIND, REID, Am. Soc. 42, 1048). Löslichkeit in 95% igem Alkohol: J., R.

Lävulinsäure - [4 - brom - phenacylester] $C_{13}H_{13}O_4Br = CH_3 \cdot CO \cdot CH_2 \cdot CH_3 \cdot CO_2 \cdot CH_3 \cdot CO_3 \cdot CH_3 \cdot CO_4$. Krystalle (aus verd. Alkohol). F: 84° (JUDEFIND, REID, Am. Soc. 42, 1049). Löslichkeit in 36% igem Alkohol: J., R.

Asparaginsäure - bis - [4-brom-phenacylester] $C_{20}H_{17}O_4NBr_2 = C_4H_4Br\cdot CO\cdot CH_2\cdot O_2C\cdot CH_3\cdot CH(NH_2)\cdot CO_2\cdot CH_2\cdot CO\cdot C_6H_4Br$. Krystalle (aus Alkohol). F: 175—176° (Zers.) (Judefind, Reid, Am. Soc. 42, 1052). Löslichkeit in 95% igem Alkohol: J., R.

- 4-Jod- ω -oxy-acetophenon, 4-Jod-benzoylcarbinol, 4-Jod-phenacylaikohol $C_8H_7O_2I=C_6H_4I\cdot CO\cdot CH_2\cdot OH$. B. Aus 4-Jod-phenacylacetat durch Kochen mit Bariumcarbonat in Wasser (Jud find, Reid, Am. Soc. 42, 1054). Krystalle (aus Alkohol). F: 152°.
- 4- Jod-ω-acetoxy-acetophenon, [4- Jod-phenacyl]-acetat C₁₀H₂O₃I = CH₃· CO₂· CH₃· CO₂· CH₃· CO· C₆H₄I. B. Durch Kochen von ω-Brom-4-jod-acetophenon mit Natriumacetat in verd. Alkohol (Judefind, Reid, Am. Soc. 42, 1051). Krystalle (aus verd. Alkohol). F: 114°. Löslichkeit in 59% igem Alkohol: J., R.
- [4-Jod-phenacyl]-propionat, Propionsäure-[4-jod-phenacylester] $C_{11}H_{11}O_3I = C_2H_5 \cdot CO_2 \cdot CH_2 \cdot CO \cdot C_4H_4I$. Krystalle (aus verd. Alkohol). F: 94,9° (JUDEFIND, REID, Am. Soc. 42, 1051). Löslichkeit in 67% igem Alkohol: J., R.
- [4- Jod-phenacyl]-butyrat, Buttersäure-[4- jod-phenacylester] $C_{12}H_{12}O_{2}I = C_{2}H_{5} \cdot CH_{2} \cdot CO_{2} \cdot CH_{3} \cdot CO \cdot C_{6}H_{4}I$. Krystalle (aus verd. Alkohol). F: 81,4° (JUDEFIND, REID, Am. Soc. 42, 1051). Löslichkeit in 71% igem Alkohol: J., R.
- [4-Jod-phenacyl]-isobutyrat, isobuttersäure-[4-jod-phenacylester] $C_{1g}H_{13}O_{2}I = (CH_{2})_{2}CH \cdot CO_{2} \cdot CH_{2} \cdot CO \cdot C_{2}H_{4}I$. Krystalle (aus verd. Alkohol). F: 109,2° (JUDEFIND, REID, Am. Soc. 42, 1051). Löslichkeit in 64% igem Alkohol; J., R.

[4-Jod-phenacyi]-n-valerianat, n-Valeriansäure-[4-jed-phenacylester] $C_{13}H_{16}O_5I = CH_3 \cdot CO_3 \cdot CH_3 \cdot CO \cdot C_6H_4I$. Nadeln (aus verd. Alkohol). F: 78,6° (JUDEFIND, REID, Am. Soc. 42, 1051), 80—80,5° (Takei, Koide, Miyajima, B. 68 [1930], 1372). Löslichkeit in 68% igem Alkohol: J., R.

[4- Jod-phenacyl]-isovalerianat, Isovaleriansäure-[4-jod-phenacylester] $C_{13}H_{15}O_3I=(CH_4)_2CH\cdot CH_2\cdot CO_4\cdot CH_2\cdot CO\cdot C_4H_4I$. Krystalle (aus verd. Alkohol). F: 78,8° (JUDEFIND, Reid), Am. Soc. 42, 1051), 81° (Takei, Koide, Miyajima, B. 68 [1930], 1372). Löslichkeit in 63% igem Alkohol: J., R.

[4- Jod-phenacyl]-n-capronat, n-Capronsäure-[4-jod-phenacylester] $C_{14}H_{17}O_{3}I=CH_{3}\cdot CO_{2}\cdot CH_{3}\cdot CO\cdot C_{6}H_{4}I$. Krystalle (aus verd. Alkohol). F: 81,5° (JUDEFIND, REID, Am. Soc. 42, 1051). Löslichkeit in 72% igem Alkohol: J., R.

Methylpropylessigsäure-[4-jod-phenacylester] $C_{14}H_{17}O_3I=C_2H_3\cdot CH_2\cdot CH_3\cdot CH_2\cdot CO\cdot C_4H_4I$. Nadeln (aus Petroläther). F: 66° (O. Th. Schmidt, A. 476, 268).

Diäthylessigsäure - [4 - jod - phenacylester] $C_{14}H_{17}O_2I = (C_2H_5)_2CH \cdot CO_2 \cdot CH_2 \cdot CO \cdot C_6H_4I$. Blättehen. F: 54° (O. Th. Schmidt, A. 476, 268).

Methylisopropylessigsäure-[4-jod-phenacylester] $C_{14}H_{17}O_3I = (CH_2)_2CH \cdot CH(CH_2) \cdot CO_2 \cdot CH_2 \cdot CO \cdot C_4H_4I$. Krystalle (aus verd. Alkohol oder Petroläther). F: 66° (O. Th. Schmidt, A. 476, 269).

Caprylsäure-[4-jod-phenacylester] $C_{1e}H_{21}O_{2}I = CH_{3} \cdot [CH_{2}]_{6} \cdot CO_{2} \cdot CH_{2} \cdot CO \cdot C_{e}H_{4}I$. Krystalle (aus verd. Alkohol). F: 77° (JUDEFIND, REID, Am. Soc. 42, 1051). Löslichkeit in 82%igem Alkohol: J., R.

Caprinsäure - [4-jod - phenacylester] $C_{18}H_{25}O_3I = CH_3 \cdot [CH_3]_6 \cdot CO_2 \cdot CH_3 \cdot CO \cdot C_6H_4I$. Krystalle (aus verd. Alkohol). F: 80° (Judefind, Reid, Am. Soc. 42, 1051). Löslichkeit in 83% igem Alkohol: J., R.

[4-Jod-phenacyl]-palmitat, Palmitinsäure-[4-jod-phenacylester] $C_{24}H_{37}O_3I=CH_3\cdot [CH_3]_{14}\cdot CO_3\cdot CH_3\cdot CO\cdot C_6H_4I$. Krystalle (aus Alkohol). F: 90° (JUDEFIND, REID, Am. Soc. 42, 1051). Löslichkeit in 90%igem Alkohol: J., R.

[4-Jod-phenacyl]-margarat, Margarinsäure-[4-jod-phenacylester] $C_{25}H_{30}O_3I=CH_3\cdot [CH_2]_{15}\cdot CO_3\cdot CH_2\cdot CO\cdot C_6H_4I$. Krystalle (aus Alkohol). F: 88,8° (JUDEFIND, REID, Am. Soc. 42, 1051). Löslichkeit in 95%igem Alkohol: J., R.

[4-Jod-phenacyl]-stearat, Stearinsäure-[4-jod-phenacylester] $C_{26}H_{41}O_3I = CH_3 \cdot [CH_2]_{16} \cdot CO_2 \cdot CH_2 \cdot CO \cdot C_4H_4I$. Krystalle (aus Alkohol). F: 90,5° (Judefind, Reid, Am. Soc. 42, 1051). Löslichkeit in 91% igem Alkohol: J., R.

Erucasäure - [4 - jod - phenacylester] $C_{30}H_{47}O_3I = CH_3 \cdot [CH_2]_7 \cdot CH : CH \cdot [CH_2]_{11} \cdot CO_2 \cdot CH_2 \cdot CO \cdot C_6H_4I$. Krystalle (aus Alkohol). F: 73,8° (JUDEFIND, REID, Am. Soc. 42, 1051). Löslichkeit in 95% igem Alkohol: J., R.

di-Milchsäure-[4-jod-phenacylester], [4-Jod-phenacyl]-di-lactat $C_{11}H_{11}O_4I=CH_3$: $CH(OH)\cdot CO_3\cdot CH_3\cdot CO\cdot C_6H_4I$. Krystalle (aus verd. Alkohol). F: 139,8° (JUDEFIND, REID, Am. Soc. 42, 1051). Löslichkeit in 53% igem Alkohol: J., R.

I.
$$OC \stackrel{O}{\underset{C_6H_4}{}} N \cdot OH_2 \cdot N \stackrel{O}{\underset{C_6H_4}{}} CO$$
 II. $OC \stackrel{O}{\underset{C_6H_4}{}} N \cdot CH_2 \cdot OH$

2-Nitroso-ω-oxy-acctophenon, 2-Nitroso-benzoylcarbinol, 2-Nitroso-phenacylalkohol C₈H₇O₃N = ON·C₆H₄· CO·CH₂· OH. Zur Konstitution vgl. ARNDT, EISTERT, PARTALE, B. 61, 1107. — B. Man trägt 0,5 g [2-Nitro-phenyl]-äthylenoxyd in ca. 3 cm³ mit Kältemischung gekühlte 90—100% ige Ameisensäure ein und erwärmt allmählich auf Zimmertemperatur; sobald sich die zunächst grüne Reaktionslösung verfärbt, kühlt man erneut mit Kältemischung und versetzt sofort mit ca. 5 Vol. auf —10° gekühltem Äther; Ausbeute 50—75% der Theorie (A., P., B. 60, 452; vgl. A., El., P., B. 61, 1107, 1113; A., Z. ang. Ch. 40, 1100). — Krystalle (aus Aceton). F: 103—104° (Zers.) (im vorgeheizten Bad) (A., P., B. 60, 453). Unlöslich in Äther, schwer löslich in heißem Chloroform, löslich in heißem Alkohol und heißem Eisessig mit grüner, schnell in Braun umschlagender Farbe; die grüne Lösung in warmem Aceton wird beim Abkühlen etwas heller (A., P., B. 60, 453). — Zereetzt sich beim Erhitzen auf ca. 100° unter Abspaltung von Formaldehyd und Bildung braunschwarzer Produkte (A., P., B. 60, 453). Verpufft bei Berührung mit konz. Schwefelsäure (A., P., B. 60, 454). Wird beim Erwärmen mit einer wäßr. Lösung von Hydrazincarbonat zu 2-Amino-benzoylearbinol reduziert (A., El., P., B. 61, 1114). Gibt beim Kochen mit 2n-Salzsäure oder bei der Einw. von starker Ameisensäure 1.1′-Methylenbis-β.γ-benzisoxazolon (Formel I) und Formaldehyd (A., P., B. 60, 453, 454). Liefert beim Erwärmen mit 5—10% iger wäßriger Formaldehyd - Lösung 1-Oxymethyl-β.γ-benzisoxazolon (Formel II); geringe Mengen dieser Verbindung entstehen auch beim Kochen mit Wasser (A., P., B. 60, 453). Beim Eintragen in kalte 2n-Natronlauge erhält man N-Oxy-isatin und andere Produkte.

94

2-Nitreso- ω -acetexy-acetephenon, [2-Nitreso-phenacyl]-acetat $C_{10}H_0O_4N=0N\cdot C_0H_4$ ·CO·CH₂·O·CO·CH₃. B. Aus [2-Nitro-phenyl]-āthylenoxyd und 3 Mol Acetanhydrid in Gegenwart von wenig Eisenchlorid bei 0° (Arndt, Eistert, Partale, B. 61, 1114). — Krystalle (aus Aceton). F: 104°; die Schmelze ist grün, dann bräunlich. Löslich in Benzol, schwer löslich in Äther und kaltem Aceton. — Verharzt beim Kochen mit Salzsäure.

3-Nitro- ω -acetoxy-acetophenon, [3-Nitro-phenacyl]-acetat $C_{10}H_{9}O_{5}N=O_{2}N\cdot C_{6}H_{4}\cdot CO\cdot CH_{3}\cdot O\cdot CO\cdot CH_{3}\cdot (H$ 93). F: 51° (Farbwerke Höchst, Priv.-Mitt.). — Eine von Dale, Nierenstein (B. 60, 1027) als 3-Nitro- ω -acetoxy-acetophenon angesehene Verbindung vom Schmelzpunkt 119° hat nicht diese Konstitution (Beilstein-Redaktion).

4-Nitro-ω-acetoxy-acetophenon, [4-Nitro-phenacyl]-acetat C₁₀H₂O₅N=O₂N·C₆H₄·CO·CH₂·O·CO·CH₃. B. Beim Kochen von ω-Chlor-4-nitro-acetophenon mit Natriumacetat in Alkohol (Dale, Nierenstein, B. 60, 1027). Beim Erwärmen von 4-Nitro-ω-diazo-acetophenon mit Eisessig (Bradley, Schwarzenbach, Soc. 1928, 2907). — Gelbe Prismen (aus Alkohol). F: 121° bis 122° (Br., Sch.), 132° (D., N.). — Reduziert Fehlingsche Lösung in der Wärme (Br., Sch.).

Schwefel- und Tellur-Analoga des ω -Oxy-acetophenons.

ω-Mercapto-acetophenon, Phenacylmercaptan C₈H₈OS = C₄H₅·CO·CH₂·SH. Das Mol. Gew. ist kryoskopisch in Benzol bestimmt (Groth, Ark. Kemi 9, Nr. 1, S. 38, 44; C. 1924 I, 1038). — B. Neben überwiegenden Mengen Diphenacylsulfid (S. 96) aus Phenacylbromid und NaSH in Wasser + Äther unter Durchleiten von Schwefelwasserstoff (Groth, Ark. Kemi 9, Nr. 1, S. 3; C. 1924 I, 1036). Bildung durch Hydrolyse von Phenacylcarbothiolglykolsäure, Phenacylcarbothiolonglykolsäure und Phenacyldithiocarbaminoessigsäure s. S. 96, 97. — Tafeln oder Schuppen (aus Petroläther) von schwach aromatischem, anhaftendem Geruch. F: 23—24°; Kp_{1,5}: 103°; Kp₄: 116—118°; Kp_{1e-18}: 140—142°; D⁵⁶: 1,1713; n⁵⁶: 1,594 (G., Ark. Kemi 9, Nr. 1, S. 43, 44). Sehr leicht löslich in organischen Lösungsmitteln außer Petroläther; schwer löslich in Sodalösung; löst sich in überschüssiger alkoholischer Alkaliauge mit gelber Farbe; die Lösung trübt sich beim Verdünnen mit Wasser allmählich und wird dann rot (G., Ark. Kemi 9, Nr. 1, S. 43). Läßt sich mit Natriumäthylat in absol. Alkohol in Gegenwart von Phenolphthalein titrieren (G., Ark. Kemi 9, Nr. 1, S. 45).

Wird durch Salpetersäure (D: 1,4) in der Kälte zu Benzoesäure und Schwefelsäure oxydiert (Groth, Ark. Kemi 9, Nr. 1, S. 46). Liefert beim Erwärmen mit amalgamiertem Zink und konz. Salzsäure auf dem Wasserbad Äthylbenzol (G., Ark. Kemi 9, Nr. 1, S. 46). Beim Erwärmen mit 2n-Sodalösung oder 1n-Natronlauge entstehen Acetophenon und Schwefelwasserstoff; auch beim Erwärmen mit Wasser wird langsam Schwefelwasserstoff entwickelt; bei der Einw. von mit Schwefelwasserstoff gesättigter Natriumäthylat-Lösung erhält man Acetophenon und Schwefel (G., Ark. Kemi 9, Nr. 1, S. 45). Beim Behandeln mit wasserfreiem Calciumohlorid werden nicht näher untersuchte Kondensationsprodukte gebildet (G., Ark. Kemi 9, Nr. 1, S. 41). Gibt bei der Einw. von methyl- oder äthylalkoholischer Salzsäure 2.5-Diphenyl-1.4-dithiin (Formel I; Syst. Nr. 2678) (G., Ark. Kemi 9, Nr. 1, S. 52). Beim Sättigen eines Gemisches von Phenacylmercaptan und überschüssigem Äthylmercaptan mit Chlorwasserstoff unter Kühlung entsteht 2.5 (oder 3.6)-Bis-äthylmercapto-2.5-diphenyl-1.4-dithian (Formel II oder III; Syst. Nr. 2721); reagiert analog mit Benzylmercaptan (G., Ark. Kemi 9, Nr. 1, S. 39, 53).

Fällungsreaktionen mit Schwermetallsalzen in wäßrig-alkoholischer Lösung: Groth, Ark. Kemi 9, Nr. 1, S. 46, 47, 48. — Das Phenylhydrazon schmilzt bei 90—91° (G., Ark. Kemi 9, Nr. 1, S. 51).

Auffassung der Salze als Derivate von C_8H_5 C H_2 : Groth, Ark. Kemi 9, Nr. 1, S. 41, 47. — Natriumsalz NaC₈H₇OS. Hellgelbes Pulver. — Bleisalz Pb(C₈H₇OS)₂. Schmutziggelbes Pulver. Zersetzt sich beim Aufbewahren. — Quecksilbersalz. Prismen (aus Chloroform + Tetrachlorkohlenstoff). Leicht löslich in Chloroform, löslich in Benzol, schwer löslich in Alkohol, Äther und Tetrachlorkohlenstoff.

ω - Butylmercapto - acetophenon, Butylphenacylsulfid $C_{12}H_{16}OS = C_{6}H_{5} \cdot CO \cdot CH_{8} \cdot S \cdot [CH_{2}]_{3} \cdot CH_{2}$. B. Beim Erhitzen von Butylmercaptan mit Phenacylchlorid und 1 Mol Natriumhydroxyd in 95 % igem Alkohol (Whitner, Reid, Am. Soc. 48, 639). — Kp₃: 140°. D°: 1,0712; D°: 1,0589. n°: 1,5050. — $C_{12}H_{16}OS + 2HgI$. Gelbe Blättchen. F: 158°.

ω-Phenyimercapto - acetophenon, Phenylphenacylsuifid $C_{14}H_{19}OS = C_6H_5 \cdot CO \cdot CH_2 \cdot S \cdot C_6H_5$ (H 94). Liefert bei der Reduktion mit amalgamiertem Zink und Salzsäure Phenyl-α-phenäthyl-sulfid (v. Braun, Weissbach, B. 62, 2420).

- ω-[4-Nitro-phenyimercapto]-acetophenon $C_{14}H_{11}O_3NS=C_0H_5\cdot CO\cdot CH_2\cdot S\cdot C_0H_4\cdot NO_3$. B. Beim Kochen von Natrium-4-nitro-thiophenolat mit Phenacylchlorid in verd. Alkohol (Waldern, Reid, Am. Soc. 45, 2402). Gelbe Blättchen (aus verd. Essigsäure). F: 118°. Unlöslich in Wasser.
- ω Phenylsulfon acetophenon, Phenylphenacylsulfon $C_{14}H_{12}O_2S = C_6H_5 \cdot CO \cdot CH_3 \cdot SO_2 \cdot C_6H_5$ (E I 540). Bei der Reduktiou mit amalgamiertem Zink und Salzsäure entsteht ein flüssiges Sulfid, das bei der Oxydation mit Chromsäure in Phenyl-α-phenäthyl-sulfon übergeht (Ashworth, Burkhardt, Soc. 1928, 1797). Gibt beim Erhitzen mit 2-Amino-benzaldehyd im Rohr auf 200° 3-Phenylsulfon-2-phenyl-chinolin (Tröger, v. Seelen, J. pr. [2] 105, 224).
- ω-[4-Chlor-phenylsulfon]-acetophenon $C_{14}H_{11}O_3ClS = C_6H_5 \cdot CO \cdot CH_2 \cdot SO_2 \cdot C_6H_4Cl$ (Ε I 540). Liefert mit 2-Amino-benzaldehyd im Rohr bei 240° 3-[4-Chlor-phenylsulfon]-2-phenylchinolin (Τεöger, v. Seelen, J. pr. [2] 105, 229).
- ω-p-Tolylmercapto-acetophenon, p-Tolyl-phenacyl-sulfid $C_{15}H_{14}OS = C_6H_5 \cdot CO \cdot CH_2 \cdot S \cdot C_6H_4 \cdot CH_3$. B. Bei der Umsetzung von ω-Brom- oder ω-Chlor-acetophenon mit p-Tolylmercapto-magnesiumjodid in Äther oder mit Thio-p-kresol in verd. Natronlauge (GILMAN, KING, Am. Soc. 47, 1140). F: 37° (unkorr.).
- ω -p-Tolylsulfon-acetophenon, p-Tolyl-phenacyl-sulfon $C_{15}H_{14}O_3S=C_6H_5\cdot CO\cdot CH_2\cdot SO_2\cdot C_6H_4\cdot CH_3$ (E I 540). B. Bei der Oxydation von p-Tolyl-phenacyl-sulfid mit Wasserstoffperoxyd in Eisessig + Acetanhydrid (GILMAN, KING, Am.Soc. 47, 1140). Liefert mit 2-Amino-benzaldehyd im Rohr bei 200° 3-p-Tolylsulfon-2-phenyl-chinolin (Teöger, v. Seelen, J. pr. [2] 105, 226).
- ω- Benzylmercapto acetophenon , Benzyl phenacyl sulfid $C_{15}H_{14}OS = C_6H_5 \cdot CO \cdot CH_2 \cdot S \cdot CH_3 \cdot C_6H_5$. B. Aus Benzylmercaptan-natrium und Phenacylbromid in Alkohol (Wahl, B. 55, 1454). Nadeln (aus Alkohol). F: 89°. Leicht löslich in Benzol, Pyridin, Schwefelkohlenstoff, Chloroform und heißem Alkohol, schwer in Äther und Petroläther. Zersetzt sich langsam beim Kochen mit Alkohol. Löst sich in rauchender Salpetersäure leicht, in konz. Salpetersäure etwas schwerer unter Oxydation zu Benzaldehyd und Schwefelsäure. Gibt bei der Reduktion mit Zinkstaub und Eisessig oder beim Kochen mit Hydroxylamin-hydrochlorid in Alkohol Benzylmercaptan. Gibt mit Quecksilber(II)-chlorid eine in Alkohol schwer lösliche Additionsverbindung. Das Phenylhydrazon schmilzt bei 80,5°.
- ω-Benzylsulfin-acetophenon, Benzyl-phenacyl-sulfoxyd $C_{15}H_{14}O_2S = C_4H_5 \cdot CO \cdot CH_2 \cdot SO \cdot CH_2 \cdot C_6H_5$. B. Durch Oxydation von Benzyl-phenacyl-sulfid mit Wasserstoffperoxyd in Eisessig (WAHL, B. 55, 1455). Blättchen (aus Benzol + Petroläther). F: 133°. Leicht löslich in Pyridin, Benzol und heißem Alkohol, löslich in Schwefelkohlenstoff und Äther, sehr schwer löslich in Petroläther.
- ω-Benzylsulfon-acetophenon, Benzyl-phenacyl-sulfon $C_{15}H_{14}O_3S = C_6H_5 \cdot CO \cdot CH_2 \cdot SO_2 \cdot CH_2 \cdot C_6H_5$. B. Durch Oxydation von in Benzol gelöstem Benzyl-phenacyl-sulfid mit Permanganat in verd. Essigsäure (Wahl, B. 55, 1456). Blättchen (aus Alkohol). F: 113°. Leicht löslich in Pyridin, Benzol und heißem Alkohol, schwer in Schwefelkohlenstoff und Äther, sehr schwer in Petroläther. Beim Erhitzen mit alkoh. Kalilauge entstehen Methylbenzylsulfon und Benzoesäure. Das Phenylhydrazon schmilzt bei 151,5°.
- 2-[2-Methoxy-phenylsulfon]-acetophenon $C_{15}H_{14}O_4S=C_6H_6\cdot CO\cdot CH_2\cdot SO_2\cdot C_6H_4\cdot O\cdot CH_3$ (E I 540). Liefert mit 2-Amino-benzaldehyd im Rohr bei 220° 3-[2-Methoxy-phenylsulfon]-2-phenyl-chinolin (Tröger, Dimitroff, J. pr. [2] 111, 195).
- ω-[2-Äthoxy-phenylsulfon]-acetophenon $C_{16}H_{16}O_4S=C_6H_5\cdot CO\cdot CH_2\cdot SO_2\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus ω-Brom-acetophenon und o-phenetolsulfinsaurem Natrium in Alkohol (Tröger, Dimitroff, J. pr. [2] 111, 202). Nadeln (aus Alkohol). F: 99°. Liefert mit 2-Amino-benzaldehyd im Rohr bei 180—200° 3-[2-Äthoxy-phenylsulfon]-2-phenyl-chinolin. Das Phenylhydrazon schmilzt bei 177°.
- ω-[4-Methoxy-phenylsulfon] acetophenon $C_{15}H_{14}O_4S = C_6H_5 \cdot CO \cdot CH_8 \cdot SO_2 \cdot C_6H_4 \cdot O \cdot CH_3$. B. Analog der vorangehenden Verbindung (Tröger, Dimitroff, J. pr. [2] 111, 198). Nadeln (aus Alkohol). F: 110°. Liefert mit 2-Amino-benzaldehyd im Rohr bei 190—205° 3-[4-Methoxy-phenylsulfon]-2-phenyl-chinolin. Das Phenylhydrazon schmilzt bei 138°.
- ω -[4-Äthoxy-phenylsulfon]-acetophenon $C_{1e}H_{1e}O_4S = C_eH_5 \cdot CO \cdot CH_2 \cdot SO_2 \cdot C_eH_4 \cdot O \cdot C_2H_5$ (E I 541). Liefert mit 2-Amino-benzaldehyd im Rohr bei 200° 3-[4-Äthoxy-phenylsulfon]-2-phenyl-chinolin (Teöger, Dimitroff, J. pr. 111, 205).
- ω-[6-Methoxy-3-methyl-phenylsulfon]-acetophenon, 4-Methoxy-3-phenacylsulfon-toluol C₁₆H₁₆O₄S, s. nebenstehende Formel.

 B. Aus dem Natriumsalz der 4-Methoxy-toluol-sulfinsäure-(3) und ω-Brom-acetophenon in siedendem Alkohol (GIBSON, SMILES, Soc. 128, 2391). Prismen (aus Alkohol). F: 79°. Wird durch Bromwasserstoffsäure (D: 1,48) und konz. Salzsäure bei 150° nicht angegriffen, durch konz. Jodwasserstoffsäure bei 140° zersetzt.

96

Diphenacyisulfid C₁₆H₁₄O₃S = (C₆H₅·CO·CH₂)₈S (H 94; E I 541). B. Aus ω-Chlor-acetophenon und krystallisiertem Natriumsulfid in Alkohol bei ca. 60° (Chrzaszczewska, Chwalinski, Roczniki Chem. 7, 69; C. 1927 II, 415). Zur Bildung aus ω-Brom-acetophenon und NaSH (H 94; E I 541) vgl. Groth, Ark. Kemi 9, Nr. 1, S. 3; C. 1924 I, 1036. Aus ω-Brom-acetophenon und Phenacylmercaptan in Natriumāthylat-Lösung (G., Ark. Kemi 9, Nr. 1, S. 48). — Nadeln (aus Alkohol). F: 76,5—77,2° (Chrz., Chw.). Löslich in Alkohol, Aceton, Ather und Benzol (Chrz., Chw.). — Wird beim Erwärmen mit Silbernitrat in absol. Alkohol allmählich gespalten (G., Ark. Kemi 9, Nr. 1, S. 48). Verhalten gegen Natriumäthylat-Lösung: G., Ark. Kemi 9, Nr. 1, S. 48. Gibt beim Kochen mit 1 Mol Hydrazinhydrat in Gegenwart oder Abwesenheit von Alkohol Diphenacylsulfid-anti-monohydrazon (S. 99), beim Kochen mit überschüssigem Hydrazinhydrat in Eisessig Diphenacylsulfon-monohydrazon-anhydrid

(Syst. Nr. 4496) (Fromm, Ehrhardt, B. 54, 187). Liefert mit Benzaldehyd und Piperidin in Alkohol eine Verbindung von 1 Mol Dibenzyliden-diphenacylsulfid mit 2 Mol Piperidin, mit Zimtaldehyd und Piperidin in Alkohol eine Verbindung von 1 Mol Dicinnamyliden-diphenacylsulfid mit 1 Mol Piperidin und reagiert analog mit Salicylaldehyd, Anisaldehyd und 4-Dimethylamino-benzaldehyd (Dilthey, B. 60, 1404).

Diphenacylsulfon C₁₆H₁₆O₄S = (C₆H₅·CO·CH₂)₂SO₂ (E I 542). Gibt beim Kochen mit 1 Mol Hydrazinhydrat in Alkohol Diphenacylsulfon-anti-monohydrazon (S. 99), mit 2 Mol Hydrazinhydrat in Alkohol Diphenacylsulfon-anti- und amphi-dihydrazon (S. 99), mit 2 Mol Hydrazinhydrat in schwach essigsaurem Alkohol Diphenacylsulfon-syn-dihydrazon (S. 99) und mit überschüssigem Hydrazinhydrat in Eisessig ein Monohydrazon-anhydrid (Formel I; Syst. Nr. 4496) (Fromm, HII.

EHRHARDT, B. 54, 188). Beim Kochen mit 1 Mol Semicarbazid-hydrochlorid in Alkohol erhält man Diphenacylsulfonmonosemicarbazon (S. 99), mit überschüssigem Semicarbazid-hydrochlorid in Alkohol "Diphenacylsulfondiaminobiuret" (Formel II; Syst. Nr. 4719), mit freiem Semicarbazid in Alkohol Diphenacylsulfon-carbohydrazon (Formel III; Syst. Nr. 4698) (Fr., E., B. 54, 192).

ω- Carbäthoxymercapto - acetophenon, Thiokohlensäure - O - äthylester - S - phenacylester $C_{11}H_{12}O_3S = C_6H_5 \cdot CO \cdot CH_2 \cdot S \cdot CO \cdot C \cdot C_2H_5$. B. Durch Umsetzung von Phenacylbromid mit im Überschuß angewandtem Kaliumsalz des Thiokohlensäure-O-āthylesters in 50% igem Alkohol oder in Wasser + Äther unter Kühlung (Groth, Ark. Kemi 9, Nr. 1, S. 8; C. 1924 I, 1036). — Hellgelbes, sehr schwach riechendes dickes Öl. Kp_{1,6}: 152°; Kp₃: 175—176°. D¹⁵: 1,1948. n¹⁵: 1,554. Mischbar mit den meisten organischen Lösungsmitteln, schwer löslich in Petroläther. — Zersetzt sich beim Kochen mit Wasser nur langsam. Bei der Einw. von 3 Mol alkoh. Kalilauge entstehen das Dikaliumsalz des $β \cdot β'$ -Dioxy- $β \cdot β'$ -diphenyl-divinyl-disulfids (S. 98), das Kaliumsalz des Kohlensäure-monoäthylesters, Kaliumcarbonat und teerige Produkte. Beim Behandeln mit NaSH und Schwefelwasserstoff in absol. Alkohol unter Kühlung wurden Acetophenon und Schwefel isoliert.

Thiokohlensäure-O-carboxymethylester-S-phenacylester, Phenacylear bothiolgly kolsäure $C_{11}H_{10}O_5S=C_6H_5\cdot CO\cdot CH_2\cdot S\cdot CO\cdot O\cdot CH_2\cdot CO_2H$. B. Durch Oxydation von Phenacylcarbothiolonglykolsäure (S. 97) mit Kaliumpermanganat in neutraler Lösung unter Durchleiten von Kohlendioxyd bei 1—2° (Groth, Ark. Kemi 9, Nr. 1, S. 30; C. 1924 I, 1037). — Nadeln (aus Benzol). F: 77°. Leicht löslich in Alkohol, Chloroform, Aceton, Essigester und warmem Benzol, schwer in Petroläther. — Zerfällt bei der Destillation mit Wasserdampf oder beim Erwärmen einer schwach sauren Lösung des Natriumsalzes in wäßr. Alkohol auf 80—83° in Phenacylmercaptan, Glykolsäure und Kohlendioxyd. — Phenylhydrazon. F: 136—137°. — Bariumsalz Ba($C_{11}H_9O_5S$)₈ + $3H_2O$. Schuppen.

Dithiokohlensäure - O- äthylester - S - phenacylester, Äthylxanthogensäure - phenacylester $C_{11}H_{12}O_2S_2 = C_cH_5 \cdot CO \cdot CH_2 \cdot S \cdot CS \cdot O \cdot C_2H_5$. B. Aus Phenacylbromid und Kaliumxanthogenat in 50% igem Alkohol oder in Wasser + Äther unter Kühlung (Groth, Ark. Kemi 9, Nr. 1, S. 13; C. 1924 I, 1036). — Tafeln (aus 90% igem Methanol). F: 32°. Sehr leicht löslich in den meisten organischen Lösungsmitteln außer Methanol, Alkohol und Benzin. — Zersetzt sich bei 200° und 15 mm Druck heftig unter Gasentwicklung und Bildung von Acetophenon. Wird durch siedendes Methanol langsam unter Entwicklung von schwefelwasserstoffhaltigen Gasen gespalten. Gibt mit kalter alkoholischer Kalilauge Thiokohlensäure-O-äthylester und andere Produkte. — Phenylhydrazon. F: 64°.

Dithiokohlensäure - S.S - diphenacylester $C_{17}H_{14}O_2S_2 = (C_6H_5 \cdot CO \cdot CH_2 \cdot S)_2CO$. B. A Trithiokohlensäure-diphenacylester durch kurzes Erwärmen mit 20% iger Salpetersäure au 60 — 70° (Greth, Ark. Kemi 9, Nr. 1, S. 18; C. 1924 I, 1037). — Prismen (aus Alkohol F: 98°. — Bis-phenylhydrazon. F: 162° (Zers.).

Dithiokohlensäure - O - carboxymethylester - S - phenacylester, Phenacylca rbothiolon-glykolsäure C₁₁H₁₀O₄S₂ = C₆H₅·CO·CH₂·S·CS·O·CH₂·CO₂H. B. Aus Phenacylbromid und dem Kaliumsalz der Dithiocarboxy-glykolsäure HS₂C·O·CH₂·CO₂H. B. Aus Phenacylbromid und dem Kaliumsalz der Dithiocarboxy-glykolsäure HS₂C·O·CH₂·CO₂H. (H 8, 234) in Wasser (Groth, Ark. Kemi 9, Nr. 1, S. 19; C. 1924 I, 1037). — Nadeln (aus Benzol). F: 107°. Bei Zimmertemperatur lösen sich 0,6 g in 1 Liter Wasser; sehr leicht löslich in Alkohol, Äther, Aceton und Essigester, löslich in Chloroform, in warmem Benzol, Tetrachlorkohlenstoff und Schwefelkohlenstoff, sehr schwer löslich in warmem Benzin. — Gibt bei der Oxydation mit Permanganat in neutraler Lösung bei 1—2° Phenacylcarbothiolglykolsäure (S. 96) (G., Ark. Kemi 9, Nr. 1, S. 30). Wird durch siedendes Wasser unter Bildung von Phenacylmercaptan, Glykolsäure, Kohlensäure und Schwefelwasserstoff zersetzt; die gleiche Spaltung erfolgt beim Erhitzen einer schwach sauren Lösung des Natriumsalzes in verd. Alkohol auf 80—83° unter Durchleiten von Kohlendioxyd; beim Erwärmen einer schwach sodaalkalischen wäßrigen Lösung im Wasserbad entstehen außerdem Acetophenon und Schwefelkohlenstoff; bei 2-tägigem Aufbewahren einer 2n-sodaalkalischen Lösung bei 25° erhält man Diphenacyltrithiocarbonat (s. u) und Phenacylmercaptan (G., Ark. Kemi 9, Nr. 1, S. 24, 26, 27). 20% ige Natronlauge wirkt verharzend. Gibt mit 2 Mol Kaliumhydroxyd in Alkohol das Dikaliumsalz der Dithiocarboxyglykolsäure und harzige Produkte (G., Ark. Kemi 9, Nr. 1, S. 28). Bei längerer Einw. von 2% igem, wenig Alkohol enthaltendem Ammoniak entstehen geringe Mengen Phenacylmercaptan (G., Ark. Kemi 9, Nr. 1, S. 28). — Phenylhydrazon. F: 119—120° (G., Ark. Kemi 9, Nr. 1, S. 24).

9, Nr. 1, S. 28). — Phenylhydrazon. F: $119-120^{\circ}$ (G., Ark. Kemi 9, Nr. 1, S. 24). Salze: Groth, Ark. Kemi 9, Nr. 1, S. 24. Salze: Groth, Ark. Kemi 9, Nr. 1, S. 24. Saures Natriumsalz NaC₁₁H₃O₄S₂ + C₁₁H₁₀O₄S₂. Krystalle. Löslich in 50% igem Alkohol, schwer löslich in Wasser und Alkohol. — Saures Kaliumsalz $KC_{11}H_9O_4S_2+C_{11}H_{10}O_4S_3$. Krystalle. Löslich in 50% igem Alkohol, schwer löslich in Wasser und Alkohol. — Kupfer(II)-salz. Graugrün. Verwandelt sich nach einigen Stunden in eine schwarze Masse. — Magnesiumsalz. Nadeln. — Calciumsalz $Ca(C_{11}H_9O_4S_2)_2+4H_2O$. Prismen (aus Wasser). — Strontiumsalz $Sr(C_{11}H_9O_4S_2)_2+5H_2O$. Nadeln (aus Wasser). — Bariumsalz $Ba(C_{11}H_9O_4S_2)_2+2H_2O$. Nadeln. — Zinksalz. Nadeln. — Bleisalz. Gelblicher, krystallinischer Niederschlag. Schwer löslich in warmem Wasser.

Metħylester $C_{12}H_{12}O_4S_2=C_6H_5\cdot CO\cdot CH_2\cdot S\cdot CS\cdot O\cdot CH_2\cdot CO_2\cdot CH_3$. B. Bei 3-stdg. Kochen von Phenacylcarbothiolonglykolsäure mit Methanol und einigen Tropfen konz. Schwefelsäure (Groth, Ark. Kemi 9, Nr. 1, S. 23; C. 1924 I, 1037). — Graugrüne prismatische Stäbchen (aus Methanol). F: 76°. Leicht löslich in Chloroform und Benzol, schwer in kaltem Alkohol, Methanol und Tetrachlorkohlenstoff, sehr schwer in Petroläther.

Äthylester $C_{13}H_{14}O_4S_2=C_6H_5\cdot CO_2\cdot CH_2\cdot S\cdot CS\cdot O\cdot CH_2\cdot CO_2\cdot C_2H_5$. B. Analog der vorangehenden Verbindung (Groth, Ark. Kemi 9, Nr. 1, S. 24; C. 1924 I, 1037). — Krystalle (aus Alkohol). F: 51°. Leicht löslich in Chloroform, Tetrachlorkohlenstoff und Benzol, schwer in Methanol, Alkohol und Petroläther.

N-Carboxymethyl-dithiocarbamidsäure-phenacylester, Phenacyldithiocarbaminoessigsäure $C_{11}H_{11}O_3NS_2 = C_4H_5 \cdot CO \cdot CH_2 \cdot S \cdot CS \cdot NH \cdot CH_2 \cdot CO_2H$. B. Das Kaliumsalz entsteht bei der Umsetzung von Phenacylbromid mit dem Dikaliumsalz der Dithiocarboxy-aminoessigsäure (E I 4, 478) in Wasser (Groth, Ark. Kemi 9, Nr. 1, S. 33; C. 1924 I, 1037). — Prismen (aus Aceton + Wasser). F: 103° (schnell erhitzt). Leicht löslich in Alkohol und Aceton, löslich in Äther und warmem Essigester, schwer löslich in Benzol, Chloroform, Tetrachlorkohlenstoff, Schwefelkohlenstoff und Ligroin. — Gibt bei mehrstündigem Erhitzen, zum Schluß auf 119°, beim Kochen mit Wasser sowie beim Erwärmen einer schwach sauren Lösung des Natriumsalzes auf 80—100° 4-Phenyl-thiazolthion-(2)-essigsäure-(3) (Syst. Nr. 4279). Beim Erwärmen einer neutralen wäßrigen Lösung des Natriumsalzes auf 80—83° unter Durchleiten von Kohlendioxyd entsteht Phenacylmercaptan. — Na triumsalz NaC₁₁H₁₀O₂NS₂+7H₂O (lufttrocken). Krystalle (aus Wasser). Verliert über Phosphorpentoxyd 5 H₂O.

Trithiokohlensäure-diphenacylester, Diphenacyltrithiocarbonat $C_{17}H_{14}O_2S_3=(C_eH_5\cdot CO\cdot CH_2\cdot S)_aCS$. B. Aus Phenacylbromid und Kaliumtrithiocarbonat in Wasser + Äther (Groth, Ark. Kemi 9, Nr. 1, S. 16; C. 1924 I, 1036). Neben anderen Produkten bei 2-tägigem Aufbewahren einer 2n-sodaalkalischen Lösung von Phenacylcarbothiolonglykolsäure (s. o) bei 25° (G., Ark. Kemi 9, Nr. 1, S. 27). — Gelbe Tafeln (aus Chloroform + Alkohol oder Benzol + Alkohol). F: 103—104°. Wandelt sich beim Aufbewahren oder beim Schmelzen und Wiedererstarren in eine bei 110° schmelzende stabile Form von gleichem Krystallhabitus um; diese Umwandlung erfolgt auch beim Umkrystallisieren unter Impfen. Sehr leicht löslich in Chloroform und Benzol, löslich in Aceton, bei Zimmertemperatur schwer löslich in Essigester, Tetrachlorkohlenstoff und Schwefelkohlenstoff, sehr schwer in Alkohol, Äther und Benzin. — Zersetzt sich langsam beim Kochen mit Wasser. Wird durch alkoh. Kalilauge unter Bildung von Thiokohlensäure-

EII 8

OXY-OXO-VERBINDUNGEN CnH2n-8O2

O-äthylester gespalten. Geht bei kurzem Erwärmen mit 20% iger Salpetersäure auf 60-70° in Dithiokohlensture-S.S-diphenacylester (S. 97) über; bei 1-stdg. Kochen mit viel 20%iger Salpetersäure erfolgt Oxydation zu Benzoesäure. — Bis-phenylhydrazon. F: 146-147°.

Diphenacyldisulfid bzw. $\beta.\beta'$ - Dioxy - $\beta.\beta'$ - diphenyl - divinyldisulfid, Bis - $[\beta$ - oxy - styryl]-disulfid $C_{16}H_{14}O_2S_3 = [C_6H_5 \cdot CO \cdot CH_2 \cdot S_-]_2$ bzw. $[C_6H_5 \cdot C(OH) \cdot CH \cdot S_-]_3$.

a) Diketonform. B. Durch Umsetzung von Phenacylhalogeniden mit Natriumthiosulfat und Oxydation der entstandenen Phenacylthioschwefelsäure in saurer Lösung (AGFA, D.R.P. 386889; C. 1924 I, 1449; Frdl. 14, 929). Durch Oxydation von Phenacylmercaptan mit Jod-Kaliumjodid-Lösung in viel Alkohol oder in Wasser bei Gegenwart von Äther (Geoth, Ark. Kemi 9, Nr. 1, S. 56; C. 1924 I, 1036). — Schuppen (aus Alkohol + Chloroform). F: 75° bis 76° (AGFA), 81° (G.). Leicht löslich in Chloroform und Benzol, löslich in Aceton und Essigester, schwer löslich in Alkohol, Äther, Schwefelkohlenstoff, Tetrachlorkohlenstoff und Ligroin (G.; Agfa). Löst sich in konz. Schwefelsäure mit gelber Farbe (Agfa), in Alkalien unter Zersetzung mit orangegelber Farbe (G.; AGFA), in alkoh. Alkalilaugen unter Übergang in die Dienolform (s. unten) (G.). Bei längerem Aufbewahren in Kaliumäthylat-Lösung entsteht Diphenacyl (G.). Die alkoh. Lösung gibt mit Silbernitrat in der Kälte einen gelblichen, schneil dunkel werdenden Niederschlag, in der Wärme sofort Silbersulfid (G.). Liefert beim Chlorieren in Schwefelkohlenstoff-Lösung und Behandeln des Reaktionsproduktes mit Aluminiumchlorid Thioindigo (AGFA). — Bis-phenylhydrazon. F: 150° (G.).

b) Dienolform. B. Das Dikaliumsalz entsteht neben anderen Produkten bei der Einw. von 3 Mol alkoh. Kalilauge auf Thiokohlensäure-O-äthylester-S-phenacylester (Groth, Ark. Kemi 9, Nr. 1, S. 10; C. 1924 I, 1036). Aus der Diketonform (s. o.) durch Behandeln mit alkoh. Kalilauge und Ansäuern der wäßr. Lösung des Dikaliumsalzes mit Schwefelsäure (G., Ark. Kemi 9, Nr. 1, S. 55). — Prismen (aus Chloroform), gelbgrüne Nadeln (aus Eisessig). F: 135° (Zers.) bei raschem Erhitzen; sintert bei langsamem Erhitzen etwas bei 135° und schmilzt dann bei 168—170°. Leicht löslich in warmem Chloroform, Eisessig, Essigester und Benzol, schwer in Alkohol und Äther. Sehr leicht löslich in verd. Sodalösung und Natronlauge unter Gelbfärbung. Zur Titration der alkoh. Lösung mit Natronlauge vgl. G., Ark. Kemi 9, Nr. 1, S. 61. — Gibb ein Dibenzoat vom Schmelzpunkt 168°. Die alkoh. Lösung gibt mit Silbernitrat einen gelben,

schleimigen Niederschlag, der beim Erwärmen beständig ist. — Kaliumsalz K₂C₁₆H₁₂O₂S₂

Gelbe Krystalle. Sehr leicht löslich in Wasser mit stark alkal. Reaktion. Zersetzt sich beim Aufbewahren an der Luft unter Schwefelwasserstoffentwicklung.

 ω - Mercapto - acetophenon - oxim $C_8H_9ONS = C_6H_5 \cdot C(:N \cdot OH) \cdot CH_2 \cdot SH$. Aus Phenacylmercaptan, Hydroxylaminhydrochlorid und Natriumcarbonat in wäßr. Alkohol (Gвотн, Ařk. Kemî 9, Nr. 1, S. 51; C. 1924 I, 1038). — Prismen (aus Petroläther + Tetrachlorkohlenstoff). F: 70°. Leicht löslich in den meisten organischen Lösungsmitteln, schwer in kaltem Petrolather. — Die alkoh. Lösung gibt mit Bleiacetat einen gelblichen Niederschlag.

ω-[2-Äthoxy-phenylsuifon]-acetophenon-oxim $C_{16}H_{17}O_4NS = C_6H_5 \cdot C(:N \cdot OH) \cdot CH_2 \cdot SO_2 \cdot C_6H_4 \cdot O \cdot C_2H_5$. Krystallaggregate (aus Alkohol). F: 129° (Τρόσερ, Dімітроff, J. pr. [2] 111, 202).

 $\omega\text{-[4-Methoxy-phenylsulfon]-acetophenon-oxim }C_{18}H_{16}O_4NS=C_6H_5\cdot C(:N\cdot OH)\cdot CH_3\cdot SO_3\cdot C(:N\cdot OH)\cdot CH_3\cdot C(:N\cdot OH)\cdot CH_3\cdot$ C₆H₄·O·CH₂. Prismen (aus Alkohol). F: 134° (TRÖGER, DIMITROFF, J. pr. [2] 111, 199).

Diphenacylsulfid-dioxim $C_{1e}H_{16}O_{2}N_{2}S_{2}=[C_{6}H_{6}\cdot C(:N\cdot OH)\cdot CH_{2}]_{2}S$ (vgl. H 94). Krystalle (aus Alkohol). Färbt sich bei 120—130° gelb; F: 145—146° (Zers.) (Chrzaszczewska, Chwalinski, Roczniki Chem. 7, 70; C. 1927 II, 415). Löslich in Alkohol, Äther, Aceton und Benzol.

- ω Benzylsulfon acetophenon oxim $C_{15}H_{15}O_3NS = C_eH_5 \cdot C(:N \cdot OH) \cdot CH_2 \cdot SO_2 \cdot CH_3 \cdot C_eH_5$. Nadeln (aus Alkohol). F: 163° (Wahl, B. 55, 1457). Leicht löslich in Pyridin, Essigester und Äther, schwer in Alkohol, Eisessig, Chloroform und Schwefelkohlenstoff, sehr schwer in Petroläther.
- ω Mercapto acetophenon semicarbazon $C_0H_{11}ON_2S = C_0H_5 \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_2 \cdot C(:N \cdot NH \cdot CO \cdot NH_2)$ SH. Schuppen (aus Alkohol). F: 164—165° bei raschem Erhitzen (Geoth, Ark. Kemi 9, Nr. 1, S. 41, 51; C. 1924 I, 1036). — Verhält sich gegen Alkalien wie Phenacylmercaptan (S. 94). Die alkoh. Lösung gibt mit Bleiacetat einen gelblichen flockigen Niederschlag.

Diphenacylsulfid-syn-monohydrazon C₁₀H₁₀ON₂S, Formel I. B. Bei kurzem Kochen von Diphenacylsulfid-anti-monohydrazon (S. 99) mit Eisessig (FROMM, EHRHARDT, B. 54, 188). Bei längerem Kochen von Diphenacylsulfid-monohydrazon-anhydrid (Formel II; Syst. Nr. 4496) mit verd. Alkohol (F., E.). — Krystalle. F: 225°. — Geht bei kurzem Kochen mit Eisessig in Diphenacylsulfon-monohydrazon-anhydrid über.

Diphenacylsulfid-anti-monohydrazon C₁₆H₁₆ON₂S, Formel III auf S. 98. Beim Kochen von Diphenacylsulfid mit 1 Mol Hydrazinhydrat in Gegenwart oder Abwesenheit von Alkohol (FROMM, EHRHARDT, B. 54, 188). — Krystalle (aus Alkohol). F: 128°. — Gibt bei kurzem Kochen mit Eisessig Diphenacylsulfid-syn-monohydrazon, beim längeren Kochen mit Eisessig Diphenacylsulfid-monohydrazon-anhydrid (Formel II auf S. 98).

Diphenacylsulfid - monosemicarbazon $C_{17}H_{17}O_2N_2S=C_6H_8\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_2\cdot S\cdot CH_8\cdot CO\cdot C_6H_5$. Beim Kochen von Diphenacylsulfid mit 1 Mol Semicarbazid-hydrochlorid in Alkohol (Fromm, Ehrhardt, B. 54, 192). — F: 237°. Sehr schwer löslich in Alkohol und Äther.

Diphenacylsulfon-syn-monohydrazon $C_{16}H_{16}O_3N_2S$, Formel IV. B. Bei kurzem Kochen von Diphenacylsulfon-anti-monohydrazon mit Eisessig (Fromm, Ehrhardt, B. 54, 189). Bei längerem Kochen von Diphenacylsulfon-monohydrazon-anhydrid (Formel V; Syst. Nr. 4496) mit verd. Alkohol (F., E.). — F: 185°. — Geht bei kurzem Kochen mit Eisessig oder Benzaldehyd in Diphenacylsulfon-monohydrazon-anhydrid über. Gibt mit Hydrazinhydrat beim Erhitzen in Alkohol Diphenacylsulfon-amphi-dihydrazon (s. u.), in schwach saurer alkoholischer Lösung Diphenacylsulfon-syn-dihydrazon (s. u.).

Diphenacylsulfon-anti-monohydrazon $C_{16}H_{16}O_3N_3S$, Formel VI. B. Aus äquimolekularen Mengen Diphenacylsulfon und Hydrazinhydrat in Alkohol (Fromm, Ehrhardt, B. 54, 189). — Krystalle (aus Alkohol). F: 158°. — Geht bei kurzem Kochen mit Eisessig in Diphenacylsulfonsyn-monohydrazon, bei längerem Kochen mit Eisessig in Diphenacylsulfon-monohydrazon obei längerem Kochen mit Eisessig in Diphenacylsulfon-monohydrazon anhydrid (Formel V) über. Liefert mit Hydrazinhydrat in Alkohol Diphenacylsulfon-anti-dihydrazon (s. u.), beim Erhitzen in schwach saurer alkoholischer Lösung Diphenacylsulfonsyn-dihydrazon (s. u.).

N-Benzyliden - diphenacylsulfon - anti-monohydrazon $C_{23}H_{20}O_3N_3S = C_4H_5 \cdot C(: N \cdot N : CH \cdot C_6H_5) \cdot CH_2 \cdot SO_2 \cdot CH_2 \cdot CO \cdot C_6H_5$. B. Beim Erhitzen von Diphenacylsulfon-anti-monohydrazon mit Benzaldehyd (Fromm, Ehrhardt, B. 54, 189). — Gelbe Krystalle (aus Benzol). F: 150° Schwer löslich in Alkohol.

Diphenacylsulfon - monosemicarbazon $C_{17}H_{17}O_4N_3S = C_6H_5 \cdot C(: N \cdot NH \cdot CO \cdot NH_2) \cdot CH_2 \cdot SO_2 \cdot CH_2 \cdot CO \cdot C_6H_5$. B. Beim Kochen von Diphenacylsulfon mit 1 Mol Semicarbazidhydrochlorid in Alkohol (Fromm, Ehrhardt, B. 54, 192). — Krystalle. F: 258°. Sehr schwer löslich in Alkohol nnd Äther.

Diphenacylsulfid - disemicarbazon $C_{18}H_{20}O_2N_6S = [C_6H_5 \cdot C(: N \cdot NH \cdot CO \cdot NH_2) \cdot CH_2]_8S$. B. Aus Diphenacylsulfid und überschüssigem Semicarbazidhydrochlorid in Alkohol (Fromm, Ehrhardt, B. 54, 192). — Krystalle. F: 232°. Sehr schwer löslich in Alkohol und Äther.

Diphenacylsulfon - syn - dihydrazon $C_{16}H_{18}O_2N_4S$, Formel VII. B. Beim kurzen Kochen einer schwach essigsauren Lösung von Diphenacylsulfon und 2 Mol Hydrazinhydrat in Alkohol (Fromm, Ehrhardt, B. 54, 190). Beim Erhitzen von Diphenacylsulfon-syn- oder anti-monohydrazon mit Hydrazinhydrat in schwach saurer alkoholischer Lösung (F., E.). — Krystalle (aus Alkohol). F: 156°. — Liefert beim längeren Kochen mit Eisessig Diphenacylsulfon-monohydrazon-anhydrid (Formel V).

Diphenacylsulfon - anti - dihydrazon C₁₆H₁₈O₈N₄S, Formel VIII. B. Beim Kochen von Diphenacylsulfon mit 2 Mol Hydrazinhydrat in Alkohol, neben Diphenacylsulfon-amphi-dihydrazon (FROMM, EHRHARDT, B. 57, 190). Aus Diphenacylsulfon-anti-monohydrazon und Hydrazinhydrat in Alkohol (F., E.). — F: 172°. Leichter löslich in Alkohol als Diphenacylsulfon-amphi-dihydrazon. — Liefert bei längerem Kochen mit Eisessig Diphenacylsulfon-monohydrazon-anhydrid (Formel V).

Diphenacylsulfon - amphi - dihydrazon C_{1e}H₁₈O₂N₄S, Formel IX. B. Beim Kochen von Diphenacylsulfon mit 2 Mol Hydrazinhydrat in Alkohol, neben Diphenacylsulfon-anti-dihydrazon (FROMM, EHRHARDT, B. 54, 191). Beim Erhitzen von Diphenacylsulfon-syn-monohydrazon mit Hydrazinhydrat in Alkohol (F., E.). — Krystalle (aus Benzol). F: 188°. Schwer löslich in Alkohol. — Liefert bei längerem Kochen mit Eisessig Diphenacylsulfon-monohydrazon-anhydrid (Formel V).

- N.N'-Dibenzyliden diphenacylsulfon syn dihydrazon $C_{30}H_{26}O_2N_4S = [C_4H_5 \cdot C(:N \cdot N : CH \cdot C_4H_5) \cdot CH_2]_2SO_2$. B. Beim Auflösen von Diphenacylsulfon-syn-dihydrazon (S. 99) in Benzaldehyd (Fromm, Ehrhardt, B. 54, 190). Gelbe Krystalle (aus Benzol). F: 178°. Schwer löslich in Alkohol.
- N.N' Dibenzyliden diphenacylsulfon anti dihydrazon $C_{30}H_{36}O_2N_4S = [C_6H_5 \cdot C(:N \cdot N:CH \cdot C_6H_5) \cdot CH_2]_2SO_2$. B. Analog der vorangehenden Verbindung (Fromm, Ehrhardt, B. 54, 191). Gelbe Krystalle (aus Benzol). F: 194°. Schwer löslich in Alkohol.
- N.N'- Dibenzyliden diphenacylsulfon amphi dihydrazon $C_{30}H_{20}O_2N_4S = [C_6H_5\cdot C(:N\cdot N:CH\cdot C_6H_5)\cdot CH_2]_2SO_2$. B. Analog den vorangehenden Verbindungen (Fromm, Ehrhardt, B. 54, 191). Gelbe Krystalle (aus Benzol). F: 171°.
- Semicarbazon des Thiokohlensäure O-äthylester-S-phenacylesters $C_{12}H_{15}O_3N_3S=C_6H_5\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_2\cdot S\cdot CO_2\cdot C_2H_5$. Prismen (aus Essigester). F: 142—143° (Groth, Ark. Kemi 9, Nr. 1, S. 9; C. 1924 I, 1036).
- 4.4'- Dichlor-diphenacylsulfid C₁₆H₁₉O₂Cl₂S = (C₆H₄Cl·CO·CH₂)₂S. B. Aus 4.ω-Dichlor-acetophenon und krystallisiertem Natriumsulfid in siedendem Alkohol (Chrzaszczewska, Chwalinski, Roczniki Chem. 7, 72, 73; C. 1927 II, 415). Tafeln (aus Aceton). F: 121—121,6°. Leicht löslich in Aceton, schwer in Alkohol und Äther. Bis-phenylhydrazon. F: 127° bis 128° (Zers.) (Chr., Chw., C. 1929 I, 511).
- 4-Chlor- ω -rhodan-acetophenon, 4-Chlor-phenacylrhodanid $C_9H_8ONClS = C_8H_4Cl \cdot CO \cdot CH_2 \cdot S \cdot CN$. B. Aus 4-Chlor- ω -brom-acetophenon und Natriumrhodanid in siedendem verdünntem Alkohol (Judefind, Reid, Am. Soc. 42, 1047). Krystalle (aus verd. Alkohol). F: 135,2°. Löslichkeit in 55% igem Alkohol: J., R.
- 4.4' Dichlor diphenacylsulfid dioxim $C_{1e}H_{14}O_2N_3Cl_2S = [C_6H_4Cl\cdot C(:N\cdot OH)\cdot CH_2]_8S$. Krystalle (aus Alkohol). F: 150—150,5° (Zers.) (Chrzaszczewska, Chwalinski, C. 1929 I, 511).

kohlenstoff und Behandeln des Reaktionsprodukts mit Aluminiumchlorid in Schwefelkohlenstoff

5.6.5'.6'-Tetrachlor-thioindigo. 4.4' - Dibrom - diphenacylsulfid $C_{16}H_{12}O_2Br_2S = [C_6H_4Br\cdot CO\cdot CH_2]_2S$. B. Aus 4-Bromphenacylchlorid und krystallisiertem Natriumsulfid in siedendem Alkohol (Chrzaszczewska, Chwalinski, Roczniki Chem. 8, 432; C. 1929 I, 511). — Blättchen (aus Aceton). F: 142,2—143,1°.

Schwer löslich in Alkohol, Äther und Aceton, leicht in siedendem Aceton.

- 4-Brom- ω -rhodan-acetophenon, 4-Brom-phenacylrhodanid $C_9H_6ONBrS = C_6H_4Br\cdot CO\cdot CH_2\cdot S\cdot CN$. B. Aus 4. ω -Dibrom-acetophenon und Natriumrhodanid in siedendem verdünntem Alkohol (Judefind, Reid, Am. Soc. 42, 1050). Krystalle (aus verd. Alkohol). F: 146,5°. Löslichkeit in 80%igem Alkohol; J., R.
- 4.4'- Dibrom diphenacylsulfid dioxim $C_{10}H_{14}O_2N_2Br_2S = [C_0H_4Br \cdot C(:N \cdot OH) \cdot CH_2]_2S$. Nadeln. F: 180 —180,5° (Zers.) (Chrzaszczewska, Chwalinski, *Roczniki Chem.* 8, 432; C. 1929 I, 511).

Diphenacyitellurdichlorid $C_{16}H_{14}O_2Cl_2Te = (C_0H_5\cdot CO\cdot CH_2)_2TeCl_2$ (H 95). B. Aus Acetophenon und Tellurtetrachlorid in siedendem Chloroform (Morgan, Elvins, Soc. 127, 2631). — Farblose Nadeln.

5. 2-Oxy-phenylacetaldehyd $C_8H_8O_3 = HO \cdot C_8H_4 \cdot CH_2 \cdot CHO$. B. Durch Ozonisieren von 2-Allyl-phenol in Äthylacetat·Lösung und Behandeln des Ozonids mit Zinkstaub und Essigsäure in Äther (RINKES, R. 45, 823). — Sirup. Siedet im Vakuum bei etwa 90°. Löst sich in 0,1 n-Natronlauge mit gelber Farbe. — Das 4-Nitro-phenylhydrazon schmilzt bei 148°.

Semicarbazon $C_0H_{11}O_2N_3 = HO \cdot C_0H_4 \cdot CH_2 \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Blättchen (aus Methanol). F: 171° (korr.) (RINKES, R. 45, 823). Schwer löslich in Wasser. Löst sich in 10% iger wäßriger Kalilauge mit schwach gelber Farbe.

2 - Methoxy - phenylacetaldehyd - semicarbazon $C_{10}H_{13}O_2N_3=CH_3\cdot O\cdot C_0H_4\cdot CH_3\cdot CH:N\cdot NH\cdot CO\cdot NH_2$ (E I 544). B. Aus 2-Oxy-phenylacetaldehyd-semicarbazon und Dimethylsulfat in 10% iger Kalilauge (RINKES, R. 45, 824). — Krystalle (aus Alkohol). F: 158—159° (korr.).

CH₂·OH
O·CH₃

5-Brom-2-methoxy-phenylacetaldehyd $C_0H_0O_2Br$, s. nebenstehende Formel. B. Beim Erhitzen von α -Brom- β -oxy- β -[5-brom-2-methoxy-phenyl]-propionsäure mit verd. Natronlauge auf 100° und Eintragen von 25%iger Schwefelsäure in die warme Reaktionsflüssigkeit (READ, ANDREWS, Soc. 119, 1785). — Gelbliches, zähflüssiges Öl.

Semicarbazon $C_{10}H_{12}O_2N_3Br=CH_2\cdot C\cdot C_6H_3Br\cdot CH_2\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Nadeln (aus Alkohol). F: 185° (Read, Andrews, Soc. 119, 1785). Schwer löslich in siedendem Alkohol.

- 6. 3-Oxy-phenylacetaldehyd $C_8H_8O_2 = HO \cdot C_6H_4 \cdot CH_2 \cdot CHO$.
- 3-Methoxy-phenylacetaldoxim $C_0H_{11}O_2N=CH_3\cdot O\cdot C_0H_4\cdot CH_2\cdot CH:N\cdot OH$. B. Durch Erwärmen von β -Nitro-3-methoxy-styrol mit Zinkstaub und Eisessig in Alkohol auf 35° (Shoesmith, Connor, Soc. 1927, 2232) oder mit Zinkstaub und verd. Essigsäure auf dem Wasserbad (Gulland, Virden, Soc. 1929, 1796). Nadeln (aus Ligroin oder Wasser). F: 91° (G., V.), 92,5—93° (Sh., C.). Leicht löslich in den üblichen organischen Lösungsmitteln (G., V.). Bei der Reduktion mit 3% igem Natriumamalgam in Alkohol + Eisessig entstehen geringe Mengen 3-Methoxy- β -phenäthylamin (Sh., C.).
 - 7. 4-Oxy-phenylacetaldehyd $C_8H_8O_2 = HO \cdot C_6H_4 \cdot CH_2 \cdot CHO$.
- 4-Methoxy-phenylacetaldehyd $C_0H_{10}O_2 = CH_3 \cdot O \cdot C_0H_4 \cdot CH_2 \cdot CHO$ (H 95; E I 544). Liefert beim Schütteln mit Methylamin-hydrochlorid und Kaliumcyanid in Wasser + Äther α -Methylamino- β -[4-methoxy-phenyl]-propionitril (Kanewskaja, J. pr. [2] 124, 50).
- 8. α -Oxy-phenylacetaldehyd, Phenylglykolaldehyd, Mandelaldehyd $C_8H_8O_2=C_6H_5\cdot CH(OH)\cdot CHO$. B. Aus $\alpha.\beta$ -Dioxy- β -phenyl-āthylcarbamidsäuremethylester durch Einw. von 1 n-Schwefelsäure in Methanol und Destillation mit Wasserdampf (RINKES, R. 39, 709). Öl. Unlöslich in Wasser. Reduziert Fehlingsche Lösung in der Kälte. Das Phenylosazon schmilzt bei 152° (korr.).
- $\alpha.\beta$ Dioxy β phenyl äthylcarbamidsäuremethylester $C_{10}H_{13}O_4N = C_6H_5 \cdot CH(OH) \cdot CH(OH) \cdot NH \cdot CO_2 \cdot CH_2$. B. Aus Styryl-carbamidsäuremethylester durch Behandeln mit Kaliumpermanganat in wasserhaltigem Aceton bei —10° bis 5°, neben Benzaldehyd (RINKES, R. 39, 708). Nadeln (aus Methanol). F: 139—140°. Liefert bei der Einw. von 1 n-Schwefelsäure in Methanol und Destillation mit Wasserdampf α-Oxy-phenylacetaldehyd.
- α -Oxy-phenylacetaldoxim $C_8H_9O_2N=C_6H_5\cdot CH(OH)\cdot CH:N\cdot OH$. Krystalle (aus Benzol), Blättchen (aus Äther). F: 158° (Rinkes, R. 39, 709). Leicht löslich in heißem Benzol, unlöslich in Petroläther.
- α -Oxy-phenylacetaldehyd-semicarbazon $C_9H_{11}O_2N_3=C_6H_5\cdot CH(OH)\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. F: 222° (Zers.) (RINKES, R. 39, 709). Leicht löslich in Eisessig, schwer in Alkohol und Wasser.
- 9. 4-Oxy-2-methyl-benzaldehyd C₈H₈O₂, s. nebenstehende Formel (H 95).

 B. Über das Mengenverhältnis zwischen 4-Oxy-2-methyl-benzaldehyd und 6-Oxy-2-methyl-benzaldehyd + 2-Oxy-4-methyl-benzaldehyd bei der Einw. von Chloroform oder Bromoform und Alkali auf m-Kresol vgl. Hodgson, Jenkinson, Soc. 1929, 469, 1641. Krystalle (aus Benzol). F: 108,9° (korr.) (Sidgwick, Allott, Soc. 123, 2820). Löslichkeitsdiagramme der Systeme mit Wasser (Tripelpunkt bei 69,1°; kritische Lösungstemperatur: 125°) und mit Benzol: S., A., Soc. 123, 2821, 2824.
- 4-Methoxy-2-methyl-benzaldehyd $C_8H_8O_2=CH_3\cdot C_6H_3(O\cdot CH_3)\cdot CHO$ (H 96). Gleichgewicht der Reaktion $CH_3\cdot O\cdot C_6H_3(CH_3)\cdot CHO+HCN\rightleftharpoons CH_3\cdot O\cdot C_6H_3(CH_3)\cdot CH(OH)\cdot CN$ in Alkohol bei 20°: Lapworth, Manske, Soc. 1928, 2546.
- 10. 6-Oxy-2-methyl-benzaldehyd, 6-Methyl-salicylaldehyd, β-m-Homosalicylaldehyd C₈H₂O₃, s. nebenstehende Formel (H 97; E I 544). B. Über das Mengenverhältnis zwischen 4-Oxy-2-methyl-benzaldehyd HO CH₃ und 6-Oxy-2-methyl-benzaldehyd bei der Einw. von Chloroform oder Bromoform und Alkali auf m-Kresol vgl. Hodgson, Jenkinson, Soc. 1929, 469, 1641.
- 11. 2 Oxy 3 methyl benzaldehyd, 3 Methyl salicylaldehyd o-Homosalicylaldehyd, o-Kresolaldehyd C₈H₈O₂, s. nebenstehende Formel (H 98; E I 545). B. Über das Mengenverhältnis zwischen 2-Oxy-3-methyl-benzaldehyd und 4-Oxy-3-methyl-benzaldehyd bei der Einw. von Chloroform oder Bromoform und Alkali auf o-Kresol vgl. Hodgson, Jenkinson, Soc. 1929, 469, 1641. Durch Sättigen einer Mischung von o-Kresol oder Carvacrol, Zinkcyanid und Benzol mit Chlorwasserstoff bei 0°, Zufügen von Aluminiumchlorid, weiteres 4-stündiges Einleiten von Chlorwasserstoff, zum Schluß bei 50°, und Zersetzen des Imidhydrochlorids mit siedender verdünnter Salzsäure, neben anderen Produkten (Bell, Henry, Soc. 1928, 2221, 2222). Beim

OXY-OXO-VERBINDUNGEN CnH2n-8O2

Erhitzen von o-Kresol mit N.N'-Diphenyl-formamidin auf 183° und Kochen des Reaktionsproduktes mit Natronlauge (Shoesmith, Haldane, Soc. 125, 2406). Durch Reduktion von 2-Oxy-3-methyl-benzoesäure mit Natriumamalgam und Na₂SO₃ + NaHSO₃ bei Gegenwart von Borsäure in durch Zusatz von Salzsäure sohwach sauer gehaltener Lösung (Weil, Traun, Marcel, B. 55, 2664). — Beim Einleiten von Cyanwasserstoff in eine Lösung von 2-Oxy-3-methylbenzaldehyd und Thymol in absol. Alkohol, Kochen des Reaktionsgemisches mit Zinkehlorid und Eingießen in 10%ige Salzsäure erhält man 4.4'-Dioxy-2.3'-dimethyl-5-isopropyl-diphenylacetonitif (Bell, Henry, Soc. 1928, 2225). Beim Sättigen einer Lösung von 2-Oxy-3-methylbenzaldehyd und ω-Cyan-acetophenon in eiskaltem Eisessig mit Chlorwasserstoff entsteht 8-Methyl-3-benzoyl-cumarin (Ghosal, J. indian chem. Soc. 3, 107; C. 1926 II, 1646). — Farbreaktion mit Pararosanilinschwefligsäure bei verschiedenem Gehalt an schwefliger Säure: Shoesmith, Sosson, Hetherington, Soc. 1927, 2222.

Semicarbazon $C_9H_{11}O_2N_3=CH_3\cdot C_9H_3(OH)\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Nadeln (aus Pyridin). F: 248° (Zers.) (Bell, Henry, Soc. 1928, 2222).

- 12. 4-Oxy-3-methyl-benzaldehyd C₈H₈O₂, s. nebenstehende Formel (H 98; E I 545). B. Über das Mengenverhältnis zwischen 4-Oxy-3-methyl-benzaldehyd und 2-Oxy-3-methyl-benzaldehyd bei der Einw. von Chloroform oder Bromoform und Alkali auf o-Kresol vgl. Hodgson, Jenkinson, Soc. 1929, 469, 1641. Durch Sättigen einer Mischung von o-Kresol, Zinkcyanid und Benzol mit Chlorwasserstoff bei 0°, Zufügen von Aluminiumchlorid, weiteres Einleiten von Chlorwasserstoff, zum Schluß bei 50°, und Zersetzen des Imidhydrochlorids mit siedender verdünnter Salzsäure, neben 2-Oxy-3-methyl-benzaldehyd (Adams, Montgomery, Am. Soc. 46, 1521; Bell, Henry, Soc. 1928, 2222). Krystalle (aus Wasser oder Benzol). F: 118° (A., M.), 117,4° (korr.) (Sidgwick, Allott, Soc. 123, 2820). Löslichkeitsdiagramme der Systeme mit Wasser (Tripelpunkt bei 79,5°; kritische Lösungstemperatur: 136,8°) und mit Benzol: Si., All., Soc. 123, 2821, 2824.
- 4-Methoxy-3-methyl-benzaldehyd $C_0H_{10}O_2=CH_3\cdot O\cdot C_6H_3(CH_3)\cdot CHO$ (H 98; E I 545). B. Neben wenig $2\cdot Oxy\cdot 3\cdot methyl\cdot 5\cdot \tilde{a}thyl\cdot benzaldehyd beim Behandeln von 6-Methoxy-1-methyl-3-<math>\tilde{a}thyl\cdot benzol$ mit wasserfreier Blausäure, Chlorwasserstoff und Aluminiumchlorid in Benzol unter allmählichem Erwärmen auf 40° (v. Auwers, Mauss, A. 460, 265). Liefert beim Kochen mit ammoniakalischer Silbernitrat-Lösung wenig 4-Methoxy-3-methyl-benzoesäure (Brady, Cosson, Roper, Soc. 127, 2431). Gleichgewicht der Reaktion $CH_3\cdot O\cdot C_6H_3(CH_3)\cdot CHO + HCN \rightleftharpoons CH_3\cdot O\cdot C_6H_3(CH_3)\cdot CH(OH)\cdot CN$ in Alkohol bei 20°: Lapworth, Manske, Soc. 1928, 2546.

 $\alpha\text{-4-Methoxy-3-methyl-benzaldoxim} \quad C_9H_{11}O_2N = \frac{CH_3 \cdot O \cdot C_6H_3(CH_3) \cdot CH}{N \cdot OH} \quad (H \ 99). \quad Zur$

Konfiguration vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 982. — B. Aus 4-Methoxy-3-methyl-benzaldehyd bei der Einw. von Hydroxylamin in alkal. Lösung (Brady, Cosson, Roper, Soc. 127, 2430). — Krystalle (aus Petroläther). F: 71°. — Beim Sättigen einer Lösung in warmem Chloroform mit Chlorwasserstoff entsteht das Hydrochlorid des β -4-Methoxy-3-methyl-benzaldoxims. Liefert beim Kochen mit überschüssigem Acetanhydrid 4-Methoxy-3-methyl-benzonitril.

 $\beta\text{-4-Methoxy-3-methyl-benzaldoxim} \ \ C_9H_{11}O_2N = \frac{CH_3 \cdot O \cdot C_9H_3(CH_3) \cdot CH}{HO \cdot N}. \ \ \text{Zur Konfillor}$

guration vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 982. — B. Beim Sättigen einer Lösung von α -4-Methoxy-3-methyl-benzaldoxim in warmem Chloroform mit Chlorwasserstoff und Lösen des entstandenen Hydrochlorids in überschüssiger kalter 2n-Natronlauge (Brady, Cosson, Roper, Soc. 127, 2431). — Nadeln (aus wäßr. Aceton). F: 121°. — Gibt beim Kochen mit Acetanhydrid 4-Methoxy-3-methylbenzonitril. — Hydrochlorid $C_9H_{11}O_9N + HCl$. Krystallpulver. F: 171° (Zers.).

- α 4-Methoxy 3 methyl benzaldoxim 0 acetat $C_{11}H_{13}O_3N=CH_3\cdot C_6H_3(O\cdot CH_3)\cdot CH:N\cdot O\cdot CO\cdot CH_3.$ Tafeln (aus Petroläther). F: 70° (Brady, Cosson, Roper, Soc. 127, 2431).
- 4 0xy 3 methyl benzaldehyd semicarbazon $C_9H_{11}O_3N_8 = CH_3 \cdot C_9H_3(OH) \cdot CH : N \cdot NH \cdot CO \cdot NH_4$. Nadeln (aus Eisessig). F: 216° (Bell, Henry, Soc. 1928, 2222).
- 13. 6-Oxy-3-methyl-benzaldehyd, 5-Methyl-salicylaldehyd, p-Homosalicylaldehyd C₃H₃O₂, s. nebenstehende Formel (H 100; E I 545).

 B. In geringer Menge beim Erwärmen von p-Kresol mit Trichloressigsäure und Natronlauge auf 100° (van Alphen, R. 46, 147). Beim Erhitzen von p-Kresol mit N.N'-Diphenyl-formamidin auf 193° und Kochen des Reaktionsproduktes mit Natronlauge (Shorsmith, Haldane, Soc. 125, 2406). Analog 2-Oxy-3-methyl-benzaldehyd (S. 101) durch Reduktion von 6-Oxy-3-methyl-benzoesäure mit Natrumamalgam (Weil, Traun, Marchi, B. 55, 2664). F: 55,1° (korr.) (Sidgwick, Allort, Soc. 123, 2820). Löslichkeitsdiagramme

- der Systeme mit Wasser und mit Benzol (Eutektikum bei —30,0° und 23,3 Gew.-% Benzol): S., A., Soc. 123, 2821, 2824. Gibt mit Jod und Kalilauge 3.5-Dijod-4-oxy-toluol (Windaus, Schielb, B. 56, 847). Liefert beim Erhitzen mit Acetanhydrid und Natriumacetat geringe Mengen 6-Methyl-cumarin (Thompson, Edde, Am. Soc. 47, 2557). Beim Einleiten von Chlorwasserstoff in eine Lösung von 6-Oxy-3-methyl-benzaldehyd und \(\omega-\)-Cyan-acetophenon in Eisessig bei 0° entsteht 6-Methyl-3-benzoyl-cumarin (Ghosal, J. indian chem. Soc. 3, 108; C. 1926 II, 1646). Nachweis durch Kupplung mit 4-Nitro-benzoldiazoniumchlorid und spektroskopische Untersuchung von schwach alkalischen Lösungen des entstehenden Farbstoffs: Wales, Palkin, Am. Soc. 48, 812. Gibt mit Aceton und Alkalilauge eine rote Färbung (v. Au.). Farbreaktion mit Pararosanilinschwefligsäure bei verschiedenem Gehalt an schwefliger Säure: Shoesmith, Sosson, Hetherington, Soc. 1927, 2222.
- 6-Methoxy-3-methyl-benzaldehyd $C_0H_{10}O_2 = CH_3 \cdot O \cdot C_0H_3(CH_3) \cdot CHO$ (H 100; E I 545). B. Durch Sättigen einer Mischung von Methyl-p-tolyl-äther, Zinkcyanid und Benzol mit Chlorwasserstoff bei 0°, Zufügen von Aluminiumchlorid, weiteres Einleiten von Chlorwasserstoff, zum Schluß bei 50°, und Zersetzen des Imidhydrochlorids mit siedender verdünnter Salzsäure (Adams, Montgomery, Am. Soc. 46, 1521).
- 4-Methyl-2-formyl-phenoxyessigsäure $C_{10}H_{10}O_4 = HO_2C \cdot CH_2 \cdot O \cdot C_0H_2(CH_3) \cdot CHO$ (E I 545). B. Aus 6-Oxy-3-methyl-benzaldehyd und Chloressigsäure (Höchster Farbw., D.R.P. 362382; C. 1928 II, 920; Frdl. 14, 1160). F: 131—133°. Überführung in ein Harz durch Einw. von α -Naphthol und konz. Salzsäure in Alkohol: H. F.
- 14. 2 Oxy 4 methyl benzaldehyd , 4 Methyl salicylaldehyd α-m-Homosalicylaldehyd C₈H₈O₃, s. nebenstehende Formel (H 101; E I 546). B. Beim Erhitzen von m-Kresol mit N.N'-Diphenyl-formamidin auf 210° und Kochen des Reaktionsproduktes mit Natronlauge (Shoesmith, Haldane, Soc. 125, 2406). Durch Sättigen einer Mischung von Thymol, Zinkcyanid und Benzol mit Chlorwasserstoff bei 0°, Zufügen von Aluminiumchlorid, weiteres 4-stündiges Einleiten von Chlorwasserstoff, zum Schluß bei 50°, und Zersetzen des Imidhydrochlorids mit siedender verdünnter Salzsäure, neben anderen Produkten (Bell, Henex, Soc. 1928, 2219). Analog 2-Oxy-3-methyl-benzaldehyd (S. 101) durch Reduktion von 2-Oxy-4-methyl-benzoesäure mit Natriumamalgam (Weil, Traun, Marcel, B. 55, 2664). Nadeln (aus Benzin). F: 54° (W., T., M.), 59° (Sh., Ha.), 63° (B., He.). Beim Einleiten von Chlorwasserstoff in eine Lösung von 2-Oxy-4-methyl-benzaldehyd und ω-Cyan-acetophenon in Eisessig bei 0° entsteht 7-Methyl-3-benzoyl-cumarin (Ghosal, J. indian chem. Soc. 3, 108; C. 1926 II, 1646). Farbreaktion mit Pararosanilinschwefligeäure bei verschiedenem Gehalt an schwefliger Säure: Shoesmith, Sosson, Hetherington, Soc. 1927, 2222.
- 15. 3-Oxy-4-methyl-benzaldehyd C₈H₈O₃, s. nebenstehende Formel. B. CHO In geringer Menge durch Reduktion von 3-Nitro-4-methyl-benzaldehyd mit Eisen(II)-sulfat und NaHSO₃-Lösung, Diazotieren der Amino-Verbindung und Eindampfen der Diazolösung (Sidgwick, Allott, Soc. 123, 2820). Blaßgelbe Nadeln. F: 73°.

 [KOBEL]

3. Oxy-oxo-Verbindungen $C_2H_{10}O_3$.

1. 2-Oxy-1-propionyl-benzol, Äthyl-[2-oxy-phenyl]-keton, 2-Propionyl-phenol, 2-Oxy-propiophenon $C_0H_{10}O_2 = HO \cdot C_0H_4 \cdot CO \cdot C_2H_5$ (H 102; E I 547). B. u. Darst. Neben 4-Oxy-propiophenon durch Behandlung von Propionsäurephenylester (H 6, 154) mit Aluminiumchlorid in Schwefelkohlenstoff, zuletzt bei Siedetemperatur, Abdestillieren des Schwefelkohlenstoffs und Erhitzen auf 140—150° (MILLER, HARTUNG, Org. Synth. 13 [1933], 90; vgl. HARTUNG, Mitarb., Am. Soc. 53 [1932], 4153). — Kp₆: 110—115° (MI., H.; H., Mitarb.).

Oxim $C_0H_{11}O_2N = HO \cdot C_2H_4 \cdot C(:N \cdot OH) \cdot C_2H_5$. Krystalle (aus Ligroin). F: 94° (korr.) (Hartung, Mitarb., Am. Soc. 58 [1932], 4154).

- 4-Chlor-2-propionyl-phenol, 5-Chlor-2-oxy-propiophenon C₂H₂O₂Cl, e. nebenstehende Formel. B. Beim Erhitzen von [4-Chlor-phenyl]-propionat mit Aluminiumchlorid auf 130—140° (Wirtig, A. 446, 186). Nadeln (aus verd. Methanol). F: 56,5—57,5°. Leicht löslich in den gebräuchlichen Lösungsmitteln, Cl. schwer in Petroläther. Liefert beim Erhitzen mit Acetanhydrid und Natriumacetat auf 180° 6-Chlor-2.3-dimethyl-chromon; reagiert analog mit Chloracetylchlorid und Natrium-chloracetat unter Bildung von 6-Chlor-3-methyl-2-chlormethyl-chromon, mit Propionsäureanhydrid und Natriumpropionat unter Bildung von 6-Chlor-3-methyl-2-äthyl-chromon.
- 5-Chlor-2-propionyloxy-propiophenon $C_{12}H_{13}O_3Cl=C_2H_5\cdot CO\cdot O\cdot C_6H_3Cl\cdot CO\cdot C_2H_5$. B. Beim Erhitzen von 5-Chlor-2-oxy-propiophenon mit Propionylchlorid und Calciumchlorid auf 110° (Wittig, A. 446, 186). Öl. Kp₁₄: 170°. Liefert beim Erhitzen mit Acetanhydrid und Natriumacetat auf 180° 6-Chlor-2.3-dimethyl-chromon.

- 2-[β -Chlor-propionyl]-phenol, β -Chlor-2-oxy-propiophenon $C_0H_0O_0Cl = HO \cdot C_0H_4 \cdot CO \cdot CH_2 \cdot CH_2Cl$. B. Beim Erwärmen von β -Chlor-propionsäure-phenylester mit Aluminium-chlorid auf 100°, neben anderen Produkten (MAYER, VAN ZÜTTHEN, B. 57, 201). Prismen (aus Ligroin). F: 70°. Löslich in Alkalien, mit Kohlendioxyd fällbar. Liefert beim Erhitzen mit Aluminium-chlorid auf 160—180° 7-Oxy-hydrindon-(1) (S. 153) (M., v. Z., B. 57, 201, 618). Die Lösung in Alkohol wird durch Eisen(III)-chlorid violett gefärbt.
- 2. 4-Oxy-1-propionyl-benzol, \overline{A} thyl-[4-oxy-phenyl]-keton, 4-Propionyl-phenol, 4-Oxy-propiophenon $C_0H_{10}O_4=HO\cdot C_0H_4\cdot CO\cdot C_2H_5$ (H 102). B. u. Darst. s. S. 103 bei 2-Propionyl-phenol. F: 147—148° (Hartung, Mitarb., Am. Soc. 58 [1932], 4154; MILLER, HARTUNG, Org. Synth. 18 [1933], 90).
- 4-Propionyl-anisol, 4-Methoxy-propiophenon, Äthyl-[4-methoxy-phenyl]-keton, Äthylanisylketon C₁₀H₁₂O₂ = CH₃·O·C₆H₄·CO·C₅H₅ (H 103; E I 547). B. Durch Hydrierung von Vinyl-[4-methoxy-phenyl]-keton in Alkohol (Mannich, Lammering, B. 55, 3519). Darstellung aus Anisol, Propionylchlorid und Aluminiumchlorid in Schwefelkohlenstoff (H 103): Bradley, Robinson, Soc. 1926, 2360, 2361; aus Anisol, Propionsäureanhydrid und Aluminiumchlorid: Noller, Adams, Am. Soc. 46, 1892. Kp₇₃₉: 275,0⁶ (korr.); Kp₄: 125° (korr.) (N., A.); Kp₄₆: 178—180° (B., R.). Liefert bei der Kondensation mit Benzoesäureäthylester bei Gegenwart von Natriumamid in Äther eine als α-Anisoyl-propiophenon angesehene Verbindung (B., R., Soc. 1926, 2361; vgl. Weygand, B. 61, 689).
- 4- [β Chlor-propionyl] phenol, β -Chlor-4-oxy-propiophenon $C_0H_0O_2Cl = HO \cdot C_0H_4 \cdot CO \cdot CH_2 \cdot CH_2Cl$. B. In geringer Menge neben anderen Produkten beim Erwärmen von β -Chlor-propionsäure-phenylester mit Aluminiumchlorid auf 100° (MAYER, VAN ZÜTPHEN, B. 57, 201). Wasserhaltige Blättchen (aus Wasser). Schmilzt lufttrocken bei 75—80°, verwittert, besonders schnell in der Wärme, und schmilzt dann bei 90°. Löst sich in Alkalien. Gibt mit Eisen(III)-chlorid eine braunrote Färbung.
- 4-[β -Chlor-propionyl]-anisol, β -Chlor-4-methoxy-propiophenon $C_{10}H_{11}O_2Cl=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot CH_2\cdot CH_2Cl$. B. Aus β -Chlor-propionylchlorid und Anisol in Gegenwart von Aluminiumchlorid (I. G. Farbenind., D.R.P. 488608; C. 1930 II, 3860; Frdl. 16, 1432). F: 64°.
- 4-[α . β -Dibrom-propionyl]-anisol, α . β -Dibrom-4-methoxy-propiophenon $C_{10}H_{10}O_{2}Br_{2}=CH_{2}\cdot O\cdot C_{6}H_{4}\cdot CO\cdot CHBr\cdot CH_{2}Br$. B. Aus Vinyl-[4-methoxy-phenyl]-keton und Brom in Chloroform (Mannich, Lammering, B. 55, 3519). Prismen (aus Ligroin). F: 71°.
- 3. 1-Phenyl-propanol-(2)-on-(1), 2-Oxy-1-oxo-1-phenyl-propan, α-Oxy-propiophenon, Methylbenzoylcarbinol ("α-Ketol", "B-Ketol") C₈H₁₀O₂ = C₆H₅·CO·CH(OH)·CH₃. Die E I 547 beschriebenen Präparate von Zincke, Zahn (B. 48, 855) und von v. Auwers (B. 50, 1180) bestanden überwiegend aus Acetylphenylcarbinol (vgl. v. Auwers, Ludewig, Müller, A. 526, 143). Die Angaben der älteren Literatur sind deshalb unübersichtlich und verwirrend¹) (vgl. v. Au., Jordan, Bio. Z. 144, 34; v. Au., Mauss, Bio. Z. 192, 200; Neuberg, Ohle, Bio. Z. 127, 332, 335; 128, 616; Faworski, Ж. 60, 397; Bl. [4] 39, 218; Kotschergin, Bl. [4] 43, 573; v. Falkenhausen, Bio. Z. 219, 246; Neuberg, Komarewsky, Bio. Z. 182, 287). B. Einheitliches Methylbenzoylcarbinol entsteht nach v. Auwers, Ludewig, Müller (A. 526, 164) durch Kochen von α-Brom-propiophenon mit Kaliumformiat und Methanol und Eingießen in Wasser. Entsteht nach Temnikowa (C. 1940 II, 1861) aus Milchsäurenitril und Phenylmagnesiumbromid. Kp₁₄: 123°; D[∞]: 1,109; n[∞]_{807,50}: 1,542 (v. Au., L., M.). Kp₁₁: 120—121,5°; D¹¹: 1,117 (T.). Reagiert mit Semicarbazid-acetat in alkoholisch-wäßriger Lösung bei 50° sehr langsam unter Bildung des Disemicarbazons des 1-Phenyl-propandions-(1.2), das bei 240° unter Zersetzung schmilzt (v. Au., L., M.). Mit Phenyliscoyanat entsteht glatt der Carbanilsäureester des Methylbenzoylcarbinols vom Schmelzpunkt 144—145°. Bei der Einw. von Phenylmagnesiumbromid scheint nur 1.1-Diphenyl-propandiol-(1.2) vom Schmelzpunkt 96—97° (E II 6, 977) zu entstehen (v. Au., L., M.; vgl. Neuberg, Ohle, Bio. Z. 127, 337; T.).
- α-Acetoxy-propiophenon, Methylbenzoylcarbinol-acetat $C_{11}H_{12}O_8=C_8H_5\cdot CO\cdot CH(O\cdot CO\cdot CH_3)\cdot CH_3$ (E I 547) ²). B. Beim Kochen von α-Brom-propiophenon mit Natriumacetat und Eisessig (v. Auwers, Mauss, Bio. Z. 192, 225; vgl. a. v. Au., Jordan, Bio. Z. 144, 41; v. Au., Ludewig, Müller, A. 526, 146, 169). Kp_{14} : 144°; D_1^{ac} : 1,112; $D_{867,85}^{ac}$: 1,517 (v. Au., L., M.).
- α-Oxy-propiophenon-semicarbazon, Methylbenzoyicarbinol-semicarbazon $C_{10}H_{13}O_2N_3=C_6H_5\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH(OH)\cdot CH_3$ (E I 547) von Zincke, Zahn (B. 48, 855) und v. Auwers, Jordan (Bio. Z. 144, 31, 40) ist als Phenylacetylcarbinol-semicarbazon (S. 106) erkannt worden (v. Auwers, Mauss, Bio. Z. 192, 204; vgl. v. Au., Ludewig, Müller, A. 526, 153).

¹⁾ Die Literatur nach dem Schlußtermin des 2. Ergänzungswerks wurde nur so weit berücksichtigt, wie zur Richtigstellung früherer Angaben erforderlich war.

²⁾ Vgl. a. den Artikel Phenylacetylcarbinol-acetat, S. 106.

- 4. 4-Oxy-1-acetonyl-benzol, Methyl-[4-oxy-benzyl]-keton, 4-Oxy-phenyl-aceton C₃H₁₀O₃ = HO·C₄H₄·CH₂·CO·CH₃. B. Beim Kochen von 4-Methoxy-phenylaceton mit Bromwasserstoffsäure (D: 1,48) und Eisessig (LE Brazidec, Bl. [4] 81, 259). Nadeln (aus Chloroform). F: 35,5°. D²⁰: 1,1159 (unterkühlt). Leicht löslich in Alkohol, Benzol, Äther, Chloroform und Essigester, unlöslich in Petroläther. Riecht schwach phenolartig. Reduziert ammoniakalische Silberlösung. Liefert eine krystallisierte NaHSO₃-Verbindung. Gibt mit verd. Eisen(III)-chlorid-Lösung eine violette Färbung.
- 4 Methoxy phenyl aceton, Anisylaceton $C_{10}H_{12}O_3 = CH_3 \cdot O \cdot C_6H_4 \cdot CH_3 \cdot CO \cdot CH_3$ (H 106; E I 548). B. Beim Behandeln von 1-[4-Methoxy-phenyl]-propandiol-(1.2) mit verd. Schwefelsäure (LE Brazidec, Bl. [4] 31, 258). Aus α -Methyl- α '-[4-methoxy-phenyl]-äthylenoxyd beim Erhitzen mit 50% iger Schwefelsäure oder etwas Zinkchlorid (Lévy, Gombinska, C. r. 188, 713; L., Dvoleitzka-Gombinska, Bl. [4] 49 [1931], 1771, 1772). Kp₁₃: 139°; D°: 1,0814 (LE B.). Schmeckt anisartig (LE B.).
 - H S. 107, Z. 16-17 v. o. statt "Syst. Nr. 2619" lies "H 18, 347".
- 4-Oxy-phenylaceton-semicarbazon $C_{10}H_{18}O_3N_3 = HO \cdot C_6H_4 \cdot CH_2 \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_3$. F: 213° (Le Brazidec, Bl. [4] \$1, 260).
- 5. 1-Phenyl-propanol-(1)-on-(2), 1-Oxy-2-oxo-1-phenyl-propan, Methyl-[α -oxy-benzyl]-keton, α -Oxy- α -phenyl-aceton, Phenylacetylcarbinol, Acetyl-phenylcarbinol $C_{\bullet}H_{10}O_{\bullet}=C_{\bullet}H_{\bullet}\cdot CH(OH)\cdot CO\cdot CH_{3}$.
- a) Linksdrehende Form, (—)-Phenylacetylcarbinol C₉H₁₀O₂ = C₆H₅·CH(OH)·CO·CH₃. Zur Konstitution vgl. Neuberg, Ohle, Bio. Z. 127, 331. B. Entsteht beim Vergären von Rohrzucker oder Brenztraubensäure (Neuberg, Hirsch, Bio. Z. 115, 296, 308) oder Stärkesirup (N., Ohle, Bio. Z. 128, 610) durch Hefe in Gegenwart von Benzaldehyd in wäßr. Lösung bei Zimmertemperatur. Kp₁₂: 124—125° (N., O.). Di³,5: 1,107; n³c: 1,5315 (frisch dargestellt); [α]^{3c}₂: —181,9° (absol. Alkohol; c = 1,7) (N., O.). Löslich in Alkohol, Äther, Benzol, Toluol, Chloroform, Schwefelkohlenstoff und Essigester, unlöslich in Ligroin. Schwer flüchtig mit Wasserdampf (N., H.). Wird durch Alkalien racemisiert (N., O.). Reduziert Fehlingsche Lösung und ammoniakalische Silberlösung schon in der Kälte, Kupfer(II)-acetat-Lösung in der Siedehitze (N., H.). Färbt sich beim Erhitzen mit Natronlauge oder Sodalösung dunkel unter Entwicklung von Benzaldehydgeruch (N., H.). Verbindet sich mit NaHSO₃ (N., H.). Liefert beim Behandeln mit Phenylmagnesiumbromid in Äther, zuletzt auf dem Wasserbad (+)-α-Methylhydrobenzoin C₆H₅·CH(OH)·C(CH₃)(OH)·C₆H₅ (E II 6, 976) (N., O., Bio. Z. 127, 335; Roger, Bio. Z. 230 [1931], 326, 327; vgl. a. v. Auwers, Mauss, Bio. Z. 192, 205). Farbreaktionen mit Nitroprussidnatrium in alkalischer oder ammoniakalischer Lösung sowie in Piperidin: N., H. Das Phenylhydrazon schmilzt bei 96°, das p-Nitro-phenylosazon bei 264—265° (N., H.).

Semicarbazon $C_{10}H_{13}O_2N_3 = C_4H_5 \cdot CH(OH) \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_3$. B. Aus je 1 Mol (—)-Phenyl-acetyl-carbinol, Semicarbazidhydrochlorid und Natriumdicarbonat in Wasser (Neuberg, Ohle, Bio. Z. 128, 614). — Krystalle (aus Alkohol). F: 194°. [α]_D: +215,8° (Pyridin; c = 1,7).

Thiosemicarbazon $C_{10}H_{13}ON_3S=C_0H_5\cdot CH(OH)\cdot C(:N\cdot NH\cdot CS\cdot NH_2)\cdot CH_3$. B. Beim Behandeln von (—)-Phenyl-acetyl-carbinol mit Thiosemicarbazid in heißem Pyridin (Neuberg, Ohle, Bio. Z. 128, 614; vgl. a. N., Hirsch, Bio. Z. 115, 300). — Nadeln (aus absol. Alkohol). Schmilzt je nach der Schnelligkeit des Erhitzens zwischen 200° und 207° (Zers.) (N., O.). Fast unlöslich in kaltem absolutem Alkohol, leicht löslich in Pyridin, löslich in ca. 300 Tln. siedendem Wasser (N., O.). [a] $_0^{\infty}$: + 228,8° (Pyridin; c = 1,5) (N., O.). Liefert mit Metallsalzen in alkoh. Lösung unlösliche Niederschläge (N., H.).

b) Inaktive Form, dl-Phenylacetylcarbinol ("β-Ketol", "A-Ketol") C₉H₁₀O₂ = C₆H₅·CH(OH)·CO·CH₃ (H 108; E I 548). Zur Konstitution vgl. Neuberg, Ohle, Bio. Z. 127, 331; v. Auwers, Ludewig, Müller, A. 526, 143; Temnikowa, C. 1940 II, 1860. — B. Neben anderen Produkten bei der Vergärung von Rohrzucker durch Hefemacerationssaft in Gegenwart von Benzaldehyd (N., Hirsch, Bio. Z. 115, 304). Durch Umsetzung von dl-Mandelsäurenitril und Methylmagnesiumjodid in Äther und Zersetzung des Reaktionsprodukts mit Eis und verd. Schwefelsäure (Tiffeneau, Lavy, Bl. [4] 33, 765; 37, 1249). Zur Gewinnung aus dl-Mandelsäureamid und Methylmagnesiumjodid vgl. v. Au., Mauss, Bio. Z. 192, 210, 227; v. Au., L., Mü., A. 526, 157. Reines Phenylacetylcarbinol erhält man in kleiner Menge durch Spaltung des Semicarbazons mit kalter konzentrierter Salpetersäure (v. Au., Mauss, Bio. Z. 192, 227; vgl. v. Au., L., Mü., A. 526, 159). Darstellung von Phenylacetylcarbinol durch längeres Kochen von Methylbenzoylcarbinol-acetat mit Wasser und Bariumcarbonat: v. Au., L., Mü. — Kp₃₁: 143—145° (Neuberg, Ohle, Bio. Z. 127, 333); Kp₃₀: 130—132° (Tiffeneau, Lévy, Bl. [4] 33, 765). Kp₁₄: 124°; D³⁰: 1,105; n³⁰_{100,98}: 1,531 (v. Au., L., M.). Zwei frühere Präparate zeigten D³⁰₂: 1,1043; n³⁰₂: 1,5256; n³⁰_{2,98}: 1,5302; n³⁰₂: 1,5414; n³⁰₂: 1,5513 und D³⁰₄: 1,1058; n³⁰₆: 1,5268; n³⁰_{100,98}: 1,5314; n³⁰₁: 1,5431 (v. Au., M., Bio. Z. 192, 228). — Reduziert Fehlingsche

OXY-OXO-VERBINDUNGEN CnH2n-8O2

Lösung schon in der Kälte (N., Hirsch, Bio. Z. 115, 304). Liefert mit Phenylisocyanat langsam und in schlechter Ausbeute den Carbanilsäureester des Methylbenzoylcarbinols (Syst. Nr. 1625) (v. Au., M., Bio. Z. 192, 209; v. Au., L., Mü., A. 526, 163). Gibt bei der Umsetzung mit Phenylmagnesiumbromid α.β-Diphenyl-propylenglykol (E II 6, 976) (T., L., Bl. [4] 41, 1360; v. Au., M., Bio. Z. 192, 209). — Das Phenylhydrazon schmilzt bei 96° (N., H., Bio. Z. 115, 305).

Phenylacetylcarbinol-acetat, α -Acetoxy- α -phenyl-aceton $C_{11}H_{12}O_3=C_8H_8\cdot CH(0\cdot CO\cdot CH_3)\cdot CO\cdot CH_3$ (H 108). Durch Kochen von Methyl- $[\alpha$ -brom-benzyl]-keton mit Natriumacetat in Eisessig (v. Auwers, Mauss, *Bio. Z.* 192, 226) sowie beim Acetylieren von Phenylacetyl-carbinol mit Acetylchlorid in Pyridin (v. Au., M.) oder mit Essigsäureanhydrid (v. Au., Ludewig, Müller, A. 526, 155) entstehen Präparate, die überwiegend oder ganz aus Methylbenzoyl-carbinol-acetat (S. 104) bestehen (v. Au., L., M.).

Phenylacetylcarbinol-semicarbazon, α -Oxy- α -phenyl-aceton-semicarbazon $C_{10}H_{13}O_2N_3=C_6H_5\cdot CH(OH)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_3$ (H 108; E I 547). Zur Konstitution vgl. v. Auwers, Mauss, Bio. Z. 192, 204; v. Au., Ludewig, A. 526, 133; v. Au., L., Müller, A. 526, 152. — B. Durch Einw. von Semicarbazid auf Phenylacetylcarbinol in Gegenwart von Kaliumacetat in kaltem Alkohol (Neuberg, Hirsch, Bio. Z. 115, 300; v. Au., M., Bio. Z. 192, 211, 212, 225). — Krystalle (aus Alkohol). F: 193—194° (v. Au., M.), 194° (v. Au., L., Mü., A. 526, 152, 162). — Gibt bei der Oxydation mit Bleidioxyd in Eisessig α -Methyl- β -phenyl-glyoxal- α -semicarbazon $C_6H_5\cdot CO\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_3$ (E II 7, 610) (v. Au., M.).

Phenylacetylcarbinol-thiosemicarbazon $C_{10}H_{13}ON_3S = C_6H_5 \cdot CH(OH) \cdot C(: N \cdot NH \cdot CS \cdot NH_3) \cdot CH_3$. Zur Konstitution vgl. v. Auwers, Mauss, Bio. Z. 192, 212. — B. Durch Einw. von Thiosemicarbazid auf Phenylacetylcarbinol (v. Au., M., Bio. Z. 192, 212; Neuberg, Ohle, Bio. Z. 128, 613). — Nadeln (aus Alkohol). F: 197° (v. Au., M.), 200° (N., O.).

1-[2-Chlor-phenyl]-propanol-(1)-on-(2), [2-Chlor-phenyl]-acetyl-carbinol $C_9H_9O_9Cl=C_8H_4Cl\cdot CH(OH)\cdot CO\cdot CH_3$. B. Bei der Einw. von gärender Hefe auf 2-Chlor-benzaldehyd (Neuberg, Liebermann, $Bio.\ Z.\ 121,\ 316$).

Thiosemicarbazon $C_{10}H_{12}ON_3SCl=C_6H_4Cl\cdot CH(OH)\cdot C(:N\cdot NH\cdot CS\cdot NH_2)\cdot CH_3$. Nadeln (aus Alkohol). F: 216—218° (Zers.) (Neuberg, Liebermann, Bio. Z. 121, 320, 323). Kaum löslich in Wasser, Äther und Essigester, ziemlich schwer in heißem Alkohol, ziemlich leicht in heißem Pyridin.

- 6. 1-Phenyl-propanol-(3)-on-(2), α' Oxy α phenyl aceton $C_9H_{10}O_2=C_9H_5\cdot CH_2\cdot CO\cdot CH_2\cdot OH$.
- α'-Cyclohexyloxy-α-phenyl-aceton $C_{15}H_{20}O_2 = C_6H_5 \cdot CH_2 \cdot CO \cdot CH_2 \cdot O \cdot C_6H_{11}$. B. Aus Cyclohexyloxyacetonitril und Benzylmagnesiumchlorid (Palfray, Sabetay, Bl. [4] 48, 903). Kp₁₄: 185—186°. D³¹: 1,044; n⁵¹: 1,5200. Schmeckt bitter. Reduziert ammoniakalische Silbernitrat-Lösung unter Bildung eines Silberspiegels, aber nicht Fehlingsche Lösung.
- α'-Phenoxy-α-phenyl-aceton $C_{15}H_{14}O_3=C_6H_5\cdot CH_2\cdot CO\cdot CH_2\cdot O\cdot C_6H_5$. B. Beim Kochen von γ-Phenoxy-α-phenyl-acetessigsäuremethylester mit 20%iger Salzsäure, neben anderen Produkten (Pfeiffer, Willems, B. 62, 1249). Nadeln (aus Ligroin). F: 43—44°. Kp_{1,3}: 195—200°.
- α' -Acetoxy- α -phenyl-aceton $C_{11}H_{12}O_3 = C_6H_5 \cdot CH_2 \cdot CO \cdot CH_2 \cdot O \cdot CO \cdot CH_2$. B. Aus α' -Chlor α -phenyl-aceton und Alkaliacetat (Lewis, Nierenstein, Rich, Am. Soc. 47, 1732). Nadeln (aus Alkohol). F: 131°.
- α' -Phenoxy- α -phenyl-aceton-semicarbazon $C_{1e}H_{1?}O_{2}N_{3} = C_{e}H_{5} \cdot CH_{3} \cdot C(:N \cdot NH \cdot CO \cdot NH_{3}) \cdot CH_{3} \cdot O \cdot C_{e}H_{5}$. Nadeln (aus Methanol). F: 151—152° (Pfeiffer, Willems, B. 62, 1250).
- 7. 1-Phenyl-propanol-(1)-al-(3), β -Oxy- β -phenyl-propionaldehyd, β -Oxy-hydrozimtaldehyd $C_5H_{10}O_2=C_6H_5\cdot CH(OH)\cdot CH_1\cdot CHO$.
- β -Oxy- β -[2-nitro-phenyl]-propionaldehyd, 2-Nitro- β -oxy-hydrozimtaldehyd, o-Nitro-phenylmilchsäurealdehyd C₂H₂O₄N = O₂N·C₄H₄·CH(OH)·CH₂·CHO (vgl. H 108; E I 548). Verharzt bei der Einw. von wäßrig-alkoholischer Ammoniumcyanid-Lösung bei 0° (Heller, J. pr. [2] 106, 5, 15).
- 8. 2-Phenyl-propanol-(3)-al-(1), β -Oxy- α -phenyl-propionaldehyd, Tropaaldehyd $C_0H_{10}O_2=C_0H_5\cdot CH(CH_2\cdot OH)\cdot CHO$.
- β-Methoxy-α-phenyl-propionaldehyd, O-Methyl-tropaaldehyd $C_{10}H_{19}O_8 = C_6H_8 \cdot CH(CH_8 \cdot O \cdot CH_3) \cdot CHO$. B. Beim Behandeln einer äther. Lösung von 2-Jod-1-oxy-3-methoxy-1-phenyl-propan mit wäßr. Silbernitrat-Lösung (Beauvour, Bl. [4] 27, 150). Gelbliche Flüssigkeit von etwas stechendem Geruch. Kp₁₄: 123—124°; polymerisiert sich bei der Destillation unter gewöhnlichem Druck. D°: 1,0711. Reduziert Silbernitrat in ammoniakalischer oder natronalkalischer Lösung unter Bildung von O-Methyl-tropasäure (Syst. Nr. 1073); Fehlingsche Lösung wird nicht reduziert. Färbt fuchsinschweflige Säure.

Oxim $C_{10}H_{18}O_2N = C_0H_0 \cdot CH(CH_2 \cdot O \cdot CH_2) \cdot CH : N \cdot OH$. Dioke Flüssigkeit. Kp₁₅: 175°; D°: 1,121 (Braufour, *Bl.* [4] 27, 151).

Semicarbazon $C_{11}H_{18}O_9N_3=C_6H_5\cdot CH(CH_2\cdot O\cdot CH_3)\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Krystalle (aus Alkohol). F: 125° (Beaufoue, Bl. [4] 27, 151).

- 9. 5 Oxy 1 methyl 2 acetyl benzol, 4 Oxy 2 methyl acetophenon,3 - Methyl - 4 - acetyl - phenol, 4 - Acetyl - m - kresol $C_0H_{10}O_3$, s. nebenstehende Formel (H 111). B. Bei 24-stdg. Einw. von Aluminiumchlorid auf m-Kresyl-CH₃ acetat in Nitrobenzol bei 200 (Rosenmund, Schnurg, A. 460, 88; v. Auwers, MAUSS, A. 464, 309). Neben überwiegenden Mengen 2-Oxy-4-methyl-aceto-CO · CH₃ phenon beim Erhitzen von m-Kresylacetat mit Aluminiumehlorid (v. Au., LECHNER, BUNDESMANN, B. 58, 43; R., Sch., A. 460, 65, 88). Bei längerer Einw. von Zinkchlorid und Chlorwasserstoff auf 2-Oxy-4-methyl-acetophenon bei Zimmertemperatur oder bei 77° (SKRAUP, POLLEB, B. 57, 2035). Zur Bildung aus m-Kresol und Acetylchlorid in Gegenwart von Zinkchlorid (Eljkman, C. 1904 I, 1597; H 111) vgl. Skb., P., B. 57, 2035, 2037. — Liefert bei der Reduktion mit amalgamiertem Zink und Salzsäure 3-Methyl-4-athyl-phenol (ROSENMUND, SCHNURR, A. 460, 85). Lagert sich beim Erhitzen mit Aluminiumchlorid auf 170° (R., Sch., A. 460, 90) oder mit Zinkchlorid auf 140° (SKRAUP, POLLER, B. 57, 2035) in 2-Oxy-4-methyl-acetophenon um. Liefert beim Erhitzen mit geringen Mengen Camphersulfonsaure auf 150-2000 m-Kresylacetat (R., Sch., A. 460, 92). Reagiert mit Hydroxylamin nur in Gegenwart von überschüssigem Alkali (v. Auwers, Lechner, Bundesmann, B. 58, 44); in neutraler Lösung erfolgt keine Reaktion (EIJKMAN, C. 1904 I, 1597).
- 4-Methoxy-2-methyl-acetophenon, 4-Acetyl-m-kresol-methyläther $C_{10}H_{12}O_2=CH_3\cdot C_0H_3(O\cdot CH_3)\cdot CO\cdot CH_3$ (H 111). B. Durch Behandeln von 4-Oxy-2-methyl-acetophenon mit Dimethylsulfat (v. Auwers, Lechner, Bundesmann, B. 58, 44). Durch Umsetzung von m-Kresol-methyläther mit Acetylchlorid in Gegenwart von Zinn(IV)-chlorid in Benzol (Stadnikow, Baryschewa, B. 61, 1998) oder von Aluminiumchlorid in Schwefelkohlenstoff (Barbier, Helv. 11, 155) oder mit Acetanhydrid bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff, neben etwas 4-Oxy-2-methyl-acetophenon (Noller, Adams, Am. Soc. 46, 1892, 1894). Kp₇₈₈: 267—268°; Kp₃₈: 163—164° (St., B.); Kp₇₈₈: 267° (korr.); Kp₃: 116,5° (korr.) (N., A.); Kp₁₄: 140—141° (v. Au., L., B.); Kp₄: 116° (Barbier). D₁°: 1,0803; n₁₅°: 1,5527 (St., B.). D₁°: 1,0796; n₁₀°: 1,5510 (N., A.). Liefert beim Kochen mit 20% iger Salpetersäure 4-Methoxy-2-methyl-benzoesäure; beim Behandeln mit rauchender Salpetersäure bei ca. 10° entsteht 3.5-Dinitro-4-methoxy-2-methyl-acetophenon (?) (S. 108) (Barbier, Helv. 11, 156). Reagiert mit Hydroxylamin nur in alkal. Lösung langsam unter Bildung des Oxims (v. Au., L., B.).
- 4-Acetoxy-2-methyl-acetophenon, 4-Acetyl-m-kresol-acetat $C_{11}H_{12}O_3=CH_3\cdot CO\cdot O\cdot C_6H_3(CH_3)\cdot CO\cdot CH_3$. B. Durch Kochen von 4-Oxy-2-methyl-acetophenon mit Acetylchlorid (Rosenmund, Schnurr, A. 460, 90). Flüssigkeit. Kp₁₅: 163°. Liefert beim Erhitzen mit Aluminiumchlorid auf 130° 4-Oxy-2-methyl-acetophenon und etwas geringere Mengen 2-Oxy-4-methyl-acetophenon.
- 4-Oxy-2-methyl-acetophenon-oxim $C_9H_{11}O_2N=CH_3\cdot C_6H_3(OH)\cdot C(:N\cdot OH)\cdot CH_3$. B. Aus 4-Oxy-2-methyl-acetophenon und Hydroxylamin in überschüssigem Alkali (v. Auwers, Lechner, Bundesmann, B. 58, 44). Nadeln (aus Benzol oder verd. Alkohol). F: 153—154°. Leicht löslich. Gibt beim Kochen mit der 20-fachen Menge 17—18% iger Salzsäure 6-Amino-3-oxytoluol und wenig 4-Oxy-2-methyl-acetophenon.
- 4-Methoxy-2-methyl-acetophenon-oxim $C_{10}H_{19}O_{2}N=CH_{3}\cdot C_{6}H_{3}(O\cdot CH_{3})\cdot C(:N\cdot OH)\cdot CH_{3}$. Bei mehrtägiger Einw. von Hydroxylamin auf 4-Methoxy-2-methyl-acetophenon in überschüssigem Alkali (v. Auwers, Lechner, Bundesmann, B. 58, 44). Prismen (aus Petroläther). F: 80,5—81,5° (Stadnikow, Baryschewa, B. 61, 1998), 81,5—82° (v. Au., L., B.). Sehr leicht löslich (v. Au., L., B.). Liefert beim Kochen mit der 20-fachen Menge 17—18 % iger Salzsäure hauptsächlich 6-Amino-3-methoxy-toluol (v. Au., L., B.).
- 4 Methoxy-2-methyl acetophenon semicarbazon $C_{11}H_{15}O_3N_3 = CH_3 \cdot C_6H_3(O \cdot CH_3) \cdot C(:N \cdot NH \cdot CO \cdot NH_3) \cdot CH_3$. Nadeln (aus Alkohol); F: 194—195° (v. Auwers, Lechner, Bundesmann, B. 58, 44). Krystalle (aus Alkohol); F: 179—180° (Stadnikow, Baryschewa, B. 61, 1998).
- $\omega.\omega.\omega$ -Trichlor-4-oxy-2-methyl-acetophenon, 4-Trichloracetyl-m-kresol $C_9H_7O_2Cl_2=CH_3$: $C_8H_3(OH)\cdot CO\cdot CCl_3$. B. Neben $\omega.\omega.\omega$ -Trichlor-2-oxy-4-methyl-acetophenon und wenig $\omega.\omega.\omega$ -Trichlor-4-oxy-2-methyl-acetophenon-imid beim Behandeln von m-Kresol mit Trichloracetonitril, Aluminiumchlorid und Chlorwasserstoff in Chlorbenzol (Houben, Fischer, J. pr. [2] 123, 269, 271). Krystalle (aus Benzin). F: 84—87°. Mit Wasserdampf nicht flüchtig. Löslich in kalter verdünnter Alkalicarbonat-Lösung mit tiefgelber Farbe, die beim Erwärmen infolge Bildung von 4-Oxy-2-methyl-benzoesäure verschwindet.

Methyläther, $\omega.\omega.\omega$ -Trichlor - 4 - methoxy - 2 - methyl - acetophenon $C_{10}H_2O_2Cl_2 = CH_3 \cdot C_8H_3(O\cdot CH_2)\cdot CO\cdot CCl_2$. B. Durch Behandeln von m-Kresol-methyläther und Trichloracetonitril mit Chlorwasserstoff in Gegenwart von Zinkchlorid in Äther (HOUBEN, FISCHER, B. 60, 1767). — Fast farblose Flüssigkeit. Kp_{0,8}: 130°. — Gibt mit Natronlauge 4-Methoxy-2-methyl-benzoesäure.

 $\omega.\omega.\omega$ -Trichlor-4-oxy-2-methyl-acetophenon-imid, 4-Trichloracetimino-m-kresol $C_9H_8ONCl_3=CH_3\cdot C_8H_8(OH)\cdot C(:NH)\cdot CCl_3$. B. s. S. 107 bei 4-Trichloracetyl-m-kresol. — Krystalle (aus Benzin). F: 122—124° (unter geringer Zersetzung) (HOUBEN, FISCHER, J. pr. [2] 128, 270). — Hydrochlorid. Gelbes Pulver. Wird durch Wasser hydrolysiert.

- 3.5-Dinitro-4-methoxy-2-methyl-acetophenon (?), 2.6-Dinitro-4-acetyl-m-kresol-methyl-äther (?) $C_{10}H_{10}O_{4}N_{2}$, Formel I. B. Durch Nitrierung von 4-Methoxy-2-methyl-acetophenon mit rauchender Salpetersäure bei ca. 10° (Barbier, Helv. 11, 156). Neben anderen Verbindungen beim Eintragen von 4-Methoxy-2-methyl-5-tert.-butyl-acetophenon (S. 143) in 92—95%ige Salpetersäure unterhalb 0° (B., Helv. 11, 155, 161). Nadeln von anhaftendem, unangenehmem Geruch (aus Alkohol oder Essigester). F: 84°.
- 10. 6-Oxy-3-äthyl-benzaldehyd, 5-Åthyl-salicylaldehyd $C_9H_{10}O_2$, Formel II. 6-Methoxy-3-äthyl-benzaldehyd $C_{10}H_{12}O_3=C_9H_5\cdot C_6H_3(O\cdot CH_3)\cdot CHO$. B. Durch Behandeln von 4-Åthyl-anisol mit Zinkeyanid und Chlorwasserstoff in Benzol, Zufügen von Alu-

handeln von 4-Athyl-anisol mit Zinkcyanid und Chlorwasserstoff in Benzol, Zufügen von Aluminiumchlorid und Erwärmen auf 50° (GULLAND, VIRDEN, Soc. 1928, 929). — Öl. Kp: 261° bis 260°

Semicarbazon $C_{11}H_{16}O_2N_3=C_2H_5\cdot C_6H_3(O\cdot CH_3)\cdot CH:N\cdot NH\cdot CO\cdot NH_2.$ Nadeln (aus Alkohol). F: 226—2270 (Gulland, Virden, Soc. 1928, 930).

$$1. \quad \underbrace{\overset{CH_3}{\circ}_{O_2N} \cdot \overset{CH_3}{\circ}}_{NO_2} \cdot \overset{CO \cdot CH_3}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CHO}{\circ}}_{HO} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{CH}{\circ}}_{CO \cdot CH_3} \cdot \overset{CH}{\circ} (\qquad \qquad 1II. \quad \underbrace{\overset{C$$

- 11. 2-Oxy-1-methyl-3-acetyl-benzol, 2-Oxy-3-methyl-acetophenon, 2-Methyl-6-acetyl-phenol, 6-Acetyl-o-kresol C₉H₁₀O₂, Formel III (E I 549). B. Durch rasches Erhitzen von o-Kresylacetat mit Aluminiumchlorid auf 130° (v. Auwers, Lechner, Bundesmann, B. 58, 41; v. Au., B., Wieners, A. 447, 180; Rosenmund, Schnurr, A. 460, 88). Ausbeute bis zu 55° der Theorie (R., Soh.). Kp: 235—237°; Kp₉: 103—104° (v. Au., L., B.). D₄^(6,1): 1,1010 (v. Au., L., B.). Verbrennungswärme bei konstantem Volumen: 1092,0 kcal/Mol (Klapeoth in Landolt-Börnst. E II, 1639). n_{\text}
- 2-Methoxy-3-methyl-acetophenon, 6-Acetyl-o-kresol-methyläther $C_{10}H_{12}O_2=CH_3\cdot C_6H_3(O\cdot CH_3)\cdot CO\cdot CH_3$. B. Durch Schütteln von 2-Oxy-3-methyl-acetophenon mit Dimethyl-sulfat und 10% iger Natronlauge (v. Auwers, Lechner, Bundesmann, B. 58, 42). Gelbliches Öl. Kp: 240°; Kp₁₂: 115°. $D_4^{19,1}$: 1,0610; $n_0^{19,1}$: 1,5193; $n_{57,6}^{19,1}$: 1,5244; $n_5^{19,1}$: 1,5371; $n_y^{19,1}$: 1,5487.
- 2-Oxy-3-methyl-acetophenon-oxim C₉H₁₁O₂N = CH₃·C₆H₃(OH)·C(:N·OH)·CH₃. B. Beim Aufbewahren von 2-Oxy-3-methyl-acetophenon mit 3 Mol Hydroxylamin-hydrochlorid und 6 Mol wäßrig-alkoholischer Natronlauge (v. Auwers, Leohner, Bundesmann, B. 58, 42).

 Nadeln (aus verd. Alkohol) oder Blättchen (aus Petroläther). Färbt sich am Licht gelblich. F: 132—133°. Leicht löslich in den meisten Lösungsmitteln. Liefert beim Kochen mit der 20-fachen Menge 17—18%iger Salzsäure wieder 2-Oxy-3-methyl-acetophenon.
- 2-Methoxy-3-methyl-acetophenon-oxim $C_{10}H_{13}O_2N=CH_3\cdot C_6H_3(O\cdot CH_3)C(:N\cdot OH)\cdot CH_3$. B. Bei 12-stdg. Erwärmen von 2-Methoxy-3-methyl-acetophenon mit Hydroxylamin-Lösung auf 60° (v. Auwers, Lechner, Bundesmann, B. 58, 42). Nadeln (aus Benzin). F: 96—97°. Leicht löslich in Alkohol und Benzol, ziemlich schwer in Benzin. Liefert beim Kochen mit der 20-fachen Menge 17—18%iger Salzsäure 2-Methoxy-3-methyl-acetophenon und geringe Mengen 3-Amino-2-methoxy-toluol.
- 2 Oxy 3 methyl acetophenon semicarbazon $C_{10}H_{13}O_2N_3 = CH_3 \cdot C_6H_3(OH) \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_3$. F: 242° (v. Auwers, Bundesmann, Wieners, A. 447, 180).
- ω -Chlor-2-exy-3-methyl-acetophenon, 6-Chloracetyl-o-kresol $C_9H_9O_3Cl=CH_3\cdot C_6H_3(OH)\cdot CO\cdot CH_2Cl\ (E I 549)$. Zur Bildung durch Erhitzen von Chloressigsäure o tolylester mit Aluminiumchlorid vgl. Mameli, G. 56, 766.

12. 4-Oxy-1-methyl-3-acetyl-benzol, 6-Oxy-3-methyl-acetophenon, 4-Methyl-2-acetyl-phenol, 2-Acetyl-p-kresol C₂H₁₀O₂, s. nebenstehende Formel (H 111; E I 549). B. Durch Erhitzen von p-Kresylacetat (E II 6, 378) mit Aluminium-chlorid auf 110—120° (v. Auwers, Anschütz, B. 54, 1533; Wittig, B. 57, 90; Rosenmund, Schurer, A. 460, 83). Beim Kochen von 3-Brom-6-methyl-chromanon mit wäßr. Alkali (Krollpfeiffer, Mitarb., B. 58, 1655) und von 2.2.6-Trimethyl-chromanon mit 1n-alkoholischer Kalilauge (v. Au., M., B. 61, 2548).

Verbrennungswärme bei konstantem Volumen: 1002,7 kcal/Mol (Roth, Banse in Landolt-Börnst. E II 1639). — Liefert bei der Einw. von Salpetersäure je nach den Bedingungen 5-Nitro-6-oxy-3-methyl-acetophenon oder 6-Nitro-4-methyl-2-acetyl-chinitrol-(1.4) (E II 7,594) (Wittig. A. 446, 181; vgl. W., Schulze, J. pr. [2] 180 [1931], 89). Liefert mit Benzaldehyd in wäßrigalkoholischer Natronlauge bei 50° 6-Oxy-3-methyl-\omega-benzyliden-acetophenon; bei den meisten Versuchen entsteht daneben 6-Methyl-flavanon, das unter bestimmten Bedingungen als einziges Reaktionsprodukt auftreten kann (v. Auwers, A. 421, 103); reagiert analog mit Anisaldehyd (v. Au., Anschütz, B. 54, 1553). Gibt beim Kochen mit Essigester und Natrium 6-Oxy-3-methyl-benzoylaceton (Wittig, B. 57, 94; 58, 21). Liefert beim Erhitzen mit Acetanhydrid und Natrium-acetat auf 160—220° und Destillieren des Reaktionsgemisches unter vermindertem Druck 2.6-Dimethyl-3-acetyl-chromon, 2.6-Dimethyl-chromon und 4.6-Dimethyl-cumarin (W., B. 57, 92; A. 446, 175). Beim Schmelzen mit Benzoylchlorid und Natriumbenzoat bei 180—210° erhält man 6-Methyl-flavon und andere Produkte (W., A. 446, 197). Liefert mit Oxalsäure-diäthylester und Natrium [6-Oxy-3-methyl-benzoyl]-brenztraubensäure-äthylester (Syst. Nr. 1437) (v. Auwers, A. 421, 29). — Das Phenylhydrazon schmilzt bei 154—155°, das 4-Bromphenylhydrazon bei 185—186° (v. Auwers, Lämmerhirt, B. 54, 1016, 1019), das 4-Nitrophenylhydrazon bei 245—246° (v. Au., L., B. 53, 435).

- 6-Methoxy 3-methyl acetophenon, 2-Acetyl p-kresol methyläther $C_{10}H_{12}O_2=CH_3\cdot C_6H_3(O\cdot CH_3)\cdot CO\cdot CH_3$ (E I 549). B. Aus p-Kresol-methyläther durch Einw. von Acetylchlorid und Zinn(IV)-chlorid in kaltem Benzol (Stadnikow, Baryschewa, B. 61, 1999) oder von Acetanhydrid und Aluminiumchlorid in kaltem Schwefelkohlenstoff, neben geringen Mengen 6-Oxy-3-methyl-acetophenon (Noller, Adams, Am. Soc. 46, 1892, 1894). Kp₇₄₀: 260,5° (korr.); Kp₇: 120,5° (korr.) (N., A.); Kp₇₃₀: 260—261°; Kp₂₁: 143—146° (St., B.). D³⁰: 1,0652; n³⁰: 1,5376 (N., A.); D³¹: 1,0636; n³²: 1,5375 (Str., B.). Liefert mit Essigsäureäthylester und Natrium 6-Methoxy-3-methyl-benzoylaceton (v. Auwers, A. 421, 40).
- 6-Äthoxy-3-methyl-acetophenon, 2-Acetyl-p-kresol-äthyläther $C_{11}H_{14}O_2=CH_3\cdot C_6H_3(O\cdot C_2H_5)\cdot CO\cdot CH_3$. B. Durch Behandeln von 6-Oxy-3-methyl-acetophenon mit Diäthyl-sulfat (v. Auwers, Lechner, Bundesmann, B. 58, 45) oder mit Äthyljodid in siedender alkoholischer Kalilauge (v. Au., Jordan, J. pr. [2] 107, 355). Prismen oder Nadeln (aus Methanol oder Petroläther). F: 44—45° (v. Au., L., B.; v. Au., J.). Sehr leicht löslich in den meisten organischen Mitteln (v. Au., J.).
- 6-Isopropyloxy-3-methyl-acetophenon, 2-Acetyl-p-kresol-isopropyläther $C_{12}H_{16}O_2=(CH_3)_2CH\cdot O\cdot C_6H_3(CH_3)\cdot CO\cdot CH_3$. B. Aus der Natriumverbindung des 6-Oxy-3-methyl-acetophenons und 2 Mol Isopropylbromid im Rohr bei 120—130° (v. Auwers, Lechner, Bundesmann, B. 58, 45). Gelbliches Öl. Kp₁₅: 136—137°.
- 6-p-Kresoxy-3-methyl-acetophenon, 4.4'-Dimethyl-2-acetyl-diphenyläther $C_{16}H_{16}O_2=CH_3\cdot C_6H_4\cdot O\cdot C_6H_3(CH_3)\cdot CO\cdot CH_3$. B. Durch Erhitzen von Di-p-tolyläther mit Acetylchlorid in Gegenwart von Aluminiumchlorid (Reilly, Drumm, Soc. 1927, 2819). Tafeln (aus Alkohol). F: 168°. Riecht nach Acetophenon. Leicht löslich in Äther, Benzol und heißem Alkohol. Löst sich in Schwefelsäure mit gelber Farbe.
- 6-Acetoxy-3-methyl-acetophenon, 2-Acetyl-p-kresol-acetat $C_{11}H_{12}O_3 = CH_3 \cdot CO \cdot O \cdot C_6H_6(CH_9) \cdot CO \cdot CH_4$. B. Aus 6-Oxy-3-methyl-acetophenon durch Einw. von Acetanhydrid und konz. Schwefelsäure (Finck, Dissert. [Marburg 1908], S. 64). Krystalle (aus Benzin). F: 34° (F.). Leicht löslich in den gewöhnlichen Lösungsmitteln (F.). Liefert bei vorsichtigem Erhitzen mit Aluminiumchlorid auf 100—120° 2.6-Diacetyl-p-kresol (ROSENMUND, SCHNURR, A. 460, 85).
- 6-Oxy-3-methyl-acetophenon-imid $C_9H_{11}ON=CH_3\cdot C_6H_3(OH)\cdot C(:NH)\cdot CH_3$. B. Durch Hydrierung von 3.5-Dimethyl-indoxazen (Syst. Nr. 4195) in absol. Ather bei Gegenwart von Palladium-Bariumsulfat (Lindemann, Pickert, A. 456, 281). Gelbe Prismen (aus Benzol). F: 167° (Zers.). Gibt mit kalter verdünnter Salzsäure 6-Oxy-3-methyl-acetophenon.
- 6-Oxy-3-methyl-acetophenon-oxim $C_9H_{11}O_9N=CH_3\cdot C_6H_3(OH)\cdot C(:N\cdot OH)\cdot CH_3$ (E I 549). Kp₁₄: 168—170° (v. Auwers, Jordan, B. 58, 34); siedet unter gewöhnlichem Druck größtenteils unzersetzt bei 265—267° (v. Au., J.). Löslich in kaltem Methanol und Alkohol und in

siedendem Benzol, schwer löslich in Wasser (LINDEMANN, THIELE, A. 449, 80). — Liefert beim Kochen mit der 20-fachen Menge 17—18 %iger Salzsäure wieder 6-Oxy-3-methyl-acetophenon (v. Au., Leonner, Bundesmann, B. 58, 44). Gibt bei kurzem Erhitzen mit Kaliumdisulfat auf 150—160° oder beim Behandeln mit Phosphorpentachlorid in Äther 2.5-Dimethyl-benzoxazol (Syst. Nr. 4195) (v. Au., J.), geringere Mengen dieser Verbindung erhält man bei der Behandlung mit Phosphorpentoxyd in siedendem Benzol oder mit Zinkchlorid auf dem Wasserbad (v. Au., J.).

- 6-Oxy-3-methyl-acetophenon-oximacetat C₁₁H₁₃O₃N = CH₃·C₆H₃(OH)·C(CH₃):N·O·CO·CH₃. B. Aus dem Oxim durch Erwärmen mit Acetanhydrid auf dem Wasserbad (LINDEMANN, THIELE, A. 449, 80). Tafeln (aus Alkohol). F: 114°. Leicht löslich in kaltem Benzol sowie in heißem Alkohol und Eisessig. Gibt beim Erhitzen auf 120—160° Essigsäure, 3.5-Dimethylindoxazen (Syst. Nr. 4195) (L., Th.; L., ROMANOFF, J. pr. [2] 122, 227) und geringe Mengen 2.5-Dimethyl-benzoxazol (L., R.).
- 6-Methoxy-3-methyl-acetophenon-oxim $C_{10}H_{12}O_2N=CH_3\cdot C_6H_3(O\cdot CH_3)\cdot C(:N\cdot OH)\cdot CH_3$. Nadeln (aus Leichtbenzin). F: 89—90° (v. Auwers, Lechner, Bundesmann, B. 58, 44), 88,5° bis 89.5° (Stadnikow, Baryschewa, B. 61, 1999). Leicht löslich in den meisten Lösungsmitteln (v. Au., L., B.). Liefert beim Kochen mit 20 Tln. 17—18% iger Salzsäure 6-Methoxy-3-methylacetophenon und 3-Amino-4-methoxy-toluol im Verhältnis 4: 3 (v. Au., L., B.).
- 6-Äthoxy-3-methyl-acetophenon-oxim $C_{11}H_{16}O_3N=CH_3\cdot C_6H_3(O\cdot C_2H_5)\cdot C(:N\cdot OH)\cdot CH_3$. Krystalle (aus Methanol). F: 107° (v. Auwers, Lechner, Bundesmann, B. 58, 45). Leicht löslich in den meisten Lösungsmitteln.
- 6-Isopropyloxy-3-methyl-acetophenon-oxim $C_{19}H_{17}O_2N = (CH_3)_2CH\cdot O\cdot C_8H_3(CH_3)\cdot C(: N-OH)\cdot CH_3$. Schwach gelbe Nadeln (aus Benzol). F: 93° (v. Auwers, Lechner, Bundesmann, B. 58, 45).
- 6-Methoxy-3-methyl-acetophenon-semicarbazon $C_{11}H_{15}O_2N_3=CH_3\cdot C_6H_3(O\cdot CH_3)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_3$. F: 176—177° (STADNIKOW, BARYSCHEWA, B. 61, 1999).
- 6-Äthoxy-3-methyl-acetophenon-semicarbazon $C_{12}H_{17}O_2N_3 = C_2H_5 \cdot O \cdot C_6H_3(CH_3) \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_3$. Nadeln (aus Alkohol). F: 195—196° (v. Auwers, Lechner, Bundesmann, B. 58, 45). Leicht löslich in Methanol, schwerer in Benzol.
- 6 Isopropyloxy 3 methyl acetophenon semicarbazon $C_{13}H_{19}O_2N_3 = (CH_3)_2CH \cdot O \cdot C_6H_3(CH_3) \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_3$. Blättchen (aus Alkohol). F: 174—175° (v. Auwers, Lechner, Bundesmann, B. 58, 45).
- 5-Chlor-6-oxy-3-methyl-acetophenon, 6-Chlor-2-acetyl-p-kresol, 6-Chlor-4-methyl-2-acetyl-phenol C₂H₂O₂Cl, s. nebenstehende Formel. B. Durch Erhitzen von 3-Chlor-4-acetoxy-toluol mit Aluminiumchlorid auf 120° (Rosen-Mund, Schnurr, A. 460, 84) oder auf 150° (v. Auwers, Mauss, A. 464, 304). Nadeln (aus 80% igem Alkohol). F: 91° (R., Sch.; v. Au., M.).
- ω- Chlor 6 oxy 3 methyl acetophenon, 2 Chloracetyl p kresol C₉H₉O₂Cl = CH₃· C₆H₃(OH)· CO· CH₂Cl (H 111). Zur Bildung durch Erhitzen von Chloressigsäure-p-tolylester mit Aluminiumchlorid (H 111) vgl. a. Mamell, G. 56, 766. F: 65° (M.). Liefert beim Erhitzen mit Acetanhydrid und Natriumacetat auf 190° 3-Chlor-2.6-dimethyl-chromon und 3-Oxy-2.6-dimethyl-chromon (Wittig, A. 446, 191). Gibt beim Kochen mit Diäthylanilin 5-Methyl-cumaranon-(3) (Syst. Nr. 2385) und wenig 6-Oxy-3-methyl-acetophenon (v. Auwers, Lämmerhirt, B. 53, 434).
- $\omega.\omega.\omega$ -Trichlor-6-methoxy-3-methyl-acetophenon, 2-Trichloracetyl-p-kresol-methyläther $C_{10}H_9O_3Cl_3=CH_3\cdot C_6H_3(O\cdot CH_3)\cdot CO\cdot CCl_3$. B. Durch Behandlung von p-Kresol-methyläther und Trichloracetonitril mit Aluminiumchlorid und Chlorwasserstoff und Zersetzung des Reaktionsproduktes mit Wasser (Houben, Fischer, J. pr. [2] 123, 272). Krystalle (aus Benzol). F: 46—49°. Kp₁₅: 168—169°. Unlöslich in Wasser, löslich in organischen Lösungsmitteln. Wird durch heiße Natronlauge in 6-Methoxy-3-methyl-benzoesäure übergeführt.
- ω -Brom-6-oxy-3-methyl-acetophenon, 2-Bromacetyl-p-kresol $C_0H_0O_2Br=CH_3\cdot C_0H_3(OH)\cdot CO\cdot CH_2Br$. B. Beim Erhitzen von p-Tolyl-bromacetat mit Aluminiumchlorid auf 125° (Wittig, A. 446, 192). Nadeln (aus verd. Methanol), F: 45,5—46,5°. Greift die Augen an. Löslich in Benzin, leicht löslich in anderen organischen Lösungsmitteln. Liefert beim Erhitzen mit Acetanhydrid und Natriumacetat auf 180° 3-Acetoxy-2.6-dimethyl-chromon.
- ω Brom 6 methoxy 3 methyl acetophenon, 2 Bromacetyl p kresol methyläther $C_{10}H_{11}O_2Br = CH_3 \cdot C_0H_3(O \cdot CH_3) \cdot CO \cdot CH_2Br$. Nadeln (aus Ligroin). F: 74—75° (Kroll-Pfeiffer, Schneider, B. 61, 1291). Wird bei der Wasserdampfdestillation und beim Erhitzen über den Schmelzpunkt nicht verändert (K., S., B. 61, 1286).

chromon (W., A. 446, 182).

111

- 6-Mercapto-3-methyl-acetophenon, 2-Acetyl-thio-p-kresol, 4-Methyl-2-acetyl-thiophenol C₉H₁₆OS, s. nebenstehende Formel. B. Beim Kochen von 3-Brom-6-methyl-1-thio-chromanon mit wäßrig-alkoholischer Natronlauge (Krollpfeiffer, Mitarb., B. 58, 1668). Schwach gelbes Öl. Kp₁₃: 144—146°.
- 6-Methylmercapto-3-methyl-acetophenon, 2-Acetyl-thio-p-kresol-methyläther $C_{10}H_{12}OS = CH_3 \cdot C_6H_3(S \cdot CH_3) \cdot CO \cdot CH_3$ (H 112). $D_4^{m,0}$: 1,0616; $n_{\alpha}^{m,0}$: 1,5585; $n_{807,80}^{m,0}$: 1,5657; $n_{\beta}^{m,0}$: 1,5853 (Krollffeiffer, B. 58, 1678). Gibt mit 1 Mol Brom in Schwefelkohlenstoff bei gelindem Erwärmen 2-Bromacetyl-thio-p-kresol-methyläther; beim Bromieren in Eisessig entsteht eine halogenfreie, in orangeroten Prismen krystallisierende Verbindung vom Schmelzpunkt 226—227° (K., Schneider, B. 61, 1289).
- 4.4' Dimethyl 2.2' diacetyl diphenyldisulfid $C_{18}H_{18}O_3S_2 = [CH_3 \cdot CO \cdot C_8H_3(CH_3) \cdot S_{-}]_2$. Nadeln (aus Alkohol). F: 173—174° (Krollpfeiffer, Mitarb., B. 58, 1668).
- 6-Mercapto 3 methyl acetophenon semicarbazon $C_{10}H_{15}ON_3S = CH_3 \cdot C_6H_3(SH) \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_3$. Nadeln (aus Alkohol). F: 199—200° (Krollpfeiffer, Mitarb., B. 58, 1668). Löslich in Alkalien.
- ω-Brom-6-methylmercapto-3-methyl-acetophenon, 2-Bromacetyl-thio-p-kresol-methyl-äther $C_{10}H_{11}OBrS = CH_3 \cdot C_4H_3(S \cdot CH_3) \cdot CO \cdot CH_3Br$. B. Aus 2-Acetyl-thio-p-kresol-methyl-äther und 1 Mol Brom in Schwefelkohlenstoff, zuletzt unter gelindem Erwärmen (Kroll-pfeiffer, Schneider, B. 61, 1289). Gelbe Nadeln (aus Alkohol). F: 77—78°. Färbt sich bei längerem Aufbewahren rot. Geht beim Erhitzen über den Schmelzpunkt oder bei der Destillation mit Wasserdampf in 3-Oxy-5-methyl-thionaphthen über; beim Kochen mit Eisessig oder Toluol entstehen außerdem geringe Mengen 5.5'- Dimethyl-thionidigo.
- ω -Jod-6-methylmercapto-3-methyl-acetophenon, 2-Jodacetyl-thio-p-kresol-methyläther $C_{10}H_{11}OIS=CH_3\cdot C_0H_3(S\cdot CH_3)\cdot CO\cdot CH_2I$. B. Aus 2-Bromacetyl-thio-p-kresol-methyläther und Kaliumjodid in wäßr. Aceton bei Zimmertemperatur (Krollpfeiffer, Schneider, B. 61, 1290). Gelbe Krystalle (aus Alkohol). F: 86—87°. Färbt sich bei längerem Aufbewahren rot. Geht bei der Destillation mit Wasserdampf in 3-Oxy-5-methyl-thionaphthen über.
- 13. 6-Oxy-1-methyl-3-acetyl-benzol, 4-Oxy-3-methyl-acetophenon, 2-Methyl-4-acetyl-phenol, 4-Acetyl-o-kresol C₉H₁₀O₂, s. nebenstehende Formel (H 112). B. Durch Behandlung von o-Tolyl-acetat mit Aluminiumchlorid, am besten in Nitrobenzol bei 20° (Rosenmund, Schnurr, A. 460, 88; vgl. a. v. Auwers, Lechner, Bundesmann, B. 58, 41).
- 4-Methoxy-3-methyl-acetophenon, 4-Acetyl-0-kresol-methyläther $C_{10}H_{12}O_2=CH_3\cdot C_6H_3(O\cdot CH_4)\cdot CO\cdot CH_2$. B. Durch Behandeln von 4-Oxy-3-methyl-acetophenon mit Dimethylsulfat in Natronlauge (v. Auwers, Lechner, Bundesmann, B. 58, 43). Durch Umsetzung von o-Kresolmethyläther mit Acetanhydrid und Aluminiumchlorid in Schwefelkohlenstoff (Noller, Adams, Am. Soc. 46, 1892) oder mit Acetylchlorid und Zinntetrachlorid in Benzol unter Kühlung, neben geringen Mengen 4-Oxy-3-methyl-acetophenon (?) (Stadnikow, Baryschewa, B. 61, 1997). F: 26—26,5° (kort.) (N., Å.). Kp₇₄₄: 273,5° (kort.); Kp₃: 116° (kort.) (N., A.); Kp₈₀: 171—172° (St., Ba.); Kp₁₄: 145—146° (v. Au., L., Bu.). D₄°: 1,0812; n₂°: 1,5538 (St., Ba.).
- 4-Acetoxy-3-methyl-acetophenon, 4-Acetyl-o-kresol-acetat $C_{11}H_{19}O_3=CH_3\cdot CO\cdot O\cdot C_6H_8(CH_8)\cdot CO\cdot CH_8$. Beim Kochen von 4-Acetyl-o-kresol mit Acetanhydrid und Natriumacetat (Wrrrig, A. 446, 201). Krystalle (aus Benzin). F: 60—61°. Leicht löslich in den üblichen Mitteln, löslich in Schwerbenzin.
- 4-Propionyloxy-3-methyl-acetophenon $C_{12}H_{14}O_3=C_2H_5\cdot CO\cdot O\cdot C_6H_3(CH_3)\cdot CO\cdot CH_3$. B. Beim Kochen von 4-Acetyl-o-kresol oder 4-Acetyl-o-kresol-acetat mit Propionsäureanhydrid und Natriumpropionat (Wittig, A. 446, 201). Öl. Kp₁₄: 168—169°.

- 4-Oxy-3-methyl-acetophenon-oxim $C_0H_{11}O_0N=CH_3\cdot C_0H_3(OH)\cdot C(:N\cdot OH)\cdot CH_3$. Nadeln (aus Benzol). F: 92,5—93,5° (v. Auwers, Lechner, Bundesmann, B. 58, 43). Leicht löslich. Reagiert beim Kochen mit der 20-fachen Menge 17—18% iger Salzsäure nur teilweise unter Rückbildung des Ketons.
- 4 Methoxy 3 methyl acetophenon oxim $C_{10}H_{18}O_2N =: CH_3 \cdot C_6H_3(O \cdot CH_2) \cdot C(:N \cdot OH) \cdot CH_3$. Nadeln (aus Leichtbenzin). F: 101—101,5° (Stadnikow, Baryschewa, B. 61, 1997), 101,5° bis 102,5° (v. Auwers, Lechner, Bundesmann, B. 58, 43). Ist im allgemeinen leicht löslich (v. Au., L., B.). Reagiert beim Kochen mit der 20-fachen Menge 17—18% iger Salzsäure nur teilweise unter Rückbildung des Ketons (v. Au., L., B.).
- 4 Methoxy 3 methyl acetophenon semicarbazon $C_{11}H_{18}O_2N_3 = CH_3 \cdot C_4H_3(O \cdot CH_3) \cdot C(:N \cdot NH \cdot CO \cdot NH_3) \cdot CH_3$. F: 206—207° (Stadnikow, Baryschewa, B. 61, 1997).
- 4-Propionyloxy-3-methyl-acetophenon-semicarbazon $C_{18}H_{17}O_8N_3=C_2H_3\cdot CO\cdot O\cdot C_4H_3(CH_3)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_3$. Krystalle (aus Alkohol). F: 192—193° (Zers.) (Wittig, A. 446, 202). Ziemlich schwer löslich in den gebräuchlichen Lösungsmitteln außer Eisessig.
- 5. ω Dichlor 4 oxy 3 methyl acetophenon, 6-Chlor-4-chloracetyl-o-kresol C₉H₈O₂Cl₂, s. nebenstehende Formel. B. Beim Erhitzen von 3-Chlor-2-chloracetoxy-toluol mit Aluminiumchlorid erst auf 100—120°, dann auf 140° (v. Auwers, Mauss, A. 464, 310). Krystalle (aus verd. Methanol). F: 98,5—99,5°.
- $\omega.\omega.\omega$ -Trichlor-4-oxy-3-methyl-acetophenon, 4-Trichloracetyl-o-kresol $C_0H_7O_2Cl_3=CH_3\cdot C_0H_3(OH)\cdot CO\cdot CCl_3$. B. Durch Umsetzung von o-Kresol mit Trichloracetonitril in Gegenwart von Aluminiumchlorid und Chlorwasserstoff in Benzol oder besser in Chlorbenzol bei ca. 60° und Zersetzung des Reaktionsproduktes mit Eis (HOUBEN, FISCHER, J. pr. [2] 123, 268, 269). Blättchen (aus Benzin). F: 90—91°. Unlöslich in Wasser, löslich in organischen Lösungsmitteln außer Petroläther. Löst sich mit gelber Farbe in konz. Schwefelsäure sowie in Alkalien und Ammoniak; die alkal. Lösungen entfärben sich rasch unter Bildung von 4-Oxy-3-methyl-benzoesäure.
- Äthyläther, $\omega.\omega.\omega$ -Trichlor-4-äthoxy-3-methyl-acetophenon $C_{11}H_{11}O_2CI_3=CH_3\cdot C_0H_3(O\cdot C_2H_5)\cdot CO\cdot CCI_3$. B. Durch Umsetzung von o-Kresol-äthyläther mit Trichloracetonitril in Gegenwart von Zinkchlorid und Chlorwasserstoff in absol. Äther und Zersetzung des Reaktionsprodukts mit Eiswasser (Houben, Fischer, B. 60, 1767). Prismen (aus Petroläther oder Methanol). F: 67—68°. Gibt mit heißer Natronlauge 4-Äthoxy-3-methyl-benzoesäure.
- 14. 3-Oxy-1-methyl-4-acetyl-benzol, 2-Oxy-4-methyl-acetophenon, CH3 5-Methyl-2-acetyl-phenol, 6-Acetyl-m-kresol $C_0H_{10}O_2$, s. nebenstehende Formel (H 112; E I 550). B. Neben geringen Mengen 4-Oxy-2-methyl-acetophenon beim Erhitzen von m-Tolylacetat mit Aluminiumchlorid auf 120-1650 (Rosen-OH MUND, SCHNURR, A. 460, 64, 88; vgl. v. Auwers, Lechner, Bundesmann, B. 58, 43). Entsteht auch beim Erhitzen von m-Tolylacetat mit Zinkchlorid auf 140° bis 160° (SKRAUP, POLLER, B. 57, 2033, 2037). Aus 4-Oxy-2-methyl-acetophenon und dessen Acetat oder Benzoat beim Erhitzen mit Aluminiumchlorid auf 170° bzw. auf 130° (Ros., Sch., A. 460, 90). — Kp₈: 101° (v. Au., L., B.). Verbrennungswärme bei konstantem Volumen: 1090,6 kcal/Mol (Roth, Banse in Landolt-Börnst. E II, 1639). — Liefert mit Zinkchlorid und Chlorwasserstoff bei wochenlangem Aufbewahren bei Zimmertemperatur, besser bei 4-tägigem Erwärmen auf 77°, 4-Oxy-2-methyl-acetophenon und m-Kresol (Skraup, Poller, B. 57, 2035, 2038). Kondensiert sich mit Essigester in Gegenwart von Natrium, zuletzt bei Siedetemperatur, zu 5-Methyl-2-acetoacetyl-phenol (Syst. Nr. 776) (Wrttig, A. 446, 170). Liefert bei 25-stdg. Erhitzen mit Acetanhydrid und Natriumacetat und Kochen des Reaktionsprodukts mit wäßr. Ammoniak 2.7-Dimethyl-chromon und 4.7-Dimethyl-cumarin; kocht man das Reaktionsprodukt mit Natronlauge, so erhält man 4.7-Dimethyl-cumarin und 4-Methyl-salicylsäure (W., A. 446, 179).
- 2 Methoxy 4-methyl acetophenon, 6 Acetyl m kresol methyläther $C_{10}H_{12}O_2=CH_3\cdot C_0H_3(O\cdot CH_3)\cdot CO\cdot CH_2$ (H 112). B. Durch Behandeln von 2-Oxy-4-methyl-acetophenon mit Dimethylsulfat und Natronlauge (Dilthey, Fröde, Koenen, J. pr. [2] 114, 162; v. Auwers, Lechner, Bundesmann, B. 58, 43). Öl. Kp: 261° (v. Au., L., B.); Kp₁₄: 136—137° (D., F., K.).
- 2-Oxy-4-methyl-acetophenon-oxim C₉H₁₁O₂N = HO·C₈H₃(CH₃)·C(:N·OH)·CH₃ (H 112). Liefert beim Kochen mit der 20-fachen Menge 17—18% iger Salzsäure das Keton zurück (v. Auwers, Lechner, Bundesmann, B. 58, 43).
- 2 Methoxy 4 methyl acetophenon oxim $C_{10}H_{13}O_2N=CH_2\cdot O\cdot C_6H_3(CH_3)\cdot C(:N\cdot OH)\cdot CH_3$ (H 112). F: 133—134° (v. Auwers, Lechner, Bundesmann, B. 58, 43). Liefert beim Kochen mit der 20-fachen Menge 17—18% iger Salzsäure 4-Amino-3-methoxy-toluol und wenig Keton.

2 - Oxy - 4 - methyl - acetophenon - semicarbazon $C_{10}H_{18}O_2N_3 = HO \cdot C_0H_3(CH_2) \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_3$ (E I 550). F: 222° (v. Auwers, Bundesmann, Wieners, A. 447, 178), 233° (v. Au., Lechner, B., B. 58, 43).

- 5-Chlor-2-oxy-4-methyl-acetophenon, 4-Chlor-6-acetyl-m-kresol C₉H₃O₂Cl, s. nebenstehende Formel. B. Beim Erhitzen von 6-Chlor-3-acetoxy-toluol mit Aluminiumchlorid auf 110—115° (WITTIG, B. 57, 89; ROSENMUND, SCHNURR, A. 460, 84). Nadeln (aus Alkohol). F: 69—70° (W.), 71—72° (R., SCH.). Kp₁₅: 137° (R., SCH.). Leicht löslich in Benzol, Alkohol, Eisessig und Aceton, löslich in Schwerbenzin, schwer löslich in Petroläther (W.). Gibt beim Behandeln mit Essigester und Natrium und Kochen des entstandenen 4-Chlor-5-methyl-2-acetoacetyl-phenols (s. Syst. Nr. 776) mit Salzsäure in Eisessig 6-Chlor-2.7-dimethyl-chromon (WITTIG, B. 57, 94). Gibt beim Erhitzen mit Acetanhydrid und Natriumacetat auf 160—170° 6-Chlor-4.7-dimethyl-cumarin und 6-Chlor-2.7-dimethyl-chromon (Syst. Nr. 2464) (W., B. 57, 91).
- 5-Chlor-2-methoxy-4-methyl-acetophenon $C_{10}H_{11}O_3Cl=CH_3\cdot O\cdot C_8H_3Cl(CH_3)\cdot CO\cdot CH_3$. Aus dem Natriumsalz des 4-Chlor-6-acetyl-m-kresols und Dimethylsulfat in siedendem Benzol (WITTIG, A. 446, 199). Nadeln (aus Benzin), F: 79—80°. Leicht löslich in Benzol, Alkohol, Äther, löslich in Schwerbenzin, schwer löslich in Petroläther.
- 5-Chlor-2-acetoxy-4-methyl-acetophenon $C_{11}H_{11}O_3Cl=CH_3\cdot CO\cdot C\cdot C_6H_3Cl(CH_3)\cdot CO\cdot CH_3$. B. Durch Einw. von Acetylchlorid auf das Natriumsalz des 4-Chlor-6-acetyl-m-kresols in siedendem Benzol (Wittig, A. 446, 200). Nadeln (aus Petroläther bei 0°). F: 35—36°. Kp₁₃: 165—167°. Leicht löslich. Liefert beim Kochen mit Acetanhydrid und Natriumacetat 6-Chlor-4.7-dimethyl-cumarin und 6-Chlor-2.7-dimethyl-chromon. Gibt beim Erhitzen mit Propionsäureanhydrid und Natriumpropionat auf 190—200° und nachfolgenden Kochen mit 2n-Natronlauge 6-Chlor-3.4.7-trimethyl-cumarin (Syst. Nr. 2464), 5-Chlor-4-methyl-salicylsäure und Methyläthylketon.
- ω -Chlor-2-oxy-4-methyl-acetophenon, 6-Chloracetyl-m-kresol $C_9H_9O_2Cl=CH_3\cdot C_6H_3(OH)\cdot CO\cdot CH_2Cl$ (H 113; E I 550). Zur Bildung aus Chloressigsäure-m-tolylester und Aluminiumchlorid (H 113) vgl. Mamell, G. 56, 766. F: 102°.
- $\omega \omega \omega$ -Trichlor-2-oxy-4-methyl-acetophenon, 6-Trichloracetyl-m-kresol $C_0H_7O_2Cl_3=CH_3\cdot C_0H_3(OH)\cdot CO\cdot CCl_3$. B. Neben anderen Produkten durch Umsetzung von m-Kresol mit Trichloracetonitril bei Gegenwart von Aluminiumchlorid und Chlorwasserstoff in Chlorbenzol und Destillation des Reaktionsprodukts mit Wasserdampf (HOUBEN, FISCHER, J. pr. [2] 123, 269, 271). Hellgelbes Öl. Kp₁₇: 162—163°. Mit Wasserdampf flüchtig. Liefert bei der Zersetzung mit wäßr. Alkali 2-Oxy-4-methyl-benzoesäure.
- 6-Brom-2-oxy-4-methyl-acetophenon, 5-Brom-6-acetyl-m-kresol C₉H₉O₂Br, s. nebenstehende Formel. B. Bei der Einw. von Acetylchlorid und Aluminium-chlorid auf 5-Brom-3-methoxy-toluol in Schwefelkohlenstoff, zuletzt bei Siedetemperatur (v. Auwers, Borsche, Weller, B. 54, 1312). Prismen (aus Petrol-Br. OH äther). F: 50—52°. Mit Wasserdampf flüchtig. Im Vakuum destillierbar. Leicht löslich in den gebräuchlichen organischen Mitteln.

Oxim $C_0H_{10}O_2NBr = CH_3 \cdot C_0H_2Br(OH) \cdot C(:N \cdot OH) \cdot CH_3$. Nadeln (aus Benzol). F: 127° (v. Auwers, Borsche, Weller, B. 54, 1313). Sehr leicht löslich in Methanol, Alkohol, Äther und Eisessig, schwer in kaltem Benzol und Petroläther. — Gibt beim Kochen mit Salzsäure 5-Brom-4-amino-3-oxy-toluol.

Semicarbazon $C_{10}H_{12}O_2N_3Br=CH_3\cdot C_0H_2Br(OH)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_3$. Nadeln (aus Alkohol). F: 218—220° (v. Auwers, Borsche, Weller, B. 54, 1312).

15. Oxymethyl-p-tolyl-keton, ω -Oxy-4-methyl-acetophenon, p-Toluyl-carbinol $C_0H_{10}O_3=CH_1\cdot C_0H_1\cdot O\cdot CH_1\cdot OH$.

Phenoxymethyl-p-tolyl-keton, ω -Phenoxy-4-methyl-acetophenon $C_{16}H_{14}O_{2}=CH_{3}\cdot C_{6}H_{4}\cdot CO\cdot CH_{2}\cdot O\cdot C_{6}H_{5}\cdot (H\ 113;\ E\ I\ 550).$ Zur Bildung aus Chlormethyl-p-tolyl-keton und Kaliumphenolat (E I 550) vgl. Sabetay, Bl. [4] 45, 537. — Kp₄: 181—184°.

Bis - [4-methyl-phenacyl]-sulfid, 4.4'-Dimethyl-diphenacylsulfid $C_{18}H_{18}O_2S = [CH_3 \cdot C_6H_4 \cdot CO \cdot CH_2]_8S$. B. Durch Einw. von Na₂S auf 4-Methyl-phenacylchlori in Alkohol auf dem Wasserbad (Chrzaszczewska, Chwalinski, Roczniki Chem. 8, 432; C. 1929 I, 511). — Krystalle (aus Alkohol). F: 88,8—89,3°. Löslich in Aceton und siedendem Alkohol, unlöslich in Ather und Wasser. — Gibt ein krystallinisches Dioxim.

Bis-[4-methyl-phenacyl]-disulfid, 4.4'- Dimethyl-diphenacyldisulfid $C_{13}H_{18}O_{4}S_{3}=[CH_{3}\cdot C_{6}H_{4}\cdot CO\cdot CH_{2}\cdot S_{-}]_{4}$. B. Durch Umsetzen von Phenacylhalogeniden mit Natriumthiosulfat und Oxydieren der Reaktionsprodukte in saurer Lösung (Agfa, D.R.P. 386889; C. 1924 I, 1449; Frdl. 14, 928). — F: 85,5—86,5°. — Gibt beim Bromieren in Schwefelkohlenstoff-Lösung und Behandeln des Reaktionsproduktes mit Aluminiumchlorid 6.6'-Dimethyl-thioindigo (Syst. Nr. 2769).

СНО

ĊH,

CHa

·Br

- 16. 4-Oxy-2.3-dimethyl-benzaldehyd $C_9H_{10}O_2$, Formel I (H 113). Zur Bildung aus 3-Oxy-o-xylol (vic. o-Xylenol), Blausäure, Chlorwasserstoff und Aluminiumchlorid (H 113) vgl. v. Auwers, Mauss, B. 61, 1507. Entsteht auch bei analoger Behandlung von 4-Oxy-1.2.3-trimethyl-benzol (v. Au., M.).
- 17. 4-Oxy-2.6-dimethyl-benzaldehyd C₂H₁₀O₂, Formel II (H 113). Zur Bildung nach GATTERMANN (A. 857, 328; H 113) vgl. Zieglee, B. 54, 112; v. Auwers, Sauewein, B. 55, 2379; Lindemann, A. 431, 293. F: 193° (L.). Nicht flüchtig mit Wasserdampf (L.).
- 3.5-Dibrom 4-0xy-2.6-dimethyl benzaldehyd C₉H₈O₃Br₂, Formel III. B. Durch Einw. von Brom auf 4-0xy-2.6-dimethyl-benzaldehyd bei Gegenwart von Natriumacetat in Eisessig (LINDEMANN, A. 481, 294). Nadeln (aus Alkohol). F: 181°. Löslich in heißem Benzol und Eisessig, schwerer in Benzin.
- 3.5-Dibrom 4-acetoxy- 2.6-dimethyl benzaldehyd $C_{11}H_{10}O_3Br_3=CH_3\cdot CO\cdot O\cdot C_6Br_3(CH_3)_3\cdot CHO$. B. Beim Kochen von 3.5-Dibrom-4-acetoxy-2.6-dimethyl-benzylidendiacetat mit verd. Salzsäure und wenig Eisessig (LINDEMANN, A. 481, 294). Krystalle (aus Benzin). F: 149°. Löslich in Alkohol, Eisessig, Benzol und heißem Benzin.
- 3.5 Dibrom 4 acetoxy 2.6 dimethyl benzylidendiacetat $C_{15}H_{16}O_6Br_3 = CH_3 \cdot CO \cdot O \cdot C_6Br_3(CH_3)_2 \cdot CH(O \cdot CO \cdot CH_3)_3$. B. Aus 3.5 Dibrom 4 oxy 2.6 dimethyl benzaldehyd, Acetanhydrid und konz. Schwefelsäure (Lindemann, A. 481, 294). Nadeln (aus Alkohol oder Benzin). F: 114°. Leicht löslich in Alkohol, Eisessig und Benzol, löslich in heißem Benzin.

- 18. 6 Oxy 2.4 dimethyl benzaldehyd, 4.6 Dimethyl salicylaldehyd $C_9H_{10}O_2$, Formel IV (E I 552). F: 48° (Lindemann, Forth, A. 485, 228). Das Phenylhydrazon schmilzt bei 126,5—127° (v. Auwers, Saurwein, B. 55, 2379), bei 127° (L., A. 481, 294).
- 6 Methoxy 2.4 dimethyl benzaldehyd $C_{10}H_{12}O_2 = CH_3 \cdot O \cdot C_6H_2(CH_3)_5 \cdot CHO$. B. Aus 6-Oxy-2.4-dimethyl-benzaldehyd und Dimethylsulfat in siedender verdünnter Natronlauge (v. Auwers, Saurwein, B. 55, 2380). Nadeln (aus verd. Methanol). F: 48—49°. Leicht löslich in allen organischen Lösungsmitteln.
- 6-Oxy-2.4-dimethyl-benzaldoxim $C_0H_{11}O_2N=HO\cdot C_0H_2(CH_3)_2CH:N\cdot OH$. Nadeln (aus verd. Alkohol). F: 124—125° (v. Auwers, Bundesmann, Wieners, A. 447, 193), 125—126° (v. Au., Saurwein, B. 55, 2379), 130° (Lindemann, Pickert, A. 456, 280). Leicht löslich in Methanol, Alkohol und Eisessig, mäßig in Benzol, fast unlöslich in Petroläther (v. Au., S.). Liefert beim Kochen mit ca. 20% iger Salzsäure den Aldehyd zurück (v. Au., S.). Gibt mit Eisen(III)-chlorid eine rotviolette Färbung (v. Au., S.).
- 6-0xy-2.4-dimethyl-benzaldoximacetat $C_{11}H_{13}O_3N=HO\cdot C_6H_3(CH_3)_2\cdot CH:N\cdot O\cdot CO\cdot CH_3$. B. Durch Erwärmen von 6-0xy-2.4-dimethyl-benzaldoxim mit Acetanhydrid (LINDEMANN, PICKERT, A. 456, 280). Nadeln (aus Benzin). F: 109°. Leicht löslich in Alkohol, Benzin und Eisessig. Liefert beim Behandeln mit der berechneten Menge Natronlauge oder beim Erwärmen mit überschüssiger 10% iger Sodalösung 4.6-Dimethyl-indoxazen (Syst. Nr. 4195).
- 6-Oxy-2.4-dimethyl-benzaldehyd-semicarbazon C₁₀H₁₈O₂N₃ = HO·C₄H₃(CH₂₎₂·CH:N·NH·CO·NH₂. Krystallpulver (aus Eisessig). F: ca. 240°; der Schmelzpunkt hängt von der Schnelligkeit des Erhitzens ab (v. Auwers, Saurwein, B. 55, 2379). Bei der Spaltung mit siedender verdünnter Schwefelsäure erfolgt Umlagerung des Aldehyds (v. Au., Bundesmann, Wieners, A. 447, 192).
- 3.5-Dibrom-6-oxy-2.4-dimethyl-benzaldehyd C₅H₅O₂Br₂, s. nebenstehende Formel. B. Beim Behandeln von 6-Oxy-2.4-dimethyl-benzaldehyd mit Brom bei Gegenwart von Natriumacetat in Eisessig (LINDEMANN, FORTH, A. 485, 228). Gelbe Nadeln (aus Eisessig). F: 190—191°. Löslich in heißem Benzin, Benzol oder Alkohol. Liefert beim Kochen mit Phosphoroxychlorid und Phosphorpentachlorid Anhydro-bis-[3.5-dibrom-6-oxy-2.4-dimethyl-benzaldehyd] C₁₈H₁₆O₃Br₄ (Krystalle aus Benzol; schmilzt nicht bis 300°).
- 3.5-Dibrom-6-oxy-2.4-dimethyl-benzaldimid C₂H₂ONBr₂ = HO·C₆Br₂(CH₂)₂·CH:NH. B. Aus 3.5-Dibrom-6-oxy-2.4-dimethyl-benzylidenchlorid und Ammoniak in Benzol (LINDEMANN, FORTH, A. 485, 229). Sintert bei 200°; zersetzt sich bei 220—230°.
- 19. 6-Oxy-2.5-dimethyl-benzaldehyd, 3.6-Dimethyl-salicylaldehyd C₂H₁₀O₃, Formel V (H 114). Zur Bildung bei der Umsetzung von p-Xylenol mit Blausäure, Chlorwasserstoff und Aluminiumchlorid (H 114) vgl. Сьемо, Намовтн, Walton, Soc. 1929, 2376.

- 20. 4-Oxy-2.5-dimethyl-benzaldehyd C₉H₁₀O₂, Formel VI auf S. 114 (H 114). Zur Darstellung aus p-Xylenol, Blausaure und Chlorwasserstoff in Gegenwart von Aluminiumchlorid (H 114) vgl. Clemo, Haworth, Walton, Soc. 1929, 2376. F: 132—133°.
- 4-Methoxy-2.5-dimethyl-benzaldehyd $C_{10}H_{12}O_2=CH_3\cdot O\cdot C_6H_2(CH_3)_2\cdot CHO$. B. Beim Erhitzen von 4-Oxy-2.5-dimethyl-benzaldehyd mit Dimethylsulfat und methylalkoholischer Kalilauge (Clemo, Haworth, Walton, Soc. 1929, 2377). Krystalle. F: 34°. Kp₁₂: 147—149°. Gibt bei der Oxydation mit Kaliumpermanganat in siedendem Aceton 4-Methoxy-2.5-dimethyl-benzoesäure.
- 21. x-Oxy-x-dimethyl-benzaldehyd C₀H₁₀O₂ = HO·C₆H₂(CH₃)₂·CHO. B. Wurde einmal in sehr geringer Menge bei der Einw. von Blausäure, Chlorwasserstoff und Aluminium-chlorid auf 2-Methoxy-mesitylen in Benzol erhalten (v. Auwers, Mauss, B. 61, 1506). F: 106° bis 107°. Löst sich in Natronlauge. Gibt mit Eisenchlorid keine Färbung.

Oxim $C_9H_{11}O_2N = HO \cdot C_6H_2(CH_3)_2 \cdot CH : N \cdot OH$. F: 164—165° (v. Auwers, Mauss, B. 61, 1506). [H. Richter]

4. Oxy-oxo-Verbindungen $C_{10}H_{12}O_2$.

- 1. 2-Oxy-1-butyryl-benzol, 2-Oxy-butyrophenon, Propyl-[2-oxy-phenyl]-keton, 2-Butyryl-phenol $C_{10}H_{12}O_2 = HO \cdot C_6H_4 \cdot CO \cdot CH_2 \cdot C_2H_5$. B. Durch Kochen von diazotiertem 2-Amino-butyrophenon mit verd. Schwefelsäure (Morgan, Hickinbottom, Soc. 119, 1885). Hellgelbe, dicke Flüssigkeit.
- 5-Chlor-2-oxy-butyrophenon, 4-Chlor-2-butyryl-phenol $C_{10}H_{11}O_2Cl$, s. nebenstehende Formel. B. Beim Erhitzen von [4-Chlor-phenyl]-butyrat mit Aluminiumchlorid auf ca. 130° (WITTIG, A. 446, 188). Krystalle (aus verd. Methanol). F: 49—50°. Leicht löslich in den gebräuchlichen Lösungsmitteln außer Petroläther. Liefert beim Erhitzen mit Acetanhydrid und Natriumacetat 6-Chlor-2-methyl-3-äthyl-chromon.
- 2. 3-Oxy-1-butyryl-benzol, 3-Oxy-butyrophenon, Propyl-[3-oxy-phenyl]-heton, 3-Butyryl-phenol $C_{10}H_{12}O_2=HO\cdot C_6H_4\cdot CO\cdot CH_2\cdot C_2H_5$. B. Analog 2-Oxy-butyrophenon (s. o.) (Morgan, Hickinbottom, Soc. 119, 1884). Tafeln (aus Benzol + Petroläther). F: 63°. Riecht schwach. 4-Nitro-phenylhydrazon $C_{16}H_{17}O_3N_3$. F: 160°.
- 3. 4 Oxy 1 butyryl benzol, 4 Oxy butyrophenon $C_{10}H_{12}O_2 = HO \cdot C_0H_4 \cdot CO \cdot CH_2 \cdot C_2H_5$.
- 4-Methoxy-butyrophenon, 4-Butyryl-anisol, Propyl-[4-methoxy-phenyl]-keton, Propyl-anisyl-keton $C_{11}H_{14}O_3=CH_3\cdot O\cdot C_8H_4\cdot CO\cdot CH_2\cdot C_2H_8$ (E I 552). B. Durch Einw. von Butyrylchlorid auf Anisol bei Gegenwart von Aluminiumchlorid in Petroläther (Skraup, Nieten, B. 57, 1300). Beim Erhitzen von 4-Methoxy-phenylquecksilberchlorid mit Butyrylchlorid auf 135° im Rohr (Sk., N.). Erstarrt in der Kälte krystallinisch. F: —3° bis —4°. Kp₈₀: 162—163°. Liefert bei der Reduktion mit amalgamiertem Zink und Salzsäure 4-Butyl-anisol. Phenylhydrazon. F: 77°.
- $\alpha.\beta$ Dibrom 4 methoxy butyrophenon, 4-[$\alpha.\beta$ -Dibrom butyryl] anisol $C_{11}H_{12}O_2Br_2=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot CHBr\cdot CHBr\cdot CH_3$. B. Aus Propenyl-[4-methoxy-phenyl]-keton und Brom in Schwefelkohlenstoff unter Kühlung (v. Auwers, A. 439, 150). Krystalle (aus Ligroin). F: 104,5—105,5°.
- 3-Nitro-4-oxy-butyrophenon, 2-Nitro-4-butyryl-phenol, Propyl-[3-nitro-4-oxy-phenyl]-keton $C_{10}H_{11}O_4N$, s. nebenstehende Formel. B. Aus 4-Chlor-3-nitro-butyrophenon beim Erhitzen mit verd. Kalilauge (Morgan, Hickinbottom, Soc. 119, 1888). Hellgelbe Nadeln (aus Petroläther). F: 46°. Leicht löslich in organischen Lösungsmitteln außer Petroläther. 4-Nitro-phenylhydrazon $C_{16}H_{16}O_5N_4$. F: 203—204°.
- 4. 1-Phenyl-butanol-(3)-on-'(1), β-Oxy-butyrophenon, [β-Oxy-propyl]-phenyl-keton, β-Benzoyl-isopropylalkohol, Methyl-phenacyl-carbinol C₁₀H₁₁O₁ = C'₆H₅·CO·CH₂·CH(OH)·CH₃ (E I 552). B. In geringer Menge durch Hydrieren von Benzoylaceton in Gegenwart von Kupfer bei 83—87° und 68—79 Atm., neben anderen Produkten (Кивота, Начавні, Bl. chem. Šoc. Japan 1, 15; C. 1926 I, 2911).
- β-Methoxy-butyrophenon $C_{11}H_{14}O_2 = C_6H_5 \cdot CO \cdot CH_2 \cdot CH(O \cdot CH_3) \cdot CH_3$. B. Neben anderen Produkten bei der Umsetzung von Acetophenon mit Acetaldehyd und Natriummethylat-Lösung erst bei —10°, dann bei 5—10° (Dufraisse, Demontvignier, Bl. [4] 41, 847). Kp₈: 119° bis 121°. D_2^{∞} : 1,0349. n_2^{∞} : 1,5168. Liefert beim Erhitzen mit geschmolzenem Zinkchlorid auf 150—160° unter 150 mm Druck ω-Äthyliden-acetophenon. Gibt bei der Einw. von Brom in Schwefelkohlenstoff $\alpha.\beta$ -Dibrom-butyrophenon und andere Produkte.

- $\gamma.\gamma.\gamma$ -Trichlor- β -oxy-butyrophenon, Chioralacetophenon $C_{10}H_9O_2Cl_3=C_8H_8\cdot CO\cdot CH_3\cdot CH(OH)\cdot CCl_3$ (H 116). Gibt mit Carbamidsaurechlorid in Äther 4-Oxy-2-oxo-6-trichlormethyl-4-phenyl-tetrahydro-1.3-oxazin (Syst. Nr. 4300) (Sen, Barat, *J. indian chem. Soc.* 3, 409; *C.* 1927 I, 1440).
- 5. 1-Phenyl-butanol-(4)-on-(1), γ -Oxy-butyrophenon, $[\gamma$ -Oxy-propyl]-phenyl-keton $C_{10}H_{12}O_1 = C_4H_5 \cdot CO \cdot [CH_2]_3 \cdot OH$.
- γ -p-Kresoxy-butyrophenon, $[\gamma$ -p-Kresoxy-propyl]-phenyl-keton $C_{17}H_{18}O_3=C_0H_s\cdot CO\cdot [CH_3]_s\cdot O\cdot C_0H_4\cdot CH_3$. B. Beim Erhitzen von α -[β -p-Kresoxy-äthyl]-benzoylessigester mit alkoh. Kalilauge (La Forge, Am. Soc. 50, 2476). Prismen (aus Alkohol). F: 63°.
- Oxim $C_{17}H_{19}O_2N = C_eH_5 \cdot C(:N \cdot OH) \cdot [CH_2]_3 \cdot O \cdot C_eH_4 \cdot CH_3$. Prismen (aus Petroläther). F: 75° (La Forge, Am. Soc. 50, 2476). Liefert bei der Reduktion mit Natriumamalgam und Essigsäure in Alkohol unterhalb 40° 1-Amino-4-p-kresoxy-1-phenyl-butan.
- 6. 1-[4-Oxy-phenyl]-butanon-(2), Äthyl-[4-oxy-benzyl]-keton $C_{10}H_{12}O_{3}=HO\cdot C_{0}H_{4}\cdot CH_{2}\cdot CO\cdot C_{2}H_{5}.$
- 1-[4-Methoxy-phenyl]-butanon-(2), Äthyl-[4-methoxy-benzyl]-keton, 1-Anisyl-butanon-(2) $C_{11}H_{14}O_2 = CH_2 \cdot O \cdot C_8H_4 \cdot CH_2 \cdot CO \cdot C_2H_5$. B. Beim Erhitzen von α -Äthyl- α -[4-methoxy-phenyl]-äthylenglykol mit verd. Schwefelsäure (Lévy, Gombinska, C. r. 188, 713; L., Dvolbitzka-Gombinska, Bl. [4] 49 [1931], 1769, 1770). Beim Erhitzen von α -Äthyl- α -[4-methoxy-phenyl]-äthylenoxyd mit 50% iger Schwefelsäure oder etwas Zinkchlorid (L., G.; L., D.-G., Bl. [4] 49, 1771). Kp₇₈₀: 265—270° (L., D.-G.).

Semicarbazon $C_{12}H_{17}O_2N_3 = CH_3 \cdot O \cdot C_6H_4 \cdot CH_6 \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot C_2H_5$. F: 131—132° (LÉVY, DVOLEITZKA-GOMBINSKA, Bl. [4] 49, 1770).

- 7. 1-Phenyl-butanol-(1)-on-(2), 1-Oxy-2-oxo-1-phenyl-butan, Phenyl-propionyl-carbinol $C_{10}H_{12}O_2=C_6H_6\cdot CH(OH)\cdot CO\cdot C_2H_6$.
- a) Linksdrehende Form, d(-)-Phenyl-propionyl-carbinol $C_{10}H_{12}O_2 = C_6H_5$ · $CH(OH) \cdot CO \cdot C_2H_5$. B. Beim Kochen von d(-)-Mandelsäureamid mit Äthylmagnesiumbromid in absol. Äther (Roger, Helv. 12, 1064). Nadeln (aus Petroläther). F: 39—40°. Kp₁₈: ca. 128° bis 131°. [a] $_{0}^{\infty}$: —455° (Benzol; c = 1,2), —428° (Chloroform; c = 1,4), —157° (Alkohol; c = 1,3). Sehr leicht löslich in organischen Lösungsmitteln außer Petroläther. Gibt in geringen Mengen mit konz. Schwefelsäure eine hellgrüne bis schmutzigbraune Färbung.
- b) Inaktive Form, dl-Phenyl-propionyl-carbinol $C_{10}H_{12}O_2=C_6H_5\cdot CH(OH)\cdot CO\cdot C_2H_5$ (E I 552). B. Aus dl-Mandelsäureamid und Äthylmagnesiumbromid (TIFFENEAU, LÉVY, Bl. [4] 37, 1249). Krystalle. F: ca. 32—33°. Kp_{11} : 124—128°. Sehr leicht löslich in den gewöhnlichen Lösungsmitteln. Reduziert Fehlingsche Lösung in der Wärme.
- **0xim** $C_{10}H_{10}O_2N = C_0H_5 \cdot CH(OH) \cdot C(:N \cdot OH) \cdot C_2H_5$. Nadeln. F: 97° (Tiffenrau, Lévy, Bl. [4] 37, 1250).

Semicarbazon $C_{11}H_{15}O_5N_3=C_5H_5\cdot CH(OH)\cdot C(:N\cdot NH\cdot CO\cdot NH_5)\cdot C_2H_5$. Nadeln. F: 89—90°. Sehr leicht löslich in Alkohol (TIFFENEAU, LÉVY, Bl. [4] 87, 1250).

- 8. 1-[2-Oxy-phenyl]-butanon-(3), $Methyl-[2-oxy-\beta-phenäthyl]-keton$, 2-Oxy-benzylaceton $C_{10}H_{11}O_2=HO\cdot C_0H_4\cdot CH_2\cdot CO\cdot CH_3$ (H 116; E I 552). B. Durch Hydrierung von Salicylidenaceton in Gegenwart von Platinschwarz in absol. Alkohol (Nomura, Nozawa, Sci. Rep. Tohoku Univ. 7, 85; C. 1921 I, 1017). F: 47,5—48,5° (N., N.). Kp_{14,5}: 160—167° (N., N.); Kp_{2,5}: 139° (Marui, Sci. Rep. Tohoku Univ. 17, 698; C. 1928 II, 1325).
- Methyl- [2-methoxy- β -phenäthyl]-keton, 2-Methoxy-benzylaceton $C_{11}H_{14}O_3=CH_3\cdot O\cdot C_6H_4\cdot CH_2\cdot CH_2\cdot CO\cdot CH_3$. B. Bei der Hydrierung von 2-Methoxy-benzylidenaceton in Gegenwart von eisenhaltigem Platinschwarz in Essigester oder Alkohol + Essigester (Faillebin, A. ch. [10] 4, 413). Öl von unangenehmem Geruch. Kp₁₀: 147°; Kp_{0,3}: 89°; Kp_{0,16}: 81°. D¹⁸: 1,050. n_D^{18} : 1,5215. Gibt bei der Hydrierung in Gegenwart von eisenhaltigem Platinschwarz in Eisessig oder Essigester 1-[2-Methoxy-phenyl]-butanol-(3); bei der Hydrierung in Gegenwart von reinem Platinschwarz in den gleichen Lösungsmitteln erhält man hauptsächlich 1-Cyclohexyl-butanol-(3), geringere Mengen 1-[2-Methoxy-cyclohexyl]-butanol-(3), wenig 1-[2-Methoxy-phenyl]-butanol-(3), Butylcyclohexan und 2-Methoxy-1-butyl-cyclohexan (?) (F., A. ch. [10] 4, 415, 417, 426).
- 9. 1-[3-Oxy-phenyl]-butanon-(3), Methyl-[3-oxy-β-phenäthyl]-keton, 3-Oxy-benzylaceton C₁₀H₁₂O₂ = HO·C₆H₄·CH₂·CH₂·CO·CH₃. B. Durch Reduktion von 3-Oxy-benzylidenaceton mit Wasserstoff und Platinschwarz in Äther (Nomura, Nozawa, Sci. Rep. Tôhoku Univ. 7, 86; 1921 I, 1017) oder mit Natriumamalgam und Wasser (Murai, Sci. Rep. Tôhoku Univ. 14, 152; C. 1925 II, 1746). Krystalle (aus Äther + Petroläther). F: 85° bis 86° (N., N.,; M.). Besitzt beißenden Geschmack (N., N.).

- 10. 1-[4-Oxy-phenyl]-butanon-(3), Methyl-[4-oxy-β-phenöthyl]-keton, 4-Oxy-benzylaceton C₁₀H₁₂O₂ = HO·C₆H₄·CH₂·CH₂·CO·CH₃· B. Durch Hydrierung von 4-Oxy-benzylidenaceton in Gegenwart von Platinschwarz in Äther oder Methanol (NOMURA, NOZAWA, Sci. Rep. Töhoku Univ. 7, 87; C. 1921 I, 1017) oder in Gegenwart von Palladiumkohle in Methanol (MANNICH, MERZ, Ar. 1927, 22). Beim Kochen von 4-Methoxy-benzylaceton mit Bromwasserstoffsäure (D: 1,48) und Eisessig (N., N., Sci. Rep. Töhoku Univ. 7, 84). Nadeln (aus Ligroin). F: 82—83° (N., N.), 83,5—84,5° (M., M.). Löslich in Åther und Alkohol, unlöslich in kaltem Ligroin (N., N.). Gibt mit Eisenchlorid in Alkohol eine grüne Färbung (N., N.).
- Methyl [4 methoxy β phenäthyl] keton, 4 Methoxy benzylaceton, Anisylaceton $C_{10}H_{12}O_3=CH_2\cdot O\cdot C_6H_4\cdot CH_2\cdot CH_2\cdot CO\cdot CH_3$ (H 117; E I 552). B. Durch Hydrierung von Anisylidenaceton bei Gegenwart von Platinschwarz in Äther (Nomura, Nozawa, Sci. Rep. Tehoku Univ. 7, 83; C. 1921 I, 1017) oder in Gegenwart von Palladiumchlorid in Aceton, neben wenig 1-[4-Methoxy-phenyl]-butanol-(3) (Straus, Grindel, A. 489, 303). F: 9,7—9,8° (Bourdiol, zit. bei Faillebin, A. ch. [10] 4, 427). Kp₁₈: 161—162° (N., N.). Schmeckt brennend (N., N.). Bei der Hydrierung in Gegenwart von reinem Platinschwarz in Eisessig oder Essigester entstehen Butylcyclohexan, ein Gemisch von 1-[4-Methoxy-cyclohexyl]-butan und 1-[4-Methoxy-phenyl]-butan, ferner 1-Cyclohexyl-butanol-(3), 1-[4-Methoxy-cyclohexyl]-butanol-(3) und sehr wenig 1-[4-Methoxy-phenyl]-butanol-(3); die letztgenannte Verbindung entsteht bei der Hydrierung in Gegenwart von eisen- oder aluminiumhaltigem Platinschwarz als Hauptprodukt (Faillebin, A. ch. [10] 4, 427, 436, 437).
- 4-Oxy-benzylaceton-oxim $C_{10}H_{13}O_2N=HO\cdot C_6H_4\cdot CH_2\cdot CH_2\cdot C(:N\cdot OH)\cdot CH_3$. Blättchen (aus verd. Alkohol). F: 97—98° (Mannich, Merz, Ar. 1927, 23). Löslich in den gebräuchlichen Lösungsmitteln, unlöslich in Petroläther.
- 4 Methoxy benzylaceton semicarbazon $C_{19}H_{17}O_2N_3 = CH_3 \cdot O \cdot C_6H_4 \cdot CH_2 \cdot CH_2 \cdot C(CH_3)$: N·NH·CO·NH₂ (E I 553). Nadeln (aus Methanol). F: 169—1700 (STRAUS, GRINDEL, A. 489, 303).
- 1.2-Dibrom-1-[4-methoxy-phenyl]-butanon-(3), 4-Methoxy-benzylidenaceton-dibromid, Anisalacetondibromid $C_{11}H_{12}O_2Br_2=CH_3\cdot O\cdot C_6H_4\cdot CHBr\cdot CHBr\cdot CO\cdot CH_3$. B. Aus Anisylidenaceton und Brom in Chloroform (VAN DUIN, R. 45, 350). Krystalle (aus Chloroform). F: 126° (korr.). Geht bei der Einw. von Kaliumjodid in 90%ig. Alkohol oder Essigsäure wieder in Anisylidenaceton über.
- 11. 1-Phenyl-butanol-(1)-on-(3), Methyl- $[\beta$ -oxy- β -phenyl-äthyl]-keton, Phenyl-acetonyl-carbinol, $[\alpha$ -Oxy-benzyl]-aceton $C_{10}H_{12}O_2=C_6H_5\cdot CH(OH)\cdot CH_2\cdot CO\cdot CH_3$. B. Neben anderen Produkten bei der Hydrierung von Benzoylaceton in Gegenwart von feinverteiltem Kupfer bei 83—87° und 68—79 Atm. (Kubota, Hayashi, Bl. chem. Soc. Japan 1 [1926], 15, 17; C. 1926 I, 2911). Flüssig. Kp₁₀: 134—136°. Phenylhydrazon $C_{16}H_{18}ON_2$. F: 120—122° (Zers.).
- 1-[2-Nitro-phenyl]-butanol-(1)-on-(3), [2-Nitro-α-oxy-benzyl]-aceton, o-Nitro-phenyl-milchsäure-methylketon $C_{10}H_{11}O_4N=O_2N\cdot C_6H_4\cdot CH(OH)\cdot CH_2\cdot CO\cdot CH_3$ (H 117). Gibt bei der Einw. von alkal. Permanganat-Lösung Isatin (Höchster Farbw., D.R.P. 281052; C. 1915 I, 73; Frdl. 12, 253). Die bei der Reduktion mit Zinkstaub und 33%iger Essigsäure erhaltene Verbindung ist nicht 4-Oxy-ohinaldin (vgl. Heller, Sourlis, B. 41 [1908], 2696; H 117), sondern Chinaldin-N-oxyd (Meisenheimer, Stotz, B. 58, 2334).
- 1-[4-Nitro-phenyl]-butanol (1)-on-(3), [4-Nitro- α -oxy-benzyl]-aceton, p-Nitro-phenylmilchsäure-methylketon $C_{10}H_{11}O_4N=O_2N\cdot C$ $H_4\cdot CH(OH)\cdot CH_2\cdot CO\cdot CH_3$ (H 117). Das bei der Einw. von heißer wäßriger Kalilauge entstehende, von Baeyer, Becker (B. 16 [1883], 1970) als Verbindung $(C_{10}H_0O_3N)_x$ (H 118) angesehene Produkt ist als 4.4'-Dinitro-dibenzylidenaceton (E II 7, 455) erkannt worden (VAN DER LEE, R. 47, 922).
- 1-[2.4-Dinitro-phenyl]-butanol-(1)-on-(3), [2.4-Dinitro-α-oxy-benzyl]-aceton, 2.4-Dinitro-phenylmilchsäure-methylketon $C_{10}H_{10}O_6N_2=(O_2N)_2C_6H_3\cdot CH(OH)\cdot CH_2\cdot CO\cdot CH_3$ (Η 118). Gelbliche Prismen. F: 72—73° (Browning, Mitarb., $Pr.\ roy.\ Soc.$ [B] 96, 326; C. 1924 II, 1229). Liefert bei der Reduktion mit Zinkstaub und siedendem Eisessig 7-Aminochinaldin (Braunholtz, Soc. 121, 173; Bro., Mitarb.).
- 1-p-Tolylsulfon-1-phenyl-butanon-(3), [α -p-Tolylsulfon-benzyl]-aceton $C_{17}H_{18}O_3S=C_6H_5\cdot CH(SO_2\cdot C_6H_4\cdot CH_3)\cdot CH_3\cdot CO\cdot CH_3$ (H 119). F: 147—148° (unkorr.); zersetzt sich bei ca. 157° (GILMAN, KING, Am.Soc. 47, 1142 Anm.).
- 1- Phenyl butanol (1) al (4), γ Oxy γ phenyl butyraldehyd bzw.
 Oxy 2 phenyl tetrahydrofuran C₁₀H₁₂O₃ = C₆H₅·CH(OH)·CH₂·CH₂·CHO bzw. H₂C CH₂
 C₆H₅·HC·O·CH·OH
 B. Durch Einleiten von 2—4%igem Ozon in eine gekühlte Lösung von γ-Butenyl-phenyl-carbinol in Eisessig und folgende Reduktion mit Zinkstaub in Äther (Helferich, Leoher, B. 54, 932). Dickflüssiges, schwach riechendes Ol. Kp₄: 137—138°.

- D_{\bullet}^{\bullet} : 1,126. $n_{\rm D}^{\bullet}$: 1,5410. Mit Wasserdampf flüchtig. Unlöslich in Wasser, löslich in den meisten organischen Lösungsmitteln. Zersetzt sich beim Aufbewahren allmählich unter Entwicklung von Zimtgeruch. Verharzt bei der Einw. von konz. Schwefelsäure sofort. Färbt fuchsinschweflige Säure allmählich. Reduziert Fehlingsche Lösung in der Siedehitze, ammoniakalische Silbernitrat-Lösung bei Zimmertemperatur. Gibt bei der Oxydation mit alkal. Permanganat-Lösung β -Benzoyl-propionsäure. Liefert bei längerem Aufbewahren mit 1% iger methylalkoholischer Salzsäure 5-Methoxy-2-phenyl-tetrahydrofuran.
- 13. 2-[4-Oxy-phenyl] butanon (3), Methyl-[4-oxy-x-phenäthyl]-keton, x-Methyl-x-[4-oxy-phenyl]-aceton $C_{10}H_{12}O_2=HO\cdot C_0H_4\cdot CH(CH_3)\cdot CO\cdot CH_2$.
- 2-[4-Methoxy-phenyl]-butanon-(3), α -Methyl- α -[4-methoxy-phenyl]-aceton, 2-Anisylbutanon-(3) $C_{11}H_{14}O_2 = CH_3 \cdot O \cdot C_6H_4 \cdot CH(CH_3) \cdot CO \cdot CH_2$. Zur Konstitution vgl. Tiffeneau, Lévy, Weill, Bl. [4] 49 [1931], 1714. B. Bei der Destillation von $\alpha.\alpha$ -Dimethyl- α -[4-methoxy-phenyl]-āthylenoxyd unter gewöhnlichem Druck (Tiffeneau, Orechow, Lévy, C.r. 179, 979; T., L., Bl. [4] 89, 777). Aus $\alpha.\alpha$ -Dimethyl- α -[4-methoxy-phenyl]-āthylenglykol beim Kochen mit 50% iger Schwefelsäure (T., L., Bl. [4] 89, 778; T., L., W., Bl. [4] 49, 1714). Kp₇₆₀: 260—265° (T., L.).

Semicarbazon $C_{12}H_{17}O_2N_3 = CH_3 \cdot O \cdot C_6H_4 \cdot CH(CH_3) \cdot C(CH_3) : N \cdot NH \cdot CO \cdot NH_2$. Krystalle (aus Alkohol). F: 183—184° (TIFFENEAU, LÉVY, Bl. [4] 49 [1931], 777).

14. 2-Phenyl-butanol-(2)-on-(3), α -Oxy- α -methyl- α -phenyl-aceton, Methyl-phenyl-acetyl-carbinol $C_{10}H_{19}O_2=C_6H_5\cdot C(CH_3)(OH)\cdot CO\cdot CH_3$ (E I 553). Kp₁₈: 126—127° (v. Auwers, Mauss, Bio. Z. 192, 221, 228). Zwei Präparate zeigten $D_4^{17,7}$: 1,0773; $n_{17}^{17,7}$: 1,5229; $n_{187,48}^{187,48}$: 1,5275; $n_{7}^{18,7}$: 1,5385; $n_{7}^{17,7}$: 1,5480 und $D_4^{16,6}$: 1,0786; $n_{\alpha}^{16,6}$: 1,5234; $n_{87,48}^{16,6}$: 1,5279; $n_{18}^{16,6}$: 1,5390; $n_{7}^{16,6}$: 1,5488.

 $\begin{array}{llll} & \textbf{Acetat} & C_{12}H_{14}O_3 = C_6H_5 \cdot C(CH_3)(O \cdot CO \cdot CH_3) \cdot CO \cdot CH_3. & Kp_{14} \colon \ 152-154^0. & D_4^{10,8} \colon \ 1,0900 \, ; \\ & n_\alpha^{19,8} \colon \ 1,5028 \, ; \, n_{507,56}^{19,8} \colon \ 1,5068 \, ; \, n_\beta^{19,8} \colon \ 1,5167 \, ; \, n_\gamma^{19,8} \colon \ 1,5253 \, \, (v. \ Auwers, \ Mauss, \ \textit{Bio. Z. 192, 221, 228}). \end{array}$

Semicarbazon $C_{11}H_{15}O_2N_3 = C_6H_5 \cdot C(CH_3)(OH) \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_2$. Krystalle (aus verd. Alkohol). F: 183—184° (v. Auwers, Mauss, *Bio. Z.* 192, 221). Leicht löslich in Eisessig, Aceton und Chloroform, schwerer in kaltem Alkohol, Äther und Benzol.

Semicarbazon des Acetats $C_{13}H_{17}O_3N_3=C_6H_5\cdot C(CH_3)(O\cdot CO\cdot CH_3)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_3$. Krystallpulver (aus Alkohol). F: 183° (v. Auwers, Mauss, *Bio. Z.* 192, 221, 228).

- 15. 2-Oxy-1-isobutyryl-benzol, 2-Oxy-isobutyrophenon $C_{10}H_{11}O_2 = HO \cdot C_0H_4 \cdot CO \cdot CH(CH_3)_2$.
- 5 Chlor 2 oxy isobutyrophenon, 4 Chlor 2 isobutyryl phenol C₁₀H₁₁O₂Cl, s. nebenstehende Formel. B. Aus [4-Chlor-phenyl]-isobutyrat in Gegenwart von Aluminiumchlorid bei 110° (v. Auwers, Baum, Lorenz, J. pr. [2] 115, 91). Gelbliches Öl. Kp₂₀: 130°; D₄^{16,4}: 1,1958; n_x^{16,4}: 1,5474;
- $n_{\text{set},a}^{\text{is.4}}$: 1,5538; $n_{\beta}^{\text{is.4}}$: 1,5718; $n_{\gamma}^{\text{is.4}}$: 1,5905 (v. Au., B., L.). Liefert mit Brom in Schwefelkohlenstoff im Sonnenlicht 4-Chlor-2-[α -brom-isobutyryl]-phenol (v. Au., B., L.). Gibt beim Kochen mit Acetanhydrid und Natriumacetat 6-Chlor-2-acetoxy-2.3.3-trimethyl-8-acetyl-chromanon (Syst. Nr. 2532) (Wittig, A. 446, 203).
- 5 Chlor α brom 2 oxy isobutyrophenon, 4 Chlor 2 $[\alpha$ brom isobutyryl] phenol $C_{10}H_{10}O_2ClBr = HO \cdot C_8H_3Cl \cdot CO \cdot CBr(CH_3)_2$. B. Bei 1—2-tägiger Einw. von Brom auf 4-Chlor-2-isobutyryl-phenol in Schwefelkohlenstoff im Sonnenlicht (v. Auwers, Baum, Lorenz, J. pr. [2] 115, 92). Dickes gelbes Öl. Liefert mit alkoh. Kalilauge ungefähr gleiche Teile 5-Chlor-2.2-dimethyl-cumaranon und 4-Chlor-2- $[\alpha$ -oxy-isobutyryl]-phenol.
- 16. 4-Oxy-1-isobutyryl-benzol, 4-Oxy-isobutyrophenon, 4-Isobutyryl-phenol, Isopropyl-[4-oxy-phenyl]-keton $C_{10}H_{12}O_2=H_0\cdot C_6H_4\cdot CO\cdot CH(CH_2)_2$. B. Durch gelindes Erwärmen von Anisol mit Dimethylmalonylchlorid und Aluminiumchlorid in Schwefelkohlenstoff (Fleischer, A. 422, 265). Öl. Kp₂₀: 125—135°. Leicht löslich in Äther.
- 4 Methoxy isobutyrophenon , 4-Isobutyryl-anisol , Isopropyl-[4-methoxy-phenyl]-keton, Isopropyl-anisyl-keton $C_{11}H_{14}O_2=CH_3\cdot O\cdot C_4H_4\cdot CO\cdot CH(CH_3)_3$ (E I 553). B. Bei der Oxydation von Isopropyl-[4-methoxy-phenyl]-carbinol mit Chromessigsäure (TIFFENEAU, LÉVY, Bl. [4] 89, 778). Gibt ein öliges Oxim.
- 4 Methoxy isobutyrophenon semicarbazon $C_{12}H_{17}O_2N_3 = CH_3 \cdot O \cdot C_0H_4 \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH(CH_2)_2$. F: 212—213° (TIFFENEAU, ORECHOW, LÉVY, C. r. 179, 979; T., L., Bl. [4] 89, 778).
- 17. 2 Methyl 1 phenyl propanol (2) on (1), α Oxy isobutyrophenon, [α -Oxy-isopropyl]-phenyl-keton, Dimethyl benzoyl carbinol $C_{10}H_{11}O_1 = C_4H_4$.

CO·C(CH₃)₂·OH (E I 553). B. Durch Verseifung von α -Acetoxy-isobutyrophenon (Blaise, Herzog, C. r. 184, 1333). Beim Kochen von α -Brom-isobutyrophenon mit wäßrig-alkoholischer Natronlauge (v. Auwers, Mauss, Bio. Z. 192, 220). — Gelbliches Öl. Kp₁₂: 125° (Bl., H.). D₁^{15,5}: 1,0787; $n_{\alpha}^{15,5}$: 1,5278; $n_{\alpha}^{15,5}$: 1,5330; $n_{\beta}^{15,5}$: 1,5456; $n_{\gamma}^{15,5}$: 1,5572 (v. Au., M., Bio. Z. 192, 228).

Acetat, α -Acetoxy-isobutyrophenon $C_{12}H_{14}O_3 = C_4H_5 \cdot \text{CO} \cdot \text{C(CH}_3)_2 \cdot \text{O} \cdot \text{CO} \cdot \text{CH}_3$ (H 120). B. Beim Kochen von Dimethyl-benzoyl-carbinol mit Acetylchlorid (v. Auwers, Mauss, Bio. Z. 192, 220, 228). Neben 2.4.4-Trimethyl-2-phenyl-1.3-dioxolon-(5) bei der Einw. von Benzol auf α -Acetoxy-isobutyrylchlorid in Gegenwart von Aluminiumchlorid (Blaise, Herzog, C. r. 184, 1332). — Prismen (aus Petroläther). F: 61° (v. Au., M.). Kp_{14} : 148—150° (v. Au., M.), 135—137° (Bl., H.). $D_1^{r,6}$: 1,0454 (v. Au., M.). $n_{\alpha}^{r,6}$: 1,4837; $n_{687,50}^{r,6}$: 1,4879; $n_{\beta}^{r,6}$: 1,4985 (v. Au., M.). — 4-Nitro-phenylhydrazon. F: 171° (Bl., H.).

 α -Oxy-isobutyrophenon-oxim, Dimethyl-benzoyl-carbinol-oxim $C_{10}H_{13}O_2N=C_6H_5\cdot C(:N\cdot OH)\cdot C(CH_3)_2\cdot OH$. F: 106° (Blaise, Herzog, C. r. 184, 1333).

- α Oxy isobutyrophenon semicarbazon, Dimethyl benzoyl carbinol semicarbazon $C_{11}H_{16}O_2N_3=C_6H_5\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot C(CH_3)_2\cdot OH$. Krystalle (aus verd. Alkohol). F: 188° (v. Auwers, Mauss, Bio. Z. 192, 220), 184—185° (Blaise, Herzog, C. r. 184, 1333). Leicht löslich in Alkohol, Aceton, Eisessig und Chloroform, schwer in Äther und Benzol (v. Au., M.).
- α Acetoxy isobutyrophenon semicarbazon $C_0H_5 \cdot C(: N \cdot NH \cdot CO \cdot NH_2) \cdot C(CH_3)_2 \cdot O \cdot CO \cdot CH_3$. F: 186—188° (Blaise, Herzog, C. r. 184, 1332).
- 18. 2 Methyl 1 phenyl propanol (1) al (3), β Oxy- α -methyl- β -phenyl-propionaldehyd, β Oxy α -methyl hydrozimtaldehyd $C_{10}H_{12}O_2=C_6H_5\cdot CH(OH)\cdot CH(CH_3)\cdot CHO$.

 β -Oxy-α-methyl- β -[2-nitro-phenyl]-propionaldehyd, α-Methyl- β -[2-nitro-phenyl]-hydracrylaldehyd $C_{10}H_{11}O_4N=O_2N\cdot C_6H_4\cdot CH(OH)\cdot CH(CH_3)\cdot CHO$ (Ε I 553). B. Aus 1 Mol 2-Nitro-benzaldehyd und 1½, Mol Propionaldehyd bei Gegenwart von Pyridin in Alkohol (Willimott, Simpson, Soc. 1926, 2808).

19. Dimethyl - [4 - oxy - phenyl] - acetaldehyd, α -[4-Oxy-phenyl]-isobutyraldehyd $C_{10}H_{13}O_1 = HO \cdot C_0H_4 \cdot C(CH_3)_2 \cdot CHO$.

Dimethyl - [4 - methoxy - phenyl] - acetaldehyd, Dimethyl - anisyl - acetaldehyd $C_{11}H_{14}O_2=CH_3\cdot O\cdot C_6H_4\cdot C(CH_3)_2\cdot CHO$. Zur Konstitution vgl. TIFFENEAU, LÉVY, WEILL, Bl. [4] 49 [1931], 1713. — B. Durch Einw. von Kaliumhydroxyd auf 4-Methoxy-1-[β -jod- α -oxy-isobutyl]-benzol (E II 6, 899) (T., Orechow, L., C. r. 179, 979; T., L., Bl. [4] 39, 778). — Anisartig riechendes Ol. Kp₂₀: 140—150°.

Semicarbazon $C_{19}\hat{H}_{17}O_2N_3 = CH_3 \cdot O \cdot C_6H_4 \cdot C(CH_3)_2 \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Krystalle (aus Alkohol). F: 159—160° (TIFFENEAU, ORECHOW, LÉVY, C. r. 179, 979; T., I., Bl. [4] 39, 779).

- 20. 3-Oxy-1-methyl-2-propionyl-benzol, 6-Oxy-2-methyl-propiophenon, 3-Methyl-2-propionyl-phenol, 2-Propionyl-m-kresol $C_{10}H_{12}O_2$, Formel I (E I 554). Liefert mit Brom in Eisessig ein bei ungefähr 120° schmelzendes Tribrom derivat, das durch Wasserstoffperoxyd in alkal. Lösung zu 3.5-Dibrom-6-oxy-2-methyl-benzoesäure oxydiert wird (v. Auwers, A. 439, 167). 4-Nitro-phenylhydrazon $C_{16}H_{17}O_3N_3$. F: 154—156°.
- 21. 5-Oxy-1-methyl-2-propionyl-benzol, 4-Oxy-2-methyl-propiophenon, 3-Methyl-4-propionyl-phenol, 4-Propionyl-m-kresol C₁₀H₁₂O₂, Formel II. B. Neben überwiegenden Mengen 2-Oxy-4-methyl-propiophenon beim Erhitzen von Propionsäure-m-tolylester mit Aluminiumchlorid auf 100° (v. Auwers, A. 439, 174). Neben anderen Produkten Behandeln von m-Kresolmethyläther mit α-Brom-propionylbromid und Aluminiumchlorid in Schwefelkohlenstoff (v. Au., A. 439, 175). Nadeln (aus Benzin). F: 114—115°. Leicht löslich in Alkohol, Eisessig und Aceton, mäßig in Benzol, ziemlich schwer in Benzin. Wird durch Eisenchlorid nicht gefärbt. Phenylhydrazon C₁₆H₁₈ON₂. F: 152—153,5°.
- 22. 1-o-Tolyl-propanol-(1)-on-(2), $\alpha-Oxy-\alpha-o-tolyl-aceton$, o-Tolyl-acetyl-carbinol $C_{10}H_{12}O_2=CH_3\cdot C_0H_4\cdot CH(OH)\cdot CO\cdot CH_3$. B. Aus o-Tolyylaldehyd bei der Einw. von gärender Unterhefe (Behrens, Iwanoff, Bio. Z. 169, 481). Gibt ein 4-Nitrophenylosazon vom Schmelzpunkt 299°.
- 23. 2-Oxy-1-methyl-3-propionyl-benzol, 2-Oxy-3-methyl-propiophenon, 2-Methyl-6-propionyl-phenol, 6-Propionyl-o-kresol C₁₀H₁₂O₂, Formel III. B. Neben 4-Oxy-3-methyl-propiophenon beim Erhitzen von Propionsäure-o-tolylester mit

Aluminiumchlorid auf 120° (v. Auwers, Wittig, B. 57, 1274). — Hellgelbe Tafeln (aus Petroläther). F: 22—23°. Kp₁₅: 127—129°. Sehr leicht löslich. Ist mit Wasserdampf flüchtig. Gibt mit Eisenchlorid eine violette Färbung. — Liefert bei der Reduktion mit amalgamiertem Zink und Salzsäure 2-Methyl-6-propyl-phenol.

- 2-Methoxy-3-methyl-propiophenon, 6-Propionyl-o-kresol-methyläther, Äthyl-[2-methoxy-3-methyl-phenyl]-keton $C_{11}H_{14}O_2=CH_3\cdot O\cdot C_6H_3(CH_3)\cdot CO\cdot C_2H_5$. B. Aus 2-Methoxy-3-methyl-benzoylchlorid und Äthylzinkjodid in Toluol (Mauthner, J. pr. [2] 103, 394). Kp₁₃: 122°.
- 2-0xy-3-methyl-propiophenon-semicarbazon $C_{11}H_{15}O_2N_3=HO\cdot C_6H_3(CH_3)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot C_2H_5$. Krystalle (aus Alkohol). F: 202° (v. Auwers, Wittig, B. 57, 1274). Ziemlich schwer löslich.
- 24. 4-Oxy-1-methyl-3-propionyl-benzol, 6-Oxy-3-methyl-propiophenon, 4-Methyl-2-propionyl-phenol, 2-Propionyl-p-kresol C₁₀H₁₂O₂, s. nebenstehende Formel (H 120; E I 554). Verbrennungswärme bei konstantem Volumen: 1252,4 kcal/Mol (Roth, Banse in Landolt-Börnet. E II, 1640). Liefert beim Behandeln mit Oxalsäure-diäthylester und Natrium und folgenden Kochen mit Salzsäure 3.6-Dimethyl-chromon-carbonsäure-(2) (v. Auwers, A. 421, 27). Gibt beim Erhitzen mit Benzoesäureanhydrid und Natriumbenzoat auf 180° OH 3.6-Dimethyl-flavon (Wittig, A. 446, 187). Das Phenylhydrazon schmilzt bei 146°, das 4-Nitro-phenylhydrazon bei 187—188° (v. Auwers, Hilliger, Wulf, A. 429, 217).
- 6-Methoxy-3-methyl-propiophenon, 2-Propionyl-p-kresol-methyläther, Äthyl-[6-methoxy-3-methyl-phenyl]- keton $C_{11}H_{14}O_2=CH_3\cdot O\cdot C_6H_3(CH_3)\cdot CO\cdot C_2H_5$ (H 120; E I 554). B. Durch Einw. von 6-Methoxy-3-methyl-benzoylchlorid auf Äthylzinkjodid in Toluol (Mauthner, J. pr. [2] 108, 395). Durch langsame Zugabe von Propionsäureanhydrid zu einer Lösung von p-Kresol-methyläther in Schwefelkohlenstoff bei Gegenwart von Aluminiumchlorid unter Kühlung (Noller, Adams, Am. Soc. 46, 1892). Kp₇₂₅: 270° (korr.); Kp₃: 118,5° (korr.) (N., A.); Kp₁₃: 139—140° (v. Auwers, Lechner, Bundesmann, B. 58, 45). D²⁰: 1,0490; n²⁰: 1,5323 (N., A.).
- 6-Acetoxy-3-methyl-propiophenon, 2-Propionyl-p-kresol-acetat $C_{12}H_{14}O_3 = CH_3 \cdot CO \cdot O \cdot C_4H_3 \cdot (CH_3) \cdot CO \cdot C_2H_5$. B. Beim Erhitzen von 6-Oxy-3-methyl-propiophenon mit Acetanhydrid und Natriumacetat (v. Auwers, Hilliger, Wulf, A. 429, 217). Nadeln (aus Petroläther). F: 58°. Leicht löslich in Alkohol, Äther, Eisessig und Benzol. Gibt mit Phenylhydrazin in Alkohol + Eisessig 6-Oxy-3-methyl-propiophenon-phenylhydrazon, mit Hydroxylamin in siedender alkalischer Lösung 6-Oxy-3-methyl-propiophenon-oxim.
- 6-Oxy-3-methyl-propiophenon-oxim $C_{10}H_{18}O_2N=HO\cdot C_6H_3(CH_3)\cdot C(:N\cdot OH)\cdot C_3H_6$. Beim Kochen von 6-Acetoxy-3-methyl-propiophenon mit Hydroxylamin in alkal. Lösung (v. Auwers, Hilliger, Wulf, A. 429, 219). Prismen (aus Methanol). F: 134—135° (v. Au., H., W.; v. Au., Lechner, Bundesmann, B. 58, 45). Leicht löslich in den meisten Lösungsmitteln (v. Au., L., B.). Liefert beim Kochen mit der 20-fachen Menge 17—18% iger Salzsäure 6-Oxy-3-methyl-propiophenon zurück (v. Au., L., B.).
- 6-Methoxy-3-methyl-propiophenon-oxim $C_{11}H_{15}O_2N=CH_3\cdot O\cdot C_4H_3(CH_3)\cdot C(:N\cdot OH)\cdot C_2H_5$ (H 120). Plättchen (aus Benzin). F: $90-90,5^{\circ}$ (v. Auwers, Lechner, Bundesmann, B. 58, 45). Leicht löslich. Liefert beim Kochen mit der 20-fachen Menge 17—18% iger Salzsäure 6-Methoxy-3-methyl-propiophenon und 3-Amino-4-methoxy-toluol im Verhältnis 4,5:2.
- 6-Oxy-3-methyl-propiophenon-semicarbazon $C_{11}H_{15}O_2N_3=HO\cdot C_4H_3(CH_3)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot C_2H_5$. Nadeln (aus Alkohol). F: 211—212° (v. Auwers, Lechner, Bundesmann, B. 58, 45).
- 5-Chlor-6-oxy-3-methyl-propiophenon, 6-Chlor-2-propionyl-p-kresol

 C₁₀H₁₁O₂Cl, s. nebenstehende Formel. B. Aus [2-Chlor-4-methyl-phenyl]propionat durch Erhitzen mit Aluminiumchlorid auf 120° (ROSENMUND,

 SCHNURR, A. 460, 84). Nadeln (aus Petroläther). F: 115°.
- α-Chlor-6-oxy-3-methyl-propiophenon, 2-[α-Chlor-propionyl]-p-kresol $C_{10}H_{11}O_2Cl = CH_3 \cdot C_6H_3(OH) \cdot CO \cdot CHCl \cdot CH_3$ (E I 554). Liefert beim Kochen mit Diäthylanilin 6-Oxy-3-methyl-propiophenon und geringe Mengen 2.5-Dimethyl-cumaranon (v. Auwers, Lämmerhiet, B. 53, 435).
- β -Brom-6-oxy-3-methyl-propiophenon, 2-[β -Brom-propionyl]-p-kresol $C_{10}H_{11}O_3Br=HO$ · $C_6H_3(CH_3)$ ·CO· CH_2 · CH_2Br . B. Beim Erhitzen von β -Brom-propionsäure-p-tolylester mit 2 Tln. Aluminiumchlorid auf 120° (Krollpfeiffer, Schultze, B. 57, 601). Tafeln (aus Alkohol). F: 72—73°.

- 121
- 6 Methylmercapto 3 methyl propiophenon, 2 Propionyl thio p kresol methyläther $C_{11}H_{14}OS = CH_3 \cdot S \cdot C_6H_4(CH_3) \cdot CO \cdot C_2H_5$. B. Aus Thio-p-kresol-methyläther, Propionylchlorid und Aluminiumchlorid in Schwefelkohlenstoff auf dem Wasserbad (Krollpfeiffer, Schneider, B. 61, 1290). Prismen (aus Alkohol). F: 42—43°. Kp_{10} : 176—177°.
- α-Brom-6-methylmercapto-3-methyl-propiophenon, 2-[α-Brom-propionyl]-thio-p-kresol-methyläther $C_{11}H_{13}OBrS = CH_3 \cdot S \cdot C_6H_3(CH_3) \cdot CO \cdot CHBr \cdot CH_3$. Schwach gelbe Nadeln (aus Alkohol). F: 98° (Krollpfeiffer, Schneider, B. 61, 1290). Liefert bei der Wasserdampfdestillation eine Verbindung $(C_{10}H_{10}O_2S)_x$ (gelbe Prismen; F: 126—127°; Kp_{10} : 165°; sehr leicht löslich in Alkalien) und sehr geringe Mengen eines bei 199° schmelzenden, in Alkali unlöslichen Produktes.
- 25. 6-Oxy-1-methyl-3-propionyl-benzol, 4-Oxy-3-methyl-propiophenon, 2-Methyl-4-propionyl-phenol, 4-Propionyl-o-kresol C₁₀H₁₂O₂, Formel I. B. Neben 2-Oxy-3-methyl-propiophenon beim Erhitzen von Propionsäure-o-tolylester mit Aluminiumchlorid auf 120° (v. Auwers, Wittig, B. 57, 1274). Nadeln (aus 80% igem Alkohol). F: 83,5—84°. Leicht löslich in Alkohol und Eisessig, mäßig löslich in Benzol, schwer in Benzin. Mit Wasserdampf nicht flüchtig.
- 26. 3-Oxy-1-methyl-4-propionyl-benzol, 2-Oxy-4-methyl-propiophenon, 5-Methyl-2-propionyl-phenol, 6-Propionyl-m-kresol C₁₀H₁₂O₂, Formel II. B. Neben wenig 4-Oxy-2-methyl-propiophenon beim Erhitzen von Propionsäure-m-tolylester mit Aluminiumchlorid auf 100° (v. Auwers, A. 439, 174). Krystalle (aus Petroläther). F: 41,5° bis 42,5°. Kp₁₀: 115—120°. Im allgemeinen leicht löslich. Wird durch Eisenchlorid violett gefärbt. Liefert beim Behandeln mit amalgamiertem Zink und Salzsäure 5-Methyl-2-propyl-phenol (Rosenmund, Schnure, A. 460, 81).

$$I. \overset{CH_{8}}{\longmapsto} \underbrace{\overset{CH_{8}}{\circ}}_{CO \cdot C_{2}H_{5}} \overset{CH_{8}}{\varinjlim} \underbrace{\overset{CO \cdot CH_{8}}{\circ}}_{CO \cdot C_{2}H_{5}} \overset{CO \cdot CH_{8}}{\varinjlim} \underbrace{\overset{CO \cdot CH_{8}}{\o}}_{CO \cdot C_{2}H_{5}} \overset{CO \cdot CH_{8}}{\o} \overset{CO \cdot$$

- 2-Methoxy-4-methyl-propiophenon, 6-Propionyl-m-kresol-methyläther, Äthyl-[2-methoxy-4-methyl-phenyl]-keton $C_{11}H_{14}O_2=CH_3\cdot O\cdot C_6H_3(CH_3)\cdot CO\cdot CH_2\cdot CH_3$. B. Aus 2-Methoxy-4-methyl-benzoylchlorid und Äthylzinkjodid in Toluol (Mauthner, J. pr. [2] 103, 395). Kp₁₄: 147°.
- 2 Oxy 4 methyl propiophenon semicarbazon $C_{11}H_{15}O_2N_3 = HO \cdot C_6H_3(CH_3) \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot C_2H_5$. Nadeln (aus Alkohol). F: 206—208° (v. AUWERS, A. 489, 174). Ziemlich leicht löslich in Eisessig und in heißem Alkohol und Methanol, schwerer in Aceton, unlöslich in Benzol.
- 5-Chlor-2-oxy-4-methyl-propiophenon, 4-Chlor-6-propionyl-m-kresol $C_{10}H_{11}O_2Cl$, Formel III. B. Aus [4-Chlor-3-methyl-phenyl]-propionat durch Erhitzen mit Aluminiumchlorid auf 120° (ROSENMUND, SCHNURR, A. 460, 84). Nadeln (aus Methanol + Wasser). F: 76°.
- α-Chlor-2-oxy-4-methyl-propiophenon, 6-[α-Chlor-propionyl]-m-kresol $C_{10}H_{11}O_2Cl = CH_3 \cdot C_6H_3(OH) \cdot CO \cdot CHCl \cdot CH_3$. B. Neben anderen Produkten beim Behandeln von m-Kresol-methyläther mit α-Brom-propionylbromid und Aluminiumchlorid in Schwefelkohlenstoff (v. Auwers, A. 439, 168). Kp₁₂: 145—147°. Liefert bei der Oxydation mit Wasserstoffperoxyd in alkal. Lösung 2-Oxy-4-methyl-benzoesäure. Bei der Reduktion mit Zinkstaub in Eisessig entsteht 2-Oxy-4-methyl-propiophenon. Gibt beim Kochen mit Natriumacetat in Alkohol 2.6-Dimethyl-cumaranon.
- 27. 1-p-Tolyl-propanol-(1)-on-(2), α -Oxy- α -p-tolyl-aceton, p-Tolyl-acetyl-carbinol $C_{10}H_{11}O_2=CH_3\cdot C_4H_4\cdot CH(OH)\cdot CO\cdot CH_3$. B. Aus p-Tolylaidehyd bei der Einw. von gärender Unterhefe (Behrens, Iwanoff, Bio. Z. 169, 479). Gibt ein 4-Nitrophenylosazon vom Schmelzpunkt 282°.
- 28. 2-Oxy-3-äthyl-1-acetyl-benzol, 2-Oxy-3-äthyl-acetophenon, 2-Äthyl-6-acetyl-phenol C₁₀H₁₂O₂. Formel IV. B. Aus nicht näher beschriebenem 2-Acetoxy-1-äthylbenzol durch Erhitzen mit Aluminiumchlorid auf 130—140° (v. Auwers, Mauss, A. 460, 276). Öl. Kp: 213°. Flüchtig mit Wasserdampf. Wird durch Eisenchlorid rotviolett gefärbt. Liefert beim Behandeln mit amalgamiertem Zink und Salzsäure 2.6-Diäthyl-phenol. 4-Nitrophenylhydrazon. F: 213—217°.
- 5-Chlor-2-oxy-3-äthyl-acetophenon, 4-Chlor-2-äthyl-6-acetyl-phenol $C_{10}H_{11}O_{2}Cl$. Formel V. B. Beim Erhitzen von 5-Chlor-2-acetoxy-1-äthyl-benzol mit Aluminiumohlorid auf 120° (v. Auwers, Wittig, B. 57, 1275). Hellgelbes Öl. Erstarrt bei Eiskühlung, zerfließt bei Zimmertemperatur. Kp₁₈: 145—146°. Gibt mit Eisenchlorid eine violette Färbung. —

Liefert beim Kochen mit amalgamiertem Zink und Salzsäure 4-Chlor-2.6-diäthyl-phenol. — Natriumsalz. Gelb. Schwer löslich in 2n-Natronlauge.

Semicarbazon C₁₁H_{1e}O₂N₃Cl = HO·C₆H₃Cl(C₂H₅)·C(:N·NH·CO·NH₂)·CH₂. F: 229—230⁶ (v. Auwers, Wittig, B. 57, 1275). Sehr schwer löslich in organischen Lösungsmitteln.

29. 6-Oxy-3-äthyl-1-acetyl-benzol, 6-Oxy-3-äthyl-acetophenon, 4-Äthyl-2-acetyl-phenol $C_{10}H_{12}O_2$, Formel VI. B. Durch Erhitzen von 4-Acetoxy-1-äthyl-benzol mit Aluminiumchlorid (v. Auwers, Mauss, A. 460, 274). — Hellgelbes Öl. Kp₁₂: 119—121°. Flüchtig mit Wasserdampf. Löslich in Alkalilaugen mit gelber Farbe. Wird durch Eisenchlorid dunkelviolett gefärbt.

 $0 \times im C_{10} H_{13} O_2 N = HO \cdot C_6 H_3 (C_2 H_5) \cdot C (: N \cdot OH) \cdot CH_3$. Hellbraune Nadeln (aus Benzin). F: 118° bis 119° (v. Auwers, Mauss, A. 460, 274). Leicht löslich in den gebräuchlichen Lösungsmitteln.

30. 5-Oxy-1-methyl-4-äthyl-2-formyl-benzol, 4-Oxy-2-methyl-5-äthyl-benzaldehyd C₁₀H₁₂O₂, Formel VII. B. Durch Behandlung von 5-Methyl-2-äthyl-phenol mit Blausäure, Chlorwasserstoff und Aluminiumchlorid in Benzol anfangs bei 0°, dann bei 40° (v. Auwers, Bundesmann, Wieners, A. 447, 178). — Nadeln (aus Wasser). F: 110°. Leicht löslich in den meisten organischen Mitteln, schwer löslich in Benzin. Gibt mit Eisenchlorid keine Färbung.

Semicarbazon $C_{11}H_{15}O_2N_3=C_2H_5\cdot C_6H_2(CH_3)(OH)\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Nadeln (aus verd. Methanol). F: 204—206° (v. Auwers, Bundesmann, Wieners, A. 447, 178). Leicht löslich in Alkohol, schwer in Benzol und Äther.

- 31. 3-Oxy-1.2-dimethyl-4-acetyl-benzol, 3-Oxy-4-acetyl-o-xylol, 2-Oxy-3.4-dimethyl-acetophenon, 2.3-Dimethyl-6-acetyl-phenol $C_{10}H_{12}O_2$, Formel VIII. B. Aus [2.3-Dimethyl-phenyl]-acetat durch langsames Erhitzen mit Aluminiumchlorid auf 100° bis 120° (v. Auwers, Mauss, A. 460, 261). Hellgelbes Öl. Kp₁₂: 122—124°. Flüchtig mit Wasserdampf. Wird durch Eisenchlorid tief blauviolett gefärbt. Löst sich in verd. Natronlauge mit gelber Farbe. Liefert bei der Reduktion nach Clemmensen 2.3-Dimethyl-6-äthylphenol. Gibt beim Kochen mit 48%iger Bromwasserstoffsäure und Eisessig 2.3-Dimethylphenol. 4-Nitro-phenylhydrazon $C_{10}H_{17}O_3N_3$. F: 216—218°.
- 32. 5-Oxy-1.2-dimethyl-4-acetyl-benzol, 5-Oxy-4-acetyl-o-xylol, 6-Oxy-3.4-dimethyl-acetophenon, 3.4-Dimethyl-6-acetyl-phenol, symm. o-Aceto-as.o-xylenol C₁₀H₁₂O₂, Formel IX. B. Durch Erhitzen von [3.4-Dimethyl-phenyl]-acetat mit Aluminiumchlorid auf 130° (v. Auwers, Bundesmann, Wieners, A. 447, 176). Neben anderen Produkten beim Erhitzen von Pseudocumenylacetat (E II 6, 482) mit Aluminiumchlorid auf 130—140° (v. Au., B., W., A. 447, 186). Blättchen (aus Benzin). F: 71°. Leicht löslich in den meisten organischen Mitteln, schwer in heißem Wasser. Löslich in verd. Natronlauge mit gelber Farbe. Wird durch Eisenchlorid blauviolett gefärbt.
- 6-Methoxy-3.4-dimethyl-acetophenon $C_{11}H_{14}O_2=CH_3\cdot O\cdot C_6H_2(CH_3)_8\cdot CO\cdot CH_3$. B. Beim Behandeln von 6-Oxy-3.4-dimethyl-acetophenon mit Dimethylsulfat (v. Auwers, Bundesmann, Wieners, A. 447, 177). Nadeln (aus Petroläther). F: 55—56°.
- 6 Oxy 3.4 dimethyl acetophenon oxim $C_{10}H_{13}O_2N = HO \cdot C_6H_3(CH_3)_2 \cdot C(CH_3) : N \cdot OH$. Nadeln (aus Alkohol). F: 136—137° (v. Auwers, Bundesmann, Wieners, A. 447, 177). Leicht löslich in Alkohol und Äther, schwerer in Benzol. Wird beim Kochen mit ca. 20% iger Salzsäure verseift.
- 6-0xy-3.4-dimethyl-acetophenon-semicarbazon $C_{11}H_{15}O_2N_3 = HO \cdot C_6H_8(CH_9)_2 \cdot C(CH_9):N \cdot NH \cdot CO \cdot NH_2$. Nadeln. F: 292—295° (v. Auwers, Bundesmann, Wieners, A. 447, 177, 186).
- 6-Methoxy-3.4-dimethyl-acetophenon-semicarbazon $C_{12}H_{17}O_2N_3 = CH_3 \cdot O \cdot C_6H_2(CH_3)_3 \cdot C(CH_3) \cdot N \cdot NH \cdot CO \cdot NH_2$. F: 204—205° bei langsamem Erhitzen (v. Auwers, Bundesmann, Wieners, A. 447, 177).
- 33. 5-Oxy-1.4-dimethyl-2-acetyl-benzol, 5-Oxy-2-acetyl-p-xylol, 4-Oxy-2.5-dimethyl-acetophenon, 2.5-Dimethyl-4-acetyl-phenol, p-Aceto-p-xylenol C₁₀H₁₂O₂, s. nebenstehende Formel. B. Entsteht neben wenig 2-Oxy-3.5-dimethyl-acetophenon beim Erhitzen von [2.5-Dimethyl-phenyl]-acetat mit Aluminiumchlorid (v. Auwers, Bundes-OH₃ Mann, Wieners, A. 447, 181; v. Au., Mauss, B. 61, 1505). Nadeln (aus Wasser oder Benzol). F: 130—131°.

- 4-Methoxy-2.5-dimethyl-acetophenon C₁₁H₁₄O₃ = CH₂·O·C₆H₃(CH₃)₂·CO·CH₃. B. Durch Methylierung von 4-Oxy-2.5-dimethyl-acetophenon mit Dimethylsulfat (v. Auwers, Bundesmann, Wieners, A. 447, 183). Aus p-Xylenol-methyläther und Acetylchlorid bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (v. Au., B., W., A. 447, 182; Clemo, Haworth, Walton, Soc. 1929, 2376). Nadeln (aus Petroläther). F: 79—80° (v. Au., B., W.). Ziemlich beständig gegen Aluminiumchlorid bei 130° (v. Au., B., W.).
- 4-Oxy-2.5-dimethyl-acetophenon-oxim $C_{10}H_{13}O_2N=HO\cdot C_6H_2(CH_3)_2\cdot C(CH_3):N\cdot OH$. Blättchen (aus sehr verd. Alkohol). F: 155—156° (v. Auwers, Bundesmann, Wieners, A. 447, 182). Leicht löslich in Alkohol, schwer in Benzol. Beim Kochen mit ca. 20% iger Salzsäure entsteht 5-Amino-2-oxy-p-xylol.
- 4-Methoxy-2.5-dimethyl-acetophenon-semicarbazon $C_{12}H_{17}O_2N_3=CH_3\cdot O\cdot C_6H_2(CH_3)_2\cdot C(CH_3):N\cdot NH\cdot CO\cdot NH_2$. Krystalle (aus Alkohol). F: 206° (v. Auwers, Bundesmann, Wieners, A. 447, 183).
- 34. 3-Oxy-1.5-dimethyl-2-acetyl-benzol, 5-Oxy-4-acetyl-m-xylol, 6-Oxy-2.4-dimethyl-acetophenon, 3.5-Dimethyl-2-acetyl-phenol C₁₀H₁₂O₂, s. nebenstehende Formel (E I 555). Verbrennungswärme bei konstantem Volumen: 1248,5 kcal/Mol (MAATSCH in Landolt-Börnst. E II, 1640). Gibt bei der Einw. von Essigester und Natrium, zuletzt bei Siedetemperatur 3.5-Dimethyl-2-acetoacetyl-phenol (Wittig, A. 446, 172). Liefert bei 8-stdg. Erhitzen mit Acetanhydrid und Natriumacetat 2.5.7-Trimethyl-chromon und 2.5.7-Trimethyl-3-acetyl-chromon (W., A. 446, 179).
- **6-Methoxy-2.4-dimethyl-acetophenon** $C_{11}H_{14}O_2=CH_3\cdot O\cdot C_6H_2(CH_3)_2\cdot CO\cdot CH_3$ (E I 555). Liefert beim Kochen mit Essigester und Natrium den Methyläther des 3.5-Dimethyl-2-aceto-acetyl-phenols (WITTIG, A. 446, 199).

$\textbf{6-Oxy-2.4-dimethyl-acetophenon-}\alpha\text{-oxim}\quad C_{10}H_{13}O_{2}N = \\ \\ \begin{matrix} HO\cdot C_{0}H_{2}(CH_{3})_{2}\cdot C\cdot CH_{3} \\ \parallel N\cdot OH \end{matrix} \text{ (E I 555)}.$

Zur Konfiguration vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 1026; v. Auwers, Jordan, B. 58, 26. — B. Neben sehr geringen Mengen des β-Oxims (s. u.) bei mehrtägigem Aufbewahren einer Lösung von 247 g 6-Oxy-2.4-dimethylacetophenön und 250 g Hydroxylaminhydrochlorid in 4200 cm³ 10%iger Natronlauge (v. Au., J., B. 58, 32; vgl. v. Au., Borsche, B. 48 [1915], 1708). Bildung aus dem β-Oxim s. bei diesem. — Destilliert unter 10 mm Druck bei 180° fast unzersetzt; geht bei der Destillation unter gewöhnlichem Druck in 2.4.6-Trimethyl-benzoxazol (Syst. Nr. 4195) über, das auch bei der Einw. von Chlorwasserstoff in Acetanhydrid + Eisessig bei Zimmertemperatur oder von PCl₅ in Äther bei 0° in fast quantitativer Ausbeute erhalten wird (v. Au., J.). Bleibt bei 8-stdg. Kochen mit verd. Natronlauge unverändert (v. Au., J.). Gibt mit Brom in Schwefelkohlenstoff 3-Brom-6-oxy-2.4-dimethyl-acetophenon-oxim (v. Au., Borsche, Weller, B. 54, 1309). Liefert mit Benzoylchlorid in alkal. Lösung 6-Benzoyloxy-2.4-dimethyl-acetophenon-α-coximbenzoat (F: 143,5—144°) (v. Au., J.). — Gibt mit Nickelsulfat in alkoh. Ammoniak sofort einen grauen Niederschlag (v. Au., J.). — Hydrochlorid. Schmilzt bei 128—130° unter Zersetzung und Bildung von 2.4.6-Trimethyl-benzoxazol (v. Au., J.).

6-0 xy-2.4-dimethyl-acetophenon- β -oxim $C_{10}H_{13}O_2N=\frac{HO\cdot C_0H_2(CH_3)_2\cdot C\cdot CH_3}{HO\cdot N}$. Zur Kon-

figuration vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 1026; v. Auwers, Jordan, B. 58, 26. — B. s. beim α -Oxim. — Nadeln (aus Benzol oder Methanol). F: 121—121,5° (v. Au., J., B. 58, 33). Leicht löslich in Alkohol und Äther, schwer in kaltem Benzol. — Geht bei der Destillation unter 10 mm Druck bei 180—185° in das α -Oxim über; bei der Destillation unter gewöhnlichem Druck entsteht ein Gemisch aus 2.4.6-Trimethyl-benzoxazol und einem alkalilöslichen Öl. Das α -Oxim bildet sich auch bei längerem Kochen mit verd. Natronlauge. Beim Behandeln mit Chlorwasserstoff in Acetanhydrid + Eisessig bilden sich nur Spuren von 2.4.6-Trimethyl-benzoxazol; etwas größere Mengen dieser Verbindung entstehen neben phosphorhaltigen Produkten bei der Einw. von PCl₅ in eiskaltem Äther. Liefert mit Benzoylchlorid in alkal. Lösung 6-Benzoyloxy-2.4-dimethyl-acetophenon- β -oxim-benzoat (F: 109—110°). — Gibt mit Nickelsulfat in alkoh. Ammoniak nur eine geringe Trübung. — Hydrochlorid. Schmilzt bei ca. 150° unter Zersetzung und Bildung von 2.4.6-Trimethyl-benzoxazol.

6-Methoxy-2.4-dimethyl-acetophenon-oxim $C_{11}H_{15}O_2N=CH_3\cdot O\cdot C_4H_4(CH_3)_2\cdot C(:N\cdot OH)\cdot CH_3$ (E I 555). Liefert beim Kochen mit der 20-fachen Menge 17—18 %iger Salzsäure 4-Amino-5-methoxy-m-xylol (v. Auwers, Lechner, Bundesmann, B. 58, 46).

- 3-Chlor-6-oxy-2.4-dimethyl-acetophenon, p-Chlor-o-aceto-symm.m-xylenol C₁₀H₁₁O₂Cl, s. nebenstehende Formel. B. Beim Erhitzen von
 3-Chlor-6-methoxy-2.4-dimethyl-acetophenon mit Aluminiumchlorid auf 140—150°
 (v. Auwers, Fortech. Ch. Phys. 18 [1924], Heft 2, S. 21).—Nadeln (aus Petroläther).

 Färbt sich bei 105° gelb; F: 109°. Leicht löslich in organischen Lösungsmitteln.
- 3-Chlor-6-methoxy-2.4-dimethyl-acetophenon $C_{11}H_{13}O_2Cl = CH_3 \cdot O \cdot C_6HCl(CH_3)_2 \cdot CO \cdot CH_3$. B. Aus 2-Chlor-5-methoxy-m-xylol, Acetylchlorid und Aluminiumchlorid in Schwefel-kohlenstoff bei Zimmertemperatur (v. Auwers, Fortsch. Ch. Phys. 18 [1924], Heft 2, S. 20). Prismen (aus verd. Methanol). F: 76—77°. Leicht löslich in den meisten Lösungsmitteln.
- 3-Chlor-6-oxy-2.4-dimethyl-acetophenon-oxim C₁₀H₁₂O₂NCl = HO·C₆HCl(CH₂)₂·C(:N·OH)·CH₃. B. Bei mehrtägigem Aufbewahren von 3-Chlor-6-oxy-2.4-dimethyl-acetophenon mit Hydroxylamin in wäßrig-alkoholischem Alkali (v. Auwers, Fortsch. Ch. Phys. 18 [1924], Heft 2, S. 21). Blättchen (aus verd. Alkohol). F: 138,5°. Leicht löslich in Alkohol, schwer in Chloroform und Benzol.
- 3-Chlor-6-methoxy-2.4-dimethyl-acetophenon-oxim $C_{11}H_{14}O_2NCl = CH_3 \cdot O \cdot C_6HCl(CH_3)_3 \cdot C(:N \cdot OH) \cdot CH_3$. B. Bei wochenlangem Aufbewahren von 3-Chlor-6-methoxy-2.4-dimethylacetophenon mit Hydroxylamin und überschüssigem wäßrig-alkoholischem Alkali (v. Auwers, Fortsch. Ch. Phys. 18 [1924], Heft 2, S. 21). Nadeln oder Tafeln (aus Alkohol oder Tetrachlorkohlenstoff). F: 134—135°. Schwer löslich in Benzol und wäßr. Natronlauge.
- 3-Brom-6-oxy-2.4-dimethyl-acetophenon-oxim $C_{10}H_{11}O_2NBr$, s. nebenstehende Formel. B. Aus 6-Oxy-2.4-dimethyl-acetophenon- α -oxim und Brom in Schwefelkohlenstoff (v. Auwers, Borsche, Weller, B. 54, 1309). Nadeln (aus Benzol). F: 188°. Leicht löslich in Alkohol Hound Eisessig, löslich in Benzol, schwer löslich in Petroläther. Liefert beim Kochen mit ca. 20% iger Salzsäure 2-Brom-4-amino-5-oxy-m-xylol.
 - CH₃
 ·Br
 ·CH₃
 ·CH₃
- 35. 4-Oxy-1.5-dimethyl-2-acetyl-benzol, 6-Oxy-4-acetyl-m-xylol, 5-Oxy-2.4-dimethyl-acetophenon, 2.4-Dimethyl-5-acetyl-phenol $C_{10}H_{18}O_2$, Formel I. B. Aus 5-Methoxy-2.4-dimethyl-acetophenon durch Einw. von Aluminiumchlorid (v. Auwers, Mauss, B. 61, 1502). Bei der Reduktion von ω -Chlor-5-oxy-2.4-dimethyl-acetophenon mit Zinkstaub und Essigsäure (v. Au., M., B. 61, 1503). Neben anderen Produkten bei der Umsetzung von 4-Methoxy-1.5-dimethyl-2-äthyl-benzol mit Acetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff (v. Au., M., B. 61, 1497). Nadeln (aus Wasser oder Alkohol). F: 130—131,5°. Ziemlich leicht löslich in

kohlenstoff (v. Au., M., B. Ziemlich leicht löslich in den meisten Lösungsmitteln. Gibt mit Eisenchlorid eine schwach grünliche Färbung. Löst sich in Alkalilaugen mit gelblicher Farbe. — Liefert

bei der Reduktion nach CLEMMENSEN 2.4-Dimethyl-5-äthyl-phenol (v. Au., M., A. 460, 264). Gibt beim Erhitzen mit 10 Tln. 84% iger Phosphorsäure auf 170—190° 4-Oxy-m-xylol (v. Au., M., B. 61, 1502).

- 5-Methoxy-2.4-dimethyl-acetophenon, 2.4-Dimethyl-5-acetyl-anisol $C_{11}H_{14}O_2=CH_3\cdot O\cdot C_6H_2(CH_3)_2\cdot CO\cdot CH_3$. B. Aus 4-Methoxy-m-xylol, Acetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff, neben anderen Produkten (v. Auwers, Mauss, B. 61, 1502). Krystalle (aus Petroläther). F: 50—51°. Unlöslich in Alkalilaugen.
- 5 Oxy 2.4 dimethyl acetophenon oxim $C_{10}H_{13}O_2 = HO \cdot C_6H_2(CH_3)_2 \cdot C(:N \cdot OH) \cdot CH_3$. Nicht rein erhalten. F: 142—146° (v. Auwers, Mauss, B. 61, 1503).
- ω -Chlor-5-oxy-2.4-dimethyl-acetophenon $C_{10}H_{11}O_2Cl = HO \cdot C_6H_8(CH_9)_8 \cdot CO \cdot CH_2Cl$. B. Aus 4-Methoxy-m-xylol, Chloracetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff, neben ω -Chlor-2-oxy-3.5-dimethyl-acetophenon (v. Auwers, Mauss, B. 61, 1503). Nadeln (aus Ligroin). F: 107—107,5°. Etwas flüchtig mit Wasserdampf. Löst sich in Laugen mit schwach gelblicher Farbe. Liefert bei der Reduktion mit Zinkstaub und Essigsäure 5-Oxy-2.4-dimethyl-acetophenon.
- 36. 2-Oxy-3-methyl-5-äthyl-1-formyl-benzol, 2-Oxy-3-methyl-5-äthyl-benzaldehyd, 3-Methyl-5-äthyl-salicylaldehyd C₁₀H₁₂O₂, Formel II. B. Neben 4-Methoxy-3-methyl-benzaldehyd beim Behandeln von 6-Methoxy-1-methyl-3-äthyl-benzol mit Blausäure, Chlorwasserstoff und Aluminiumchlorid anfangs in der Kälte, später bei 40° (v. Auwers, Mauss, A. 460, 265). Gelbes Öl. Kp₁₂: 120—122°. Löslich in Alkalilaugen mit gelber Farbe. Wird durch Eisenchlorid tiefblau gefärbt. 4-Nitro-phenylhydrazon. F: 167—169°.
- 37. 4-Oxy-3-methyl-5-äthyl-1-formyl-benzol, 4-Oxy-3-methyl-5-äthyl-benzaldehyd $C_{10}H_{12}O_2$, Formel III. B. Aus 2-Methyl-6-äthyl-phenol durch Einw. von wasser-

freier Bitusäure, Chlorwasserstoff und Aluminiumchlorid bei 40° (v. Auwers, Bundesmann, Wieners, A. 447, 180). — Nadeln (aus Benzol). F: 94—95°. Leicht löslich in den meisten organischen Lösungsmitteln, schwerer in Benzin. — Liefert bei der Reduktion nach Clemmensen 2.4-Dimethyl-6-äthyl-phenol.

- 38. 2-Oxy-1.3-dimethyl-5-acetyl-benzol, 2-Oxy-5-acetyl-m-xylol, 4-Oxy-3.5-dimethyl-acetophenon, 2.6-Dimethyl-4-acetyl-phenol, p-Aceto-vic.-m-xylenol C₁₀H₁₂O₂, Formel IV. B. Aus 2-Acetoxy-m-xylol beim Erhitzen mit Aluminium-chlorid auf 150° (v. Auwers, Mauss, A. 460, 266; 464, 305) oder beim Aufbewahren mit Aluminiumchlorid in Nitrobenzol (v. Au., M., A. 464, 309). Neben etwas geringeren Mengen 2-Oxy-3.5-dimethyl-4-āthyl-acetophenon beim Erhitzen von 2.6-Dimethyl-4-āthyl-phenol-acetat (E II 6, 503) mit Aluminiumchlorid (v. Au., M., A. 460, 267). Tafeln (aus Alkohol). F: 150—151°. Liefert bei der Reduktion nach Clemmensen 2.6-Dimethyl-4-āthyl-phenol (v. Au., M., A. 460, 266). Beim Kochen mit Eisessig und 48 %iger Bromwasserstoffsäure entsteht 2-Oxy-m-xylol. Natriumsalz. Schwer löslich.
- 39. 4-Oxy-1.3-dimethyl-5-acetyl-benzol, 4-Oxy-5-acetyl-m-xylol, 2-Oxy-3.5-dimethyl-acetophenon, 2.4-Dimethyl-6-acetyl-phenol, o-Aceto-asymm.-m-xylenol C₁₀H₁₂O₂, Formel V. B. Durch längeres Erhitzen von 4-Acetoxy-m-xylol mit Aluminiumchlorid auf 120° (v. Auwers, Lechner, Bundesmann, B. 58, 45). Neben 5-Methoxy-2.4-dimethyl-acetophenon bei der Umsetzung von 4-Methoxy-m-xylol mit Acetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff (v. Au., Mauss, B. 61, 1502). Neben 4-Oxy-2.5-dimethyl-acetophenon und anderen Produkten beim Erhitzen von 2-Acetoxy-p-xylol mit Aluminiumchlorid auf 80—90° (v. Au., Bundesmann, Wieners, A. 447, 179; v. Au., M., B. 61, 1505). Krystalle (aus Petroläther). F: 53—54° (v. Au., B., W.; v. Au., M.). Kp_{1e}: 124,5—126° (v. Au., L., B.). Verbrennungswärme bei konstantem Volumen: 1243,1 kcal/Mol (Maatsch in Landolt-Börnet. E II, 1640). Löslich in Alkalilaugen (v. Au., M.). Gibt mit Eisenchlorid eine tiefblaue Färbung (v. Au., L., B.). Liefert beim Schmelzen mit Natrium- und Kaliumhydroxyd und etwas Wasser bei 220—230° geringe Mengen 2-Oxy-3.5-dimethyl-benzoesäure (v. Au., B., W., A. 447, 181).
- 2-Methoxy-3.5-dimethyl-acetophenon, 2.4-Dimethyl-6-acetyl-anisol $C_{11}H_{14}O_2=CH_3\cdot O\cdot C_6H_8(CH_8)_2\cdot CO\cdot CH_8$. Ol. Als Siedepunkt¹) wird angegeben $Kp_{14}\colon 132-133^\circ$ (v. Auwers, Lechner, Bundesmann, B. 58, 46); $Kp_{13}\colon 120^\circ$ (v. Au., B., Wieners, A. 447, 179).

IV.
$$CH_3 \cdot CO \cdot \bigcirc \cdot CH_3$$
 V. $CH_3 \cdot CO \cdot \bigcirc \cdot CH_3$ VI. $HO \cdot \bigcirc \cdot CH_3$ CH_3

- 2-Oxy-3.5-dimethyl-acetophenon-oxim $C_{10}H_{13}O_2N=HO\cdot C_6H_2(CH_3)_2\cdot C(:N\cdot OH)\cdot CH_3$. Krystalle (aus Petroläther). F: 139,5—141° (v. Auwers, Bundesmann, Wieners, A. 447, 179; v. Au., Lechner, B., B. 58, 46). Sehr leicht löslich. Liefert beim Kochen mit der 20-fachen Menge 17—18%iger Salzsäure das Keton zurück (v. Au., L., B.).
- 2-Methoxy-3.5-dimethyl-acetophenon-oxim $C_{11}H_{15}O_2N=CH_2\cdot O\cdot C_6H_2(CH_3)\cdot C(:N\cdot OH)\cdot CH_2$. Nadeln (aus Benzin). F: 86—86,5° (v. Auwers, Lechner, Bundesmann, B. 58, 46). Leicht löslich in den meisten Lösungsmitteln. Liefert beim Kochen mit der 20-fachen Menge 17—18 % iger Salzsäure 2-Methoxy-3.5-dimethyl-acetophenon und nicht näher beschriebenes 5-Amino-4-methoxy-m-xylol(?) im Verhältnis 3:1.
- 2-0xy-3.5-dimethyl-acetophenon-semicarbazon $C_{11}H_{15}O_2N_3=HO\cdot C_6H_2(CH_3)_3\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_3$. F: 257° (v. Auwers, Bundesmann, Wieners, A. 447, 179). Schwer löslich in den meisten Lösungsmitteln.
- ω Chlor 2 oxy 3.5 dimethyl acetophenon $C_{10}H_{11}O_2Cl = HO \cdot C_6H_4(CH_3)_2 \cdot CO \cdot CH_2Cl$ (H 122). B. Aus 4-Methoxy-m-xylol, Chloracetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff, neben ω -Chlor-5-oxy-2.4-dimethyl-acetophenon (v. Auwers, Mauss, B. 61, 1503).
- 40. 6-Oxy-2.3.4-trimethyl-1-formyl-benzol, 6-Oxy-2.3.4-trimethyl-benz-aldehyd, 4.5.6-Trimethyl-salicylaldehyd C₁₀H₁₂O₂, Formel VI. B. Neben überwiegenden Mengen 1.2.6-Trimethyl-1-dichlormethyl-oyclohexadien-(2.5)-on-(4) bei der Einw. von Chloroform und verd. Natronlauge auf 3.4.5-Trimethyl-phenol bei 80—90° (v. Auwers, Ziegler, A. 425, 276). Schwach gelbliche Nadeln (aus Alkohol, Methanol oder Benzin). F: 77—78°. Leicht lödich in Benzol, Aceton und Chloroform. Gibt mit Eisenchlorid in Alkohol eine schmutziggrüne Färbung.

¹⁾ Nach dem Literatur-Schlußtermin des Ergänzungswerks II [1. I. 1930] geben FLYNN, ROBERTSON (Soc. 1936, 215) Kp₁₁: 134—135° an.

Semicarbazon $C_{11}H_{15}O_2N_3 = HO \cdot C_8H(CH_3)_3 \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Krystallpulvé sich bei 130° gelb, schmilzt nicht bis 280° (v. Auwers, Ziegler, A. 425, 277). Löslich in heißem Eisessig unter schwacher Zersetzung, schwer löslich in den meisten anderen Lösungsmitteln.

- 41. 5-Oxy-1.3.4-trimethyl-2-formyl-benzol, 4-Oxy-2.3.6-trimethyl-benz-aldehyd C₁₀H₁₂O₂, Formel VII. B. Neben geringen Mengen 6-Oxy-2.4.5-trimethyl-benzaldehyd bei der Einw. von wasserfreier Blausäure, Chlorwasserstoff und Aluminiumchlorid auf 6-Oxy-1.2.4-trimethyl-benzol in Benzol (v. Auwers, Bundesmann, Wieners, A. 447, 184). Ist nicht näher beschrieben.
- 42. 4-Oxy-1.3.5-trimethyl-2-formyl-benzol (?), 3-Oxy-2.4.6-trimethyl-benzaldehyd (?) C₁₀H₁₂O₂, Formel VIII. B. Durch Einw. von wasserfreier Blausäure, Chlorwasserstoff und Aluminiumchlorid auf 2-Methoxy-mesitylen und Behandlung des Reaktionsprodukts mit Aluminiumchlorid (v. Auwers, Mauss, B. 61, 1500, 1506). Nadeln (aus Alkohol). F: 108—109°. Löst sich in Alkalilaugen mit schwach gelblicher Farbe.
- 43. 4-Oxy-1.2.3-trimethyl-5-formyl-benzol, 2-Oxy-3.4.5-trimethyl-benzaldehyd, 3.4.5-Trimethyl-salicylaldehyd $C_{10}H_{12}O_{2}$, Formel IX. B. Neben überwiegenden Mengen 4-Oxy-2.3-dimethyl-benzaldehyd bei der Umsetzung von 4-Oxy-1.2.3-trimethyl-benzol mit wasserfreier Blausäure und Chlorwasserstoff in Gegenwart von Aluminiumchlorid (v. Auwers, Mauss, B. 61, 1501, 1507). Nadeln (aus Petroläther). F: $36-37^{\circ}$. Ist mit Wasserdampf flüchtig. Leicht löslich in den gebräuchlichen Lösungsmitteln. Löst sich in überschüssiger verdünnter Natronlauge mit gelber Farbe. Gibt mit Eisenchlorid eine tiefe grünstichig blaue Färbung. Das Natriumsalz ist schwer löslich.

$$VII. \underset{CH_3}{\overset{CH_3}{\longrightarrow}} VIII. \underset{CH_3}{\overset{CH_3}{\longrightarrow}} VIII. \underset{CH_3}{\overset{CH_3}{\longrightarrow}} VIII. \underset{OHC}{\overset{CH_3}{\longrightarrow}} VIII. \underset{OHC}{\overset{CH_3}{\longrightarrow}} VIII. \underset{CH_3}{\overset{CH_3}{\longrightarrow}} VIII. \underset{OHC}{\overset{CH_3}{\longrightarrow}} VIII. \underset{OHC}{\overset{CH_3}{\longrightarrow}} VIII. \underset{CH_3}{\overset{CH_3}{\longrightarrow}} VIII. \underset{CH_3}{\overset{CH_3}{\longrightarrow}} VIII. \underset{OHC}{\overset{CH_3}{\longrightarrow}} VIII. \underset{OHC}{\overset{CH_3}{\longrightarrow}} VIII. \underset{CH_3}{\overset{CH_3}{\longrightarrow}} VIII. \underset{OHC}{\overset{CH_3}{\longrightarrow}} VIII. \underset{CH_3}{\overset{CH_3}{\longrightarrow}} VIII. \underset{CH_3}{\overset{CH_3}{\longrightarrow}} VIII. \underset{OHC}{\overset{CH_3}{\longrightarrow}} VIII. \overset{OHC}{\overset{CH_3}{\longrightarrow}} VIII. \overset{OHC}{\overset{CH_3}{\longrightarrow}} VIII. \overset{OHC}{\overset{CH_3}{\longrightarrow}} VIII. \overset{OHC$$

- 44. 6-Oxy-2.4.5-trimethyl-1-formyl-benzol, 6-Oxy-2.4.5-trimethyl-benz-aldehyd, 3.4.6-Trimethyl-salicylaldehyd C₁₀H₁₂O₂, Formel X (H 122). B. s. o. im Artikel 4-Oxy-2.3.6-trimethyl-benzaldehyd. Krystalle (aus verd. Alkohol). F: 74° (v. Auwers, Bundesmann, Wieners, A. 447, 184). Löslich in Natronlauge mit gelber Farbe. Gibt mit Eisenchlorid eine grüne Färbung. Liefert beim Kochen mit amalgamiertem Zink und Salzsäure 2.3.5.6-Tetramethyl-phenol.
- 45. Rheosmin $C_{10}H_{12}O_3 = HO \cdot C_9H_{10} \cdot CHO$. B. Bei der Spaltung des aus chinesischem Rhabarber isolierten Glykosids Tetrarin mit siedenden verdünnten Mineralsäuren (GILSON, C. r. 136 [1903], 386; C. 1903 I, 722, 883). Nadeln. Rhombisch (Stöber, C. 1903 I, 883). F: 79,5°. Sehr leicht löslich in Alkohol, Methanol, Aceton und Äther, schwerer in Benzol, schwer in Wasser. Löslich in Alkalilauge, durch Kohlendioxyd fällbar. Reduziert ammoniakalische Silberlösung unter Spiegelbildung. Addiert NaHSO₃. Färbt Fuchsinschwefligsäure.

 $0xim~C_{10}H_{10}O_2N=HO\cdot C_9H_{10}\cdot CH:N\cdot OH.$ Blättchen. Schwer löslich in Wasser, leicht in Alkohol und Äther (GLISON, C. 1903 I, 883).

5. Oxy-oxo-Verbindungen C₁₁H₁₄O₂.

- 1. 4-Oxy-1-n-valeryl-benzol , 4-Oxy-valerophenon $C_{11}H_{14}O_2=HO\cdot C_0H_4\cdot CO\cdot [CH_3]_3\cdot CH_3$.
- 4-Methoxy-valerophenon, 4-Valeryl-anisol, Butyl-[4-methoxy-phenyl]-keton, Butyl-p-anisyl-keton C₁₂H₁₆O₂ = CH₃·O·C₆H₄·CO·[CH₂]₃·CH₃ (H 123). Darstellung durch Umsetzung von Anisol mit n-Valerylchlorid und Aluminiumchlorid in Petroläther: Seraup, Nieten, B. 57, 1301; mit n-Valeriansäureanhydrid und Aluminiumchlorid in Schwefelkohlenstoff: Noller, Adams, Am. Soc. 46, 1892. F: 26° (Se., Nie.), 22—23,5° (No., A.). Kp₇₃₀: 300° (korr.); Kp₆: 150,5° (korr.) (No., A.); Kp₁₄: 165—167° (Se., Nie.). Liefert beim Kochen mit amalgamiertem Zink und Salzsäure 4-Pentyl-anisol (Se., Nie.). Phenylhydrazon. F: 73° (Se., Nie.).
- 2. 1-[4-Oxy-phenyl]-pentanon-(2), Propyl-[4-oxy-benzyl]-keton $C_{11}H_{14}O_{1}=HO\cdot C_{6}H_{4}\cdot CH_{2}\cdot CO\cdot CH_{2}\cdot C_{1}H_{6}.$
- 1-[4-Methoxy-phenyl]-pentanon-(2), Propyl-[4-methoxy-benzyl]-keton, 1-Anisyl-pentanon-(2) $C_{12}H_{16}O_3=CH_3\cdot O\cdot C_4H_4\cdot CH_2\cdot CO\cdot CH_2\cdot C_2H_5$. B. Beim Erhitzen von α -Propyl- α' -[4-methoxy-phenyl]-åthylenglykol mit 20%iger Schwefelsäure (Lévy, Gombinska, O.r. 188, 713; L., Dvoleitzka-Gombinska, Bl. [4] 49 [1931], 1773). Aus α -Propyl- α' -[4-methoxy-phenyl]- α' -[4-methoxy-ph

phenyl]-āthylenoxyd beim Erhitzen mit 50% iger Schwefelsäure oder mit Zinkchlorid (L., G.; L., D.-G., Bl. [4] 49, 1771). — Kp₇₆₀: 280—285° (L., D.-G.).

Semicarbazon $C_{13}H_{19}O_2N_8=CH_3\cdot O\cdot C_0H_4\cdot CH_2\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_2\cdot C_2H_5$. F: 142° Lév y, Dvoleitzka-Gombinska, Bl. [4] 49 [1931], 1770).

- 3. 1-Phenyl-pentanol-(1)-on-(2), Phenyl-butyryl-carbinol $C_{11}H_{14}O_2 = C_0H_5$. CH(OH)·CO·CH₂·C₂H₅. B. Aus dl-Mandelsäureamid und Propylmagnesiumbromid (TIFFENEAU, LÉVY, Bl. [4] \$7, 1250). Gelbe Flüssigkeit von brennendem Geschmack. Kp₂₆: 159° bis 162°. D°: 1,064. Reduziert Fehlingsche Lösung in der Wärme. Gibt ein flüssiges Oxim.
- Semicarbazon $C_{12}H_{17}O_2N_3 = C_2H_5 \cdot CH(OH) \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_2 \cdot C_2H_5$. Krystalle. F: 157—158° (TIFFENEAU, LÉVY, Bl. [4] 37, 1250).
- 4. 1-[2-Oxy-phenyl]-pentanon-(3), Äthyl- $[2-oxy-\beta-phenäthyl]-keton$ $C_{11}H_{14}O_2=H0\cdot C_4H_4\cdot CH_4\cdot CH_5\cdot C0\cdot C_2H_5$. B. Durch Reduktion von Athyl-[2-oxy-styry]-keton mit Natriumamalgam und Wasser (Marui, Sci. Rep. Töhoku Univ. 17, 696; C. 1928 II, 1325). Krystalle (aus Äther + Petroläther). F: 72°. Schmeckt brennend und wirkt lähmend.
- 5. 1-[4-Oxy-phenyl]-pentanon-(3), Äthyl-[4-oxy- β -phenäthyl]-keton $C_{11}H_{14}O_2=HO\cdot C_4H_4\cdot CH_2\cdot CH_2\cdot CO\cdot C_2H_5$.
- 1.2-Dibrom 1-[4-methoxy-phenyl]-pentanon-(3), Dibromid des Äthyl-[4-methoxy-styryl]-ketons $C_{12}H_{14}O_2Br_2 = CH_3 \cdot O \cdot C_eH_4 \cdot CHBr \cdot CHBr \cdot CO \cdot C_2H_5$. B. Aus Äthyl-[4-methoxy-styryl]-keton und Brom in Chloroform (Iwamoto, Bl. chem. Soc. Japan 2, 55; C. 1927 I, 2730; II, 1471). Krystalle. F: 87,5°.
- 6. 2-[4-Oxy-phenyl]-pentanon-(3), $Athyl-[4-oxy-\alpha-phenäthyl]-keton <math>C_{11}H_{14}O_1=HO\cdot C_4H_4\cdot CH(CH_2)\cdot CO\cdot C_2H_4$.
- 2-[4-Methoxy-phenyl]-pentanon-(3), 2-Anisyl-pentanon-(3) $C_{12}H_{18}O_2 = CH_3 \cdot O \cdot C_8H_4 \cdot CH(CH_3) \cdot CO \cdot C_2H_5$. B. Aus α -Methyl- α -[4-methoxy-phenyl]-butyraldehyd (S. 128) durch Einw. von konz. Schwefelsäure (Lévy, Weill, C. r. 185, 137). Aus dem nicht näher beschriebenen Jodhydrin des 3-[4-Methoxy-phenyl]-pentens-(2) (vgl. dazu H 6, 582) bei der Einw. von Kaliumhydroxyd (L., W.). Kp: $262-265^{\circ}$.

Semicarbazon $C_{12}H_{19}O_2N_3=CH_3\cdot O\cdot C_6H_4\cdot CH(CH_3)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot C_2H_5$. F: 115° bis 117° (Lévy, Well, C.r. 185, 137).

- 7. 2-Phenyl-pentanol-(2)-al-(5), γ -Oxy- γ -phenyl-n-valeraldehyd bzw. 5-Oxy-2-methyl-2-phenyl-tetrahydrofuran $C_{11}H_{14}O_2=C_6H_5\cdot CH(CH_3)(OH)\cdot CH_2\cdot H_4C$ — CH_4
- CH₃·CHO bzw. C₄H₅ C·O·CH·OH. B. Durch Einleiten von Ozon in eine Lösung von
- 2-Methyl-6-phenyl-hepten-(2)-ol-(6) in Eisessig und Reduktion des Ozonids mit Zinkstaub (Helferich, Gehree, B. 54, 2644). Angenehm aromatisch riechendes Öl. Kp4: 127—128°; Kp3: 123—124°; spaltet bei der Destillation-geringe Mengen Wasser ab. Die: 1,106. nie: 1,5382. Unlöslich in Wasser, mischbar mit organischen Lösungsmitteln. Ist mit Wasserdampf flüchtig. Reduziert Fehlingsche Lösung beim Kochen rasch, ammoniakalische Silberlösung bei Zimmertemperatur allmählich. Färbt fuchsinschweflige Säure langsam, aber intensiv. Verharzt bei der Einw. von konz. Säuren oder Laugen. Liefert bei längerem Aufbewahren mit 3,5% iger methylalkoholischer Salzsäure 5-Methoxy-2-methyl-2-phenyl-tetrahydrofuran.
- 8. 2-Methyl-1-[4-oxy-phenyl]-butanon-(3), α -Methyl- α -[4-oxy-benzyl]-aceton $C_{11}H_{14}O_2 = HO \cdot C_4H_4 \cdot CH_2 \cdot CH(CH_3) \cdot CO \cdot CH_3$.
- 1.2 Dibrom 2 methyl 1 [4 methoxy phenyl] butanon (3), Dibromid des α -Methyl- α -anisyliden-acetons $C_{13}H_{14}O_3Br_3=CH_3\cdot O\cdot C_6H_4\cdot CHBr\cdot CBr(CH_3)\cdot CO\cdot CH_3$. B. Aus α -Methyl- α -anisyliden-aceton und Brom in Chloroform (Iwamoto, Bl. chem. Soc. Japan 2, 54; C. 1927 I, 2730; II, 1471). Krystalle (aus Äther + Petroläther). F: 70,5—71°. Zersetzt sich langsam.
- 9. 2 Oxy 1 isovaleryl benzol, 2 Oxy isovalerophenon, 2 Isovaleryl-phenol, Isobutyl-[2-oxy-phenyl]-keton $C_{11}H_{14}O_2 = HO \cdot C_0H_4 \cdot CO \cdot CH_2 \cdot CH(CH_3)_2$. B. Neben 4-Oxy-isovalerophenon beim Erhitzen von Isovaleriansäure-phenylester mit Aluminium-chlorid auf 130—140° (v. Auwers, B. 61, 419). Öl. Kp₂₀: 138—140°. Mit Wasserdampf flüchtig. Leicht löslich in Alkalilaugen mit gelber Farbe. Gibt mit Eisenchlorid eine rotviolette Färbung. 4-Nitro-phenylhydrazon $C_{17}H_{10}O_3N_3$. F: 121—122°.

2 - Methoxy - isovalerophenon, 2 - Isovaleryi - anisol $C_{12}H_{16}O_2=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot CH_2\cdot CH(CH_3)_6$. Ol. Kp₁₈: 142—144° (v. Auwers, B. 61, 420).

2 - Acetoxy - isovalerophenon $C_{13}H_{16}O_3 = CH_3 \cdot CO \cdot O \cdot C_6H_4 \cdot CO \cdot CH_3 \cdot CH(CH_3)_2$. Öl. Kp₂₀: 164—166° (v. AUWERS, B. 61, 420).

- 10. 4 Oxy 1 isovaleryl benzol, 4 Oxy isovalerophenon, 4 Isovaleryl-phenol, Isobutyl [4 oxy phenyl] keton $C_{11}H_{14}O_2 = HO \cdot C_4H_4 \cdot CO \cdot CH_2 \cdot CH(CH_4)_2$ (H 123). B. s. S. 127 bei 2-Oxy-isovalerophenon. F: 95,5—96,5° (v. Auwers, B. 61, 420). Nicht flüchtig mit Wasserdampf. Leicht löslich in Alkalilaugen. Gibt mit Eisenchlorid keine Färbung.
- 11. 2 Methyl 4 phenyl butanol (4) on (3), Phenyl-isobutyryl-carbinol $C_{11}H_{14}O_2=C_6H_5\cdot CH(OH)\cdot CO\cdot CH(CH_3)_2$. B. Aus dl-Mandelsäureamid und Isopropylmagnesiumbromid (TIFFENEAU, LÉVY, Bl. [4] 87, 1250). Krystalle. F: 44—45°. Kp₂₆: 160—170°.

Semicarbazon $C_{12}H_{17}O_2N_3=C_0H_5\cdot CH(OH)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH(CH_3)_2$. F: 158—159° (TIFFENEAU, Lévy, Bl. [4] 37, 1250).

12. 3-[4-Oxy-phenyl]-pentanon-(2) $C_{11}H_{14}O_2 = HO \cdot C_4H_4 \cdot CH(C_2H_5) \cdot CO \cdot CH_2$.

3-[4-Methoxy-phenyl]-pentanon-(2), 3-Anisyl-pentanon-(2) $C_{19}H_{16}O_3=CH_3\cdot O\cdot C_6H_4\cdot CH(C_9H_5)\cdot CO\cdot CH_3$. B. Aus 2-Methyl-1-[4-methoxy-phenyl]-butandiol-(1.2) bei der Einw. von Sauren oder bei der Destillation (Lavy, Well, C. r. 185, 136). Durch Destillation von α-Methyl- α -āthyl- α' -[4-methoxy-phenyl]-āthylenoxyd bei ca. 250° (L., W., C. r. 185, 136). — Kp₍₁₅?): 166° bis 170°. n_p: 1,532.

Semicarbazon $C_{13}H_{19}O_2N=CH_3\cdot O\cdot C_6H_4\cdot CH(C_2H_5)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_2$. F: 179° bis 180° (Lévy, Weill, C. r. 185, 137).

13. 2-Methyl-2-[4-oxy-phenyl]-butanal-(1), α -Methyl- α -[4-oxy-phenyl]-butyraldehyd $C_{11}H_{14}O_2=HO\cdot C_0H_4\cdot C(C_0H_5)\cdot CHO$.

α-Methyl-α-[4-methoxy-phenyl]-butyraldehyd, Methyl-äthyl-[4-methoxy-phenyl]-acetaldehyd, 2-Anisyl-2-methyl-butanal $C_{12}H_{16}O_2 = CH_3 \cdot O \cdot C_6H_4 \cdot C(C_2H_6)(CH_3) \cdot CHO$. B. Aus 4-Methoxy-1-[β-methyl-α-butenyl]-benzol (E II 6, 545) durch Anlagerung von unterjodiger Säure und Behandlung des erhaltenen 2-Jod-2-methyl-1-[4-methoxy-phenyl]-butanols-(1) mit Kaliumhydroxyd (Lévy, Weill, C. r. 185, 137). — Kp₁₄: 135—145°. — Gibt bei der Einw. von konz. Schwefelsäure 2-[4-Methoxy-phenyl]-pentanon-(3) (S. 127).

Oxim $C_{12}H_{17}O_2N = CH_3 \cdot O \cdot C_6H_4 \cdot C(C_2H_5)(CH_3) \cdot CH : N \cdot OH$. F: 870 (Lévy, Weill, C. r. 185, 137). — Gibt bei der Wasserabspaltung α -Methyl- α -[4-methoxy-phenyl]-butyronitril. Semicarbazon $C_{19}H_{19}O_2N_3 = CH_3 \cdot O \cdot C_6H_4 \cdot C(C_2H_5)(CH_9) \cdot CH : N \cdot NH \cdot CO \cdot NH_8$. F: 145° LÉVY, WEILL, C. r. 185, 137).

14. 4-Oxy-1-methyl-3-butyryl-benzol, 6-Oxy-3-methyl-butyrophenon, 4-Methyl-2-butyryl-phenol, 2-Butyryl-p-kresol $C_{11}H_{14}O_{2}$, Formel I (H 123). B. Beim Erhitzen von Buttersäure-p-tolylester mit Aluminiumchlorid auf 120—130° (v. Auwers, Lämmerhirt, B. 53, 436; v. Au., A. 439, 147). Neben 2.6-Dimethyl-3-äthyl-chromanon-(4) bei der Einw. des Chlorids der festen α-Äthyl-crotonsäure auf p-Kresol methyläther bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (v. Au., A. 439, 146). — Krystalle (aus Petroläther). F: 33-34° (v. Au., L.). Kp₁₅: 132-133° (v. Au.). D₄^{56,5}: 1,0188 (v. Au.). Verbrennungswärme bei konstantem Volumen: 1404,0 kcal/Mol (Klaproth in Landolt-Börnst. E II, 1640). $n_{\alpha}^{56,2}$: 1,5178; $n_{\beta}^{56,2}$: 1,5240; $n_{\beta}^{56,2}$: 1,5413 (v. Au.). Schwer löslich in überschüssiger Natronlauge (v. Au., L.). Gibt mit Eisenchlorid eine

blauviolette Färbung (v. Av., L.). - Gibt mit Semicarbazid das Semicarbazon (s. u.)

und geringere Mengen einer gelben Verbindung vom Schmelzpunkt 159—160° OH OH OH

(v. Au., L., B. 58, 437; v. Au., A. 489, 147).

Liefert beim Erhitzen mit Benzoesäureanhydrid und Natriumbenzoat auf 180° 6-Methyl-

3-äthyl-flavon (Wittig, A. 446, 188). — 4-Nitro-phenylhydrazon $C_{17}H_{10}O_2N_3$. $F: 184-186^\circ$ (v. Auwers, A. 439, 147).

6- Methoxy-3-methyl-butyrophenon, 2-Butyryl-p-kresol-methyläther $C_{19}H_{16}O_9=CH_8$ O·C₆H₃(CH₃)·CO·CH₂·C₂H₅. B. Durch Einw. von Buttersäureanhydrid und Aluminiumchlorid auf p-Kresol-methyläther in Schwefelkohlenstoff (Noller, Adams, Am. Soc. 46, 1892). Kp_{739} : 276,5° (korr.); Kp_3 : 123° (korr.). D_4^{∞} : 1,0258. n_p^{∞} : 1,5250.

6-Oxy-3-methyl-butyrophenon-semicarbazon C₁₂H₁₇O₂N₃ = HO·C₆H₂(CH₃)·C(:N·NH·CO·NH₂)·CH₃·C₂H₅. Nadeln. F: 188—189° (v. Auwers, Lämmerhert, B. 53, 437), 190° (v. Au., A. 439, 147). Leicht löslich in heißem Eisessig, Methanol und Alkohol, fast unlöslich in Äther, Benzol und Petroläther; leicht löslich in verd. Natronlauge (v. Au., L.).

5-Chlor-6-oxy-3-methyl-butyrophenon, 6-Chlor-2-butyryl-p-kresol $C_{11}H_{12}O_{2}Cl$, Formel II. B. Aus [2-Chlor-4-methyl-phenyl]-butyrat durch Erhitzen mit Aluminiumchlorid auf 120° (ROSENMUND, SCHNUBB, A. 460, 85). — Nadeln. F: 62°.

α-Chlor-6-oxy-3-methyl-butyrophenon, 2- [α-Chlor-butyryl] -p- kresol $C_{11}H_{13}O_3Cl = HO \cdot C_0H_3(CH_3) \cdot CO \cdot CHCl \cdot C_2H_5$ (Ε I 556). Liefert beim Kochen mit Diäthylanilin 2-Butyryl-p-kresol und wenig 2.6-Dimethyl-chromanon (v. Auwers, Lämmerhiet, B. 53, 436).

β-Chlor-6-oxy-3-methyl-butyrophenon, 2-[β-Chlor-butyryl]-p-kresol $C_{11}H_{13}O_{2}Cl = HO \cdot C_{6}H_{3}(CH_{2}) \cdot CO \cdot CH_{2} \cdot CHCl \cdot CH_{3}$. B. Aus p-Kresol-methyläther und inakt. β-Chlor-butyryl-chlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (v. Auwers, A. 421, 38). Aus 2-Crotonoyl-p-kresol (S. 160) beim Sättigen der Lösung in Eisessig mit Chlorwasserstoff (v. Au., A. 421, 105). — Nadeln (aus Benzin). F: 66- 67° . Kp₂₀: 167- 170° . Im allgemeinen leicht löslich. — Beim Kochen mit Essigsäureanhydrid oder verd. Sodalösung entsteht 2.6-Dimethyl-chromanon.

 β -Chlor-6-acetoxy-3-methyl-butyrophenon $C_{13}H_{15}O_3Cl=CH_3\cdot CO\cdot O\cdot C_6H_3(CH_3)\cdot CO\cdot CH_4\cdot CHCl\cdot CH_2$. B. Durch Erhitzen von 2-Crotonoyl-p-kresol mit 5 Tln. Acetylchlorid auf 100° (v. Auwers, A. 421, 106). — Prismen (aus Methanol). F: 86—87°. Leicht löslich in Alkohol und Äther, löslich in Methanol. — Gibt beim Kochen mit Kaliumacetat oder Silberacetat in Alkohol 2-Crotonoyl-p-kresol-acetat.

α,β-Dibrom-6-acetoxy-3-methyl-butyrophenon $C_{13}H_{14}O_3Br_2=CH_3\cdot CO\cdot O\cdot C_6H_3(CH_3)\cdot CO\cdot CHBr\cdot CHBr\cdot CH_2$. B. Aus 2-Crotonoyl-p-kresol-acetat und Brom in Schwefelkohlenstoff (v. Auwers, A. 421, 107). — Prismen (aus Benzin). F: 79,5—80,5°. Leicht löslich in den meisten Lösungsmitteln.

15. 3-Oxy-1-methyl-4-butyryl-benzol, 2-Oxy-4-methyl-butyrophenon $C_{11}H_{14}O_2=HO\cdot C_4H_3(CH_3)\cdot CO\cdot CH_2\cdot C_2H_5$.

5 - Chlor - 2 - oxy - 4 - methyl - butyrophenon, 4 - Chlor - 6 - butyryl - m - kresol $C_{11}H_{18}O_2Cl$, Formel III. B. Aus [4-Chlor-3-methyl-phenyl]-butyrat durch Erhitzen mit Aluminiumchlorid auf 120° (ROSENMUND, SCHNURB, A. 460, 84). — Nadeln (aus Methanol). F: 61—62°.

16. 1-p - Tolyl - butanol - (3) - on - (1), 1 - Methyl - 4 - $[\beta$ - oxy - butyryl] - benzol, β - Oxy - 4 - methyl - butyrophenon $C_{11}H_{11}O_1$ = $CH_3 \cdot C_6H_4 \cdot CO \cdot CH_1 \cdot CH(OH) \cdot CH_3$.

4.4.4-Trichlor-1-p-tolyl-butanol-(3)-on-(1), $\gamma.\gamma.\gamma$ -Trichlor- β -oxy-4-methyl-butyrophenon, Chloral-p-acetotoluon $C_{11}H_{11}O_3Cl_3=CH_3\cdot C_6H_4\cdot CO\cdot CH_2\cdot CH(OH)\cdot CCl_3$. B. Beim Erhitzen von 4-Methyl-acetophenon mit Chloral in Eisessig (Sen, Barat, J. indian chem. Soc. 3, 410; C. 1927 I, 1440). — Krystalle (aus Petroläther). F: 100°. — Liefert beim Behandeln mit konz. Schwefelsäure 4-Methyl- ω -[$\beta.\beta.\beta$ -trichlor-āthyliden]-acetophenon. Gibt mit Carbamidsäurechlorid in Äther 4-Oxy-2-oxo-6-trichlormethyl-4-p-tolyl-tetrahydro-1.3-oxazin (Syst. Nr. 4300).

17. $2-Oxy-1-methyl-3-isobutyryl-benzol, 2-Oxy-3-methyl-isobutyrophenon, 2-Methyl-6-isobutyryl-phenol, 6-Isobutyryl-o-kresol <math>C_{11}H_{14}O_{2}$, Formel IV. B. Neben 4-Oxy-3-methyl-isobutyrophenon beim Erhitzen von Isobuttersäure-o-tolylester mit Aluminiumchlorid auf $100-110^{\circ}$ (v. Auwers, Baum, Lorenz, J. pr. [2] 115, 94). — Grünlichgelbes Öl. Unter 12 mm Druck destillierbar. $D_4^{m,4}$: 1,0468. $n_{\pi}^{m,4}$: 1,5302; $n_{\pi,4}^{m,4}$: 1,5366; $n_{\gamma}^{m,6}$: 1,5540; $n_{\gamma}^{m,4}$: 1,5726. Gibt mit Eisenchlorid Violettfärbung. — Liefert beim Erhitzen mit Acetanhydrid und Natriumacetat das Acetat (s. u.), mit Acetanhydrid und wenig konz. Schwefelsäure eine Verbindung $C_{18}H_{18}O_4$ (s. u.).

konz. Schwefelsäure eine Verbindung C₁₈H₁₈O₄ (s. u.).

Verbindung C₁₈H₁₈O₄ (2-Acetoxy-3-methyl-α-acetyl-isobutyrophenon, Formel V, oder 2-Acetoxy-2.3.3.8-tetramethyl-chromanon, Formel VI). B. s. o. — Nadeln (aus verd. Methanol). F: 64—65° (v. Auwers, Baum, Lorenz, J. pr. [2] 115, 95). Kp₁₅: 162—165°.

— Zerfällt beim Behandeln mit Alkalien in 3-Methyl-salicylsäure und Methylisopropylketon.

2-Acetoxy-3-methyl-isobutyrophenon, 6-Isobutyryl-o-kresol-acetat $C_{13}H_{16}O_3 = CH_3 \cdot CO \cdot O \cdot C_6H_3(CH_3) \cdot CO \cdot CH(CH_3)_3$. Ol. Kp₁₃: 152—154° (v. Auwers, Baum, Lorenz, J. pr. [2] 115, 95). $D_6^{16,4}$: 1,0755. $n_{\alpha}^{16,4}$: 1,5099; $n_{\alpha}^{16,4}$: 1,5144; $n_{\beta}^{16,4}$: 1,5258; $n_{\gamma}^{15,4}$: 1,5361.

 α -Brom-2-acetoxy-3-methyl-isobutyrophenon, 6-[α -Brom-isobutyryl]-o-kresol-acetat $C_{13}H_{13}O_3Br=CH_3\cdot CO\cdot O\cdot C_4H_3(CH_3)\cdot CO\cdot CBr(CH_3)_3$. B. Aus 6-Isobutyryl-o-kresol-acetat und Brom in Schwefelkohlenstoff (v. Auwers, Baum, Lorenz, J. pr. [2] 115, 86, 96). — Dickes gelbliches Öl. — Liefert mit alkoh. Kalilauge 6-[α -Oxy-isobutyryl]-o-kresol(?) und wenig 2.2.7-Trimethyl-cumaranon. Gibt beim Kochen mit Diäthylanilin 3.8-Dimethyl-chromanon.

130

18. $4-Oxy-1-methyl-3-isobutyryl-benzel, 6-Oxy-3-methyl-isobutyro-phenon, 4-Methyl-2-isobutyryl-phenol, 2-Isobutyryl-p-kresol <math>C_{11}H_{16}O_{3}$, s. nebenstehende Formel (E I 556). B. Beim Erhitzen von Isobuttersäure-p-tolylester mit Aluminiumchlorid auf $140-150^{\circ}$ (v. Auwers, Baum, Lorenz, $J.\ pr.\ [2]\ 115,\ 98)$. — Ol von angenehm süßlichem Geruch. $Kp_{10}:\ 124-125^{\circ}$. Löst sich teilweise in verd. Natronlauge. Gibt mit Eisenchlorid Violettfärbung. — Phenylhydrazon $C_{17}H_{20}ON_2$. 'F: $126,5-127,5^{\circ}$. Oxim $C_{11}H_{16}O_{2}N = HO\cdot C_{0}H_{3}\cdot C(:N\cdot OH)\cdot CH(CH_{2})_{2}$. Krystalle (aus

Methanol oder Benzol). F: 149—150° (v. Auwers, Baum, Lorenz, J. pr. [2] 115, 100).

Semicarbazon $C_{12}H_{17}O_2N_3 = HO \cdot C_0H_3(CH_2) \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH(CH_3)_2$. Nadeln (aus Eisessig). F: 193—194° bei langsamem Erhitzen (v. Auwers, Baum, Lorenz, J. pr. [2] 115, 99). Löslich in verd. Natronlauge; gibt mit konz. Natronlauge ein Natriumsalz.

β-Chlor-6-oxy-3-methyl-isobutyrophenon, 2-[β-Chlor-isobutyryl]-p-kresol $C_{11}H_{12}O_2Cl=HO\cdot C_4H_3(CH_3)\cdot CO\cdot CH(CH_3)\cdot CH_2Cl.$ B. Aus p-Kresol-methyläther und β-Brom-isobutyryl-chlorid mit Aluminiumchlorid in siedendem Schwefelkohlenstoff (v. Auwers, A. 421, 25). — Gelbes Öl. Kp₁₃: 135—137°. — Liefert beim Behandeln mit 20% iger Sodalösung in siedendem Alkohol 3.6-Dimethyl-chromanon (E I 17, 166).

- 19. 6-Oxy-1-methyl-3-isobutyryl-benzol, 4-Oxy-3-methyl-isobutyrophenon, 2-Methyl-4-isobutyryl-phenol, 4-Isobutyryl-o-kresol C₁₁H₁₄O₂, Formel I. Neben 2-Oxy-3-methyl-isobutyrophenon beim Erhitzen von Isobuttersäure-o-tolylester mit Aluminiumchlorid auf 100—110° (v. Auwers, Baum, Lorenz, J. pr. [2] 115, 94). Blättchen (aus Benzol). F: 122°. Kp₁₂: 182°. Leicht löslich in Alkohol und Äther, schwer in heißem Wasser. Gibt mit Eisenchlorid keine Färbung.
- 20. $3-Oxy-1-methyl-4-isobutyryl-benzol, 2-Oxy-4-methyl-isobutyro-phenon, 5-Methyl-2-isobutyryl-phenol, 6-Isobutyryl-m-kresol <math>C_{11}H_{14}O_{2}$, Formel II. B. Durch Erhitzen von Isobuttersäure-m-tolylester mit Aluminiumchlorid auf 100° (v. Auwers, A. 439, 166). Leicht bewegliches Öl. Kp₁₁: $120-121^{\circ}$. $D_{4}^{13.5}$: 1,0485. $n_{7}^{13.5}$: 1,5366; $n_{7}^{13.5}$: 1,5366; $n_{7}^{13.5}$: 1,5793. Wird durch Eisenchlorid viol tt gefärbt. Gibt mit alkal. Permanganat-Lösung sehr geringe Mengen 4-Methyl-salicylsäure. Liefert bei vorsichtigem Behandeln mit 2 Mol Brom in Eisessig $5.\alpha$ -Dibrom-2-oxy-4-methyl-isobutyrophenon, mit 3 Mol Brom unter Erwärmen $3.5.\alpha$ -Tribrom-2-oxy-4-methyl-isobutyrophenon. Reagiert nicht mit Semicarbazid.

α-Chlor-2-oxy-4-methyl-isobutyrophenon, 6-[α-Chlor-isobutyryl]-m-kresol $C_{11}H_{12}O_2Cl = HO \cdot C_6H_3(CH_3) \cdot CO \cdot CCl(CH_3)_2$. B. Neben anderen Produkten beim Erwärmen von m-Kresolmethyläther mit α-Brom-isobutyrylb omid und Aluminiumchlorid in Schwefelkohlenstoff (v. Auwers, A. 489, 153, 162). — Nicht rein erhalten. Krystalle (aus Petroläther). F: 48°. — Liefert beim Behandeln mit Natronlauge ausschließlich $2 \cdot \alpha$ -Dioxy-4-methyl-isobutyrophenon (v. Au., A. 439, 157, 160). Gibt beim Kochen mit Natriumacetat in Alkohol geringe Mengen 2.2.6-Trimethyl-cumaranon (v. Au., A. 489, 160). Beim Kochen mit Diäthylanilin erhält man 3.7-Dimethyl-chromanon und geringe Mengen 2-Oxy-4-methyl-isobutyrophenon (v. Au., A. 489, 172).

β-Chlor-2-oxy-4-methyl-isobutyrophenon, 6-[β-Chlor-isobutyryl]-m-kresol $C_{11}H_{13}O_2Cl = HO \cdot C_8H_3(CH_3) \cdot CO \cdot CH(CH_3) \cdot CH_2Cl$. B. Aus m-Kresol-methyläther, β-Chlor-isobutyrylchlorid und Aluminiumchlorid in siedendem Schwefelkohlenstoff (v. Auwers, A. 489, 160, 173). — Kp₁₁: 140—145°. — Liefert beim Behandeln mit Sodalösung und Alkohol 3.7-Dimethylchromanon.

5. α -Dibrom-2-oxy-4-methyl-isobutyrophenon, 4-Brom-6-[α -brom-lsobutyryl]-m-kresol $C_{11}H_{12}O_2Br_2$, Formel III. B. Bei vorsichtigem Zusatz von 2 Mol Brom zu einer Lösung von 2-Oxy-4-methyl-isobutyrophenon in Eisessig (v. Auwers, A. 489, 167). — Nadeln (aus Methanol). F: 98—99°. Leicht löslich in organischen Mitteln außer Petroläther.

3.5. α -Tribrom-2-oxy-4-methyl-isobutyrophenon, 2.4-Dibrom-6-[α -brom-isobutyryl]-p-kresol $C_{11}H_{11}O_2Br_2$, Formel IV. B. Aus 2-Oxy-4-methyl-isobutyrophenon und 3 Mol Brom in Eisessig, zuletzt in der Wärme (v. Auwers, A. 439, 167). — Blättchen (aus Petroläther). F: 90—92°. Leicht löslich in Benzol, Chloroform und Aceton, mäßig in Alkohol und Eisessig. Löslich in Alkalien mit gelber Farbe. — Liefert beim Erwärmen mit Wasserstoffperoxyd in alkal. Lösung 3.5-Dibrom-2-oxy-4-methyl-benzoesäure.

- 21. 6-Oxy-3-tert.-butyl-benzaldehyd, 5-tert.-Butyl-salicylaldehyd $C_{11}H_{14}O_{2}$, Formel V (H 124). B. Durch Kondensation von 4-tert.-Butyl-phenol mit Formaldehyd (Henry, Sharp, Soc. 1926, 2437). Kp₁₂: 138—140°. Gibt beim Erwärmen mit 1 Mol Quecksilber(II)-acetat in Alkohol + Eisessig oder besser ohne Lösungsmittel 6-Oxy-5-acetoxymercuri-3-tert.-butyl-benzaldehyd (Syst. Nr. 2353). Phenylhydrazon. F: 184°.
- 22. 4-Oxy-3-propyl-1-acetyl-benzol, 4-Oxy-3-propyl-acetophenon, 2-Propyl-4-acetyl-phenol $C_{11}H_{14}O_2$, Formel VI. B. Durch Einw. von Acetylchlorid und Aluminiumchlorid auf 2-Propyl-phenol in Nitrobenzol (ROBENMUND, SCHULZ, Ar. 1927, 314). Krystalle. F: 87°. Kp₂₅: 210°. Löslich in Alkohol, Äther und Eisessig, unlöslich in Ligroin und Wasser.

Semicarbazon $C_{12}H_{17}O_2N_3 = HO \cdot C_2H_3(CH_3 \cdot C_2H_5) \cdot C(:N \cdot NH \cdot CO \cdot NH_3) \cdot CH_3$. Krystalle. F: 192° (ROSENMUND, SCHULZ, Ar. 1927, 315).

23. 6-Oxy-2-methyl-5-isopropyl-benzaldehyd, 3-Methyl-6-isopropyl-2-formyl-phenol, Thymol-aldehyd-(2), o-Thymotinaldehyd C₁₁H₁₄O₂, Formel VII. B. s. u. bei Thymol-aldehyd-(4). — Ist nur als Semicarbazon isoliert (Bell, Henry, Soc. 1928, 2219).

Semicarbazon $C_{19}H_{17}O_2N_3=(CH_3)_2CH\cdot C_4H_3(CH_2)(OH)\cdot CH:N\cdot NH\cdot CO\cdot NH_2.$ Krystalle (aus Alkohol). F: 198° (Bell, Henry, Soc. 1928, 2219).

24. 4-Oxy-2-methyl-5-isopropyl-benzaldehyd, 3-Methyl-6-isopropyl-4-formyl-phenol, Thymol-aldehyd-(4), p-Thymotinaldehyd C₁₁H₁₄O₂, Formel VIII (H 124; E I 557). B. Beim Sättigen eines Gemisches aus Thymol, Zinkcyanid und Benzol mit Chlorwasserstoff in der Kälte, Zufügen von Aluminiumchlorid, weiteren Einleiten von Chlorwasserstoff bei 40—45° und anschließenden Kochen mit 10%iger Salzsäure (Adams, Montomery, Am. Soc. 46, 1521; Bell, Henry, Soc. 1928, 2219), neben geringen Mengen Thymolaldehyd-(2) und anderen Produkten (B., H.). — F: 135° (B., H.). — Gibt mit Quecksilber(II)-acetat und Essigsäure in siedendem Alkohol 2-Acetoxymercuri-thymol-aldehyd-(4) (Syst. Nr. 2353) (Henry, Sharp, Soc. 1926, 2439). Kondensiert sich mit Thymol bei Gegenwart von Zinkcyanid und Chlorwasserstoff in Benzol zu 4.4'.4".Trioxy-2.2'.2"-trimethyl-5.5'.5"-triisopropyl-triphenylmethan (B., H., Soc. 1928, 2223). Gibt mit Thymol und Blausäure in Gegenwart von Zinkchlorid in siedendem absolutem Alkohol oder beim Kochen mit Thymol und Kaliumcyanid in wäßr. Alkohol, Versetzen mit konz. Salzsäure und nachfolgenden Aufbewahren 4.4'-Dioxy-2.2'-dimethyl-5.5'-diisopropyl-diphenylacetonitril (Syst. Nr. 1119); reagiert analog mit Phenol, Carvacrol oder o-Kresol und Blausäure in Gegenwart von Zinkchlorid in siedendem absolutem Alkohol (B., H., Soc. 1928, 2223, 2224).

Semicarbazon $C_{13}H_{17}O_2N_3=(CH_3)_2CH\cdot C_0H_2(CH_3)(OH)\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Nadeln (aus Eisessig oder Alkohol). F: 226° (Bell, Henry, Soc. 1928, 2220).

- 3-Jod-4-oxy-2-methyl-5-isopropyl-benzaldehyd, 2-Jod-thymol-aldehyd-(4) $C_{11}H_{13}O_2I$ (?), Formel IX. B. Durch Einw. von Jod-Kaliumjodid-Lösung auf 2-Acetoxymercuri-thymolaldehyd-(4) (Henry, Sharp, Soc. 1926, 2440). Blaßgelbe Prismen (aus Alkohol). F: 128—129°.
- 25. 4-Oxy-5-methyl-2-isopropyl-benzaldehyd, 2-Methyl-5-isopropyl-4-formyl-phenol, Carvacrol-aldehyd-(4), p-Carvacrotinaldehyd C₁₁H₁₄O₂, Formel X (H 125). B. Entsteht analog Thymol-aldehyd-(4) (s. o.) aus Carvacrol, Zinkcyanid und Chlorwasserstoff in Gegenwart von Aluminiumchlorid in Benzol, neben geringen Mengen Carvacrol-aldehyd-(6) und anderen Pro-

Carvacrol-aldehyd-(6) und anderen Produkten (Bell, Henry, Soc. 1928, 2221).

— Tafeln. F: 102° (B., H.). — Gibt beim Erwärmen mit Quecksilber (II) - acetat ohne Lösungsmittel oder in Alkohol + etwas Essignäure 6-Acetoxymercuri-

IX. CH_3 : CH_3 : $CH(CH_3)_3$ (?) X. $(CH_3)_3CH$ OH OH

carvacrol-aldehyd-(4) (Henry, Sharp, Soc. 1926, 2438). Kondensiert sich mit Carvacrol zu 4 4.4. Trioxy-5.5.5.5. trimethyl-2.2.2. triisopropyl-triphenylmethan, mit Carvacrol und Blausaure zu 4.4. Dioxy-5.5. dimethyl-2.2. diisopropyl-diphenylacetonitril; reagiert analog mit Thymol und Blausaure (B., H., Soc. 1928, 2223, 2224).

- 4 Methoxy 5 methyl 2 isopropyl benzaldehyd , p Carvacrotinaldehyd methyläther $C_{12}H_{16}O_2 = (CH_2)_2CH \cdot C_4H_2(CH_2)(O \cdot CH_3) \cdot CHO$ (H 125). Vgl. dazu Bogert, Goldstein, Am. Perfumer 23, 524; C. 1929 II, 3128.
- p-Carvacrotinaldehyd semicarbazon $C_{18}H_{17}O_8N_3=(CH_2)_2CH\cdot C_6H_2(CH_3)(OH)\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Nadeln (aus Eisessig). F: 224° (Bell, Henry, Soc. 1928, 2221).
- 3- Jod 4-oxy-5-methyl 2-isopropyl benzaldehyd, 6- Jod-carvacrol-aldehyd-(4) C₁₁H₁₂O₃I, s. nebenstehende Formel. B. Durch Einw. von Jod-Kaliumjodid-Lösung auf 6-Acetoxymercuri-carvacrol-aldehyd-(4) (Heney, Sharp, Soc. 1926, 2439). Nadeln (aus Alkohol). F: 157°.
- 26. 6-Oxy-5-methyl-2-isopropyl-benzaldehyd, 6-Methyl-3-isopropyl-2-formyl-phenol, Carvacrol-aldehyd-(6), o-Carvacrotinaldehyd $C_{11}H_{14}O_2$, Formel I (H 125). B. s. S. 131 bei Carvacrol-aldehyd-(4).

Semicarbazon $C_{12}H_{17}O_2N_3=(CH_2)_2CH\cdot C_6H_2(CH_3)(OH)\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Nadeln (aus verd. Alkohol). F: 180° (Bell, Henry, Soc. 1928, 2221).

27. 5-Oxy-1-methyl-4-äthyl-2-acetyl-benzol, 4-Oxy-2-methyl-5-äthyl-acetophenon, 3-Methyl-6-äthyl-4-acetyl-phenol $C_{11}H_{14}O_{2}$, Formel II. B. Neben überwiegenden Mengen 6-Oxy-3-methyl-5-äthyl-acetophenon beim Erhitzen von [5-Methyl-2-äthyl-phenyl]-acetat mit Aluminiumchlorid (v. Auwers, Bundesmann, Wieners, A. 447, 194). — Nadeln (aus Benzol). F: 117—118°. — Beim Erhitzen mit Phosphorsäure entsteht 5-Methyl-2-äthyl-phenol.

- 4-Methoxy-2-methyl-5-äthyl-acetophenon, 3-Methyl-6-äthyl-4-acetyl-anisol $C_{12}H_{16}O_2=CH_3\cdot O\cdot C_6H_2(CH_3)(C_2H_5)\cdot CO\cdot CH_2$. B. Neben anderen Produkten beim Erhitzen von 5-Methyl-2-äthyl-anisol mit Acetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff (v. Auwers, Mauss, A. 460, 269). Nadeln (aus Petroläther). F: 29—30°. Kp₁₈: 139—140°. Liefert beim Kochen mit wäßr. Bromwasserstoffsäure und Eisessig 5-Methyl-2-äthyl-phenol. Bei der Reduktion nach Clemmensen entsteht 5-Methyl-2.4-diäthyl-anisol.
- 28. 5-Oxy-1-methyl-2-äthyl-4-acetyl-benzol, 6-Oxy-4-methyl-3-äthyl-acetophenon, 5-Methyl-4-äthyl-2-acetyl-phenol C₁₁H₁₄O₃, Formel III. B Aus [3-Methyl-4-āthyl-phenyl]-acetat durch Erhitzen mit Aluminiumchlorid auf 120° (ROSENMUND, SCHNURR, A. 460, 85; v. Auwers, Mauss, A. 460, 271). Neben 6-Methoxy-2-methyl-3.5-diāthyl-acetophenon beim Erhitzen von 5-Methyl-2.4-diāthyl-anisol mit Acetylchlorid und Aluminium-chlorid in Schwefelkohlenstoff (v. Au., M., A. 460, 271). Schwach gelbe Krystalle (aus Petrolāther). F: 96—97° (R., Sch.), 94—95° (v. Au., M.). Kp₁₅: 142—143° (R., Sch.). Löslich in Alkalilaugen mit gelber Farbe (v. Au., M.). Wird durch Eisenchlorid tiefblau gefärbt (v. Au., M.). Liefert bei der Reduktion nach Clemmensen 5-Methyl-2.4-diāthyl-phenol (v. Au., M.).
- 29. $4-Oxy-1-methyl-5-\ddot{a}thyl-2-acetyl-benzol, 5-Oxy-2-methyl-4-\ddot{a}thyl-acetophenon, 4-Methyl-2-\ddot{a}thyl-5-acetyl-phenol <math>C_{11}H_{14}O_2$, Formel IV. B. s. im folgenden Artikel. Plättchen (aus Alkohol). F: 120—121° (v. Auwers, Mauss, B. 61, 1503). Leicht löslich in den meisten Lösungsmitteln. Ist mit Wasserdampf nur schwer flüchtig. Löst sich in Alkalilaugen mit gelblicher Farbe. Gibt mit Eisenchlorid eine schwache Grünfärbung. Liefert beim Erhitzen mit Phosphorsäure auf 170—180° 4-Methyl-2-äthyl-phenol.
- 5-Methoxy-2-methyl-4-äthyl-acetophenon, 4-Methyl-2-äthyl-5-acetyl-anisol $C_{12}H_{16}O_2=CH_3\cdot O\cdot C_3H_3(CH_3)\cdot (C_2H_3)\cdot CO\cdot CH_3$. B. Neben 5-Oxy-2-methyl-4-äthyl-acetophenon und 6-Oxy-3-methyl-5-äthyl-acetophenon bei der Umsetzung von 4-Methoxy-1-methyl-3-äthyl-benzol mit Acetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff (v. Auwers, Mauss, B. 61, 1503).

 Blaßgelbes Öl. Kp₁₈: 148—150°. Ist mit Wasserdampf flüchtig. Unlöslich in Alkalilaugen.
- 30. $4-Oxy-1-methyl-2-äthyl-5-acetyl-benzol, 6-Oxy-3-methyl-4-äthyl-acetophenon, 4-Methyl-5-äthyl-2-acetyl-phenol <math>C_{11}H_{14}O_{2}$, Formel V auf S. 133. B. Aus 4-Methyl-2.5-diāthyl-anisol, Acetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff, neben wenig 6-Oxy-3-methyl-2.5-diāthyl-acetophenon (?) (v. Auwers, Mauss, B. 61, 1496). Gelbes Ol. Kp_{15} : 144—147°. Löst sich in Alkalilaugen. Gibt mit Eisenchlorid eine tiefblaue Färbung. Gibt bei der Reduktion nach Clemmensen 4-Methyl-2.5-diāthyl-phenol.

- 31. 2-Oxy-1-methyl-5-äthyl-3-acetyl-benzol, 2-Oxy-3-methyl-5-äthylacetophenon, 2-Methyl-4-äthyl-6-acetyl-phenol C11H14O3, Formel VI. B. Aus [2-Methyl-4-äthyl-phenyl]-acetat durch Erhitzen mit Aluminiumchlorid (v. Auwers, Mauss, A. 460, 272). Neben 4-Oxy-3-methyl-5-athyl-acetophenon bei raschem Erhitzen von [2-Methyl-6-sthyl-phenyl]-acetat mit Aluminiumchlorid auf 130—140° (v. Au., M., A. 460, 276). — Gelbes Öl. Kp₁₁: 129—131°. Mit Wasserdampf flüchtig. Löslich in Alkalilaugen mit tiefgelber Farbe. Wird durch Eisenchlorid tiefblau gefärbt. — 4-Nitro-phenylhydrazon C17H19O3N9. F: 196—198°.
- 32. 4-Oxy-1-methyl-5-äthyl-3-acetyl-benzol, 6-Oxy-3-methyl-5-äthyl-acetophenon, 4-Methyl-6-äthyl-2-acetyl-phenol C₁₁H₁₄O₃, Formel VII. B. Beim Erhitzen von [4-Methyl-2-āthyl-phenyl]-acetat mit Aluminium chlorid (v. Auwens, Sandars) MANN, WIENERS, A. 447, 194). Neben geringeren Mengen 4-Oxy-2-methyl-5-äthyl-acetophenon beim Erhitzen von [5-Methyl-2-athyl-phenyl]-acetat mit Aluminiumchlorid (v. Au., B., W.). Neben anderen Produkten bei der Umsetzung von 4-Methoxy-1-methyl-3-athyl-benzol mit Acetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff (v. Auwers, Mauss, B. 61, 1503). — Gelbes Öl. Kp₃₀: 153° (v. Au., B., W.); Kp₃₅: 144—146° (v. Au., M.). Ist mit Wasserdampf flüchtig (v. Au., B., W.). Löslich in Petroläther. Gibt mit Eisenchlorid eine dunkelblaue Färbung (v. Au., B., W.). — 4-Nitro-phenylhydrazon $C_{17}H_{19}O_3N_3$. F: 176° (v. Au., B., W.).

Semicarbazon $C_{19}H_{17}O_{2}N_{3}=C_{2}H_{5}\cdot C_{6}H_{3}(CH_{2})(OH)\cdot C(CH_{3}):N\cdot NH\cdot CO\cdot NH_{2}.$ F: 238° bis 239° (v. Auwers, Bundesmann, Wieners, A. 447, 194).

- 33. 6-Oxy-1-methyl-5- \ddot{a} thyl-3-acetyl-benzol, 4-Oxy-3-methyl-5- \ddot{a} thylacetophenon, 2-Methyl-6-äthyl-4-acetyl-phenol C₁₁H₁₄O₃, Formel VIII. B. Neben 2-Oxy-3-methyl-5-āthyl-acetophenon bei raschem Erhitzen von 2-Acetoxy-1-methyl-3-āthylbenzol mit Aluminiumchlorid auf 130—140° (v. Auwers, Mauss, A. 460, 276). — Nadeln (aus verd. Alkohol). F: 95,5—96,5°. Leicht löslich in den gebräuchlichen Lösungsmitteln. Löst sich in Alkalilaugen mit gelber Farbe. Gibt keine Eisenchlorid-Reaktion.
- 34. 5-Oxy-1.2.3 trimethyl 4 acetyl benzol, 6-Oxy-2.3.4 trimethyl-acetophenon, 5-Oxy-4-acetyl hemellitol, 3.4.5 Trimethyl 2-acetyl phenol, o-Aceto-symm. hemellitenol $C_{11}H_{14}O_{2}$, Formel IX. B. Man erwärmt Methyl-[3.4.5-trimethyl phenyl] äther mit Acetylchlorid und CH_{3} CH_{3}

Aluminiumchlorid in Schwefelkohlenstoff, bis sich das Reaktionsprodukt vollständig in Alkali löst IX. (v. Auwers, Fortsch. Ch. Phys. 18 [1924/26], 56). Beim Erhitzen von [3.4.5-Trimethyl-phenyl]acetat mit Aluminiumchlorid auf 130°(v. AUWERS,

CH₃ CH₃ CH.

BUNDESMANN, WIENERS, A. 447, 191). — Prismen (aus Petroläther). F: 83,5—84,5° (v. Au.). Kp₁₃: 163—166° (v. Au., B., W.). Leicht löslich in den meisten organischen Lösungsmitteln (v. Au.) und in verd. Natronlauge (v. Au., B., W.). Gibt mit Eisenchlorid in Alkohol eine blaugrüne Färbung (v. Au., B., W.). — Beim Erwärmen mit amalgamiertem Zink und Salzsäure entsteht 3.4.5-Trimethyl-phenol (v. Au., B., W.).

Oxim C₁₁H₁₅O₂N = (CH₃)₂C₆H(OH)·C(: N·OH)·CH₃. Nadeln (aus Benzol oder verd. Alkohol). F: 147° (v. Auwers, Fortsch. Ch. Phys. 18 [1924/26], 57), 143° (v. Auwers, Bundesmann, Wieners, A. 447, 192). Leicht löslich in Alkohol und Ather, schwer in kaltem Benzol (v. Au.). — Liefert beim Kochen mit ca. 20% iger Salzsäure 2-Amino-3.4.5-trimethyl-phenol und wenig 2.4.5.6-Tetramethyl-benzoxazol (Syst. Nr. 4195) (v. Au.).

Semicarbazon $C_{12}H_{17}O_2N_3=(CH_8)_3C_6H(OH)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_3$. Tafeln (aus Methanol). F: 210° (v. Auwers, Bundesmann, Wieners, A. 447, 192).

35. 4-Oxy-1.2.3-trimethyl-5-acetyl-benzol, 2-Oxy-3.4.5-trimethyl-aceto-phenon, 4-Oxy-5-acetyl-hemellitol, 2.3.4-Trimethyl-6-acetyl-phenol, p-Aceto-vic.-hemellitenol C₁₁H₁₄O₂, Formel X. B. Durch Erhitzen von [2.3.4-Trimethyl-phenyl]-acetat mit Aluminiumchlorid (v. AUWERS, Property V. August BUNDESMANN, WIENERS, A. 447, 192). Neben anderen Produkten beim Erhitzen von [2.4.5-Trimethyl-phenyl]-acetat (v. Au., B., W., A. 447, 189) oder von [2.4.6-Trimethyl-phenyl]-acetat (v. Au., B., W., A. 447, 193; vgl. v. Au., Mauss, A. 464, 306) mit Aluminiumchlorid. — Gelbliche

Krystalle (aus Petroläther). F: 42—43°. Kp: 275—276°; Kp₁₁: 142—144°. $D_4^{m,s}$: 1,0261. $n_{\alpha}^{m,s}$: 1,5257; $n_{\beta,m,s}^{m,s}$: 1,5327; $n_{\beta}^{m,s}$: 1,5523 (v. Au., B., W.). — Liefert beim Kochen mit Phosphorsaure 2.3.4-Trimethyl-phenol (v. Au., B., W.).

Oxim $C_{11}H_{15}O_2N = (CH_3)_2C_2H(OH) \cdot C(:N \cdot OH) \cdot CH_2$. Nadeln (aus Alkohol). F: 160,5bis 161° (v. Auwers, Bundesmann, Wieners, A. 447, 190). Leicht löslich in Alkohol und Eise essig, schwerer in Benzol. — Wird beim Kochen mit Salzsäure verseift.

Semicarbazon $C_{12}H_{17}O_2N_3=(CH_2)_2C_6H(OH)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_3$. F: ca. 290° (v. Auwers, Bundesmann, Wieners, A. 447, 190). Schwer löslich in den meisten organischen Lösungsmitteln.

36. 4-Oxy-1.2.5-trimethyl-3-acetyl-benzol, 6-Oxy-2.3.5-trimethyl-acetophenon, 5-Oxy-6-acetyl-pseudocumol, 2.4.5-Trimethyl-6-acetyl-phenol, 0.4 cet o-pseudocumon ol 0.1H₁₄0. CH₂ CH₂

Formel I. B. Neben anderen Produkten beim Erhitzen von [2.4.5-Trimethyl-phenyl]-acetat mit Aluminium chlorid auf 130—140° (v. Auwers, Bundesmann, Wieners, A. 447, 187). — Gelbes, dickflüssiges Öl. Er-

starrt teilweise bei längerem Aufbewahren. Kp₁₁: 145—146°. $D_4^{17,4}$: 1,0873. $n_{\alpha}^{17,4}$: 1,5547; n^{17,4}_{887,86}: 1,5619; n^{17,4}_β: 1,5818. Löslich in verd. Natronlauge mit intensiv gelber Farbe. Gibt mit Eisenchlorid in Alkohol eine violette Färbung.

Oxim $C_{11}H_{15}O_2N = (CH_3)_3C_6H(OH)\cdot C(:N\cdot OH)\cdot CH_3$. Nadeln (aus verd. Alkohol). F: 163° bis 164° (v. Auwers, Bundesmann, Wieners, A. 447, 188). Leicht löslich in Alkohol, Methanol und Äther, schwer in Benzol. — Liefert beim Kochen mit ca. 20% iger Salzsäure 2.4.5.7-Tetramethyl-benzoxazol (Syst. Nr. 4195).

Semicarbazon $C_{12}H_{17}O_2N_3 = (CH_3)_3C_4H(OH) \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_3$. F: 232° (v. Auwers, Bundesmann, Wieners, A. 447, 187). Schwer löslich in organischen Lösungsmitteln. Löslich in alkoh. Kalilauge mit gelber Farbe.

- 37. 4-Oxy-1.3.5-trimethyl-2-acetyl-benzol, 3-Oxy-2.4.6-trimethyl-acetophenon, 4-Oxy-2-acetyl-mesitylen, 2.4.6-Trimethyl-3-acetyl-phenol, m-Aceto-mesitol $C_{11}H_{14}O_2$, Formel II. B. Aus 2-Methoxy-mesitylen, Acetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff (v. Auwers, Mauss, B. 61, 1504). Krystalle (aus Alkohol). F: 81—820. Leicht löslich in den meisten Lösungsmitteln. — Wird durch heiße Phosphorsaure in 2-Oxy-mesitylen und Essigsaure gespalten. [BEGER]
- 38. 1-Methyl-2-[β.δ-pentadienyl]-cyclopenten-(1)-ol-(4)-on-(3), Pyrethrolon C₁₁H₁₄O₂, Formel III. Zur Zusammensetzung und Konstitution vgl. La Forgr, Haller, Am. Soc. 58 [1936], 1061, 1777; *J. org. Chem.* 1 [1937], 44; 2 [1938], 552; ACREE, LA FORGE, *J. org. Chem.* 5 [1940], 433; LA FORGE, ACREE, *J. org. Chem.* 7 [1942], 418; GILLAM, WEST, Soc. 1942, 672, 674; 1944, 49; *C.* 1943 I, 2189; WEST, Soc. 1944, 51, 642; 1945, 412; *Chem. Abstr.* 89 [1945], 1629, 4594. Nach neueren Untersuchungen ist natürliches Pyrethrolon (aus Kenya-Pyrethrumblüten) ein Gemisch aus rechtsdrehenden und racemischen Formen des Pyrethrolons und ca. 20—30% rechtsdrehendem und racemischem 1-Methyl-2- β -butenyl-cyclopenten-(1)-ol-(5)-on-(3) (Cinerolon, Formel V), und Pyrethrolon selbst ist als 1-Methyl-2- $[\beta, \delta$ -pentadienyl]-cyclopenten-(1)-ol-(5)-on-(3) (Formel IV) zu formulieren (vgl. La Forge, Barthell, J. org. Chem. 9 [1944], 242; 10 [1945], 106, 114, 222; 12 [1947], 199; Chem. Abstr. 38 [1944], 4567; 39 [1945], 2974, 4059; 41 [1947], 3766; West, Soc. 1946, 463; Chem. Abstr. 40 [1946], 7171;

III.
$$\frac{H_{3}C \cdot C(CH_{3})}{H_{2}C \cdot C(CH_{3})}C \cdot CH_{2} \cdot CH : CH \cdot CH : CH_{2} \qquad IV. \qquad \frac{HO \cdot HC \cdot C(CH_{3})}{H_{2}C \cdot CO}C \cdot CH_{3} \cdot CH : CH \cdot CH : CH_{2}$$

$$V_{*} \qquad \frac{HO \cdot HC \cdot C(CH_{3})}{H_{2}C \cdot CO}C \cdot CH_{3} \cdot CH : CH \cdot CH_{3}$$

 C. 1947 [Akad. Verl.], 1205; LA FORGE, SOLOWAY, Am. Soc. 69, [1947], 186, 2932; SOLOWAY,
 LA FORGE, Am. Soc. 69, 979; DAUBEN, WENKERT, Am. Soc. 69, 2074; Chem. Abstr. 41 [1947], 2007, 4112. In dem nachstehenden Artikel sind diese neueren Ergebnisse noch nicht berücksichtigt. — Das Mol.-Gew. ist in Benzol kryoskopisch und in Chloroform ebullioskopisch bestimmt (STAUDINGER, RUZIOKA, Helv. 7, 217). — B. Bei 3—4 Wochen langem Schütteln von Pyrethrolon-semicarbazon (S. 136) mit konz. Kaliumdisulfat-Lösung und Benzol in der Kälte (STAUDINGER, RUZIOKA, Helv. 7, 216, 217). Entsteht in unreiner Form bei der Hydrolyse der wirksamen Anteile des dalmatinischen Insektenpulvers (aus Chrysantemum einerariifolium Bocc.) mit Alkalien (Sr., R.). — Dickflüssiges Ol ohne charakteristischen Geruch. Ersterrt nicht

bei —80°; Kp_{0.05}: 111—112°; Kp_{0.135}: 115—118° (Sr., R.); Kp₅: 164—166° (West, Soc. 1944, 52). n_p[±]: 1,5433; [a]_p[±]: +11,7° (La F., Barthel, J. org. Chem. 12, 199—202). Absorptionsspektrum in Alkohol: Gillam, West, Soc. 1944, 50. Unlöslich in Wasser, sehr schwer löslich in Petroläther, mischbar mit Alkohol, Äther und Benzol (Sr., R.).

Zersetzt sich bei längerem Erhitzen auf höhere Temperaturen (STAUDINGER, RUZICKA, Helv. 7, 217). Gibt mit Ozon in Tetrachlorkohlenstoff ein harziges Monoozonid, das bei der Spaltung mit siedendem Wasser Acetaldehyd, Essigsäure und ölige Produkte liefert (St., R., Helv. 7, 229, 230). Bei der Oxydation mit Permanganat in Magnesiumsulfat-Lösung anfangs bei 0°, zuletzt bei Zimmertemperatur, entstehen Essigsäure und geringe Mengen öliger Produkte (Sr., R., Helv. 7, 228). Reduziert Fehlingsche Lösung in der Wärme, alkoholisch-ammoniakalische Silbernitrat-Lösung in der Kälte (St., R., Helv. 7, 218). Gibt bei der Einw. von 2 Mol Wasserstoff in Gegenwart von Palladium in Alkohol Tetrahydropyrethrolon (S. 27) (St., R., Helv. 7, 225; vgl. La Forge, Haller, Am. Soc. 58 [1936], 1061, 1777); bei weiterer Einw. von Wasserstoff bildet sich 1-Methyl-2-n-amyl-cyclopentanon-(3) (Hexahydropyrethron, E II 7, 46) (St., R., Helv. 7, 225, 238). Über Versuche zur Reduktion mit amalgamiertem Aluminium oder mit Zink und Schwefelsäure vgl. Staudinger, Ruzicka, Helv. 7, 240. Nimmt in Schwefelkohlenstoff-Lösung 2 Atome Brom sehr rasch, weiteres Brom nur langsam und unter Bromwasserstoffentwicklung auf (Sr., R., Helv. 7, 218). Gibt beim Kochen mit wäßrig-methylalkoholischer Natronlauge Pyrethrolonenol und Isopyrethrolonenol (S. 136) (Sr., R., Helv. 7, 220; vgl. HALLER, LA FORGE, J. org. Chem. 3 [1939], 544; ACREE, LA FORGE, J. org. Chem. 5 [1940], 433; GILLAM, WEST, Soc. 1944, 49; WEST, Soc. 1944, 51). Liefert mit Dimethylsulfat und Kaliumhydroxyd in Äther Pyrethrolonmethyläther (Sr., R., Helv. 7, 224). Über methoxylhaltige Verbindungen, die bei langem Kochen von Pyrethrolon mit methylalkoholischer Schwefelsäure entstehen, vgl. Sr., R., Helv. 7, 223.

Insecticide Wirkung von Estern des Pyrethrolons: Staudinger, Ruzicka, Helv. 7, 454. Pyrethrolon gibt ein 4-Nitro-phenylosazon C₂₃H₂₂O₄N₄, das sich oberhalb 350° zersetzt (STAUDINGER, RUZICKA, Helv. 7, 218).

Pyrethrolon - methyläther $C_{12}H_{16}O_2 = H_2C \cdot C(CH_2)$ $CH_3 \cdot O \cdot HC CO$ CH₂ $CO \cdot C_5H_7$ Bei 2-tägigem Schütteln von Pyrethrolon mit Dimethylsulfat und Kaliumhydroxyd in Äther (Staudinger, RUZICKA, Helv. 7, 224). Neben Pyrethrolon-methyläther-semicarbazon beim Kochen von Pyrethrolon-semicarbazon mit methylalkoholischer Schwefelsäure (St., R., Helv. 7, 222). — Dünnflüssiges Öl. Siedet im Hochvakuum bei 82—87°. Löslich in Petroläther und anderen organischen Lösungsmitteln. — Entfärbt Brom und Kaliumpermanganat sofort. Liefert in Gegenwart von Palladium mit 2 Mol Wasserstoff Tetrahydropyrethrolon-methyläther, mit überschüssigem Wasserstoff 1-Methyl-2-n-amyl-cyclopentanon-(3) (Sr., R., Helv. 7, 227, 237). Wird durch alkoh. Kalilauge dunkel gefärbt und verharzt (Sr., R., Helv. 7, 222).

Pyrethrolon - äthyläther $C_{13}H_{18}O_3 = H_3C \cdot C(CH_3) \cdot C \cdot C_5H_7$. Neben Pyrethrolon-äthyläther-semicarbazon beim Kochen von Pyrethrolon-semicarbazon mit alkoh. Schwefelsaure (Staudinger, Ruzicka, Helv. 7, 224). — Siedet im Hochvakuum bei 102—103°. — Wird durch Natronlauge dunkel gefärbt.

Pyrethroion-acetat $C_{13}H_{16}O_3 = H_2C - C(CH_3)$ $C \cdot C_5H_7$. B. Durch Behandlung von Pyrethroion mit überschüssigem Acetanhydrid, zuletzt auf dem Wasserbad (STAUDINGER, RUZICKA, Helv. 7, 219). — Dünnflüssiges Öl. Kp_{0,5}: 104—105°. D¹⁵: 1,0507. [α]_D¹⁵: —23,79° (unverdünnt). Löslich in Petroläther. — Liefert beim Ozonisieren in Tetrachlorkohlenschen Dardisch ausgestätzt auf dem Pardukter ausgestätzt. harziges Monoozonid C₁₈H₁₆O₆ und ein Gemisch sauerstoffreicherer Produkte; aus diesen erhält man beim Erhitzen mit Wasser Acetaldehyd, Spuren von Formaldehyd und saure und neutrale gelbe ölige Produkte, die bei der Oxydation mit Wasserstoffperoxyd Malonsäure geben und mit 4-Nitro-phenylhydrazin hochschmelzende Osazone liefern (Šr., R., Helv. 7, 229); bei langer Einw. von Ozon und nachfolgender Zersetzung mit Wasser wurde einmal eine Verbindung C₁₀H₁₂O₅ (?) (s. u.) in geringer Menge erhalten (Sr., R., *Helv.* 7, 232). Gibt bei der Hydrierung in Gegenwart von Palladium in wäßr. Alkohol 1-Methyl-2-n-amyl-cyclopentanon-(3) (Sr., R., *Helv.* 7, 238), Nimmt in Schwefelkohlenstoff-Lösung 1 Mol Brom auf (Sr., R., *Helv.* 7, 219).

Verbindung C₁₀H₁₂O₅(?), vielleicht 4-Acetoxy-1-methyl-cyclopenten-(1)-on-(3)-H₂C·C(CH₂) CH·CH₂·CO₂H. B. s. o. — Blättchen (aus Benzol). essigsäure-(2) CH₂·CO·O·HC—CO CH·UH₂·UU₂II. D. S. S. F. 136—138° (Zers.) (Staudinger, Ruzicka, Helv. 7, 233). Leicht löslich in Wasser und Alkohol. Fahlingsche Lösung und ammoniakalische Silbernitrat-- Reduziert Permanganat-Lösung, Fehlingsche Lösung und ammoniakalische Silbernitrat-Lösung.

136

Pyrethrolon-semicarbazon $C_{12}H_{17}O_2N_3 = HO \cdot HC \cdot C(:N \cdot NH \cdot CO \cdot NH_2)$ den Semicarbazonen des Pyrethrins I (Syst. Nr. 894) und des Pyrethrins II (Syst. Nr. 967) oder einem aus den wirksamen Anteilen des dalmatinischen Insektenpulvers erhaltenen Gemisch der beiden Semicarbazone durch mehrtägige Einw. von methylalkoholischer Kalilauge bei 0° (Staudinger, Ruzicka, Helv. 7, 196, 215). Aus Pyrethrolon, Semicarbazidhydrochlorid und Natriumacetat in Alkohol (St., R., Helv. 7, 216). — Krystalle (aus Essigester, Methanol oder Aceton). F: ca. 200° (Zers.). Leicht löslich in heißem Essigester, Methanol und Aceton, sehr schwer in Äther und Benzol, unlöslich in Petroläther und Wasser. — Gibt beim Kochen mit methylalkoholischer Schwefelsäure Pyrethrolonmethyläther und dessen Semicarbażon (Sr., R., Helv. 7, 222).

Pyrethrolon-methyläther-semicarbazon $C_{13}H_{19}O_2N_3 =$

von Pyrethrolonsemicarbazon mit methylalkoholischer Schwefelsäure (STAUDINGER, RUZICKA, Helv. 7, 222). Aus Pyrethrolonmethyläther, Semicarbazidhydrochlorid und Natriumacetat in Alkohol (St., R., Helv. 7, 223). — Krystalle (aus Methanol). F: 183^o (unter geringer Zersetzung). Leicht löslich in Chloroform, schwer in Äther.

Pyrethrolon-athylather-semicarbazon $C_{14}H_{21}O_2N_2 =$

 $C \cdot C_5H_7$. B. Aus Pyrethrolonāthylāther und Semicarbazid $C_2H_5 \cdot O \cdot HC \cdot C(: N \cdot NH \cdot CO \cdot NH_2)$ in essigsaurer Lösung (Staudinger, Ruzicka, Helv. 7, 224). — Krystalle (aus Alkohol). F: 179° bis 180° (unter geringer Zersetzung).

Pyrethrolon - acetat - semicarbazon $C_{14}H_{19}O_3N_3 =$

 $\begin{array}{c} H_2C \\ \hline \\ CH_3 \cdot CO \cdot O \cdot HC \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \\ \end{array} \\ C \cdot C_5H_7. \quad Krystalle \ (aus \ Benzol \ und \ Schwefelkohlenstoff). \end{array}$ Schmilzt unscharf bei 143—145° (STAUDINGER, RUZICKA, Helv. 7, 219). Leicht löslich in Alkohol und Äther, schwer in Schwefelkohlenstoff und Petroläther.

- 39. Pyrethrolonenol (früher Dehydropyrethrolon genannt) C₁₁H₁₄O₂. Zur Zusammensetzung und Konstitution vgl. HALLER, La Forge, J. org. Chem. 3 [1939], 544; ACREE, La Forge, J. org. Chem. 5 [1940], 433; Gillam, West, Soc. 1944, 49. — B. Neben Isopyrethrolonenol (s. u.) beim Kochen von Pyrethrolon mit methylalkoholischer Natronlauge (Staudinger, RUZICKA, Helv. 7, 220; HALLER, LA FORGE, J. org. Chem. 8 [1939], 546). — Dünnflüssiges Öl. Kp_{0,05}: 82° (St., R.); Kp_{0,7}: 93° (H., LA F.); Kp₁: ca. 102° (G., W., Soc. 1944, 50, 51). Brechungsindices und Lichtabsorption verschiedener Präparate: G., W. Löslich in Natronlauge und in Sodalösung (H., LA F.). — Entfärbt Brom und Permanganat sofort; gibt mit Eisenchlorid eine schwache Grünfärbung (Sr., R.). Hydrierung eines Gemisches mit Isopyrethrolonenol: Sr., R. Gibt mit Chrysanthemumsäurechlorid einen schwach insecticid wirkenden Ester (Sr., R.). — Gibt ein Semicarbazon vom Schmelzpunkt 251° (STAUDINGER, RUZICKA, Helv. 7, 220), ca. 255° (Zers.) (HALLER, LA FORGE, J. org. Chem. 3 [1939], 546), 255—256° (GILLAM, WEST, Soc. 1944, 51).
- 40. Isopyrethrolonenol C₁₁H₁₄O₂. Zur Zusammensetzung und Konstitution vgl. Haller, La Forge, J. org. Chem. 3 [1939], 545; Acres, La Forge, J. org. Chem. 5 [1940], 433; vgl. dagegen West, Soc. 1944, 52. Die Einheitlichkeit ist fraglich (W.). B. s. o. bei Pyrethrolonenol. — Zähflüssiges Öl. Siedet im Hochvakuum bei 145° (N-).— B. S. O. Bei Predmonenot.

 Zähflüssiges Öl. Siedet im Hochvakuum bei 145° (N-).

 Kp_a, ; 155—160° (H., La F.); Kp₁: 165° (W.). Brechungsindices und Lichtabsorption verschiedener Präparate: W. Löslich in Natronlauge und Sodalösung (H., La F.). — Verharzt an der Luft sehr rasch (St., R.). Gibt bei der Hydrierung in Gegenwart von Platinoxyd in Essigester Tetrahydroisopyrethrolonenol ²) (H., La F.; W.).

Acetat $C_{18}H_{16}O_2 = C_{11}H_{13}O(O \cdot CO \cdot CH_2)$. B. Aus Isopyrethrolonenol und Acetanhydrid, zuletzt auf dem Wasserbad (Haller, La Forge, J. org. Chem. 8 [1939], 546). — Kp_{0,6}: 118° bis 120° (H., La F.); Kp₁: 140°; Kp_{1,5}: 143° (West, Soc. 1944, 53). n_D^{**} : 1,5047 (H., La F.), 1,5007 (W.). Lichtabsorption: W. [OSTERTAG]

¹⁾ Über Pyrethrolon-semicarbazone vgl. nach dem Literatur-Schlußtermin des Ergänzungs-Werks II [1. 1. 1930] LA FORGE, BARTHEL, J. org. Chem. 9 [1944], 242; 10 [1945], 106, 114, 222; West, Soc. 1944, 52; 1946, 463; C. 1947 [Akad.-Verl.], 1205.

²⁾ Diese Verbindung wird nach dem Literatur-Schlußtermin des Ergänzungswerks II [1. I. 1930] näher beschrieben.

6. Oxy-oxo-Verbindungen $C_{12}H_{16}O_{2}$.

1. 4-Oxy-1-caproyl-benzol, 4-Oxy-caprophenon, n-Amyl-[4-oxy-phenyl]-keton $C_{18}H_{16}O_1=HO\cdot C_6H_4\cdot CO\cdot [CH_2]_4\cdot CH_3$.

- 4 Methoxy caprophenon, 4 Caproyl anisol, n Amyl [4 methoxy phenyl] keton, n Pentyl anisyl keton $C_{13}H_{18}O_2 = CH_3 \cdot O \cdot C_4H_4 \cdot CO \cdot [CH_2]_4 \cdot CH_3$. B. Aus Anisol, n-Caproylchlorid und Aluminium chlorid in Petroläther (Skraup, Nieten, B. 57, 1301). Krystalle (aus Methanol). F: 41°. — Liefert mit amalgamiertem Zink und Salzsäure 4-n-Hexyl-anisol. — Phenylhydrazon. F: 28°.
- 2. 1-Phenyl-hexanol-(1)-on-(2), Phenyl-n-valeryl-carbinol $C_{13}H_{16}O_2=C_6H_5\cdot CH(OH)\cdot CO\cdot [CH_3]_3\cdot CH_3$. B. In geringer Menge aus dl-Mandelsäureamid und Butyl-magnesiumbromid (TIFFENEAU, LÉVY, Bl. [4] 37, 1250). Flüssigkeit von brennendem Geschmack. Kp₁₃: 145—160°. D: 1,045. Färbt sich an der Luft braun.

Oxim $C_{12}H_{17}O_2N = C_0H_5 \cdot CH(OH) \cdot C(:N \cdot OH) \cdot [CH_2]_3 \cdot CH_2$. Krystalle (aus Benzol + Petroläther). F: 95—96° (TIFFENEAU, LÉVY, Bl. [4] 37, 1251). Sehr leicht löslich in Alkohol.

Semicarbazon $C_{19}H_{19}O_2N_3 = C_0H_5 \cdot CH(OH) \cdot C(: N \cdot NH \cdot CO \cdot NH_2) \cdot [CH_2]_3 \cdot CH_3$. F: 152—153° (TIFFENEAU, LÉVY, Bl. [4] 87, 1251).

3. 4-Methyl-1-phenyl-pentanol-(1)-on-(2), Phenyl-isovaleryl-carbinol C₁₂H₁₆O₂ = C₆H₅·CH(OH)·CO·CH₂·CH(CH₃)₂. B. In geringer Menge aus dl-Mandelsäureamid und Isobutylmagnesiumbromid (Tiffeneau, Lévy, Bl. [4] 87, 1251). — Flüssigkeit. Kp₃₈: 155—157°. D: 1,048.

Oxim $C_{19}H_{17}O_2N = C_6H_5 \cdot CH(OH) \cdot C(:N \cdot OH) \cdot CH_2 \cdot CH(CH_3)_2$. Krystalle (aus Benzol und Petroläther). F: 99—100° (Tiffeneau, Lévy, Bl. [4] 37, 1251).

Semicarbazon $C_{13}H_{19}O_2N_3=C_6H_5\cdot CH(OH)\cdot C(:N\cdot NH\cdot CO\cdot NH_9)\cdot CH_3\cdot CH(CH_3)_2$. F: 123° TIFFENEAU, LÉVY, Bl. [4] 87, 1251).

4. 3-[4-Oxy-phenyl]-hexanon-(4) $C_{12}H_{16}O_2 = HO \cdot C_6H_4 \cdot CH(C_2H_5) \cdot CO \cdot C_2H_5$.

3-[4-Methoxy-phenyl]-hexanon-(4), 3-Anisyl-hexanon-(4) C₁₃H₁₈O₂ = CH₃·O·C₆H₄·CH(C₂H₅)·CO·C₂H₅. Diese Konstitution kommt einer von Tiffeneau, Levy (Bl. [4] 33, 759) als Diäthyl-[4-methoxy-phenyl]-acetaldehyd angesehenen Verbindung zu (T., L., Weill, Bl. [4] 49 [1931], 1716). — B. Aus α.α-Diāthyl-α'-[4-methoxy-phenyl]-āthylenglykol der Destillation unter Athenatical Constitution and Constitut (T., L.; T., L., W.). — Kp₂₈: 165—167°.

(aus Alkohol). F: 137-1380 (TIFFENEAU, LEVY, WEILL, Bl. [4] 49 [1931], 1716).

5. 4-Oxy-1-methyl-3-n-valeryl-benzol, 6-Oxy-3-methyl-valerophenon, 2-n-Valeryl-p-kresol $C_{1a}H_{16}O_{2}$, Formel I.

α-Brom-6-oxy-3-methyl-valerophenon, 2-[α-Brom-n-valeryl]-p-kresol $C_{12}H_{15}O_2Br = HO \cdot C_6H_3(CH_3) \cdot CO \cdot CHBr \cdot CH_2 \cdot CH_2 \cdot CH_3$. Aus p-Kresol-methyläther und α-Brom-n-valeryl-bromid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff auf dem Wasserbad (v. Auwers, Wegener, J. pr. [2] 106, 246). — Hellgelbe Tafeln (aus Alkohol). F: 51—52°. Leicht löslich in den gebräuchlichen organischen Lösungsmitteln. — Liefert beim Kochen mit Natriumacetat in Alkohol 5-Methyl-2-propyl-cumaranon.

6. 6-Oxy-1-methyl-3-n-valeryl-benzol, 4-Oxy-3-methyl-valerophenon, 4-n-Valeryl-o-kresol C₁₂H₁₄O₂, Formel II.

Methyläther, 4 - Methoxy - 3 - methyl - valerophenon $C_{13}H_{18}O_2 = CH_3 \cdot O \cdot C_8H_3(CH_3) \cdot CO \cdot [CH_2]_3 \cdot CH_3$. B. Durch Einw. von Valeriansäureanhydrid und Aluminiumchlorid auf o-Kresolmethyläther in Schwefelkohlenstoff unter Kühlung (Noller, Adams, Am. Soc. 46, 1892). — F: 31-33°. Kp₇₄₄: 308,7° (korr.); Kp₄: 151,5° (korr.).

7. 6 - Oxy - 3 - isoamyl - benzaldehyd, 5 - Isoamyl - salicylaldehyd C₁₂H₁₆O₂, Formel III. B. Durch Kondensation von 4-Isoamyl-phenol mit Formaldehyd ') (HENRY, SHARP, Soc. 1926, 2437). — Flüssigkeit. Kp₁₇: 165—168°. — Liefert beim Erhitzen mit 1 Mol Queck-diber (II) -acetat 5-Acetoxymercuri-6-oxy-3-isoamyl-benzaldehyd. — Phenylhydrazon C₁₆H₂₂ON₂. F: 177—178°.

Semicarbazon $C_{13}H_{19}O_2N_3=C_5H_{11}\cdot C_4H_3(OH)\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Nadeln (aus Alkohol). F: 222º (Henry, Sharp, Soc. 1926, 2438).

²⁾ Vgl. analoge Bildungen von Salicylaldehyd und 4-Oxy-benzaldehyd, H 8, 31, 64.

8. 4-Oxy-1-methyl-3-isovaleryl-benzol, 6-Oxy-3-methyl-isovalerophenon, 4-Methyl-2-isovaleryl-phenol, 2-Isovaleryl-p-kresol C₁₂H₁₈O₂, Formel IV. B. Durch Umsetzung von p-Kresolmethyläther mit Isovalerylchlorid und Aluminiumchlorid in Schwefelkohlenstoff, zuletzt bei Siedetemperatur, und Erhitzen des Reaktionsproduktes mit Aluminiumchlorid auf 140—150° (v. AUWERS, LÄMMERBIET, B. 53, 438). Durch Hydrierung von 2-[β.β-Dimethyl-acrylcyl]-p-kresol (S. 162) in Gegenwart von kolloidem Palladium in Methanol (v. AU. A. 421, 48). — Öl. Kp₃₁: 151°; D₄^{18,4}: 1,0291; n_α^{18,4}: 1,5268; n_α^{18,4}: 1,5327; n_β^{18,4}: 1,5500; n_γ^{18,4}: 1,5685 (v. AU., L.). Gibt mit Eisenchlorid in verd. Alkohol eine violette Färbung (v. AU., L., B. 58, 439). — Liefert beim Erhitzen mit Benzoesäureanhydrid und Natriumbenzoat auf 180° 6-Methyl-3-isopropyl-flavon (Wittig, A. 446, 189). — 4-Nitro-phenylhydrazon C₁₈H₂₁O₂N₃. F: 136° bis 137° (v. AU., L., B. 58, 439).

Semicarbazon $C_{13}H_{19}O_2N_3 = HO \cdot C_0H_3(CH_2) \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_2 \cdot CH(CH_3)_2$. Nadeln. F: 203—204° (v. Auwers, Lämmerhiet, B. 58, 439). Schwer löslich in kalter verdünnter Alkalilauge; wird aus alkoholisch-alkalischer Lösung durch Wasser gefällt.

 α -Chlor-6-oxy-3-methyl-isovalerophenon, 2-[α -Chlor-isovaleryl]-p-kresol $C_{19}H_{15}O_{3}Cl=HO \cdot C_{6}H_{3}(CH_{3}) \cdot CO \cdot CHCl \cdot CH(CH_{8})_{2}$ (E I 557). Liefert beim Kochen mit Diäthylanilin 2-Isovaleryl-p-kresol (v. Auwers, Lämmerhirt, B. 58, 437).

β-Chlor-6-oxy-3-methyl-isovalerophenon, 2-[β-Chlor-isovaleryl]-p-kresol $C_{12}H_{15}O_3Cl = HO \cdot C_6H_3(CH_3) \cdot CO \cdot CH_2 \cdot CCl(CH_3)_2$. B. Aus 2-[β,β-Dimethyl-acryloyl]-p-kresol (S. 162) und Chlorwasserstoff in Eisessig (v. Auwers, A. 421, 49). — Prismen (aus Methanol). F: 53—55°. Leicht löslich in organischen Lösungsmitteln. — Wird durch verd. Natronlauge mit gelber Farbe gelöst und in 2.2.6-Trimethyl-chromanon übergeführt.

 $\alpha.\beta$ - Dibrom - 6 - oxy - 3 - methyl - isovalerophenon, 2 - $[\alpha.\beta$ - Dibrom - isovaleryl] - p - kresol $C_{12}H_{14}O_2Br_2 = HO \cdot C_6H_9(CH_3) \cdot CO \cdot CHBr \cdot CBr(CH_3)_8$. B. Aus 2 - $[\beta.\beta$ - Dimethyl - acryloyl] - p-kresol und Brom in Schwefelkohlenstoff (v. Auwers, A. 421, 49). — Gelbliche Nadeln (aus Petroläther). F: 70—71°. Leicht löslich in organischen Lösungsmitteln. — Wird durch verd. Natronlauge mit gelber Farbe gelöst und in 3-Brom-2.2.6-trimethyl-chromanon übergeführt.

9. 4-Oxy-3-propyl-1-propionyl-benzol, 4-Oxy-3-propyl-propiophenon, 2-Propyl-4-propionyl-phenol C₁₂H₁₆O₂, Formel V. B. Durch Einw. von Propionylchlorid und Aluminiumchlorid auf 2-Propyl-phenol in Nitrobenzol (Rosenmund, Schulz, Ar. 1927, 315). — Nadeln. F: 80—81°. Leicht löslich in Alkohol, Äther und Eisessig.

Semicarbazon $C_{12}H_{19}O_2N_3=C_2H_5\cdot CH_2\cdot C_6H_3(OH)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot C_2H_5$. Nadeln. F: 128° (Rosenmund, Schulz, Ar. 1927, 315).

10. 3-Oxy-1.5-dimethyl-2-butyryl-benzol, 5-Oxy-4-butyryl-m-xylol, 6-Oxy-2.4-dimethyl-butyrophenon, 3.5-Dimethyl-2-butyryl-phenol, o-Butyro-symm.-m-xylenol $C_{12}H_{16}O_2$, Formel VI. B. Neben dem Methyläther (s. u.) durch Umsetzung von 5-Methoxy-m-xylol mit Butyrylchlorid und Aluminiumchlorid in Schwefelkohlenstoff, zuletzt auf dem Wasserbad (v. Auwers, A. 421, 79). — Prismen (aus Petroläther). F: $58-59^\circ$. Leicht löslich in den meisten organischen Lösungsmitteln außer Petroläther. — Reagiert nicht mit Hydroxylamin oder Semicarbazid, bildet aber ein 4-Nitro-phenylhydrazon (F: $162-162,5^\circ$).

Methyläther, 6-Methoxy-2.4-dimethyl-butyrophenon $C_{13}H_{18}O_{9}=CH_{9}\cdot O\cdot C_{6}H_{2}(CH_{2})_{9}\cdot CO\cdot CH_{2}\cdot C_{2}H_{5}$. B. s. im vorangehenden Artikel. — Sohwach gelbliches, stark lichtbrechendes Öl von durchdringendem Geruch. Kp₁₈: 162° (v. Auwers, A. 421, 81).

Acetat, 6-Acetoxy-2.4-dimethyl-butyrophenon $C_{14}H_{18}O_3 = CH_3 \cdot CO \cdot O \cdot C_0H_3 \cdot CO \cdot CH_3 \cdot C_2H_5$. Stark lichtbrechendes Ol. Kp₁₈: 173—175° (v. Auwers, A. 421, 81).

3-Brom-6-oxy-2.4-dimethyl-butyrophenon, 2-Brom-5-oxy-4-butyryl-m-xylol C₁₂H₁₄O₂Br, Formel VII auf S. 139. B. Aus 6-Oxy-2.4-dimethyl-butyrophenon und 1 Mol Brom in Schwefelkohlenstoff oder besser in möglichst wenig Eissesig unter Kühlung mit Wasser (v. Auwers, A. 421, 82). Aus 2-Brom-5-methoxy-m-xylol, Butyrylchlorid und Aluminiumchlorid in Schwefelkohlenstoff, zuletzt bei Siedetemperatur (v. Au.). — Blättchen (aus Petroläther). F: 108—109°. Leicht löslich in organischen Lösungsmitteln.

2.2.4.6-tetramethyl-cumaranon.

- α-Brem-6-acetexy-2.4-dimethyl-butyrophenon, 5 Acetexy 4 [α-brom-butyryl] -m-xylol $C_{14}H_{17}O_3Br = CH_3 \cdot CO \cdot C_6H_3(CH_3)_2 \cdot CO \cdot CHBr \cdot C_2H_5$. B. Aus 6-Acetexy-2.4-dimethyl-butyrophenon und 1 Mol Brom in Schwefelkohlenstoff (v. Auwers, A. 421, 81). Krystalle (aus verd. Methanol). F: 36,5—38,5°. Leicht löslich in organischen Lösungsmitteln. Liefert beim Kochen mit alkoh. Natronlauge 2-Åthyl-4.6-dimethyl-cumaranon.
- 3.a Dibrom 6 oxy 2.4 dimethyl butyrophenon, 2 Brom 5 oxy 4 [a-brom-butyryl]m-xylol C₁₂H₁₄O₂Br₂, Formel VIII. B. Aus 6-Oxy-2.4-dimethyl-butyrophenon und 2 Mol Brom
 in Schwefelkohlenstoff (v. Auwers, A. 421, 83). Schuppen (aus Petroläther). F: 112,5—113,5°.
 Leicht löslich in den gebräuchlichen Lösungsmitteln. Liefert beim Kochen mit Natronlauge
 in verd. Aceton oder mit Natriumacetat in verd. Alkohol 5-Brom-4.6-dimethyl-2-äthyl-cumaranon.
- 3.5. α -Tribrom-6-oxy-2.4-dimethyl-butyrophenon, 2.6-Dibrom-5-oxy-4- $[\alpha$ -brom-butyryl]-m-xylol $C_{12}H_{13}O_2Br_3=HO\cdot C_6Br_2(CH_3)_2\cdot CO\cdot CHBr\cdot C_2H_5$. B. Aus 6-Oxy-2.4-dimethyl-butyrophenon und 3 Mol Brom in Gegenwart von Eisenpulver in Schwefelkohlenstoff oder besser in Eisessig, zuletzt unter Erwärmen (v. Auwers, A. 421, 83, 84). Nadeln (aus Petroläther). F: 124—125°. Leicht löslich in den meisten organischen Lösungsmitteln.

- 11. 3 Oxy 1.5 dimethyl 2 isobutyryl benzol, 5 Oxy 4 isobutyryl-m-xylol, 6-Oxy-2.4-dimethyl-isobutyrophenon, 3.5-Dimethyl-2-isobutyryl-phenol, o-Isobutyro-symm.-m-xylenol C₁₂H₁₆O₂, Formel IX. B. Durch Kondensation von 5-Methoxy-m-xylol mit Isobutyrylchlorid, am besten bei Gegenwart von 2 Mol Aluminium-chlorid in Schwefelkohlenstoff, zuletzt auf dem Wasserbad (v. Auwers, A. 421, 74). Neben überwiegenden Mengen 2.2.4.6-Tetramethyl-cumaranon bei gelindem Erwärmen von 5-Methoxy-m-xylol mit α-Brom-isobutyrylbromid und Aluminiumchlorid in Schwefelkohlenstoff (v. Au., L.). Lämmerhier, B. 53, 442). Prismen (aus Petroläther). F: 93—94° (v. Au.; v. Au., L.). Leicht löslich in den meisten organischen Lösungsmitteln. 4-Nitro-phenylhydrazon C₁₈H₂₁O₂N₂. F: 181—182° (v. Au.).
- Methyläther, 6-Methoxy-2.4-dimethyl-isobutyrophenon $C_{13}H_{18}O_3=CH_3\cdot O\cdot C_8H_2(CH_3)_8\cdot CO\cdot CH(CH_2)_3$. B. Neben 6-Oxy-2.4-dimethyl-isobutyrophenon bei der Umsetzung von 5-Methoxy-m-xylol mit Isobutyrylchlorid bei Gegenwart von 1 Mol Aluminiumchlorid in Schwefelkohlenstoff (v. Auwers, A. 421, 74). $D_4^{u,v}$: 1,0116; $n_{\alpha}^{u,v}$: 1,5135; $n_{eev,ue}^{u,v}$: 1,5182; $n_{\beta}^{u,v}$: 1,5299; $n_{\alpha}^{u,v}$: 1,5406 (v. Auwers, B. 60, 2130, 2138).
- 3.a-Dibrom-6-oxy-2.4-dimethyl-isobutyrophenon, 2-Brom-5-oxy-4-[a-brom-isobutyryl]m-xylol C₁₃H₁₄O₃Br₃, Formel X. B. Aus 6-Oxy-2.4-dimethyl-isobutyrophenon und 2 Mol Brom in Eisessig unter Kühlung (v. Auwers,
 A. 421, 76). Prismen (aus Petroläther).
 F: 128—129°. Leicht löslich in Methanol,
 Alkohol, Benzol und Eisessig, sohwer in
 Petroläther. Beim Behandeln mit
 Natriumacetat in wenig verdünntem Alkohol, mit verdünnter alkoholischer Natronlauge oder mit Diäthylanilin entsteht 5-Brom-
- 3.5. α -Tribrom-6-0xy-2.4-dimethyl-isobutyrophenon, 2.6-Dibrom-5-0xy-4-[α -brom-isobutyryl]-m-xylol $C_{12}H_{13}O_2Br_3=HO\cdot C_6Br_5(CH_2)_2\cdot CO\cdot CBr(CH_3)_2$. B. Aus 6-Oxy-2.4-dimethyl-isobutyrophenon und 3 Mol Brom in Eisessig unter Erwärmen (v. Auwers, A. 421, 78). Nadeln (aus Benzin). F: 154°. Liefert beim Behandeln mit alkoh. Natronlauge oder Diäthylanilin 5.7-Dibrom-2.2.4.6-tetramethyl-cumaranon.
- 12. 1.4-Dimethyl-2-[α -oxy-isobutyryl]-benzol, α -Oxy-2.5-dimethyl-isobutyrophenon, 2-[α -Oxy-isobutyryl]-p-xylol, [α -Oxy-isopropyl]-p-xylenyl-keton $C_{12}H_{16}O_2$, Formel XI. B. Durch Hydrolyse des Acetats (BLAISE, HERZOG, C. r. 184, 1333). Kp₁₆: 136°. 4-Nitro-phenylhydrazon. F: 219°.
- α Acetoxy 2.5 dimethyl isobutyrophenon $C_{1e}H_{1e}O_3 = (CH_3)_2C_eH_3 \cdot CO \cdot C(CH_3)_2 \cdot O \cdot CO \cdot CH_3$. B. Neben anderen Produkten bei der Einw. von α -Acetoxy-isobutyrylchlorid und Aluminiumchlorid auf p-Xylol (Blasse, Herzog, C.r. 184, 1333). Kp₁₇: 148°. 4 Nitro-phenylhydrazon. F: 212°.
- α-Gxy-2.5-dimethyl-isobutyrophenon-semicarbazon $C_{13}H_{19}O_2N_3 = (CH_3)_2C_6H_3 \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot C(CH_2)_2 \cdot OH$. F: 166° (BLAISE, HERZOG, C. r. 184, 1333).

OXY.OXO.VERBINDUNGEN CnH2n-8O2

13. 4 - Oxy - 1.3 - dimethyl - 5 - isobutyryl - benzol, 4 - Oxy - 5 - isobutyryl-m-xylol, 2-Oxy-3.5-dimethyl-isobutyrophenon, 2.4-Dimethyl-6-isobutyryl-ptehenol, o-Isobutyro-asymm.m-xylonol C₁₂H₁₄O₂, s. nebenstehende Formel. B. Beim Ernitzen von [2.4-Dimethyl-phenyl]-isobutyryl-mit Alminima black of 4000 (2.4-Dimethyl-phenyl)-isobutyryl-mit Alminima black of 4000 (2.4-Dimethyl-phenyl)-iso-phenyl-mit Alminima black of 4000 (2.4-Dimethyl-phenyl)-iso-phenyl-mit Alminima black of 4000 (2.4-Dimethyl-phenyl-mit) butyrat mit Aluminiumchlorid auf 120° (v. Auwers, Baum, Lorenz, J. pr. [2] 115, 101). — Gelbliches 120° (v. Auwers, Baum, Lorenz, J. pr. [2] 115, 101). — Gelbliches 120° (v. Auwers, Baum, Lorenz, J. pr. [2] 115, 101). — Gelbliches 129—131°. D⁴: 1,0334. (CH₃)₂CH·CO·CH₃ chlorid in Alkohol eine blaue Färbung. — Liefert beim Bromieren und nachfolgenden längeren Kochen mit starker Kalilauge 2.4-Dimethyl-6-[α-oxy-isobutyryl]-brond(2)

phenol (?) und wenig 2.2.5.7-Tetramethyl-cumaranon; bei nachfolgendem längerem Kochen mit Diäthylanilin erhält man 3.6.8-Trimethyl-chromanon und andere Produkte.

2-Acetoxy-3.5-dimethyl-isobutyrophenon $C_{14}H_{18}O_3=CH_3\cdot CO\cdot O\cdot C_6H_2(CH_3)_2\cdot CO\cdot CH(CH_3)_2$. Hellgelbes Öl. Kp₁₄: 150—152° (v. Auwers, Baum, Lorenz, *J. pr.* [2] 115, 101).

14. 5-Oxy-1-methyl-4-propyl-2-acetyl-benzol, 4-Oxy-2-methyl-5-propyl-acetophenon, 5-Methyl-2-propyl-4-acetyl-phenol $C_{12}H_{16}O_3$, Formel I. B. Aus dem Acetat des 5-Methyl-2-propyl-phenols durch 18-stdg. Einw. von Aluminiumchlorid in Nitrobenzol bei 20° (ROSENMUND, SCHNURR, A. 460, 81). — Nadeln (aus Benzol + Ligroin). F: 113°. Kp₁₈: 194°.

- 15. 5-Oxy-1-methyl-4-isopropyl-2-acetyl-benzol, 4-Oxy-2-methyl-5-isopropyl-acetophenon, 4-Acetyl-thymol, Thymolmethylketon, Thymylmethylketon C₁₂H₁₆O₂, Formel II (H 126). B. u. Darst. Bei längerem Aufbewahren von Thymylacetat mit Aluminiumchlorid in Nitrobenzol bei 200 (ROSENMUND, SCHNURR, A. 460, 79). Zur Darstellung aus Thymol, Acetylchlorid und Aluminiumchlorid in Nitrobenzol (H 127) vgl. R., Schulz, Ar. 1927, 309; R., Schn., A. 460, 77. — Krystalle (aus Methanol). F: 125° (R., Schulz; R., Schn.). Leicht löslich in Alkohol, Äther und Eisessig, unlöslich in Ligroin (R., Schulz). — Geht bei 1-stdg. Erhitzen mit wenig Camphersulfonsäure auf 180° wieder in Thymylacetat über (R., Schn., A. 460, 93).
- 16. 6-Oxy-1-methyl-4-isopropyl-3-acetyl-benzol, 4-Oxy-5-methyl-2-isopropyl-acetophenon, 4-Acetyl-carvacrol C₁₉H₁₆O₂, Formel III. B. Aus Carvacrol und Acetylchlorid bei Gegenwart von Aluminiumchlorid in Nitrobenzol bei gewöhnlicher Temperatur (Jонн, Веетz, J. pr. [2] 143 [1935], 254, 256; vgl. J., J. pr. [2] 187 [1933], 368). — Krystalle (aus 60 %igem Alkohol). F: 101° (J., B.). Kp: 305° (J.). Leicht löslich in den meisten organischen Lösungsmitteln, fast unlöslich in Petroläther und Wasser (J.). Flüchtigkeit mit Wasserdampf: J. Gibt keine Eisenchlorid-Reaktion (J.).

Die von ROSENMUND, WHA (Ar. 1928, 407) und R., SCHNURR (A. 460, 80) als 4-Acetylcarvacrol beschriebene Substanz ist als unreines 4-Acetyl-thymol erkannt worden (John, Beetz, J. pr. [2] 148 [1935], 254).

4-Methoxy-5-methyl-2-isopropyl-acetophenon, 4-Acetyl-carvacrol-methyläther $C_{13}H_{18}O_2=CH_3\cdot CO\cdot O\cdot C_6H_9(CH_3)(C_3H_7)\cdot CO\cdot CH_3$. B. Aus Carvacrolmethyläther und Acetylchlorid in Gegenwart von Aluminiumchlorid (BOGERT, GOLDSTEIN, Am. Perfumer 23, 525; C. 1929 II, 3128). — Nadeln. F: 40,5°. Löslich in Alkohol, Äther, Benzol, Schwefelkohlenstoff und Eisessig, sehr schwer löslich in Wasser. — Liefert bei der Kalischmelze 4-Methoxy-5-methyl-2-isopropylbenzoesäure.

4-Methoxy-5-methyl-2-isopropyl-acetophenon-oxim $C_{12}H_{10}O_2N=CH_2\cdot O\cdot C_6H_2(CH_2)(C_2H_7)\cdot C(:N\cdot OH)\cdot CH_2$. Blättchen. F: 131° (korr.) (Bogert, Goldstein, Am. Perfumer 23, 525; C. 1929 II, 3128). — Liefert bei der Einw. von PCl₅ in Äther 4-Acetamino-carvacrol-methyläther.

17. 6-Oxy-2.4-diäthyl-1-acetyl-benzol, 6-Oxy-2.4-diäthyl-acetophenon, 3.5-Diäthyl-2-acetyl-phenol C₁₂H₁₆O₂, Formel IV. B. Bei raschem Erhitzen von [3.5-Diäthyl-phenyl]-acetat mit Aluminiumchlorid auf 130—140° (v. Auwers, Mauss, A. 460, 277). — Hellgelbes Ol. Kp₁₂: 140°. Flüchtig mit Wasserdampf. Gibt mit Eisenchlorid eine tiefblaue Färbung. — Liefert beim Erhitzen mit 84%iger Phosphorsäure 3.5-Diäthyl-phenol. — Natriumsalz. Schwer löslich.

- 18. 2-Oxy-3.5-diäthyl-1-acetyl-benzol, 2-Oxy-3.5-diäthyl-acetophenon, 2.4-Diäthyl-6-acetyl-phenol C₁₂H₁₆O₂, Formel V. B. Aus 4-Acetoxy-1.3-diäthyl-benzol durch Erhitzen mit Aluminiumchlorid (v. Auwers, Mauss, A. 460, 275). Gelbes Öl. Kp₁₂: 138—140°. Flüchtig mit Wasserdampf. In Alkalilaugen mäßig löslich mit gelber Farbe. Gibt mit Eisenchlorid eine tiefblaue Färbung. 4-Nitro-phenylhydrazon C₁₈H₂₁O₂N₃. F: 136° bis 138°.
- 19. 4-Oxy-3.5-diäthyl-1-acetyl-benzol, 4-Oxy-3.5-diäthyl-acetophenon, 2.6-Diäthyl-4-acetyl-phenol C₁₂H₁₆O₂, Formel VI. B. Neben anderen Produkten bei raschem Erhitzen von 2-Acetoxy-1.3-diäthyl-benzol mit Aluminiumchlorid (v. Auwers, Mauss, A. 460, 277). Krystalle (aus verd. Alkohol). F: 92—92,5°. Leicht löslich in den gebräuchlichen Lösungsmitteln. Löslich in Alkalilaugen mit gelber Farbe. Gibt keine Eisenchlorid-Reaktion.

20. 4-Oxy-1.2-dimethyl-5-äthyl-3-acetyl-benzol, 6-Oxy-2.3-dimethyl-5-äthyl-acetophenon, 3.4-Dimethyl-6-äthyl-2-acetyl-phenol C₁₈H₁₆O₂, Formel VII. B. Aus 4.5-Dimethyl-2-āthyl-anisol durch Behandeln mit Acetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff auf dem Wasserbad (v. Auwers, Mauss, A. 460, 260). Neben 6-Oxy-3.4-dimethyl-5-āthyl-acetophenon beim Erhitzen von 4.5-Dimethyl-2-āthyl-phenol-acetat mit Aluminiumchlorid (v. Au., M., A. 460, 263). — Gelbes Öl. Kp₁₁: 143—145°. Leicht löslich in Alkalilauge mit gelber Farbe. Gibt mit Eisenchlorid eine tiefblaue Färbung. — Liefert beim Kochen mit 48%iger Bromwasserstoffsäure und Eisessig 4.5-Dimethyl-2-āthyl-phenol. Bei der Reduktion nach Clemmensen entsteht 3.4-Dimethyl-2.6-diäthyl-phenol. — 4-Nitrophenylhydrazon C₁₈H₃₁O₃N₃. F: 251—253°.

0xim $C_{12}H_{17}O_2N = C_2H_5 \cdot C_6H(CH_3)_2(OH) \cdot C(CH_3) : N \cdot OH$. Nadeln (aus Methanol). F: 153° bis 154° (v. Auwers, Mauss, A. 460, 261).

- 21. $6-Oxy-1.2-dimethyl-5-\ddot{a}thyl-3-acetyl-benzol,$ $4-Oxy-2.3-dimethyl-5-\ddot{a}thyl-acetophenon$ $C_{12}H_{16}O_2$, Formel VIII.
- 4-Methoxy-2.3-dimethyl-5-äthyl-acetophenon, 2.3-Dimethyl-6-äthyl-4-acetyl-anisol $C_{18}H_{18}O_2=C_2H_5\cdot C_6H(CH_3)_2(O\cdot CH_3)\cdot CO\cdot CH_3$. B. Durch Erwärmen von 2.3-Dimethyl-6-äthylphenol-methyläther (E II 6, 502 Z. 1 v. o.) mit Acetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff (v. Auwers, Mauss, A. 460, 262). Öl. Kp₁₂: 138—140°. Flüchtig mit Wasserdampf. Liefert bei der Reduktion nach CLEMMENSEN 6-Methoxy-1.2-dimethyl-3.5-diäthylbenzol.
- 22. 4-Oxy-1.2-dimethyl-3-äthyl-5-acetyl-benzol, 6-Oxy-3.4-dimethyl-5-äthyl-acetophenon, 3.4-Dimethyl-2-äthyl-6-acetyl-phenol C₁₂H₁₆O₂, Formel IX. B. Neben isomeren Verbindungen beim Erhitzen von 2.4-Dimethyl-6-äthyl-phenol-acetat (v. AUWERS, MAUSS, A. 460, 259) oder von 4.5-Dimethyl-2-äthyl-phenol-acetat (v. AU., M., A. 460, 263) mit Aluminiumchlorid. Liefert bei der Reduktion nach CLEMMENSEN 3.4-Dimethyl-2.6-diäthyl-phenol. 4-Nitro-phenylhydrazon. F: 179—183°.

Semicarbazon $C_{13}H_{19}O_2N_3=HO\cdot C_6H(CH_3)_2(C_2H_5)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_3$. Krystalle (aus Alkohol). F: 219—221° (v. Auwers, Mauss, A. 460, 260).

23. 4 - Oxy - 1.3 - dimethyl - 5 - äthyl - 2-acetyl - benzol, 3-Oxy - 2.6-dimethyl - 4-äthyl - acetyl - phenol C₁₂H₁₆O₂, Formel X. B. Neben anderen Produkten beim Erwärmen von 2.4-Dimethyl 6. äthyl - phenol CH₃

CH₃

CH₃

wärmen von 2.4-Dimethyl-6-äthyl-phenolmethyläther (E II 6, 503) mit Acetylchlorid und Aluminiumchlorid in Schwefelkehlenstoff (v. Auwers, Mauss, A. 460, 263). — Gelbe Masse. Kp₁₅: 178—182°.

460, 263). — Gelbe Masse. Kp₁₅: 178—182°.

Löslich in Alkalilaugen mit gelblicher Farbe. Gibt keine Eisenchlorid-Reaktion. — Liefert bei der Reduktion nach CLEMMENSEN 2.4-Dimethyl-3.6-diäthyl-phenol. Bei der Einw. von Phosphorsäure entsteht 2.4-Dimethyl-6-äthyl-phenol.

24. 4-Oxy-1.3-dimethyl-2- thyl-5-acetyl-benzol, 2-Oxy-3.5-dimethyl-4-äthyl-acetophenon, 2.4-Dimethyl-3-äthyl-6-acetyl-phenol C₁₂H₁₂O₂, Formel I. B. Entsteht neben isomeren Verbindungen aus den Acetaten des 2.4-Dimethyl-5-äthyl-phenols (v. Auwers, Mauss, A. 460, 264; B. 61, 1505), des 2.6-Dimethyl-4-äthyl-phenols (v. Au., M., A. 460, 269) beim Erhitzen mit Aluminiumehlorid auf 130—140°. — Nadeln (aus Petroläther). F: 52—53°; Kp₁₂: 145—147° (v. Au., M., A. 460, 259, 267). Ziemlich leicht löslich in verd. Alkaliaugen mit gelber Farbe. Gibt mit Eisenchlorid eine blaue Färbung. — Liefert bei der Reduktion nach Clemmensen 2.4-Dimethyl-3-äthyl-phenol (v. Au., M., A. 460, 259). Gibt bei der Einw. von Phosphorsäure 2.4-Dimethyl-3-äthyl-phenol (v. Au., M., A. 460, 264). — 4-Nitro-phenylhydrazon. F: 212—214° (v. Au., M., A. 460, 259).

 $\begin{array}{lll} \textbf{Oxim} & C_{12}H_{17}O_2N = HO \cdot C_8H(CH_3)_2(C_2H_5) \cdot C(:N \cdot OH) \cdot CH_8. & Krystalle & (aus & Methanol). \\ \textbf{F}: & 157,5-158,5^0 & (v. \ Auwers, \ Mauss, \ A. & 460, \ 259). \end{array}$

Semicarbazon $C_{13}H_{19}O_2N_3 = HO \cdot C_6H(CH_3)_8(C_2H_5) \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_3$. Gelbliches Pulver. F: 235—236° (v. Auwers, Mauss, A. 460, 259).

25. 4-Oxy-1.5-dimethyl-2-äthyl-3-acetyl-benzol, 6-Oxy-3.5-dimethyl-2-äthyl-acetophenon, 2.4-Dimethyl-5-äthyl-6-acetyl-phenol C₁₂H₁₆O₂, Formel II. B. In geringer Menge neben anderen Verbindungen bei der Umsetzung von 2.4-Dimethyl-5-äthyl-phenol-methyläther mit Acetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff (v. Auwers, Mauss, B. 61, 1497, 1506) und bei raschem Erhitzen von 2.4-Dimethyl-5-äthyl-phenol-acetat mit Aluminiumchlorid auf 130—140° (v. Au., M., A. 460, 264). — Nicht rein erhalten. Gibt ein bei 120—125° schmelzendes Oxim (v. Au., M., A. 460, 264).

7. Oxy-oxo-Verbindungen $C_{13}H_{18}O_2$.

- 1. 4-Oxy-1-önanthoyl-benzol, 4-Oxy-önanthophenon $C_{19}H_{18}O_2=HO\cdot C_0H_4\cdot CO\cdot [CH_2]_5\cdot CH_3$.
- 4-Methoxy-önanthophenon, 4-Önanthoyl-anisol, n-Hexyl-[4-methoxy-phenyl]-keton, n-Hexyl-anisyl-keton $C_{14}H_{20}O_2=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot [CH_2]_5\cdot CH_3$. B. Aus Anisol, Önanthoylchlorid und Aluminiumchlorid in Petroläther (Skraup, Nieten, B. 57, 1302). Krystalle (aus Methanol). F: 40°. Kp₁₇: 192°. Liefert mit amalgamiertem Zink und wäßr. Salzsäure 4-n-Heptyl-anisol. Phenylhydrazon. F: 35°.
- 2. 2.2 Dimethyl 1 phenyl pentanol (4) on (1), 2 Methyl 2 benzoyl-pentanol (4) $C_{13}H_{18}O_2 = C_6H_5 \cdot CO \cdot C(CH_s)_2 \cdot CH_2 \cdot CH(OH) \cdot CH_s$.
- 5-Brom-2.2-dimethyl-1-phenyl-pentanol-(4)-on-(1), 5-Brom-2-methyl-2-benzoyl-pentanol-(4) $C_{13}H_{17}O_2Br=C_6H_5\cdot CO\cdot C(CH_3)_2\cdot CH_2\cdot CH(OH)\cdot CH_2Br$. B. Aus $\omega.\omega$ -Dimethyl- ω -allyl-acetophenon bei der Einw. von Brom in Chloroform und Hydrolyse des entstandenen Dibromids durch Luftfeuchtigkeit oder bei der Einw. von Brom in wäßr. Aceton (HALLER, RAMART-LUCAS, C. r. 171, 146). Krystalle (aus Äther + Petroläther). F: 106°; zersetzt sich bei weiterem Erhitzen. Sehr leicht löslich in den meisten organischen Lösungsmitteln. Liefert mit Alkohol eine bei 54° schmelzende krystallinische Verbindung.

III.
$$\bigodot_{\text{OH}} \cdot \text{CO} \cdot [\text{CH}_3]_4 \cdot \text{CH}_3 \qquad \text{IV.} \quad \bigodot_{\text{OH}} \cdot \text{CO} \cdot \text{CH}(\text{C}_2\text{H}_5)_2 \qquad \text{V.} \quad \biguplus_{\text{CO}} \cdot \text{CO} \cdot [\text{CH}_3]_2 \cdot \text{CH}_3$$

- 3. 4-Oxy-1-methyl-3-n-caproyl-benzol, 6-Oxy-3-methyl-caprophenon, 2-n-Caproyl-p-kresol $C_{13}H_{18}O_3$, Formel III. B. Durch Erhitzen von n-Capronsaurep-tolylester mit Aluminiumchlorid auf 120° (Rosenmund, Schnurg, A. 460, 83). Gelbliches Ol. Kp₁₅: 163° .
- α-Brom-6-oxy-3-methyl-caprophenon, 2-[α-Brom-n-caproyl]-p-kresol $C_{13}H_{17}O_2$ Br = HO· $C_6H_3(CH_3)\cdot CO\cdot CH$ Br· $[CH_2]_3\cdot CH_3$. B. Beim Kochen von p-Kresol-methyläther mit α-Brom-n-caproylbromid und Aluminiumchlorid in Schwefelkohlenstoff (v. Auwers, Wegener, J. pr. [2] 106, 246). Gelbe Nadeln (aus verd. Methanol). F: 30,5—31,5°. Im allgemeinen leicht löslich. Liefert beim Kochen mit Natriumacetat in Alkohol 5-Methyl-2-butyl-cumaranon.
- 4. 4-Oxy-1-methyl-3-diäthylacetyl-benzol, 6-Oxy-3-methyl- $\omega.\omega$ -diäthylacetyl-p-kresol $C_{13}H_{14}O_4$, Formel IV.
- ω -Brom-6-oxy-3-methyl- ω . ω -diathyl-acetophenon, 2-Diathylbromacetyl-p-kresol $C_{13}H_{17}O_2Br = HO \cdot C_6H_3(CH_2) \cdot CO \cdot CBr(C_2H_3)_3$. B. Beim Kochen von p-Kresol-methyläther

mit Diāthylbromaeetylbromid und Aluminiumehlorid in Schwefelkohlenstoff (v. Auwers, A. 489, 141). — Gelbes Öl. Kp_{14} : 175°. $D_4^{n,s}$: 1,3047. $n_{\alpha}^{n,s}$: 1,5577; $n_{10}^{n,s}$: 1,5647; $n_{\beta}^{n,s}$: 1,5844. — Färbt sich beim Aufbewahren grün. Liefert beim Behandeln mit 2n-Natronlauge in der Kälte 2-[α -Oxy-diāthylacetyl]-p-kresol und wenig 5-Methyl-2.2-diāthyl-cumaranon, in der Wärme 5-Methyl-2.2-diāthyl-cumaranon und geringere Mengen 6-Oxy-3-methyl-benzoesäure. Gibt beim Kochen mit Diāthylanilin 2.6-Dimethyl-3-āthyl-chromanon.

5. 6-Oxy-1-propyl-3-butyryl-benzol, 4-Oxy-3-propyl-butyrophenon, Propyl-[4-oxy-3-propyl-phenyl]-keton, 2-Propyl-4-butyryl-phenol C₁₃H₁₆O₃, Formel V auf S. 142. B. Durch Einw. von Butyrylchlorid und Aluminiumchlorid auf 2-Propyl-phenol in Nitrobenzol (ROSENMUND, SCHULZ, Ar. 1927, 315). — Krystalle. F: 54°. Kp₁₄: 210°.

Semicarbazon $C_{14}H_{21}O_2N_3 = C_2H_5 \cdot CH_2 \cdot C_4H_3(OH) \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot [CH_2]_3 \cdot CH_2$. F: 151° (ROSENMUND, SCHULZ, Ar. 1927, 316).

- 6. 4-Oxy-2-methyl-5-tert.-butyl-acetophenon, 6-tert.-Butyl-4-acetyl-m-kresol C₁₃H₁₈O₂, Formel VI.
- 4-Methoxy-2-methyl-5-tert.-butyl-acetophenon, 3-Methyl-6-tert.-butyl-4-acetyl-anisol, 6-tert.-Butyl-4-acetyl-m-kresol-methyläther $C_{14}H_{20}O_3 = \frac{CH_3 \cdot CO}{(CH_3)_3C}C_6H_2(CH_2) \cdot O \cdot CH_3$. Zur Konstitution vgl. Seide, Dubinin, Ž. obšč. Chim. 2, 455; C. 1933 I, 603; Chem. Abstr. 27 [1933], 961.— B. Aus 3-Methyl-6-tert.-butyl-anisol und Acetylchlorid bei Gegenwart von Aluminium-chlorid in Schwefelkohlenstoff (Barbier, Helv. 11, 154; vgl. S., D.).— Krystalle (aus Alkohol oder Benzol). F: 91°; Kp₇₃₀: 281°; Kp₁₀: 155° (B.).— Liefert mit 92—95% iger Salpetersäure unterhalb 0° 2.6-Dinitro-3-methoxy-1-methyl-4-tert.-butyl-benzol, 3.5 (?) Dinitro-4-methoxy-2-methyl-acetophenon und geringe Mengen 3 (?) Nitro-4-methoxy-2-methyl-5-tert.-butylacetophenon (B., Helv. 11, 154, 161; vgl. S., D.).
- 3 (?) Nitro 4 methoxy 2 methyl 5 tert. butyl acetophenon, 2 (?) Nitro 6 tert. butyl 4-acetyl-m-kresol-methyläther C₁₄H₁₉O₄N = CH₃·CO (CH₃)CC₆H(CH₃)(NO₂)·O·CH₃. Zur Konstitution vgl. Seide, Dubinin, Ž. obšč. Chim. 2, 455; C. 1983 I, 603; Chem. Abstr. 27 [1933], 961. B. s. im vorangehenden Artikel. Krystalle (aus Alkohol). F: 97° (Barbier, Helv. 11, 154). Leicht löslich in Benzol und in siedendem Alkohol (B.).
- 7. 5-Oxy-1-methyl-4-isopropyl-2-propionyl-benzol, 4-Oxy-2-methyl-5-isopropyl-propiophenon, 4-Propionyl-thymol, Thymoläthylketon, Thymyläthylketon C₁₈H₁₈O₂, Formel VII. B. Durch Einw. von Propionylchlorid und Aluminiumchlorid auf Thymol in Nitrobenzol (Rosenmund, Schulz, Ar. 1927, 310). Aus Propionsäurethymylester durch 24-stdg. Einw. von Aluminiumchlorid in Nitrobenzol bei 20° (R., Schulrr, A. 460, 79). Nadeln (aus Ligroin oder Methanol). F: 112° (R., Schulz; R., Schul.). Kp₁₅: 200° (R., Schulz). Leicht löslich in Alkohol, Äther und Eisessig, fast unlöslich in Ligroin (R., Schulz). Geht beim Erhitzen mit Camphersulfonsäure auf 180° wieder in Propionsäurethymylester über (R., Schul, A. 460, 93). Gibt bei der Reduktion mit amalgamiertem Zink und Salzsäure 4-Propyl-thymol (R., Schulz).

Oxim $C_{13}H_{19}O_2N = HO \cdot C_eH_2(CH_g)(C_gH_7) \cdot C(: N \cdot OH) \cdot CH_2 \cdot CH_3$. Nadeln. F: 153—154° (ROSENMUND, SCHULZ, Ar. 1927, 310). Löslich in Alkohol und Eisessig und in Alkalilaugen.

8. 6-Oxy-1-methyl-4-isopropyl-3-propionyl-benzol, 4-Oxy-5-methyl-2-isopropyl-propiophenon, 4-Propionyl-carvacrol $C_{13}H_{18}O_2$, Formel VIII. B. Aus Carvacrol, Propionylchlorid und Aluminiumchlorid in Nitrobenzol bei Zimmertemperatur (John, Beetz, J. pr. [2] 148 [1935], 344). — Krystalle (aus Benzin). F: 76°. Leicht löslich in organischen Lösungsmitteln außer Benzin, fast unlöslich in Petroläther und Wasser. Gibt keine Eisenchlorid-Reaktion.

Die von Rosenmund, Wha (Ar. 1928, 407) und R., Schnurg (A. 460, 81) als 4-Propionyl-carvacrol beschriebene Substanz ist unreines 4-Propionyl-thymol gewesen (John, Beetz, J. pr. [2] 148 [1935], 344).

9. 4-Oxy-1-methyl-2.5-diäthyl-3-acetyl-benzol (?), 6-Oxy-3-methyl-2.5-diäthyl-acetophenon(?), 4-Methyl-3.6-diäthyl-2-acetyl-phenol(?) C₁₈H₁₈O₂, Formel IX. B. In geringer Menge neben anderen Verbindungen bei der Umsetzung

von 4-Methyl-2.5-diäthyl-anisol mit Acetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff (v. Auwers, Mauss, B. 61, 1496) und beim Erhitzen von 4-Methyl-2.5-diäthyl-phenol-acetat mit Aluminiumchlorid auf 130° (v. Au., M., B. 61, 1506). — Rötlichgelbes Öl. Siedet unter 15 mm Druck bei 164—172°. Löst sich in Alkalilaugen. Gibt mit Eisenchlorid eine tiefblaue Färbung.

10. 4-Oxy-1-methyl-2.3-diäthyl-5-acetyl-benzol, 6-Oxy-3-methyl-4.5-diäthyl-acetophenon, 4-Methyl-2.3-diäthyl-6-acetyl-phenol C₁₃H₁₅O₂, Formel I. B. Beim Erhitzen von 4-Methyl-2.5-diäthyl-phenol-acetat (v. Au., M., A. 460, 268) mit Aluminium-chlorid auf 130°. Entsteht wahrscheinlich auch bei analoger Behandlung von 5-Methyl-2.4-diāthyl-phenol-acetat (v. Au., M., A. 460, 268). Flüchtig mit Wasserdampf. Wird durch Eisenchlorid tiefblau gefärbt. — Bei der Reduktion nach Clemmensen entsteht 4-Methyl-2.3-6-triäthyl-phenol. — 4-Nitrophenyl-hydrazon C₁₉H₂₃O₂N₃. F: 254—256° (v. Au., M., A. 460, 268). — Natriumsalz. Schwer löslich in Alkalilaugen.

Oxim $C_{13}H_{19}O_{2}N = CH_{3} \cdot C(:N \cdot OH) \cdot C_{3}H(CH_{3})(C_{2}H_{5})_{3} \cdot OH$. Krystalle (aus Alkohol). F: 117° bis 118° (v. Auwers, Mauss, B. 61, 1506).

Semicarbazon $C_{14}H_{21}O_2N_3 = CH_3 \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot C_6H(CH_3)(C_2H_5)_2 \cdot OH$. Nadeln (aus Alkohol). F: 228—229° (v. Auwers, Mauss, A. 460, 268).

11. 6-Oxy-1-methyl-2.3-diäthyl-5-acetyl-benzol, 2-Oxy-3-methyl-4.5-diäthyl-acetophenon, 2-Methyl-3.4-diäthyl-6-acetyl-phenol C₁₃H₁₈O₃, Formel II. B. Aus 2-Methyl-4.6-diāthyl-phenol-acetat durch Erhitzen mit Aluminiumchlorid (v. Auwers, Mauss, A. 460, 273). — Nadeln (aus Petroläther). F: 50—51°. Flüchtig mit Wasserdampf. Schwer löslich in wäßr. Natronlauge. Wird durch Eisenchlorid tiefblau gefärbt. — Liefert bei der Reduktion nach Clemmensen 2-Methyl-3.4.6-triäthyl-phenol. — 4-Nitrophenylhydrazon. F: 187—190°.

Oxim $C_{13}H_{19}O_2N = CH_3 \cdot C(:N \cdot OH) \cdot C_6H(CH_3)(C_2H_5)_2 \cdot OH$. Nadeln (aus Ligroin). F: 125° bis 126° (v. Auwers, Mauss, A. 460, 273).

- 12. $6-Oxy-2-methyl-3.5-diäthyl-acetophenon, 3-Methyl-4.6-diäthyl-2-acetyl-phenol <math>C_{13}H_{18}O_2$, Formel III.
- 6-Methoxy-2-methyl-3.5-diäthyl-acetophenon, 3-Methyl-4.6-diäthyl-2-acetyl-anisol $C_{14}H_{20}O_2=(C_2H_5)_2C_6H(CH_3)$ $C_0\cdot CH_3$. B. Aus 5-Methyl-2.4-diāthyl-anisol durch Erhitzen mit Acetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff, neben 6-Oxy-4-methyl-3-āthyl-acetophenon (v. Auwers, Mauss, A. 460, 271). Schwach gelbes Öl. Kp₁₁: 146—148°. Liefert bei der Reduktion nach Clemmensen 3-Methyl-2.4.6-triäthyl-anisol. Bildet ein öliges Oxim.

8. Oxy-oxo-Verbindungen $C_{14}H_{20}O_2$.

1. 1-Phenyl-octanol-(2)-on-(1), n-Hexyl-benzoyl-carbinol, α -Benzoyl-n-heptylalkohol $C_{14}H_{20}O_2=C_6H_6\cdot CO\cdot CH(OH)\cdot [CH_2]_5\cdot CH_3$. B. Aus C-n-Hexyl-glykolsäure-amid und Phenylmagnesiumbromid (Nicolle, Bl. [4] 39, 66). — Kp₃₆: 200°.

- 2. 4-Oxy-1-methyl-3-önanthoyl-benzol, 6-Oxy-3-methyl-önanthophenon, n-Hexyl-[6-oxy-3-methyl-phenyl]-keton, 2-Önanthoyl-p-kresol C₁₄H₁₀O₂, Formel IV. B. Aus Önanthsäure-p-tolylester durch Erhitzen mit Aluminiumchlorid auf 120° (ROSENMUND, SCHNURR, A. 460, 83). Gelbliches Öl. Kp₁₀: 168°.
- 4-Oxy-1-methyl-3-[α-brom-ŏnanthoyl]-benzol, α-Brom-6-oxy-3-methyl-ŏnanthophenon, 2-[α-Brom-ŏnanthoyl]-p-kresol C₁₄H₁₉O₂Br = HO·C₆H₃(CH₃)·CO·CHBr·[CH₂]₄·CH₃· B. Aus p-Kresol-methylāther und α-Brom-ŏnanthešurebromid bei Gegenwart von Aluminiumchlorid in siedendem Schwefelkohlenstoff (v. Auwers, Wegener, J. pr. [2] 106, 246). Gelbe Nadeln (aus Methanol). F: 49—50°. Im allgemeinen leicht löslich.

3. 6-Oxy-1-propyl-3-isovaleryl-benzol, 4-Oxy-3-propyl-isovalero-phenon, 2-Propyl-4-isovaleryl-phenol, Isobutyl-[4-oxy-3-propyl-phenyl]-keton C₁₄H₂₀O₂, Formel V auf S. 144. B. Durch Einw. von Isovalerylchlorid und Aluminium-chlorid auf 2-Propyl-phenol in Nitrobenzol (Rosenmund, Schulz, Ar. 1927, 316). — Sirupartige Flüssigkeit. Erstarrt in Kältemischung glasartig.

Oxim $C_{14}H_{21}O_2N=C_2H_5\cdot CH_2\cdot C_6H_3(OH)\cdot C(:N\cdot OH)\cdot CH_2\cdot CH(CH_2)_2$. Nadeln. F: 87° (ROSENMUND, SCHULZ, Ar. 1927, 316).

Semicarbazon $C_{15}H_{25}O_2N_3=C_2H_5\cdot CH_2\cdot C_0H_3(OH)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_2\cdot CH(CH_3)_2$. F: 156° (ROSENMUND, SCHULZ, Ar. 1927, 316).

4. 5-Oxy-1-methyl-4-isopropyl-2-butyryl-benzol, 4-Oxy-2-methyl-5-isopropyl-butyrophenon, 4-Butyryl-thymol, Thymolpropylketon, Thymylpropylketon C₁₄H₂₀O₂, Formel VI auf S. 144. B. Durch Einw. von Butyrylchlorid und Aluminiumchlorid auf Thymol in Nitrobenzol (Rosenmund, Schulz, Ar. 1927, 311). Aus Buttersäurethymylester durch 12-stdg. Einw. von Aluminiumchlorid in Nitrobenzol bei 30° (R., Schulr, A. 460, 79). — Krystalle (aus Ligroin). F: 93—94° (R., Schn.). Kp₁₄: 204° (R., Schulz). Leicht löslich in Alkohol, Äther und Eisessig, fast unlöslich in Ligroin (R., Schulz). — Geht beim Erhitzen mit Camphersulfonsäure auf 180° wieder in Buttersäurethymylester über (R., Schn., A. 460, 93).

VII.
$$HO \cdot \bigcirc CO \cdot CH_2 \cdot CH_3 \cdot CH_3$$
 $CH_3 \cdot CO \cdot CH(CH_3)_3$ IX. $CH_3 \cdot CO \cdot CH_3 \cdot CO \cdot CH_4 \cdot CH_5 \cdot CO \cdot CH$

4-Methoxy-2-methyl-5-isopropyl-butyrophenon, 4-Butyryl-thymol-methyläther $C_{15}H_{22}O_2=(CH_3)_2CH\cdot C_6H_2(CH_3)\cdot (O\cdot CH_2\cdot C_2H_5.$ B. Durch Methylierung von 4-Butyryl-thymol mit Dimethylsulfat (ROSENMUND, SCHNURR, A. 460, 96). — Nadeln. F: 50°. Sehr leicht löslich in den üblichen Lösungsmitteln. — Liefert beim Erhitzen mit Camphersulfonsäure und Phenol auf 180° Methylthymyläther und Buttersäurephenylester (R., SCHN., A. 460, 73, 96).

4-Oxy-2-methyl-5-isopropyl-butyrophenon-oxim, Oxim des 4-Butyryl-thymois $C_{14}H_{21}O_2N$ = $(CH_a)_2CH \cdot C_6H_3(CH_3)$ (OH) $\cdot C(:N \cdot OH) \cdot CH_3 \cdot C_2H_5$. F: 117—118° (ROSENMUND, SCHULZ, Ar. 1927, 311).

5. 6-Oxy-1-methyl-4-isopropyl-3-butyryl-benzol, 4-Oxy-5-methyl-2-isopropyl-butyrophenon, 4-Butyryl-carvacrol C₁₄H₂₀O₂, Formel VII. B. Aus Carvacrol, Butyrylchlorid und Aluminiumchlorid in Nitrobenzol (John, Beetz, J. pr. [2] 148 [1935], 345). — Krystalle (aus 80%iger Essigsäure oder Benzin). F: 66°. Leicht löslich in den meisten organischen Lösungsmitteln, fast unlöslich in Petroläther und Wasser.

meisten organischen Lösungsmitteln, fast unlöslich in Petroläther und Wasser.
Ein von Rosenmund, Wha (Ar. 1928, 408) und R., Schnurg (A. 460, 81) als 4-Butyryl-carvacrol beschriebenes Präparat ist unreines 4-Butyryl-thymol gewesen (John, Beetz, J. pr. [2]

148 [1935], 343, 345).

6. $5-Oxy-1-methyl-4-isopropyl-2-isobutyryl-benzol, 4-Oxy-2-methyl-5-isopropyl-isobutyrophenon, 4-Isobutyryl-thymol <math>C_{14}H_{20}O_2$, Formel VIII. B. Analog 4-Butyryl-thymol (s. o.) (ROSENMUND, SCHULZ, Ar. 1927, 311). — Nicht rein erhalten. Blaßviolette Krystalle (aus Ligroin und Eisessig). F: 80° .

Oxim $C_{14}H_{21}O_2N = (CH_3)_3CH \cdot C_0H_3(CH_2)(OH) \cdot C(:N \cdot OH) \cdot CH(CH_3)_3$. F: 161—162° (ROSENMUND, SCHULZ, Ar. 1927, 311).

- 7. 4-Oxy-1.2.3-triäthyl-5-acetyl-benzol, 2-Oxy-3.4.5-triäthyl-acetophenon, 2.3.4-Triäthyl-6-acetyl-phenol C₁₄H₂₀O₂, Formel IX. B. Beim Erhitzen von 2.4.6-Triäthyl-phenol-acetat mit Aluminiumchlorid (v. Auwers, Mauss, A. 460, 252, 275).

 Einheitlichkeit fraglich. Gelbes Öl. Kp₁₂: 153—155°. Mit Wasserdampf flüchtig. Mäßig löslich in wäßr. Alkaliaugen mit blauer Farbe. Wird durch Eisenchlorid tiefblau gefärbt.

 Gibt ein öliges Oxim.
- 8. 10-Oxy-3-oxo-1.6-dimethyl-1.4-äthylen
 \$\Delta^{\(\text{b}\)}\column{c} -\text{oktahydronaphthalin} \text{C}_{14}\text{H}_{20}\text{O}_{3}, \text{ Formel } \text{X}. \text{B}. \text{Neben 3.8-Dioxo-1.10-dimethyl-1.4-\text{athylen-dekahydro-naphthalin} (?) (E II 7, 598) bei der Einw. von Natrium
 amid auf 1-Methyl-cyclohexen-(1)-on-(3) in siedendem

 Ather (RUZICKA, \(\text{Helv. 3, 785, 787).} \text{CH}_{\(\text{c}\)}\text{CH}_{\(

Acetat $C_{16}H_{22}O_3=CH_3\cdot CO\cdot O\cdot C_{14}H_{19}O$. Zähe gelbliche Masse. $Kp_{12}\colon 205^\circ$ (Ruziora, *Helv.* 3, 788).

Semicarbazon $C_{14}H_{23}O_2N_3=HO\cdot C_{14}H_{19}:N\cdot NH\cdot CO\cdot NH_2$. Krystalle (aus Methanol). F: 215° (Zers.) (Ruzicka, Helv. 8, 788).

OXY-OXO-VERBINDUNGEN CnH2n-8O2

9. Oxy-exo-Verbindunges $C_{18}H_{22}O_{2}$.

- 1. 1-[4-Oxy-phenyl] nonanon (1), n-Octyl-[4-oxy-phenyl] keton, 4-Pelargonoyl-phenol $C_{1s}H_{2s}O_1=H0\cdot C_0H_0\cdot CO\cdot [CH_1]$, CH_0 .
- n-Octyl-[4-methoxy-phenyl]-keton, 4-Pelargonoyl-anisol, n-Octyl-anisyl-keton $C_{16}H_{24}O_2=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot [CH_2]_7\cdot CH_3$. B. Beim Erwärmen von Anisol mit Pelargonoyl-chlorid und Aluminiumchlorid in Petroläther (Seraup, Nieten, B. 57, 1303). Krystalle (aus Methanol). F: 43°. — Liefert mit amalgamiertem Zink und wäßr. Salzsäure 4-n-Nonyl-anisol. -Phenylhydrazon. F: 48°.
- 2. 3-Athyl-3-benzoyl-hexanol-(5) $C_{15}H_{22}O_2 = C_6H_5 \cdot CO \cdot C(C_2H_5)_2 \cdot CH_2 \cdot CH(OH) \cdot CH_7$. CH₃Br. B. Analog 5-Brom-2-methyl-2-benzoyl-pentanol-(4) (S. 142) aus w.w-Diāthyl-w-allyl-acetophenon (HALLER, RAMART-LUCAS, C. r. 171, 147). — Nadeln (aus Äther + Petroläther). Schmilzt bei 84—88°. Färbt sich am Licht gelb und erweicht.
- 3. 4-Oxy-1-methyl-3-capryloyl-benzol, n-Heptyl-[6-oxy-3-methyl-phenyl]-keton, 2-Capryloyl-p-kresol, o-Octanoyl-p-kresol $C_{18}H_{22}O_2$, Formel I. B. Aus Caprylsäure-p-tolylester durch Erhitzen mit Aluminiumchlorid auf 100° (Rosenmund), SCHNURR, A. 460, 84). — Blaßgelbe Krystalle (aus verd. Alkohol). F: 36°.

$$I. \bigcirc_{OH}^{CH_3} CO \cdot [CH_2]_6 \cdot CH_3 \qquad III. \bigcirc_{CH(CH_3)_2}^{CH_2} CH(CH_3)_2 \qquad IIII. \bigcirc_{CH(CH_3)_2}^{CH_3} CH(CH_3)_2$$

- 4. 5-Oxy-1-methyl-4-isopropyl-2-isovaleryl-benzol, 4-Oxy-2-methyl-5-isopropyl-isovalerophenon, 4-Isovaleryl-thymol $C_{15}H_{21}O_{3}$, Formel II. B. Durch Einw. von Isovalerylchlorid und Aluminiumchlorid auf Thymol in Nitrobenzol (Rosenmund, Schulz, Ar. 1927, 312). Aus Isovaleriansäurethymylester durch 12-stündige Behandlung mit Aluminiumchlorid bei 30° (Rosenmund, Schnurr, A. 460, 79). — Krystalle (aus Benzol + Ligroin). F: 108° (R., Schulz; R., Schn.). Kp₁₃: 202° (R., Schn.). — Liefert beim Erhitzen mit Camphersulfonsäure auf 150° Isovaleriansäurethymylester, Thymol und 4-Isovaleryl-thymolisovalerianat (s. u.) (R., Schn., A. 460, 69, 94); Umlagerung in Isovaleriansäurethymylester erfolgt auch beim Erhitzen mit wenig konzentrierter Schwefelsäure, Thionylchlorid, Sulfurylchlorid oder Phosphorsäure auf 180—250° (R., Sohn.). — Gibt ein zwischen 125° und 135° schmelzendes Oxim C₁₅H₂₂O₂N (R., SCHULZ).
- 4 Isovaleryl thymol isovalerianat $C_{20}H_{30}O_3 = (CH_3)_2CH \cdot CH_2 \cdot CO \cdot O \cdot C_6H_2(CH_2)(C_3H_7)$ CO CH₂ CH(CH₃)₂. B. Entsteht neben anderen Produkten beim Erhitzen von 4-Isovalerylthymol mit Camphersulfonsaure auf 1500 (ROSENMUND, SCHNURB, A. 460, 69, 94). — Zahflüssiges Öl. Kp₁₄: 200°.
- 5. 6-Oxy-1-methyl-4-isopropyl-3-isovaleryl-benzol, 4-Oxy-5-methyl-2-isopropyl-isovalerophenon, 4-Isovaleryl-carvacrol C₁₅H₂₁O₂, Formel III.
 B. Aus Carvacrol, Isovaleryl-horid und Aluminium-horid in Nitrobard (John, Bertz, J. pr. [2] 143, 345). — Prismen (aus Petroläther). F: 86°. Leicht löslich in organischen Lösungsmitteln außer Petroläther, fast unlöslich in Wasser.

Das von Rosenmund, Schnurg (A. 460, 81) als 4-Isovaleryl-carvacrol beschriebene Präparat ist als 4-Isovaleryl-thymol erkannt worden (John, Beetz, J. pr. [2] 148 [1935], 343).

10. Oxy-oxo-Verbindungen $C_{16}H_{24}O_2$.

Dimeres 1.3-Dimethyl-cyclohexen-(3)-on-(5), Bis-[1.3-dimethyl-cyclohexen - (3) - on - (5) C₁₆H₂₄O₂, s. nebenstehende Formel (H 7, 61). Zur Konstitution vgl. RUZICKA, *Helv.* 3, 785, 790. B. Beim Kochen von 1.3-Dimethyl-cyclohexen-(3)-on-(5) mit Natriumamid in Ather (R., Helv. 3, 790). — F: 112°.

Acetat $C_{18}H_{26}O_8 = CH_3 \cdot CO \cdot O \cdot C_{16}H_{22}O$. Zähe hellgelbe Masse. $Kp_{13} \colon 200-202^0$ (RUZICKA, Helv. 3, 790).

CH. CHa ĊH2 ĊΟ

11. Oxy-oxo-Verbindungen C₁₇H₂₆O₂.

1. 1 - [4 - Oxy - phenyl] - undecanon - (1), n - Decyl - [4 - oxy - phenyl] - keton $C_{11}H_{26}O_2 = HO \cdot C_6H_4 \cdot CO \cdot [CH_2]_9 \cdot CH_3$.

1-[4-Methoxy-phenyl]-undecanon-(1), n-Decyl-[4-methoxy-phenyl]-keton $C_{18}H_{28}O_2 = CH_3 \cdot O \cdot C_6H_4 \cdot CO \cdot [CH_2]_9 \cdot CH_3$. B. Aus Anisol und Undecylsäurechlorid in Gegenwart von Aluminiumchlorid (MAJIMA, NAGAOKA, KEISUKE, B. 55, 216). — F: 49°.

2. 6-Oxy-1-propyl-3-capryloyl-benzol, n-Heptyl-[4-oxy-3-propyl-phenyl]-keton, 2-Propyl-4-capryloyl-phenol $C_{17}H_{26}O_{2}$, Formel IV. B. Durch Einw. von Caprylsäurechlorid und Aluminiumchlorid auf 2-Propyl-phenol in Nitrobenzol (ROSENMUND, SCHULZ, Ar. 1927, 316). — Prismen (aus Benzol + Ligroin). F: $60-61^{\circ}$. $Kp_{0,8}$: 206°.

Semicarbazon $C_{10}H_{10}O_2N_2 = C_2H_5 \cdot CH_2 \cdot C_6H_3(OH) \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot [CH_2]_6 \cdot CH_3$. F:1370 (ROSENMUND, SCHULZ, Ar. 1927, 317).

12. Oxy-oxo-Verbindungen C18H28O2.

- 1. 1 [4 Oxy phenyl] dodecanon (1), n Undecyl [4 oxy phenyl] keton $C_{18}H_{18}O_{1} = HO \cdot C_{4}H_{4} \cdot CO \cdot [CH_{2}]_{10} \cdot CH_{3}.$
- 1-[4-Methexy-phenyl]-dodecanon-(1), n-Undecyl-[4-methoxy-phenyl]-keton, 4-Lauroylanisol $C_{19}H_{80}O_2=CH_3\cdot \cdot \cdot \cdot C_6H_4\cdot CO\cdot [CH_2]_{10}\cdot CH_3$. B. Aus Anisol, Lauroylchlorid und Aluminiumchlorid (MAJIMA, NAGAOKA, KEISUKE, B. 55, 216). F: 62,5°.

- 2. 5-Oxy-1-methyl-4-isopropyl-2-capryloyl-benzol, 4-Capryloyl-thymol, n-Heptyl-[4-oxy-2-methyl-5-isopropyl-phenyl]-keton, Thymyl-n-heptyl-keton C₁₈H₂₈O₂, Formel V. B. Aus n-Caprylsäurethymylester durch Einw. von Alumininm-chlorid in Nitrobenzol bei 25° (ROSENMUND, SCHNURR, A. 460, 80). Blättchen (aus Benzol + Ligroin). F: 81—82°. Kp₂: 217—220°.
- 3. Dimeres Isophoron, Bis-isophoron C₁₈H₂₈O₂, s. nebenstehende Formel, B. Beim Kochen von Isophoron (E II 7, 65) mit Natriumamid in Äther (RUZICKA, Helv. 3, 783, 790). Zähes gelbes Öl. Kp₁₇: 203—205°; Kp_{0,2}: 140°.

 Acetat C₂₀H₃₀O₃ = CH₃·CO·O·C₁₈H₂₇O. Prismen.
 F: 126° (RUZICKA, Helv. 3, 791).

Semicarbazon $C_{19}H_{31}O_2N_3=C_{18}H_{28}O(:N\cdot NH\cdot CO\cdot NH_2)$. Krystalle (aus Alkohol). F: 215° (Zers.) (Ruzicka, Helv. 3, 791).

13. Oxy-oxo-Verbindungen C10H20O2.

1-[4-Methoxy-phenyl]-tridecanon-(1), n-Dodecyl-[4-methoxy-phenyl]-keton $C_{20}H_{32}O_2=CH_2\cdot O\cdot C_6H_4\cdot CO\cdot [CH_2]_{11}\cdot CH_2$. B. Aus Anisol, Tridecylsaurechlorid und Aluminiumchlorid (Мајіма, Nagaoka, Keisuke, B. 55, 216). — F: 59°.

14. Oxy-oxo-Verbindungen C₂₀H₂₂O₂.

- 1. 1-[4-Oxy-phenyl]-tetradecanon-(1), n-Tridecyl-[4-oxy-phenyl]-keton $C_{20}H_{22}O_3=HO\cdot C_4H_4\cdot CO\cdot [CH_4]_{13}\cdot CH_3$.
- 1-[4-Methoxy-phenyl]-tetradecanon-(1), n-Tridecyl-[4-methoxy-phenyl]-keton, 4-Myristoyl-anisol $C_{21}H_{24}O_2=CH_2\cdot O\cdot C_6H_4\cdot CO\cdot [CH_2]_{13}\cdot CH_3$. B. Aus Anisol, Myristoylchlorid und Aluminiumehlorid (Majima, Nagaora, Keisure, B. 55, 216). F: 67°.
- 2. 1-Oxo-2-[1-oxy-dekahydro-naphthyl-(1)]- dekahydronaphthyl-(1)]- dekahydronaphthyl-(1)]- dekalon-(1)(?), Bis-α-dekalon (1)(?), Bi

15. Oxy-oxo-Verbindungen C₂₁H₂₄O₂.

1-[4-Methoxy-phenyl]-pentadecanon-(1), n-Tetradecyl-[4-methoxy-phenyl]-keton $C_{22}H_{34}O_2=CH_3\cdot O\cdot C_2H_4\cdot CO\cdot [CH_2]_{13}\cdot CH_3$. B. Aus Anisol, Pentadecylsäurechlorid und Aluminiumchlorid (MAJIMA, NAGAOKA, KEISUKE, B. 55, 216). — F: 65—66°.

OXY-OXO-VERBINDUNGEN CnH2n-8O2 UND CnH2n-10O2 [Syst. Nr. 748

16. Oxy-oxo-Verbindungen C₂₂H₂₆O₃.

1-[4-Methoxy-phenyl]-hexadecanon-(1), 4-Methoxy-palmitophenon, n-Pentadecyl-[4-methoxy-phenyl]-keton, 4-Palmitoyl-anisol C₂₂O₂₈O₃ = CH₃· O·C₂H₄· CO· [CH₂]₁₄· CH₂ (H 129). F: 72—73° (Majima, Nagaoka, Keisuke, B. 55, 216), 71—71,5° (Adam, Pr. roy. Soc. [A] 103, 684; C. 1923 III, 1294). — Geht beim Kochen mit amalgamiertem Zink und Salzsäure in 4-Cetyl-anisol über (A.).

17. Oxy-oxo-Verbindungen C25H28O2

1. 1-[4-Oxy-phenyl]-heptadecanon-(1), Cetyl-[4-oxy-phenyl]-keton $C_{23}H_{32}O_{2}=HO\cdot C_{6}H_{4}\cdot CO\cdot [CH_{2}]_{15}\cdot CH_{3}$.

1-[4-Methoxy-phenyi]-heptadecanon-(1), Cetyi-[4-methoxy-phenyi]-keton $C_{24}H_{40}O_2=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot [CH_3]_{16}\cdot CH_3$. B. Aus Anisol, Margarinsäurechlorid und Aluminiumchlorid (Majima, Nagaoka, Keisuke, B. 55, 216). — F: 70,5°.

2. 4 - Oxy - 1 - methyl - 3 - palmitoyl - benzol, 6 - Oxy - CH₃ 3-methyl-palmitophenon C₁₃H₃₈O₂, s. nebenstehende Formel.

α-Brom-6-oxy-3-methyl-palmitophenon, 2-[α-Brom-palmitoyl]p-kresol, [α-Brom-pentadecyl]-[6-oxy-3-methyl-phenyl]- keton
C₂₃H₃₇O₂Br = HO·C₆H₃(CH₃)·CO·CHBr·[CH₂]₁₂·CH₃. B. Beim Kochen
von p-Kresol-methyläther mit α-Brom-palmitoylbromid und Aluminiumchlorid in Schwefel-kohlenstoff (v. Auwers, Wegener, J. pr. [2] 106, 247). — Gelbe Krystalle (aus Alkohol).
F: 46—47°; die Schmelze ist trüb. — Liefert beim Kochen mit Natriumacetat in Alkohol 5-Methyl-2-tetradecyl-cumaranon.

18. Oxy-oxo-Verbindungen C24H40O2.

1-[4-Methoxy-phenyl]-octadecanon-(1), 4-Methoxy-stearophenon, n-Heptadecyl-[4-methoxy-phenyl]-keton, 4-Stearoyl-anisol $C_{25}H_{42}O_3=CH_8\cdot O\cdot C_6H_4\cdot CO\cdot [CH_2]_{16}\cdot CH_2$. B. Aus Anisol, Stearoylchlorid und Aluminiumchlorid (MAJIMA, NAGAOKA, KEISUKE, B. 55, 216). — F: 77—77.5°.

19. Oxy-oxo-Verbindungen $C_{25}H_{43}O_2$.

1-[3-Oxy-phenyl]-nonadecanon-(2), Hydrocampnospermonol $C_{25}H_{42}O_2=HO\cdot C_6H_4\cdot CH_2\cdot CO\cdot [CH_2]_1e\cdot CH_3$. Zur Zusammensetzung und Konstitution vgl. Jones, Pr. roy. Soc. Queensland 45, 38; C. 1984 II, 3259; Chem. Abstr. 29 [1935], 4341. — B. Bei der Verseifung von Hydrocampnospermonolacetat (Jones, Smith, Soc. 1928, 69). — F: 70°.

Methyläther C₂₆H₄₄O₂ = CH₃·O·C₆H₄·CH₂·CO·[CH₂]₁₆·CH₃. B. Bei der Hydrierung von Campnospermonol-methyläther (S. 166) bei Gegenwart von Platinoxyd in wasserfreiem Äther (Jones, Smith, Soc. 1928, 69). — Tafeln (aus Alkohol). F: 54°. — Gibt bei der Oxydation mit Kaliumpermanganat in siedendem Aceton Margarinsäure (im Gemisch mit 30% Stearinsäure), 3-Methoxy-benzoesäure und Oxalsäure. Liefert bei der Einw. von Isoamylnitrit in Natriumäthylat-Lösung bei 0° und Behandlung des Reaktionsproduktes mit Phosphorpentachlorid in Chloroform bei 0° Stearinsäure und 3-Methoxy-benzonitril (Jones, Pr. roy. Soc. Queensland 45, 38; C. 1934 II, 3259; Chem. Abstr. 29 [1935], 4341).

Acetat $C_{37}H_{44}O_3 = CH_3 \cdot CO \cdot C_6H_4 \cdot CH_2 \cdot CO \cdot [CH_2]_{16} \cdot CH_3$. B. Bei der Hydrierung von Campnospermonol-acetat (S. 166) bei Gegenwart von Platinoxyd in wasserfreiem Ather (Jones, Smith, Soc. 1928, 69). — Wachsähnlich. F: 61°. Schwer löslich in kaltem Alkohol.

Methyläther - oxim $C_{26}H_{45}O_2N=CH_3\cdot O\cdot C_6H_4\cdot CH_2\cdot C(:N\cdot OH)\cdot [CH_2]_{16}\cdot CH_3$. Krystalle. F: 43° (Jones, Smith, Soc. 1928, 69).

20. Oxy-oxo-Verbindungen $C_{27}H_{46}O_{2}$.

1. Cholestanol-(3)-on-(6) C₂₇H₄₄O₂, Formel I, s. 4. Hauptabteilung, Sterine.

2. Cholestanol-(3)-on-(7) C₁₇H₄₆O₂, Formel II, s. 4. Hauptabteilung, Sterine.

e) Oxy-oxo-Verbindungen C_nH_{2n-10}O₂.

1. Oxy-oxo-Verbindungen $C_9H_8O_2$.

1. 1-[2-Oxy-phenyl]-propen-(1)-al-(3), 2-Oxy-zimtaldehyd, Salicylidenacetaldehyd, o-Cumaraldehyd $C_2H_2O_2$, s. nebenstehende Formel (H 129). Für die von o-Cumaraldehyd abgeleiteten Namen wird in diesem Handbuch die angegebene Stellungsbezeichnung gebraucht. — B. Durch kurzes Kochen von o-Cumaraldehydmethoxymethyläther mit verdünnter Essigsäure und etwas Schwefelsäure im Kohlendioxydstrom (Pauly, Wäscher, B. 56, 606). — F: 133°.

- 2 Methoxy zimtaldehyd, o Cumaraldehyd methyläther $C_{10}H_{10}O_2 = CH_3 \cdot O \cdot C_6H_4 \cdot CH$: $CH \cdot CHO$ (H 129). Eine Suspension in verd. Natronlauge liefert mit Hydroxylaminhydrochlorid α -2-Methoxy-zimtaldoxim; beim Mischen einer warmen alkoholischen Lösung mit einer gesättigten wäßrigen Lösung von Hydroxylaminhydrochlorid entsteht β -2-Methoxy-zimtaldoxim (Brady, Grayson, Soc. 125, 1418).
- 2 Methoxymethoxy zimtaldehyd , o Cumaraldehyd methoxymethyläther $C_{11}H_{12}O_8=CH_3\cdot O\cdot CH_2\cdot O\cdot C_8H_4\cdot CH\cdot CH\cdot CHO$. B. Durch Kondensation von Salicylaldehyd-methoxymethyläther mit Acetaldehyd in sehr verdünnter wäßrig-alkoholischer Kalilauge bei 60° (PAULY, WÄSCHER, B. 56, 606; vgl. P., FEUERSTEIN, B. 62, 303 Anm. 18). Hellgelbe Krystalle (aus Petroläther). F: 55°. Kp₃: 158—159°. Leicht löslich in Alkohol und Benzol, schwer in Benzin, unlöslich in Wasser. Liefert bei kurzem Kochen mit verdünnter Essigsäure und etwas Schwefelsäure im Kohlendioydstrom o-Cumaraldehyd und Formaldehyd.

$\begin{array}{lll} \alpha-2-Methoxy-zimtaldoxim, & 2-Methoxy-zimt-syn-aldoxim & C_{10}H_{11}O_2N = \\ CH_3\cdot O\cdot C_6H_4\cdot CH: CH\cdot CH & \\ & N\cdot OH & \end{array} \\ \text{(von Brady, Grayson, Soc. 125, 1418 als o-Methoxy-zimt-N)} \\ \end{array}$

anti-aldoxim bezeichnet). Zur Konfiguration vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 982. — B. Durch Einw. von Hydroxylaminhydrochlorid auf eine Suspension von 2-Methoxy-zimtaldehyd in 2n-Natronlauge (Brady, Grayson, Soc. 125, 1418). — Nadeln (aus Petroläther). F: 82° (B., G.). Elektrolytische Dissoziationskonstante k in Wasser bei 25° (aus der Verteilung zwischen wäßr. Natronlauge und Benzol berechnet): 1.61×10^{-11} (B., Chokshi, Soc. 1929, 950). — Lagert sich beim Sättigen einer heißen Chloroform-Lösung mit Chlorwasserstoff und Lösen des Hydrochlorids in verd. Natronlauge in β -2-Methoxy-zimtaldoxim um (B., G.). Liefert beim Behandeln mit 4-Chlor-1.3-dinitro-benzol in warmer alkoholisch-wäßriger Natronlauge β -2-Methoxy-zimtaldoxim-O-[2.4-dinitro-phenyläther] (B., G.). Gibt mit Acetanhydrid bei 30° α -2-Methoxy-zimtaldoxim-O-acetat (B., G.), mit Benzoylchlorid und Natronlauge α -2-Methoxy-zimtaldoxim-O-benzoat (B., G.).

 β -2-Methoxy-zimtaldoxim, 2-Methoxy-zimt-anti-aldoxim $C_{10}H_{11}O_2N=CH_2\cdot O\cdot C_6H_4\cdot CH\cdot CH\cdot CH$ $HO\cdot N$ (H 129; von Brady, Grayson, Soc. 125, 1419 als o-Methoxy-

zimt-syn-aldoxim bezeichnet). Zur Konfiguration vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 982. — B. Durch Mischen einer warmen alkoholischen Lösung von 2-Methoxy-zimtaldehyd mit einer gesättigten wäßrigen Lösung von Hydroxylaminhydrochlorid (Brady, Grayson, Soc. 125, 1419). Aus α-2-Methoxy-zimtaldoxim durch Sättigen einer heißen Lösung in Chloroform mit Chlorwasserstoff und Lösen des ausfallenden Hydrochlorids in verd. Natronlauge (B., G., Soc. 125, 1419). — Nadeln (aus Benzol). F: 135,5° (B., G.). Elektrolytische Dissoziationskonstante k in Wasser bei 25° (aus der Verteilung zwischen wäßr. Natronlauge und Benzol berechnet): 0,45×10⁻¹¹ (B., Chokshi, Soc. 1929, 950). — Liefert bei der Einw. von Acetanhydrid bei 30° β-2-Methoxy-zimtaldoxim-0-acetat (B., G.). Gibt mit Benzoylchlorid und Natronlauge α-2-Methoxy-zimtaldoxim-0-benzoat (B., G.). — Hydrochlorid C₁₀H₁₁O₂N + HCl. Gelbes Krystallpulver. F: 142° (Zers.) (B., G.).

- β-2-Methoxy-zimtaidoxim-O-[2.4-dinitro-phenyläther] $C_{16}H_{19}O_6N_3 = CH_4 \cdot O \cdot C_6H_4 \cdot OH : CH \cdot CH \cdot N \cdot O \cdot C_6H_3 (NO_9)_6$. B. Durch Behandeln von α-2-Methoxy-zimtaidoxim mit 4-Chlor-1.3-dinitrobenzol in warmer alkoholisch-wäßriger Natronlauge (Brady, Grayson, Soc. 125, 1420). Blaßgelbe Nadeln (aus Aceton oder Eisessig). F: 202° (Zers.). Schwer löslich in Aceton und Eisessig. Wird durch alkoh. Kalilauge in 2.4-Dinitro-phenol und 2-Methoxy-zimtsäure gespalten.
- α -2-Methoxy-zimtaldoxim-0-acetat $C_{13}H_{13}O_3N=CH_3\cdot O\cdot C_4H_4\cdot CH\cdot CH\cdot CH\cdot CH\cdot N\cdot O\cdot CO\cdot CH_4$. B. Durch Einw. von Acetanhydrid auf α -2-Methoxy-zimtaldoxim bei 30° (Brady, Grayson, Soc. 125, 1418). Krystallinisches Pulver (aus verd. Alkohol). F: 82°. Löst sich in warmer 2n-Natronlauge unter Rückbildung von α -2-Methoxy-zimtaldoxim.
- β -2-Methoxy-zimtaldoxim-0-acetat $C_{12}H_{12}O_2N=CH_3\cdot O\cdot C_6H_4\cdot CH\cdot CH\cdot CH\cdot N\cdot O\cdot CO\cdot CH_2$. B. Durch Einw. von Acetanhydrid auf β -2-Methoxy-zimtaldoxim bei 30° (Brady, Grayson, Soc. 125, 1419). Krystalle (aus verd. Alkohol). F: 77°. Gibt beim Erhitzen mit 2n-Natronlauge das Natriumsalz der 2-Methoxy-zimtsäure.
- 2-Methoxy-zimtaldehyd-semicarbazon $C_{11}H_{12}O_2N_3=CH_3\cdot O\cdot C_6H_4\cdot CH:CH:CH:N\cdot NH\cdot CO\cdot NH_2$. Krystalle (aus Alkohol). F: 200° (Hellbron, Hudson, Hudson, Hudson, Hudson, 123, 2276). Bleibt bei längerer Belichtung mit Sonnenlicht farblos, nimmt bei darauffolgendem Aufbewahren im Dunkeln eine gelbe Färbung an, die am Licht wieder verschwindet; Erhöhung der Temperatur beschleunigt das Auftreten der Färbung.
- 2-Methoxy-zimtaldehyd-thiosemicarbazon C₁₁H₁₃ON₃S = CH₂· O·C₆H₄· CH: CH: CH: N·NH·CS·NH₂. Nadeln (aus Alkohol). F: 185° (Heilbron, Hudson, Hudson, Hudson, Experimental Soc. 123, 2277). Schwer löslich in Chloroform, leichter in Essigester und Alkohol. Färbt sich beim Aufbewahren am Licht hellgelb.
- 2. 1-[3-Oxy-phenyl]-propen-(1)-al-(3), 3-Oxy-zimtaldehyd $C_9H_9O_2=HO\cdot C_8H_4\cdot CH\cdot CH\cdot CHO$.
- 3-Methoxy-zimtaldehyd-semicarbazon $C_{11}H_{13}O_2N_3=CH_3\cdot O\cdot C_6H_4\cdot CH\cdot CH\cdot CH\cdot N\cdot NH\cdot CO\cdot NH_2$. B. Aus 3-Methoxy-zimtaldehyd (E I 558) und essigsaurem Semicarbazid in verd. Alkohol (Heilbron, Hudson, Hudson, Hudson, Hudson, Hudson, Hudson, Hudson, Hudson, Hudson, Essigester. Bleibt bei Belichtung mit Sonnenlicht farblos, nimmt bei darauffolgendem Aufbewahren im Dunkeln eine hellgelbe Färbung an, die am Licht wieder verschwindet; Erhöhung der Temperatur beschleunigt das Auftreten der Färbung.
- 3. 1-[4-Oxy-phenyl]-propen-(1)-al-(3), 4-Oxy-zimtaldehyd, 4-Oxy-benzylidenacetaldehyd, p-Cumaraldehyd C₂H₈O₂ = HO·C₆H₄·CH·CH·CHO. B. Durch Kochen von p-Cumaraldehyd-methoxymethyläther mit verdünnter Essigsäure und etwas Schwefelsäure im Kohlendioxyd-Strom (PAULY, WÄSCHER, B. 46, 607). Blaßgelbe Nadeln (aus Benzol). F: 134°. Leicht löslich in Äther und Essigester, schwerer in Alkohol und kaltem Benzol, schwer in Ligroin und Wasser.
- 4-Methoxy-zimtaldehyd, Anisylidenacetaldehyd, p-Cumaraldehyd-methyläther C₁₀H₁₀O₂ = CH₃·O·C₆H₄·CH·CH·CHO (H 130). B. Aus Anisaldehyd und Acetaldehyd in wäßrig-methylalkoholischer Natronlauge bei 5—10°, neben anderen Verbindungen (Vorländer, Gieseler, J. pr. [2] 121, 238). Aus α-Äthylimino-β-anisyliden-propionsäure durch langsames Erwärmen mit Glycerin auf 140°, Versetzen mit Salzsäure und Destillieren mit Wasserdampf (Skita, Wulff, A. 455, 27). Gelbliche Blättchen (aus Alkohol). F: 58° (V., G.). Kp₈₋₁₀: 167—169° (V., G.); Kp₁₂: 173—176° (Sk., W.). Liefert bei der Kondensation mit Acetaldehyd in wäßrigalkoholischer oder wäßrig-methylalkoholischer Natronlauge unterhalb 10° geringe Mengen 1-[4-Methoxy-phenyl]-pentadien-(1.3)-al-(5) und andere Produkte; bei folgender Vakuumdestillation bildet sich auch γ-[4-Methoxy-benzyl]-crotonsäure (V., G., J. pr. [2] 121, 242, 245). Gibt mit Malonsäure in Gegenwart von wenig Piperidin in Pyridin je nach den Bedingungen 4-Methoxy-cinnamy idenma onsäure oder höherschmelzende 4-Methoxy-cinnamy.idenessigsäure (V., G., J. pr. [2] 121, 248).
- 4 Methoxymethoxy zimtaldehyd, p Cumaraldehyd methoxymethyläther C₁₁H₁₂O₂ = CH₂·O·CH₂·O·C₆H₄·CH·CH·CHO. B. Durch allmähliche Einw. von Acetaldehyd auf 4-Methoxymethoxy-benzaldehyd in sehr verdünnter alkoholisch-wäßriger Kalilauge bei 65—68° (PAULY, Wäscher, B. 56, 607; vgl. P., Feuerstein, B. 62, 303 Anm. 18). Zähes Öl. Kp₃: 158—160°. Mischbar mit Alkohol und Benzol, schwer löslich in Benzin. Liefert beim Kochen mit verdünnter Essigsäure und etwas Schwefelsäure im Kohlendioxyd-Strom p-Cumaraldehyd.
- 4-Oxy-zimtaldehyd-semicarbazon, p-Cumaraldehyd-semicarbazon $C_{10}H_{11}O_2N_3=HO\cdot C_0H_4\cdot CH:CH:CH:N\cdot NH\cdot CO\cdot NH_2$. Krystalle (aus Eisessig). F: 224° (PAULY, WÄSCHER, B. 56, 607).
- 4-Methoxy-zimtaldehyd-hydrazon C₁₀H₁₂ON₂ = CH₂·O·C₀H₄·CH·CH·CH·N·NH₂. B. Aus 4-Methoxy-zimtaldehyd und Hydrazin in Wasser (Vorländer, Geseler, J. pr. [2] 121, 241). Gelbe Blättchen oder Nadeln (aus Alkohol). F: 210—212° (korr.); die Schmelze ist enantiotrop krystallin-flüssig und wird bei 231° (korr.) klar.

- 4-Methoxy-zimtaldehyd-semicarbazon $C_{11}H_{12}O_2N_3=CH_2\cdot O\cdot C_0H_4\cdot CH:CH\cdot CH:N\cdot NH\cdot CO\cdot NH_2$ (H 130). Blättchen. F: 202° (Heilbron, Hudson, Hudson, Hudson, 2278). Zeigt nach dem Belichten mit Sonnenlicht und nachfolgenden Aufbewahren im Dunkeln nur eine schwache Gelbfärbung, die am Licht wieder verschwindet.
- 4 Methoxy zimtaldehyd thiosemicarbazon $C_{11}H_{13}ON_3S=CH_3\cdot O\cdot C_0H_4\cdot CH\cdot CH\cdot CH\cdot N\cdot NH\cdot CS\cdot NH_2$. Gelbe Nadeln. F: 194° (Heilbron, Hudson, Hudson, Hudson, 2278). Zeigt keine Phototropie.
- 4. 1-Phenyl-propen-(1)-ol-(2)-al-(3), α -Oxy-zimtaldehyd $C_9H_8O_2=C_6H_5\cdot CH:C(OH)\cdot CHO$ ist desmotrop mit Benzylglyoxal, E II 7, 613.
- α Äthoxy-zimtaldehyd diāthylacetal $C_{15}H_{22}O_3 = C_6H_5 \cdot CH : C(O \cdot C_2H_5) \cdot CH(O \cdot C_2H_5)_2$. B. Beim Erhitzen von Phenylpropiolaldehyd-diāthylacetal mit überschüssiger Natriumāthylat-Lösung im Rohr auf 140° (v. Auwers, Ottens, B. 58, 2067). Kp₁₄: 158—160°. D₄^{18,1}: 0,9937. $n_{1}^{16,1}$: 1,5117; $n_{1}^{16,1}$: 1,5167; $n_{1}^{16,1}$: 1,5294; $n_{1}^{16,1}$: 1,5409. Liefert mit 4-Nitro-phenylhydrazinhydrochlorid in siedendem Alkohol Benzylglyoxal-bis-[4-nitro-phenylhydrazon].
- α-Äthoxy-zimtaldehyd-semicarbazon $C_{12}H_{15}O_2N_3=C_6H_5\cdot CH:C(O\cdot C_2H_5)\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. B. Durch Umsetzung des Diäthylacetals mit Semicarbazidhydrochlorid und Natriumacetat in wäßr. Alkohol (v. Auwers, Öttens, B. 58, 2068). Krystalle. F: 151—152°. Liefert beim Erwärmen mit alkoholisch-wäßriger Salzsäure auf dem Wasserbad α-Benzylglyoxal- β -semicarbazon.
- 5. 1-[4-Oxy-phenyl]-propen-(2)-on-(1), 4-Acryloyl-phenol, $Vinyl-[4-oxy-phenyl]-keton <math>C_0H_0O_2=H_0\cdot C_0H_4\cdot CO\cdot CH:CH_2$.
- 4-Acryloyl-anisol, Vinyl-[4-methoxy-phenyl]-keton, Vinyl-p-anisyl-keton $C_{10}H_{10}O_2$ = $CH_3 \cdot O \cdot C_6H_4 \cdot CO \cdot CH : CH_2$. B. Beim Erhitzen von 4-Methoxy- ω -dimethylamino-propiophenon-hydrochlorid unter 20 mm Druck auf 180° (Mannich, Lammering, B. 55, 3518). F: 19°. Kp₂₀: 138—142°. Riecht angenehm süßlich, an Anis erinnernd; reizt in höherer Konzentration Nase und Auge. Ist in der Kälte längere Zeit haltbar; geht beim Aufbewahren in flüssigem Zustand, besonders am Licht, in ein gelbliches, kautschukähnliches Polymerisationsprodukt über. Entfärbt Permanganat in Aceton sofort. Gibt bei der katalytischen Hydrierung 4-Methoxy-propiophenon. Liefert beim Kochen mit überschüssigem Phenylhydrazin in Alkohol 1-Phenyl-3-[4-methoxy-phenyl]- Δ -pyrazolin.
- 6. 1-Phenyl-propen-(2)-ol-(3)-on-(1), ω -Oxymethylen-acetophenon, β -Benzoyl-vinylalkohol, $[\beta$ -Oxy-vinyl]-phenyl-keton $C_0H_8O_2=C_0H_5\cdot CO\cdot CH: CH\cdot OH$ ist desmotrop mit Benzoylacetaldehyd, E II 7, 611.
- ω-Methoxymethylen-acetophenon, Methyl-[β-benzoyl-vinyl]-äther, [β-Methoxy-vinyl]-phenyl-keton $C_{10}H_{10}O_2=C_6H_5\cdot CO\cdot CH:CH\cdot O\cdot CH_3$. B. Durch Einw. von Methyljodid auf das Natriumsalz des ω-Oxymethylen-acetophenons (E II 7, 611) in Benzol (Sen, Mondal, J. indian chem. Soc. 5, 627; C. 1929 I, 1101). Wurde nicht rein erhalten¹). Flüssigkeit. Siedet unter 45 mm bei 120—130°. Zersetzt sich beim Erhitzen. Liefert bei der Hydrolyse Acetophenon. Addiert Brom.
- ω-Äthoxymethylen-acetophenon, Äthyl-[β-benzoyl-vinyl]-äther, [β-Äthoxy-vinyl]-phenyl-keton $C_{11}H_{12}O_3=C_6H_5\cdot CO\cdot CH:CH\cdot O\cdot C_2H_5$. B. Durch Äthylierung von ω-Oxymethylen-acetophenon nach Claisen (v. Auwers, Schmidt, B. 58, 536; vgl. a. Sen, Mondal, J. indian shem. Soc. 5, 627; C. 1929 I, 1101). Öl. Kp₁₀: 162—163° (korr.) (v. Au., Sch.). Liefert bei der Hydrolyse Acetophenon (S., M.). Gibt mit Cyanacetamid in Gegenwart von Piperidin ein oberhalb 280° unter Zersetzung schmelzendes Produkt (S., M.). Liefert mit Semicarbazid-hydrochlorid in neutraler, schwach alkalischer oder schwach essigsaurer Lösung Benzoylacetaldehyd-ω-semicarbazon (v. Auwers, Ottens, B. 58, 2072). Bei der Einw. von Phenylhydrazin entsteht die stabile Form des α-[β-Benzoyl-vinyl]-α-phenyl-hydrazins (Syst. Nr. 2079) (v. Au., Sch.; vgl. v. Au., Mauss, A. 452, 186).
- ω [Carbäthoxyoxy-methylen] acetophenon, Kohlensäure äthylester [β-benzoyl-vinylester] $C_{12}H_{12}O_4 = C_6H_5 \cdot CO \cdot CH : CH \cdot O \cdot CO_2 \cdot C_2H_5$. B. Aus ω-Oxymethylen-acetophenon und Chlorameisensäureäthylester in Äther + Pyridin unter Eiskühlung (v. Auwers, Schmidt, B. 58, 536). Nadeln (aus Petroläther). F: 57—59° (v. Au., Sch.). Ist im allgemeinen leicht löslich. Liefert bei der Einw. von Phenylhydrazin die stabile Form des α-[β-Benzoyl-vinyl]-α-phenyl-hydrazins (Syst. Nr. 2079) (v. Au., Sch.; vgl. v. Au., Mauss, A. 452, 186).

Die reine Substanz, nach dem Literatur-Schlußtermin des Ergänzungswerks II [1. I. 1930]
 won Walker (Soc. 1939, 120) beschrieben, zeigt Kp₁₂: 145—147°; n⁶_D: 1,5688.

7. 2-Phenyl-propen-(1)-ol-(1)-al-(3), Oxymethylen-phenylacetaldehyd $C_0H_8O_2=C_6H_6\cdot C(CHO):CH\cdot OH$ ist desmotrop mit Phenylmalondialdehyd, E II 7, 613.

Methoxymethylen-phenylacetaldehyd C₁₀H₁₀O₂ = C₅H₅·C(CHO):CH·O·CH₃. B. Beim Behandeln von Oxymethylen-phenylacetaldehyd (E II 7, 613) mit åther. Diazomethan-Lösung (Rupe, Huber, Helv. 10, 847). — Nicht ganz rein erhalten. Wasserhelle, leicht bewegliche Flüssigkeit von unangenehmem Geruch. Siedet im Hochvakuum bei 97—100°. Unlöslich in Alkalilaugen. — Wird durch verd. Säuren in Oxymethylen-phenylacetaldehyd zurückverwandelt (R., H., Helv. 10, 848). Gibt beim Behandeln mit Semicarbazidhydrochlorid und Kaliumacetat in alkoh. Lösung 4-Phenyl-pyrazol-carbonsäure-(1)-amid (R., H., Helv. 10, 856). Bei der Einw. der berechneten Menge Guanidin in alkoh. Lösung entsteht 2-Amino-5-phenyl-pyrimidin (?) (R., H., Helv. 10, 857). Liefert mit Anilin in alkoh. Lösung Phenylmalondialdehyd-dianil; reagiert analog mit 3- und 4-Nitro-anilin (R., H., Helv. 10, 855, 856). Gibt bei der Umsetzung mit Äthylmagnesiumbromid in Äther und nachfolgenden Zersetzung mit Eiswasser und verd. Salzsäure eine Verbindung C₁₁H₁₂O (Kp₁₁: 98—100° unter geringer Zersetzung), die auch bei analoger Behandlung von Benzoyloxymethylenphenylacetaldehyd erhalten wird (R., H., Helv. 10, 857, 858).

- 8. 2-Oxy-1-oxo-hydrinden, Indanol-(2)-on-(1), 2-Oxy-hydrindon-(1) $C_9H_8O_2=C_9H_4$ CH2CH-OH. B. Durch Verseifung des Acetats mit kalter wäßrig-methylalkoholischer Kaliumcarbonat-Lösung im Wasserstoffstrom (Ishiwara, J. pr. [2] 108, 197). F: $40-40,5^{\circ}$. Kp_{0,08}: 95° ; Kp₁: $128-133^{\circ}$. Leicht löslich in Wasser. Färbt sich beim Aufbewahren auch in der Kälte allmählich gelb und wird ölig. Reduziert Fehlingsche Lösung in der Kälte. Liefert bei der Oxydation mit Chromsäure meist Homophthalsäure; bei einem-Versuch wurde Indandion-(1.2) erhalten. Das Phenylurethan schmilzt bei $133-134^{\circ}$.
- 2-Acetoxy-hydrindon-(1) $C_{11}H_{10}O_3 = C_6H_4 < CO > CH \cdot O \cdot CO \cdot CH_3$. B. Beim Kochen von 2-Brom-hydrindon-(1) mit Eisessig und Natriumacetat (ISHIWARA, J. pr. [2] 108, 196). Hellgelbes Öl. $Kp_{0,1}$: 128°; Kp_1 : 137°; Kp_{17} : 165°. Ist nicht sehr beständig. Reduziert schon in der Kälte Fehlingsche Lösung.
- 9. 5-Oxy-1-oxo-hydrinden, 5-Oxy-indanon-(1), 5-Oxy-hydrindon-(1) C₂H₈O₂, s. nebenstehende Formel (E I 558). B. Neben 5-Methoxy-hydrindon-(1) und 7-Oxy-hydrindon-(1) beim Behandeln von 3-Methoxy-hydrozimtsäure-chlorid mit Aluminiumchlorid in Petroläther (Ingold, Piggott, Soc. 123, 1503). Gibt mit Eisenchlorid eine blaßrote Färbung (I., P.). Das Phenylhydrazon schmilzt bei 165—1660 (v. Auwers, Hilliger, Wulf, A. 429, 245).
- 5-Methoxy-indanon-(1), 5-Methoxy-hydrindon-(1) $C_{10}H_{10}O_3 = CH_3 \cdot O \cdot C_6H_3 < CO^2 \cdot CH_2$.

 B. Beim Behandeln von 3-Methoxy-hydrozimtsäure-chlorid mit Aluminiumchlorid in Petroläther (Ingold, Piggott, Soc. 123, 1503; Brand, Horn, J. pr. [2] 115, 375), neben 5-Oxy-hydrindon-(1) und 7-Oxy-hydrindon-(1) (I., P.). Beim Methylieren von 5-Oxy-hydrindon-(1) mit Dimethylsulfat und Alkalilauge (I., P., Soc. 123, 1504). Prismen (aus Methanol oder Alkohol), Nadeln (aus Wasser). Riecht safranartig (B., H.). F: 108° (B., H.), 110° (I., P.). Leicht löslich in organischen Lösungsmitteln außer Äther und Petroläther, ziemlich leicht in heißem Wasser (I., P.); leicht löslich in Alkohol, Äther und anderen organischen Lösungsmitteln, mäßig in Wasser (B., H.). Gibt beim Kochen mit Chromschwefelsäure 4-Methoxy-homophthalsäure und etwas 4-Methoxy-phthalsäure (I., P.). Liefert beim Schütteln mit überschüssigem Benzaldehyd in alkoh. Kalilauge 5-Methoxy-2-benzyliden-indanon-(1) (B., H.). Gibt mit 4-Methoxy-phenylmagnesiumbromid in siedendem Äther ein sehr zähflüssiges gelbes Öl (B., H.).
- 5-Methoxy-hydrindon-(1)-oxim $C_{10}H_{11}O_2N=CH_3\cdot O\cdot C_9H_7:N\cdot OH$. Nadeln (aus Methanol). F: 151° (INGOLD, PIGGOTT, Soc. 123, 1504). Liefert bei der Reduktion mit Natriumamalgam und 50% iger Essigsäure 1-Amino-5-methoxy-hydrinden.
- 5 Methoxy hydrindon (1) semicarbazon $C_{11}H_{13}O_2N_3 = CH_3 \cdot O \cdot C_9H_7 : N \cdot NH \cdot CO \cdot NH_3$ Blättchen (aus verd. Essigsäure). F: 239° (Ingold, Piggott, Soc. 123, 1503).
- 10. 6-Oxy-1-oxo-hydrinden, 6-Oxy-indanon-(1), 6-Oxy-hydrindon-(1) C₉H₈O₂, s. nebenstehende Formel. B. Aus 6-Amino-hydrindon-(1) durch Diazotieren und Verkochen (Ingold, Piggort, Soc. 128, 1492). Gelbe Nadeln (aus Wasser oder Alkohol). F: 151—153°. Gibt mit wäßrigalkoholischer Eisenchlorid-Lösung eine violette Färbung.
- 6-Methoxy-indanon-(1), 6-Methoxy-hydrindon-(1) $C_{10}H_{10}O_2 = CH_3 \cdot O \cdot C_0H_3 \cdot CH_2 \cdot CH_3$.

 Beim Behandeln von 6-Oxy-hydrindon-(1) mit Dimethylsulfat und 2n-Natronlange (INGOLD,

PIGGOTT, Soc. 123, 1492). — Hellgelbe Tafeln (aus Alkohol). F: 109°. — Gibt bei der Oxydation mit Chromsäure 4-Methoxy-phthalsäure und andere Produkte (I., P., Soc. 123, 1481).

- 6-Methoxy-hydrindon-(1)-oxim $C_{10}H_{11}O_2N=CH_3\cdot O\cdot C_0H_7:N\cdot OH$. B. Beim Behandeln von 5 g 6-Methoxy-hydrindon-(1) mit 4 g Hydroxylaminhydrochlorid in 5 cm³ 90% igem Alkohol und nachfolgenden Zusatz von 8 cm³ 40% iger Kalilauge (Ingold, Piggott, Soc. 123, 1492). Hellgelbe Nadeln (aus Alkohol). F: 133°. Liefert bei der Reduktion mit Natriumamalgam und 50% iger Essigsäure 3-Amino-5-methoxy-hydrinden. Verbindung mit 6-Methoxy-hydrindon-(1) $C_{10}H_{11}O_2N+C_{10}H_{10}O_2$. B. Bei der Einw. von 1,5 Mol Hydroxylaminhydrochlorid auf 6-Methoxy-hydrindon-(1) in Gegenwart von überschüssiger Soda (I., P., Soc. 123, 1492). Gelbliche Nadeln (aus Alkohol). F: 90°.
- 11. 7-Oxy-1-oxo-hydrinden, 7-Oxy-indanon-(1), 7-Oxy-hydrindon-(1) C₃H₈O₂, s. nebenstehende Formel (E I 558). B. Neben 5-Oxy-hydrindon-(1) und 5-Methoxy-hydrindon-(1) beim Behandeln von 3-Methoxy-hydrointsäure-chlorid mit Aluminiumchlorid in Petroläther (INGOLD, PIGGOTT, Soc. 123, 1503). Beim Erhitzen von 2-[β-Chlor-propionyl]-phenol mit Aluminiumchlorid auf 160—180°, in geringerer Menge bei analoger Behandlung von β-Chlor-propionsäure-phenylester (MAYER, VAN ZÜTPHEN, B. 57, 201, 618). Prismen (aus Methanol), Nadeln (aus Ligroin). F: 111° (I., P.; M., VAN Z.). Kp₁₃: 128° (M., VAN Z.); Kp_{3,5}: 128—130,5° (v. Auwers, A. 439, 151). Löst sich in heißen Alkalilaugen mit gelber Farbe (M., VAN Z.). Liefert mit Benzaldehyd in siedender alkoholischer Salzsäure 7-Oxy-2-benzyliden-hydrindon-(1) (M., VAN Z.). NaC₂H₇O₂. Gelbe Krystalle. Löslich in Alkohol mit gelber Farbe und blauer Fluorescenz (M., VAN Z.). Wird durch Wasser gespalten.
- 7-0xy-hydrindon-(1)-oxim $C_0H_0O_2N=HO\cdot C_0H_7:N\cdot OH$. Nadeln (aus Wasser). F: 144° bis 145° (Mayer, van Zütphen, B. 57, 202, 618).
- 4-Chlor-7-oxy-indanon-(1), 4-Chlor-7-oxy-hydrindon-(1) $C_0H_7O_2Cl$, s. nebenstehende Formel. B. Beim Behandeln von 6-Chlor-3-methoxy-hydrozimtsäure-chlorid mit Aluminiumchlorid in Schwefelkohlenstoff auf dem Wasserbad (MAYER, Mitarb., B. 61, 1973). Krystalle (aus verd. Essigsäure). F: 122°. Sublimierbar.

CI CH₂CH₂

2. Oxy-oxo-Verbindungen $C_{10}H_{10}O_2$.

- 1. 1-[2-Oxy-phenyl]-buten-(1)-on-(3), 2-Oxy-benzylidenaceton, Salicylidenaceton, Methyl-[2-oxy-styryl]-keton, Methyl-o-cumarketon $C_{10}H_{10}O_2=HO\cdot C_4H_4\cdot CH\cdot CO\cdot CH_3$ (H 130). Existiert in einer gelben cis-Form und einer farblosen trans-Form; die H 130 beschriebenen Präparate von Tiemann, Kees (B. 18 [1885], 1966) und Harries (B. 24 [1891], 3180) haben ganz oder zum größten Teil aus der farblosen Form bestanden (Buck, Heilbron, Soc. 121, 1096; McGookin, Heilbron, Soc. 125, 2100, 2102).
- a) Gelbe Form, cis-Methyl-[2-oxy-styryl]-keton. B. Entsteht primär bei der Kondensation von Aceton mit Salicylaldehyd in alkal. Lösung (Nomura, Nozawa, Sci. Rep. Tôhoku Univ. 7, 85; C. 1921 I, 1018; vgl. Harries, B. 24 [1891], 3180) und läßt sich aus der Reaktionslösung mit Hilfe von Kohlendioxyd ausfällen (McGookin, Heilbron, Soc. 125, 2100). Gelbliche Blättchen (aus Benzol). F: 139° (McG., H.), 136—137° (N., N.). Löslich in verd. Natronlauge¹) mit karminroter Farbe (McG., H., Soc. 125, 2100). Wandelt sich bei 24-stdg. Ultraviolett-Bestrahlung der alkoh. Lösung oder beim Kochen mit Benzol, Toluol, Isoamylalkohol oder Acetessigester, namentlich in Gegenwart von etwas Chlorwasserstoff oder auch beim Kochen mit Wasser in die farblose Form um (McG., H., Soc. 125, 2102); die farblose Form wurde auch beim Behandeln mit Gentisinaldehyd, 4-Oxy-benzaldehyd, Protocatechualdehyd oder Vanillin in wäßrig-alkoholischer Natronlauge und Ansäuern mit verd. Essigsäure an Stelle der erwarteten Kondensationsprodukte erhalten (B., H., Soc. 121, 1100; McG., H., Soc. 125, 2102). Weitere Angaben über das chemische Verhalten s. S. 154.
- b) Farblose Form, trans-Methyl-[2-oxy-styryl]-keton. B. s. im vorangehenden Abschnitt. Farblose Nadeln (aus Alkohol), Prismen (aus Benzol). F: 139° (TIEMANN, KEES, B. 18 [1885], 1966; BUCK, HEILBRON, Soc. 121, 1100). Löst sich in Natronlauge mit blaßgelber Farbe (McG., H., Soc. 125, 2100). Chemisches Verhalten s. im folgenden Abschnitt. Natriumsalz. B. Aus der farblosen Form und Natriumäthylat in absol. Alkohol (McG., H., Soc. 125, 2104). Neben anderen Produkten bei analoger Behandlung der gelben Form (McG., H.). Goldgelbe Krystalle.

¹) Nach dem Literatur-Schlußtermin des Ergänzungswerks II [1. I. 1930] haben DVOR-KOVITZ, SMILES (Soc. 1938, 2027) das aus alkoh. Lösung erhaltene Natriumsalz näher untersucht. Es bildet rote Prismen der Zusammensetzung NaC₁₀H₂O₂ + 4H₂O und liefert mit Salicylaldehyd ein gelbes krystallinisches Addukt NaC₁₀H₂O₂ + C₇H₄O₂.

Chemisches Verhalten von gelbem und farblosem Methyl-[2-oxy-etyryl]-keton. Umlagerung der gelben in die farblose Form s. S. 153. Bei der Einw. von konz. Salzsäure liefert die gelbe Form sofort, die farblose Form erst nach längerem Kochen 2-Methyl-benzopyrylium-chlorid (Mc Gookin, Heilbron, Soc. 125, 2101). Die farblose Form wird durch Natriumäthylat-Lösung in das entsprechende Natriumsalz (S. 153) übergeführt; die gelbe Form gibt mit Natriumäthylat-Lösung außer dem entsprechenden Natriumsalz (?) die Natriumsalze des Disalicylidenacetons, des Salicylaldehyds und der farblosen Form (Mc G., H., Soc. 125, 2101, 2103—2104). Bei 2-tägigem Aufbewahren der gelben Form mit wäßrig-alkoholischer Natronlauge bildet sich Disalicylidenaceton; die farblose Form geht erst beim Kochen mit Natronlauge in Disalicylidenaceton über (Heilbron, Buck, Soc. 119, 1503; McG., H., Soc. 125, 2103). Beide Formen liefern denselben Methyläther (H., B., Soc. 119, 1509; McG., H., Soc. 125, 2103; vgl. dagegen Mc Gookin, Sinclair, Soc. 1928, 1172; v. Auwers, A. 413, 279) und dasselbe Oxim (s. u.), Semicarbazon (vgl. H 131) und Phenylhydrazon (Mc G., H., Soc. 125, 2103). Die farblose Form gibt bei 3-tägigem Aufbewahren mit Salicylaldehyd in 10% iger Natronlauge und nachfolgenden Neutralisieren mit verd. Salzsäure Disalicylidenaceton und Dibenzospiropyran (Formel I; Syst. Nr. 2679) (Mc Gookin, Heilbron, Soc. 125, 2102). Die gelbe Form gibt mit Anisaldehyd in wäßrig-alkoholischer Natronlauge je nach den Mengenverhältnissen a) 2-Oxy-4-methoxy-dibenzylidenaceton (Buck, Heilbron, Soc. 121, 1098) oder b) 4.4'-Dimethoxy-dibenzylidenaceton (H., B., Soc. 119, 1514); analog verlaufen die Reaktionen mit 2-Methoxy-benzaldehyd, 3-Oxy-benzaldehyd, 3-Methoxy-benzaldehyd, Veratrumaldehyd, Furfurol und Piperonal nach a) (B., H., Soc. 121, 1097), mit 4-Dimethylamino-benzaldehyd je nach den Bedingungen nach a) (H., B., Soc. 119, 1507; 121, 1098) oder nach b) (H., B., Soc. 119, 1514). Die gelbe Form gibt bei der Kondensation mit 4-Oxy-

$$I. \quad C_0H_4 \stackrel{CH:CH}{\longleftarrow} C \stackrel{CH:CH}{\longleftarrow} C_0H_4 \qquad \qquad II. \qquad \stackrel{CH:CH}{\longleftarrow} C \stackrel{CH:CH}{\longleftarrow} C$$

benzaldehyd und Chlorwasserstoff in wasserfreier Ameisensäure 2-[4-Oxy-styryl]-benzopyrylium-chlorid (B., H., Soc. 121, 1199, 1205); analoge Verbindungen entstehen z. B. bei den entsprechenden Umsetzungen mit 2.4-Dioxy-benzaldehyd, Protocatechualdehyd und Vanillin in Ameisensäure (B., H., Soc. 121, 1207). Beim Behandeln der gelben Form mit 2-Oxy-naphthaldehyd-(1), Chlorwasserstoff und Überchlorsäure in Alkohol bei 0° entsteht [5.6-Benzo-pyran]-[naphtho-1'.2': 5.6-pyran] - spiran-(2.2') (Formel II; Syst. Nr. 2682) (Dickinson, Heilbron, Soc. 1927, 1702). Die gelbe Form liefert mit Acetessigester in Natriumäthylat - Lösung 2-Methyl-4-acetonyl-1.4- III. CH-CH-chromen (Formel III) (Forster, Heilbron, Soc. 125, 343) und reagiert analog mit α-Methyl-acetessigester und α-Phenyl-acetessigester (Hill, Soc. 1928, 257). Gibt beim Erwärmen mit Isatin in 33 % iger Kalilauge auf dem Wasserbad 2-[2-Oxy-styryl]-chinolin-carbonsäure-(4) (John, J. pr. [2] 117, 220).

Das Phenylhydrazon schmilzt bei 159° (McGookin, Heilbron, Soc. 125, 2103), das

2-Methoxy-benzylidenaceton, Methyl-[2-methoxy-styryl]-keton $C_{11}H_{12}O_2 = CH_3 \cdot O \cdot C_4H_4 \cdot CH \cdot CO \cdot CH_3$. Vielleicht stereoisomer mit der E I 559 aufgeführten Verbindung von v. Auwers (A. 418, 279); vgl. dazu Mc Gookin, Sinclair, Soc. 1928, 1172, 1173. — B. Durch Kondensation von 2-Methoxy-benzaldehyd mit Aceton in verd. Natronlauge (Heilbron, Buck, Soc. 119, 1509). Beim Behandeln von gelbem Methyl-[2-oxy-styryl]-keton mit Dimethylsulfat und Alkalilauge (H., B., Soc. 119, 1509). Durch Einw. von Methyljodid auf farbloses Methyl-[2-oxy-styryl]-keton bei Gegenwart von trocknem Silberoxyd oder auf das Natriumsalz des farblosen Methyl-[2-oxy-styryl]-ketons in siedendem Methanol (Mc Gookin, Heilbron, Soc. 125, 2103). — Blaßgelbe Blättchen. F: 50° (H., B.; Faillebin, A. ch. [10] 4, 413). Kp₁₄: 174°; Kp_{0,5}: 118°; Kp_{0,16}: 108° (F.); Kp₁₀: 184° (H., B.). — Gibt bei der Hydrierung in Gegenwart von eisenhaltigem Platinschwarz in Essigester 2-Methoxy-benzylaceton (F.). Gibt mit Acetessigester in siedender alkoholischer Natronlauge oder Natriumäthylat-Lösung 4-Methyl-

4-Nitro-phenylhydrazon bei 218-220° (Zers.) (v. Auwers, Kreuder, B. 58, 1985).

$$IV. \begin{array}{c} c_{H_2} \cdot o \cdot c_{\mathfrak{s}} H_4 \cdot Hc \cdot cH_2 \cdot c \cdot cH_3 \\ c_{\mathfrak{s}} H_5 \cdot o_{\mathfrak{g}} c \cdot Hc - co - cH \end{array} \qquad V. \begin{array}{c} c_{\mathfrak{s}} H_5 \cdot o_{\mathfrak{g}} c \cdot Hc \cdot c(cH_5) \colon cH \\ cH_3 \cdot o \cdot c_{\mathfrak{s}} H_4 \cdot Hc - cH_2 - cO \end{array}$$

2-[2-methoxy-phenyl]-cyclohexen-(4)-on-(6)-carbonsāure-(1)-āthylester oder 1-Methyl-3-[2-methoxy-phenyl]-cyclohexen-(6)-on-(5)-carbonsāure-(2)-āthylester (Formel IV oder V; Syst. Nr. 1415) (Forster, Heilbron, Soc. 125, 344). Kondensiert sich nicht mit 4-Dimethylamino-benzaldehyd (H., B., Soc. 119, 1509).

Salicylidenaceton-oxim, Methyl-[2-oxy-styryl]-ketoxim, Salicylal-acetoxim $C_{10}H_{11}O_2N$ = $HO \cdot C_0H_4 \cdot CH \cdot C(:N \cdot OH) \cdot CH_2$ (H 131). B. Aus gelbem oder farblosem Methyl-[2-oxy-styryl]-keton beim Kochen mit essigsaurem Hydroxylamin in Alkohol (McGookin, Heilbron, Soc. 125, 2103). — F: 84°.

- 2-Methoxy-benzylidenaceton-oxim, Methyl-[2-methoxy-styryl]-ketoxim $C_{11}H_{18}O_{2}N=$ CH2 · O · C2H4 · CH · CH · C(: N · OH) · CH2. F: 1276 (HEILBRON, BUCK, Soc. 119, 1509).
- 5-Brom-2-oxy-benzylidenaceton, [5-Brom-salicyliden]-aceton, Methyl-[5-brom-2-oxy-styryl]-keton C₁₆H₂O₂Br, Formel VI (H 131). Zur Bildung aus 5-Brom-salicylaldehyd und Aceton (H 131) vgl. Hellbeon, Whitworth, Soc. 123, 241. Existiert analog Salicylidenaceton (S. 153) in 2 Modifikationen. Die gelbe Form wird beim Umkrystallisieren des durch Fällung mit verd. Salzsäure erhaltenen CH:CH.CO.CH: CH:CH.CO.CH3

Reaktionsproduktes aus Benzol in gelblichen Krystallen erhalten (H., Wh.); die farblose Form bildet sich VI. aus der gelben Form bei Versuchen

VII. OH OH

zur Kondensation mit Protocatechualdehyd oder anderen Oxyaldehyden (McGookin, Heilbron, Soc. 125, 2104). Beide Formen schmelzen bei 154-155° (H., WH.; McG., H.) und geben miteinander keine Schmelzpunktsdepression (McG., H.). — Gibt beim Behandeln mit Natronlauge das Natriumsalz des 5.5'-Dibrom-2.2'-dioxy-dibenzylidenacetons (McG., SINCLAIR, Soc. 1928, 1173). Liefert bei längerer Einw. von 4-Dimethylamino-benzaldehyd in wäßrig-alkoholischer Natronlauge 5-Brom-4'-dimethylamino-2-oxy-dibenzylidenaceton (H., W.).

- 5-Nitro-2-oxy-benzylidenaceton, [5-Nitro-salicyliden]-aceton, Methyl-[5-nitro-2-oxy-styryl]-keton $C_{10}H_0O_4N$, Formel VII. B. Bei 3-tägigem Aufbewahren von 5-Nitro-salicylaldehyd und Aceton in 2 n-Natronlauge (Heilbron, Whitworth, Soc. 123, 240). Gelbe Krystalle (aus Aceton). F: 227°. Mäßig löslich in Aceton und Essigester, sehr schwer in Alkohol, Chloroform und Äther. — Liefert bei der Einw. von 4-Dimethylamino-benzaldehyd in wäßrig-alkoholischer Natronlauge 5-Nitro-4'-dimethylamino-2-oxy-dibenzylidenaceton.
- 2. 1-[3-Oxy-phenyl]-buten-(1)-on-(3), 3-Oxy-benzylidenaceton, Methyl-[3-oxy-styryl]-keton C₁₀H₁₀O₃ = HO·C₆H₄·CH·CH·CO·CH₃. B. Aus 3-Oxy-benz-aldehyd und Aceton in verd. Natronlauge bei gewöhnlicher Temperatur (Nomura, Nozawa, Sci. Page 77 Abeleu Univ. 7, 98. C. 1991 I. 4047. vol. McClowery, Springer III. Soc. 1998, 4474). Aus 3-Oxy-benz-Sci. Řep. Tôhoku Univ. 7, 86; C. 1921 I, 1017; vgl. McGookin, Šinclair, Soc. 1928, 1171). Beim Diazotieren von 3-Amino-benzylidenaceton und nachfolgenden Kochen (MURAI, Sci. Rep. Töhoku Univ. 14, 151; C. 1925 II, 1746). — Gelbliche Krystalle (aus Benzol). F: 97—98° (N., N.; McG., S.), 95—97° (Mu.). Kp₁₄: 208—209° (N., N.). Löst sich in Alkalilaugen mit gelber Farbe, die allmählich in Orange übergeht (McG., S.). — Liefert bei der Hydrierung bei Gegenwart von Platinschwarz in Äther (N., N.) oder bei der Reduktion mit Natriumamalgam und Wasser (Mu.) 3-Oxy-benzylaceton.
- 3-Methoxy-benzylidenaceton, Methyl-[3-methoxy-styryl]-keton $C_{11}H_{12}O_2=CH_3\cdot O\cdot C_6H_4\cdot CH\cdot CO\cdot CH_5$ (E I 559). Liefert bei der Einw. von Phenylhydrazin in siedendem Alkohol 3-Methoxy-benzylidenaceton-phenylhydrazon (E I 15, 53), in siedendem Eisessig 1-Phenyl-3-methyl-5-[3-methoxy-phenyl]- Δ^2 -pyrazolin (E I 23, 114) (BAUER, Vogel, J. pr. [2] 88 [1913], 332).
- 3. 1-[4-Oxy-phenyl]-buten-(1)-on-(3), 4-Oxy-benzylidenaceton, Methyl-[4-oxy-styryl]-keton $C_{10}H_{10}O_2 = HO \cdot C_6H_4 \cdot CH \cdot CH \cdot CO \cdot CH_3$ (H 131). B. Aus 4-Oxybenzzldehyd und Aceton in verd. Natronlauge (Nomura, Nozawa, Sci. Rep. Tôhoku Univ. 7, 87; C. 1921 I, 1017; Buck, Heilbron, Soc. 121, 1100, 1101; Mannich, Merz, Ar. 1927, 21; MacConstant Constant C McGookin, Sinclair, Soc. 1928, 1175). — Existiert analog Methyl-[2-oxy-styryl]-keton (S. 153) in einer gelben und einer farblosen Modifikation (McGOOKIN, SINCLAIR, Soc. 1928, 1175). a) Gelbe Form. Gelbliche Nadeln (aus Wasser oder verd. Alkohol); F: 111—112° (NOMURA, NOZAWA), 112º (MANNICH, MERZ); scheidet sich aus der Reaktionslösung in wasserhaltigen, bei 52—62° schmelzenden Nadeln aus, die beim Umlösen aus absol. Alkohol in wasserfreie, hell citronengelbe Krystalle vom Schmelzpunkt 111-112° übergehen (McGookin, Sinclair). Unlöslich in Petroläther (Ma., Merz). — b) Farblose Form. B. Aus der gelben Form analog farblosem Methyl-[2-oxy-styryl]-keton (S. 153) (McG., S.); wird außerdem beim Versetzen der aus 4-Oxy-benzaldehyd, Aceton und Natronlauge erhaltenen Reaktions ösungen mit verd. Salzsäure (Buck, Heilbron) oder mit 40% iger Natronlauge (McG., S.) erhalten. Fast farblose Nadeln (aus Wasser). F: 114—115° (H., B.), 111—112° (McG., S.). Bildet ein in tiefgelben Nadeln krystallisierendes Natriumsalz (McG., S.).

4-Oxy-benzylidens ceton gibt bei der Hydrierung in Gegenwart von Platinschwarz in Äther 4-Oxy-benzylaceton (Nomura, Nozawa, Sci. Rep. Tohoku Univ. 7, 87; C. 1921 I, 1017), in Gegenwart von Palladiumkohle in Methanol 4-Oxy-benzylaceton und wenig 1-[4-Oxy-phenyl]-butanol-(3) (Mannich, Merz, Ar. 1927, 22). Kondensiert sich nicht mit Salicylaldehyd (Buck, Heilbeon, Soc. 121, 1097). — Das Phenylhydrazon C₁₆H₁₆ON₂ schmilzt bei 130—131° (Ma., Merz).

4-Methoxy-benzylidenaceton, Anisylidenaceton, Anisalaceton, Methyl-[4-methoxystyryi]-keton C₁₁H₁₂O₂ = CH₂·O·C₂H₄·CH:CH·CO·CH₂ (H 131; E I 559). F: 73—74° (korr.) (VAN DUIN, R. 45, 350), 74—75° (NOMURA, NOZAWA, Sci. Rep. Téhoku Univ. 7, 83; C. 1921 I, 1017). Löslich in konz. Schwefelsäure mit blutroter Farbe (Periffer, A. 441, 244); gibt mit konz. Schwefelsäure oder Überchlorsäure in Eisessig hellorange Färbungen (Pr., Segall, A. 460, 127). — Polymerisiert sich beim Erhitzen auf 220—225° im Kohlendioxydstrom zu einem gelblichen Harz (Herzog, Kreidl, Z. ang. Ch. 35, 641; Kr., D.R.P. 397603; C. 1924 II, 4412; Frdl. 14, 660). Liefert bei der Hydrierung bei Gegenwart von Platinschwarz in Äther 4-Methoxybenzylaceton (Nom., Noz.); bei Gegenwart von Palladium in Aceton entsteht daneben etwas 1-[4-Methoxy-phenyl]-butanol-(3) (Straus, Grindel, A. 439, 303). Gibt beim Behandeln mit Nitrosylchlorid in Äther bei —15° α'-Chlor-α'-isonitroso-α-anisyliden-aceton (Syst. Nr. 1411) und α'-Isonitroso-α-anisyliden-aceton (Syst. Nr. 777) (Rheinboldt, Schmitz-Dumont, A. 444, 133). Bei mehrtägiger Einw. von Salicylaldehyd und wäßrig-alkoholischer Natronlauge oder von wäßrig-alkoholischer Natronlauge allein entstehen teerige Produkte (Heilbron, Buck, Soc. 119, 1514). Beim Erwärmen mit Isatin in 33 %iger Kalilauge auf dem Wasserbad erhält man 2-[4-Methoxy-styryl]-chinolin-carbonsäure-(4) (John, J. pr. [2] 117, 220).

Verbindungen mit Aluminiumbromid: $C_{11}H_{12}O_2 + AlBr_3$. Roter Niederschlag (Pfelffer, Haack, A. 460, 175). — $C_{11}H_{12}O_2 + 2AlBr_3$. Tiefgelbe, sehr zersetzliche Nadeln. Liefert beim Erhitzen mit Benzol und folgenden Behandeln mit Alkalilauge 4-Oxy-benzylidenaceton (Pf., H.).

- 4-0xy-benzylidenaceton-oxim, Methyl-[4-oxy-styryl]-ketoxim $C_{10}H_{11}O_4N=HO\cdot C_6H_4\cdot CH\cdot CH\cdot CH\cdot CH\cdot CH_5\cdot Gelbliche Nadeln (aus Wasser + wenig Methanol). F: 141° (MANNICH, MERZ, Ar. 1927, 22).$
- 3 Chlor 4 methoxy benzylidenaceton, 3 Chlor anisylidenaceton $C_{11}H_{11}O_2Cl$, Formel I. B. Neben geringeren Mengen 3.3'- Dichlor-4.4'-dimethoxy-dibenzyliden-aceton durch Kondensation von 3-Chlor-anisaldehyd mit Aceton in wäßrigalkoholischer Natronlauge (Pfeiffer, Segall,

- A. 460, 134). Prismen (aus Wasser), gelbliche Nadeln (aus verd. Alkohol). F: 111,5°.
- 3-Brom-4-methoxy-benzylidenaceton, 3-Brom-anisylidenaceton $C_{11}H_{11}O_2Br$, Formel II. B. Analog der vorangehenden Verbindung (Pfeiffer, Segall, A. 460, 135). Nadeln (aus 50% igem Alkohol). F: 101%. Sehr leicht löslich in Benzol, Äther und Aceton, schwerer in Wasser, unlöslich in Petroläther. Gibt mit konz. Schwefelsäure oder Überchlorsäure in Eisessig blasse orangegelbe Färbungen (Pf., S., A. 460, 127).
- 4. 1-Phenyl-buten'-(1)-ol-(1)-on-(3), $[\alpha$ -Oxy-benzyliden]-aceton $C_{10}H_{10}O_2 = C_0H_5 \cdot C(OH): CH \cdot CO \cdot CH_3$ ist desmotrop mit Benzoylaceton, E II 7, 616.
- [α-Methoxy-benzyliden]-aceton, Benzoylaceton-B-methyläther C₁₁H₁₂O₃ = C₆H₅·C(O·CH₃):CH·CO·CH₃ (vgl. E I 559). B. Neben überwiegenden Mengen Benzoylaceton-A-methyläther (S. 157) beim Erwärmen von Benzoylaceton mit äther. Diazomethan-Lösung Weygand, B. 58, 1479; vgl. Claisen, B. 59, 151). Als Benzoylaceton-B-methyläther angesehene Präparate entstehen ferner bei allmählichem Eintragen von Benzylidenacetondibromid in siedende methylalkoholische Kalilauge (W., B. 58, 1478) und beim Kochen von Phenylacetyl-acetylen mit Natriummethylat-Lösung (W.). Gelbes Öl. Kp₁₂: 150° (W.). Wird durch Säuren sofort zu Benzoylaceton verseift (W.). Bleibt auf Zusatz von alkoh. Eisenchlorid-Lösung einige Schunden farblos und gibt dann infolge Hydrolyse zu Benzoylaceton eine rote Färbung (W.). Das aus Benzoylaceton und Diazomethan erhaltene Gemisch mit Benzoylaceton-A-methyläther liefert bei der Ozonspaltung Benzoesäure (W., B. 58, 1482); es gibt beim Erhitzen mit methylalkoholischem Ammoniak auf 100° 3-Amino-1-phenyl-buten-(2)-on-(1) und geringere Mengen 1-Amino-1-phenyl-buten-(1)-on-(3) (E II 7, 620) (Cl.) und liefert beim Erhitzen mit Hydroxylamin und wäßrig-methylalkoholischer Kalilauge überwiegend 5-Methyl-3-phenyl-isoxazol (Cl.).

[α -Äthoxy-benzyliden]-aceton, Benzoylaceton-B-āthylāther $C_{13}H_{14}O_2=C_8H_5\cdot C(O\cdot C_2H_5)$: $CO\cdot C_2H_5$: $CO\cdot C_3$: $CO\cdot C_$

- 5. 1-Phenyl-buten-(1)-ol-(2)-on-(3) $C_{10}H_{10}O_2 = C_6H_5 \cdot CH : C(OH) \cdot CO \cdot CH_3$.
- 2-Rhodan 1-phenyl buten (1) on (3), α -Rhodan α -benzyliden aceton, Methyl-[α -rhodan-styryl]-keton $C_{11}H_{2}ONS = C_{2}H_{3}\cdot CH:C(S-CN)\cdot CO\cdot CH_{2}$. B. Durch Einw. von Rhodan oder von Quecksilber(II)-rhodanid und Jod auf Benzylidenaceton in Äther im Dunkein (Challenger, Smith, Paton, Soc. 123, 1055; Ch., Bott, Soc. 127, 1040, 1041). Tafeln (aus Aceton

- + Ligroin). F: 119° (Ch., B.). Liefert bei der Oxydation mit siedender wäßriger Permanganat-Lösung Benzoesäure und Spuren von Essigsäure (?) (Ch., B.). Gibt bei der Oxydation mit Kaliumhypobromit-Lösung Zimtsäure (?) (Ch., B.). Addiert Brom in Schwefelkohlenstoff unter Bildung von 1.2-Dibrom-2-rhodan-1-phenyl-butanon-(3) (E II 7, 623) (Ch., B.). Liefert beim Kochen mit Zinkstaub und Wasser und nachfolgenden Destillieren mit Wasserdampf Benzylaceton und Spuren von 2.7-Dioxo-4.5-diphenyl-octan (?) (vgl. E I 7, 405) (Ch., B.).
- 6. 1-[4-Oxy-phenyl] buten (2) on (1), 4-Oxy 1 crotonoyl benzol, 4-Crotonoyl-phenol $C_{10}H_{10}O_1=HO\cdot C_6H_4\cdot CO\cdot CH\cdot CH_2$.
- 4-Methoxy 1-crotonoŷl benzol, 4-Crotonoŷl-anisol, Propenyl-[4-methoxy-phenyl]-keton, Propenyl-anisyl-keton $C_{11}H_{12}O_3=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot CH:CH\cdot CH_3$. B. Aus Anisol, Crotonoylohlorid und Aluminiumchlorid in Schwefelkohlenstoff auf dem Wasserbad (v. Auwers, A. 439, 150). Gelbe Krystalle. F: 22°. Kp₁₅: 165—167°. D₄^{1.7}: 1,0906. $n_{\alpha}^{1.7}$: 1,5786; $n_{\beta\gamma,\epsilon}^{1.7}$: 1,66100; $n_{\gamma}^{1.7}$: 1,6330 (unterkühlt). Gibt beim Aufbewahren mit je 2,5 Mol Semicarbazid-hydrochlorid und Natriumacetat in wäßr. Alkohol das Semicarbazon des β -Semicarbazino-4-methoxy-butyrophenons (v. Au., B. 54, 992). Liefert beim Aufbewahren mit Phenylhydrazin in Alkohol + Eisessig 5-Methyl-1-phenyl-3-[4-methoxy-phenyl]-pyrazolin (v. Au., LXMMERHIRT, B. 54, 1012).
- 7. 1-Phenyl-buten-(2)-ol-(3)-on-(1), 2-Oxy-1-benzoyl-propen-(1) $C_{10}H_{10}O_2=C_5H_5\cdot CO\cdot CH:C(OH)\cdot CH_3$ ist desmotrop mit Benzoylaceton, E II 7, 616.
- 2-Methoxy-1-benzoyl-propen-(1), Benzoyla ceton-A-methyläther $C_{11}H_{12}O_2=C_0H_5$: $CO\cdot CH: C(O\cdot CH_3)\cdot CH_3$. Zur Konstitution vgl. Claisen, B. 59, 146. B. Durch kurzes Kochen von Benzoyla ceton mit Orthoameisensä uretrimethylester in Methanol unter Zusatz von etwas Eisenchlorid (Weygand, B. 58, 1480). Bildung neben Benzoyla ceton-B-methyläther s. bei diesem (S. 156). Gelbes Öl. Kp₁₃: 147—148° (W.). Liefert bei längerem Erhitzen mit der berechneten Menge methylalkoholischen Ammoniak im Rohr auf 100° 2-Amino-1-benzoyl-propen-(1) (E II 7, 620) (Cl.). Gibt beim Erwärmen mit 1,5 Mol Hydroxylaminhydrochlorid und 4 Mol wäßrig-methylalkoholischer Kalilauge 5-Methyl-3-phenyl-isoxazol und Benzoyla ceton-dioxim; in Abwesenheit von freiem Alkali entstehen unter sonst gleichen Bedingungen 5-Methyl-3-phenyl-isoxazol und 3-Methyl-5-phenyl-isoxazol (W.; vgl. Cl., B. 59, 148, 151).
- 2-Äthoxy-1-benzoyl-propen-(1), Benzoylaceton-A-āthylāther C₁₂H₁₄O₂ = C₆H₅·CO·CH:C(O·C₂H₅)·CH₃ (H 133). Zur Bildung nach Claisen (B. 40 [1907], 3909) vgl. noch Weygand, B. 58, 1480; vgl. a. Cl., B. 59, 146. Kp₁₂: 158° (W.). An zwei Prāparaten wurde gefunden D^{13,6}; 1,0641; n^{15,6}; 1,5601; n^{15,6}; 1,5678; n^{15,6}; 1,5881; n^{15,8}; 1,6074 und D^{14,6}; 1,0593; n^{15,6}; 1,5583; n^{15,6}; 1,5660; n^{15,6}; 1,5860; n^{15,6}; 1,6048 (v. Auwers, Stuhlmann, B. 59, 1053). Liefert bei der Ozonspaltung Essigester (W., B. 59, 2253). Verhält sich gegen Hydroxylamin wie Benzoylaceton-A-methyläther (s. o.) (Cl., B. 59, 148; vgl. W., B. 58, 1480). Liefert beim Aufbewahren mit Semicarbazidacetat in verd. Alkohol bei Zimmertemperatur 3(5)-Methyl-5(3)-phenyl-pyrazol-carbonsäure-(1)-amid und Hydrazodicarbonamid (v. Au., St., B. 59, 1054). Gibt beim Behandeln mit Methylhydrazin in trocknem Äther bei Zimmertemperatur oder in der Kälte 1.5-Dimethyl-3-phenyl-pyrazol und 1.3-Dimethyl-5-phenyl-pyrazol im Verhältnis 3:1 (v. Au., St.). Bei der Einw. von Phenylhydrazin in absol. Äther bei Zimmertemperatur entsteht Benzoylaceton-mono-phenylhydrazon C₆H₅·CO·CH₅·C(CH₅):N·NH·C₆H₅ (Syst. Nr. 1970; vgl. H 15, 169) (v. Au., St., B. 59, 1053). Liefert mit α-Methyl-phenylhydrazin in Äther bei Zimmertemperatur Benzoylaceton-mono-methylphenylhydrazon (!) vom Schmelzpunkt 107° (v. Au., St., B. 59, 1054).
- 8. 2-Oxy-1-oxo-1.2.3.4-tetrahydro-naphthalin, Tetra-lol-(2)-on-(1), 2-Oxy-tetralon-(1) C₁₀H₁₀O₃, s. nebenstehende Formel. B, Beim Kochen von 2-Brom-tetralon-(1) mit 3 Mol Natrium-accetat in Eisessig und Verseifen des entstandenen 2-Acetoxy-tetralons-(1) mit 2 Mol 'Kaliumcarbonat in verd. Methanol bei Zimmertemperatur unter Luftausschluß (Straus, Bernoully, Mautner, A. 444, 179, 181). Krystalle (durch Destillation oder aus Schwefelkohlenstoff + Petroläther). F: 36—36,5°. Kp_{0,1}: 93°. Löslich in Wasser, sehr leicht löslich in allen organischen Lösungsmitteln außer Petroläther. Färbt sich beim Aufbewahren bräunlich und zerfließt, läßt sich aber durch Destillation leicht wieder rein erhalten. Färbt sich beim Schütteln mit Alkalilauge und Luft erst gelb, dann gelbbraun, tief dunkelgrün und schließlich orangerot (St., B., M., A. 444, 182); bei der Einw. von 1 Atom Sauerstoff auf alkal. Lösungen von 2-Oxy-tetralon oder 2-Acetoxy-tetralon entsteht 1.2-Dioxy-naphthalin; Einw. von 1,5—3 Atomen Sauerstoff ergibt 3.4.3'.4'-Tetraoxy-dinaphthyl-(1.1') und 3'.4'-Dioxy-dinaphthyl-(1.1')-chinon-(3.4); bei größerem Überschuß an Sauerstoff entsteht schließlich 2-Oxy-dinaphthyl-(1.1')-chinon-(3.4); bei größerem Überschuß an Sauerstoff entsteht schließlich 2-Oxy-

naphthochinon-(1.4) (Sr., B., M., A. 444, 168, 193, 194). Geschwindigkeit der Reaktion mit Sauerstoff in alkal. Lösung: Sr., B., M., A. 444, 174. Reduziert Fehlingsche Lösung momentan (Sr., B., M., A. 444, 182). Beim Erwärmen mit konz. Salzsäure auf dem Wasserbad entsteht β -Naphthol (Sr., B., M., A. 444, 183). Beim Erwärmen mit Phenylhydrazin in Eisessig oder Eisessig + Salzsäure bilden sich rotgelbe, schwerlösliche Produkte (Sr., B., M., A. 444, 182).

2-Acetoxy-tetralon-(1) $C_{12}H_{12}O_3 = C_6H_4$ $CH_2 \cdot CH_2$. B. s. im vorangehenden Artikel. — Prismen (aus Methanol). F: 74,5—75° (STRAUS, BERNOULLY, MAUTINER, A. 444, 179). Kp_{20} : 180°. Löslich in kaltem Äther, Eisessig und Benzol sowie in warmem Alkohol und Petroläther. — Reaktion mit Sauerstoff s. im vorangehenden Artikel. Reduziert Fehlingsche Lösung momentan. Liefert beim Erwärmen mit rauchender Salzsäure auf dem Wasserbad β -Naphthol. Beim Erhitzen mit Wasser im Rohr auf 150° erhält man β -Naphthol und sehr unreines 2-Oxy-tetralon-(1). Gibt bei der Einw. von Kaliumcarbonat in verd. Methanol bei Zimmertemperatur unter Luftausschluß 2-Oxy-tetralon-(1). Gibt mit konz. Schwefelsäure keine Färbung.

- 9. 2-Oxymethyl-indanon-(1), 2-Oxymethyl-hydrindon-(1), [1-Oxohydrindyl-(2)]-carbinol $C_{10}H_{10}O_2=C_6H_4$ CH $_2$ CH·CH $_3$ ·OH. B. Neben polymerem 2-Methylen-hydrindon-(1) bei der Hydrierung von 2-Oxymethylen-hydrindon-(1) in Gegenwart von Nickel in Alkohol (RUPE, WIELAND, Helv. 9, 1003). Nadeln (aus Benzol + wenig Benzin). F: 56,5°. Geht beim Aufbewahren in 75% iger Schwefelsäure oder bei kurzem Erwärmen mit 50% iger Schwefelsäure auf dem Wasserbad in polymeres 2-Methylen-hydrindon-(1) über.
- 2-Acetoxymethyl-hydrindon-(1) $C_{12}H_{12}O_3 = C_4H_4 < C_{CO}^{CH_3} > CH \cdot CH_2 \cdot O \cdot CO \cdot CH_3$. Nadeln (aus Alkohol + Wasser). F: 63° (RUPE, WIELAND, Helv. 9, 1004).
- 10. 7-Oxy-4-methyl-indanon-(1), 7-Oxy-4-methyl-hydrindon-(1) C₁₀H₁₀O₂, s. nebenstehende Formel (E I 561). B. Zur Bildung beim Erhitzen von α-Brom-propionsäure-p-tolylester mit Aluminiumchlorid auf 150° (E I 561) vgl. v. Auwers, Hilliger, Wulf, A. 429, 226. Beim Erhitzen von β-Brom-propionsäure-p-tolylester mit 2 Tln. Aluminiumchlorid auf 160—170°; Ausbeute 60—70° (Krollpfeiffer, Schultze, B. 57, 601).—

 Liefert bei der Einw. von α-Benzoyl-phenylhydrazin in Alkohol bei Gegenwart von konz. Salzsäure 7-Oxy-4-methyl-hydrindon-(1)-benzoylphenylhydrazon und 7-Benzoyloxy-4-methyl-hydrindon-(1)-phenylhydrazon (v. Au., H., W., A. 429, 230).— Das 4-Nitro-phenylhydrazon schmilzt bei 298° (Zers.) (v. Au., H., W., A. 429, 233).— Natriumsalz. Schwer löslich in Natronlauge (K., Sch.).
- 7-Methoxy-4-methyl-hydrindon-(1) $C_{11}H_{12}O_2=CH_3\cdot O\cdot C_6H_3(CH_3)$ CH₂ CH₃ (E I 561). Das Phenylhydrazon schmilzt bei 150—152°, das 4-Nitro-phenylhydrazon bei 215° (v. Auwers, Hilliger, Wulf, A. 429, 237).
- 7-Acetoxy-4-methyl-hydrindon-(1) C₁₂H₁₂O₂ = CH₂·CO·O·C₂H₂(CH₃) CH₂·CH₃.

 Nadeln (aus Ligroin). F: 107° (v. Auwers, Hilliger, Wulf, A. 429, 227). Leicht löslich in Alkohol, Eisessig, Chloroform und Benzol, schwerer in Äther. Das Phenylhydrazon schmilzt bei 226°, das 4-Nitro-phenylhydrazon bei 264—265° (Zers.) (v. Au., H., W., A. 429, 227, 233).

7-0xy-4-methyl-hydrindon-(1)-oxim $C_{10}H_{11}O_2N=(HO)(CH_2)C_9H_4:N\cdot OH$. Nadeln (aus Benzol). F: 140° (v. Auwers, Hilliger, Wulf, A. 429, 235). Leicht löslich in Alkohol, Äther, Eisessig und Chloroform, schwer in Ligroin. — Hydrochlorid. Nadeln. Schwer löslich.

3. Oxy-oxo-Verbindungen $C_{11}H_{12}O_{2}$.

- 1. 1-[2-Oxy-phenyl]-penten-(1)-on-(3), Athyl-[2-oxy-styryl]-keton $C_{11}H_{12}O_2=H0\cdot C_0H_4\cdot CH\cdot CO\cdot C_2H_5$ (H 134). Existiert analog Salicylidenaceton (S. 1/3) in einer gelben und einer farblosen Form; das Präparat von Auwers, Voss (B. 42 [1909], 4423) war die farblose Form, das Präparat von Decker, v. Fellenberg (A. 364 [1909], 24) war die nicht ganz reine gelbe Form (McGookin, Sinclair, Soc. 127, 2539).
- a) Gelbe Form. B. Durch Kondensation von Salicylaldehyd mit Methyläthylketon in wäßrig-alkoholischer Natronlauge und Behandlung des Reaktionsgemisches mit Kohlendioxyd (McGOOKIN, SINCLAIR, Soc. 127, 2542; vgl. a. MARUI, Soi. Rep. Téhoku Univ. 17, 696;

- C. 1928 II, 1325). Gelbe Nadeln (aus Cyanessigester), gelbe Blättchen (aus verd. Alkohol). F: 116° (McG., S.), 116—118° (M.). Lagert sich beim Kochen in Gegenwart einer Spur Säure in die farblose Form um (McG., S.).
- b) Farblose Form. B. Durch Kondensation von Salicylaldehyd mit Methyläthylketon in wäßrig-alkoholischer Natronlauge und Ansäuern des Reaktionsgemisches mit Salzsäure (Auwers, Voss, B. 42 [1909], 4423; McGookin, Sinclair, Soc. 127, 2542). Beim Kochen von Lösungen der gelben Form in Gegenwart einer Spur Säure (McG., S.). Farblose Nadeln (aus Benzol). F: 116° (McG., S.), 118—119° (Au., V.).
 Beide Formen lösen sich in Alkalilaugen mit gelber Farbe, die allmählich unter gleich-

Beide Formen lösen sich in Alkalilaugen mit gelber Farbe, die allmählich unter gleichzeitiger Abscheidung eines Kondensationsproduktes in Rot übergeht (McGookin, Sinclair, Soc. 127, 2540). Beim Kochen mit konz. Salzsäure färbt sich die gelbe Form rasch, die farblose Form langsamer karminrot (McG., S., Soc. 127, 2541). Äthyl-[2-oxy-styryl]-keton gibt beim Erwärmen mit Isatin in 33%iger Kalilauge auf dem Wasserbad 3-Methyl-2-[2-oxy-styryl]-chinolin-carbonsäure-(4) (John, J. pr. [2] 118, 18).

- 2. 1-[4-Oxy-phenyl]-penten-(1)-on-(3), Xthyl-[4-oxy-styryl]-keton $C_{11}H_{12}O_2=H0\cdot C_0H_4\cdot CH\cdot CO\cdot C_2H_5$. B. Beim Erwärmen von 4-Oxy-benzaldehyd mit Methyläthylketon in 15% iger Alkalilauge auf dem Wasserbad (McGookin, Sinclair, Soc. 1928, 1175). Gelbe Nadeln (aus kaltem verdünntem Alkohol); farblose Nadeln (aus heißem Alkohol); beide Formen schmelzen bei 115°.
- Äthyl-[4-methoxy-styryl]-keton $C_{12}H_{14}O_{2}=CH_{3}\cdot O\cdot C_{6}H_{4}\cdot CH\cdot CH\cdot CO\cdot C_{2}H_{5}$. B. Aus Anisaldehyd und Methyläthylketon in verd. Natronlauge bei Zimmertemperatur (Iwamoto, Bl. chem. Soc. Japan 2, 54; Sci. Rep. Tohoku Univ. 16, 537; C. 1927 I, 2730). Schuppen (aus Äther + Petroläther). F: 58,5—59°.
- Äthyl-[4-methoxy-styryl]-ketoxim $C_{12}H_{15}O_2N=CH_2\cdot O\cdot C_6H_4\cdot CH\cdot CH\cdot C(:N\cdot OH)\cdot C_2H_5$. Nadeln (aus Alkohol). F: 138—139° (IWAMOTO, Bl. chem. Soc. Japan 2, 55; Sci. Rep. Tohoku Univ. 16, 537; C. 1927 I, 2730).
- 3. 1-[2-Oxy-phenyl]-penten-(4)-on-(1), $\gamma-Butenyl-[2-oxy-phenyl]-keton$, $2-Oxy-\omega-allyl-acetophenon$ $C_{11}H_{12}O_3=H0\cdot C_4H_4\cdot C0\cdot CH_2\cdot CH_2\cdot CH_3\cdot C$
- γ-Butenyl-[2-methoxy-phenyl]-keton, 2-Methoxy-ω-allyl-acetophenon, o -Allylacetophenol-methyläther $C_{12}H_{14}O_2=CH_2\cdot O\cdot C_{14}\cdot CO\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot B$. Bei mehrstündigem Kochen von α-Allyl-α-[2-methoxy-benzoyl]-acetessigsäureäthylester mit wäßrigalkoholischer Kalilauge (Helferich, Keiner, B. 57, 1618). Kp₁₆: 152° (H., K.). D₄°: 1,0466; n_B°: 1,5244 (H., K.); D₄°: 1,0525; n_α°: 1,5335; n₈₆°: 1,5390; n_β°: 1,5532; n_γ°: 1,5664 (v. Auwers, B. 60, 2138).
- 4. 1-[4-Oxy-phenyl]-penten-(4)-on-(1), $\gamma-Butenyl-[4-oxy-phenyl]-keton$, $4-Oxy-\omega-allyl-acetophenon$ $C_{11}H_{12}O_3=HO\cdot C_6H_4\cdot CO\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot B$. Bei mehrstündigem Kochen von α -Allyl- α -[4-acetoxy-benzoyl]-acetessigsäureäthylester mit wäßrig-alkoholischer Kalilauge (Helferich, Keiner, B. 57, 1618). Fast farblose Blättchen. F: 61,5°. Kp₁₆: 210—211°. Leicht löslich in Alkohol, Äther, Essigester und Chloroform, schwer in Ligroin.
- 5. 2 Methyl 1 [4 oxy phenyl] buten (1) on (3), Methyl [4 oxy α -methyl-styryl]-keton, α Methyl α [4 oxy benzyliden] aceton $C_{11}H_{12}O_2=HO\cdot C_4H_4\cdot CH:C(CH_3)\cdot CO\cdot CH_3$. B. Beim Sättigen eines Gemisches aus 4-Oxy-benzaldehyd und Methyläthylketon mit Chlorwasserstoff unter Kühlung (Iwamoto, Bl. chem. Soc. Japan 2, 55; Sci. Rep. Töhoku Univ. 16, 538; C. 1927 I, 2730). Gelbe Krystalle (aus verd. Alkohol). F: 108,5—109,5°. Das Benzoat schmilzt bei 124—125°.
- α-Methyl-α-anisyliden aceton C₁₂H₁₄O₂ = CH₃·O·C₆H₄·CH:C(CH₃)·CO·CH₃. B. Beim Sättigen eines Gemisches aus Anisaldehyd und Methyläthylketon mit Chlorwasserstoff unter Kühlung (Iwamoto, Bl. chem. Soc. Japan 2, 54; Sci. Rep. Töhoku Univ. 16, 535; C. 1927 I, 2730). Beim Behandeln von α-Methyl-α-[4-oxy-benzyliden]-aceton mit Methyljodid in alkoh. Kalilauge (I., Bl. chem. Soc. Japan 2, 55; Sci. Rep. Töhoku Univ. 16, 539). Krystalle (aus Äther + Petroläther). F: 27,5—28,5°. Kp₁₈: 278—281°. Beim Erwärmen mit Natriumhypochlorit-Lösung entstehen α-Anisyliden-propionsäure und Chloroform.
- α-Methyl-α-[4-oxy-benzyliden] aceton oxim $C_{11}H_{13}O_2N = HO \cdot C_6H_4 \cdot CH : C(CH_3) \cdot C(:N \cdot OH) \cdot CH_3$. F: 147—148° (IWAMOTO, Bl. chem. Soc. Japan 2, 55; Sci. Rep. Tohoku Univ. 16, 539; C. 1927 I, 2730).
- α -Methyl- α -anisyliden-aceton-oxim $C_{12}H_{15}O_2N=CH_3\cdot O\cdot C_6H_4\cdot CH:C(CH_3)\cdot C(:N\cdot OH)\cdot CH_3$. Nadeln (aus Alkohol). F: 126,5—128° (IWAMOTO, Bl. chem. Soc. Japan 2, 54; Sci. Rep. Téhoku Univ. 16, 536; C. 1927 I, 2730).

6. 4-Oxy-1-methyl-3-crotonoyl-benzol, 6-Oxy-3-methyl-w-äthyliden-acetophenon, 2-Crotonoyl-p-kresol, Propenyl-[6-oxy-3-methyl-p-kresyl-keton, o-Propenyl-p-kresyl-keton C₁₁H₁₂O₂, s. nebenstehende Formel. B. Durch Umsetzung von p-Kresol-methyläther mit 1 Mol Crotonoylchlorid und 2 Mol Aluminiumchlorid in Schwefelkohlenstoff bei Zimmertemperatur (v. Auwers, A. 421, 34). — Gelbe Prismen oder Tafeln (aus Petroläther) oder Nadeln (aus Methanol). F: 65—66°. Leicht löslich in Äther, Benzol und Eisessig, löslich in kaltem Alkohol

Leicht löslich in Äther, Benzol und Eisessig, löslich in kaltem Alkohol und Methanol, schwer löslich in Ligroin. — Lagert sich bei der Destillation unter gewöhnlichem Druck oder beim Verreiben mit Natronlauge in 2.6-Dimethyl-chromanon um (v. Au., A. 421, 35). Gibt mit Chlorwasserstoff in Eisessig β-Chlor-6-oxy-3-methyl-butyrophenon; beim Kochen mit 5 Tln. Acetylchlorid entsteht das Acetat dieser Verbindung (v. Au., A. 421, 105, 106). Gibt bei längerem Aufbewahren mit 2 Mol Semicarbazidhydrochlorid und Natriumacetat in verd. Alkohol bei Zimmertemperatur das Semicarbazon des 6-Oxy-β-semicarbazino-3-methyl-butyrophenons (v. Au., B. 54, 993). Gibt beim Erwärmen mit Phenylhydrazin in Alkohol + Eisessig auf dem Wasserbad 5-Methyl-1-phenyl-3-[6-oxy-3-methyl-phenyl]-Δ²-pyrazolin (v. Au., Lämmerhirt, B. 54, 1013).

Methyläther $C_{12}H_{14}O_8=CH_3\cdot O\cdot C_6H_3(CH_2)\cdot CO\cdot CH:CH\cdot CH_3$. B. Neben anderen Verbindungen bei der Umsetzung von p-Kresol-methyläther mit 1 Mol Crotonoylchlorid und 1 Mol Aluminiumchlorid in Schwefelkohlenstoff (v. Auwers, A. 421, 7, 34; B. 54, 993). — Kp₁₃: 156° bis 161° (v. Au., B. 54, 993). — Gibt mit essigsaurem Semicarbazid in verd. Alkohol bei Zimmertemperatur das Semicarbazon des 6-Methoxy- β -semicarbazino-3-methyl-butyrophenons.

Acetat $C_{13}H_{14}O_3 = CH_3 \cdot CO \cdot O \cdot C_6H_5(CH_5) \cdot CO \cdot CH \cdot CH_5$. B. Aus β -Chlor-6-acetoxy-3-methyl-butyrophenon durch Kochen mit Kaliumacetat oder Silberacetat in Alkohol (v. Auwers, A. 421, 107). — Nicht rein erhalten. — Liefert beim Behandeln mit Brom in Schwefelkohlenstoff $\alpha.\beta$ -Dibrom-6-acetoxy-3-methyl-butyrophenon.

- 7. 1-Phenyl-cyclopentanol-(4)-on-(3) $C_{11}H_{12}O_2 = C_6H_5 \cdot HC \overset{CH_2-CO}{\longleftarrow} \cdot Vgl.$ darüber Staudinger, Ruzioka, Helv. 7, 444.
- 8. [2-Oxy-benzoyl]-cyclobutan, Salicoylcyclobutan, Cyclobutyl-[2-oxy-benyl]-keton $C_{11}H_{12}O_2=HO\cdot C_0H_4\cdot CO\cdot HC < CH_2 > CH_2 > CH_2$. B. Neben anderen Produkten bei 72-stdg. Erhitzen von Cyclobutancarbonsäure-phenylester unter Stickstoff im Rohr auf 300° (SKRAUP, BINDER, B. 62, 1132). Flüssigkeit. Erstarrt bis —15° nicht. Kp₁₅: 139—140°. Gibt mit Eisenchlorid in Alkohol eine dunkelviolette Färbung. Gibt mit Boressigsäureanhydrid in Acetanhydrid eine gelbe, blaugrün fluorescierende Lösung.
- 9. 2-Oxy-1-formyl-5.6.7.8-tetrahydro-naphthalin, 1 (oder 3)-Formyl-5.6.7.8-tetrahydro-naphthalin, 2 (CH0)

 Nyd-(5 oder 7) C₁₁H₁₂O₂, Formel I oder II. B. Durch Einw. von Blausäure und Chlorwasserstoff auf Tetrahydro-naphthalin, 2 (CH0)

 Säure und Chlorwasserstoff auf Tetrahydro-naphthalin oder 3-Oxy-2-formyl-5.6.7.8-tetrahydro-naphthalin, 1 (oder 3)-Formyl-5.6.7.8-tetrahydro-naphthalin, 2 (CH0)

 CH0

 H₂C

 CH₂

 CH₂

 CH₃

 CH₃

 $0 \times m C_{11}H_{13}O_1N = HO \cdot C_{10}H_{10} \cdot CH : N \cdot OH$. Krystalle (aus verd. Methanol oder Alkohol). F: 150° (Thoms, Kross, Ar. 1927, 344). Löslich in Alkalilauge. Gibt mit Eisenchlorid in Wasser oder wäßr. Methanol eine tiefgrüne Färbung.

Semicarbazon $C_{19}H_{15}O_8N_8=HO\cdot C_{10}H_{10}\cdot CH:N\cdot NH\cdot CO\cdot NH_8$. Krystalle (aus verd. Methanol). F: 190—191° (Thoms, Kross, Ar. 1927, 344).

10. 4-Oxy-1.1-dimethyl-indanon-(3), 7-Oxy-3.3-dimethyl-hydrindon-(1) $C_{11}H_{12}O_2$, Formel III ϵ uf S. 161. B. Beim Erhitzen von $\beta.\beta$ -Dimethyl-acrylsäure-phenylester mit Aluminiumchlorid auf 130—140° (v. Auwers, B. 61, 420). — Öl. Kp₁₈: 138—142°. Mit Wasserdampf flüchtig. $D_{\bullet}^{m,s}$: 1,0960. $n_{\alpha}^{m,s}$: 1,5447; $n_{\bullet n,s}^{m,s}$: 1,5509; $n_{\bullet n}^{m,s}$: 1,5679; $n_{\bullet n,s}^{m,s}$: 1,5519. Färbt sich mit Eisenchlorid tief blauviolett. — Das Natriumsalz ist in Alkalilauge schwer löslich.

Semicarbazen $C_{19}H_{15}O_9N_3=(H0)(CH_2)_3C_9H_5:N\cdot NH\cdot CO\cdot NH_2.$ Pulver. F: 261—263° (v. Auwers, B. 61, 420). Sohwer löslich.

- 11. 4-Oxy-1.7-dimethyl-indanon-(3), 7-Oxy-3.4-dimethyl-hydrindon-(1) $C_{11}H_{12}O_{3}$, Formel IV (E I 561). B. Beim Erhitzen von Crotonsäure-p-tolylester mit Aluminium-chlorid auf 120° (v. Auwers, A. 421, 36). Neben 2.6-Dimethyl-chromanon bei der Umsetzung von 1 Mol p-Kresol-methyläther mit 1 Mol Crotonoylehlorid und 2 Mol Aluminiumchlorid in Schwefelkohlenstoff, zuletzt auf dem Wasserbad (v. Auwers, A. 421, 31, 33). Zur Bildung aus α -Brom-buttersäure-p-tolylester und Aluminiumchlorid (E I 561) vgl. v. Au., Hilliger, Wulf, A. 423, 241. Kp₁₆: 155—156°; Kp₆: 140,3° (v. Au., A. 421, 33; 439, 151). D₁⁴: 1,0997; $\eta_{\alpha}^{a,b}$: 1,5453; $\eta_{\alpha\beta,\mu}^{a,a}$: 1,5516; $\eta_{\beta}^{a,b}$: 1,5683 (v. Au., A. 439, 151). Gibt mit Eisenchlorid in wäßriger oder alkoholischer Lösung eine tiefblaue Färbung (v. Au., A. 421, 33). Das Phenylhydrazon schmilzt bei 166,5—167,5° (v. Au., H., W.).
- 7 Acetoxy 3.4 dimethyl hydrindon (1) $C_{13}H_{14}O_3 = CH_3 \cdot CO \cdot O \cdot C_0H_2(CH_3) \cdot CH_2$. Prismen (aus Alkohol). F: 135° (v. Auwers, Hilliger, Wulf, A. 429, 242). Leicht löslich in Eisessig und Benzol, schwer in Äther und Ligroin. Das Phenylhydrazon schmilzt bei 210—211°.

- 12. 7-Oxy-2.4-dimethyl-indanon-(1), 7-Oxy-2.4-dimethyl-hydrindon-(1) $C_{11}H_{12}O_2$, Formel V (E I 561). Bei der Darstellung aus α -Brom-isobuttersäure-p-tolylester (E I 561) erhitzt man zweckmäßig nur auf 135° (v. Auwers, Hilliger, Wulf, Å. 429, 238). Kp₆: 136,5—137,5°; $D_4^{a_{10}}$: 1,0890; $n_{\alpha}^{a_{10}}$: 1,5389; $n_{a_{10}}^{a_{10}}$: 1,5450; $n_{\alpha}^{a_{10}}$: 1,5613 (v. Au., A. 439, 151). Das Phenylhydrazon schmilzt bei 136,5° (v. Au., H., W.).
- 7 Acetoxy 2.4 dimethyl hydrindon (1) $C_{13}H_{14}O_3 = CH_3 \cdot CO \cdot O \cdot C_6H_3 \cdot CH_3 \cdot C$
- 13. 6-Oxy-2.4-dimethyl-indanon-(3), 5-Oxy-2.7-dimethyl-hydrindon-(1) $C_{11}H_{12}O_2$, Formel VI. B. Neben anderen Produkten beim Erhitzen von m-Kresol-methyläther mit 1 Mol α -Brom-isobutyrylbromid und 2 Mol Aluminiumchlorid in Schwefelkohlenstoff (v. Auwers, A. 439, 152, 161). Neben 7-Oxy-2.5-dimethyl-hydrindon-(1) beim Erhitzen von α -Brom-isobuttersäure-m-tolylester mit Aluminiumchlorid auf 130—140° (v. Au., A. 439, 163, 164). Prismen (aus Alkohol).

F:190—191°. Ist mit Wasserdampf nicht flüchtig. Leicht löslich in den meisten organischen Lösungsmitteln, schwer in Petroläther. Gibt mit Eisen-

VI. HO. CH3 CH · CH3 VIII. CH3 · CH3 CH · CH3

chlorid keine Färbung. — Liefert beim Erwärmen mit Brom in Eisessig 2.4.6-Tribrom-5-oxy-2.7-dimethyl-hydrindon-(1).

- 5-Acetoxy-2.7-dimethyl-hydrindon-(1) $C_{13}H_{14}O_3 = CH_3 \cdot CO \cdot O \cdot C_6H_2(CH_3) < CO \cdot CH_2 \cdot CH_3$. Schuppen (aus Petroläther). F: 70—71° (v. Auwers, A. 489, 164). Im allgemeinen leicht löslich.
- 5- Θ xy-2.7-dimethyl-hydrindon-(1)-semicarbazon $C_{12}H_{15}O_2N_3=(HO)(CH_3)_2C_9H_5:N\cdot NH\cdot CO\cdot NH_2$. Nadeln (aus Eisessig). F: 228—229° (v. Auwers, A. 489, 164). Leicht löslich in Eisessig, schwer in Alkohol und Aceton, unlöslich in Benzol.
- 2.4.6 Tribrom 5 oxy 2.7 dimethyl hydrindon (1) $C_{11}H_9O_2Br_3 = HO \cdot C_6Br_3(CH_3) < CO^2 > CBr \cdot CH_4$. B. Aus 5-Oxy-2.7-dimethyl-hydrindon-(1) beim Erwärmen mit Brom in Eisessig (v. Auwers, A. 489, 164). Bräunliche Nadeln (aus Eisessig). F: 169° bis 170°. Leicht löslich in Äther, Aceton und Benzol, mäßig in Alkohol, schwer in Benzin.
- 14. 7-Oxy-2.5-dimethyl-indanon-(1), 7-Oxy-2.5-dimethyl-hydrindon-(1) $C_{11}H_{12}O_2$, Formel VII. B. Neben anderen Produkten beim Erhitzen von m-Kresol-methyläther mit 1 Mol α -Brom-isobutyrylbromid und 2 Mol Aluminiumchlorid in Schwefelkohlenstoff (v. Auwers, A. 439, 152, 157, 161, 163). Neben 5-Oxy-2.7-dimethyl-hydrindon-(1) beim Er-

hitzen von α -Brom-isobuttersäure-m-tolylester mit Aluminiumchlorid auf 130—140° (v. Au., A. 439, 155, 163). — Blaßgelbes Öl. Kp₁₁: 138—139°. Flüchtig mit Wasserdampf. D₄^{24,0}: 1,1251. $n_{3}^{14,0}$: 1,5608; $n_{3,0}^{14,0}$: 1,5672; $n_{3}^{14,0}$: 1,5643; $n_{3,0}^{14,0}$: 1,6002. Gibt mit Eisenehlorid eine blaue Färbung. — Das Phenylhydrazon schmilzt bei 122—123°. — Natriumsalz. Schwer löslich in 2n-Natronlauge.

Semicarbazon $C_{12}H_{15}O_2N_2 = (HO)(CH_2)_2C_5H_5:N\cdot NH\cdot CO\cdot NH_2$. Nadeln (aus Alkohol oder Eiseasig). F: 232—233° (v. Auwers, A. 439, 163).

15. 6 - Oxy - 4.7 - dimethyl - indanon - (1), 6 - Oxy - 4.7 - dimethyl - hydrindon - (1) $C_{11}H_{12}O_2$, s. nebenstehende Formel.

6 - Methoxy - 4.7 - dimethyl - hydrindon - (1) $C_{12}H_{14}O_2 =$ CH₂

CH₃

2.5-dimethyl-phenyl]-propionsāure-chlorid mit Aluminiumchlorid in Benzin auf dem Wasserbad (CLEMO, HAWORTH, WALTON, Soc. 1929, 2378). — Prismen (aus Ligroin). F: 162—164°.

4. Oxy-exe-Verbindungen C12H14O1.

- 1. 1-[2-Oxy-phenyl]-hexen-(1)-on-(3), Propyl-[2-oxy-styryl]-keton C₁₂H₁₄O₂ = HO·C₄H₄·CH·CH·CO·CH₂·C₂H₅ (H 135). Zur Bildung aus Salicylaldehyd und Methylpropylketon in wäßrig-alkoholischer Natronlauge vgl. McGookin, Sinclair, Soc. 127, 2542. Existiert analog Methyl-[2-oxy-styryl]-keton (S. 153) in einer farblosen Form (Nadeln aus Benzol) und einer gelben Form (Tafeln aus verd. Alkohol); beide Formen schmelzen bei 113°. Welcher der beiden Formen die im Hptw. beschriebenen Präparate zugehören, ist nicht bekannt (McG., S., Soc. 127, 2540). Löst sich in Alkalien mit gelber, bei längerem Aufbewahren in Rot übergehender Farbe (McG., S.). Beim Kochen mit konz. Salzsäure färbt sich die gelbe Form rasch, die farblose Form langsamer karminrot. Natriumsalz. Gelbe Nadeln (McG., S.).
- 2. 1-[4-Oxy-phenyl]-hexen-(1)-on-(3), Propyl-[4-oxy-styryl]-heton $C_{13}H_{14}O_2=H_0\cdot C_0H_4\cdot CH\cdot CO\cdot CH_2\cdot C_2H_5$. B. Beim Behandeln von 4-Oxy-benzaldehyd mit Methylpropylketon in Alkalilauge (McGookin, Sinclair, Soc. 1928, 1175). Scheidet sich aus kaltem verdünntem Alkohol in wasserhaltigen gelben Krystallen vom Schmelzpunkt $80-83^\circ$, aus Benzol + Hexan in wasserfreien gelben Nadeln vom Schmelzpunkt 90° , aus heißem Alkohol in farblosen Krystallen vom Schmelzpunkt 90° aus.
- 3. 2-Methyl-5-[2-oxy-phenyl]-penten-(4)-on-(3), Isopropyl-[2-oxy-styryl]-keton $C_{12}H_{14}O_{2}=HO\cdot C_{4}H_{4}\cdot CH:CH\cdot CO\cdot CH(CH_{2})_{2}$. B. Beim Behandeln von Salicylaldehyd mit Methylisopropylketon in Alkalilauge (McGookin, Sinclair, Soc. 1928, 1175). Gelbe Krystalle (aus eiskaltem Alkohol). F: 107°. Geht sehr leicht in eine farblose Form vom gleichen Schmelzpunkt über.

H 136 streiche Z. 13-6 v. u. und die danebenstehende Formel.

4. 2-Methyl-5-phenyl-penten-(4)-ol-(2)-on-(3), $[\alpha$ -Oxy-isopropyl-styryl-keton $C_{12}H_{14}O_3=C_4H_5\cdot CH:CH\cdot CO\cdot C(CH_3)_2\cdot OH.$ B. Aus Benzaldehyd und 2-Methyl-butanol-(2)-on-(3) in wäßrig-alkoholischer Natronlauge (SCHEIBLER, FISCHER, B. 55, 2917). — Krystalle (aus Petroläther). F: 39—40°. Kp₁₅: 164—169°. Leicht löslich in Alkohol, Äther, Benzol und Ligroin, schwerer in Petroläther.

Acetat $C_{14}H_{16}O_3 = C_4H_5 \cdot CH \cdot CO \cdot C(CH_3)_2 \cdot O \cdot CO \cdot CH_3$. Krystalle (aus verd. Alkohol). F: 85° (Scheibler, Fischer, B. 55, 2918).

Oxim $C_{12}H_{15}O_2N = C_4H_5 \cdot CH \cdot CH \cdot C(:N \cdot OH) \cdot C(CH_4)_2 \cdot OH$. Krystalle (aus Ligroin). F: 136° (Scheibler, Fischer, B. 55, 2917).

5. 4-Oxy-1-methyl-3-[β.β-dimethyl-acryloyl]-benzol, 2-[β.β-Dimethyl-acryloyl]-p-kresol, [β.β-Dimethyl-vinyl]-[6-oxy-3-methyl-phenyl]-keton, Isobutenyl-[6-oxy-3-methyl-phenyl]-keton, o-Isobutenyl-p-kresol-keton C₁₂H₁₄O₂, s. nebenstehende Formel. B. Aus p-Kresol-methyläther und β.β-Dimethyl-acrylsäurechlorid in Gegenwart von 2 Mol Aluminiumchlorid in Schwefelkohlenstoff (v. Auwers, A. 421, 13, 43, -CO·CH:C(CH₂)₂ 46). — Schwefelgelbe Prismen (aus Petroläther oder verd. Methanol). F: 50—50,5°. Kp₁₅: 159—160°. D₄^{81,8}: 1,0376. n₂^{81,8}: 1,5628; n₂^{81,9}: 1,5719. Leicht löslich in organischen Lösungsmitteln außer Petroläther. — Lagert sich bei der Destillation, beim Behandeln mit verd. Natronlauge oder mit Natriummethylat-Lösung und beim Kochen mit alkoh. Salzsäure oder Schwefelsäure oder mit Diäthylanilin in 2.2.6-Trimethyl-chromanon um (v. Au., A. 421, 16, 17, 47, 48); geringe Mengen dieser Verbindung bilden sich auch beim Erhitzen mit Zinkohlorid auf 140° (v. Au., B. 61, 421). Liefert bei der Hydrierung in

Gegenwart von kolloidalem Palladium in Methanol 6-Oxy-3-methyl-isovalerophenon (v. Auwers, A. 421, 14, 48). Addiert Brom in Schwefelkohlenstoff unter Bildung von 2-[α.β-Dibrom-isovaleryl]-p-kresol (v. Au., A. 421, 13, 49). Beim Sättigen der Lösung in Eisessig mit Chlorwasserstoff entsteht 2-[β-Chlor-isovaleryl]-p-kresol (v. Au., A. 421, 13, 49). Liefert bei längerem Kochen mit 2 Mol Hydroxylaminhydrochlorid in Alkohol das entsprechende Oxim (s. u.); beim Aufbewahren mit 2 Mol Hydroxylamino-isovaleryl]-p-kresol (v. Au., B. 54, 997). Gibt beim Aufbewahren mit Semicarbazidhydrochlorid und Natriumacetat in verd. Alkohol 2-[β-Semicarbazino-isovaleryl]-p-kresol (Syst. Nr. 2079) (v. Au., A. 421, 42, 43; B. 54, 997). Gibt beim Kochen mit freiem Phenylhydrazin in Alkohol das Phenylhydrazon des 2-[β-Phenylhydrazino-isovaleryl]-p-kresols (Syst. Nr. 2079); bei Zutritt von viel Luft entsteht daneben das Phenylhydrazon des 2-[β-Benzolazo-isovaleryl]-p-kresols (Syst. Nr. 2137); beim Erwärmen mit Phenylhydrazin in alkoholisch-essigsaurer Lösung auf dem Wasserbad erhält man 6-Oxy-3-methylacetophenon-phenylhydrazon (v. Au., Lameerher, B. 54, 1001, 1004, 1014, 1015, 1016); analog verläuft die Reaktion mit 4-Brom-phenylhydrazin (v. Au., L., B. 54, 1005). Gibt bei der Einw. von 4-Nitro-phenylhydrazin in alkohol lentsteht 6-Oxy-3-methyl-acetophenon-[4-nitro-phenylhydrazin in Alkohol bei 30—40° Isobutenyl-[6-oxy-3-methyl-acetophenon-[4-nitro-phenylhydrazin-hydrochlorid nv verd. Alkohol bei 30—40° Isobutenyl-[6-oxy-3-methyl-phenyl]-keton-[4-nitro-phenylhydrazon], beim Kochen 5.5-Dimethyl-1-[4-nitro-phenylhydrazon] erhält (v. Au., L., B. 54, 1005, 1007, 1019, 1021, 1022).

Das 4-Nitro-phenylhydrazon schmilzt bei 166-170° (v. Auwers, Lämmerhirt, B. 54, 1022).

Isobutenyl-[6-acetoxy-3-methyl-phenyl]-keton, 2-[β . β -Dimethyl-acryloyl]-p-kresol-acetat $C_{14}H_{16}O_3=CH_3\cdot CO\cdot O\cdot C_6H_3(CH_3)\cdot CO\cdot CH: C(CH_3)_2$. Würfel (aus Petroläther). F: 63—64° (v. Auwers, B. 61, 421).

Isobutenyl-[6-oxy-3-methyl-phenyl]-ketoxim $C_{12}H_{15}O_2N=HO\cdot C_6H_8(CH_3)\cdot C(:N\cdot OH)\cdot CH:C(CH_2)_2$. Prismen (aus Ligroin). F: 130,5—131,5° (v. AUWERS, B. 54, 998). Leicht löslich in Äther und in heißem Methanol, Alkohol, Benzol und Eisessig. Die mit Alkohol befeuchtete Substanz löst sich leicht in Alkalilauge. — Wird durch Alkalilauge, auch in der Wärme, nicht verändert (v. Au., B. 54, 990).

6. [2 - Oxy - benzoyl] - cyclopentan, Salicoylcyclopentan, Cyclopentyl-[2 - oxy - phenyl] - keton $C_{12}H_{14}O_3 = H_1C \cdot CH_2 \cdot CH \cdot CO \cdot C_6H_4 \cdot OH$. B. Neben anderen Produktan bei 72 etda. Erbitzen von Cyclopentan erboneium phonylestan mater Sticketett im

Produkten bei 72-stdg. Erhitzen von Cyclopentancarbonsäure-phenylester unter Stickstoff im Rohr auf 340° (Skraup, Binder, B. 62, 1132). — Blaßgelbe Flüssigkeit. Erstarrt bis —15° nicht. Kp₁₃: 125—135°. Gibt mit Boressigsäureanhydrid in Acetanhydrid eine gelbe, blaugrün fluorescierende Lösung.

7. 3-Oxy-5-oxo-1.4 - dimethyl - 5.6.7.8 - tetrahydro - naphthalin, 7-Oxy-1-oxo-5.8 - dimethyl - tetralin, 7-Oxy-5.8 - dimethyl - tetralon-(1) $C_{19}H_{14}O_{3}$, Formel I (R = H).

7-Methoxy-5.8-dimethyl-tetralon-(1) $C_{13}H_{16}O_3$, Formel I (R = CH₃). B. Beim Erhitzen von γ -[4-Methoxy-2.5-dimethyl-phenyl]-buttersäure mit konz. Schwefelsäure auf 70° (Clemo, Hawgeth, Walton, Soc. 1929, 2381). — Tafeln (aus Petroläther). F: 63—64°. — Liefert mit Brom in Chloroform bei Zimmertemperatur 2.6-Dibrom-7-methoxy-5.8-dimethyl-tetralon-(1). Beim Schütteln mit Isoamylnitrit und Kaliumäthylat-Lösung in Äther entsteht 2-Isonitroso-7-methoxy-5.8-dimethyl-tetralon-(1) (Syst. Nr. 1937).

2.6-Dibrom-7-methoxy-5.8-dimethyl-tetralon-(1) C₁₃H₁₆O₂Br₂, Formel II. B. Beim Aufbewahren von 7-Methoxy-5.8-dimethyl-tetralon-(1) mit Brom in Chloroform (Clemo, Hawobth, Walton, Soc. 1929, 2381). — Prismen (aus Petroläther). F: 93°.

8. 4-Oxy-1.1.7-trimethyl-indanon-(3), 7-Oxy-3.3.4-trimethyl-hydrin-don-(1) $C_{12}H_{14}O_2$, Formel III. B. In sehr geringer Menge neben 2.2.6-Trimethyl-chromanon bei der Umsetzung von p-Kresol-methyläther mit 1 Mol $\beta.\beta$ -Dimethyl-acrylsäure-chlorid und

2 Mol Aluminiumehlorid in Schwefelkohlenstoff und Behandlung des Reaktionsproduktes mit 30% iger Natronlauge (v. Auwers, A. 421, 12, 16, 45). — Prismen (aus Petroläther). F: 67—68°. Die wäßrige oder alkoholische Lösung färbt sich auf Zusatz von Eisenehlorid blau. — Natriumsalz. Löst sich in Wasser mit grünstichig gelber Farbe.

Semicarbazon $C_{12}H_{17}O_2N_3=(HO)(CH_2)_2C_0H_4:N\cdot NH\cdot CO\cdot NH_2$. Nadeln (aus Alkohol). F: 201—202° (unter Gelbfärbung) (v. Auwers, A. 421, 46). Löslich in kaltem Eisessig und in heißem Alkohol oder Methanol. — Färbt sich beim Aufbewahren an der Luft grünstichig gelb.

5. Oxy-oxo-Verbindungen C18H16O2.

- 1. 2-Methyl-6-[2-oxy-phenyl]-hexen-(5)-on-(4), Isobutyl-[2-oxy-styryl]-keton $C_{13}H_{16}O_2=H0\cdot C_6H_4\cdot CH: CH\cdot CO\cdot CH_2\cdot CH(CH_3)_2$. B. Aus Methylisobutylketon und Salicylaldehyd in wäßrig-alkoholischer Natronlauge (Hellbron, Irving, Soc. 1929, 941). Gelbe Krystalle (aus Methanol). F: 104° . CH(CH₃)₂ und Chlorwasserstoff in Alkohol bei 0° und Behandlung des entstandenen Pyryliumsalzes mit verd. Ammoniak die Verbindung nebenstehender Formel (Syst. Nr. 2682).
- 2. 2.2-Dimethyl-5-[2-oxy-phenyl]-penten-(4)-on-(3), tert.-Butyl-[2-oxy-styryl]-keton, Salicyliden-pinakolin $C_{13}H_{16}O_3=HO\cdot C_0H_4\cdot CH\cdot CH\cdot CO\cdot C(CH_3)$. B. Beim Erwärmen von Pinakolin mit Salicylaldehyd und alkoh. Natronlauge auf dem Wasserbad (McGookin, Sinclair, Soc. 1928, 1176). Gelbe Nadeln (aus kaltem verdünntem Alkohol). F: 128°. Geht leicht in eine farblose Form vom gleichen Schmelzpunkt über. Beide Formen lösen sich in Alkalilauge mit gelber Farbe.
- 3. 1-[α-Oxy-benzyl]-cyclohexanon (2), [2-Oxo-cyclohexyl]-phenyl-carbinol C₁₃H₁₆O₃ = H₂C CH₂·CO₂CH·CH(OH)·C₆H₅ (H 137). Zur Bildung aus Benzaldehyd und Cyclohexanon (Wallach, C. 1908 I, 638) vgl. Vorländer, Kunze, B. 59, 2080. Leicht löslich in den meisten Lösungsmitteln. Liefert bei längerem Aufbewahren in verd. Natronlauge unter häufigem Umschütteln 1.3-Bis-[α-oxy-benzyl]-cyclohexanon-(2); auf Zusatz einiger Tropfen 10%iger Natronlauge zur alkoh. Lösung entsteht 1.3-Dibenzyliden-cyclohexanon-(2). Liefert bei längerem Erwärmen mit Acetanhydrid auf 80—90° 1-[α-Acetoxy-benzyl]-cyclohexanon-(2). Bei längerer Einw. von 1 Mol Cyclohexanon in verd. Natronlauge oder von Acetanhydrid und wenig konz. Schwefelsäure oder beim Kochen mit 100%iger Ameisensäure erhält man 1-Benzyliden-cyclohexanon-(2).
- 1-[α -Acetoxy-benzyl]-cyclohexanon-(2) $C_{15}H_{18}O_3=C_6H_5\cdot CH(O\cdot CO\cdot CH_3)\cdot C_6H_9O$. B. Bei längerem Erwärmen von 1-[α -Oxy-benzyl]-cyclohexanon-(2) mit Acetanhydrid auf 80—90° (Vorländer, Kunze, B. 59, 2081). Krystalle (aus Alkohol). F: 70,4—71,1° (korr.). Färbt sich mit konz. Schwefelsäure gelborange.
- 4. [2-Oxy-benzoyl]-cyclohexan, Salicoylcyclohexan, Cyclohexyl [2-oxy-phenyl] keton, 2'-Oxy-1.2.3.4.5.6 hexahydro benzophenon $C_{13}H_{16}O_2=H_1CC_{H_1}\cdot CH_2$ $CH_2\cdot CH_3\cdot CH_4\cdot OH$. B. Neben anderen Verbindungen beim Erhitzen von Cyclohexancarbonsäure-phenylester für sich auf $350-370^\circ$ oder mit Zinkchlorid auf $140-150^\circ$ (SKRAUF, BEIFUSS, B. 60, 1073). Krystalle (aus Petroläther). F: $41-42^\circ$. Kp_{16} : $166-168^\circ$. Färbt Boressigsäure-anhydrid gelb mit starker blaugrüner Fluorescenz.
- 5. $4-Oxy-1.7-dimethyl-2-\ddot{a}thyl-indanon-(3)$, $7-Oxy-3.4-dimethyl-2-\ddot{a}thyl-hydrindon-(1)$ $C_{13}H_{16}O_2$, ϵ . nebenstehende Formel. B. Aus α -Åthyl-crotonsäure-p-tolylester beim Erhitzen mit Aluminiumchlorid auf 130—140°; Ausbeute 60% der Theorie (v. Auwers, A. 439, 150). Neben 2.6-Dimethyl-3-äthyl-chromanon-(4) beim Erhitzen von Diäthylbromessigsäure-p-tolylester mit Aluminiumchlorid auf 140° bis 150° (v. Au., A. 439, 148). Gelbliches Öl. Kp_{8,5}: 149,6—150,2°. D₄^{11,2}: 1,0806. $n_{\alpha}^{12,3}$: 1,5459; $n_{\text{BSF,58}}^{11,2}$: 1,5519; $n_{\beta}^{11,2}$: 1,5673; $n_{\gamma}^{11,2}$: 1,5826. Gibt mit Eisenchlorid eine blaue Färbung. Das 4-Nitro-phenylhydrazon schmilzt bei 218—219°. Natriumsalz. Löslich in Wasser mit grünstichig gelber Farbe, schwer löslich in überger Alkalilauge.

Semicarbazon $C_{14}H_{16}O_2N_3 = (HO)(CH_3)C_6H_3 \xrightarrow{C(:N\cdot NH\cdot CO\cdot NH_3)} CH\cdot C_3H_4$. Krystallines Pulver (aus Alkohol). F: 186—188° (v. Auwers, A. 439, 149).

6. Oxy-exe-Verbindungen C14H16O2.

4-Methoxy-5-methyl-2-isopropyl-benzylidenaceton $C_{15}H_{20}O_{2}$, s. nebenstehende Formel. B. Durch Einw. von Aceton und Kalichauge auf 4-Methoxy-5-methyl-2-isopropyl-benzaldehyd (Bogger, GOLDSTEIN, Am. Perjumer 28, 524; C. 1929 II, 3128). — Gelbe Nadeln (aus Alkohol). F: 174-175° (korr.).

7. Oxy-oxe-Verbindungen $C_{15}H_{20}O_{2}$.

1. 1-[2-Oxy-phenyl]-nonen-(1)-on-(3), n-Hexyl-[2-oxy-styryl]-keton $C_{15}H_{20}O_2=H_0\cdot C_0H_4\cdot CH\cdot CO\cdot [CH_2]_5\cdot CH_2$. B. Aus Salicylaldehyd und Methyl-n-hexyl-keton bei 7-tägigem Aufbewahren in wäßrig-alkoholischer Natronlauge (McGookip, Sinclair, Soc. 127, 2543). — Gelbe Tafeln (aus kaltem verdünntem Alkohol), F: 102-103°; gont seim Aufbewahren in eine farblose Form vom gleichen Schmelzpunkt über. Färbt sich beim Kochen mit konz. Salzsäure karminrot. Löst sich in Alkalilaugen mit gelber, bei längerem Aufbewahren in Rot übergehender Farbe (McG., S., Soc. 127, 2540).

2. 1-[4-Oxy-phenyl]-nonen-(1)-on-(3), n-Hexyl-[4-oxy-styryl]-keton $C_{16}H_{20}O_2=HO\cdot C_6H_4\cdot CH\cdot CO\cdot [CH_2]_5\cdot CH_3.$

n-Hexyl-[4-methexy-styryl]-keton $C_{16}H_{22}O_3=CH_5\cdot O\cdot C_6H_4\cdot CH\cdot CO\cdot [CH_2]_5\cdot CH_3\cdot B$. Aus Anisaldehyd und Methyl-n-hexyl-keton in 1% iger alkoholischer Natronlauge bei Zimmertemperatur (Hell-bron, Irving, Soc. 1929, 935). — Tafeln (aus verd. Methanol). F: 55° .

Dimeres n-Hexyl-[4-methoxy-styryl]-keton $C_{33}H_{44}O_4 = (C_{16}H_{32}O_2)_3$. B. Beim Kochen von Anisaldehyd mit Methyl-n-hexyl-keton in 3% iger alkoholischer Kalilauge (Hell-Beim BRON, IRVING, Soc. 1929, 935). — Nadeln (aus Alkohol). F: 145—146°.

- 3. $2 [4 Oxo cyclohexyl] 2 [4 oxy phenyl] propan <math>C_{15}H_{20}O_1 =$ $OC < CH_3 \cdot CH_3 > CH \cdot C(CH_3)_3 \cdot C_6H_4 \cdot OH.$
- 2 [4 Oxo cyclohexyl] 2 [4 methoxy phenyl] propan $C_{16}H_{22}O_2 =$ OC CH₂·CH₂·CH₂ CH·C(CH₃)₂·C₆H₄·O·CH₃. B. Aus 2-[4-Oxy-cyclohexyl]-2-[4-methoxy-CH₂·CH₃·CH₃·CH₃·CH₃·CH₄·O·CH₄·O·CH₃·CH₄·O·CH₃·CH₄·O·CH₄·O·CH₃·CH₄·O·CH₃·CH₄·O·CH₄·O·CH₃·CH₄·O·CH₄ phenyl]-propan bei der Oxydation mit Chromsäure in Eisessig (v. Braun, A. 472, 69). — Öl. Kp₁₅: 205—210°.

 $Semicarbazon \quad C_{17}H_{25}O_2N_3 = H_2N \cdot CO \cdot NH \cdot N : C_6H_9 \cdot C(CH_3)_2 \cdot C_6H_4 \cdot O \cdot CH_3. \quad Nadeln \quad (aussian or constant)$ Methanol). F: 1840 (v. Braun, A. 472, 69).

8. Oxy-oxo-Verbindungen $C_{18}H_{26}O_2$.

1. 1-[2-Oxy-phenyl]-dodecen-(1)-on-(3), n-Nonyl-[2-oxy-styryl]-keton $C_{18}H_{26}O_2=H0\cdot C_6H_4\cdot CH\cdot CO\cdot [CH_2]_6\cdot CH_5$. B. Aus Salicylaldehyd und Methyl-n-nonyl-keton in waßrig-alkoholischer Natronlauge bei Zimmertemperatur (Heilbron, Irving, Soc. 1928, 2326). — Blättchen (aus Methanol). F: 79°.

2. 1-[4-Oxy-phenyl]-dodecen-(1)-on-(3), n-Nonyl-[4-oxy-styryl]-keton $C_{13}H_{35}O_3=H0\cdot C_6H_4\cdot CH\cdot CO\cdot [CH_3]_8\cdot CH_3.$

Dimeres n-Nonyl-[4-methoxy-styryl]-keton $C_{28}H_{40}O_4=(CH_2\cdot O\cdot C_6H_4\cdot CH:CH\cdot CO\cdot [CH_3]_2\cdot CH_3)_3$. B. Beim Kochen von Anisaldehyd mit Methyl-n-nonyl-keton in 1 % iger alkoholischer Kalilauge (Heilbron, Irving, Soc. 1928, 2324). — Nadeln (aus Alkohol). F: 120°.

9. Oxy-oxo-Verbindungen C_MH_MO₂.

 $1-[\alpha-Oxy-benzyl]-cycloheptadecanon-(2), [\alpha-Oxy-benzyl]-dihydrozibeton$ $I_{38}O_3 = H_3C \cdot [CH_3]_6 \cdot CH \cdot CH(OH) \cdot C_6H_5.$ B. Aus Dihydrozibeton (E II 7, 52) und Benz-C₂₄H₃₅U₂ = H₂C·[CH₂]₇·CO

aldehyd in wäßrig-alkoholischer Natronlauge, neben anderen Produkten (Ruzicka, Helv. 9, 246). — Nadeln (aus Petroläther). F: 113-1140.

10. Oxy-oxo-Verbindungen CasH40Oa.

1-[3-Oxy-phenyl]-nonadecen-(10)-on-(2), Campnospermonol $C_{15}H_{40}O_2=HO\cdot C_4H_4\cdot CH_3\cdot CO\cdot [CH_2]_7\cdot CH\cdot [CH_2]_7\cdot CH_3$. Zur Zusammensetzung und Konstitution vgl. Jones, Pr. roy. Soc. Queensland 45, 38; C. 1984 II, 3259; Chem. Abstr. 29 [1935], 4341. V. Bildet den Hauptbestandteil des oligen Exsudats von Campnospermum brevipetiolatum (Jones, Smith, Soc. 1928, 65). — Ol. Kp₅: 260° (unter teilweiser Zersetzung). D^{16,5}: 0,9454. ng: 1,4925.

Methyläther $C_{26}H_{42}O_2 = CH_3 \cdot O \cdot C_6H_4 \cdot CH_2 \cdot CO \cdot [CH_2]_7 \cdot CH \cdot [CH_2]_7 \cdot CH_3$. B. Beim Behandeln des öligen Exsudats von Campnospermum brevipetiolatum mit Dimethylsulfat und Natronlauge (Jones, Smith, Soc. 1928, 67). — Gelbliches Öl. Kp₈: 240°. D^{15,5}: 0,9342. n₅°: 1,4960. — Gibt bei der Oxydation mit Permanganat in Aceton 3-Methoxy-benzoesäure, Pelargonsäure, Azelainsäure und Ameisensäure (J., Sm.) sowie geringe Mengen Korksäure (J., C. 1934 II, 3259). Bei der Ozonspaltung in Chloroform entstehen Pelargonsäure, Pelargonaldehyd, Ameisensäure und andere Produkte (J., Sm.). Liefert bei der Reduktion mit Natrium und Alkohol 1-[3-Methoxy-phenyl]-nonadecen-(10)-ol-(2) (J., Sm.). Gibt bei der Hydrierung in Gegenwart von Platinoxyd in wasserfreiem Äther Hydrocampnospermonol-methyläther (S. 148) (J., Sm.). Bei der Reduktion mit amalgamiertem Zink und konz. Salzsäure bei Gegenwart von Eisessig bei 100° erhält man 1-[3-Methoxy-phenyl]-nonadecen-(10) (J., Sm.).

Acetat $C_{27}H_{42}O_3 = CH_3 \cdot CO \cdot O \cdot C_6H_4 \cdot CH_2 \cdot CO \cdot [CH_2]_7 \cdot CH \cdot [CH_2]_7 \cdot CH_3$. Kp₅: 255—260° (Jones, Smith, Soc. 1928, 67; vgl. J., Pr. roy. Soc. Queensland 45, 38; C. 1924 II, 3259). $D^{12,5}$: 0,9550. n_D^{10} : 1,489... Gibt bei der Hydrierung bei Gegenwart von Platinoxyd in wasserfreiem Äther Hydrocampnospermonol-acetat (S. 148).

 $\begin{array}{ll} \text{Oxim} & \mathrm{C_{ss}H_{41}O_{s}N} = \mathrm{HO}\cdot\mathrm{C_{6}H_{4}}\cdot\mathrm{CH_{2}}\cdot\mathrm{C(:N}\cdot\mathrm{OH)}\cdot[\mathrm{CH_{2}}]_{7}\cdot\mathrm{CH}\cdot\mathrm{CH}\cdot[\mathrm{CH_{2}}]_{7}\cdot\mathrm{CH_{2}}. & \mathrm{Kp_{5}}\colon \ 240^{\circ} \\ \text{(unter geringer Zersetzung)} & \text{(Jones, Smith, Soc. 1928, 67)}. & \mathrm{D^{1s,s}}\colon 0,9195. & \mathrm{n_{D}^{ss}}\colon 1,489. \end{array}$

Methyläther-oxim $C_{2a}H_{43}O_{2}N=CH_{3}\cdot O\cdot C_{a}H_{4}\cdot CH_{2}\cdot C(:N\cdot OH)\cdot [CH_{3}]_{7}\cdot CH:CH\cdot [CH_{2}]_{7}\cdot CH_{3}.$ $CH_{3}\cdot CH_{3}\cdot C$

11. Oxy-exe-Verbindungen $C_{27}H_{44}O_{2}$.

Cholesten-(5(6))-ol-(3)-on-(7), β -Oxy-cholestenol $C_{27}H_{44}O_{2}$, s. nebenstehende Formel, s. 4. Hauptabteilung, H_{20} Sterine.

CH · [OH2]3 · CH(CH3)2

12. Oxy-oxo-Verbindungen $C_{30}H_{50}O_{2}$.

 β -Amyranonol, Keto-dihydro- β -amyrin, β -Amyrinoxyd, Oxy- β -amyrin $C_{20}H_{20}O_3=HO\cdot C_{20}H_{40}O$ s. E II 6, 570.

f) Oxy-oxo-Verbindungen $C_n H_{2n-12} O_2$.

1. Oxy-oxo-Verbindungen C.H.O.

Bis-[2-chlor-3-oxo-inden-(1)-yi-(1)]-suifid, 2.2'- Dichlor - 3.3'- dioxo - diindenyi - (1.1')-suifid, Dichlordiindonylsulfid C₁₈H₈O₂Cl₂S = C₈H₄CO CCl₃CIC CO C₈H₄. Zur Konstitution vgl. Lindemann, Pabst, A. 462, 39. — B. Durch Einw. von 1 Mol Natriumsulfid auf 2 Mol 1.2-Dichlor-inden-(1)-on-(3) in Wasser + wenig Alkohol bei 50—60° (Brass, Mosl., B. 59, 1271). — Rote Nadeln (aus Alkohol). F: 200° (B., M.). Leicht löslich in Chloroform, Schwefelkohlenstoff, Benzol und Pyridin mit orangeroter Farbe, ziemlich leicht in Äther, Alkohol und Eisessig (B., M.). Leicht löslich in konz. Schwefelsäure mit olivgrüner Farbe, unlöslich in Natronlauge (B., M.). — Wird durch rauchende Salpetersäure bei gewöhnlicher Temperatur nicht verändert, beim Erwärmen völlig zersetzt (B., M.). Liefert beim Kochen mit Zinkstaub und Eisessig ,α.α'-Dioxy-diindenylen" (s. bei 2.3(CO); 5(CO)6-Dibenzoylen-1.4-dithiin, Syst. Nr. 2771) (B., M.). Gibt beim Erwärmen mit 1 Mol Natriumsulfid in Wasser auf 58° 2.3(CO); 5(CO)6-Dibenzoylen-1.4-dithiin (s. nebenstehende Formel; Syst. Nr. 2771) (B., M.). Gibt kein Oxim oder Hydrazon (B., M.). Bei kurzem Aufkochen mit Anilin erhält man Phenyl-bis-[2-ohlor-3-phenylimino-indenyl-(1)]-amin(Syst.Nr. 1873) (B., M.). — Gibt mit alkal. Na₂S₂O₄- Lösung eine weinrote Küpe (B., M.). — 2C₁₈H₈O₂Cl₂S + SnCl₄. Dunkelrote Krystalle (B., M.).

2. Oxy-oxo-Verbindungen $C_{10}H_4O_2$.

 dem Wasserbad (FUCHS, PIRAK, B. 59, 2460). Hellgelb bis gelblichbraun, hygroskopisch (aus Aceton beim Verdunsten). Leicht löslich in Wasser, Alkohol und Aceton. Leicht zersetzlich. Bläht sich bei starkem Erhitzen auf. Gegen Mineralsäuren ziemlich beständig. Addiert Brom in Tetrachlorkohlenstoff. Gibt mit Eisenchlorid eine blauviolette, auf Zusatz von Natriumacetat in Blaugrün übergehende Färbung. Die wäßr. Lösung reduziert Ammoniummolybdat und Silbernitrat. Liefert beim Behandeln mit überschüssigem wäßrigem Ammoniak 1-Aminonaphthol-(2). Gibt bei der Einw. von verd. Alkalilauge oder bei gelindem Erwärmen mit der berechneten Menge 2% igem Wasserstoffperoxyd 1.2-Dioxy-naphthalin. Liefert beim Erwärmen mit Phenylhydrazin in Wasser eine Verbindung C₂₂H₁₈N₄ (s. u.).

2 - 0xy - 1 - amino - 1.2 - dihydro - naphthalin - sulfonsäure - (1) $C_{10}H_{11}O_4NS = C(NH_4)(SO_4H) \cdot CH \cdot OH$

Verbindung C₂₂H₁₈N₄. B. In geringer Menge neben anderen Produkten bei der Einw. von Phenylhydrazin auf das Natriumsalz der 1.2-Dioxy-1.2-dihydro-naphthalin-sulfonsäure-(1) oder auf das Ammoniumsalz der 2-Oxy-1-amino-1.2-dihydro-naphthalin-sulfonsäure-(1) in wäßr. Lösung auf dem Wasserbad (Fuchs, Pirak, B. 59, 2461). — Gelbe Nadeln. F: 211—212°. Leicht löslich in Pyridin, sehr schwer in Wasser, Alkohol und Äther. Unlöslich in kalten Alkalilaugen und Säuren.

2. 4-Oxy-1-oxo-1.2-dihydro-naphthalin C₁₀H₄O₂, Formel I.

3. 7-Oxy-2-oxo-1.2-dihydro-naphthalin $C_{10}H_2O_2$, Formel II. 2.7 - Dioxy - 1.2 - dihydro - naphthalin - sulfonsäure - (2) $C_{10}H_{10}O_4S=$

 $HO \cdot C_0H_4 \stackrel{CH_2 \cdot C(OH) \cdot SO_0H}{CH = CH}$. — Natriumsalz Na $C_{10}H_0O_8S$. Bei 10-tägigem Kochen

von 2.7-Dioxy-naphthalin mit 2 Mol wäßr. NaHSO₃-Lösung unter wiederholtem Einleiten von Schwefeldioxyd (Fuchs, Stix, B. 55, 661, 667). Hellgelb, krystallin, sehr hygroskopisch. Reagiert in wäßr. Lösung gegen Lackmus neutral, gegen Methylorange schwach alkalisch. Löslich in Alkohol. Zersetzt sich bereits beim Lösen in Wasser merklich. Zerfällt beim Erhitzen teilweise in die Ausgangsstoffe; bläht sich bei stärkerem Erhitzen auf. Addiert in Chloroform-Lösung 1 Mol Brom. Liefert beim Erhitzen im Ammoniakstrom auf 100° das Natriumsalz der 7-Oxy-2-amino-1.2-dihydro-naphthalin-sulfonsäure-(2). Gibt mit Eisenchlorid eine rotviolette Färbung, die durch Natriumdicarbonat zerstört wird; mit Eisenchlorid und etwas Wasserstoffperoxyd entsteht eine braungrüne Färbung, die auf Zusatz von Dicarbonat in Rotbraun übergeht.

7-0xy-2-amino-1.2-dihydro-naphthalin-sulfonsäure-(2) $C_{10}H_{11}O_4NS = CH_2 \cdot C(NH_2) \cdot SO_3H$. — Natriumsalz $NaC_{10}H_{10}O_4NS$. B. Aus dem Natriumsalz CH_1O_4NS .

CH=CH
der 2.7-Dioxy-1.2-dihydro-naphthalin-sulfonsäure-(2) beim Erhitzen im Ammoniakstrom auf 100°
(Fuchs, Stix, B. 55, 662, 669). Dunkelbraun. Unlöslich in Äther. Zersetzt sich beim Aufbewahren. Gibt bei der Einw. von Wasser oder wäßr. Ammoniak 7-Amino-naphthol-(2) und etwas 2.7-Dioxy-naphthalin.

4. 4-Oxy-1-oxo-1.4-dihydro-naphthalin C.H.O., Formel III.

4-Oxy-1.1-bis-āthylsulfon-1.4-dihydro-naphthalin $C_{14}H_{18}O_8S_8 = C_8H_4$ $C(SO_8 \cdot C_2H_5)_8 \cdot CH$ B. Beim Kochen von 1.1-Bis-āthylsulfon-4-oxo-1.4-dihydro-naphthalin (E II 7, 656) mit Zink in Eisessig + Benzin (Rúcsei, B. 69, 1840). — Krystalle (aus Benzin). F: 91°. Leicht löalich

[Syst. Nr. 750

in Chloroform, Essigester, Bensin, Äther und warmem Alkohol. — Oxydiert sich in wäßrigalkoholischer Lösung an der Luft unter Rückbildung von 1.1-Bis-äthylsulfon-4-oxo-1.4-dihydronaphthalin.

3. Óxy-oxo-Verbindungen C₁₁H₁₀O₂.

- 1-[4-Methoxy-phenyl]-pentadien-(1.3)-al-(5), 4-Methoxy-cinnamylidenacetaldehyd C₁₂H₁₃O₃ = CH₃·O·C₄H₄·CH·CH·CH·CH·CH·CHO. B. In geringer Menge aus Anisaldehyd und Acetaldehyd in wäßrig-methylalkoholischer Natronlauge bei 5—10° (VORLÄNDER, GIESELER, J. pr. [2] 121, 238) oder aus 4-Methoxy-zimtaldehyd und Acetaldehyd in wäßrig-alkoholischer oder wäßrig-methylalkoholischer Natronlauge unterhalb 10° (V., G., J. pr. [2] 121, 242). Dickflüssiges gelbes Öl. Färbt sich an der Luft rasch braun; ist in Lösung einigermaßen haltbar. Wird durch ammoniakalische Silberoxyd-Lösung zu höherschmelzender 4-Methoxy-cinnamyliden-essigsäure oxydiert.
- 2. 1-Oxy-2-oxo-1-methyl-1.2-dihydro-naphthalin, 1-Methyl-1.2-naphthochinol C₁₁H₁₀O₂, Formel I (H 139; E I 562). Liefert beim Erwärmen mit Acetylchlorid im Rohr auf 100⁵ 4-Chlor-1-methyl-naphthol-(2)-acetat (FRIES, B. 54, 2929).

- 1-[1-Methyl-naphthyl-(2)-oxy]-2-oxo-1-methyl-1.2-dihydro-naphthalin, 1-Methyl-1.2-naphthochinoi-[1-methyl-naphthyl-(2)-äther] $C_{22}H_{18}O_2$, Formel II (X = H). Diese Konstitution kommt der E I 6, 319 beschriebenen Verbindung $C_{22}H_{18}O_3$ [Dehydro-1-methyl-naphthol-(2)] zu (Fries, Schimmelschmidt, A. 484 [1931], 259; vgl. a. Pummerer, Cherbullez, B. 47 [1914], 2957; 52 [1919], 1392). B. Aus 1-Brom-2-oxo-1-methyl-dihydro-naphthalin (E II 7, 320) und dem Natriumsalz des 1-Methyl-naphthols-(2) in Benzol (F., Sch., A. 484, 300). Hellgelbe Nadeln (aus Benzin + Benzol). F: 144° (F., Sch.).
- 1-Acetoxy-2-oxo-1-methyl-1.2-dihydro-naphthalin, 1-Methyl-1.2-naphthochinol-acetat $C_{12}H_{12}O_3 = O:C_{10}H_4(CH_2)\cdot O:CO\cdot CH_2$ (H 139). B. Aus 1-Brom-2-oxo-1-methyl-1.2-dihydro-naphthalin beim Erhitzen mit Silberacetat in Eisessig auf dem Wasserbad (Fries, Engel, A. 439, 240). Krystalle (aus Hexan). F: 130°.
- 6-Brom-1-[6-brom-1-methyl-naphthyl-(2)-exy]-2-oxo-1-methyl-1.2-dihydro-naphthalin, 6-Brom-1-methyl-1.2-naphthochinol-[6-brom-1-methyl-naphthyl-(2)-ather] $C_{22}H_{12}O_{2}Br_{3}$, Formel II (X = Br). Diese Konstitution kommt vermutlich der E I 6, 320 beschriebenen Verbindung $C_{22}H_{14}O_{3}Br_{3}$ [,,Dehydro-6-brom-1-methyl-naphthol-(2) vom Schmelz-punkt 1440''] zu (vgl. Fries, Schimmelsohmidt, A. 484 [1931], 259). Liefert beim Erwärmen mit Acetylchlorid im Wasserbad 6-Brom-2-acetoxy-1-methyl-naphthalin und 4-Chlor-6-brom-2-acetoxy-1-methyl-naphthalin (Fries, B. 54, 2930).
- 4.6-Dibrom-1-oxy-2-oxo-1-methyl-1.2-dihydro-naphthatin, 4.6-Dibrom-1-methyl-1.2-naphthochinol $C_{11}H_5O_2$ Br, Formel III. Diese Konstitution kommt der H 140 als 3.6-Dibrom-1-methyl-1.2-naphthochinol formulierten Verbindung zu (Fales, Ozhrake, A. 462, 2 Anm. 3).— Liefert beim Aufbewahren mit methylalkoholischer Natronlauge 6-Brom-4-methoxy-1-methyl-1.2-naphthochinol (Fa., Oz., A. 462, 5, 14).

3. 4-Oxy-2-oxo-1-methyl-1.2-dihydro-naphthalin C11H100, Formel IV.

6-Brom-1-nitro-4-oxy-2-oxo-1-methyl-1.2-dihydro-naphthalin, 6-Brom-4-oxy-1-methyl-1.2-naphthochinitrol $C_{11}H_0O_4NBr$, Formel V, ist desmotrop mit 6-Brom-1-nitro-2.4-dioxo-1-methyl-tetralin, E H 7, 638.

4. Oxy-oxo-Verbindungen $C_{12}H_{12}O_2$. When the special constraint the state of the state o

1. 3-Methyl-1-phonyl-pentin-(1)-ol-(3)-on-(4) $C_{12}H_{12}O_{2}=C_{4}H_{5}\cdot C:C\cdot C(CH_{5})(OH)\cdot CO\cdot CH_{5}$. B. Neben 3.4-Dioxy-3.4-dimethyl-1.6-diphonyl-hexadim-(1.5) bei 1-stdg. Kochen

von Diacetyl mit 1 Mol Phenylacetylenmagnesiumbromid in äther. Lösung (Wilson, Hyslop' Soc. 125, 1557). — Grüngelbe Flüssigkeit. Kp_{0,5}: 120°. Riecht angenehm nach Rosen und schmeckt brennend.

Semicarbazon $C_{13}H_{15}O_3N_3=C_6H_5\cdot C:C\cdot C(CH_3)(OH)\cdot C(CH_3):N\cdot NH\cdot CO\cdot NH_2$. Pulver (aus Alkohol). F: 171—172° (Wilson, Hyslop, Soc. 125, 1557).

2. 1-[4-Oxy-benzyliden]-cyclopentanon-(2) $C_{12}H_{12}O_2=CO\cdot CH$

HO-C₆H₄·CH:C CH₂·CH₃

1-[4-Äthoxy-benzyliden]-cyclopentanon-(2) $C_{14}H_{16}O_{3}=C_{2}H_{5}\cdot O\cdot C_{6}H_{4}\cdot CH:C_{8}H_{6}O.$ B. Bei der Kondensation von Cyclopentanon mit 4-Äthoxy-benzaldehyd (Vorländer, Ph. Ch. 105, 242). — F: 146°; ist bis 176° krystallin-flüssig.

5. Oxy-oxo-Verbindungen C₁₂H₁₄O₂.

- 1. 5 Methyl 1 [2 oxy phenyl] hexadien (1.4) on (3), [β.β-Dimethyl-vinyl] [2-oxy-styryl]-keton, Isobutenyl-[2-oxy-styryl]-keton, α-Isopropyliden α'- salicyliden aceton C₁₃H₁₄O₂ = HO·C₄H₄·CH·CH·CO·CH·C(CH₂)₂ (E I 562). B. In geringer Menge neben Salicylidenaceton und 2.2'-Dioxy-distyryl-keton beim Behandeln von Salicylaklehyd mit Mesityloxyd in wäßrig-alkoholischer Natronlauge (McGookin, Sinclair, Soc. 1928, 1176). Existiert in einer gelben und einer farblosen Form; beide Formen schmelzen bei 141°. Löst sich in konz. Alkalilauge mit gelber Farbe; nach längerer Einw. von Salicylaldehyd auf diese Lösung scheidet sich das rote Natriumsalz des 2.2'-Dioxy-distyrylketons aus. Beim Kochen mit konz. Salzsäure tritt keine Farbänderung ein.
- 2. 1-Methyl-2-benzyliden-cyclopentanol-(4)-on-(3) $C_{13}H_{14}O_{2} = C_{4}H_{5}\cdot CH:CC_{CO}$. B. Beim Aufbewahren von 1-Methyl-cyclopentanol-(4)-on-(3) mit Benzaldehyd in methylalkoholischer Kalilauge (Stauding er, Ruzicka, Helv. 7, 441). Dickes gelbliches Öl. Kp₁: 140°.

6. Oxy-oxo-Verbindungen $C_{14}H_{16}O_2$.

1. 6-Methyl - 1-phenyl - heptadien - (1.3)-ol - (6)-on - (5), [α -Oxy-isopropyl]-[δ -phenyl - α . γ -butadienyl]-keton $C_{14}H_{16}O_{2}=C_{6}H_{5}\cdot CH:CH:CH:CH:CH:CO:C(CH_{2})_{2}\cdot OH.$ B. Aus Zimtaldehyd und 2-Methyl-butanol-(2)-on-(3) in wäßrig-alkoholischer Natronlauge (SCHEIBLER, FISCHER, B. 55, 2919). — Hellgelbe Blättchen (aus Alkohol + Wasser). F: 109—110°.

Acetat $C_{16}H_{18}O_3 = C_6H_5 \cdot CH : CH \cdot CH : CH \cdot CO \cdot C(CH_3)_8 \cdot O \cdot CO \cdot CH_3$. Blaßgelbe Krystallmasse (aus Petroläther oder verd. Alkohol). F: 58—59° (Scheibler, Fischer, B. 55, 2919). Kp₁₈: 210—215°.

2. 1-Methyl-4-[4-oxy-benzyliden]-cyclohexanon-(3) $C_{14}H_{16}O_{3} = HO \cdot C_{6}H_{4} \cdot CH : C \cdot CH_{3} \cdot CH \cdot CH_{3}$.

1-Methyl-4-anisyliden-cyclohexanon-(3) C₁₈H₁₈O₂=CH₂·O·C₈H₄·CH:C₆H₇(CH₂):O. Link sdrehende Form (H 142). B. Aus rechtsdrehendem 1-Methyl-cyclohexanon-(3) und Anisaldehyd in alkoholisch-alkalischer Lösung oder in Natriummethylat-Lösung (Vorländer, B. 58, 135). — Löslich in Äther. — Reagiert nicht mit Anisaldehyd in alkoholisch-alkalischer Lösung bei Zimmertemperatur, gibt aber mit Anisaldehyd in absol. Alkohol beim Einleiten von Chlorwasserstoff unter Kühlung 1-Methyl-2.4-dianisyliden-cyclohexanon-(3) und reagiert analog mit 4-Oxy-benzaldehyd. — Das Hydrochlorid ist blau.

7. Oxy-oxo-Verbindungen $C_{10}H_{10}O_{2}$.

1.7.7-Trimethyl-2 (oder 3)-phenyl-bicyclo-[1.2.2]-heptanol-(2 oder 3)-on-(3 oder 2), 2 (oder 3)-Phenyl-camphanol-(2 oder 3)-on-(3 oder 2), 2 (oder 3)-Oxy-2 (oder 3)-phenyl-camphanon-(3 oder 2) $C_{18}H_{20}O_{2}$, Formel I oder II. B. Durch Einw. von Phenylmagnesiumbromid auf Campherchinon (Rupe, Wirz, Verh. naturf. Ges. Basel 38, 166, 174; C. 1928 I, 908; % wgl. Palmén, Ann. Acad. Sci. fenn. [A]

Palmén, Ann. Acad. Sci. fenn. [A]

Weight of the second seco

bei der Einw. von Phosphortribromid neben einem bromhaltigen Öl geringe Mengen einer Verbindung $C_{ss}H_{40}O_4$ vom Schmelzpunkt 156—158° (R., W.). Gibt bei der Einw. von PCl₅ bei Zimmertemperatur 2 (oder 3)-Chlor-2 (oder 3)-phenyl-camphanon-(3 oder 2) (R., W.). Liefert bei der Reduktion mit Natrium in siedendem absolutem Alkohol festes und flüssiges 2 (oder 3)-Phenyl-camphanol-(3 oder 2) (R., W.).

2 (oder 3) - Methoxy - 2 (oder 3) - phenyl - camphanon - (3 oder 2) $C_{17}H_{22}O_3 = C_8H_{16} \cdot O \cdot CH_3$. B. Bei folgeweisem Kochen von 2 (oder 3) - Oxy - 2 (oder 3) - phenyl - campha-

non-(3 oder 2) mit Natrium in Toluol und mit Methyljodid (RUPE, Wirz, Verh. naturf. Ges. Basel 38, 176; C. 1928 I, 908). — Dickflüssig. Kp₁₀: 161—163°.

2(oder 3)-Athoxy-2(oder 3)-phenyl-camphanon-(3 oder 2) $C_{10}H_{24}O_2$ =

 C_8H_{16} $C(C_8H_8) \cdot O \cdot C_2H_8$. B. Analog der vorangehenden Verbindung in Benzol-Lösung (RUPE,

Wirz, Verh. naturf. Ges. Basel 38, 176; C. 1928 I, 908). — Kp₁₀: 165—166⁶. Erstarrt nach einigen Monaten teilweise. D₀⁶: 1,0600. n_p⁸: 1,5284.

8. Oxy-oxo-Verbindungen C17H22O2.

1. 2-Oxo-1-[2-oxy-benzyl]-dekahydronaphthalin, 1-[2-Oxy-benzyl]-dekalon-(2) C₁₇H₂₁O₂, Formel I. B. Beim Kochen von 1-Salicyliden-dekalon-(2) mit Zinkstaub in Eisessig (J. D. RIEDEL, D. R. P. 422036; C. 1926 I, 2841; Frdl. 15, 1505). — Krystalle (aus Methanol). F: 110°. Leicht löslich in den gebräuchlichen Lösungsmitteln.

2. 7.7-Dimethyl-1-phenacyl-bicyclo-[1.2.2]-heptanol-(2), 1¹-Benzoyl-camphanol-(2), 1¹-Benzoyl-borneol, ω-Benzoyl-borneol C₁₇H₁₂O₂, Formel II. B. Beim Schütteln von 1¹-Benzoyl-bornylbromid mit überschüssigem Silberacetat in Kisessig (Lipp, Küppers, Holl, B. 60, 1581; L., Quaedvlieg, B. 62, 2319). Aus Camphen beim Behandeln mit etwas weniger als 1 Mol Benzoylchlorid und Aluminiumchlorid in Schwefelkohlenstoff bei —10° und Kintragen des Reaktionsgemisches in Eis (L., K., H., B. 60, 1576, 1579). — Blättchen (aus Ligroin und verd. Methanol). F: 85—86° (L., K., H.). Spaltet beim Erhitzen auf ca. 155° teilweise Wasser ab (L., K., H.). Gibt bei der Oxydation mit Chromsäure in Eisessig ω-Benzoyl-campher (L., K., H.). Liefert beim Erhitzen mit Kaliumdisulfst auf 180—185° 2¹-Benzoyl-camphen und andere Produkte (L., K., H., B. 60, 1580; ASAHINA, SANO, B. 78 [1940], 750). Die konzentrierte ätherische Lösung gibt mit NaHSO₃-Lösung eine krystalline Anlagerungsverbindung (L., K., H.). Liefert beim Kochen mit Acetanhydrid 1¹-Benzoyl-bornylacetat und andere Produkte (L., K., H.). Reaktion mit Acetylchlorid: L., K., H.

Acetat, ω -Benzoyl-bornylacetat $C_{19}H_{24}O_{9}=C_{9}H_{5}\cdot CO\cdot CH_{2}\cdot C_{7}H_{8}(CH_{9})_{9}\cdot O\cdot CO\cdot CH_{2}$. B. Beim Kochen von 1¹-Benzoyl-borneol mit Acetanhydrid, neben anderen Produkten (Lipp, Küppers, Holl, B. 60, 1580). — Kp_{1,8}: 179—184°.

ω-Benzoyi-borneoi-oxim $C_{17}H_{20}O_2N = C_0H_0 \cdot C(:N \cdot OH) \cdot CH_0 \cdot C_7H_0(CH_0)_0 \cdot OH$. Krystalle (aus verd. Methanol). F: 159—160° (LIPP, KÜPPERS, HOLL, B. 60, 1579).

ω-Benzoyl-borneol-semicarbazon $C_{18}H_{35}O_3N_3=C_0H_5\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_3\cdot C_7H_6(CH_3)_3\cdot OH$. Nadeln (aus verd. Alkohol). Zersetzt sich bei 212—214° (korr.) (Lipp, Küppers, Holl, B. 60, 1579).

3. 1.7.7 – Trimethyl – 3-[4 – oxy – benzyl] – bicyclo – [1.2.2] – beptanon – (2), 3-[4-Oxy-benzyl]–d-camphanon–(2), 3-[4-Oxy-benzyl]–d-campher $C_{17}H_{22}O_{27}$ Formel III. B. Durch Diazotieren von 3-[4-Amino-benzyl]-d-campher in schwefelsauer Lösung und nachfolgendes Kochen (Haller, Boudin, A. ch. [9] 17, 20). — Krystalle (aus Toluel). F: 184°. Unlöslich in Wasser, löslich in Alkohol, Ather und Benzol. [α]_p: +409° (Alkohol; p = 1,6).

3-[4-Methoxy-benzyl]-d-campher, 3-Anisyl-d-campher $C_{16}H_{14}O_{8}=C_{6}H_{14}$ CO (H 143). Ultraviolett-Absorptionsspektrum der Lösung in Alkohol: Haller, Lucas, C.r. 176, 46. [α] $_{9}^{9}$: + 120 6 (Alkohol; c=1), + 91,3 6 (Benzol; c=1), + 61,9 6 (Schwefelkohlenstoff; c=1), + 138,1 6 (Cyclohexan; c=1) (H., L., C.r. 180, 1805); Rotations-dispersion (4358—6708 Å) in den genannten Lösungsmitteln bei 19 6 : H., L., C.r. 180, 1805;

2-OXY-NAPHTHALDEHYD-(1)

Rotationsdispersion von geschmolzenem 3-Anisyl-d-campher bei 86°, 148° und 257°: L., Biquard, C. r. 189, 1078. Piezoelektrizität: L., C. r. 178, 1892.

9. Oxy-oxo-Verbindungen CaoHasOa.

Dimeres Carvon, Biscarvon C₁₀H₁₂O₂, Formel IV. B. Beim Kochen von d-Carvon mit 1¹/₂ Mol Natriumamid in Äther (RUZICKA, Helv. 8, 787, 792). — Zähe gelbliche Masse. Krystallisiert nicht bei längerem Aufbewahren. Kp₁₂: 225°.

Biscarvon - acetat $C_{22}H_{20}O_3=CH_3\cdot CO\cdot O\cdot C_{20}H_{27}O$. Zähe gelbe Masse. Kp₁₁: ca. 225° (Ruzicka, Helv. 8, 792). Liefert ein amorphes Semicarbazon.

Biscarvon-semicarbazon $C_{21}H_{21}O_2N_3 = HO \cdot C_{20}H_{27} : N \cdot NN \cdot CO \cdot NH_2$. Krystalle (aus Alkohol). F: 194—195° (Zers.) (RUZICKA, Helv. 3, 792).

10. Oxy-oxo-Verbindungen CzoH45O.

 α -Amyrenonyl-acetat, Keto- α -amyrin-acetat, Oxy- α -amyrin-acetat $C_{33}H_{36}O_3=CH_3\cdot CO\cdot O\cdot C_{26}H_{47}O$ s. H 6, 594; E II 6, 569.

g) Oxy-oxo-Verbindungen $C_nH_{2n-14}O_2$.

1. Oxy-oxo-Verbindungen $C_{11}H_{\bullet}O_{\bullet}$.

1. 2-Oxy-1-formyl-naphthalin, 2-Oxy-naphthaldehyd-(1), Naphthol-(2)-aldehyd-(1) C₁₁H₃O₂, s. nebenstehende Formel (H 143; E I 564). B. Durch Einleiten von Chlorwasserstoff in eine Lösung bzw. Suspension von β-Naphthol und Zinkcyanid in Äther und Kochen des entstandenen Imidhydrochlorids mit Wasser; Ausbeute 85% (Adams, Levine, Am. Soc. 45, 2377). Beim Erhitzen von β-Naphthol mit N.N'-Diphenyl-formamidin auf 130° und Kochen des entstandenen 2-Oxy-naphthaldehyd-(1)-anils (Syst. Nr. 1604) mit 10% iger Natronlauge (Shorsmith, Haldane, Soc. 125, 2405, 2406). — Härte der Krystalle: Reis, Zimmermann, Z. Kr. 57, 485; Ph. Ch. 102, 329.

Wird in Gegenwart von Platinmohr in Eisessig bei Zimmertemperatur zu 2-Oxy-1-methylnaphthalin hydriert (Windaus, Schiele, B. 56, 847). Liefert mit Jod und Kalilauge 1-Jodaphthol-(2) und braune schmierige Produkte (W., Sch.). Gibt beim Erhitzen mit Salpetersäure (D: 1,52) in Eisessig auf 100° x-Nitro-2-oxy-naphthaldehyd-(1) (Morgan, Reeves, Soc. 121, 6). Gibt bei der Kondensation mit Dithiobrenzcatechin in Gegenwart von Chlorwasserstoff in Äther die Verbindung der Formel V (Syst. Nr. 2749) (Hurtley, Smiles, Soc. 1927, 537).

2-Oxy-naphthaldehyd-(1) kondensiert sich mit ¹/₂ Mol Aceton beim Sättigen der alkoh. Lösung mit Chlorwasserstoff zu 6-[β-{2-Oxy-naphthyl-(1)}-vinyl]-[naphtho-2'.1':2.3-pyrylium-chlorid] (Formel VI; Syst. Nr. 2412) (Dilthey, Mitarb., J. pr. [2] 114, 188; Diokinson, Heilbon, Soc. 1927, 19), mit überschüssigem Aceton in wäßrig-alkoholischer Kalilauge bei Siedetemperatur zu 6-Methyl-4-acetonyl-[naphtho-2'.1':2.3-pyran] (Formel VII; Syst. Nr. 2467) und einem gelben amorphen hochschmelzenden Produkt (Diok., H., Soc. 1927, 17). Gibt mit ¹/₂ Mol Methyläthylketon beim Einleiten von Chlorwasserstoff in Alkohol (Dil., Mitarb.) oder in Eisessig (De. J. indian chem. Soc. 4, 140; C. 1927 II, 1701) 5-Methyl-6-[β-{2-oxy-naphthyl-(1)}-vinyl]-[naphtho-2'.1':2.3-pyryliumchlorid] oder 6-[α-Methyl-β-{2-oxy-naphthyl-(1)}-vinyl]-[naphtho-2'.1':2.3-pyryliumchlorid] (Syst. Nr. 2412), mit überschüssigem Methyläthylketon in Gegenwart von konz. Schwefelsäure und Überchlorsäure 5.6-Dimethyl-[naphtho-2'.1':2.3-pyryliumperchlorat] oder 6-Āthyl-[naphtho-2'.1':2.3-pyry-liumperchlorat] oder 6-Āthyl-[naphtho-2'.1':2.3-pyry-

liumperchlorat] oder 6-Äthyl-[naphtho-2'.1': 2.3-pyry-liumperchlorat] (Syst. Nr. 2388) (Dil., Mitarb.). Liefert mit Diäthylketon in Chlorwasserstoff-Eisessig bei 0° Bis - [3-methyl - (naphtho - 1'.2': 5.6-pyran)]-spiran-(2.2') (Formel VIII; R und R' = CH₂) (Syst. Nr. 2685) (Hell-

BEON, DICKINSON, Soc. 1927, 1703; DILTHEY, WÜBREN, B. 61, 967); reagiert analog mit Methylisobutylketon in alkoh. Salzsäure bei 0° unter Bildung von [Naphtho-1'.2':5.6-pyran]-[3-isopropyl-(naphtho-1'.2':5.6-pyran)]-spiran-(2.2') [Formel VIII; $R = CH(CH_2)_2$; R' = H] (Syst. Nr. 2685)

(Heilbeon, Irving, Soc. 1929, 942). Gibt mit Cyclohexanon und Chlorwasserstoff in Alkohol 4 - [2 - Oxy - naphthyl-(1) - methylen] - 7.8-benzo - 1.2.3.4 - tetrahydroxanthyliumchlorid (Formel I; Syst. Nr. 2412) (DICKINSON, HEILBEON, Soc. 1927, 1704; DILTHEY, WÜBKEN, B. 61, 966). 2-Oxy-naphthaldehyd-(1) gibt mit 1 Mol Dibenzylketon in Gegenwart von Piperidin in siedendem Alkohol 5-Phenyl-6-benzyliden [naphtho-2'.1': 2.3-pyran] (Formel II; Syst. Nr. CI, CH · C10He · OM

2377), mit ¹/_a Mol Dibenzylketon in kalter alkoholischer Salzsäure Bis - {3 - phenyl - [naphtho - 1'.2': 5.6 - pyran]} - spiran-(2.2') (Formel VIII auf S. 171; \hat{R} und $R' = C_6H_5$) und geringe Mengen

5-Phenyl-6-benzyl-[naphtho-2.1: 2.3-pyryliumchlorid] (Diox., I. H., O'Brien, Soc. 1928, 2082; vgl. Dir., W.).
2-Oxy-naphthaldehyd-(1) gibt mit Benzylidenaceton in Alkohol beim Sättigen mit Chlor-

wasserstoff 6-Styryl-[naphtho-2'.1':2.3-pyryliumchlorid] (Syst. Nr. 2393) (Dickinson, Heil-BRON, Soc. 1927, 18). Beim Behandeln einer alkoh. Lösung von 2-Oxy-naphthaldehyd-(1) und Salicylidenaceton mit Überchlorsäure und mit Chlorwasserstoff bei 0° erhält man [Benzo-1'.2':5.6-pyran]-[naphtho-1'.2':5.6-pyran]-spiran-(2.2') (Formel III; Syst. Nr. 2682) (Dick., HeIL., Soc. 1927, 1702); analog verlaufen die Reaktionen mit Salicylidenmethylbenzylketon (S. 227), Isobutyl-[2-oxy-styryl]-keton und n-Nonyl-[2-oxy-styryl]-keton (S. 165) (H., I., Soc. 1929, 940, 942). Liefert beim Erhitzen mit ω -Phenacetyl-acetophenon (E II 7, 699) in absol. Alkohol bei Gegenwart von Piperidin 5-Benzoyl-6-benzyliden-[naphtho-2'.1': 2.3-pyran] (?) (Formel IV; Syst. Nr. 2473) (LOVETT, ROBERTS, Soc. 1928, 1978).

Bei der Kondensation mit α-Methyl-acetessigester in Ameisensäure unter Zusatz von etwas Uberchlorsäure und Sättigung mit Chlorwasserstoff entsteht 5-Methyl-6- $\{\beta$ -[2-oxy-naphthyl-(1)]vinyl}-[naphtho-2'.1':2.3-pyryliumperchlorat] (Syst. Nr. 2412); analog verlaufen die Reaktionen mit α-Benzyl-acetessigester und mit α-Phenyl-acetessigsaure-nitril (Löwenbein, Katz, B. 59, 1381). Beim Kochen mit Benzoisonitril in Alkohol erhält man $1-[\alpha-Oxo-\beta-phenylimino-äthyl]-naphthol-(2) (Syst. Nr. 1604) (Passerini, G. 56, 367). Liefert bei der Kondensation mit 6.7-Diacet$ oxy-cumaranon bei Gegenwart von wenig Sodalösung in Alkohol und nachfolgenden Behandlung mit siedendem Acetanhydrid 6.7-Diacetoxy-2-[2-acetoxy-naphthyl-(1)-methylen]-cumaranon (FEIST, SIEBENLIST, Ar. 1927, 209).

Gibt mit Pararosanilinschwefligsäure von verschiedenem Schwefeldioxydgehalt orangerote Niederschläge (Shoesmith, Sosson, Hetherington, Soc. 1927, 2222).

2-Methoxy-naphthaldehyd-(1) $C_{12}H_{10}O_2 = CH_2 \cdot O \cdot C_{10}H_4 \cdot CHO$ (H 145; E I 564). B. Entsteht in quantitativer Ausbeute beim Sättigen eines Gemisches aus Methyl-β-naphthyl-äther, Zinkcyanid, Aluminiumchlorid und Benzol mit Chlorwasserstoff und Zersetzen des entstandenen Imidhydrochlorids mit Salzsäure (Adams, Montgomery, Am. Soc. 46, 1521). — Kondensiert sich nicht mit Anthranilsäure (EKELEY, ROGERS, SWISHER, Am. Soc. 44, 1756).

H. 145, Z. 19-18 v. u. vertausche die Worte "(Syst. Nr. 4172)" und "vom Schmelzpunkt 219-220° (Syst. Nr. 3635)".

2-Methoxy-naphthaldehyd-(1)- α -oxim-N-methyläther, N-Methyl-2-methoxy-naphthaldoxim-(1) $C_{13}H_{13}O_2N=CH_3\cdot O\cdot C_{10}H_5\cdot CH:N(:0)\cdot CH_3$. B. Entsteht neben dem O-Methyläther aus α -2-Methoxy-naphthaldoxim-(1) beim Kochen mit Methyljodid und Natriumäthylat-Lösung (Brady, Goldstein, Soc. 1927, 1962, 1963) oder durch Einw. von Dimethylsulfat und wäßrigmethylalkoholischer Natronlauge bei Zimmertemperatur (B., Chokshi, Soc. 1929, 2273). Nadeln mit 1H₂O (aus Benzol); wird im Vakuum über Calciumchlorid wasserfrei. Schmilzt wasserhaltig bei 88—89°, wasserfrei bei 118—119° (B., G.). — Zerfällt beim Kochen mit Säuren in 2-Methoxy-naphthaldehyd-(1) und N-Methyl-hydroxylamin (B., G.).

HO·C₁₀H₄·CH 2-Oxy-naphthaldehyd-(1)- β -oxim, β -2-Oxy-naphthaldoxim-(1) $C_{11}H_{\bullet}O_{\bullet}N=$ $HO \cdot N$

(H 146; E I 564; im E I als höherschmelzende Form bezeichnet). Zur Konfiguration vgl. Passerini, G. 56, 125 und die bei α-Benzaldoxim (E II 7, 167) zitierte Literatur. — Liefert beim Kochen mit Kaliumcyanid in verd. Alkohol oder beim Acetylieren mit Acetanhydrid und Behandeln des Reaktionsprodukts mit Sodalösung 2-Oxy-naphthonitril-(1) (P.).

2-Oxy-naphthaldehyd-(1)- β -oximacetat $C_{13}H_{13}O_5N=HO\cdot C_{16}H_5\cdot CH:N\cdot O\cdot CO\cdot CH_5$. B. Beim Behandeln von 2-Oxy-naphthaldehyd-(1)- β -oxim mit Acetaahydrid (Lindenann, Köntteer, Romanoff, A. 456, 293). — Nadeln (aus Benzol oder Alkohol). F: 124°. — Liefert

beim Erhitzen im Vakuum auf 120—135° unter Essigsäureabspaltung [Naphtho-1'.2':4.5-isoxazol] und 2-Oxy-naphthonitril-(1). Beim Behandeln mit 2 n-Natronlauge entsteht nur [Naphtho-1'.2':4.5-isoxazol].

2-Methoxy-maphthaldehyd-(1)- α -oxim, α -2-Methoxy-naphthaldoxim-(1) $C_{12}H_{11}O_2N=CH_3\cdot O\cdot C_{10}H_6\cdot CH$, von Brady, Goldstein, Soc. 1927, 1962 auf Grund früherer Literatur $N\cdot OH$

als 2-Methoxy-naphthaldehyd-(1)-anti-oxim bezeichnet; zur Konfiguration vgl. die bei α-Benzaldoxim (E II 7, 167) zitierte Literatur. — B. Beim Behandeln von 2-Methoxy-naphthaldehyd-(1) mit Hydroxylaminhydrochlorid und wäßrig-alkoholischer Natronlauge (B., G., Soc. 1927, 1962). — Tafeln (aus Benzol). F: 154—155° (B., G.). — Gibt beim Kochen mit Methyljodid in Natriumāthylat-Lōsung 2-Methoxy-naphthaldehyd-(1)-oxim-N-methyläther und geringere Mengen 2-Methoxy-naphthaldehyd-(1)-oxim-O-methyläther, während bei der Einw. von Dimethylsulfat und wäßrig-methylalkoholischer Natronlauge bei Zimmertemperatur etwa gleiche Mengen O- und N-Methyläther entstehen (B., Chokshi, Soc. 1929, 2273). — C₁₂H₁₁O₂N + HCl. Hellgelbes Pulver. F: 145—147° (Zers.) (B., G.). — Natriumsalz. Krystalle. Sehr schwer löglich in Wasser (B., G.).

- 2-Methoxy-naphthaldehyd-(1)- α -oxim-0-methyläther, α -0-Methyl-2-methoxy-naphthaldexim-(1) $C_{13}H_{13}O_3N=CH_3\cdot O\cdot C_{10}H_6\cdot CH:N\cdot O\cdot CH_3$. B. s. im vorangehenden Artikel. Entsteht ferner aus 2-Methoxy-naphthaldehyd-(1) und O-Methyl-hydroxylamin in Alkohol (Brady, Goldstein, Soc. 1927, 1963). Prismen (aus Alkohol). F: 65°.
- 2-Methoxy-naphthaldehyd-(1)- α -oxim-0-acetat $C_{14}H_{13}O_3N=CH_3\cdot O\cdot C_{10}H_4\cdot CH:N\cdot O\cdot CO\cdot CH_3$. B. Aus α -2-Methoxy-naphthaldoxim-(1) und Acetanhydrid (Brady, Goldstein, Soc. 1927, 1962). Nadeln (aus Alkohol). F: 79—80°. Gibt bei der Hydrolyse mit 2n-Natronlauge α -2-Methoxy-naphthaldoxim-(1).

Azin des 2-Äthoxy-naphthaldehyds-(1) $C_{2e}H_{24}O_{2}N_{2} = C_{2}H_{5} \cdot O \cdot C_{10}H_{6} \cdot CH \cdot N \cdot N \cdot CH \cdot C_{10}H_{6} \cdot O \cdot C_{2}H_{5}$ (H 146). F: 1860 (Vorländer, *Ph. Ch.* 105, 242).

6-Nitro-2-methoxy-naphthaldehyd-(1)
C₁₂H₂O₄N, Formel V. Diese Konstitution kommt
der H 146 als x-Nitro-2-methoxy-naphthaldehyd-(1) beschriebenen Verbindung zu
(Ruggli, Burckhardt, Helv. 28 [1940], 448).

x-Nitro-2-oxy-naphthaldehyd-(1) $C_{11}H_7O_4N=HO\cdot C_{10}H_5(NO_2)\cdot CHO$. B. Beim Erhitzen von 2-Oxy-naphthaldehyd-(1) mit Salpetersäure (D: 1,52) in Eisessig auf 100° (Moegan, Reeves, Soc. 121, 6). — Blaßgelbe Nadeln (aus Benzol oder verd. Alkohol). F: 186—187°. — Natriumsalz. Orangegelb. Schwer löslich.

2. 3-Oxy-1-formyl-naphthalin, 3-Oxy-naphthaldehyd-(1) C₁₁H₈O₂, Formel VI.

3-Methoxy-naphthaldehyd-(1) C₁₂H₁₀O₂ = CH₃·O·C₁₀H₆·CHO. B. Entsteht in geringer Menge bei der Hydrierung von 3-Methoxy-naphthoesäure-(1)-chlorid in Gegenwart von Palladium-Bariumsulfat in Xylol bei 170° (Shoesmith, Rubli, Soc. 1927, 3102). — Tafeln (aus Petroläther). F: 60° (Sh., R.). — Liefert bei der Einw. von 66% iger wäßriger Kalilauge [3-Methoxy-naphthyl-(1)]-carbinol (Sh., R.). Gibt mit Pararosanilinschwefligsäure von verschiedenem Schwefeldioxyd-Gehalt rote Färbungen (Sh., Sosson, Hetherington, Soc. 1927, 2223). — Das 4-Nitrophenylhydrazon schmilzt bei 197° (Sh., R.).

Oxim $C_{12}H_{11}O_2N = CH_3 \cdot O \cdot C_{10}H_6 \cdot CH : N \cdot OH$. Nadeln (aus verd. Alkohol). F: 102° (Shoesmith, Rubli, Soc. 1927, 3102).

Semicarbazon $C_{13}H_{13}O_2N_3=CH_3\cdot O\cdot C_{10}H_4\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Nadeln (aus verd. Alkohol). F: 200° (Shoesmith, Rubli, Soc. 1927, 3102).

3. 4-Oxy-1-formyl-naphthalin, 4-Oxy-naphthaldehyd-(1), Naphthol-(1)-aldehyd-(4) C₁₁H₂O₂, Formel VII (H 146; E I 565). B. Beim Sättigen einer Lösung bzw. Suspension von α-Naphthol und Zinkcyanid in Äther oder Chloroform mit Chlorwasserstoff und Kochen des entstandenen Imidhydrochlorids mit 30% igem Alkohol (ADAMS, LEVINE, Am. Soc. 45, 2377).

4-Methoxy-naphthaldehyd-(1) $C_{12}H_{10}O_2 = CH_3 \cdot O \cdot C_{10}H_6 \cdot CHO$ (H 147; E I 565). B. Beim Behandeln von 4-Oxy-naphthaldehyd-(1) mit Dimethylsulfat in wäßr. Kalilauge auf dem Wasserbad (Brady, Goldstein, Soc. 1927, 1963) oder besser in methylalkoholischer Kalilauge (Ausbeute 80%) (Ruhemann, Levy, B. 53, 267). Beim Sättigen einer Lösung von Methyl-α-naphthyläther und wasserfreier Blausäure in Benzol mit Chlorwasserstoff in Gegenwart von Aluminium-chlorid und Zersetzen des entstandenen Imidhydrochlorids mit heißem Wasser (Bretscher, Rule, Spence, Soc. 1928, 1500). — Kp₁₅: 204—205° (v. Auwers, Frühling, A. 422, 198, 200); Kp₁₆: 200—202° (Ruh., L.). $D_4^{a,b}$: 1,1879; $D_4^{a,7}$: 1,1829; $n_{\alpha}^{a,1}$: 1,6436; $n_{\alpha}^{a,5}$: 1,6551;

 $\mathbf{n}_{\mathbf{G}}^{\mathbf{m}_{\mathbf{G}}}$: 1,6897; $\mathbf{n}_{\mathbf{G}}^{\mathbf{m}_{\mathbf{G}}}$: 1,6415; $\mathbf{n}_{\mathbf{G}}^{\mathbf{m}_{\mathbf{G}}}$: 1,6530; $\mathbf{n}_{\mathbf{G}}^{\mathbf{m}_{\mathbf{G}}}$: 1,6875 (v. Au., F.). — Liefert bei der Einw. von Natrium und überschüssigem Essigester β - [4 - Methoxy - naphthyl - (1)] - acrylsäureäthylester (Ruh., L.).

- 4-Äthexy-naphthaidehyd-(1) $C_{12}H_{12}O_3 = C_2H_3 \cdot O \cdot C_{10}H_4 \cdot CHO$ (H 147; E I 565). Liefert bei der Kondensation mit 1-Acetyl-naphthol-(2) in siedender wäßrig-alkoholischer Natronlauge hauptsächlich 4'-Äthoxy-5.6; 2'.3'-dibenzo-flavanon, in absolut-alkoholischer Natronlauge hauptsächlich α -[4-Äthoxy-naphthyl-(1)]- β -[2-oxy-naphthoyl-(1)]-äthylen (Tambor, Plattner, Zäch, Helv. 9, 465, 466).
- 4-Carbomethexyoxy-naphthaldehyd-(1) $C_{12}H_{10}O_4 = CH_2 \cdot O_2C \cdot O \cdot C_{10}H_4 \cdot CHO$. B. Beim Behandeln von 4-Oxy-naphthaldehyd-(1) mit Chlorameisensäureäthylester in alkal. Lösung (Lampe, Frenklowna, Roczniki Chem. 9, 460; C. 1929 II, 1917). Nadeln (aus Alkohol). F: 124° bis 126°. Die Lösung in konz. Schwefelsäure ist gelb und fluoresciert grünlich.
- 4-Methoxy-naphthaldehyd-(1)-oxim-N-methyläther, N-Methyl-4-methoxy-naphthaldexim-(1) C₁₂H₁₂O₂N = CH₂·O·C₁₀H₄·CH:N(:O)·CH₂. B. Entsteht neben α-O-Methyl-4-methoxy-naphthaldoxim-(1) beim Kochen von α-4-Methoxy-naphthaldoxim-(1) mit Methyl-jodid in Natriumäthylat-Losung (Brady, Goldstein, Soc. 1927, 1964).—Ist dimorph. Krystallisiert aus heißem Benzol in gelben Prismen vom Schmelzpunkt 158—159°; diese gehen beim Aufbewahren unter der Mutterlauge in graue Tafeln über, die sich beim Umkrystallisieren oder Erhitzen auf 100° wieder in die gelben Prismen zurückverwandeln.
- 4-Methoxy-naphthaldehyd-(1)- α -oxim, α -4-Methoxy-naphthaldoxim-(1) $C_{12}H_{11}O_2N=CH_2\cdot O\cdot C_{10}H_4\cdot CH$ (von Brady, Goldstein, Soc. 1927, 1963 als 4-Methoxy-naphth-N:OH
- aldehyd-(1)-anti-oxim bezeichnet). Zur Konfiguration vgl. die bei α-Benzaldoxim (E II 7, 167) zitierte Literatur. B. Aus 4-Methoxy-naphthaldehyd-(1) und Hydroxylaminhydrochlorid in wäßr. Natronlauge (Brady, Goldstein, Soc. 1927, 1963). Nadeln (aus Benzol). F: 107—108°. Liefert beim Kochen mit Methyljodid in Natriumäthylat-Lösung O-Methyl-α-4-methoxy-naphthaldoxim-(1) und N-Methyl-4-methoxy-naphthaldoxim-(1). C₁₂H₁₁O₂N + HCl. Gelblichgrünes Pulver. F: 144—145° (Zers.).
- 4-Methoxy-naphthaldehyd-(1)- α -oxim-0-methyläther, 0-Methyl- α -4-methoxy-naphthaldoxim-(1) $C_{13}H_{13}O_2N=CH_3\cdot\dot{O}\cdot C_{10}H_6\cdot CH:N\cdot\dot{O}\cdot CH_3$. Entsteht neben dem N-Methyläther beim Kochen von α -4-Methoxy-naphthaldoxim-(1) mit Methyljodid in Natriumäthylat-Lösung (Brady, Goldstein, Soc. 1927, 1964). Nadeln (aus wäßr. Alkohol). F: 38—39°.
- 4-Methoxy-naphthaldehyd-(1)- α -oxim-0-acetat $C_{14}H_{12}O_3N = CH_3 \cdot O \cdot C_{10}H_4 \cdot CH : N \cdot O \cdot CO \cdot CH_3$. B. Aus α -4-Methoxy-naphthaldoxim-(1) und Acetanhydrid (Brady, Goldstein, Soc. 1927, 1963). Nadeln (aus Alkohol). F: 102° . Gibt beim Erwärmen mit 2n-Natronlauge α -4-Methoxy-naphthaldoxim-(1).
- Azin des 4-Äthoxy-naphthaldehyds-(1) $C_{10}H_{14}O_{2}N_{2}=C_{2}H_{5}\cdot O\cdot C_{10}H_{6}\cdot CH:N\cdot N:CH\cdot C_{10}H_{6}\cdot O\cdot C_{2}H_{5}$ (H 147). F: 214° (VORLÄNDER, Ph. Ch. 105, 242).

4. 5-Oxy-1-formyl-naphthalin, 5-Oxy-naphthaldehyd-(1) C11H2O2, Formel I.

5-Methoxy-naphthaldehyd-(1) $C_{12}H_{10}O_2 = CH_3 \cdot O \cdot C_{16}H_4 \cdot CHO$. B. Durch Hydrierung von 5-Methoxy-naphthoylchlorid-(1) in Gegenwart von Palladium-Bariumsulfat in Xylol bei 170° (Shorsmith, Rubli, Soc. 1926, 3242). — Hellgelbe Tafeln (aus Petroläther). F: 66° (Sh., R., Soc. 1926, 3242). — Gibt bei der Einw. von 66% iger Kalilauge und etwas Alkohol [5-Methoxy-naphthyl-(1)]-carbinol (Sh., R., Soc. 1927, 3104). — Gibt mit Pararosanilinschwefligsäure von verschiedenem Schwefeldioxyd-Gehalt rote Färbungen (Sh., Sosson, Hetherington, Soc. 1927, 2223). — Das 4-Nitro-phenylhydrazon schmilzt bei 246° (Sh., R., Soc. 1926, 3242).

Oxim $C_{18}H_{11}O_2N=CH_3\cdot O\cdot C_{10}H_3\cdot CH:N\cdot OH$. Nadeln (aus Wasser oder verd. Alkohol). F: 104^0 (Shoesmith, Rubli, Soc. 1926, 3242).

Semicarbazon $C_{18}H_{13}O_8N_8=CH_3\cdot O\cdot C_{10}H_4\cdot CH:N\cdot NH\cdot CO\cdot NH_8$. Nadeln (aus verd. Essigsäure). F: 246° (Shoesmith, Rubli, Soc. 1926, 3242).

1-Oxy-2-formyl-naphthalin, 1-Oxy-naphthaldehyd-(2), Naphthol-(1)-aldehyd-(2) C₁₁H₆O₂, Formel II (H 148; E I 566). B. Beim Erhitzen von α-Naphthol mit N.N'-Diphenyl-formamidin auf 95° und Kochen des Reaktionsprodukts mit 10%iger Natronlauge (Shoesmith, Haldane, Soc. 125, 2406). — Beim Einleiten von Chlorwasserstoff in eine

Lösung von 1-Oxy-naphthaldehyd-(2) und Benzoylacetonitril in Eisessig entsteht 3-Benzoyl-7.8-benzo-cumarin (Ghosal, J. indian chem. Soc. 3, 109; C. 1926 II, 1646). — Gibt mit Pararosanilinschwefligsäure von verschiedenem Schwefeldioxyd-Gehalt orangerote Niederschläge (Sh., Sosson, Hetherington, Soc. 1927, 2222). — Natriumsalz. Gelbgrüne Krystalle (Sh., Ha.).

2. Oxy-exe-Verbindungen $C_{12}H_{10}O_2$.

- 1. 2-Oxy-1-acetyl-naphthalin, Methyl-[2-oxy-naphthyl-(1)]-keton, 1-Acetyl-naphthol-(2), 1-Aceto-naphthol-(2), 2-Oxy-1-acetonaphthon $C_{12}H_{10}O_2$, Formel III auf S. 174 (El 566). B. Aus β -Naphthylacetat durch 1-stdg. Kochen mit 1 Tl. Aluminiumchlorid in Schwefelkohlenstoff, Abdestillieren des Schwefelkohlenstoffs und 4-stdg. Erhitzen auf 120° (FRES, B. 54, 711); Isolierung erfolgt über das Natriumsalz; Ausbeute 60—65% (F., Ehlers, B. 56, 1305; F., Engel, A. 439, 243). — Verbrennungswärme bei konstantem Volumen: 1398,2 kcal/Mol (Klaproth in Landolt-Börnst. E II, 1640). Leicht löslich in Alkohol, Benzol und Äther (F.). Löst sich in konz. Schwefelsäure mit gelber Farbe (F.). — Liefert beim Eindampfen einer Lösung in wäßr. Natronlauge auf dem Wasserbad [3-Oxy-naphthalin-(1)]-[4.5-benzo-cumaron-(2)]-indolignon (Formel IV auf S. 174, Syst. Nr. 2542) (F., E.). Gibt bei der Einw. von Brom in Chloroform 1-Brom-naphthol-(2) und geringe Mengen anderer Produkte (F.). Bei der Einw. von Benzaldehyd in alkoholisch-wäßriger Natronlauge auf dem Wasserbad entsteht 5.6-Benzo-flavanon (Syst. Nr. 2470) (Tambor, Plattner, Zich, Helv. 9, 463). Kondensation mit 4-Athoxy-naphthaldehyd-(1) s. bei diesem (S. 174). Liefert bei der Einw. von Natrium und Essigester, zuletzt bei Siedetemperatur, 1-Acetoacetyl-naphthol-(2) (WITTIG, A. 446, 174). Bei 4-stündigem Erhitzen mit Acetanhydrid und Natriumacetat erhält man 2-Methyl-3-acetyl-5.6-benzo-chromon und wenig 2-Methyl-5.6-benzo-chromon (W., A. 446, 180). Die blaßgelbe Lösung in Acetanhydrid färbt sich auf Zusatz von Pyroboracetat orangerot und liefert bei schwachem Erwärmen den Diacetylborsäureester des 1-Acetyl-naphthols-(2) (DIMROTH, A. 446, 116). Reagiert mit diazotierter Sulfanilsäure in verd. Natronlauge unter Abspaltung der Acetylgruppe und Bildung von Benzol-sulfonsäure-(1)-(4 azo 1)-naphthol-(2) (FRIES, B. 54, 713). — Die Alkalisalze sind intensiv gelb und in Wasser leicht löslich (F., B. 54, 712).
- 2-Methoxy-1-acetyl-naphthalin, Methyl-[2-methoxy-naphthyl-(1)]-keton, 1-Acetyl-naphthol-(2)-methyläther, 2-Methoxy-1-acetonaphthon $C_{12}H_{12}O_2=CH_3\cdot O\cdot C_{10}H_3\cdot CO\cdot CH_3$ (H 152; E I 566). B. Aus 2-Oxy-1-acetyl-naphthalin und Dimethylsulfat in alkal. Lösung (Noller, Adams, Am. Soc. 46, 1895; Fries, B. 54, 712). Beim Behandeln von 2-Methoxy-naphthalin mit Acetanhydrid und Aluminiumchlorid in Schwefelkohlenstoff unter Kühlung (Ausbeute 70%) (Noller, Adams, Am. Soc. 46, 1892, 1893) oder mit Acetanhydrid und konz. Schwefelsäure bei Zimmertemperatur und nachfolgenden Zersetzen mit kaltem Wasser, neben 2-Methyl-3-acetyl-5.6-benzo-chromon (Schweider, Kunau, B. 54, 2305).— F: 59° (Fries). Siedet oberhalb 320° (SCH., K.); Kp₂: 158° (korr.) (N., A.). Leicht löslich in Alkohol, Eisessig, Äther und Benzol; löst sich in konz. Schwefelsäure mit gelber Farbe (F.).— Liefert bei der Einw. von Natrium und Essigester, zuletzt in der Wärme, 2-Methoxy-1-acetoacetyl-naphthalin (Wittig, Blumenthal, B. 60, 1094).
- 2-Äthoxy-1-acetyl-naphthalin, Methyl-[2-äthoxy-naphthyl-(1)]-keton, 1-Acetyl-naphthol-(2)-äthyläther $C_{14}H_{14}O_2=C_2H_5\cdot O\cdot C_{10}H_4\cdot CO\cdot CH_3$ (H 152; E I 566). B. Aus 1-Acetyl-naphthol-(2) und Äthylbromid in Gegenwart von Natriumäthylat (FRIES, SCHIMMELSCHMIDT, B. 58, 2844). Prismen (aus Alkohol). F: 61°.
- 2-Carbāthoxyoxy-1-acetyl-naphthalin $C_{18}H_{14}O_4=C_2H_5\cdot O_3C\cdot O\cdot C_{10}H_4\cdot CO\cdot CH_3$. B. Beim Schütteln einer Lösung von 1-Acetyl-naphthol-(2) in 2n-Natronlauge mit Chlorameisensäure-äthylester (Fries, B. 54, 712). Nadeln (aus Alkohol). F: 60°. Leicht löslich in Benzol und Äther, ziemlich leicht in Eisessig, schwer in Alkohol und Benzin. Löst sich in konz. Schwefelsäure mit gelber Farbe. Ziemlich beständig gegen Sodalösung und verd. Natronlauge. Liefert mit Brom in Chloroform 2-Carbāthoxyoxy-1-bromacetyl-naphthalin.
- [1-Acetyl-naphthyl-(2)-oxy]-essigsäure, Glykolsäure-[1-acetyl-naphthyl-(2)-äther] $C_{14}H_{12}O_4=CH_3\cdot CO\cdot C_{10}H_4\cdot O\cdot CH_3\cdot CO_3H$. B. Beim Kochen einer Lösung von 1-Acetyl-naphthol-(2) in wäßr. Natronlauge mit Chloressigsäure (Faies, B. 54, 714). Blättohen (aus Benzol). F: 145°. Leicht löslich in Alkohol, Äther und Eisessig, schwerer in Benzol und Wasser, schwer in Benzin, Leicht löslich in verd. Sod lösung und Ammoniak. Liefert beim Erhitzen auf 180—210° β -Naphthoxyessigsäure und 3-Methyl-4.5-benzo-cumaron (Syst. Nr. 2370).

Diacetylborsäureester des 1-Acetyl-naphthols-(2) $C_{16}H_{15}O_6B=(CH_3\cdot CO\cdot O)_2B\cdot O\cdot C_{10}H_4\cdot CO\cdot CH_3$. B. Aus 1-Acetyl-naphthol-(2) bei gelindem Erwärmen mit Pyroboracetat in Acetanhydrid (Diaboth, A. 446, 116). — Orangegelbe Krystalle.

Methyl-[2-oxy-naphthyl-(1)]-ketoxim, 2-Oxy-1-acetyl-naphthalin-oxim $C_{12}H_{11}O_2N=HO\cdot C_{10}H_4\cdot C(CH_3):N\cdot OH.$ B. Aus 1-Acetyl-naphthol-(2) und Hydroxylaminhydrochlorid in

siedender wäßriger Natriumacetat-Lösung (LINDEMANN, KÖNITZER, ROMANOFF, A. 456, 309). — Nadeln (aus Benzol oder Chloroform). F: 134°. Gibt beim Verreiben mit 2 Tln. Acetanhydrid 2-Oxy-1-acetyl-naphthalin-oximacetat, beim Behandeln mit Acetanhydrid und kons. Schwefelsäure 2-Acetoxy-1-acetyl-naphthalin-oximacetat.

- 2-Oxy-1-acetyl-naphthalin-oximacetat C₁₄H₁₅O₂N = HO·C₁₆H₄·C(CH₃):N·O·CO·CH₂.

 B. Beim Verreiben von Methyl-[2-oxy-naphthyl-(1)]-ketoxim mit 2 Tln, Acetanhydrid (Lindemann, Könitzer, Romanoff, A. 456, 309). Krystalle (aus Benzol + Benzin). F: 94°. Leicht löslich in Alkohol, Benzol, Chloroform, Aceton und Eisessig, schwer in Benzin und Wasser. Liefert bei langsamem Erhitzen über den Schmelzpunkt oder bei der Einw. von Natronlauge unter Abspaltung von Essigsäure 2-Methyl-[naphtho-1'.2':4.5-oxazol] (Formel I; Syst. Nr. 4198) (L., K., R., A. 456, 288, 310).
- 2-Acetoxy-1-acetyl-naphthalin-oximacetat C₁₆H₁₈O₄N = CH₃·CO·O·C₁₆H₄·C(CH₃):N·O·CO·CH₃. B. Beim Behandeln von Methyl-[2-oxy-naphthyl-(1)]-ketoxim mit Acetanhydrid und wenig konz. Schwefelsäure (Lindemann, Könitzer, Romanoff, A. 456, 309). Nadeln (aus Alkohol oder Eisessig). F: 226°. Leicht löslich in heißem Eisessig und Alkohol, schwer in Benzol und Toluol.

Methyl-[2-oxy-naphthyl-(1)]-keton-hydrazon, 2-Oxy-1-acetyl-naphthalin-hydrazon $C_{12}H_{12}ON_2=HO\cdot C_{10}H_6\cdot C(CH_8):N\cdot NH_2.$ B. Aus 1-Acetyl-naphthol-(2) und überschüssigem Hydrazinhydrat in Alkohol (Fries, Schimmelschmidt, B. 58, 2838).—Grünlichgelb schimmernde Blättchen (aus Alkohol). F: 130°. — Liefert bei Einw. von konz. Schwefelsäure 3-Methyl-4.5-benzo-indazol (Formel II; Syst. Nr. 3486).

2 - Carbäthoxyoxy-1- bromacetyl-naphthalin, 1-Bromacetyl-naphthol-(2)-0-carbonsäure-äthylester $C_{15}H_{15}O_4Br=C_2H_5\cdot O_2\dot{C}\cdot O\cdot \dot{C}_{10}H_3\cdot CO\cdot CH_2Br$. B. Aus 2-Carbāthoxyoxy-1-acetyl-naphthalin und Brom in Chloroform (FRIES, B. 54, 713). — Tafeln (aus Benzin). F: 79°. — Beim Kochen der alkoholisch-wäßrigen Lösung mit Silbernitrat scheidet sich Silberbromid ab.

- 2. 4-Oxy-1-acetyl-naphthalin, Methyl-[4-oxy-naphthyl-(1)]-keton, 4-Acetyl-naphthol-(1), 4-Aceto-naphthol-(1), 4-Oxy-1-acetonaphthon $C_{12}H_{10}O_2$, Formel III (E I 566). B. Beim Kochen des salzsauren Ketimids (s. u.) mit Wasser (Houben, B. 59, 2889).
- 4-Methoxy-1-acetyl-naphthalin, Methyl-[4-methoxy-naphthyl-(1)]-keton, 4-Acetyl-naphthol-(1)-methyläther, 4-Methoxy-1-acetonaphthon $C_{13}H_{12}O_3=CH_3\cdot O\cdot C_{10}H_4\cdot CO\cdot CH_3$ (H 148; E I 567). B. Aus Methyl-α-naphthyl-āther, Acetanhydrid und Sulfoessigsäure bei Zimmertemperatur (SCHNEIDER, KUNAU, B. 54, 2304). Beim Kochen von [4-Methoxy-naphthyl-(1)]-propiolsäure mit Wasser (RUHEMANN, LEVY, B. 53, 270). Prismen (aus Petroläther), gelbliche Blätter (aus verd. Alkohol). F: 70—71° (SCH., K.), 72—73° (R., L.). Kp₁₅: 224—225° (R., L.). Leicht löslich in Benzol und siedendem Petroläther; unlöslich in Alkalien (R., L.). Verbindungen mit Aluminiumbromid: $C_{13}H_{12}O_2 + AlBr_3$. Gelbe Krystalle (aus Benzol) (Pfeiffer, Haack, A. 460, 174). $C_{13}H_{12}O_2 + 2$ AlBr₃ + C_6H_6 . Gelbe Krystalle (aus Benzol) + Ligroin). Gibt beim Kochen mit Benzol und nachfolgenden Zersetzen mit Wasser 4-Acetyl-naphthol-(1) (Pf., H.). Pikrat $C_{13}H_{12}O_3 + C_6H_3O_7N_8$. Rote Nadeln. F: 119—121° (SCH., K.).
- 4-Äthoxy-1-acetyl-naphthalin, Methyl-[4-äthoxy-naphthyl-(1)]-keton, 4-Acetyl-naphthol-(1)-äthyläther, 4-Äthoxy-1-acetonaphthon C₁₄H₁₄O₂ = C₂H₅·O·C₁₀H₆·CO·CH₅ (H 148; E I 567). B. In geringer Menge beim Sättigen einer Mischung aus Äthyl-α-naphthyl-äther, Acetonitril, Zinkchlorid und wenig absol. Äther mit Chlorwasserstoff und Kochen des Reaktionsprodukts mit Wasser (Houben, Fischer, B. 60, 1773). Krystalle (aus Methanol). F: 77° bis 79°.

Methyl-[4-oxy-naphthyl-(1)]-ketimid, 4-Oxy-1-acetyl-naphthalin-imid $C_{12}H_{11}ON = HO \cdot C_{10}H_{6} \cdot C(:NH) \cdot CH_{2}$. B. Das Hydrochlorid entsteht beim Einleiten von Chlorwasserstoff in eine Lösung von α -Naphthol und Acetonitril in absol. Äther unter Eiskühlung, neben dem Hydrochlorid des Acetimino- α -naphthyläthers (Houben, B. 59, 2888). — Unlöslich in Wasser, Alkohol und Äther. Reagiert basisch. — $C_{12}H_{11}ON + HCl$. Grüne Nadeln (aus Eisessig). Zersetzt sich von 200° an und schmilzt unter Dunkelfärbung bei 251°. An der Luft haltbar.

Methyl-[4-methoxy-naphthyl-(1)]-ketoxim, 4-Methoxy-1-acetyl-naphthalin-exim $C_{13}H_{13}O_2N=CH_3\cdot O\cdot C_{10}H_4\cdot C(CH_3):N\cdot OH.$ B. Durch Kochen von Methyl-[4-methoxy-naphthyl-(1)]-keton mit Hydroxylaminhydrochlorid und Bariumcarbonat in Alkohol (Schneider, Kunau, B. 54, 2305). — Blättchen (aus verd. Alkohol). Schmilzt unschaf bei 122—127°.

4-Oxy-1-chloracetyl-naphthalin, 4-Chloracetyl-naphthol-(1), ω -Chlor-4-oxy-1-acetonaphthon $C_{12}H_{2}O_{2}Cl = HO \cdot C_{10}H_{2} \cdot CO \cdot CH_{2}Cl$. Das E I 567 unter dieser Formel aufgeführte 4-Chloracetyl-naphthol-(1)(?) von Madinavertia, Puyal (C. 1919 III, 789) hat nicht diese Konstitution (vgl. a. Houben, Fischer, B. 60, 1773, 1775).

B. Beim Einleiten von Chlorwasserstoff in eine Lösung von α-Naphthol und Chloracetonitril in Äther unter Eiskühlung und Kochen des entstandenen salzsauren Ketimids (s. u.) mit verd. Essigsäure oder mit Wasser (Houben, B. 59, 2890; H., Fischer, B. 60, 1762; Dey, Rajagopalan, Ar. 1989, 388). — Krystalle (aus Benzol), Nadeln (aus Alkohol). F: 185° (H.), 184° (D., R.). Unlöslich in heißem Wasser und Petroläther, löslich in Alkohol, Äther und heißem Benzol; löslich in Natronlauge, unlöslich in Säuren (H.).

- 4-Methoxy-1-chloracetyl-naphthalin, 4-Chloracetyl-naphthol-(1)-methyläther, ω -Chloracetyl-nacetonaphthon $C_{13}H_{11}O_2Cl=CH_3\cdot O\cdot C_{10}H_3\cdot CO\cdot CH_3Cl$ (E I 567). Die Angaben von Madinaveitia, Puyal (C. 1919 III, 789) beziehen sich nicht auf 4-Methoxy-1-chloracetyl-naphthalin (Beilstein-Redaktion). B. 4-Methoxy-1-chloracetyl-naphthalin entsteht bei der Behandlung von α -Naphthol-methyläther mit Chloracetonitril, Aluminiumchlorid und Chloraceserstoff in Äther und Hydrolyse des entstandenen Imid-hydrochlorids mit Wasser (Dey, Rajagopalan, Ar. 1939, 389). Nadeln (aus Alkohol). F: 75°.
- 4-Äthoxy-1-chloracetyl-naphthalin, 4-Chloracetyl-naphthol-(1)-äthyläther, ω-Chloracetyl-naphthol $C_{14}H_{13}O_2Cl=C_2H_5\cdot O\cdot C_{10}H_6\cdot CO\cdot CH_2Cl$ (Ε I 567). Die Angaben von Madinaveitia, Puyal (C. 1919 III, 789) beziehen sich nicht auf 4-Äthoxy-1-chloracetyl-naphthalin (Beilstein-Redaktion). B. 4-Äthoxy-1-chloracetyl-naphthalin entsteht beim Einleiten von Chlorwasserstoff in ein Gemisch von Äthyl-α-naphthyl-äther, Chloracetonitril und Zinkchlorid in Äther und Kochen des Reaktionsprodukts mit Wasser (Houben, Fischer, B. 60, 1772). Nadeln (aus Alkohol oder Aceton). F: 132—132,5°. Löslich in Benzol, Chloroform, Aceton und Eisessig, schwer löslich in Alkohol und Äther, unlöslich in Wasser und Benzin. Löst sich in konz. Schwefelsäure mit tiefgelber Farbe.
- ω-Chlor-4-oxy-1-acetonaphthon-imid $C_{12}H_{10}ONCl = HO \cdot C_{10}H_6 \cdot C(:NH) \cdot CH_2Cl.$ B. s. o. bei 4-Oxy-1-chloracetyl-naphthalin. $C_{12}H_{10}ONCl + HCl.$ Gelbe Krystalle (Houben, B. 59, 2890).
- 4-Oxy-1-trichloracetyl-naphthalin, 4-Trichloracetyl-naphthol-(1), ω.ω.ω-Trichlor-4-oxy-1-acetonaphthon $C_{12}H_7O_2Cl_3=HO\cdot C_{10}H_6\cdot CO\cdot CCl_3$. B. Beim Sättigen einer Mischung von α-Naphthol, Trichloracetonitril und Zinkchlorid in Äther mit Chlorwasserstoff und Kochen des entstandenen salzsauren Ketimids (s. u.) mit Wasser (Houben, Fischer, B. 60, 1774). Blaßgelbe Krystalle (aus Benzol). F: 100—101°. Unlöslich in Wasser und Petroläther. Die Lösungen in hydroxylfreien Medien wie Äther, Benzol, Aceton und Chloroform sind fast farblos, die Lösungen in Alkoholen sind deutlich gelb und werden auf Zusatz von Mineralsäuren heller. Löst sich in konz. Schwefelsäure mit tiefgelber Farbe, in Pyridin und in ca. 5 % iger alkoholischer Natronlauge mit gelber, in ca. 5 % iger wäßriger Natronlauge mit gelber, sofort in Grün übergehender Farbe; sehr verd. Lösungen in wäßr. Alkohol färben sich auf Zusatz von etwas Natronlauge sofort gelb. Liefert bei der Einw. von Natronlauge 4-Oxy-naphthoesäure-(1).
- 4 Äthoxy 1 trichloracetyl naphthalin, 4 Trichloracetyl naphthol (1) äthyläther, $\omega.\omega.\omega$ Trichlor 4 äthoxy-1-acetonaphthon $C_{14}H_{11}O_2Cl_3=C_2H_5\cdot O\cdot C_{10}H_6\cdot CO\cdot CCl_8$. B. Beim Sättigen eines Gemisches von 1-Äthoxy-naphthalin, Trichloracetonitril und Zinkchlorid in Äther mit Chlorwasserstoff und Zersetzen des Reaktionsproduktes mit siedendem Wasser (Houben, Fischer, B. 60, 1772). Blaßgelbe Krystalle (aus Petroläther). F: 74—74,5°. Löslich in den gebräuchlichen organischen Lösungsmitteln, in der Wärme auch in Petroläther. Gibt bei der Einw. von Natronlauge 4-Äthoxy-naphthoesäure-(1).
- ω.ω.ω-Trichlor-4-oxy-1-acetonaphthon-imid $C_{12}H_8$ ONCl $_3=H$ O· $C_{10}H_8$ · C(:NH)·CCl $_3$. B. s. o. bei Oxy-1-trichloracetyl-naphthalin. Hydrochlorid. Orangerotes bis zinnoberrotes Krystallpulver. Löst sich mit gelber Farbe in Alkohol und Eisessig, etwas schwerer in Aceton und Chloroform; die Lösung in Pyridin ist fast farblos (Houben, Fischer, B. 60, 1773). Bei Luftabschluß haltbar; zerfließt an der Luft unter Hydrolyse zu 4-Oxy-1-trichloracetyl-naphthalin und Ammoniumchlorid.
- 4-Äthoxy-1-bromacetyl-naphthalin, 4-Bromacetyl-naphthol-(1)-äthyläther, ω -Brom-4-äthoxy-1-acetonaphthon $C_{14}H_{13}O_2Br=C_2H_5\cdot O\cdot C_{10}H_6\cdot CO\cdot CH_2Br$. B. Beim Sättigen eines Gemisches von 1-Äthoxy-naphthalin, Bromacetonitril und Zinkchlorid in Äther mit Chlorwasserstoff und Hydrolyse des entstandenen salzsauren Ketimids mit siedendem Wasser oder mit warmem Wasser in Gegenwart von Chloroform (Houben, Fischer, B. 60, 1772, 1773). Prismen (aus Aceton). F: 120—121°.

Imid C₁₄H₁₄ONBr = C₂H₅·O·C₁₀H₆·C(:NH)·CH₂Br. B. s. im vorangehenden Artikel. — Hydrochlorid. Citronengelbes Pulver. Zersetzt sich bei ca. 150° (HOUBEN, FISCHER, B. 60, 1773). Unlöslich in Äther und Benzol, löslich in Alkohol, Pyridin und Eisessig mit hellgelber Farbe; an der Luft beständig.

3. 1-Oxyacetyl-naphthalin , Oxymethyl- α -naphthyl-keton $C_{12}H_{10}O_2=C_{10}H_7\cdot CO\cdot CH_1\cdot OH$.

1-Methoxyacetyl-naphthalin, Methoxymethyl- α -naphthyl-keton $C_{13}H_{13}O_3=C_{10}H_7\cdot CO\cdot CH_3\cdot O\cdot CH_3\cdot B$. Durch Umsetzung von α -Naphthylmagnesiumbromid mit Methoxyacetonitril in absol. Ather unter Eiskühlung und Zersetzung des Reaktionsprodukts mit Eis und Schwefelsäure (RIDGWAY, ROBINSON, Soc. 125, 219). — Hellgelbes viscoses Öl. Kp₁₃: 184—186°. Leicht löslich in den meisten organischen Lösungsmitteln.

Semicarbazon $C_{14}H_{18}O_2N_3=C_{10}H_7\cdot C(CH_2\cdot O\cdot CH_3):N\cdot NH\cdot CO\cdot NH_2$. Nadeln (aus verd. Alkohol). F: 164° (RIDGWAY, ROBINSON, Soc. 125, 219).

4. 1-Oxy-2-acetyl-naphthalin, Methyl-[1-oxy-naphthyl-(2)]-keton, 2-Acetyl-naphthol-(1), 2-Aceto-naphthol-(1), 1-Oxy-2-acetonaphthon C₁₂H₁₀O₂, Formel I (H 149; E I 567). B. Beim Erhitzen von α-Naphthylacetat mit der gleichen Gewichtsmenge Aluminiumchlorid auf 125°, neben wenig 2.4-Diacetyl-naphthol-(1) (FRIES, B. 54, 711). — Verbrennungswärme bei konstantem Volumen: 1391,5 kcal/Mol (KLAPBOTH in Landoli-Börnst. E II, 1640).

I.
$$OH$$
 OH OH OH OO CO CH₃

Liefert beim Kochen mit 1 Mol Natronlauge unter Durchleiten von kohlendioxydfreier Luft oder besser von Sauerstoff [3-Oxy-naphthalin-(1)]-[6.7-benzo-cumaron-(2)]-indolignon (Formel II; Syst. Nr. 2542) und Essigsäure; ein geringer Überschuß an Alkali verhindert die Reaktion (Fries, Leue, B. 55, 753, 757). Beim Aufbewahren mit konz. Schwefelsäure erfalt man 1-Oxy-2-acetyl-naphthalin-sulfonsäure-(4) (Fries, Schimmelschmidt, B. 58, 2844). Liefert bei der Einw. von Brom in Chloroform 4-Broma-2-bromacetyl-naphthol-(1) (Fries, Freilstedt, B. 54, 720). Gibt bei der Einw. von Natrium und Essigester, zuletzt bei Siedetemperatur, 2-Acetoacetyl-naphthol-(1) (Wittig, A. 446, 173). Bei 25-stdg. Erhitzen mit Acetanhydrid und Natriumacetat entsteht 2-Methyl-3-acetyl-7.8-benzo-chromon (W., A. 446, 180). Liefert bei ca. 30-stdg. Erhitzen mit Natrium-phenylacetat und Acetanhydrid 4-Methyl-3-phenyl-7.8-benzo-cumarin (Bargellin, G. 55, 947; R. A. L. [6] 2, 266). Die Lösung in Acetanhydrid färbt sich auf Zusatz von Pyroboracetat gelb und liefert den Diacetylborsäureester des 2-Acetyl-naphthols-(1) (Dimroth, A. 446, 116).

Magnesiumsalz. Grünlichgelbe Nadeln. Färbt sich beim Erhitzen auf 100° citronengelb (Zetzsche, Silbermann, Viell, Helv. 8, 600). Leicht löslich in siedendem Xylol, ziemlich leicht in siedendem Chloroform, schwer in Alkohol und Äther, unlöslich in Ligroin und Wasser. — Verbindung $Cl_4Sb\cdot O\cdot C_{10}H_6\cdot CO\cdot CH_3$. B. Beim Kochen von 1-Oxy-2-acetyl-naphthalin mit 3 Tln. Antimonpentachlorid in Chloroform unter Ausschluß von Feuchtigkeit (Pfeiffer, Z. anorg. Ch. 133, 106). Braungelbe Krystalle.

1-Methoxy-2-acetyl-naphthalin, 2-Acetyl-naphthol-(1)-methyläther, 1-Methoxy-2-acetonaphthon $C_{13}H_{12}O_2 = CH_3 \cdot O \cdot C_{10}H_6 \cdot CO \cdot CH_3$. B. Beim Schütteln von 2-Acetyl-naphthol-(1) mit Dimethylsulfat und 2n-Natronlauge bei gewöhnlicher Temperatur (Fries, B. 54, 711). — Tafeln (aus verd. Alkohol). F: 49°. Sehr leicht löslich in den gewöhnlichen Lösungsmitteln. Löst sich in konz. Schwefelsäure mit gelber Farbe.

Diacetylborsäureester des 2-Acetyl-naphthols-(1) $C_{16}H_{18}O_6B = (CH_3 \cdot CO \cdot O)_8B \cdot O \cdot C_{10}H_8 \cdot CO \cdot CH_8$. B. Aus 2-Acetyl-naphthol-(1) beim Aufbewahren mit Pyroboracetat in Acetanhydrid (DIMEOTH, A. 446, 116). — Honiggelbe, grün fluorescierende Prismen.

Azin des 1-Oxy-2-acetyl-naphthalins, Methyl-[1-oxy-naphthyl-(2)]-ketazin $C_{24}H_{20}O_3N_3==HO\cdot C_{10}H_6\cdot C(CH_3):N\cdot N:C(CH_3)\cdot C_{10}H_6\cdot OH$ (E I 567). Rote Nadeln (aus Benzol). Schmilzt unter Zersetzung oberhalb 300° (Fries, Schimmelschmidt, B. 58, 2844).

4-Brom-1-oxy-2-acetyl-naphthalin, 4-Brom-2-acetyl-naphthol-(1) С₁₂H₂O₂Br, Formel III (Н 150). B. Aus 1-Oxy-2-acetyl-naphthalin-sulfonsäure-(4) beim Behandeln mit Brom in Eisessig (Fries, Schimmelschmidt, B. 58, 2844). — Liefert bei der Einw. von Salpetersäure (D: 1,5) in Eisessig 4-Nitro-2-acetyl-naphthol-(1) (F., Ehlers, B. 56, 1308).

4-Brom-1-0Xy-2-bromacetyl-naphthalin, 4-Brom-2-bromacetyl-naphthol-(1), 4.ω-Dibrom-1-oxy-2-acetonaphthon C₁₂H₂O₂Br₂, Formel IV auf S. 179. B. Durch Einw. von Brom auf 2-Acetyl-naphthol-(1) in Chloroform (Fries, Freilstedt, B. 54, 720). — Gelbe Nadeln (aus Eisessig). F: 147° (Zers.). Ziemlich schwer löslich in Alkohol und Benzin. Löslich in konz. Schwefelsäure mit orangegelber Farbe. — Wird durch verd. Natronlauge, namentlich beim

...

Erwärmen oder bei Zusatz von etwas Alkohol, zersetzt. Beim Kochen der alkoh. Lösung in Gegenwart von Dimethylanilin entsteht 5-Brom-6.7-benzo-cumaranon (Syst. Nr. 2388).

4-Nitro-1-oxy-2-acetyl-naphthalin, 4-Nitro-2-acetyl-naphthol-(1) C₁₂H₂O₄N, Formel V (H 150). B. Bei der Einw. von Salpetersäure (D: 1,5) auf 4-Brom-2-acetyl-naphthol-(1) in Eisessig (Fries, Ehlers, B. 56, 1308). — Gelbe Nadeln (aus Alkohol). F: 159°.

- 5. 3 Oxy 2 acetyl naphthalin, Methyl [3 oxy naphthyl (2)] keton, 3-Acetyl-naphthol-(2), 3-Oxy-2-acetonaphthon C₁₂H₁₀O₂, Formel VI. B. Beim Kochen von 3-Methoxy-2-acetyl-naphthalin mit Aluminiumchlorid in Benzol (FRIES, SCHIMMELSCHMIDT, B. 58, 2839). Gelbe Blättchen (aus Alkohol oder Benzin). F: 112°. Leicht löslich in Benzol und Aceton; schwerer in Alkohol und Benzin. Das intensiv gelbe Natriumsalz wird durch Luftsauerstoff nicht oxydiert.
- 3-Methoxy-2-acetyl-naphthalin, 3-Acetyl-naphthol-(2)-methyläther, 3-Methoxy-2-aceto-naphthon C₁₃H₁₃O₂ = CH₃·O·C₁₀H₃·CO·CH₃. B. Bei der Einw. von Methylzinkjodid auf 3-Methoxy-naphthoesäure-(2)-chlorid in Toluol, anfangs unter Kühlung, dann bei Zimmertemperatur (Fries, Schimmelschmidt, B. 58, 2839). Prismen (aus Petroläther). F: 48°. Kp₂₀: 210—212°. Sehr leicht löslich in Alkohol, Eisessig, Benzol und Aceton, mäßig in Benzin. Liefert bei der Kondensation mit Benzaldehyd in Natriumäthylat-Lösung 3-Methoxy-2-cinnamoyl-naphthalin.
- 3-Acetoxy-2-acetyl-naphthalin, 3-Acetyl-naphthol-(2)-acetat $C_{14}H_{12}O_3 = CH_3 \cdot CO \cdot O \cdot C_{10}H_4 \cdot CO \cdot CH_3$. Beim Behandeln von 3-Öxy-2-acetyl-naphthalin mit Acetanhydrid und Schwefelsäure (Fries, Schimmelschmidt, B. 58, 2840). Tafeln (aus Alkohol). F: 101°.
- Diacetylborsäureester des 3-Acetyl-naphthols-(2) $C_{16}H_{15}O_6B = (CH_3 \cdot CO \cdot O)_2B \cdot O \cdot C_{10}H_6 \cdot CO \cdot CH_3$. B. Aus 3-Acetyl-naphthol-(2) und Pyroboracetat in Acetanhydrid (DIMROTH, A. 446, 117). Orangefarbene Krystalle.
- Methyl-[3-oxy-naphthyl-(2)]-keton-hydrazon, 3-Oxy-2-acetyl-naphthalin-hydrazon $C_{12}H_{12}ON_2 = HO \cdot C_{10}H_6 \cdot C(CH_2) : N \cdot NH_2$. B. Beim Kochen von 3-Oxy-2-acetyl-naphthalin mit überschüssigem Hydrazinhydrat und 1 Tropfen verd. Salzsäure in Alkohol (Fries, Schimmelschmidt, B. 58, 2840). Blaßgelbe Nadeln (aus Alkohol). F: 144°.
- 6. 6 Oxy 2 acetyl naphthalin, Methyl [6 oxy naphthyl (2)] keton, 6 Acetyl naphthol (2), 6 Oxy 2-acetonaphthon C₁₂H₁₀O₂, s. nebenstehende Formel. B. Beim Kochen von 6-Methoxy-2-acetyl-naphthalin mit Aluminiumchlorid in Xylol (FRIES, SCHIMMELSCHMIDT, B. 58, 2841). Prismen (aus Benzol). F: 172°. Natriumsalz. Gelb. Die wäßr. Lösung fluoresciert grün.
- 6-Methoxy-2-acetyl-naphthalin, 6-Acetyl-naphthol-(2)-methyläther, 6-Methoxy-2-acetonaphthon $C_{13}H_{12}O_2=CH_3\cdot O\cdot C_{10}H_6\cdot CO\cdot CH_3$. B. Bei der Einw. von Methylzinkjodid auf 6-Methoxy-naphthoesäure-(2)-chlorid in Toluol (FRIES, SCHIMMELSCHMIDT, B. 58, 2841). Nadeln (aus Benzin oder Methanol). F: 105°. Leicht löslich in Benzol und Eisessig, ziemlich leicht in Alkohol, mäßig in Benzin. Die Lösung in konz. Schwefelsäure ist gelb.

3. Oxy-oxo-Verbindungen $C_{18}H_{12}O_2$.

- 1. 4 Oxy 1 propionyl naphthalin, 4 Propionyl naphthalin (1) C₁₃H₁₂O₂, Formel VII.
- 4-Methoxy-1-[β -chlor-propionyl]-naphthalin $C_{14}H_{18}O_{2}CI = CH_{3}\cdot O\cdot C_{10}H_{6}\cdot CO\cdot CH_{2}\cdot VII$.

 CH₄Cl. B. Aus 1-Methoxy-naphthalin und β -Chlor-propionylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (MAYER, MÜLLER, B. 60, 2281). Nadeln (aus Eisessig). F: 77—78°.
- 2. 1-Oxy-2-propionyl-naphthalin, Athyl-[1-oxy-naphthyl-(2)]-keton, 2-Propionyl-naphthol-(1) $C_{13}H_{13}O_3$, Formel VIII (H 152). Liefert beim Aufbewahren mit konz. Schwefelsäure 1-Oxy-2-propionyl-naphthalin-sulfonsäure-(4) (Fries, Schimmelschmidt, B. 58, 2843).
- Athyl-[1-oxy-naphthyl-(2)]-ketazin $C_{26}H_{26}O_2N_3 = HO \cdot C_{10}H_6 \cdot C(C_2H_5) : N \cdot N : C(C_2H_5) \cdot C_{10}H_6 \cdot OH$. B. Beim Kochen einer Lösung von 2-Propionyl-naphthol-(1) mit Hydrazinhydrat (Fries,

OXY-OXO-VERBINDUNGEN CnH2n-14O2

SCHMMEISCHMIDT, B. 58, 2842). — Rote Nadeln (aus Benzol). F: 232°. Schwer löslich in Alkohol und Eisessig, mäßig in Benzol, ziemlich leicht in Nitrobenzol. — Wird von konz. Salzsäure und wäßr. Alkalien kaum angegriffen. Liefert beim Aufbewahren in konz. Schwefelsäure das Azin der 1-Oxy-2-propionyl-naphthalin-sulfonsäure-(4).

Äthyl-[1-acetoxy-naphthyl-(2)]-ketazin $C_{30}H_{28}O_4N_2=[CH_3\cdot CO\cdot O\cdot C_{10}H_4\cdot C(C_2H_5):N-]_2$. Beim Behandeln von Äthyl-[1-oxy-naphthyl-(2)]-ketazin mit Acetanhydrid und Natriumacetat (FRIES, SCHIMMELSCHMIDT, B. 58, 2843). — Gelbe Krystalle (aus Alkohol). F: 139°.

4-Brom-1-oxy-2-propionyl-naphthalin, 4-Brom-2-propionyl-naphthol-(1) C₁₃H₁₁O₂Br, Formel I. B. Aus 2-Propionyl-naphthol-(1) oder 2-Propionyl-naphthol-(1)-sulfonsäure-(4) und 2 Atomen Brom in Eisessig (Fries, Schimmblschmidt, B. 58, 2843). — Gelbe Nadeln (aus Alkohol), F: 97°. Leicht löslich in Benzol, mäßig in Eisessig, Alkohol oh oh oh und Benzin.

4-Brom - 1-oxy- 2-[α -brom-propionyl] - naphthalin, 4-Brom - 2-[α -brom-propionyl] - naphthol - (1) $C_{13}H_{10}O_{2}Br_{2}$,

I. OH OH OH OH OH OH Br. CH3

propionyl] - naphthol-(1) C₁₃H₁₀O₂Br₂,
Formel II. B. Aus 2-Propionyl-naphthol-(1) oder 2-Propionyl-naphthol-(1)-sulfonsäure-(4) und
4 Atomen Brom in Eisessig (FRIES, SCHIMMELSCHMIDT, B. 58, 2844). — Gelbe Krystalle.
F: 138°. — Liefert beim Kochen mit überschüssiger 10% iger alkoholischer Natronlauge 5-Brom2-methyl-6.7-benzo-cumaranon (Syst. Nr. 2388).

4. Oxy-oxo-Verbindungen $C_{14}H_{14}O_{2}$.

1- $[\gamma,\gamma,\gamma$ -Trichlor- β -oxy-butyryl]-naphthalin, Chloral- α -acetonaphthon $C_{14}H_{11}O_2Cl_2=C_{10}H_{\gamma}\cdot CO\cdot CH_2\cdot CH(OH)\cdot CCl_3$. B. Aus Methyl- α -naphthyl-keton beim Erhitzen mit Chloral in Eisessig (Sen, Barat, J. indian chem. Soc. 3, 411; C. 1927 I, 1440). — Krystalle (aus Benzol). F: 90—92°. — Gibt mit Carbamidsäurechlorid in Äther 4-Oxy-2-oxo-6-trichlormethyl-4- α -naphthyl-tetrahydro-1.3-oxazin $O\cdot CO\cdot NH$ (Syst. Nr. 4300).

5. Oxy-oxo-Verbindungen $C_{16}H_{18}O_2$.

1. 1.2.4.5 - Tetramethyl - 1 - phenyl - cyclohexadien - (2.4) - ol - (3) - on - (6) $C_{16}H_{18}O_2 = CH_3 \cdot C < C(CH_3) - CO(CH_3) - CO(CH_3$

Methyläther, 3 - Methoxy -1.2.4.5 - tetramethyl - 1 - phenyl - cyclohexadien - (2.4) - on - (6) $C_{17}H_{20}O_2 = CH_3 \cdot C < C(CH_3) \cdot C(CH_3) \cdot$

Acetat, 3-Acetoxy-1.2.4.5-tetramethyl-1-phenyl-cyclohexadien-(2.4)-on-(6) $C_{18}H_{20}O_3 = CH_3 \cdot C < C(O \cdot CO \cdot CH_3) \cdot C(CH_3) \cdot C < C_6H_5$. B. Durch Acetylierung der Enolform des 1.2.4.5-Tetramethyl-1-phenyl-cyclohexen-(4)-dions-(3.6) (SMITH, CRAWFORD, Am. Soc. 50, 880). — Nadeln. F: 140°. Sehr leicht löslich in Alkohol und Äther. — Ist gegen Permanganat beständig. Reagiert nicht mit Phenylmagnesiumbromid.

2. 1.2.4.5 - Tetramethyl - 3 - phenyl - cyclohexadien - (1.4) - ol - (3) - on - (6) $C_{16}H_{18}O_2 = OC \xrightarrow{C(CH_3):C(CH_3)} CC_{0}H_5$. B. Neben anderen Produkten bei der Einw. von 1 Mol Phenylmagnesiumbromid auf 1 Mol Durochinon (SMITH, CRAWFORD, Am. Soc. 50, 879). — Prismen (aus Alkohol oder Åther). F: $2O3^0$. — Bildet kein Semicarbazon oder Phenylhydrazon und reagiert nicht mit Dimethylsulfat. Gibt bei der Acetylierung und bei der Oxydation mit Permanganat nur gelbe Öle. Reagiert mit Phenylmagnesiumbromid unter Bildung einer Metallverbindung, die beim Ansäuern ein Öl gibt.

6. Oxy-oxo-Verbindungen $C_{17}H_{20}O_{2}$.

1. 1-Isopropyl-4-[2-oxy-styryl]-cyclohexen-(3)-on-(2), 7-[2-Oxy-benzy-liden]-p-menthen-(1)-on-(3), 7-Salicyliden-dl-piperiton $C_{17}H_{10}O_{2}=HO\cdot C_{6}H_{4}\cdot CH\cdot CH\cdot CC_{CH_{2}\cdot CH_{2}}$ CH-CH(CH₃)₂. B. Aus Salicylaldehyd und dl-Piperiton (E II 7, 75) in 10%iger Natronlauge auf dem Wasserbad oder in konz. Salzsäure (EARL, Read,

Soc. 1926, 2074). — Hellgelbe Krystalle (aus Alkohol). F: 177°. Leicht löslich in heißem Alkohol, schwer in kaltem Alkohol, Benzol und Äther. Löslich in Natronlauge mit orangegelber Farbe, unlöslich in Natriumdicarbonat-Lösung. — Liefert bei der Reduktion mit Zinkstaub und Alkalilauge eine in wäßr. Alkalilaugen lösliche und eine in Alkalilauge unlösliche Verbindung $C_{17}H_{22}O_{2}$.

2. $1-Isopropyl-4-[4-oxy-styryl]-cyclohexen-(3)-on-(2) \ C_{17}H_{20}O_2=HO\cdot C_0H_4\cdot CH\cdot CH\cdot CCCH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_2)_2.$

1-Isopropyl-4-[4-methoxy-styryl]-cyclohexen-(3)-on-(2), 7-Anisyliden-dl-piperiton $C_{18}H_{22}O_2=CH_3\cdot O\cdot C_6H_4\cdot CH\cdot CH\cdot CCCH_2\cdot CH\cdot CH\cdot CH\cdot CH\cdot CH\cdot CH\cdot CH\cdot CH_3\cdot 2$. B. Aus l-Piperiton oder aus dl-Piperiton (E II 7, 75) und Anisaldehyd in konz. Salzsäure, besser aus dl-Piperiton und Anisaldehyd in Natriumäthylat-Lösung (EARL, READ, Soc. 1926, 2073). — Blaßgelbe Prismen (aus Alkohol). Rhombisch (Bentivogljo). F: 98°. Leicht löslich in Chloroform und Benzol, löslich in Alkohol und warmem Ligroin.

- 3. 2-Oxo-1-salicyliden-dekahydronaphthalin, 1-Salicyliden-dekalon-(2) $C_{17}H_{20}O_{2}$, Formel I. B. Bei der Kondensation von β -Dekalon mit Salicylaldehyd in wäßrigalkoholischer Natronlauge (J. D. RIEDEL, D.R.P. 422036; C. 1926 I, 2841; Frdl. 15, 1505). Gelbe Nadeln (aus Methanol). F: 166°.
- 4. 1.7.7 Trimethyl 3 [2 oxy benzyliden] bicyclo [1.2.2] heptanon (2), 3-[2-Oxy-benzyliden]-campher, 3-Salicyliden-campher $C_{17}H_{10}O_2$, Formel II.
- 3-[2-Methoxy-benzyliden]-d-campher, 3-[0-Methyl-salicyliden]-d-campher $C_{16}H_{22}O_2=C_8H_{14}$ (H 153). Piezoelektrizität: Lucas, C.r.178, 1891. Bei der Hydrierung bei Gegenwart von Platinschwarz in Eisessig entsteht 3-[2-Methoxy-hexahydrobenzyl]-d-campher (Détrie, Bl. [4] 33, 1273). Geschwindigkeit dieser Reaktion, auch in Gegenwart von 3-Anisyliden-d-campher: D., Bl. [4] 33, 1276, 1278.
- 5. 1.7.7 Trimethyl 3 [3 oxy benzyliden] bicyclo-[1.2.2]-heptanon-(2), 3-[3-Oxy-benzyliden]-d-campher $C_{17}H_{20}O_2$, Formel II (H 154). Ultraviolett-Absorptionsspektrum in Alkohol: Haller, Lucas, C. r. 176, 48.
- 3-[3-Methoxy-benzyliden]-d-campher $C_{18}H_{22}O_2 = C_8H_{14}$ C: $CH \cdot C_6H_4 \cdot O \cdot CH_3$ (H 154). Ultraviolett-Absorptionsspektrum in Alkohol: Haller, Lucas, C. r. 176, 48.

- 6. 1.7.7 Trimethyl 3 [4 oxy benzyliden] bicyclo-[1.2.2]-heptanon-(2), 3-[4-Oxy-benzyliden]-campher $C_{17}H_{20}O_3$, Formel II.
- a) Rechtsdrehende Form, 3 [4 Oxy benzyliden] d-campher $C_{17}H_{20}O_2 = C_8H_{14} C_1$: (H 154). B. Durch Diazotieren von 3 [4 Amino-benzyliden] d-campher und Verkochen (HALLER, BOUDIN, A. ch. [9] 17, 11). $[\alpha]_p$: $+536^o$ (absol. Alkohol; c = 0.8).
- 3-[4-Methoxy-benzyliden]-d-campher, 3-Anisyliden-d-campher, 3-Anisal-d-campher $C_{18}H_{22}O_2=C_8H_{14}$ CO (H 154). Zirkularpolarisation der Krystalle: Long-Chambon, Bl. Soc. franç. Min. 45, 243, 248; C. 1924 I, 2070. [α] $_{0}^{10}$: +496 $^{\circ}$ (Alkohol; c = 1), +456 $^{\circ}$ (Benzol; c = 1) (Haller, Lucas, C. r. 180, 1804). Rotationsdispersion (4358—6708 Å) in Alkohol und Benzol bei 19 $^{\circ}$: H., L. Piezoelektrizität: Lucas, C. r. 178, 1892. Liefert bei der Hydrierung in Gegenwart von Platinschwarz in Eisessig je nach der Wirksamkeit des Katalysators 3-[4-Methoxy-hexahydrobenzyl]-d-campher oder 3-Hexahydrobenzyl-d-campher (Détrie, Bl. [4] 33, 1273, 1276, 1277); Geschwindigkeit dieser Reaktion: D., Bl. [4] 33, 1275, 1276.
- b) Linksdrehende Form, $3-[4-Oxy-benzyliden]-l-campher <math>C_{17}H_{20}O_2=C_0H_{14}$ CO C: $CH\cdot C_2H_4\cdot OH$

3-[4-Methoxy-benzyliden]-1-campher, 3-Anisyliden-1-campher $C_{18}H_{22}O_8 = C_8H_{14}C_1$: CH·C₈H₄·O·CH₃ (H 155). B. Aus der Natriumverbindung des 1-Camphers und Anisaldehyd (Détrrie, Bl. [4] \$3, 1273). — Krystalle (aus Alkohol). F: 125°. [α]_D: —531°. Änderung des opt. Drehungsvermögens während der katalytischen Hydrierung allein und in äquimolekularen Gemischen mit 3-Benzyliden-d-campher, 3-Salicyliden-d-campher, 3-Hexahydrobenzyliden-d-campher und 3-Athyliden-d-campher: D., Bl. [4] \$3, 1278 ff. [Ammerlahn]

h) Oxy-oxo-Verbindungen $C_nH_{2n-16}O_2$.

1. Oxy-oxo-Verbindungen $C_{13}H_{10}O_{2}$.

1. 2-Oxy-benzophenon, Phenyl-[2-oxy-phenyl]-keton, 2-Benzoyl-phenol $C_{13}H_{10}O_{2}=C_{6}H_{5}\cdot CO\cdot C_{6}H_{4}\cdot OH$ (H 155; E I 569). F: 38,8° (kort.) (Winkler, Ar. 1928, 48). Kp₁₄: 175° (Billon, A.ch. [10] 7, 339).

2-Methoxy-benzophenon, 2-Benzoyl-anisol $C_{14}H_{13}O_3=C_4H_5\cdot CO\cdot C_6H_4\cdot O\cdot CH_3$ (H 156; E I 569). B. Bei der Kondensation von 2-Methoxy-benzoylchlorid mit Benzol in Gegenwart von Aluminiumchlorid (Tasaki, Acta phytoch. 2, 55; C. 1925 II, 1355; Billon, A.ch. [10] 7, 339). — F: 41° (Kahil, Nierenstein, Am. Soc. 46, 2557 Anm. 4). Kp₁₆: 194—196° (T.); Kp₁₆: 185° (B.). Absorptionsspektrum in Alkohol: T. — Liefert beim Behandeln mit amalgamiertem Zink und Salzsäure 2-Methoxy-diphenylmethan (Stoerer, Frick, B. 57, 27). Bei der Reduktion mit Zinkstaub in alkal. Lösung bildet sich 2-Methoxy-diphenylcarbinol (K., N.). Gibt beim Kochen mit Natriumamid in Toluol und Verseifen des Reaktionsprodukts mit siedender verdünnter Natronlauge Benzoesäure (Lea, Robinson, Soc. 1926, 2354).

2-Oxy-benzophenon- α -oxim, 2-Oxy-benzophenon-h-oxim $C_{13}H_{11}O_2N=C_6H_5\cdot C\cdot C_6H_4\cdot OH$ 1). Zur Konfiguration vgl. J. Meisenheimer, W. Theilacker in K. Freudenho·NBerg, Stereochemie [Leipzig-Wien 1933], S. 1028. — B. Durch Umsetzung von 2-Oxy-benzophenon mit Hydroxylaminhydrochlorid und 40% iger Kalilauge bei gewöhnlicher Temperatur

BERG, Stereochemie [Leipzig-Wien 1933], S. 1028. — B. Durch Umsetzung von 2-Oxy-benzophenon mit Hydroxylaminhydrochlorid und 40%iger Kalilauge bei gewöhnlicher Temperatur (Kohler, Bruce, Am. Soc. 58 [1931], 1572; Blatt, Russell, Am. Soc. 58 [1936], 1905 Anm. 11) oder zweckmäßiger unter kurzem Erwärmen auf dem Wasserbad (Meisenheimer, Dorner, A. 502 [1933], 174). Neben dem β-Oxim bei 2-stdg. Kochen von 2-Oxy-benzophenon mit Hydroxylaminhydrochlorid in wäßrig-methylalkoholischer Kalilauge (K., B.) oder in Gegenwart von Kaliumcarbonat oder Bariumcarbonat in Alkohol (M., D.). — Tafeln (aus Benzol + Petroläther oder aus verd. Methanol). F: 142—143° (K., B.). Ultraviolett-Absorptionsspektrum in Alkohol: M., D., A. 502, 167. — Verändert sich nicht beim Erhitzen auf 180—200° (K., B.). Lagert sich beim Kochen mit 20%iger Natronlauge (K., B.) oder besser mit 20%iger Kalilauge (M., D.) in das β-Oxim um. Gibt mit Chlorwasserstoff in Äther ein gelbes Hydrochlorid (F: 118—120°), das beim Erhitzen auf 140—145° in 2-Oxy-benzophenon und 2-Phenyl-benzoxazol übergeht (K., B.). 2-Phenyl-benzoxazol entsteht auch beim Behandeln des Oxims mit PCl₅ in Äther oder mit kalter konzentrierter Ameisensäure (K., B.).

2-Oxy-benzophenon- β -oxim, 2-Oxy-benzophenon-n-oxim $C_{13}H_{11}O_2N = C_6H_5 \cdot C_6H_4 \cdot OH$

N·OH

RERG, Stereochemie [Leipzig-Wien 1933], S. 1028. — B. s. im vorangehenden Artikel. — Nadeln (aus Benzol + Petroläther oder aus Tetrachlorkohlenstoff). F: 143° (Kohler, Bruce, Am. Soc. 53, 1572), 142° (Meisenheimer, Dorner, A. 502, 174). Ultraviolett-Absorptionsspektrum in Alkohol: M., D., A. 502, 167. In 50% igem Methanol leichter löslich als das α-Oxim (M., D.). — Geht beim Erhitzen auf 180—200° in das α-Oxim über (K., B.). Wird beim Kochen mit Alkalilaugen nur wenig verändert (K., B.). Gibt mit Chlorwasserstoff in Äther ein bei 132—134° sohmelzendes Hydrochlorid, das beim Erhitzen auf 145° in 2-Phenyl-benzoxazol übergeht (K., B.). Lagert sich beim Behandeln mit PCl₅ in Äther in Salicylsäureanilid um (K., B.).

 $\textbf{2-Methoxy-benzophenon-} \alpha\textbf{-oxim} \ \, C_{14}H_{13}O_{2}N = \frac{C_{6}H_{5}\cdot C\cdot C_{6}H_{4}\cdot O\cdot CH_{3}}{N\cdot OH} \text{)}. \ \, B. \ \, \text{Beim Behandeln von 2-Methoxy-benzophenon mit Hydroxylamin-hydrochlorid und Kaliumcarbonat in the second of the second of$

¹) Das H 156 beschriebene 2-Oxy-benzophenon-oxim vom Schmelzpunkt 133—134° ist ein Gemisch der beiden Stereoisomeren.

²) Die Bezeichnung als α -Oxim und die Konfiguration ergeben sich aus der Analogie mit dem entsprechenden Oxim des 4-Methoxy-benzophenons, S. 186.

kalter wäßrig-methylalkoholischer Lösung (Billon, A.ch. [10], 7, 342). — Krystalle. F: 158° bis 159° . — Geht beim Umkrystallisieren aus heißem Eisessig in das β -Oxim über. Liefert bei der Einw. von PCl₅ in absol. Äther bei — 15° unter Konfigurationswechsel Benzoesäure-o-anisidid; analog entsteht beim Erhitzen mit konz. Schwefelsäure Benzoesäure.

2-Methoxy-benzophenon- β -oxim $C_{14}H_{13}O_{2}N = \frac{C_{6}H_{5} \cdot C \cdot C_{6}H_{4} \cdot O \cdot CH_{3}}{HO \cdot N}$. B. Aus 2-Methoxy-benzophenon- α -oxim beim Umkrystallisieren aus heißem Eisessig (Billon, A. ch. [10]

7, 341, 342). — Krystalle (aus Eisessig). F: 128—1300. — Liefert beim Erhitzen mit konz, Schwefelsäure Benzoesäure. Bei der Reduktion mit Natrium in Alkohol bildet sich 2-Methoxybenzhydrylamin (Syst. Nr. 1859).

- 3-Chlor-2-oxy-benzophenon C₁₃H₉O₂Cl, Formel I. B. Aus Benzoylchlorid und 2-Chlorphenol bei Gegenwart von Aluminiumchlorid in Tetrachlorāthan bei 120—130° (HAYASHI, J. pr. [2] 128, 295, 296). Blaßgelbe Krystalle (aus Alkohol), die beim Aufbewahren nachdunkeln. F: 92,5—93°. Leicht löslich in Benzol, heißem Alkohol und heißem Eisessig, löslich in Petroläther. Die Lösung in verd. Alkalilauge ist gelb.
- 3-Chlor-2-methoxy-benzophenon $C_{14}H_{11}O_2Cl = C_0H_5 \cdot CO \cdot C_0H_2Cl \cdot O \cdot CH_3$. B. Aus dem Kaliumsalz des 3-Chlor-2-oxy-benzophenons und Dimethylsulfat in siedendem Toluol (HAYASHI, J. pr. [2] 123, 296). Viscoses Öl. Kp₅: 173—174°. Löslich in Alkohol, Benzol und Eisessig.
- 5-Chlor-2-oxy-benzophenon C₁₃H₂O₂Cl, Formel II. B. Bei der Kondensation von 4-Chlorphenol oder besser von 4-Chlor-anisol mit Benzoylchlorid in Gegenwart von Aluminiumchlorid in Tetrachlorāthan bei 120—130° (HAYASHI, J. pr. [2] 128, 297, 298). Beim Erhitzen von Benzoesäure-[4-chlor-phenylester] mit Aluminiumchlorid (WITTIG, A. 446, 198). Blaßgelbe Blättchen (aus Methanol). F: 93—94° (W.), 95—95,5° (H.). Leicht löslich in organischen Lösungsmitteln (W.), fast unlöslich in Wasser (H.). Schwer löslich mit gelber Farbe in kalter Alkalilauge und heißer verdünnter Natriumcarbonat-Lösung (H.). Färbt sich beim Aufbewahren gelb (H.). Liefert bei 40-stdg. Erhitzen mit Acetanhydrid und Natriumacetat auf 210° 6-Chlor4-phenyl-cumarin (Syst. Nr. 2468) (W.).
- 5-Chlor-2-methoxy-benzophenon $C_{14}H_{11}O_2Cl = C_eH_5\cdot CO\cdot C_6H_3Cl\cdot O\cdot CH_3$. B. Aus dem Kaliumsalz des 5-Chlor-2-oxy-benzophenons und Dimethylsulfat in siedendem Toluol (HAYASHI, J. pr. [2] 123, 298). Nadeln (aus Alkohol). F: 100,5—101°. Leicht löslich in Benzol und Eisessig, löslich in heißem Alkohol und Petroläther, fast unlöslich in Wasser.

5-Nitro-2-methoxy-benzophenon $C_{14}H_{11}O_4N$, Formel III. B. Beim Kochen von 6-Chlor3-nitro-benzophenon mit Natriummethylat-Lösung in Benzol (Meisenheimer, Zimmermann, v. Kummer, A. 446, 218). — Blaßgelbe Krystalle (aus Aceton). F: 129°. Leicht löslich in Aceton, löslich in Alkohol.

Oxim C₁₄H₁₂O₄N₂ = C₆H₅·C(:N·OH)·C₆H₈(NO₂)·O·CH₃. B. Beim Erhitzen von 5-Nitro-2-methoxy-benzophenon mit Hydroxylaminhydrochlorid in Alkohol im Rohr auf 140—150⁰ (Meisenheimer, Zimmermann, v. Kummer, A. 446, 218). — Blättchen (aus Alkohol). F: 195⁰. — Liefert beim Behandeln mit PCl₅ in Äther [5-Nitro-2-methoxy-benzoesäure]-anilid. Bei der Einw. von wäßrig-alkoholischer Kalilauge bildet sich 5-Nitro-3-phenyl-indoxazen (Formel IV; Syst. Nr. 4199).

3.5-Dinitro-2-methoxy-benzophenon $C_{14}H_{10}O_6N_2$, Formel V (H 157). Liefert beim Behandeln mit Hydroxylamin in schwach essigsaurer Lösung 5.7-Dinitro-3-phenyl-indoxazen (Formel VI; Syst. Nr. 4199) (Meisenheimer, Zimmermann, v. Kummer, A. 416, 215).

CH₃ O NO₃

V. $C_6H_5 \cdot CO$ VI.

3.5 - Dinitro - 2 - oxy - benzophenonoxim C₁₃H₉O₆N₃ = C₆H₅ · C(: N · OH) · NO₂

C₆H₃(NO₂)₂ · OH. — Kaliumsalz KC₁₃H₈O₆N₃. B. Beim Aufbewahren von 5.7-Dinitro-3-phenylindoxazen (Formel VI; Syst. Nr. 4199) mit alkoh. Kalilauge (MEISENHEIMER, ZIMMERMANN,
v. Kummer, A. 446, 215). Roter Niederschlag. Zersetzt sich zwischen 180° und 200° unter

¹) Die Bezeichnung als β -Oxim und die Konfiguration ergeben sich aus der Analogie mit dem entsprechenden Oxim des 4-Methoxy-benzophenons, S. 186.

184

Schwarzfärbung. Liefert beim Erwärmen mit Wasser oder konz. Schwefelsäure 5.7-Dinitro-3-phenyl-indoxazen zurück.

- 5-Nitro 2 mercapto benzophenon, 4-Nitro 2 benzoyl thiophenol
 C₁₉H₉O₂NS, s. neben-tehende Formel. B. Beim Erhitzen von 6-Chlor3-nitro-benzophenon mit Natriumsulfid und Schwefel in Alkohol (FRIES,
 A. 454, 287). Gelbliche Blättchen (aus Tetrachlorkohlenstoff) oder Nadeln
 (aus Ligroin oder verd. Alkohol). F: 125°. Leicht löslich in Alkohol, Benzol
- und Eisessig. Die Lösung in Natronlauge ist dunkelrot. Gibt bei der Oxydation mit Luft in siedendem Eisessig 4.4'-Dinitro-2.2'-dibenzoyl-diphenyldisulfid.
- 5-Nitro-2-methylmercapto-benzophenon $C_{14}H_{11}O_3NS = C_4H_5\cdot CO\cdot C_4H_3(NO_2)\cdot S\cdot CH_4$. Beim Behandeln von 5-Nitro-2-mercapto-benzophenon mit Dimethylsulfat in alkal. Lösung (Fries, A. 454, 288). Gelbe Nadeln (aus Alkohol). F: 89°. Leicht löslich in den gebräuchlichen Lösungsmitteln.
- 4.4'- Dinitro 2.2'- dibenzoyl diphenylsulfid $C_{se}H_{16}O_eN_2S = [C_eH_5 \cdot CO \cdot C_eH_3(NO_4)]_sS$. B. Beim Erwärmen von 6-Chlor-3-nitro-benzophenon mit Natriumsulfid in verd. Alkohol (FRIES, A. 454, 289). Gelbe Nadeln (aus Eisessig oder Benzol). F: 205°. Ziemlich leicht löslich in Eisessig und Benzol, schwer in Alkohol, Äther und heißem Aceton.
- 4.4'- Dinitro 2.2'- dibenzoyl- diphenyldisulfid $C_{2a}H_{16}O_{6}N_{2}S_{2}=[C_{6}H_{5}\cdot CO\cdot C_{6}H_{5}(NO_{2})\cdot S_{-}]_{2}$. Beim Durchleiten von Luft durch eine siedende Lösung von 5-Nitro-2-mercapto-benzophenon in Eisessig (Fries, A. 454, 288). Hellgelbe Nadeln (aus Eisessig). F: 177°. Ziemlich leicht löslich in warmem Aceton, Benzol und Tetrachlorkohlenstoff, schwerer in Eisessig, fast unlöslich in Alkohol. Löslich in heißer wäßrig-alkoholischer Natronlauge mit blutroter Farbe.
- 4-Nitro-2-benzoyl-phenylschwefelbromid $C_{13}H_8O_3NBrS=C_6H_6\cdot CO\cdot C_6H_3(NO_2)\cdot SBr.$ Beim Kochen von 4.4'-Dinitro-2.2'-dibenzoyl-diphenyldisulfid mit 1 Mol Brom in Tetrachlor-kohlenstoff (Fries, A. 454, 290). Gelbe Nadeln (aus Tetrachlor-kohlenstoff). F: 146° (Zers.). Löst sich in kalter alkoholischer Natronlauge mit blutroter, in konz. Schwefelsäure mit hellroter Farbe. Spaltet beim Erwärmen mit konz. Schwefelsäure Bromwaserstoff und Brom ab. Zersetzt sich beim Aufbewahren an feuchter Luft oder beim Kochen mit Alkohol, Wasser oder Eisessig. Beim Erhitzen mit Aceton entstehen 4.4'-Dinitro-2.2'-dibenzoyl-diphenyldisulfid und Bromaceton. Beim Kochen mit konz. Ammoniak in Benzol oder Einleiten von Ammoniak in die heiße Lösung in Benzol bildet sich 5-Nitro-3-phenyl- $\alpha.\beta$ -benzisothiazol

(s. nebenstehende Formel; Syst. Nr. 4199). Gibt beim Kochen mit Anilin in Benzol auf dem Wasserbad 5-Nitro-3-phenyl- $\alpha.\beta$ -benzisothiazol-bromphenylat-(2); reagiert analog mit p-Toluidin und mit Methylamin.

2. 3-Oxy-benzophenon $C_{13}H_{10}O_2 = C_6H_5 \cdot CO \cdot C_6H_4 \cdot OH$.

- 3-Methoxy-benzophenon, 3-Benzoyl-anisol $C_{14}H_{12}O_3=C_6H_6\cdot CO\cdot C_6H_4\cdot O\cdot CH_3$ (H 158; E I 569). Zur Bildung durch Oxydation von 3-Methoxy-benzhydrol mit Dichromat und Schwefelsäure (H 158) vgl. a. Lea, Robinson, Soc. 1926, 2354. F: 38° (L., R.), 35—36° (Tasaki, Acta phytoch. 2, 56; C. 1925 II, 1355). Absorptionsspektrum in Alkohol: T. Liefert beim Kochen mit Natriumamid in Toluol und Behandeln des Reaktionsprodukts mit siedender verdünnter Natronlauge 82 Mol-% Benzoesäure und 18 Mol-% 3-Methoxy-benzoesäure (L., R.).
- 3. 4-Oxy-benzophenon, Phenyl-[4-oxy-phenyl]-keton, 4-Benzoyl-phenol C₁₃H₁₀O₂ = C₆H₅·CO·C₆H₄·OH (H 158; E I 569). B. Zur Bildung durch Erwärmen von Phenol bzw. Phenylbenzoat mit Benzoylchlorid in Gegenwart von Zinkchlorid und nachfolgende Verseifung (H 158) vgl. Minajew, Ж. 58, 307; C. 1927 I, 84. Entsteht in quantitativer Ausbeute heim Erhitzen von Phenylbenzoat mit Aluminimchlorid auf 140° (Rosenmund, Subhurr, 460, 89). Ist monotrop trimorph (Schaum, Unger, Z. anorg. Ch. 132, 94; Sch., A. 462, 203). Die stabile Modifikation schmilzt bei 133,75° (korr.) (Montagne, R. 59, 341), 134,0° (Sch., U.), 135° (Blakey, Jones, Scarborough, Soc. 1927, 2867), die beiden metastabilen Modifikationen bei ca. 122° (Sch., U.). Gegenseitige Umwandlung der 3 Modifikationen: Sch., U.; Sch. Kp₂₄: 261° (Mo.). Leicht löslich in Aceton, löslich in Benzol und Nitrobenzol, unlöslich in Benzin und Natriumdisulfit-Lösung (R. Meyer, Gerloff, B. 56, 102). Die Lösung in konz. Schwefelsäure ist grünstichig gelb (Dilthey, Mitarb., J. pr. [2] 117, 338). Thermische Analyse des Systems mit Sarkosinanhydrid (Additionsverbindung 1:1, F: 91,5—92°; Eutektika mit Sarkosinanhydrid bei ca. 86°, mit 4-Oxy-benzophenon bei ca. 84°): Pfeiffer, Wang, Z. ang. Ch. 40, 985, 989.

Gibt bei der Chlorierung bei Gegenwart von Natriumacetat in Eisessig 3.5-Dichlor-4-oxybenzophenon (Blakey, Jones, Scarborough, Soc. 1927, 2868). Beim Schütteln mit Bromwasser oder beim Behandeln mit Bromkaliumbromid in alkal. Lösung unterhalb 5° bildet sich 3.5-Dibrom-4-oxy-benzophenon (B., J., Sc.). Zur Bromierung in essigsaurer Lösung (H 159) vgl.

185

MONTAGNE, R. 41, 710. Die Einw. von Jod in alkal. Lösung führt zur Bildung von 3-Jod-4-oxybenzophenon, während beim Behandeln mit Jodmonochlorid in Gegenwart von Natriumacetat in Eisessig 3.5-Dijod-4-oxy-benzophenon entsteht (B., J., Sc.). Gibt bei der Einw. von Salpetersäure (D: 1,4) bei 0° oder beim Erwärmen mit der berechneten Menge Salpetersäure (D: 1,5) in Eisessig + Acetanhydrid auf 50—60° 3-Nitro-4-oxy-benzophenon; beim Erwärmen mit überschüssiger Salpetersäure (D: 1,4) auf 40° erhält man 3.5-Dinitro-4-oxy-benzophenon (B., J., Sc.). Bleibt bei tagelangem Erhitzen mit alkoh. Kalilauge (200 g Kaliumhydroxyd in 1 l Alkohol) unverändert (Montagne); beim Erwärmen mit 35—40%iger Natronlauge oder beim Kochen mit verd. Salzsäure oder Zinkchlorid-Lösung entstehen ölige Produkte (Minajew, Ж. 58, 307). Liefert bei der Umsetzung mit p-Tolylmagnesiumbromid ein Gemisch von 4'-Oxy-4-methylriphenylcarbinol und 3-Methyl-fuchson (Hahn, Am. Soc. 43, 177; vgl. Ramaet-Lucas, Martynoff, Bl [5] 8 [1941], 882).

H 159, Z. 2 v. o. statt "farblos" lies "mit gelber Farbe (HANTZSCH, B. 89, 3094)".

4 - Methoxy - benzophenon, 4 - Benzoyl - anisol, Phenyl - [4 - methoxy - phenyl] - keton, Phenyl - anisyl-keton C₁₄H₁₂O₂ = C₆H₅·CO·C₆H₄·O·CH₃ (H 159; E I 569). B. Neben anderen Produkten bei der Einw. von Benzoylehlorid auf Anisol in Gegenwart von Zink in Äther (Kaufmann, Fuchs, Ar. 1924, 124). Beim Kochen von Anisol mit Benzoesäure-phenylimid-chlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff und längeren Erhitzen des Reaktionsprodukts mit verd. Salzsäure (Staudinger, Goldstein, Schlenker, Helv. 4, 362). Entsteht aus 4-Methoxy-diphenylmethan bei der Oxydation mit alkal. Permanganat-Lösung (vgl. Rennie, Soc. 41 [1882], 37, 227) nur in geringer Menge, beim Behandeln mit Chromtrioxyd in Eisessig in ca. 56 %iger Ausbeute (Short, Stewart, Soc. 1929, 557). Entsteht ferner durch Oxydation von 4-Methoxy-benzhydrol mit Chromsäure (Tiffeneau, Obechow, Bl. [4] 87, 435 Ann.). Beim Erhitzen von 2-Oxy-3-[4-methoxy-phenyl]-indazol über den Schmelzpunkt (v. Auwers, Steödter, B. 59, 530). — F: 63—64° (Ti., O., Bl. [4] 87, 1417). Absorptionsspektrum in Alkohol: Tasaki, Acta. phytoch. 2, 56; C. 1925 II, 1355. Depolarisationsgrad des in unterkühltem 4-Methoxy-benzophenon gestreuten Lichts bei 17°: Lautsch, Ph. Ch. [B] 1, 118. Löst sich in konz. Schwefelsäure mit grüngelber Farbe (Dilthey, Mitarb., J. pr. [2] 117, 338). Ebullioskopisches Verhalten in Trichloräthylen: Walden, Ann. Acad. Sci. fenn. [A] 29, Nr. 23, S. 5; C. 1928 I, 166.

Liefert beim Erhitzen mit Zinkstaub und alkoh. Natronlauge 4-Methoxy-benzhydrol (Norris, Blake, Am. Soc. 50, 1811). Bei der Einw. von Zinkstaub in Eisessig auf dem Wasserbad bildet sich ms.ms-Bis-[4-methoxy-phenyl]-desoxybenzoin (Tiffeneau, Orechow, Bl. [4] 37, 435). Geschwindigkeit der photochemischen Reduktion zu α.α'-Diphenyl-α.α'-bis-[4-methoxy-phenyl]-āthylenglykol durch absol. Alkohol: Cohen, R. 39, 258. Gibt bei der Chlorierung je nach den Bedingungen 3-Chlor-4-methoxy-benzophenon oder 3.5-Dichlor-4-methoxy-benzophenon (Blakey, Jones, Scarborough, Soc. 1927, 2867). B.i der Einw. von Brom erhält man je nach den Bedingungen 3-Brom-4-methoxy-benzophenon oder (unter Aufspaltung der Methoxygruppe) 3.5-Dibrom-4-oxy-benzophenon (B., J., Sc., Soc. 1927, 2868, 2869). Liefert mit 1 Mol Jodmonochlorid in Eisessig 3-Jod-4-methoxy-benzophenon (B., J., Sc.). Gibt beim Behandeln mit Salpetersäure (D: 1,5) ohne Verdünnungsmittel bei gewöhnlicher Temperatur 3-Nitro-4-methoxy-benzophenon, in Eisessig + konz. Schwefelsäure unterhalb 10° 3.3'-Dinitro-4-methoxy-benzophenon, 3.5.2'-Trinitro-4-methoxy-benzophenon und andere Produkte; bei der Nitrierung mit Salpetersäure (D: 1,5) und konz. Schwefelsäure bilden sich 3.5.3'-Trinitro-4-methoxy-benzophenon, 3.5.2'-Trinitro-4-methoxy-benzophenon und andere Produkte (B., J., Sc., Soc. 1927, 2870—2872; vgl. van Alphen, R. 49 [1930], 383). Beim Kochen mit Natriumamid (vgl. H 159) in Toluol und Verseifen des Reaktionsprodukts mit siedender verdünnter Natronlauge erhält man ca. ½ Mol Benzoesäure und ca. ½ Mol 4-Methoxy-benzoesäure (Lea, Robinson, Soc. 1926, 2353, 2354; vgl. a. Schönberg, A. 436, 213).

- 4-Äthoxy-benzophenon, Phenyl-[4-äthoxy-phenyl]-keton, 4-Benzoyl-phenetol $C_{15}H_{14}O_2=C_6H_5\cdot CO\cdot C_6H_4\cdot O\cdot C_2H_5$ (H 159; E I 569). B. Beim Erhitzen von 4'-Jod-4-äthoxy-benzophenon mit alkoh. Kalilauge auf 100° (Montaone, R. 39, 356). Krystalle (aus Benzol + Ligroin). Monoklin sphenoidisch (Jaeger, R. 41, 709; Versl. Akad. Amsterdam 35, 54; C. 1926 II, 200). Der Schmelzpunkt variiert zwischen 42° und 46,5° (J., Versl. Akad. Amsterdam 35, 54; vgl. a. M., B. 39, 344, 357); F: 47—48° (Torres, Bl. [4] 37, 1593; An. Soc. españ. 24, 85; C. 1926 II. 21). Bildet leicht unterkühlte Schmelzen, die erst beim Impfen wieder krystallisieren (J., R. 41, 709). Kp₂₅: 245—250°; Kp₁₅: 215—225° (T.); Kp₂₁: 227° (M., R. 39, 344). Liefert bei 48-stündigem Erhitzen mit alkoh. Kalilauge auf 100° 4-Åthoxy-benzhydrol (M., R. 39, 344).
- **4-Propyloxy-benzophenon** $C_{16}H_{16}O_2 = C_6H_5 \cdot CO \cdot C_6H_4 \cdot O \cdot CH_2 \cdot C_2H_5$. B. Aus Propylphenyläther und Benzoylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (Torres, Bl. [4] 37, 1594; An. Soc. españ. 24, 86; C. 1926 II, 21). Blättchen (aus Alkohol). F: 65—66° (T.; Ley, Kirchner, Z. anorg. Ch. 178, 409).
- **4 Butyloxy benzophenon** $C_{17}H_{18}O_3 = C_6H_5 \cdot CO \cdot C_6H_4 \cdot O \cdot [CH_2]_5 \cdot CH_3$. B. Analog der vorangehenden Verbindung (Torres, Bl. [4] 37, 1594; An. Soc. españ. 24, 87; C. 1926 II, 21). —

- F: 35—36° (Ley, Kirchner, Z. anorg. Ch. 173, 409), 38—39° (T.). Siedet unter gewöhnlichem Druck bei 235—245° (T.).
- 4 Isoamyloxy benzophenon $C_{18}H_{20}O_3=C_6H_5\cdot CO\cdot C_6H_4\cdot O\cdot C_6H_{11}$. B. Analog den vorangehenden Verbindungen (Torres, Bl. [4] 37, 1594; An. Soc. españ. 24, 87; C. 1926 II, 21). S'edet unter gewöhnlichem Druck bei 225—240°.
- 4-Phenoxy-benzophenon, 4-Benzoyl-diphenyläther $C_{19}H_{14}O_2=C_4H_5\cdot CO\cdot C_4H_4\cdot O\cdot C_6H_5$ (H 159). Vgl. dazu Torres, Bl. [4] 87, 1594; An. Soc. españ. 24, 87; C. 1926 II, 21.
- 4-[4-Nitro-phenoxy]-benzophenon, 4'-Nitro-4-benzoyl-diphenyläther $C_{19}H_{19}O_4N=C_6H_5$. $CO\cdot C_6H_4\cdot O\cdot C_6H_4\cdot NO_2$. B. Aus 4-Nitro-diphenyläther, Benzoylchlorid und Aluminiumchlorid in Schwefelkohlenstoff bei 45° (Dilthey, Mitarb., J. pr. [2] 117, 360). Krystalle (aus Benzol). F: 126°. Löst sich in konz. Schwefelsäure mit grünstichig gelber Farbe. Phenylhydrazon $C_{25}H_{19}O_3N_3$. F: 167°.
- 4-p-Kresoxy-benzophenon, 4-Methyl-4'-benzoyl-diphenyläther $C_{20}H_{16}O_{2}=C_{6}H_{5}\cdot CO\cdot C_{6}H_{4}\cdot O\cdot C_{6}H_{4}\cdot CH_{3}$. B. Aus 4-Methyl-diphenyläther, Benzoylchlorid und Aluminiumohlorid in Schwefelkohlenstoff (Dilthex, Mitarb., J. pr. [2] 117, 358). Krystalle (aus Ligroin). F: 68°. Löst sich in konz. Schwefelsäure mit gelber Farbe.
- 4.4'-Bis-[4-benzoyl-phenoxy]-diphenyläther $C_{38}H_{28}O_5 = (C_4H_5 \cdot CO \cdot C_6H_4 \cdot O \cdot C_6H_4)_2O$. B. Aus 4.4'-Diphenoxy-diphenyläther und 2 Mol Benzoylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff, zuletzt auf dem Wasserbad (Dilthey, Mitarb., J. pr. [2] 124, 123). Krystalle (aus Benzol). F: 205—206°. Gibt mit konz. Schwefelsäure eine gelbe Färbung.
- 4.4' Dibenzoyl diphenyläther $C_{26}H_{18}O_3 = C_6H_5 \cdot CO \cdot C_6H_4 \cdot CO \cdot C_6H_4 \cdot CO \cdot C_6H_5$. B. Aus Diphenyläther und 2 Mol Benzoylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (Dilthey, Mitarb., J. pr. [2] 117, 353). Entsteht ferner beim Erhitzen von 4-Brom-benzophenon mit dem Kaliumsalz des 4-Oxy-benzophenons in Gegenwart von Kupferpulver auf 240° (D., Mitarb.). Krystalle (aus Methanol oder Ligroin). F: 163—164°. Leicht löslich in Benzol, schwer in Äther und Tetrachlorkohlenstoff. Löst sich in konz. Schwefelsäure mit gelber Farbe.
- 4 Acetoxy benzophenon $C_{15}H_{12}O_3 = C_6H_5 \cdot CO \cdot C_6H_4 \cdot O \cdot CO \cdot CH_3$ (H 160). B. Durch Acetylierung von 4-Oxy-benzophenon in Pyridin (Blakey, Jones, Scarborough, Soc. 1927, 2867).
- 4-Benzoyl-phenoxyessigsäure C₁₅H₁₂O₄ = C₆H₅·CO·C₆H₄·O·CH₂·CO₂H. B. Durch Verseifung des Äthylesters (s. u.) (TORRES, An. Soc. españ. 24, 88; C. 1926 II, 21). F: 154—155° (T., Bl. [4] 37, 1594; An. Soc. españ. 24, 88).

Äthylester $C_{17}H_{16}O_4 = C_6H_5 \cdot CO \cdot C_6H_4 \cdot O \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. B. Aus 4-Oxy-benzophenon und Chloressigsäureäthylester in Natriumäthylat-Lösung (Torres, Bl. [4] 87, 1594; An. Soc. españ. 24, 88; C. 1926 II, 21). — F: 84—85°.

4-Oxy-benzophenon-oxim, Phenyl-[4-oxy-phenyl]-ketoxim $C_{13}H_{11}O_3N=C_6H_5\cdot C(:N\cdot OH)\cdot C_6H_4\cdot OH$ (H 160). Nach neueren Untersuchungen besitzt das bei 152° schmelzende $\alpha\cdot Ox$ im die Konfiguration I, das bei 81° schmelzende $\beta\cdot Ox$ im die Konfiguration II ¹) (vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 1028).

$$I. \begin{tabular}{ll} $C_6H_5 \cdot C \cdot C_6H_4 \cdot OH$ \\ \hline $N \cdot OH$ \\ \hline \end{tabular} II. \begin{tabular}{ll} $C_6H_5 \cdot C \cdot C_6H_4 \cdot OH$ \\ \hline $H0 \cdot N$ \\ \hline \end{tabular}$$

4-Methoxy-benzophenon- α -oxim $C_{14}H_{13}O_2N = \frac{C_6H_6 \cdot C \cdot C_6H_4 \cdot O \cdot CH_8}{N \cdot OH}$ (H 161; E I 570). Zur

Konfiguration vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 1028. — F: 146° (Meisenheimer, Dorner, A. 502 [1933], 173). — Gibt bei der Reduktion mit Natrium in absol. Alkohol 4-Methoxy-benzhydrylamin (Billon, C. r. 182, 471; A. ch. [10] 7, 337). Lagert sich beim Erwärmen mit Oxalylchlorid in absol. Äther in Anissäureanilid um (Adams, Ulich, Am. Soc. 42, 608).

4-Methoxy-benzophenon- β -oxim $C_{14}H_{13}O_2N = \frac{C_6H_5 \cdot C \cdot C_6H_4 \cdot O \cdot CH_8}{HO \cdot N}$ (H 160; E I 570).

Zur Konfiguration vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 1028. — F: 118° (Meisenheimer, Dorner, A. 502 [1933], 173). — Gibt bei der Reduktion mit Natrium in absol. Alkohol 4-Methoxy-benzhydrylamin (Billon, C. r. 182, 471; A. ch. [10], 7, 337).

4-Äthoxy-benzophenon-oxim $C_{15}H_{15}O_3N=C_9H_5\cdot C(:N\cdot OH)\cdot C_9H_4\cdot O\cdot C_9H_5$. Krystalle (aus Alkohol). F: 135—136° (Torres, Bl. [4] \$7, 1593; An. Soc. españ. 24, 86; C. 1926 II, 21). — Gibt bei der Reduktion mit Natriumamalgam und Essigsäure in Alkohol 4-Äthoxy-benzhydrylamin.

¹) Nach Meisenheimer, Dorner (A. 502 [1933], 173) schmilzt das α -Oxim bei 159°, das β -Oxim bei 83°.

- 4-Propyloxy-benzophenon-oxim $C_{1e}H_{17}O_2N = C_0H_5 \cdot C(:N \cdot OH) \cdot C_0H_4 \cdot O \cdot CH_2 \cdot C_2H_5$. Krystalle (aus Alkohol). F: 104—105° (Torres, Bl. [4] 87, 1594; An. Soc. españ. 24, 86; C. 1926 II, 21).
- 4-Butyloxy-benzophenon-oxim $C_{17}H_{19}O_2N = C_6H_6 \cdot C(:N \cdot OH) \cdot C_6H_4 \cdot O \cdot [CH_2]_3 \cdot CH_3$. F: 94° bis 95° (Torres, Bl. [4] 37, 1594; An. Soc. españ. 24, 87; C. 1926 II, 21).
- 4-Isoamyloxy-benzophenon-exim $C_{18}H_{21}O_2N=C_4H_5\cdot C(:N\cdot OH)\cdot C_6H_4\cdot O\cdot C_5H_{11}$. Krystalle (aus Alkohol). F: 93—94° (Torres, Bl. [4] 37, 1594; An. Soc. españ. 24, 87; C. 1926 II, 21).
- 4 Phenoxy benzophenon oxim $C_{19}H_{15}O_{9}N = C_{6}H_{5} \cdot C(:N \cdot OH) \cdot C_{6}H_{4} \cdot O \cdot C_{6}H_{5}$. F: 124° (TORRES, Bl. [4] 87, 1594; An. Soc. españ. 24, 87; C. 1926 II, 21).
- 4-[4-Nitro-phenoxy]-benzophenon-oxim $C_{19}H_{14}O_4N_2=C_6H_5\cdot C(:N\cdot OH)\cdot C_6H_4\cdot NO_2$. Nadeln (aus Benzol + Ligroin). F: 162° (Dилнеу, Mitarb., J. pr. [2] 117, 360).
- 4-p-Kresoxy-benzophenon-oxim $C_{20}H_{17}O_2N=C_6H_5\cdot C(:N\cdot OH)\cdot C_6H_4\cdot O\cdot C_6H_4\cdot CH_3$. Krystalle. F: 138° (Dilthey, Mitarb., J. pr. [2] 117, 358). Wenig beständig.
- Dioxim des 4.4'-Bis-[4-benzoyl-phenoxy]-diphenyläthers $C_{38}H_{28}O_5N_3=[C_6H_5\cdot C(:N\cdot OH)\cdot C_6H_4\cdot O\cdot C_6H_4]_2O$. Krystalle (aus Benzol). F: 196—197° (Zers.) (DILTHEY, Mitarb., J. pr. [2] 124, 124).
- Dioxim des 4.4'- Dibenzoyl diphenyläthers $C_{26}H_{20}O_3N_2=[C_6H_5\cdot C(:N\cdot OH)\cdot C_6H_4]_2O$. Krystalle (aus Benzol + Petroläther). F: 215—216° (Zers.) (Dilthey, Mitarb., $J.\ pr.\ [2]\ 117,354$).
- Oxim des 4-Benzoyi-phenoxyessigsäureäthylesters $C_{17}H_{17}O_4N = C_6H_5 \cdot C(:N \cdot OH) \cdot C_6H_4 \cdot O \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. F: 78—79° (Torres, Bl. [4] 37, 1595; An. Soc. españ. 24, 88; C. 1926 II, 21).
- 3-Chlor-4-oxy-benzophenon C₁₃H₉O₃Cl, s. nebenstehende Formel (H 161). B. Beim Erhitzen von 2-Chlor-phenol oder 2-Chlor-anisol mit Benzoylchlorid und Aluminiumchlorid in Tetrachloräthan auf 120° C₆H₅ CO OH bis 130° (HAYASHI, J. pr. [2] 128, 293). Beim Erhitzen von 3-Chlor-4-methoxy-benzophenon mit Aluminiumchlorid in Tetrachloräthan auf 100—111° (H.). F: 180—181°. Leicht löslich in heißem Benzol und Eisessig, schwer in Schwefelkohlenstoff, sehr schwer in Petroläther und Wasser. Leicht löslich in verd. Natronlauge oder Sodalösung mit gelber Farbe.
- 3-Chlor-4-methoxy-benzophenon $C_{14}H_{11}O_3Cl = C_6H_5\cdot CO\cdot C_6H_3Cl\cdot O\cdot CH_3$. B. Aus 2-Chloranisol und Benzoylchlorid bei Gegenwart von Aluminiumchlorid in Tetrachlorāthan bei 120° bis 130° (Hayashi, J. pr. [2] 123, 293). Beim Behandeln von 3-Chlor-4-oxy-benzophenon-kalium mit Dimethylsulfat in siedendem Toluol (H.). Durch Einne von etwas weniger als 1 Mol Chlor auf 4-Methoxy-benzophenon in kaltem Eisessig (Blakey, Jones, Scarborough, Soc. 1927, 2867). Prismen (aus Methanol). F: 98° (B., J., Sc.), 99—99,5° (H.). Leicht löslich in Benzol und in heißem Eisessig und Alkohol, sehr schwer in Petroläther (H.). Gibt bei weiterer Chlorierung in Eisessig 3.5-Dichlor-4-methoxy-benzophenon (B., J., Sc.).
- 4'- Chlor-4- oxy-benzophenon C₁₃H₂O₂Cl = C₆H₄Cl·CO·C₆H₄·OH. B. Neben anderen Verbindungen beim Erhitzen von 4'-Chlor-4-amino-benzophenon mit Natriumnitrit in Alkohol und konz. Schwefelsäure (Montagne, R. 39, 342). Aus 4'-Chlor-4-äthoxy-benzophenon durch Erhitzen mit Eisessig und Bromwasserstoffsäure (D: 1,49) (M., R. 39, 343). Krystalle (aus Benzol). F: 179,25° (korr.). Kp₁₈: 257°.
- 4'-Chlor-4-äthoxy-benzophenon $C_{15}H_{13}O_2Cl=C_6H_4Cl\cdot CO\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus Phenetol and 4-Chlor-benzoylchlorid bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (Montagn, R. 39, 346). Neben anderen Verbindungen beim Diazotieren von 4'-Chlor-4-aminobenzophenon mit Natriumnitrit in alkoh. Schwefelsäure und nachfolgenden Kochen (M., R. 39, 342). Nadeln oder Tafeln (aus Benzol + Petroläther oder aus Essigester). F: 121,25° (korr.). Kp₁₂: 223°. Liefert bei 48-stdg. Erhitzen mit alkoh. Kalilauge auf 100° 4'-Chlor-4-äthoxy-benz hydrol und 4.4'-Diäthoxy-benzophenon.
- 3.5-Dichlor-4-oxy-benzophenon C₁₃H₈O₂Cl₂, s. nebenstehende Formel.

 B. Beim Einleiten von Chlor in eine Lösung von 4-Oxy-benzophenon in Eisessig in Gegenwart von Natriumacetat (Blakey, Jones, Scar. C₆H₅·CO OH BOROUGH, Soc. 1927, 2868). Beim Kochen von 3.5-Dichlor-4-methoxy-benzophenon mit Bromwasserstoffsäure und Eisessig (B., J., Sc.).

 Nadeln (aus Methanol). F: 148°.
- 3.5-Dichlor-4-methoxy-benzophenon $C_{14}H_{10}O_3Cl_2=C_6H_5\cdot CO\cdot C_6H_3Cl_2\cdot O\cdot CH_3$. B. Beim Einleiten von Chlor in geschmolzenes 4-Methoxy-benzophenon bei Gegenwart von Jod oder in Lösungen von 4-Methoxy-benzophenon in siedendem Tetrachlorkohlenstoff oder in Eiseseig bei Gegenwart von Natriumacetat (Blakey, Jones, Scarborough, Soc. 1927, 2867). Durch Chlorierung von 3-Chlor-4-methoxy-benzophenon in Eisessig (B., J., Sc.). Nadeln (aus Alkohol). F: 74°.

- 3.5 Dichlor 4- methoxy-benzophenon-oxim $C_{14}H_{11}O_2NCl_2=C_6H_5\cdot C(:N\cdot OH)\cdot C_6H_2Cl_2\cdot O\cdot CH_2$. Nadeln (aus Alkohol). F: 146° (Blakey, Jones, Scarborough, Soc. 1927, 2867). Liefert bei der Einw. von PCl₅ in Äther 3.5-Dichlor-4-methoxy-benzoesäure-anilid.
- 3-Brom 4 exy benzephenon C₁₈H₂O₂Br, s. nebenstehende Formel (H 161). B. Beim Kochen von 3-Brom-4-methoxy-benzophenon mit Eisessig und Bromwasserstoffsäure (Blakey, Jones, Scarborough, C₂H₅·CO·OH Soc. 1927, 2867, 2869). F: 183° (B., J., Sc.), 183,25° (korr.) (Montagne, R. 41, 711). Bleibt bei tagelangem Erhitzen mit alkoh. Kalilauge unverändert (M.).
- 3-Brom-4-methoxy-benzophenon $C_{14}H_{11}O_2Br = C_6H_8 \cdot CO \cdot C_6H_8Br \cdot O \cdot CH_8$. B. Aus 4-Methoxy-benzophenon beim Behandeln mit Brom in Gegenwart von Natriumacetat in Eisessig bei Zimmertemperatur im Sonnenlicht oder bei 100° oder in siedendem Pyridin (Blakey, Jones, Scarbobough, Soc. 1927, 2868). Nadeln (aus Alkohol). F: 94°. Gibt bei der Chlorierung bei Gegenwart von Natriumacetat in Eisessig 5-Chlor-3-brom-4-methoxy-benzophenon.
- 3-Brom-4-äthoxy-benzophenon $C_{15}H_{13}O_2Br = C_6H_5 \cdot CO \cdot C_6H_2Br \cdot O \cdot C_2H_5$. B. Beim Koehen von 3-Brom-4-oxy-benzophenon mit Åthyljodid in alkoholisch-alkalischer Lösung (MONTAGNE, R. 41, 713). Aus 4-Äthoxy-benzophenon und Brom in Eisessig (M., R. 41, 713). Tafeln (aus Benzol + Ligroin). Rhombisch bipyramidal (JARGER, R. 41, 714; Versl. Akad. Amsterdam \$5, 55; C. 1926 II, 200). F: 102,25° (korr.). Liefert beim Erhitzen mit alkoh. Kalilauge auf 100° 3-Brom-4-åthoxy-benzhydrol.
 - $\textbf{3-Brom-4-methoxy-benzophenon-}\alpha\text{-oxim} \ \ C_{14}H_{12}O_{2}NBr = \frac{C_{6}H_{5}\cdot C\cdot C_{6}H_{3}Br\cdot O\cdot CH_{3}}{N\cdot OH}. \ \ Zur$

Konfiguration vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 1028. — B. Neben dem β -Oxim (s. u.) beim Kochen von 3-Brom4-methoxy-benzophenon mit Hydroxylaminhydrochlorid in wäßrig-alkoholischer Kalilauge (Blakey, Jones, Scarborough, Soc. 1927, 2868). — Tafeln (aus Alkohol). F: 164°. — Liefert bei der Einw. von PCl₅ in Äther 3-Brom-4-methoxy-benzoesäure-anilid.

3-Brom-4-methoxy-benzophenon- β -oxim $C_{14}H_{12}O_2NBr = \frac{C_0H_5 \cdot C \cdot C_0H_3Br \cdot O \cdot CH_3}{HO \cdot N}$. Zur afiguration und zur Bildung vol die Angelen

Konfiguration und zur Bildung vgl. die Angaben im vorhergehenden Artikel. — Nadeln (aus 30% igem Alkohol). F: 111,5° (Blakey, Jones, Scarborough, Soc. 1927, 2868). — Liefert bei der Einw. von PCl₅ in Äther Benzoesäure-[3-brom-4-methoxy-anilid].

- 2'- Brom 4 oxy benzophenon C₁₈H₉O₂Br = C₆H₄Br·CO·C₆H₄·OH. B. Aus 2'-Brom-4-āthoxy-benzophenon beim Kochen mit Bromwasserstoffsäure und Eisessig (Montagne, R. 42, 509). Krystalle (aus Benzol + Petroläther). F: 114° (korr.). Kp₁₀: 260° (korr.). Bleibt beim Erhitzen mit alkoh. Kalilauge auf 100° fast unverändert.
- 2'-Brom-4-äthoxy-benzophenon $C_{18}H_{13}O_2Br = C_6H_4Br\cdot CO\cdot C_6H_4\cdot O\cdot C_2H_5$ (H 162). Zur Bildung aus Phenetol und 2-Brom-benzoylchlorid bei Gegenwart von Aluminiumchlorid vgl. a. MONTAGNE, R. 39, 487. Wurde in 2 Modifikationen erhalten. Labile Form. Nadeln (aus Alkohol) F: ca. 68°. Geht beim Aufbewahren in Substanz oder in Berührung mit Alkohol sowie beim Schmelzen in die stabile Form über. Stabile Form. Prismen (aus Äthylacetat). Rhombisch bipyramidal (JAEGER, Z. Kr. 56, 59; R. 39, 488). F: 79,5° (korr.). Kp₁₈: 247°. Liefert bei der Reduktion mit Natriumamalgam und Alkohol oder mit Zinkstaub und alkoh. Kalilauge 4-Äthoxy-benzhydrol.
- 3'-Brom-4-oxy-benzophenon $C_{13}H_9O_2Br=C_6H_4Br\cdot CO\cdot C_6H_4\cdot OH$. B. Beim Kochen von 3'-Brom-4-āthoxy-benzophenon mit Bromwasserstoffsäure und Eisessig (Montagne, R. 41, 712). Krystalle (aus Toluol). F: 171° (korr.). Bleibt beim Erhitzen mit alkoh. Kalilauge auf 100° unverändert.
- 3'-Brom-4-äthoxy-benzophenon $C_{15}H_{13}O_2Br=C_6H_4Br\cdot CO\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus Phenetol, 3-Brom-benzoylchlorid und Aluminiumchlorid in siedendem Schwefelkohlenstoff (Montagne, R. 41, 717). Krystalle (aus Alkohol). F: 79,5° (korr.). Kp₁₁: 232° (korr.). Liefert bei der Reduktion mit Natriumamalgam und Alkohol 4-Äthoxy-benzhydrol. Beim Erhitzen mit alkoh. Kalilauge auf cs. 100° entsteht 3'-Brom-4-äthoxy-benzhydrol.
- 4'- Brom 4 äthoxy benzophenon $C_{15}H_{13}O_2Br = C_3H_4Br\cdot CO\cdot C_8H_4\cdot O\cdot C_4H_5$ (E I 570). Liefert bei der Reduktion mit Zinkstaub und alkoh. Kalilauge auf dem Wasserbad 4-Äthoxy-benzhydrol (Montagne, R. 39, 489). Bei 48-stdg. Erhitzen mit alkoh. Kalilauge auf 100° bilden sich 4'-Brom-4-äthoxy-benzhydrol und 4.4'-Diäthoxy-benzophenon (M., R. 39, 348).
- 5-Chlor-3-brom-4-methoxy-benzophenon C₁₄H₁₀O₂ClBr, Formel I auf S. 189. B. Beim Einleiten von Chlor in eine Lösung von 3-Brom-4-methoxy-benzophenon in Eisessig bei Gegenwart von Natriumacetat (Blakey, Jones, Scarbobough, Soc. 1927, 2869). Nadeln (aus Methanol). F: 92°.

189

2-Chier-2'-brom-4-oxy-benzophenon (?) C₁₃H₈O₂ClBr, Formel II. B. In geringer Menge beim Kochen von 2.4-Dichlor-2'-brom-benzophenon mit 3 Mol Hydroxylaminhydrochlorid und 9 Mol wäßrig-alkoholischer Kalilauge (Meisenheimee, Hanssen, Wächterowitz, J. pr. [2] 119, 346, 353). — Blaßbraune Nadeln (aus Benzol). F: 158—160°. Leicht löslich in Alkohol, Äther und Essigester, löslich in Benzol, schwer löslich in Schwefelkohlenstoff und Petroläther. Löslich in Alkalilaugen.

$$I. \quad C_0H_5 \cdot CO \cdot \underbrace{ \begin{array}{c} Br \\ \\ \\ Cl \\ \end{array}} \cdot O \cdot CH_3 \qquad \qquad II. \quad \underbrace{ \begin{array}{c} Br \\ \\ \\ \\ \end{array}} \cdot CO \cdot \underbrace{ \begin{array}{c} Cl \\ \\ \\ \\ \end{array}} \cdot OH \ (?) \qquad \qquad III. \quad C_0H_5 \cdot CO \cdot \underbrace{ \begin{array}{c} Br \\ \\ \\ \\ \\ \end{array}} \cdot OH$$

- 3.5-Dibrom-4-oxy-benzophenon C₁₃H₈O₂Br₂, Formel III (H 162). B. Aus 4-Oxy-benzophenon beim Schütteln mit Bromwasser oder beim Behandeln mit alkal. Hypobromit-Lösung unterhalb 5° (Blakey, Jones, Scarborough, Soc. 1927, 2869). Zur Bildung aus 4-Oxy-benzophenon durch Bromierung in essigsaurer Lösung vgl. Montagne, R. 41, 710, 711. Entsteht ferner beim Erhitzen von 4-Methoxy-benzophenon mit Brom und wasserfreiem Natriumacetat im Rohr auf 140° (B., J., Sc., Soc. 1927, 2869). Neben anderen Produkten beim Erhitzen von 3.5-Dibrom-4-athoxy-benzophenon mit alkoh. Kalilauge auf 100° (Montagne, R. 41, 716). Beim Diazotieren von 3.5-Dibrom-4-amino-benzophenon mit Natriumnitrit in alkoh. Schwefelsäure und nachfolgenden Erwärmen (M., R. 41, 719). Tafeln (aus Petroläther). F: 153,5° (korr.) (M.), 155° (B., J., Sc.). Bleibt beim Erhitzen mit alkoh. Kalilauge auf 100° unverändert (M.).
- 3.5-Dibrom-4-äthoxy-benzophenon $C_{15}H_{12}O_2Br_8=C_6H_5\cdot CO\cdot C_6H_2Br_2\cdot O\cdot C_2H_5$. B. Beim Kochen von 3.5-Dibrom-4-oxy-benzophenon mit Äthyljodid in alkoholisch-alkalischer Lösung (Montagne, R. 41, 715). Krystalle (aus Ligroin). Monoklin prismatisch (Jaeger, R. 41, 715; Versl. Akad. Amsterdam 35, 56; C. 1926 II, 200). F: 83,5° (korr.); Kp₁₁: 244° (korr.) (M.). Liefert beim Erhitzen mit alkoh. Kalilauge auf 100° 3.5-Dibrom-4-äthoxy-benzhydrol und geringere Mengen 3.5-Dibrom-4-oxy-benzophenon und 3-Brom-4-äthoxy-benzhydrol.
- 3-Jod-4-oxy-benzophenon $C_{13}H_9O_2I$, s. nebenstehende Formel.

 B. Beim Behandeln von 4-Oxy-benzophenon mit Jod in alkal. Lösung (Blakey, Jones, Scarborough, Soc. 1927, 2870). Beim Kochen von 3-Jod-4-methoxy-benzophenon mit Eisessig und Bromwasserstoffsäure (B., J., Sc.). Tafeln (aus Methanol). F: 184°.
- 3-Jod-4-methoxy-benzophenon $C_{14}H_{11}O_2I=C_8H_5\cdot CO\cdot C_8H_2I\cdot O\cdot CH_3$ (E I 570). B. Beim Behandeln von 4-Methoxy-benzophenon mit Jodmonochlorid in essigsaurer Lösung (Blakey, Jones, Scarborough, Soc. 1927, 2869). Nadeln (aus Alkohol). F: 81°.
 - 3- Jod-4-methoxy-benzophenon- α -oxim $C_{14}H_{12}O_2NI = \frac{C_6H_5 \cdot C \cdot C_6H_3I \cdot O \cdot CH_3}{N \cdot OH}$. Zur Kon-

figuration vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 1028. — B. Neben dem β -Oxim (s. u.) beim Kochen von 3-Jod-4-methoxy-benzophenon mit Hydroxylaminhydrochlorid in wäßrig-alkoholischer Kalilauge (Blakey, Jones, Scarborough, Soc. 1927, 2869). — Nadeln (aus Alkohol). F: 182°. — Gibt bei der Einw. von PCl_5 in Äther 3-Jod-4-methoxy-benzoesäure-anilid.

3- Jod-4-methoxy-benzophenon- β -oxim $C_{14}H_{12}O_2NI = \frac{C_6H_5 \cdot C \cdot C_6H_3I \cdot O \cdot CH_3}{HO \cdot N}$. Zur Konguration und zur Bildung well die Angelen

figuration und zur Bildung vgl. die Angaben im vorhergehenden Artikel. — Nadeln (aus 30 %igem Alkohol). F: 135° (ВІДКЕЧ, JONES, SCARBOROUGH, Soc. 1927, 2870). — Liefert bei der Einw. von PCl₅ in Äther Benzoesäure-[3-jod-4-methoxy-anilid].

- 4'-Jod-4-äthoxy-benzophenon $C_{15}H_{13}O_2I = C_6H_4I \cdot CO \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Beim Erwärmen von Phenetol mit 4-Jod-benzoylchlorid und Aluminiumchlorid in Schwefelkohlenstoff (Montagne, R. 39, 356). Tafeln (aus Alkohol). F: 147,5° (korr.). Kp₁₇: 266°. Liefert beim Erhitzen mit Natriumamalgam in Alkohol 4-Äthoxy-benzhydrol. Beim Erhitzen mit alkoh. Kalilauge auf 100° bildet sich 4-Äthoxy-benzophenon.
- 3.5 Dijod 4 oxy benzophenon

 C₁₃H₈O₂I₂, Formel IV. B. Beim Behandeln einer essigsauren Lösung von 4-Oxybenzophenon mit Jodmonochlorid in
 Gegenwart von Natriumacetat (BIAKEY,
 JONES, SCARBOROUGH, Soc. 1927, 2870). Nadeln (aus Alkohol). F: 145°.

3-Nitro-4-oxy-benzophenon C₁₃H₂O₄N, Formel V (E I 571). B. Aus 4-Oxy-benzophenon beim Behandeln mit Salpetersäure (D: 1,4) bei 0° oder beim Erwärmen mit Salpetersäure

- (D: 1,5) in Eisessig + Acetanhydrid auf 50—60° (Blakey, Jones, Scarborough, Soc. 1927, 2870—2871). Beim Kochen von 3-Nitro-4-methoxy-benzophenon mit Eisessig und Bromwasserstoffsäure (B., J., Sc.,). Tafeln (aus Methanol). F: 94° (B., J., Sc.; vgl. dagegen Borsche, B. 50 [1917], 1355).
- 3-Nitro-4-methoxy-benzophenon C₁₄H₁₁O₄N = C₆H₅·CO·C₆H₃(NO₂)·O·CH₃. B. Bei der Einw. von Salpetersäure (D: 1,5) auf 4-Methoxy-benzophenon bei Zimmertemperatur (Blakey, Jones, Scaeborough, Soc. 1927, 2870). Gelbe Nadeln (aus Alkohol). F: 105° (B., J., Sc.). Liefert beim Behandeln mit Salpeterschwefelsäure in Eisessig 3.3'-Dinitro-4-methoxy-benzophenon und 3.2'-Dinitro-4-methoxy-benzophenon (B., J., Sc.; vgl. van Alphen, R. 49 [1930], 390).
- 3-Nitro-4-methoxy-benzophenon-oxim $C_{14}H_{12}O_4N_2=C_6H_5\cdot C(:N\cdot OH)\cdot C_3H_3(NO_3)\cdot O\cdot CH_3$. Gelbe Tafeln (aus Alkohol). F: 179° (Blakey, Jones, Scarborough, Soc. 1927, 2870). Gibt bei der Einw. von PCl₅ in Äther 3-Nitro-4-methoxy-benzoesäure-anilid.
- 3'-Nitro-4-oxy-benzophenon $C_{13}H_9O_4N=O_3N\cdot C_6H_4\cdot CO\cdot C_6H_4\cdot OH$ (H 162). B. Beim Kochen von 3'-Nitro-4-methoxy-benzophenon mit Eisessig und Bromwasserstoffsäure (Blakey, Jones, Scarborough, Soc. 1927, 2867, 2871).
- 3'-Nitro-4-methoxy-benzophenon $C_{14}H_{11}O_4N=O_3N\cdot C_6H_4\cdot CO\cdot C_6H_4\cdot O\cdot CH_3$ (H 162). Zur Bildung aus Anisol, 3-Nitro-benzoylchlorid und Aluminiumchlorid in Schwefelkohlenstoff vgl. a. BLAKEY, JONES, SOARBOROUGH, Soc. 1927, 2871. Blaßgelbe Nadeln (aus Alkohol). F: 95°. Liefert bei der Einw. von Salpetersäure (D: 1,5) 3.3'-Dinitro-4-methoxy-benzophenon.
- 4'-Nitro 4 methoxy benzophenon $C_{14}H_{11}O_4N=O_9N\cdot C_6H_4\cdot CO\cdot C_6H_4\cdot O\cdot CH_3$ (H 163). Liefert bei der Einw. von Salpetersäure (D: 1,5) 3.4'-Dinitro-4-methoxy-benzophenon (Blakey, Jones, Scarbobough, Soc. 1927, 2872).
- 3.5-Dinitro-4-oxy-benzophenon $C_{13}H_6O_6N_2$, Formel I (H 163). B. Beim Erwärmen von 4-Oxy-benzophenon mit Salpetersäure (D: 1,4) auf 40° (Blakey, Jones, Scarborough, Soc. 1927, 2871). Gelbe Nadeln (aus Alkohol). F: 138°.

- 3.5 Dinitro 4 methoxy benzophenon $C_{14}H_{10}O_6N_2 = C_6H_5 \cdot CO \cdot C_6H_4(NO_2)_2 \cdot O \cdot CH_3$. B. Beim Behandeln von 4-Chlor-3.5-dinitro-benzophenon mit Natriummethylat-Lösung (Blakey, Jones, Scarborough, Soc. 1927, 2871). Gelbe Nadeln (aus Methanol). F: 105° (B., J., Sc.). Liefert bei der Nitrierung mit Salpeterschwefelsäure 3.5.3'-Trinitro-4-methoxy-benzophenon und 3.5.2'-Trinitro-4-methoxy-benzophenon (B., J., Sc.; vgl. van Alphen, R. 49 [1930], 385).
- 3.2'- Dinitro 4 methoxy benzophenon $C_{14}H_{10}O_6N_2$, Formel II. Zur Konstitution vgl. van Alphen, R. 49 [1930], 390. B. Neben 3.3 -Dinitro-4-methoxy-benzophenon bei der Einw. von Salpetersäure (D: 1,5) auf 4-Methoxy-benzophenon oder auf 3-Nitro-4-methoxy-benzophenon in Eisessig + konz. Schwefelsäure unterhalb 10° (Blakey, Jones, Scarborough, Soc. 1927, 2872). Nadeln (aus Eisessig). F: 125° (B., J., Sc.).
- 3.3'-Dinitro-4-oxy-benzophenon C₁₂H₈O₆N₂, Formel III. B. Beim Kochen von 3.3'-Dinitro-4-methoxy-benzophenon mit Bromwasserstoffsäure in Eisessig (Blakey, Jones, Scarborough, Soc. 1927, 2867, 2871). Blaßgrüne Prismen (aus Alkohol). F: 165°.
- 3.3'-Dinitro 4-methoxy benzophenon $C_{14}H_{10}O_6N_2=O_2N\cdot C_6H_4\cdot CO\cdot C_6H_3(NO_2)\cdot O\cdot CH_3$. B. s. o. im Artikel 3.2'-Dinitro-4-methoxy-benzophenon. Entsteht ferner bei der Einw. von Salpetersäure (D: 1,5) auf 3'-Nitro-4-methoxy-benzophenon (Blakey, Jones, Scarborough, Soc. 1927, 2871). Blaßgelbe Nadeln (aus Alkohol). F: 143°. Liefert bei der Nitrierung mit Salpeterschwefelsäure 3.5.3'-Trinitro-4-methoxy-benzophenon.
- 3.4'-Dinitro-4-methoxy-benzophenon $C_{14}H_{10}O_6N_2$, Formel IV. B. Bei der Einw. von Salpetersäure (D: 1,5) auf 4'-Nitro-4-methoxy-benzophenon (Blakey, Jones, Scarbobough, Soc. 1927, 2872). Prismen (aus Alkohol). F: 174°.

3.5.2'-Trinitro-4-methoxy-benzophenon $C_{14}H_{9}O_{8}N_{3}$, Formel V. Zur Konstitution vgl. Van Alphen, R. 49 [1930], 385. — B. Neben 3.5.3'-Trinitro-4-methoxy-benzophenon bei der Einw. von Salpeterschwefelsäure auf 4-Methoxy-benzophenon oder auf 3.5-Dinitro-4-methoxy-

benzophenon (Blakey, Jones, Scarborough, Soc. 1927, 2872). — Hellgelbe Tafeln (aus Toluol). F: 142° (B., J., Sc.).

3.5.3'-Trinitro-4-methoxy-benzophenon C₁₄H₉O₈N₃, Formel VI auf S. 190. *B.* s. o. im Artikel 3.5.2'-Trinitro-4-methoxy-benzophenon. Entsteht ferner beim Behandeln von 3.3'-Dinitro-4-methoxy-benzophenon mit Salpeterschwefelsäure (BIAKEY, JONES, SCARBOROUGH, Soc. 1927, 2872). — Prismen (aus Eisessig). F: 184°. Schwer löslich in Toluol. — Gibt bei der Oxydation mit Chromtrioxyd in Essigsäure geringe Mengen 3-Nitro-benzoesäure.

- 4-Methylmercapto-benzophenon, 4-Benzoyl-thioanisol C₁₄H₁₂OS = C₆H₅·CO·C₆H₄·S·CH₈. B. Beim Erwärmen von Benzotrichlorid mit 1 Mol Thioanisol in Gegenwart von ZnCl₂ auf dem Wasserbad und Kochen des Reaktionsprodukts mit Sodalösung (Brand, Vogt, J. pr. [2] 107, 384, 389). Beim Behandeln von Thioanisol mit Benzoylchlorid und Aluminiumchlorid in siedendem Schwefelkohlenstoff (Schönberg, A. 486, 216). Krystalle (aus Äther oder Petroläther). F: 72—73° (B., V.), 79° (Sch.). Leicht löslich in Eisessig (Sch.) und in Benzol und Äther, löslich in Alkohol und heißem Petroläther (B., V.). Die Lösung in konz. Schwefelsäure ist orange (Sch.). Liefert beim Kochen mit Natriumamid in Toluol Benzamid und 4-Methylmercapto-benzamid (Sch., A. 486, 217; B. 58, 585).
- 4-Phenylmercapto-benzophenon, 4-Benzoyl-diphenylsulfid $C_{19}H_{14}OS = C_6H_5 \cdot CO \cdot C_6H_4 \cdot S \cdot C_6H_5 \cdot B$. Aus Diphenylsulfid und 1 Mol Benzoylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff unter Eiskühlung (Dilthey, Mitarb., $J.\ pr.\ [2]\ 124,\ 113)$. Nadeln (aus Petroläther). F: 71—72°. Die Lösung in konz. Schwefelsäure ist orangerot mit grünstichigem Ablauf.
- 4.4'- Dibenzoyl diphenylsulfid $C_{26}H_{18}O_2S=C_6H_5\cdot CO\cdot C_6H_4\cdot S\cdot C_6H_4\cdot CO\cdot C_6H_5$. B. Aus Diphenylsulfid und 2 Mol Benzoylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (Dilthey, Mitarb., J. pr. [2] 124, 114). Fast farblose Krystalle (aus Benzol + Petroläther). F: 169°. Die Lösung in konz. Schwefelsäure ist orangerot mit gelbstichigem Ablauf.
 - 4-Methylmercapto-benzophenon- α -oxim $C_{14}H_{13}ONS = \frac{C_6H_5 \cdot C \cdot C_6H_4 \cdot S \cdot CH_3}{N \cdot OH}$. Zur Kon

figuration vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 1029. — Krystalle (aus Alkohol). F: 138° (Brand, Vogt, J. pr. [2] 107, 385, 390). Schwer löslich in Alkohol.

4-Methylmercapto-benzophenon- β -oxim $C_{14}H_{18}ONS = \frac{C_6H_5 \cdot C \cdot C_6H_4 \cdot S \cdot CH_3}{HO \cdot N}$. Zur Konuration vgl. J. Meisenheimer W. Turk of the contraction of the contraction

figuration vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 1029. — Krystalle (aus verd. Alkohol). F: 105° (Brand, Vogt, J. pr. [2] 107, 385, 390). Leicht löslich in Alkohol.

4-Äthylmercapto-benzophenon-oxim $C_{15}H_{15}ONS = C_6H_5 \cdot C(:N \cdot OH) \cdot C_6H_4 \cdot S \cdot C_2H_5$ (H 164). Nach neueren Untersuchungen besitzt das bei 133—134° schmelzende α -Oxim die Konfiguration I, das bei 94—96° schmelzende β -Oxim die Konfiguration II (vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 1029).

$$I. \begin{array}{c} C_0H_5 \cdot C \cdot C_0H_4 \cdot S \cdot C_2H_5 \\ \parallel N \cdot OH \end{array} \qquad II. \begin{array}{c} C_0H_5 \cdot C \cdot C_0H_4 \cdot S \cdot C_2H_5 \\ \parallel HO \cdot N \end{array}$$

4-Phenylmercapto-benzophenon-oxim $C_{19}H_{15}ONS = C_{5}H_{5} \cdot C(:N \cdot OH) \cdot C_{5}H_{4} \cdot S \cdot C_{5}H_{5}$. Prismen (aus Alkohol). F: 150° (Diltey, Mitarb., J. pr. [2] 124, 113). — Zersetzt sich langsam beim Aufbewahren.

Dioxim des 4.4'- Dibenzoyl - diphenylsulfids $C_{26}H_{20}O_2N_2S = [C_6H_5 \cdot C(:N \cdot OH) \cdot C_6H_4]_2S$. Krystalle (aus Methanol). F: ca. 203° (Dilthey, Mitarb., J. pr. [2] 124, 114). — Zersetzt sich langsam beim Aufbewahren.

4.4'- Dibenzoyl-diphenylselenid $C_{26}H_{18}O_2Se = C_6H_5 \cdot CO \cdot C_6H_4 \cdot Se \cdot C_6H_4 \cdot CO \cdot C_6H_5$. B. Aus Diphenylselenid und überschüssigem Benzoylchlorid in Gegenwart von Aluminiumchlorid (Dilthey, Mitarb., J. pr. [2] 124, 117). — Krystalle (aus Benzol oder Toluol). F: 159—160°. Löst sich in konz. Schwefelsäure mit orangeroter Farbe. — Liefert beim Kochen mit Zinkstaub in methylalkoholischer Natronlauge 4.4'-Bis-[α -oxy-benzyl]-diphenylselenid.

4. 4 - Oxy - 3 - formyl - diphenyl, 4 - Oxy - diphenyl - al-dehyd-(3) C₁₃H₁₀O₃, s. nebenstehende Formel. B. Beim Erhitzen von 4-Oxy-diphenyl mit Chloroform und Natronlauge (Bell, Kenyon, Soc. 1926, 3047). — Blaßgelbe Tafeln (aus Alkohol). F: 102°. — Gibt mit Eisenchlorid Vielettfärbung. — Phenylhydrazon C₁₉H₁₆ON₂. F: 210°.

2. Oxy-oxo-Verbindungen $C_{14}H_{12}O_{2}$.

- 1. $2-Oxy-\alpha-oxo-dibenzyl$, [2-Oxy-phenyl]-benzyl-keton, 2-Phenacetyl-phenol, 2-Oxy-desoxybenzoin $C_{14}H_{18}O_2=C_6H_5\cdot CH_2\cdot CO\cdot C_6H_4\cdot OH$. B. Neben wenig 4-Oxy-desoxybenzoin und etwas Phenol bei 9-stdg. Erhitzen von Phenylessigsäure-phenylester für sich oder besser in Gegenwart von Bleicherde auf 200° unter Rückfluß (Skraup, Binder, B. 62, 1128, 1137). Gelbe Krystalle. F: 55° . Kp₂₃: ca. 165° .
- 5 Chlor 2 oxy desoxybenzoin, 4 Chlor 2 phenacetyl phenol C₁₄H₁₁O₂Cl, s. nebenstehende Formel. B. Aus 4-Chlor-anisol und Phenylessigsäurechlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (Wittig, A. 446, 189). Nadeln (aus Methanol). F·66—67°. Kp₃₀: 280—285°. Leicht löslich in organischen Lösungsmitteln außer Benzin. Liefert beim Erhitzen mit Acetanhydrid und Natriumacetat auf 180° 6-Chlor-2-methyl-3-phenylchromon (Syst. Nr. 2468); reagiert analog mit Benzoesäureanhydrid und Natriumbenzoat.
- 2. 4-Oxy- α -oxo-dibenzyl, [4-Oxy-phenyl]-benzyl-keton, 4-Phenacetyl-phenol, 4-Oxy-desoxybenzoin, 4-Oxy- ω -phenyl-acetophenon $C_{14}H_{12}O_2=C_4H_5$ · CH_2 · $CO\cdot C_6H_4$ · OH (H 165). B. s. o. im Artikel 2-Oxy-desoxybenzoin. Hellgelbe Nadeln. F: 141° (Skraup, Binder, B. 62, 1137), 144° (Tasaki, Acta phytoch. 8, 275; C. 1927 II, 1949). Ultraviolett-Absorptionsspektrum in Alkohol: T.
- [4-Methoxy-phenyl]-benzyl-keton, 4-Methoxy-desoxybenzoln, p-Anisylbenzylketon $C_{15}H_{14}O_2=C_6H_5\cdot CH_2\cdot CO\cdot C_6H_4\cdot O\cdot CH_8$ (H 166; E I 571). Krystallisiert aus allen Lösungsmitteln in Nadeln, seltener in Blättchen (Meisenheimer, Lange, B. 57, 285; vgl. Jörlander, B. 50 [1917], 415). Liefert beim Behandeln mit Isoamylnitrit und Natriumäthylat-Lösung bei, 0^0 α -4'-Methoxy-benzil-7-oxim (F: 95—96') und etwas 4-Methoxy-benzoesäure; häufig erhält man daneben noch β -4'-Methoxy-benzil-7-oxim (F: 130—131') (M., L.).
- [4-Äthoxy-phenyl]-benzyl-keton, 4-Äthoxy-desoxybenzoin, p-Phenetylbenzylketon $C_{16}H_{16}O_2=C_6H_5\cdot CH_5\cdot CO\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus Phenetol, Phenylessigsäurechlorid und Aluminiumchlorid in Schwefelkohlenstoff (Torres, Bl. [4] 37, 1595; An. Soc. españ. 24, 89; C. 1926 II, 21). F: 105—106°.
- 4-Methoxy-desoxybenzoin-oxim $C_{15}H_{18}O_2N=C_6H_5\cdot CH_2\cdot C(:N\cdot OH)\cdot C_6H_4\cdot O\cdot CH_3$ (H 166). F: 114° (Torres, Bl. [4] 37, 1595; An. Soc. españ. 24, 89; C. 1926 II, 21). Gibt bei der Reduktion mit Natriumamalgam und Essigsäure in Alkohol β -Phenyl- α -[4-methoxy-phenyl]-äthylamin.
- 4-Äthoxy-desoxybenzoin-oxim $C_{16}H_{17}O_2N = C_6H_5 \cdot CH_2 \cdot C(:N \cdot OH) \cdot C_6H_4 \cdot O \cdot C_2H_5$. F: 89° bis 90° (Torres, Bl. [4] 87, 1595; An. Soc. españ. 24, 89; C. 1926 II, 21).
- 3. 4'-Oxy- α -oxo-dibenzyl, Phenyl-[4-oxy-benzyl]-keton, 4'-Oxy-desoxy-benzoin $C_{14}H_{12}O_2=HO\cdot C_4H_4\cdot CH_2\cdot CO\cdot C_4H_5$.
- Phenyl-[4-methoxy-benzyl]-keton, 4'-Methoxy-desoxybenzoin, ω -[4-Methoxy-phenyl]-acetophenon, Anisylacetophenon $C_{15}H_{14}O_2=CH_3\cdot O\cdot C_6H_4\cdot CH_3\cdot CO\cdot C_6H_6$. B. Durch Einw. von Jod und Quecksilber (II)-oxyd auf α -Phenyl- α -[4-methoxy-phenyl]-äthylen in feuchtem Äther und Behandlung des Reaktionsprodukts mit Silbernitrat (Tiffenrau, Orechow, Bl. [4] 37, 437). Neben 4-Methoxy-diphenylacetaldehyd beim Kochen von höherschmelzendem oder niedrigerschmelzendem 4-Methoxy-hydrobenzoin mit 20% iger Schwefelsäure (O., T., Bl. [4] 37, 1420; vgl. a. Kinney, Am. Soc. 51, 1598). Aus β -Amino- α -phenyl- α -[4-methoxy-phenyl]-äthylalkohol bei der Einw. von salpetriger Säure (O., Roger, C.r. 180, 72). Bei der Destillation von α -Phenyl- α -[4-methoxy-phenyl]-āthylenoxyd unter gewöhnlichem Druck (T., Lévy, C.r. 182, 392; Bl. [4] 39, 782). Blättchen (aus Alkohol). F: 98—99° (T., O., Bl. [4] 37, 437, 1420; O., R.). Leicht löslich in heißem Alkohol und in Benzol, schwerer in kaltem Äther (T., O., Bl. [4] 37, 437). Liefert beim Behandeln mit Isoamylnitrit in Natriumäthylat-Lösung unter Eiskühlung α -4-Methoxy-benzil-7-oxim (F: 108—110°) und β -4-Methoxy-benzil-7-oxim (F: 170°) (T., O., Bl. [4] 37, 437; vgl. a. Kinney).
- 4' Methoxy desoxybenzoin oxim $C_{15}H_{15}O_2N=CH_3\cdot O\cdot C_6H_4\cdot CH_2\cdot C(:N\cdot OH)\cdot C_6H_5$. Nadeln (aus Alkohol). F: 133—134° (Orechow, Tiffeneau, Bl. [4] 87, 1420).
- 4. a'-Oxy-a-oxo-dibenzyl, Phenyl-[a-oxy-ben-zyl]-keton, Benzoin C₁₄H₁₂O₂, s. nebenstehende Formel.

 Die in der Formel angegebene Stellungsbezeichnung wird in diesem Handbuch für die von Benzoin abgeleiteten Namen benutzt.
- a) Linksdrehendes Benzoin, d(-)-Benzoin, l-Benzoin $C_{14}H_{16}O_{5} = C_{6}H_{5} \cdot CH(OH) \cdot CO \cdot C_{6}H_{5}$ (H 167; E I 572). Zur Konfiguration vgl. Roger, Helv. 12, 1062; Roger, McKay,

- Soc. 1981. 2229; McKenzie, Pirie, B. 69 [1936], 864 Anm. 13, 877; McKe., Ritchie, B. 70 [1937], 25, 26; K. FREUDENBERG, Stereochemie [Leipzig-Wien 1933], S. 697. — B. Bei kurzem Kochen von rechtsdrehendem Benzoin-[4-(α-phenäthyl)-semicarbazon] mit Oxalsäure in verd. Alkohol (Hopper, Wilson, Soc. 1928, 2488). — F: 133—134° (Ho., Wilson). $[\alpha]_{\rm b}^{\rm ib}$: —118,5° (Aceton; c = 1) (Ho., Wilson); $[\alpha]_{\rm b}^{\rm ib}$: —132,5° (Alkohol; c = 1) (McKe., Roger, Wills, Soc. 1926, 789; McKe., Walker, Soc. 1928, 651). — Geschwindigkeit der Racemisierung durch alkoh. Kalilauge: McKr., Ro., WILLS. Liefert beim Kochen mit 5 Mol Benzylmagnesiumchlorid in Ather (—)-α-Benzyl-hydrobenzoin (E II 6, 1019) (Ro., McKE., B. 62, 283).
- b) Rechtsdrehendes Benzoin, l(+)-Benzoin, d-Benzoin $C_{14}H_{13}O_{2}=C_{6}H_{5} \cdot CH(OH) \cdot CO \cdot C_{6}H_{5}$ (H 167). Zur Konfiguration vgl. die bei d(-)-Benzoin zitierte Literatur. B. Bei kurzem Kochen von linksdrehendem Benzoin-[4- $(\alpha$ -phenäthyl)-semicarbazon] mit Oxalsäure in verd. Alkohol (Hopper, Wilson, Soc. 1928, 2488). Zur Bildung aus l(+)-Mandelsäureamid und Phenylmagnesiumbromid vgl. H., W., Soc. 1928, 2486. F: 133—134°. $[\alpha]_{11}^{11}:+118,5^{\circ}$ (Aceton; c = 1; $[\alpha]_{n}^{16}$: $+92.8^{\circ}$ (Pyridin; c = 1).
- c) Inaktives Benzoin, $dl Benzoin C_{14}H_{12}O_2 = C_6H_5 \cdot CH(OH) \cdot CO \cdot C_4H_5$ (H 167; E I 572).

Bildung und Darstellung.

B. Neben anderen Verbindungen beim Behandeln von Benzaldehyd mit 1 Atom Natrium in Ather in Stickstoff-Atmosphäre und Zersetzen des Reaktionsprodukts mit eiskalter verdünnter Essigsäure (Blicke, Am. Soc. 46, 2564, 2567; vgl. a. Lachman, Am. Soc. 46, 716 Anm. 22). Über den Mechanismus der Bildung aus Benzaldehyd in Gegenwart von Alkalicyanid (Benzoinkondensation; vgl. H 167) vgl. LACHMAN, Am. Soc. 46, 708, 714, 716; vgl. a. die Angaben über Einw. von Blausäure und Cyaniden, S. 194—195. Benzoin entsteht beim Erhitzen von Benzaldehyd mit Kaliumcyanid auf 150° nur in Gegenwart geringer Mengen Wasser oder auch von Benzoin (L., Am. Soc. 46, 711, 719). Neben anderen Verbindungen bei der Einw. von Kohlenoxyd auf Phenylmagnesiumbromid in Äther + Benzol bei Gegenwart von Chrom(III)-chlorid unterhalb 0° (Job. Cassat. Bl. 14] 41, 820). Beim Erwärmen von Benzaldehyd-machadis mit Benzulaus der Wasserbad und Zeretzen der cyanhydrin mit Phenylmagnesiumbromid in Äther + Benzol auf dem Wasserbad und Zersetzen des Reaktionsprodukts mit Eis und Schwefelsäure (ASAHINA, TERASAKA, J. pharm. Soc. Japan 1923, Nr. 494, S. 219; Chem. Abstr. 17 [1923], 3028). Bei der Zerlegung der Salze des Stilbendiols (E II 6, 988) mit Wasser oder verd. Säuren (Staudinger, Binkbert, Helv. 5, 708; Scheuing, Hensle, A. 440, 81; Gomberg, Bachmann, Am. Soc. 49, 2587; 50, 2766). Beim Behandeln von ms-Chlor-desoxybenzoin mit wäßrig-alkoholischer Natronlauge (WARD, Soc. 1929, 1549). Bildet sich aus Benzil i ei der Ultraviolett-Bestrahlung einer Lösung in verd. Alkohol in Stickstoff-Atmosphäre (Porter, Ramsperger, Steel, Am. Soc. 45, 1829), bei der Hydrierung in Gegenwart von Platinoxyd in Alkohol bei Zimmertemperatur (Buck, Jenkins, Am. Soc. 51, 2165) oder in Gegenwart von fein verteiltem Kupfer bei 100° und 60-92 Atm. (Kubota, Hayashi, Bl. chem. Soc. Japan 1, 15; C. 1926 I, 2911), beim Kochen mit Eisenpentacarbonyl in Pyridin (I. G. Farbenind., D.R.P. 441179; C. 1927 I, 2135; Frdl. 15, 351), beim Behandeln mit amalgamiertem Magnesium in Äther + Benzol (Gomberg, Bachmann, Am. Soc. 49, 2592) oder bei der Reduktion mit Chrom(II)-chlorid in Alkohol (CONANT, CUTTER, Am. Soc. 48, 1025). Beim Erhitzen von Diphenylglykolaldehyd mit Alkohol und etwas konz. Schwefelsäure im Rohr auf 130-140°; in geringer Menge beim Kochen von Diphenylglykolaldehyd-oxim mit 10%iger Schwefelsaure im Kohlendioxydstrom (Danilow, B. 60, 2397, 2400; 36. 59, 1116, 1121). In geringer Menge beim Schütteln von Phenylbenzoat mit Natrium in Äther oder Äther + Benzol und Zersetzen des Reaktionsprodukts mit Wasser (BLICKE, Am. Soc. 47, 235). Bei der Einw. von Magnesium + Magnesium jodid auf Dibenzoylperoxyd in Äther + Benzol und nachfolgenden Hydrolyse (Gomberg, Bachmann, Am. Soc. 50, 2768).

Darstellung durch Kochen von Benzaldehyd mit wäßr. Kaliumcyanid-Lösung: Lachman, Am. Soc. 46, 717.

Physikalische Eigenschaften.

Benzoin ist monotrop dimorph; die metastabile Form wandelt sich oberhalb 30° sehr langsam in die stabile um (Schaum, A. 462, 203). Härte der Krystalle: Reis, Zimmermann, Ph. Ch. 102, 329. F: 137° (Tammann, Laass, Z. anorg. Ch. 172, 68), 134° (Hassel, Naeshagen, Ph. Ch. [B] 6, 157). Ultraviolett-Absorptionsspektrum von Lösungen in Alkohol: Purvis, Soc. 1927, 781; b, 157). Ultraviolett-Adsorptionsspektrum von Losungen in Alkohol: Purvis, Soc. 1927, 781;
Tasari, Acta phytoch. 3, 275; C. 1927 II, 1949; in Hexan: Castille, Bl. Acad. Belgique [5] 12,
519; Bl. Soc. chim. Belg. 36, 304; C. 1927 I, 1126; II, 1004. Zeigt nach Ultraviolett-Bestrahlung gelbliches Nachleuchten (Kirchhof, Phys. Z. 30, 241; C. 1929 I, 3071). Dipolmoment: 3,5 D (verd. Lösung in Benzol) (H., N., Ph. Ch. [B] 6, 157; vgl. a. H., N., Ph. Ch. [B] 8 [1930], 362).
Bei ca. 20° lösen 100 cm³ 50%iger Alkohol 0,083 g (Anderson, Jacobson, Am. Soc. 45, 836), 100 cm³ Åther 0,8 g, 100 cm³ Tetrachlorkohlenstoff 0,4 g Benzoin (Danilow, %. 52, 375; C. 1928 III, 1017); 1 g siedender Eisessig löst mehr als 1,5 g Benzoin (Lachman, Am. Soc. 46, 717);

Benzoin ist leicht löslich in Trichlorathylen und Tetrachlorathylen (Walden, Ass. Acad. Sci. fenn. [A] 29, Nr. 23, S. 5; C. 1928 I, 166). Ausscheidung gefärbter Benzoinkrystalle aus unterkühlten Schmelzen von Gemischen mit Methylviolett: Tammann, Laass, Z. anorg. Ch. 172, 67, 68. Ebullioskopisches Verhalten in Tetrachlorathylen: Walden. Gemische aus Borsäure und geringen Mengen Benzoin zeigen nach Ultraviolett-Bestrahlung blaues Nachleuchten (Tiede, Ragoss, B. 56, 659).

Chemisches und biochemisches Verhalten.

dl-Benzoin läßt sich durch Umsetzung mit rechtsdrehendem bzw. linksdrehendem 4-[α-Phenäthyl]-semicarbazid-hydrochlorid und Hydrolyse der entstandenen Semicarbazone (Syst. Nr. 1704)
in die optisch-aktiven Komponenten spalten (Hopper, Wilson, Soc. 1928, 2487). Benzoin wird
beim Erhitzen auf 220—230° kaum verändert; beim Erhitzen auf ca. 300° erhält man Benzaldehyd,
Benzoesäure, Benzil, Phenylbenzylcarbinol und Desoxybenzoin (Lachman, Am. Soc. 46, 717).
Umlagerung durch Säuren s. unten. Beim Erhitzen auf Siedetemperatur in Gegenwart von
Aluminiumpulver entsteht außer den durch thermische Zersetzung gebildeten Verbindungen
(vgl. H 168) noch etwas Tetraphenylfuran (Syst. Nr. 2377) (Postowsky, Lugowkin, J. pr. [2]
122, 145; ж. 61, 1283).

Benzoin wird durch Luft bei Gegenwart von Anthrachinon in Eisessig im Sonnen-licht zu Benzoesäure oxydiert (ECKERT, B. 58, 317). Oxydiert sich in neutraler Lösung nicht; dagegen entsteht in alkoholisch-alkalischer Lösung an der Luft oder bei Luftabschluß in Gegenwart von schwachen Oxydationsmitteln wie Nitrobenzol, Chinon oder besser Benzil eine violette, vielleicht chinhydronartige Substanz, die beim Schütteln mit Luft Benzil und Benzoesaure liefert (Weissberger, Mainz, Strasser, B. 62, 1942). Mechanismus und Kinetik der Autoxydation in alkoholisch-alkalischer Lösung: Weiss., Mainz, Str.; vgl. a. Corson, McAllister, Am. Soc. 51, 2823. Benzoin gibt bei der Oxydation mit Jod in siedender Natriummethylat-Lösung in Stickstoff-Atmosphäre nahezu die berechnete Menge Benzil; beim Durchleiten von Luft bilden sich außerdem Benzoesäure und andere Produkte (Co., McA., Am. Soc. 51, 2823). Beträchtliche Mengen Benzil bilden sich auch beim Erhitzen von Benzoin mit überschüssigem Kupfer(II)-oxyd und äquimolekularen Mengen Chinolin und 1.3-Dinitro-benzol auf 210—220° (ZETZSCHE, ZALA, Helv. 9, 289). Eine siedende Lösung von Benzoin in Pyridin löst Kupfer unter Bildung einer Verbindung von Kupfer(II)-benzoat mit Pyridin (Syst. Nr. 897) (MOHLER, Helv. 8, 740). Benzoin reduziert Nitroverbindungen wie 4-Nitro-stilben, 4-Nitro-benzonitril, 2-Nitro-chalkon und 3-Nitro-chalkon in siedender Natriumalkoholat-Lösung zu den entsprechenden Azoxyverbindungen und geht dabei in Benzil über (NISBET, Soc. 1927, 2081; 1928, 3121). Erhitzt man Benzoin mit gepulvertem Natriumhydroxyd und Toluol auf 120°, fügt zur abgekühlten Lösung Nitrobenzol hinzu und erhitzt auf 110°, so erhält man Benzoesäure, Azoxybenzol und etwas Azobenzol (Lyons, Pleasant, B. 62, 1726).

Benzoin reagiert mit 1 Mol Wasserstoff bei Gegenwart von Platinoxyd in Alkohol bei 60° unter Bildung von Hydrobenzoin (Buck, Jenkins, Am. Soc. 51, 2165); Hydrobenzoin entsteht auch bei der Reduktion mit Zinn und alkoh. Salzsäure (B., J.) oder mit Zink und Salzsäure in Alkohol (Danilow, B. 60, 2393; M. 59, 1110) und bei den Umsetzungen mit tert.-Butylmagnesiumchlorid in Äther oder in Äther + Benzol (Orechow, Tiffeneau, Bl. [4] 41, 1184; Da.), mit sek.-Butylmagnesiumbromid in Äther (Or., Tr.) oder mit tert.-Amylmagnesiumchlorid in Äther + Benzol (Da.). Beim Behandeln von Benzoin mit Aluminiumäthylat in siedendem Toluol unter Durchleiten von Wasserstoff oder Stickstoff oder in Alkohol bei Zimmertemperatur erhält man Gemische von Hydrobenzoin und Isohydrobenzoin; bei Ausführung der Reaktion in siedendem Dekalin wird vorwiegend Isohydrobenzoin gebildet (Meerwein, Schmidt, A. 444, 235). Beim Behandeln einer heißen konzentrierten Lösung von Benzoin in Benzol mit Kaliumäthylat-Lösung in Stickstoff-Atmosphäre erhält man das Dikaliumsalz des Stilbendiols (E II 6, 988) (Scheuing, Hensle, A. 440, 81).

Eine Lösung von Benzoin in Pyridin gibt beim Behandeln mit Thionylchlorid in der Kälte außer ms-Chlor-desoxybenzoin etwas Benzil (Ward, Soc. 1929, 1544). Benzoin lagert sich bei mehrstündigem Erhitzen in schwefelsaurer oder phosphorsaurer Lösung auf 200—250° in Diphenylessigsäure um, die unter diesen Bedingungen teilweise in Diphenylmethan und Kohlendioxyd zerfällt (Lachman, Am. Soc. 45, 1531, 1534; vgl. a. Danilow, Ж. 52, 400, 407). Beim Kochen von Benzoin mit Hydrazinhydrochlorid in 80% igem Alkohol entstehen Phenylbenzoylketazin und Tetraphenylpyrazin (Syst. Nr. 3497) (Schapiro, B. 62, 2135). Einw. auf Kupfer s. o.

Beim Sättigen einer Lösung von Benzoin in Benzol mit Chlorwasserstoff und nachfolgenden Kochen mit Aluminiumchlorid entsteht ms-Phenyl-desoxybenzoin (McKenzie, Lesslie, B. 61, 158). Benzoin liefert beim Behandeln mit Benzylchlorid und Kaliumamalgam in absol. Alkohol ms-Benzyl-benzoin, Hydrobenzoin und wahrscheinlich Benzoinpinakon (Pascual, Cerreo, An. Soc. españ. 23, 78; 24, 396; C. 1925 I, 2557; 1926 II, 2298).

Benzoin wird durch wasserfreie Blausäure bei 125—130° kaum verändert, bei 175° völlig zersetzt; bei längerem Erhitzen mit Blausäure und absol. Alkohol auf 130—150° erfolgt

teilweise Zersetzung unter Bildung von Äthylbenzoat, Benzylalkohol und geringen Mengen Benzamid (LACHMAN, Am. Soc. 46, 1530, 1533, 1534). Bei der Destillation von Benzoin mit festem Kaliumcyanid unter vermindertem Druck bei 150—160° geht ein großer Teil des Benzoins in kurzer Zeit in Benzaldehyd und andere Produkte über; beim Erhitzen mit Kaliumcyanid im geschlossenen evakuierten Rohr bilden sich geringere Mengen Benzaldehyd neben wenig Benzoesäure, Benzylalkohol und Benzylbenzoat (L., Am. Soc. 46, 710, 718). Beim Kochen mit überschüssigem Natriumcyanid in Alkohol bildet sich Mandelsäurenitril, das bei der Destillation unter Bildung von Benzaldehyd zerfällt, sowie Benzylalkohol und Benzoesäure neben geringerem Mengen Phenylbenzylcarbinol, Äthylbenzoat und Benzylbenzoat (L., Am. Soc. 46, 712, 721). Spaltung durch siedende alkoholische Kaliumcyanid-Lösung unter verschiedenen Bedingungen: L., Am. Soc. 46, 709, 720; vgl. Anderson, Jacobson, Am. Soc. 45, 837. Benzoin gibt mit Natriumcyanid in kaltem Pyridin wechselnd zusammengesetzte gelartige Produkte, die durch Wasser unter Rückbildung von Benzoin, durch Alkohol unter Bildung von wenig Äthylbenzoat zersetzt werden; beim Kochen mit Natriumcyanid in Pyridin bilden sich geringe Mengen Benzaldehyd und andere Produkte (L., Am. Soc. 46, 713, 722).

Benzoin liefert mit 4-Phenyl-semicarbazid in Pyridin bei Zimmertemperatur höherschmelzendes und niedrigerschmelzendes Benzoin-[4-phenyl-semicarbazon]; bei der Umsetzung mit salzsaurem 4-Phenyl-semicarbazid in verd. Alkohol erhält man je nach den Bedingungen höherschmelzendes Benzoin-[4-phenyl-semicarbazon] oder Benzil-bis-[4-phenyl-semicarbazon] (HOPPER, Soc. 127, 1287). Mit 4-Benzyl-semicarbazon] und geringere Mengen Benzil-mono-[4-benzyl-semicarbazon] und geringere Mengen Benzil-mono-[4-benzyl-semicarbazon] und Benzoin-[4-benzyl-semicarbazon] (HO.). Mit dl-4-α-Phenäthyl-semicarbazid-hydrochlorid erhält man in wäßr. Pyridin dl-Benzoin-[4-α-phenäthyl-semicarbazon] in 3 Formen vom Schmelzpunkt 174°, 154° und 137°, während in alkoh. Lösung nur die bei 174° und 154° schmelzenden Formen entstehen (Ho., Wilson, Soc. 1928, 2485). Spaltung von dl-Benzoin mit Hilfe von rechtsdrehendem bzw. linksdrehendem 4-[α-Phenäthyl]-semicarbazid-hydrochlorid s. S. 194.

Beim Behandeln mit Isopropylmagnesiumbromid in Äther entstehen höherschmelzendes Isopropylhydrobenzoin, niedrigerschmelzendes Isopropylhydrobenzoin (?) und andere Produkte (Danilow, Ж. 52, 400, 412; C. 1928 III, 1017; vgl. a. Tiffeneau, Orechow, Bl. [4] 83, 208). Reduktion durch Alkylmagnesiumhalogenide s. S. 194. Die Einw. von Acetylen-bis-magnesiumbromid in Äther führt zur Bildung von 1.2.5.6-Tetraphenyl-hexin-(3)-tetrol-(1.2.5.6) (E II 6, 1147) (Salkind, Komarowskaja, B. 60, 183). Beim Behandeln mit 4-Methoxy-phenylmagnesiumbromid in Äther bildet sich das höherschmelzende Anisylhydrobenzoin (E II 6, 1110) (Orechow, Tiffeneau, Bl. [4] 29, 452; McKenzie, Mitarb., Bl. [4] 45, 420).

Benzoin liefert beim Erhitzen mit 6-Amino-chinolin und dessen Hydrochlorid auf 150—160° 4'.5'-Diphenyl-[pyrrolo-3'.2':5.6-chinolin] (s. nebenstehende Formel; Syst. Nr. 3494) (FAWCETT, ROBINSON, Soc. 1927, 2256).

Physiologisches Verhalten: E. Keeser in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. II [Berlin-Leipzig 1932], S. 256.

Analytisches; Salze des Benzoins.

Benzoin gibt beim Versetzen mit Pikrinsäure in alkoh. Lösung nach Zusatz von sehr verd. Natronlauge eine vorübergehende schwache Rotfärbung (Sasaki, Bio. Z. 114, 64, 66). Zum Nachweis nach Hantzsch, Glower (B. 40 [1907], 1520; vgl. a. Lachman, Am. Soc. 46, 720 Anm. 1) vgl. die Angaben über Autoxydation auf S. 194. Gibt mit Natriummethylat-Lösung eine purpurrote Färbung, die auf Zusatz von Jod oder bei Luftzutritt in Gelb übergeht, aber nach kurzer Zeit wieder in Rot umschlägt (Corson, McAllister, Am. Soc. 51, 2823). Colorimetrische Bestimmung auf Grund dieser Reaktion, auch in Gegenwart von Benzil: C., McA., Am. Soc. 51, 2824.

Verbindung mit Zirkon (IV)-chlorid $2C_{14}H_{12}O_2 + ZrCl_4$. Farblos, krystallinisch. Zersetzt sich bei Zimmertemperatur (Jantsch, J. pr. [2] 115, 22).

Derivate des Benzoins.

Benzoinmethyläther $C_{15}H_{14}O_{5}=C_{6}H_{5}\cdot CH(O\cdot CH_{5})\cdot CO\cdot C_{6}H_{5}$ (H 174; E I 572). $D_{4}^{14,4}$: 1,1278; $n_{\alpha}^{14,4}$: 1,5800; $n_{60,62}^{14,4}$: 1,5862; $n_{\beta}^{14,4}$: 1,6020 (v. Auwers, Mauss, Bio. Z. 192, 228).

Benzoinäthyläther $C_{16}H_{16}O_3=C_6H_5\cdot CH(O\cdot C_2H_5)\cdot CO\cdot C_6H_5$ (H 174). B. Neben Benzoin beim Erhitzen von Diphenylglykolaldehyd mit absol. Alkohol und wenig konz. Schwefelsäure im Rohr auf 138° (Danilow, B. 60, 2400; \Re . 59, 1122). — Kp_{20} : 194—195° (unkort.) (Bergmann, Hervey, B. 62, 915). $D_3^{r,1}$: 1,1016; $n_{xx}^{r,1}$: 1,5662; $n_{xy}^{r,1}$: 1,5727; $n_{\beta}^{r,2}$: 1,5868; $n_{y}^{r,3}$: 1,6005 (v. Auwers, Mauss, Bio. Z. 192, 228).

Benzeinbenzyläther $C_{21}H_{16}O_{2}=C_{6}H_{5}\cdot CH(O\cdot CH_{2}\cdot C_{6}H_{5})\cdot CO\cdot C_{6}H_{5}$. Eine von Bands, VII.a (Az. Soc. españ. 22, 262; C. 1924 II, 2142) so formulierte Verbindung ist als ms-Benzyl-benzoin (S. 248) erkannt worden (vgl. Pascual, Cerezo, An. Soc. españ. 23, 76; 24, 395; C. 1925 I, 2557; 1926 II, 2298).

Benzeinacetat $C_{16}H_{14}O_3 = C_6H_5 \cdot CH(O \cdot CO \cdot CH_8) \cdot CO \cdot C_6H_5$ (H 174; E I 572). B. Neben niedrigerschmelzendem Stilbendioldiacetat beim Behandeln von Stilbendiolkalium mit Acetanhydrid in Äther (Scheuing, Hensle, A. 440, 82). — Darst, durch Acetylierung von Benzein mit Acetanhydrid bei Gegenwart von etwas konz. Schwefelsäure in Eisessig: Corson, Saliani, Org. Synth. 12 [1932], 1.

Benzoindiäthylacetal $C_{18}H_{22}O_3 = C_6H_5 \cdot CH(OH) \cdot C(O \cdot C_2H_5)_2 \cdot C_6H_5$. B. Beim Behandeln von ms-Chlor-desoxybenzoin mit alkoholischer oder wäßrig-alkoholischer Natronlauge oder mit Natriumäthylat-Lösung in Wasserstoffatmosphäre bei 25° (WARD, Soc. 1929, 1550). — Tafeln (aus Petroläther). Monoklin prismatisch (Bennett). F: 68°. Leicht löslich in organischen Lösungsmitteln außer Petroläther.

congesmitteln außer Petrolätner. α -Benzoinoxim, Cupron $C_{16}H_{18}O_{8}N = \begin{array}{c} C_{6}H_{5}\cdot CH(OH)\cdot C\cdot C_{6}H_{5} \\ N\cdot OH \end{array}$ (H 175; E I 573; im Hptw.

auf Grund älterer Literatur als anti-Phenyl-[\alpha-oxy-benzyl]-ketoxim bezeichnet; zur Konfiguration vgl. Meisenheimer, Meis, B. 57, 293; J. Meisenheimer, W. Theilackee in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 1016, 1026, 1032). — Ultraviolett-Absorptionsspektrum in Alkohol: Purvis, Soc. 1927, 781. — Prüfung auf Reinheit: E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 79. Verwendung zum Nachweis und zur quantitativen Bestimmung von Kupfer: Frigl, B. 56, 2083; Mikroch. 1, 74; C. 1924 I, 1979; Strebinger, Mikroch. 1, 72; C. 1924 I, 1979; Strebinger, Mikroch. 1, 72; C. 1924 I, 1978; St., Pollack, Mikroch. 2, 125; C. 1924 II, 2538; Azzalin, Ann. Chim. applic. 15, 373; C. 1926 I, 1460; Fritz, Fr. 78, 422; F. Frigl., Qualitative Analyse mit Hilfe von Tüpfelreaktionen, 2. Aufl. [Leipzig 1935], S. 167. — CuC₁₄H₁₁O₂N. Grün, amorph. Unlöslich in Wasser, Alkohol, verd. Ammoniak, Essigsäure und Weinsäure, leicht löslich in verd. Mineralsäuren, schwer in konz. Ammoniak (Feigl, B. 56, 2083). — Ni(C₁₄H₁₂O₂N)₂. Amorph, fleischfarben (Feigl, Sichee, Singer, B. 58, 2300).

 $\beta\text{-Benzoinoxim }C_{14}H_{13}O_2N = \frac{C_6H_5\cdot CH(OH)\cdot C\cdot C_6H_5}{HO\cdot N} \text{ (H 175 auf Grund älterer Literatur}$

als syn-Phenyl-[α -oxy-benzyl]-ketoxim bezeichnet; zur Konfiguration vgl. die beim α -Oxim (s. o.) zitierte Literatur). — Liefert beim Behandeln mit konz. Schwefelsäure eine in den meisten organischen Lösungsmitteln sehr schwer lösliche, schwierig krystallisierende, anscheinend hochmolekulare Substanz (Meisenheimer, Meis, B. 57, 292 Anm. 13).

Benzoinsemicarbazon $C_{15}H_{15}O_2N_3 = C_6H_5 \cdot CH(OH) \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot C_6H_5$.

- a) Höherschmelzende Form, α-Semicarbazon (H 177). B. Neben dem niedrigerschmelzenden Semicarbazon beim Behandeln von Benzoin mit 1 Mol salzsaurem Semicarbazid in wäßr. Pyridin in der Kälte (HOPPER, Soc. 127, 1285). F: 205—206°.
- b) Niedrigerschmelzende Form, β -Semicarbazon. B. s. o. Würfel (aus Alkohol). F: 186—187° (Zers.) (HOPPER, Soc. 127, 1285). Schwer löslich in siedendem Benzol und Äther, unlöslich in Wasser.

Bei kurzem Kochen mit konz. Salzsäure in Alkohol erhält man aus beiden Formen Benzoin.

4.4'- Dichlor - benzoin $C_{14}H_{10}O_2Cl_2 = C_6H_4Cl\cdot CH(OH)\cdot CO\cdot C_6H_4Cl$ (H 177). B. Bei der Einw. von Magnesium + Magnesium jodid auf 4.4'-Dichlor-benzil und nachfolgenden Hydrolyse (Gomberg, van Natta, Am. Soc. 51, 2241). — F: 85—87° (G., van N.). — Mechanismus der Farbreaktion mit wäßrig-alkoholischer Kalilauge bei Gegenwart von Luftsauerstoff: Weissberger, Mainz, Strasser, B. 62, 1942.

5. 2-Oxy-diphenylacetaldehyd $C_{14}H_{12}O_{2} = HO \cdot C_{6}H_{4} \cdot CH(C_{6}H_{5}) \cdot CHO$.

2-Methoxy-diphenylacetaldehyd, Phenyl-[2-methoxy-phenyl]-acetaldehyd $C_{15}H_{14}O_2=CH_3\cdot O\cdot C_6H_4\cdot CH(C_6H_5)\cdot CHO.$ B. Beim Erhitzen von α -Phenyl- α -[2-methoxy-phenyl]-āthylenglykol mit NaHSO₃-Lösung und Zersetzen der entstandenen Disulfit-Verbindung mit verd. Schwefelsäure (Stoermer, Frick, B. 57, 26). Beim Erhitzen von α -Phenyl- α -[2-methoxy-phenyl]-āthylenoxyd mit verd. Salzsäure im Rohr auf 180° (St., F., B. 57, 28). — Zähflüssiges Öl von angenehmem Geruch. Kp₁₆: 198°. — Liefert bei der Oxydation mit Wasserstoffperoxyd in Eisessig oder besser mit Permanganat in Gegenwart von Kaliumcarbonat in Aceton unter Eiskühlung 2-Methoxy-diphenylessigsäure. Bei der Reduktion mit amalgamiertem Aluminium in feuchtem Äther bildet sich β -Phenyl- β -[2-methoxy-phenyl]-āthylalkohol. Gibt beim Behandeln mit PCl₅ in Tetrachlorkohlenstoff β -Chlor- α -phenyl- α -[2-methoxy-phenyl]-āthylen (E II 6, 659).

Beim Erhitzen mit Eisessig und 48 %iger Bromwasserstoffsäure auf 150° erhält man 2-Phenylcumaron. Gibt beim Erhitzen mit überschüssiger alkoholischer Kalilauge im Rohr auf 180—200° 2-Methoxy-diphenylmethan.

6. 4-Oxy-diphenylacetaldehyd $C_{14}H_{12}O_2 = HO \cdot C_6H_4 \cdot CH(C_6H_5) \cdot CHO$.

4-Methoxy-diphenylacetaldehyd, Phenyl-[4-methoxy-phenyl]-acetaldehyd, Phenylanisylacetaldehyd C₁₅H₁₄O₃ = CH₃·O·C₆H₄·CH(C₆H₅)·CHO. B. Durch Einw. von Jod und Quecksilber (II)-oxyd auf α-Phenyl-α-[4-methoxy-phenyl]-āthylen in feuchtem Äther, Trocknen der Reaktions-Lösung mit Calciumehlorid und Zufügen von gepulvertem Kaliumhydroxyd (Orechow, Tiffeneau, Bl. [4] 37, 1417). Neben 4-Methoxy-desoxybenzoin beim Kochen von höherschmelzendem oder niedrigerschmelzendem 4-Methoxy-hydrobenzoin mit 20%iger Schwefelsäure (O., T., Bl. [4] 37, 1420). — Dickes Öl. Unlöslich in Wasser. — Reduziert in der Wärme Fehlingsche Lösung und ammoniakalische Silbernitrat-Lösung. Gibt bei der Oxydation mit Chromessigsäure 4-Methoxy-benzophenon. Bildet eine krystallinische NaHSO₃-Verbindung.

Semicarbazon $C_{16}H_{17}O_2N_3 = CH_3 \cdot O \cdot C_6H_4 \cdot CH(C_6H_5) \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Krystalle (aus Benzol + Petroläther). F: 127—128° (ORECHOW, TIFFENEAU, Bl. [4] 37, 1417).

7. α - Oxy - diphenylacetaldehyd, Diphenylglykolaldehyd C₁₄H₁₂O₂ = (C₆H₅)₂C(OH)·CHO. B. Beim Erhitzen von Diphenylbromacetaldehyd mit frisch gefälltem Bariumcarbonat im Kohlendioxydstrom auf 100° (Danilow, B. 60, 2395; Ж. 59, 1113). Durch Hydrolyse des Semicarbazons (s. u.) mit Eisessig und verd. Schwefelsäure bei 100° (D., B. 60, 2398). Durch Hydrierung von O-Acetyl-benzilsäure-chlorid in Gegenwart von Palladium-Tierkohle in Äther und Kochen des Reaktionsprodukts mit 1% iger Salzsäure (Zerner, Goldhammer, M. 58/54, 488). — Krystalle mit 0,5 C₆H₆ (aus Benzol). Schmilzt benzolfrei bei ca. 162° (D.), bei 161—163° (Freon, A. ch. [11] 11 [1939], 507). Die von Danilow beobachtete ölige Form ist nach Freon (A. ch. [11] 11, 508) polymerer Diphenylglykolaldehyd gewesen. Ziemlich schwer löslich in Alkohol, leicht in heißem Benzol und siedendem Chloroform (D.). Kryoskopisches Verhalten in Benzol und Eisessig und ebullioskopisches Verhalten in Benzol: D.

Lagert sich beim Erhitzen mit Alkohol und etwas konz. Schwefelsäure im Rohr auf 130° bis 140° in Benzoin um; bei Anwendung von wasserfreiem Alkohol bildet sich außerdem etwas Benzoinäthyläther; beim Erhitzen mit 90% igem Alkohol auf 130—135° ohne Zusatz von Mineralsäuren erfolgt erhebliche Zersetzung unter Bildung von Benzophenon (Danilow, B. 60, 2400, 2401; Ж. 59, 921). Reduziert Fehlingsche Lösung schon in der Kälte (D., B. 59, 2395). Gibt bei der Oxydation mit Silberoxyd in siedendem 80% igem Alkohol Benzophenon, bei der Oxydation mit Permanganat in wäßr. Pyridin Benzophenon und Benzilsäure (D., B. 60, 2398, 2399). Gibt beim Erhitzen mit Kupfersulfat und wäßrig-alkoholischer Kalilauge auf 100° Benzilsäure, Benzil und Benzophenon (D., B. 60, 2399); Benzil entsteht auch beim Erhitzen mit Quecksilber(II)-chlorid in Alkohol im Rohr auf 135° (D., B. 60, 2401). Wird bei der Einw. von tertæbutylmagnesiumchlorid in Äther + Benzol zu α.α-Diphenyl-āthylenglykol reduziert (D., B. 60, 2398). Wird beim Kochen mit Benzoylehlorid und Bariumcarbonat in Benzol nicht verestert (D., B. 60, 2400).

Phenylhydrazon C₂₀H₁₈ON₂. F: 132° (Zerner, Goldhammer, M. 53/54, 489). — Verbindung mit Natriumdisulfit. Krystallinisch. Sehr leicht löslich in Wasser (Z., G.).

Oxim C₁₄H₁₈O₂N = (C₆H₈)₂C(OH)·CH:N·OH. B. Beim Behandeln von 1 Mol Isonitroso-acetophenon mit 5 Mol Phenylmagnesiumbromid in Äther (Orechow, Tiffeneau, Bl. [4] 41, 841). Bei kurzem Erhitzen von Diphenylbromacetaldehyd mit Hydroxylaminhydrochlorid und Natriumcarbonat in Alkohol (Danilow, B. 60, 2395; Ж. 59, 1115). Aus Diphenylglykolaldehyd und Hydroxylaminhydrochlorid bei 1-stdg. Erwärmen mit wäßrig-alkoholischer Sodalösung auf 100° (D.) oder bei längerem Erwärmen mit wäßr. Natriumacetat·Lösung (Zerner, Gold-Hammer, M. 53/54, 489). — Krystalle (aus Benzol, Alkohol oder Petroläther). F: 127° (Z., G.), 124° (D.), 121° (O., T.). Leicht löslich in Alkohol (D.; O., T.) und in heißem Benzol (O., T.). Leicht löslich in verd. Natronlauge (O., T.). Ebullioskopisches Verhalten in Benzol: D. — Liefert beim Kochen mit 10% iger Schwefelsäure im Kohlendioxydstrom geringe Mengen Benzoin und Benzophenon (?), beim Erhitzen mit wäßrig-alkoholischer Schwefelsäure im Rohr auf ca. 100° wurde etwas Diphenylglykolaldehyd erhalten (D.).

Semicarbazon C₁₅H₁₅O₂N₃ = (C₆H₅)₂C(OH)·CH:N·NH·CO·NH₂. B. Beim Kochen von Diphenylbromacetaldehyd mit Semicarbazidhydrochlorid und Kaliumacetat in verd. Alkohol im Kohlendioxydstrom (Danilow, B. 60, 2394; Ж. 59, 1117). Aus Diphenylglykolaldehyd und Semicarbazidhydrochlorid in Gegenwart von Alkaliacetat in Wasser oder Alkohol (Zerner, Goldhammer, M. 58/54, 489; D., B. 60, 2397). — Krystalle (aus 90 %iger Essigsäure). F: 243° (Zers.) (D.), 241—242° (Zers.) (Franon, A. ch. [11] 11 [1939], 507), 238,5° (Madelung, Oberwegner, B. 65 [1932], 937). Leicht löslich in Pyridin, löslich in Alkohol, schwer löslich in Benzol (D.). — Liefert beim Erwärmen mit Eisessig und verd. Schwefelsäure auf 100° Diphenylglykolaldehyd (D.).

- 8. 4-Oxy-2-methyl-benzophenon, 4-Benzoyl-m-kresol

 C1419O2, s. nebenstehende Formel. Diese Konstitution kommt der

 H 179; E I 573 als x-Benzoyl-m-kresol vom Schmelzpunkt 129° C2H5·CO·OH

 beschriebenen Verbindung zu (Cox, Am. Soc. 49, 1029). B. Aus

 m-Kresol-benzoat beim Erwärmen mit Aluminiumchlorid in Nitrobenzol auf 60° (ROSENMUND,

 SCHNURE, A. 460, 89) oder, neben 2-Benzoyl-m-kresol, beim Behandeln mit Aluminiumchlorid

 in Schwefelkohlenstoff (Cox, Am. Soc. 49, 1029). F: 129° (Cox). Lagert sich beim Erhitzen

 mit Aluminiumchlorid auf 180—190° in 6-Benzoyl-m-kresol um (R., Sch.). Geht beim Erhitzen

 mit wenig Camphersulfonsäure auf 200° wieder in m-Kresol-benzoat über (R., Sch.).

 Liefert in der Kalischmelze bei 350° 4-Oxy-2-methyl-benzoesäure (Cox).
- 4-Methoxy-2-methyl-benzophenon, 4-Benzoyl-m-kresol-methylåther $C_{15}H_{14}O_{2}=C_{4}H_{5}$: $CO \cdot C_{6}H_{3}(CH_{9}) \cdot O \cdot CH_{9}$ (H 179). B. Bei der Einw. von Benzoylchlorid auf m-Kresol-methyläther in Gegenwart von Zinn(IV)-chlorid in Benzol und Zersetzung des Reaktionsprodukts mit kaltem Wasser (Stadnikow, Baryschewa, B. 61, 1998). Krystalle (aus Äther). F: 172°. Kp₂₅: 219—221°. D_{4}^{20} : 1,1250; n_{2}^{20} : 1,6016 (unterkühlt).
 - 9. 2'- Oxy-2-methyl-benzophenon $C_{14}H_{12}O_2 = HO \cdot C_6H_4 \cdot CO \cdot C_6H_4 \cdot CH_3$.
- 5'-Chlor-2'-oxy-2-methyl-benzophenon C₁₄H₁₁O₂Cl, s. nebenstehende Formel. B. Beim Erhitzen von o-Toluylchlorid mit 4-Chlor-phenol oder besser mit 4-Chlor-anisol bei Gegenwart von Aluminiumchlorid in Tetrachlorathan auf 120—130° (HAYASHI, J. pr. [2] 123, 303, 304). Blaßgelbe Blättchen (aus Alkohol). F: 67,5—68°. Sehr leicht löslich in Benzol, leicht in Eisessig und Petroläther, löslich in Alkohol. Schwer löslich in verd. Alkalilauge mit gelber Farbe, fast unlöslich in konz. Alkalilauge. Färbt sich beim Aufbewahren intensiv gelb.
- 5'-Chlor-2'-methoxy-2-methyl-benzophenon $C_{15}H_{12}O_1Cl = CH_2 \cdot O \cdot C_6H_3Cl \cdot CO \cdot C_6H_4 \cdot CH_2$. B. Aus dem Kaliumsalz des 5'-Chlor-2'-oxy-2-methyl-benzophenons und Dimethylsulfat in siedendem Xylol (Hayashi, J. pr. [2] 123, 303). Krystalle (aus Alkohol). F: 101,5—102°. Leicht löslich in Benzol, löslich in Eisessig und Alkohol, schwer löslich in Petroläther.
 - 10. 4'-Oxy-2-methyl-benzophenon $C_{14}H_{12}O_1 = HO \cdot C_6H_4 \cdot CO \cdot C_6H_4 \cdot CH_2$.
- 4'-Methoxy-2-methyl-benzophenon $C_{15}H_{14}O_{2}=CH_{3}\cdot O\cdot C_{6}H_{4}\cdot CO\cdot C_{8}H_{4}\cdot CH_{3}$. B. Beim Erhitzen von Anisol mit o-Toluylchlorid und Aluminiumchlorid auf 140° (de Diesbach, Strebel, Helv. 8, 562). Kp: 325—330°. Liefert beim Behandeln mit Brom in Eisessig bei 140—160° und nachfolgenden kurzen Erhitzen des Reaktionsprodukts mit konz. Schwefelsäure auf 180° 1.3-Dibrom-2-oxy-anthrachinon (?).
- 3'-Chlor-4'-oxy-2-methyl-benzophenon C₁₄H₁₁O₂Cl, s. nebenstehende Formel. B. Neben 3'-Chlor-4'-methoxy-2-methyl-benzophenon beim Erhitzen von 2-Chlor-anisol mit o-Toluylchlorid und Aluminiumchlorid in Tetrachloräthan auf 120—130° (HAYASHI, J. pr. [2] 123, 300, 302). Krystalle (aus Benzol). F: 128—129°. Leicht löslich in Eisessig und Alkohol, löslich in Benzol, sehr sehwer löslich in Petroläther. Löslich in verd. Sodalösung mit gelber Farbe.
- 3'-Chior-4'-methoxy-2-methyl-benzophenon C₁₅H₁₃O₂Cl = CH₃·O·C₆H₃Cl·CO·C₆H₄·CH₃.

 B. s. im vorangehenden Artikel. Entsteht ferner aus dem Kaliumsalz des 3'-Chlor-4'-oxy-2-methyl-benzophenons und Dimethylsulfat in siedendem Xylol (HAYASHI, J. pr. [2] 123, 302). Nadeln (aus Alkohol). F: 106—106,5°. Leicht löslich in Benzol, löslich in Eisessig. Alkohol und Petroläther. Wird beim Kochen mit 1% iger Permanganat-Lösung zu 3'-Chlor-4'-methoxy-benzophenon-carbonsäure-(2) oxydiert.
- 11. 4-Oxy-3-methyl-benzophenon, 4-Benzoyl-o-kresol

 C14H11O2, s. nebenstehende Formel. Diese Konstitution kommt der

 H 178; E I 573 als x-Benzoyl-o-kresol beschriebenen Verbindung C6H5·CO·OH

 Zu (COx, Am. Soc. 49, 1029; Wittig, Schulze, J. pr. [2] 130 [1931],

 86). Als 4-Benzoyl-o-kresol ist ferner die von Schroetter (A. 257 [1890], 70) als 4.4'-Dioxy
 3.3'-dimethyl-triphenylmethan (H 6, 1048) beschriebene Verbindung aufzufassen (Orndorff, McNulty, Am. Soc. 49, 995); die von Schroetter (A. 257, 74) als 4.4'-Dioxy-3.3'-dimethylbenzophenon (H 8, 325) beschriebene Verbindung war ebenfalls stark verunreinigtes 4-Benzoylo-kresol (Gomberg, Anderson, Am. Soc. 47, 2026). B. Neben o-Kresolbenzein beim Erwärmen
 von Benzotrichlorid mit o-Kresol auf 80° (O., McN., Am. Soc. 49, 993, 995). Beim Erhitzen von
 o-Kresol-benzoat mit Aluminiumchlorid auf 130—160° (C., Am. Soc. 49, 1029; Rosenmund, Schnurr, A. 460, 89). Beim Behandeln von Carvacrolbenzoat mit Aluminiumchlorid in Nitrobenzol bei 60° (R., Soh., A. 460, 82; vgl. John, Beetz, J. pr. [2] 149 [1937], 168). Aus o-Kresolbenzein beim Behandeln mit wäßr. Kalilauge oder mit alkal. Hydroxylamin-Lösung (O., Mo.N.,
 Am. Soc. 49, 995, 997) oder bei der Kalischmelze (Schr.; vgl. G., A.). Tafeln (aus verd. Alkohol).

Krystallographisches: Gill, Am. Soc. 49, 995. F: 173—174° (C.), 172° (R., Sch.), 170—171° (O., McN.). — Liefert in der Kalischmelze bei 350° 4-Oxy-3-methyl-benzoesäure (C.).

- 4-Methoxy-3-methyl-benzophenon, 4-Benzoyl-o-kresol-methyläther $C_{16}H_{14}O_3=C_6H_6\cdot CO\cdot C_6H_3\cdot (CH_3)\cdot O\cdot CH_3$ (H 178). B. Bei der Kondensation von o-Kresol-methyläther mit Benzoylehlorid in Gegenwart von Zinn(IV)-chlorid in Benzol unter Kühlung und Zersetzung des Reaktionsprodukts mit kaltem Wasser (Stadnikow, Baryschrwa, B. 61, 1998). Krystalle (aus Petroläther). F: 79—80°.
- 4-Acetoxy-3-methyl-benzophenon, 4-Benzoyl-o-kresol-acetat $C_{16}H_{14}O_3=C_0H_5\cdot CO\cdot C_6H_3\cdot (CH_2)\cdot O\cdot CO\cdot CH_3$ (H 178; E I 573). Nadeln (aus Methanol oder Alkohol). F: 68° (Gomberg, Anderson, Am. Soc. 47, 2026), 66,5° (Orndoeff, McNulty, Am. Soc. 49, 996).
- 12. 6-Oxy-3-methyl-benzophenon, 2-Benzoyl-p-kresol

 C₁₄H₁₂O₂, s. nebenstehende Formel (H 177). B. Beim Erhitzen von
 p-Kresol mit Benzoylchlorid in Gegenwart von Aluminiumchlorid in
 Tetrachloräthan auf 100—110° (Reilly, Drumm, Soc. 1927, 2818). Beim
 Erhitzen von p-Kresol-benzoat mit Aluminiumchlorid auf 120—140°
 (v. Auwers, Jordan, B. 58, 34; Cox, Am. Soc. 49, 1030; Robermund, Schnurr, A. 460, 78, 86). Krystalle (aus Aceton). F: 87° (Cox), 84,5° (Rei., D.), 84° (Ro., Sch.; v. Au., M.).
 Ultraviolett-Absorptionsspektrum in Alkohol: Tasaki, Acta phytoch. 2, 56; C. 1925 II, 1354. Mit Wasserdampf flüchtig (Rei., D.). Liefert in der Kalischmelze bei 350° 6-Oxy-3-methylbenzoesäure (Cox).
- 6-Methoxy-3-methyl-benzophenon, 2-Benzoyl-p-kresol-methyläther $C_{15}H_{14}O_3=C_4H_5$: $CO\cdot C_4H_3(CH_3)\cdot O\cdot CH_3$. B. Bei der Kondensation von p-Kresol-methyläther mit Benzoylchlorid in Gegenwart von Zinn(IV)-chlorid in Benzol unter Kühlung und Zersetzung des Reaktionsprodukts mit kaltem Wasser (Stadnikow, Baryschewa, B. 61, 1999). F: 37—38°. Kp₂₀: 210-211°.
- 6-p-Kresoxy-3-methyl-benzophenon, 4.4'-Dimethyl-2-benzoyl-diphenyläther $C_{s1}H_{18}O_{2}=C_{c}H_{5}\cdot CO\cdot C_{6}H_{3}(CH_{5})\cdot O\cdot C_{6}H_{4}\cdot CH_{2}$. Eine Verbindung, der von Reilly, Drumm (Soc. 1927, 2818) diese Konstitution zugeschrieben wurde, ist von denselben Autoren (Soc. 1930, 455) als 2.7-Dimethyl-9-phenyl-xanthydrol (Syst. Nr. 2392) erkannt worden.
 - $\textbf{6-Oxy-3-methyl-benzophenon-}\beta\text{-oxim} \ C_{14}H_{13}O_{2}N = \frac{C_{6}H_{5}\cdot C\cdot C_{6}H_{3}(CH_{2})\cdot OH}{HO\cdot N} \ (\text{H 177})^{1})$

Zur Konfiguration vgl. v. Auwers, Jordan, B. 58, 30; Blatt, Russell, Am. Soc. 58 [1936], 1906. — Reindarstellung über das Hydrochlorid: v. Au., J. — F: 135—136° (B., R.), 134—135° (v. Au., J.). — Gibt bei der Einw. von Phosphorpentachlorid in Äther bei —10° 5-Methyl-2-phenyl-benzoxazol (Syst. Nr. 4199), geringere Mengen 3-Benzamino-4-oxy-toluol und Spuren eines Phosphorsäureesters (v. Au., J.). Beim Erhitzen des Hydrochlorids auf 150° bilden sich 5-Methyl-2-phenyl-benzoxazol und sehr geringe Mengen 6-Oxy-3-methyl-benzoesäureanilid (v. Au., J.).

- 5-Chlor-6-oxy-3-methyl-benzophenon, 6-Chlor-2-benzoyl-p-kresol C₁₄H₁₁O₂Cl, Formel I. B. Beim Erhitzen von Benzoesäure-[2-chlor-4-methyl-phenylester] mit Aluminiumchlorid auf 140—150° (Rosenmund, Schnuer, A. *60, 86; v. Auwers, Mauss, A. 464, 305). Gelbe Blättchen (aus Methanol oder Petroläther + Ligroin). F: 71° (R., Sch.; v. Au., M.).
- 2'-Chlor-6-oxy-3-methyl-benzophenon, 2-[2-Chlor-benzoyl]-p-kresol C₁₄H₁₁O₂Cl, Formel II. B. Beim Erhitzen von 2-Chlor-benzoesäure-p-tolylester mit Aluminiumchlorid auf 140° (ROSENMUND, SCHNURB, A. 460, 86). Gelbe Krystalle (aus Petroläther). F: 78°. Kp₁₅: 195°.

2'-Brom-6-exy-3-methyl-benzophenon, 2-[2-Brom-benzoyl]-p-kresol C₁₄H₁₁O₂Br, Formel III. B. Beim Erwärmen von p-Kresol-methyläther mit 2-Brom-benzoylchlorid und Aluminiumchlorid in Schwefelkohlenstoff auf dem Wasserbad und Zersetzen des Reaktionsprodukts mit warmer verdünnter Salzsäure (MEISENHEIMER, HANSSEN, WÄCHTEROWITZ, J. pr. [2] 119, 358). Beim Erhitzen von 2-Brom-benzoesäure-p-tolylester mit Aluminiumchlorid auf 140° (ROBENMUND, SCHURR, A. 460, 86). — Blaßgelbe Krystalle (aus Alkohol oder Petroläther). F: 78,5° (M., H., W.), 76—77° (R., SCH.). Sehr leicht löslich in Äther, schwerer in Alkohol und Ligroin (M., H., W.). — Geht beim Kochen mit Alkalilauge in 2-Methyl-xanthon (Syst. Nr. 2467)

Über das stereoisomere α-Oxim (F: 136—137°) vgl. nach dem Literatur-Schlußtermin des Ergänzungswerks II [1. I. 1930] BLATT, RUSSELL, Am. Soc. 58 [1936], 1907.

über (M., H., W.). Reagiert schwer mit Hydroxylaminhydrochlorid (M., H., W.). — Natriumsalz. Gelbe Nadeln. Schwer löslich in heißem Wasser (M., H., W.). — Kaliumsalz. Löslich in heißem Wasser (M., H., W.).

- 2'-Brom-6-methoxy-3-methyl-benzophenon, 2-[2-Brom-benzoyl]-p-kresol-methyläther C₁₈H₁₈O₂Br = C₆H₄Br·CO·C₆H₃(CH₃)·O·CH₃. B. Beim Behandeln von 2'-Brom-6-oxy-3-methyl-benzophenon mit Dimethylsulfat in wäßrig-alkoholischer Natronlauge (Meisenheimer, Hanssen, Wächterowitz, J. pr. [2] 119, 349, 362). Tafeln (aus Petroläther). F: 50—51°. Sehr leicht löslich in Alkohol, Äther und Benzol, ziemlich schwer in Petroläther. Reagiert leicht mit Hydroxylamin.
- 2'- Brom 6 oxy 3 methyl benzophenon oxim $C_{14}H_{12}O_2NBr = C_6H_4Br\cdot C(:N\cdot OH)\cdot C_6H_4(CH_3)\cdot OH$. Be Beim Erhitzen von 2'- Brom-6-oxy-3-methyl-benzophenon mit Hydroxyl-aminhydrochlorid in Alkohol im Rohr auf 130—135° (Meisenheimer, Hanssen, Wächterowitz, J. pr. [2] 119, 348, 361). Blaßgelbe Krystalle (aus Schwefelkohlenstoff). F: 144,5° Sehr leicht löslich in Alkohol und Äther, leicht in Benzol, schwerer in Schwefelkohlenstoff, sehr schwer in Ligroin. Bei der Einw. von Phosphorpentachlorid entstanden keine definierten Produkte.
- 2'-Brom-6-methoxy-3-methyl-benzophenon-oxim $C_{15}H_{14}O_2NBr=C_4H_4Br\cdot C(:N\cdot OH)\cdot C_4H_3(CH_3)\cdot O\cdot CH_2$. Zur Konfiguration vgl. Meisenheimer, Hanssen, Wächterowitz, J. pr. [2] 119, 349. B. Aus 2'-Brom-6-methoxy-3-methyl-benzophenon beim Kochen mit Hydroxylaminhydrochlorid in Alkohol in Gegenwart von Natriumacetat, Bariumcarbonat oder Natronlauge oder beim Erhitzen mit Hydroxylaminhydrochlorid in Alkohol im Rohr auf 145° bis 155° (M., H., W., J. pr. [2] 119, 363, 364). Blättchen (aus Methanol). F: 193°. Ziemlich schwer löslich in Methanol und Chloroform, fast unlöslich in Aher. Die Alkalisalze werden durch Wasser hydrolysiert. Liefert beim Behandeln mit Phosphorpentachlorid in Chloroform 2-Brom-benzoesäure-[6-methoxy-3-methyl-anilid]. Beim Kochen mit methylalkoholischer Kalilauge bildet sich 3-[6-Methoxy-3-methyl-phenyl]-indoxazen C_6H_4 C N $C_6H_8(CH_3)\cdot O\cdot CH_8$ (Syst. Nr. 4226).
- 4'-Brom-6-oxy-3-methyl-benzophenon, 2-[4-Brom-benzoyl]-p-kresol C₁₄H₁₁O₂Br, Formel IV. B. Beim Erhitzen von 4-Brom-benzoesäure-p-tolylester mit Aluminiumchlorid auf 140° (ROSENMUND, SCHNURR, A. 460, 86). Gelbliche Krystalle. F: 79°. Kp₁₄: 210°.
- 6'-Brom-3'-nitro-6-oxy-3-methyl-benzophenon, 2-[6-Brom-3-nitro-benzoyl]-p-kresol C₁₄H₁₀O₄NBr, Formel V. B. Beim Erwärmen von p-Kresol-methyläther mit je 1 Mol 6-Brom-3-nitro-benzoylchlorid und Aluminiumchlorid in Schwefelkohlenstoff auf dem Wasserbad (Meisen-Heimer, Hanssen, Wächtersowttz, J. pr. [2] 119, 347, 355). Blaßgelbe Nadeln (aus Alkohol). F: 151—152°. Sehr schwer löslich in Åther, ziemlich schwer in Alkohol. Zersetzt sich beim Behandeln mit Alkalien schon in der Kälte unter Bildung von 7-Nitro-2-methyl-xanthon (Syst. Nr. 2467). Wird durch Diazomethan nicht methyliert.

6'-Brom-3'-nitro-6-oxy-3-methyl-benzophenon-oxim $C_{14}H_{11}O_4N_3Br=O_2N\cdot C_6H_6Br\cdot C(:N\cdot OH)\cdot C_6H_6(CH_3)\cdot OH.$ B. Bei 18-stdg. Erhitzen des Ketons mit 3 Mol Hydroxyla ninhydrochlorid im Rohr auf 120—125° (Meisenhemer, Hanssen, Wächterowitz, J. pr. [2] 119, 347, 357).—Blaßgelbe Krystalle (aus Benzol). F:218°. Sehr leicht löslich in Alkohol, schwerer in Benzol und Eisessig, unlöslich in Petroläther. — Bleibt bei der Einw. von Phosphorpentachlorid bei niedriger Temperatur größtenteils unverändert. Liefert beim Behandeln mit wäßrig-alkoholischer Natronlauge in der Kälte eine Verbindung $C_{14}H_{10}O_4N_3$ (s. u.).

Natronlauge in der Kälte eine Verbindung C₁₄H₁₀O₄N₂ (s. u.).

Verbindung C₁₄H₁₀O₄N₂ (7 - Nitro - 2 - methyl - xanthon - oxim, Formel VI, oder 5-Nitro-3-[6-oxy-3-methyl-phenyl]-indoxazen, Formel VII). B. s. o. — Nadeln (aus Eisessig). F: 148° (Meisenheimer, Hanssen, Wächterowitz, J. pr. [2] 119, 358). Sehr leicht löslich in Äther und Benzol, schwerer in kaltem Methanol und Ligroin.

13. 2'- Oxy-3-methyl-benzophenon $C_{14}H_{12}O_2 = HO \cdot C_6H_4 \cdot CO \cdot C_6H_4 \cdot CH_3$.

5'-Chlor-2'-oxy-3-methyl-benzophenon C₁₆H₁₁O₂Cl, Formel VIII. B. Beim Erhitzen von 4-Chlor-anisol mit m-Toluylchlorid und Aluminiumchlorid in Tetrachloräthan auf 120—130°

- (HAYASHI, J. pr. [2] 123, 305, 306). Blaßgelbe, beim Aufbewahren dunkler werdende Nadeln (aus Alkohol). F: 106—106,5°. Leicht löslich in Benzol, löslich in Alkohol, schwer löslich in Eisessig und Petroläther. Schwer löslich in verdünnten, unlöslich in konzentrierten Alkalilaugen.
- 5'-Chlor-2'-methoxy-3-methyl-benzophenon $C_{15}H_{13}O_4Cl=CH_3\cdot O\cdot C_6H_3Cl\cdot CO\cdot C_6H_4\cdot CH_3$. B. Aus dem Kaliumsalz des 5'-Chlor-2'-oxy-3-methyl-benzophenons und Dimethylsulfat in siedendem Xylol (Hayashi, J. pr. [2] 123, 306). Blättchen (aus Alkohol). F: 70,5—71°. Leicht löslich in Benzol, löslich in Eisessig, schwer löslich in Alkohol und Petroläther.
 - 14. 4'- Oxy-3-methyl-benzophenon $C_{14}H_{12}O_2 = HO \cdot C_6H_4 \cdot CO \cdot C_6H_4 \cdot CH_3$.
- 3'-Chlor-4'-oxy-3-methyl-benzophenon C₁₄H₁₁O₂Cl, Formel IX auf S. 200. B. Neben 3'-Chlor-4'-methoxy-3-methyl-benzophenon beim Erhitzen von 2-Chlor-anisol mit m-Toluyl-chlorid und Aluminiumchlorid in Tetrachlorāthan auf 120—130° (HAYASHI, J. pr. [2] 123, 304). Beim Erhitzen von 3'-Chlor-4'-methoxy-3-methyl-benzophenon mit Aluminiumchlorid in Tetrachlorāthan (H.). Krystalle (aus Benzol). F: 145—146°. Leicht löslich in Eisessig, Alkohol und heißem Benzol, schwer in Petroläther. Leicht löslich in Sodalösung mit blaßgelber Farbe.
- 3'-Chlor-4'-methoxy-3-methyl-benzophenon $C_{15}H_{13}O_3Cl=CH_3\cdot O\cdot C_6H_3Cl\cdot CO\cdot C_6H_4\cdot CH_3$. B. s. im vorhergehenden Artikel. Entsteht auch aus dem Kaliumsalz des 3'-Chlor-4'-oxy-3-methyl-benzophenons und Dimethylsulfat in siedendem Xylol (HAYASHI, J. pr. [2] 123, 305). Krystalle (aus Alkohol). F: 105—105,5°. Leicht löslich in Benzol, löslich in Eisessig und Alkohol, schwer löslich in Petroläther.
- 15. 2-Oxy-4-methyl-benzophenon, 6-Benzoyl-m-kresol $C_{14}H_{12}O_{2}$, Formel X. Diese Konstitution kommt der E I 573 als x-Benzoyl-m-kresol vom Schmelzpunkt 63° beschriebenen Verbindung zu (Cox, Am. Soc. 49, 1029). B. Beim Erhitzen von m-Kresol-benzoat mit Aluminium-von m-Kresol-benzoat mit Aluminium-von der auf 175° (Rosenmund, Schnurr, A. 460, 89). Neben 4-Benzoyl-m-kresol beim Behandeln von m-Kresol-benzoat mit Aluminium-
- chlorid in Schwefelkohlenstoff (C., Am. Soc. 49, 1029). Aus 4-Benzoyl-m-kresol (S. 198) beim Erhitzen mit Aluminiumchlorid auf 180—190° (R., Sch., A. 460, 91). F: 63° (C.). Liefert in der Kalischmelze bei 350° 2-Oxy-4-methyl-benzoesäure (C.).
- 5-Chlor-2-oxy-4-methyl-benzophenon, 4-Chlor-6-benzoyl-m-kresol $C_{14}H_{11}O_2Cl$, Formel XI. B. Aus Benzoesäure-[4-chlor-3-methyl-phenylester] beim Erhitzen mit Aluminiumchlorid auf 140° (ROSENMUND, SCHNURB, A. 460, 86). Gelbe Krystalle (aus Petroläther oder verd. Alkohol). F: 142°.
- 3'-Chlor-2-oxy-4-methyl-benzophenon, 6-[3-Chlor-benzoyl]-m-kresol $C_{14}H_{11}O_{2}Cl=C_{6}H_{4}Cl\cdot CO\cdot C_{6}H_{3}(CH_{3})\cdot OH$. B. Beim Erhitzen von m-Kresol-acetat mit 3-Chlor-benzoylchlorid in Gegenwart von Zinkchlorid in Wasserstoff-Atmosphäre auf 140° und Verseifen des entstandenen 3'-Chlor-2-[3-chlor-benzoyloxy]-4-methyl-benzophenons mit methylalkoholischer Kalilauge (Skraup, Poller, B. 57, 2037, 2038). Krystalle (aus Petroläther). F: 147°. Die farblose Lösung in Acetanhydrid wird auf Zusatz von Pyroboracetat grünstichig gelb.
- 16. x-Benzoyl-o-kresol $C_{14}H_{12}O_2 = C_4H_5 \cdot CO \cdot C_6H_6(CH_2) \cdot OH$ (H 178; E I 573). Ist als 4-Benzoyl-o-kresol (S. 198) erkannt worden (Cox, Am. Soc. 49, 1029; Wittig, Schulze, J. pr. [2] 180 [1931], 86).
- 17. x-Benzoyl-m-kresol vom Schmelzpunkt 129° $C_{14}H_{12}O_2 = C_6H_5 \cdot CO \cdot C_6H_3 (CH_3) \cdot OH$ (H 179; E I 573). Ist als 4-Benzoyl-m-kresol (S. 198) erkannt worden (Cox, Am. Soc. 49, 1029).
- 18. x-Benzoyl-m-kresol vom Schmelzpunkt 63° C₁₄H₁₂O₂ = C₄H₅·CO·C₄H₃(CH₂)·OH (E I 573). Ist als 6-Benzoyl-m-kresol (s. o.) erkannt worden (Cox, Am. Soc. 49, 1029).
- 19. 2-Oxy-3-acetyl-diphenyl C₁₄H₁₈O₃, s. nebenstehende Formel. B. C₆H₅
 Neben 6-Oxy-3-acetyl-diphenyl beim Erhitzen von 2-Acetoxy-diphenyl mit
 Aluminiumchlorid auf 130° (v. Auwers, Wittig, J. pr. [2] 108, 105). Prismen
 (aus Petroläther). F: 60—61°. Kp₁₄: 194—196°. Leicht löslich in organischen
 Lösungsmitteln. Löst sich in Alkalilaugen mit tiefgelber Farbe. Gibt mit Eisenchlorid eine violette Färbung.
- Oxim $C_{14}H_{13}O_4N=C_6H_5\cdot C_6H_3(OH)\cdot C(CH_3):N\cdot OH$. Rhomboeder (aus 75% igem Alkohol). F: 165—166° (v. Auwers, Wittig, J. pr. [2] 108, 107). Leicht löslich in Alkohol, löslich in Benzol, schwer löslich in Benzin. Gibt beim Kochen mit ca. 18% iger Salzsäure 2-Oxy-3-acetyl. diphenyl und geringere Mengen nicht näher beschriebenes 3-Amino-2-oxy-diphenyl.

Semicarbazon $C_{15}H_{15}O_2N_3 = C_6H_5 \cdot C_6H_3(OH) \cdot C(CH_3) : N \cdot NH \cdot CO \cdot NH_2$. F: 214—215° (v. Auwers, Wittig, J. pr. [2] 108, 106).

- 20. 6-Oxy-3-acetyl-diphenyl C₁₄H₁₂O₂, s. nebenstehende Formel.

 B. s. im Artikel 2-Oxy-3-acetyl-diphenyl, S. 201. Gelbliche Nadeln (aus 50%igem Alkohol). F: 172—173° (v. Auwers, Wittig, J. pr. [2] 108, 106).

 Leicht löslich in Alkohol und Aceton, ziemlich leicht in Benzol und Eisessig, fast unlöslich in Petroläther. Ist unter 35 mm Druck mit überhitztem Wasserdampf flüchtig. Gibt mit Eisen(III)-chlorid keine Färbung. Wird durch amalgamiertes Zink und Salzsäure zu 6-Oxy-3-äthyl-diphenyl reduziert.
- 6-Methoxy-3-acetyl-diphenyl $C_{16}H_{14}O_2 = C_6H_5 \cdot C_6H_3 \cdot CO \cdot CH_3 \cdot CO \cdot CH_3$. B. Beim Erwärmen von 2-Methoxy-diphenyl mit Acetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff auf dem Wasserbad (v. Auwers, Wittig, J. pr. [2] 108, 104). Aus 6-Oxy-3-acetyl-diphenyl und Dimethylsulfat in Natronlauge (v. Au., W.). Blaßgelbe Prismen (aus Benzin). F: 91,5° bis 92°. Leicht löslich in organischen Lösungsmitteln außer Petroläther.

Semicarbazon des 6-Oxy-3-acetyl-diphenyls $C_{15}H_{15}O_2N_5=C_6H_5\cdot C_6H_2(OH)\cdot C(CH_3):N\cdot NH\cdot CO\cdot NH_3$. Schmilzt unscharf bei 213 o (v. Auwers, Wittig, J. pr. [2] 108, 106). Schwer löslich.

Semicarbazon des 6-Methoxy-3-acetyl-diphenyls $C_{1e}H_{17}O_2N_3 = C_eH_e \cdot C_eH_e \cdot C_O \cdot CH_a \cdot C(CH_a) \cdot N \cdot NH \cdot CO \cdot NH_2$. Nadeln (aus Alkohol). F: 209—210° (v. Auwers, Wittig, J. pr. [2] 108, 105).

3. Oxy-oxo-Verbindungen $C_{15}H_{14}O_2$.

- 1. 3-Phenyl-1-[2-oxy-phenyl]-propanon-(1), [2-Oxy-phenyl]- β -phen-äthyl-keton, 2-Oxy- ω -benzyl-acetophenon, 2-Oxy- β -phenyl-propiophenon, 2'-Oxy-hydrochalkon $C_{15}H_{14}O_2=C_6H_5\cdot CH_2\cdot CH_2\cdot CO\cdot C_6H_4\cdot OH$. B. Bei der Hydrierung von 2'-Oxy-chalkon in Gegenwart von Platinschwarz in Eisessig (Tasaki, Acta phytoch. 8, 281; C. 1927 II, 1949). Nadeln (aus Alkohol). F: 36—37°. Ultraviolett-Absorptionsspektrum in Alkohol: T.
- $\alpha.\beta$ Dibrom-2-oxy- β -[2-chlor-phenyl]-propiophenon, 2-Chlor-2'-oxy-chalkondibromid $C_{15}H_{11}O_3ClBr_2=C_6H_4Cl\cdot CHBr\cdot CHBr\cdot CO\cdot C_6H_4\cdot OH.$ B. Aus 2-Chlor-2'-oxy-chalkon und Brom in Chloroform (Röthlisberger, Helv. 8, 114). Blaßgelbe Prismen (aus Chloroform + Methanol). F: 171°. Liefert bei der Einw. von wäßrig-alkoholischen Alkalilaugen 2'-Chlor-flavon.
- $\alpha.\beta$ Dibrom 2 acetoxy β [2-chlor-phenyl]-propiophenon, 2-Chlor-2'-acetoxy-chalkon-dibromid $C_{17}H_{13}O_3ClBr_2=C_6H_4Cl\cdot CHBr\cdot CHBr\cdot CO\cdot C_8H_4\cdot O\cdot CO\cdot CH_3$. B. Aus 2-Chlor-2'-acetoxy-chalkon und Brom in wenig Chloroform (RÖTHLISBERGER, Helv. 8, 114). Nadeln (aus Äther + Methanol). F: 92°.
- 2. 3-Phenyl-1-[3-oxy-phenyl]-propanon-(1), [3-Oxy-phenyl]- β -phenäthyl-keton, 3-Oxy- ω -benzyl-acetophenon, 3-Oxy- β -phenyl-propiophenon, 3'-Oxy-hydrochalkon $C_{15}H_{14}O_2=C_6H_5\cdot CH_2\cdot CH_2\cdot CO\cdot C_6H_4\cdot OH$. B. Bei der Hydrierung von 3'-Oxy-chalkon in Gegenwart von Platinschwarz in Eisessig (Tasakt, Acta phytoch. 3, 281; C. 1927 II, 1949). Blättchen (aus Alkohol). F: 40—42°. Ultraviolett-Absorptionsspektrum in Alkohol. T
- 3. 3 Phenyl 1 [4 oxy phenyl] propanon (1), [4-Oxy-phenyl]- β -phenäthyl keton, 4-Oxy- ω -benzyl acetophenon, 4-Oxy- β -phenyl-propiophenon, 4'-Oxy-hydrochalkon $C_{15}H_{14}O_2=C_6H_5\cdot CH_2\cdot CH_2\cdot CO\cdot C_6H_4\cdot OH$. B. Analog der vorhergehenden Verbindung (Tasaki, Acta phytoch. 8, 281; C. 1927 II, 1949). Nadeln (aus Alkohol). F: 62—64°. Ultraviolett-Absorptionsspektrum in Alkohol: T.
- 4-Methoxy- ω -benzyl-acetophenon, 4-Methoxy- β -phenyl-propiophenon, 4'-Methoxy-hydrochalkon $C_{16}H_{16}O_2=C_6H_5\cdot CH_2\cdot CH_2\cdot CO\cdot C_6H_4\cdot O\cdot CH_3$ (E I 574). Ultraviolett-Absorptionsspektrum in Alkohol: Tasaki, Acta phytoch. 8, 282; C. 1927 II, 1949.
- 4-Methoxy- ω -benzyl- acetophenon-oxim, 4'- Methoxy-hydrochaikon-oxim $C_{16}H_{17}O_2N=C_6H_5\cdot CH_2\cdot CH_3\cdot C(:N\cdot OH)\cdot C_6H_4\cdot O\cdot CH_3$ (E I 574). Loslichkeit in Natronlauge: PFEIFFER, J. pr. [2] 108, 342, 351.
- 4-Methoxy-ω-[2-chlor-benzyl]-acetophenon, 4-Methoxy-β-[2-chlor-phenyl]-prepiephenon, 2-Chlor-4'-methoxy-hydrochalkon $C_{16}H_{15}O_{2}Cl = C_{6}H_{4}Cl \cdot CH_{2} \cdot CH_{2} \cdot CH_{4} \cdot O \cdot C_{6}H_{4} \cdot O \cdot CH_{3}$. B. Durch Hydrierung von 2-Chlor-4'-methoxy-chalkon in Gegenwart von Platinmohr in Eisessig (Pfelffer, Mitarb., J. pr. [2] 119, 123). Nadeln (aus Methanol). F: 48,5°. Sehr leicht löslich in Tetrachlorkohlenstoff, Alkohol, Äther, Ligroin und Eisessig. Die Lösung in konz. Schwefelsäure ist blaßgelb.
- Oxim C₁₆H₁₆O₂NCl = C₆H₄Cl·CH₂·CH₂·C(:N·OH)·C₆H₄·O·CH₃. Nadeln. F: 90—91\$ (Pfelfyer, Mitarb., J. pr. [2] 119, 123). Sehr leicht löslich in Chloroform, Alkohol, Äther und Ligroin.

- 4-Methoxy- ω -[2-brom-benzyl]-acetophenon, 4-Methoxy- β -[2-brom-phenyl]-propiophenon, 2-Brom-4'-methoxy-hydrochalkon $C_{16}H_{15}O_2Br=C_6H_4Br\cdot CH_2\cdot CH_2\cdot CO\cdot C_6H_4\cdot O\cdot CH_3$. B. Durch Hydrierung von 2-Brom-4'-methoxy-chalkon in Gegenwart von Platinmohr in Eisessig (Pfriffer, Mitarb., J. pr. [2] 119, 124). Nadeln (aus Alkohol). F: 65°. Färbt sich kaum mit konz. Schwefelsäure.
- **0xim** $C_{16}H_{16}O_2NBr = C_6H_4Br \cdot CH_2 \cdot CH_2 \cdot C(:N \cdot OH) \cdot C_6H_4 \cdot O \cdot CH_3$. Prismen (aus Alkohol). F: 99,5—100° (Pfeiffer, Mitarb., *J. pr.* [2] 119, 124).
- α.β-Dibrom-4-methoxy-β-phenyl-propiophenon, 4'-Methoxy-chalkondibromid $C_{16}H_{14}O_2Br_2 = C_6H_5 \cdot CHBr \cdot CO \cdot C_6H_4 \cdot O \cdot CH_3$ (H 179). Liefert beim Kochen mit Natriumāthylat-Lösung oder methylalkoholischer Kalilauge α-Brom-4'-methoxy-chalkon (Weygand, A. 459, 107; vgl. Kohler, Allen, Am. Soc. 50, 892). Bei aufeinanderfolgendem Kochen mit Natriumacetat in Methanol und mit methylalkoholischer Kalilauge bildet sich 4'.β-Dimethoxy-chalkon (W.). Beim Kochen mit salzsaurem Hydroxylamin in Methanol, zuletzt unter Zusatz von 50% iger Kalilauge erhält man 5-Phenyl-3-[4-methoxy-phenyl]-isoxazol (Syst. Nr. 4227) (W., Bauer, A. 459, 138).
- α.β-Dibrom-4-phenoxy-β-phenyl-propiophenon, 4'-Phenoxy-chalkondibromid, Dibromid des 4-Cinnamoyl-diphenyläthers $C_{21}H_{16}O_2Br_2=C_6H_5\cdot CHBr\cdot CHBr\cdot CO\cdot C_6H_4\cdot O\cdot C_6H_5$. B. Aus 4'-Phenoxy-chalkon und Brom in Chloroform (Dilthey, Mitarb., J. pr. [2] 117, 350). Krystalle (aus Ligroin). F: 137° (unter Dunkelfärbung).
- 4.4 Bis $[\alpha.\beta$ dibrom β phenyl-propionyl]-diphenyläther, Tetrabromid des 4.4 Dicinnamoyl-diphenyläthers $C_{20}H_{21}O_3Br_4 = (C_0H_5 \cdot CHBr \cdot CHBr \cdot CO \cdot C_9H_4)_2O$. B. Aus 4.4 Dicinnamoyl-diphenyläther und Brom in Chloroform (Dilthey, Mitarb., J. pr, [2] 117, 352). Krystalle (aus Benzol + Ligroin). F: 224° (Zers.).
- 4-Methoxy- ω -[2-nitro-benzyl]-acetophenon, 4-Methoxy- β -[2-nitro-phenyl]-proplophenon, 2-Nitro-4'-methoxy-hydrochalkon $C_{1e}H_{16}O_4N=O_2N\cdot C_6H_4\cdot CH_2\cdot CH_2\cdot CO\cdot C_6H_4\cdot O\cdot CH_2$. B. Durch Kondensation von 2-Nitro-hydrozimtsäure-chlorid mit Anisol in Gegenwart von Aluminium-chlorid (Jaenisch, B. 56, 2450). Blaßgelbe Nadeln (aus Alkohol). F: 59°. Liefert bei der Reduktion mit Jodwasserstoffsäure und rotem Phosphor 2-[4-Methoxy-phenyl]-chinolin.
- α.β- Dibrom 4 phenylmercapto β phenyl propiophenon, 4'- Phenylmercapto chalkon-dibromid, Dibromid des 4-Cinnamoyl diphenylsulfids $C_{21}H_{16}OBr_{5}S = C_{6}H_{5} \cdot CHBr \cdot CHBr \cdot CO \cdot C_{6}H_{4} \cdot S \cdot C_{6}H_{5}$. B. Aus 4-Cinnamoyl-diphenylsulfid und Brom in Chloroform (Dilthey, Mitarb., J. pr. [2] 124, 109). Nadeln (aus Ligroin). F: 146—147°; zersetzt sich bei 152°.
- 4.4'- Bis $[\alpha,\beta$ dibrom β phenyl-propionyl]-diphenylsulfid, Tetrabromid des 4.4'-Dicinnamoyl-diphenylsulfids $C_{30}H_{21}O_2Br_4S'=(C_6H_5\cdot CHBr\cdot CHBr\cdot CO\cdot C_6H_4)_2S$. B. Aus 4.4'-Dicinnamoyl-diphenylsulfid und Brom in Chloroform (Dilthey, Mitarb., J. pr. [2] 124, 111). Krystalle (aus Benzol). Zersetzt sich gegen 220°.
- 4. 1-Phenyl-3-[2-oxy-phenyl]-propanon-(1), Phenyl-[2-oxy- β -phen-äthyl]-keton, ω -[2-Oxy-benzyl]-acetophenon, β -[2-Oxy-phenyl]-propiophenon, 2-Oxy-hydrochalkon $C_{16}H_{14}O_2=HO\cdot C_6H_4\cdot CH_2\cdot CH_2\cdot CO\cdot C_6H_6$ (H 180; E I 574). B. Durch Hydrierung von 2-Oxy-chalkon in Gegenwart von Platinschwarz in Alkohol (Marui, Sci. Rep. Tohoku Univ. 17, 697; C. 1928 II, 1325) oder Eisessig (Tasaki, Acta phytoch. 3, 285; C. 1927 II, 1949). Ultraviolett-Absorptionsspektrum in Alkohol: T. Schmeckt erst suß, dann brennend (M.).
- 5. 1-Phenyl-3-[3-oxy-phenyl]-propanon-(1), Phenyl-[3-oxy- β -phendithyl]-keton, ω -[3-Oxy-benzyl]-acetophenon, β -[3-Oxy-phenyl]-propiophenon, β -[3-Oxy-phenyl]-propiophenon, β -Oxy-hydrochalkon $C_{18}H_{14}O_2=HO\cdot C_4H_4\cdot CH_2\cdot CH_2\cdot CO\cdot C_6H_5$. B. Durch Hydrierung von 3-Oxy-chalkon in Gegenwart von Platinschwarz in Eisessig (Tasaki, Acta phytoch. 3, 286; C. 1927 II, 1949). Nadeln (aus Alkohol). F: 73—74°. Ultraviolett-Absorptionsspektrum in Alkohol: T.
- 6. 1 Phenyl 3 [4 oxy phenyl] propanon-(1), ω -[4-Oxy-benzyl]-aceto-phenon $C_{1b}H_{1c}O_{2} = HO \cdot C_{b}H_{4} \cdot CH_{2} \cdot CH_{2} \cdot CO \cdot C_{c}H_{5}$.
- ω-[4-Methoxy-benzyl]-acetophenon, β-[4-Methoxy-phenyl]-propiophenon, 4-Methoxy-hydrochalkon, Phenyl-[4-methoxy-β-phenäthyl]-keton $C_{16}H_{16}O_3 = CH_3 \cdot O \cdot C_6H_4 \cdot CH_2 \cdot CH_2 \cdot CO \cdot C_6H_5$ (E I 574). Zur Bildung durch Hydrierung von 4-Methoxy-chalkon (E I 574) vgl. Stobbe, Beemer, J. pr. [2] 123, 55. F: 65—66° (Tasaki, Acta phytoch. 3, 286; C. 1927 II, 1949), 65,5° (Pyelfyer, J. pr. [2] 108, 350), 59° (St., B.). Ultraviolett-Absorptionsspektrum in Alkohol: T. Färbt sich beim Aufbewahren am Licht gelblich (St., B.).
- Oxim C₁₆H₁₇O₅N = CH₂·O·C₆H₄·CH₂·CH₂·C(C₆H₅):N·OH. Nadeln (aus verd. Alkohol). F: 88° (Рукцуук, J. pr. [2] 108, 350). Leicht löslich in Äther, Benzol und siedendem Alkohol, fast unlöslich in wäßr. Alkalilauge.

7. 1.3-Diphenyl - propanol - (3) - on - (1), β - Oxy - β - phenyl - propiophenon, Phenyl-phenacyl-carbinol $C_{15}H_{14}O_3=C_6H_5\cdot CH(OH)\cdot CH_3\cdot CO\cdot C_6H_5$.

α-Chlor- β -methoxy- β -phenyl-propiophenon, ω-Chlor- ω -[α-methoxy-benzyl]-acetophenon, α-Chlor- β -methoxy-hydrochalkon $C_{1e}H_{1s}O_2Cl = C_eH_s \cdot CH(O \cdot CH_s) \cdot CHCl \cdot CO \cdot C_eH_s$.

a) Niedrigerschmelzendes α-Chlor- β -methoxy-hydrochalkon. B. Aus Chalkon bei der Einw. von Chlor in Methanol bei Zimmertemperatur (JACKSON, Am. Soc. 48, 2171). -Nadeln (aus Methanol). F: 69-70°.

- b) Höherschmelzendes α-Chlor-β-methoxy-hydrochalkon. B. Wurde einmal in geringer Menge neben der niedrigerschmelzenden Form bei der Einw. von Chlor auf Chalkon in Methanol bei Zimmertemperatur erhalten (Jackson, Am. Soc. 48, 2171). — Krystalle (aus Methanol oder Toluol). F: 98-99°.
- $\begin{array}{lll} \alpha\text{-Brom-}\beta\text{-methoxy-}\beta\text{-phenyl-propiophenon,} & \omega\text{-Brom-}\omega\text{-}[\alpha\text{-methoxy-benzyl}]\text{-acetophenon,} \\ \alpha\text{-Brom-}\beta\text{-methoxy-hydrochalkon} & C_{1e}H_{1s}O_{2}Br = C_{e}H_{5}\cdot CH(O\cdot CH_{2})\cdot CHBr\cdot CO\cdot C_{e}H_{5}. & B. & Beim \\ \end{array}$ Einleiten von Bromdampf in Lösungen von Chalkon in verd. Methanol bei 0-50 oder in absol, Methanol bei 25-30° bzw. 65° (Conant, Jackson, Am. Soc. 46, 1730; Jackson, Am. Soc. 48, 2169). Bei der Einw. von Natriummethylat-Lösung auf α-Brom-chalkon, am besten bei —8° bis —5° (Dufraisse, Gérald, C. r. 174, 1632; Bl. [4] 81, 1296). Beim Behandeln von α -Acetoxymercuri- β -methoxy-hydrochalkon mit 1 Mol Brom in Methanol unter Kühlung (MIDDLE-TON, Am. Soc. 45, 2767). — Krystalle (aus Methanol). F: 76—77° (D., G.), 76° (M.), 75—76° (J.). — Gibt beim Behandeln mit Alkali β-Methoxy-chalkon (F: 65—66°) (D., G., C. r. 174, 1632). Beim Erhitzen mit Natriummethylat-Lösung und Aufbewahren des Reaktionsprodukts (Kp₆: 200-205°) mit 2 Mol Quecksilber(II)-acetat in Methanol erhält man ms.ms-Bis-acetoxymercuridibenzoylmethan (E II 7, 834) (M.).

 α -Brom- β -äthoxy- β -phenyl-propiophenon, ω -Brom - ω - [α -äthoxy-benzyl]-acetophenon, α -Brom- β -äthoxy-hydrochalkon $C_{17}H_{17}O_2Br=C_6H_5\cdot CH(O\cdot C_2H_5)\cdot CHBr\cdot CO\cdot C_6H_5$.

- a) Niedrigerschmelzendes α-Brom-β-āthoxy-hydrochalkon. B. Bei der Einw. von Natriumāthylat-Lösung auf α-Brom-chalkon bei —5° bis 0° (Dufraisse, Gérald, Bl. [4] 31, 1293; C. r. 173, 987; 174, 1632). Beim Behandeln von α-Acetoxymercuri-β-āthoxy-hydrochalkon mit 1 Mol Brom in Alkohol oder Ather (MIDDLETON, Am. Soc. 45, 2767). — Nadeln (aus Alkohol). F: 60—61° (D., G.; M.). Kp₃₋₄: 182—183° (D., G.). — Liefert beim Behandeln mit Alkalien in der Kälte ein Ol, vielleicht Dibenzoylmethan-mono-diäthylacetal, das an der Luft allmählich in Dibenzoylmethan, beim Erhitzen gegen 100° in β -Äthoxy-chalkon übergeht (D., G.). β -Äthoxy-chalkon entsteht unmittelbar beim Erhitzen mit Alkalien bzw. Natriumäthylat-Lösung (D., G.). Beim Einleiten von Bromwasserstoff in die äther. Lösung
- bei —10° bildet sich Chalkondibromid (D., G.).
 b) Höherschmelzendes α-Brom-β-äthoxy-hydrochalkon. B. Wurde einmal beim Behandeln von α-Acetoxymercuri-β-äthoxy-hydrochalkon mit 1 Mol Brom in Alkohol oder Äther erhalten (MIDDLETON, Am. Soc. 45, 2767). Blättchen. F: 74°.
- α-Brom-β-propyloxy-β-phenyl-propiophenon, ω-Brom-ω-[α-propyloxy-benzyl]-acetophenon $C_{18}H_{19}O_2Br=C_6H_5\cdot CH(O\cdot CH_2\cdot C_2H_5)\cdot CHBr\cdot CO\cdot C_aH_5$. B. Bei der Einw. von Natrium-propylat-Lösung auf α-Brom-chalkon bei ca. —5° bis 0° (Dufraisse, Gárald, C. r. 174, 1632; Bl. [4] 31, 1297). Krystalle (aus absol. Alkohol). F: 95—96°. — Gibt beim Behandeln mit Alkali β-Propyloxy-chalkon.
- α-Brom-β-butyloxy-β-phenyl-propiophenon, ω-Brom-ω-[α-butyloxy-benzyl]-acetophenon $C_{19}H_{21}O_2Br = C_6H_5 \cdot CH(O \cdot [CH_2]_3 \cdot CH_3) \cdot CHBr \cdot CO \cdot C_6H_5$. B. Beim Behandeln von α-Bromchalkon mit Natriumbutylat Lösung bei 0° bis $+5^{\circ}$ (Duffaisse, Gérald, C.r. 174, 1632; Bl. [4] 81, 1297). — Krystalle (aus verd. Alkohol). F: 81—82°.
- α -Brom- β -isobutyloxy- β -phenyl-propiophenon, ω -Brom- ω -[α -isobutyloxy-benzyl]-acetophenon $C_{19}H_{21}O_2$ Br = C_0H_5 ·CH[O·CH $_2$ ·CH(CH $_3$) $_2$]·CHBr·CO·C $_4$ H $_5$. B. Analog der vorangehenden Verbindung (Dufraisse, Gérald, C. τ . 174, 1632; Bl. [4] 81, 1298). Krystalle. Ť: 110—111°.
- α Jod- β -methoxy- β -phenyl-propiophenon, ω Jod ω [α -methoxy-benzyl] acetophenon $C_{1s}H_{1s}O_2I = C_sH_s\cdot CH(O\cdot CH_s)\cdot CHI\cdot CO\cdot C_cH_b$. B. Bei der Einw. von 1 Mol Jod auf α-Acetoxy-mercuri- β -methoxy- β -phenyl-propiophenon in Methanol unter Kühlung (MIDDLETON, Am. Soc. 45, 2767). F: 96°.
- α Jod- β äthoxy- β phenyl- propiophenon, ω Jod- ω [α äthoxy-benzyl]-acetephenon $C_{17}H_{17}O_2I=C_0H_8\cdot CH(O\cdot C_0H_8)\cdot CHI\cdot CO\cdot C_0H_8$. B. Analog der vorangehenden Verbindung (MIDDLETON, $Am.\ Soc.\ 45$, 2767). F: 75—76°.

- 2-Nitro-3-methoxy-1.3-bis-[3-nitro-phenyi]-propanon-(1), 3.3'. α -Trinitro- β -methoxy-hydrochalkon $C_{1e}H_{1s}O_8N_8=O_2N\cdot C_eH_4\cdot CH(O\cdot CH_3)\cdot CH(NO_2)\cdot CO\cdot C_eH_4\cdot NO_2$. B. Aus 3.3'. α -Trinitro-chalkon beim Umkrystallisieren aus Methanol (van der Lee, R. 47, 929). Krystalle (aus Methanol, Alkohol oder Benzol). F: 128,5° bei raschem Erhitzen. Leicht löslich in organischen Lösungsmitteln außer Ligroin und Tetrachlorkohlenstoff, unlöslich in Wasser. Zersetzt sich beim Erhitzen über den Schmelzpunkt. Liefert bei Behandlung mit 25 %iger Kalilauge bei Zimmertemperatur und nachfolgender Einw. von Bromwasser 1².1²- Dibrom-3.1²- dinitro-1¹- methoxy-1-āthyl-benzol (E II 6, 448).
- 2-Nitro 3-äthoxy 1.3-bis [3-nitro-phenyl-propanon-(1), 3.3'.α-Trinitro-β-äthoxy-hydrochalkon $C_{17}H_{15}O_8N_8=O_2N\cdot C_6H_4\cdot CH(O\cdot C_2H_5)\cdot CH(NO_2)\cdot CO\cdot C_6H_4\cdot NO_2$. B. Beim Kochen von 3.3'.α-Trinitro-chalkon mit Alkohol (van der Lee, R. 47, 930). Krystalle (aus Alkohol oder Benzol). F: 120,5—121° bei raschem Erhitzen. Zersetzt sich beim Erhitzen über den Schmelzpunkt. Gibt bei aufeinanderfolgender Einw. von 25 %iger Kalilauge und Bromwasser 1².1²-Dibrom-3.1²-dinitro-1¹-äthoxy-1-äthyl-benzol (E II 6, 448).
- 2-Nitro-3-methoxy-1-[3-nitro-phenyi]-3-[4-nitro-phenyi]-propanon-(1), $4.3'.\alpha$ -Trinitro- β -methoxy-hydrochalkon $C_{16}H_{12}O_8N_3=O_2N\cdot C_6H_4\cdot CH(O\cdot CH_3)\cdot CH(NO_2)\cdot CO\cdot C_6H_4\cdot NO_2$. B. Aus $4.3'.\alpha$ -Trinitro-chalkon beim Umkrystallisieren aus Methanol (van der Lee, R. 47, 931). Krystalle (aus Methanol oder Benzol). F: 122,5° (Zers.). Gibt bei folgeweiser Einw. von 25 % iger Kalilauge und Bromwasser $1^2.1^2$ -Dibrom- 4.1^2 -dinitro- 1^1 -methoxy-1-āthyl-benzol (E II 6, 448).
- β-Phenylmercapto-β-phenyl-propiophenon, β-Phenylmercapto-hydrochalkon $C_{21}H_{18}OS = C_{8}H_{5} \cdot CH(S \cdot C_{6}H_{5}) \cdot CH_{2} \cdot CO \cdot C_{6}H_{5}$ (H 182). B. Bei der Umsetzung von Chalkon mit Phenylmercapto-magnesiumjodid (E II 6, 286) in Äther (Gilman, King, Am. Soc. 47, 1142).
- β- Phenylsulfon β- phenyl propiophenon, β- Phenylsulfon hydrochalkon $C_{21}H_{18}O_3S = C_6H_5 \cdot CH(SO_2 \cdot C_6H_5) \cdot CH_3 \cdot CO \cdot C_6H_5$ (H 182). B. Beim Eintragen von Aluminiumchlorid in eine mit Schwefeldioxyd gesättigte Lösung von Chalkon in Benzol (Vorländer, Friedberg, B. 56, 1148). Aus Chalkon und Benzolsulfinsäure in Äther (V., F.). Beim Behandeln von β-Phenylmercapto-hydrochalkon mit Wasserstoffperoxyd in Eisessig + Acetanhydrid (Gilman, King, Am. Soc. 47, 1142). F: 155° (V., F.). Leicht löslich in Chloroform, Schwefelkohlenstoff und heißem Benzol, fast unlöslich in Petroläther (V., F.). Unlöslich in verd. Säuren und Alkalien; die Lösung in konz. Schwefelsäure ist blaß citronengelb und färbt sich beim Erhitzen braun (V., F.). Zersetzt sich beim Erhitzen über den Schmelzpunkt (V., F.). Wird durch 2-stündiges Kochen mit 20%iger Kalilauge in Benzolsulfinsäure und Chalkon gespalten (V., F.). Liefert bei der Einw. von Benzol und Aluminiumchlorid β-β-Diphenyl-propiophenon (V., F.).
- β-p-Tolylmercapto-β-phenyl-propiophenon, β-p-Tolylmercapto-hydrochalkon $C_{22}H_{20}OS = C_0H_5 \cdot CH(S \cdot C_0H_4 \cdot CH_3) \cdot CH_2 \cdot CO \cdot C_0H_5$. B. Bei der Einw. von p-Tolylmercapto-magnesium-jodid (E II 6, 393) auf Chalkon oder auf eine Lösung von Benzaldehyd und Acetophenon in Äther (GILMAN, KING, Am. Soc. 47, 1141). Aus Chalkon und Thio-p-kresol in Gegenwart von Piperidin (G., K.). F: 110—111° (unkorr.).
- β-p-Tolylsulfon-β-phenyl-propiophenon, β-p-Tolylsulfon-hydrochalkon $C_{22}H_{20}O_3S = C_6H_5 \cdot CH(SO_2 \cdot C_6H_4 \cdot CH_2) \cdot CH_2 \cdot CO \cdot C_6H_5$ (H 182). B. Bei der Oxydation von β-p-Tolylmercaptohydrochalkon mit Wasserstoffperoxyd in Eisessig + Acetanhydrid (GILMAN, KING, Am. Soc. 47, 142). Bei der Reduktion von höherschmelzendem oder niedrigerschmelzendem β-p-Tolylsulfon-chalkon mit Zinkstaub und starker Essigsäure (Kohler, Barrett, Am. Soc. 46, 752). F: ca. 185° (Ko., B.), 182—183° (unkorr.) (G., KING); zersetzt sich beim Erhitzen über den Schmelzpunkt (G., KING).
- 8. 1.3 Diphenyl propanol (1) on (2), Benzyl [α oxy benzyl] keton, Phenyl-phenacetyl-carbinol, α -Oxy- α . α' -diphenyl-aceton $C_{15}H_{14}O_2=C_6H_5\cdot CH_2\cdot CO\cdot CH(OH)\cdot C_2H_5$.
- a) Linksdrehende Form, d(-)-Phenyl-phenacetyl-carbinol $C_{15}H_{14}O_2 = C_6H_5$ · $CH_2 \cdot CO \cdot CH(OH) \cdot C_6H_5$. B. Beim Kochen von d(-)-Mandelsäureamid mit Benzylmagnesium-chlorid in absol. Äther (Roger, Helv. 12, 1066). Tafeln (aus Alkohol). F: 128—129°. [α] $_{0}^{\text{mc}}$: —122,3° (Aceton; c=1). Liefert beim Kochen mit überschüssigem Phenylmagnesium-bromid in Äther (+)- β -Benzylhydrobenzoin (E II 6, 1018).
- b) Inaktive Form, dl-Phenyl-phenacetyl-carbinol C₁₅H₁₄O₂ = C₆H₅·CH₂·CO·CH(OH)·C₆H₅. B. Bei der Umsetzung von dl-Mandelsäure-amid oder dl-Mandelsäure-nitril mit Benzylmagnesiumhalogenid in Äther (Tiffeneau, Lévy, Bl. [4] 37, 1251). Beim Behandeln von 1.3-Diphenyl-propen (F: 15—16°) mit Permanganat in Aceton bei Gegenwart von 10% iger Schwefelsäure (Stoermer, Thier, B. 58, 2613; vgl. Burton, Shoppee, Soc. 1937, 547). Krystalle (aus Alkohol). F: 116—117° (St., Th.), 115—116° (Ti., L.). Ziemlich leicht löslich in Alkohol, Eisessig und Aceton, löslich in Äther (St., Th.). Löst sich in konz. Schwefelsäure mit

dunkeiroter Farbe, die beim Verdünnen mit Wasser verschwindet (Sr., Th.). — Reduniert Silberlösung (Sr., Th.) und Fehlingsche Lösung (Sr., Th.; Tl., L.).

Semicarbazon $C_{1e}H_{17}O_2N_3 = C_eH_5 \cdot CH_2 \cdot C(:N \cdot NH \cdot CO \cdot NH_3) \cdot CH(OH) \cdot C_eH_5$. F: 189—190° (Tiffeneau, Lévy, Bl. [4] 37, 1251), 189° (Stoermer, Thier, B. 58, 2613).

- 9. 1.2 Diphenyl propanol (2) on (1), α Oxy α phenyl propiophenon, ms-Methyl-benzoin $C_{15}H_{14}O_3=C_6H_5\cdot C(CH_5)(OH)\cdot CO\cdot C_6H_5$. B. Aus Benzil und Methylmagnesiumjodid in Äther (Roger, Soc. 127, 523). Nadeln (aus Petroläther). F: 65—66°. Liefert beim Kochen mit Phenylmagnesiumbromid in Äther 1.2-Dioxy-1.1.2-triphenyl-propan (E II 6, 1019).
- Oxim, 1-Oximino-1.2-diphenyl-propanol-(2) $C_{18}H_{18}O_8N=C_0H_5\cdot C(CH_3)(OH)\cdot C(:N\cdot OH)\cdot C_{18}H_6$. B. Beim Behandeln vor β -Benzilmonoxim mit Methylmagnesiumjodid in Äther (Orbonow, Tiffeneau, Bl. [4] 41, 842). Beim Kochen von α -Isonitroso- α -phenyl-aceton mit Phenylmagnesiumbromid in Äther (O., T.). Krystalle (aus Benzol). F: 120—121°. Leicht löslich in Methanol, Alkohol und Äther, schwer in Petroläther und kaltem Benzol.
- 10. [4-Oxy-2-methyl-phenyl]-benzyl-keton, 4-Phenacetyl-m-kresol, 4-Oxy-2-methyl-desoxybenzoin $C_{15}H_{14}O_{2}$, Formel I (H 183). Geht beim Erhitzen mit Camphersulfonsäure auf 170° in Phenylessigsäure-m-tolylester üter (Rosenmund, Schnurg, A. 460, 93).
- 11. [6-Oxy-3-methyl-phenyl]-benzyl-keton, 2-Phenacetyl-p-kresol, 4-Methyl-2-phenacetyl-phenol, 6-Oxy-3-methyl-desoxy-benzotn C₁₈H₁₄O₂, Formel II. B. Beim Erwärmen von p-Kresol-methyläther mit
 - I. HO. CO.CH2.C6H5 II. CO.CH2.C6H8

Phenylessigsäurechlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff auf dem Wasserbad und Erhitzen des erhaltenen 6-Methoxy-3-methyl-desoxybenzoins mit Aluminiumchlorid auf 120—130° (v. Auwers, B. 53, 2277). — Nadeln (aus Methanol oder Petroläther). F: 65° (v. Au.). Kp₁₈: 214°; Kp₁₈₋₁₄: 210—213° (v. Au.). Löst sich in Alkalilaugen mit tiefgelber Farbe (v. Au.). Gibt mit Eisen (III)-chlorid eine violette Färbung (v. Au.). — Liefert beim Erhitzen mit Acetanhydrid und Natriumacetat auf 160—170° 2.6-Dimethyl-3-phenyl-chromon (Syst. Nr. 2468); reagiert analog mit Benzoesäureanhydrid + Natriumbenzoat und mit Zimtsäureanhydrid + Natriumcinnamat (Wittig, A. 446, 190, 191). — Natriumsalz. Schwer löslich in 8% iger Natronlauge (v. Au.).

- 4-Nitro-phenylhydrazon C₂₁H₁₉O₃N₃. F: 203-204⁶ (v. Auwers, B. 53, 2282).
- 6-Methoxy-3-methyl-desoxybenzoin $C_{16}H_{16}O_2=C_8H_5\cdot CH_2\cdot CO\cdot C_8H_3(CH_3)\cdot O\cdot CH_3$. B. s. im vorhergehenden Artikel. Entsteht ferner beim Kochen von 6-Oxy-3-methyl-desoxybenzoin mit Methyljodid und Natriummethylat-Lösung unter Luftabschluß (v. Auwers, B. 53, 2283). Krystalle (aus Eisessig oder Alkohol). F: 75°. Kp₁₄: 205—207°.
- 6-Acetoxy-3-methyl-desoxybenzoin $C_{17}H_{16}O_3=C_6H_5\cdot CH_2\cdot CO\cdot C_6H_3(CH_3)\cdot O\cdot CO\cdot CH_3$. B. Beim Kochen von 6-Oxy-3-methyl-desoxybenzoin mit Acetylchlorid (v. Auwers, B. 53, 2278). Nadeln (aus Alkohol), Rhomben (aus Benzin). F: 73—74°. Liefert mit Brom in Schwefelkohlenstoff am Sonnenlicht oder bei gelindem Erwärmen α -Brom-6-acetoxy-3-methyl-desoxybenzoin.
- 6 Oxy 3 methyl desoxybenzoin semicarbazon $C_{16}H_{17}O_2N_3 = C_6H_5 \cdot CH_2 \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot C_6H_3(CH_3) \cdot OH$. Krystalle (aus Eisessig). F: 204—205° (v. Auwers, B. 53, 2282).
- ms-Brom-6-oxy-3-methyl-desoxybenzoin $C_{15}H_{13}O_2Br=C_6H_5\cdot CHBr\cdot CO\cdot C_6H_3(CH_3)\cdot OH.$ B. Beim Kochen von α-Brom-6-acetoxy-3-methyl-desoxybenzoin mit bei 0° gesättigter Bromwasserstoffsäure und Eisessig (v. Auwers, B. 53, 2279). Blaßgelbe Blättchen (aus Methanol oder Petroläther). F: 106°. Leicht löslich in den gebräuchlichen Lösungsmitteln. Sehr empfindlich gegen Feuchtigkeit. Wird beim Kochen mit Diäthylanilin zu 6-Oxy-3-methyl-desoxybenzoin reduziert. Liefert beim Auflösen in kalter Natronlauge und nachfolgenden Ansäuern und Aufbewahren des Reaktionsgemisches an der Luft 6-Oxy-3-methyl-benzil und 6-Benzoyloxy-3-methyl-benzoesäure. Beim Behandeln mit Natriumacetat in verd. Alkohol erhält man je nach den Reaktionsbedingungen 6-Benzoyloxy-3-methyl-benzoesäure, eine Verbindung $C_{20}H_{24}O_4$ (Krystalle; F: 227—232°; sehr schwer löslich in den meisten Lösungsmitteln) oder eine Verbindung vom Schmelzpunkt 64—65°.
- ms-Brom-6-acetoxy-3-methyl-desoxybenzoin $C_{17}H_{18}O_3Br=C_6H_5\cdot CHBr\cdot CO\cdot C_6H_3(CH_6)\cdot O\cdot CO\cdot CH_3$. B. Aus 6-Acetoxy-3-methyl-desoxybenzoin und Brom in Schwefelkohlenstoff am Sonnenlicht oder bei gelindem Erwärmen (v. Auwers, B. 58, 2278). Nadeln. F: 118° bis 119°. Leicht löslich in Methanol und Alkohol, ziemlich schwer in Benzol und Petroläther.

12. Methyl-[2-oxy-benzhydryl]-keton, α -Phenyl- α -[2-oxy-phenyl]-aceton $C_{15}H_{14}O_2=HO\cdot C_4H_4\cdot CH(C_4H_5)\cdot CO\cdot CH_4.$

Chlormethyl-[2-methexy-benzhydryl]- keton, α' -Chlor- α -phenyl- α -[2-methexy-phenyl]-aceton $C_{1e}H_{1s}O_{2}Cl = CH_{2}\cdot O\cdot C_{e}H_{4}\cdot CH(C_{e}H_{5})\cdot CO\cdot CH_{2}Cl$. B. Beim Behandeln von 2-Methoxy-diphenylessigsäure-chlorid mit Diazomethan in Äther (Kahll, Nierenstein, Am. Soc. 46, 2557). — Tafeln von charakteristischem Geruch (aus Ligroin). F: 107°. — Liefert beim Kochen mit Aluminiumchlorid in Benzol 3-Oxo-4-phenyl-chroman (Syst. Nr. 2467).

13. Methyl-[4-oxy-benzhydryl]-keton, α -Phenyl- α -[4-oxy-phenyl]-aceton $C_{18}H_{14}O_2=HO\cdot C_4H_4\cdot CH(C_4H_5)\cdot CO\cdot CH_2$.

Methyl-[4-methoxy-benzhydryl]-keton, α -Phenyl- α -[4-methoxy-phenyl]-aceton $C_{16}H_{16}O_3=CH_3\cdot O\cdot C_6H_4\cdot CH(C_6H_5)\cdot CO\cdot CH_2$. B. Man behandelt 1-Phenyl-1-[4-methoxy-phenyl]-propen-(1) mit Benzopersäure in Chloroform und kocht das entstandene α -Phenyl- α -[4-methoxy-phenyl]-propylenoxyd mit 50% iger Schwefelsäure oder destilliert es unter Atmosphärendruck (Lévy, Gallais, Abragam, Bl. [4] 43, 877, 878). — Kp25: 225°. D2°: 1,159. Die Lösung in konz. Schwefelsäure ist orangebraun. — Liefert beim Kochen mit alkoh. Kalilauge und Behandeln des Reaktionsprodukts mit siedender Chromessigsäure 4-Methoxy-benzophenon.

Oxim $C_{16}H_{17}O_{2}N = CH_{5} \cdot O \cdot C_{6}H_{4} \cdot CH(C_{6}H_{5}) \cdot C(CH_{3}) : N \cdot OH$. F: 189—190° (Lévy, Gallais, Abragam, Bl. [4] 48, 878).

Semicarbazon $C_{17}H_{19}O_2N_3 = CH_3 \cdot O \cdot C_9H_4 \cdot CH(C_9H_5) \cdot C(CH_3) : N \cdot NH \cdot CO \cdot NH_2$. F: 178° bis 179° (Lévy, Gallais, Abragam, Bl. [4] 48, 878).

14. Oxymethyl - benzhydryl - keton , α' -Oxy- $\alpha.\alpha$ -diphenyl-aceton $C_{15}H_{14}O_2=(C_4H_5)_2CH\cdot CO\cdot CH_2\cdot OH.$

Acetoxymethyl-benzhydryl-keton, α' -Acetoxy- α . α -diphenyl-aceton $C_{17}H_{16}O_3 = (C_6H_5)_2CH \cdot CO \cdot CH_2 \cdot O \cdot CO \cdot CH_3$. B. Aus α' -Chlor- α . α -diphenyl-aceton und Alkaliacetat (Lewis, Nierenstein, Rich, Am. Soc. 47, 1732). — Nadeln (aus Alkohol). F: 147°.

- 5-Methoxy-2.4-dimethyl-benzophenon $C_{16}H_{16}O_2=C_8H_5\cdot CO\cdot C_6H_2(CH_3)_2\cdot O\cdot CH_3$. B. s. im vorhergehenden Artikel. Entsteht ferner beim Schütteln von 5-Oxy-2.4-dimethyl-benzophenon mit Dimethylsulfat in alkal. Lösung (Meisenheimer, Hanssen, Wächterowitz, J. pr. [2] 119, 334). Zähflüssiges Öl. $Kp_{18-18}\colon 199-200^\circ; Kp_{10}\colon 196-198^\circ.$ Liefert beim Kochen mit Aluminiumchlorid in Schwefelkohlenstoff oder besser mit Jodwasserstoffsäure (D: 1,7) in Eisessig 5-Oxy-2.4-dimethyl-benzophenon.
- 5 Äthoxy 2.4 dimethyl benzophenon $C_{17}H_{18}O_3 = C_0H_5 \cdot CO \cdot C_0H_3 \cdot CO \cdot C_2H_5$. B. Beim Kochen von 4-Äthoxy-m-xylol mit Benzoylchlorid und Aluminiumchlorid in Schwefelkohlenstoff (Meisenhemer, Hanssen, Wächterowitz, J. pr. [2] 119, 332). Kp₁₀: 190—191°.
- 5-0xy-2.4-dimethyl-benzophenon-oxim $C_{18}H_{15}O_2N=C_6H_5\cdot C(:N\cdot OH)\cdot C_6H_2(CH_3)_3\cdot OH$. Nadeln (aus Benzol). F: 182—183° (Meisenheimer, Hanssen, Wachterowitz, J. pr. [2] 119, 335). Leicht löslich in Alkohol und Äther, löslich in heißem Wasser, schwer löslich in Benzol und Ligroin. Liefert beim Erwärmen mit Chlorwasserstoff in Eisessig + Acetanhydrid unter Druck auf 100° und Verseifen des Reaktionsgemisches viel 6-Benzamino-4-oxy-m-xylol und wenig 5-Oxy-2.4-dimethyl-benzoesäure-anilid. Beim Schmelzen des Hydrochlorids entsteht ausschließlich 5-Oxy-2.4-dimethyl-benzoesäure-anilid. Beim Behandeln mit PCl₅ in Äther unter Kühlung bildet sich eine amorphe Phosphorsäureverbindung, die sich bei 90—100° nach vorhergehendem Erweichen zersetzt. Hydrochlorid. Gelb. Zersetzt sich bei ca. 135°.

¹⁾ Vgl. jedoch die Eigenschaften der aus beiden Präparaten erhaltenen Methyläther.

208

- 5 Methoxy 2.4 dimethyl-benzophenon- α -oxim $C_{10}H_{17}O_2N = \frac{C_0H_5\cdot C\cdot C_0H_4(CH_5)_5\cdot O\cdot CH_3}{N\cdot OH}$.
- B. Neben wenig β -Oxim beim Kochen von 5-Methoxy-2.4-dimethyl-benzophenon mit Hydroxylaminhydrochlorid in wäßrig-alkoholischer Kalilauge (Meisenheimer, Hanssen, Wächterowitz, J. pr. [2] 119, 326). Nadeln (aus Benzol + Ligroin), Tafeln (aus Alkohol). F: 138—139°. Kp₁₀: 218°. Leicht löslich in den gebräuchlichen Lösungsmitteln außer Ligroin. Fast unlöslich in wäßr. Alkalien. Zersetzt sich beim Aufbewahren an der Luft. Ist beständig gegen Mineralsäuren, bleibt auch bei längerem Kochen mit Eisessig unverändert. Liefert beim Behandeln mit PCl₅ in Äther unter Kühlung 5-Methoxy-2.4-dimethyl-benzoesäure-anilid. Hydrochlorid. Gelb. F: 127—130° (Zers.).
 - $5 \text{Methoxy} 2.4 \text{dimethyl-benzophenon} \beta \text{oxim } C_{16}H_{17}O_2N = \frac{C_6H_6 \cdot C \cdot C_6H_2(CH_3)_2 \cdot O \cdot CH_8}{HO \cdot N}.$
- B. s. im vorangehenden Artikel. Nadeln. F: 119—120° (MEISENHEIMER, HANSSEN, WÄCHTEROWITZ, J. pr. [2] 119, 327). Zersetzt sich beim Aufbewahren an der Luft. Liefert beim Behandeln mit PCl_s in Äther unter Kühlung 6-Benzamino-4-methoxy-m-xylol.
 - $5 \text{Äthoxy} 2.4 \text{dimethyl-benzophenon} \alpha \text{oxim } C_{17} H_{19} O_2 N = \frac{C_6 H_5 \cdot C \cdot C_6 H_2 (CH_2)_2 \cdot O \cdot C_2 H_5}{N \cdot OH}$
- B. Neben wenig β -Oxim beim Kochen von 5-Äthoxy-2.4-dimethyl-benzophenon mit Hydroxyl-aminhydrochlorid in wäßrig-alkoholischer Kalilauge (MEISENHEIMER, HANSSEN, WÄCHTEROWITZ, J. pr. [2] 119, 332). Nadeln. F: 148—149°. Leicht löslich in Alkohol, Äther und Benzol, schwer in Ligroin. Zersetzt sich beim Aufbewahren an der Luft. Liefert beim Behandeln mit PCl_5 in Äther unter Kühlung 5-Äthoxy-2.4-dimethyl-benzoesäure-anilid.
- 5-Äthoxy-2.4-dimethyl-benzophenon- β -oxim $C_{17}H_{18}O_2N = \frac{C_6H_6 \cdot C \cdot C_6H_2(CH_3)_2 \cdot O \cdot C_2H_5}{HO \cdot N}$.

 8. 8. im vorangehenden Artikel Nadeln F: 422 4246
- B. s. im vorangehenden Artikel. Nadeln. F: 133—134° (Meisenheimer, Hanssen, Wächterowitz, J. pr. [2] 119, 332).
- x Dibrom 5 oxy 2.4 dimethyl-benzophenon $C_{15}H_{12}O_2Br_2$. B. Durch Bromierung von 5-Oxy 2.4 dimethyl-benzophenon (Meisenheimer, Hanssen, Wächterowitz, J. pr. [2] 119, 333—334). Nadeln (aus verd. Alkohol). F: 156—157°.
- 16. 4 Oxy 2.5 dimethyl benzophenon, 5 Oxy 2 benzoyl p xylol, 5 Benzoyl 1.4.2 xylonol C₁₅H₁₄O₂, s. nebenstehende Formel (H 184 als x-Benzoyl-p-xylonol beschrieben). B. C₅H₅·CO·OH Beim Kochen von 4-Methoxy-2.5-dimethyl-benzophenon mit Jodwasserstoffsäure (D: 1,7) in Eisessig (MEISENHEIMER, HANSSEN, WÄCHTEROWITZ, CH₂ J. pr. [2] 119, 343). Nadeln (aus Benzol + Ligroin). F: 166—167°. Leicht löslich in Alkohol, Äther und Benzol, schwer in Ligroin.
- 4-Methoxy-2.5-dimethyl-benzophenon $C_{16}H_{16}O_2 = C_6H_5 \cdot \text{CO} \cdot C_6H_2(\text{CH}_3)_2 \cdot \text{O} \cdot \text{CH}_3$ (H 184). B. Bei der Kondensation von p-Kylenol-methyläther mit Benzoylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (Meisenheimer, Hanssen, Wächterowitz, J. pr. [2] 119, 342). Nadeln (aus Petroläther). F: 60—61°. Kp_{12—13}: 202—204°. Sehr leicht löslich in allen organischen Lösungsmitteln.
- 4-Acetoxy-2.5-dimethyl-benzophenon $C_{17}H_{16}O_3=C_6H_5\cdot CO\cdot C_6H_3(CH_3)_2\cdot O\cdot CO\cdot CH_3$ (H 184). F: 57—58° (Meisenheimer, Hanssen, Wächterowitz, *J. pr.* [2] 119, 343).
- 17. 2-Oxy-3.5-dimethyl-benzophenon, 4-Oxy-5-benzoylm-xylol, 5-Benzoyl-1.3.4-xylenol C₁₅H₁₄O₂, s. nebenstehende
 Formel. B. s. im Artikel 5-Oxy-2.4-dimethyl-benzophenon, S. 207. C₅H₅·CO
 Gelbe Nadeln (aus Petroläther). F: 40—41° (v. Auwers, Mauss, B. 61,
 1498, 1504). Kp₁₈: 198—200° (Meisenheimer, Hanssen, Wächterowitz,
 J. pr. [2] 119, 342). Gibt mit Eisen(III)-chlorid eine tiefgrüne Färbung (v. Au., Mauss). —
 Natriumsalz. Schwer löslich in Natronlauge (v. Au., Mauss).
- Oxim $C_{15}H_{15}O_2N=C_6H_6\cdot C(:N\cdot OH)\cdot C_6H_2(CH_2)_2\cdot OH$. Nadeln (aus Benzol + Ligroin). F: 153—154° (Meisenheimer, Hanssen, Wächterowitz, J. pr. [2] 119, 339; v. Auwers, Mauss, B. 61, 1498, 1505). Leicht löslich in Alkohol, Äther und Benzol, schwer in Ligroin. Liefert beim Behandeln mit PCl_5 in Äther unter Kühlung hauptsächlich 5.7-Dimethyl-2-phenylbenzoxazol (Syst. Nr. 4199) (Mei., H., W.).
- 18. x Benzoyl asymm. m xylenol $C_{15}H_{14}O_2 = C_6H_5 \cdot CO \cdot C_9H_2(CH_3)_2 \cdot OH$ (H 184). Ist vielleicht als 5-Oxy-2.4-dimethyl-benzophenon (S. 207) zu formulieren (Meisenheimer, Hanssen, Wächterowitz, J. pr. [2] 119, 333).

- 19. x Benzoyd p xylenol $C_{15}H_{14}O_3 = C_0H_5 \cdot CO \cdot C_5H_2(CH_0)_3 \cdot OH$ (H 184). Wird als 4-Oxy-2.5-dimethyl-benzophenon (S. 208) angesehen (Meisenheimee, Hanssen, Wächterowitz, J. pr. [2] 119, 343).
- 20. 6 Oxy 3 propionyl diphenyl C₁₅H₁₄O₂, s. nebenstehende
 Formel. B. Neben nicht rein erhaltenem 2-Oxy-3-propionyl-diphenyl
 beim Erhitzen von 2-Propionyloxy-diphenyl mit Aluminiumchlorid auf
 120° (v. Auwers, Wittig, J. pr. [2] 108, 111). Blaßgelbe Nadeln (aus
 50% igem Alkohol). F: 148°. Leicht löslich in Alkohol, löslich in Benzol, schwer löslich in
 Petroläther. Wird durch amalgamiertes Zink und Salzsäure zu 6-Oxy-3-propyl-diphenyl
 reduziert.

4. Oxy-oxo-Verbindungen $C_{10}H_{10}O_{2}$.

- 1. 1.4 Diphenyl butanol (4) on (1), γ Oxy γ phenyl butyrophenon $C_{1e}H_{1e}O_2 = C_eH_1 \cdot CH(OH) \cdot CH_2 \cdot CO \cdot C_eH_1$.
- β Nitro γ οxy γ [4 chlor phenyl] butyrophenon $C_{10}H_{14}O_4NCl = C_6H_4Cl \cdot CH(OH) \cdot CH(NO_2) \cdot CH_2 \cdot CO \cdot C_6H_5$. B. Bei gelindem Erwärmen von γ-Brom-β-nitro-γ-[4-chlor-phenyl]-butyrophenon mit Silberacetat in Alkohol (Kohler, Smith, Am. Soc. 44, 633). Nadeln (aus Alkohol). F: 142°. Reduziert Permanganat. Gibt beim Behandeln mit Alkalilauge 2-Phenyl-5-[4-chlor-phenyl]-furan (Syst. Nr. 2372).
- 2. 1.4-Diphenyl-butanol-(3)-on-(2), α.α'-Diphenyl-acetoin C₁₆H₁₆O₂ = C₆H₅· CH₂· CH(OH)· CO· CH₂· C₆H₅. B. Durch Einw. von Natrium auf Phenylessigester in absol. Äther (Feigl, Sigher, Singer, B. 58, 2300). Kp₁₃: 160°.
- $\begin{array}{l} \textbf{Oxim}\, \mathbf{C_{1e}}\mathbf{H_{17}}\mathbf{O_{2}}\mathbf{N} = \mathbf{C_{e}}\mathbf{H_{5}}\cdot\mathbf{CH_{2}}\cdot\mathbf{CH(OH)}\cdot\mathbf{C(:N\cdot OH)}\cdot\mathbf{CH_{2}\cdot\mathbf{C_{e}}}\mathbf{H_{5}}\cdot\mathbf{-K}\,\mathbf{u}\,\mathbf{pfersalz}\,\mathbf{CuC_{1e}}\mathbf{H_{15}}\mathbf{O_{2}}\mathbf{N}.\\ \textbf{Grün.}\ \ \, \mathbf{Unlöslich}\,\,\mathbf{in}\,\,\,\mathbf{Wasser}\,\,\mathbf{und}\,\,\mathbf{Ammoniak}\,\,(\mathbf{Feigl},\,\,\mathbf{Sicher},\,\,\mathbf{Singer},\,\,B.\,\,\mathbf{58},\,\,\mathbf{2296},\,\,\mathbf{2299}). \end{array}$ Wird durch Säuren zersetzt.
- 3. 2-Methyl-3-phenyl-1-[4-oxy-phenyl]-propanon-(1), 4-Oxy- α -methyl-propiophenon, 4-Oxy- α -methyl-hydrochalkon $C_{16}H_{16}O_2=C_4H_5\cdot CH_5\cdot CH(CH_5)\cdot CO\cdot C_4H_4\cdot OH$.
- β-Chlor-4-methoxy-α-methyl-β-phenyl-propiophenon, β-Chlor-4'-methoxy-α-methyl-hydrochalkon $C_{17}H_{17}O_3Cl = C_6H_6 \cdot CHCl \cdot CH(CH_2) \cdot CO \cdot C_6H_4 \cdot O \cdot CH_3$. B. Beim Sättigen eines Gemisches aus 4-Methoxy-propiophenon und Benzaldehyd mit Chlorwasserstoff (BISCHOFF, Dissert. [Leipzig 1928], S. 73). Krystalle (aus Äther). F: 89°. Geht beim Erwärmen mit Methanol in 4'-Methoxy-α-methyl-chalkon und höhersiedende Produkte über.
- 4. $6 Oxy 3 methyl \beta phenyl propiophenon,$ $6 Oxy 3' methyl hydrochalkon C_{16}H_{16}O_2$, s. nebenstehende

 Formel. $\alpha.\beta \text{Dibrom} 6 \text{oxy} 3 \text{methyl} \beta \text{phenyl} \text{propiophenon},$ $6' Oxy 3' \text{methyl} \text{chalkondibromid} C_{10}H_{10}O_{2}B_{10} = C_{10}H_{10} \cdot \text{CHBr}$
- 6'-Oxy-3'-methyl-chaikondibromid $C_{16}H_{14}O_2Br_2=C_6H_5$ ' CHBr· CHBr· CO· C_6H_5 (CH₂)· OH. B. Aus 6'-Oxy-3'-methyl-chalkon und Brom in Schwefelkohlenstoff (v. Auwers, A. 421, 104). Hellgelbe Prismen (aus Methanol). F: 151—152°. Leicht löslich in Alkohol, Äther, Eisessig und Schwefelkohlenstoff, ziemlich schwer löslich in Methanol und Benzin. Liefert mit 1 Mol wäßrig-zlkoholischer Natronlauge 3-Brom-6-methyl-flavanon (Syst. Nr. 2467) (v. Au.; vgl. a. v. Au., Anschütz, B. 54, 1559).
- 5. 2 Phenyl 1 [4 oxy phenyl] butanon (1), 4-Oxy-ms-äthyl-desoxy-benzoin $C_{16}H_{16}O_2=C_0H_6\cdot CH(C_2H_6)\cdot CO\cdot C_0H_4\cdot OH.$
- 2-Phenyl-1-[4-methexy-phenyl]-butanon-(1), 4-Methexy-ms-äthyl-desoxybenzoin $C_{17}H_{18}O_2 = C_6H_5 \cdot CH(C_2H_5) \cdot CO \cdot C_6H_4 \cdot O \cdot CH_3$ (H 186). B. Bei der Umsetzung von Äthylphenyl-essigsäure-nitril mit 4-Methoxy-phenylmagnesiumbromid in siedendem Toluol und Hydrolyse des entstandenen Imids mit siedender alkoholischer Salzsäure (RAMART-LUCAS, ANAGNOSTOPOULOS, Bl. [4] 43, 1353; vgl. C. r. 186, 1628). F: 45°. Kp₁₂: 215—220°.
- Oxim $C_{17}H_{19}O_2N = C_6H_5 \cdot CH(C_2H_5) \cdot C(:N \cdot OH) \cdot C_6H_4 \cdot O \cdot CH_3$. F: 154° (Ramart-Lucas, Anagnostopoulos, C. r. 186, 1628; Bl. [4] 48, 1353).
- Semicarbazon $C_{16}H_{21}O_2N_3 = C_6H_5 \cdot CH(C_2H_5) \cdot C(:N \cdot NH \cdot CO \cdot NH_4) \cdot C_6H_4 \cdot O \cdot CH_2$. F: 118° (Ramart-Lucas, Anagnostopoulos, C. r. 186, 1628; Bl. [4] 48, 1353).

- 6. 4.4 Dimethyl benzoin, p Toluoin C₁₆H₁₆O₂ = CH₂·C₄H₄·CH(OH)·CO·C₆H₄·CH₄·CH₄·CH(OH)·CO·C₆H₄·CH₆·CH₆ (H 186; E I 576). B. Zur Bildung aus p-Toluylaldehyd und Kaliumoyanid in Alkohol vgl. GILMAN, ADAMS, R. 48, 465. Aus p-Tolil beim Behandeln mit Magnesiumjodid-Lösung oder mit Magnesium + Magnesiumbromid oder -jodid in Äther + Benzol und Zersetzen des Reaktionsprodukts mit Wasser (GOMBERG, VAN NATTA, Am. Soc. 51, 2239, 2240). Reduziert Fehlingsche Lösung in der Wärme (Go., VAN N.).
- 7. $2-[\alpha-Oxy-isopropyl]$ -benzophenon, Dimethyl-[2-benzoyl-phenyl]-carbinol bzw. 3-Oxy-1.1-dimethyl-3-phenyl-phthalan $C_{10}H_{10}O_{2}=C_{0}H_{1}$ ·CO· $C_{0}H_{4}$ ·C(CH₂)₂·OH bzw. $C_{0}H_{4}$ ·C(CH₂)₃O. B. Aus 3.3-Dimethyl-phthalid und Phenylmagnesiumbromid in siedendem Äther (Barnett, Cook, Nixon, Soc. 1927, 509). Krystalle (aus Benzol + Benzin). F: 118°. Liefert bei der Destillation unter Atmosphärendruck 2-Isopropenyl-benzophenon.

5. Oxy-oxo-Verbindungen $C_{17}H_{18}O_2$.

- 1. 4-Oxy-2-methyl-5-isopropyl-benzophenon, 5-Oxy-2-benzoyl-p-cymol, 5-Methyl-2-isopropyl-4-benzoyl-phenol, 4-Benzoyl-thymol, Thymolphenyl-keton, Thymylphenylketon C₁₇H₁₈O₂, CH₈ CO CH₈ CH₈ CO CH₈
- 4-Acetoxy-2-methyl-5-isopropyl-benzophenon $C_{18}H_{20}O_8=C_8H_8\cdot CO\cdot C_6H_8(CH_2)(C_2H_7)\cdot O\cdot CO\cdot CH_3$. Krystalle (aus Methanol). F: 73° (unkorr.) (Orndorff, Lacey, Am. Soc. 49, 821). Sehr leicht löslich in Alkohol, Äther, Aceton, Eisessig und Essigester, unlöslich in Wasser. Wird durch siedendes Wasser und durch Alkalilaugen leicht verseift.
- 4 Oxy 2 methyl 5 isopropyl benzophenon oxim $C_{17}H_{19}O_2N=C_0H_5\cdot C(:N\cdot OH)\cdot C_0H_8$ (CH₃)(C₃H₇)·OH (Gemisch der beiden stereoisomeren Formen). Krystallpulver (aus verd. Alkohol). F: ca. 157° (Rosenmund, Schulz, Ar. 1927, 313).
- 2. 4-Oxy-3-methyl-6-isopropyl-benzophenon, 6-Oxy-3-benzoyl-p-cymol, 2-Methyl-5-isopropyl-4-benzoyl-phenol, 4-Benzoyl-carracrol C₁₇H₁₈O₂, Formel II. B. Bei 48-stdg. Aufbewahren von Carvacrol mit Benzoylchlorid und Aluminium-chlorid in Nitrobenzol bei Zimmertemperatur (JOHN, BEHTZ, J. pr. [2] 143 [1935], 345).—Prismen (aus Benzol + Benzin). F: 126°. Fast unlöslich in Wasser und Benzin, leicht löslich in anderen organischen Lösungsmitteln.

Eine von Rosenmund, Schnurg (A. 460, 82) durch Erwärmen von Carvacrylbenzoat mit Aluminiumchlorid in Nitrobenzol auf 60° erhaltene, als 4-Benzoyl-carvacrol angesehene Verbindung vom Schmelzpunkt 172—173° ist 4-Benzoyl-o-kresol (S. 198) gewesen (vgl. John, Beetz, J. pr. [2] 149 [1937], 168).

4 - Methoxy - 3 - methyl - 6 - isopropyl - benzophenon, 4 - Benzoyl - carvaerol - methyläther $C_{18}H_{20}O_2=C_6H_6\cdot CO\cdot C_6H_2(CH_3)(C_3H_7)\cdot O\cdot CH_3$. Blättchen (aus Alkohol). F: 55°; Kpss: 218° bis 221° (korr.) (Bogert, Goldstein, Am. Perfumer 23, 526; C. 1929 II, 3128). — Liefert bei der Reduktion mit Natrium in Alkohol 4-Methoxy-5-methyl-2-isopropyl-benzhydrol (E II 6, 983).

6. Oxy-oxo-Verbindungen $C_{18}H_{20}O_{2}$.

1. 1.6-Diphenyl-hexanol-(4)-on-(3), a.a'-Dibenxyl-acetoin, Hydrocinnamoin $C_{18}H_{50}O_2=C_6H_5\cdot CH_2\cdot CH_2\cdot CO\cdot CH(OH)\cdot CH_2\cdot CH_2\cdot C_4H_5$. B. Bei der Einw. von Natrium auf Hydrozimtsäure-äthylester in Äther und Zersetzung des Reaktionsprodukts mit Wasser (SCHEIBLER, EMDEN, A. 484, 283). — Wurde nicht rein erhalten. Öl. Erstarrt in der Kälte gallertartig. Siedet unter 38 mm Druck bei 240—265°.

- 2. 2 Åthyl 2 phenyl 1 [4-oxy-phenyl]-butanon-(1), 4-Oxy-ms.ms-di-äthyl-desoxybenzoin $C_{12}H_{10}O_2=C_4H_5\cdot C(C_2H_5)_2\cdot CO\cdot C_4H_4\cdot OH$.
- 2-Äthyl-2-phenyl-1-[4-methoxy-phenyl]-butanon-(1), 4-Methoxy-ms.ms.-diäthyl-desoxy-benzoin $C_{19}H_{25}O_2=C_6H_5\cdot C(C_2H_3)_2\cdot CO\cdot C_6H_4\cdot O\cdot CH_3$. Bei der Hydrolyse des Imidhydrobromids (s. u.) mit siedender alkoholischer Salzsäure (Ramart-Lucas, Anagnostopoulos, Bl. [4] 43, 1352; vgl. C. r. 186, 1628). — Krystalle (aus Alkohol). F: 56°. Kp₁₅: 222°. Löslich in den gebräuchlichen Lösungsmitteln.

Imid $C_{19}H_{22}ON = C_6H_5 \cdot C(C_2H_5)_2 \cdot C(:NH) \cdot C_6H_4 \cdot O \cdot CH_3$. — Hydrobromid $C_{19}H_{22}ON +$ HBr. B. Durch Umsetzung von Diathyl-phenyl-essigsäure-nitril mit 4-Methoxy-phenylmagnesiumbromid in siedendem Toluol und Zersetzung des Reaktionsproduktes mit Eis und Bromwasserstoffsäure (RAMART-LUCAS, ANAGNOSTOPOULOS, Bl. [4] 48, 1352). Krystallpulver (aus Alkohol + Ather). $F: 185-187^{\circ}$ (Zers.).

Oxim $C_{19}H_{23}O_2N = C_6H_5 \cdot C(C_2H_5)_2 \cdot C(:N \cdot OH) \cdot C_6H_4 \cdot O \cdot CH_3$. B. Beim Behandeln des Imidhydrobromids mit Hydroxylaminhydrochlorid und Kaliumacetat in verd. Alkohol (RAMART-LUCAS, ANAGNOSTOPOULOS, Bl. [4] 48, 1352; vgl. C. r. 186, 1628). — Nadeln (aus Alkohol). F: 180°.

Semicarbazon $C_{20}H_{25}O_2N_2 = C_6H_5 \cdot C(C_2H_5)_2 \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot C_6H_4 \cdot O \cdot CH_2$. B. Analog dem Oxim (RAMART-LUCAS, ANAGNOSTOPOULOS, Bl. [4] 43, 1352). - F: 175°.

3. 5-Oxy-2-phenacetyl-p-cymol, 4-Oxy-2-methyl-5-isopropyl-desoxybenzoin, 4-Phenacetyl-thymol, Thymylbenzylketon C₁₈H₂₀O₂, s. nebenstehende Formel. B. Aus C₆H₅·CH₂·CO Phenylessigsäure-thymylester und Aluminiumchlorid in Nitrobenzol bei 30° (ROSENMUND, SCHNURR, A. 460, 80). — Krystalle (aus Benzol + Ligroin). F: 105°. Unlöslich in Petroläther.

ĊH(CH₂)2

 $C(C_3H_5)_2 \cdot OH$ bzw. $C_6H_4 < C(C_8H_5)(OH) > O$. B. Aus 3.3-Diāthyl-phthalid und Phenylmagnesiumbromid in siedendem Ather (BARNETT, COOK, NIXON, Soc. 1927, 510). — Krystalle. F: 94° bis 95°. — Spaltet beim Erhitzen Wasser ab und geht in ein ungesättigtes Ol über.

7. Oxy-oxo-Verbindungen C₁₀H₂₂O₈.

- 1. 2 Benzyl 2 benzoyl pentanol (4) $C_{19}H_{22}O_2 =$ $C_6H_5 \cdot CH_2 \rightarrow C(CH_3) \cdot CH_2 \cdot CH(OH) \cdot CH_3.$
- 5-Brom-2-benzyl-2-benzoyl-pentanol-(4) $C_{10}H_{21}O_2Br =$ $\begin{array}{c} \text{C}_{\bullet}\text{H}_{5} \cdot \text{CO} \\ \text{C}_{\bullet}\text{H}_{5} \cdot \text{CH}_{2} \\ \end{array} \\ \text{C}(\text{CH}_{3}) \cdot \text{CH}_{2} \cdot \text{CH}(\text{OH}) \cdot \text{CH}_{2}\text{Br}. \quad B. \quad \text{Beim Behandeln von 2-Benzyl-2-benzoyl-pen-conditions}$ ten-(4) mit 1 Mol Brom in kaltem Chloroform und Aufbewahren des Reaktionsprodukts an feuchter Luft (Haller, Ramart-Lucas, C. r. 171, 147). — Krystalle (aus Äther + Petroläther). F: 125-126°. Löslich in den meisten organischen Lösungsmitteln.
- 2. 2.2-Dimethyl 3.5-diphenyl pentanol (5) al (1), δ -Oxy $\alpha.\alpha$ -dimethyl - $\beta.\delta$ - diphenyl - n - valeraldehyd bzw. 3.3-Dimethyl - 4.6-diphenyl - tetrahydropyranol - (2) $C_{19}H_{21}O_{2} = C_{6}H_{5} \cdot CH(OH) \cdot CH_{2} \cdot CH(C_{6}H_{5}) \cdot C(CH_{2})_{2} \cdot CHO$ bzw. $H_{2}C \cdot CH(C_{6}H_{5}) \cdot C(CH_{3})_{2} = R$ In gasinger Margo durch Hydriganyg you δ One are dimethyl
- B. In geringer Menge durch Hydrierung von δ -Oxo- α . α -dimethyl-O-CH-OH β . δ -diphenyl-n-valeraldehyd in Gegenwart von eisenhaltigem Platinschwarz in Eisessig (MEER-WEIN, J. pr. [2] 116, 270, 274). Durch Verseifen von 2-Methoxy-3.3-dimethyl-4.6-diphenyltetrahydropyran mit 10% iger Schwefelsäure in Eisessig (M.). — Nadeln (aus verd. Alkohol). F: 105-107°. Löst sich in konz. Schwefelsäure mit gelber Farbe.
- 3. 5-Oxy-2-[β-phenyl-propionyl]-p-cymol, 4-Oxy-2-methyl-5-isopropyl-β-phenyl-propiophenon, C₆H₅·OH₂·CH₅·OO·4-Hydrocinnamoyl-thymol, Thymyl-β-phenäthyl-keton C₁·H₁₀O₄, s. nebenstehende Formel. B. Bei 48-stdg. Behandlung zur H-d-sciebathyl-keton C₁·H₁₀O₄, s. nebenstehende Formel. B. Bei 48-stdg. Behandlung zur H-d-sciebathyl-keton C₁·H₁₀O₄, s. nebenstehende Formel. B. Bei 48-stdg. CH2 CH (CH₂)2 handlung von Hydrozimtsäure-thymylester mit Aluminiumchlorid in Nitrobenzol bei 20° (ROSENMUND, SCHNURB, A. 460, 80). — Nadeln (aus verd. Alkohol). F: 122°.

212

OXY.OXO.VERBINDUNGEN CaH2n-16O2 UND CaH2n-18O2 [Syst.Nr. 752]

4. 6 - Oxy - 3 - $[\beta$ - phenyl - propionyl] - p - cymol, 4-Hydrocinnamoyl-carvacrol $C_{13}H_{22}O_2$, s. nebenstehende Formel.

6-Methoxy - $3-[\alpha.\beta-dibrom - \beta-phenyl - propionyl] - p-cymol,$ $4 - <math>[\alpha.\beta-Dibrom - hydrocinnamoyl] - carvacrol - methyläther$ $<math>C_{20}H_{22}O_2Br_2 = C_6H_5 \cdot CHBr \cdot CHBr \cdot CO \cdot C_6H_2(CH_2)(C_3H_7) \cdot O \cdot CH_3$. B. Aus 4-Cinnamoyl-carvacrol-methyläther und Brom in Tetrachlorkohlenstoff (Bogert, Goldstein, Am. Perfumer 23, 526; C. 1929 II, 3128). — Blättchen. Zersetzt sich bei 175° (korr.).

8. Oxy-oxo-Verbindungen CaoHatOa.

- 1. 2.5-Dimethyl-1.6-diphenyl-hexanol-(4)-on-(3), α.α'-Dimethyl-α.α'-di-benzyl-acetoin C₂₀H₂₄O₁ = C₆H₅·CH₂·CH(CH₂)·CH(OH)·CO·CH(CH₃)·CH₂·C₆H₅. B. Bei der Einw. von Natrium auf α-Methyl-hydrozimtsäure-äthylester in Äther und Hydrolyse des Reaktionsprodukts mit Wasser (SCHEIBLER, EMDEN, A. 434, 283). Nicht rein erhalten. Öl. Siedet unter 25 mm Druck bei 225—235°.
- 2. 4.4'- Diisopropyl benzoin, Cuminoin $C_{20}H_{24}O_3 = (CH_3)_3CH \cdot C_4H_4 \cdot CH(OH) \cdot CO \cdot C_4H_4 \cdot CH(CH_3)_3$.
- 4.4'- Diisopropyl benzoin oxim, Cuminoin-oxim $C_{20}H_{25}O_2N = (CH_3)_2CH \cdot C_6H_4 \cdot CH(OH) \cdot C(:N \cdot OH) \cdot C_6H_4 \cdot CH(CH_3)_3$. Blaßgelbe Nadeln (ans Alkohol). F: 137° (FEIGL, SIGHER, SINGER, B. 58, 2300). $CuC_{20}H_{23}O_2N$. Grün, amorph. Unlöslich in Wasser und Ammoniak. Wird durch Säuren zersetzt. [MATERNE]

i) Oxy-oxo-Verbindungen $C_nH_{2n-18}O_2$.

1. Oxy-oxe-Verbindungen $C_{12}H_6O_2$.

1. 2-Oxy-9-oxo-fluoren, 2-Oxy-fluorenon C₁₂H₂O₂, Formel I (H 188). B. Durch Behandlung von 4-Oxy-diphenyl-carbonsäure-(2) mit Zinkchlorid (Courtot, Groffroy, C.r. 180, 1667) oder von 4'-Oxy-diphenyl-carbonsäure-(2) mit kalter konzentrierter Schwefelsäure (C., G., C. r. 178, 2261).

Hydrazon $C_{13}H_{10}ON_2 = HO \cdot C_{13}H_7 : N \cdot NH_2$. B. Aus 2-Oxy-fluorenon und Hydrazinhydrat in siedendem Alkohol (Gerhardt, M. 41, 209). — Gelbe Nadeln (aus Alkohol). F: 201—202°.

Azin $C_{26}H_{16}O_2N_2 = HO \cdot C_{13}H_7 \cdot N \cdot N \cdot C_{13}H_7 \cdot OH$. B. Aus 2-Oxy-fluorenon-hydrazon und Jod in siedendem Alkohol (Gerhardt, M. 41, 209). — Braunes Krystallpulver (aus Alkalilauge durch Salzsäure). F: 301—303°. Schwer löslich in organischen Lösungsmitteln. Löslich in Alkalien. — Gibt mit Schwefelsäure braunrote Färbungen.

- x-Dibrom-2-oxy-fluorenon $C_{13}H_4O_2Br_2=HO\cdot C_{12}H_4OBr_2$. B. In geringer Menge beim Diazotieren von x-Tribrom-2-amino-fluorenon in konzentrierter schwefelsaurer Lösung und Kochen der Diazoverbindung mit Alkalilauge (Eckert, Langecker, J. pr. [2] 118, 278). Gelbe Nadeln (aus Chlorbenzol oder Nitrobenzol). F: 303°.
- x-Tribrom-2-oxy-fluorenen C₁₃H₅O₂Br₃ = HO·C₁₃H₄OBr₃. B. Durch Verseifen von x-Tribrom-2-methoxy-fluorenon mit konz. Schwefelsäure bei 120° (ECKERT, LANGECKER, J. pr. [2] 118, 279). Orangefarbene Krystalle (aus Nitrobenzol). F: 273°. Löst sich in Alkalilaugen mit rotgelber Farbe.
- x-Tribrom-2-methoxy-fluorenon $C_{14}H_7O_2Br_3 = CH_3 \cdot O \cdot C_{13}H_4OBr_3$. B. Durch Oxydation von x-Tribrom-2-methoxy-fluoren mit Natriumdichromat und Schwefelsäure in siedendem Eisessig (ECKERT, LANGECKER, J. pr. [2] 118, 279). Hellgelbe Krystalle (aus Eisessig). F: 265—266°.
- 7-Nitro-2-oxy-fluorenon C₁₂H₇O₄N, Formel II. B. Durch Diazotieren von 7-Nitro-2-aminofluorenon in konz. Schwefelsäure, Verdünnen mit viel Wasser und nachfolgendes Kochen (ECKERT, LANGECKER, J. pr. [2] 118, 275). Rote Blättchen (aus Nitrobenzol). F: 298—299°. Löslich in verd. Alkalilaugen mit dunkelroter Farbe; Lösungen in konz. Alkalilaugen sind fast schwarz.

- 7 Nitro 2 methoxy fluorenon $C_{14}H_9O_4N=\frac{CH_2\cdot O\cdot C_4H_9}{O_9N\cdot C_9H_9}$ CO. B. Aus 7-Nitro-2-oxy-fluorenon und Dimethylsulfat in heißer alkalischer Lösung (ECKERT, LANGECKEE, J. pr. [2] 118, 275). Bräunliche Krystalle (aus Eisessig oder Chlorbenzol). F: 248,5—249,5°.
- 2. 3-Oxy-9-exo-fluoren, 3-Oxy-fluorenon $C_{13}H_8O_2$, Formel III auf S. 212 (H 188). B. Durch Kochen von diazotiertem 3-Amino-fluorenon mit Wasser (Eckert, Langecker, J. pr. [2] 118, 268). F: 229°.
- 3. 2 Oxy 1 formyl acenaphthylen, 2 Oxy acenaphthylen aldehyd (1) $C_{18}H_8O_2$, Formel IV (R=H), ist desmotrop mit Acenaphthenonaldehyd, E II 7, 673.
- 2-Methoxy-acenaphthylen-aldehyd-(1) C₁₄H₁₀O₂, Formel IV (R = CH₃). B. Beim Schütteln einer sodaalkalischen Lösung von Acenaphthenon-(1)-aldehyd-(2) mit Dimethylsulfat (FRIED-LÄNDER, HERZOG, v. Voss, B. 55, 1594). Nadeln (aus Alkohol). Phenylhydrazon. F: 172°.

2. Oxy-oxo-Verbindungen $C_{14}H_{10}O_2$.

1. 1-Oxy-9-oxo-dihydro-anthracen, 1-Oxy-anthron-(9) bzw. 1.9-Dioxy-anthracen, 1-Oxy-anthranol-(9) C₁₄H₁₀O₂, Formel V bzw. VI (H 189; E I 577 als 1(oder 4)·Oxy-anthron-(9) aufgeführt). Zur Konstitution vgl. Green, Soc. 1927, 2342; Cross, Perkin, Soc. 1930, 292. Enthält nach dem Kochen mit Alkohol und einigen Tropfen konz. Salzsäure 3—4% Enolform (K. H. Meyer, Sander, A. 420, 118). — B. Durch Einw. von Zinn und etwas Salzsäure auf 4-Chlor-1-oxy-anthron-(9) in Eisessig (Green, Soc. 1927, 2344). Zur Bildung durch Reduktion von 1-Oxy-anthrachinon mit Zinn oder Zinn(II)-chlorid (H 189; E I 577) vgl. noch Goodall, Perkin, Soc. 125, 472; Gr., Soc. 1927, 2342. — F: 142° (Gr., Soc. 1927, 2343). Absorptionsspektrum in Natronlauge: Moir, Soc. 1927, 1810. — Liefert mit Brom in Schwefelkohlenstoff 10-Brom-1-oxy-anthron-(9) (Meyer, Sander). Beim Kochen mit Thionylchlorid und Pyridin in Schwefelkohlenstoff entsteht 1.9-Thionyldioxy-anthracen (E II 6, 998) (Gr., Soc. 1927, 2344). Kondensiert sich mit Zimtaldehyd in Gegenwart von Zimkchlorid bei 280° unter Bildung geringer Mengen 4(oder 5)-Oxy-Bz 1-phenyl-benzanthron (I. G. Farbenind, D. R. P. 490187; Frdl. 16, 1436). Gibt mit Acetanhydrid oder Acetylchlorid in Pyridin 1.9-Diacetoxy-anthracen (E II 6, 998) (Gr., Soc. 1927, 2343; M., S.) und reagiert analog mit Benzoyl-chlorid in Pyridin (M., S.).

- 4-Chlor-1-oxy-anthron-(9) bzw. 4-Chlor-1-oxy-anthranol-(9) C₁₄H₂O₂Cl, Formel VII bzw. desmotrope Form. B. Durch kurze Einw. von Zinn und Salzsäure auf 4-Chlor-1-oxy-anthrachinon in Eisessig (Green, Soc. 1927, 2343). Blaß grüngelbe Nadeln. F: 170—171°. Löslich in konz. Schwefelsäure mit grünlich goldgelber, in wäßr. Natronlauge mit gelber, an der Luft rasch unter Rückbildung von 4-Chlor-1-oxy-anthrachinon in Weinrot übergehender Farbe. Gibt mit Eisenchlorid in Alkohol eine goldbraune Färbung. Gibt bei der Einw. von Zinn und etwas Salzsäure in Eisessig 1-Oxy-anthron-(9). Liefert mit Acetanhydrid in Pyridin 4-Chlor-1.9-diacetoxy-anthracen (E II 6, 998).
- 10-Brom-1-oxy-anthron-(9) bzw. 10-Brom-1-oxy-anthranol-(9) C₁₄H₅O₂Br, Formel VIII bzw. desmotrope Form (H 190). B. Aus 1-Oxy-anthron-(9) und Brom in Schwefelkohlenstoff (K. H. MEYER, SANDER, A. 420, 119; I. G. Farbenind., Priv.-Mitt.). Gelbe Nadeln (aus Benzin). Sintert von 130° an zu einer schwarzen Masse, schmilzt bei 273° unter Zersetzung (M., S.). Liefert beim Erhitzen mit Kupferpulver in Xylol hellgelbe Prismen einer bromfreien Verbindung vom Schmelzpunkt 188—189° (M., S.). Beim Kochen mit verd. Aceton entsteht 1.10-Dioxy-anthron-(9) (M., S.).

2. $2-Oxy-9-oxo-dihydroanthracen,\ 2-Oxy-anthron-(9)$ bzw. $2.9-Dioxy-anthracen,\ 2-Oxy-anthranol-(9)$ C₁₄H₁₀O₂, Formel IX bzw. X (H 189). Absorptions-spektrum in Natronlauge: MoIR, Soc. 1927, 1810.

1 (oder 4)-Chlor-2 (oder 3)-oxy-anthron-(9) C₁₄H₂O₂Cl s. S. 214.

3 - Oxy - 9 - oxo - dihydroanthracen, 3-Oxy-anthron-(9) bzw. 3.9-Dioxyanthracen, 3 - Oxy - anthranol - (9) $C_{14}H_{10}O_2$, Formel I bzw. II (H 189; E I 577). B. Zur Bildung durch Reduktion von 2-Oxy-anthrachinon mit Zinkstaub und Ammoniak vgl. PERKIN, WHATTAM, Soc. 121, 298, 299. Durch kurzes Erhitzen von 2-Oxy-anthrachinon mit Aluminiumpulver und Ammoniak in verd. Alkohol (P., Wh.). Aus 2.2'-Dioxy-dihydrodianthron (Syst. Nr. 817) durch Kochen mit Jodwasserstoffsaure (D: 1,7) oder mit Zinkstaub und Ammoniak (P., Wh., Soc. 121, 293, 295). Durch Reduktion von 2.2'-Dioxy-dianthrachinon (Syst. Nr. 818) mit Zinkstaub in siedendem Ammoniak (P., Yoda, Soc. 127, 1887). Neben 2.2'-Dioxy-10.10'-dioxo-9.10.9'.10'-tetrahydro-dianthranyl-(1.1') (Syst. Nr. 817) bei allmählichem Eintragen von Zinkstaub in eine Lösung von 2.2'-Dioxy-dianthrachinonyl-(1.1') (Syst. Nr. 863) in siedendem Ammoniak (HARDACHE, P., Soc. 1929, 187). — Absorptionsspektrum in Natronlauge: Moir, Soc. 1927, 1810. — 3-Oxy-anthron-(9) liefert bei der Oxydation mit Eisenchlorid in siedendem Eisessig bei Gegenwart von Natriumacetat 2.2'-Dioxy-dihydrodianthron (Syst. Nr. 817) (Perkin, Whattam, Soc. 121, 295; Haller, P., Soc. 125, 235; vgl. Hardacre, P., Soc. 1929, 181); bei der Oxydation mit Kaliumferricyanid in alkal. Lösung entstehen 2.2'-Dioxy-helianthron (Syst. Nr. 819) und 2-Oxy-anthrachinon (Haller, P., Soc. 125, 236; vgl. Hab., P., Soc. 1929, 181). Wird durch Natrium und Isoamylalkohol zu 2-Oxy-9.10-dihydro-anthracen reduziert (v. Braun, Bayer, A. 472, 105). Beim Erhitzen mit Glucose, Fructose, Glycerin, Erythrit oder Mannit und Natronlauge unter Druck auf 180-2000 erhält man 2-Oxy-benzanthron-carbonsäure-(Bz 1), bei Gegenwart von Natriumnitrat entstehen außerdem 2.2'-Dioxy-helianthron und andere Produkte (Bradshaw, P., Soc. 121, 913, 918, 921; HALLER, P., Soc. 125, 231; vgl. HAB., P., Soc. 1929, 181).

- 1 (oder 4)-Chlor-2 (oder 3)-oxy-anthron-(9) bzw. 1 (oder 4)-Chlor-2 (oder 3)-oxy-anthranel-(9) C₁₄H₂O₂Cl, Formel III oder IV bzw. desmotrope Formen. B. Durch Einw. von Aluminium-pulver und Schwefelsäure auf 1-Chlor-2-oxy-anthrachinon bei 30—40° (Hardacee, Perein, Soc. 1929, 188). Prismen. F: 230°. Gibt bei der Acetylierung in Pyridin 1 (oder 4)-Chlor-2 (oder 3).10-diacetoxy-anthracen (hellgelbe Würfel aus Alkohol + Eisessig; F: 167—168°).
- 2-Jod-3-oxy-anthron-(9) bzw. 2-Jod-3-oxy-anthranol-(9) C₁₄H₂O₂I, Formel V bzw. desmotrope Form. B. Beim Behandeln von 3-Jod-2-acetoxy-anthrachinon mit Aluminiumpulver und Schwefelsäure bei 35—40° (Hardacre, Perkin, Soc. 1929, 190). Tafeln (aus Aceton). F: 239—240°. Bei der Acetylierung mit Essigsäureanhydrid in Pyridin entsteht 3-Jod-2.10-diacetoxy-anthracen (E II 6, 1000).
- 4. 1 (oder 4) Oxy-9 oxo-dihydr: anthracen, 1 (oder 4) Oxy-anthron (9) $C_{14}H_{10}O_{2}=C_{4}H_{4}< {CO\atop CH_{2}}> C_{6}H_{3}$ OH bzw. desmotrope Form (H 189; E I 577). Ist als 1-Oxy-anthron-(9) (S. 213) erkannt (Green, Soc. 1927, 2342; Cross, Perkin, Soc. 1930, 292).
- 5. 10 Oxy 9 oxo dihydroanthracen, <math>10 Oxy- anthron (9), Oxanthron bzw. 9.10- Dioxy- $anthracen, Anthrahydrochinon, Anthrachinol <math>C_{14}H_{10}O_2$, Formel VI bzw. VII.

a) Ketonform, Oxanthron C₁₄H₁₀O₂, Formel VI (E I 578). B. Durch längeres Kochen von 10-Chlor-anthron-(9) mit wäßr. Aceton (MATTHEWS, Soc. 1926, 242). — Wandelt sich beim Kochen mit Wasser in Kohlendioxyd-Atmosphäre in die Enolform um (M., Soc. 1926, 243). Gibt bei der Reduktion mit Zinkstaub und konz. Salzsäure in siedendem Eisessig Dianthranyl (E II 5, 707), mit Zinn und konz. Salzsäure in Eisessig Anthron und wenig Dianthranyl (M., Soc. 1926, 239; Bergmann, Schuchardt, A. 487 [1931], 245; vgl. Clar, B. 65 [1932], 518). Liefert beim Kochen mit konz. Salzsäure oder beim Einleiten von Chlorwasserstoff in eine Suspension Toluol 10-Chlor-anthron-(9), beim Kochen mit konz. Bromwasserstoffsäure 10-Brom-anthron-(9) (M., Soc. 1926, 237, 242, 244). Bei der Einw. von Jodwasserstoffsäure (D: 1,7) in siedendem Eisessig in Kohlendioxyd-Atmosphäre oder von kalter konzentrierter Schwefelsäure in Kohlendioxyd-Atmosphäre erhält man Anthraohinon und Anthron; beim Behandeln mit Aluminium-

pulver in konz. Schwefelsäure wird nur Anthron gebildet (M., Soc. 1926, 237, 244). Beim Erwärmen mit β -Chlor-propiophenon in Schwefelsaure und Eisessig auf 110-120° entsteht Bz 1-Phenyl-benzanthron (I. G. Farbenind., D. R. P. 488608; C. 1930 II. 3860; Frdl. 16, 1432).

- b) Enolform, Anthrahydrochinon C₁₄H₁₀O₂, Formel VII auf S. 214 (H 190; E I 578). B. und Darst. Aus der Ketonform durch Kochen mit Wasser in Kohlendioxyd-Atmosphäre (MATTHEWS, Soc. 1926, 243). Durch Hydrierung von Anthrachinon in Gegenwart von Platin-mohr in Alkohol (MANOHOT, GALL, B. 58, 487). Bei der Reduktion von Anthrachinon mit Schwefeldioxyd oder Glucose in alkal. Lösung im Licht (PFELISTICKER, Bio. Z. 199, 9). Neben anderen Produkten bei der Einw. von Phenylmagnesiumbromid auf Anthrachinon (BARNETT, COOK, WILTSHIRE, Soc. 1927, 1727). Konnte durch Reduktion von Anthrachinon mit Zinkstaub und Natronlauge nach K. H. MEYER (A. 879, 60) nur in geringer Menge und in unreiner Form erhalten werden (Manchot, Gall). — Absorptionsspektrum in Natronlauge: Moir, Soc. 1927, 1810. — Wird auch beim Schütteln mit sauerstofffreiem Platinmohr in Alkohol oder Äther in Stickstoffatmosphäre zu Anthrachinon dehydriert; die Reaktion bleibt in alkal. Lösung aus (MAN., G., B. 58, 488). Bei der Oxydation mit Sauerstoff in Gegenwart einer aus Lactarius vellereus gewonnenen Phenol-Oxydase entsteht Hydroperoxyd (Wieland, Fischer, B. 59, 1187).
- 10 Methoxy anthron (9) bzw. 9-Oxy-10-methoxy-anthracen, Anthrahydrochinonmonomethyläther $C_{16}H_{18}O_3 = OC < C_6H_6 > CH \cdot O \cdot CH_8$ bzw. desmotrope Form (H 190; E I 578). B. Die Natriumverbindung entsteht bei längerer Einw. von Natrium auf Anthrahydrochinon-dimethyläther (E II 6, 1000) in Äther (SCHLENK, BERGMANN, A. 464, 40). — Die Natriumverbindung wird durch Jod in Ather zu 9.9'-Dimethoxy-dihydrodianthron oxydiert und gibt mit Benzoylchlorid und Natronlauge Anthrahydrochinon-methyläther-benzoat.

Anthrahydrochinon-dimethyläther $C_{10}H_{14}O_2 = C_{14}H_6(O \cdot CH_2)_2$ s. E II 6, 1000.

Di-[anthronyl-(10)]-äther, Oxanthranoläther $C_{s0}H_{18}O_{s} = OC < C_{c}H_{4} > CH \cdot O \cdot HC < C_{c}H_{4} > CO$ (H 191). B. Beim Behandeln von Anthracen mit unterchloriger Säure und Kochen des Reaktionsprodukts mit überschüssigem Alkohol (Charrier, CRIPPA, G. 57, 748). — Hellgelbes Krystallpulver. Schmilzt bei 235—245°.

Anthrahydrochinon-dischwefelsäure $C_{14}H_{10}O_8S_2=C_{14}H_8(O\cdot SO_3H)_2$ s. E II 6, 1000.

1-Chlor-10-oxy-anthron-(9) bzw. 1-Chlor-anthrahydrochinon C₁₄H₂O₂Cl, Formel I bzw. desmotrope Form. B. Durch Kochen von 1-Chlor-10-brom-anthron-(9) mit wäßr. Aceton (MATTHEWS, Soc. 1926, 241). — Nadeln (aus Benzol). F: 144—145°. Löslich in siedender verdünnter Natronlauge mit tiefroter Farbe. — Liefert beim Behandeln mit Chlorwasserstoff in Benzol oder mit kalter konzentrierter Schwefelsäure in Kohlendioxyd-Atmosphäre 1-Chloranthron-(9) und 1-Chlor-anthrachinon, beim Behandeln mit Bromwasserstoff in Benzol 1-Chlor-Gibt beim Kochen mit Jodwasserstoffsäure (D: 1,7) in Eisessig in 10-brom-anthron-(9). Kohlendioxyd-Atmosphäre 1-Chlor-anthron-(9), 4.4'- Dichlor-dihydrodianthron und wenig 1-Chlor-anthrachinon. Bei der Reduktion mit Zinn und konz. Salzsäure in siedendem Eisessig entsteht ausschließlich 4.4'-Dichlor-dihydrodianthron, bei der Reduktion mit Aluminiumpulver und kalter konzentrierter Schwefelsäure ausschließlich 1-Chlor-anthron-(9).

4-Chlor-10-oxy-anthron-(9) bzw. 4-Chlor-anthrahydrochinon C₁₄H₂O₂Cl, Formel II bzw. desmotrope Form. B. Durch Kochen von 4-Chlor-10-brom-anthron-(9) mit wäßr. Aceton (MATTHEWS, Soc. 1926, 242). — Blaßgelbe Krystalle (aus Benzol). F: 144—145°. — Gibt beim Einleiten von Chlorwasserstoff in Benzol 4.10-Dichlor-anthron-(9); reagiert analog mit Bromwasserstoff unter Bildung von 4-Chlor-10-brom-anthron-(9). Beim Behandeln mit Jodwasserstoffanre (D: 1,7) in siedendem Eisessig oder mit kalter konzentrierter Schwefelsäure in Kohlendioxyd-Atmosphäre erhält man 4-Chlor-anthron-(9) und 1-Chlor-anthrachinon, während bei der Reduktion mit Zinn und konz. Salzsäure in siedendem Eisessig oder mit Aluminiumpulver in kalter konzentrierter Schwefelsäure nur 4-Chlor-anthron-(9) entsteht.

1.5-Dichlor-10-oxy-anthron-(9) bzw. 1.5-Dichlor-anthrahydrochinon C14H8O2Cl2, Formel III bzw. desmotrope Form. B. Beim Kochen von 1.5.9.9.10-Pentachlor-9.10-dihydro-anthracen oder 1.5.10-Trichlor-anthron-(9) mit Calciumcarbonat in wäßr. Aceton (BARNETT, COOK,

- MATTHEWS, R. 44, 897) oder von 1.5-Dichlor-10-brom-anthron-(9) mit wäßr. Aceton (B., C., M., B. 58, 981). Wurde einmal bei der Reduktion von 1.5-Dichlor-anthrachinon mit Zinkstaub und Ammoniak erhalten (B., M., R. 48, 540). — Nadeln (aus Benzol). F: 196—197° (B., M.). Ultraviolett-Absorptionsspektrum in Alkohol: B., C., Ellison, Soc. 1928, 886. — Wird von kalter verdünnter Natronlauge nicht angegriffen; beim Kochen mit verd. Natronlauge erhalt man eine rote Lösung, in der durch Luftoxydation sofort 1.5-Dichlor-anthrachinon gebildet wird (B., M.). Beim Kochen mit konz. Salzsäure entsteht 1.5.10-Trichlor-anthron-(9) (B., C., M., B. 58, 980). Gibt beim Erhitzen mit Acetanhydrid und Pyridin 1.5-Dichlor-anthrahydrochinon-diacetat (E II 6, 1000) (B., C., M., B. 58, 977, 982).
- 1.5-Dichlor-10-äthoxy-anthron-(9), 1.5-Dichlor-anthronyläthyläther $C_{16}H_{18}O_3Cl_3 = C_2H_5 \cdot O \cdot HC < \begin{array}{c} C_0H_2Cl \\ C_2H_2Cl \end{array} > CO$ bzw. desmotrope Form. B. Beim Kochen von 1.5.9.9.10-Pentachlor-9.10-dihydro-anthracen (Barnett, Cook, Matthews, R. 44, 897) oder 1.5-Dichlor-10-brom-anthron-(9) (B., C., M., B. 58, 981) mit absol. Alkohol. — Tafeln (aus Aceton + Alkohol). F: 1590. Löst sich in konz. Schwefelsäure mit karminroter, in alkoh. Kalilauge mit orangeroter Farbe. — Liefert beim Erhitzen mit alkoh. Salzsäure 1.5.10-Trichlor-anthron-(9) (B., C., M., R. 44, 897). Gibt bei der Einw. von 3 Mol Benzylmagnesiumchlorid in Äther, Zersetzung mit Eis und Ammoniumchlorid und nachfolgenden Behandlung mit Eisessig und konz. Salzsäure 1.5.9-Trichlor-9-oxy-9-benzyl-dihydroanthracen; bei einem Versuch entstand eine Verbindung C₂₃H₁₈OCl₂ vom Schmelzpunkt 144° (vielleicht 1.5-Dichlor-10-äthoxy-9-benzyliden-dihydroanthracen) (B., Goodway, B. 62, 429).
- 1.5-Dichlor-10-benzyloxy-anthron-(9) $C_{21}H_{14}O_{2}Cl_{2} = C_{4}H_{5} \cdot CH_{2} \cdot O \cdot HC \cdot C_{4}H_{4}Cl > CO$. B. Durch Erhitzen von 1.5-Dichlor-10-brom-anthron-(9) mit Benzylalkohol und Calciumcarbonat auf dem Wasserbad (Benzylalkohol und Calciumcarbonat auf dem Wasserbad (BARNETT, GOODWAY, B. 62, 428). — Krystalle (aus Methyläthylketon oder Benzol). F: 157°. — Beim Behandeln mit Methylmagnesium jodid entsteht 1.5-Dichloranthron-(9). Liefert bei Einw. von 3 Mol Benzylmagnesiumchlorid in Ather, Zersetzung mit Eis und Ammoniumchlorid und nachfolgender Behandlung mit Eisessig und konz. Salzsäure 1.5.9-Trichlor-9-oxy-9-benzyl-dihydroanthracen.
- 1.5-Dichlor-10-acetoxy-anthron-(9), 1.5-Dichlor-anthronylacetat $C_{16}H_{10}O_2Cl_2 =$ CH₈·CO·O·HC C₆H₉Cl CO bzw. desmotrope Form. B. Beim Kochen von 1.5.9.9.10-Pentachlor-9.10-dihydro-anthracen (Barnett, Cook, Matthews, R. 44, 897) oder 1.5-Dichlor-10-brom-anthron-(9) (B., C., M., B. 58, 981) mit Eisessig und Natriumacetat. — Hellgelbe Nadeln (aus Eisessig). F: 178°. — Löst sich in siedender Natronlauge mit roter Farbe; die Lösung gibt beim Durchleiten von Luft 1.5-Dichlor-anthrachinon (B., C., M., R. 44, 897). Gibt beim Kochen mit konz. Salzsäure 1.5.10-Trichlor-anthron-(9) (B., C., M., B. 58, 980). Beim Erhitzen mit Essigsaureanhydrid und Pyridin entsteht 1.5-Dichlor-anthrahydrochinon-diacetat (E II 6, 1000) (B., C., M., B. 58, 981).
- 4.5-Dichlor-10-oxy-anthron-(9) bzw. 1.8-Dichlor-anthrahydrochinon $C_{14}H_8O_3Cl_2$, Formel IV bzw. desmotrope Form. B. Aus 1.8.9.10.10-Pentachlor-9.10-dihydro-anthracen bei längerer Einw. von Silberoxyd und Wasser, zuletzt auf dem Wasserbad (BARNETT, COOK, MATTHEWS, R. 45, 76). — Nadeln (aus Benzol). F: 221° bis 2220. — Gibt beim Kochen mit wäßr. Natronlauge eine hellrote, beim Kochen mit alkoh. Natronlauge eine dunkelrote Färbung.
 - NO3 он он
- trope Form. B. Durch Kochen von 1.8.9.10.10-Pentachlor-9.10-dihydro-anthracen mit absol. Alkohol (BARNETT, COOK, MATTHEWS, R. 45, 76). — Tafeln (aus Alkohol). F: 122°.
- 4.5-Dichlor-10-acetoxy-anthron-(9) $C_{1e}H_{1e}O_3Cl_2 = CH_3 \cdot CO \cdot O \cdot HC < \begin{array}{c} C_0H_3Cl \\ C_0H_2Cl \\ \end{array} > CO$ bzw. desmotrope Form. B. Beim Kochen von 1.8.9.10.10-Pentachlor-9.10-dihydroanthracen mit Natriumacetat und Eisessig (Barnett, Cook, Matthews, R. 45, 76). — Krystalle (aus Eisessig). F: 130°.
- 1-Nitro-10-oxy-anthron-(9) bzw. 1-Nitro-anthrahydrochinon C14H₂O₄N, Formel V bzw. desmotrope Form. B. Das Kaliumsalz eines sauren Schwefelsäureesters (orangegelbe Nadeln) entsteht, wenn man ein Gemisch von gleichen Teilen 1-Nitro-anthrachinon und Kupferpulver in eine Suspension von Methylschwefelsäurechlorid in Pyridinbasen langsam bei 30-35° einträgt, einige Stunden bei dieser Temperatur rührt und die wäßr. Lösung des Reaktionsprodukts mit Kaliumchlorid versetzt; es gibt mit sauren Oxydationsmitteln (Salpetersäure, Chromsäure) 1-Nitro-anthrachinon, mit Salzsäure ein Gemisch aus 1-Nitro-anthrachinon und 1-Aminoanthrachinon (I. G. Farbenind., D. R. P. 516845; Frdl. 16, 3024).

SALICYLIDENACETOPHENON

2-Nitro-10-exy-anthron-(9) bzw. 2-Nitro-anthrahydrochinon C₁₄H₂O₄N, Formel VI bzw. desmotrope Form. B. Das Kaliumsalz eines sauren Schwefelsäureesters (hellorangefarbene Nadeln)

entsteht, wenn man ein Gemisch aus Pyridin und Nitrobenzol im Stickstoffstrom unterhalb 10° langsam mit Methylschwefelsäurechlorid versetzt. 2-Nitro-anthrachinon und später Kupferpulver einträgt, mehrere Stunden

bei 15-20° rührt und die wäßr. Lösung des Reaktionsprodukts mit Kaliumchlorid versetzt; es gibt mit oxydierenden Säuren 2-Nitro-anthrachinon, mit nichtoxydierenden Säuren 2-Nitroanthrackinon und 2-Amino-anthrackinon (I. G. Farbenind., D.R. P. 516845; Frdl. 16, 3024).

1.5-Dinitro-10-oxy-anthron-(9) bzw. 1.5-Dinitro-anthrahydrochinon $C_{14}H_8O_6N_2$, Formel VII bzw. desmotrope Form. B. Das Kaliumsalz eines sauren Schwefelsäureesters (gelbliche Nadeln aus Wasser) entsteht, wenn man ein Gemisch aus 1.5-Dinitro-anthrachinon und Kupferpulver in eine Suspension von Methylschwefelsäurechlorid in Pyridin bei 30-35° einträgt, mehrere Stunden bei dieser Temperatur rührt und die wäßr. Lösung des Reaktionsproduktes mit Kaliumchlorid versetzt; es wird durch saure Oxydationsmittel in 1.5-Dinitro-anthrachinon übergeführt (I. G. Farbenind., D.R.P. 516845; Frdl. 16, 3024).

Dithioanthrahydrochinon-diphenyläther $C_{se}H_{18}S_2 = C_{14}H_8(S \cdot C_eH_b)_2$. Vgl. 9.10-Bis-phenylmercapto-anthracen, E II 6, 1000.

Bis-thioanthronyl-(10)-suifid $C_{28}H_{18}S_8 = SC < \begin{array}{c} C_6H_4 \\ C_6H_4 \end{array} > CH \cdot S \cdot HC < \begin{array}{c} C_6H_4 \\ C_6H_4 \end{array} > CS.$ B. Neben anderen Produkten beim Einleiten von Schwefelwasserstoff in eine Lösung von 9.10-Dibromanthracen und 2 Mol Natriumisoamylat in Isoamylalkohol, zuletzt bei Siedetemperatur (HELL-BRON, HEATON, Soc. 123, 182, 184). — Gelbbraune Krystalle (aus Benzol). F: 185°. Ziemlich schwer löslich in Benzol und Chloroform, schwer in Alkohol, Aceton und Essigester.

6. 9 - Oxy - 1 - oxo - 2 - methyl - perinaphthinden , 9 - Oxy-2-methyl - perinaphthindenon $C_{14}H_{10}O_1$, s. nebenstehende Formel $(\mathbf{R} = \mathbf{H}).$

O·R

9-Methoxy-2-methyl-perinaphthindenon $C_{15}H_{19}O_3$. s. nebenstehende Formel (R = CH₂). B. Durch Einw. von 82%iger Schwefelsäure auf nicht näher beschriebenes $[\beta - 0xy - \alpha - methyl - vinyl] - [2 - methoxy-naphthyl-(1)]-$ keton (I. G. Farbenind., D. R. P. 489571; C. 1980 II, 468; Frdl. 16, 526). — F: ca. 105°. Löslich in Schwefelsäure mit hellgelber Farbe und grüngelber Fluorescenz.

3. Oxy-oxo-Verbindungen $C_{15}H_{12}O_{2}$,

1. 3-Phenyl-1-[2-oxy-phenyl]-propen-(1)-on-(3), Phenyl-[2-oxy-styryl]-keton, w-[2-Oxy-benzyliden]-acetophenon, Salicylidenacetophenon, 2-Oxy-chalkon C₁₈H₁₂O₂ = C₆H₅·CO·CH:CH·C₆H₄·OH (H 191; E I 579). B. Zur Bildung aus Salicylaldehyd und Acetophenon (H 191) vgl. Le Fèvre, Soc. 1929, 2773. Das Natriumsalz entsteht bei kurzem Erwärmen von 2-Phenyl-benzopyranol-(2) (Syst. Nr. 2389) mit Natronlauge (Decker, Becker, B. 55, 381, 394). — F: 154—156° (D., B., B. 55, 381). Die Lösung in Alkaliauge ist gengefachen (McGrowy Syky and Soc. 1928 4176). Ultraviolett. Absorptionespektrum lauge ist orangefarben (McGookin, Sinclair, Soc. 1928, 1176). Ultraviolett-Absorptionsspektrum in Alkohol: ŠHIBATA, NAGAI, Acta phytoch. 2, 32, 34; C. 1924 II, 1688.

Läßt sich nicht in eine zweite Modifikation überführen (McGookin, Sinclair, Soc. 1928, 1176). Zerfällt bei längerem Erwärmen mit Natronlauge in Salicylaldehyd und Acetophenon (DECKER, BECKER, B. 55, 394). Liefert beim Kochen mit Acetylaceton in wäßrig-alkoholischer Natronlauge 2-Methyl-4-phenacyl-benzopyran (Hellbron, Hill, Soc. 1927, 924). Bei sehr langer Einw. von Natriummalonester in Alkohol erhält man Cumarin-carbonsäure-(3) und Acetophenon (HILL, Soc. 1928, 257, 259). Bei der Umsetzung von Salicylidenacetophenon mit 1 Mol Acetessigester und ca. 2 Atomen Natrium in Alkohol bei Zimmertemperatur erhielten FORSTER, HEIL-BRON (Soc. 125, 345) 4-Phenacyl-3-acetyl-3.4-dihydro-cumarin (Formel VIII) und geringe Mengen einer Verbindung C₁₀H₁₄O₂ (Formel IX; Syst. Nr. 2749); bei einer Wiederholung des Versuchs in größerem Maßstab erhielten Heilbern, Hill (Soc. 1927, 920, 924) die Verbindung der Formel IX und geringe Mengen 2-Methyl-4-phenacyl-benzopyran (Formel X). Gibt mit α-Methyl-acetessigester in Natriumäthylat-Lösung 2.3-Dimethyl-4-phenacyl-benzopyran und reagiert analog mit α-Phenyl-acetessigester (Hill, Soc. 1928, 258). Liefert mit Phenylmagnesiumbromid in Ather 2.4-Diphenyl-chromanol-(2) (Syst. Nr. 2392) (Löwenbein, Pongrace, Spiess, B. 57. 1521). — Eine Lösung von Salicylidenacetophenon in möglichst wenig Alkali gibt beim Versetzen mit Jod-Kaliumjodid-Lösung und nachfolgenden Ansäuern eine blaue Färbung (Barger, Eaton, Soc. 125, 2408).

Phenyl-[2-methoxy-styryl]-keton, ω -[2-Methoxy-benzyliden]-acetophenon, 2-Methoxy-chalkon $C_{16}H_{16}O_2=C_6H_6\cdot CO\cdot CH:CH\cdot C_6H_4\cdot O\cdot CH_3$ (E I 579). Zur Bildung durch Methylierung von ω -[2-Oxy-benzyliden]-acetophenon mit Dimethylsulfat vgl. Forster, Heilbron, Soc. 125, 345. — F: 60°. — Gibt mit Acetessigester in wäßrig-alkoholischer Natronlauge 4-Phenyl-6-[2-methoxy-phenyl]-cyclohexen-(3)-on-(2)-carbonsaure-(1)-athylester.

- 3-Nitro- ω -Balicyliden-acetophenon (?), 3'-Nitro-2-oxy-chalkon (?) $C_{15}H_{11}O_4N=O_2N\cdot C_6H_4$ CO·CH:CH·C₀H₄·OH(?). B. Neben 2-[3-Nitro-phenyl]-benzopyryliumchlorid (Syst. Nr. 2389) beim Einleiten von Chlorwasserstoff in eine Lösung von Salicylaldehyd und 3-Nitro-acetophenon in 99% iger Ameisensäure (Le Fèvre, Soc. 1929, 2774). — Wurde nicht rein erhalten. F: 252°.
- 4-Nitro- ω -salicyliden-acetophenon (?), 4'-Nitro-2-oxy-chalkon (?) $C_{15}H_{11}O_4N=O_2N\cdot C_4H_4$ CO·CH·CH·C₆H₄·OH (?). B. Beim Einleiten von Chlorwasserstoff in eine Lösung von Salicylaldehyd und 4-Nitro-acetophenon in 99%iger Ameisensäure, neben anderen Produkten (LE FEVER, Soc. 1929, 2774). — Wurde nicht rein erhalten. Goldgelbe Nadeln. F: 297—298°.
- 2. 3-Phenyl-1-[3-oxy-phenyl]-propen-(1)-on-(3), Phenyl-[3-oxy-styryl]-keton, ω -[3-Oxy-benzyliden]-acetophenon, 3-Oxy-chalkon $C_{16}H_{19}O_2=C_0H_1\cdot CO\cdot CH:CH\cdot C_0H_1\cdot OH$ (H 191). Ultraviolett-Absorptionsspektrum in Alkohol: Shibata, Nagai, Acia phytoch. 2, 33, 34; C. 1924 II, 1688.
- 3. 3-Phenyl-1-[4-oxy-phenyl]-propen-(1)-on-(3); Phenyl-[4-oxy-styryl]-keton, ω -[4-Oxy-benzyliden]-acetophenon, 4-Oxy-chalkon $C_{15}H_{11}O_{2}=C_{6}H_{5}\cdot CO\cdot CH\cdot CH\cdot C_{6}H_{4}\cdot OH$ (H 192). Lost sich in Natriumäthylat-Lösung mit orangeroter Farbe (Vorden)-chalkon (Vorden) LÄNDER, B. 58, 126). Ultraviolett-Absorptionsspektrum in Alkohol: Shibata, Nagai, Acta phytoch. 2, 33, 34; C. 1924 II, 1688. — Gibt bei der Reduktion mit Natriumamalgam eine Verbindung C₁₅H₁₄O₂ oder C₁₅H₁₆O₂ (s. u.) (V., B. 58, 127). Wird bei 1-stdg. Kochen mit Kalilauge (D: 1,17) in 4-Oxy-benzaldehyd und Acetophenon gespalten (V., B. 58, 127). Gibt beim Erwärmen mit 3 Mol Hydroxylaminhydrochlorid und 6 Mol Natriumäthylat-Lösung auf 70° 3-Phenyl-5-[4-oxy-phenyl]-∆²-isoxazolin, bei längerem Erwärmen mit 3 Mol Hydroxylaminhydrochlorid, 3 Mol Natriumacetat und wenig Eisessig in Alkohol auf 70° geringe Mengen 3-Phenyl-5-[4-oxyphenyl]-isoxazol (V., B. 58, 141, 142). Liefert bei längerem Erwärmen mit Phenylhydrazin in Natriumäthylat-Lösung auf 50—60° oder in Eisessig auf dem Wasserbad 1.3-Diphenyl-5-[4-oxyphenyl]- Δ^2 -pyrazolin (V., B. 58, 127).

Ammoniumsalz. Rot. An der Luft unbeständig (Vorländer, B. 58, 127). — Natriumsalz NaC₁₅H₁₁O₂. Ziegelrote Krystalle (V., B. 58, 126, 136). — AlBr₂·C₁₅H₁₁O₂ + AlBr₃. B. Aus der Verbindung von 4-Methoxy-chalkon mit 2 Mol Aluminiumbromid (S. 219) beim Kochen mit wenig Benzol (Pfeiffer, Haack, A. 460, 177). Nicht ganz rein erhalten. Gelbe Krystalle.

Liefert beim Behandeln mit Wasser 4-Oxy-chalkon.

Verbindung C₁₅H₁₄O₂ oder C₁₅H₁₆O₃. B. Bei der Reduktion von 4-Oxy-chalkon mit Natriumamalgam in wäßrig-alkalischer Lösung oder besser in alkoh. Lösung unter Zusatz von Ammoniumchlorid (Vorländer, B. 58, 127). — Nadeln. F: 81—83°. Leicht löslich in organischen Lösungsmitteln, etwas löslich in Wasser. Wird durch konz. Schwefelsäure purpurrot gefärbt. Gibt mit Eisenchlorid in Alkohol eine schwache bräunliche Färbung. — Gibt ein öliges Diacetat (?).

Phenyl-[4-methoxy-styryl]-keton, ω -[4-Methoxy-benzyliden]-acetophenon, Anisyliden-acetophenon, 4-Methoxy-chalkon $C_{16}H_{14}O_{2}=C_{6}H_{5}\cdot CO\cdot CH\cdot CH\cdot C_{6}H_{4}\cdot O\cdot CH_{3}$ (H 192; E I 580). B. Durch Einw. von Methyljodid auf das feste Natriumsalz des 4-Oxy-chalkons oder durch Schütteln von 4-Oxy-chalkon mit Dimethylsulfat in wäßrig-alkalischer Lösung (VORLÄNDER, B. 58, 127). — F: 79° (TASAKI, Acta phytoch. 3, 286; C. 1927 II, 1949). Löst sich in konz. Schwefelsäure und in Eisessig + konz. Schwefelsäure mit orangegelber Farbe (Dilthey, Mitarb., J. pr. [2] 117, 339; PFEIFFER, SEGALL, A. 460, 127), in Eisessig + Überchlorsäure mit goldgelber Farbe (Pr., S.). Ultraviolett-Absorptionsspektrum in Alkohol: Stobbe, Hensel, B. 59, 2255.

Geschmolzenes und wieder erstarrtes 4-Methoxy-chalkon gibt beim Belichten 1.2-Bis-[4-methoxy-phenyl]-3.4-dibenzoyl-cyclobutan vom Schmelzpunkt 164° (Bis-[4-methoxy-chalkon] A; Syst. Nr. 816) (Stobbe, Hensel, B. 59, 2257, 2262, 2264). Die von Stobbe, Striegler (J. pr. [2] 86, 248 Anm. 1) erhaltene Verbindung $C_{12}H_{22}O_4$ (E I 580, Z. 16 v. o.) ist als 1.2-Bis-[4-methoxy-phenyl]-3.4-dibenzoyl-cyclobutan vom Schmelzpunkt 1920 (Bis-[4-methoxy-chalkon] B; Syst. Nr. 816) anzusehen (Sro., H.). Verhalten bei der Belichtung in Eisessig, Alkohol, Chloroform und Benzol: Sro., H., B. 59, 2261. Ist bei schnellem Erhitzen unter teilweiser Zersetzung destillierbar; bei sehr langsamem Erhitzen entstehen geringe Mengen 4.4'-Dimethoxystilben (Sto., H., B. 59, 2256, 2261). Gibt beim Erwärmen mit 3 Mol Hydroxylamin in Methanol auf 60—65° neben großen Mengen eines bei 180—186° (Zers.) schmelzenden Produktes 3-Phenyl-5-[4-methoxy-phenyl]-isoxazoli und wenig 3-Phenyl-5-[4-methoxy-phenyl]-Λ²-isoxazoli (Vorländer, B. 58, 142). Liefert beim Kochen mit wasserfreiem Hydrazin 3-Phenyl-5-[4-methoxy-phenyl]-Λ²-pyrazolin (Freudenberg, Stoll, A. 440, 41). Bei der Umsetzung von 4-Methoxy-chalkon mit Acetophenon, Acetanhydrid und Eisenchlorid entsteht das Eisenchlorid-doppelsalz des 2.6-Diphenyl-4-[4-methoxy-phenyl]-pyryliumchlorids (Syst. Nr. 2411) (Dilthey, Taucher, B. 53, 256); analog verläuft die Reaktion mit 4-Methoxy-acetophenon, Acetanhydrid und Eisenchlorid (D., Burger, B. 54, 827). Beim Behandelm mit Benzolsulfinsäure in Äther oder beim Eintragen von Aluminiumchlorid in eine mit Schwefeldioxyd gesättigte Lösung von 4-Methoxy-chalkon in Benzol bildet sich β-Phenylsulfon-β-[4-methoxy-phenyl]-propiophenon (S. 364) (Vorländer, Friedberg, B. 56, 1149).

Sulfat C₁₆H₁₄O₂ + 2H₂SO₄. B. Aus 4-Methoxy-chalkon und konz. Schwefelsäure in Benzol (Vorländer, Osterburg, Meye, B. 56, 1143). Rotviolette Blättchen. — Verbindung mit Quecksilber(II)-chlorid C₁₆H₁₄O₂ + HgCl₂. Zur Konstitution vgl. Middleron, Am. Soc. 45, 2766. Hellgelbe Nadeln (aus Essigester). Zersetzt sich bei etwa 114° (V., Eichwald, B. 56, 1152). Färbt sich mit konz. Salzsäure oder Schwefelsäure rot (V., El.). — Verbindung mit Quecksilber(II)-bromid C₁₆H₁₄O₂ + HgBr₃. Gelbliche Nadeln (aus Essigester). Zersetzt sich bei 115—117° (V., El.). — Verbindungen mit Aluminiumbromid: C₁₆H₁₄O₂ + AlBr₃. Tiefdunkelrote Nadeln. Löslich in Benzol (Pfeiffer, Haaok, A. 460, 176). — C₁₆H₁₄O₂ + 2AlBr₃. Honiggelbe Krystalle. Ziemlich leicht löslich in Benzol (Pf., H.). Beim Erhitzen im Vakuum auf 100° entsteht 4-Oxy-chalkon, beim Kochen mit Benzol erhält man die Verbindung AlBr₃· C₁₅H₁₁O₂ + AlBr₃ (S. 218).

ω-[4-Acetoxy-benzyliden]-acetophenon, 4-Acetoxy-chalkon $C_{17}H_{14}O_3=C_6H_6\cdot CO\cdot CH$: $CH\cdot C_6H_6\cdot O\cdot CO\cdot CH_3$ (Η 192). F: 130° (VORLÄNDER, B. 58, 127).

Anisylidenacetophenon-semicarbazon, 4-Methoxy-chalkon-semicarbazon $C_{17}H_{17}O_2N_2=C_4H_5\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH:CH\cdot C_0H_4\cdot O\cdot CH_3.$

a) 168°-Form, α-Semicarbazon. B. Neben der 190°-Form aus 4-Methoxy-chalkon, Semicarbazidhydrochlorid und Kaliumacetat in heißem Alkohol (Stobbe, Bermer, J. pr. [2] 123, 255). — Krystalle (aus Alkohol). F: 168°. — Bleibt im diffusen Tageslicht farblos. Gibt mit Natriummethylat-Lösung eine gelbe, mit wenig Eisenchlorid in Alkohol eine dunkelorange Färbung (St., B., J. pr. [2] 123, 250, 252).

b) 190°-Form, $\hat{\gamma}$ -Semicarbazon. \hat{B} . s. o. — Krystalle (aus Alkohol). F: 190° (Stobbe, Bremer, J. pr. [2] 123, 255). — Wird im diffusen Tageslicht schnell gelb. Gibt mit Natriummethylat-Lösung eine gelbe, mit wenig Eisenchlorid in Alkohol eine braunschwarze Färbung (St., B., J. pr. [2] 123, 250, 252).

ω - [3 - Chlor - 4 - methoxy - benzyliden] - acetophenon,
3 - Chlor - 4 - methoxy - chalkon C₁₆H₁₈O₂Cl, s. nebenstehende
Formel. B. Bei kurzem Erwärmen von 3-Chlor-anisaldehyd
und Acetophenon mit etwas Natronlauge in Alkohol auf 60°
(Pfeliffer, Segall, A. 460, 135). — Gelbliche Nadeln (aus verd. Alkohol). F: 113—114°. Sehr
leicht löslich in Benzol, leicht in Eisessig, Äther und Ligroin, unlöslich in Petroläther. Löslich
in Eisessig + konz. Schwefelsäure mit tiefgelber, in Eisessig + Überchlorsäure mit hellgelber
Farbe (Pf., S., A. 460, 127).

 ω -[3-Brom-4-methoxy-benzyliden]-acetophenon, 3-Brom-4-methoxy-chalkon $C_{16}H_{13}O_2Br$ = $C_4H_5\cdot CO\cdot CH: CH: C_6H_3Br\cdot O\cdot CH_3$ (E I 580). Gelbliche Nadeln (aus Alkohol oder Methanol). F: 112—113° (Pfeifffer, Segall, A. 460, 137). Sehr leicht löslich in Benzol und Aceton, in der Wärme leicht löslich in den meisten organischen Lösungsmitteln außer Petroläther. Löslich in Eisessig + konz. Schwefelsäure mit tiefgelber, in Eisessig + Überchlorsäure mit hellgelber Farbe (Pf., S., A. 460, 127).

ω-Brom-ω-anisyliden-acetophenon, α-Brom-4-methoxy-chalkon $C_{16}H_{13}O_2Br = C_6H_6 \cdot CO \cdot CBr : CH \cdot C_6H_4 \cdot O \cdot CH_2$ (H 192). B. Durch Erhitzen von α-Brom-β-āthoxy-β-[4-methoxy-phenyl]-propiophenon mit Kaliumdisulfat auf 160—170° (Dufraisse, Moureu, Bl. [4] 41, 854). — Kp₄: 225—230° (D., M.). — Liefert beim Erhitzen mit Hydroxylamin in wäßrig-methylalkoholischer Natronlauge 3-Phenyl-5-[4-methoxy-phenyl]-isoxazol (Weygand, Bauer, A. 459, 137).

ω - [3 - Nitro - 4 - methoxy - benzyliden] - acetophenon,
3 - Nitro - 4 - methoxy - chalken C₁₆H₁₃O₄N, s. nebenstehende
Formel. B. Aus 3-Nitro-anisaldehyd und Acetophenon in
wäßrig-alkoholischer Natronlauge (Pfeiffer, Segall, A.
460, 129). — Gelbe Nadeln (aus Alkohol oder Benzol). F: 146°. Leicht löslich in Eisessig, Aceton
und Benzol, schwer in Alkohol, sehr schwer in Äther und Methanol. Löslich in konz. Schwefelsäure mit orangegelber, in Eisessig + Überchlorsäure mit goldgelber Farbe (Pf., S., A. 460, 126).

- 2-Nitro- ω -anisyliden-acetophenon, 2'-Nitro-4-methoxy-chalkon $C_{1e}H_{12}O_4N=O_4N\cdot C_0H_4$. CO·CH:CH·C $_4H_4$ ·O·CH $_2$. B. Aus 2-Nitro-acetophenon und Anisaldehyd in Natriummethylat-Lösung (Dilthey, Neuhaus, Schommer, J. pr. [2] 128, 239). Braungelbe Krystalle (aus Methanol oder Ligroin). F: 100°. Gibt mit konz. Schwefelsäure eine orangerote Färbung.
- 3-Nitro- ω -anisyliden-acetophenon, 3'-Nitro-4-methoxy-chaikon $C_{14}H_{12}O_4N=O_4N\cdot C_0H_4\cdot CO\cdot CH: CH\cdot C_0H_4\cdot O\cdot CH_3$. B. Analog der vorangehenden Verbindung (DILTHEY, NEUHAUS, SCHOMMER, J. pr. [2] 128, 239). Orangegelbe Krystalle (aus Alkohol). F: 171—172°. Löst sich in konz. Schwefelsäure mit orangeroter Farbe.
- 4-Nitro- ω -anisyliden-acetophenon, 4'-Nitro-4-methoxy-chalkon $C_{1e}H_{1s}O_{4}N=O_{1}N\cdot C_{e}H_{4}\cdot CO\cdot CH: CH\cdot C_{e}H_{4}\cdot O\cdot CH_{3}$. B. Analog den vorangehenden Verbindungen (Dilthey, Neuhaus, Schommer, J. pr. [2] 123, 238). Gelbe Nadeln (aus Alkohol). F: 176—177°. Löst sich in konz. Schwefelsäure mit roter Farbe.
- 4. 1-Phenyl-3-[2-oxy-phenyl]-propen-(1)-on-(3), [2-Oxy-phenyl]-styryl-keton, 2-Oxy-o-benzyliden-acetophenon, 2'-Oxy-chalkon C₁₅H₁₃O₂ = C₅H₅·CH:CH·CO·C₅H₄·OH (H 193). F: 90° (Tasaki, Acta phytoch. 8 [1927], 281). Ultraviolett-Absorptionsspektrum in Alkohol: Shibata, Nagai, Acta phytoch. 2, 30, 31; C. 1924 II, 1688. Bei der Hydrierung in Gegenwart von Platinschwarz in Eisessig entsteht 2'-Oxy-hydrochalkon (T.). Umwandlung in 4-Oxo-flavan (Flavanon) (vgl. H 193) erfolgt auch beim Verdünnen einer warmen konzentrierten alkoholischen Lösung mit viel 1,5%iger wäßriger Natronlauge (Löwenbein, B. 57, 1515).
- 2-Oxy- ∞ -[2-chlor-benzyliden]-acetophenon, 2-Chlor-2'-oxy-chalkon $C_{15}H_{11}O_3Cl=C_6H_4Cl-CH:CH:CO:C_6H_4\cdotOH$. B. Aus 2-Chlor-benzaldehyd und 2-Oxy-acetophenon in waßrigalkoholischer Natronlauge bei ca. 50° (Röthlisberger, Helv. 8, 114). Citronengelbe Nadeln (aus Alkohol). F: 102° . Löst sich in konz. Schwefelsäure mit grünstichiggelber Farbe.
- 2-Chlor-2'-acetoxy-chalkon $C_{17}H_{18}O_3Cl=C_6H_4Cl\cdot CH\cdot CO\cdot C_6H_4\cdot O\cdot CO\cdot CH_8$. Gelbliche Prismen (aus Schwefelkohlenstoff). F: 52° (RÖTHLISBERGER, Helv. 8, 114).
- 5. 1-Phenyl-3-[3-oxy-phenyl]-propen-(1)-on-(3), [3-Oxy-phenyl]-styryl-keton, 3-Oxy- ω -benzyliden-acetophenon, 3'-Oxy-chalkon $C_{15}H_{12}O_1=C_6H_5\cdot CH\cdot CO\cdot C_6H_4\cdot OH$ (H 193). Ultraviolett-Absorptionsspektrum in Alkohol: Shibata, Nagai, Acta phytoch. 2, 30, 31; C. 1924 II, 1688.
- 6. 1-Phenyl-3-[4-oxy-phenyl]-propen-(1)-on-(3), [4-Oxy-phenyl]-styryl-keton, 4-Oxy- ω -benzyliden-acetophenon, 4'-Oxy-chalkon $C_{18}H_{18}O_{2}=C_{4}H_{5}\cdot CH:CH\cdot CO\cdot C_{4}H_{4}\cdot OH$ (H 193; E I 580). Die Lösungen in konz. Schwefelsäure und in Eisessig + konz. Schwefelsäure sind orangerot (Dilthey, Mitarb., J. pr. [2] 117, 339). Ultraviolett-Absorptionsspektrum in Alkohol: Shibata, Nagai, Acta phytoch. 2, 30, 31; C. 1924 II, 1688. Natriumsalz Na $C_{18}H_{11}O_{2}\cdot Orangegelb$ (Vorländer, B. 58, 136).
- [4-Methoxy-phenyl]-styryl-keton, 4-Methoxy- ω -benzyliden-acetophenon, 4'-Methoxy-chalkon $C_{18}H_{14}O_2 = C_4H_5 \cdot CH \cdot CO \cdot C_8H_4 \cdot O \cdot CH_2$ (H 193; E I 580). Die Lösungen in konz. Schwefelsäure und in Eisessig + konz. Schwefelsäure sind orangegelb (Pfeiffer, J. pr. [2] 109, 51; Dilthey, Mitarb., J. pr. [2] 117, 339), die Lösung in Eisessig + Überchlorsäure ist tief orangefarben und fließt gelb ab (Pr., J. pr. [2] 109, 56 Anm. 1). 4'-Methoxy-chalkon liefert beim Kochen mit wasserfreiem Hydrazin 3-Phenyl-5-[4-methoxy-phenyl]- Δ '-pyrazolin (Ferdenner Kochen mit wasserfreiem Hydrazin 3-Phenyl-5-[4-methoxy-phenyl]- Δ '-pyrazolin (Ferdenner Kochen mit Benzyleyanid in Phenyl-11-denner Hydrazin 3-Phenyl-5-[4-methoxy-phenyl]-butanon (4) (Kohlbe, Allen, Am. Soc. 50, 888). Setzt sich mit Benzyleyanid in heißer, sehr verdünnter Natriummethylat-Lösung zu $\alpha.\beta$ -Diphenyl- γ -[4-methoxy-benzyl]-butyronitril um und reagiert analog mit 4-Nitro-benzyleyanid (A., Am. Soc. 49, 1113). Bei der Einw. von 4-Methoxy-phenylmagnesiumbromid in Äther erhält man 1-Phenyl-1.3-bis-[4-methoxy-phenyl]-propanon-(3) (Ziegler, Oche, B. 55, 2273).
- 4-Phenoxy- ω -benzyliden-acetophenon, 4'-Phenoxy-chalkon, 4-Cinnamoyl-diphenyläther $C_{21}H_{16}O_3=C_6H_5\cdot CH\cdot CH\cdot CO\cdot C_6H_4\cdot O\cdot C_6H_5$ (E I 581). B. Aus 4-Phenoxy-acetophenon und Benzaldehyd in Natriumäthylat-Lösung bei 70—80° oder besser in Gegenwart von Halogenwasserstoff in Eisessig oder Alkohol (DILTHEY, Mitarb., J. pr. [2] 117, 349, 350). F: 85—86°. Die Lösung in konz. Schwefelsäure ist orangegelb, fließt grünstichig gelb ab und zeigt nach einiger Zeit schwache grüne Fluorescenz.
- 4'-[4-Nitro-phenoxy]-chalkon, 4'-Nitro-4-cinnamoyl-diphenyläther $C_{91}H_{15}O_4N=C_6H_5$ $CH:CH\cdot CO\cdot C_6H_4\cdot O\cdot C_6H_4\cdot NO_2$. B. Aus 4-[4-Nitro-phenoxy]-acetophenon und Benzaldehyd bei Gegenwart von Natriummethylat-Lösung in Alkohol (Dilthey, Mitarb., J. pr. [2] 117, 362). Krystalle (aus Benzol). F: 165—166°. Löst sich in konz. Schwefelsäure mit grüngelber Farbe (D., Mitarb., J. pr. [2] 117, 343).
- 4-p-Kresoxy- ω -benzyliden-acetophenon, 4'-p-Kresoxy-chalkon, 4-Methyl-4'-cinnamoyi-diphenyläther $C_{22}H_{18}O_2=C_6H_5\cdot CH\cdot CO\cdot C_6H_4\cdot O\cdot C_6H_4\cdot CH_2$. B. Analog der vorangehenden

Verbindung (Dilthey, Mitarb., J. pr. [2] 117, 359). — Kryställe (aus Alkohol oder Ligroin). F: 84°. Die Lösung in konz. Schwefelsäure ist orangefarben, fließt orangegelb ab und zeigt nach einiger Zeit schwach grüne Fluorescenz.

- 4.4'-Dicinamoyi-diphenyläther $C_{30}H_{22}O_3 = (C_8H_5 \cdot CH : CH : CO \cdot C_8H_4)_2O$. B. Aus 1 Mol 4.4'-Diacetyl-diphenyläther und 2 Mol Benzaldehyd in Natriummethylat-Lösung (DILTHEY, Mitarb., J. pr. [2] 117, 352). Gelbliche Krystalle (aus Benzol). F: 170°. Die Lösung in konz. Schwefelsäure ist grangefarben.
- 4-Äthoxy-ω-benzyliden-acetophenon-oxim, 4'-Äthoxy-chalkon-oxim $C_{17}H_{17}O_2N = C_6H_5$. CH:CH:C(:N·OH)· C_6H_4 ·O· C_2H_5 . B. Durch längeres Kochen von 4'-Äthoxy-chalkon (H 193) mit 2 Mol Hydroxylaminhydrochlorid und etwas konz. Salzsäure in absol. Alkohol (v. Auwers, B. 62, 1322). Nadeln (aus Methanol oder Alkohol). F: 134—140°. Der Schmelzpunkt sinkt beim Aufbewahren an der Luft. Leicht löslich in den meisten organischen Lösungsmitteln. Löst sich in wäßrig-alkoholischer Natronlauge mit gelblicher Farbe. Beim Versetzen einer äther. Lösung mit Phosphorpentachlorid entsteht Zimtsäure-p-phenetidid.
- 4-Methoxy- ω -[2-chlor-benzyliden]-acetophenon, 2-Chlor-4'-methoxy-chalkon $C_{16}H_{13}O_{2}Cl = C_{6}H_{4}Cl \cdot CH \cdot CO \cdot C_{6}H_{4} \cdot O \cdot CH_{3}$. B. Aus 4-Methoxy-acetophenon und 2-Chlor-benzaldehyd in wäßrig-alkoholischer Natronlauge (Pfelffer, Mitarb., J. pr. [2] 119, 122). Schuppen (aus Ligroin). F: 91,5—92°. Sehr leicht löslich in Äther und Benzol, leicht in Alkohol, löslich in Ligroin. Die Lösung in konz. Schwefelsäure ist orangefarben.
- 4 Methoxy ω [2 brom benzyliden] acetophenon, 2 Brom 4' methoxy chalkon $C_{16}H_{12}O_2Br = C_6H_4Br\cdot CH\cdot CO\cdot C_6H_4\cdot O\cdot CH_2$. B. Beim Erhitzen von 4-Methoxy-acetophenon mit 2-Brom-benzaldehyd oder 2-Brom-benzylidenchlorid in wäßrig-alkoholischer Natronlauge (Pfeiffer, Mitarb., J. pr. [2] 119, 124). Blättchen (aus Alkohol). F: 79,5°. Die Lösung in konz. Schwefelsäure ist orangefarben.
- ω-Brom-4-methoxy-ω-benzyliden-acetophenon, α-Brom-4'-methoxy-chalkon $C_{10}H_{13}O_{2}$ Br $= C_{0}H_{1} \cdot CH : CBr \cdot CO \cdot C_{0}H_{4} \cdot O \cdot CH_{3}$. B. Durch Kochen von 4'-Methoxy-chalkondibromid mit Natriumäthylat-Lösung oder mit methylalkoholischer Kalilauge (Weygand, A. 459, 107; vgl. Kohler, Allen, Am. Soc. 50, 892). Nadeln (aus Alkohol). F: 105—107°; siedet im Hochvakuum bei 160° (W.). Liefert beim Erhitzen mit Hydroxylamin in methylalkoholischer Natronlauge 5-Phenyl-3-[4-methoxy-phenyl]-isoxazol (W., Bauer, A. 459, 138). Geht beim Kochen mit Eisessig in 4-Methoxy-dibenzoylmethan über (K., A.). Beim Kochen mit Natriummethylat-Lösung entsteht 4'.β-Dimethoxy-chalkon (W., A. 459, 110).
- 4-Methoxy- ∞ -[2-nitro-benzyliden]-acetophenon, 2-Nitro-4'-methoxy-chalkon $C_{18}H_{13}O_4N=O_2N\cdot C_4H_4\cdot CH:CH\cdot CO\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus 4-Methoxy-acetophenon und 2-Nitro-benzaldehyd in sehr verdünnter alkoholischer Natronlauge (Pfelffer, J. pr. [2] 109, 46). Grünlichgelbe Blättchen (aus Alkohol). F: 113—115°. Schwer löslich in Ligroin, löslich in Alkohol, Äther, Chloroform und Eisessig. Löst sich in konz. Schwefelsäure mit orangegelber Farbe (Ablauf grüngelb), in Trichloressigsäure mit grüngelber Farbe. Liefert bei der Reduktion mit Zinn(II)-chlorid und Chlorwasserstoff in Eisessig 2-[4-Methoxy-phenyl]-chinolin (Pf., J. pr. [2] 109, 56).
- 4-Methoxy- ω -[3-nitro-benzyliden]-acetophenon, 3-Nitro-4'-methoxy-chalkon $C_{16}H_{18}O_4N=O_2N\cdot C_4H_4\cdot CH:CH\cdot CO\cdot C_4H_4\cdot O\cdot CH_3$. B. Analog der vorangehenden Verbindung (PFEIFFER, J. pr. [2] 109, 46). Gelbliche Nadeln (aus Alkohol). F: ca. 153°. Leicht löalich in Chloroform, Benzol, Eisessig und Alkohol, schwer in Ligroin. Die Lösung in konz. Schwefelsäure ist orangegelb (Ablauf grüngelb), die Lösung in Trichloressigsäure ist orangegelb.
- 4-Methoxy- ω -[4-nitro-benzyliden]-acetophenon, 4-Nitro-4'-methoxy-chalkon $C_{16}H_{12}O_4N=O_2N\cdot C_6H_4\cdot CH:CH\cdot CO\cdot C_6H_4\cdot O\cdot CH_2$. B. Analog den vorangehenden Verbindungen (KAUFFMANN, B. 54, 800; Periffers, A. 441, 240). Grünlichgelbe Nadeln (aus Benzol), gelbliche Nadeln (aus Alkohol). F: 169° (K.), 167—168° (Pf.). Schwer löslich in Ligroin und Schwefelkohlenstoff, löslich in Chloroform, heißem Aceton, Äther, Methanol, Alkohol und Eisessig (K.; Pf.). Die Lösung in konz. Schwefelsäure ist orange (K.; Pf.), die Lösung in geschmolzener Trichloressigsäure ist gelb (Pf.).
- 4-Phenylmercapto- ω -benzyliden-acetophenon, 4'-Phenylmercapto-chalkon, 4-Cinnamoyldiphenylsulfid $C_{11}H_{14}OS = C_{6}H_{5} \cdot CH : CH \cdot CO \cdot C_{6}H_{4} \cdot S \cdot C_{6}H_{5} \cdot B$. Aus 4-Acetyl-diphenylsulfid und Benzaldehyd in Natriumäthylat-Lösung (Dilthey, Mitarb., $J.\ pr.\ [2]\ 124,\ 109)$. Grünlichgelbe Krystalle (aus Ligroin). F: 95°. Die Lösung in konz. Schwefelsäure ist orangerot.
- 4.4'-Dicinnamoyl-diphenylsulfid $C_{20}H_{22}O_2S=(C_0H_5\cdot CH\cdot CH\cdot CO\cdot C_0H_4)_2S$. B. Aus 4.4'-Diacetyl-diphenylsulfid und 2 Mol Benzaldehyd in Natriummethylat-Lösung (Dilthey, Mitarb., J. pr. [2] 124, 111). Gelbliche Krystalle (aus Benzol). F: 150—151°. Die Lösung in konz. Schwefelsäure ist orangerot.
- 4.4' Dicinnamoyi diphenyiselenid $C_{20}H_{21}O_2Se = (C_0H_1\cdot CH: CH\cdot CO\cdot C_0H_4)_2Se$. B. Aus 4.4' Discetyl diphenyiselenid und 2 Mol Benzaldehyd in methylalkoholischer Natronlauge

[Syst. Nr. 753

(DILTHEY, Mitarb., J. pr. [2] 124, 120). — Gelbliche Krystelle (aus Benzol). F: 155—156°. Die Lösung in konz. Schwefelsäure ist orangerot.

- 7. 1.3-Diphenyl-propen-(1)-ol-(1)-on-(3), ω -[α -Oxy-benzyliden]-acetophenon, β -Oxy-chalkon $C_{15}H_{15}O_3=C_0H_5\cdot C(OH):CH\cdot CO\cdot C_0H_5$ ist desmotrop mit Dibenzoylmethan, E II 7, 689.
- ω-[α-Methoxy-benzyliden]-acetophenon, β-Methoxy-chaîkon, Dibenzoylmethan-enolmethyläther $C_{16}H_{14}O_2 = C_6H_5 \cdot C(O \cdot CH_3) : CH \cdot CO \cdot C_6H_8$ (vgl. H 194). Existiert in 3 Formen mit den Schmelzpunkten 65°, 78° und 81°; die 65°-Form ist stabil, die beiden höherschmelzenden sind metastabil. Duffratsse, Gillet (C.r. 188, 747; A. ch. [10] 6, 302) und Weygand, Bauer, Hennig (B. 62, 563; vgl. C. Weygand, Chemische Morphologie der Flüssigkeiten und Krystalle (Leipzig 1941), S. 127) fassen die 65°-Form und die 81°-Form als sehr leicht ineinander übergehende Stereoisomere, die 78°-Form als polymorphe Modifikation der 81°-Form auf; nach J. Meyer, Pfaff (Z. anorg, Ch. 222 [1935], 388) liegt jedoch keine Isomerie, sondern Polymorphie vor.
- a) 65°-Form. B. Aus α-Brom-chalkon in siedender Natriummethylat-Lösung (Dufralsse, Gérald, Bl. [4] 31, 1302; Weygand, Bauer, Hennig, B. 62, 570). Aus Phenyl-benzoyl-acetylen bei kurzem Kochen mit sehr verdünnter Natriummethylat-Lösung und Destillieren des Reaktionsgemisches im Vakuum, neben kleineren Mengen der 81°-Form und wenig Dibenzoyl-methan-mono-dimethylacetal (E II 7, 692); Trennung von der 81°-Form erfolgt durch Auslesen der Krystalle (D., Gé., Bl. [4] 31, 1302; D., Gillet, A. ch. [10] 6, 302, 306; W., B., H., B. 62, 571). Beim Behandeln von α-Brom-β-methoxy-hydrochalkon mit Alkalien (D., Gé., C.r. 174, 1632). Tafeln (aus Alkohol). F: 65° (D., Gi.), 65—66° (D., Gé.). Verhalten bei der Krystallisation der unterkühlten Schmelze: W., B., H., B. 62, 573. Siedet im Hochvakuum bei 155° bis 160° (W., B., H., B. 62, 571). Geht in Substanz bei ½-stdg. Erhitzen auf 85°, in alkoh. Lösung bei mehrtägigem Aufbewahren bei 5—10°, bei mehrstündiger Bestrahlung mit Sonnenlicht, bei 2-stdg. Erwärmen auf ca. 70° sowie bei kurzer Einw. von Chlorwasserstoff in ein überwiegend aus der 65°-Form bestehendes Gleichgewichtsgemisch mit der 81°-Form über (D., Gi., A. ch. [10] 6, 307, 308; W., B., H., B. 62, 566). Liefert mit wenig konz. Salzsäure in Methanol Dibenzoylmethan (F: 72—73°) (W., Z. ang. Ch. 41, 618; W., B., H., B. 62, 572). Gibt beim Behandeln mit Brom in Schwefelkohlenstoff unter Kühlung ein Dibromid, das bei kurzem Kochen mit Kaliumacetat und Methanol in α-Brom -β.β-dimethoxy-β-phenyl-propiophenon übergeht (D., Gi., C. r. 178, 948; Bl. [4] 43, 886; A. ch. [10] 6, 307).
- b) 78°-Form. B. Bei der spontanen aseptischen Krystallisation von Lösungen der 81°-Form in Alkohol (Dufraisse, Gillet, C. r. 183, 747; A. ch. [10] 6, 308). F: 78°. Geht beim Impfen der Schmelze oder Lösung mit der 81°-Form sofort in diese über.
- c) 81°-Form. B. s. o. bei der 65°-Form. Entsteht ferner beim Behandeln von 78°-Dibenzoylmethan (E II 7, 689) mit Diazomethan in Äther (W., B., H.). Prismatische Nadeln (aus Alkohol), Krystalle (aus Äther + Petroläther). F: 81° (W., B., H.), 80—81° (DUFRAISSE, GILLET, C. r. 188, 747; A. ch. [10] 6, 307). Verhalten bei der Krystallisation der unterkühlten Schmelze: W., B., H. Sehr unbeständig (D., GI., C. r. 183, 747; A. ch. [10] 6, 308). Gibt beim Erhitzen, beim Belichten der alkoh. Lösung usw. dasselbe Gleichgewichtsgemisch wie die 65°-Form (s. o.). Liefert mit wenig konz. Salzsäure in Methanol Dibenzoylmethan (F: 78°) (W., B., H.). Gibt bei aufeinanderfolgendem Behandeln mit Brom und Methanol ebenso wie die 65°-Form α-Brom-β-β-dimethoxy-β-phenyl-propiophenon (D., GI., A. ch. [10] 6, 307).
- ω [α Äthoxy benzyliden] acetophenon, β Äthoxy chalkon, Dibenzoylmethanenol äthyläther $C_{17}H_{16}O_2=C_6H_5$ · $C(O\cdot C_2H_5)$: $CH\cdot CO\cdot C_6H_5$ (H 194; E I 581). Wurde von Weygand (B. 59, 2249; 60, 2430; Z. ang. Ch. 41, 618; vgl. W., Bauer, Hennig, B. 62, 563) in einer stabilen Form (F: 78°) und 3 metastabilen Formen (F: 63°, 75° und 81°) erhalten; eine weitere instabile Form (F: 43°) s. u.
- a) 78°-Form (H 194; E I 581; im Hptw. als stabiles β-Äthoxy-chalkon bezeichnet).

 B. Bei der Einw. von siedender Natriumäthylat-Lösung auf α.β-Dibrom-hydrochalkon (Dufraisse, Gérald, Bl. [4] 31, 1300), auf α-Brom-chalkon (D., Gé., C. τ. 174, 1631; Bl. [4] 31, 1300; Weygand, B. 59, 2251), auf Phenyl-benzoyl-acetylen (D., Gé., C. τ. 178, 986; Bl. [4] 31, 1301; D., Gillet, A. ch. [10] 6, 309) oder auf α-Brom-β-āthoxy-hydrochalkon vom Schmelzpunkt 61° (D., Gé., C. τ. 173, 987; 174, 1631; Bl. [4] 31, 1295, 1301). In geringer Menge beim Behandeln von Dibenzoylmethan (F: 78°) mit Orthoameisaureester und Eisenchlorid oder mit Diazoāthan in Äther (Weygand, Bauer, Hennig, B. 62, 571). Aus der 63°-Form bei längerem Aufbewahren, beim Erwärmen auf etwa 55° oder beim Impfen der Schmelze (W., B. 59, 2251). Beim Erhitzen der 81°-Form mit absol. Alkohol im Rohr auf 100° (W., B. 59, 2252). Nadeln (aus Alkohol), Krystalle (aus Petroläther). F: 77—78° (Maquennescher Block) (Dufraisse, Gérald, Bl. [4] 31, 1301; D., Gillet, C. r. 183, 747; A. ch. [10] 6, 309; Weygand, B. 59, 2251). Verhalten bei der Krystallisation der unterkühlten Schmelze: W., Bauer, Hennig, B. 62, 573. Kp.—3: ca. 209° (D., Gé., Bl. [4] 31, 1301). Ist in Petroläther erheblich schwerer löslich als die 63°-Form (W.,

- B. 59, 2251), leicht löslich in Äther und heißem Alkohol (D., Gź., Bl. [4] 81, 1301). Ist in Lösung neben der 75°-Form (D., Gr., C. r. 183, 747; A. ch. [10] 6, 309), in der Schmelze und in Lösung vorübergehend neben der 63°-Form beständig (W., B. 59, 2251). Aus der auf 80° erhitzten Schmelze krystallisiert beim Abkühlen auf Zimmertemperatur die 63°-Form, beim Abkühlen auf 0° die ursprüngliche 78°-Form aus (W., B. 59, 2251). Liefert beim Verseifen mit wenig konz. Salzsäure in Alkohol Dibenzoylmethan vom Schmelzpunkt 78° (W., B., H., B. 62, 572). Gibt beim Behandeln mit Brom in Schwefelkohlenstoff unter Kühlung ein Dibromid, das bei kurzem Kochen mit Kaliumacetat in absol. Alkohol α-Brom- β - β -diāthoxy- β -phenyl-propiophenon liefert (D., Gr., Bl. [4] 48, 886).
- b) 81°-Form. F: 80—81° (WEYGAND, B. 59, 2252). Lagert sich beim Aufbewahren spontan in bei 77,5—79° schmelzendes Material um (W., B. 60, 2429). Geht beim Erhitzen mit absol. Alkohol im Rohr auf 100° wieder in die 78°-Form über (W., B. 59, 2252). Bei der Verseifung mit alkoh. Salzsäure entsteht Dibenzoylmethan vom Schmelzpunkt 81° (W., B. 60, 2429).
- c) 75°-Form. B. Entsteht bei der spontanen aseptischen Krystallisation von Lösungen der 78°-Form in Alkohol (Dufraisse, Gillet, C. r. 183, 747; A. ch. [10] 6, 309). Derbe Krystalle. F: 74—75° (Maquennescher Block). Ist unter der Mutterlauge neben der 78°-Form beständig.
- d) 63°-Form (H 194 als labiles β-Äthoxy-chalkon beschrieben). Das Mol.-Gew. ist kryoskopisch in Benzol bestimmt (Weygand, B. 59, 2251). B. Wurde einmal beim Kochen von α-Brom-chalkon mit alkoh. Natronlauge erhalten (vgl. W., B. 59, 2250). Entsteht aus der 78°-Form beim Erhitzen auf 80° und Abkühlen der Schmelze auf Zimmertemperatur (W., B. 59, 2251). Gelbe Krystalle. F: 63° (W.). Verhalten bei der Krystallisation unterkühlter Schmelzen: W., Bauer, Hennig, B. 62, 573. Ist in der Schmelze und in Lösung vorübergehend neben der 78°-Form besändig (W.). Sehr leicht löslich in Petroläther und anderen organischen Lösungsmitteln (W.). Gibt mit alkoh. Eisenchlorid-Lösung zunächst keine Rotfärbung (W.). Umwandlung in die 78°-Form s. bei dieser. Gibt bei Einw. einiger Tropfen konz. Salzsäure in Alkohol Dibenzoylmethan (F: 78°) (W., B., H., B. 62, 572).
- e) 43°-Form. B. Entsteht beim Animpfen der Schmelze mit β -Äthoxy-4-methyl-chalkon (WEYGAND, A. 472, 177). F: 43°. Wird in der Schmelze durch 63°- oder 78°-Form rasch aufgezehrt.
- ω [α Propyloxy benzyliden] acetophenon, β Propyloxy chalkon $C_{18}H_{18}O_2 = C_4H_5$. $C(O \cdot C_3H_7) : CH \cdot CO \cdot C_4H_8$. B. Bei der Einw. von siedender Natriumpropylat-Lösung auf α-Bromchalkon (Dufraiser, Gerald, C. r. 174, 1632; Bl. [4] 31, 1302), auf Phenyl-benzoyl-acetylen (D., G., Bl. [4] 31, 1302) oder auf α-Brom-β-propyloxy-hydrochalkon (D., G., C. r. 174, 1632). Gelbliche Krystalle (aus Petroläther bei —10°). F: 59—60°.
- ω [α Isopropyloxy benzyliden] acetophenon, β Isopropyloxy chalkon $C_{18}H_{18}O_3 = (CH_3)_2CH \cdot O \cdot C(C_6H_8) \cdot CH \cdot CO \cdot C_6H_8$. B. Bei der Einw. von siedender Natriumisopropylat-Lösung auf α-Brom-chalkon (Dufraisse, Gérald, C. r. 174, 1632; Bl. [4] 31, 1303) oder Phenylbenzoyl-acetylen (D., G., Bl. [4] 31, 1303). Gelbliche Nadeln (aus absol. Alkohol). F: 49—50°. Kp₂₋₃: 180—183°.
- ω-[α-Butyloxy-benzyliden]-acetophenon, β-Butyloxy-chalkon $C_{19}H_{20}O_2=C_2H_5\cdot CH_2\cdot CH_2\cdot O\cdot C(C_6H_5): CH\cdot CO\cdot C_6H_5$. B. Aus α-Brom-chalkon, aus Phenyl-benzoyl-acetylen oder aus α-Brom-β-butyloxy-hydrochalkon bei der Einw. von Natriumbutylat-Lösung auf dem Wasserbad (Dufraisse, Gérald, C. r. 174, 1632; Bl. [4] 31, 1302). Gelbliche Flüssigkeit. $Kp_{2-3}: 204-206^{\circ}$.
- ω-[α-Isobutyloxy-benzyliden]-acetophenon, β-Isobutyloxy-chalkon $C_{19}H_{20}O_2 = (CH_3)_2CH \cdot CH_2 \cdot O \cdot C(C_0H_5) \cdot CH \cdot CO \cdot C_0H_5$. Analog der vorangehenden Verbindung (Dufraisse, Gérald, C.r. 174, 1632; Bl. [4] 31, 1303). Gelbliche Krystalle (aus absol. Alkohol). F: 55—56°. Kp₂₋₃: 195—197°.
- w-[4-Brom-α-methoxy-benzyliden]-acetophenon, 4-Brom-β-methoxy-chalkon C₁₆H₁₈O₂Br = C₆H₄Br·C(O·CH₃);CH·CO·C₆H₅. B. Aus 4.α-Dibrom-chalkon beim Kochen mit Natrium-methylat-Lösung (Weygand, A. 459, 119). Gelbes Öl. Siedet im Hochvakuum bei 170°. Liefert beim Erwärmen mit wenig konz. Salzsäure oder Eisessig in Methanol 4-Brom-dibenzoyl-methan.
- ω-Brem-ω-[α-methoxy-benzyliden]-acetophenon, α-Brom- β -methoxy-chalkon $C_{16}H_{13}O_2$ Br $C_6H_5 \cdot C(O \cdot CH_3) \cdot CBr \cdot CO \cdot C_6H_5$. Existiert in 3 Formen vom Schmelzpunkt 65°, 72° und 102°. Dufraisse, Gillet (C. r. 178, 950; A. ch. [10] 11, 7, 16) betrachten die 72°-Form und die 102°-Form als leicht ineinander übergehende Stereoisomere, die 65°-Form als polymorphe Modifikation der 72°-Form. B. Ein Gemisch aus den 3 Formen entsteht beim Erhitzen von α-Brom- β - β -dimethoxy- β -phenyl-propiophenon (E II 7, 693) im Vakuum auf 220—240° (D., G., C. r. 178, 949; A. ch. [10] 11, 15, 16); das Gemisch läßt sich durch entsprechendes Animpfen in jede beliebige der 3 Formen umwandeln.

a) 102°-Form. B. Entsteht beim Belichten einer alkoh. Suspension der beiden anderen Formen in Gegenwart von etwas Pyridin unter Wasserkühlung (Duffalsse, Gillet, A.ch. [10] 11, 9, 19; vgl. C.r. 188, 747). — Hellgelbe Prismen (aus Alkohol). F: 101—102° (Maquennescher Block). — Geht beim Erwärmen in An- oder Abwesenheit von Alkohol zum Teil in die beiden anderen Formen über. Diese entstehen auch beim Belichten einer alkoh.

Lösung der 1020-Form in Gegenwart von etwas Säure.

- b) 72°-Form. B. Entsteht aus der 102°-Form beim Erwärmen in Gegenwart oder Abwesenheit von Alkohol oder beim Belichten in Gegenwart einer Spur Säure (Duffalsse, Gillet, A.ch. [10] 11, 18). Krystallisiert aus übersättigten Lösungen oder Schmelzen der beiden anderen Formen beim Impfen (D., G.). Hellgelbe Nadeln (aus Alkohol). F: 71—72°. Löst sich in Alkohol bei 17° zu 6,1 %. Ist stabiler als die 65°-Form. Beim Impfen der übersättigten alkoholischen Lösung oder der Schmelze mit niedrigschmelzendem $\alpha.\beta$ -Dibrom-chalkon krystallisiert die 65°-Form aus. Geht beim Belichten in alkoh. Suspension in Gegenwart von etwas Pyridin in die 102°-Form über (D., G., A.ch. [10] 11, 9, 19). Wird durch heiße verdünnte Salzsäure in Dibenzoylbrommethan übergeführt (D., G., C. r. 178, 949). Bei der Einw. von Alkoholat-Lösungen wird 1 Mol Alkohol addiert (D., G., C. r. 178, 949).
- c) 65°-Form. B. Fällt bei der spontanen aseptischen Krystallisation der beiden anderen Formen aus übersättigten Lösungen oder Schmelzen oder beim Impfen mit niedrigschmelzendem α.β-Dibrom-chalkon (E II 7, 428) zuerst aus (Dufraisse, Gillet, A.ch. [10] 11, 17, 18). Hellgelbe spindelförmige Krystalle (aus Alkohol). F: 64—65°. Löslich in Alkohol bei 19° zu 9,9%. Geht beim Impfen der Lösung oder Schmelze mit der 72°-Form in diese über.
- ω-Brom-ω-[α-āthoxy-benzyliden]-acetophenon, α-Brom-β-āthoxy-chalkon $C_{17}H_{18}O_2Br = C_eH_5 \cdot C(O \cdot C_2H_5) \cdot CBr \cdot CO \cdot C_eH_5$. Existiert in 4 Formen vom Schmelzpunkt 65°, 73°, 76° und 85°; die 76°-Form ist stabil. Dufraisse, Gillet (C. r. 178, 949; A. ch. [10] 11, 7, 20) und Dufraisse, Netter (C. r. 189, 299) betrachten die 85°-Form als stereoisomer mit den drei anderen, unter sich polymorphen Formen. B. Ein Gemisch der 4 Formen entsteht beim Erhitzen von α-Brom-β-β-diāthoxy-β-phenyl-propiophenon (E II 7, 693) im Vakuum auf 220—240° (D., G., C. r. 178, 949; A. ch. [10] 11, 15, 20; D., N.). F: 65°, 73°, 76° und 85° (D., G.; D., N.). Die 4 Formen unterscheiden sich auch im Aussehen und in der Löslichkeit (D., G.; D., N.). Die Formen vom Schmelzpunkt 65° und 73° gehen bei Gegenwart von Keimen schnell in die stabile 76°-Form über (D., G., C. r. 178, 950; A. ch. [10] 11, 20); die Umwandlung der 85°-Form in die 76°-Form wird durch Säuren beschleunigt, durch Alkalien verzögert (D., N.; D., G., A. ch. [10] 11, 20). Beim Bestrahlen der Formen vom Schmelzpunkt 65°, 73° oder 76° entstehen geringe Mengen der 85°-Form (D., N., C. r. 189, 299). Beim Kochen mit wäßrig-alkoholischer Bromwasserstoffsäure erhält man Dibenzoylbrommethan (D., G., C. r. 178, 949; A. ch. [10] 11, 15). Einw. von überschüssiger konzentrierter Natriumāthylat-Lösung bei 0° ergibt α-Brom-β-β-diāthoxy-β-phenyl-propiophenon (D., G., C. r. 178, 949; Bl. [4] 43, 886; A. ch. [10] 11, 16).
- ω-Brom ω- [α-propyloxy benzyliden] acetophenon, α-Brom β-propyloxy chalkon $C_{16}H_{17}O_2$ Br = C_6H_5 ·C(O· C_6H_7):CBr·CO· C_6H_5 . B. Analog der vorangehenden Verbindung (Dufraisse, Gillet, C. r. 178, 949; A. ch. [10] 11, 20). Wurde nur in einer Form erhalten. Blättchen. F: 50—51°.
- 4-Nitro- ω -[α -methoxy-benzyliden]-acetophenon, 4'-Nitro- β -methoxy-chalkon $C_{16}H_{12}O_4N$ = $C_6H_5\cdot C(O\cdot CH_3):CH\cdot CO\cdot C_6H_4\cdot NO_2$. B. Aus α -Brom-4'-nitro-chalkon beim Kochen mit Natriummethylat-Lösung (Weygand, A. 459, 117). Gelbes Krystallpulver (aus Methanol). F: 77°. Siedet im Hochvakuum bei 210°. Löslich in Äther und Benzol, schwer löslich in Alkohol. Liefert beim Kochen mit wenig konz. Salzsäure in Methanol 4-Nitro-dibenzoylmethan.
- $\omega [\alpha p Tolylsulfon benzyliden] acetophenon , \ \beta p Tolylsulfon chalkon \ C_{22}H_{16}O_2S = C_8H_5 \cdot C(SO_2 \cdot C_6H_4 \cdot CH_3) : CH \cdot CO \cdot C_6H_5.$
- a) Niedrigerschmelzende Form. B. Neben geringeren Mengen der höherschmelzenden Form beim Erhitzen von Phenyl-benzoyl-acetylen mit p-Toluolsulfinsäure in Alkohol (KOHLER, BARRETT, Am. Soc. 46, 752). Blättchen (aus Alkohol). F: 141°. Löslich in heißem Alkohol. Geht beim Behandeln mit geringen Mengen Natriumäthylat in Alkohol in die höherschmelzende Form über.
- b) Höherschmelzende Form. B. s. o. bei der niedrigerschmelzenden Form. Gelbe Nadeln (aus Alkohol). F: 157° (Kohleb, Barrett, Am. Soc. 46, 752). Schwer löslich in Alkohol. Bei der Reduktion mit Zinkstaub und Eisessig liefern beide Formen β -p-Tolylsulfon- β -phenyl-propiophenon und ein bei 249° schmelzendes dimolekulares Reduktionsprodukt (?).
- 8. 1.3-Diphenyl-propen (1) ol (2) on (3), ω -Oxy- ω -benzyliden-acetophenon, α -Oxy-chalkon $C_{15}H_{12}O_5=C_6H_5\cdot CH:C(OH)\cdot CO\cdot C_6H_5$ ist desmotrop mit Phenylbenzylglyoxal, E II 7, 687.

ω-Methoxy-ω-benzyliden-acetophenon, α-Methoxy-chalkon, Phenyl-[α-methoxy-styryl]-keton $C_{18}H_{14}O_3 = C_6H_5 \cdot CH : C(0 \cdot CH_2) \cdot CO \cdot C_6H_5$, B. Aus ω-Methoxy-acetophenon und Benzaldehyd in wäßrig-alkoholischer Natronlauge (Malkin, Robinson, Soc. 127, 372) oder in Gegenwart von Natriummethylat-Lösung unterhalb 40^o (Dufraisse, Chaux, Bl. [4] 39, 447). — Tafeln (aus Methanol, Alkohol oder Petroläther). F: 34— 35^o (D., Ch.), 35^o (M., R.); Kp_3 : 184— 186^o (D., Ch.). Sehr leicht löslich in organischen Lösungsmitteln (D., Ch.). Die Lösung in Schwefelsäure ist gelb und wird beim Erhitzen erst grüngelb, dann tiefviolett. — Verharzt bei längerem Belichten in methylalkoholischer Lösung (D., Ch.). Oxydiert sich an der Luft allmählich unter Bildung von Benzaldehyd (D., Ch.). Bei der Hydrierung in Gegenwart von kolloidalem Palladium in Alkohol entsteht 2-Methoxy-1.3-diphenyl-propanol-(1) (M., R., Soc. 127, 377). Liefert bei der Einw. von Brom in Äther bei 0^o Phenyl-[α.β-dibrom-α-methoxy-β-phenyl-āthyl]-keton (E II 7, 689) (M., R., Soc. 127, 373). Gibt beim Einleiten von Bromwasserstoff in eine wäßrig-alkoholische Suspension und nachfolgenden Kochen (D., Ch.) sowie beim Erhitzen mit Eisessig und konz. Schwefelsäure über freier Flamme (M., R., Soc. 127, 373) die Ketoenolform des Phenylbenzyldiketons (E II 7, 687).

ω- Äthoxy-ω- benzyliden-acetophenon, α-Äthoxy-chalkon $C_{17}H_{16}O_2=C_6H_5$ · CH: C(O· C_2H_5)· CO· C_6H_5 . B. Aus ω-Äthoxy-acetophenon und Benzaldehyd in Gegenwart von Natriummethylat-Lösung unterhalb 40° (Dufraisse, Chaux, Bl. [4] 39, 450). — Hellgelbe Krystalle (aus Alkohol). F: 34—35°. Kp_{2,5}: 175—176°. Sehr leicht löslich in den gebräuchlichen Lösungsmitteln. — Oxydiert sich allmählich an der Luft unter Bildung von Benzaldehyd. Gibt bei kurzem Erhitzen mit Kaliumhydroxyd bei 0,2—0,3 mm Druck auf 120—150° die Form A und geringere Mengen der Form B des β-Äthoxy-styrols (E II 6, 522) sowie etwas Benzaldehyd (D., Ch., Bl. [4] 39, 451, 917).

ω-Methoxy-ω-[4-chlor-benzyliden]-acetophenon, 4-Chlor-α-methoxy-chalkon, Phenyl-[4-chlor-α-methoxy-styryl]-keton $C_{16}H_{13}O_2Cl = C_6H_4Cl \cdot CH : C(O \cdot CH_3) \cdot CO \cdot C_6H_5$. B. Durch Kondensation von ω-Methoxy-acetophenon mit 4-Chlor-benzaldehyd (Bennett, Willis, Soc. 1928, 1966). — Krystalle (aus Petroläther). F: 45°. Kp₁₆: 238°. — Liefert beim Kochen mit konz. Bromwasserstoffsäure und Eisessig Phenyl-[4-chlor-benzyl]-diketon.

Bis-[α-benzoyl-styryl]-sulfid, α.α'-Dibenzyliden-diphenacylsulfid $C_{20}H_{22}O_2S=C_0H_5\cdot CO\cdot C(:CH\cdot C_0H_5)\cdot S\cdot C(:CH\cdot C_0H_5)\cdot CO\cdot C_0H_5$ (vgl. E I 581). Die von Fromm, Schömer (A. 399, 353) so formulierte Verbindung vom Schmelzpunkt 270° (E I 581) hat vermutlich eine andere Konstitution; sie konnte nicht wieder erhalten werden (Dilthey, B. 60, 1403). — B. α.α'-Dibenzyliden-diphenacylsulfid entsteht bei der Kondensation von Diphenacylsulfid mit Benzaldehyd in Gegenwart von Piperidin in Alkohol und Behandlung der entstandenen Piperidin verbindung (Syst. Nr. 3038) mit Eisessig (D., B. 60, 1404). — Gelbe Nadeln (aus Alkohol). F: 139° bis 140°. Wird durch konz. Schwefelsäure tiefrot gefärbt und mit gelbroter, bald verblassender Farbe gelöst.

1-Nitro-10-oxy-2-methyl-anthron-(9) bzw. 1-Nitro-2-methyl-anthrahydrochinon $C_{18}H_{11}O_4N$, Formel I (X = NO₂) bzw. desmotrope Form. B. Das Pyridinsalz eines sauren Schwefelsäureesters entsteht, wenn man ein Gemisch von 5 Tln. 1-Nitro-2-methyl-anthrachinon und 2 Tln. Kupferpulver oder Zinkstaub langsam bei 25—30° in eine Suspension von Chlorsulfonsäure oder Chlorsulfonsäuremethylester in trockenem Pyridin einträgt und kurz rührt; die gelbe wäßrige Lösung des Pyridinsalzes ist sehr unbeständig und scheidet bei kurzem Aufbewahren einen in Wasser unlöslichen roten Niederschlag aus; saure Oxydationsmittel regenerieren 1-Nitro-2-methyl-anthrachinon (I. G. Farbenind., D. R. P. 516845; Frdl. 16, 3024).

10. 3 - Oxy - 10 - oxo - 2 - methyl - dihydroanthracen, 2 - Oxy - 3 - methyl-anthron - (9) bzw. 3.10 - Dioxy - 2 - methyl - anthracen, 2 - Oxy - 3 - methyl-anthranol - (9) C₁₅H₁₅O₂, Formel II bzw. desmotrope Form. Oxo-Form, 2-Oxy-3-methyl-anthron - (9). Zur Konstitution vgl. BISTRZYCKI, ZEN-RUFFINEN, Helv. 3, 376. — B. Bei kurzer Einw. von Schwefelsture (D: 1,84) auf 4'-Oxy-3'-methyl-diphenylmethan-carbonsaure - (2) (B., Z.-R., Helv. 3, 374). — Prismen (aus Pyridin + Wasser), Krystallpulver (aus Eisessig). F: 276° bis 277° (unter Braunfärbung). Leicht löslich in siedendem Pyridin, sehr schwer in siedendem Alkohol, Aceton, Chloroform, Xylol und Eisessig. — Löst sich in 0,5n-Kalilauge mit hellgelber Farbe, die namentlich beim Erhitzen bald in Braunorange übergeht; kühlt man unter 0° ab und sättigt mit Kohlendioxyd, so erhält man einen orangebraunen Niederschlag der Oxy-Ferm(?). Liefert beim Kochen mit Acetanhydrid und Natriumacetat 3.10-Diacetoxy-2-methyl-anthracen (E II 6, 1005).

4. Oxy-exe-Verbindungen $C_{14}H_{14}O_{1}$.

1. 1.4 - Diphenyl - buten - (1) - ol - (1) -on - (4) $C_{16}H_{16}O_{3} = C_{6}H_{5} \cdot CO \cdot CH_{2} \cdot CH : C(OH) \cdot C_{6}H_{5}$ ist desmotrop mit 1.2-Dibenzoyl-āthan, E II 7, 700.

1-Methoxy-1.4-diphenyl-buten-(1)-on-(4), 1-Methoxy-1-phenyl-3-benzoyl-propen-(1) C₁₇H₁₆O₂ = C₆H₅·CO·CH₂·CH:C(O·CH₃)·C₆H₅. B. In geringer Menge neben 1.2-Dibenzoyl-athan beim Erwärmen von 1-Nitro-1-phenyl-2-benzoyl-cyclopropan mit 5% iger Natriummethylat-Lösung (Allen, Bridgess, Am. Soc. 51, 2156). — Nadeln (aus Methanol). F: 72°. Sehr leicht löslich in den üblichen Lösungsmitteln. — Liefert bei vorsichtiger Oxydation mit Permanganat Benzoesäure und Benzoesäuremethylester (?).

 2 - Methyl - 1 - phenyl - 3 - [4 - oxy - phenyl] - propen - (1) - on - (8), 4-Oxy- ω - methyl - ω - benzyliden - acetophenon, 4' - Oxy - α - methyl - chalkon $C_{14}H_{14}O_{8} = C_{4}H_{5} \cdot CH : C(CH_{8}) \cdot CO \cdot C_{4}H_{4} \cdot OH$.

4-Methoxy- ω -methyl- ω -benzyliden-acetophenon, 4'-Methoxy-lpha-methyl-chaikon $m C_{17}H_{16}O_{2}$

 $= C_8H_5 \cdot CH : C(CH_3) \cdot CO \cdot C_6H_4 \cdot O \cdot CH_3.$

a) Niedrigerschmelzende Form. B. Neben höhersiedenden Produkten beim Erwärmen von β -Chlor-4'-methoxy- α -methyl-hydrochalkon mit Methanol (BISCHOFF, Dissert. [Leipzig 1928], von p-c.nior-4-metnoxy-a-metnyl-nydrochaikon mit methanol (Bischoff, Dissert. Leipzig 1925), S. 74). — Krystalle (aus Methanol); F: 47—48° (Bl.), Grünlichgelbe Krystalle; F: ca. 30° (Stobbe, Bremer, J. pr. [2] 123, 35). Kp₁₀: 235—237° (Bl.). In Alkohol leichter löslich als die höherschmelzende Form (St., Br., J. pr. [2] 123, 35). Ultraviolett-Absorptionsspektrum in Alkohol: St., Br., J. pr. [2] 123, 29. — Geht bei längerer Einw. von ultraviolettem Licht auf die Krystalle oder die alkoh. Lösung in die höherschmelzende Form über (St., Br., J. pr. 121 122). [2] 123, 35, 58). Wird durch Permanganat in essigsaurer Lösung etwas langsamer oxydiert als die höherschmelzende Form; Brom wird in Chloroform-Lösung im Licht von beiden Formen

ungefähr gleich schnell addiert (Sr., Br., J. pr. [2] 123, 59, 60).

b) Höherschmelzende Form. B. s. o. — Blättchen (aus Alkohol). F: 64,5° (Stobbe, Bremer, J. pr. [2] 123, 59). Ultraviolett-Absorption spektrum in Alkohol: St., Br., J. pr. [2] 123, 29. — Verhalten gegen Permanganat und Brom s. o.

3. 1-Phenyl-3-[6-oxy-3-methyl-phenyl]-propen-(1)-on-(3), 6-Oxy-3-methyl- ω -benzyliden-acetophenon, > CO · CH : CH · CeH 5 6' - 0xy - 3' -methyl - chalkon , 2 - Cinnamoyl - p - kresol $C_{16}H_{14}O_2$, s. nebenstehende Formel. B. Aus 6-0xy-3-methyl-acetophenon und Benzaldehyd in wäßrig-alkoholischer Natronlauge bei 50° (v. Auwers, A. 421, 103). Aus p-Kresol-methyläther und Zimtsäurechlorid in Gegenwart von 2 Mol Aluminiumchlorid in Schwefelkohlenstoff anfangs unter Eiskühlung, zuletzt bei 50°

(Simonis, Lear, B. 59, 2911). Bei der Einw. von Aluminiumchlorid auf 6'-Methoxy-3'-methylchalkon in Schwefelkohlenstoff (S., LEAR). — Orangefarbene Nadeln (aus Methanol oder Alkohol). F: 1110 (v. Au.; S., Lear). Leicht löslich in Alkohol, Äther, Eisessig und Schwefelkohlenstoff, schwerer in Methanol und Benzin (v. Au.). — Die konzentrierte alkoholische Lösung liefert bei der Einw. von viel 1-2%iger wäßriger Natronlauge 6-Methyl-flavanon (Syst. Nr. 2467) (Löwenbein, B. 57, 1516; S., Lear). — Natriumsalz. Schwer löslich (v. Au.). Wird durch Wasser gespalten.

6-Methoxy-3-methyl- ω -benzyliden-acetophenon, 6'- Methoxy-3'- methyl-chalkon $C_{17}H_{16}O_{2}$ = CH₃·O·C₆H₃(CH₃)·CO·CH:CH·C₆H₅. B. Aus p-Kresol-methyläther und Zimtsäurechlorid in Gegenwart von 1 Mol Aluminiumchlorid in Schwefelkohlenstoff anfangs unter Eiskühlung, zuletzt bei 50° (SIMONIS, LEAR, B. 59, 2911). — Krystalle (aus Alkohol). F: 55—56°. Leicht löslich in Benzol, Eisessig und Schwefelkohlenstoff, löslich in Alkohol, unlöslich in Petroläther. Gibt beim Behandeln mit Aluminiumchlorid in Schwefelkohlenstoff 6'-Oxy-3'-methyl-chalkon.

- 6-Oxy-3-methyl- ω -[α -chlor-benzyliden]-acetophenon, β -Chlor-6'-oxy-3'-methyl-chalkon $C_{16}H_{13}O_2Cl = HO \cdot C_6H_3(CH_3) \cdot CO \cdot CH \cdot CCl \cdot C_6H_5$. B. Aus p-Kresol-methyläther und Phenyl-propiolsäurechlorid in Gegenwart von 2 Mol Aluminiumchlorid in Schwefelkohlenstoff anfange bei -4° , dann bei Zimmertemperatur (Simonis, Lear, B. 59, 2912). Bei der Einw. von 1 Mol Aluminium chlorid auf Phenyl-[6-methoxy-3-methyl-benzoyl]-acetylen in Schwefelkohlenstoff (S., L.). — Tiefgelbe Nadeln (aus Benzin). F: 95,5°. Löslich in organischen Lösungsmitteln. -Die alkoh. Lösung liefert beim Eintragen in 1—2%ige Natronlauge 6-Methyl-flavon (Syst. Nr. 2468).
- 4. 3 Phenyl 1 p tolyl propen (1) ol (1) on (3), ω [α -Oxy-4-methyl-benzyliden]-acetophenon, β -Oxy-4-methyl-chalkon $C_{14}H_{14}O_1=CH_2\cdot C_4H_4\cdot C(OH)$: $CH\cdot CO\cdot C_6H_5$ ist desmotrop mit 4-Methyl-dibenzoylmethan, E II 7, 702.
- ω- [α-Methoxy-4-methyl-benzyliden] acetophenon, β-Methoxy-4-methyl-chalkon $C_{17}H_{16}O_2=CH_3\cdot C_6H_4\cdot C(O\cdot CH_2):CH\cdot CO\cdot C_6H_5$. B. Durch Kochen von α-Brom-4-methyl-chalkon mit Natriummethylat-Lösung (Weygand, A. 459, 112). Hellgelbes zähes Öl von angenehmem Geruch. Siedet im Hochvakuum bei 145—150°. Liefert bei der Ozonspaltung in Chloroform Benzoesäure und p-Toluylsäure-methylester (W., A. 459, 122). Beim Erwärmen

mit wenig Methanol und einigen Tropfen konz. Salzsäure sowie beim Kochen mit Risessig erhält man 4-Methyl-dibenzoylmethan vom Schmelzpunkt 84° (W., A. 459, 113). Gibt beim Kochen mit Hydroxylamin in sehr verdünnter methylalkoholischer Natronlauge 5-Phenyl-3-p-tolyl-isoxazol (W., BAUER, A. 459, 140).

ω-[α-Äthoxy-4-methyl-benzyliden]-acetophenon, β-Äthoxy-4-methyl-chalkon $C_{18}H_{18}O_2 = CH_3 \cdot C_6H_4 \cdot C(O \cdot C_2H_5) : CH \cdot CO \cdot C_6H_8$. F: 91° (WEYGAND, A. 472, 178). Krystallisation unterkühlter Schmelzen: W.

5. 1-[2-Oxy-phenyl]-3-p-tolyl-propen-(1)-on-(3), p-Tolyl-[2-oxy-styryl]-keton, $4-Methyl-\omega-salicyliden-acetophenon$, 2-Oxy-4'-methyl-chalkon $C_{10}H_{14}O_2=CH_3\cdot C_0H_4\cdot CO\cdot CH\cdot CH\cdot C_0H_4\cdot OH$ (H 196). Liefert mit Phenylmagnesium-bromid in Äther 4-Phenyl-2-p-tolyl-chromanol-(2) (s. nebenstehende Formel; Syst. Nr. 2392) (Löwenbein, Pongracz, Spiess, B. 57, 1522).

6. 1-[4-Oxy-phenyl]-3-p-tolyl-propen-(1)-on-(3), 4-Methyl- ω -[4-oxy-benzyliden]-acetophenon, 4-Oxy-4'-methyl-chalkon $C_{16}H_{14}O_2=CH_3\cdot C_4H_4\cdot CO\cdot CH\cdot C_4H_4\cdot OH.$

4-Methyl- ω -anisyliden-acetophenon, 4-Methoxy-4'-methyl-chalkon $C_{17}H_{14}O_{2}=CH_{3}\cdot C_{6}H_{4}\cdot CO\cdot CH:CH\cdot C_{6}H_{4}\cdot O\cdot CH_{3}$. B. Aus Anisaldehyd und 4-Methyl-acetophenon in wäßrigalkoholischer Natronlauge bei -3° (Stobbe, Bremer, J. pr. [2] 123, 56). — Hell grüngelbe Blättchen (aus Alkohol). F: 94°. — Verharzt bei längerer Belichtung teilweise.

Semicarbazon $C_{18}H_{19}O_2N_3 = CH_3 \cdot C_8H_4 \cdot C(: N \cdot NH \cdot CO \cdot NH_4) \cdot CH \cdot CH \cdot C_8H_4 \cdot O \cdot CH_3$. Krystalle (aus Alkohol). F: 184—186° (Stobbe, Bremer, J. pr. [2] 123, 255). — Wird bei längeren Aufbewahren im Sonnenlicht schwach gelblich. Gibt mit wenig Natriummethylat-Lösung eine gelbe, mit wenig alkoh. Eisenchlorid-Lösung eine dunkelorangefarbene Lösung (St., B., J. pr. [2] 123, 250, 252).

7. 1-Phenyl-3-p-tolyl-propen - (1)-ol-(1)-on-(3), 4-Methyl- ω -[α -oxybenzyliden]-acetophenon, β -Oxy-4'-methyl-chalkon $C_{16}H_{14}O_2=CH_3\cdot C_6H_4\cdot CO\cdot CH:C(OH)\cdot C_8H_5$ ist desmotrop mit 4-Methyl-dibenzoylmethan, E II 7, 702.

4-Methyl-ω- [α-methoxy-benzyliden] - acetophenon, β-Methoxy - 4'-methyl-chalkon $C_{17}H_{16}O_2 = CH_3 \cdot C_eH_4 \cdot CO \cdot CH : C(O \cdot CH_3) \cdot C_6H_5 \cdot B$. Durch Kochen von α-Brom-4'-methyl-chalkon mit Natriummethylat-Lösung (Wevgand, A. 459, 113). — Gelbes, zähflüssiges Öl. Siedet im Hochvakuum bei 140—145°. — Beim Erwärmen mit einigen Tropfen konz. Salzsäure in wenig Methanol sowie beim Kochen mit Eisessig entsteht 4-Methyl-dibenzoylmethan vom Schmelzpunkt 84—85° (W.). Liefert beim Kochen mit Hydroxylamin in sehr verdünnter methylalkoholischer Natronlauge 3-Phenyl-5-p-tolyl-isoxazol (W., Bauer, A. 459, 140).

4-Methyl-ω-[α-äthoxy-benzyliden]-acetophenon, β-Äthoxy-4'-methyl-chalkon $C_{18}H_{18}O_{2}=CH_{3}\cdot C_{6}H_{4}\cdot CO\cdot CH:C(O\cdot C_{2}H_{5})\cdot C_{6}H_{5}\cdot C_{8}$ Existiert in einer stabilen Form (F: 73°), die aus der Schmelze spontan auskrystallisiert, und einer instabilen Form (F: 56—58°), die aus der Schmelze manchmal spontan auskrystallisiert und sich in der Schmelze rasch in die stabile Form umwandelt (Weygand, A. 472, 177). Durch Impfen der Schmelze mit β-Äthoxy-chalkon vom Schmelzpunkt 63° läßt sich die stabile, durch Impfen mit β-Äthoxy-chalkon vom Schmelzpunkt 78° die labile Form erzeugen; umgekehrt bewirken stabiles und labiles β-Äthoxy-4'-methyl-chalkon Ausscheidung von 63°- bzw. 78°-β-Äthoxy-chalkon.

8. 2-Phenyl-1-[2-oxy-phenyl]-buten-(1)-on-(3), a-Phenyl-a-salicyliden-aceton, Methyl-[2-oxy-c-phenyl-styryl]-keton, Salicyliden-methylbenzylketon C₁₆H₁₆O₇ = HO·C₆H₄·CH:C(C₆H₅)·CO·CH₃. Zur Konstitution vgl. Heilbron, Irving, Soc. 1929, 937, 938. — B. Aus Methylbenzylketon und Salicylaldehyd bei Gegenwart von Diathylamin oder besser Piperidin in absol. Alkohol (Dickinson, Soc. 1926, 2237). — Nadeln (aus Alkohol). F: 181° (D.). Unlöslich in Wasser; die Lösung in verd. Natronlauge ist orangefarben (D.). — Färbt sich am Licht olivgrün (D.). Beim Sättigen einer alkoh. Lösung von Salicylidenmethylbenzylketon und 2-Oxy-naphthaldehyd-(1) mit Chlorwasserstoff und Hydrolysieren des Reaktionsproduktes mit

wasserston und Hydrolysieren des Keaktionsproduktes mit wenig verd. Ammoniak erhält man [3-Phenyl-(benzo-1'.2':5.6-pyran)]-[naphtho-1'.2':5.6-pyran]-spiran-(2.2') (s. nebenstehende Formel; Syst. Nr. 2686) (H., I., Soc. 1929, 940).

Methyl-[2-methoxy- α -phenyl-styryl]-keton, [O-Methyl-salicyliden]-methyl-benzylketon C₁₇H₁₈O₂ = CH₃· O· C₄H₄· CH: C(C₆H₅)· CO· CH₂. Eine von Dickinson (Soc. 1926, 2238) so formulierte Verbindung vom Schmelzpunkt 145° ist als 2-Phenyl-1.5-bis-[2-methoxy-phenyl]-pentadien-(1.4)-on-(3) oder 1-Phenyl-2.3-bis-[2-methoxy-phenyl]-cyclopenten-(1)-on-(5) (Syst. Nr. 785) erkannt (Heilbron, Irving, Soc. 1929, 938). — B. Methyl-[2*methoxy- α -phenyl-styryl]-keton entsteht bei der Einw. von Dimethylsulfat und 8%iger Kalilauge auf Methyl-[2-oxy- α -phenyl-styryl]-keton (s. o.) bei 30—40° (D., Soc. 1926, 2238). — Gelbliche Nadeln (aus verd. Alkohol). F: 79° (D.).

228

Carbomethoxysalicyliden-methylbenzylketen $C_{18}H_{18}O_4=CH_2\cdot O_5C\cdot O\cdot C_8H_4\cdot CH:C(C_8H_8)\cdot CO\cdot CH_2$. Nadeln (aus Alkohol). F: 64—65° (Dickinson, Soc. 1926, 2238).

Semicarbazon des Salicyliden-methylbenzylketons $C_{1}H_{17}O_{2}N_{3} = HO \cdot C_{6}H_{4} \cdot CH : C(C_{6}H_{4}) \cdot C(CH_{2}) : N \cdot NH \cdot CO \cdot NH_{2}$. Nadeln. F: 205—206° (Dickinson, Soc. 1926, 2237).

9. 1.1-Diphenyl-cyclobutanol-(3)-on-(2)
$$C_{10}H_{14}O_{2}=(C_{0}H_{5})_{2}C<\frac{CO}{CH_{2}}>CH\cdot OH.$$

3-Äthoxy-1.1-diphenyl-cyclobutanon-(2) $C_{18}H_{18}O_3 = (C_8H_8)_3C < CH \cdot O \cdot C_3H_5$. B. Bei 24-stdg. Erwärmen von Diphenylketen mit Äthylvinyläther im Rohr auf 600 (STAUDINGER, SUTER, B. 53, 1100). — Krystallpulver (aus Petroläther). F: 71—72°. Leicht löslich in Benzol, Chloroform, Essigester und Schwefelkohlenstoff, schwer in Alkohol und Petroläther. — Zerfällt bei gelindem Erwärmen oder längerem Aufbewahren in die Ausgangsstoffe. Liefert beim Behandeln mit alkoh. Kalilauge eine Säure $C_{18}H_{20}O_3$ (F: ca. 116°).

10. $1 - [4 - Oxy - naphthyl - (1) - methylen] - cyclopentanon-(2) <math>C_{16}H_{14}O_{2}$, s. nebenstehende Formel (R = H).

1-[4-Athoxy-naphthyl-(1)-methylen]-cyclopentanon-(2) $C_{18}H_{18}O_{5}$, s. nebenstehende Formel ($R=C_{2}H_{5}$). B. Durch Kondensation von Cyclopentanon mit 4-Athoxy-naphthaldehyd-(1) (VORLÄNDER, Ph. Ch. 165, 242). — F: 197°.

5. Oxy-exo-Verbindungen $C_{17}H_{16}O_2$.

1. 1.5 - Diphenyl - penten - (1) - ol - (5) - on - (3), [β - Oxy - β - phenyl - δ thyl]-styryl - keton, α - [α - Oxy - benzyl] - α - benzyliden - aceton $C_{17}H_{16}O_3=C_6H_5\cdot CH:CH\cdot CO\cdot CH_2\cdot CH(OH)\cdot C_6H_5$.

1-Phenyl-5-[4-chlor-phenyl]-penten-(1)-ol-(5)-on-(3), $[\beta$ -Oxy- β -(4-chlor-phenyl)-athyl]-styryl-keton, α -[4-Chlor- α -oxy-benzyl]- α -benzyliden-aceton $C_{17}H_{18}O_{1}Cl=C_{6}H_{4}$ ·CH: CH·CO·CH₂·CH(OH)· $C_{6}H_{4}$ Cl. B. Bei der Kondensation von Benzylidenaceton mit 4-Chlorbenzaldehyd bei Gegenwart von 0,01—0,1 Mol Natriumhydroxyd in verd. Alkohol bei Zimmertemperatur (Heilbron, Hill, Soc. 1928, 2864, 2867). — Nadeln (aus Benzol). F: 108—109°. — Gibt bei 2-stdg. Kochen mit Acetanhydrid 4-Chlor-distyrylketon.

- 5-Phenylsulfon-1.5-diphenyl-penten-(1)-on-(3), α-[α-Phenylsulfon-benzyl]-α'-benzyliden-aceton C₂₂H₂₀O₂S = C₆H₅·CH:CH·CO·CH₄·CH(C₆H₅)·SO₂·C₆H₅. B. Aus Dibenzyliden-aceton bei der Einw. von Benzolsulfinsäure in Äther oder von mit Schwefeldioxyd gesättigtem Benzol in Gegenwart von Aluminiumchlorid (Vorländer, Friedberg, B. 56, 1149). Nadeln (aus Alkohol). F: 168—170°. Löslich in Chloroform und Benzol, schwer löslich in Alkohol und Eisessig, sehr schwer in Äther und Schwefelkohlenstoff. Löslich in konz. Schwefelsäure mit gelber, beim Ewärmen in Rotbraun übergehender Farbe.
- 2. 1-Phenyl-3-[6-oxy-3.4-dimethyl-phenyl]-propen-(1)-on-(3), 5-Oxy-4-cinnamoyl-o-xylol, 6'-Oxy-3'.4'-dimethyl-chalkon C₁₇H₁₆O₂, Formel I (R = H). B. Beim Erhitzen von 6'-Methoxy-3'.4'-dimethyl-chalkon mit Aluminiumchlorid auf 100—110° (SIMONIS, DANISCHEWSKI, B. 59, 2918; vgl. v. AUWERS, RISSE, B. 64 [1931], 2221). Orange-gelbe Blättchen. F: 116° (S., D.). Schwer löslich in Alkohol (S., D.). Gibt bei der Einw. von cs. 1%iger wäßrig-alkoholischer Natronlauge geringe Mengen 6.7-Dimethyl-flavanon (S., D.; vgl. v. Au., R.).

6'-Methoxy-3'.4'-dimethyl-chalkon C₁₈H₁₈O₂, Formel I (R = CH₃). B. Durch Kendensation von 4-Methoxy-0-xylol mit Zimteäurechlorid in Gegenwart von 1 Mol Aluminiumchlorid in Schwefelkohlenstoff anfangs bei 15°, zuletzt bei 50° (Simonis, Danischewski, B. 50, 2918; vgl. v. Auwers, Resse, B. 64 [1931], 2218, 2221). — Gelbe Prismen (aus Ligroin). F: 78° (S., D.). — Liefert beim Erhitzen mit Aluminiumchlorid auf 100—110° 6'-Oxy-3'A'-dimethyl-chalkon (S., D.; vgl. v. Au., R.).

- 3. 1 Phenyl 3 [2-oxy-3.5-dimethyl-phenyl]-propen-(1)-on-(3), 4-Oxy-5-cinnamoyl-m-xylol, 2'-Oxy-3'.5'-dimethyl-chalkon $C_{17}H_{16}O_3$, Formel II auf S. 228. B. Bei der Umsetzung von 4-Methoxy-m-xylol mit 1 Mol Zimtsäurechlorid in Gegenwart von 2 Mol Aluminiumchlorid (Simonis, Danischewski, B. 59, 2918). — Orangerote Krystalle (aus Benzin und Petroläther). F: 78°. — Gibt bei der Einw. von verd. Natronlauge 6.8-Dimethyl-flavanon.
- 4. 1.3-Di-p-tolyl-propen-(1)-ol-(1)-on-(3), β -Oxy-4.4'-dimethyl-chalkon $C_{17}H_{16}O_2 = CH_2 \cdot C_2H_4 \cdot CO \cdot CH : C(OH) \cdot C_4H_4 \cdot CH_3$ ist desmotrop mit Di-p-toluylmethan, E H 7, 704.
- 1-Äthoxy-1.3-di-p-tolyl-propen-(1)-on-(3), β -Äthoxy-4.4'-dimethyl-chalkon $C_{19}H_{20}O_2=CH_3\cdot C_0H_4\cdot CO\cdot CH:C(O\cdot C_2H_5)\cdot C_0H_4\cdot CH_3$. Beim Umkrystallisieren des bei der Darstellung erhaltenen Rohproduktes bilden sich Krystalle vom Schmelzpunkt 80-81°, die sich sehr langsam auch aus der unterkühlten Schmelze ausscheiden und sich anscheinend sehr langsam in eine bei 106-107° schmelzende Form umlagern (WEYGAND, A. 472, 178).
- 6 (oder 7)-Oxy-2-benzyl-tetralon-(1) C₁₇H₁₆O₂, Formel III auf S. 228 (R = H). 6 (oder 7)-Methoxy-2-benzyl-tetralon-(1) $C_{18}H_{18}O_2$, Formel III auf S. 228 (R = CH₃). B. Bei der Hydrierung von 6 (oder 7)-Methoxy-2-benzyliden-tetralon-(1) in Gegenwart von Platinmohr in Eisessig (J. D. RIEDEL, D. R. P. 422036; C. 1926 I, 2841; Frdi. 15, 1505). — F: 53—55°.
- 6. 1 Oxy 3 oxo 2.2 dimethyl 1 phenyl indan, 3 Oxy 2.2 dimethyl 3-phenyl-hydrindon (1) $C_{17}H_{16}O_3$, Formel IV (R = H). B. Bei der Einw. von Phenylmagnesiumbromid auf 2.2-Dimethyl-indandion-(1.3) in Ather, neben anderen Produkten (Weiss, Luft, M. 48, 344). — Krystalle (aus Ligroin). F: 139—141°. — Gibt mit Chlorwasserstoff bei Gegenwart von Calciumchlorid in siedendem Benzol 3-Chlor-2.2-dimethyl-3-phenyl-hydrindon-(1).
- 3 Methoxy 2.2 dimethyl 3 phenyl-hydrindon-(1) $C_{18}H_{18}O_2$, Formel IV ($R=CH_3$). Beim Koohen von 3-Chlor-2.2-dimethyl-3-phenyl-hydrindon-(1) mit Methanol (Weiss, Luff, M. 48, 344). — Krystalle (aus Methanol). F: 160—162°.

6. Oxy-oxo-Verbindungen $C_{18}H_{18}O_{2}$.

4'-Methoxy-4-cyclopentyl-benzophenon $C_{19}H_{10}O_2=C_8H_9\cdot C_9H_4\cdot CO\cdot C_9H_4\cdot O\cdot CH_8$. B. Aus Phenylcyclopentan und Anisoylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (v. Braun, Kühn, B. 69, 2561). — Nicht rein erhalten. Gelbes Ol. Siedet unter 1 mm Druck bei 200-210°.

7. Oxy-oxo-Verbindungen $C_{19}H_{20}O_2$.

1. 1-Phenyl - 3-[4-oxy-2-methyl-5-isopropyl-phenyl]-propen-(1)-on-(3), 4'-Oxy-2'-methyl-5'-isopropyl-chalkon, 4-Cinnamoyl-thymol, Thymyl-styrylketon C₁₂H₂₀O₂, Formel V. B. Durch Kondensation von 4-Acetyl-thymol mit Benzaldehyd in alkoh. Alkalilauge (Rosenmund Schulz, Ar. 265, 310). Aus Zimtsäure-thymylester durch 48-stdg. Einw. von Aluminiumchlorid in Nitrobengl unterhalb 20° (R., Schnure, A. 460, 80). — Cellbliche Nedell (aus Benzald Limeia). Et 4870 (D. Schnure, A. 460, 80). — Gelbliche Nadeln (aus Benzol + Ligroin). F: 167° (R., Schulz).

$$IV. \underbrace{\begin{array}{c} CO \\ C(CH_3)_3 \\ C(O \cdot E) \cdot C_6H_5 \end{array}}_{C(O+E) \cdot C_6H_5} V. \underbrace{\begin{array}{c} CH_3 \\ CO \cdot CH : CH \cdot C_6H_5 \\ CH(CH_3)_3 \end{array}}_{CH(CH_3)_3} \underbrace{\begin{array}{c} CH_3 \\ VI. \end{array}}_{CO \cdot CH : CH \cdot C_6H_5}$$

2. 1 - Phenyl - 3 - [4-oxy-5-methyl-2-isopropyl-phenyl]-propen-(1)-on-(3), 4-Cinnamoyl-carvacrol $C_{10}H_{10}O_{1}$, Formel VI (R = H).

4-Cinnamoyl-carvacrol-methyläther, 4'-Methoxy-5'-methyl-2'-isopropyl-chalkon $C_{20}H_{22}O_{2}$, Formel VI (R = CH₃). B. Aus 4-Acetyl-carvacrolmethyläther und Benzaldehyd in Kalilauge bei 0-5° (BOGERT, GOLDSTEIN, Am. Perfumer 28, 524; C. 1929 II, 3128). — Gelbe Nadeln (aus Alkohol). F: 72-73°.

Oxim $C_{20}H_{22}O_2N = CH_3 \cdot O \cdot C_6H_2(CH_3)(C_2H_7) \cdot C(:N \cdot OH) \cdot CH : CH \cdot C_6H_5$. Nadeln. F: 201° bis 202° (korr.) (Bogert, Goldstein, Am. Perfumer 28, 524; C. 1929 II, 3128).

8. Oxy-oxo-Verbindungen $C_{20}H_{22}O_2$.

Diphenyi - hexahydrobenzoyi - carbinol, Cyclohexyl - $[\alpha$ -oxy - benzhydryi]-heton $C_{20}H_{12}O_3=C_0H_{11}\cdot CO\cdot C(C_0H_5)_3\cdot OH$. B. Durch 24-stdg. Kochen von Benzilsäure-methylester mit Cyclohexylmagnesiumbromid in Ather + Dibutyläther (GAUBREE, MARVEL, Am. Soc. 50, 1881). — Krystalle (aus Ligron). F: 112,5° (korr.). — Wird durch siedende alkoholische Kalilauge in Hexahydrobenzoesaure und Diphenylcarbinol gespalten.

k) Oxy-oxo-Verbindungen C_nH_{2n-20}O₂.

1. Oxy-oxo-Verbindungen CuH100.

1. [4-Oxy-phenyl]-benzoyl-acetylen $C_{18}H_{10}O_2 = C_4H_4 \cdot CO \cdot C : C \cdot C_4H_4 \cdot OH$.

[4-Methexy-phenyl]-benzoyl-acetylen, Anisylbenzoylacetylen $C_{16}H_{13}O_3=C_4H_5\cdot CO\cdot C:C\cdot C_6H_4\cdot O\cdot CH_3$ (E I 583). Bei der Darstellung aus 4-Methoxy-phenylacetylen-natrium und Benzoylchlorid (E I 583) läßt sich die Ausbeute durch Destillation im Hochvakuum verbessern (Weygand, Bauer, A. 459, 141). — Siedet im Hochvakuum bei 185°. — Gibt in siedendem Methanol mit Hydroxylaminhydrochlorid allein 3-Phenyl-5-[4-methoxy-phenyl]-isoxazol, in Gegenwart von Natriumacetat oder Soda 5-Phenyl-3-[4-methoxy-phenyl]-isoxazol.

2. Phenyl-[4-oxy-benzoyl]-acetylen $C_{15}H_{10}O_2 = C_6H_5 \cdot C \cdot CO \cdot C_6H_4 \cdot OH$.

Phenyl-[4-methoxy-benzoyl]-acetylen, Phenyl-anisoyl-acetylen $C_{18}H_{13}O_3 = C_8H_8 \cdot C : C \cdot CO \cdot C_8H_4 \cdot O \cdot CH_3$ (H 199; E I 583). B. Aus Phenylacetylennatrium und Anisoylchlorid in absol. Ather unter Eiskühlung (Weygand, Bauer, A. 459, 141). — F: 90—91°. — Gibt in siedendem Methanol mit Hydroxylaminhydrochlorid allein 5-Phenyl-3-[4-methoxy-phenyl]-isoxazol, in Gegenwart von Natriumacetat oder Soda 3-Phenyl-5-[4-methoxy-phenyl]-isoxazol,

3. 10 - Oxy - 9 - formyl - anthracen, 10 - Oxy - anthracen - aldehyd - (9) $C_{15}H_{10}O_2$, Formel 1.

I. OH CHS

OH O'B

10-Methoxy-anthracen-aldehyd-(9) C₁₆H₁₂O₂

= CH₂·O·C₁₄H₃·CHO. B. Beim Behandeln

von Methylanthranyläther mit wasserfreier Blausäure, Chlorwasserstoff und Aluminiumchlorid in Benzol, erst unter Eiskühlung, dann bei 35—40° (KBOLLFFEIFFER, A. 462, 63). — Goldglänzende Nadeln. F: 165°. Löst sich in konz. Schwefelsäure mit gelbstichig roter Farbe. — Liefert bei der Oxydation Anthrachinon. Beim Erhitzen mit 10 Tln. konz. Salzsäure entstehen Anthron, Dihydrodianthron, Anthrachinon und Ameisensäure. Beim Erhitzen mit Eisessig unter Zusatz von etwas konz. Salzsäure erhält man Dihydrodianthron. — Das Phenylhydrazon schmilzt bei 138—139°.

10-Äthoxy-9-formyl-anthracen, 10-Äthoxy-anthracen-aldehyd-(9) $C_{17}H_{14}O_{2}=C_{2}H_{5}\cdot O\cdot C_{14}H_{6}\cdot CHO$. B. Analog der vorangehenden Verbindung (Krollpfeiffer, A. 462, 64). — Grünstichig gelbe Nadeln (aus Alkohol). F: 93—94°.

10 - Methoxy - anthracen - aldoxim - (9) $C_{16}H_{13}O_9N=CH_3\cdot O\cdot C_{14}H_8\cdot CH:N\cdot OH.$ Gelbe Blättchen (aus Alkohol). F: 142—143° (Korllpfeiffer, A. 462, 64).

2. Oxy-oxo-Verbindungen $C_{16}H_{19}O_2$.

1. Phenyl-[6-oxy-3-methyl-benzoyl]-acetylen, 2-Phenylpropiolyl-p-kresol $C_{11}H_{12}O_{1}$, Formel II (R = H).

Phenyi - [6 - methoxy - 3 - methyi - benzoyl] - acetylen, 2 - Phenyipropiolyi -p- kresol-methyiäther $C_{17}H_{16}O_2$, Formel II ($R=CH_3$). B. Aus äquimolekularen Mengen Phenyipropiolsäurechlorid, p-Kresolmethyläther und Aluminiumchlorid in Schwefelkohlenstoff unter starker Kühlung (Simonis, Lear, B. 59, 2913). — Hellgelbe Krystalle (aus Alkohol). F: 62°. Sehr leicht löslich in Schwefelkohlenstoff, Eisessig und Benzol, schwer in kaltem Alkohol und Benzin. — Liefert beim Behandeln mit 1 Mol Aluminiumchlorid in Schwefelkohlenstoff β -Chlor-6'-oxy-3'-methyl-chalkon $C_6H_5\cdot CCl: CH\cdot CO\cdot C_6H_3(OH)\cdot CH_3$ (S. 226).

2. 5 - Oxy - 2 - benzy-liden-indanon-(1), 5 - Oxy - 2 - benzy-2 - benzyliden - hydrindon-(1) $C_{16}H_{12}O_2$, Formel III
(R = H).

R - Oxy - 2 - benzyCH₂
COC: OH · C_6H_5 OH

OH

5-Methoxy-2-benzyliden-indanon-(1), 5-Methoxy-2-benzyliden-hydrindon-(1) C₁₇H₁₄O₂, Formel III (R = CH₂). B. Aus 5-Methoxy-hydrindon-(1) und Benzaldehyd in alkoh. Kalilauge (Brand, Hoen, J. pr. [2] 115, 376). — Fluorescierende Nadeln (aus Alkohol). F: 176°,

3. 7-Oxy-2-benzyliden-indanon-(1), 7-Oxy-2-benzyliden-hydrindon-(1) C₁₈H₁₂O₃, Formel IV. B. Aus 7-Oxy-hydrindon-(1) und Benzaldehyd in siedender alkoholischer Salzsäure (MAYER, VAN ZÜTPHEN, B. 57, 202, 618). — Krystalle (aus Ligroin oder Methanol). F: 147—150°. Färbt sich beim Übergießen mit sehr verdünnter Alkalilauge gelb, geht aber auch beim Kochen nicht in Lösung.

CO · CHa

4. 10 - Oxy - 9 - acetyl - anthracen, Methyl - [10 - oxy - anthramyl-(9)]-keton C₁₆H₁₈O₂, s. nebenstehende Formel.

10 - Methoxy - 9 - acetyl - anthracen, Methyl - [10 - methoxy-anthranyl-(9)]-keton $C_{17}H_{14}O_2=CH_2\cdot O\cdot C_{14}H_2\cdot CO\cdot CH_2$. B. Durch Kochen von Methyl-[10-methoxy-anthranyl-(9)]-ketimid-hydrochlorid mit Wasser oder besser durch ÓН Kochen des freien Ketimids mit starker Essigsäure (Krollpfeiffer, B. 56, 2363). — Gelbliche Blättchen (aus Methanol). F: 182—183°. — Liefert beim Erhitzen mit Eisessig und etwas konz. Salzsäure Anthron. Wird durch konz. Schwefelsäure gelbstichig rot gefärbt und unter

Umwandlung in Anthron (?) mit schwach gelber Farbe gelöst. Methyl-[10-methoxy-anthranyl-(9)]-ketimid $C_{17}H_{16}ON = CH_8 \cdot O \cdot C_{14}H_8 \cdot C(:NH) \cdot CH_3$ B. Das Hydrochlorid entsteht beim Einleiten von Chlorwasserstoff in eine mit Aluminiumehlorid und Acetonitril versetzte Lösung von Methyl-anthranyl-ather in Benzol erst bei 0°, zuletzt bei " ca. 35° und Zersetzen des Reaktionsprodukts mit Eis und konz. Salzsäure (Krollpfeiffer, B. 56, 2362). — Blaßgelbes, krystallines Pulver (aus verd. Methanol). F: 145—146°. Sehr leicht löslich in fast allen organischen Lösungsmitteln, schwer in Petroläther. — Gibt bei kurzem Kochen mit 2n-Salzsäure Anthron, bei 8-stdg. Kochen mit starker Essigsäure Methyl-[10-methoxy-anthranyl-(9)]-keton; das Keton entsteht auch bei mehrstündigem Kochen des Hydrochlorids mit Wasser, neben etwas Anthron. Beim Kochen des freien Imids mit Wasser, 2n-Natronlauge oder Natriumäthylat-Lösung oder des Hydrochlorids mit Natriumacetat und Wasser erfolgt keine Hydrolyse. — Hydrochlorid. Hellgelbe Krystalle. Löslich in Wasser mit gelber Farbe.

3. Oxy-oxo-Verbindungen $C_{17}H_{14}O_{2}$.

- 3-Nitro- ω -[4-methoxy-cinnamyliden]-acetophenon $C_{18}H_{15}O_4N=O_2N\cdot C_6H_4\cdot CO\cdot CH: CH\cdot CH: CH: CH: CH: CG+4_4\cdot O\cdot CH_3$. B. Aus 3-Nitro-acetophenon und 4-Methoxy-zimtaldehyd in alkoholischwäßriger Natronlauge (GIUA, G. 55, 570). Gelbe Nadeln (aus Alkohol). F: 157—158°. Löslich in Alkohol, Benzol, Chloroform, Aceton und Schwefelkohlenstoff, schwer löslich in Petroläther und Äther. Gibt mit konz. Schwefelsäure eine rotviolette Färbung.
- 2. $1 Phenyl 5 [4 oxy phenyl] pentadien (1.3) on (5), 4 Oxy \omega cinn$ amyliden-acetophenon $C_{17}H_{14}O_2 = C_6H_5 \cdot CH \cdot CH \cdot CH \cdot CH \cdot CO \cdot C_6H_4 \cdot OH$.
- 4-[4-Nitro-phenoxy]- ω -cinnamyliden-acetophenon $C_{23}H_{17}O_4N=C_6H_5\cdot CH\cdot CH\cdot CH\cdot CH\cdot CO\cdot C_6H_4\cdot O\cdot C_6H_4\cdot O\cdot C_6H_4\cdot NO_2$. B. Beim Erwärmen von 4-[4-Nitro-phenoxy]-acetophenon mit Zimtaldehyd in Alkohol unter Zusatz von Natriummethylat-Lösung (Dilthey, Mitarb., J. pr. [2] 117, 362). — Citronengelbe Blättchen. F: 138°. Löst sich in konz. Schwefelsaure mit orangeroter Farbe.
- 4.4' Bis cinnamylidenacetyl diphenyläther $C_{34}H_{36}O_3 = (C_6H_5 \cdot CH \cdot CH \cdot CH \cdot CH \cdot CO \cdot C_6H_4)_2O$. B. Aus 4.4'-Diacetyl-diphenyläther und Zimtaldehyd in Natriummet yat-Lösung (DILTHEY, Mitarb., J. pr. [2] 124, 122). — Strohgelbe Krystalle. F: 178—179°. Die Lösung in konz. Schwefelsäure ist orangerot.
- 4 Methoxy ω [2 nitro cinnamyliden] acetophenon $C_{18}H_{15}O_4N = O_2N \cdot C_6H_4 \cdot CH : CH$ CH:CH·CO·C, H₄·O·CH₃. B. Aus 2-Nitro-zimtaldehyd und 4-Methoxy-acetophenon in alkoh. Natronlauge (PTELFFER, A. 441, 242). — Gelbe Nadeln (aus Acetanhydrid). F: 128°. Leicht löslich in Alkohol, Eisessig und Toluol, schwerer in Äther und Schwefelkohlenstoff. Löslich in konz. Schwefelsäure mit orangeroter Farbe.
- 4 Methexy ω [3 nitro cinnamyliden] acetophenon $C_{12}H_{15}O_4N = O_2N \cdot C_8H_4 \cdot CH \cdot CH \cdot CH \cdot CO \cdot C_9H_4 \cdot O \cdot CH_9$. B. In ziemlich geringer Menge aus 3-Nitro-zimtaldehyd und 4-Methery ω ω oxy-acetophenon in 10% iger alkoholischer Natronlauge bei 150 (Pfeiffer, J. pr. [2] 109, 49). Goldgelbe Nadeln (aus Eisessig). F: 175—176°. Löslich in Benzol, Toluol, Eisessig und Alkohol, schwer löelich in Schwefelkohlenstoff. Die Lösung in konz. Schwefelsaure ist undurchsichtig blutrot und fließt orangegelb ab.
- 4-Methoxy- ω -[4-nitro-cinnamyliden]-acetophenon $C_{18}H_{18}O_4N = O_5N \cdot C_6H_4 \cdot CH \cdot CH \cdot CH \cdot CH \cdot CCH \cdot CO \cdot C_4H_4 \cdot O \cdot CH_3$. B. Aus 4-Nitro-zimtaldehyd und 4-Methoxy-acetophenon in wäßrigalkoholischer Natronlauge (Pfriffer, A. 441, 243). Goldgelbe Nadeln (aus Eisessig). F: 163°. Leicht löslich in Benzol und Eisessig, mäßig in Alkohol und Schwefelkohlenstoff. Löslich in konz. Schwefelsäure mit bordeauxroter Farbe.

- 4.4'- Bis cinnamylidenacetyl diphenylsulfid $C_{24}H_{26}O_2S = (C_6H_5 \cdot CH : CH \cdot CH \cdot CH \cdot CO \cdot C_6H_4)_2S$. B. Aus 4.4'- Discetyl-diphenylsulfid und Zimtaldehyd in Natriummethylat Lösung (DILTHEY, Mitarb., J. pr. [2] 124, 113). Gelbe Prismen (aus Benzol). F: 176°. Die Lösung in konz. Schwefelsäure ist violett.
- 4.4'- Bis cinnamylidenacetyl diphenylselenid $C_{24}H_{26}O_2Se = (C_6H_5 \cdot CH : CH \cdot CH : CH \cdot CC \cdot C_6H_4)_2Se$. B. In cs. 60% iger Ausbeute aus 4.4'-Diacetyl-diphenylselenid und Zimtaldehyd in methylalkoholischer Natroniauge (Dilthey, Mitarb., J. pr. [2] 124, 122). Gelbe Krystalle (aus Chloroform). F: 166° (Zers.). Löslich in konz. Schwefelsäure mit blaustichig violetter Farbe.
- 3. 1.5 Diphenyl pentadien (1.3) ol-(4)-on-(5) $C_{17}H_{14}O_2 = C_0H_5 \cdot CH \cdot CH \cdot CH \cdot CH \cdot COH \cdot CO \cdot C_4H_5$.
- Bis- $[\delta$ -phenyl- α -benzoyl- α . γ -butadienyl]-sulfid, α . α' -Dicinnamyliden-diphenacylsulfid $C_{34}H_{36}O_{2}S = [C_{6}H_{5}\cdot CH\cdot CH\cdot CH\cdot C(CO\cdot C_{6}H_{5})]_{2}S$. B. Aus Diphenacylsulfid und Zimtaldehyd in Alkohol bei Gegenwart von Piperidin (DILTHEY, B. 60, 1405). Gibt eine rote amorphe Verbindung mit 1 Mol Piperidin.
- 4. 1-Phenyl-5-[2-oxy-phenyl]-pentadien (1.4) on (3) , α -Benzyliden- α' -salicyliden-aceton, 2-Oxy-dibenzylidenaceton $C_{17}H_{14}O_2=C_0H_3\cdot CH:CH\cdot CO\cdot CH:CH\cdot C_0H_4\cdot OH.$

Nr. 2750), mit Benzoylessigsäureäthylester in Natriumäthylat-Lösung 2-Phenyl4-[2-chlor-cinnamoylmethyl]-1.4-chromen-carbonsäure-(3)-äthylester (Formel II; Syst. Nr. 2619). — Natriumsalz. Rote Krystalle.

I. HC C CO CH : CH · CoH 4C1

CH : CH · CCO CH : CH · CoH 4C1

- 3'-Chlor-2-oxy-dibenzylidenaceton, 3'-Chlor-2-oxy-distyrylketon $C_{17}H_{19}O_3Cl=C_6H_4Cl$ CH:CH:CO:CH:CH:C $_6H_4$:OH. B. Analog der vorangehenden Verbindung (Heilbein, Hill, Soc. 1927, 922). Goldgelbe Tafeln (aus Benzol); existiert auch in einer grünen Modifikation. F: 142—143° (unter Zersetzung und Grünfärbung). Reagiert mit Acetessigester analog der vorangehenden Verbindung. Natriumsalz. Schwarze Tafeln.
- 4'-Chlor-2-oxy-dibenzylidenaceton, 4'-Chlor-2-oxy-distyrylketon $C_{17}H_{18}O_2Cl = C_0H_4Cl$ ·CH:CH:CO·CH:CH:C H_2 CH. B. Analog den vorangehenden Verbindungen (Helleron, Hill, Soc. 1927, 922). Blaßgelbe Tafeln (aus Benzol). F: 152° (unter Zersetzung und Grünfärbung). Reagiert mit Acetessigester analog den vorangehenden Verbindungen.
- 4'-Chlor-2-methoxy-dibenzylidenaceton, 4'-Chlor-2-methoxy-distyrylketon $C_{18}H_{15}O_3Cl=C_4H_4Cl\cdot CH:CH\cdot CO\cdot CH:CH\cdot C_4H_4\cdot O\cdot CH_3$. B. Aus dem Natriumsalz des 4'-Chlor-2-oxy-distyrylketons und Methyljodid in siedendem Aceton (Heilbron, Hill, Soc. 1927, 923). Gelbe Nadeln (aus wäßr. Aceton). F: 74—75°.
- 5. 1-Phenyl-5-[4-oxy-phenyl]-pentadien-(1.4)-on-(3), α -Benzyliden- α' -[4-oxy-benzyliden]-aceton, 4-Oxy-dibenzylidenaceton $C_{17}H_{14}O_3=C_4H_5\cdot CH:CH\cdot CO\cdot CH:CH\cdot C_4H_4\cdot OH.$
- 4-Methoxy-dibenzylidenaceton, α -Benzyliden- α -anisyliden-aceton, Benzal-anisal-aceton $C_{18}H_{16}O_2=C_6H_5\cdot CH:CH\cdot CO\cdot CH:CH\cdot C_6H_4\cdot O\cdot CH_2$ (H 200; E I 583). Die Lösung in könz. Schwefelsäure ist blutrot und fließt tief orangerot ab (Pfelffer, J. pr. [2] 109, 47). Gibt mit Malonsäuredimethylester in Methanol bei 14-stündigem Koohen mit Piperidin [α -Phenyl- β -(4-methoxy-cinnamoyl)-āthyl]-malonsäuredimethylester (Syst. Nr. 1460) und 2-Phenyl-6-[4-methoxy-phenyl]-cyclohexanon-(4)-dicarbonsäure-(1.1)-dimethylester (Syst. Nr. 1460); bei kurzem Koohen mit Natriummethylat-Lösung erhält man nur die letztgenannte Verbindung (Kohler, Dewey, Am. Soc. 46, 1274, 1275).
- 2'-Chlor-4-methoxy-dibenzylidenaceton, α -[2-Chlor-benzyliden]- α '-anisyliden-aceton $C_{12}H_{13}O_2Cl=C_0H_4Cl\cdot CH:CH\cdot CO\cdot CH:CH\cdot C_0H_4\cdot O\cdot CH_2$. B. Aus Anisylidenaceton und 2-Chlor-benzaldehyd in Gegenwart von Alkali (DILTHEY, RAUCHHAUPT, B. 57, 309). Gelbe

Krystalle (aus Alkohol). F: 109°. — 2 C₁₈H₁₅O₂Cl+FeCl₂. Tiefviolette Nadeln. F: 155—156° (Zers.).

- 2'- Nitro 4 methoxy dibenzylidenaceton, α [2 Nitro benzyliden] α '- anisyliden-aceton $C_{12}H_{15}O_4N = O_2N \cdot C_6H_4 \cdot CH : CH \cdot CO \cdot CH : CH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Aus Anisylidenaceton und 2-Nitro-benzaldehyd in wäßrig-alkoholischer Natronlauge (Pfeiffer, J. pr. [2] 109, 47). — Grünlichgelbe Blättchen (aus Alkohol). F: 124°. Löslich in Eisessig, Chloroform, Methanol, Alkohol und Toluol. Löslich in konz. Schwefelsäure mit orangeroter Farbe; die Lösung in geschmolzener Trichloressigsäure ist orangerot und fließt orangegelb ab. — Färbt sich am Licht orange. Liefert bei der Reduktion mit Zinn(II)-chlorid und Chlorwasserstoff in Eisessig 2-[4-Methoxystyryl]-chinolin (Pr., J. pr. [2] 109, 57).
- 3'-Nitro-4-methoxy-dibenzylidenaceton, α -[3-Nitro-benzyliden]- α '-anisyliden-aceton $C_{18}H_{18}O_4N=O_4N\cdot C_6H_4\cdot CH\cdot CH\cdot CH\cdot CH\cdot C_6H_4\cdot O\cdot CH_3$. B. Analog der vorangehenden Verbindung (Pfelffer, J. pr. [2] 109, 48). Gelbe Krystalle (aus Toluol). F: 159—160°. Leicht löslich in Alkohol, Methanol, Chloroform, Toluol und Eisessig. Verhält sich gegen konz. Schwefelsäure und gegen Trichloressigsäure wie die vorangehende Verbindung.
- 4'-Nitro-4-methoxy-dibenzylidenaceton, α -[4-Nitro-benzyliden] - α '-anisyliden-aceton $C_{18}H_{18}O_4N = O_2N \cdot C_6H_4 \cdot CH \cdot CH \cdot CO \cdot CH \cdot CH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Analog den vorangehenden Verbindungen (Pfeisfer, A. 441, 241). Gelbe Blättchen (aus Eisessig). F: 185—186°. Leicht löslich in Alkohol, Methanol, Eisessig und Chloroform, schwer in Äther. Löst sich in konz. Schwefelsaure mit undurchsichtig blutroter, in geschmolzener Trichloressigsaure mit orangeroter Farbe.
- 6. 6 (oder 7) Oxy 1 oxo 2 benzyliden 1.2.3.4 tetrahydro naphthalin,6 (oder 7)-Oxy-2-benzyliden-tetralon-(1) $C_{17}H_{14}O_2$, Formel I ($\check{R}=H$).
- 6(oder 7)-Methoxy-2-benzyliden-tetralon-(1) $C_{18}H_{16}O_{9}$, Formel I ($R=CH_{3}$). B. Bei der Kondensation von 6 (oder 7)-Methoxy-tetralon-(1) mit Benzaldehyd in Natriummethylat-Lösung (J. D. RIEDEL, D. R. P. 422036; C. 1926 I, 2841; Frdl. 15, 1505). Rötliche Tafeln (aus Methanol). F: 99-101°.
- 7. 7-Oxy-4-methyl-2-benzyliden-hydrindon-(1) $C_{17}H_{14}O_{27}$, Formel II (E I 584). Natriumsalz. Gelb, sehr schwer löslich (Krollpfeiffer, Schultze, B. 57, 601).

I. R.O
$$CH_3$$
 CH_3 CH_5 CH_5

8. 10-Oxy-9-propionyl-anthracen, Athyl-[10-oxy-anthranyl-(9)]-keton $C_{17}H_{14}O_{2}$, Formel III.

Athyl-[10-methoxy-anthranyl-(9)]-ketimid $C_{18}H_{17}ON = CH_8 \cdot O \cdot C_{14}H_8 \cdot C(:NH) \cdot C_2H_5$. Hydrochlorid C18H17ON + HCl. B. Aus Methyl-anthranyl-ather, Propionitril und Chlorwasserstoff in Gegenwart von Aluminiumchlorid in Benzol erst bei 0°, zuletzt bei 35° (Keollpfeiffer, A. 462, 57). Gelbliche Blättchen.

Acetylderivat $C_{50}H_{19}O_{5}N = CH_{5} \cdot O \cdot C_{14}H_{5} \cdot C(:N \cdot CO \cdot CH_{5}) \cdot C_{2}H_{5}$. B. Beim Kochen von Athyl-[10-methoxy-anthranyl-(9)]-ketimid-hydrochlorid mit Acetanhydrid (Keollefferer, A. 462, 57). — Schwach bläulich fluorescierende Krystalle (aus Alkohol). F: 201—202°.

4. Oxy-oxo-Verbindungen $C_{16}H_{14}O_{2}$.

5-[4-Methoxy-cinnammoyl]-hydrinden $C_{19}H_{18}O_{2}$, s. nebenstehende Formel. B. Aus 5-Acetyl-hydrinden CH₃ O C₆H₄ CH:CH CO und Anisaldehyd in wäßrig-alkoholischer Natronlauge (Borsche, Pommes, B. 54, 109). — Gelbe Krystalle (aus Alkohol). F: 92-93°.

5. Oxy-oxo-Verbindungen $C_{10}H_1O_2$.

1 - [α - Phenyisulton - benzyl] - 3 - benzyliden - cyclopentanon - (2) $C_{25}H_{22}O_8S=C_8H_6\cdot CH:C\cdot CO$ CH·CH(SO₂·C₆H₆)·C₆H₅. B. Aus 1.3-Dibenzyliden-cyclopentanon-(2) durch

H.C.CH. Behandlung mit Benzolsulfinsäure in Äther oder mit Schwefeldioxyd und Benzol in Gegenwart von Aluminiumchlorid (Vorländer, Friedberg, B. 56, 1150). — Krystalle (aus Alkohol). F: 155°.

6. Oxy-exe-Verbindungen C₁₀H₁₀O₂.

H₂C·CH₂·CH₂.

B. Durch längeres Schütteln von 1-Benzyliden-cyclo-hexanon-(2) mit 1 Mol Benzaldehyd in verd. Natronlauge (Vorländer, Kunze, B. 59, 2082). — Blaßgelbe Krystalle (aus absol. Alkohol). F: 102—103° (korr.). — Ist gegen verdünnte wäßrige Natronlauge beständig; beim Versetzen der alkoh. Lösung mit etwas Natronlauge entsteht 1.3-Dibenzyliden-cyclohexanon-(2), das auch bei längerer Einw. von Acetanhydrid bei Zimmertemperatur erhalten wird.

7. Oxy-oxe-Verbindungen CaoHsoO2.

Cerin C₂₀H₃₀O₂. Zur Zusammensetzung und Konstitution vgl. Drake, Jacobsen, Am. Soc. 57 [1935], 1570; D., Shrader, Am. Soc. 57, 1854; D., Campbell, Am. Soc. 58 [1936], 1681; D., Haskins, Am. Soc. 58, 1684; D., Wolfe, Am. Soc. 61 [1939], 3074; 62 [1940], 3020; Ruzioka, Jeger, Ringnes, Helv. 27 [1944], 972. — V. Im Kork (Thoms, P. C. H. 39 [1898], 699; Istrati, Ostrogovich, C. r. 128 [1899], 1581; vgl. auch Zetzsche, Sondereger, Helv. 14 [1931], 636; Z., Lüscher, J. pr. [2] 150 [1938], 68; ältere Literatur s. bei C. Wehmer, Die Pflanzenstoffe, 2. Aufl., Bd. I [Jena 1929], S. 224); zur Isolierung extrahiert man mit Chloroform (Kügler, Ar. 222 [1884], 226; I., O.) oder Äthvlacotat (Drake, Jacobsen, Am. Soc. 57, 1570) und trennt von Friedelin (E II 7, 316) durch fraktionierte Krystallisation aus Chloroform, worin Cerin schwerer löslich ist (I., O.). — Nadeln (aus Essigester, Benzol oder Chloroform oder durch Sublimation im Hochvakuum). F: 249° (Thoms), 250—254° im offenen Röhrehen (Ruzioka, Jeger, Ringnes, Helv. 27, 980), 250—256° (Zets.) (Drake, Sheader, Am. Soc. 57, 1857). [α]_D: —41,2° (Chloroform; c = 1) (Ru., J., Ri.); [α]_{sec.}1: —44,5° (Chloroform; c = 1) (D., Jacobsen, Am. Soc. 57, 1573). 1g löst sich bei 23° in 302 cm³, bei Siedetemperatur in 89 cm² Chloroform, bei 26° in 1353 cm³, bei Siedetemperatur in 429 cm² 99 %igem Alkohol (Istrati, Ostbogovoe). — Gibt mit Tetranitromethan, konz. Schwefelsäure und Eisenchlorid (Ru., Je., Ri.) und mit Sterinreagenzien (D., Ja., Am. Soc. 57, 1571) keine Farbreaktionen. Die Lösung in Acetanhydrid gibt mit rauchender Schwefelsäure eine rote Färbung (I., O.; D., Ja.).

1) Oxy-oxo-Verbindungen $C_nH_{2n-22}O_2$.

1. Oxy-oxo-Verbindungen C17H18O2.

1. 2-Oxy-1-benzoyl-naphthalin, Phenyl- $\{2-oxy-naphthyl-(1)\}$ -keton, 1-Benzoyl-naphthol- $\{2\}$ C₁₇H₁₂O₂, s. nebenstehende Formel (H 207 als x-Benzoyl-naphthol- $\{2\}$ beschrieben). Zur CO · CoH 5 OH Konstitution vgl. DISCHENDORFER, DANZIGER, M. 48, 322. — B. Aus β -Naphthol und Benzotrichlorid in konz. Schwefelsäure bei gewöhnlicher Temperatur (Ges. f. chem. Ind. Basel, D.R.P. 378908; C. 1923 IV, 593; Frdl. 14, 469) oder in Natronlauge bei 60° (Ges. f. chem. Ind. Basel, D.R.P. 418034; C. 1925 II, 2095; Frdl. 15, 299). In 80%iger Ausbeute durch Kochen von Benzoesäure- β -naphthylester mit 1 Teil Aluminiumchlorid in Tetrachlorithan (I. G. Farbenind., D.R.P. 453280; Frdl. 16, 1405). In geringer Menge neben Benzoesaureäthylester beim Erwärmen einer mit Chlorwasserstoff gesättigten Mischung von β -Naphthol, Benzonitril. Zinko orid und Ather unter Druck auf 60° und Zersetzen des Reaktionsprodukts mit Eis (HOUBEN, FISCHER, B. 60, 1777). Bildung aus β -Naphthol-methyläther s. im folgenden Artikel. — Darstellung aus β -Naphthol, Benzoylchlorid und Aluminiumchlorid: Dischendorfer, Danziger, M. 48, 335. - Leicht löslich in Schwefelkohlenstoff, Ather, Chloroform, Pyridin und Benzol und in heißem Alkohol und Eisessig mit gelber Farbe; löslich in konz. Schwefelsäure mit rötlicher, in verd. Natronlauge mit gelber Farbe (DI., Da.). — Liefert beim Erhitzen mit Aluminiumchlorid auf 150° (Pieroni, R. A. L. [6] 9, 423) bzw. auf 200° (Jaccard, Dissert. [T. H. Zürich 1928], S. 28) oder beim Verschmelzen mit Natriumchlorid und Aluminiumchlorid bei 140-150° (I. G. Farbenind.) 4-Oxy-benzanthron (S. 238). — Das Natriumsalz und das Kaliumsalz bilden orangegelbe Prismen (JACC.).

2 - Methoxy - 1 - benzoyl - naphthalin, Phenyl-[2-methoxy-naphthyl-(1)]-keton $C_{18}H_{14}O_3=C_8H_5\cdot CO\cdot C_{10}H_4\cdot O\cdot CH_3$. Neben geringeren Mengen 2-Benzoyl-naphthol-(1) durch Kondensation von β -Naphthol-methyläther mit Benzoylchlorid in Schwefelkohlenstoff in Gegenwart von Aluminiumchlorid (Jaccard, Dissert. [T. H. Zürich 1928], S. 26; vgl. Fierz-David, J., Helv. 11, 1044). — Blättchen (aus Alkohol). F: 125° (J.). Unter vermindertem Druck unzersetzt destillierbar (J.). Ist in den üblichen organischen Lösungsmitteln beim Erwärmen ziemlich leicht löslich, in der Kälte praktisch unlöslich (J.). Die Lösung in konz. Schwefelsäure ist

- orange (J.). Liefert beim Erhitzen mit Aluminiumchlorid auf 200° 4-Oxy-benzanthron (S. 238) (J.; F.-D., J.).
- 2-Acetexy 1 benzoyl naphthalin C₁₉H₁₄O₃ = C₆H₅· CO·C₁₀H₆· O·CO·CH₃. B. Durch Kochen von 1-Benzoyl-naphthol-(2) mit Acetanhydrid und Natriumacetat (DISCHENDORFER, DANZIGER, M. 48, 335). Blättchen (aus Alkohol). F: 90—91,5°. Leicht löslich in Äther, Chloroform, Schwefelkohlenstoff, Aceton und Pyridin und in heißem Alkohol und Eisessig. Unlöslich in Natronlauge, löslich in konz. Schwefelsäure mit rötlicher Farbe. Liefert beim Erhitzen auf 140—160° 4-Phenyl-5.6-benzo-cumarin (Syst. Nr. 2471).
- 2. 4-Oxy-1-benzoyl-naphthalin, Phenyl-[4-oxy-naphthyl-(1)]-keton, 4-Benzoyl-naphthol-(1) C₁₇H₁₂O₂, Formel I (E I 586). B. Durch Einw. von Benzotrichlorid auf α-Naphthol in konz. Schwefelsäure, bei Gegenwart von Zinkoxyd in Nitrobenzol oder bei Gegenwart von Kupferpulver in Natriumacetat-Lösung bei gewöhnlicher Temperatur (Ges. f. chem. Ind. Basel, D.R. P. 418033, 418034; C. 1925 II, 2095; Frdl. 15, 299). Aus 4-Benzoyl-naphthol-(1)-sulfonsäure-(2) oder 4-Benzoyl-naphthol-(1)-carbonsäure-(2) beim Erhitzen mit verd. Schwefelsäure unter Druck, aus letztgenannter Säure auch beim Erwärmen mit Dimethylanilin (Ges. f. chem. Ind. Basel, D.R. P. 378908, 378909; C. 1923 IV, 593; Frdl. 14, 469, 470). Beim Kochen des Imid-hydrochlorids (s. u.) mit viel Wasser (HOUBEN, FISCHER, B. 60, 1776). Anwendung zur Darstellung von Azofarbstoffen auf der Faser: Ges. f. chem. Ind. Basel, D.R. P. 393701, 464083; C. 1925 I, 2468; 1928 II, 1267; Frdl. 14, 1028; 16, 931.
- 4-Methoxy-1-benzoyl-naphthalin, Phenyl-[4-methoxy-naphthyl-(1)]-keton $C_{16}H_{14}O_2 = C_0H_5\cdot CO\cdot C_{10}H_4\cdot O\cdot CH_3$. B. In 68% iger Ausbeute beim Kochen von α -Naphthol-methyläther mit Benzoylchlorid und Aluminiumchlorid in Schwefelkohlenstoff (Firrz-David, Jaccard, Helv. 11, 1045). Gelbliche Krystalle (aus Alkohol). F: 82—83°. Im Vakuum unzersetzt destillierbar. Leicht löslich in warmem Methanol und Aceton. Liefert beim Erhitzen mit Aluminiumchlorid auf 100—145° 3-Oxy-1.2-benzo-fluorenon (S. 244) und sehr geringe Mengen 2-Oxy-benzanthron (S. 237).

Phenyl-[4-oxy-naphthyl-(1)]-ketimid $C_{17}H_{13}ON = C_eH_5 \cdot C(:NH) \cdot C_{10}H_6 \cdot OH$. — Hydrochlorid $C_{17}H_{13}ON + HCl$. B. In ca. 30% iger Ausbeute beim Sättigen eines Gemisches aus α -Naphthol, Benzonitril, Zinkchlorid und Äther mit Chlorwasserstoff und 4—5-stdg. Erwärmen auf 60° unter Druck (Houben, Fischer, B. 60, 1775). Gelbe Krystalle. Unlöslich in Aceton, Chloroform, Eisessig, Äther und Benzol, ziemlich leicht löslich in kaltem Wasser; löslich in warmem Pyridin, in verd. Essigsäure und in verd. Alkalilaugen mit gelber Farbe. Gibt mit ca. 20% iger Natronlauge einen orangebraunen Niederschlag. Löst sich in konz. Schwefelsäure unter Entwicklung von Chlorwasserstoff mit tiefgelber Farbe; die Lösung gibt mit Wasser einen gelben Niederschlag.

- 5-Chlor-4-oxy-1-benzoyl-naphthalin, 8-Chlor-4-benzoyl-naphthol-(1) C₁₇H₁₁O₂Cl, Formel II. B. Aus 8-Chlor-naphthol-(1) und Benzotrichlorid in konz. Schwefelsäure bei gewöhnlicher Temperatur (Ges. f. chem. Ind. Basel, D. R. P. 378908; C. 1923 IV, 593; Frdl. 14, 469).—F: 121°.
- 4-0xy-1-[2-chlor-benzoyl]-naphthalin, 4-[2-Chlor-benzoyl]-naphthol-(1) $C_{17}H_{11}O_{1}Cl=C_{6}H_{4}Cl\cdot CO\cdot C_{19}H_{4}\cdot OH$. B. Aus α -Naphthol und 2-Chlor-benzotrichlorid bei Gegenwart von Zinkoxyd in Nitrobenzol bei 100—200 $^{\circ}$ (Ges. f. chem. Ind. Basel, D.R.P. 418033; C. 1925 II, 2095; Frdl. 15, 299). Krystalle (aus Eisessig). Verwendung zur Darstellung von Azofarbstoffen auf der Faser: Ges. f. chem. Ind. Basel, D.R.P. 393701; C. 1925 I, 2468; Frdl. 14, 1028.
- 4-0xy-1-[4-chlor-benzoyl]-naphthalin, 4-[4-Chlor-benzoyl]-naphthol-(1) $C_{17}H_{11}O_2Cl = C_6H_4Cl\cdot CO\cdot C_{10}H_4\cdot OH$. B. Aus α -Naphthol und 4-Chlor-benzotrichlorid in Gegenwart von konz. Schwefelsture in Nitrobenzol bei 100—120° (Ges. f. chem. Ind. Basel, D.R. P. 418033; C. 1925 II, 2095; Frdl. 15, 299). Krystalle (aus Eisessig).
- 3. 1-Oxy-2-benzoyi-naphthalin, 2-Benzoyi-naphthol-(1) C₁₇H₁₂O₂, Formel III. Diacetyibersäureester C₂₁H₁₇O₆B = C₆H₅·CO·C₁₀H₆·O·B(O·CO·CH₆)₂. B. Aus 2-Benzoyi-naphthol-(1) (E I 587) und Pyroboracetat (E II 2, 175) in Acetanhydrid (Dimroth, A. 446, 117).—Hellorangefarbene Prismen.
- 4. 3-Oxy-2-benzoyl-naphthatin, Phenyl-[3-oxy-naphthyl-(2)]-keton, 8-Benzoyl-naphthol-(2) C₁₇H₁₂O₂, Formel IV. B. Aus 3-Oxy-naphthoesăure-(2)-chlorid, Benzol und Aluminiumchlorid bei 70—75° (I. G. Farbenind., D.R.P. 483148; C. 1930 I, 893;

- Frdl. 16, 495). In geringer Menge bei der Umsetzung von 3-Acetoxy-naphthoesäure-(2)-chlorid mit Benzol und Aluminiumchlorid, zuletzt bei 50—60° (Lesser, Kranefuhl, Gad, B. 58, 2122).

 Orangegelbe Krystalle (aus Alkohol + Äther). F: 161—162° (korr.) (L., K., G.; I. G. Farbenind.). KC₁₇ H₁₁O₂. Orangerote Nadeln (L., K., G.). Sehr leicht löslich in Methanol und Alkohol. (Wird durch Wasser hydrolysiert.
- 5. x-Benzoyl-naphthol-(2) C₁₇H₁₂O₂ (H 207). Wird von DISCHENDORFER, DANZIGER M. 48, 322) als 1-Benzoyl-naphthol-(2) (S. 234) formuliert.

2. Oxy-oxe-Verbindungen C₁₈H₁₄O₁.

1. 4-Oxy-1-phenacetyl-naphthalin, Benzyl-[4-oxy-naph-thyl-(1)]-keton, 4-Phenacetyl-naphthol-(1) C₁₈H₁₄O₂, s. nebenstehende Formel. B. In etwa 40% iger Ausbeute beim Sättigen einer Mischung von α-Naphthol, Benzylcyanid, Zinkchlorid und absol. Äther mit Chlorwasserstoff und Zersetzen des Reaktionsprodukts mit Eiswasser (Houben, Fischer, B. 60, 1776). — Krystalle (aus Methanol). F: 185—187°. Löts sich in konz. Sohwefelsäure mit eitronengelber, in nicht zu starker Natronlauge sowie in heißer Sodaldsung mit hellgelber Farbe.

- 2. 1-Phenyl-2- α -naphthyl-äthanol-(1)-on-(2), [α -Oxy-benzyl]- α -naphthyl-keton, Phenyl- α -naphthoyl-carbinol $C_{18}H_{14}O_2=C_{10}H_1\cdot CO\cdot CH(OH)\cdot C_8H_5$. B. Beim Kochen von [α -Brom-benzyl]- α -naphthyl-keton mit methylalkoholischer Kalilauge (Ruggli, Reiner, Helv. 9, 79). Nadeln (aus Alkohol). F: 105—105,5°. Liefert beim Erwärmen mit verd. Natronlauge α -Naphthoesäure.
- 3. 1-Phenyl-2- β -naphthyl-äthanol-(1)-on-(2), [α -Oxy-benzyl]- β -naphthyl-keton, Phenyl- β -naphthoyl-carbinol $C_{18}H_{14}O_2=C_{10}H_7\cdot CO\cdot CH(OH)\cdot C_6H_6$. B. Analog der vorangehenden Verbindung (Ruggli, Reinert, Helv. 9, 76). Krystalle (aus Alkohol). F: 151—152°. Liefert beim Erwärmen mit Chromsäure und Pyridin auf dem Wasserbad Phenyl- β -naphthyl-glyoxal.
- 4. 3-Oxy-2-p toluyl naphthalin, p-Tolyl-[3-oxy-naphthyl-(2)]- keton, 3-p- Toluyl- naphthol-(2) $C_{18}H_{14}O_{1}$, s. nebenstehende Formel. B. Aus 3-Oxy- naphthossäure -(2) chlorid, Toluol und Aluminiumchlorid bei $80-85^{\circ}$ (I. G. Farbenind., D. R. P. 483148; C. 1980 I, 893; Frdl. 16, 495). Gelbe Nadeln (aus verd. Alkohol oder Ligroin). F: 152—153° (unkorr.).

3. Oxy-oxo-Verbindungen C₁₀H₁₆O₂.

1. 1-Phenyl-7-[4-oxy-phenyl]-heptatrien-(1.3.6)-on-(5), α -[4-Oxy-benzy-liden]- α '-cinnamyliden-aceton $C_{19}H_{16}O_3=C_6H_8\cdot CH\cdot CH\cdot CH\cdot CH\cdot CO\cdot CH\cdot CH\cdot C_6H_4\cdot OH$.

(CONANT, Hall, Am. Soc. 49, 3064, 3065). Die Lösung in konz. Schwefelsäure ist rotviolett (vgl. dagegen E I 588) (Pfelffer, J. pr. [2] 109, 50). — Geht beim Erhitzen auf 220° im Kohlendioxydstrom in ein bei 135—140° schmelzendes Harz über (Kreidl, D. R. P. 397603; C. 1924 II, 1412; Frdl. 14, 660; Herzog, Kreidl, Z. ang. Ch. 35, 467). Beim Kochen mit Malonsäuredimethylester in Methanol bei Gegenwart von Natriummethylat oder langsamer in Gegenwart von Piperidin entsteht 2-[4-Methoxy-phenyl]-6-styryl-cyclohexanon-(4)-dicarbonsäure-(1.1)-dimethylester (Syst. Nr. 1461) (Kohler, Dewey, Am. Soc. 46, 1277).

- α Anisyliden α' [2-nitro-cinnamyliden] aceton $C_{20}H_{17}O_4N = O_2N \cdot C_4H_4 \cdot CH \cdot CH \cdot CH \cdot CH \cdot CH \cdot CO \cdot CH : CH \cdot C_9H_4 \cdot O \cdot CH_3$. B. Aus Anisylidenaceton und 2-Nitro-zimtaldehyd in kalter methylalkoholischer Natronlauge (Pfelffer, A. 441, 244). Tiefgelbe Krystalle (aus Acetanhydrid oder Eisessig). F: 126—127°. Sehr leicht löslich in Eisessig, leicht in Alkohol, schwerer in Ather und Schwefelkohlenstoff. Löslich in konz. Schwefelsäure mit tief rotvioletter Farbe.

237

 α -Anisyliden - α' - [4-nitro-cinnamyliden] - aceton $C_{50}H_{17}O_4N = O_2N \cdot C_6H_4 \cdot CH \cdot CH \cdot CH \cdot CH \cdot CO \cdot CH \cdot CH \cdot C_6H_4 \cdot O \cdot CH_5$. Analog den vorangehenden Verbindungen (Pfelffer, A. 441, 245). — Ockergelbe Nadeln (aus Eisessig). F: 197—198°. Leicht löslich in Eisessig und Benzol, schwerer in Alkohol und Schwefelkohlenstoff. Löslich in konz. Schwefelsäure mit tief rotvioletter Farbe.

2. $1-Oxy-2-[\beta-phenyl-propionyl]-naphthalin$, $\beta-Phenäthyl-[1-oxy-naphthyl-(2)]-keton$, 2-Hydro-cinnamoyl-naphthol-(1) $C_{19}H_{16}O_{2}$, s. nebenstehende Formel.

B. Durch Hydrierung von 2-Cinnamoyl-naphthol-(1) in Gegenwart von Platinmohr in Eisessig (Pfeifere, Mitarb., J.pr. [2]

119, 125). — Gelbliche Krystalle (aus Eisessig). F: 98°. Leicht löslich in Alkohol, Eisessig und Toluol. Löst sich in konz. Schwefelsäure mit hellgelber Farbe.

Acetat $C_{21}H_{18}O_3 = CH_2 \cdot CO \cdot O \cdot C_{10}H_4 \cdot CO \cdot CH_2 \cdot CH_2 \cdot C_6H_5$. Nadeln (aus Alkohol). F: 89° bis 90° (Pfeiffer, Mitarb., J. pr. [2] 119, 125).

4. Oxy-oxo-Verbindungen CaoH18O2.

- $\begin{array}{llll} \textbf{1-[2-Oxy-phenyl]-3-[2-chlor-styryl]-cyclohexen-(3)-on-(5)} & C_{20}H_{17}O_2Cl = \\ C_6H_4Cl\cdot CH: CH\cdot C\underbrace{CH_2\cdot CH_3\cdot CH}_{CO}CH_2. & B. & Durch Kochen von 2-[2-Oxy-phenyl]-4-[2-chlor-styryl]-cyclohexen-(4)-on-(6)-carbons&ure-(1)-athylester (Syst. Nr. 1420) mit 20% iger Schwefels&ure und Eisessig (Hellbron, Hill, Soc. 1927, 922). Gelbe Tafeln (aus Essigester). F: 209—210°. \\ \end{array}$
- 1 [2 Oxy phenyi] 3 [3 chlor styryi] cyclohexen (3) on (5) $C_{20}H_{17}O_2Cl = C_0H_4Cl \cdot CH \cdot CCH_2 \cdot CH(C_0H_4 \cdot OH) CH_2$. B. Analog der vorangehenden Verbindung (Heilbron, Hill, Soc. 1927, 922). Gelbe Krystalle (aus Essigester). F: 221°.
- 1 [2 0xy phenyl] 3 [4 chlor styryl] cyclohexen (3) on (5) $C_{20}H_{17}O_2Cl =$ $C_6H_4Cl \cdot CH \cdot CC \cdot CH_2 \cdot CH(C_6H_4 \cdot OH) \cdot CH_2 \cdot B$. Analog den vorangehenden Verbindungen Hellbron, Hill, Soc. 1927, 923). Gelbe Prismen (aus Essigester). F: 176°. [BÄRMANN]

m) Oxy-oxo-Verbindungen $C_nH_{2n-24}O_2$.

1. Oxy-oxo-Verbindungen $C_{17}H_{10}O_2$.

1. 2-Oxy-benzanthron C₁₇H₁₀O₂, s. nebenstehende Formel (E I 589). B. Entsteht als Hauptprodukt beim Schmelzen von Benzanthron mit Kaliumhydroxyd, Kaliumchlorat, Anthrachinon und Wasser bei 250—265⁶ (Perkin, Spencer, Soc. 121, 479). In geringer Menge neben anderen Produkten beim Schmelzen von Benzanthron mit Kaliumhydroxyd und Methanol, Alkohol oder Isopropylalkohol bei 100—105⁶ oder bei höherer Tem-

peratur (Lüttringhaus, Neresheimer, A. 478, 272, 280) oder mit Kaliumhydroxyd, Kaliumchlorat und Wasser bei 230—240° (P., Sp., Soc. 121, 474). Durch Einw. von Natriumnitrit auf 2-Amino-benzanthron in konz. Schwefelsäure bei 0°, Verdünnen mit Wasser und Kochen (P., Sp., Soc. 121, 481). Beim Erhitzen von 2-Anilino-benzanthron mit 50%iger Kalilauge auf 250° (L., N., A. 478, 275). Durch Erhitzen von 3-Oxy-anthron-(9) (S. 214) mit Glycerin und konz. Schwefelsäure auf 150° (BASF, D.R.P. 187495; C. 1907 II, 1367; Frdl. 3, 816; Perkin, Soc. 117, 697, 698) oder mit Acrolein und Eisessig auf Siedetemperatur unter Einleiten von Chlorwasserstoff; Ausbeute ca. 30% (Cross, Perkin, Soc. 1927, 1305).

F: 304° (Lüttringhaus, Neresheimer, A. 478, 275). Löslich in verd. Sodalösung mit

F: 304° (LÜTTRINGHAUS, NERESHEIMER, A. 478, 275). Löslich in verd. Sodalösung mit gelber Farbe und grüner Fluorescenz (L., N.). — Wird durch geschmolzenes Alkali bei 240—250° kaum verändert (PERKIN, SPENCER, Soc. 121, 475). Liefert beim Erhitzen mit Ammoniak (D: 0,88) auf 220—230° im Autoklaven 2-Amino-benzanthron (P., Sr., Soc. 121, 480). — Sulfat C₁₇H₁₉O₂ + H₂SO₄. Scharlachrote Nadeln. Wird durch Wasser sofort hydrolysiert (P., Soc.

117, 698).

2-Methoxy-benzanthron $C_{12}H_{12}O_2 = CH_2 \cdot O \cdot C_{17}H_0O$. B. Durch Behandlung von 2-Oxybenzanthron mit Dimethylsulfat und methylsukoholischer Kalilauge (Perkin, Soc. 117, 698). — Gelbe Nadeln (aus Benzol). F: 198—199°. Gibt mit konz. Schwefelsäure und Salpetersäure grüne fluorescierende Lösungen. — Liefert bei der Oxydation mit Chromessigsäure 2-Methoxy-anthrachinon-carbonsäure-(1) (P., Soc. 117, 700; P., Spencer, Soc. 121, 478). — Das Hydrochlorid und das Hydrobromid bilden unbeständige rote Nadeln (P.). —

Sulfat C₁₈H₁₂O₂ + H₂SO₄. Rote Nadeln (P., Soc. 117, 698). — Eisen(III)-chlorid-Doppel-salz 2 C₁₈H₁₂O₂ + HCl + FeCl₂. Rote Nadeln. Wird durch Wasser leicht zersetzt (P.). — Chloroplatinat 2 C₁₈H₁₂O₂ + H₂PtCl₆. Scharlachrot (P.).

2-Acetoxy-benzanthron $C_{19}H_{19}O_3=CH_3\cdot CO\cdot O\cdot C_{17}H_9O$. Gelbe Nadeln. F: 200—201° (Perkin, Soc. 117, 698; P., Spencer, Soc. 121, 479), 203° (Lüttringhaus, Neresheimer, A. 478, 275).

Dibenzanthronyl-(2.2')-sulfid $C_{84}H_{18}O_{8}S$, Formel I. F: 238—240° (I. G. Farbenind., D.R.P. 441465; Frdl. 15, 730).

Dibenzanthronyl-(2.2')-disulfid $C_{34}H_{18}O_2S_2 = OC_{17}H_9 \cdot S \cdot S \cdot C_{17}H_9O$. B. Aus nicht näher beschriebenem 2-Mercapto-benzanthron durch Oxydation des Natriumsalzes mit Kaliumferricyanid in waßr. Lösung (I. G. Farbenind., D.R.P. 441 465; Frdl. 15, 730). — F: ca. 230—231°. - Geht beim Kochen mit Trichlorbenzol in Dibenzanthronyl-(2.Bz 1')-sulfid (S. 241) über.

6.6'- Dichlor - dibenzanthronyl-(2.2') - sulfid C₃₄H₁₆O₂Cl₂S, Formel II. B. Aus nicht näher beschriebenem 6-Chlor-2-mercapto-benzanthron bei mehrstündigem Kochen der Natriumverbindung mit Trichlorbenzol (I. G. Farbenind., D.R.P. 441465; Frdl. 15, 730). — Krystalle (aus Dichlorbenzol). F: 347—348°. Löslich in konz. Schwefelsäure mit kirschroter, in dünner Schicht karminroter Farbe.

- 3-Oxy-benzanthron C₁₇H₁₀O₂, Formel III. Vgl. darüber Höchster Farbw., D.R.P. 414924; Frdl. 15, 771.
- 3. 4-Oxy-benzanthron C17H10O2, Formel IV (H 210 als 4- oder 5- oder 8-Oxy-benzanthron aufgeführt). Zur Konstitution vgl. FIERZ-DAVID, JACCARD, Helv. 11, 1044; JACCARD, Dissert. [T. H. Zürich 1928], S. 17; FIESER, Am. Soc. 53 [1931], 3558; vgl. a. PERKIN, SPENCER, Soc. 121, 478. — B. Beim Erhitzen von 2-Methoxy-1-benzoyl-naphthalin oder besser von 2-Oxy-1-benzoyl-naphthalin mit Aluminiumchlorid auf 200° (FIERZ-DAVID, JACCARD, Helv. 11, 1044; JACCARD, Dissert., S. 27; PIERONI, R. A. L. [6] 9, 421; FIESER, Am. Soc. 53, 3558) oder von 2-Oxy-1-benzoyl-naphthalin mit Aluminiumchlorid und Natriumchlorid auf 140—150° (I. G. Farbenind., D. R. P. 453 280; Frdl. 16, 1405). Beim Verschmelzen von Benzoesäure-β-naphthylester mit Aluminiumchlorid und Natriumchlorid bei 140-1500 unter Durchleiten von Sauerstoff (I. G. Farbenind.). — Gelbe Nadeln (aus Eisessig oder Pyridin). F: 178—179° (Perkin, Spencer, Soc. 121, 476), 179° (FIESER), 176° (unkorr.) (JACCARD, Dissert., S. 31; I. G. Farbenind.). -Wird bei 2-tägigem Kochen mit Methyljodid und methylalkoholischer Kalilauge nicht methyliert; beim Kochen mit Athyljodid und alkoh. Kalilauge entstehen geringe Mengen 4-Athoxybenzanthron (Perkin, Spencer, Soc. 121, 476, 477). Liefert beim Erhitzen mit Phthalsaureanhydrid und Aluminiumchlorid auf 150—170° einen gelben Küpenfarbstoff (I. G. Farbenind., D.R.P. 430558; Frdl. 15, 734). — Gibt mit konz. Schwefelsäure in siedendem Eisessig ein rotes unbeständiges Sulfat, mit alkoh. Kalilauge ein gelbes Kaliumsalz (Perkin, Spencer).
- 4-Methoxy-benzanthron $C_{18}H_{12}O_2=CH_3\cdot O\cdot C_{17}H_4O$. Eine von Cassella & Co. (D.R.P. 483902; Frdl. 16, 1445) so formulierte Verbindung ist wahrscheinlich 4'-Methoxy-[benzo-1'.2':3.4-fluorenon] (S. 244) (BEILSTEIN-Redaktion)
- 4-Äthoxy-benzanthron $C_{19}H_{14}O_2=C_2H_5\cdot O\cdot C_{17}H_9O$. B. In geringer Menge beim Kochen von 4-Oxy-benzanthron mit Äthyljodid und alkoh. Kalilauge (Perkin, Spencer, Soc. 121, 477). - Gelbliche Nadeln (aus Alkohol). Löslich in konz. Schwefelsäure mit grüner Fluorescenz. - $2C_{19}H_{14}O_2 + SnCl_4$. Rote Nadeln. $-C_{19}H_{14}O_2 + HCl + FeCl_3$. Dunkelrote Nadeln. Wird durch Wasser leicht hydrolysiert.
- 4-Acetoxy-benzanthron $C_{19}H_{12}O_3=CH_3\cdot CO\cdot O\cdot C_{17}H_9O$. Gelbe Nadeln (aus Alkohol). F: 158° (FIESER, Am. Soc. 53 [1931], 3558).
 - 4. 5-Oxy-benzanthron $C_{17}H_{10}O_2$, Formel V auf 8. 239 (R = H).
- 5-Methoxy-benzanthron $C_{18}H_{12}O_2$, Formel V auf S. 39 (R = CH_3). B. Beim Erhitzen von 5-Chlor-benzanthron mit methylalkoholischer Kalilauge auf 150° (MAKI, J. Soc. chem. Ind. Japan Spl. 38, 634 B; C. 1936 II, 469). — Rotbraune Nadeln (aus 80 % iger Essigsaure). F; 1916 (korr.). Zi mlich leicht löslich in organischen Lösungsmitteln. Löslich in konz. Schwefelsäure mit karminroter Farbe, unlöslich in Alkalien. — Gibt beim Schmelzen mit Kaliumhydroxyd und Phenol und Behandeln des Reaktionsprodukts mit Luft 5.5'-Dimethoxy-violanthron und geringere Mengen eines graublauen Küpenfarbstoffes.

5. 6-Oxy-benzanthron $C_{17}H_{10}O_{2}$, Formel VI (R = H).

6-Methoxy-benzanthron C₁₉H₁₂O₂, Formel VI (R = CH₃). B. Aus 4'-Methoxy-benzo-phenon-carbonsăure-(2) durch Erhitzen mit konz. Schwefelsäure, Kondensation mit Glycerin in schwefelsaurer Lösung und nachfolgende Methylierung (Höchster Farbw., D.R.P. 413738; Frdl. 15, 766). — Gelbes Pulver. F: 148—150°. Ziemlich leicht löslich in organischen Lösungsmitteln mit gelber Farbe; die verdünnte alkoholische Lösung fluoresciert grün. Unlöslich in Wasser sowie in verd. Säuren und Alkalien. Löst sich in konz. Schwefelsäure mit roter Farbe und braunroter Fluorescenz. — Liefert beim Verschmelzen mit alkoh. Kalilauge bei 150—160° und Behandeln des Reaktionsproduktes mit Luft einen rötlichvioletten Küpenfarbstoff (vielleicht 6.6'-Dimethoxy-violanthron).

$$V. \bigcup_{\mathbf{B} \cdot \hat{\mathbf{O}}} VI. \bigcup_{\mathbf{B} \cdot \mathbf{O}} VII. \bigcup_{\hat{\mathbf{O}}} VIII. \bigcup_{\mathbf{HO}} \cdot \bigcup_{\hat{\mathbf{O}}} \cdot \mathbf{Cl} VIII. \bigcup_{\mathbf{HO}} \cdot \bigcup_{\hat{\mathbf{O}}} \cdot \mathbf{Br}$$

Bz 1-Chlor-6-oxy-benzanthron C₁₇H₀O₂Cl, Formel VII. B. Durch Diazotieren von Bz 1-Chlor-6-amino-benzanthron (Syst. Nr. 1873) mit Natriumnitrit und konz. Schwefelsäure und Eintragen des Diazoderivats in 66%ige Schwefelsäure bei 140—150° (Scottish Dyes Ltd., D.R.P. 516535; Frdl. 16, 3026). — Goldgelbe Tafeln (aus Nitrobenzol). F: 305—307°. Schwer löslich in siedenden organischen Lösungsmitteln mit bräunlicher Farbe. Löslich in verd. Alkalien mit rötlicher Farbe, in konz. Schwefelsäure mit blauroter Farbe und brauner Fluorescenz.

Bz 1-Chlor-6-methoxy-benzanthron $C_{18}H_{11}O_2Cl=CH_3\cdot O\cdot C_{17}H_8Cl(:O)$. B. Beim Erhitzen von Bz 1-Chlor-6-oxy-benzanthron mit Dimethylsulfat und Natriumcarbonat in Nitrobenzol auf 180—200° (Scottish Dyes Ltd., D.R.P. 516535; Frdl. 16, 3026). — Grünlichgelbe Nadeln. F: 212°. Ziemlich leicht löslich in organischen Lösungsmitteln. Die Lösung in konz. Schwefelsäure ist bläulichrot.

Bz 1-Chlor-6-äthoxy-benzanthron $C_{10}H_{13}O_2Cl=C_2H_5\cdot O\cdot C_{17}H_6Cl(:O)$. *B.* Durch Erhitzen von Bz 1-Chlor-6-oxy-benzanthron mit p-Toluolsulfonsäureäthylester und Natriumearbonat in Nitrobenzol auf 180° (Scottish Dyes Ltd., D. R. P. 516535; *Frdl.* 16, 3926). — Braune Nadeln. F: 212°.

Bz1-Brom-6-oxy-benzanthron C₁₇H₉O₂Br, Formel VIII. B. Analog Bz1-Chlor-6-oxy-benzanthron (s. o.) (Scottish Dyes Ltd., D. R. P. 516535; Frdl. 16, 3028). — Bronzeglänzende Tafeln. F: ca. 300°. Löslich in konz. Schwefelsäure mit blauroter, in verd. Natronlauge mit roter Farbe.

Bz1-Brom-6-methoxy-benzanthron $C_{18}H_{11}O_2Br = CH_3 \cdot O \cdot C_{17}H_8Br(:O)$. B. Durch Erhitzen von Bz 1-Brom-6-oxy-benzanthron mit Dimethylsulfat und Natriumcarbonat in Nitrobenzol auf 180° (Scottish Dyes Ltd., D. R. P. 516535; Frd. 16, 3026). — Braune Nadeln (aus Nitrobenzol). F: 196—197°. Die Lösung in konz. Schwefelsäure ist bläulichrot.

6. **7-Oxy-benzanthron** $C_{17}H_{10}O_2$, Formel IX. Vgl. darüber Höchster Farbw., D.R.P. 414203; *Frdl.* 15, 770.

7. 4(oder 5 oder 8)-Oxy-benzanthron C₁₇H₁₀O₂(H 210). Vgl. 4-Oxy-benzanthron, S. 233.

8. **Bz 1 - Oxy - benzanthron** $C_{17}H_{10}O_2$, Formel X (R = H).

Bz 1 - Methoxy - benzanthron $C_{18}H_{19}O_{2}$, Formel X (R = CH₃). B. Aus Bz 1 - Nitrobenzanthron durch Kochen mit methylalkoholischer Natronlauge oder durch Erhitzen mit

wasserfreiem Natriumcarbonat, Harnstoff und Methanol auf 135° unter Druck (I. G. Farbeniud., D.R.P. 459366; Frdl. 16. 1447). Durch Erhitzen von Bz 1-Chlor-benzanthron, benzanthron-Bz 1-sulfonsaurem Natrium oder Dibenzanthronyl-(Bz 1.Bz 1')-sulfon mit methylalkoholischer Natronlauge auf 120—135° unter Druck (I. G. Farbenind., D.R.P. 479286; Frdl. 16, 1448). — Gelbe Nadeln (aus Alkohol oder Aceton). F: 173°. Löst sich in Alkohol und Aceton mit gelber Farbe und dunkelgrüner Fluorescenz. Die Lösung in konz. Schwefelsäure ist rotviolett und fluoresciert karminrot und nimmt auf Zusatz von Salpetersäure rote Farbe und gelbe Fluorescenz an. — Liefert beim Erhitzen mit Kaliumhydroxyd und Alkohol auf 210—220° und Behandeln des Resktionsprodukts mit Luft einen violetten Küpenfarbstoff (I. G. Farbenind., D.R.P. 453134; Frdl. 16, 1478).

Bz1-Phenoxy-benzanthron C₃₃H₁₄O₃, Formel X (R = C₆H₅). B. Beim Kochen von Bz1-Chlor-benzanthron mit Phenol, Kaliumcarbonat und Kupferpulver in Trichlorbenzol (I. G. Farbenind., D.R. P. 482838; Frdl. 16, 1464). — F: 185°; löslich in konz. Schwefelsäure mit fuchsinroter Farbe (I. G. Farbenind., D.R. P. 453134; Frdl. 16, 1478). — Liefert beim Erhitzen mit alkoh. Kalilauge auf 220—240° und Behandeln des Reaktionsprodukts mit Luft

einen rötlichvioletten Küpenfarbstoff (I. G. Farbenind., D.R.P. 453134). Gibt beim Kochen mit 2-Chlor-benzoylchlorid und nachfolgenden Erhitzen mit konz. Schwefelsäure auf: 140° Isoviolanthron (I. G. Farbenind., D.R.P. 473163; Frdl. 16, 1509).

- 6-Chlor-Bz 1-methoxy-benzanthron C₁₈H₁₁O₂Cl, Formel I. B. Durch Kochen von 6-Chlor-Bz 1-nitro-benzanthron mit methylalkoholischer Natronlauge (I. G. Farbenind., D.R.P. 459366; Frdl. 16, 1447). Bei 20-stdg. Erhitzen von 6-Chlor-Bz 1-brom-benzanthron mit methylalkoholischer Natronlauge oder von 6-Bz 1-Dichlor-benzanthron mit Kaliumearbonat und Methanol auf 120—130° unter Druck (I. G. Farbenind., D.R.P. 479286; Frdl. 16, 1449). Gelbe Nadeln (aus Pyridin). F: 265° (I. G. Farbenind., D.R.P. 479286). Leicht löslich in organischen Lösungsmitteln mit gelber Farbe und dunkelgrüner Fluorescenz; die Lösung in konz. Schwefelsäure ist rotviolett mit karminroter Fluorescenz, wird auf Zusatz von Salpetersäure rot und zeigt dann keine Fluorescenz mehr (I. G. Farbenind., D.R.P. 459366).
- 8-Chlor Bz 1 methoxy benzanthron C₁₈H₁₁O₂Cl, Formel II. B. Durch Kochen von 8-Chlor-Bz 1-nitro-benzanthron mit methylalkoholischer Natronlauge (I. G. Farbenind., D. R. P. 459 366; Frdl. 16, 1448). Durch Erhitzen von 8.Bz 1-Dichlor-benzanthron mit Kaliumcarbonat und Methanol im Rohr auf 120° unter Druck (I. G. Farbenind., D. R. P. 479 286; Frdl. 16, 1449). Gelbe Krystalle (aus Eisessig oder Chlorbenzol). F: 225—226°. Leicht löslich in organischen Lösungsmitteln mit gelber Farbe und dunkelgrüner Fluorescenz. Löslich in konz. Sohwefelsäure mit blauvioletter Farbe und karminroter Fluorescenz.

- 6-Brom Bz 1-methoxy-benzanthron $C_{18}H_{11}O_2Br$, Formel III (X = Br). B. Durch Erhitzen von 6.Bz 1-Dibrom-benzanthron oder Bz 1-Chlor-6-brom-benzanthron mit Kaliumcarbonat und Methanol auf 135° unter Druck (I. G. Farbenind., D. R. P. 479286; Frdl. 16, 1448). Gelbe Nadeln (aus Nitrobenzol und Pyridin). F: 275°. Verhält sich gegen konz. Schwefelsäure wie die vorangehende Verbindung.
- 6-Nitro-Bz1-methoxy-benzanthron $C_{18}H_{12}O_4N$, Formel III $(X=O_4N)$. B. Durch Kochen von 6. Bz 1-Dinitro benzanthron mit methylalkoholischer Natronlauge (I. G. Farbenind., D. R. P. 459 366; Frdl. 16, 1447). Beim Erhitzen von Bz1-Chlor-6-nitro-benzanthron mit Kalium-carbonat und Methanol auf 110° unter Druck (I. G. Farbenind., D. R. P. 479 286; Frdl. 16, 1449). Gelbe Nadeln (aus Nitrobenzol). F: 315—318°. Ziemlich schwer löslich in niedrigsiedenden organischen Lösungsmitteln mit gelber Farbe. Löslich in konz. Schwefelsäure mit blaustichig roter Farbe, die auf Zusatz von etwas Salpetersäure in Rotgelb mit braungelber Fluorescenz übergeht.
- Bz1-Mercapto benzanthron C₁₇H₁₀OS, Formel IV. B. Bei mehrstündigem Kochen von Bz1-Brom-benzanthron mit einer Lösung von 10 Tln. krystallisiertem Natriumsulfid in 10 Tln. Alkohol und 5 Tln. Wasser (I. G. Farbenind., D.R.P. 443022; Frdl. 15, 724). Neben Dibenzanthronyl-(Bz1.Bz1')-sulfid durch Einw. von Dischwefeldichlorid auf Benzanthron bei Gegenwart von Jod in Chlorbenzol bei 90—140° (I. G. Farbenind., D.R.P. 441748; Frdl. 15, 723) sowie durch Kochen von Bz1-Nitro-benzanthron mit Schwefel in Trichlorbenzol (I. G. Farbenind., D.R.P. 443021; Frdl. 15, 727) und Kochen der Reaktionsprodukte mit konz. Natriumsulfid-Lösung. Gelb. Löslich in konz. Schwefelsäure mit orangeroter Farbe. Gibt bei der Oxydation Dibenzanthronyl-(Bz1.Bz1')-disulfid (I. G. Farbenind., D.R.P. 441748). Gibt mit Brom in Chlorsulfonsäure bei —10° x.x-Dibrom-dibenzanthronyl-(Bz1.Bz1')-disulfid (I. G. Farbenind., D.R.P. 4451959; Frdl. 16, 1459). Liefert beim Erhitzen auf ca. 300° (I. G. Farbenind., D.R.P. 448262; Frdl. 15, 726), bei der Kondensation mit Bz1-Brom-benzanthron (I. G. Farbenind., D.R.P. 448262; Frdl. 15, 728) und beim Kochen mit Bz1-Nitro-benzanthron bei Gegenwart von NaHSO₃ und Soda in Trichlorbenzol (I. G. Farbenind., D.R.P. 441709; Frdl. 15, 726) Dibenzanthronyl-(Bz1.Bz1')-sulfid. Gibt ein blauviolettes Natriumsalz (I. G. Farbenind., D.R.P. 441748).
- Bz1-Methylmercapto-benzanthron, Methyl-benzanthronyl-(Bz1)-suffid $C_{18}H_{18}OS=CH_3 \cdot S \cdot C_{17}H_9O$. B. Aus Bz1-Mercapto-benzanthron und Dimethylsulfat in alkal. Lösung (I, G. Farbenind., D. R. P. 441748; Frdl. 15, 723). Orangefarbene Krystalle (aus Alkohol). F: 151—154°. Die Lösung in konz. Schwefelsäure ist blau, in dünner Schicht blaugrün. Listert bei der Oxydation mit Ammoniumpersulfat in konz. Schwefelsäure unterhalb 0° ein dunkelgelbes Produkt, das beim Schmelzen mit alkoh. Kaliumhydroxyd auf dem Wasserbad und Behandeln des Reaktionsprodukts mit Lüft in einen violetten Küpenfarbstoff übergeht (I. G. Farbenind., D.R. P. 485786; Frdl. 16, 1476).

Bz 1-Äthylmercapto-benzanthron, Äthyl-benzanthronyl-(Bz 1)-suifid $C_{19}H_{14}OS = C_{2}H_{5} \cdot S \cdot C_{17}H_{9}O$. B. Bei 24-stdg. Kochen von Bz 1-Brom-benzanthron mit Äthylmercaptan in alkoh. Kalilauge (I. G. Farbenind., D.R.P. 479230; Frdl. 16, 1457). — Orangegelbe Nadeln (aus Eisessig). F: 116—118°. Löst sich in konz. Schwefelsäure mit grünstichig blauer Farbe.

Bz1-[4-Nitro-phenylmercapto]-benzanthron, [4-Nitro-phenyl]-benzanthronyl-(Bz1)-autha $C_{23}H_{13}O_3NS = O_2N \cdot C_8H_4 \cdot S \cdot C_{17}H_5O$. B. Aus äquimolekularen Mengen Bz1-Mercapto-benzanthron und 4-Chlor-1-nitro-benzol in alkoh. Alkalilauge (L. G. Farbenind., D. R. P. 441748; Frdl. 15, 723). — Bräunlichgelbes Krystallpulver (aus Nitrobenzol). F: ca. 300°. Löst sich in konz. Schwefelsäure mit bläulichvioletter Farbe.

Bz1-p-Tolylmercapto-benzanthron, p-Tolyl-benzanthronyl-(Bz1)-sulfid C₂₄H₁₆OS = CH₃· C₆H₄· S·C₁₇H₉O. B. Aus Bz1-Chlor-benzanthron und 4-Mercapto-toluol in siedender alkoholischer Kalilauge (I. G. Farbenind., D. R. P. 479230; Frdl. 16, 1457). — Gelbe Nadeln. F: 218° bis 222°. Löst sich in konz. Schwefelsäure mit grünblauer Farbe. — Liefert beim Verschmelzen mit alkoh. Kaliumhydroxyd bei 135—140° und Behandeln des Reaktionsprodukts mit Luft (I. G. Farbenind., D. R. P. 448262; Frdl. 15, 728), bei der Kondensation mit Benzanthron in Gegenwart von Natriumäthylat bei 105—110° (I. G. Farbenind., D. R. P. 445889; Frdl. 15, 750) und beim Kochen mit 2-Chlor-benzoyl-chlorid und Erhitzen des Reaktionsprodukts mit konz. Schwefelsäure auf 130° (I. G. Farbenind., D. R. P. 473163, 488888; Frdl. 16, 1469, 1509) Isoviolanthron.

Dibenzanthronyl-(2.Bz1')-sulfid C₃₄H₁₈O₂S, Formel I. B. Durch Kochen von Dibenzanthronyl-(2.2')-disulfid mit Trichlorbenzol oder Naphthalin (I. G. Farbenind., D.R.P. 441465;

Frdl. 15, 730). Aus der Natriumverbindung des 2-Mercapto-benzanthrons und Bz 1-Nitro-benzanthron in Gegenwart von NaHSO₃ und Soda in siedendem Trichlorbenzol (I. G. Farbenind., D.R.P. 441709; Frdl. 15, 726). — Gelbe Nadeln (aus Chlorbenzol oder Nitro-

I.
$$\bigcup_{\ddot{\mathbf{0}}}^{\mathbf{S}} \bigcup_{\ddot{\mathbf{0}}}^{\mathbf{S}} \quad \text{II.} \left[\bigcup_{\ddot{\mathbf{0}}}^{\mathbf{S}} \right]_{2}^{\mathbf{S}}$$

benzol). F: 310—312°. Löst sich in konz. Schwefelsäure mit kirschroter, in dünner Schicht karminroter Farbe.

Dibenzanthronyl-(Bz1.Bz1')-sulfid C₃₄H₁₈O₂S, Formel II. B. Neben Dibenzanthronyl-(Bz1.Bz1')-disulfid (?) beim Erhitzen von Benzanthron mit Dischwefeldichlorid und etwas Jod in Chlorbenzol auf 90—140° (I. G. Farbenind., D.R.P. 441748; Frdl. 15, 723) und beim Kochen von Bz1-Nitro-benzanthron mit Schwefel in Trichlorbenzol (I. G. Farbenind., D.R.P. 443021; Frdl. 15, 727). Beim Erhitzen von Bz1-Chlor-benzanthron mit Natriumpolysulfid-Lösung auf 120—150° (I. G. Farbenind., D.R.P. 443022; Frdl. 15, 725). Aus Bz1-Brom-benzanthron durch Kochen mit wasserfreiem Natriumsulfid und Natriumacetat in Pyridin (I. G. Farbenind., D.R.P. 443022), durch Kochen mit Schwefel und Natriumacetat in Trichlorbenzol oder Tetralin und durch Erhitzen mit Schwefel, Natriumacetat und etwas Kupferpulver in Alkohol unter Druck auf 180—185° (I. G. Farbenind., D.R.P. 462154; Frdl. 16, 1456). Aus Bz1-Mercaptobenzanthron beim Erhitzen auf ca. 300° (I. G. Farbenind., D.R.P. 442415; Frdl. 15, 726), bei der Umsetzung mit Bz1-Brom-benzanthron (I. G. Farbenind., D.R.P. 441748; Frdl. 15, 723) und bei der Einw. von Bz1-Nitro-benzanthron auf die Natriumverbindung in Gegenwart von NaHSO₃ und Soda in siedendem Trichlorbenzol (I. G. Farbenind., D.R.P. 441709; Frdl. 15, 726). Aus Dibenzanthronyl-(Bz1.Bz1')-disulfid beim Erhitzen mit Kupfer und Naphthalin auf 220—240° und beim Kochen mit technischem Phenol (I. G. Farbenind., D.R.P. 441465; Frdl. 15, 729).

Dunkelgelbe Blättchen oder gelbe Nadeln (aus Nitrobenzol). F: 347° (I. G. Farbenind., D. R. P. 441709, 441748; Frdl. 15, 723, 726). Löslich in konz. Schwefelsäure mit grünlichblauer Farbe. — Gibt beim Verschmelzen mit alkoh. Kalilauge bei 130—140° und nachfolgenden Behandeln mit Luft Isoviolanthron (I. G. Farbenind., D. R. P. 448262; Frdl. 15, 728); Isoviolanthron bildet sich auch bei der Oxydation mit 30% igem Wasserstoffperoxyd in konz. Schwefelsäure und nachfolgenden Alkalischmelze bei 90—100° und Behandlung mit Luft (I. G. Farbenind., D. R. P. 485786; Frdl. 16, 1477). Bei der Oxydation mit konz. Salpetersäure in konz. Schwefelsäure oder Nitrobenzol, Reduktion und nachfolgenden Alkalischmelze und Behandlung mit Luft entsteht ein violettblauer Küpenfarbstoff (I. G. Farbenind., D. R. P. 485786).

Dibenzanthronyl-(Bz 1. Bz 1')-suiton $C_{34}H_{18}O_4S = OC_{17}H_6 \cdot SO_2 \cdot C_{17}H_6O$. F: 350° (I. G. Farbenind., D. R. P. 479 286; Frdl. 16, 1448). — Gibt beim Erhitzen mit methylalkoh. Natronlauge auf 135° unter Druck Bz 1-Methoxy-benzanthron.

Benzanthronyl-(Bz1)-mercaptoessigsäure, S-[Benzanthronyl-(Bz1)]-thioglykolsäure $C_{10}H_{10}O_0S = CC_{17}H_0$, S- CH_2 - CO_2H . B. Aus dem Natriumsalz des Bz1-Mercapto-benzanthrons und Chloressigsäure in neutraler wäßriger Lösung (I. G. Farbenind., D. R. P. 441748; Frdl. 15, 723).

— Orangefarbene Krystalle (aus Eisessig). F: cs. 220°. Löst sich in konz. Schwefelsäure mit rotvioletter Farbe. — Gibt beim Schmelzen mit 75% iger Kalilauge bei 195—200° oder mit Kaliumhydroxyd und Pyridin bei 90° und nachfolgenden Kochen mit Nitrobensol ein blaugrünes Kondensationsprodukt, das bei der Oxydation mit Luft in alkal. Lösung bei 70° oder beim Erwärmen mit 90% iger Schwefelsäure auf 95—100° in Cibanonblau 3 G (Formel III; Syst. Nr. 2777) (vgl. E I 19, 702) übergeht (I. G. Farbenind., D.R. P. 483154; Frdl. 16, 1490).

Äthylester C₂₁H₁₆O₂S = OC₁₇H₆·S·CH₂·CO₂·C₂H₅. B. Durch Erhitzen von S-[Benzanthronyl-(Bz1)]-thioglykolsäure mit alkoh. Schwefelsäure (I. G. Farbenind., D.R.P. 485907; Frdl. 16, 1493). — F: 135—138°. — Gibt beim Behandeln mit Kaliumhydroxyd in Pyridin bei Zimmertemperatur, Kochen des Reaktionsprodukts mit Natronlauge und mit Nitrobenzol und nachfolgenden Oxydieren mit Luft in alkal. Lösung Cibanonblau 3 G (Syst. Nr. 2777).

Amid C₁₀H₁₀O₂NS = OC₁₇H₂·S·CH₂·CO·NH₂. F: 258—260° (I. G. Farbenind., D.R.P. 485907; Frdl. 16, 1494). — Last sich analog dem Äthylester in Cibanonblau 3 G überführen.

Nitrii $C_{19}H_{11}ONS = OC_{17}H_{9} \cdot S \cdot CH_{9} \cdot CN$. B. Aus der Natriumverbindung des Bz1-Mercapto-benzanthrons und Chloracetonitril (I. G. Farbenind., D.R.P. 485907; Frdl. 16, 1494). — F: 205—208°. — Läßt sich analog dem Äthylester in Cibanonblau 3 G überführen.

Benzanthronyl-(Bz 1)-sulfinessignäure C₁₉H₁₉O₄S = OC₁₇H₉·SO·CH₂·CO₂H. B. Durch Oxydation von S-[Benzanthronyl-(Bz 1)]-thioglykolsäure mit Ammoniumpersulfat oder mit konz. Salpetersäure oder Wasserstoffperoxyd in konz. Schwefelsäure (I. G. Farbenind., D. R. P. 487194; Frdl. 16, 1495). — F: 208°. — Liefert beim Verschmelzen mit wäßriger oder alkoholischer Kalilauge bei 90—100°, Kochen des Reaktionsprodukts mit Nitrobenzol und nachfolgenden Oxydieren mit Luft in alkal. Lösung Cibanonblau 3 G (Syst. Nr. 2777).

Methylester C₃₀H₁₄O₄S = OC₁₇H₉·SO·CH₂·CO₂·CH₃. B. Aus Benzanthronyl-(Bz1)-sulfinessignaure und methylalkoholischer Schwefelsaure (I. G. Farbenind., D.R.P. 487194; Frdl. 16, 1495). — Gibt beim Behandeln mit Kaliumhydroxyd und Pyridin bei 35—40°, Kochen des Reaktionsprodukts mit Natronlauge und Nitrobenzol und nachfolgenden Oxydieren mit Luft Cibanonblau 3 G (Syst. Nr. 2777).

Dibenzanthronyl-(Bz1.Bz1')-disulfid C₃₄H₁₈O₂S₂, Formel IV. B. Durch Oxydation von Bz1-Mercapto-benzanthron, zweckmäßig mit Luft in alkal. Lösung (I. G. Farbenind., D. R. P. 441748, 443021; Frdl. 15, 723, 727). Entsteht wahrscheinlich neben Dibenzanthronyl-(Bz1.Bz1')-sulfid beim Erhitzen von Benzanthron mit Dischwefeldichlorid und etwas Jod in Chlorbenzol auf 90—100° (I. G. Farbenind., D. R. P. 441748) und beim Kochen von Bz1-Nitrobenzanthron mit Schwefel in Trichlorbenzol (I. G. Farbenind., D. R. P. 443021). — Gelbe Nadeln (aus Trichlorbenzol). F: 263—265°. Löslich in konz. Schwefelsäure mit blauvioletter Farbe. — Geht beim Erhitzen mit Kupfer und Naphthalin auf 220—240° oder beim Kochen mit technischem Phenol in Dibenzanthronyl-(Bz1.Bz1')-sulfid über (I. G. Farbenind., D. R. P. 441465; Frdl 15, 729).

- 6-Chlor Bz 1 mercapto benzanthron C₁₇H₉OClS, Formel V. B. Durch Kochen von 6.Bz 1-Dichlor-benzanthron mit Natriumsulfid und etwas Schwefel in Alkohol (I. G. Farbenind., D. R. P. 442415; Frdl. 15, 726). Löst sich in konz. Schwefelsäure mit bordeauxroter Farbe. Liefert beim Erhitzen auf ca. 300° unter Durchleiten eines schwachen Stickstoffstromes 6.6'-Dichlor-dibenzanthronyl-(Bz 1.Bz 1')-sulfid.
- 6.6'- Dichlor dibenzanthronyi (Bz 1.Bz 1') suifié $C_{24}H_{16}O_{2}Cl_{2}S = [C_{17}H_{2}Cl(:O)]_{2}S$. B. Durch Erhitzen von 6-Chlor-Bz 1-mercapto-benzanthron auf ca. 300° unter Durchleiten eines schwachen Stickstoffstromes (I. G. Farbenind., D. R. P. 442415; Frdl. 15, 727). Beim Kochen von 6.6'-Dichlor-dibenzanthronyl-(Bz 1.Bz 1')-disulfid mit technischem Phenol (I. G. Farbenind., D. R. P. 441465; Frdl. 15, 730). Braungelbe Nadeln (aus Nitrobenzol), orangefarbene Nadeln (aus Trichlorbenzol). Schmilzt oberhalb 360°. Löslich in konz. Schwefelsäure mit bläulichgrüner Farbe. Gibt beim Schmelzen mit alkoh. Kalilauge und nachfolgenden Behandeln mit Luft 6.6'-Dichlor-isoviolanthron (I. G. Farbenind., D. R. P. 442415).
- 6.6' Dichlor dibenzanthronyi (Bz 1.Bz 1') disulfid $C_{24}H_{18}O_3Cl_2S_3=C_{17}H_4Cl(:O)\cdot S\cdot S\cdot C_{17}H_4Cl(:O)$. B. Durch Oxydation von 6-Chlor-Bz 1-mercapto-benzanthron mit Luft in alkal. Lösung (I. G. Farbenind., D.R.P. 441465; Frdl. 15, 730). F: 322—324°. Geht beim Kochen mit technischem Phenol in 6.6'-Dichlor-dibenzanthronyl-(Bz 1.Bz 1')-sulfid über.
- x.x-Dictior-dibenzanthronyi-(Bz1.Bz1')-suifid $C_{24}H_{16}O_2Cl_2S_2$. B. Durch Einw. von Sulfurylchlorid auf Dibenzanthronyi-(Bz1.Bz1')-sulfid bei 50° (I. G. Farbenind., D. R. P. 451959; Frdl. 16, 1459). Braungelbes Pulver. Löst sich in konz. Schwefelsäure mit violetter Farbe.

- x-Trichler-dibenzanthrenyl-(Bz 1.Bz 1')-sulfid C₂₄H₁₈O₄Cl₂S. B. Durch Kinw. von Sulfuryl-chlorid und Dischwefeldichlorid auf Dibenzanthronyl-(Bz 1.Bz 1')-sulfid bei 50° (I. G. Farbenind., D. R. P. 451 959; Frdl. 16, 1460). Gelbes Krystallpulver (aus Nitrobenzol). Löst sich in konz. Schwefelsäure mit roter Farbe.
- x-Brom-Bz 1-methylmercapto-benzanthron $C_{18}H_{11}OBrS=CH_8\cdot S\cdot C_{17}H_8Br(:O)$. B. Durch Einw. von Brom auf Bz 1-Methylmercapto-benzanthron in Nitrobenzol (I. G. Farbenind., D.R.P. 479356; Frdl. 16, 1458). F: 238—240°.
- x Brom dibenzanthronyl (Bz 1.Bz 1') suifid C₃₄H₁₇O₂BrS. B. Aus Dibenzanthronyl-(Bz 1.Bz 1')-sulfid und 1 Mol Brom in Chlorsulfonsäure bei 5° (I. G. Farbenind., D. R. P. 451 959; Frdl. 16, 1459). Orangegelbes Pulver. Löst sich in konz. Schwefelsäure mit blaugrüner Farbe.
- x.x Dibrom dibenzanthronyl (Bz 1.Bz 1') sulfid C₃₄H₁₆O₃Br₂S. B. Durch Einw. von 2 Mol Brom auf Dibenzanthronyl-(Bz 1.Bz 1')-sulfid in Chlorsulfonsaure bei —5° (I. G. Farbenind., D.R.P. 451 959; Frdl. 16, 1459). Krystalle (aus Nitrobenzol). Löst sich in konz. Schwefelsaure mit grüner Farbe.
- x.x Dibrom dibenzanthronyldisuifid C₃₄H₁₆O₂Br₂S₂. B. Durch Einw. von Brom auf Bz 1-Mercapto-benzanthron in Chlorsulfonsäure bei —5° (I. G. Farbenind., D.R.P. 451959; Frdl. 16, 1459). Dunkelgelbes Pulver. Löst sich in konz. Schwefelsäure mit weinroter, in dünner Schicht blauer Farbe.
- \$-[x.x-Dibrom-benzanthronyl-(Bz1)]-thioglykolsäure $C_{10}H_{10}O_3Br_2S=O:C_{17}H_7Br_5\cdot S\cdot CH_2\cdot CO_2H$. B. Durch Verrühren von \$-[Benzanthronyl-(Bz1)]-thioglykolsäure mit überschüssigem Brom und Schwefel bei gewöhnlicher Temperatur (I.G. Farbenind., D. R. P. 451959; Frdl. 16, 1459). Löst sich in verd. Alkalien mit orangebrauner, in konz. Schwefelsäure mit roter Farbe.
- x-Tribrom-dibenzanthronyl-(Bz1.Bz1')-sulfid $C_{34}H_{15}O_{2}Br_{3}S$. B. Durch Einw. von Brom auf Dibenzanthronyl-(Bz1.Bz1')-sulfid in konz. Schwefelsäure bei $60-70^{\circ}$ (I. G. Farbenind., D. R. P. 451959; Frdl. 16, 1460). Gelbbraunes Pulver. Löst sich in konz. Schwefelsäure mit grüner Farbe.
- 9. Bz 2-Ozy-benzanthron $C_{17}H_{10}O_2$, Formel I. B. Durch Kondensation von 6-Oxy-naphthoylchlorid-(1) mit Benzol und Aluminiumchlorid und Erhitzen des erhaltenen 6-Oxy-1-benzoyl-naphthalins mit Aluniniumchlorid auf höhere Temperatur (Höchster Farbw., D.B.P. 413738; Frdl. 15, 644, 766). Aus dem Anhydrid des Bz 2-Oxy-benzanthron-diazoniumhydroxyds-(Bz 1)

T. OH II. OH

- (Syst. Nr. 2200) durch Behandlung mit kalter Kaliumstannit-Lösung oder durch Erwärmen mit Eisen (II) -sulfat und ca. 75% iger Schwefelsäure auf dem Dampfbad (I. G. Farbenind., D.R.P. 445729; Frdl. 15, 742). Durch Eintragen von Bz 2-Oxy-benzanthron-diazonium-sulfat-(Bz1) in siedenden Alkohol (I. G. Farbenind., D.R.P. 446548; Frdl. 15, 743). Gelbe Nadeln (aus Benzylalkohol). F: 298°. Löst sich in Alkalilaugen mit gelbroter Farbe.
- Bz 2 Methoxy benzanthron C₁₈H₁₈O₂ = CH₃·O·C₁₇H₈O. B. Durch Behandlung von Bz 2-Oxy-benzanthron mit Dimethylsulfat in alkal. Lösung (Höchster Farbw., D.R. P. 413738; Frdl. 15, 644, 766; I. G. Farbenind., D.R. P. 445729; Frdl. 15, 742). Braungelbe Krystalle (aus Benzol). F: 170—172° (Höchster Farbw.). Ziemlich leicht löslich in organischen Lösungsmitteln mit gelbbrauner Farbe; die verdünnte alkoholische Lösung fluoresciert stark grün; die Lösung in konz. Schwefelsäure ist gelblichrot mit schwacher brauner Fluorescenz (Höchster Farbw.). Gibt beim Verschmelzen mit Kaliumhydroxyd und etwas Alkohol und Behandeln des Reaktionsprodukts mit Luft Bz 2.Bz 2'-Dimethoxy-violanthron (Syst. Nr. 819) (Höchster Farbw.).
- Bz1-Chier-Bz2-exy-benzanthron $C_{17}H_{2}O_{2}Cl$, Formel II (X = Cl). B. Aus dem Anhydrid des Bz2-Oxy-benzanthron-diazoniumhydroxyds-(Bz1) durch Erwärmen mit Kupfer(I)-chlorid in konz. Salzsäure (I. G. Farbenind., D. R. P. 458090; Frdl. 16, 1446). Hellgelbes Pulver. Löst sich in konz. Schwefelsäure und in verd. Alkalien mit roter Farbe.
- Bz1-Chlor-Bz2-methoxy-benzanthron $C_{18}H_{11}O_2Cl=CH_3\cdot O\cdot C_{17}H_8Cl(:O)$. B. Durch Behandeln von Bz1-Chlor-Bz2-oxy-benzanthron mit Dimethylsulfat in alkal. Lösung (I. G. Farbenind., D. R. P. 442511, 458090; Frdl. 15, 772; 16, 1446). Durch Chlorierung von Bz2-Methoxy-benzanthron mit Sulfurylchlorid in Nitrobenzol (I. G. Farbenind., D. R. P. 442511). F: 215°. Liefert beim Verschmelzen mit alkoh. Kalilauge bei 145—150° und Behandeln des Reaktionsprodukts mit Luft Bz2.Bz2'-Dimethoxy-isoviolanthron (I. G. Farbenind., D. R. P. 442511, 458090).
- Bz 1 Brom Bz 2 oxy benzanthron $C_{17}H_9O_3Br$, Formel II (X = Br). B. Analog Bz 1-Chlor-Bz 2-oxy-benzanthron (a. oben) (I. G. Farbenind., D. R. P. 458090; Frdl. 16, 1446). Gelbgrünes Pulver. Löst sich in konz. Schwefelsäure und in verd. Alkalien mit roter Farbe.

Bz2-Methylmercapto-benzantiron $C_{18}H_{12}OS$, Formel III (X = H), B. Aus Bz1-Amino-Bz2-methylmercapto-benzantiron durch Elimination von NH₂ (Höchster Farbw., D.R.F. 410011; Frdl. 15, 754). — Liefert beim Verschmelzen mit Kaliumhydroxyd und Alkohol bei 140—180° und Behandeln des Reaktionsproduktes mit Luft Bz2.Bz2'-Bis-methylmercapto-violanthron.

Bz 1-Chier-Bz 2-methylmercapto-benzanthron C₁₈H₁₁OClS, Formel III (X = Cl). B. Aus Bz 1-Amino-Bz 2-methylmercapto-benzanthron nach Sandmeyer (Höchster Farbw., D.R.P. 410011; Frdl., 15, 754). — Gibt beim Verschmelzen mit Kaliumhydroxyd und Alkohol einen grünlichblauen Küpenfarbstoff.

10. 3-Oxy-1.2-benzo-fluorenon, Oxy-chrysofluorenon C₁₇H₁₀O₂, Formel IV (E I 589). B. Neben sehr geringen Mengen 2-Oxy-benzanthron beim Erhitzen von 4-Methoxy-1-benzoyl-naphthalin mit Aluminiumchlorid auf 100°, zuletzt auf 145° (FIERZ-DAVID, JACOARD, Helv. 11, 1046). — Ziegelrote Krystalle (aus Eisessig); dünne Krystalle erscheinen in der Durchsicht violett. F: 305°. Im Vakuum sublimierbar. — Liefert bei der Zinkstaubdestillation im Wasserstoffstrom 1.2-Benzo-fluoren.

11. 4'-Oxy-[benzo-1'.2':3.4-fluorenon] $C_1, H_{10}O_2$, Formel V (R = H).

4'-Methoxy-[benzo-1'.2': 3.4-fluorenon] $C_{18}H_{12}O_2$, Formel V (R = CH₃). Diese Konstitution kommt wahrscheinlich einer als 4-Methoxy-benzanthron formulierten Verbindung zu, die von Cassella & Co. (D.R.P. 483902; Frdl. 16, 1445) durch Einw. von Chlorsulfonsäure auf nicht näher beschriebene 2-[7-Methoxy-naphthyl-(1)]-benzoesäure erhalten wurde (Bellstein-Redaktion). — Braunes Pulver. Löst sich in hochsiedenden organischen Lösungsmitteln mit orangeroter Farbe, in konz, Schwefelsäure mit gelber Farbe und grüner Fluorescenz.

2. Oxy-oxo-Verbindungen $C_{18}H_{18}O_2$.

1. 3-Oxy-10-oxo-9.10-dihydro-1.2-benzo-anthracen, 2-Oxy-3.4-benzo-anthron-(9) bzw. 3.10-Dioxy-1.2-benzo-anthracen $C_{18}H_{12}O_2$, Formel VI (R = H) bzw. desmotrope Form.

2-Methoxy-3.4-benzo-anthron-(9), 3-Methoxy-1.2-benz-10-anthron C₁₉H₁₄O₂, Formel VI (B = CH₃). B. Durch Einw. von konz. Schwefelsäure auf 4-Methoxy-1-[2-carboxy-benzyl]-naphthalin (Syst. Nr. 1092) bei 20° (Fieser, Dietz, Am. Soc. 51, 3144). — Gelblich. Leicht löslich in Alkohol und Benzol; die Lösungen färben sich rasch dunkel; die Lösung in Eisessig färbt sich beim Erwärmen grün und scheidet einen braunen, amorphen Niederschlag aus. Löst sich langsam in Alkalien. — Liefert bei der Oxydation mit Chromtrioxyd in Eisessig bei 90° 3-Methoxy-1.2-benzo-anthrachinon. Gibt bei der Reduktion mit amalgamiertem Aluminium und konz. Ammoniak in siedendem Alkohol 3-Methoxy-1.2-benzo-anthracen und eine gelbe, bei 272° schmelzende Substanz. Beim Kochen mit Acetanhydrid in Pyridin entsteht 3-Methoxy-10-acetoxy-1.2-benzo-anthracen (E II 6, 1023).

VI.
$$CH_3$$
 $O \cdot R$ CH_2 $O \cdot R$ $O \cdot R$

2. Bx1-Oxy-6-methyl-benzanthron $C_{18}H_{13}O_{2}$, Formel VII (R = H).

Bz 1 - Methoxy - 6 - methyl - benzanthron $C_{19}H_{14}O_2$, Formel VII (R = CH₃). B. Durch Erhitzen von Bz 1-Chlor-6-methyl-benzanthron mit Methanol und Kaliumcarbonat (I. G. Farbenind., D. R. P. 479 286; Frdl. 16, 1449) oder von Bz 1-Nitro-6-methyl-benzanthron mit Kaliumcarbonat, Harnstoff und Methanol (I. G. Farbenind., D. R. P. 459 366; Frdl. 16, 1447) auf 120° unter Druck. — Gelbe Nadeln (aus Aceton). F: 218°. Leicht löslich in Aceton mit gelber Farbe und dunkelgrüner Fluorescenz, löslich in konz. Schwefelsäure mit blauvioletter Farbe und rotvioletter Fluorescenz.

. :

3: Oxy-exo-Verbindungen C19H24O2.

- 1. 4-Oxy-benzochinon-(1.2)-diphenylmethid-(1) $C_{10}H_{14}O_{2}$, Formel VIII auf S. 244 (R = H).
- 4-Methoxy-benzochinon-(1.2)-diphenyimethid-(1) C₂₀H₁₆O₂, Formel VIII auf S. 244 (R=CH₃). B. Beim Erhitzen von 2-Oxy-4-methoxy-triphenylcarbinol (E II 6, 1106) auf 100° bis 140° (Gomberg, McGill, Am. Soc. 47, 2398; vgl. Ramart-Lucas, Martynoff, Bl. [5] 8 [1941], 882, 886). Krystalle (aus Eisessig). F: 156° (G., McG.).
- 2. 2-Oxy-benzochinon-(1.4)-diphenylmethid-(4), 3-Oxy-fuchson $C_{11}H_{14}O_{1}$, s. nebenstehende Formel (R = H).

0 · **R**:

2-Methoxy-benzochinon - (1.4) - diphenylmethid - (4), 3-Methoxy- (C₂H₅)₂C: Ofuchson C₂₀H₁₆O₃, s. nebenstehende Formel (R = CH₃) (E I 589), B. Bei längerem Erwärmen von 4-Oxy-3-methoxy-triphenyl-carbinol auf 75—80° (Gomberg, van Stone, Am. Soc. 38 [1916], 1594; Anderson, Am. Soc. 51, 1895; vgl. Ramart-Lucas, Martynoff, Bl. [5] 8 [1941], 882, 886). — Ultraviolett-Absorptionsspektrum in Ather: A., Am. Soc. 51, 1890, 1895.

3. 4'- Oxy-fuchson $C_{19}H_{14}O_{2} = HO \cdot C_{6}H_{4} \cdot C(C_{6}H_{5})$: C_{6} :

Hydrat, Benzaurin C₁₉H₁₄O₂ + H₂O (H 6, 1145; E I 8, 589). Zur Konstitution vgl. a: R. Meyer, Gerloff, B. 56, 98. — Darstellung durch Erwärmen von Benzotrichlorid mit 2 Mol Phenol auf dem Wasserbad: M., Ge., B. 56, 102; vgl. a. Greenbaum, Am. J. Pharm. 101, 34; C. 1929 I, 1690. — Färbt sich beim Erwärmen auf 70—80° dunkel und schmilzt bei 110—120° unter Abgabe von 1 Mol H₂O (M., Ge., B. 56, 101, 104). Die Lösung von Benzaurin in gewöhn: lichem Alkohol ist gelblich und wird beim Erwärmen orange; die Lösung in Eisessig ist schon in der Kälte orangefarben (M., G., B. 56, 101); Lösungen in absol. Alkohol sind orangegelb und werden beim Aufbewahren hellgelb; die orangegelbe Farbe tritt beim Erwärmen wieder auf, verblaßt aber rasch wieder (Orndorff, Gibbs, McNulty, Am. Soc. 47, 2769). Löst sich in Alkalilaugen mit intensiv karminroter Farbe, die beim Aufbewahren infolge Umwandlung in 4.4'-Dioxy-triphenylcarbinol verschwindet; beim Einleiten von Kohlendioxyd in die entfärbten Lösungen fällt Benzaurin wieder aus (R. Meyer, Gerloff, B. 57, 592; vgl. Dörner, A. 217 [1883], 228); die Entfärbung erfolgt um so rascher, je stärker alkalisch die Lösung ist; Alkohol hemmt die Reaktion; bei der Ultraviolett-Bestrahlung der entfärbten Lösungen tritt die Färbung wieder auf (Lifschitz, B. 58, 2437, 2438). Absorptionsspektrum von Benzaurin im sichtbaren Gebiet und im Ultraviolett in frisch dargestellten und gealterten Lösungen in absol. Alkohol: Orndorff, Gibbs, McNulty, Am. Soc. 47, 2770, 2776; O., McN., Am. Soc. 49, 1547, 1554, 1589, 1592; in konz. Schwefelsäure, in alkoh. Salzsäure verschiedener Konzentration und in wäßriger und alkoholischer Kalilauge: O., Gi., McN., Am. Soc. 47, 2776.

Benzaurin gibt mit 8 Atomen Brom in Gegenwart von etwas Eisen Tetrabrombenzaurin (s. u.); bei der Chlorierung entsteht ein gelbes, bei der Jodierung ein dunkehrotes amorphes Produkt (R. Meyer, Gerloff, B. 57, 593, 596). Liefert beim Erhitzen mit konzentriertem wäßrigem Ammoniak auf 120—130° und Auflösen des Reaktionsproduktes in verd. Salzsäure 4'-Amino-fuchsonimid-hydrochlorid (Syst. Nr. 1865); beim Erhitzen mit alkoh. Ammoniak auf 140—150° entsteht unter gleichzeitiger Reduktion 4.4'-Diamino-triphenylmethan (M., G., B. 57, 593, 597). Verhalten gegen Alkalien s. im vorangehenden Abschnitt. Gibt mit Kaliumoyanid in warmer verdünner Natronlauge 4.4'-Dioxy-triphenylacetonitril (M., G., B. 57, 592, 596). Beim Schütteln mit Benzoylchlorid und 10% iger Natronlauge entsteht 4.4'-Dibenzoyloxy-triphenylcarbinol (Syst. Nr. 902) (M., G., B. 56, 103).

bein Schuttern mit Benzoykohorid und 10 %iger Natroniauge entrent 4.4 - Intenzoykoxytriphenylcarbinol (Syst. Nr. 902) (M., G., B. 56, 103).

Salze des Benzaurins. $C_{19}H_{14}O_2 + HCl(R. MEYER, GERLOFF, B. 56, 104; 57, 595 Anm. 12)$. Dunkelrote Nadeln. — $C_{19}H_{14}O_2 + HClO_4$ (E I 590). Wird durch kaltes Wasser kaum verändert, durch heißes Wasser zersetzt (M., G., B. 56, 104). Die Lösung in wasserfreiem Piperidin wird nach einiger Zeit fast farblos, bei Wasserzusatz wieder rotviolett (Dilthey, Wielinger, B. 59, 1857). — $C_{19}H_{14}O_2 + NaHSO_3$. Krystalle. Zersetzt sich leicht beim Aufbewahren (M., G., B. 57, 592, 595).

,,Benzaurindimethyläther" $C_{21}H_{20}O_3$ und andere von der Carbinolform (4.4'-Dioxytriphenyl-carbinol) abgeleitete Derivate s. E II 6, 1108, 1109.

"Benzaurindibenzoat" C₂₅H₂₄O₅. Vgl. 4.4′-Dibenzoyloxy-triphenyloarbinol, Syst. Nr. 902.

 $HO \stackrel{Br}{\underbrace{\hspace{1cm}}} C(O_0H_0) : \stackrel{Br}{\underbrace{\hspace{1cm}}} : O$

3.5.3'.5'-Tetrabrom - 4'-oxy-fuchson, Tetrabrombenzaurin

C₁₀H₁₀O₂Br₄, s. nebenstehende Formel (H 210). B. Aus Benzaurin und 8 Atomen Brom in Gegenwart von Eisenspänen in Eisessig (R. Meyer, Gerloff, B. 57, 596). — Dunkelrote Krystalle (aus Nitrobenzol). Leicht löslich in heißem Nitrobenzol, schwer in Alkohol, Aceton, Eisessig, Benzol, Toluol und Chloroform, unlöslich in Benzin. — NaC₁₀H₂O₂Br₄. Braune, grün schimmernde Nadeln (aus Alkohol).

4. 2-Oxy-1-cinnamoyl-naphthalin, 1-Cinnamoyl-naphthol-(2) $C_{19}H_{14}O_1$, ϵ . nebenstehende Formel.

CO-CH; CH-C,H,

- 2-Methoxy-1-cinnamoyi-naphthalin, 1-Cinnamoyi-naphthel-(2)-methyläther, Styryi-[2-methoxy-naphthyl-(1)]-ketan $C_{90}H_{16}O_{3}=C_{0}H_{5}$. CH:CH:CO: $C_{10}H_{4}$:O:CH₂. B. Aus 2-Methoxy-1-acetyl-naphthalin und Benzaldehyd in Natrium-äthylat-Lösung (Fries, Schimmelschmidt, B. 58, 2837).—Gelbe Nadeln (aus Alkohol). F: 139°. Gibt mit konz. Schwefelsäure eine weinrote Färbung.
- 2-Äthoxy-1-ci nnamoyi-naphthalin, 1-Cinnamoyi-naphthol-(2)-äthyläther, Styryl-[2-äthoxy-naphthyl-(1)]-keton C₂₁H₁₈O₂ = C₈H₅·CH:CH·CO·C₁₆H₆·O·C₂H₅. B. Aus 2-Äthoxy-1-acetyl-naphthalin und Benzaldehyd in Natriumäthylat-Lösung (DILTHEY, LIPPS, B. 56, 2444; vgl. Fries, Schimmelschmidt, B. 58, 2835 Anm. 4). Tiefgelbe Blättchen. F: 87° (D., L.), 90° (F., Sch., B. 58, 2845). Löst sich in konz. Schwefelsäure mit violettroter Farbe (D., L.). Liefert bei der Oxydation mit Permanganat in Pyridin unter Kühlung [2-Äthoxy-naphthyl-(1)]-glyoxylsäure, 2-Äthoxy-naphthoesäure-(1) und Benzoesäure (D., L.).
- 2 Äthoxy 1-[2-chlor-cinnamoyi] naphthalin $C_{31}H_{17}O_1Cl = C_0H_4Cl\cdot CH\cdot CH\cdot CO\cdot C_{10}H_4\cdot O\cdot C_2H_5$. B. Analog den vorangehenden Verbindungen (Dilthey, Lipps, B. 56, 2445; vgl. Fries, Schimmelschmidt, B. 58, 2835 Anm. 4). Gelbliche Nadeln. F: 121° (D., L.). Löslich in konz. Schwefelsäure mit roter Farbe (D., L.).
- 5. 4 Oxy 1 cinnamoyl naphthalin , 4-Cinnamoyl naphthol-(1) $\rm C_{10}H_{14}O_2$, Formel I.
- 4-Äthoxy-1-cinnamoyl-naphthalin, 4-Cinnamoyl-naphthol-(1)-äthyläther, Styryl-[4-äthoxy-naphthyl-(1)]-keton $C_{31}H_{16}O_3=C_6H_5\cdot CH\cdot CO\cdot C_{16}H_6\cdot O\cdot C_2H_5$ (H 210). B. Aus 4-Äthoxy-1-acetyl-naphthalin und Benzaldehyd in Natriumäthylat-Lösung (Dilthey, Lipps, B. 56, 2445). Gelbe Nadeln; wurde einmal in labilen farblosen Blättchen erhalten. F: 85°. Löst sich in konz. Schwefelsäure mit tiefroter Farbe.
- 4-Äthexy-1-[2-chlor-cinnamoyl]-naphthalin $C_{21}H_{17}O_2Cl = C_6H_4Cl \cdot CH \cdot CH \cdot CO \cdot C_{10}H_4 \cdot O \cdot C_2H_5$. B. Analog der vorhergehenden Verbindung (DILTHEY, LIPPS, B. 56, 2445). Schwach gelbe Nadeln. F: 97—98°. Löst sich in konz. Schwefelsäure mit gelbroter Farbe.

I.
$$\begin{array}{c} \text{CO \cdot CH : CH \cdot C_6H_5} \\ \text{II.} \\ \text{OH} \end{array}$$

- 6. 1-Oxy-2-cinnamoyl-naphthalin, 2-Cinnamoyl-naphthol-(1), 2-Benzal-aceto-naphthol-(1), Styryl-[1-oxy-naphthyl-(2)]-keton C₁₀H₁₄O₂, Formel II (H 211; E I 590). F: 129° (Pyelffer, Mitarb., J. pr. [2] 119, 125). Löst sich in konz. Schwefelsäure mit braunroter Farbe. Gibt mit Wasserstoff in Gegenwart von Platinmohr in Eisessig 2-Hydrocinnamoyl-naphthol-(1).
- 7. 3 Oxy 2 cinnamoyl naphthalin, 3 Cinnamoyl naphthol-(2) $\rm C_{10}H_{14}O_{2}$, Formel III.
- 3-Methoxy-2-cinnamoyi-naphthalin, 3-Cinnamoyi-naphthol-(2)-methyläther, Styryi-[3-methoxy-naphthyi-(2)]-keton $C_{20}H_{16}O_2 = C_0H_5$. CH: $CH \cdot CO \cdot C_{10}H_6 \cdot O \cdot CH_3$. B. Aus 3-Methoxy-2-acetyl-naphthalin und Benzaldehyd in Natriumäthylat-Lösung (Fries, Schimkelschmidt, B. 58, 2839). Gelbliche Prismen (aus Alkohol). F: 121°.

4. Oxy-exe-Verbindungen C₂₀H₁₆O₂.

1. Phenyl-[4-oxy-benzhydryl]-keton, ms-[4-Oxy-phenyl]-desoxybenzoin $C_{20}H_{10}O_2=C_0H_5\cdot CO\cdot CH(C_0H_5)\cdot C_0H_4\cdot OH.$

Phenyl-[4-methoxy-benzhydryl]-keton, ms-[4-Methoxy-phenyl]-desoxybenzoin, Anisyldesoxybenzoin, Anisyldiphenyläthanon $C_{21}H_{12}O_2 = C_6H_5 \cdot \text{CO} \cdot \text{CH}(C_9H_5) \cdot C_8H_4 \cdot \text{O} \cdot \text{CH}_6$ (H 211). B. Beim Kochen von höherschmelzenden und niedrigerschmelzendem $\alpha.\alpha$ -Diphenyl- α -[4-methoxy-phenyl]-äthylenglykol (E II 6, 1110) mit 50% iger Schwefelsäure (Orechow, Tiffenbau, C. r. 171, 474; Bl. [4] 29, 452; Mc Kenzie, Mitarb., Bl. [4] 45, 420). Neben Diphenyl-[4-methoxy-phenyl]-acetaldehyd beim Kochen von $\alpha.\alpha$ -Diphenyl- α '-[4-methoxy-phenyl]-äthylenglykol mit 50% iger Schwefelsäure (O., T., C. r. 171, 475; Bl. [4] 29, 456). Aus rechtsdrehendem oder inaktivem β -Amino- $\alpha.\beta$ -diphenyl- α -[4-methoxy-phenyl]-äthylakohol durch Einw. von kalter konzentrierter Schwefelsäure oder durch Kochen mit verd. Salesäure und etwas Alkohol (Mc Kenzie, Muls. B. 62, 1792, 1794). Aus $\alpha.\alpha$ -Diphenyl- α '-[4-methoxy-phenyl]-äthylenoxyd beim Erhitzen auf 390° unter gewöhnlichem Druck oder auf 310° in Gegenwart von Schwefelsäure

und Bimsstein (LAGRAVE, A. ch. [10] 8, 421, 422). — F: 88—89° (O., T., Bl. [4] 39, 452), 87,5—88° (McK., Mills). Sehr leicht löslich in den gebräuchlichen Lösungsmitteln (O., T.). — Liefert

beim Kochen mit alkoh. Kalilauge Benzoesäure und 4-Methoxy-diphenylmethan (O., T.; La.). Ein schwach rechtsdrehendes Präparat, das durch alkoh. Kalilauge ziemlich rasch vollständig racemisiert wurde, entstand neben überwiegenden Mengen [4-Methoxy-phenyl]benzhydryl-keton bei der Einw. von salpetriger Säure auf rechtsdrehenden β -Amino- α . β -diphenylα-[4-methoxy-phenyl]-athylalkohol (McKenzie, Mills, B. 62, 1794).

- ms [4 Methoxy phenyi] desoxybenzoin oxim $C_{21}H_{19}O_2N = C_6H_5 \cdot C(:N \cdot OH) \cdot CH(C_6H_5) \cdot C_6H_4 \cdot O \cdot CH_3$. Krystalle (aus Alkohol). F: 139—140° (Orbechow, Tippenbau, Bl. [4] 29, 453; McKenzie, Mills, B. 62, 1792).
- 2. [4-Oxy-phenyl]-benzhydryl-keton, 4-Oxy-ms-phenyl-desoxybenzoin $C_{10}H_{10}O_1=HO\cdot C_0H_4\cdot CO\cdot CH(C_0H_6)_1$.
- [4-Methoxy-phenyl]-benzhydryl-keton, 4-Methoxy-ms-phenyl-desoxybenzoin, Anisyl-diphenylmethyl-keton $C_{s_1}H_{1s}O_s = CH_s \cdot O \cdot C_eH_4 \cdot CO \cdot CH(C_eH_5)_s$. B. Durch Oxydation von [4-Methoxy-phenyl]-benzhydryl-carbinol mit Chromsaure in siedendem Eisessig (LAGRAVE, A. ch. [10] 8, 419). Bei der Einw. von Natriumnitrit und verd. Essigsäure auf inaktiven oder rechtsdrehenden β -Amino - α . β -diphenyl - α -[4-methoxy-phenyl]-āthylalkohol (McKenzie, Mills, B. 62, 1792, 1793). — Prismen (aus Alkohol), Nadeln (aus Methanol). F: 130—131° (McK., M.), 129—130° (L.). — Wird durch siedende alkoholische Kalilauge in Anissäure und Diphenylmethan gespalten (L.). Gibt kein Oxim und Semicarbazon (L.).
- 3. 1 Oxy 2 oxo 1.1.2 triphenyl äthan, Diphenyl benzoyl carbinol, ms-Phenyl-benzoin $C_{10}H_{10}O_1 = C_0H_0$: $C_0C_0C_0H_0$: OH (H 211). Bei der Umsetzung mit Natrium und Spaltung des erhaltenen Natriumsalzes mit Natriumsmid in siedendem Toluol entsteht verwiegend Benzoesäure (Schönberg, A. 436, 215). Gibt bei der Einw. von Methylmagnesiumjodid 1.1.2-Triphenyl-propandiol-(1.2) (Roger, Soc. 127, 523).

Methyläther $C_{21}H_{18}O_3 = C_6H_5 \cdot CO \cdot C(C_6H_5)_3 \cdot O \cdot CH_3$ (H 212). Liefert beim Kochen mit methylalkoholischer Kalilauge vorwiegend Benzoesäure (Schönberg, B. 58, 585).

Oxim, β -Oximino- α . α . β -triphenyl-äthylaikohol $C_{20}H_{17}O_2N = C_6H_5 \cdot C(:N \cdot OH) \cdot C(C_6H_5)_2 \cdot OH$ (H 212). Zur Konfiguration vgl. Orechow, Tiffenau, Bl. [4] 41, 840. — B. Aus β -Benzilmonoxim (E II 7, 679) und Phenylmagnesiumbromid in Äther (Orechow, Tiffeneau, Bl. [4] 41, 842). — Krystalle (aus Alkohol). F: 153—154° (O., T.). — Kupfersalz CuC₂₀H₁₅O₂N. Grün. Unlöslich in Wasser, löslich in Ammoniak (Feigl., Sicher, Singer, B. 58, 2297, 2298, 2302).

4. Diphenyl-[4-oxy-phenyl]-acetaldehyd $C_{10}H_{10}O_{2} = HO \cdot C_{4}H_{4} \cdot C(C_{4}H_{4})_{2} \cdot CHO$.

Diphenyl-[4-methoxy-phenyl]-acetaldehyd, Diphenyl-p-anisyl-acetaldehyd $C_{21}H_{18}O_{2}=CH_{2}\cdot O\cdot C_{6}H_{4}\cdot C(C_{2}H_{6})$, CHO. B. Neben Phenyl-[4-methoxy-benzhydryl]-keton beim Kochen von $\alpha.\alpha$ -Diphenyl- α' -[4-methoxy-phenyl]-äthylenglykol mit 50% iger Schwefelsäure (Овесноw, Тірренвай, C. r. 171, 475; Bl. [4] 29, 456). — Nadeln (aus Methanol). F: 75—76°. Sehr leicht löslich in organischen Lösungsmitteln. — Liefert beim Kochen mit alkoh. Kalilauge 4-Methoxytriphenylmethan und Ameisensäure.

Oxim $C_{a_1}H_{1a}O_2N = CH_3 \cdot O \cdot C_6H_4 \cdot C(C_6H_5)_2 \cdot CH : N \cdot OH$. F: 180—181° (Orechow, Tiffrneau, *Bl.* [4] 29, 457).

Semicarbazon $C_{32}H_{31}O_2N_2=CH_3\cdot O\cdot C_6H_4\cdot C(C_6H_5)_3\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Krystalle (aus Methanol). F: 198—199° (Orechow, Tiffeneau, Bl. [4] 29, 457).

- 5. 6 Oxy 3 formyl triphenylmethan, 4 Oxy-3-benzhydryl-benzaldehyd C₂₀H₁₆O₂, s. nebenstehende Formel. — Ver-(C6H5)2CH . (bindungen mit Benzhydrylchlorid und mit Benzhydrylbromid(?) s. S. 64.
- 6. 1 Phenyl 2 diphenylyl äthanolon , 4 (oder 4') Phenyl benzoin , p Phenylbenzoin $C_{20}H_{10}O_2 = C_0H_5 \cdot C_0H_4 \cdot CH(OH) \cdot CO \cdot C_0H_5$ oder $C_0H_5 \cdot C_0H_4 \cdot CO \cdot CH(OH) \cdot C_0H_5$. B. Bei der Einw. von Magnesium und Magnesiumjodid oder besser Magnesiumbromid auf 4-Phenyl-benzil in Äther + Benzol und Behandlung des Reaktionsprodukts mit Wasser (Gomberg, van Natta, Am. Soc. 51, 2244). — Krystallpulver (aus Alkohol). F: 148—151°.
- 7. 1 Phenyl 2 [accnophthenyl (5)] äthanol (1) on-(2), 5-Phenylglykoloyl-accnaphthen C₁₀H₁₆O₂, s. nebenstehende Formel. B. Bei \(^1/_4\)-stdg. Kochen von 5-Phenylbromacetylacenaphthen mit methylalkoholischer Kalilauge (Ruggli, Jenny, Helv. 10, 237). Nadem (aus Alkohol). F: 138°. Leicht löslich in heißem Alkohol. - Liefert bei der Oxydation mit Permanganat in waßr. Pyridin bei ca. 50° Phenyl - [acenaphthenyl - (5)] - glyoxal. — Das Benzoat C27 H20O2 schmilzt bei 156°.

CO · CH(OH)· C.H.

5. Oxy-exe-Verbindungen $\mathbf{C}_{21}\mathbf{H}_{18}\mathbf{O}_{2}$.

- 1. 1.3 Diphenyl 2 [4 oxy phenyl] propanon (1), 4'- Oxy ms benzyl-desoxybenzoin $C_{21}H_{16}O_3 = C_6H_5 \cdot CH_2 \cdot CH(C_6H_4 \cdot OH) \cdot CO \cdot C_6H_5$.
- 1.3-Diphenyl-2-[4-methoxy-phenyl]-propanon-(1), 4'- Methoxy-ms-benzyl-desoxybenzein C₂₂H₂₀O₂ = C₆H₅·CH₂·CH₄·O·CH₃·CO·C₆H₅. B. Bei 3-stdg. Kochen von 4'-Methoxy-desoxybenzoin mit Benzylchlorid und Natriumäthylat-Lösung (TIFFENEAU, OBECHOW, Bl. [4] 87, 437). Nadeln (aus Alkohol). F: 135—136°.
- 2. 1.2.3-Triphenyl-propanol-(2)-on-(1), Phenyl-benzyl-benzyl-carbinol, ms-Benzyl-benzoin C₂₁H₁₈O₂ = C₆H₅·CH₂·C(C₆H₆)(OH)·CO·C₆H₅. Zur Konstitution vgl. Scheunl, Cherryl 1998 N. 440, 74; Pascual, Cerezo, An. Soc. españ. 23, 76; 24, 395; C. 1925 I, 2557; 1926 II, 2298. — B. Durch Reduktion von Benzoin mit Kaliumamalgam und absol. Alkohol und Behandlung des Reaktionsproduktes mit Benzylchlorid, neben anderen Produkten (P., C.). Bei der Umsetzung von Benzil mit 1 Mol Benzylmagnesiumchlorid in Äther (BANDS, VILA, An. Soc. cepañ. 19, 334; C. 1924 I, 1525). Durch Einw. von Benzylchlorid auf Stilbendiolkalium (E II 6, 989) in Ather (Scheuing, Hensle, A. 440, 82). — Nadeln (aus Methanol oder Alkohol). Triklin (Pardillo, An. Soc. españ. 19, 334; C. 1924 I, 1525). F: 120—121° (B., V.), 119—120,5° (P., C.), 119° (Sch., H.). Schwer löslich in Petroläther, Eisessig und kaltem Alkohol, leichter in Äther, leicht in Benzol; löslich in konz. Schwefelsäure mit roter, allmählich in Grün übergehender Farbe (B., V.). — Wird beim Erhitzen mit Jodwasserstoffsäure (D: 1,625) und Eisessig zu ms-Benzyl-desoxybenzoin reduziert (PASCUAL, CEREZO). Liefert beim Erhitzen mit methylalkoholischer Kalilauge Benzoesäure und Phenylbenzylcarbinol (Toluylenhydrat) (P., C.). Gibt beim Behandeln mit Acetanhydrid und Schwefelsäure Benzylidendesoxybenzoin, Isobenzylidendesoxybenzoin, ms-Benzyl-benzoin-acetat und eine bei 166-1676 schmelzende Verbindung (P., C.). — Entwickelt bei der Hydroxylbestimmung nach ZEREWITINOW

1 Mol Methan (Scheuing, Hensle, A. 440, 83).

Das Phenylurethan C₂₈H₂₈O₃N schmilzt bei 221° (Scheuing, Hensle, A. 440, 83); das Phenylhydrazon C₂₇H₂₈ON₂ erweicht bei 61—62° und schmilzt bei 115—116° (Bant), VILA, An. Soc. españ. 19, 337; C. 1924 I, 1526).

ms-Benzyl-benzoin-acetat $C_{23}H_{20}O_3=C_6H_5\cdot CH_2\cdot C(C_6H_5)(O\cdot CO\cdot CH_3)\cdot CO\cdot C_6H_5$. B. Durch Umsetzung von Benzil mit Benzylmagnesiumchlorid und Behandlung des Reaktionsproduktes mit Acetylchlorid (PASCUAL, CEREZO, An. Soc. espat. 24, 396; C. 1926 II, 2298). Neben anderen Produkten beim Behandeln von ms-Benzyl-benzoin mit Acetanhydrid und Schwefelsäure (P., C.). — Krystalle (aus Petroläther oder Äther). F: 128—129°.

 $\text{ms-Benzyl-benzoin-oxim} \quad \mathrm{C}_{21}\mathrm{H}_{19}\mathrm{O}_2\mathrm{N} = \mathrm{C}_6\mathrm{H}_5\cdot\mathrm{CH}_2\cdot\mathrm{C}(\mathrm{C}_6\mathrm{H}_5)(\mathrm{OH})\cdot\mathrm{C}(:\mathrm{N}\cdot\mathrm{OH})\cdot\mathrm{C}_6\mathrm{H}_5, \ \ B.$ Aus ms-Benzyl-benzoin und Hydroxylamin in siedendem verdünntem Alkohol (BANDS, VILA, An. Soc. españ. 19, 336; C. 1924 I, 1526). — Krystalle (aus Benzol + Benzin). F: 175—176° (B., V.). — Gibt bei der Einw. von PCl_s in Ather Desoxybenzoin und Benzonitril (B., V.). — CuC₂, H₁₇O₂N. Grün. Unlöslich in Wasser, löslich in Ammoniak (Feigl., Sioher, Singer, B. 58, 2294, 2297, 2303).

3. 1.2.3-Triphenyl-propanol-(3)-on-(1), Phenyl-desyl-carbinol $C_{11}H_{18}O_{1}=$ $C_6H_5 \cdot CH(OH) \cdot CH(C_6H_5) \cdot CO \cdot C_6H_5$.

1.2.3 - Triphenyl - propanol - (3) - on - (1) - oxim, 3 - Oxy-1-oximino-1.2.3-triphenyl-propan $C_{a_1}H_{10}O_aN = C_aH_a \cdot CH(OH) \cdot CH(C_aH_a) \cdot C(:N \cdot OH) \cdot C_aH_a$. Zur Konstitution vgl. Kohler, Richtmyeb, Am.Soc.52 [1930], 2039. — B. Aus 3.4.5-Triphenyl- Δ^2 -isoxazolinoxyd (Syst. Nr. 4203) bei der Reduktion mit Zinkstaub und Eisessig (Kohler, Barrett, Am. Soc. 46, 2110) und bei der Einw. von überschüssigem Äthylmagnesiumjodid in Äther (K., B., Am. Soc. 46, 2112). Nadeln (aus Benzol). F: 188° (K., B.). Sehr schwer löslich in Benzol, ziemlich schwer in Alkohol. - Liefert beim Behandeln mit konz. Schwefelsäure 3.4.5-Triphenyl-isoxazolidin, geringere Mengen 3.4.5-Triphenyl- Δ^2 -isoxazolin (F: 208°) und wenig 3.4.5-Triphenyl-isoxazol (K., B.). \rightarrow

Kupfersalz CuC₂₁H₁₇O₂N. Grünlichbraunes Pulver (K., R., Am. Soc. 52, 2043; vgl. K., B.).

Benzoylderivat C₂₆H₂₅O₃N. B. Aus 3-Oxy-1-oximino-1.2.3-triphenyl-propan nach
Schotten-Baumann (Kohler, Barrett, Am. Soc. 46, 2111). — Tafeln (aus Methanol). F: 130°.

3-Oxy-1-acetoximino-1.2.3-triphenyl-propan $C_{23}H_{21}O_3N=C_6H_5\cdot CH(OH)\cdot CH(C_6H_5)\cdot C(:N\cdot O\cdot CO\cdot CH_3)\cdot C_2H_5$. Zur Konstitution vgl. Kohler, Richtmyer, Am. Soc. 52 [1930], 2040). — B. Beim Auflösen von 3-Oxy-1-oximino-1.2.3-triphenyl-propan in Acetylchlorid oder Acetanhydrid (Kohler, Barrett, Am. Soc. 46, 2111). — Tafeln mit 1 H₂O (aus Eisessig oder verd. Alkohol). Schmilzt unter Zersetzung bei 100—110° (K., B.; K., R., Am. Soc. 52, 2043).

4. 1.3 - Diphenyl - 1 - [4 - oxy - phenyl] - propanon - (3), β - Phenyl - β - [4 - oxy - phenyl] - propiophenon $C_{11}H_{18}O_1 = C_4H_5 \cdot CO \cdot CH_2 \cdot CH(C_4H_4) \cdot C_6H_4 \cdot OH$.

1.3 - Diphenyl - 1 - [4 - methoxy - phenyl] - propanon - (3), β - Phenyl- β - [4 - methoxy - phenyl] - propiophenon, Phenylanisylpropiophenon $C_{12}H_{20}O_2 = C_6H_5 \cdot CO \cdot CH_2 \cdot CH(C_6H_5) \cdot C_6H_6 \cdot CH_6$ O·CH₃ (H 212). B. Aus Benzylidenacetophenon und 4-Methoxy-phenylmagnesiumbromid in Ather (Alberco, A. ch. [9] 18, 224). — Kp₁₄: 275—280° (A.). — Gibt mit konz. Sohwefelsäure eine dunkelrote Färbung (Vorländer, Friedberg, B. 56, 1147). Reagiert mit Brom in kaltem Chloroform unter Entwicklung von Bromwasserstoff (V., F.).

5. 1.1.3 - Triphenyl - propanol - (1) - on - (3), Diphenyl - phenacyl - carbinol, β-Oxy-β.β-diphenyl - propiophenon C₂₁H₁₈O₂ = C₆H₅·CO·CH₂·C(C₄H₅)₅·OH (H 213; E I 591). B. Aus Dibenzoylmethan und Phenylmagnesiumbromid in Äther (Vorländer, Osterburg, Meye, B. 56, 1137); Ausbeute 35—40% der Theorie (Landrieu, Blatt, Bl. [4] 55, 1430). Zur Bildung durch Einw. von Phenylmagnesiumbromid auf Malonsäurediäthylester und -dimethylester (H 213) vgl. V., O., M., B. 56, 1137, 1138. — Prismen (aus Alkohol). F: 119° (V., O., M.), 117° (L., B.). Verbrennungswärme bei konstantem Volumen: 2536 kcal/Mol (L., B.). Leicht löslich in Schwefelkohlenstoff, schwerer in Äther (V., O., M.). — Wird durch siedende 20 wige Kalilauge in Acetophenon und Benzophenon gespalten (V., O., M.). Liefert beim Kochen mit 20 wiger Salzsäure, beim Einleiten von Chlorwasserstoff in siedende Lösungen in Alkohol oder Eisessig und beim Behandeln mit Bromwasserstoff-Eisessig in der Kälte β-Phenyl-chalkon (E II 7, 493) (V., O., M.). Gibt mit Phenylhydrazin in siedendem Eisessig 1.3.5.5-Tetraphenyl-Δ'-pyrazolin (?) (V., O., M.).

6. 4'- Oxy - 3.3'- dimethyl-fuchson, o-Kresol-benzein C₂₁H₁₈O₂, s. nebenstehende Formel (H 6, 1147). Zur Konstitution vgl. R. Meyer, Funke, B. 57, 1360; Orndorff, O: C(C₆H₅). OH McNulty, Am. Soc. 49, 992. — Darst. Durch Eintragen von

1 Mol Benzotrichlorid in 2,1 Mol o-Kresol und Erwärmen auf 80° bis zum Aufhören der Chlorwasserstoff-Entwicklung (O., McN., Am. Soc. 49, 993). — Orangerote wasserfreie Krystalle (aus absol. Alkohol oder Eisessig), Tafeln (aus Aceton oder Benzol) (O., McN.); wahrscheinlich triklin; pleochroitisch (gelb-rotorange) (Gill, Am. Soc. 49, 993). Dunkelrote Krystalle mit 1 H₂O (aus der alkal. Lösung mit verd. Schwefelsäure gefällt); wird bei 140—150° wasserfrei (M., F.). F: 260—262° (Zers.) (O., McN.). Sehr schwer löslich in Aceton und Benzol, fast unlöslich in Ather (O., McN.); löst sich in Alkohol mit gelbroter, beim Erwärmen dunkler werdender Farbe, in Eisessig mit dunkelroter Farbe (M., F.), in Alkalien mit violettroter Farbe (M., F.; O., McN.), die sich beim Erhitzen verstärkt (O., McN.); Lösungen in überschüssigem Alkali sind infolge Bildung von 4.4'-Dioxy-3.3'-dimethyl-triphenylcarbinol farblos (O., McN.). Absorptionsspektrum in absol. Alkohol, in 33 %iger Kalilauge und 93 %iger Schwefelsäure und in frisch hergestellten und gestterten Lösungen in alkoh. Salzsäure und alkoh. Kalilauge: Orndorff, McNulty, Am. Soc. 49, 1589—1593.

Gibt bei der Reduktion mit Zinkstaub und Eisessig 4.4'-Dioxy-3.3'-dimethyl-triphenylmethan (Orndorff, McNulty, Am. Soc. 49, 995). Wird durch Kochen mit Schwefeldioxyd in wäßr. Lösung nicht verändert; beim Einleiten von Schwefeldioxyd in die alkal. Lösung entsteht eine Bisulfit-Verbindung, aus der durch Ansäuern wieder o-Kresolbenzein regeneriert wird (O., McN., Am. Soc. 49, 992, 993, 995; vgl. Doebner, Schrofter, A. 257 [1890], 70; R. Meyer, Funke, B. 57, 1361). Beim Schmelzen mit Kaliumhydroxyd entsteht nicht, wie Doebner, Schrofter (A. 257, 74) annahmen, 4.4'-Dioxy-3.3'-dimethyl-benzophenon, sondern 4-Oxy-3-methyl-benzophenon (Gomberg, Anderson, Am. Soc. 47, 2026); vgl. O., McN., Am. Soc. 49, 995). Gibt mit Brom bei Gegenwart von Eisen in Eisessig Dibrom-o-kresolbenzein; bei der Einw. von Chlor und Jod entstehen amorphe Produkte (R. Meyer, Funke, B. 57, 1362). Liefert mit rauchender Salpetersäure in Eisessig Dinitro-o-kresolbenzein (Orndorff, McNulty, Am. Soc. 49, 996). Gibt mit Kaliumcyanid in siedender 10%iger Natronlauge 4.4'-Dioxy-3.3'-dimethyl-triphenylacetonitril (M., F., B. 57, 1362). Beim Behandeln mit Benzoylchlorid in alkal. Lösung entsteht das Dibenzoat der Carbinolform (4.4'-Dibenzoyloxy-3.3'-dimethyl-triphenylcarbinol, Syst.Nr. 902) (M., F.; O., McN.).

Hydrochlorid $C_{21}H_{18}O_2+HCl$. Rotes Krystallpulver (aus Eisessig) oder granatrote Blättchen. F: 222—223° (Orndorff, McNulty, Am. Soc. 49, 996), 230° (Zers.) (R. Meyer, Funke, B. 57, 1361). Zersetzt sich an der Luft langsam, gibt im Vakuum oder bei längerem Erwärmen auf 120—130° Chlorwasserstoff ab (M., F.). — Sulfat $C_{21}H_{18}O_2+H_2SO_4$. Dunkelrote Tafeln (aus Eisessig). Triklin (Gill). F: 231—232° (O., McN.).

5.5'- Dibrom - 4 - oxy - 3.3' - dimethyl - fuchson, Dibrom-o-kresolbenzein C₂₁H₁₆O₂Br₂, s. nebenstehende Formel (X = Br).

B. Durch Einw. von Brom auf o-Kresolbenzein in Gegenwart von Eisen in Eisessig (R. Meyer, Funke, B. 57, 1362).

Dunkelbraune Krystalle mit 1 H₂O (aus Nitrobenzol); wird bei 130—140° wasserfrei; F: 171° (Zers.) (M., F.). Rote Krystalle mit ½ C₇H₈ (aus Toluel); triklin (GHL); F: 238° (Zers.) (Orndorff, McNulty, Am. Soc. 49, 994). Leicht löslich in Alkohol, Aceton und Eisessig, etwas schwerer in Nitrobenzol, schwer in Benzin und Benzol (M., F.). — Nimmt im Ammoniakstrom etwas mehr als 1 Mol Ammoniak auf (O., McN.). — Gibt beim Kochen mit 5% iger Natronlauge 5.5'-Dibrom 4.4'-dioxy-3.3'-dimethyl-triphenylcarbinol (O., McN.).

Natriumsalz NaC₂₁H₁₈O₂Br₂ + H₂O. Blaue Blättchen (aus Aceton). Löslich in Wasser, Alkohol und Aceton, unlöslich in Benzin (M., F.).

5.5'-Dinitre-4-exy-3.3'-dimethyl-fuchson, Dinitre-e-kreselbenzeia $C_{21}H_{16}O_6N_2$, s. die Formel auf S. 249 (X = NO₂). B. Durch Einw. von rauchender Salpetersäure auf o-Kresolbenzein in Eisessig (Orndorff, McNulty, Am. Soc. 49, 996). — Gelbliche Nadeln oder Tafeln (aus Alkohol). F: 127° .

6. Oxy-exe-Verbindungen C22H20O2.

- 1. 2.4 Diphenyl 1 [4 oxy phenyl] butanon (3) $C_{11}H_{10}O_1=C_4H_5\cdot CH_2\cdot CO\cdot CH(C_4H_4)\cdot CH_1\cdot C_4H_4\cdot OH$.
- 1-Chlor-2.4-diphenyl-1-[4-methoxy-phenyl]-butanon-(3), Methyläther des δ-Chlor-β-οxο-α.y-diphenyl-δ-[4-oxy-phenyl]-butans C₂₃H₂₁O₂Cl = C₆H₅·CH₂·CO·CH₄(C₆H₅)·CHCl·C₆H₄·O·CH₃ (H 214). Gibt mit konz. Schwefelsäure unter Chlorwasserstoff-Abspaltung eine orangegelbe Färbung, die an der Luft langsam in Grün übergeht (VORLÄNDER, EICHWALD, B. 56, 1156). Die Umwandlung in Anisylidendibenzylketon (H 214) erfolgt auch beim Kochen mit Diäthylanilin; der H 214 beschriebene Austausch von Chlor gegen die Äthoxygruppe läßt sich auch durch mehrtägige Einw. von Silbernitrat in Alkohol bewirken.
- 2. 1.4 Diphenyl 2 [4 oxy phenyl [butanon (8) $C_{12}H_{10}O_2 = C_4H_5 \cdot CH_2 \cdot CO \cdot CH(C_4H_4 \cdot OH) \cdot CH_2 \cdot C_4H_5$.
- 1.4 Diphenyl 2 [4 methoxy phenyl] butanon (3), 1.4 Diphenyl 3 anisyl butanon (2) $C_{22}H_{22}O_2 = C_eH_5 \cdot CH_2 \cdot CO \cdot CH(C_eH_4 \cdot O \cdot CH_3) \cdot CH_2 \cdot C_eH_5$. B. Aus α -[4-Methoxy-phenyl]- α' . α' -dibenzyl-äthylenglykol (E II 6, 1111) beim Behandeln mit Schwefelsäure oder beim Erhitzen bis zum Siedepunkt (Tiffeneau, Lévy, C. r. 183, 1113).
- Oxim $C_{25}H_{25}O_3N = C_6H_5 \cdot CH_2 \cdot C(:N \cdot OH) \cdot CH(C_6H_4 \cdot O \cdot CH_3) \cdot CH_2 \cdot C_6H_5$. F: 90—91° (Tiffeneral, Lévy, C. r. 188, 1113).
- Semicarbazon $C_{24}H_{25}O_2N_3=C_4H_5\cdot CH_2\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH(C_6H_4\cdot O\cdot CH_3)\cdot CH_2\cdot C_6H_5.$ F: 138—139° (Tiffeneau, Lévy, C. r. 188, 1113).
- 3. 1.2-Diphenyl-4-[4-oxy-phenyl]-butanon-(4), 1.2-Diphenyl-3-[4-oxy-benzoyl]-propan, 4-Oxy- β . γ -diphenyl-butyrophenon $C_{22}H_{20}O_2=HO\cdot C_4H_4\cdot CO\cdot CH_1\cdot CH(C_4H_5)\cdot CH_2\cdot C_4H_5$.
- 1-Nitro-1.2-diphenyl-3-anisoyl-propan, γ-Nitro-4-methoxy- β .γ-diphenyl-butyrophenon $C_{22}H_{21}O_4N=CH_3\cdot O\cdot C_4H_4\cdot CO\cdot CH_2\cdot CH(C_4H_5)\cdot CH(NO_2)\cdot C_5H_5$. B. Aus 4-Methoxy- ω -benzyliden-acetophenon und Phenylnitromethan in siedender Natriummethylat-Lösung (Kohler, Allen, Am. Soc. 50, 888). Nadeln (aus Chloroform). F: 164—165°. Schwer löslich in allen gewöhnlichen Lösungsmitteln außer siedendem Eisessig; läßt sich aus methylalkoholischer Salzsäure umkrystallisieren. Löst sich in Natriummethylat-Lösung und wird daraus durch Essigsäure unverändert gefällt; beim Ansäuern mit Salzsäure bildet sich 1-Phenyl-1-benzoyl-2-anisoyl-āthan. Liefert mit Brom in Natriummethylat-Lösung bei 0° 1-Brcm-1-nitro-1.2-diphenyl-3-anisoyl-propan und geringe Mengen $\alpha.\beta$ -Dibrom-4-methoxy- β -phenyl-propiophenon.
- 1-Brom-1-nitro-1.2-diphenyl-3-anisoyl-propan, γ-Brom-γ-nitro-4-methoxy-β,γ-diphenyl-butyrophenon C₂₃H₂₀O₄NBr = CH₃· O· C₆H₄· CO· CH₂· CH(C₆H₅)· CBr(NO₂)· C₆H₅. B. Aus 1-Nitro-1.2-diphenyl-3-anisoyl-propan und Brom in 30%iger Natriummethylat-Lösung unter Eiskühlung (Kohler, Allen, Am. Soc. 50, 888). Tafeln (aus Methanol). F: 140°. Gibt bei 24-stdg. Kochen mit Kaliumacetat in Methanol niedrigerschmelzendes und höherschmelzendes 1-Nitro-1.2-diphenyl-3-anisoyl-cyclopropan und geringere Mengen 1-Nitro-1.2-diphenyl-3-anisoyl-propan und 1-Phenyl-1-benzoyl-2-anisoyl-āthan.
- 4. 2-Methyl-1.3-diphenyl-1-[4-oxy-phenyl]-propanon-(3), α -[4-Oxy-benzhydryl]-propiophenon $C_{13}H_{10}O_1=C_4H_5\cdot CO\cdot CH(CH_3)\cdot CH(C_4H_5)\cdot C_4H_4\cdot OH$.
- 2-Methyl-1.3-diphenyl-1-[4-methoxy-phenyl]-propanon-(3), α -[4-Methoxy-benzhydryl]-propiophenon, α -Methyl- β -phenyl- β -[4-methoxy-phenyl]-propiophenon $C_{48}H_{24}O_5 = C_0H_5 \cdot CO \cdot CH(CH_3) \cdot CH(C_6H_5) \cdot C_6H_4 \cdot O \cdot CH_3$. B. Durch Umsetzung von β -Phenyl- β -[4-methoxy-phenyl]-propiophenon mit Natriumamid und Methyljodid in Benzol (Albersoo, A. ch. [9] 18, 238). Krystalle (aus Alkohol). F: 128°. Schwer löslich in Äther und Ligroin.

7. Oxy-oxo-Verbindungen $C_{27}H_{20}O_2$.

4'-Oxy-2.2'-dimethyl-5.5'-diisopropylfuchson, Thymolbenzein C₂₇H₂₀O₂, s. nebenstehende
Formel. B. Neben 4-Oxy-2-methyl-5-isopropyl-benzophenon
beim Eintragen von 2 Mol geschmolzenem Thymol in ein
Gemisch aus 1 Mol Benzotrichlorid und 2 Mol Zinn(IV)-chlorid
unter Rühren und nachfolgenden Erwärmen auf 60—65' (ORNDORFF, LACEY, Am. Soc. 49, 820,
822). — Rote Krystalle (aus 90%igem Alkohol). F: 184' (unkorr.). Sehr leicht löslich in

Ameisensäure, Eisessig, Methanol und Aceton, löslich in Äther und Benzol, unlöslich in Wasser und Petroläther; konz. Lösungen sind rot, verdünnte orangegelb. Löslich in warmer konzentrierter Schwefelsäure mit dunkelroter Farbe. Schwer kalich in wäßr. Natronlauge mit blaner Farbe; die Farbe schlägt bei p_H 7,6—7,9 nach Gelb, bei p_H 1,5—2,5 nach Rot um. Nimme a. 2 Mol Chlorwasserstoff auf und hält über Kaliumhydroxyd 1 Mol Chlorwasserstoff zurück. — Gibt bei der Reduktion mit Zinkstaub und siedendem Eisessig oder beim Kochen mit Phenylhydrazin 4.4'-Dioxy-2.2'-dimethyl-5.5'-diisopropyl-triphenylmethan. — Hydrochlorid C₂₇H₂₆O₂ + HCl. Grüne Krystalle. Zersetzt sich im offenen Röhrchen bei 225—235°, im geschlossenen Röhrchen bei 235—250°. Löslich in Methanol, Alkohol, Eisessig und Aceton, sehr schwer löslich in Benzol, unlöslich in Äther, Petroläther und Wasser; die Lösungen sind dunkelrot. Wird durch siedendes Wasser vollständig hydrolysiert. — Perchlorat C₂₇H₂₆O₂ + HClO₄. Krystalle (aus Eisessig). Zersetzt sich bei 265—272°. Löslich in Methanol, Alkohol und Aceton, unlöslich in Äther, Benzol, Petroläther und Wasser; die Lösungen sind rot. — Sulfat C₂₇H₂₆O₂ + H₂SO₄. Krystalle (aus Eisessig). F: 242—243°. — Natriumsalz NaC₂₇H₂₆O₂ + 2H₂O. Dunkelblaue, bronzeglänzende Naclen. Erweicht bei 235—245°, schmilzt nicht bis 310°. Sehr schwer löslich in Petroläther und Tetrachlorkohlenstoff mit hellgelber Farbe, schwer in Äther, Äthylacetat und Chloroform mit orangegelber Farbe sowie in Wasser mit hellblauer, infolge Hydrolyse allmählich verschwindender Farbe; die Lösungen in absol. Alkohol, Methanol und Aceton sind blau und werden beim Verdünnen erst grün, dann gelb.

Thymolbenzein - methyläther $C_{26}H_{32}O_2 = O: C_6H_3(C_3H_7): C(C_6H_5)\cdot C_6H_3(CH_3)(C_3H_7)\cdot O\cdot CH_2$. B. Beim Kochen von Thymolbenzein mit Methyljodid und Kaliumcarbonat in Aceton (Orndorff, Lacex, Am. Soc. 49, 823). — Orangefarbene Krystalle. F: 132—133°. Löslich in Aceton, Äther, Benzol, Methanol und Alkohol mit gelber Farbe. Addiert unter Rotviolettfärbung 3 Mol Chlorwasserstoff; das Additionsprodukt gibt über Kaliumhydroxyd 2 Mol Chlorwasserstoff ab. — Hydrochlorid $C_{26}H_{22}O_2$ + HCl. Schmilzt im geschlossenen Röhrchen bei 85—95°. Löslich in Methanol, Alkohol und Aceton mit dunkelroter, bei Zusatz von Natronlauge in Gelb übergehender Farbe.

Thymolbenzein-acetat $C_{29}H_{32}O_3=O:C_4H_4(CH_3)(C_2H_7):C(C_6H_5)\cdot C_4H_4(CH_3)(C_3H_7)\cdot O\cdot CO\cdot CH_3$. B. Aus dem Natriumsalz des Thymolbenzeins und Acetylchlorid in Aceton bei $40-45^{\circ}$ (Orndorff, Laux, Am. Soc. 49, 824). — Orangefarbene Nadeln (aus Äther + Petroläther). F: 143—144°. Sehr leicht löglich in Aceton, Methanol, Alkohol und Äther, schwer in Petroläther, unlöglich in Wasser. — Wird durch siedendes Wasser langsam, durch heiße wäßrige oder kalte alkoholische Kalilauge rasch hydrolysiert.

3.3'- Dibrom - 4'- oxy - 2.2'- dimethyl - 5.5'- diisopropylfuchson, Dibromthymolbenzein C₂₇H₂₈O₂Br₂, s. nebenstehende
Formel. B. Aus Thymolbenzein und 2 Mol Brom in Eisessig
+ Ameisensäure bei Zimmertemperatur (ORNDORFF, LACEY,
Am. Soc. 49, 824). — Rote Krystalle mit 1 HCO₂H; gibt die
Ameisensäure beim Kochen mit Wasser ab. Schmilzt lufttrocken bei 96—97°, ameisensäurefrei
bei 89—90°. Löslich in Aceton, Äther, Methanol und Alkohol; die Lösungen sind orange bis
orangerot; sehr schwer löslich in Petroläther, unlöslich in Wasser. Schwer löslich in 5—10 %iger

3.3'-Dinitro-4'-oxy-2:2'-dimethyl-5.5'-diisopropyl-fuchson,
Dinitrothymoibenzein $C_{27}H_{28}O_{2}N_{2}$, s. nebenstehende Formel.

B. Aus Thymolbenzein und Salpetersäure (D: 1,5) in Eisessig,
zuletzt bei 60° (Orndorff, Lacey, Am. Soc. 49, 824). — Gelbe
Nadeln (aus Äther + Petroläther). Färbt sich bei 100—110°
dunkler, verkohlt bei 150—160°. Sehr leicht löslich in Methanol, Alkohol, Äther und Aceton,
schwer in Wasser, unlöslich in Petroläther. Löslich in 5—10%iger Natronlauge mit roter Farbe.

Natronlauge und in konz. Ammoniak mit blauer Farbe, die bei p_H 5,6—7,2 in Gelb umschlägt. Gibt unbeständige Additionsprodukte mit 2,5 Mol Chlorwasserstoff und mit 1 Mol Ammoniak.

n) Oxy-oxo-Verbindungen $C_n H_{2n-26} O_2$.

1. Oxy-exe-Verbindungen C10H12O2.

1. 3 - Oxy - 1 - phenyl - fluoremon C₁₈H₁₂O₂, s. nebenstehende Formel. B. Neben 3.9-Dioxo-1-phenyl-1.2.3.10-tetrahydro-fluoren beim Erhitzen von ms - {Phenyl-[indandion-(1.3)-yl-(2)]-methyl}-acetylaceton (E II 7, 863) mit Chlorwasserstoff-Eisessig auf 150° im Rohr (Ionescu, Bl. [4] 27, 915; Bulet. Cluj 3, 39; C. 1927 I, 600). — Olivbraune Nadeln (aus Nitrobenzol). F: 266°. Sehr schwer löglich in organischen Lösungsmitteln. Die alkoh. Suspension gibt mit Alkalikaugen eine smaragdgrüne Färbung, die beim Aufbewahren, rascher beim Erwärmen, in Rotorange übergeht.

- 2. 2-Oxo-1-[2-oxy-benzyliden]-acenaphthen, Salicy-liden-acenaphthenon C₁₉H₁₂O₂, s. nebenstehende Formel. B. Aus Acenaphthenon und Salicylaldehyd in alkoh. Natronlauge (DE Fazi, MONFORTE, R. A. L. [6] 10, 654; G. 60 [1930], 273; vgl. Kalle & Co., D. R. P. 405394; C. 1925 I, 1135; Frdl. 14, 487). Gelbe Nadeln (aus Eisessig oder verd. Alkohol). F: 186° (K. & Co.), 186—187° (SIRCAR, GOPALAN, J. indian chem. Soc. 9, 105, 648; G. 1932 II, 705; 1938 I, 3193). Löslich in Natronlauge mit orangegelber Farbe (K. & Co.), in konz. Schwefelsäure mit violettroter Farbe (DE F., M.). Gibt beim Verschmelzen mit Kaliumhydroxyd und Behandeln mit Luft einen blaugrünen Küpenfarbstoff (K. & Co.).
- 3. 2-Oxo-1-[4-oxy-benzyliden] acenaphthen, [4-Oxy-benzyliden] acenaphthenon $C_{19}H_{13}O_{2}$, s. obenstehende Formel.
- 2-0xo-1-[4-methoxy-benzyliden]-acenaphthen, Anisyliden-acenaphthenon $C_{50}H_{14}O_{3}$ $= C_{10}H_{6} \stackrel{C}{\smile} C_{0}H_{4} \cdot O \cdot CH_{3}. \quad B. \text{ Aus Acenaphthenon und Anisaldehyd in wäßrig-alkoholischer}$

Natronlauge (DE FAZI, G. 54, 664). — Gelbe Nadeln (aus Alkohol). F: 97—98°. Leicht löslich in Äther, Chloroform, Benzol und Eisessig, schwerer in Alkohol und Methanol. Gibt mit Salpetersäure eine gelbbraune, mit konz. Schwefelsäure eine charakteristische rote Färbung.

2. Oxy-oxo-Verbindungen $C_{20}H_{14}O_{2}$.

- 9-Oxy-10-oxo-9-phenyl-dihydroanthracen, 10-Oxy-10-phenyl-anthron-(9), ms-Phenyl-oxanthranol C₂₀H₁₄O₂ = OC C₆H₄ C C₆H₅ (H 215; E I 592). B. Neben wenig Anthrachinon bei kurzem Kochen von 10-Nitro-9-phenyl-anthracen mit überschüssiger Chromsäure in Eisessig (Barnett, Cook, Soc. 123, 2638). Durch Einw. von überschüssigem Stickstoffdioxyd auf 10-Methoxy-9-phenyl-anthracen in Chloroform unter Kühlung (B., Soc. 127, 2044). Als Hauptprodukt beim Behandeln von 10-Acetoxy-9-phenyl-anthracen mit Salpetersäure (D: 1,42) in Eisessig (B., C., Soc. 123, 2641). Beim Kochen von 10-Nitro-10-phenyl-anthron-(9) mit verd. Schwefelsäure oder mit Eisessig (B., C., Soc. 123, 2642). Beim Aufbewahren einer wäßr. Lösung von N-[10-Phenyl-anthron-(9)-yl-(10)]-pyridiniumbromid (B., C., Soc. 123, 2638). F: 214° (B., C., Soc. 123, 2638 Anm.). Liefert bei der Reduktion mit Zinkstaub und konz. Salzsäure in siedendem Eisessig 10.10'-Diphenyl-dianthranyl-(9.9') (MATTHEWS, Soc. 1926, 240).
- 10 Methoxy -10 phenyl-anthron-(9), ms Phenyl oxanthranoi methyläther $C_{81}H_{16}O_8 = OC C_6H_4 C_0H_5$ (H 215). Darstellung durch Erhitzen von 3.3-Diphenyl-phthalid mit PCl_5 auf 140° und Kochen des entstandenen 9-Chlor-10-oxo-9-phenyl-dihydroanthracens mit Methanol (vgl. Haller, Guyot, Bl. [3] 17, 877): Schlenk, Bergmann, A. 463, 150. Würfel (aus Aceton oder Benzin). F: 169—170° (Sch., B., A. 463, 151). Färbt konz. Schwefelsäure blutrot (Sch., B., A. 463, 277). Gibt bei der Reduktion mit Jodwasserstoffsäure (D: 1,7) und rotem Phosphor in siedendem Eisesig 10-Phenyl-anthron-(9) (Sch., B., A. 463, 162). Beim Kochen mit Natrium und Isoamylalkohol entsteht 9-Phenyl-dihydroanthracen (Sch., B., A. 463, 276).
- 10 Athoxy 10 phenyl anthron (9), ms Phenyl oxanthranol athylather $C_{ss}H_{18}O_{s} = OC < C_{c}H_{4} > C < C_{c}H_{5}$ (H 216). B. Beim Kochen von N-[10-Phenyl-anthron-(9)-yl-(10)]-pyridiniumbromid mit Alkohol (BARNETT, COOK, Soc. 128, 2638).
- 10-Methoxy-10-phenyl-anthron-(9)-hydrazon $C_{21}H_{18}ON_2 = H_2N \cdot N : C \xrightarrow{C_0H_4} C \xrightarrow{C_0H_5} C \xrightarrow{C$
- 1.5 Dichlor 10 oxy 10 phenyl anthron-(9) C₂₀H₁₂O₂Cl₂, s. nebenstehende Formel. B. Bei der Einw. von Chromsäure auf 1.5-Dichlor-10-phenyl-anthron-(9) in siedendem Pyridin (Barnett, Matthews, B. 59, 676). Bei kurzem Kochen von 1.5-Dichlor-10-acetoxy-9-phenyl-anthracen mit Eisessig und Salpetersäure (D: 1,42) (B., M.). Nadeln (aus Eisessig). F: 224°.

1.5 - Dichlor -10- methoxy-10-phenyl-anthron-(9) $C_{21}H_{14}O_3Cl_3 = OC < C_0H_3Cl_2 < C_0H_3Cl_3 < C_0H_$

- 1.5-Dichlor-10-athoxy-10-phenyl-anthron-(9) $C_{22}H_{16}O_2Cl_3 = OC < \begin{array}{c} C_0H_3Cl > C \\ C_0H_2Cl > C \\ \end{array}$ C_2H_5 B. Analog der vorangehenden Verbindung (BARNETT, GOODWAY, B. 62, 427). — Krystalle (aus Benzol + Petroläther). F: 150°.
- $1.5 \textbf{Dichier} 10 \textbf{acetexy} 10 \textbf{phenyl-anthron-(9)} \quad \textbf{C}_{22} \\ \textbf{H}_{14} \\ \textbf{O}_{3} \\ \textbf{Cl}_{2} = \textbf{OC} \\ \textbf{C}_{6} \\ \textbf{H}_{3} \\ \textbf{Cl} \\ \textbf{Cl} \\ \textbf{CC} \\ \textbf{CD} \cdot \textbf{CD} \cdot \textbf{CH}_{6}.$ B. Beim Kochen von 1.5-Dichlor-10-brom-10-phenyl-anthron-(9) mit Natriumacetat und Eisessig (Barnett, Matthews, B. 59, 676). — Mikrokrystallines Pulver (aus Benzol). F: 254°.
- 1.5 Dichlor 10 oxy 10 [4 nitro phenyl] anthron (9) (?) $C_{20}H_{11}O_4NCl_2 =$ $OC < C_6H_4Cl > C < C_6H_4 \cdot NO_2$. B. Beim Kochen von 1.5-Dichlor-10-phenyl-anthron-(9) mit überschüssiger Salpetersäure (D: 1,42) (Barnett, Matthews, B. 59, 676). — Krystalle (aus Eisessig). F: 270°. — Gibt bei der Oxydation 1.5-Dichlor-anthrachinon.

3. Oxy-oxo-Verbindungen $C_{21}H_{16}O_2$.

- 1. 2.3 Diphenyl 1 [2 oxy phenyl] propen (1) on (3), ms Salicyliden-desoxybenzoin, ω Phenyl ω salicyliden acetophenon, 2 Oxy α phenyl chalkon $C_{21}H_{16}O_2=C_6H_5\cdot CO\cdot C(C_6H_5): CH\cdot C_6H_4\cdot OH.$
- a) $cis 2 Oxy \alpha phenyl chalkon$, cis-Phenylcumarinphenon $C_{3}H_{16}O_{3} =$ $C_8H_5 \cdot CO \cdot C \cdot C_8H_5$. B. Das Natriumsalz entsteht beim Behandeln wäßr. Emulsionen von HO C.H. CH 2.3-Diphenyl-benzopyryliumsalzen mit Natronlauge bei Zimmertemperatur (Decker, Becker, B. 55, 390). — Ist nur als Alkalisalz beständig; Kohlendioxyd fällt aus alkal. Lösungen 2.3-Diphenyl-benzopyranol. Wandelt sich beim Kochen der alkal. Lösungen in die trans-Form um. Beim Behandeln mit Dimethylsulfat in alkal. Lösung entsteht cis-2-Methoxyα-phenyl-chalkon. — Natriumsalz. Gelbe amorphe Floeken. Löslich in verd. Natronlauge mit gelber Farbe.
- cis 2 Methoxy α phenyl chalkon $C_{22}H_{18}O_2 = C_6H_5 \cdot CO \cdot C(C_6H_6) : CH \cdot C_6H_4 \cdot O \cdot CH_8$. B. Aus cis-2-Oxy-x-phenyl-chalkon und Dimethylsulfat in ca. 1 % iger Natronlauge (Decker, Becker, B. 55, 391). — Gelbliche Täfelchen (aus Äther). F: 111—112°. Die Krystalle werden bei jahrelangem Aufbewahren trüb und zerfallen.
- b) trans-2-Oxy-α-phenyl-chalkon, trans-α-Phenyl-o-cumarphenon C₂₁H₁₆O₂= $C_6H_5 \cdot CO \cdot C \cdot C_6H_5$
- $HC \cdot C_5H_4 \cdot OH$. Bei kurzem Erwärmen von 2.3-Diphenyl-benzopyranol-(2) mit 1% iger Natronlauge (Decker, Becker, B. 55, 385). Entsteht auch beim Kochen der cis-Form mit Alkalien (D., B., B. 55, 390). — Schwach lachsrote Nadeln (aus Benzol + Ligroin). F: 154° bis 155°. Löst sich in kalter sehr verdünnter Natronlauge mit gelbroter Farbe; färbt sich beim Übergießen mit 5—10% iger Natronlauge rot. — Geht beim Erhitzen ohne Lösungsmittel oder beim Kochen mit Toluol in 2.3-Diphenyl-benzopyranol-(2) über. Gibt beim Behandeln mit Salzsäure 2.3-Diphenyl-benzopyryliumchlorid. Zerfällt beim Kochen mit wäßrig-alkoholischer Natronlauge in Desoxybenzoin und Salicylaldehyd. — Natriumsalz NaC₂₁H₁₅O₂+3H₂O. Dunkelrote Nadeln (aus sehr verd. Natronlauge). Wird bei etwa 150° heller, schmilzt bei 194° bis 196°. Schwer löslich in verd. Natronlauge.
- trans-2-Methoxy- α -phenyl-chalkon $C_{22}H_{18}O_2=C_0H_5\cdot CO\cdot C(C_0H_5)\cdot CH\cdot C_0H_4\cdot O\cdot CH_3$. B. Aus trans-2-Oxy- α -phenyl-chalkon und Dimethylsulfat in wäßriger oder besser in wäßrig-alkoholischer Natronlauge (DECKER, BECKER, B. 55, 387). — Gelbliche Nadeln (aus 90%igem Alkohol). F: 1410. — Gibt beim Kochen mit konz. Salzsaure 2.3-Diphenyl-benzopyryliumchlorid.
- 2. 4-[4-Oxy-cinnamoyl]-diphenyl, 4-Oxy-4'-phenyl-chalkon $C_{21}H_{16}O_3=C_6H_5\cdot C_6H_4\cdot CO\cdot CH\cdot CH\cdot C_6H_4\cdot OH.$
- 4-[4-Methoxy-cinnamoyl]-diphenyl, 4-Anisalacetyl-diphenyl, 4-Methoxy-4'-phenyl-chalkon C₃₂H₁₈O₂ = C₆H₅·C₆H₄·CO·CH:CH·C₆H₄·O·CH₃. B. Aus 4-Acetyl-diphenyl und Anisaldehyd in Gegenwart von etwas Kalilauge in siedendem Alkohol (DILTHEY, J. pr. [2] 101, 196). Hellgelbe Prismen (aus Alkohol). F: 140°. Leicht löslich in Alkohol. Löst sich in konz. Schwefelsäure und in Eisessig + konz. Schwefelsäure mit roter Farbe (D.; D., Mitarb., J. pr. 191 117, 230)
- 4'-Nitro-4-[4-methoxy-cinnamoyl]-diphenyl $C_{22}H_{17}O_4N=O_2N\cdot C_6H_4\cdot C_8H_4\cdot CO\cdot CH$: $CH\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus 4'-Nitro-4-acetyl-diphenyl und Anisaldehyd in Natriumäthylat-Lösung bei Zimmertemperatur (Dilthey, Mitarb., J. pr. [2] 124, 125). — Gelbe Prismen (aus Benzol). F: 198-199°. Die Lösung in konz. Schwefelsäure ist rotorange.

OXY-OXO-VERBINDUNGEN CnH2n-26O2

3. 2 (oder 3)-Oxy-2.3-diphenyl-hydrindon-(1) C₃₁H_{1e}O₃ = C_eH₄ CH(C_eH₅) C(OH)·C_eH₅ oder C_eH₄ CO CH·C_eH₅. Eine Verbindung, der vielleicht eine dieser Formeln zukommt, s. E II 7, 502.

6 - Phenyl - 1.2; 4.5 - dibenzo - cycloheptadien - (1.4) - ol - (3) - on - (7) bzw.

6-Phenyl-1.2; 4.5-dibenzo-cycloheptatrien-(1.4.6)-diol-(3.7) C₁₁H₁₆O₂, Formel I bzw. II. B. Bei der Reduktion von 6-Phe-CaH s CaHs nyl - 1.2; 4.5 - dibenzo - cycloheptadien - (1.4) dion-(3.7) (E II 7, 769) mit Zinkstaub und CO · CH C(OH):C wäßr. Ammoniak auf dem Wasserbad (Cook, I. Soc. 1928, 61). — Krystallpulver (aus Toluol). CH(OH) CH Sintert bei 1780 unter Gelbfärbung; F: 1860 OH bis 188°. Löslich in siedender wäßriger Natronlauge. — Liefert bei der Oxydation mit Chromtrioxyd in siedendem Eisessig 2'-Benzoyl-

Natronlauge. — Liefert bei der Oxydation mit Chromtrioxyd in siedendem Eisessig 2'-Benzoylbenzophenon-carbonsäure-(2). Gibt beim Erwärmen mit Acetanhydrid und Pyridin 3.7-Diacetoxy-6-phenyl-1.2;4.5-dibenzo-cycloheptatrien (E II 6, 1029). Reagiert nicht mit Hydroxylamin. Verharzt beim Kochen mit Natrium und Isoamylalkohol.

4. Oxy-exe-Verbindungen C₂₂H₁₈O₂.

- 1. 2.4 Diphenyl 1 [2 oxy phenyl] buten (1) on (3), Benxyl-[2-oxy-α phenyl styryl] keton, Salicylidendibenxylketon C₁₂H₁₈O₂ = C₄H₅·CH₂·CO·C(C₄H₅):CH·C₄H₄·OH. B. Aus Dibenzylketon und Salicylaldehyd in Gegenwart von Piperidin in Alkohol (DICKINSON, HEILBRON, O'BRIEN, Soc. 1928, 2080). Gelbliche Krystalle (aus Methanol). F: 177°. Löslich in konz. Schwefelsäure mit orangeroter Farbe. Wird durch verd. Natronlauge orangerot gefärbt und teilweise gelöst; die Lösung ist orange. Entfärbt Brom. Beim Sättigen einer alkoh. Lösung mit Chlorwasserstoff entsteht 3-Phenyl-2-benzyliden-1.2-chromen. Gibt mit Salicylaldehyd und Chlorwasserstoff in Alkohol 3.3'-Diphenyl-dibenzospiropyran C₆H₄ CH:C(C₆H₅) COC(C₆H₅):CH C₆H₄ (Syst. Nr. 2687).
- 2.4 Diphenyl 1 [2 methoxy phenyl] buten-(1)-on-(3), Benzyl-[2-methoxy- α -phenyl-styryl]-keton $C_{22}H_{20}O_2 = C_4H_3 \cdot CH_3 \cdot CO \cdot C(C_4H_5) : CH \cdot C_4H_4 \cdot O \cdot CH_3$. B. Beim Behandeln von Salicylidendibenzylketon mit Dimethylsulfat und verd. Natronlauge in wäßr. Aceton bei ca. 50° (Dickinson, Heilbeon, O'Brien, Soc. 1928, 2080). Gelbliche Nadeln (aus Aceton). F: 140—141°.

Salicylidendibenzylketon-semicarbazon $C_{22}H_{21}O_2N_3=C_6H_5\cdot CH_2\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot C(C_6H_6):CH\cdot C_6H_6\cdot OH$. Gelbliche Tafeln (aus Alkohol). F: 196° (DICKINSON, HEILBEON, O'BRIEN, Soc. 1928, 2080).

- 2. 2.4-Diphenyl-1-[4-oxy-phenyl]-buten-(1)-on-(3), [4-Oxy-benzyliden]-dibenzylketon $C_{11}H_{16}O_1=C_4H_4\cdot CH_2\cdot CO\cdot C(C_4H_4)\cdot CH\cdot C_4H_4\cdot OH$.
- 2.4 Diphenyl 1 [4 methoxy phenyl] buten (1) on (3), Anisylidendibenzylketon, Benzyl [4 methoxy α-phenyl styryl] keton C₃₂H₂₀O₂ = C₆H₅·CH₂·CO·C(C₆H₅): CH·C₆H₄·O·CH₃ (H 218). B. Beim Kochen von 1-Chlor-2.4-diphenyl-1-[4-methoxy-phenyl]-butanon-(3) mit Diāthylanilin (Vorländer, Eichwald, B. 56, 1155). Beim Erwärmen von 1-Piperidino-2.4-diphenyl-1-[4-methoxy-phenyl]-butanon-(3) mit Eisessig (Dilthey, Stallmann, B. 62, 1607). F: 101—102° (D., St.), 98° (V., El.). Die Lösung in konz. Schwefelsäure ist orange und wird allmählich dunkelrot (D., St.); nach Vorländer, Eichwald nimmt sie an der Luft langsam eine grüne Färbung an. Über Aufnahme von Chlorwasserstoff in Eisessig vgl. V., El. Gibt beim Erwärmen mit überschüssigem Piperidin 1-Piperidino-2.4-diphenyl-1-[4-methoxy-phenyl]-butanon-(3) (D., St.).
- 3. 1.3-Diphenyl 2-[4-oxy-benzoyl] propen (1) $C_{12}H_{14}O_2 = C_4H_5 \cdot CH_1 \cdot C(:CH \cdot C_4H_4) \cdot CO \cdot C_4H_4 \cdot OH$.

3 - Nitro - 1.3 - diphenyl - 2 - anisoyl-propen-(1) $C_{33}H_{19}O_4N = C_0H_5 \cdot CH(NO_9) \cdot C(:CH \cdot C_0H_5) \cdot CO \cdot C_4H_4 \cdot O \cdot CH_3$.

a) Höherschmelzende Form. B. Neben der niedrigerschmelzenden Form bei kurzem Erwärmen von höherschmelzendem 1-Nitro-1.2-diphenyl-3-anisoyl-cyclopropan (S. 255) mit 5 % iger Natriummethylat-Lösung und Behandeln einer äther. Suspension der entstandenen Natriumverbindung mit eiskalter verdünnter Salzsäure (Kohler, Allen, Am. Soc. 56, 890). — Nadeln (aus Methanol). F: 140°. Schwer löalich in Äther und kaltem Methanol. — Geht bei wiederholter Krystallisation aus Methanol oder bei einmaliger Krystallisation aus Methanol in Gegenwart einer Spur Essigsäure in die niedrigerschmelzende Form über. Gibt beim Behandeln mit Ozon in Äthylbromid und Kochen des Ozonids mit Wasser Benzaldehyd. Lösungen in alkoh. Natronlauge zersetzen sich unter Rotfärbung und Auftreten von Benzaldehyd-Geruch. — Natriumsalz. Gelbe Nadeln.

- b) Niedrigerschmelzende Form. B. s. bei der höherschmelzenden Form. Prismen (aus Methanol). F: 118° (KOHLER, ALLEN, Am. Soc. 50, 890). Leicht löslich in Äther und Methanol. Gibt bei der Ozonisierung in Äthylbromid und Hydrolyse des Ozonids mit Wasser Benzaldehyd. Natriumverbindung. Gelbe Prismen.
- 4. 1.1 Diphenyl 4 [4 oxy phenyl] buten (3) on (2), [4-Oxy-styryl] benzhydryl-keton $C_{12}H_{13}O_1 = (C_1H_5)_3CH \cdot CO \cdot CH : CH \cdot C_4H_4 \cdot OH$.
- 1.1 Diphenyi 4 [4 methoxy phenyi] buten (3) on (2), $\alpha.\alpha$ -Diphenyi α' -anisylidenaceton, [4 Methoxy styryi] benzhydryi keton $C_{23}H_{20}O_2 = (C_8H_5)_8CH\cdot CO\cdot CH: CH\cdot C_8H_4\cdot O\cdot CH_8$. B. Aus $\alpha.\alpha$ -Diphenyi-aceton und Anisaldehyd in wäßrig-alkoholischer Kalilauge bei 0° (RACK, B. 56, 1131). Gelbliche Krystalle (aus Alkohol). F: 130—131°. Wird durch konz. Schwefelsäure orangegelb gefärbt.
- 5. 1.1-Diphenyl-2-[4-oxy-phenyl]-cyclobutanon-(4) $C_{21}H_{18}O_{1} = (C_{4}H_{1})_{4}C$ —C0 $HO \cdot C_{4}H_{4} \cdot HC$ —CH₄
- 1.1 Diphenyl 2 [4 methoxy phenyl] cyclobutanon (4), 1.1 Diphenyl 2 p-anisyl-cyclobutanon (4) C₂₃H₂₆O₃ = (C₆H₆)₂C—CO
 cyclobutanon (4) C₂₃H₂₆O₃ = (CH₂·O·C₆H₄·HC—CH₂. Zur Konstitution vgl. Staudinger, Rheiner, Helv. 7, 9; Beegmann, Blum-Bergmann, Soc. 1938, 727. B. Bei 24-stdg. Erwärmen von Diphenylketen mit 1 Mol 4-Methoxy-styrol im Rohr auf 60° (Staudinger, Suter, B. 53, 1100). F: 77—78°; löslich in Benzol, Essigester und Chloroform, unlöslich in Alkohol und Petroläther (St., S.). Zerfällt beim Erhitzen auf höhere Temperatur in Diphenylketen und 4-Methoxy-styrol (St., S.).
- 6. 1.2 Diphenyl 3 [4 oxy benzoyl] cyclopropan $C_{11}H_{16}O_2 = HO \cdot C_0H_4 \cdot CO \cdot HC + C_0H_5$.
- a) Höherschmelzende Form. B. Neben überwiegenden Mengen der niedrigerschmelzenden Form und anderen Produkten bei 24-stdg. Kochen von 1-Brom-1-nitro-1.2-diphenyl-3-anisoyl-propan mit Kaliumacetat in Methanol (Kohler, Allen, Am. Soc. 50, 889). Nadeln (aus Methanol). F: 187°. Schwer löslich in Äther, Alkohol und Aceton, leicht in Chloroform und Äthylbromid. Reagiert nicht mit Ozon. Gibt bei der Einw. von Natriummethylat-Lösung die Natriumverbindungen des höherschmelzenden und des niedrigerschmelzenden 3-Nitro-1.3-diphenyl-2-anisoyl-propens-(1). Wird durch methylalkoholisches Ammoniak und durch siedendes Pyridin oder Piperidin nicht verändert.
- b) Niedrigerschmelzende Form. B. s. o. Nadeln oder Prismen (aus Methanol). F: 137° (Kohler, Allen, Am. Soc. 50, 891). Leicht löslich in Chloroform und Aceton, ziemlich schwer in siedendem Methanol, schwer in kaltem Alkohol und Äther. Reagiert nicht mit Ozon. Gibt bei der Einw. von warmer Natriummethylat-Lösung 1-Methoxy-1.2-diphenyl-3-anisoyl-propen-(1). Spaltet bei der Einw. von alkoh. Natronlauge, Ammoniak oder primären oder sekundären Aminen salpetrige Säure ab.
- 7. 1 Oxy 4 oxo 1.2 diphenyl 1.2.3.4 tetrahydro-naphthalin, 4 Oxy 3.4 diphenyl tetralon (1) C₁₂H₁₂O₂, s. nebenstehende Formel. Zur Konstitution vgl. SMTH, HOEHN, Am. Soc. CH. C₆H₅ (2H. C₆H₅) (2H

o) Oxy-oxo-Verbindungen $C_nH_{2n-28}O_2$.

43 1

1. Oxy-oxo-Verbindungen $C_{21}H_{14}O_{2}$.

1. Naphthochinon - (1.4) - mono - [4 - oxy - naphthyl - (1) - methid] C₂₁H₁₄O₂, Formel III. B. Bei der Oxydation von Bis-[4-oxy-naphthyl-(1)]-methan (E II 6, 1028) mit Luft oder Wasserstoffperoxyd (Zamparo, Boll. chim.-jarm. 64, 99; C. 1925 I, 2457). — Rotbraune Schuppen (aus Äther). Die 2%ige alkoholische Lösung wird bei Zusatz von Alkalien blau, beim Ansäuern wieder rot.

2. 4-Oxy-1.2'-dinaphthylketon $C_{21}H_{14}O_2 = HO \cdot C_{10}H_4 \cdot CO \cdot C_{10}H_7$.

1'-Chlor-4-oxy-1.2'-dinaphthylketon, [4-0xy-naphthyl-(1)]-[1-chlor-naphthyl-(2)]-keton C₂₁H₁₃O₂Cl, Formel IV. B. Beim Erhitzen von 1-Oxy-4-[1-chlor-naphthoyl-(2)]-naphthoesäure₁(2) mit 5% iger Schwefelsäure auf 180—190° (Ges. f. chem. Ind. Basel, D.R.P. 378909; C. 1923 IV, 593; Frdl. 14, 470). — Krystalle (aus verd. Essigsäure). F: 213°. — Anwendung zur Darstellung von Azofarbstoffen auf der Faser: Ges. f. chem. Ind. Basel, D.R.P. 393701; Frdl. 14, 1028.

- 3. 6 Phenyl 1.2; 4.5 dibenzo cycloheptatrien (1.3.5) ol (3) on (7) $C_{21}H_{14}O_2$, Formel V, ist desmotrop mit 6-Phenyl-1.2; 4.5-dibenzo-cycloheptadien-(1.4)-dion-(3.7), E II 7, 769.
- 3 Acetoxy 6 phenyl 1.2;4.5 dibenzo cycloheptatrien (1.3.5) on (7) $C_{22}H_{16}O_3 = C_6H_4 \subset CO \cdot C(C_6H_5) \subset C_6H_4$. Zur Konstitution vgl. Coox, Soc. 1928, 60. B. Beim Erwärmen von 6-Phenyl-1.2;4.5-dibenzo-cycloheptadien-(1.4)-dion-(3.7) mit Acetanhydrid und Pyridin (Coox, Soc. 1926, 2171). Nadeln (aus Benzol + Petroläther). F: 140—141°.
- 4. 10 Oxy 9 benzoyl anthracen, 10-Benzoyl-anthranol-(9), Phenyl [10 oxy anthranyl (9)] keton C₂₁H₁₄O₂, s. nebenstehende Formel, ist desmotrop mit 10-Benzoyl-anthron-(9), E II 7, 769.

10-Methoxy-9-benzoyl-anthracen, 10-Benzoyl-anthranol-(9)-methyläther, Phenyl-[10-methoxy-anthranyl-(9)]-keton $C_{23}H_{16}O_3 = C_6H_6 \cdot CO \cdot C_{14}H_6 \cdot O \cdot CH_3$.

B. Aus 10-Benzoyl-anthranol-(9) (E II 7, 769) bei gelindem Erwärmen mit Dimethylsuliat und verd. Natronlauge (Krollpfeiffer, A. 462, 61). — Schwach grünliche Nadeln (aus Methanol). F: 175—177° (Zers.). Löst sich in konz. Schwefelsäure mit vorübergehender kornblumenblauer Farbe. — Zersetzt sich beim Kochen mit konz. Salzsäure unter Abspaltung von Anthron.

10-Acetoxy-9-benzoyl-anthracen, 10-Benzoyl-anthranol-(9)-acetat, Phenyl-[10-acetoxy-anthranyl-(9)]-keton C₂₂H₁₆O₃ = C₆H₅·CO·C₁₄H₆·O·CO·CH₃. B. Durch Behandlung von 10-Benzoyl-anthranol-(9) mit Acetanhydrid (Keollefferfer, A. 462, 61). Bei kurzem Kochen von 10-Benzoyl-anthron-(9) mit Acetanhydrid und Pyridin (K.). — Nicht rein erhalten. Gelbliche Nadeln (aus Alkohol). F: ca. 194°.

10 - [α - Imine - benzyl] - anthranol-(9) - methyläther, Phenyl-[10-methoxy-anthranyl-(9)] ketimid $C_{22}H_{17}ON = C_6H_6 \cdot C(:NH) \cdot C_{14}H_8 \cdot O \cdot CH_3$. B. Durch Umsetzung von Methylanthranyläther (E II 6, 670) mit Benzonitril und Chlorwasserstoff in Gegenwart von Aluminium-chlorid in Benzol, anfangs bei 0°, zuletzt bei 30—35°, und nachfolgende Hydrolyse mit Eis

und konz. Salzsäure (Krollffeffer, B. 56, 2363; A. 462, 62). — Gelblichgrüne Krystalle (aus Alkohol). F: 147—148° (K., B. 56, 2363). — Gibt beim Behandeln mit kalter konzentrierter Schwefelsäure das Sulfat des Phenyl-[10-oxy-anthranyl-(9)]-ketimids (E II 7, 769) (K., A. 462, 59). Beim Erhitzen mit konz. Salzsäure entstehen Anthron und Benzoesäure (K., B. 56, 2364). — Hydrochlorid C₂₂H₁₇ON + HCl. Orangefarbene Nadeln (aus alkoholisch-wäßriger Salzsäure). Schwer löslich in Wasser, sehr leicht in Alkohol (K., B. 56, 2364). — Verbindung mit Benzonitril C₂₂H₁₇ON + C₆H₅·CN + HCl s. bei Benzonitril, Syst. Nr. 926.

Phenyl-[10-methoxy-anthranyl-(9)]-keton-methylimid C₂₃H₁₉ON = C₆H₅·C(:N·CH₉)·C₁₄H₈·O·CH₃. B. Durch Einw. von Dimethylsulfat auf Phenyl-[10-methoxy-anthranyl-(9)]-ketimid in alkoholisch-alkalischer Lösung (Krollffelffer, B. 56, 2364). — Blaßgelbe Nadeln (aus wäßr. Aceton). F: 127°. Sehr leicht löslich in Benzol, Alkohol und Aceton, schwer in Petroläther. — Liefert beim Kochen mit konz. Salzsäure Anthron, Benzoesäure und Methylamin.

Phenyl- [10-methoxy-anthranyl-(9)] - keton - acetylimid $C_{24}H_{19}O_2N = C_6H_5 \cdot C(:N \cdot CO \cdot CH_3) \cdot C_{14}H_8 \cdot O \cdot CH_3$. Beim Erwärmen von Phenyl-[10-methoxy-anthranyl-(9)]-ketimid mit Acetanhydrid (Krollpfeiffer, A. 462, 55). — Blaßgelbe Nadeln (aus Eisessig). F: 204—205°. — Wird durch Salzsäure leicht unter Bildung von Anthron und Benzoesäure zersetzt.

Phenyl - [10 - acetoxy - anthranyl - (9)] - keton - acetylimid $C_{25}H_{19}O_3N = C_6H_5 \cdot C(:N \cdot CO \cdot CH_3) \cdot C_{14}H_5 \cdot O \cdot CO \cdot CH_3$. B. Beim Kochen von schwefelsaurem Phenyl-[10-oxy-anthranyl-(9)]-ketimid (E II 7, 769) mit Acetanhydrid und Natriumacetat (Krollpfelffer, A. 462, 59). — Gelbliche Nadeln (aus Alkohol). F: 206—207°. Unlöslich in wäßr. Alkalien.

[4-Chlor-phenyl]-[10-methoxy-anthranyl-(9)]-ketimid $C_{22}H_{16}$ ONCl = C_6H_4 Cl·C(:NH)· $C_{14}H_8$ ·O·CH₃. B. Analog Phenyl-[10-methoxy-anthranyl-(9)]-ketimid (S. 256) (Krollpfeiffer, A. 462, 57). — Grünliche Blättchen (aus Alkohol). F: 147—148°. — Gibt beim Behandeln mit kalter konzentrierter Schwefelsäure 10-[4-Chlor-benzoyl]-anthron-(9) (E II 7, 770). Beim Kochen mit konz. Salzsäure entstehen Anthron und 4-Chlor-benzoesäure. — Hydrochlorid. Orangerote Krystalle. — Verbindung mit Benzonitril $C_{22}H_{16}$ ONCl+HCl+ C_6H_5 ·CN s. bei Benzonitril, Syst. Nr. 926.

Acetylderivat $C_{24}H_{18}O_2NCl = C_6H_4Cl \cdot C(:N \cdot CO \cdot CH_3) \cdot C_{14}H_8 \cdot O \cdot CH_3$. Gelbliche Krystalle (aus Alkohol). F: 176—177° (Krollpfeiffer, A. 462, 57).

5. 10 - Oxy - 1 (CO).9 - benzoylen - dihydroanthracen, 4(CO).10 - Benzoylen - 9.10 - dihydro - anthranol - (9) C₂₁H₁₄O₂, s. nebenstehende Formel. B. Beim Kochen von 10-Oxy-4(CO).10-benzoylenanthron-(2) (S. 427) mit Jodwasserstoffsäure (D: 1,7) (Weiss, Reichelm, M. 53/54, 196). — Gelbliche Nadeln (aus Alkohol). F: 241—242°. Löslich in verd. Ammoniak und Natronlauge. Gibt mit überschüssiger konzentrierter Natronlauge ein in Wasser lösliches Natriumsalz.

2. Oxy-oxo-Verbindungen $C_{22}H_{16}O_2$.

- 1. 2-Phenyl-1-[α -oxy-benzyl]-inden-(1)-on-(3) $C_{22}H_{16}O_2$, $C_{6}H_{5}$ s. nebenstehende Formel.
- 2 Phenyl 1 [α acetoxy benzyl] inden (1) on (3) $C_{24}H_{18}O_3 = CH(0H) \cdot C_6H_6$ OC C_6H_6 C·CH(0·CO·CH₃)·C₆H₅. B. Beim Kochen von 2-Phenyl-1-[α -brom-benzyl]-inden-(1)-on-(3) mit Natriumacetat und Eisessig (Weiss, Grobstein, Sauermann, B. 59, 305). Orangegelbe Krystalle. F: 164—168°. Gibt bei der Oxydation mit Permanganat in kaltem wäßrigem Aceton eine Verbindung $C_{24}H_{18}O_5$ (Krystalle aus Alkohol; F: 144—145°), die beim Kochen mit alkoh. Kalilauge in eine bei 256—257° schmelzende krystallinische Substanz übergeht.
- 2. 1.2-Di α -naphthyl äthanolon, α -Naphthoin $C_{22}H_{16}O_2=C_{10}H_7\cdot CO\cdot CH(OH)\cdot C_{10}H_7$. B. Beim Kochen von α -Naphthaldehyd mit Kaliumoyanid in verd. Alkohol (Gomberg, Van Natta, Am. Soc. 51, 2242). Durch Reduktion von α -Naphthil (Go., Van N., Am. Soc. 51, 2243) oder von α -Naphthoesäure (G., Bachmann, Am. Soc. 50, 2767; G., Van N.) mit Magnesium + Magnesiumjodid in Benzol + Äther bei Siedetemperatur und Zersetzung der Reaktionsprodukte mit Wasser. Krystalle (aus Alkohol). F: 138—139° (G., Van N.). Gibt bei der Oxydation mit Kupfersulfat in Pyridin α -Naphthil (G., Van N.).
- 3. 1.2 Di β naphthyl äthanolon, β Naphthoin $C_{22}H_{16}O_2 = C_{10}H_7 \cdot CO \cdot CH(OH) \cdot C_{10}H_7$. Vgl. darüber Gomberg, Bachmann, Am. Soc. 50, 2767 1).

⁾ β -Naphthoin wird nach dem Literatur-Schlußtermin des Ergänzungswerks II [1. 1. 1930] von Fulton, Robinson (Soc. 1939, 200) näher beschrieben; es schmilzt bei 125—126° und gibt ein Oxim vom Schmelzpunkt 172°.

OXY.OXO.VERBINDUNGEN C_nH_{2n-28}O₂ mis C_nH_{2n-32}O₂ [Syst. Nr. 758

4. 10-Oxy-9-phenacetyl-anthraen , Benzyl - [10 - oxy - anthranyl -(9) j-keton C₂₂H₁₆O₂, Formel I.

CO · CoH & · CH3 CO · CH2 · C4H5 II.

Benzyl-[10-methoxy-anthranyl-(9)]
ketimid C₂₂H₁₉ON = C₆H₅·CH₂·C(:NH)·

C₁₄H₈·O·CH₃. B. Analog Phenyl-[10-methoxy-anthranyl-(9)]-ketimid (S. 256) (Krollpfeiffer, A. 462, 56). — Gelbe Nadeln (aus wäßr. Aceton). F: 202—203°. — Wird beim Erwärmen mit konz. Salzsäure in Anthron und Phenylessigsäure gespalten.

Acetylderivat $C_{36}H_{21}O_3N = C_6H_5 \cdot CH_3 \cdot C(:N \cdot CO \cdot CH_3) \cdot C_{16}H_6 \cdot O \cdot CH_3$. gelbe Nadeln (aus Methanol). F: 199—200° (Krollpfeiffer, A. 462, 56). Schwach grünlich-

5. 10-Oxy-9-m-toluyl-anthracen, m-Tolyl-[10-oxy-anthranyl-(9)]-keton C₂₂H₁₆O₂, Formel II.

m-Tolyl-[10-methoxy-anthranyl-(9)]-ketimid $C_{22}H_{19}ON = CH_3 \cdot C_4H_4 \cdot C(:NH) \cdot C_{14}H_8 \cdot O \cdot CH_3$. B. Analog Phenyl-[10-methoxy-anthranyl-(9)]-ketimid (S. 256) (Krollpfeiffer, A. 462, 56). — Gelbliche Krystalle (aus Alkohol). F: 127°.

6. 10-Oxy-9-p-toluyl-anthracen, p-Tolyl-[10-oxy-anthranyl-(9)]-keton $C_{11}H_{16}O_{2}$, Formel II.

p-Tolyl-[10-methoxy-anthranyl-(9)]-ketimid $C_{23}H_{19}ON=CH_3\cdot C_6H_4\cdot C(:NH)\cdot C_{14}H_8\cdot O\cdot CH_3$. B. Analog Phenyl-[10-methoxy-anthranyl-(9)]-ketimid (S. 256) (Krollffeiffer, A. 462, 56). — Grüngelbe Krystalle (aus Alkohol). F: 150°. — Wird durch siedende konzentrierte Salzsaure in Anthron und p-Toluylsaure gespalten. — Hydrochlorid. Gelbrote Nadeln. Gibt mit Benzonitril eine rote krystallinische Verbindung.

Acetylderivat $C_{25}H_{21}O_2N = CH_3 \cdot C_6H_4 \cdot C(:N \cdot CO \cdot CH_3) \cdot C_{14}H_8 \cdot O \cdot CH_3$. Gelbliches Krystallpulver. F: 147° (KROLLPFEIFFER, A. 462, 56).

p) Oxy-oxo-Verbindungen $C_nH_{2n-30}O_2$.

2 - Oximino - 1.2 - diphenyl - 1 - α - naphthyl - athanol - (1), $ms - \alpha$ - Naphthyl - benzoin - oxim $C_{24}H_{19}O_2N = \frac{C_{10}H_7}{C_6H_5}C(OH) \cdot C(:N \cdot OH) \cdot C_6H_5$. Aus β -Benzil-monoxim und α -Naphthylmagnesiumbromid (Orechow, Tiffeneau, Bl. [4] 41, 843). — Krystalle (aus Alkohol oder Benzol). F: 193-194°. Schwer löslich in heißem Alkohol und Benzol.

q) Oxy-oxo-Verbindungen $C_nH_{2n-32}O_2$.

1. Oxy-oxo-Verbindungen $C_{23}H_{14}O_{2}$.

1. 4(oder 5)-Oxy-Bz 1-phenyl-benzanthron C₂₃H₁₄O₂, Formel III oder IV. B. Beim Erhitzen von 1-Oxy-anthron-(9) mit Zimtaldehyd und Zinkchlorid auf 280°; Ausbeute ca. 15% (I. G. Farbenind., D. R. P. 490187; Frdl. 16, 1436). Beim Erhitzen von nicht näher beschriebenem 1-Oxy-10-cinnamyliden-anthron-(9) in α-Chlor-naphthalin auf 220—240° (I. G. Farbenind., D. R. P. 488607; Frdl. 16, 1435). — Gelbe Nadeln (aus Pyridin). Die stark fluorescierende Lösung in konz. Schwefelsäure ist anfangs orangerot, später gelb. — Lagert sich beim Erhitzen mit Aluminiumchlorid und Natriumchlorid auf 130—140° in 4-Oxy-Bz2-phenyl-benzanthron (s. u.) um.

2. $Bz1-[4-Oxy-phenyl]-benzanthron <math>C_{23}H_{14}O_2$, Formel V (R = H).

Bz 1 - [4 - Methoxy - phenyl] - benzanthron $C_{24}H_{16}O_2$, Formel V (R = CH_3). B. Beim Erwärmen von 10-[β -Anisoyl-āthyl]-anthron-(9) mit 82% iger Schwefelsäure auf 100° (I. G. Farbenind., D.R.P. 488608; Frdl. 16, 1432). — Gelbe Nadeln (aus Eisessig). F: 186°. Löst sich in konz. Schwefelsäure mit bläulichroter Farbe und braunroter Fluorescenz.

3. 4-Oxy-Bz 2-phenyl-benzanthron C₂₃H₁₄O₂, Formel VI auf S. 259. B. Durch Erhitzen von 4-Oxy-Bz1-phenyl-benzanthron mit Aluminiumchlorid und Natriumchlorid auf 130—140° (I. G. Farbenind., D.R. P. 491973; Frdl. 16, 1437). — Gelbes Krystallpulver. Löst sich in Schwefelsäure orangefarben mit grüner Fluorescenz.

· '4 :

OXY-PHENYL-BENZANTHRON

$$VI. \qquad \begin{array}{c} C_6H_5 \\ \hline \\ OOH \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} C_6H_5 \\ \hline \\ OOH \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \\ OOH \\ \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ OOH \\ \hline \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \end{array} \qquad \begin{array}{c} CH_3$$

4. Bz1-Oxy-Bz2-phenyl-benzanthron $C_{23}H_{14}O_2$, Formel VII. B. Beim Erwärmen von Anthron und Oxymethylenphenylessigester mit konz. Schwefelsäure und Eisessig (I. G. Farbenind., D.R.P. 488608; Frdl. 16, 1433). — Orangefarbene Nadeln (aus Eisessig). F: 230°, Löst sich in konz. Schwefelsäure und in wäßr. Alkalien mit blauer Farbe.

2. Oxy-oxo-Verbindungen $C_{25}H_{16}O_2$.

2-[4-Oxy-3.5-dimethyl-phenyl]-benzanthron (?) C₂₆H₁₈O₂, Formel VIII. B. Beim Schmelzen von Benzanthron mit 2-Oxy-m-xylol und Kaliumhydroxyd bei 200° (I. G. Farbenind., D.R.P. 479231; Frdl. 16, 1463). — Gelbe Prismen (aus Nitrobenzol). Löslich in Schwefelsäure mit orangeroter, in alkoh. Lauge mit violetter Farbe.

3. Oxy-oxo-Verbindungen $C_{26}H_{20}O_{2}$.

1. $2-[\alpha-Oxy-benzhydryl]-benzophenon$, 2-Benzoyl-triphenylcarbinol bzw. 5-Oxy-2.2.5-triphenyl-3.4-benzo-2.5-dihydro-furan, 3-Oxy-1.1.3-triphenyl-phthalan $C_{26}H_{20}O_2=C_6H_4 < \begin{array}{c} C(C_6H_5)_2 \cdot OH \\ CO\cdot C_6H_5 \end{array}$ bzw. $C_6H_4 < \begin{array}{c} C(C_6H_5)_2 \cdot OH \\ C(C_6H_5)(OH) \end{array}$ (H 17, 149; E I 8, 594). Zur Konstitution vgl. a. Seidel, Bezner, B. 65 [1932], 1569. — Darstellung durch Umsetzung von Phthalsäurediäthylester mit überschüssigem Phenylmagnesiumbromid in Äther: Howell, Am. Soc. 42, 2334. — F: 118° (korr.) (H.). — Liefert beim Erhitzen auf 300° 10.10-Diphenyl-anthron-(9) (H.; BARNETT, COOK, NIXON, Soc. 1927, 510).

2. 1.2 - Bis - diphenylyl - äthanolon , 4.4' - Diphenyl - benzoin $C_{28}H_{20}O_2 = C_6H_5$. $C_6H_4 \cdot CO \cdot CH(OH) \cdot C_6H_4 \cdot C_6H_5$. B. Beim Kochen von 4-Phenyl-benzaldehyd mit Kalium-cyanid in verd. Alkohol (GOMBERG, VAN NATTA, Am. Soc. 51, 2243). — Pulver (aus Pyridin, Eisessig oder Xylol). F: 168—170°. 1 g löst sich in ca. 115 cm³ kaltem Benzol oder Essigester; leicht löslich in heißem Pyridin, Eisessig und Xylol. — Gibt bei der Oxydation mit Kupfersulfat in wäßr. Pyridin 4.4'-Diphenyl-benzil.

4. Oxy-oxo-Verbindungen $C_{29}H_{26}O_{2}$.

2.2'-Dimethyl-2"-o-toluyl-triphenylcarbinol, 2-Methyl-2'- $[\alpha$ -oxy-2.2'-dimethyl-benzhydryl]-benzophenon, Trimethyl-o-benzhydryl-benzophenon $C_{29}H_{20}O_2=C_6H_4 < C(C_6H_4 \cdot CH_3)_2 \cdot OH$ bzw. desmotrope Cyclo-Form. B. Aus Phthalsäurediäthylester und o-Tolylmagnesiumbromid in Äther (Weiss, Korczyn, Heidrich, M. 45, 210 Anm.). — Krystalle (aus Alkohol). F: 124—126°.

5. Oxy-oxo-Verbindungen $C_{30}H_{28}O_2$.

1.1.6.6 - Tetraphenyl - hexanol - (4) - on - (3), α.α'-Dibenzhydryl - acetoin $C_{30}H_{38}O_3=(C_6H_5)_2CH\cdot CH_2\cdot CH(OH)\cdot CO\cdot CH_2\cdot CH(C_6H_5)_2$. B. Neben 1.1.6.6 - Tetraphenylhexandion-(3.4) bei der Einw. von Natriumdraht auf eine äther. Lösung von β.β-Diphenylpropionsäure-äthylester oder -methylester und Zersetzung des Reaktionsprodukts mit verd. Essigsäure (Vorländer, Rack, Leister, B. 56, 1132, 1133). Bei der Reduktion von 1.1.6.6 - Tetraphenyl-hexandion-(3.4) mit siedender Jodwasserstoffsäure und rotem Phosphor (V., R., L., B. 56, 1133). — Prismen oder Nadeln (aus wäßr. Alkohol, Eisessig oder Benzol + Petroläther). F: 147—148°. Leicht löslich in warmem Eisessig, Alkohol und Benzol, schwer in Äther und Petroläther. — Gibt beim Erwärmen mit Salpetersäure (D: 1,4) auf 100° 1.1.6.6 - Tetraphenyl-hexandion-(3.4). Wird durch Natrium in siedendem Isoamylalkohol zu 1.1.6.6 - Tetraphenyl-hexanol-(3), durch Zinkstaub und Salzsäure in siedendem Eisessig oder durch amalgamiertes Zink und Salzsäure zu 1.1.6.6 - Tetraphenyl-hexan reduziert.

Acetat C₃₂H₃₀O₃ = (C₆H₅)₂CH · CH₂ · CH(O · CO · CH₃) · CO · CH₂ · CH(C₆H₅)₂. Nadeln (aus Alkohol). F: 93° (VORLÄNDER, RACK, LEISTER, B. 56, 1133). Leicht löslich in Alkohol, Äther, Benzol und Chloroform, löslich in Petroläther, unlöslich in Wasser. Löst sich in konz. Schwefelsäure mit gelber Farbe, die beim Erwärmen über Orange in Grünlichbraun übergeht.

OXY-OXO-VERBINDUNGEN C_nH_{2n-32}O₂ BIS C_nH_{2n-42}O₂ [Syst.Nr. 760

Oxim $C_{50}H_{29}O_2N=(C_9H_5)_2CH\cdot CH_2\cdot CH(OH)\cdot C(:N\cdot OH)\cdot CH_2\cdot CH(C_9H_5)_2$. Nadeln (aus Benzol + Petroläther). F: 169° (Vorländer, Rack, Leister, B. 56, 1133). Unlöslich in Sodalösung, löslich in konz. Kalilauge. Löslich in konz. Schwefelsäure mit gelber, beim Erwärmen über Orange in Bordeauxrot übergehender Farbe.

8. Oxy-oxo-Verbindungen $C_{22}H_{22}O_2$.

1.1.4.4 - Tetrabenzyl - butanol - (3) - on - (2), a.a.a'.a' - Tetrabenzyl - acetoin C₃₂H₃₂O₂ = (C₄H₅·CH₂)₂CH·CH(OH)·CO·CH(CH₂·C₄H₅)₂. B. Neben 1.1.4.4-Tetrabenzyl-butandion-(2.3) durch Einw. von 2 Atomen Natrium oder Kalium auf Dibenzylessigester in Äther und Zersetzung des Reaktionsprodukts mit Wasser (SCHEIBLER, EMDEN, A. 484, 277). — Blättrige Krystalle (aus Eisessig). F: 148—149°. In der Kälte schwer löslich in den gebräuchlichen organischen Lösungsmitteln, unlöslich in Wasser. — Liefert beim Erwärmen mit Salpetersäure (D: 1,4) 1.1.4.4-Tetrabenzyl-butandion-(2.3).

r) Oxy-oxo-Verbindungen $C_n H_{2n-36} O_2$.

1. Oxy-oxo-Verbindungen $C_{27}H_{18}O_2$.

Dehydro-benzyliden-di-\beta-naphthol $C_{27}H_{18}O_2$ s. E II 6, 1046.

2. Oxy-oxo-Verbindungen CasH26O2.

s) Oxy-oxo-Verbindungen $C_nH_{2n-38}O_2$.

Oxy-oxo-Verbindungen C₂₇H₁₆O₂.

1. 2-[2-Oxy-naphthyl-(1)]-benzanthron $C_{27}H_{16}O_2$, Formel I. B. Beim Verschmelzen von Benzanthron mit β -Naphthol und Kaliumhydroxyd bei 140° bis 200° (I. G. Farbenind., D. R.P.

он

479231; Frdl. 16, 1464). — Gelbe Blättchen (aus Nitrobenzol). Färbt sich bei ca. 260° rot, schmilzt nicht bis 300°. Löst sich in konz. Schwefelsäure und in alkoh. Alkalilauge mit roter Farbe.

2. $2 - [4 - Oxy - naphthyl - (1)] - benzanthron C₂₇H₁₆O₂, Formel II. B. Beim Verschmelzen von Benzanthron mit <math>\alpha$ -Naphthol und Kaliumhydroxyd bei 200° (I. G. Farbenind., D.R.P. 479231; Frdl. 16, 1464). — Gelbe Prismen (aus Nitrobenzol). Schmilzt nicht bis 300°.

t) Oxy-oxo-Verbindungen $C_nH_{2n-40}O_2$.

1. Oxy-oxo-Verbindungen $C_{20}H_{18}O_2$.

10-[10-Oxy-anthranyl-(9)-methylen]-anthron-(9) $\rm C_{29}H_{18}O_{2}$, s. nebenstehende Formel, ist desmotrop mit 10.10'-Methenyl-dianthron-(9.9'), E II 7, 798.

Methyläther, 10-[10-Methoxy-anthranyl-(9)-methylen]-anthron-(9)

C₃₀H₂₀O₃ = CH₃·O·C₁₄H₆·CH:CCC₆H₄·CO. B. Aus 10.10'-Methenyldianthron und Dimethylsulfat in Natriumäthylat-Lösung (Krollffeiffer,
A. 462, 65). — Orangefarbenes Krystallpulver (aus Eisessig). F: 221—222°.

Leicht löslich in fast allen Lösungsmitteln.

Acetat, 10-[10-Acetoxy-anthranyl-(9)-methylen]-anthron-(9) $C_{31}H_{20}O_3 = CH_3 \cdot CO \cdot C \cdot C_{14}H_8 \cdot CH : C < \begin{array}{c} C_0H_4 \\ C_0H_4 \end{array} > CO \ (H \ 225). F: 205-206^0 \ (Krollpfeiffer, A. 462, 67). \end{array}$

2. Oxy-exe-Verbindungen CathaO2.

 $2-[\alpha-Oxy-benzhydryl]-2'-benzoyl-diphenyl, \ 2-[2-Benzoyl-phenyl]-triphenylcarbinol bzw. entsprechende Cyclo-Form <math>C_{22}H_{24}O_2= \begin{array}{c} C_4H_4\cdot C(C_4H_5)\cdot OH \\ C_4H_4\cdot C(OH)(C_4H_5) \end{array}$ bzw. $C_6H_4\cdot C(OH)(C_6H_5)$ O. Das Mol.-Gew. ist in Benzol kryoskopisch bestimmt. — B. Neben $--C(C_6H_8)_9$ anderen Verbindungen bei der Umsetzung von 2.2'-Dibenzoyl-diphenyl mit Phenylmagnesiumbromid in Åther (TSCHITSCHIBABIN, SSERGEJEW, B. 59, 654, 657; vgl. Ss., 3K. 61, 1439; C. 1930 II, 391). — Krystallisiert aus Chloroform + Alkohol je nach den Bedingungen in Rhomboedern mit 1CHCl₃ oder in lösungsmittelfreien körnigen Krystallen, aus Alkohol + Essigester in Prismen mit 1C₂H₅·OH. F: 193—194° (TSCH., Ss.). — Reagiert nicht mit Ketonreagenzien und mit Phenylmagnesiumbromid (TSCH., Ss.). Gibt beim Behandeln mit Chlorwasserstoff, Bromwasserstoff oder Acetylchlorid in Eisessig oder bei längerer Einw. von konz. Salzsäure auf die Lösung in Alkohol + Chloroform 9.9-Diphenyl-4-benzoyl-fluoren (Ss.).

3. Oxy-oxo-Verbindungen CasHanO.

CHO $4 - Oxy - 3.5 - dibenzhydryl - benzaldehyd <math>C_{33}H_{36}O_2$, s. nebenstehende Formel. B. Bei 4-stdg. Erhitzen von 4-Oxy-benznebenstehende Formel. B. Bei 4-stdg. Erintzen von 4-Oxy-benzaldehyd mit Benzhydrylbromid auf 100—110° (Busch, Knoll,
B. 60, 2252). Aus den Verbindungen C₃₃H₂₇O₂Cl und C₃₂H₂₇O₂Cl.

(S. 64) beim Erwärmen mit Alkohol oder Aceton (B., K.). —

Lösungsmittelfreie Blättchen (aus Alkohol); F: 230°. Blättchen mit 1C₆H₆ (aus Benzol);
schmilzt unscharf bei 200—205° und verwittert an der Luft. — 4-Brom-phenylhydrazon $C_{39}H_{31}ON_{2}Br.$ F: 184° (Zers.).

u) Oxy-oxo-Verbindungen $C_nH_{2n-42}O_2$.

1. Oxy-oxo-Verbindungen $C_{82}H_{22}O_{2}$.

1-Oxy-2-imino-1.1.2-tri- α -naphthyl- α -naphthyl- α -naphthoin-imid, Imid des Di - α - naphthyl - α - naphthoyl - carbinols $C_{32}H_{23}ON = C_{10}H_7 \cdot C(:NH) \cdot C(C_{10}H_7)_2 \cdot OH$. B. Das Hydrobromid bildet sich aus 1 Mol Cyanameisensäure-methylester und 3 Mol α-Naphthylmagnesiumbromid in kaltem Åther (Finger, Gaul, J. pr. [2] 111, 59). — Lösungsmittelfreie Krystalle (aus Benzol + Petroläther); F: 150—151° (Zers.). Natel auf 105° (Zers.). Hydrobromid 105° (Zers.). F: 135—138° (Zers.). — Bei längerem Erwärmen des Hydrats auf 105—110° wird etwas Ammoniak abgespalten. Beim Erhitzen mit konz. Säuren erhält man unter Abgabe von Ammoniak braune amorphe Produkte. - Die Salze sind löslich in Alkohol, Aceton, Nitrokindinak öldüle allorphe Frodukte. — Die Satze sind loshen in Alkohol, Aceton, Nitrobenzol und Eisessig, unlöslich in Äther und Kohlenwasserstoffen. — $C_{32}H_{23}ON + HCl$. Hellgelbe Krystalle (aus Alkohol + Äther). F: 185—160° (Zers.). — $C_{32}H_{23}ON + HBr$. Gelbe Stäbchen (aus Eisessig + Nitrobenzol + Äther). F: 205—210° (Zers.). — $C_{32}H_{23}ON + HNO_3$. Gelbe Krystalle (aus Alkohol + Äther). F: 135—136° (Zers.). — Pikrat $C_{32}H_{23}ON + C_6H_3O_7N_3$. Gelbe Nadeln (aus Alkohol + Äther). F: 165—166° (Zers.).

2. Oxy-oxo-Verbindungen CasH₂₄O₂.

9 - Oxy - 10 - oxo - 9 - triphenylmethyl - dihydroanthracen , 10 - Oxy - 10 - triphenylmethyl - anthron - (9) , 10 - Oxy - 10 - trityl - anthron - (9) $\rm C_{33}H_{24}O_2 = \rm C_{13}H_{24}O_2$ OC C_6H_4 $C(OH) \cdot C(C_6H_5)_3$. B. Durch Einw. von Tritylmagnesiumchlorid auf Anthrachinon in Ather (Ingold, Marshall, Soc. 1926, 3087). — Prismen (aus Toluol). Schmilzt bei 183—190°. Löslich in konz. Schwefelsäure mit gelber Farbe.

3. Oxy-oxo-Verbindungen Cs4H200.

1.1.2.3.3 - Pentaphenyl - cyclobutanol - (2) - on - (4)(?) $C_{34}H_{26}O_2 =$ $OC < C(C_6H_5)_2 > C < C_6H_5$ (?). B. In geringer Menge neben anderen Produkten bei langsamem Zusatz von 3,5 Mol Phenylmagnesiumbro.nid-Lösung zu einer eiskalten ätherischen Lösung von Diphenylchloracetylchlorid und nachfolgendem längerem Aufbewahren (McKenzie, BOYLE, Soc. 119, 1134, 1138). — Prismen (aus Benzol). F: 256,5—257,5°. Schwer löslich in Alkohol, Äther und Petroläther. [OSTERTAG]

2. Oxy-oxo-Verbindungen mit 3 Sauerstoffatomen.

a) Oxy-oxo-Verbindungen $C_nH_{2n-2}O_3$.

1. Oxy-oxo-Verbindungen C7H12O2.

1-Methyl-cyclohexandiol-(1.3)-on-(2) C₇H₁₂O₃ = H₂C CH(OH)·CO_{CH₃} C(OH)·CH₃.

B. Beim Behandeln von 1.3-Dibrom-1-methyl-cyclohexanon-(2) mit Kalilauge (Cusmano, G. 55, 217). — Krystalle mit 2 H₂O (aus Alkohol). Gibt im Vakuum über Schwefelsäure ca. 1 Mol Wasser ab, den Rest bei 100°. Schmilzt bei ca. 150°. Schwer löslich in Benzol, Äther und Essigester. — Liefert beim Erhitzen auf ca. 200° sowie bei der Einw. von verd. Kalilauge oder verd. Schwefelsäure 1-Methyl-cyclohexandion-(2.3). Gibt mit Eisen(III)-chlorid keine Färbung.

2. Óxy-oxo-Verbindungen $C_{10}H_{18}O_3$.

1-Methyl - 1- $[f.\gamma$ -dioxy - propyl] - cyclohexanon-(2), γ -[2-Oxo - 1-methyl-cyclohexyl]-propylenglykol $C_{10}H_{18}O_3=H_2CCH_3\cdot CO_{CH_3}\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH_2\cdot CH_3\cdot CH_3$

b) Oxy-oxo-Verbindungen $C_nH_{2n-4}O_3$.

1. Oxy-oxo-Verbindungen C₂H₁₀O₃.

5-Methoxy-1-formyl-cyclohexanon-(2) bzw. 5-Methoxy-1-oxymethylen-cyclohexanon-(2) $C_8H_{18}O_3 = H_2C < \frac{CH_2}{CH(O \cdot CH_3) \cdot CH_2} < \frac{CO}{CH \cdot CHO}$ bzw. $H_2C < \frac{CH_2}{CH(O \cdot CH_3) \cdot CH_2} < C \cdot CH \cdot OH$. B. Aus 4-Methoxy-cyclohexanon-(1), Isoamylformiat und Natriumäthylat in Äther + Alkohol unter Eiskühlung (Helfer, Helv. 7, 953). — Flüssig. Kp_{10} : 108—110°. Löslich in Wasser. Die wäßr. Lösung gibt mit Eisen(III)-chlorid eine violette Färbung. — Verwandelt sich beim Aufbewahren in ein rotes, sehr viscoses Öl. Liefert bei der Reduktion mit Natrium und Alkohol 2-Oxy-5-methoxy-cyclohexylcarbinol (E II 6, 1058).

2. Oxy-oxo-Verbindungen C₁₀H₁₆O₃.

1. 1-Methyl-4-isopropyl-cyclohexanol-(1)-dion-(2.3), p-Menthanol-(1)-dion-(2.3), 1-Oxy-buccocampher C₁₀H₁₀O₃ = (CH₃)₂CH·HC CO CH₂·CH₂·CCO)-CO COH·CH₃ bzw. desmotrope Form. Zur Konstitution vgl. Cusmano, Cattini, G. 54, 380. — B. Neben dem Hydrat (s. u.) und anderen Produkten bei Einw. von Sauerstoff auf Buccocampher in wasserhaltigem Äther bei Gegenwart von Platinschwarz (Cu., G. 53, 160; Cu., Ca., G. 54, 383). Aus dem Hydrat beim Erhitzen über den Schmelzpunkt (Cu., G. 53, 161) oder beim Erhitzen mit Lösungsmitteln (Cu., Ca., G. 54, 385). — Angenehm riechende Krystalle (aus verd. Methanol oder wäßr. Aceton). F: 75—76° (Cu.). Ist bei höherer Temperatur flüchtig (Cu.). Löslich in 20%iger Kalilauge unter Salzbildung; wird aus der Lösung durch Kohlendioxyd gefällt (Cu.). Die alkoh. Lösung wird durch Eisen(III)-chlorid violettschwarz gefärbt (Cu.). — Liefert beim Behandeln mit Bromwasserstoff in Äther Brombuccocampher (E II 7, 541) (Cu., Ca.). Liefert beim Erwärmen mit Kalilauge auf dem Wasserbad ε·Oxy·α·οxo·β·isopropyl·önanthsäure (E II 3, 517) sowie eine Säure C₁₀H₁₈O₄ (F: 52°) (Cu., Ca.). Reagiert mit Phenylhydrazin, mit Semicarbazid und mit Phenylisocyanat (Cu., Ca.).

p - Menthantriol - (1.2.2) - on - (3), Hydrat des 1-Oxy-buccocamphers $C_{10}H_{18}O_4 = (CH_3)_2CH \cdot HC \xrightarrow{CO \cdot C(OH)_2} C(OH) \cdot CH_3$ (?). B. s. im vorangehenden Artikel. — Blättchen (aus Essigester). F: 126° (Zers.) (Cusmano, G. 53, 161). Löslich in siedendem Methanol und Essigester, schwer löslich in Benzol, Chloroform, Alkohol und Äther (Cu.). — Verwandelt sich beim

Erhitzen über den Schmelzpunkt in 1-Oxy-buccocampher (Cu.); beim Erwärmen mit Lösungsmitteln entsteht außerdem noch ε -Oxy- α -oxo- β -isopropyl-önanthsäure (Cu., Cattini, G. 54, 385).

2. 1-Methyl-4-[\alpha-oxy-isopropyl]-cyclohexandion-(2.3), p-Menthanol-(8)-dion-(2.3), 8-Oxy-buccocampher C₁₀H₁₆O₃ = HO·C(CH₃)₂·HC·CO—CO—CO—CH·CH₃ bzw. desmotrope Formen. B. Durch Reduktion von 1.8-Oxido-p-menthandion-(2.3) (Diketocineol; Syst. Nr. 2476) mit Zink und verd. Schwefelsäure oder mit amalgamiertem Aluminium in feuchtem Äther (CUSMANO, MASSA, G. 55, 143). — Krystalle (aus verd. Alkohol). F: 78—79°. Schwer löslich in Wasser, ziemlich leicht in kaltem Alkohol, Äther und Aceton. Löslich in Alkalilaugen. Flüchtig mit Wasserdampf. Gibt mit Eisen(III)-chlorid in Alkohol erst eine grüne, dann eine violettschwarze Färbung. — Reduziert ammoniakalische Silbernitrat-Lösung. Gibt mit Brom in feuchtem Äther ein aus Petroläther krystallisierendes Bromderivat. Gibt beim Behandeln mit Bromwasserstoff in Äther 2.3-Dioxy-1-methyl-4-isopropyl-benzol (E II 6, 900). Liefert beim Erwärmen mit Kalilauge oder Barytwasser auf dem Wasserbad 1-Methyl-cyclohexandion-(2.3) und Aceton; daneben entsteht 2-Methyl-cyclopentanol-(1)-carbonsäure-(1).

c) Oxy-oxo-Verbindungen $C_nH_{2n-6}O_3$.

1. Oxy-oxo-Verbindungen $C_5H_4O_3$.

2.4.4-Tribrom-1-methoxy-cyclopenten-(1)-dion-(3.5) $C_6H_3O_3Br_8 = \frac{OC \cdot CBr}{Br_2C \cdot CO}C \cdot O \cdot CH_3$.

B. Neben 3.5.5-Tribrom-cyclopentantrion-(1.2.4) beim Erhitzen von Tetrabrom-cyclopenten-(1)-dion-(3.5) mit Methanol im Rohr auf 100° (ZINCKE, WEISHAUPT, A. 487, 91, 104). — Krystalle (aus verd. Methanol). F: 89—90°. Leicht löslich in Alkohol und Methanol, fast unlöslich in Wasser. — Löst sich in Alkalien langsam unter Zersetzung. Wird beim Erhitzen mit verd. Alkohol zu 3.5.5-Tribrom-cyclopentantrion-(1.2.4)

verseift. Reagiert mit o-Phenylendiamin in Alkohol unter Bildung von 3'.3'.5'-Tribrom-4'.oxo-[cyclopenteno-1'.2':2.3-chinoxalin] (s. nebenstehende Formel; Syst. Nr. 3570).

2.4.4-Tribrom-1-äthoxy-cyclopenten-(1)-dion-(3.5) $C_7H_5O_3Br_3 = {\begin{array}{c} OC \cdot CBr \\ \vdots \\ Br_5C \cdot CO \\ \end{array}} C \cdot O \cdot C_2H_5.$

B. Analog der vorangehenden Verbindung (ZINCKE, WEISHAUPT, A. 487, 105). — Gelbstichige Nadeln (aus verd. Alkohol). F: 111—112°. Leicht löslich in Alkohol und Methanol.

2. Oxy-oxo-Verbindungen C₄H₄O₃.

4.5-Dichlor - 1-methoxy-cyclohexen-(1)-dion-(3.6), Methoxychinondichlorid $C_7H_6O_3Cl_2 = OC < CH: C(O\cdot CH_3) < CO$. B. Beim Behandeln von Methoxychinon (S. 265) mit Chlor in Chloroform unter Kühlung (Dimroth, Eber, Wehr, A. 446, 147). — Gelbliche Blättchen (aus Tetrachlorkohlenstoff). — Spaltet leicht Chlorwasserstoff ab. Bei der Oxydation mit Bariumpermanganat entsteht dl-Dichlorbernsteinsäure.

3. Oxy-oxo-Verbindungen $C_{10}H_{14}O_3$.

2.3-Dioxy-5-oxo-4.7-methylen-oktahydroinden,
4.7-Methylen-hydrindandiol-(2.3)-on-(5), Keto-dihydrodicyclopentadienglykol C₁₀H₁₄O₃, s. nebenstehende Formel. B. Aus Ketodihydrodicyclopentadienoxyd (Syst. Nr. 2462) beim Kochen mit sehr verdünnter Salzsäure (BERGEL, WIDMANN, A. 467, 87). — Gelblicher Syrup.

4. Oxy-oxo-Verbindungen $C_{14}H_{22}O_3$.

 $1-[2-Oxo-cyclohexyl]-2-[1-oxy-2-oxo-cyclohexyl]-äthan <math>C_{14}H_{22}O_3=H_{2}CCH_{2}\cdot CO$ $CH_{2}\cdot CH_{2}\cdot CH_{3}\cdot CCH_{2}\cdot CH_{3}\cdot CH_{2}\cdot CH_{3}\cdot CH_{2}\cdot CH_{3}\cdot CH_{3}\cdot$

d) Oxy-oxo-Verbindungen C_nH_{2n-8}O₃.

1. Oxy-exe-Verbindungen $C_2H_4O_2$.

- 1. 3-Oxy-benzochinon-(1.2) C,H4O, Formel I.
- 3-Methoxy-benzochinon-(1.2) $C_7H_4O_3=CH_3\cdot O\cdot C_6H_3(:O)_3$ (E I 597). Liefert beim Behandeln mit Pyrogallol in Äther + Chloroform Purpurogallinmonomethyläther (Syst. Nr. 827) (WILLSTATTER, HEISS, A. 488, 29).
- 4-Chlor-3-oxy-benzochinon-(1.2)-oxim-(2) bzw. 4-Chlor-2-nitroso-resorcin C₆H₄O₃NCl, Formel II bzw. III. B. Aus 4-Chlor-resorcin und Isoamylnitrit in Natriummethylat-Lösung unter Kühlung (FABRE, A. ch. [9] 18, 71). Gelbe Blättchen (aus verd. Alkohol). Löslich in Alkohol, Eisessig und Benzol.
- 5-Nitro-3-methoxy-benzochinon-(1.2)-diazid-(1) C₂H₅O₄N₃, Formel IV, s. bei 5-Nitro-3-diazo-brenzcatechin-1-methyläther, Formel V (Syst. Nr. 2199).

- 2. 4-Oxy-benzochinon-(1.2) C₆H₄O₃, Formel VI.
 - 4-Oxy-benzochinon-(1.2)-oxim-(1) $C_0H_5O_8N=HO\cdot C_0H_8(:0):N\cdot OH$ s. S. 265.
- 4-Methoxy-benzochinon-(1.2)-oxim-(1) bzw. 4-Nitroso-resorcin-1-methyläther, 6-Nitroso-3-methoxy-phenol, 4-Nitroso-3-oxy-anisol C₇H₂O₂N, Formel VII bzw. VIII (H 232; E I 597). Die stabile braungelbe bis gelbe und die labile grüne Form (HENRICH, EISENACH, J. pr. [2] 70, 337; H 232) werden von Hodgson, Moore (Soc. 128, 2499) als stereoisomere Chinonoximformen aufgefaßt. Eine dritte braunc Form vom Schmelzpunkt 138° (HENRICH, RHODIUS, B. 85, 1484), die von Henrich, Eisenach (J. pr. [2] 70, 334) als verunreinigte stabile Form angesprochen wird, sehen Hodgson, Moore als die echte Nitrosoform an. — B. Durch Behandeln einer Lösung von Resorcinmonomethyläther in verd. Natronlauge mit Natriumnitrit und verd. Schwefelsäure unterhalb 0° (Hodgson, Clay, Soc. 1929, 2777). — Liefert bei der Oxydation mit verd. Salpetersaure oder mit Wasserstoffperoxyd in Gegenwart von Eisen(II)-sulfat 4-Nitroresorcin-1-methyläther (H., CL.).

- 6-Chlor-4-methoxy-benzochinon-(1.2)-oxim-(1) bzw. 5-Chlor-4-nitroso-resorcin-1-methyläther, 5-Chlor-4-nitroso-3-oxy-anisol C₇H₆O₃NCl, Formel IX bzw. X. B. Beim Behandeln von in verd. Natronlauge gelöstem 5-Chlor-resorcin-monomethyläther mit Natrium-nitrit und verd. Schwefelsäure bei 0° (HODGSON, WIGNALL, Soc. 1928, 330). Tiefgrüne Nadeln (aus Methanel) F. 120° (Zorg.) Unbeligh in Detroläther schwer läcke in Wigner Albeita Bernall (aus Methanol). F: 1320 (Zers.). Unlöslich in Petroläther, schwer löslich in Wasser, Alkohol, Benzol und Tetrachlorkohlenstoff, leicht in Aceton, Äther und Eisessig. Löst sich in 10 %iger wäßriger Natronlauge mit grüner Farbe. Gibt mit konz. Schwefelsäure eine bordeauxrote Färbung. — Wird durch heiße konzentrierte Salzsäure und heiße konzentrierte Alkalilauge zersetzt. Liefert bei Einw. von Kaliumeisen(III)-cyanid in alkal. Lösung bei 60° 5-Chlor-4-nitro-3-oxy-anisol (E II 6, 822).
- 3. 2-Oxy-benzochinon-(1.4), Oxy-p-chinon, Oxychinon C₈H₄O₈, s. nebenstehende Formel (E I 599). Gelbe Nadeln (aus Benzol) (Conant, Fieser, Am. Soc. 46, 1865). Normal-Redoxpotential bei 25° in wäßt. Lösung: 0,596 V (0,1 n-Salzsäure), 0,594 V (1,0 n-Salzsäure), in 50% igem Alkohol: 0,601 V (0,5 n-Salzsäure) HO säure), 0,598 V (1 n-Salzsäure). Oxydierende Wirkung: Dімкотн, Ніскки, В. 54, 3054. Liefert mit 2—3 Mol Anilin in Alkohol 2.5-Dianilino-p-chinon (Syst. Nr. 1874), 5-Anilino-2-oxy-p-chinon (Syst. Nr. 1878) und 5-Anilino-2-oxy-p-chinon-anil-(1) (Syst. Nr. 1878) KEHRMANN, CHERPILLOD, Helv. 7, 980). Gibt mit 2-Amino-diphenylamin in Eisessig geringe

Mengen Aposafranon (Formel I; Syst. Nr. 3513) und wenig Fluorindin (Formel II; Syst. Nr. 4030); bei raschem Erhitzen mit 2-Amino-phenol in Eisessig entstehen viel Triphendioxazin (Formel III; Syst. Nr. 4633), Spuren Phenazoxon (Formel IV; Syst. Nr. 4225) und ein in verd. Natronlauge

I.
$$N$$
 III. N III. N III.

mit rotbrauner Farbe lösliches Produkt (K., CH.). Liefert mit Naphthylendiamin-(1.2)-hydrochlorid und Natriumacetat in Essigsäure wenig 6-Oxy-1.2-benzo-phenazin (Formel V; Syst. Nr. 3516) und in Laugen unlösliche dunkelrote Krystalle (Kehrmann, Cherpillod, Helv. 7, 976). Gibt mit o-Phenylendiamin in Eisessig unter Kühlung in guter Ausbeute 2-Oxy-phenazin (Formel VI) und wenig Fluorindin, mit 3.4-Diamino-toluolhydrochlorid und Natriumacetat in Essigsäure wenig 6(oder 7)-Oxy-2-methyl-phenazin (K., Ch.). Liefert beim Aufbewahren mit 4-Nitro-phenylendiamin-(1.2) in Eisessig 7-Nitro-2-oxy-phenazin, 6-Nitro-2-oxy-phenazin, 2-Oxy-benzo-chinon-(1.4)-[4(oder 5)-nitro-2-amino-anil]-(4)(Syst. Nr. 1755) und andere Produkte (K., Harnny, Helv. 8, 677).

- 2 Methoxy benzochinon (1.4), Methoxychinon $C_7H_6O_3 = O:C_6H_3(O\cdot CH_3):O$ (H 234; E I 599). B. Durch Oxydation von Oxyhydrochinon-2-methyläther mit Chromsäure (DIMROTH, EBER, Wehr, A. 446, 147). Durch Oxydation von 2-Methoxy-4-amino-phenol mit verd. Chromsäuremischung in der Kälte (Kehrmann, Hoehn, Helv. 8, 221). Beim Erhitzen von 2-Methoxy-benzochinon-(1.4)-imid-(4) in verdünnter schwefelsaurer Lösung (K., H.). Aus 4-Oxy-3-methoxy-styrol, besser aus dem Acetat oder dem Methyläther dieser Verbindung und Salpetersäure (D: 1,2) unter Kühlung (Fromm, A. 456, 177). F: 144—145° (D., E., W.).
- 2- Oxy benzochinon (1.4) acetimid (4) bzw.

 4-Acetamino-benzochinon-(1.2) C₈H₇O₃N, Formel VII
 bzw. VIII. B. Aus 4-Acetamino-brenzcatechindiacetat durch Verseifung und anschließende Oxydation mit Chromsäure bei 0° (Kehrmann, Hoehn, Helv. 8, 219). Rotbraune Nadeln. Zersetzt sich zwischen 170° und 180°. Löslich in kaltem Wasser mit orangeroter Farbe, leicht löslich in Alkohol und Eisessig, sohwer in Äther, Benzol und Chloroform (K., H.). Zersetzt sich rasch beim Kochen mit Wasser (K., H.). Liefert mit Anilin in Alkohol bei ca. 50° 2.5-Dianilino-benzochinon-(1.4)-anil-(1) (Syst. Nr. 1874) (Hoehn, Helv. 8, 279). Liefert beim Aufbewahren mit o-Phenylendiamin in Eisessig und nachfolgenden Versetzen mit 10%iger Schwefelsäure wenig 2-Aminophenazin und ein in Benzol unlösliches dunkelbraunes Produkt (K., H.). Beim Aufbewahren mit 2-Amino-phenol in Eisessig + verd. Schwefelsäure entsteht neben Triphendioxazin sehr wenig Phenoxazin (K., H.).

2-Methoxy-benzochinon-(1.4)-imid-(4) C₇H₇O₂N, Formel IX. B. Beim Schütteln von 4-Amino-brenzeatechin-2-methyläther mit Silberoxyd und wasserfreiem Natriumsulfat in Äther (Kehrmann, Hoehn, Helv. 8, 221). — Hellgelbe Krystalle (aus Äther). F: 95° (Zers.). Die Lösungen in Äther, Benzol und Chloroform sind hellgelb. Löst sich in verd. Mineralsäuren mit intensiv gelber Farbe, in konz. Schwefelsäure mehr rötlich. — Ist an trockener Luft ziemlich beständig und wird erst nach einigen Wochen an der Oberfläche bräunlich.

2-Oxy-benzochinon-(1.4)-oxim-(1) bzw. 4-Oxy-benzochinon-(1.2)-oxim-(1) bzw. 4-Nitroso-resorcin $C_6H_5O_3N$, Formel X bzw. XI oder XII (H 235). Zur Durstellung aus Resorcin and Isoamylnitrit vgl. noch Fabre, A. ch. [9] 18, 68. — Bräunliche Nadeln (aus siedendem Chloroform), gelbe wasserhaltige Nadeln (aus verd. Alkohol). Löslich in Alkohol, Aceton und siedendem Chloroform, schwer löslich in Ather und Wasser (Fa.). — Liefert bei der Oxydation mit Wasserstoffperoxyd in alkal. Lösung 4-Nitro-resorcin (Gilbert, Laxton, Prideaux, Soc. 1927, 2301). Gibt mit Isoamylnitrit in Natriummethylat-Lösung unter Kühlung 2.4-Dinitroso-

resorcin (FA.). Gibt mit Phenylglycin eine rote Färbung, mit Proteinen braune bis rotbraune Färbungen (COOPER, FORSTNER, J. Soc. chem. Ind. 45 [1926], 95 T). — Wirkt bactericid gegenüber Bac. coli communis (COO., Fo., Biochem. J. 18, 942).

2 - Oxy - benzochinon - (1.4) - thiooxim - (1) - S - [4 - chlor - 2 - nitro-phenylather], 4 - Chlor - 2 - nitro-phenyl - 2' - oxychinonschwefelimin C₁₄H₇O₄N₃ClS, Formel I. Das Mol.-Gew. ist in schmelzendem Campher bestimmt. — B. Aus S - [4 - Chlor - 2 - nitro-phenyl]-N - [2.4 - dioxy-phenyl]-thiohydroxylamin beim Schütteln mit 30 % igem Wasserstoffperoxyd in Äther oder [als komplexes Chrom(III)-salz] beim Behandeln mit Natriumdichromat in Eisessig (Gebauer-Fülnegg, Beatty, Am. Soc. 49, 1364). — Liefert bei der reduzierenden Acetylierung mit Zinkstaub und Acetanhydrid in Eisessig bei Gegenwart von Natriumacetat 5 - Chlor - 2 - methyl-benzthiazol] (Syst. Nr. 4195) und 4 - Diacetamino-resorcin-diacetat (Syst. Nr. 1869). — Färbt chromgebeizte Wolle braun. — Komplexes Chrom(III)-salz. Braun, amorph (aus Pyridin + Ligroin). Schwer löslich in Alkohol, Aceton und Essigester.

2-Oxy-benzochinon-(1.4)-acetimid-(4)-oxim-(1) bzw. 4-Acetamino-benzochinon-(1.2)-oxim-(1) C₈H₈O₃N₂, Formel II bzw. III. B. Aus 2-Oxy-benzochinon-(1.4)-acetimid-(4) und Hydroxylaminsulfat in 15 %iger Schwefelsäure (Kehrmann, Hoehn, Helv. 8, 220). — Existiert in zwei Formen: Braunrote Form. Braunrote Flocken. Zersetzt sich bei ca. 175°. Die Lösung in Alkohol ist gelblichrot. Löst sich leicht und schnell in kalter Natronlauge. Gibt beim Umkrystallisieren aus Benzol die grüne Form. — Grüne Form. Dunkelgrüne bis schwarze Krystalle (aus Benzol). Löst sich in heißem Benzol gelblichgrün. Löst sich in kalter Natronlauge nur langsam; beim Ansäuern der Lösung fällt die braunrote Modifikation. Gibt beim Erhitzen auf 115—120° die braunrote Form. — Liefert bei der Reduktion mit Zinn(II)-chlorid und Salzsäure 2.5-Diamino-phenol.

6-Chlor-2-[2.4.6-trichlor-phenoxy]-benzochinon-(1.4) C₁₂H₄O₃Cl₄, Formel IV. B. Entsteht neben anderen Produkten bei der Oxydation von 2.4.6-Trichlor-phenol mit Chromtrioxyd in Eisessig bei 30—40° (Hunter, Morse, Am. Soc. 48, 1619; vgl. Ling, Soc. 61 [1892], 559) oder mit Bleidioxyd in Benzol oder Eisessig (H., M.). — Gelbliche Nadeln (aus Eisessig). F: 134—135°. Unlöslich in kaltem Ligroin, schwer löslich in kaltem Alkohol, Äther und Eisessig, sonst sehr leicht löslich. Löst sich langsam in wäßr. Alkalien unter Zersetzung. — Wird durch Schwefeldioxyd in wäßr. Aceton zu 6-Chlor-2-[2.4.6-trichlor-phenoxy]-hydrochinon (E II 6, 1072) reduziert. Liefert beim Erhitzen mit 0,5 Mol Anilin und etwas konz. Salzsäure in Alkohol 6-Chlor-5-anilino-2-[2.4.6-trichlor-phenoxy]-benzochinon-(1.4) und wenig 6-Chlor-2-[2.4.6-trichlor-phenoxy]-hydrochinon; mit überschüssigem Anilin in heißem Alkohol entstehen 6-Chlor-2.5-dianilino-benzochinon-(1.4) (Syst. Nr. 1874) und 2.4.6-Trichlor-phenol.

3.5.6-Trichlor-2-oxy-benzochinon-(1.4), Trichloroxychinon $C_6HO_3Cl_3=O:C_6Cl_3(OH):O$ (H 238). B. Neben Tetrachlor-cyclopenten-(1)-dion-(3.5) beim Erhitzen von 1.2.5.5-Tetrachlor-cyclohexen-(1)-trion-(3.4.6) im Xylolbad (ZINCKE, WEISHAUPT, A. 487, 95). — F: 192—194°. — Beim Behandeln mit Chlor entsteht 1.2.5.5-Tetrachlor-cyclohexen-(1)-trion-(3.4.6).

H 238, Z. 23—24 v. o. statt "Hexachlor-o-chinomono-methylhemiacetalbrenzcatechinäther" lies "Hexachlor-o-chinobrenzcatechinäther-bis-monomethylacetal"; die Formel ist durch die nebenstehende zu ersetzen.

3.5.6-Tribrom-2-oxy-benzochinon-(1.4), Tribromoxychinon $C_6HO_3Br_3=0:C_6Br_3(OH):O$ (H 240). B. Neben Tetrabrom-cyclopenten-(1)-dion-(3.5) beim Erhitzen von 1.2.5.5-Tetrabrom-cyclohexen-(1)-trion-(3.4.6) für sich oder in Wasser (ZINCKE, WEISHAUPT, A. 487, 97). — Gelbrote Blättchen oder dunkelrote Krystalle (aus Benzol). F: 210°. Schwer löslich in Wasser mit violetter Farbe, die auf Zusatz von Mineralsäuren verschwindet. Die Lösungen in Ammoniak, Sodalösung und verd. Alkalien sind tiefviolett. — Schweflige Säure reduziert zu Tribromoxyhydrochinon (E II 6, 1072). Bei längerer Einw. von Alkali entsteht Bromanilsäure (Syst. Nr. 798). Mit Calciumhypobromit in essigsaurer Lösung bildet sich Tetrabrom-cyclopenten-(1)-dion-(3.5).

"Chinonthiosulfonsäure" $C_6H_4O_5S_2 = O: C_6H_2(S\cdot SO_3H): O$ (H 240). Durch Kondensation mit aromatischen Aminen entstehen schwefelhaltige Küpenfarbstoffe (Höchster Farbw., D.R.P. 362457; C. 1923 II, 1117; Frdl. 14, 1052; vgl. a. D.R.P. 366734; C. 1923 IV, 292;

Frdl. 14, 1054). — Kaliumsalz KC₆H₂O₅S₂. Gelbe Nadeln. Die wäßr. Lösung färbt sich mit wenig Anilin rot, mit größeren Mengen gelb unter Bildung eines amorphen gelben Niederschlages, der sich in verd. Natronlauge mit brauner, in konz. Schwefelsäure mit violetter Farbe löst (Heller, J. pr. [2] 108, 272).

2. Oxy-oxo-Verbindungen C,H,O,,

1. 2.3-Dioxy-benzaldehyd, o-Protocatechualdehyd C7H6O3, s. neben-CHO stehende Formel (H 240; E I 600). Liefert mit Glycylglycinäthylester in Alkohol OH [2.3-Dioxy-benzyliden]-glycylglycinäthylester (Gennoross, Bio. Z. 108, 90; Z. ang. ·OH Ch. 33, 137). — Färbt Hautpulver goldgelb; besitzt Gerbwirkung.

2-Oxy-3-methoxy-benzaldehyd, 3-Methoxy-salicylaldehyd, o-Vanillin $C_8H_8O_3 = CH_3 \cdot O \cdot C_6H_8(OH) \cdot CHO$ (H 240; E I 600). B. In geringer Menge beim Erwärmen von Guajacol mit Trichloressigsäure und Natronlauge auf 100° (van Alphen, R. 46, 146). In geringer Menge beim Erhitzen von Guajacol mit N.N'-Diphenyl-formamidin auf 210° und Kochen des Reaktionsproduktes mit Natronlauge (Shoesmith, Haldane, Soc. 125, 2406). Durch Hydrierung von 3-Methoxy-2-carbomethoxypoxy-benzoylchlorid in Gegenwart von Palladium -Bariumsufat in Televis bei 440° und folgende Versiging mit väßeig ellegheligehen Natronlauge (M. versign) in Toluol bei 110° und folgende Verseifung mit wäßrig alkoholischer Natronlauge (MAUTHNER, J. pr. [2] 112, 62). Reinigung durch Überführung in 2.2'.2"-Trioxy-3.3'.3"-trimethoxy-hydrobenzamid: Рісноп, Bl. [4] 45, 529. — Absorptionsspektrum in Alkohol, alkoh. Salzsäure und Natriumäthylat-Lösung: Waljaschko, 3K. 58, 813; C. 1927 I, 1125. Adsorption durch

Hautpulver: Gerngross, Bio. Z. 108, 95.
In 72% igem Alkohol gelöstes o-Vanillin greift Magnesium, Zink, Eisen, Kobalt und Kupfer an (Zetzsche, Silbermann, Vieli, Helv. 8, 598). Die Natriumverbindung liefert bei allmählicher Einw. von Chlordimethyläther in Toluol unter starker Kühlung geringe Mengen 3-Methoxy-2-methoxymethoxy-benzaldehyd (S. 268) (PAULY, WÄSCHER, B. 56, 607). o-Vanillin liefert mit Aceton und verd. Natronlauge bei gewöhnlicher Temperatur 2-Oxy-3-methoxyhenzylidenaceton (S. 325) (NOMURA, NOZAWA, Sci. Rep. Tohoku Univ. 7, 88; C. 1921 I, 1017; McGookin, Sinclair, Soc. 1926, 1578). Liefert mit Glycylglycinäthylester in absol. Alkohol N-[2-Oxy-3-methoxy-benzyliden]-glycylglycinäthylester (Genngross, Bio. Z. 108, 89; Z. ang. Ch. 33, 137). Beim Leiten von Chlorwasserstoff in eine Lösung äquimolekularer Mengen o-Vanillin und 4.5-Benzo-cumaranon in Äther oder in Alkohol entsteht 2-[2-Oxy-3-methoxy-benzyliden]-4.5-benzo-cumaranon (Syst. Nr. 2539), in Eisessig-Lösung bei 50° entsteht das Pyryliumsalz der nebenstehenden Formel (Syst. Nr. 2726) (RIDGWAY, ROBINSON, Soc. 125, 221). o-Vanillin kondensiert sich mit Homophthal-

säureimid in Alkohol oder Essigsäure bei Gegenwart von Diäthylamin oder Chlorwasserstoff zu α -[2-Oxy-3-methoxy-benzyliden]-homophthalsäureimid (Syst. Nr. 3241) (A. MEYER, C. r. 186, 1216).

O·CH2

Das 4-Nitro-phenylhydrazon schmilzt bei 217--218° (MAUTHNER, J. pr. [2] 112, 63). Eisen(II) Salz. Grüner Niederschlag. F: 156-1580 (ZETZSCHE, SILBERMANN, VIELI, Helv. 8, 601). Unlöslich in den gebräuchlichen Lösungsmitteln.

2.3 - Dimethoxy - benzaldehyd, o - Vanillin - methyläther, o - Veratrumaldehyd $C_9H_{10}O_3=(CH_3\cdot O)_2C_6H_3\cdot CHO$ (E I 601). B. Durch Hydrierung von 2.3 - Dimethoxy - benzoylchlorid in Gegenwart von Palladium - Bariumsulfat in Xylol bei 140° (MAUTHNER, J. pr. [2] 112, 64). Aus 2-Oxy-3-methoxy-benzaldehyd und Dimethylsulfat in heißer verdünnter Natronlauge (Späth, Mosettig, A. 438, 144) oder methylalkoholischer Kalilauge (Haworth, Perkin, Soc. 127, 1437). — Liefert bei der Einw. von Brom in Eisessig 5-Brom-2.3-dimethoxy-benzaldehyd (Davies, Soc. 123, 1579, 1586). Gibt beim Eintragen in Salpetersäure (D: 1,42) unter Kühlung ein Gemisch von 5-Nitro-2.3-dimethoxy-benzaldehyd und 6-Nitro-2.3-dimethoxy-benzaldehyd (Perkin, Robinson, Stoyle, Soc. 125, 2357; vgl. P., R., Soc. 105 [1914], 2389); das gleiche Gemisch entsteht auch beim Erwärmen mit Salpetersäure in Eisessig auf dem Wasserbad (Da., Soc. 123, 1577, 1584). Beim Aufbewahren von 2.3-Dimethoxy-benzaldehyd mit alkoh. Kalilauge bei gewöhnlicher Temperatur bildet sich außer 2.3-Dimethoxy-benzylalkohol und 2.3-Dimethoxy-benzoesaure (E I 601) auch 2.3-Dimethoxy-zimtsaure (P., St., Soc. 123, 3173, 3174). Liefert mit 3-Nitro-4-methyl-benzonitril und wenig Piperidin bei 110° 2-Nitro-2'.3'-dimethoxy-4-cyan-stilben (Pfeiffer, J. pr. [2] 109, 206).

Das 4-Nitro-phenylhydrazon schmilzt bei 205—206' (Mauthner, J. pr. [2] 112, 64).

2-Oxy-3-äthoxy-benzaldehyd, 3-Äthoxy-salicylaldehyd $C_9H_{10}O_3=C_2H_5\cdot O\cdot C_6H_3(OH)\cdot CHO$. Stark riechende, hellgelbe Nadeln. F: 64—65°; Kp_{740} : 263—264° (geringe Zersetzung) (Davies, Soc. 123, 1587). Mit Wasserdampf flüchtig (D.). Leicht löslich in organischen Lösungsmitteln, schwer in Wasser mit deutlicher gelber Farbe (D.). Die alkoh. Lösung gibt mit Eisenchlorid eine indigoblaue Färbung (D.). — Liefert beim Behandeln mit Salpetersäure (D: 1,42)

- in Eisessig bei 10—20° 5-Nitro-2-oxy-3-åthoxy-benzaldehyd (D.). Bei der Einw. von Brom in Eisessig entsteht eine bei 250° schmelzende, in Eisessig, Methanol und Aceton schwer lösliche Verbindung; in Gegenwart von Natriumacetat erhält man 5-Brom-2-oxy-3-åthoxy-benzaldehyd (D.). Beim Leiten von Chlorwasserstoff in eine Lösung von 2-Oxy-3-åthoxy-benzaldehyd und Cyclohexanon in Äther entsteht 5-Åthoxy-4-[2-oxy-3-åthoxy-benzyliden]-1.2.3.4-tetrahydro-xanthyliumchlorid (Syst. Nr. 2446) (RIDGWAY, ROBINSON, Soc. 125, 218). Bei der analogen Umsetzung mit Acetophenon oder \(\alpha \text{Brom-acetophenon in Eisessig erhält man 8-Äthoxy-2-phenyl-benzopyryliumchlorid (Syst. Nr. 2406) (RI., Ro., Soc. 125, 216).
- 3 Methoxy 2 šthoxy benzaldehyd C₁₀H₁₂O₃ = CH₃·O·C₂H₃(O·C₂H₅)·CHO. B. Beim Kochen von 2-Oxy-3-methoxy-benzaldehyd mit Åthyljodid in wäßrig-alkoholischer Natronlauge (DAVIES, RUBERSTEIN, Soc. 123, 2846). Flüssigkeit, die bei 0° zu Nadeln erstarrt (D., R.). Riecht stechend und reizt zum Niesen (D., R.). Kp₁₈: 140° (D., R.). Zersetzt sich teilweise bei der Destillation unter gewöhnlichem Druck; das Destillat gibt mit Eisenchlorid eine intensiv blaue Färbung (D., R.). Wird durch Permanganat in alkal. Lösung zu 3-Methoxy-2-āthoxy-benzoesāure oxydiert (REICHSTEIN, Helv. 10, 397). Liefert bei der Einw. von Salpetersäure (D: 1,42) bei 0° 5-Nitro-3-methoxy-2-āthoxy-benzaldehyd und 6-Nitro-3-methoxy-2-āthoxy-benzaldehyd, vielleicht auch geringe Mengen 4-Nitro-3-methoxy-2-āthoxy-benzaldehyd (RUBENSTEIN, Soc. 127, 2268; D., R.). Beim Behandeln mit Brom in Eisessig entsteht 5-Brom-3-methoxy-2-āthoxy-benzaldehyd (DAVIES, RUBENSTEIN, Soc. 123, 2847). Phenylhydrazon. Prismen. F: 122° (D., R.). 4-Nitro-phenylhydrazon. Orangerote Nadeln. F: 192° (D., R.).
- 2 Methoxy 3 äthoxy benzaldehyd $C_{10}H_{12}O_3 = C_2H_5 \cdot O \cdot C_6H_3 (O \cdot CH_3) \cdot CHO$. B. Beim Kochen von 3-Åthoxy-salicylaldehyd mit Dimethylsulfat in methylalkoholisch-wäßriger Natronlauge (Davies, Soc. 123, 1589). Nadeln (aus Wasser). F: 45° (D.). Mit Wasserdampf flüchtig. Schwer löslich in Wasser. Die Dämpfe reizen zum Niesen. Geht beim Erhitzen mit 10% iger Kaliumpermanganat-Lösung und Kaliumcarbonat-Lösung in 2-Methoxy-3-äthoxy-benzeldehyd (D.). Liefert beim Behandeln mit Salpetersäure (D. 1,42) 5-Nitro-2-methoxy-3-äthoxy-benzeldehyd (nachgewiesen durch Oxydation und durch Indigobildung) (D.; D., Rubenstein, Soc. 123, 2844).
- 2.3 Diäthoxy benzaldehyd $C_{11}H_{14}O_3 = (C_2H_5\cdot O)_2C_6H_3\cdot CHO$. B. Aus 3-Äthoxy-salicylaldehyd und Äthyljodid in siedender alkoholisch-wäßriger Natronlauge (Davies, Rubenstein, Soc. 123, 2347). Scharf riechende Flüssigkeit. Kp₃₇: 169° (D., R.). Liefert bei der Einw. von Salpetersäure (D: 1,42) bei 0° 5-Nitro-2.3-diäthoxy-benzaldehyd, 6-Nitro-2.3-diäthoxy-benzaldehyd, vielleicht auch geringe Mengen 4-Nitro-2.3-diäthoxy-benzaldehyd (R., Soc. 127, 2268, 2269; vgl. D., R.). Gibt beim Behandeln mit Brom in Eisessig 5-Brom-2.3-diäthoxy-benzaldehyd (D., R.).
- 3 Methoxy 2 methoxymethoxy benzaldehyd $C_{10}H_{12}O_4 = CH_3 \cdot O \cdot CH_2 \cdot O \cdot C_6H_3 (O \cdot CH_3) \cdot CHO$. B. In geringer Menge durch allmähliche Einw. von Chlordimethyläther auf die Natriumverbindung des 3-Methoxy-salicylaldehyds in Toluol unter starker Kühlung (Pauly, Wäscher, B. 56, 607). Tafeln (aus Petroläther). F: 56°; Kp₂: 128—130° (P., W.). Leicht löslich in Alkohol, Äther und Benzol, sehr schwer in kaltem Ligroin und Wasser. Durch Kondensation mit Acetaldehyd in verdünnter wäßrig-alkoholischer Kalilauge bei 65—68° erhält man 3-Methoxy-2-methoxymethoxy-zimtaldehyd (P., W.; vgl. P., Feuerstein, B. 62, 303 Anm. 18).
- 3-Methoxy-2-acetoxy-benzaldehyd $C_{10}H_{10}O_4=(CH_3\cdot CO\cdot O)(CH_3\cdot O)C_6H_3\cdot CHO$ (E I 601 . Wird durch Salpetersäure nicht nitriert, sondern hydrolysiert und oxydiert (Davies, Soc. 123, 1584).
- 3 Methoxy 2 carbomethoxyoxy benzaldehyd $C_{10}H_{10}O_5 = (CH_3 \cdot O_2C \cdot O)(CH_3 \cdot O)C_6H_3 \cdot CHO$ (E I 602). B. Durch Hydrierung von 3 Methoxy 2 carbomethoxyoxy benzoylchlorid in Gegenwart von Palladium-Bariumsulfat in Toluol bei 110° (Mauthner, J. pr. [2] 112, 62).
- 2.3 Dimethoxy benzaldehyd dimethylacetal $C_{11}H_{16}O_4 = (CH_3 \cdot O)_2C_6H_3 \cdot CH(O \cdot CH_3)_2$. B. In geringer Menge durch Einw. von Dimethylsulfat auf 2-Oxy-3-methoxy-benzaldehyd in methylalkoholischer Kalilauge, neben 2.3-Dimethoxy-benzaldehyd (Haworth, Perkin, Soc. 127, 1437). Öl. Kp₁₁: 134—136°.
- [2.3 Dioxy benzyliden] glycylglycinäthylester C₁₃H₁₆O₅N₂ = (HO)₂C₆H₃·CH:N·CH₂·CO·NH·CH₂·CO₂·C₂H₅. B. Aus 2.3-Dioxy-benzaldehyd und Glycylglycinäthylester in Alkohol (Gengross, Bio. Z. 108, 90; Z. ang. Ch. 33, 137). Goldgelbe Platten (aus Alkohol). F: 120,5°. Leicht löslich in Aceton, Äthylacetat und Eisessig, schwer in Äther, unlöslich in Petroläther. Unbeständig gegen siedendes Wasser und gegen Säuren.
- 2-0xy-3-methoxy-benzaldimid, o-Vanillin-imid $C_8H_9O_2N=CH_3\cdot O\cdot C_8H_3(OH)\cdot CH:NH.$ B. Das Kupfersalz bildet sich durch Einw. von alkoh. Ammoniak und gesättigter Kupferacetat-Lösung auf o-Vanillin in Alkohol, ferner aus dem Kupfersalz des o-Vanillins und alkoh. Ammoniak (Pichon, Bl. [4] 45, 530). $Cu(C_8H_8O_2N)_2$. Grüne Krystalle (aus Chloroform). F: 192°. $Ni(C_8H_8O_2N)_2$. Braune Nadeln (aus Chloroform). F: 327°. $Co(C_8H_8O_2N)_2$. Grüne Nadeln. F: 278°. $Co(C_8H_8O_2N)_3$. Schwarzes Pulver. F: 177°.

- 2-Oxy-3-methoxy-benzaidehyd-methylimid, o-Vanillin-methylimid $C_0H_{11}O_2N=CH_3\cdot O\cdot C_0H_3(OH)\cdot CH:N\cdot CH_3$. Das Mol.-Gew. ist in Benzol kryoskopisch bestimmt. B. Äus o-Vanillin und Methylamin in Alkohol (Ріснок, Bl. [4] 45, 533). Gelbe Nadeln (aus Alkohol). F: 77°. Natrium salz. Hellgelb. Sehr unbeständig. $Cu(C_0H_{10}O_2N)_2$. Dunkelgrüne Blättchen (aus Benzol). F: 207°. Unlöslich in Wasser. Wird durch Säuren unter Bildung von o-Vanillin zersetzt.
- [2-0xy-3-methoxy-benzyliden]-glycylglycinäthylester $C_{14}H_{16}O_5N_2 = CH_3 \cdot O \cdot C_6H_8(OH) \cdot CH : N \cdot CH_2 \cdot CO \cdot NH \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. B. Aus o-Vanillin und Glycylglycinäthylester in absol. Alkohol (Gerngross, Bio. Z. 108, 89; Z. ang. Ch. 33, 137). Gelbe Nadeln (aus Alkohol). F: 118°. Löst sich in Wasser mit grünlichgelber Farbe und schwach saurer Reaktion. Zersetzt sich bei längerem Kochen der wäßr. Lösung.
- 2 Oxy 3 methoxy benzyliden bis dimethylamin $C_{12}H_{20}O_2N_2 = CH_3 \cdot O \cdot C_8H_3(OH) \cdot CH[N(CH_3)_2]_2$. B. Das Kupfersalz bildet sich durch Einw. von Dimethylamin und Kupferacetat in Alkohol auf o-Vanillin (Pichon, Bl. [4] 45, 533). $Cu(C_{12}H_{12}O_2N_2)_2$. Dunkelgrüne Krystalle (aus Chloroform). F: 236°.
- 2.2'.2''-Trioxy-3.3'.3''-trimethoxy-hydrobenzamid, o-Vanillin-hydramid $C_{24}H_{24}O_6N_2=[CH_3\cdot O\cdot C_6H_3(OH)\cdot CH:N]_2CH\cdot C_6H_3(OH)\cdot O\cdot CH_3$. B. Aus o-Vanillin und der berechneten Menge Ammoniak in Alkohol (Pichon, Bl. [4] 45, 529). Hellgelbe Nadeln (aus Alkohol). F: 158°. Unlöslich in Wasser, schwer löslich in Äther und kaltem Benzol, löslich in heißem Benzol. Wird durch wäßr. Alkalien oder Säuren in o-Vanillin und Ammoniak gespalten. Hydrochlorid $C_{24}H_{24}O_6N_2+HCl$. Gelbliches Pulver. Zersetzt sich an der Luft langsam, in Wasser sofort. Pikrat. Krystalle. F: 188°. Schwer löslich in kaltem Benzol.
- 2.3.2'.3'.2''.3''-Hexamethoxy-hydrobenzamid, o-Veratrumaldehyd-hydramid $C_{27}H_{30}O_6N_3 = [(CH_3 \cdot O)_2C_6H_3 \cdot CH : N]_2CH \cdot C_6H_3(O \cdot CH_3)_2$. B. Aus o-Veratrumaldehyd und der berechneten Menge Ammoniak in Alkohol (Pichon, Bl. [4] 45, 530). Krystalle (aus Alkohol). F: 115°. $C_{27}H_{30}O_6N_2 + HCl$. Pulver. Löslich in Wasser unter Zersetzung.
- 2 0xy 3 methoxy benzaldoxim, 0 Vanillinoxim $C_8H_9O_3N=CH_3\cdot O\cdot C_6H_3(OH)\cdot CH:N\cdot OH$ (E I 602). F: 123° (MAUTHNER, J. pr. [2] 112, 63).
- 2.3 Dimethoxy-benzaldoxim, o-Veratrumaldoxim $C_9H_{11}O_3N = (CH_3 \cdot O)_2C_6H_3 \cdot CH : N \cdot OH$ (E I 602). F: 98—99° (Mauthner, J. pr. [2] 112, 64). Liefert beim Kochen mit Acetanhydrid und Natriumacetat 2.3-Dimethoxy-benzonitril (Baker, Eastwood, Soc. 1929, 2907).
- 5-Brom-2-oxy-3-methoxy-benzaldehyd $C_8H_7O_3Br$, Formel I (E I 602). Zur Konstitution vgl. Davies, Soc. 128, 1579.
- 5-Brom-2.3-dimethoxy-benzaldehyd $C_9H_9O_3Br$, Formel II. B. Beim Kochen von 5-Brom-2-oxy-3-methoxy-benzaldehyd mit Dimethylsulfat und wäßriger oder wäß ig-methylalkoholischer Natronlauge (Davies, Soc. 123, 1586). Beim Behandeln von 2.3-Dimethoxy-benzaldehyd mit Brom in Eisessig bei 10—20° (D.). Nadeln (aus Methanol). F: 81°. Geht beim Erhitzen mit Kaliumpermanganat-Lösung in Gegenwart von Magnesiumsulfat in 5-Brom-2.3-dimethoxy-benzcefäure über. Liefert bei der Einw. von Salpetersäure (D: 1,42) bei 10—20° 5-Brom-6-nitro-2.3-dimethoxy-benzaldehyd.

- 5-Brom-2-oxy-3-äthoxy-benzaldehyd C₀H₉O₃Br, Formel III. B. Beim Behandeln von 3-Äthoxy-salicylaldehyd mit Brom in Eisessig in Gegenwart von Natriumacetat bei 10—20° (DAVIES, Soc. 123, 1592). Gelbe Nadeln (aus Alkohol). F: 94°. Schwer löslich in kaltem, leicht in heißem Alkohol. Gibt mit Eisenchlorid in alkoh. Lösung eine blaue Färbung. Gibt ein rotes 4-Nitro-phenylhydrazon.
- 5-Brom-3-methoxy-2-äthoxy-benzaldehyd $C_{10}H_{11}O_3Br$, Formel IV. B. Beim Behandeln von 3-Methoxy-2-äthoxy-benzaldehyd mit Brom in Eisessig (Davies, Rubenstein, Soc. 123, 2847). Aus 5-Brom-2-oxy-3-methoxy-benzaldehyd und p-Toluolsulfonsäureäthylester in wäßrigalkoholischer Natronlauge (D., R.). Nadeln. F: $84,5^{\circ}$.
- 5-Brom-2-methoxy-3-äthoxy-benzaldehyd C₁₀H₁₁O₃Br, Formel V. B. Beim Behandeln von 5-Brom-2-oxy-3-äthoxy-benzaldehyd mit Dimethylsulfat in methylalkoholischer Lösung (Davies, Soc. 123, 1593). Bei längerer Einw. von Brom auf 2-Methoxy-3-äthoxy-benzaldehyd in Eisessig bei 10—20° (D.). Nadeln (aus Alkohol). F: 95°. Schwer löslich in kaltem, leicht in heißem Alkohol.

270

$OXY \cdot OXO \cdot VERBINDUNGEN \ C_nH_{2n-8}O_3$

5-Brom-2.3-diāthoxy-benzaldehyd C₁₁H₁₈O₃Br, Formel VI. B. Beim Behandeln von 2.3-Diāthoxy-benzaldehyd mit Brom in Eisessig (Davies, Rubenstein, Soc. 123, 2849). Durch Einw. von p-Toluolsulfonsäure-äthylester auf 5-Brom-2-oxy-3-äthoxy-benzaldehyd in wäßrigalkoholischer Natronlauge (D., R.). — Nadeln (aus Alkohol). F: 46°. — 4-Nitro-phenyl-hydrazon. Orangerote Krystalle. F: 207°.

5-Nitro-2-oxy-3-methoxy-benzaldehyd C₈H₇O₅N, Formel VII (E I 602). B. Durch Kochen von 5-Nitro-2.3-dimethoxy-benzaldehyd mit 1n-Natronlauge (Davies, Soc. 123, 1583). Gelbliche Nadeln. F: 140—141°. Leicht löslich in den meisten organischen Lösungsmitteln, schwer in siedendem Wasser. — Liefert beim Kochen mit Methyljodid und Silberoxyd in Chloroform 5-Nitro-2.3-dimethoxy-benzaldehyd.

5-Nitro-2.3-dimethoxy-benzaldehyd C₉H₉O₅N, Formel VIII. B. Neben 6-Nitro-2.3-dimethoxy-benzaldehyd durch Nitrierung von o-Veratrumaldehyd mit Salpetersäure (D: 1,42) unter Kühlung; Trennung der Isomeren über die Anile oder p-Tolylimide (Perkin, Robinson, Stoyle, Soc. 125, 2357). Beim Kochen von 5-Nitro-2-oxy-3-methoxy-benzaldehyd mit Methyljodid und Silberoxyd in Chloroform (Davies, Soc. 123, 1583). — Nadeln (aus Benzol + Petroläther). F: 115° (D.; P., R., St.). Schwer löslich in kaltem, leicht in heißem Methanol, sehr schwer löslich in siedendem Wasser. — Liefert bei der Oxydation mit warmer alkalischer Permanganat-Lösung 5-Nitro-2.3-dimethoxy-benzoesäure (P., R., St.). Geht beim Kochen mit 1n-Natronlauge teilweise in 5-Nitro-2-oxy-3-methoxy-benzaldehyd über (D.). Liefert beim Erhitzen mit Malonsäure und Piperidin in Pyridin auf dem Wasserbad 5-Nitro-2.3-dimethoxy-zimtsäure (Chakravarti, Perkin, Soc. 1929, 194). — Das Phenylhydrazon schmilzt bei 179° (P., R., St.).

5-Nitro-2-oxy-3-äthoxy-benzaldehyd $C_9H_9O_5N$, Formel IX. B. Beim Behandeln von 3-Äthoxy-salicylaldehyd mit Salpetersäure (D: 1,42) in Eisessig bei 10—20° (Davies, Soc. 123, 1587). Beim Kochen von 5-Nitro-2-methoxy-3-äthoxy-benzaldehyd mit 2n-Natronlauge (D.). — Hellgelbe Krystalle (aus Alkohol). F: 158°. — Beim Kochen mit Methyljodid und Silberoxyd in Chloroform erhält man 5-Nitro-2-methoxy-3-äthoxy-benzaldehyd.

5 - Nitro - 3 - methoxy - 2 - äthoxy - benzaldehyd $C_{10}H_{11}O_5N$, Formel X. B. Neben 6-Nitro-3-methoxy-2-äthoxy-benzaldehyd beim Behandeln von 3-Methoxy-2-äthoxy-benzaldehyd mit Salpetersäure (D: 1,42) unter Kühlung (Davies, Rubenstein, Soc. 123, 2846; R., Soc. 127, 2268); die Isomeren können teilweise über die p-Tolylimide getrennt werden (R.). Durch Einw. von Äthyliodjd und Silberoxyd auf 5-Nitro-2-oxy-3-methoxy-benzaldehyd in Chloroform (D., R.). — Hellgelbe Tafeln (aus Alkohol). F: 137° (D., R.; R.). — Liefert bei der Oxydation mit Kaliumpermanganat in Kaliumdicarbonat-Lösung 5-Nitro-3-methoxy-2-äthoxy-benzoesäure (D., R.).

5-Nitro-2-methoxy-3-äthoxy-benzaldehyd $C_{10}H_{11}O_8N$, Formel XI. B. Beim Kochen von 5-Nitro-2-oxy-3-äthoxy-benzaldehyd mit Methyljodid und Silberoxyd in Chloroform (Davies, Soc. 128, 1588). Neben 6-Nitro-2-methoxy-3-äthoxy-benzaldehyd beim Behandeln von 2-Methoxy-3-äthoxy-benzaldehyd mit Salpetersäure (D: 1,42) bei 10—20° (D., Soc. 128, 1590; vgl. D., Rubenstein, Soc. 128, 2844). — Nadeln. F: 118,5° (D.). — Liefert beim Erhitzen mit Kaliumpermanganat-Lösung in Gegenwart von Magnesiumsulfat 5-Nitro-2-methoxy-3-äthoxy-benzosäure (D.). Geht bei kurzem Kochen mit 2n-Natronlauge in 5-Nitro-2-oxy-3-äthoxy-benzoldehyd über (D.).

5-Nitro-2.3-diāthoxy-benzaldehyd C₁₁H₁₃O₅N, Formel XII. B. Neben wenig 6-Nitro-2.3-diāthoxy-benzaldehyd bei der Einw. von Salpetersäure (D: 1,42) auf 2.3-Diāthoxy-benzaldehyd bei 0° (Trennung über die p-Tolylimide) (Rubenstein, Soc. 127, 2269; vgl. Davies, R., Soc. 123, 2848). Beim Behandeln von 5-Nitro-2-oxy-3-āthoxy-benzaldehyd mit Äthyljodid und Silberoxyd in Chloroform (D., R., Soc. 123, 2849). — Hellgelbe Nadeln (aus verd. Alkohol). F: 71° (D., R.; R.). — Liefert bei der Oxydation mit Kaliumpermanganat in heißer Kalium-carbonat-Lösung 5-Nitro-2.3-diāthoxy-benzoesāure (D., R.).

5 - Nitro - 2.3 - dimethoxy - benzaldehyd - dimethylacetal $C_{11}H_{15}O_6N = (CH_2 \cdot O)_2C_6H_2(NO_2) \cdot CH(O \cdot CH_2)_2$. B. Beim Kochen von 5-Nitro-2.3-dimethoxy-benzaldehyd mit Methanol und wenig Salpetersäure (Perkin, Robinson, Stoyle, Soc. 125, 2358). — Prismen. F: 89°.

- 5-Nitro-2.3-dimethoxy-benzaldoxim $C_0H_{10}O_5N_2=(CH_3\cdot O)_9C_0H_8(NO_2)\cdot CH:N\cdot OH$. Nadeln (aus Alkohol). F: 155° (Perkin, Robinson, Stoyle, Soc. 125, 2358).
- 5-Nitro-2.3-dimethoxy-benzaldehyd-semicarbazon $C_{10}H_{12}O_5N_4=(CH_3\cdot O)_2C_6H_2(NO_2)\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Nadeln (aus verd. Alkohol). F: 210^0 (Perkin, Robinson, Stoyle, Soc. 125, 2358).
- 6-Nitro-2.3-dimethoxy-benzaldehyd C₂H₂O₅N, Formel I (E I 603; vgl. a. Davies, Soc. 123 1577, 1584). Wird von Perkin, Robinson, Stoyle (Soc. 125, 2355) und Charravarti (J. indian chem Soc. 6 [1929], 208, 215) als Gemisch von 5-Nitro-2.3-dimethoxy-benzaldehyd und 6-Nitro-2.3-dimethoxy-benzaldehyd erkannt; die Isomeren können durch fraktionierte Krystallisation aus Methanol (Ch.) oder besser über die Anile oder p-Tolylimide (P., R., St.) getrennt werden. B. 6-Nitro-2.3-dimethoxy-benzaldehyd entsteht bei der Oxydation von 6-Nitro-2.3-dimethoxy-zimtsäure mit Permanganat in alkal. Lösung (Charravarti, J. indian chem. Soc. 6, 226). Nadeln (aus Benzol + Ligroin oder Methanol). F: 110° (P., R., St.; Ch.). Wird durch FeSO₄ und Ammoniak auf dem Wasserbad zu 6-Amino-2.3-dimethoxy-benzaldehyd (Syst. Nr. 1878) reduziert (Ch.). Liefert mit Aceton und Natronlauge 4.5.4'.5'-Tetramethoxy-indigo (Syst. Nr. 3638) (P., R., St.). Das Phenylhydrazon schmilzt bei 138° (P., R., St.).
- 6-Nitro-3-methoxy-2-äthoxy-benzaldehyd $C_{10}H_{11}O_5N$, Formel II. B. s. bei 5-Nitro-3-methoxy-2-äthoxy-benzaldehyd (S. 270). Prismen (aus verd. Alkohol). F: 57° (RUBENSTEIN, Soc. 127, 2268). Liefert beim Kochen mit Permanganat in Kaliumdicarbonat-Lösung 6-Nitro-3-methoxy-2-äthoxy-benzoesäure. Gibt bei der Einw. von Aceton und Alkalilauge eine indigoide Verbindung. 4-Nitro-phenylhydrazon. F: 188—189°.

$$I. \quad \overset{\text{CHO}}{\overset{\text{O}_2N}{\dots}} \overset{\text{O}_1 \times \text{CH}_3}{\overset{\text{O}_2N}{\dots}} \quad II. \quad \overset{\text{O}_2N}{\overset{\text{O}_2N}{\dots}} \overset{\text{O}_2N}{\overset{\text{O}_2N}{\dots}} \quad \overset{\text{O}_2N}{\overset{\text{O}_2N}{\dots}} \overset{\text{O}_2N}{\overset{\text{O}_2N}{\overset{O}_2N}{\overset{\text{O}_2N}{\dots}} \overset{\text{O}_2N}{\overset{\text{O}_2N}{\dots}} \overset{\text{O}_2N}{\overset{\text{O}_2N}{\dots}} \overset{\text{O}_2N}{\overset{\text{O}_2N}{\dots}} \overset{\text{O}_2N}{\overset{\text{O}_2N}{\dots}} \overset{\text{O}_2N}{\overset{\text{O}_2N}{\dots}} \overset{\text{O}_2N}{\overset{\text{O}_2N}{\dots}} \overset{\text{O}_2N}{\overset{\text{O}_2N}{\overset{O}_2N}{\overset{\text{O}_2N}{\overset{O}_2N}{\overset{O}_2N}{\overset{O}_2N}} \overset{\text{O}_$$

- 6-Nitro-2-methoxy-3-äthoxy-benzaldehyd $C_{10}H_{11}O_5N$, Formel III. B. Neben 5-Nitro-2-methoxy-3-äthoxy-benzaldehyd aus 2-Methoxy-3-äthoxy-benzaldehyd und Salpetersäure (D: 1,42) bei 10—20° (Davies, Soc. 123, 1590; D., Rubenstein, Soc. 123, 2844). Ein noch unreines Präparat schmolz bei 93—96° (D., R.). Gibt bei der Oxydation mit Permanganat hauptsächlich 6-Nitro-2-methoxy-3-äthoxy-benzoesäure und nur Spuren des 5-Nitro-Isomeren (D., R.). Beim Behandeln mit Aceton und Natronlauge entsteht vermutlich 4.4'-Dimethoxy-5.5'-diäthoxy-indigo (D., R.).
- 6-Nitro-2.3-diäthoxy-benzaldehyd $C_{11}H_{13}O_5N$, Formel IV. B. s. bei 5-Nitro-2.3-diäthoxy-benzaldehyd (S. 270). Nadeln (aus verd. Alkohol). F: 75—76° (Rubenstein, Soc. 127, 2269). Wird beim Aufbewahren für sich oder in Lösung an der Luft grün. Liefert mit Aceton und Alkalilauge eine indigoide Verbindung. 4-Nitro-phenylhydrazon. F: 268—270°.
- 6-Nitro-2.3-dimethoxy-benzaldehyd-dimethylacetal $C_{11}H_{15}O_8N=(CH_3\cdot O)_2C_8H_2(NO_2)\cdot CH(O\cdot CH_3)_2$. Würfel (aus Methanol). F: 72° (Perkin, Robinson, Stoyle, Soc. 125, 2358). Färbt sich beim Aufbewahren am Licht und an der Luft grün.
- 6-Nitro-2.3-dimethoxy-benzaldoxim $C_9H_{10}O_5N_2=(CH_3\cdot O)_2C_6H_9(NO_2)\cdot CH:N\cdot OH.$ Nadeln (aus verd. Alkohol). F: 130° (Perkin, Robinson, Stoyle, Soc. 125, 2358).
- 6-Nitro-2.3-dimethoxy-benzaldehyd-semicarbazon $C_{10}H_{12}O_5N_4=(CH_3\cdot O)_2C_6H_2(NO_2)\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Nadeln (aus verd. Alkohol). F: 227—228° (Perkin, Robinson, Stoyle, Soc. 125, 2358).
- 5-Brom-6-nitro-2.3-dimethoxy-benzaldehyd $C_9H_8O_5NBr$, Formel V (R und R'= CH_3). B. Bei der Einw. von Salpetersäure (D: 1,42) auf 5-Brom-2.3-dimethoxy-benzaldehyd bei 10—20° (Davies, Soc. 123, 1586). Gelbliche Nadeln (aus Methanol oder Eisessig). F: 141°. Läßt sich durch Behandeln mit Aceton und Natronlauge in eine indigoide Verbindung überführen.
- 5-Brom-6-nitro-3-methoxy-2-äthoxy-benzaldehyd $C_{10}H_{10}O_5NBr$, Formel V ($R=C_2H_5$, $R'=CH_3$). B. Durch Nitrieren von 5-Brom-3-methoxy-2-äthoxy-benzaldehyd (Davies, Rubenstein, Soc. 123, 2847). Tafeln (aus Alkohol). F: 101°. Färbt sich am Licht grünlichblau. Gibt mit Aceton und Natronlauge eine indigoide Verbindung.
- 5-Brom-6-nitro 2 methoxy 3 äthoxy benzaldehyd $C_{10}H_{10}O_5NBr$, Formel V ($R=CH_3$, $R'=C_5H_5$). B. Beim Erwärmen von 5-Brom-2-methoxy-3-äthoxy-benzaldehyd mit Salpetersäure (D: 1,42) auf 35° (Davies, Soc. 123, 1593). Gelbliche Nadeln (aus Alkohol). F: 128°. Wird beim Erwärmen mit Aceton und wenig konz. Natronlauge in eine indigoide Verbindung übergeführt.
- 5-Brom-6-nitro-2.3-diäthoxy-benzaldehyd $C_{11}H_{12}O_5NBr$, Formel V (R und R' = C_2H_5). B. Beim Nitrieren von 5-Brom-2.3-diäthoxy-benzaldehyd (Davies, Rubenstein, Soc. 123, 2849). Hellgelbe Tafeln. F: 110°. Liefert beim Behandeln mit Aceton und Natronlauge eine indigoide Verbindung.

272

2. 2.4 - Dioxy - benzaldehyd , Resorcylaldehyd , β - Resorcylaldehyd C₇H₆O₃, s. nebenstehende Formel (H 241; E I 603). B. Resorcylaldehyd entsteht beim Erhitzen von Resorcin mit N.N'-Diphenyl-formamidin auf 100° und Kochen OH des Kondensationsproduktes mit 12-15% iger Natronlauge; Ausbeute ca. 50% der Theorie (Shoesmith, Haldane, Soc. 123, 2705). Durch Reduktion von β -resorcylsaurem Natrium mit Natriumamalgam und neutralisierter Natriumdisulfit-Lösung; Ausbeute ca. 25 % der Theorie (Weil, Traun, Marcel, B. 55, 2665). — Darst. Man leitet Chlorwasserstoff unter Rühren in ein Gemisch aus 20 g Resorcin, ca. 20 g Zinkcyanid und 150 bis 200 cm3 Åther und kocht das ausgeschiedene Imid-hydrochlorid mit 100 cm3 Wasser auf; aus dem abgekühlten Filtrat krystallisiert der Aldehyd in ca. 95% Ausbeute (Adams, Levine, Am. Soc. 45, 2376). Zur Darstellung aus Resorcin und Blausäure nach Gattermann, Köbner (B. 32, 278; H 241) vgl. Johnson, Lane, Am. Soc. 48, 353. Bei der Darstellung aus 22 g Resorcin, 24 g Formanilid und 10 g Phosphoroxychlorid nach Dімвотн, Zöppritz (В. 85, 995; Н 211) werden zur Zersetzung des Reaktionsprodukts 400 cm3 10 %iger Natronlauge benötigt; Ausbeute ca. 40 % (J., L.); nach Pratt, Robinson (Soc. 121, 1582 Anm.) erhält man eine Ausbeute von 60% der Theorie, wenn man das Reaktionsprodukt mit 20 Tln. Wasser und Salzsäure bis zur kongosauren Reaktion mischt und wiederholt mit Äther ausschüttelt. — F: 134—135°(W., T., M.), 135—136°(SH., HA.). Ist oberhalb des Schmelzpunktes mit Glycerin in jedem Verhältnis mischbar (PARVATIKER, McEWEN, Soc. 125, 1491). Absorptionsspektrum in Wasser und in Natronlauge sowie in Alkohol bei Gegenwart von Salzsäure oder Natriumäthylat: Waljaschko, Ж. 58, 799, 802; С. 1927 I, 1125. Die Lösungen in alkoholischen und wäßrigen Laugen zeigen im ultravioletten Licht schwache grünlichblaue

Fluorescenz (W.). Fluorescenz bei Bestrahlung mit Röntgenstrahlen: Newcomer, Am. Soc. 42, 2003. Relative Geschwindigkeit der Bromierung in wäßr. Lösung bei Gegenwart von Anilin: Francis, Am. Soc. 48, 1633. — Der beim Erhitzen mit Methyljodid und methylalkoholischer Kalilauge neben 2.4-Dimethoxy-benzaldehyd entstehende Methyläther vom Schmelzpunkt 62—63° ist nicht, wie Tiemann, Parrisius (B. 18, 2370, 2372) annahmen, 2-Oxy-4-methoxy-benzaldehyd, sondern 2-Oxy-4-methoxy-3 (?)-methyl-benzaldehyd (OTT, Nauen, B. 55, 920, 926). 2-Oxy-4-methoxy-benzaldehyd bildet sich neben dieser Verbindung bei mehrtägigem Schütteln mit Methyljodid und Kaliumcarbonat in Methanol, als einziger Monomethyläther beim Behandeln mit Dimethylsulfat oder Methylbromid in alkal. Lösung (O., N.); bei Gegenwart von Soda in wäßr. Methanol erhielt Waljaschko (Ж. 58, 794; С. 1927 I, 1125) außerdem 4-Oxy-2-methoxy-benzaldehyd. Gibt mit Aceton bei Einw. von Chlorwasserstoff bei Zimmertemperatur 7-Oxy-2-[2.4-dioxy-styryl]-benzopyryliumchlorid (Syst. Nr. 2444) (Buck, Heilbron, Soc. 121, 1207); in alkal. Lösung erfolgt keine Kondensation (Bu., Hel., Soc. 121, 1096). Beim Behandeln mit Methyläthylketon und Chlorwasserstoff in Ather entsteht 7-Oxy-3-methyl-2-[2.4-dioxy-styryl]-benzopyryliumchlorid (DE, J. indian chem. Soc. 4, 139; C. 1927 II, 1701). Liefert bei der Kondensation mit Acenaphthenon [2.4-Dioxy-benzyliden]acenaphthenon (DE FAZI, MONFORTE, R. A. L. [6] 10, 654). Gibt mit Methyl-[2-oxy-styryl]keton bei Einw. von Chlorwasserstoff in Ameisensäure bei Zimmertemperatur 2-[2.4-Dioxystyryl]-benzopyryliumchlorid (Syst. Nr. 2424) (Bu., Hel., Soc. 121, 1207). Beim Erwärmen mit phenylessigsaurem Natrium und Acetanhydrid entsteht 7-Acetoxy-3-phenyl-cumarin (Syst. Nr. 2515) (Bargellini, G. 57, 459). Leitet man in eine Lösung von Resorcylaldehyd und ω -Cyanacetophenon in Eisessig bei 0º Chlorwasserstoff ein, so entsteht 7-Oxy-3-benzoyl-cumarin (Syst. Nr. 2537) (GHOSAL, J. indian chem. Soc. 3, 108; C. 1926 II, 1646).

Gibt mit fuchsinschwefliger Säure (Shoesmith, Haldane, Soc. 123, 2705) und mit pararosanilinschwefliger Säure (Sh., Sosson, Hetherington, Soc. 1927, 2222) gelbe Niederschläge. Die wäßr. Lösung gibt mit Eisen(III)-chlorid eine tiefbraune Färbung (Sh., Ha.). Gibt in 4n-alkoh. Salzsäure mit Resorcin und mit Pyrogallol eine rote, mit Brenzcatechin eine gelbe, mit Phloroglucin eine orangerote Färbung (Van Itallie, Harmsma, Pharm. Weekb. 61, 827; C. 1924 II, 1614).

4 - Oxy - 2 - methoxy - benzaldehyd, Resorcylaldehyd-2-methyläther C₈H₈O₃, Formel I (H 241; E I 603). B. Neben 2-Oxy-4-methoxy-benzaldehyd durch Erwärmen von 2.4-Dioxy-benzaldehyd mit Dimethylsulfat in verd. Methanol bei Gegenwart von Soda (Waljaschko, Ж. 58, 794, 795; C. 1927 I, 1125). Bei der Darstellung aus Resorcinmonomethyläther

und Blausäure bei Gegenwart von Chlorwasserstoff entsteht als Nebenprodukt 2-Oxy-4-methoxy-benzaldehyd (Lindemann, Forth, A. 485, 220, 229; Sonn, Patschke, B. 58, 1699). — Blättchen (aus Benzol). F: 153° (W.). Absorptionsspektrum in Alkohol und Natriumäthylat-Lösung: W.

2-Oxy-4-methoxy-benzaldehyd, Resorcylaldehyd-4-methyläther, 4-Methoxy-salicylaldehyd $C_8H_8O_3$, Formel II (H 242; E I 603). Der von Tiemann, Parrisius (B. 18, 2366; H 242) durch Einw. von Chloroform und Natronlauge auf unreinen (?) Resorcinmonomethyläther und beim Behandeln von 2.4-Dioxy-benzaldehyd mit Methyljodid und methylalkoholischer Kahlauge erhaltene Methyläther (F: 62—63°) wird als 2-Oxy-4-methoxy-3 (?)-methyl-benzaldehyd erkannt (Ott, Nauen, B. 55, 924).

V. 2-Oxy-4-methoxy-benzaldehyd findet sich in den Wurzeln von Decalepis Hamiltonii (Rao, Ivengar, Perjum. Essent. Oil Rec. 14, 300; C. 1923 III, 1370). — B. In geringerer Menge neben 4-Oxy-2-methoxy-benzaldehyd aus Resorcinmonomethyläther, Blausäure und Chlorwasserstoff, auch in Gegenwart von Zinkchlorid oder Aluminiumchlorid (Ott, Nauen, B. 55, 928; Lindemann, Foeth, A. 435, 229; Sonn, Patschke, B. 58, 1699). Beim Erhitzen von Resorcinmonomethyläther mit N.N'-Diphenyl-formamidin auf 185° und Kochen des Reaktionsprodukts mit Natronlauge (Shoesmith, Haldane, Soc. 125, 2406). Als Nebenprodukt neben 2-Oxy-4-methoxy-3(?)-methyl-benzaldehyd bei anhaltendem Schütteln von 2.4-Dioxy-benzaldehyd mit Methyljodid und Kaliumcarbonat in Methanol (Ott, Nauen, B. 55, 926). — Darst. Durch Schütteln von 30 g 2.4-Dioxy-benzaldehyd mit 20 cm² Dimethylsulfat und 150 cm² 10%iger Natronlauge (O., N.). — Krystalle (aus verd. Alkohol). F: 41° (Sh., H.), 41—42° (O., N.), 42—43° (Waljaschko, Ж. 58, 794, 797; C. 1927 I, 1125). Absorptionsspektrum in Alkohol und Natriumäthylat-Lösung: W.

Wird durch Feuchtigkeit angegriffen und geht bei der Einw. von Halogenwasserstoffsäuren in dunkelrote Produkte über (RAO, SRIKANTIA, IVENGAR, Soc. 127, 559). Gibt mit 1 Mol Brom in Ameisensäure bei Gegenwart von Natriumacetat oder in Eisessig 5-Brom-2-oxy-4-methoxy-benzaldehyd, mit 2 Mol Brom in Eisessig bei Gegenwart von Natriumacetat 3.5-Dibrom-2-oxy-4-methoxy-benzaldehyd (RAO, SRIKANTIA, IVENGAR, Soc. 1929, 1579; LINDEMANN, FORTH, A. 485, 230). Liefert bei der Nitrierung in Eisessig bei 10—15° 5-Nitro-2-oxy-4-methoxy-benzaldehyd (R., S., I., Soc. 127, 557). Liefert bei längerer Einw. von Aceton in verd. Natronlauge Methyl-[2-oxy-4-methoxy-styryl]-keton (S. 325) (Heilbron, Whitworth, Soc. 128, 244; Mc Gookin, Sinclair, Soc. 1926, 1580). — Gibt mit Indol und Salzsäure oder Schwefelsäure eine ähnliche rote Färbung wie Vanillin (R., S., I., Soc. 127, 559). Liefert mit pararosanilinschwefliger Säure einen gelben Niederschlag (Shoesmith, Sosson, Hetherington, Soc. 1927, 2222).

2.4 - Dimethoxy - benzaldehyd, Resorcylaldehyd - dimethyläther C₀H₁₀O₂ = (CH₃·O)₂C₆H₃·CHO (H 242; E I 603). B. Aus 2.4-Dioxy-benzaldehyd und Trimethylphenylammoniumhydroxyd in Methanol bei 120° (Rodionow, Fedorowa, Ar. 266, 118). Aus dem Natriumsalz des 2-Oxy-4-methoxy-benzaldehyds und Dimethylsulfat in Toluol bei 40° (Ott, Nauen, B. 55, 925). — Darstellung aus 2.4-Dioxy-benzaldehyd, Dimethylsulfat und Alkali: Cullinane, Philipott, Soc. 1929, 1763—1764; vgl. Pfeiffer, J. pr. [2] 109, 209; Feist, Siebenlist, Ar. 1927, 205. In 80% iger Ausbeute durch Einleiten von Chlorwasserstoff in ein Gemisch aus Resorcindimethyläther und Zinkcyanid in Benzol in Gegenwart von Aluminiumchlorid und Kochen des Reaktionsprodukts mit 10% iger Salzsäure (Adams, Montgomery, Am. Soc. 46, 1521). — F: 70° (F., S.), 71° (A., M.; C., Ph.).

Liefert bei Einw. der berechneten Menge Brom in Eisessig bei Gegenwart von Natriumacetat 5-Brom-2.4-dimethoxy-benzaldehyd (RAO, SRIKANTIA, IYENGAR, Soc. 1929, 1581). Mit Salpetersäure (D: 1,42) in kaltem Eisessig entsteht 5-Nitro-2.4-dimethoxy-benzaldehyd (R., S., I., Soc. 127, 558). Liefert mit 3-Nitro-4-methyl-benzonitril und wenig Piperidin bei 110° 2-Nitro-2'.4'-dimethoxy-4-cyan-stilben (Syst. Nr. 1120); reagiert analog mit 5-Nitro-2-methyl-benzonitril und mit 2.4-Dinitro-toluol (Pfeiffer, J. pr. [2] 109, 209). Gibt mit 4-Nitro-phenylessigsäure in Gegenwart von wenig Piperidin bei 150° 4'-Nitro-2.4-dimethoxy-stilben (E II 6, 986) (Kauffmann, B. 54, 799, 801). Beim Erhitzen mit Glycinanhydrid in Gegenwart von Natriumacetat und Essigsäureanhydrid auf 160—170° entsteht 3.6-Dioxo-2.5-bis-[2.4-dimethoxy-benzyliden]-piperazin (Syst. Nr. 3638) (Hirai, Bio. Z. 177, 451).

- 4-Methoxy-2-äthoxy-benzaldehyd C₁₀H₁₂O₃ = CH₃· O·C₆H₃(O·C₂H₅)·CHO. B. Aus 2-Oxy-4-methoxy-benzaldehyd durch Kochen mit Äthylbromid und Natriumäthylat-Lösung (Sonn, Patschke, B. 58, 1700) oder durch Behandeln mit Äthyljodid und Silberoxyd in Chloroform (Rao, Srikantia, Iyengar, Soc. 127, 559). Neben 55% 2-Methoxy-4-äthoxy-benzaldehyd beim Sättigen eines Gemisches aus Resorcin-methyläther-äthyläther, geschmolzenem Zinkchlorid und wasserfreier Blausäure in Äther mit Chlorwasserstoff und Kochen des Reaktionsprodukts mit Wasser (So., P.). Prismen (aus verd. Alkohol). F: 64—65° (So., P.), 65—66° (R., Sri., I.). Flüchtig mit Wasserdampf (R., Sri., I.). Leicht löslich in Alkoholen, Benzol, Äther, Chloroform und Eisessig, schwer in Ligroin, fast unlöslich in Wasser (R., Sri., I.). Thermische Analyse des binären Systems mit 2-Methoxy-4-äthoxy-benzaldehyd (Eutektikum bei 28,1°): So., P., 5. 58, 1702. Gibt mit Brom in Eisessig bei Gegenwart von Natriumacetat 5-Brom-4-methoxy-2-āthoxy-benzaldehyd (R., Sri., I., Soc. 1929, 1581). Mit Salpetersäure (D: 1,42) in Eisessig entsteht 5-Nitro-4-methoxy-2-āthoxy-benzaldehyd (R., Sri., I., Soc. 127, 559).
- 2-Methoxy-4-äthoxy-benzaldehyd $C_{10}H_{12}O_3 = C_2H_3 \cdot O \cdot C_8H_3(O \cdot CH_3) \cdot CHO$. B. s. im vorangehenden Artikel. Entsteht ferner beim Kochen von 4-Oxy-2-methoxy-benzaldehyd mit Athylbromid und Natriumäthylat-Lösung (Sonn, Patschke, B. 58, 1700). Prismen (aus verd. Alkohol). F: 58—59°. Leicht löslich in Benzol, Essigester, Alkohol und Äther, schwer in Ligroin, kaum löslich in Wasser. Thermische Analyse des binären Systems mit 4-Methoxy-2-äthoxy-benzaldehyd (Eutektikum bei 28,1°): S., P., B. 58, 1702.

- 4-Methoxy-2-propyloxy-benzaldehyd $C_{11}H_{14}O_8=CH_2\cdot O\cdot C_8H_3(O\cdot CH_2\cdot C_2H_6)\cdot CHO$. B. Analog 4-Methoxy-2-šthoxy-benzaldehyd (SONN, PATSCHKE, B. 58, 1700). Angenehm riechende Prismen (aus verd. Alkohol). F: 37°. Erstarrungspunkt eines äquimolekularen Gemisches mit 2-Methoxy-4-propyloxy-benzaldehyd: 16,5°.
- 2 Methoxy 4 propyloxy benzaidehyd $C_{11}H_{14}O_3 = C_2H_5 \cdot CH_2 \cdot O \cdot C_2H_3 \cdot O \cdot CH_3 \cdot CHO$. B. Analog 2-Methoxy-4-athoxy-benzaidehyd (Sonn, Patschke, B. 58, 1700). Prismen von schwach aromatischem Geruch (aus verd. Alkohol). F: 45°. Erstarrungspunkt eines äquimolekularen Gemisches mit 4-Methoxy-2-propyloxy-benzaidehyd: 16,5°.
- 4-Methoxy-2-allyloxy-benzaldehyd $C_{11}H_{13}O_3 = CH_3 \cdot O \cdot C_4H_3(O \cdot CH_2 \cdot CH : CH_2) \cdot CHO$. B. Analog 4-Methoxy-2-athoxy-benzaldehyd (Sonn, Patschke, B. 58, 1701). Hellgelbe, charakteristisch riechende Prismen (aus verd. Alkohol). F: 38°. Erstarrungspunkte von Gemischen mit 2-Methoxy-4-allyloxy-benzaldehyd: S., P.
- 2-Methoxy-4-allyloxy-benzaldehyd $C_{11}H_{12}O_3 = CH_2:CH\cdot CH_2\cdot O\cdot C_0H_2(O\cdot CH_3)\cdot CHO$. B. Analog 2-Methoxy-4-athoxy-benzaldehyd (SONN, PATSCHKE, B. 58, 1701). Angenehm riechende, hellgelbe Schuppen oder Prismen (aus verd. Alkohol). F: 47—48°. Schwer löslich in heißem Wasser. Erstarrungspunkte von Gemischen mit 4-Methoxy-2-allyloxy-benzaldehyd: S., P.
- 4-Methoxy-2-benzyloxy-benzaldehyd $C_{15}H_{14}O_3=CH_3\cdot O\cdot C_0H_3\cdot C_0H_5\cdot C$
- 2 Methoxy 4 benzyloxy benzaldehyd $C_{15}H_{14}O_3 = C_4H_5 \cdot CH_2 \cdot O \cdot C_4H_3(O \cdot CH_3) \cdot CHO$. B. Analog 2-Methoxy 4-āthoxy benzaldehyd (Sonn, Patschke, B. 58, 1701). Prismen (aus verd. Alkohol). F: 95°. Thermische Analyse des binären Systems mit 4-Methoxy 2-benzyloxy benzaldehyd (Eutektikum bei 43,8°): S., P.
- 2.4-Dioxy-benzaldoxim, Resorcylaldoxim $C_7H_7O_3N=(HO)_2C_6H_3\cdot CH:N\cdot OH$ (H 243). F: 192° (Shoesmith, Haldane, Soc. 128, 2705).
- 2.4-Dioxy-benzaldoximacetat C₉H₉O₄N = (HO)₂C₆H₃·CH:N·O·CO·CH₈. B. Aus 2.4-Dioxy-benzaldoxim und Acetanhydrid (Lindemann, Könitzer, Romanoff, A. 456, 290). Krystalle (aus Eisessig). F: 139°. Liefert bei Einw. von 1 Mol Natronlauge 6-Oxy-indoxazen (Syst. Nr. 4222).
- 2 Oxy 4 methoxy benzaldoxim $C_8H_9O_3N=CH_3\cdot O\cdot C_9H_9(OH)\cdot CH:N\cdot OH$ (H 243). F: 138° (Ott, Nauen, B. 55, 927).
- 4-Methoxy-2-äthoxy-benzaldoxim $C_{10}H_{13}O_3N=CH_3\cdot O\cdot C_0H_3(O\cdot C_2H_5)\cdot CH:N\cdot OH.$ F: 95° bis 96° (Rao, Srikantia, Iyengar, Soc. 127, 559).
- 2.4.2'.4' Tetraoxy benzaldazin, Resorcylaldazin $C_{14}H_{12}O_4N_2 = (HO)_2C_6H_3 \cdot CH:N\cdot N:CH\cdot C_6H_3(OH)_2$ (H 243; E I 603). B. Aus 7-Oxy-3-acetyl-cumarin und 50% igem Hydrazinhydrat (Weiss, Merksammer, M. 50, 121). Gelbe Krystalle mit 1 H_2O (aus Alkohol).
- 4 Methoxy 2 äthoxy benzaldehyd hydrazon $C_{10}H_{14}O_2N_2 = CH_3 \cdot O \cdot C_4H_4(O \cdot C_2H_5) \cdot CH : N \cdot NH_2$. Gelbe Tafeln. F: 110—111° (RAO, SRIKANTIA, İYENGAR, Soc. 127, 559).
- 5-Brom-2-oxy-4-methoxy-benzaldehyd C₈H₇O₃Br, s. nebenstehende Formel.

 B. Durch Einw. von 1 Mol Brom auf 2-Oxy-4-methoxy-benzaldehyd in Ameisensäure bei Gegenwart von Natriumacetat oder in Eisessig (RAO, SRIKANTIA, Br. IYENGAR, Soc. 1929, 1579). Durch Reduktion von 5-Nitro-2-oxy-4-methoxy-benzaldehyd mit Na₂S₂O₄ und Austausch der Aminogruppe gegen Brom (R., S., I., Soc. 1929, 1580). Nadeln (aus Methanol). F: 120—121°. Gibt mit methylalkoholischer Eisenchlorid-Lösung eine dunkelviolette Färbung. Das Phenylhydrazon schmilzt bei 177—178°.
- 5 Brom 2.4 dimethoxy benzaldehyd $C_9H_9O_9Br=(CH_3\cdot O)_9C_6H_9Br\cdot CHO$. B. Durch Einw. der berechneten Menge Brom auf 2.4-Dimethoxy-benzaldehyd in Eisesaig bei Gegenwart von Natriumacetat (RAO, SRIKANTIA, IYENGAR, Soc. 1929, 1581). Durch Methylierung von 5-Brom-2-oxy-4-methoxy-benzaldehyd (R., S., I.). F: 136—137°. Liefert bei der Oxydation mit Permanganat in heißer Magnesiumsulfat-Lösung 5-Brom-2.4-dimethoxy-benzoesäure.
- 5 Brom 4 methoxy 2 āthoxy benzaldehyd C₁₀H₁₁O₂Br, s. nebenstehende Formel. B. Durch Einw. von Brom auf 4-Methoxy-2-āthoxy-benzaldehyd in Eisessig bei Gegenwart von Natriumacetat (RAO, SRIKANTIA, IYENGAR, Soc. 1929, 1581). Durch Äthylierung von 5-Brom-2-oxy-4-methoxy-benzaldehyd (R., S., I.). Nadeln. F: 126—427°. Liefert bei der Oxydation mit Permanganat nicht näher beschriebene 5-Brom-4-methoxy-2-āthoxy-benzoesāure.

$$\mathbf{Br} \cdot \bigcup_{\dot{\mathbf{O}} \cdot \mathbf{OH}_{\mathbf{G}}}^{\mathbf{CHO}} \cdot \mathbf{O} \cdot \mathbf{C}_{\mathbf{g}} \mathbf{H}_{\delta}$$

- 5-Brom-2-oxy-4-methoxy-benzaldoxim C₂H₂O₂NBr = CH₂· O·C₂H₂Br(OH)·CH:N·OH. Nadeln. F: 148—149° (Rao, Srikantia, Ivengae, Soc. 1929, 1579).
- 5-Brom-2.4-dimethoxy-benzaldoxim C/H₁₀O₃NBr = (CH₃·O)₂C₆H₂Br·CH:N·OH. Nadeln. F: 175—176° (Rao, Srikantia, Iyengar, Soc. 1929, 1581).
- 5-Brom 2-āthoxy- 4-methoxy- benzaldoxim C₁₀H₁₂O₂NBr == CH₃·O·C₂H₂Br(O·C₂H₅)·CH: N·OH. Nadeln. F: 169—170° (Rao, Seikantia, Iyengar, Soc. 1929, 1581).
- 3.5-Dibrom-4-0xy-2-methoxy-benzaldehyd $C_8H_6O_3Br_2$, s. nebenstehende Formel (R = CH₈, R' = H). B. Aus 4-Oxy-2-methoxy-benzaldehyd und Brom in Eisessig bei Gegenwart von Natriumacetat (LINDEMANN, FORTH, A. 485, 231). Krystalle (aus Alkohol oder Eisessig). F: 170—171°.
- CHO Br. O. E Br
- 3.5-Dibrom 2-oxy-4-methoxy-benzaldehyd C₈H₆O₂Br₂, s. nebenstehende Formel (R = H, R' = CH₃). B. Aus 2-Oxy-4-methoxy-benzaldehyd und Brom in Eisessig bei Gegenwart von Natriumacetat (Lindemann, Forth, A. 485, 230; Rao, Srikantia, Iyengar, Soc. 1929, 1579). Durch Einw. von überschüssigem Brom auf 5-Brom-2-oxy-4-methoxy-benzaldehyd in Eisessig bei Gegenwart von Natriumacetat (R., S., I., Soc. 1929, 1580). Gelbliche Nadeln (aus Alkohol). F: 97—98° (L., F.; R., S., I.). Wird durch Erhitzen mit Brom im Rohr auf 180° bei Gegenwart von Jod nicht verändert (R., S., I.). Gibt beim Erhitzen mit Salpetersäure (D: 1,52) und konz. Schwefelsäure in Eisessig auf dem Wasserbad 2.6-Dibrom-4-nitroresorcin-1-methyläther (E II 6, 823) (R., S., I.). Gibt mit methylalkoholischer Eisenchlorid-Lösung eine violette Färbung (R., S., I.). Das Phenylhydrazon schmilzt bei 131—132° (R., S., I.).
- 3.5 Dibrom 4 methoxy 2 acetoxy benzaldehyd $C_{10}H_8O_4Br_8 = CH_8 \cdot O \cdot C_0HBr_2(O \cdot CO \cdot CH_3) \cdot CHO$. B. Aus 3.5-Dibrom 4 methoxy 2 acetoxy benzylidendiacetat beim Kochen mit Eisessig und verd. Schwefelsäure (Lindemann, Forth, A. 435, 230). Krystalle (aus Petroläther). F: 78°.
- 3.5 Dibrom 4 methoxy 2 acetoxy-benzylidendiacetat $C_{14}H_{14}O_7Br_2 = CH_3 \cdot O \cdot C_4HBr_2(O \cdot CO \cdot CH_3) \cdot CH(O \cdot CO \cdot CH_3)_2$. B. Aus 3.5-Dibrom -2-oxy-4-methoxy-benzaldehyd, Acetanhydrid und konz. Schwefelsäure (Lindemann, Forth, A. 485, 230). Krystalle (aus Benzin). F: 98°.
- 3.5-Dibrom-2-methoxy-4-acetoxy-benzylidendiacetat $C_{14}H_{14}O_7Br_2=CH_3\cdot CO\cdot O\cdot C_8HBr_4(O\cdot CH_3)\cdot CH(O\cdot CO\cdot CH_3)_2$. B. Aus 3.5-Dibrom-4-oxy-2-methoxy-benzaldehyd, Acetanhydrid und konz. Schwefelsäure (Lindemann, Forth, A. 485, 231). Nadeln (aus Benzin). F: 124°. Beim Kochen mit Eisessig und konz. Schwefelsäure entsteht 3.5-Dibrom-4-oxy-2-methoxy-benzaldehyd.
- 3.5 Dibrom 2 oxy 4 methoxy benzaldimid C₈H₇O₃NBr₂ = CH₃·O·C₆HBr₂(OH)·CH: NH. B. Beim Einleiten von Ammoniak in eine Lösung von 3.5-Dibrom-2-oxy-4-methoxy-benzylidenchlorid in Benzol (LINDEMANN, FORTH, A. 485, 230). Gelbes Pulver. Zersetzt sich bei 206°. Schwer löslich.
- 3.5 Dibrom 2 oxy 4 methoxy benzaldoxim $C_8H_7O_3NBr_2 = CH_3 \cdot O \cdot C_6HBr_2(OH) \cdot CH : N \cdot OH$. F: 215° (Rao, Srikantia, Iyengar, Soc. 1929, 1580).
- 5-Nitro-2-oxy-4-methoxy-benzaldehyd C₈H₇O₅N, s. nebenstehende Formel.

 B. Durch Nitrierung von 2-Oxy-4-methoxy-benzaldehyd in Eisessig bei 10—15° (RAO, SRIKANTIA, IYENGAR, Soc. 127, 557). Nadeln (aus Benzol, Chloroform oder Alkohol). F: 168—169°. Gibt mit Eisenchlorid eine rote Färbung. Gibt bei der Oxydation mit Permanganat 5-Nitro-2-oxy-4-methoxy-benzoesäure. —

 Das Phenylhydrazon schmilzt bei 197—198°.
- 5-Nitro-2.4-dimethoxy-benzaldehyd C₂H₂O₅N = (CH₃·O)₅C₄H₂(NO₂)·CHO. B. Durch Einw. von Salpetersäure (D: 1,42) auf 2.4-Dimethoxy-benzaldehyd in Eisessig in der Kälte (RAO, SRIKANTIA, IYENGAR, Soc. 127, 558). Durch Einw. von Methyljodid und Silberoxyd auf 5-Nitro-2-oxy-4-methoxy-benzaldehyd in Chkoroform (R., S., I.). Gelbe oder rosa Nadeln (aus Methanol). F: 189—190°. Schwer löslich in Alkoholen. Zersetzt sich beim Kochen mit Alkalien.
- 5-Nitro-4-methoxy-2-äthoxy-benzaldehyd $C_{10}H_{11}O_5N=CH_3\cdot O\cdot C_6H_2(NO_2)(O\cdot C_2H_5)\cdot CHO$. B. Durch Einw. von Salpetersäure (D: 1,42) auf 4-Methoxy-2-äthoxy-benzaldehyd in Eisessig unter Kühlung (Rao, Srikantia, Iyengar, Soc. 127, 559). Durch Einw. von Äthyljodid und Silberoxyd auf 5-Nitro-2-oxy-4-methoxy-benzaldehyd in Chloroform (R., S., I.). F: 138° bis 139°. Schwer löslich in Alkoholen, löslich in Eisessig und Chloroform.
- 5-Nitro-2-oxy-4-methoxy-benzaldoxim $C_8H_8O_8N_9=CH_3\cdot O\cdot C_6H_2(NO_9)(OH)\cdot CH:N\cdot OH.$ Gelb. F: 215—2160 (Rao, Srikantia, Iyengar, Soc. 127, 557).
- 5 Nitro 2.4 dimethoxy benzaldoxim $C_9H_{10}O_5N_9=(CH_3\cdot O)_2C_9H_2(NO_9)\cdot CH:N\cdot OH$. Hellgelb. F: 184—185° (Rao, Srikantia, Iyengar, Soc. 127, 558).

- : 5 Mitro 4 methoxy 2 Athoxy benzaldoxim $C_{10}H_{12}O_5N_3=CH_3\cdot 0\cdot C_6H_4(NO_4)(0\cdot C_2H_5)\cdot CH:N\cdot OH.$ Gelb. F: 185—186 (Rao, Srikantia, Ivengar, Soc. 127, 559).
- 5.- Nitro 2.4 dimethoxy benzaldehyd hydrazon $C_0H_{11}O_4N_3=(CH_3\cdot O)_2C_0H_4(NO_2)\cdot CH:$ N·NH₂. Orangefarbene Tafeln. F: 169—170° (RAO, SRIKANTIA, IVENGAR, Soc. 127, 558).
- 5-Nitro 4-methoxy-2-athoxy-benzaldehyd-hydrazon $C_{16}H_{18}O_4N_3 = CH_2 \cdot O \cdot C_6H_2(NO_2)(O \cdot C_16H_10)$ C₂H₅) CH: N NH₂. Geb. F: 185--186° (Rao, Srikantia, Iyengar, Soc. 127, 559).
- 3...2.5 Dioxy benzaldehyd, Gentisinaldehyd $C_7H_6O_3$, s. nebenstehende Formel (H 244). Die angegebene Stellungsbezeichnung wird in diesem Handbuch für die von Gentisinaldehyd abgeleiteten Namen gebraucht. — B. Durch allmählichen Zusatz von Kaliumpersulfat und Natronlauge zu einer alkal: Lösung von 3-Oxy-benzaldehyd bei 30—35° und Erhitzen des Reaktions-produkts mit konz. Salzsäure auf 70°; Ausbeute ca. 40% der Theorie (Hodgson, Beard, Soc. 1927, 2339). — F: 98—99° (H., B.). Absorptionsspek-trum in Wasser und Natronlauge und in Alkohol, alkoh. Salzsäure und Natrumäthylat-Lösung:

CHO OH

WALJASCHKO, 2R. 58, 814; C. 1927 I, 1125. Die Lösungen in Wasser und Alkohol fluorescieren im ultravioletten Licht bläulichgrün (W.). — 4-Nitro-phenylhydrazon. F: 256—257° (Zers.) (H., B.).

- 2-0xy-5-methoxy-benzaldehyd, Gentisinaldehyd-5-methyläther, 5-Methoxy-salicylaldehyd $C_8H_8O_3=CH_3\cdot O\cdot C_6H_8(OH)\cdot CHO$ (H 244). B. Durch Einw. von 2 Mol Dimethylsulfat auf 2.5-Dioxy-benzaldehyd in 10% iger Natronlauge, neben 2.5-Dimethoxy-benzaldehyd (Hodgson, Beard, Soc. 1927, 2340). — Zur Darstellung nach Tiemann, Müller (B. 14, 1990) vgl. Ruben-STEIN, Soc. 127, 1999. — Riecht vanillinartig. Kp₁₂: 124° (R.). — Liefert beim Behandeln mit Brom in Eisessig bei 5° in Gegenwart von geschmolzenem Natriumacetat 3-Brom-2-oxy-5-methoxy-benzaldehyd (R.), Liefert bei Einw. von Salpetersäure (D: 1,42) in Eisessig bei 10-200 3-Nitro-2-oxy-5-methoxy-benzaldehyd (R.). — 4-Nitro-phenylhydrazon. F: 206° (H., B.).
- 2.5 Dimethoxy benzaldehyd , Gentisinaldehyd dimethyläther $C_0H_{10}O_3=(CH_3\cdot O)_3C_0H_3\cdot CHO$ (H 245; E I 603). B. Aus 2.5-Dioxy-benzaldehyd, Methyljodid und Kaliumhydroxyd (Waljaschko, 3K. 58, 795, 878; C. 1927 I, 1125). Durch Einw. von Dimethylsulfat auf 2.5-Dioxy-benzaldehyd in 10%iger Natronlauge (HIRAI, Bio. Z. 189, 89; Hodgson, Brard, Soc. 1927, 2340). Durch Einw. von Zinkeyanid und Chlorwasserstoff auf Hydrochinondimethyläther bei Gegenwart von Aluminiumchlorid in Benzol bei 50° und Kochen des Reaktionsproduktes mit verd. Salzsäure (Gulland, Virden, Soc. 1928, 1481). — F: 51° (W.; Ho., B.). Absorptionsspektrum in Alkohol, alkoh. Salzsäure, Natriumäthylat-Lösung und NaHSO, Lösung: W. Die Lösung in Alkohol fluoresciert im ultravioletten Licht blau; auf Zusatz von Salzsäure tritt Abschwächung ein. (W.). — Mit Brom in Eisessig entsteht in der Kälte nach 2-tägigem Aufbewahren 6-Brom-2.5-dimethoxy-benzaldehyd (Rubenstein, Soc. 127, 2001). Gibt mit Salpetersäure (D: 1,42) in der Kälte 6-Nitro-2.5-dimethoxy-benzaldehyd und geringere Mengen 3-Nitro-2.5-dimethoxy-benzaldehyd (R.). — 4-Nitro-phenylhydrazon. F: 2169 (Ho., B.).
- 2-Oxy-5-methoxy benzaldoxim $C_8H_9O_3N=CH_2\cdot O\cdot C_6H_3(OH)\cdot CH:N\cdot OH$. Nadeln (aus Wasser). F: 118° (Shinoda, Soc. 1927, 1984). Wird durch Kochen mit Essigsäureanhydrid und anschließende Hydrolyse mit 10%iger Natronlauge in 2-Oxy-5-methoxy-benzonitril übergeführt (Sн.).
- 3-Brom'-2-oxy-5-methoxy-benzaldehyd CaH7OaBr, Formel I. B. Aus 2-Oxy-5-methoxy-benzaldehyd und Brom in Eisessig in Gegenwart von Natriumacetat bei 5° (RUBENSTEIN. Soc. 127, 2000). — Hellbraune Nadeln (aus verd. Alkohol). F: 107°. — 4-Nitro-phenylhydrazon. Zersetzt sich oberhalb 250°.
- 3-Brom 2.5 dimethoxy benzaldehyd C₂H₂O₂Br, Formel II. B. Aus 3-Brom 2-oxy-5-methoxy-benzaldehyd, p-Toluolsulfonsäuremethylester und 30% iger Natronlauge in siedendem Alkohol (RUBENSTEIN, Soc. 127, 2001). — Nadeln (aus verd. Alkohol). F: 63°. — Liefert bei der Oxydation mit Permanganat in siedender Kaliumdicarbonat-Lösung 3-Brom-2.5-dimethoxy-benzoesäure.

сно CHO CHO ·OH ·O·CH2 O · CHa I. CH3 . O .

6 Brom 25 dimethoxy benzaldehyd C.H.O.Br, Formel III. B. Aus 2:5-Dimethoxy benzaldehyd und Brom in Eisessig unter Kühlung (RURENSTEIN, Soc. 127, 2001). — Hellgraue Nadeln (aus Alkohol). F: 125—126°. — Färbt sich an der Luft rosa. Liefert bei der Oxydation mit Permanganat in siedender Kaliumdicarbonat-Lösung 6-Brom-2.5-dimethoxy-benzoesäure. — 4-Nitro-phenylhydrazon. F: 204-206°.

3-Nitro-2-oxy-5-methoxy-benzaldehyd C_eH₇O₅N, Formel IV. B. Aus 2-Oxy-5-methoxy-benzaldehyd und Salpetersäure (D: 1,42) in Eisessig bei 10—20° (Rubenstein, Soc. 127, 2000). — Gelbe Nadeln. F: 132°. — Beim Behandeln mit Aceton und verd. Natronlauge entsteht kein Indigoderivat. Gibt mit Eisen(III)-chlorid-Lösung eine rote Färbung. — 4-Nitro-phenyl-hydrazon. Zersetzt sich bei 250°.

3 - Nitro - 2.5 - dimethoxy - benzaldehyd C₂H₂O₃N, Formel V. B. Aus 3-Nitro-2-oxy-5-methoxy-benzaldehyd durch Erwärmen mit Methyljodid und Silberoxyd in Chloroform (RUBENSTEIN, Soc. 127, 2000). Neben viel 6-Nitro-2.5-dimethoxy-benzaldehyd beim Eintragen von 2.5-Dimethoxy-benzaldehyd in Salpetersäure (D: 1,42) in der Kälte und Aufbewahren bei Zimmertemperatur (R., Soc. 127, 2001). — Hellgelbe Nadelin. F: 113°. — Liefert bei der Oxydation mit Permanganat in siedender Kaliumdicarbonat-Lösung 3-Nitro-2-5-dimethoxy-benzoesäure. Bei kurzem Kochen mit 10% iger Natronlauge bildet sich 3-Nitro-2-oxy-5-methoxy-benzaldehyd.

6-Nitro-2.5-dimethoxy-benzaldehyd C₀H₉O₅N, Formel VI. B. s. im vorangehenden Artikel.

— Hellgelbe Nadeln (aus Alkohol). F: 159° (Rubenstein, Soc. 127, 2001). — Liefert bei der Oxydation mit Permanganat in siedender Kaliumdicarbonat-Lösung 6-Nitro-2.5-dimethoxy-benzoesäure. Liefert beim Kochen mit Aceton und Kalilauge 4.7.4'.7'. Tetramethoxy-indigo (Syst. Nr. 3638). — 4-Nitro-phenylhydrazon. Zersetzt sich bei 245—250°.

[H. RICHTER]

4. 3.4 - Dioxy - benzaldehyd, Protocatechualdehyd C₇H₆O₃, s. nebenstehende Formel (H 246; E I 604). Die in der Formel angegebene Stellungsbezeichnung wird in diesem Handbuch für die von Protocatechualdehyd abgeleiteten Namen benutzt. — B. Zur Bildung durch Erwärmen von Brenzcatechin mit Chloroform und Natronlauge oder Kalilauge (H 246) vgl. Reihlen, Illig, Wittig, B. 88, 18. In geringer Menge beim Behandeln eines auf dem Wasserbad geschmolzenen Gemisches aus je 1 Mol Brenzcatechin und Formanilid mit Phosphoroxychlorid bei gewöhnlicher Temperatur und Kochen des Reaktionsprodukts mit 3%iger Natron-

lauge (Fröschl., Bomberg, M. 48, 574). — Darst. Man erhitzt Piperonal mit Phosphorpentachlorid und zerlegt das entstandene µ.µ-Dichlor-piperonylidenchlorid mit Wasser erst in der Kälte, zuletzt bei Siedetemperatur (Hydrolyse von 4-Dichlormethyl-brenzcatechin-carbonat; vgl. H 246) (Murai, Sci. Rep. T'choku Univ. 14, 153; C. 1925 II, 1746; Buck, Zimmermann, Org. Synth. 18 [1938], 75). Man behandelt Piperonal auf dem Wasserbad erst mit Thionylchlorid, dann mit Chlor und zersetzt das Reaktionsprodukt mit Wasser (Hamburger, D. R. P. 339945; C. 1921 IV, 1223; Frdl. 18, 265). — F: 153° (Fr., Bo.), 153—154° (Zers.) (Buck, Zi.). Ultraviolett. Absorptionsspektrum in Wasser, Natronlauge, alkoh. Salzsäure und Natriumäthylat-Lösung: Waljaschko, Ж. 58, 809; C. 1927 I, 1125. Konduktometrische Titration mit 0,2 n-Lithiumhydroxyd oder Natronlauge in ca. 40% igem Alkohol: Pfundt, Junge, B. 62, 516.

Liefert mit Wasserstoff bei Gegenwart von Palladium-Bariumsulfat in Eisessig 3.4-Dioxytoluol (Rosenmund, Borhm, Ar. 1926, 459). Wird durch 50%ige Kalilauge bei gewöhnlicher Temperatur nicht verändert (Look, B. 62, 1186). Gibt beim Erhitzen mit Kaliumhydroxyd auf 150—160° fast quantitativ Protocatechusäure und Wasserstoff; bei Luftzutritt wird Protocatechusäure nur in ziemlich geringer Menge erhalten (Look; vgl. Fittig, Reisen, A. 159 [1871], 150). Beim Eintragen von Zinkstaub in eine Lösung von Protocatechualdehyd und Nitromethan in 30%iger Essigsäure entsteht N-Methyl-protocatechualdoxim (S. 284); analog verlaufen die Reaktionen mit Nitroäthan und mit 1-Nitro-propan (Kanao, J. pharm. Soc. Japan 49, 42; C. 1923 I, 2974). Protocatechualdehyd kondensiert sich nicht mit Aceton in alkal. Lösung (Buck, Heilbron, Soc. 121, 1096). Beim Erwärmen mit Anilin und Malonsäure entsteht das Malonat des Protocatechualdehyd-anilins (Syst. Nr. 1604) (Rosenmund, Boehm, A. 437, 144). Gibt beim Erhitzen mit Trimethylphenylammoniumhydroxyd auf 125—130° Veratrumaldehyd (Rodionow, Fedoroa, Ar. 1927, 118; R., Bl. [4] 45, 116).

Das Phenylhydrazon existiert in einer niedrigerschmelzenden Form (F: 121—128°) und einer höherschmelzenden Form (F: 175—176° [Zers.]) (Wegscheider, M. 17 [1896], 345; vgl. Fröschl, Bomberg, M. 48, 575). Protocatechualdehyd gibt in 4n-alkoholischer Salzsäure mit 1%igen Lösungen von Brenzoatechin, Resorcin, Phloroglucin und Pyrogallol unbeständige rote Färbungen (van Italle, Harmsma, Pharm. Weelb. 61, 827; C. 1924 II, 1614). Colorimetrische Bestimmung auf Grund der Farbreaktion mit Eisenchlorid bei Gegenwart von Rohrzucker in sodaalkalischer Lösung: Schmalfuss, Spitzer, Brandes, Bio. Z. 189, 227, 228.

Salze des Protocatechualdehyds. Na $_{4}$ [Cu $_{2}$ (C $_{7}$ H $_{4}$ O $_{3}$) $_{4}$ (H $_{2}$ O) $_{2}$] +7H $_{4}$ O. B. Aus Protocatechualdehyd und Kupfersulfat in kalter verdünnter Natronlauge (Reihlen, Sapper.

Z. anorg. Ch. 124, 283). Olivgrüne Krystalle (aus Wasser). — Die folgenden Salze wurden auf analoge Weise dargestellt. $K_4[Cu_2(C_7H_4O_3)_4(H_2O)_2]+6H_2O$. Grüne Krystalle. Ziemlich leicht löslich in Wasser, sehwer in Alkohol (R., S., Z. anorg. Ch. 132, 62). Gibt das Krystalkwasser im Vakuum bei 60° sehr langsam, bei 100° ziemlich rasch ab. — $Na_4[Zn_2(C_7H_4O_3)_4(H_2O)_3]+18H_2O$. Gelbliche Blättchen (aus Wasser) (R., S., Z. anorg. Ch. 124, 284). — $Na_{13}[Cd_6(C_7H_4O_3)_{12}(C_7H_5O_3)]+18H_2O$. Fast farblose, außerordentlich leicht verwitternde Blättchen (aus Wasser oder verd. Alkohol) (R., S., Z. anorg. Ch. 124, 287, 288). $NH_4H[MOO_2(C_7H_4O_3)_2]$. B. Aus Ammoniummolybdat und überschüssigem Protocatechu-

NH₄H[MoO₂(C₇H₄O₃)₂]. B. Aus Ammoniummolybdat und überschüssigem Protocatechualdehyd in Wasser (Fernanders, G. 56, 422). Kastanienbraunes, mikrokrystallines Pulver. — Guanidin-diprotocatechualdehyd-molybdat 2CH₅N₃+H₂[MoO₂(C₇H₄O₃)₂]. B. Aus Guanidinmolybdat und Protocatechualdehyd in siedendem Wasser (F.). Ziegelrote Krystalle. Ziemlich leicht löslich in siedendem, sehr schwer in kaltem Wasser, unlöslich in Alkohol und Äther. Verändert sich nicht bis 160°. — NH₄H[MoO₃(C₇H₄O₃)(H₂O)]. B. Aus Ammoniummolybdat und 1 Mol Protocatechualdehyd in Wasser (F.). Gelbes Krystallpulver. — TIH[MoO₃(C₇H₄O₃)(H₂O)]. Rote Krystalle. Schwer löslich in kaltem Wasser (F.). — (NH₄)₂[WO₂(C₇H₄O₃)₂]. B. Aus Ammoniumwolframat und überschüssigem Protocatechualdehyd in Wasser (F., G. 56, 424). Violettes Krystallpulver. Ziemlich leicht löslich in Wasser, unlöslich in Alkohol und Äther. — (NH₄)₂[WO₃(C₇H₄O₃)(H₂O)]. B. Aus Ammoniumwolframat und 1 Mol Protocatechualdehyd in Wasser (F., G. 56, 423). Mikrokrystallin. Schwer löslich in Wasser, unlöslich in Alkohol und Äther.

Na₂[Co(C₇H₄O₃)₂] +9¹/₄ H₂O. B. Aus Kobaltacetat oder Kobaltsulfat und Protocatechualdehyd in verd. Natronlauge (Reihlen, Sapper, Z. anorg. Ch. 182, 63). Hellbraune Blättchen. Leicht löslich in warmem Wasser, schwer in Alkohol. — Über kompliziert zusammengesetzte, in grünlichgelben Blättchen krystallisierende Nickel-Natrium-salze vgl. R., S., Z. anorg. Ch. 124, 285, 287. — Na₄ [NiCu(C₇H₄O₃)₄]. B. Aus Protocatechualdehyd, Kupfersulfat und Nickelchlorid in warmer Natronlauge (R., S., Z. anorg. Ch. 182, 62). Krystallisiert je nach den Bedingungen in heligrünen Blättchen mit 14 H₂O oder in grünen mikroskopischen Blättchen mit 22 H₂O, — Die folgenden Salze wurden auf analoge Weise erhalten. Na₁₁[Ni₃Zn₂(C₇H₄O₃)₁₀(C₇H₂O₃)₁₀(C₇H₂O₃)₁₀(H₂O)₂] + 55 H₂O. Gelbgrüne Blättchen (R., S., Z. anorg. Ch. 182, 60). — Na₁₀[Ni₃Cd₂(C₇H₄O₃)₁₀(H₂O)₂] + 50 H₂O. Dunkelgrüne Blättchen (R., S., Z. anorg. Ch. 182, 61). — Na₁₀[Ni₂Co₃(C₇H₄O₃)₁₀(H₂O)₂] + 47 H₂O. Hellbraune Blättchen. (R., S., Z. anorg. Ch. 132, 61).

Funktionelle Derivate des Protocatechualdehyds.

4-Oxy-3-methoxy-benzaldehyd, Protocatechualdehyd-3-methyläther, Vanillin C₂H₂O₃, s. nebenstehende Formel (H 247; E I 604). Die in der Formel angegebene Stellungsbezeichnung wird in diesem Handbuch für die von Vanillin abgeleiteten Namen benutzt. — Literatur: Alexandre, Martinet, Chim. et Ind. 7 [1922], 1043 (= 251 T). — A. Wagner, Die Riechstoffe und ihre Derivate. Die Aldehyde, 3. u. 4. Abt. [Wien-Leipzig 1930/31], S. 899—979, 1289—1372.

Vorkommen, Bildung und Darstellung.

V. Pflanzen, in denen Vanillin nachgewiesen wurde, sind von C. Wehmer, W. Thies, M. Hadders in G. Klein, Handbuch der Pflanzenanalyse, 2. Bd. Teil I [Wien 1932], S. 294 zusammengestellt. Vanillin wurde im Java-Citronellöl (von Cymbopogon Nardus Rendl. == Andropogon Nardus L.) (Takens, Riechstoffind. 3, 210; C. 1929 I, 949) und im äther. Öl der Baumwollpflanze (Power, Chesnut, Am. Soc. 47, 1768) nachgewiesen. Vanillin- β -d-glucopyranosid (Glucovanillin; vgl. H 31, 228) findet sich in unreifen Vanillefrüchten (Goris, C. r. 179, 70) und tritt zuweilen als Efflorescenz auf jüngeren Buchenstämmen auf (v. Lippmann, B. 60, 161).

B. In geringer Menge durch Einw. von Phosphoroxychlorid auf ein auf dem Wasserbad geschmolzenes und abgekühltes Gemisch aus Guajacol und Formanilid bei gewöhnlicher Temperatur und Kochen des Reaktionsprodukts mit 3% iger Natronlauge (Fröscht, Bomberg, M. 48, 575). Zur Bildung durch Oxydation von Isoeugenol mit Ozon (H 249; E I 604) vgl. noch Briner, Patey, de Luserna, Helv. 7, 71; Briner, v. Tscharner, Paillard, Helv. 8, 407; Anonymus, J. Soc. chem. Ind. 41 [1922], 70 R. Vanillin entsteht in guter Ausbeute beim Behandeln von Isoeugenolozonid mit Kaliumferrocyanid-Lösung in Gegenwart von etwas Alkohol oder Aceton oder von Kaliumdisulfat-Lösung (Harries, D.R.P. 321567; C. 1920 IV, 292; Frdl. 13, 266). Bei der elektrolytischen Oxydation von Isoeugenol in alkal. Lösung (H 249) erhielten Lowy. Moore (Trans. am. elektroch. Soc. 42, 276, 280; C. 1928 III, 1516) an Platin-, Eisenoder Bleidioxyd-Anoden nur Spuren von Vanillin; Fighter, Christen (Helv. 8, 332) erhielten an Bleidioxyd-Anoden bei 0—12° höchstens 14% der berechneten Menge Vanillin. In ca. 50% iger Ausbeute entsteht Vanillin bei der elektrolytischen Oxydation von isoeugenolschwefelsaurem Kalium (E II 6, 919) an Bleidioxyd-Anoden in Sodalösung und nachfolgenden Hydrolyse mit verd. Schwefelsaure (F1., Ch., Helv. 8, 336; F1., Rinderspacher, Helv. 10, 106). Aus

Trichlormethyl-[4-oxy-3-methoxy-phenyl]-carbinol (E II 6, 1085) durch Reduktion mit Zinkstaub in 40% igem Alkohol auf dem Wasserbad, Acetylierung, Oxydation mit Chromtrioxyd in Eisessig und Verseifung mit verd. Natronlauge (PAULY, SCHANZ, B. 56, 983) oder besser durch Kochen mit Wasser und Kupferacetat oder auch mit Wasser und Quecksilberoxyd oder Blei(IV)-oxyd (I. G. Farbenind., D.R.P. 475918; Frdl. 16, 424). Bei der Hydrierung von Acetylvanillinsäurechlorid in Gegenwart von Palladium-Bariumsulfat und geschwefeltem Chinolin in Xylol (Rosenmund, Zetzsche, B. 56, 1482). Durch Umsetzung von Vanillylamin mit 4-Chlor-3.5-dinitro-benzol-sulfonsäure-(1) in Kaliumcarbonat-Lösung und Oxydation der entstandenen 3.5-Dinitro-4-vanillylamino-benzol-sulfonsäure-(1) mit Chromschwefelsäure (I. G. Farbenind., D.R.P. 482837; Frdl. 16, 422). Beim Kochen von Vanillylaminhydrochlorid mit Isatin oder besser mit dem Kaliumsalz der Isatin-sulfonsäure-(5) in Sodalösung (I. G. Farbenind., D.R.P. 494432; Frdl. 16, 421).

Über Bildung geringer Mengen Vanillin beim Erhitzen von Ligninen verschiedener Herkunft vgl. Kürschner, Mikroch. 3, 12, 14; C. 1925 II, 705. Vanillin entsteht bei aufeinanderfolgendem Kochen von Fichtenholz mit Kaliumnitrat-Lösung und mit verd. Schwefelsäure (Routala, Sevón, Cellulosech. 7, 115; C. 1926 II, 1600), bei der Zersetzung von Fichtenholzlignin durch Merulius lacrymans (Kürschner, Z. ang. Ch. 40, 229) und beim Kochen von einzedickter Fichtenholz-Sulfitablauge mit Alkali unter Durchleiten von Luft (Graff, M. 25 [1904], 1002; K., J. pr. [2] 118, 247; Z. ang. Ch. 41, 1106). Das von Czapek (H. 27 [1899], 156, 163) durch Kochen von Holzmehl mit Zinn(II)-chlorid-Lösung und Extraktion mit Benzol erhaltene Hadromal (vgl. a. Combes, C. 1907 I, 132; Hoffmeister, B. 60, 2065) ist unreines Vanillin gewesen (Pauly, Feuerstein, B. 62, 298; Wiechert, Papierf. 37, 20; C. 1939 I, 2605; vgl. Graff, M. 25 [1904], 995).

Technische Darstellung: A. Wagner, Die Riechstoffe und ihre Derivate. Die Aldehyde, 3. Abt. [Wien-Leipzig 1930], S. 937; J. Schwyzer, Die Fabrikation pharmazeutischer und chemisch-technischer Produkte [Berlin 1931], S. 279; vgl. a. S. P. Schotz, Synthetic organic compounds [London 1925], S. 96; McLang, Chem. Trade J. 77, 3, 181; 79, 35; C. 1925 II, 1562; 1926 I, 515; II, 1582; Mauge, Ind. chimique 16 [1929], 302, 362. Reinigung von technischen Vanillin durch Umkrystallisieren aus Wasser von 60° unter Einleiten von Schwefeldioxyd: McLang, Chem. Trade J. 77, 180.

Physikalische Eigenschaften.

Über instabile Krystallmodifikationen des Vanillins, die bei Unterkühlung auftreten, vgl. noch Gaubert, C. r. 175, 1416. Röntgenogramm von festem und geschmolzenem Vanillin: Herzog, Jancke, Z. Phys. 45, 195; C. 1928 I, 639. F: 82,5° (Pauly, Feuerstein, B. 62, 298), 81,0° (korr.) (Winkler, Ar. 1928, 49). Ultraviolett-Absorptionsspektrum in Hexan: Steiner, C. r. 176, 745; in 50%igem Alkohol: Herzog, Hillmer, B. 60, 365; in Alkohol, alkoh. Salzsäure und Natriumäthylat-Lösung: Waljaschko, Ж. 58, 803; C. 1927 I, 1125.

100 cm³ der gesättigten wäßrigen Lösung enthalten bei 4,4° 0,30, bei 15,6° 0,52, bei 23,9° 0,90 g Vanillin (Mange, Ehler, Ind. Eng. Chem. 16 [1924], 1258). Bei 20—25° lösen sich in 100 g Alkohol 67,2, in 100 g Chinolin 5,5 g Vanillin (Picher, Dehn, Am. Soc. 54, 1755). Bei 20° lösen sich in 100 Tln. Glycerin (D: 1,2612) 8,2, in 100 Tln. Glycerin (D: 1,2303) 3,4 Tle. Vanillin (Roborgh, Pharm. Weekb. 64, 1208; C. 1928 I, 547); oberhalb des Schmelzpunktes ist Vanillin mit Glycerin in jedem Verhältnis mischbar (Mc Ewen, Soc. 123, 2287). Löslichkeit in Alkohol-Wasser-Gemischen bei 4,4°, 15,6° und 23,9°: Mange, Ehler; in Glycerin-Wasser-Gemischen bei verschiedenen Temperaturen: de Groote, Am. Perfumer 15, 373; C. 1921 I, 495; Mange, Ehler. Thermische Analyse des binären Systems mit Coniferylaldehyd: Pauly, Feuerstein, B. 62, 300. Bewegung auf Wasser und auf der Grenzfläche zwischen Wasser und Toluol oder Xylol: Karczag, Roboz, Bio. Z. 162, 23, 27. Konduktometrische Titration mit n-Natronlauge in 40% igem Alkohol: Kolthoff, Z. anorg. Ch. 112, 188; mit 0,2 n-Lithiumhydroxyd in 40% igem Alkohol: Pfundt, Junge, B. 62, 516. — Vanillin hemmt die Autoxydation von Aldehyden (Moureu, Dufraisse, C. r. 174, 259).

Chemisches Verhalten.

Vanillin zerfällt beim Leiten des Dampfes über feinverteiltes Nickel bei 370—390° unter Bildung von Guajacol, Brenzcatechin, Kohlendioxyd, Kohlenoxyd und Wasserstoff (MAILHE, Bl. [4] 39, 922). Zur Bildung von Blausäure bei der Oxydation von Vanillin mit verd. Salpetersäure (E I 605) vgl. noch ROUTALA, SEVÓN, Cellulosech. 7, 116; C. 1926 II, 1601. Über katalytische Hydrierung zu 4-Oxy-3-methoxy-benzylalkohol (Vanillylalkohol) (E I 605) vgl. a. VOORHEES, ADAMS, Am. Soc. 44, 1404; CAROTHERS, ADAMS, Am. Soc. 46, 1680; ROSENMUND, JORDAN, B. 58, 162; Geschwindigkeit der Hydrierung zu Vanillylalkohol bei Gegenwart von Palladium(II)-oxyd und von Palladium(II)-oxyd + Eisen(II)-chlorid in Alkohol: Shriner, ADAMS, Am. Soc. 46, 1688. Beim Behandeln von Vanillin mit 2 Mol Wasserstoff in Gegenwart von Palladium-Bariumsulfat in Eisessig erhält man 4-Oxy-3-methoxy-toluol (R., J.). Vanillin gibt bei der elektrolytischen Reduktion in schwach alkalischer oder schwach saurer Lösung an Quecksilber.

Kathoden Vanillylalkohol, in verd. Schwefelsäure an Zink-Kathoden 4-Oxy-3-methoxy-toluol (Shima, Mem. Coll. Sci. Kyoto [A] 11, 420, 423; 12, 79; C. 1928 II, 2331; 1929 I, 2978).

Gibt bei der Chlorierung in Chloroform (Menke, Bentley, Am. Soc. 20 [1898], 316) oder in Eisessig, auch in Gegenwart von Natriumaoetat (Hann, Am. Soc. 47, 2000; H., Mareley, C. 1926 I, 3401; H., Spencer, Am. Soc. 49, 535) 5-Chlor-vanillin. Bei der Einw. von Brom erhält man je nach den Bedingungen 5-Brom-vanillin (Brady, Dunn, Soc. 107 [1915], 1859; Raiford, Stoesser, Am. Soc. 49, 1078; Sherner, McCutchan, Am. Soc. 51, 2194) oder 5.6-Dibrom-vanillin (Raiford, Hilman, Am. Soc. 49, 1575). Über Aufnahme von Brom durch Vanillin vogl. ferner Frances, Hill, Am. Soc. 46, 2502; Kaufmann, Ar. 1929, 11; Braun, Disch. Parf., Zig. 15, 108; C. 1929 I, 2931. Relative Geschwindigkeit der Bromierung bei Gegenwart von Anilin: F., H., Johnston, Am. Soc. 47, 2229; F., Am. Soc. 48, 1635. Beim Erhitzen von Vanillin mit Kaliumhydroxyd auf 150—210° (vgl. H 251) entstehen Protocatechusäure und geringere Mengen Vanillinsäure (Lock, B. 62, 1187). Vanillin wird durch eisgekühlte rauchende Schwefelsäure (20% SO₂) unter starker Erwärmung in Vanillin-sulfonsäure-(5) übergeführt (Finger, Schott, J. pr. [2] 115, 287). In 72% igem Alkohol gelöstes Vanillin löst Magnesium, Zink und Kupfer (Zetzsche, Silbermann, Viell, Helv. 8, 598). Vanillin gibt mit Quecksilber(II)-acetat in kaltem Eisessig 5-Acetoxymercuri-vanillin (Syst. Nr. 2353) (Paolini, G. 51 II. 194).

Eisessig 5-Acetoxymercuri-vanillin (Syst. Nr. 2353) (PAOLINI, G. 51 II, 194).

Vanillin kondensiert sich mit Glycerin in alkoh. Lösung unter Bildung von α.β-Vanillylidenglycerin (Syst. Nr. 2734) (Dodge, Am. Soc. 44, 1405); sind auf 100 Tle. Vanillin mehr als 7 Tle. Wasser anwesend, so bleibt die Reaktion aus (Mange, Ehler, Ind. Eng. Chem. 16, 1260; C. 1925 I, 839). Läßt sich mit Acetaldehyd nicht zu Ferulaaldehyd kondensieren (Tiemann, B. 18 [1885], 3487; Paully, Wäscher, B. 56, 603; P., Feuerstein, B. 62, 299; Klason, B. 61, 172). Kondensiert sich mit Aceton in wäßtig alkoholischer Alkalilauge zu Vanillylidenaceton (Francesconi, Cusmano, G. 38 II [1908], 75; McGoorin, Sinclair, Soc. 1926, 1581), in Gegenwart von konz. Salzsäure zu Divanillylidenaceton (Nomura, Hotta, Sci. Rep. Töhoku Univ. 14, 123; C. 1925 II, 1745; McG., S., Soc. 1926, 1581); reagiert analog mit Methyläthylketon in verd. Natronlauge (McG., S., Soc. 127, 2543; Ichirawa, Sci. Rep. Töhoku Univ. 14, 127; C. 1925 II, 1744) und bei Gegenwart von Chlorwasserstoff (I.) sowie mit Methylpropylketon und anderen Methylalkylketonen in verd. Natronlauge (N., H., Sci. Rep. Töhoku Univ. 14, 135—136; C. 1925 II, 1744). Gibt bei der Einw. auf Acetophenon in wäßrig-alkoholischer Natronlauge Vanillylidenacetophenon und Vanillylidendiacetophenon (Nomura, Nozawa, Sci. Rep. Töhoku Univ. 7, 90; C. 1921 I, 1018).

Beim Erhitzen mit Acetanhydrid und Natriumacetat (vgl. H 252) entsteht außer 3-Methoxy-4-acetoxy-zimtsäure (Acetylferulasäure) auch Acetylferuloylferulasäure (Ogawa, Bl. chem. Soc. Japan 2, 20; C. 1927 I, 2068; II, 1021). Vanillin liefert beim Schütteln mit Kaliumcyanid und Benzoylchlorid in kalter verdünnter Kalilauge 3-Methoxy-4.a-dibenzoyloxy-phenylessigsäurenitril (Greene, Robinson, Soc. 121, 2195). Wird durch Benzjodamidin in 5-Jod-vanillin übergeführt (Bougault, Robin, C. r. 172, 453; R., A. ch. [9] 16, 131). Reagiert nicht mit Rhodan in Tetrachlorkohlenstoff (Kaufmann, Ar. 1929, 11). Gibt beim Erhitzen mit Trimethylphenylammoniumhydroxyd auf 115—120° Veratrumaldehyd (Rodionow, Fedorowa, Ar. 1927, 118; R., Bl. [4] 45, 116). Kryoskopisch bestimmte Geschwindigkeit der Reaktion mit Anilin: Oddo, Tognacchini, G. 52 II, 358; mit Phenylhydrazin: Oddo, Piatti, G. 52 II, 345.

Biochemisches Verhalten; Verwendung.

Über enzymatische Oxydation von Vanillin vgl. CIAMICIAN. GALIZZI, G. 52 I, 9. Vanillin beschleunigt die Reduktion von Nitrat durch Kartoffelreduktase (SMORODINZEW, H. 123, 138).

Physiologisches Verhalten: E. Keeber in J. Houben, Fortschritte der Heilstoffehemic, 2. Abt., Bd. II [Berlin-Leipzig 1932], S. 254. Nach Boyles (C. 1922 IV, 1142) hat Vanillin nur geringe Bedeutung für den Geschmack der Vanille. Einfluß auf die Keimung von Samen: SIGMUND, Bio. Z. 146, 399; auf das Wachstum von Pflanzen: Skinner, C. 1920 I, 786. Keimtötende Wirkung: Penfold, Grant, J. Pr. Soc. N. S. Wales 58, 120; C. 1928 I, 3634; wachstumshemmende Wirkung auf Bac. tuberculosis: Schöbl, Philippine J. Sci. 25, 133; C. 1925 I, 2699. Wirkung auf Paramaecien: Hegner, Shaw, Manwell, Am. J. Hyg. 8 [1928], 571.

Verwendung in der Riechstoffindustrie: F. WINTER, Riechstoffe und Parfumierungstechnik [Wien 1933], S. 141.

Analytisches; Salze des Vanilfins.

Literatur über Nachweis und Bestimmung: E. Simon, C. Neuberg in G. Klein, Handbuch der Pflanzenanalyse, Bd. II [Wien 1932], S. 278. — A. BÖMER, O. WINDHAUSEN in A. BÖMER, A. JUCKENACK, J. TILLMANS, Handbuch der Lebensmittelchemie, Bd. II [Berlin 1935], S. 1050 bis 1053.

Mikrochemischer Nachweis durch Sublimation: Kempf, Fr. 62, 289, 290, 293; zum mikrochemischen Nachweis vgl. a. Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 79; O. Tunmann, Pflanzenmikrochemie, 2. Aufl. von L. Rosenthaler [Berlin 1931], S. 333. Empfindlichkeit der Geruchsprobe und verschiedener Nachweis.

reaktionen im Vergleich mit anderen aromatischen Aldehyden: CROCKER, Ind. Eng. Chem.

17, 1159; C. 1926 I, 1461.

Eine Lösung von Vanillin in 2000-3000 Th. Wasser gibt mit dem gleichen Volumen konz. Salpetersäure eine gelbe Färbung, die beim Kochen erst in Orangebraun, dann wieder in Gelb übergeht (McLang, Chem. Trade J. 79, 73; C. 1926 II, 1555). Vanillin gibt mit seleniger Säure oder ihren Salzen in konz. Schwefelsäure eine gelbgrüne Färbung (Levine, *J. Labor. clin. Med.* 11, 813; *C.* 1926 II, 926). Gibt beim Erwärmen mit wäßr. Lösungen von Quecksilber(II)nitrat oder Kaliumquecksilber(II)-nitrit rote bis rotviolette Färbungen (Estes, J. ind. eng. Chem. 9, 142; C. 1920 IV, 239; KREIS, STUDINGER, Mitt. Lebensmittelunters. Hyg. 18, 333; 19, 59; C. 1928 I, 765, 1917); der entstandene Farbstoff läßt sich mit Äther teilweise ausschütteln (SABALITECHKA, Z. ang. Ch. 42, 939); die Reaktion eignet sich zum Nachweis und zur colorimetrischen Bestimmung in Branntwein (K., St.). Die Farbreaktion mit Eisenchlorid in Alkohol bleibt bei Gegenwart von Benzoesäure aus (ZINKE, DZRIMAL, M. 41, 437). Vanillin gibt mit Pararosanilinschwefligsäure je nach dem Schwefeldioxyd-Gehalt gelbe, braune oder rotviolette Niederschläge (Shoesmith, Sosson, Hetherington, Soc. 1927, 2222). Farbreaktionen von Vanillin + Salzsäure oder Vanillin + Schwefelsäure mit Alkoholen: Еккевт, Р. С. Н. 69 [1928], 289; mit Alkoholen, aliphatischen Aldehyden und Ketonen und Oxocarbonsäuren: HIGASI, C. 1928 II, 1678; mit verschiedenen Phenolen: VAN ITALLIE, HARMSMA, Pharm. Weekb. 61, 827; C. 1924 II, 1614; EKKERT, P. C. H. 68 [1927], 563. Lichtabsorption des bei der Einw. von Phloroglucin und Salzsäure in Äther entstehenden roten Farbstoffs: POWICK, Ind. Eng. Chem. 15, 66; J. Agric. Res. 26, 323; C. 1928 II, 638; 1925 I, 178. Vanillin gibt mit einer Lösung von Benzidin in Eisessig eine dunkelorangerote Färbung, die bei Zusatz von Wasser in Rot übergeht; die Reaktion ist sehr empfindlich (van Eok, Pharm. Weekb. 60, 1207; 62, 374; C. 1924 I, 434; 1925 II, 76). Abhängigkeit der Farbreaktionen mit Pyrrol, Indol und Tryptophan in Gegenwart von konz. Schwefelsaure von der Konzentration der Komponenten: LIBBEN, POPPER, Bio. Z. 173, 460, 462, 464. Farbreaktionen mit Alkaloiden in wäßrig-alkoholischer Salzsäure oder Schwefelsäure: van Itallie, Steenhauer, Pharm. Weekb. 64, 925; C. 1927 II, 2330; vgl. a. Portnow, C. 1928 II, 2271. Nachweis durch Kupplung mit 4-Nitro-benzoldiazoniumchlorid und Ermittlung der Lichtabsorption des entstandenen Farbstoffs in Aceton, Alkohol und Wasser: Walks, Palkin, Am. Soc. 48, 812.

Vanillin kann in Weindestillaten nur durch Sublimation mit Sicherheit nachgewiesen werden (Reif, Z. Unters. Lebensm. 54, 90; C. 1927 II, 2632). Nachweis und colorimetrische Bestimmung in Branntwein durch Destillation, Extraktion des Rückstands mit Äther, Sublimation und Ausführung der Farbreaktion mit Bromwasser und Eisen(II)-sulfat (E I 605): v. Fellenberg, Mitt. Lebensmittelunters. Hyg. 18, 98; C. 1922 IV, 63. Nachweis in Pflanzenextrakten durch Destillation mit Wasserdampf und Überführung in Dehydrodivanillin durch Oxydation mit Eisenchlorid: Herissey, Delauney, J. Pharm. Chim. [7] 28, 257; C. 1924 I, 221; in zuckerhaltigen Lösungen durch Überführung in Vanillyliden-bis-dimethyldihydroresorcin (Syst. Nr. 851): Bernardi, Tartarini, Ann. Chim. applic. 16, 133; C. 1926 II, 621; Vorländer, Fr. 77, 266. Analysengang zum Nachweis in pharmazeutischen Präparaten: ROJAHN, STRUFFMANN, Apoth. Ztg. 41, 503; C. 1926 II, 76.

Das 4-Nitro-phenylhydrazon C₁₄H₁₈O₄N₈ schmilzt bei 227° (BILTZ, SIEDEN, A. 324 [1902], 323), bei 225° (QUILICO, FLEISCHNER, G. 59, 47).

Nachprüfung verschiedener Bestimmungsmethoden: Radcliffe, Sharples, C. 1925 I, 1460, 2119; II, 1816; 1926 I, 1310; Eder, Schlumpf, Pharm. Acta Helv. 3 [1928], 59, 65. Gehaltsbestimmung durch Titration mit Phenolphthalein als Indicator: Zanotti, Boll. chim. jarm. 66, 33; C. 1927 I, 2455. Über Bestimmung durch Titration mit Rosolsäure als Indicator in Gegenwart von Na₂SO₃ oder NaHSO₃ vgl. ROMEO, PIRRONE, Ann. Chim. applic. 18, 189; C. 1928 II, 1594. Zur Bestimmung in Vanillinzucker extrahiert man mit Äther und wägt das erhaltene Vanillin (Bodinus, Pharm. Ztg. 67, 584; C. 1922 IV, 902) oder man extrahiert mit Äther oder besser mit Aceton und ermittelt die Lichtbrechung der erhaltenen Lösung (HASSE, Ch. Z. 46, 233; C. 1922 II, 1147; Anonymus, C. 1922 IV, 447; Arbenz, Mitt. Lebensmittelunters. Hyg. 16, 265; C. 1926 I, 2153) oder man extrahiert mit Äther und titriert mit Thymolphthalein als Indicator (PRITZKER, JUNGKUNZ, Ch. Z. 52, 537; Z. Unters. Lebensm. 55, 441; C. 1928 II, 1157, 1726; vgl. Arbenz, C. 1926 I, 3416). Bestimmung in Vanille als 3-Nitro-benzoylhydrazon: Pr., J., Z. Unters. Lebensm. 55, 428; C. 1928 II, 1726; in Vanille und Vanillinzucker als Semioxamazon: Eder. Schlumpf, Pharm. Acta Helv. 3, 67; C. 1928 I, 3099. Colorimetrische Bestimmung s. in den vorangehenden Abschnitten.

Nachweis von Cumarin in Vanillin: Geret, Mitt. Lebensmittelunters. Hyg. 11, 69; C. 1929 IV, 325.

Thallium(I)-salz TiC_zH₂O_z. Nadeln. Schmilzt bei 193—201^o (Christie, Menzies, Soc. - Kalium-eisen(III)-salz K₂Fe(C₂H₇O₂)₅ + H₂O. Magnetische Susceptibilität: WELO, Phil. Mag. [7] 6, 496; C. 1928 II, 2626.

3-Oxy-4-methoxy-benzaidehyd, Protocatechualdehyd-4-methyläther, Isovanillin C₈H₈O₃, s. nebenstehende Formel (H 254; E I 606). Die in der Formel angegebene Stellungsbezeichnung wird in diesem Handbuch für die von Isovanillin abgeleiteten Namen verwendet. — B. Durch Kochen von Veratrumaldehyd mit verd. Bromwasserstoffsäure (Shinoda, Kawagove, J. pharm. Soc. Japan 48, 119; C. 1929 I, 245). — Darstellung durch Kochen von Protocatechualdehyd mit Methylodid und alkoh. Kalilauge: Mauthner, J. pr. [2] 104, 135. — Kp₁₀: 163—166° (M.). Ultraviolett-Absorptionsspektrum in Alkohol und Natriumäthylat-Lösung: Wallscher, J. 85, 794, 805; C. 1927 I, 1125. Konduktometrische Titration mit 0,2 n-Lithiumhydroxyd in ca. 40% igem Alkohol: Pfundt, Junge, B. 62, 516.

Zersetzt sich beim Erhitzen mit Kaliumhydroxyd auf 190—260° unter Wasserstoffentwicklung; beim Behandeln mit 50% iger Kalilauge bei 50—70° entstehen Isovanillinalkohol und Isovanillinsäure in guter Ausbeute (Lock, B. 62, 1187). Isovanillin kondensiert sich mit Aceton in Gegenwart von konz. Salzsäure (Murai, Sci. Rep. Töhoku Univ. 14, 153; O. 1925 II, 1746) oder in 10% iger Natronlauge (Mannich, Merz, Ar. 1927, 17) zu Isovanillylidenaceton. Liefert bei 10-stdg. Erwärmen mit Malonsäure und Eisessig auf dem Wasserbad Isoferulasäure (3-Oxy4-methoxy-zimtsäure) (Mauthner, J. pr. [2] 104, 135), beim Erhitzen mit Acetanhydrid und Natriumacetat Acetyl-isoferulasäure (Pacsu, Stieber, B. 62, 2977).

3.4-Dimethoxy-benzaldehyd, Protocatechualdehyd-dimethyläther, Vanillinmethyläther, Methylvanillin, Veratrumaldehyd $C_9H_{10}O_3$, s. nebenstehende Formel (H 606; E I 255). Die in der Formel angegebene Stellungsbezeichnung CHO wird in diesem Handbuch für die von Veratrumaldehyd abgeleiteten Namen benutzt. — B. Neben geringen Mengen Veratrumsäure bei der elektrolytischen O·CH₃ Oxydation von Isoeugenolmethyläther an einer Bleidioxyd-Anode in 2%iger Kalilauge bei 70-80° (FICHTER, CHRISTEN, Helv. 8, 334). Bei der Oxydation O.CH. von Isoeugenolmethyläther mit Ozon in Tetrachlorkohlenstoff bei -15° (BRINER, v. TSCHARNER, PAULARD, Helv. 8, 407). Aus Protocatechualdehyd oder besser aus Vanillin beim Erhitzen mit Trimethyl-phenyl-ammoniumhydroxyd auf 125—130° bzw. auf 115—120° (Rodionow, Fedoroka, Ar. 1927, 118; R., Bl. [4] 45, 116). — Darstellung durch Erwärmen von Protocatechualdehyd mit Dimethylsulfat und 33% iger Kalilauge auf 60—90°: Freudenberg, B. 53, 1424; durch Erwärmen von Vanilium Dimethylsulfat und verd. Natronlauge oder Kalilauge (vgl. H 255): Buck, Perkin, Soc. 125, 1678; Buck, Org. Synth. 18 [1933], 102; BARGER, SILBERSCHMIDT, Soc. 1928, 2924; JOHNSON, STEVENSON, Org. Synth. 16 [1936], 91; vgl. a. van Duin, R. 45, 348; Pfeiffer, J. pr. [2] 109, 217; durch Behandlung von Isovanillin mit Dimethylsulfat und wäßr. Kalilauge bei gewöhlicher Temperatur: Späth, Lang, M. 42, 278. — F: 44,5—45° (korr.) (VAN DUIN). Kp: 281,5° (WALJASCHKO, 2K. 58, 795, 807; C. 1927 I, 1125). Absorptionsspektrum in Alkohol und in alkoh. Salzsäure: W. Löslich in ca. 50 Tln. siedendem Wasser (Freudenberg, B. 53, 1424). Mit Wasserdampf sehr wenig

Beim Behandeln von Veratrumaldehyd mit alkoh. Kalilauge erhielten Perkin, RAY, Robinson (Soc. 1926, 948) außer Veratrumsäure und 3.4-Dimethoxy-benzylalkohol (Tiffeneau, Bl. [4] 9, 929; vgl. E I 606) beträchtliche Mengen 3.4-Dimethoxy-zimtsäure. Veratrumaldehyd gibt bei längerer Einw. von Acetaldehyd in wäßrig-alkoholischer Kalilauge, zuletzt bei 50—60°, 3.4-Dimethoxy-zimtaldehyd (Freudenberg, Orthner, Fikentscher, A. 436, 296). Liefert mit Methyl-n-nonyl-keton in alkoh. Alkalilauge je nach den Bedingungen monomeres oder dimeres n-Nonyl-[3.4-dimethoxy-styryl]-keton (Heilbron, Irving, Soc. 1928, 2324). Kondensiert sich mit Malonsäure in Pyridin bei Gegenwart von etwas Piperidin bei 100° zu 3.4-Dimethoxy-zimtsäure (Haworth, Perkin, Pink, Soc. 127, 1714), in alkoh. Ammoniak bei 100° zu 3.4-Dimethoxy-zimtsäure und geringeren Mengen 3.4-Dimethoxy-benzylidenmalonsäure (Jackson, Kenner, Soc. 1928, 1661).

4-Oxy-3-äthoxy-benzaldehyd, Protocatechualdehyd-3-äthyläther, Bourbonal, Vanirom C₉H₁₀O₃ = C₂H₅·O·C₆H₃(OH)·CHO (H 256). Konduktometrische Titration mit 0,2n-Lithiumhydroxyd in ca. 40%igem Alkohol: Pfundt, Junge, B. 62, 516. — Verwendung in der Riechstoffindustrie: Junge, Parfümeur Augsb. 3, 35; C. 1929 II, 1232; F. Winter, Riechstoffe und Parfumierungstechnik [Wien 1933], S. 140. — Bourbonal gibt mit alkoh. Kalilauge eine gelbe Färbung; es läßt sich als 3-Nitro-benzoylhydrazon (F: 188—189°) nachweisen und durch alkalimetrische Titration mit Thymolphthalein als Indicator bestimmen (Pritzker, Jungkunz, Z. Unters. Lebensm. 55, 442; C. 1928 II, 1726).

3-0xy-4-äthoxy-benzaldehyd, Protocatechualdehyd-4-äthyläther, Isobourbonal, Isosafrovanillin $C_0H_{10}O_3=C_2H_5\cdot O\cdot C_6H_3(OH)\cdot CHO$. B. Beim Behandeln von 3-0xy-4-äthoxy-1-propenyl-benzol (E II 6, 918) mit Ozon in Chloroform unter Eiskühlung und Zersetzen des entstandenen Ozonids mit Kaliumferrocyanid (Kafuku, Itikawa, J. pharm. Soc. Japan 1926, Nr. 531, S. 35; C. 1926 II, 1138). — Nach Vanillin riechende Krystalle. F: 1256 (K., I.).

Konduktometrische Titration mit 0,2n-Lithiumhydroxyd in ca. 40% igem Alkohol: Pfundt, Junge, B. 62, 516. — Liefert kein krystallinisches Phenylhydrazon (K., I.).

- 4-Methoxy-3-äthoxy-benzaldehyd, Isovanillinäthyläther, Äthylisovanillin $C_{10}H_{18}O_3 = C_2H_5 \cdot O \cdot C_9H_3 (O \cdot CH_3) \cdot CHO$. B. Durch Kochen von Isovanillin mit Äthyljodid und alkoh. Natronlauge (Späth, Bernhauer, B. 58, 203). Krystalle (aus verd. Alkohol). F: 50—51°. Liefert bei der Oxydation mit Permanganat in warmer alkalischer Lösung 4-Methoxy-3-äthoxybenzoesäure.
- 3-Methoxy-4-äthoxy-benzaldehyd, Vanillinäthyläther, Äthylvanillin $C_{10}H_{12}O_3=C_2H_5$: O·C₆H₃(O·CH₃)·CHO (H 256; E I 606). Gibt beim Behandeln mit starker Salpetersäure 6-Nitro-3-methoxy-4-äthoxy-benzaldehyd (Barger, Silberschmidt, Soc. 1928, 2927). Kondensiert sich mit Aceton in alkal. Lösung je nach den Bedingungen zu 3-Methoxy-4-äthoxy-benzylidenaceton oder zu 3.3'-Dimethoxy-4-4'-diäthoxy-dibenzylidenaceton (Dickinson, Heilbron, Irving, Soc. 1927, 1894).
- 3-Methoxy-4-propylexy-benzaldehyd, Vanillinpropyläther $C_{11}H_{14}O_8=C_2H_8\cdot CH_2\cdot O\cdot C_9H_8(O\cdot CH_9)\cdot CHO$. B. Durch Einw. von Propyljodid auf das Kaliumsalz des Vanillins in siedendem absolutem Alkohol (Dickinson, Heilbron, Ieving, Soc. 1927, 1894). Krystalle (aus verd. Alkohol). F: 59—60°.
- 3-Methoxy-4-isopropyloxy-benzaldehyd, Vanillinisopropyläther $C_{11}H_{14}O_3=(CH_3)_2CH\cdot O\cdot C_6H_3(O\cdot CH_2)\cdot CHO$. B. Analog der vorangehenden Verbindung (DICKINSON, HEILBRON, IRVING, Soc. 1927, 1895). Gelbliche zähe Flüssigkeit. Kp₁₃: 150—152°.
- 3-Methoxy-4-benzyloxy-benzaldehyd, Vaniffinbenzyläther, Benzylvanillin $C_{15}H_{14}O_2=C_6H_5\cdot CH_2\cdot O\cdot C_6H_3(O\cdot CH_3)\cdot CHO$ (H 257). B. Durch 12-stdg. Kochen von Vanillin-kalium mit Benzylchlorid in Alkohol (Dickinson, Heilbron, Irving, Soc. 1927, 1895) oder von Vanillin mit Benzylchlorid und Kaliumcarbonat in Alkohol; Ausbeute 90% der Theorie (Kobayashi, Scient. Pap. Inst. phys. chem. Res. 6, 153; C. 1928 I, 1027). F: 64—65° (D., H., I.). Kp5: 213—214° (K.).
- $\beta.\beta'$ Bis [2 methoxy 4 formyl phenoxy] diäthylsulfid $C_{20}H_{22}O_6S=S[CH_2\cdot CH_2\cdot O\cdot C_6H_3(O\cdot CH_2)\cdot CHO]_2$. B. Aus $\beta.\beta'$ -Dichlor-diāthylsulfid und Vanillin in alkoh. Natronlauge auf dem Wasserbad (Helfrich, Reid, Am. Soc. 42, 1219). Graue Nadeln (aus Alkohol). F: 131,5° (korr.). Bei 75° lösen sich 2 g in 100 cm³ Alkohol.
- 3-Methoxy-4-methoxymethoxy-benzaldehyd, Vanillin-methoxymethyläther $C_{10}H_{12}O_4=CH_3\cdot O\cdot CH_4\cdot O\cdot C_6H_3(O\cdot CH_3)\cdot CHO$. B. Durch Umsetzung von Vanillin-natrium mit Chlordimethyläther in Toluol (Pauly, Wäscher, B. 56, 609; P., Fruerstein, B. 62, 303 Anm. 17; vgl. Klason, B. 61, 174). Nadeln. F: 40° ; Kp_4 : 145— 149° ; Kp_3 : 136° (P., W.; P., F.). Leicht löslich in Äther, Alkohol und Benzol, schwer in Ligroin, unlöslich in Wasser (P., W.). Zerfällt bei der Einw. von Säuren sehr leicht in Vanillin, Formaldehyd und Methanol (P., W.); spaltet auch beim Aufbewahren leicht etwas Vanillin ab (P., F.). Gibt beim Erwärmen mit Acetaldehyd und wäßrig-methylalkoholischer Kalilauge auf 66— 68° Coniferylaldehyd-methoxymethyläther (P., F., B. 62, 303; vgl. P., W.; K.); über Nebenprodukte dieser Reaktion, die durch Einw. von Alkali auf Acetaldehyd entstehen (vgl. E II 1, 661, 670) vgl. P., F., B. 62, 310.
- 4-Oxy-3-acetoxy-benzaldehyd, Protocatechualdehyd-3-acetat, 3-Acetyl-protocatechualdehyd C₀H₈O₄ = CH₃·CO·O·C₆H₃(OH)·CHO. B. Neben wenig Protocatechualdehyd bei der Einw. von 1 Mol 1 n-Kalilauge auf Diacetylprotocatechualdehyd in Aceton bei 5° (PACSU, v. VARGHA, B. 59, 2820). Durch Schütteln einer Lösung von Protocatechualdehyd in 1 Mol 1 n-Kalilauge mit einer äther. Lösung von 1 Mol Acetanhydrid in Äther; Ausbeute ca. 65% der Theorie (P., v. V., B. 59, 2821). Blättchen (aus Benzol). F: 109—110°. Sehr leicht löslich in Aceton, Alkohol und Essigester, schwerer in Äther, Chloroform und kaltem Benzol, schr schwer in Ligroin und Wasser; die wäßr. Lösung reagiert sauer. Gibt mit Eisenchlorid in alkoh. Lösung eine schwache braune Färbung. Liefert mit Diazomethan in Äther Isovanillinacetat. 4-Nitro-phenylhydrazon C₁₅H₁₃O₅N₃. F: 195°.
- 4-Methoxy-3-acetoxy-benzaldehyd, Isovanillinacetat, Acetylisovanillin $\mathrm{C_{10}H_{10}O_4} \simeq \mathrm{CH_3}$ $\mathrm{CO\cdot O\cdot C_6H_3(O\cdot \mathrm{CH_3})\cdot \mathrm{CHO}}$ (H 258). B. Aus Protocatechualdehyd-3-acetat und Diazomethan in Äther bei 0° (Pacsu, v. Vargha, B. 59, 2821). Beim Schütteln einer Lösung von Isovanillin in 1n-Kalilauge mit einer äther. Lösung von Acetanhydrid (P., v. V., B. 59, 2822). F: 88°. Leicht löslich in Aceton, Äther, Essigester und Benzol, schwerer in kaltem Alkohol, fast unlöslich in Petroläther und Wasser.
- 3-Methoxy-4-acetoxy-benzaldehyd, Vanillinacetat, Acetylvanillin $C_{10}H_{10}O_4=CH_3\cdot CO\cdot O\cdot C_6H_3(O\cdot CH_3)\cdot CHO$ (H 258; E I 607). F: 78—79° (WALJASOHKO, Ж. 58, 795; C. 1927 I, 1125). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: W. Liefert beim Erwärmen mit etwas

- mehr als 1 Mol Brom und etwas Jod in Gegenwart von Natriumacetat in Eisessig auf 45° und nachfolgenden Verseifen mit Kalilauge 6-Brom-vanillin; bei Abwesenheit von Natriumacetat bei gewöhnlicher Temperatur erhält man außerdem 5-Brom-vanillin und 5.6-Dibrom-vanillin (RAIFORD, STOESSER, Am. Soc. 49, 1078, 1079). Liefert bei der Nitrierung mit rauchender Salpetersäure (H 258) bei 2—6° und folgenden Verseifung mit Kalilauge 2-Nitro-vanillin und wenig 6-Nitro-vanillin (R., St., Am. Soc. 50, 2559); zur Nitrierung vgl. a. Oberlin, Ar. 1925, 643 Anm. 7. 4-Nitro-phenylhydrazon C₁₆H₁₅O₅N₃. F: 179° (Quilico, Fleischner, G. 59, 45).
- 3.4 Diacetoxy benzaldehyd, Protocatechualdehyd diacetat, Diacetylprotocatechualdehyd $C_{11}H_{10}O_5 = (CH_3 \cdot CO \cdot O)_2C_6H_3 \cdot CHO$. B. Durch Einw. von 2 Mol Acetanhydrid in Äther auf eine Lösung von Protocatechualdehyd in 1n-Kalilauge unter Kühlung (Pacsu, v. Vargha, B. 59, 2819). Beim Behandeln von Protocatechualdehyd mit Acetanhydrid und Natriumacetat oder 30% iger Kalilauge (Kanao, J. pharm. Soc. Japan 49, 36; C. 1929 I, 2974). Nadeln (aus verd. Alkohol), Säulen (aus Ligroin). F: 55° (K.), 54° (P., v. V.). Sehr leicht löslich in den meisten organischen Lösungsmitteln, unlöslich in Wasser (P., v. V.). Die alkoh. Lösung gibt mit Eisenchlorid keine Färbung (P., v. V.). Liefert bei der Hydrolyse mit Kalilauge in wäßr. Aceton Protocatechualdehyd. 3-acetat und wenig Protocatechualdehyd (P., v. V.). Phenylhydrazon $C_{17}H_{16}O_4N_2$. F: 136° (P., v. V.), 135° (K.).
- 4-Methoxy-3-carbāthoxyexy-benzaidehyd, Carbāthoxyisovanillin $C_{11}H_{12}O_3=C_3H_5\cdot O_2C\cdot O\cdot C_6H_3(O\cdot CH_3)\cdot CHO$. B. Aus Isovanillin und Chlorameisensäureäthylester in Natronlauge (Shinoda, Kawagoye, J. pharm. Soc. Japan 48, 119; C. 1929 I, 245). Krystalle (aus verd. Alkohol). F: 61—62°.
- 3-Methoxy-4-carbäthoxyoxy-benzaldehyd, Carbäthoxyvanillin $C_{11}H_{12}O_5=C_2H_5\cdot O_2C\cdot O\cdot C_4H_3(O\cdot CH_3)\cdot CHO$ (H 258; E I 607).
 - E I 607. Z. 15 v. u. statt "mit Alkali" lies "mit alkoh. Salzsäure und mit Alkali".
- 3.4-Bis-carbomethoxyoxy-benzaldehyd, Dicarbomethoxy-protocatechualdehyd $C_{11}H_{10}O_7=(CH_3\cdot O_2C\cdot O)_2C_6H_3\cdot CHO$. B. Aus Protocatechualdehyd und Chlorameisensäuremethyester in wäßr. Kalilauge (Rosenmund, Boehm, Ar. 1926, 457). Nadeln (aus Eisessig oder wäßr. Aceton). F: 99—100°. Leicht löslich in Chloroform, Aceton, Eisessig und Essigester, schwerer in Alkohol und Äther, fast unlöslich in Petroläther und kaltem Wasser. Liefert bei der Hydrierung in Gegenwart von Palladium-Bariumsulfat in Eisessig Dicarbomethoxy-protocatechualkohol (E II 6, 1084). 4-Nitro-phenylhydrazon $C_{17}H_{16}O_8N_3$. F: 187—189°.
- 3.4 Bis carbäthoxyoxy benzaldehyd , Dicarbäthoxy protocatechualdehyd $C_{12}H_{14}O_7=C_2H_5\cdot O_2C\cdot O)_2C_4H_3\cdot CHO$ (E I 607).
- E I 607, Z. 7 v. u. statt "mit Essigsäure, verseift mit Natronlauge" lies "nach Verseifung durch Natronlauge mit Essigsäure".
 - Z. 5 v. u. nach "Äther" füge ein "nach Behandlung des Reaktionsprodukts mit alkoh. Salzsäure".
- Schwefelsäure mono [2-methoxy- 4-formyl-phenylester], Vanillinschwefelsäure C₈H₈O₄S = HO₃S·O·C₆H₃(O·CH₃)·CHO (H 259). B. Aus Vanillin und Chlorsulfonsäure in Gegenwart von Pyridin in Chloroform (Neuberg, Wagner, Bio. Z. 161, 497, 501). Das Kaliumsalz wird durch die in der Takadiastase vorkommende Sulfatase in Gegenwart von Calciumcarbonat in Wasser bei 35—37° in Vanillin und Schwefelsäure gespalten.
- 3.4-Dioxy-benzaldoxim-N-methyläther, N-Methyl-protocatechualdoxim, Methyl-3.4-dioxy-benzylidenoximid $C_0H_0O_3N=(HO)_2C_0H_3\cdot CH:N(:O)\cdot CH_3$. B. Beim Eintragen von Zinkstaub in eine Lösung von Protocatechualdehyd und Nitromethan in 30%iger Essigsäure (Kanao, J. pharm. Soc. Japan 49, 42; C. 1929 I, 2974). Bräunliche Tafeln (aus Alkohol). Zersetzt sich bei 228°. Liefert bei der Reduktion mit Zink und Essigsäure Methyl-[3.4-dioxy-benzyl]-amin.
- 3.4-Dioxy-benzaldoxim-N-äthyläther, N-Äthyl-protocatechualdoxim, Äthyl-3.4-dioxy-benzylidenoximid $C_0H_{11}O_2N=(HO)_2C_0H_3\cdot CH:N(:O)\cdot C_2H_3$. B. Analog der vorangehenden Verbindung unter Anwendung von Nitroäthan (Kanao, J. pharm. Soc. Japan 49, 42; C. 1929 I, 2975). Prismen. F: 251°. Löst sich nur in Eisessig.
- 3.4-Dioxy-benzaldoxim-N-propyläther, N-Propyl-protocatechualdoxim, Propyl-3.4-dioxy-benzylidenoximid $C_{10}H_{12}O_2N=(HO)_2C_0H_3\cdot CH:N(:O)\cdot CH_2\cdot C_2H_5$. B. Analog den vorangehenden Verbindungen unter Anwendung von 1-Nitro-propan (Kanao, J. pharm. Soc. Japan 49, 42; C. 1929 I, 2975). Tafeln. Zersetzt sich bei 237°.
- N Amineformyl vanillinisexim, Vanillinexim N-carbonsäureamid $C_9H_{16}O_4N_2=CH_8\cdot O\cdot C_6H_8(OH)\cdot CH:N(:O)\cdot CO\cdot NH_2$ s. H 27, 125.

- 3.4 Dimethoxy benzaldoxim N methyläther, N Methyl veratrumaldoxim $C_{10}H_{13}O_2N$ = $(CH_3 \cdot O)_2C_2H_3 \cdot CH : N(:O) \cdot CH_3$. B. Aus Veratrumaldehyd und Methylhydroxylamin-hydrochlorid in Natriumathylat-Lösung (Brady, Dunn, Goldstein, Soc. 1926, 2391). Blaßrosa Blättehen (aus Benzol). F: 127°. Leicht löslich in Wasser (B., D., G., Soc. 1926, 2393).
- [3.4 Dimethoxy benzylidenamino] acetaldehyd diäthylacetal , Veratrylidenaminoacetal $C_{15}H_{25}O_4N=(CH_3\cdot O)_2C_6H_3\cdot CH:N\cdot CH_4\cdot CH(O\cdot C_2H_5)_2$. B. Bei mehrstündigem Erhitzen von Veratrumaldehyd mit Aminoacetal auf dem Wasserbad (Forsyth, Kelly, Pyman, Soc. 127, 1665). Gelbliche Tafeln (aus Äther). F: 61—62° (korr.). Gibt bei der Reduktion mit Natrium und absol. Alkohol Veratrylaminoacetal.
- 3.4 Dioxy benzaldoxim, Protocatechualdoxim $C_7H_7O_3N = (HO)_2C_6H_3 \cdot CH : N \cdot OH$ (H 259; E I 608). B. Aus Protocatechualdehyd und Hydroxylaminhydrochlorid in mit konz. Ammoniak neutralisierter wäßriger Lösung (Ott, Nauen, B. 55, 927).
- 4-Oxy-3-methoxy-benzaldoxim, Vanillinoxim (von Brady, Klein, Soc. 127, 847 als 3-Methoxy-4-oxy-benz-anti-aldoxim bezeichnet) $C_8H_9O_3N = CH_3 \cdot O \cdot C_9H_9(OH) \cdot CH : N \cdot OH$ (H 259; E I 608). Gibt bei der Hydrierung in Gegenwart von Palladium in Alkohol (Ott, Zimmermann, A. 425, 328), bei der elektrolytischen Reduktion an Bleikathoden in wäßrig-alkoholischer Schwefelsäure (Kaplansky, B. 60, 1843), bei der Reduktion mit Natriumamalgam und Eisessig in Alkohol (Nelson, Am. Soc. 41 [1919], 1118; Jones, Pyman, Soc. 127, 2592, 2596; Kobayashi, C. 1928 I, 1028) und bei der Reduktion mit Zinkstaub und Eisessig bei 90° bis 98° (K.) Vanillylamin; bei der Reduktion mit Natriumamalgam (J., P.) und mit Zinkstaub (K.) bildet sich daneben Divanillylamin. Gibt beim Behandeln mit rauchender Salpetersäure in Eisessig 5-Nitro-vanillinoxim (Brady, Miller, Soc. 1928, 342).
- $\begin{array}{l} \alpha\text{--}3.4\text{--Dimethoxy--benzaldoxim,} \quad \alpha\text{--Veratrumaldoxim,} \quad \text{gew\"ohnliches Veratrumaldoxim} \\ \mathrm{C_0H_{11}O_3N} = (\mathrm{CH_3\cdot O})_2\mathrm{C_0H_3\cdot CH} \\ \text{N\cdot OH} \quad (\text{H 259; E I 608}). \quad \text{Wurde von Brady, Truszkowski} \quad (Soc. \ \text{No. OH}) \\ \text{No. OH} \quad (\text{H 259; E I 608}). \quad \text{Wurde von Brady, Truszkowski} \\ \text{No. OH} \quad (\text{H 259; E I 608}). \end{array}$
- 125, 1092) als 3.4-Dimethoxy-benz-anti-aldoxim bezeichnet; zur Konfiguration vgl. die bei α -Benzaldoxim (E II 7, 167) zitierte Literatur. Darstellung aus Veratrumaldehyd und Hydroxylaminhydrochlorid in wäßrig-alkoholischer Natronlauge: Buck, Ide, Org. Synth. 15 [1935], 85. Elektrolytische Dissoziationskonstante k in Wasser bei 25° (aus der Leitfähigkeit des Natriumsalzes berechnet): $1,4 \times 10^{-11}$ (Brady, Goldstein, Soc. 1926, 1923). Wird bei der Ultraviolett-Bestrahlung in Benzol-Lösung nicht verändert (Br., McHugh, Soc. 125, 548). Gibt beim Behandeln mit Chlorwasserstoff in siedendem Benzol das Hydrochlorid des β -3.4-Dimethoxy-benzaldoxims (Br., Dunn, Soc. 123, 1799). Das Natriumsalz liefert bei der Einw. von 4-Chlor-1.3-dinitro-benzol in warmem Alkohol β -3.4-Dimethoxy-benzaldoxim-O-[2.4-dinitro-phenyläther] (s. u.) (Br., Truszkowski, Soc. 125, 1092). Liefert mit a-Naphthylisocyanat in Äther das α -Naphthylcarbamidsäure-Derivat des α -3.4-Dimethoxy-benzaldoxims (Br., Ridge, Soc. 128, 2173).
 - β 3.4 Dimethoxy benzaldoxim , β Veratrumaldoxim $C_9H_{11}O_3N = \frac{(CH_8 \cdot O)_2C_6H_3 \cdot CH}{HO \cdot N}$

Zur Konfiguration vgl. die bei α-Benzaldoxim (E II 7, 167) zitierte Literatur. — B. Durch Behandlung von α-3.4-Dimethoxy-benzaldoxim mit Chlorwasserstoff in siedendem Benzol und Zersetzung des entstandenen Hydrochlorids mit 2 n-Natronlauge (Brady, Dunn, Soc. 123, 1799). — Hellrosa Nadeln (aus Benzol). F: 119°. — Hydrochlorid. F: 151° (Zers.).

- β-3.4 Dimethoxy-benzaldoxim-O-[2.4-dinitro-phenyläther] $C_{15}H_{13}O_7N_3 = (CH_3 \cdot O)_3C_6H_3 \cdot CH: N \cdot O \cdot C_6H_3(NO_2)_2$. B. Durch Umsetzung von α-3.4-Dimethoxy-benzaldoxim mit je 1 Mol 4-Chlor-1.3-dinitro-benzol und Natriumäthylat in Alkohol (Brady, Truszkowski, Soc. 125, 1092). Hellgelbe Blättchen (aus Aceton + Wasser). F: 176° (Zers.). Liefert bei kurzem Erhitzen mit 5 % iger alkoholischer Kalilauge 3.4-Dimethoxy-benzonitril. Gibt mit Acetanhydrid bei Zimmertemperatur ein öliges Acetat, das durch 2 n-Natronlauge bei gewöhnlicher Temperatur in 3.4-Dimethoxy-benzoesäure umgewandelt wird.
- 3-Oxy- 4-2thoxy- benzaldoxim, Isobourbonaloxim $C_9H_{11}O_3N = C_2H_5 \cdot O \cdot C_6H_3(OH) \cdot CH : N \cdot OH.$ F: 181—183° (Kafuku, Itikawa, J. pharm. Soc. Japan 1926, Nr. 531, S. 35; C. 1926 II, 1138).
- 4 Methoxy 3 äthoxy benzaldoxim, Isovanillin äthyläther oxim $C_{10}H_{13}O_3N = C_2H_5$. O· $C_4H_5(O\cdot CH_2)\cdot CH:N\cdot OH$. Krystalle (aus verd. Alkohol). F: 98—99° (SPÄTH, BERNHAUER, B. 58, 203).
- 3 Methoxy 4 pikryloxy benzaldoxim 0 pikryläther, Vanillin pikryläther [oxim-0 pikryläther]; Pikryl · 3 · methoxy · 4 · pikryloxy · benz · syn-aldoxim C₂₀H₁₁O₁₅N₇ = (O₂N)₂C₆H₂·O·C₆H₃(O·CH₂)·CH·N·O·C₆H₂(NO₂)₃. B. Durch Einw. von 2 Mol Pikrylchlorid auf Vanillinoxim in Natriumäthylat-Lösung bei 0° (Brady, Klein, Soc. 127, 847). Gelbliche Prismen (aus Aceton + etwas Wasser). F: 178—179° (Zers.). Gibt beim Erhitzen mit 5% iger alkoholischer Kalilauge Vanillinsäurenitril und Pikrinsäure.

- 3-Methoxy-4-benzyloxy-benzaldexim, Vaniilin-benzyläther-exim $C_{12}H_{16}O_5N=C_6H_6$ $CH_2\cdot O\cdot C_6H_6(O\cdot CH_6)\cdot CH:N\cdot OH.$ Nadeln. F: 113—115° (Kobayashi, Scient. Pap. Inst. phys.-chem. Res. 6, 164; C. 1928 I, 1028). Liefert bei der Reduktion mit Natriumamalgam und Eisessig in Alkohol bei 60—65° 3-Methoxy-4-benzoyloxy-benzylamin.
- 3 Oxy- 4 äthoxy- benzaldehyd semicarbazon, Isobourbonal-semicarbazon $C_{10}H_{18}O_2N_2=C_2H_5\cdot O\cdot C_0H_3(OH)\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. F: 202—203° (Kapuku, Itikawa, J. pharm. Soc. Japon 1926, Nr. 531, S. 35; C. 1926 II, 1138).
- 3 Methoxy-4-propyloxy-benzaldehyd-semicarbazon, Vanillin-propyläther-semicarbazon $C_{12}H_{17}O_2N_3=C_2H_5\cdot CH_2\cdot O\cdot C_6H_3(O\cdot CH_3)\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Nadeln (aus Alkohol). F: 156° (Dickinson, Heilbron, Irving, Soc. 1927, 1895).
- 3 Methoxy 4 isopropyloxy benzaldehyd semicarbazon , Vanillin-isopropyläther-semicarbazon $C_{12}H_{17}O_3N_3=(CH_3)_2CH\cdot O\cdot C_6H_3(O\cdot CH_2)\cdot CH\cdot N\cdot NH\cdot CO\cdot NH_2$. Nadeln (aus Alkohol). F: 151—152° (Dickinson, Heilbron, Irving, Soc. 1927, 1895).
- 3.4 Diacetoxy benzaldehyd semicarbazon, Diacetylprotocatechualdehyd semicarbazon $C_{12}H_{13}O_5N_3=(CH_3\cdot CO\cdot O)_2C_6H_3\cdot CH:N\cdot NH\cdot CO\cdot NH_2.$ Nadeln (aus Alkohol). F: 200—202° (Zers.) bei schnellem Erhitzen (Pacsu, v. Vargha, B. 59, 2820).

Substitutionsprodukte des Protocatechualdehyds.

5-Chlor-4-oxy-3-methoxy-benzaldehyd, 5-Chlor-vanillin C₈H₇O₃Cl, s. nebenstehende Formel. B. Durch Chlorierung von Vanillin in Eisessig (HANN, SPENCER, Am. Soc. 49, 535) oder bei Gegenwart von Natriumacetat in Eisessig (H., Am. Soc. 47, 2000; H., MARKLEY, J. Washington Acad. 16, 171; C. 1926 I, 3401; vgl. a. MENKE, BENTLEY, Am. Soc. 29 [1898], 316; PERATONER, G. 28 I [1898], 235). — Schwach riechende Tafeln (aus Eisessig). Tetragonal (H., Sp.). F: 165° (H.; H., Sp.). Leicht löslich in heißem Eisessig (H., Sp.). — Gibt mit Anilin in siedendem Alkohol 5-Chlor-vanillin-anil (Syst. Nr. 1604) (H., Sp., Am. Soc. 49, 537); reagiert analog mit β-Naphthylamin (H., Sp.) und mit anderen aromatischen Aminen außer 2-Nitro-4-amino-toluol, das sich mit 5-Chlor-vanillin zu N.N'-Bis-[3-nitro-4-methyl-phenyl]-5-chlor-vanillylidendiamin kondensiert (H., Jamieson, Reid, Am. Soc. 51, 2587). — Das Phenyl-hydrazon schmilzt bei 106—107°, das Diphenylhydrazon bei 155—156° (H., Sp.).

Hydrazon $C_8H_9O_2N_2Cl = CH_3\cdot O\cdot C_6H_2Cl(OH)\cdot CH: N\cdot NH_2$. Gelbliche, mikrokrystalline Nadeln (aus Alkohol). F: 248—249° (korr.; Zers.) (HANN, SPENCER, Am. Soc. 49, 536).

Semicarbazon $C_9H_{10}O_3N_3Cl=CH_3\cdot O\cdot C_9H_2Cl(OH)\cdot CH:N\cdot NH\cdot CO\cdot NH_3$. Krystallpulver (aus Alkohol). F: 198—199° (korr.; Zers.) (Hann, Spencer, Am. Soc. 49, 536).

Thiosemicarbazon $C_0H_{10}O_2N_3CIS = CH_2 \cdot O \cdot C_0H_1CI(OH) \cdot CH : N \cdot NH \cdot CS \cdot NH_2$. Nadeln (aus Alkohol). F: 216—217° (kott.) (Hann, Spencer, Am. Soc. 49, 536).

- 6-Chlor-3.4-dimethoxy-benzaldehyd, 6-Chlor-veratrumaldehyd C₉H₂O₃Cl, Formel I. B. Aus 6-Amino-veratrumaldehyd nach Sandmeyer (Rilliet, Helv. 5, 550). Nadeln. F: 144°.
- 2-Brom-4-oxy-3-methoxy-benzaldehyd, 2-Brom-vanillin C₈H₇O₃Br, Formel II. B. Durch Umsetzung von diazotiertem 2-Amino-vanillin mit Kupfer(I)-bromid-Lösung auf dem Wasserbad (Raiford, Stoesser, Am. Soc. 49, 1079). Fast farblose Nadeln (aus Alkohol). F: 154—155°. Das 4-Brom-phenylhydrazon C₁₄H₁₂O₂N₂Br₂ schmilzt bei 157°.

Semicarbazon $C_9H_{19}O_9N_9Br=CH_8\cdot O\cdot C_9H_2Br(OH)\cdot CH:N\cdot NH\cdot CO\cdot NH_8$. Fast farblose Nadeln (aus verd. Pyridin). F: 216—217° (RAIFOED, STOESSER, Am. Soc. 49, 1079).

5-Brom-4-oxy-3-methoxy-benzaldehyd, 5-Brom-vanilla C.H.O.Br. Formel III (H 260; E I 609). B. Durch Bromierung von Vanillin in Eisessig bei Zimmertemperatur (Shrindr, McCutchan, Am. Soc. 51, 2194; vgl. Raiford, Storsser, Am. Soc. 49, 1076), Neben 6-Brom-

- vanillin und 5.6-Dibrom-vanillin bei der Einw. von 1 Mol Brom auf Vanillinacetat in Eisessig bei Zimmertemperatur (R., Sr., Am. Soc. 49, 1079). Tafeln (aus Eisessig), Nadeln oder Tafeln (aus Alkohol) (R., Hilman, Am. Soc. 49, 1572). Liefert beim Erhitzen mit überschüssigem Brom im Rohr 5.6-Dibrom-vanillin (R., H., Am. Soc. 49, 1574). Beim Erhitzen mit 8 %iger Natronlauge und Kupferpulver auf 200—210° entsteht Gallusaldehyd-3-methyläther (Sh., McC.; Bradley, Robinson, Schwarzenbach, Soc. 1980, 796, 811). Das Phenylhydrazon schmilzt bei 117°, das 4-Brom-phenylhydrazon bei 153° (R., H., Am. Soc. 49, 1572).
- 5 Brom 3.4 dimethoxy benzaldehyd, 5 Brom veratrumaldehyd C₂H₂O₂Br = (CH₃· O)₂C₆H₂Br· CHO (H 260; E I 609). Zur Bildung durch Methylierung von 5-Brom-vanillin (H 260; E I 609) vgl. Shriner, McCutchan, Am. Soc. 51, 2194. F: 61—62°.
- 5-Brom-4-oxy-3-methoxy-benzaldoxim, 5-Brom-vanillinoxim $C_8H_8O_3NBr=CH_3\cdot O\cdot C_6H_2Br(OH)\cdot CH:N\cdot OH$ (E I 609). B. Bei 72-stdg. Ultraviolett-Bestrahlung von α -5-Brom-3.4-dimethoxy-benzaldoxim in Benzol (Brady, McHugh, Soc. 125, 548, 551).
- α 5 Brom 3.4 dimethoxy benzaldoxim, α 5 Brom veratrumaldoxim $C_9H_{10}O_3NBr=(CH_8\cdot O)_2C_9H_2Br\cdot CH$ (E I 609). (von Wentworth, Brady, Soc. 117, 1044 als 5 Brom $N\cdot OH$
- 3.4-dimethoxy-benz-anti-aldoxim bezeichnet; zur Konfiguration vgl. J. Meisenheimer, W. Theilacker in K. Freundeberg, Stereochemie [Leipzig-Wien 1933], S. 982). F: 83° (Wentworth, Brady, Soc. 117, 1044). Geht bei 72-stdg. Ultraviolett-Bestrahlung in Benzollösung in 5-Brom-vanillin-oxim über (Brady, McHugh, Soc. 125, 551). Gibt mit Chlorwasserstoff in Äther das Hydrochlorid des β-5-Brom-3.4-dimethoxy-benzaldoxims (W., B., Soc. 117, 1044). Liefert bei der Einw. von 4-Chlor-1.3-dinitro-benzol in warmer Natriumäthylat-Lösung β-5-Brom-3.4-dimethoxy-benzaldoxim-O-[2.4-dinitro-phenyläther] (Brady, Truszkowski, Soc. 125, 1091). Liefert beim Kochen mit Acetanhydrid 5-Brom-3.4-dimethoxy-benzonitril (W., B., Soc. 117, 1045).
- β -5-Brom-3.4-dimethoxy-benzaldoxim, β -5-Brom-veratrumaldoxim $C_0H_{10}O_3NBr = (CH_3 \cdot O)_3C_0H_3Br \cdot CH$ (von Wentworth, Brady, Soc. 117, 1045 als 5-Brom-3.4-dimethoxy-
- HO·N (von Wartworth, Blabt, Sec. 117, 1010 als 0-Bioline Gradient Chornell Blabt, Bell 117, 1010 als 0-Bioline Gradient Chornell Blabt, Bell 117, 1010 als 0-Bioline Gradient Chornell Gradient
- β-5-Brom-3.4-dimethoxy-benzaldoxim-0-[2.4-dinitro-phenyläther] $C_{15}H_{12}O_7N_3Br=(CH_3\cdot O)_2C_6H_2Br\cdot CH:N\cdot O\cdot C_6H_3(NO_2)_2$. B. Aus α-5-Brom-3.4-dimethoxy-benzaldoxim und 4-Chlor-1.3-dinitro-benzol in warmer Natriumäthylat-Lösung (Brady, Truezkowski, Soc. 125, 1091). Gelbliche Nadeln (aus Aceton). F: 199° (Zers.). Schwer löslich in siedendem Aceton. Liefert bei kurzem Erhitzen mit 5% iger alkoh. Kalilauge 5-Brom-3.4-dimethoxy-benzonitril.
- α-5 Brom 3.4 dimethoxy benzaldoxim 0 acetat $C_{11}H_{12}O_4NBr = (CH_3\cdot O)_2C_6H_2Br\cdot CH: N\cdot O\cdot CO\cdot CH_3$. B. Durch Acetylierung von α-5-Brom-3.4-dimethoxy-benzaldoxim (Wentworth, Brady, Soc. 117, 1044). Mikroskopische Krystalle (aus verd. Methanol). F: 77°. Gibt beim Behandeln mit verd. Natronlauge wieder das α-Oxim.
- β -5-Brom-3.4-dimethoxy-benzaldoxim-0-acetat $C_{11}H_{12}O_4NBr = (CH_3\cdot O)_2C_6H_2Br\cdot CH: N\cdot O\cdot CO\cdot CH_3$. Beim Erwärmen von β -5-Brom-3.4-dimethoxy-benzaldoxim mit Acetanhydrid auf 30° (Wentworth, Brady, Soc. 117, 1045). Krystalle (aus verd. Alkohol). F: 73°. Liefert beim Erwärmen mit 10% iger Natronlauge auf 35° 5-Brom-3.4-dimethoxy-benzonitril.
- 5-Brom-vanillin-semicarbazon $C_9H_{19}O_5N_8Br=CH_8\cdot O\cdot C_4H_8Br(OH)\cdot CH:N\cdot NH\cdot CO\cdot NH_8$. Bernsteingelbe Krystalle mit 1 $C_2H_5\cdot OH$ (aus Alkohol). Schmilzt alkoholfrei bei 189—190° (RAIFORD, HILMAN, Am. Soc. 49, 1572).
- 6-Brom-4-oxy-3-methoxy-benzaidehyd, 6-Brom-vanillin C₈H₂OBr. s. nebenstehende Formel. B. In ca. 90% iger Ausbeute durch Erwärmen von Vanillinacetat mit 1 Mol Brom und etwas Jod in Gegenwart von Natriumacetat in Kiscesig auf 45° und nachfolgende Hydrolyse mit Kalilause (RAIFORD, STOESSER, Am. Soc. 49, 1079). Nadeln (aus Alkohol). F: 178° (R., St.). OH Liefert mit überschüssigem Brom bei Gegenwart von wenig Jod in heißem Eisessig 5.6-Dibrom-vanillin (R., HILMAN, Am. Soc. 49, 1574 Anm. 21). Das 4-Brom-phenyl-hydrazon schmilzt bei 176° (R., St.).

- 6 Brom 3.4 dimethoxy benzaldehyd , 6 Brom veratrumaldehyd $C_2H_2O_3Br = (CH_3 \cdot O)_2C_2H_3Br \cdot CHO$ (H 260; E I 610). B. Aus 6-Amino-veratrumaldehyd nach Sandweyer (Ruller, Helv. 5, 550).
- 6-Brom-4-oxy-3-methoxy-benzaldoxim, 6-Brom-vanillin-oxim $C_8H_8O_3NBr=CH_3\cdot O\cdot C_8H_2Br(OH)\cdot CH:N\cdot OH$. Nadeln (aus verd. Alkohol). F: 158—159° (RAIFORD, STORSSER, Am. Soc. 49, 1079).
- 6-Brom-4-oxy-3-methoxy-benzaldoximacetat, 6-Brom-vanillin-oximacetat $C_{12}H_{10}O_4NBr=CH_3\cdot O\cdot C_4H_2Br(OH)\cdot CH:NO\cdot CO\cdot CH_3$. B. Aus 6-Brom-vanillin-oxim und Acetanhydrid bei gewöhnlicher Temperatur (RAIFORD, STOESSER, Am. Soc. 50, 2558). Fast farblose Nadeln (aus Benzol). F: 149—151°; der Schmelzpunkt sinkt bei längerem Aufbewahren auf 140—141°. Gibt beim Erwärmen mit Acetanhydrid und etwas Schwefelsäure 6-Brom-3-methoxy-4-acetoxy-benzoloximacetat, beim Kochen mit Acetanhydrid 6-Brom-3-methoxy-4-acetoxy-benzonitril.
- 6-Brom-3.4-dimethoxy-benzaldoxim, 6-Brom-veratrumaldoxim $C_9H_{16}O_8NBr=(CH_3\cdot O)_2C_6H_2Br\cdot CH:N\cdot OH$ (E I 610). Läßt sich nicht in ein stereoisomeres Oxim umlagern (Brady, Manjunath, Soc. 125, 1068). $C_9H_{10}O_3NBr+H_2SO_4$. Gelbe, körnige Masse. F: 105° (Brady, Whitehead, Soc. 1927, 2936—2937).
- 6 Brom 3.4 dimethoxy benzaldoxim 0 acetat, 6 Brom veratrumaldoxim 0 acetat $C_{11}H_{12}O_4NBr = (CH_3\cdot O)_2C_4H_2Br\cdot CH:N\cdot O\cdot CO\cdot CH_3$. B. Aus 6-Brom 3.4-dimethoxy benzaldoxim und Acetanhydrid bei gewöhnlicher Temperatur (Brady, Manjunath, Soc. 125, 1068). Blättchen (aus Alkohol). F: 140°. Liefert bei der Hydrolyse mit 2n-Natronlauge das ursprüngliche Oxim zurück.
- 6-Brom-3-methoxy-4-acetoxy-benzaldoxim, Oxim des 6-Brom-vanillin-acetats $C_{10}H_{10}O_4$ NBr = $CH_3 \cdot CO \cdot O \cdot C_6H_2$ Br $(O \cdot CH_3) \cdot CH \cdot N \cdot OH$. B. Aus nicht näher beschriebenem 6-Brom-vanillinacetat, Hydroxylaminhydrochlorid und Natriumacetat in siedendem Alkohol (RAIFORD, STOESSER, Am. Soc. 50, 2558). Nadeln (aus Alkohol). F: 150—152°.
- 6-Brom-3-methoxy-4-acetoxy-benzaldoxim-0-acetat, 6-Brom-vanillin-acetat-oximacetat $C_{12}H_{12}O_5NBr=CH_3\cdot CO\cdot O\cdot C_6H_2Br(O\cdot CH_3)\cdot CH:N\cdot O\cdot CO\cdot CH_3$. B. Beim Erhitzen von 6-Brom-3-methoxy-4-acetoxy-benzaldoxim mit Acetanhydrid bis zum Siedepunkt (Raiford, Stoesser, Am. Soc. 50, 2558). Beim Erwärmen von 6-Brom-4-oxy-3-methoxy-benzaldoximacetat mit Acetanhydrid und etwas Schwefelsäure (R., St.). Tafeln (aus Alkohol). F: 153—154°.
- 6 Brom vanillin semicarbazon $C_3H_{10}O_3N_3Br=CH_3\cdot O\cdot C_6H_2Br(OH)\cdot CH:N\cdot NH\cdot CO\cdot NH_2.$ Schwach grünliche Nadeln (aus verd. Pyridin). F: 231—232° (RAIFORD, STOESSER, Am. Soc. 49, 1079). [OSTERTAG]
- 2.5 Dibrom 4 oxy 3 methoxy benzaldehyd, 2.5 Dibrom vanillin C₈H₆O₃Br₂, s. nebenstehende Formel. B. Durch Umsetzung von diazotiertem 5-Brom-2-amino-vanillin mit Kupfer(I)-bromid-Lösung auf dem Wasserbad (Raiford, Stoesser, Am. Soc. 50, 2560). Nadeln (aus Eisessig). F: 189°. Br. O·CH₃ Das 4-Nitro-phenylhydrazon schmilzt bei 249°.
- 2.5-Dibrom-3-methoxy-4-acetoxy-benzaldehyd, 2.5-Dibrom-vanillin-acetat $C_{10}H_8O_4Br_8$ $CH_3 \cdot CO \cdot O \cdot C_4HBr_9(O \cdot CH_2) \cdot CHO$. B. Durch Umsetzung von 2.5-Dibrom-vanillin mit Acetanhydrid und NaHSO₃-Lösung und Zersetzung der erhaltenen krystallinen NaHSO₄-Verbindung mit Sodalösung (Raiford, Stoesser, Am. Soc. 50, 2560). Prismen (aus Alkohol). F: 68—70°.
- 2.5 Dibrom 3 methoxy 4 acetoxy benzylidendiacetat, 2.5 Dibrom vanillin triacetat $C_{14}H_{16}O_7Br_2 = CH_2 \cdot CO \cdot O \cdot C_8HBr_2(O \cdot CH_3) \cdot CH(O \cdot CO \cdot CH_3)_2$. B. Aus 2.5-Dibrom vanillin und Acetanhydrid bei Gegenwart von wenig konz. Schwefelsäure (Raiford, Stoesser, Am. Soc. 50, 2560). Tafeln (aus Alkohol). F: 157—158°.
- 2.5-Dibrom-4-oxy-3-methoxy-benzaldoxim, 2.5-Dibrom-vanillin-oxim $C_9H_7O_2NBr_9=CH_3\cdot O\cdot C_6HBr_2(OH)\cdot CH:N\cdot OH.$ Fast farblose Nadeln (aus Benzol). F: 154—155⁶ (RAIFORD, STOESSER, Am. Soc. 50, 2561).
- 2.5 Dibrom 4 oxy 3 methoxy benzaldoximacetat , 2.5 Dibrom vanillin oximacetat $C_{10}H_9O_4NBr_2 = CH_3 \cdot O \cdot C_6HBr_4(OH) \cdot CH : N \cdot O \cdot CO \cdot CH_4$. Läßt sich nicht umkrystallieren. F: 184—185° (Raiford, Storsser, Am. Soc. 50, 2561).
- 2.5-Dibrom-3-methoxy-4-acetoxy-benzaldoximacetat, 2.5-Dibrom-vanilinacetat-eximacetat $C_{12}H_{11}O_5NBr_2=CH_3\cdot CO\cdot O\cdot C_4HBr_4(O\cdot CH_3)\cdot CH:N\cdot O\cdot CO\cdot CH_3$. Nadeln (aus Ligroin). F: 137—139° (Raiford, Stoesser, Am. Soc. 50, 2561).
- 2.5 Dibrom vaniliin semicarbazon C₂H₂O₂N₂Br₂ = CH₂· O·C₂HBr₂(OH)·CH: N·NH·CO·NH₂. Essigsaurehaltige Nadeln (aus verd. Essigsaure). F: 233—234° (Rairond, Stonsser, Am. Soc. 50, 2561).

2.6 - Dibrom - 4 - exy - 3 - methoxy-benzaidehyd, 2.6 - Dibrom - vanillin $C_4H_4O_3Br_2$, Formel I. B. Durch Umsetzung von diazotiertem 6-Brom-2-amine-vanillin mit Kupfer(I)-bromid-Lösung auf dem Wasserbad (RAIFORD, STOESSER, Am. Soc. 50, 2562). — Fast farblose Nadeln (aus verd. OH

Alkohol). F: 155—156°. — Gibt mit Brom bei Gegenwart von Natriumacetat in Eisessig

Tribromvanillin. — Das 4-Brom-phenylhydrazon schmilzt bei 168—170°.

Oxim $C_9H_7O_3NBr_2 = CH_3 \cdot O \cdot C_9HBr_2(OH) \cdot CH : N \cdot OH$. Nadeln (aus Benzol). F: 144—145° (RAIFORD, STOESSER, Am. Soc. 50, 2562).

Semicarbazon C₂H₂O₃N₃Br₂ = CH₃·O·C₄HBr₂(OH)·CH:N·NH·CO·NH₂. Nade 2CH₃·CO₂H (aus Eisessig). F: 216—217^o (RAIFORD, STORSSER, Am. Soc. 50, 2562). Nadeln mit

- 5.6-Dibrom-4-oxy-3-methoxy-benzaldehyd, 5.6-Dibrom-vanillin $C_8H_6O_2Br_2$, Formel II. B. Durch Einw. von überschüssigem Brom auf Vanillin bei Gegenwart von etwas Jod in siedendem Eisessig (RAIFORD, HILMAN, Am. Soc. 49, 1575). Neben 5-Brom-vanillin und 6-Bromvanillin bei der Einw. von 1 Mol Brom auf Vanillinacetat in Eisessig bei Zimmertemperatur und nachfolgenden Hydrolyse (R., Stoesser, Am. Soc. 49, 1078). Durch Einw. von überschüssigem Brom auf 5-Brom-vanillin im Rohr bei 122—125° oder auf 6-Brom-vanillin bei Gegenwart von etwas Jod in heißem Eisessig (R., H., Am. Soc. 49, 1574). — Fast farblose Nadeln (aus Eisessig). F: 218° (R., Sr.; R., H.). Leicht löslich in Pyridin, fast unlöslich in den meisten anderen Lösungsmitteln (R., H.). — Das Phenylhydrazon schmilzt bei 94—102°.
- 5.6 Dibrom 3.4 dioxy benzaldoxim, 5.6 Dibrom protocatechualdoxim $C_7H_5O_9NBr_2 = (HO)_2C_6HBr_2\cdot CH:N\cdot OH.$ B. Beim Erhitzen von 5.6-Dibrom-vanillin mit Hydroxylaminhydrochlorid, Alkohol und konz. Salzsäure im Rohr auf 160-170° (RAIFORD, HILMAN, Am. Soc. 49. 1577). — Krystalle (aus Alkohol). F: 167°.
- 5.6-Dibrom-4-oxy-3-methoxy-benzaldoxim, 5.6-Dibrom-vanillinoxim $C_2H_7O_3NBr_2=CH_3\cdot O\cdot C_4HBr_2(OH)\cdot CH:N\cdot OH$. Aus 5.6-Dibrom-vanillin und Hydroxylamin bei Gegenwart von Natriumcarbonat in siedendem Alkohol (Raiford, Hilman, Am. Soc. 49, 1576). — Nadeln (aus verd. Alkohol). F: 187°. — Liefert beim Kochen mit überschüssigem Acetanhydrid 5.6-Dibrom-3-methoxy-4-acetoxy-benzonitril.
- 5.6 Dibrom vanillin semicarbazon $C_9H_9O_3N_3Br_9=CH_3\cdot O\cdot C_6HBr_9(OH)\cdot CH:N\cdot NH\cdot CO\cdot NH_2.$ Krystallpulver mit $1C_5H_5N$ (aus Pyridin + Benzol). F: 224° (Raiford, Hilman, Am. Soc. 49, 1576).
- 2.5.6-Tribrom 4-oxy-3 methoxy-benzaldehyd, Tribromvanillin C,H,O,Br2, Formel III. B. Aus 2.6-Dibrom-vanillin und Brom in Gegenwart von Natriumacetat in Eisessig (RAIFORD, STOESSER, Am. Soc. 50, 2562). - Nadeln (aus Eisessig). F: 177-1780. - Das 4 - Brom-phenylhydrazon schmilzt bei 169-170°.

 $\mathbf{0xim} \ \mathbf{C_8H_6O_3NBr_3} = \mathbf{CH_3} \cdot \mathbf{O} \cdot \mathbf{C_6Br_3(OH)} \cdot \mathbf{CH} : \mathbf{N} \cdot \mathbf{OH}. \ \mathbf{Fast farblose \ Nadeln \ (aus \ Isobutyl-}$ alkohol). F: 1926 (RAIFORD, STOESSER, Am. Soc. 50, 2563).

Semicarbazon $C_9H_8O_9N_3Br_3=CH_3\cdot O\cdot C_6Br_3(OH)\cdot CH: N\cdot NH\cdot CO\cdot NH_2$. Fast farblose Nadeln mit $1C_9H_9N$ (aus verd. Pyridin). F: 222—223° (Raiford, Stoesser, Am. Soc. 50, 2563).

5-Jod-4-oxy-3-methoxy-benzaldehyd, 5-Jod-vanillin $C_8H_7O_3I$, Formel IV (H 260 als x-Jod-vanillin beschrieben). B. Aus Vanillin und Benzjodsmidin (Syst. Nr. 927) in essigsaurer Lösung (Bougault, Robin, C. r. 172, 453; Robin, A. ch. [9] 16, 131). Beim Schütteln von 5-Chlormercuri-vanillin mit wäßr. Jod-Kaliumjodid-Lösung (Paolini, G. 51 II, 194). — Monoklin domatisch; pleochroitisch (gelb-farblos) (HANN, Am. Soc. 47, 2000). F: 180° (H., C. 1924 I, 2110; Am. Soc. 47, 2000; B., R.; R.).

6-Jod-3.4-dimethoxy-benzaldehyd, 6-Jod-veratrumaldehyd $C_0H_0O_3I$, Formel V. B. Aus 6-Amino-veratrumaldehyd nach Sandmeyer (Rillier, Helv. 5, 550). — Nadeln. F: 128°.

2-Nitro-4-oxy-3-methoxy-benzaldehyd, 2-Nitro-vanillin C₈H,O₅N, Formel VI (H 261; E I 610). Zur Bildung durch Nitrierung von Acetylvanillin und nachfolgende Verseifung (H 261; E I 610) vgl. RAIFORD, STORSSER, Am. Soc. 50, 2559. — F: 138° (GOTO, SUZUKI, Bl. chem. Scc. Japan 4 [1929], 166).

290

2 - Nitro - 3.4 - dimethoxy - benzaldehyd, 2 - Nitro - veratrumaldehyd $C_0H_0O_2N = (CH_3 \cdot O)_2C_0H_2(NO_2) \cdot CHO$ (H 261; E I 610). F: 65° (Goro, Suzuki, Bl. chem. Soc. Japan 4 [1929], 166). — Liefert beim Behandeln mit Salpeterschwefelsäure, zuletzt auf dem Wasserbad 3.4.5-Trinitro-veratrol (DE LANGE, R. 45, 49). Gibt beim Kochen mit Semicarbazidhydrochlorid und Kaliumacetat in verd. Alkohol das Semicarbazon (s. u.) und eine bei 264—265° (unkor.) schmelzende Verbindung (gelbe Blättchen; unlöslich in Alkohol) (OBERLIN, Ar. 1925, 668).

Hydrazon $C_0H_{11}O_4N_3 = (CH_2 \cdot O)_2C_0H_2(NO_2) \cdot CH : N \cdot NH_2$. Gelbe Tafeln (aus Alkohol). F: 111—112° (unkorr.) (OBERLIN, Ar. 1925, 668). Leicht löslich in den üblichen organischen Lösungsmitteln. — Zersetzt sich bei der Einw. von Alkalien unter Stickstoffentwicklung (O., Ar. 1925, 648).

Semicarbazon $C_{10}H_{12}O_5N_4=(CH_3\cdot O)_2C_0H_2(NO_2)\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Gelbe Nadeln (aus Alkohol). F: 245° (unkorr.; Zers.) (OBERLIN, Ar. 1925, 668). — Wird durch Natriumäthylat-Lösung bei 150—160° nicht verändert (O., Ar. 1925, 648).

5-Nitro-4-oxy-3-methoxy-benzaidehyd, 5-Nitro-vanillin C₀H₇O₅N, Formel I (H 261; E I 610). B. Durch Einw. von rauchender Salpetersäure auf eine konzentrierte wäßrige Lösung von Vanillin-sulfonsäure-(5) (FINGER, SCHOTT, J. pr. [2] 115, 288). — F: 176° (F., SCH.). — Liefert bei der Einw. von mehr als 2 Mol Diazomethan in absol. Äther 5-Nitro-3.4-dimethoxy-aceto-phenon (Brady, Manjunath, Soc. 125, 1067).

I.
$$O_2N$$
 $O \cdot CH_3$ II. O_3N $O \cdot CH_3$ III. O_3N $O \cdot CH_3$ $O \cdot CH_3$

- 5-Nitro-3.4-dimethoxy-benzaldehyd, 5-Nitro-veratrumaldehyd C₅H₅O₅N = (CH₃·O)₂ C₆H₂(NO₂)·CHO (H 262; E I 610). B. Zur Bildung durch Einw. von Dimethylsulfat auf 5-Nitro-vanillin-kalium (E I 610) vgl. Späth, Röder, M. 48, 102. Aus 5-Nitro-vanillin durch Erwärmen mit 1,5 Mol Methyljodid auf dem Wasserbad (Sonn, B. 58, 1108), durch Einw. von Methyljodid auf das Silbersalz (Brady, Manjunath, Soc. 125, 1067) oder durch Einw. von Diazomethan in Äther (B., M.). F: 91—92° (Sp., R.). Liefert beim Behandeln mit Salpeterschwefelsäure 3.4.5-Trinitro-veratrol (DE Lange, R. 45, 49).
- 5-Nitro-4-oxy-3-methoxy-benzaldoxim, 5-Nitro-vanillin-oxim $C_8H_8O_8N_2=CN_3\cdot O\cdot C_8H_2(NO_2)(OH)\cdot CH:N\cdot OH$ (H 262; E I 610). B. Beim Behandeln von Vanillinoxim mit rauchender Salpetersäure in Eisessig unter Wasserkühlung (Brady, Miller, Soc. 1928, 342). F: 207° (Finger, Schott, J. pr. [2] 115, 288).
- 5-Nitro-3.4-dimethoxy-benzaldoxim, 5-Nitro-veratrumaldoxim $C_9H_{10}O_5N_2 = (CH_3 \cdot O)_2C_6H_2(NO_2) \cdot CH : N \cdot OH$. B. Aus 5-Nitro-veratrumaldehyd und Hydroxylaminhydrochlorid in verd. Alkohol (Brady, Manjunath, Soc. 125, 1067). Tafeln (aus Alkohol). F: 151°. Läßt sich nicht in ein stereoisomeres Oxim umlagern.
- 5-Nitro-3.4-dimethoxy-benzaldoxim-0-acetat, 5-Nitro-veratrumaldoxim-0-acetat $C_{11}H_{12}O_6N_2=(CH_3\cdot O)_2C_6H_2(NO_2)\cdot CH:N\cdot O\cdot CO\cdot CH_3$. B. Aus 5-Nitro-veratrumaldoxim durch Einw. von Acetanhydrid (Brady, Manjunath, Soc. 125, 1067). Tafeln (aus Aceton + Wasser). F: 115°.
- 6-Nitro-4-oxy-3-methoxy-benzaldehyd, 6-Nitro-vanillin C₈H₇O₅N, Formel II. B. In geringer Menge bei der Nitrierung von Acetylvanillin mit rauchender Salpetersäure bei 2—6° und nachfolgenden Verseifung mit siedender Kalilauge (RAIFORD, STOESSER, Am. Soc. 50, 2559). Gelbe Tafeln (aus Eisessig). F: 212°.
- 6 Nitro 3.4 dimethoxy benzaldehyd, 6 Nitro veratrumaldehyd $C_9H_9O_5N=(CH_3 \cdot O)_2C_9H_9(NO_2)$ · CHO (H 262; E I 610). Löst sich in kalter konzentrierter Schwefelsäure mit roter Farbe (Oberlin, Ar. 1925, 650). Gibt beim Behandeln mit Kalilauge und Aceton eine intensiv rote Färbung (De Lange, R. 45, 50). Liefert bei der Einw. von Salpeterschwefelsäure 3.4.5-Trinitro-veratrol (De L., R. 45, 49).
- 6-Nitro-3-methoxy-4-äthoxy-benzaldehyd, 6-Nitro-vanillin-äthyläther C₁₀H₁₁O₈N, Formel III. B. Aus Vanillinäthyläther beim Behandeln mit starker Salpetersäure (Barger, Silberschmidt, Soc. 1928, 2927). F: 159—160°. Im Vakuum bei 130—140° sublimierbar.
- 6-Nitro-3.4-dimethoxy-benzaldoxim, 6-Nitro-veratrumaldoxim $C_9H_{10}O_5N_2=(CH_2\cdot O)_2$ $C_6H_2(NO_2)\cdot CH:N\cdot OH$ (E I 611). B. Aus 6-Nitro-veratrumaldehyd und Hydroxylaminhydrochlorid in wäßrig-alkoholischer Natronlauge (Brady, Manjunath, Soc. 125, 1066). Läßt sich nicht in ein stereoisomeres Oxim umlagern.

- 6 Nitro 3.4 dimethoxy benzaldoxim 0 acetat, 6 Nitro veratrumaldoxim 0 acetat C₁₁H₁₂O₂N₂ = (CH₂·O)₂C₆H₂(NO₂)·CH:N·O·CO·CH₂. B. Aus 6-Nitro-3.4-dimethoxy-benzaldoxim bei der Einw. von Acetanhydrid (Brady, Manunath, Soc. 125, 1066). Hellgelbe Blättchen (aus Alkohol). F: 152°. - Liefert bei der Hydrolyse mit 2n-Natronlauge wieder 6-Nitro-veratrumaldoxim.
- 6.6' Dinitro 3.4.3'.4' tetramethoxy benzaldazin, 6.6' - Dinitro - veratrumaldazin $C_{18}H_{18}O_8N_4=(CH_3\cdot O)_2C_6H_2(NO_3)\cdot CH:N\cdot N:CH\cdot C_6H_2(NO_2)(O\cdot CH_3)_2$. Gelbe Nadeln (aus Eisessig). Zersetzt sich bei 263° (DE LANGE, R. 45, 49). Schwer löslich in Alkohol, Petroläther, Aceton, Benzol und Eisessig, löslich in Chloroform.
- 6-Nitro-veratrumaldehyd-semicarbazon $C_{10}H_{12}O_8N_4=(CH_3\cdot O)_2C_6H_2(NO_2)\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Gelbe Krystalle (aus Benzylacetat). F: 246° (DE LANGE, R. 45, 50), Schwer löslich in Alkohol, Chloroform, Petroläther und Benzol, ziemlich leicht in siedendem Aceton, Eisessig und Benzylacetat.
- 5-Brom-2-nitro-4-oxy-3-methoxy-benzaldehyd, 5-Brom-2-nitro-vanillin C₈H₆O₅NBr, Formel I. B. Durch Nitrierung von nicht näher beschriebenem 5-Brom-vanillin-acetat mit rauchender Salpetersäure bei 25-30° und nachfolgende Verseifung (RAIFORD, STOESSER, Am. Soc. 50, 2559). Aus 2-Nitro-vanillin und Brom in Eisessig in Gegenwart von Jod (R., St., Am. Soc. 50, 2559). — Prismen (aus Benzol). F: 150—151°.

I.
$$\underbrace{\begin{array}{c} \dot{\mathbf{C}}\mathbf{HO} \\ \dot{\mathbf{N}O_2} \\ \dot{\mathbf{O}} \cdot \mathbf{CH_3} \end{array}}_{\mathbf{OH}} \quad \mathbf{II.} \quad \underbrace{\begin{array}{c} \dot{\mathbf{C}}\mathbf{HO} \\ \dot{\mathbf{N}O_2} \\ \dot{\mathbf{O}} \cdot \mathbf{CH_3} \end{array}}_{\mathbf{OH}}$$

- 5-Brom-2-nitro-3-methoxy-4-acetoxy-benzaldehyd, 5-Brom-2-nitro-vanillin-acetat $C_{10}H_8O_6NBr=(CH_8\cdot CO\cdot O)C_6HBr(NO_2)(O\cdot CH_3)\cdot CHO.$ B. Durch Nitrierung von 5-Brom-vanillin-acetat mit rauchender Salpetersäure bei 25—30° (Raiford, Stoesser, Am. Soc. 50, 2559). Körnehen (aus Benzol + Ligroin). Wird am Licht gelb. F: 128°.
- 6-Brom-2-nitro-4-oxy-3-methoxy-benzaldehyd, 6-Brom-2-nitro-vanillin $C_8H_4O_5NBr$, Formel II. B. Durch Nitrierung von nicht näher beschriebenem 6-Brom-vanillin-acetat mit rauchender Salpetersäure bei 0—6° und nachfolgende Verseifung (RAIFORD, STOESSER, Am. Soc. 50, 2561). — Gelbliche Nadeln (aus verd. Essigsäure). F: 168—170°.
- 6. 3.5 Dioxy benzaldehyd $C_7H_6O_3$, s. nebenstehende Formel. B. сно Durch Verseifung von 3.5-Bis-carbomethoxyoxy-benzaldehyd mit wäßrigalkoholischer Natronlauge in Wasserstoff-Atmosphäre bei Zimmertemperatur (MAUTHNER, J. pr. [2] 101, 94). — Nadeln (aus Essigester + Ligroin). F: 145° bis 146°. Leicht löslich in Alkohol und Äther, schwer in Benzol und Ligroin. Löst sich in konz. Schwefelsäure mit rotvioletter Farbe.
- 3-0xy-5-methoxy-benzaldehyd $C_8H_8O_3=CH_3\cdot O\cdot C_6H_3(OH)\cdot CHO$. B. Durch Hydrierung von 3-Methoxy-5-carbomethoxyoxy-benzoylchlorid in Gegenwart von Palladium-Bariumsulfat in Toluol bei 110° und Verseifung des entstandenen 3-Methoxy-5-carbomethoxyoxy-benzaldehyds mit wäßrig-alkoholischer Natronlauge in Wasserstoff-Atmosphäre (MAUTHNER, J. pr. [2] 116, 318). — Nadeln (aus Wasser). F: 130—131°. Leicht löslich in Alkohol, Eisessig und Benzol, schwer in Ligroin. — 4-Nitro-phenylhydrazon. F: 221—222°.
- 3.5-Dimethoxy-benzaldehyd $C_0H_{10}O_3=(CH_3\cdot O)_2C_0H_3\cdot CHO$. B. Durch Oxydation von 3.5-Dimethoxy-benzylalkohol mit Kaliumdichromat in verd. Schwefelsäure (MAUTHNER, J. pr. [2] 100, 180). Durch Hydrierung von 3.5-Dimethoxy-benzoylchlorid in Gegenwart von Palladium-Bariumsulfat in Xylol bei 1400 (M., J. pr. [2] 100, 180). Durch kurzes Behandeln von [3.5-Dimethoxy-benzoesäure]-anilid mit Phosphorpentachlorid in Toluol und Reduktion des erhaltenen sirupösen 3.5-Dimethoxy-benzoesäure-phenylimidchlorids mit Zinn(II)-chlorid und Chlorwasserstoff in Äther (Asahina, Matsuzaki, J. pharm. Soc. Japan 1924, Nr. 509, S. 1; C. 1925 I, 1713). — Krystalle (aus 70% igem Alkohol oder Ligroin). F: 45,5° (A., M.), 45—46° (M.). Kp₁₆: 151° (M.). Sehr schwer löslich in warmem Wasser, leicht in Alkohol und Benzol und in warmem Petroläther (M.). — 4-Nitro-phenylhydrazon. F: 183—1840 (M., J. pr. [2] 100, 181).
- 3.5 Bis carbomethoxyoxy benzaldehyd $C_{11}H_{10}O_7 = (CH_3 \cdot O_3C \cdot O)_3C_6H_3 \cdot CHO$. B. Durch Hydrierung von 3.5-Bis-carbomethoxyoxy benzoylohlorid in Gegenwart von Palladium-Barium-sulfat in Toluol bei 1100 (MAUTHNER, J. pr. [2] 101, 94). Krystalle (aus Benzol). F: 1540 bis 155°. Leicht löslich in Alkohol und Aceton, schwer in kaltem Benzol. — Das 4-Nitrophenylhydrazon schmilzt bei 222-223°.
- 3.5-Dimethoxy-benzaldoxim $C_0H_{11}O_3N=(CH_3\cdot O)_1C_0H_3\cdot CH:N\cdot OH$. Nadeln (aus Ligroin). F: 119—120° (Mauthner, J. pr. [2] 100, 182), 115° (Asahina, Matsubaki, J. pharm. Soc. Japan 1924, Nr. 509, S. 1; C. 1925 I, 1713). Leicht löslich in Alkohol, Ather und Benzol (M.).

- 3.5 Diexy benzaldehyd semicarbazen $C_8H_9O_2N_9=(HO)_2C_9H_3\cdot CH:N\cdot NH\cdot CO\cdot NH_2.$ Nadeln (aus Wasser). F: 223—224° (Zers.) (MAUTHNER, J. pr. [2] 101, 95). Leicht löslich in Alkohol und Aceton, sehr schwer in Benzol.
- 3 Oxy 5 methoxy benzaldehyd semicarbazon $C_9H_{11}O_3N_3 = CH_3 \cdot O \cdot C_9H_3(OH) \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Nadeln (aus Wasser). F: 197—198° (MAUTHNER, J. pr. [2] 116, 319). Leicht löslich in Alkohol und Aceton, sehr schwer in Benzol.
- 3.5 Dimethoxy benzaldehyd semicarbazon $C_{10}H_{13}O_3N_3=(CH_3\cdot O)_3C_6H_3\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Nadeln (aus Wasser). F: 177—178° (MAUTHNER, J. pr. [2] 100, 182). Leicht löslich in Alkohol und siedendem Benzol, schwer in Ligroin, unlöslich in Petroläther.
- 2(oder 4)-Chlor-3.5-dimethoxy-benzaldehyd C_oH_oO₃Cl = (CH₃·O)₃C_oH_aCl·CHO. B. Neben anderen Produkten bei längerem Erhitzen von [3.5-Dimethoxy-benzoesäure]-anilid mit PCl_x in Toluol und Zersetzen des Reaktionsprodukts mit Säuren (Asahina, Matsuzaki, J. pharm. Soc. Japan 1924, Nr. 509; S. 1; C. 1925 I, 1713). Krystalle. F; 128—129°. Gibt mit konz. Schwefelsäure eine blaue Färbung. Gibt ein bei 102—108° schmelzendes Oxim.

7. 5-Oxy-3-methyl-benzochinon-(1.2) C₂H₄O₂, Formel I.

- 5-Methoxy-3-methyl-benzochinon-(1.2)-imid-(2) C₈H₆O₂N, Formel II. B. Beim Schütteln einer Suspension von 2-Amino-3-oxy-5-methoxy-toluol in absol. Äther mit Silberoxyd und wasserfreiem Natriumsulfat (Henrich, Herold, B. 61, 2347). Orangegelbe Krystalle (aus Petroläther). F: 61°. Leicht löslich in kaltem Alkohol, Äther, Benzol und Chloroform, löslich in siedendem Petroläther. Löst sich in Wasser unter vorübergehender Gelbfärbung und Abscheidung von 1-Amino-4-methoxy-2.5-dimethyl-phenoxazon-(7) (Syst. Nr. 4382). Löst sich in Natronlauge mit orangeroter Farbe; die Lösung scheidet einen roten Niederschlag aus. Liefert bei der Reduktion mit Zinn(II)-chlorid und Salzsäure das Hydrochlorid des 2-Amino-3-oxy-5-methoxy-toluols und eine rote, in Wasser unlösliche Verbindung. Gibt mit Pikrinsäure in Äther einen fast schwarzen Niederschlag.
- 5-Oxy-3-methyl-benzochinon-(1.2)-oxim-(2) $C_7H_7O_3N = (CH_3)(HO)C_6H_3(:O):N\cdot OH.$ Vgl. 6-Oxy-2-methyl-benzochinon-(1.4)-oxim-(1), S. 293.

8. 3-Oxymethyl-benzochinon-(1.2) C₇H₆O₂, Formel III.

4-Nitroso-6-nitro-3-oxymethyl-benzochinon-(1.2)-oxim-(2) $C_7H_5O_6N_3$, Formel IV. B. In geringer Menge neben 3-Nitroso-5-nitro-2-oxymethyl-benzochinon-oxim-(1) (8. 293) bei langdauerndem Belichten von gepulvertem 2.4.6-Trinitro-toluol (SCHULTZ, GANGULY, B. 58, 705). Beim Aufbewahren einer Lösung von 3-Nitroso-5-nitro-2-oxymethyl-benzochinon-oxim-(1) in Aceton (SCH., G., B. 58, 702, 706). — Schwarz. Ist bis 280° nicht geschmolzen. Unlöslich in Benzol, Äther, Chloroform und kaltem Aceton, löslich in Wasser mit roter Farbe. — Liefert beim Kochen mit Acetanhydrid und wasserfreiem Kaliumacetat [2.6-Dinitroso-4-nitro-3-acetoxy-benzyl]-acetat (E II 6, 882). — Färbt Wolle rot.

9. 3-Oxy-2-methyl-benzochinon-(1.4), 3-Oxy-toluchinon C,H,O,, Formel V.

3-Oxy-2-methyl-benzochinon-(1.4)-oxim-(4), 3-Oxy-toluchinon-oxim-(4) bzw. 3-Nitroso-2.6-dioxy-toluol, 4-Nitroso-2-methyl-resorcin C₇H₇O₂N, Formel VI bzw. VII. B. Aus 2.6-Dioxy-toluol und Isoamylnitrit in alkoh. Kalilauge unter Eiskühlung (Henrich, Herold, B. 60, 2054). — Gelbe Nadeln (aus Benzol). F: 147°. Leicht löslich in Alkohol, Aceton und Eisessig, schwer in Petroläther. Löst sich in Alkalien und in konz. Salzsaure mit rotgelber Farbe. — Liefert beim Einleiten von Chlorwasserstoff in die Suspension in Äther eine chlorhaltige Verbindung, die sich in Alkali mit violetter Farbe löst. — Kaliumsalz KC₇H₄O₂N. Krystalle (aus verd. Alkohol). Leicht löslich in Wasser, schwer in Alkohol, unlöslich in Äther. Die wäßr. Lösung gibt mit Schwermetallsalzen Niederschläge.

10. 5 - Oxy - 2 - methyl - benzochinen - (1.4), 5 - Oxy - toluchinen C₇H₄O₂, Formel VIII auf S. 292.

5-0xy-2-methyl-benzochinon-(1.4)-oxim-(4), 5-0xy-toluchinon-oxim-(4) bzw. 5-Nitroso-2.4-dioxy-toluol, 5-Nitroso-kresorein C₇H₇O₂N, Formel IX bzw. X. B. Durch Einw. von Iso-amylnitrit auf 2.4-Dioxy-toluol in alkoh. Kalilauge unter Kühlung (Henrich, B. 55, 3915). — Heligelbes, krystallines Pulver (aus verd. Alkohol). Färbt sich bei 146° dunkel und zersetzt sich bei 175—180°. Leicht löslich in kaltem Aceton und Alkohol, schwer in Wasser, sehr schwer in kaltem Benzol, Chloroform und Äther. — Gibt die Liebermannsche Nitrosoreaktion. Liefert ein bei 146—153° schmelzendes Dibenzoat. — Kaliumsalz. Rote Krystalle.

11. 6-Oxy-2-methyl-benzochinon-(1.4), 6-Oxy-toluchinon C7H4O2, Formel XI.

6-Methoxy-2-methyl-benzochinon-(1.4)-imid-(1), 6-Methoxy-toluchinon-imid-(1) C₈H₉O₂N, Formel XII. B. Beim Schütteln einer Lösung von 2-Amino-5-oxy-3-methoxy-toluol in absol. Äther mit Silberoxyd und wasserfreiem Natriumsulfat (Henrich, Herold, B. 61, 2345). — Gelbe Nadeln (aus Äther oder Petroläther). F: 111°. Der Staub reizt stark zum Niesen. Löst sich in den meisten organischen Lösungsmitteln und in kaltem Wasser mit gelber Farbe. — Die wäßr. Lösung liefert beim Aufbewahren bei Zimmertemperatur eine blaßgelbe Verbindung vom Schmelzpunkt 130°, beim Kochen unter Ammoniakabspaltung ein braunes Produkt, das bei 280° noch nicht schmilzt und in Säuren löslich ist. Aus der rotgelben Lösung in Natronlauge scheiden sich dunkle Flocken ab. Über Produkte, die bei der Einw. von Schwefeldioxyd auf die wäßrige oder ätherische Lösung entstehen, vgl. H., H., B. 61, 2346. Gibt in alkal. Phenollösung allmählich eine blaue Färbung; Resorcin in wenig Alkali gibt sofort eine blaue, Orcin eine intensiv rote, Kresorcin eine violette Färbung. Bildet beim Einleiten von Schwefeldioxyd in eine wäßr. Lösung Krystalle einer stickstoffhaltigen, in Wasser sehr schwer löslichen Verbindung. — Gibt mit Salzsäure, Salpetersäure und Schwefelsäure unbeständige, tiefgelb gefärbte Salze. — Pikrat. Intensiv gelb.

6-0xy-2-methyl-benzochinon-(1.4)-oxim-(1), 6-0xy-toluchinon-oxim-(1) bzw. 5-0xy-3-methyl-benzochinon-(1.2)-oxim-(2) bzw. 2-Nitroso-3.5-dioxy-toluol, Nitroso-orcin $C_7H_7O_3N$, Formel XIII bzw. XIV bzw. XV (H 264; E I 612). Auffassung der H 264 beschriebenen Formeln als stereoisomere 6-0xy-toluchinon-oxime-(1) (Formel XIII): Hodgson, Moore, Soc. 123, 2502.

12. 2-Oxymethyl-benzochinon-(1.4), 2'-Oxy-toluchinon C,H₄O₂, Formel XVI.

3-Nitroso - 5-nitro - 2-oxymethyl-benzochinon - oxim-(1), 3-Nitroso - 5-nitro - 2¹-oxy-toluchinon-oxim-(1) C₇H₈O₈N₃, Formel XVII. B. In geringer Menge neben 4-Nitroso-6-nitro-3-oxymethyl-benzochinon-(1.2)-oxim-(2) (8. 292) bei langdauerndem Belichten von gepulvertem 2.4.6-Trinitro-toluol (SCHULTZ, GANGULY, B. 58, 705). — Braun, sehr hygroskopisch. Leicht löslich in kaltem Wasser und Aceton, unlöslich in Chloroform, Äther und Benzol. — Zersetzt sich beim Kochen in Alkohol. Löst sich im Gemisch mit Phenol in konz. Schwefelsäure mit roter Farbe, die sich auf Zusatz von überschüssiger konzentrierter Natronlauge vertieft. Liefert bei kurzem Kochen mit Acetanhydrid und wasserfreiem Natriumacetat [2.6-Dinitroso-4-nitro-3-acetoxy-benzyl]-acetat. Lagert sich in Acetonlösung teilweise in 4-Nitroso-6-nitro-3-oxymethyl-benzo-chinon-(1.2)-oxim-(2) um. — Färbt Wolle rot. [Delitzsch]

3. Oxy-oxo-Verbindungen C,H,O,.

1. 2.3-Dioxy-1-acetyl-benzol, 2.3-Dioxy-acetophenon, 3-Acetyl-CO-CH₂ brenzcatechin C₂H₂O₂, s. nebenstehende Formel (R = H).

2-Oxy-3-methexy-acetophenon, o-Acetovanillon C_pH_{1e}O₃, s. nebenstehende .OR Formel (R = CH₂). B. Beim Kochen von 2.3-Dimethoxy-acetophenon mit Aluminium-chlorid in Toluol (REICHSTEIN, Helv. 10, 396). In geringer Menge neben Acetovanillon (S. 298) und Isoacetovanillon (S. 298) bei kurzem Kochen von Guajacolacetat mit Acetanhydrid und

Zinkehlerid (R., Helv. 10, 395). — Hellgelbe Nadeln (aus Äther + Pentan). F: 53—54°. Löslich in Äther. Die Lösungen in Alkalilaugen und in Sodalösung sind gelb; läßt sich aus Sodalösung durch Äther extrahieren.

- 2. 2.4-Dioxy-1-acetyl-benzol, 2.4-Dioxy-acetophenon,
 4-Acetyl-resorcin, Resacetophenon, Methyl-[2.4-dioxyphenyl]-keton C₈H₈O₃, s. nebenstehende Formel (H 266; E I 613).
 Stellungsbezeichnung in den von Resacetophenon abgeleiteten Namen
 s. nebenstehende Formel. B. Bei der Einw. von Acetylchlorid und Aluminiumchlorid auf
 eine Lösung von Resorcin in Nitrobenzol (Rosenmund, Schulz, Ar. 265, 318). Zur Bildung

s. nebenstehende Formel. — B. Bei der Einw. von Acetylchlorid und Aluminiumchlorid auf eine Lösung von Resorcin in Nitrobenzol (Rosenmund, Schulz, Ar. 265, 318). Zur Bildung aus Resorcin und Acetonitril nach Hoesch (B. 48, 1125; EI 613) vgl. Slater, Stephen, Soc. 117, 311; Houben, B. 59, 2887. Entsteht neben anderen Verbindungen beim Kochen von salzsaurem 2.4-Dioxy-2'.4'-diacetoxy-benzophenon-imid mit 25% iger Schwefelsäure (Shoesmith, Haldane, Soc. 125, 114). — F: 140—141° (Johnson, Lane, Am. Soc. 48, 356), 142° (Ro., Schu.), 143° (Bauer, Schoder, Ar. 259, 57; Prieffer, Wang, Z. ang. Ch. 40, 989). Thermische Analyse des binären Systems mit 1.4-Dimethyl-2.5-dioxo-piperazin (Additionsverbindungen 2C₈H₈O₂ + C₆H₁₀O₂N₂, F: 125°, und C₆H₈O₂ + C₆H₁₀O₂N₂, F: 118°; Eutektika bei 119°, 117° und 106° und 33, 42 und 61 Gew. % Resacetophenon): Pr., W., Z. ang. Ch. 40, 985, 989. Ultraviolett-Absorptionsspektrum in alkoh. Lösung: Tasaki, Acta phytoch. 3, 270; C. 1927 II, 1949.

Beim Einleiten von Chlorwasserstoff in eine geschmolzene Mischung von Resacetophenon und Resorcin bei 140—170° entsteht 3.6-Dioxy-9-methyl-xanthyliumchlorid (Syst. Nr. 2422) (Atkinson, Heilbron, Soc. 1926, 682). Bei der Umsetzung mit Benzaldehyd in wäßrig-methylalkoholischer Kalilauge bei 65° erhält man 7-Oxy-flavanon-(4) und (2.4-Dioxy-phenyl]-styrylketon (Ellison, Soc. 1927, 1722). Resacetophenon liefert beim Erhitzen mit Benzoesäureanhydrid und Natriumbenzoat und Verseifen des Reaktionsproduktes mit alkoh. Kalilauge 7-Oxy-flavon (Allan, Robinson, Soc. 125, 2193; Robinson.

7-Oxy-flavon (Allan, Robinson, Soc. 125, 2193; Robinson, Venkataraman, Soc. 1926, 2345). Gibt mit etwas mehr als ¹/₂ Mol Benzoesäure bei Gegenwart von Zinkchlorid bei 140° CH₃·CO bis 145° 6-Oxy-9-phenyl-2.7-diacetyl-fluoron (s. nebenstehende

HO CH₃·CO·CH₃

C₆H₅

Formel; Syst. Nr. 2562) (CHARRAVARTI, Am. Soc. 46, 684);
reagiert analog mit anderen aromatischen Säuren (Ch.). Bei ca. 30-stdg. Erhitzen mit Natriumphenylacetat und Acetanhydrid erhält man 7-Acetoxy-4-methyl-3-phenyl-cumarin (Syst. Nr. 2515) (BARGELLINI, R. A. L. [6] 2, 262). Gibt beim Erhitzen mit Anissäureanhydrid und Natriumanisat 7-Oxy-4'-methoxy-flavon (Syst. Nr. 2536), eine in Nadeln vom Schmelzpunkt 290—291° krystallisierende Verbindung und eine Verbindung, die beim Acetylieren in orangegelbe Prismen vom Schmelzpunkt 171—172° übergeht (ROBINSON, VENKATARAMAN, Soc. 1926, 2346). Liefert mit α-Methoxymethylen -acetessigsäure - methylester oder α-Äthoxymethylen -acetessigsäure-äthylester in Natriumäthylat-Lösung auf dem Wasserbad 7-Oxy-3.6-diacetyl-cumarin (Syst. Nr. 2555) und geringe Mengen einer Verbindung C₁₀H₁₄O₆ (graue Nadeln aus Alkohol, F: 192—197°) (Weiss, Woidich, M. 47, 431; Weiss, Merksammer, M. 50, 119).

E I 613, Z. 6-5 v. u. streiche "Liefert mit konz. Salpetersäure... (ADAMS, Am. Soc. 41, 264)".

Resacctophenon gibt mit pararosanilinschwefliger Säure sehr langsam eine violette Färbung (Shobsmith, Sosson, Hetherington, Soc. 1927, 2223). — Das Phenylhydrazon schmilzt bei 158° (Sh., Haldane, Soc. 125, 114).

2-Oxy-4-methoxy-acetophenon, Resacetophenon-4-methyläther, Päonol C₉H₁₀O₃ = CH₃* O·C₄H₃(OH)·CO·CH₃ (H 267; E I 614). B. Aus dem Harz verschiedener Xanthorrhoea-Arten beim Lösen in konz. Natronlauge und Destillieren mit Wasserdampf (Rennie, Cooke, Finlayson, Soc. 117, 341; F.; Soc. 1926, 2763, 2765). Zur Bildung aus Resacetophenon und Dimethylsulfat in alkal. Lösung vgl. Lindemann, Könitzer, Romanoff, A. 456, 304. — F: 51,3° (Pfeiffer, Wang, Z. ang. Ch. 40, 990). Kp₂₀: 158° (R., C., F.). Verbrennungswärme bei konstantem Volumen: 1060,1 kcal/Mol (Roth, Banse in Landolt-Börnst. E II, 1639). Leicht löslich in den meisten organischen Lösungsmitteln, sehr schwer in kaltem Wasser, leicht in Alkalilaugen, unlöslich in Sodalösung und Ammoniak (R., C., F.). Thermische Analyse des binären Systems mit 1.4-Dimethyl-2.5-dioxo-piperazin (Eutektikum bei 42,3° und 11 Gew.-% Päonol): Pr., W., Z. ang. Ch. 40, 985, 990. — Liefert bei ca. 30-stündigem Erhitzen mit phenylessigsaurem Natzium und Acetanhydrid 7-Methoxy-4-methyl-3-phenyl-cumarin (Syst. Nr. 2515) (Bargellini, R. A. L. [6] 2, 263). Gibt mit diazotiertem Anilin in sehr verd. Natronlauge 5-Benzolazo-2-oxy-4-methoxy-acetophenon (Sonn, B. 54, 358).

Salze und additionelle Verbindungen des Pilonois.

Zur Konstitution der Salze vgl. Pfeiffer, Golther, Angern, B. 60, 305, 308. — Dipäonolkupfer Cu(C₂H₂O₃)₂. B. Beim Kochen von Päonol mit Kupfersulfat in wäßrigalkoholischem Ammoniak (Pf., Go., A., B. 60, 312). Grünes Pulver. Krystallisiert aus Pyridin mit 2 Mol Pyridin, aus Anilin mit 1 Mol Anilin. Mit grüner Farbe löslich in Pyridin, Chloroform und Anilin, sehr schwer löslich in Benzol und Aceton, unlöslich in Alkohol, Äther, Schwefelkohlenstoff und Tetrachlorkohlenstoff.

ZrCl(C,H₂O₂)₂. B. Aus Pāonol und Zirkontetrachlorid in siedendem Benzol (Jantsch, J. pr. [2] 115, 22). Hellgelbe Nadeln. F: 247—249° (Zers.). — ZrCl₂(C₂H₂O₂)₂. B. Aus Pāonol und Zirkontetrachlorid in siedendem Äther (Ja.). Gelbliche Krystalle. F: 185° (Zers.). — C₂H₁₀O₃ + ZrCl₄. B. Aus den Komponenten in Åther bei —10° (JA.). Krystalle. Zersetzt sich bei —10°.— SnCl₃(C₂H₂O₃) (E I 614 als Verbindung C₂H₂O₃Cl₃Sn bezeichnet). Zum Mol.-Gew. und zur Konstitution vgl. Pfeiffer, B. 60, 115; Pf., Golther, Angern, B. 60, 305.

Tripäonolkobalt Co(C₂H₂O₃)₃ + CHCl₂. B. Aus [Co(NH₂)₅Cl]Cl₂ und 3 Mol Päonol in siedendem Wasser (Pfeiffer, Golther, Angern, B. 60, 309). Grüne Krystalle (aus Chloro-

form + Petrolather). Löslich in Anilin, Pyridin und Benzol mit grüner Farbe, ziemlich schwer löslich in Alkohol und Äther, unlöslich in Ligroin; die Lösung in Anilin wird beim Erwarmen

Päonolo-diäthylendiamin-kobalt (III)-salze [Coen₂(C₂H₂O₂)]Ac₂ (Pfelffer, GOLTHER, ANGERN, B. 60, 309-312). Die Salze zersetzen sich beim Erwärmen in Wasser unter GOLTHER, ANGERN, B. 60, 505—512). Die Salze zersetzen sich beim Erwarmen in Wasser unter Bildung von Triäthylendiaminkobalt(III)-salzen [Coen₃(Ac₃. — Bromid [Coen₃(C₂H₂O₃)]Br₂ + H₂O. a) Inaktive Form. B. Aus cis-[Coen₃(OH₃)(OH)]Br₃ und Päonol in verd. Alkohol auf dem Wasserbad (Pr., Go., A.). Aus cis-[Coen₃(OH₂)Cl]SO₄ durch Erwärmen mit Alkali, Neutralisieren mit verd. Salzsäure, Kochen mit Päonol in Alkohol und Umsetzen mit Natrium-bromid (Pr., Go., A.). Rotbraune Nadeln (aus Wasser). Läßt sich mit Hilfe von d-Weinsäure in die optisch aktiven Komponenten spalten. — b) Linksdrehende Form. B. Aus l-Päonolodiäthylendiamin-kobalt(III)-d-tartrat und Natriumbromid in Wasser (Pf., Go., A.). Braunrote Krystalle. $[\alpha]_{int}^{in}$: $-175,7^{\circ}$. — Jodid $[\text{Coen}_{2}(C_{2}H_{2}O_{3})]I_{2}+H_{2}O$. Dunkelbraune Krystalle (aus Wasser). — Chlorat $[\text{Coen}_{2}(C_{2}H_{2}O_{3})](\text{ClO}_{3})_{2}$. Braunrote Krystalle (aus Wasser). — Perchlorat Wasser). — Chlorat [Coen₂(C₂H₂O₃)](ClO₃). Braumote Krystalie (aus Wasser). — Letellotae [Coen₂(C₂H₂O₃)](ClO₄). Rote Krystalie (aus Wasser). — Dithionat [Coen₂(C₂H₃O₃)]S₂O₆. Hellrote Blättchen (aus Wasser). — 1-Päonolo-diäthylendiamin-kobalt (III)-d-tartrat [Coen₂(C₂H₃O₃)](C₄H₄O₅) + 2 H₂O. B. Aus dl-Päonolo-diäthylendiamin-kobalt (III)-bromid und Silber-d-tartrat in Wasser (Pf., Go., A.). Braungelbe Krystalle. [a]¹⁰₁₀₁: —139,4°. Dipāonolnickel Ni(C₂H₂O₃)₂. B. Analog Dipāonolkupfer (s. o.) (Pfeiffer, Golther, Anderson, B. 60, 313). Hellgrünes Pulver. Krystallisert aus Pyridin mit 2 Mol Pyridin, aus Anderson aus Anderson aus Anderson mit is nach der Kon-

Anilin mit 1 Mol Anilin. Leicht löslich in Pyridin, Anilin und Chloroform mit je nach der Konzentration gelbgrüner bis goldgelber Farbe; sehr schwer löslich in Alkohol, unlöslich in Äther.

- 2.4 Dimethoxy acetophenon, Resacetophenon dimethyläther $C_{10}H_{12}O_3 = (CH_3 \cdot O)_2C_6H_3$. CO CH₃ (H 267; EI 614). B. In ca. 80% iger Ausbeute bei langsamer Zugabe von 1 Mol Acetanhydrid zu einer Lösung von Resorcindimethyläther in Schwefelkohlenstoff bei Gegenwart von Aluminium chlorid unter Kühlung (NOLLER, ADAMS, Am. Soc. 46, 1892). Zur Bildung aus Resorcindimethyläther und Acetylchlorid bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (H 267) vgl. a. MAUTHNER, J. pr. [2] 119, 314. Beim Behandeln von Resorcindimethyläther und Acetonitril in Äther mit Chlorwasserstoff und Erwärmen des Reaktionsprodukts mit Wasser (Shinoda, J. pharm. Soc. Japan 1927, 111; C. 1928 I, 333). — F: 39—40° (korr.) (N., A.), 40° (M.). Kp₇₃₆: 298,5° (korr.); Kp₇: 157,5° (korr.) (N., A.); Kp₁₈: 163—165° (M.).
- 2 Oxy 4 äthoxy acetophenon , Resacetophenon 4 äthyläther $C_{16}H_{13}O_{2}=C_{2}H_{5}\cdot O\cdot C_{4}H_{5}(OH)\cdot CO\cdot CH_{3}$ (H 268). F: 50° (Tasaki, Acta phytochim. 3, 269; C. 1927 II, 1949). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: T.
- 4-Methoxy-2-acetoxy-acetophenon, Resacetophenon-4-methyläther-2-acetat, Päonolacetat $C_{11}H_{12}O_4 = CH_3 \cdot O \cdot C_6H_3(O \cdot CO \cdot CH_3) \cdot CO \cdot CH_3$ (H 268). F: 44-45° (Rennie, Cooke, Fin-LAYSON, Soc. 117, 342), 46-470 (LINDEMANN, KÖNITZER, ROMANOFF, A. 456, 308).
- 2.4 Dioxy acetophenon imid , Resacetophenon imid $C_8H_9O_2N = (HO)_2C_6H_3 \cdot C(:NH) \cdot CH_3$. B. Das Hydrochlorid entsteht beim Einleiten von Chlorwasserstoff in eine Lösung von Resorcin und Acetonitril in wenig Äther unter Kühlung (Houben, B. 59, 2887; vgl. Hoesch, B. 48 [1915], 1125; SLATER, STEPHEN, Sec. 117, 311). — Krystalle. Schwärzt sich oberhalb 200°, sersetzt sich bei 239° (Hov.). Unlöslich in Wasser, Alkohol und Äther. Reagiert stark alkalisch. — Gibt mit verd. Salzsaure das Hydrochlorid, mit konz. Salzsaure Resacctophenon (Hou.). Mit Hydroxylaminhydrochlorid entsteht Resacetophenon-oxim (Hou.). — C. H.O.N. + HCl. Blaßgrüne Nadeln (aus Eisessig oder Ather + Alkohol). F: 228° (Zers.) (Hou.). Löslich in hydroxylhaltigen, unlöslich in hydroxylfreien Lösungsmitteln, fast unlöslich in verd. Salzsaure. Wird durch kons. Salzsaure zersetzt. — 2C₂H₂O₂N + H₂SO₄. In Wasser sehr viel schwerer löslich als das Hydrochlorid (Hou.).

- 2.4-Diexy-acetophenon-exim, Resacetophenon-exim C₈H₉O₈N = (HO)₂C₈H₃·C(CH₃): N·OH (H 269). B. Aus Resacetophenonimid und Hydroxylaminhydrochlorid (Houben, B. 59, 2887). Krystalle (aus Wasser oder Benzol). F: 209° (Lindemann, Könitzer, Romanoff, A. 456, 301), 213—215° (korr.) (Houben, Priv.-Mitt.). Löslich in kaltem Alkohol und Eisessig und in heißem Wasser und Benzol (L., K., R.). Löst sich unverändert in konz. Schwefelsäure (L., K., R.).
- 2.4 Dioxy acetophenon oximacetat, Resacetophenon oximacetat $C_{10}H_{11}O_4N = (HO)_2C_6H_3 \cdot C(CH_3) : N \cdot O \cdot CO \cdot CH_2$. Ist nicht identisch mit der H 269 als Acetat des Resacetophenonoxims abgehandelten Verbindung. B. Aus Resacetophenon-oxim durch Verreiben mit überschüssigem Acetanhydrid (Lindemann, Könitzer, Romanoff, A. 456, 302). Nadeln (aus Benzol). F: 127°. Löslich in kaltem Alkohol und Eisessig und in heißem Benzol und Toluol, schwer löslich in Benzin. Ist gegen verd. Säuren beständig. Liefert beim Erhitzen auf 145°, beim Behandeln mit Natronlauge sowie beim Erwärmen mit konz. Sodalösung 6-Oxy-2-methyl-benzoxazol (Syst. Nr. 4222).
- 2-0xy-4-methoxy-acetophenon-oxim, Resacetophenon-4-methyläther-oxim, Päonoloxim $C_0H_{11}O_2N=CH_3\cdot O\cdot C_0H_2(OH)\cdot C(CH_2):N\cdot OH$ (H 269). Blättchen (aus Wasser). F: 130' (LINDEMANN, KÖNITZER, ROMANOFF, A. 456, 304). Löslich in heißem Wasser und Eisessig.
- 2-Oxy-4-methoxy-acetophenon-oximacetat, Päonoi-oximacetat $C_{11}H_{13}O_4N=CH_3\cdot O\cdot C_6H_8(OH)\cdot C(CH_9):N\cdot O\cdot CO\cdot CH_8$. B. Aus Päonoloxim durch Einw. von Acetanhydrid (Lindemann, Könitzer, Romanoff, A. 456, 304). Nadeln (aus Alkohol). F: 123°. Sehr schwer löslich in Wasser, leichter in Alkohol, Eisessig und Benzol. Liefert beim Behandeln mit 1 Mol verd. Natronlauge 6-Methoxy-2-methyl-benzoxazol (Syst. Nr. 4222).
- ω-Chlor-2.4-dioxy-acetophenon, ω-Chlor-resacetophenon, 4-Chloracetyl-resorcin $C_0H_7O_3Cl = (HO)_9C_6H_3 \cdot CO \cdot CH_9Cl$ (Ε I 615). B. Bei der Umsetzung von Resorcin mit Chloracetimid-chlorid bei 50—60° und nachfolgenden Hydrolyse (Stephen, Soc. 117, 1529).
- ω-Chlor-2.4-diacetoxy-acetophenon, ω-Chlor-resacetophenon-diacetat $C_{12}H_{11}O_5Cl = (CH_3 \cdot CO \cdot O)_2C_6H_3 \cdot CO \cdot CH_2Cl$. B. Aus 2.4-Diacetoxy-benzoylchlorid und Diazomethan in Ather (Nierenstein, Wang, Warr, Am. Soc. 46, 2554; vgl. dazu Bradley, Schwarzenbach, Soc. 1928, 2905). Nadeln (aus Benzol). F: 73° (N., W., W.). Liefert beim Kochen mit Acetanhydrid und Natriumacetat 2.4.ω-Triacetoxy-acetophenon (N., W., W.).
- $\omega.\omega.\omega$ -Trichlor-2.4-dimethoxy-acetophenon, $\omega.\omega.\omega$ -Trichlor-resacetophenon-dimethyläther $C_{10}H_{9}O_{3}Cl_{3}=(CH_{3}\cdot O)_{2}C_{4}H_{3}\cdot CO\cdot CCl_{3}$. B. In fast quantitativer Ausbeute aus Resorcindimethyläther und Trichloracetonitril beim Sättigen mit Chlorwasserstoff in Gegenwart von Zinkchlorid in Äther und anschließenden Zersetzen mit kaltem Wasser (HOUBEN, FISCHER, B. 60, 1769). Kp_{0,5-0,6}: 153°. Schwer löslich in Petroläther. Gibt beim Behandeln mit Natronlauge 2.4-Dimethoxy-benzoesäure.
- 5-Brom-2.4-dioxy-acetophenon, 5-Brom-resacetophenon C₈H₇O₃Br, s. nebenstehende Formel. Zur Konstitution vgl. Lindemann, Könttzer, Romanoff, A. 456, 306; vgl. a. Fries, A. 442, 293. B. Aus Resacetophenon und der berechneten Menge Brom bei Gegenwart von Chinolinsulfat in Eisessig unter Br. OH Kühlung (Rosenmund, Kuhnhenn, Lesch, B. 56, 2043). Nadeln (aus verd. Alkohol). F: 139° (R., K., L.).
- 5-Brom-2-oxy-4-methoxy-acetophenon-oxim, 5-Brom-päonol-oxim C₈H₁₀O₈NBr CH₃·O·C₆H₂Br(OH)·C(:N·OH)·CH₃. B. Aus eso-Brom-resacetophenon-4-methyläther (E I 615) durch Kochen mit Hydroxylaminhydrochlorid und Natriumacetat in verd. Alkohol (Lindemann, Könitzer, Romanoff, A. 456, 306). Nadeln (aus Benzol). F: 160°. Löslich in siedendem Benzol, leichter löslich in Alkohol, schwer in Wasser.
- 5-Brom 2-oxy 4-methoxy acetophenon oximacetat, 5-Brom pāonol oximacetat $C_{11}H_{12}O_4NBr = CH_3 \cdot O \cdot C_6H_2Br(OH) \cdot C(:N \cdot O \cdot CO \cdot CH_3) \cdot CH_2$. B. Aus 5-Brom-pāonol-oxim durch Einw. von Acetanhydrid (Lindemann, Könitzer, Romanoff, A. 456, 306). Nadeln (aus Eisessig). F: 187°. Leicht löslich in kaltem Alkohol und in siedendem Benzol und Eisessig, sehwer in Benzin. Liefert bei kurzem Erwärmen mit Natronlauge auf dem Wasserbad 5-Brom-6-methoxy-2-methyl-benzoxazol (Syst. Nr. 4222).
- ω-Brom-2.4-dioxy-acetophenon, ω-Brom-resacetophenon, 4-Bromacetyl-resorcia C₈H₇O₃Br = (HO)₂C₄H₃·CO·CH₂Br (E I 616). B. Beim Sättigen einer mit Zinkehlorid versetzten Lösung von Resorcin und Bromacetonitril in absol. Äther mit Bromwasserstoff und nachfolgenden Kochen mit Wasser (Sonn, Falkenheim, B. 55, 2979). Leicht löslich in Alkohol und Aceton. Liefert mit Acetanhydrid in Gegenwart von Schwefelsäure das Diacetat (S. 297), in Gegenwart von Natriumacetat 3.6-Diacetoxy-cumaron und geringe Mengen einer Verbindung vom Schmelzpunkt 118°, die bei der Abspaltung der Acetylgruppen in eine bei 257° schmelsende Verbindung übergeht (S., F., B. 55, 2976, 2980).

- ω-Brom-2.4-dimethoxy-acetophenon, ω-Brom-resacetophenon-dimethyläther $C_{10}H_{11}O_3Br = (CH_3\cdot O)_2C_2H_3\cdot CO\cdot CH_2Br$ (E I 616). B. Beim Sättigen einer mit Zinkehlorid versetzten Lösung von Bromacetonitril und Resorcindimethyläther in absol. Äther mit Bromwasserstoff und Kochen des Reaktionsprodukts mit Wasser (Sonn, Falkenheim, B. 55, 2979).
- ω-Brom-2.4-diacetoxy-acetophenon, ω-Brom-resacetophenon-diacetat $C_{12}H_{11}O_5Br = (CH_3 \cdot CO \cdot O)_2C_6H_3 \cdot CO \cdot CH_2Br$. B. Aus ω-Brom-2.4-dioxy-acetophenon und Acetanhydrid bei Gegenwart von etwas konz. Schwefelsäure (SONN, FALKENHEIM, B. 55, 2980). Prismen (aus verd. Alkohol). F: 76°. Löslich in Eisessig, Essigester und Benzol, schwer löslich in Äther.
- ω-Chlor-5-brom-2-oxy-4-methoxy-acetophenon, ω-Chlor-5-brom-resacetophenon 4 methyläther C₂H₈O₃ClBr, s. nebenstehende Formel. B. Aus ω-Chlor-2-oxy-4-methoxy-acetophenon und der berechneten Menge Brom in Chloroform (FRIES, A. 442, 293). Nadeln (aus Benzol). F: 194°. Schwer Br löslich in Benzin, ziemlich leicht in Alkohol, Benzol und Eisessig. Liefert beim Kochen mit Natriumacetat in Alkohol 5-Brom-6-methoxy-cumaranon (Syst. Nr. 2402).

CO CH₂C
O CH₃C

- ω-Jod-2.4-dioxy-acetophenon, ω-Jod-resacetophenon, 4-Jodacetyl-resorcin $C_8H_7O_8I = (HO)_8C_6H_8 \cdot CO \cdot CH_2I$. B. Aus ω-Chlor-2.4-dioxy-acetophenon und Natriumjodid in Aceton (Sonn, Falkenheim, B. 55, 2980). Prismen (aus Benzol). F: 141°. Leicht löslich in Äther, Alkohol, Aceton und Eisessig, fast unlöslich in Ligroin und Chloroform. Liefert mit feuchtem Silberoxyd oder Silbernitrit 6-Oxy-cumaranon.
- ω-Jod-4-oxy-2-methoxy-acetophenon, ω-Jod-resacetophenon-2-methyläther $C_0H_0O_3I=HO\cdot C_0H_3(O\cdot CH_3)\cdot CO\cdot CH_2I$. B. Aus ω-Chlor-4-oxy-2-methoxy-acetophenon und Natrium-jodid in Aceton (Sonn, Falkenheim, B. 55, 2981). Nadeln (aus Benzol). F: 128°. Leicht löslich in Essigester, Aceton, Alkohol, heißem Benzol und heißem Eisessig, schwerer in Chloroform, unlöslich in Äther und Ligroin. Die Lösung in Alkohol gibt mit Eisenchlorid eine dunkelrote Färbung.
- ω- Jod-2.4-diacetoxy-acetophenon, ω- Jod-resacetophenon-diacetat $C_{12}H_{11}O_5I \subseteq (CH_5 \cdot CO \cdot O)_2C_6H_3 \cdot CO \cdot CH_2I$. B. Aus ω-Jod-2.4-dioxy-acetophenon und Acetanhydrid bei Gegenwart von etwas konz. Schwefelsäure (Sonn, Falkenheim, B. 55, 2980). Aus ω-Chlor-2.4-diacetoxy-acetophenon und Natriumjodid in Aceton (S., F.). Prismen (aus Alkohol). F: 97°. Leicht löslich in Eisessig und Aceton, löslich in Benzol und Chloroform, schwer löslich in Ligroin und Äther. Gibt bei der Umsetzung mit Silbernitrit in wenig Wasser geringe Mengen einer bei 155—160° schmelzenden Substanz, die bei der Abspaltung der Acetylgruppen in die aus ω-Brom-2.4-dioxy-acetophenon (S. 296) erhaltene Verbindung vom Schmelzpunkt 257° übergeht (S., F., B. 55, 2977).

5-Nitro-2-oxy-4-methoxy-acetophenon, 5-Nitro-resacetophenon-4-methyläther, 5-Nitro-päonol C₉H₉O₅N, s. nebenstehende Formel (E I 616 als 3 (oder 5 oder 6)-Nitro-2-oxy-4-methoxy-acetophenon bezeichnet). Zur Konstitution vgl. Sonn, B. 54, 358. — F: 153° (Rennie, Cooke, Finlayson, O₂N. O₃N. O₄N. O₅N. O₅N. O₆N. O₅N. O₆N. O₇N. O₈N. O₈N

9xim $C_9H_{10}O_5N_2 = CH_3 \cdot O \cdot C_9H_9(OH)(NO_2) \cdot C(:N \cdot OH) \cdot CH_8$. Nadeln (aus Eisessig). Wird bei 230° dunkel, zersetzt sich bei 238° (Lindemann, Könitzer, Romanoff, A. 456, 307).

Oximacetat $C_{11}H_{12}O_6N_2 = CH_3 \cdot O \cdot C_6H_2(OH)(NO_2) \cdot C(:N \cdot O \cdot CO \cdot CH_3) \cdot CH_3$. B. Aus dem Oxim durch Behandeln mit Acetanhydrid und Natriumacetat (LINDEMANN, KÖNITZER, ROMANOFF, A. 456, 307). — Nadeln (aus Eisessig). F: 178° Schwer löslich in Wasser und Alkohol. — Liefert bei der Einw. von verd. Natronlauge 5-Nitro-6-methoxy-2-methyl-benzoxazol.

3.5 (?) - Dinitro - 2.4 - dioxy - acetophenon , 3.5 (?) - Dinitro - resacetophenon $C_8H_6O_7N_2=(HO)_2C_6H(NO_2)_2\cdot CO\cdot CH_3$ (E I 616).

E I 616, Z. 7 v. u. streiche "Resacetophenon oder"

2.4(oder 3.4)-Dimercapto-acetophenon $C_8H_8OS_2 = (HS)_2C_6H_3 \cdot CO \cdot CH_3$ s. S. 301.

3. 2.5 - Dioxy - 1 - acetyl - benzol, 2.5 - Dioxy - acetophenon, 2-Acetyl-hydrochinon, Chinacetophenon, Methyl-[2.5-dioxy-phenyl] - keton C₈H₈O₅, s. nebenstehende Formel (H 271; E I 617). Stellungsbezeichnung in den von Chinacetophenon abgeleiteten Namen s. in nebenstehender Formel. — B. Durch aufeinanderfolgende Einw. von Aluminiumchlorid und Acetylchlorid auf Hydrochinon in warmem Nitrobenzol (ROSENMUND, LOHFERT, B. 61, 2605). Beim Erhitzen von Hydrochinondiacetat mit Aluminiumchlorid anfangs auf 135°, dann auf 160° (WITTIG, A. 446, 182). Beim Erwärmen eines Gemisches

- aus Hydrochinon und Hydrochinondiacetat mit Aluminiumchlorid in Nitrobenzol auf 45—95° (Ros., Loh., B. 61, 2606). Aus 5-Amino-2-oxy-acetophenon beim Diazotieren und Verkochen (Lindemann, Romanoff, J. pr. [2] 122, 224). Hellgelbe Krystalle (aus Methanol oder Alkohol). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: Tasaki, Acta phytoch. 3, 270; C. 1927 II. 1949. Liefert bei ca. 30-stdg. Erhitzen mit phenylessigsaurem Natrium und Acetanhydrid 6-Acetoxy-4-methyl-3-phenyl-cumarin (Syst. Nr. 2515) (Bargellini, R. A. L. [6] 2, 264).
- 2 Oxy 5 methoxy acetophenon, Chinacetophenon 5 methyläther $C_9H_{10}O_3=CH_3\cdot O\cdot C_9H_{10}O_3=CH_3\cdot O\cdot C_9H_{10}O_3=CH$
- 2.5 Diacetoxy acetophenon , Chinacetophenon diacetat $C_{12}H_{12}O_5 = (CH_3 \cdot CO \cdot O)_5C_6H_3 \cdot CO \cdot CH_3$ (H 272). Liefert bei 15-stdg. Erhitzen mit Acetanhydrid und Natriumacetat auf 180° 6-Acetoxy-2-methyl-3-acetyl-chromon (Syst. Nr. 2533) (WITTIG, A. 446, 183).
- 2.5-Dioxy-acetophenon-oxim, Chinacetophenon-oxim $C_8H_9O_8N=(HO)_8C_6H_8\cdot C(:N\cdot OH)\cdot CH_3$ (H 272). F: 156° (Lindemann, Könitzer, Romanoff, A. 456, 296). Löslich in Aceton, Alkohol oder Eisessig, schwer löslich in Benzin.
- 2.5-Dioxy-acetophenon-oximacetat, Chinacetophenon-oximacetat $C_{10}H_{11}O_4N = (HO)_2C_4H_2 \cdot C(:N\cdot O\cdot CO\cdot CH_3)\cdot CH_3$. B. Aus dem Oxim durch Verreiben mit Acetanhydrid (LINDEMANN, KÖNITZER, ROMANOFF, A. 456, 296). Nadeln (aus Alkohol oder Benzol). F: 157°. Löslich in heißem Wasser, Alkohol und Eisessig. Bei langsamem Erhitzen im Vakuum auf 160—165° entstehen 5-Oxy-3-methyl-indoxazen (Syst. Nr. 4222) und Essigsäure.
- 2 Oxy 5 methoxy acetophenon oxim $C_9H_{11}O_3N=CH_3\cdot O\cdot C_6H_3(OH)\cdot C(:N\cdot OH)\cdot CH_3$. Nadeln (aus Wasser). F: 121° (Lindemann, Könttzer, Romanoff, A. 456, 297).
- 2 Oxy 5 methoxy acetophenon eximacetat $C_{11}H_{13}O_4N = CH_3 \cdot O \cdot C_6H_3(OH) \cdot C(:N \cdot O \cdot CO \cdot CH_3) \cdot CH_3$. B. Aus dem Oxim durch Einw. von Acetanhydrid (LINDEMANN, KÖNITZER, ROMANOFF, A. 456, 297). Nadeln (aus Wasser oder Alkohol). F: 125°. Liefert beim Erhitzen im Vakuum auf 160—165° 5-Methoxy-3-methyl-indoxazen (Syst. Nr. 4222) und Essigsäure.
- 4. 3.4 Bioxy 1-acetyl benzol, 3.4 Dioxy-acetophenon, 4 Acetyl-brenzcatechin, 4 Aceto-brenzcatechin, Methyl [3.4 dioxy phenyl] keton C₀H₂O₃, s. nebenstehende Formel (H 272; E I 617). B. Durch Einw. von Aluminium-hlorid auf Guajacolacetat in Nitrobenzol bei Zimmertemperatur oder besser auf Brenzcatechindiacetat in Nitrobenzol bei 75° (ROSENMUND, LOHFERT, B. 61, 2603). Beim Kochen von 3.4 Methylendioxy-acetophenon mit Aluminium-chlorid in Chlorbenzol (MAUTHNER, J. pr. [2] 119, 75).
- 4-Oxy-3-methoxy-acetophenon, Acetovanillon, Apocynin $C_0H_{10}O_3=HO\cdot C_4H_3(O\cdot CH_2)\cdot CO\cdot CH_3$ (H 272; E I 617). B. Beim Erwärmen von ω-Chlor-4-oxy-3-methoxy-acetophenon mit Eisenspänen in alkoholisch-wäßriger Schwefelsäure auf 60° (Pratt, Robinson, Soc. 123, 753). Entsteht als Hauptprodukt neben Isoacetovanillon und wenig o-Acetovanillon bei kurzem Kochen von Guajacolacetat mit Zinkchlorid in Acetanhydrid (Reichstein, Helv. 16, 394). F: 115—116° (Reil.). Ziemlich schwer löslich in Benzol (Reil.). Kann mit Hilfe von Phenolphthalein titriert werden (Reil.). Gibt mit Eisenchorid in alkoh. Lösung eine grüne, in wäßr. Lösung eine dunkelviolette Färbung (Pr., Ro.; vgl. H 272). Das Phenylhydrazon schmilzt bei 125° (Neitzel, B. 24 [1891], 2867; Pr., Ro.).
- 3-0xy-4-methoxy-acetophenon, Isoacetovanillon C₂H₁₀O₃ = CH₃·O·C₆H₃(OH)·CO·CH₃. B. Neben Acetovanillon und o-Acetovanillon bei kurzem Kochen von Guajacolacetat in Acetanhydrid mit Zinkchlorid (Reichstein, Helv. 10, 396). Neben anderen Produkten bei der Einw. von Aluminiumchlorid auf Guajacolacetat oder auf Guajacol und Acetylchlorid in Schwefelkohlenstoff (R., Helv. 10, 393). Beim Kochen von 4-Methoxy-3-acetoxy-acetophenon mit wäßr. Kalilauge (Schneider, Kraft, B. 55, 1896). Krystalle mit 1H₂O (aus Wasser), F: 66—69° (Sch., K.), 67—68° (R.); wasserfreie Krystalle (aus Äther + Ligroin), F: 91° (Sch., K.). Löslich in konz. Salzsäure und konz. Schwefelsäure mit gelber, in konz. Salpetersäure mit roter Farbe (Sch., K.). Gibt mit Eisenchlorid eine blauviolette Färbung (Sch., K.).
- 3.4-Dimethoxy-acetophenon, 4-Acetyl-veratrol, Acetoveratron C₁₆H₁₉O₃ = (CH₃·O)₂C₆H₃·CO·CH₃ (H 273; E I 617). B. Durch Umsetzen von Veratrol mit Keten und Chlorwasserstoff bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff in der Kälte (Plong, R. 45, 344). Aus 3-Oxy-4-methoxy-acetophenon durch Methylierung mit Dimethylsulfat und Natronlauge (Schneider, Kraft, B. 55, 1898). F: 50° (Tasaki, Acta phytoch. 8, 271; C. 1927 II, 1949), 52° (Mosettig, Jovanović, M. 53/54, 432). Kp₁₀: 160—162° (Koepfil, Perkin, Soc. 1928, 2995), 161—162° (M., J.); Kp₁₅: 172—174° (Sen, Barat, J. indian chem. Soc. 8, 412; C. 1937 I, 1440). Ultraviolett-Absorptionsspektrum in alkoh. Lözung: T. Gibt bei der Reduktion mit

299

amalgamiertem Zink und Salzsäure 4-Äthyl-veratrol (Shinoda, Sato, J. pharm. Soc. Japan 1927, 113; C. 1928 I, 333; Barger, Stlerbeichmidt, Soc. 1928, 2925). Liefert bei langsamem Eintragen in Salpetersäure (D: 1,42) 6-Nitro-3.4-dimethoxy-acetophenon (Lawson, Perkin, Robinson, Soc. 125, 653). Beim Erwärmen mit Bromessigsäureäthylester und Zink in trockenem Benzol entsteht nicht näher beschriebener β -Oxy- β -[3.4-dimethoxy-phenyl]-buttersäureäthylester, der durch Destillation unter vermindertem Druck oder durch Kochen mit Phosphoroxychlorid in Benzol in β -[3.4-Dimethoxy-phenyl]-crotonsäureäthylester übergeführt wird; bei Anwendung von Phosphoroxychlorid in Benzol und Hydrolyse der entstandenen Nebenprodukte mit alkoh. Kalilauge erhält man geringe Mengen einer Verbindung $C_{24}H_{22}O_{3}$ (Prismen aus Methanol, F: 225—226°) (Koepfil, Perkin, Soc. 1928, 2995). Acetoveratron gibt mit Diazomethan in Äther + Methanol 3.4-Dimethoxy-phenylaceton und ein Oxyd, das beim Behandeln mit Piperidin in β '-Piperidino- β -[3.4-dimethoxy-phenyl]-tert.-butylalkohol (Syst. Nr. 3038) übergeht (Mosettig, Jovanović, M. 53/54, 432).

Phenylhydrazon. F: 131° (PLOEG, R. 45, 343). — 4-Nitro-phenylhydrazon. F: 227° (PL.).

- 4 Methoxy 3 äthoxy acetophenon, Isoacetovanillon äthyläther $C_{11}H_{14}O_3=CH_3\cdot O\cdot C_4H_3(O\cdot C_2H_5)\cdot CO\cdot CH_3$. B. Aus 3-Oxy-4-methoxy-acetophenon und Diäthylsulfat in alkoh. Kalilauge (Reichstein, Helv. 10, 396). Neben 3-Methoxy-4-äthoxy-acetophenon bei der Einwvon Acetylchlorid und Aluminiumchlorid(?) auf Guajacoläthyläther (Kondo, Tanaka, J. pharm. Soc. Japan 49, 49; C. 1929 I, 2978). Krystalle (aus Petroläther). F: 70—71° (R.). Liefert mit Permanganat in alkal. Lösung 4-Methoxy-3-äthoxy-phenylglyoxylsäure (R.). Gibt bei der Reduktion mit amalgamiertem Zink und Salzsäure 4-Methoxy-3-äthoxy-1-äthyl-benzol (K., T.).
- 3 Methoxy 4 äthoxy acetophenon, Acetovanillon äthyläther $C_{11}H_{14}O_3 = C_2H_5 \cdot O \cdot C_6H_3(O \cdot CH_3) \cdot CO \cdot CH_3$ (H 273). B. Aus Guajacoläthyläther und Acetylchlorid in Gegenwart von Aluminiumchlorid(?) neben 4-Methoxy-3-äthoxy-acetophenon (Kondo, Tanaka, Noto, J. pharm. Soc. Japan 48, 168; 49, 49; C. 1929 I, 1112, 2978). Krystalle. F: 79°. Liefert bei der Oxydation 3-Methoxy-4-äthoxy-benzoesäure. Bei der Reduktion mit amalgamiertem Zink und Salzsäure entsteht 3-Methoxy-4-äthoxy-1-äthyl-benzol.
- 3.4 Dibenzyloxy acetophenon $C_{22}H_{20}O_3=(C_0H_5\cdot CH_2\cdot O)_2C_0H_2\cdot CO\cdot CH_3$. B. Beim Erhitzen von 3.4-Dioxy-acetophenon mit Benzylbromid in Natriumäthylat-Lösung (Merck, D.R.P. 414142; C. 1925 II, 612; Frdl. 15, 1495). Nadeln. F: 93—94°. Leicht löslich in Aceton und Chloroform, schwerer in Alkohol, sehr schwer in Äther.
- 4-Methoxy-3-acetoxy-acetophenon, Isoacetovanillon-acetat $C_{11}H_{12}O_4 = CH_3 \cdot O \cdot C_6H_3(O \cdot CO \cdot CH_3) \cdot CO \cdot CH_3$. Neben Guajacolacetat beim Eintragen von 50 g Guajacol in ein zuvor auf 80° erwärmtes Gemisch aus 350 cm³ Acetanhydrid und 50 cm³ konz. Schwefelsäure bei Zimmertemperatur (Schneider, Kraft, B. 55, 1896). Blättchen oder Nadeln (aus Wasser). F: 66°. Leicht löslich in Äther, Alkohol, Chloroform und Benzol, ziemlich leicht in siedendem Wasser. Beständig beim Kochen mit Wasser.
- 3 Oxy 4 methoxy acetophenon oxim, Isoacetovaniilon oxim $C_9H_{11}O_3N=CH_3\cdot O\cdot C_6H_3(OH)\cdot C(:N\cdot OH)\cdot CH_3$. Nadeln (aus Wasser). F: 138° (SCHNEIDER, KRAFT, B. 55, 1897).
- 4-Oxy-3-methoxy-acetophenon-semicarbazon, Acetovanillon-semicarbazon $C_{10}H_{12}O_3N_3=HO\cdot C_0H_3(O\cdot CH_3)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_3$ (H 273). Krystalle (aus Wasser oder verd. Sodalösung), F: 173,5—174,5° (korr.); Krystalle mit 1 Mol Essigsäure (aus verd. Essigsäure), F: 135° bis 136° (REICHSTEIN, Helv. 10, 396).
- 3-Oxy-4-methoxy-acetophenon-semicarbazon, Isoacetovanillon-semicarbazon $C_{10}H_{13}O_5N_3=CH_3\cdot O\cdot C_2H_3(OH)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_3$. Krystalle (aus Wasser). F: 206° (Schneider, Kraft, B. 55, 1897).
- 3.4 Dimethoxy acetophenon azin, Acetoveratron azin $C_{50}H_{24}O_4N_2 = (CH_3 \cdot O)_2C_6H_3 \cdot C(CH_3) \cdot N \cdot N \cdot C(CH_3) \cdot C_6H_3(O \cdot CH_2)_2$. B. Durch Kochen von Acetoveratron mit Hydrazin-sulfat und Natriumacetat in verd. Alkohol (Ploeg, R. 45, 343). Gelbe Krystalle (aus Alkohol). F: 203°. Unlöslich in Äther und Petroläther, schwer löslich in heißem Wasser und Alkohol.
- 3.4 Dimethoxy acetoshenon semicarbazon, Acetoveratron semicarbazon $C_{11}H_{15}O_3N_3 = (CH_3 \cdot O)_2C_6H_3 \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_3$ (E I 618). F: 218—220° (Zers.) (Sen, Barat, J. indian chem. Soc. 8, 413; C. 1927 I, 1440), 218° (Ploeg, R. 45, 343). Unlöslich in Benzol und Wasser, löslich in heißem Alkohol, schwer löslich in Äther (Pl.).
- ω-Chlor-3.4-dioxy-acetophenon, 4-Chloracetyl-brenzcatechin C₆H₇O₅Cl = (HO)₅C₆H₃·CO·CH₂Cl (H 273; E I 618). Zur Bildung durch Erhitzen von Brenzcatechin mit Chloressigsäure und Phosphoroxychlorid (H 273; E I 618) vgl. Orr, B. 59, 1071; Johnson, Gatewood, Am. Soc. 51, 1817. Beim Kochen von Brenzcatechin mit Chloracetylchlorid und Phosphoroxychlorid

- in Benzol, neben anderen Produkten (OTT, B. 59, 1069, 1070; D.R.P. 445524; C. 1987 II, 868; Frdl. 15, 1496). Aus Brenzcatechin-monochloracetat durch Erwärmen auf dem Wasserbad mit Phosphoroxychlorid (OTT) oder mit Aluminiumchlorid in Nitrobenzol + Benzol (ROSENMUND, LOHFERT, B. 61, 2603). Das Hydrat (H 273) schmilzt bei 120° (Bo., Lo.). Liefert Thioharnstoff in siedendem Alkohol 2-Amino-4-[3.4-dioxy-phenyl]-thiazol (Syst. Nr. 4300) (JOHNSON, GATEWOOD, Am. Soc. 51, 1817). Reagiert nicht mit p-Phenetidin in siedendem Alkohol; beim Kochen mit 4-Amino benzoesäure-äthylester in Alkohol erhält man 4-[3.4-Dioxy-phenacylamino]-benzoesäure-äthylester (ISHIWARA, B. 57, 1126).
- ω-Chlor-4-oxy-3-methoxy-acetophenon, ω'-Chlor-acetovanillon C₀H₀O₃Cl = HO·C₆H₃(O·CH₃)·CO·CH₄Cl. B. Aus Guajacol (Kobayashi, Scient. Pap. Inst. phys. chem. Res. 6, 160; C. 1928 I, 1027) oder besser aus Veratrol (Pratt, Robinson, Soc. 128, 753; Levy, Robinson, Soc. 1981, 2716) durch Umsetzung mit Chloracetylchlorid und Aluminiumohlorid in Schwefelkohlenstoff. Prismen (aus verd. Alkohol, Benzol oder Benzol + Petroläther). F: 100—102° (Ko.), 102° (Pr., Ro.; L., Ro.). Kp₂₃: 207—210° (L., Ro.). Löslich in heißem Wasser, leicht löslich in Alkohol. Löslich in verd. Kalilauge (Pr., Ro.) mit blaßgrüner Farbe (Ko.). Die alkoh. Lösung gibt mit Eisenschlorid eine grüne Färbung (Pr., Ro.; Ko.). Liefert beim Erwärmen mit Eisenspänen und verd. Schwefelsäure in Alkohol auf 60° Acetovanillon (Pr., Ro.).
- ω-Chlor-3.4-dimethoxy-acetophenon, 4-Chloracetyl-veratrol, ω-Chlor-acetoveratron $C_{10}H_{11}O_3Cl = (CH_3 \cdot O)_2C_6H_3 \cdot CO \cdot CH_2Cl$ (E I 618). Kondensiert sich mit Benzaldehyd in Eisessig beim Sättigen mit Chlorwasserstoff zu 3'.4'-Dimethoxy-chalkon-dichlorid (S. 362) (BAUER, WERNER, B. 55, 2497). Unter denselben Bedingungen erhält man mit 4-Dimethyl-aminobenzaldehyd α-Chlor-4-dimethylamino-3'.4'-dimethoxy-chalkon $(CH_3 \cdot O)_2C_6H_3 \cdot CO \cdot CCl \cdot CH \cdot C_6H_4 \cdot N(CH_3)_2$.
- 2-0xy-4.4'-bis-chloracetyl-diphenyläther $C_{16}H_{19}O_4Cl_9 = CH_2Cl \cdot CO \cdot C_6H_4 \cdot O \cdot C_6H_4(OH) \cdot CO \cdot CH_2Cl.$ B. Bei der Einw. von Aluminiumchlorid auf 2-Methoxy-4.4'-bis-chloracetyl-diphenyläther in indifferenten Lösungsmitteln (Schering-Kahlbaum A.G., D.R.P. 492321; C. 1980 I, 2796; Frdl. 16, 2831). Nadeln (aus verd. Alkohol). F: 158°.
- 2 Methoxy 4.4' bis chloracetyl diphenyläther $C_{17}H_{14}O_4Cl_2=CH_2Cl\cdot CO\cdot C_6H_4\cdot O\cdot C_6H_3(O\cdot CH_2)\cdot CO\cdot CH_4Cl.$ B. Aus 2-Methoxy-diphenyläther und Chloracetylchlorid bei Gegenwart von Aluminiumchlorid (Schering-Kahlbaum A.G., D.R.P. 492321; C. 1980 I, 2796; Frdl. 16, 2831). F: 148°.
- 2.2'- Dimethoxy 4.4'- bis chloracetyl-diphenyläther $C_{18}H_{16}O_5Cl_8=[CH_2Cl\cdot CO\cdot C_8H_3(O\cdot CH_8)]_2O$. B. Bei der Einw. von Chloracetylchlorid und Aluminiumchlorid auf 2.2'-Dimethoxy-diphenyläther (SCHERING-Kahlbaum A.G., D.R.P. 492321; C. 1930 I, 2796; Frdl. 16, 2831). Prismen (aus Benzol). F: 154°. Unlöslich in Wasser, löslich in siedendem Benzol und Alkohol.
- ω-Chlor-3-methoxy-4-acetoxy-acetophenon, ω-Chlor-acetovaniilon-acetat $C_{11}H_{11}O_4Cl = CH_3 \cdot CO \cdot C \cdot CH_3(O \cdot CH_3) \cdot CO \cdot CH_2Cl$. B. Durch Einw. von Acetanhydrid auf ω-Chlor-4-oxy-3-methoxy-acetophenon (ΚοβΑΥΑSHI, Scient. Pap. Inst. phys. chem. Res. 6, 161; C. 1928 I, 1027). F: 98—100.5°.
- ω-Chlor-3.4-diacetoxy-acetophenon, 4-Chloracetyl-brenzcatechin-diacetat $C_{12}H_{11}O_0Cl = (CH_3 \cdot CO \cdot O)_2C_0H_3 \cdot CO \cdot CH_2Cl$ (H 274; E I 618). B. Beim Einleiten von Chlorwasserstoff in eine Suspension von ω-Diazo-3.4-diacetoxy-acetophenon in Äther (Bradley, Schwarzenbach, Soc. 1928, 2908). Tafeln (aus Benzol + Petroläther). F: 107,5—108°. Unlöslich in Sodalösung.
- Eine von Malkin, Nierenstein (B. 61, 797) durch Behandeln von Diacetylprotocatechusäurschlorid mit Diazomethan in Äther erhaltene und als ω-Chlor-3.4-diacetoxy-acetophenon angesehene Substanz vom Schmelzpunkt 94° war vermutlich nicht einheitlich (Robertson, Robinson, Soc. 1928, 1532; Robinson, Willstätter, B. 61, 2506; Bradley, Schwarzen-Bach, Soc. 1928, 2905).
- $\omega.\omega.\omega$ -Trichlor-3.4-dimethoxy-acetophenon, 4-Trichloracetyl-veratrol, $\omega.\omega.\omega$ -Trichloracetoveratron $C_{10}H_2O_3Cl_3=(CH_3\cdot O)_2C_6H_3\cdot CO\cdot CCl_3$. B. Bei der Umsetzung von Veratrol mit Trichloracetonitril und Chlorwasserstoff bei Gegenwart von Zinkchlorid in Äther und anschließenden Zersetzung mit Wasser (Houben, Fischer, B. 60, 1768). Spieße (aus Alkohol). F: 101—102°. Löslich in Äther, Benzol, Aceton, Alkohol und Chloroform, schwer löskich in Petroläther, unlöslich in Wasser. Löst sich in konz. Schwefelsäure mit gelber Farbe. Gibt bei der Zersetzung durch Alkalilaugen Veratrumsäure.
- 5 (oder 6) Brom 3.4 dibenzyloxy-acetophenon, 5 (oder 6) Brom 4-acetyl-brenzcatechin-dibenzyläther $C_{12}H_{19}O_3Br = (C_6H_5 \cdot CH_2 \cdot O)_2C_6H_2Br \cdot CO \cdot CH_6$. B. Beim Erwärmen von 3.4 Dibenzyloxy-acetophenon mit Brom in Chloroform auf höchstens 50° (Merch, D.R.P. 415314; C. 1925 II, 1564; Frdl. 15, 1495). Nadeln (aus Alkohol). F: 94°. Leicht löslich in Chloroform, schwerer in Alkohol, unlöslich in Wasser.

- ω- Brom 3.4 dimethexy acetephenen, 4 Bromacetyi veratrol, ω Brom aceteveratron $C_{10}H_{11}O_2Br = (CH_3 \cdot O)_2C_6H_3 \cdot CO \cdot CH_2Br$ (E I 618). Liefert mit Phloroglucinaldehyd-dimethyläther und Kaliumcarbonat in siedendem Alkohol 4.6-Dimethoxy-2-[3'.4'-dimethoxy-benzoyl]-cumaron (Syst. Nr. 2568) (Freudenberg, Fikentscher, Wenner, A. 442, 314).
- ω-Chlor-5(oder 6)-brom-3.4-diaxy-acetophenon, 5(oder 6)-Brom-4-chloracetyl-brenz-catechin C₆H₆O₃ClBr = (HO)₂C₆H₂Br·CO·CH₂Cl. B. Beim Behandeln von 4-Chloracetyl-brenzcatechin mit Brom bei Gegenwart von Chinolinsulfat in Eisessig unter Kühlung (ROSEN-MUND, KUHNHENN, LESCH, B. 56, 2043). Nadeln (aus Toluol). F: 137°.
- 5-Nitro-3.4-dimethoxy-acetophenon, 6-Nitro-4-acetyl-veratrol, 5-Nitro-acetoveratron $C_{10}H_{11}O_5N$, Formel I. B. Aus 5-Nitro-vanillin und überschüssigem Diazomethan in absolutätherischer Lösung (Brady, Manjunath, Soc. 125, 1067). Hellgelbe Nadeln (aus Alkohol). F: 89°.

I.
$$O_{2N}$$
. $O_{\cdot CH_{2}}$ II. $O_{\cdot CH_{3}}$ $O_{\cdot CH_{3}}$ $O_{\cdot CH_{3}}$ $O_{\cdot CH_{3}}$ III. $O_{\cdot SH}$ IV. $O_{\cdot SH}$

- 6-Nitro-3.4-dimethoxy-acetophenon, 5-Nitro-4-acetyl-veratrol, 6-Nitro-acetoveratron $C_{10}H_{11}O_tN$, Formel II. B. Bei langsamem Eintragen von 3.4-Dimethoxy-acetophenon in Salpetersäure (D: 1,42) (Lawson, Perkin, Robinson, Soc. 125, 653). Blaßgelbe Nadeln (aus Alkohol). F: 133—133,5°. Ziemlich schwer löslich in Alkohol und Benzol, leichter in Essigester und Eisessig. Liefert beim Kochen mit Salpetersäure (D: 1,42) 4.5-Dinitro-veratrol. Kondensiert sich mit Oxalsäure-diäthylester in Natriumäthylat-Lösung zu [6-Nitro-3.4-dimethoxy-benzoyl]-brenztraubensäure.
- 5. Derivat des 2.4-Dioxy-acetophenons oder des 3.4-Dioxy-acetophenons $C_8H_8O_8=(HO)_2C_6H_3\cdot CO\cdot CH_3$.
- 2.4 (oder 3.4) Dimercapto acetophenon, 4-Acetyl-dithiobrenzcatechin oder 4-Acetyl-dithioresorcin C₃H₈OS₂, Formel III oder IV. B. Durch Reduktion von Acetophenon-disulfonsäure-(2.4 oder 3.4) dichlorid mit Zinkstaub und konz. Salzsäure in siedendem Alkohol (RIESS, FRANKFURTER, M. 50, 74). Nadeln (aus Benzin). F: 215°. Bleisalz. Orangerot.
- 6. 3.5-Dioxy-1-acetyl-benzol, 3.5-Dioxy-acetophenon, 5-Acetyl-resorcin, Methyl-[3.5-dioxy-phenyl]-keton C₈H₈O₃, s. nebenstehende Formel. B. Beim Kochen von 3.5-Dimethoxy-acetophenon mit Aluminiumchlorid in Chlorbenzol (Mauthner, J. pr. [2] 115, 275). Krystalle (aus Wasser). F: 147—148°. Leicht löslich in Wasser, Aceton, Alkohol und Äther, schwer in kaltem Benzol. Die wäßr. Lösung gibt mit Eisenchlorid eine violette Färbung. 4-Nitro-phenylhydrazon. F: 236—237°.
- 3.5 Dimethoxy acetophenon, Methyl [3.5 dimethoxy phenyl]-keton $C_{10}H_{12}O_3 = (CH_3 \cdot O)_2C_0H_9 \cdot CO \cdot CH_3$ (H 274). B. Bei mehrstündigem Kochen von 3.5-Dimethoxy-benzoylessigsäure-äthylester mit 25 % iger Schwefelsäure (MAUTHNER, J. pr. [2] 107, 106; ASAHINA, IHARA, J. pharm. Soc. Japan 48, 12; C. 1928 I, 1852). Nadeln (aus Petroläther). F: 42—43° (M.). Kp₁₀: 151—152° (M.). Leicht löslich in den gebräuchlichen organischen Lösungsmitteln (M.). Liefert bei der Reduktion mit amalgamiertem Zink und Salzsäure 3.5-Dimethoxy-1-äthyl-benzol (A., I.). Das 4-Nitro-phenylhydrazon schmilzt bei 157—158° (M.).
- 3.5 Diacetoxy acetophenon, Methyl [3.5 diacetoxy phenyl] keton $C_{12}H_{12}O_5 = (CH_3 \cdot CO \cdot O)_2C_6H_3 \cdot CO \cdot CH_3$. B. Aus 3.5-Dioxy-acetophenon beim Kochen mit Acetylchlorid in Eisessig (MAUTHNER, J. pr. [2] 115, 277). Nadeln (aus Ligroin). F: 91--92°. Leicht löslich in Alkohol, Benzol und heißem Ligroin.
- 3.5 Dioxy acetophenon-semicarbazon $C_9H_{11}O_3N_3=(HO)_2C_9H_3\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_3$. Nadeln (aus Alkohol). F: 205—206° (MAUTHNER, J. pr. [2] 115, 276). Leicht löslich in Alkohol und Aceton.
- 3.5 Dimethoxy acetophenon semicarbazon $C_{11}H_{15}O_3N_3 = (CH_3 \cdot O)_2 C_6H_3 \cdot C(: N \cdot NH \cdot CO \cdot NH_2) \cdot CH_3$ (H 274). Nadeln (aus verd. Alkohol). F: 186—187° (Mauthner, J. pr. [2] 107, 107; Asahina, Ihara, J. pharm. Soc. Japan 48, 12; C. 1928 I, 1852).
- 3.5 Dimercapto acetophenon, 5 Acetyl dithioresorcin $C_0H_0OS_2 = (HS)_2C_0H_3 \cdot CO \cdot CH_2$. B. Durch Reduktion von Acetophenon-disulfonsäure-(3.5)-dichlorid mit Zinkstaub und konz. Salzsäure in siedendem Alkohol (RIESS, FRANKFURTER, M. 50, 71). Nadeln (aus Petroläther). F: 128°. Bleisalz PbC₈H₆OS₂. Orangerot.

- 7. 2.0 Dioxy acetophenon , 2 Oxy benzoglearbinol $C_0H_0O_2=HO\cdot C_0H_4\cdot CO\cdot CH_2\cdot OH.$
- 2. ω Dimethoxy acetophenon $C_{10}H_{12}O_3=CH_3\cdot O\cdot C_4H_4\cdot CO\cdot CH_2\cdot O\cdot CH_3$. B. Beim Erhitzen von 2-Methoxy-benzoylchlorid mit der Natriumverbindung des $\alpha.\gamma$ -Dimethoxy-acetessigsäureāthylesters in Äther auf dem Wasserbad und Verseifen des Reaktionsprodukts mit siedender verdünnter Kalilauge (Pratt, Robinson, Soc. 127, 1184).

 Öl. Kp₁₅: 165°. Beim Sättigen einer Mischung aus 2. ω -Dimeth-

Ol. Kp₁₅: 165°. — Beim Sättigen einer Mischung aus 2.ω-Dimethoxy-acetophenon, 2.4.6-Triacetoxy-benzylidendiacetat und Ameisensäure mit Chlorwasserstoff und Kochen des Reaktionsprodukts mit alkoholisch-wäßriger Salzsäure entsteht 5.7-Dioxy-3.2′-dimethoxy-flavyliumchlorid (s. nebenstehende Formel, Syst. Nr. 2453) (Pr., Ro.; vgl. Malkin, Nierenstein, Am. Soc. 58 [1931], 239).

HO CI O CH₃

Semicarbazon $C_{11}H_{15}O_3N_3 = CH_3 \cdot O \cdot C_6H_4 \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_3 \cdot O \cdot CH_3$. Nadeln (aus Wasser). F: 137° (Pratt, Robinson, Soc. 127, 1185).

- 8. 3. ω Dioxy acetophenon, 3-Oxy benzoylcarbinol $C_8H_8O_8=HO\cdot C_9H_4\cdot CO\cdot CH_2\cdot OH$.
- 3. ω -Dimethoxy-acetophenon $C_{10}H_{12}O_3=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot CH_3\cdot O\cdot CH_3$. B. Analog 2. ω -Dimethoxy-acetophenon (s. o.) (Pratt, Robinson, Soc. 127, 1185). Hellgelbes Öl. Kp₁₈: 155°. Reagiert mit 2.4.6-Triacetoxy-benzylidendiacetat analog 2. ω -Dimethoxy-acetophenon.

Semicarbazon $C_{11}H_{15}O_3N_3=CH_3\cdot O\cdot C_6H_4\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_3\cdot O\cdot CH_3$. Nadeln (aus wäßr. Alkohol). F: 128° (Pr., R., Soc. 127, 1185).

- 9. $4.\omega$ Dioxy acetophenon, 4 Oxy benzoylcarbinol $C_8H_8O_8 = H0 \cdot C_6H_4 \cdot CO \cdot CH_2 \cdot OH$. B. Aus 4-Oxy- ω -acetoxy-acetophenon bei kurzem Erwärmen mit 16 %iger Natronlauge auf dem Wasserbad (Robertson, Robinson, Soc. 1928, 1464). Natriumsalz. Tafeln.
- 4-Oxy-ω-methoxy-acetophenon, 4-Oxy-benzoylcarbinol-methyläther $C_0H_{10}O_3=HO\cdot C_0H_4\cdot CO\cdot CH_3\cdot O\cdot CH_3$. B. Aus 4-Acetoxy-benzoylchlorid beim Behandeln mit der Natriumverbindung des α.γ-Dimethoxy-acetessigsäureäthylesters in siedendem absolutem Äther und Zersetzen des Reaktionsprodukts mit siedender alkoholisch-wäßriger Kalilauge (ROBERTSON. ROBINSON, Soc. 1926, 1715). Nadeln (aus Benzol), F: 130—131°; Prismen mit 0,25 H_2O (aus Wasser). Leicht löslich in Alkohol und Aceton, löslich in Äther, schwer löslich in Petroläther. Liefert beim Behandeln mit Resorcylaldehyd in Ameisensäure unter Einleiten von Chlorwasserstoff 7.4′-Dioxy-3-methoxy-flavyliumchlorid (Syst. Nr. 2441). Kaliumsalz. Tafeln.
- 4.ω Dimethoxy acetophenon $C_{10}H_{12}O_3=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot CH_2\cdot O\cdot CH_3$. B. Analog 2.ω-Dimethoxy-acetophenon (s. o.) (Pratt, Robinson, Soc. 127, 169). Entsteht ferner beim Behandeln von Methoxyacetonitril mit 4-Methoxy-phenylmagnesiumbromid in Åther und Zersetzen des Reaktionsprodukts mit Eiswasser und verd. Schwefelsäure (Pr., Ro., Soc. 123, 750). Tafeln (aus Benzol + Petroläther). F: 40°. Kp₃₅: 185—190° (Pr., Ro.). Leicht löslich in organischen Lösungsmitteln außer Petroläther (Pr., Ro.). Reagiert mit 2.4.6-Triacetoxy-benzylidendiacetat und ähnlichen Verbindungen analog 2.ω-Dimethoxy-acetophenon (Pr., Ro., Soc. 125, 196; 127, 1187; Robertson, Robinson, Soc. 1927, 2199, 2204). Gibt mit 6-Aminopiperonal 3-Methoxy-6-7-methylendioxy-2-[4-methoxy-phenyl]-chinolin (Syst. Nr. 4441) (Pr., Ro., Soc. 123, 751; 127, 169).
- Semicarbazon $C_{11}H_{15}O_3N_3=CH_3\cdot O\cdot C_6H_4\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_2\cdot O\cdot CH_3$. Tafeln (aus Alkohol). F: 149° (Pr., Ro., Soc. 128, 751).
- ω Oxy 4 acetoxy acetophenon, 4 Acetoxy benzoylcarbinol $C_{10}H_{10}O_4 = CH_3 \cdot CO \cdot O \cdot C_6H_4 \cdot CO \cdot CH_2 \cdot OH$. B. Durch Schütteln der in Wasser suspendierten Natriumverbindung des 4.ω-Dioxy-acetophenons mit Acetanhydrid und Äther (ROBERTSON, ROBINSON, Soc. 1928, 1465). Prismen (aus Wasser). F: 95—96°. Schwer löslich in trockenem Äther. Unlöslich in kalten verdünnten Alkalilaugen.
- 4-0xy- ω -acetoxy-acetophenon, 4-0xy-benzoylcarbinol-acetat $C_{10}H_{10}O_4=H0\cdot C_0H_4\cdot C0\cdot CH_2\cdot O\cdot CO\cdot CH_3$. B. Beim Kochen von ω -Chlor-4-acetoxy-acetophenon mit Kaliumacetat in Alkohol (Nolan, Pratt, Robinson, Soc. 1926, 1969) oder von ω -Chlor-4-oxy-acetophenon mit Kaliumacetat, Eisessig und absol. Alkohol (Robertson, Robinson, Soc. 1928, 1464). Nadeln (aus Wasser). F: 133° (R., R.). Löslich in verd. Sodalösung, unlöslich in Natrium-dicarbonat-Lösung (R., R.).
- $4.\omega$ -Diacetoxy-acetophenen $C_{12}H_{12}O_5=CH_3\cdot CO\cdot O\cdot C_6H_4\cdot CO\cdot CH_2\cdot O\cdot CO\cdot CH_3$. B. Aus 4-Oxy- ω -acetoxy-acetophenon und Acetylchlorid in der Kälte (Nolan, Pratt, Robinson, Soc. 1926, 1969). Beim Erwärmen von ω -Chlor-4-oxy-acetophenon mit Kaliumacetat und Acetanhydrid auf dem Wasserbad (Robertson, Robinson, Soc. 1928, 1464). Prismen (aus Petroläther), Tafeln (aus Benzol). F: 98° (R., R.). Unlöslich in Sodalösung (N., P., R.).

303

- ω Θ xy- 4-carbomethoxyoxy- acetophenon $C_{16}H_{10}O_5 = CH_3 \cdot O_2C \cdot O \cdot C_6H_4 \cdot CO \cdot CH_2 \cdot OH$. B. Aus der Natriumverbindung des $4 \cdot \omega$ -Dioxy-acetophenons und Chlorameisensäuremethylester in Wasser (Robertson, Robinson, Soc. 1928, 1465). Nadeln (aus Wasser oder Benzol + Petroläther). F: 84°. Leicht löslich in Alkohol, ziemlich leicht in kaltem Benzol und heißem Wasser, schwer in Petroläther.
- 10. 3.4-Dioxy-phenylacetaldehyd C₈H₈O₃, s. nebenstehende Formel.

 3.4 Dimethoxy phenylacetaldehyd, Homoveratrumaldehyd C₁₀H₁₈O₃ = (CH₃·C)₃C₆H₅·CH₂·CHO (E I 619). B. Bei der Ozonspaltung von 3.4-Dimethoxy-OH (Della Cohn, G. 56, 146). Liefert bei der Kondensation mit 2.4-Dimethoxy-6-acetoxy-benzaldehyd und Chlorwasserstoff in Ather 5.7-Dimethoxy-3-[3.4-dimethoxy-phenyl]-benzopyryliumehlorid (Syst. Nr. 2453) (CA., COHN).
- 3.4-Dimethoxy-phenylacetaldoxim, Homoveratrumaldoxim $C_{10}H_{13}O_3N=(CH_3\cdot O)_2C_0H_3\cdot CH_2\cdot CH:N\cdot OH$ (E I 619). F: 91—92° (Mannich, Merz, Ar. 1927, 106).
- 3-Methoxy-4-benzyloxy-phenylacetaldoxim $C_{16}H_{17}O_2N=C_6H_5\cdot CH_2\cdot O\cdot C_6H_3(O\cdot CH_3)\cdot CH_3\cdot CH:N\cdot OH.$ B. Durch Reduktion von ω -Nitro-3-methoxy-4-benzyloxy-styrol mit Zinkstaub in Alkohol + Eisessig bei 5—10° (Kobayashi, Scient. Pap. Inst. phys. chem. Res. 6, 154; C. 1928 I, 1027). Prismen (aus Alkohol). F: 118—119°. Leicht löslich in Äther, Aceton, Eisessig und Chloroform, schwer in kaltem Alkohol, Benzol und Tetrachlorkohlenstoff. Liefert bei der Reduktion mit überschüssigem Natriumamalgam in Alkohol + Eisessig bei 30—50° β -[3-Methoxy-4-benzyloxy-phenyl]-äthylamin.
- 11. 4.5 Dioxy 2 methyl benzaldehyd, 4.5 Dioxy o toluyl-aldehyd C₈H₈O₃, s. nebenstehende Formel.

 4.5 Dimethoxy 2 methyl benzaldehyd, 4.5 Dimethoxy o toluylaldehyd Ho

 C: H. O. = CH. C.H. O. CH. b. CHO (H. 275). B. Bei 1/c. stdg. Kochen von
- 4.5 Dimethoxy 2 methyl benzaldehyd, 4.5 Dimethoxy o toluylaidehyd HO C₁₀H₁₉O₃ = CH₃· C₄H₂(O· CH₃)₂· CHO (H 275). B. Bei ¹/₂·stdg. Kochen von [4.5-Dimethoxy-2-methyl-benzyliden]-anilin mit ca. 14% iger Salzsäure (Kuroda, Perkin, Soc. 123, 2110). Nadeln (aus Wasser). F: 76°.
- Oxim $C_{10}H_{18}O_3N = CH_3 \cdot C_6H_2(O \cdot CH_3)_2 \cdot CH : N \cdot OH$ (H 276). F: 128° (KURODA, PERKIN, Soc. 128, 2110).
- Semicarbazon $C_{11}H_{15}O_3N_3=CH_3\cdot C_6H_2(O\cdot CH_3)_2\cdot CH\cdot N\cdot NH\cdot CO\cdot NH_2$ (H 276). Nadeln (aus Alkohol). F: 218° (Kuroda, Perkin, Soc. 128, 2110).
- 12. 4.6 Dioxy 2 methyl 1 formyl-benzol, 4.6 Dioxy 2 methyl benzaldehyd, 4.6 Dioxy o toluylaldehyd, Orcylaldehyd

 C₈H₈O₃, s. nebenstehende Formel (H 276). Darst. Zur Darstellung aus Orcin und Blausäure bei Gegenwart von Chlorwasserstoff nach Gattermann, Köbner

 (B. 32, 279) vgl. Adams, Levine, Am. Soc. 45, 2376. Beim Einleiten von Chlorwasserstoff in eine Mischung aus 4.6-Dioxy-2-methyl-benzaldehyd, Acetophenon und Methanol in der Kälte erhält man 7-Oxy-5-methyl-2-phenyl-benzopyryliumchlorid (Syst. Nr. 2406) (Hirst, Soc. 1927, 2493). Gibt mit pararosanilinschwefliger Säure je nach dem Schwefeldioxyd-Gehalt gelbe oder rote Niederschläge (Shorsmith, Sosson, Hetherington, Soc. 1927, 2222).
- 6-Oxy-4-methoxy-2-methyl-benzaldehyd, 6-Oxy-4-methoxy-o-toluyl-aldehyd, Everninaldehyd C_bH₁₀O₃, s. nebenstehende Formel (E I 620). B.

 Neben Isoeverninaldehyd (s. u.) beim Einleiten von Chlorwasserstoff in eine Mischung aus 3-Oxy-5-methoxy-toluol und Zinkeyanid in Benzol in der Kälte, Zufügen von Aluminiumchlorid und nochmaligen Einleiten von Chlorwasserstoff bei 40° (Prau, Helv. 11, 876). Liefert beim Behandeln mit Acetophenon in Methanol unter Einleiten von Chlorwasserstoff in der Kälte 7-Methoxy-5-methyl-2-phenyl-benzopyryliumchlorid (Syst. Nr. 2406) (Hirst, Soc. 1927, 2494). Reagiert analog mit 4-Methoxy-acetophenon (H.).
- 4-0xy-6-methoxy-2-methyl-benzaldehyd, 4-0xy-6-methoxy-0-toluyl-aldehyd, Isoeverninaldehyd C₂H₁₀O₃, s. nebenstehende Formel (H 276). B. s. o. bei Everninaldehyd. Krystalle (aus 50% iger Essigsäure). F: 194—195° (Pfau, Helv. 11, 876). Liefert beim Kochen mit 4-Methoxy-acetophenon und wäßrig-methylalkoholischer Kalilauge [4-Methoxy-phenyl]-[4-oxy-6-methoxy-2-methyl-styryl]-keton (HIRST, Soc. 1927, 2495).

CHO

- 4.6 Dimethoxy-2-methyl benzaldehyd , 4.5 Dimethexy- e-tolwylaldehyd , Orcylaldehyd dimethyläther $C_{10}H_{12}O_3=CH_3\cdot C_cH_2(O\cdot CH_3)_3\cdot CHO$ (H 276). B. Aus Orcylaldehyd beim Behandeln mit Dimethylsulfat in wäßr. Natronlauge (Robertson, Robinson, Soc. 1927, 2200). F: 64—65°. Liefert bei der Oxydation mit Permanganat 4.6-Dimethoxy-2-methyl-benzoesäure.
- 6-0xy-4-carbomethoxyoxy-2-methyl-benzaldehyd, 6-0xy-4-carbomethoxyoxy-0-toluyl-aldehyd $C_{10}H_{10}O_5=CH_3\cdot C_4H_4(OH)(O\cdot CO_2\cdot CH_3)\cdot CHO$. Diese Konstitution kommt dem E I 620 beschriebenen Monocarbomethoxyorcylaldehyd von Hoesch (B. 46, 887) zu (E. Fischer, H. O. L. Fischer, B. 47 [1914], 505).
- 6-Methoxy-4-carbomethoxyoxy-2-methyl-benzaldehyd, 6-Methoxy-4-carbomethoxyoxy-0-toluylaldehyd, Carbomethoxy-isoeverninaldehyd $C_{11}H_{12}O_5=CH_3\cdot C_6H_2(O\cdot CH_3)(O\cdot CO_3\cdot CH_2)\cdot CHO$. B. Aus 4-Oxy-6-methoxy-2-methyl-benzaldehyd und Chlorameisensäuremethylester in Aceton beim Schütteln mit Natronlauge unter Kühlung (HIRST, Soc. 1927, 2495). Nadeln (aus verd. Aceton). F: 80—81°. Wird bei Belichtung dunkelgelb, im Dunkeln wieder farblos. Liefert bei der Oxydation mit Permanganat in Aceton 6-Methoxy-4-carbomethoxyoxy-o-toluylsäure.
- 13. 2.4 Dioxy 3 methyl benzaldehyd, 2.4 Dioxy m toluylaldehyd $C_8H_8O_3$, s. nebenstehende Formel (R = H).
- 2-0xy-4-methoxy-3-methyl-benzaldehyd, 2-0xy-4-methoxy-m-tokylaldehyd

 C₂H₁₀O₃, s. nebenstehende Formel (R = CH₃). Zur Konstitution vgl. Ott, Nauen,

 B. 55, 920, 925; Jones, Robertson, Soc. 1932, 1689. B. In geringer Menge
 durch Einw. von Chloroform und Natronlauge auf (vermutlich unreinen) Resoreinmonomethyläther (Tiemann, Parrisius, B. 13 [1880], 2366; vgl. O., N., B. 55, 920, 925). Neben wenig
 2-Oxy-4-methoxy-benzaldehyd bei tagelangem Schütteln von Resorcylaldehyd mit Methyljodid
 und Kaliumcarbonat in Methanol unter Luftabschluß (O., N., B. 55, 921; vgl. T., P.). —
 Riecht vanilleartig. F: 62—63° (T., P.; O., N.). Flüchtig mit Wasserdampf.
- $0 \text{xim } C_0 H_{11} O_3 N = C H_3 \cdot C_8 H_2(OH)(O \cdot C H_3) \cdot C H : N \cdot OH$. B. Aus 2-Oxy-4-methoxy-3-methylbenzaldehyd und Hydroxylaminhydrochlorid in mit Ammoniak neutralisierter wäßrig-alkoholischer Lösung (OTT, NAUEN, B. 55, 927). F: 124—126°.
- 14. 3 Oxy 2.6 dimethyl benzochinon (1.4), Oxy-m-xylochinon C₈H₈O₃, s. nebenstehende Formel (H 279). B. Aus asymm. m-Xylidin beim Behandeln mit Eisenchlorid in 2n-Schwefelsäure und nachfolgenden Destillieren mit Wasserdampf (Fichter, Müller, Helv. 8, 291). Entsteht in sehr geringer Menge neben anderen Produkten bei der elektrolytischen Oxydation von asymm. m-Xylidin in 2n-Schwefelsäure an Platinanoden mit niedriger Stromdichte und nachfolgenden Destillation mit Wasserdampf (F., M., Helv. 8, 296). Kann als Indikator ähnlich wie Methylorange angewandt werden (F., M., Helv. 8, 292).
- 15. 2.6 Dioxy 4 methyl 1 formyl-benzol, 2.6-Dioxy-4-methyl-benzaldehyd, 2.6-Dioxy-p-toluylaldehyd, Paraorsellinaldehyd, Atranol, Physciol (früher auch als Atranorinsäure bezeichnet)

 C₈H₈O₃, s. nebenstehende Formel. Zur Zusammensetzung und Konstitution vgl.

 Pfau, Helv. 9, 656, 662; 16 [1933], 283. B. Entsteht neben anderen Produkten beim Erhitzen von Atranorinsäure (Syst. Nr. 1433) mit Alkohol auf 150° im Rohr (Hesse, J. pr. [2] 57 [1898], 294), aus Atranorin (Syst. Nr. 1433) beim Erhitzen mit Wasser auf 150° im Rohr (Paternò, G. 12 [1882], 257; H., J. pr. [2] 57, 284; Pf., Helv. 9, 660), beim Erwärmen mit Sodalösung (H., J. pr. [2] 57, 436; vgl. H., A. 284 [1895], 188), beim Kochen mit Barytwasser (H., J. pr. [2] 57, 288; vgl. Pa., G. 12, 258; Pf., Helv. 9, 654 Ann. 5) und beim Erhitzen mit Alkoholen oder Eisessig (H., J. pr. [2] 57, 284, 289; Pf., Helv. 9, 660). Aus Hämatommsäureäthylester (= 6-Methyl-3-formyl-β-resorcylsäureäthylester, Syst. Nr. 1433) beim Kochen mit 10%iger Natronlauge (Pf., Helv. 9, 669) oder beim Erhitzen mit Eisessig auf 150° im Rohr (H., J. pr. [2] 57, 292). Bildet sich neben anderen Produkten beim Erwärmen von Cetrarsäure (Syst. Nr. 2904) mit Zinkstaub und 15%iger Natronlauge (Koller, Kandler, M. 56 [1930], 234; Pf., Helv. 16, 282; vgl. Simon, Ar. 240 [1902], 548; 244 [1906], 464). Über Bildung bei der Mikrosublimation verschiedener Parmelia-Arten vgl. Heyl, Kneip, Apoth. Zig. 29, 564; C. 1914 II, 412.

Gelbe oder blaßgelbe Krystalle (aus Wasser, Benzol oder Ligroin). Schmilzt wasserfrei bei 124°; nimmt an der Luft /₂ H₂O auf, wird dabei citronengelb und schmilzt dann bei 118° bis 119°; das Krystallwasser wird im Vakuum über Phosphorpentoxyd bei 100° abgegeben (Pfau, Helv. 17 [1934], 1322, 1327). Schwer flüchtig mit Wasserdampf (Pf., Helv. 9, 662). Leicht löslich in siedendem Wasser, Alkohol, Äther, Chloroform und Eisessig, schwer in heißem Ligroin (Paternò, G. 12 [1882], 257; Hesse, A. 284 [1895], 190; Pf., Helv. 9, 661). Löslich in

305

Alkalilaugen und Alkalicarbonat- und Alkalidicarbonat-Lösungen mit gelber Farbe (Pr.). Leicht löslich in konz. Schwefelsture mit goldgelber Farbe, die beim Verdünnen mit Wasser verschwindet (Pr.). Löst sich in kalter verdünnter NaHSO₂-Lösung und wird beim Erwärmen mit verd. Schwefelsäure wieder abgeschieden (Pr.).

Bei der Oxydation mit Wasserstoffperoxyd und verd. Natronlauge entsteht 5-Methylpyrogallol (Pfau, Helv. 9, 667). Hydrierung in Gegenwart von Nickel: Pf., Helv. 9, 665. Liefert bei der Reduktion mit amalgamiertem Zink und Salzsäure 2.6-Dioxy-p-xylol (Pf., Helv. 9, 664). Gibt bei der Einw. von Chlorameisensäureäthylester in Aceton, Oxydation mit Permanganat in Aceton + Wasser und folgenden Verseifung 2.6-Dioxy-4-methyl-benzoesäure (Pr., Helv. 9, 666). — Atranol gibt beim Erwärmen mit Chloroform und Natronlauge eine blutrote Färbung (Pr., Helv. 9, 662). Reines Atranol gibt mit Eisenchlorid in konzentrierter alkoholischer oder wäßriger Lösung eine grünlichschwarze Färbung, die beim Verdünnen mit Alkohol bzw. Wasser in Olivgrün übergeht (Pr.).

- 2.6-Dimethoxy-4-methyl-benzaldehyd, 2.6-Dimethoxy-p-toluylaldehyd, Atranol-dimethyl-ather $C_{10}H_{12}O_3=CH_3\cdot C_6H_4(O\cdot CH_3)_2\cdot CHO$. B. Durch Reduktion von 2.6-Dimethoxy-4-methyl-benzaldehyd. benzonitril mit Zinn(II)-chlorid und Chlorwasserstoff in Chloroform + Ather und Erwarmen des Reaktionsprodukts mit wäßr. Natriumacetat Lösung auf dem Wasserbad (ROBERTSON, ROBINSON, Soc. 1927, 2201). — Nadeln (aus Petroläther). F: 90—91°. Leicht löslich in Äther und Alkoholen, ziemlich leicht in Benzol, schwer in heißem Wasser. — 4. Nitro-phenylhydrazon. Gelb. Schwer löslich.
- 2.6 Diacetoxy 4 methyl benzylidendiacetat, Atranol tetraacetat $C_{16}H_{16}O_8=CH_3\cdot C_6H_2(O\cdot CO\cdot CH_3)_3\cdot CH(O\cdot CO\cdot CH_3)_2$. B. Beim Kochen von Atranol mit Acetanhydrid und Natriumacetat (Pfau, Helv. 9, 663). Rötliche Krystalle (aus 20%iger Essigsäure). F: 137°. Wird durch Alkalilaugen nach einiger Zeit verseift.
- 2.6-Dioxy-4-methyl-benzaldoxim, Atranol-oxim $C_8H_9O_3N=CH_3\cdot C_9H_9(OH)_2\cdot CH:N\cdot OH.$ Bräunliche Schuppen (aus Benzol + Petroläther). F: 188—190° (Maquennescher Block; Zers.) (Pfau, Helv. 9, 663). Leicht löslich in verd. Alkalilauge mit gelber Farbe. Gibt mit Eisenchlorid in alkoh. Lösung eine dunkelbraunviolette, beim Verdünnen mit Wasser in Rotviolett übergehende Färbung.
- 2.6-Dioxy-4-methyl-benzaldehyd-semicarbazon, Atranol-semicarbazon $C_9H_{11}O_3N_3=CH_3\cdot C_6H_2(OH)_3\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Krystalle (aus Alkohol). F: 273—275° (Maquennescher Block; Zers.) (Pfau, Helv. 9, 663). Leicht löslich in verd. Alkalilauge mit gelber Farbe. Gibt mit Eisenchlorid in konzentrierter alkoholischer Lösung eine intensiv violettschwarze Färbung, die beim Verdünnen mit Wasser oder Alkohol in Violett übergeht.

4. Oxy-oxo-Verbindungen $C_0H_{10}O_3$.

1. 2.4 - Dioxy - 1 - propionyl - benzol, 2.4 - Dioxy - propiophenon, CO · CaH 5 4 - Propionyl - resorcin, Athyl - [2.4 - dioxy - phenyl] - keton $C_0H_{10}O_3$, s. nebenstehende Formel (H 279; E I 620). B. Zur Bildung aus Resorcin und Propionон säure bei Gegenwart von Zinkehlorid nach Goldzweig, Kaiser (J. pr. [2] 48, 90) vgl. Johnson, Lane, Am. Soc. 48, 357; Gnagy, Am. Soc. 45, 806; Sharp & Dohme, D.R.P. 489117; C. 1930 I, 2796; Frdl. 16, 2867. Beim Einleiten von Chlorwasserstoff in eine Mischung aus Resorcin, Propionitril und Zinkchlorid in Äther (Sonn, B. 54, 773). — F: 95—96° (J., L.; Sh. & D.), 98° (Gn.). Kp_{e-7}: 176—178° (Sh. & D.). Leicht löslich in Alkalilauge (Gn.). — Die wäßr. Lösung gibt mit Silbernitrat hellgelbe Nadeln, mit Bleiacetat einen rosaroten und mit Bariumhydroxyd einen gelben Niederschlag, mit Eisenchlorid eine rote Färbung (Gn.). Liefert beim Erhitzen mit Acetanhydrid und Natriumacetat auf 160—170° und anschließenden Verseifen mit siedender Sodalösung 7-Oxy-2.3-dimethyl-chromon (Syst. Nr. 2511) (WITTIG, B. 59, 117).

3.5 - Dibrom - 2.4 - dioxy - propiophenon, 2.6 - Dibrom - 4 - propionyl - resorcin C₉H₈O₃Br₂, s. nebenstehende Formel. B. Aus 2.4 - Dioxy - propiophenon und 2 Mol Brom in Eisessig (GNAGY, Am. Soc. 45, 807). — Krystalle (aus Alkohol). F: 148°. Leicht löslich in Alkohol, Benzol und Eisessig, schwer in Wasser; leicht löslich in Alkalilaugen. — Das Phenylhydrazon schmilzt bei 173° (Zers.).

CO · C2H5 OH Br ÓН

CO · C2H3

он

2. 2.5-Dioxy - 1-propionyl - benzol, 2.5 - Dioxy - propiophenon, 2-Propionyl-hydrochinon, Athyl-[2.5-dioxy-phenyl]-keton, Chin-propiophenon C, H₁₀O₅, s. nebenstehende Formel (H 280; E I 621). B. Bei aufeinanderfolgender Einw. von Aluminiumehlorid und Propionylehlorid auf Hydrochinon in warmem Nitrobenzol (ROSENMUND, LOHFERT, B. 61, 2606). Aus Hydrochinondipropionat oder besser aus Hydrochinon-dipropionat + Hydrochinon beim Erwärmen mit Aluminium chlorid in Nitrobenzol (R., L.). — F: 92°.

- 3. 3.4 Bioxy 1 propionyl benzol , 3.4 Dioxy propiophenen, 4 Propionyl brenzcatechin , Athyl [3.4 dioxy phenyl] keton C.H. 1003, s. nebenstehende Formel. B. Aus Brenzoatechin-dipropionat bei der Einw. von Aluminiumchlorid in Nitrobenzol anfangs bei Zimmertemperatur, zuletzt auf dem Wasserbad (Rosenmund, Lohffert, B. 61, 2604). Gelbe Nadeln (aus Benzol). F: 1460.
- β -Chlor-3.4-dimethoxy-propiophenon, 4- $[\beta$ -Chlor-propionyl]-veratrot $C_{11}H_{10}O_3Cl=(CH_3\cdot O)_2C_6H_3\cdot CO\cdot CH_2\cdot CH_3Cl$. B. Beim Behandeln von β -Chlor-propionylchlorid mit Aluminiumchlorid in Schwefelkohlenstoff, Zufügen einer Lösung von Veratrol in Schwefelkohlenstoff und Erwärmen auf dem Wasserbad (Freudenberg, Firentscher, A. 440, 36). Gelbliche Krystalle (aus Methanol oder Tetrachlorkohlenstoff). F: 114°. Gibt beim Eintragen in siedendes wasserfreies Hydrazin 3-[3.4-Dimethoxy-phenyl]-pyrazolin (Syst. Nr. 3534).
- 4. 3.5 Dioxy-1-propionyl benzol, 3.5 Dioxy-propiophenon Co CoH 5 CoH 5 CoH 5 Co CoH 5 COH
- 3.5-Dimethoxy-propiophenon, 5-Propionyl-resorcin-dimethyläther, Äthyl-13.5-dimethoxy-phenyl]- keton $C_{11}H_{14}O_3=(CH_3\cdot O)_2C_6H_3\cdot CO\cdot C_2H_5$. B. Aus 3.5-Dimethoxy-benzoylchlorid und Athylzinkjodid in Toluol (MAUTHNER, J. pr. [2] 103, 396). Beim Erhitzen von 3.5-Dimethoxy-benzoylessigsäureäthylester mit Methyljodid und Natriumäthylat-Lösung auf dem Wasserbad und Kochen des entstandenen α -[3.5-Dimethoxy-benzoyl]-propionsäure-äthylesters mit 25%iger Schwefelsäure (M., J. pr. [2] 107, 105). Nadeln (aus Petroläther). F: 34—35° (M., J. pr. [2] 107, 106). Kp₁₅: 170—172° (M., J. pr. [2] 107, 106); Kp₁₇: 168—170° (M., J. pr. [2] 103, 396). Liefert beim Kochen mit amalgamiertem Zink und Salzsäure 3.5-Dimethoxy-1-propyl-benzol (M., J. pr. [2] 103, 396; 108, 276).

Semicarbazon $C_{19}H_{17}O_3N_3 = (CH_3 \cdot O)_2C_4H_5 \cdot C(C_2H_5) : N \cdot NH \cdot CO \cdot NH_8$. Nadeln (aus verd. Alkohol). F: 130—131° (Mauthner, *J. pr.* [2] 107, 106).

- 5. 3.4 Dioxy 1 acetonyl benzol, 3.4 Dioxy phenylaceton $CH_4 \cdot CO \cdot CH_3 \cdot C_9H_{10}O_2$, s. nebenstehende Formel.
- 3.4- Dimethoxy- phenylaceton, Methyl- [3.4-dimethoxy-benzyl]- keton, Veratrylaceton $C_{11}H_{14}O_3=(CH_3\cdot O)_2C_6H_2\cdot CH_2\cdot CO\cdot CH_3$ (H 281; E I 621). B. In geringer Menge beim Behandeln von Acetoveratron mit Diazomethan in Äther + Methanol (Mosettig, Jovanovio, M. 58/54, 430, 432). Bei der Destillation von α -Methyl- β -[3.4-dimethoxy-phenyl]-äthylenoxyd im Vakuum (M., J., M. 58/54, 436 Anm.). Kp₁₀: 157—159°. Gibt bei weiterer Einw. von Diazomethan in Äther + Methanol ein Oxyd, das beim Behandeln mit Piperidin in β '-Piperidino- β -[3.4-dimethoxy-phenyl]-tert.-butyl-alkohol (Syst. Nr. 3038) übergeht.

Semicarbazon $C_{12}H_{17}O_3N_3 = (CH_3 \cdot O)_2C_6H_3 \cdot CH_2 \cdot C(CH_2) : N \cdot NH \cdot CO \cdot NH_2$ (H 281). F: 178° bis 181° bzw. 177—180° (Mosettig, Jovanović, M. 53/54, 432, 436).

- 6. $1-[4-Oxy-phenyl]-propanol-(1)-on-(2), [4-Oxy-phenyl]-acetyl-carbinol <math>C_0H_{10}O_8=HO\cdot C_0H_4\cdot CH(OH)\cdot CO\cdot CH_8$.
- [4-Methoxy-phenyl]-acetyl-carbinol $C_{10}H_{12}O_3 = CH_3 \cdot O \cdot C_6H_4 \cdot CH(OH) \cdot CO \cdot CH_2$. B. Bei der Einw. von gärender Hefe auf Anisaldehyd (Neuberg, Liebermann, Bio. Z. 121, 324). Liefert ein bei 266° (unkorr.) schmelzendes 4-Nitro-phenylosazon $C_{22}H_{20}O_5N_6$,
 - 7. 4.5-Dioxy-2-äthyl-benzaldehyd C₂H₁₄O₃, Formel I auf S. 307.
- 4.5 Dimethoxy 2 äthyl benzaldehyd $C_{11}H_{14}O_3 = C_2H_5 \cdot C_6H_3(0 \cdot CH_3)_2 \cdot CHO$. B. Beim Behandeln von 3.4 Dimethoxy 1 āthyl benzol mit Blausäure und Chlorwasserstoff bei Gegenwart von Aluminiumchlorid anfangs bei 0°, zuletzt bei 30° (BARGER, SILBERSCHMIDT, Soc. 1928, 2925). Platten. F: 28—30°. Kp₅: 150—159°. Leicht löslich in organischen Lösungsmitteln. Gibt bei der Oxydation mit alkal. Permanganat-Lösung 4.5 Dimethoxy 2 āthylbenzoesäure.

Semicarbazon $C_{12}H_{17}O_2N_3=C_2H_3\cdot C_4H_2(O\cdot CH_3)_2\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Krystalie. F: 197° bis 199° (Barger, Silberschmidt, Soc. 1928, 2925).

- 8. 4.5-Dioxy-1-methyl-2-acetyl-benzol, 4.5-Dioxy-2-acetyl-toluol, 4.5-Dioxy-2-methyl-acetophenon $C_9H_{10}O_3$, Formel II auf S. 307 (R und R' = H).
- 5-Oxy-4-methoxy-2-acetyl-toluol, 4-Oxy-5-methoxy-2-methyl-acetophenon, 5-Oxy-4-methoxy-0-tolylmethylketon $C_{10}H_{12}O_3$. Formel II auf 8.307 (R = H, R' = CH₃). B. Neben überwiegenden Mengen 4.5-Dimethoxy-2-methyl-acetophenon bei aufeinanderfolgendem Ein-

tragen von Aluminiumchlorid und 3.4-Dimethoxy-toluol in eine Lösung von Acetylchlorid in Schwefelkohlenstoff in der Kälte und nachfolgendem Erwärmen auf dem Wasserbad (FARCHER, PERKIN, Söc. 118, 1731, 1732). — Krystalle (aus Petroläther oder Benzol + Petroläther). F: 123°. Leicht löslich in Methanol und Benzol, schwer in Petroläther und Wasser. Die Lösung in Methanol gibt mit Eisenchlorid eine blaß gelbgrüne Färbung. — Gibt mit Dimethylsulfat in methylalkoholischer Natronlauge, zuletzt auf dem Wasserbad, 4.5-Dimethoxy-2-methyl-acetophenon. — Phenylhydrazon. F: 164—165°.

- 4.5-Dimethoxy-2-acctyl-toluol, 4.5-Dimethoxy-2-methyl-acctophenon, 4.5-Dimethoxy-0-tolylmethylketon $C_{11}H_{14}O_3$, Formel II (R und R' = CH_3) (E I 622). B. s. im vorangehenden Artikel. Prismen (aus Methanol). F: 76—77° (FARGHER, PERKIN, Soc. 119, 1731, 1734). Kp₁₈: 175°. Ziemlich schwer löslich in kaltem, leicht in warmem Methanol. Liefert bei der Öxydation mit 3,75 Tln. Kaliumpermanganat in heißer Kaliumcarbonat-Lösung 4.5-Dimethoxy-phthalonsäure, geringere Mengen 4.5-Dimethoxy-2-methyl-phenylglyoxylsäure und wenig Oxalsäure und Metahemipinsäure. Phenylhydrazon. F: 182° (ohne Zersetzung).
- 5-Methoxy-4-äthoxy-2-acetyl-toluol, 4-Methoxy-5-äthoxy-2-methyl-acetophenon $\rm C_{19}H_{10}O_{3}$, Formel II (R = CH₃, R' = C₂H₅). B. Beim Behandeln von 3-Methoxy-4-äthoxy-toluol mit Acetylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff bei 50° (v. BRUCHHAUSEN, SAWAY, Ar. 1925, 603). Nadeln (aus Benzin). F: 50—51°. Kp₁₁: 156—160°. Liefert bei der Oxydation mit sodaalkalischer Permanganat-Lösung in der Wärme 4-Methoxy-5-äthoxy-2-methyl-phenylglyoxylsäure und 4-Methoxy-5-äthoxy-2-methyl-benzoesäure.
- 4-Methoxy-5-acetoxy-2-acetyl-toluol, 5-Methoxy-4-acetoxy-2-methyl-acetophenon $C_{12}H_{14}O_4$, Formel II ($R=CH_3\cdot CO,\ R'=CH_3$). B. Aus 5-Oxy-4-methoxy-2-acetyl-toluol beim Kochen mit überschüssigem Acetylchlorid (Fargher, Perkin, Soc. 119, 1733). Nadeln (aus Methanol). F: 108° .

I. HO OH CH3 CH3 CH3 CH3 CH3 CO CH3
$$\frac{\text{CH}_3}{\text{HO}}$$
 CO CH3

- 4.5 Dimethoxy 2 methyl acetophenon oxim $C_{11}H_{16}O_3N=CH_3\cdot C_6H_3(O\cdot CH_3)_2\cdot C(CH_3):$ N·OH. Prismen (aus Wasser). F: 138° (FARGHER, PERKIN, Soc. 119, 1732).
- 4 Methoxy 5 āthoxy 2 methyl acetophenon oxim $C_{12}H_{17}O_3N = CH_3 \cdot C_6H_2(O \cdot CH_3)(O \cdot C_2H_5) \cdot C(CH_3): N \cdot OH$. Krystalle (aus Benzin). F: 99—100° (v. Bruchhausen, Saway, Ar. 1925, 604).
- 4-Oxy-5-methoxy-2-methyl-acetophenon-semicarbazon $C_{11}H_{15}O_3N_3=CH_3\cdot C_6H_2(OH)(O\cdot CH_3)\cdot C(CH_3):N\cdot NH\cdot CO\cdot NH_2$. Prismen. Erweicht bei 220° und zersetzt sich bei ca. 228—230° (FARGHER, PERKIN, Soc. 119, 1733). Schwer löslich in siedendem Wasser, leicht in verd. Natronlauge.
- 4.5 Dimethoxy -2- methyl acetophenon semicarbazon $C_{12}H_{17}O_3N_3 = CH_3 \cdot C_6H_2(O \cdot CH_3)_2 \cdot C(CH_3) \cdot N \cdot NH \cdot CO \cdot NH_2$ (vgl. E I 622). Krystalle (aus Alkohol). F: 208° (FARGHER, PERKIN, Soc. 119, 1732).
- 4 Methoxy 5 \ddot{a} thoxy 2 methyl acetophenon semicarbazon $C_{19}H_{19}O_3N_8 = CH_8 \cdot C_6H_8(O \cdot CH_8)(O \cdot C_2H_5) \cdot C(CH_9): N \cdot NH \cdot CO \cdot NH_2$. Nadeln. F: 185—186° (v. Bruchhausen, Saway, Ar. 1925, 604).
- 9. 5.6 Dioxy 1 methyl 2 acetyl benzol, 5.6 Dioxy 2 acetyl toluol, 3.4 Dioxy 2 methyl acetophenon $C_0H_{10}O_3$, Formel III.
- 5.6-Dimethoxy-2-acetyl-toluol, 3.4-Dimethoxy-2-methyl-acetophenon, 2-Methyl-acetoveratron C₁₁H₁₄O₂ = CH₃·C₆H₂(O·CH₃)₂·CO·CH₃. B. Bei der Einw. von Kaliumpermanganat auf Anhydrotetrahydromethylcorycavidin (Syst. Nr. 2932) in essigsaurer Lösung unter Kühlung (v. Bruchhausen, Ar. 1925, 591). Beim Behandeln von 2.3-Dimethoxy-toluol mit Acetylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff bei 40—50° (v. B., Ar. 1925, 595). Tafeln (aus Petroläther). F: 70—71°. Ist mit Wasserdampf flüchtig. Leicht löslich in organischen Lösungsmitteln außer Petroläther. Liefert bei der Oxydation mit Natriumhypojodit-Lösung Jodoform und 2-Methyl-veratrumsäure (Syst. Nr. 1106). Beim Behandeln mit Permanganat in sodaalkalischer Lösung erhält man 3.4-Dimethoxy-2-methyl-phenylglyoxylsäure und wenig 2-Methyl-veratrumsäure.

Semicarbazon $C_{12}H_{17}O_8N_3=CH_2\cdot C_4H_2(O\cdot CH_3)_3\cdot C(CH_2):N\cdot NH\cdot CO\cdot NH_2$. Krystalle (aus Methanol). F: 203° (v. Bruchhausen, Ar. 1925, 591).

O.R

- 10. 3.5 Dioxy 1.4-dimethyl 2 formyl benzol, 4.6-Dioxy 2.5-dimethyl-benzaldehyd, β -Orcylaldehyd $C_0H_{10}O_3$, Formel IV (R und R' = H). B. Beim Erwärmen von 2.6-Dioxy-p-xylol mit Formanilid und Phosphoroxychlorid in Åther auf dem Wasserbad und anschließenden Kochen mit verd. Natronlauge (Pfau, Helv. 11, 872).

 Krystalle (durch Sublimation im Vakuum). F: 163—164°. Gibt mit Eisenchlorid in alkoh. Lösung eine purpurviolette Färbung.
- 4-0xy-6-methoxy-2.5-dimethyl-benzaldehyd, Isorhizoninaldehyd $C_{10}H_{12}O_3$, Formel IV ($R=CH_3$, R'=H). B. s. im folgenden Artikel. Nadeln (durch Sublimation im Vakuum). F: 150—150,5° (PFAU, Helv. 11, 874). Ist mit Wasserdampf nicht flüchtig.
- 6-Oxy-4-methoxy-2.5-dimethyl-benzaldehyd, Rhizoninaldehyd C₁₆H₁₂O₃, Formel IV (R = H, R' = CH₃) (E I 623). Zur Konstitution vgl. Pfau, Helv. 11, 868; Robertson, Stephenson, Soc. 1930, 314. B. Aus 4.6-Dioxy-2.5-dimethyl-benzaldehyd und Dimethyl-sulfat in 5%iger Sodalösung auf dem Wasserbad (Pfau, Helv. 11, 873). Neben wenig Isorhizoninaldehyd beim Behandeln von 2-Oxy-6-methoxy-p-xylol und Zinkcyanid mit Chlorwasserstoff in Benzol zunächst in der Kälte, dann in Gegenwart von Aluminiumchlorid bei 40° und Zersetzen des Reaktionsprodukts mit Eiswasser (Pfau, Helv. 11, 874). Beim Erwärmen von 2-Oxy-6-methoxy-p-xylol mit Formanilid und Phosphoroxychlorid in absol. Äther auf dem Wasserbad und anschließenden Kochen mit verd. Natronlauge (Pf., Helv. 11, 876). Nadeln (aus verd. Alkohol). F: 136°. Mit Wasserdampf ziemlich leicht flüchtig. Gibt mit Eisenchlorid in alkoh. Lösung eine dunkelbraunviolette Färbung, die auf Zusatz von viel Wasser in Rotviolett umschlägt.
- 4-Methoxy-6-acetoxy-2.5-dimethyl-benzaldehyd, O-Acetyl-rhizoninaldehyd $C_{12}H_{14}O_4$, Formel IV (R = CO·CH₃, R' = CH₃). B. Aus 6-Oxy-4-methoxy-2.5-dimethyl-benzaldehyd und Acetanhydrid in Pyridin (Pfau, Helv. 11, 875). Krystalle. Liefert beim Kochen mit Bromessigsäureäthylester und Zink in Benzol in Gegenwart einer Spur Jod und folgenden Erhitzen mit alkoh. Kalilauge 7-Methoxy-5.8-dimethyl-cumarin.
- 4.6 Dioxy 2.5 dimethyl benzaldoxim $C_9H_{11}O_3N = (HO)_2C_6H(CH_3)_2 \cdot CH:N \cdot OH$. Nadeln (durch Sublimation im Vakuum). F: 224—225° (Maquennescher Block) (Pfau, Helv. 11, 872). Gibt mit Eisenchlorid in konzentrierter alkoholischer Lösung eine blaue Färbung, die bei Verdünnung mit Wasser in Violett übergeht.
- 6-Oxy-4-methoxy-2.5-dimethyl-benzaldoxim, Rhizoninaldoxim $C_{10}H_{13}O_3N=CH_3\cdot O\cdot C_6H(CH_3)_2(OH)\cdot CH:N\cdot OH$. Gelbliches Pulver (durch Sublimation im Vakuum). F: 188° bis 189° (PFAU, Helv. 11, 873). Löslich in Natronlauge. Gibt mit Eisenchlorid eine violette Färbung.
- 4.6 Dioxy 2.5 dimethyl benzaldehyd semicarbazon $C_{10}H_{13}O_3N_3=(HO)_2C_6H(CH_3)_2$ · CH:N·NH·CO·NH₂. Krystalle (aus Alkohol). F: 285° (Maquennescher Block; Zers.) (Pfau, Helv. 11, 872). Gibt mit Eisenchlorid in alkoh. Lösung eine schwarze Färbung, die beim Verdünnen mit Wasser in Violettblau übergeht.
- 11. 2.6 Dioxy 3.5 dimethyl 1 formyl benzol, 2.6 Dioxy-3.5 dimethyl benzaldehyd, m-Xylorcylaldehyd C₂H₁₀O₃, s. nebenstehende Formel. B. Beim Sättigen einer Lösung von 4.6-Dioxy-m-xylol HO und wasserfreier Blausäure in Äther mit Chlorwasserstoff und Erwärmen des CH₃. CH₃ Reaktionsprodukts mit Wasser auf 80—90° (Robertson, Robenson, Soc. 1927, 2202). Gelbe Nadeln (aus 40 % igem Alkohol). F: 155—156°. Liefert mit 4.ω-Dimethoxy-acetophenon und Chlorwasserstoff in Ameisensäure 5-Oxy-3.4'-dimethoxy-6.8-dimethyl-flavyliumehlorid (Syst. Nr. 2444).
- 12. Cyclopentan [cyclopenten (3') ol (3') dion (2'.5')] spiran (1.1'), 1.1 Tetramethylen cyclopenten (3) ol (3) dion (2.5) $C_9H_{10}O_3 = H_2C \cdot CH_2 \cdot CO \cdot CH$ ist desmotrop mit 1.1-Tetramethylen-cyclopentantrion-(2.3.5), E II 7. 827.
- 3'-Methoxy-cyclopentan-[cyclopenten-(3')-dion-(2'.5')]-spiran-(1.1'), 3-Methoxy-1.1-tetramethylen-cyclopenten-(3)-dion-(2.5), 3-Methoxy-5-cyclopentan-spiro-cyclopentendion-(1.4) $C_{10}H_{12}O_3=\frac{H_2C\cdot CH_2}{H_3C\cdot CH_2}\cdot \frac{CO\cdot CH}{CO\cdot C\cdot O\cdot CH_3}$. B. Bei der Behandlung von 1.1-Tetramethylen-cyclopenten-(3)-ol-(3)-dion-(2.5) (E II 7, 827) mit Methanol und Schwefelsäure (Goss, Soc. 1928, 1308). Nadeln (aus Äther). F: 65°. Kp₁: 145°.

RHIZONINALDEHYD; BUTYRYLRESORCIN

5. Oxy-exe-Verbindungen C₁₀H₁₂O₂.

- 2.4 Dioxy 1 butyryl benzol, 2.4 Dioxy butyrophenon, $CO \cdot CH_2 \cdot C_2H_5$ 4 - Butyryl - resorcin, Resbutyrophenon C₁₀H₁₂O₃, s. nebenstehende Formel. B. Beim Erhitzen von Resorcin mit einer Lösung von Zinkehlorid OH in Buttersäure auf Siedetemperatur (Johnson, Lane, Am. Soc. 48, 357; Gnagy, In Buttersaure auf Siedetemperatur (Johnson, Lane, Am. Soc. 45, 357; Gragy,

 Am. Soc. 45, 807) oder auf 130—140° (Share & Dohme, D.R.P. 489117; C.

 1930 I, 2796; Frill. 16, 2867). Durch Umsetzung von Resorcin mit Butyronitril

 und Chlorwasserstoff in Gegenwart von Zinkchlorid in Äther und nachfolgendes Kochen mit

 Wasser (Karrer, Rosenfeld, Helv. 4, 714). — Krystalle (aus Tetrachlorkohlenstoff + Benzol)

 (J., L.); Nadeln mit ½ H₂O (aus Wasser oder verd. Alkohol), wird bei 40—50° im Vakuum

 wasserfrei (K., R.). Schmilzt wasserfrei bei 70° (K., R.), 69—70° (J., L.), 68—69,5° (Sh. & D.),

 wasserhaltig bei 51—52° (K., R.). Kp_{6—7}: 186—188° (Sh. & D.). Leicht löglich in Benzol, Alkohol,

 Ather, Chloroform, Aceton, Essigester und Eisessig, schwer in Tetrachlorkohlenstoff und Wasser;

 leicht löglich in Alkalilangen (J., L.; G.). — Wird beim Anfhewahren bräuplich. Liefert beim leicht löslich in Alkalilaugen (J., L.; G.). — Wird beim Aufbewahren bräunlich. Liefert beim Erhitzen mit amalgamiertem Zink und Salzsäure 4-Butyl-resorcin (J., L.; Sh. & D.). — Pharmakologische Wirkung: K., R., Helv. 4, 710. — Das Phenylhydrazon schmilzt bei 191—193° (Zers.) (GNAGY).
- 2.4-Dioxy-butyrophenon-oxim $C_{10}H_{12}O_3N=(HO)_2C_6H_3\cdot C(:N\cdot OH)\cdot CH_3\cdot C_2H_5$. Krystalle (aus Alkohol, Chloroform oder Benzol). F: 189—190° (JOHNSON, LANE, Am.~Soc.~48, 358). Fast unlöslich in kaltem Wasser. Verfärbt sich an der Luft.
- α Brom 2.4 dioxy butyrophenon $C_{10}H_{11}O_3Br = (HO)_2C_0H_3 \cdot CO \cdot CHBr \cdot C_2H_5$. B. Man leitet Chlorwasserstoff in eine ather. Lösung von a-Brom-butyronitril und Resorcin und hydrolysiert mit siedendem Wasser (Klarmann, Am. Soc. 48, 2366). — Nadeln. F: 114—115° (unkorr.). Gibt mit Eisenchlorid eine rote Färbung. — Wird durch siedendes Wasser etwas zersetzt.
- 3.5 Dibrom 2.4 dioxy butyrophenon C₁₀H₁₀O₃Br₂, s. nebenstehende Formel. B. Aus 2.4 Dioxy butyrophenon und Brom in Eisessig (Gracy, Am. Soc. 45, 808). Nadeln (aus Alkohol). F: 113°. Leicht löslich in Alkohol, Benzol, Eisessig und Alkalilauge. Das Phenylhydrazon Br CO · CHa · CaHs ОĦ ·Br schmilzt bei 155°. OH
- 3.4 Dioxy 1 butyryl benzol, 3.4 Dioxy butyrophenon, CO · CH 2 · C2H5 4 - Butyryl - brenzcatechin $C_{10}H_{12}O_3$, s. nebenstehende Formel. B. Bei langsamer Zugabe von Butyrylchlorid zu einer mit Aluminiumchlorid versetzten warmen Lösung von Brenzcatechin in Nitrobenzol (Rosenmund, Lohfert, HO B. 61, 2604). Aus Brenzcatechin-dibutyrat und Aluminiumchlorid in Nitrobenzol bei 100°, besser in Gegenwart von 1 Mol Brenzcatechin bei 80° (R., L.). -Nadeln (aus Wasser). F: 146—147°. Sehr leicht löslich in Alkohol, Aceton und Essigester, schwerer in Benzol. Die wäßr. Lösung gibt mit Eisenchlorid eine grüne Färbung.
- 1-[4-Oxy-phenyl] butanol (1) on (2), [4-Oxy-phenyl] propionylcarbinol $C_{10}H_{12}O_3 = HO \cdot C_6H_4 \cdot CH(OH) \cdot CO \cdot C_2H_5$.
- [4-Methoxy-phenyl] propionyl-carbinol, Anisylpropionylcarbinol $C_{11}H_{14}O_3=CH_3\cdot O\cdot C_6H_4\cdot CH(OH)\cdot CO\cdot C_2H_5$. B. Aus 4-Methoxy-mandelsäureamid und Athylmagnesiumbromid in siedendem Ather (McKenzie, Mitarb., Bl. [4] 45, 417; Lévy, Weill, C. r. 185, 136). Gelbes dickes Öl. Kp₁₅: 175° (McK., Mitarb.; L., W.). D: 1,11; n_p: 1,531; ziemlich leicht löslich in den meisten organischen Lösungsmitteln (McK., Mitarb.). — Zersetzt sich allmählich unter Verfärbung (McK., Mitarb.). Reduziert ammoniakalische Silbernitrat-Lösung leicht, Fehlingsche Lösung schwerer (McK., Mitarb.). Liefert beim Behandeln mit Methylmagnesiumjodid 2-Methyl-1-[4-methoxy-phenyl]-butandiol-(1.2) (L., W.). Mit Butylmagnesiumbromid erhält man höherschmelzendes 2-Äthyl-1-[4-methoxy-phenyl]-hexandiol-(1.2) (McK., Mitarb.); bei der Umsetzung mit Phenylmagnesiumbromid in siedendem Äther entsteht niedrigerschmelzendes 2-Phenyl-1-[4-methoxy-phenyl]-butandiol-(1.2) (McK., Mitarb.).
- $0 \times im C_{11}H_{15}O_3N = CH_3 \cdot O \cdot C_4H_4 \cdot CH(OH) \cdot C(C_3H_5) : N \cdot OH$. Tritt in 2 Formen auf, die nicht ineinander überführbar sind; F: 128° (aus Benzol + Petroläther) und F: 88—89° (aus Alkohol + Petroläther) (McKenzie, Mitarb., Bl. [4] 45, 417).

Semicarbazon $C_{19}H_{17}O_{2}N_{8} = CH_{8} \cdot O \cdot C_{6}H_{4} \cdot CH(OH) \cdot C(C_{2}H_{8}) : N \cdot NH \cdot CO \cdot NH_{2}. F: 220-222^{6}$ (Mc Kenzie, Mitarb., Bl. [4] 45, 417).

4. $1-[2.3-Dioxy-phenyl]-butanon-(3), 2.3-Dioxy-benzylaceton, Methyl-[2.3-dioxy-\beta-phenäthyl]-keton I. <math>C_{10}H_{12}O_3$, Formel I (R und R' = H). CH2 · CH2 · CO · CH3 . O . R

2 - Oxy - 3 - methoxy - benzylaceton, Methyl - [2 - oxy - 3 - methoxy- β -phenithyl] - keton $C_{11}H_{14}O_3$, Formel I (R = H, R' = CH₂). B. Durch Hydrierung von 2-Oxy-3-methoxy-benzylidenaceton bei Gegenwart von Platinschwarz in Ather (NOMURA, NOZAWA 310

Sci. Rep. Tohoku Univ. 7, 89; C. 1921 I, 1018). — Kp₃₅: 206—207⁶; Kp₁₅: 178—179,5⁶. Wird beim Aufbewahren, auch im Dunkeln, erst gelb, dann braun. — Besitzt einen brennenden Geschmack. Wirkt lähmend.

- 5. 1-[3.4-Dioxy-phenyl]-butanon-(3), 3.4-Dioxy-benzylaceton, Methyl-[3.4-dioxy- β -phenäthyl]-keton $C_{10}H_{12}O_3$, Formel II (R und R' = H).
- 4-Ony-3-methoxy-benzylaceton, Methyl-[4-oxy-3-methoxy-β-phenžthyl]-keton, Zingeron C₁₁H₁₄O₃, Formel II (R = CH₃, R' = H) (E I 623). B. Bei der Reduktion von Vanillylidenaceton mit Natriumamalgam in Wasser (Nomura, Sci. Rep. Töhoku Univ. 14, 143; C. 1925 II, 1745). Neben 1-[4-Oxy-3-methoxy-phenyl]-butanol-(3) durch Hydrierung von Vanillylidenaceton bei Gegenwart von Palladium in Alkohol (Mannich, Merz, Ar. 1927, 25). F: 40—41° (N.). Kp_{15,6}: 190,5—191,5°; Kp₁₃: 185,5° (N.); Kp_{0,8}: 141°; Kp_{0,25}: 133° (Faillebin, A. ch. [10] 4, 443). Gibt bei der Hydrierung bei Gegenwart von eisenhaltigem Platin in Essigester (F.) oder bei der Reduktion mit Natrium in siedendem Alkohol (Nomura, Hotta, Sci. Rep. Töhoku Univ. 14, 119; C. 1925 II, 1745) 1-[4-Oxy-3-methoxy-phenyl]-butanol-(3). Physiologische Wirkung: Doi, Ber. Physiol. 5, 446; C. 1921 I, 544.
- 3-Oxy-4-methoxy-benzylaceton, Methyl-[3-oxy-4-methoxy- β -phenäthyl]-keton, Isozingeron $C_{11}H_{14}O_3$, Formel II (R=H, R'=CH₃). B. Aus Isovanillylidenaceton bei der Reduktion mit Natriumamalgam in Wasser (MURAI, Sci. Rep. Tōhoku Univ. 14, 153; C. 1925 II, 1746) oder, neben 1-[3-Oxy-4-methoxy-phenyl]-butanol-(3), bei der Hydrierung in Gegenwart von Palladium in Alkohol (Mannich, Merz, Ar. 1927, 18). Nadeln (aus Äther+Petroläther). F: 41—42° (MA., ME.). Kp₄: 159—160° (Mu.). Besitzt einen beißenden Geschmack (Mu.).
- 3.4 Dimethoxy benzylaceton, Methyl [3.4 dimethoxy β phenäthyl] keton, Zingeronmethyläther $C_{12}H_{16}O_3$, Formel II (R und R' = CH₃) (E I 623). B. Bei der Destillation von Methylgingerol (Syst. Nr. 798) (Nomura, Iwamoto, Sci. Rep. Tohoku Univ. 17, 978; C. 1929 II, 3021). Krystalle (aus Äther + Petroläther). F: 54,5—55° (N., I.), 55—56° (Faillebin, A. ch. [10] 4, 446). Kp₁₆: 186°; Kp₁: 141° (F.). Gibt bei der Hydrierung bei Gegenwart von eisenhaltigem Platinschwarz in Essigester 1-[3.4-Dimethoxy-phenyl]-butanol-(3) (F.).

Zingeron - exim $C_{11}H_{15}O_3N=HO\cdot C_6H_3(O\cdot CH_3)\cdot CH_2\cdot C(CH_3)\cdot N\cdot OH$. Nadeln (aus 50% igem Alkohol). F: 87,5—88,5° (MANNICH, MERZ, Ar. 1927, 25).

Isozingeron-oxim $C_{11}H_{15}O_3N=CH_3\cdot O\cdot C_0H_3(OH)\cdot CH_3\cdot CH_2\cdot C(CH_2):N\cdot OH$. Prismen (aus verd. Alkohol). F: 121,5—122,5° (Mannich, Merz, Ar. 1927, 19).

- 1.2 Dibrom 1 [3.4 dimethoxy phenyl] butanon (3), Veratrylidenaceton dibromid $C_{13}H_{14}O_3Br_3=(CH_3\cdot O)_2C_6H_3\cdot CHBr\cdot CHBr\cdot CO\cdot CH_3$. B. Durch vorsichtiges Versetzen von Veratrylidenaceton mit Brom in Chloroform im Dunkeln unter Kühlung (van Duin, R. 45, 351). Krystalle. F: 98° (korr.). Liefert beim Behandeln mit Kaliumjodid in 90% igem Alkohol oder 90% iger Essigsäure Veratrylidenaceton (van Duin, R. 45, 347, 350).
- 6. 2.4 Dioxy 1 isobutyryl benzol, 2.4 Dioxy isobutyro-phenon, 4-Isobutyryl-resorcin C₁₀H₁₂O₅, s. nebenstehende Formel. B. Beim Erhitzen von Resorcin mit Isobuttersäure und Zinkchlorid auf 125—140° (Dohme, Cox, Miller, Am. Soc. 48, 1692; Sharp & Dohme, D.R.P. 489117; C. 1330 I, 2796; Frdl. 16, 2867). F: 67—68,5° (D., C., M.; Sh. & D.). Kp₆₋₇: 173—175° (D., C., M.; Sh. & D.). Die Lösung in Alkohol gibt mit Eisenchlorid eine rote Färbung (D., C., M.).
- 7. 2.5 Dioxy isobutyrophenon, 2 Isobutyryl hydrochinon C₁₀H₁₂O₃, s. nebenstehende Formel.
- 2(oder 5)- Oxy-5(oder 2)- methoxy-isobutyrophenon, 2-Isobutyryl-hydrochinon-monomethyläther $C_{11}H_{14}O_2=CH_3\cdot O\cdot C_4H_3(OH)\cdot CO\cdot CH(CH_3)_2$.

 B. Neben anderen Produkten bei gelindem Erwärmen von Hydrochinondimethyläther und überschüssigem Dimethylmalonsäurechlorid mit Aluminiumchlorid (Fleischer, A. 422, 259). Öl. Kp₂₅: 163°. Löelich in Schwefelsäure mit brauner Farbe. Alkal. Lösungen fluorescieren blaugrün. Natriumsalz. Gelblich.
- 8. 2. α Dioxy isobutyrophenon, 2 [α Oxy isobutyryl] CO·C(CH₃)₂·OH phenol $C_{10}H_{12}O_3 = HO \cdot C_6H_4 \cdot CO \cdot C(CH_3)_2 \cdot OH$.

 5-Chlor 2. α -dioxy isobutyrophenon, 4 Chlor 2 [α -oxy-isobutyryl] Cl.

phenol C₁₀H₁₁O₂Cl, a nebenstehende Formel. B. Aus 4-Chlor-2-[a-brom-isobutyryl]-phenol beim Kochen mit alkoh. Kalilauge, neben 5-Chlor-2.2-dimethyl-cumaranon (v. Auwers, Baum, Lorenz, J. pr. [2] 115, 93). Neben anderen Verbindungen aus 4-Chlor-

anisol und α-Brom-isobutyrylbromid bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff auf dem Wasserbad (v. Au., B., L., J. pr. [2] 115, 90). — Gelbliche Blättchen (aus verd. Methanol). F: 73. Leicht löslich in den meisten Lösungsmitteln. Gibt mit Eisenchlorid eine violette Färbung.

- 5:- Chlor 2. α diacetoxy isobutyrophenon $C_{14}H_{15}O_5Cl = CH_3 \cdot CO \cdot O \cdot C_8H_3Cl \cdot CO \cdot C(CH_3)_2 \cdot O \cdot CO \cdot CH_3$. B. Aus 5-Chlor-2. α -dioxy-isobutyrophenon und Acetanhydrid (v. Auwers, Baum, Lorenz, J. pr. [2] 115, 90). Krystalle (aus verd. Methanol). F: 65—66°.
- 5 Chlor 2. α Giery isobutyrophenon semicarbazon $C_{11}H_{14}O_2N_3Cl = HO \cdot C_0H_3Cl \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot C(CH_3)_2 \cdot OH$. Nadeln (aus verd. Alkohol). F: 233---239° (je nach Art des Erhitzens) (v. Auwers, Baum, Lorenz, $J.\ pr.\ [2]\ 115,\ 90$).
- 9. 4.6 Dioxy 1 formyl 3 propyl benzol, 4.6 Dioxy-3-propyl-benzaldehyd C₁₀H₁₂O₃, s. nebenstehende Formel. B. Beim Behandeln von 4-Propyl-resorcin mit Blausäure und Chlorwasserstoff HO in Gegenwart von Aluminiumchlorid und anschließenden Zersetzen mit heißem Wasser (Sonn, B. 54, 774). Wurde nicht rein erhalten. Tafeln. Schmilzt unschaf bei 71—76°.
 - OH CH⁵·C⁵H²
 CHO
- 10. 3 Oxy 2 methyl 5 isopropyl benzochinon (1.4),
 3-Oxy-thymochinon C₁₀H₁₂O₃, s. nebenstehende Formel (H 284; E I 624). B. Aus 2.3.6-Triacetoxy-p-cymol beim Behandeln mit konz. Schwefelsäure, Eintragen in Wasser und Versetzen mit überschüssiger konzentrierter (CH₃)₂CH.

 CH₃ cH₃ cH₄ cH₅ cH₆ cH₅ cH₅ cH₅ cH₆ cH₅ cH₆ cH₆ cH₇ - thymochinon C₁₀H₁₂O₃, s. nebenstehende Formel (H 285; E I 624). B.

 Aus 2.3.5-Triacetoxy-p-cymol beim Behandeln mit konz. Schwefelsäure in der Kälte, Eintragen des Reaktionsgemisches in Wasser und Versetzen (CH₃)₂CH in überschüssiger konzentrierter Eisen(III)-chlorid-Lösung (Bargellini, G. 53, 240). Hellgelbe Nadeln (aus verd. Alkohol). F: 181—183°. Ist mit Wasserdampf flüchtig. Löst sich in Alkalilaugen und Ammoniak mit rotvioletter, in konz. Schwefelsäure mit roter Farbe. Beim Durchleiten von Luft durch Lösungen in Kalilauge oder Natronlauge erhält man 3.6-Dioxy-thymochinon. Liefert beim Erwärmen mit Acetanhydrid und Zinkstaub 2.3.5-Triacetoxy-p-cymol. Bei Zusatz von konz. Schwefelsäure zu der Lösung in Acetanhydrid entsteht 2.3.5.6-Tetraacetoxy-p-cymol.
- 12. 4.5-Dioxy-2-äthyl-1-acetyl-benzol, 4.5-Dioxy-2-äthyl-acetophenon C₁₀H₁₂O₃, Formel I (R und R' = H).

 4.5-Dimethoxy-2-äthyl-acetophenon C₁₂H₁₆O₃, Formel I (R und R' = CH₃). B. Aus 4-Äthyl-veratrol durch Einw. von Acetylchlorid und Eisenchlorid in Schwefelkohlenstoff (Shinona, Satto, J. pharm. Sec. Japan.

Eisenchlorid in Schwefelkohlenstoff (Shinoda, Sato, J. pharm. Soc. Japan 1927, 115; C. 1928 I, 333). — Prismen (aus Petroläther). F: 63°. — Liefert bei der Oxydation mit Natriumhypojodit-Lösung 4.5-Dimethoxy-2-äthyl-benzoesäure.

- 4-Methoxy-5-äthoxy-2-äthyl-acetophenon $C_{13}H_{18}O_3$, Formel I ($R=CH_3$, $R'=C_2H_3$). B. Aus 3-Methoxy-4-äthoxy-1-äthyl-benzol und Acetylchlorid in Gegenwart von Aluminium-chlorid (?) (Kondo, Tanaka, Noto, J. pharm. Soc. Japan 48, 168; C. 1929 I, 1112). Nadeln (aus Alkohol). F: 50° . Liefert bei der Oxydation mit Natriumhypojodit-Lösung 4-Methoxy-5-äthoxy-2-äthyl-benzoesäure.
- 5-Methoxy-4-äthoxy-2-äthyl-acetophenon $C_{13}H_{18}O_3$, Formel I ($R=C_2H_5$, $R'=CH_3$). B. Aus 4-Methoxy-3-äthoxy-1-äthyl-benzol und Acetylchlorid in Gegenwart von Aluminium-chlorid (?) (Kondo, Tanaka, J. pharm. Soc. Japan 49, 49; C. 1929 I, 2978). Krystalle (aus Alkohol). F: 81,5—82,5°. Liefert bei der Oxydation mit Natriumhypojodit-Lösung 5-Methoxy-4-äthoxy-2-äthyl-benzoesäure.
- 4.5 Dimethoxy 2 žthyl acetophenen oxim $C_{12}H_{17}O_2N = C_2H_5 \cdot C_6H_2(O \cdot CH_3)_2 \cdot C(CH_6)$: N·OH. Nadeln (aus Wasser). F: 111,5° (Shinoda, Sato, J. pharm. Soc. Japan 1927, 115; C. 1928 I, 333).

13. 4.6-Dioxy-3-äthyl-1-acetyl-benzol, 4.6-Dioxy-3-äthyl-acetophenon C₁₀H₁₂O₂, s. nebenstehende Formel. B. Durch Erhitzen von 4-Äthyl-resorcin mit Zinkchlorid und Eisessig auf 140° (Weiss, Kratz, M. 51, 392). — Gelbliche Krystalle (aus Ligroin, Benzol oder verd. Salzsäure). F: 115°. Leicht löslich in Eisessig und Alkohol. — Liefert beim Erhitzen mit amalgamiertem Zink und Salzsäure 4.6-Diäthyl-resorcin.

14. 3.6-Dioxy-2.4.5-trimethyl-1-formyl-benzol, 3.6-Dioxy-2.4.5-trimethyl-benzaldehyd $C_{10}H_{11}O_3$, s. nebenstehende Formel (R = H).

3.6-Dimethoxy-2.4.5-trimethyl-benzaldehyd C₁₂H₁₆O₃, s. nebenstehende Formel (R = CH₃). B. Bei der Oxydation von [3.6-Dimethoxy-2.4.5-trimethyl-benzyliden]-malonsäure mit Permanganat in Natriumdicarbonat-Lösung bei 0° (SMITH, DOBROVOLNY, Am. Soc. 48, 1708). — Gelbe Plättchen (aus verd.

Methanol). F: 84—85°. — Entfärbt sich im Dunkeln und wird am Sonnenlicht wieder gelb. Wird durch Salpetersäure (D: 1,4) zu 6-Nitro-2.3.5-trimethyl-benzochinon-(1.4) nitriert und oxydiert. Reduziert alkal. Silbernitrat-Lösung. Liefert bei der Reduktion mit Natriumamalgam und Salzsäure in Methanol 3.6-Dimethoxy-2.4.5-trimethyl-benzylalkohol und eine Verbindung vom Schmelzpunkt 242—244° (Krystalle aus 30% iger Essigsäure).

Oxim $C_{12}H_{17}O_3N = (CH_3)_3C_6(O \cdot CH_3)_3 \cdot CH : N \cdot OH$. Blaßgelbe Prismen (aus verd. Methanol). F: 132—134 0 (SMITH, DOBROVOLNY, Am. Soc. 48, 1708). — Verpufft beim Erhitzen auf dem Spatel.

15. Cyclohexan - [cyclopenten - (3') - ol - (3') - dion - (2'.5')] - spiran - (1.1'), 1.1 - Pentamethylen - cyclopenten - (3) - ol - (3) - dion - (2.5) $C_{10}H_{12}O_3 = H_2CCH_2 \cdot CH_2 \cdot CH_3 \cdot CH_4 \cdot CH_4 \cdot CH_5 \cdot C$

Cyclohexan-[3'-methoxy-cyclopenten-(3')-dion-(2'.5')]-spiran-(1.1'), 3-Methoxy-1.1-pentamethylen-cyclopenten-(3)-dion-(2.5), 3-Methoxy-5-cyclohexan-spiro-cyclopenten-dion-(1.4) $C_{11}H_{14}O_3 = CH_2$ $CH_2 \cdot CH_2 \cdot CO \cdot CH$ $CO \cdot CH_3 \cdot B.$ Durch Behandeln von 1.1-Pentamethylen-cyclopentantrion-(2.3.5) (E II 7, 827) mit methylalkoholischer Schwefelsäure (Hassell, Ingold, Soc. 1926, 1840). — Prismen (aus Methanol). F: 117°. Unlöslich in Alkali. — Wird beim Kochen mit Mineralsäuren hydrolysiert. — Gibt mit 2 Mol Hydroxylaminhydrochlorid in Pyridin das 2-Oxim (s. u.) und stickstoffreichere, schwer lösliche Produkte.

3 - Methoxy - 1.1 - pentamethylen - cyclopenten - (3) - dion - (2.5) - oxim - (2) $C_{11}H_{15}O_3N = H_2CCH_2 \cdot CH_2 \cdot CH_3 \cdot CH_4 \cdot CH_3 \cdot$

6. Oxy-oxo-Verbindungen $C_{11}H_{14}O_{3}$.

1. 2.4-Dioxy-1-valeryl-benzol, 2.4-Dioxy-valerophenon, 4-n-Valeryl-resorcin, Butyl-[2.4-dioxy-phenyl]-keton C₁₁H₁₄O₃, s. nebenstehende Formel. B. Beim Erhitzen von Resorcin mit n-Valeriansäure und Zinkchlorid auf 125—140° (Dohme, Cox, Miller, Am. Soc. 48, 1692; Sharp & Dohme, D.R.P. 488419, 489117; C. 1980 I, 1826, 2796; Frdl. 16, 2865, 2867). — F: 58,5—60°; Kp₆₋₇: 190—192° (D., C., M.; Sh. & D., D.R.P. 489117). — Liefert beim Kochen mit amalgamiertem Zink und verd. Salzsäure 4-n-Amyl-resorcin (Sh. & D., D.R.P. 488419, 489117).

2. 1-[3.4-Dioxy-phenyl]-pentanon-(3), \tilde{A} thyl-[3.4-dioxy-CH₁·CH₂·CO·C₂H₅ β -phendthyl]-keton $C_{11}H_{14}O_3=(HO)_1C_4H_3$ ·CH₂·CH₂·CO·C₂H₅.

1-[4-0xy-3-methoxy-phenyl]-pentanon-(3), Äthyl-[4-0xy-3-methoxy-phenäthyl]-keton C₁₂H₁₆O₃, s. nebenstehende Formel. B. Aus Äthyl-[4-0xy-3-methoxy-styryl]-keton bei der Reduktion mit Natriumamalgam in Wasser (Nomura, Hotta, Sci. Rep. Töhoku Univ. 14, 133; C. 1925 II, 1744) oder mit Wasserstoff in Gegenwart von Platinschwarz in Äther (Ichikawa, Sci. Rep. Töhoku Univ.

14, 128; C. 1925 II, 1744). — Krystalle (aus Äther + Petroläther). F: 36-37° (N., H.). Kp_{11.5}: 187—188° (I.); Kp₂₈: 201—204° (N., H.).

- 1-[3.4-Dimethoxy-phenyi] pentanon (3), Äthyi [3.4-dimethoxy- β -phenäthyi] keton $C_{12}H_{18}O_2=(CH_2\cdot O)_2C_2H_3\cdot CH_2\cdot CO\cdot C_2H_5$. Beim Schütteln von Äthyl-[4-oxy-3-methoxy- β -phenäthyl]-keton mit Dimethylsulfat in Natronlauge (NOMURA, HOTTA, Sci. Rep. Tohoku Univ. 14, 134; C. 1925 II, 1744). - F: 26,5-27,5°. Kp12: 183-184°.
- Äthyl- [3.4-dimethoxy- β -phenäthyl]- ketoxim $C_{13}H_{19}O_3N=(CH_2\cdot O)_2C_4H_3\cdot CH_2\cdot CH_2\cdot CC_2H_3):N\cdot OH.$ Krystalle (aus verd. Alkohol). F: 120—120,5° (NOMURA, HOTTA, Sci. Rep. Téhoku Univ. 14, 135; C. 1925 II, 1744).
- Äthyl- [3.4-dimethoxy- β -phenäthyl]- keton-semicarbazon $C_{14}H_{21}O_{9}N_{3}=(CH_{3}\cdot O)_{9}C_{0}H_{3}\cdot CH_{2}\cdot C(C_{2}H_{5}):N\cdot NH\cdot CO\cdot NH_{2}\cdot Krystalle (aus verd. Alkohol). F: 143—144° (NOMURA, HOTTA, Sci. Rep. Tohoku Univ. 14, 135; C. 1925 II, 1744).$
- 3. 2.4 Dioxy 1 isovaleryl benzol, 2.4-Dioxy-isovalerophenon, 4-Isovaleryl-resorcin, Isobutyl-[2.4-dioxy-phenyl]-keton $C_{11}H_{14}O_{2}$, s. nebenstehende Formel. B. Beim Erhitzen von Resorcin mit Isovaleriansäure und Zinkchlorid auf 125—140° (DOHME, CO · CH2 · CH(CH3)2 OH Cox, MILLER, Am. Soc. 48, 1692; SHARP & DOHME, D.R.P. 488419, 489117; он C. 1930 I, 1826, 2796; Frdl. 16, 2866, 2868). — F: 108—110°; Kp₆₋₇: 183° OH bis 185° (D., C., M.; Sh. & D.). Die alkoh. Lösung gibt mit Eisenchlorid eine rote Färbung. — Liefert beim Kochen mit amalgamiertem Zink und Salzsäure 4-Isoamyl-resorcin (SH. & D.; D., C., M.).
- 4. 3.4 Dioxy 1 isovaleryl benzol, 3.4-Dioxy-isovalero-CO · CH₂ · CH(CH₃)₂ phenon, 4 - Isovaleryl - brenzcatechin, Isobutyl - [3.4 - dioxyphenyl]-keton $C_{11}H_{14}O_3$, s. nebenstehende Formel. B. Aus Brenzcatechindiisovalerianat bei der Einw. von Aluminiumchlorid in Nitrobenzol an-OH fangs unter Kühlung, zuletzt bei 80° (ROSENMUND, LOHFEET, B. 61, 2605).

 — Nadeln (aus Tetrachlorkohlenstoff und Wasser). F: 108°. Leicht löslich ÓЯ in heißem Wasser und Benzol, sehr leicht in Alkohol.
- 5. $2 Oxy 1 methyl 3 [\alpha oxy isobutyryl] benzol,$ CH₃ $2.\alpha$ -Dioxy-3-methyl-isobutyrophenon, 2-Methyl-6- $[\alpha$ -oxyisobutyryl]-phenol, $6-[\alpha-Oxy-isobutyryl]-o-kresol <math>C_{11}H_{14}O_3$, OH s. nebenstehende Formel. B. Entsteht wahrscheinlich neben geringeren · CO · C(CH₃)₂ · OH Mengen 2.2.7-Trimethyl-cumaranon bei der Einw. von alkoh. Kalilauge auf α-Brom-2-acetoxy-3-methyl-isobutyrophenon (v. Auwers, Baum, Lorenz, J. pr. [2] 115, 97). — Nicht rein erhalten. Kp12: 142—1520. Gibt mit Eisenchlorid eine violette Färbung.
- 6. $3 Oxy 1 methyl 4 [\alpha oxy isobutyryl] benzol, 2.\alpha Di$ oxy - 4 - methyl - isobutyrophenon, 3 - Methyl - 6 - $[\alpha$ - oxy - isobutyryl] - phenol, 6 - $[\alpha$ - Oxy - isobutyryl] - m - kresol $C_{11}H_{14}O_{3}$, s. nebenstehende Formel. B. Aus 6- $[\alpha$ -Chlor-isobutyryl]-m-kresol (S. 130) CH3 OH beim Behandeln mit Natronlauge (v. Auwers, A. 439, 157, 160, 170). — Blättchen (aus Petroläther). F: 54—55°. Kp₁₂: 152—156°. Leicht löslich $CO \cdot C(CH_3)_2 \cdot OH$ in organischen Lösungsmitteln. Die alkoh. Lösung gibt mit Eisenchlorid eine violette Färbung.
- α Oxy 2 acetoxy 4 methyl isobutyrophenon $C_{13}H_{16}O_4=CH_3\cdot C_4H_3(O\cdot CO\cdot CH_3)\cdot CO\cdot C(CH_3)_2\cdot OH$. B. Aus 6-[α -Oxy-isobutyryl]-m-kresol beim Kochen mit Acetanhydrid in Gegenwart von Natriumacetat (v. Auwers, A. 489, 171). — Prismen (aus Methanol). F: 56-570. Kp₁₈: 183—185°. Unlöslich in Alkalilaugen. Gibt mit Eisenchlorid keine Färbung.
- 2. α Dioxy 4 methyl isobutyrophenon semicarbazon $C_{12}H_{17}O_3N_8 = CH_3 \cdot C_6H_3(OH) \cdot C_{12}H_{13}O_3N_8 = CH_3 \cdot C_6H_3(OH) \cdot C_{12}H_3(OH) \cdot$ C(:N-NH-CO·NH₂)·C(CH₂)₂·OH. Krystalle mit 1 H₂O (aus Wasser oder Xylol). Schmilzt unscharf bei 154—156° (v. Auwers, A. 489, 171). Leicht löslich in heißem Wasser und in den meisten organischen Lösungsmitteln.
- сно 7. 2.6-Dioxy-3.5-didthyl-benzaldehyd C₁₁H₁₄O₃, s. nebenstehende Formel. HO. ·OH Azin, 2.6.2'.6'-Tetraoxy-3.5.3'.5'-tetraäthyl-benzaldazin $C_{22}H_{23}O_4N_2 = C_{2}H_5$. $C_{2}H_5$. $C_{2}H_5$. $C_{2}H_6$. Aus 5-Oxy-6.8-diäthyl-3-acetyl-oumarin und Hydraxinhydrat (Weiss, Kratz, M. 51, 394). — Hellgelbe Krystalle (aus Eisessig). F: 214°.

7. Oxy-exe-Verbindungen $C_{12}H_{16}O_{8}$.

- 1. 2.4-Dioxy-1-caproyl-benzol, 2.4-Bioxy-caprophenan, 4-Caproyl-resorcin, n-Amyl-[2.4-dioxy-phenyl]-keton C₁₂H₁₆O₃ = (HO)₂C₂H₃· CO·[CH₃]₆· CH₃.

 B. Beim Erhitzen von Resorcin mit Capronsäure und Zinkchlorid auf 125—140° (Dohma, Cox, Miller, Am. Soc. 48, 1690; Sharp & Dohma, D.R. P. 488419, 489117; C. 1930 I, 1826, 2796; Frdl. 16, 2865, 2867) oder mit Äthylcapronat und Zinkchlorid (Twiss, Am. Soc. 48, 2209).—Plättchen (aus Toluol + Petroläther). F: 54,5—56° (D., C., M.; Sh. & D., D.R. P. 489117), 56—57° (Tw.). Kp₆₋₇: 196—197° (D., C., M.; Sh. & D., D.R. P. 489117); Kp₁₆: 217° bis 218°; Kp: 343—345° (Zers.) (Tw.). Löslich in Alkohol, Aceton, Chloroform und Äther, schwer löslich in Petroläther (D., C., M.). Löslich in Alkohol, Aceton, Chloroform und Äther, schwer löslich in Petroläther (D., C., M.). Löslich in Alkohol oder Wasser eine rote Färbung und konz. Schwefelsäure (Tw.). Gibt mit Eisenchlorid in Alkohol oder Wasser eine rote Färbung (D., C., M.; Tw.).— Färbt sich bei langer Einw. von Licht braun (Twiss, Am. Soc. 49, 2209). Wird bei langer Einw. von konz. Schwefelsäure sulfoniert (Tw.). Spaltet bei der Kalischmelze Capronsäure ab (Tw.). Wird durch Aluminiumamalgam in saurer, neutraler oder alkalischer Lösung sowie durch Zink in alkoh. Natronlauge nicht angegriffen (Tw.). Bei der Reduktion mit Natrium in Alkohol entsteht ein hochmolekulares Produkt, das sich in Natronlauge mit dunkelroter Farbe löst (Tw.). Beim Behandeln mit amalgamiertem Zink und siedender verdünnter Salzsäure erhält man 4-n-Hexyl-resorcin (Tw.; Dohma, Cox, Miller, Am. Soc. 48, 1690; Sharp & Dohma, D. R. P. 489117; Frdl. 16, 2867). Liefert mit Salpetersäure (D: 1,4) 5-Nitro-2.4-dioxy-caprophenon (Tw.).
- 2-Oxy-4-methoxy-caprophenon, 4-Caproyl-resorcin-1-methyläther $C_{13}H_{18}O_3=CH_3\cdot O\cdot C_6H_3(OH)\cdot CO\cdot [CH_2]_4\cdot CH_3$. B. Neben sehr geringen Mengen des Dimethyläthers (?) (s. u.) aus 4-Caproyl-resorcin und Dimethylsulfat in Natronlauge (Twiss, Am. Soc. 48, 2209). Öl. Kp₁₂₋₁₃: 189—192°. Unlöslich in verd. Natronlauge; gibt mit konz. Natronlauge ein unlösliches Natriumsalz. Gibt mit Eisenchlorid in Alkohol eine rote Färbung.
- 2.4-Dimethoxy-caprophenon (?), 4-Caproyl-resorcin-dimethyläther (?) $C_{14}H_{20}O_3 = (CH_2 \cdot O)_2C_0H_3 \cdot CO \cdot [CH_2]_4 \cdot CH_3$ (?). B. s. im vorangehenden Artikel. Krystalle. F: 35—36° (Twiss, Am. Soc. 48, 2210). Gibt mit Eisenchlorid keine Färbung.
- 2-Oxy-4-acetoxy-caprophenon, 4-Caproyl-resorcin-1-acetat $C_{14}H_{18}O_4=CH_2\cdot CO\cdot O\cdot C_6H_3(OH)\cdot CO\cdot [CH_2]_4\cdot CH_3$. B. Aus 4-Caproyl-resorcin und Acetylchlorid auf dem Wasserbad (Twiss, Am. Soc. 48, 2210). Öl. Kp₁₄: 213—215°. Gibt mit Eisenchlorid in Alkohol eine rote Färbung.
- 2.4-Diacetoxy-caprophenon, 4-Caproyl-resorcin-diacetat $C_{1e}H_{20}O_5 = (CH_3 \cdot CO \cdot O)_1C_eH_3 \cdot CO \cdot [CH_2]_4 \cdot CH_3$. B. In geringer Menge beim Kochen von 4-Caproyl-resorcin mit Acetanhydrid und Natriumacetat (Twiss, Am. Soc. 48, 2210). Dickes gelbes Öl. Kp₁₃: 229—232° (geringe Zersetzung).
- 2.4-Dioxy-caprophenon-oxim $C_{12}H_{17}O_2N=(HO)_2C_6H_3\cdot C(:N\cdot OH)\cdot [CH_2]_4\cdot CH_3$. Krystalle (aus 50% igem Alkohol). F: 190—191 $^{\circ}$ (Zers.) (Twiss, Am.~Soc.~48, 2210). Unlöslich in Wasser. Gibt mit Eisenchlorid in Alkohol eine dunkelblauviolette Färbung.
- 3.5-Dibrom-2.4-dioxy-caprophenon $C_{12}H_{14}O_3Br_2$, Formel I. B. Aus 4-Caproyl-resorcin und 2 Mol Brom in Eisessig (Twiss, Am. Soc. 48, 2211). Gelbliche Nadeln (aus 75 %igem Alkohol). F: $102-103^\circ$.
- 5 Nitro 2.4 dioxy caprophenon $C_{12}H_{15}O_5N$, Formel II. B. Bei der Nitrierung von 4-Caproyl-resorcin mit Salpetersäure (D: 1,4) (Twiss, Am. Soc. 48, 2210). Plättchen (aus Alkohol). F: 73—74°. Schwer löslich in kaltem

Alkohol. Löst sich in Natronlauge mit gelber Farbe. Gibt mit Eisenchlorid in Alkohol eine rote Färbung.

- 2. $1-[4-Oxy-phenyl]-hexanol-(1)-on-(2), [4-Oxy-phenyl]-n-valeryl-carbinol <math>C_{12}H_{16}O_3=HO\cdot C_6H_4\cdot CH(OH)\cdot CO\cdot [CH_2]_3\cdot CH_3.$
- 1 [4 Methoxy phenyl] hexanol (1) on (2), [4 Methoxy phenyl] n valeryl carbinol, Anisyl-pentanoyl-carbinol $C_{13}H_{19}O_3=CH_3\cdot O\cdot C_0H_4\cdot CH(OH)\cdot CO\cdot [CH_2]\cdot CH_3$. B. Aus 4-Methoxy-mandelsaureamid und 4 Mol Butylmagnesiumbromid in Ather (McKenzie, Mitarb., Bl. [4] 45, 420). Gelbliches Öl. Kpg.: 204—206°. Gibt mit Äthylmagnesiumbromid in siedendem Äther niedrigerschmelzendes 2-Äthyl-1-[4-methoxy-phenyl]-hexandiol-(1.2).

- 3. 1-[8.4-Dioxy-phenyl]-hexanon-(3), Propyl-[3.4-dioxy- β -phenäthyl]-keton $C_{18}H_{14}O_3=(HO)_2C_6H_3\cdot CH_2\cdot CO\cdot CH_2\cdot C_2H_5$.
- 1-[4-Oxy-3-methoxy-phenyl]-hexanon-(3), Propyl-[4-oxy-3-methoxy-β-phenäthyl]-keton C₁₃H₁₆O₃, s. nebenstehende Formel.

 B. Bei der Reduktion von Propyl-[4-oxy-3-methoxy-styryl]-keton mit Natriumamalgam in Wasser (Nomura, Hotta, Sci. Rep. Tôhoku Univ. 14, 136; C. 1925 II, 1744). Krystalle (aus Äther + Petroläther), F.: 44,5-45° (N., H.; TSURUMI, MURAKOSHI, YAMASAKI, Sci. Rep. Tôhoku Univ. 17, 704; C. 1928 II, 1325). Kp₁₄: 198° (N., H.).
- 1-[3.4-Dimethoxy-phenyi]-hexanoa-(3), Propyi-[3.4-dimethoxy- β -phenäthyi]-keton $C_{14}H_{20}O_3=(CH_3\cdot O)_2C_4H_3\cdot CH_2\cdot CH_2\cdot CO\cdot CH_2\cdot C_2H_5$. B. Beim Schütteln von Propyl-[4-oxy-3-methoxy- β -phenäthyi]-keton mit Dimethylsulfat in Natronlauge (NOMURA, HOTTA, Sci. Rep. Tôhoku Univ. 14, 137; C. 1925 II, 1744). Öl. Kp₁₇: 198—199°.
- Propyl [3.4 dimethoxy β phenäthyl] ketoxim $C_{14}H_{21}O_3N = (CH_2 \cdot O)_2C_6H_3 \cdot CH_2 \cdot CH_2 \cdot C(: N \cdot OH) \cdot CH_2 \cdot C_2H_5$. Krystalle (aus Äther + Petroläther). F: 94,5—95,5° (Nomura, Hotta, Sci. Rep. Tohoku Üniv. 14, 137; C. 1925 II, 1744).
- 4. 2.4 Dioxy 1 isocaproyl benzol, 2.4 Dioxy isocaprophenon, 4 Isocaproyl resorcin, Isoamyl [2.4 dioxy phenyl] keton, Resisocaprophenon C₁₈H₁₆O₃ = (HO)₈C₆H₃·CO·CH₂·CH₂·CH(CH₃)₂. B. Beim Erhitzen von Resorcin mit Isocapronsäure und Zinkchlorid auf 125—140° (DOHME, COX, MILLER, Am. Soc. 48, 1692; SHARP & DOHME, D.R.P. 489117; C. 1980 I, 2796; Frdl. 16, 2867). Beim Einleiten von Chlorwasserstoff in cine Mischung aus Resorcin, Isocapronitril und Zinkchlorid in Äther und anschließenden Zersetzen mit Eiswasser (KARRER, ROSENFELD, Helv. 4, 715). Nadeln oder Blättchen (aus verd. Alkohol). F: 76—77,5° (D., C., M.; SH. & D.), 83—84° (K., R.). Wurde einmal in krystallwasserhaltigen Blättchen vom Schmelzpunkt 47° erhalten (K., R.). Kp₆₋₇: 192—194° (D., C., M.; SH. & D.). Leicht löslich in Alkohol, Äther, Benzol, Aceton und Chloroform, schwer in heißem Wasser (K., R.). Liefert beim Erhitzen mit amalgamiertem Zink und Salzsäure 4-Isohexyl-resorcin (SH. & D.; D., C., M.). Gibt mit Eisenchlorid eine rote Färbung (K., R.; D., C., M.). Pharmakologische Wirkung: K., R., Helv. 4, 710.
- 5. 4-Oxy-1.3-dimethyl-5-[α-oxy-isobutyryl]-benzol,
 2.α Dioxy 3.5 dimethyl isobutyrophenon, 2.4 Dimethyl-6-[α-oxy-isobutyryl]-phenol, ο-Ο x y is o b u t y roas. m-xylenol C₁₂H₁₆O₃, s. nebenstehende Formel. B. Eine Verbindung, der wahrscheinlich diese Konstitution zukommt, entsteht
 als Hauptprodukt neben 2.2.5.7-Tetramethyl-cumaranon beim Behandeln von 2.4-Dimethyl-6-isobutyryl-phenol mit Brom in Schwefelkohlenstoff und folgenden
 Kochen mit starker Kalilauge (v. Auwers, Baum, Lorenz, J. pr. [2] 115, 102). Gibt mit
 Eisenchlorid eine indigoblaue Färbung.

8. Oxy-oxo-Verbindungen $C_{12}H_{18}O_8$.

- 1. 2.4 Dioxy 1 önanthoyl-benzol, 1 [2.4 Dioxy phenyl] heptanon-(1), 4 Önanthoyl resorcin, n Hexyl [2.4 dioxy phenyl] keton, Resönanthophenon $C_{13}H_{18}O_3 = (HO)_2C_6H_3 \cdot CO \cdot [CH_2]_5 \cdot CH_3$. B. Beim Erhitzen von Resorcin mit Önanthsäure und Zinkehlorid auf 125—140° (Dohme, Cox, Miller, Am. Soc. 48, 1692; Sharp & Dohme, D. R. P. 489117; C. 1930 I, 2796; Frdl. 16, 2867). Beim Einleiten von Chlorwasserstoff in eine Mischung aus Resorcin, Önanthsäurenitril und Zinkehlorid in Äther und anschließenden Zersetzen mit Eiswasser (Karrer, Rosenfeld, Helv. 4, 715). Krystalle mit $^{1/2}H_2O$ (aus Wasser). Schmilzt wasserhaltig bei 43° (K., R.), wasserfrei bei 49° (K., R.), 48—50° (D., C., M.; Sh. & D.). Kp₅₋₇: 204—206° (D., C., M.; Sh. & D.). Die Lösung in Alkohol gibt mit Eisenchlorid eine rote Färbung (D., C., M.).
- 2, 1-[3.4-Dioxy-phenyl]-heptanon-(3), Butyl-[3.4-dioxy- β -phenäthyl]-heton $C_{13}H_{18}O_3=(HO)_2C_4H_3\cdot CH_2\cdot CO\cdot [CH_1]_3\cdot CH_3$.
- **Reton C₁₂H₁₈O₃ = (HO)₂C₆H₃·CH₂·CO·[CH₂]₃·CH₃.

 1-[4-Oxy-3-methoxy-phenithyl]-hexanon-(3), Butyl-[4-oxy-3-methoxy-β-phenithyl]-keton C₁₄H₂₀O₃, s. nebenstehende Formel.

 B. Bei der Reduktion von Butyl-[4-oxy-3-methoxy-styryl]-keton mit Natriumamalgam in Wasser (Nomura, Hortra, Sci. Rep. Töhoku Univ. 14, 138; C. 1925 H, 1744). Krystalle (aus Äther + Petrolather): F: 47,5—48° (N., H.). TSURUMI, Sci. Rep. Töhoku Univ. 16, 564; C. 1927 II, 2185). Kp₂₁: 213—214° (N., H.).

1-[3.4-Dimethexy-phenyl]-heptanon-(3), Butyl-[3.4-dimethexy- β -phenkthyt]-keton $C_{11}H_{22}O_3=(CH_3\cdot O)_2C_6H_3\cdot CH_2\cdot CH_3\cdot CO\cdot [CH_2]_2\cdot CH_3$. B. Beim Schütteln von Butyl-[4-0xy-3-methoxy- β -phenäthyl]-keton mit Dimethylsulfat in verd. Natronlauge (Nomura, Hotta, Sci. Rep. Tohoku Univ. 14, 138; C. 1925 II, 1744). — Öl. $K_{p_{20}}$: 206°.

Butyl- [3.4-dimethoxy- β -phenāthyl] - ketoxim $C_{18}H_{88}O_8N = (CH_8 \cdot O)_2C_4H_8 \cdot CH_8

- 3. 5 Methyl 1 [3.4 dioxy phenyl] hexanon (3), Isobutyl-[3.4-dioxy- β -phenäthyl]-keton $\mathrm{C_{13}H_{16}O_3} = (\mathrm{HO})_2\mathrm{C_6H_3} \cdot \mathrm{CH_2} \cdot \mathrm{CO} \cdot \mathrm{CH_2} \cdot \mathrm{CH}(\mathrm{CH_3})_2.$
- 5-Methyl-1-[4-oxy-3-methoxy-phenyl]-hexanon-(3), Isobutyl-[4-oxy-3-methoxy-β-phenäthyl]-keton C₁₄H₂₀O₃, s. nebenstehende Formel. B. Bei der Reduktion von Isobutyl-[4-oxy-3-methoxy-styryl]-keton mit Natriumamalgam in Wasser (No-MURA, HOTTA, Sci. Rep. Tôhoku Univ. 14, 139; C. 1925 II, 1744).
 Öl von beißendem Geschmack. Kp₁₉: 210°.
- 5-Methyl-1-[3.4-dimethoxy-phenyl]-hexanon-(3), Isobutyl-[3.4-dimethoxy- β -phenäthyl]-keton $C_{1z}H_{2z}O_3=(CH_3\cdot O)_2C_cH_3\cdot CH_2\cdot CH_2\cdot CO\cdot CH_3\cdot CH(CH_3)_2$. B. Beim Schütteln von Isobutyl-[4-oxy-3-methoxy- β -phenäthyl]-keton mit Dimethylsulfat in Natronlauge (Nomura, Hotta, Sci. Rep. Tôhoku Univ. 14, 140; C. 1925 II, 1744). Öl. Kp₁₇: 202°.

Isobutyi - [3.4 - dimethoxy - β - phenithyi] - ketoxim $C_{15}H_{12}O_3N = (CH_3 \cdot O)_2C_6H_3 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot C$

Isobutyl - [3.4 - dimethoxy-β-phenäthyl]-keton-semicarbazon $C_{1e}H_{2e}O_3N_3=(CH_3\cdot O)_2C_eH_3\cdot CH_2\cdot CH_2\cdot CH_3\cdot C$

- 4. 4.4-Dimethyl-1-[3.4-dioxy-phenyl]-pentanon-(3), tert.-Butyl-[3.4-dioxy- β -phenäthyl]-keton $C_{13}H_{18}O_3=(HO)_2C_6H_3\cdot CH_2\cdot CH_3\cdot CO\cdot C(CH_3)_3$.
- 4.4 Dimethyl 1 [4 oxy-3-methoxy-phenyl] pentanon-(3), tert.-Butyl [4 oxy 3 methoxy β phenäthyl] keton $C_{14}H_{20}O_3$, s. nebenstehende Formel. B. Bei der Reduktion von tert.-Butyl-[4-oxy-3-methoxy-styryl]-keton mit Natriumamalgam in Wasser (Nomura, Hotta, Sci. Rep. Töhoku Univ. 14, 141; C. 1925 II, 1744). Krystalle von beißendem Geschmack (aus Äther). F: 76—80°.
- 4.4 Dimethyl 1 [3.4 dimethoxy phenyl] pentanon (3), tert.- Butyl [3.4 dimethoxy- β -phenäthyl]-keton $C_{15}H_{22}O_3=(CH_3\cdot O)_2C_4H_3\cdot CH_2\cdot CH_2\cdot CO\cdot C(CH_3)_2$. B. Beim Schütteln von tert.-Butyl-[4-oxy-3-methoxy- β -phenäthyl]-keton mit Dimethylsulfat in verd. Natronlauge (Nomura, Hotta, Sci. Rep. Tôhoku Univ. 14, 142; C. 1925 II, 1744). Krystalle (aus verd. Alkohol). F: 46,5—47,5°.

tert. - Butyl - [3.4 - dimethoxy - β - phenäthyl] - ketoxim $C_{15}H_{29}O_3N = (CH_3 \cdot O)_2C_6H_3 \cdot CH_2 \cdot C(:N \cdot OH) \cdot C(CH_3)_3$. Krystalle (aus verd. Alkohol). F: 114,5—115,5° (Nomura, Hotta, Sci. Rep. Tôhoku Univ. 14, 142; C. 1925 II, 1744).

tert. - Butyl - [3.4 - dimethoxy - β - phenäthyl] - keton - semicarbazon $C_{1e}H_{2b}O_3N_3 = (CH_3 \cdot O)_3C_eH_3 \cdot CH_2 \cdot C(: N \cdot NH \cdot CO \cdot NH_2) \cdot C(CH_3)_3$. Krystalle (aus verd. Alkohol oder Ather). F: 127—128° (NOMURA, HOTTA, Sci. Rep. Töhoku Univ. 14, 142; C. 1925 II, 1744).

Semicarbazon $C_{14}H_{21}O_3N_3 = CH_2 \cdot C_6H_3(OH) \cdot \dot{C}(:N \cdot NH \cdot CO \cdot NH_2) \cdot C(C_2H_3)_2 \cdot OH$. Nadeln (aus verd. Alkohol). F: 180—181° (v. Auwers, A. 439, 142). Leicht löslich in Alkohol, Methanol und Äther, schwerer in Eisessig und Wasser.

9. Oxy-oxo-Verbindungen $C_{14}\dot{H}_{20}O_{2}$.

1. 1-[2.4-Dioxy-phenyl]-octanon-(1), 4-Capryloyl-resorcin, n-Heptyl-[2.4-dioxy-phenyl]-keton, Rescaprylophenon $C_{14}H_{20}O_{3}=(HO)_{2}C_{3}H_{3}\cdot CO\cdot [CH_{2}]_{4}\cdot CH_{2}$. B. Beim Erhitzen von Resorcin mit Caprylsäure und Zinkehlorid auf 125—140° (DOHME, COX, MILLER, Am. Soc. 48, 1692; SHAEP & DOHME, D.R.P. 489117; C. 1930 I, 2796;

- Frill. 16, 2867). Beim Behandeln von Resorcin und Caprylsäurenitril mit Chlorwasserstoff in Gegenwart von Zinkohlorid in Äther und anschließenden Zersetzen mit Eiswasser (Karrär, Rosenfeld), Helv. 4, 716). Blättchen mit ½, H₂O (aus Wasser oder verd. Alkohol). Schmilzt wasserhaltig bei 58° (K., R.), wasserfrei bei 59° (K., R.), 62,5—64° (D., C., M.; Sh. & D.). Kp₂₋₇: 214—216° (D., C., M.; Sh. & D.). Die Lösung in Alkohol gibt mit Eisenchlorid eine rote Färbung (D., C., M.). Liefert beim Erhitzen mit amalgamiertem Zink und Salzsäure 4-n-Octyl-resorcin (Sh. & D.; D., C., M.).
- 2. 1 [3.4 Dioxy phenyl]-octanon-(3), n-Amyl-[3.4-dioxy- β -phenäthyl]-keton $C_{14}H_{26}O_1=(HO)_2C_4H_1\cdot CH_2\cdot CO\cdot [CH_2]_4\cdot CH_2$.
- 1-[4-Oxy-3-methoxy-phenyl]-octanon-(3), n-Amyl-[4-oxy-3-methoxy-β-phenäthyl]-keton C₁₃H₂₂O₃, s. nebenstehende Formel.

 B. Durch Hydrierung von α-Pentenyl-[4-oxy-3-methoxy-β-phenäthyl]-keton in Gegenwart von Platinschwarz in Äther (Nomura, El Choi, Sci. Rep. Tôhokų Univ. 17, 709; C. 1928 II, 1325). Bei der Reduktion von n-Amyl-[4-oxy-3-methoxy-styryl]-keton mit Natriumamalgam in Wasser (Murai, Sci. Rep. Tôhoku Univ. 14, 146; C. 1925 II, 1746). Krystalle von beißendem Geschmack (aus Äther + Petroläther). F: 37,5—38° (Murai), 38—38,5° (Tsurumi, Murakoshi, Yamasaki, Sci. Rep. Tôhoku Univ. 17, 705; C. 1928 II, 1325). Kp₃: 177° bis 178° (Ts., M., Y.); Kp_{5,5}: 196—197° (Murai).
- 1-[3.4-Dimethoxy-phenyl]-octanon-(3), n-Amyl-[3.4-dimethoxy- β -phenäthyl]-keton $C_{1t}H_{24}O_3=(CH_3\cdot O)_2C_4H_3\cdot CH_3\cdot CH_3\cdot CO\cdot [CH_3]_4\cdot CH_3\cdot B$. Beim Schütteln von n-Amyl-[4-oxy-3-methoxy- β -phenäthyl]-keton mit Dimethylsulfat in verd. Natronlauge (Murai, Sci. Rep. Töhoku Üniv. 14, 147; C. 1925 II, 1746). Ol. Kp₅: 192°.
- n-Amyl-[3.4-dimethoxy- β -phenäthyl]-ketoxim $C_{16}H_{25}O_3N=(CH_3\cdot O)_2C_6H_3\cdot CH_2\cdot C(:N\cdot OH)\cdot [CH_2]_4\cdot CH_3$. Krystalle (aus verd. Methanol). F: 97,5—98° (Murai, Sci. Rep. Tôloku Univ. 14, 147; C. 1925 II, 1746).
- 3. 1-[2.3-Dioxy-phenyl]-octanal-(8), $\omega-[2.3-Dioxy-phenyl]-n-capryl-aldehyd <math>C_{14}H_{20}O_3=(HO)_2C_4H_3\cdot[CH_2]_7\cdot CHO$.
- ω-[3-Methoxy-2-acetoxy-phenyl]-n-caprylaldehyd $C_{17}H_{24}O_4$, C_{H_3} · 0 · CO·CH₃ s. nebenstehende Formel. B. Neben anderen Produkten beim Ozonisieren von Urushiol-methyläther-acetat (Ε II 6, 936) in Chloroform unter Kühlung und nachfolgenden Zersetzen mit Wasserdampf (MAJIMA, B. 55, 182). Wurde nicht rein erhalten. Öl. $Kp_{0,8}$: 190—210°. Liefert bei der Oxydation mit Permanganat in Aceton + Eisessig ω-[3-Methoxy-2-acetoxy-phenyl]-n-caprylsäure.
- o-[2.3 Diacetoxy phenyl] n caprylaidehyd C₁₈H₂₄O₅ = (CH₃·CO·O)₂C₆H₃·[CH₂]₇·CHO.

 B. Beim Ozonisieren von Urushiol-diacetat (Е II 6, 936) in Chloroform unter Kühlung und nachfolgenden Zersetzen mit Wasserdampf (МАЈІМА, В. 55, 180). Öl. Kp₁: 205 207°. Gibt mit Alkali in alkoh. Lösung eine schwarze Färbung. Liefert bei der Oxydation mit überschüssigem Permanganat in Aceton Azelainsäure und andere Produkte.

10. Oxy-oxo-Verbindungen C15H22O3.

- 1. 2.4-Dioxy-1-pelargonoyl-benzol, 1-[2.4-Dioxy-phenyl]-nonanon-(1), 4-Pelargonoyl-resorcin, n-Octyl-[2.4-dioxy-phenyl]-keton $C_{15}H_{32}O_3=(HO)_2C_6H_3\cdot CO\cdot [CH_2]_7\cdot CH_3$. B. Beim Erhitzen von Resorcin mit Pelargonsäure und Zinkchlorid auf 125—135° (Dohme, Cox, Miller, Am. Soc. 48, 1692). Kp_{12} : 245—248°. Liefert beim Erhitzen mit amalgamiertem Zink und Salzsäure 4-n-Nonyl-resorcin. Die Lösung in Alkohol gibt mit Eisenchlorid eine rote Färbung.
- 2. 1-[8.4-Dioxy-phenyl]-nonanon-(3), n-Hexyl-[3.4-dioxy- β -phenäthyl]-keton $C_{15}H_{32}O_3=(HO)_2C_6H_3\cdot CH_1\cdot CO\cdot [CH_2]_5\cdot CH_3$.
- 1-[4-0xy-3-methoxy-phenyl]-nonanon-(3), n-Hexyl-[4-0xy-3-methoxy-β-phenäthyl]-keton C₁₄H₂₄O₃, s. nebenstehende Formel.

 B. Durch Reduktion von n-Hexyl-[4-0xy-3-methoxy-styryl]-keton mit Natriumamalgam in Wasser (Nomura, Tsurumi, Sci. Rep.

 Tôhoku Univ. 16, 567; C. 1927 II, 2186). Durch Hydrierung von α-Hexenyl-[4-0xy-3-methoxy-β-phenäthyl]-keton bei Gegenwart von Platinschwarz in Äther (Nomura, El Choi, Sci. Rep. Tôhoku Univ. 17, 710; C. 1928 II, 1925). Gelbes Öl von beißendem Geschmack. Kp₃: 193—194° (N., Ts.).
- 1-[3.4-Dimethoxy-phenyl]-nonanon-(3), n-Hexyl-[3.4-dimethoxy- β -phenäthyl]-keton $C_{17}H_{26}O_3=(CH_3\cdot O)_2C_6H_3\cdot CH_2\cdot CH_2\cdot CO\cdot [CH_2]_5\cdot CH_3$. R. Beim Schütteln von n-Hexyl-[4-oxy-3-methoxy- β -phenäthyl]-keton mit Dimethylsulfat und Natronlauge (Nomura, Tsurum, Sci. Rep. Tôhoku Univ. 16, 568; C. 1927 II, 2186). Krystalle (aus Åther + Petroläther). F: 32,7—33,7°.

318

n-Hexyl-[3.4-dimethexy- β -phenäthyl]-ketoxim $C_{17}H_{37}O_3N=(CH_2\cdot O)_3C_6H_3\cdot CH_4\cdot CH_2\cdot C(:N\cdot OH)\cdot [CH_2]_5\cdot CH_3$. Krystalle (aus Methanol). F: 88—89° (Nomura, Tsurumi, Pr. Acad. Tokyo 2, 230; Sci. Rep. Töhoku Univ. 16, 569; C. 1927 I, 726; II, 2186).

n-Hexyl-[3.4-dimethoxy- β -phenäthyl]-keton-semicarbazon $C_{18}H_{29}O_0N_2=(CH_2\cdot O_1C_0H_2\cdot CH_2\cdot CH_2\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot [CH_2]_6\cdot CH_2$. Krystalle (aus verd. Methanol). F: 97,5--99° (Nomura, Tsurumi, Pr. Acad. Tokyo 2, 230; Sci. Rep. Tōhoku Univ. 16, 569; C. 1927 I, 726; II, 2486).

11. Oxy-oxo-Verbindungen CzeH24O2.

- 1. 1-[2.4-Dioxy-phenyl]-decanon-(1), n-Nonyl-[2.4-dioxy-phenyl]-keton, n-Decylylresorcin C₁₆H₂₄O₃ = (HO)₂C₆H₃·CO·[CH₂]₆·CH₄. B. Beim Erhitzen von Resorciu mit Caprinsäure und Zinkchlorid auf 125—135° (Dонме, Cox, Miller, Am. Soc. 48, 1692). Kp₁₀: 240—245°. Liefert beim Erhitzen mit Zinkamalgam und Salzsäure 4-n-Decyl-resorcin. Die Lösung in Alkohol gibt mit Eisenchlorid eine rote Färbung.
- 2. 1-[3.4-Dioxy-phenyl]-decanon-(3), n-Heptyl-[3.4-dioxy- β -phenäthyl]-heton $C_{16}H_{24}O_3=(HO)_4C_6H_3\cdot CH_3\cdot CO\cdot [CH_4]_6\cdot CH_3.$
- 1-[4-Oxy-3-methoxy-phenyl]-decanon-(3), n-Heptyl-[4-oxy-3-methoxy-β-phenäthyl]-keton, Dihydroshogaol C₁₇H₂₆O₂, s. nebenstehende Formel. Zur Konstitution vgl. Nomura, Tsurumi, Pr. Acad. Tokyo 2, 231; Sci. Rep. Tōhoku Univ. 16, 565, 581; C. 1927 I, 726; II, 2186. B. Durch Reduktion von n-Heptyl-[4-oxy-3-methoxy-styryl]-keton mit Natriumamalgam und Wasser (Nomura, Tsurumi, Sci. Rep. Tōhoku Univ. 16, 571; C. 1927 II, 2186). Aus Shogaol (S. 337) durch

TSURUMI, Sci. Rep. Tôhoku Univ. 16, 571; C. 1927 II, 2186). Aus Shogaol (S. 337) durch Hydrierung bei Gegenwart von Platinschwarz in Äther (NOMURA, Sci. Rep. Tôhoku Univ. 7, 76; C. 1921 I, 1016). — Krystalle (aus Äther + Petroläther). F: 30—31° (N., Ts., Pr. Acad. Tokyo 2, 230; Sci. Rep. Tôhoku Univ. 16, 571, 592 Anm.; C. 1927 I, 726; 1927 II, 2186). Kp_{0,15}: 166° bis 169° (N., Sci. Rep. Tôhoku Univ. 7, 76; C. 1921 I, 1016); Kp_{5,5—6}: 206,5° (N., Ts., Sci. Rep. Tôhoku Univ. 16, 571).

- 1-[3.4-Dimethoxy-phenyl]-decanon-(3), n-Heptyl-[3.4-dimethoxy- β -phenäthyl]-keton, Dihydroshogaol-methyläther $C_{18}H_{28}O_3=(CH_3\cdot O)_2C_6H_3\cdot CH_2\cdot CH_2\cdot CO\cdot [CH_2]_6\cdot CH_3\cdot B$. Beim Schütteln von n-Heptyl-[4-oxy-3-methoxy- β -phenäthyl]-keton mit Dimethylsulfat und Natronlauge (Nomura, Tsurumi, Sci. Rep. Töhoku Univ. 16, 572; C. 1927 II, 2186). Durch Hydricrung von Shogaol-methyläther (S. 337) in Gegenwart von Platinschwarz (Nomura, Iwamotc, Sci. Rep. Töhoku Univ. 17, 982; C. 1929 II, 3021). Krystalle (aus Äther + Petroläther), F: 34,5—35° (N., I.).
- n-Heptyl-[3.4-dimethoxy- β -phenäthyl]-ketoxim, Dihydroshogaol-methyläther-oxim $C_{19}H_{19}O_3N=(CH_8\cdot O)_2C_6H_3\cdot CH_2\cdot CH_3\cdot C(:N\cdot OH)\cdot [CH_2]_6\cdot CH_3$. Krystalle (aus Äther + Petroläther). F: 79,5—80,5° (Nomura, Tsurumi, *Pr. Acad. Tokyo* 2, 230; *Sci. Rep. Tohoku Univ.* 16, 573; C. 1927 I, 726; II, 2186; N., Iwamoto, *Sci. Rep. Tohoku Univ.* 17, 982; C. 1929 II, 3021).
- n-Heptyl-[3.4-dimethoxy-2-phenäthyl]-keton-semicarbazon, Dihydroshogaol-methyläthersemicarbazon $C_{10}H_{31}O_3N_3=(CH_3\cdot O)_2C_6H_3\cdot CH_2\cdot CH_2\cdot C(:N\cdot NH\cdot CO\cdot NH_4)\cdot [CH_2]_6\cdot CH_3$. Krystalle (aus verd. Methanol). F: 82,5—83,5° (Nomura, Tsurumi, $Pr.\ Acad.\ Tokyo$ 2, 230; Sci. Rep. Tôhoku Univ. 16, 573; C. 1927 I, 726; II, 2186).

12. Oxy-oxo-Verbindungen $C_{17}H_{26}O_{3}$.

- 1. 1-[2.4-Dioxy-phenyl]-undecanon-(1), n-Decyl-[2.4-dioxy-phenyl]-keton, n-Undecylylresorcin C₁₇H₂₆O₃ = (HO)₂C₆H₃·CO·[CH₂]₆·CH₃. B. Beim Erhitzen von Resorcin mit Undecylsäure und Zinkchlorid auf 125—135° (Dohme, Cox, Miller, Am. Soc. 48, 1692). Kp₁₁: 255—260°. Liefert beim Erhitzen mit amalgamiertem Zink und Salzsäure 4n-Undecyl-resorcin. Die Lösung in Alkohol gibt mit Eisenchlorid eine rote Färbung.
- 2. 1-Phenyl-undecandiol-(10.11)-on-(1), 1-Benzoyl-decandiol-(9.10), $[\theta$ -Benzoyl-n-octyl]-äthylenglykol $C_{17}H_{26}O_3=C_6H_6\cdot CO\cdot [CH_2]_6\cdot CH(OH)\cdot CH_2\cdot OH$. B. Durch Einw. von Wasser auf 9.10-Oxido-1-benzoyl-decan (Lévy, Wellisch, Bl. [4] 45, 940). Krystalle (aus Petroläther). F: 57—58°.
- 3. 1.-[3.4-Dioxy-phenyl]-undecanon-(3), n-Octyl-[3.4-dioxy- β -phenäthyl]-keton $C_{17}H_{26}O_3=(HO)_2C_4H_3\cdot CH_2\cdot CH_2\cdot CO\cdot [CH_2]_7\cdot CH_3.$ $CH_2\cdot CO\cdot [CH_2]_7\cdot CH_3.$
- 1-[4-0xy-3-methoxy-phenyl]-undecanon-(3), n-Octyl-[4-exy-3-methoxy-β-phenäthyl]-keton C₁₈H₂₈O₃, s. nebenstehende Formel.

 B. Durch Hydrierung von n-α-Octenyl-[4-oxy-3-methoxy-β-phenäthyl]-keton bei Gegenwart von Platinschwarz in Äther (NOMURA, TSURUMI, Sci. Rep. Töhoku Univ. 16, 587; C. 1927 II, 2186).

Durch Reduktion von n-Qetyl-[4-oxy-3-methoxy-styryl]-keton mit Natriumamalgam und Wasser (N., Ts., Sci. Rep. Tôhoku Univ. 16, 574; C. 1927 II, 2186). — Krystalle (aus Petroläther oder Äther + Petroläther). F: 35,5—36,5° (N., Ts., Pr. Acad. Tokyo 2, 230; Sci. Rep. Tôhoku Univ. 16, 574; C. 1927 I, 726; II, 2186). Kp4: 213—214° (N., Ts., Sci. Rep. Tôhoku Univ. 16, 574).

1-[3.4-Dimethoxy-phenyl]-undecanon-(3), n-Octyl-[3.4-dimethoxy-β-phenäthyl]-keton C₁₉H₃₀O₃ = (CH₃·O)₂C₆H₃·CH₂·CH₂·CO·[CH₂]₇·CH₃. B. Beim Schütteln von n-Octyl-[4-oxy-3-methoxy-β-phenäthyl]-keton mit Dimethylsulfat und Natronlauge (Nomura, Tsurumi, Sci. Rep. Töhoku Univ. 16, 576; C. 1927 II, 2186). — Krystalle (aus Petroläther). F: 45-46°.

n-Octyl - [3.4 - dimethoxy - β - phenäthyl] - ketoxim $C_{19}H_{31}O_9N=(CH_3\cdot O)_2C_6H_3\cdot CH_2\cdot CH_2\cdot C(:N\cdot OH)\cdot [CH_3]_7\cdot CH_3$. Krystalle (aus Äther + Petroläther). F: 79.5—80° (NOMURA, TSURUMI, Pr. Acad. Tokyo 2, 230; Sci. Rep. Tôhoku Univ. 16, 576; C. 1927 I, 726; II, 2186).

n-Octyl-[3.4-dimethoxy- β -phenäthyi]-keton-semicarbazon $C_{30}H_{35}O_3N_3=(CH_3\cdot O)_2C_6H_3\cdot CH_2\cdot CH_2\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot [CH_2]_7\cdot CH_3$. Krystalle (aus Alkohol). F: 86—87,5° (Nomura, Tsurumi, Pr. Acad. Tokyo 2, 230; Sci. Rep. Tohoku Univ. 16, 577; C. 1927 I, 726; II, 2186).

13. Oxy-oxo-Verbindungen C16H26O2.

- 1. 2.4 Dioxy 1 lauroyl benzol, 1 [2.4 Dioxy phenyl] dodecanon (1), 2.4 Dioxy laurophenon, 4-Lauroyl-resorcin, n-Undecyl-[2.4-dioxy-phenyl]-keton C₁₈H₂₈O₃ = (HO)₂C₆H₃·CO·[CH₂]₁₀·CH₃. B. Beim Erhitzen von Resorcin mit Laurinsäure und Zinkehlorid auf 125—135° (Dohme, Cox, Miller, Am. Soc. 48, 1692; Sharp & Dohme, D.R.P. 489117; C. 1930 I, 2796; Frdl. 16, 2867) oder auf 100—250° (Klarmann, Am. Soc. 48, 2366). Tafeln (aus Ligroin). F: 79—80° (unkorr.) (K.), 84—85,5° D., C., M.; Sh. & D.). Kp₆₋₇: 237—239° (D., C., M.; Sh. & D.); Kp₈: 260—265° (K.). Liefert beim Erhitzen mit amalgamiertem Zink und Salzsäure 4-n-Dodecyl-resorcin (K.; D., C., M.; Sh. & D.). Die alkoh. Lösung gibt mit Eisenchlorid eine rote Färbung (D., C., M.).
- 2.4-Dimethoxy-laurophenon, 4-Lauroyl-resercia-dimethyläther, n-Undecyl-[2.4-dimethoxy-phenyl]-keton C₂₀H₃₂O₃ = (CH₃·O)₂C₆H₃·CO·[CH₂]₁₀·CH₃. B. Beim Kochen von Lauroyl-chlorid mit Resorcindimethyläther bei Gegenwart von Eisenchlorid in Schwefelkohlenstoff (ADAM, Pr. roy. Soc. [A] 119, 642; C. 1928 II, 1648). F: 46°. Struktur dünner, auf Wasser ausgebreiteter Schichten: A.
- 2. 3.4-Dioxy laurophenon, 4 Lauroyl brenzcateckin $C_{18}H_{28}O_3 = (HO)_2C_6H_3 \cdot CO \cdot [CH_3]_{10} \cdot CH_3$.
- 3.4-Dimethoxy-laurophenon, 4-Lauroyl-veratrol, n-Undecyl-[3.4-dimethoxy-phenyl]-keton $C_{20}H_{32}O_3 = (CH_3 \cdot O)_2C_6H_3 \cdot CO \cdot [CH_3]_{10} \cdot CH_3$. B. Aus Veratrol und Laurinsäurechlorid in Gegenwart von Aluminiumchlorid anfangs bei Zimmertemperatur, zuletzt bei 70° (MAJIMA, NAGAOKA, YAMADA, B. 55, 216; vgl. M., NAKAMURA, B. 46 [1913], 4090). F: 68—69°.
- 3. 1 [3.4 Dioxy phenyl] dodecanon (3), n Nonyl [3.4 dioxy-\beta-phen-üthyl]-keton $C_{18}H_{28}O_3=(HO)_2C_6H_3\cdot CH_3\cdot CO\cdot [CH_2]_8\cdot CH_3$.
- 1-[4-0xy-3-methoxy-phenyl]-dodecanon-(3), n-Nonyl-[4-0xy-3-methoxy-β-phenäthyl]-keton C₁₉H₃₀O₅, s. nebenstehende Formel.

 B. Durch Reduktion von n-Nonyl-[4-0xy-3-methoxy-styryl]-keton mit Natriumamalgam und Wasser (Nomura, Tsurumi, Sci. Rep. Tohoku Univ. 16, 578; C. 1927 II, 2186). Krystalle (aus Petroläther). F: 42,5—43,5°. Kp₃: 217—220°.
- 1-[3.4-Dimethoxy-phenyl]-dodecanon-(3), n-Nonyl-[3.4-dimethoxy- β -phenäthyl]-keton $C_{20}H_{32}O_3=(CH_3\cdot O)_2C_0H_3\cdot CH_2\cdot CH_2\cdot CO\cdot [CH_2]_3\cdot CH_3\cdot B$. Beim Schütteln von n-Nonyl-[4-oxy-3-methoxy- β -phenäthyl]-keton mit Dimethylsulfat und Natronlauge (Nomura, Tsurumi, Sci. Rep. Töhoku Univ. 16, 578; C. 1927 II, 2186). Krystalle (aus Äther + Petroläther). F: 33,5° bis 35°.
- n-Nonyl-[3.4-dimethoxy- β -phenäthyi]-ketoxim $C_{20}H_{32}O_3N=(CH_3\cdot O)_2C_6H_3\cdot CH_2\cdot CH_2\cdot C(:N\cdot OH)\cdot [CH_2]_6\cdot CH_3$. Krystalle (aus Petroläther). F: 73,5—74,5° (NOMURA, TSURUMI, Sci. Rep. Tôhoku Univ. 16, 579; C. 1927 II, 2186).

14. Oxy-oxo-Verbindungen $C_{19}H_{20}O_{2}$.

1. 1-[2.4-Dioxy-phenyl]-tridecanon-(1), n-Dodecyl-[2.4-dioxy-phenyl]heton C₁₉H₃₀O₃ = (HO)₂C₆H₃·CO·[CH₂]₁₁·CH₃. B. Beim Erhitzen von Resorcin mit Dodecancarbonsäure-(1) und Zinkchlorid auf 125—135° (Dонмя, Cох, Миллен, Am. Soc. 48, 1692). —
Kp₁₁: 265—270°. — Liefert beim Erhitzen mit amalgamiertem Zink und Salzsäure 4-n-Tridecylresorcin. — Die Lösung in Alkohol gibt mit Eisenchlorid eine rote Färbung.

- 2. 1-[3.4-Dioxy-phenyl]-tridecanon-(1), n-Dodecyl-[3.4-dioxy-phenyl]-keton $C_{10}H_{20}O_3=(HO)_1C_0H_3\cdot CO\cdot [CH_2]_{11}\cdot CH_3$.
- 1-[3.4-Dimethoxy-phenyl]-tridecanon-(1), n-Dodecyl-[3.4-dimethoxy-phenyl]-keton C₂₁H₂₄O₃ = (CH₃· O)₂C₂H₃· CO·[CH₂]₁₁· CH₃. B. Aus Veratrol und Dodecan-carbonsaure-(1)-chlorid in Gegenwart von Aluminiumehlorid, zuletzt bei 70° (MAJIMA, NAGAOMA, YAMADA, B. 55, 216; vgl. M., NAMABURA, B. 46 [1913], 4090). F: 59,5—60°.

15. Oxy-oxo-Verbindungen $C_{22}H_{24}O_{2}$.

- 2.4-Dioxy-1-palmitoyl-benzol, 2.4-Dioxy-palmitophenon, 4-Palmitoyl-resorcin, Pentadecyl-[2.4-dioxy-phenyl]-keton C₂₂H₂₆O₃ = (HO)₂C₆H₃·CO·[CH₂]₁₄·CH₃. B. Beim Erhitzen von Resorcin mit Palmitinsäure und Zinkchlorid (Adam, Pr. roy. Soc. [A] 119, 643; C. 1928 II, 1647). F: 94—95°. Struktur dünner, auf Wasser ausgebreiteter Schichten: A. Liefert bei der Reduktion mit amalgamiertem Zink und Salzsäure 2.4-Dioxy-1-n-hexadecyl-benzol.
- 4-Paimitoyi-resorcin-monomethyläther $C_{23}H_{38}O_3 = HO \cdot C_6H_3(O \cdot CH_3) \cdot CO \cdot [CH_2]_{14} \cdot CH_3$. Diese Konstitution kommt wahrscheinlich der von Krafft (B. 21 [1888], 2270) als 2.4-Diese het hoxy-palmitophenon (H 286) beschriebenen Verbindung zu (Adam, Pr. roy. Soc. [A] 119, 642; C. 1928 II, 1647). F: 66°.
- 2.4 Dimethoxy palmitophenon, 4 Palmitoyl resorcin dimethyläther $C_{24}H_{46}O_8 = (CH_8 \cdot O)_2C_6H_3 \cdot CO \cdot [CH_2]_{14} \cdot CH_3$. Die H 286 unter dieser Formel aufgeführte Verbindung war vermutlich der Monomethyläther (s. o.). B. Beim Kochen von Resorcindimethyläther mit Palmitoylchlorid und Eisenchlorid in Schwefelkohlenstoff (ADAM, Pr. roy. Soc. [A] 119, 642; C. 1928 II, 1648). Beim Behandeln von 4-Palmitoyl-resorcin-monomethyläther mit Dimethylsulfat (A.). F: 61°. Struktur dünner, auf Wasser ausgebreiteter Schichten: A.

16. Oxy-oxo-Verbindungen $C_{23}H_{38}O_8$.

- 1-[3.4-Dioxy-phenyl]-heptadecanon-(1), Cetyl-[3.4-dioxy-phenyl]-keton, Hexadecylbrenzcatechylketon C₃₂H₃₂O₃ = (HO)₂C₄H₃·CO·[CH₂]₁₅·CH₂. B. Beim Erwärmen von Brenzcatechin mit Hexadecan-carbonsäure-(1) und Zinkchlorid 1) (MAJIMA, B. 55, 205). Krystalle (aus Xylol und Ligroin). F: 100—103°. Liefert bei der Reduktion mit amalgamiertem Zink und Salzsäure 3.4-Dioxy-1-n-heptadecyl-benzol.
- 1-[3.4-Dimethoxy-phenyl]-heptadecanon-(1), n-Hexadecyl-[3.4-dimethoxy-phenyl]-keton $C_{25}H_{42}O_3=(CH_3\cdot O)_2C_6H_3\cdot CO\cdot [CH_2]_{15}\cdot CH_3$. B. Aus Veratrol und Hexadecan-carbonsaure-(1)-chlorid in Gegenwart von Aluminiumchlorid, zuletzt bei 70° (MAJIMA, NAGAOKA, YAMADA, B. 55, 216; vgl. M., NAKAMURA, B. 46 [1913], 4090). F: 67—68°.

17. Oxy-oxo-Verbindungen C24H40O2.

- 1. 1-[2.4-Dioxy-phenyl]-octadecanon-(1), 4-Stearoyl-resorcin, $n-Heptadecyl-[2.4-dioxy-phenyl]-keton <math>C_{24}H_{40}O_3=(HO)_2C_6H_3\cdot CO\cdot [CH_2]_{16}\cdot CH_3$. Struktur dünner, auf Wasser ausgebreiteter Schichten: ADAM, Pr. roy. Soc. [A] 119, 630; C. 1928 II, 1647.
- 2. 1 [3.4 Dioxy phenyl] octadecanon (1), 4 Stearoyl brenzcatechin, n-Heptadecyl <math>[3.4 dioxy phenyl] keton C₂₄H₄₀O₃ = (HO)₂C₄H₃· CO· [CH₂]₁₆· CH₅. B. Aus Brenzcatechin-distearat beim Erhitzen mit Aluminiumchlorid auf 110° (ROSENMUND, LOHFERT, B. 61, 2605). Wurde nicht rein erhalten. Krystalle. F: 70°.
- 1-[3.4-Dimethoxy-phenyl]-octadecanon-(1), 4-Stearoyl-veratrol, n-Heptadecyl-[3.4-dimethoxy-phenyl]-keton $C_{26}H_{44}O_3=(CH_3\cdot O)_2C_6H_3\cdot CO\cdot [CH_2]_{16}\cdot CH_3$. B. Aus Veratrol und Stearinsäurechlorid in Gegenwart von Aluminiumchlorid, zuletzt bei 70° (MAJIMA, NAGAOKA, YAMADA, B. 55, 216; vgl. M., NAKAMURA, B. 46 [1913], 4090). F: 82—83°.

18. Oxy-oxo-Verbindungen C₂₇H₄₆O₃.

Cholestandiol - (3.5) - on - (6) C₂₇H₄₆O₃, s. untenstehende Formel, s. 4. Hauptabteilung, Sterine.

[BARMANN]

¹⁾ Im Original Zinnehlorid; vermutlich Druckfehler [Beilstein-Redaktion].

e) Oxy-oxo-Verbindungen $C_n H_{2n-10} O_3$.

1. Oxy-oxo-Verbindungen C_eH_eO₃.

- 1. 4 Oxy 1 dioxoāthyl benzol , 4 Oxy phenylglyoxal $C_aH_aO_3=HO\cdot C_0H_4\cdot CO\cdot CHO$.
- 4-Methoxy-phenylglyoxal, Anisylglyoxal $C_0H_0O_3=CH_3\cdot O\cdot C_0H_4\cdot CO\cdot CHO$. B. Neben anderen Produkten durch Behandlung von 4-Methoxy-dibenzoylmethan mit Ozon in Chloroform und folgende Zersetzung mit Wasser (Weygand, A. 459, 121). Das Bis-phenylhydrazon $C_{21}H_{20}ON_4$ schmilzt bei 190°.
- α-[4-Methoxy-phenyl]-glyoxal-β-oxim, 4-Methoxy-ω-oximino-acetophenon, 4-Methoxy-ω-isonitroso-acetophenon C₉H₂O₃N = CH₂·O·C₆H₄·CO·CH:N·OH. B. Durch längere Einw. von Isoamylnitrit und Natriumäthylat-Lösung auf 4-Methoxy-acetophenon in der Kälte (Borsche, Walter, B. 59, 466). Nadeln (aus Chloroform). F: 120°. Liefert beim Behandeln mit Acetylchlorid oder besser mit Acetanhydrid 4-Methoxy-benzoylcyanid.
- '2. 2-Oxy-1.3-diformyl-benzol, 2-Oxy-isophthalaldehyd $C_8H_eO_3$, Formel I (vgl. H 287). B. Durch Reduktion von 3-Formyl-salicylsäure mit Natriumamalgam in Gegenwart von Borsäure und NaHSO $_3$ in schwach salzsaurer Lösung; Ausbeute ca. 20% (Weil, Brimmer, B. 55, 302, 304). Haarförmige Krystalle. F: 125° (vgl. dagegen die Angabe des Hptw.). Mit Wasserdampf flüchtig. Leicht löslich in heißem Wasser und in Alkohol.

3. 4-Oxy-1.3-diformyl-benzol, 4-Oxy-isophthalaldehyd C₈H₆O₃, Formel II (H 287). B. Durch Reduktion von 5-Formyl-salicylsäure mit Natriumamalgam in Gegenwart von Borsäure und NaHSO₃ in schwach salzsaurer Lösung; Ausbeute ca. 40% (Weil, Brimmer, B. 55, 302, 305). — F: 113°. Nicht flüchtig mit Wasserdampf. Schwer löslich in heißem Wasser, leicht in heißem Alkohol.

2. Oxy-oxo-Verbindungen $C_9H_8O_3$.

- 2-Oxy-3-methoxy-zimtaldehyd, o-Coniferylaldehyd C₁₀H₁₀O₃, Formel III. B. Neben harzigen Produkten beim Kochen von 3-Methoxy-2-methoxymethoxy-zimtaldehyd mit 50% iger Essigsäure und etwas Schwefelsäure unter Luftausschluß (Paulx, Wäscher, B. 56, 608). Blaßgelbe Plättchen (aus Benzol). F: 131°. Leicht löslich in Alkohol, schwerer in Benzol, fast unlöslich in Wasser. Gibt mit Eisenchlorid in verd. Alkohol einen schmutzigroten Niederschlag.
- 3-Methoxy-2-methoxymethoxy-zimtaldehyd C₁₃H₁₄O₄ = CH₃· O· C₆H₃(O· CH₂· O· CH₃)· CH: CH· CHO. B. Durch allmähliche Einw. von Acetaldehyd auf 3-Methoxy-2-methoxymethoxybenzaldehyd in wäßrig-alkoholischer Kalilauge bei 65—68°; Ausbeute 50% (PAULY, Wäscher, B. 56, 608; vgl. P., Feuerstein, B. 62, 303 Ann. 18). Hellgelbe Plättchen (aus Ligroin + Benzol). F: 91° (P., W.). Leicht löslich in Alkohol und Äther, schwerer in Benzol, schwer in Ligroin, sehr schwer in Wasser. Liefert beim Kochen mit 50% iger Essigsäure und etwas Schwefelsäure unter Luftabschluß 2-Oxy-3-methoxy-zimtaldehyd und harzige Produkte.
- 2 Oxy 3 methoxy zimtaldehyd semicarbazon $C_{11}H_{12}O_3N_3 = CH_3 \cdot O \cdot C_6H_3(OH) \cdot CH \cdot CH \cdot CH \cdot N \cdot NH \cdot CO \cdot NH_2$. Fast farblose Krystalle (aus Eisessig). F: 198° (Pauly, Wäscher, B. 56, 608).
- 2. 1 [3.4 Dioxy phenyl] propen (1) al (3), 3.4 Dioxy zimtaldehyd $C_0H_8O_3=(HO)_3C_6H_3\cdot CH\cdot CH\cdot CHO$.
- 4-Oxy-3-methoxy-zimtaidehyd, Ferulaaldehyd, Coniferylaidehyd $C_{10}H_{10}O_3$, Formel IV (H 288). Coniferylaidehyd wurde von Klason (B. 58, 1762; 61, 171, 614; 63 [1930], 792, 912; Cellulosech. 18 [1932], 115) als Baustein des Lignin-Moleküls angesehen (vgl. dagegen Pauly, Feuerstein, B. 62, 301).
- B. Durch Kochen von 3-Methoxy-4-methoxymethoxy-zimtaldehyd mit 50% iger Essigsäure und etwas Schwefelsäure unter Durchleiten von Kohlendioxyd (Pauly, Wäscher, B. 56, 610; P., Feuerstein, B. 62, 304). F: 82,5° (P., W.; P., F.; Hillmer, Hellriegel, B. 62, 726); die Schmelse ist gelb (P., F., B. 62, 307). Siedepunkte zwischen 2,5 mm (157°) und 5 mm Druck (175°): P., F., B. 62, 307; der Dampf ist hellgelb (P., F.). D: 1,1562; not. 1,6397;

nian, 1.6563 (v. Auwers, zitiert bei P., F.). Löst sich in Wasser, Methanol, Alkohol, Glykol und Glycerin mit gelber, in Isoamylalkohol, Benzylalkohol und Pyridin mit sehr schwacher gelber Farbe; die Lösungen in Äther, Aceton, Methyläthylketon, Hexan, Tetrachlorkohlenstoff, Schwefelkohlenstoff, Benzol und Xylol sind farblos; die Lösung in Methanol wird durch Äther entfärbt (Hillmer, Hellriegel, B. 62, 725); die verdünnte wäßrige Lösung wird bei längerem Aufbewahren farblos (Hi., Hell.). Ultraviolet-Absorptionsspektrum in Alkohol: Herzog, Hi., B. 64 [1931], 1305; vgl. Hi., Hell., B. 62, 726. Alkalische Lösungen sind gelb, saure Lösungen farblos; der Umschlag erfolgt bei ph 7,6 und ist sehr scharf (Hi., Hell.). Wird durch konz. Schwefelsäure rot gefärbt und mit orangeroter Farbe gelöst; die Lösung wird bei Zusatz von Wasser blau und scheidet blaue Flocken ab (Pauly, Fruerstein, B. 62, 307). Gibt mit Eisenchlorid-Lösung erst beim Erwärmen eine blaugrüne Färbung (P., F.). Thermische Analyse des binären Systems mit Vanillin: P., F., B. 62, 300.

Wird bei längerem Aufbewahren an der Luft, schneller beim Kochen mit Eisenchlorid-Lösung zu Vanillin oxydiert (Pauly, Wäscher, B. 56, 610). Liefert beim Erhitzen mit Phlorogluein und verd. Salzsäure auf dem Wasserbad eine Verbindung $C_{18}H_{20}O_{8}$ (dunkelkarminrotes Pulver; schmilzt undeutlich oberhalb 300°; die Lösungen in Alkalilauge sind purpurfarben) (P., Feuerstein, B. 62, 306). Gibt mit Anilin eine rotgelbe krystallinische Verbindung (P., Wäscher, B. 56, 610). Liefert beim Erwärmen mit $\frac{1}{2}$ Mol Benzidin in Methanol auf dem Wasserbad N.N'-Bis-[4-oxy-3-methoxy-cinnamyliden]-benzidin (P., F., B. 62, 306). Die wäßr. Lösung des Kaliumsalzes liefert bei 3-tägigem Schütteln mit α -Acetobromglucose in Äther das Tetraacetat des Ferulaaldehyd- β -d-glucopyranosids (P., F., B. 60, 1033). — Wird durch gärende Hefe zu 4-Oxy-3-methoxy-zimtalkohol reduziert (P., F., B. 62, 305). — Färbt sich mit β -Naphthylaminhydrochlorid ziegelrot; gibt mit einer 2% igen Lösung von Benzidin in 50% iger Essigsäure eine blutrote Färbung, die sich bei Zusatz von Eisessig nicht ändert und bei starkem Verdünnen der Lösung über Rotorange in Orange übergeht (P., F., B. 62, 307, 308).

Natriumsalz. NaC₁₀H₀O₃. Gelbes Pulver. Sehr leicht löslich in Wasser (Pauly, Feuerstein, B. 60, 1033; 62, 307). Färbt die Haut intensiv gelbbraun. — Verbindung mit Natriumdisulfit. Unlöslich in überschüssiger 37%iger NaHSO₃-Lösung (Pauly, Wäscher, B. 56, 610).

- 3.4-Dimethoxy-zimtaldehyd, Ferulaaldehyd-methyläther $C_{11}H_{12}O_3 = (CH_3 \cdot O)_2C_6H_3 \cdot CH$: CH·CHO. B. In geringer Menge beim Behandeln von Veratrumaldehyd mit Acetaldehyd in alkoh. Kalilauge, zuletzt bei $50-60^\circ$ (Freudenberg, Orthner, Fikentscher, A. 436, 296). Hellgelbe Krystalle (aus Methanol). F: 82—83°. Gibt beim Kochen mit wasserfreiem Hydrazin 3-[3.4-Dimethoxy-phenyl]-pyrazolin.
- 3-Methoxy-4-benzyloxy-zimtaldehyd, Ferulaaldehyd-benzyläther $C_{17}H_{16}O_3=C_6H_5\cdot CH_2\cdot O\cdot C_6H_3(O\cdot CH_3)\cdot CH\cdot CH\cdot CHO$. B. Entsteht in geringer Menge beim Behandeln von Vanillinbenzyläther mit Acetaldehyd in wäßrig-alkoholischer Kalilauge bei 7° (Kobayashi, Scient. Pap. Inst. phys. chem. Res. 6, 181; C. 1928 I, 1029). Hellgelbe Prismen (aus Alkohol). F: 89—90°. Das Phenylhydrazon schmilzt bei 144—146°.
- 3-Methoxy-4-methoxymethoxy-zimtaldehyd, Ferulaaldehyd-methoxymethyläther C₁₂H₁₄O₄ = CH₃·O·CH₂·O·C₆H₃(O·CH₃)·CH:CH·CHO. B. Durch Einw. von Acetaldehyd auf 3-Methoxy-4-methoxymethoxy-benzaldehyd in schwach alkalischer wäßrig-alkoholischer oder wäßrigmethylalkoholischer Lösung bei 65—68° (Pauly, Feuerstein, B. 62, 303; Hillmer, Hellriegel, B. 62, 726; vgl. P., Wäscher, B. 56; 609; Klason, B. 61, 174) oder in wäßrig-alkoholischer Kalilauge bei —5° bis —15° (Kobayashi, Scient. Pap. Inst. phys. chem. Res. 6, 182; C. 1928 I, 1029). Fast farblose Nadeln (aus Hexan). F: 78° (P., F.), 78—79° (Ko.), 80,5—81,5° (Hi., He.). Kp₃: 182—184° (P., F.), 179—183° (Hi., He.). Ultraviolett-Absorptionsspektrum in Lösung: Hi., He. Liefert beim Kochen mit 50% iger Essigsäure und etwas Schwefelsäure unter Durchleiten von Kohlendioxyd 3-Oxy-4-methoxy-zimtaldehyd (P., W.; P., F.; vgl. Kl.). Beim Erhitzen mit Acetanhydrid und Natriumacetat auf 160° entstehen geringe Mengen 3-Methoxy-4-methoxy-methoxy-cinnamylidenessigsäure (Ko.). Bei der Reduktion durch gärende Hefe entsteht 3-Methoxy-4-methoxy-zimtalkohol (P., F.).
- 4-0xy-3-methoxy-zimtaldehyd-semicarbazon, Ferulaaldehyd-semicarbazon $C_{11}H_{13}O_2N_3=HO\cdot C_6H_3(O\cdot CH_3)\cdot CH\cdot CH\cdot CH\cdot N\cdot NH\cdot CO\cdot NH_2$. Blaßgelbe Krystalle (aus Eisessig). F: 218°; die Schmelze ist rot (PAULY, WÄSCHER, *B.* 56, 610).
- 3. 1 [4 Oxy phenyl]-propandion-(1.2), Methyl-[4-oxy-phenyl]-diketon, Methyl-[4-oxy-phenyl]-glyoxal $C_bH_eO_5=HO\cdot C_bH_t\cdot CO\cdot CO\cdot CH_t$.
- α-Methyl-β- [4-methoxy-phenyl]-glyoxal-α-oxim $C_{10}H_{11}O_2N=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot C(:N\cdot OH)\cdot CH_3$. Diese Konstitution kommt der von Borsche (B. 40 [1907], 742) als Brenztraubensäure-p-anisidid (H 18, 495) formulierten Verbindung zu (Taylor, Soc. 1931, 2024; Philipp, Müller, A. 528 [1937], 297).

 $\label{eq:Niedrigerschmeizendes} \begin{array}{ll} \text{Niedrigerschmeizendes} & \text{Methyl-[4-methoxy-phenyl]-glyoxim,} & \alpha\text{-Methyl-[4-methoxy-phenyl]-glyoxim,} & \alpha\text{-Methyl-[4-methoxy-phenyl-phenyl-glyoxim,} & \alpha\text{-Methyl-[4-methoxy-phenyl-phenyl-glyoxim,} & \alpha\text{-Methyl-[4-methoxy-phenyl-phenyl-glyoxim,} & \alpha\text{-Methyl-glyoxim,} & \alpha\text{-Methyl$

J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 1060. — Liefert beim Behandeln mit alkal. Natriumhypochlorit-Lösung Methyl-[4-methoxyphenyl]-furoxan vom Schmelzpunkt 99° (Ponzio, B. 61, 1325; G. 58, 338). — Nickelsalz. Hellgelber amorpher Niederschlag. Löslich in verd. Essigsäure. Geht beim Erwärmen in essigsaurer Lösung in das Nickelsalz der β -Form (s. u.) über.

- β -Methyl-[4-methoxy-phenyl]-glyoxim-diacetat $C_{14}H_{16}O_5N_2=CH_3\cdot O\cdot C_6H_4\cdot C(:N\cdot O\cdot CO\cdot CH_3)\cdot C(:N\cdot O\cdot CO\cdot CH_3)\cdot CH_3$ (H 289). F: 105° (Ponzio, Bernardi, G. 53, 815).
- 4. 2-Oxy-benzoylacetaldehyd, Salicoylacetaldehyd, 2-Oxy- ω -formyl-acetophenon bzw. 2-Oxy- ω -oxymethylen-acetophenon $C_9H_8O_3=HO\cdot C_6H_4\cdot CO\cdot CH_2\cdot CHO$ bzw. $HO\cdot C_6H_4\cdot CO\cdot CH: CH\cdot OH$.

5-Chlor-2-oxy-benzoylacetaldehyd, 5-Chlor-2-oxy-ω-formyl-acetophenon bzw. 5-Chlor-2-oxy-ω-oxymethylen-acetophenon C₂H₇O₃Cl, s. nebenstehende Formel bzw. desmotrope Form. B. In geringer Menge beim Behandeln von 5-Chlor-2-oxy-acetophenon mit Ameisensäureäthylester und Natrium unter Cl. OH Kühlung (WITTIG, A. 446, 197). — Fast farblose Nadeln (aus Methanol). F: 148—149° (Zers.). Leicht löslich in Alkohol und Eisessig, schwer in Benzol. — Löst sich in konz. Schwefelsäure mit schwach gelber Farbe und bläulicher Fluorescenz unter Bildung von 6-Chlor-chromon.

- 5. 4-Oxy-benzoylacetaldehyd, 4-Oxy- ω -formyl-acetophenon bzw. 4-Oxy- ω -oxymethylen-acetophenon $C_9H_8O_3=HO\cdot C_6H_4\cdot CO\cdot CH_2\cdot CHO$ bzw. $HO\cdot C_6H_4\cdot CO\cdot CH:CH\cdot OH$.
- 4-Methoxy-benzoylacetaldehyd, Anisoylacetaldehyd, 4-Methoxy-ω-formyl-acetophenon bzw. 4-Methoxy-ω-oxymethylen-acetophenon, [β-Oxy-vinyl]-[4-methoxy-phenyl]-keton C₁₀H₁₀O₃ = CH₃·O·C₆H₄·CO·CH₂·CHO bzw. CH₃·O·C₆H₄·CO·CH:CH·OH. B. Beim Behandeln von 4-Methoxy-acetophenon mit Ameisensäureäthylester und Natrium (Benary, Meyer, Charisius, B. 59, 111) oder mit Ameisensäureäthylester und Natriumäthylat in Alkohol + Äther unter Eiskühlung (Pratt, Robinson, Williams, Soc. 125, 202). Hellgelbe Blätter (aus Petroläther). F: 50—51° (B., M., Ch.). Leicht löslich in organischen Lösungsmitteln außer Petroläther (B., M., Ch.). Gibt mit Eisenchlorid in Alkohol eine rote Färbung (B., M., Ch.). Gibt bei der Kondensation mit Phloroglucin-monobenzoat in Äther unter Sättigung mit Chlorwasserstoff 7-Oxy-4'-methoxy-5-benzoyloxy-flavylium-

chlorid (s. nebenstehende Formel; Syst. Nr. 2441) (Robertson, Robinson, Struthers, Soc. 1928, 1458). Das Natriumsalz liefert mit Anilinhydrochlorid in Wasser 4-Methoxy-ω-anilinomethylen-acetophenon (Benary, Meyer, Charisius). Kondensiert sich mit Phenylhydrazin zu 1-Phenyl-3(oder 5)-[4-methoxy-phenyl]-pyrazol (B., M., Ch.; vgl. B., B. 59, 2200). Bei

HO. CO.O. COH4.O.CH3

oxy-phenyl]-pyrazol (B., M., Ch.; vgl. B., B. 59, 2200). Bei der Einw. von Benzoldiazoniumchlorid auf das Natriumsalz erhält man 4-Methoxy-ω-phenyl-hydrazono-ω-formyl-acetophenon (Syst. Nr. 2004) (B., M., Ch.). — Kupfersalz Cu(C₁₀H₂O₃)₃. Grüne Prismen (aus Toluol). F: 206—207° (Pratt, Robinson, Williams), 192—194° (B., M., Ch.).

- 6. α Oxy α benzoyl acetaldehyd , ω Oxy ω formyl acetophenon bzw. ω -Oxy- ω -oxymethylen-acetophenon $C_9H_8O_3=C_9H_5\cdot CO\cdot CH(OH)\cdot CHO$ bzw. $C_6H_5\cdot CO\cdot C(OH)\cdot CH\cdot OH$.
- ω-Methoxy-ω-formyl-acetophenon bzw. ω-Methoxy-ω-oxymethylen-acetophenon, [β-Oxy-α-methoxy-v-inyi] phenyl- keton, β- Methoxy-β- benzoyl- vinyialkohol $C_{1o}H_{10}O_3 = C_oH_5 \cdot CO \cdot CH_0 \cdot C$

Ameisensäureäthylester bei Gegenwart von Natriumäthylat in absol. Äther unter Eiskühlung (Malkin, Robinson, Soc. 127, 1192). — Prismen (aus Ather). F: 112°. Gibt mit Eisenchlorid in alkoh. Lösung eine bräunliche Purpurfärbung. — Cu(C₁₀H₂O₃)₂. F: 178°.

7. 4.5 - Dioxy - indanon - (1), 4.5 - Dioxy - hydrindon - (1)
$$C_0H_0O_3 = (HO)_2C_0H_2 \stackrel{CH_2}{\sim} CH_2$$
.

4.5-Dimethoxy-hydrindon-(1) $C_{11}H_{12}O_2$, Formel I (E I 627). B. Bei gelindem Erwärmen von 2.3-Dimethoxy-hydrozimtsäure mit PCl_5 in Benzol und nachfolgendem Behandeln mit Aluminiumchlorid unter Eiskühlung (RUHEMANN, B. 58, 280). — Gelbliche Blättchen (aus Petroläther). F: 77—78°. — Gibt mit Athylformiat und trocknem Natriumäthylat in absol. Ather 4.5-Dimethoxy-2-oxymethylen-hydrindon-(1). Analog entsteht bei der Kondensation mit Oxalsäurediäthylester 4.5-Dimethoxy-hydrindon-(1)-oxalylsäure-(2)-äthylester.

I.
$$CH_3 \cdot O \xrightarrow{CH_2} CH_2$$

II. $CH_3 \cdot O \xrightarrow{CH_2} CH_2$

HO $CH_3 \cdot O \xrightarrow{CH_2} CH_3$

- 8. 5.6 Dioxy indanon (1), 5.6 Dioxy hydrindon (1) $C_9H_8O_3 = (HO)_2C_6H_2 < C_0H_2 > CH_2$.
- 6-Oxy-5-methoxy-hydrindon-(1) $C_{10}H_{10}O_3$, Formel II. B. Durch Einw. von konz. Schwefelsäure auf 4-Oxy-3-methoxy-hydrozimtsäure bei 140° (v. Konek, Szamák, B. 55, 106). Nadeln (aus Wasser). F: 193—194°. Schwer löslich in Wasser, Alkohol, Äther und Ligroin, löslich in Chloroform und Benzol. Löst sich in Natronlauge mit gelber Farbe. — Das Phenylhydrazon C₁₆H₁₆O₂N₂ schmilzt unter Zersetzung bei 206—210°.
- 5.6-Dimethoxy hydrindon (1) $C_{11}H_{12}O_3 = (CH_3 \cdot O)_2C_6H_1 < \frac{CH_2}{CO} > CH_2$ (H 290). B. Beim Behandeln von 6-Oxy-5-methoxy-hydrindon-(1) mit Dimethylsulfat und überschüssiger Alkalilauge (v. Konek, Szamák, B. 55, 108). — F: 116—117° (v. K., Sz.). — Liefert mit Resorcin in Eisessig beim Sättigen mit Chlorwasserstoff in der Kälte das Mono-[3-oxy-phenyl]-acetal (?) (s. u.) und geringe Mengen einer Verbindung vom Schmelzpunkt 227° (Nadeln aus Methanol; schwer löslich in Wasser) (Perkin, Rây, Robinson, *Soc.* 1926, 949). Bei der Kondensation mit 2-Oxy-3-methoxybenzaldehyd in Eisessig unter Einleiten von Chlorwasserstoff entsteht als Eisen(III)-chlorid-Verbindung isoliertes 8.5'.6'-Trimethoxy-[indeno-1'.2':2.3-benzopyryliumchlorid] (Formel III; Syst. Nr. 2444) (P., Rây, Ro., Soc. 1926, 953).

- 5.6-Dimethoxy-hydrindon-(1)-mono-[3-oxy-phenyl]-acetal(?) $C_{17}H_{18}O_5$, Formel IV. B. s. o. Gelbe Nadeln (aus Wasser). F: 78° (Perkin, Ray, Robinson, Soc. 1926, 950). Wird durch kalte verdünnte Natronlauge wieder in 5.6-Dimethoxy-hydrindon-(1) und Resorcin gespalten.
- 2-Brom-5.6-dimethoxy-hydrindon-(1) $C_{11}H_{11}O_3Br = (CH_3 \cdot O)_2C_4H_2 < \frac{CH_2}{CO} > CHBr$. B. Aus 5.6-Dimethoxy-hydrindon-(1) und Brom in heißem Tetrachlorkohlenstoff (Реккін, Rây, Robinson, Soc. 1926, 948). — Blaßgelbe Tafeln (aus Alkohol). F: 157°. — Liefert beim Kochen mit Kaliumcyanid in wäßr. Alkohol je nach der Konzentration des Alkohols monomeres oder polymeres (?) 5.6-Dimethoxy-2-cyan-hydrindon-(1).
- 9. 6.7 Dioxy indanon (1), 6.7 Dioxy hydrindon (1) $C_0H_8O_3 =$
- 4-Brom-6.7-dimethoxy-hydrindon-(1) $C_{11}H_{11}O_9Br$, Formel V. B. Durch Einw. von konz. Schwefelsäure auf 6-Brom-3.4-dimethoxy-hydrozimtsäure bei 75° (Haworth, Koeppli, Perkin, Soc. 1927, 550). Nadeln (aus Methanol). F: 120—121°. Liefert bei der Einw. von Methylnitrit und etwas konz. Salzsäure in wenig Methanol 4-Brom-6.7-dimethoxy-2-oximino-
- Oxim $C_{11}H_{12}O_3NBr = (CH_3 \cdot O)_2C_6HBr C(:N \cdot OH)$ CH₂. Prismen (aus Alkohol). F: 228° bis 230° (HAWORTH, KOEPFLI, PERKIN, Soc. 1927, 550). Schwer löslich in Alkohol.

3. Oxy-oxo-Verbindungen C₁₀H₁₀O₃.

1. 1 - [2.3 - Dioxy - phenyl] - buten - (1) - on - (3), 2.3 - Dioxy - benzylidenaceton, $Methyl - [2.3 - dioxy - styryl] - keton <math>C_{10}H_{10}O_3 = (HO)_2C_4H_3 \cdot CH \cdot CO \cdot CH_3$.

2-Oxy-3-methoxy-benzylidenaceton, Methyl-[2-oxy-3-methoxy-styryl]-keton C₁₁H₁₂O₃, s. nebenstehende Formel. B. Aus o-Vanillin und Aceton in verd. Natronlauge bei gewöhnlicher Temperatur (Nomura, Nozawa, Sci. Rep. Töhoku Univ. 7 [1918], 88; C. 1921 I, 1017; Heilbron, Whitworth, Ochsoc. 123, 242; vgl. McGookin, Sinclair, Soc. 1926, 1578). — Krystallisiert aus verd. Alkohol als Hydrat C₁₁H₁₂O₃ + H₂O in hellgelben bis gelben Tafeln; F: 83° (H., Wh.; McG., S.), 81—82° (Nom., Noz.); das Wasser wird beim Kochen mit Phosphorpentoxyd oder Acetanhydrid in Benzol nicht abgegeben (H., Wh., Soc. 123, 243). Durch Krystallisation aus Benzol erhielten Nomura, Nozawa wasserfreie Krystalle vom Schmelzpunkt 77—77,5°; McGookin, Sinclair erhielten erst dem Hydrat ähnliche gelbe Tafeln, dann farblose, hygroskopische Nadeln, die sofort Wasser aufnahmen und in das bei 83° schmelzende Hydrat übergingen. Löst sich in Alkalilaugen mit orangeroter, beim Aufbewahren in Tiefrot übergehender Farbe (MoG., S.).

Gibt bei der Hydrierung bei Gegenwart von Platinschwarz in Äther 2-Oxy-3-methoxy-benzylaceton (Nomura, Nozawa, Sci. Rep. Tôhoku Univ. 7, 89; C. 1921 I, 1017). Liefert bei der Kondensation mit 2-Oxy-3-methoxy-benzaldehyd 2.2'-Dioxy-3.3'-dimethoxy-dibenzylidenaceton (McGoorin, Sinclair, Soc. 1926, 1578); reagiert analog mit 4-Dimethylamino-benzaldehyd in wäßrig-alkoholischer Natronlauge bei 50° (Heilbron, Whitworth, Soc. 123, 243). Gibt beim Erwärmen mit Acetessigester und alkoh. Natronlauge 8-Methoxy-2-methyl-4-acetonyl-4-chromen (Syst. Nr. 2511) (Forster, Heilbron, Soc. 125, 346). — Benzoat C₁₈H₁₆O₄. F: 120° (H., Wh.).

- 3-Methoxy-2-acetoxy-benzylidenaceton, Methyl-[3-methoxy-2-acetoxy-styryl]-keton $C_{13}H_{14}O_4 = CH_3 \cdot CO \cdot O \cdot C_4H_3(O \cdot CH_3) \cdot CH \cdot CH \cdot CO \cdot CH_3$. Beim Kochen von 2-Oxy-3-methoxy-benzylidenaceton-hydrat mit Acetanhydrid (McGookin, Sinclair, Soc. 1926, 1580). Nadeln (aus Alkohol). F: 91°. Löslich in Benzol und heißem Wasser.
- 2. 1 [2.4 Dioxy phenyl] buten-(1)-on-(3), 2.4 Dioxy benzylidenaceton, $Methyl-[2.4 dioxy styryl] keton <math>C_{10}H_{10}O_3 = (HO)_2C_4H_3 \cdot CH \cdot CO \cdot CH_3$.
- 2 Oxy 4 methoxy benzylidenaceton, Methyl [2 oxy-4 methoxy styryl] keton C₁₁H₁₂O₃, s. nebenstehende Formel.

 B. Bei längerer Einw. von Aceton auf 4-Methoxy-salicylaldehyd CH₃·O·CH:CH·CO·CH₃ in verd. Natronlauge (Heilbron, Whitworth, Soc. 123, 244; McGookin, Sinclair, Soc. 1226, 1580). Hellgelbe Krystalle (aus Benzol oder aus Chloroform + Hexan). F: 131° (H., Wh.; McG., S.). Leicht löslich in Alkohol, Aceton und Chloroform, schwer in Benzol, fast unlöslich in Petroläther (H., Wh.). Leicht löslich in Alkalilauge mit gelber Farbe, die beim Aufbewahren nach Rot umschlägt (McG., S.). Oxydiert sich an der Luft unter Grünfärbung (H., Wh.). Liefert beim Kochen mit Acetessigester in wäßrig-alkoholischer Natronlauge 7-Methoxy-2-methyl-4-acetonyl-1.4-chromen (Syst. Nr. 2511) (Forster, Heilbron, Soc. 125, 346). Liefert bei der Einw. von 4-Dimethylamino-benzaldehyd in wäßrig-alkoholischer Natronlauge 4'-Dimethylamino-2-oxy-4-methoxy-dibenzylidenaceton (H., Wh.).
- 3. 1-[2.5-Dioxy-phenyl]-buten-(1)-on-(3), 2.5-Dioxy-benzylidenaceton, Methyl-[2.5-dioxy-styryl]-keton $C_{10}H_{10}O_3=(HO)_sC_6H_3\cdot CH\cdot CH\cdot CO\cdot CH_3$.
- 2-Oxy-5-methoxy-benzylidenaceton, Methyl-[2-oxy-5-methoxy-styryl]-keton C₁₁H₁₂O₃, s. nebenstehende Formel. B. Aus 5-Methoxy-salicylaldehyd bei der Einw. von Aceton in wäßrig-alkoholischer Natronlauge (Heilbron, Whitworth, Soc. 123, 245). Existiert analog Salicylidenaceton (S. 153) in zwei Formen. a) Gelbe Form. Gelbe Nadeln (aus Benzol). F: 122° (H., Wh.). Leicht löslich in Alkohol, Äther und Aceton, schwer in Benzol. Gibt mit konz. Schwefelsäure eine dunkelrote Färbung. b) Farblose Form. B. Beim Kochen der gelben Form mit angesäuertem Wasser (McGookin, Sinclair. Soc. 1926, 1579). Farblose Nadeln. F: 124° (McG., S.). Löslich in Alkohol und Benzol. Beim Auflösen in Alkalilauge geht die gelbe Form sofort, die farblose Form allmählich unter Rotfärbung der Lösung in 2.2'-Dioxy-5.5'-dimethoxy-dibenzylidenaceton über (McG., S., Soc. 1926, 1578, 1579). Gibt mit Acetessigester in Natriumäthylat-Lösung oder wäßrig-alkoholischer Natronlauge bei Zimmertemperatur 6-Methoxy-2-methyl-4-acetonyl-1.4-chromen (Syst. Nr. 2511) (Forster, Heilbron, Soc. 125, 346). Beim Aufbewahren mit 4-Dimethylamino-benzaldehyd in wäßrig-alkoholischer Natronlauge bei Zimmertemperatur entsteht 4'-Dimethylamino-2-oxy-5-methoxy-dibenzylidenaceton (H., Whitworth, Soc. 128, 245).

- 4. 1 [3.4 Dioxy phenyl] buten-(1)-on-(3), 3.4-Dioxy-benzylidenaceton, Methyl-[3.4-dioxy-styryl]-keton $C_{10}H_{10}O_3 = (HO)_2C_6H_3 \cdot CH : CH \cdot CO \cdot CH_3$.
- a) Gelbe Form. Löslichkeit in Alkohol zwischen 18° (4,4 Gew.-%) und 47° (16,0 Gew.-%): Mc Gookin, Sinclare, Soc. 127, 2544. Wandelt sich beim Schmelzen in die farblose Form um (Mc G., S., Soc. 1926, 1579). Löst sich in Alkalilauge infolge Umwandlung in Divanillylidenaceton mit roter Farbe; versetzt man die Lösung mit konz. Alkalilauge, so erhält man das Natriumsalz der farblosen Form¹) (Mc G., S., Soc. 1926, 1579, 1581); die farblose Form bildet sich auch bei Versuchen zur Kondensation mit Vanillin in wäßrig-alkoholischer Natronlauge (Mc G., Heilbron, Soc. 125, 2104; vgl. Buck, H., Soc. 121, 1100).
- b) Farblose Form. B. Bei 12-stdg. Aufbewahren eines Gemisches aus 50 g Vanillin, 120 cm³ Aceton, 50 cm³ Alkohol und 100 cm³ 20%iger Natronlauge (McG., S., Soc. 1926, 1581). Bildung aus der gelben Form s. o. Nadeln. F: 129° (McG., Heilbron, Scc. 125, 2104; McG., S., Soc. 1926, 1581). Löslichkeit in Alkohol zwischen 18° (4,8 Gew.-%) und 47° (18,6 Gew.-%): McG., S., Soc. 127, 2544. Löslich in Aceton und Benzol (McG., S., Soc. 1926, 1581). Löst sich in Alkali mit gelber Farbe, die beim Aufbewahren allmählich, beim Kochen rasch infolge Umwandlung in Divanillylidenaceton in Rot übergeht (McG., S., Soc. 1926, 1579, 1581). Natriumsalz. Gelbe Nadeln (McG., S., Soc. 1926, 1581).

Vanillylidenaceton polymerisiert sich beim Erhitzen auf 230° im Kohlendioxydstrom zu einem rötlichbraunen, bei 60—80° schmelzenden Harz (Heezog, Kreidl, Z. ang. Ch. 85; 641). Liefert bei der Hydrierung bei Gegenwart von Palladiumkohle in Alkohol 4-Oxy-3-methoxybenzylaceton und geringere Mengen 1-[4-Oxy-3-methoxy-phenyl]-butanol-(3) (Mannich, Meez, Ar. 1927, 25). 4-Oxy-3-methoxy-benzylaceton entsteht auch bei der Reduktion von Vanillylidenaceton mit Natriumamalgam in Wasser (Nomura, Sci. Rep. Töhoku Univ. 14, 143; C. 1925 II, 1745). Kondensiert sich nicht mit Salicylaldehyd (Buck, Heilbern, Scc. 121, 1097).

1745). Kondensiert sich nicht mit Salicylaldehyd (Buck, Heilbron, Soc. 121, 1097).

Das Phenylhydrazon schmilzt bei 127—128° (Mannich, Merz, Ar. 1927, 25).

- 3-0xy-4-methoxy-benzylidenaceton, Isovanillylidenaceton, Methyl-[3-exy-4-methoxy-styryl]-keton $C_{11}H_{12}O_3$, s. nebenstehende Formel. B. Aus Isovanillin und Aceton in 10% iger Natronlauge (Mannich, Merz, Ar. 1927, 17) oder in konz. Salzsäure (Murai, Sci. Rep. Töhoku Univ. 14, 153; C. 1925 II, 1746). Lösungsmittelhaltige citronengelbe Prismen (aus verd. Alkohol). Schmilzt lufttrocken bei 81°, im Vakuum getrocknet bei 92—93° (Ma., Merz). Kp4: 159—160° (Mu.). Verhält sich bei der Hydrierung (Ma., Merz) und bei der Reduktion mit Natriumamalgam (Mu.) analog der vorangehenden Verbindung. Das Phenylhydrazon schmilzt bei 138—139° (Zers.) (Ma., Merz).
- 3.4 Dimethoxy benzylidenaceton, Veratrylidenaceton, Veratralaceton, Methyl [3.4 dimethoxy styryl] keton C₁₂H₁₄O₃ = (CH₃·O)₂C₆H₃·CH:CH·CO·CH₃ (E I 627). Darst. Man versetzt eine Lösung von 10 g Veratrumaldehyd in 45 cm³ Aceton und 30 cm³ Wasser mit 10 cm³ 10% iger Natronlauge und verdünnt nach 15 Min. mit 600 cm³ Wasser (van Duin, R. 45, 350). Durch Methylierung von Vanillylidenaceton mit Dimethylsulfat in 8 % iger Kalilauge (Dickinson, Heilbeon, Irving, Soc. 1927, 1891). Gelbliche Blättchen (aus Petroläther). F: 84—85° (korr.) (van D.). Gibt bei mehrtägigem Aufbewahren mit Aceton und etwas 8 % iger Natronlauge 1-[3.4-Dimethoxy-phenyl]-3-[3.4-dimethoxy-styryl]-cyclohexen-(3)-on-(5) (Di., H., I., Soc. 1926, 1893). Kondensiert sich mit Veratrumaldehyd in alkoholisch-wäßriger Natronlauge zu Diveratrylidenaceton (Di., H., I.). Bei 24-stdg. Erhitzen mit Piperidin auf dem Dampfbad entstehen sehr geringe Mengen dimeres Veratrylidenaceton C₂₄H₂₅O₆ (amorph; F: 209—210°) (Di., H., I., Soc. 1927, 1893). Gibt beim Kochen mit Paraformaldehyd und Piperidinhydrochlorid in wenig Alkohol 5-Piperidino-1-[3.4-dimethoxy-phenyl]-penten-(1)-on-(3) (Mannich, Schütz, Ar. 1927, 692).
- 3-Methoxy-4-äthoxy-benzylidenaceton, Methyl-[3-methoxy-4-äthoxy-styryl]-keton $C_{13}H_{16}O_3=C_2H_5\cdot O\cdot C_6H_3(O\cdot CH_3)\cdot CH\cdot CO\cdot CH_3$. B. Aus Vanillinäthyläther und Aceton in wäßrig-alkoholischer Natronlauge (Dickinson, Heilbron, Irving, Soc. 1927, 1894). Existiert in 2 Formen; man erhält beim Umkrystallisieren des Reaktionsproduktes aus verd. Alkohol gelbe Nadeln, die bei mehrwöchiger Sonnenbestrahlung der Suspension in Wasser oder Xylol in eine farblose Form übergehen. Beide Formen schmelzen bei 106°. In konz. Salzsäure löst sich die gelbe Form mit karminroter, die farblose Form mit gelber Farbe. Gibt beim Erhitzen mit Piperidin auf dem Dampfbad geringe Mengen dimeres 3-Methoxy-4-äthoxy-benzylidenaceton $C_{20}H_{32}O_6$ (amorph; F: 187°).

¹⁾ Vgl. dazu S. 153 Anm.

- 3-Methoxy-4-propyloxy-benzylidenaccton, Methyl-[3-methoxy-4-propyloxy-styryl] keton $C_{14}H_{18}O_3=C_2H_5\cdot CH_2\cdot O\cdot C_4H_2(O\cdot CH_3)\cdot CH\cdot CH\cdot CO\cdot CH_3$. B. Analog der vorangehenden Verbindung (Dickinson, Heilbron, Irving, Soc. 1927, 1895). Gelbe Krystalle (aus Alkohol). F: 92—93°. Geht bei mehrtägiger Einw. von 1%iger Natronlauge in Alkohol + Aceton in 1-[3-Methoxy-4-propyloxy-phenyl]-3-[3-methoxy-4-propyloxy-styryl]-cyclohexen-(3)-on-(5) über.
- 3-Methoxy-4-isopropyloxy-benzylidenaccton, Methyl-[3-methoxy-4-isopropyloxy-styryl]-keton $C_{14}H_{18}O_3 = (CH_3)_2CH \cdot O \cdot CH_3 \cdot CH \cdot CH \cdot CD \cdot CH_3$. B. Analog den vorangehenden Verbindungen (Dickinson, Heilbron, Irving, Soc. 1927, 1895). Gelbe Krystalle (aus verd. Alkohol). F: 51—53°. Verharzt bei der Einw. von verd. Alkali in Alkohol + Aceton.
- 3-Methoxy-4-benzyloxy-benzylidenaceton, Methyl-[3-methoxy-4-benzyloxy-styryl]-keton $C_{18}H_{18}O_3=C_6H_5\cdot CH_2\cdot O\cdot C_6H_3(O\cdot CH_3)\cdot CH\cdot CH\cdot CO\cdot CH_3$. B. Analog den vorangehenden Verbindungen (Dickinson, Heilbron, Irving, Soc. 1927, 1895). Gelbe Nadeln (aus Alkohol). F: 93°. Liefert bei weiterer Umsetzung mit Vanillinbenzyläther in Gegenwart von 1% iger Natronlauge in Alkohol 3.3′-Dimethoxy-4.4′-dibenzyloxy-dibenzylidenaceton; beim Behandeln mit 8% iger Natronlauge in Alkohol + Aceton entsteht eine damit isomere Verbindung $C_{23}H_{20}O_5$ (dunkel orangegelbe Nadeln; F: 174—175°; absorbiert 2 Mol Brom).
- 4-Oxy-3-methoxy-benzylidenaceton-oxim, Vanillylidenaceton-oxim $C_{11}H_{13}O_3N=HO\cdot C_4H_3(O\cdot CH_3)\cdot CH\cdot CH\cdot C(CH_3)\cdot N\cdot OH$. Hydrochlorid. Gelbe Nadeln. F: 128—129° (Mannich, Merz, Ar. 1927, 25).
- 3.4 Dimethoxy benzylidenaceton semicarbazon, Veratrylidenaceton semicarbazon $C_{13}H_{17}O_3N_3 = (CH_3\cdot O)_2C_6H_3\cdot CH\cdot CH\cdot C(CH_3): N\cdot NH\cdot CO\cdot NH_2$. Nadeln (aus Alkohol). F: 205° (Dickinson, Helleron, Irving, Soc. 1927, 1892). Wird beim Aufbewahren am Licht rasch gelb. Geht beim Umkrystallisieren aus 50% iger Essigsäure in gelbe, bei ca. 180° unscharf schmelzende Nadeln über, die beim Aufbewahren in Wasser oder über Kalilauge das ursprüngliche Semicarbazon zurückbilden.
- 3 Methoxy 4 athoxy benzylidenaceton semicarbazon $C_{14}H_{19}O_3N_3 = C_2H_5 \cdot O \cdot C_6H_3(O \cdot CH_3) \cdot CH \cdot C(CH_3) \cdot N \cdot NH \cdot CO \cdot NH_3$. Blaßgelbe Tafeln (aus Alkohol). F: 208—209° (DICKINSON, HEILBRON, IRVING, Soc. 1927, 1894).
- 3 Methoxy 4-isopropyloxy benzylidenaceton semicarbazon $C_{15}H_{21}O_3N_3=(CH_3)_2CH\cdot O\cdot C_6H_3(O\cdot CH_3)\cdot CH:CH\cdot C(CH_3):N\cdot NH\cdot CO\cdot NH_2$. Gelbe Nadeln. F: 203—204° (Dickinson, Heilbron, Irving, Soc. 1927, 1895).
- 3-Methoxy-4-benzyloxy-benzylidenaceton-semicarbazon $C_{19}H_{21}O_2N_3=C_9H_5\cdot CH_2\cdot O\cdot C_9H_2(O\cdot CH_3)\cdot CH\cdot CH\cdot C(CH_3)\cdot N\cdot NH\cdot CO\cdot NH_2$. Gelbes Pulver. F: 200—201° (Dickinson, Heilbron, Irving, Soc. 1927, 1896).
- 5-Brom-4-oxy-3-methoxy-benzylidenaceton, 5-Brom-vanilly idenaceton C₁₁H₁₁O₃Br, s. nebenstehende Formel. B. Aus 5-Brom-vanillin und Aceton in 10% iger Natronlauge (GLASER, HO. CH:CH:CO:CH: TRAMER, J. pr. [2] 116, 344). Gelbliche Krystalle (aus Alkohol). Br. 147—148°. Löslich in Aceton, Äthylacetat, Chloroform, Benzol und Xylol, schwer löslich in Äther. Löslich in Kalilauge mit gelber Farbe, löslich in konz. Schwefelsäure. Natriumsalz. Gelbe Nadeln (aus Alkohol).
- 5 Brom 3 methoxy 4 acetoxy benzylidenaceton $C_{13}H_{13}O_4Br = CH_3 \cdot CO \cdot O \cdot C_6H_2Br(O \cdot CH_3) \cdot CH : CH \cdot CO \cdot CH_3$. Beim Erwärmen von 5-Brom-vanillylidenaceton mit Acetanhydrid und Natriumacetat (Glaser, Tramer, J. pr. [2] 116, 345). Plättchen (aus Alkohol). F: 135° bis 136°. Leicht löslich in Aceton, Chloroform und Benzol, schwerer in Alkohol und in heißem Xylol und Eisessig, sehr schwer in Äther.
- 5. 1-[2-Oxy-phenyl]-butandion-(1.3), Salicoylaceton, $2-Oxy-\omega-acetyl-acetophenon$, 2-Acetoacetyl-phenol $C_{10}H_{10}O_3=HO\cdot C_4H_4\cdot CO\cdot CH_2\cdot CO\cdot CH_3$ bzw. desmotrope Formen. B. Beim Behandeln von 2-Oxy-acetophenon mit Essigester und Natrium, zuletzt bei Siedetemperatur (WITITG, A. 446, 169). Nadeln (aus Benzol). F: 90,5° bis 91,5°. Leicht löslich in Alkohol, Eisessig und Aceton, löslich in Benzol, unlöslich in Schwerbenzin. Liefert bei der Einw. von kalter konzentrierter Schwefelsäure oder beim Kochen mit Eisessig und etwas Mineralsäure 2-Methyl-ohromon. Bei kurzem Kochen mit 2 Tln. Acetanhydrid und 1 Tl. Natriumacetat erhält man 2-Methyl-3-acetyl-chromon und wenig 2-Methyl-chromon.
- 2-Äthoxy-benzoylaceton, 2-Äthoxy- ω -acetyi-acetophenon $C_{12}H_{14}O_3=C_2H_5\cdot O\cdot C_4H_4\cdot CO\cdot CH_3\cdot CO\cdot CH_3\cdot (H 292; E I 627). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: Tasaki, Acta phytoch. 3, 297, 298; C. 1927 II, 1949.$

- 5 Chior 2 exy benzoylaceton, 4 Chior 2 acetoacetyl phenei C₁₀H₂O₃Cl, s. nebenstehende Formel. B. Beim Behandeln von 5-Chlor-2-oxy-acetophenon mit Essigester und Natrium (Wittig, B. 57, 94). Blaßgelbe Blättchen (aus verd. Alkohol). F: 110—111°. Leicht löslich in Alkohol, Eisessig und Aceton, löslich in Benzol, schwer löslich in Benzin. Gibt mit Eisenchlorid in Aceton eine violette Färbung. Liefert bei längerem Aufbewahren in wäßrig-alkoholischer Alkalilauge 5-Chlor-salicylsäure. Beim Kochen mit Essigsäure und verd. Sohwefelsäure oder beim Behandeln mit konz. Schwefelsäure entsteht 6-Chlor-2-methylchromon (W., B. 57, 89, 94).
- 5-Chlor-2-methoxy-benzoylaceton, 4-Chlor-2-acetoacetyl-anisol $C_{11}H_{11}O_3Cl=CH_3\cdot O\cdot C_4H_3Cl\cdot CO\cdot CH_3\cdot CO\cdot CH_3$. B. Beim Behandeln von 5-Chlor-2-methoxy-acetophenon mit Essigester und Natrium (WITTIG, B. 57, 93). Blaßgelbe Prismen (aus verd. Methanol). F: 76,5° bis 77,5°. Leicht löslich in Benzol, Eisessig und Aceton, löslich in Alkohol, schwer löslich in Petroläther. Liefert beim Kochen mit konz. Jodwasserstoffsäure 6-Chlor-2-methyl-chromon, beim Kochen mit Bromwasserstoffsäure (D: 1,7) in Eisessig 5-Chlor-2-oxy-acetophenon und wenig 6-Chlor-2-methyl-chromon.
- 6. 1 [3 Oxy phenyl] butandion (1.3), 3 Oxy benzoylaceton $C_{10}H_{10}O_3 = HO \cdot C_6H_4 \cdot CO \cdot CH_2 \cdot CO \cdot CH_3$.
- 3-Methoxy-benzoylaceton, 3-Methoxy- ω -acetyl-acetophenon $C_{11}H_{12}O_3=CH_3\cdot O\cdot C_4H_4\cdot CO\cdot CH_3\cdot CO\cdot CH_3\cdot (H\ 292)$. Kp: 280—283° (Tasaki, Acta phytoch. 3, 297, 298; C. 1927 II, 1949). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: T.
- 7. 1-[4-Oxy-phenyl]-butandion-(1.3), 4-Oxy-benzoylaceton $C_{10}H_{10}O_3=HO\cdot C_6H_4\cdot CO\cdot CH_2\cdot CO\cdot CH_3$.
- 4-Methoxy-benzoylaceton, Anisoylaceton, 4-Methoxy- ω -acetyl-acetophenon $C_{11}H_{12}O_3=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot CH_3\cdot CO\cdot CH_3$ (H 292). B. Beim Behandeln von 4-Acetyl-anisol mit Essigester und Natriumamid in trockenem Äther (Chapman, Perkin, Robinson, Soc. 1927, 3033). —Blättchen (aus Alkohol), Krystalle (aus Methanol). F: 57° (Ch., P., R.), 52—54° (Tasaki, Acta phytoch. 3, 297, 298; C. 1927 II, 1949). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: T.
- 8. 1-Phenyl-butanol-(2)-dion-(1.3), α -Oxy- α -benzoyl-aceton $C_{10}H_{10}O_3=C_6H_5\cdot CO\cdot CH(OH)\cdot CO\cdot CH_3$.

Dithio-bis-benzoylaceton $C_{20}H_{18}O_4S_2 = \begin{bmatrix} C_0H_5 \cdot CO \\ CH_3 \cdot CO \end{bmatrix}$ CH $\Big]_2S_2$ (H 292). Ist isomorph mit der analogen Diselenverbindung (E II 7, 620) (MORGAN, DREW, BARKER, Soc. 121, 2458).

 $\begin{array}{lll} \textbf{Cyanselen-benzoylaceton} & C_{11}H_9O_2NSe = C_6H_5\cdot CO\cdot CH(Se\cdot CN)\cdot CO\cdot CH_3 & \textbf{bzw.} & C_6H_5\cdot CO.\\ C(Se\cdot CN): C(CH_3)\cdot OH. & Eine & Verbindung , & der & vielleicht & diese & Konstitution & zukommt, & s. & EII 7, 620. \\ \end{array}$

,,Selen - 0.C - bis - benzoylaceton" $C_{20}H_{18}O_4Se = C_6H_5 \cdot CO \cdot CH(CO \cdot CH_3) \cdot Se \cdot O \cdot C(CH_3) \cdot CH \cdot CO \cdot C_6H_5$. Eine Verbindung, der vielleicht diese Konstitution zukommt, s. E II 7, 1619.

Diselen - bis - benzoylaceton $C_{20}H_{18}O_4Se_2 = \frac{C_6H_6 \cdot CO}{CH_3 \cdot CO}$ CH · So : Se · CH $\stackrel{CO}{\leftarrow}$ CeH₅ bzw. $\stackrel{C_6H_6 \cdot CO}{\leftarrow}$ CO · CeH₃ bzw. $\stackrel{C_6H_5 \cdot CO}{\leftarrow}$ CO · Se : Se · CH $\stackrel{CO}{\leftarrow}$ CH₃ · CO · CeH₃ bzw. Eine Verbindung, der vielleicht diese Konstitution zukommt, s. E II 7, 620.

9. 1-Phenyl - butanol-(4)-dion-(1.3), α' - Oxy - α - benzoyl - aceton $C_{10}H_{10}O_3=C_6H_5\cdot CO\cdot CH_2\cdot CO\cdot CH_2\cdot OH$.

Bis-[α' -benzoyl-acetonyl]-tellurdichlorid (?) bzw. $\beta\beta'$ - Dioxy- $\gamma\cdot\gamma'$ - dibenzoyl- diallyltellurdichlorid (?), Tellur-bis-benzoylacetondichlorid $C_{20}H_{18}O_4Cl_2Te = [C_6H_5\cdot CO\cdot CH_2\cdot CO\cdot CH_2]_2TeCl_2$ (?) bzw. $[C_6H_5\cdot CO\cdot CH:C(OH)\cdot CH_2]_2TeCl_2$ (?). B. Beim Kochen von Tellurtetrachlorid mit 2 Mol Benzoylaceton in alkoholfreiem gereinigtem Chloroform (Morgan, Drew, Soc. 121, 930). — Gelbliche Nadeln (aus Essigester). F: 148° (Zers.). Unlöslich in Wasser und Petroläther, schwer löslich in kaltem Benzol, Chloroform und Essigester, leichter in Aceton. Gibt mit wäßrig-alkoholischer Eisenchlorid-Lösung sofort eine rote Färbung.

10. 2 - Methyl - 1 - [3.4 - dioxy - phenyl] - propen - (1) - al - (3), 3.4 - Dioxy-a-methyl-zimtaldehyd $C_{10}H_{10}O_3=(HO)_2C_0H_3\cdot CH:C(CH_3)\cdot CHO$.

6-Nitro - 3.4-dimethoxy- α-methyl - zimtaldehyd C₁₂H₁₃O₅N, CH₃·O
s. nebenstehende Formel. B. Beim Kochen von α-Methylβ-[6-nitro-3.4-dimethoxy-phenyl]-hydracrylaldehyd mit Acetanhydrid (Willimott, Simpson, Soc. 1926, 2810). — Gelbe-Nadeln
(aus Benzol). F: 165—166°. — Liefert beim Kochen mit
Zinn(II)-chlorid und konz. Salzsäure 6.7-Dimethoxy-3-methyl-chinolin.

11. 1-[6-Oxy-3-methyl-phenyl]-propandion-(1.2), Methyl-[6-oxy-3-methyl-phenyl]-diketon, 2-Pyruvyl-p-kresol $C_{10}H_{10}O_{3}$, Formel I.

Disemicarbazon C₁₂H₁₆O₃N₆ = CH₂· C₆H₃(OH) · C(:N·NH·CO·NH₂)· C(:N·NH·CO·NH₂)· CH₂ (E I 629). B. Bei längerem Erwärmen von 2-Rhodan-2.5-dimethyl-cumaranon (Syst. Nr. 2510) mit überschüssigem Semicarbazid in konzentrierter wäßrig-alkoholischer Lösung auf 40—50° (v. Auwers, Lorenz, B. 59, 2633). — F: 225—226°.

12. $1 - [2 - Oxy - 4 - methyl - phenyl] - propandion - (1.2), Methyl - [2 - oxy-4-methyl-phenyl]-diketon, 6-Pyruvyl-m-kresol <math>C_{10}H_{10}O_3$, Formel II.

Disemicarbazon $C_{12}H_{16}O_3N_6=CH_3\cdot C_6H_3(OH)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)$ CH₃. B. Bei mehrtägigem Erwärmen von 2.6-Dimethyl-cumaranon (Syst. Nr. 2385) mit Semicarbazidhydrochlorid und Natriumacetat in verd. Alkohol auf 40—50° (v. Auwers, A. 439, 169). — Krystalle (aus Eisessig). Enthält 1 Mol Wasser, das auch bei 150° nicht entweicht. F: 245°. Mäßig löslich in Alkohol und Eisessig.

- $13. \quad \textbf{4.5 Dioxy 3 oxo 1 methyl hydrinden}, \quad \textbf{4.5 Dioxy 1 methyl indanon-(3)}, \quad \textbf{6.7 Dioxy 3 methyl hydrindon-(1)} \\ \text{ $C_{10}H_{10}O_3 = (HO)_2C_6H_2$} \text{ CH_2} \text{ CH_2} \text{ CH_2}.$
- 4-Brom-6.7-dimethoxy-3-methyl-hydrindon-(1) $C_{12}H_{13}O_3$ Br, Formel III. B. Beim Behandeln von β -[6-Brom-3.4-dimethoxy-phenyl]-buttersäure mit konz. Schwefelsäure bei 75° (Koepfli, Perkin, Soc. 1928, 2997). Citronengelbe Prismen (aus verd. Methanol). F: 82—83°. Beim Behandeln mit Methylnitrit und konz. Salzsäure in Methanol bei 35° erhält man 4-Brom-6.7-dimethoxy-2-oximino-3-methyl-hydrindon-(1) und geringere Mengen einer bei 155—156° schmelzenden Verbindung.

Oxim $C_{12}H_{14}O_3NBr = (CH_3 \cdot O)_2C_6HBr < CH(CH_3) > CH_2$. Prismen (aus Methanol). **F**: 187° bis 188° (KOEPFLI, PERKIN, Soc. 1928, 2997).

$$1V. \xrightarrow{R \cdot O} \xrightarrow{CO} \xrightarrow{CH_2} CH_2 \qquad V. \xrightarrow{O \cdot CH_3} VI. \xrightarrow{O \cdot CH_3} O \cdot CH_2$$

- 14. 5.6 Dioxy 3 oxo 1 methyl hydrinden, 5.6 Dioxy 1 methyl-indanon-(3), 5.6 Dioxy 3 methyl-hydrindon-(1) $\rm C_{10}H_{10}O_3$, Formel IV (R = H).
- 5.6-Dimethoxy-3-methyl-hydrindon-(1) $C_{12}H_{14}O_3$, Formel IV (R = CH₃). B. Beim Behandeln von β -[3.4-Dimethoxy-phenyl]-buttersäure mit konz. Schwefelsäure bei 60—73° (Korpfli, Perkin, Soc. 1928, 2996). Prismen (aus sehr verd. Methanol). F: 90—91°. Leicht löslich in organischen Lösungsmitteln außer Petroläther. Gibt bei der Einw. von Methylnitrit und Salzsäure in Alkohol 5.6-Dimethoxy-2-oximino-3-methyl-hydrindon-(1).

4. Oxy-oxo-Verbindungen $C_{11}H_{12}O_{3}$.

1. 1-[2.3-Dioxy-phenyl]-penten-(1)-on-(3), Äthyl-[2.3-dioxy-styryl]-heton $C_{11}H_{12}O_8=(HO)_1C_4H_3\cdot CH\cdot CO\cdot C_2H_3$.

Äthyl-[2-oxy-3-methoxy-styryl]-keton, [2-Oxy-3-methoxy-benzyliden]-methyläthylketon C₁₂H₁₄O₃, Formel V. B. Aus 2-Oxy-3-methoxy-benzaldehyd und Methyläthylketon in wäßr. Kalilauge (Mc Gookin, Sinclam, Soc. 1928, 1174). — Gelbliche, wasserhaltige Nadeln (aus der Reaktionslösung), F: 77—79°, oder farblose wasserfreie Nadeln (aus Benzol + Hexan), F: 86,5°. Die farblose Form löst sich in Alkalilauge mit orangeroter Farbe.

2. [2.4-Dioxy-phenyl]-penten-(1)-on-(3), Äthyl-[2.4-dioxy-styryl]-keton $C_{11}H_{12}O_3=(HO)_sC_6H_3\cdot CH\cdot CO\cdot C_2H_5$.

Äthyl-[2-oxy-4-methoxy-styryl]-keton, [2-Oxy-4-methoxy-benzyliden]-methyläthylketon C₁₂H₁₄O₂, Formel VI. B. Aus 2-Oxy-4-methoxy-benzaldehyd und Methyläthylketon in wäßrigalkoholischer Natronlauge (McGookin, Sinclair, Soc. 1928, 1174). — Gelbe Krystalle, F: 123°,

färbt sich rasch grün. Geht beim Umkrystallisieren aus Alkohol in farblose Nadeln vom gleichen Schmelzpunkt über. Die farblose Form löst sich in Alkalilauge mit gelber Farbe, die nach 5 Tagen in Orange übergeht.

[3.4-Dioxy-phenyl]-penten-(1)-on-(3), Athyl-[3.4-dioxy-styryl]-keton

 $C_{11}H_{12}O_3 = (HO)_2C_6H_3 \cdot CH \cdot CH \cdot CO \cdot C_2H_5.$

CH:CH-CO-C2H5 Äthyl-[4-oxy-3-methoxy-styryl]-keton, Vanillyliden-methyläthylketon C₁₂H₁₄O₃, s. nebenstehende Formel (E I 629). Existiert in einer gelben und einer farblosen Form (McGookin, Sinclair, Soc. 127, 2540, 2543); das im Ergw. I beschriebene Präparat von Pearson (C. 1919 III, 936) ist die farblose Form gewesen.

O·CH₃

- a) Gelbe Form. B. Bei kurzem Erwärmen von Vanillin mit Methyläthylketon und 10%iger Natronlauge auf dem Wasserbad und anschließendem 3-tägigen Aufbewahren (McGookin, Sinclair, Soc. 127, 2543; vgl. Ichikawa, Sci. Rep. Töhoku Univ. 14, 128; C. 1925 II, 1744). — Gelbe Nadeln (aus Benzol + Hexan). F: 93° (McG., S.). Leicht löslich in Alkohol, Benzol. Aceton und Chloroform, schwer in Hexan und Wasser (McG., S.). Löst sich in Alkalilauge mit gelber Farbe, die bei längerem Aufbewahren in Rot übergeht (McG., S.). Färbt sich beim Kochen mit konz. Salzsäure rasch karminrot (McG., S., Soc. 127, 2541). Geht beim Umkrystallisieren aus nichtwäßrigen Lösungsmitteln in Gegenwart einer Spur Säure in die farblose Form über (McG., S., Soc. 127, 2543).
- b) Farblose Form. B. s. o. Scheidet sich aus wasserhaltigen Lösungsmitteln in gelben Krystallen mit 1 H₂O, aus wasserfreien Lösungsmitteln in lösungsmittelfreien farblosen Nadeln aus. Schmilzt wasserfrei bei 93°, wasserhaltig bei 79-82° (McGookin, Sinclair, Soc. 127, 2543). Färbt sich beim Kochen mit konz. Salzsäure allmählich karmesinrot.

Äthyl-[4-oxy-3-methoxy-styryl]-keton liefert bei der Hydrierung in Gegenwart von Platinschwarz in Äther (Ichikawa, Sci. Rep. Tohoku Univ. 14, 128; C. 1925 II, 1744) oder bei der Reduktion mit Natriumamalgam in Wasser (NOMURA, HOTTA, Sci. Rep. Tohoku Univ. 14, 133; C. 1925 II, 1744) Äthyl-[4-oxy-3-methoxy- β -phenäthyl]-keton.

4. $1 - [2 - Oxy - phenyl] - pentandion - (1.2), Propyl-[2-oxy-phenyl]-diketon <math>C_{11}H_{12}O_3 = HO \cdot C_6H_4 \cdot CO \cdot CO \cdot CH_2 \cdot C_2H_5$.

- $\textbf{Disemicarbazon} \quad C_{13}H_{18}O_3N_6 = HO \cdot C_0H_4 \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_2 \cdot$ C_2H_5 . B. Bei der Einw. von Semicarbazidacetat auf 2-Propyl-cumaranon (v. Auwers, B. 61, 413). — Enthält 1 H₂O. F: 210—211°. Leicht löslich in heißem Methanol, schwer in anderen Lösungsmitteln.
- 5. 1 Phenyl pentanol (3) dion (2.4), α Oxy α phenacetyl aceton, $ms - Oxy - \omega - phenyl - acetylaceton <math>C_{11}H_{12}O_3 = C_0H_5 \cdot CH_2 \cdot CO \cdot CH(OH) \cdot CO \cdot CH_3$ bzw. desmotrope Formen.
- ms-Cyanselen- ω -phenyl-acetylaceton $C_{19}H_{11}O_2NSe=C_6H_5\cdot CH_2\cdot CO\cdot CH(Se\cdot CN)\cdot CO\cdot CH_2$ bzw. $C_6H_5\cdot CH_2\cdot CO\cdot C(Se\cdot CN):C(OH)\cdot CH_3$. Eine Verbindung, der vielleicht diese Konstitution zukommt, s. E II 7, 626.
- Diselen bis ω phenyl acetylaceton C₂₂H₂₂O₄Se₂ = C₆H₅· CH₂· CO·CH(CO·CH₂)· Se: Se· CH(CO·CH₃)·CO·CH₂·C₆H₅ bzw. desmotrope Form. Eine Verbindung, der vielleicht diese Konstitution zukommt, s. E II 7, 626.
- 6. 1 [2 Oxy phenyl] pentandion-(1.3), 2-Oxy- ω -propionyl-acetophenon $C_{11}H_{12}O_{3}=HO\cdot C_{6}H_{4}\cdot CO\cdot CH_{2}\cdot CO\cdot C_{2}H_{5}.$
- 2 Äthoxy ω propionyl acetophenon $C_{13}H_{16}O_3=C_2H_5\cdot O\cdot C_6H_4\cdot CO\cdot CH_2\cdot CO\cdot C_2H_5$ (E I 629). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: Tasaki, Acta phytoch. 3, 301; C. 1927 II, 1949.
- 7. 2 Methyl 1 phenyl butanol (2) dion (1.3), Methyl-acetyl-benzoyl-carbinol $C_{11}H_{12}O_3=C_6H_5\cdot CO\cdot C(CH_3)(OH)\cdot CO\cdot CH_3$.
- 2 Methyl 1 phenyl-butanol (2)-dion (1.3)-oxim (3), 3-Isonitreso-2-benzoyl-butanol (2) $C_{11}H_{18}O_3N = C_6H_5 \cdot CO \cdot C(CH_5)(OH) \cdot C(:N \cdot OH) \cdot CH_2$. B. Aus 4-Oxy-5-anilino-3.4-dimethyl-butanol (2) 5-phenyl-42-isoxazolin beim Kochen mit 2n-Schwefelsäure (WITTIG, KLEINER, CONRAD, A. 469, 12). — Blättchen (aus Benzol). F: 145°.
- 8. 2 Oxy 1 methyl 3 acetoacetyl benzol, 2 Oxy-3-methyl-benzoylaceton, 2-Methyl-6-acetoacetyl-phenol, 6-Acetoacetyl-o-kresol C₁₁H₁₂O₂, s. nebenstehende Formel bzw. desmotrope Formen. B. Beim Behandeln von 2-Oxy-3-methyl-aceto-CH2 OH CO . CH2 . CO . CH3 phenon mit Essigester und Natrium, zuletzt bei Siedetemperatur (Wittig, B. 58, 21; A. 446, 170). — Nadeln (aus verd. Methanol). F: 85—86°. Leicht löslich in Alkohol, Eisessig und Aceton, schwer in Benzol, unlöslich in Benzin. — Liefert bei der Einw.

- von konz. Schwefelsäure oder beim Aufkochen mit Eisessig und etwas Mineralsäure 2.8-Dimethyl-chromon (W., A. 446, 171). Bei kurzem Kochen mit Acetanhydrid und Natriumacetat entsteht 2.8-Dimethyl-3-acetyl-chromon (W., B. 58, 21). Gibt mit Semicarbazidhydrochlorid und Natriumacetat in Alkohol das Monosemicarbazon des 2-Methyl-6-acetoacetyl-phenols (s. u.) und 3-Methyl-5-[2-oxy-3-methyl-phenyl]-pyrazol (W., B. 58, 23). Beim Kochen mit 25 %igem wäßrigen Ammoniak entsteht eine additionelle Verbindung aus 2-Methyl-6-[β-aminocrotonoyl]-phenol und 2.8-Dimethyl-chromon (Syst. Nr. 2464) (W., B. 58, 22). Gibt mit absolutalkoholischem Ammoniak bei Zimmertemperatur 2-Methyl-6-[β-amino-crotonoyl]-phenol (s. u.) und wenig 2-Methyl-6-[α-amino-β-acetyl-vinyl]-phenol (s. u.) (W., B. 58, 21; vgl. W., Blumenthal, B. 60, 1086, 1092 Anm. 18). Gibt mit überschüssigem Methylamin in Alkohol 2-Methyl-6-[β-methylamino-crotonoyl]-phenol; reagiert analog mit Anilin in siedendem Alkohol (W., Bl., B. 60, 1092). Bei der Einw. von Diäthylamin erhält man 2.8-Dimethyl-chromon (W., B. 58, 20). Liefert beim Erwärmen mit Phenylhydrazin in Alkohol 1-Phenyl-3-methyl-5-[2-oxy-3-methyl-phenyl]-pyrazol (W., Bl., B. 60, 1093).
- 2-Methyl-6- $[\gamma$ -oxo- α -imino-butyl]-phenol bzw. 2-Methyl-6- $[\alpha$ -amino- β -acetyl-vinyl]-phenol $C_{11}H_{13}O_2N=CH_3\cdot C_6H_3(OH)\cdot C(:NH)\cdot CH_2\cdot CO\cdot CH_3$ bzw. $CH_3\cdot C_6H_3(OH)\cdot C(NH_2):CH\cdot CO\cdot CH_3$. Zur Konstitution vgl. Wittig, Blumenthal, B. 60, 1086. B. Neben überwiegenden Mengen 2-Methyl-6- $[\beta$ -amino-crotonoyl]-phenol beim Aufbewahren von 2-Methyl-6-acetoacetyl-phenol mit absolut-alkoholischem Ammoniak (Wittig, B. 58, 22). Nadeln (aus Benzol + Benzin). F: 119—120°. Leicht löslich in Eisessig und Aceton, löslich in Benzol und Alkohol, sehr schwer löslich in Benzin. Löslich in Säuren, sehr schwer löslich in Natronlauge. Gibt mit alkoh. Eisenchlorid-Lösung eine grüngelbe Färbung.
- 2-Methyl-6-[β-imino-butyryl]-phenol bzw. 2-Methyl-6-[β-amino-crotonoyl]-phenol $C_{11}H_{13}O_2N=CH_3\cdot C_0H_3(OH)\cdot CO\cdot CH_2\cdot C(:NH)\cdot CH_3$ bzw. $CH_3\cdot C_0H_3(OH)\cdot CO\cdot CH:C(NH_2)\cdot CH_3$. Zur Konstitution vgl. Wittig, Blumenthal, B. 60, 1086. B. s. im vorangehenden Artikel. Entsteht ferner beim Behandeln von 2.8-Dimethyl-3-acetyl-chromon mit alkoh. Ammoniak (Wittig, B. 58, 19). Citronengelbe Nadeln (aus Benzol + Benzin). F: 100,5—101° (W., B. 58, 21). Leicht löslich in Eisessig und Aceton, löslich in Benzol und Alkohol, schwer löslich in Petroläther und Schwerbenzin. Löslich in Säuren, sehr schwer löslich in Natronlauge. Gibt in alkoh. Lösung mit Spuren von Eisenchlorid eine rote, mit mehr Eisenchlorid eine blaugrüne Färbung. Beim Kochen mit 2n-Natronlauge entsteht 3-Methyl-salicylsäure (W., B. 58, 22). Liefert beim Behandeln mit kalter 2n-Salzsäure 2.8-Dimethyl-chromon (W., B. 58, 22); dieses entsteht auch beim Kochen mit Acetanhydrid und Natriumacetat (W., B. 58, 23). Reagiert nicht mit Benzoylchlorid und Alkalilauge; in Pyridin-Lösung entsteht ein öliges Produkt, das beim Erwärmen mit Methanol wieder in 2-Methyl-6-[β-amino-crotonoyl]-phenol übergeht (W., B. 58, 23). Liefert mit Semicarbazidhydrochlorid und Natriumacetat in Alkohol das Monosemicarbazon des 2-Methyl-6-acetoacetyl-phenols und 3-Methyl-5-[2-oxy-3-methyl-phenyl]-pyrazol (W., B. 58, 23). Beim Erwärmen mit Phenylhydrazin in Alkohol entsteht 1-Phenyl-3-methyl-5-[2-oxy-3-methyl-phenyl]-pyrazol (W., B. 58, 22).
- 2 Methyl 6 $[\beta$ methylimino butyryl] phenol bzw. 2 Methyl 6 $[\beta$ methylamino crotonoyl]-phenol $C_{12}H_{15}O_2N = CH_3 \cdot C_0H_3(OH) \cdot CO \cdot CH_2 \cdot C(:N \cdot CH_3) \cdot CH_3$ bzw. $CH_3 \cdot C_0H_3(OH) \cdot CO \cdot CH:C(NH \cdot CH_3) \cdot CH_3$. B. Aus 2-Methyl-6-acetoacetyl-phenol und überschüssigem Methylamin in Alkohol (Wittig, Blumenthal, B. 60, 1092). Gelbgrüne Krystalle (aus Methanol). F: 109—110°.
- Dioxim des 2-Methyl-6-acetoacetyl-phenols $C_{11}H_{14}O_3N_2 = CH_3 \cdot C_4H_3(OH) \cdot C(:N \cdot OH) \cdot CH_3 \cdot CH_$
- 2 Methyl 6 $[\beta$ semicarbazono butyryl] phenol, Monosemicarbazon des 2-Methyl-6-acetoacetyl phenols $C_{12}H_{18}O_2N_3=CH_2\cdot C_2H_3(OH)\cdot CO\cdot CH_2\cdot C(CH_3):N\cdot NH\cdot CO\cdot NH_2.$ B. Neben 3-Methyl-5-[2-oxy-3-methyl-phenyl]-pyrazol beim Behandeln von 2-Methyl-6-acetoacetyl-phenol oder 2-Methyl-6- $[\beta$ -amino-crotonoyl]-phenol mit Semicarbazidhydrochlorid + Natriumacetat in verd. Alkohol (Wittig, B. 58, 23). Krystalle. F: 196—197° (Zers.) (W.). Löslich in Kisessig, unlöslich in anderen Lösungsmitteln. Löst sich in 2 n-Natronlauge

332

unverändert mit gelber Farbe. — Liefert beim Kochen mit 2 n-Natronlauge und Ansäuern mit Essigsäure 3-Methyl-5-[2-oxy-3-methyl-phenyl]-pyrazol (W.). Gibt beim Kochen mit Acetan-

hydrid und Natriumacetat das Lacton der 3-Methyl-5-[2-oxy-3-methyl-phenyl]-pyrazol-carbonsäure-(1) (Formel I; Syst. Nr. 4550) und 3-Methyl-5-[2-acetoxy-3-methyl-phenyl]-pyrazol (W., Blumenthal, B. 60, 1092).

- 2-Methyl-6- $[\alpha$ -oximino- γ -semicarbazono-butyl]-phenol, Oxim-semicarbazon des 2-Methyl-6-acetoacetyl-phenols $C_{12}H_{16}O_3N_4=CH_3\cdot C_6H_3(OH)\cdot C(:N\cdot OH)\cdot CH_3\cdot C(CH_3):N\cdot NH\cdot CO\cdot NH_2$. B. Aus dem Monosemicarbazon des 2-Methyl-6-acetoacetyl-phenols beim Behandeln mit salzsaurem Hydroxylamin und 2n-Natronlauge (WITTIG, BLUMENTHAL, B. 60, 1092). Krystalle (aus Alkohol). F: 198°. Gibt mit alkoh. Eisenehlorid-Lösung eine blaue Färbung. Liefert beim Erwärmen mit konz. Salzsäure auf dem Wasserbad 5-Methyl-3-[2-oxy-3-methyl-phenyl]-isoxazol.
- 9. 4-Oxy-1-methyl-3-acetoacetyl-benzol, 6-Oxy-3-methyl-benzoylaceton, 4-Methyl-2-acetoacetyl-phenol, 2-Acetoacetyl-p-kresol C₁₁H₁₁O₃, Formel II bzw. desmotrope Formen. B. Bei 4-stdg. Kochen von 6-Oxy-3-methyl-acetophenon mit Essigester und Natrium (WITTIG, B. 57, 94; 58, 21). — Krystalle (aus Schwerbenzin). F: 94,5—96° (W., B. 57, 94). Leicht löglich in Alkohol, Eisessig und Aceton, löglich in Schwerbenzin und Benzol, schwer in Petroläther. — Beim Sättigen der Lösung in absol. Äther mit Chlorwasserstoff (W., A. 446, 202) oder beim Kochen mit Eisessig unter Zusatz von etwas Salzsäure (W., B. 57, 92, 95) entsteht das Hydrochlorid des 2.6-Dimethyl-chromons. Gibt bei der Einw. von alkoh. Ammoniak bei Zimmertemperatur 4-Methyl-2-[β-amino-crotonoyl]-phenol und geringere Mengen 4-Methyl-2- $[\alpha$ -amino- β -acetyl-vinyl]-phenol (WITTIG, BLUMENTHAL, B. 60, 1089). Umsetzung mit Hydroxylaminhydrochlorid und kalter 2 n-Natronlauge und nachfolgendes Ansauern mit Essigsäure ergibt das Hydrat des Dioxims (S. 333) (W., BANGERT, B. 58, 2640). Gibt bei kurzem Kochen mit Acetanhydrid und Natriumacetat 2.6-Dimethyl-3-acetyl-chromon (W., A. 446, 172), mit Propionsäureanhydrid und Natriumpropionat 2.6-Dimethyl-chromon und 2.6-Dimethyl-3-propionyl-chromon (W., A. 446, 203). Gibt in wäßrig-alkoholischer Lösung mit Semicarbazidhydrochlorid allein 3-Methyl-5-[6-oxy-3-methyl-phenyl]-pyrazol-carbonsaure-(1)amid; in Gegenwart von Natriumacetat bildet sich ein nicht rein erhaltenes, bei 190-2200 schmelzendes Monosemicarbazon, das beim Kochen mit 2 n-Natronlauge ebenfalls in das Pyrazolderivat übergeht (WITTIG, BLUMENTHAL, B. 60, 1091). Wird durch Diäthylamin in 2.6-Dimethyl-chromon umgewandelt (W., Bl., B. 60, 1088). Liefert mit Anilin in siedendem Alkohol 4-Methyl-2- $[\beta$ -anilino-crotonoyl]-phenol (Syst. Nr. 1604) (W., Bl., B. 60, 1089). Setzt sich mit Phenylhydrazin in siedendem Alkohol zu 1-Phenyl-3-methyl-5-[6-oxy-3-methyl-phenyl]pyrazol um (W., Bl., B. 60, 1092).
- 6-Methoxy-3-methyl-benzoylaceton, 4-Methyl-2-acetoacetyl-anisol $C_{12}H_{14}O_3=CH_3\cdot C_0H_3(O\cdot CH_3)\cdot CO\cdot CH_2\cdot CO\cdot CH_3$. Beim Behandeln von 6-Methoxy-3-methyl-acetophenon mit Essigsäureäthylester und Natrium (v. Auwers, A. 421, 40). Gelbes Öl. Kp₁₅: 182—183°; $D_4^{17.6}$: 1,1196; $n_0^{\gamma,6}$: 1,5758; $n_D^{\gamma,6}$: 1,5856; $n_D^{\gamma,6}$: 1,6156 (v. Au.). Liefert beim Kochen mit starker Jodwasserstoffsäure 2.6-Dimethyl-chromon (v. Au.). Beim Sättigen der alkoh. Lösung mit Ammoniak erhält man 4-Methyl-2-[β -amino-crotonoyl]-anisol (WITTIG, BLUMENTHAL, B. 60, 1090).
- 4-Methyl-2-[γ -oxo- α -imino-butyl]-phenol bzw. 4-Methyl-2-[α -amino- β -acetyl-vinyl]-phenol $C_{11}H_{13}O_2N=CH_3\cdot C_4H_3(OH)\cdot C(:NH)\cdot CH_2\cdot CO\cdot CH_3$ bzw. $CH_3\cdot C_6H_3(OH)\cdot C(NH_2):CH\cdot CO\cdot CH_3$. B. Neben überwiegenden Mengen 4-Methyl-2-[β -amino-crotonoyl]-phenol beim Sättigen einer alkoh. Lösung von 4-Methyl-2-acetoacetyl-phenol mit Ammoniak (Wittig, Blumenthal, B. 60, 1089). Nadeln (aus Methanol). F: 131,5—132° (Zers.). Löst sich in 2n-Natronlauge mit gelber Farbe, in 2n-Säuren farblos. Gibt mit alkoh. Eisenchlorid-Lösung eine schwache grüngelbe Färbung. Beim Aufbewahren in saurer Lösung entstehen in Säuren und Alkalien unlösliche Produkte (W., B., B. 60, 1086). Gibt bei 12-stdg. Aufbewahren mit Semicarbazidhydrochlorid und Natriumacetat in verd. Alkohol ein nicht rein erhaltenes, bei 155—163° schmelzendes Semicarbazon, das beim Verreiben mit konz. Schwefelsäure in 3-Methyl-5-[6-oxy-3-methyl-phenyl]-pyrazol-carbonsäure-(1)-amid übergeht (W., B., B. 60, 1091).
- 4-Methyl-2-[β-imino-butyryl]-phenol bzw. 4-Methyl-2-[β-amino-crotonoyl]-phenol $C_{11}H_{13}O_2N=CH_3\cdot C_0H_3(OH)\cdot CO\cdot CH_3\cdot C(:NH)\cdot CH_3$ bzw. $CH_3\cdot C_0H_3(OH)\cdot CO\cdot CH:C(NH_2)\cdot CH_3$. B. s. im vorangehenden Artikel. Entsteht ferner in guter Ausbeute beim Sättigen alkoh. Lösungen von 2.6-Dimethyl-chromon oder 2.6-Dimethyl-3-acetyl-chromon mit Ammoniak (Wittig, Blumenthal, B. 60, 1089). Gelbgrün fluorescierende, benzolhaltige Nadeln (aus Benzol + Petroläther); wird an der Luft benzolfrei. Schmilzt benzolhaltig bei 82—87°, benzolfrei bei 101—102°. Löst sich in 2 n-Natronlauge mit gelber Farbe, in 2 n-Säuren farblos.

Gibt mit Eisenchlorid in Alkohol eine grünschwarze Färbung. — Bei mehrstündiger Einw. von 2n-Säuren erhält man 2.6-Dimethyl-chromon (W., B., B. 60, 1089). Beim Schütteln mit Benzoyl-chlorid und Natronlauge entsteht das Benzoat des 4-Methyl-2-[β-amino-crotonoyl]-phenols (Syst. Nr. 905) (W., B., B. 60, 1090). Liefert mit Semicarbazidhydrochlorid und Natriumacetat in verd. Alkohol das Monosemicarbazon des 4-Methyl-2-acetoacetyl-phenols (S. 332 Z. 33 v. o.) (W., B., B. 60, 1091). Liefert beim Erwärmen mit Phenylhydrazin in Alkohol auf dem Wasserbad 1-Phenyl-3-methyl-5-[6-oxy-3-methyl-phenyl]-pyrazol (W., B., B. 60, 1092).

4-Methyl-2-[β-imino-butyryl]-anisol bzw. 4-Methyl-2-[β-amino-crotonoyl]-anisol C₁₃H₁₅O₂N = CH₃· C₆H₃(O·CH₃)· CO·CH₂· C(:NH)· CH₃ bzw. CH₃· C₆H₃(O·CH₃)· CO·CH: C(NH₂)· CH₃. B. Beim Schütteln von 4-Methyl-2-[β-amino-crotonoyl]-phenol mit Dimethyl-sulfat und 2n-Natronlauge (Wittig, Blumenthal, B. 60, 1090). Beim Sättigen der alkoh. Lösung von 4-Methyl-2-acetoacetyl-anisol mit Ammoniak (W., B., B. 60, 1090). — Krystalle (aus Benzol + Benzin). F: 79,5—80°. — Liefert beim Kochen mit 2n-Schwefelsäure oder mit starker Essigsäure 4-Methyl-2-acetoacetyl-anisol.

Dioxim des 4 - Methyl - 2 - acetoacetyl - phenois $C_{11}H_{14}O_3N_2 = CH_3 \cdot C_6H_3(OH) \cdot C(: N \cdot OH) \cdot CH_3 \cdot C_6 \cdot$

Hydrat des Dioxims, 4-Methyl-2- $[\gamma$ -oxy- α -oximino- γ -hydroxylamino-butyl]-phenol $C_{11}H_{16}O_4N_2=CH_3\cdot C_6H_2(OH)\cdot C(:N\cdot OH)\cdot CH_2\cdot C(NH\cdot OH)(OH)\cdot CH_3$. B. Beim Behandeln von 4-Methyl-2-acetoacetyl-phenol mit Hydroxylaminhydrochlorid in kalter 2n-Natronlauge und Ansäuern des Reaktionsproduktes mit verd. Essigsäure (WITTIG, BANGERT, B. 58, 2640); entsteht auch bei analoger Behandlung von 2.6-Dimethyl-chromon (W., B.). — Nadeln (aus kaltem verdünntem Alkohol). Schmilzt bei 70—73°, erstarrt wieder unter Wasserabgabe und schmilzt erneut bei 122°. Leicht löslich in den gebräuchlichen Lösungsmitteln, schwer in Benzin. Löslich in verd. Salzsäure. Die alkoh. Lösung färbt sich auf Zusatz von Eisenchlorid dunkelblau. — Liefert beim Erwärmen auf dem Wasserbad das Dioxim des 4-Methyl-2-acetoacetyl-phenols. Geht beim Aufbewahren mit 2n-Salzsäure in 2.6-Dimethyl-chromon-oxim über.

10. 3-Oxy-1-methyl-4-acetoacetyl-benzol, 2-Oxy-4-methyl-benzoylaceton, 5-Methyl-2-acetoacetyl-phenol, 6-Acetoacetyl-m-kresol C₁₁H₁₂O₃, Formel I. B. Aus 2-Oxy-4-methyl-acetophenon durch Einw. von Essigester und Natrium, zuletzt bei Siedetemperatur (Wittig, A. 446, 171). — Nadeln (aus Benzol). F: 76—77°. Leicht löslich in Alkohol, Eisessig und Aceton, löslich in Benzol, unlöslich in Benzin. — Liefert beim Lösen in konz. Schwefelsäure oder beim Aufkochen in Eisessig unter Zusatz von etwas Mineralsäure 2.7-Dimethyl-chromon. Beim Kochen mit Acetanhydrid und Natriumacetat entsteht 2.7-Dimethyl-3-acetyl-chromon.

$$I. \quad \bigodot_{\text{CO} \cdot \text{CH}_{3} \cdot \text{CO} \cdot \text{CH}_{3}}^{\text{CH}_{3}} \qquad III. \quad \circlearrowleft_{\text{CO} \cdot \text{CH}_{2} \cdot \text{CO} \cdot \text{CH}_{3}}^{\text{CH}_{3}} \qquad III. \quad \circlearrowleft_{\text{CH}_{3} \cdot \text{CO}}^{\text{CH}_{3}} \cdot \circlearrowleft_{\text{CO} \cdot \text{CH}_{3}}^{\text{CO} \cdot \text{CH}_{3}}$$

5-Chlor-2-oxy-4-methyl-benzoylaceton, 4-Chlor-5-methyl-2-acetoacetyl-phenol, 4-Chlor-6-acetoacetyl-m-kresol $C_{11}H_{11}O_3Cl$, Formel II. B. Beim Behandeln von 6-Chlor-2.7-dimethyl-chromon mit Natriumäthylat-Lösung (Wittig, B. 57, 91). Über Bildung aus 4-Chlor-6-acetyl-m-kresol und Athylacetat vgl. W., B. 57, 94. — Gelbliche Blättchen (aus verd. Alkohol). F: 115,5° bis 116,5°. Leicht löslich in Aceton, Eisessig und Alkohol, löslich in Benzol und Schwerbenzin, schwer löslich in Petroläther. — Liefert beim Kochen mit Eisessig unter Zusatz von etwas Mineralsäure 6-Chlor-2.7-dimethyl-chromon zurück.

11. 4-Oxy-1-methyl-3.5-diacetyl-benzol, 4-Methyl-2.6-diacetyl-phenol, 2.6-Diacetyl-p-kresol C₁₁H₁₂O₃, Formel III (H 294). B. Durch Einw. von 1½ Mol Acetylchlorid auf p-Kresol in Gegenwart von Aluminiumchlorid in Nitrobenzol (ROSENMUND, SCHULZ, Ar. 1927, 317). Beim Erhitzen von 2-Acetyl-p-kresol-acetat mit Aluminiumchlorid auf 100—120° (R., SCHNURB, A. 460, 85). — Prismen (aus Ligroin). F: 82—83° (R., SCHN.; R., SCHULZ). Kp₁₃: 194° (R., SCHN.).

5. Oxy-exe-Verbindungen $C_{19}H_{14}O_{3}$.

1. 1 - [2.3 - Dioxy - phenyl] - hexen - (1) - on - (3), Propyl-[2.3-dioxy-styryl]-keton $C_{12}H_{14}O_3 = (HO)_2C_4H_3 \cdot CH \cdot CO \cdot CH_3 \cdot C_2H_5$.

1-[2-Oxy-3-methoxy-phenyl]-hexen-(1)-on-(3), Propyl-[2-oxy-3-methoxy-styryl]-keton C₁₃H₁₆O₃, Formel I. B. Aus 2-Oxy-3-methoxy-benzaldehyd und Methylpropylketon in wäßrigalkoholischer Natronlauge (McGookin, Sinclair, Soc. 1928, 1174). — Farblose Krystalle (aus Alkohol). F: 82,5°. Löst sich in Alkalilauge mit orangeroter Farbe.

2. $1-[2.4-Dioxy-phenyl]-hexen-(1)-on-(3), \ Propyl-[2.4-dioxy-styryl]-keton \ C_{12}H_{14}O_3=(HO)_2C_0H_3\cdot CH:CH\cdot CO\cdot CH_3\cdot C_2H_8.$

1-[2-0xy-4-methoxy-phenyl]-hexen-(1)-on-(3), Propyl-[2-oxy-4-methoxy-styryl]-keten C₁₃H₁₆O₃, Formel II. B. Analog der vorangehenden Verbindung (McGookin, Sinclair, Scc. 1928, 1174). — Krystallisiert aus der Reaktionslösung in gelben Nadeln, die beim Umlösen aus Alkohol in farblose Krystalle übergehen. Beide Formen schmelzen bei 111—112°. Die farblose Form löst sich in Alkalilauge mit gelber Farbe, die nach 8 Tagen in Orange übergeht.

3. $1-[3.4-Dioxy-phenyl]-hexen-(1)-on-(3), \quad Propyl-[3.4-dioxy-styryl]-heton \quad C_{12}H_{14}O_3=(HO)_2C_0H_3\cdot CH:CH\cdot CO\cdot CH_2\cdot C_2H_5.$

1-[4-0xy-3-methoxy-phenyl]-hexen-(1)-on-(3), Propyl-[4-oxy-3-methoxy-styryl]-keton, Vanillyliden-methylpropylketon $C_{13}H_{16}O_3$, Formel III. Existiert in einer gelben und einer farblosen Form.

- a) Gelbe Form. B. Aus Vanillin und Methylpropylketon bei kurzem Erwärmen mit wäßrig-alkoholischer Natronlauge auf dem Wasserbad und nachfolgendem Aufbewahren, neben der farblosen Form (McGookin, Sinclair, Soc. 127, 2543), bei langem Schütteln mit verd. Natronlauge (NOMURA, HOTTA, Sci. Rep. Tohoku Univ. 14, 136; C. 1925 II, 1744) oder beim Kochen mit wäßrig-alkoholischer Kalilauge (TSURUMI, MURAKOSHI, YAMASAKI, Sci. Rep. Tohoku Univ. 17, 704; C. 1928 II, 1325). — Gelbe Würfel (aus wäßr. Aceton). F: 82—83° (Ts., M., Y.), 83° (McG., S.), 82,5—83,5° (N., H.). Löslich in Alkohol, Benzol und Aceton (McG., S.). — Färbt sich bei längerem Aufbewahren in Alkalilauge oder bei kurzem Kochen mit konz. Salzsäure rot (McG., S.). Geht beim Kochen in Gegenwart von Säurespuren in die farblose Form über (McG., S.). Liefert bei der Reduktion mit Natriumamalgam Propyl-[4-oxy-3-meth-oxy- β -phenäthyl]-keton (N., H.).
- b) Farblose Form. B. s. bei der gelben Form. Farblose Nadeln. F: 83° (McGookin, SINCLAIR, Soc. 127, 2544). — Färbt sich beim Aufbewahren mit Alkalilauge und beim Kochen mit konz. Salzsäure langsamer rot als die gelbe Form (McG., S., Soc. 127, 2541).
- 4. 1-Phenyl-hexanol-(4)-dion-(3.5), α -Oxy- α -[β -phenyl-propionyl]-aceton $C_{12}H_{14}O_3=C_4H_5\cdot CH_2\cdot CO\cdot CH(OH)\cdot CO\cdot CH_3$ bzw. desmotrope Formen.

 α - Cyanselen - α - [β - phenyl - propionyl] - aceton C₁₃H₁₃O₃NSe = C₆H₅·CH₂·CH₂·CO·CH(Se·CN)·CO·CH₃ bzw. C₆H₅·CH₂·CO·C(Se·CN):C(OH)·CH₃. Eine Verbindung, der vielleicht diese Konstitution zukommt, s. E II 7, 629.

,,Diselen-bis- $[\beta$ -phenyl-propionyl]-aceton" $C_{24}H_{26}O_{4}Se_{2}=C_{6}H_{5}\cdot CH_{2}\cdot CH_{2}\cdot CO\cdot CH(CO\cdot CH_{3})\cdot Se: Se\cdot CH(CO\cdot CH_{3})\cdot CO\cdot CH_{2}\cdot CH_{3}\cdot C_{6}H_{5}$ bzw. desmotrope Form. Eine Verbindung, der vielleicht diese Konstitution zukommt, s. E II 7, 629.

5. 3-[4-Oxy-benzyl]-pentandion-(2.4), ms-[4-Oxy-benzyl]-acetylaceton $C_{12}H_{14}O_3=HO\cdot C_4H_4\cdot CH_2\cdot CH(CO\cdot CH_3)_2$.

ms – [α – Chior – 4 – methoxy – benzyl] – acetylaceton, Anisalacetylacetonhydrochlerid B $C_{13}H_{15}O_3CI = CH_3 \cdot O \cdot C_6H_4 \cdot CHCI \cdot CH(CO \cdot CH_3)_2$. B. In geringer Menge beim Einleiten von Chlorwasserstoff in ein Gemisch aus Anisaldehyd und Acetylaceton unter Kühlung mit Eis (Vorländer, Osterburg, Meye, B. 56, 1137, 1144). — Nadeln (aus Petroläther). F: 48—50°. Leicht löslich in Äther, Alkohol, Benzol und Chloroform. — Wird durch Wasser bei Zimmertemperatur kaum angegriffen. Nimmt bei Zimmertemperatur wenig, bei Kühlung mit Kohlendioxyd und Äther mehr Chlorwasserstoff auf.

6. $1 - [6 - Oxy - 3 - methyl - phenyl] - pentandion - (1.2), Propyl - [6 - oxy-3-methyl-phenyl]-diketon <math>C_{12}H_{14}O_3$, Formel IV auf S. 335.

Disemicarbazon C₁₄H₂₀O₂N₆ = CH₃·C₆H₃(OH)·C(:N·NH·CO·NH₂)·C(:N·NH·CO·NH₂)·C(+N·NH·CO· 106, 252). — Enthält 1 Mol H₂O. Zersetzt sich bei schnellem Erhitzen bei 212—213°.

- 7. 3.Oxy-1.5-dimethyl-2-acetoacetyl-benzol, 6-Oxy-2.4-dimethyl-benzoylaceton, 3.5-Dimethyl-2-acetoacetyl-phenol, 2-Acetoacetyl-symm. m-xylenol C₁₃H₁₄O₃, Formel V bzw. desmotrope Formen. B. Beim Behandeln von 3.5-Dimethyl-2-acetyl-phenol mit Essigester und Natrium, zuletzt bei Siedetemperatur; Ausbeute 75—80% (Wirrig, A. 446, 172). Nadeln (aus verd. Alkohol). F: 116—117°. Leicht löslich in Alkohol, Eisessig und Aceton, löslich in Benzol, sehr schwer löslich in Schwerbenzin. Liefert beim Lösen in konz. Schwefelsäure oder beim Kochen mit Eisessig und etwas Mineralsäure 2.5.7-Trimethyl-chromon. Beim Kochen mit Acetanhydrid und Natriumacetat entsteht 2.5.7-Trimethyl-3-acetyl-chromon.
- 6-Methoxy-2.4-dimethyl-benzoylaceton, 3.5-Dimethyl-2-acetoacetyl-anisol $C_{13}H_{16}O_3=CH_3\cdot O\cdot C_6H_3(CH_3)_2\cdot CO\cdot CH_2\cdot CO\cdot CH_3$. B. Beim Kochen von 6-Methoxy-2.4-dimethyl-acetophenon mit Essigester und Natrium (WITTIG, A. 446, 199). Kugelige Aggregate (aus Schwerbenzin). F: 59—60°. Leicht löslich in den gebräuchlichen Lösungsmitteln, schwerer in Benzin.

- 8. 3-Oxy-1.5-dimethyl-2.4-diacetyl-benzol, 3.5-Dimethyl-2.6-diacetyl-phenol, 2.6-Diacetyl-symm. m-xylenol C₁₂H₁₄O₃, Formel VI (E I 630). Darstellung aus symm. m-Xylenol, Acetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff: v. Auwers, Schornstein, Fortsch. Ch. Phys. 18 [1924/26], 76.
- 9. [2.4-Dioxy-benzoyl]-cyclopentan, Cyclopentyl-pentyl-[2.4-dioxy-phenyl]-keton, Cyclopentyl-resorcylketon C₁₂H₁₄O₃, Formel VII. B. Beim Erhitzen von Resorcin mit Cyclopentancarbonsäure in Gegenwart von Zinkchlorid auf 125—135° (Talbot, Adams, Am. Soc. 49, 2041). Kp4: 184—190°. Wird durch amalgamiertes Zink und verd. Salzsäure zu 4-Cyclopentylmethyl-resorcin reduziert.

6. Oxy-oxo-Verbindungen C₁₂H₁₄O₂.

- 1. 1 [3.4 Dioxy phenyl] hepten (1) on (3), Butyl-[3.4 dioxy styryl] keton C₁₃H₁₆O₃ = (HO)₅C₆H₃·CH·CO·[CH₂]₃·CH₃.
- 1-[4-Oxy-3-methoxy-phenyi]-hepten-(1)-on-(3), Butyl-[4-oxy-3-methoxy-styryi]-keton, Vanillyliden-methylbutylketon C₁₄H₁₈O₃, Formel VIII. B. Aus Vanillin und Methylbutylketon bei längerem Schütteln mit Natronlauge (Nomura, Hotta, Sci. Rep. Töhoku Univ. 14, 137; C. 1925 II, 1744) oder beim Kochen mit wäßrig-alkoholischer Kalilauge (N., Tsurum, Sci. Rep. Töhoku Univ. 16, 563; C. 1927 II, 2185). Gelbe Krystalle mit 1 H₂O (aus verd. Methanol) Schmilzt wasserhaltig zwischen 66° und 100° (N., H.; N., Ts.), wasserfrei bei 39—40° (N., Ts.). Liefert bei der Reduktion mit Natriumamalgam Butyl-[4-oxy-3-methoxy-β-phenäthyl]-keton (N., H.).
- 2. 5-Methyl-1-[3.4-dioxy-phenyl]-hexen-(1)-on-(3), Isobutyl-[3.4-dioxy-styryl]-heton $C_{13}H_{16}O_3=(HO)_2C_6H_3\cdot CH\cdot CO\cdot CH_2\cdot CH(CH_3)_2$.
- 5-Methyl-1-[4-oxy-3-methoxy-phenyl]-hexen-(1)-on-(3), Isobutyl-[4-oxy-3-methoxy-styryl]-keton, Vanillyliden-methylisobutylketon $C_{14}H_{18}O_3$, Formel IX. B. Bei längerem Schütteln von Vanillin mit Methylisobutylketon in verd. Natronlauge (NOMURA, HOTTA, Sci.

Rep. Tohoku Univ. 14, 139; C. 1925 II, 1744). — Gelbliche Krystalle (aus verd. Alkohol). F: 78—79°. Kp₂₀: 233—234,5°. — Liefert bei der Reduktion mit Natriumamalgam Isobutyl-[4-oxy-3-methoxy- β -phenäthyl]-keton.

3. 1-[6-Oxy-3-methyl-phenyl]-hexandion-(1.2), Butyl-[6-oxy-3-methyl-phenyl]-diketon $C_{13}H_{14}O_3$, Formel X.

Disemicarbazon $C_{1k}H_{2k}O_3N_6=CH_3\cdot C_6H_3(OH)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot C(H_2)\cdot CH_3$. B. Beim Erwärmen von 5-Methyl-2-butyl-cumaranon mit Semicarbazidhydrochlorid und Natriumacetat in wäßr. Alkohol (v. Auwers, Wegener, J. pr. [2] 106, 252). — Enthält 1 Mol H_2O . F: ca. 213—214° (Zers.) bei mäßig raschem Erhitzen.

4. 4.4 - Dimethyl - 1 - [3.4 - dioxy - phenyl] - penten - (1) - on - (3), tert. - Butyl-[3.4-dioxy-styryl]-keton $C_{13}H_{16}O_3=(HO)_2C_6H_3$. $CH:CH:CO:C(CH_3)_3$.

4.4 - Dimethyl - 1 - [4 - 0xy - 3 - 0methoxy - 0me

$$I. \underbrace{\bigcirc_{O.CH_3}}_{OH} \underbrace{II.}_{HO} \underbrace{\bigcirc_{CO.HC} < \bigcirc_{CH_2.CH_2}^{CH_2.CH_2} > CH_2}_{CH_2.CH_3} \underbrace{III.}_{O.CH_3}$$

- 5. 2 Oxy 3 methyl α -acetyl isobutyrophenon $C_{13}H_{16}O_3 = HO \cdot C_6H_3(CH_3) \cdot CO \cdot C(CH_3)_2 \cdot CO \cdot CH_3$.
- 2 Acetoxy 3 methyl α acetyl isobutyrophenon $C_{15}H_{18}O_4 = CH_3 \cdot CO \cdot O \cdot C_6H_3(CH_3) \cdot CO \cdot C(CH_3)_2 \cdot CO \cdot CH_3$. Eine Verbindung, der vielleicht diese Konstitution zukommt, s. S. 129.
- 6. [2.4-Dioxy-benzoyl]-cyclohexan, 4-Hexahydrobenzoyl-resorcin, Cyclohexyl-[2.4-dioxy-phenyl]-keton, Cyclohexylresorcylketon C₁₃H₁₆O₃, Formel II. B. In mäßiger Ausbeute beim Erhitzen von Resorcin mit Hexahydrobenzossäure in Gegenwart von Zinkchlorid auf 125—135° (Talbot, Adams, Am. Soc. 49, 2041). Krystalle (aus Chloroform + Petroläther). F: 115,5—116°. Kp₄: 200—202°. Wird durch amalgamiertes Zink und verd. Salzsäure zu 4-Hexahydrobenzyl-resorcin reduziert.

7. Oxy-oxo-Verbindungen $C_{14}H_{18}O_{3}$.

1. 1 - [3.4 - Dioxy - phenyl] - octen - (1) - on - (3), Pentyl-[3.4-dioxy-styryl]-keton $C_{14}H_{16}O_3 = (HO)_2C_6H_3 \cdot CH \cdot CO \cdot [CH_3]_4 \cdot CH_3$.

1-[4-0xy-3-methoxy-phenyl]-octen-(1)-on-(3), n-Amyl-[4-oxy-3-methoxy-styryl]-keton, Vanillyliden-methyl-n-amyl-keton C₁₅H₂₀O₃, Formel III. B. Aus Vanillin und Methyl-n-amyl-keton bei längerem Schütteln mit verd. Natronlauge (Murai, Sci. Rep. Tōhoku Univ. 14, 146; C. 1925 II, 1746) oder beim Kochen mit wäßrig-alkoholischer Kalilauge (TSURUMI, MURAKOSHI, YAMASAKI, Sci. Rep. Tōhoku Univ. 17, 705; C. 1928 II, 1325). — Gelbliche Krystalle (aus Äther + Petroläther). F: 50—50,5° (Murai). Kp_{1,5}: 208—210° (T., M., Y.). — Liefert bei der Reduktion mit Natriumamalgam in Wasser n-Amyl-[4-oxy-3-methoxy-β-phenāthyl]-keton (Murai).

2. 1-[3.4-Dioxy-phenyl]-octen-(4)-on-(3), α -Pentenyl-[3.4-dioxy- β -phendthyl]-keton $C_{14}H_{18}O_3=(HO)_2C_6H_3\cdot CH_2\cdot CH_2\cdot CO\cdot CH:CH\cdot CH_1\cdot C_1H_5.$

1-[4-0xy-3-methoxy-phenyl]-octen-(4)-on-(3), α -Pentenyl-[4-oxy-3-methoxy- β -phenäthyl]-keton, Butylidenzingeron $C_{15}H_{20}O_3$, Formel IV. B. Beim Schütteln einer Lösung von Zingeron (S. 310) in Kalilauge mit Butyraldehyd in Äther (Nomura, El Choi, Sci. Rep. Tôhoku Univ. 17, 708; C. 1928 II, 1325). — Gelbliches Öl. Kp_{4,5}: 198,5—200°. Schmeckt brennend.

3. 1-[6-Oxy-3-methyl-phenyl]-heptandion-(1.2), Pentyl-[6-oxy-3-methyl-phenyl]-diketon, p-Kresyl-n-pentyl-diketon $C_{14}H_{18}O_3$, Formel V.

Disemicarbazon $C_{16}H_{24}O_2N_6 = CH_3 \cdot C_8H_3(OH) \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot C(:N \cdot NH \cdot C$

4. [2.4-Dioxy-phenacyl]-cyclohexan, [2.4-Dioxy-phenyl]-hexahydrobenzyl-keton, 4-Hexahydrophenacetyl-resorcin, Cyclohexylmethylresorcylketon C₁₄H₁₈O₃, Formel VI. B. In mäßiger Ausbeute OH beim Erhitzen von Resorcin mit Cyclohexylessigsäure in Gegenwart von Zinkchlorid auf 125—135° (Talbot, Adams, Am. Soc. 49, 2041).—

Krystalle (aus Chloroform + Petroläther). F: 111—112°. Kp₄: 202—204°. — Wird durch amalgamiertes Zink und verd. Salzsäure zu 4-[Hexahydro-β-phenäthyl]-resorcin reduziert.

8. Oxy-oxe-Verbindungen $C_{15}H_{20}O_3$.

1. 1-[3.4-Dioxy-phenyl]-nonen-(1)-on-(3), n-Hexyl-[3.4-dioxy-styryl]-keton $C_{15}H_{70}O_3=(HO)_2C_4H_3\cdot CH:CH\cdot CO\cdot [CH_2]_5\cdot CH_3$.

1-[4-0xy-3-methoxy-phenyl]-nonen-(1)-on-(3), n-Hexyl-[4-oxy-3-methoxy-styryl]-keton, Vanillyliden-methyl-n-hexyl-keton C_{1e}H₂₂O₂ = CH₂·O·C_eH₂(OH)·CH·CH·CO·[CH₂]₅·CH₂. B. Aus Vanillin und Methyl-n-hexyl-keton in wäßrig-alkholicher Kalilauge auf dem Wasserbad. (NOMURA, TSURUMI, Pr. Acad. Tokyo 2, 230; Sci. Rep. Tohoku Univ. 16, 567; C. 1927 I, 726; II, 2186). — Gelbliche Krystalle (aus Äther + Petroläther). F: 48—49°. Kp₂: 213—217°.

2. 1 - [3.4 - Dioxy - phenyl] - nonen - (4) - on - (3), α - Hexenyl - [3.4 - dioxy- β -phenäthyl]-keton $C_{15}H_{20}O_3 = (HO)_2C_4H_3 \cdot CH_2 \cdot CH_2 \cdot CO \cdot CH \cdot (CH \cdot [CH_2]_3 \cdot CH_3.$

1-[4-0xy-3-methoxy-phenyl]-nonen-(4)-on-(3), α -Hexenyl-[4-oxy-3-methoxy- β -phenäthyl]-keton, n-Amyliden-zingeron $C_{1s}H_{12}O_3=CH_3\cdot O\cdot C_sH_3(OH)\cdot CH_2\cdot CH_2\cdot CO\cdot CH: CH\cdot [CH_2]_3\cdot CH_3$. B. Beim Schütteln einer Lösung von Zingeron (S. 310) in Kalilauge mit n-Valeraldehyd in Äther (Nomura, el Choi, Sci. Rep. Töhoku Univ. 17, 710; C. 1928 II, 1325). — Brennend schmeckendes, gelbliches Ol. Kp₆: 203—206,5°.

9. Oxy-oxo-Verbindungen $C_{16}H_{22}O_{2}$.

1. 1-[3.4-Dioxy-phenyl]-decen-(1)-on-(3), n-Heptyl-[3.4-dioxy-styryl]-keton $C_{14}H_{12}O_3=(HO)_2C_4H_3\cdot CH\cdot CO\cdot [CH_2]_4\cdot CH_3$.

1 - [4 - Oxy - 3-methoxy-phenyl] - decen-(1)-on-(3), n-Heptyl - [4-oxy-3-methoxy-styryl]-keton, Vanillyliden-methyl-n-heptyl-keton $C_{17}H_{24}O_3 = CH_3 \cdot O \cdot C_6H_3(OH) \cdot CH \cdot CH \cdot CO \cdot [CH_2]_6 \cdot CH_3$. B. Aus Methyl-n-heptyl-keton und Vanillin in wäßrig-alkoholischer Kalilauge auf dem Wasserbad (NOMURA, TSURUMI, *Pr. Acad. Tokyo* 2, 230; *Sci. Rep. Tohoku Univ.* 16, 570; C. 1927 I, 726; II, 2186). — Gelbliche Krystalle (aus verd. Methanol). F: 42—43°.

2. $1-[3.4-Dioxy-phenyl]-decen-(4)-on-(3), \ \alpha-Heptenyl-[3.4-dioxy-phenäthyl]-keton \ C_{16}H_{21}O_3=(HO)_2C_6H_3\cdot CH_2\cdot CH_2\cdot CO\cdot CH: CH\cdot [CH_2]_4\cdot CH_3.$

1-[4-Oxy-3-methoxy-phenyl]-decen-(4)-on-(3), α -Heptenyl-[4-oxy-3-methoxy- β -phenathyl]-keton, Shogaol $C_{17}H_{24}O_3=CH_3\cdot O\cdot C_6H_3(OH)\cdot CH_2\cdot CH_2\cdot CO\cdot CH\cdot CH\cdot [CH_2]_4\cdot CH_3$. Das Mol.-Gew. ist in Benzol kryoskopisch bestimmt (NOMURA, Sci. Rep. Tchoku Univ. 7, 71; C. 1921 I, 1016). — V. Im Ingwer (Zingiber officinale Rosc.) (N., Sci. Rep. Töhoku Univ. 7, 68; C. 1921 I, 1016). — B. Durch Einw. von n-Capronaldehyd in Ather auf eine Lösung von Zingeron (S. 310) in Kalilauge (N., Tsurumi, Pr. Acad. Tokyo 8, 159; Sci. Rep. Töhoku Univ. 16, 590; C. 1927 II, 809, 2186). — Beißend schmeckendes Öl. Kp_{15,5}: 232° (N.); Kp_{2-2,5}: 201—203° (N., Ts.). D²: 1,0448; n²: 1,5247 (N.); D²: 1,0419; n²: 1,5252 (N., Ts.). Löslich in Alkohol und Eisessig (N.). — Liefert bei der Hydrierung bei Gegenwart von Platinschwarz in Äther Dihydroshogaol (S. 318) (N.). Gibt mit ammoniakalischer Silbernitrat-Lösung einen Silberspiegel (N.). Liefert keine krystallinische NaHSO₃-Verbindung (N.) und kein krystallinisches Benzoylderivat (N., Ts.). Gibt mit Eisenchlorid in Alkohol eine grüne Färbung (N.).

α- Heptenyl- [3.4-dimethoxy-β-phenäthyl]-keton, Shogaol-methyläther C₁₈H₂₆O₃ = (CH₃·CO)₂C₂H₃·CH₃·CO+₂·CO+CH·(CH-)₂(CH₃·CO)₃C₃ = (CH₃·CO+₃·C

amin-hydrochlorid und Natriumacetat in verd. Alkohol ein öliges Oxim (N.).

Shogael-athylather $C_{19}H_{28}O_3=C_2H_3\cdot O\cdot C_6H_3(O\cdot CH_3)\cdot CH_2\cdot CH_2\cdot CO\cdot CH\cdot CH\cdot [CH_2]_4\cdot CH_3$. B. Aus Shogael und Athyljodid in siedender alkoholischer Kalilauge (NOMURA, Sci. Rep. Töhoku Univ. 7, 75; C. 1921 I, 1016). — Gelbliches Ol. $Kp_{0.65}$: 181—186°. — Liefert bei der Öxydation mit Permanganat in sodaalkalischer Lösung 3-Methoxy-4-äthoxy-benzoesäure. Entfärbt Brom in Chloroform; bei der Einw. von überschüssigem Brom wird Bromwasserstoff entwickelt.

Shogaol-acetat $C_{19}H_{28}O_4 = CH_3 \cdot CO \cdot O \cdot C_4H_3 \cdot (O \cdot CH_2) \cdot CH_2 \cdot CH_2 \cdot CO \cdot CH : CH \cdot [CH_2]_4 \cdot CH_3$. B. Beim Kochen von Shogaol mit Acetanhydrid und Natriumacetat (Nomura, Sci. Rep. Töhoku Univ. 7, 73; C. 1921 I, 1016). — Gelbliches Öl. Kp_{0,6}: 183—188°. — Entfärbt Brom in Chloroform; bei der Einw. von überschüssigem Brom wird Bromwasserstoff entwickelt.

10. Oxy-oxo-Verbindungen $C_{17}H_{24}O_3$.

1. 1-[3.4-Dioxy-phenyl]-undecen-(1)-on-(3), n-Octyl-[3.4-dioxy-styryl]-keton $C_{17}H_{24}O_3=(HO)_3C_6H_3\cdot CH: CH\cdot CO\cdot [CH_2]_7\cdot CH_3.$

1-[4-0xy-3-methoxy-phenyi]-undecen-(1)-on-(3), n-Octyl-[4-oxy-3-methoxy-styryl]-keton, Vanillyliden-methyl-n-octyl-keton $C_{18}H_{26}O_3=CH_3\cdot O\cdot C_6H_3(OH)\cdot CH:CH\cdot CO\cdot [CH_2]_7\cdot CH_3$. B. Aus Vanillin und Methyl-n-octyl-keton in wäßrig-alkoholischer Kalilauge auf dem

OXY-OXO-VERBINDUNGEN CnH2n-10O3 UND CnH2n-12O3 [Syst. Nr. 776

Wisserbad (NOMURA, TSURUMI, *Pr. Acad. Tokyo* 2, 230; *Sci. Rep. Téheku Univ.* 16, 574; *C.* 1927 I, 726; II, 2186). — Krystalle (aus Äther + Petroläther). F: 45,5—46°.

2. 1-[3.4-Dioxy-phenyl]-undecen-(4)-on-(3), $\alpha-Octenyl-[3.4-dioxy-\beta-phendthyl]-heton <math>C_{17}H_{24}O_3=(HO_3)_3C_6H_3\cdot CH_3\cdot CO\cdot CH:CH\cdot [CH_2]_5\cdot CH_3$.

1-[4-0xy-3-methoxy-phenyl]-undecen-(4)-on-(3), α-Octenyl-[4-oxy-3-methoxy-β-phen-athyl]-keton, Önanthyliden-zingeron $C_{18}H_{18}O_3=CH_3\cdot O\cdot C_8H_3(OH)\cdot CH_3\cdot CO\cdot CH: CH\cdot [CH_2]_5\cdot CH_3\cdot B$. Durch Einw. von Önanthol in Äther auf eine Lösung von Zingeron (S. 310) in verd. Kalilauge (Nomura, Tsurumi, Pr. Acad. Tokyo 2, 231; Sci. Rep. Töhoku Univ. 16, 586; C. 1927 I, 726; II, 2186). — Gelbliches Öl. $Kp_{7,5}$: 227—229°. D_4^{28} : 1,0299. D_2^{29} : 1,5232.

11. Oxy-oxo-Verbindungen C₁₈H₂₄O₃.

1-[4-Oxy-3-methoxy-phenyl]-dodecen-(1)-on-(3), n-Nonyl-[4-oxy-3-methoxy-styryl]-keton, Vanilyliden - methyl - n - nonylketon C₁₉H₃₆O₃ = CH₃·O·C₆H₃(OH)·CH:CH·CO·[CH₂]₈·CH₃. B. Aus Methyl-n-nonyl-keton und Vanillin in wäßrig-alkoholischer Kalilauge auf dem Wasserbad (Nomura, Tsurumi, Sci. Rep. Tokoku Univ. 16, 577; C. 1927 II, 2186). — Wasserfreie Krystalle (aus Äther + Petroläther), Krystalle mit 1H₂O (aus verd. Methanol). Schmilzt wasserfrei bei 55,5—56,5°, wasserhaltg zwischen 68° und 100°. — Liefert bei der Reduktion mit Natriumamakam n-Nonyl-[4-oxy-3-methoxy-β-phenäthyl]-keton.

auf dem Wasserbad (NOMURA, TSURUMI, Sci. Rep. Tohoku Univ. 16, 577; C. 1927 II, 2186). —
 Wasserfreie Krystalle (aus Äther + Petroläther), Krystalle mit 1 H₂O (aus verd. Methanol).
 Schmilzt wasserfrei bei 55,5—56,5°, wasserhaltig zwischen 68° und 100°. — Liefert bei der Reduktion mit Natriumamalgam n-Nonyl-[4-oxy-3-methoxy-β-phenäthyl]-keton.
 n-Nonyl-[3.4-dimethoxy-styryl]-keton, Veratryllden-methyl-n-nonyl-keton C₂₀H₃₀O₅ = (CH₃·O)₂C₆H₂·CH·CO·[CH₃]₆·CH₃. B. Bei 12-stdg. Aufbewahren einer Lösung von 4 g Veratrumaldehyd, 4 g Methyl-n-nonyl-keton und 2 cm³ 8%iger Natronlauge in 10 cm³ Alkohol (Hellbron, Irving, Soc. 1928, 2324). — Gelbliche Tafeln (aus Methanol). F. 61°.
 Dimeres and Nonyl-[3.4-dimethoxy-styryl] beton C. H. O. Dag Mel Geweist

Dimeres n-Nonyl-[3.4-dimethoxy-styryl]-keton $C_{40}H_{60}O_{6}$. Das Mol.-Gew. ist vaporimetrisch bestimmt. — B. Bei 4-stdg. Kochen von 4 g Veratrumaldehyd und 4 g Methyln-nonyl-keton mit 25 g 1 %iger alkoholischer Kalilauge (Heilbron, Irving, Soc. 1928, 2325). — Farblose Nadeln (aus Alkohol). F: 135°.

12. Oxy-oxo-Verbindungen $C_{24}H_{38}O_3$.

1-Cyclopentyl-13-[2.4-dioxy-phenyl]tridecanon-(13), 4-Dihydrochaulmoogroylresorcin C₂₄H₃₈O₃, Formel I. B. Durch Erhitzen
von Dihydrochaulmoograsaure (Syst. Nr. 893) mit
Resorcin und Zinkchlorid oder besser durch Umsetzung von Dihydrochaulmoograsaurechlorid
mit Resorcin in Gegenwart von Aluminiumchlorid in Nitrobenzol (HINEGARDNER, JOHNSON,
Am. Soc. 51, 1505). — Krystalle (aus Aceton). F: 89,5°.

Oxim $C_{24}H_{39}O_8N = (HO)_2C_6H_3\cdot C(:N\cdot OH)\cdot [CH_2]_{12}\cdot C_5H_9$. Blättchen (aus Benzol). F: 169° bis 170° (Hinegardner, Johnson, Am. Soc. 51, 1506). — Färbt sich am Licht gelb.

13. Oxy-oxo-Verbindungen C₂₇H₄₄O₈.

Cholestanol-(5)-dion-(3.6) C₂₇H₄₄O₃, Formel II, s. 4. Hauptabteilung, Sterine.

f) Oxy-oxo-Verbindungen $C_n H_{2n-12} O_3$.

1. Oxy-oxo-Verbindungen C.H.O.

2 - Oxy - 1.3 - dioxo - hydrinden, 2 - Oxy - indendion - (1.3) $C_0H_4O_8=C_0H_4C_0$ CH OH (E I 631). Die von Ruhemann (Soc. \$9, 1306, 1309) beschriebene blaue Lösung des Natriumsalzes enthält nach Hantzsch (B. 54, 1271) das Natriumsalz des Hydrindantins (s. u.).

339

[1.3-Dioxo-hydrindyl-(2)]-[2-oxy-1.3-dioxo-hydrindyl-(2)]-äther, Hydrindantin C₁₈H₁₀O₆ = C₆H₄CO C(OH)·O·HC CO C₄H₄ (E I 631). Hydrindantin wird von Hantzsch (B. 54, 1272) als 2.2'-Dioxy-1.3.1'.3'-tetraoxo-dihydrindyl-(2.2') angesehen; indessen weichen die Eigenschaften des Hydrindantins von denen des 2.2'-Dioxy-1.3.1'.3'-tetraoxo-dihydrindyls-(2.2') (H 8, 557) stark ab. Die frühere Formulierung des Hydrindantins wird auch nach dem Literatur-Schlußtermin des Ergänzungswerks II [1. I. 1930] gebraucht (vgl. Wanag, Lode, B. 71 [1938], 1267; Schönberg, Moubasher, Soc. 1944, 366).

2. Oxy-oxo-Verbindungen $C_{10}H_8O_3$.

1. 3.4 - Dioxo - 1 - [4 - oxy - phenyl] - buten - (1), [4 - Oxy - styryl] - glyoxal $C_{10}H_8O_3 = HO \cdot C_0H_4 \cdot CH \cdot CO \cdot CHO$.

3-0xo-4-oximino-1-[4-methoxy-phenyl]-buten-(1), α -[4-Methoxy-styryl]-glyoxal- α' -oxim, α' -Isonitroso- α -anisyliden-aceton $C_{11}H_{11}O_0N=CH_3\cdot O\cdot C_0H_4\cdot CH\cdot CH\cdot CO\cdot CH:$ N·OH. B. Neben α' -Chlor- α' -isonitroso- α -anisyliden-aceton (Syst. Nr. 1411) beim Behandeln von Anisylidenaceton mit Nitrosylchlorid in Äther bei —15° (RHEINBOLDT, SCHMITZ-DUMONT, A. 444, 133). — Gelbe Nadeln (aus Chloroform). F: 173°. Löslich in Natronlauge mit gelber Farbe.

2. 2 - Oxy - 1.3 - dioxo - 2 - methyl - hydrinden, $2 - Oxy - 2 - methyl - indan-dion - (1.3) C_{10}H_5O_3 = C_0H_4 < CO > C(CH_3) \cdot OH$. B. Bei der Einw. von Kalilauge auf $2 - [\alpha - Brom-propionyl]$ -benzoesäure (Gabriel, Kornfeld, Grunert, B. 57, 304). — Nadeln (aus verd. Alkohol). — Zersetzt sich beim Aufbewahren an der Luft sowie beim Kochen mit Wasser. Reduziert Fehlingsche Lösung.

3. Oxy-oxo-Verbindungen $C_{11}H_{10}O_3$.

1. 1 - Phenyl - penten - (4) - ol - (5) - dion - (1.3), α -Oxymethylen - α' -benzoylaceton $C_{11}H_{10}O_{0}=C_{0}H_{0}\cdot CO\cdot CH_{1}\cdot CO\cdot CH: CH\cdot OH.$

5-Methoxy-1-phenyl-penten-(4)-dion-(1.3), α-Methoxymethylen-α'-benzoyl-aceton $C_{12}H_{12}O_3=C_4H_5\cdot CO\cdot CH_2\cdot CO\cdot CH: CH\cdot O\cdot CH_3$. B. Das Kupfersalz entsteht beim Behandeln von 2-Phenyl-pyron-(4) (Syst. Nr. 2465) mit Natriummethylat-Lösung und Umsetzen des Reaktionsprodukts mit Kupferacetat-Lösung (Borsche, Peter, A. 453, 159). — $Cu(C_{12}H_{11}O_3)_2$. Dunkelgrüne Nadeln (aus Essigester + Alkohol). F: 203°.

 $\begin{array}{llll} 2. & 1.3-Dioxy-2-oxo-1-methyl-1.2-dihydro-naphthalin, & 3-Oxy-1-methyl-1.2-naphthochinol & bzw. & 1-Oxy-2.3-dioxo-1-methyl-1.2.3.4-tetrahydro-naphthalin & C_{11}H_{10}O_3 & C_6H_4 & CH_2 & C(CH_3)(OH)\cdot CO \\ & CH_2 & C\cdot OH & CH_2 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 & CH_4 & CH_3 & CH_3 & CH_4 & CH_4 & CH_4 & CH_5 & CH_5 & CH_5 & CH_5 & CH_6 &$

[4-Chlor-6-brom-3-oxy-1-methyl-naphthyl-(2)]-äther des 4-Chlor-6-brom-3-oxy-1-methyl-1.2-naphthochlools C₂₂H₁₄O₄Cl₂Br₂, Formel I. Diese Konstitution kommt der H 7, 734 als 4-Chlor-6-brom-1-methyl-naphthochloon-(2.3) beschriebenen Verbindung zu (Fries, Schimmelschmidt, B. 65 [1932], 1502; vgl. a. Fries, B. 58, 2846).

I.
$$B_{\Gamma}$$
. C_{CO} C_{COH} $C_{$

3. 1.4-Dioxy-2-oxo-1-methyl-1.2-dihydro-naphthalin, 4-Oxy-1-methyl-1.2-naphthochinol bzw. 1-Oxy-2.4-dioxo-1-methyl-1.2.3.4-tetrahydro-naphthalin $C_{11}H_{10}O_3$, Formel II bzw. III (X = H).

6-Brom-1.4-dioxy-2-oxo-1-methyl-1.2-dihydro-naphthalin, 6-Brom-4-oxy-1-methyl-1.2-naphthochinol C₁₁H₅O₃Br, Formel II bzw. III (X=Br). B. Aus 6-Brom-4-methoxy-1-methyl-1.2-naphthochinol oder aus 6-Brom-4-āthoxy-1-methyl-1.2-naphthochinol beim Erwärmen mit 2n-Natronlauge (Fries, Oehmke, A. 462, 15). — Krystalle (aus Benzol). F: 182°. Leicht löslich in Alkohol und Eisessig, schwerer in Wasser, schwer in Benzol, Benzin und Chloroform. Löst sich in konz. Schwefelsäure mit schmutziggrüner Farbe.

6-Brom-1-oxy-4-methoxy-2-oxo-1-methyl-1.2-dihydro-naphthalin, 6-Brom-4-methoxy-1-methyl-1.2-naphthochinol $C_{12}H_{11}O_3Br=C_6H_3Br$ $\begin{array}{c} C(CH_3)(OH)\cdot CO\\ C(O\cdot CH_3)=-\dot CH \end{array}.$ Beim Aufbewahren von 4.6-Dibrom-1-methyl-1.2-naphthochinol mit methylalkoholischer Natronlauge (Fries, Oehmke, A. 462, 14). — Tafeln (aus Benzol). F: 155°. Leicht löslich in Alkohol und Eisessig,

schwerer in Chloroform und Benzol, schwer in Äther und Benzin. Die Lösung in konz. Schwefelsäure ist erst gelb, dann schmutziggrün. — Beim Behandeln mit Zinkstaub in Eisessig entsteht 6-Brom-4-methoxy-1-methyl-naphthol-(2).

- 6-Brom-1-oxy-4-äthoxy-2-oxo-1-methyl-1.2-dihydro-naphthalin, 6-Brom-4-äthoxy-1-methyl-1.2-naphthechinol $C_{13}H_{12}O_8Br=C_6H_3Br$ $C(CH_3)(OH)\cdot CO$ $C(CC_2H_3)=CH$ gehenden Verbindung (Fries, Oehmke, A. 462, 14). Tafeln (aus Benzol). F: 144°.
- 6 Brom 4 methoxy 1 methyl 1.2 naphthochinol acetat $C_{14}H_{13}O_4Br = C(CH_3)(O \cdot CO \cdot CH_3) \cdot CO$ $C_4H_3Br C_4H_3Br C_5$ $C_6H_3Br C_6$ $C_6H_3Br C_7$ $C_8H_3Br C_7$
- 6 Brom 4 āthoxy 1 methyl 1.2 naphthochinol acetat $C_{15}H_{15}O_6Br = C_8H_3Br \xrightarrow{C(CH_3)(O\cdot CO\cdot CH_3)\cdot CO}$ F: 156° (Fries, Oehmke, A. 462, 14).

Diacetat des 6 - Brom - 4 - oxy - 1 - methyl - 1.2 - naphthochinols $C_{15}H_{13}O_5Br = C_6H_3Br \xrightarrow{C(CH_3)(O \cdot CO \cdot CH_3) \cdot CO} B$. Aus 6-Brom - 4-oxy - 1-methyl - 1.2 - naphthochinol bei der Einw. von Acetanhydrid und Natriumacetat (Fries, Oehmke, A. 462, 15). — Nadeln (aus Benzin). F: 147°.

4. Oxy-oxo-Verbindungen $C_{12}H_{12}O_3$.

- 1. 1-[3-Oxy-phenyl]-hexen-(1)-dion-(3.5), 3-Oxy-cinnamoylaceton $C_{12}H_{12}O_3=HO\cdot C_0H_4\cdot CH\cdot CO\cdot CH_2\cdot CO\cdot CH_3$. B. Beim Erhitzen von α -[3-Oxy-cinnamoyl]-acetessigester mit Wasser im Autoklaven (Lampe, Mitarb., Roczniki Chem. 9, 451; C. 1929 II, 1916). Durch Verseifung von 3-Carbomethoxyoxy-cinnamoylaceton (L., Mitarb.). Gelbe Krystalle (aus verd, Alkohol). F: 132—134°. Leicht löslich in Methanol und Alkohol, schwerer in Toluol und Benzol, unlöslich in Ligroin. Gibt mit Eisen(III)-chlorid eine rote, bald in Braun übergehende Färbung. Wird durch konz. Schwefelsäure rot gefärbt und mit orangeroter Farbe gelöst.
- 3 Carbomethoxyoxy cinnamoylaceton $C_{14}H_{14}O_5 = CH_3 \cdot O_2C \cdot O \cdot C_6H_4 \cdot CH \cdot CH \cdot CO \cdot CH_3 \cdot CO \cdot CH_8$. B. Durch Erhitzen von α -[3-Carbomethoxyoxy-cinnamoyl]-acetessigsäureäthylester mit Wasser unter Druck (Lampe, Mitarb., Roczniki Ohem. 9, 451; C. 1929 II, 1916). Fast farblose Nadeln (aus verd. Alkohol). F: 77—79°. Wird durch konz. Schwefelsäure gelb gefärbt. Die alkoh. Lösung gibt mit Eisen(III)-chlorid eine rote Färbung. Kupfersalz. Grün.
- 2. 1-[4-Oxy-phenyl]-hexen-(1)-dion-(3.5), 4-Oxy-cinnamoylaceton $C_{11}H_{12}O_3=HO\cdot C_0H_4\cdot CH\cdot CH\cdot CO\cdot CH_2\cdot CO\cdot CH_3$.
- 4-[4-Methoxy-phenyl]-hexen-(1)-dion-(3.5), 4-Methoxy-cinnamoylaceton, Yangonol C₁₃H₁₄O₃ = CH₃· O·C₆H₄· CH·CH·CO·CH₂· CO·CH₃ bzw. desmotrope Formen. Bezeichnung als Yangonon: Borsche, Peitzsch, B. 62, 360 Anm. 2. B. Aus Yangonasäure (Syst. Nr. 1438; vgl. E I 10, 491) beim Schmelzen oder beim Kochen mit Alkohol (Winzheimer, Ar. 246 [1908], 362) sowie bei jahrelangem Aufbewahren (Borsche, Meyer, Peitzsch, B. 60, 2116). Beim Erhitzen von α-[4-Methoxy-cinnamoyl]-acetessigsäure-methylester mit Wasser auf ca. 130° (B., Walter, B. 60, 2113). Gelbe Blättchen (aus Methanol, Alkohol oder Essigester). F: 93° (B., Wal, 92—92,5° (Wi.). Leicht löslich in den meisten organischen Lösungsmitteln sowie in Alkalilauge, unlöslich in Ammoniak und Alkalicarbonat-Lösungen; löslich in konz. Schwefelsäure mit gelber Farbe (Wi.).

Benzoylyangonol $C_{50}H_{18}O_4$ (wahrscheinlich Benzoat einer Enolform). B. Beim Schütteln einer alkal. Lösung von Yangonol mit Benzoylchlorid (WINZHEIMER, Ar. 246 [1908], 363). — Gelbe Krystalle (aus Alkohol oder Essigester). F: 103° . Leicht löslich in Äther sowie in verd. Natronlauge.

3. 1-[6-Oxy-3-methyl-phenyl]-penten-(4)-dion-(1.2), Allyl-[6-oxy-3-methyl-phenyl]-diketon $C_{11}H_{11}O_3$, Formel I auf S. 341.

Disemicarbazon $C_{14}H_{18}O_5N_6=CH_2\cdot C_6H_6(OH)\cdot C(:N\cdot NH\cdot CO\cdot NH_6)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_2\cdot CH_2\cdot CH_2\cdot B$. Bei der Einw. von essigsaurem Semicarbazid auf 5-Methyl-2-allyl-cumaranon (v. Auwers, B. 61, 415). — Prismen mit 1 H_2O (aus Wasser). F: 200° bei langsamem Erhitzen. Leicht löslich in heißem Eisessig.

OXY-CINNAMOYLACETON

4. 3-Oxy-5.8-dioxo-1.4-dimethyl-5.8.7.8-tetrahydro-naphthalin, 7-Oxy-1.2-dioxo-5.8-dimethyl-tetralin $C_{12}H_{11}O_{3}$, Formel II.

7-Methoxy-1-oxo-2-oximino-5.8-dimethyl-tetralin C₁₃H₁₅O₃N, Formel III, ist desmotrop mit 6-Hydroxylamino-5-oxy-3-methoxy-1.4-dimethyl-naphthalin, Syst. Nr. 1937.

5. Oxy-oxo-Verbindungen $C_{10}H_{20}O_3$.

5 - Oxy - 6 - methoxy - 3 - oxo-12-āthyl-1.2.3.4.9.10.11.12-oktahydro-phenanthren, 6 - Keto-13 - āthyl-oktahydromorphol-3 - methylāther $C_{17}H_{12}O_3$, Formel IV ($R=CH_3$, R'=H). Beim Behandeln von 6 - Methoxy - 3-oxo-4.5-oxido-12-āthyl-1.2.3.4.9.10.11.12-oktahydro-

B. Beim Behandeln von 6-Methoxy-3-oxo-4.5-oxido-12-athyl-1.2.3. phenanthren (Syst. Nr. 2512) mit Aluminiumamalgam und feuchtem Äther (Cahn, Soc. 1930, 705). Durch Hydrierung von 3.6-Dimethoxy-4.5-oxido-12-vinyl-1.4.9.10.11.12-hexahydro-phenanthren (Syst. Nr. 2405) bei Gegenwart von Palladiumschwarz in Alkohol (Wieland, Kotake, A. 444, 87). Aus 4-Oxy-3.6-dimethoxy-13-āthyl-5.8.9.10.13.14-hexahydro-phenanthren (E II 6, 1097) beim Erwärmen mit wäßrig-alkoholischer Salzsäure (W., K., B. 58, 2011). — Prismen (aus Alkohol). F: 148—150° (Сани; W., K.). Löslich in verdünnter alkoholischer Kalilauge (W., K., A. 444, 87). — Gibt mit Eisenchlorid eine grüne Färbung (W., K., A. 444, 87).

5.6 - Dimethoxy - 3 - 0x0 - 12 - \ddot{a} thyl - 1.2.3.4.9.10.11.12 - oktahydro - phenanthren $C_{18}H_{28}O_3$, Formel IV (R und R' = CH_3). B. Beim Behandeln der vorangehenden Verbindung mit Dimethylsulfat in wäßrig-alkoholischer Kalilauge (WIELAND, KOTAKE, B. 58, 2011). — Krystalle (aus Alkohol). F: 111—112°. — Liefert mit Benzaldehyd in alkoh. Natronlauge ein Monobenzyliden-Derivat (S. 415).

6. Oxy-oxo-Verbindungen $C_{24}H_{34}O_{3}$.

1-/ Δ^2 -Cyclopentenyl}-13-/2.4-dioxy-phenyl}tridecanon-(13), 4-Chaulmoogroyl-resorcin

C₂₄H₂₄O₂, s. nebenstehende Formel. B. Aus Resorcin

HC:OH

CH:[CH₂]₁₂·CO·OH

und Chaulmoograsäurechlorid bei Gegenwart von Aluminiumchlorid in Nitrobenzol bei 30—35° (HINEGARDNER, JOHNSON, Am. Soc. 51, 1507).

Nadeln (aus Aceton). F: 83°. [α] $_{\Sigma}^{\infty}$: +1,4° (Chloroform; c = 2,5). — Liefert bei der Reduktion mit amalgamiertem Zink und Salzsäure 1-[Δ^2 -Cyclopentenyl]-13-[2.4-dioxyphenyl]-tridecan.

4-Chaulmoogroyl-resorcin-1-methyläther $C_{25}H_{38}O_3 = C_5H_7 \cdot [CH_2]_{12} \cdot CO \cdot C_6H_3(OH) \cdot O \cdot CH_3$. B. Neben 4-Chaulmoogroyl-resorcin-dimethyläther beim Behandeln von Resorcin-dimethyläther mit Chaulmoograsäurechlorid und Aluminiumchlorid in Schwefelkohlenstoff ohne Kühlung (HINEGARDNER, JOHNSON, Am. Soc. 51, 1506). — Nadeln (aus Alkohol und Aceton). F: 65°. [α] $_{25}^{25}$: +7,0° (Chloroform; c = 2,6). — Wird an der Luft rötlich. Löst sich nicht in Natronlauge. Die Lösung in Alkohol gibt mit Eisenchlorid eine rote Färbung.

4 - Chaulmoogroyl - resorcin - dimethyläther $C_{26}H_{40}O_3 = C_5H_7 \cdot [CH_2]_{12} \cdot CO \cdot C_6H_3 (O \cdot CH_3)_2$. B. Entsteht als einziges Reaktionsprodukt beim Behandeln von Resorcindimethyläther mit Chaulmoograsäurechlorid und Aluminiumchlorid in Schwefelkohlenstoff bei 30—35° (HINE-GARDNER, JOHNSON, Am. Soc. 51, 1507). — Nadeln (aus Alkohol und Aceton). F: 46°. $[\alpha]_D^{\text{in}}$: +18,8° (Chloroform; c=4,6). Löst sich nicht in Natronlauge. — Bleibt an der Luft farblos.

4 - Chauimoogroyi - resorcin - oxim $C_{24}H_{37}O_3N=C_5H_7\cdot [CH_2]_{13}\cdot C(:N\cdot OH)\cdot C_6H_3(OH)_3$. Krystalle (aus Benzol). F: 161° (HINEGARDNER, JOHNSON, Am. Soc. 51, 1508). Schwach rechtsdrehend. — Wird am Licht gelb.

g) Oxy-oxo-Verbindungen $C_n H_{2n-14} O_3$.

1. Oxy-oxo-Verbindungen $\mathrm{C}_{10}H_{6}\mathrm{O}_{2}.$

1. 3-Oxy-naphthochinon-(1.2) $C_{10}H_6O_3 = C_6H_4$ $CO \cdot CO$ $CH:C \cdot OH$.

Bis-[4-chlor-maphthochinon-(1.2)-yl-(3)]-sulfid, Dichlor-di-β-naphthochinon-(1.2)-yl-(3)]-sulfid, Dichlor-di-β-naphthochinon-(1.2)-yl-

342

Nitrobenzol). Schmilzt unscharf unter Zersetzung bei 240°. Unlöslich in Äther, Ligroin und Alkohol, sehr schwer löslich in Schwefelkohlensteff, Chloroform, Eisessig, Benzol, Toluol und Kylol, leicht in Nitrobenzol mit dunkelorangegelber, in Pyridin mit tiefblauvioletter Farbe. Löslich in konz. Schwefelsäure mit himbeerroter Farbe. — Unlöslich in kalter Natronlauge; bei längerem Aufbewahren oder beim Erwärmen entstehen harzige Produkte. Gibt mit alkal. Na₂S₄O₄-Lösung eine grüngelbe Küpe. Mit Zinkstaub und Eisessig erhält man ein rötliches Reduktionsprodukt, das durch Salpetersäure wieder zum Sulfid oxydiert wird. — 2C₂₀H₅O₄Cl₂S + SnCl₄. Schwarz.

- 2. 4 Oxy naphthochinon (1.2) $C_{10}H_6O_3 = C_6H_4$ $C_{(OH)}C_{(OH)$
- 4-Methexy-naphthochinon-(1.2) $C_{11}H_8O_3$, s. nebenstehende Formel. B. Neben geringeren Mengen 2-Methoxy-naphthochinon-(1.4) bei der Einw. von Methyljodid auf das Silbersalz des 2-Oxy-naphthochinons-(1.4) ohne Lösungsmittel oder in Alkohol oder Äther (Fieser, Am. Soc. 48, 2930, 2935). Trennung von 2-Methoxy-naphthochinon-(1.4): F., Am. Soc. 48, 2923, 2930, 2935. Goldgelbe Nadeln (aus Wasser, Alkohol oder Benzol). F: 190° (F., Am. Soc. 48, 2930). Schwer löslich in siedendem Wasser und in Äther und Ligroin, ziemlich schwer in Benzol und Alkohol; köst sich in NaHSO₃-Lösung (F., Am. Soc. 48, 2930). Redexpotential in wäßrig-alkoholischer Lösung bei 25°: +0,433 V (Fieser, Am. Soc. 48, 2930). Redexpotential in wäßrig-alkoholischer Lösung bei 25°: +0,433 V (Fieser, Am. Soc. 442). Lagert sich beim Kochen mit 3%iger methylalkoholischer Salzsäure in 2-Methoxy-naphthochinon-(1.4) um (F., Am. Soc. 48, 2931). Bei der Reduktion mit Na₂S₂O₃ in siedendem Wasser erhält man 1.2-Dioxy-4-methoxy-naphthalin (F., Am. Soc. 48, 2931). Wird durch Alkalilaugen und durch Mineralsäuren zu 2-Oxy-naphthochinon-(1.4) verseift (F., Am. Soc. 48, 2930). Gibt beim Erwärmen mit p-Toluidin in Wasser auf dem Wasserbad 4-p-Toluidino-naphthochinon-(1.2) (Syst. Nr. 1685) und 2-p-Toluidino-naphthochinon-(1.4)-p-tolylimid-(4) (Syst. Nr. 1874) (F., Am. Soc. 48, 2932). Mit o-Phenylendiamin in siedendem Alkohol erhält man 3-Methoxy-1.2-benzo-phenazin (F., Am. Soc. 48, 2931).
- 4-Äthexy-naphthochinon-(1.2) $C_{12}H_{10}O_3 = C_6H_4$ (E I 633; vgl. H 302). Zur Bildung aus dem Silbersalz des 2-Oxy-naphthochinons-(1.4) und Äthyljodid (E I 633) vgl. FIESER, Am. Soc. 48, 2933, 2934. Trennung von 2-Äthoxy-naphthochinon-(1.4): F., Am. Soc. 48, 2933, 2935. Orangegelbe Nadeln (aus verd. Alkohol oder Benzol + Ligroin). F: 126° (F., Am. Soc. 48, 2933). Redoxpotential in wäßrig-alkoholischer Phosphatpuffer-Lösung bei 25°: F., Am. Soc. 50, 442. Zersetzt sich bei längerem Außbewahren (F., Am. Soc. 50, 459). Wird durch wäßrig-alkoholische Salzsäure verseift (F., Am. Soc. 48, 2925). Natrium-disulfit-Verbindung. Sehr hygroskopische Krystalle. Schwer löslich in Wasser (F., Am. Soc. 48, 2933). Färbt sich beim Außbewahren braun.
- 4 Isopropyloxy naphthochinon (1.2) $C_{13}H_{13}O_3 = C_6H_4$ $C_{C[O \cdot CH(CH_3)_3]:CH}$ B. Aus dem Silbersalz des 2-Oxy-naphthochinons-(1.4) und Isopropylbromid in Benzol (Fieser, Am. Soc. 48, 2934). Orangegelbe Nadeln (aus Ligroin + Benzol). F: 126°.
- 4 Butyloxy naphthochinon (1.2) $C_{14}H_{14}O_3 = C_0H_4$ $C(O \cdot [CH_2]_3 \cdot CH_3) \cdot CH$. B. Neben geringeren Mengen 2-Butyloxy-naphthochinon-(1.4) bei der Einw. von Butyljodid auf das Silbersalz des 2-Oxy-naphthochinons-(1.4) in Ather (Fieser, Am. Soc. 48, 2934). Orangegelbe Blättchen (aus Ligroin + Benzol). F: 98°. Ziemlich leicht löslich. Redoxpotential in wäßrig-alkoholischer Phosphatpuffer-Lösung bei 25°: F., Am. Soc. 50, 442.

4-METHOXY-NAPHTHOCHINON-(1.2)

....

strom auf 140—145° in 3-Oxy-2-allyl-naphthochinon-(1.4) um (F., Am. Soc. 48, 3208). — Gibt mit NaHSO₃ eine leicht lösliche Verbindung.

- 4 Benzyloxy naphthochinon (1.2) $C_{17}H_{12}O_3 = C_0H_4$ $C_0CH_3\cdot C_0H_5$: C_0CH_3 : $C_0CH_$
- 4-Oxy-naphthochinon-(1.2)-imid-(2) $C_{10}H_7O_2N = C_6H_4$ CO—C:NH ist desmotrop mit 2-Amino-naphthochinon-(1.4), Syst. Nr. 1874.
- 4 Methoxy naphthochinon (1.2) monosemicarbazon $C_{12}H_{11}O_3N_3 = CH_3 \cdot O \cdot C_{10}H_5(:O)$ (:N·NH·CO·NH₃). Diese Konstitution kommt vermutlich der von Sachs, Berthold, Zaar (C. 1907 I, 1130) als 2-Methoxy-naphthochinon-(1.4)-semicarbazon-(4) angesehenen Verbindung (H 304) zu (Fieser, Am. Soc. 48, 2931). B. Aus 4-Methoxy-naphthochinon-(1.2), Semicarbazidhydrochlorid und Natriumacetat in siedender wäßrig-alkoholischer Lösung (F.). Gelbe Nadeln. F: 246° (Zers.) (F.). Sehr schwer löslich in den gebräuchlichen Lösungsmitteln. Zersetzt sich beim Kochen mit Nitrobenzol (F.).
- $4-\beta$ -Naphthylsulfon-naphthochinon-(1.2), β -Naphthyl-[naphthochinon-(1.2)-yl-(4)]-sulfon $C_{80}H_{18}O_4S$, Formel I. B. Aus [Naphthyl-(2)]-[3.4-dioxy-naphthyl-(1)]-sulfon durch Oxydation mit Kaliumdichromat und Eisessig (HINSBERG, B. 58, 1337). Gelbe Nadeln (aus Chloroform). F: 187°. Löslich in Chloroform, schwer löslich in Benzol und Eisessig. Gibt mit o-Phenylendiamin in Eisessig $3-\beta$ -Naphthylsulfon-1.2-benzo-phenazin. Beim Kochen mit Eisessig und Behandeln der in Alkali löslichen Anteile des Reaktionsproduktes mit o-Phenylendiamin in Eisessig entsteht eine in rotbraunen Nadeln krystallisierende Verbindung $C_{46}H_{28}O_6N_2S_3$ (?).

Thioschwefelsäure - S - [naphthochinon - (1.2) - yl - (4) - ester], 1.2 - Naphthochinon-4-thiosulfonsäure $C_{10}H_0O_5S_2=HO_3S\cdot S\cdot C_{10}H_5(:O)_2$. B. Das Kaliumsalz entsteht bei der Oxydation von [3.4-Dioxy-naphthyl-(1)]-thioschwefelsäure (E II 6, 1095) mit Kaliumnitrit in essigsaurer Lösung (Heller, J. pr. [2] 108, 273). — Kaliumsalz $KC_{10}H_5O_5S_2$. Gelbe Nadeln (aus Wasser). Schwer löslich in Alkohol mit gelber Farbe. Lisefert beim Erwärmen mit Wasser auf über 70° ein in Wasser und organischen Lösungsmitteln unlösliches Produkt. Gibt mit Anilin in wenig Wasser 4-Anilino-naphthochinon-(1.2) (Syst. Nr. 1604).

7-Oxy-naphthochinen-(1.2)-oxim-(1) bzw. 1-Nitroso-2.7-dioxy-naphthalin C₁₆H₇O₃N, Formel II bzw. III (H 300). Gibt beim Kochen mit Alkali und p-Toluolsulfochlorid 4-Oxy-2-cyan-zimtsäure (Chem. Fabr. Weiler-Ter Meer, D.R.P. 416073; C. 1925 II, 1807; Frdl. 15, 266). — Färbt mit Kobaltsalzen gebeizte Wolle braun (Morgan, Smith, Soc. 119, 715). — Co(C₁₆H₆O₃N)₂ + 3H₂O. B. Durch Einw. von Kobalt(II)-chlorid und Natriumitrit auf 2.7-Dioxy-naphthalin in Wasser oder besser in verd. Salzsäure bei 100° (Morgan, Smith, Soc. 119, 708). Brauner, grün schillernder Niederschlag. Gibt das Wasser im Vakuum bei 150° ab. Schwer löslich in Wasser, leicht in wäßr. Alkohol oder Aceton mit orangeroter Farbe. Gibt mit Alkalilaugen schwärzlich-olivgrüne Lösungen, die beim Ansäuern orangerot werden. Löst sich in konz. Schwefelsäure mit olivgrüner Farbe, die beim Verdünnen in Rot übergeht. — Co₂(C₁₆H₅O₃N)₃ + 5NH₃ + 3H₂O. B. Aus 7-Oxy-naphthochinon-(1.2)-oxim-(1) beim Erhitzen mit Kobalt(II)-chlorid und 20 %igem Wasserstoffperoxyd in überschüssigem Ammoniak auf dem Wasserbad (Morgan, Smith, Soc. 119, 709). Schwarzer Niederschlag. Löst sich in Natronlauge und in konz. Schwefelsäure mit olivgrüner Farbe.

OXY-OXO-VERBINDUNGEN C_nH_{2n-14}O₃

4. 8-Oxy-naphthochinon-(1.2) $C_{10}H_{0}O_{3} = HO \cdot C_{0}H_{0} \cdot C_{0}H_{1} \cdot C_{1}H_{1}$

8 - Oxy - naphthechinon - (1.2) - exim - (2) bzw. 2-Nitroso-1.8-dioxy-naphthalin C₁₀H₂O₂N, Formel I bzw. II. B. Aus 1.8-Dioxy-naphthalinbeim Behandeln mit Natriumnitrit in essignature Lösung (Heiler, Kretzschmann, B. 54, 1104). — Bräunlichgelbe Nadeln (aus Benzol). Wird von 170° an dunkel und zersetzt sich bei 183°; verpufft bei raschem Erhitzen. Leicht löslich mit gelber Farbe in Aceton, Äther, Alkohol, Ligroin und Benzol. Löst sich auch in Sodablöung mit gelber Farbe; die Lösung wird durch freies Alkali rötlichgelb gefärbt. Die Lösung in Salzsäure ist orangerot, die in konz. Schwefelsäure kirschrot. Die Lösung in Alkohol gibt mit Eisenchlorid eine dunkelbraunviolette Färbung. — Liefert bei der Reduktion mit Na₂S₂O₄ bei 50—60° und folgenden Behandlung mit Benzoylchlorid 2-Benzamino-1.8-dibenzoyloxy-naphthalin. Bei der Reaktion mit Benzoylchlorid in verd. Natronlauge erhält man 8-Benzoyloxy-naphthochinon-(1.2)-oxim-(2)-benzoat (Syst. Nr. 929) und geringe Mengen 2-Nitroso-1.8-dibenzoyloxy-naphthalin (Syst. Nr. 901).

5. 2-Oxy-naphthochinon-(1.4) bzw. 4-Oxy-naphthochinon-(1.2) C₁₀H₄O₃. Formel III bzw. IV (Naphthalinsäure, von Tommasi, G. 50 I, 263 als Lawson bezeichnet) (H 300; E I 635). Wird als 2-Oxy-naphthochinon-(1.4) (Formel III) angesehen; die Lösungen enthalten im Gleichgewicht gewisse Mengen des im freien Zustand nicht bekannten 4-Oxy-naphthochinons-(1.2) (Formel IV) (FIESER, Am. Soc. 48, 2927, 2929; 50, 439, 443; WALLENFELS, MÖHLB, B. 76 [1943], 931, 932; vgl. a. CONANT, FIESER, Am. Soc. 46, 1870). — V. In den Blättern von Henna (Lawsonia inermis L.) (Tommasi, G. 50 I, 263). — B. Bei der Einw. von überschüssigem Sauerstoff auf 1.2-Dioxy-naphthalin oder auf 2-Oxy-tetralon-(1) in wäßrig-methylalkoholischer Alkalilauge (STRAUS, BERNOULLY, MAUTNER, A. 444, 189, 194). Zur Bildung durch Oxydation von 1.2.4-Trioxy-naphthalin in alkal. Lösung mit Luft (H 300) vgl. Conant, Fieser, Am. Soc. 46, 1866; zur Bildung durch Behandlung von Naphthochinon-(1.2)-sulfonsäure-(4) mit konz. Schwefelsäure (H 301) vgl. F., Am. Soc. 48, 2929. — Gelbe Nadeln (aus Alkohol, Äther, Eisessig oder Alkohol + etwas Eisessig) (Tommasi; Fieser, Am. Soc. 48, 2930); die rote Farbe mancher Präparate ist auf Verunreinigungen zurückzuführen (F., Am. Soc. 50, 439 Anm. 1). F: ca. 192° (Zers.) (F., Am. Soc. 48, 2930), 192—195° (Zers.) (T., G. 50 I, 263). Leicht löslich in Alkohol, Äther, Methanol und Aceton, löslich in Chloroform, Eisessig und Essigester, fast unlöslich in Petroläther, Benzol, Tetrachlor-kohlenstoff und Schwefelsäure mit orangeroter Farbe (T., G. 50 I, 264). Normalredoxpotential bei 25° in 0,5n-Salzsäure in 50% igem Alkohol: + 0,357 V, in 95% igem Alkohol: + 0,352 V C., F., Am. Soc. 46, 1867).

$$\nabla. \bigcirc_{O \cdot \mathbf{R}}^{O} \quad \forall I. \bigcirc_{O \cdot \mathbf{R}}^{O} \cdot O \cdot \mathbf{R} \quad \forall II. \bigcirc_{O \cdot \mathbf{R}}^{O} \cdot \mathbf{R} \quad \forall III. \bigcirc_{O : \mathbf{S}}^{\mathbf{N}}$$

2-Oxy-naphthochinon-(1.4) oxydiert in Chloroform-Lösung 2-Amino-naphthol-(1)-sulfonsäure-(4), aber nicht Schwefeldioxyd, Jodwasserstoff, Leukomethylenblau und Leukomalachitgrün (Dimboth, Hilcken, B. 54, 3054). Wird außer durch Zinn und Salzsäure (H 301) auch durch Zinkstaub und Eisessig auf dem Wasserbad zu 1.2.4-Trioxy-naphthalin reduziert (Tommasi, G. 50 I, 267). Beim Erhitzen mit Zinkstaub und Acetanhydrid entsteht 1.2.4-Trioacetoxy-naphthalin (T., G. 50 I, 268). Das Silbersalz gibt mit Methyljodid ohne Lösungsmittel oder in äther. Lösung 4-Methoxy-naphthochinon-(1.2) (Formel V; R = CH₃) und geringere Mengen 2-Methoxy-naphthochinon-(1.4) (Formel VI; R = CH₃) (Fieser, Am. Soc. 48, 2930, 2935; vgl. Sachs, Berthold, Zaar, C. 1967 I, 1130); reagiert analog mit Äthýlbromid, Äthyljodid und Butyljodid, während bei der Umsetzung mit Isopropyljodid hauptsächlich 2-Isopropyloxy-naphthochinon-(1.4) neben teerigen Produkten erhalten wird (F., Am. Soc. 48, 2933, 2935); bei den Umsetzungen mit Allylbromid oder -jodid und mit Benzylbromid bilden sich neben den Äthern vom Typus V und VI beträchtliche Mengen 3-Oxy-2-allyl (bzw. benzyl)-naphthochinon-(1.4) (Formel VII; R = CH₂·CH:CH₂ bzw. CH₂·C₂H₅) (F., Am. Soc. 48, 3202, 3206); Cinnamylchlorid, Benzhydrylchlorid und Triphenylchlormethan geben ausschließlich

Verbindungen vom Typus VII, γ . γ -Dimethyl-allylbromid und Benzhydrylbromid liefern die Typen VI und VII (F., Am. Soc. 48, 3202, 3206; 49, 860). Bei der Umsetzung des Silbersalzes mit β-Butenylbromid CH₂·CH·CH·CH·Br erhält man die β-Butenyläther der Typen V und VI und 3-Oxy-2-[α-methyl-allyl]-naphthochinon-(1.4) [Formel VII auf S. 344; R = CH(CH₂)·CH: CH₂] (F., Am. Soc. 49, 858, 861). 2-Oxy-naphthochinon-(1.4) gibt beim Kochen mit 3-iger methylalkoholischer Salzsäure sowie beim Behandeln mit Diazomethan in Äther 2-Methoxy-naphthochinon-(1.4) (F., Am. Soc. 48, 2932). Liefert beim Kochen mit Benzhydrol und etwas konz. Schwefelsäure in Eisessig 3-Oxy-2-benzhydryl-naphthochinon-(1.4) (F., Am. Soc. 48, 3212). Bei der Kondensation mit 2-Amino-thiophenol entsteht 3.4-Benzo-phenthiazon-(2) (Formel VIII auf S. 344; Syst. Nr. 4228) (Stahrfoss, Helv. 8, 136). Über Bildung von Azin-und Oxazin-Farbstoffen durch Kondensation mit arylierten o-Diaminen und mit o-Oxy-aminen und deren N-Arylderivaten (H 301) vgl. z. B. Kehrmann, Grillet, Borgeaud, Helv. 9, 868; K., Perrot, Helv. 10, 58; Goldstein, Radovanovitoh, Helv. 9, 961; G., Warnéex, Helv. 11, 251.

Helv. 10, 58; Goldstein, Radovanovitch, Helv. 9, 961; G., Warnery, Helv. 11, 251.

Fällungsreaktionen mit Metallsalzen: Tommasi, G. 50 I, 264. — Silbersalz AgC₁₀H₅O₃.

Darst.: Fieser, Am. Soc. 48, 2930. — Calciumsalz Ca(C₁₀H₅O₃)₂ + 2H₂O. Rote Nadeln (aus Wasser) (T., G. 50 I, 265).

Derivate des 2-Oxy-naphthochinons-(1.4).

2-Methoxy-naphthochinon-(1.4) C₁₁H₈O₃, s. nebenstehende Formel.
Die H 302 unter dieser Formel beschriebene Verbindung von Sachs, Berthold, Zaab (C. 1907 I, 1130) war ein eutektisches Gemisch aus 4-Methoxy-naphthochinon-(1.2) und 2-Methoxy-naphthochinon-(1.4) (Fieser, Am. Soc. 48, 2924, 2930). — B. Wird aus 2-Oxy-naphthochinon-(1.4) beim Kochen mit 3% iger methylalkoholischer Salzsäure und beim Behandeln mit Diazomethan in Äther als einziges Reaktionsprodukt erhalten (Fieser, Am. Soc. 48, 2932). Entsteht bei der Einw. von Methyljodid auf das Silbersalz des 2-Oxy-naphthochinons-(1.4) ohne Lösungsmittel oder in Alkohol oder Äther neben überwiegenden Mengen 4-Methoxy-naphthochinon-(1.2) (F., Am. Soc. 48, 2930, 2935; vgl. S., B., Z.). Entsteht auch beim Kochen von 4-Methoxy-naphthochinon-(1.2) ir., Am. Soc. 48, 2931). Trennung von 4-Methoxy-naphthochinon-(1.2): F., Am. Soc. 48, 2923, 2930, 2935. — Gelbe Nadeln (aus Wasser). F: 183,5° (F., Am. Soc. 48, 2932). Schwer löslich in Wasser, ziemlich schwer in Alkohol, ziemlich leicht in Benzol. Löst sich in NaHSO₃-Lösung. Normalredoxpotential in neutraler wäßrig-alkoholischer Phosphatpuffer-Lösung bei 25°: +0,353 V (F., Am. Soc. 50, 442). — Ziemlich beständig gegen wäßrig-alkoholische Salzsäure (F., Am. Soc. 48, 2925, 2932). Liefert beim Kochen mit p-Toluidin in Eisessig 2-p-Toluidino-naphthochinon-(1.4) (Syst. Nr. 1874) (F., Am. Soc. 48, 2933).

2-Äthoxy-naphthochinon-(1.4) C₁₂H₁₀O₃=C₆H₄ CO·C·O·C₂H₅. Die H 302 als 2-Äthoxy-naphthochinon-(1.4) beschriebene Verbindung war 4-Äthoxy-naphthochinon-(1.2) (vgl. E I 633, 635); das E I 635 als 2-Äthoxy-naphthochinon-(1.4) beschriebene, bei 98° schmelzende Präparat war ein Gemisch aus 4-Äthoxy-naphthochinon-(1.2) und 2-Äthoxy-naphthochinon-(1.4) (FIESER, Am. Soc. 48, 2924, 2933). — B. Beim Kochen von 2-Oxy-naphthochinon-(1.4) mit 3% iger alkoholischer Salzsäure (F., Am. Soc. 48, 2934). Neben überwiegenden Mengen 4-Äthoxy-naphthochinon-(1.2) bei der Einw. von Äthyljodid auf das Silbersalz des 2-Oxy-naphthochinons-(1.4) ohne Lösungsmittel oder in Äther (F., Am. Soc. 48, 2933, 2935; vgl. MILLER, Ж. 48, 446; 47, 1539; C. 1911 II, 283; 1916 II, 227). — Hellgelbe Nadeln (aus Wasser). F: 120° (F., Am. Soc. 48, 2934). Schwer löslich in siedendem Wasser; ziemlich leicht in Benzol. Schr schwer löslich in NaHSO₃-Lösung. Redoxpotential in wäßrig-alkoholischer Phosphatpuffer-Lösung bei 25°; F., Am. Soc. 50, 442. — Wird durch wäßrig-alkoholische Salzsäure nicht hydrolysiert (F., Am. Soc. 48, 2925).

2 - Propyloxy - naphthechinon - (1.4) $C_{13}H_{12}O_3 = C_6H_4 < \begin{array}{c} \text{CO} \cdot \text{C} \cdot \text{O} \cdot \text{CH}_2 \cdot C_2H_5 \\ \text{CO} \cdot \text{CH} \end{array}$. B. Automorphisms B.

2-Oxy-naphthochinon-(1.4) durch Einw. von Propylalkohol und Chlorwasserstoff oder, neben überwiegenden Mengen 4-Propyloxy-naphthochinon-(1.2), durch Einw. von Propyljodid auf das Silbersalz (FIESER, Am. Soc. 50, 459). — Hellgelbe Nadeln (aus Ligroin oder Wasser). F: 91°. Redoxpotential in wäßrig-alkoholischer Phosphatpuffer-Lösung bei 25°: F., Am. Soc. 50, 442.

2 - Butyloxy - naphthochinon - (1.4) $C_{14}H_{14}O_3 = C_6H_4 CO \cdot C \cdot O \cdot [CH_2]_3 \cdot CH_3$. B. Aus

2-Oxy-naphthochinon-(1.4) durch Einw. von Butylalkohol und konz. Schwefelsäure oder, neben überwiegenden Mengen 4-Butyloxy-naphthochinon-(1.2), bei der Umsetzung des Silbersalzes mit Butyljodid in Äther (FIESER, Am. Soc. 48, 2935, 2936). — Braungelbe Nadeln (aus Ligroin). F: 105,6°. Löst sich nicht in kalter NaHSO₃-Lösung. Redoxpotential in wäßrig-alkoholischer Phosphatpuffer-Lösung bei 25°: F., Am. Soc. 50, 442.

346

2-Allyloxy-naphthochinon-(1.4) $C_{12}H_{10}O_3 = C_0H_4$ $CO \cdot C \cdot O \cdot CH_2 \cdot CH \cdot CH_2$. B. Neben über-

wiegenden Mengen isomerer Verbindungen bei der Einw. von Allylbromid in siedendem Benzol oder von Allyljodid in kaltem Benzol auf das Silbersalz des 2-Oxy-naphthochinons-(1.4) (Fiesze, Am. Soc. 48, 3206, 3207). In ca. 20% iger Ausbeute beim Kochen von 2-Oxy-naphthochinon-(1.4) mit 3% iger allylalkoholischer Salzsäure (F.). — Hellgelbe Nadeln (aus Ligroin oder verd. Alkohol). F: 98,5°. — Lagert sich beim Erhitzen auf 135° im Stickstoffstrom in 3-Oxy-2-allyl-naphthochinon-(1.4) um.

2- β -Butenyloxy-naphthochinon-(1.4) $C_{14}H_{12}O_3=C_6H_4$ $CO \cdot C \cdot O \cdot CH_2 \cdot CH \cdot CH \cdot CH_3$. B. Neben überwiegenden Mengen isomerer Verbindungen bei der Einw. von β -Butenylbromid auf

das Silbersalz des 2-Oxy-naphthochinons-(1.4) in Ather (Fieser, Am. Soc. 48, 861). — Hellgelbe Nadeln (aus Ligroin). F: 137°. Schwer löslich in Petroläther, mäßig in Ligroin, leicht in Benzol und Alkohol. — Wird durch siedende Natronlauge nur langsam unter teilweiser Zersetzung verseift. Lagert sich beim Erhitzen auf 140° in 3-Oxy-2-[α-methyl-allyl]-naphthochinon-(1.4) um.

2 - $[\gamma \cdot \gamma$ - Dimethyl - allyloxy] - naphthochinon - (1.4) $C_{15}H_{14}O_3 =$

 $\begin{array}{c} \text{CO} \cdot \text{C} \cdot \text{O} \cdot \text{CH}_3 \cdot \text{CH} : \text{C}(\text{CH}_3)_3 \\ \text{CO} \cdot \text{CH} \end{array} = \\ \begin{array}{c} \text{CO} \cdot \text{C} \cdot \text{O} \cdot \text{CH}_3 \cdot \text{CH} : \text{C}(\text{CH}_3)_3 \\ \text{OO} \cdot \text{CH} \end{array} = \\ \begin{array}{c} B. \text{ In geringer Menge bei der Einw. von } \gamma \cdot \gamma \cdot \text{Dimethyl-} \end{array}$

allylbromid auf das Silbersalz des 2-Oxy-naphthochinons-(1.4) in Äther bei 0° , neben 3-Oxy-2- $[\gamma,\gamma$ -dimethyl-allyl]-naphthochinon-(1.4) (FIESER, Am.Soc. 49, 860). — Hellgelbe Nadeln (aus Ligroin). F: 149—150°. Mäßig löslich in Ligroin. Löst sich nicht in NaHSO₃-Lösung.

2-Benzyloxy-naphthochinon-(1.4) $C_{17}H_{13}O_3 = C_6H_4 < \begin{array}{c} \text{CO} \cdot \text{C} \cdot \text{O} \cdot \text{CH}_2 \cdot \text{C}_6H_5 \\ \text{CO} \cdot \text{CH} \end{array}$. B. Neben über-

wiegenden Mengen isomerer Verbindungen bei der Einw. von Benzylbromid auf das Silbersalz des 2-Oxy-naphthochinons-(1.4) in siedendem Benzol (FIRSER, Am. Soc. 48, 3211). — Hellgelbe Nadeln (aus wäßrig-alkoholischer Salzsäure). F: 145°.

2 - Benzhydryloxy - naphthochinon - (1.4) $C_{23}H_{16}O_{3} = C_{6}H_{4} CO \cdot CH(C_{6}H_{5})_{3}$ en 3-Oxy-2-henzhydryl-naphthochinon (4.4)

Neben 3-Oxy-2-benzhydryl-naphthochinon-(1.4) bei der Einw. von Diphenylbrommethan auf das Silbersalz des 2-Oxy-naphthochinons-(1.4) bei Gegenwart von Natriumcarbonat in Benzol (FIESER, Am. Soc. 48, 3211). — Hellgelbe Krystalle (aus Benzol). F: 150—151°. Schwer löslich in Alkohol, leicht in Benzol. — Beständig gegen wäßrig-alkoholische Salzsäure; wird beim Kochen mit Alkalilaugen hydrolysiert.

- 2 Acetoxy naphthechinon (1.4) $C_{11}H_8O_4 = C_6H_4$ $CO \cdot C \cdot O \cdot CO \cdot CH_8$ (H 302). Gelbe eln (aus Schwefelkoblenstoff). Fr. 490, 4906 (T Nadeln (aus Schwefelkohlenstoff). F: 128—130° (Tommasi, G. 50 I, 266).
- 2-Oxy-naphthochinon-(1.4)-imid-(4) bzw. 4-Amino-naphthochinon-(1.2) C₁₀H₇O₂N, Formel I bzw. II (H 302; E I 636). B. Bei der Einw. von Natriumazid auf Naphthochinon-(1.2) in verd. Essigsäure bei 30—40° (Korczynski, Bl. [4] 35, 1191; vgl. Firser, Hartwell, Am. Soc. 57 [1935], 1482). Über die Bildung von Oxazinfarbstoffen durch Kondensation mit o-Oxy-aminen (H 302) vgl. noch Kehrmann, Grillet, Borgeaud, Helv. 9, 867; Goldstein, Radovanovitch, Helv. 9, 779, 961. Gibt mit 2-Amino-tholphenol-hydrochlorid in siedender 80% iger Essigsåure 3.4-Benzo-phenthiazon-(2)-imid (Formel III; Syst. Nr. 4347), das Disulfid des 2-[2-Mercapto-anilino]-naphthochinons-(1.4) (Formel IV, Syst. Nr. 1874) und das Disulfid des 3.4-Benzo-phenthiazon-(2)-[2-mercapto-anils] (Stahrfoss, Helv. 3, 137; 4, 273, 654); beim Erhitzen mit 2-Amino-thiophenol in alkoh, Kalilauge auf 140° im Rohr entsteht die Verbindung der Formel IV als Hauptprodukt (St., Helv. 4, 654).

I.
$$\bigcirc$$
 OH II. \bigcirc III. \bigcirc IV. \bigcirc NH \cdot C, H₄ \cdot S \bigcirc NH \cdot C, H₄ \cdot S \bigcirc S

2-0xy-naphthechinon-(1.4)-acetimid-(4) bzw. 4-Acetamino-naphthechinon-(1.2) $C_{12}H_0O_2N$, Formel V auf S. 347 bzw. desmotrope Form (H 303; E I 636). Kondensation mit Aminooxy-Verbindungen: Kehrmann, Grillet, Borgeaud, Helv. 9, 871; Goldstein, RADOVANOVITCH, Helv. 9, 780.

(S. 343) (FIESER, Am. Soc. 48, 2931).

2-OXY-NAPHTHOCHINON-(1.4)-IMID-(4); JUGLON

2 - Methoxy - maphthochinon - (1.4) - semicarbazon - (4) $C_{12}H_{11}O_{2}N_{3} = C_{0}CO - C \cdot O \cdot CH_{3}$ (H 304). Die von Sachs, Beethold, Zaar (C. 1907 I, 1130) so formulierte Verbindung war vielleicht 4-Methoxy-naphthochinon-(1.2)-monosemicarbazon

3-Chlor-2-oxy-naphthechinon-(1.4) C₁₀H₈O₃Cl, Formel VI (H 304). Zur Konstitution vgl. die Angaben bei 2-Oxy-naphthochinon-(1.4), S. 344. — B. Beim Kochen von 3-Chlor-1-nitrosonaphthol-(2) (E II 7, 650) mit Eisessig und konz. Salzsäure (Marschalk, Bl. [4] 45, 658). Aus 3-Chlor-2-amino-naphthochinon-(1.4) (Syst. Nr. 1874) durch Kochen mit verd. Natronlauge (Fries, Ochwar, B. 56, 1296). — Redoxpotential in wäßrig-alkoholischer Salzsäure verschiedener Konzentration bei 25°: COMANT, FIESER, Am. Soc. 46, 1867.

3 - Chlor - 2 - äthoxy - naphthochinon-(1.4) $C_{12}H_0O_3Cl = C_0H_4 < CO \cdot CC_2H_5 < CO \cdot CC_2H_5$ (H 305). B.

Aus dem Silbersalz des 3-Chlor-2-oxy-naphthochinons-(1.4) beim Kochen mit Äthyljodid (FIESER, Am. Soc. 48, 2936). — Gelbe Nadeln (aus Ligroin, Methanol oder Benzol + Petroläther). F: 97—98°. Sehr leicht löslich in Alkohol und Benzol, leicht in Ligroin.

3 - Chlor - 2 - acetoxy - naphthochinon - (1.4) $C_{12}H_7O_4Cl = C_6H_4$ $CO \cdot CO \cdot CO \cdot CH_8$ $CO \cdot CCl$

Beim Erhitzen einer alkoh. Suspension von 2.3-Dichlor-naphthochinon-(1.4) mit Natrium-acetat (Fries, Ochwat, B. 56, 1300). — Gelbe Nadeln (aus Alkohol). F: 98°. Leicht löslich in Benzin und Benzol, löslich in Alkohol.

- 3.6.7 Tribrom 2 oxy -naphthochinon-(1.4) C₁₀H₃O₃Br₃, Formel VII. Zur Konstitution vgl. die Angaben bei 2-Oxy-naphthochinon-(1.4) (S. 344). B. Aus 2.3.6.7-Tetrabrom-naphthochinon-(1.4) beim Erhitzen mit wäßrig-alkoholischer Kalilauge (Kohn, Schwarz, M. 46, 352). Dunkelgelbe Prismen (aus Essigester). F: 253—254°. Kaliumsalz. Rot. Schwer löslich. Anilinsalz s. Syst. Nr. 1598.
- 2 Äthylmercapto naphthochinon (1.4) $C_{12}H_{10}O_2S$, Formel VIII. B. Neben 4-Oxo-1.1-bis-āthylsulfon-1.4-dihydro-naphthalin durch Behandlung von Naphthochinon-(1.4) mit Äthylmercaptan und Chlorwasserstoff in Eisessig bei Gegenwart von wenig konz. Schwefelsäure und Öxydation des Reaktionsproduktes mit Permanganat in essigsaurer Lösung (Récsei, B. 60, 1840). Gelbe Nadeln (aus wäßr. Aceton). F: 142°. Schwer löslich in Äther und Benzin.

Thioschwefelsäure - S - [naphthochinon - (1.4) - yl - (2) - ester], 1.4-Naphthochinon-2-thiosulfonsäure $C_{10}H_4O_5S_2 = C_6H_4 CO \cdot C \cdot S \cdot SO_3H$. B. Das Kaliumsalz entsteht bei

der Oxydation von [1.4-dioxy-naphthyl-(2)]-thioschwefelsaurem Kalium mit Kaliumferricyanid in Wasser (Heller, J. pr. [2] 108, 274). — Kaliumsalz KC₁₀H₅O₅S₂. Gelbe Prismen (aus Wasser). Löst sich in Alkohol mit gelber Farbe; bei längerem Erhitzen entsteht ein violettes Produkt, das aus Benzol in braunen Nadeln vom Schmelzpunkt 290° krystallisiert. Bei der Reduktion bilden sich gelbliche schwefelhaltige Nadeln vom Schmelzpunkt 134°, die sich in Alkalilaugen mit roter Farbe lösen. Gibt mit p-Toluidin in Wasser 2-p-Toluidino-naphthochinon-(1.4).

6. 5-Oxy-naphthochinon-(1.4), Juglon, Nucin C₁₀H₄O₃, s. nebenstehende Formel (H 308; E I 636). Ultraviolett-Absorptionsspektrum in alkal. Na₂SO₃-Lösung: Moie, Soc. 1927, 1811. Normalredoxpotential in 0,5 n · Salzsäure in 50% igem Alkohol bei 25°: +0,452 V (Conant, Fieser, Am. Soc. 46, 1867).— Juglon oxydiert 2-Amino-naphthol-(1)-sulfonsäure-(4) und Leukomethylenblau (Dimeote, Hilchen, B. 54, 3054). Das von Myllus (B. 18, 474) beschriebene Produkt der Zusammensetzung C₂₆H₁₆O₇ (H 309, Z. 22 v. o.) entsteht auch beim Aufbewahren einer Lösung von Juglon in heißem Eisessig (Wheeler, Dawson, McEven, Am. Soc. 45, 1971). — Wird durch gärende Hefe zu Hydrojuglon reduziert (Lüers, Mengele, Bio. Z. 179, 244). —

Syst. Nr. 778

Alkoholische Lösungen von Juglon geben mit Nickelacetat-Lösung infolge Bildung des Nickelsalzes intensiv violette Niederschläge oder Färbungen; die Reaktion tritt noch bei Anwendung von 0,0006 %iger Nickelacetat-Lösung ein und kann zum Nachweis von Juglon und von Nickel dienen (CIUSA, Ann. Chim. applic. 16, 127; C. 1926 II, 571). — Ni(C₁₀H₅O₃)₂ + 1,5 H₂O. Violette Nadeln (aus verd. Alkohol) (CIUSA).

2-Chlor-5-oxy-naphthechinon-(1.4), 2-Chlor-jugion C₁₀H₅O₅Cl, Formel I (E I 637). B. Beim Erwärmen von 2-Brom-5-oxy-naphthechinon-(1.4) mit alkoh. Salzsäure (Wheeler, Naiman, Am. Soc. 44, 2332). — Hellbraune Nadeln (aus Alkohol). F: 164°.

- 2.3-Dichlor-5-oxy-naphthochinon-(1.4), 2.3-Dichlor-juglon C₁₀H₄O₂Cl₂, Formel II (E I 637). B. Beim Erhitzen von 2.3-Dibrom-5-oxy-naphthochinon-(1.4) mit alkoh. Salzsäure (Wheeler, Naiman, Am. Soc. 44, 2333). F: 153° (Wh., N.). Liefert beim Koohen mit wäßrig-alkoholischer Natronlauge sowie beim Behandeln mit Natriumäthylat in Benzol 3-Chlor-2.5(oder 2.8)-dioxy-naphthochinon-(1.4) (Wh., Dawson, McEwen, Am. Soc. 45, 1973, 1974). Beim Koohen mit Anilin in Alkohol entsteht 3-Chlor-2-anilino-5-oxy-naphthochinon-(1.4) (Wh., D., McE.). Natriumsalz NaC₁₀H₂O₂Cl₂. Blau. Schwer löslich in Alkohol, löslich in Wasser mit tief violetter Farbe (Wh., D., McE.). Färbt Wolle und Seide ziemlich lichtbeständig braun.
- 2-Brom-5-oxy-naphthochinon-(1.4), 2-Brom-jugion $C_{10}H_zO_3$ Br, Formel III (E I 637). Zur Bildung durch Kochen von 2.3-Dibrom-1.4.5-trioxy-naphthalin mit Alkohol vgl. Wheeler, Naiman, Am. Soc. 44, 2332. Liefert beim Erwärmen mit alkoh. Salzsäure 2-Chlor-5-oxy-naphthochinon-(1.4). Beim Erhitzen mit Brom in Eisessig erhält man 2.3-Dibrom-5-oxy-naphthochinon-(1.4).
- 2.3 Dibrom 5 oxy- naphthochinon (1.4), 2.3 Dibrom jugion $C_{10}H_4O_3Br_8$, Formel IV. B. Durch Erhitzen von 2-Brom-5-oxy-naphthochinon-(1.4) mit Brom in Eisessig (Wheeler, Naiman, Am. Soc. 44, 2333). Bronzefarbene Nadeln (aus Tetrachlorkohlenstoff). F: 169°. Liefert beim Erhitzen mit alkoh. Salzsäure 2.3-Dichlor-5-oxy-naphthochinon-(1.4). Beim Behandeln mit wäßrig-alkoholischer Natronlauge erhält man 3-Brom-2.5(oder 2.8)-dioxy-naphthochinon-(1.4).
- 2.3 Dibrom 5 acetoxy naphthochinon (1.4) $C_{12}H_{e}O_{4}Br_{s} = CH_{s} \cdot CO \cdot O \cdot C_{10}H_{s}Br_{s}(:O)_{s}$. Beim Kochen von 2.3-Dibrom-5-oxy-naphthochinon-(1.4) mit Acetanhydrid (Wheeler, Naiman, Am. Soc. 44, 2333). Gelbe Nadeln (aus Alkohol oder Eisessig). F: 172°.
- 8-Chlor-2.3-dibrom-5-acetoxy-naphthochinon-(1.4) C₁₂H₅O₄ClBr₂, Formel V. B. Beim Kochen von 8-Chlor-2.3-dibrom-5-oxy-naphthochinon-(1.4) (E I 637) mit Acetanhydrid (Wherler, Andrews, Am. Soc. 43, 2586). Gelbliche Prismen (aus Alkohol). F: 159,5—160°. Sehr leicht löslich in Eisessig und Äther.

$$V. \underbrace{\begin{array}{c} Cl & O \\ \vdots & O \\ CH_{2} \cdot OO \cdot O \end{array}}_{CBr} \underbrace{\begin{array}{c} Br & O \\ \vdots & Br \\ \end{array}}_{Br} \underbrace{\begin{array}{c} Br & O \\ \vdots & Br \\ \end{array}}_{Br} \underbrace{\begin{array}{c} VIII. \\ BO \\ \vdots & O \\ \end{array}}_{D} \underbrace{\begin{array}{c} O \\ \vdots \\ BO \\ \end{array}}_{D} \underbrace{\begin{array}{c} O \\ \vdots \\ O \\$$

- 2.3.8-Tribrom-5-oxy-naphthochinon-(1.4), 2.3.8-Tribrom-juglon C₁₀H₂O₂Br₃, Formel VI (E I 637). Liefert bei der Reduktion mit Zinkstaub und verd. Schwefelsäure in Äther 2.3.8-Tribrom-1.4.5-trioxy-naphthalin (Wheeler, Andrews, Am. Soc. 43, 2585). Spaltet beim Kochen mit Alkohol Brom ab. Liefert beim Erhitzen mit wäßrig-alkoholischer Natronlauge x-Dibrom-x-dioxy-naphthochinon-(x) (S. 464). Das Natriumsalz liefert beim Kochen mit Methyljodid in Methanol x-Dibrom-x-oxy-x-methoxy-naphthochinon-(x) (S. 464). Beim Kochen mit Anilin in Alkohol entsteht x-Dibrom-x-anilino-x-oxy-naphthochinon-(x); analog verläuft die Reaktion mit 4-Brom-anilin und mit o- und p-Toluidin; mit 4-Nitro-anilin erhält man eine Verbindung vom Schmelzpunkt 159,5—169° (gelbe Nadeln aus Aceton). Das Natriumsalz liefert mit diazotiertem Anilin bei 0° einen bei 145—147° schmelzenden roten Azofarbstoff.
- 7. 6-Oxy-naphthochinon -(1.4) C₁₀H₄O₂, Formel VII (E I 638). Zur Bildung durch Oxydation von 4-Amino-1.6-dioxy-naphthalin mit Eisenchlorid (E I 638) vgl. DIMBOTH, Roos, A. 456, 185. Liefert beim Erwärmen mit 66%iger Salpetersäure in Eisessig 5-Nitro-6-oxy-naphthochinon-(1.4).
- 5-Nitro-6-axy-naphthochinon-(1.4) C₁₀H₅O₅N, Formel VIII. B. Beim Erwärmen von 6-Oxy-naphthochinon-(1.4) mit 66% iger Salpetersäure in Eisessig (Dinaorn, Roos, A. 456, 186). Gelbe Nadeln (aus Eisessig). Liefert beim Erwärmen mit Zinn(II)-chlorid und konz. Salzsäure auf 60° und folgenden Behandeln mit Eisenchlorid in Wasser 5.6-Dioxy-naphthochinon-(1.4).

2. Oxy-oxo-Verbindungen $C_{11}H_8O_3$.

- 1. 1 Phenyl cyclopenten (1) ol (2) dion (3.5) $C_{11}H_8O_3 = OC \cdot C(OH)$ $C \cdot C_8H_8$ ist desmotrop mit 1-Phenyl-cyclopentantrion-(2.3.5), E II 7, 832.
- 2. 2.3-Dioxy-1-formyl-naphthalin, 2.3 Dioxy naphthaldehyd (1) C₁₁H₈O₃, Formel I. B. Beim Einleiten von Chlorwasserstoff in ein Gemisch aus 2.3-Dioxy-naphthalin, wasserfreier Blausäure, Zinkchlorid und Äther und Kochen des Reaktionsproduktes mit Wasser (MORGAN, VINING, Soc. 119, 179, 181). Gelbe Prismen (aus verd. Alkohol oder Benzol). F: 133,5—134,5°. Ziemlich schwer löslich. Das 4-Brom-phenylhydrazon schmilzt bei 200° (Zers.).
- 3. 2.4-Dioxy-1-formyl-naphthalin, 2.4-Dioxy-naphthaldehyd-(1) C₁₁H₈O₂, Formel II. B. Analog der vorangehenden Verbindung aus 1.3-Dioxy-naphthalin (Morgan, Vining, Soc. 119, 180). Nadeln (aus Benzol + Petroläther). F: 214°. Ziemlich leicht löslich in Wasser, Alkohol und Benzol. Das 4-Brom-phenylhydrazon schmilzt bei 165,5—166,5°.

- 4. 2.5-Dioxy-1-formyl-naphthalin, 2.5-Dioxy-naphthaldehyd-(1) $C_{11}H_8O_3$, Formel III. B. s. im Artikel 4.7-Dioxy-naphthaldehyd-(1), S. 350. Hellgelbe Nadeln. Wird bei 190° dunkel und zersetzt sich bei 225—230° (Morgan, Vining, Soc. 119, 185). Leicht löslich in Alkohol und Äther, schwer in Wasser, Chloroform und Benzol. Das 4-Bromphenylhydrazon schmilzt bei 206—207° (Zers.).
- 5. 2.6-Dioxy-1-formyl-naphthalin, 2.6-Dioxy-naphthaldehyd-(1) $C_{11}H_8O_3$, Formel IV (H 310). Dunkelgelbe Prismen (aus Benzol). F: 189—190° (Morgan, Vining, Soc. 119, 183). Das 4-Brom-phenylhydrazon schmilzt bei 194—195° (Zers.).
- 6. 2.7-Dioxy-1-formyl-naphthalin, 2.7-Dioxy-naphthaldehyd-(1) C₁₁H₈O₃, Formel V. Die von Gattermann (A. \$57, 342) als 2.7-Dioxy-naphthaldehyd-(1) beschriebene Verbindung (H 310) ist wahrscheinlich 4.7-Dioxy-naphthaldehyd-(1) (S. 350) gewesen (Morgan, Vining, Soc. 119, 184).—B. Beim Einleiten von Chlorwasserstoff in ein Gemisch aus 2.7-Dioxy-naphthalin, wasserfeier Blausäure, Zinkchlorid und Äther und Kochen des Reaktionsprodukts mit Wasser (M., V., Soc. 119, 183).— Hellgelbe Nadeln (aus Benzol), F: 159,5—160,5° oder hellgelbe Nadeln mit 0,5 H₂O (aus Wasser), F: 156,5—158,5°.— Das 4-Brom-phenyl-hydrazon schmilzt bei 202—203° (Zers.).

- 7. 2.8-Dioxy-1-formyl-naphthalin, 2.8-Dioxy-naphthaldehyd-(1) C₁₁H₈O₃, Formel VI. B. Analog der vorangehenden Verbindung aus 1.7-Dioxy-naphthalin (Morgan, Vining, Soc. 119, 186). Gelbe Schuppen (aus Alkohol). F: 203—204° (Zers.). Leicht löslich in Alkohol und Äther, schwer in Benzol und siedendem Wasser. Das 4-Brom-phenyl-hydrazon schmilzt bei 206—207° (Zers.).
- 8. 3.4-Dioxy-1-formyl-naphthalin, 3.4-Dioxy-naphthaldehyd-(1) C₁₁H₈O₃, Formel VII. B. Analog den vorangehenden Verbindungen aus 1.2-Dioxy-naphthalin (MORGAN, VINING, Soc. 119, 179). Hellgelbe Nadeln (aus Äther + Petroläther). F: 178—180°. Das 4-Brom-phenylhydrazon schmilzt bei 137—138°.
- 9. 4.5-Dioxy-1-formyl-naphthalin, 4.5-Dioxy-naphthaldehyd-(1) C₁₁H₈O₂, Formel VIII. B. Neben geringeren Mengen 1.8-Dioxy-naphthaldehyd-(2) beim Einleiten von Chlorwasserstoff in ein Gemisch aus 1.8-Dioxy-naphthalin, wasserfreier Blausäure, Zinkchlorid

und Äther und Kochen des Reaktionsprodukts mit Wasser (MORGAN, VINING, Soc. 119, 482; HELLER, KRETZSCHMANN, B. 54, 1105). — Gelbe Nadeln (aus Wasser oder verd. Alkohol). Wird bei 150—160° dunkel und schmilzt bei 164—166° (Zers.) (M., V.); wird ab 110° grün, dann dunkler und bei 170° schwarz (H., KB.). Leicht löslich in siedendem Wasser, Benzol, Äther und Alkohol, unlöslich in Petroläther (M., V.). Löst sich in konz. Schwefelsäure mit gelbbrauner, bei längerem Aufbewahren in Grün übergehender Farbe (H., KR.). Gibt mit Eisenchlorid in Alkohol einen olivgrünen Niederschlag (H., KR.). — Verändert sich bei längerem Kochen mit Wasser oder Benzol (M., V.). — Das Phenylhydrazon schmilzt nicht bis 285° (H., KR.); das 4-Brom-phenylhydrazon schmilzt bei 180° (Zers.) (M., V.).

- 10. 4.6 Dioxy 1 formyl naphthalin, 4.6 Dioxy naphthaldehyd (1) $C_{11}H_2O_3$, Formel IX. B. Analog den vorangehenden Verbindungen aus 1.7-Dioxy-naphthalin (Morgan, Vining, Soc. 119, 186). Gelbe Nadeln (aus Wasser). Zersetzt sich bei 265—270°. Leicht löslich in Äther, schwer in Alkohol, unlöslich in Benzol. Das 4-Brom-phenylhydrazon schmilzt bei 205—206° (Zers.).
- 11. 4.7 Dioxy 1 formyl naphthalin, 4.7 Dioxy naphthaldehyd (1) C₁₁H₈O₃, Formel X. Diese Konstitution kommt wahrscheinlich der von Gattermann (A. 357, 342) als 2.7-Dioxy-naphthaldehyd-(1) angesehenen Verbindung (H 310) zu (Morgan, Vining, Soc. 119, 184). B. Neben geringeren Mengen 2.5-Dioxy-naphthaldehyd-(1) beim Einleiten von Chlorwasserstoff in ein Gemisch aus 1.6-Dioxy-naphthalin, wasserfreier Blausäure, Zinkchlorid und Äther und Kochen des Reaktionsprodukts mit Wasser (M., V., Soc. 119, 184). Gelblichbraune Nadeln mit 1 H₂O (aus Wasser oder Alkohol); wird im Vakuum bei 120—130° wasserfrei. Zersetzt sich bei 218°; wasserhaltige Präparate färben sich von 160° an dunkel. Leicht löslich in siedendem Alkohol, schwerer in heißem Wasser, sehr schwer in Benzol und Chloroform. Das 4-Brom-phenylhydrazon schmilzt bei 185° (Zers.).

- 12. 4.8 Dioxy 1 formyl naphthalin, 4.8 Dioxy naphthaldehyd (1) $C_{11}H_8O_3$, Formel XI (H 310). Das Präparat von Gattermann (A. 357, 341; H 310) war mit 4-Oxy-naphthaldehyd-(1) verunreinigt (Morgan, Vining, Soc. 119, 181). Gelbe Nadeln (aus Wasser). Wird bei 280° schwarz, schmilzt nicht bis 300° (M., V., Soc. 119, 182). Leicht löslich in Äther, ziemlich schwer in anderen Lösungsmitteln. Das 4-Brom-phenylhydrazon schmilzt bei 206° (Zers.).
- 13. 1.4 Dioxy 2 formyl naphthalin, 1.4 Dioxy naphthaldehyd (2) $C_{11}H_8O_3$, Formel XII. B. Beim Einleiten von Chlorwasserstoff in ein Gemisch aus 1.4-Dioxynaphthalin, wasserfreier Blausäure, Äther und Zinkchlorid und Zersetzen des Reaktionsprodukts mit siedendem Wasser (Morgan, Vining, Soc. 119, 180). Grünlichgelbe Nadeln (aus verd. Alkohol oder Wasser). Wird bei 160—1700 dunkel. F: 188—1900. Das 4-Bromphenylhydrazon schmilzt bei 2140 (unter Zersetzung).
- 14. 1.8 Dioxy 2 formyl naphthalin, 1.8 Dioxy naphthaldehyd (2) C₁₁H₈O₂, Formel XIII. B. s. bei 4.5-Dioxy-naphthaldehyd-(1), S. 349. Gelbe Krystalle (aus Petroläther). F: 134—135° (MORGAN, VINING, Soc. 119, 183). Löslich in heißem Wasser, Alkohol, Äther und Benzol, schwer löslich in Petroläther. Das 4-Brom-phenylhydrazon zersetzt sich bei 181°.
- 15. 5 Oxy 2 methyl naphthochinon (1.4), Plumbagin, Ophioxylin C₁₁H_sO₈, s. nebenstehende Formel. Zur Zusammensetzung und Konstitution vgl. Madinaveitia, Gallego, An. Soc. españ. 26, 266; C. 1929 I, 662; Katti, Patwardhan, J. indian Inst. Sci. [A] 15, 9; C. 1922 II, 1459; de Buruaga, Verdú, An. Soc. españ. 32, 830; C. 1935 I, 3146; Fieser, Ho Ö Dunn, Am. Soc. 58 [1936], 572; Dieterie, Kruta, Ar. 1936, 458.
- V. In den Wurzeln von Plumbago europaea L. (Dulong, Journal de Pharmacie 14 [1828], 441; Berzelius Jahresb. 9 [1830], 232), von P. coccinea Boiss. (= P. rosea L.) (Greshoff, B. 28 [1890], 3543; vgl. Bettink, R. 8 [1889], 319; Roy, Dutt, J. indian chem. Soc. 5, 419; C. 1928 II, 2256) und von P. zeylanica L. (Flückiger in H. v. Fehlling, Neues Handwörterbuch der Chemie, Bd. V [Braunschweig 1890], S. 723; Roy, Dutt). Findet sich außer in der Wurzel auch in anderen Teilen von P. europaea L. (Madinaveitta, Gallego, An. Soc. españ. 26, 264; C. 1929 I, 662); über Vorkommen in Stengeln und Blättern von P. pulchella Boiss. vgl. Altameano, Armen-

Syst. Nr. 778]

DIRAZ, Pharm. J. [4] 8 [1896], 439. Plumbagin hat such in einer von WITANOWSKI (C. 1935 I, 1069, 1882) aus Drosera rotundifolia L. isolierten, als Droseron bezeichneten Substanz vorgelegen (Differle, Kruta, Ar. 1986, 457). — Isolierung erfolgt durch Extraktion von Plumbago-Wurzeln mit Äther (Madinaveitta, Gallego, An. Soc. españ. 26, 264; C. 1929 I, 662) oder mit Petroläther (Roy, Dutt, J. indian chem. Soc. 5, 421; C. 1928 II, 2256). — Orangegelbe Nadeln (aus verd. Alkohol). F: 78—79° (Fieser, Dunn, Am. Soc. 58, 575), 77° (Dieterle, KRUTA, Ar. 1986, 461). Sublimierbar; mit Wasserdampf flüchtig (BETTINK, R. 8, 320). Löst sich bei 15° in 3280 Tln. Wasser und in 21 Tln. absol. Alkohol, bei Siedetemperatur in 680 Tln. Wasser und in 3 Tln. absol. Alkohol; sehr leicht löslich in Chloroform, Benzol, Schwefelkohlenstoff, Essigester und Eisessig, ziemlich leicht in Äther und Petroläther (B.). Löslich in Alkaliund Erdalkalilaugen, Alkalicarbonat-Lösungen und Ammoniak mit violetter Farbe; die Färbung ist in ammoniakalischer Lösung noch bei einer Verdünnung von 1:200000 sichtbar (B.) und verschwindet bei der Reduktion mit Zinkstaub und bei der Oxydation mit Luft (Ma., G., An. Soc. españ. 26, 266). Gibt mit Kupferacetat in Alkohol einen violetten Niederschlag (B.; Ma., G.). Gibt mit einer Lösung von Pyroboracetat in Acetanhydrid eine orangerote, beim Erwärmen

in Rot übergehende Färbung (Fieser, Dunn, Am. Soc. 56, 574).

Die Angaben von Roy, Dutt (J. indian chem. Soc. 5, 423; C. 1928 II, 2256) und Madinaveitia, Gallego (An. Soc. españ. 26, 269; C. 1929 I, 662) über die Oxydation des Plumbagins sind offenbar irrtümlich (Fieser, Dunn, Am. Soc. 58, 573). Plumbagin gibt bei der Destillation mit Zinkstaub 2-Methyl-naphthalin und andere Produkte (R., D.). — Erzeugt auf der Haut Blasen (R., D.); verd. Lösungen färben die Haut erst gelblich, dann braun bis schwarz (Bettink, R. 8, 320; R., D.; M., G., An. Soc. españ. 26, 264).

Kupfersalz Cu(C₁₁H₇O₃)₂. Violette mikroskopische Prismen (Madinaveitta, Gallego, An. Soc. españ. 26 [1928], 269; vgl. Bettink, R. 8 [1889], 321).

Plumbaginacetat, Acetylplumbagin $C_{13}H_{10}O_4 = CH_3 \cdot CO \cdot O \cdot C_6H_3 \stackrel{CO \cdot C \cdot CH_3}{\sim CO \cdot CH}$. Gelbe Krystalle. F: 117-1180 (FIESER, DUNN, Am. Soc. 58 [1936], 574).

Plumbagin-monoxim $C_{11}H_0O_3N = (HO)(CH_3)C_{10}H_4(:O); N \cdot OH$. B. Beim Erhitzen von Plumbagin mit Hydroxylaminhydrochlorid in Alkohol auf 140° im Rohr (MADINAVEITIA, GALLEGO, An. Soc. españ. 26, 267; C. 1929 I, 662). — Nicht rein erhalten. Krystalle (aus Alkohol). F: 210°. Leicht löslich in siedendem Alkohol, löslich in Ather. — Plumbaginmonoxim hat wahrscheinlich auch in der von Roy, Durr (J. indian chem. Soc. 5, 422; C. 1928 II, 2256) als Plumbagin-dioxim angesehenen Verbindung (F: 2200) vorgelegen (vgl. Fieser, Dunn, Am. Soc. 58 [1936], 573).

3. Oxy-oxo-Verbindungen $C_{12}H_{10}O_{3}$.

1.8-Dioxy-2-acetyl-naphthalin, Methyl-[1.8-dioxy-naphthyl-[2]-keton $C_{12}H_{12}O_{2}$, s. nebenstehende Formel (H 310). Liefert beim Behandeln mit Acetanhydrid je nach den Bedingungen das Monoacetat OH CO · CH₃ oder das Diacetat oder beide Verbindungen nebeneinander (DIMROTH, A. 446, 118). Beim Erwärmen mit Pyroboracetat und Acetanhydrid auf 45° bis 50° erhält man den 1-Diacetylborsäureester (s. u.) (D., A. 446, 117).

8-Acetat, 1-Oxy-8-acetoxy-2-acetyl-naphthalin $C_{14}H_{12}O_4 = CH_3 \cdot CO \cdot O \cdot C_{10}H_5(OH) \cdot CO \cdot CH_3$. Diese Konstitution kommt der H 310 als Diacetat bezeichneten Verbindung zu (DIMROTH, A. 446, 118). — B. Entsteht aus 1.8-Dioxy-2-acetyl-naphthalin beim Kochen mit Acetanhydrid und Natriumacetat als einziges Reaktionsprodukt, beim Behandeln mit Acetanhydrid und wenig konz. Schwefelsäure bei 0° neben dem Diacetat (DIMROTH, A. 446, 118). Bildung aus dem 1-Diacetylborsäureester s. bei diesem. — Grünliche Nadeln (aus Benzol + Petroläther). F: 168—169° (D., A. 446, 117, 118). — Liefert beim Behandeln mit Pyroboracetat und Acetanhydrid den entsprechenden Diacetylborsäureester (S. 352).

Diacetat, 1.8 - Diacetoxy - 2 - acetyl - naphthalin $C_{16}H_{14}O_5 = (CH_3 \cdot CO \cdot O)_2C_{10}H_5 \cdot CO \cdot CH_8$. Die von Lange (D.R.P. 126199; E I 310) so formulierte Verbindung ist als 1-Oxy-8-acetoxy-2-acetyl-naphthalin(s.o.) erkannt (Dімкотн, А. 446, 118).— В. Aus 1.8-Dioxy-2-acetyl-naphthalin bei längerer Einw. von Acetanhydrid und konz. Schwefelsäure bei Zimmertemperatur (DIMвотн, А. 446, 118). — Grünstichige Krystalle (aus Benzol). F: 146°. — Liefert bei längerem Behandeln mit Pyroboracetat und Acetanhydrid den Diacetylborsäureester des 1-0xy-8-acetoxy-2-acetyl-naphthalins (S. 352).

1-Diacetyiborsaureester $C_{16}H_{15}O_7B = (CH_3 \cdot CO \cdot O)_2B \cdot O \cdot C_{10}H_5(OH) \cdot CO \cdot CH_3$. Beim Erwarmen von 1.8-Dioxy-2-acetyl-naphthalin mit Pyroboracetat in Acetanhydrid auf 45—50° (Dивотн, А. 446, 117). — Ziegelrote Würfel. Die Lösung in Acetanhydrid ist rotbraun mit gelber Fluorescenz. — Geht beim Aufbewahren in der Reaktionslösung und folgender Hydrolyse in 1-Oxy-8-acetoxy-2-acetyl-naphthalin über (D., A. 446, 117). Beim Erwärmen mit Acetanhydrid entsteht die folgende Verbindung (D., A. 446, 106).

OXY-OXO-VERBINDUNGEN CnH2n-14O2 WMD CnH2n-16O2 [Syst. Nr. 778

Diacetylborsäureester des 1-0xy-8-acetoxy-2-acetyl-naphthalins $C_{18}H_{17}O_8B=(CH_8\cdot CO\cdot O)_2B\cdot O\cdot C_{10}H_5(O\cdot CO\cdot CH_8)\cdot CO\cdot CH_8$. B. Beim Erwärmen der vorangehenden Verbindung mit Acetanhydrid (DIMBOTH, A. 446, 106). Aus 1-Oxy-8-acetoxy-2-acetyl-naphthalin und aus 1.8-Diacetoxy-2-acetyl-naphthalin beim Behandeln mit Pyroboracetat in Acetanhydrid (D., A. 446, 118). — Grüngelb schillernde Blättchen. Die Lösung in Acetanhydrid fluoresciert intensiv grün.

4. Oxy-oxo-Verbindungen C₁₈H₁₈O₂.

3-Oxy-2-propyl-naphthochinon-(1.4) C₁₂H₁₂O₃, Formel I.

3-Oxy-2-[
$$\beta$$
-chlor-propyl]-naphthochinon-(1.4) $C_{18}H_{11}O_{3}Cl = C_{0}H_{4}$
 $CO \cdot C \cdot CH_{2} \cdot CHCl \cdot CH_{3}$
 $CO \cdot C \cdot CH_{2} \cdot CHCl \cdot CH_{3}$

Zur Konstitution vgl. die Angaben bei 2-Oxy-naphthochinon-(1.4), S. 344. — B. Beim Erwärmen von 3-Oxy-2-allyl-naphthochinon-(1.4) mit konz. Salzsäure und Eisessig auf dem Wasserbad (FIESER, Am. Soc. 48, 3209). — Gelbe Nadeln (aus Benzol + Ligroin). F: 147° (F., Am. Soc. 48, 3209). Leicht löslich in verd. Alkalilaugen mit tiefroter Farbe. Redox potential in wäßrig-alkoholischer Salzsäure bei 25° in Gegenwart von Lithium-

chlorid: F., Am. Soc. 50, 449. -Gibt beim Kochen mit Eisessig wenig 2-Methyl-5.6-benzo-cumaranchinon-(4.7); beim Erhitzen mit konz. Schwefelsäure auf 80° erhält man 2-Methyl-6.7-benzo-cumaranchinon-(4.5) (vgl. die Formeln im Artikel 3-Oxy-2-allyl-naphthochinon-(1.4), S. 357) (F., Am. Soc. 48, 3210).

3 - Acetoxy - 2 - $[\beta$ - chlor - propyl] - naphthochinon - (1.4) $C_{18}H_{13}O_4Cl = C_0 \cdot C \cdot CH_2 \cdot CHCl \cdot CH_3$.

B. Bei kurzem Erhitzen von 3-Oxy-2- $[\beta$ -chl B. Bei kurzem Erhitzen von 3-Oxy-2-[β-chlor-propyl]-naphthochinon-(1.4) mit Acetanhydrid und wenig Schwefelsäure (FIESEE, Am. Soc. 48, 3209). — Hellgelbe Nadeln (aus Ligroin). F: 1020. Mäßig löslich in Ligroin.

5. Oxy-oxo-Verbindungen $C_{15}H_{16}O_3$.

- 3-Oxy-2-isoamyl-naphthochinon-(1.4), Dihydrolapachol $C_{15}H_{16}O_{3}$, Formel II (E I 638). Zur Konstitution vgl. die Angaben bei 2-Oxy-naphthochinon-(1.4), S. 344. — B. Durch Hydrierung von Lapachol (S. 365) bei Gegenwart von Platinoxyd in Alkohol unter Druck und Oxydation des Hydrierungsproduktes an der Luft (FIESER, Åm. Soc. 50, 449 Anm. 14). — F: 88—89°. Normalredoxpotential in 0,1n-Salzsäure in 50% igem Alkohol bei 25° in Gegenwart von Lithiumchlorid: +0,285 V (F., Am. Soc. 50, 449).
- 3 Oxy 2 $[\gamma$ chlor isoamyi] naphthochinon-(1.4), Chlordihydrolapachol $C_{16}H_{16}O_3Cl = CO \cdot C \cdot CH_2 \cdot CH_2 \cdot CCl(CH_3)_2$ (H 311). Normalredox potential in 0,1 n-Salzsäure in 50% igem $C_{\bullet}H^{\bullet} \subset CO \cdot C \cdot OH$

Alkohol bei 25° in Gegenwart von Lithiumchlorid: + 0,297 V (FIESER, Am. Soc. 50, 449).

3 - Oxy - 2 - [β . γ - dibrom - isoamyl] - naphthochinon - (1.4), Dibromdihydrolapachol $C_{15}H_{14}O_{8}Br_{2} = C_{6}H_{4} CO \cdot C \cdot CH_{2} \cdot CHBr \cdot CBr(CH_{2})_{2}$ (H 311). Normalredoxpotential in 0,1 n-

Salzsäure in 50% igem Alkohol bei 25° in Gegenwart von Lithiumchlorid: +0,291 V (Fieser, Am. Soc. 50, 449). [BAUMANN]

h) Oxy-oxo-Verbindungen $C_n H_{2n-16} O_3$.

1. Oxy-oxo-Verbindungen C12H10O2.

1. 2.4-Dioxy-benzophenon, 4-Benzoyl-resorcin, Phenyl-OH [2.4 - dioxy - phenyl] - keton C₁₂H₁₀O₃, s. nebenstehende Formel (H 312; E I 639). B. Beim Kochen von 2.4-Dioxy-benzophenon-anil C₂H₅·CO·mit 25 %iger Salzsäure (Stephen, Soc. 117, 1532; vgl. Chapman, Soc. 121, 1678). Neben anderen Produkten beim Erhitzen von salzsaurem N-Phenyl-benzimino-[3-oxy-phenyl]-äther $C_6H_5 \cdot C(O \cdot C_6H_4 \cdot OH) : N \cdot C_6H_5$ auf 150—175° und nachfolgenden Erwärmen mit Salzsäure in Gegenwart von Glaswolle (CH., Soc. 121, 1678, 1681) und beim Erhitzen von Benzoesäure-phenylimid-chlorid mit Resorcin auf 100° und nachfolgenden Erwärmen mit verd. Salzsaure (CH.). — Darstellung durch Kondensation von Resorcin mit Benzonitril und nachfolgende Hydrolyse nach Horson (B. 48, 1130; E I 639): Klarmann, Am. Soc. 48, 793. —

- F: 144° (Sr.), 144—145° (Ch.), 145° (TASAKI, Acta phytoch. 2, 49; C. 1925 II, 1354). Ultraviolett-Absorptionsspektrum in Alkohol: T. Liefert bei ca. 30-stdg. Erhitzen mit Natrium-phenylacetat und Acetanhydrid unter Rückfluß 7-Acetoxy-3.4-diphenyl-cumarin (Syst. Nr. 2519) (BARGELLINI, R. A. L. [6] 2, 179).
- 2.4-Dimethoxy-benzophenon $C_{15}H_{14}O_3 = C_6H_5 \cdot \text{CO} \cdot \text{C}_6H_3 \cdot \text{(O} \cdot \text{CH}_3)_3$ (H 312; E I 639). Bei der Spaltung durch Koohen mit Natriumamid in Toluol und Behandeln des Reaktionsprodukts mit siedender verdünnter Natronlauge entsteht fast ausschließlich Benzoesäure (Lea, Robinson, Soc. 1926, 2354).
- 3'- Chior 2.4 dioxy benzophenon $C_{13}H_9O_9Cl = C_6H_4Cl \cdot CO \cdot C_6H_3(OH)_2$. B. Durch Einleiten von Chlorwasserstoff in eine Lösung von 3-Chlor-benzonitril und Resorcin in Äther in Gegenwart von Zinkchlorid und nachfolgende Hydrolyse (Orito, Sci. Rep. Töhoku Univ. 18, 121; C. 1929 II, 1158). Gelbe Krystalle (aus Benzol). F: 197—197,5°. Leicht löslich in Alkohol, Äther, Benzol und Eisessig, schwer in Ligroin und Wasser.
- 4'-Chior 2.4 dioxy benzophenon $C_{13}H_{\bullet}O_{\circ}Cl = C_{\bullet}H_{\bullet}(Cl \cdot CO \cdot C_{\bullet}H_{\bullet}(OH)_{\bullet}$. B. Analog der vorangehenden Verbindung (Klarmann, v. Wowern, Am. Soc. 51, 609; Orito, Sci. Rep. Tohoku Univ. 18, 121; C. 1929 II, 1159). Gelbe Krystalle (aus Benzol) oder blaßrote Nadeln (aus Wasser). F: 151—152° (O.), 155° (unkorr.) (Kl., v. W.). Gibt mit Eisen(III)-chlorid in verd. Alkohol eine purpurrote Färbung (Kl., v. W.).
- 4'-Brom-2.4-dioxy-benzophenon C₁₃H₂O₃Br = C₆H₄Br·CO·C₆H₃(OH)₂. B. Analog den vorangehenden Verbindungen (Klarmann, v. Wowern, Am. Soc. 51, 609; vgl. Korczynski, Nowakowski, Bl. [4] 43, 334). Gelbe Nadeln (aus verd. Alkohol). F: 164° (Ko., N.), 169° (unkorr.) (Kl., v. W.). Löslich in Alkalien mit gelber Farbe (Ko., N.). Die alkoh. Lösung gibt mit Eisen(III)-chlorid eine violette Färbung (Ko., N.).
- 4'- Brom 2.4- dioxy benzophenon imid $C_{13}H_{10}O_2NBr = C_6H_4Br\cdot C(:NH)\cdot C_6H_3(OH)_8$. Hydrochlorid $C_{13}H_{10}O_2NBr + HCl.$ B. Beim Einleiten von Chlorwasserstoff in eine äther. Lösung von 4-Brom-benzonitril und Resorcin in Gegenwart von Zinkchlorid (Korczynski, Nowakowski, Bl. [4] 43, 333). Gelbe Nadeln (aus 10% iger Salzsäure). Gibt beim Kochen mit Alkohol 4'-Brom-2.4-dioxy-benzophenon.
- 3'-Nitro 2.4 dioxy benzophenon $C_{13}H_9O_5N=O_2N\cdot C_6H_4\cdot CO\cdot C_6H_3(OH)_2$. B. Analog 3'-Chlor-2.4-dioxy-benzophenon (s. o.) (Yamashita, Bl. chem. Soc. Japan 8, 181; C. 1928 II, 1561). Gelbe Nadeln (aus verd. Alkohol). F: 228°.
- 3'- Nitro 2.4 dimethoxy benzophenon $C_{15}H_{13}O_5N = O_2N \cdot C_6H_4 \cdot CO \cdot C_6H_3(O \cdot CH_3)_2$. B. Beim Schütteln von 3'-Nitro-2.4-dioxy-benzophenon mit Dimethylsulfat und Natronlauge (Yamashita, Bl. chem. Soc. Japan 3, 182; C. 1928 II, 1561). Krystalle (aus Alkohol). F: 116° bis 117°.
- 4'-Nitro-2.4-dioxy-benzophenon $C_{13}H_9O_5N=O_2N\cdot C_6H_4\cdot CO\cdot C_6H_3(OH)_2$. B. Analog 3'-Chlor-2.4-dioxy-benzophenon (s. o.) (Yamashita, Bl. chem. Soc. Japan 3, 181; C. 1928 II, 1561; Korczynski, Nowakowski, Bl. [4] 48, 333). Gelbliche Krystalle (aus verd. Alkohol). F: 200° (K., N.), 203° (Y.). Leicht löslich in Alkohol und Eisessig, schwerer in Chloroform, Äther und siedendem Wasser. Löslich in Alkalien mit dunkelroter Farbe (K., N.). Die alkoh. Lösung gibt mit Eisen(III)-chlorid eine rotbraune Färbung (K., N.).
- 4'- Nitro 2.4 dimethoxy benzophenon $C_{15}H_{19}O_5N=O_2N\cdot C_0H_4\cdot CO\cdot C_0H_3(O\cdot CH_3)_2$. B. Analog 3'-Nitro-2.4-dimethoxy-benzophenon (s. o.) (Yamashita, Bl. chem. Soc. Japan 3, 181; C. 1928 II, 1561). Gelbliche Krystalle (aus Ather + Petroläther). F: 123—124°.
- 4'-Nitro-2.4-dioxy-benzophenon-imid $C_{13}H_{10}O_4N_2 = O_2N \cdot C_6H_4 \cdot C(:NH) \cdot C_6H_3(OH)_2$.—
 Hydrochlorid $C_{13}H_{10}O_4N_2 + HCl.$ B. Beim Einleiten von Chlorwasserstoff in eine äther.
 Lösung von 4-Nitro-benzonitril und Resorcin bei Gegenwart von Zinkehlorid (Korczynski, Nowakowski, Bl. [4] 48, 332). Gelbe Nadeln. Löslich in Eisessig, Alkohol und Chloroform.
 Gibt beim Kochen mit Wasser 4'-Nitro-2.4-dioxy-benzophenon.
- 2. 2.5 Dioxy benzophenon, 2 Benzoyl hydrochinon,
 Phenyl [2.5 dioxy phenyl] keton C₁₃H₁₀O₃, s. nebenstehende Formel (H 312). B. Beim Behandeln von 2.5-Dimethoxy-benzophenon mit überschüßiger Bromwasserstoffsäure (Pfeiffer, Wang, Z. ang. Ch. 40, 989). Thermische Analyse des Systems mit 1.4-Dimethyl-2.5-dioxopiperazin (Additionsverbindung C₁₃H₁₆O₃ + 2C₆H₁₀O₃N₂, F: 100,5°; Eutektika bei 83° und ca. 96° und ca. 55 und 84 Gew.-% 2.5-Dioxy-benzophenon): Pf., W.
- 2 Oxy 5 methoxy benzophenon $C_{14}H_{12}O_3 = C_6H_5 \cdot \text{CO} \cdot C_6H_3 \text{(OH)} \cdot \text{O} \cdot \text{CH}_3 \text{ (H 313; E I 640)}$. B. Neben 2.5-Dimethoxy-benzophenon bei der Umsetzung von Hydrochinondimethyläther mit Benzoylchlorid und Aluminiumehlorid (Pfelffer, Wang, Z. ang. Ch. 40, 990). Gelbliche Krystalle (aus verd. Alkohol). F: 84°. Thermische Analyse des Systems mit 1.4-Dimethyl-2.5-dioxo-piperazin (Eutektikum bei 74,5° und ca. 85 Gew.-% 2-Oxy-5-methoxy-benzophenon); Pf., W.

- 2.5 Dimethexy benzophenen $C_{15}H_{14}O_3 = C_6H_5 \cdot CO \cdot C_6H_3(O \cdot CH_3)_2$ (H 313). Ultraviolett-Absorptionsspektrum in Alkohol: Tasaki, Acta phytoch. 2, 49; C. 1925 II, 1354). Bei der Spaltung durch Kochen mit Natriumamid in Toluol und Behandeln des Reaktionsprodukts mit siedender verdünnter Natronlauge entsteht fast ausschließlich Benzoesäure (Lea, Robersson, Soc. 1926, 2354).
- 3. 2.2'-Dioxy-benzophenon, Bis-[2-oxy-phenyl]-keton $C_{13}H_{10}O_3 = HO \cdot C_4H_4 \cdot OO \cdot C_4H_4 \cdot OH$ (H 313). F: 59,5° (Pfelffer, Wang, Z. ang. Ch. 40, 990). Thermische Analyse des Systems mit 1.4-Dimethyl-2.5-dioxo-piperazin (Additionsverbindung $C_{13}H_{10}O_3 + 2C_4H_{10}O_3N_2$, F: 89,8°; Eutektika bei 53° und 77,8° und 96 und 63 Gew.-% 2.2'-Dioxy-benzophenon): Pr., W.
- 2.2'- Dimethoxy-benzophenon $C_{15}H_{14}O_3=(CH_3\cdot O\cdot C_5H_4)_2CO$ (H 314). B. Durch Oxydation von 2.2'-Dimethoxy-benzhydrol mit Chromsäure (Ziegler, Ochs, B. 55, 2273). Bei der Einw. von Dimethylsulfat auf 2.2'-Dioxy-benzophenon in Natronlauge (Schönberg, Schütz, Nickel, B. 61, 1381).
- 2.2'- Dioxy benzophenon oxim C₁₃H₁₁O₃N = (HO·C₈H₄)₂C:N·OH. B. Beim Kochen von 2.2'-Dioxy-benzophenon mit Hydroxylaminhydrochlorid in verd. Alkohol (Graebe, Feer, B. 19 [1886], 2610) oder in wäßrig-alkoholischer Natronlauge (v. Auwers, Jordan, B. 58, 35). Nadeln (aus Benzol). F: 104—105° (v. Au., J.), 99° (G., F.). Unzersetzt sublimierbar; geht oberhalb 250° in 2-[2-Oxy-phenyl]-benzoxazol (Syst. Nr. 4226) über (v. Au., J.).
- 2.2'- Dimethoxy thiobenzophenon $C_{15}H_{14}O_2S = (CH_2 \cdot O \cdot C_4H_4)_2CS$. B. Beim Kochen von 2.2'-Dimethoxy-benzophenon mit Oxalylchlorid und Behandeln des entstandenen 2.2'-Dimethoxy-benzophenonchlorids mit Thioessigsäure in siedendem Benzol im Kohlendioxydstrom (SCHÖNBERG, SCHÜTZ, NICKEL, B. 61, 1381). Dunkelbaue Krystalle (aus Ligroin im Kohlendioxydstrom). F: 121°. Schwer löslich in Äther, löslich in anderen organischen Lösungsmitteln mit blauer, in flüssigem Schwefeldioxyd mit roter Farbe. Gibt mit Quecksilber(II)-chlorid in Äther eine tiefrote krystalline Additionsverbindung.
- 2.2' Dimethoxy benzophenon dibenzylmercaptol $C_{29}H_{28}O_2S_2 = (CH_2 \cdot O \cdot C_6H_4)_2C(S \cdot CH_5 \cdot C_6H_5)_2$. B. Aus 2.2'-Dimethoxy-benzophenonchlorid (s. im vorangehenden Artikel) und Benzylmercaptan in siedendem Benzol (SCHÖNBERG, SCHÜTZ, B. 62, 2329). Krystalle (aus Methanol). F: 107—108°. Färbt sich oberhalb des Schmelzpunktes grünblau und zersetzt sich bei ca. 163° unter Bildung von 2.2'-Dimethoxy-thiobenzophenon. Löst sich in konz. Schwefelsäure mit rotbrauner Farbe.
- 4. 2.4'-Dioxy-benzophenon $C_{13}H_{10}O_3=H_0\cdot C_4H_4\cdot CO\cdot C_6H_4\cdot OH$ (H 315; E I 640). B. Neben überwiegenden Mengen 4.4'-Dioxy-benzophenon beim Erhitzen von 2 Mol Phenol mit 1 Mol Tetrachlorkohlenstoff und ca. 0,8 Mol Zinkchlorid auf 120° (Gomberg, Snow, Am. Soc. 47, 202). Beim Erwärmen von 9-[4-Oxy-phenyl]-fluoron mit 5 %iger Natronlauge auf dem Wasserbad (G., S., Am. Soc. 47, 209). Beim Schmelzen von 3-[2-Oxy-phenyl]-3-[4-oxy-phenyl]-phthalid mit Kaliumhydroxyd und Wasser bei 180—190° (Orndorff, Barrett, Am. Soc. 46, 2488). F: 150—151° (G., S.). Löslich in Äther; in heißem Benzol leichter löslich als 4.4'-Dioxy-benzophenon (G., S.). Löst sich in 1,5 %igem Ammoniak (G., S.). Ultraviolett-Absorptionsspektrum in Alkohol: Tasaki, Acta phytoch. 2, 49; C. 1925 II, 1354.
- 2.4'- Diacetoxy benzophenon $C_{17}H_{14}O_5 = CH_3 \cdot CO \cdot O \cdot C_6H_4 \cdot CO \cdot C_6H_4 \cdot O \cdot CO \cdot CH_3$ (H 315). F: 88° (unkorr.) (Orndorff, Barrett, Am. Soc. 46, 2489), 89—90° Gomberg, Snow, Am. Soc. 47, 210). Ultraviolett-Absorptionsspektrum in Alkohol: Tasaki, Acta phytoch. 2, 49; C. 1925 II, 1354.
- 5. 3.4 Dioxy benzophenon, 4 Benzoyl brenzcatechin, Phenyl [3.4 dioxy phenyl] heton C₁₂H₁₀O₂, s. nebenstehende Formel (H 315; E I 640). B. Beim Erwärmen von Brenzcatechin-dibenzoat mit Aluminiumchlorid in Nitrobenzol auf 100° (Rosenmund, Lohfert, B. 61, 2605).
- 3.4 Dimethoxy benzophenon, 4 Benzoyl veratrol $C_{15}H_{14}O_2 = C_6H_5 \cdot CO \cdot C_6H_3(O \cdot CH_2)_2$ (H 316). F: 103° (Lea, Robinson, Soc. 1926, 2355). Ultraviolett-Absorptionspektrum in Alkohol: Tasaki, Acta phytoch. 2, 49; C. 1925 II, 1354. Bei der Spaltung durch Kochen mit Natriumamid in Toluol und Hydrolyse des Reaktionsprodukts mit siedender verdünnter Natronlauge entstehen ca. 55 Mol-% Benzoesäure und 45 Mol-% Veratrumsäure (L., R.).
 - 6. 3.4'-Dioxy-benzophenon $C_{13}H_{10}O_3 = HO \cdot C_6H_4 \cdot CO \cdot C_6H_4 \cdot OH$.
- 3.4'-Dimethoxy-benzophenon $C_{18}H_{14}O_3 = CH_3 \cdot O \cdot C_6H_4 \cdot CO \cdot C_6H_4 \cdot O \cdot CH_3$. B. Aus 3-Methoxy-benzoylchlorid, Anisol und Aluminiumchlorid in Schwefelkohlenstoff, zuletzt auf dem Wasserbad (Lea, Robinson, Soc. 1926, 2355). Prismen (aus Alkohol). F: 55°. Bei der Spaltung durch Kochen mit Natriumamid in Toluol und Hydrolyse des Reaktionsprodukts mit siedender verdünnter Natronlauge entstehen ca. 86% Anissäure und ca. 14% 3-Methoxy-benzoesäure.

- 7. 4.4'- Dioxy benzophenon, Bis [4 oxy phenyl] keton C₁₂H₁₆O₃ = (HO·C₆H₄)₂CO (H 316; E I 641). B. Neben wenig 2.4'-Dioxy-benzophenon und Diphenylcarbonat beim Erhitzen von 2 Mol Phenol mit 1 Mol Tetrachlorkohlenstoff und ca. 0,8 Mol Zinkchlorid auf 120° (Gomberg, Snow, Am. Soc. 47, 202). Beim Leiten von Luft in eine Lösung von Aurin (S. 417) in 50% iger Natronlauge (Gomberg, Snow, Am. Soc. 47, 207). Neben anderen Produkten bei der Autoxydation von Aurinleukosulfinsäure in alkal. Lösung (Scheuurg, Berliner, B. 56, 1585). Beim Erhitzen von Anissäure-phenylester mit Aluminiumchlorid auf 140° (Rosenmund, Schnuer, A. 460, 89). F: 213,5° (Montagne, R. 39, 348), 212° bis 213° (Blicke, Smith, Am. Soc. 51, 1873). Ultraviolett-Absorptionsspektrum in Alkokol: Tabari, Acta phytoch. 2, 49; C. 1925 II, 1354; in alkal. Na₂SO₃-Lösung: Moir, Soc. 1927, 1817. Löst sich in 1,5% igem Ammoniak (G., Sn.). Gibt mit Phthalylchlorid bei 120° eine Verbindung C₁₁H₁₂O₃ (s. bei Phthalylchlorid, Syst. Nr. 972) (Kaufmann, Z. ang. Ch. 40, 863). Abführende Wirkung bei Katzen: K., Z. ang. Ch. 40, 859. Überführung in eine gerbend wirkende Sulfonsäure: BASF, D.R.P. 409984; C. 1925 I, 2136; Frdl. 14, 582.
- 4.4'-Dimethoxy-benzophenon, Di-p-anisylketon C₁₈H₁₄O₃ = (CH₈·O·C₆H₄)₂CO (H 317; E I 641). B. Bei der Oxydation von 2.2.2-Tribrom-1.1-bis-[4-methoxy-phenyl]-āthan (Harris, Frankforter, Am. Soc. 48, 3150), Bis [4 methoxy phenyl] acetaldehyd (Tiffenbau, Ore-how, Bl. [4] 33, 1836) und von 4.4'-Dimethoxy-benzhydrol (Orechow, Tiffenbau, Bl. [4] 29, 455) mit Chromsäure in Eisessig. Darst. Durch Umsetzung von Anisol mit Anissäurechlorid und Aluminiumchlorid in Schwefelkohlenstoff (vgl. H 317); Ausbeute ca. 90% (Bergmann, Hervey, B. 62, 916). Elektrische Leitfähigkeit in flüssigem Schwefeldioxyd: Straus, Dützmann, J. pr. [2] 103, 45. Wird bei Gegenwart von Palladium(II)-chlorid in Aceton durch 1 Mol Wasserstoff teilweise, durch 2 Mol Wasserstoff vollständig zu 4.4'-Dimethoxy-diphenylmethan reduziert (Straus, Grindel, A. 489, 301). Gibt bei der Reduktion mit Zinkstaub und Eisessig auf dem Wasserbad 4.4'.4"."-Tetramethoxy-β-benzpinakolin (Syst. Nr. 836) (Tiffenbau, Orechow, Bl. [4] 37, 439). Liefert mit Aluminiumbromid in warmem Ligroin eine krystallinische Verbindung C₁₈H₁₄O₃ + 2AlBr₂; in warmem Benzol entsteht ein hellgelber krystalliner Niederschlag, der bei der Zersetzung mit Wasser in 4.4'-Dioxy-benzophenon übergeht (Pfeiffer, Haack, A. 460, 173).
- 4-Methoxy-4'-äthoxy-benzophenon $C_{16}H_{16}O_3 = CH_3 \cdot O \cdot C_6H_4 \cdot CO \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus Anissäurechlorid und Phenetol in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (Schönberg, Schütz, Nickel, B. 61, 1380). Krystalle (aus Benzol + Petroläther). F: 112°. Schwer löslich in heißem Petroläther, leicht in heißem Benzol. Löst sich in konz. Schwefelsäure mit gelber Farbe.
- 4.4'-Diäthoxy-benzophenon C₁₇H₁₈O₃ = (C₂H₅·O·C₆H₄)₂CO (H 317). B. Bei der Oxydation von 2.2:2-Tribrom-1.1-bis-[4-āthoxy-phenyl]-āthan mit siedender Chromessigsäure (Harris, Frankforter, Am. Soc. 48, 3150). Neben 4'-Chlor-4-āthoxy-benzhydrol bei mehrtägigem Erhitzen von 4'-Chlor-4-āthoxy-benzophenon mit alkoh. Kalilauge auf 100° (Montagne, R. 39, 346); entsteht analog aus 4'-Brom-4-āthoxy-benzophenon (M., R. 39, 348). Aus 4-Āthoxy-benzophenorid und Phenetol bei Gegenwart von Aluminiumchlorid in siedendem Schwefelkohlenstoff (Montagne, R. 41, 720). Tafeln (aus Alkohol). F: 132° (korr.); Kp₁₈: 258° (M., R. 41, 720). Liefert beim Erhitzen mit alkoh. Kalilauge auf 100° 4.4'-Diäthoxy-benzhydrol (M., R. 41, 720).
- hydrol (M., R. 41, 120).

 4.4'-Diacetoxy-benzophenon $C_{17}H_{14}O_5$ = $(CH_3 \cdot CO \cdot O \cdot C_6H_4)_2CO$ (H 317). F: 149°
 (TASAKI, Acta phytoch. 2, 49; C. 1925 II, 1356). Ultraviolett-Absorptionsspektrum in Alkohol: T.
- 3.3'-Dibrom-4.4'-dimethoxy-benzophenon $C_{15}H_{12}O_3Br_2$, Formel I (H 318). B. Bei kurzem Erhitzen von $\beta.\beta$ -Dibrom- $\alpha.\alpha$ -bis-[3-brom-4-methoxy-phenyl]-āthylen mit Chromsäure in Eisessig (Pfeiffer, Wizinger, A. 461, 150).
- 3.5.3'.5'-Tetrajod 4.4'-dioxy benzophenon (?) $C_{13}H_4O_3I_4$, Formel II. B. Bei langsamer Zugabe von 18—20% iger Salzsäure zu einer mit Jod und Kaliumjodid versetzten Lösung von Aurin in Natronlauge (Spiers, Soc. 125, 458). Krystalle (aus o-Chlor-phenol). F: 247° (Zers.).
- 3.5.3'.5'-Tetrajod-4.4'-diacetoxy-benzophenon (?) $C_{17}H_{10}O_5I_4=(CH_3\cdot CO\cdot O\cdot C_6H_3I_3)_8CO$. B. Beim Kochen von 3.5.3'.5'-Tetrajod-4.4'dioxy-benzophenon (?) mit Acetanhydrid (Spiers, Soc. 125, 458). Krystalle (aus Alkohol). F: 220—222°.
- 4.4'- Dimethoxy thiobenzophenon, Di p anisylthioketon $C_{15}H_{14}O_2S=(CH_3\cdot O\cdot C_6H_4)_2CS$ (H 319). B. Beim Kochen von 4.4'-Dimethoxy-benzophenonchlorid (E II 6, 965) mit Thioessigsäure in Benzol im Kohlendioxydstrom (SCHÖNBERG, SCHÜTZ, NICKEL, B. 61, 1381). Bei 1-stdg. Erhitzen von 4.4'-Dimethoxy-benzophenon-dibenzylmercaptol auf 170—225°

unter vermindertem Druck (Sch., Sch., B. 62, 2329). --- Tiefblane Krystalle (aus Alkohol oder Ather). F: 114--115° (Sch., Sch., N.), 117--118° (Sch., Sch.). Leslich in organischen Lösungsmitteln mit blauer, etwas rotstichiger Farbe, in flüssigem Schwefeldioxyd mit roter Farbe (SOH., SCH., N.).

Gibt bei der Einw. von Magnesium + Magnesium jodid in Äther + Benzel Tetrakis-[4-methoxy-phenyl]-athylensulfid (Schönberg, Schütz, B. 60, 2352). Liefert beim Erhitzen mit Fluoren auf 270° α.α-Bis-[4-methoxy-phenyl]-β-diphenylen-āthylen (Ε II 6, 1045) (SCH., B. 58, 1801). Gibt mit Diphenyldiazomethan in Benzol unter Stickstoffentwicklung a.a.Diphenylβ.β.bis-[4-methoxy-phenyl]-āthylensulfid (STAUDINGER, SIEGWART, Helv. 3, 839). Lagert in trockenem Ather bei Zimmertemperatur Diphenylketen an unter Bildung einer Verbindung Con Hard on S (s. u.) (Sr., Hele. 8, 866). Gibt beim Kochen mit Triäthylphosphin in Toluol unter Durchleiten von Luft und beim Behandeln mit einer Lösung von Triäthylphosphinperoxyd (E II 4, 970) 4.4'-Dimethoxy-benzophenon (Schönberg, Krüll, B. 59, 1405). Liefert bei der Umsetzung mit Phenylmagnesiumhalogeniden, mit α-Naphthylmagnesiumbromid und mit 2-Methoxy-phenylmagnesiumbromid in siedendem Äther Tetrakis-[4-methoxy-phenyl]-äthylensulfid und andere Produkte; bei der Einw. von Methylmagnesiumjodid und Athylmagnesiumbromid entsteht Tetrakis-[4-methoxy-phenyl]-āthylensulfid nur in geringer Menge (SCHÖNBERG,

C₁₈H₁₄O₂S + HgCl₂. Rotgelbe Prismen. Schwer löslich in Äther (Schönberg, B. 58, 1800). — C₁₈H₁₄O₂S + HgBr₂. Rotgelbe Nadeln. Schwer löslich in Äther (Sch.).

Verbindung C₂₅H₂₄O₃S. B. Aus 4.4'-Dimethoxy-thiobenzophenon und Diphenylketen in trockenem Äther bei Zimmertemperatur (STAUDINGER, Helv. \$, 865). — Krystallpulver (aus Benzol + Petroläther). Zersetzt sich oberhalb 80° unter Blaufärbung. Leicht löslich in Benzol und Chloroform, sehr schwer in Ather und Petroläther. — Zerfällt beim Kochen mit Benzol oder Toluol teilweise, beim Kochen mit Xylol vollständig in die Ausgangsstoffe und wird beim Abkühlen der Lösungen zurückgebildet.

- 4-Methoxy-4'-äthoxy-thiobenzophenon $C_{1e}H_{1e}O_2S = CH_2 \cdot O \cdot C_eH_4 \cdot CS \cdot C_eH_4 \cdot O \cdot C_2H_5$. B. Durch Kochen von 4-Methoxy-4'-äthoxy-benzophenon mit Oxalylchlorid unter Feuchtigkeitsausschluß und Umsetzung des entstandenen 4-Methoxy-4'-äthoxy-benzophenonchlorids mit Thioessigsäure in siedendem Benzol (Schönberg, Schütz, Nickel, B. 61, 1381). — Dunkelblaue Krystalle (aus Ligroin im Kohlendioxydstrom). F: 94—96°. Leicht löslich in kaltem Benzol. Lost sich in konz. Schwefelsäure mit orangegelber Farbe.
- 4.4'- Diäthoxy thiobenzophenon $C_{17}H_{18}O_2S = (C_2H_5 \cdot O \cdot C_6H_4)_2CS$ (H 319). Liefert beim Kochen mit Triäthylphosphin in Toluol unter Durchleiten von Luft 4.4'-Diäthoxy-benzophenon (Schönberg, Krüll, B. 59, 1406). Beim Erwärmen mit Phenylmagnesiumbromid in absol. Äther entsteht Tetrakis-[4-āthoxy-phenyl]-āthylensulfid neben anderen Produkten (Sch., A. 454, 44). — C₁₇H₁₈O₂S + HgBr₂. Rotgelbe Stäbchen. Schwer löslich in Äther (Sch., B. 58, 1800).
- **4.4'** Dimethoxy benzophenon dibenzylmercaptol $C_{20}H_{28}O_2S_2 = (CH_3 \cdot O \cdot C_0H_4)_2C(S \cdot C_0H_4)_$ CH₂·C₂H₂)₃. B. Durch Umsetzung von 4.4'-Dimethoxy-benzophenonchlorid (Е II 6, 965) mit 2 Mol Benzylmercaptan in Benzol (Schönberg, Schütz, A. 454, 52). — Krystalle (aus Methanol). F: 81,5°; die Schmelze färbt sich bei weiterem Erhitzen allmählich blau (Sch., Sch., A. 454, 52). Leicht löslich in Benzol, Schwefelkohlenstoff, Äther, sehr schwer in Alkohol; löslich in konz. Schwefelsäure mit rotgelber Farbe (Sch., Sch., A. 454, 52). — Zersetzt sich bei kurzem Erhitzen auf 150° unter Gelbgrünfärbung, bei 1-stdg. Erhitzen im Vakuum auf 170—225° unter Blaufärbung und Bildung von 4.4'-Dimethoxy-thiobenzophenon (Sch., Sch., B. 62, 2329).
- **4.4'- Bis methylmercapto benzophenon** $C_{15}H_{14}OS_2 = (CH_3 \cdot S \cdot C_2H_4)_2CO$. *B.* Durch Umsetzung von Thioanisol mit Oxalylchlorid und Aluminiumchlorid in Schwefelkohlenstoff anfangs bei Zimmertemperatur, dann bei 35° (Schönberg, A. 486, 217). — Krystalle (aus Alkohol). F: 125,5°. Löst sich in konz. Schwefelsäure mit rotgelber Farbe.
- 8. 3 Oxy 2 allyl naphthochinon (1.4) C₁₈H₁₉O₃, Formel I auf S. 357 bzw. desmotrope Form. Zur Konstitution vgl. die Angaben bei 2 Oxy naphthochinon (1.4), S. 344. — B. Neben isomeren Verbindungen bei der Einw. von Allylbromid in siedendem Benzol oder von Allyljodid in kaltem Benzol auf das Silbersalz des 2-0xy-naphthochinons-(1.4) (FIRSER, Am. Soc. 48, 3202, 3206). Beim Erhitzen von 4-Allyloxy-naphthochinon-(1.2) oder von 2-Allyloxy-naphthochinon-(1.4) im Stickstoffstrom auf 135—145° (F., Am. Soc. 48, 3208). — Gelbe Nadeln (aus Ligroin oder verd. Essigsäure). F: 116° (F., Am. Soc. 48, 3208). Sehr leicht löslich in Benzol, Alkohol, Eisessig und Äther, schwer in Petroläther und siedendem Wasser (F., Am. Soc. 48, 3208). Löslich in Natronlauge und Sodalösung mit tiefroter Farbe; schwer löslich in NaHSO, Lösung, durch Säuren unverändert fällbar (F., Am. Soc. 48, 3208). Redoxpotential in wäßrig-alkoholischer Salzsäure in Gegenwart von Lithiumchlorid bei 25°: F., Am. Soc. 50, 449.

857

Wird durch konz. Schwefelsäure bei Zimmertemperatur in 2-Methyl-6.7-benzo-cumaranchinon-(4.5) (Formel II) (Fiesee, Am. Soc. 48, 3210), durch Bromwasserstoff-Eisessig auf dem Wasserbad in 2-Methyl-5.6-benzo-cumaranchinon-(4.7) (Formel III) (F., Am. Soc. 59, 462) umgewandelt. Beim Erwärmen mit konz. Salzsäure und Eisessig auf dem Wasserbad erhält man 3-Oxy-2-[β-chlor-propyl]-naphthochinon-(1.4) und geringe Mengen 2-Methyl-5.6-benzo-cumaranchinon-(4.7) (F., Am. Soc. 48, 3209). Gibt mit Acetanhydrid in Gegenwart von konz. Schwefelsäure eine rote, in Wasser lösliche Verbindung, bei kursem Kochen in Gegenwart von Natziumacetat eine Verbindung C₁₇H₁₄O₅ (s. u.) und andere Produkte (F., Am. Soc. 48, 3208).

Verbindung C₁₇H₁₄O₅. B. s. o. — Nadeln (aus Benzol oder Alkohol). F: 220—221⁶ (Zers.) (Fieser, Am. Soc. 48, 3208). Leicht löslich in Benzol, schwer in Alkohol und Ligroin. — Wird durch siedende Natronlauge hydrolysiert; die erhaltene Lösung oxydiert sich an der Luft unter Rotfärbung.

2. Oxy-oxo-Verbindungen $C_{14}H_{12}O_3$.

1. [2.4-Dioxy-phenyl]-benzyl-keton, 2.4-Dioxy-desoxybenzoin, 4-Phenacetyl-resorcin, 2.4-Dioxy-w-phe- C₂H₅·CH₂·CO·
nyl-acetophenon C₁₄H₁₂O₃, s. nebenstehende Formel (H 320).

B. Durch Hydrolyse von 2.4-Dioxy-desoxybenzoin-imid-hydrochlorid (S. 358) mit Wasser (Chapman, Stephen, Soc. 123, 406; Klarmann, Am. Soc. 48, 793; Urushibara, J. pharm. Soc. Japan 48, 117; C. 1928 II, 1880; Houben, Wollenweber, Bio. Z. 204, 451). — F: 115° (Ch., St.), 116° (Tasari, Acta phytoch. 3, 276; C. 1927 II, 1949), 117° (U.), 121° (Kl.). Kp₁₆: 220—225° (Dohme, Cox, Muler, Am. Soc. 48, 1692). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: T. — Gibt bei der Reduktion mit amalgamiertem Zink und Salzsäure 4-β-Phenäthyl-resorcin (E II 6, 966) (Kl.; D., C., M.; H., W.). Beim Kochen mit Acetanhydrid und wasserfreiem Natriumacetat entsteht 7-Acetoxy-2-methyl-3-phenyl-chromon (Syst. Nr. 2515) (Baker, Robinson, Soc. 127, 1984). — Die Lösung in Alkohol gibt mit Eisenchlorid eine dunkelrote Färbung (Kr.; Ch., St.; D., C., M.). Die Lösung in Alkohol oder Äther färbt sich auf Zusatz von Natriumhypochlorit hellrot (Ch., St.).

[4-Oxy-2-methoxy-phenyl]-benzyl-keton, 4-Oxy-2-methoxy-desoxybenzoin $C_{15}H_{14}O_3=C_0H_5\cdot CH_2\cdot CO\cdot C_0H_3(OH)^4(O\cdot CH_2)^2$. B. s. im folgenden Artikel. — Krystalle (aus Ather + Ligroin). F: 113° (Baker, Robinson, Soc. 1929, 161). Kp₁₈: 260—265°. Leicht löslich in 1%iger Natronlauge. Gibt eine bräunlich-violette Eisenchlorid-Reaktion.

[2-Oxy-4-methoxy-phenyl]-benzyl-keton, 2-Oxy-4-methoxy-desoxybenzoin $C_{15}H_{16}O_3=C_6H_5\cdot CH_3\cdot CO\cdot C_6H_3(OH)^2(O\cdot CH_3)^4$ (E I 641). B. Neben geringeren Mengen 4-Oxy-2-methoxy-desoxybenzoin beim Sättigen einer äther. Lösung von Benzyleyanid und Resorcinmonomethyläther mit Chlorwasserstoff bei Gegenwart von Zinkchlorid und Destillieren des Reaktionsgemisches mit Wasserdampf (Baker, Robinson, Soc. 1929, 160). — Unlöslich in 1 %iger Natronlauge. Gibt mit Eisenchlorid in Alkohol eine rote Färbung. — Liefert beim Erhitzen mit Acetanhydrid und Natriumacetat auf 180° 7-Methoxy-2-methyl--3-phenyl-chromon (Syst. Nr. 2515).

2(oder 4) - Oxy-4(oder 2) - acetoxy-desoxybenzoin $C_{16}H_{16}O_4 = C_6H_5 \cdot CH_2 \cdot CO \cdot C_6H_3(OH) \cdot O \cdot CO \cdot CH_3$. Diese Konstitution kommt der von Finzi (M. 26, 1126) als 2.4 - Diacetoxy-desoxybenzoin (H 320) beschriebenen Verbindung zu (Chapman, Stephen, Soc. 128, 407). — B. Wurde nach den Angaben von Finzi nur in sehr geringer Menge erhalten (Ch., St.). — Löst sich etwas in Alkalien. Gibt mit Eisenchlorid in Alkohol eine rötlichviolette Färbung.

2 - Methoxy - 4 - acetoxy - desoxybenzoin $C_{17}H_{16}O_4=C_6H_5\cdot CH_2\cdot CO\cdot C_6H_8(O\cdot CH_8)^2(O\cdot CO\cdot CH_8)^4$. Rhomboeder (aus Alkohol). F: 68° (Baker, Robinson, Soc. 1929, 161).

2.4 - Diacetoxy - desoxybenzoin $C_{18}H_{16}O_5 = C_6H_5 \cdot CH_2 \cdot CO \cdot C_6H_3 \cdot (O \cdot CO \cdot CH_3)_2$. Die von Finzi (M. 26, 1126; H 320) so formulierte Verbindung ist als $2(\text{oder 4}) \cdot Oxy \cdot 4(\text{oder 2}) \cdot \text{acetoxy}$. desoxybenzoin (s. o.) erkannt (Chapman, Stephen, Scc. 123, 407). — B. Aus 2.4-Dioxy-desoxybenzoin durch Kochen mit Acetanhydrid (Ch., St.) oder durch Behandlung mit Acetanhydrid und konz. Schwefelsäure (Urushibara, J. pharm. Soc. Japan 48, 117; C. 1928 II, 1880). — Prismen (aus Alkohol). F: 136° (Ch., St.), 137° (U.). Unlöslich in kalter Natronlauge (Ch., St.). Die alkoh. Lösung gibt mit Eisenchlorid keine Färbung (Ch., St.).

OXY-OXO-VERBINDUNGEN CnH2n-16O3

- 2.4 Diexy desoxybenzoin imid $C_{14}H_{12}O_2N = C_0H_5 \cdot CH_2 \cdot C(:NH) \cdot C_0H_3(OH)_8$. B. Das salzsaure Salz entsteht beim Einleiten von Chlorwasserstoff in eine äther. Lösung von Resorcin und Benzyleyanid in Gegenwart von Zinkehlorid (Chapman, Stephen, Soc. 123, 406; Klarmahn, Am. Soc. 48, 793; Urushibaba, J. pharm. Soc. Japan 48, 117; C. 1928 II, 1880; Houben, Wollenwebber, Bio. Z. 204, 451). $C_{14}H_{13}O_2N + HCl + H_2O$. F: 243° (U.). Geht beim Behandeln mit kaltem Alkohol in ein Salz $2C_{14}H_{13}O_2N + HCl + H_2O$ über.
- 2.4 Dioxy desoxybenzoin oxim C₁₄H₁₂O₂N = C₂H₅·CH₄·C(:N·OH)·C₂H₃(OH)₂. Das H 320 beschriebene Präparat von Finzi (M. 26, 1127) enthielt 2.4-Dioxy-desoxybenzoin (Chapman, Stephen, Soc. 128, 407). Hellbraune Krystalle (aus verd. Alkohol). F: ca. 230° (Zers.) (Ch., St., Soc. 123, 406; Urushibara, J. pharm. Soc. Japan 48, 117; C. 1928 II, 1880). Gibt mit Eisenchlorid eine fast schwarze, mit Natriumhypochlorit eine purpurrote Färbung (Ch., St.).
- 2'-Chior-2.4-dioxy-desoxybenzoin $C_{14}H_{11}O_3Cl = C_0H_4Cl \cdot CH_2 \cdot CO \cdot C_0H_3(OH)_2$. B. Durch Einleiten von Chlorwasserstoff in eine Lösung von 2-Chlor-benzyleyanid und Resorcin in Äther in Gegenwart von Zinkchlorid und nachfolgende Hydrolyse (Obiro, Sci. Rep. Töhoku Univ. 18, 121; C. 1929 II, 1159). Gelbliche Krystalle (aus Benzol). F: 142° .
- **0xim** $C_{14}H_{12}O_{2}NCl = C_{6}H_{4}Cl \cdot CH_{2} \cdot C(:N \cdot OH) \cdot C_{6}H_{3}(OH)_{2}$. Krystalle (aus Alkohol + Benzol). F: 225—226° (ORITO, C. 1929 II, 1159).
- 4'-Chlor-2.4-dioxy-desoxybenzoin $C_{14}H_{11}O_2Cl=C_0H_4Cl\cdot CH_2\cdot CO\cdot C_0H_3(OH)_2$. B. Analog 2'-Chlor-2.4-dioxy-desoxybenzoin (Chapman, Stephen, Soc. 128, 407). Helibraune Krystalle. F: 153—154°.
- 4'- Chior 2.4 diacetoxy desoxybenzoin $C_{18}H_{15}O_5Cl = C_9H_4Cl\cdot CH_2\cdot CO\cdot C_6H_3(O\cdot CO\cdot CH_3)_2$. Prismen (aus Alkohol). F: 145° (CHAPMAN, STEPHEN, Soc. 123, 408).
- 4' Chiot 2.4 dioxy desoxybenzein oxim $C_{14}H_{12}O_3NCl=C_0H_4Cl\cdot CH_2\cdot C(:N\cdot OH)\cdot C_0H_3(OH)_2$. Prismen (aus verd. Alkohol). F: 235—236° (Zers.) (Chapman, Stephen, Soc. 128, 408).
- 2. [2.5-Dioxy-phenyl] benzyl keton, 2.5 Dioxy desoxybenzoin, 2 Phenacetyl hydrochinon C₁₄H₁₃O₂, s. nebenstehende Formel. Das Präparat von Finzi (M. 26, 1135; H 321) war unverändertes Hydrochinon (Baker, Eastwood, Soc. 1929, 2900).

 B. Beim Erwärmen von 2.5-Dimethoxy-desoxybenzoin (H 321) mit Jodwasserstoffsäure (D: 1,7) und Eisessig auf dem Wasserbad (B., Ea., Soc. 1929, 2905). Citronengelbe Prismen (aus Tetrachlorkohlenstoff). F: 109,5°. Leicht löslich in Alkohol. Löst sich in Alkalien mit gelber Farbe. Die alkoh. Lösung gibt mit Eisen(III)-chlorid eine grüne Färbung.
 - 3. 4.4'- Dioxy-desoxybenzoin $C_{14}H_{12}O_3 = HO \cdot C_4H_4 \cdot CO \cdot CH_2 \cdot C_6H_4 \cdot OH$.
- 4.4'-Dimethoxy-desoxybenzoin, Desoxyanisoin C₁₆H₁₆O₃ = CH₃·O·C₆H₄·CO·CH₃·C₆H₄·CO·CH₃·C₆H₄·CO·CH₃·C₆H₄·CO·CH₃·C₆H₄·CO·CH₃·C₆H₄·CO·CH₃·C₆H₄·CO·CH₃·C₆H₄·CO·CH₃·C₆H₄·CO·CH₃·C₆H₄·CO·CH₃·C₆H₄·CO·CH₃·C₆H₄·CO·CH₃·C₆H₄·CO·CH₃·C₆H₄·CO·CH₃·C₆H₄·CO·CH₃·C₆H₄·CO·CH₃·C₆H₄·CO·CH₃·C₆H₄·CO·CH₃·C₆H₄·CO·CH₃·CO·C₆H₄·CO·CH₃·CO·C₆H₄·CO·CH₃·CO·C₆H₄·CO·CH₃·CO·CH₄·CO·CH₃·CO·CH₄·CO·CH₃·CO·CH₄·CO·CH₃·CO·CH₄·CO·CH₃·CO·CH₄·CO·CH₄·CO·CH₃·CO·CH₄·CO·CH₃·CO·CH₄·CO·CH₃·CO·CH₄·CO·CH
- 4. 4-Oxy-benzoin, Phenyl-[4-oxy-benzoyl]-carbinol $C_{14}H_{12}O_3=HO\cdot C_0H_4\cdot CO\cdot CH(OH)\cdot C_0H_4$.
- 4-Methexy-benzoin, Phenyl-anisoyl-carbinol, Benzanisoin $C_{16}H_{14}O_2 = CH_2 \cdot O \cdot C_0H_4 \cdot CO \cdot CH(OH) \cdot C_0H_5$ (H 322 unter Nr. 5 als 4-Methoxy-benzoin, unter Nr. 6 als 4 oder 4'-Methoxy-benzoin beschrieben). Zur Konstitution vgl. McKenzie, Mitarb., Bl. [4] 45, 415. B. Aus Mandelsäureamid und 4-Methoxy-phenylmagnesiumbromid (McK., Mitarb., Bl. [4] 45, 416). In geringer Menge aus O-Benzoyl-4-methoxy-mandelsäurenitril und Benzaldehyd in Natriumäthylat-Lösung (Geeene, Robinson, Soc. 121, 2189; vgl. G., Soc. 1926, 329). Darstellung aus Benzaldehyd und Anisaldehyd bei Gegenwart von Kaliumcyanid in wäßr. Alkohol (H 322): McK., Mitarb., Bl. [4] 45, 421; Kinney, Am. Soc. 51, 1595. F: 105,5° bis 106,5° (McK., Mitarb.). Gibt bei der Oxydation mit Kupfersulfat in heißem wäßrigem Pyridin 4-Methoxy-benzil (S. 368) (K.; McK., Mitarb.). Gibt mit Phenylmagnesiumbromid niedrigerschmelsendes α.α'-Diphenyl-α-[4-methoxy-phenyl]-āthylenglykol (E II 6, 1110) (McK., Mitarb.). Phenylhydrazon C₁₁H₂₀O₂N₂. F: 149,5—150,5° (McK., Mitarb.)

- 4-Methoxy-benzein-exim, Benzanisein-exim $C_{18}H_{18}O_{2}N=CH_{2}\cdot O\cdot C_{2}H_{4}\cdot C(:N\cdot OH)\cdot CH(OH)\cdot C_{6}H_{5}$. Nadeln (aus Benzol + Petroläther). F: 136—138° (McKenzie, Mitarb., Bl. [4] 45, 422). Kupfersalz $CuC_{18}H_{12}O_{2}N$. Grün. Unlöslich in Wasser und Ammoniak (Feigl, Sicher, B. 58, 2297, 2302). Wird durch Säuren zersetzt.
- 4-Methoxy-benzoin-semicarbazon, Benzanisoin-semicarbazon $C_{16}H_{17}O_3N_3 = CH_3 \cdot O \cdot C_6H_4 \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH(OH) \cdot C_6H_5$. Nadeln (aus Alkohol). F: 185—186° (Mc Kenzie, Mitarb., Bl. [4] 45, 421).
- 5. 2'-Oxy-benzoin, [2-Oxy-phenyl]-benzoyl-carbinol $C_{14}H_{12}O_2 = C_0H_5 \cdot CO \cdot CH(OH) \cdot C_0H_4 \cdot OH$. B. Durch Umsetzung von Salicylaldehyd-cyanhydrin mit Phenylmagnesiumbromid in Äther und Zersetzung des Reaktionsprodukts mit Säuren (ASAHINA, TERASAKA, J. pharm. Soc. Japan 1923, Nr. 494, S. 20; japan. Teil S. 219; Chem. Abstr. 17 [1923] 3028). Blättchen. F: 148°. Die alkoh. Lösung wird durch Eisen(III)-chlorid olivgrün gefärbt.
- 2'-Methoxy-benzoin, [2-Methoxy-phenyl]-benzoyl-carbinol $C_{15}H_{14}O_2 = C_0H_5 \cdot CO \cdot CH(OH) \cdot C_0H_4 \cdot O \cdot CH_3$. B. Durch Umsetzung von 2-Methoxy-benzaldehyd-cyanhydrin mit Phenylmagnesiumbromid in Äther und Zersetzung des Reaktionsprodukts mit Säuren (Asahina, Terasaka, J. pharm. Soc. Japan 1923, Nr. 494, S. 21; japan. Teil, S. 219; Chem. Abstr. 17 [1923] 3028). Prismen (aus Benzol). F: 58°. Gibt mit Fehlingscher Lösung 2-Methoxy-benzil.
- 6. 4'-Oxy-benzoin, [4-Oxy-phenyl]-benzoyl-carbinol $C_{14}H_{12}O_3=C_6H_5\cdot CO\cdot CH(OH)\cdot C_6H_4\cdot OH$.
- 4'-Methoxy-benzoin, [4-Methoxy-phenyl]-benzoyl-carbinol $C_{15}H_{14}O_3 = C_6H_5 \cdot CO \cdot CH(OH) \cdot C_8H_4 \cdot O \cdot CH_3$. B. Aus 4-Methoxy-mandelsäureamid und Phenylmägnesiumbromid in siedendem Äther (McKenzie, Mitarb., Bl. [4] 45, 418). Durch Umsetzung von Anisaldehyd-cyanhydrin mit Phenylmagnesiumbromid in Benzol und Zersetzung des Reaktionsprodukts mit Säuren (Asahina, Terasaka, J. pharm. Soc. Japan 1923, Nr. 494, S. 20; japan. Teil S. 219; Chem. Abstr. 17 [1923], 3028). Krystalle (aus Chloroform + Petroläther). F: 100—101° (McK., Mitarb.). Gibt mit Äthylmagnesiumbromid in siedendem Äther höherschmelzendes 2-Phenyl-1-[4-methoxy-phenyl]-butandiol-(1.2) (E II 6, 1100) (McK., Mitarb.).
- 4'-Methoxy-benzoin-oxim $C_{15}H_{15}O_8N=C_9H_5\cdot C(:N\cdot OH)\cdot CH(OH)\cdot C_9H_4\cdot O\cdot CH_9$. Krystalle (aus Alkohol). F: 132° (Maquennescher Block) (MCKENZIE, Mitarb., Bl. [4] 45, 419).
- 4'- Methoxy benzoin semicarbazon $C_{16}H_{17}O_5N_3=C_6H_5\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH(OH)\cdot C_6H_4\cdot O\cdot CH_3$. Krystalle (aus Chloroform). F: 206° (Maquennescher Block) (McKenzie, Mitarb., Bl. [4] 45, 419). Sehr schwer löslich in organischen Lösungsmitteln.

7. Bis-[4-oxy-phenyl]-acetaldehyd C₁₄H₁₂O₃ = (HO·C₄H₄)₂CH·CHO.

Bis - [4 - methoxy - phenyl] - acetaldehyd, Dianisylacetaldehyd C₁₆H₁₆O₃ = (CH₃·O·C₆H₄)₂CH·CHO. B. Beim Kochen von Hydroanisoin (E II 6, 1129) oder Isohydroanisoin (E II 6, 1130) mit 50% iger Schwefelsäure (Tiffeneau, Orechow, Bl. [4] 33, 1833, 1837; vgl. Rossel, A. 151 [1869], 40, 42). Durch Behandeln von Äthoxyessigsäure-äthylester mit 4-Methoxy-phenylmagnesiumbromid in Äther und Kochen des Reaktionsprodukts mit Ameisensäure (T., O., Bl. [4] 33, 1835). — Nadeln (aus Alkohol). F: 104—105° (T., O.). Sehr leicht löslich in Benzol, schwerer in kaltem Alkohol und Äther. Löst sich in konz. Schwefelsäure mit rotvioletter Farbe. — Wird durch Außkochen mit Chromsäure in Eisessig zu 4.4'-Dimethoxy-benzophenon oxydiert. Reduziert Fehlingsche Lösung und ammoniakalische Silbernitrat-Lösung in der Wärme. Färbt Fuchsinschwefligsäure rotviolett. Addiert NaHSO₃ langsam.

Semicarbazon $C_{17}H_{19}O_2N_3=(CH_2\cdot O\cdot C_2H_4)_2CH\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Krystalle (aus Benzol). F: 140—141° (Tiffeneau, Orechow, Bl. [4] 33, 1836). Schwer löslich in Benzol, sehr leicht in Alkohol und Methanol.

- 8. 3'.4'-Dioxy-2-methyl-benzophenon, 4-o-Toluyl-brenzoatechin C₁₄H₁₂O₃, s. nebenstehende Formel. B. Beim Erhitzen von 4'-Oxy-3'-methoxy-2-methyl-benzophenon mit Jodwasserstoffsäure (Maniwa, J. pharm. Soc. Japan 1925, Nr. 515, S. 5; C. 1925 I, 2375). Nadeln. F: 105—106°. Gibt mit Eisen(III)-chlorid eine grüne Färbung, die bei Zusatz von Sodalösung in Rot umschlägt.
- 4'- Oxy 3'- methoxy 2 methyl benzophenon $C_{16}H_{14}O_3 = CH_3 \cdot C_0H_4 \cdot CO \cdot C_8H_3 \cdot (O \cdot CH_3) \cdot OH$. B. Durch Verseifen von Bis-[2-methoxy-4-o-toluyl-phenyl]-carbonat (S. 360) (Maniwa, J. pharm. Soc. Japan 1925, Nr. 515, S. 5; C. 1925 I, 2375). Krystalle. F: 112°. Beim Erhitzen mit Jodwasserstoffsäure entsteht 3'.4'-Dioxy-2-methyl-benzophenon.

OXY-OXO-VERBINDUNGEN CnH2n-16O3

3'.4'- Dimethoxy-2-methyl-benzophenon, 4-e-Teleyl-veratrol $C_{1e}H_{1e}O_{2}=CH_{2}\cdot C_{2}H_{4}\cdot CO\cdot C_{3}H_{2}\cdot CO\cdot C_{4}H_{3}\cdot CO\cdot C_{4}H_{3}\cdot CO\cdot CH_{3}$. B. Beim Erhitzen von o-Toluylsäurechlorid mit Veratrol und Aluminiumchlorid auf 140° (DE DIESBACH, STREBEL, Helv. 8, 563). — Prismen (aus 60 %iger Essignaure). F: 75° (DE D., St.), 72—73° (Maniwa, J. pharm. Soc. Japan 1925, Nr. 515, S. 5; C. 1925 I., 2375). Unlöslich in Wasser, löslich in den meisten organischen Lösungsmitteln (DE D., Sr.). — Beim Bromieren in Eisessig bei 170-180° und Erhitzen des Reaktionsprodukts mit konz. Schwefelsäure auf 200° entsteht eine aus Wasser krystallisierbare, bromhaltige Substanz (DE D., Sr.).

3'- Methoxy-4'- āthoxy-2-methyl-benzophenon $C_{17}H_{18}O_3=CH_2\cdot C_6H_4\cdot CO\cdot C_6H_2(O\cdot CH_3)\cdot O\cdot C_2H_5$. F: 107—108° (Manua, J. pharm. Soc. Japan 1925, Nr. 515, S. 5; O. 1925 I, 2375).

3'- Methoxy - 4'- acetoxy - 2 - methyl-benzophenon $C_{17}H_{16}O_4 = CH_3 \cdot C_6H_4 \cdot CO \cdot C_6H_8(O \cdot CH_2) \cdot O \cdot CO \cdot CH_8$. F: 96—97° (Maniwa, J. pharm. Soc. Japan 1925, Nr. 515, S. 5; C. 1925 I, 2375).

Bis - [2 - methoxy - 4 -o- toluyl-phenyl]-carbonat C₂₁H₂₀O₇ = [CH₃·C₆H₄·CO·C₆H₃(O·CH₂)·O]₂CO. B. Durch Erhitzen von Guajacolcarbonat mit o-Toluylsäurechlorid und Zinkchlorid auf 120° (Maniwa, J. pharm. Soc. Japan 1925, Nr. 515, S. 5; C. 1925 I, 2375). — Krystalle.

4'- 0xy - 3'- methoxy - 2 - methyl - benzophenon - oxim $C_{1b}H_{1b}O_2N = CH_2 \cdot C_0H_4 \cdot C(:N \cdot OH) \cdot C_0H_2(O \cdot CH_2) \cdot OH$. F: 164—166° (Maniwa, J. pharm. Soc. Japan 1925, Nr. 515, S. 5; C. 1925 I, 2375).

9. 6.2'- Dioxy-3-methyl-benzophenon $C_{14}H_{12}O_3 = CH_2 \cdot C_4H_3(OH) \cdot CO \cdot C_5H_4 \cdot OH$.

5'-Nitro-6.2'-dioxy-3-methyl-benzophenon C₁₄H₁₁O₅N, Formel I. B. Beim Kochen von 7-Nitro-2-methyl-xanthon mit 10% iger methylalkoholischer Kalilauge (MEISENHEIMER, HANSSEN, WÄCHTEBOWITZ, J. pr. [2] 119, 357). — F: 146-148°.

10. 6.4'- Dioxy - 3-methyl - benzophenon $C_{14}H_{12}O_3 = CH_3 \cdot C_4H_3 \cdot OH \cdot CO \cdot C_4H_4 \cdot OH$.

6.4'- Dimethoxy - 3 - methyl - benzophenon $C_{16}H_{16}O_3$, Formel II (H 322). Liefert beim Kochen mit amalgamiertem Zink und ca. 19 % iger Salzsäure 6.4'- Dimethoxy-3-methyl-diphenylmethan (E II 6, 973) und eine bei 178—182° schmelzende krystalline Substanz (Pummerer, PUTTFARCKEN, SCHOPFLOCHER, B. 58, 1820).

- 11. 3.4'-Dioxy-4-methyl-benzophenon $C_{14}H_{12}O_3 = CH_3 \cdot C_4H_3(OH) \cdot CO \cdot C_4H_4 \cdot OH$.
- 3.4'- Dimethoxy 4 methyl benzophenon $C_{16}H_{16}O_{8}$, Formel III. B. Aus 3-Methoxyp-toluylsäurechlorid, Anisol und Aluminiumchlorid (SIMONSEN, RAU, Soc. 119, 1341 Anm.). — Prismen (aus Methanol). F: 77—78°.
- 12. 2-Oxy-1-acetoacetyl-naphthalin, 1-Acetoacetyl-naphthol-(2) $C_{14}H_{12}O_3$, Formel IV auf S. 361 bzw. desmotrope Form. B. Aus 1-Acetyl-naphthol-(2) und Athylacetat in Gegenwart von Natrium bei Siedetemperatur (WITTIG, A. 446, 174). — Fast farblose Nadeln (aus Benzol). F: 152° (Zers.) (W.). Leicht löslich in Benzol und Eisessig, löslich in Alkohol, unlöslich in Petroläther. — Geht beim Behandeln mit kalter konzentrierter Schwefelsäure oder beim Kochen mit etwas Mineralsäure in Eisessig in 2-Methyl-5.6-benzo-chromon über (W.), das auch beim Behandeln mit Semicarbazid in neutraler Lösung erhalten wird (W., BLUMBNTHAL, B. 69, 1094 Anm. 27). Gibt mit alkoh. Ammoniak 1- $[\beta$ -Amino-crotonoyl]-naphthol-(2) (8. 361) (W., Bl., B. 60, 1093). Liefert beim Kochen mit Acetanhydrid und Natriumacetat 2-Methyl-3-acetyl-5.6-benzo-chromon und geringe Mengen 2-Methyl-5.6-benzo-chromon (W.).
- 2-Methoxy-1-acetoacetyl-naphthalin, 1-Acetoacetyl-naphthol-(2)-methyläther $C_{1s}H_{1s}O_{2}=CH_{2}\cdot CO\cdot CH_{2}\cdot CO\cdot C_{1o}H_{4}\cdot O\cdot CH_{3}$. B. Aus 1-Acetyl-naphthol-(2)-methyläther und Athylacetat in Gegenwart von Natrium, zuletzt auf dem Wasserbad (WITTIG, BLUMENTHAL, B. 60, 1094). — Krystalle (aus Methanol). F: 70-71°.
- 2-0 xy-1-[β -imino butyryl]- naphthalin, 1-[β -Imino-butyryl]-naphthol-(2) baw. 2-0 xy-1-[β -amino crotonoyl] naphthalin, 1-[β -Amino crotonoyl] naphthol-(2) $C_{14}H_{18}O_aN = CH_a$ · $C(:NH)\cdot CH_a\cdot CO\cdot C_{10}H_a\cdot OH$ bzw. $CH_a\cdot C(NH_a)\cdot CH\cdot CO\cdot C_{10}H_a\cdot OH$. Zur Konstitution vgl. Wittig, Blumenthal, B. 60, 1086, 1093. B. Durch Einw. von gesättigtem alkoholischem Ammoniak auf 1-Acetoacetyl-naphthol-(2) (W., Bl., B. 60, 1093). Neben geringeren Mengen 2-Methyl-5.6-benzo-chromon aus 2-Methyl-3-acetyl-5.6-benzo-chromon und alkoh. Ammoniak (SCHNEIDER, Box 1998). P. 54. 4044 and 1998 acetyl-3-acetyl-3-Galba Nadeln (SCHNEIDER, Alkohol). V. 4.380 BODE, B. 56, 1044; vgl. a. Sch., Kunau, B. 54, 2309). — Gelbe Nadeln (aus Alkohol). F: 1386 bis 1396 (Sch., B.). Sehr leicht löslich in Äther, Aceton und Benzol, etwas schwerer in Alkohol, unlöslich in Wasser und Ligroin; alkal. Lösungen sind gelb, saure Lösungen farblos (Son., B.). Gibt mit Eisenchlorid in Alkohol oder Ather eine dunkelgrüne Färbung (Son., B.). — Zersetzt

sich beim Aufbewahren unter Abgabe von Ammoniak; beim Aufbewahren oder Erwärmen in saurer Lösung bildet sich 2-Methyl-5.6-benzo-chromon (SCH., B.). Liefert mit Semicarbazidhydrochlorid und Natriumacetat in verd. Alkohol 2-Methyl-5.6-benzo-chromon und wenig 3-Methyl-5-[2-oxy-naphthyl-(1)]-pyrazol (W., BL.). — Pikrat C₁₄H₁₈O₂N + C₆H₈O₇N₃. Gelbe Krystalle. F: 179—180° (SCH., B., B. 56, 1045). Zersetzt sich in Lösung unter Bildung von 2-Methyl-5.6-benzo-chromon und Ammoniumpikrat.

2-Methoxy-1-[β-assino-crotoneyi]-naphthalin, 1-[β-Amino-crotoneyi]-naphthol-(2)-methyläther C₁₅H₁₅O₂N = CH₂·C(:NH)·CH₂·CO·C₁₆H₆·O·CH₂ bzw. CH₃·C(NH₃):CH·CO·C₁₆H₆·O·CH₃. B. Aus 2-Methoxy-1-acetoacetyl-naphthalin und alkoh. Ammoniak (Wettig, Blumenthal, B. 60, 1094). Durch Methylierung von 1-[β-Amino-crotonoyl]-naphthol-(2) mit Dimethylsulfat in verd. Natronlauge (Schneider, Bode, B. 56, 1045). — Krystalle (aus Alkohol). F: 198° (Sch., B.). Löslich in nicht zu verdünnten Mineralsäuren mit gelber Farbe, unlöslich in überschüssigen Alkalien. — Gibt mit Eisenchlorid keine Färbung (Sch., B.). — Pikrat C₁₅H₁₅O₂N + C₆H₂O₇N₃. Gelbe Krystalle (aus Alkohol). F: 171° (Sch., B., B. 56, 1046).

$$1 \text{A.} \qquad \begin{matrix} \text{OH} \\ \text{OO OH}_2 \cdot \text{CO OH}_3 \cdot \text{CO OH}_3 \cdot \text{CO OH}_3 \cdot \text{CO OH}_3 \end{matrix} \qquad \text{A.} \qquad \begin{matrix} \text{OI} \\ \text{OO} \cdot \text{OH}_3 \cdot \text{CO OH}_3 \cdot \text{CO OH}_3 \end{matrix} \qquad \text{O.} \\ \text{OO OH}_3 \cdot \text{CO OH}_3 \cdot \text{CO OH}_3 \cdot \text{CO OH}_3 \end{matrix} \qquad \text{O.} \\ \text{OO OH}_3 \cdot \text{CO OH}_3 \end{matrix} \qquad \text{O.}$$

- 13. 1-Oxy-2-acetoacetyl-naphthalin, 2-Acetoacetyl-naphthol-(1) C₁₄H₁₂O₃, Formel V bzw. desmotrope Form. B. Aus 2-Acetyl-naphthol-(1) und Äthylacetat in Gegenwart von Natrium bei Siedetemperatur (Wittig, A. 446, 173). Gelbe Nadeln (aus Benzin). F: 110,5° bis 111,5° (W.). Leicht löslich in Alkohol, Eisessig und Aceton, schwer in Benzin. Gibt beim Behandeln mit konz. Schwefelsäure oder beim Kochen mit etwas Mineralsäure in Eisessig 2-Methyl-7.8-benzo-chromon (W.). Gibt mit alkoh. Ammoniak 2-[β-Amino-crotonoyl]-naphthol-(1) (s. u.); reagiert analog mit Anilin in siedendem Alkohol (W., Blumenthal, B. 60, 1093). Liefert beim Kochen mit Acetanhydrid und Natriumacetat 2-Methyl-3-acetyl-7.8-benzo-chromon und geringe Mengen 2-Methyl-7.8-benzo-chromon (W.)
- 1-Oxy-2-[β -imino-butyryl]-naphthalin, 2-[β -Imino-butyryl]-naphthol-(1) bzw. 1-Oxy-2-[β -amino-crotonoyl]-naphthalin, 2-[β -Amino-crotonoyl]-naphthol-(1) $C_{14}H_{12}O_2N=CH_2$ ·C(:NH)·CH₂·CO·C₁₀H₄·OH bzw. CH₃·C(NH₂):CH·CO·C₁₀H₄·OH. B. Durch Rinw. von alkoh. Ammoniak auf 2-Acetoacetyl-naphthol-(1) (WITTIG, BLUMENTHAL, B. 60, 1093) und auf 2-Methyl-7.8-benzo-chromon (W., B.). Gelbe Krystalle (aus Methanol), F: 153—154°.
- 14. 3-Oxy-2-β-butenyl-naphthochinon-(1.4), 3-Oxy-2-[γ-methyl-allyl]-naphthochinon-(1.4) C₁₄H₁₂O₂, Formel VI bzw. desmotrope Form. Zur Konstitution vgl. die Angaben bei 2-Oxy-naphthochinon-(1.4), S. 344. B. Neben geringeren Mengen isomerer Verbindungen bei der Einw. von β-Butenylbromid auf das Silbersalz des 2-Oxy-naphthochinons-(1.4) in Äther (Fieser, Am. Soc. 49, 861). Gelbe Plättchen (aus Alkohol). F: 132—133° (F., Am. Soc. 49, 862). Sehr schwer löslich in Wasser und Petroläther, sehr leicht in Alkohol und Eisessig; löslich in Alkalilaugen und Alkalicarbonat-Lösungen mit tiefroter Farbe, sehr schwer löslich in NaHSO₃-Lösung (F., Am. Soc. 49, 862). Reduktionspotential in wäßrig-alkoholischer Salzsäure in Gegenwart von Lithiumchlorid bei 25°: F., Am. Soc. 50, 449. Löst sich in konz. Schwefelsäure mit roter Farbe und gebt dabei in 2-Methyl-7.8-benzo-chromanchinon-(5.6) und 2-Methyl-6.7-benzo-chromanchinon-(5.8) (Syst. Nr. 2481) über (F., Am. Soc. 49, 862).
- 15. 3-Oxy-2-[α-methyl-allyl]-naphthochinon-(1.4) C₁₄H₁₂O₃, Formel VII bzw. desmotrope Form. Zur Konstitution vgl. die Angaben bei 2-Oxy-naphthochinon-(1.4), S. 344. B. Beim Erhitzen von 2-[β-Butenyloxy]-naphthochinon-(1.4) auf 140° oder von 4-[β-Butenyloxy]-naphthochinon-(1.2) auf 125° (FIESEE, Am. Soc. 49, 863). Gelbe Nadeln (aus verd. Methanol). F: 69° (F.,

(aus verd. Methanol). F: 69° (F., Am. Soc. 49, 863). Etwas löslich in Wasser, sehr leicht in organischen Lösungsmitteln; löst sich in Alkalien mit tiefroter Farbe (F., Am. Soc. 49, 863). Reduktionspotential in wäßrig-alkoholischer

VII. OH OH OH OH CO-CH3

potential in waßrig-alkoholischer Salzsäure in Gegenwart von Lithiumchlorid bei 25°: F., Am. Soc. 50, 449. — Löst sich in konz. Schwefelsäure mit roter Farbe unter Umwandlung in 2.3-Dimethyl-6.7-benzo-cumaranchinon-(4.5) (Syst. Nr. 2481) (F., Am. Soc. 49, 863).

16. 4-Oxy-1.3-diacetyl-naphthalin, 2.4-Diacetyl-naphthol-(1) C₁₄H₁₂O₂, Formel VIII (Ε I 642). B. Neben überwiegenden Mengen 2-Acetyl-naphthol-(1) beim Erhitzen von α-Naphthylacetat mit 1 Tl. Aluminiumchlorid auf 125° (Fries, B. 54, 711). — F: 141°.

362

Diacetyibersäureester des 2.4-Diacetyi-naphtheis-(1) $C_{10}H_{17}O_7B = (CH_3 \cdot CO)_2C_{10}H_5 \cdot O \cdot B(O \cdot CO \cdot CH_3)_2$. — B. Aus 2.4-Diacetyi-naphthol-(1) und Pyroboracetat in Acetanhydrid (DIMBOTH, A. 446, 117). — Schmutziggelbe Tafeln.

3. Oxy-oxo-Verbindungen C12H14O2.

- 2-Oxy-4-methoxy- β -phenyl-propiophenon, 2'-Oxy-4'-methoxy-hydrochalkon $C_{16}H_{16}O_3=C_6H_5\cdot CH_2\cdot CO\cdot C_6H_4(OH)\cdot O\cdot CH_3$ (H 323; E I 642). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: Tasaki, Acta phytoch. 8, 284; C. 1927 II, 1949.
 - E I 643, Z. 5 v. o. hinter "Lösung" schalte ein "mit Eisenchlorid".
- 2.4-Dimethoxy- β -phenyl-proplophenon, 2'.4'-Dimethoxy-hydrochalkon $C_{17}H_{18}O_3=C_8H_3$: $CH_2\cdot CH_2\cdot CO\cdot C_8H_3(O\cdot CH_3)_2$ (H 324; E I 643). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: Tasaki, Acta phytoch. 3, 284; C. 1927 II, 1949.
- 2. $2 Oxy \beta [4 oxy phenyl] propiophenon$, 4.2' Dioxy hydrochalkon $C_{16}H_{14}O_3 = HO \cdot C_0H_4 \cdot CH_2 \cdot CH_2 \cdot CO \cdot C_0H_4 \cdot OH$.
- α.β-Dibrom-2-oxy-β-[4-methoxy-phenyl] propiophenon, 2'- Oxy-4-methoxy-chalkon-dibromid $C_{16}H_{14}O_3Br_2=CH_3\cdot O\cdot C_6H_4\cdot CHBr\cdot CHBr\cdot CO\cdot C_6H_4\cdot OH.$ B. Aus 2'-Oxy-4-methoxy-chalkon und Brom in Schwefelkohlenstoff (v. Auwers, Anschütz, B. 54, 1557). Hellgelbe Krystalle (aus Schwefelkohlenstoff). F: 133°. Liefert bei Behandlung mit wäßrig-alkoholischer Natronlauge in der Kälte 4'-Methoxy-flavon, in der Wärme 2-Anisyliden-cumaranon.
- 3. 3.4-Dioxy- β -phenyl-propiophenon , 3'.4'-Dioxy-hydrochalkon $C_{15}H_{14}O_3=C_4H_5\cdot CH_2\cdot CH_2\cdot CO\cdot C_6H_3(OH)_3.$
- 4. $4 Oxy \beta [2 oxy phenyl] propiophenon, 2.4' Dioxy hydrochalkon <math>C_{16}H_{14}O_3 = HO \cdot C_4H_4 \cdot CH_2 \cdot CH_2 \cdot CO \cdot C_6H_4 \cdot OH$.
- 4-Methoxy-β-[2-oxy-phenyl]-propiophenon, 2-Oxy-4'-methoxy-hydrochalkon $C_{10}H_{10}O_{3}=HO\cdot C_{0}H_{4}\cdot CH_{2}\cdot CH_{2}\cdot CO\cdot C_{0}H_{4}\cdot O\cdot CH_{3}$. B. Durch Hydrierung von 2-Oxy-4'-methoxy-chalkon bei Gegenwart von Platinschwarz in Eisessig (Tabaki, Acta phytoch. 8, 290; C. 1927 II, 1949). Tafeln (aus Alkohol). F: 59—60°. Ultraviolett-Absorptionsspektrum in alkoh. Lösung: T.
- 5. $4 Oxy \beta [4 oxy phenyl] propiophenon, 4.4' Dioxy hydrochalkon <math>C_{1t}H_{14}O_{3} = HO \cdot C_{e}H_{4} \cdot CH_{1} \cdot CH_{2} \cdot CO \cdot C_{e}H_{4} \cdot OH$.

- 4.4'- Dimethoxy- hydrochaikon-dimethylacetal $C_{19}H_{24}O_4 == CH_3 \cdot O \cdot C_6H_4 \cdot CH_2 \cdot C(O \cdot CH_3)_2 \cdot C_6H_4 \cdot O \cdot CH_3 \cdot B$. Durch Hydrierung von 4.4'- Dimethoxy-chalkon-dimethylacetal bei Gegenwart von kolloidem Palladium in Methanol (STRAUS, HEYN, A. 445, 102). Öl. $Kp_{9,6-9,7}$: 217—218°.
- 4.4'- Dimethexy- bydrochaiken exim, 4-Methexy- β -[4-methexy- phenyl]-propiophenon-exim C₁₇H₁₉O₂N = CH₃·O·C₆H₄·CH₂·CH₂·C(:N·OH)·C₆H₄·O·CH₃ (E I 643). Blättchen (aus Alkohol). F: 116—118,5° (STRAUS, GRINDEL, A. 439, 296). Löslichkeit in Natronlauge: Pfeiffer, J. pr. [2] 108, 351; 109, 376.
- 4.4'- Dimethoxy-hydrochaikon-semicarbazon $C_{18}H_{21}O_2N_3=CH_2\cdot O\cdot C_6H_4\cdot CH_2\cdot CH_2\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot C_6H_4\cdot O\cdot CH_2$. Nadeln (aus Methanol). F: 148—149° (Straus, Grindel, A. 439, 297; St., Heyn, A. 445, 103).

Tetrabromid des 4.4'-Bis-[4-methoxy-cinnamoyl]-diphenyläthers $C_{22}H_{26}O_5Br_4=(CH_3\cdot C+Br\cdot CHBr\cdot CO\cdot C_6H_4)_2O$. B. Durch Einw. von Brom auf 4.4'-Bis-[4-methoxy-cinnamoyl]-diphenyläther in Trichlorathylen (DILTHEY, Mitarb., J. pr. [2] 117, 353). — Krystalle. F: 198° (Zers.).

- 6. β -[2.5-Dioxy-phenyl]-propiophenon, 2.5-Dioxy-hydrochalkon $C_{15}H_{14}O_3=(HO)_1C_0H_3\cdot CH_2\cdot CO\cdot C_0H_3$.

Semicarbazon $C_{17}H_{19}O_3N_3=CH_2\cdot O\cdot C_6H_3(OH)\cdot CH_2\cdot CH_3\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot C_6H_5.$ Prismen (aus Alkohol). F: 184° (IEVINE, ROBINSON, Soc. 1927, 2093).

- 7. β -[3.4-Dioxy-phenyl]-propiophenon, 3.4-Dioxy-hydrochalkon $C_{15}H_{16}O_3=(HO)_5C_6H_5\cdot CH_2\cdot CH_2\cdot CO\cdot C_6H_5$.
- β-[4-Oxy-3-methoxy-phenyl]-propiophenon, Phenyl-[4-oxy-3-methoxy-β-phenäthyl]-keton, 4-Oxy-3-methoxy-hydrochalkon C₁₆H₁₆O₃, s. nebenstehende Formel. B. Durch Hydrierung von HO. CH₂·CH₂·CO·C₆H₅ Vanillylidenacetophenon bei Gegenwart von Platinschwarz in Äther (NOMURA, NOZAWA, Sci. Rep. Tôhoku Univ. 7, 91; C. 1921 I, 1017). Schuppen (aus verd. Methanol). F: 97,5—98°. Schmeckt brennend.
- β -[3.4-Dimethoxy-phenyl]-propiophenon, Phenyl-[3.4-dimethoxy- β -phenäthyl]-keton, 3.4-Dimethoxy-hydrochalkon $C_{17}H_{16}O_3=(CH_3\cdot O)_2C_6H_3\cdot CH_3\cdot CH_3\cdot CO\cdot C_6H_5$. B. Durch Hydrierung von 3.4-Dimethoxy-chalkon in Gegenwart von Platinmohr in Eisessig (Pyeryver, Mitarb., J. pr. [2] 119, 116). Krystalle (aus Alkohol). F: 67,5—68,5°.
- β -[3-Methoxy-4-äthoxy-phenyl]-propiophenon, Phenyl-[3-methoxy-4-äthoxy- β -phenäthyl]-keton, 3-Methoxy-4-äthoxy-hydrochalkon $C_{18}H_{20}O_3=C_2H_5\cdot O\cdot C_6H_3\cdot (O\cdot CH_3)\cdot CH_2\cdot CO\cdot C_6H_5\cdot O\cdot C_6H_3\cdot O\cdot CH_3\cdot CH_3\cdot CO\cdot C_6H_5\cdot B$. Durch Hydrierung von ω-[3-Methoxy-4-äthoxy-benzyliden]-acetophenon in Gegenwart von Platinschwarz in Eisessig (Tasaki, *Acta phytoch.* 3, 288, 289; *C.* 1927 II, 1949). Nadeln (aus Alkohol). F: 54—55°. Ultraviolett-Absorptionsspektrum in alkoh. Lösung: T.
- β -[3.4-Dimethoxy-phenyl]-propiophenon-oxim, 3.4-Dimethoxy-hydrochalkon-oxim $C_{17}H_{19}O_8N=(CH_3\cdot O)_2C_6H_3\cdot CH_3\cdot CH_2\cdot C(:N\cdot OH)\cdot C_6H_5$. Krystalle (aus verd. Alkohol). F: 109° (Pfeiffer, Mitarb., $J.\ pr.\ [2]\ 119,\ 116$).
- 8. β Oxy β [4 oxy phenyl] propiophenon, 4. β Dioxy hydrochalkon $C_{:5}H_{14}O_{3} = HO \cdot C_{6}H_{4} \cdot CH(OH) \cdot CH_{2} \cdot CO \cdot C_{6}H_{5}$.
- α-Brom-β-methoxy-β-[4-methoxy-phenyl]-propiophenon, α-Brom-4,β-dimethoxy-hydrochalkon $C_{17}H_{17}O_3$ Br = $CH_2 \cdot O \cdot C_0H_4 \cdot CH(O \cdot CH_5) \cdot CHBr \cdot CO \cdot C_0H_5$ (H 324). Liefert beim Erhitzen mit Natriummethylat-Lösung 4.β-Dimethoxy-chalkon (S. 379 (Weygand, A. 459, 108). Gibt beim Kochen mit Hydroxylaminhydrochlorid und methylalkoholischer Kalilauge 3-Phenyl-5-[4-methoxy-phenyl]-isoxazol (Syst. Nr. 4227) und 4 (oder 5)-Oxy-3-phenyl-5-[4-methoxy-phenyl]-Δ²-isoxazolin (Syst. Nr. 4252) (W., Bauer, A. 459, 138).
- α-Brom-β-āthoxy-β-[4-methoxy-phenyl]-propiophenon, α'- Brom 4 methoxy β āthoxy-hydrochalkon $C_{10}H_{10}O_2Br = CH_3 \cdot O \cdot C_0H_4 \cdot CH(O \cdot C_0H_5) \cdot CHBr \cdot CO \cdot C_0H_5$ (H 325). Gibt beim Erhitzen mit etwas Kaliumdisulfat auf 160—170° α-Brom-4-methoxy-chalkon (S. 219) (Dufraiser, Moureu, Bl. [4] 41, 854).

 β -Phenylsulion - β -[4-methoxy - phenyi] - propiophenon, 4-Methoxy- β -phenylsulion-hydrochalkon $C_{22}H_{20}O_3S=CH_3\cdot O\cdot C_6H_4\cdot CH(SO_3\cdot C_6H_5)\cdot CH_2\cdot CO\cdot C_6H_5$. B. Durch Umsetsung von Anisylidenacetophenon mit Benzolsulfinsäure in Äther oder mit Benzol und Schwefeldioxyd in Gegenwart von Aluminiumchlorid (Vorländer, Friedberg, B. 56, 1149). — Krystalle (aus Alkohol). F: ca. 1770 (Zers.). — Zersetzt sich beim Erwärmen mit Benzol und Aluminiumchlorid.

9. 4.6-Dioxy-2-methyl-desoxybenzoin, [4.6-Dioxy-2-methyl-phenyl]-benzyl-keton, $C_{16}H_{14}O_{2}$, s. nebenstehende Formel (R und R' = H).

CH2 CH2

6-0xy-4-methoxy-2-methyl-desoxybenzoin, [6-0xy-4-methoxy-2-methyl-phenyl] - benzyl-keton $C_{16}H_{16}O_{3}$, s. nebenstehende Formel (R = CH₃, R' = H). Bildung s. im folgenden Artikel. — Nadeln (aus Åther + Ligroin). F: 110° (Baker, Robinson, Soc. 1929, 161). Schwer löslich in Åther. Gibt mit Eisenehlorid in Alkohol eine starke rotbraune Färbung. — Gibt beim Erhitzen mit Acetanhydrid und Natriumacetat 7-Methoxy-2.5-dimethyl-isoflavon (Syst. Nr. 2515).

4-0xy-6-methoxy-2-methyl-desoxybenzoin, [4-0xy-6-methoxy-2-methyl-phenyl]-benzyl-keton $C_{16}H_{16}O_3$, s. obenstehende Formel (R = H, R' = CH₃). B. Neben geringen Mengen 6-0xy-4-methoxy-2-methyl-desoxybenzoin beim Einleiten von Chlorwasserstoff in eine Lösung von Oreinmonomethyläther (E II 6, 877) und Benzylcyanid in Ather bei Gegenwart von Zinkchlorid und Erhitzen des Reaktionsprodukts mit Wasser (Baker, Robinson, Soc. 1929, 161). — Tafeln (aus Äther + Ligroin). F: 93°. Sehr leicht löslich in Äther, Alkohol, Methanol, Benzol und Aceton. — Gibt mit Eisenchlorid in Alkohol eine blaßgelbe Färbung.

6-Methoxy-4-acetoxy-2-methyl-desoxybenzoin, [6-Methoxy-4-acetoxy-2-methyl-phenyl]-benzyl-keton $C_{18}H_{18}O_4 = CH_3 \cdot CO \cdot O \cdot C_6H_2(CH_3)(O \cdot CH_3) \cdot CO \cdot CH_3 \cdot C_6H_5$. Tafeln (aus Alkohol). F: 88° (Baker, Robinson, Soc. 1929, 161).

10. 2.4 - Dioxy - 4' - methyl - desoxybenzoin,
[2.4 - Dioxy - phenyl] - [4 - methyl - benzyl] - keton

C₁₈H₁₄O₃, s. nebenstehende Formel. B. Beim Einleiten von HO

COCH₃

Chlorwasserstoff in eine Lösung von Resorcin und p-Tolylacetonitril bei Gegenwart von Zinkchlorid in Äther und Kochen des Reaktionsprodukts mit

Wasser (Chapman, Stephen, Soc. 123, 405, 408). — Nadeln (aus Wasser oder verd. Alkohol).

F: 114°. Leicht löslich in organischen Lösungsmitteln außer Ligroin, fast unlöslich in kaltem

Wasser. — Reduziert Fehlingsche Lösung. Gibt mit Eisenchlorid in Alkohol eine dunkelrotbraune, mit Natriumhypochlorit in Alkohol oder Äther eine rote Färbung.

2.4 - Dioxy - 4' - methyl - desoxybenzoin - oxim $C_{16}H_{16}O_8N = (HO)_8C_6H_8 \cdot C(:N \cdot OH) \cdot CH_8 \cdot C_6H_4 \cdot CH_9$. Prismen (aus verd. Alkohol). F: 218° (Zers.) (Chapman, Stephen, Soc. 123, 408). Gibt mit Eisenchlorid eine fast schwarze, mit Natriumhypochlorit eine purpurrote Färbung.

11. 2.4'-Dioxy-3.5-dimethyl-benzophenon $C_{15}H_{14}O_{2}$, Formel I (R = H).

2-Oxy-4'-methoxy-3.5-dimethyl-benzophenon C_{1e}H_{1e}O₃, Formel I (R = CH₃). B. Durch Kondensation von 2-Oxy-3.5-dimethyl-benzoylchlorid mit Anisol und Aluminiumchlorid in Schwefelkohlenstoff (I. G. Farbenind., D. R. P. 483148; C. 1930 I, 893; Frdl. 16, 495). — Nadeln (aus verd. Alkohol). F: 105—106° (unkorr.).

12. 4.4' - Dioxy - 3.3' - dimethyl - benzophenon C₁₂H₁₄O₃, Formel II. Die von Doebnee, Schroeter (A. 257, 74; H 325) so formulierte Verbindung ist als unreines 4-Oxy-3-methyl-benzophenon erkannt (Gomberg, Anderson, Am. Soc. 47, 2026). — B. 4.4'-Dioxy-3.3'-dimethyl-benzophenon entsteht beim Leiten von Luft oder Sauerstoff durch eine Lösung von o-Kresolaurin (S. 421) in 5% iger Natronlauge (G., A., Am. Soc. 47, 2030). Neben anderen Produkten beim Erhitzen von o-Kresol und Tetrachlorkohlenstoff mit Zinkeblorid auf 125°, mit Aluminiumohlorid auf ca. 100° oder mit Zinn(IV)-chlorid im Autoklaven auf 130° (G., A., Am. Soc. 47, 2025). — Rotliche Krystalle (aus verd. Alkohol). Färbt sich bei 110° geiblich; F: 240°. Löslich in Äther, Alkohol, Aceton und Eisessig, unlöslich in Benzol, Chloroform und Petroläther.

4.4'-Dimethoxy-3.3'-dimethyl-benzophenon C₁₇H₁₈O₂ = [CH₈·O·C₅H₂(CH₈)]₂CO. B. Beim Kochen von 4.4'-Dioxy-3.3'-dimethyl-benzophenon mit Dimethylsulfat in Natronlauge (Gomberg, Andreson, Am. Soc. 47, 2026). Durch Umsetzung von 4-Methoxy-3-methyl-phenylmagnesiumbromid mit 4-Methoxy-3-methyl-benzaldehyd in siedendem Äther und Oxydation des erhaltenen Carbinols mit Permanganat in schwefelsaurer Lösung (G., A.). Durch Behandlung von 4.4'-Dimethoxy-3.3'-dimethyl-thiobenzophenon mit Triäthylphosphin und Luft in siedendem Toluol (Schönberg, Keüll, B. 59, 1406). — Krystalle (aus Petroläther). F: 116° (G., A.).

4.4'- Diäthoxy-3.3'-dimethyl-benzophenon C₁₉H₂₂O₃ = [C₂H₃·O·C₆H₃(CH₃)]₂CO (H 325).

B. Durch Behandlung von 4.4'-Diäthoxy-3.3'-dimethyl-thiobenzophenon mit wäßrig-alkoholischer Kalilauge (Sch., B. 58, 1797) oder mit Triäthylphosphin und Luft in siedendem Toluol (Sch., Krüll, B. 59, 1407). — Liefert beim Kochen mit Natriumamid in Toluol und Verseifen des Reaktionsprodukts mit 2n-Natronlauge 4-Äthoxy-3-methyl-benzoesäure (Sch.).

4.4' - Diacetoxy - 3.3' - dimethyl - benzophenon $C_{19}H_{18}O_5 = [CH_3 \cdot CO \cdot O \cdot C_eH_3(CH_3)]_sCO$. F: 102° (Gomberg, Anderson, Am. Soc. 47, 2026).

4.4'-Dimethexy-3.3'-dimethyl-benzophenon-oxim $C_{17}H_{19}O_3N = [CH_3 \cdot O \cdot C_6H_3(CH_3)]_2C : N$

OH. F: 137º (GOMBERG, ANDERSON, Am. Soc. 47, 2027).

- 4.4'- Dimethoxy-3.3'-dimethyl-thiobenzophenon $C_{17}H_{18}O_4S = [CH_2 \cdot O \cdot C_6H_3(CH_8)]_2CS$ (H 325). Liefert beim Behandeln mit Triäthylphosphin und Luft in siedendem Toluol 4.4'-Dimethoxy-3.3'-dimethyl-benzophenon (Schönberg, Krüll, B. 59, 1406). Gibt bei der Umsetzung mit Phenylmagnesiumbromid in siedendem Äther und Behandlung des Reaktionsprodukts mit siedendem Aceton Tetrakis-[4-methoxy-3-methyl-phenyl]-āthylen (E II 6, 1146) (Sch., A. 454, 45).
- 4.4'- Diäthexy 3.3'- dimethyl thiobenzophenon $C_{19}H_{32}O_{2}S=[C_{2}H_{5}\cdot 0\cdot C_{6}H_{4}(CH_{3})]_{2}CS$ (H 325). Liefert beim Behandeln mit wäßrig-alkoholischer Kalilauge (Schönberg, B. 58, 1797) oder mit Triäthylphosphin und Luft in siedendem Toluol (Sch., Krüll, B. 59, 1407) 4.4'-Diäthoxy-3.3'-dimethyl-benzophenon. Gibt bei der Einw. von Phenylmagnesiumbromid in siedendem Ather und Behandlung des Reaktionsprodukts mit siedendem Aceton Tetrakis-[4-āthoxy-3-methyl-phenyl]-āthylen (E II 6, 1146) (Sch., A. 454, 45). $C_{19}H_{22}O_{2}S + HgBr_{2}$. Rotgelbe Stäbchen. Schwer löslich in Äther (Sch., B. 58, 1800).
- 4.4'- Diāthoxy 3.3'- dimethyl benzophenon dibenzylmercaptol $C_{33}H_{36}O_2S_2 = [C_2H_5\cdot O\cdot C_6H_3(CH_3)]_2C(S\cdot CH_2\cdot C_6H_5)_2$. B. Durch Kochen von 4.4'- Diāthoxy-3.3'-dimethyl-benzophenon mit Oxalylchlorid und Umsetzung des entstandenen 4.4'- Diāthoxy-3.3'-dimethyl-benzophenon-chlorids mit Benzylmercaptan in siedendem Benzol (Schönberg, Schütz, B. 62, 2332). Nadeln (aus Methanol). F: 92—93°; zersetzt sich bei ca. 159° unter Blaugrünfärbung. Leicht löslich in Ather und Benzol, schwer in Methanol. Löslich in konz. Schwefelsäure mit gelblichroter Farbe.
- 13. 6.6'-Dioxy-3.3'-dimethyl-benzophenon $C_{15}H_{14}O_3$, Formel I (H 325). F: 104° bis 106° (Reilly, Drumm, Soc. 1927, 2817).
- 14. 3 Oxy-2-[γ.γ-dimethyl-propenyl]-naphthochinon-(1.4), Isolapachol C₁₄H₁₄O₂, Formel II bzw. desmotrope Form (H 325). Zur Konstitution vgl. die Angaben bei 2-Oxy-naphthochinon-(1.4) (S. 344) sowie Fieser, Am. Soc. 50, 452; Hooker, Am. Soc. 58 [1936], 1163. Normalredoxpotential in wäßrig-alkoholischer Salzsäure in Gegenwart von Lithiumchlorid bei 25°: +0,282 V (F., Am. Soc. 50, 449).

$$I. \quad \bigodot_{OH} \quad OH \quad II. \quad \bigodot_{OH} \quad CH: CH: CH: CH(CH_3)_3 \quad III. \quad \bigodot_{OH} \quad CH_3 \cdot CH: C(CH_3)_3$$

15. 3 - Oxy - 2 - [γ·γ - dimethyl-allyl]-naphthochinon-(1.4), Lapachol, Grönhartin, Taigusäure, Tecomin C₁₈H₁₄O₃, Formel III (H 326; E I 644). Zur Konstitution vgl. die Angaben bei 2-Oxy-naphthochinon-(1.4) (S. 314) sowie Fieer, Am. Soc. 49, 857; 50, 447. — B. In geringer Menge neben wenig 2-[γ·γ-Dimethyl-allyloxy]-naphthochinon-(1.4) bei der Einw. von γ·γ-Dimethyl-allylbromid auf das Silbersalz des 2-Oxy-naphthochinons-(1.4) in absol. Ather bei 0° (F., Am. Soc. 49, 860). — Normlaredoxpotential in wäßrig-alkoholischer Salzsäure in Gegenwart von Lithiumchlorid bei 25°: + 0,287 V (F., Am. Soc. 50, 449).

3-Methoxy-2- $[\gamma,\gamma$ -dimethyl-allyl]-naphthochinon-(1.4), Lapachol-methyläther $C_{10}H_{10}O_{3}=$ $C_{0}H_{1}$ C_{10} C_{10}

(FIESER, Am. Soc. 50, 459). — Gelbe Nadeln (aus Ligroin oder Petroläther). F: 53°. Sehr leicht löslich in organischen Lösungsmitteln, sehr schwer in Wasser. — Wird durch wäßrige und alkoh. Alkalien schwer hydrolysiert.

OXY-OXO-VERBINDUNGEN CnH2n-16O3 UMD CnH2n-18O3 [Syst. Nr. 779

4. Oxy-exe-Verbindungen C14H14O2.

1. 4.6 - Dioxy - 2 - methyl - w - phenyl - propiophenon, 4'.6' - Dioxy - 2' - methyl - hydrochalkon, Hydrocinnamoyl-orcin, Benzyl-orcacetophenon C₁₈H₁₆O₃, Formel IV. B. Neben anderen Produkten beim Sättigen einer Lösung von Hydrozintsäurenitril und Orcin in Äther mit Chlorwasserstoff bei 0° und Erhitzen des entstandenen Ketimidhydrochlorids mit Wasser (Baker, Soc. 127, 2356). — Tafeln (aus Wasser). F: 118,5°.

2. 6 - Oxy - 3 - methyl - β - [4 - oxy - phenyl] - propiophenon , 4.6' - Dioxy-3'- methyl - hydrochalkon $\rm C_{16}H_{16}O_3$, Formel V.

αβ-Dibrom-6-oxy-3-methyl-β-[4-methoxy-phenyl] - propiophenon, 6'- Oxy-4-methoxy-3'-methyl-chalkondibromid $C_{17}H_{16}O_3Br_2 = CH_3 \cdot O \cdot C_4H_4 \cdot CHBr \cdot CHBr \cdot CO \cdot C_6H_4 \cdot (CH_3) \cdot OH$. B. Aus 6'- Oxy-4-methoxy-3'-methyl-chalkon und Brom in Schwefelkohlenstoff (v. Auwers, Anschütz, B. 54, 1555). — Heligelbe Krystelle (aus Schwefelkohlenstoff). F: ca. 146° (Zers.). Leicht löslich in Benzol, löslich in Methanol und Alkohol, schwer löslich in Äther und Benzin. — Liefert bei der Behandlung mit wäßrig-alkoholischer Natronlauge je nach den Bedingungen β-Brom-6'-oxy-4-methoxy-3'-methyl-chalkon, 3-Brom-4'-methoxy-6-methyl-flavanon, 4'-Methoxy-6-methyl-flavon oder 5-Methyl-2-anisyliden-cumaranon.

 $\alpha.\beta$ - Dibrom - 6 - acetoxy - 3 - methyl - β - [4 - methoxy - phenyl] - propiophenen, 4-Methoxy-6' - acetoxy - 3' - methyl - chalkondibromid $C_{19}H_{18}O_4Br_3 = CH_3 \cdot O \cdot C_6H_4 \cdot CHBr \cdot CHBr \cdot CO \cdot C_6H_3(CH_3) \cdot O \cdot CO \cdot CH_3$. B. Aus 4-Methoxy-6'-acetoxy-3'-methyl-chalkon und Brom in Schwefelkohlenstoff (v. Auwers, Anschürz, B. 54, 1555). — Krystalle (aus Schwefelkohlenstoff). F: 126° bis 127°. Leicht löslich in Benzol, löslich in Methanol und Alkohol, schwer löslich in Äther und Benzin.

5. Oxy-exo-Verbindungen $C_{17}H_{18}O_8$.

1. 1.5-Bis -[4-oxy-phenyl]-pentanon-(3), $\alpha.\alpha'$ -Bis -[4-oxy-benzyl]-aceton $C_{19}H_{18}O_3 = (HO \cdot C_8H_4 \cdot CH_3 \cdot CH_3)_6CO$.

1.5-Bis-[4-methoxy-phenyl]-pentanon-(3), $\alpha.\alpha'$ -Dianisyl-aceton, 4.4'-Dimethoxy-dibenzylaceton, Bis-[4-methoxy- β -phenäthyl]-keton $C_{10}H_{22}O_3 = (CH_3 \cdot O \cdot C_6H_4 \cdot CH_2 \cdot CH_2)_2CO$. B. Neben überwiegenden Mengen Bis-[4-methoxy- β -phenäthyl]-carbinol bei der Hydrierung von Dianisylidenaceton in Gegenwart von Palladium(II)-chlorid in Aceton (STRAUS, GRINDEL, A. 489, 305). — Nadeln (aus Ligroin). F: 54—55°.

Semicarbazon $C_{30}H_{25}O_3N_3=(CH_3\cdot O\cdot C_4H_4\cdot CH_2\cdot CH_2)_3C:N\cdot NH\cdot CO\cdot NH_3$. Blättchen (aus Methanol). F: 151—153,5° (STRAUS, GRINDEL, A. 489, 305).

2. 4'- Oxy - 4 - isopropyl-benzoin $C_{17}H_{18}O_8 = (CH_8)_2CH \cdot C_8H_4 \cdot CH(OH) \cdot CO \cdot C_8H_4 \cdot OH$.

4'- Methoxy - 4 - isopropyl - benzoin - oxim, Cuminanisoin - oxim $C_{18}H_{21}O_3N = (CH_9)_2CH \cdot C_8H_4 \cdot CH(OH) \cdot C(:N \cdot OH) \cdot C_8H_4 \cdot O \cdot CH_8$. Beim Kochen äquimolekularer Mengen Cuminaldehyd und Anisaldehyd mit Kaliumcyanid in 80% igem Alkohol und anschließenden Oximieren (Feigl, Sicher, Singer, B. 58, 2297). — $CuC_{18}H_{19}O_3N$. Grün. Unlöslich in Wasser und Ammoniak. Wird durch Säuren zersetzt.

6. Oxy-oxo-Verbindungen C₂₁H₂₆O₃.

1.2.3.4.6.7.8.9 - Oktabrom - 1.9 - bis - [4 - methoxy - phenyl] - nonanon-(5), 4.4'-Dimethoxy-dicinnamylidenaceton - oktabromid $C_{22}H_{22}O_2Br_3 = CH_2 \cdot O \cdot C_4H_4 \cdot [CHBr]_4 \cdot CO \cdot [CHBr]_4 \cdot C_6H_4 \cdot O \cdot CH_3$. B. Aus Bis-[4-methoxy-cinnamyliden]-aceton und Brom in Chloroform (Vorlander, Gieseler, J. pr. [2] 121, 241). — Gelbliche Krystalle (aus Xylol). F: ca. 164° (Zers.).

7. Oxy-oxo-Verbindungen C₂₂H₂₀O₃.

2.6 - Dimethyl - 2.6 - bis - [2-oxy-3-methyl-phenyl]-heptanon-(4), Di-o-tolyl-phoron C₂₂H₃₀O₃, s. nebenstehende
Formel. B. Durch tropfenweise Zugabe von

konz. Schwefelsäure zu einer Mischung von 1 Mol Aceton und 1 Mol c-Kresol bei 0° oder besser durch Einw. von 1 Mol konz. Schwefelsäure auf ein Gemisch von 1 Mol Diisopropylidenaceton und 2 Mol o-Kresol in der Kälte und Aufbewahren der Mischung bei Zimmertemperatur (Niederl., Casty, M. 51, 90). — Platten (aus Alkohol). F: 245°. Unlöslich in heißem Wasser, löslich in Alkohol, schwer löslich in Chloroform, Äther und Benzol. Löst sich in Alkalien. — NaC₂₂H₂₉O₃. Nadeln (aus verd. Alkohol). Schwer löslich in kaltem Wasser. — KC₂₃H₂₉O₃. Platten.

Dimethyläther $C_{25}H_{34}O_3 = [CH_3 \cdot C_0H_3(O \cdot CH_3) \cdot C(CH_3)_2 \cdot CH_3]_2CO$. F: 154° (Niederl, Casty, M. 51, 91).

Dibromderivat C₂₂H₂₆O₅Br₂. B. Aus 2.6-Dimethyl-2.6-bis-[2-oxy-3-methyl-phenyl]-heptanon-(4) und Brom in Chloroform (NIEDERL, CASTY, M. 51, 90). — Platten. F: 220°.

[H. RICHTER]

i) Oxy-oxo-Verbindungen C_nH_{2n-18}O₃.

1. Oxy-exe-Verbindungen $C_{12}H_4O_3$.

3-Methoxy-acenaphthenchinon C₁₃H₁₈O₂, Formel I (R = CH₃). B. Durch Umsetzung von Methyl-β-naphthyl-āther mit Oxalsāure-phenylimid-chlorid oder Oxalsāure-p-tolylimid-chlorid bei Gegenwart von 2 Mol Aluminiumchlorid in Schwefelkohlenstoff oder schneller in Benzol, zuletzt bei 50—55°, und Zersetzen der Reaktionsprodukte mit Eis und Salzsäure (Stauddinger, Goldstein, Schlenker, Helv. 4, 349, 351, 359). In geringerer Menge beim Einleiten von Dicyan und Chlorwasserstoff in eine Lösung von Methyl-β-naphthyl-āther in Schwefelkohlenstoff bei Gegenwart von Aluminiumchlorid und Destillieren des Reaktionsprodukts mit Wasserdampf (St., G., Sch., Helv. 4, 363). — Gelbe Blättchen (aus Eisessig). F: 215—216° (St., G., Sch., Helv. 4, 350). Löslich in Eisessig, fast unlöslich in den meisten anderen organischen Lösungsmitteln; löst sich in konz. Schwefelsäure unverändert mit tiefroter Farbe (St., G., Sch., Helv. 4, 350). — Liefert mit Indoxyl in heißem Eisessig 3 (oder 8)-Methoxy-acenaphthen-(1)-indol-(2')-indigo (Formel II oder III) und reagiert analog mit 3-Oxy-thionaphthen in heißem Eisessig + wenig Salzsäure (St., G., Sch., Helv. 4, 351).

3-Äthoxy-acenaphthenchinon $C_{14}H_{10}O_3$, Formel I ($R=C_2H_5$). B. Durch Umsetzung von Äthyl- β -naphthyl-äther mit Oxalsäure-phenylimid-chlorid bei Gegenwart von Aluminium-chlorid in Benzol und Zersetzen des Reaktionsprodukts mit Eis und Salzsäure (Staudinger, Goldstein, Schlenker, Helv. 4, 353). — Krystalle (aus Eisessig). F: 141—142°. Leichter löslich als 3-Methoxy-acenaphthen-chinon-(1.2).

2. Oxy-oxo-Verbindungen C18H4O2.

(E I 645) wird als 4.4'-Dioxy-diphenyl-carbonsäure-(2) erkannt (Courtor, Geoffroy, C. r. 180, 1665). — B. 2.7-Dioxy-fluorenon entsteht bei der Einw. von Zinkchlorid auf 4.4'-Dioxy-diphenyl-carbonsäure-(2) (C., G., C. r. 180, 1667). — Rot. F: 338°. Löst sich in Alkalien mit blauer Farbe.

0xim $C_{13}H_9O_8N = (HO)_2C_{13}H_6:N\cdot OH$. Orangegelb. F: 300° (Courtot, Geoffroy, C. r. 180, 1667).

2. 3.6-Dioxy-4.5-benzo-inden-(2)-on-(1) $C_{13}H_8O_3$, Formel V (R und R' = H).

6 - Methoxy - 3 - phenoxy - 4.5 - benzo - inden - (2) - on - (1), 8 - Methoxy - 3 - phenoxy - $[\alpha.\beta$ - na phth indon - (1)] $C_{20}H_{14}O_3$, Formel V ($R = CH_3$; $R' = C_8H_5$). B. Neben β -Phenoxy- β -[4-methoxy-naphthyl-(1)]-acrylsäure bei der Verseifung von β -Phenoxy- β -[4-methoxy-naphthyl-(1)]-acrylsäure-šthylester mit methylalkoholischer Kalilauge auf dem Wasserbad (Ruhemann, Levy, B. 53, 272). — Prismen (aus Alkohol). F: 186—187°. Schwer löslich in siedendem Alkohol. Unlöslich in Alkalilaugen und Alkalicarbonat-Lösungen. Löst sich in konz. Schwefelsäure mit roter Farbe. Die alkoh. Lösung wird durch Eisenchlorid tief gelb gefärbt.

3. Oxy-exe-Verbindungen $C_{14}H_{10}O_{2}$.

- 1. Phenyl-[2-oxy-phenyl]-diketon, 2-Oxy-benzil C₁₄H₁₀O₃ = C₄H₅·CO·CO·C₄H₄·OH. B. Durch Erhitzen von 2-Methoxy-benzil mit Eisessig und 48% iger Bromwasserstoffsäure im Kohlendioxydstrom auf 140—150° (ASAHINA, ASANO, B. 62, 173). Gelbliche Blättchen (aus Ligroin) von süßlichem und zugleich etwas kratzendem Geschmack. F: 74°. Leicht löslich in Alkohol, Äther und Benzol. Leicht löslich in Alkalilaugen, etwas löslich in Sodalösung; die alkal. Lösungen sind gelb. Die alkoh. Lösung gibt mit Eisenchlorid eine rotviolette Färbung. Liefert beim Erwärmen mit Bariumhydroxyd in verd. Alkohol auf dem Wasserbad 2-Oxybenzilsäure, die beim Erhitzen mit Natriumacetat und Acetanhydrid auf 140° in 2-Oxybenzilsäure-lacton-acetat (Syst. Nr. 2514) übergeht.
- 2 Methoxy benzil $C_{15}H_{12}O_3 = C_4H_5 \cdot CO \cdot CO \cdot C_6H_4 \cdot O \cdot CH_3$. B. Durch Oxydation von 2'-Methoxy-benzoin mit Fehlingscher Lösung (ABARINA, TERASAKA, J. pharm. Soc. Japan 1923, Nr. 494, S. 19; japan. Teil, S. 219; Chem. Abstr. 17 [1923], 3028). Gelbliche Prismen. F: 71,5° (A., T.). Liefert beim Erhitzen mit Eisessig und 48 %iger Bromwasserstoffsäure im Kohlendioxydstrom auf 140—150° 2-Oxy-benzil (ASARINA, ASANO, B. 62, 173).
- 2. Phenyl [4 oxy phenyl] diketon, 4 Oxy benzil $C_{14}H_{10}O_5 = C_6H_5 \cdot CO \cdot CO \cdot C_6H_4 \cdot OH$.
- 4-Methoxy-benzil $C_{18}H_{12}O_3=C_6H_5\cdot CO\cdot CO\cdot C_6H_4\cdot O\cdot CH_3$. B. Durch Oxydation von 4-Methoxy-benzoin mit Kupfersulfat in wäßr. Pyridin (McKenzie, Mitarb., Bl. [4] 45, 422; Kinney, Am. Soc. 51, 1596). Hellgelbe Nadeln (aus Alkohol). F: 62—63° (McK., Mitarb.; Ki.). Gibt beim Kochen mit etwas weniger als 1 Mol Hydroxylaminhydrochlorid in Alkohol β-4'-Methoxy-benzil-7-oxim (8. 369); bei anschließendem Kochen mit weiteren 1½ Mol Hydroxylaminhydrochlorid und überschüssiger wäßrig-alkoholischer Natronlauge erhält man ein Gemisch von Dioximen, das bei der Oxydation mit kalter alkalischer Hypochlorit-Lösung in α- und β-Phenyl-[4-methoxy-phenyl]-furoxan (Syst. Nr. 4515) übergeht (Ki.).
- vgl. Meisenheimer, Lange, Lamparter, A. 444, 96; J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 1049, 1057. B. Aus α-[4'-Methoxy-benzil-7'-oxim-7-dimethylacetal] (S. 369) beim Erwärmen mit Eisessig auf dem Wasserbad (M., L., L., A. 444, 100). Neben β-4-Methoxy-benzil-7-oxim (s. u.) beim Behandeln von 4'-Methoxy-desoxybenzoin mit Isoamylnitrit und Natriumäthylat-Lösung unter Eiskühlung (Tiffeneau, Orechow, Bl. [4] 37, 437; vgl. a. Kinney, Am. Soc. 51, 1598). Krystalle (aus Benzol). F: 115—116° (T., O.), 108—110° (M., L., L.). Sehr leicht löslich in Methanol, Alkohol, Äther, Aceton und Chloroform, schwerer in Benzol, ziemlich schwer in Schwefelkohlenstoff, sehr schwer in Petroläther (T., O.; M., L., L.). Löslich in Alkalien mit gelber Farbe (M., L., L.). Geht beim Erhitzen (T., O.), beim Kochen mit Alkohol und beim Aufbewahren mit konz. Salzsäure (M., L., L.) in β-4-Methoxy-benzil-7-oxim (s. u.) über. Liefert bei 1—2-tägigem Aufbewahren mit Hydroxylaminhydrochlorid in verd. Natronlauge α-4-Methoxy-benzil-dioxim und wenig β-4-Methoxy-benzil-dioxim (S. 370) (M., L., L.).
- $\begin{array}{lll} 4-\text{Methoxy-benzil-7-oxim} & \text{vom Schmelzpunkt 170°}, & \beta-4-\text{Methoxy-benzil-7-oxim}, \\ 4-\text{Methoxy-benzil-β_3-monoxim} & C_{15}H_{13}O_3N = \frac{C_6H_5\cdot CO\cdot C\cdot C_6H_4\cdot O\cdot CH_3}{HO\cdot N}. & \text{Zur Konfiguration} \end{array}$

vgl. die bei α-4-Methoxy-benzil-7-oxim (s. o.) aufgeführte Literatur. — B. Neben α-4-Methoxy-benzil-7-oxim beim Behandeln von 4'-Methoxy-desoxybenzoin mit Isoamylnitrit und Natriumäthylat-Lösung unter Eiskühlung (Tiffenbau, Orbechow, Bl. [4] 37, 437; Kinney, Am. Soc. 51, 1598). Aus α-4-Methoxy-benzil-7-oxim beim Erhitzen (T., O.), beim Kochen mit Alkohol sowie beim Aufbewahren mit konz. Salzsäure (Meisenheimer, Lange, Lamparter, A. 444, 101). — Krystalle (aus Alkohol). F: 170° (M., L., L.), 169—170° (K.), 163—164° (Zers.) (T., O.). Leicht (öslich in Benzol und Äther, schwerer in Alkohol (T., O.); schwerer löslich als α-4-Methoxy-benzil-7-oxim; löslich in Alkalien mit gelber Farbe (M., L., L.). — Liefert bei 24-stdg. Aufbewahren mit Hydroxylamin in Natronlauge δ-4-Methoxy-benzil-dioxim (?) (S. 371) (M., L., L., A. 444, 107; vgl. dagegen Ponzio, G. 60 [1930], 86).

4'- Methoxy - benzil - 7 - oxim vom Schmelzpunkt 96°, α - 4'- Methoxy - benzil - 7 - oxim 4 - Methoxy - benzil - α_1 - monoxim $C_{16}H_{13}O_3N = \frac{C_6H_6 \cdot C \cdot CO \cdot C_6H_4 \cdot O \cdot CH_8}{HO \cdot N}$. Zer Konfiguration val die bei α 4 Methoxy benzil 7 oxim (a. a.) - oxioxish to Literature R Are 4 Methoxy.

vgl. die bei α -4-Methoxy-benzil-7-oxim (s. o.) aufgeführte Literatur. — B. Aus 4-Methoxy-desoxybenzoin beim Behandeln mit Isoamylnitrit und Natriumäthylat-Lösung unter Kühlung, neben β -4'-Methoxy-benzil-7-oxim und Aniseäure (Meisenheimen, Lange, B. 57, 285; vgl. Taylor,

Soc. 1881, 2025). Beim Erwärmen von α -4'-Methoxy-benzil-7-oxim-7'-dimethylacetal mit Eisessig auf dem Wasserbad (M., Lange). — Nadeln (aus Schwefelkohlenstoff). F: 95—96° (M., Theilacker, A. 469, 129), 95,5° (T.). Schwer löslich in Petroläther, ziemlich schwer in Schwefelkohlenstoff, leicht in anderen organischen Lösungsmitteln; leicht löslich in Alkaliaugen mit gelber Farbe (M., Lange). — Gibt beim Behandeln mit kalter konzentrierter Salzsäure oder beim Erwärmen mit Alkohol auf 90—100° β -4'-Methoxy-benzil-7-oxim (M., Lange). Liefert bei der Umsetzung mit Hydroxylaminhydrochlorid in verd. Natronlauge bei Zimmertemperatur oder in kaltem oder siedendem Alkohol α -4-Methoxy-benzil-dioxim und wenig β -4-Methoxy-benzil-dioxim (M., Lange, Lamparter, A. 444, 102). Beim Kochen mit Methyljodid und methylalkoholischer Kalilauge entsteht O-Methyl-[α -4'-methoxy-benzil-7-oxim] (M., Lange). Gibt bei der Einw. von siedendem Acetanhydrid oder von Acetylchlorid in Pyridin bei 0° O-Acetyl-[α -4'-methoxy-benzil-7-oxim]; reagiert analog mit Benzoylchlorid in Pyridin und mit Benzoesäureanhydrid auf dem Wasserbad (M., Lange).

4'- Methoxy - benzil - 7 - oxim vom Schmelzpunkt 131°, β - 4'- Methoxy - benzil - 7 - oxim, 4-Methoxy - benzil - β_1 -menoxim $C_{15}H_{13}O_3N = \begin{array}{c} C_6H_5 \cdot C \cdot CO \cdot C_6H_4 \cdot O \cdot CH_3 \\ N \cdot OH \end{array}$ (H 329 als 4-Methoxy -

benzil- α' -oxim beschrieben). Zur Konfiguration vgl. die bei α -4-Methoxy-benzil-7-oxim (8. 368) aufgeführte Literatur. — B. Beim Kochen von 4-Methoxy-benzil mit etwas weniger als 1 Mol Hydroxylaminhydrochlorid in Alkohol (Kinney, Am. Soc. 51, 1596). Aus α -4'-Methoxy-benzil-7-oxim beim Behandeln mit kalter konzentrierter Salzsäure oder beim Erwärmen mit Alkohol auf 90—100° (Meisenheimer, Lange, B. 57, 283, 286). Aus α -4'-Methoxy-benzil-7-oxim-7'-dimethylacetal beim Behandeln mit verd. Alkohol, neben α -4'-Methoxy-benzil-7-oxim, oder bei längerem Erhitzen mit Wasser auf 120—140°, neben Benzonitril und Anissäure (M., Lange, B. 57, 288). — Liefert beim Behandeln mit Phosphorpentachlorid in absol. Äther unter Kühlung Anisoylameisensäure-anilid und geringe Mengen Anissäure und Anisoylameisensäure (M., Lange, B. 57, 283). Gibt mit Hydroxylamin in verd. Natronlauge bei 50—60° γ -4-Methoxy-benzil-dioxim, bei längerem Erhitzen auf dem Wasserbad β -4-Methoxy-benzil-dioxim und wenig Phenyl-[4-methoxy-phenyl]-furazan (M., Lange, Lamparter, A. 444, 104, 105). Wird beim Kochen mit Natronlauge und beim Erhitzen mit Alkohol im Rohr auf 100—120° nicht verändert (M., Lange, B. 57, 283). Gibt beim Kochen mit Acetanhydrid O-Acetyl-[β -4'-methoxy-benzil-7-oxim], bei der Einw. von Benzoylchlorid in Pyridin unter Kühlung O-Benzoyl-[β -4'-methoxy-benzil-7-oxim] (M., Lange, B. 57, 284).

O-Methyl- $[\alpha$ -4'-methoxy-benzil-7-oxim], 4-Methoxy-benzil- α_1 -monoxim - 0 - methyläther $C_{16}H_{16}O_3N=C_6H_6\cdot C(:N\cdot O\cdot CH_3)\cdot CO\cdot C_6H_4\cdot O\cdot CH_3$. B. Beim Kochen von α -4'-Methoxy-benzil-7-oxim mit Methyljodid und methylalkoholischer Kalilauge (Meisenheimer, Lange, B. 57, 287). Aus O-Methyl- $[\alpha$ -4'-methoxy-benzil-7-oxim-7'-dimethylacetal] beim Erwärmen mit Eisessig auf dem Wasserbad (M., L.). — Tafeln (aus Methanol). F: 62—63°. Leicht löslich in organischen Lösungsmitteln. — Wird bei mehrstündigem Erhitzen mit konz. Salzsäure in O-Methyl- $[\beta$ -4'-methoxy-benzil-7-oxim] umgewandelt.

O-Methyl- $[\beta-4$ -methoxy-benzil-7-oxim], 4-Methoxy-benzil- β_1 -monoxim - O - methyläther $C_{1e}H_{15}O_3N = C_eH_5 \cdot C(:N \cdot O \cdot CH_3) \cdot CO \cdot C_eH_4 \cdot O \cdot CH_3$ (H 329 als höhers chmelzender 4-Methoxy-benzil- α' -oxim-methyläther beschrieben). B. Aus O-Methyl- $[\alpha-4'$ -methoxy-benzil-7-oxim] bei mehrstündigem Erhitzen mit konz. Salzsäure (MEISENHEIMER, LANGE, B. 57, 287).

- 0-Acetyl [β -4-methoxy-benzil-7-oxim], 4-Methoxy-benzil- β_3 -monoxim-0-acetat $C_{17}H_{15}O_4N=C_6H_5\cdot CO\cdot C(:N\cdot O\cdot CO\cdot CH_3)\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus β -4-Methoxy-benzil-7-oxim beim Kochen mit Acetanhydrid (Meisenheimer, Lange, Lamparter, A. 444, 101). Krystalle (aus Alkohol). F: 99—100°. Zersetzt sich beim Aufbewahren an der Luft. Die Acetylgruppe wird durch verd. Natronlauge bei Zimmertemperatur abgespalten.
- 0-Acetyl-[α-4-methoxy-benzil-7-oxim], 4-Methoxy-benzil-α₁-monoxim-0-acetat C_{1?}H₁₆O₄N = C₆H₅·C(:N·O·CO·CH₃)·CO·C₆H₄·O·CH₃. B. Aus α-4'-Methoxy-benzil-7-oxim beim Kochen mit Acetanhydrid oder beim Behandeln mit Acetylchlorid in Pyridin bei 0° (Meisenheimer, Lange, B. 57, 286). Krystalle (aus Methanol). F: 133—134°. In der Wärme ziemlich leicht löslich in den gebräuchlichen Lösungsmitteln. Gibt bei kurzem Erwärmen mit Natronlauge wieder α-4'-Methoxy-benzil-7-oxim.
- O-Acetyl- $[\beta-4'$ -methoxy-benzil-7-oxim], 4-Methoxy-benzil- β_1 -monoxim-O-acetat $C_{17}H_{15}O_4N=CH_8\cdot O\cdot C_6H_4\cdot CO\cdot C(:N\cdot O\cdot CO\cdot CH_8)\cdot C_6H_6$. B. Aus $\beta-4'$ -Methoxy-benzil-7-oxim beim Kochen mit Acetanhydrid (Meisenheimer, Lange, B. 57, 284). Krystalle (aus Methanol). F: 85—86°. Leicht löslich in organischen Lösungsmitteln. Gibt beim Erwärmen mit verd. Natronlauge wieder $\beta-4'$ -Methoxy-benzil-7-oxim.
- α -4'-Methoxy-benzil-7'-oxim-7-dimethylacetal $C_{17}H_{19}O_4N=C_0H_5\cdot C(O\cdot CH_3)_3\cdot C(:N\cdot OH)\cdot C_0H_4\cdot O\cdot CH_3$. B. Beim Erhitzen von α-Nitro-4-methoxy-stilben (Ε II 6, 658) mit 30% iger methylalkoholischer Kalilauge auf 150° (Меізеннеїмев, Lange, Lamparter, A. 444, 100). —

Nadeln (aus Methanol). F: 205°. Schwer löslich in den meisten organischen Lösungsmitteln. — Gibt beim Erwärmen mit Eisessig α-4-Methoxy-benzil-7-oxim (S. 368).

 α -4'- Methoxy - benzil -7 - oxim - 7'- dimethylacetal $C_{17}H_{19}O_4N = C_8H_8 \cdot C(:N \cdot OH) \cdot C(O \cdot CH_3)_4 \cdot C_8H_4 \cdot O \cdot CH_3$ (H 329 als 4-Methoxy-benzil -α-dimethylacetal -α'-oxim beschrieben). Zur Konfiguration vgl. Meisenheimer, Lange, B. 57, 287. — Ist beim Erhitzen mit absol. Alkohol im Rohr auf 100° beständig, wird von verd. Alkohol allmählich in α-4'-Methoxy-benzil-7-oxim und β-4'-Methoxy-benzil-7-oxim, Benzonitril und Anissäure. Beim Erwärmen mit Eisessig auf dem Wasserbad entsteht α-4'-Methoxy-benzil-7-oxim. Gibt beim Behandeln mit Acetanhydrid in Eisessig und Einleiten von Chlorwasserstoff bei 0° Benzonitril und Anissäure. Liefert bei der Einw. von viel überschüssigem Benzoylchlorid in Pyridin O-Benzoyl-α-4'-methoxy-benzil-7-oxim-7'-dimethylacetal.

 $\alpha - 4 - \text{Methoxy-benzil-dioxim } C_{15}H_{14}O_{5}N_{2} = \frac{C_{6}H_{5} \cdot C - C \cdot C_{6}H_{4} \cdot O \cdot CH_{3}}{HO \cdot N} \text{ (von Ponzio, Ber-$

NARDI, G. 58, 817 als β-Phenyl-4-anisyl-glyoxim bezeichnet). Zur Konfiguration vgl. J. Meisenheimer, W. Theilacker in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 1049, 1058. — B. Bei der Einw. von 4-Methoxy-benzoldiazoniumchlorid auf β-Phenylglyoxim (Ponzio, Bernaedi, G. 58, 817). Aus α-4-Methoxy-benzil-7-oxim oder α-4-Methoxy-benzil-7-oxim beim Behandeln mit Hydroxylaminhydrochlorid in verd. Natronlauge oder in siedendem Alkohol, neben wenig β-4-Methoxy-benzil-dioxim (Meisenheimer, Lange, Lamparter, A. 444, 102). — Blättchen (aus Alkohol). F: 223° (Zers.) (P., B., G. 53, 817), 221° (Zers.) bei langsamem Erhitzen; zersetzt sich bei raschem Erhitzen bei 226° (M., Theilacker, A. 469, 129) Sehr schwer löslich in kaltem Alkohol und Aceton, fast unlöslich in Äther, Chloroform, Benzo und Ligroin; löslich in Alkalien (P., B.; M., L., L., A. 444, 103). — Gibt beim Erwärmen mit mäßig konzentrierter Natronlauge auf dem Wasserbad oder beim Erhitzen mit Alkohol im Rohr auf 150° β-4-Methoxy-benzil-dioxim, beim Erhitzen mit Alkohol im Rohr auf 200—220° Phenyl-[4-methoxy-phenyl]-furazan (M., L., L., A. 444, 103, 109). Liefert bei der Oxydation mit alkal. Natriumhypochlorit-Lösung α- und β-3-Phenyl-4-[4-methoxy-phenyl]-furoxan (M., L., L., A. 444, 111). — Nickelsalz Ni(C₁₅H₁₃O₃N₃)₂. Rotes Krystallpulver. F: 264° (Zers.) (P., B.), 265° (M., Th.). Schwer löslich in kaltem Chloroform und Benzol, fast unlöslich in den meisten anderen Lösungsmitteln.

figuration vgl. die Angaben bei α-4-Methoxy-benzil-dioxim (s. o.). — B. Entsteht in geringer Menge bei der Einw. von 4-Methoxy-benzoldiazoniumchlorid auf α-Phenyl-glyoxim in Natronlauge bei 0° (Meisenheimer, Theilacker, A. 469, 141). Neben überwiegenden Mengen α-4-Methoxy-benzil-dioxim beim Behandeln von α-4-Methoxy-benzil-7-oxim oder α-4'-Methoxy-benzil-7-oxim mit Hydroxylaminhydrochlorid in verd. Natronlauge oder in siedendem Alkohol (M., Lange, Lamparter, A. 444, 102). Neben Phenyl-[4-methoxy-phenyl]-furazan bei längerem Erhitzen von β-4'-Methoxy-benzil-7-oxim mit Hydroxylamin in alkal. Lösung auf dem Wasserbad (M., L., L., A. 444, 105). Aus α-4-Methoxy-benzil-dioxim beim Erwärmen mit mäßig konz. Natronlauge auf dem Wasserbad oder beim Erhitzen mit Alkohol im Rohr auf 150° (M., L., L., A. 444, 104). — Nadeln. F: 185° (Ponzio, B. 62, 1750; G. 60, 83). Leicht löslich in Alkohol, Aceton, Essigester und Xylol, ziemlich schwer in kaltem Benzol und Chloroform, fast unlöslich in Schwefelkohlenstoff und Ligroin (M., L., L., A. 444, 104). — Wird beim Kochen mit konz. Alkalilaugen nicht verändert (M., L., L., A. 444, 104). Liefert bei längerem Erhitzen mit Alkohol im Rohr auf 200—220° Phenyl-[4-methoxy-phenyl]-furazan (M., L., L., A. 444, 109). Bei der Oxydation mit alkal. Hypochlorit-Lösung entstehen α- und β-Phenyl-[4-methoxy-phenyl]-furoxan (Syst. Nr. 4515) (M., L., L., A. 444, 111; Ponzio, B. 62, 1750; G. 60 [1930], 84).

 $\gamma\text{-4-Methoxy-benzil-dioxim} \ \ C_{15}H_{14}O_{3}N_{3} = \frac{C_{6}H_{5}\cdot C - C_{5}C_{6}H_{4}\cdot OCH_{3}}{N\cdot OH} \ \ \text{Zur Konfigu-}$

ration vgl. die Angaben bei α -4-Methoxy-benzil-dioxim (s. o.). — B. Aus β -4'-Methoxy-benzil-7-oxim bei der Einw. von salzsaurem Hydroxylamin bei 50—60° (MEISENHEIMER, LANGE, LAMPARTER, A. 444, 104); das so gewonnene Präparat enthält nach Ponzio (G. 60 [1930], 86) etwas β -Form. — F: 89—91° (M., L., L.). Ziemlich leicht löslich in Alkohol und Äther, schwerer in Benzol (M., L., L.). — Ist sehr unbeständig (M., L., L.). Geht beim Erhitzen über den Schmelzpunkt und bei der Einw. von Lösungsmitteln, allmählich auch beim Aufbewahren in festem Zustand, in β -4-Methoxy-benzil-dioxim über (M., L., L.). Gibt bei der Oxydation mit alkal. Hypochlorit-Lösung α -Phenyl-[4-methoxy-phenyl]-furoxan (M., L., L.; P.). Beim Erwärmen mit wäßr. Natronlauge entstehen β -4-Methoxy-benzil-dioxim und geringe Mengen Phenyl-[4-methoxy-phenyl]-furazan (M., L., L.; vgl. P.). Geht beim Erhitzen mit Alkohol im Rohr auf 200—220° praktisch quantitativ in Phenyl-[4-methoxy-phenyl]-furazan über (M., L., L., A. 444, 109).

- δ -4-Methoxy-benzii-diexim $C_{15}H_{14}O_5N_2$. Das von Meisenheimer, Lange, Lamparter (A. 444, 107) aus β -4-Methoxy-benzil-7-oxim durch Behandeln mit Hydroxylamin in alkal. Lösung erhaltene Dioxim vom Schmelzpunkt 114—115° ist nach Ponzio (G. 66 [1930], 86) ein Gemisch.
- 0.0 Diacetyl $[\alpha$ 4 methoxy- benzil dioxim], α 4 Methoxy- benzil dioxim 0.0 diacetat $C_{19}H_{19}O_2N_3 = C_0H_5 \cdot C(:N \cdot O \cdot CO \cdot CH_3) \cdot C(:N \cdot O \cdot CO \cdot CH_3) \cdot C_0H_4 \cdot O \cdot CH_3$. B. Aus α 4 Methoxy-benzil dioxim durch Einw. von Acetanhydrid (Meisenheimer, Lange, Lamparter, A. 444, 103). Nadeln oder Platten (aus Methanol). F: 108° (M., L., L.,; M., Theilacker, A. 469, 130). In der Kälte ziemlich schwer löslich in den üblichen Lösungsmitteln (M., L., L.).

0.0 - Diacetyl - $[\beta - 4$ - methoxy- benzil - dioxim], β -4-Methoxy- benzildioxim - 0.0-diacetat $C_{19}H_{18}O_5N_2 = C_6H_5 \cdot C(:N \cdot O \cdot CO \cdot CH_3) \cdot C(:N \cdot O \cdot CO \cdot CH_3) \cdot C_6H_4 \cdot O \cdot CH_3$. B. Aus β -4-Methoxy-benzil-dioxim beim Erwärmen mit Acetanhydrid (Meisenheimer, Lange, Lamparter, A. 444, 104). Beim Erwärmen von γ -4-Methoxy-benzil-dioxim-0.0-diacetat mit Methanol oder anderen Lösungsmitteln (M., L., L., A. 444, 106). — Nadeln (aus Alkohol). F: 130°. Leicht löslich in den üblichen Lösungsmitteln.

0.0 - Diacetyl - [γ - 4 - methoxy- benzil - dioxim], γ - 4-Methoxy- benzildioxim - 0.0-diacetat $C_{19}H_{18}O_5N_2=C_6H_5 \cdot C(:N \cdot O \cdot CO \cdot CH_3) \cdot C(:N \cdot O \cdot CO \cdot CH_3) \cdot C_6H_4 \cdot O \cdot CH_3$. B. Aus γ -4-Methoxy-benzil-dioxim bei der Einw. von Acetanhydrid (Meisenheimer, Lange, Lamparter, A. 444, 106). — Nicht rein erhalten. F: 100—102°. — Ziemlich beständig bei höherer Temperatur. Wird durch Lösungsmittel, besonders in der Wärme, in β -4-Methoxy-benzil-dioxim-O.0-diacetat umgelagert. Beim Behandeln mit mäßig konzentrierter Natronlauge bei Zimmertemperatur entsteht Phenyl-[4-methoxy-phenyl]-furazan.

3. 1.2 - Dioxy - 9 - oxo - dihydroanthracen, 1.2 - Dioxy - anthron - (9) bzw. 1.2.9 - Trioxy - anthracen, 1.2 - Dioxy - anthranol-(9) C₁₄H₁₀O₃, Formel I bzw. II. B. Durch Hydrolyse von 1-Oxy-2-carbāthoxyoxy-anthron-(9) mit siedender methylalkohdlischer Kalilauge bei Gegenwart von etwas Na₄S₂O₄ in Wasserstoff - Atmosphäre (Perkin, Storky, Soc. 1929, 1418). — Orangegelbe Blättchen (aus verd. Essigsäure in Gegenwart von Zinn(II)-chlorid und Salzsäure). F: 149—151°. Löslich in Alkalien mit karminroter, in konz. Schwefelsäure mit gelber, allmählich in Violettrot übergehender Farbe.

- 1-Oxy-2-methoxy-anthron-(9) bzw. 1.9-Dioxy-2-methoxy-anthracen C₁₈H₁₂O₃, Formel III (R = CH₃) bzw. desmotrope Form. B. Neben wenig 4-Oxy-3-methoxy-anthron-(9) beim Kochen von Alizarin-2-methyläther mit Zinn(II)-chlorid und 33%iger Salzsäure (MILLER, PERKIN, Soc. 127, 2688). Orangerote Nadeln (aus Alkohol). F: 135—137°. In Alkohol schwerer löslich als 4-Oxy-3-methoxy-anthron-(9). Gibt bei der Oxydation mit Chromtrioxyd in Eisessig Alizarin-2-methyläther-1-acetat. Beim Erhitzen mit Schwefelsäure entsteht ein amorphes Produkt, das in Aceton mit roter, in Natronlauge mit rotbrauner Farbe löslich ist. Liefert beim Erhitzen mit Glycerin und verd. Schwefelsäure auf 120—130° 3.4 (oder 5.6)-Dioxy-benzanthron.
- 1-0xy-2-carbāthoxyoxy-anthron-(9) bzw. 1.9-Dioxy-2-carbāthoxyoxy-anthracen C₁₇H₁₄O₅, Formel III (R = CO₂·C₂H₅) bzw. desmotrope Form. B. Durch kurzes Kochen von O²-Carbāthoxy-alizarin mit Zinn(II)-chlorid und Salzsāure in Eisessig (Perkin, Story, Soc. 1929, 1418). Blaßgelbe Blättchen (aus Alkohol). Sintert bei 120°; F: 130—133°. Die Lösung in verdünnter alkoholischer Kalilauge ist gelb, die Lösung in Schwefelsäure ist orangefarben und wird beim Aufbewahren violettrot. Gibt bei der Einw. von Diazomethan in Benzol in Wasserstoff-Atmosphäre 1-Methoxy-2-carbāthoxyoxy-anthron-(9) und geringe Mengen 2-Methoxy-1-carbāthoxyoxy-anthron-(9) (nachgewiesen durch Oxydation und nachfolgende Hydrolyse zu Alizarin-1-methyläther und 2-methyläther); in Aceton-Lösung entstand außerdem etwas 4.4'-Dimethoxy-3.3'-bis-carbāthoxyoxy-dihydrodianthron (Syst. Nr. 860) (P., St., Soc. 1929, 1405, 1419). Liefert mit Acetanhydrid in kaltem Pyridin 1.9-Diacetoxy-2-carbāthoxyoxy-anthracen (E II 6, 1102).
- 4. 1.5 Dioxy 9 oxo dihydroanthracen, 1.5 Dioxy anthron (9) bzw. 1.5.9 Trioxy anthracen, 1.5 Dioxy anthracel (9) C₁₄H₁₀O₂, Formel IV bzw. V (H 330; E I 646). Darst. Durch Reduktion von 1.5-Dioxy-anthrachinon mit Zinn(II)-chlorid und siedender 33 % iger Salzsäure (Goodall, Perkin, IV Soc. 125, 473). Absorptionsspektrum in Natronlauge: Moir, Soc. 1327, 1810.

24*

- 5. 1.10 Dioxy 9 oxo dihydroanthracen, 1.10 Dioxy anthron (9) bzw. 1.9.10 Trioxy-anthracen, 1-Oxy-anthrahydrochinon $C_{14}H_{16}O_{2}$. Formel VI bzw. VII. Die Lösung in Alkohol enthält im Gleichgewicht etwa 10% Enolform (K. H. Meyer, Sander, A. 420, 116).
- a) Ketonform, 1.10-Dioxy-anthron-(9) C₁₄H₁₀O₃, Formel VI. B. Beim Kochen von 10-Brom-1-oxy-anthron-(9) mit verd. Aceton (K. H. MEYER, SANDER, A. 420, 120). Tiefgelbe Nadeln (aus Benzin). F: 135—137°. In der Kälte schwer löslich in den meisten Lösungsmitteln. Die hellgelbe Lösung in Alkohol wird beim Kochen mit etwas konz. Salzsäure infolge teilweiser Umwandlung in die Enolform tiefer farbig und nimmt blaugrüne Fluorescenz an. Löst sich in alkoh. Alkalien unter sofortiger Enolisierung; die tief orangeroten Lösungen in verdünnten wäßrigen Alkalien werden beim Kochen infolge Enolisierung braunstichig dunkelrot, beim nachfolgenden Schütteln mit Luft infolge Oxydation zu 1-Oxy-anthrachinon bläulichrot.
- b) Enolform, 1-Oxy-anthrahydrochinon C₁₄H₁₀O₃, Formel VII. B. Durch Reduktion von 1-Oxy-anthrachinon mit Zinkstaub und wäßr. Natronlauge; Isolierung erfolgt durch Ansäuern mit eiskalter verdünnter Schwefelsäure im Kohlendioxydstrom (K. H. MEYEE, SANDER, A. 420, 121). Bildung aus der Ketonform s. o. Dunkelolivgrüne Nadeln (aus Äther). Färbt sich beim Erhitzen gelb; F: 204—206°. Die äther. Lösung ist olivbraun und fluoresciert grün; alkoholische Lösungen verlieren die Fluorescenz rasch, besonders bei Gegenwart von Katalysatoren. Geht leicht in die Ketonform über. Leicht oxydierbar; Verhalten gegen Luft in alkal. Lösung s. o.

- 6. 2.3 Dioxy 9 oxo dihydroanthracen, 2.3 Dioxy anthron (9) bzw. 2.3.9-Trioxy-anthracen, 2.3-Dioxy-anthranol-(9) C₁₄H₁₀O₃, Formel VIII bzw. IX (H 330). B. Durch Kochen von Hystazarin mit Zinn(II)-chlorid und Salzsäure (Green, Soc. 1927, 556). F: 288—289°. Gibt in wäßriger und alkoholischer Lösung mit Eisenchlorid eine olivgrüne Färbung.
- 2-0xy-3-methoxy-anthron-(9) bzw. 2-0xy-3-methoxy-anthranol-(9) $C_{15}H_{12}O_3 = C_6H_4 < C_{15}C_6H_2(OH) \cdot O \cdot CH_2$ bzw. desmotrope Form. B. Beim Behandeln von 4'-Oxy-3'-methoxy-diphenylmethan-carbonsäure-(2) mit konz. Schwefelsäure bei Zimmertemperatur (BISTRZYCKI, ZEN-RUFFINEN, Helv. 8, 381). Nadeln (aus Eisessig). F: 211—213°. Mäßig löslich in siedendem Eisessig, sehr schwer in Xylol, unlöslich in Alkohol. Löst sich in 0,5 n-Kalilauge mit orangebrauner Farbe; die Lösung wird beim Erhitzen tief orangerot und scheidet beim Ansäuern mit verd. Essigsäure bräunlichviolette Flocken aus. Liefert beim Kochen mit Acetanhydrid und Natriumacetat 3-Methoxy-2-9-diacetoxy-anthracen (E II 6, 1102).

- 7. 2.6 Dioxy 9 oxo dihydroanthracen, 2.6 Dioxy anthron (9) bzw. 2.6.9 Trioxy anthracen, 2.6 Dioxy anthranol (9) C₁₄H₁₀O₃, Formel X bzw. XI (H 330). Darst. Durch Reduktion von 2.6 Dioxy anthrachinon mit Zinn (II) chlorid und siedender 33 % iger Salzsäure (Goodall, Perkin, Soc. 125, 473). Absorptionsspektrum in Natronlauge: Moir, Soc. 1927, 1810. Gibt bei der Reduktion mit amalgamiertem Aluminium in siedendem wäßrigem oder wäßrig-alkoholischem Ammoniak 2.6 Dioxy anthracen (Hall, Perkin, Soc. 123, 2033).
- 8. 2.10-Dioxy-anthron-(9) bzw. 2.9.10-Trioxy-anthracen, 2-Oxy-anthra-hydrochinon C₁₄H₁₉O₃, Formel XII bzw. desmotrope Form. Absorptionsspektrum in Natronlauge: Moir, Soc. 1927, 1810.

9. 3.4 - Dioxy - 9 - oxo - dihydroanthracen, 3.4 - Dioxy - anthron - (9) bsw. 1.2.10-Trioxy-anthracen, 3.4-Dioxy-anthranol-(9), Desoxyalizarin, Anthrarobin $C_{14}H_{10}O_2$, Formel XIII bzw. XIV (R und R' = H) (H 330; E I 647). Absorptionsspektrum in Natronlauge: Moir, Soc. 1927, 1810. — Aufnahme von Sauerstoff durch eine Lösung in 0,1 n-Natronlauge: Patzschke, Arch. Dermatol. 141, 133; C. 1922 III, 1206. Bei der Reduktion

mit amalgamiertem Aluminium in siedendem wäßrig-alkoholischem Ammoniak entsteht 1.2-Dioxy-anthracen (Hall, Perrin, Soc. 123, 2034). Gibt beim Erhitzen mit Glyceria und konz. Schwefelsäure auf 150° 7.8-Dioxy-benzanthron (S. 416) (P., Soc. 117, 701). Gibt bei der Einw. von Diazomethan in Äther oder in Äther + Tetrachloräthan 4-Oxy-3-methoxy-anthron-(9), 3.4-Dimethoxy-anthron-(9) und 1.1'-Dioxy-2.2'-dimethoxy-dihydrodianthron, bei der Umsetzung mit Diazomethan in Benzol in Wasserstoff-Atmosphäre erhält man nur die beiden Methyläther (P., Story, Soc. 1929, 1406, 1419). — Bactericide Wirkung: Pa., Arch. Dermatol. 141, 128; C. 1922 III, 1206. — Färbt mit Zinn-, Aluminium-, Chrom- und Eisensalzen gebeizte Wolle gelb bis braun (Goodall, Perrin, Soc. 125, 476). — Reinheitsprüfung: Ergänzungsbuch zum Deutschen Arzneibuch, 6. Ausgabe [Berlin 1941], S. 36.

4-Oxy-3-methoxy-anthron-(9) bzw.4-Oxy-3-methoxy-anthranel-(9) $C_{15}H_{12}O_3$, Formel XIII bzw. XIV auf S. 372 (R = H, R' = CH₂). B. s. im vorangehenden Artikel. Entsteht ferner neben überwiegenden Mengen 1-Oxy-2-methoxy-anthron-(9) beim Kochen von Alizarin-2-methyläther mit Zinn(II)-chlorid und 33 %iger Salzsäure (MILLER, PERKIN, Soc. 127, 2688). — Blaßgelbe Nadeln (aus Alkohol). F: 202°. — Gibt bei der Oxydation mit Chromtrioxyd in Eisessig Alizarin-2-methyläther-1-acetat. Beim Erhitzen mit Glycerin und wäßr. Schwefelsäure auf 125—130° entsteht 8-Oxy-7-methoxy-benzanthron (S. 416). Liefert ein in gelben Nadeln krystallisierendes Acetylderivat vom Schmelzpunkt 185—186°.

3.4-Dimethoxy-anthron-(9) bzw. 3.4-Dimethoxy-anthranol-(9) $C_{10}H_{14}O_3$, Formel XIII bzw. XIV auf S. 372 (R und R' = CH_4) (H 331). B. s. o. im Artikel 3.4-Dioxy-anthron-(9). — Liefert beim Behandeln mit der berechneten Menge Brom in Schwefelkohlenstoff bei 50° 10-Brom-3.4-dimethoxy-anthron-(9) (GOODALL, PERKIN, Soc. 125, 475).

10 - Brom - 3.4 - dimethoxy - anthron - (9) bzw. 10 - Brom - 3.4 - dimethoxy - anthranol - (9) $C_{16}H_{13}O_3Br = C_6H_4 < CO > C_6H_2(O \cdot CH_3)_2$ bzw. desmotrope Form. B. Durch Behandeln von 3.4 - Dimethoxy - anthron - (9) mit der berechneten Menge Brom in Schwefelkohlenstoff bei 50° (GOODALL, PERKIN, Soc. 125, 475). — Gelbe Nadeln (aus Schwefelkohlenstoff). F: 130°. — Gibt bei der Einw. von alkoh. Kalilauge 1.2-Dimethoxy-anthrachinon.

10-Nitro-3.4-diacetoxy-anthron-(9) bzw. 10-Nitro-3.4-diacetoxy-anthranol-(9), 10-Nitro-diacetyldesoxyalizarin C₁₈H₁₃O₇N = C₆H₄ CH(NO₂) C₆H₂(O·CO·CH₃)₂ bzw. desmotrope Form. B. Aus nicht näher beschriebenem 34-Diacetoxy-anthron-(9) durch Einw. von Salpetersäure unter verschiedenen Bedingungen (GODALL, PERKIN, Soc. 125, 475, 476). — Nadeln (aus Benzol). F: 156° (Zers.). Löst sich in Schwefelsäure mit violetter Farbe. — Die Lösung in Diäthylamin ist scharlachrot, wird beim Aufbewahren erst braun, dann violett und gibt beim Neutralisieren und Acetylieren Alizarindiacetat.

10. 2.7 (oder 3.6) - Dioxy - 9 - oxo - dihydroanthracen, 2.7 (oder 3.6) - Dioxy-anthron-(9) bzw. 2.7.9 (oder 2.7.10) - Trioxy-anthracen, 2.7 (oder 3.6) - Dioxy-anthranol-(9) C₁₄H₁₀O₃, Formel I oder II bzw. desmotrope Formen (H 331). B. Durch Reduktion von 2.7-Dioxy-anthrachinon mit Zinn(II)-chlorid und 33 %iger Salzsäure (Goodall, Perrin, Soc. 125, 473). — Absorptionsspektrum in Natronlauge: Moir, Soc. 1927, 1810. — Gibt bei der Reduktion mit amalgamiertem Aluminium in siedendem wäßrigem oder wäßrig-alkoholischem Ammoniak 2.7-Dioxy-anthracen (Hall, P., Soc. 123, 2031).

11. 1.8(oder 4.5) - Dioxy - 9 - oxo - dihydroanthracen, 1.8(oder 4.5) - Dioxy-anthron-(9) bzw. 1.8.9 (oder 1.8.10) - Trioxy-anthracen, 1.8 (oder 4.5) - Dioxy-anthranol - (9), Chrysanthranol, Cignolin C₁₄H₁₀O₃, Formel III oder IV bzw. desmotrope Formen (H 332; E I 647). Aufnahme von Sauerstoff durch eine Lösung in 0,1 n-Natronlauge: PATZSCHKE, Arch. Dermatol. 141, 133; C. 1922 III, 1206. — Wirkung bei Einreibung in die Haut und bei subeutaner Injektion: PA., Arch. Dermatol. 141, 138, 144; C. 1922 III, 1206. Zur therapeutischen Anwendung vgl. POLLAND, Wien. med. Wechr. 69, 1810; C. 1920 I, 232; KRETSCHMER, Wien. med. Wschr. 69, 1811; C. 1920 I, 231; ULLMANN, Wien. med. Wechr. 70, 706; C. 1920 I, 863; BAUDISCH, Arch. Dermatol. 129, 96; C. 1921 III, 239. — Die Lösung in konz. Schwefelsäure ist intensiv rot und wird beim Erhitzen blau, beim Verdünnen und beim Zufügen von Zinkstaub farblos (Torti, Boll. chim. Farm. 64, 259; C. 1925 II, 1480). Färbt sich beim Erhitzen mit konz. Salpetersäure intensiv rot; Verhalten des Reaktionsprodukts gegen Alkalien und gegen Kaliumeisencyanide: T. Farbreaktionen von Cignolin mit Phenolen: T.

374

- 4. Oxy-exe-Verbindungen C15H15O2.
- 1. 3 Phenyl 1 [2.3 dioxy phenyl] propen (1) on (3), ω -[2.8-Dioxybenzyliden] acetophenon, 2.3 Dioxy chalkon $C_{15}H_{12}O_3=(HO)_5C_6H_3\cdot CH:CH\cdot CO\cdot C_6H_5$.
- ω -[2-Oxy-3-methoxy-benzyliden]-acetophenon, Phenyl-[2-oxy-3-methoxy-styryl]-keton, 2-Oxy-3-methoxy-chalkon $C_{16}H_{14}O_3$, Formel V. B. Aus 2-Oxy-3-methoxy-benzaldehyd und Acetophenon in wäßrig-alkoholischer Alkalilauge (Robinson, Soc. 125, 208; Preiffer, J. pr. [2] 108, 354). Gelbe Nadeln oder Blättchen (aus Ligroin) oder Prismen (aus Alkohol). F: 110—1110 (Pr.), 1120 (R.). Sehr leicht löslich in Alkohol und Eisessig, leicht in Äther, Benzol und Methanol, schwer in Ligroin (Pr.). Liefert beim Erhitzen mit konz. Salzsäure wenig 8-Methoxy-2-phenyl-benzopyryliumchlorid (R.). Kaliumsalz $KC_{16}H_{13}O_8$. Rote Krystalle (Pr.; R.).
- 3-Methoxy-2-acetoxy-chalkon $C_{19}H_{16}O_4 = C_6H_5 \cdot CO \cdot CH : CH \cdot C_6H_3 \cdot O \cdot CO \cdot CH_2$. B. Beim Erwärmen von 2-Oxy-3-methoxy-chalkon mit Acetanhydrid und Natriumacetat (Pfelffer, J. pr. [2] 108, 355). Krystalle (aus Alkohol). F: 124,5°.
- 2. 3 Phenyl 1 [2.5 dioxy phenyl] propen (1) on (3), ω [2.5 Dioxy benzyliden] acetophenon, 2.5 Dioxy chalkon $C_{15}H_{12}O_3 = (HO)_2C_6H_3 \cdot CH \cdot CH \cdot CO \cdot C_6H_5$.
- ω -[2-Oxy-5-methoxy-benzyliden]-acetophenon, Phenyl-[2-oxy-5-methoxy-styryl]-keton, 2-Oxy-5-methoxy-chalkon $C_{15}H_{14}O_{2}$, Formel VI. B. Beim Aufbewahren von 2-Oxy-5-methoxy-benzaldehyd mit Acetophenon in alkoholisch-wäßriger Kalilauge in der Wärme, neben [2-Oxy-5-methoxy-benzyliden]-diacetophenon (Irvine, Robinson, Soc. 1927, 2088). Goldgelbe Nadeln (aus Benzol oder 50%igem Alkohol). F: 104°. Liefert bei der Hydrierung in Gegenwart von Palladium 2-Oxy-5-methoxy-hydrochalkon (I., R., Soc. 1927, 2094).

- 3. 1-[2-Oxy-phenyl]-3-[4-oxy-phenyl]-propen-(1)-on-(3), $4-Oxy-\omega-salicyliden-acetophenon$, 2.4'-Dioxy-chalkon $C_{14}H_{12}O_3=HO\cdot C_4H_4\cdot CH\cdot CH\cdot CO\cdot C_4H_4\cdot OH$.
- 4-Methoxy-w-salicyliden-acetophenon, 2-Oxy-4'-methoxy-chalkon C₁₆H₁₄O₃ = HO·C₆H₄·CH:CH·CO·C₆H₄·O·CH₃ (H 333). Fast farblose Blättchen; F: 147—148°; 0,3 g lösen sich in 50 cm³ heißem Benzol (Dilther, Radmacher, B. 58, 362). Wurde einmal in gelben Nadeln (aus Alkohol) vom Schmelzpunkt 134° erhalten; 0,3 g dieser Form lösten sich in 5 cm³ heißem Benzol.
- 4. 3 Phenyl 1 [3.4 dioxy phenyl] propen (1) on (3), ω -[3.4-Dioxybenzyliden] acetophenon, 3.4 Dioxy chalkon $C_{15}H_{12}O_3=(HO)_2C_4H_3\cdot CH:CH\cdot CO\cdot C_4H_5$.
- ω -[4-Oxy-3-methoxy-benzyliden]-acetophenon, Vanillylidenacetophenon, Phenyl-[4-oxy-3-methoxy-styryl]-keton, 4-Oxy-3-methoxy-chalkon $C_{1e}H_{14}O_9$. Formel VII. B. Neben wenig Vanillylidendiacetophenon bei der Kondensation von Vanillin mit Acetophenon in wäßrig-alkoholischer Natronlauge bei gewöhnlicher Temperatur (NOMURA, NOZAWA, Sci. Rep. Töhoku Univ. 7, 91; C. 1921 I, 1018). Gelbe Krystalle (aus verd. Alkohol). F: 92—93°. Leicht löalich in verd. Alkohol und in 2% iger Natronlauge.
- ω-[3.4-Dimethoxy-benzyliden] acetophenon, Veratrylidenacetophenon, Phenyl-[3.4-dimethoxy-styryl]-keton, 3.4-Dimethoxy-chalkon $C_{17}H_{16}O_3 = (CH_2 \cdot O)_5C_6H_3 \cdot CH : CH \cdot CO \cdot C_6H_5$. B. Aus Veratrumaldehyd und Acetophenon in wäßrig-alkoholischer Natronlauge (Dickinson, Heilbron, Irving, Soc, 1927, 1896; Pfeiffer, Mitarb., J. pr. [2] 119, 116). Gelbe Nadeln (aus verd. Alkohol). F: 88° (D., H., I.), 85° (Pf., Mitarb.). Löst sich in konz. Schwefelsäure mit orangegelber Farbe (Pf., Mitarb.). Wird in Gegenwart von Platinmohr in Eisessig zu ω-[3.4-Dimethoxy-benzyl]-acetophenon hydriert (Pf., Mitarb.).
- ω-[3-Methoxy-4-äthoxy-benzyliden] acetophenon, Phenyl-[3-methoxy-4-äthoxy-atyryl]-keton, 3-Methoxy-4-äthoxy-chalkon $C_{18}H_{18}O_3=C_2H_6\cdot O\cdot C_6H_6(O\cdot CH_2)\cdot CH\cdot CH\cdot CO\cdot C_6H_6$. B. Aus 3-Methoxy-4-äthoxy-benzaldehyd und Acetophenon in konz. Natronlange (Tabari, Actaphytock. 8, 288; C. 1927 II, 1950). Gelbe Nadeln (aus Alkohol). F: 109° (T.). Ultraviolett-Absorptionsspektrum in Alkohol: Shibata, Nagai, Actaphytock. 2, 35; C. 1924 II, 1688. Gibt bei der Hydrierung in Gegenwart von Platinschwarz in Eisessig ω-[3-Methoxy-4-āthoxy-benzyl]-acetophenon (T.).

- 5. $3-[2-Oxy-phenyl]-1-[4-oxy-phenyl]-propen-(1)-on-(3), 2-Oxy-2-[4-oxy-benzyliden]-acetophenon, 4.2'-Dioxy-chalkon <math>C_{15}H_{12}O_3=HO\cdot C_4H_4\cdot CH\cdot CO\cdot C_4H_4\cdot OH$.
- 2-Oxy- ω -anisyliden-acetophenon, 2'-Oxy-4-methoxy-chaiken $C_{1e}H_{1e}O_{3}=CH_{3}\cdot O\cdot C_{e}H_{4}\cdot CH: CH\cdot CO\cdot C_{e}H_{4}\cdot OH$ (H 333). Lagert sich in warmer, etwas Alkohol enthaltender verdünnter Natronlauge in 4'-Methoxy-flavanon (Syst. Nr. 2514) um (HATTORI, Acta phytoch. 2, 112; C. 1926 I, 956).
- 6. 1.3 Bis [4 oxy phenyl] propen (1) on (3), 4-Oxy-w-[4-oxy-benzyliden]-acetophenon, [4 Oxy phenyl] [4 oxy styryl] keton, 4.4 Dioxy-chalkon C₁₂H₁₂O₂ = HO·C₆H₄·CH·CO·C₆H₄·OH. B. Aus 4-Oxy-benzaldehyd und 4-Oxy-acetophenon in alkoh. Alkali, besser durch Sättigen einer absolut-alkoholischen Lösung mit Chlorwasserstoff unter Kühlung und Zerlegen des entstandenen roten Hydrochlorids mit Wasser (Vorländer, B. 58, 128; 62, 540). Gelbe Nadeln (aus Wasser). F: 197° (V., B. 58, 128). Gibt mit Chlorwasserstoff und mit konz. Schwefelsäure rote Additionsprodukte (V., B. 58, 128; 62, 540). Liefert beim Behandeln mit Acetanhydrid und Natriumacetat ein Acetylderivat (gelbliche Nadeln aus Alkohol; F: 126°) mit Benzoylchlorid in alkal. Lösung ein Benzoylderivat (gelbliche Nadeln aus Benzol + Alkohol; F: 188°) (V., B. 58, 128). Natriumsalz Na₂C₁₅H₁₀O₃. Bräunlichrot (V., B. 58, 136).
- 4-0xy-ω-anisyliden-acetophenon, 4'-0xy-4-methoxy-chalkon C₁₆H₁₄O₂ = CH₃·O·C₆H₄·CH·CH·CO·C₆H₄·OH. B. Aus Anisaldehyd und 4-0xy-acetophenon bei längerem Aufbewahren in wenig Wasser enthaltender alkoholischer Natronlauge oder durch Sättigen einer absolutalkoholischen Lösung mit Chlorwasserstoff und Zerlegen des entstandenen hellroten Hydrochlorids mit Wasser (VORLÄNDER, B. 58, 128). Gelbe Nadeln (aus Alkohol). F: 188—190° (V.). Löst sich in konz. Schwefelsäure und in Eisessig + konz. Schwefelsäure mit orangeroter Farbe (DILTHEY, Mitarb., J. pr. [2] 117, 339; V.). Gibt mit konz. Schwefelsäure und mit Chlorwasserstoff rote Additionsverbindungen (V.).
- 4-Methoxy- ω -[4-oxy-benzyliden]-acetophenon, 4-Oxy-4'-methoxy-chalkon $C_{16}H_{14}O_3=HO\cdot C_6H_4\cdot CH\cdot CO\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus 4-Oxy-benzaldehyd und 4-Methoxy-acetophenon in alkoh. Alkali, besser durch Sättigen einer alkoh. Lösung mit Chlorwasserstoff und Zerlegen des entstandenen roten Hydrochlorids mit Wasser (Vorländer, B. 58, 128). Gelbe Nadeln (aus verd. Alkohol). F: 180°. Färbt sich mit konz. Schwefelsäure dunkelrot. Natriumsalz $NaC_{16}H_{13}O_3$. Rotorange (V., B. 58, 136).
- 4-Methoxy-ω-anisyliden-acetophenon, 4.4'- Dimethoxy chalkon, 4.4'- Dimethoxy benzylidenacetophenon C₁₇H₁₆O₂ = CH₃· O· C₆H₄· CH: CH· CO· C₆H₄· O· CH₂ (E I 647). B. Durch Kondensation von Anisaldehyd mit 4-Methoxy-acetophenon in wäßrig-alkoholischer Natronlauge (Tognazzi, G. 54, 700). Neben anderen Produkten beim Aufbewahren von 1-Chlor-3-methoxy-1.3-bis-[4-methoxy-phenyl]-propen-(1) (STRAUS, HEYN, A. 445, 95, 108). F: 102° (TASAKI, Acta phytoch. 3, 291), 102—102,5° (ST., H.), 103° (Pfeliffer, HAACK, A. 460, 177). Unlöslich in Wasser, löslich in organischen Lösungsmitteln (To.). Löslich in Eisessig + konz. Schwefelsäure mit orangeroter Farbe (Dilthey, Mitarb., J. pr. [2] 117, 339), in flüssigem Schwefeldioxyd mit intensiv gelber Farbe (ST., DÜTZMANN, J. pr. [2] 103, 52). Elektrische Leitfähigkeit in flüssigem Schwefeldioxyd: ST., DÜ

Bei der Ultraviolett-Bestrahlung der festen Substanz oder der alkoh. Lösung entstehen harzige Produkte (Stobbe, Bremer, J. pr. [2] 123, 57). Liefert bei der Hydrierung in Gegenwart von Platinschwarz in Alkohol 4.4'-Dimethoxy-benzylacetophenon (Tognazzi, G. 54, 700). Gibt bei Gegenwart von Palladium(II)-chlorid in Aceton bei 17—18° mit 1 Mol Wasserstoff 4.4'-Dimethoxy-benzylacetophenon, mit 2 Mol Wasserstoff 1.3-Bis-[4-methoxy-phenyl]-propan, α.γ-Bis-[4-methoxy-phenyl]-propan, α.γ-Bis-[4-methoxy-phenyl]-propan (Straus, Grindel, A. 489, 292, 296, 297). Gibt mit Chlorwasserstoff ohne Lösungsmittel oder in flüssigem Schwefeldioxyd ein Hydrochlorid (s. u.), mit Bromwasserstoff in Schwefelkohlenstoff ein Hydrobromid (s. u.) (Str., Heyn, A. 445, 106, 107), mit Überchlorsäure in Eisessig ein Perchlorat (s. u.) (Pfeiffer, Segall, A. 460, 130). Bei der Einw. von Oxalylchlorid in Benzol oder Chloroform, zuletzt auf dem Wasserbad, entsteht 1.3-Dichlor-1.3-bis-[4-methoxy-phenyl]-propen (Str., Heyn, A. 445, 100). Additionelle Verbindungen des 4.4'-Dimethoxy-chalkons. C₁₇H₁₆O₃ + HCl = CH₃·

Additionelle Verbindungen des 4.4'-Dimethoxy-chalkons. $C_{17}H_{16}O_3 + HCl = CH_3 \cdot O \cdot C_6H_4 \cdot CH \cdot CCl(OH) \cdot C_6H_4 \cdot O \cdot CH_3$ (?). B. s. o. Dunkelrote Krystalle (aus flüssigem Schwefeldioxyd), zinnoberrote Nadeln (aus organischen Lösungsmitteln) (Straus, Heyn, A. 445, 106). Ist in Lösung bei 20^0 weitgehend dissoziiert. — $C_{17}H_{16}O_3 + HBr = CH_3 \cdot O \cdot C_6H_4 \cdot CH \cdot CBr(OH) \cdot C_6H_4 \cdot O \cdot CH_5$ (?). B. s. o. Rote Krystalle (St., H., A. 445, 107). — $C_{17}H_{16}O_3 + HClO_4$. Rote Krystalle (Pfelfer, Segall, A. 460, 130). — $C_{17}H_{16}O_3 + HCl + HgCl_2$. B. Aus den Komponenten in Äther (St., H., A. 445, 107). Zinnoberrote Krystalle. — $C_{17}H_{16}O_3 + AlBr_3$. Zinnoberroter Niederschlag (Pf., Haack, A. 460, 177). — $C_{17}H_{16}O_3 + 3AlBr_3$. Honiggelbe

- Krystalle. Leicht löslich in Benzol (Pr., H.). Nur in der Kälte beständig, spaltet schon bei schwachem Erwärmen Methylbromid ab.
- 4 Oxy ω [4-āthoxy benzyliden] acetophenon, 4' Oxy 4 āthoxy chalkon C_1 , H_1 , O_2 = C_2H_3 · O· C_4H_4 · CH · CO· C_6H_4 · OH. B. Aus 4-Oxy-acetophenon und 4-Athoxy-benzaldehyd in wäßrig-alkoholischer Natronlauge (Shibata, Nagai, Acta phytoch. 2, 27, 35, 36; C. 1924 II, 1689). F: 144°. Ultraviolett-Absorptionsspektrum in Alkohol: Sh., N.
- 4-Phenoxy-ω-anisyliden-acetophenon, 4-Methoxy-4'-phenoxy-chalkon, 4-[4-Methoxy-cinnamoyi]-diphenyläther C₂₂H₁₈O₃ = CH₂·O·C₆H₄·CH: CH·CO·C₆H₄·O·C₆H₅. B. Aus 4-Phenoxy-acetophenon und Anisaldehyd in Natriumäthylat-Lösung (DILTREY, Mitarb., J. pr. [2] 117, 350). Gelbliche Krystalle (aus Ligroin). F: 97°. Die Lösung in konz. Schwefelsäure ist orangefarben, fließt orangegelb ab und fluoresciert nach einiger Zeit schwach grün.
- 4-[4-Nitro-phenoxy]- ω -anisyliden-acetophenon, 4-Methoxy-4'-[4-nitro-phenoxy]-chalkon $C_{22}H_{17}O_5N=CH_2\cdot O\cdot C_6H_4\cdot CH\cdot CH\cdot CO\cdot C_6H_4\cdot O\cdot C_6H_4\cdot NO_2$. B. Aus 4-[4-Nitro-phenoxy]-acetophenon und Anisaldehyd in Natriummethylat-Lösung (Dilthex, Mitarb., J. pr. [2] 117, 362). Gelbe Blättchen (aus Benzol). F: 135°. Die Lösung in konz. Schwefelsäure ist orangefarben.
- 4-p-Tolyloxy-ω-anisyliden-acetophenon, 4-Methoxy-4'-p-tolyloxy-chaiken $C_{33}H_{30}O_3=CH_3\cdot O\cdot C_6H_4\cdot CH:CH\cdot CO\cdot C_6H_4\cdot O\cdot C_6H_4\cdot CH_3$. B. Aus 4-p-Kresoxy-acetophenon (S. 85) und Anisaldehyd in warmer Natriummethylat-Lösung (DILTHEY, Mitarb., J. pr. [2] 117, 360). Gelbliche Nadeln. F: 109—110°. Die Lösung in konz. Schwefelsäure ist orangerot und fließt orangefarben ab.
- 4.4'-Bis- [4-methoxy-cinnamoyl]-diphenyläther $C_{32}H_{32}O_5 = (CH_3 \cdot O \cdot C_9H_4 \cdot CH \cdot CO \cdot C_9H_4)_2O$. B. Durch Kondensation von 4.4'-Diacetyl-diphenyläther (S. 85) mit 2 Mol Anisaldehyd in Natriummethylat-Lösung (Dilthey, Mitarb., J. pr. [2] 117, 352). Gelbliche Krystalle. F: 207—208°. Die Lösung in konz. Schwefelsäure ist orangerot.
- 4-Acetoxy- ω -anisyliden-acetophenon, 4-Methoxy-4'-acetoxy-chalkon $C_{12}H_{16}O_4=CH_2$ · $O\cdot C_6H_4\cdot CH\cdot CO\cdot C_9H_4\cdot O\cdot CO\cdot CH_2$. Gelbliche Nadeln (aus Alkohol). F: 101° (VORLÄNDER, B. 58, 128).
- 4-Methoxy- ω -[4-acetoxy-benzyliden]-acetophenon, 4'-Methoxy-4-acetoxy-chalkon $C_{18}H_{16}O_4=CH_3\cdot CO\cdot O\cdot C_6H_4\cdot CH: CH\cdot CO\cdot C_6H_4\cdot O\cdot CH_2$. Nadeln (aus Alkohol). F: 144° (Vorländer, B. 58, 128).
- 4-Methoxy- ω -anisyliden-acetophenon-dimethylacetal, 4.4'- Dimethoxy-chalkon-dimethylacetal $C_{19}H_{29}O_4 = CH_3 \cdot O \cdot C_6H_4 \cdot CH \cdot C(O \cdot CH_3)_3 \cdot C_6H_4 \cdot O \cdot CH_3$. B. Bei längerem Erhitzen von 1.3-Dichlor-1.3-bis-[4-methoxy-phenyl]-propen mit Natriummethylat-Lösung in Benzol im Rohr auf 100° (Straus, Heyn, A. 445, 101). Dickflüssiges, gelbliches Öl. Erstarrt bei Kühlung mit Kohlendioxyd-Aceton glasartig. $Kp_{0,4}$: 244°. D_{50}^{50} : 1,130. n_{5}^{51} : 1,5757. Sehr leicht löslich in Schwefelkohlenstoff und Benzol, schwerer in Äther, schwer in kaltem Methanol. Reagiert nicht mit Permanganat in Sodalösung oder Aceton. Bei der Hydrierung in Gegenwart von kolloidalem Palladium in Methanol entsteht 4.4'-Dimethoxy-benzylacetophenon-dimethylacetal. Wird durch Säuren sofort unter Bildung von 4.4'-Dimethoxy-chalkon zersetzt. Liefert bei der Einw. von Chlorwasserstoff in Schwefelkohlenstoff bei Zimmertemperatur das Hydrochlorid des 4-Methoxy- ω -anisyliden-acetophenon-chlormethylats (s. u.). Gibt mit Quecksilber (II)-chlorid in chlorwasserstoffhaltigem Äther eine Verbindung von 4-Methoxy- ω -anisyliden-acetophenon-chlormethylat mit Quecksilber (II)-chlorid (s. u.).
- 4-Methoxy- ω -anisyliden-acetophenon-hydrochlorid , 4.4'- Dimethoxy-chalkon-hydrochlorid $C_{17}H_{17}O_5Cl=CH_8\cdot O\cdot C_0H_4\cdot CH\cdot CCl(OH)\cdot C_0H_4\cdot Q\cdot CH_8$ (?) s. S. 375.
- 3-Chlor-3-methoxy-1.3-bis-[4-methoxy-phenyl] -propen-(1), 4-Methoxy-\omega-anis-yliden-acetophenon-chlormethylat, 4.4'-Dimethoxy-chalkon-chlormethylat C₁₀H₁₀O₃Cl = CH₃·O·C₆H₄·CH:CH·CCl(O·CH₃)·C₆H₄·O·CH₃. B. Aus 1-Chlor-3-methoxy-1.3-bis-[4-methoxy-phenyl]-propen-(1) beim Aufbewahren unter Kühlung (STRAUS, HEYN, A. 445, 97, 108). Das Hydrochlorid entsteht bei der Einw. von Chlorwasserstoff auf 4.4'-Dimethoxy-chalkon-dimethylacetal in Schwefelkohlenstoff oder Äther (ST., H., A. 445, 103). Hydrochlorid C₁₀H₁₀O₃Cl+HCl. Karminrote Nadeln mit stahlblauem Glanz (aus Schwefelkohlenstoff oder Äther). Sehr unbeständig; wird durch Luftfeuchtigkeit sehr leicht zersetzt unter Bildung von 4.4'-Dimethoxy-chalkon (ST., H., A. 445, 103). Gibt beim Erwärmen 4.4'-Dimethoxy-chalkon, Methylchlorid und Chlorwasserstoff (ST., H., A. 445, 104); beim Aufbewahren in der Reaktions-Lösung bilden sich außerdem geringe Mengen 2.4.6-Tris-[4-methoxy-phenyl]-benzopyryliumchlorid (ST., H., A. 445, 95; ST., A. 458, 271). Gibt mit Natriummethylat-Lösung 4.4'-Dimethoxy-chalkon-dimethylacetal (ST., H., A. 445, 103). Verbindung mit Quecksilber(II)-chlorid C₁₀H₁₀O₃Cl+HgCl₂. B. Durch Einw. von Chlorwasserstoff und Quecksilber(II)-chlorid auf

- 4.4'-Dimethoxy-chalkon-dimethylacetal in Ather (Straus, Heyn, A. 445, 105). Zinnoberrotes Krystallpulver; geht bei nachträglicher Behandlung mit Chlorwasserstoff oder Quecksilber(II)-chlorid in Ather in ein schokoladebraunes Krystallpulver über.
- 4-Methoxy- ∞ -anisyliden-acetophenon-hydrobromid, 4.4'- Dimethoxy-chalkon-hydrobromid $C_{17}H_{17}O_3Br = CH_3O \cdot C_6H_4 \cdot CH \cdot CH \cdot CBr(OH) \cdot C_6H_4 \cdot O \cdot CH_3$ (?) s. S. 375.
- 4-Methoxy- ∞ -anisyliden-acetophenon-semicarbazon, 4.4'-Dimethoxy-chalkon-semicarbazon $C_{12}H_{19}O_2N_2=CH_2\cdot O\cdot C_4H_4\cdot CH: CH\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot C_4H_4\cdot O\cdot CH_3$. Krystalle (aus Alkohol). F: 177—178° (Stobbe, Bremer, J. pr. [2] 123, 255). Gibt mit Natriummethylat-Lösung eine gelbe, mit alkoh. Eisenchlorid-Lösung eine dunkelorange Färbung (St., B., J. pr. [2] 123, 250, 252).
- 4 Methoxy ω [3 brom anisyliden] acctophenon, 3 Brom 4.4' dimethoxy chalkon $C_{17}H_{15}O_3Br$, s. nebenstehende Formel (X = Br). B. Aus 4-Methoxy-acetophenon und 3-Brom-anisaldehyd in wäßrig-alkoholischer Natronlauge (Pfelffer, Segall, A. 460, 137). Grünlichgelbe Nadeln (aus Alkohol oder Methanol). F: 120°. Leicht köslich in Aceton und Benzol, schwerer in Äther, unlöslich in Petroläther. Die Lösung in konz. Schwefelsäure ist orangegelb und fließt gelb ab; die Lösung in Eisessig + wenig Überchlorsäure ist gelb (Pf., S., A. 460, 127). Perchlorat $C_{17}H_{18}O_3Br$ + HClO₄. Orangerote Krystalle. F: 138—139° (Pf., S., A. 460, 137). Wird beim Erwärmen mit Wasser zersetzt.
- 4-Methexy-ω-[3-nitro-anisyliden]-acetophenon, 3-Nitro-4.4'-dimethoxy-chalkon $C_{17}H_{18}O_8N$, s. obenstehende Formel (X = NO₂). B. Analog der vorangehenden Verbindung (Pfeiffer, Segall, A. 460, 130). Gelbe Nadeln (aus Eisessig, Alkohol oder Methanol). F: 160°. Leicht löslich in Eisessig, Chloroform und Aceton, schwer in Methanol und Alkohol, fast unlöslich in Äther und Ligroin. Die Lösung in konz. Schwefelsäure ist orangerot und fließt orangegelb ab, die Lösung in Eisessig + wenig Überchlorsäure ist orangegelb (Pf., S., A. 460, 126). Perchlorat $C_{17}H_{18}O_8N + HClO_4$. Orangerote Nadeln. F: 177—180° (Zers.) (Pf., S., A. 460, 130). Zersetzt sich an der Luft sowie beim Kochen mit wäßr. Aceton.
- 4 Phenylmercapto ω anisyliden acetophenon, 4 Methoxy 4'- phenylmercapto-chalkon, 4 [4 Methoxy cinnamoyl] diphenylsulfid $C_{22}H_{10}O_2S=CH_2\cdot 0\cdot C_4H_4\cdot CH\cdot CH\cdot CO\cdot C_4H_4\cdot S\cdot C_4H_5$. B. Aus 4-Acetyl-diphenylsulfid und Anisaldehyd in Natriummethylat-Lösung (DILTHEY, Mitarb., J. pr. [2] 124, 110). Gelbliche Krystalle (aus Ligroin). F: 110°. Die Lösung in konz. Schwefelsäure ist violettstichig rot.
- 4.4'- Bis [4 methoxy cinnamoyi] diphenylsulfid $C_{23}H_{26}O_4S = (CH_3 \cdot O \cdot C_6H_4 \cdot CH \cdot CH \cdot CO \cdot C_6H_4)_2S$. B. Aus 4.4'-Diacetyl-diphenylsulfid und 2 Mol Anisaldehyd in Natriummethylat-Lösung (DILTHEY, Mitarb., J. pr. [2] 124, 112). Gelbliche Krystalle (aus Ligroin). F: 178° bis 179°. Die Lösung in konz. Schwefelsäure ist rotviolett.
- 4.4'- Bis [4-methoxy-cinnamoyl] diphenylselenid $C_{32}H_{26}O_4Se = (CH_3 \cdot O \cdot C_6H_4 \cdot CH \cdot CH \cdot CO \cdot C_6H_4)_2Se$. B. Aus 4.4'-Diacetyl-diphenylselenid und 2 Mol Anisaldehyd in methylalkoholischer Natronlauge (DILTHEY, Mitarb., J. pr. [2] 124, 121). Gelbliche Krystalle (aus Ligroin). F: 157—158°. Gibt mit konz. Schwefelsäure eine rotviolette Färbung.
- 7. 1-Phenyl-3-[2.4-dioxy-phenyl]-propen-(1)-on-(3), 2.4-Dioxy-ω-benzy-liden-acetophenon, 2'.4'-Dioxy-chalkon, 4-Cinnamoyl-resorcin, [2.4-Dioxy-phenyl]- styryl- keton C_{1L}H₁₂O₂, s. nebenstehende Formel (H 333; E I 648). B. Aus 2.4-Dioxy-acetophenon und Benz-aldehyd in wäßrig-methylalkoholischer Kalilauge bei 65°, neben C₆H₅·CH·CH·CO·OH 7-Oxy-flavanon (Ellison, Soc. 1927, 1722). Aus Resorcin und Zimtsäurechlorid in Gegenwart von Aluminiumchlorid in Nitrobenzol (Shinoda, Sato, J. pharm. Soc. Japan 48, 109; C. 1928 II, 1885). Durch Einw. von heißer Natronlauge auf 7-Oxy-flavanon (E.). Gelbe Priamen (aus Toluol), Krystalle (aus Methanol). F: 151° (Sh., S.). Leicht löslich in Alkohol, Eisessig und Aceton, sehr in siedendem Wasser (E.). Die Lösung in konz. Schwefelsäure ist tief gelb (E.). Liefert bei der Reduktion mit Zink und Essigsäure 2.4-Dioxy-ω-benzyl-acetophenon (Sm., S.).
- 2-Oxy-4-methexy- ω -benzyliden-acetophenon, 2'-Oxy-4'-methoxy-chalkon, Benzyliden-päonol $C_{16}H_{14}O_3=C_6H_5\cdot CH\cdot CH\cdot CO\cdot C_5H_6(OH)\cdot O\cdot CH_3$ (H 333; E I 648). B. Beim Erhitzen von 2'.4'-Dimethoxy-chalkon mit 1 Mol Aluminiumchlorid auf 140° (Simonis, Danischewski, B. 59, 2917; vgl. v. Auwers, Risse, B. 64 [1931], 2221). Bei der Einw. von Dimethylsulfat und methylalkoholischer Kalilauge auf 7-Oxy-flavanon, neben wenig 2'.4'-Dimethoxy-chalkon

(ASAHINA, SHINODA, INUBUSE, J. pharm. Soc. Japan 48, 29; C. 1928 II, 49). — F: 107—107,5° (v. Au., B.), 108° (S., D.). Ultraviolett-Absorptionsspektrum in Alkohol: Shibata, Nagal, Acta phytoch. 2, 28, 31; C. 1924 II, 1688.

- 2.4 Dimethoxy ω benzyliden acetophenon, 2'.4'- Dimethoxy chalken C₁, H₁₀O₃ = C₆H₅· CH: CH· CO· C₆H₃(O· CH₂)₂ (E I 648). B. Aus Resoroindimethyläther und Zimtsäurechlorid in Gegenwart von 1 Mol Aluminiumchlorid, zuletzt bei 50° (Simonis, Danischewski, B. 59, 2916; vgl. v. Auwers, Risse, B. 64 [1931], 2221). Neben überwiegenden Mengen Benzylidenpäonol bei der Einwirkung von Dimethylsulfat und methylalkoholischer Kalilange auf 7-Oxyflavanon (Asahina, Shinoda, Inubuse, J. pharm. Soc. Japan 48, 29; C. 1928 II, 49). F: 78° (A., Sh., I.), 79—80° (v. Au., R.), 80° (S., D.). Unlöslich in Petroläther (S., D.). Liefert beim Erhitzen mit 1 Mol Aluminiumchlorid auf 140° Benzylidenpäonol (S., D.; vgl. v. Au., R.).
- 2.4 Diäthoxy ω benzyliden acetophenon, 2'.4' Diäthoxy chalkon $C_{18}H_{20}O_3 = C_6H_5$. CH: CH·CO·C₈H₂(O·C₂H₅)₂ (H 333). B. Aus Resorcindiäthyläther und Zimtsäurechlorid in Gegenwart von 1 Mol Aluminiumchlorid in Schwefelkohlenstoff anfangs unter Kühlung, zuletzt bei 50° (Simonis, Lear, B. 59, 2912; vgl. v. Auwers, Risse, B. 64 [1931], 2220). Tafeln (aus Alkohol). F: 90,5° (S., L.; v. Au., R.).
- 2.4 Diacetoxy ω benzyliden acetophenon, 2'.4'- Diacetoxy chalkon $C_{19}H_{16}O_5=C_9H_8$ · CH: CH·CO· C_9H_3 (O·CO·CH₃)₂. B. Neben 7-Acetoxy-flavanon beim Kochen von 7-Oxy-flavanon mit Acetanhydrid in Gegenwart von Natriumacetat (Asahina, Shinoda, Inubuse, J. pharm. Soc. Japan 48, 29; C. 1928 II, 49). F: 101°.
- 2-Oxy-4-methoxy- ω -[2-chlor-benzyliden]-acetophenon, 2-Chlor-2'-oxy-4'-methoxy-chalkon $C_{16}H_{13}O_3Cl=C_6H_4Cl\cdot CH\cdot CO\cdot C_6H_3(OH)^2(O\cdot CH_3)^4$. B. Aus 2-Chlor-benzaldehyd und Päonol in wäßrig-alkoholischer Natronlauge bei 50° (RÖTHLISBERGER, Helv. 8, 112). Gibt bei der Acetylierung, Anlagerung von Brom und Behandlung des Reaktionsprodukts mit wäßrig-methylalkoholischer Kalilauge 2'-Chlor-7-oxy-flavon.
- 2 Oxy 4 methoxy ω [α chlor benzyliden] acetophenon, β -Chlor-2'-oxy-4'-methoxy-chalkon $C_{18}H_{13}O_3Cl = C_6H_5$ 'CCl: $CH \cdot CO \cdot C_6H_3(OH)^2(O \cdot CH_3)^4$. Eine von Simonis, Danischewski (B. 59, 2917) durch Erhitzen von Resorcindimethyläther mit Phenylpropiolesure-chlorid und 2 Mol Aluminiumchlorid erhaltene Verbindung vom Schmelzpunkt 95°, der vermutlich diese Konstitution zukommt, konnten v. Auwers, Risse (B. 64 [1931], 2222) nicht wieder erhalten.
- 2.4 Dimethoxy ω [4 nitro benzyliden] acetophenon, 4-Nitro-2'.4'-dimethoxy-chalkon $C_{17}H_{15}O_5N = O_2N \cdot C_6H_4 \cdot CH \cdot CO \cdot C_6H_3(O \cdot CH_2)_2$. B. Aus 2.4-Dimethoxy-acetophenon und 4-Nitro-benzaldehyd in alkoh. Natronlauge (Kauffmann, B. 54, 801). Hellgelbe Nadeln (aus Schwerbenzol). F: 191°. Ziemlich leicht löslich in heißem Eisessig und Chloroform, schwer in den meisten anderen organischen Lösungsmitteln, auch in der Hitze. Wird durch konz. Sehwefelsäure orangerot gefärbt und orangefarben gelöst.
- 8. 1 Phenyl 3 [2.5 dioxy phenyl] propen (1)-on-(3), 2.5-Dioxy- ω -benzyliden-acetophenon, 2'.5'-Dioxy-chalkon $C_{18}H_{12}O_{2}$, s. nebenstehende Formel.

C⁶H²·CH:CH·CO·OR

- 2 Oxy 5 methoxy ω benzyliden acetophenon, 2' Oxy-5' methoxy chalkon $C_{16}H_{14}O_3=C_6H_5\cdot CH\cdot CH\cdot CO\cdot C_6H_6(OH)^2(O\cdot CH_3)^5$. B. Bei 12-stdg. Kochen von 2'.5'-Dimethoxy-chalkon mit etwas weniger als 1 Mol Aluminiumchlorid in Benzol (Simonis, Danischewski, B. 59, 2915). Rubinrote Krystalle (aus Benzin). F: 49°. Geht beim Behandeln mit wäßrig-alkoholischer Natronlauge in 6-Methoxy-flavanon über.
- 2.5 Dimethoxy ω -benzyliden acetophenon, 2'.5'- Dimethoxy chalkon $C_{17}H_{16}O_{3}=C_{6}H_{5}$: $CH:CH:CO:C_{6}H_{3}(O:CH_{3})_{2}$. B. Aus Hydrochinondimethyläther und Zimtsäurechlorid durch Einw. von 1 Mol Aluminiumchlorid in Schwefelkohlenstoff anfangs unter Kühlung, zuletzt bei 50° (Simonis, Danischewski, B. 59, 2915). Gelbe Krystalle (aus verd. Alkohol oder Benzin). F: 43°. Leicht löslich in organischen Lösungsmitteln außer kaltem Benzin. Liefert beim Kochen mit etwas weniger als 1 Mol Aluminiumchlorid in Benzol 2'-Oxy-5'-methoxy-chalkon.
- 2-Oxy-5-äthoxy- ω -benzyliden-acetophenon, 2'-Oxy-5'-äthoxy-chalkon $C_{17}H_{16}O_3=C_6H_5\cdot CH\cdot CH\cdot CO\cdot C_6H_6(OH)^2(O\cdot C_2H_5)^5$. B. Aus Hydrochinondiäthyläther und Zimtsäurechlorid durch Einw. von 1 Mol Aluminiumchlorid in Schwefelkohlenstoff anfangs unter Kühlung, zuletzt bei 50° (SIMONIS, LEAR, B. 59, 2912). Nadeln (aus Alkohol). F: 83°. Geht beim Behandeln mit kalter 1 % iger Natronlauge in 6-Äthoxy-flavanon über.

 $\begin{array}{lll} 2-\text{Oxy}-5-\text{methoxy}-\omega-\left[\alpha-\text{chlor}-\text{benzyliden}\right]-\text{acetophenon}, & \beta-\text{Chlor}-2'-\text{oxy}-5'-\text{methoxy-chalkon} & C_{10}H_{13}O_{2}\text{Cl} & = C_{0}H_{5}\cdot\text{CCl}:\text{CH}\cdot\text{CO}\cdot\text{C}_{2}H_{3}(\text{OH})^{2}(\text{O}\cdot\text{CH}_{3})^{4}. \end{array}$

a) Höherschmelzende Form. B. Beim Erhitzen von [2.5-Dimethoxy-phenyl]-phenylacetylenyl-keton mit Aluminiumchlorid in Benzol auf 80° (Simonis, Danischewski, B. 52, 2916). — Gelbe Krystalle (aus Benzin). F: 90°.

b) Niedrigerschmelzende Form. B. Beim Erhitzen von [2.5-Dimethoxy-phenyl]-phenylacetylenyl-keton mit Aluminiumchlorid in Benzol auf 80° unter Einleiten von Chlorwasserstoff (Simonis, Danischewski, B. 59, 2916). — Rote Blättchen (aus Benzin + Petroläther). F: 80°.

Beim Behandeln mit wäßrig-alkoholischer Natronlauge gehen beide Formen in 6-Methoxy-

flavon über.

- 9. 1 Phenyl 3 [3.4 dioxy phenyl] propen (1) on (3), 3.4 Dioxy ∞ benzyliden acetophenon, 3'.4' Dioxy chalkon $C_{15}H_{12}O_3$, s. nebenstehende Formel.
- ω- Chlor 3.4 dimethoxy ω- benzyliden acetophenon, α- Chlor 3'.4'- dimethoxy-chalkon $C_{17}H_{18}O_3Cl = C_6H_5 \cdot CH : CCl \cdot CO \cdot C_6H_3(O \cdot CH_3)_2$. B. Durch längeres Aufbewahren einer Lösung von ω-Brom-acetoveratron und Benzaldehyd in gesättigtem Chlorwasserstoff-Eisessig und Umkrystallisieren des Reaktionsprodukts aus wäßr. Pyridin (BAUER, WERNER, B. 55, 2495, 2498). Würfel. F: 108—109°.
- 10. 3 Phenyl 1 [4-oxy-phenyl]-propen-(1)-ol-(1)-on-(3), ω -[4.2-Dioxy-benzyliden] acetophenon , 4.3 Dioxy chalkon $C_{15}H_{12}O_3 = HO \cdot C_4H_4 \cdot C(OH) : CH \cdot CO \cdot C_4H_5$.
- ω- [4.α Dimethoxy benzyliden] acetophenon, 4.β Dimethoxy chalkon, Anisoylacetophenon A methyläther $C_{17}H_{16}O_3 = CH_3 \cdot O \cdot C_6H_4 \cdot C(O \cdot CH_2) \cdot CH \cdot CO \cdot C_6H_5$. B. Beim Kochen von α-Brom-4.β-dimethoxy-hydrochalkon mit Natriummethylat-Lösung (Weygand, A. 459, 108). Citronengelbes zähes Öl von angenehmem Geruch. Siedet im Hochvakuum bei 165° bis 170° (W., A. 459, 109). Leicht löslich in Alkohol, Methanol, Äther und Chloroform. Gibt bei der Ozonspaltung in Chloroform Benzoesäure und ein Öl, das bei der Verseifung Anissäure liefert (W., A. 459, 122). Bei der Einw. von sehr wenig Salzsäure oder Schwefelsäure in Methanol sowie beim Kochen mit wenig Eisessig in Methanol entsteht ω-Anisoyl-acetophenon (S. 382) (W., A. 459, 109). Liefert mit Hydroxylamin in wäßrig-methylalkoholischer Lösung bei 1-stdg. Kochen β-Hydroxylamino-4-methoxy-chalkon (S. 382), bei mehrtägigem Aufbewahren 5-Phenyl-3-[4-methoxy-phenyl]-isoxazol; die letztgenannte Verbindung bildet sich auch beim Kochen mit Hydroxylaminhydrochlorid in Methanol, auch in Gegenwart von Natriumacetat oder von etwas überschüssiger 1n-Natronlauge (W., BAUER, A. 459, 134, 135).
- 11. 1 Phenyl 3 [4 oxy phenyl] propen (1) ol (1) on (3), 4-Oxy- ω -[α -oxy-benzyliden]-acetophenon, 4'. β -Dioxy-chalkon $C_{1\delta}H_{1\delta}O_3=C_{\delta}H_{\delta}\cdot C(OH)$: $CH\cdot CO\cdot C_{\delta}H_{\delta}\cdot OH$.
- 4-Methoxy- ω -[4-methoxy-benzyliden]-acetophenon, 4'. β -Dimethoxy-chalkon, [4-Methoxy-phenyl]-[β -methoxy-styryl]-keton, Anisoylacetophenon-B-methyläther $C_{17}H_{16}O_3=C_6H_6\cdot C(0\cdot CH_3)\cdot CH\cdot CO\cdot C_6H_4\cdot O\cdot CH_3$. B. Durch Kochen von 4'-Methoxy-chalkon-dibromid mit wasserfreiem Natriumacetat in Methanol und folgende langsame Zugabe von 2 Mol methylalkoholischer Kalilauge (Weygand, A. 459, 109). Durch Kochen von α -Brom-4'-methoxy-chalkon mit Natriummethylat-Lösung (W., A. 459, 110). Krystalle (aus Methanol). F: 83—85°; siedet im Hochvakuum bei 190—200° (W.). Leicht löslich in Alkohol, Methanol, Äther und Chloroform. Bei der Ozonspaltung in Chloroform erhält man Anissäure und ein Öl, das bei der Verseifung Benzoesäure liefert (W., A. 459, 122). Beim Kochen mit wenig Eisessig oder konz. Salzsäure in Methanol entsteht ω -Anisoyl-acetophenon (S. 382) (W., A. 459, 111), das sich mit Hydroxylamin in siedendem Methanol zu 5-Phenyl-3-[4-methoxy-phenyl]-isoxazol umsetzt (W., Bauer, A. 459, 135). 5-Phenyl-3-[4-methoxy-phenyl]-isoxazol bildet sich auch beim Kochen von 4'. β -Dimethoxy-chalkon mit Hydroxylaminhydrochlorid und Natriumacetat oder Natriummethylat in Methanol 3-Phenyl-5-[4-methoxy-phenyl]-isoxazol, bei 1-stdg. Kochen mit Hydroxylamin in völlig neutraler wäßrig-methylalkoholischer Lösung β -Hydroxylamino-4'-methoxy-chalkon (S. 382) erhält (W., B., A. 459, 130, 135, 137).
- 12. **3**-Phenyl-1-[2-oxy-phenyl]-propen-(1)-ol-(2)-on-(3), ω -Oxy- ω -salicyliden-acetophenon, 2. α -Dioxy-chalkon $C_{15}H_{12}O_{3}=HO\cdot C_{5}H_{4}\cdot CH:C(OH)\cdot CO\cdot C_{5}H_{5}$.
- ω-Methoxy-ω-salicyliden-acetophenon, 2-Oxy-α-methoxy-chalkon, Phenyl-[2-oxy-α-methoxy-styryl]-keton $C_{16}H_{14}O_3 = HO \cdot C_6H_4 \cdot CH : C(O \cdot CH_2) \cdot CO \cdot C_6H_5$. B. Analog der folgenden Verbindung (Pratt, Robinson, Soc. 123, 749). Prismen (aus Methanol). F: 155°. Ziemlich schwer löslich in Alkohol und Äther. Löslich in verd. Alkalien mit orangegelber Farbe.
- ω-Äthoxy-ω-salicyliden-acetophenon, 2-Oxy-α-äthoxy-chalkon, Phenyi-[2-oxy-α-äthoxy-styryi]-keton $C_{12}H_{16}O_8 = HO \cdot C_4H_4 \cdot CH \cdot C(O \cdot C_2H_3) \cdot CO \cdot C_6H_5$. B. Beim Kochen von ω-Äthoxy-acetophenon mit Salicylaidehyd in methylalkoholischer Kalilauge (Pratt, Robinson, Soc. 121, 1580). Blättchen (aus Methanol). F: 138°. Leicht löslich in Methanol, Alkohol und

Chloroform, ziemlich leicht in Äther. Löst sich in verd. Kalilauge mit orangegelber, in konz. Schwefelsäure mit orangeroter Farbe. — Gibt mit Chlorwasserstoff in Äther 3-Äthoxy-2-phenylbenzopyryliumchlorid.

- ω-Phenexy-ω-salicyliden-acetophenen, 2-Oxy-α-phenexy-chalken, Phenyi-[2-exy-α-phenexy-styryi] keton $C_{21}H_{16}O_3 = HO \cdot C_6H_4 \cdot CH : C(O \cdot C_6H_6) \cdot CO \cdot C_6H_5$. B. Analog der vorangehenden Verbindung (Pratt, Robinson, Soc. 121, 1581). Prismen (aus Methanol). F: 160°. Leicht löslich in Alkohol, Chloroform, Essigester und Äther, schwer in Petroläther. Die Lösung in wäßr. Kalilauge ist orangegelb und scheidet bei Zusatz von mehr Kalilauge ein rotes öliges Kaliumsalz ab.
- $\alpha.\alpha'$ Disalicyliden diphenacylsulfid $C_{30}H_{22}O_4S = [HO \cdot C_0^iH_4 \cdot CH : C(CO \cdot C_0H_5)]_9S.$ Verbindung mit Piperidin $C_{30}H_{22}O_4S + C_5H_{11}N$. B. Aus Diphenacylsulfid, Salicylaldehyd und Piperidin in Alkohol (Dilthery, B. 60, 1405). Gelbrote Prismen (aus Alkohol + Piperidin). F: 167—169° (Zers.). Löst sich in konz. Schwefelsäure mit tief orangeroter Farbe.
- 13. 3-Phenyl-1-[3-oxy-phenyl]-propen-(1)-ol-(2)-on-(3), ω -Oxy- ω -[3-oxy-benzyliden] acetophenon , 3. α Dioxy chalkon $C_{15}H_{11}O_3 = HO \cdot C_4H_4 \cdot CH : C(OH) \cdot CO \cdot C_4H_5$.
- ω-Methexy-ω-[3-methoxy-benzyliden]-acetophenon, 3.α-Dimethoxy-chalkon, Phenyl-[3.α-dimethoxy-styryl]-keton $C_{17}H_{16}O_3 = CH_3 \cdot O \cdot C_6H_4 \cdot CH : C(O \cdot CH_3) \cdot CO \cdot C_6H_5$. B. Durch Kondensation von ω-Methoxy-acetophenon mit 3-Methoxy-benzaldehyd (Bennett, Willis, Soc. 1928, 1967). Öl. Kp₁₈: 245°. Liefert beim Erhitzen mit konz. Bromwasserstoffsäure und Eisessig eine Verbindung $C_{16}H_{14}O_3$ (rötliche Krystalle aus Petroläther; schmilzt rasch erhitzt bei 175—180° unter Zersetzung).
- 14. 3 Phenyl 1 [4 oxy phenyl] propen (1) ol (2) on (3), ω Oxy ω [4 oxy benzyliden] acetophenon, 4. α Dioxy-chalkon $C_{18}H_{12}O_3 = HO \cdot C_4H_4 \cdot CH : C(OH) \cdot CO \cdot C_4H_5$.
- ω-Methoxy-ω-anisyliden-acetophenon, 4.α-Dimethoxy-chalkon, Phenyl-[4.α-dimethoxy-styryl] keton $C_{17}H_{16}O_3 = CH_3 \cdot O \cdot C_0H_4 \cdot CH : C(O \cdot CH_3) \cdot CO \cdot C_0H_5$. B. Aus ω-Methoxy-acetophenon und Anisaldehyd in wäßrig-alkoholischer Natronlauge (Malkin, Robinson, Soc. 127, 374). Durch Einw. von Dimethylsulfat auf Phenyl-[4-methoxy-benzyl]-glyoxal (S. 381) in alkal. Lösung (M., R.). Gelbliche Prismen (aus Alkohol). F: 75°. Kp₁₄: 238—242°. Ziemlich leicht löslich in Alkohol. Die orangefarbene Lösung in Schwefelsäure wird beim Erhitzen tief gelbbraun. Liefert beim Erhitzen mit konz. Bromwasserstoffsäure und Eisessig Phenyl-[4-methoxy-benzyl]-glyoxal.
- α.α' Dianisyliden diphenacylsulfid C₃₂H₃₆O₄S = [CH₃·O·C₅H₄·CH:C(CO·C₅H₅)]₈S. Verbindung mit Piperidin C₃₂H₃₆O₄S+C₅H₁₁N. B. Aus Diphenacylsulfid, Anisaldehyd und Piperidin in Alkohol (DILTHEY, B. 60, 1405). Nadeln (aus Benzol + wenig Piperidin). F: 157—159°; die Schmelze ist gelbrot. Die Lösung in konz. Schwefelsäure ist orangerot und verblaßt beim Aufbewahren.
- 15. 1 Phenyl 3 [4 oxy phenyl] propen (1)-ol-(2)-on-(3), 4ω -Dioxy- ω -benzyliden acetophenon, $4' \omega$ -Dioxy chalkon $C_{15}H_{12}O_3=C_4H_5\cdot CH:C(OH)\cdot CO\cdot C_4H_4\cdot OH$.
- $4.\omega$ -Dimethoxy- ω -benzyliden-acetophenon, $4'.\alpha$ -Dimethoxy-chalkon, [4-Methoxy-phenyl] [α -methoxy-styryl] keton $C_{17}H_{16}O_3=C_6H_6\cdot CH:C(O\cdot CH_8)\cdot CO\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus $4.\omega$ -Dimethoxy-acetophenon und Benzaldehyd in wäßrig-alkoholischer Natronlauge (Malkin, Robinson, Soc. 127, 375). Prismen (aus Alkohol). F: 74°. Kp₂₃: 240—250°. Leicht löslich in den meisten organischen Lösungsmitteln. Die tiefgelbe Lösung in Schwefelsäure wird beim Erwärmen orangerot, bei stärkerem Erhitzen karminrot. Gibt beim Erhitzen mit Eisessig und konz. Schwefelsäure [4-Methoxy-phenyl]-benzyl-diketon (s. u.).
- 16. 3 Phenyl 1 [2 oxy phenyl] propandion (1.2), [2 Oxy phenyl] benzyl-diketon $C_{18}H_{12}O_8 = C_6H_8 \cdot CH_2 \cdot CO \cdot CO \cdot C_4H_4 \cdot OH$ bzw. desmotrope Form.
- Disemicarbazon $C_{17}H_{16}O_3N_6 = C_6H_5 \cdot CH_2 \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot C_6H_4 \cdot OH$. B. Bei der Einw. von essigsaurem Semicarbazid auf 2-Benzyl-cumaranon (Syst. Nr. 2389) (v. Auwers, B. 61, 414). Enthält vielleicht $2H_2O$. Krystalle. F: 219—220° (Zers.). Leicht löslich in heißem Eisessig, schwer löslich oder unlöslich in anderen Lösungsmitteln.
- 17. 3 Phenyl 1 [4 oxy phenyl] propandion (1.2), [4 Oxy phenyl] benzyl-diketon $C_{1i}H_{12}O_3 = C_iH_i \cdot CH_2 \cdot CO \cdot CO \cdot C_iH_4 \cdot OH$.
- [4-Methoxy-phenyi]-benzyi-diketon, [4-Methoxy-phenyi]-benzyi-giyoxal $C_{16}H_{14}O_3=C_6H_5\cdot CH_2\cdot CO\cdot CO\cdot C_6H_4\cdot O\cdot CH_2$. B. Durch Erhitzen von 4'. α -Dimethoxy-chalkon (8.0.)

mit Eisessig und konz. Schwefelsäure (Malkin, Robinson, Soc. 127, 375). — Gelbe Tafeln (aus Äther oder Alkohol). F: 82°. — Gibt beim Kochen mit verd. Natronlauge α -Oxy- β -phenyl α -[4-methoxy-phenyl]-propionsäure. Bei der Kondensation mit o-Phenylendiamin entsteht 2-[4-Methoxy-phenyl]-3-benzyl-chinoxalin.

18. 1 - Phenyl - 3 - [4 - oxy - phenyl] - propandion - (1.2), Phenyl - [4 - oxy-henxyl]-diketon $C_{1k}H_{12}O_2 = C_4H_5 \cdot CO \cdot CO \cdot CH_2 \cdot C_4H_4 \cdot OH$ bzw. desmotrope Form.

Phenyl-[4-methoxy-benzyl]-diketon, Phenyl-[4-methoxy-benzyl]-glyoxal bzw. ω -0xy- ω -anisyliden - acetophenon, α -0xy-4-methoxy-chalkon $C_{16}H_{14}O_3=C_6H_5\cdot CO\cdot CO\cdot CH_2\cdot C_6H_4\cdot O\cdot CH_3$ bzw. $C_6H_5\cdot CO\cdot CO\cdot CH_2\cdot C_6H_4\cdot O\cdot CH_3$.

- a) Niedrigerschmelzende Enolform. B. Durch Erhitzen von 4.α-Dimethoxy-chalkon (S. 380) mit konz. Bromwasserstoffsäure und Eisessig (Malkin, Robinson, Soc. 127, 374). Aus ω-Piperidino-ω-anisyliden-acetophenon bei der Einw. von verd. Säuren (Dufraisse, Moureu, Bl. [4] 41, 855) oder von 1 Mol krystallisierter Oxalsäure in Äther + Alkohol (D., Mou., Bl. [4] 41, 1374). Durch aufeinanderfolgende Einw. von 1 Mol Brom und 4 Mol Piperidin auf Anisylidenacetophenon in Äther und Hydrolyse des Reaktionsprodukts mit 10%iger Schwefelsäure (D., Mou., C. r. 184, 100; Bl. [4] 41, 1372, 1378, 1620; vgl. Mou., C. r. 188, 505). Blaßgelbe Nadeln (aus Methanol). F: 68° (Ma., R.), 70° bei schnellem Erhitzen (D., Mou.). Gibt mit Eisenchlorid in Wasser (?) eine intensiv braune (D., Mou.), in Alkohol eine rotbraune Färbung (Ma., R.). Liefert beim Erhitzen auf 68—75° oder beim Impfen einer gesättigten Lösung die höherschmelzende Enolform (Moureu, C. r. 188, 505). Geht bei langsamer Vakuum-destillation, am besten bei Gegenwart von Spuren Alkali zum größten Teil in die Ketonform über (Dufraisse, Mou., Bl. [4] 41, 1620; Mou., C. r. 188, 505). Oxydiert sich an der Luft (D., Mou.). Gibt beim Kochen mit verd. Natronlauge α-Oxy-α-phenyl-β-(4-methoxy-phenyl)-propionsäure (Malkin, Robinson, Soc. 127, 376). Bei der Einw. von Dimethylsulfat und Natronlauge entsteht 4.α-Dimethoxy-chalkon (Ma., R.). Setzt sich mit o-Phenylendiamin in siedendem Alkohol zu 2-Phenyl-3-(4-methoxy-benzyl]-chinoxalin um (Ma., R.). Natriumsalz. Rot. Löslich in Wasser (D., Mou., Bl. [4] 41, 1620). Kaliumsalz. Rot. Löslich in Wasser (D., Mou.). Gibt Einw. von SbCl₂ auf die niedrigerschmelzende Enolform und auf die Ketonform (D., Mou.). Orangegelbe Nadeln. F: 199—200° bei schnellem Erhitzen. Wird durch wäßr. Weinsäure-Lösung gespalten.
- b) Höherschmelzende Enolform. B. Aus der niedrigerschmelzenden Enolform durch Erhitzen auf 68—75° oder durch Impfen ihrer gesättigten Lösung (Moureu, C. r. 188, 505). Gelbe Krystalle. F: 82°.
- c) Ketonform. B. Durch langsaem Vakuumdestillation der niedrigerschmelzenden Enolform in Gegenwart von Spuren Alkali; Trennung von der Enolform erfolgt durch Krystallisation bei tiefer Temperatur (Dufraisse, Moureu, Bl. [4] 41, 1620; M., C. r. 188, 505). Citronengelbe Krystalle. F: 23—24° (M.). Gibt mit Eisenohlorid eine braune Färbung. Geht beim Unterkühlen oder durch Einw. alkal. Katalysatoren in die Enolform über (M.). Ist leicht oxydierbar (D., M.). Liefert mit Antimontrichlorid dasselbe Salz wie die niedrigerschmelzende Enolform (D., M.)
- 19. 1-Phenyl-3-[2-oxy-phenyl]-propandion-(1.3), 2-Oxy-dibenzoyl-methan, 2-Oxy- ω -benzoyl-acetophenon $C_{15}H_{12}O_3=C_4H_5\cdot CO\cdot CH_2\cdot CO\cdot C_4H_4\cdot OH$ bzw. desmotrope Formen.
- 2-Methoxy-dibenzoylmethan, 2-Methoxy- ω -benzoyl-acetophenon $C_{16}H_{14}O_3=C_6H_5$: $CO\cdot CH_2\cdot CO\cdot C_6H_4\cdot O\cdot CH_2$. B. Durch Einw. von Natriumamid auf 2-Methoxy-benzoesäureäthylester und Acetophenon in Äther (Bradley, Robinson, Soc. 1926, 2359). Blaßgelbe Nadeln (aus Alkohol). F: 65°. Leicht löslich in den meisten organischen Lösungsmitteln. Gibt mit Eisenchlorid in Alkohol eine tiefrote Färbung. Liefert beim Kochen mit 1%iger Natronlauge 85 Mol-% 2-Methoxy-benzoesäure und 15 Mol-% Benzoesäure. Kupfersalz. Blaßgrüne Prismen (aus Benzol). F: 196—197° (Zers.).
- 2-Äthoxy-dibenzoylmethan, 2-Äthoxy- ω -benzoyl-acetophenon $C_{17}H_{16}O_3=C_4H_5\cdot CO\cdot CH_1\cdot CO\cdot C_5H_4\cdot O\cdot C_5H_5$ (H 334). F: 86—87° (Tasaki, Acta phytoch. 3, 305; C. 1927 II, 1951). Ultraviolett-Absorptionsspektrum in Alkohol: T.

5-Chlor-2-oxy-dibenzoylmethan, 5-Chlor-2-oxy- ω -benzoyl-aceto-phenon $C_{15}H_{11}O_4Cl$, s. nebenstehende Formel. B. Beim Kochen von 6-Chlor-3-benzoyl-flavon mit Natriumäthylat-Lösung (Wittig, A. $C_6H_5 \cdot CO \cdot CH_4 \cdot CO$ 446, 196). — Gelbe Tafeln (aus Alkohol). F: 107—108°. Leicht löslich in Eisessig und Aceton, löslich in Alkohol, schwer löslich in Benzol. — Liefert beim Behandeln mit konz. Schwefelsäure 6-Chlor-flavon.

20. 1-Phenyl-3-[3-oxy-phenyl]-propandion-(1.3), 3-Oxy-dibenzoyl-methan, 3-Oxy- ω -benzoyl-acetophenon $C_{15}H_{12}O_3=C_4H_4\cdot CO\cdot CH_2\cdot CO\cdot CH_4\cdot OH$ bzw. desmotrope Formen.

- 3-Methoxy-dibenzoylmethan, 3-Methoxy- ω -benzoyl-acetophenon $C_{18}H_{16}O_{2}=C_{6}H_{8}\cdot CO\cdot CH_{2}\cdot CO\cdot C_{4}H_{4}\cdot O\cdot CH_{3}$. B. Durch Einw. von Natriumamid auf 3-Methoxy-benzoesäureäthylester und Acetophenon in Ather (Bradley, Robinson, Soc. 1926, 2360). Tafein (aus Alkohol). F: 59,5°. Leicht löslich in den meisten organischen Lösungsmitteln. Gibt mit alkoh. Eisenchlorid-Lösung eine blutrote Färbung. Beim Kochen mit 1%iger Natronlauge entstehen 3-Methoxy-benzoesäure und Benzoesäure im Verhältnis von 2:1 Mol. Kupfersalz. Grüne Tafeln (aus Benzol). F: 215°.
- 21. 1-Phenyl-3-[4-oxy-phenyl]-propandion-(1.3), 4-Oxy-dibenzoyl-methan, 4-Oxy- ω -benzoyl-acetophenon $C_{15}H_{12}O_3=C_0H_5\cdot CO\cdot CH_2\cdot CO\cdot C_0H_4\cdot OH$ bzw. desmotrope Formen.
- 4-Methoxy-dibenzoylmethan, Benzoyl-anisoyl-methan, 4-Methoxy-ω-benzoyl-acetophenon, ω-Anisoyl-acetophenon C₁₈H₁₄O₃ = C₆H₅·CO·CH₃·CO·C₆H₄·O·CH₃ bzw. C₆H₅·C(OH):CH·CO·C₆H₄·O·CH₃ bzw. C₆H₅·CO·CH:C(OH)·C₆H₄·O·CH₃ (H 334; E I 649). B. Durch Kondensation von 4-Methoxy-acetophenon mit Benzoesäureāthylester bei Gegenwart von Natriumamid in Äther (Bradley, Robinson, Soc. 1926, 2358) oder von Acetophenon mit Anissäureāthylester bei Gegenwart von Natriumamid (B., R.) oder Natrium (Tasaki, Acta phytoch. 3, 305; C. 1927 II, 1951). Aus 4.β-Dimathoxy-chalkon oder 4'.β-Dimethoxy-chalkon durch Einw. von Salzsäure oder Schwefelsäure in Alkohol oder Methanol oder von Eisessig in siedendem Methanol (Weygand, A. 459, 109, 111). Krystalle (aus Methanol). F: 130—131° (W., A. 459, 111), 132° (B., R.). Siedet im Hochvakuum bei 195—200° (W.). Ultraviolett-Absorptionsspektrum in Alkohol: T. Die alkoh. Lösung wird durch Eisenchlorid sofort rot gefärbt (W.). Liefert bei der Ozonspaltung in Chloroform Benzoesäure, Anissäure, Phenylglyoxal und 4-Methoxy-phenylglyoxal (Weygand, A. 459, 121). Beim Kochen mit 1%iger Natronlauge entstehen Benzoesäure und Anissäure im Mol-Verhältnis 4:5 (Bradley, Robinson). Gibt bei der Einw. von Diazomethan in siedendem Äther und Behandlung des entstandenen gelben Öls mit Hydroxylamin in methylalkoholischer Natronlauge 5-Phenyl-3-[4-methoxy-phenyl]-isoxazol (W., A. 459, 115). Kaliumsalz KC₁₆H₁₃O₃. B. Aus 4-Methoxy-dibenzoylmethan und Kalium in siedendem Äther + Benzol (W., B. 61, 688). Gelbes Krystallpulver (aus Benzol). Kupfer(II)-salz CuC₃₂H₂₆O₆. F: 241° (Zers.) (B., R., Soc. 1926, 2358).
- 4-Äthoxy-dibenzoylmethan, 4-Äthoxy- ω -benzoyl-acetophenon $C_{17}H_{16}O_3=C_0H_5\cdot CO\cdot CH_2\cdot CO\cdot C_2H_4\cdot O\cdot C_2H_5$ bzw. desmotrope Formen. B. Durch Kondensation von 4-Äthoxybenzoesäureäthylester mit Acetophenon bei Gegenwart von Natrium in Äther (Bradley, Robinson, Soc. 1926, 2363). Blaßgelbe Tafeln (aus Petroläther). F: 68°.
- 4-Isopropyloxy-dibenzoylmethan, 4-Isopropyloxy-ω-benzoyl-acetophenon $C_{10}H_{10}O_3=C_0H_5\cdot CO\cdot CH_2\cdot CO\cdot CH_4\cdot O\cdot CH(CH_2)_2$ bzw. desmotrope Formen. B. Durch Kondensation von 4-Isopropyloxy-benzoesäureäthylester mit Acetophenon oder besser von Benzoesäureäthylester mit 4-Isopropyloxy-acetophenon bei Gegenwart von Natrium in Åther (Bradley, Robinson, Soc. 1926, 2361, 2362). Blaßgelbe Nadeln (aus Petroläther). F: 73°. Leicht löslich in den meisten organischen Lösungsmitteln. Die alkoh. Lösung gibt mit Eisenchlorid eine intensiv rote Färbung. Beim Kochen mit 1 %iger Natronlauge entstehen Benzoesäure und 4-Isopropyloxy-benzoesäure im ungefähren Mol-Verhältnis 3:2. Kupfer(Π)-salz Cu($C_{10}H_{17}O_0$)₂. Blaßgrüne Nadeln (aus Benzol). F: 228°.
- 3-0xo-1-oximino-3-phenyl-1-[4-methoxy-phenyl]-propan, 4-Methoxy- ω -benzoyl-aceto-phenon-oxim bzw. 1-Hydroxylamino-3-phenyl-1-[4-methoxy-phenyl]-propen-(1)-on-(3), β -Hydroxylamino-4-methoxy-chalkon, β -Oxy-p'-methoxy-chalkon-isoxim $C_{16}H_{16}O_3N = C_4H_5\cdot CO\cdot CH_2\cdot C(:N\cdot OH)\cdot C_6H_4\cdot O\cdot CH_3$ bzw. $C_6H_5\cdot CO\cdot CH:C(NH\cdot OH)\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus 4. β -Dimethoxy-chalkon durch 1-stdg. Kochen mit einer völlig neutralen wäßrig-methylalkoholischen Hydroxylamin-Lösung (Weygand, Bauer, A. 459, 135). Prismen (aus Äther). F: 134°. Löslich in Alkohol, Methanol, Benzol und Äther; unlöslich in Natronlauge. Geht zuweilen beim Aufbewahren in 5-Phenyl-3-[4-methoxy-phenyl]-isoxazol über; die gleiche Verbindung entsteht bei Zugabe von wenig Salzsäure, Essigsäure oder Natronlauge zu einer Lösung in Methanol oder von Eisenchlorid zu einer Lösung in Alkohol.
- 1 0xo 3 0ximino 3

Seien - bis -dibenzoyimethan $C_{20}H_{22}O_4$ Se = $[(C_6H_5\cdot CO)_5CH]_2$ Se bzw. desmotrope Form. Eine Verbindung, der diese Konstitution zugeschrieben wurde, s. E II 7, 691.

Cyanselen-dibenzoylmethan $C_{16}H_{11}O_4NSe=(C_6H_5\cdot CO)_2CH\cdot Se\cdot CN$. Eine Verbindung, der diese Konstitution zugeschrieben wurde, s. E II 7, 691.

Diselen - bis - dibenzoylmethan $C_{2e}H_{2g}O_4Se_g=(C_6H_6\cdot CO)_2CH\cdot Se\cdot Se\cdot CH(CO\cdot C_6H_6)_2$ bzw. desmotrope Form. Eine Verbindung, der diese Konstitution zugeschrieben wurde, s. E II 7, 692.

- 23. Phenyl [6-oxy-3-methyl-phenyl] diketon, 6-Oxy-3-methyl-benzil C₁₈H₁₂O₂, Formel I (R = H). B. Aus ms-Brom-6-oxy-3-methyl-desoxybenzoin durch Behandeln mit kalter wäßriger Natronlauge und Aufbewahren des angesäuerten Reaktionsgemisches an der Luft, neben 6-Benzoyloxy-3-methyl-benzoesäure (v. Auwers, B. 53, 2279). Gelbliche Prismen (aus Ligroin). F: 90—91°. Leicht löslich in Alkohol, Äther und Benzol, schwerer in Benzin. Leicht löslich in verd. Alkalilaugen mit gelber Farbe, fast unlöslich in Sodalösung. Gibt mit Eisenchlorid eine schmutzigviolette Färbung. Wird durch siedende wäßrig-alkoholische Schwefelsäure nicht verändert. Das dunkelrote Bis-[4-nitro-phenyl-hydrazon] färbt sich bei 225—240° gelb und schmilzt bei 280—282°.
- 6-Methoxy-3-methyl-benzil $C_{16}H_{14}O_3$, Formel I (R = CH_3). B. Aus 6-Oxy-3-methylbenzil und Dimethylsulfat in 8% iger Natronlauge (v. Auwers, B. 53, 2280). Beim Kochen von 6-Methoxy-3-methyl-benzil-7'-oxim mit 20% iger Schwefelsäure (v. Au., B. 53, 2284). Nadeln (aus Ligroin). F: 106—106,5°. Leicht löslich in Alkohol und Äther, schwer in Benzin. Das Bis-[4-nitro-phenyl-hydrazon] schmilzt bei 224,5—225,5°.
- 6-Methoxy-3-methyl-benzil-7'-oxim $C_{18}H_{15}O_3N=C_6H_5\cdot C(:N\cdot OH)\cdot CO\cdot C_6H_3(CH_2)\cdot O\cdot CH_8$. Aus 6-Methoxy-3-methyl-desoxybenzoin bei der Einw. von Isoamylnitrit und konz. Salzsäure in Eisessig unter Eiskühlung (v. Auwers, B. 53, 2283). Nadeln (aus Benzol). F: 143° bis 144°. Sehr leicht löslich in Methanol, Alkohol, Äther und Eisessig, mäßig in Benzol, fast unlöslich in Benzin.
- 6-Methoxy-3-methyl-benzil-dioxim $C_{16}H_{16}O_3N_2=C_6H_5\cdot C(:N\cdot OH)\cdot C(:N\cdot OH)\cdot C_6H_3(CH_3)\cdot O\cdot CH_3$. B. Beim Kochen von 6-Methoxy-3-methyl-benzil-7'-oxim mit Hydroxylaminhydrochlorid in Alkohol (v. Auwers, B. 58, 2284). Nadeln (aus Methanol oder Alkohol). F: 225—227°. Fast unlöelich in Benzol und Benzin.
- 6-0xy-3-methyl-benzil-disemicarbazon $C_{17}H_{18}O_3N_6=C_4H_5\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot C_6H_3(CH_3)\cdot OH$. Nadeln. F: 193—194° (v. Auwers, B. 58, 2280).
- 6 Methoxy 3 methyl benzil disemicarbazon $C_{18}H_{20}O_3N_6=C_6H_5\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot C(:N\cdot NH\cdot CO\cdot NH_3)\cdot C_6H_3(CH_3)\cdot O\cdot CH_3$. Krystallpulver. F: 250—251° (v. Auwers, B. 53, 2284). Sehr leicht löslich in Eisessig, unlöslich in Benzol, Methanol und Alkohol.
- 24. 1.6-Dioxy-10-oxo-2-methyl-dihydroanthracen, 4.7-Dioxy-3-methylanthron-(9) $C_{15}H_{13}O_{2}$, Formel II (R = H).
- 4.7 Dimethoxy 3 methyl anthron (9) C₁₇H₁₆O₃, Formel II (R = CH₃) bzw. desmotrope Form. B. Aus 6.4'-Dimethoxy-5-methyl-diphenylmethan-carbonsäure-(2) in kalter konzentrierter Schwefelsäure (Bhattacharya, Simonsen, J. indian Inst. Sci. [A] 10, 8; C. 1927 II, 1476). Gelbliche Nadeln (aus Eisessig). F: 111—112°. Bei der Oxydation mit Chromessigsäure entsteht 1.6-Dimethoxy-2-methyl-anthrachinon.

25. 4.5-Dioxy-9 (oder 10)-oxo-2-methyl-dihydroanthracen, Chrysophansäureanthron, Chrysophanhydranthron bzw. 4.5.9 (oder 4.5.10) - Trioxy-2-methyl-anthracen, Chrysophananthranol C₁₅H₁₂O₃, Formel III oder IV bzw. desmotrope Formen (H 335; E I 650). Kommt in der Droge Chrysarobin 1) in der Anthronform vor (EDER, HAUSER, Ar. 1925, 329). — Gehalt im Chrysarobin: E., H., Ar. 1925, 340. — B. Bei 3-stdg. Kochen des im Chrysarobin vorkommenden Ararobinols mit Zinkspänen und

¹⁾ Der Name Chrysarobin wird in der Literatur vielfach nicht nur für die Droge selbst, sondern auch für das in der Droge als Hauptbestandteil vorkommende Chrysophansäureanthron gebraucht.

Eisessig (E., H., Ar. 1925, 447). — Geht in alkoh. Natronlauge unter Luftabschluß in die grün fluorescierende Enolform über (E., H., Ar. 1925, 328). — Physiologisches Verhalten: E. Kerser in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 268. — Farbreaktionen mit konz. Schwefelsäure bei verschiedenen Temperaturen: E., H., Ar. 1925, 449.

5. Oxy-oxo-Verbindungen $C_{16}H_{14}O_{2}$.

- 1. 4-Phenyl-1-[4-oxy-phenyl]-butandion-(1.3), 4-Oxy- ω -phenacetylacetophenon, α -Phenyl- α '-[4-oxy-benzoyl]-aceton $C_{14}H_{14}O_3=C_4H_4\cdot CH_2\cdot CO\cdot CH_3\cdot CO\cdot C_4H_4\cdot OH$.
- 4-Methoxy- ω -phenacetyl-acetophenon, α -Phenyl- α '-anisoyl-aceton $C_{17}H_{16}O_8=C_8H_8$ · $CO\cdot CH_9\cdot CO\cdot C_9H_4\cdot O\cdot CH_9$. B. Aus 4-Methoxy-acetophenon und Phenylessigsäureäthylester bei Gegenwart von Natrium (Tasaki, Acta phytoch. 8, 309; C. 1927 II, 1951). Nadeln (aus Alkohol). F: 75—76°. Ultraviolett-Absorptionsspektrum in Alkohol: T.
- 2. 1.4 Diphenyl butanol (2) dion (1.4), $\alpha.\beta$ Dibenzoyl äthylalkohol $C_{18}H_{14}O_3 = C_8H_5 \cdot \text{CO} \cdot \text{CH}_2 \cdot \text{CH}(\text{OH}) \cdot \text{CO} \cdot C_8H_5$.
- 2 Methoxy 1.4 diphenyl butandion (1.4), 1 Methoxy 1.2 dibenzoyl-ăthan $C_{17}H_{16}O_3 = C_6H_5\cdot CO\cdot CH_2\cdot CH(0\cdot CH_3)\cdot CO\cdot C_6H_5$. B. Beim Kochen von α -Methoxy- α . β -dibenzoyl-āthylen mit Na₂S₂O₄ oder Chrom(II)-chlorid in verd. Alkohol (Lurz, Am. Soc. 51, 3017, 3020). Krystalle (aus Athylbromid + Petroläther). F: 48,5—49°. Zerfällt beim Erhitzen auf 210° bis 215° in α . β -Dibenzoyl-āthylen und Methanol. Zersetzt sich beim Behandeln mit Acetanhydrid und etwas Schwefelsäure.
- 2 Phenoxy-1.4 diphenyl butandion (1.4), 1 Phenoxy-1.2 dibenzoyl-ăthan $C_{22}H_{12}O_3 = C_0H_5 \cdot CO \cdot CH_2 \cdot CH(O \cdot C_0H_5) \cdot CO \cdot C_0H_5 \cdot B$. Durch Reduktion von α -Phenoxy- α . β -dibenzoyl-āthylen mit Chrom(II)-chlorid oder $Na_2S_2O_4$ in siedendem verdünntem Alkohol oder mit Zink und siedendem Eisessig (Lutz, Am. Soc. 51, 3019, 3020). Krystalle (aus Alkohol). F: 120°. Zerfällt beim Erhitzen auf 270° in α . β -Dibenzoyl-āthylen und Phenol. Liefert beim Behandeln mit Acetanhydrid und wenig konz. Schwefelsäure 3-Phenoxy-2.5-diphenyl-furan.
- 1-m-Tolyloxy-1.2-dibenzoyl-äthan $C_{23}H_{20}O_3=C_0H_5\cdot CO\cdot CH_2\cdot CH(O\cdot C_0H_4\cdot CH_2)\cdot CO\cdot C_0H_5$. B. Durch Reduktion von höher- oder niedrigerschmelzendem α -m-Tolyloxy- $\alpha\beta$ -dibenzoyl-äthylen mit Chrom(II)-chlorid in Aceton, mit Zink und Eisessig oder mit Na₂S₂O₄ in verd. Alkohol (Conant, Lutz, Am. Soc. 47, 890; L., Am. Soc. 51, 3017). Krystalle (aus Alkohol). F: 111° (C., L.).
- 1-p-Tolyloxy-1.2-dibenzoyl-āthan $C_{22}H_{20}O_3=C_6H_6\cdot CO\cdot CH_3\cdot CH(O\cdot C_6H_4\cdot CH_3)\cdot CO\cdot C_6H_5$. B. Bei der Reduktion von α-p-Tolyloxy-αβ-dibenzoyl-āthylen mit Na₂S₂O₄ in siedendem verdünntem Alkohol oder mit Zink und siedendem Eisessig (Lutz, Am. Soc. 51, 3019, 3020). Krystalle (aus Alkohol). F: 108,5°. Liefert beim Behandeln mit Acetanhydrid und einer Spur konz. Schwefelsäure 3-p-Tolyloxy-2.5-diphenyl-furan.
- 1 Methoxy 1.2 bis [4 chlor benzoyl] äthan $C_{17}H_{14}O_3Cl_3 = C_6H_4Cl\cdot CO\cdot CH_3\cdot CH(O\cdot CH_3)\cdot CO\cdot C_6H_4Cl\cdot B$. Bei der Reduktion von α -Methoxy- α . β -bis-[4-chlor-benzoyl]-āthylen mit Na₂S₂O₄ in siedendem verdünntem Alkohol oder mit Zink und Eisessig bei 70° (Lutz, Am. Soc. 51, 3018, 3020). Krystalle (aus Methanol). F: 61,5°. Löslich in Benzol, Chloroform, Äther und Eisessig und in siedendem Petroläther und Alkohol. Zerfällt beim Erhitzen auf 200° in α . β -Bis-[4-chlor-benzoyl]-āthylen und Methanol. Liefert beim Behandeln mit Acetanhydrid und einer Spur konz. Schwefelsäure wenig 3-Methoxy-2.5-bis-[4-chlor-phenyl]-furan.
- 1-Methoxy-1.2-bis-[4-brom-benzoyl]-āthan $C_{17}H_{14}O_{2}Br_{2}=C_{4}H_{4}Br\cdot CO\cdot CH_{2}\cdot CH(O\cdot CH_{2})\cdot CO\cdot C_{4}H_{4}Br$. B. Bei der Reduktion von α -Methoxy- α . β -bis-[4-brom-benzoyl]-āthylen mit Na₂S₂O₄ in siedendem verdünntem Alkohol oder mit Zink und Eisessig bei 70° (Lutz, Am. Soc. 51, 3019, 3020). Krystalle (aus Methanol). F: 72°. Löslich in Benzol, Aceton und Äther, schwer löslich in kaltem Alkohol. Zerfällt bei kurzem Erhitzen auf 210—220° in α . β -Bis-[4-brom-benzoyl]-āthylen und Methanol.
- 3. 4.5-Dioxy-2-methyl- ω -benzyliden-acetophenon , 4'.5'-Dioxy-2'-methyl-chalkon $C_{10}H_{14}O_{1},\ Formel\ V\ (R=H).$
- 4.5-Dimethoxy-2-methyl- ω -benzyliden-acetophenon, 4.5'- Dimethoxy 2'- methyl-chalken $C_{18}H_{18}O_{2}$, Formel V (R = CH_{2}). B. Aus 4.5-Dimethoxy-2-methyl-acetophenon und Benzaldehyd in methylalkoholischer Kalilauge (FARGHER, PERKIN, Soc. 119, 1732). Nadeln (aus Alkohol). F: 110°.
- 4. 4 Oxy ω [6 oxy 3 methyl benzyliden] acetophenon, 6.4'-Dioxy-3-methyl-chalkon $C_{16}H_{14}O_{3}$, Formel VI (R = H).

385

4-Methoxy- ∞ -[6-oxy-3-methyl-benzyliden]-acetophenon, 6-Oxy-4'-methoxy-3-methyl-chalkon, [4-Methoxy-phenyl]-[6-oxy-3-methyl-styryl]-keton $C_{17}H_{16}O_3$, Formel VI (R = CH₄). B. Aus 6-Oxy-3-methyl-benzaldehyd und 4-Methoxy-acetophenon bei Gegenwart von konz.

Kalilauge in Alkohol + Ather (ROBINSON, Soc. 125, 208). — Gelbliche Tafeln (aus Benzol). F: 151—152° (unter Grünfärbung). — Beim Einleiten von Chlorwasserstoff in die äther. Lösung oder bei kurzem Kochen mit Eisessig und etwas verd. Salzsäure entsteht 4'-Methoxy-6-methylflavyliumchlorid. — Kaliumsalz. Karmesinrote Nadeln.

- 5. 6 Oxy 3 methyl ω [4-oxy benzyliden] acetophenon , 4.6' Dioxy-3'-methyl-chalkon $C_{1e}H_{14}O_{3}$, Formel VII (R und R' = H).
- $6 Oxy 3 methyl \omega anisyliden acetophenon$, 6' Oxy 4 methoxy 3' methyl chalkonC₁, H₁₆O₃, Formel VII (R = CH₃, R' = H). B. Aus 6-Oxy-3-methyl-acetophenon und Anisaldehyd in wäßrig-alkoholischer Natronlauge bei 50°, neben geringeren Mengen 4'-Methoxy-6-methyl-flavanon (v. Auwers, Anschütz, B. 54, 1553, 1554). — Hellgelbe Nadeln oder orangefarbene, violettglänzende Krystalle (aus Alkohol oder Schwefelkohlenstoff). Monoklin (Weigel). F: 98—99°. Sehr leicht löslich in Äther und Benzol, leicht in Alkohol, Benzin und Schwefelkohlenstoff, löslich in Methanol. — Gibt beim Kochen mit alkoh. Salzsäure wenig 4'-Methoxy-6-methyl-flavanon.
- 6-Acetoxy-3-methyl- ω -anisyliden-acetophenon, 4-Methoxy-6'-acetoxy-3'-methyl-chaikon $C_{19}H_{18}O_4$, Formel VII (R = CH₂, R' = CO·CH₃). Gelbliche Nadeln (aus Methanol). F: 116° (v. Auwers, Anschütz, B. 54, 1554—1555). Schwer löslich in Äther, mäßig in Benzin, ziemlich leicht in Methanol und Alkohol, leicht in Benzol.
- 6-Oxy-3-methyl- ω -[α -brom-anisyliden]-acetophenon, β -Brom-6'-oxy-4-methoxy-3'-methyl-chalkon $C_{17}H_{15}O_8Br=CH_3\cdot C_6H_3(OH)\cdot CO\cdot CH:CBr\cdot C_6H_4\cdot O\cdot CH_3$. Be der Einw. von 1 Mol Natriumhydroxyd auf 6'-Oxy-4-methoxy-3'-methyl-chalkondibromid in heißem Alkohol (v. Auwers, Anschütz, B. 54, 1557). — Nicht rein erhalten. Krystalle. F: ca. 107°.

6. 1-Phenyl-3-[6-oxy-3-methyl-phenyl]-propandion-(2.3), [6-Oxy-3-methyl-phenyl]-benzyl-diketon, p-Kresylbenzyldiketon $C_{16}H_{14}O_3$, Formel VIII.

 $\begin{array}{l} \textbf{Disemicarbazon} \ \ C_{10}H_{23}O_{4}N_{6} = C_{0}H_{5} \cdot CH_{2} \cdot C(:N \cdot NH \cdot CO \cdot NH_{2}) \cdot C(:N \cdot NH \cdot CO \cdot NH_{2}) \cdot \\ \end{array}$ C₆H₃(CH₂)·OH. B. Durch Erwärmen von 5-Methyl-2-benzyl-cumaranon (Syst. Nr. 2389) mit Semicarbazidhydrochlorid und Natriumacetat in wäßr. Alkohol auf 45—50° (v. Auwers, Wegener, J. pr. [2] 106, 252). — Krystalle. Enthält 1 Mol H₂O. F: 222°. Leicht löslich in heißem Eisessig, sehwer in den meisten anderen Lösungsmitteln.

7. 1-Benzoyl-1-[4-oxy-benzoyl]-äthan, α -[4-Oxy-benzoyl]-propiophenon $C_{16}H_{14}O_{3} = C_{6}H_{5} \cdot CO \cdot CH(CH_{3}) \cdot CO \cdot C_{6}H_{4} \cdot OH.$

1 - Benzoyl - 1 - anisoyl - āthan, 4 - Methoxy -α- methyl-dibenzoylmethan, α-Anisoyl-propiophenon C₁₂H₁₆O₃ = C₆H₅·CO·CH(CH₂)·CO·C₆H₄·O·CH₃ bzw. desmotrope Formen.

a) Ketonform. B. Aus der Kaliumverbindung des 4-Methoxy-dibenzoylmethans und Methyljodid in siedendem Aceton (Weygand, B. 61, 689). — Nadeln (aus Benzol). F: 71,5° bis 72°. Kp₁₈: 249°. — Die destillierte Substanz ist haltbar, die aus Benzol krystallisierte zerfließt aus des 1 fließt an der Luft. Übergang in die Enolform s. u.

b) Enolform. B. Aus der Ketonform durch ½ stdg. Einw. von Natriummethylat-Lösung und Eingleßen des Reaktionsgemisches in eisgekühlte 10 n-Schwefelsäure (WEYGAND, B. 61, 689). — Schwach gelblich. F: 80°. — Geht beim Umkrystallisieren in die Ketonform über-

Gibt mit Eisenchlorid eine blauviolette Färbung. — Kupfer(II)-salz Cu(C₁₇H₁₆O₃)₄. F: 178°. Eine von Bradley, Robinson (Soc. 1926, 2361) durch Kondensation von 4-Methoxypropiophenon mit Benzoesäureäthylester erhaltene, ebenfalls als α-Anisoyl-propiophenon bezeichnete Verbindung hat vermutlich eine andere Konstitution (vgl. WEYGAND, B. 61, 689). — Blaßgelbe Tafeln (aus Alkohol). F: 56,5° (B., R.). Gibt mit alkoh. Eisenchlorid-Lösung eine blutrote Färbung. — Kupfersalz. Prismen (aus Methanol). F: 218°. Leicht löslich in Benzol, sehr schwer in Methanol. OXY. OXO. VERBINDUNGEN CnH2n-18O8 UND CnH2n-20O8 [Syst. Nr. 780

8. 1.2 - Diphenyl - butanol - (2) - dion - (1.3), ms - Acetyl - benzoin, Phenylacetyl-benzoyl-carbinol $C_{1e}H_{1e}O_8=C_0H_6\cdot CO\cdot C(C_0H_8)(OH)\cdot CO\cdot CH_8$.

1.2-Diphenyl-butanol-(2)-dion-(1.3)-oxim-(3), ms-[α-Oximino-lithyl]-benzola C₁₆H₁₅O₆N = C₆H₅·CO·C(C₆H₅)(OH)·C(:N·OH)·CH₃. B. Beim Kochen von 5-Anilino-4-oxy-3-methyl-4.5-diphenyl-Δ¹-isoxazolin mit 1 n-Essigsäure und Aceton (Wittig, Kleiner, Conrad, A. 469, 11). — Nadeln (aus Benzol). F: 179—180° (Zers.). Löslich in Alkalien. — Beim Erhitzen über den Schmelzpunkt und bei der Einw. von verd. Schwefelsäure entsteht Benzil.

9. 1-[4-Oxy-naphthyl-(1)]-hexen-(1)-dion-(3.5), $\{\beta-[4-Oxy-naphthyl-(1)]-acryloyl\}-aceton$ $C_{16}H_{14}O_3$, Formel IX (R=H).

1-[4-Carbomethoxyoxy-naphthyl-(1)]-hexen-(1)-dion-(3.5), $\{\beta$ -[4-Carbomethoxyoxy-naphthyl-(1)]-acryloyl]-aceton $C_{18}H_{16}O_5$, Formel IX (R = $CO_2 \cdot CH_2$). B. Beim Erhitzen von α -[β -[4-Carbomethoxyoxy-naphthyl-(1)]-acryloyl]-acetessigester mit Wasser im Autoklaven (Lampe, Mitarb., Roczniki Chem. 9, 462; C. 1929 II, 1917). — Gelbliche Nadeln (aus Alkohol). F: 104—106°.

6. Oxy-oxo-Verbindungen $C_{19}H_{20}O_3$.

1.3-Dibrom-1.3-bis-[α-brom-4-methoxy-benzyl] - cyclopentanon-(2), Tetrabromid des 1.3-Dianisyliden-cyclopentanons - (2) C₂₁H₂₀O₂Br₄, Formel X. Nadeln. F: ca. 166° (Zers.) (VORLÄNDER, B. 54, 2263).

7. Oxy-oxo-Verbindungen C₂₀H₂₂O₃.

1. 1.3-Bis-[4-oxy-benzyl]-cyclohexanon-(2) $C_{20}H_{22}O_{3}$, Formel XI (R = H).

1.3-Bis-[4-methoxy-benzyl]-cyclohexanon-(2), 1.3-Dianisyl-cyclohexanon-(2) $C_{22}H_{26}O_3$, Formel XI (R = CH₃). B. Durch Hydrierung von 1.3-Dianisyliden-cyclohexanon-(2) bei Gegenwart von Platinoxyd in Alkohol unter 1—2 Atm. Druck (Garland, Reid, Am. Soc. 47, 2337). — Blättchen. F: 157°.

2. 1.3-Bis-[a-oxy-benzyl]-cyclohexanon-(2) C₂₀H₂₂O₃, Formel XII (H 337). B. Durch mehrwöchige Einw. von verd. Natronlauge auf 1-[a-Oxy-benzyl]-cyclohexanon-(2) (VORLÄNDER, KUNZE, B. 59, 2080). Zur Bildung aus Benzaldehyd und Cyclohexanon in verd. Natronlauge (Wallach, C. 1908 I, 638) vgl. V., K., B. 59, 2081. — Krystalle (aus Alkohol). F: 164—165°. — Wird durch wäßr. Natronlauge nicht verändert. Gibt in alkoh. Lösung bei Zusatz einiger Tropfen 10%iger Natronlauge 1.3-Dibenzyliden-cyclohexanon-(2). [KOBEL]

k) Oxy-oxo-Verbindungen $C_n H_{2n-20} O_3$.

1. Oxy-oxo-Verbindungen C₁₄H₄O₂.

1. 4-Oxy-anthrachinon-(1.2) $C_{14}H_{6}O_{3}$, s. nebenstehende Formel (R = H), ist desmotrop mit 2-Oxy-anthrachinon-(1.4), S. 387.

4-Methoxy-anthrachinon-(1.2) C₁₅H₁₀O₃, s. nebenstehende Formel (R = CH₃). B. Neben geringeren Mengen 2-Methoxy-anthrachinon-(1.4) bei der Einw. von Methyljodid auf das Silbersalz des 2-Oxy-anthrachinons-(1.4) in Benzol (Firser, Am. Soc. 50, 472). — Gelbe Nadeln (aus Benzol). F: 198°. Mäßig löslich in Benzol. Normal-Redoxpotential in 37% igem Alkohol bei 25°: 0,346 V (F., Am. Soc. 50, 467). Löst sich in konz. Schwefelsäure mit weinroter Farbe. Leicht löslich in NaHSO₂-Lösung. — Wird durch siedende verdünnte alkoholische Salzsäure oder Alkalilauge leicht hydrolysiert. Lagert sich bei kurzem Kochen mit methylalkoholischer Schwefelsäure in 2-Methoxy-anthrachinon-(1.4) um.

4 - Allylexy - anthrachinon - (1.2) C₁₇H₁₂O₃ = C₁₀H₆ C(O·CH₂·CH:CH₂):CH.

B. Neben geringeren Mengen isomerer Verbindungen bei der Kinw. von Allylbromid auf das Silbersalz des 2-Oxy-anthrachinons-(1.4) in siedendem Benzol (FIESER, Am. Soc. 50, 472). — Gelbe

387

Nadeln (aus Benzol). F: 173°. — Lagert sich beim Erhitzen auf 175° in 3-Oxy-2-allyl-anthrachinon-(1.4) um.

- 2. 2 Oxy anthrachinon (1.4) bzw. 4 Oxy anthrachinon (1.2) C₁₄H₂O₃, Formel I bzw. II (H 337). Liegt im Gleichgewichtszustand fast ausschließlich als 2-Oxy-anthrachinon-(1.4) (Formel I) und nur in sehr geringer Menge als 4-Oxy-anthrachinon-(1.2) (Formel II) vor (FIRSER, Am. Soc. 50, 468—469; vgl. a. die Angaben zur Konstitution des 2-Oxy-naphthochinons-(1.4), S. 344). B. Beim Kochen von 2-Methoxy-anthrachinon-(1.4) mit 6n-Natronlauge (FIRSER, Am. Soc. 50, 471). Gelbe Nadeln (aus Toluol oder Eisessig). F: 243° (Zers.). Normal-Redoxpotential in wäßrig-alkoholischer Salzsäure in Gegenwart von Lithium-chlorid bei 25°: 0,275 V (F., Am. Soc. 50, 467). Mäßig löslich in Eisessig und Alkohol, schwer in Benzol, Äther und Wasser. Löst sich in konz. Schwefelsäure mit weinroter, in Natronlauge, Sodalösung und Natriumacetat-Lösung mit blaßorangegelber Farbe. Schwer löslich in NaHSO₃-Lösung. Gibt eine orangerote Küpe. Gibt beim Kochen mit Zinkstaub, Natriumacetat und Acetanhydrid 1.2.4-Triacetoxy-anthracen. Das Silbersalz liefert mit Methyljodid in Benzol bei Zimmertemperatur 4-Methoxy-anthrachinon-(1.2) und 2-Methoxy-anthrachinon-(1.4) im ungefähren Verhältnis 2: 1, mit Allylbromid in siedendem Benzol 4-Allyloxy-anthrachinon-(1.2), 2-Allyloxy-anthrachinon-(1.4) und 3-Oxy-2-allyl-anthrachinon-(1.4) im ungefähren Verhältnis 7: 1: 1. Kondensiert sich mit aromatischen Aminen in Eisessig unter Bildung alkaliunlöslicher Anilinochinone. Natriumsalz NaC₁₄H₇O₃. Orangefarbene, mikrokrystalline Nadeln (aus Wasser). Leicht löslich in Wasser, sehr schwer in verd. Natronlauge. Silbersalz AgC₁₄H₇O₃. Dunkelrotes, krystallines Pulver.
- 2 Methoxy anthrachinon (1.4) C₁₅H₁₀O₃ = C₁₀H₆CO·C·O·CH₃. B. Aus Anthrachinon-(1.2)-sulfonsāure-(4) beim Schütteln des Ammoniumsalzes mit methylalkoholischer Schwefelsäure (FIESER, Am. Soc. 50, 470). Durch kurzes Kochen von 4-Methoxy-anthrachinon-(1.2) (S. 386) mit methylalkoholischer Schwefelsäure (F., Am. Soc. 50, 472). Gelbe Nadeln (aus Toluol). F: 217°. Mäßig löslich in Benzol, Toluol und Eisessig. Normal-Redoxpotential in 37% igem Alkohol bei 25°: 0,272 V (F., Am. Soc. 50, 467). Löslich in konz. Schwefelsäure mit weinroter Farbe. Unlöslich in NaHSO₃-Lösung. Wird durch verdünnte alkoholische Salzsäure nur langsam hydrolysiert.
- 2 Acetoxy anthrachinon (1.4) $C_{16}H_{10}O_4 = CH_3 \cdot CO \cdot O \cdot C_{14}H_7O_2$ (H 338). B. Bei der Einw. von Acetanhydrid und wenig konz. Schwefelsäure auf 2-Oxy-anthrachinon-(1.4) (FIESER, Am. Soc. 50, 471). Gelbe Tafeln (aus Alkohol oder Benzol). F: 195°. Schwer löslich in Alkohol, leicht in Benzol.
 - 3. 4-Oxy-anthrachinon-(1.10) $C_{14}H_8O_3$, Formel III (X = H).
- 9-Chlor-4-oxy-anthrachinon-(1.10) C₁₄H₇O₃Cl, Formel III (X = Cl). B. Durch Kochen von Chinizarin mit frisch destilliertem Thionylchlorid (Green, Soc. 1926, 1431). Dunkelrote Nadeln (aus Methanol, Alkohol oder Benzol). F: 225—226°. Gibt mit alkoh. Eisenchlorid-Lösung eine hellrote Färbung. Gibt bei der Oxydation mit siedender alkalischer Permanganat-Lösung Phthalsäure. Liefert beim Erwärmen mit konz. Schwefelsäure auf dem Wasserbad, beim Kochen mit verd. Natronlauge oder Kalilauge und beim Erhitzen mit Eisessig und Kaliumacetat auf 180° oder mit absol. Methanol oder Alkohol auf 200° Chinizarin. Beim Kochen mit Acetanhydrid, auch in Gegenwart von etwas konz. Schwefelsäure, entsteht Chinizarindiacetat; beim Behandeln mit Acetanhydrid und Pyridin oder mit Acetylchlorid und Kaliumacetat bilden

sich keine einheitlichen Produkte. Liefert bei der Kondensation mit Anilin bei Siedetemperatur 4-Oxy-9-anilino-anthrachinon-(1.10) (Syst. Nr. 1878); bei längerem Erhitzen in Gegenwart von Borsäure entsteht 4.9-Dianilino-anthrachinon-(1.10) (Syst. Nr. 1874); reagiert analog mit p-Toluidin. Gibt bei der Einw. von Diasomethan in absol. Äther bei 5° ein rotes Produkt, das sich bei ca. 190° dunkel färbt und bei 270—280° zu einer schwarzen Paste erweicht.

Beim Erwärmen mit Pyridin entsteht eine schmutzigbraune Lösung, aus der sich langsam ein schwarzes amorphes Pulver abscheidet.

2.9 (oder 3.9) - Dichlor - 4 - oxy - anthrachinon - (1.10) $C_{14}H_4O_2Cl_2$, Formel IV. Eine von RAUDNITZ (B. 62, 2763) so formulierte Verbindung ist als 2.4-Dichlor-1-oxy-anthrachinon (S. 389) erkannt worden (Zahn, B. 67 [1934], 2068).

4. 1-Oxy-anthrachinon, α-Oxy-anthrachinon, Erythrooxyanthrachinon C₁₄H₈O₃, Formel V auf S. 387 (H 338; E I 650). B. Beim Erhitzen von Phthalsäureanhydrid mit Phenol in Gegenwart von Zinkchlorid im Chlorwasserstoffstrom auf 120—125°, neben anderen Produkten (Copisarow, Soc. 117, 214). Beim Erwärmen von 2'-Oxy-benzophenon-carbonsäure-(2) mit konz. Schwefelsäure auf 140° (Sieglitz, B. 57, 317). Bei 13-stdg. Erhitzen von 1-Nitroanthrachinon mit Kaliumacetat und Eisessig auf ca. 170° (Schwenk, J. pr. [2] 103, 107). Beim Diazotieren von 4-Amino-1-oxy-anthrachinon mit Nitrosylschwefelsäure und folgenden Verkochen (Brass, Ziegler, B. 58, 760). — Darstellung durch Diazotieren von 1-Aminoanthrachinon mit Natriumnitrit und konz. Schwefelsäure und nachfolgendes Erhitzen auf 120—130° (H 338): Ullmann, Conzetti, B. 53, 828. — Schwer löslich in flüssigem Ammoniak mit blauroter Farbe (Briner, Morf, Helv. 11, 941). Aufnahme von Ammoniak-Gas bei 78°: B., M. Thermische Analyse des Systems mit 1.4-Dimethyl-2.5-dioxo-piperazin (Eutektikum bei 131° und ca. 30 Gew.-% 1-Oxy-anthrachinon): Pfriffer, Wang, Z. ang. Ch. 40, 986, 990. Absorptionsspektrum in verd. Natronlauge in Gegenwart von Na₂SO₂: Moir, Soc. 1927, 1810; in Acetanhydrid bei Gegenwart von Pyroboracetat: Dimeoth, Ruck, A. 446, 126. Normal-Redoxpotential in 0,5 n- und 1 n-Salzsäure in 95 %igem Alkohol bei 25°: ca. 0,133 V (Conant, Freer, Am. Soc. 46, 1867). Dissoziationskonstante in 96 %igem Alkohol (durch potentiometrische Titration bestimmt): Teeadwell, Schwarzenbach, Helv. 11, 395.

1-Oxy-anthrachinon gibt beim Behandeln mit Chlor in 98% iger Schwefelsäure bei 70—75°, zweckmäßig in Gegenwart von Jod (Scottish Dyes Ltd., D.R.P. 490637; Frdl. 16, 1258) oder mit Sulfurylchlorid in Nitrobenzol auf dem Wasserbad (ULLMANN, D. R. P. 282493; C. 1915 I, 643; Frdl. 12, 427; U., Conzetti, B. 53, 829) 4-Chlor-1-oxy-anthrachinon; Einw. von Sulfurylchlorid in Gegenwart von Jod in Nitrobenzol ergibt 2.4-Dichlor-1-oxy-anthrachinon (U.; U., C.). Die Bildung von 1.1'-Dioxy-dianthrachinonyl-(2.2') bei der Kalischmelze von 1-Oxy-anthrachinon (vgl. Bayer & Co., D.R.P. 167461; C. 1906 I, 1068; Frdl. 8, 239; H 338—339) wird durch Zusatz von organischen Lösungs- und Suspensionsmitteln wie Alkohol oder Anilin und Ausschluß von Luft erleichtert (I. G. Farbenind., D. R. P. 469135; Frdl. 16, 1208); 1.1'-Dioxy-dianthrachinonyl-(2.2') bildet sich auch beim Erhitzen von 1-Oxy-anthrachinon mit Aluminium chlorid und trockenem Pyridin auf 130° (I. G. Farbenind., D. R. P. 485906; Frdl. 16, 1356). Beim Erhitzen eines Gemisches aus 1-Oxy-anthrachinon und 2.4-Dibrom-1-oxy-anthrachinon auf 370—380° erhält man 2-Brom-1-oxy-anthrachinon (I. G. Farbenind., D.R. P. 84665; Frdl. 16, 1244). Wird durch Acetanhydrid erst bei längerem Kochen acetyliert (DIMROTH, FRIEDE-MANN, KÄMMERER, B. 53, 482). 1-Oxy-anthrachinon gibt beim Erwärmen mit Pyroboracetat in Acetanhydrid den Diacetylborsäureester des 1-Oxy-anthrachinons (S. 389) (DIMEOTH, FAUST, B. 54, 3029). Liefert bei der Einw. von N-Oxymethyl-trichloracetamid in Gegenwart von konz. Schwefelsäure unter Kühlung 4-Oxy-1-trichloracetaminomethyl-anthrachinon; bei ungenauer Einhaltung der Bedingungen entsteht leicht ein in Alkohol leicht lösliches Produkt vom Schmelzpunkt 108° (DE DIESBACH, GUBSER, Helv. 11, 1110); reagiert analog mit N-Oxymethyl-benzamid in konz. Schwefelsäure unter Bildung von 4-Oxy-1-benzaminomethyl-anthrachinon und 4-Oxy-1.3-bis-benzaminomethyl-anthrachinon, mit N-Oxymethyl-phthalimid unter Bildung von 4-Oxy-1.3-bis-phthalimidomethyl-anthrachinon (Syst. Nr. 3218) und 4-Oxy-1.3-bis-[2-carboxy-benzaminomethyl]-anthrachinon (DE D., G., Helv. 11, 1111; D.R.P. 507049; Frdl. 16, 1236).

Gibt mit überschüssigem Titan(III)-chlorid in wäßr. Natriumtartrat-Lösung eine intensiv

Gibt mit überschüssigem Titan(III)-chlorid in wäßr. Natriumtartrat-Lösung eine intensiv blaugrüne Färbung, die durch Eisen(III)-salz sofort zerstört wird (Knecht, Soc. 125, 1542 Anm.).

 $C_{14}H_8O_3+NH_8$. Tiefrot (BRINER, MORF, Helv. 11, 940). Bildung und Zerfall bei 78° und Dissoziationsdruck bei 20° und 50° : B., M.

^{1 -} Methoxy - anthrachinon $C_{15}H_{10}O_3 = C_6H_4(CO)_3C_6H_3\cdot O\cdot CH_3$ (H 339; E I 651). Liefert beim Erhitzen mit Kaliumchlorat-Lösung in Eisessig unter Zufügen von konz. Salzsäure 4-Chlor-1-methoxy-anthrachinon und geringere Mengen eines bei 136—140° schmelzenden Gemisches von Monochlorderivaten (Eckert, Hampel, B. 60, 1695). Beim Erhitzen mit Brom in Gegenwart von Natziumacetat und Eisenchlorid in Eisessig erhält man 2.4-Dibrom-1-methoxy-anthrachinon und geringere Mengen 4-Brom-1-methoxy-anthrachinon.

^{1 -} Acetoxy - anthrachinon $C_{16}H_{10}O_4=C_4H_4(CO)_2C_6H_3$ O CO CH₂ (H 340). B. Bei 6-stdg. Kochen von 1-Oxy-anthrachinon mit Acetanhydrid (Dimroth, Frieddemann, Kimmener, B. 53, 482). — Gelblichgrüne Tafeln (aus Pyridin). F: 183—185° (Genen, Soc. 1926, 2203).

Anthrachinonyl-(1)-metaborat, Metaborsäure-anthrachinonyl-(1)-ester $C_{14}H_7O_4B=C_6H_4(CO)_3C_6H_2\cdot O\cdot BO$. B. Aus der nachfolgenden Verbindung beim Aufbewahren oder beseer beim Erhitzen im Vakuum (DIMROTH, FAUST, B. 54, 3030). — Braune Krystalle. — Wird beim Erwärmen mit Wasser verseift.

Diacetylborsäureester des 1-Oxy-anthrachinons $C_{18}H_{19}O_7B = C_8H_4(CO)_2C_8H_3 \cdot O \cdot B(O \cdot CO \cdot CH_3)_8$. Beim Erwärmen von 1-Oxy-anthrachinon mit Pyroboracetat in Acetanhydrid (DIMBOTH, FAUST, B. 54, 3029). — Orangerote Tafeln. Zersetzt sich beim Erhitzen. — Geht beim Aufbewahren, schneller beim Erhitzen im Vakuum unter Abschluß von Feuchtigkeit, in Anthrachinonyl-(1)-metaborat über. Wird durch Wasser sehr rasch hydrolysiert.

- 2-Chlor-1-oxy-anthrachinon C₁₄H₇O₃Cl, Formel I. B. Beim Erhitzen von Phthalsäure-anhydrid und 2-Chlor-phenol mit konz. Schwefelsäure und Borsäure auf 225° (Tanaka, Pr. Acad. Tokyo 3, 84; C. 1927 II, 567). Orangefarbene Nadeln (aus Eisessig). F: 215°. Leicht löslich in Alkohol, Äther und Eisessig; löslich in Alkalien mit roter Farbe. Bei der Kalischmelze entsteht Alizarin.
- 2 Chlor 1 acetoxy anthrachinon $C_{16}H_9O_4Cl = C_6H_4(CO)_2C_6H_2Cl \cdot O \cdot CO \cdot CH_3$. Gelbe Nadeln (aus Eisessig). F: 176—179° (Tanaka, Pr. Acad. Tokyo 8, 85; C. 1927 II, 567).
- 4-Chlor-1-oxy-anthrachinon C₁₄H₂O₃Cl, Formel II (H 340; E I 651). B. Durch Einleiten von Chlor in eine Lösung von 1-Oxy-anthrachinon in 98% iger Schwefelsäure bei 70—75°, zweckmäßig in Gegenwart von Jod (Scottish Dyes Ltd., D.R. P. 490637; Frdl. 16, 1258). Zur Bildung aus 1-Oxy-anthrachinon und Sulfurylchlorid in Nitrobenzol und aus 5'-Chlor-2'-oxy-benzophenon-carbonsäure-(2) und Schwefelsäuremonohydrat bei 90—95° (E I 651) vgl. ULIMANN, CONZETTI, B. 58, 829, 831. Goldgelbe Nadeln (aus Alkohol). F: 193—194° (Green, Soc. 1926, 2203). Normal-Redoxpotential in 0,5 n- und 1 n-Salzsäure in 95% igem Alkohol bei 25°: ca. 0,142 V (CONANT, FIESER, Am. Soc. 46, 1867). Die alkoh. Lösung gibt mit Eisenchlorid eine blaßrote Färbung (G., Soc. 1926, 1435). Die Lösung in konz. Schwefelsäure ist orangefarben (U., C.). Wird beim Erwärmen mit konz. Schwefelsäure auf 100° nicht verändert (G., Soc. 1926, 1435). Überführung in Chinizarin (H 340) läßt sich auch durch Erhitzen mit konz. Schwefelsäure in Gegenwart von Borsäure auf 156—160° bewirken (U., C., B. 53, 833). Beim Behandeln mit Sulfurylchlorid in Gegenwart von Jod in Nitrobenzol erhält man 2.4-Dichlor-1-oxy-anthrachinon (U., C.).
- 4-Chlor-1-methoxy-anthrachinon $C_{18}H_9O_3Cl = C_9H_4(CO)_2C_9H_9Cl\cdot O\cdot CH_3$ (E I 652). B. Aus 1-Methoxy-anthrachinon beim Erhitzen mit Kaliumchlorat in Eisessig unter Zufügen von konz. Salzsäure (Eckert, Hampel, B. 60, 1695). F: 164—165°. Schwer löslich in Alkohol. Liefert beim Erhitzen mit konz. Schwefelsäure und Borsäure auf 130—140° 4-Chlor-1-oxy-anthrachinon. Beim Erhitzen mit Kupferbronze in Nitrobenzol entsteht 4.4'-Dimethoxy-dianthrachinonyl-(1.1').
- 4-Chlor-1-acetoxy-anthrachinon $C_{1e}H_{2}O_{4}Cl = C_{e}H_{4}(CO)_{2}C_{e}H_{2}Cl \cdot O \cdot CO \cdot CH_{3}$. Blaß gelbgrüne Nadeln (aus Pyridin + etwas Acetanhydrid). F: 176—177° (Green, Soc. 1926, 1435, 2203).
- 5-Chlor-1-oxy-anthrachinon C₁₄H₇O₃Cl, Formel III. B. Durch Diazotieren von 5-Chlor-1-amino-anthrachinon mit Natriumnitrit in konz. Schwefelsäure bei 0° und nachfolgendes Erwärmen (GREEN, Soc. 1926, 2203). Goldgelbe Tafeln. F: 223—224°.

- 5-Chlor-1-acetoxy-anthrachinon $C_{16}H_9O_4Cl = C_6H_4(CO)_2C_6H_2Cl \cdot O \cdot CO \cdot CH_3$. Gelblichgrüne Nadeln (aus Pyridin). F: 205° (Green, Soc. 1926, 2203).
- 8-Chlor-1-methoxy-anthrachinon C₁₅H₉O₅Cl, Formel IV. B. Durch Einw. von methylalkoholischer Kalilauge auf 1.8-Dichlor-anthrachinon oder 8-Chlor-1-nitro-anthrachinon (I. G. Farbenind., D. R. P. 481362; Frdl. 16, 1327). Citronengelbe Nadeln (aus Eisessig oder Isoamylalkohol). F: 170°. Die Lösung in konz. Schwefelsäure ist orangefarben. Liefert bei vorsichtiger Nitrierung in Schwefelsäure 8-Chlor-4-nitro-1-methoxy-anthrachinon.
- 2.4-Dichlor-1-oxy-anthrachinon $C_{14}H_4O_3Cl_2$, Formel V (E I 652). B. Zur Bildung durch Behandlung von 3'.5'-Dichlor-2'-oxy-benzophenon-carbonsäure-(2) mit Schwefelsäure und von 1-Oxy-anthrachinon mit Sulfurylchlorid (E I 652) vgl. Ullmann, Conzetti, B. 58, 830, 832. Entsteht auch beim Erwärmen von 1-Oxy-anthrachinon oder von 4-Chlor-1-oxy-anthrachinon mit

Sulfurylchlorid und Jod in Nitrobenzol (U., C., B. 58, 830). Durch Reduktion von 2.2.3.4.4-Pentachlor-1-0x0-1.2.3.4-tetrahydro-anthrachinon (E II 7, 833) mit Zinn(II)-chlorid in Eisessig (Fries, Auffenberg, B. 58, 26). Beim Erhitzen von Chinizarin mit Thionylchorid im Rohr auf 135° bis 140° (Raudnitz, B. 62, 2763; vgl. Zahn, B. 67 [1934], 2068). — Im Vakuum bei 240° sublimierbar (R.). Leicht löslich in siedendem Nitrobenzol, schwer in heißem Benzol (U., C.). Löst sich in Natronlauge mit roter Farbe, in konz. Schwefelsäure orangefarben (U., C.). — Liefert beim Erhitzen mit konz. Schwefelsäure in Gegenwart von Borsäure auf 156—160° 2-Chlor-1.4-dioxy-anthrachinon (Ullmann, Conzetti, B. 58, 833). Beim Erhitzen mit PCl₅ auf 160° bis 165° entsteht 1.2.4-Trichlor-anthrachinon (U., C., B. 58, 833). Gibt beim Kochen mit p-Toluolsulfamid, Kaliumacetat und etwas Kupferacetat in Isoamylalkohol 2-Chlor-4-p-toluolsulfamino-1-oxy-anthrachinon; reagiert unter analogen Bedingungen mit Anilin unter Bildung von 2-Chlor-4-anilino-1-oxy-anthrachinon (U., C., B. 58, 834, 835). — Bildet leuchtend rote, in Wasser schwer lösliche Alkalisalze (Fries, Auffenberg).

- 2.4 Dichlor 1 acetoxy anthrachinon $C_{16}H_8O_4Cl_3 = C_6H_4(CO)_3C_6HCl_2 \cdot O \cdot CO \cdot CH_8$. B. Bei kurzem Kochen von 2.4-Dichlor-1-oxy-anthrachinon mit Acetanhydrid und etwas konz. Schwefelsäure (RAUDNITZ, B. 62, 2765; vgl. ZAHN, B. 67 [1934], 2068). Goldgelbe Nadeln (aus Eisessig). F: 174° (unkorr.).
- 2.3.4-Trichlor-1-oxy-anthrachinon $C_{14}H_5O_3Cl_8$, Formel VI. B. Beim Kochen von rohem, aus 1-Amino-anthrachinon erhaltenem 2.2.3.4.4-Pentachlor-1-oxo-1.2.3.4-tetrahydro-anthrachinon mit Eisessig oder von reinem 2.2.3.4-4-Pentachlor-1-oxo-1.2.3.4-tetrahydro-anthrachinon mit Ammoniumehlorid und Eisessig (Fries, Auffenberg, B. 53, 26). Krystalle (aus Eisessig). F: 214°. Schwer löslich in Alkohol und Benzin, leichter in Eisessig und Benzol. Löst sich unverändert in heißer rauchender Salpetersäure und konz. Schwefelsäure. Wird durch Chlor in Eisessig nicht verändert. Bildet leuchtend rote, in Wasser schwer lösliche Alkalisalze.
- 2-Brom-1-oxy-anthrachinon C₁₄H₇O₃Br, Formel VII. B. Beim Erhitzen eines Gemisches von 2.4-Dibrom-1-oxy-anthrachinon und 1-Oxy-anthrachinon auf 370—380° (I. G. Farbenind., D.R.P. 484665; Frdl. 16, 1244). Gelbe Nadeln (aus Eisessig). F: 197—200°.
- 4-Brom-1-methoxy-anthrachinon C₁₅H₉O₃Br, Formel VIII (H 341; E I 652). B. Beim Erhitzen von 1-Methoxy-anthrachinon mit Brom und Natriumacetat in Eisessig in Gegenwart von Eisenchlorid, neben überwiegenden Mengen 2.4-Dibrom-1-methoxy-anthrachinon (ECKERT, HAMPEL, B. 60, 1696). Gelbe Nadeln (aus Alkohol oder Benzol oder durch Sublimation). F: 148—151° (vgl. dagegen die abweichende Angabe im Ergw. I). Ziemlich leicht löslich in Alkohol. Liefert beim Erhitzen mit heißer konzentrierter Schwefelsäure in Gegenwart von Borsäure auf 150—160° Chinizarin. Beim Kochen mit Kupferbronze in Nitrobenzol erhält man 4.4'-Dimethoxy-dianthrachinonyl-(1.1').

- 2.4 Dibrom 1 oxy anthrachinon C₁₄H₆O₃Br₃, Formel IX (H 341; E I 652). Beim Erhitzen eines Gemisches mit 1-Oxy-anthrachinon auf 370—380° entsteht 2-Brom-1-oxy-anthrachinon (I. G. Farbenind., D.R.P. 484665; Frdl. 16, 1244).
- 2.4 Dibrom 1 methoxy anthrachinon C₁₅H₃O₂Br₂ = C₆H₄(CO)₂C₆HBr₂·O·CH₃. B. Aus 1-Methoxy-anthrachinon beim Erhitzen mit Brom in Gegenwart von Natriumacetat und Eisenchlorid in Eisessig, neben geringeren Mengen 4-Brom-1-methoxy-anthrachinon (ECKERT, HAMPEL, B. 60, 1696). Krystalle (aus Eisessig). F: 235°. Ziemlich leicht löslich in siedendem Toluol und Chlorbenzol. Liefert beim Erhitzen mit konz. Schwefelsäure und Borsäure auf 150—160° 2-Brom-chinizarin. Beim Kochen mit Kupferpulver in Nitrobenzol entsteht 3.3'-Dibrom-4.4'-dimethoxy-dianthrachinonyl-(1.1').
- 3-Nitro-1-oxy-anthrachinon $C_{14}H_7O_5N$, Formel X (H 341). B. Ein unreines Präparat erhielt Dhar (Soc. 117, 1003) durch Diazotieren von 3-Nitro-1-amino-anthrachinon und nachfolgendes Erwärmen auf dem Wasserbad.
- 4-Nitro-1-exy-anthrachinon $C_{14}H_7O_5N$, Formel XI (H 341; E I 652). Gibt mit gasförmigem oder flüssigem Ammoniak eine karminrote Verbindung $C_{14}H_7O_5N+NH_3$ (Briner, Kuhn, Helv. 12, 1088, 1089); Dissoziationsdruck der Ammoniakverbindung bei 20°: 50 mm, bei 56°: 100,5 mm (B., K.).
- 8-Chlor-4-nitro-1-methoxy-anthrachinon C₁₁H₂O₅NCl, Formel XII. B. Bei vorsichtiger Nitrierung von 8-Chlor-1-methoxy-anthrachinon in Schwefelsäure (I. G. Farbenind.,

1-MERCAPTO-ANTHRACHINON

D.R.P. 481362; Frdl. 16, 1327). — Gelbe Nadeln (aus o-Dichlor-benzol). F: 262°. Löslich in Pyridin mit gelbgrüner Farbe. Gibt mit 30% igem Oleum erst eine orange, dann eine braune Färbung.

- 2.4-Dinitro-1-oxy-anthrachinon C₁₄H₆O₇N₂, Formel XIII (H 341). B. Durch Nitrierung von 1-Oxy-anthrachinon mit 4 Tln. Salpetersäure (D: 1,52) bei 0° oder mit Salpeterschwefelsäure bei 0—5° (ULLMANN, D.R.P. 332853; C. 1921 II, 805; Frdl. 18, 389). Nadeln (aus Eisessig). F: 248°. Schwer löslich in siedendem Alkohol und Eisessig, leicht in Nitrobenzol mit gelber Farbe. Gibt beim Behandeln mit p-Toluolsulfochlorid bei Gegenwart von Kalium-carbonat in siedendem Dichlorbenzol 4-Chlor-1.3-dinitro-anthrachinon, bei Gegenwart von Diäthylanilin auf dem Wasserbad 3.4-Dichlor-1-nitro-anthrachinon.
- 1 Mercapto anthrachinon, Anthrachinonyl (1) mercaptan $C_{14}H_8O_2S$, Formel XIV (H 341; E I 652). Liefert beim Erhitzen mit Aluminiumchlorid und trockenem Pyridin auf 140° 1.1'-Dimercapto-dianthrachinonyl-(2.2') (I. G. Farbenind., D.R.P. 485906; Frdl. 16, 1356). Bei der Einw. von Nitrosylchlorid auf die Quecksilberverbindung erhält man Di-anthrachinonyl-(1)-disulfid (Rheinboldt, B. 59, 1312).
- 1 Methylmercapto anthrachinon, Methyl [anthrachinonyl (1)] sulfid $C_{15}H_{10}O_2S = C_6H_4(CO)_2C_6H_3 \cdot S \cdot CH_3$ (E I 653). B. Beim Leiten von Methylmercaptan in eine nahezu siedende Suspension von anthrachinon-1-sulfonsaurem Natrium in Natronlauge (Reid, Mackall, Miller, Am. Soc. 48, 2105, 2108). Orangerote Nadeln (aus Benzol oder Benzol + Alkohol). F: 221°. Unlöslich in Wasser, schwer löslich in Alkohol, leicht in Benzol.
- 1 Methylsulfon anthrachinon, Methyl [anthrachinonyl (1)] sulfon $C_{15}H_{10}O_4S = C_6H_4(CO)_2C_4H_3 \cdot SO_2 \cdot CH_3$ (E I 653). B. Bei der Einw. von rauchender Salpetersäure auf 1-Methylmercapto-anthrachinon (REID, MACKALL, MILLER, Am. Soc. 48, 2109). F: 254°.
- 1 Äthylmercapto anthrachinon, Äthyl [anthrachinonyl (1)] sulfid $C_{16}H_{12}O_2S = C_6H_4(CO)_2C_6H_3\cdot S\cdot C_2H_5$ (E I 653). B. Aus dem Natriumsalz der Anthrachinon-sulfonsäure-(1) und Äthylmercaptan in siedender Natronlauge (Reid, Mackall, Miller, Am. Soc. 43, 2108). Orangefarbene Nadeln (aus Benzol oder Benzol + Alkohol). F: 184°.
- 1 Äthylsulfon anthrachinon, Äthyl [anthrachinonyl (1)] sulfon C₁₆H₁₂O₄S = C₆H₄(CO)₂C₆H₃·SO₂·C₂H₅ (E I 653). B. Analog 1-Methylsulfon-anthrachinon (s. o.) (Reid. Mackall, Miller, Am. Soc. 48, 2109). F: 211,5°.
- 1 Propylmercapto anthrachinon, Propyl [anthrachinonyl (1)] sulfid $C_{17}H_{14}O_2S = C_0H_4(CO)_2C_0H_3 \cdot S \cdot CH_2 \cdot C_2H_5$. B. Analog 1-Äthylmercapto-anthrachinon (s. o.) (Reid, Mackall, Miller, Am. Soc. 48, 2108). Orangefarbene Nadeln (aus Benzol oder Benzol + Alkohol). F: 151°.
- 1 Propylsulfon anthrachinon, Propyl [anthrachinonyl (1)] sulfon $C_{17}H_{14}O_4S = C_6H_4(CO)_2C_6H_3\cdot SO_2\cdot CH_3\cdot C_2H_5$. B. Analog 1-Methylsulfon-anthrachinon (s. o.) (Reid, Mackall, Miller, Am. Soc. 48, 2109). Gelbliche Krystalle (aus Eisessig). F: 204,5°.
- 1 Isopropylmercapto anthrachinon, Isopropyl [anthrachinonyl-(1)]-sulfid $C_{17}H_{14}O_3S=C_6H_4(CO)_3C_4H_3\cdot S\cdot CH(CH_3)_3$. B. Analog 1-Äthylmercapto-anthrachinon (s. o.) (HOFFMAN, REID, Am. Soc. 45, 1835). Goldgelb. F: 134°. Liefert bei der Einw. von rauchender Salpetersäure Anthrachinon-sulfonsäure-(1) und geringe Mengen 1-Isopropylsulfon-anthrachinon.
- 1-Isopropyleuifon-anthrachinon, Isopropyl-[anthrachinonyl-(1)]-sulfon $C_{17}H_{14}O_4S = C_6H_4(CO)_5C_6H_3\cdot SO_3\cdot CH(CH_3)_2$. B. Neben überwiegenden Mengen Anthrachinon-sulfonsäure-(1) bei der Oxydation von 1-Isopropylmercapto-anthrachinon mit rauchender Salpetersäure (Hoffman, Reid, Am. Soc. 45, 1835). F: 182°.
- 1 Butylmercapto anthrachinon , Butyl [anthrachinonyl (1)] sulfid $C_{16}H_{16}O_2S=C_0H_4(CO)_2C_0H_3\cdot S\cdot [CH_2]_3\cdot CH_3$. B. Analog 1-Äthylmercapto-anthrachinon (s. o.) (Reid, Mackall, Miller, Am. Soc. 43, 2108; Hoffman, R., Am. Soc. 45, 1832). Gelbrote Nadeln (aus Benzol oder Benzol + Alkohol). F: 112,5° (R., Ma., Ml.).
- 1 Butylsulfon anthrachinon, Butyl [anthrachinonyl (1)] sulfon $C_{1e}H_{1e}O_4S=C_6H_4(CO)_2C_6H_3\cdot SO_2\cdot [CH_2]_2\cdot CH_3$. B. Analog 1-Methylsulfon-anthrachinon (s. o.) (Reid, Mackall, Miller, Am. Soc. 48, 2109). Gelbliche Krystalle (aus Eisessig). F: 150°.

- 392
- 1-Isobulyimercapto-anthrachinon, Isobutyl-[anthrachinonyl-(1)]-sulfid $C_{18}H_{16}O_2S=C_6H_4(CO)_2C_6H_3\cdot S\cdot CH_3\cdot CH(CH_3)_3$. B. Analog 1-Athylmercapto-anthrachinon (S. 391) (Reid, Mackall, Miller, Am. Soc. 48, 2108). Gelbe Krystalle (aus Benzol oder Benzol + Alkohol). F: 116° (Moses, R., Am. Soc. 48, 776).
- 1 Isobutylsulfon anthrachinon, Isobutyl [anthrachinonyl (1)] sulfon $C_{18}H_{16}O_4S = C_4H_4(CO)_2C_6H_3\cdot SO_2\cdot CH_2\cdot CH(CH_3)_2$. B. Analog 1-Methylsulfon-anthrachinon (S. 391) (Reid, Mackall, Miller, Am. Soc. 48, 2109). Gelbliche Krystalle (aus Eisessig). F: 190°.
- 1 Isoamylmercapto anthrachinon , Isoamyl [anthrachinonyl (1)] sulfid $C_{10}H_{18}O_2S=C_4H_4(CO)_2C_4H_3\cdot S\cdot C_5H_{11}$. B. Analog 1-Athylmercapto-anthrachinon (S. 391) (Reid, Mackall, Miller, Am. Soc. 43, 2108). Orangefarbene Krystalle (aus Benzol oder Benzol + Alkohol). F:86°.
- 1 Isoamylsulfon anthrachinon, Isoamyl [anthrachinonyl (1)] sulfon $C_{19}H_{18}O_4S=C_6H_4(CO)_3C_6H_3\cdot SO_3\cdot C_5H_{11}$. B. Analog 1-Methylsulfon-anthrachinon (S. 391) (Reid, Mackall, Miller, Am. Soc. 48, 2109). Gelbliche Krystalle (aus Eisessig). F: 133°.
- 1 Benzylmercapto anthrachinon, Benzyl [anthrachinonyl (1)] sulfid $C_{21}H_{14}O_2S=C_6H_4(CO)_2C_6H_3\cdot S\cdot CH_2\cdot C_6H_5$ (E I 654). B. Analog 1-Äthylmercapto-anthrachinon (S. 391) (HOFFMAN, Reid, Am. Soc. 45, 1833). F: 242°.
- 1 Benzylsulfon anthrachinon, Benzyl [anthrachinonyl (1)] sulfon $C_{31}H_{14}O_4S=C_6H_4(CO)_2C_6H_3\cdot SO_2\cdot CH_2\cdot C_6H_5$ (E I 654). F: 233° (HOFFMAN, REID, Am. Soc. 45, 1834).
- 1 $[\beta$ Oxy \sharp thylmercapto] anthrachinon, $[\beta$ Oxy \sharp thyl] $[\mathtt{anthrachinonyl (1)}]$ -sulfid $C_{16}H_{12}O_3S = C_6H_4(CO)_3C_6H_3 \cdot S \cdot CH_2 \cdot CH_2 \cdot OH$ (E I 654). B. Analog 1-Athylmercapto-anthrachinonyl $[\beta]$ chinon (S. 391) (HOFFMAN, REID, Am. Soc. 45, 1836). — Orangefarbene Krystalle (aus Butylalkohol). F: 178°. Schwer löslich in Wasser.
- $1 [\beta Acetoxy athylmercapto] anthrachinon <math>C_{18}H_{14}O_4S = C_6H_4(CO)_2C_6H_2 \cdot S \cdot CH_2 \cdot CH_2 \cdot CH_2$ O·CO·CH₂ (E I 654). B. Aus 1-[β-Oxy-āthylmercapto] anthrachinon und Acetylchlorid (HOFFMAN, REID, Am. Soc. 45, 1836).

[Benzanthronyl - (Bz 1)] - [anthrachinonyl - (1)] - sulfid, Bz 1-[Anthrachinonyl - (1) - mercapto] - benzanthron $C_{11}H_{16}O_3S$, s. nebenstehende Formel. B. Beim Kochen von Bz 1-Brombenzanthron mit dem Natriumsalz des 1-Mercapto-anthrachinons in Gegenwart von Kupferoxyd in Nitrobenzol (I. G. Farbenind., D.R.P. 479230; Frdl. 16, 1457). — Gelbe Krystalle (aus O Trichlorbenzol). F: ca. 368—370°. Löst sich in konz. Schwefelsäure mit bordeauxroter Farbe.

- Di anthrachinonyl (1) sulfid $C_{18}H_{14}O_4S = C_6H_4(CO)_2C_6H_3 \cdot S \cdot C_6H_3(CO)_2C_6H_4$ (E I 655). B. Beim Kochen von 1-Chlor-anthrachinon mit äthylkanthogensaurem Kalium in Gegenwart von Kupferpulver in Isoamylalkohol (PERKIN, SEWELL, Soc. 123, 3040). — Rote Prismen (aus Pyridin). F: 321,5°.
- Di-anthrachinonyl-(1)-sulfoxyd $C_{28}H_{14}O_{5}S = [C_{6}H_{4}(CO)_{2}C_{6}H_{2}]_{2}SO$. B. Durch Oxydation von Di-anthrachinonyl-(1)-sulfid mit Salpetersaure (D: 1,5) (Perkin, Sewell, Soc. 123, 3040). — Orangefarbene Nadeln (aus Eisessig). F: 309,5°. Löslich in konz. Schwefelsaure mit - Gibt mit Chromsaure in siedendem Eisessig Di-anthrachinonyl-(1)-sulfon.
- Di anthrachinonyl (1) sulfon $C_{28}H_{14}O_{6}S = C_{6}H_{4}(CO)_{5}C_{6}H_{8} \cdot SO_{5} \cdot C_{6}H_{6}(CO)_{5}C_{6}H_{4}$. B. Durch Oxydation von Di-anthrachinonyl-(1)-sulfod oder Di-anthrachinonyl-(1)-sulfoxyd mit Chromsaure in siedendem Eisessig (Perkin, Sewell, Soc. 123, 3040). — Gelbe Nadeln. F: 321°. Löslich in Schwefelsäure mit gelber Farbe.
- 1 Rhodan anthrachinon, Anthrachinonyl (1) rhodanid $C_{15}H_7O_2NS = C_6H_4(CO)_2C_6H_8$ · S·CN (H 342; E I 655). Liefert bei kurzem Kochen mit Kupferpulver in Anthracen Dianthrachinonyl-(1.1') (KOPETSCHNI, D.R.P. 360419; C. 1928 II, 1030; Frdl. 14, 853).
- S [Anthrachinonyl (1)] thioglykolsäure $C_{16}H_{10}O_4S = C_6H_4(CO)_2C_6H_3 \cdot S \cdot CH_2 \cdot CO_2H$ (E I 655). B. Beim Kochen von anthrachinon-1-sulfonsaurem Natrium mit Thioglykolsaure in Natronlauge (REID, MACKALL, MILLER, Am. Soc. 43, 2109). — F: 243°.

Anthrachinonyl-(1)-sulfinessigsäure, Anthrachinonyl-(1)-sulfoxydessigsäure $C_{16}H_{10}O_5S=C_6H_4(CO)_2C_6H_3\cdot SO\cdot CH_2\cdot CO_2H$ (E I 656). F: 239° (Reid, Mackall, Miller, Am. Soc. 48, 2109).

Di - anthrachinonyi - (1) - disulfid $C_{18}H_{14}O_4S_8 = C_6H_4(CO)_4C_6H_3 \cdot S \cdot S \cdot C_6H_4(CO)_4C_6H_4$ (E I 656). B. Durch Einw. von Nitrosylchlorid auf die Quecksilberverbindung des 1-Mercapto-anthrachinons (RHEINBOLDT, B. 59, 1312). — Liefert beim Erhitzen mit Kupferpulver in Anthracen auf 220-240° Di-

anthrachinonyl-(1.1') (KOPETSCHNI, D.R.P. 360419; C. 1923 II, 4030; Frdl. 14, 852). Beim Erhitzen mit alkoh. Ammoniak im Rohr auf 100° entsteht 3.4(CO)-Benzoylen-α.β-benzisothiazol (Formel I; Syst. Nr. 4284) (K., Wiesler, M. 48, 86).

 2-Oxy-anthrachinon, β-Oxy-anthrachinon C₁₄H₆O₃, Formel II auf S. 392 (H 342; E I 658).
 B. In geringer Menge beim Erhitzen von 2-Chlor-anthrachinon mit 28,5 %igem Ammoniak unter Druck auf 215° (GROGGINS, NEWTON, Ind. Eng. Chem. 21, 372; C. 1929 II, 40). Bei wiederholter Oxydation von 3-Oxy-anthron-(9) mit Kaliumferricyanid in verd. Natronlauge, neben 2.2'-Dioxy-helianthron (HALLER, PERKIN, Soc. 125, 236; vgl. HARDACRE, PERKIN, Soc. 1929, 181). — Darst. Durch Diazotieren von 2-Amino-anthrachinon in schwefelsaurer Lösung und Verkochen der Diazoniumsulfat-Lösung; Ausbeute nahezu quantitativ (Perkin, WHATTAM, Soc. 121, 289 Anm.; vgl. Brass, Ziegler, B. 58, 762).

Verbrennungswärme bei konstantem Volumen: 1481,9 kcal/Mol (Swietoslawski, Starczewska, J. Chim. phys. 23, 822; vgl. Valeur, A. ch. [7] 21 [1900], 567). Absorptionsspektrum der Lösung in verd. Natronlauge in Gegenwart von Na₂SO₃: Moir, Soc. 1927, 1810. Sehr schwer löslich in flüssigem Ammoniak mit roter Farbe; nimmt in flüssigem oder gasförmigem Ammoniak ca. 1 Mol Ammoniak auf und färbt sich dabei orangegelb bis orangerot (Briner, Morf, Helv. 11, 941, 942). Dissoziationskonstante in 96% igem Alkohol (durch potentiometrische Titration

bestimmt): TREADWELL, SCHWARZENBACH, Helv. 11, 395.

Liefert bei der Reduktion mit Zinkstaub und 20%iger Natronlauge im Autoklaven bei 150° 2-Oxy-9.10-dihydro-anthracen (v. Braun, Bayer, A. 472, 105 Anm. 3). Gibt beim Erhitzen mit Zinkstaub und Ammoniak unter Luftabschluß auf dem Wasserbad außer 3-Oxyanthron-(9) (vgl. H 343) 2.2'-Dioxy-dianthranyl-(9.9'), 2.2'-Dioxy-dihydrodianthron (Syst. Nr. 817) und andere Produkte (Perkin, Whattam, Soc. 121, 289). Beim Erhizen mit Aluminiumpulver und wäßrig-alkoholischem Ammonial 200 hit fath in Erhizen 14. Nr. 1818. 2-Oxy-anthracen und dessen Äthyläther (P., W., Soc. 121, 298). Liefert beim Erhitzen mit Alkali und Glucose, Fructose, Glycerin, Erythrit oder Mannit in Wasser auf 180-200° und nachfolgenden Kochen mit Acetanhydrid außer einer braunen amorphen Sub-CO stanz das Lacton der 2-Oxy-benzanthron-carbonsäure-(Bz1) (s. nebenstehende Formel; Syst. Nr. 2487) und geringe Mengen einer Verbindung $C_{36}H_{36}O_{8}$ (Nadeln; F: 302—303°); bei Verwendung von Glucose und nitrathaltiger Kalilauge erhält man an Stelle der Verbindung $C_{36}H_{26}O_{8}$ ٠þ 2.2'-Diacetoxy-helianthron und 2.2'-Diacetoxy-mesonaphthodianthron

(Syst. Nr. 819) (Bradshaw, Perkin, Soc. 121, 913, 918, 921; Haller, P., Soc. 125, 231; Hard-ACRE, P., Soc. 1929, 181). 2-Oxy-anthrachinon gibt beim Behandeln mit 1 Mol Brom in Wasser und Erhitzen des Reaktionsprodukts auf 280° oder beim Erhitzen mit 1.3-Dibrom-2-oxyanthrachinon und 90 % iger Phosphorsäure oder Schwefelsäure auf 250° 3-Brom-2-oxy-anthrachinon (I. G. Farbenind., D.R.P. 484665; C. 1980 I, 588; Frdl. 16, 1244). Beim Behandeln mit siedender alkalischer Natriumhypobromit-Lösung entsteht je nach den Mengenverhältnissen 1-Brom-2-oxy-anthrachinon oder 1.3-Dibrom-2-oxy-anthrachinon (HARDACEE, PERKIN, Soc. 1929, 185, 186); 1.3-Dibrom-2-oxy-anthrachinon bildet sich auch durch Einw. von 3 Mol Brom in Pyridin und Kochen des Reaktionsprodukts mit verd. Salzsäure (Barnett, Cook, Soc. 121, 1389) und hat wohl auch in dem von WEDEKIND & Co. (D.R.P. 175663; C. 1906 II, 1699; Frdl. 8, 272) in mit Schwefelsäure angesäuertem Wasser erhaltenen Dibromderivat vorgelegen. 2-Oxy-anthrachinon gibt beim Kochen mit Jod in Pyridin 3-Jod-2-oxy-anthrachinon (HA., P., Soc. 1929, 188).

Bei der Einw. von Formaldehyd-Lösung auf die Hydrosulfitküpe des 2-Oxy-anthrachinons und nachfolgenden Oxydation mit Luft entsteht 2-Oxy-1-methyl-anthrachinon (Marschalk, Bl. [5] 6 [1939], 658). Reaktion mit 1.3-Dibrom-2-oxy-anthrachinon s. S. 395. 2-Oxy-anthrachinon wird beim Kochen mit Acetanhydrid sehr rasch acetyliert (DIMROTH, FRIEDEMANN, KÄMMEREB, B. 53, 482). Liefert beim Behandeln mit N-Oxymethyl-trichloracetamid in konz. Schwefelsäure 2-Oxy-1-trichloracetaminomethyl-anthrachinon (DE DIES-BACH, D.R.P. 507049; Frdl. 16, 1235); reagiert analog mit N-Oxymethyl-phthalimid unter Bildung von 2-Oxy-1-phthalimidomethyl-anthrachinon und 2-Oxy-1-[2-carboxy-benzamino-

methyl]-anthrachinon (DE D., GUBSER, Helv. 11, 1109).

Uberführung in orangerote bis orangebraune Küpenfarbstoffe durch Erhitzen mit Thiosulfaten: Wederind & Co., D.R.P. 297567; Frdl. 18, 437.

C₁₄H₈O₃ + NH₃. Gelbrot (Briner, Morf, Helv. 11, 942). Dissoziationsdruck bei 78°: 70 mm, bei 103°: 300 mm (B., M).

2-Methoxy-anthrachinon $C_{15}H_{10}O_3=C_5H_4(CO)_2C_6H_3\cdot O\cdot CH_3$ (H 343; E I 658). F: 196° (Hardacre, Perkin, Soc. 1929, 189). — Gibt bei der Einw. von Brom in Nitrobenzol 1-Brom-2-methoxy-anthrachinon (BASF, D.R.P. 329247; Frdl. 13, 422).

Di - anthrachinonyi - (2) - äther $C_{28}H_{14}O_5 = C_6H_4(CO)_2C_6H_3 \cdot O \cdot C_6H_3(CO)_2C_6H_4$. B. Bei längerem Erhitzen von 2-Oxy-anthrachinon und 2-Chlor-anthrachinon mit Natriumacetat und Kupferpulver auf 230—260° (Perkin, Sewell, Soc. 123, 3036). Neben anderen Produkten bei der Arschaus Der Weller. bei der trockenen Destillation von anthrachinon-2-sulfonsaurem Natrium in einem Kupferrohr (P., S., Soc. 123, 3035, 3036). — Gelbliche Nadeln (aus Pyridin). F: 326°. Sehr schwer löslich 394

in allen Lösungsmitteln. Löslich in Schwefelsäure mit gelblichbrauner Farbe. — Gibt beim Behandeln mit kalter Salpetersäure (D: 1,5) zwei Nitro-Derivate (F: ca. 278° und ca. 290°) und andere Produkte. Liefert beim Erhitzen mit Barytwasser unter Druck auf 180—200° Alizarin und 2-Oxy-anthrachinon.

- 2 Acetoxy anthrachinon $C_{16}H_{10}O_4 = C_6H_4(CO)_2C_6H_3 \cdot O \cdot CO \cdot CH_3$ (H 344). B. Bei kurzem Kochen von 2-Oxy-anthrachinon mit Acetanhydrid (Dimroth, Friedemann, Kämmerer, B. 53, 482; vgl. D., Faust, B. 54, 3030). F: 160° (Green, Soc. 1926, 2203).
- 1 Chlor 2 oxy-anthrachinon $C_{14}H_7O_3Cl$, Formel I (H 344; E I 658). Liefert bei der Reduktion mit Aluminiumpulver und Schwefelsäure bei 30—40° 1(oder 4)-Chlor-2(oder 3)-oxy-anthron-(9) (Haedacre, Perrin, Soc. 1929, 188).
- $\begin{array}{l} \mbox{1-Chlor-2-methoxy-anthrachinon} \ \ C_{15}H_9O_3Cl = C_6H_4(CO)_2C_6H_2Cl\cdot O\cdot CH_3 \ \ (H\ 344). \ \ Wird durch Kupferpulver in siedendem Nitrobenzol nicht verändert (Hardache, Perkin, Soc. 1929, 187). \end{array}$
- 3-Chlor-2-oxy-anthrachinon C₁₄H₇O₅Cl, Formel II (H 344). B. Beim Erhitzen von Phthalsäureanhydrid mit 2-Chlor-phenol, Schwefelsäuremonohydrat und Borsäure auf 195° (Tanaka, Pr. Acad. Tokyo 3, 84; C. 1927 II, 567). Goldgelbe Nadeln (aus Eisessig). F: 258°. Beim Erhitzen mit konz. Kalilauge entsteht Alizarin.
- 3 Chlor 2 acetoxy anthrachinon $C_{16}H_{9}O_{4}Cl = C_{6}H_{4}(CO)_{2}C_{6}H_{2}Cl \cdot O \cdot CO \cdot CH_{3}$. Gelbliche Nadeln (aus Eisessig). F: 197—200° (Tanaka, *Pr. Acad. Tokyo* **2**, 84; *C.* 1927 II, 567).

I.
$$\bigcirc$$
 OH \bigcirc O

- 1.3 Dichlor 2 oxy anthrachinon $C_{14}H_6O_3Cl_2$, Formel III. B. Durch Reduktion von 1.1.3.4.4-Pentachlor-2-oxo-1.2.3.4-tetrahydro-anthrachinon (E II 7, 834) mit Zinn(II)-chlorid und Salzsäure in heißem Eisessig (Fries, Hartmann, B. 54, 197). Gelbe Nadeln (aus Eisessig). F: 208°. Ziemlich schwer löslich in Eisessig, Alkohol und Benzol, sehr schwer in Benzin. Gibt mit Natronlauge, Sodalösung oder Ammoniak schwer lösliche rote Salze.
- 1.3 Dichlor 2 acetoxy anthrachinon $C_{16}H_8O_4Cl_2 = C_6H_4(CO)_2C_6HCl_2 \cdot O \cdot CO \cdot CH_8$. Gelbe Nadeln (aus Eisessig). F: 179° (FRIES, HARTMANN, B. 54, 197).
- 1.3.4-Trichlor-2-oxy-anthrachinon $C_{14}H_5O_3Cl_3$, Formel IV. B. Beim Kochen von 1.1.3.4.4-Pentachlor-2-oxo-1.2.3.4-tetrahydro-anthrachinon mit Eisessig und Natriumacetat (FRIES, HARTMANN, B. 54, 197). Gelbe Nadeln (aus Eisessig). F: 252°. Mäßig löslich in Alkohol und Benzol, schwer in Benzin. Gibt mit Alkalien schwer lösliche rote Salze.
- 1.3.4 Trichlor -2 acetoxy anthrachinon $C_{16}H_7O_4Cl_3 = C_6H_4(CO)_3C_6Cl_3 \cdot O \cdot CO \cdot CH_3$. Gelbe Blättchen oder Nadeln (aus Eisessig). F: 174° (FRIES, HARTMANN, B. 54, 197).
- 1-Brom-2-oxy-anthrachinon C₁₄H₇O₃Br, Formel V. B. Beim Behandeln von 1 g 2-Oxy-anthrachinon mit 0,7 g Brom in verdünnter Natronlauge unter langsamem Erwärmen bis zum Sieden (Hardacre, Perkin, Soc. 1929, 186). Aus 2-Oxy-anthrachinon-sulfonsäure-(3) durch Bromierung und Abspaltung der Sulfogruppe (I. G. Farbenind., D. R. P. 484 665; C. 1936 I, 588; Frdl. 16, 1244). Gelbe Krystalle (aus Alkohol). F: 185—187° (H., P.), 175° (I. G. Farbenind.). Lagert sich beim Erhitzen auf 310—320° in 3-Brom-2-oxy-anthrachinon um (I. G. Farbenind.).
- 1 Brom 2 methoxy anthrachinon C₁₅H₉O₂Br = C₆H₄(CO)₂C₆H₂Br·O·CH₃. B. Aus 1-Brom-2-oxy-anthrachinon und Dimethylsulfat in alkal. Lösung (Hardacre, Perkin, Soc. 1929, 186). Beim Bromieren von 2-Methoxy-anthrachinon in Nitrobenzol (BASF, D.R.P. 329247; Frdl. 13, 422). Nadeln (aus Eisessig). F: 247° (H., P.). Löslich in konz. Schwefelsäure mit roter Farbe (BASF). Liefert beim Erhitzen mit salzsaurem 2-Amino-diphenylamin und Kaliumacetat in Naphthalin 10-Phenyl-1.2-phthalyl-9.10-dihydro-phenazin (Syst. Nr. 3603) (BASF).
- 1 Brom 2 acetoxy anthrachinon $C_{16}H_9O_4Br = C_6H_4(CO)_2C_6H_2Br \cdot O \cdot CO \cdot CH_3$. Gelbe Krystalle (aus Aceton). F: 182—183° (Hardacre, Perkin, Soc. 1929, 186).

3-Brom-2-oxy-anthrachinon $C_{14}H_7O_3Br$, Formel VI (vgl. H 344). B. Durch Erhitzen von 1-Brom-2-oxy-anthrachinon auf 310—320° (I. G. Farbenind., D.R.P. 484665; C. 1930 I,

- 588; Frdl. 16, 1244); entsteht ferner durch Einw. von 1 Mol Brom auf 2-Oxy-anthrachinon in Wasser und Erhitzen des Reaktionsproduktes auf 280° und beim Erhitzen von 1.3-Dibrom-2-oxy-anthrachinon mit 2-Oxy-anthrachinon und 90% iger Phosphorsäure oder Schwefelsäure auf 250° (I. G. Farbenind.). — Krystalle (aus Eisessig). F: 267-268°.
- 1.3-Dibrom-2-oxy-anthrachinon C₁₄H₅O₃Br₂, Formel VII (H 344). 1.3-Dibrom-2-oxy-anthrachinon hat wahrscheinlich auch in dem H 345; E I 658 beschriebenen x.x-Dibrom-2-oxy-anthrachinon von Wederind & Co. (D.R.P. 175663; C. 1906 II, 1699; Frdl. 8, 272) vorgelegen, das von de Diesbach, Strebel (Helv. 8, 559, 562) ohne näheren Beweis als 1.4-Dibrom-2-oxy-anthrachinon angesehen wird. — B. Aus 2-Oxy-anthrachinon beim Behandeln mit 3 Mol Brom in Pyridin und Kochen des Reaktionsproduktes mit verd. Salzsäure (BARNETT, COOK, Soc. 121, 1389) oder mit 2 Tln. Brom in siedender verdünnter Natronlauge (HARDACRE, PERKIN, Soc. 1929, 185). Durch Bromierung von 4'Methoxy-2-methyl-benzophenon in Eisessig bei 140—160° und kurzes Erhitzen des Reaktionsproduktes mit konz.
 Schwefelsäure auf 180° (DE DIESBACH, STREBEL, Helv. 8, 562). — Gelbe Nadeln (aus Alkohol
 oder Eisessig). Krystalle (aus Xylol). F: 218° (DE D., St.), 216—217° (H., P.), 214—215°
 (B., C.). — Liefert beim Erhitzen mit konz. Natronlauge im Autoklaven auf 200° 3-Brom-alizarin (H., P., Soc. 1929, 181, 185). Beim Erhitzen mit 2-Oxy-anthrachinon und 90%iger Phosphorsäure oder Schwefelsäure auf 250° entsteht 3-Brom-2-oxy-anthrachinon (I. G. Farbenind., D.R.P. 484665; C. 1980 I, 588; Frdl. 16, 1244).
- 1.3 Dibrom -2- methoxy-anthrachinon $C_{16}H_8O_3Br_2=C_6H_4(CO)_2C_6HBr_2\cdot O\cdot CH_3$. B. Aus 1.3-Dibrom-2-oxy-anthrachinon und Dimethylsulfat in alkal. Lösung (Hardacre, Perkin, Soc. 1929, 185). — Gelbliche Nadeln (aus Benzol). F: 226—227°.
- 1.3 Dibrom 2 acetoxy anthrachinon $C_{16}H_8O_4Br_2=C_6H_4(CO)_2C_6HBr_2\cdot O\cdot CO\cdot CH_3$. Gelbe Nadeln (aus Eisessig). F: 195° (Hardacre, Perkin, Soc. 1929, 185).
- 3-Jod-2-oxy-anthrachinon C₁₄H₇O₂I, Formel VIII. B. Durch Kochen von 2-Oxyanthrachinon mit Jod in Pyridin (HARDACRE, PERKIN, Soc. 1929, 188). — Gelbe Nadeln (aus Alkohol). F: 278—279°. — Gibt beim Schmelzen mit Alkali bei 200° Alizarin. Liefert beim Erhitzen mit konz. Ammoniak bei Gegenwart einer Spur Kupfer im Autoklaven auf 160—180° 3-Amino-2-oxy-anthrachinon (?).
- 3- Jod-2-methoxy-anthrachinon $C_{15}H_{9}O_{3}I = C_{6}H_{4}(CO)_{2}C_{6}H_{2}I \cdot O \cdot CH_{3}$. Aus 3-Jod-2-oxy-anthrachinon und Dimethylsulfat in alkal. Lösung (HARDACRE, PERKIN, Soc. 1929, 188 bis 189). — Hellgelbe Nadeln (aus Benzol). F: 228—229°. — Gibt beim Erhitzen mit Natriummethylat-Lösung im Rohr auf 110° 2-Methoxy-anthrachinon.

VIII.
$$OH \longrightarrow IX$$
. $OH \longrightarrow IX$. $OH \longrightarrow IX$. $OH \longrightarrow IX$. $OH \longrightarrow IX$. $OH \longrightarrow IX$. $OH \longrightarrow IX$.

- 3 Jod 2 acetoxy-anthrachinon $C_{16}H_9O_4I = C_6H_4(CO)_2C_6H_2I \cdot O \cdot CO \cdot CH_3$. Gelbe Nadeln (aus Eisessig). F: 224—225° (HARDACRE, PERKIN, Soc. 1929, 188). — Liefert beim Behandeln mit Aluminiumpulver und Schwefelsäure bei 35-40° 2-Jod-3-oxy-anthron-(9).
- 1-Nitro-2-oxy-anthrachinon C₁₄H₇O₅N, Formel IX (E I 658). Gibt mit Ammoniakgas unter Druck eine ockerfarbige Verbindung C₁₄H₇O₅N + NH₃ und eine rotbraune Verbindung C₁₄H₇O₅N + 2NH₃ (Briner, Kuhn, Helv. 12, 1087). Verlauf der Ammoniak-Aufnahme und Dissoziationsdruck der Ammoniakverbindungen bei 0°: B., K., Helv. 12, 1087, 1088, 1095.
- 2-Methylsulfon-anthrachinon, Methyl-[anthrachinonyl-(2)]-sulfon $C_{15}H_{10}O_4S$, Formel X (E I 659). B. Beim Erhitzen von 4'-Methylsulfon-benzophenon-carbonsäure-(2) mit konz. Schwefelsäure auf 160° (HAHN, REID, Am. Soc. 46, 1650). Durch Kondensation von [4-Methylsulfon-phthalsäure]-anhydrid mit Benzol in Gegenwart von Aluminiumchlorid bei 80° und Erwärmen der entstandenen 4(oder 5)-Methylsulfon-benzophenon-carbonsäure-(2) (F: ca. 230°) mit rauchender Schwefelsäure auf 100° (v. Braun, B. 56, 2342).
- Di-anthrachinenyl-(2)-sulfid $C_{28}H_{14}O_4S = [C_6H_4(CO)_2C_6H_3]_2S$ (H 11, 338; E I 8, 661).

 B. Zur Bildung bei der hermischen Zersetzung anthrachinon-2-sulfonsaurem Natrium (H 11, 338) vgl. Perkin, Sewell, Soc. 128, 3035, 3037. Entsteht in sehr guter Ausbeute bei (1) and Religious Religi 10-stdg. Erhitzen von 2-Brom-anthrachinon mit Kaliumrhodanid und Kupfer(I)-rhodanid in verd. Alkohol im Rohr auf 195—205° (Rosenmund, Harms, B. 53, 2239). — Gelbe bis orangerote Nadeln (aus Nitrobenzol). F: 289,5° (unkorr.) (in geschlossener Capillare) (R., H.). — Liefert beim Erhitzen mit Zinn(II)-chlorid und Salzsäure im Rohr auf 140—150° und folgenden Acetylieren 9.9'-Diacetoxy-[2.2'-dianthrylsulfid] (E II 6, 1000); bei der Reduktion mit Aluminiumpulver

und Schwefelsäure und nachfolgenden Acetylierung entsteht eine Verbindung $C_{22}H_{22}O_4S$, die keinen definierten Schmelzpunkt zeigt (P., S., Soc. 128, 3039).

Di-anthrachinonyl-(2)-sulfoxyd $C_{28}H_{14}O_5S = [C_6H_4(CO)_2C_6H_3]_2SO$ (H 11, 338). B. Neben anderen Produkten bei der trockenen Destillation von anthrachinon-2-sulfonsaurem Natrium im Kupferrohr (Perkin, Sewell, Soc. 123, 3038). Durch Einw. der berechneten Menge Chromsäure auf eine Lösung von Dianthrachinonyl-(2)-sulfid in viel Eisessig (P., S., Soc. 123, 3039). — F: 261,5—263°. — Geht beim Kochen mit käuflichem Eisessig oder mit Dimethylanilin in Di-anthrachinonyl-(2)-sulfid über.

Di-anthrachinonyl-(2)-sulfon $C_{28}H_{14}O_{4}S=[C_{4}H_{4}(CO)_{2}C_{4}H_{3}]_{2}SO_{2}$ (H 11, 338). Nadeln (aus Eisessig). F: 303,5° (Perkin, Sewell, Soc. 128, 3039).

S - [Anthrachinonyl - (2)] - thioglykolsäure $C_{16}H_{10}O_4S = C_6H_4(CO)_3C_6H_3 \cdot S \cdot CH_4 \cdot CO_2H$ (E I 661). Liefert bei der Reduktion mit Zink und Ammoniak auf dem Wasserbad Anthracenthioglykolsäure-(2) (E II 6, 669) (Ges. f. chem. Ind. Basel, D.R.P. 494597; Frdl. 16, 1198).

6. 4-Oxy-phenanthrenchinon-(1.2) $C_{14}H_8O_3$, Formel I (R = H).

- 4-Allyloxy-phenanthrenchinon-(1.2) C₁₇H₁₂O₃, Formel I (R = CH₂·CH:CH₂). B. Neben 2-Oxy-3-allyl-phenanthrenchinon-(1.4) bei der Einw. von Allylbromid auf das Silbersalz des 2-Oxy-phenanthrenchinons-(1.4) in siedendem Benzol (FIESER, Am. Soc. 51, 1902). Dunkelrote Nadeln (aus Ligroin). F: 128°. Leicht löslich in Alkohol und Benzol. Löst sich leicht in NaHSO₃-Lösung unter Bildung eines ziemlich schwer löslichen Additionsprodukts.
- 7. 2 Oxy phenanthrenchinon (1.4) C₁₄H₈O₃, Formel II (R = H). B. Bei der Einw. von Luft auf 1.2-Dioxy-phenanthren in alkoh. Alkalilauge (FIESER, Am. Soc. 51, 1901). Bei der Hydrolyse von 1.2.4-Triacetoxy-phenanthren mit siedender wäßrig-alkoholischer Natronlauge im Stickstoffstrom und folgenden Oxydation mit Luft (F., Am. Soc. 51, 1902). Orangegelbe Nadeln (aus Benzol oder Eisessig). F: 190° (korr.; Zers.). Sehr leicht löslich in Alkohol, leicht in Benzol und Eisessig, schwer in Wasser. Löst sich in konz. Schwefelsäure mit intensiv grüner, in Alkalilaugen mit roter Farbe. Normal-Redoxpotential in wäßrig-alkoholischer Salzsäure in Gegenwart von Lithiumchlorid bei 25°: 0,410 V (F., Am. Soc. 51, 3102). Beim Kochen der alkal. Lösung entsteht [1-Acetyl-naphthyl-(2)]-glyoxylsäure. Das Silbersalz liefert beim Kochen mit Allylbromid in Benzol 4-Allyloxy-phenanthrenchinon-(1.2) und 2-Oxy-3-allyl-phenanthrenchinon-(1.4). Bildet ein rotes Natriumsalz.

- 2-Methoxy-phenanthrenchinon-(1.4) $\mathrm{C}_{15}\mathrm{H}_{10}\mathrm{O}_3$, Formel II (R = CH₃). B. Beim Kochen von 2-Oxy-phenanthrenchinon-(1.4) mit methylalkoholischer Salzsäure (FIESER, Am. Soc. 51, 1902). Gelbe Nadeln. F: 172,5°. Mäßig löslich in Alkohol, leicht in Benzol. Normal-Redoxpotential in wäßrig-alkoholischer Salzsäure in Gegenwart von Lithiumchlorid bei 25°: 0,418 V (F., Am. Soc. 51, 3102).
- 2-Acetoxy-phenanthrenchinon-(1.4) $C_{16}H_{10}O_4$, Formel II ($R = CO \cdot CH_0$). B. Wurde einmal neben anderen Produkten bei der Oxydation von 1.2.4-Triacetoxy-phenanthren mit Chromsaure in siedendem Acetanhydrid oder Acetanhydrid + Eisessig erhalten (FIESER, Am. Soc. 51, 1939). F: 146°.
- 8. 3-Oxy-phenanthrenchinon-(1.4) C₁₄H₈O₃, Formel III (R = H). B. Durch Oxydation von 3.4-Dioxy-phenanthren-sulfonsäure-(1) mit Wasserstoffperoxyd in Natronlauge (Fieser, Am. Soc. 51, 949). Durch Hydrolyse von 3-Methoxy-phenanthrenchinon-(1.4) (F., Am. Soc. 51, 948). Orangegelbe Nadeln (aus verd. Essigsäure). Sintert bei 200°; F: 230° (Zers.). Sehr schwer löslich in Wasser, leicht in Alkohol und Benzol, sehr leicht in Eisessig. Löst sich in konz. Schwefelsäure mit braunroter, in Alkalilaugen mit roter Farbe. Löslich in Natrumacetat-Lösung. Normal-Redoxpotential in wäßrig-alkoholischer Salzsäure in Gegenwart von Lithiumchlorid bei 25°: 0,396 V (F., Am. Soc. 51, 3102). Liefert beim Kochen mit Natronlauge [2-Acetyl-naphthyl-(1)]-glyoxylsäure. Das Silbersalz liefert beim Kochen mit Allylbromid in Benzol 1-Allyloxy-phenanthrenchinon-(3.4), geringere Mengen 3-Oxy-2-allyl-phenanthrenchinon-(1.4) und andere Produkte. Natriumsalz. Sehr schwer löslich in überschüssigen Alkalilaugen. Silbersalz AgC₁₄H₇O₃. Dunkelrot.
- 3-Methoxy-phenanthrenchinon-(1.4) $C_{15}H_{10}O_3$, Formel III (R = CH₂). B. Beim Kochen von 3-Oxy-phenanthrenchinon-(1.4) mit methylalkoholischer Salzsäure (Fieser, Am. Soc.

51, 949). Durch Einw. von methylalkoholischer Schwefelsäure auf das Ammoniumsalz der Phenanthrenchinon-(3.4)-sulfonsäure-(1) (F., Am. Soc. 51, 948). — Gelbliche Nadeln (aus Benzol + Ligroin). F: 170° (unkorr.). Normal-Redoxpotential in wäßrig-alkoholischer Salzsäure in Gegenwart von Lithiumchlorid bei 25°: 0,409 V (F., Am. Soc. 51, 3102).

9. 1-Oxy-phenanthrenchinon-(3.4) $C_{14}H_8O_3$, Formel IV (R = H).

- 1 Allyloxy phenanthrenchinon (3.4) $C_{17}H_{12}O_{3}$, Formel IV (R = CH₂·CH·CH₃). B. Neben geringeren Mengen anderer Produkte bei der Einw. von Allylbromid auf das Silbersalz des 3-Oxy-phenanthrenchinons-(1.4) in siedendem Benzol (Fieser, Am. Soc. 51, 949). Orangefarbene Nadeln (aus Benzol). F: 161° (unkorr.). Leicht löslich in Alkohol und Benzol. Unlöslich in NaHSO₃-Lösung. Lagert sich beim Erhitzen über den Schmelzpunkt in 3-Oxy-2-allylphenanthrenchinon-(1.4) um. Wird durch alkoh. Salzsäure vollständig hydrolysiert.
- 10. 1-Oxy-phenanthrenchinon C₁₄H₈O₃, Formel V. B. Durch Erwärmen von 1-Acetoxy-phenanthrenchinon mit NaHSO₃-Lösung (FIESER, Am. Soc. 51, 2469). Feuerrote Nadeln (aus Alkohol). F: 227° (korr.). Leicht löslich in Alkohol, unlöslich in NaHSO₃-Lösung; löslich in konz. Schwefelsäure mit intensiv grüner Farbe; aus der weinroten Lösung in sehr verd. Natronlauge wird schon durch den geringsten Natronlauge-Überschuß ein indigoblaues Natriumsalz gefällt (F., Am. Soc. 51, 2469). Löst sich in Acetanhydrid mit gelber, in Pyroboracetat-Lösung mit roter Farbe (F., Am. Soc. 51, 2483). Normal-Redoxpotential in wäßrig-alkoholischer Salzsäure in Gegenwart von Lithiumchlorid bei 25°: 0,408 V (F., Am. Soc. 51, 3105).
- 1 Acetoxy phenanthrenchinon $C_{16}H_{10}O_4 = CH_3 \cdot CO \cdot O \cdot C_{14}H_7O_2$. B. Bei der Oxydation von 1-Acetoxy-phenanthren mit Chromessigsäure bei 70° (FIESER, Am. Soc. 51, 2468). Orangefarbene Nadeln (aus Eisessig). F: 206° (korr.).
- 11. 2-Oxy-phenanthrenchinon C₁₄H₈O₃, Formel VI (H 346; E I 662). Darst. Durch Diazotieren von 2-Amino-phenanthrenchinon in salzsaurer Lösung bei 0°, Verdünnen mit viel Wasser und nachfolgendes Kochen; Ausbeute 90% (J. Schmidt, Spoun, B. 55, 1201). F: 283° bis 285° (Sch., Sp.), 283° (korr.) (Brass, Ferber, Stadler, B. 57, 125). Löslich in Acetanhydrid oder Pyroboracetat + Acetanhydrid mit rotbrauner, beim Kochen in Orange übergehender Farbe (Dimroth, A. 446, 114). Normal-Redoxpotential in wäßrig-alkoholischer Salzsäure in Gegenwart von Lithiumchlorid bei 25°: 0,457 bzw.0,459 V (Freser, Am. Soc. 51, 3105). Liefert beim Erhitzen mit Brom und Wasser im Rohr auf 110° x-Dibrom-2-oxy-phenanthrenchinon (s. u.), ein bei ca. 195° schmelzendes Monobromderivat und ein bei ca. 290° schmelzendes Tribromderivat (Sch., Sp., B. 55, 1208). Beim Erhitzen mit Salpetersäure (D: 1,35) entsteht 3.4-Dinitro-2-oxy-phenanthrenchinon (Sch., Sp., B. 55, 1202).

- 2 Acetoxy phenanthrenchinon $C_{16}H_{10}O_4=CH_3\cdot CO\cdot O\cdot C_{14}H_7O_2$ (H 346). F: 215° (Dімвотн, A. 446, 114).
- 2 Oxy phenanthrenchinon monosemicarbazon $C_{15}H_{11}O_3N_3 = HO \cdot C_{14}H_7(:O):N \cdot NH \cdot CO \cdot NH_2$. Braunrote Krystalle (aus Alkohol). F: 263—265° (Zers.) (J. SCHMIDT, SPOUN, B. 55, 1202).
- x-Dibrom-2-oxy-phenanthrenchinon $C_{14}H_6O_3Br_2=HO\cdot C_{14}H_5Br_2O_2$. B. Neben anderen Produkten bei 5-stdg. Erhitzen von 2-Oxy-phenanthrenchinon mit Brom und Wasser auf 110^o im Rohr (J. Schmidt, Spoun, B. 55, 1208). Nicht ganz rein erhalten. Rotbraune Krystalle (aus Alkohol). F: 255°.
- 3.4-Dinitro-2-oxy-phenanthrenchinon C₁₄H₄O₇N₂, Formel VII. B. Beim Erhitzen von 2-Oxy-phenanthrenchinon mit Salpetersäure (D: 1,35) (J. Schmidt, Spoun, B. 55, 1202). Ziegelrotes Pulver. Zersetzt sich von 220° an unter Dunkelfärbung. Ziemlich leicht löslich in Alkohol mit dunkelbrauner, in Eisessig mit roter Farbe, sehr schwer in Benzol, Tetrachlorkohlenstoff und Chloroform. Gibt bei der Oxydation mit siedender Chromschwefelsäure Phthalsäure. Liefert bei der Reduktion mit Zinn und konz. Salzsäure auf dem Wasserbad 3.4-Diamino-2-oxy-phenanthrenhydrochinon-hydrochlorid, das beim Eindampfen der von Zinn befreiten Lösung an der Luft in 3.4-Diamino-2-oxy-phenanthrenchinon übergeht. Beim Erhitzen mit rotem Phosphor und Jodwasserstoffsäure (D: 2,05) im mit Kohlendioxyd gefüllten Rohr auf 135° erhält man 4-Amino-phenanthren und andere Produkte. Liefert beim Kochen mit Phenylhydrazin in Benzol und nachfolgenden Erhitzen mit Acetanhydrid 3.4-Dinitro-2-oxy-9.10-diacetoxy-phenanthren. Gibt mit Na₂S₂O₄ eine hellgelbe Küpe, aus der Wolle und Baumwolle hellbraun gefärbt werden. Natriumsalz. Tief dunkelgrün. Löslich in Wasser. Färbt Wolle dunkelbraun.

- 3.4 Dinitro 2 oxy phenanthrenchinon monoxim $C_{14}H_7O_7N_3 =$ $\text{HO} \cdot \text{C}_{14}\text{H}_{5}(\text{NO}_{2})_{2} \ll_{\text{N}\cdot\text{OH}}^{\text{O}}$. Braune Krystalle. F: 211° (Zers.) (J. Schmidt, Spour, B. 55, 1205).
- 3.4 Dinitro 2 oxy phenanthrenchinon monosemicarbazon $C_{15}H_9O_7N_8=$ HO·C₁₄H₅(NO₂)₂≪N·NH·CO·NH₂. Rotbraune Krystalle. Schmilzt nicht bis 270° (J. SCHMIDT,
- 12. 3-Oxy-phenanthrenchinon С₁₄H₅O₃, Formel VIII (H 347). Löslich in Acetanhydrid oder Pyroboracetat + Acetanhydrid mit gelber Farbe (Dімвотн, A. 446, 115). Normal-Redoxpotential in wäßrig-alkoholischer Salzsäure in Gegenwart von Lithiumchlorid bei 25°: 0,405 V (FIESER, Am. Soc. 51, 3105).
- 3 Methoxy phenanthrenchinon $C_{15}H_{10}O_3=CH_3\cdot O\cdot C_{14}H_7O_3$ (H 347). Normal-Redox-potential in wäßrig-alkoholischer Salzsäure in Gegenwart von Lithiumchlorid bei 25°: 0,419 V (FIESER, Am. Soc. 51, 3105).
- 3-Acetoxy phenanthrenchinon $C_{16}H_{10}O_4=CH_3\cdot CO\cdot O\cdot C_{14}H_7O_3$ (H 347). F: 199° bis 200° (Dімкотн, A. 446, 115). Normal-Redox potential in wäßrig-alkoholischer Salzsäure in Gegenwart von Lithiumchlorid bei 25°: 0,467 V (FIESER, Am. Soc. 51, 3105).
- 13. 4-Oxy-phenanthrenchinon C₁₄H₈O₃, Formel IX (E I 662). Zur Bildung aus diazotiertem 4-Amino-phenanthrenchinon vgl. noch Brass, Stadler, B. 57, 132. Normal-Redoxpotential in wäßrig-alkoholischer Salzsäure in Gegenwart von Lithiumchlorid bei 25°: $0,458 \text{ } \hat{V} \text{ } \text{(Fieser, } Am. Soc. 51, 3105).}$

- 2.3 Dinitro 4 oxy phenanthrenchinon C₁₄H₆O₇N₂, Formel X. B. Bei 3—4 Min. langem Erhitzen von 4-Oxy-phenanthrenchinon mit Salpetersäure (D: 1,35) (J. SCHMIDT, SCHAIRER, B. 56, 1335). Hellrote Blättchen (aus Eisessig). F: 248° (Zers.). Ziemlich schwer löslich in organischen Lösungsmitteln, leicht in Wasser. Schwer löslich in konz. Schwefelsäure mit rosenroter Farbe, in Natriumdicarbonat-Lösung mit dunkelgrüner Farbe. Bei der Oxydation mit siedender Chromschwefelsäure entsteht Phthalsäure. Liefert bei der Reduktion mit Zinn und rauchender Salzsäure auf dem Wasserbad 2.3-Diamino-4-oxy-phenanthrenchinon und wenig 2.3-Diamino-4-oxy-phenanthrenhydrochinon.
- 2.3 Dinitro 4 acetoxy phenanthrenchinon $C_{16}H_8O_8N_2=CH_3\cdot CO\cdot O\cdot C_{14}H_5(NO_2)_3(:O)_2$. Rotbraune Krystalle. F: 233° (Zers.) (J. Schmidt, Schairer, B. 56, 1335).
- 2.3 Dinitro -4- oxy-phenanthrenchinon-monoxim $C_{14}H_7O_7N_3=HO\cdot C_{14}H_5(NO_2)_2 < \stackrel{O}{\sim}_{N\cdot OH}$. Orangefarbene Krystalle. Verpufft bei 214-2150 (J. Schmidt, Schairer, B. 56, 1335).

2. Oxy-oxo-Verbindungen C₁₈H₁₀O₃.

1. Phenyl-[2.5-dioxy-benzoyl]-acetylen C15H10O2, s. nebenstehende Formel.

Phenyl-[2.5-dimethoxy-benzoyl]-acetylen, 2.5-Dimethoxy. $C_0H_5 \cdot C : C \cdot CO$. phenylpropiolophenon $C_{17}H_{14}O_3 = C_0H_5 \cdot C : C \cdot CO \cdot C_0H_3(O \cdot CH_3)_3$.

B. Beim Behandeln von Hydrochinonden int Phenylpropiologians application of the phenylpropiologians application of the phenylpropiologians applications. säurechlorid und Aluminiumchlorid (Simonis, Danischewski, B. 59, 2916). — Krystalle (aus Benzin). F: 57°. — Liefert beim Erhitzen mit Aluminiumchlorid in Benzol auf 80° höherschmelzendes β-Chlor - 2'- oxy - 5'- methoxy - chalkon (S. 378); beim Behandeln des Reaktionsgemisches mit Chlorwasserstoff erhält man die niedrigerschmelzende Form dieser Verbindung.

2. 2-Oxy-1.3-dioxo-2-phenyl-hydrinden, 2-Oxy-2-phenyl-indandion-(1.3) $C_{15}H_{10}O_3 = C_6H_4 < \begin{array}{c} CO \\ CO \end{array} > C(C_6H_5) \cdot OH.$ B. Beim Schütteln von 3-Brom-3-[\alpha-brom-benzyl]phthalid oder 3-[a-Brom-benzyliden]-phthalid mit Natriummethylat-Lösung unter Eiskühlung (Gabriel, Kornfeld, Grunert, B. 57, 303). — Gelbe Nadeln (aus Alkohol). Schmilzt im Vakuum bei 192°. Schwer löslich in Ammoniak, löslich in Kalilauge mit gelber Farbe. — Alkal. Lösungen reduzieren Fehlingsche Lösung und oxydieren sich an der Luft unter Bildung von Benzil-carbonsäure-(2). — Kaliumsalz. Gelb.

2-Methoxy-1.3-dioxo-2-phenyl-hydrinden, 2-Methoxy-2-phenyl-indandion-(1.3) $C_{16}H_{12}O_3 = C_6H_4 < \stackrel{CO}{CO} > C(C_6H_5) \cdot O \cdot CH_2$. B. Durch Einw. von Dimethylsulfat oder Methyljodid auf 2-Oxy-1.3-dioxo-2-phenyl-hydrinden in Natriummethylat-Lösung (Gabriel, Kornfeld, Grunert, B. 57, 303). — Nadeln (aus Alkohol). F: 114°. Unlöslich in Alkalilauge.

- 3. 2-Oxy-1-methyl-anthrachinon C₁₅H₁₀O₅, Formel I. Die von Bentley, Gardner, Weizmann (Soc. 91 [1907], 1631) so formulierte Verbindung (H 348) wird als 3-Oxy-2-methyl-anthrachinon (S. 400) erkannt (Mitter, Sen, J. indian chem. Soc. 5, 634; C. 1929 I, 1105; Waldmann, Sellner, J. pr. [2] 150 [1938], 146; Marschalk, Bl. [5] 6 [1939], 655). B. 2-Oxy-1-methyl-anthrachinon entsteht neben überwiegenden Mengen 3-Oxy-2-methyl-anthrachinon und anderen Produkten beim Erhitzen von o-Kresol mit Phthalsäureanhydrid und Aluminumchlorid auf 165° (W., S., J. pr. [2] 150, 147). Durch Einw. von Formaldehyd-Lösung auf die Hydrosulfitküpe des 2-Oxy-anthrachinons in Stickstoffatmosphäre bei 90—95° und nachfolgende Oxydation mit Luft (M., Bl. [5] 6, 658). Gelbe Nadeln (aus Benzol). F: 240° (M.), 238° (W., S.). Löslich in konz. Schwefelsäure und in Alkalien mit orangeroter Farbe (M.).
- 2-Methoxy-1-methyl-anthrachinon $C_{16}H_{12}O_3 = C_6H_4(CO)_2C_6H_2(CH_3) \cdot O \cdot CH_3$. Das H 348 beschriebene Präparat wird als 3-Methoxy-2-methyl-anthrachinon erkannt (vgl. die im vorangehenden Artikel zitierte Literatur). B. Beim Kochen von 2-Oxy-1-methyl-anthrachinon mit Dimethylsulfat und wasserfreiem Natriumcarbonat in Alkohol (MARSCHALK, Bl. [5] 6 [1939], 659). Gelbliche Blättchen (aus Eisessig). F: 214—215°.

[1939], 659). — Gelbliche Blättchen (aus Eisessig). F: 214—215°.
Für ein aus 2-Oxy-1-methyl-anthrachinon und p-Toluolsulfonsäuremethylester erhaltenes
Präparat geben Waldmann, Sellner (J. pr. [2] 150 [1938], 148) den Schmelzpunkt 166° an.

- 2-Acetoxy-1-methyl-anthrachinon $C_{17}H_{12}O_4=C_6H_4(CO)_2C_6H_2(CH_3)\cdot O\cdot CO\cdot CH_3$. Hellgelbe Nadeln (aus Alkohol). F: 184° (Waldmann, Sellner, *J. pr.* [2] 150 [1938], 148), 186° (Marschalk, *Bl.* [5] 6 [1939], 658).
- x-Brom-2-methoxy-1-methyl-anthrachinon $C_{16}H_{11}O_3Br = (O:)_2C_{16}H_8Br\cdot O\cdot CH_3$ (H 348). Ist als Derivat des 3-Oxy-2-methyl-anthrachinons anzusehen; vgl. die im Artikel 2-Oxy-1-methyl-anthrachinon (s. o.) zitierte Literatur.
- x-Nitro·2-oxy-1-methyl-anthrachinon $C_{15}H_2O_5N=(O:)_2C_{15}H_8(NO_2)\cdot OH$ (H 348). Ist als Derivat des 3-Oxy-2-methyl-anthrachinons anzusehen; vgl. die im Artikel 2-Oxy-1-methyl-anthrachinon (s. o.) zitierte Literatur.
- x-Nitro-2-methoxy-1-methyl-anthrachinon $C_{16}H_{11}O_5N=(O:)_2C_{15}H_8(NO_9)\cdot O\cdot CH_9$ (H 348). Ist als Derivat des 3-Oxy-2-methyl-anthrachinons anzusehen; vgl. die im Artikel 2-Oxy-1-methyl-anthrachinon (s. o.) zitierte Literatur.
- x-Trinitro-2-methoxy-1-methyl-anthrachinon $C_{16}H_9O_9N_3=(O:)_2C_{15}H_6(NO_2)_3\cdot O\cdot CH_3$ (H 348). Ist als Derivat des 3-Oxy-2-methyl-anthrachinons anzusehen; vgl. die im Artikel 2-Oxy-1-methyl-anthrachinon (s. o.) zitierte Literatur.
- 4. 3-Oxy-1-methyl-anthrachinon $C_{15}H_{10}O_3$, Formel II (H 349). B. Beim Kochen von 3-Methoxy-1-methyl-anthrachinon mit Bromwasserstoffsäure (Keimatsu, Hirano, Tanabe, J. pharm. Soc. Japan 49, 85; C. 1929 II, 1537). F: 285—286° (K., H., T.), 295° (Waldmann, Sellner, J. pr. [2] 150 [1938], 150).
- 3- Methoxy-1-methyl-anthrachinon $C_{16}H_{19}O_3=C_6H_4(CO)_2C_6H_2(CH_9)\cdot O\cdot CH_3$. B. Beim Kochen von 3-Chlor-1-methyl-anthrachinon mit Natriummethylat-Lösung (Keimatsu, Hirano, Tanabe, J. pharm. Soc. Japan 49, 85; C. 1929 II, 1537). F: 128—129° (K., H., T.), 145° (Waldmann, Sellner, J. pr. [2] 150 [1938], 150).
- 3-Acetoxy-1-methyl-anthrachinon $C_{17}H_{12}O_4=C_6H_4(CO)_2C_6H_2(CH_3)\cdot O\cdot CO\cdot CH_3$ (H 349). F: 151—152° (Keimatsu, Hibano, Tanabe, J. pharm. Soc. Japan 49, 85; C. 1929 II, 1537), 135° (Waldmann, Sellner, J. pr. [2] 150 [1938], 150).
- 5. 4-Oxy-1-methyl-anthrachinon C₁₅H₁₀O₃, Formel III (H 349; E I 663). B. In geringer Menge neben anderen Produkten beim Erhitzen von Phthalsäureanhydrid mit p-Kresol und Zinkchlorid auf 125° (COPISABOW, Soc. 117, 215).
- 5 (oder 8)-Oxy-1-methyl-anthrachinon C₁₅H₁₀O₂, Formel IV oder V (X = H).
 8 (oder 5) Chlor-5 (oder 8) oxy 1 methyl anthrachinon C₁₅H₂O₃Cl, Formel IV oder V (X = Cl). Zur Konstitution vgl. Hayashi, Soc. 1980, 1514. B. Beim Erhitzen der isomeren

5'-Chlor-2'-oxy-3(oder 6)-methyl-benzophenon-carbonsäuren-(2) (F: 238—239° und 171—171,5°) mit 98 % iger Schwefelsäure auf 115—120° (H., Soc. 1927, 2523, 2524). In geringer Menge neben anderen Produkten beim Erhitzen von [3-Methyl-phthalsäure]-anhydrid mit 4-Chlor-phenol oder 4-Chlor-anisol und Aluminiumchlorid in Tetrachloräthan auf 115—130° (H., Soc. 1927, 2520). — Krystalle (aus Eisessig). F: 223—224°. In der Wärme leicht löslich in Benzol, ziemlich eicht in Eisessig, schwer in Alkohol. Leicht löslich in konz. Schwefelsäure, schwer in Alkalilargen; die Lösungen sind rot. — Gibt beim Erhitzen mit Borsäure in konz. Schwefelsäure auf 140—160° 5.8-Dioxy-1-methyl-anthrachinon.

- 8 (oder 5) Brom 5 (oder 8) oxy 1-methyl anthrachinon C₁₅H₂O₃Br, Formel IV oder V (X = Br). B. Analog der vorangehenden Verbindung (Hayashi, Soc. 1927, 2525, 2526; 1930, 1514). Gelbe Krystalle (aus Isobutylalkohol). F: 198—198,5°. Leicht löslich in heißem Benzol, Eisessig, Isobutylalkohol, Schwefelkohlenstoff, Tetrachlorkohlenstoff und Aceton, ziemlich schwer in Alkohol, schwer in Petroläther. Leicht löslich in konz. Schwefelsäure, schwer in verd. Alkalilaugen; die Lösungen sind rot.
- 7. 1-Oxy-2-methyl-anthrachinon C₁₈H₁₀O₂, Formel VI (H 349). B. Aus 1-Methoxy-2-methyl-anthrachinon durch Erhitzen mit Bromwasserstoffsäure (Keimatsu, Hirano, J. pharm. Soc. Japan 49, 17; C. 1929 I, 2532). In geringer Menge neben anderen Produkten beim Erhitzen von Phthalsäureanhydrid mit o-Kresol und Zinkchlorid auf 125° (Copisarow, Soc. 117, 215). Goldgelbe Tafeln (aus Alkohol), Nadeln (aus verd. Essigsäure). F: 184—185° (C.; K., H.), 181—182° (Eder, Widmer, Bütler, Helv. 7, 353). Wird am Sonnenlicht viel schwieriger oxydiert als 2-Methyl-anthrachinon (Eckert, B. 58, 320). Gibt beim Behandeln mit N-Oxymethyl-phthalimid in konz. Schwefelsäure 4-Oxy-3-methyl-1-phthalimidomethyl-anthrachinon (v. Diesbach, D.R.P. 507049; Frdl. 16, 1236).
- 1-Methoxy-2-methyl-anthrachinon $C_{16}H_{12}O_2 = C_6H_4(CO)_2C_6H_2(CH_3) \cdot O \cdot CH_2$. B. Beim Erwärmen von 1-Chlor-2-methyl-anthrachinon mit methylalkoholischer Kalilauge unter Druck auf 80° (Eckert, Endler, J. pr. [2] 102, 333) oder mit Natriummethylat-Lösung (Keimatsu, Hirano, J. pharm. Soc. Japan 49, 17; C. 1929 I, 2532). Über Bildung beim Kochen von 1-Nitro-2-methyl-anthrachinon mit methylalkoholischer Natronlauge vgl. E., E., J. pr. [2] 102, 332. Hellgelbe Nadeln (aus Eisessig oder Benzol). F: 152—153° (E., E.), 156—157° (K., H.). Leicht löslich in Benzol, löslich in Eisessig (E., E.). Gibt bei langem Belichten in Eisessig-Lösung an der Luft 1-Oxy-anthrachinon-carbonsäure-(2) (Eckert, D. R. P. 383 030; C. 1924 I, 1713; Frdl. 14, 442; vgl. E., B. 58, 320). Bei der Oxydation mit Permanganat in siedendem Aceton entsteht 1-Methoxy-anthrachinon-carbonsäure-(2) (E., E.).
- 1-Acetoxy 2-methyl anthrachinon $C_{17}H_{12}O_4 = C_6H_4(CO)_2C_6H_2(CH_3) \cdot O \cdot CO \cdot CH_3$ (H 349). F: 180—181° (Eder, Widmer, Bütler, Helv. 7, 353), 177—178° (Keimatsu, Hirano, J. pharm. Soc. Japan 49, 17; C. 1929 I, 2532).
- 4-Brom 1-oxy 2-methyl anthrachinon C₁₅H₉O₃Br, Formel VII. B. Durch Diazotieren von 4-Brom 1-amino 2-methyl anthrachinon in konz. Schwefelsäure, Versetzen mit Eis und Erwärmen auf 120° (Locher, Fierz, Helv. 10, 651). Gelbe Nadeln (aus Eisessig). F: 176° bis 177°. Leicht löslich in heißem Eisessig und Toluol. Löslich in konz. Schwefelsäure mit blutroter, in warmer verdünnter Natronlauge mit rotvioletter Farbe.

- 2.2'- Dimethyl dianthrachinonyl (1.1') disulfid $C_{30}H_{18}O_4S_2$, Formel VIII (E I 664). Liefert beim Erhitzen mit Kupferpulver in Anthracen auf ca. 240—250° 2.2'-Dimethyl-dianthrachinonyl-(1.1') (KOPETSCHNI, D.R.P. 362984; C. 1928 II, 1030; Frdl. 14, 853).
- 8. 3-Oxy-2-methyl-anthrachinon C₁₅H₁₀O₃, Formel IX. Diese Konstitution kommt der von Bentley, Gaedner, Weizmann (Soc. 91 [1907], 1631) als 2-Oxy-1-methyl-anthrachinon (H 348) beschriebenen Verbindung zu (Mitter, Sen, J. indian chem. Soc. 5, 634; C. 1929 I, 1105; Waldmann, Sellner, J. pr. [2] 150 [1938], 146; Marschalk, Bl. [5] 6 [1939], 655); das H 349 als 3-Oxy-2-methyl-anthrachinon beschriebene Praparat von Baeyer, Fraude (A. 202 [1880], 163) war nach Mitter, Sen ein Gemisch von 2-Oxy-1-methyl-anthrachinon, 1-Oxy-2-methyl-anthrachinon und 3-Oxy-2-methyl-anthrachinon (vgl. a. Bistrzycki, Zen-Ruffinen, Helv. 3, 379). B. Aus 3-Methoxy-2-methyl-anthrachinon durch Erhitzen mit Bromwasserstoffsäure (Keimatsu, Hirano, J. pharm. Soc. Japan 49, 17; C. 1929 I, 2532). Bei kurzem Kochen von 3-Acetoxy-2-methyl-anthrachinon mit alkoh. Kalilauge (B., Z.-R.,

- Helv. 3, 378). Neben wenig 3-Methoxy-2-methyl-anthrachinon beim Erhitzen von 4'-Methoxy-3'-methyl-benzophenon-carbonsäure-(2) mit Schwefelsäure (D: 1,84) auf 155° (MITTER, SEN, J. indian chem. Soc. 5, 636; C. 1929 I, 1106). In geringer Menge neben anderen Produkten beim Erhitzen von Phthalsäureanhydrid mit o-Kresol und Zinkchlorid auf 125° (Copisarow, Soc. 117, 215; vgl. B., Z.-R., Helv. 3, 379). Orangegelbe Blättchlorid auf 125° (Copisarow, Soc. 117, 215; vgl. Esigsäure). F: 302° (Waldmann, Sellner, J. pr. [2] 150 [1938], 148), 299° (M., S.), 298,5° nach Braunfärbung und Sintern (B., Z.-R.), 298° (K., H.). Liefert bei der Zinkstaubdestillation im Wasserstoffstrom 2-Methyl-anthracen (M., S.). Beim Erhitzen mit 50% iger Kalilauge auf 200—205° entsteht 3-Methyl-alizarin (M., S.).
- 3-Methoxy-2-methyl-anthrachinon $C_{16}H_{12}O_3=C_6H_4(CO)_2C_6H_4(CH_3)\cdot O\cdot CH_3$. Diese Konstitution kommt der H 348 als 2-Methoxy-1-methyl-anthrachinon formulierten Verbindung zu (vgl. die im vorangebenden Artikel zitierte Literatur). B. Durch Erhitzen von 3-Chlor-2-methyl-anthrachinon mit Natriummethylat-Lösung (Keimatsu, Hirano, J. pharm. Soc. Japan 49, 17; C. 1929 I, 2532). Neben überwiegenden Mengen 3-Oxy-2-methyl-anthrachinon beim Erhitzen von 4'-Methoxy-3'-methyl-benzophenon-carbonsäure-(2) mit Schwefelsäure (D: 1,84) auf 155° (Mitter, Sen, J. indian chem. Soc. 5, 637; C. 1929 I, 1106). Grünlichgelbe Nadeln (aus Eisessig). F: 197° (Waldmann, Sellner, J. pr. [2] 150 [1938], 149), 184° (Bentley, Gardner, Weizmann, Soc. 91 [1907], 1631; M., Sen), 179—180° (K., H.).
- 3-Acetoxy-2-methyl-anthrachinon $C_{17}H_{12}O_4=C_8H_4(CO)_2C_6H_2(CH_2)\cdot O\cdot CO\cdot CH_3$. B. Bei kurzem Kochen von 3.10-Diacetoxy-2-methyl-anthracen mit Chromessigsäure (BISTRZYCKI, Zen-Ruffinen, Helv. 3, 378). Durch Kochen von 3-Oxy-2-methyl-anthrachinon mit Acetanhydrid und etwas Pyridin (MITTER, Sen, J. indian chem. Soc. 5, 637; C. 1929 I, 1106). Nadeln (aus Eisessig). F: 1770 (B., Z.-R.), 1760 (M., S.). Ziemlich leicht löslich in heißem Benzol und Eisessig, sehr schwer in Alkohol; löst sich in kalter konzentrierter Schwefelsäure mit bräunlich dunkelroter Farbe (B., Z.-R.).

- 9. 4-Oxy-2-methyl-anthrachinon C₁₅H₁₀O₃, Formel I (H 350; E I 665). B. Beim Kochen von 4-Methoxy-2-methyl-anthrachinon mit Bromwasserstoffsäure (Keimatsu, Hirano, Tanabe, J. pharm. Soc. Japan 49, 85; C. 1929 II, 1537). Bei der Bildung aus 2'-Oxy-4'-methylbenzophenon-carbonsäure-(2) (H 350) läßt sich die Ausbeute durch Anwendung von rauchender Sohwefelsäure und Erwärmen auf dem Wasserbad auf 60—70% erhöhen (Eder, Manoukian, Helv. 9, 53). F: 178—179° (E., Widmer, Bütler, Helv. 7, 354). Liefert bei der Nitrierung mit 1 Tl. Kaliumnitrat in 4 Tln. konz. Schwefelsäure auf dem Wasserbad 1.3-Dinitro-4-oxy-2-methyl-anthrachinon; bei Anwendung von weniger Kaliumnitrat bei gewöhnlicher Temperatur erhält man außerdem 1-Nitro-4-oxy-2-methyl-anthrachinon (E., M.).
- 4 Methoxy-2 methyl anthrachinon $C_{16}H_{19}O_3 = C_6H_4(CO)_2C_6H_2(CH_3) \cdot O \cdot CH_3$. B. Durch Erhitzen von 4-Chlor-2-methyl-anthrachinon mit Natriummethylat-Lösung (Keimatsu, Hirano, Tanabe, J. pharm. Soc. Japan 49, 85; C. 1929 II, 1537). F: 142—143°.
- 4-Acetoxy-2-methyl-anthrachinon $C_{17}H_{12}O_4=C_8H_4(CO)_2C_8H_2(CH_3)\cdot O\cdot CO\cdot CH_3$. Grünlichgelbe Nadeln (aus Alkohol). F: 156—157° (Eder, Widmer, Bütler, Helv. 7, 354), 152° bis 153° (Keimatsu, Hirano, Tanabe, J. pharm. Soc. Japan 49, 85; C. 1929 II, 1537). Leicht löslich in Eisessig und heißem Alkohol, unlöslich in Wasser; löslich in konz. Schwefelsäure mit orangegelber Farbe; löst sich in warmer Sodalösung oder Natronlauge unter Verseifung (E., W., B.).
- 1-Nitro-4-oxy-2-methyl-anthrachines C₁₈H₀O₈N, Formel II. B. Neben 3-Nitro-4-oxy-2-methyl-anthrachinon und überwiegenden Mengen 1.3-Dinitro-4-oxy-2-methyl-anthrachinon beim Behandeln von 4-Oxy-2-methyl-anthrachinon mit weniger als 1 Tl. Kaliumnitrat in 4 Tln. konz. Schwefelsäure bei gewöhnlicher Temperatur (Eder, Manoukian, Helv. 9, 54, 58). Hellgelbe Nadeln (aus Aceton). F: 241—242°. In Aceton leichter löslich als das 3-Nitro-Derivat.
- 3-Nitro-4-oxy-2-methyl-anthrachinon C₁₈H₉O₅N, Formel III. B. s. im vorangehenden Artikel. Hellgelbe Blättchen (aus Aceton). F: 272—273° (Zers.) (Edeb, Manoukian, Helv. 9, 58). In Aceton schwerer löslich als das 1-Nitro-Derivat. Gibt bei weiterer Einw. von Kaliumnitrat und konz. Schwefelsäure 1.3-Dinitro-4-oxy-2-methyl-anthrachinon.
- 1.3-Dinitro 4-0xy-2-methyl-anthrachinon $C_{15}H_8O_7N_2$, Formel IV. B. Beim Nitrieren von 4-0xy-2-methyl-anthrachinon mit 1 Tl. Kaliumnitrat und 4 Tln. konz. Schwefelsäure auf dem Wasserbad; entsteht auch beim Behandeln von 3-Nitro-4-oxy-2-methyl-anthrachinon mit Kaliumnitrat und Schwefelsäure (Eder, Manoukian, Helv. 9, 55, 58). Nadeln (aus

Kiscssig). F: 275—276° (Zers.). Löst sich in heißer Schwefelsäure unverändert mit gelber Farbe. Wird bei 20-stdg. Kochen mit Salpetersäure (D: 1,3) kaum verändert. Gibt bei der Oxydation mit siedender alkalischer Permanganat-Lösung Phthalsäure. Beim Kochen mit methylalkoholischer Natronlauge und Erhitzen des Reaktionsprodukts mit konz. Salzsäure und Eisessig im Rohr auf 190° erhält man geringe Mengen 1.3.4-Trioxy-2-methyl-anthrachinon.

3.3'-Dimethyl - dianthrachinonyl - (1.1') - disulfid C₃₀H₁₈O₄S₃, Formel V. B. Beim Kochen von 4-Brom-2-methyl-anthrachinon mit Natriumsulfid in 80%igem Alkohol, Verdünnen mit Wasser und Einleiten von Luft bei Wasserbadtemperatur (Ruggli, Merz, Helv. 12, 89). — Nicht rein erhalten. Olivgelbes Pulver. Sehr schwer löslich in hochsiedenden Lösungsmitteln. — Liefert beim Eintragen in siedende konzentrierte Salpetersäure 2-Methyl-anthrachinon-sulfonsäure-(4).

3. Oxy-oxo-Verbindungen C₁₆H₁₂O₈.

1. 1.4-Diphenyl-buten-(2)-ol-(2)-dion-(1.4), α -Oxy- α . β -dibenzoyl-äthylen $C_{16}H_{12}O_3=C_6H_5\cdot CO\cdot CH:C(OH)\cdot CO\cdot C_6H_5$ ist desmotrop mit 1.4-Diphenyl-butantrion-(1.2.4), E II 7, 835.

α-Methoxy-α.β-dibenzoyl-äthylen $C_{17}H_{14}O_3=C_6H_5\cdot CO\cdot CH:C(O\cdot CH_3)\cdot CO\cdot C_6H_5.$ B. Beim Kochen von höherschmelzendem 1.2-Dichlor-1.2-dibenzoyl-äthan oder 1.2-Dibrom-1.2-dibenzoyl-äthan oder 1.2-Dibrom-1.2-dibenzoyläthan mit Natriummethylat-Lösung (CONANT, LUTZ, Am. Soc. 47, 888, 889). Beim Behandeln von Dibenzoylacetylen mit Natriummethylat-Lösung (C., L., Am. Soc. 47, 889). — Krystalle (aus Alkohol). F: 108,5° (C., L.). — Gibt bei der Reduktion mit Zink in siedendem Eisessig 3-Methoxy-2.5-diphenyl-furan (C., L.; L., Am. Soc. 51, 3020). Bei der Reduktion mit Na₂S₂O₄ oder Chrom(II)-chlorid in siedendem 50—95 %igem Alkohol erhält man je nach den Reaktionsbedingungen wechselnde Mengen 1-Methoxy-1.2-dibenzoyl-athan und 3-Methoxy-2.5-diphenylfuran (L., Am. Soc. 51, 3017, 3020)

α Äthoxy-α.β-dibenzoyl-äthylen $C_{18}H_{16}O_3=C_6H_5\cdot CO\cdot CH\cdot C(O\cdot C_8H_5)\cdot CO\cdot C_6H_5$. B. Beim Kochen von höherschmelzendem 1.2-Dibrom 1.2-dibenzoyl-äthan mit Natriumäthylat-Lösung (CONANT, LUTZ, Am. Soc. 47, 889). — F: 103°.

 α -Phenoxy- α , β -dibenzoyl-äthylen $C_{22}H_{16}O_3=C_6H_5\cdot CO\cdot CH:C(O\cdot C_6H_5)\cdot CO\cdot C_6H_5$. B. Aus höherschmelzendem 1.2-Dibrom-1.2-dibenzoyl-åthan bei kurzem Kochen mit überschüssigem Phenol in Natriumäthylat-Lösung (Lutz, Am. Soc. 51, 3016) oder beim Behandeln mit Natriumphenolat in absol. Ather (CONANT, LUTZ, Am. Soc. 47, 889). — Krystalle (aus Alkohol). F: 92° (C., L.). — Gibt bei der Reduktion mit Zink in siedendem Eisessig + Acetanhydrid 1-Phenoxy-1.2-dibenzoyl-äthan und 3-Phenoxy-2.5-diphenyl-furan; bei der Reduktion mit Chrom(II)-chlorid oder mit Na₂S₂O₄ in Alkohol entsteht 1-Phenoxy-1.2-dibenzoyl-äthan als einziges Reaktionsprodukt (L., Am. Soc. 51, 3019, 3020).

 $\begin{array}{ll} \text{$\alpha$-m-Tolyloxy-$\alpha$.$\beta$-dibenzoyl-$athylen} & \text{$C_{23}H_{18}O_3$} = \text{$C_6H_6\cdot CO\cdot CH:C(O\cdot C_6H_4\cdot CH_3)\cdot CO\cdot C_6H_6$.} \\ \text{$A$ is h\"oherschmelzende Form. B.} & \text{A us h\"oherschmelzendem 1.2-Dibrom-1.2-dibenzoyl$ äthan durch Einw. von m-Kresol-Natrium in Äther (CONANT, LUTZ, Am. Soc. 47, 889) oder, neben der niedrigerschmelzenden Form, beim Kochen mit m-Kresol in Natriumäthylat-Lösung (Lutz, Am. Soc. 51, 3017). — Nadeln (aus Alkohol). F: 104,5° (C., L.), 103° (L.).

b) Niedrigerschmelzende Form. B. s. bei der höherschmelzenden Form. — Fast farblose Nadeln oder Prismen (aus Alkohol). Schmilzt bei 95°; die Schmelze ist hellgelb (Lurz,

Am. Soc. 51, 3017).

Beide Formen liefern bei der Reduktion mit Chrom(II)-chlorid in Aceton oder mit Zink und Eisessig oder mit Na₂S₂O₄ 1-m-Tolyloxy-1.2-dibenzoyl-athan (CONANT, LUTZ, Am. Soc. 47, 890; L., Am. Soc. 51, 3017).

- α p-Tol·lox/-α.β-dibenzoyl-āthylen $C_{23}H_{18}O_3=C_6H_5\cdot CO\cdot CH\cdot C(O\cdot C_6H_4\cdot CH_3)\cdot CO\cdot C_6H_5$. B. Aus höherschmelzendem 1.2-Dibrom-1.2-dibenzoyl-āthan durch Einw. von p-Kresol-Natrium in Äther (CONANT, LUTZ, Am. Soc. 47, 889) oder von p-Kresol in siedender Natrium-āthylat-Lösung (LUTZ, Am. Soc. 51, 3017). F: 165° (C., L.). Liefert bei der Reduktion mit Na₂S₂O₄ oder mit Zink und Eisessig 1-p-Tolyloxy-1.2-dibenzoyl-āthan; beim Kochen mit Zink in Eisessig + Acetanhydrid entsteht außerdem 3-p-Tolyloxy-2.5-diphenyl-furan (L., Am. Soc. 51, 3019).
- α [3-Methoxy-phenoxy]- $\alpha.\beta$ -dibenzeyl-äthylen $C_{23}H_{12}O_4=C_6H_5\cdot CO\cdot CH:C(O\cdot C_6H_4\cdot O\cdot CH_3)\cdot CO\cdot C_6H_5$. B. In geringer Menge beim Kochen von höherschmelzendem 1.2-Dibrom-1.2-dibenzoyl-åthan mit Resorcinmonomethyläther in Natriumäthylat-Lösung (Lurz, Am. Soc. 51, 3017). — Krystalle (aus Alkohol). F: 110°.

äthan mit Natriummethylat-Lösung (Conant, Lutz, Am. Soc. 47, 889; L., Am. Soc. 51, 3016). — Krystalle (aus Alkohol). F: 130—131°. Löslich in heißem Alkohol und in kaltem Chloroform, Benzol und Aceton, unlöslich in kaltem Alkohol und Petroläther. — Liefert beim Kochen mit Zinkstaub in Eisessig + Acetanhydrid 3-Methoxy-2.5-bis-[4-chlor-phenyl]-furan; beim Erwärmen mit Zink und Eisessig auf 70° oder beim Kochen mit Na₂S₂O₄ in verd. Alkohol erhält man je nach den Reaktionsbedingungen wechselnde Mengen 3-Methoxy-2.5-bis-[4-chlor-phenyl]-furan und 1-Methoxy-1.2-bis-[4-chlor-benzoyl]-äthan (L., Am. Soc. 51, 3018, 3020).

α-Methoxy-α.β-bis-[4-brom-benzoyl]-āthylen $C_{17}H_{12}O_3Br_2 = C_6H_4Br\cdot CO\cdot CH: C(O\cdot CH_3)\cdot CO\cdot C_6H_4Br\cdot B$. Bei der Einw. von Natriummethylat-Lösung auf höherschmelzendes 1.2-Dibrom-1.2-bis-[4-brom-benzoyl]-āthan (Lutz, Am. Soc. 48, 2912). — Krystalle (aus Alkohol). F: 155° (korr.) (L., Am. Soc. 48, 2912). — Liefert bei der Reduktion mit Zinkstaub und Eisessig, mit Chrom(II)-chlorid oder mit Na₂S₂O₄ in Alkohol je nach den Reaktionsbedingungen wechselnde Mengen 1-Methoxy-1.2-bis-[4-brom-benzoyl]-āthan und 3-Methoxy-2.5-bis-[4-brom-phenyl]-furan (L., Am. Soc. 51, 3018, 3019, 3020).

I.
$$O \cdot R$$

$$CH_3 \cdot O$$

- 2. 2-[2.3-Dioxy-benzyliden]-hydrindon-(1) $C_{16}H_{12}O_{3}$, Formel I (R und R' = H).
- 2-[2-0xy-3-methoxy-benzyliden]-hydrindon-(1) C₁₇H₁₄O₃, Formel I (R = H, R' = CH₃). B. Beim Kochen von Hydrindon-(1) mit 2-0xy-3-methoxy-benzaldehyd in alkoholisch-wäßriger Kalilauge (Robinson, Soc. 125, 213). Gelbe Nadeln (aus Äthylacetat). F: 198°. KC₁₇H₁₃O₃. Orangerote, grün schillernde Nadeln (aus Alkohol).
- 2-[2.3-Dimethoxy-benzyliden]-hydrindon-(1) $C_{18}H_{16}O_{3}$, Formel I (R und R' = CH_{3}). B. Aus 2-[2-Oxy-3-methoxy-benzyliden]-hydrindon-(1) und Dimethylsulfat in alkoh. Kalilauge (Perkin, Rây, Robinson, Soc. 1926, 952). Blaßgelbe Prismen (aus Alkohol). F: 124°. Gibt mit Eisenchlorid in eiskaltem Acetanhydrid 5.6-Dimethoxy-[indeno-1'.2':2.3-benzo-pyryliumferrichlorid] (Formel II; Syst. Nr. 2424).

III.
$$CH_3 > C: CH \cdot CH_3 \cdot O \cdot R$$
 IV. $CH_3 \cdot O \cdot CH_3 \cdot O \cdot CH_$

3. 2-[3.4-Dioxy-benzyliden]-hydrindon-(1) $C_{14}H_{12}O_3$, Formel III (R = H).

2-[3.4-Dimethoxy-benzyliden]-hydrindon-(1), 2-Veratryliden-hydrindon-(1) $C_{18}H_{16}O_3$, Formel III (R = CH₃). B. Beim Einleiten von Chlorwasserstoff in eine eiskalte Lösung von Hydrindon-(1) und Veratrumaldehyd in Eisessig (PERKIN, Rây, Robinson, Soc. 1926, 951). — Gelbe Prismen (aus Eisessig). F: 175°. — Gibt mit Eisenchlorid in eiskaltem Acetanhydrid 6.7-Dimethoxy-[indeno-1'.2':2.3-benzopyryliumferrichlorid] (Formel IV; Syst. Nr. 2424).

- 2-[2-Nitro-3.4-dimethoxy-benzyliden]- hydrindon-(1) C₁₈H₁₅O₅N, Formel V (Gemisch von Stereoisomeren). B. Beim Einleiten von Chlorwasserstoff in eine Lösung von Hydrindon-(1) und 2-Nitro-veratrumaldehyd in Eisessig (Lions, Perkin, Robinson, Soc. 127, 1168). Gelbe Prismen (aus Alkohol). Schmilzt zwischen 156° und 176°. Schwer löslich in Alkohol. Löslich in konz. Schwefelsäure mit orangeroter Farbe.
- 2-[6-Nitro-3.4-dimethoxy-benzyliden]-hydrindon-(1) C₁₈H₁₅O₅N, Formel VI. B. Beim Einleiten von Chlorwasserstoff in eine Lösung von Hydrindon-(1) und 6-Nitro-veratrumaldehyd in Eisessig (Lions, Perkin, Robinson, Soc. 127, 1168). Bräunlichgelbe Nadeln (aus Pyridin + Alkohol). F: 211⁶. Löst sich in konz. Schwefelsäure mit roter Farbe. Liefert bei der Reduktion mit Zinkstaub und Eisessig 6.7-Dimethoxy-[indeno-1'.2':2.3-chinolin].
- 4. 1.3-Dioxo-2-[α -oxy-benzyl]-hydrinden, 2-[α -Oxy-benzyl]-indandion-(1.3), Phenylindandionylcarbinol $C_{16}H_{12}O_3=C_6H_4 < \stackrel{CO}{CO} > CH \cdot CH(OH) \cdot C_6H_5$. Das Mol.-Gew.

wurde kryoskopisch in Nitrobenzol bestimmt. — B. Aus äquimolekularen Mengen 1.3-Dioxohydrinden und Benzaldehyd in alkoh. Kalilauge (Radulescu, Georgescu, Bl. [4] \$7, 1073). — Nadeln (aus Eisessig oder Alkohol). F: 158°. — Liefert allmählich beim Kochen in Benzol oder Toluol, schneller beim Behandeln mit kalter konzentrierter Schwefelsäure in Eisessig, 2-Benzyliden-indandion-(1.3). — KC₁₆H₁₁O₂. Rote Krystalle.

5. 4-Oxy-1.2-dimethyl-anthrachinon C₁₆H₁₈O₃, Formel VII. B. Beim Erwärmen von 6'-Oxy-3'.4'-dimethyl-benzophenon-carbonsäure-(2) mit konz. Schwefelsäure auf 100° (FAIRBOURNE, GAUNTLETT, Soc. 123, 1138, 1139). — Goldgelbe Nadeln (aus Aceton). F: 169°.

4. Oxy-oxo-Verbindungen C17H14O2.

- 1. 1.5 Bis [4 oxy phenyl] pentadien (1.3) on (5), 4-Oxy oxy -
- 4-0xy- ω -[4-methoxy-cinnamyliden]-acetophenon $C_{18}H_{16}O_3 = CH_3 \cdot O \cdot C_6H_4 \cdot CH \cdot CH \cdot CH \cdot CH \cdot CO \cdot C_6H_4 \cdot OH$. B. Aus 4-Methoxy-zimtaldehyd und 4-Oxy-acetophenon in Chlorwasser-stoff-Eisessig (Vorländer, Girseler, J. pr. [2] 121, 242). Gelbe Krystalle (aus Methanol). F: 169°. Neigt zu Unterkühlung. Hydrochlorid. Dunkelblaue Nadeln. Natriumsalz. Orangegelb.
- 4-Methoxy- ω -[4-methoxy-cinnamyliden]-acetophenon, 4.4'-Dimethoxy-cinnamyliden-acetophenon $C_{19}H_{18}O_3=CH_3\cdot O\cdot C_6H_4\cdot CH\cdot CH\cdot CH\cdot CH\cdot CH\cdot CO\cdot C_6H_4\cdot O\cdot CH_3$. B. Beim Kochen von 4-Methoxy-zimtaldehyd und 4-Methoxy-acetophenon mit Natriummethylat-Lösung und Alkohol (STRAUS, A. 458, 288). Aus 4-Oxy- ω -[4-methoxy-cinnamyliden]-acetophenon und Dimethylsulfat in alkal. Lösung (Vorländer, Gieseler, J. pr. [2] 121, 242). Durch Verseifung des Dimethylacetals (s. u.) mit heißer methylalkoholischer Salzsäure (St., Heyn, A. 445, 110). Gelbe Nadeln (aus Methanol). F: 111,5—112,5° (St.), 112° (V., G.), 112,5—113° (St., H.). Die Lösung in konz. Schwefelsäure ist in der Durchsicht rotorange (St., H.). $C_{19}H_{18}O_3+2$ HCl. Sohwarzblaue Masse (St.). $C_{19}H_{18}O_3+$ HCl + HgCl₂. Blauschwarze Krystalle. F: 144—146° (Zers.) (St.).
- 4-Acetoxy- ω -[4-methoxy-cinnamyliden]-acetophenon $C_{20}H_{18}O_4=CH_2\cdot O\cdot C_6H_4\cdot CH:$ $CH\cdot CH\cdot CH\cdot CO\cdot C_6H_4\cdot O\cdot CO\cdot CH_3$. B. Durch Behandlung von 4-Oxy- ω -[4-methoxy-cinnamyliden]-acetophenon mit Acetanhydrid und Natriumacetat (Vorländer, Gieseler, J. pr. [2] 121, 242). Gelbe Nadeln. F: 134°.
- 4.4'- Dimethoxy cinnamylidenacetophenon chlormethylat $C_{20}H_{21}O_3Cl = CH_3 \cdot O \cdot C_6H_4 \cdot CH \cdot CH \cdot CH \cdot CH \cdot CCl(O \cdot CH_3) \cdot C_6H_4 \cdot O \cdot CH_3$. B. Beim Behandeln von 4.4'- Dimethoxy-cinnamylidenacetophenon-dimethylacetal mit Chlorwasserstoff in Schwefelkohlenstoff (Straus, A. 458, 290). Blauschwarze Kryställchen. Zerfällt bei 64—70° unter Orangefärbung in 4.4'- Dimethoxy-cinnamylidenacetophenon und Methylchlorid. Bei der Einw. von lauwarmer 5% iger Natriummethylat-Lösung bildet sich 4.4'- Dimethoxy-cinnamylidenacetophenon-dimethylacetal. $C_{20}H_{21}O_3Cl + HgCl_2$. B. Durch Einw. von Chlorwasserstoff und Quecksilber (II)-chlorid auf 4.4'- Dimethoxy-cinnamylidenacetophenon-dimethylacetal in Äther (Straus, A. 458, 291). Schwarzblaue Kryställchen. F: 138—142° (Zers.). Ist in trockenem Zustande beständig. Löslich in absol. Methanol mit tief fuchsinroter Farbe, die auf Wasserzusatz verschwindet.
- 2. 1.5-Bis-[2-oxy-phenyl]-pentadien-(1.4)-on-(3), Disalicylidenaceton, Bis-[2-oxy-styryl]-keton, 2.2-Dioxy-distyrylketon C₁₇H₁₄O₈ = HO·C₄H₄·CH·CH·CO·CH·CH·C₄H₄·OH (H 352; E I 666). B. Aus farblosem Salicylidenaceton (S. 153) beim Kochen mit überschüssiger Natronlauge und bei mehrtägigem Aufbewahren mit Salicylaldehyd in 10% iger Natronlauge (Mc Gookin, Heilbron, Soc. 125, 2102, 2103); aus gelbem Salicylidenaceton beim Aufbewahren in wäßrig-alkoholischer Natronlauge (H., Buck, Soc. 119, 1513) und beim Behandeln mit Natriumäthylat-Lösung (Mc G., H., Soc. 125, 2101). Entsteht ferner bei der Einw. von Salicylaldehyd und Alkaliauge auf Isobutenyl-[2-oxy-styryl]-keton (Mc G., Singlair, Soc. 1228, 1176) oder auf Vanillylidenaceton (Glaser, Tramer, J. pr. [2] 116, 334, 336). F: 159° (Mc G., H.). Leicht löslich in Alkohol, Aceton, Äthylacetat, Pyridin, Methanol und Isoamylalkohol, löslich in Äther, Benzol und Chloroform, sehr schwer löslich in Xylol und Wasser (G., T.). Leicht löslich in Alkalien mit roter Farbe (G., T.). Liefert bei der Einw. von

1,5 Mol Acetessigester und 3 Mol Natronlauge bei Zimmertemperatur 1-[2-Oxy-phenyl]-3-[2-oxy-styryl]-cyclohexen-(3)-on-(5) (S. 412) und 4-[2-Oxy-cinnamoylmethyl]-3.4-dihydro-cumarin (Formel I; Syst. Nr. 2537) (HRILBRON, FORSTER, Soc. 125, 2066).

[2-Oxy-styryl]-[2-methoxy-styryl]-keton, 2-Oxy-2'-methoxy-distyrylketon $C_{18}H_{16}O_3=CH_{3}\cdot O\cdot C_{6}H_{4}\cdot CH:CH\cdot CO\cdot CH:CH\cdot C_{6}H_{4}\cdot OH.$ B. Aus Salicylidenaceton und 2-Methoxy-benzaldehyd in wäßrig-alkoholischer Natronlauge (Buck, Heilbron, Soc. 121, 1097). — Grünliche Krystallmasse (aus Benzol). F: 129° (B., H.). Mäßig löslich in den üblichen Lösungsmitteln (B., H.). — Liefert beim Kochen mit Acetessigester in wäßrig-alkoholischer Natronlauge 1-[2-Oxy-phenyl]-3-[2-methoxy-styryl]-cyclohexen-(3)-on-(5) (S. 412) und 2-[2-Methoxy-phenyl]-4-[2-oxy-styryl]-cyclohexen-(4)-on-(6)-carbonsäure-(1)-äthylester (Formel II; R = H) (H., Forster, Soc. 125, 2067). — Natriumsalz. Rote Krystalle (B., H.).

 $\textbf{CH_3} \cdot \textbf{CO} \cdot \textbf{CH} : \textbf{CH} \cdot \textbf{C}_{\textbf{C}} \textbf{H}_{\textbf{4}} \cdot \textbf{OH}$

I.
$$\begin{array}{c} \text{CH} \\ \text{CH}_2 \\ \text{CO} \end{array}$$

$$\begin{array}{c} \text{CH} \\ \text{CO} \\ \text{CO} \end{array}$$

$$\begin{array}{c} \text{CH} \\ \text{CO} \\ \text{CO} \end{array}$$

$$\begin{array}{c} \text{CH} \\ \text{CH}_2 \\ \text{CO} \\ \text{CO} \end{array}$$

$$\begin{array}{c} \text{CH} \\ \text{CH}_2 \\ \text{CO} \end{array}$$

Bis - [2-methoxy-benzyliden] - aceton, Bis - [2-methoxy-styryl]-keton, 2.2'- Dimethoxy-distyrylketon $C_{19}H_{18}O_3 = (CH_3 \cdot O \cdot C_6H_4 \cdot CH : CH)_2CO$ (H 352; E 1 666). B. Durch Methylierung von Disalicylidenaceton (Heilbron, Forster, Soc. 125, 2067). — Gelbe Tafeln (aus Alkohol). F: 127°. Schwer löslich in kaltem Alkohol. — Liefert bei der Einw. von Acetylaceton in heißer wäßrig-alkoholischer Natronlauge geringe Mengen 2-[2-Methoxy-phenyl]-4-[2-methoxy-styryl]-1-acetyl-cyclohexen-(4)-on-(6). Bei der analogen Umsetzung mit Acetessigester entsteht 2-[2-Methoxy-phenyl]-4-[2-methoxy-styryl]-cyclohexen-(4)-on-(6) - carbonsäure-(1)-äthylester (Formel II; $R = CH_3$).

Bis-[5-brom-salicyliden]-aceton, 5.5'- Dibrom-2.2'-dioxy-distyryl-keton C₁₇H₁₂O₃Br₂, s. nebenstehende Formel (H 352). B. Aus 5-Brom-salicylidenaceton beim Behandeln des Natriumsalzes mit Natronlauge oder bei der Kondensation mit 5-Brom-salicylaldehyd (McGookin, Sinclair, Soc. 1928, 1173). — Existiert in einer gelben und einer farblosen Form. Die gelbe Form schmilzt bei 188°, die farblose bei 174,5°. Die farblose Form löst sich in Alkalilauge mit gelber Farbe.

- 3. $\alpha [2 Oxy benzyliden] \alpha' [3 oxy benzyliden] aceton, 2.3' Dioxydistyrylketon <math>C_{17}H_{14}O_3 = HO \cdot C_8H_4 \cdot CH \cdot CH \cdot CH \cdot CH \cdot C_8H_4 \cdot OH$. B. Aus Salicylidenaceton und 3-Oxy-benzaldehyd in wäßrig-alkoholischer Natronlauge (Buck, Heilbron, Soc. 121, 1097). Gelbgrünes Pulver mit 1 H₂O (aus Benzol). Schmilzt bei 137° zu einer dunkelgrünen Flüssigkeit (B., H., Soc. 121, 1097). Sehr sohwer löslich in Benzol. Beim Sättigen einer Lösung in Ameisensäure mit Chlorwasserstoff bei Zimmertemperatur entsteht 2-[3-Oxystyryl]-benzopyryliumchlorid (B., H., Soc. 121, 1205).
- α -[2-0xy-benzyliden]- α' -[3-methoxy-benzyliden]-aceton, 2-0xy-3'-methoxy-distyrylketon $C_{18}H_{16}O_3 = HO \cdot C_6H_4 \cdot CH \cdot CH \cdot CH \cdot CH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Aus Salicylidenaeeton und 3-Methoxy-benzaldehyd in wäßrig-alkoholischer Natronlauge (Buck, Hehlbron, Soc. 121, 1098). Gelbliche Krystalle (aus Benzol). Schmilzt bei 128° zu einer dunkelgrünen Flüssigkeit. Mäßig löslich in Benzol.
- 4. $\alpha [2 Oxy benzyliden] \alpha' [4 oxy benzyliden] aceton, 2.4' Dioxydistyrylketon <math>C_1, H_{14}O_2 = HO \cdot C_4H_4 \cdot CH \cdot CO \cdot CH \cdot CH \cdot C_6H_4 \cdot OH$.
- α-Salicyliden-α-anisyliden-aceton, 2-Oxy-4'-methoxy-distyrylketon $C_{18}H_{16}O_3=HO\cdot C_6H_4\cdot CH:CH\cdot CO\cdot CH:CH\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus Salicylidenaceton und Anisaldehyd in wäßrigalkoholischer Natronlauge bei Zimmertemperatur (Buck, Hellbron, Soc. 121, 1098). Gelbe Nadeln (aus Benzol). Schmilzt bei 139° zu einer grünen Flüssigkeit. Leicht löslich in Alkohol und Aceton, mäßig in Benzol und Chloroform. Verbindung mit 1.3-Dinitro-benzol $C_{18}H_{16}O_3+C_6H_4O_4N_3$. Orangefarbenes krystallines Pulver. F: 117°.
- 5. 1.5-Bis-[4-oxy-phenyl]-pentadien-(1.4)-on-(3), Bis-[4-oxy-benzy-liden]-aceton, 4.4'-Dioxy-distyrylketon C₁₇H₁₄O₃ = HO·C₆H₄·CH·CH·CO·CH·CO·CH·CH·CO·CH

in 100 cm³ Acetanhydrid 1,22 g (V., B. 58, 129, 130). Die alkalisch-wäßrigen Lösungen sind kolloidal; Verhalten dieser Lösungen im Ultramikroskop: V., K., B. 62, 537. Löst sich in konz. Schwefelsäure mit purpurroter Farbe (V., B. 58, 129). — Färbt sich beim Überleiten von Chlorwasserstoff unter Aufnahme von cs. 2 Mol Chlorwasserstoff, beim Behandeln mit Chlorwasserstoff in Alkohol oder mit konz. Salzsäure in Aceton unter Aufnahme von cs. 1 Mol Chlorwasserstoff blauschwarz; reagiert analog mit Bromwasserstoff (V., B. 58, 128, 129, 137). Verhalten der Lösung in Eisessig bei längerem Belichten in Gegenwart von Uranylacetat: Vorländer, B. 58, 130. — Natriumverbindung Na₂C₁₇H₁₂O₃. Karminrot mit bläulicher Oberflächenfarbe (Vorländer, B. 58, 136).

Bis-[4-methoxy-benzyliden]-aceton, Dianisylidenaceton, Dianisalaceton, 4.4'- Dimethoxy-distyrylketon C₁₉H₁₈O₃ = CH₃·O·C₆H₄·CH·CH·CO·CH·CH·C₆H₄·O·CH₃ (H 354; E I 666). B. Bei mehrtägiger Einw. von 2 Mol Anisaldehyd auf Salicylidenaceton in wäßrig-alkoholischer Natronlauge (Heilbron, Buck, Soc. 119, 1514). — Thermische Analyse binärer Systeme, die Eutektika aufweisen, s. in der untenstehenden Tabelle sowie bei den additionellen Verbindungen (S. 407). Löst sich in Alkohol mit heller grüngelber Farbe (Kehrmann, Effront, B. 54, 422), in Anisol mit hellgelber, in Dimethylanilin mit orangegelber, in Tetranitromethan und in geschmolzenem Thymochinon mit orangeroter Farbe, in geschmolzenem Chloranil und Maleinsäureanhydrid mit roter Farbe (Skraup, Freundlich, A. 431, 261, 262). Farbumschlag der Lösung in Eisessig auf Zusatz verschiedener Puffer: Conant, Hall, Am. Soc. 49, 3065. Löst sich in konz. Schwefelsäure mit violettroter, in alkoh. Schwefelsäure mit orangeroter Farbe (K., E.). Absorptionsspektrum in Chloroform: Stobbe, Färber, B. 58, 1550; in Alkohol, 90—100%iger Schwefelsäure, rauchender Schwefelsäure (60% SO₃) und alkoh. Schwefelsäure: K., E. Elektrische Leitfähigkeit in flüssigem Schwefeldioxyd: Straus, Dützmann, J. pr. [2] 108, 60.

Thermische Analyse binärer Systeme.

4	Eutektikum bei			Eutektikum bei	
Komponente	o C	Gew% Dianisal- aceton	Komponente	•C	Gew% Dianisal- aceton
Diphenyl 1)	65 91—92 75 64	20 35 56 34	Benzoesäure ²)	85 64—65 86 86	63 42 60 56

1) Pfeiffer, Schmitz, Inoue, J. pr. [2] 121, 78, 82. — 2) Pf., A. 440, 248, 261—264. — 3) Unbeständige Additionsverbindung $2C_{19}H_{19}O_3 + C_{19}H_{9}I$.

Dianisalaceton polymerisiert sich beim Erhitzen auf 220—225° im Kohlendioxydstrom zu einem rötlichbraunen, bei 70—100° schmelzenden Harz (Herzog, Kreidl, Z. ang. Ch. 35, 467). Liefert bei der Hydrierung in Gegenwart von Palladium(II)-chlorid in Aceton α.α΄-Dianisyl-aceton und Bis-[4-methoxy-β-phenäthyl]-carbinol (Steaus, Geindel, A. 439, 305). Verbindet sich mit Malonsäuredimethylester bei Gegenwart von Natriummethylat oder Piperidin in siedendem Methanol zu 2.6-Bis-[4-methoxy-phenyl]-cyclohexanon-(4)-dicarbonsäure-(1.1)-dimethylester (Kohler, Dewey, Am. Soc. 46, 1276). Liefert mit Cyanessigsäuremethylester bei Gegenwart von Natriummethylat-Lösung drei stereoisomere 2.6-Bis-[4-methoxy-phenyl]-1-cyan-cyclohexanon-(4)-carbonsäure-(1)-methylester (Ko., Helmkamp, Am. Soc. 46, 1023).

Salze und additionelle Verbindungen des Dianisalacetons. Verhalten der Salze einiger starker Säuren beim Verdünnen der Lösungen in Chloroform: Hantzsch, Voigt, B. 62, 982, 983. — C₁₉H₁₈O₃+HgCl₂. Gelbe Nadeln (aus Essigester). Zersetzt sich bei etwa 159° (Vorländer, Eichwald, B. 56, 1152). — C₁₉H₁₈O₃+HCl+HgCl₂. Blauschwarze Krystalle. F: 177—178° (Zers.) (Straus, A. 458, 298). Löslich in wasserfreiem Methanol mit rötlicher Farbe. — C₁₉H₁₈O₃ + AlBr₃. Roter krystalliner Niederschlag (Pfeiffer, Haack, A. 460, 178). — C₁₉H₁₈O₃ + AlBr₃. Honiggelbe zersetzliche Krystalle (Pf., H., A. 460, 178). Leicht löslich in Benzol. Liefert beim Kochen mit Benzol 4.4°-Dioxy-distyrylketon. — C₁₉H₁₈O₃ + SiGl₄. Braunschwarze Krystalle (V., Ei., B. 56, 1152). — C₁₉H₁₈O₃ + SiCl₄. Braunschwarze Krystalle (V., Ei., B. 56, 1152). — 2C₁₉H₁₈O₃ + SnCl₄. Rotviolettes Pulver. F: 173° (Zers.) (Stobbe, Färber, B. 58, 1553). Leicht löslich in Chloroform mit roter Farbe und gelber Fluorescenz, schwer in den übrigen Lösungsmitteln. Verharzt beim Belichten. — 2C₁₉H₁₈O₃ + VCl₂. Braungelbe Nadeln (aus Eisessig) (Dilthey, Rauchhaupt, B. 57, 310). — 2C₁₉H₁₈O₃ + VCl₂. Violettrote Blättehen. Zersetzt sich von 150° an, schmilzt bei ca. 258° (Di., R., B. 57, 300). — 2C₁₉H₁₈O₃ + FeCl₃. Tiefviolette Nadeln. F: ca. 146° (Zers.) (Di., R., B. 57, 309). Zersetzt sich beim Behandeln mit verd. Alkohol.

Verbindung mit α -Naphthol $2C_{19}H_{18}O_3+3C_{10}H_8O$ (E I 687). Ist auch durch thermische Analyse nachgewiesen; bildet Eutektika mit Dianisalaceton und mit α -Naphthol (Pfeiffer, A. 440, 248, 253, 260). — Verbindung mit β -Naphthol $2C_{19}H_{18}O_3+3C_{10}H_8O$. Gelbe Nadeln aus Toluol); ist auch durch thermische Analyse nachgewiesen (Pr., A. 440, 248, 254, 262). F: 73—74°. Bildet Eutektika mit Dianisalaceton und mit β -Naphthol. — Verbindung mit Resorcin $C_{19}H_{18}O_3+2C_6H_6O_3$. Orangefarbene Prismen (aus Eisessig); ist auch durch thermische Analyse nachgewiesen (Pf., A. 440, 249, 254, 263). F: 88—90°. Bildet Eutektika mit Dianisalaceton und mit Resorcin.

Bis-[4-acetoxy-benzyliden]-aceton, 4.4'-Diacetoxy-distyrylketon $C_{21}H_{18}O_5 = (CH_3 \cdot CO \cdot O \cdot C_0H_4 \cdot CH : CH)_2CO$ (H 355). B. Bei längerem Aufbewahren von 4.4'-Dioxy-distyrylketon mit Acetanhydrid in Gegenwart geringer Mengen Mineralsäure (Vorländer, B. 58, 129; vgl. V., Koch, B. 62, 536).

Dianisylidenaceton-dimethylacetal $C_{21}H_{24}O_4=(CH_3\cdot O\cdot C_6H_4\cdot CH\cdot CH)_2C(O\cdot CH_3)_2$. B. Man sättigt eine Lösung von Dianisylidenaceton in absol. Äther + Methanol bei 25—30° mit Chlorwasserstoff und behandelt das Reaktionsprodukt bei 10—20° mit 5%iger Natriummethylat-Lösung (Straus, A. 458, 295). Eine weitere Bildung s. im folgenden Artikel. — Hellgelbes zähes Öl. Kp_{0,2-0,4}: 222—224°. — Zersetzt sich allmählich bei der Destillation sowie beim Aufbewahren an der Luft unter Braunfärbung. Liefert beim Versetzen der warmen methylalkoholischen Lösung mit etwas konz. Salzsäure Dianisylidenaceton und andere Produkte. Gibt beim Behandeln mit Chlorwasserstoff in Schwefelkohlenstoff das Hydrochlorid, beim Behandeln mit Quecksilber(II)-chlorid und Chlorwasserstoff in Äther das Quecksilberchlorid-Doppelsalz des Dianisylidenaceton-chlormethylats.

3-Chlor-3-methoxy-1.5-bis-[4-methoxy-phenyl]-pentadien-(1.4), Dianisylidenaceton-chlormethylat C₂₀H₂₁O₃Cl = (CH₃·O·C₆H₄·CH:CH)₂CCl·O·CH₃. B. Das Quecksilberchlorid-Doppelsalz entsteht beim Leiten von wenig Chlorwasserstoff über mit Methanol befeuchtetes 3-Chlor-5-methoxy-1.5-bis-[4-methoxy-phenyl]-pentadien-(1.3), kurzen Erwärmen auf 60—70° und Behandeln des entstandenen roten Öls mit Quecksilber(II)-chlorid in Äther (STRAUS, A. 458, 292). Das Hydrochlorid und das Quecksilberchlorid-Doppelsalz entstehen beim Behandeln von Dianisylidenaceton-dimethylacetal mit Chlorwasserstoff in Schwefelkohlenstoff bzw. mit Quecksilber(II)-chlorid und Chlorwasserstoff in Äther (STRAUS, A. 458, 297). — Das Hydrochlorid zerfällt beim Erwärmen auf 75—80° in Methylchlorid und Dianisylidenaceton. Das Quecksilberchlorid-Doppelsalz liefert beim Behandeln mit lauwarmer 5% iger Natriummethylat-Lösung Dianisylidenaceton-dimethylacetal. — Hydrochlorid. Blauschwarze Kryställchen.—C₂₀H₂₁O₃Cl+HgCl₂. Violettschwarze feinkrystalline Masse. F: 175—178°. Ist in trockenem Zustand luftbestärdig. Löslich in wasserfreiem Methanol mit fuchsinroter Farbe, die auf Zusatz von Wasser nach Gelb umschlägt, in konz. Schwefelsäure mit violettroter Farbe.

I.
$$\begin{bmatrix} cH_3 \cdot 0 & & & \\ & \ddots & & \\ & & & & \end{bmatrix}_{3}^{2}$$
 CO II. $CH_3 \cdot 0 & & \\ CH_3 \cdot$

Bis - [3 - chlor - anisyliden] - aceton, 3.3'- Dichlor - 4.4'- dimethoxy- dibenzylidenaceton $C_{19}H_{16}O_3Cl_2$, Formel I (X = Cl). B. Durch Kondensation von 3-Chlor-anisylidenaceton mit 3-Chlor-anisaldehyd in wäßrig-alkoholischer Natronlauge (Pfeiffer, Segall, A. 460, 134). — Gelbe Nadeln (aus Benzol oder Eisessig). F: 177,5—178,5°. Sehr schwer löslich in Äther, Methanol und Alkohol, leichter in Benzol und Eisessig. Die Lösung in Eisessig färbt sich auf Zusatz von etwas konz. Schwefelsäure oder Überchlorsäure blutrot (Pf., S., A. 460, 127). — $C_{19}H_{16}O_3Cl_2+HClO_4$. Schokoladebraune Nadeln. F: 205—207° (Zers.) (Pf., S., A. 460, 135).

Bis - [3 - brom - anisyliden] - aceton, 3.3' - Dibrom - 4.4' - dimethoxy - dibenzylidenaceton $C_{19}H_{16}O_3Br_8$, Formel I (X = Br). B. Analog der vorangehenden Verbindung (Pfeiffer, Segall, A. 460, 136). — Gelbe Nadeln (aus Eisessig oder Benzol). F: 181°. Leicht löslich in Eisessig und Benzol, schwer in Methanol, Alkohol und Äther, sehr schwer in Aceton. — $C_{19}H_{16}O_3Br_3 + HClO_4$. Dunkelbraunrote Krystalle (aus Eisessig). F: 168—169° (Zers.).

 α -Anisyliden- α' -[3-nitro-anisyliden]-aceton, 3-Nitro-4.4'-dimethoxy-dibenzylidenaceton $C_{19}H_{17}O_5N$, Formel II. B. Aus 3-Nitro-anisylidenaceton und Anisaldehyd oder aus Anisylidenaceton und 3-Nitro-anisalaldehyd in wäßrig-alkoholischer Natronlauge (Pfeiffer, Segall, A. 460, 132). — Gelbe Nadeln (aus Eisessig). F: 158,5°. Leicht löslich in Eisessig, Aceton und Benzol, schwer in Methanol und Alkohol, sehr schwer in Ligroin, unlöslich in Äther. — Färbt sich am Licht grünlich, wird im Dunkeln wieder gelb.

Bis - [3 - nitro - anisyliden] - aceton, 3.3'- Dinitro - 4.4'- dimethoxy- dibenzylidenaceton $C_{19}H_{16}O_7N_2$, Formel I (X = NO₂). B. Durch Kondensation von Aceton oder 3-Nitro-anisylidenaceton mit 3-Nitro-anisaldehyd in wäßrig-alkoholischer Natronlauge (Pfeiffer, Segall, A. 460, 132, 133). — Gelbe Nadeln (aus Eisessig). F: 220°. — $C_{19}H_{16}O_7N_2 + HClO_4$. Orangerote Nadeln. F: 198° (Zers.).

OXY-OXO-VERBINDUNGEN CnH2n-20O8 UND CnH2n-22O3 [Syst. Nr. 781

- 6. 1.5-Diphenyl pentadien-(1.4)-diol-(2.4)-on-(3), $\alpha.\alpha'$ Dioxy- $\alpha.\alpha'$ dibenzyliden-aceton $C_{17}H_{14}O_2=[C_4H_5\cdot CH:C(OH)]_2CO$.
- 2.4 Dirhodan 1.5 diphenyl pentadien (1.4) on-(3), α.α' Dirhodan α.α' dibenzyliden-aceton C₁₆H₁₂ON₂S₂ = [C₆H₅·CH:C(S·CN)]₂CO. B. Aus Distyrylketon und überschüssigem Rhodan in Äther (Challenger, Bott, Soc. 127, 1041). Krystalle (aus Aceton + Ligroin). F: 151°. Gibt mit Schwefelsäure eine tiefblaue Färbung.

5. Oxy-oxo-Verbindungen $C_{18}H_{16}O_3$.

- 1. 2-Methyl-1.5-bis-[3-oxy-phenyl]-pentadien-(1.4)-on-(3), α -Methyl- $\alpha.\alpha'$ -bis-[3-oxy-benzyliden]-aceton, 3.3'-Dioxy- α -methyl-distyrylketon $C_{18}H_{16}O_3 = HO \cdot C_6H_4 \cdot CH \cdot CH \cdot CO \cdot C(CH_3) \cdot CH \cdot C_6H_4 \cdot OH$. B. Aus 3-Oxy-benzaldehyd und Methyläthylketon in konz. Salzsäure unter anfänglicher Kühlung (Iwamoro, Bl. chem. Soc. Japan 2, 56; Sci. Rep. Tohoku Univ. 16, 540; C. 1927 I, 2730; II, 1471). Ziegelrotes Pulver.
- 3.3'- Dimethoxy- α -methyl-distyrylketon $C_{80}H_{20}O_3=CH_3\cdot O\cdot C_6H_4\cdot CH:CH\cdot CO\cdot C(CH_3):$ $CH\cdot C_6H_4\cdot O\cdot CH_3$. B. Beim Sättigen eines Gemisches aus 3-Methoxy-benzaldehyd und Methyläthylketon mit Chlorwasserstoff unter Kühlung (Iwamoto, Bl. Soc. chem. Japan 2, 56; Sci. Rep. Tôhoku Univ. 16, 540; C. 1927 I, 2730; II, 1471). Aus 3.3'-Dioxy- α -methyl-distyrylketon und Dimethylsulfat in Alkalilauge (I.). Gelb, amorph.
- 2. 1.4-Di-m-tolyl-buten-(2)-ol-(2)-dion-(1.4), α -Oxy- α . β -di-m-tolyl-äthylen $C_{18}H_{16}O_3=CH_3\cdot C_6H_4\cdot CO\cdot CH: C(OH)\cdot CO\cdot C_6H_4\cdot CH_3.$
- α-Methoxy-α.β-bis-[4-chlor-3-methyl-benzoyl]äthylen C₁₉H₁₆O₃Cl₂, s. nebenstehende Formel. B.
 Beim Kochen von 1.2-Dibrom-1.2-bis-[4-chlor-3-methyl-benzoyl]-äthan mit Natriummethylat-Lösung
 (CONANT, LUTZ, Am. Soc. 47, 889). F: 123,5°.
- 3. 1.4 Di p tolyl buten -(2) ol -(2) dion -(1.4), α Oxy α . β di p tolyl äthylen $C_{18}H_{16}O_3 = CH_3 \cdot C_6H_4 \cdot CO \cdot CH : C(OH) \cdot CO \cdot C_6H_4 \cdot CH_2$.
- α-Methoxy-α.β-di-p-toluyi-äthylen C₁₉H₁₈O₃ = CH₃·C₆H₄·CO·CH:C(O·CH₃)·CO·C₆H₄·CH₃. B. Analog der vorangehenden Verbindung (CONANT, LUTZ, Am. Soc. 47, 889). F: 100°.

6. Oxy-oxo-Verbindungen $C_{20}H_{20}O_3$.

α-Methoxy-α.β-bis-[2.4-dimethyl-benzoyl]-äthylen $C_{31}H_{23}O_3={}^{2\cdot4}(CH_3)_3C_6H_3\cdot CO\cdot CH:$ $C(O\cdot CH_3)\cdot CO\cdot C_6H_3(CH_3)_3{}^{2\cdot4}.$ B. Analog den vorangehenden Verbindungen (Conant, Lutz, Am. Soc. 47, 889). — F: 117,5°.

7. Oxy-oxo-Verbindungen C₂₂H₂₄O₃.

- 1.4-Bis-[2.4.6-trimethyl-phenyl]-buten-(2)-ol-(2)-dion-(1.4), α -Oxy- α . β -bis-[2.4.6-trimethyl-benzoyl]-äthylen $C_{11}H_{44}O_3$ =(CH₃), C_6H_1 ·CO·CH:C(OH)·CO·C₆H₄(CH₃)₃ ist desmotrop mit 1.4-Bis-[2.4.6-trimethyl-phenyl]-butantrion-(1.2.4), E II 7, 836.
- α-Methoxy-α.β-bis-[2.4.6-trimethyl-benzoyi]-āthylen $C_{23}H_{26}O_3 = (CH_3)_3C_6H_2\cdot CO\cdot CH: C(O\cdot CH_3)\cdot CO\cdot C_6H_2(CH_3)_3$. Zur Konfiguration der nachstehend beschriebenen Stereoisomeren vgl. Lutz, Am. Soc. 56 [1934], 1590.
- a) Niedrigerschmelzende Form, trans- α -Methoxy- $\alpha.\beta$ -bis-[2.4.6-trimethylbenzoyl]-äthylen (CH₃)₃C₆H₂·CO·CH benzoyl]-äthylen B. Aus α -Oxy- $\alpha.\beta$ -bis-[2.4.6-trimethylen B.
- CH₃·O·C·Co·C₆H₂(CH₃).

 methyl-benzoyl]-äthylen (E II 7, 836) und Diazomethan in Äther (Lutz, Am. Soc. 48, 2913).

 Neben der höherschmelzenden Form bei der Einw. von Natriummethylat-Lösung auf höherschmelzendes oder niedrigerschmelzendes 1.2-Dibrom-1.2-bis-[2.4.6-trimethyl-benzoyl]-äthan; man erhält mit möglichst wenig Natriummethylat bei gewöhnlicher Temperatur oder in der Kälte überwiegend die höherschmelzende Form, bei etwas höherer Temperatur mit überschüssigem Natriummethylat etwa gleiche Mengen der beiden Stereoisomeren (Conant, L., Am. Soc. 47, 889; L., Am. Soc. 48, 2913; 56 [1934], 1591). Gelbe Krystalle (aus Alkohol).

 F: 107,5—1080 (korr.) (L.). In Ligroin leichter löslich als die höherschmelzende Form (L.).
- b) Höherschmelzende Form, cis-α-Methoxy-α.β-bis-[2.4.6-trimethyl-benzoyl](CH₃)₃C₅H₂·CO·CH

 äthylen
 (CH₃)₃C₆H₂·CO·C·C·O·CH₃
 (CH₃)₃C₆H₂·CO·C·O·CH₃
 (aus Alkohol). F: 120° (korr.) (CONANT, LUTZ, Am. Soc. 47, 889; L., Am. Soc. 48, 2913).

8. Oxy-exo-Verbindungen C₂₅H₃₀O₃.

1.5-Bis-[4-oxy-2-methyl-5-isopropyl-phenyl]-pentadien-(1.4)-on-(3), Bis-[4-oxy-2-methyl-5-isopropyl-benzyliden]-aceton, Dithymolaldehydaceton C₂₅H₂₀O₃, s. nebenstehende Formel. B. Das Hydrochlorid entsteht aus Thymol-aldehyd-(4) und Aceton oder Acetylaceton in alkoh. Salzsäure (Heller, B. 54, 1119). — Rötlichgelbe, violett-schimmernde Krystalle (aus Eisessig oder Alkohol). F: 268° (CH₃)₂CH (CH₃)₂CH (CH₃)₂CH considered in Chloroform und Benzol. Löst sich in konz. Selver ein dunkslatter Selver in Netroplause ein dunkslatter Selver in Netroplause ein dunkslatter Selver (chi 2) (chi 3)
sehr schwer in Chloroform und Benzol. Löst sich in konz. Schwefelsäure mit karminroter, in Natronlauge mit blaustichig roter Farbe; gibt mit konz. Natronlauge ein dunkelrotes Salz. — Wird durch siedende Kalilauge gespalten. — Hydrochlorid. Grüne Nadeln.

Diacetylderivat $C_{59}H_{34}O_5 = [CH_3 \cdot CO \cdot O \cdot C_4H_4(CH_3)(C_3H_7) \cdot CH : CH]_3CO$. F: 129° (Heller, B. 54, 1119). [Ammerlahn]

1) Oxy-oxo-Verbindungen $C_n H_{2n-22} O_3$.

1. Oxy-o'xo-Verbindungen $C_{16}H_{10}O_3$.

- 1. 3-Oxy-2-phenyl-naphthochinon-(1.4) C₁₆H₁₀O₃, s. nebenstehende Formel (H 356). Zur Konstitution vgl. die Angaben bei 2-Oxynaphthochinon-(1.4) (S. 344) sowie Fieser, Am. Soc. 50, 443. B. Beim Einleiten von Luft in eine alkal. Lösung von 1.4-Dioxy-3-phenyl-naphthoesäure-(2)-äthylester (Radulescu, Gheorghiu, B. 60, 187, 189). Beim Kochen von 3-Phenyl-naphthochinon-(1.4)-carbonsäure-(2)-äthylester mit Alkalien unter Luftzutritt (R., Gh.). F: 145—146° (R., Gh.). Gibt beim Kochen mit Zinkstaub, Acetanhydrid und Natriumacetat 1.3.4-Triacetoxy-2-phenyl-naphthalin (E II 6, 1104) (R., Gh.). Liefert beim Erhitzen mit alkoh. Ammoniak im Rohr ein Dioxy-diphenyl-dibenzophenazin; Absorptionsspektrum dieser Verbindung in verschiedenen Lösungsmitteln: Radulescu, Barbulescu, Bulet. Cluj 4, 352, 356; C. 1929 II, 1766.
- 3 Methoxy 2 phenyl naphthochinon (1.4) $C_{17}H_{12}O_3 = C_6H_4 < CO \cdot C \cdot C_6H_5$ (H 356).

 B. Beim Behandeln von 3-Oxy-2-phenyl-naphthochinon-(1.4) mit Dimethylsulfat in alkal. Lösung (RADULESCU, GHEORGHIU, B. 60, 189).
- 3-Acetoxy-2-phenyl-naphthochinon-(1.4) $C_{18}H_{12}O_4 = C_6H_4 < \begin{array}{c} CO \cdot C \cdot C_6H_5 \\ CO \cdot C \cdot C \cdot C \cdot CO \cdot CH_5 \end{array}$ (H 356). Hellgelbe Nadeln (aus Alkohol). F: 112—113° (Radulescu, Gheorghiu, B. 60, 189).
- 2. 1.3 Dioxo 2 [2 oxy benzyliden] hydrinden, 2 Salicyliden indandion-(1.3), Salicylalindandion $C_{16}H_{10}O_3 = C_6H_4 < {}^{CO}_{CO} > C: CH \cdot C_6H_4 \cdot OH (H 357; E I 668).$ Lichtabsorption: RADULESCU, IONESCU, Bulet. Cluj 2, 182, 184; C. 1924 II, 2846.
- 2-[4-Brom-2-oxy-benzyliden]-indandion-(1.3), 2-[4-Brom-salicyliden]-indandion-(1.3) $C_{16}H_9O_3$ Br, s. nebenstehende Formel.

 B. Aus Indandion-(1.3) und 4-Brom-salicylaldehyd (RADULESCU, Ionescu, Bulet. Cluj 2, 178; C. 1924 II, 2844). Gelbe Nadeln (aus Alkohol). F: 229—230°. Lichtabsorption: R., I. Löslich in konz. Schwefelsäure mit gelber, in alkoh. Ammoniak mit rotvioletter Farbe.

3. 1.3 - Dioxo - 2 - [4 - oxy - benzyliden] - hydrinden, 2 - [4 - Oxy - benzyliden] - indandion - (1.3) $C_{16}H_{10}O_2 = C_6H_4 < CO > C:CH \cdot C_6H_4 \cdot OH$ (H 357). Lichtabsorption: Radulescu, Ionescu, Bulet. Cluj 2, 182, 184; C. 1924 II, 2846; R., Georgescu, Ph. Ch. [B] 5, 196. — Liefert beim Kochen mit Dimethyldihydroresorcin und wenig Piperidin in Alkohol [4-Oxyphenyl]-[indandion-(1.3)-yl-(2)]-bindonyl-methan (Formel I; $R = C_6H_4 \cdot OH$) (Syst. Nr. 864) (Ionescu, Secareanu, Bulet. Cluj 8, 282; C. 1927 II, 71).

- 2 [4 Methoxy benzyliden] indandion (1.3), 2 Anisyliden indandion (1.3), Anisaiindandion $C_{17}H_{18}O_8 = C_6H_4 < \frac{CO}{CO} > C: CH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Aus Anisaldehyd und Indandion (1.3) beim Erhitzen auf 120º (RADULESCU, IONESCU, Bulet. Cluj 2, 178; C. 1924 II, 2846) oder beim Kochen mit etwas Piperidin in Alkohol (Ionescu, Secareanu, Bulet. Cluj 8, 274; C. 1927 II, Notes in the twas riperion in Alaoho (1000850), Suckkiano, Butel. Ctay 6, 212; C. De Losung in konz. Schwefelsäure ist orangerot (R., I.). — Liefert beim Kochen mit Indandion-(1.3) und wenig Piperion in Alkohol [4-Methoxy-phenyl]-[indandion-(1.3)-yl-(2)]-bindonyl-methan (Formel I; $R = C_6H_4 \cdot O \cdot CH_3$) (I., S.). Bei kurzem Kochen mit Indandion-(1.3) und etwas Ammoniak in Alkohol bildet sich [4-Methoxy-phenyl]-dibindonyl-methan (Formel II; Syst. Nr. 876) (I., S.). Beim Kochen mit Dimethyldihydroresorcin und wenig Piperidin in Alkohol entstehen [4-Methoxy-phenyl]-[indandion-(1.3)-yl-(2)]-bindonyl-methan und 1.8-Dioxo-3.3.6.6-tetramethyl-9-[4-methoxy-phenyl]-1.2.3.4.5.6.7.8-oktahydro-xanthen (Syst. Nr. 2536) (I., S.).
- 2 [4-Acetoxy benzyliden] indandion (1.3) $C_{18}H_{12}O_4 = C_6H_4 < \stackrel{CO}{CO} > C: CH \cdot C_6H_4 \cdot O \cdot CO \cdot CH_3$ (H 357). B. Beim Kochen von 2-[4-Oxy-benzyliden]-indandion-(1.3) mit Acetanhydrid und wenig konz. Schwefelsäure (IONESCU, SECAREANU, Bulet. Cluy 3, 265 Anm.; C. 1927 II, 71). - Absorptionsspektrum in Methyläthylketon: I., S., Bulet. Cluj 3, 128; C. 1927 I, 601. — Kondensiert sich mit Malonester bei Gegenwart von Piperidin in siedendem Alkohol zu β -[4-Acetoxy-phenyl]- β -[indandion-(1.3)-yl-(2)]-isobernsteinsäure-diäthylester (Syst. Nr. 1479) (I., S., Bulet. Cluj 3, 127; C. 1927 I, 601).

2. Oxy-oxo-Verbindungen $C_{12}H_{12}O_3$.

- 1. 1.3 Diphenyl cyclopenten (3) ol (4) dion (2.5) bzw. 1.3 Diphenyl-cyclopentadien (3.5) diol (4.5) on (2) $C_{17}H_{12}O_3 = \frac{HO \cdot C = C(C_0H_5)}{OC \cdot CH(C_0H_5)}CO$ bzw. HO·C: $C(C_6H_5)$ CO ist desmotrop mit 1.3-Diphenyl-cyclopentantrion-(2.4.5), E II 7, 838.
- 4 Methoxy 1.3 diphenyl cyclopenten (3) dion (2.5) bzw. 4 Methoxy 1.3 diphenyl-cyclopentadien (3.5) ol (5) on (2) $C_{18}H_{14}O_3=$ $\begin{array}{c} \text{CH}_3 \cdot \text{O} \cdot \text{C} = \text{C}(\text{C}_c \text{H}_5) \\ \text{OC} \cdot \text{CH}(\text{C}_0 \text{H}_5) \end{array} \text{CO} \quad \text{bzw.} \quad \begin{array}{c} \text{CH}_3 \cdot \text{O} \cdot \text{C} : \text{C}(\text{C}_c \text{H}_5) \\ \text{HO} \cdot \text{C} : \text{C}(\text{C}_0 \text{H}_5) \end{array} \text{CO} \quad \text{(H 357)}. \quad B. \quad \text{Bei der Einw. von 4\% iger} \\ \end{array}$

methylalkoholischer Kalilauge auf Pulvinon-methyläther $\begin{array}{c} C_6H_5 \cdot C = C \cdot O \cdot CH_3 \\ C_6H_5 \cdot C = C \cdot O \cdot CH_3 \\ OC \cdot O \cdot C \cdot C(C_6H_5) \cdot CO_2 \cdot CH_3 \\ \end{array}$ (Köcl., A. 465, 248, 249, 256).

- 2. 3-Oxy-2-[4-oxy-benzoyl]-naphthalin, 3-[4-Oxy-benzoyl]-naphthol-(2) $C_{17}H_{12}O_3$, Formel 1.
- 3-Oxy-2-[4-methoxy-benzoyl]-naphthalin, 3-Anisoyl-naphthol-(2), [4-Methoxy-phenyl]-(3-oxy-naphthyl-(2)]-keton $C_{18}H_{14}O_3 = HO \cdot C_{10}H_4 \cdot CO \cdot C_6H_4 \cdot O \cdot CH_8$. B. Beim Erwärmen von 3-Oxy-naphthoesäure-(2)-chlorid mit Anisol in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff auf 45° (I. G. Farbenind., D.R.P. 483148; C. 1980 I, 893; Frdl. 16, 495). — Gelbe Blättchen (aus Ligroin). F: 134-134,5° (unkorr.).
- 3. 6-Oxy-2-[4-oxy-benzoyl]-naphthalin, 6-[4-Oxy-benzoyl]-naphthol-(2) C₁₇H₁₂O₃, Formel II.
- 6-Oxy-2-[4-methoxy-benzoyl]-naphthalin, 6-Anisoyl-naphthol-(2), [4-Methoxy-phenyl]-[6-oxy-naphthyl-(2)]-keton $C_{18}H_{14}O_3 = HO \cdot C_{10}H_{e} \cdot CO \cdot C_{e}H_{4} \cdot O \cdot CH_{3}$. B. Analog der vorangehenden Verbindung (I. G. Farbenind., D.R.P. 483148; C. 1980 I, 893; Frdl. 16, 495). Blaßgelbe Nadeln (aus verd. Alkohol). F: 196—1970 (unkorr.).

I.
$$OH OH$$
 II. $OO OH$ III. $OO OH$ III. $OO OH$ OH

4. 3-Oxy-2-benzyl-naphthochinon-(1.4) C₁₇H₁₂O₃, Formel III. Zur Konstitution vgl. die Angaben bei 2-Oxy-naphthochinon-(1.4) (8.344) sowie Fieser, Am. Soc. 50, 443. — B. Neben isomeren Verbindungen bei der Einw. von Benzylbromid auf das Silbersalz des 2-Oxy-naphthochinons-(1.4) in siedendem Benzol (F., Am. Soc. 48, 3211). — Gelbe Tafeln (aus Benzol + Ligroin), Nadeln (aus angestuertem Alkohol). F: 175—176° (F., Am. Soc. 48,

3211). Leicht löslich in Benzol, Alkohol und Eisessig; löslich in Natronlauge, schwer löslich in Sodalösung mit roter Farbe. Redoxpotential in wäßrig-alkoholischer Salzsäure bei Gegenwart von Lithiumchlorid bei 25°: F., Am. Soc. 50, 449.

3-Methoxy-2-benzyl-naphthochinon-(1.4) $C_{18}H_{14}O_3 = C_6H_4$ $C_0 \cdot C \cdot C \cdot C_{18} \cdot C_6H_5$. B. Bei der Einw. von Diazomethan auf 3-Oxy-2-benzyl-naphthochinon-(1.4) (Fieser, Am. Soc. 50, 459). — Gelbe Nadeln (aus Ligroin oder Petroläther). F: 83,5°. Sehr leicht löslich in den gebräuchlichen Lösungsmitteln, sehr schwer in Wasser. — Wird durch wäßrige oder alkoholische Alkalien nur schwer hydrolysiert.

- 5. 3-Oxy-2-allyl-anthrachinon-(1.4) C₁₇H₁₂O₃, Formel IV. B. In geringer Menge bei der Einw. von Allylbromid auf das Silbersalz des 2-Oxy-anthrachinons-(1.4) in siedendem Benzol (FIESER, Am. Soc. 50, 472). Beim Erhitzen von 4-Allyloxy-anthrachinon-(1.2) auf 175° (F.). Gelbe Nadeln (aus Eisessig). F: 215°. Leicht löslich in Benzol, schwer in Alkohol. Löst sich in Alkalien und Alkalicarbonat-Lösungen mit orangegelber Farbe. Liefert beim Behandeln mit konz. Schwefelsäure 2-Methyl-[naphtho-2'.3':6.7-cumaranchinon-(4.5)] (Formel V; Syst. Nr. 2484).
- 6. 3-Oxy-2-allyl-phenanthrenchinon-(1.4) C₁₇H₁₂O₃, Formel VI. B. Neben viel 1-Allyloxy-phenanthrenchinon-(3.4) bei der Einw. von Allylbromid auf das Silbersalz des 3-Oxy-phenanthrenchinons-(1.4) in siedendem Benzol (FIESEB, Am. Soc. 51, 949). Beim Erhitzen von 1-Allyloxy-phenanthrenchinon-(3.4) über den Schmelzpunkt (F., Am. Soc. 51, 950). Orangefarbene Nadeln (aus Ligroin). F: 155° (unkorr.). Leicht löslich in Eisessig und Alkohol. Liefert beim Behandeln mit kalter konzentrierter Schwefelsäure 2-Methyl-[naphtho-1'.2':6.7-cumaranchinon-(4.5)] (Formel VII; Syst. Nr. 2484) (F., Am. Soc. 51, 950, 3102).

VII.
$$O - CH \cdot CH_3$$
 $O - CH_3 - CH_3$ $O - CH_3 -$

7. 2-Oxy-3-allyl-phenanthrenchinon-(1.4) C₁₇H₁₂O₃, Formel VIII. B. Neben 4-Allyloxy-phenanthrenchinon-(1.2) bei der Einw. von Allylbromid auf das Silbersalz des 2-Oxy-phenanthrenchinons-(1.4) in siedendem Benzol (FIESER, Am. Soc. 51, 1902). — Orangefarbene Nadeln (aus Ligroin). F: 157°. Leicht löslich in Ligroin. Die Lösung in konz. Schwefelsäure ist grün und scheidet beim Verdünnen einen dunkelroten Niederschlag aus. Löst sich in Alkalien mit weinroter Farbe, die beim Kochen verschwindet.

3. Oxy-oxo-Verbindungen C₁₉H₁₆O₂.

1. 1.3-Bis-[2-oxy-benzyliden]-cyclopentanon-(2), 1.3-Disalicyliden-cyclopentanon-(2) $C_{19}H_{16}O_3 = \frac{H_2C \cdot C(:CH \cdot C_6H_4 \cdot OH)}{H_2C \cdot C(:CH \cdot C_6H_4 \cdot OH)}$ CO (H 359; E I 669). F: cs. 193° (Zers.) (VORLÖNDER, R 58, 135).

2. 1.3 - Bis - [4 - oxy - benzyliden] - cyclopentanon - (2) C₁₈H₁₆O₃ = H₂C·C(:CH·C₆H₄·OH) CO (H 359). B. Zur Bildung aus Cyclopentanon und 4-Oxy-benz-H₂C·C(:CH·C₆H₄·OH) aldehyd in wäßrig-alkoholischer Natronlauge (Mentzel, B. 36, 1503) vgl. Vorländer, B. 58, 131. Man sättigt eine Lösung von 1 Tl. Cyclopentanon und 3 Tln. 4-Oxy-benzaldehyd in absol. Alkohol oder Eisessig unter Eiskühlung mit Chlorwasserstoff und behandelt das entstandene. Hydrochlorid mit warmem Wasser oder mit Natriumacetat in kalter verdünnter Essigsäure; das infolge geringen Säuregehalts gelbgrüne bis grüne Reaktionsprodukt wird bei längerem Aufbewahren, beim Erhitzen auf 80—120° oder Erwärmen mit Alkohol oder Aceton säurefrei (V., B. 58, 131; vgl. V., Koch, B. 62, 534). — Bei 20° lösen 100 cm² Chloroform 0,421 g, 100 cm² Alkohol 0,156 g, 100 cm³ Benzol 0,01 g, 100 cm³ Eisessig 0,31 g, 100 cm³ Acetanhydrid 0,14 g (V.). Die Lösungen in indifferenten Lösungsmitteln sind gelb; alkal. Lösungen sind rotgelb und geben mit verd. Salzsäure einen grünlichen Niederschlag, der an der Luft wieder gelb wird; beim Umkrystallisieren aus Eisessig werden ebenfalls grünstichig gelbe Präparate erhalten (V.; vgl.

V., K.). — Aus Alkohol umkrystallisierte und über Phosphorpentoxyd getrocknete Präparate bleiben beim Überleiten von Halogenwasserstoffen unverändert, addieren aber in Gegenwart von etwas Alkohol oder Eisessig bei 0° oder Zimmertemperatur unter Schwarzfärbung bis zu 2 Mol Chlorwasserstoff bzw. Bromwasserstoff (V.).

Salze: Voblander, B. 58, 136. — Na₂C₁₉H₁₄O₃. Rot, krystallinisch. — C₁₉H₁₆O₃ + HCl. Dunkelblauviolette Krystalle. Wird durch Wasser bei 15—20° leicht hydrolysiert. — C₁₉H₁₆O₃ + HBr. Dunkelblauviolette Krystalle. Wird durch Wasser bei 15—20° leicht hydrolysiert.

- 1.3 Dianisyliden cyclopentanon (2), Dianisalcyclopentanon $C_{21}H_{20}O_3 = (CH_2 \cdot O \cdot C_6H_4 \cdot CH:)_2C_5H_4O$ (H 359). Gelbe Prismen (aus Alkohol); F: 216° (korr.); die Schmelze wird beim Abkühlen monotrop krystallinisch-flüssig und scheidet bei geringer Unterkühlung die gelben Prismen, bei stärkerer Unterkühlung eine zweite krystallinische Form aus, die unterhalb 190° zu einer bis 195° beständigen anisotropen Flüssigkeit schmilzt (Vorländer, B. 54, 2261, 2263; vgl. A. Müller, B. 54, 1482 Anm. 2). Zersetzt sich bei längerem Erhitzen unter Braunfärbung (V.).
- 1.3-Bis-[4-äthoxy-benzyliden]-cyclopentanon-(2) $C_{23}H_{24}O_3=(C_2H_5\cdot O\cdot C_6H_4\cdot CH:)_2C_5H_4O$. Gelbe Tafeln. F: 189°; die anisotrope Schmelze ist bis 194° zähflüssig, oberhalb 194° dünnflüssig und wird bei 200° klar (Vorländer, *B.* 54, 2263; vgl. a. V., *B.* 41 [1908], 2049).
- 1.3 Bis [4 phenoxy benzyliden] cyclopentanon (2) $C_{31}H_{24}O_3 = (C_6H_5\cdot O\cdot C_6H_4\cdot CH:)_2C_5H_4O$. Blaßgelbe Nadeln (aus Alkohol). F: ca. 224° (Vorländer, B. 54, 2263).
- 1.3 Bis [4 acetoxy benzyliden] cyclopentanon (2) $C_{93}H_{90}O_5 = (CH_3 \cdot CO \cdot O \cdot C_6H_4 \cdot CH:)_2C_5H_4O$. B. Beim Erwärmen von 1.3-Bis-[4-oxy-benzyliden]-cyclopentanon-(2) mit Acetanhydrid (Vorländer, B. 58, 132). Ist dimorph. F: 240° ; die Schmelze ist monotrop krystallinisch-flüssig (V., B. 54, 2263; 58, 132).
- 1.3 Bis [4 carbāthoxyoxy benzyliden] cyclopentanon (2) $C_{25}H_{24}O_7 = (C_2H_5 \cdot O_2C \cdot O \cdot C_6H_4 \cdot CH:)_2C_5H_4O$. B. Beim Behandeln von 1.3-Bis-[4-oxy-benzyliden]-cyclopentanon-(2) mit Chlorameisensäureäthylester in wäßrig-alkalischer Lösung (Vorländer, B. 58, 132). Gelbe Blättchen (aus Alkohol). Schmilzt bei 188° (korr.); die Schmelze ist bis 193° (korr.) krystallinischflüssig.
- 3. 1 Oxy 2 [4 oxy hydrocinnamoyl] naph-thalin, <math>2 [4 Oxy hydrocinnamoyl] naphthol-(1) $C_{10}H_{16}O_3$, s. nebenstehende Formel.
- 2-[4-Methoxy-hydrocinnamoyl]-naphthol-(1), [4-Methoxy- β -phenäthyl]-[1-oxy-naphthyl-(2)]-keton $C_{30}H_{18}O_3 = HO \cdot C_{10}H_6 \cdot CO \cdot CH_2 \cdot CH_3 \cdot C_6H_4 \cdot O \cdot CH_3$ (E I 669). B. In geringer Menge bei der Reduktion von 2-[4-Methoxy-cinnamoyl]-naphthol-(1) mit Zinkstaub und Eisessig (Pfeiffer, Mitarb., J. pr. [2] 119, 126).

4. Oxy-oxo-Verbindungen C₂₀H₁₈O₃.

1. 1-[2-Oxy-phenyl]-3-[2-oxy-styryl]-cyclohexen-(3)-on-(5) $C_{10}H_{18}O_3 = HO \cdot C_6H_4 \cdot CH \cdot CH \cdot C \cdot CH_2 \cdot CH \cdot C_6H_4 \cdot OH$ $H^{\circ}_{C} \cdot CO \cdot CH_2 \cdot CH_2 \cdot CH \cdot C_6H_4 \cdot OH$ B. Neben 4-[2-Oxy-cinnamoylmethyl]-3.4-di-

hydro-cumarin bei der Kondensation von 2.2'-Dioxy-distyrylketon mit Acetessigester in Gegenwart von Natronlauge bei Zimmertemperatur (Heilbron, Forster, Soc. 125, 2066). — Blaßgelbe Prismen mit 1 CH₃·OH (aus Methanol). F: 240°. Gibt mit konz. Schwefelsäure eine tiefrote Färbung.

cyclohexen-(4)-on-(6)-carbonsäure-(1)-äthylester beim Kochen von 2-Oxy-2'-methoxy-distyrylketon mit Acetessigester in wäßrig-alkoholischer Natronlauge (Heilbron, Forster, Soc. 125, 2067). — Blaßgelbe Nadeln (aus Benzol + Petroläther). F: 172°. Schwer löslich in Alkohol. Löslich in konz. Schwefelsäure mit karminroter, in verd. Natronlauge mit gelber Farbe.

1-[2-Methoxy-phenyl]-3-[2-methoxy-styryl]-cyclohexen-(3)-on-(5) $C_{22}H_{22}O_{3} = CH_{3} \cdot O \cdot C_{6}H_{4} \cdot CH : CH \cdot C \cdot CH_{2} \cdot CHC_{6}H_{4} \cdot O \cdot CH_{3}$. Beim Erwärmen von 1-[2-Oxy-phenyl]-

HÜ-CO·CH₂
3-[2-oxy-styryl]-cyclohexen-(3)-on-(5) oder 1-[2-Oxy-phenyl]-3-[2-methoxy-styryl]-cyclohexen-(3)-on-(5) mit Dimethylsulfat und 10%iger Natronlauge in Aceton (Heilbon, Forster, Soc. 125, 2067). Beim Erhitzen von 2-[2-Methoxy-phenyl]-4-[2-methoxy-styryl]-1-acetyl-cyclohexen-(4)-on-(6) mit Kaliumhypojodit-Lösung und methylalkoholischer Kalilauge (H., F.). — Nadeln (aus Benzol + Petroläther). F: 128°.

- 2. 1.3-Bis-[2-oxy-benzyliden]-cyclohexanon-(2), 1.3-Disalicyliden-cyclohexanon-(2), 1.3-Disalicyliden-cyclohexanon-(2) $C_{50}H_{16}O_{5} = H_{0} \cdot C_{6}H_{4} \cdot CH \cdot C \cdot C \cdot C \cdot CH \cdot C_{6}H_{4} \cdot CH \cdot CH_{2} \cdot$
- 3. 1.3 Bis [4 oxy benzyliden] cyclohexanon (2) $C_{20}H_{18}O_3 = HO \cdot C_0H_4 \cdot CH : C \cdot CO \cdot C : CH \cdot C_0H_4 \cdot OH$. B. Aus Cyclohexanon und 4-Oxy-benzaldehyd durch
- H₂C·CH₃·CH₃
 Behandlung mit wäßrig-alkoholischer Natronlauge oder durch Einleiten von Bromwasserstoff und Eintragen einer siedenden alkoholischen Lösung des entstandenen Hydrobromids (s. u.) in heißes Wasser (Vorländer, B. 58, 132). Gelbes Krystallpulver. F: ca. 291° (korr.; Zers.). Bei 18—20° lösen 100 cm³ Chloroform 0,28 g, 100 cm³ Alkohol 0,294 g, 100 cm³ Benzol 0,010 g, 100 cm³ Eisessig 0,32 g, 100 cm³ Acetanhydrid 0,13 g. Die wäßrig-alkoholische Lösung ist gelb und wird bei p_H 9—11 orange. Liefert bei der Reduktion mit Natriumamalgam in Alkohol unter Zusatz von Ammoniumchlorid bei Zimmertemperatur 1.3-Bis-[4-oxy-benzyl]-cyclohexanol-(2). Verhalten gegen Halogenwasserstoff bei verschiedenen Temperaturen: V. Na₂C₃₀H₁₆O₃. Rotorange, krystallinisch. C₂₀H₁₈O₃ + HBr. Schwarzblaue oder blauviolette Blättchen oder Nadeln. Wird durch Wasser erst bei 40—80° vollständig hydrolysiert.
- 1.3 Dianisyliden cyclohexanon (2), Dianisalcyclohexanon $C_{22}H_{22}O_3 = (CH_3 \cdot O \cdot C_6H_4 \cdot CH_2)_2C_6H_6O$ (H 360; E I 670). B. Zur Bildung aus Cyclohexanon und Anisaldehyd in alkoh. Natronlauge (H 360) vgl. A. MÜLLER, B. 54, 1482; entsteht aus Cyclohexanon und Anisaldehyd auch in Gegenwart von sauren Kondensationsmitteln wie z. B. alkoh. Salzsäure (Coffey, R. 42, 528) oder Bromwasserstoff in Alkohol oder Eisessig (Vorländer, B. 58, 133). Durch Methylierung von 1.3-Bis-[4-oxy-benzyliden]-cyclohexanon-(2) mit Dimethylsulfat (V.). Gelbe Nadeln (aus Eisessig). F: 162° (korr.); die Schmelze ist bis 173° (korr.) krystallinischflüssig (V., B. 58, 133; V., Koch, B. 62, 540 Anm. 2; Co.; vgl. M.). $C_{22}H_{22}O_3 + HCl$. Blauviolett (V.).
- 1.3-Bis-[4-äthoxy-benzyliden]-cyclohexanon-(2) $C_{24}H_{26}O_3 = (C_2H_5 \cdot O \cdot C_6H_4 \cdot CH :)_2C_6H_6O$ (E I 670). Gelbe Prismen (aus Alkohol). F: 146°; die Schmelze ist bis 176° krystallinisch-flüssig (Vorländer, B. 54, 2262).
- 1.3 Bis [4 acetoxy benzyliden] cyclohexanon (2) $C_{24}H_{22}O_5 = (CH_3 \cdot CO \cdot O \cdot C_6H_4 \cdot CH \cdot)_2C_6H_6O$. B. Aus 1.3-Bis-[4-oxy-benzyliden]-cyclohexanon-(2) und Acetanhydrid bei Zimmertemperatur (Vorländer, B. 58, 133). Gelbe Nadeln (aus Chloroform + Alkohol oder verd. Essigsäure). F: 187° (korr.); die Schmelze wird beim Unterkühlen krystallinischflüssig. Die Lösung in konz. Schwefelsäure ist rotviolett.
- 1.3 Bis [4 carbäthoxyoxy benzyliden] cyclohexanon (2) $C_{26}H_{26}O_7 = (C_2H_5 \cdot O_2C \cdot O \cdot C_6H_4 \cdot CH:)_2C_6H_6O$. Gelbe Nadeln oder Tafeln (aus Chloroform + Alkohol). F: 136° (korr.); die Schmelze ist bis 167° (korr.) krystallinisch-flüssig (Vorländer, B. 58, 133).
- 5. Oxy-oxo-Verbindungen $C_{s1}H_{s0}O_{s}$.
- 1. 1.3 Bis [4 oxy benzyliden] cycloheptanon (2) $C_{21}H_{20}O_3 = \frac{HO \cdot C_6H_4 \cdot CH \cdot C CO C \cdot CH \cdot C_6H_4 \cdot OH}{H_2C \cdot CH_2 \cdot CH_2 \cdot CH_2}.$
- 1.3-Dianisyliden-cycloheptanon-(2), Dianisalsuberon C₂₃H₂₄O₃ = (CH₃·O·C₆H₄·CH:)₂C₇H₈O (H 360). F: 128—129°; zuweilen wurden bei ca. 124° schmelzende Präparate erhalten (Vorländer, Koch, B. 62, 540 Anm. 3). Die Schmelze wird beim Unterkühlen krystallinischflüssig.
- 2. 1-Methyl-2.4-bis-[4-oxy-benzyliden]-cyclohexanon-(3) $C_{21}H_{20}O_3=HO\cdot C_0H_4\cdot CH:C\cdot CO\cdot C:CH\cdot C_0H_4\cdot OH$. Optisch-aktive Form (?). B. Beim Sättigen einer
- eiskalten Lösung von 1 Mol rechtsdrehendem 1-Methyl-cyclohexanon-(3) und 2 Mol 4-Oxybenzaldehyd in absol. Alkohol mit Chlorwasserstoff; man zersetzt das entstandene Hydrochlorid mit verd. Natronlauge und fällt mit Essigsäure (Vorländer, B. 58, 134). Gelbe Krystalle (aus verd. Alkohol). F: 236° (korr.). Die Lösung in konz. Schwefelsäure ist violett. Dinatriumsalz. Rot; in Lösung rotorange. Hydrochlorid C₂₁H₂₀O₃+HCl. Schwarzblaue Nadeln; in Lösung dunkelblauviolett. Wird durch kaltes Wasser hydrolysiert.
- 1 Methyl 2 [4 oxy-benzyliden] 4 anisyliden cyclohexanon (3) $C_{22}H_{22}O_3 = CH_1 \cdot O \cdot C_4H_4 \cdot CH \cdot C \cdot CO \cdot C \cdot CH \cdot C_6H_4 \cdot OH$
- H₂C·CH₂·CH·CH₃ mit 1-Methyl-4-anisyliden-cyclohexanon-(3) [aus rechtsdrehendem 1-Methyl-cyclohexanon-(3)]

B. Bei der Kondensation von 4-Oxy-benzaldehyd

OXY-OXO-VERBINDUNGEN C_nH_{2n-22}O₃ und C_nH_{2n-24}O₃ [Syst. Nr. 782

in Gegenwart von Chlorwasserstoff in absol. Alkohol unter Kühlung (VORLÄNDER, B. 58, 135). — Gelbe Nadeln (aus Methanol). F: 1990 (korr.); die Schmelze läßt sich stark unterkühlen. Die Lösung in konz. Schwefelsäure ist violett. — Natriumsalz. Gelb. Löslich in Wasser. — Hydrochlorid. Violette Nadeln. Wird durch Wasser hydrolysiert.

1-Methyl-2.4-dianisyliden-cyclohexanon-(3) $C_{33}H_{24}O_3=CH_3\cdot O\cdot C_6H_4\cdot CH:C\cdot \cdot CO\cdot \cdot C:CH\cdot \cdot C_6H_4\cdot O\cdot CH_3$ (H 360). B. Bei der Kondensation von rechts-H₂C·CH₂·CH·CH₃ (H 360). B. Ber der Kondensstehn von 1stenes drehendem 1-Methyl-cyclohexanon-(3) oder von daraus erhaltenem 1-Methyl-4-anisyliden-cyclo-

hexanon-(3) mit Anisaldehyd in Gegenwart von Chlorwasserstoff in absol. Alkohol (VORLANDER, B. 58, 134, 135). Aus 1-Methyl-2.4-bis-[4-oxy-benzyliden]-cyclohexanon-(3) (S. 413) oder 1-Methyl-2-[4-oxy-benzyliden]-4-anisyliden-cyclohexanon-(3) (S. 413) und Dimethylsulfat in alkal. Lösung (V., B. 58, 134, 135). — Gelbe Nadeln (aus verd. Methanol). F: 114°; die Schmelze wird beim Abkühlen erst krystallinisch-flüssig, beim Unterkühlen bis auf Zimmertemperatur zähflüssig und beim Erwärmen auf ca. 98° wieder klar (V., B. 54, 2262; 58, 134). Schwer löslich in Äther (V., B. 58, 134). Die Lösung in konz. Schwefelsäure ist rot (V., B. 58, 134). — Hydrochlorid. Blau. Wird durch Wasser hydrolysiert (V., B. 58, 134).

1 - Methyl - 2.4 - bis - [4 - ăthoxy - benzyliden] - cyclohexanon - (3) $C_{25}H_{26}O_2 = C_2H_5 \cdot O \cdot C_6H_4 \cdot CH : C \cdot CO \cdot C : CH \cdot C_6H_4 \cdot O \cdot C_2H_5$. Nadeln (aus Alkohol). F: 130°; die Schmelze

H.C.CH.CH.CH.

ist in einem engen Temperaturbereich krystallinisch-flüssig (VORLÄNDER, B. 54, 2262).

1 - Methyl - 4 - anisyliden - 2 - [4 - acetoxy - benzyliden] - cyclohexanon - (3) $C_{24}H_{24}O_4 = CH_3 \cdot O \cdot C_6H_4 \cdot CH : C \cdot CO \cdot C : CH \cdot C_6H_4 \cdot O \cdot CO \cdot CH_3$ And 4 Methyl 2 [4 over benzyliden] B. Aus 1-Methyl-2-[4-oxy-benzyliden]-

H.C.CH.CH.CH. 4-anisyliden-cyclohexanon-(3) (S. 413) und Acetanhydrid bei 100° (VORLÄNDER, B. 58, 135). — Gelbe Nadeln. F: 172° (korr.).

1 - Methyl - 2.4 - bis - [4 - acetoxy - benzyliden] - cyclohexanon - (3) $C_{25}H_{24}O_5 = CH_3 \cdot CO \cdot C \cdot C_6H_4 \cdot CH \cdot C \cdot CO \cdot C \cdot CH \cdot C_6H_4 \cdot O \cdot CO \cdot CH_3$ B. Aus 1-Methyl-2.4-bis - [4 - oxy - benzyliden] - cyclohexanon - (3) $C_{25}H_{24}O_5 = CH_3 \cdot CO \cdot C \cdot CH_3 \cdot CH_4 \cdot O \cdot CO \cdot CH_3$ H_3 $\stackrel{\cdot}{\text{C}}$ \cdot $\stackrel{\cdot}{\text{CH}}_3$ \cdot $\stackrel{\cdot}{\text{CH}}_3$ \cdot $\stackrel{\cdot}{\text{CH}}_3$ \cdot $\stackrel{\cdot}{\text{CH}}_3$ \cdot $\stackrel{\cdot}{\text{CH}}_3$ \cdot $\stackrel{\cdot}{\text{C}}$ $\stackrel{\cdot}{\text{C}$

gelbe Nadeln (aus Alkohol oder Essigsäure). F: 180° (korr.).

- 3. 1 Methyl 3.5 bis [4 oxy benzyliden] cyclohexanon (4) HO·C₅H₄·CH·C—CO— \bigcirc : CH·C₅H₄·OH H.C.CH(CH.).CH.
- 1 Methyl 3.5 dianisyliden cyclohexanon (4) $C_{33}H_{24}O_3 = CH_3 \cdot O \cdot C_6H_4 \cdot CH : C CO C : CH \cdot C_6H_4 \cdot O \cdot CH_3$ (H 361). Gelbe Nadeln (aus Alkohol). F: 148°;

H₂C·CH(CH₃)·CH₂
die Schmelze wird beim Unterkühlen krystallinisch-flüssig (Vorländer, B. 54, 2262).

 $\mathbf{H_2C \cdot CH(CH_3) \cdot CH_2}$ zweiten Krystallmodifikation. F: 131°; die Schmelze ist monotrop krystallinisch-flüssig (Vor-LÄNDER, B. 54, 2262).

- 4. 1.3 Bis [4 oxy 2 methyl benzyliden cyclopentanon (2) $C_{sy}H_{so}O_{sy}$ Formel I (R = H).
- 1.3 Bis [4 methoxy 2 methyl benzyliden] cyclopentanon (2) $C_{33}H_{24}O_{3}$, Formel I (R = CH₃). Gelbe Blättchen (aus Alkohol); existiert auch in einer zweiten Krystallmodifikation. F: ca. 1440 (VORLÄNDER, B. 54, 2263).

- 5. 1.3 Bis [4 oxy 3 methyl benzyliden] cyclopentanon (2) $C_{21}H_{20}O_{2}$, Formel II (R = H).
- 1.3 Bis [4 methoxy 3 methyl benzyliden] cyclopentanon (2) C₁₂H₂₄O₂, Formel II (R = CH₂). Gelbe Blättchen (aus Benzol und Alkohol); existiert auch in einer zweiten Krystallmodifikation. F: 176°; die Schmelze ist monotrop krystallinisch-flüssig (VORLÄNDER, B. 54, 2263).

6. Oxy-exe-Verbindungen C₂₃H₂₄O₃.

5.6 - Dimethoxy-3 - oxo - 12 - $\frac{1}{2}$ thyl - 2 (oder 4) - benzyliden - 1.2.3.4.9.10.11.12 - oktahydro - phenanthren $C_{45}H_{24}O_{3}$, Formel III oder IV. B. Bei der Kondensation von 5.6-Dimethoxy-3-oxo-

$$III. \underbrace{\begin{array}{c} \text{CH}_{2} \cdot \text{CH}_{2} \\ \text{CH}_{3} \cdot \hat{\text{O}} \\ \text{CH}_{3} \cdot \hat{\text{O}} \\ \text{CH}_{3} \cdot \hat{\text{O}} \\ \end{array}}_{\text{CH}_{3} \cdot \hat{\text{C}} + \text{CH}_{3}} \text{C:} \text{CH} \cdot \text{Ce}_{6} \text{H}_{5} \\ \text{CH}_{3} \cdot \hat{\text{O}} \\ \text{CH}_{3} \cdot \hat{\text{O}} \\ \text{CH}_{3} \cdot \hat{\text{O}} \\ \text{CH}_{3} \cdot \hat{\text{O}} \\ \text{CH}_{3} \cdot \hat{\text{C}} \\ \text{CH}_{3} \\ \text{CH}_{3} \cdot \hat{\text{C}} \\ \text{CH}_{3}$$

12-āthyl-1.2.3.4.9.10.11.12-oktahydro-phenanthren (S. 341) mit Benzaldehyd in alkoh. Natronlauge (Wieland, Kotake, B. 58, 2011). — Prismen (aus Alkohol). F: 128—130°.

7. Oxy-oxo-Verbindungen C40H58O2.

Capsanthin-diacetat $C_{44}H_{62}O_5=(CH_3\cdot CO\cdot O)_2C_{40}H_{56}O$ und andere Ester des Capsanthins s. H 30, 104.

m) Oxy-oxo-Verbindungen $C_n H_{2n-24} O_3$.

1. Oxy-oxo-Verbindungen $C_{17}H_{10}O_8$.

1. **4.Bz** 2-Dioxy-benzanthron $C_{17}H_{10}O_3$, Formel I. B. Neben überwiegenden Mengen 1.6-Dioxy-3.4;8.9-dibenzo-pyrenchinon-(5.10) beim Verschmelzen von 2.6-Dioxy-1.5-dibenzoylnaphthalin mit Natriumchlorid und Aluminiumchlorid bei 140—150° oder bei analoger Behandlung von 2.6-Dibenzoyloxy-naphthalin unter gleichzeitigem Einleiten von Sauerstoff (I. G. Farbenind., D.R. P. 453 280; Frdl. 16, 1405). — F: 250—252°.

2. 3.4 (oder 5.6) - Dioxy - benzanthron, Isobenzalizarin C₁₇H₁₀O₃, Formel II oder III (R und R' = H) (H 361). Zur Konstitution vgl. Cross, Perkin, Soc. 1930, 299. — B. Beim Erhitzen von Alizarin mit Glycerin und konz. Schwefelsäure in Gegenwart von Anilinsulfat auf 150° (BASF, D.R.P. 187495; Frdl. 9, 816; C., P., Soc. 1930, 299, 307) oder von 1-Oxy-2-methoxy-anthron-(9) mit Glycerin und Schwefelsäure auf 120—130° (MILLER, P., Soc. 127, 2689). — Orangefarbene Nadeln (aus Nitrobenzol). F: 265° (C., P., Soc. 1930, 299). Die Lösungen in konz. Schwefelsäure und in verd. Natronlauge zeigen keine Fluorescenz (C., P.).

Monomethyläther $C_{18}H_{18}O_3$, Formel II oder III (R=H; $R'=CH_3$). B. Durch Einw. von Methyljodid auf Isobenzalizarin in siedender methylalkoholischer Kalilauge (MILLER, PERKIN, Soc. 127, 2690). — Tiefgelbe Nadeln (aus Alkohol). F: 196—198°.

Monoacetat $C_{10}H_{10}O_4$, Formel II oder III (R=H; $R'=CO\cdot CH_3$). B. Bei kurzem Kochen von Isobenzalizarin mit Acetanhydrid in Gegenwart von Pyridin (MILLER, PERKIN, Soc. 127, 2689). — Orangegelbe Nadeln (aus Aceton). F: 243—245° (M., P.; Cross, P., Soc. 1930, 299, 307). Schwer löslich in Alkohol und Aceton (M., P.). — Kaliumsalz. Orangefarbene Nadeln (M., P.).

Methyläther-acetat $C_{50}H_{14}O_4$, Formel II oder III ($R = CO \cdot CH_3$; $R' = CH_3$). B. Aus Isobenzalizarin-monomethyläther und Acetanhydrid in Pyridin (MILLER, PERKIN, Soc. 127, 2690). — Gelbe Nadeln. F: ca. 178—180°.

Diacetat C₂₁H₁₄O₅, Fo.mel II oder III (R und R' = CO·CH₃). B. Bei längerem Kochen von Isobenzalizarin mit Acetanhydrid und Pyridin (MILLER, PERKIN, Soc. 127, 2690). — Gelbe Nadeln (aus Acetanhydrid). F: 214°.

- 3. 6.Bz 1 Dioxy benzanthron $C_{17}H_{10}O_3$, Formel IV (X = H). Eine Verbindung, der diese Konstitution zugeschrieben wurde (Cassella & Co., D.R.P. 483902; C. 1930 I, 3241; Frdl. 16, 1444), ist wahrscheinlich als 2.7-Dioxy-3.4-benzo-fluorenon (S. 417) zu formulieren (Beilstein-Redaktion).
- 4-Chlor-6.Bz 1-dioxy-benzanthron $C_{17}H_9O_9Cl$, Formel IV (X = Cl). Eine Verbindung, der diese Konstitution zugeschrieben wurde (Cassella & Co., D.R.P. 483902; C. 1930 I, 3241; Frdl. 16, 1444), ist wahrscheinlich als 4'-Chlor-2.7-dioxy-[benzo-1'.2':3.4-fluorenon] (S. 417) zu formulieren (Beilstein-Redaktion).

IV.
$$_{HO}$$
 $\overset{\cdot}{\underbrace{\hspace{1cm}}}$ $\overset{\cdot}{\underbrace{\hspace{1cm}}}$

- 6.6'(?)-Dimercapto-dibenzanthronyl-(Bz 1.Bz 1')-sulfid $C_{24}H_{18}O_2S_2$, Formel V (R = H). B. Neben anderen Verbindungen beim Kochen von Benzanthron mit Dischwefeldichlorid in Gegenwart von Eisenchlorid in Chlorbenzol und Behandeln des Reaktionsprodukts mit warmer konzentrierter Natriumsulfid-Lösung (I. G. Farbenind., D.R.P. 441748; C. 1927 II, 510; Frdl. 15, 723). Durch Einw. von Dischwefeldichlorid auf Dibenzanthronyl-(Bz 1.Bz 1')-sulfid (I. G. Farbenind.). Sehr schwer löslich in heißem Nitrobenzol. Löst sich in konz. Schwefelsäure mit grüner Farbe.
- 6.6'(?)-Bis-methylmercapto-dibenzanthronyl-(Bz1.Bz1')-sulfid C₃₆H₂₂O₂S₃, Formel V (R = CH₃). B. Aus 6.6'(?)-Dimercapto-dibenzanthronyl-(Bz1.Bz1')-sulfid und Dimethylsulfat in alkal. Lösung (I. G. Farbenind., D.R.P. 441748; C. 1927 II, 510; Frdl. 15, 723). Orange-farbenes Pulver. Schmilzt bei 165—177°. Löslich in konz. Schwefelseure mit grünblauer Farbe.
- 4. 7.8 Dioxy benzanthron, Benzalizarin C₁₇H₁₀O₃, Formel VI¹). Zur Konstitution vgl. Perkin, Soc. 117, 704; P., Spencer, Soc. 121, 476; Miller, P., Soc. 127, 2686. B. Aus Desoxyalizarin (S. 372) und Glycerin in Gegenwart von konz. Schwefelsäure bei 150° (P., Soc. 117, 701). Orangerote Tafeln (aus Alkohol). F: 309—310° (Zers.) (P.). Schwer löslich in Alkohol (P.). Löst sich in Schwefelsäure mit roter, in Salpetersäure mit bläulichvioletter Farbe (P.). Die Lösung in konz. Natronlauge ist blau und wird auf Wasserzusatz erst violett, dann braun (P.). Liefert beim Verschmelzen mit alkoh. Kalilauge, zuletzt bei 250°, und Behandeln des Reaktionsprodukts mit Luft 7.8.7′.8′-Tetraoxy-violanthron (Syst. Nr. 864) (Höchster Farbw., D.R. P. 414 203; C. 1925 II, 859; Frdl. 15, 770). Färbt metallgebeizte Wolle shnlich wie Alizarin (P.; M., P.). C₁₇H₁₀O₃+HBr. Rotbraune Nadeln. Zersetzt sich von 100° ab (P.). C₁₇H₁₀O₃+H₂SO₄. Dunkelrotbraune Nadeln. Wird durch Wasser langsam hydrolysiert (P.).
- 8-Oxy-7-methoxy-benzanthron, Benzalizarin-7-methyläther C₁₈H₁₂O₃, Formel VII. B. Beim Erhitzen von 4-Oxy-3-methoxy-anthron-(9) mit Glycerin und ca. 75% iger Schwefelsäure auf 125—130° (MILLER, PERKIN, Soc. 127, 2688). Durch Einw. von Methyljodid auf Benzalizarindiacetat in siedender methylalkoholischer Kalilauge (M., P.). Orangefarbene Nadeln. F: 247° bis 249°. Schwer löslich in Alkohol und in Natronlauge; löst sich in Schwefelsäure mit violettroter Farbe. Sulfat. Dunkelrotbraune Nadeln.

- 7.8 Dimethoxy benzanthron, Benzalizarin dimethyläther $C_{19}H_{14}O_3 = (CH_2 \cdot O)_1C_{17}H_4 : O$. B. Beim Erhitzen von Benzalizarin mit überschüssigem Methyljodid in methylalkoholischer Kalilauge (Perkin, Soc. 117, 703). Gelbe Nadeln (aus Aceton). F: 139—141°. Löst sich in Schwefelsäure mit orangeroter Farbe ohne Fluorescenz. Sulfat. Scharlachrote Nadeln. $2C_{19}H_{14}O_3 + H_1PtCl_4$. Rote Nadeln. $2C_{19}H_{14}O_3 + H_2PtCl_4$. Rote Prismen (aus Eisessig).
- 7-Methoxy-8-acetexy-benzanthron, Benzalizarin-7-methyläther-8-acetet $C_{20}H_{14}O_4 = (CH_3 \cdot O)(CH_2 \cdot CO \cdot O)C_{17}H_3 \cdot O$. B. Bei der Acetylierung von Benzalizarin-7-methyläther (Miller, Perkin, Soc. 127, 2688). Blaßgelbe Nadeln (aus Alkohol + Essigsäure). F: 205° bis 207°.

¹⁾ Die von Benzalizarin abgeleiteten Namen werden analog Benzanthron (E II 7, 468) beziffert.

- 7.6 Diacetoxy benzanthron, Benzalizarin diacetat $C_{81}H_{14}O_5 = (CH_2 \cdot CO \cdot O)_2C_{17}H_3 \cdot O$. B. Beim Kochen von Benzalizarin mit Acetanhydrid (Perkin, Soc. 117, 701). Blaßgelbe Nadeln (aus Aceton). F: 202—204° (Miller, P., Soc. 127, 2689).
 - 5. **Bz 1.Bz 2-Dioxy-benzanthron** $C_{17}H_{10}O_3 = (HO)_4C_{17}H_8:O.$
- Bz 2-Methoxy-dibenzanthronyl-(Bz 1.Bz 1')-sulfid $C_{25}H_{20}O_8S$, Formel VIII (X = H). B. Durch Kondensation von Bz 1-Chlor-Bz 2-methoxy-benzanthron mit Bz 1-Mercapto-benzanthron (I. G. Farbenind., D. R. P. 448 262; C. 1927 II, 2235; Frdl. 15, 728). F: 338—340°. Liefert beim Verschmelzen mit alkoh. Kalilauge bei 140° und Behandeln des Reaktionsprodukts mit Luft Bz 2-Methoxy-isoviolanthron (S. 430).
- Bz 2. Bz 2'- Dimethoxy- dibenzanthronyl (Bz 1. Bz 1') sulfid C₂₈H₂₁O₄S, Formel VIII (X = O·CH₃). B. Beim Erhitzen von nicht näher beschriebenem Bz1-Brom-Bz2-methoxy-benzanthron mit einer Schmelze aus krystallisiertem Natriumsulfid und Schwefel auf 140° bis 160° (I. G. Farbenind., D. R. P. 443022; C. 1927 II, 510; Frdl. 15, 725) oder mit einem Gemisch von Schwefel, wasserfreiem Natriumacetat und etwas Kupferpulver in Alkohol unter Druck auf 190° oder in hochsiedenden Lösungsmitteln unter gewöhnlichem Druck (I. G. Farbenind., D. R. P. 462154; C. 1928 II, 1490; Frdl. 16, 1456). Gelbbraunes Pulver. Löst sich in konz. Schwefelsäure mit grüner Farbe (I. G. Farbenind., D. R. P. 443022, 462154). Liefert beim Verschmelzen mit alkoh. Kalilauge bei 130—140° und Behandeln des Reaktionsprodukts mit Luft Bz2. Bz2'-Dimethoxy-isoviolanthron (S. 529) (I. G. Farbenind., D. R. P. 448262; C. 1927 II, 2235; Frdl. 15, 728).
 - 6. Derivate eines Bz 1.x-Dioxy-benzanthrons $C_{17}H_{10}O_3 = (HO)_2C_{17}H_8:O.$
- x-Phenoxy-Bz 1-methylmercapto-benzanthron C₂₄H₁₆O₂S, Formel IX. B. Beim Erhitzen von x-Brom-Bz 1-methylmercapto-benzanthron mit Phenol, Kaliumcarbonat und etwas Kupfercarbonat auf 171—175° (I. G. Farbenind., D.R.P. 479356; C. 1980 I, 1228; Frdl. 16, 1458). Orangerote Blättchen (aus Alkohol + Chlorbenzol). F: 163—165°. Löst sich in konz. Schwefelsäure mit grüner Farbe.

- x-Diphenoxy-dibenzanthronyl-(Bz 1.Bz 1')-sulfid $C_{48}H_{28}O_4S$, Formel X (X = $C_6H_5\cdot O$). B. Beim Erhitzen von x-Dibrom-dibenzanthronyl-(Bz 1.Bz 1')-sulfid mit Phenol, Kalium-carbonat und etwas Kupferpulver im Rohr auf 160—170° (I. G. Farbenind., D.R.P. 479356; C. 1930 I, 1228; Frdl. 16, 1458). Gelbbraunes Pulver. Löst sich in konz. Schwefelsäure mit grüner Farbe.
- x Bis p tolylmercapto dibenzanthronyl (Bz 1. Bz 1') suifid $C_{48}H_{30}O_2S_3$, Formel X (X = $CH_3 \cdot C_8H_4 \cdot S$). B. Beim Erhitzen von x-Dibrom-dibenzanthronyl-(Bz 1. Bz 1')-sulfid mit Thio-p-kresol, Kaliumcarbonat und etwas Kupferpulver im Rohr auf 160—170° (I. G. Farbenind., D. R. P. 479356; C. 1930 I, 1228; Frdl. 16, 1458). Hellbraunes Pulver. Löst sich in konz. Schwefelsäure mit grüner Farbe.
- 7. 2.7-Dioxy-3.4-benzo-fluorenon (?) $C_{17}H_{10}O_{37}$, Formel XI (X = H). Konstitution analog 2.7-Diohlor-3.4-benzo-fluorenon, E II 7, 476. B. Beim Behandeln von 5-Oxy-2-[4-oxy-naphthyl-(1)]-benzoesäure mit Chlorsulfonsäure bei 10° (Cassella & Co., D. R. P. 483902; C. 1930 I, 3241; Frdl. 16, 1444). Braunes Pulver. Schmilzt oberhalb 300°. Löst sich in organischen Lösungsmitteln mit gelber, in Alkalilauge mit tiefvioletter, in konz. Schwefelsäure mit rotvioletter Farbe.
- 4'-Chlor-2.7-dioxy-[benzo-1'.2': 3.4-fluorenon] C₁₇H₂O₂Cl, Formel XI (X = Cl). Konstitution analog 2.7-Dichlor-3.4-benzo-fluorenon, E II 7, 476. B. Beim Behandeln von 5-Oxy-2-[7-chlor-4-oxy-naphthyl-(1)]-benzoesäure mit sauren Kondensationsmitteln (Cassella & Co., D.R.P. 483902; C. 1980 I, 3241; Frdl. 16, 1444). Braunes Pulver. Schmilzt oberhalb 300°. Löslich in hochsiedenden organischen Lösungsmitteln mit gelber Farbe. Die Lösungen in Alkalilauge und in konz. Schwefelsäure sind bordeauxfarben.

2. Oxy-oxo-Verbindungen C10H14O2.

1. 4'.4''- Dioxy-fuchson, Aurin, Pararosolsäure C₁₉H₁₄O₃, s. nebenstehende Formel (H 361; E I 671). B. Beim Leiten von O: :0(C₆H₄·OH)₂
Tetrschlorkohlenstoff-Dampf über Kaliumphenolat oder auch über
Natrium- oder Calciumphenolat bei 170—190° (BAINES, DRIVER, Soc. 128, 1216, 1217). Zur
BEILSTEINs Handbuch, 4. Aufl. 2. Erg.-Werk, Bd. VIII.

Bildung aus Phenol und Tetrachlorkohlenstoff in Gegenwart von Zinkchlorid bei 135° vgl. Gomberg, Snow, Am. Soc. 47, 202. Entsteht ferner neben anderen Verbindungen bei der Kondensation von Phenol mit Formaldehyd in Gegenwart von Salzsäure (Traubenberg, Z. ang. Ch. 36, 515), beim Erhitzen von Natriumphenolat mit Trichloressigsäure in wenig Äther auf 190° (van Alphen, R. 46, 145) und bei der Umsetzung von Phenol mit Chlorpikrin in konzentrierter wäßriger Natronlauge zunächst bei 50—60°, dann bei Siedetemperatur (Berlingozzi, Badolato, R. A. L. [5] 33 I, 292). — Zur Darstellung aus Phenol und Okalsäure in konz. Schwefelsäure vgl. a. Spiers, Soc. 125, 454; Gomberg, Snow, Am. Soc. 47, 210. Reinigung über das Salz 2C₁₉H₁₄O₃ + H₂SO₃ + 4 H₂O: Spiers.
Aurin wird beim Anstwern einer auf 60—70° erwärnten Lösung in Natronlauge mit verd.

Aurin wird beim Ansauern einer auf 60—70° erwarmten Losung in Natroniauge mit verd. Salzsäure oder beim Aufbewahren einer wäßr. Suspension des Hydrochlorids in Form eines purpurroten Hydrats C₁₉H₁₄O₂ + 2 H₂O [vielleicht HO : C(C₆H₄·OH)₂ + H₂O] erhalten, das bei 10-stdg. Erhitzen auf 100° 1 H₂O verliert und bei weiterem 40-stdg. Erhitzen in wasserfreies Aurin übergeht (Gomberg, Snow, Am. Soc. 47, 204, 205). Krystallisiert ferner mit 1 C₄H₁₀O (aus feuchtem Äther), mit 1,5 C₂H₆O (aus Aceton), mit 1 C₄H₂O, +0,5 C₄H₆ (aus Eisessig + Benzol) (Go., Sn.). F: 295—300° (Zers.) (Go., Sn.). Absorptionsspektrum in absol. Alkohol, in alkoh. Salzsäure und Schwefelsäure und in wäßriger und alkoholischer Kalilauge: Orndorff, Mitarb., Am. Soc. 49, 1546, 1551. Zeitliche Änderung des Absorptionsspektrums in absol. Alkohol und in alkoh. Salzsäure: O., Mitarb. 100 cm³ siedender Eisessig lösen ca. 2 g, 100 cm³ siedende 80—95 %ige Essigsäure ca. 4 g (Go., Sn.). Schwer löslich in Aceton und Methyläthylketon, unlöslich in Äther (Go., Sn.) und in Wasser (VAN ALPHEN, R. 46, 146). Aurin löst sich in 1,5 %igem wäßrigem Ammoniak (Go., Sn.). Adhāsion an poliertem Aluminium und Nickel: McBain, Lee, J. phys. Chem. 32, 1181. Das Umschlagsintervall von Gelb nach Rot liegt bei p_H 5,6—6,5 (Go., Sn.).

Aurin absorbiert in alkal. Lösung Sauerstoff unter Bildung von 4.4'-Dioxy-benzophenon (Scheuing, Berliner, B. 56, 1585; Gomberg, Snow, Am. Soc. 47, 207; vgl. Zulkowsky, M. 1 [1880], 783). Die photochemische Zersetzung von Aurin-Lösungen im Sonnenlicht bei Gegenwart von Luftsauerstoff wird durch Zinkoxyd beschleunigt (Bhattacharya, Dhar, J. indian chem. Soc. 4, 303; C. 1928 I, 649). Aurin liefert beim Behandeln mit überschüssigem Sulfurylchlorid in Gegenwart von FeCl₃ in Eisessig unter Kühlung Hexachloraurin (SPIERS, Soc. 125, 452, 455). Bei der Einw. von 2,2 Mol Brom in kaltem Eisessig bilden sich geringe Mengen Dibromaurin, während bei Anwendung von 8,8 Mol Brom in heißem Eisessig Hexabromaurin entsteht (Sp.). Beim Behandeln einer alkal. Aurin-Lösung mit Jod-Kaliumjodid-Lösung erhält man 3.5.3'.5'(?)-Tetrajod-4.4'-dioxy-benzophenon und etwas 2.4.6-Trijod-phenol (Sr.). Aurin liefert beim Behandeln mit Na, S, O, in Natronlauge in Stickstoff-Atmosphäre Aurinleukosulfinsaure (Syst. Nr. 1513) (SCHEURING, BERLINER, B. 56, 1587). Gibt beim Kochen mit Quecksilber(II)-acetat in Essigester + Eisessig Acetoxymercuri-aurin (Syst. Nr. 2353); beim Kochen mit Quecksilber(II)-acetat in Alkohol + Eisessig entstehen je nach der Konzentration der Lösungsmittel Bis-acetoxymercuri-aurin (Syst. Nr. 2353) oder Tris-acetoxymercuriaurin (Syst. Nr. 2353) (Whitmore, Leuck, Am. Soc. 51, 2783) 1). Aurin gibt beim Erwärmen mit Benzoylchlorid und Dimethylanilin auf 60° und Behandeln des Reaktionsprodukts mit verd. Salzsaure und Natronlauge 4.4'.4"-Tribenzoyloxy-triphenylcarbinol (Syst. Nr. 902) (Gom-BEBG, SNOW, Am. Soc. 47, 206).

Zur Konstitution der Salze vgl. Kehbmann, Helv. 7, 1059. — $C_{19}H_{14}O_8 + HCl + 2H_2O$. Braune Nadeln (aus Salzsäure) (Gomberg, Snow, Am. Soc. 47, 203, 204). — $C_{19}H_{14}O_3 + HCl + C_2H_4O$. Krystalle (aus alkoh. Salzsäure) (Go., Sn.; vgl. Dale, Schorlemmer, A. 196 [1879], 87). — $C_{19}H_{14}O_3 + HCl + 2C_2H_4O_2$. Krystalle (aus Salzsäure + Eisessig). Wird beim Erhitzen auf 100° essigsäurefrei (Go., Sn.). — Perchlorat. Die Lösung in wasserfreiem Piperidin wird nach einiger Zeit fast farblos; bei Wasserzusatz tritt die Färbung wieder auf (Dilthey, Wizinger, B. 59, 1857).

3.5.3'.5'.3".5" - Hexachlor - 4'.4" - dioxy - fuchson (?), Hexachloraurin C₁₀H₈O₃Cl₆ = O:C₆H₂Cl₂:C(C₆H₂Cl₂·OH)₂. B. Beim Behandeln von Aurin mit überschüssigem Sulfurylchlorid in Gegenwart von Eisenchlorid in Eisessig unter Kühlung (Spiers, Soc. 125, 452, 455). — Rote, goldglänzende Krystalle (aus Anisol). Unlöslich in den gebräuchlichen Lösungsmitteln. — Zersetzt sich beim Behandeln mit heißer Natronlauge. Liefert bei der Acetylierung eine farblose Substanz. — Sulfat. Grüne Krystalle.

x-Dibrom - 4'.4"-dioxy-fuchson, Dibromaurin $C_{10}H_{12}O_3Br_2$. B. In geringer Menge bei der Einw. von 2,2 Mol Brom auf 1 Mol Aurin in kaltem Eisessig (SPIERS, Soc. 125, 453, 457). — Nicht rein erhalten. Tiefrote Prismen mit 1 H_2O (aus 60% igem Alkohol). Leicht löslich in Alkohol mit purpurroter Farbe.

¹⁾ Zur Mercurierung vgl. a. die nach dem Literatur-Schlußtermin des Ergänzungswerks II [1. I. 1930] erschienene Arbeit von Dominikiewicz, Roczniki Chem. 12, 79; C. 1932 II, 1163.

3.5.3'.5''. Hexabrom - 4'.4''- dioxy - fuchson (?), Hexabromaurin $C_{19}H_8O_3Br_6=0$: $C_6H_2Br_6$: $C(C_6H_2Br_6$: $C(C_6H_2Br_6)$: $C(C_6$

Hexabromaurin - diacetat $C_{23}H_{12}O_5Br_6=0:C_6H_2Br_3:C(C_6H_2Br_3:O\cdot CO\cdot CH_3)_2$. B. Beim Kochen von Hexabromaurin mit Acetanhydrid (Spiers, Soc. 125, 456). — Gelbe Krystalle. Färbt sich beim Erhitzen dunkel und schmilzt bei 280—290° unter Zersetzung zu einer roten Flüssigkeit. Schwer löslich in Eisessig, unlöslich in Alkohol.

$$I. \underbrace{\begin{array}{c} \text{CO} \cdot \text{CH} : \text{CH} \cdot \text{C}_6\text{H}_4 \cdot \text{OH} \\ \text{OH} \\ \\ \text{OH} \\ \end{array}}_{\text{OH}} \text{III.} \underbrace{\begin{array}{c} \text{OH} \\ \text{CO} \cdot \text{CH} : \text{CH} \cdot \text{C}_6\text{H}_4 \cdot \text{OH} \\ \\ \text{OH} \\ \\ \text{OH} \\ \end{array}}_{\text{OH}}$$

2. $2 - Oxy - 1 - [4 - oxy - cinnamoyl] - naphthalin, 1 - [4 - Oxy - cinnamoyl] - naphthol-(2) <math>C_{10}H_{14}O_3$, Formel I.

2-Äthoxy-1-[4-methoxy-cinnamoyl]-naphthalin, 1-[4-Methoxy-cinnamoyl]-naphthol-(2)-äthyläther $C_{12}H_{10}O_3=C_2H_5\cdot O\cdot C_{10}H_6\cdot CO\cdot CH: CH\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus 1-Acetyl-naphthol-(2)-äthyläther und Anisaldehyd in alkoholisch-alkalischer Lösung (Dilthey, Lipps, B. 56, 2445; vgl. Fries, Schimmelschmidt, B. 58, 2835 Anm. 4). — Gelbe Nadeln. F: 102° (F., Sch., B. 58, 2845), 99—100° (D., L.). Löst sich in konz. Schwefelsäure mit tiefroter Farbe (D., L.).

3. $4-Oxy-1-[4-oxy-cinnamoyl]-naphthalin, 4-[4-Oxy-cinnamoyl]-naphthol-(1) <math>C_{12}H_{14}O_3$, Formel II.

4-Äthoxy-1-[4-methoxy-cinnamoyl]-naphthalin, 4-[4-Methoxy-cinnamoyl]-naphthol-(1)-äthyläther C₂₂H₂₀O₃ = C₂H₅·O·C₁₀H₄·CO·CH·CH·C₆H₄·O·CH₃. B. Aus 4-Acetyl-naphthol-(1)-äthyläther und Anisaldehyd in alkoholisch-alkalischer Lösung (DILTHEY, LIPPS, B. 56, 2445). — Grüngelbe Nadeln. F: 110—111°. Löst sich in konz. Schwefelsäure mit roter Farbe.

4. 1 - Oxy - 2 - [4 - oxy - cinnamoyl] - naphthalin, <math>2 - [4 - Oxy - cinnamoyl] - naphthol-(1) C₁₀H₁₄O₃, Formel III.

2-[4-Methoxy-cinnamoyl]-naphthol-(1), [4-Methoxy-styryl]-[1-oxy-naphthyl-(2)]-keton $C_{20}H_{16}O_3 = HO \cdot C_{10}H_6 \cdot CO \cdot CH : CH \cdot C_6H_4 \cdot O \cdot CH_3$ (H 365; E 1 671). Gibt bei der Reduktion mit Zinkstaub und Eisessig geringe Mengen [4-Methoxy- β -phenäthyl]-[1-oxy-naphthyl-(2)]-keton (Pfeiffer, Mitarb., J. pr. [2] 119, 126).

5. 3 - Oxy-2 - cinnamyl - naphthochinon - (1.4) C₁₉H₁₄O₃, Formel IV (R = H). Zur Konstitution vgl. die Angaben bei 2-Oxy-naphthochinon-(1.4), S. 344. — B. Beim Schätteln der Silbergeleer der

Schütteln des Silbersalzes des 2-Oxy-naphthochinons-(1.4) mit Cinnamylchlorid und Natriumcarbonat in Benzol (FIESER, Am. Soc. 48, 3213).

V. 0: CH₂ CH₃ CH · C₆H₅

— Gelbe Nadeln (aus Eisessig oder Alkohol). F: 170°. Leicht löslich in Eisessig, schwer in Alkohol und Benzol, unlöslich in Wasser. Schwer löslich in Natronlauge mit roter Farbe, durch Säuren fällbar. — Färbt sich am Sonnenlicht braun. Liefert beim Behandeln mit konz. Schwefelsäure 2-Phenyl-7.8-benzochromanchinon-(5.6) (Formel V; Syst. Nr. 2485).

3-Methoxy-2-cinnamyl-naphthochinon-(1.4) $C_{30}H_{16}O_{3}$, Formel IV ($R=CH_{3}$). B. Bei der Einw. von Diazomethan auf 3-Oxy-2-cinnamyl-naphthochinon-(1.4) in Ather (FIESER, Am. Soc. 50, 459). — Gelbe Nadeln (aus Ligroin oder Petroläther). F: 90,5°. Sehr leicht löslich in organischen Lösungsmitteln, sehr schwer in Wasser. — Wird durch wäßrige oder alkoholische Alkalien nur schwer hydrolysiert.

3. Oxy-oxo-Verbindungen $C_{30}H_{16}O_3$.

1. $\omega.\omega$ - Bis - [4 - oxy - phenyl] - acetophenon, Phenyl - [4.4' - dioxy - benz-hydryl] - keton $C_{10}H_{14}O_{0}=(HO\cdot C_{0}H_{4})_{3}CH\cdot CO\cdot C_{0}H_{5}$.

 ω . ω -Bis-[4-methoxy-phenyl]-acetophenon, Phenyl-[4.4'-dimethoxy-benzhydryl]-keton, 1.1-Di-p-anisyl-2-phenyl-āthanon $C_{22}H_{20}O_8 = (CH_3 \cdot O \cdot C_6H_4)_2CH \cdot CO \cdot C_6H_5$. B. Being

[Syst. Nr. 783

Kochen von α-Phenyl-α.α'-bis-[4-methoxy-phenyl]-āthylenglykol mit verd. Schwefelsäure (Οκεσκοw, Τιγγενελυ, C. r. 171, 474; Bl. [4] 29, 454; Lένγ, Bl. [4] 29, 898). — Nadeln (aus Methanol). F: 57—58° (O., T.). Leicht löslich in den gebräuchlichen Lösungsmitteln, schwerer in kaltem Methanol und in Petroläther (O., T.). Die Lösung in konz. Schwefelsäure ist rotviolett (O., T.). — Liefert beim Kochen mit alkoh. Kalilauge Benzoesäure und 4,4'-Dimethoxy-diphenylmethan (O., T.). Gibt mit Phenylmagnesiumbromid in Äther Diphenyl-[4.4'-dimethoxy-benzhydryl]-carbinol (L.).

Oxim $C_{23}H_{31}O_3N=(CH_3\cdot O\cdot C_6H_4)_3CH\cdot C(C_6H_5):N\cdot OH$. Nadeln (aus Alkohol) (Orechow, Tiffeneau, Bl. [4] 29, 454).

- 2. 4.4'-Dioxy-3' (oder 3)-methyl-fuchson, Rosolsäure C₂₀H₁₆O₃, Formel I oder II. Zur Darstellung aus Rosanilin (H 365) vgl. Spiers, Soc. 125, 451. Erzeugung von Doppelbrechung und Dichroismus durch Polieren von auf Glas aufgetragenen dünnen Schichten: Zocher, Jacoby, Koll. Beih. 24, 377; C. 1927 II, 2041. 100 Tle. 90% iger Alkohol lösen bei gewöhnlicher Temperatur 4,0 Tle. Rosolsäure (Spengler, Pharm. Acta Helv. 2 [1927], 14). Adhäsion an poliertem Kupfer oder Stahl: Mc Bain, Lee, J. phys. Chem. 32, 1181. Das Umschlagsgebiet von Gelb nach Rot liegt in alkoh. Lösung bei ph 6,9—8,0 (I. M. Kolthoff, Säure-Basen-Indikatoren [Berlin 1932], S. 167, 212; E. Merck, Prüfung der chemischen Reagenzien auf Reinheit, 5. Aufl. [Darmstadt 1939], S. 657; Gutbier, Brintzinger, Koll.-Z. 41 [1927], 1; vgl. a. Bishop, Kittredge, Hilderrand, Am. Soc. 44, 138), in wäßt. Aceton (90 Vol.-%) bei ph 10,5—12,5 (Cray, Westrip, Trans. Faraday Soc. 21, 334; C. 1926 I, 3258). Einfluß von Dextrin, Gummi arabicum und Gelatine auf das Verhalten als Indikator: Gu., Br., Koll.-Z. 41, 3; C. 1927 I, 1558. Verhalten von Lösungen in Äthylalkohol + Isoamylalkohol beim Vermischen mit Wasser und Farbänderungen der dabei entstehenden flüssigen Phasen auf Zusatz von Salzsäure und Kalilauge: Hofman, Pharm. Weekb. 65, 1194; C. 1929 I, 302. Entwicklungshemmende Wirkung auf Bakterien der Coligruppe: Winslow, Dolloff, Ber. Physiol. 16, 532; C. 1923 III, 256. Eine neutrale Lösung von Rosolsäure und Na₂SO₃ gibt mit Aldehyden und Ketonen eine bleibende rotviolette Färbung; die Reaktion eignet sich zum Nachweis dieser Verbindungen (Pittarelli, Arch. Farmacol. sperim. 29, 79; C. 1920 IV, 616). Prüfung auf Reinheit: E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 657.
- 3. $5 Oxy 2 [\alpha.\alpha diphenyl \ddot{a}thyl] benzochinon (1.4) C₂₀H₁₆O₃, Formel III (R = H).$
- 5-Methoxy-2-[$\alpha.\alpha$ -diphenyl-äthyl]-benzochinon-(1.4) $C_{21}H_{18}O_3$, Formel III (R = CH₂). B. Beim Behandeln von 1.1-Diphenyl-1-[2.4.5-trimethoxy-phenyl]-äthan mit Salpetersäure (D: 1,48) in Eisessig unter Kühlung (Széki, B. 62, 1377). Zinnoberrote Krystalle (aus Eisessig). F: 198°.

4. Oxy-oxo-Verbindungen $C_{21}H_{18}O_3$.

- 1. 1.9 Bis [4 oxy phenyl] nonatetraen (1.3.6.8) on (5), $\alpha.\alpha'$ Bis-[4-oxy-cinnamyliden]-aceton $C_{21}H_{18}O_3 = (HO \cdot C_6H_4 \cdot CH \cdot CH \cdot CH \cdot CH)_2CO$.
- $\alpha.\alpha'$ Bis [4 methoxy cinnamyliden] aceton, 4.4' Dimethoxy dicinnamylidenaceton $C_{23}H_{23}O_3 = (CH_3 \cdot O \cdot C_6H_4 \cdot CH \cdot CH \cdot CH \cdot CH)_4CO$ (E I 672). F: 168° (korr.); die Schmelze klärt sich bei 183° (korr.) (VORLÄNDER, GIESELER, J. pr. [2] 121, 241). Färbt sich beim Behandeln mit Brom in Chloroform erst grün, dann gelb unter Bildung von 4.4'-Dimethoxy-dicinnamylidenaceton-oktabromid (S. 366).
- 2. 1-Phenyl-1.3-bis-[4-oxy-phenyl]-propanon-(3) $C_{s1}H_{18}O_{s} = HO \cdot C_{6}H_{4} \cdot CO \cdot CH_{2} \cdot CH(C_{6}H_{5}) \cdot C_{6}H_{4} \cdot OH$.
- 1 Phenyl 1.3 bis [4 methoxy phenyl] propanon (3), 1.3 Di p-anisyl 3 phenyl propanon (1) $C_{22}H_{22}O_3 = CH_2 \cdot O \cdot C_8H_4 \cdot CO \cdot CH_2 \cdot CH(C_6H_5) \cdot C_6H_4 \cdot O \cdot CH_2$. B. Aus [4-Methoxy-phenyl]-styryl-keton und 4-Methoxy-phenylmagnesiumbromid in Ather (ZIEGLER, OOHS, B. 55, 2273). Krystalle (aus Methanol). F: 89—90°. Siedet unter 15 mm Druck oberhalb 200°. Leicht löslich in Alkohol, Äther, Aceton und Benzol, schwerer in Methanol und Benzin.

3. 5-Oxy-2-[a. β -diphenyl-isopropyl]-benzochinon-(1.4) $C_{21}H_{18}O_{2}$, Formel I (R = H).

5-Methoxy-2-[α . β -diphenyl-isopropyl]-benzochinon-(1.4) $C_{22}H_{20}O_3$, Formel I (R = CH₃). B. Bei der Einw. von Salpetersäure (D: 1,48) in Eisessig auf 1.2-Diphenyl-2-[2.4.5-trimethoxy-phenyl]-propan unter Kühlung (Száki, B. 62, 1377). — Karminrote Krystalle (aus Eisessig). F: ca. 183—184°.

5. Oxy-oxo-Verbindungen CasH₂₀O₈.

1. 2.4-Diphenyl - 1 - [4-oxy-phenyl] - butanol - (1)-on - (3) $C_{33}H_{30}O_3 = C_6H_5 \cdot CH_3 \cdot CO \cdot CH(C_6H_5) \cdot CH(OH) \cdot C_6H_4 \cdot OH$.

1-Methoxy-2.4-diphenyl-1-[4-methoxy-phenyl]-butanon-(3) $C_{24}H_{24}O_3 = C_6H_5 \cdot CH_5 \cdot CO \cdot CH(C_6H_5) \cdot CH(O \cdot CH_3 \cdot C_6H_4 \cdot O \cdot CH_3 \cdot B.$ Bei längerer Einw. von Silbernitrat auf 1-Chlor-2.4-diphenyl-1-[4-methoxy-phenyl]-butanon-(3) in absol. Methanol bei Zimmertemperatur (Vorländer, Eichwald, B. 56, 1156). — F: 122°. Gibt mit konz. Schwefelsäure eine purpurrote Färbung, die an feuchter Luft in Blau übergeht.

1-Äthoxy-2.4-diphenyl-1-[4-methoxy-phenyl]-butanon-(3) $C_{25}H_{26}O_3 = C_6H_5 \cdot CH_2 \cdot CO \cdot CH(C_6H_5) \cdot CH(O \cdot C_2H_5) \cdot C_6H_4 \cdot O \cdot CH_3$ (H 366). B. Analog der vorangehenden Verbindung (Vorländer, Eichwald, B. 56, 1156). — Krystalle (aus Alkohol). F: 92—93°. — Verhält sieh gegen konz. Schwefelsäure wie die vorangehende Verbindung.

2. 4'.4" - Dioxy - 2.2'.2" - trimethyl - fuchson, 2.2'.2" - Trimethyl - aurin, m-Kresolaurin C₂₂H₂₀O₃, Formel II. B. Beim Leiten von Tetrachlorkohlenstoff - Dampf über m-Kresol-Kalium bei 110° (Baines, Driver, Soc. 123, 1217). — Rote Nadeln (aus 10% iger Salzsäure). Schwer löslich in Wasser mit rötlicher Farbe, leicht in Alkohol und Eisessig. Leicht löslich in Alkalien mit roter Farbe. — Gibt mit überschüssigem Brom in Eisessig eine Brom-Verbindung, die sich in Alkalien mit tiefvioletter Farbe löst. Bei längerem Kochen mit Anilin in Eisessig bildet sich 4.4'.4"-Trianilino-2.2'.2"-trimethyl-triphenylcarbinol.

3. 4'.4"- Dioxy - 3.3'.3"- trimethyl - fuchson, 3.3'.3"- Trimethyl - aurin, o-Kresolaurin, o-Kresaurin C₂₂H₂₀O₃, Formel III. B. Beim Leiten von Tetrachlorkohlenstoff-Dampf über o-Kresol-Kalium bei 110° (BAINES, DRIVER, Soc. 123, 1217; GOMBERG, ANDERSON, Am. Soc. 47, 2028). Beim Erhitzen von o-Kresol mit Tetrachlorkohlenstoff und Zinkchlorid, Aluminiumchlorid oder Zinn(IV)-chlorid auf 100—130° (G., A., Am. Soc. 47, 2025). Beim Erhitzen von 2-Oxy-toluol-sulfonsäure-(5) mit wasserfreier Oxalsäure (G., A., Am. Soc. 47, 2027). Beim Kochen von diazotiertem 4.4'.4"-Triamino-3.3'.3"-trimethyltriphenylcarbinol mit verd. Mineralsäuren (SPIERS, Soc. 125, 458; G., A., Am. Soc. 47, 2028). — Kastanienbraune Krystalle (aus Eisessig oder Alkoholen). 1 g löst sich in 200—250 cm³ siedendem Eisessig; schwer löslich in Aceton und in heißem Nitrobenzol, Isopropylalkohol und Homologen, Äthylenchlorhydrin und Methylsalicylat, sehr schwer löslich oder unlöslich in Alkohol, Äther, Petroläther, Chloroform, Benzol und Brombenzol und in Wasser (G., A., Am. Soc. 47, 2027). Sehr leicht löslich in Ammoniak, Alkalien und Erdalkalien, unlöslich in verd. Säuren (G., A.). Die Lösungen sind bis p_H 6,6—7,6 gelb, bei höherem p_H rot (G., A., Am. Soc. 47, 2032).

Ather, Petrolather, Chloroform, Benzol und Brombenzol und in Wasser (G., A., Am. Soc. 12, 2027). Sehr leicht löslich in Ammoniak, Alkalien und Erdalkalien, unlöslich in verd. Säuren (G., A.). Die Lösungen sind bis p_H 6,6—7,6 gelb, bei höherem p_H rot (G., A., Am. Soc. 47, 2032). Beim Leiten von Luft oder Sauerstoff durch eine Lösung von o-Kresolaurin in 5% iger Natronlauge entsteht 4.4'-Dioxy-3.3'-dimethyl-benzophenon (Gomberg, Anderson, Am. Soc. 47, 2030). o-Kresolaurin wird beim Erwärmen mit Zinkstaub und Eisessig zu 4.4'-d''-Trioxy-3.3'-3''-trimethyl-triphenylmethan reduziert (G., A., Am. Soc. 47, 2029). Liefert beim Behandeln mit 4 Mol Brom in Eisessig Dibrom-o-kresolaurin und Tribrom-o-kresolaurin (G., A.; vgl. a. Spiers, Soc. 125, 459). Beim Behandeln mit Dimethylsulfat und Natronlauge entsteht 4.4'-d''-Trimethoxy-3.3'.3''-trimethyl-triphenylcarbinol, beim Kochen mit Acetanhydrid und Natrium-acetat 4.4'-d''-Triacetoxy-3.3'.3''-trimethyl-triphenylcarbinol (G., A.). Liefert beim Kochen mit Anilin in Gegenwart von Stearinsäure 4.4'-d''-Trianilino-3.3'.3''-trimethyl-triphenylcarbinol (G., A.).

Salze: Gomberg, Anderson, Am. Soc. 47, 2030. — Die essigsäurehaltigen Salze geben das Krystallösungsmittel bei 80—90° und 15 mm Druck ab. — $C_{22}H_{20}O_3 + HCl + C_2H_4O_2$. Hellrote goldglänzende Krystalle (aus Eisessig). — $C_{22}H_{20}O_3 + HBr + C_2H_4O_2$. Hellrote Krystalle (aus Eisessig). — $C_{22}H_{20}O_3 + HClO_4 + C_2H_4O_2$. Hellrote Krystalle (aus Eisessig). — $2C_{22}H_{20}O_3 + H_2SO_4$. Orangerote Krystalle (G., A.). — $C_{22}H_{20}O_3 + H_2SO_4 + 2C_2H_4O_3$. Hellrote Krystalle (aus Eisessig).

. .*

- ***Elbrom-3.3'.3"-trimethyl-aurin, Dibrom-o-kreselaurin C_{is}H₁₈O₃Br₂. B. Neben Tribrom-o-kresolaurin bei der Einw. von 4 Mol Brom auf o-Kresolaurin in Eisessig (Gomberg, Anderson, Am. Soc. 47, 2030; vgl. a. Spiers, Soc. 125, 459). Rotbraune Nadeln (aus Eisessig). Löslich in Methyläthylketon.
- 5.5'.5''(?)-Tribrom 3.3'.3''-trimethyl-aurin, Tribrom 0-kresolaurin $C_{12}H_{17}O_3Br_3 = O:C_6H_2Br(CH_3):C[C_6H_3Br(CH_3):OH]_2$. B. s. im vorhergehenden Artikel. Rötlichbraune goldglänzende Krystalle mit $1C_2H_5OCl$ (aus Äthylenchlorhydrin). Verliert das Krystallösungsmittel im Vakuum bei 120^0 und geht dabei in kleinere rote Krystalle über (Spiers, Soc. 125, 459). Sehr leicht löslich in Äthylenchlorhydrin, löslich in Anisol (Sp.), unlöslich in Methyläthylketon (Gomberg, Anderson, Am. Soc. 47, 2030). Hydrobromid. Grüne Krystalle (Sp.).

n) Oxy-oxo-Verbindungen $C_nH_{2n-26}O_3$.

1. Oxy-oxo-Verbindungen $C_{18}H_{10}O_{3}$.

- 1. 1-Oxy-2.3-benzo-anthrachinon, 11-Oxy-naphthacenchinon-(9.10)¹), α-Oxy-naphthacenchinon C₁₈H₁₀O₃, Formel I (H 367; E I 673). B. Durch Erhitzen von Phthalsäureanhydrid mit α-Naphthol in Gegenwart von japanischer saurer Erde auf 250—260° (ΤΑΝΑΚΑ, WATANABE, Bl. chem. Soc. Japan 3, 289; C. 1929 I, 752) oder, neben anderen Verbindungen, in Gegenwart von Zinkchlorid auf 100° (Coptsarow, Soc. 117, 216). Die Lösung in konz. Schwefelsäure ist karminrot (T., W.).
- 2. 3-Oxy-1.2-benzo-anthrachinon C₁₈H₁₀O₃, Formel II. B. Beim Erwärmen von 3-Acetoxy-1.2-benzo-anthrachinon mit alkoh. Alkalilauge (FIESER, DIETZ, Am. Soc. 51, 3146). Hellbraun, amorph. Löst sich in konz. Schwefelsäure mit intensiv blaugrüner, in Pyridin mit dunkel orangeroter, in Pyroboracetat-Lösung mit hellgelber Farbe. Die Küpe ist orangefarben. Die Alkalisalze sind schwer löslich in Wasser, löslich in Alkohol mit purpurroter Farbe.
- 3-Methoxy-1.2-benzo-anthrachinon $C_{19}H_{18}O_3 = C_6H_4(CO)_2C_{10}H_5 \cdot O \cdot CH_3$. Bei der Oxydation von 3-Methoxy-1.2-benzo-anthracen oder von 2-Methoxy-3.4-benzo-anthron-(9) mit Chromtrioxyd in Eisessig bei 90° (FIESER, DIETZ, Am. Soc. 51, 3145). Braunrote Nadeln (aus Methyläthylketon oder Benzol). F: 188,5°. Ziemlich schwer löslich in Benzol und Eisessig, sohwer in Alkohol.
- 3-Acetoxy-1.2-benzo-anthrachinon $C_{20}H_{12}O_4=C_6H_4(CO)_2C_{10}H_5\cdot O\cdot CO\cdot CH_3$. B. Bei der Oxydation von 3-Acetoxy-1.2-benzo-anthracen mit Chromtrioxyd in Eisessig bei 70° (FIESER, Dietz, Am. Soc. 51, 3146). Gelbe Krystalle. F: 232°. Ziemlich schwer löslich in Toluol und Eisessig.

2. Oxy-oxo-Verbindungen C₁₉H₁₂O₂.

1. 2-Oxo-1-[2.4-dioxy-benzyliden]-acenaphthen, [2.4-Dioxy-benzyliden]-acenaphthenon C₁₉H₁₂O₂, Formel III. B. Bei der Kondensation von Acenaphthenon mit 2.4-Dioxy-benzaldehyd in wäßrig-alkoholischer Natronlauge (DE FAZI, MONFORTE, R. A. L. [6] 10, 654; G. 60 [1930], 276). — Rotbraun, amorph. F: 167—169° (Zers.). Sehr leicht löslich in Alkohol. Gibt mit konz. Schwefelsäure eine rotviolette Färbung.

2. 2-Oxo-1-[3.4-dioxy-benzyliden]-acenaphthen C₁₉H₁₂O₃, Formel IV (R = H). 2-0xo-1-[4-oxy-3-methoxy-benzyliden]-acenaphthen, Vanillyliden-acenaphthenon C₂₀H₁₄O₃, Formel IV (R = CH₃). B. Bei der Kondensation von Acenaphthenon mit Vanillin in wäßrig-alkoholischer Natronlauge (DE FAZI, G. 54, 663). — Rotbraune Krystalle (aus Aceton + Alkohol). F: 149—150°. Leicht löslich in Chloroform, Äther, Aceton, Benzol und Eisessig, ziemlich schwer in Alkohol. Löslich in Natronlauge und in konz. Schwefelsäure mit violettroter Farbe.

¹⁾ Bezifferung des Naphthacens s. E II 5, 628.

3. Bz1-Oxy-Bz2-acetyl-benzanthron C₁₉H₁₂O₃, Formel V. B. Beim Erwärmen von Anthron und α-Oxymethylen-acetessigester mit mäßig konz. Schwefelsäure und Eisessig auf ca. 60° (I. G. Farbenind., D.R.P. 488 608; C. 1930 II, 3861; Frdl. 16, 1432). — Goldgelbe Nadeln (aus Nitrobenzol). F: 295°. Löst sich in wäßr. Alkalien mit karminroter Farbe, in konz. Schwefelsäure mit karminroter Farbe und braunroter Fluorescenz.

3. Oxy-oxo-Verbindungen $C_{21}H_{16}O_3$.

- 1. 1.1.3 Triphenyl-propanol -(1)-dion -(2.3), Phenyl -[α -oxy-benzhydryl]-diketon $C_{21}H_{16}O_3=C_6H_5\cdot CO\cdot C(C_6H_5)_2\cdot OH$. B. Bei der Oxydation von 3-Oxo-2.2.4.5-tetraphenyl-2.3-dihydro-furan mit Ozon in Chloroform oder besser mit Chromsäure in Eisessig bei 90° (Kohler, Am. Soc. 47, 3036). Bei der Ozonspaltung von 5-Oxo-2-methyl-3.4.6.6-tetraphenyl-2.5-dihydro-1.2-oxazin in Chloroform (K., Am. Soc. 48, 762). Gelbe Nadeln oder Tafeln (aus Aceton + Methanol). F: 150°; schwer löslich in Methanol und Äther, leicht in Aceton (K., Am. Soc. 47, 3036). Bei weiterer Oxydation mit Chromsäure in heißem Eisessig entstehen Benzophenon, Benzoesäure und Benzilsäure (K., Am. Soc. 47, 3036). Wird durch wäßrig-methylalkoholische Natronlauge sehr rasch in Benzophenon und Phenylglyoxal gespalten (K., Am. Soc. 47, 3036).
- 2. $[2-Benzoyl-phenyl]-benzoyl-carbinol, 2-Benzoyl-benzoin <math>C_{21}H_{16}O_3=C_6H_5\cdot CO\cdot C_6H_4\cdot CH(OH)\cdot CO\cdot C_6H_5$. B. Bei der Ozonspaltung von 1.2-Diphenyl-inden in Eisesig (Banvis, Calvet, An. Soc. españ. 27, 57; C. 1929 II, 1793). Nadeln (aus Äther). F: 121° bis 123°. Liefert bei der Oxydation mit Permanganat in siedendem Aceton 2-Benzoyl-benzil (E II 7, 841) und geringe Mengen Benzoesäure und Benzophenon-carbonsäure-(2). Gibt ein bei 143—145° schmelzendes Monophenylhydrazon $C_{27}H_{22}O_2N_3$.

Dioxim $C_{31}H_{18}O_3N_2 = C_6H_5 \cdot C(:N \cdot OH) \cdot C_6H_4 \cdot CH(OH) \cdot C(:N \cdot OH) \cdot C_6H_5$. B. Beim Behandeln von 2-Benzoyl-benzoin mit Hydroxylaminhydrochlorid in wäßrig-alkoholischer Kalilauge in Wasserstoffatmosphäre (Banús, Calvet, An. Soc. españ. 27 [1929], 58). — Krystalle (aus Alkohol). F: 178—180°.

4. Oxy-oxo-Verbindungen CasH18O3.

- 1. 1.2-Diphenyl 4-[4-oxy-phenyl]-buten-(1)-ol-(1)-on-(4), 1.2-Diphenyl-3-[4-oxy-benzoyl]-propen-(1)-ol-(1) $C_{22}H_{18}O_3 = HO \cdot C_4H_4 \cdot CO \cdot CH_2 \cdot C(C_6H_5) : C(OH) \cdot C_6H_5$.
- 1-Methoxy-1.2-diphenyl-3-anisoyl-propen-(1), [4-Methoxy-phenyl]- $[\gamma$ -methoxy- β . γ -diphenyl-aliyl]- keton $C_{24}H_{21}O_3=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot CH_2\cdot C(C_6H_5):C(O\cdot CH_3)\cdot C_6H_5$. Bei der Einw. von warmer Natriummethylat-Lösung auf niedrigerschmelzendes 1-Nitro-1.2-diphenyl-3-anisoyl-cyclopropan (Kohler, Allen, Am. Soc. 50, 891). Nadeln (aus Methanol). F: 144° bis 145°. Leicht löslich in Methanol, löslich in Äther. Gibt bei der Ozonspaltung in Äthylbromid Benzoesäuremethylester und Benzoyl-anisoyl-methan. Wird durch verd. Alkalien nicht verändert. Liefert bei der Einw. von methylalkoholischer Natronlauge 1-Phenyl-1-benzoyl-2-anisoyl-äthan; dieses entsteht auch beim Zusatz einer Spur Essigsäure zu einer methylalkoholischen Lösung. Gibt beim Behandeln mit methylalkoholischer Salzsäure hauptsächlich 2.3-Diphenyl-5-[4-methoxy-phenyl]-furan (Syst. Nr. 2394).
- 1-Äthoxy-1.2-diphenyl-3-anisoyl-propen-(1), [4-Methoxy-phenyl]-[γ -äthoxy- β , γ -diphenyl-allyl]-keton $C_{25}H_{24}O_3=CH_3\cdot C\cdot C_4H_4\cdot CO\cdot CH_2\cdot C(C_4H_5)\cdot C(O\cdot C_2H_5)\cdot C_6H_5$. B. Bei der Einw. von warmer Natriumäthylat-Lösung auf niedrigerschmelzendes 1-Nitro-1.2-diphenyl-3-anisoyl-cyclopropan (Kohler, Allen, Am. Soc. 50, 892). Prismen (aus absol. Alkohol). F: 89—90°.
- 2. 1.2-Diphenyl 4 [4-oxy-phenyl] butandion (1.4), 1-Phenyl-1-benzoyl 2 [4-oxy-benzoyl] äthan $C_{23}H_{18}O_3 = HO \cdot C_0H_4 \cdot CO \cdot CH_2 \cdot CH(C_0H_5) \cdot CO \cdot C_0H_5$.
- 1.2 Diphenyl 4 [4 methoxy-phenyl] butandion-(1.4), 1 Phenyl 1 benzoyl 2-anisoyläthan $C_{33}H_{30}O_3=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot CH_3\cdot CH(C_6H_5)\cdot CO\cdot C_6H_5$. B. Aus 1-Nitro-1.2-diphenyl-3-anisoyl-propan durch Auflösen in Natriummethylat-Lösung und Ansäuern mit Salzräure (Kohler, Allen, Am. Soc. 50, 888). In geringer Menge bei 24-stdg. Kochen von 1-Brom-1-nitro-1.2-diphenyl-3-anisoyl-propan mit Kaliumacetat in Methanol (K., A.). Aus 1-Methoxy-1.2-diphenyl-3-anisoyl-propen-(1) beim Behandeln mit methylalkoholischer Natronlauge oder beim Zusatz einer Spur Essigsäure zu einer methylalkoholischen Lösung (K., A.). Prismen. F. 155-156°. Leicht löslich in Chloroform und in siedendem Methanol und Benzol, schwer in Äther. Liefert bei der Einw. von kalter konzentrierter Schwefelsäure 2.3-Diphenyl-5-[4-methoxy-phenyl]-furan (Syst. Nr. 2394).

Dioxim $C_{45}H_{24}O_3N_3 = CH_3 \cdot O \cdot C_6H_4 \cdot C(:N \cdot OH) \cdot CH_2 \cdot CH(C_6H_5) \cdot C(C_6H_5) :N \cdot OH$. Prismen (aus verd. Methanol). F: 180—181° (KOHLER, ALLEN, Am. Soc. 50, 888).

OXY-OXO-VERBINDUNGEN C_nH_{2n-26}O₃ und C_nH_{2n-28}O₈ [Syst. Nr. 784

5. Oxy-oxe-Verbindungen CasH2003.

1. 1.5 - Diphenyl - 3 - [2 - oxy - phenyl] - pentandion - (1.5), Salicylidendi - acetophenon bzw. 2 - Oxy - 2 - phenyl - 4 - phenacyl - chroman, 2 - Phenyl - 4 - phenacyl - chromanol - (2) $C_{23}H_{20}O_3 = HO \cdot C_6H_4 \cdot CH(CH_2 \cdot CO \cdot C_6H_5)_2$ bzw. CH(CH₂·CO·C₆H₅)·CH₂

C₆H₄ CH(CH₂·CO·C₆H₅)·CH₂ (H 369). Zur Konstitution vgl. Hill, Soc. 1984, 1257; Gomm, Hill, Soc. 1985, 1119. — Tafeln. F: 129° (Mc Gookin, Singlair, Soc. 1928, 1177). Löst

GOMM, HILL, Soc. 1985, 1119. — Tafeln. F: 129° (McGookin, Sinclair, Soc. 1928, 1177). Löst sich in starker Alkalilauge (> 15%) mit gelber Farbe (McG., S.). — Läßt sich schon durch Behandlung mit Essigsäure in 4-Phenacyliden-flaven überführen (vgl. H 369) (Dilthey, Floret, A. 440, 95).

- [2-Methoxy-benzyliden] diacetophenon $C_{24}H_{32}O_3=CH_3\cdot O\cdot C_6H_4\cdot CH(CH_2\cdot CO\cdot C_6H_5)_2$ (E I 674). B. Durch Kondensation von 2-Methoxy-chalkon mit 1 Mol Acetophenon in alkoholischalkalischer Lösung (DILTHEY, FLORET, A. 440, 92). F: 115°. Die Lösung in konz. Schwefelsäure ist farblos und wird langsam gelblich. Liefert beim Behandeln mit Bromwasserstoff in Alkohol oder Eisessig oder mit Eisen(III)-chlorid in siedendem Acetanhydrid 2.6-Diphenyl-4-[2-methoxy-phenyl]-pyryliumsalze.
- 2. 1.5-Diphenyl-3-[4-oxy-phenyl]-pentandion-(1.5), [4-Oxy-benzyliden]-diacetophenon $C_{23}H_{20}O_3=HO\cdot C_6H_4\cdot CH(CH_2\cdot CO\cdot C_6H_5)_2$.
- [4-Methoxy-benzyliden]-diacetophenon, Anisylidendiacetophenon $C_{24}H_{32}O_3 = CH_3 \cdot O \cdot C_6H_4 \cdot CH(CH_3 \cdot CO \cdot C_6H_5)_3$. Beim Kochen von Acetophenon mit Anisaldehyd in wäßrigalkoholischer Natronlauge (Dilthey, Taucher, B. 53, 255). Ist monotrop dimorph. Stabile Form. Derbe Krystalle (aus Äther). F: 105°. Instabile Form. Nadeln (aus Äther). F: 93°. Geht beim Umkrystallisieren aus Benzol in die stabile Form über. Ein Gemisch beider Formen schmilzt bei 105°. Schwer löslich in Äther, leicht in Benzol. Die Lösung der stabilen Form in konz. Schwefelsäure ist zunächst fast farblos und wird nach 1 Stde. schmutzigviolett, nach einigen Tagen gelb mit grüner Fluorescenz; die instabile Form verhält sich analog, aber ohne das Auftreten der violetten Zwischenstufe. Liefert bei der Einw. von überschüssigem Eisen(III) ohlorid in Acetanhydrid 2.6-Diphenyl-4-[4-methoxy-phenyl]-pyryliumferrichlorid (Syst. Nr. 2411).

Disemicarbazon $C_{26}H_{28}O_3N_6=CH_3\cdot O\cdot C_6H_4\cdot CH[CH_2\cdot C(C_6H_5):N\cdot NH\cdot CO\cdot NH_2]_2$. Krystalle. F: 246—247° (unkorr.) (Dilthey, Taucher, B. 53, 255). Schwer löslich in den meisten Lösungsmitteln.

- 3. 1.3 Bis [4 oxy cinnamyliden] cyclopentanon (2) $C_{13}H_{10}O_3$, Formel I (R = H).
- 1.3 Bis [4 methoxy cinnamy-liden] cyclopentanon (2) C₂₅H₂₄O₃, I.

 Formel I (R = CH₃). B. Aus Cyclopentanon und 4-Methoxy-zimtaldehyd in wäßrig-methylalkoholischer Natronlauge (Vorländer, Gieseler, J. pr. [2] 121, 241). Orangerote Nadeln (aus Chloroform + Benzol oder aus Eisessig). F: 237° (korr.). Ist schwach monotrop krystallinisch-flüssig. Addiert Brom unter Farbänderung und Bromwasserstoffentwicklung.

6. Oxy-oxo-Verbindungen C. H. O.

1.3 - Bis - [4 - methoxy - cinnamyliden] - cyclohexanon - (2) $C_{28}H_{24}O_3$, Formel II. B. Aus Cyclohexanon und 4-Methoxy-zimtaldehyd; in wäßrig-methylalkoholischer Natronlauge (Vorländer, Gieseller, J. pr. [2] 121, 241). — Orangegelbe Nadeln (aus Aceton oder Chloroform + Alkohol). F: 201°; die Schmelze ist bis 212° krystallinisch-flüssig. — Addiert Brom unter Farbänderung und Bromwasserstoffentwicklung.

$$\begin{array}{c} \text{H}_2\text{O}\cdot\text{CH}_2\cdot\text{CH}_2\\ \text{II.} & \text{CH}_2\cdot\text{O}\cdot\text{C}_6\text{H}_4\cdot\text{OH}:\text{CH}\cdot\text{CH}:\text{C}\cdot\text{CO}\cdot\text{C};\text{CH}\cdot\text{CH}:\text{CH}\cdot\text{C}_6\text{H}_4\cdot\text{O}\cdot\text{CH}_2}\\ \end{array}$$

7. Oxy-oxo-Verbindungen CasH26O3.

2'- 0xo-2.3'-dianisyliden-dicyclohexyliden, 1-[2-Anisyliden-cyclohexyliden]-3-anisyliden-cyclohexanon-(2) C₂₈H₃₀O₃, Formel III. B. Durch Kondensation von 1-\(\delta\)-1-Cyclohexenyl-cyclohexanon-(2) (E II 7, 136) mit 2 Mol Anisaldehyd in wäßrig-alkoholischer Natronlauge (Kunze, B. 59, 2087). — Nadeln (aus Alkohol). F: 152—153° (korr.). Löslich in Chloroform, Äther und Benzol, schwer löslich in Alkohol und Wasser. Löslich in konz. Schwefelsäure mit roter Farbe.

III.
$$H_2C$$
 $C(:CH \cdot C_6H_4 \cdot O \cdot CH_3) \cdot CO$
 CH_2
 CH_3
 CH_3
 CH_3
 CH_3

o) Oxy-oxo-Verbindungen $C_n H_{2n-28} O_3$.

1. Oxy-oxo-Verbindungen $C_{20}H_{12}O_3$.

- 1. 2-[4-Oxy-naphthyl-(1)]-naphthochinon-(1.4), 4-Oxy-dinaphthyl-(1.2')-chinon (1'.4'), α-Naphtholyl-α-naphthochinon C₂₀H₁₂O₃, Formel I. B. Bei der Oxydation von 1.4-Dioxy-2-[4-oxy-naphthyl-(1)]-naphthalin mit Chinon oder überschüssigem Eisenchlorid in Eiseesig (РUММЕВЕВ, HUFPMANN, B. 60, 1450). Braune Nadeln (aus 20%iger Essigsure). F: 175° (Zers.). Sehr leicht löslich in Aceton, leicht in Chloroform und Essigester, schwer in Ligroin, sehr schwer in Wasser. Die Lösungen in Alkalien sind anfangs moosgrün, dann hellbraun.
- 4-Acetoxy-dinaphthyl-(1.2')-chinon-(1'.4') $C_{22}H_{14}O_4 = (0:)_2C_{10}H_5 \cdot C_{10}H_6 \cdot O \cdot CO \cdot CH_3$. Be kurzem Erhitzen von 4-Oxy-dinaphthyl-(1.2')-chinon-(1'.4') mit Acetanhydrid und Pyridin auf dem Wasserbad (Pummerer, Huppmann, B. 60, 1451). Gelbe Nadeln (aus Hexahydrotoluol). F: 221°. Sehr leicht löslich in Aceton, leicht in Benzol und Chloroform, schwer in Ligroin.

II.
$$\bigcirc$$
 CO C: CH. OH III. \bigcirc CO C: CH. OH IV. $\Big[$ HO. $\Big]$ CO

- 2. 2-[4-Oxy-naphthyl-(1)-methylen]-indandion-(1.3), C₂₀H₁₂O₃, Formel II. B. Beim Erhitzen von 4-Oxy-naphthaldehyd-(1) mit Indandion-(1.3) auf 120° (RADULESCU, IONESCU, Bulet. Cluj 2, 177; C. 1924 II, 2846). Krystallpulver (aus Alkohol). F: 214—215°. Absorptionsspektrum des Natriumsalzes in Alkohol: R., Georgescu, Ph. Ch. [B] 5, 196; vgl. a. R., I. Löslich in konz. Schwefelsäure mit violetter, in Alkalien mit fuchsinroter Farbe (R., I.).
- 3. 2-[1-Oxy-naphthyl-(2)-methylen]-indandion-(1.3), C₂₀H₁₂O₃, Formel III. B. Beim Erhitzen von 1-Oxy-naphthaldehyd-(2) mit Indandion-(1.3) auf 120° (RADULESCU, IONESCU, Bulet. Cluj 2, 177; C. 1924 II, 2846). Orangefarbenes Krystallpulver (aus Eisessig). F: 211°. Lichtabsorption: R., I. Löslich in konz. Schwefelsäure mit violetter, in Alkalien mit roter Farbe.

2. Oxy-oxo-Verbindungen $C_{21}H_{14}O_3$.

Bis - [4-oxy-naphthyl-(1)]-keton, 4.4'-Dioxy-dinaphthyl-(1.1')-keton C₃₁H₁₄O₃, Formel IV. B. Beim Behandeln von α-Naphthol mit Tetrachlorkohlenstoff bei Gegenwart von Kupferpulver in wäßrig-isoamylalkoholischer Natronlauge (Ges. f. chem. Ind. Basel, D.R.P. 373737; C. 1923 IV, 593; Frdl. 14, 729). Bei langsamem Erhitzen von 4.4'-Dioxy-dinaphthyl-(1.1')-keton-dicarbonsäure-(3.3') mit Dimethylanilin auf 150° (Ges. f. chem. Ind. Basel, D.R.P. 378909; C. 1923 IV, 593; Frdl. 14, 470). — Krystalle (aus Eisessig). F: 243°; löslich in Natronlauge und Sodalösung mit gelber Farbe (Ges. f. chem. Ind. Basel, D.R.P. 373737). — Anwendung zur Darstellung von Azofarbstoffen auf der Faser: Ges. f. chem. Ind. Basel, D.R.P. 393701; C. 1925 I, 2468; Frdl. 14, 1028. — Natriumsalz. Krystalle (aus Wasser) (Ges. f. chem. Ind. Basel, D.R.P. 378909).

3. Oxy-oxo-Verbindungen C₂₂H₁₆O₃.

α-Phenyl-α-benzoyl-β-anisoyl-äthylen, α-Benzoyl-β-anisoyl-styrol $C_{23}H_{18}O_3=C_6H_5\cdot CO\cdot C(C_6H_6)\cdot CH_5\cdot CO\cdot C_6H_6\cdot O\cdot CH_3$. B. Bei kurzem Erwärmen von Benzil mit 4-Methoxy-acetophenon und Natriummethylat-Lösung und nachfolgendem Aufbewahren (Allen, Rosener, Am. Soc. 49, 2112). — Hellgelbe Krystalle (aus Eisessig). F: 177°. Schwer löslich in Eisessig, unlöslich in Chloroform. — Liefert beim Behandeln mit Bromwasserstoff in Eisessig oder Chloroform 4-Brom-2.3-diphenyl-5-[4-methoxy-phenyl]-furan (Syst. Nr. 2394).

4. Oxy-oxo-Verbindungen $C_{23}H_{18}O_{3}$.

1. 2.5 - Diphenyl - 1 - [2 - oxy-phenyl] - penten - (1) - dion - (3.5), α - Phenyl- α -salicyliden - α' - benzoyl-aceton, o - Oxy-benzyliden - phenylacetyl-acetophenon C₂₃H₁₈O₃ = C₆H₅·CO·C(C₅H₅):CH·C₆H₄·OH. B. Beim Erhitzen von Salicylaldehyd mit α -Phenacetyl-acetophenon in absol. Alkohol bei Gegenwart von Piperidin (Lovett, Robbetts, Soc. 1928, 1975, 1977). — Prismen. F: 171—174°. — Zerfällt beim Umkrystallisieren aus Alkohol oder Benzol teilweise in 3-Phenyl-cumarin und Acetophenon.

- 2. 1.5-Diphenyl-3-[2-oxy-phenyl]-penten-(2)-dion-(1.5) $C_{23}H_{18}O_3 = C_0H_5 \cdot CO \cdot CH_2 \cdot C(C_0H_4 \cdot OH) : CH \cdot CO \cdot C_0H_5$ bzw. desmotrope Formen.
- 1.5-Diphenyl-3-[2-acetoxy-phenyl]-penten-(2)-dion-(1.5) bzw. 1.5-Diphenyl-3-[2-acetoxy-phenyl]-pentadien-(1.3)-ol-(1)-on-(5) bzw. 2.6-Diphenyl-4-[2-acetoxy-phenyl]-pyranol-(2) $C_{55}H_{20}O_4$, Formel I bzw. III bzw. III, Pseudobase der 2.6-Diphenyl-4-[2-acetoxy-phenyl]-pyryliumsalze. B. Bei der Hydrolyse von 2.6-Diphenyl-4-[2-acetoxy-phenyl]-pyrylium-chlorid (Syst. Nr. 2411) mit wäßrig-alkoholischer Natriumacetat-Lösung (Dilthex, Floret, A. 440, 94). Farblose Krystalle (aus verd. Alkohol oder Aceton). F: 112—113°.

- 3. 3.5 Diphenyl 1 [3 oxy phenyl] penten (2) dion (1.5) bzw. 1.3 Diphenyl 5 [3-oxy phenyl] pentadien (1.3) ol (1) on (5) bzw. 2.4 Diphenyl 6 [3-oxy phenyl] pyranol (2) C₃₃H₁₆O₃, Formel IV bzw. V bzw. VI, Pseudobase der 2.4 Diphenyl 6 [3-oxy phenyl] pyryliumsalze. B. Beim Behandeln von 2.4 Diphenyl 6 [3-oxy phenyl] pyryliumsalze. B. Beim Behandeln von 2.4 Diphenyl 6 [3-oxy phenyl] pyryliumsalze. B. Beim Behandeln von 2.4 Diphenyl 6 [3 oxy phenyl] pyryliumsalze. B. Beim Behandeln von 2.4 Diphenyl 6 [3 oxy phenyl] pyryliumsalze. B. Beim Behandeln von 2.4 Diphenyl 6 [3 oxy phenyl] pyryliumsalze. B. Beim Behandeln von 2.4 Diphenyl 6 [3 oxy phenyl] pyryliumsalze. Beim Behandeln von 2.4 Diphenyl 6 [3 oxy phenyl] pyryliumsalze. B. Beim Behandeln von 2.4 Diphenyl 6 [3 oxy phenyl] pyryliumsalze. B. Beim Behandeln von 2.4 Diphenyl 6 [3 oxy phenyl] pyryliumsalze. B. Beim Behandeln von 2.4 Diphenyl 6 [3 oxy phenyl] pyryliumsalze. B. Beim Behandeln von 2.4 Diphenyl 6 [3 oxy phenyl] pyryliumsalze. B. Beim Behandeln von 2.4 Diphenyl 6 [3 oxy phenyl] pyryliumsalze. B. Beim Behandeln von 2.4 Diphenyl 6 [3 oxy phenyl] pyryliumsalze. B. Beim Behandeln von 2.4 Diphenyl 6 [3 oxy phenyl] pyryliumsalze. B. Beim Behandeln von 2.4 Diphenyl 6 [3 oxy phenyl] pyryliumsalze. B. Beim Behandeln von 2.4 Diphenyl 6 [3 oxy phenyl] pyryliumsalze. B. Beim Behandeln von 2.4 Diphenyl 6 [3 oxy phenyl] pyryliumsalze. B. Beim Behandeln von 2.4 Diphenyl 6 [3 oxy phenyl] pyryliumsalze. B. Beim Behandeln von 2.4 Diphenyl 6 [3 oxy phenyl] pyryliumsalze. B. Beim Behandeln von 2.4 Diphenyl 6 [3 oxy phenyl] pyryliumsalze. B. Beim Behandeln von 2.4 Diphenyl 6 [3 oxy phenyl] pyryliumsalze. B. Beim Behandeln von 2.4 Diphenyl 6 [3 oxy phenyl] p
- a.5-Diphenyl-1-[3-methoxy-phenyl]-penten-(2)-dion-(1.5) bzw. 1.3-Diphenyl-5-[3-methoxy-phenyl] pentadien (1.3)-ol (1)-on (5) bzw. 2.4-Diphenyl-6-[3-methoxy-phenyl]-pyranol-(2), Pseudobase der 2.4-Diphenyl-6-[3-methoxy-phenyl]-pyryliumsalze $C_{24}H_{30}O_{3}=C_{6}H_{5}\cdot \text{CO}\cdot \text{CH}_{2}\cdot \text{C(}C_{6}H_{5})\cdot \text{CH}\cdot \text{CO}\cdot \text{C}_{6}H_{4}\cdot \text{O}\cdot \text{CH}_{3}$ bzw. desmotrope Formen. B. Beim Behandeln von 2.4-Diphenyl-6-[3-methoxy-phenyl]-pyryliumferrichlorid (Syst. Nr. 2411) mit Natriumacetat in wäßr. Aceton (Dilthey, Bloss, J. pr. [2] 101, 210). Gelbliche Nadeln (aus Methanol). F: 114° bis 115°. Löst sich in alkoh. Alkalien mit roter Farbe. Wird durch Säuredämpfe unter Bildung der entsprechenden Pyryliumsalze gelb gefärbt. Fluoresciert in Eisessig und 75%iger Schwefelsäure schwach grün, in rauchender Schwefelsäure (40% SO₂) intensiv grün. Gibt beim Erhitzen mit konz. Salzsäure auf 150—170° 2.4-Diphenyl-6-[3-oxy-phenyl]-pyryliumchlorid.
- 3.5 Diphenyl 1 [3-oxy-phenyl] penten (2) dion (1.5) disemicarbazon $C_{25}H_{24}O_2N_6=C_6H_5\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_2\cdot C(C_6H_5):CH\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot C_6H_4\cdot OH.$ Prismen (aus Alkohol). F: 209° (Zers.) (DILTHEY, BLOSS, J. pr. [2] 101, 212).
- 3.5-Diphenyl 1-[3-methoxy-phenyl]-penten-(2)-dion-(1.5)-disemicarbazon $C_{26}H_{26}O_2N_6=C_6H_5\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_2\cdot C(C_6H_5):CH\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot C_6H_4\cdot O\cdot CH_2$. Prismen. F: 196—198° (Zers.) (Dilthey, Bloss, J. pr. [2] 101, 210).
 - II. $C_6H_5 \cdot CO \cdot CH_2 \cdot C(C_6H_4 \cdot O \cdot R) : CH \cdot CO \cdot C_6H_5$ III. $R \cdot O \cdot C_9H_4 \cdot C \cdot CH \cdot C(C_6H_5) \cdot CH \cdot CO \cdot C_6H_5$
- 4. 1.5-Diphenyl-3-[4-oxy-phenyl]-penten-(2)-dion-(1.5) $C_{35}H_{18}O_3 = C_eH_s \cdot CO \cdot CH_s \cdot C(C_eH_4 \cdot OH) : CH \cdot CO \cdot C_eH_5$ bzw. desmotrope Formen.
- 1.5-Diphenyl-3-[4-methoxy-phenyl]-penten-(2)-dion-(1.5) bzw. 1.5-Diphenyl-3-[4-methoxy-phenyl]-pentadien-(1.3)-ol-(1)-on-(5) bzw. 2.6-Diphenyl-4-[4-methoxy-phenyl]-pyranol-(2) C₃₄H₃₀O₃, Formel I bzw. III bzw. III (R = CH₃), Pseudobase der 2.6-Diphenyl-4-[4-methoxy-phenyl]-pyryliumsalze. B. Bei der Hydrolyse von 2.6-Diphenyl-4-[4-methoxy-phenyl]-pyryliumferrichlorid (Syst. Nr. 2411) mit sehr verd. Natriumacetat-Lösung (DILTHEY, TAUCHER, B. 58, 256). Blaßgelbe Nadeln (aus Äther). F: 122° (unkorr.) (D., T.). Die Lösung in konz. Schwefelsäure ist gelb und zeigt nach einigen Tagen blaugrüne Fluorescenz; in rauchender Schwefelsäure (30% SO₃) tritt die Fluorescenz sofort auf (D., T.). Gibt beim Erhitzen mit konz. Salzsäure im Rohr auf 160—170° 2.6-Diphenyl-4-[4-oxy-phenyl]-pyrylium-chlorid (Syst. Nr. 2411) (D., T.). Liefert beim Behandeln mit alkoh. Ammoniak 2.6-Diphenyl-4-[4-methoxy-phenyl]-pyridin (D., J. pr. [2] 102, 226).
- 1.5-Diphenyl-3-[4-acetoxy-phenyl]-penten-(2)-dlon-(1.5) bzw. 1.5-Diphenyl-3-[4-acetoxy-phenyl]-pentadlen-(1.3)-ol-(1)-on-(5) bzw. 2.6-Diphenyl-4-[4-acetoxy-phenyl]-pyranol-(2) $C_{25}H_{20}O_4$, Formel I bzw. II bzw. III (R = CH₃·CO), Pseudebase der 2.6-Diphenyl-4-[4-acetoxy-phenyl]-pyryllumsalze. B. Beim Kochen von 2.6-Diphenyl-4-[4-oxy-phenyl]-pyryllum-

chlorid mit Acetanhydrid und Behandeln des Reaktionsprodukts mit Wasser (Dilthey, Taucher, B. 53, 254, 259). — Fast farblose Nadeln (aus verd. Alkohol). F: 122—123°.

1.5-Diphenyl - 3-[4-methoxy-phenyl]-penten-(2)-dion-(1.5)-disemicarbazon $C_{56}H_{26}O_3N_6=C_6H_5\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_2\cdot C(C_6H_4\cdot O\cdot CH_3):CH\cdot C(C_6H_5):N\cdot NH\cdot CO\cdot NH_2.$ Farblose Krystalle. F: 2180 (unkorr.) (Dilthey, Taucheb, B. 58, 257).

$$IV. \ \ \mathbf{R} \cdot \mathbf{O} \cdot \mathbf{C_6H_4} \cdot \mathbf{CH} : \mathbf{CH} \cdot \mathbf{CO} \cdot \mathbf{C(C_6H_5)} : \mathbf{CH} \cdot \mathbf{C_6H_4} \cdot \mathbf{O} \cdot \mathbf{R} \qquad \qquad V. \qquad \begin{array}{c} \mathbf{R} \cdot \mathbf{O} \cdot \mathbf{C_6H_4} \cdot \mathbf{C} : \mathbf{C(C_6H_5)} \\ \mathbf{R} \cdot \mathbf{O} \cdot \mathbf{C_6H_4} \cdot \mathbf{HC} \longrightarrow \mathbf{CH_2} \end{array}$$

5. 2-Phenyl-1.5-bis-[2-oxy-phenyl]-pentadien-(1.4)-on-(3) oder 1-Phenyl-2.3-bis-[2-oxy-phenyl]-cyclopenten-(1)-on-(5) $C_{23}H_{18}O_3$, Formel IV oder V (R = H).

2-Phenyl-1.5-bis-[2-methoxy-phenyl]-pentadien-(1.4)-on-(3) oder 1-Phenyl-2.3-bis-[2-methoxy-phenyl]-cyclopenten-(1)-on-(5) $C_{25}H_{22}O_3$, Formel IV oder V (R = CH₃). Zur Konstitution der beiden folgenden Verbindungen vgl. Hellbron, Irving, Soc. 1929, 938.

a) Bei 145° schmelzendes Isomeres. Das Mol.-Gew. ist vaporimetrisch bestimmt (Heilbron, Irving, Soc. 1929, 941). — B. Beim Sättigen einer Lösung von 5 g 2-Methoxybenzaldehyd und 5 g Methylbenzylketon in absol. Alkohol mit Chlorwasserstoff unter Kühlung (Dickinson, Soc. 1926, 2238). — Blaßrosa Rhomben (aus Alkohol). F: 145° (D.). Löslich in konz. Schwefelsäure mit gelber Farbe, die beim Aufbewahren etwas dunkler wird (H., I., Soc. 1929, 941). — Eine Lösung von Brom in Chloroform wird nicht entfärbt (H., I.).

b) Bei 180° schmelzendes Isomeres. B. Beim Sättigen einer Lösung von 5 g 2-Methoxy-benzaldehyd und 2,5 g Methylbenzylketon in absol. Alkohol mit Chlorwasserstoff bei —5° (HEILBEON, IRVING, Soc. 1929, 941). — Blaßgelbe Rhomben (aus Essigester). F: 180°.

Löslich in konz. Schwefelsäure mit roter Farbe.

6. 10-Oxo-9-[β -(4-oxy-benzoyl)-äthyl]-dihydroanthracen, 10-[β -(4-Oxy-benzoyl)-äthyl]-anthron-(9) $C_{23}H_{18}O_3 = HO \cdot C_0H_4 \cdot CO \cdot CH_2 \cdot CH_2 \cdot HC < C_0H_4 \cdot CO \cdot CH_2 \cdot CH_3 \cdot HC < C_0H_4 \cdot CO \cdot CH_3 \cdot CO \cdot CH_4 \cdot CO \cdot CH_3 \cdot CO \cdot CH_3 \cdot CO \cdot CH_4 \cdot CO \cdot CH_3 \cdot CO \cdot CH_3 \cdot CO \cdot CH_4 \cdot CO \cdot CH_3

10-[β -Anisoyl-äthyl]-anthron-(9) $C_{24}H_{20}O_3 = CH_3 \cdot O \cdot C_6H_4 \cdot CO \cdot CH_2 \cdot CH_2 \cdot HC \cdot C_2H_4 \cdot CO$.

B. Beim Erhitzen von Anthron mit β -Chlor-4-methoxy-propiophenon auf 100—120° (I. G. Farbenind., D.R.P. 488608; C. 1930 II, 3861; Frdl. 16, 1432). — Krystalle (aus Alkohol). F: 181°. — Liefert beim Erwärmen mit 82%iger Schwefelsäure auf 100° Bz 1-[4-Methoxy-phenyl]-benzanthron.

p) Oxy-oxo-Verbindungen $C_nH_{2n-30}O_3$.

1. Oxy-oxo-Verbindungen $C_{21}H_{12}O_2$.

10 - Oxy - 4(CO).10 - benzoylen - anthron - (9), Dimethylen-triphenylcarbinoldiketon C₂₁H₁₂O₃, s. nebenstehende Formel. B. Aus bei 100° im Vakuum getrockneter Triphenylmethan-dicarbonsäure-(2.2') beim Erwärmen mit konz. Schwefelsäure auf 70—90°, beim Behandeln mit konz. Schwefelsäure und Aluminium bei 50—60° oder beim Kochen mit Thionylchlorid und Behandeln des Reaktionsprodukts mit Aluminiumenhlorid in siedendem Schwefelkohlenstoff (Weiss, Reichell, M. 53/54, 194, 195). —

Prismen (aus Albohol). F. 2009 — Pleibt beim Frustmen mit 3° irom Natriums

Prismen (aus Alkohol). F: 232°. — Bleibt beim Erwärmen mit 3% igem Natriumamalgam in Alkohol unverändert. Beim Kochen mit Jodwasserstoffsäure (D: 1,7) bildet sich 4(CO).10-Benzoylen-9.10-dihydro-anthranol-(9) (S. 257).

Acetylderivat $C_{23}H_{14}O_4 = CH_3 \cdot CO \cdot O \cdot C_{21}H_{11}O_2$. B. Beim Erwärmen von Krystallessigsäure enthaltender Triphenylmethan-dicarbonsäure-(2.2') mit konz. Schwefelsäure auf 70—90° (Weiss, Reichel, M. 53/54, 189, 193). — Blaßrosa Krystalle (aus Eisessig oder verd. Alkohol). F: 230°. Sublimiert im Vakuum bei 184°. Unlöslich in Alkalilauge.

2. Oxy-exe-Verbindungen $C_{23}H_{16}O_3$.

1. 1.3-Bis-[4-exy-benzyliden]-indanon-(2), 1.3-Bis-[4-exy-benzyliden]-hydrindon-(2) $C_{15}H_{16}O_{3} = C_{6}H_{4} C_{(:CH \cdot C_{6}H_{4} \cdot OH)} CO$. B. Aus Hydrindon-(2) und 4-Oxy-benzaldehyd bei Gegenwart einer Spur konz. Salzsäure in warmen Eisessig (FRIEDLÄNDER, HERZOG, v. Voss, B. 55, 1594). — Gelbe Nadeln (aus Eisessig). F: ca. 265° (Zers.). Schwer löslich

in Alkohol, Äther und Benzol. Löslich in Natronlauge mit orangeroter Farbe, in kalter konzentrierter Schwefelsäure mit blauvioletter Farbe.

- 2. 3-Oxy-2-benzhydryl-naphthockinon-(1.4) C₂₃H₁₆O₃, s. nebenstehende Formel. Zur Konstitution vgl. die Angaben bei 2-Oxynaphthochinon-(1.4), S. 344. B. Aus 2-Oxynaphthochinon-(1.4) beim Kochen mit Benzhydrol in Gegenwart von wenig konz. Schwefelsäure in Eisessig (FIESER, Am. Soc. 48, 3212) oder, neben überwiegenden Mengen 2-Benzhydryloxy-naphthochinon-(1.4), beim Schütteln des Silbersalzes mit Diphenylbrommethan in Gegenwart von Natriumcarbonat in Benzol (F.). Gelbe Nadeln (aus Benzol + Ligroin). F: 186,5°. Sehr leicht löslich in Benzol und Eisessig, ziemlich schwer in Alkohol, Ligroin und Äther. Fast unlöslich in wäßriger, leicht löslich in wäßrig-alkoholischer Natronlauge.
 - roniange. $\textbf{3-Methoxy-2-benzhydryi-naphthochinon-(1.4)} \quad \textbf{C}_{\mathbf{24}}\textbf{H}_{\mathbf{18}}\textbf{O}_{\mathbf{2}} = \textbf{C}_{\mathbf{6}}\textbf{H}_{\mathbf{4}} \underbrace{ \begin{matrix} \textbf{CO} \cdot \textbf{C} \cdot \textbf{CH}(\textbf{C}_{\mathbf{6}}\textbf{H}_{\mathbf{5}})_{\mathbf{2}} \\ \textbf{CO} \cdot \textbf{C} \cdot \textbf{O} \cdot \textbf{CH}_{\mathbf{3}} \end{matrix} }_{\textbf{CO} \cdot \textbf{C} \cdot \textbf{C} \cdot \textbf{O} \cdot \textbf{CH}_{\mathbf{3}}}.$
- B. Durch Einw. von Diazomethan auf 3-Oxy-2-benzhydryl-naphthochinon-(1.4) (FIESER, Am. Soc. 50, 459). Krystalle (aus Ligroin oder Petroläther). F: 112,5°. Sehr leicht löslich in organischen Lösungsmitteln, sehr schwer in Wasser. Wird durch wäßrige und alkoholische Alkalien nur schwer hydrolysiert.
- 3-Acetoxy-2-benzhydryl-naphthochinon-(1.4) $C_{25}H_{18}O_4 = C_6H_4$ $CO \cdot C \cdot CH(C_6H_5)_2$ B. Aus 3-Oxy-2-benzhydryl-naphthochinon-(1.4) und Acetanhydrid in Gegenwart von wenig Schwefelsäure (Firser, Am. Soc. 48, 3212). Gelbe Krystalle (aus Benzol + Ligroin). F: 170,5°. Leicht löslich in Benzol.
- 3. $1-[4-Oxy-naphthyl-(1)]-3-[2-oxy-naphthyl-(1)]-propen-(1)-on-(3),\\ \alpha-[4-Oxy-naphthyl-(1)]-\beta-[2-oxy-naphthoyl-(1)]-\ddot{a}thylen \ C_{12}H_{16}O_3=HO\cdot C_{10}H_6\cdot CO\cdot CH:CH\cdot C_{10}H_6\cdot OH.$
- α -[4-Äthoxy-naphthyl-(1)]- β -[2-oxy-naphthoyl-(1)]-äthylen $C_{25}H_{20}O_3=HO\cdot C_{10}H_4\cdot CO\cdot CH: CH\cdot C_{10}H_4\cdot O\cdot C_2H_5$. B. Beim Erhitzen von 4-Äthoxy-naphthaldehyd-(1) mit 1-Acetyl-naphthol-(2) in absolut-alkoholischer Natronlauge auf dem Wasserbad (Tambor, Plattner, Zäch, Helv. 9, 466). Ziegelrote Nadeln (aus Chloroform + Alkohol). F: 144°. Die Lösung in konz. Schwefelsäure ist smaragdgrün mit grüner Fluorescenz. Löst sich in alkoh. Kalilauge mit roter Farbe; unlöslich in wäßr. Kalilauge. Gibt beim Behandeln mit wäßrig-alkoholischer Natronlauge 2-[4-Äthoxy-naphthyl-(1)]-5.6-benzo-chromanon-(4) (Syst. Nr. 2520).

q) Oxy-oxo-Verbindungen $C_n H_{2n-82} O_8$.

1. Oxy-oxo-Verbindungen C33H14O3.

9-Oxy-9-[4-brom-phenyl]-[benzo-1'.2':1.2-fluorenchinon-(3'.6')], 11-Oxy-11-[4-brom-phenyl]-chrysofluorenchinon-(1.4) C₂₃H₁₃O₃Br, Formel I. B. Beim Kochen von 9-[4-Brom-phenyl]-1.2-benzo-fluoren mit Natriumdichromat in Eisessig (Gomberg, Am. Soc. 45, 1772).

— Krystalle (aus Eisessig). F: 172°
bis 173°. Leicht löslich in Benzol, Aceton und Schwefelkohlenstoff. Löst sich in konz. Schwefelsäure mit blutroter Farbe. — Gibt bei weiterer Oxydation mit Chromtrioxyd in siedendem Eisessig 4'-Brom-benzophenon-carbonsäure-(2). Macht aus Kaliumjodid in alkoholisch-salzsaurer Lösung Jod frei.

2. Oxy-oxo-Verbindungen C_MH₁₆O₃.

 $2-Oxo-1.1-bis-[4-oxy-phenyl]-acenaphthen, Bis-[4-oxy-phenyl]-acenaphthenon <math>C_{24}H_{16}O_3$, Formel II. B. Bei der Kondensation von Acenaphthenchinon mit Phenol in Gegenwart von konz. Schwefelsäure (MATEI, B. 62, 2095, 2096). — Rötlichgelbe Nadeln (aus verd. Alkohol). F: 257—258°. Löst sich in kalten Alkalien mit rötlichgelber Farbe.

Bis - [4-acetoxy-phenyi] - acenaphthenon $C_{28}H_{90}O_5 = C_{10}H_4 < \stackrel{C(C_6H_4\cdot O\cdot CO\cdot CH_3)_2}{CO}$. Nadeln (aus Alkohol oder Eisessig). F: 141° (MATEI, B. 62, 2095, 2097). — Unlöslich in verd. Alkalien; wird durch konz. Alkalien langsam verseift.

3. Oxy-oxo-Verbindungen CasH₂₀O₂.

4.4'- Dimethoxy-α-benzoyl-triphenylmethan, ms.ms-Bis-[4-methoxy-phenyl]-desoxy-benzoin, 4.4'- Dimethoxy-β-benzpinakolin, 1.1-Di-p-anisyl-1.2-diphenyl-āthanon C₁₈H₂₄O₃=C₄H₅·CO·C(C₄H₄·O·CH₃)₂·C₆H₅. B. Beim Kochen von α.α'-Diphenyl-α.α'-bis-[4-methoxy-phenyl]-āthylenglykol mit 50% iger Schwefelsäure oder mit Acetylchlorid (Питемеди, Окваноw, Bl. [4] 87, 434). Beim Behandeln von 4-Methoxy-benzophenon mit Zinkstaub in Eisessig auf dem Wasserbad (T., O., Bl. [4] 87, 435). — Krystalle (aus Alkohol). F: 125—126°. Leicht löslich in Benzol, Äther und Eisessig, schwer in kaltem Alkohol. — Liefert beim Kochen mit alkoh. Kalilauge 4.4'-Dimethoxy-triphenylmethan und Benzoesäure. Bei der Umsetzung mit Äthylmagnesiumbromid in Äther erfolgt Reduktion zu α.β-Diphenyl-β.β-bis-[4-methoxy-phenyl]-āthylalkohol (E II 6, 1115).

r) Oxy-oxo-Verbindungen $C_n H_{2n-34} O_3$.

1. Oxy-oxe-Verbindungen C₂₂H₁₀O₃.

7-Oxy-1.4-dioxo-1.4-dihydro-2.3; 5.6-dibenzo-pyren C₂₂H₁₀O₃, Formel I, ist demotrop mit "Trimethylentriphenylmethantriketon", E II 7, 846.

2. Oxy-oxo-Verbindungen $C_{26}H_{18}O_{2}$.

10 - Oxo - 9.9-bis - [4-oxy-phenyl]- 9.10-dihydro-phenanthren, 10.10-Bis-[4-oxy-phenyl]-phenanthron-(9) Сав НавОз, Formel II. В. Веіт Егwаттеп von 10.10-Dichlor-phenanthron-(9) mit Phenol auf 50° (Goldschmidt, Vogt, Виков, А. 445, 134). — Prismen (aus Toluol oder aus Aceton + Ligroin). F: 248°. Sehr leicht löslich in Alkohol, Äther und Aceton, schwer in Benzol, Toluol und Xylol, unlöslich in Ligroin.

3. Oxy-oxo-Verbindungen $C_{27}H_{20}O_3$.

1.3 - Bis - [4 - $\frac{1}{3}$ thoxy - naphthyl - (1) - methylen] - cyclopentanon - (2) $C_{31}H_{28}O_3 = H_3C - CH_2$ Gelbrote Nadeln (aus Alkohol). F: 194° (Vor-C₂H₅·O·C₁₀H₆·CH·C·CO·C:CH·C₁₀H₆·O·C₂H₆ Gelbrote Nadeln (aus Alkohol). F: 194° (Vor-Länder, B. 54, 2263).

4. Oxy-oxo-Verbindungen CzeH22O3.

10 - Oxo - 9.9-bis - [4-oxy-3-methyl-phenyl]-9.10-dihydro-phenanthren, 10.10 - Bis - [4-oxy-3-methyl-phenyl]-phenanthron - (9) C₂₈H₂₁O₃, Formel III. B. Beim Erwärmen von 10.10-Dichlor-phenanthron-(9) mit geschmolzenem o-Kresol (Goldschmidt, Vogt, Bredig, A. 445, 134). — Krystalle (aus Aceton + Ligroin). F: 291—293° (Zers.).

s) Oxy-oxo-Verbindungen $C_n H_{2n-36} O_3$.

1. Oxy-oxo-Verbindungen CadH12O2.

1. 1-Oxy-3.4; 8.9-dibenzo-pyrenchinon-(5.10) $C_{24}H_{12}O_3$, Formel IV auf S. 430 (R = H). B. Beim Verschmelzen von Bz 2-Benzoyloxy-benzanthron mit Aluminiumehlorid und Natriumehlorid bei 220—240° (I. G. Farbenind., D. R. P. 455955; Frdl. 16, 1406). — Rotbraunes Pulver. Fast unlöslich in organischen Lösungsmitteln. Löst sich in konz. Schwefelsäure mit rotvioletter Farbe. — Färbt Baumwolle aus kirschroter Küpe rotbraun; beim Betupfen mit Säuren schlägt die Farbe nach Gelb um.

OXY-OXO-VERBINDUNGEN CaH2n-36O3 USW.

1-Methoxy-3.4; 8.9-dibenzo-pyrenchinon-(5.10) C₂₅H₁₄O₃, Formel IV (B, = CH₃). B. Beim Erhitzen von 1-Oxy-3.4; 8.9-dibenzo-pyrenchinon-(5.10) mit p-Toluolsulfonsäuremethylester und Natriumcarbonat in Nitrobenzol auf 180° (I. G. Farbenind., D. R. P. 455955; Frdl. 16, 1407). — Goldgelbe Krystalle. Löslich in hochsiedenden organischen Lösungsmitteln mit gelbbrauner Farbe. Die Lösung in konz. Schwefelsäure ist bläulichrot. — Färbt Baumwolle aus kirschroter Küpe gelb.

2. Oxy-oxo-Verbindungen $C_{25}H_{14}O_{3}$.

1 - Oxy - 5" - methyl - [dibenzo - 1'.2':3.4; 1".2":8.9 - pyrenchinon - (5.10)] C₂₄H₁₄O₃, Formel V 1). B. Beim Verschmelzen von Bz2-p-Toluyloxy-benzanthron mit Aluminiumchlorid und Natriumchlorid bei 220—240° (I. G. Farbenind., D.R.P. 455955; Frdl. 16, 1407). — Rotbraunes Pulver. Unlöslich in organischen Lösungsmitteln. Die Lösung in konz. Schwefelsäure ist rotviolett. — Liefert beim Methylieren einen gelben Küpenfarbstoff.

t) Oxy-oxo-Verbindungen $C_n H_{2n-38} O_3$.

1. Oxy-oxo-Verbindungen $C_{20}H_{18}O_{3}$.

9-Oxy-10.10'-dioxo-9.10.9'.10'-tetrahydro-diphenanthryl-(9.9') $C_{23}H_{18}O_{3} = C_{6}H_{4} \cdot C(OH) \cdot HC \cdot C_{6}H_{4} = C_{6}H_{4} \cdot CO \quad OC \cdot C_{6}H_{4} \quad (H 374).$ F: 158° (Dutt, Sen, Soc. 128, 3420).

2. Oxy-oxo-Verbindungen $C_{22}H_{20}O_3$.

3-Oxy-2-triphenylmethyl-naphthochinon-(1.4), 3-Oxy-2-trityl-naphthochinon-(1.4) C₂₉H₂₀O₃, Formel VI. B. Bei der Einw. von Triphenylchlormethan auf das Silbersalz des 2-Oxy-naphthochinons-(1.4) in Benzol bei Zimmertemperatur (FIESER, Am. Soc. 48, 3213). — Gelbe Nadeln (aus Benzol + Ligroin). F: 211° (Zers.). Leicht löslich in Benzol, schwer in Ligroin und Alkohol. Unlöslich in wäßriger, leicht löslich in verdünnter wäßrigalkoholischer Natronlauge mit roter Farbe; überschüssiges Alkali bewirkt Ausscheidung des Natriumsalzes. — NaC₂₉H₁₉O₃. Dunkelrote Prismen (aus verd. Alkohol).

u) Oxy-oxo-Verbindungen $C_n H_{2n-42} O_3$.

ω-Brom - ω'- oxy-ω.ω-diphenyl - ω'.ω'-dibenzoyl - p-xylol $C_{34}H_{25}O_3Br = (C_6H_6)_2CBr \cdot C_6H_4 \cdot C(OH)(CO \cdot C_6H_5)_2$. B. Bei $^1/_3$ -stdg. Kochen von ω.ω-Diphenyl-ω'.ω'-dibenzoyl-p-xylylenbromid mit wäßr. Alkohol (Goldschmidt, Mitarb., B. 61, 837). — Tafeln (aus Benzol). F: 181°. Schwer löslich in Benzol, fast unlöslich in Alkohol, Äther und Petroläther. Löslich in konz. Schwefelsäure mit gelbroter Farbe. — Bleibt bei mehrstündigem Kochen mit Kupfer-, Silber- oder Zinkpulver in Benzol unverändert. Spaltet bei längerem Kochen mit wäßr. Alkohol Bromwasserstoff ab.

v) Oxy-oxo-Verbindungen $C_n H_{2n-52} O_3$.

Bz2-Methoxy-isoviolanthron, Bz2-Methoxy-isodibenzanthron C₃₅H₁₈O₃, Formel VII. B. Beim Verschmelzen von Bz2-Methoxy-dibenzanthronyl-(Bz1.Bz1')-sulfid mit alkoh. Kalilauge bei 140° und Behandeln des Reaktionsprodukts mit Luft (I. G. Farbenind., D. R. P. 448 262; C. 1927 II, 2235; Frdl. 15, 728). — Löst sich in konz. Schwefelsäure mit bläulichgrüner Farbe. — Färbt Baumwolle aus der Küpe blauviolett.

¹⁾ Die im Original angegebene Konstitution ist unwahrscheinlich.

3. Oxy-oxo-Verbindungen mit 4 Sauerstoffatomen.

a) Oxy-oxo-Verbindungen $C_n H_{2n-4} O_4$.

b) Oxy-oxo-Verbindungen $C_n H_{2n-6} O_4$.

1. Oxy-oxo-Verbindungen $C_6H_6O_4$.

2.3-Dioxy-2.3-dihydro-benzochinon-(1.4), Dioxydihydrochinon C4H4O4 = OC CH(OH) CH(OH) CO bzw. desmotrope Formen. Zur Konstitution vgl. Terry, Milas, Am. B. Bei der Oxydation von Hydrochinon oder Chinon mit Natriumchlorat bei Gegenwart von Osmiumtetroxyd in salzsaurer Lösung (T., M., Am. Soc. 48, 2647, 2652). — Krystalle (aus Wasser). Zersetzt sich ohne zu schmelzen bei 177—178°. Löst sich langsam in siedendem Wasser; unlöslich in den gewöhnlichen organischen Lösungsmitteln. Lichtabsorption in wäßriger und alkalischer Lösung: T., M., Am. Soc. 48, 2649. — Wird von Salpetersäure zu Oxalsäure oxydiert. Beim Schmelzen des Ammoniumsalzes mit Zinkstaub tritt die Fichtenspanreaktion des Pyrrols auf. Gibt in frisch bereiteter wäßriger Lösung keine Eisenchloridreaktion und reagiert nur langsam mit Brom; behandelt man mit Alkali und säuert an, so gibt die erhaltene Lösung mit wenig Eisenchlorid eine rote, mit viel Eisenchlorid eine blaue Färbung, entfärbt Brom und reduziert Silbernitrat in saurer Lösung. Gibt mit Brom in Eisessig eine rote Färbung; beim Auflösen in Alkali, Ansäuern und Behandeln mit Brom und Natriumbromid in Wasser erhält man gelbe Krystalle vom Schmelzpunkt 285°. Beim Aufbewahren der alkal. Lösung bei Zimmertemperatur werden 2 Äquivalente Alkali gebunden. Die alkal. Lösung gibt mit Schwermetallsalzen Niederschläge. Gibt beim Behandeln mit Aceton und wäßr. Ammoniak an der Luft ein blaues Produkt. Liefert beim Erwärmen mit Acetanhydrid auf dem Wasserbad 1.2.3.4-Tetraacetoxy-benzol (E II 6, 1118); reagiert analog mit Benzoylchlorid in Pyridin. 5 g Dioxydihydrochinon geben bei der Einw. von 75 cm² Acetanhydrid und 5 cm³ konz. Schwefelsäure eine Verbindung $C_{30}H_{16}O_{10}$ (Nadeln, F: 217—218°); bei Anwendung von weniger Schwefelsäure unter Erwärmen entsteht außerdem eine nicht näher beschriebene Verbindung C24H22O13. Reaktion mit Phenylhydrazin: T., M., Am. Soc. 48, 2651.

2. Oxy-oxo-Verbindungen C₁₈H₂₄O₄.

3-Isoamyl-1-isovaleryl-cyclopentanol-(4)-dion-(2.5) bzw. 3-Isoamyl-1-isovaleryl-cyclopenten-(5)-diol-(4.5)-on-(2), Dihydrohumulinsäure $C_{18}H_{24}O_4$, Formel I bzw. II. Zur Konstitution vgl. Wieland, B. 58, 106, 2013; Wiel, Martz,

c) Oxy-oxo-Verbindungen C_nH_{2n-8}O₄.

1. Oxy-oxo-Verbindungen C.H.O.

1. 2.5-Dioxy-benzochinon-(1.4), 2.5-Dioxy-p-chinon C₀H₄O₄, s. nebenstehende Formel (H 377; E I 680). B. Durch Einw. von 4 Mol Kahumferricyanid auf 1 Mol Purpurin in verd. Kalilauge bei 15° (SCHOLL, DAHLL, B. 57, 82). — Existiert in zwei Modifikationen. Die metastabile Form Ho bildet hellgelbe Prismen oder Tafeln (aus Eisessig), ist nur in Eisessig oder Eisessig-Atmosphäre haltbar und geht beim Aufbewahren an der Luft oder beim Be-

netzen mit Wasser oder Äther in die stabile Form über (Sch., D.). Die stabile Form bildet orangegelbe Nadeln oder Tafeln (aus Alkohol) oder Rhomboeder (durch Sublimation). F: ca. 211° (Zers.); sublimiert unzersetzt bei 110—150° (Sch., D.). Ziemlich leicht löslich in heißem Alkohol, Aceton, Eisessig und Wasser (Sch., D.). Oxydations-Reduktions-Potential in wäßriger und wäßrig-alkoholischer Salzsäure bei 25°: Conant, Fieser, Am. Soc. 46, 1867. 2.5-Dioxy-p-chinon kondensiert sich mit 2-Amino-5-dimethylamino-phenol in schwach salzsaurer Lösung auf dem Wasserbad unter Bildung von 7-Dimethylamino-3-oxy-phenoxazon (Syst. Nr. 4382), Bis-dimethylamino-triphendioxazin

(s. nebenstehende Formel; Syst. Nr. 4652) und einer (CH₃)₂N. in schwarzen Nadeln krystallisierenden Substanz (Kehrmann, Grillet, Borgeaud, Helv. 9, 872).
Kaliumsalz K₂C₆H₂O₄. Vgl. dazu Scholl, Dahll, B. 57, 83. N(CH₃)2

- 2.5 Dimethoxy benzochinon (1.4), 2.5 Dimethoxy p chinon C₈H₈O₄ = O: C₆H₂(O· CH₂)₂: O (E I 681, H 378). B. Durch Sättigen einer Lösung von 2.5-Dioxy-benzochinon-(1.4) in Methanol mit Chlorwasserstoff (Scholl, Dahll, B. 57, 83). Goldzänzende Prismen (aus Eisessig). Sublimiert bei ca. 200° (Sch., D.); zersetzen 210—220° (Sch., D.), bei 250° (Conant, Fieser, Am. Soc. 46, 1867). Oxydations-Reduktions-Potential in wäßrig-alkoholischer Scholler and Scholler Scholler and Scholler Scholler and Scholler Scholler Scholler and Scholler Sch Salzsäure bei 25°: C., F. — Löst sich in alkal. Na₂S₂O₄-Lösung unter Bildung von 2.5-Dimethoxy-hydrochinon mit grüner Farbe.
- 2.5-Diäthoxy- benzochinon-(1.4), 2.5-Diäthoxy- p-chinon $C_{10}H_{12}O_4 = O:C_6H_2(O\cdot C_2H_5)_2:O$ (H 378). Oxydations-Reduktions-Potential in wäßriger und in wäßrig-alkoholischer Salzsäure bei 25°: CONANT, FIESER, Am. Soc. 46, 1867.
- 2.5 Diphenoxy benzochinon (1.4), 2.5 Diphenoxy p chinon $C_{19}H_{12}O_4 = O:C_9H_3(O\cdot C_9H_5)_2:O.$ B. Durch Oxydation von 2.5-Diphenoxy-hydrochinon mit Chromessigsäure (Kohn, Sussmann, M. 48, 208). — Gelbe Tafeln (aus Eisessig). F: 236°.
- 2.5 Diacetoxy benzochinon (1.4), 2.5 Diacetoxy p chinon $C_{10}H_{8}O_{8}=O:C_{8}H_{8}(O\cdot CO\cdot CH_{8})_{2}:O.$ B. Beim Vermischen von 2.5-Dioxy-benzochinon-(1.4) mit Acetanhydrid und wasserfreiem Zinkchlorid (Kehrmann, Sterchi, Helv. 9, 861). — Citronengelbe Tafeln oder Prismen (aus Benzol). F: ca. 150—152°. Löslich in Benzol, Ather, Eisessig und Alkohol, unlöslich in kaltem Wasser. — Wird beim Kochen mit Wasser rasch verseift.
- 2.5-Dioxy-benzochinon-(1.4)-monoxim bzw. 5-Nitroso-1.2.4-triexy-benzoi, 5-Nitroso-exyhydrochinon C_eH₅O₄N, Formel I bzw. II (R und R'= H). B. Bei kurzem Erwärmen von 2-Oxy-

5-acetoxy-benzochinon-(1.4)-oxim-(1) mit wäßr. Natronlauge auf dem Wasserbad (Kehrmann, STERCHI, Helv. 9, 862). Durch Einw. von Hydroxylamin auf 5-Amino-2-oxy-benzochinon-(1.4) und auf 5-Amino-2-oxy-benzochinon-(1.4)-imid-(1) in

I.
$$\mathbf{R} \cdot \mathbf{0} \cdot \bigcup_{\mathbf{O}}^{\mathbf{N} \cdot \mathbf{OH}} \cdot \mathbf{0} \cdot \mathbf{R}'$$
 II. $\mathbf{R} \cdot \mathbf{0} \cdot \bigcup_{\mathbf{OH}}^{\mathbf{NO}} \cdot \mathbf{0} \cdot \mathbf{R}'$

alkal. Lösung (K., Sr.). — Gelbbraune Nadeln (aus Wasser). Zersetzt sich bei 170—180°. Leicht löslich in Alkohol, Eisessig und Äther mit orangegelber Farbe, ziemlich leicht in kaltem Wasser, unlöslich in Benzol und Petroläther. Löst sich in Alkalicarbonat-Lösungen mit roter, in Alkalilaugen mit orangegelber Farbe. — Liefert bei kurzem Erwärmen mit Zinn(II)-chlorid in konz. Salzsäure 5-Amino-2-oxy-benzo-

- 2-0xy-5-acetoxy-benzochinon-(1.4)-exim-(1) bzw. 5-Nitroso-oxyhydrochinon-1-acetat $C_8H_7O_5N$, Formel I bzw. II ($R=CH_3\cdot CO$, R'=H). B. Durch Einw. von Hydroxylamin-hydrochlorid auf 2.5-Diacetoxy-benzochinon-(1.4) in Alkohol, zuletzt unter kurzem Kochen (Kehemann, Sterch, Helv. 9, 861). Hellgelbe Krystalle (aus Benzol). Schmilzt unter Zersetzung bei 115-120°. Sehr leicht löslich in Alkohol, sehwerer in Benzol, leicht in siedendem Wasser. Löst sich in Sodalösung mit orangegelber, beim Erwärmen in Rot übergehender Farbe.
- 2.5 Diacetoxy benzochinon-(1.4)-monoxim bzw. 5-Nitroso-oxyhydrochinon-1.4-diacetat $C_{10}H_{\bullet}O_{\bullet}N$, Formel I bzw. II (R und R' = $CH_{\bullet}\cdot CO$). B. Beim Behandeln von 2.5-Dioxy-benzo-

chinon-(1.4)-monoxim mit Acetanhydrid und Zinkchlorid (Kehrmann, Sterchi, Helv. 9, 863). — Gelbbraune Nadeln (aus Petroläther). F: 121°. Leicht löslich in organischen Lösungsmitteln, unlöslich in Wasser.

- 3.6 Dichlor 2.5 -dioxy benzochinon (1.4), Chloraniisäure C₆H₂O₄Cl₂, s. nebenstehende Formel (H 379). B. Bei der Einw. von Harnstoff oder Aminosäuren (z. B. Leucin, Leucylglycin) auf Chloranii in wäßr. Lösung (HILPERT, Bio. Z. 166, 76, 85). În geringer Menge neben anderen Verbindungen beim Erhitzen von Hydrochinon mit überschüssiger Chlorsulfonsäure auf 150—160° (POLLAK, GEBAUER-FÜLNEGG, M. 47, 115, 537). Verbrennungswärme bei konstantem Volumen: 486.1 kcal/Mol (Swietoslawski, Starczewska, J. Chim. phus. 28
- KONSTANTEM VOLUMEN: 486,1 kcal/Mol (SWIETOSLAWSKI, STARCZEWSKA, J. Chim. phys. 23, 822; vgl. Valeur, A. ch. [7] 21, 507. Oxydations Reduktions-Potential in wäßriger und in wäßrigalkoholischer Salzsäure: Conant, Lutz, Am. Soc. 46, 1257; Co., Fieser, Am. Soc. 46, 1867. Liefert beim Kochen mit Zinkstaub, Acetanhydrid und Natriumacetat 3.6-Dichlor-1.2.4.5-tetraacetoxy-benzol (P., G.-F., M. 47, 117, 537). Kondensiert sich mit o-Phenylendiamin-hydrochlorid in siedender Benzoesäure zu 1.4-Dichlor-2.3-dioxy-phenazin (Formel I); reagiert unter den gleichen Bedingungen mit 2-Amino-diphenylamin unter Bildung von 10-Phenyl-1.4-dichlor-2.oxy-phenazon-(3) (Formel II) (Kehrmann, B. 56, 2391, 2392). Toxische Wirkung auf Mäuse: Felton, Dougherty, J. exp. Medicine 36, 175; C. 1923 I, 123. Bactericide Wirkung: F. D.; Morgan, Cooper, J. Soc. chem. Ind. 48, 352 T; C. 1925 I, 1215.
- 3.6-Dibrom-2.5-dioxy-benzochinon-(1.4), Bromanilsäure C₆H₂O₄Br₂, Formel III (H 382; E I 681). B. Neben anderen Produkten bei der Einw. von Luft oder Wasserstoffperoxyd auf eine Lösung von Tetrabrombrenzcatechin in 8 Mol verd. Natronlauge (Zetzsche, Sukiennik, Helv. 10, 101). Aus 3.5.6-Tribrom-2-oxy-benzochinon-(1.4) bei längerer Einw. von Alkalien (Zincke, Weishaupt, A. 437, 97). Zersetzt sich bei 270° (Conant, Fieser, Am. Soc. 46, 1866). Oxydations-Reduktions-Potential in wäßrig-alkoholischer Salzsäure bei 25°: C., F. Liefert beim Kochen mit Zinkstaub und Acetanhydrid 1.2.4.5-Tetraacetoxy-benzol (Kohn, Sussmann, M. 48, 209). Bactericide Wirkung: Morgan, Cooper, J. Soc. chem. Ind. 43, 352 T; C. 1925 I, 1215.

$$I. \xrightarrow{\text{HO}} \overset{\text{Cl}}{\underbrace{\hspace{1cm}}} \overset{\text{N}}{\underbrace{\hspace{1cm}}} & III. \xrightarrow{\text{HO}} \overset{\text{Cl}}{\underbrace{\hspace{1cm}}} \overset{\text{N}}{\underbrace{\hspace{1cm}}} & III. \xrightarrow{\text{Br}} \overset{\text{O}}{\underbrace{\hspace{1cm}}} \overset{\text{OH}}{\underbrace{\hspace{1cm}}} & IV. \xrightarrow{C_0H_5 \cdot O} \overset{\text{O}}{\underbrace{\hspace{1cm}}} \overset$$

- 3.6-Dibrom 2.5-diphenoxy-benzochinon-(1.4), Bromanilsäure-diphenyläther $C_{18}H_{10}O_4Br_2=0:C_6Br_2(0\cdot C_6H_5)_2:0$ (H 383). Liefert beim Kochen mit Zinkstaub und Eisessig 2.5-Diphenoxy-hydrochinon (Kohn, Sussmann, M. 48, 208).
- 3.6 Dijod 2.5 diphenoxy benzochinon (1.4), Jodanilsäurediphenyläther $C_{18}H_{10}O_4I_2$, Formel IV (E I 682).
- E I 682, Z. 10—9 v. u. Der Passus "Beim Erwärmen mit Anilin ... (T., H.)" ist durch folgenden zu ersetzen: Gibt beim Erwärmen mit Anilin allein 2.5-Dianilino-p-chinon und 3-Jod-2.5-dianilino-p-chinon-monoanil (TORREY, HUNTER, Am. Soc. 34, 713), beim Erwärmen mit Anilin in Alkohol 3.6-Dijod-2.5-dianilino-benzochinon-(1.4) (JACKSON, BOLTON, Am. Soc. 36, 1480).
- 3.6-Dinitro-2.5-dioxy-benzochinon-(1.4), Nitranilsäure C₆H₂O₈N₂, Formel V (H 384; E I 683). B. Durch Eintragen von Chinon in rauchende Salpetersäure (D: 1,459) und mehrtägiges Aufbewahren des Reaktionsgemisches bei —5° bis —10°; Ausbeute ca. 75% (H. O. MEYER, B. 57, 327). In geringer Menge bei der Einw. von Wismutnitrat auf Chinon (SPIEGEL, HAYMANN, B. 59, 203). Zur Darstellung aus Hydrochinondiacetat und Salpeterschwefelsäure (H 384; E I 683) vgl. Gutzeit, Helv. 12, 726. Wasserhaltige Nitranilsäure schmilzt bei 86—87°: wasserfreie Nitranilsäure verpufft bei höherer Temperatur oder

Salpeterschwefelsäure (H 384; E I 683) vgl. Gutzeit, Helv. 12, 726. — Wasserhaltige Nitranilsäure schmilzt bei 86—87°; wasserfreie Nitranilsäure verpufft bei höherer Temperatur oder verbrennt unter lebhafter Feuererscheinung (M.). — Kaliumsalz K₂C₆O₈N₂. Krystallisiert aus der wäßr. Lösung bei 15—80° in zwei Modifikationen (M., B. 57, 328); beide Formen sind monoklin (Heide). — Rubidiumsalz Rb₂C₆O₈N₂. Gelbe Nadeln (M.). — Basisches Bleisalz PbC₆H₈N₂ + 2PbO. Rotes Pulver. Verpufft bei 215° (A.-G. Lignose, D.R.P. 407416; C. 1925 I, 2484; Frdl. 14, 390). Explodiert bei Schlag und Stoß. Unlöslich in heißem Wasser.

- 2. 2.6-Dioxy-benzochinon-(1.4), 2.6-Dioxy-p-chinon $C_6H_4O_4$, s. nebenstehende Formel.
- 2.6 Dimethoxy-benzochinon (1.4), 2.6 Dimethoxy-p chinon $C_0H_0O_4=O:C_0H_2(O\cdot CH_0)_2:O$ (H 385; E I 683). B. Bei der Oxydation von Antiarol BEILSTEINs Handbuch, 4. Autl. 2. Erg.-Werk, Bd. VIII.

но О

28

- (E II 6, 1118) mit Eisenchlorid in wäßr. Lösung (Baker, Soc. 1928, 1029). Bei der Oxydation von Pyrogallol-1.3-dimethyläther-sulfonsäure-(5) mit Chromschwefelsäure (Alimchandami, Soc. 125, 542). F: 255° (A.), 256° (B.). Redoxpotentiale: La Mer, Baker, Am. Soc. 44, 1960; Conant, Fieser, Am. Soc. 46, 1867.
- 2-Methoxy-6-äthoxy-benzochinon-(1.4), 2-Methoxy-6-äthoxy-p-chinon $C_sH_{10}O_4=O:C_sH_{1}(O\cdot CH_s)(O\cdot C_sH_s):O.$ B. Bei der Oxydation von Phloroglucin-monomethyläthermonoäthyläther oder von 2.4-Dimethoxy-6-äthoxy-benzhydrol mit Chromessigsäure (Späth, Wesselx, M. 49, 240). Krystalle (aus Äther). F: 135—136°.
- 2.6-Diäthoxy-benzochinon-(1.4), 2.6-Diäthoxy-p-chinon $C_{10}H_{12}O_4 = O:C_6H_5(O\cdot C_2H_5)_2:O$ (H 386). B. Bei der Oxydation von Phloroglucin-diāthyläther oder von 4-Methoxy-2.6-diāthoxy-benzhydrol mit Chromessigsäure (Späth, Wessely, M. 49, 239). F: 127—128°.
- 2.6-Bis-[2.4.6-trichlor-phenoxy]-benzochinon-(1.4) C₁₈H₄O₄Cl₆ = O:C₆H₂(O·C₆H₄Cl₈)₂:O.

 B. Neben anderen Produkten bei der Oxydation von 2.4.6-Trichlor-phenol mit Bleidioxyd in Benzol bei Gegenwart von Natriumsulfat (Hunter, Morse, Am. Soc. 48, 1623). Gelbe Krystalle (aus Benzol). F: 245°. Schwer löslich in kalten organischen Lösungsmitteln. Liefert bei der Reduktion mit Zinn(II)-chlorid und konz. Salzsäure in heißem Eisesig 2.6-Bis-[2.4.6-trichlor-phenoxy]-hydrochinon. Beim Erhitzen mit überschüssigem Anilin auf dem Wasserbad erhält man 3.6-Dianilino-2-[2.4.6-trichlor-phenoxy]-benzochinon-(1.4) (Syst. Nr. 1878), 2.6-Bis-[2.4.6-trichlor-phenoxy]-hydrochinon und 2.4.6-Trichlor-phenol.
- 2.6 Dibenzyloxy benzochinon (1.4), 2.6 Dibenzyloxy p-chinon $C_{20}H_{10}O_4=O:C_6H_2(O\cdot CH_2\cdot C_6H_5)_9:O.$ B. Neben 5(?)-Nitro-pyrogallol-tribenzyläther beim Behandeln von Pyrogallol-tribenzyläther mit Salpetersäure (D: 1,19) in Eisessig, anfangs bei 40° (Baker, Nodzu, Robinson, Soc. 1929, 77). Gelbe Nadeln (aus Aceton). F: 201—202°. Leicht löslich in Chloroform, schwer in den meisten übrigen organischen Lösungsmitteln.

- 3.5 Dichlor 2.6 dimethoxy-benzochinon (1.4) $C_8H_8O_4Cl_2$, Formel I (H 387). B. Bei der Oxydation von 4.5.6-Trichlor-pyrogallol-1.3-dimethyläther mit Chromtrioxyd in Eisessig bei Zimmertemperatur (Hunter, Levine, Am. Soc. 48, 1613; Kohn, Gurewitsch, M. 49, 186). Ziegelrote Blättchen (aus Eisessig). F: 159° (K., G.).
- 3.5 Dichlor 2-methoxy 6 [3.4.5 trichlor 2.6 dimethoxy phenoxy] benzochinon (1.4) $C_{18}H_9O_4Cl_5$, Formel II. B. Entsteht als Hauptprodukt bei der Oxydation von 4.5.6-Trichlor-pyrogallol-1.3-dimethyläther mit Chromtrioxyd in 50% iger Essigsäure bei 50—60° (Hunter, Levine, Am. Soc. 48, 1613). Rote Nadeln (aus Eisessig). F: 211°. Gibt bei der Reduktion mit Schwefeldioxyd in feuchtem Aceton das nicht näher beschriebene entsprechende Hydrochinon.
- 3-Brom 2.6-dimethoxy-benzochinon (1.4) $C_8H_7O_4Br$, Formel III. B. Durch Oxydation von 2-Brom-syringasäure (Syst. Nr. 1136) mit verd. Chromschwefelsäure (Levine, Am. Soc. 48, 799). Neben überwiegenden Mengen 2.2'-Dibrom-3.5.3'.5'-tetramethoxy-diphenochinon-(4.4') bei der Oxydation von 4-Brom-pyrogallol-1.3-dimethyläther mit Chromtrioxyd in 50% iger Essigsäure (L.). Rötlichgelbe Nadeln (aus Eisessig). F: 148°. Löslich in Benzol, Alkohol, Chloroform und Eisessig, unlöslich in Wasser und Ligroin.

5-Chlor-3-brom-2.6-dimethoxy-p-chinon C₈H₈O₄ClBr, Formel IV. B. Bei der Oxydation von 5.6-Dichlor-4-brom-pyrogallol-1.3-dimethyläther mit Chromessigsäure (Levine, Am. Soc. 48, 800) oder von 6-Chlor-4.5-dibrom-pyrogallol-1.3-dimethyläther mit Chromtrioxyd in Schwefelkohlenstoff (L., Am. Soc. 48, 2720). Beim Chlorieren von 3-Brom-2.6-dimethoxy-benzochinon-(1.4) in Chloroform (L., Am. Soc. 48, 800). — Rote Schuppen (aus Eisessig). F: 164—165° (L., Am. Soc. 48, 800). Löslich in den meisten organischen Lösungsmitteln außer Ligroin, unlöslich in Wasser. — Liefert bei der Reduktion mit Schwefeldioxyd in wasserhaltigem Aceton 5-Chlor-3-brom-2.6-dimethoxy-hydrochinon (L., Am. Soc. 48, 2721).

- 3.5-Dibrom 2.6-dimethoxy-benzochinon-(1.4) C₈H₂O₄Br₂, Formel V auf S. 434 (H 387). B. Bei der Oxydation von 4.5.6-Tribrom-pyrogallol-1.3-dimethyläther mit Chromtrioxyd in Riscorig (HUNTER, LEVINE, Am. Soc. 48, 1612; KOHN, GUREWITSCH, M. 49, 186).
- 3.5 Dibrom 2 methoxy 6 [3.4.5 tribrom 2.6 dimethoxy phenoxy] benzochinon (1.4) $C_{18}H_{\bullet}O_{\bullet}Br_{5}$, Formel VI auf S. 434. B. Bei der Oxydation von 4.5.6 Tribrom-pyrogallol-1.3-dimethyläther mit Chromtrioxyd in 50% iger Essigsäure, mit Bleidioxyd oder Natriumnitrit in Eisessig oder am besten mit Bleidioxyd in Benzol bei Gegenwart von Natriumsulfat (HUNTER, LEVINE, Am. Soc. 48, 1612). — Rote Nadeln (aus Eisessig). F: 214°. Schwer löslich in organischen Lösungsmitteln außer Ligroin. — Wird durch konz. Schwefelsäure zersetzt. Gibt bei der Reduktion mit schwefliger Säure in wäßr. Aceton ein öliges Hydrochinon.
- 2.6 Bis chlormercapto benzochinon (1.4), Benzochinon (1.4) disulfensäure (2.6)-dichlorid, Benzochinondischwefelchlorid C₆H₂O₂S₂Cl₂, Formel VII auf S. 434. B. Durch Einw. von Chlor auf 2.6-Dimercapto-hydrochinon in Chloroform bei 30° (Litvay, Riess, Landau, B. 62, 1869). — Bräunliche Krystalle (aus Tetrachlorkohlenstoff). F: 97—99°.

2. Oxy-oxo-Verbindungen $C_7H_6O_4$.

- OHO 1. 2.3.4 - Trioxy - benzaldehyd, Pyrogallolaldehyd $C_7H_6O_4$, s. nebenstehende Formel (H 388, E I 684). B. Beim Erhitzen von Pyrogallol mit N.N'-Diphenyl-formamidin auf 1100 und Kochen des Reaktionsprodukts mit Natronlauge OH OH (Shoesmith, Haldane, Soc. 125, 2406). — Zur Darstellung durch Einw. von Blausaure und Chlorwasserstoff auf Pyrogallol vgl. Adams, Levine, Am. Soc. 45, 2377; Leone, G. 55, 675. — Liefert beim Erwärmen mit phenylessigsaurem Natrium und Acetanhydrid 7.8-Diacetoxy-3-phenyl-cumarin (BARGELLINI, G. 57, 461). — Gibt mit Pararosanilinschwefligsäure von verschiedenem Schwefligsäure-Gehalt gelbe Färbungen (Shorsmith, Sosson, HETHERINGTON, Soc. 1927, 2222). — Sb(ÖH)C₇H₄O₄. B. Aus 2.3.4-Trioxy-benzaldehyd und Natriumantimonyltartrat in siedendem Wasser (Christiansen, Am. Soc. 48, 1367).
- 2.3.4 Trimethoxy benzaldehyd $C_{10}H_{12}O_4 = (CH_3 \cdot O)_3C_6H_2 \cdot CHO$ (E I 684). B. Beim Einleiten von Chlorwasserstoff in eine Lösung von Pyrogalloltrimethyläther und wasserfreier Blausaure in Benzol in Gegenwart von Aluminiumchlorid bei 0-40° und nachfolgenden Zersetzen mit Eis (SCHAAF, LABOUCHÈRE, Helv. 7, 358). — Säulen von schwachem Geruch. F: 37°.

2. 2.4.5-Trioxy-benzaldehyd $C_7H_6O_4$, s. nebenstehende Formel.

CHO 2.4.5 - Trimethoxy-benzaldehyd, Asarylaldehyd $C_{10}H_{12}O_4 = (CH_3 \cdot O)_8C_6H_2 \cdot O_8C_6H_2 \cdot O_8$ OĦ CHO (H 389; E I 684). V. Im äther. Öl der Haselwurz (Asarum europaeum L.) (Gerö, C. 1929 I, 947; Bruckner, Szeki, J. pr. [2] 184 [1932], 107, 137). B. In mäßiger Ausbeute durch Ozonisierung von Asaron in Chloroform oder besser in Essigester und Zersetzung des entstandenen Ozonids mit Eis und Calciumcarbonat (van Alphen, R. 46, 195). — Wird durch absol. Salpetersäure oder Salpeterschwefelsäure bei 0° vollständig zerstört; bei vorsichtiger Behandlung mit absol. Salpetersaure in Acetanhydrid bei —10° entsteht 5-Nitro-1.2.4-trimethoxy-benzol; bei Gegenwart von etwas konz. Schwefelsaure bei —15° erhält man 5-Methoxy-2-diacetoxymethyl-benzochinon-(1.4) (S. 454) (VAN A., R. 46, 198; 47, 174). — Das 4-Nitro-phenylhydrazon schmilzt bei 234° (van A., R. 46, 196).

Semioxamazon $C_{12}H_{15}O_5N_3 = (CH_3 \cdot O)_3C_6H_2 \cdot CH : N \cdot NH \cdot CO \cdot CO \cdot NH_2$. Blaßgelbe Nadeln (aus Wasser). F: 249-250° (Zers.) (van Alphen, R. 46, 196). Unlöslich in Alkohol, schwer in siedendem Wasser.

Semicarbazon $C_{11}H_{15}O_4N_3 = (CH_3 \cdot O)_3C_6H_2 \cdot CH : N \cdot NH \cdot CO \cdot NH_2$ (H 389). F: 2080 (Asahina, TSUKAMOTO, J. pharm. Soc. Japan 1926, 98; C. 1927 I, 1843).

сно 3. 2.4.6 - Trioxy - benzaldehyd, Phloroglucinaldehyd $C_7H_6O_4$, s. nebenstehende Formel (H 390; E I 684). B. In geringer Menge beim Er-OH warmen von Phloroglucin mit Formanilid und Phosphoroxychlorid in Äther auf dem Wasserbad und Zerlegen des Reaktionsproduktes mit Wasser (Pratt, ROBINSON, Soc. 125, 195). — Zur Darstellung aus Phloroglucin, Blausäure und Chlorwasserstoff (H 390) vgl. Tröger, Dunkel, J. pr. [2] 104, 330; P., R., Soc. 127, 1132 Anm.; zur Darstellung aus Phloroglucin, Bromcyan und Chlorwasserstoff (E I 684) vgl. Shriner, KLEIDERER, Am. Soc. 51, 1269. Darstellung durch Behandlung von Phloroglucin mit Zinkcyanid und Chlorwasserstoff in Ather: Malkin, Nierenstein, Am. Soc. 53 [1931], 241. -Liefert beim Erhitzen mit Natrium-phenylacetat und Acetanhydrid 5.7-Diacetoxy-3-phenylcumarin (BARGELLINI, G. 57, 460). — Das Phenylhydrazon schmilzt bei 120° (SH., KL.).

2.4-Dioxy-6-methoxy-benzaldehyd, Phloroglucinaldehyd-2-methyläther $C_0H_4O_4=CH_2$ O.C. H. (OH), CHO (H 390). Zur Konstitution vgl. noch KARRER, HELFENSTEIN, Helv. 10, 789. — B. Durch Behandlung von Phloroglucinmonomethyläther mit Blausäure und Chlorwasserstoff (vgl. H 390) in Gegenwart von Zinkchlorid in Ather und nachfolgendes Kochen mit Wasser (Карке, Mitarb., Helv. 4, 724), neben geringeren Mengen Phloroglucinaldehyd-t-methyläther (К., Вьосн, Helv. 10, 378). Beim Erwärmen von Phloroglucinmonomethylather mit Formanilid und Phosphoroxychlorid in Äther und Zersetzen des Reaktionsprodukts mit Wasser (Pratt, Robinson, Soc. 125, 194). Neben wenig Phloroglucinaldehyd-4-methyläther beim Behandeln von Phloroglucinaldehyd mit Diazomethan in absol. Äther bei —15° (K., Bloch, Helv. 10, 377) oder mit 0,5 Mol Dimethylsulfat und Natriumcarbonat in siedendem Aceton (K., Lichtenstein, Helfenstein, Helv. 12, 991). — Nadeln (aus Benzol). F: ca. 2030 (Zers.) (KARRER, Mitarb., Helv. 4, 724). Sehr leicht löslich in Alkohol und Äther, leicht in heißem

Wasser, praktisch unlöslich in Ligroin (K., Mitarb.); ist in Wasser und Benzol schwerer löslich als Phloroglucin-4-methyläther (К., ВLOCH, Helv. 10, 378). — Gibt mit salpetriger Säure ein Nitrosoderivat (s. u.) (K., B., Helv. 10, 378). Gibt mit 4.w-Dimethoxy-acetophenon und Chlor-

- wasserstoff in Ather 7-Oxy-3.5.4'-trimethoxy-flavyliumchlorid (Pratt, Robinson, Soc. 125, 196). Liefert beim Kochen mit Acetanhydrid und Natriumacetat 5-Methoxy-7-acetoxy-cumarin (K., Mitarb.). Bei der Umsetzung mit p-Toluolsulfochlorid und Pyridin in siedendem Chloroform entsteht 2-Oxy-6-methoxy-4-p-toluolsulfonyloxy-benzaldehyd (K., Helfenstein, Helv. 10, 791). 3 - Nitroso - phloroglucinaldehyd-2(oder 6) - methyläther C₈H₂O₅N, Formel I oder II bzw. entsprechende Oxim-Formeln. B. Durch Umsetzung von Phloroglucinaldehyd-2-methyläther mit Kaliumnitrit und

Essigsäure in Alkohol (KARRER, BLOCH, Helv. 10, 378). — Rotbraune Blättchen und Nadeln (aus Eisessig). Zersetzt sich bei ca. 166°. Leicht löslich in Wasser, schwer in Alkohol, praktisch unlöslich in Äther.

- 2.6-Dioxy-4-methoxy-benzaldehyd, Phloroglucinaldehyd-4-methyläther $C_8H_8O_4=CH_3\cdot O\cdot$ CaH2(OH)2 CHO. Bildung s. o. bei Phloroglucinaldehyd-2-methyläther.. — Nadeln (aus Wasser oder Tetrachlorkohlenstoff). F: 139—140° (KARRER, BLOCH, Helv. 10, 378; K., LICHTENSTEIN, HELFENSTEIN, Helv. 12, 991). Ist in Wasser und Benzol leichter löslich als Phloroglucinaldehyd-2-methyläther (K., B.). Gibt mit Eisenchlorid in Wasser eine braunrote Färbung (K., B.). — Zersetzt sich bei der Einw. von salpetriger Säure (K., B.).
- 2 Oxy-4.6 dimethoxy- benzaldehyd, Phloroglucinaldehyd 2.4-dimethyläther $C_0H_{10}O_4=HO\cdot C_0H_{2}(O\cdot CH_3)_2\cdot CHO$ (H 390). B. Durch Kochen von Phloroglucinaldehyd mit überschüssigem Dimethylsulfat und Natriumcarbonat in Aceton (Karrer, Lichtenstein, Helfen-STEIN, Helv. 12, 992). Aus Phloroglucindimethyläther durch Einw. von Blausäure und Chlorwasserstoff in kaltem Äther und Zersetzen des gebildeten Imidhydrochlorids mit Wasser (Pratt, Robinson, Soc. 125, 195; 127, 1132 Anm.; Freudenberg, Fikentscher, Wenner, A. 442, 318) oder durch Erwärmen mit Formanilid und Phosphoroxychlorid in Äther und Zersetzen des Reaktionsprodukts mit Wasser (P., R., Scc. 125, 194), neben geringeren Mengen Phloroglueinaldehyd-2.6-dimethyläther (P., R., Soc. 125, 194; FR., FI., W.). — Nadeln (aus wäßr.
 Methanol). F: 70° (PR., R.), 71° (K., L., H.). Kp₂₅: 190—195° (PR., R.). — Gibt mit w-BromMethanol). F: 70° (PR., R.), 71° (K., L., H.). acetoveratron bei Gegenwart von Kaliumcarbonat in siedendem Alkohol 4.6-Dimethoxy-2-[3.4-dimethoxy-benzoyl]-cumaron (Fr., Fi., W.). Liefert mit 4.\u03c3-Dimethoxy-acetophenon und Chlorwasserstoff in Ather 3.5.7.4'-Tetramethoxy-flavyliumchlorid (P., R., Soc. 125, 197). Setzt sich beim Kochen mit p-Toluolsulfochlorid und Pyridin in Chloroform teilweise unter Bildung von 2.4-Dimethoxy-6-p-toluolsulfonyloxy-benzaldehyd und einer bei 213° schmelzenden Verbindung um (K., H., Helv. 10, 792).
- 4 Oxy-2.6 dimethoxy- benzaldehyd, Phloroglucinaldehyd 2.6 dimethyläther $C_0H_{10}O_4=HO\cdot C_0H_{2}(O\cdot CH_3)_2\cdot CHO$. B. s. im vorangehenden Artikel. Entsteht ferner beim Aufbewahren von 2.6-Dimethoxy-4-p-toluolsulfonyloxy-benzaldehyd mit wäßrig-alkoholischer Natronlauge (KARRER, HELFENSTEIN, Helv. 10, 792). - Prismen (aus Benzol); färbt sich bei 180° dunkel und schmilzt bei 1900 (Pratt, Robinson, Scc. 125, 194). Krystalle (aus Methanol); sintert oberhalb 200° und schmilzt bei 224° (K., H.). — Gibt mit 4 w-Dimethoxy-acetophenon und Chlorwasserstoff in Ather 7-Oxy-3.5.4'-trimethoxy-flavyliumchlorid (P., R.).
- 2.4.6 Trimethoxy benzaldehyd , Phloroglucinaldehyd trimethyläther $C_{10}H_{12}O_4=(CH_3\cdot O)_3C_0H_3\cdot CHO$ (H 390). Gibt mit Wasserstoff bei Gegenwart von Platin in Essigester 2.4.6-Trimethoxy-toluol, bei Gegenwart von Nickel-Kieselgur in Alkohol 2.4.6-Trimethoxy-benzylalkohol (Freudenberg, Harder, A. 451, 222).
- 2.4-Dimethoxy-6-acetoxy-benzaldehyd, Phloroglucinaldehyd-2.4-dimethyläther-6-acetat $C_{11}H_{12}O_5 = CH_3 \cdot CO \cdot O \cdot C_6H_2(O \cdot CH_3)_2 \cdot CHO$. B. Beim Behandeln von 2-Oxy-4.6-dimethoxy-

benzaldehyd mit Acetanhydrid in Pyridin (Freudenberg, Carrara, Cohn, A. 446, 93; Ca., Co., G. 56, 146). — Krystalle (aus Alkohol). F: 102°. — Liefert bei der Kondensation mit Homoveratrumaldehyd und Chlorwasserstoff in Äther 5.7.3′.4′-Tetramethoxy-isoflavyliumchlorid (Syst. Nr. 2453).

- 2 (oder 4) Oxy 4.6 (oder 2.6) diacetoxy benzaldehyd , Phloroglucinaldehyd diacetat, Diacetylphloroglucinaldehyd $C_{11}H_{10}O_6 = HO \cdot C_6H_2(O \cdot CO \cdot CH_3)_2$ CHO. B. Durch Schütteln einer Lösung von Phloroglucinaldehyd in 1n-Natronlauge mit Acetanhydrid und Äther bei —5° (Robertson, Robinson, Soc. 1927, 1712). Fast farblose Nadeln (aus 60% igem Alkohol). F: 102—103°. Leicht löslich in Äther, mäßig in kaltem Methanol und Alkohol. Gibt mit Eisenchlorid in Alkohol eine weinrote Färbung.
- 2.4.6-Triacetoxy-benzaldehyd, Phloroglucinaldehyd-triacetat, Triacetylphloroglucinaldehyd $C_{13}H_{12}O_7=(CH_3\cdot CO\cdot O)_3C_6H_2\cdot CHO$. B. Durch Einw. von Acetanhydrid auf Phloroglucinaldehyd bei Gegenwart von Kaliumcarbonat in Äther (Malkin, Nierenstein, Am. Soc. 58 [1931], 242). Prismen (aus Alkohol). F: 101° .
- 2.4.6-Triacetoxy-benzylidendiacetat, Phloroglucinaldehyd pentaacetat C₁₇H₁₈O₁₀ = (CH₃·CO·O)₃C₆H₂·CH(O·CO·CH₃)₂ (H 390). B. Durch Behandlung von Phloroglucinaldehyd oder Phloroglucinaldehyd-diacetat mit Acetanhydrid und Kaliumcarbonat (Pratt, Robinson, Soc. 127, 1184; Roberson, Robinson, Scc. 1927, 1713; vgl. Malkin, Nierenstein, Am. Soc. 53 [1931], 239). Prismen (aus Methanol). F: 156—157° (Roberson, Robinson), 157° (M., N.), Gibt mit 2.ω-Dimethoxy-acetophenon beim Sättigen mit Chlorwasserstoff in Ameisensäure und nachfolgenden Kochen mit wäßrig-alkoholischer Salzsäure 5.7-Dioxy-3.2′-dimethoxy-flavylium-chlorid (P., Robinson); reagiert analog mit 3.4ω-Trimethoxy-acetophenon (M., N., B. 61, 794). Reaktion mit 3.4ω-Triacetoxy-acetophenon: Malkin, Nierenstein, B. 61, 798; Robertson, Robinson, Soc. 1928, 1531; Robinson, Willstätter, B. 61, 2504.
- 4. 3.4.5 Trioxy benzaldehyd, Gallusaldehyd C₇H₆O₄, s. nebenstehende Formel (E I 684). Elektrische Leitfähigkeit in wäßr. Lösung: Rosenmund, Perannkuch, B. 55, 2362. Bei der Hydrierung in Gegenwart von Palladium-Bariumsulfat oder Platinmohr in Wasser oder Eisessig erhält man eine braune amorphe Masse, die an der Luft verschmiert (R., Pf., B. 55, 2370). Gibt beim Erwärmen mit Malonsäure und Piperidin in Alkohol 3.4.5-Trioxyzimtsäure (Rosenmund, Boehm, A. 487, 144). Beim Erwärmen mit Malonsäure und Anilin bildet sich das Malonat des Gallusaldehydanilins (Syst. Nr. 1604) (R., B.). Liefert mit 2-Methyl-indol in alkoh. Salzsäure 2-Methyl-3-[3.4.5-trioxy-benzyliden]-indolenin-hydrochlorid (R., Pf.). Kondensiert sich mit Indoxylsäure in alkoh. Salzsäure zu 2-[3.4.5-Trioxy-benzyliden]-indoxyl(R., Pf.).
- 3.4 Dioxy 5 methoxy benzaldehyd, Gallusaldehyd 3 methyläther $C_8H_8O_4=CH_3\cdot O\cdot C_6H_2(OH)_2\cdot CHO$. B. Beim Erhitzen von 5-Brom-vanillin mit 8 %iger Natronlauge und Kupferpulver im Rohr auf 200—210° (Sheiner, McCutchan, Am. Soc. 51, 2195; vgl. Bradley, Robinson, Schwarzenbach, Soc. 1930, 796, 811). Durch Reduktion von 5-Nitro-veratrumaldehyd mit Zinn und konz. Salzsäure auf dem Wasserbad, Diazotieren in schwefelsaurer Lösung und nachfolgendes Erhitzen im Kohlendioxydstrom auf dem Wasserbad (Späth, Röder, M. 43, 103). Krystalle (aus Benzol oder Äther + Petroläther). F: 131—132° (Sh., McC.), 132° bis 133° (Sp., Rö.), 132—134° (B., Ro., Sch.). Gibt mit Eisenchlorid eine grünliche Färbung (Sh., McC.). Das 2.4-Dinitro-phenylhydrazon zersetzt sich bei 230° (B., Ro., Sch.).
- 3.5 Dioxy 4 methoxy benzaldehyd , Gallusaldehyd 4 methyläther $C_8H_8O_4=CH_3\cdot O\cdot C_6H_2(OH)_2\cdot CHO$. B. Durch Hydrierung von 4-Methoxy-3.5-bis-carbomethoxyoxy-benzoylchlorid bei Gegenwart von Palladium-Bariumsulfat in Toluol bei 110° und nachfolgende Verseifung mit kalter wäßrig-alkoholischer Natronlauge in Wasserstoffatmosphäre (Mauthner, $J.\ pr.\ [2]\ 119,\ 309$). Nadeln (aus Benzol). F: 139—140°. Leicht löslich in warmem Benzol und in kaltem Alkohol und Äther. Das 4-Nitro-phenylhydrazon schmilzt bei 222—223°.
- 3-0xy-4.5-dimethoxy-benzaldehyd, Gallusaldehyd-3.4-dimethyläther, Iridinaldehyd C₉H₁₀O₄ = HO·C₆H₂(O·CH₃)₂·CHO. B. Beim Erwärmen von Carbäthoxyiridinaldehyd (S. 438) mit Natriumäthylat-Lösung (Späth, Röder, M. 43, 106). Durch Hydrierung von 3.4-Dimethoxy-5-carbomethoxyoxy-benzoylchlorid bei Gegenwart von Palladium-Bariumsulfat in siedendem Toluol und Verseifung des entstandenen Carbomethoxyiridinaldehyds mit wäßrig-alkoholischer Natronlauge in Wasserstoffatmosphäre (Mauther, A. 449, 105, 106). Bei der Hydrierung von 3.4-Dimethoxy-5-acetoxy-benzoylchlorid und nachfolgenden Verseifung (Sp., R_v, M. 43, 95). Krystalle (aus Petroläther). F: 62—63° (Sp., R., M. 43, 107), 60—61° (M.). Kp₁₂: 177—180° (M.). Leicht löslich in Alkohol, Benzol, Eisessig und warmem Ligroin. schwer in warmem Petroläther (M.). Das 4-Nitro-phenylhydrazon schmilzt bei 212—213° (M., A. 449, 107).
- 4-Oxy-3.5-dimethoxy-benzaldehyd, Gallusaldehyd-3.5-dimethyläther, Syringaaldehyd $C_8H_{10}O_4 = HO \cdot C_8H_9(O \cdot CH_3)_2 \cdot CHO$ (H 391; E I 684). B. Beim Kochen von 3.5-Dimethoxy-

- 4-carbāthoxyoxy-benzaldehyd mit überschüssiger 1n-Natronlauge im Vakuum (Späth, M. 41, 278). Aus Trichlormethyl-[4-oxy-3.5-dimethoxy-phenyl]-carbinol durch Verseifung und Oxydation (vgl. die analoge Bildung von Vanillin, S. 279) (Pauly, Strassberger, B. 62, 2279). Nadeln. F: 112—113° (Sp.), 113° (P., St.). Löslich in konz. Mineralsäuren mit gelber Farbe, in überschüssigen Alkalien mit roter Farbe (P., St.). Gibt mit Eisenchlorid eine olivgrüne, mit Anilinacetat und mit Naphthylamin-hydrochlorid eine gelbe Färbung, mit Phloroglucin-Salzsäure eine orange, beim Verdünnen in Violett übergehende Färbung (P., St.). Die alkal. Lösung färbt die Haut gelblich (P., St.). NaC₉H₉O₄. Gelbe Nadeln. Löslich in Wasser und Alkohol (P., St.). KC₉H₉O₄. Gelbe Prismen (aus Alkohol). Löslich in Wasser und Alkohol (P., St.).
- 3.4.5-Trimethoxy-benzaldehyd, Gallusaldehyd-trimethyläther C₁₀H₁₉O₄ = (CH₃·O)₂C₂H₂·CHO (H 391; E I 684). B. Beim Behandeln von Gallusaldehyd-3-methyläther mit Dimethylsulfat in Natronlauge (Späth, Röder, M. 48, 103; Bradley, Robinson, Schwarzenbach, Soc. 1930, 811). Durch Reduktion von 3.4.5-Trimethoxy-benzonitril mit Zinn(II)-chlorid und Chlorwasserstoff in Äther + Chloroform und Kochen des Reaktionsprodukts mit Wasser (Stephen, Soc. 127, 1876; vgl. Baker, Robinson, Soc. 1929, 156). Durch Erwärmen von 3.4.5-Trimethoxy-benzoesäure-methylamid oder -benzylamid mit PCl₅ auf dem Wasserbad, Reduktion der entstandenen Imidchloride mit Zinn(II)-chlorid und Chlorwasserstoff in Äther und Kochen der Reaktionsprodukte mit verd. Salzsäure (Sonn, Meyer, B. 58, 1096, 1100). Neben geringeren Mengen 3.4.5-Trimethoxy-benzoesäure-lydrazid mit 3 Mol Kaliumferricyanid in 6 Mol wäßt. Ammoniak bei 17° (Kalb, Gross, B. 59, 735). Darst. Durch Hydrierung von 3.4.5-Trimethoxy-benzoylchlorid (vgl. E I 392) bei Gegenwart von Palladium-Bariumsulfat in siedendem Xylol (Baker, Robinson, Soc. 1929, 156; Slotta, Heller, B. 63 [1930], 3042).
- 3.4-Dimethoxy-5-benzyloxy- benzaldehyd, Gallusaldehyd-3.4-dimethyläther-5-benzyläther $C_{16}H_{16}O_4=C_6H_6\cdot CH_2\cdot O\cdot C_6H_4(O\cdot CH_2)_2\cdot CHO$. B. Aus Gallusaldehyd-3.4-dimethyläther und Benzylchlorid in siedender Natriumäthylat-Lösung (Späth, Röder, M. 48, 109). Krystalle (aus Benzin). F: 54°.
- 3.5 Dimethoxy- 4 methoxymethoxy- benzaldehyd, Syringaaldehyd methoxymethyläther $C_{11}H_{14}O_5 = CH_3 \cdot O \cdot CH_2 \cdot O \cdot C_6H_2(O \cdot CH_3)_2 \cdot CHO$. B. Durch Einw. von Chlordimethyläther auf das in Toluol fein verteilte Natriumsalz des Syringaaldehyds unter Kühlung mit Eis-Kochsalz-Mischung (Paulx, Strassberger, B. 62, 2280). Nadeln (aus Petroläther). F: 54°. Kp₃: 157—158°. Leicht löslich in Äther und Alkohol, schwer in Petroläther und heißem Wasser. Zersetzt sich an feuchter Luft unter Abspaltung von Formaldehyd.
- 3-Methoxy-4.5-diacetoxy-benzaldehyd, Gallusaldehyd-3-methyläther-4.5-diacetat $C_{12}H_{12}O_6$ = $(CH_3 \cdot CO \cdot O)_2C_6H_2(O \cdot CH_3) \cdot CHO$. B. Aus Gallusaldehyd-3-methyläther und Acetanhydrid in Gegenwart von wenig Überchlorsäure (Shriner, McCutchan, Am. Soc. 51, 2195; vgl. Bradley, Robinson, Schwarzenbach, Soc. 1930, 796, 811). Plättchen oder Nadeln (aus Benzol oder Benzol + Petroläther). F: 102—103° (Sh., McC.), 98—99° (B., R., Sch.).
- 3.4.5-Triacetoxy-benzaldehyd, Triacetyl-gallusaldehyd C₁₃H₁₂O₇ = (CH₃·CO·O)₃C₆H₂·CHO (E I 685). Darstellung durch Hydrierung von Triacetylgalloylchlorid in Gegenwart von Palladium Bariumsulfat in Xylol (E I 685): ROSENMUND, PFANNKUCH, B. 55, 2359; Ro., BOEHM, A. 487, 136. Farblose Krystalle (aus Xylol). F: 107—108° (R., PF.). Schwer löslich in Wasser, kaltem Alkohol, Tetrachlorkohlenstoff, Benzol und Xylol, ziemlich leicht in Essigester, leicht in Aceton, Chloroform und Eisessig. Läßt sich nicht hydrieren (R., PF.). Gibt kein Oxim (R., PF.). Das 4-Nitro-phenylhydrazon schmilzt bei 207—208° (unter geringer Zersetzung) (R., PF.).
- 3.4 Dimethoxy 5 carbäthoxyoxy benzaldehyd, Carbäthoxy-iridinaldehyd $C_{12}H_{14}O_6 = C_2H_5 \cdot O_2C \cdot O \cdot C_6H_3(O \cdot CH_3)_2 \cdot CHO$. B. Durch Hydrierung von 3.4 Dimethoxy-5 carbäthoxyoxy-benzoylchlorid bei Gegenwart von Palladium-Bariumsulfat und geschwefeltem Chinolin in Toluol (Späth, Röder, M. 43, 106). Krystalle (aus verd. Alkohol). F: $60-60.5^{\circ}$.
- 3.5 Dimethoxy- 4 carbăthoxyoxy- benzaldehyd, Carbăthoxy- syringaaldehyd C₁₂H₁₄O₆ = C₂H₅· O₂C· O· C₆H₂(O· CH₃)₂· CHO. B. Durch Hydrierung von Carbăthoxysyringoylchlorid (E I 10, 349) bei Gegenwart von Palladium-Bariumsulfat in siedendem Toluol (Späth, M. 41, 278). Krystalle (aus verd. Alkohol). F: 100—101°.
- 4-0xy-3.5-bis-carbomethoxyoxy-benzaldehyd (?), 3.5 (?) Dicarbomethoxy-gallusaldehyd C₁₁H₁₀O₈ = (CH₃·O₃C·O)₃C₆H₂(OH)·CHO. B. Beim Schütteln von Gallusaldehyd mit Chlorameisensäuremethylester und wäßr. Kalilauge (Rosenmund, Boehm, Ar. 1926, 453). Krystalle (aus verd. Essigsäure). F: 155°. Schwer löslich in Äther, Benzol und heißem Wasser, sehr leicht in Eisessig, Essigester und Alkohol sowie in verd. Natronlauge. Die wäßr. Lösung gibt mit Eisenchlorid eine grüne, auf Zusatz von Sodalösung in Rot übergehende Färbung. Das 4-Nitro-phenylhydrazon schmilzt bei 192—193°.

- 3.4.5 -Tris-carbomethoxyoxy-benzaldehyd, Tricarbomethoxy-gallussaldehyd $C_{18}H_{12}O_{10} = (CH_3 \cdot O_2C \cdot O)_2C_6H_2 \cdot CHO$ (E I 685). B. Beim Schütteln von Gallusaldehyd mit überschüssigem Chlorameisensäuremethylester in wäßr. Kalilauge unter Eiskühlung (ROSENMUND, BOEHM, Ar. 1926, 452). Prismen (aus wäßr. Aceton). F: 81—82°. Leicht löslich in Chloroform, Eisessigester, Äther, Benzol und siedendem Alkohol, sehr schwer in siedendem Wasser, unlöslich in Petroläther. Gibt bei der Hydrierung in Gegenwart von Palladium-Bariumsulfat in Eisessig 3.4.5-Tris-carbomethoxyoxy-benzylalkohol. Das 4-Nitro-phenylhydrazon schmilzt bei 206—207°.
- . 3.4.5-Tris-carbäthoxyoxy-benzaldehyd, Tricarbäthoxy-gallusaldehyd $C_{16}H_{18}O_{10}=(C_2H_5\cdot O_2C\cdot O)_3C_6H_2\cdot CHO$. B. Analog Tricarbomethoxy-gallusaldehyd (Rosenmund, Boehm, Ar. 1926, 455). Krystalle (aus Benzol + Petroläther). F: 69—70°. Leicht löslich in organischen Lösungsmitteln außer Petroläther. Das 4-Nitro-phenylhydrazon schmilzt bei 198—199°.
- 3.4.5-Triacetoxy-benzylidendiacetat, Gallusaldehyd-pentaacetat $C_{17}H_{18}O_{10}=(CH_3\cdot CO\cdot O)_3C_6H_2\cdot CH(O\cdot CO\cdot CH_3)_2$. B. Bei schwachem Erwärmen von Gallusaldehyd mit überschüssigem Acetanhydrid und etwas Pyridin (Rosenmund, Pfannkuch, B. 55, 2362). Blättehen (aus Chloroform + Petroläther). F: 166°. Unlöslich in Petroläther, schwer löslich in kaltem Methanol, Alkohol, Xylol, Äther und Wasser, leicht in Benzol und Chloroform. Löst sich in heißer Natronlauge nur langsam unter Verfärbung.
- [3.4.5-Trimethoxy-benzyliden]-methylamin, Gallusaldehyd-trimethyläther-methylimid $C_{11}H_{15}O_3N=(CH_3\cdot O)_3C_6H_3\cdot CH:N\cdot CH_3$. B. Durch längeres Aufbewahren von Gallusaldehydtrimethyläther mit 2 Mol Methylamin in Alkohol (Sonn, B. 58, 1104). Blaßgelbes, dickflüssiges, stark lichtbrechendes Öl. Kp₁₄: 181—192°. Liefert bei der Hydrierung in Gegenwart von kolloidalem Palladium in Alkohol unter geringem Überdruck Methyl-[3.4.5-trimethoxy-benzyl]-amin.
- 3.4.5-Trioxy-benzaldoxim, Gallusaldoxim $C_7H_7O_4N = (HO)_3C_6H_2\cdot CH:N\cdot OH$. B. Bei kurzem Kochen von Gallusaldehyd mit Hydroxylaminhydrochlorid und Sodalösung (Rosenmund, Pfannkuoh, B. 55, 2363). Tafeln mit $1\,H_2O$ (aus Wasser). Das Krystallwasser wird im Vakuum über Phosphorpentoxyd bei 70° abgegeben und äußerst leicht wieder aufgenommen. Färbt sich bei ca. 160° dunkel, zersetzt sich bei $195-200^\circ$. Schwer löslich in Chloroform, Benzol, Xylol, Petroläther und Äther, leicht in Alkohol, Aceton und heißem Wasser. Die wäßr. Lösung gibt mit Eisenchlorid eine blaue Färbung. Wird durch Wasserstoff in Gegenwart von Palladium-Bariumsulfat in Wasser hauptsächlich zu Bis-[3.4.5-trioxy-benzyl]-amin reduziert. Gibt mit Acetanhydrid in Pyridin 3.4.5-Triacetoxy-benzaldoxim-O-acetat; bei längerem Erhitzen mit Acetanhydrid entsteht eine glasartige Masse.
- 3.4.5 -Trimethoxy-benzaldoxim $C_{10}H_{13}O_4N=(CH_3\cdot O)_3C_6H_2\cdot CH:N\cdot OH$ (H 391; E I 685). F: 88° (Stephen, Soc. 127, 1876).
- 3.4.5-Triacetoxy-benzaldoxim-O-acetat, Triacetyl-gallusaldoxim-acetat $C_{15}H_{15}O_8N=(CH_3\cdot CO\cdot O)_3C_6H_2\cdot CH:N\cdot O\cdot CO\cdot CH_3$. B. Beim Behandeln von Gallusaldoxim mit Acetanhydrid und Pyridin (Rosenmund, Pfannkuch, B. 55, 2364). F: 126—127° (aus Eisessig durch Wasser gefällt). Gibt bei der Hydrierung bei Gegenwart von Palladium-Bariumsulfat in Eisessig 3.4.5-Triacetoxy-benzylamin.
- 3-Oxy-4.5-dimethoxy-benzaldehyd-semicarbazon, Iridinaldehyd-semicarbazon C₁₀H₁₈O₄N₃ = HO·C₆H₂(O·CH₃)₂·CH:N·NH·CO·NH₂. Nadeln (aus Wasser). F: 211—212° (MAUTHNER, A. 449, 106). Löslich in Alkohol und Eisessig, sehr schwer löslich in heißem Benzol.
- 4 0xy 3.5 dimethoxy benzaldehyd semicarbazon, Syringaaldehyd semicarbazon $C_{10}H_{13}O_4N_3 = HO \cdot C_6H_2(O \cdot CH_3)_2 \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Nadeln (aus verd. Essigsäure). F: 188° (unter Gelbfärbung) (PAULY, STRASSBERGER, B. 62, 2279). Leicht löslich in Alkohol, Eisessig und heißem Wasser, löslich in Äther.

Semicarbazon des Syringaaldehyd-methoxymethyläthers $C_{12}H_{17}O_5N_3 = CH_3 \cdot O \cdot CH_2 \cdot O \cdot C_6H_2(O \cdot CH_3)_2 \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Nadeln (aus 40% igem Alkohol). F: 141,5° (Pauly, Strassberger, B. 62, 2280). Leicht löslich in Alkohol, Chloroform und Benzol, schwer in Petroläther und Wasser.

3. Oxy-oxo-Verbindungen C₈H₈O₄.

1. 2.3.4 - Trioxy - acetophenon, 4 - Acetyl - pyrogallol, Gallacetophenon, Methyl - [2.3.4 - trioxy - phenyl] - keton C₈H₈O₄, s. nebenstehende Formel (H 393; E I 685). B. In mäßiger Ausbeute bei der Einw. von Acetylchlorid und Aluminiumchlorid auf Pyrogallol in Nitrobenzol (Rosenwund, Schulz, Ar. 1927, 318). — Darst. durch Erhitzen von Pyrogallol mit Acetanhydrid, Eisessig oh und Zinkchlorid auf 135—145°: Badhwar, Venkatararam, Org. Synth. 14 [1934], 40. — Ultraviolett-Absorptionsspektrum in alkoh. Lösung: Tasaki, Acta phytoch. 3. 271, 272; C. 1927 II, 1949. Einfluß auf die Krystallisation von Calciumcarbonat: Kohlschütter, Egg.

Helv. 8, 699. — Gibt mit 1 Mol Brom in Gegenwart von Chinolinsulfat in kaltem Eisessig 5(oder 6)-Brom-gallacetophenon (Rosenmund, Kuhnhenn, Lesch, B. 56, 2042). Gibt beim Erhitzen mit Acetanhydrid und Natriumacetat auf 160—170° 7.8-Diacetoxy-2-methyl-3-acetyl-chromon und 2.3.4-Triacetoxy-acetophenon (Canter, Martin, Robertson, Soc. 1931, 1878; vgl. Venkataraman, Soc. 1929, 2220). Beim Erhitzen mit Benzoesäureanhydrid und Natriumbenzoat auf 180—185° und Kochen des Reaktionsproduktes mit alkoholisch-wäßriger Kalilauge entsteht 7.8-Dioxy-flavon (V., Scc. 1929, 2221). Gallacetophenon gibt beim Erhitzen mit Natrium-phenylacetat und Acetanhydrid 7.8-Diacetoxy-4-methyl-3-phenyl-cumarin (Bargellini, R. A. L. [6] 2, 265).

Eisen(III)-salz $\text{FeC}_6\text{H}_5\text{O}_4 + 1^1/2\text{H}_2\text{O}$. Olivschwarzes Pulver (Zetzsche, Loosli, A. 445, 294).

- 3.4 Dioxy-2 methoxy-acetophenon, Gallacetophenon 2 methyläther $C_9H_{10}O_4=CH_3$. O· $C_4H_9(OH)_2$ ·CO·CH₃. Zur Konstitution vgl. Perkin, Storey, Soc. 1928, 232; vgl. a. Mauthner, J. pr. [2] 118, 315. B. Durch Kochen von 2-Methoxy-3.4-diacetoxy-acetophenon (S. 441) mit Sodalösung oder von 2-Methoxy-3.4-di-p-toluolsulfonyloxy-acetophenon (Syst. Nr. 1521) mit 2%iger methylalkoholischer Kalilauge (P., St., Soc. 1928, 243). Prismen. F: 175° (P., St.). Liefert beim Erhitzen mit alkoh. Kalilauge im Rohr auf 180° und Destillieren der erhaltenen Carbonsäure Pyrogallol-1-methyläther (P., St.). Bleisalz. Löslich in Alkohol, unlöslich in Wasser (P., St.).
- 2.4 Dioxy 3 methoxy acetophenon, Gallacetophenon 3 methyläther $C_9H_{10}O_4=CH_3\cdot O\cdot C_6H_3(OH)_3\cdot CO\cdot CH_3$. Diese Konstitution kommt der von Perkin, Wilson (Soc. 88, 131) als Gallacetophenon 3 (oder 4) methyläther (H 393) beschriebenen Verbindung zu (Perkin, Storey, Scc. 1928, 232). B. Durch Kochen von 3-Methoxy-2.4-diacetóxy-acetophenon mit Sodalösung (P., St., Scc. 1928, 243). Nadeln. F: 134—135°. Liefert beim Erhitzen mit alkoh. Kalilauge im Rohr auf 180° und Destillieren der erhaltenen Carbonsäure Pyrogallol-2-methyläther. Bleisalz. Unlöslich in Alkohol, löslich in Wasser.
- 2.3-Dioxy-4-methoxy-acetophenon, Gallacetophenon-4-methyläther $C_9H_{10}O_4=CH_3\cdot O\cdot C_6H_3(OH)_2\cdot CO\cdot CH_3^{-1}$). B. Beim Erhitzen von Pyrogallol-1.3-dimethyläther-2-acetat mit Zinkchlorid auf 120° (MAUTHNER, J. pr. [2] 118, 316). Bei längerem Aufbewahren von Pyrogallol-1.3-dimethyläther mit Acetylchlorid und Zinkchlorid bei Zimmertemperatur (M., J. pr. [2] 118, 319). Bei kurzem Erhitzen von Pyrogallol-1-methyläther mit Eisessig und Zinkchlorid auf 155—160° (Baker, Juker, Subrahmanyam, Soc. 1934, 1683). Beim Behandeln von Pyrogallol-1-methyläther -2.3-diacetat mit Aluminiumchlorid in Nitrobenzol bei Zimmertemperatur (M., J. pr. [2] 150 [1938], 260). Krystalle (aus Wasser oder Methanol). F: 132—133° (M., J. pr. [2] 118, 316; 150, 260), 132° (B., J., S.). Gibt mit Diazomethan in Äther Gallacetophenon-3.4-dimethyläther (M., J. pr. [2] 118, 318). Das 4-Nitrophenylhydrazon verkohlt gegen 260° (M., J. pr. [2] 118, 317).
- 3-Oxy-2.4-dimethoxy-acetophenon, Gallacetophenon-2.4-dimethyläther $C_{10}H_{12}O_4=HO\cdot C_6H_3(O\cdot CH_3)_2\cdot CO\cdot CH_3$. B. Durch Verseifung von Gallacetophenon-2.4-dimethyläther-3-acetat mit heißer Natronlauge (Brand, Collischonn, J. pr. [2] 103, 343). Krystalle (aus Wasser). F: 79—80°. Leicht löslich in Alkohol, Eisessig, Chloroform und Äther. Das Phenylhydrazon schmilzt bei 108—110°.
- 2-Oxy-3.4-dimethoxy-acetophenon, Galiacetophenon-3.4-dimethyläther $C_{10}H_{12}O_4=HO\cdot C_6H_3(O\cdot CH_3)_2\cdot CO\cdot CH_3$ (H 393; E I 685). B. Aus Gallacetophenon-4-methyläther und Diazomethan in Ather (Mauthner, J. pr. [2] 118, 318). Darst. Durch 6-stdg. Kochen von 10 g Gallacetophenon mit 22,5 g Dimethylsulfat und 24,7 g Kaliumcarbonat in 200 cm³ Nitrobenzol (Crabtree, Robinson, Soc. 121, 1038 Anm.). F: 78—79° (M.). Liefert bei ca. 30-stdg. Erhitzen mit Natriumphenylacetat und Acetanhydrid 7.8—79° (M.). Tiefert bei ca. 30-stdg. Erhitzen mit Natriumphenylacetat und Acetanhydrid 7.8—10imethoxy-4-methyl-3-phenyl-cumarin (Bargellini, R. A. L. [6] 2, 265). Phenylhydrazon $C_{16}H_{19}O_3N_3$. F: 171° (Perkin, Weizmann, Soc. 89 [1906], 1655). 4-Nitro-phenylhydrazon $C_{16}H_{17}O_5N_3$. F: 205—206° (M.).
- 2.3.4 Trimethoxy acetophenon, Gallacetophenon trimethyläther $C_{11}H_{14}O_4 = (CH_3 \cdot O)_3C_4H_2 \cdot CO \cdot CH_3$ (H 393; E I 685). B. Beim Schütteln einer Lösung von Gallacetophenon-2.4-dimethyläther-3-acetat in 33%iger Kalilauge mit Dimethylsulfat (Brand, Collischonn, J. pr. [2] 108, 344). F: 15—17° (B., C.). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: Tasaki, Acta phytoch. 3, 272; C. 1927 II, 1949.
- 2.4 Dimethoxy 3 acetoxy acetophenon, Gallacetophenon 2.4 dimethyläther 3 acetat $C_{12}H_{14}O_5 = CH_3 \cdot CO \cdot C \cdot C_6H_2(O \cdot CH_3)_2 \cdot CO \cdot CH_3$. B. Beim Kochen von Pyrogallol-1.3-dimethyl-

¹⁾ Die in diesem Artikel beschriebenen Präparate werden von den Autoren für identisch mit dem Gallacetophenon-monomethyläther von Perkin, Wilson (Soc. 88, 131) gehalten. Hierbei wird aber die Arbeit von Perkin, Storey (Soc. 1928, 232) übersehen, in der der Äther von Perkin, Wilson als Gallacetophenon-3-methyläther (s. o.) erkannt ist.

- 2 (oder 4) Oxy 3.4 (oder 2.3) diacetoxy acetophenon, Gallacetophenon 2.3 (oder 3.4)-diacetat $C_{12}H_{12}O_6=(CH_3\cdot CO\cdot O)_2C_8H_2(OH)\cdot CO\cdot CH_3$ (vgl. E I 685). B. Durch Einw. von Acetanhydrid und Pyridin auf Gallacetophenon in kaltem Eisessig (Perkin, Storby, Soc. 1928, 242). Nadeln (aus Alkohol). F: 107—108°. Liefert mit Diazomethan in Tetrachloräthan 3-Methoxy-2.4-diacetoxy-acetophenon und geringere Mengen 2-Methoxy-3.4-diacetoxy-acetophenon.
- 4-Methoxy-2.3-diacetoxy-acetophenon, Gallacetophenon-4-methyläther-2.3-diacetat $C_{13}H_{14}O_6 = CH_3 \cdot O \cdot C_6H_2(O \cdot CO \cdot CH_3)_2 \cdot CO \cdot CH_3$. B. Aus Gallacetophenon-4-methyläther (S. 440) und Acetylchlorid in siedendem Eisessig (Mauthner, J. pr. [2] 118, 316). Krystalle (aus Ligroin). F: 146—148°.
- 3-Methoxy-2.4-diacetoxy-acetophenon, Gallacetophenon-3-methyläther-2.4-diacetat $C_{13}H_{14}O_6 = CH_3 \cdot O \cdot C_6H_2(O \cdot CO \cdot CH_3)_2 \cdot CO \cdot CH_3$ (H 394 als Gallacetophenon-3 oder 4-methyläther-diacetat beschrieben). Zur Konstitution vgl. Perkin, Storey, Soc. 1928, 243. B. Neben geringeren Mengen Gallacetophenon-2-methyläther-3.4-diacetat beim Behandeln von Gallacetophenondiacetat (s. o.) mit Diazomethan in Tetrachloräthan (Perkin, Storey, Soc. 1928, 242). Tafeln (aus Alkohol). F: 150—151°. Gibt beim Kochen mit Sodalösung Gallacetophenon-3-methyläther (S. 440).
- 2-Methoxy-3.4-diacetoxy-acetophenon, Gallacetophenon-2-methyläther-3.4-diacetat $C_{13}H_{14}O_6 = CH_3 \cdot O \cdot C_6H_2(O \cdot CO \cdot CH_3)_2 \cdot CO \cdot CH_3$. B. s. im vorangehenden Artikel. Nicht rein erhalten. Gibt beim Kochen mit Sodalösung Gallacetophenon-2-methyläther (Perkin, Storey, Soc. 1928, 243).
- 2.3.4-Triacetoxy-acetophenon, Gallacetophenon-triacetat $C_{14}H_{14}O_7 = (CH_3 \cdot CO \cdot O)_3C_6H_2 \cdot CO \cdot CH_3$ (H 394). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: Tasaki, Acta phytoch. 3, 273; C. 1927 II, 1949).
- 3-Oxy-2.4-dimethoxy-acetophenon-oxim $C_{10}H_{13}O_4N=HO\cdot C_6H_2(O\cdot CH_3)_2\cdot C(:N\cdot OH)\cdot CH_8$. Beim Kochen von 2.4-Dimethoxy-3-acetoxy-acetophenon mit Hydroxylaminhydrochlorid und Natriumacetat in wäßr. Methanol (Brand, Collischonn, J. pr. [2] 103, 340). Krystalle (aus verd. Methanol). F: 112°. Leicht löslich in Alkohol und Natronlauge.
- 2.3-Dioxy-4-methoxy-acetophenon-semicarbazon $C_{10}H_{12}O_4N_3 = CH_2 \cdot O \cdot C_6H_2(OH)_2 \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_3$. Nadeln (aus Alkohol). F: 229—230° (Zers.) (MAUTHNER, J. pr. [2] 118, 317). Leicht löslich in Alkohol, schwer in Benzol.
- ω-Chlor-2.3.4-trioxy-acetophenon, ω-Chlor-gallacetophenon $C_8H_7O_4Cl = (HO)_3C_6H_2$ ·CO·CH₂Cl (H 394). B. Bei 8-stdg. Erhitzen von Pyrogallol-1.3-dimethyläther-2-chloracetat mit Aluminiumchlorid auf 100° (MAUTHNER, $J.\ pr.\ [2]\ 118,\ 320$).
- 5 (oder 6)-Brom-2.3.4-trioxy-acetophenon, 5 (oder 6)-Brom-gallacetophenon $C_8H_7O_4Br$, s. nebenstehende Formel. B. Aus Gallacetophenon und 1 Mol Brom bei Gegenwart von Chinolinsulfat in Eisessig bei 0^0 (Rosenmund, Kuhnhenn, Lesch, B. 56, 2042). Nadeln mit $1\,H_2O$ (aus verd. Essigsäure). F: 186° . Spaltet bei längerem Erhitzen mit Wasser Bromwasserstoff ab.

Triacetat, 5 (oder 6) - Brom - 2.3.4 - triacetoxy - acetophenon $C_{14}H_{13}O_7Br = (CH_3 \cdot CO \cdot O)_3C_6HBr \cdot CO \cdot CH_3$. Krystalle mit 1 H_2O (aus verd. Alkohol). F: 108^0 (Rosenmund, Kuhnhenn, Lesch, B. 56, 2043).

2. 2.4.5-Trioxy-acetophenon C₈H₈O₄, s. nebenstehende Formel.

2.4.5-Trimethoxy-acetophenon C₁₁H₁₄O₄ = (CH₃·O)₃C₄H₂·CO·CH₃ (E I 686). Gibt bei der Einw. von Salpetersäure (D:1,48) in Eisessig unter Kühlung 5-Nitro-1.2.4-trimethoxy-benzol (Széri, B. 62, 1374). Kondensiert sich mit Anissäure-methylester in Gegenwart von Natrium bei 110° zu 2.4.5-Trimethoxy-ω-anisoyl-acetophenon (Bargellini, Grippa, G. 57, 607).

3. 2.4.6-Trioxy-acetophenon, 2-Acetyl-phloroglucin, Phloracetophenon, Methyl-[2.4.6-trioxy-phenyl]-keton $C_0H_0O_4$, s. nebenstehende Formel (E I 687). Über Tautomerie des Phloracetophenons vgl. Sonn, Bülow, B. 58, 1691, 1692; Sonn, Winzer, B. 61, 2303. — B. Beim Behandeln von Phloroglucin mit Acetylchlorid und Aluminiumchlorid anfangs in Nitrobenzol + Äther, dann in Nitrobenzol auf dem Wasserbad (Rosenmund,

Nitrobenzol + Atner, dann in Nitrobenzol all dem wasserosa (Rosembund, Schulz, Ar. 1927, 318; Shriner, Kleiderer, Am. Soc. 51, 1268). — Darstellung durch Behandlung von Phloroglucin und Acetonitril mit Chlorwasserstoff bei Gegenwart von Zinkchlorid in Äther und Hydrolyse des entstandenen Imidhydrochlorids (vgl. Hoesch, B. 48, 1129; E I 687, 688): Gulati, Seth, Venkataraman, Org. Synth. 15 [1935], 70. — F: 218—219° (korr.) (G., S., V.). — Über Aufnahme von Brom durch Phloracetophenon vgl. Sonn, Winzer, B. 61, 2304. Phloracetophenon gibt mit Acetylchlorid bei Gegenwart von Dimethylanilin in Benzol Phloracetophenontriacetat und eine bei 164—165° schmelzende Verbindung (Nadeln, leicht löslich in Alkalien) (Sonn, Bülow, B. 58, 1697). Kondensation mit Piperonal: Shriner, Kleiderer, Am. Soc. 51, 1269; Sonn, Fischer, B. 64 [1931], 1909; vgl. a. Shinoda, Ueyeda, Sato, J. pharm. Soc. Japan 50, 65; C. 1930 II, 2645. — Anthelminthische Wirkung: Höchster Farbw., D. R. P. 364 883; C. 1928 II, 375; Frdl. 14, 1423.

E I 687, Textzeile 1 v. u. Die linke der beiden Formeln ist durch die nebenstehende zu ersetzen; vgl. dazu Sonn, B. 50, 138; 52, 256. CaH5.O2C.

- 2.4-Dioxy-6-methoxy-acetophenon, Phloracetophenon-2-methyläther C₃H₁₀O₄ = CH₃·O·C₄H₁(OH)₂·CO·CH₃. Zur Konstitution vgl. Sonn, B. 61, 2300; Shinoda, Sato, J. pharm. Soc. Japan 48, 33; C. 1928 II, 49. Verhalten bei der Bromtitration: So., Winzer, B. 61, 2304. B. Beim Einleiten von Chlorwasserstoff in eine mit Zinkchlorid versetzte Lösung von Phloroglucin-monomethyläther und Acetonitril in Äther und Kochen des entstandenen Ketimidhydrochlorids mit Wasser (Sonn, Bülow, B. 58, 1692). Durch Einw von Aluminiumchlorid auf Phloracetophenontrimethyläther (Sh., Sa., J. pharm. Soc. Japan 1927, 133; C. 1928 I, 333). Beim Schütteln von 2.4-Dicarbomethoxy-phloracetophenon mit äther. Diazomethan-Lösung und anschließenden Verseifen mit 2n-Alkali (Sonn, Bülow, B. 58, 1695). Nadeln (aus Wasser). F: 205—207° (So., B.), 207° (Sh., Sa.). Leicht löslich in Alkohol, Aceton und Essigester, schwerer in Benzol und Äther, fast unlöslich in Ligroin (So., B.). Löst sich in konz. Schwefelsäure mit intensiv gelber Farbe (So., B.). Ist mit Wasserdampf kaum flüchtig (So., B. 61, 2302). Gibt mit Eisenchlorid in Wasser oder Alkohol eine rotviolette Färbung (So., B.). Liefert beim Erhitzen mit Veratrumsäureanhydrid und veratrumsaurem Natrium auf 180—200° 7-Oxy-5.3'.4'-trimethoxy-flavon (Sh., Sa., J. pharm. Soc. Japan 48, 33; C. 1928 II, 49).
- 2.6 Dioxy- 4 methoxy- acetophenon, Phloracetophenon 4 methyläther $C_9H_{10}O_4=CH_3$ · $O\cdot C_6H_8(OH)_2\cdot CO\cdot CH_3$. Verhalten bei der Bromtitration: Sonn, Winzer, B. 61, 2305. B. Durch Einw. von äther. Diazomethan-Lösung auf Phloracetophenon, neben Phloracetophenon-2.4-dimethyläther (Sonn, Bülow, B. 58, 1693). Bei der Hydrolyse von Phloracetophenon-4-methyläther-2- β -d-glucopyranosid (Asahina, Shinoda, Inubuse, J. pharm. Soc. Japan 1927, 133; C. 1928 I, 1672). Nadeln (aus Wasser). F: 139—140° (A., Sh., I.), 136—137° (So., B.). Sehr leicht löslich in Alkohol, Äther und Benzol (So., B.). Löst sich in konz. Schwefelsäure mit gelber Farbe (So., B.). Ist mit Wasserdampf kaum flüchtig (So., B. 61, 2302). Gibt mit Eisenchlorid in Alkohol eine dunkelrote Färbung (So., B.; vgl. A., Sh., I.), mit konz. Salpetersäure eine tiefblaue Färbung (A., Sh., I.). Ist gegen Alkali beständiger als Phloracetophenon (So., B.).
- 2-Oxy-4.6-dimethoxy-acetophenon, Phloracetophenon-2.4-dimethyläther, Xanthoxylin C₁₀H₁₂O₄ = (CH₃·O)₂C₆H₂(OH)·CO·CH₂ (H 394; E I 688). Verhalten bei der Bromtitration: SONN, WINZER, B. 61, 2305. V. Im japanischem Pfefferöl (von Xanthoxylum piperitum DC.) (Anonymus, Parf. mod. 18, 132; C. 1920 III, 597). Im äther. Ol von Eucalyptus Bakeri Maid. (Penfold, Perfum. essent. Oil Rec. 18, 506; J. Pr. Soc. N. S. Wales 61, 180; C. 1928 I, 1106; 1929 I, 947). In Geijera-Arten (P., J. Pr. Soc. N. S. Wales 61, 184). B. Durch Einw. von Diazomethan in Äther auf Phloracetophenon (SONN, BÜLOW, B. 58, 1694) oder auf Phloracetophenon-4-methyläther (So., BÜ.; ASAHINA, SHINODA, INUBUSE, J. pharm. Scc. Japan 1927, 133; C. 1928 I, 1672). Bei der Destillation von Lösungen verschiedener Xanthorrhoea-Harze in konz. Natronlauge mit Wasserdampf (Rennie, Cooke, Finlayson, Soc. 117, 343; Fl., Soc. 1926, 2763, 2766; vgl. SONN, B. 61, 2301). F: 86—87° (Dean, Nierenstein, Am. Soc. 47, 1679), 83° (So., BÜ.), 82—83° (Pe.; A., Sh., I.). Kp₂₀: 185° (R., C., Fl.). Gibt mit konz. Salpetersäure eine blaue Färbung, die beim Aufbewahren oder Erwärmen in Blutrot, bei nachfolgendem Verdünnen und Zufügen von Natronlauge in ein etwas unbeständiges Dunkelgrün übergeht (R., C., Fl.).

Gibt mit Dimethylsulfat in alkal. Lösung Phloracetophenon-trimethyläther (Rennie, Cooke, Finlayson, Soc. 117, 346). Das Natriumsalz gibt mit Veratrylbromid in siedendem Aceton 2.4-Dimethoxy-6-veratryloxy-acetophenon (?) und 3-Oxy-4.6-dimethoxy-3-methyl-2-[3.4-dimethoxy-phenyl]-cumaran (?) (Syst. Nr. 2452) (Freudenberg, Carraba, Cohn, A. 446, 95; Ca., Co., G. 56, 144). Phloracetophenondimethyläther kondensiert sich mit Opiansäure in alkal. Lösung zu 6.7-Dimethoxy-3-[2-oxy-4.6-dimethyläther kondensiert sich mit Opiansäure methoxy-phenacyl]-phthalid (Syst. Nr. 2569), mit Opiansäure oder deren Athylester in gesättigter CH3.O CO.CH3.

(**Co.CH3**CH(OH) CH3.**O CO.CH3**CH(OH) CO.CH3**CH.**O CO

— Keimtötende Wirkung: Penfold, Grant, Perfum. essent. Oil Rec. 18, 101; J. Pr. Soc. N. S. Wales 60, 169; C. 1927 I, 3039; 1928 I, 2622.

- 2.4.6-Trimethoxy-acctophenon, Phloracctophenon-trimethyläther C₁₁H₁₄O₄=(CH₃·O)₃C₆H₂·CO·CH₃ (H 395). B. und Darst. Aus Phloracctophenon-2.4-dimethyläther und Dimethylsulfat in starker Natronlauge (Rennie, Cooke, Finlayson, Soc. 117, 345; vgl. Sonn, B. 61, 2301). Durch Erwärmen des Imid-hydrochlorids (S. 444) mit Wasser (Shinoda, J. pharm. Soc. Japan 1927, 111; C. 1928 I, 333; Houben, Fischer, J. pr. [2] 123, 98). Zur Darstellung aus Phloroglucintrimethyläther und Acetylchlorid in Gegenwart von Eisenchlorid (H 395) vgl. Freudenberg, B. 58, 1426. Löst sich in konz. Salzsäure mit gelber Farbe und fällt beim Verdünnen wieder aus (Fr.); gibt mit Salpetersäure allmählich eine blaue Färbung (R., C. Fi.). Gibt beim Schmelzen mit Kaliumhydroxyd und etwas Wasser Phloroglucin (R., C., Fi.). Bei der Kondensation mit Opiansäure in alkal. Lösung erhält man höherschmelzendes und niedrigerschmelzendes 6.7-Dimethoxy-3-[2.4.6-trimethoxy-phenacyl]-phthalid (Syst. Nr. 2569) (Shinoda, Sato, J. pharm. Soc. Japan 1927, 113; C. 1928 I, 333).
- 2 Oxy 4 methoxy 6 äthoxy acetophenon, Phloracetophenon 4 methyläther 2 äthyläther C₁₁H₁₄O₄, Formel I. B. Aus Phloracetophenon-4-methyläther und Diazoäthan (Sonn, B. 61, 2302). Prismen (aus Methanol). F: 133—134°.
- 2-Oxy-6-methoxy-4-äthoxy-acetophenon, Phloracetophenon-2-methyläther-4-äthyläther $C_{11}H_{14}O_4$, Formel II. B. Aus Phloracetophenon-2-methyläther und Diazoāthan (Sonn, B. 61, 2302). Blättchen (aus verd. Methanol). F: $56-57^{\circ}$.
- 2.4 Dimethoxy- 6 äthoxy- acetophenon, Phloracetophenon 2.4 dimethyläther 6-äthyläther $C_{12}H_{16}O_4 = C_2H_5 \cdot O \cdot C_6H_2(O \cdot CH_3)_2 \cdot CO \cdot CH_2$. B. Aus Phloracetophenon-2.4-dimethyläther durch Erwärmen mit überschüssigem Athyljodid und 2n Kalilauge auf dem Wasserbad (Sonn, B. 61, 2302) oder durch Schütteln mit Diäthylsulfat und warmer wäßrig-alkoholischer Kalilauge (Freudenberg, Cohn, B. 56, 2130). Prismen oder Nadeln (aus verd. Methanol oder Alkohol). F: 73—74° (F., C.), 69—70° (S.). Leicht löslich in organischen Lösungsmitteln außer Petroläther, sehr schwer in Wasser (F., C.). Löslich in konz. Salzsäure mit gelber Farbe (F., C.).
- 2.6-Dimethoxy-4-äthoxy-acetophenon, Phloracetophenon-2.6-dimethyläther-4-äthyläther $C_{12}H_{16}O_4=C_2H_5\cdot O\cdot C_4H_2(O\cdot CH_3)_2\cdot CO\cdot CH_3$. B. Aus Phloracetophenon-2-methyläther-4-äthyläther und Methyljodid in Gegenwart von Alkali (Sonn, B. 61, 2302). Blättchen (aus verd. Methanol). F: 81—82°.
- 2.4-Dimethoxy-6-veratryloxy-acetophenon (?) $C_{19}H_{22}O_6 = (CH_3 \cdot O)_2C_6H_3 \cdot CH_2 \cdot O \cdot C_6H_3(O \cdot CH_3)_2 \cdot CO \cdot CH_3$ (?). B. Neben 3-Oxy-4.6-dimethoxy-3-methyl-2-[3.4-dimethoxy-phenyl]-cumaran (?) aus dem Natriumsalz des Phloracetophenon-2.4-dimethyläthers und Veratrylbromid in siedendem Aceton (Freudenberg, Carrara, Cohn, A. 446, 95; Ca., Co., G. 56, 145). Hellgelbe Nadeln. F: 148°.
- 2.4.6-Triacetoxy-acetophenon, Phloracetophenon-triacetat, Triacetyl-phloracetophenon $C_{14}H_{14}O_7 = (CH_3 \cdot CO \cdot O)_3C_6H_2 \cdot CO \cdot CH_3$. B. Neben anderen Verbindungen beim Schütteln von Phloracetophenon mit Acetylchlorid und Dimethylanilin in Benzol (Sonn, Bülow, B. 58, 1697). Nadeln oder Prismen (aus absol. Alkohol). F: 90°. Löslich in Äther, schwer löslich in kaltem Alkohol, unlöslich in Wasser. Löst sich in verdünnten Alkalilaugen unter Verseifung mit gelber Farbe. Die alkoh. Lösung gibt mit Eisenchlorid eine dunkelrote Färbung.
- 2.4 (oder 2.6)-Dioxy-6 (oder 4)-carbomethoxyoxy-acetophenon, 2 (oder 4)-Carbomethoxy-phloracetophenon $C_{10}H_{10}O_6 = CH_3 \cdot O_2C \cdot O \cdot C_6H_4(OH)_2 \cdot CO \cdot CH_3$. B. Neben überwiegenden Mengen 2.4-Dioarbomethoxy-phloracetophenon beim Schütteln von 5 g Phloracetophenon mit 3 cm³ Chlorameisensäure-methylester und 27 cm³ 1n-Natronlauge bei Zimmertemperatur (Sonn, Bülow, B. 58, 1694). Nadeln (aus verd. Alkohol). F: 152°. Sehr leicht löslich in Alkohol, schwer in Wasser.

Phloracotophenon-2-methyläther.

- 2-0xy-4.6-bis-carbomethoxyoxy-acetophenon, 2.4-Dicarbomethoxy-phloracetophenon $C_{12}H_{12}O_8=(CH_3\cdot O_2C\cdot O)_2C_6H_2(OH)\cdot CO\cdot CH_3$. B. s. im vorangehenden Artikel. Nadeln (aus Alkohol). F: 114—115° (Sonn, Bürlow, B. 58, 1694). Kaum löslich in Wasser, ziemlich leicht in Alkohol, leicht in Äther. Die alkoh. Lösung gibt mit Eisenchlorid eine rote Färbung. Gibt beim Behandeln mit Diazomethan in Äther und anschließenden Schütteln mit 2 n-Alkali
- 2.4.6-Tris-carbomethoxyoxy-acetophenon, Tricarbomethoxy-phloracetophenon $C_{14}H_{14}O_{10} = (CH_3 \cdot O_2C \cdot O)_8C_6H_2 \cdot CO \cdot CH_3$. B. Durch Einw. von überschüssigem Chlorameisensäuremethylester auf Phloracetophenon in Gegenwart von Dimethylanilin in Benzol unter Kühlung mit Eis-Kochsalz-Gemisch (SONN, BÜLOW, B. 58, 1695). Krystalle (aus absol. Alkohol). F: 65°. Unlöslich in Wasser, ziemlich leicht löslich in Alkohol, leicht in Äther und Aceton. Löst sich in verd. Alkali unter Verseifung.
- 2.4.6-Trimethoxy-acetophenon-imid, Phloracetophenon-trimethyläther-imid $C_{11}H_{15}O_3N=(CH_3\cdot O)_3C_6H_1\cdot C(:NH)\cdot CH_3$. B. Das Hydrochlorid entsteht aus Phloroglucin-trimethyläther, Acetonitril und Chlorwasserstoff in Gegenwart von Zinkehlerid in Äther (Shinoda, J. pharm. Soc. Japan 1927, 111; C. 1928 I, 333; Houben, Fischer, J. pr. [2] 128, 97). Nadeln (aus Benzin). F: 95—96° (H., F.). Löslich in allen organischen Lösungsmitteln, in der Wärme auch in Petroläther (H., F.).
- 2-Oxy-4.6-dimethoxy-acetophenon-oxim, Phloracetophenon-2.4-dimethyläther-oxim, Xanthoxylin-oxim $C_{10}H_{13}O_4N=(CH_3\cdot O)_2C_6H_2(OH)\cdot C(:N\cdot OH)\cdot CH_3$. B. Durch Umsetzung von Phloracetophenon-2.4-dimethyläther (8. 442) mit Hydroxylamin in Alkohol + Äther, zuletzt bei Siedetemperatur (Rennie, Cooke, Finlayson, Soc. 117, 344; vgl. Sonn, B. 61, 2301). Tafeln mit 1 H_2O (aus Wasser). Sintert bei 100° ; F: 107° (Zers.) bei langsamem Erhitzen (R., C., F.).
- ω-Chlor-2-oxy-4.6-dimethoxy-acetophenon, ω-Chlor-phloracetophenon-2.4-dimethyläther $C_{10}H_{11}O_4Cl = (CH_3 \cdot O)_2C_6H_2(OH) \cdot CO \cdot CH_2Cl$ (H 395). B. Beim Erhitzen von ω-Chlor-2.4.6-trimethoxy-acetophenon mit Aluminiumchlorid auf 120° (Freudenberg, Fikentscher, Harder, A. 441, 169). F: 144—146°.
- ω-Chlor 2.4.6-trimethoxy-acetophenon, ω-Chlor phloracetophenon trimethyläther $C_{11}H_{13}O_4Cl = (CH_3 \cdot O)_3C_6H_2 \cdot CO \cdot CH_2Cl$. B. Durch Einleiten von Chlorwasserstoff in eine Lösung von Phlorogluein-trimethyläther und Chloracetonitril in Äther und Kochen des Reaktionsprodukts mit Wasser (Freudenberg, Fikentscher, Harder, A. 441, 168). Krystalle (aus Alkohol). F: 95—96°.
- 3-Brom-phloracetophenon-2.4 (oder 4.6)-dimethyläther $C_{10}H_{11}O_4Br = (CH_3 \cdot O)_2C_6HB_1(OH) \cdot CO \cdot CH_3$ (H 395 als x-Brom-phloracetophenon-2.4-dimethyläther bezeichnet). F: 188° bis 189° (Penfold, J. Pr. Soc. N. S. Wales 61, 184; C. 1929 I, 948).
- ω-Brom-2-oxy-4.6-dimethoxy-acetophenon, ω-Brom-phloracetophenon-2.4-dimethyläther $C_{10}H_{11}O_4Br = HO \cdot C_6H_2(O \cdot CH_3)_2 \cdot CO \cdot CH_2Br$. B. Bei langsamem Erwärmen von ω-Brom-2.4-6-trimethoxy-acetophenon mit Aluminiumbromid auf 70° (Freudenberg, Fikentscher, Harder, A. 441, 169). F: 130—131°.
- ω-Brom-2.4.6-trimethoxy-acetophenon, ω-Brom-phloracetophenon-trimethyläther $C_{11}H_{13}O_4Br = (CH_3 \cdot O)_3C_6H_2 \cdot CO \cdot CH_2Br$. B. Analog ω-Chlor-2.4.6-trimethoxy-acetophenon (FREUDENBERG, FIKENTSCHER, HARDER, A. 441, 168). F: 86°.
- 4. 3.4.5 Trioxy acetophenon, 5 Acetyl pyrogallol, Methyl- [3.4.5 trioxy phenyl] keton C₈H₈O₄, s. nebenstehende Formel. B. Beim Erhitzen von 3.4.5 Trimethoxy-acetophenon mit Aluminiumehlorid in Chlorbenzol (Mauthner, J. pr. [2] 115, 138). Nadeln (aus Wasser). F: 187—188°. Unlöslich in Ligroin und Petroläther, sehr schwer löslich in Benzol, leicht in Alkohol, Äther, Aceton und Eisessig. Eisenchlorid färbt die alkoh. Lösung blau, die wäßrige grün. Das 4-Nitrophenylhydrazon verkohlt gegen 260°.
- 4-Oxy-3.5-dimethoxy-acetophenon, Acetosyringon $C_{10}H_{12}O_4 = HO \cdot C_4H_4(O \cdot CH_3)_3 \cdot CO \cdot CH_3$. B. Durch Einw. von Aluminiumchlorid auf Pyrogallol-1.3-dimethyläther-2-acetat in Nitrobenzol erst bei 2—3°, dann bei Zimmertemperatur (Mauthner, J. pr. [2] 121, 256). Beim Behandeln von 3.5-Dimethoxy-4-benzyloxy-acetophenon mit gesättigtem Bromwasserstoff-Eisessig bei gewöhnlicher Temperatur (Bradley, Robinson, Soc. 1928, 1564). Prismen (aus Petroläther). F: 122—123° (M.), 117° (Br., R.). Leicht löslich in Alkohol, Eisessig und Benzol, schwer in kaltem Ligroin (M.). Löst sich in konz. Schwefelsäure mit gelber Farbe (M.; Br., R.), löslich in Sodalösung (Br., R.). Die alkoh. Lösung wird durch Eisenchlorid grünblau gefärbt (M.; Br., R.). Gibt mit 15%iger wäßriger Natronlauge ein schwer lösliches Natriumsalz (Br., R.). Das 4-Nitro-phenylhydrazon schmilzt bei 189—190° (M.).

- 3.4.5-Trimethoxy-acetophenon $C_{11}H_{14}O_4=(CH_3\cdot O)_3C_6H_3\cdot CO\cdot CH_3$ (E I 688). B. Aus 4-Oxy-3.5-dimethoxy-acetophenon und Methyljodid in siedender methylalkoholischer Kalilauge (Mauthner, J. pr. [2] 121, 258). F: 76—77° (Gatewood, Robinson, Soc. 1926, 1963).
- 3.5-Dimethoxy-4-benzyloxy-acetophenon $C_{17}H_{18}O_4=C_6H_5\cdot CH_2\cdot O\cdot C_6H_2(O\cdot CH_3)_3\cdot CO\cdot CH_3$. B. Beim Erhitzen von 3.5-Dimethoxy-4-benzyloxy-benzylessigsäureäthylester mit Wasser im Rohr auf 175—180° (Bradley, Robinson, Soc. 1928, 1564). — Prismen (aus Petroläther). F: 60—61°. Leicht löslich in den meisten organischen Lösungsmitteln. Die orangefarbene Lösung in Schwefelsäure wird beim Aufbewahren allmählich grünlichbraun. - Das 2.4 - Dinitrophenylhydrazon schmilzt bei 192-1930.
- 3.4.5-Triacetoxy-acetophenon $C_{14}H_{14}O_7 = (CH_3 \cdot CO \cdot O)_3C_8H_2 \cdot CO \cdot CH_3$. B. Beim Erwärmen von 3.4.5-Trioxy-acetophenon mit Acetylchlorid in Eisessig (MAUTHNER, J. pr. [2] 115, 141). Nadeln (aus Ligroin). F: 111-1120. Leicht löslich in Benzol, Alkohol und Eisessig, sehr schwer in kaltem Ligroin.
- 3.4.5-Trimethoxy-acetophenon-oxim $C_{11}H_{15}O_4N = (CH_3\cdot O)_3C_6H_2\cdot C(:N\cdot OH)\cdot CH_3$ (E I 688). Tafeln. F: 102° (SONN, B. 58, 1105). Leicht löslich in Alkohol, Äther, Ligroin, Benzol und heißem Wasser.
- 3.4.5-Trioxy-acetophenon-semicarbazon $C_9H_{11}O_4N_3=(HO)_3C_6H_2\cdot C(CH_3):N\cdot NH\cdot CO\cdot NH_2$. Nadeln (aus Alkohol). F: 216 2170 (Mauthner, J. pr. [2] 115, 140). Leicht löslich in Alkohol, fast unlöslich in Äther und Essigester.
- 3.5 Dimethoxy 4 benzyloxy acetophenon semicarbazon $C_{18}H_{21}O_4N_3 = C_6H_5 \cdot CH_2 \cdot O \cdot C_6H_2 \cdot O \cdot C_6H_2 \cdot C(CH_3) \cdot N \cdot NH \cdot CO \cdot NH_2$. Tafeln (aus Alkohol). F: 166° (Bradley, Robinson, Soc. 1928, 1564).
- 2-Nitro 3.4.5 trimethoxy-aceto-phenon $C_{11}H_{13}O_6N$, Formel I. B. Bei ester oder a-[2-Nitro-3.4.5-trimethoxybenzoyl]-acetessigsäure-äthylester mit

verd. Schwefelsäure (Overmyer, Am. Soc. 49, 505). — Nadeln (aus Äther). F: 1180. Löslich in Methanol, Äther und Alkohol, unlöslich in Wasser. Löst sich in konz. Schwefelsäure mit intensiv roter Farbe.

- 5. 2.4. ω Trioxy acetophenon, ω Oxy resacetophenon, Fisetol $C_8H_8O_4$, Formel II. B. Bei längerer Einw. von methylalkoholischem Ammoniak auf Fisetol-triacetat (?) (S. 446) (NIERENSTEIN, WANG, WARR, Am. Soc. 46, 2554). Durch Hydrolyse von ω Carbomethoxy-fisetol oder ω-Carbathoxy-fisetol mit 2 n Natronlauge bei Zimmertemperatur (Sonn, FALKENHEIM, B. 55, 2984). Durch Umsetzung von Resorcin mit Glykolsäurenitril und Chlorwasserstoff in Gegenwart von ZnCl₂ in Äther und Erwärmen des entstandenen Imidhydrochlorids mit Wasser¹) (Karrer, Biedermann, *Helv.* 10, 441). — Nadeln oder Prismen (aus Wasser). F: 189° (S., F.; N., W., W.; K., B.). Leicht löslich in kaltem Essigester und Aceton und in heißem Wasser, Alkohol und Eisessig, unlöslich in Äther, Benzol und Ligroin (S., F.). Gibt mit Eisenchlorid in Alkohol eine bordeauxrote Färbung (S., F.). — Reduziert ammoniakalische Silberlösung und alkalische Kupferlösung (S., F.). — Das Phenylhydrazon $C_{14}H_{14}O_3N_2$ schmilzt bei 109^0 (Zers.) (S., F.).
- 2.4-Dioxy- ω -methoxy-acetophenon, ω -Methoxy-resacetophenon, Fisetol- ω -methyläther $C_9H_{10}O_4=(HO)_2C_6H_3\cdot CO\cdot CH_3\cdot O\cdot CH_3$. B. Durch Erwärmen von 2.4-Dioxy- ω -methoxy-acetophenon-imid-hydrochlorid (S. 446) mit Wasser auf 80° (Slater, Stephen, Soc. 117, 313). Tafeln (aus Wasser) (SL., St.); scheidet sich oft in wasserhaltigen Krystallen aus (Gatewood, Robinson, Soc. 1926, 1962). Schmilzt wasserfrei bei 136° (SL., St.), bei 136—137° (G., R.), wasserhaltig bei ca. 85° (G., R.). Leicht löslich in Methanol, Alkohol, Ather und Benzol, unlöslich in Petroläther (SL., St.). Gibt mit Eisenchlorid eine tiefviolette Färbung (SL., St.). — Reduziert Fehlingsche Lösung und ammoniakalische Silberlösung (SL., ST.). — Das 4-Nitro-phenylhydrazon $C_{15}H_{18}O_5N_3$ schmilzt bei 205° (Zers.) (SL., ST.).
- ω -0xy-2.4-dimethoxy-acetophenon, Fisetol-2.4-dimethyläther $C_{10}H_{12}O_4 = (CH_3 \cdot O)_2C_6H_3$. CO·CH. OH. B. In geringer Menge durch Umsetzung von Resorcindimethyläther mit Glykolsäurenitril und Chlorwasserstoff in Gegenwart von Zinkchlorid in Äther und Erwärmen des Reaktionsprodukts mit Wasser (Slater, Stephen, Soc. 117, 315). Aus Fisetol und Diazomethan in Äther (Nierenstein, Wang, Warr, Am. Soc. 46, 2554). Bei der Verseifung von in Aceton gelöstem 2.4-Dimethoxy-w-carbathoxyoxy-acetophenon mit Alkali (Sonn, Falkenheim, B. 55, 2985). — Nadeln (aus Benzol). F: 131° (N., W., W.), 127—129° (Sl., St.). Leicht löslich in

¹⁾ SLATER, STEPHEN, Soc. 117, 314, erhielten nach diesem Verfahren 6-Oxy-cumaranon.

Alkohol, sohwer in Wasser (SL., Sr.). — Zersetzt sich beim Kochen mit Wasser, besonders rasch in Gegenwart von Salzsäure oder Natronlauge (SL., Sr.). Reduziert Fehlingsche Lösung in der Kälte, ammoniakalische Silberlösung in der Wärme (SL., Sr.). Wird durch alkal. Permanganat-Lösung zu 2.4-Dimethoxy-benzoesäure oxydiert (N., W., W.). — Das Phenylhydrazon schmilzt bei 212° (So., F.).

- 2-Oxy-4 ω -dimethoxy-acetophenon, Fisetol-4 ω -dimethyläther $C_{10}H_{12}O_4 = CH_3 \cdot O \cdot C_6H_3(OH) \cdot CO \cdot CH_2 \cdot O \cdot CH_3$ (H 395). B. Aus Fisetol- ω -methyläther und 1 Mol Dimethylsulfat in 5% iger Natronlauge unter Eiskühlung (Slater, Stephen, Soc. 117, 313). Durch Behandlung von Resorcin-monomethyläther und Methoxyacetonitril mit Chlorwasserstoff bei Gegenwart von Zinkchlorid in Äther und Erwärmen des Reaktionsprodukts mit Wasser (Sl., St., Soc. 117, 314).
- 2.4. ω -Trimethoxy-acetophenon, Fisetoltrimethyläther $C_{11}H_{14}O_4 = (CH_3 \cdot O)_2C_6H_3 \cdot CO \cdot CH_2 \cdot O \cdot CH_3 \cdot (H 396)$. B. Durch Methylierung von Fisetol- ω -methyläther mit Dimethylsulfat in Natronlauge bei Temperaturen bis 60° (Slater, Stephen, Soc. 117, 314; Pratt, Robinson, Soc. 127, 1136 Anm.), von Fisetol-2.4-dimethyläther mit Methyljodid und Silberoxyd in siedendem Äther (Nierenstein, Wang, Ward, Am. Soc. 46, 2555) und von Fisetol-4. ω -dimethyläther mit Dimethylsulfat in warmer alkoholischer Kalilauge (N., W., W.). In geringer Menge durch Umsetzung von Resorcindimethyläther mit Methoxyacetonitril und Chlorwasserstoff bei Gegenwart von Zinkchlorid in Äther und Hydrolyse des Reaktionsprodukts mit Wasser (Sl., St.). Beim Sättigen einer Lösung von Fisetol-trimethyläther und 2.4-Dioxy-benzaldehyd in Eisessig mit Chlorwasserstoff erhält man 7-Oxy-3.2'.4'-trimethoxy-flavyliumchlorid und ein dunkelrotviolettes Nebenprodukt (P., R., Soc. 128, 757).
- 2.4. ω -Triacetoxy-acetophenon, Fisetoltriacetat $C_{14}H_{14}O_7 = (CH_3 \cdot CO \cdot O)_2C_6H_3 \cdot CO \cdot CH_2 \cdot O \cdot CO \cdot CH_3$.
- a) Präparat von Charlesworth, Chavan, Robinson. B. Durch Kochen von Fisetol oder Fisetol-w-acetat mit Acetanhydrid in Gegenwart von Pyridin (CHARLESWORTH, CHAVAN, ROBINSON, Soc. 1983, 372). Krystalle (aus Alkohol). F: 93.5°.
- ROBINSON, Soc. 1988, 372). Krystalle (aus Alkohol). F: 93,5°.
 b) Präparat von Nierenstein, Wang, Warr. B. Beim Kochen von ω-Chlor-2.4-diacet-oxy-acetophenon mit Acetanhydrid und Natriumacetat (NIERENSTEIN, WANG, WARR, Am. Soc. 46, 2554). Nadeln (aus Alkohol). F: 129°. Gibt bei mehrtägigem Aufbewahren mit methylalkoholischem Ammoniak Fisetol.
- 2.4 Dloxy ω carbomethoxyoxy acetophenon, ω Carbomethoxyoxy resacetophenon, ω -Carbomethoxy-fisetol $C_{10}H_{10}O_6=(HO)_2C_6H_3\cdot CO\cdot CH_2\cdot O\cdot CO_2\cdot CH_3$. B. Durch Kondensation von Resorcin mit Carbomethoxy-glykolsäurenitril und Chlorwasserstoff bei Gegenwart oder Abwesenheit von Zinkchlorid in Äther und Hydrolyse des Reaktionsprodukts mit Wasser (Sonn, Fallenheim, B. 55, 2983; Pratt, Robinson, Soc. 123, 756 Anm.). Nadeln (aus Wasser). F: 157—158° (S., F.). Leicht löslich in kaltem Aceton und Essigester und in heißem Alkohol und Eisessig, schwerer in heißem Wasser, fast unlöslich in Äther, Benzol, Chloroform und Ligroin (S., F.).
- 2.4-Dioxy- ω -carbäthoxyoxy-acetophenon, ω -Carbäthoxyoxy-resacetophenon, ω -Carbäthoxy-fisetol $C_{11}H_{12}O_6 = (HO)_2C_6H_3 \cdot CO \cdot CH_2 \cdot O \cdot CO_2 \cdot C_2H_5$. B. Analog der vorangehenden Verbindung (Sonn, Falkenheim, B. 55, 2983). Tafeln (aus verd. Alkohol). F: 104— 105° ; die Schmelze wird bei 107° klar. Leicht löslich in Äther, löslich in heißem Benzol und Chloroform, unlöslich in Ligroin.
- 2.4 Dimethoxy- ω -carbāthoxyoxy-acetophenon, ω -Carbāthoxy-fisetol-2.4-dimethylāther $C_{13}H_{16}O_6=(CH_3\cdot O)_2C_8H_3\cdot CO\cdot CH_2\cdot O\cdot CO_2\cdot C_2H_5$. B. Durch Kondensation von Resorcindimethylāther mit O-Carbāthoxy-glykolsāurenitril und Chlorwasserstoff in Äther und Hydrolyse des Reaktionsproduktes mit Wasser (Sonn, Falkenheim, B. 55, 2984). Tafeln (aus verd. Alkohol). F: 74—75°.
- 2.4-Dioxy- ω -methoxy-acetophenon-imid $C_9H_{11}O_3N = (HO)_2C_6H_3 \cdot C(:NH) \cdot CH_2 \cdot O \cdot CH_3$. Hydrochlorid $C_9H_{11}O_3N + HCl.$ B. Beim Sättigen einer Lösung von Resorcin und Methoxy-acetonitril in Äther mit Chlorwasserstoff (Slater, Stephen, Soc. 117, 312). Krystalle (aus Methanol). F: 205—207° (Zers.).
 - 6. 3.4.ω-Trioxy-acetophenon C₈H₈O₄, s. nebenstehende Formel.
- 4. ω -Dioxy-3-methoxy-acetophenon, ω -Oxy-acetovanilion $C_0H_{10}O_4$ = $CH_3 \cdot O \cdot C_0H_3 \cdot OH$. B. Beim Kochen von ω -Acetoxy-acetovanillon mit Bariumcarbonat und Wasser (Pratt, Robinson, Soc. HO CO · CH3 · OH 123, 754). Ol. Gibt beim Erwärmen mit Phenylhydrazin in essignaurer Lösung 4 · Oxy · 3 · methoxy · phenylglyoxal · bis · phenylhydrazon.
- ω- 0xy-3.4-dimethoxy-acctophenon, ω- 0xy-acctoveratron $C_{10}H_{12}O_4 = (CH_2 \cdot O)_2C_0H_3 \cdot CO \cdot CH_2 \cdot OH$ (Ε I 689). Reduziert Fehlingsche Lösung in der Kälte (PRATT, ROBINSON, Soc. 123, 756). Liefert beim Kochen mit Methyljodid und Silberoxyd 3.4.ω-Trimethoxy-acctophenon und 3.4.ω-Trimethoxy-phenylacetaldehyd (?) (S. 448) (PR., R., Soc. 123, 756; 127, 167).

- 3.4. ω -Trimethoxy-acetophenon, ω -Methoxy-acetoveratron $C_{11}H_{14}O_4 = (CH_3 \cdot O)_3C_4H_3 \cdot CO \cdot CH_3 \cdot O \cdot CH_3 \cdot$
- 4-0xy-3-methoxy- ω -acetoxy-acetophenon, ω -Acetoxy-acetovanillon $C_{11}H_{12}O_5=CH_3\cdot O\cdot C_6H_3(OH)\cdot CO\cdot CH_2\cdot O\cdot CO\cdot CH_3$. Be im Kochen von ω -Chlor-acetovanillon mit Kalium-acetat in-Alkohol (Pratt, Robinson, Scc. 128, 754; Nolan, P., R., Scc. 1926, 1970). Prismen (aus Benzol + Petroläther). F: 110° (N., P., R.). Leicht löslich in den meisten organischen Lösungsmitteln und in Sodalösung (N., Pr., R.). Liefert beim Kochen mit Salicylaldehyd in methylalkoholischer Kalilauge, Behandeln des Reaktionsprodukts mit Chlorwasserstoff in Ather und Versetzen mit salzsaurer Eisenchlorid-Lösung 3.4'-Dioxy-3'-methoxy-flavylium-ferrichlorid (P., R.).
- 3.4 Dimethoxy ω acetoxy acetophenon, ω Acetoxy acetoveratron $C_{12}H_{14}O_5 = (CH_3 \cdot CO \cdot CH_2 \cdot O \cdot CO \cdot CH_3 \cdot CO \cdot$
- 3-Methoxy-4. ω -diacetoxy-acetophenon $C_{13}H_{14}O_6=CH_3\cdot CO\cdot O\cdot C_6H_3(O\cdot CH_3)\cdot CO\cdot CH_2\cdot O\cdot CO\cdot CH_3$. B. Aus ω -Acetoxy-acetovanillon und Acetylchlorid (Nolan, Pratt, Robinson, Soc. 1926, 1970). Nadeln (aus Petroläther). F: 73°. Unlöslich in Sodalösung.
- 3.4. ω -Triacetoxy-acetophenon $C_{14}H_{14}O_7 = (CH_3 \cdot CO \cdot O)_2C_6H_3 \cdot CO \cdot CH_2 \cdot O \cdot CO \cdot CH_2 \cdot (H 396)$. B. Beim Erwärmen von 3.4-Diacetoxy- ω -diazo-acetophenon mit Eisessig auf 65—70° und anschließenden kurzen Kochen (Bradley, Schwarzenbach, Scc. 1928, 2908). Tafeln (aus Benzol + Petroläther). F: 95° (Robertson, Robinson, Scc. 1928, 1527), 92—93° (B., Sch.). Reduziert Fehlingsche Lösung (B., Sch.).
- 3.4 Dimethoxy ω methoxyacetoxy acetophenon, ω Methoxyacetoxy acetoveratron $C_{12}H_{16}O_6 = (CH_2 \cdot O)_2C_6H_3 \cdot CO \cdot CH_2 \cdot O \cdot CO \cdot CH_2 \cdot O \cdot CH_3$. B. Aus ω -Brom-acetoveratron und Kalium-methoxyacetat in Gegenwart geringer Mengen Natriumjodid in siedendem Alkohol (FREUDENBERG, SMEYKAL, B. 59, 106). Prismen (aus Äther). F: 70°.
- 3.4 Dimethoxy ω [α methoxy propionyloxy] acetophenon, ω [O Methyl lactyloxy] acetoveratron $C_{14}H_{18}O_6 = (CH_3 \cdot O)_2C_6H_3 \cdot CO \cdot CH_2 \cdot O \cdot CO \cdot CH(O \cdot CH_3) \cdot CH_3$.

 a) Rechtsdrehende Form. B. Aus ω -Brom-acetoveratron und dem Kaliumsalz der
- a) Rechtsdrehende Form. B. Aus ω -Brom-acetoveratron und dem Kaliumsalz der d(+)-O-Methyl-milchsäure bei Gegenwart geringer Mengen Natriumjodid in siedendem Alkohol (FREUDENBERG, WOLF, B. 59, 839). Hellgelbe Nadeln. F: 91°. [α]¹⁷₆₇₈: + 39,0° (Tetrachloräthan; o = 3.5).
- b) Linksdrehende Form. B. Analog der rechtsdrehenden Form aus 1(-)-O-Methylmilchsäure. Nadeln. F: 91° (Freudenberg, Wolf, B. 59, 840). [α]¹⁹₅₇₀: —38,8° (Tetrachloräthan; α = 3).
- c) Inaktive Form. B. Analog den aktiven Formen aus O-Methyl-dl-milchsäure (FREUDENBERG, WOLF, B. 59, 839). Aus gleichen Mengen der aktiven Formen in Äther (F., W., B. 59, 840). Prismen (aus Äther). F: 74°.
- 3.4. ω -Trimethoxy-acetophenon-semicarbazon, ω -Methoxy-acetoveratron-semicarbazon $C_{12}H_{17}O_4N_3=(CH_3\cdot O)_2C_6H_3\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_3\cdot O\cdot CH_3$. Nadeln (aus Methanol). F: 1780 (Pratt, Robinson, Scc. 127, 167; vgl. Soc. 128, 757). Zersetzt sich bei der Hydrolyse mit Salzsäure (P., R., Soc. 123, 757).
- 7. 3.5.ω-Trioxy-acetophenon C₈H₈O₄, s. nebenstehende Formel.
 3.5.ω-Trimethoxy-acetophenon C₁₁H₁₄O₄ = (CH₂· O)₂C₆H₃· CO· CH₂·
 O· CH₂.
 Durch Umsetzung von 3.5-Dimethoxy-benzoylchlorid mit der HO.
 Natriumverbindung des α.γ-Dimethoxy-acetessigesters in siedendem Äther und Hydrolyse des Reaktionsprodukts mit 2,5 % iger Kalilauge (ROBERTSON, ROBINSON, SUGIURA, Scc. 1928, 1535). Nadeln (aus Petroläther). F: 42°. Leicht löslich in den meisten organischen Lösungsmitteln.
- Semicarbazon $C_{12}H_{17}O_4N_3=(CH_3\cdot O)_4C_6H_3\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_3\cdot O\cdot CH_4$. Nadeln (aus Alkohol). F: 149—149,5° (Robertson, Robinson, Sugiura, Soc. 1928, 1536).

8. 3.4.a-Trioxy-phenylacetaldehyd C₈H₈O₄, Formel I.

3.4. α -Trimethoxy-phenylacetaldehyd (?) $C_{11}H_{14}O_4 = (CH_3 \cdot O)_9C_6H_3 \cdot CH(O \cdot CH_3) \cdot CHO$ (?). B. Neben 3.4. ω -Trimethoxy-acetophenon beim Kochen von ω -Oxy-3.4-dimethoxy-acetophenon mit Methyljodid und Silberoxyd (Pratt, Robinson, Soc. 123, 756; 127, 167).

Semicarbazon $C_{12}H_{17}O_4N_3 = (CH_3 \cdot O)_2C_6H_3 \cdot CH(O \cdot CH_3) \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Prismen (aus Methanol). F: 205° (Pratt, Robinson, Scc. 123, 757; 127, 167). Schwer löslich in Methanol. — Zersetzt sich bei der Hydrolyse mit Salzsäure (P., R., Soc. 123, 757).

- 9. 2.3.6-Trioxy-4-methyl-benzaldehyd, 2.3.6-Trioxy-p-toluylaldehyd, Thamnol C₈H₈O₄, Formel II. Zur Konstitution vgl. Asahina, Fuzikawa, B. 65 [1932], 58.—B. Neben anderen Produkten bei längerem Erhitzen von Thamnolsäure (Syst. Nr. 1454) mit Eisessig im Rohr auf 150° oder mit Pelargonsäure bis auf 200° unter gewöhnlichem Druck (Asahina, Ihara, B. 62, 1203).— Gelbe Prismen (aus Benzol). F: 185° (A., I.). Leicht löslich in Alkohol, Äther, Essigester und Pyridin, schwerer in kaltem Benzol, schwer in Wasser mit saurer Reaktion; ist als einbasische Säure titrierbar (A., I.).— Gibt bei der Reduktion mit amalgamiertem Zink und 15% iger Salzsäure 2.3.5-Trioxy-p-xylol (A., I., B. 62, 1206).— Löslich in konz. Schwefelsäure mit rotbrauner, beim Verdünnen in Gelb übergehender Farbe, in Alkalilaugen und in Alkalicarbonat- und -dicarbonat-Lösungen mit gelber Farbe (A., I.). Gibt mit Spuren Eisenchlorid in Alkohol eine allmählich dunkler werdende grüne Färbung, die beim Verdünnen in Olivgrün, auf Zusatz von Alkalidicarbonat in ein dunkles Weinrot übergeht (A., I.). Beim Erhitzen mit Chloroform und Alkali entsteht eine rote Lösung. Gibt mit Phloroglucin und heißer verdünnter Schwefelsäure eine orangerote Lösung bzw. einen braunen Niederschlag (A., I.). Wird aus NaHSO₃-Lösung durch Säuren nicht gefällt (A., I.).— Das Phenylhydrazon schmilzt bei 194° (Zers.), das 4-Nitro-phenylhydrazon gegen 320° (Zers.) (A., I., B. 62, 1205).
- 2.3.6-Triacetoxy-4-methyl-benzaldehyd, Thamnol-triacetat, Triacetyl-thamnol $C_{14}H_{14}O_7=CH_3\cdot C_6H(O\cdot CO\cdot CH_9)_3\cdot CHO$. B. Durch kurzes Erwärmen von Thamnol mit Acetanhydrid u'd Pyridin auf dem Wasserbad (Asahina, Ihara, B. 62, 1205). Nadeln (aus verd. Alkohol). F: 133° (A., I.), 113° (A., Fuzikawa, B. 65 [1932], 60).
- 10. 3.6-Dioxy-2.5-dimethyl-benzochinon-(1.4), Dioxy-p-xylochinon $C_8H_8O_4$, Formel III (H 397; E I 689). Bei der Bildung aus Propionsäureäthylester und Oxalester in Gegenwart von Natrium (H 397) läßt sich die Ausbeute durch Einleiten von Sauerstoff in das Reaktionsgemisch erhöhen (Kögl., Lang, B. 59, 912, 913). Orangerote Blättchen (aus Eisessig). F: 245°.

4. Oxy-oxo-Verbindungen C₂H₁₀O₄.

1. 2.4.6-Trioxy-1-propionyl-benzol, 2.4.6-Trioxy-propiophenon, 2-Propionyl-phloroglucin $C_9H_{10}O_4$, Formel IV. B. Durch Kondensation von Phloroglucin mit Propionitril nach Hoesch und nachfolgende Hydrolyse (Shinoda, J. pharm. Soc. Japan 1927, Nr. 541, S. 35; C. 1927 II, 97). — Orangefarbene Nadeln mit 1 H_2O (aus Wasser). Schmilzt wasserhaltig bei 113°, wasserfrei bei 207°.

IV. HO
$$CO \cdot C_2H_5$$
 $CO \cdot C_2H_5$ $CO \cdot C_$

2. 3.4.5-Trioxy-propiophenon C₂H₁₀O₄, Formel V.

3.4.5-Trimethoxy-propiophenon, Äthyl-[3.4.5-trimethoxy-phenyl]-keton $C_{12}H_{16}O_4 = (CH_3 \cdot O)_3C_6H_2 \cdot CO \cdot C_2H_5$ (E I 690). B. Beim Erwärmen von α -[3.4.5-Trimethoxy-benzoyl]-propionsäure-äthylester mit 25 %iger Schwefelsäure (MAUTHNEB, J. pr. [2] 112, 270). — F: 51° bis 52°. Kp₁₁: 177—178°. — Das 4-Nitro-phenylhydrazon schmilzt bei 182—183°.

2-Nitro-3.4.5-trimethoxy-propiophenon $C_{12}H_{15}O_{6}N$, Formel VI. B. Bei kurzem Kochen von α -[2-Nitro-3.4.5-trimethoxy-benzoyl]-propionsäure-äthylester mit verd. Schwefelsäure (Overmyer, Am. Soc. 49, 506). — Schweres braunes Öl. Gibt mit alkoh. Eisenchlorid-Lösung eine tiefrote Färbung.

- 3. 2.4.6 Trioxy 1 methyl 3 acetyl benzol, 2.4.6 Trioxy 3 methylacetophenon $C_0H_{10}O_4$, Formel VII (R=H).
- 2.4-Dioxy-6-acetoxy-3-methyl-acetophenon $C_{11}H_{12}O_5$, Formel VII (R = CH₃·CO). Zur Konstitution vgl. Curd, Robertson, Soc. 1983, 716. B. Bei der Ozonspaltung von Ueneol (Syst. Nr. 2402) in Essigester (Schöff, Heuck, A. 459, 282). Nadeln (aus 20% iger Essigsäure). F: 161—164° (Sch., H.). Die alkoh. Lösung wird durch Eisenchlorid blutrot gefärbt (Sch., H.).

5. Oxy-oxo-Verbindungen $C_{10}H_{13}O_4$.

- 1. 2.4.6-Trioxy-1-butyryl-benzol, 2.4.6-Trioxy-butyrophenon, 2-Butyryl-phloroglucin, Phlorbutyrophenon $C_{10}H_{12}O_4={}^{2-4.6}(HO)_2C_6H_2\cdot CO\cdot CH_2\cdot C_2H_5$ (E I 691). B. Bei tropfenweiser Zugabe von Butyrylchlorid zu einer mit Aluminiumchlorid versetzten Lösung von Phloroglucin in Nitrobenzol bei ca. 90° (Rosenmund, Lohfert, B. 61, 2606). Anthelminthische Wirkung: Höchster Farbw., D.R.P. 364883; C. 1928 II, 375; Frdl. 14, 1423.
 - 2. 3.4. β -Trioxy-butyrophenon $C_{10}H_{12}O_4 = {}^{3.4}(HO)_2C_0H_3 \cdot CO \cdot CH_2 \cdot CH(OH) \cdot CH_3$.

 $\gamma_*\gamma_*\gamma_*$ -Trichlor- β_* -oxy-3.4-dimethoxy-butyrophenon, Chloralacetoveratron $C_{12}H_{13}O_4Cl_3=(CH_3\cdot O)_2C_3H_3\cdot CO\cdot CH_2\cdot CH(OH)\cdot CCl_3$. B. Beim Erhitzen von Acetoveratron mit Chloral und Eisessig (Sen, Barat, J. indian chem. Soc. 8, 413; C. 1927 I, 1440). — Krystalle (aus verd. Alkohol). F: 120—122°. Sehr schwer löslich in Benzol.

3. 2.4.6 - Trioxy - 1 - isobutyryl - benzol, 2.4.6 - Trioxy - isobutyrophenon, 2-Isobutyryl - phloroglucin, Phlorisobutyrophenon $C_{10}H_{12}O_4={}^{2\cdot 4\cdot 6}(HO)_3C_6H_3\cdot CO\cdot CH(CH_3)_2$ (E I 691). An der Luft verwitternde Rhomboeder mit $2H_2O$ (aus verd. Alkohol). Schmilzt wasserhaltig bei 68°, wasserfrei bei 138—140° (Karrer, Rosenfeld, Helv. 4, 711). Sehr schwer löslich in kaltem, schwer in heißem Wasser (K., R.). Die wäßr. Lösung wird durch Eisenchlorid braunrot gefärbt (K., R.). — Über anthelminthische Wirkung vgl. Höchster Farbw., D.R.P. 364883; C. 1928 II, 375; Frdl. 14, 1423.

4. 2-Methyl-1-[3.4-dioxy-phenyl]-propanol-(1)-al-(3), β -Oxy- β -[3.4-dioxy-phenyl]-isobutyraldehyd $C_{10}H_{12}O_4=(HO)_sC_6H_3\cdot CH(OH)\cdot CH(CH_3)\cdot CHO$.

β-Oxy-β-[6-nitro-3.4-dimethoxy-phenyl]-isobutyraldehyd, α-Methyl-β-[6-nitro-3.4-dimethoxy-phenyl]-hydracrylaldehyd $C_{12}H_{15}O_8N$, Formel VIII. B. Aus 6-Nitro-3.4-dimethoxy-benzaldehyd und überschüssigem Propionaldehyd in Gegenwart von Piperidin bei Zimmertemperatur (WILLIMOTT, SIMPSON, Soc. 1926, 2810). — Blaßbrauner Syrup von charakteristischem Geruch. Die alkoh. Lösung zeigt grüne Fluorescenz. — Liefert bei der Reduktion mit Zinkstaub und Eisessig 6.7-Dimethoxy-3-methyl-chinolin. Beim Kochen mit Acetanhydrid erhält man 6-Nitro-3.4-dimethoxy-α-methyl-zimtaldehyd.

5. 3.6-Dioxy-2-methyl-5-isopropyl-benzochinon-(1.4), 3.6-Dioxy-thymochinon C₁₀H₁₂O₄, Formel IX (H 399; E I 691). B. Neben anderen Produkten bei der Einw. von Dimethylanilin auf Thymochinon in Gegenwart von Oxydations- oder Lösungsmitteln und Behandeln der erhaltenen teerigen Produkte mit 50% iger Schwefelsäure (HIXON, Am. Soc. 45, 2336). Aus 3-Oxy-thymochinon oder 6-Oxy-thymochinon beim Durchleiten von Luft durch Lösungen in Natronlauge oder Kalilauge (Bargellini, G. 53, 242). — F: 222—224° (B.). Flüchtig mit Wasserdampf (B.). Löslich in Ammoniak mit violettroter Farbe, in konz. Schwefelsäure mit violetter Farbe (B.). — Die rote alkoholische Lösung wird beim Behandeln mit Wasserstoff und Platinschwarz farblos, an der Luft sofort wieder rot (B.). Kondensiert sich mit o-Phenylendiamin je nach den Bedingungen zu 2.3-Dioxy-1-methyl-4-isopropyl-phenazin (Syst. Nr. 3538) oder zu 6-Methyl-13-isopropyl-fluorindin (Formel X; Syst. Nr. 4030) (Kehbann, Collaud, Helv. 11, 1032). Liefert bei kurzem Kochen mit 2-Amino-phenol in Benzoesäure 3-Oxy-4-methyl-1-isopropyl-phenazoxon (Formel XI; Syst. Nr. 4251), mit 2-Amino-phenol-hydrochlorid außerdem Methyl-isopropyl-triphendioxazin (Formel XII; Syst. Nr. 4633) (K., C.).

6. 3.6 - Dioxy - 2.5 - diäthyl - benzechinen - (1.4), 3.6 - Dioxy - 2.5 - diäthyl - p - chinen C₁₀H₁₃O₄, s. nebenstehende Formel (H 399; EI 691). B. Durch Einw. von 1 Mol Dibutyryl auf 1 Mol Oxalester bei Gegenwart von 3 Mol alkoholfreiem Natriumäthylat in Äther (Kögl., Lang, C₂H₅. OH 5.59, 912). Bei der Bildung aus Oxalester, Buttersäuremethylester und Natrium (H 399) läßt sich die Ausbeute durch Behandlung des Reaktionsgemisches mit Sauerstoff erhöhen (K., L., B. 59, 912, 913). — F: 221—221,5° (im geschlossenen Röhrchen).

6. Oxy-oxo-Verbindungen C11H14O4.

1. 2.4.6 - Trioxy - 1 - isovaleryl - benzol, 2.4.6 - Trioxy - isovalerophenon, 2-Isovaleryl - phloroglucin, Phlorisovalerophenon $C_{11}H_{14}O_4={}^{1.4.6}(HO)_8C_4H_2\cdot CO\cdot CH_3\cdot CH(CH_3)_8$.

- a) Präparat von Karrer, Rosenfeld. B. Durch Sättigen eines Gemisches aus Phloroglucin, Isovaleronitril und Zinkchlorid in Äther mit Chlorwasserstoff und Erwärmen des Reaktionsprodukts mit Wasser (KARRER, ROSENFELD, Helv. 4, 712). An der Luft verwitternde Nadeln, Blättchen oder Rhomboeder mit 1 H₂O (aus Wasser). Schmilzt wasserfrei bei 178°; die wasserhaltige Verbindung schmilzt bei ca. 95°, wird wieder fest und schmilzt erneut bei 177—178° (K., R.). Leicht löslich in Alkohol und Äther, schwer in heißem Wasser. Gibt mit wäßr. Eisenchlorid-Lösung eine brauurote Färbung.
- b) Prāparat von Rosenmund, Lohfert. B. Bei tropfenweiser Zugabe von Isovalerylchlorid zu einer mit Aluminiumchlorid versetzten Lösung von Phloroglucin in Nitrobenzol bei ca. 90° (ROSENMUND, LOHFERT, B. 61, 2607). F: 145°.
- 2. 2.4.6-Trioxy-1-methyl-3-butyryl-benzol, 2-Methyl-4-butyryl-phloroglucin, 2.4.6-Trioxy-3-methyl-butyrophenon $C_{11}H_{14}O_4=CH_3\cdot C_4H(OH)_8\cdot CO\cdot CH_3\cdot C_4H_5$.
- 2-Methyl-4-butyryl-phloroglucin-1-methyläther, Aspidinol C₁₂H₁₆O₄, Formel I (H 400). B. Neben Pseudoaspidinol (s. u.) beim Einleiten von Chlorwasserstoff in eine äther. Lösung von 2-Methyl-phloroglucin-1-methyläther und Butyronitril in Gegenwart von Zinkehlorid und Kochen des Reaktionsproduktes mit Wasser (Karrer, Widmer, Helv. 3, 392, 395). Ist in Ligroin etwas schwerer löslich als Pseudoaspidinol.

$$I. \quad \overset{\text{CH}_3 \cdot \text{O}}{\underset{\text{OH}}{\bigcirc}} \cdot \overset{\text{CH}_3}{\underset{\text{CO} \cdot \text{CH}_3 \cdot \text{C}_3\text{H}_5}{\bigcirc}} \quad \text{III.} \quad \overset{\text{CH}_3}{\underset{\text{CO} \cdot \text{CH}_3 \cdot \text{C}_3\text{H}_5}{\bigcirc}} \quad \text{III.} \quad \overset{\text{CH}_3}{\underset{\text{CO} \cdot \text{CH}_3 \cdot \text{C}_3\text{H}_5}{\bigcirc}} \quad \text{III.} \quad \overset{\text{CH}_3}{\underset{\text{CO} \cdot \text{CH}_3 \cdot \text{CH}_3 \cdot \text{CH}_3}{\bigcirc}} \quad \text{III.} \quad \overset{\text{CH}_3}{\underset{\text{CO} \cdot \text{CH}_3 \cdot \text{CH}_3 \cdot \text{CH}_3}{\bigcirc}} \quad \text{III.} \quad \overset{\text{CH}_3}{\underset{\text{CO} \cdot \text{CH}_3 \cdot \text{CH}_3}{\bigcirc}} \quad \text{CH}_3$$

- 2-Methyl-4-butyryl-phloroglucin-3-methyläther, Pseudoaspidinol C₁₂H₁₆O₄, Formel II. B. s. im vorangehenden Artikel. Nadeln (aus Ligroin). F: 116,5° (KARRER, WIDMER, Helv. 3, 395). Leicht löslich in Alkohol, sehr schwer in Wasser; in Ligroin etwas leichter löslich als Aspidinol. Gibt mit Eisenchlorid eine tief braunrote Färbung.
- 3. 2.4.6-Trioxy-1-methyl-3-isobutyryl-benzol, 2-Methyl-4-isobutyryl-phloroglucin $C_{11}H_{14}O_4$, Formel III (R = H).
- 2-Methyl-4-isobutyryl-phloroglucin-1.5-dimethyläther, Baeckeol C₁₃H₁₈O₄, Formel III (R = CH₃). Zur Konstitution vgl. Ramage, Stowe, Soc. 1940, 425; Hems, Todd, Soc. 1940, 1208; vgl. a. Penfold, Simonsen, J. Pa Soc. N. S. Wales 71 [1938], 291. V. In den äther. Olen von Baeckea frutescens L. (van Romburgh, zitiert bei C. Wehmer, Die Pflanzenstoffe, 2. Aufl. [Jena 1931], S. 839, und bei Spoelstra, R. 50 [1931], 433), Baeckea Gunniane var. latifolia F. v. M. (Penfold, J. Pr. Soc. N. S. Wales 59, 351, 354; C. 1927 II, 754) und von Baeckea crenulata und Darwinia grandiflora (P., Morrison, J. Pr. Soc. N. S. Wales 56, 87; Ber. Schimmel 1924, 186; P., J. Pr. Soc. N. S. Wales 57, 237; Ber. Schimmel 1925, 20). Gelbe Nadeln (aus Alkohol). F: 1020 (van R.), 103,5—1040 (P., J. Pr. Soc. N. S. Wales 59, 354).

7. Oxy-oxe-Verbindungen $C_{12}H_{16}O_4$.

1. 2.4.6-Trioxy-1-caproyl-benzol, 2.4.6-Trioxy-caprophenon, 2-n-Caproyl-phloroglucin, Phlorcaprophenon C₁₂H₁₆O₄ = ^{2.4.6}(HÔ)₃C₆H₂· CO· [CH₂]₄· CH₃.

B. Bei tropfenweiser Zugabe von n·Caproylchlorid zu einer mit Aluminiumchlorid versetzten Lösung von Phloroglucin in Nitrobenzol bei ca. 90° (Rosenmund, Lohfert, B. 61, 2607). Beim Einleiten von Chlorwasserstoff in eine Mischung von n·Capronitril, Phloroglucin und Zinkchlorid in Äther und Kochen des Reaktionsproduktes mit Wasser (Klarmann, Figdor, Am. Soc. 48, 804). — Krystallwasserhaltige Blättchen (aus Wasser). Schmilzt lufttrocken bei 95° (K., F.), wasserfrei bei 118° (K., F.), bei 120° (R., L.). Struktur von auf Wasser ausgebreiteten dünnen Schichten: Adam, Pr. roy. Soc. [A] 119, 631; C. 1928 II, 1647.

- 2. 2.4.6-Trioxy-1-isocaproyl-benzol, 2.4.6-Trioxy-isocaprophenon, 2-Isocaproyl-phloroglucin, Phlorisocaprophenon C₁₂H₁₄O₄ = 2.4.6 (HO)₃C₆H₂· CO· CH₂· CH₂· CH(CH₃)₂. B. Analog der vorangehenden Verbindung aus Phloroglucin und Isocapronitril (Karrer, Rosenfeld, Helv. 4, 712). Blättchen mit 1 H₂O (aus Wasser). Schmilzt wasserhaltig bei 104°, wasserfrei bei 122°. Schwer löslich in Wasser. Die wäßr. Lösung gibt mit Eisenchlorid eine braunrote Färbung. Gibt mit Kaliumnitrit und Essigsäure in Alkohol Dinitroso-phlorisocaprophenon C₁₂H₁₄O₆N₂ (gelbe Krystalle aus Alkohol; zersetzt sich bei 202°; schwer löslich in Wasser) (K., Bloch, Helv. 10, 379). Wirkt stark anthelminthisch (Staub bei K., R., Helv. 4, 710).
- 3. 3.6 Dioxy-2.5 disopropyl benzochinon (1.4), 3.6 Dioxy-2.5 disopropyl-p-chinon C₁₂H₁₆O₄, Formel I (H 400; E I 692). B. Durch Einw. von 1 Mol Disovaleryl auf 1 Mol Oxalester bei Gegenwart von 3 Mol alkoholfreiem Natriumäthylat in Äther (Kögl., Lang., B. 59, 913).

8. Oxy-oxo-Verbindungen $C_{13}H_{18}O_4$.

1. 2.4.6-Trioxy - 1-önanthoyl - benzol, 2-Önanthoyl - phloroglucin, Phlor-önanthophenon $C_{13}H_{18}O_4 = {}^{2.4.6}(HO)_3C_6H_2 \cdot CO \cdot [CH_2]_5 \cdot CH_3$. B. Analog Phlorogrophenon (S. 450) aus Phloroglucin und Önanthsäurenitril (Karrer, Rosenfeld, Helv. 4, 713). — Blättchen mit 1 H₂O (aus Wasser). Schmilzt wasserhaltig bei 98—100°, wasserfrei bei 107°.

2. 2.4.6-Trioxy-1-methyl-3-isocaproyl-benzol, 2-Methyl-4-isocaproyl-phloroglucin C₁₃H₁₈O₄, Formel II. B. Analog Phlorogrophenon (S. 450) aus 2-Methyl-phloroglucin und Isocapronitril (Karrer, Rosenfeld, Helv. 4, 716). — Krystalle (aus verd. Alkohol). F: 156° (bei 110° getrocknet).

9. Oxy-oxo-Verbindungen $C_{14}H_{20}O_4$.

- 1. 1-[2.4.6-Trioxy-phenyl]-octanon-(1), 2-Capryloyl-phloroglucin, Phlor-caprylophenon $C_{14}H_{20}O_4 = {}^{2\cdot4\cdot6}(HO)_3C_6H_2\cdot CO\cdot [CH_2]_6\cdot CH_3$. B. Analog Phloroaprophenon (S. 450) aus Phloroglucin und Caprylsäurenitril (Karrer, Rosenfeld, Helv. 4, 713). Blättchen mit 1 H_2O . Schmilzt wasserhaltig bei 106°, wasserfrei bei 124°.
- 2. 2.4.6-Trioxy-1-methyl-3-önanthoyl-benzol, 2-Methyl-4-önanthoyl-phloroglucin C₁₄H₂₀O₄, Formel III. B. Analog Phlorcaprophenon aus 2-Methyl-phloroglucin und Önanthsäurenitril (KARRER, ROSENFELD, Helv. 4, 717). Krystalle mit 1 H₂O (aus verd. Alkohol). Schmilzt wasserfrei bei 143—144°.

10. Oxy-oxo-Verbindungen $C_{15}H_{22}O_4$.

1. 1-[2.4.6-Trioxy-phenyl]-nonanon-(1), 2-Pelargonoyl-phloroglucin $C_{18}H_{22}O_4={}^{2.4.6}(HO)_3C_6H_2\cdot CO\cdot [CH_2]_7\cdot CH_3.$

Trimethyläther, 1-[2.4.6-Trimethoxy-phenyl]-nonanon-(1), 2.4.6-Trimethoxy-1-nonoyl-benzol $C_{18}H_{28}O_4=(CH_8\cdot O)_3C_6H_2\cdot CO\cdot [CH_2]_7\cdot CH_3$. B. Aus Phloroglucintrimethyläther und Pelargonsäurechlorid bei Gegenwart von Eisenchlorid in siedendem Schwefelkohlenstoff (Adam, Pr. roy. Soc. [A] 119, 642; C. 1928 II, 1647). —Krystalle (aus Petroläther). F: 34°. Struktur von auf Wasser ausgebreiteten dünnen Schichten: Adam.

2. 2.4.6 - Trioxy-1 - methyl - 3 - capryloyl - benzol, 2-Methyl-4-capryloyl-phloroglucin C₁₅H₂₂O₄, Formel IV. B. Analog Phlorcaprophenon (S. 450) aus 2-Methyl-phloroglucin und Caprylsäurenitril (KARRER, ROSENFELD, Helv. 4, 717). — iv. OH CO · [CH₃]₅ · CH₃ Blättchen mit 1 H₂O (aus verd. Alkohol). Schmilzt wasserfrei bei 135°.

3. $3-[\gamma-Methyl-\beta-butenyl]-1-isovaleryl-cyclopentanol-(4)-dion-(2.5), 3-[\gamma-\gamma-Dimethyl-allyl]-1-isovaleryl-cyclopentanol-(4)-dion-(2.5), Humulin-OC—CH-OH

säure <math>C_{15}H_{28}O_4 = C_{15}H_{28}O_4 = C_{15}H_{28}$

Zur Konstitution vgl. Wieland, B. 58, 106, 2014; Wieland, Marz, B. 59, 2352. — B. Neben anderen Produkten bei der Einw. von wäßrig-alkoholischer Natronlauge auf Humulon (S. 537),

langsam in der Kälte, rasch beim Erwärmen (Lintner, Schnell, Z. Brauw. 27 [1904], 668; C. 1904 II, 1227; Wöllmer, B. 49 [1916], 785; Wieland, B. 58, 108; vgl. a. Barth, C. 1906 II, 916; Siller, Z. Unters. Nahr.-Genuβm. 18, 269; C. 1909 II, 1173; Windisch, Kolbach, Schleicher, C. 1928 I, 428). — Nadeln und Blättchen (aus Petroläther). F: 92° (Wieland, B. 58, 108), 92,5° (unkorr.) (L., Schn.), 93° (Wöllmer). Kp₁: 130—131° (Wie., B. 58, 108). Schwer löslich in Wasser und kaltem Petroläther, leicht in Alkohol, Äther, Chloroform, Benzol und Eisessig; löslich in Alkalilaugen, Sodalösung und wäßr. Ammoniak (Wö.; Lintner, Schnell). Die alkoh. Lösung schmeckt bitter (Wö.; L., Schn.). — Bei der Ozonspaltung der Humulinsäure wird Aceton gebildet (Wie., B. 59, 2356). Gibt bei der Hydrierung bei Gegenwart von Palladium in Methanol Dihydrohumulinsäure (S. 431) (Wö.). Liefert beim Erwärmen mit Zink und konz. Salzsäure in Alkohol oder Eisessig 3-Isoamyl-1-[γ.γ-dimethyl-allyl]-cyclopentan (Wie., B. 58, 109; 59, 2354). Reagiert mit Diazomethan unter Bildung leicht zersetzlicher Produkte (Wie., B. 58, 103). — Die alkoh. Lösung färbt sich beim Eineiten von Chlorwasserstoff erst grün, dann unter Ausscheidung von Krystallen ziegelrot (L., Schn.). Die Lösungen in Alkohol (Wö.), Benzol und Äther (L., Schn.) werden durch Eisenchlorid rot gefärbt. — Das Monophenylhydrazon (?) schmilzt bei 158° (Lintner, Schnell, Z. Brauw. 27 [1904]. 668).

Monexim $C_{15}H_{25}O_4N = HO \cdot C_{15}H_{21}(:O)_2(:N \cdot OH)$. Krystalle (aus verd. Alkohol). F: 152° bis 153° (Wieland, B. 58, 108).

Monosemicarbazon $C_{16}H_{25}O_4N_3 = HO \cdot C_{15}H_{21}(:O)_2(:N \cdot NH \cdot CO \cdot NH_2)$. Nadeln (aus Alkohol). F: 175° (Zers.) (Wöllmer, B. 49 [1916], 788). Sehr schwer löslich in Wasser, leicht in Alkalien. Die alkoh. Lösung gibt mit Eisenchlorid eine dunkelblaue Färbung.

11. Oxy-oxo-Verbindungen $C_{16}H_{34}O_4$.

1-[3.4-Dimethoxy-phenyl]-decanol-(5)-on-(3), $[\beta-Oxy-n-heptyl]$ -[3.4-dimethoxy- β -phenäthyl]-keton, Methylgingerol $C_{18}H_{18}O_4=^{3\cdot4}(CH_3\cdot O)_2C_8H_2\cdot CH_3\cdot CH_2\cdot CO\cdot CH_2\cdot CH(OH)\cdot [CH_4]_4\cdot CH_3$. V. Im Ingwer (Nomura, Iwamoto, Sci. Rep. Tohoku Univ. 17, 973; C. 1929 II, 3021). — Krystalle (aus Petroläther). F: 63,5—64°. [α] $_{\rm D}^{\rm S}$: +9,0° (Alkohol; c=6,4). — Liefert bei der Destillation unter gewöhnlichem Druck n-Capronaldehyd, Zingeron-methyläther (S. 310) und Shogaol-methyläther (S. 337). Zingeron-methyläther wird auch bei der Destillation unter vermindertem Druck erhalten.

Oxim $C_{18}H_{29}O_4N = (CH_3 \cdot O)_2C_6H_3 \cdot CH_2 \cdot CH_2 \cdot C(:N \cdot OH) \cdot CH_2 \cdot CH(OH) \cdot [CH_2]_4 \cdot CH_3$. Krystalle (aus Ather + Petrolather). F: 85,5—86,5° (NOMURA, IWAMOTO, Sci. Rep. Tohoku Univ. 17, 977; C. 1929 II, 3021).

12. Oxy-oxo-Verbindungen C₁₇H₂₆O₄.

3.6-Dioxy-2-n-undecyl-benzochinon-(1.4), Embelin, Embeliasāure C₁₇H₂₆O₄, s. nebenstehende Formel. Zur Zusammensetzung und Konstitution vgl. Asano, Yamaguti, J. pharm. Scc. Japan 60, 34; C. 1940 I, 3119; vgl. a. Hasan, Stedman, Scc. 1981, 2113; Nargund, Bhide, J. indian chem. Soc. 8, 238; C. 1981 II, 2621.—
V. In den Beeren von Embelia Ribes Burm. (Scott, Z. öst. Apoth.

V. In den Beeren von Embelia Ribes Burm. (SCOTT, Z. öst. Apoth...
Verein 1888, 241; WARDEN, Pharm. J. 18 [1888], 601; 19 [1888], 305; Heffter, Feuerstein, Ar. 238 [1900], 16); Isolierung erfolgt durch Extraktion der getrockneten Beeren mit Chloroform (Wa.), Äther (He., F.) oder Benzol (Kaul, Ray, Dutt, J. indian chem. Soc. 6 [1929], 580; C. 1930 I, 395). — Orangerote Blätter (aus Alkohol) oder gelbe Tafeln (durch Sublimation) (He., F.), goldgelbe, metallglänzende Flitter (aus Xylol) oder gelbe, lösungsmittelhaltige Nadeln (aus Alkohol oder Ligroin) (K., R., D.); orangefarbene Tafeln (aus Chloroform) (Hasan, Stedman). F: 143° (Ha., St.), 142° (He., F.; K., R., D.), 139—140° (Warden); sublimiert unterhalb des Schmelzpunktes (He., F.). Unlöslich in Wasser (He., F.; K., R., D.); sehr schwer löslich in Ligroin, in der Kälte ziemlich schwer löslich, bei Siedetemperatur leicht löslich in anderen Lösungsmitteln (He., F.). Löst sich in verdünnten wäßrigen Alkalilaugen und Alkalicarbonat-Lösungen allmählich mit violetter Farbe (Ha., St., Soc. 1931, 2122); überschüssiges Alkali bewirkt Fällung der Alkalisalze (He., F.; Heyl, Kneip, Apoth.-Ztg. 28 [1913], 699). Die Lösung mit verd. Ammoniak ist hellrot (Heyl, Kn.). Löst sich in warmer konzentrierter Schwefelsäure mit rotvioletter Farbe (He., F.).

Alkalische Lösungen von Embelin oxydieren sich an der Luft (Kaul, Ray, Dutt, J. indian chem. Soc. 6, 580; C. 1930 I, 395). Embelin gibt bei der Oxydation mit Permanganat in alkal. Lösung je nach den Bedingungen Laurinsäure und Ameisensäure und geringe Mengen anderer Produkte (Heffter, Feuerstein, Ar. 238 [1900], 22) oder unreine Laurinsäure (?) und Oxalsäure (K., R., D., J. indian chem. Soc. 6, 586; 8, 235; C. 1930 I, 395; 1931 II, 2620); bei 20-stdg. Erhitzen mit Salpetersäure (D: 1,5) auf dem Wasserbad bilden sich Laurinsäure, Oxalsäure und geringe Mengen Malonsäure (K., R., D., J. indian chem. Soc. 8, 235). Embelin liefert beim

Kochen mit Zinkstaub und Salzsäure Dihydroembelin (E II 6, 1123) (H., F., Ar. 228, 22), beim Kochen mit Zinkstaub und Acetanhydrid Dihydroembelin-tetraacetat (K., R., D., J. indian chem. Soc. 6, 585). Gibt mit Brom in Tetrachlorkohlenstoff, zuletzt auf dem Wasserbad, Tetrabromembelin (KAUL, RAY, DUTT, J. indian chem. Soc. 6, 585). Gibt mit Hydroxylamin je nach den Bedingungen Embelindioxim (s. u.) oder "Embelintetroxim" (s. u.) (K., R., D., J. indian chem. Soc. 6, 582). Versuche zur Darstellung von Äthern: Hefffer, Feuerstein, Ar. 228, 22; K., R., D., J. indian chem. Soc. 6, 581. Gibt mit Methylamin in siedendem Eisesig Embelin-mono-methylimid (s. u.) und reagiert analog mit Anilin und o-Toluidin (H., F., Ar. 228, 19, 22); beim Kochen mit 33% iger methylakhoholischer Methylamin- oder Äthylamin-Lösung oder mit unverdünntem Anilin oder o-Toluidin erhielten Kaul, Ray, Dutt (J. indian chem. Soc. 6, 581) Embelin-bis-methylimid bzw. die analogen Verbindungen.

Physiologisches Verhalten: Heffter, Feuerstein, Ar. 288, 27; Paranjpé, Gorhalé, Arch. int. Pharmacod. 42 [1932], 227. Über Anwendung des Ammoniumsalzes gegen Bandwürmer vgl. Warden bei H., F., Ar. 288, 16; Hagers Handbuch der pharmazeutischen Praxis, Bd. I [Berlin 1925], S. 1194. — Embelin ist ein schwacher Beizenfarbstoff (H., F., Ar. 288, 18).

Nachweis in Embeliafrüchten durch Mikrosublimation: Heyl, Kneip, Apoth.-Ztg. 28 [1913], 699. Das Dibenzoat schmilzt bei 97—98° (Heffter, Feuerstein, Ar. 238 [1900], 21; Kaul, Ray, Dutt, J. indian chem. Soc. 6 [1929], 581), das Bis-phenylhydrazon bei 189—190° (Zers.) (Kaul, R., D.). Fällungsreaktionen mit Schwermetallsalzen: Heffter, F., Ar. 238, 18; Heyl, Kn.; Kaul, R., D., J. indian chem. Soc. 6, 580.

Ammoniumsalz. Rote Krystalle (Warden, *Pharm. J.* 19 [1888], 305). Gibt das Ammoniak bei Wasserbadtemperatur vollständig ab (Hefffer, Feuerstein, *Ar.* 238 [1900], 18). — Die Alkalisalze bilden violette Tafeln oder Nadeln (H., F., *Ar.* 238, 17). — Silbersalz Ag₂C₁₇H₂₄O₄. Schwarzbraunes Pulver (H., F., *Ar.* 238, 19). — Bleisalz. Krystalle (Kaul, Ray, Dutt, *J. indian chem. Soc.* 6, 580).

"Embelintetroxim" $C_{17}H_{20}O_4N_4$ (?). B. Beim Kochen von Embelin oder Embelindioxim (s. u.) mit Hydroxylaminhydrochlorid und Natriumacetat in Alkohol (Kaul, Ray, Dutt, J. indian chem. Soc. 6 [1929], 582; C. 1930 I, 395). — Nadeln (aus Alkohol). F: 175°. In organischen Lösungsmitteln leichter löslich als Embelindioxim. Bildet mit Alkalilaugen intensiv orangegelbe Lösungen. Die alkoh. Lösung gibt mit Kupferacetat, Silbernitrat, Bleiacetat und Eisenchlorid intensiv gefärbte Niederschläge.

Embelindiacetat, Diacetylembelin $C_{21}H_{30}O_6 = CH_3 \cdot [CH_2]_{10} \cdot C_6HO_2(O \cdot CO \cdot CH_3)_3$. B. Durch Einw. von Acetylchlorid auf das Bleisalz des Embelins in siedendem Benzol (KAUL, RAY, DUTT, J. indian chem. Soc. 6 [1929], 580; C. 1930 I, 395). — Gelbe Nadeln (aus verd. Alkohol). F: 54° .

Dicarbāthoxyembelin $C_{23}H_{34}O_8 = CH_3 \cdot [CH_2]_{10} \cdot C_8HO_2(O \cdot CO_2 \cdot C_2H_5)_2$. B. Beim Erwärmen von Embelin mit Chlorameisensäureäthylester in Pyridin (Kaul, Ray, Dutt, J. indian chem. Soc. 6 [1929], 581; C. 1930 I, 395). — Farblose Nadeln (aus Benzol). F: 266° (Zers.). Leicht hydrolysierbar.

Embelin-mono-methylimid, Methylaminoembeliasäure $C_{18}H_{29}O_3N=CH_3\cdot[CH_2]_{10}\cdot C_4H(OH)_2(:O)(:N\cdot CH_3)$. B. Aus Embelin und Methylamin in siedendem Eisessig (Heffter, Feuerstein, Ar. 238 [1900], 21). — Kupferrote Blättchen. F: 166,5°; sublimiert unterhalb des Schmelzpunktes.

Embelin-bis-methylimid $C_{19}H_{22}O_2N_2 = CH_3 \cdot [CH_2]_{10} \cdot C_6H(OH)_2(:N \cdot CH_3)_2$. B. Aus Embelin und überschüssigem Methylamin in siedendem Methanol (KAUL, RAY, DUTT, J. indian chem. Soc. 6, 582; C. 1930 I, 395). — Blaue, kupferglänzende Nadeln (aus Alkohol). F: 216°.

Embelin - bis - Athylimid $C_{21}H_{36}O_2N_2 = CH_3 \cdot [CH_2]_{10} \cdot C_4H(OH)_2(:N \cdot C_2H_5)_2$. B. Analog der vorangehenden Verbindung (Kaul, Ray, Dutt, J. indian chem. Soc. 6, 582; C. 1980 I, 395). — Dunkelgrüne Nadeln (aus Alkohol). F: 212°.

Embelindioxim $C_{17}H_{28}O_4N_2 = CH_3 \cdot [CH_2]_{10} \cdot C_6H(OH)_8(:N\cdot OH)_2$. B. Bei 1-stdg. Erhitzen von Embelin mit 0,8 Tln. Hydroxylaminhydrochlorid in Pyridin (Kaul, Ray, Dutr, J. indian chem. Soc. 6 [1929], 582; C. 1930 I, 395). — Blaßgelbe Nadeln (aus Eisessig). F: 278°. Löst sich in den meisten organischen Lösungsmitteln sowie in Alkalilaugen mit gelber Farbe. Gibt in alkoh. Lösung mit Kupferacetat dunkelgrüne, mit Silbernitrat braungelbe, mit Bleiacetat hellgelbe und mit Eisenchlorid rotbraune Niederschläge. — Liefert bei weiterer Behandlung mit Hydroxylamin "Embelintetroxim" (s. o.). Gibt mit Anilin "Dianilinoembelindioxim" (s. bei Embelindianil, Syst. Nr. 1604).

Embelindihydrazon $C_{17}H_{36}O_{3}N_{4}=CH_{8}\cdot[CH_{8}]_{10}\cdot C_{6}H(OH)_{2}(:N\cdot NH_{2})_{2}$. Gelbe Nadeln (aus Pyridin). F: 204—205° (KAUL, RAY, DUTT, J. indian chem. Soc. 6 [1929], 583; C. 1980 I, 395).

Embelindisemicarbazon $C_{19}H_{39}O_4N_6 = CH_3 \cdot [CH_2]_{10} \cdot C_6H(OH)_2(:N \cdot NH \cdot CO \cdot NH_2)_2$. Hellbraune Nadeln (aus verd. Alkohol). F: 236° (Zers.) (Kaul, Ray, Dutt, *J. indian chem. Soc.* 6 [1929], 583; C. 1930 I, 395).

Tetrabromembelin C₁₇H₂₂O₄Br₄ = (HO)₂C₁₇H₂₀Br₄(:O)₂. B. Bei der Einw. von überschüssigem Brom auf Embelin in Tetrachlorkohlenstoff, zuletzt auf dem Wasserbad (KAUL, RAY, DUTT, J. indian chem. Soc. 6 [1929], 585; C. 1980 I, 395). — Farblose Prismen (aus Alkohol). F. 1320. Ziemlich leicht löslich in den meisten organischen Lösungsmitteln und in verd. Alkalilaugen. - Wird durch konz. Alkalilaugen rasch zersetzt,

12. Oxy-exo-Verbindungen C18H28O4.

1-[2.4.6-Trimethoxy-phenyl]-dodecanon-(1), 2.4.6-Trimethoxy-1-lauroyl-benzol, Lauroyl-phloroglucin-trimethyläther $C_{31}H_{34}O_4={}^{2\cdot4\cdot6}(CH_3\cdot O)_3C_4H_3\cdot CO\cdot [CH_2]_{10}\cdot CH_3$. B. Beim Kock n von Phloroglucintrimethyläther mit Laurinsäurechlorid und Eisenchlorid in Schwefelkohlenstoff (Adam, Pr. roy. Soc. [A] 119, 642; C. 1928 II, 1647). — Krystalle (aus Petroläther). F: 40°. Struktur von auf Wasser ausgebreiteten dünnen Schichten: ADAM.

14. Oxy-oxe-Verbindungen C₂₁H₂₄O₄.

2.4.6-Trioxy-3.5-diisoamyl-1-isovaleryl-benzol, 2.4.6-Trioxy-3.5-diiso-2.4.5-1710xy-3.5-att80-a wart von Palladium(II)-chlorid in Methanol (Wo., B. 58, 675). — Nur in Lösung erhalten. Die methylalkoholische Lösung liefert beim Schütteln mit Sauerstoff in Gegenwart von Bleiacetat das Bleisalz des Tetrahydrohumulons (6. 535) und harzige Produkte (Wö.). — Das Tribenzoat schmilzt bei 164-165° (Wö.).

15, Oxy-oxo-Verbindungen C₂₂H₃₆O₄.

1-[2.4.6-Trimethoxy-phenyi]- hexadecanon-(1), 2.4.6-Trimethoxy-1-paimitoyi-benzoi, Palmitoyi-phioroglucin-trimethyäther $C_{25}H_{42}O_4={}^{2.4.6}(CH_3\cdot O)_3C_6H_3\cdot CO\cdot [CH_2]_{14}\cdot CH_3$. B. Beim Kochen von Phloroglucintrimethyläther mit Palmitoylchlorid und Eisenchlorid in Schwefel-kohlenstof (ADAM, Pr. roy. Soc. [A] 119, 642; C. 1928 II, 1647). — Krystalle (aus Petroläther). F: 54,5°. Struktur von auf Wasser ausgebreiteten dünnen Schichten: ADAM.

16. Oxy-oxo-Verbindungen C24H40O4.

1-[2.4.6-Trioxy-phenyl]-octadecanon-(1), 2-Stearoyl-phloroglucin, Phlorstearophenon $C_{24}H_{40}O_4={}^{2.4\cdot6}(HO)_3C_6H_2\cdot CO\cdot [CH_2]_{16}\cdot CH_3$. B. Beim Einleiten von Chlorwasserstoff in eine äther. Lösung von Phloroglucin und Stearinsäurenitril in Gegenwart von Zinkchlorid und Kochen des Reaktionsproduktes mit Wasser (KARRER, ROSENFELD, Helv. 4, 714). — Gelbliches Pulver (aus Benzol), Krystalle mit 1 H₂O (aus Wasser). F: 126° bis 127° (K., R.). Leicht löslich in Alkohol, Äther, Essigester, warmem Benzol und warmem Ligroin (K., R.). Die wäßrig-alkoholische Lösung wird durch Eisenchlorid braunrot gefärbt (K., R.). Struktur von auf Wasser ausgebreiteten dünnen Schichten: ADAM, Pr. roy. Scc. [A] 119, 631; C. 1928 II, 1647.

Trimethyläther, 1-[2.4.6-Trimethoxy-phenyi]-octadecanon-(1), 2.4.6-Trimethoxy-1-stearoyi-benzol $C_{27}H_{46}O_4=(CH_3\cdot O)_3C_6H_2\cdot CO\cdot [CH_2]_{16}\cdot CH_3$. B. Beim Kochen von Phloroglucintrimethyläther mit Stearinsäurechlorid und Eisenchlorid in Schwefelkohlenstoff (ADAM, Pr. roy. Soc. [A] 119, 641; C. 1928 II, 1647). — Krystalle (aus Petroläther). F: 67°. Struktur von auf Wasser ausgebreiteten dünnen Schichten: ADAM. [BARMANN]

d) Oxy-oxo-Verbindungen $C_n H_{2n-10} O_4$.

J. Oxy-oxo-Verbindungen C,H4O4.

5-Methoxy-2-diacetoxymethyl-benzochinon-(1.4) $C_{12}H_{12}O_7$, s. nebenstehende Formel. B. Beim allmählichen Eintragen eines Gemisches aus absol. Salpetersäure und Acetanhydrid in eine Lösung von 2.4.5-Trimethoxy-benzaldehyd in Acetanhydrid und etwas konz. Schwefelsäure bei —15° (VAN ALPHEN, R. 47, 174). — Hellgelbe Krystalle (aus verd. Alkohol). F: 145°. Etwas löslich in Wasser.

$$\mathbf{CH_8 \cdot O \cdot \bigodot_{O}^{O} \cdot \mathbf{CH(O \cdot CO \cdot CH_8)_8}}$$

2. Oxy-oxo-Verbindungen C,H,O4.

- 1. 3.4-Dioxy-1-[a. β -dioxo-äthyl]-benzol, 3.4-Dioxy-phenylglyoxal $C_0H_0O_4=3.4(HO)_2C_0H_3\cdot CO\cdot CHO$.
- 3.4 Diacetoxy ω diazo acetophenon $C_{18}H_{10}O_5N_2=(CH_3\cdot CO\cdot O)_2C_6H_3\cdot CO\cdot CH:N:N.$ B. Bei allmählicher Zugabe einer eiskalten ätherischen Lösung von Diacetylprotocatechusäurechlorid zu einer äther. Diazomethan-Lösung bei -5° (Bradley, Sohwarzenbach, Soc. 1928, 2908). Gelbe Prismen (aus Benzol + Petroläther). F: 76 77°. Leicht löslich in den meisten organischen Lösungsmitteln außer Petroläther. Zersetzt sich bei $103-105^{\circ}$ unter Abspaltung von Stickstoff. Bei Zusatz von wenig Natronlauge zu der kalten alkoholischen Lösung tritt erst eine orangerote Färbung, dann ein flockiger Niederschlag auf. Beim Einleiten von Chlorwasserstoff in die äther. Suspension entsteht ω -Chlor-3.4-diacetoxy-acetophenon. Beim Erwärmen mit Eisessig auf 65—70° und folgenden Kochen erhält man 3.4. ω -Triacetoxy-acetophenon (S. 447).
- 2. 2.4-Dioxy-1.3-diformyl-benzol, 2.4-Dioxy-isophthalaldehyd, Resorcin-dialdehyd-(2.4) C₈H₄O₄, s. nebenstehende Formel (H 402). Zur Konstitution vgl. Baker, Kirby, Montgomery, Soc. 1982, 2877. B. Neben 2.4-Dioxy-benzaldehyd beim Erhitzen von Resorcin mit N.N-Diphenyl-formamidin auf 130° und Hydrolyse des entstandenen 4.6-Dioxy-isophthalaldehyddianils mit siedender Natronlauge (Shoesmith, Haldane, Soc. 128, 2706; 125, 2407). Gibt mit pararosanilinschwefliger Säure gelbe, bei hohem Schwefeldioxydgehalt rote Niederschläge (Sh., Sosson, Hetherington, Soc. 1927, 2222).

3. Oxy-oxo-Verbindungen $C_9H_8O_4$.

- 1. 3.4.5 Trioxy zimtaldehyd C₉H₈O₄ = (HO)₃C₆H₂· CH: CH· CHO. СН: СН ⋅ СНО
- 4-Oxy-3.5-dimethoxy-zimtaldehyd, Dimethylpyrogallyl-CH3.O.CH8 acrolein C11H12O4, s. nebenstehende Formel. B. Beim Kochen von 3.5-Dimethoxy-4-methoxymethoxy-zimtaldehyd mit 50%iger Essigssäure und etwas Schwefelsäure (PAULY, STRASSBERGER, B. 62, 2281). Gelbliche Nadeln (aus Benzol). F: 108°; die Schmelze ist orangegelb. Löslich mit gelber Farbe in Alkohol und Essigester, ziemlich schwer löslich in Wasser und heißem Benzol, sohwer in Äther und Benzin. Löslich in konz. Mineralsäuren mit blutroter Farbe; beim Verdünnen mit Wasser wird die Lösung in Salpetersäure entfärbt; die Lösungen in Salzsäure und Schwefelsäure geben blaue Niederschläge. Die Lösung in Natronlauge ist orange. Gibt mit Eisenchlorid eine tief braunrote Färbung. Färbt die Haut ziegelrot. KC11H11O4. Dunkelgelbe Nadeln. Leicht löslich in Wasser, löslich in Alkohol.
- 3.5-Dimethoxy-4-methoxymethoxy-zimtaldehyd $C_{13}H_{16}O_5 = CH_3 \cdot O \cdot CH_2 \cdot O \cdot C_6H_2(O \cdot CH_3)_2 \cdot CH : CH \cdot CHO$. B. Aus 3.5-Dimethoxy-4-methoxymethoxy-benzaldehyd und Acetaldehyd in schwach alkalischer wäßrig-methylalkoholischer Lösung bei 80° (Pauly, Strassberger, B. 62, 2280). Blättchen (aus Benzol). F: 102° . Kp₃: 190° (unter teilweiser Verharzung). Leicht löslich in Alkohol und Benzol, schwer in heißem Wasser und Äther, unlöslich in Petroläther. Zersetzt sich beim Aufbewahren an der Luft unter Abspaltung von Formaldehyd.
- 4-0xy-3.5-dimethoxy-zimtaldehyd-semicarbazon $C_{12}H_{15}O_4N_3=HO\cdot C_6H_3(O\cdot CH_3)_2\cdot CH$: $CH\cdot CH: N\cdot NH\cdot CO\cdot NH_2$. Gelbe Nadeln (aus Methanol). F: 211° (unter Rotfärbung) (Pauly, Strassberger, B. 62, 2282). Leicht löslich in Alkohol und heißem Wasser, löslich in Äther, Chloroform und Benzin.
- 3.5 Dimethoxy 4 methoxymethoxy zimtaldehyd semicarbazon $C_{14}H_{19}O_5N_8 = CH_3 \cdot O \cdot CH_2 \cdot O \cdot C_6H_2(O \cdot CH_3)_2 \cdot CH : CH \cdot CH : N \cdot NH \cdot CO \cdot NH_2$. Citronengelbe Nadeln (aus 50% igem Alkohol). F: 202° (PAULY, STRASSBERGER, B. 62, 2281). Leicht löslich in Alkohol, Chloroform und Aceton, schwer in Benzol, unlöslich in Äther und Petroläthers
- 2. 2.4 Dioxy ω formyl acetophenon bzw. 2.4 Dioxy ω oxymethylenacetophenon $C_9H_8O_4={}^{2.4}(HO)_1C_9H_3\cdot CO\cdot CH_2\cdot CHO$ bzw. ${}^{2.4}(HO)_2C_9H_3\cdot CO\cdot CH\cdot CH\cdot OH.$
- 2.4-Dimethoxy- ω -oxymethylen-acetophenon, ω -Oxymethylen-resacetophenon-dimethyläther $C_{11}H_{12}O_4=(CH_3\cdot O)_2C_6H_3\cdot CO\cdot CH:CH\cdot OH$ bzw. desmotrope Form. B. Aus Resacetophenondimethyläther, Ameisensäureäthylester und Natriummethylat in Methanol + Äther (Pratt, Robertson, Robinson, Soc. 1927, 1981). Kupfersalz $Cu(C_{11}H_{11}O_4)_2$. Hellgrüne Prismen (aus Toluol). F: 190°.
- 3. 3.4 Dioxy ω formyl acetophenon bzw. 3.4 Dioxy ω oxymethylenacetophenon $C_9H_8O_4={}^{3\cdot4}(HO)_2C_6H_3\cdot CO\cdot CH_2\cdot CHO$ bzw. ${}^{3\cdot4}(HO)_2C_6H_3\cdot CO\cdot CH\cdot CH\cdot OH$.

- 3.4-Dimethoxy- ω -exymethylen-acetophenon, ω -Oxymethylen-acetoveration $C_{11}H_{12}O_4=(CH_3\cdot O)_2C_8H_3\cdot CO\cdot CH:CH\cdot OH$ bzw. desmotrope Form. B. Aus Acetoveratron, Ameisensäure-äthylester und Natriummethylat in Methanol + Äther (Pratt, Robertson, Robinson, Soc. 1927, 1981). Kupfersalz $Cu(C_{11}H_{11}O_4)_2$. Hellgrüne Nadeln (aus Toluol). Sintert bei 180° und zersetzt sich bei 188°.
- 4. 4. ω Dioxy ω formyl acetophenon bzw. 4. ω Dioxy ω oxymethylenacetophenon $C_9H_8O_4=HO\cdot C_4H_4\cdot CO\cdot CH(OH)\cdot CHO$ bzw. $HO\cdot C_4H_4\cdot CO\cdot C(OH)\cdot CH\cdot OH$.
- 4. ω -Dimethoxy- ω -oxymethylen-acetophenon, [β -Oxy- α -methoxy-vinyl]-[4-methoxy-phenyl]-keton $C_{11}H_{12}O_4=CH_3\cdot O\cdot C_4H_4\cdot CO\cdot C(O\cdot CH_3):CH\cdot OH$ bzw. desmotrope Form. B. Aus 4. ω -Dimethoxy-acetophenon, Ameisensäureäthylester und festern Natriumäthylat in absol. Ather unter Kühlung (Malkin, Robinson, Soc. 127, 1194). Öl. Gibt mit Eisen(III)-chlorid in alkoh. Lösung eine purpurbraune Färbung. Kupfersalz $Cu(C_{11}H_{11}O_4)_2$. Hellgrüne Nadeln (aus Toluol). Sintert bei 163° und schmilzt bei 170°.
- 5. 4.6 Dioxy-2-methyl-isophthalaldehyd oder 2.6-Dioxy-4-methyl-isophthalaldehyd, α -Orcindialdehyd $C_0H_1O_4=(HO)_2C_4H(CH_2)(CHO)_2$ (H 403). Gibt mit pararosanilinschwefliger Säure gelbe, bei hohem Schwefeldioxydgehalt rote Niederschläge (Shoesmith, Sosson, Hetherington, Soc. 1927, 2222).

4. Oxy-oxo-Verbindungen $C_{10}H_{10}O_4$.

- 1. 1 [2.4 Dioxy phenyl] butandion (1.3), 2.4 Dioxy benzoylaceton $C_{10}H_{10}O_4={}^{2.4}(HO)_2C_4H_3\cdot CO\cdot CH_2\cdot CO\cdot CH_3.$
- 2.4 Diäthoxy benzoylaceton, 2.4 Diäthoxy ω -acetyl acetophenon $C_{14}H_{18}O_4=(C_8H_5\cdot O)_2C_6H_3\cdot CO\cdot CH_3\cdot CO\cdot CH_3$ (H 404). Ultraviolett Absorptionsspektrum in alkoh. Lösung: Tasaki, Acta phytoch. 8, 299, 300; C. 1927 II, 1949.
- 2. 1-[2.5-Dioxy-phenyl]-butandion-(1.3), 2.5-Dioxy-benzoylaceton $C_{10}H_{10}O_4 = {}^{3.5}(HO)_2C_6H_3 \cdot CO \cdot CH_2 \cdot CO \cdot CH_3$.
- 2.5 Diäthoxy benzoylaceton, 2.5 Diäthoxy ω acetyl acetophenon $C_{14}H_{18}O_4=(C_2H_5\cdot O)_1C_6H_3\cdot CO\cdot CH_2\cdot CO\cdot CH_3\cdot (H~404)$. F: 58—59° (Tasaki, *Acta phytoch.* 3, 299, 300; C. 1927 II, 1949). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: T.
- 3. 1 [3.4 Dioxy phenyl] butandion (1.3), 3.4 Dioxy benzoylaceton $C_{10}H_{10}O_4 = {}^{3.4}(HO)_2C_6H_3 \cdot CO \cdot CH_2 \cdot CO \cdot CH_3$.
- 3.4-Dimethoxy-benzoylaceton, 3.4-Dimethoxy- ω -acetyl-acetophenon $C_{13}H_{14}O_4=(CH_3\cdot O)_2C_6H_3\cdot CO\cdot CH_2\cdot CO\cdot CH_3$. B. Aus 3.4-Dimethoxy-acetophenon, Essigester und Natrium auf dem Wasserbad (Tasaki, Acta phytoch. 8, 299; C. 1927 II, 1949). Nadeln (aus Alkohol). F: 71° bis 72°. Ultraviolett-Absorptionsspektrum in alkoh. Lösung: T.
- 4. 2.4-Dioxy-1.3-diacetyl-benzol, 2.4-Diacetyl-resorcin C₁₀H₁₀O₄, Formel I. B. Beim Kochen von 7-Oxy-2-methyl-8-acetyl-chromon mit Natriumäthylat-Lösung (Wittig, A. 446, 185). Nadeln (aus Methanol). F: 88—89°. Leicht löslich in Benzol, Eisessig und Äther, löslich in Alkohol, unlöslich in Ligroin.

- 5. 4.6 Dioxy-1.3 diacetyl benzol, 4.6 Diacetyl resorcin, 4.6 Diacetoresorcin, Resodiacetophenon $C_{10}H_{10}O_4$, Formel II (H 404; E I 694). B. Aus Resorcindiacetat beim Erwärmen mit Aluminiumchlorid in Nitrobenzol auf dem Wasserbad (Wittig, A. 446, 184) oder beim Erhitzen mit Zinkchlorid auf 130° (Klarmann, Am. 806, 48, 2365). F: 182° (K.).
- 4.6-Diacetyl-resorcin-monomethyläther $C_{11}H_{12}O_4 \stackrel{\cdot}{=} CH_3 \cdot O \cdot C_6H_2(OH)(CO \cdot CH_3)_2$ (H 405). B. Aus Resorcin-dimethyläther und 2 Mol Acetylchlorid in Schwefelkohlenstoff bei Gegenwart von Aluminiumehlorid, neben dem Dimethyläther (s. u.) (MAUTHNER, J. pr. [2] 119, 313). Krystalle (aus Alkohol). F: 121—122°. Löslich in Alkalilaugen.
- 4.6-Diacetyl-resorcin-dimethyläther $C_{12}H_{14}O_4=(CH_3\cdot O)_2C_6H_2(CO\cdot CH_3)_3$ (H 405). B. s. im vorangehenden Artikel. Krystalle (aus Alkohol). F: 171—172° (MAUTHNER, J. pr. [2] 119, 313). Unlöstich in Alkalilaugen.
- 4.6-Diacetyl-resorcin-monoäthyläther $C_{12}H_{14}O_4=C_2H_5\cdot O\cdot C_6H_2(OH)(CO\cdot CH_3)_2$ (H 405). B. Aus Resorcin-diathyläther und 2 Mol Acetylchlorid bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (MAUTHNER, J, pr. [2] 119, 314). Krystalle (aus Ligroin). F: 109°. Löslich in Alkalilaugen.

blaue Färbung.

4.6-Diacetyl-resorcin-dimethyläther-dioxim $C_{13}H_{16}O_4N_3=(CH_3\cdot O)_2C_4H_2[C(:N\cdot OH)\cdot CH_3]_3$ (H 406). Krystalle (aus Alkohol). F: 255—256° (MAUTHNER, J. pr. [2] 119, 313).

5. Oxy-exe-Verbindungen $C_{11}H_{12}O_4$.

1. 1-[3.4.5-Trioxy-phenyl]-penten-(4)-on-(1), $\gamma-Butenyl-[3.4.5-trioxy-phenyl]-keton$ $C_{11}H_{12}O_4$, s. nebenstehende Formel. B. Bei mehrstündigem Kochen von α -Allyl- α -[triacetyl-galloyl]-acetessigsäureäthylester mit wäßrig-alkoholischer Kalilauge im Wasserstoffstrom (Helferich, Keiner, B. 57, 1618). — Prismen mit $1 H_2O$ (aus Wasser). F: $84-85^\circ$. Gibt das Krystallwasser über P_2O_5 bei 78° ab und schmilzt dann nach vorangehendem Sintern bei 130° . Leicht löslich in Alkohol, Äther, Eisessig, Essigester und Aceton, sohwer in Petroläther, Ligroin, Chloroform, Tetrachlorkohlenstoff und Benzol. Gibt mit Eisen(III)-chlorid eine dunkel-

1-[3.4.5-Trimethoxy-phenyl]-penten-(4)-on-(1), γ -Butenyl-[3.4.5-trimethoxy-phenyl]-keton $C_{14}H_{18}O_4=(CH_2\cdot O)_2C_6H_2\cdot CO\cdot CH_2\cdot CH_2\cdot CH:CH_2$. B. Bei mehrstündigem Kochen von α -Allyl- α -[trimethyl-galloyl]-acetessigsäureäthylester mit wäßrig-alkoholischer Kalilauge (Helferich, Keiner, B. 57, 1618). In sehr geringer Menge bei der Methylierung von γ -Butenyl-[3.4.5-trioxy-phenyl]-keton mit Diazomethan (H., K., B. 57, 1620). — Prismen (aus Äther + Petroläther). F: 54—55°. Kp₁₄: 195—196°. Leicht löslich in Alkohol, Äther und Eisessig, sehr schwer in Ligroin.

 γ -Butenyl-[3.4.5-trioxy-phenyl]-keton-semicarbazon $C_{12}H_{16}O_4N_5 = (HO)_3C_4H_2 \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3$. Krystalle (aus Wasser). F: 174—175° (Helferich, Keiner, B. 57, 1620).

 γ -Butenyl-[3.4.5-trimethoxy-phenyl]-keton-semicarbazon $C_{15}H_{21}O_4N_3=(CH_3\cdot O)_3C_6H_3\cdot C(:N\cdot NH\cdot CO\cdot NH_3)\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH$

- 2. 1-[2.4-Dioxy-phenyl]-pentandion-(1.3), 2.4-Dioxy- ω -propionylacetophenon $C_{11}H_{12}O_4={}^{2a4}(HO)_2C_6H_3\cdot CO\cdot CH_2\cdot CO\cdot C_2H_5.$
- 2.4 Diäthoxy- ω propionyl acetophenon $C_{15}H_{20}O_4=(C_2H_5\cdot O)_2C_6H_3\cdot CO\cdot CH_2\cdot CO\cdot C_2H_5$ (H 407). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: Tasaki, Acta phytoch. **3**, 301, 303; C. 1927 II, 1949.
- 3. 1-[2.5-Dioxy-phenyl]-pentandion-(1.3), 2.5-Dioxy- ω -propionylacetophenon $C_{11}H_{11}O_4={}^{2.5}(HO)_2C_6H_3\cdot CO\cdot CH_1\cdot CO\cdot C_2H_5.$
- 2.5-Diäthoxy- ω -propionyl-acetophenon $C_{18}H_{20}O_4=(C_2H_5\cdot O)_2C_6H_3\cdot CO\cdot CH_2\cdot CO\cdot CH_2\cdot CH_8$ (H 407). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: Tasaki, *Acta phytoch.* 3, 302; C. 1927 II, 1949.

6. Oxy-oxo-Verbindungen $C_{12}H_{14}O_4$.

1. 2.4-Dioxy-1.3-dipropionyl-benzol, 2.4-Dipropionyl-resorcin $C_{12}H_{14}O_4$, Formel I. B. Aus 7-Oxy-2.3-dimethyl-8-propionyl-chromon oder aus " $\alpha.\beta.\alpha'.\beta'$ -Tetramethyl-[benzo-1.6; 3.2-di- γ -pyron]" (Formel II; Syst. Nr. 2766) beim Kochen mit überschüssiger Natriumäthylat-Lösung (Wittig, B. 59, 118). — Nadeln (aus Methanol). F: 82°. Schwer löslich in Benzin, leicht in den meisten anderen Lösungsmitteln.

2. 4.6-Dioxy-1.3-dipropionyl-benzol, 4.6-Dipropionyl-resorcin C₁₂H₁₄O₄. Formel III. B. Beim Erhitzen von Resorcindipropionat mit Zinkchlorid auf 130° (WITTIG, B. 59, 117; KLARMANN, Am. Soc. 48, 2365). — Nadeln (aus Alkohol). F: 125° (Kl.), 125—126° (W.). Löslich in Eisessig, Aceton und Benzol, schwer löslich in Alkohol (W.). — Liefert beim Erhitzen mit Acetanhydrid und Natriumacetat auf 170°, α.β.α΄.β΄-Tetramethyl-[benzo-1.6; 3.4-di-γ-pyron]" (Formel IV auf S. 458; Syst. Nr. 2766); reagiert analog mit Benzoesäureanhydrid und Natriumbenzoat (W.).

OXY-OXO-VERBINDUNGEN C_nH_{2n-10}O₄ UND C_nH_{2n-12}O₄ [Syst. Nr. 799

7. Oxy-exe-Verbindungen $C_{14}H_{18}O_4$.

4.6-Dioxy-1.3-dibutyryl-benzol, 4.6-Dibutyryl-resorcin C₁₄H₁₈O₄, Formel V. B. Beim Erhitzen von Resorcindibutyrat mit Zinkchlorid auf 130° (KLARMANN, Am. Soc. 48, 2365). — F: 64—65°.

$$1V. \xrightarrow{CH_3 \cdot C} \xrightarrow{CO} \xrightarrow{CO} \xrightarrow{C \cdot CH_3} V. \xrightarrow{HO} \xrightarrow{CO \cdot CH_3 \cdot C_2H_5} VI. \xrightarrow{HO} \xrightarrow{CO \cdot [CH_2]_4 \cdot CH_3}$$

8. Oxy-oxo-Verbindungen C18H26O4.

4.6-Dioxy-1.3-dicaproyl-benzol, 4.6-Dicaproyl-resorcin C₁₈H₂₆O_c, Formel VI. B. Beim Erhitzen von Resorcindicapronat mit Zinkchlorid auf 130° (Klarmann, Am. Soc. 48, 2365). — Kp₈: 215—220°.

e) Oxy-oxo-Verbindungen $C_nH_{2n-12}O_4$.

1. Oxy-oxo-Verbindungen C.H.O.

- 1. 1.6.7-Trioxy-3-oxo-inden, 1.6.7-Trioxy-inden-(1)-on-(3) $C_9H_6O_4=(HO)_9C_6H_2 < CO > CH$ ist desmotrop mit 4.5-Dioxy-indandion-(1.3), s. u.
- 6.7-Dimethoxy-1-phenoxy-inden-(1)-on-(3), 4.5-Dimethoxy-1-phenoxy-inden-(1)-on-(3), 4.5-Dimethoxy-β-phenoxy-inden C₁₇H₁₄O₄, s. nebenstehende Formel. B. Aus
 2.3-Dimethoxy-β-phenoxy-zimtsäure beim Erwärmen mit Phosphor- CH₃·O· C₃H₅
 pentachlorid in Benzol und Versetzen der abgekühlten Lösung mit CH₃·O· O·C₃H₅
 Aluminiumchlorid oder, in geringerer Menge, beim Behandeln mit konz. Schwefelsäure (Ruhemann, B. 53, 279). Blättchen (aus Alkohol). F: 199—200°. Sehr schwer löslich in siedendem Alkohol, schwer löslich in Benzol und Äther. Löst sich in konz. Schwefelsäure mit schwach gelber Farbe. Liefert beim Kochen mit rauchender Jodwasserstoffsäure 4.5-Dioxy-indandion-(1.3) (s. u.) und Phenol.
- 2. 5.6-Dioxy-1.2-dioxo-hydrinden, 5.6-Dioxy-indandion-(1.2) $C_0H_0O_4=(HO)_0C_0H_0<\frac{CH_2}{CO}>CO$.
- 5.6-Dimethoxy-1-oxo-2-oximino-hydrinden, 5.6-Dimethoxy-2-oximino-hydrindon-(1) $C_{11}H_{11}O_4N$, Formel I (H 409; E I 695). Liefert bei der Einw. von Benzolsulfochlorid in 8% iger Natronlauge, zuletzt bei 80°, 4.5-Dimethoxy-2-carboxy-phenylacetonitril (Syst. Nr. 1163) (Edwards, Soc. 1926, 817).

I.
$$\begin{array}{c} CH_3 \cdot O \\ CH_3 \cdot O \end{array}$$
 $\begin{array}{c} CH_3 \cdot O \\ CH_3 \cdot O \end{array}$
 $\begin{array}{c} CH_3 \cdot O \\ CH_3 \cdot O \end{array}$
 $\begin{array}{c} CH_3 \cdot O \\ CH_3 \cdot O \end{array}$
 $\begin{array}{c} CH_3 \cdot O \\ CH_3 \cdot O \end{array}$
 $\begin{array}{c} CH_3 \cdot O \\ CH_3 \cdot O \end{array}$
 $\begin{array}{c} CH_3 \cdot O \\ CH_3 \cdot O \end{array}$

- 3. 6.7-Dioxy-1.2-dioxo hydrinden, 6.7-Dioxy-indandion -(1.2) $C_0H_6O_4 = (HO)_1C_6H_2 < \frac{CH}{CO} > CO$.
- 4-Brom-6.7-dimethoxy-1-oxo-2-oximino-hydrinden, 4-Brom-6.7-dimethoxy-2-oximino-hydrindon-(1) C₁₁H₁₀O₄NBr, Formel II. B. Durch Einw. von Methylnitrit auf eine Lösung von 4-Brom-6.7-dimethoxy-hydrindon-(1) in Methanol und konz. Salzsäure (Haworth, Korffli, Perkin, Soc. 1927, 550). Gelbliche Prismen (aus Alkohol). F: 236° (Zers.). Liefert bei der Einw. von p-Toluolsulfochlorid in verd. Natronlauge, zuletzt bei 80°, 6-Brom-3.4-dimethoxy-2-carboxy-phenylacetonitril (Syst. Nr. 1163).
- 4. 4.5-Dioxy-1.3-dioxo-hydrinden, 4.5-Dioxy-indandion-(1.3) bzw. 1.6.7-Trioxy-3-oxo-inden, 1.6.7-Trioxy-inden-(1)-on-(3) C₅H₆O₄, Formel III bzw. desmorope Form. B. Beim Ko hen von 6.7-Dimethoxy-1-phenoxy-inden-(1)-on-(3) (s. o.) mit rauchender Jodwasserstoffsäure (Ruhemann, B. 53, 280). Nadeln (aus Wasser). F: 277—278° (Zers.). Leicht löslich in Alkohol, schwer in siedendem Wasser. Löst sich in Alkalilaugen und Alkalicarbonat-Lösungen. Die wäßr. Lösung gibt mit Eisen(III)-chlorid eine rotviolette Färbung. Silbersalz. Wird beim Aufbewahren sowie beim Erwärmen schwarz.

2. Oxy-oxo-Verbindungen $C_{10}H_8O_4$.

1. 5.8 - Dioxy- 2.3 - dihydro - naphthochinon - (1.4), Leukonaphthazarin, Hydronaphthazarin $C_{10}H_{\rm s}O_{\rm d}$, s. nebenstehende Formel, s. É II 6, 1126.

HO CH. ĊH₂

2.3-Dichlor-5.8-dioxy-2.3-dihydro-naphthochinon-(1.4), Naphthazarin-

dichlorid $C_{10}H_6O_4Cl_2 = (HO)_8C_6H_2$ $CO \cdot CHCl$ $CO \cdot CHCl$ (H 410; E I 695). Gibt mit Acetanhydrid in

Gegenwart von etwas konz. Schwefelsäure das Diacetat (s. u.) (ZAHN, OCHWAT, A. 462, 87).

Als 2.3-Dichlor-5.8-dioxy-2.3-dihydro-naphthochinon-(1.4) formulierten Wheeler, Carson (Am. Soc. 49, 2828) eine Verbindung vom Schmelzpunkt 220°, die sie bei der Chlorierung eines x-Tetraoxy-naphthalins (E II 6, 1127) in Chloroform unter Eiskühlung erhielten.

2.3-Dichlor-5.8-diacetoxy-2.3-dihydro-naphthochinon-(1.4), Diacetat des Naphthazarin-CO-CHCI dichlorids $C_{14}H_{10}O_6Cl_2 = (CH_3 \cdot CO \cdot O)_2C_6H_2 \underbrace{CO \cdot CHCl}_{CO \cdot CHCl}$. B. Durch Sättigen einer Suspension von

5.8-Diacetoxy-naphthochinon-(1.4) in Eisessig mit Chlor in der Kälte und längeres Aufbewahren des Reaktionsgemisches bei Zimmertemperatur (ZAHN, OCHWAT, A. 462, 87). Durch Behandeln von 2.3-Dichlor-5.8-dioxy-2.3-dihydro-naphthochinon-(1.4) mit Acetanhydrid und wenig konz. Schwefelsäure in der Kälte (Z., O.). — Blättchen (aus Benzol + Petroläther). F: 136—137°. Leicht löslich in Benzol, Alkohol und Eisessig, schwer in Benzin. — Beim Zufügen des gleichen Volumens Wasser zu der Lösung in siedendem Alkohol erhält man 2-Chlor-5.8-diacetoxynaphthochinon-(1.4) (S. 464).

- 2. 4.5 Dioxy 2.3 dioxo 1 methyl hydrinden, 4.5 Dioxy 1 methylindandion (2.3) $C_{10}H_8O_4 = (HO)_1C_4H_2 CH(CH_3) CO$.
- 7- Brom 4.5- dimethoxy-3 oxo 2 oximino 1 methylhydrinden, 4-Brom-6.7-dimethoxy-2-oximino-3-methyl-hydrindon-(1) C₁₂H₁₂O₄NBr, s. nebenstehende Formel. B. Beim Sättigen einer Lösung von 4-Brom-6.7-dimethoxy-3-methyl-hydrindon-(1) in methylalkoholischer Salzsaure mit Methylnitrit bei 35° (Koepfli, Perkin, Soc. 1928, 2998). — Gelbliche Prismen (aus Alkohol). F: 217° (Zers.). Schwer löslich in Alkohol.

- 3. 5.6 Dioxy 2.3 dioxo 1 methyl hydrinden, 5.6 Dioxy 1 methylindandion (2.3) $C_{10}H_8O_4=(HO)_2C_6H_2$ CO.
- 5.6-Dimethoxy-3-oxo-2-oximino-1-methy l-hydrinden, $CH_8 \cdot O \cdot$ 5.6 - Dimethoxy - 2 - oximino - 3 - methyl - hydrindon - (1) $_{\text{CH}_3 \cdot \text{O}}$. $_{\text{Cl}_1\text{H}_{13}\text{O}_4\text{N}}$, s. nebenstehende Formel. B. Bei der Einw. von Methylnitrit auf 5.6-Dimethoxy-3-methyl-hydrindon-(1) in alkoh. Salzsaure (Koepfli, Perkin, Scc. 1928, 2997). — Citronengelbe Prismen (aus Methanol). F: 225—226° (Zers.).
- 4. 4.5 Dioxy-2 formyl hydrindon (1) bzw. 4.5 Dioxy-2 oxymethylenhydrindon-(1) $C_{10}H_{\bullet}O_{4} = (HO)_{\bullet}C_{6}H_{\bullet} < \stackrel{CH_{2}}{CO} > CH \cdot CHO$ bzw. $(HO)_{\bullet}C_{\bullet}H_{\bullet} < \stackrel{CH_{2}}{CO} > C : CH \cdot OH$.
- 4.5 Dimethoxy-2-oxymethylen-hydrindon-(1) $C_{13}H_{12}O_4$, s. nebenstehende Formel bzw. desmotrope Form. B. Beim Be handeln von 4.5-Dimethoxy-hydrindon-(1) mit Äthylformiat und CH₃·O· trockenem Natriumäthylat in absol. Ather (RUHEMANN, B. 53, 281). — Nadeln (aus verd. Alkohol). F: 135—1360 (unter Rotfärbung). Färbt sich beim Trocknen auf dem Wasserbad gelblich. Löst sich in Natronlauge, Sodalösung und Ammoniak mit rotvioletter Farbe. Die Lösung in Alkohol gibt mit Eisen(III)-chlorid eine dunkelgrüne Färbung. — Reduziert ammoniakalische Silbernitrat-Lösung beim Erwärmen. Liefert beim Erhitzen auf 160° 2.2'-Methenyl-bis-[4.5-dimethoxy-hydrindon-(1)] (S. 592). -Kupfersalz Cu(C₁₂H₁₁O₄)₂. Grünlichgelbe Nadeln (aus Alkohol). Schwer löslich in Alkohol.

3. Oxy-oxo-Verbindungen $C_{11}H_{10}O_4$.

1. 4.5 (oder 5.6) - Dioxy -2.2-dimethyl-indandion-(1.3), 3.4(oder 4.5)-Dimethylmalonyl- I. brenzcatechin, Brenzcatechindimethylindandion $C_{11}H_{10}O_4$, Formel I oder II. B. Durch gelindes Erwärmen von Brenzeatechin-dimethyläther mit Dimethylmalonylchlorid in Schwefelkohlenstoff bei Gegenwart

но

460

von Aluminiumchlorid, neben dem Monomethyläther (s. u.) und dem Dimethyläther (s. u.) (Fleischer, A. 422, 262). — Blättchen (aus Alkohol). F: 297°. Leicht löslich in konz. Schwefelsäure mit hellgelber Farbe. Die alkal. Lösung fluoresciert braun.

Monomethyläther, Guajacoldimethylindandion $C_{12}H_{12}O_4 = (CH_3 \cdot O)(HO)C_6H_1 < CO < C(CH_3)_2$. B. s. im vorangehenden Artikel. — Krystalle (aus verd. Alkohol). F: 192° (FLEISCHEB, A. 422, 262). Leicht löslich in kaltem Alkohol, Eisessig und Chloroform und in heißem Benzol und Toluol, schwer in Ligroin und Wasser. Löslich in konz. Schwefelsäure mit hellgelber Farbe. Die verdünnte alkalische Lösung fluoresciert schwach gelb.

Dimethyläther, Veratroldimethylindandion $C_{13}H_{14}O_4 = (CH_3 \cdot O)_2C_6H_2 < CO > C(CH_3)_2$.

B. s. o. bei 3.4(oder 4.5)-Dimethylmalonyl-brenzcatechin. — Fäden (aus Alkohol). F: 228° (FLEISCHER, A. 422, 261). — Liefert beim Kochen mit Jodwasserstoffsäure (D: 1,72) 3.4(oder 4.5)-Dimethylmalonyl-brenzcatechin.

Methyläther-acetat $C_{14}H_{14}O_5 = (CH_3 \cdot 0)(CH_3 \cdot CO \cdot 0)C_4H_2 < \begin{array}{c} CO \\ CO \\ \end{array} > C(CH_3)_2$. B. Durch Kochen des Monomethyläthers (s. o.) mit Acetanhydrid und wenig konz. Schwefelsäure (FLEISCHER, A. 422, 263). — Nadeln (aus Alkohol). F: 176—177°. Leicht löslich in Äther, Benzol, Toluol, Chloroform und in heißem Alkohol und Ligroin, schwer in Petroläther.

Diacetat $C_{15}H_{14}O_6 = (CH_3 \cdot CO \cdot O)_2C_6H_2 \stackrel{CO}{CO} C(CH_3)_2$. B. Durch Kochen von 3.4 (oder 4.5)-Dimethylmalonyl-brenzcatechin mit Acetanhydrid und wenig konz. Schwefelsäure (FLEISCHER, A. 422, 264). — Nadeln. F: 152°. Leicht löslich in Äther, Benzol, Toluol, Chloroform und in heißem Alkohol und Ligroin, schwer in Petroläther.

- 2. 4.7-Dioxy-2.2-dimethyl-indandion-(1.3), $2.\dot{3}$ -Dimethyl-malonyl-hydrochinon $C_{11}H_{10}O_4$, s. nebenstehende Formel.
- 4 0xy 7 methoxy 2.2 dimethyl indandion (1.3) $C_{12}H_{12}O_4 = (CH_3 \cdot O)(HO)C_4H_2 < CO < C(CH_3)_2$. B. In geringer Menge neben 4.7-Dimethoxy 2.2-dimethyl-indandion (1.3) and enderen Produkten durch

methoxy-2.2-dimethyl-indandion-(1.3) und anderen Produkten durch Erwärmen von Hydrochinon-dimethyläther mit Dimethylmalonylchlorid bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (Fleischer, A. 422, 239, 260 Anm. 2). — F: 132° bis 134°. Löslich in Ligroin. Löst sich in konz. Schwefelsäure mit bräunlichgrüner Farbe. Zeigt in alkal. Lösung starke Fluorescenz.

4.7- Dimethoxy-2.2- dimethyl-indandion-(1.3) $C_{13}H_{14}O_4 = (CH_3 \cdot O)_2C_6H_2 < CO > C(CH_2)_2$.

B. s. im vorangehenden Artikel. — F: 170—171° (FLEISCHER, A. 422, 259). Löslich in siedendem Wasser. Löslich in konz. Schwefelsäure mit bräunlichgrüner Farbe.

4. Oxy-oxo-Verbindungen C₁₂H₁₂O₄.

- 1. 1-[2.4-Dioxy-phenyl]-hexen-(1)-dion-(3.5), [2.4-Dioxy-cinnamoyl]-aceton $C_{12}H_{12}O_4={}^{2.4}(HO)_2C_4H_3\cdot CH\cdot CO\cdot CH_3\cdot CO\cdot CH_3\cdot CO\cdot CH_3$.
- [2.4 Bis carbomethoxyoxy cinnamoyl] aceton $C_{10}H_{16}O_8 = (CH_2 \cdot O_2C \cdot O)_2C_0H_2 \cdot CH : CH \cdot CO \cdot CH_2 \cdot CO \cdot CH_3$. B. Durch Erhitzen von $\alpha \cdot [2.4 \cdot Bis$ carbomethoxyoxy cinnamoyl]-acetessigsäureäthylester mit Wasser unter Druck (Lampe, Mitarb., Roczniki Chem. 9, 454; C. 1929 II, 1916). Gelbliche Nadeln (aus Alkohol). F: 110—112°. Die Lösung in konz. Schwefelsäure ist orangegelb und fluoresciert rötlich. Gibt mit Eisenchlorid in alkoh. Lösung eine dunkelrote Färbung. Kupfersalz Cu($C_{10}H_{15}O_9)_2 + H_8O$. Grüne Nadeln (aus Chloroform + Alkohol). F: 205—207°.
- 2. 1-[2.5-Dioxy-phenyl] hexen-(1) dion-(3.5), [2.5-Dioxy-cinnamoyl]-aceton $C_{12}H_{12}O_4=\frac{2.5}{3}(HO)_2C_4H_3\cdot CH\cdot CO\cdot CH_2\cdot CO\cdot CH_3$.
- [2.5-Bis-carbomethoxyoxy-cinnamoyl]-aceton $C_{1e}H_{1e}O_{3}=(CH_{2}\cdot O_{2}C\cdot O)_{2}C_{e}H_{2}\cdot CH\cdot CH\cdot CO\cdot CH_{2}\cdot CO\cdot CH_{3}$. B. Beim Erhitzen von α -[2.5-Bis-carbomethoxyoxy-cinnamoyl]-acetessig-saureathylester mit Wasser im Autoklaven (Lampe, Mitarb., Roczniki Chem. 9, 457; C. 1929 II, 1916). Gelbe Krystalle (aus Alkohol). F: 108—110°.

f) Oxy-oxo-Verbindungen $C_nH_{2n-14}O_4$.

1. Oxy-oxo-Verbindungen C10H2O4.

1. 2.3 - Dioxy - naphthochinon - (1.4) bzw.
3.4-Dioxy-naphthochinon-(1.2) C₁₀H₄O₄, Formel I bzw. II, Isonaphthazarin (H 411). Zur Konstitution vgl. Firser, Am. Soc. 50, 454. —
F: 282° (F., Am. Soc. 50, 461). Normal-Redoxpotential in 0,1 n-wäßrig-alkoholischer Salzsäure (50% Alkohol) bei 25° in Gegenwart von Lithiumchlorid: 0,282 V (F., Am. Soc. 50, 454). — Die oxydierende Wirkung ist gering (DIMBOTH, HILCKEN, B. 54, 3054).

2 - 0xy-3 - methoxy-naphthochinon-(1.4), Isonaphthazarin-monomethyläther $C_{11}H_6O_4 = C_6H_4 \subset_{CO \cdot \overset{\circ}{C} \cdot OH}$. B. Bei der Einw. von 1% iger Natronlauge auf Isonaphthazarindimethyläther auf dem Wasserbad (FIESER, Am. Soc. 50, 461). — Gelbe Nadeln (aus Wasser oder Ligroin

äther auf dem Wasserbad (FIESER, Am. Soc. 50, 461). — Gelbe Nadeln (aus Wasser oder Ligroin + Benzol). F: 152°. Leicht löslich in siedendem Wasser. Löslich in NaHSO₃-Lösung. Normal-Redoxpotential in 0,1 n-wäßrig-alkoholischer Salzsäure (50% Alkohol) bei 25° in Gegenwart von Lithiumchlorid: 0,329 V (F., Am. Soc. 50, 454). — Wird beim längeren Kochen mit Alkalien nicht verseift.

2.3 - Dimethoxy - naphthochinon - (1.4), Isonaphthazarin - dimethyläther $C_{12}H_{10}O_4 = C_{0}\cdot C \cdot C \cdot C \cdot C \cdot C_{13}$. B. Bei der Einw. von Diazomethan auf Isonaphthazarin in Äther (FIESER, Am. Soc. 50, 461). — Gelbe Nadeln (aus Äther). F: 115°. Leicht löslich in Alkohol und Ligroin, sehr leicht in Äther und Benzol, unlöslich in Wasser und NaHSO₃-Lösung. Normal-Redoxpotential in 0,1 n-wäßrig-alkoholischer Salzsäure (50% Alkohol) bei 25° in Gegenwart von Lithiumchlorid: 0,387 V (F., Am. Soc. 50, 454). — Liefert beim Erwärmen mit 1% iger Natronlauge 2-Oxy-3-methoxy-naphthochinon-(1.4).

2.3 - Diphenoxy - α - naphthochinon - (1.4), Isonaphthazarin - diphenyläther C₂₂H₁₄O₄ = C₀·C·O·C₄H₅. B. Aus 2.3-Dichlor-naphthochinon-(1.4) beim Erhitzen mit Kalium-phenolat auf 100° (ULIMANN, ETTISCH, B. 54, 267). — Orangegelbe oder rote Nadeln (aus Xylol). F: 204° (korr.) (CONANT, FIESER, Am. Soc. 46, 1868), 205° (U., E.). Unlöslich in Wasser und Alkohol, schwer löslich in siedendem Benzol, löslich in siedendem Chlorbenzol und Xylol, leicht löslich in Nitrobenzol und Eisessig; die Lösungen sind orangegelb (U., E.). Gibt mit konz. Schwefelsäure eine braune Färbung (U., E.). Normal-Redoxpotential in 0,5—1 n-alkoh. Salzsäure bei 25°: 0,453 V (C., F., Am. Soc. 46, 1867). — Gibt mit Na₂S₂O₄ eine gelbe Küpe.

2-0xy-3-[2-nitro-phenylmercapto] - naphthochinon-(1.4) $C_{16}H_9O_5NS = C_6H_4\cdot NO_2$. B. Durch Umsetzung von 3-Chlor-2-arylamino(oder acylamino)-naphthochinonen-(1.4) mit 2-Nitro-thiophenol und folgendes Erwärmen mit Alkalilaugen (AGFA, D.R.P. 421326; C. 1926 I, 1718; Frdl. 15, 438). — Orangerotes Krystallpulver. F: 245°. Die Lösungen in konz. Schwefelsäure und in Alkalilaugen sind orangegelb. — Liefert bei der Reduktion mit Na₂S₂O₄ in verd. Natronlauge und nachfolgenden Oxydation mit Luft 1-Oxy-3.4-benzophenthiazon-(2)(?) (Syst. Nr. 4300). — Natriumsalz. Gelb.

2 - 0xy - 3 - [4 - chlor - 2 - nitro - phenylmercapto] - naphthochinon - (1.4) $C_{16}H_8O_5NSCl = C_6H_4Cl\cdot NO_2$. B. Analog der vorangehenden Verbindung (AGFA, D.R.P. 421 326; C. 1926 I, 1718; Frdl. 15, 438). — Braungelbes Pulver. F: 210°.

,,iso- α -naphthalinsulfon-oxy- α -naphthochinon" $C_{20}H_{12}O_{5}S=C_{6}H_{4}$ $CO \cdot C \cdot SO_{2} \cdot C_{10}H_{7}$ (?) s. E II 6, 1095.

2.3 - Bis - [2 - nitro - phenylmercapto] - naphthochinon-(1.4) $C_{22}H_{12}O_6N_2S_2 = C_6H_4\cdot NO_3$. $C_6H_4\cdot CO\cdot C\cdot S\cdot C_6H_4\cdot NO_3$. $C_6H_4\cdot CO\cdot C\cdot S\cdot C_6H_4\cdot NO_3$. $C_6H_4\cdot NO_3$. C

chlorid in Eisessig bei Zimmertemperatur 1.4 - Dioxy - 2.3 - bis - [2 - nitro - phenyl - mercapto]-

naphthalin; beim Kochen mit Zinn(II)-chlorid in Eisessig entsteht die Verbindung der nebenstehenden Formel (Syst. Nr. 4635). Beim Kochen mit Anilin erhält man 3-Anilino-2-[2-nitro-phenylmercapto]-naphthochinon-(1.4) und 2.2'-Dinitro-diphenyldisulfid.

N S

- 2. 2.6 Dioxy naphthochinon (1.4) bzw. 4.6 Dioxy naphthochinon (1.2) $C_{10}H_6O_4$, Formel I bzw. II (E I 698). Löst sich leicht in Natriumacetat-Lösung und Alkalien und wird aus alkal. Lösungen nur durch überschüssige Essigsäure wieder ausgefällt (FIESER, Am.Soc. 50, 461). Normal-Redoxpotential in wäßrig-alkoholischer Salzsäure (50% Alkohol) bei 25° in Gegenwart von Lithiumchlorid: 0,303 V (F., Am.Soc. 50, 444).
 - 3. 2.5 (oder 2.8)-Dioxy-naphthochinon-(1.4) $C_{10}H_{\bullet}O_{\bullet}$, Formel III oder IV (X = H).

3-Chlor-2.5 (oder 2.8)-dioxy-naphthochinon-(1.4) $C_{10}H_5O_4Cl$, Formel III oder IV (X = Cl). B. Aus 2.3-Dichlor-juglon beim Kochen mit wäßrig-alkoholischer Natronlauge oder beim Behandeln mit Natriumäthylat in Benzol (Wheeler, Dawson, McEwen, Am. Soc. 45, 1973). — Goldbraune Nadeln (aus verd. Alkohol). F: 191°. Färbt sich im feuchten Zustand rot. Sehr leicht löslich in Alkohol, schwer in Ligroin. Die tiefrote wäßrige Lösung wird bei Zusatz von Säure gelb; beim Neutralisieren kehrt die rote Färbung zurück.

Diacetat $C_{14}H_9O_6Cl = CH_3 \cdot CO \cdot O \cdot C_6H_3 \cdot CO \cdot CO \cdot C\bar{O} \cdot CH_3$. B. Beim Kochen von 3-Chlor-

2.5 (oder 2.8)-dioxy-naphthochinon-(1.4) mit Acetanhydrid (Wheeler, Dawson, McEwen, Am. Soc. 45, 1973). — Gelbe Nadeln (aus Alkohol). F: 147°.

3-Brom-2.5(oder 2.8)-dioxy-nanhthochinon-(1.4) C₁₀H₅O₄Br, Formel III oder IV (X = Br). B. Durch Einw. von wäßrig-alkoholischer Natronlauge auf 2.3-Dibrom-juglon (Wheeler, Naiman, Am. Soc. 44, 2333). — Gelbe Nadeln (aus Chloroform), rote Nadeln mit 1 H₂O (aus verd. Alkohol), die bei ca. 80° in die gelbe Form übergehen. F: 192°. Sehr leicht löslich in Äther, leicht in Alkohol und Chloroform; die alkoh. Lösung ist tiefrot.

4. 5.6 - Dioxy - naphthochinon - (1.4), o · Naphthazarin C₁₀H₄O₄, s. nebenstehende Formel. B. Durch Erwärmen von 5-Nitro-6-oxy-naphthochinon-(1.4) mit Zinn(II) - chlorid in konz. Salzsäure und Behandeln des Reaktionsproduktes mit Eisen(III) - chlorid in Wasser (DIMROTH, Roos, A. 456, 186). — Dunkelrote Nadeln mit grünlichem Oberflächenglanz. F: 201°

bis 202° (D., R.). Sehr leicht löslich in Aceton, leicht in Alkohol, löslich in Chloroform und Benzol, unlöslich in Ligroin (D., R.). Die anfangs blaue Lösung in Natronlauge wird nach kurzer Zeit grün, bei Luftzutritt schmutzigbraun (D., R.). Die Lösung in konz. Schwefelsäure ist schmutzigviolett und zersetzt sich beim Aufbewahren (D., R.). Die kirschrote Lösung in Acetanhydrid färbt sich auf Zusatz von Pyroboracetat-Lösung braungelb, bei nachfolgendem gelindem Erwärmen violett, beim Kochen unter Zersetzung rot (D., R., A. 456, 190). Normal-Redoxpotential in 0,1 n-Salzsäure (50% Alkohol) bei 25° in Gegenwart von Lithiumchlorid: 0,427 V (Fieser, Am. Soc. 51, 3105). — Liefert beim Behandeln mit Mangandioxyd und konz. Schwefelsäure 5.6.8-Trioxy-naphthochinon-(1.4) (D., R., A. 456, 191). Beim Erwärmen mit Zinn(II)-chlorid in verd. Salzsäure erhält man 1.2.5.8-Tetraoxy-naphthalin, beim Behandeln mit Zinkstaub und Acetanhydrid 1.2.5.8-Tetracetoxy-naphthalin (E II 6, 1125) (D., R., A. 456, 187). Beim Behandeln mit Acetanhydrid und Pyridin in der Kälte entsteht 5-Oxy-6-acetoxy-naphthochinon-(1.4); kocht man kurz mit Acetanhydrid, so bildet sich 6-Oxy-5-acetoxy-naphthochinon-(1.4) (D., R., A. 456, 188); bei etwas längerem Kochen und Aufbewahren des Reaktionsgemisches bei Zimmertemperatur erhält man geringe Mengen des Diacetats (D., R., A. 456, 189). — Pyridinsalz s. Syst. Nr. 3051.

6 - Oxy - 5 - acetoxy - naphthochinon - (1.4) C₁₂H₈O₅, Formel V. B. Durch kurzes Kochen von 5.6-Dioxy-naphthochinon-(1.4) mit Acetanhydrid (Dmkoth, Roos, A. 456, 188). Aus 5-Oxy -6-acetoxy - naphthochinon - (1.4) (S. 463) beim Aufbewahren oder kurzen Erwärmen in Eis-

$$V. \xrightarrow[CH_3\cdot CO\cdot O]{\overset{\circ}{0}} Vi. \xrightarrow[CH_3\cdot CO\cdot O]{\overset{\circ}{0}} \xrightarrow[HO]{\overset{\circ}{0}}$$

essig (D., R., A. 456, 188). Beim Kochen von 5.6-Diacetoxy-naphthochinon-(1.4) mit Wasser (D., R., A. 456, 190). — Dunkelrote Nadeln (aus Wasser). Schmilzt unter Zersetzung zwischen 155°

und 160°. Löslich in organischen Lösungsmitteln mit braunroter Farbe. Zeigt stärker sauren Charakter als 5-Oxy-6-acetoxy-naphthochinon-(1.4). Die Lösung in Acetanhydrid wird bei Zusatz von Pyroboracetat braungelb.

5-0xv-6-acetoxy-naphthochinon-(1.4) C₁₂H₆O₆, Formel VI. B. Aus 5.6-Dioxy-naphthochinon-(1.4) durch Behandeln mit Acetanhydrid in kaltem Pyridin (Dimform, Roos, A. 456, 188). — Dunkelrote Krystalle. F: 140—145° (Zers.). Löslich in organischen Lösungsmitteln mit bläulichroter Farbe. Die blaurote Lösung in Acetanhydrid wird durch Pyroboracetat beim Aufbewahren oder Erwärmen tiefblau, beim Kochen rot gefärbt. Ist schwächer sauer als 6-Oxy-5-acetoxy-naphthochinon-(1.4). — Beim Aufbewahren oder Erwärmen der Lösung in Eisessig erhält man 6-Oxy-5-acetoxy-naphthochinon-(1.4) (S. 462).

5.6-Diacetoxy-naphthochinon-(1.4) $C_{16}H_{10}O_6 = (CH_3 \cdot CO \cdot O)_2C_6H_3 \stackrel{CO \cdot CH}{\leftarrow} CO \cdot \stackrel{\parallel}{C}H$. B. Ent-

steht in geringer Menge beim Kochen von 5.6-Dioxy-naphthochinon-(1.4) mit Acetanhydrid und längeren Aufbewahren des Reaktionsgemisches bei Zimmertemperatur (DIMROTH, ROOS, A. 456, 189). — Gelbe Krystalle (aus Benzol). Schmilzt unter Zersetzung bei ca. 152°. — Beim Kochen mit Wasser entsteht 6-Oxy-5-acetoxy-naphthochinon-(1.4) (S. 462).

5. 5.8-Dioxy-naphthochinon-(1.4), Naphthazarin C₁₀H₆O₄, s. nebenstehende Formel (H 412; E I 698). B. Aus 1.4.5.8-Tetraoxy-naphthalin beim Behandeln mit Bromwasser oder Eisenchlorid oder bei der Einw. von Luft auf die Lösung in Natronlauge (ZAHN, OCHWAT, A. 462, 82). Durch Behandeln von 2.3-Dichlor-1.4.5.8-tetraoxo-1.2.3.4.5.8-hexahydro-naphthalin mit Kaliumjodid bei 0° oder mit schwefliger Säure bei Zimmertemperatur (Z., O., A. 462, 88). Zur Bildung aus 1.5-Dinitro-naphthalin nach Bayer & Co. (D.R.P. 71386, 77330; Frdl. 8, 271; 4, 346; H 412) vgl. FIESER, Am. Soc. 50, 459; CHARRIER, TOCCO, G. 53, 434. Entsteht aus 1.4.5.8-Tetranitronaphthalin bei der Reduktion mit Zinn und Salzsäure und Behandlung des Reaktionsprodukts mit Natronlauge und mit Salzsäure (Dімкотн, Ruck, A. 446, 129). Beim Eintragen eines Gemisches aus Maleinsäureanhydrid und Hydrochinon in eine Schmelze aus Aluminiumchlorid und Natriumchlorid bei 180° und nachfolgenden Erhitzen auf 200—220° (Z., O., A. 462, 81). — Aus Pyridin krystallisieren rotbraune durchsichtige Nadeln, die bei etwa 90° opak werden und eine grüne Oberflächenfarbe annehmen (Pfeiffer, B. 60, 114). Absorptionsspektrum in Alkohol: Majima, Kuroda, Acta phytoch. 1, 63; C. 1922 III, 677. Normal-Redoxpotential in 0,1 n-Salzsäure (50% Alkohol) bei 25° in Gegenwart von Lithiumchlorid: 0,361 V (Fieser, Am. Soc. 50, 444). — Liefert beim Behandeln mit Bleitetraacetat in kaltem Eisessig Naphthodichinon-(1.4;5.8) (Z., O., A. 462, 86). Oxydierende Wirkung: DIMROTH, HILOKEN, B. 54, 3054. Bei der Reduktion mit Zinkstaub und verd. Schwefelsäure bei Gegenwart von Äther bei Zimmertemperatur oder mit Na₂S₂O₄ in verd. Essigeäure bei etwa 10° erhält man 1.4.5.8-Tetraoxy-naphthalin (Z., O.). Gibt mit 2 bzw. 4 Mol Brom in siedendem Eisessig 2.3-Dibrom-naphthazarin vom Schmelzpunkt 2580 oder 2.3.6.7-Tetrabrom-naphthazarin; beim Erhitzen oder längeren Aufbewahren mit überschüssigem Brom in Eisessig erhält man 2.3.6.7-Tetrabrom-naphthodichinon-(1.4; 5.8) (WHEELER, Carson, Am. Soc. 49, 2827). Bei der Einw. von Pyroboracetat in Acetanhydrid bei 50-60° färbt sich die orangerote Lösung blaurot mit rotgelber Fluorescenz und scheidet beim Abkühlen den Bis-diacetylborsäureester des Naphthazarins aus (DIMROTH, RUCK, A. 446, 123, 127). Naphthazarin kondensiert sich mit Methylamin in Wasser bei 50—60° in Gegenwart von Zinkstaub zu einem blaugrünen, in Gegenwart von Borsäure zu einem roten Farbstoff (I. G. Farbenind., D.R.P. 488625; C. 1930 I, 2636; Frdl. 16, 846). Liefert beim Erwärmen mit Phenylhydrazin in Eisessig auf dem Wasserbad 8-Benzolazo-1.4.5-trioxy-naphthalin (Syst. Nr. 2131) (CHARRIER, Tocco, G. 58, 435).

 $SnCl_2(C_{10}H_4O_4)_2$. B. Aus Naphthazarin und Zinn(IV)-chlorid in trockenem Benzol auf dem Wasserbad (Preiffer, B. 60, 113). Braunrotes Krystallpulver. Löst sich in Pyridin mit braunroter Farbe. Wird durch siedendes Wasser unter Abscheidung von Naphthazarin zersetzt.

5.8 - Diacetoxy - naphthochinon - (1.4), Naphthazarindiacetat C₁₄H₁₀O₆ = (CH₃·CO·O)₂C₆H₂ CO·CH (H 413; E I 699). Hellgelbe Prismen (aus Chloroform). F: 192—193° (ZAHN, OCHWAT, A. 482, 82). — Liefert bei der Reduktion mit Na₂S₂O₄ in 50% iger Essigsäure

(ZAHN, OCHWAT, A. 462, 82). — Liefert bei der Reduktion mit Na₂S₂O₄ in 50%iger Essigsäure oder mit Zinn(II)-chlorid und Salzsäure 1.4-Dioxy-5.8-diacetoxy-naphthalin (Е II 6, 1127) (Z., O., A. 462, 84). Gibt bei längerem Behandeln mit Acetanhydrid und konz. Schwefelsäure unter Eiskühlung 1.2.4.5.8-Pentaacetoxy-naphthalin (Е II 6, 1152) (DIMBOTH, ROOS, A. 456, 191). Liefert beim Behandeln mit Chlor in kaltem Eisessig und nachfolgenden Aufbewahren bei Zimmertemperatur 2.3-Dichlor-5.8-diacetoxy-2.3-dihydro-naphthochinon-(1.4) (S. 459) (Z., O., A. 462, 87).

Bis-diacety/borsaureester des Naphthazarins $C_{18}H_{16}O_{12}B_2 =$

- [(CH₈·CO·O)₂B·O]₂C₆H₈CO·CH B. Aus Naphthazarin und Pyroboracetat in Acetanhydrid beim Erwärmen auf 50—60° (DIMBOTH, RUCK, A. 446, 127). Ziegelrote Prismen mit grünlichem Metallglanz.
- 2-Chlor-5.8-dioxy-naphthochinon-(1.4), Chlornaphthazarin $C_{10}H_5O_4Cl = (HO)_2C_6H_3\underbrace{CO\cdot CCl}_{CO\cdot CH}$ (H 413). B. Aus Naphthodichinon-(1.4;5.8) und Chlorwasserstoff in Eisessig (Zahn, Ochwat, A. 462, 86). Dunkelrote Nadeln. F: 178—179°. Liefert mit Acetanhydrid und konz. Schwefelsäure 2-Chlor-5.8-diacetoxy-naphthochinon-(1.4) (s. u.).
- 2-Chlor-5.8-diacetoxy-naphthochinon-(1.4), Chlornaphthazarin-diacetat $C_{14}H_{\bullet}O_{\bullet}Cl = (CH_{\bullet}\cdot CO\cdot O)_{\bullet}C_{\bullet}H_{\bullet} CO\cdot CCl$ (H 413). B. Durch Behandeln von Chlornaphthazarin mit Acetanhydrid und konz. Schwefelsäure (Zahn, Ochwat, A. 462, 87). Durch Zusatz des gleichen Volumens Wasser zu einer siedenden alkoholischen Lösung von 2.3-Dichlor-5.8-diacetoxy-2.3-dihydro-naphthochinon-(1.4) (Z., O.). Gelbe Nadeln oder Blättchen. F: 193—194° (unter Rotfärbung).
- 6.7-Dichlor-5.8-dioxy-naphthochinon-(1.4) $C_{10}H_4O_4Cl_2 = (HO)_5C_6Cl_2 \stackrel{CO \cdot CH}{\longleftarrow} Vgl. 2.3$ -Dichlor-1.4.5.8-tetraoxo-1.2.3.4.5.8-hexahydro-naphthalin, E II 7, 855.
- 2.3 Dibrom 5.8 dioxy-naphthochinon (1.4), Dibromnaphthazarin $C_{10}H_4O_4Br_8 = (HO)_2C_6H_8 CO \cdot CBr$ (E I 699 als Präparat aus 1.4.5.8 Tetraoxy-naphthalin bezeichnet).
- B. Beim Kochen von Naphthazarin mit 2 Mol Brom in Eisessig (WHEELER, CARSON, Am. Soc. 49, 2828). Metallglänzende rote Blättchen (aus Eisessig). F: 258°. Sublimierbar. Gibt beim Kochen mit o-Phenylendiamin in Alkohol eine rotstichig blaue Verbindung, die sich bei ca. 225° zersetzt.

"Präparat aus 2.3.8-Tribrom-5-oxy-naphthochinon-(1.4)" (E I 699) s. u.

2.3.6.7-Tetrabrom-5.8-dioxy-naphthochinon-(1.4), Tetrabromnaphthazarin $C_{10}H_2O_4Br_4=(HO)_2C_6Br_8$ CO·CBr Beim Kochen oder wochenlangen Aufbewahren von Naphthazarin mit nahezu 4 Mol Brom in Eisessig (Wheeleb, Carson, Am. Soc. 49, 2827). — Bronzefarbene Nadeln (aus Eisessig). F: 300°. Unlöslich in Äther, schwer löslich in heißem Alkohol und Aceton, leicht in heißem Chloroform, Tetrachlorkohlenstoff und Eisessig, sehr leicht in Toluol. — Gibt beim Kochen mit Anilin in Alkohol 6.7-Dibrom-2.3-dianilino-naphthazarin (Syst. Nr. 1879).

Diacetat $C_{14}H_{\bullet}O_{\bullet}Br_{\bullet} = (CH_{\bullet}\cdot CO\cdot O)_{\bullet}C_{\bullet}Br_{\bullet} CO\cdot CBr$. B. Aus dem Natriumsalz des 2.3.6.7-Tetrabrom-naphthazarins durch Erwärmen mit Acetylchlorid und Acetanhydrid (Wheeler, Carson, Am. Soc. 49, 2827). Bei der reduzierenden Acetylierung von 2.3.6.7-Tetrabrom-naphthodichinon-(1.4;5.8) mit Zinkstaub und Acetanhydrid (Wh., C., Am. Soc. 49, 2828). — Gelbe Krystalle (aus Chloroform). F: 262°. Leicht löslich in Aceton, Eisessig, Chloroform und Benzol, schwer in Alkohol und Äther.

6. Dioxy-naphthochinon $C_{10}H_4O_4 = (HO)_5C_{10}H_4(:O)_5$ mit unbekannter Stellung

der funktionellen Gruppen.

Dibrom-dioxy-naphthochinon aus Tribromjugion $C_{10}H_4O_4Br_2 = (HO)_2C_{10}H_4Br_2(:0)_2$ (E I 699 als Dibromnaphthazarin aus 2.3.8-Tribrom-5-oxy-naphthochinon-(1.4) bezeichnet; vgl. indessen Dimroth, Roos, A. 456, 187 Anm.). Liefert bei der Reduktion mit Zinkstaub in 30% iger Natronlauge auf dem Wasserbad x-Tetraoxy-naphthalin (E II 6, 1127) (Wheeler, Andrews, Am. Soc. 48, 2584). Bei der Reduktion mit Zinkstaub und verd. Schwefelsäure in Äther entsteht x-Dibrom-x-tetraoxy-naphthalin (E II 6, 1127). Beim Kochen mit Acetanhydrid erhält man x-Dibrom-x-oxy-x-acetoxy-naphthochinon-(x).

- x D brom-x-oxy-x-methoxy-naphthochinon-(x) $C_{11}H_6O_4Br_9 = (CH_9 \cdot O)(HO)C_{10}H_9Br_9(:O)_9$.

 B. Beim Kochen der Natriumverbindung des 2.3.8-Tribrom-juglons mit Methyljodid in absol.

 Methanol (Wheeler, Andrews, Am. Soc. 43, 2585). Goldrote Blättehen (aus Benzol).

 F: 209—210°.
- x D brom-x-oxy-x-äthoxy-nashthochinon-(x) C₁₂H₃O₄Br₂ = (C₂H₅·O)(HO)C₁₀H₂Br₂(:O)₂.

 B. Analog der vorangehenden Verbindung (Wherler, Andrews, Am. Soc. 48, 2585).

 Gelbe Blättchen (aus Alkohol). F: 134—136°.

 NaC₁₂H₇O₄Br₂. Purpurroter Niederschlag.
 Färbt Seide hellgelb.

x - Dibrom - x - exy - x - acetoxy - nanhthochinon - (x) C₁₈H₆O₅Br₈ = (CH₂·CO·O)(HO) C₁₆H₈Br₈(:O)₈. B. Beim Kochen von x-Dibrom-x-dioxy-naphthochinon-(x) (s. o.) mit Acetan-hydrid (Whenler, Andrews, Am. Soc. 48, 2584). — Gelbliche Prismen (aus Eisessig). F: 197° (rote Schmelze).

2. Oxy-oxo-Verbindungen C₁₁H₈O₄.

3.5 (oder 3.8)-Dioxy-2-methyl-naphthochinon-(1.4), Droseron $C_{11}H_8O_4=CO\cdot C\cdot OH$ HO· C_6H_3 CO· $C\cdot CH_3$. Zur Bezeichnung Droseron vgl. Macbeth, Price, Winzor, Soc. 1985, 326. Zur Konstitution vgl. Lugg, Macbeth, Winzob, Soc. 1937, 1597. — V. In den Wurzelknollen von Drosera Whittakeri Planch. (Rennie, Soc. 51 [1887], 371). — Gelbe Nadeln (aus Eisessig). F: 174—175° (R., Soc. 63 [1893], 1087), 181° (L., M., W., Soc. 1937, 1599).

D acetat C₁₅H₁₂O₆ = (CH₃·CO·O)₂C₁₁H₆(·O)₂. Gelbe Nadeln (aus Methanol). F: 119° (Lugg, Macbeth, Winzor, Soc. 1937, 1599; vgl. Rennie, Soc. 63, 1088).

3. Oxy-oxo-Verbindungen C₁₈H₁₂O₄.

3 - Oxy - 2 - $[\beta$ - oxy - propyl | - naphthochinon - (1.4) $C_{13}H_{13}O_4$, s. nebenstehende Formel. B. Bei der Einw. von heißen CH2 · CH(OH) · CH8 Alkalien auf 2-Methyl-6.7-benzo-cumaranchinon-(4.5) (FIESER, Am. Soc. 48, 3210) oder auf 2-Methyl-5.6-benzo-cumaranchinon-(4.7) OH (F., Am. Soc. 50, 462). — Gelbliche Nadeln (aus verd. Methanol). F: 108—110° (F., Am. Soc. 48, 3210). Sehr leicht löslich in Benzol und Alkohol (F., Am. Soc. 48, 3210). Normal-Redoxpotential in 0,1 n-Salzsäure (50% Alkohol)

bei 25° in Gegenwart von Lithiumchlorid: 0,308 V (F., Am. Soc. 50, 449). — Liefert beim Behandeln mit konz. Schwefelsäure 2-Methyl-6.7-benzo-cumaranchinon-(4.5), beim Erwärmen mit Eisessig und Bromwasserstoffsäure 2-Methyl-5.6-benzo cumaranchinon-(4.7) (F., Am. Soc. 50, 462).

3-0xy-2- $[\beta$ -acetoxy-propyl]-naphthochinen-(1.4) $C_{15}H_{14}O_5 = CO \cdot C \cdot CH_3 \cdot CH(CH_3) \cdot O \cdot CO \cdot CH_3$. Beim Erhitzen von 3-0xy-2- $[\beta$ -chlor-propyl]-

naphthochinon-(1.4) mit Silberacetat in Eisessig (FIESER, Am. Soc. 48, 3210). — Krystallines Pulver (aus Äther und Petroläther). F: 127°. Sehr leicht löslich in den gebräuchlichen Lösungsmitteln,

4. Oxy-oxo-Verbindungen $C_{15}H_{16}O_4$.

 $3-Oxy-2-[\gamma-oxu-isoamul]-naphthochinon-(1.4), Oxydihydrolapachol $C_{15}H_{16}O_4=C_0H_4$ CO·C·CH₂·CH₂·C(OH)(CH₃)₂ (H 415). Zur Konstitution vgl. die Angaben bei$ 2-Oxy-naphthochinon-(1.4), S. 344. — Normal-Redoxpotential in 0,1 n-Salzsaure (50% Alkohol) bei 25° in Gegenwart von Lithiumchlorid: 0,295 V (Fieser, Am. Soc. 50, 449).

g) Oxy-oxo-Verbindungen C_nH_{2n-16}O₄.

1. Oxy-oxo-Verbindungen C₁₂H₂O₄.

1. 2-[2.4-Dioxy-phenul] - benzochinon-(1.4), Monoresorcylchinon C₁₂H₈O₄, s. nebenstehende Formel. B. Aus 2.4.2'.5'-Tetraoxydiphenyl beim Behandeln mit Eisen(III)-chlorid (über das in Wasser lösliche, ·OH schwarzbraune Chinhydron) oder besser mit Permanganat in schwefelsaurer Lösung bei ca. 50° (PUMMERER, HUPPMANN, B. 60, 1446). — Braune Nadeln (aus Methanol). Zersetzt sich bei 280°. Löslich in Aceton, Pyridin, Eisessig und Alkohol, schwer löslich in siedendem Wasser, sehr schwer in siedendem Chloroform, unlöslich in Schwefelkohlenstoff, Äther, Ligroin und Benzol. — Die Lösung in Eisessig liefert beim gelinden Erwärmen mit Zinkstaub 2.4.2'.5'-Tetraoxy-diphenyl. Gibt beim Behandeln mit Acetanhydrid und Pyridin das Diacetat C₁₈H₁₈O₆. — Färbt chromgebeizte Wolle braun.

2. Verbindung C₁₈H₆O₆ = OC CH₂·CO C(OH):CH CO.

,,Rhodobromresochinon" $C_{12}H_2O_4Br_5 = OC < CBr_2 \cdot CO < CCH = CBr \cdot CO < CH = CBr \cdot CO$. Als Hauptprodukt bei der Oxydation von 2.4.6-Tribrom-resorcin in Benzol mit wäßr. Chromsäure-Lösung (Davis, Hill, Am. Soc. 51, 494, 501). Bei der Behandlung von Hexabromresochinon (E II 7, 857) in Benzol mit Brom (D., H., Am. Soc. 51, 498). — Rote Krystalle mit $\frac{1}{2}$ oder 1 C₆H₆

466

(aus Benzol); Krystalle mit 1 C₄H₁₀O (aus Äther); verbindet sich ebenso mit \(^{1}_{4}\) Mol Schwefelkohlenstoff; die von Lösungsmitteln freie Substanz ist ein rotes Pulver (D., H., Am. Soc. 51, 496, 502). Die Äther bzw. Benzol enthaltenden Krystalle schmelzen bei 215° bzw. 220° (unter Zersetzung) (D., H., Am. Soc. 51, 496). Löst sich in verdünnter wäßriger Natronlauge mit dunkelgrüner bis schwarzer Farbe, in konz. Schwefelsäure mit tiefroter Farbe (D., H., Am. Soc. 51, 496). — Beim längeren Erhitzen der benzolhaltigen Krystalle auf 120° erhält man eine Verbindung C₁₂H₂O₄Br₂ (s. u.) (D., H., Am. Soc. 51, 498, 503). Reagiert mit Hydroxylamin, Hydrazin, Phenylhydrazin, Semicarbazid und ähnlichen Verbindungen unter Entwicklung von Stickstoff (D., H., Am. Soc. 51, 496). Liefert bei der Reduktion mit Schwefeldioxyd oder Jodwasserstoff in verd. Alkohol oder mit Bromwasserstoff in Benzol 3.5.3′.5′.Tetrabrom-2.4.2′.4′-tetraoxy-diphenyl (E II 6, 1128) (D., H., Am. Soc. 51, 496, 502). Beim Behandeln mit Brom in 50 %iger Easigsäure erhält man Hexabromresochinon (E II 7, 857) (D., H., Am. Soc. 51, 503); bei mehrtägigem Aufbewahren mit Brom ohne Lösungsmittel entsteht "Tetrabromresochinon" (E II 7, 855) (D., H., Am. Soc. 51, 499, 504).

Verbindung C₁₂H₂O₄Br₅. Das Mol.-Gew. konnte nicht bestimmt werden. — B. Bei mehrtägigem Erhitzen von benzolhaltigem Rhodobromresochinon auf 120° (Davis, Hill, Am. Soc. 51, 498, 503). — Farblose Krystalle (aus Eisessig). F: 228—229°. Löslich in Eisessig mit gelber Farbe, sehr schwer löslich in den meisten anderen Lösungsmitteln. — Das Oxydationsvermögen ist etwa halb so stark wie das des Rhodobromresochinons. Beständig gegen Brom.

2. Oxy-oxo-Verbindungen $C_{13}H_{10}O_4$.

1. 2.3.4 - Trioxy - benzophenon, 4 - Benzoyl - pyrogallol,
Alizaringelb A C₁₂H₁₀O₄, s. nebenstehende Formel (H 417; E I 701).

B. Neben Pyrogallolbenzein beim Erhitzen von 1 Mol Benzotrichlorid C₆H₅·CO·OH und 2 Mol Pyrogallol auf dem Wasserbad (Orndoeff, Wang, Am. Soc.

47, 290; 49, 1284). — Absorptionsspektrum in Lösung: Tasaki, Acta phytoch. 2, 49; C. 1925 II, 1354. — Liefert bei 30-stdg. Kochen mit phenylessigsaurem Natrium und Acetanhydrid 7.8-Diacetoxy-3.4-diphenyl-cumarin (Syst. Nr. 2540) (Bargellini, R. A. L. [6] 2, 180; C. 1926 I, 1184).

— FeC₁₂H₂O₄ + 2,5H₄O. Schwarzes unlösliches Pulver (Zetzsche, Loosli, A. 445, 294). Wird durch Alkalilaugen zersetzt.

2-0xy-3.4-diacetoxy-benzophenon $C_{17}H_{14}O_6 = C_6H_5 \cdot \text{CO} \cdot C_8H_2(\text{OH})(\text{O} \cdot \text{CO} \cdot \text{CH}_2)_2$. B. Aus 2.3.4-Trioxy-benzophenon, Pyroboracetat und Acetanhydrid beim Aufbewahren in der Kälte oder kurzen Erwärmen und Behandeln des Reaktionsprodukts mit Wasser (Dimeoth, A. 446, 116). — Krystalle (aus verd. Alkohol oder wäßr. Aceton). F: 119°. — Gibt mit

Pyroboracetat eine gelbe Färbung.

4'-Chior-2.3.4-trioxy-benzophenon C₁₃H₂O₄Cl = C₆H₄Cl·CO·C₆H₃(OH)₃ (H 418). B. Durch Einleiten von Chlorwasserstoff in eine äther. Lösung von 4-Chlor-benzonitril und Pyrogallol in Gegenwart von Zinkchlorid und Kochen des Reaktionsprodukts mit Wasser im Kohlendioxydstrom (Korczynski, Nowakowski, Bl. [4] 43, 335). — Hellgelbe Nadeln (aus verd. Alkohol). F: 157—158°. Löslich in organischen Lösungsmitteln, etwas schwerer in kaltem Wasser.

2. 2.4.5-Trioxy-benzophenon $C_{13}H_{10}O_4 = C_6H_5 \cdot CO \cdot C_6H_8(OH)_8$.

4'-Chlor-2.4.5-trloxy-benzonhenon $C_{13}H_0O_4Cl$, s. nebenstehende

Formel. B. Durch Einleiten von Chlorwasserstoff in eine äther. Lösung von 4-Chlor-benzonitril und Oxyhydroch non in Gegenwart von Zinkchlorid und Kochen des Reaktionsprodukts mit Wasser unter Einleiten von Kohlendioxyd (Korczynski, Nowakowski, Bl. [4] 43, 334). — Gelbe Nadeln (aus Alkohol). F: 260°. Leicht löslich in Alkohol, schwer in Eisessig. Löst sich in Alkalien mit gelber Farbe. Die alkoh. Lösung gibt mit Eisenchlorid eine dunkelgelbe Färbung.

3. 2.4.6-Trioxy-benzophenon, 2-Benzoyl-phloroglucin,
Benzophloroglucin C₁₈H₁₀O₄, s. nebenstehende Formel (E I 701).

B. Aus Benzoylchlorid und Phloroglucin mit Aluminiumchlorid in C₆H₅·CO·OH Nitrobenzol auf dem Wasserbad (K. W. ROSENMUND, M. ROSENMUND,
B. 61, 2609) oder in Nitrobenzol + Äther (R., SCHULZ, Ar. 1927,
319). Zur Bildung aus Phloroglucin und Benzonitril in Äther nach Horsch (B. 48, 1131; E I 702)
vgl. Späth, Fuchs, M. 42, 269. — F: 165° (R., R.). — Liefert beim Aufbewahren in mit Chlorwasserstoff gesättigtem Methanol Benzoesäuremethylester und wahrscheinlich ein Gemisch methylierter Phloroglucine (Sp., F., M. 42, 268, 270). Beim Behandeln mit Diazomethan in Äther bei —12° erhält man Cotoin, 2-Oxy-4.6-dimethoxy-benzophenon und 2.4.6-Trimethoxy-benzophenon (Sp., F., M. 42, 270). Gibt bei ca. 30-stdg. Kochen mit phenylessigsaurem Natrium und Acetanhydrid 5.7-Diacetoxy-3.4-diphenyl-cumarin (Syst. Nr. 2540) (Bargellini, R. A. L. [6] 2, 181; C. 1926 I, 1484).

- 2.4-Dioxv-6-methoxy-benzoshenon, Isocotoin $C_{14}H_{12}O_4=C_4H_5\cdot CO\cdot C_6H_5(OH)_5^{2-4}(O\cdot CH)_5^{0}$ (E I 702). Die Reaktion mit Kaliumnitrit und Essigsäure in Alkohol führt zu Produkten, die sich nicht krystallisieren lassen (Karren, Bloch, Helv. 10, 379).
- 2.6-Dioxy-4-methoxy-benzophenon, Cotoin $C_{14}H_{12}O_4 = C_4H_3 \cdot CO \cdot C_4H_3 \cdot (OH)_2^{14} \cdot (O \cdot CH_3)^6$ (H 419; E I 702). Zur Konstitution vgl. a. Späth, Wesselly, M. 49, 229. V. Die Stammpflanze der echten Cotorinde ist Nectandra Coto Rusb. (Seil., J. am. pharm. Assoc. 11, 904; C. 1923 I, 1631; vgl. C. Wehmer, Die Pflanzenstoffe, 2. Aufl., Bd. I [Jena 1929], S. 367). B. Beim Methylieren von Benzophloroglucin mit Diazomethan in Äther bei —12°, neben Hydroototin und Methylhydrocotoin (Späth, Fuors, M. 42, 270, 272). Löslich in Kaliumearbonat-Lösung (Sp., F.). Absorptionsspektrum in Lösung: Tasaki, Acta phytoch. 2, 49; C. 1925 II, 1354. Liefert mit der berechneten Menge Diazomethan in Äther 2-Oxy-4-6-dimethoxy-benzophenon (Sp., W., M. 49, 234). Analog erhält man mit der berechneten Menge Diazoäthan in Äther 2-Oxy-4-methoxy-6-athoxy-benzophenon, mit überschüssigem Diazoäthan 4-Methoxy-2.6-diäthoxy-benzophenon (Sp., W., M. 49, 235, 237). Physiologisches Verhalten: E. Keere in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 259. Prüfung auf Reinheit: Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 104.
- 2-Oxy-4.6-dimethoxy-benzophenon, Cotoinmethyläther, Methylcotoin ("Hydrocotoin") $C_{15}H_{14}O_4 = C_0H_5 \cdot CO \cdot C_4H_2(O \cdot CH_3)_2^{4\cdot6}(OH)^2$ (H 419; E I 702). B. Beim Methylieren von Benzophloroglucin mit Diazomethan in Äther bei —12°, neben Cotoin und 2.4.6-Trimethoxybenzophenon (Späth, Fuchs, M. 42, 272). Beim Behandeln von Cotoin mit der berechneten Menge Diazomethan in Äther (Sp., Wesselv, M. 49, 234). In geringer Menge neben 4-Oxy-2.6-dimethoxy-benzophenon beim Einleiten von Chlorwasserstoff in eine Mischung aus Phloroglucindimethyläther und Benzonitril in absol. Äther bei Gegenwart von Zinkchlorid und Kochen des Reaktionsprodukts mit Wasser (Karrer, Lichtenstein, Helv. 11, 795). Krystalle (aus verd. Methanol oder Alkohol). F: 97—98° (Sp., W.). Ultraviolett-Absorptionsspektrum der Lösung in Alkohol: Tasaki, Acta phytoch. 2, 200; C. 1927 II, 2190. Liefert beim Behandeln mit Diazoäthan in Äther 2.4-Dimethoxy-6-äthoxy-benzophenon (Sp., W., M. 49, 238).
- 4-Oxy-2.6-dimethoxy-benzophenon ("Isohydrocotoin") $C_{15}H_{14}O_4 = C_0H_5 \cdot CO \cdot C_0H_3 (O \cdot CH_3)_3 \cdot (OH)$. B. Beim Einleiten von Chlorwasserstoff in eine Mischung aus Phloroglucin-dimethyläther und Benzonitril in absol. Äther bei Gegenwart von Zinkchlorid und Kochen des Reaktionsprodukts mit Wasser, neben wenig 2-Oxy-4.6-dimethoxy-benzophenon (Karrer, Lichtenstein, Helv. 11, 795). Krystalle (aus Benzol). F: 177°.
- 2.4.6-Trimethoxy-bcnzophenon ("Methylhydrocotoin") $C_{16}H_{16}O_4 = C_6H_8 \cdot CO \cdot C_6H_4(O \cdot CH_3)_3$ (H 420). B. Beim Methylieren von Benzophloroglucin mit Diazomethan in Äther bei 12°, neben Cotoin und 2-Oxy-4.6-dimethoxy-benzophenon (Späth, Fuchs, M. 42, 272). F:113—114°. Ultraviolett-Absorptionsspektrum der Lösung in Alkohol: Tasaki, Acta phytoch. 2, 201; C. 1927 II, 2190.
- 2-0xy-4-methoxy-6-äthoxy-benzophenon, Cotoinäthyläther, Äthylcotoin $C_{16}H_{16}O_4=C_6H_5\cdot CO\cdot C_6H_6(OH)^3(O\cdot CH_5)^4(O\cdot C_2H_5)^6$. B. Beim Behandeln von Cotoin mit Diazoäthan in Äther (Späth, Wessely, M. 49, 235). Krystalle (aus verd. Alkohol). F: 91—92°. Gibt beim Behandeln mit Diazomethan in Äther 2.4-Dimethoxy-6-āthoxy-benzophenon. Liefert beim Kochen mit Bromessigsäureäthylester und Natrium in Alkohol, Verseifen des Reaktionsprodukts mit siedender alkoholischer Kalilauge und folgenden Destill eren im Vakuum 6-Methoxy-4-āthoxy-3-phenyl-cumaron (Syst. Nr. 2406).
- 2.4-Dimethoxy-6-žthoxy-benzophenon, Cotoin-methylžther-žthylžther, Methylžthylcotoin $C_{17}H_{18}O_4=C_0H_5\cdot CO\cdot C_0H_2(O\cdot C_1H_3)^{2-4}(O\cdot C_2H_3)^{3}$. B. Beim Behandeln von 2-Oxy-4.6-dimethoxy-benzophenon mit Diazoāthan oder von 2-Oxy-4-methoxy-6-žthoxy-benzophenon mit Diazomethan in Äther (Späth, Wessely, M. 49, 238). Krystalle (aus Petroläther). F: 103—104°. Liefert bei der Reduktion mit Zink in siedender alkoholischer Kalilauge Phenyl-[2.4-dimethoxy-6-žthoxy-phenyl]-carbinol (E II 6, 1129).
- 4-Methoxy-2.6-diäthoxy-benzophenon, Cotoin-diäthyläther $C_{18}H_{20}O_4=C_4H_5\cdot CO\cdot C_6H_6(O\cdot CH_4)$ ($O\cdot C_2H_5$), $0\cdot C_2H_5$), $0\cdot C_3H_5$. B. Beim Behandeln von Cotoin mit überschüssigem Diazoathan in Äther (Späth, Wesselly, M. 49, 237). Krystalle (aus Petroläther). F: 82—83°. Im Hochvakuum destillierbar. Liefert bei der Reduktion mit Zink in siedender alkoholischer Kalilauge Phenyl-[4-methoxy-2.6-diāthoxy-phenyl]-carbinol (E II 6, 1129).
- 3'-Chlor-2.4.6-trioxy-benzophenou C₁₃H₅O₄Cl = C₆H₄Cl·CO·C₆H₅(OH)₃. B. Beim Einleiten von Chlorwasserstoff in eine Mischung aus 3-Chlor-benzonitril und Phloroglucin in Äther bei Gegenwart von Zinkchlorid und Behandeln des Reaktionsprodukts mit Wasser oder Säure (Orito, Sci. Rep. Tohoku Univ. 18, 121; C. 1929 II, 1159). Gelbe Krystalle mit 1 H₂O (aus Wasser), wasserfreie Krystalle (aus Benzol). F: 169,5—170°. Leicht löslich in Alkohol, Äther, Benzol und Eisessig, schwer in Ligroin.

468

- 4'-Chier-2.4.6-triexy-benzophenon $C_{12}H_{0}O_{2}Cl = ClC_{2}H_{4} \cdot CO \cdot C_{2}H_{4}(OH)_{2}$. B. Analog der vorangehenden Verbindung (Orito, Soi. Rep. Töhoku Univ. 18, 121; C. 1929 II, 1159). Krystallisiert aus Äther mit 1 $H_{2}O$, aus Benzol wasserfrei. F: 169—169,5°.
- 4'-Chlor-2.4.6-trimethoxy-benzophenon $C_{16}H_{15}O_4Cl = C_6H_6Cl \cdot CO \cdot C_6H_6(O \cdot CH_3)_8$. B. Aus 4'-Chlor-2.4.6-trioxy-benzophenon und Methyljodid in Alkohol bei Gegenwart von Alkali (Ortro, Sci. Rep. Töboku Univ. 18, 121; C. 1929 II, 1159). F: 175°. Leicht löslich in Alkohol, Ather und Benzol.
- 3'-Nitro-2.4.6-trioxy-benzophenon $C_{13}H_{9}O_{6}N=C_{6}H_{4}(NO_{2})\cdot CO\cdot C_{6}H_{2}(OH)_{2}$. B. Beim Einleiten von Chlorwasserstoff in ein Gemisch aus 3-Nitro-benzonitril, Phloroglucin, Zinkchlorid und Äther und nachfolgenden Kochen mit Wasser oder verd. Schwefelsäure (Yamashitta, Bl. chem. Soc. Japan 3, 182; C. 1928 II, 1561). Gelbliche Nadeln (aus Wasser). F: 194°.
- 4'-Nitro-2.4.6-trloxv-benzonhenon C₁₂H₂O₆N = C₆H₄(NO₂)·CO·C₆H₄(OH)₃. B. Analog der vorangehenden Verbindung (Yamashita, Bl. chem. Soc. Japan 3, 182; C. 1928 II, 1561; Korozynski, Nowakowski, Bl. [4] 48, 334). Gelbe Nadeln (aus Wasser oder verd. Alkohol). F: 244—245° (K., N.), 246—247° (Y.). Leicht löslich in Eisessig, Aceton und Alkohol, löslich in Benzol und Äther (K., N.). Löslich in verd. Alkalien mit tiefroter Farbe (K., N.). Gibt mit Eisenchlorid eine blaue Färbung (K., N.).
- 4. $[2-Oxy-phenyl]-[2.4-dioxy-phenyl]-keton, 2.4.2-Trioxy-benzonhenon, 4-Salicoyl-resorcin <math>C_{12}H_{10}O_4$, Formel I. Diese Konstitution wird von Atkinson, Heilbron (Soc. 1926, 2690) der als 2-Salicoyl-resorcin (s. u.) formulierten Verbindung zugeschrieben.

- 5. [4-Oxy-phenul]-[2.4-dioxu-phenul]- keton, 2.4.4'-Trioxy-benzophenon C₁₂H₁₆O₄, Formel II (H 422; E I 702). B. Aus 4-Carbāthoxyoxy-benzoesāure-phenylimid-chlorid C₂H₅·O₅C·O·C₆H₄·CCl:N·C₆H₅ und Resorcin bei gelindem Erwärmen auf dem Dampfbad und Kochen des Reaktionsprodukts mit Alkohol und etwas Salzsäure (STEPHEN, Soc. 117, 1533). Gelbliche Nadeln (aus heißem Wasser). F: 200° (St.; Tasaki, Acta phytoch. 2, 49; C. 1925 II, 1354). Absorptionsspektrum in Lösung: T. Gibt in Alkohol mit Eisen(III)-chlorid eine rote Färbung (St.).
- 2.4-Diexy-4'-methexy-benzophenon $C_{14}H_{12}O_4 = CH_3 \cdot O \cdot C_6H_4 \cdot CO \cdot C_6H_5 (OH)_3$ (H 422; E I 702), Liefert bei ca. 30-stdg. Kochen mit phenylessigsaurem Natrium und Acetanhydrid 7-Oxy-3-phenyl-4-[4-methoxy-phenyl]-cumarin (Syst. Nr. 2540) (BARGELLINI, R. A. L. [6] 2, 181; C. 1926 I, 1184).
- 2.4'- Dioxy-4-methoxy-benzophenon $C_{14}H_{18}O_4=HO\cdot C_6H_4\cdot CO\cdot C_6H_2(OH)\cdot O\cdot CH_2$. B. Aus Phenol und 2-Oxy-4-methoxy-benzoesäure in Gegenwart von Zinkohlorid bei 115—120° (Tabaki, Acta phytoch. 2, 49; C. 1925 II, 1354). Nadeln (aus Alkohol). F: 136—138°. Absorptionsspektrum in Lösung: T.
- 2-Oxy-4.4'-dimethoxy-benzophenon $C_{15}H_{14}O_4 = CH_3 \cdot O \cdot C_0H_4 \cdot CO \cdot C_0H_2(OH) \cdot O \cdot CH_2$. B. Aus Anisol und 2-Oxy-4-methoxy-benzoesäure in Gegenwart von Zinkchlorid bei 115—120° (Tasaki, Acta phytoch. 2, 49; C. 1925 II, 1354). Krystalle (aus Alkohol). F: 129° bis 131°. Absorptionsspektrum in Lösung: T.
- 2.4.4'-Trimethoxy-benzophenon $C_{1e}H_{1e}O_4 = CH_3 \cdot O \cdot C_eH_4 \cdot CO \cdot C_eH_3 \cdot (O \cdot CH_3)_3$ (E I 702).

 B. Aus Amisoylchlorid und Resorcindimethyläther in Gegenwart von Aluminiumchlorid (ZIEGLER, OCHS, B. 55, 2273). Nadeln (aus Alkohol). F: 70—71°. Leicht löslich in Äther, Eisessig und Benzol, schwer in Benzin.
- 6. [2-Qxy-phenyl]-[2.6-dioxy-phenyl]-keton, 2.6.2'-Trioxy-benzophenon, 2-Salicoyl-resorcin C₁₂H₁₀O₄, Formel III (H 422; vgl. E I 702). Wird von Atkinson, Hellbron (Soc. 1926, 2690) als 2.4.2'-Trioxy-benzophenon angesehen. B. Durch Einleiten von Chlorwasserstoff in eine Lösung von 2-Acetoxy-benzontril und Resorcin in Ather bei Gegenwart von Zinkchlorid bei 0° und aufennderfolgende Behandlung mit Kaliumacetat und siedender 0,5 n. Natronlauge, neben 3-Oxy-xanthon (A., H.). Gelbliche Nadeln. F: 130—132° (Tasaki, Acta phytoch. 2, 49; C. 1925 II, 1354), 133—134° (A., H.). Absorptionsspektrum in Lösung: T.
 - 7. 3.4.8'-Trioxy-benzophenon C₁₂H₁₆O₄. Formel IV (S. 469).
- 3.4.3'-Trimethoxy-benzophenon $C_{16}H_{16}O_4 = CH_3 \cdot O \cdot C_6H_4 \cdot CO \cdot C_6H_3(O \cdot CH_2)_2$. B. Aus 3-Methoxy-benzophenorid und Veratrol bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff, anfangs in der Kälte, dann auf dem Wasserbad (Lea, Robinson, Soc. 1926, 2355). —

TRIOXYDESOXYBENZOIN

Nadeln (aus Methanol). F: 83—84°. — Liefert beim Kochen mit Natriumamid in Toluol und Verseifen des Reaktionsprodukts mit siedender verdünnter Natronlauge 3-Methoxy-benzoesäure und Veratrumsäure im Verhältnis 2:3.

Oxim $C_{16}H_{17}O_4N=CH_3\cdot O\cdot C_6H_4\cdot C(:N\cdot OH)\cdot C_6H_3(O\cdot CH_3)_2$. Prismen (aus Alkohol). F: 128° (Lea, Robinson, Soc. 1926, 2355).

8. 3.4.4'-Trioxy-benzophenon C₁₈H₁₀O₄, Formel V.

3.4.4'-Trimethoxy-benzophenon $C_{19}H_{19}O_4 = CH_3 \cdot O \cdot C_6H_4 \cdot CO \cdot C_6H_3(O \cdot CH_3)_2$ (H 422). Liefert beim Kochen mit Natriumamid in Toluol und Hydrolysieren des Reaktionsproduktes mit siedender verdünnter Natronlauge 4-Methoxy-benzoesäure und Veratrumsäure im Verhältnis 3:1 (Lea, Robinson, Soc. 1926, 2355).

3. Oxy-oxo-Verbindungen C14H12O4.

1. [2.3.4 - Trioxy - phenyl] - benzyl - keton, 2.3.4 - Trioxy - desoxybenzoin, 2.3.4 - Trioxy - ω - phenyl - acetophenon $C_{14}H_{12}O_4$, Formel I (H 422). F: 140—141° (Tasaki, Acta phytoch. 8, 276; C. 1927 II, 1949). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: T.

- 2. [2.4.6 Trioxy phenyl] benzyl-keton, 2.4.6 Trioxy desoxybenzoin, 2 Phenacetul phloroglucin, ω Phenyl phloracetophe non C₁₄H₁₂O₄, Formel II. B. Beim Einleiten von Chlorwasserstoff in eine Lösung von Phloroglucin und Phenylessigsäurenitril in Äther bei Gegenwart von Zinkehlorid und Koehen des Reaktionsprodukts mit Wasser (Höchster Farbwerke, D.R.P. 407666; C. 1925 I, 1808; Frdl. 14, 1424; Chapman, Stephen, Soc. 128, 408; Klarmann, Figdor, Am. Soc. 48, 804). Bei tropfenweiser Zugabe von Phenylessigsäurechlorid zu einer Lösung von Phloroglucin und Aluminiumehlorid in Nitrobenzol auf dem Wasserbad (K. W. ROSENMUND, M. ROSENMUND, B. 61, 2610). Prismen mit 1 H₂O (aus Wasser), die bei 90° das Krystallwasser verlieren; Nadeln (aus Essigester + Toluol). Schmilzt wasserhaltig bei 88—89° (Höchster Farbw.), wasserfrei bei 162° (Ch., St.), 163—164° (Kl., F.), 164—166° (R., R.), 165—166° (Höchster Farbw.). Leicht löslich in deh meisten organischen Lösungsmitteln außer Ligroin und Benzin, fast unlöslich in kaltem Wasser; löslich in verd. Natronlauge mit gelber Farbe, leicht löslich in konz. Schwefelsäure (Ch., St.). Reduziert Fehlingsche Lösung (Ch., St.). Die Lösung in Alkohol oder Äther wird durch Natriumhypochlorit hellrot gefärbt (Ch., St.). Die alkoh. Lösung gibt mit Eisenchlorid eine dunkelrotbraune Färbung (Ch., St.; Kl., F.; R., R.).
- 2'-Chior-2.4.6-trioxy-desoxybenzoin $C_{14}H_{11}O_4Cl = (HO)_3C_6H_2 \cdot C_0 \cdot CH_2 \cdot C_6H_4Cl$. B. Beim Einleiten von Chlorwasserstoff in eine Lösung von 2-Chlor-phenylessigsäurenitril und Phloroglucin in Äther bei Gegenwart von Zinkchlorid und Behandeln des Reaktionsprodukts mit Wasser oder Säuren (Orito, Sci. Rep. Tõhoku Univ. 18, 121; C. 1929 II, 1159). Gelbe Krystalle mit 1 H_2O (aus Wasser). Krystallisiert wasserfrei aus Benzol. F: 172—172,5°.
- 4'-Chlor-2.4.6-trioxy-desoxybenzoin $C_{14}H_{11}O_4Cl = (HO)_3C_6H_2 \cdot CO \cdot CH_2 \cdot C_6H_4Cl$. B. Analog der vorhergehenden Verbindung (Chapman, Stephen, Soc. 128, 409). Nadeln mit 1 H₂O (aus Wasser). Schmilzt wasserfrei bei 221—222°.
- 3. [2.4-Dioxy-phenyl]-[4-oxy-benzyl]-keton, OH
 2.4.4-Trioxy-desoxybenzotn C₁₄H₁₂O₄, s. nebenstehende Formel.

[2.4-Dioxy-phenyl] - [4-methoxy-benzyl]-keton, 2.4-Dioxy-4'-methoxy-desoxybenzoin $C_{16}H_{14}O_4 = (HO)_*C_6H_3 \cdot CO \cdot CH_2 \cdot C_6H_4 \cdot O \cdot CH_3$. B. Ein als Ononetin bezeichnetes Gemisch aus 2.4-Dioxy-4'-methoxy-desoxybenzoin und anderen Produkten entsteht bei längerem Kochen von Ononin (H 31, 249) mit Barytwasser (v. Hemmelmayr, M. 23, 141; vgl. Wessely, Lechner, M. 57 [1931], 396), beim Erhitzen von Onospin (H 31, 230) mit verd. Salzsäure oder Schwefelsäure (Hlasswetz, J. pr. [1] 65, 419; v. He., B. 33, 3539; M. 24, 137; W., L.) sowie aus Formonetin (Syst. Nr. 2536) beim Kochen mit Barytwasser (Hl.; v. He., M. 23, 145; 24, 138) oder Erwärmen mit 10%iger Natronlauge auf dem Wasserbad (W., L.). 2.4-Dioxy-4'-methoxy-desoxybenzoin entsteht beim Sättigen einer Lösung von 4-Methoxy-phenylacetonitril und Resorcin in absol. Äther mit Chlorwasserstoff bei 0° in Gegenwart von Zinkchlorid und Erhitzen

des Reaktionsprodukts mit Wasser (Baker, Eastwood, Soc. 1929, 2902; W., L.). — Nadeln (aus verd. Alkohol oder Chloroform). F: 158° (W., L.), 159° (B., Ea.). Löst sich in Alkalien mit gelber Farbe; gibt mit Eisenchlorid in alkoh. Lösung eine rote Färbung (B., Ea.).

- 4. $[4-Oxy-phenyl]-[2.a-dioxy-benzyl]-keton, 4.2'-Dioxy-benzoin <math>C_{14}H_{12}O_4 = HO \cdot C_4H_4 \cdot CO \cdot CH(OH) \cdot C_4H_4 \cdot OH.$
- 4.2'-Dimethoxy-benzoin C_{1e}H_{1e}O₄, s. nebenstehende
 Formel. B. Durch Umsetzung von 4-Methoxy-phenylmagnesiumbromid mit 2-Methoxy-mandelsäurenitril und CH₂·O·CH(OH)
 Zersetzung des Reaktionsprodukts mit Säuren (Asahina,
 Terasaka, J. pharm. Soc. Japan 1928, Nr. 494, S. 21; C. 1928 III, 434). Prismen.
 F: 92—93°. Liefert bei Einw. von Fehlingscher Lösung 2.4'-Dimethoxy-benzil (S. 474).
- 5. $[3 \cdot Oxu-phenul]-[3 \cdot a-dioxy-benzyl]-keton, 3 \cdot 3 \cdot Dioxy-benzoin C_{14}H_{12}O_4 = HO \cdot C_4H_4 \cdot CO \cdot CH(OH) \cdot C_4H_4 \cdot OH.$
- 3.3'-Dimethoxy-benzoin $C_{16}H_{16}O_4 = CH_2 \cdot O \cdot C_0H_4 \cdot CO \cdot CH(OH) \cdot C_0H_4 \cdot O \cdot CH_3$. B. Beim Kochen von 3-Methoxy-benzaldehyd mit Kaliumcyanid in 66 % igem Alkohol (SCHÖNBERG, MALCHOW, B. \$5, 3752). Prismen (aus Ather). F: 55°. Leicht löslich in Alkohol, löslich in Ligroin.
- 6. [4-Oxy-phenyl]-[4.a-dioxy-benzyl]-keton, 4.4'-Dioxy-benzoin $C_{14}H_{12}O_4 = HO \cdot C_0H_4 \cdot CO \cdot CH(OH) \cdot C_0H_4 \cdot OH$.
- 4.4'-Dimethoxy-benzoin, Anisoin $C_{16}H_{16}O_4 = CH_3 \cdot O \cdot C_4H_4 \cdot CO \cdot CH(OH) \cdot C_6H_4 \cdot O \cdot CH_2$ (H 423). B. Aus Anisil bei der Reduktion mit alkoh. Chrom(II) -chlorid Lösung (Conant, Cutter, Am. Soc. 48, 1025) oder mit Wasserstoff in Essigester bei 60° in Gegenwart von Platinoxyd (Buck, Jenkins, Am. Soc. 51, 2165) oder durch Reduktion mit Magnesium + Magnes umjod d in Äther + Benzol urch Behandlung des Reaktionsprodukts mit Wasser (Gomerg, van Natta, Am. Soc. 51, 2241). Zur Darstellung durch Kochen von Anisaldehyd mit Kaliumcyanid (H 423) vgl. van Alphen, R. 48, 1112. F: 109—110° (B., J.). Geschwindigkeit der Oxydation an der Luft in alkoholisch-alkalischer Lösung: Weissberger, Mainz, Strasser, B. 62, 1946. Anisoin reduziert Nitro-Verbindungen in Gegenwart von Natriumäthylat in siedendem Alkohol zu Azoxy-Verbindungen und geht dabei in Anisil über (Nisbet, Soc. 1927, 2081). Beim Kochen mit Brom in Eisessig entsteht 3.3'-Dibrom-4.4'-dimethoxy-benzil (van A.). Gibt mit absol. Salpetersäure bei 0° 3.5'.5'-Tetranitro-anisil und 2.4-Dinitro-anisol, bei Siedetemperatur 3.5-Dinitro-anissure und 2.4.6-Trinitro-anisil (van A., R. 48, 1115, 1116). Bei der Einw. von absol. Salpetersäure in Acetanhydrid erhält man bei 0° 3.3'-Dinitro-anisil, bei Siedetemperatur 2.4-Dinitro-anisol und sehr geringe Mengen 3.5.3'.5'-Tetranitro-anisil (S. 476) (van A., R. 48, 1117, 1200). Gibt mit Natriummethylat-Lösung keine Färbung (Corson, McAllister, Am. Soc. 51, 2825).
- 4.4'-Dimethoxy-benzoinoxim, Anisoinoxim $C_{10}H_{17}O_4N=CH_2\cdot O\cdot C_0H_4\cdot C(:N\cdot OH)\cdot CH(OH)\cdot C_0H_4\cdot O\cdot CH_3$. $CuC_{10}H_{15}O_4N$. Grün. Unlöslich in Wasser und Ammoniak (Feigl., Sicher, Singer, B. 58, 2296, 2300). Wird durch Säuren zersetzt.
- 7. 6.3'.4'-Trioxy-2-methyl-benzophenon $C_{14}H_{18}O_4 = CH_3 \cdot C_4H_3(OH) \cdot CO \cdot C_4H_3(OH)_2$.

 4'-Oxy-6.3'-dimethoxy-2-methyl-benzophenon (?) $C_{16}H_{16}O_4$, Formel I. B. Aus 6-Methoxy-2-methyl-benzoylchlorid und Guajacolbenzoat in Gegenwart von Aluminiumchlorid (Maniwa, J. pharm. Soc. Japan 1925, Nr. 515, S. 5; C. 1925 I, 2375). Krystalle. F: 97°.
- 8. 5.5'-Dioxy-3.3'-dimethyl-diphenochinon-(4.4') C₁₄H₁₂O₄, Formel II (R = H). 5.5'-Dimethoxy-3.3'-dimethyl-diphenochinon-(4.4') C₁₄H₁₂O₄, Formel II (R = CH₂). B. Aus 2-Oxy-3-methoxy-toluol beim Behandeln mit Eisenchlorid in verd. Alkohol unter Eiskühlung oder beim Durchleiten von Luft in Gegenwart von Laccase (Majima, Takayama, B. 53, 1913, 1916). Wurde nicht ganz rein erhalten. Dunkelviolette Nadeln (aus absol. Alkohol). F: 202—203°. Liefert bei der Reduktion mit Zinkstaub in Eisessig 4.4'-Dioxy-5.5'-dimethoxy-3.3'-dimethyl-diphenyl (E II 6, 1130).

- 9. 5.5'-Dioxy 4.4' dimethyl diphenochinon (2.2') $C_{14}H_{12}O_4$, Formel III (R = H).
- 5.5'- Dimethoxy-4.4'-dimethyl-diphenochinon-(2.2'), Dimethoxy ditolylchinon $C_{1e}H_{1e}O_4$, Formel III (R = CH₂). Diese Konstitution kommt nach Fighter, Ris (Helv. 7, 813) wahrscheinlich der H 424 als 2-Methyl-6-[2.5-dimethoxy-3-methyl-phenyl]-benzo-

ANISOIN: TRIOXYHYDROCHALKON

chinon-(1.4) beschriebenen Verbindung zu. — B. Bei der elektrolytischen Oxydation von Toluhydrochinondimethyläther (E II 6, 862) in verd. Essigsäure + wenig Schwefelsäure an einer Platinanode, neben 2.5.2'.5'-Tetramethoxy-4.4'-dimethyl-diphenyl (F., R., Helv. 7, 812). — Violettgraue Nadeln. F: 153°. Leicht löslich mit dunkelgelbroter Farbe in Alkohol, Äther, Benzol und Eisessig. — Liefert bei der Reduktion mit wäßr. Ammoniumsulfid 2.2'-Dioxy-5.5'-dimethoxy-4.4'-dimethyl-diphenyl (E II 6, 1131).

4. Oxy-oxo-Verbindungen C15H14O4.

- 1. 2.3.4 Trioxy β phenul propiophenon, 2'.3'.4' Trioxy hydrochalkon $C_{18}H_{14}O_4 = C_4H_4 \cdot CH_2 \cdot CO \cdot C_4H_4 (OH)_3$.
- α.β-Dibrom-3-oxy-2.4-dimethoxy-β-phenyl-propiophenon, 3'-Oxy-2.4-dimethoxy-chalkon-dibromid $C_{17}H_{16}O_4Br_2$, s. nebenstehende Formel. B. Aus [3-Oxy-2.4-dimethoxy-phenyl]-styryl-keton (S. 481) und Brom in Åther (Brand, Collischonn, J. pr. [2] 103, C_0H_5 ChBr ChBr Collischonn, J. pr. [2] 104, Collischonn, J. pr. [2] 105, Collischonn, J. pr. [2] 107, Collischonn, J. pr. [2] 108, Col
- 2.4.6-Triacetoxy- β -phenyl-propiophenon, 2'.4'.6'-Triacetoxy-hydrochalkon $C_{21}H_{20}O_7=C_6H_5\cdot CH_2\cdot CH_2\cdot CO\cdot C_6H_3(O\cdot CO\cdot CH_3)_3$. B. Durch katalytische Hydrierung von 2'.4'.6'-Triacetoxy-chalkon (Shinoda, Sato, J. pharm. Soc. Japan 48, 109; C. 1928 II, 1885). Durch Acetylieren von 2'.4'.6'-Trioxy-dihydrochalkon (Sh., S.). Nadeln. F: 76,5°.
- α-Brom-2.4.6-trimethoxy-β-phenyl-propiophenon, α-Brom-2'.4'.6'-trimethoxy-hydrochalkon, ω-Brom-ω-benzyl-phloracetophenon-trimethyläther $C_{18}H_{19}O_4Br=C_8H_5\cdot CH_2\cdot CHBr\cdot CO\cdot C_6H_2(O\cdot CH_3)_3$. B. Beim Einleiten von Chlorwasserstoff in eine äther. Lösung von Phloroglucin-trimethyläther und α-Brom-β-phenyl-propionitril bei Gegenwart von Zinkchlorid und Kochen des Reaktionsprodukts mit Wasser (Freudenberg, Fikentscher, Harder, A. 441, 175). Krystalle (aus Eisessig). F: 101—102°. Wird bald an der Oberfläche gelb.
- 2.4 Dioxy- β -[4 methoxy-phenyl]-propiophenon, 2'.4'- Dioxy-4-methoxy-hydrochalkon $C_{1a}H_{1a}O_4=CH_3\cdot O\cdot C_aH_4\cdot CH_2\cdot CH_2\cdot CO\cdot C_aH_3(OH)_3$. B. Aus Resoroin und 4-Methoxy-hydrozimt-säurechlorid in Gegenwart von Aluminiumchlorid in Nitrobenzol (Shinoda, Sato, J. pharm. Soc. Japan 48, 109; C. 1928 II, 1885). Durch katalytische Hydrierung von 2'.4'- Dioxy-4-methoxy-chalkon (Sh., S.). Nadeln mit 1 H_2O . F: 82—83°.
- 2-0xy-4-āthoxy- β -[4-methoxy-phenvl]-propiophenon, 2'-0xy-4-methoxy-4'-āthoxy-hydrochalkon $C_{12}H_{20}O_4=CH_2\cdot O\cdot C_2H_4\cdot CH_2\cdot CH_2\cdot CO\cdot C_4H_4(OH)\cdot O\cdot C_2H_5$. B. Bei der Hydrierung von 2-Oxy-4-methoxy-4'-āthoxy-chalkon in Gegenwart von Platinschwarz (Tasaki, Acta phytoch. 2, 49; C. 1925 II, 1356). F: 46°. Absorptionsspektrum in Lösung: T., Acta phytoch. 2, 49; 3, 293; C. 1925 II, 1356; 1927 II, 1949.
- 4. 3.4-Dioxy- β -[4-oxy-phenyl]-propiophenon, OH 4.3'.4'-Trioxy-hydrochalkon $C_{15}H_{14}O_4$, s. neben-stehende Formel.
- 3.4 Dimethoxy- β -[4 methoxy-phenvi]-proviophenon, 4.3'.4'-Trimethoxy-hydrochalkon $C_{18}H_{26}O_4 = CH_3 \cdot O \cdot C_6H_4 \cdot CH_3 \cdot CO \cdot C_6H_6 (O \cdot CH_3)_2$. B. Durch Hydrierung von 4.3'.4'-Trimethoxy-chalkon in Gegenwart von Platinschwarz in Eisessig (Tasaki, Acta phytoch. 8, 292, 293; C. 1927 II, 1949). Nadeln (aus Alkohol). F: 65—66°. Ultraviolett-Absorptionsspektrum in alkoh. Lösung: T.

OXY-OXO-VERBINDUNGEN $C_nH_{2n-16}O_4$ und $C_nH_{2n-18}O_4$ [Syst. Nr. 802

5. 4.	-Oxy- β - [[2.3-dioxy-phe hydrochalkon	nyl]-propi	opi	henon,	HÔ	ÓН	•	
2.8.4' -	Trioxy -	hydrochalleon	$C_{15}H_{14}O_4$	8.	neben -			CH CO . /	
stehende	Formel.					_		8.018.00.	

4-Methoxy- β -[2.3-dimethoxy-phenyl]-propiophenyn, 2.3.4'-Trimethoxy-hydrochalkon $C_{12}H_{26}O_4=(CH_3\cdot O)_2C_2H_3\cdot CH_2\cdot CH_2\cdot CO\cdot C_4H_4\cdot O\cdot CH_3$. B. Durch Hydrierung von 2.3.4'-Trimethoxy-chalkon bei Gegenwart von Platinmohr in Eisessig (Periper, J. pr. [2] 108, 353). — Blättehen (aus Petroläther). F: 53—54°. Sehr leicht löslich in Alkohol und Ligroin, schwer in Petroläther. Löst sich in konz. Schwefelsäure hell orangefarben.

Oxim $C_{18}H_{21}O_4N = (CH_2 \cdot O)_2C_6H_2 \cdot CH_2 \cdot CH_2 \cdot C(:N \cdot OH) \cdot C_6H_4 \cdot O \cdot CH_2$. Nadeln (aus Alkohol). F: 127—128° (Periffer, J. pr. [2] 108, 354). Leicht löslich in heißem Alkohol. 100 Mol einer 10% igen wäßrigen Natronlauge lösen 0,2 Mol Oxim (Pf., J. pr. [2] 108, 344, 354; 109, 376).

6.
$$4-Oxy-\beta-[3.4-dioxy-phenyl]-propio-phenon, 3.4.4'-Trioxy-hydrochalkon $C_{15}H_{14}O_4$, s. nebenstehende Formel.$$

- 4-Methoxy- β -[3.4-dimethoxy-phenvi]-pronjophenon, 3.4.4'-Trimethoxy-hydrochalkon $C_{18}H_{26}O_4=(CH_3\cdot O)_2C_6H_2\cdot CH_2\cdot CH_2\cdot CO\cdot C_6H_4\cdot O\cdot CH_3$. B. Durch Hydrierung von 3.4.4'-Trimethoxy-chalkon bei Gegenwart von Platinmohr in Alkohol (Pfelffer, Mitarb., J. pr. [2] 119, 118). Nadeln (aus Alkohol). F: 57°. Löst sich in konz. Schwefelsäure mit hellbraungelber Farbe und allmählich auftretender grüner Fluorescenz.
- 4-Äthoxy- β -[3-methoxy-4-äthoxy-nhenvl]-nronionhenon, 3-Methoxy-4.4'-diäthoxy-hydrochalkon $C_{20}H_{24}O_4=C_2H_5$. $O\cdot C_4H_3(O\cdot CH_3)\cdot CH_2\cdot CH_2\cdot CO\cdot C_4H_4\cdot O\cdot C_2H_5$. B. Durch Hydrierung von 3-Methoxy-4.4'-diäthoxy-chalkon bei Gegenwart von Platinschwarz in Eisessig (Tasael, Acta phytoch. 8, 291, 293; C. 1927 II, 1949). Nadeln (aus Alkohol). F: 70—71°. Ultraviolett-Absorptionsspektrum in alkoh. Lösung: T.

7. 4.6' – Dioxy-2'-methyl-benzoin
$$C_{15}H_{14}O_4$$
, s. nebensethende Formel.

4.6' – Dimethoxy-2'-methyl-benzoinimid $C_{17}H_{19}O_2N = CH_3$
 $C_4H_3(O\cdot CH_3)\cdot CH(OH)\cdot C(:NH)\cdot C_4H_4\cdot O\cdot CH_3$. — Hydrochlorid.

C_cH₃(O·CH₃)·CH(OH)·C(:NH)·C_cH₄·O·CH₃.—Hydrochlorid.

B. Entsteht bei der Umsetzung von 6-Methoxy-2-methyl-benzaldehydcyanhydrin mit 4-Methoxy-phenylmagnesiumbromid in Äther und Zersetzung des Reaktionsprodukts mit Eis und Salzsäure (Asahina, Ishidate, J. pharm. Soc. Japan 1925, Nr. 521, S. 3; C. 1926 I, 82). Hellgelbe Krystalle (aus salzsäurehaltigem Wasser). F: 234°. Fast unlöslich in Alkohol, Aceton und Äther. Liefert bei der Oxydation mit Fehlingscher Lösung in verd. Alkohol unter gelindem Erwärmen 6.4′-Dimethoxy-2-methyl-benzil (S. 483).

8. [2.4.6-Trioxy-phenyl]-[4-methyl-benzyl]keton, 2.4.6-Trioxy-4'-methyl-desoxubenzoin

C₁₈H₁₄O₄, s. nebenstehende Formel. B. Beim Einleiten von CH₂.

CH₂·CO.

OH

Chlorwasserstoff in eine Lösung von Phloroglucin und p-Tolylessigsäure-nitril in Äther bei Gegenwart von Zinkchlorid und

Koohen des Reaktionsprodukts mit Wasser (CHAPMAN, STEPHEN, Soc. 123, 409). — Hellrote

Tafeln mit 1½ H₂O (aus Wasser). Schmilzt wasserfrei bei 205—206°. Leicht löslich in den
meisten organischen Lösungsmitteln außer Ligroin, fast unlöslich in kaltem Wasser. Löslich
in verd. Natronlauge mit gelber Farbe. Leicht löslich in konz. Schwefelsäure. — Reduziert
Fehlingsche Lösung. Die alkoh. Lösung gibt mit Eisenchlorid eine dunkelrotbraune Färbung.
Die Lösung in Alkohol oder Äther wird durch Natriumhypochlorit hellrot gefärbt.

9. 3-Oxy-2-[\beta-oxy-\gamma-\gamma-dimethyl-propenyl]-nanhthochinon-(1.4), Oxyiso-lapachol C₁₅H₁₄O₄, Formel I bzw. desmotrope Formen (H 426). Reduktionspotential in waßrigalkoholischer Salzsäure bei 25° in Gegenwart von Lithiumchlorid: Fieser, Am. Soc. 50, 449.

$$I. \qquad \underbrace{\overset{O}{\circ}}_{\circ} \cdot \operatorname{CH} : \operatorname{C}(\operatorname{OH}) \cdot \operatorname{CH}(\operatorname{CH}_{9})_{9}}_{\circ} \qquad \qquad II. \qquad \underbrace{\overset{O}{\circ}}_{\circ} \cdot \operatorname{CH} : \operatorname{CH} \cdot \operatorname{C}(\operatorname{OH}_{9})_{9} \cdot \operatorname{OH}}_{\circ}$$

10. 3-Oxy-2-[γ-oxy-γ-γ-dimethyl-propenyl]-naphthockinon-(1.4) C₁₂H₄₄O₄, Formel II bzw. desmotrope Formen. Hochschmelzende Form, Lomatiol (H 427). Reduktionspotential in wäßrig-alkoholischer Salzsäure bei 25° in Gegenwart von Lithium-chlorid: FIESEB, Am. Soc. 50, 449.

h) Oxy-oxo-Verbindungen $C_n H_{2n-18} O_4$.

1. Oxy-oxo-Verbindungen C12H8O4.

- 1. 3.6-Dioxy-acenaphthenchinon $C_{18}H_4O_4$, s. nebenstehende Formel. OC—CO 3.6-Dimethoxy-acenaphthenchinon $C_{14}H_{10}O_4 = (CH_8 \cdot O)_2C_{10}H_4 \cdot CO$. B. Neben 3'-Oxy-[benzo-1'.2':4.5-cumarandion] (Syst. Nr. 2535) aus 1.6-Dimethoxy-naphthalin und Oxalylchlorid bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff unter Eiskühlung (Lesser, Gad, B. 60, 244). Gelbe Nadeln (aus Eis-
- oxy-naphthalin und Oxalylchlorid bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff unter Eiskühlung (Lesser, Gad, B. 60, 244). Gelbe Nadeln (aus Eisessig). F: 227⁶ (korr.).

 2. 3.8-Dioxy-acenaphthenchinon C₁₂H₄O₄, s. nebenstehende oc—co
- Formel.

 3.8-Dimethoxy-acenaphthenchinon $C_{14}H_{10}O_4 = (CH_3 \cdot O)_2C_{10}H_4 \stackrel{CO}{\downarrow_CO}$.

 HO. OH

 B. Durch Hopersung von 2.7-Dimethoxy-nephthelin mit Oveleëuse his phonylimidehlorid
- B. Durch Umsetzung von 2.7-Dimethoxy-naphthalin mit Oxalsaure-bis-phenylimidchlorid und Aluminiumchlorid in Schwefelkohlenstoff und Zersetzung des Reaktionsprodukts mit verd. Salzsäure (Staudinger, Schlenker, Goldstein, Helv. 4, 355, 356). Neben 5'-Methoxy-[benzo-1'.2':4.5-cumarandion] (Syst. Nr. 2535) bei der Kondensation von 2.7-Dimethoxy-naphthalin mit Oxalylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (Lesser, Gad, B. 60, 245; vgl. St., Sch., G., Helv. 4, 336, 340). Orangerotes Pulver; Krystalle (aus Nitrobenzol). F: 279° (korr.) (L., G.), 273° (Str., G., Sch.). Schwer löslich in organischen Lösungsmitteln außer heißem Eisessig und Nitrobenzol (Str., G., Sch.). Löst sich beim Erwärmen mit Na₂S₂O₄-Lösung und verd. Natronlauge mit tiefblauer Farbe (Str., G., Sch.). Das Monophenylhydrazon schmilzt bei 128° (korr.), das Bis-phenylhydrazon bei 232—233° (korr.) (L., G.).

2. Oxy-oxo-Verbindungen $C_{13}H_8O_4$.

1.4.6 - Trioxy - 9 - oxo - fluoren, 1.4.6 - Trioxy - fluorenon $C_{18}H_8O_4$, s. nebenstehende Formel.

1.4.6 - Trimethoxy - fluorenon $C_{18}H_14O_4 = (CH_3 \cdot O)_3C_{13}H_5O$. B. Bei der Einw. von kalter konzentrierter Schwefelsäure auf 5.2'.5'-Trimethoxy - OH diphenyl-carbonsäure-(2) (FIESER, Am. Soc. 51, 2486). — Gelbe Nadeln (aus Alkohol). F: 157°. Leicht löslich in Alkohol.

3. Oxy-oxo-Verbindungen $C_{14}H_{10}O_4$.

- 1. 2.4 Dioxy $\alpha.\alpha'$ dioxo dibenzul, Phenyl [2.4 dioxy phenyl] diketon, 2.4 Dioxy benzil $C_{14}H_{10}O_4 = C_2H_5 \cdot CO \cdot CO \cdot C_4H_4(OH)_3$ (vgl. H 428). Eine von Marsh, Strephen (Soc. 127, 1636) aus Benzoyleyanid und Resoroin erhaltene, als 2.4-Dioxy-benzil beschriebene Verbina .g vom Schmelzpunkt 239° wird von Borsche (B. 62, 1360; vgl. a. B., Walter, B. 59, 462) als 6-Oxy-2-oxo-3-phenyl-3-[2.4-dioxy-phenyl]-cumaran $C_{90}H_{14}O_5$ (Syst. Nr. 2560) formuliert. Versuche zur Darstellung von 2.4-Dioxy-benzil durch Verseifung des Monoxims (s. u.) waren erfolglos (Urushibara, J. pharm. Soc. Japan 48, 117; C. 1928 II, 1880).
- 2.4-Dioxy-benzil-α'-oxim C₁₄H₁₁O₄N = C₆H₅·C(:N·OH)·CO·C₆H₃(OH)₂. B. Man behandelt 2.4-Diacetoxy-desoxybenzoin in Ather mit Athylnitrit oder Isoamylnitrit und Chlorwasserstoff unter Eiskühlung und zersetzt das Reaktionsgemisch mit Eis (URUSHIBARA, J. pharm. Soc. Japan 48, 117; C. 1928 II, 1880). Krystalle (aus verd. Alkohol). F: 187°. Reagiert nicht mit Hydroxylamin und läßt sich nicht zu 2.4-Dioxy-benzil verseifen.
- 2.4-Dioxy-benzii-dioxim $C_{14}H_{19}O_4N_9 = C_6H_5 \cdot C(:N \cdot OH) \cdot C(:N \cdot OH) \cdot C_6H_8(OH)_9$ (H 428). Konnte von Massi, Stephen (Soc. 127, 1636) nach den Angaben von Finzi (M. 26, 1131) nicht erhalten werden 1).
- 2. 2.2'-Dioxy- α α' -dioxo-dihenzul, Bis-[2-oxy-phenyl]-diketon, 2.2'-Dioxy-benzil $C_{14}H_{10}O_4 = HO \cdot C_4H_4 \cdot CO \cdot CO \cdot C_4H_4 \cdot OH$.
- 2-0xv-2'-methoxy-benzil C₁₈H₁₂O₄ = HO·C₆H₄·CO·CO·C₆H₄·O·CH₃. B. Beim Kochen von 2.2'-Dimethoxy-benzil mit Eisessig und 50% iger Bromwasserstoffsäure (Schönberg, Kraemer, B. 55, 1185). Prismen (aus Wasser). F: 120°. Leicht löslich in den üblichen

¹⁾ Aus dem Original ist indessen nicht zu ersehen, ob die Versuche mit dem Präparat von Marsh, Stephen (s. o.) oder mit einem nach Finzi hergestellten Präparat ausgeführt wurden.

organischen Lösungsmitteln, schwer in heißem Wasser. Löstich in Alkalflaugen. Löst sich in konz. Schwefelsäure mit grüner Farbe. Die wäßr. Lösung gibt mit Eisenchlorid eine violette Färbung.

- 2.2'-Dimethoxy-benzil C₁₆H₁₄O₄ = CH₂·O·C₆H₄·CO·CO·C₆H₄·O·CH₂ (H 428). B. Durch Einw. von Fehlingscher Lösung auf 2.2'-Dimethoxy-benzoin in 50% igem Alkohol (Schönberg, Kraemer, B. 55, 1184). Aus 2-Oxy-2'-methoxy-benzil und Dimethylsulfat in alkal. Lösung (Sch., Kr., B. 55, 1185). Blättchen (aus Ligroin). F: 130° (unter Gelbfärbung) (Sch., Kr.), 130° (korr.) (Garner, Sugden, Soc. 1927, 2882). D. zwischen 130° (1,128) und 187° (1,086): G., S. Oberflächenspannung bei 137,5°: 3′,64, bei 155,5°: 36,22, bei 178°: 34,04 dyn/cm (G., S.). Parachor: G., S. Últraviolett-Absorptionsspektrum in alkoh. Lösung: Sch., Kr., B. 55, 1177. Löst sich in den gebräuchlichen organischen Lösungsmitteln mit gelber, in konz. Schwefelsäure int rotbrauner Farbe (Sch., Kr.). Liefert beim Kochen mit Eisessig und 50% iger Bromwasserstoffsäure 2-Oxy-2'-methoxy-benzil (Sch., Kr.). Bei längerer Einw. von alkoh. Kaliumäthylat-Lösung auf die Lösung in Äther in der Kälte unter Luftabschluß erhält man 2.2'-Dimethoxy-benzilsäure (Schönberg, Keller, B. 56, 1641). Das Bis-phenylhydrazon schmilzt bei 198—199° (Sch., Kr.).
- 2.2'- Diäthoxy-benzii $C_{18}H_{18}O_4=C_2H_5\cdot O\cdot C_0H_4\cdot CO\cdot CO\cdot C_8H_4\cdot O\cdot C_2H_5$. B. Man kocht Salicylaldehyd-äthyläther mit Kaliumcyanid in wäßr. Alkohol und oxydiert das entstandene 2.2'-Diäthoxy-benzoin mit Fehlingscher Lösung (Schönberg, Malchow, B. 55, 3747). Blättohen (aus Alkohol). F: 157° (gelbe Schmelze). Die bei Zimmertemperatur farblosen Lösungen in Alkohol, Eisessig, Benzol und Benzin werden in der Hitze schwach gelb. Löst sich in konz. Schwefelsäure mit gelbroter Farbe. Wird beim Erhitzen mit konzentriertem wäßrigem Ammoniak im Rohr auf 120° oder durch Wasserstoffperoxyd in saurer oder alkalischer Lösung nicht angegriffen. Reagiert sehr langsam mit o-Diaminen.
- 2.2'- Dimethoxy-benzil-dioxim $C_{16}H_{16}O_4N_8=CH_3\cdot O\cdot C_6H_4\cdot C(:N\cdot OH)\cdot C(:N\cdot OH)\cdot C_6H_4\cdot O\cdot CH_3$. Prismen. Zersetzt sich bei ca. 235° (Schönberg, Kraemer, B. 55, 1184).
- 3. $2.4'-Dioxy-\alpha.\alpha'-dioxo-dibenzyl$, [2-Oxu-phenul]-[4-oxu-phenul]-diketon. 2.4'-Dioxy-benzil $C_{14}H_{10}O_4=H0\cdot C_0H_4\cdot C0\cdot C0\cdot C_0H_4\cdot OH$. B. Beim Kochen von 2.4'-Dimethoxy-benzil mit Eisessig und 48% iger wäßriger Bromwasserstoffsäure im Kohlensäurestrom (ASAHINA, ASANO, B. 62, 174). Schmeckt schwach süß. Gelbliche Prismen (aus Benzol). F: 164°. Löslich in Sodalösung. Löst sich in konz. Schwefelsäure mit tief blutroter Farbe. Gibt mit alkoh. Eisenchlorid-Lösung eine violette Färbung. Liefert beim Erwärmen mit Natronlauge 2.4'-Dioxy-benzilsäure.
- 2.4'- Dimethoxy-benzil C₁₈H₁₄O₄ = CH₂·O·C₆H₄·CO·CO·C₆H₄·O·CH₃. B. Aus 4.2'-Dimethoxy-benzoin durch Oxydation mit Fehlingscher Lösung (Asahina, Terasaka, J. pharm. Soc. Japan 1923, Nr. 494, 19; C. 1923 III, 434). Prismen. F: 104—105°. Liefert bei der Einw. von Alkalien 2.4'-Dimethoxy-benzilsäure (A., T.). Beim Kochen mit Eisessig und 48% iger wäßriger Bromwasserstoffsäure im Kohlendioxydstrom entsteht 2.4'-Dioxy-benzil (Asahina, Asano, B. 62, 174).
- 4. 3.3'-Dioxy- $\alpha.\alpha'$ -dioxo-dibenzul, Bis-[3-oxy-phenyl]-diketon, 3.3'-Dioxybenzil $C_{14}H_{10}O_4 = HO \cdot C_6H_4 \cdot CO \cdot CO \cdot C_4H_4 \cdot OH$.
- 3.3'- Dimethoxy- benzil $C_{16}H_{14}O_4=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot CO\cdot C_6H_4\cdot O\cdot CH_3$. B. Durch Einw. von Fehlingscher Lösung auf 3.3'-Dimethoxy-benzoin in siedendem verdünntem Alkohol (Schönberg, Malchow, B. 55, 3752). Gelbe Prismen (aus 60% igem Alkohol). F: 83° (Sch., M.). Löslich in den üblichen organischen Lösungsmitteln (Sch., M.). Liefert bei längerem Behandeln mit Kaliumäthylat-Lösung in Äther in der Kälte unter Luftabschluß 3.3'-Dimethoxy-benzilsäure (Sch., Keller, B. 56, 1642).
- 5. 4.4' Dioxy α.α' dioxo dibenzyi, Bis [4 oxy phenyl] diketon, 4.4' Dioxy benzil C₁₄H₁₀O₄ = HO·C₄H₄·CO·CO·C₆H₄·OH. B. Beim Kochen von 4.4'-Dioxy-benzil mit Bromwasserstoffsäure (D: 1,78) in Eisessig (Schönberg, Kraemer, B. 55, 1188). Krystalle (aus Wasser). F: 235°. Die Schmelze ist intensiv gelb. Leicht löslich in heißem Wasser und in den gebräuchlichen organischen Lösungsmitteln. Löst sich in konz. Schwefelsäure mit rotbrauner Farbe. Die wäßr. Lösung gibt mit Eisenchlorid eine violette Färbung.
- 4.4'-Dimethoxy-benzil, Anisil C_{1e}H_{1e}O₄ = CH₂·O·C_eH₄·CO·CO·C_eH₄·O·CH₈ (H 428; E I 705). B. Beim Erwärmen von Anisol mit Oxalsäure-bis-phenylimid-chlorid in Schwefelkohlenstoff bei Gegenwart von Aluminiumchlorid und Zersetzen des Reaktionsprodukts mit verd. Salzsäure (Staudinger, Goldstein, Schlenker, Helv. 4, 358). Bei kurzem Kochen von Anisoin mit Nitrobenzol bei Gegenwart von etwas Natriumäthylat in Alkohol (Nisber, Soc. 1928, 3124). Verdeckung der Fluorescenz des Anisils unter der Quarzlampe durch nicht erregbare Substanzen: Hein, Retter, J. pr. [2] 119, 370.

Anisil liefert bei der Hydrierung in Essigester bei 60° in Gegenwart von Platinoxyd Anisoin (Buck, Jeneins, Am. Soc. 51, 2165). Anisoin entsteht ferner bei der Reduktion mit alkoh. Chrom(II)-chlorid-Lösung (Conant, Cutter, Am. Soc. 48, 1025) sowie bei der Einw. von Magnesium und Magnesiumjodid in Äther + Benzol und Behandlung des Reaktionsprodukts mit Wasser (Gomberg, van Natta, Am. Soc. 51, 2241). Beim Kochen mit Brom in Eisessig entsteht 3.3'-Dibrom-4.4'-dimethoxy-benzil (van Alphen, R. 48, 1113). Anisil gibt mit absol. Salpetersäure bei Zimmertemperatur 3.5.3'.5'-Tetranitro-4.4'-dimethoxy-benzil und 2.4.6-Trinitro-anisol und sehr wenig 3.5.3'.5'-Tetranitro-4.4'-dimethoxy-benzil (van A., R. 48, 1115, 1116); bei der Einw. von absol. Salpetersäure in Acetanhydrid bei 0° bildet sich 3.3'-Dinitro-4.4'-dimethoxy-benzil (van A., R. 48, 1199); beim Kochen mit absol. Salpetersäure und Acetanhydrid erhält man 2.4-Dinitro-anisol und wenig 3.5.3'.5'-Tetranitro-4.4'-dimethoxy-benzil (van A., R. 48, 1117). Beim Erhitzen mit konzentriertem wäßrigem Ammoniak im Rohr auf 120° entsteht 2.4.5-Tris-[4-methoxy-phenyl]-oxazol (Syst. Nr. 4268) (Schönberg, B. 54, 244). Anisil liefert beim Kochen mit Hydrazinhydrat in alkoh. Lösung je nach den Versuchsbedingungen das Monohydrazon oder das Dihydrazon (van A., R. 48, 1201, 1202; vgl. Schlenk, Bergmann, A. 463, 82); beim Kochen mit Hydrazinsulfat oder Hydrazinhydrochlorid in Alkohol erhält man Anisilazin (Schaptero, B. 62, 2135; van A., B. 62, 3029). Liefert beim Schütteln mit Ammoniumcyanid in verd. Alkohol unter Zusatz von Äther Anissäureamid und Anisaldehydcyanhydrin (Dakin, Habington, J. biol. Chem. 55, 492).

C₁₈H₁₆O₄ + SnCl₄. Rote Krystalle. Wird durch Wasser zersetzt (Schönberg, B. 58, 1801).

4.4'-Diäthoxy-benzil, Phenetil $C_{18}H_{18}O_4=C_2H_5\cdot O\cdot C_6H_4\cdot CO\cdot CO\cdot C_6H_4\cdot O\cdot C_2H_5$ (E I 705). B. Bei der Einw. von Oxalylchlorid auf Phenetol bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff unter Eiskühlung (Schönberg, Kraemer, B. 55, 1186; Lewis, Cramer, Bly, Am. Soc. 46, 2062). — F: 150—151° (L., C., B.). Dipolmoment $\mu \times 10^{18}$: 5,4 (verd. Lösung; Benzol) (Sängewald, Weissberger, Phys. Z. 30, 268; C. 1929 II, 139). — Liefert bei längerem Behandeln mit Kaliumäthylat-Lösung in Äther in der Kälte unter Luftabschluß -44'-Diäthoxy-benzilsäure (SCH., Keller, B. 56, 1641). Beim Erhitzen mit konzentriertem wäßrigem Ammoniak im Rohr entstehen 4-Äthoxy-benzoesäure und 2.4.5-Tris-[4-äthoxy-phenyl]-oxazol (Syst. Nr. 4268) (SCH., Kr.)

4.4'-Diphenoxy-benzil $C_{se}H_{18}O_4=C_eH_5\cdot O\cdot C_eH_4\cdot CO\cdot CO\cdot C_eH_4\cdot O\cdot C_eH_5$. B. Durch Einw. von Oxalylchlorid auf Diphenyläther bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (Schönberg, Kraemer, B. 55, 1190). — Gelbliche Blättchen (aus Benzin). F: 116°; die Schmelze ist gelb. Leicht löslich in den gebräuchlichen Lösungsmitteln mit gelber, in konz. Schwefelsäure mit rotbrauner Farbe. — Die Lösung in kaltem Alkohol liefert beim Behandeln mit 15%igem Wasserstoffperoxyd und überschüssiger wäßriger Kalilauge 4-Phenoxy-benzoesäure.

4.4'- Dibenzyloxy- benzil $C_{28}H_{21}O_4 = C_6H_5 \cdot CH_2 \cdot O \cdot C_6H_4 \cdot CO \cdot CO \cdot C_8H_4 \cdot O \cdot CH_2 \cdot C_8H_8$. Beim Kochen von 4.4'-Dioxy-benzil mit etwas mehr als 2 Mol Benzylbromid in Kaliumäthylat-Lösung (Schönberg, Bleyberg, B. 55, 3755). — Tiefgelbe Prismen (aus Eisessig). F: 126°. Löslich in den gebräuchlichen organischen Lösungsmitteln mit tief gelber Farbe, unlöslich in Wasser und Alkalilaugen. Durch plötzliches Abkühlen heißer konzentrierter Lösungen in Alkohol, Eisessig oder Benzin erhält man farblose Nadeln (vielleicht Peroxyd-Form; vgl. dagegen Burawoy, B. 65 [1932], 1068), die bei ca. 124° unter Gelbfärbung schmelzen und bei Berührung mit Lösungsmitteln wieder in die gelbe Form übergehen. — Bei der Oxydation mit Wasserstoffperoxyd in siedender alkoholisch-wäßriger Natronlauge entsteht 4-Benzyloxybenzoesäure.

4.4'- Dimethoxy- benzil - monohydrazon, Anisilmonohydrazon $C_{16}H_{16}O_3N_2=CH_3\cdot O\cdot C_6H_4\cdot C(:N\cdot NH_2)\cdot CO\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus Anisil und Hydrazinhydrat durch 5-stdg. Erhitzen ohne Lösungsmittel auf dem Wasserbad, durch 6-stdg. Erhitzen mit Alkohol im Rohr auf 100° oder durch $^1/_2$ -stdg. Kochen bei Gegenwart von Eisessig in Alkohol (van Alphen, R. 48, 1201; vgl. a. van A., B. 62, 3030). — Nadeln (aus Alkohol). F: 143° (Zers.) (van A., R. 48, 1201; B. 62, 3030). Löslich in Benzol, Chloroform, Alkohol und Aceton, unlöslich in Wasser, Äther, Tetrachlorkohlenstoff, Petroläther und Schwefelkohlenstoff (van A., R. 48, 1201). — Beim Kochen mit wäßrig-alkoholischer Schwefelsäure erhält man Anisil, Anisilazin und Hydrazinsulfat (van A., R. 48, 1201). Reduziert Quecksilber(II)-oxyd beim Erwärmen in verd. Alkohol (van A., R. 48, 1201).

[4-Methoxy-phenyl] - [4-methoxy-benzoyl]-ketazin, Anisilazin $C_{32}H_{32}O_{6}N_{2}=[CH_{3}\cdot O\cdot C_{6}H_{4}\cdot CO\cdot C(C_{6}H_{4}\cdot O\cdot CH_{3}):N-]_{2}\cdot B$. Beim Kochen von Anisil in Alkohol mit Hydrazinsulfat (VAN ALPHEN, R. 48, 1203) oder Hydrazinhydrochlorid (VAN A., B. 62, 3029; vgl. Schafer, B. 62, 2136). — Heligelbe Nadeln (aus Alkohol). F: 165° (VAN A., R. 48, 1203). Löslich in Benzol, Chloroform und Aceton, schwer löslich in Alkohol, unlöslich in Wasser, Äther, Tetrachlorkohlenstoff, Petroläther und Schwefelkohlenstoff (VAN A., R. 48, 1203).

- 4.4'- Dimethoxy-benzii-dihydrazon, Anisidihydrazon $C_{18}H_{18}O_{2}N_{4} = [CH_{8}\cdot O\cdot C_{8}H_{4}\cdot C(:N\cdot NH_{4})-]_{2}$. B. Beim Kochen von Anisil mit überschüssigem Hydrazinhydrat ohne Lösungsmittel (van Alphen, R. 48, 1202) oder in Propylalkohol (Schlenk, Bebgmann, A. 463, 82). Nadeln (aus Alkohol). F: 118° (Sch., B.), 122° (van A.). Löslich in Alkohol, Benzol, Chloroform und Aceton, unlöslich in Wasser, Äther, Tetrachlorkohlenstoff, Petroläther und Schwefelkohlenstoff (van A.). Liefert beim Behandeln mit Quecksilber(II)-oxyd in Benzol 4.4'-Dimethoxytolan (E II 6, 997) (Sch., B.).
- 4.4'- Dimethoxv-benzil-bis-[4-chlor-benzyliden-hydrazon], Anisil-bis-[4-chlor-benzyliden-hydrazon] $C_{20}H_{24}O_2N_4Cl_2=[CH_2\cdot O\cdot C_2H_4\cdot C(:N\cdot N:CH\cdot C_6H_4Cl)-]_3$. B. Beim Erwärmen von Anisildihydrazon mit 4-Chlor-benzaldehyd in alkoh. Lösung (van Alphen, R. 48, 1202). Gelbe Nadeln. F: 184°. Löslich in Alkohol, Benzol, Chloroform, Tetrachlorkohlenstoff, Aceton und Schwefelkohlenstoff, unlöslich in Wasser, Äther und Petroläther.
- 3 3'- Dibrom 4.4'-dimethoxy-benzil, 3.3'- Dibrom anisil $C_{1e}H_{1s}O_4Br_s = CH_3 \cdot O \cdot C_eH_3Br \cdot CO \cdot CO \cdot C_eH_3Br \cdot O \cdot CH_s$. Beim Kochen von Anisil oder Anisoin mit Brom in Eisessig (van Alphen, R. 48, 1113, 1114). Hellgelbe Nadeln (aus Eisessig). F: 233°. Löslich in Benzol, Chloroform, Tetrachlorkohlenstoff, Aceton und siedendem Eisessig, unlöslich in Wasser, Alkohol, Äther, Ligroin und Schwefelkohlenstoff. Liefert mit absol. Salpetersäure 5.5'-Dibrom-3.3'-dinitro-4.4'-dimethoxy-benzil (s. u.).
- 3.3'- Dibrom 4.4'- diäthoxy- benzil, 3.3'- Dibrom-phenetil $C_{18}H_{14}O_4Br_2 = C_2H_5 \cdot O \cdot C_0H_3Br \cdot O$
- 3.3'- Dinitro-4.4'- dimethoxy-benzil, 3.3'- Dinitro-anisil $C_{16}H_{12}O_8N_8=CH_3\cdot O\cdot C_6H_3(NO_8)\cdot CO\cdot CO\cdot C_6H_3(NO_3)\cdot O\cdot CH_3$. Bei der Einw. von absol. Salpetersäure auf Anisil oder Anisoin in Acetanhydrid bei 0° (van Alphen, R. 48, 1199, 1200). Hellgelbe Blätter (aus Aceton). F: 212°. Ziemlich schwer löslich in Aceton, fast unlöslich in den meisten anderen organischen Lösungsmitteln. Bei vorsichtiger Behandlung mit absol. Salpetersäure entsteht 3.5.3'.5'-Tetranitro-4.4'-dimethoxy-benzil (s. u.).
- 3.3'- Dinitro-4.4'- diāthoxy-benzil, 3.3'- Dinitro-phenetil $C_{18}H_{16}O_8N_8=C_2H_5\cdot O\cdot C_4H_8(NO_2)\cdot CO\cdot CO\cdot C_6H_8(NO_2)\cdot O\cdot C_2H_5$. B. Bei der Einw. von Salpeterschwefelsäure auf 4.4'-Diāthoxy-benzil unterhalb 50° (Schönberg, Kraemer, B. 55, 1187). Gelbe Blättchen (aus Eisessig). F: 216°. Schwer löslich in Alkohol, Chloroform und Eisessig. Löst sich in konz. Schwefelsäure mit hellgelber Farbe.
- 5.5'- Dibrom 3.3'- dinitro 4.4'- dimethoxy- benzil, 5.5'- Dibrom 3.3'- dinitro anisil $C_{18}H_{10}O_8N_3Br_2=CH_3\cdot O\cdot C_4H_2Br(NO_2)\cdot CO\cdot CO\cdot C_4H_2Br(NO_2)\cdot O\cdot CH_3$. B. Aus 3.3'- Dibrom-4.4'-dimethoxy-benzil beim Eintragen in absol. Salpetersäure (van Alphen, R. 48, 1114). Hellgelbe Nadeln (aus Eisessig). F: 220°. Bei der Einw. von Salpeterschwefelsäure entsteht 6-Brom-2.4-dinitro-anisol.
- 3.5.3′.5′-Tetranitro 4.4′-dimethoxv-benzil, 3.5.3′.5′-Tetranitro-anisil $C_{16}H_{10}O_{12}N_4=CH_3\cdot O\cdot C_6H_4(NO_2)_2\cdot CO\cdot C_6H_4(NO_2)_2\cdot O\cdot CH_2$. B. Entsteht neben 2.4-Dinitro-anisol aus Anisoin und absol. Salpetersäure bei 0° (van Alphen, R. 48, 1115). Aus Anisil und absol. Salpetersäure bei gewöhnlicher Temperatur, neben 2.4.6-Trinitro-anisol (van A., R. 48, 1115). Bei vorsichtigem Eintragen von 3.3′-Dinitro-4.4′-dimethoxy-benzil in absol. Salpetersäure (van A., R. 48, 1200). Gelbe Nadeln (aus Eisessig). F: 233° (van A., R. 48, 1115, 1200). Schwer löslich in Nitrobenzol, Aceton und siedendem Eisessig, unlöslich in den übrigen organischen Lösungsmitteln (van A., R. 48, 1115). Wird durch siedende absolute Salpetersäure zu 3.5-Dinitro-anissäure oxydiert, durch siedende Salpeterschwefelsäure in 2.4.6-Trinitro-anisol übergeführt (van A., R. 48, 1116). Gibt beim Erhitzen mit alkoholisch-wäßrigem Ammoniak auf 100° 3.5.3′.5′.Tetranitro-4.4′-diamino-benzil (Syst. Nr. 1874); reagiert analog mit primären Aminen (van A., R. 48, 1118).
- Anisii-mono-dibenzylmercaptol $C_{20}H_{28}O_3S_2=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot C(S\cdot CH_3\cdot C_6H_5)_2\cdot C_6H_4\cdot O\cdot CH_3$. Bei der Einw. von etwas mehr als 2 Mol Benzylmercaptan auf Anisii in Eisessig unter Durchleiten von Chlorwasserstoff (Schönberg, Schütz, A. 454, 53). Krystalle (aus Alkohol). F: 112,5° (Sch., Sch., A. 454, 53); färbt sich bei höherer Temperatur grün (Sch., Sch., A. 454, 53; B. 62, 2336). Löslich in konz. Schwefelsäure mit roter Farbe (Sch., Sch., A. 454, 53).

^{6. 1.2.3-}Trioxy-9-exo-9.10-dihydro-anthracen, 1.2.3-Trioxy-anthron-(9) bzw. 1.2.3.9-Tetraoxy-anthracen, 1.2.3-Trioxy-anthranol-(9), Anthragallolanthranol $C_{14}H_{10}O_4$, Formel I bzw. II (S. 477) (H 430). Zur Konstitution vgl. Breaks,

PERKIN, Soc. 128, 2604; CROSS, PERKIN, Soc. 1927, 1300; 1980, 293; vgl. a. Green, Soc. 1927, 2342. — B. Durch 3-stdg. Kochen von Anthragallol mit Zinn(II)-chlorid und 33 %iger Salzsäure

(B., P., Soc. 123, 2606). — Gelbe Nadeln (aus Eisessig). Wird bei ca. 200° violett und schmilzt bei 235° (B., P.). — Färbt sich am Licht braun (B., P.). Beim Kochen mit Eisenchlorid in Eisessig und Alkohol

entsteht 2.3.4.2'.3'.4'-Hexaoxy-dihydrodianthron (S. 609) (B., P., Soc. 123, 2608). Einw. von Thionylchlorid in Schwefelkohlenstoff und Pyridin: Green, Soc. 1927, 2345. Liefert beim Erhitzen mit Glycerin und Kaliumdisulfat auf 190-2000 oder beim Kochen mit Acrolein in Eisessig unter Einleiten von Chlorwasserstoff 2.3.4-Trioxy-benzanthron (S. 513) (C., P., Soc. 1927, 1302, 1305). Gibt bei der Einw. von Diazomethan in Äther einen Dimethyläther (s. u.) und andere Produkte (B., P.; vgl. dazu P., Story, Soc. 1929, 1406). Beim Kochen mit einer Mischung aus gleichen Teilen Acetanhydrid und Eisessig entsteht ein Monoacetat (s. u.), bei Anwendung von überschüssigem Acetanhydrid in siedendem Eisessig erhält man ein Diacetat (s. u.); bei der Einw. von Acetanhydrid und Pyrid n in der Kälte bildet sich 1.2.3.9-Tetraacetoxy-anthracen (E II 6, 1133) (B., P., Soc. 123, 2607). Gibt beim Erwärmen mit Chinon in Alkohol + Eisessig 2.3.4.2'.3'.4'-Hexaoxy-dianthron (S. 669); bei Anwendung von überschüssigem Chinon entsteht eine Verbindung C₂₈H₁₆O₈ (violette Nadeln; schmilzt nicht bis 275°; schwer löslich in Eisessig, löslich in Schwefelsäure mit rotbrauner Farbe) (B., P., Soc. 123, 2609, 2610). Beim Kochen mit gleichen Teilen 2.3.4.2'.3'.4'-Hexaoxy-dianthron in Alkohol und Eisessig entsteht 2.3.4.2'.3'.4'-Hexaoxy-dihydrodianthron (S. 609) (B., P., Soc. 128, 2610).

Dimethyläther $C_{1e}H_{14}O_4=C_{1e}H_{7}O(OH)(O\cdot CH_9)_3$. B. Durch Einw. von Diazomethan auf eine Suspension von 1.2.3-Trioxy-anthranol-(9) in Äther (Breare, Perkin, Soc. 123, 2607). — Gelbliche Nadeln. F: 223—225°. Schwer löslich in Benzol.

Monoacetat $C_{16}H_{12}O_5=C_{16}H_7O(OH)_2\cdot O\cdot CO\cdot CH_2$. B. Beim Kochen von 1.2.3-Trioxyanthranol-(9) mit einem Gemisch aus gleichen Mengen Acetanhydrid und Eisessig (BRBARE, Perkin, Soc. 123, 2607). — Blättehen (aus Eisessig). F: 239—240°.

Dia:etat $C_{18}H_{14}O_6 = C_{14}H_7O(OH)(O\cdot CO\cdot CH_3)_2$. B. Durch Kochen von 1.2.3-Trioxy-anthanol-(9) mit überschüssigem Acetanhydrid und Eisessig (Breare, Perkin, Soc. 123, 2607). — Hellgelbe Nadeln (aus Eisessig + Alkohol). F: 194°.

- 1.2.5 Trioxy 9 oxo 9.10 dihydroanthracen, 1.2.5 Trioxy anthron (9) bzw. 1.2.5.9-Tetraoxy-anthracen, 1.2.5-Trioxy-anthranol-(9) C₁₄H₁₀O₄, Formel I bzw. II.
- 5-0xy-1.2-dimethoxy-anthron-(9) bzw. 5-0xy-1.2-dimethoxy-anthranol-(9) $C_{10}H_{14}O_4 =$ $(CH_8 \cdot O)_8C_6H_8 < CO_{CH_8} > C_6H_8 \cdot OH$ bzw. desmotrope Form. B. Bei Behandlung eines Gemisches aus 5.6-Dimethoxy-2-[2-oxy-benzyl]-benzoesäure und Borsäure mit konz. Schwefelsäure und Phosphorpentoxyd (Puntambeker, Adams, Am. Soc. 49, 488). — Gelber Niederschlag. — Wird durch Chromessigsäure zu 5-Oxy-1.2-dimethoxy-anthrachinon oxydiert.
- 1.2.6-Trioxy-9-oxo-9.10-dihydroanthracen, 1.2.6-Trioxy-anthron-(9) bzw. 1.2.6.9-Tetraoxu-anthracen, 1.2.6-Trioxu-anthranol-(9), Flavopurpurinanthranol $C_{14}H_{16}O_4$, Formel III bzw. IV. Diese Konstitution kommt der H 430 als 2.5.6-Trioxy-anthron-(9) bzw. 2.5.6-Trioxy-anthranol-(9) beschriebenen Verbindung zu (Cross, Perkin, Soc. 1927, 1300). — B. Durch Kochen von 1.2.6-Trioxy-anthrachinon mit Zinn(II)-chlorid und Salzsäure; Isolierung über die Diacetylverbindung (C., P., Soc. 1927, 1304).— Tiefgelbe Blättchen (aus verd. Alkohol). Schmilzt bei langsamem Erhitzen bei 231-233°, bei raschem Erhitzen bei 243-245°. Löst sich in Natronlauge mit orangeroter Farbe. - Wird beim Aufbewahren in alkal. Lösung an der Luft zu 1.2.6-Trioxy-anthrachinon oxydiert.
- 1-Oxy-2.6-diacetoxy-anthron-(9) bzw. 1-Oxy-2.6-diacetoxy-anthranol-(9) $C_{18}H_{14}O_6 =$ CH₃·CO·O·C₆H₃<CO C₆H₄(OH)·O·CO·CH₃ bzw. desmotrope Form. B. Durch Einw. von Acetanhydrid und Kaliumacetat auf 1.2.6-Trioxy-anthron-(9) in der Kälte (Cross, Perkin, Soc. 1927, 1304). — Gelbe Blättchen (aus Eisessig). F: 209—212°. — Gibt mit Acetanhydrid in Gegenwart von Pyridin 1.2.6.9-Tetraacetoxy-anthracen (E II 6, 1133). Beim Kochen

[Syst. Nr. 893

mit Acrolein in Eisessig unter Durchleiten von Chlorwasserstoff erhält man 2.5.6-Trioxy-benzanthron.

9. 2.5.6-Trioxy-9-oxo-9.10-dihydroanthracen, 2.5.6-Trioxy-anthron-(9) bzw. 2.5.6.9-Tetraoxy-anthracen, 2.5.6-Trioxy-anthranol-(9) $C_{14}H_{16}O_4$, Formel V bzw. VI (H 430). Wurde von Cross, Perkin (Soc. 1927, 1300) als 1.2.6-Trioxy-anthron-(9) (S. 477) erkannt.

- 10. 3.4.6-Trioxy-9-oxo-9.10-dihydro-anthracen, 3.4.6-Trioxu-anthron-(9) bzw.1.2.7.10-Tetraoxy-anthracen, 3.4.6-Trioxu-anthranol-(9) C₁₄H₁₀O₄, Formel VII bzw. VIII, Desoxyanthrapurpurin (H 430). Liefert bei der Oxydation mit Wasserstoffperoxyd in alkoh. Natronlauge 1.2.7.1′.2′.7′-Hexsoxy-dihydrodianthron (S. 609) (HABDACEE, PERKIN, Soc. 1929, 192). Bei der Einw. von Dimethylsulfat in siedender wäßrig-methylalkoholischer Kalilauge entstehen 1.2.7.10-Tetramethoxy-anthracen (E II 6, 1133) und etwas 3.4.6-Trimethoxy-anthron-(9) (s. u.) (Macmaster, P., Soc. 1927, 1308). Gibt beim Erhitzen mit Glycerin und ca. 77% iger Schwefelsäure auf 125—130° oder beim Kochen mit Acrolein und Eisessig unter Durchleiten von Chlorwasserstoff 2.7.8-Trioxy-benzanthron (Cross, P., Soc. 1927, 1301, 1305).
- 3.4.6-Trimethoxy-anthron-(9) bzw. 3.4.6-Trimethoxy-anthranol-(9) $C_{17}H_{16}O_4 = CH_2 \cdot O \cdot C_4H_2 < CO_{CH_2} \cdot C_6H_3 (O \cdot CH_3)_3$ bzw. desmotrope Form. B. Durch Reduktion von 1.2.7-Trimethoxy-anthrachinon mit Zinn(II)-chlorid und Salzsäure in siedendem Eisessig (MACMASTEE, PERKIN, Soc. 1927, 1309). In geringer Menge neben 1.2.7.10-Tetramethoxy-anthracen durch Einw. von Dimethylsulfat auf 3.4.6-Trioxy-anthranol-(9) in siedender methylskoholischer Kalilauge (M., P., Soc. 1927, 1308). Nadeln (aus Alkohol). F: 149°. Gibt beim Kochen mit Eisenchlorid in Eisessig 1.2.7.1′.2′.7′-Hexamethoxy-dihydrodianthron (S. 60). Bei der Einw. von Acetanhydrid in Gegenwart von Pyridin entsteht 1.2.7-Trimethoxy-10-acetoxy-anthracen (E II 6, 1133).
- 11. 1.4.10-Trioxy-9-oxo-dihydroanthracen, 1.4.10-Trioxy-anthron-(9) bzw. 1.4.9.10-Tetraoxy-anthracen, 1.4-Dioxy-anthrahydrochinon bzw. 9.10-Dioxy-2.3-dihydro-anthrachinon-(1.4) $C_{14}H_{10}O_4$, Formel I bzw. II bzw. III, Dihydrochinizarin, Leukochinizarin, Leukochinizarin II (H 431; E I 705).

a) Höherschmelzende Form. Besitzt nach Zahn, Ochwat (A. 482, 77) und Zahn (B. 67 [1934], 2063) die Konstitution III, nach K. H. Meyer, Sander (A. 420, 116, 122), denen die Isolierung einer Enol-Form (S. 479) gelang, die Konstitution I. — B. Durch Verschmelzen von 1.4-Dioxy-naphthalin mit Bernsteinsäureanhydrid und Natriumchlorid + Aluminiumchlorid bei 220° (ZAHN, OCHWAT, A. 462, 88; I. G. Farbenind., D.R.P. 454762; C. 1928 I, 2664; Frdl. 16, 2914). Aus Chinizarin durch Kochen mit Zinn und Salzsäure (M., S., A. 420, 122). Zur Bildung aus Chinizarin durch Reduktion mit Zinn(II)-chlorid und Salzsäure (H 431) vgl. Goodall, PERKIN, Soc. 125, 473. Durch Einw. von konz. Schwefelsäure auf 1.4-Dimethoxy-2.3-dihydroanthrachinon (S. 479) (Z., O., A. 462, 96). Durch Verseifen von 1.4-Diacetoxy-2.3-dihydro-anthrachinon (S. 479) mit verd. Alkali (Z., O., A. 462, 89). Beim Kochen von 4-Amino-1-oxy-anthrachinon mit Na₂S₂O₄ in alkal. Lösung (I. G. Farbenind., D.R.P. 436526; C. 1927 I, 809; Frdl. 15, 661). Entsteht aus der niedrigerschmelzenden Form beim Kochen mit Alkohol und einer Spur äther. Salzsäure (K. H. MEYER, SANDER, A. 420, 124). — Tieforangerote Krystalle (GOODALL, PERKIN), gelbe Nadeln (aus verd. Essigsäure oder Benzin) (M., S.). F: 152—154° (G., P.), 157—158° (M., S.). — Liefert bei allmählichem Zusatz von Acetylchlorid zu der Suspension in Pyridin 1.4-Diacetoxy-2.3-dihydro-anthrachinon (S. 479), bei gelindem Erwärmen mit überschüssigem Acetylchlorid in Pyridin 1.4.9.10-Tetraacetoxy-anthracen (E II 6, 1134); beim Kochen mit Acetanhydrid und Natriumacetat entstehen Chinizarindiacetat und 1.4.9-Triacetoxy-anthracen (S. 479) (Zahn, Ochwat, A. 462, 89). Liefert beim Erhitzen mit überschüssigem Phthalsäureanhydrid in Gegenwart von Aluminiumchlorid auf 240° 5.7.12.14-Tetraoxv-pentacenchinon-(6.13) (Syst. Nr. 858) (Firshe, Am. Soc. 53 [1931], 3559; vgl. Bayer & Co., D.R.P. 298345; C. 1917 II, 256; Frdl. 13, 391).

- b) Niedrigerschmelzende Form. Besitzt nach K. H. Meyer, Sander (A. 420, 123) die Konstitution II. B. Durch Reduktion von Chinizarin mit Zinkstaub und Alkali und Versetzen der erhaltenen Küpe mit verd. Säuren unter Ausschluß von Sauerstoff (Meyer, Sander, A. 420, 123). Brauner Niederschlag. Schmilzt bei 131—136°. Ziemlich leicht löslich in Alkalien mit leuchtend roter Farbe. Beim Kochen der alkoh. Lösung entsteht nach Zusatz einer Spur äther. Salzsäure die höherschmelzende Form (S. 478). Liefert mit Brom in alkoh. Lösung Chinizarin.
- 1.4.9-Triacetoxy-anthracen $C_{20}H_{16}O_6 = C_{14}H_7(O \cdot CO \cdot CH_7)_3$. B. Beim Kochen von Dihydrochinizarin oder von 1.4-Diacetoxy-2.3-dihydro-anthrachinon (s. u.) mit Acetanhydrid und Natriumacetat (Zahn, Ochwat, A. 462, 90). Gelbliche Plättchen (aus Eisessig). F: 210° bis 211°. Die Lösungen fluorescieren blau.
- 1.4-Diacetoxy-anthrahydrochinon $C_{18}H_{14}O_6=C_{14}H_6(OH)_2(O\cdot CO\cdot CH_3)_2$ s. bei Chinizarin-diacetat (S. 494).
- 5.8-Dichlor-1.4.10-trioxy-anthron-(9) bzw. 5.8-Dichlor-9.10-dioxy-1.4-dioxo-1.2.3.4-tetra-hydro-anthracen C₁₄H₈O₄Cl₂, Formel IV bzw. V. B. Aus 5.8-Dichlor-chinizarin durch Reduktion mit Zinn und Salzsäure in Eisessig (Zahn, Ochwar, A. 462, 91). Orangegelbe Nadeln. Die Lösung in verd. Alkali ist gelb und wird beim Schütteln mit Luft in der Wärme blau. Liefert beim Erwärmen mit Anilin und Borsäure auf 90—95° und folgenden Schütteln mit Luft 5.8-Dichlor-1.4-dianilino-anthrachinon.

- 12. 1.4-Dioxy-2.3-dihydro-anthrachinon C₁₄H₁₀O₄, Formel VI.
- 1.4-Dimethoxy-2.3-dihydro-anthrachinon $C_{16}H_{14}O_4 = C_6H_4 < C_{CO} > C_6H_4 (O \cdot CH_8)_2$. B. Aus 1.4-Dimethoxy-anthrachinon durch Reduktion mit $Na_2S_2O_4$ in verd. Natronlauge oder Essigsäure oder mit Zinkstaub in Essigsäure (Zahn, Ochwat, A. 462, 95). Braungelbe Blättchen (aus Eisessig), bernsteingelbe Krystalle (aus Chloroform). F: 186°. Ziemlich leicht löslich in Pyridin, Chloroform und Chlorbenzol, schwerer in Alkohol, unlöslich in wäßr. Alkalien. Die Lösungen fluorescieren blaugrün. An der Luft beständig. Die dunkelgrüne Lösung in konz. Schwefelsäure wird schnell braunrot und scheidet beim Eingießen in Wasser Dihydrochinizarin (S. 478) ab. Beim Behandeln mit alkoh. Alkalilauge, Zufügen von Wasser und Schütteln mit Luft erhält man 1.4-Dimethoxy-anthrachinon. Liefert mit Acetanhydrid bei Gegenwart einiger Tropfen konz. Schwefelsäure 1.4-Dimethoxy-9.10-diacetoxy-anthracen (E II 6, 1134).
- 1.4-Diäthexy-2.3-dihydro-anthrachinen $C_{18}H_{16}O_4 = C_6H_4 < \stackrel{CO}{CO} > C_6H_4(O \cdot C_2H_5)_2$. B. Durch Reduktion von Chinizarin-diäthyläther mit Na $_2$ S $_2$ O $_4$ in verd. Natronlauge (ZAHN, OCHWAT, A. 462, 96). Olivbraune Stäbchen. F: 174—176°. Liefert mit Acetanhydrid bei Gegenwart einiger Tropfen konz. Schwefelsäure 1.4-Diäthexy-9.10-diacetexy-anthracen (E II 6, 1134).
- 1.4-Diacetoxy-2.3-dihydro-anthrachinen C₁₈H₁₄O₆ = C₆H₄(C_{CO}C₆H₄(O·CO·CH₃)₂. B. Bei allmählichem Zufügen von Acetylchlorid zu einer Suspension von Dihydrochinizarin (S. 478) in Pyridin (Zahn, Ochwat, A. 462, 89). Aus Chinizarindiacetat durch Reduktion mit Zinkstaub in kaltem Eisessig und Kochen des Reaktionsgemisches unter Luftabschluß (Z., O.). Nadeln (aus Eisessig). Zersetzt sich bei 215°. Löslich in heißem Eisessig und Chlorbenzol, schwer löslich in Chloroform und Alkohol. Ist nicht autoxydabel. Bei der Einw. von wäßr. Alkalilaugen entsteht Dihydrochinizarin (S. 47). Zersetzt sich bei längerem Kochen mit Eisessig. Bei gelindem Erwärmen mit überschüssigem Acetylchlorid in Pyridin entsteht 1.4.9.10-Tetraacetoxy-anthracen (E II 6, 1134). Beim Kochen mit Acetanhydrid und Natriumacetat erhält man Chinizarindiacetat und 1.4.9-Triacetoxy-anthracen (s. o.).

4. Oxy-oxo-Verbindungen $C_{15}H_{12}O_4$.

1. 8-Phenyl-1-[2.4.6-trioxy-phenyl]-propen-(1)-on-(3), Phenyl-[2.4.6-trioxy-phenyl]-keton, ω -[2.4.6-Trioxy-benzyliden]-acetophenon, 2.4.6-Trioxy-chalkon $\tilde{C}_{14}H_{13}O_4=C_0H_1\cdot CO\cdot CH\cdot CH\cdot C_0H_1\cdot (OH)_0$.

- Phenyl-[2-oxy-4.6-dimethoxy-styryl]-keton, ∞ -[2-0xv-4.6-dimethoxy-benzvliden]-acetophenon, 2-0xy-4.6-dimethoxy-chalkon $C_{17}H_{16}O_4 = C_6H_5 \cdot \text{CO} \cdot \text{CH} : \text{CH} \cdot \text{C}_6H_2(\text{O} \cdot \text{CH}_2)_8 \cdot \text{OH}$. B. Beim Aufbewahren von 2-0xy-4.6-dimethoxy-benzaldehyd mit Acetophenon in methylalkoholisch-wäßriger Kalilauge bei 60° (Pratt, Robinson, Soc. 127, 1132). Hellgelbe Tafeln (aus Alkohol). F: 136°.
- 2. 3-[4-Oxy-phenyl]-1-[2.3-dioxy-phenyl]-propen-(1)-on-(3), [4-Oxy-phenyl]-[2.3-dioxy-styryl]-keton, 4-Oxy- ω -[2.3-dioxy-benzyliden]-acetophenon, 2.3.4'-Trioxy-chalkon $C_{15}H_{18}O_4=HO\cdot C_6H_4\cdot CO\cdot CH: CH\cdot C_6H_5(OH)_4$.
- [4-Methoxy-phenyl]-[2-oxy-3-methoxy-styryl]-keton, 4-Methoxy- ω -[2-oxv-3-methoxy-benzyliden]-acetophenon, 2-Oxy-3.4'-dimethoxy-chalkon $C_{17}H_{16}O_4=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot CH: CH\cdot C_8H_3(OH)\cdot O\cdot CH_3.$ B. Das Natriumsalz entsteht aus 2-Oxy-3-methoxy-benzaldehyd und 4-Methoxy-acetophenon in wäßrig-alkoholischer Natronlauge auf dem Wasserbad (Pfeiffer, J. pr. [2] 108, 351). Gelbliche Blättchen oder Nadeln (aus Alkohol). F: 143°. Sehr leicht löslich in Eisessig, leicht in Äther, Benzol und Methanol, schwer in Ligroin. Natriumsalz. Rote Krystallmasse.
- [4-Methoxy-phenyl]-[2.3-dimethoxy-styryl]- keton, 4-Methoxy- ω -[2.3-dimethoxy-benzyliden]-acetophenon, 2.3.4'-Trimethoxy-chalkon $C_{18}H_{18}O_4=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot CH:CH\cdot C_6H_3(O\cdot CH_2)_2$. B. Beim Erhitzen von 2.3-Dimethoxy-benzaldehyd mit 4-Methoxy-acetophenon in wäßrig-alkoholischer Natronlauge auf dem Wasserbad (Periffer, J. pr. [2] 108, 353). Aus 2-Oxy-3.4'-dimethoxy-chalkon und Dimethylsulfat in wäßrig-methylalkoholischer Natronlauge in der Wärme (Pf., J. pr. [2] 108, 352). Gelbliche Blättchen oder Nadeln (aus verd. Essigsäure oder Benzol + Ligroin). F: 102—103°. Sehr leicht löslich in Eisessig und Benzol, schwer in Äther. Gibt mit heißer Alkalilauge eine schwach ross Färbung.
- [4-Methoxy-phenyl]-[3-methoxy-2-acetoxy-styryl]-keton, 4-Methoxy- ω -[3-methoxy-2-acetoxy-benzvliden]-acetophenon, 3.4'-Dimethoxy-2-acetoxy-chalkon $C_{19}H_{18}O_5=CH_2\cdot O\cdot C_6H_4\cdot CO\cdot CH:CH\cdot C_6H_2(O\cdot CH_3)\cdot O\cdot CO\cdot CH_3$. B. Bei der Behandlung von 2-Oxy-3.4'-dimethoxy-chalkon mit Acetanhydrid (Pfeiffer, J. pr. [2] 108, 352). Gelbliche Blättchen oder Nadeln (aus Ligroin). F: 113—113,5°. Sehr leicht löslich in Eisessig, Benzol und heißem Methanol, löslich in kaltem Alkohol und Ligroin.
- 3. $3-[2-Oxy-phenyl]-1-[3.4-dioxy-phenyl]-propen-(1)-on-(3), [2-Oxy-phenyl]-[3.4-dioxy-styryl]-keton, 2-Oxy-\omega-[3.4-dioxy-benzyliden]-aceto-phenon, 3.4.2'-Trioxy-chalkon <math>C_{16}H_{18}O_4=H0\cdot C_6H_4\cdot C0\cdot CH\cdot C_6H_6(OH)_8$.
- [2-Oxy-phenyl]-[3.4-dimethoxy-styrvl]-keton, ?-Oxy-w-w-ratrvliden-acetonhenon, 2'-Oxy-3.4-dimethoxy-chalkon C₁₇H₁₈O₄ = HO·C₂H₄·CO·CH:CH·C₈H₃(O·CH₃)₃ (H 432). Zur Bildung aus Veratrumaldehyd und 2-Oxy-acetophenon vgl. HATTORI, Bl. chem. Soc. Japan 2, 174; C. 1927 II, 1149. F: 117°. Gibt mit Eisenchlorid in Alkohol eine braune Färbung. Die Krystalle werden durch konz. Schwefelsäure rotbraun gefärbt.
- [2-Oxy-phenyl]-[3-methoxy-4-āthoxy-styryl]-keton, 2-Oxy- ω -[3-methoxy-4-āthoxy-benzvliden]-aceto henon, 2'-Oxy-3-methoxy-4-āthoxy-chalkon $C_{18}H_{18}O_4=H0\cdot C_6H_4\cdot CO\cdot CH\cdot CH\cdot C_6H_3(O\cdot CH_3)\cdot O\cdot C_8H_6$. B. Beim Kochen von Vanillinäthyläther mit 2-Oxy-acetophenon in wäßrig-alkoholischer Natronlauge (HATTORI, Acta phytoch. 4, 48; C. 1928 II, 1090). Rote Prismen (aus Alkohol). F: 107°. Beim Kochen mit alkoh. Schwefelsäure entsteht 3'-Methoxy-4'-āthoxy-flavanon (Syst. Nr. 2535).
- [2-Acetoxy-phenyl]-[3.4-dimethoxy-styryl]-keton, 2-Acetoxy- ω -veratryliden-acetophenon, 3.4-Dimethoxy-2'-acetoxy-chalkon $C_{10}H_{10}O_5=CH_3\cdot CO\cdot O\cdot C_6H_4\cdot CO\cdot CH: CH\cdot C_6H_5(O\cdot CH_3)_2$. B. Beim Kochen von 2'-Oxy-3.4-dimethoxy-chalkon mit Acetanhydrid und wenig Pyridin (Hattori, Bl. chem. Soc. Japan 2, 174; C. 1927 II, 1149). Blättchen (aus Alkohol). F: 90°.
- 4. $3-[4-Oxy-phenyl]-1-[3.4-dioxy-phenyl]-propen-(1)-on-(3), [4-Oxy-phenyl]-[3.4-dioxy-styryl]-keton. 4-Oxy-<math>\omega$ -[3.4-dioxy-benzuliden]-aceto-phenon, 3.4.4'-Trioxy-chalkon $C_{18}H_{12}O_4=HO\cdot C_4H_4\cdot CO\cdot CH\cdot CH\cdot C_6H_3(OH)_3$.
- [4-Methoxy-phenyl]-[3.4-dimethoxy-stvryl]-keton, 4-Methoxy- ω veratryliden-acetophenon, 3.4.4'-Trimethoxy-chalkon $C_{18}H_{18}O_4=CH_3\cdot O\cdot C_8H_4\cdot CO\cdot CH: CH\cdot C_8H_3(0\cdot CH_3)_3$. B. Aus Veratrumaldehyd und 4-Methoxy-acetophenon in Gegenwart von Alkali (Prayres, Mitarb., J. pr [2] 119, 118). Hell grünlichgelbe Nadeln (aus Alkohol). F: 91°. Löst sich in konz. Schwefelsäure mit orangeroter Farbe. Gibt bei der Hydrierung bei Gegenwart von Platinmohr in Alkohol 3.4.4'-Trimethoxy-hydrochalkon.
- [4-Äthoxy-phenyi] [3-methoxy-4-äthoxy-styryi]-keton, 4-Äthoxy- ω -[3-methoxy-4-äthoxy-benzyliden]-acetophenon, 3-Methoxy-4.4'-diäthoxy-chalkon $C_{20}H_{22}O_4 = C_2H_3 \cdot O \cdot C_3H_4 \cdot O \cdot C_4 \cdot CH \cdot C_6H_3 \cdot O \cdot C_2H_3 \cdot O \cdot C_3H_5 \cdot O$

4. athoxy-benzaldehyd in konz. Natronlauge (Tasaki, Acta phytoch. 3, 291; C. 1927 II, 1949). — Gelbe Nadeln (aus Alkohol). F: 115—116°.

- 5. 3-[3.4-Dioxy-phenyl]-1-[2-oxy-phenyl]-propen-(1)-on-(3), [3.4-Dioxy-phenyl]-[2-oxy-styrul]-keton, $3.4-Dioxy-\omega-saltcyliden-acetophenon$, 2.3'.4'-Trioxy-chalkon $C_{15}H_{12}O_4=(HO)_2C_6H_3\cdot CO\cdot CH: CH\cdot C_6H_4\cdot OH.$
- [3.4-Dimethoxy-phenyl]-[2-oxy-styryl]-keton, 3.4-Dimethoxy- ω -salicyliden-acetophenon, 2-0xy-3'.4'-dimethoxy-chaikon $C_{17}H_{16}O_4=(CH_3\cdot O)_2C_6H_3\cdot CO\cdot CH:CH\cdot C_6H_4\cdot OH$ (H 433). Zur Bildung aus Salicylaldehyd und Acetoveratron vgl. Robertson, Robinson, Soc. 1926, 1952. Orangegelbe Prismen (aus Methanol). Schmilzt bei 150—151° zu einer dunkelgrünen Flüssigkeit.
- 6. 3-[2.4-Dioxy-phenyl]-1-[4-oxy-phenyl]-propen-(1)-on-(3), [2.4-Dioxy-phenyl]-[4-oxy-styryl]-keton, 2.4-Dioxy- ω -[4-oxy-benzyliden]-acetophenon, 4.2'.4'-Trioxy-chalkon $C_{15}H_{12}O_4=(HO)_4C_6H_3\cdot CO\cdot CH\cdot CH\cdot C_6H_4\cdot OH.$
- [2.4-Dioxy-phenyi]-[4-methoxy-styryi]-keton, 2.4-Dioxy-ω-anisyliden-acetophenon, 2'.4'-Dioxy-4-methoxy-chalkon C_{1e}H₁₄O₄ = (HO)₂C_eH₃·CO·CH:CH·C_eH₄·O·CH₃. B. Aus Resacetophenon und Anisaldehyd in Gegenwart von Alkali (Shinoda, J. pharm. Soc. Japan 48, 35; C. 1928 II, 50). Orangegelbe Nadeln (aus Methanol). F: 186°. Liefert bei der katalytischen Reduktion 2'.4'-Dioxy-4-methoxy-hydrochalkon (Sh., Sato, J. pharm. Soc. Japan 48, 109; C. 1928 II, 1885).
- [2-0xy-4-äthoxy-phenyl]-[4-äthoxy-styryl]-keton, 2-0xy-4-äthoxy- ω -[4-äthoxy-berzyliden]-acetophenon, 2'-0xy-4.4'-diäthoxy-chalkon $C_{19}H_{20}O_4=(C_2H_5\cdot O)(HO)C_6H_3\cdot CO\cdot CH:CH\cdot C_8H_4\cdot O\cdot C_2H_5.$ Absorptionsspektrum in Lösung: Shibata, Nagai, Acta phytoch. 2, 25; C. 1924 II, 1688.
- [5-Nitro-2-oxy-4-methoxy-phenyl]-[4-methoxy-styryl]-keton, 5-Nitro-2-oxy-4-methoxy- ω -anisyliden-acetophenon, 5'-Nitro-2'-oxy-4-4'-dimethoxy-chalkon $C_{17}H_{18}O_6N$, Formel I. B. Das Kaliumsalz entsteht aus 5-Nitro-2-oxy-4-methoxy-acetophenon und Anisaldehyd in wäßrig-alkoholischer Kalilauge (Sonn, B. 54, 359). Gelbe Blättehen (aus Eisessig). F: 182° (unkorr.). Löslich in Essigester und Benzol, ziemlich schwer löslich in heißem Alkohol und Aceton, sehr schwer in Äther und Ligroin, fast unlöslich in Wasser. Die alkoh. Lösung gibt mit Eisenchlorid eine tief orangerote Färbung.

- 7. 3-[3.4-Dioxy-phenyl]-1-[4-oxy-phenyl]-propen-(1)-on-(3), [3.4-Dioxy-phenyl]-[4-oxy-styryl]-keton, 3.4-Dioxy- ω -[4-oxy-benzyliden]-acetophenon, 4.3'.4'-Trioxy-chalkon $C_{15}H_{12}O_4=(HO)_3C_6H_3\cdot CO\cdot CH: CH\cdot C_6H_4\cdot OH.$
- [3.4 Dimethoxy phenyl] [4 methoxy styryl] keton, 3.4 Dimethoxy ω -anisyliden-acetophenon, 4.3'.4'-Trimethoxy chalkon $C_{18}H_{18}O_4 = (CH_3 \cdot O)_2C_6H_3 \cdot CO \cdot CH : CH \cdot C_4H_4 \cdot O \cdot CH_8$ (E I 708). F: 80—81° (Kuroda, Matsukuma, C. 1932 I, 2169), 86° (v. Wacek, David, B. 70 [1937], 193).
- [6-Nitro-3.4-dimethoxy-phenyl]-[4-methoxy-styryl]-keton, 6-Nitro-3.4-dimethoxy- ω -anisyliden-acetophenon, 6'-Nitro-4.3'.4'-trimethoxy-chalkon $C_{18}H_{17}O_6N$, Formel II. B. Bei der Kondensation von 6-Nitro-3.4-dimethoxy-acetophenon mit Anisaldehyd in alkoh. Kalilauge (Lawson, Perkin, Robinson, Soc. 125, 653). Gelbliche Prismen (aus Essigester). F: 170°. Sehr schwer löslich in siedendem Alkohol, schwer in Essigester. Wird durch Schwefelsäure zunächst tiefrot gefärbt und löst sich dann mit gelber Farbe, die beim Stehen in Tiefgrün umschlägt.
- 8. 1-Phenyl-3-[2.3.4-trioxy-phenyl]-propen-(1)-on-(3), [2.3.4-Trioxy-phenyl]-styryl-keton, 2.3.4-Trioxy- ω -benzyliden-acetophenon, 2'.3'.4'-Trioxy-challen $C_{16}H_{13}O_4=(HO)_3C_6H_3\cdot CO\cdot CH: CH\cdot C_6H_5$. B. Beim Erwärmen von 2.3.4-Trioxy-acetophenon mit Benzaldehyd in alkoh. Kallauge auf 60° (Ellison, Soc. 1927, 1723). Orangegelbe, methanolhaltige Prismen (aus 75 % igem Methanol). F: 165—166° (E.). Leicht löslich in Alkohol und Eisessig, schwer in Benzol und Toluol, unlöslich in Wasser. Gibt mit Alkalien und mit konz. Schwefe'säure tiefbraune Lösungen (E.). Liefert bei der Einw. von alkoh. Schwefelsäure 7.8-Dioxy-flavanon (Syst. Nr. 2535) (Shinoda, J. pharm. Soc. Japan 48, 35; C. 1928 II, 50).
- [3-Oxy-2.4-dimethoxy-phenyl]-styryl-keton, 3-Oxy-2.4-dimethoxy- ω -benzyliden-acetephenon, 3'-Oxy-2'.4'-dimethoxy-chalkon $C_{17}H_{16}O_4=(CH_3\cdot O)_3(HO)C_6H_2\cdot CO\cdot CH: CH\cdot C_4H_5$. B. Das Natriumsalz entsteht aus 2.4-Dimethoxy-3-acetoxy-acetophenon und Benzaldehyd in Natronlauge (Brand, Collischonn, J. pr. [2] 103, 334, 340). Krystalle (aus Benzol + Ligroin). F: 78°. Unlöslich in Wasser, leicht löslich in Alkohol, Eisessig und Äther. Gibt mit

verd. Natronlauge eine rote Lösung, mit konz. Kalilauge eine dunkelrote Färbung. Färbt sich bei der Einw. von konz. Schwefelsäure oder Salzsäure orangerot. — Liefert mit Brom in Äther $\alpha.\beta$ -Dibrom-3-oxy-2.4-dimethoxy- β -phenyl-propiophenon (S. 471).

- [2.3.4-Trimethoxy-phenyl]-stvryl-keton, 2.3.4-Trimethoxv- ω -benzyliden-acetophenon, 2'.3'.4'-Trimethoxy-chalkon $C_{18}H_{18}O_4=(CH_3\cdot O)_3C_6H_2\cdot CO\cdot CH:CH\cdot C_6H_5$. B. Bei der Einw. von Dimethylsulfat auf [3-Oxy-2.4-dimethoxy-phenyl]-styryl-keton in 1 n-Natronlauge (Brand, Collischonn, J. pr. [2] 103, 342). Gelbe Krystalle (aus verd. Alkohol). F: 71—72°. Leicht löslich in Aceton, Chloroform und Eisessig, schwer in kaltem Alkohol und Ligroin, fast unlöslich in Wasser. Wird durch Kaliumpermanganat in kaltem Aceton zu 2.3.4-Trimethoxy-benzoesäure oxydiert.
- 9. 1-Phenyl-3-[2.4.6-trioxy-phenyl]-propen-(1)-on-(3), [2.4.6-Trioxy-phenyl]-styryl-keton, 2.4.6-Trioxy-w-benzyliden-acetophenon, 2'.4'.6'-Trioxy-chalkon, Cinnamoylphloroglucin C₁₈H₁₂O₄ = (HO)₃C₆H₂·CO·CH:CH·CC₆H₅. B. In geringer Menge bei langsamer Zugabe von Zimtsäurechlorid in Nitrobenzol zu einer Lösung von Phloroglucin in Nitrobenzol bei Gegenwart von Aluminiumchlorid, neben 5.7-Dioxy-flavanon und anderen Produkten (K. W. ROSEMMUND, M. ROSEMMUND, B. 61, 2611; SHINODA, SATO, J. pharm. Soc. Japan 48, 111; C. 1928 II, 1885). Gelbliche Nadeln (aus verd. Methanol), gelbrote Nadeln mit ½ H₂O. F: 189—190° (Sh., S.), 202° (R., R.). Geht beim Erhitzen über den Schmelzpunkt sowie beim Erhitzen mit Eisessig in 5.7-Dioxy-flavanon über (Sh., S.). Gibt mit Eisenchlorid eine rotviolette bis braune Färbung (R., R.).
- [2 Oxy-4.6-dimethoxy-phenyl]-styryl-keton, 2-Oxy-4.6-dimethoxv- ω -benzyliden-acetophenon, 2'-Oxy-4'.6'-dimethoxy-chalkon $C_{17}H_{16}O_4 = HO \cdot C_6H_3(O \cdot CH_3)_3 \cdot CO \cdot CH \cdot CH \cdot C_6H_5$ (H 434). Liefert bei der Einw. von alkoh. Schwefelsäure 5.7-Dimethoxy-flavanon (Shinoda, *J. pharm. Soc. Japan* 48, 35; *C.* 1928 II, 50).
 - H 434, Z. 1 v. u. statt "B. 88, 2803" lies "B. 87, 2803".
- [2.4.6-Triacetoxy-phenyl] styryl-keton, 2.4.6-Triacetoxv- ω -benzyliden-acetophenon, 2'.4'.6'-Triacetoxy-chalkon $C_{21}H_{18}O_7 = (CH_3 \cdot CO \cdot O)_8C_6H_2 \cdot CO \cdot CH : CH \cdot C_6H_8$. B. Aus 5.7-Dioxy-flavanon, Acetanhydrid und Natriumacetat (Shinoda, Sato, J. pharm. Soc. Japan 48, 109; C. 1928 II, 1885). F: 115—117,5°.
- 10. 1-[2-Oxy-phenyl]-3-[4-oxy-phenyl]-propen-(1)-ol-(2)-on-(3), $[4-Oxy-phenyl]-[2.\beta-dioxy-styryl]-keton,$ $2.4'.\beta-Trioxy-chalkon$ $C_{15}H_{12}O_4=H0\cdot C_6H_4\cdot CH:C(OH)\cdot CO\cdot C_6H_4\cdot OH.$
- [4-Methoxy-phenyl]-[2-oxv- β -methoxy-stvrvl]-keton, 2-Oxy-4'. β -dimethoxy-chalkon $C_{17}H_{16}O_4=H_0\cdot C_0H_4\cdot CH:C(0\cdot CH_3)\cdot CO\cdot C_0H_4\cdot O\cdot CH_3$. B. Beim Kochen von $4.\omega$ -Dimethoxy-acetophenon mit Salicylaldehyd in methylalkoholischer Kalilauge (Pratt, Robinson, Soc. 128, 751). Prismen (aus Methanol). F: 160°. Ziemlich schwer löslich in Methanol, Alkohol und Ätler, leicht in Chloroform. Leicht löslich in verdünnter wäßriger Kalilauge mit orangegelber Farbe.
- 11. 1.3-Bis-[4-oxy-phenyl]-propen-(1)-ol-(2)-on-(3), [4-Oxy-phenyl]-[4. β -dioxy-styryl]-keton, 4.4'. β -Trioxy-chalkon $C_{16}H_{14}O_4=HO\cdot C_6H_4\cdot CO\cdot C(OH)$: $CH\cdot C_6H_4\cdot OH$.
- [4-Methoxy-phenyl]-[4. β -dimethoxy-stvryl]-keton, 4.4'. β -Trimethoxy-chalkor. $C_{18}H_{18}O_4=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot C(O\cdot CH_3): CH\cdot C_6H_4\cdot O\cdot CH_3$. B. Durch Kondensation von Anisaldehyd mit 4. ω -Dimethoxy-acetophenon in wäßrig-alkoholischer Natronlauge (Malkin, Robinson, Soc. 127, 375). Gelbliche Blättchen (aus Alkohol). F: 72,5°. Liefert beim Erhitzen mit Eisessig und konz. Bromwasserstoffsäure [4-Methoxy-phenyl]-[4-methoxy-benzyl]-diketon (s. u.). Die orangerote Lösung in Schwefelsäure wird beim Erhitzen intensiv karminrot.
- 12. 1.3-Bis-[4-oxy-phenyl]-propandion-(1.2), [4-Oxy-phenyl]-[4-oxy-benzyl]-diketon $C_{15}H_{18}O_4=HO\cdot C_6H_4\cdot CO\cdot CO\cdot CH_2\cdot C_6H_4\cdot OH$.
- [4-Methoxy-phenyl]-[4-methoxy-benzvl]-diketon $C_{17}H_{16}O_4 = CH_3 \cdot O \cdot C_6H_4 \cdot CO \cdot CO \cdot CH_3 \cdot C_6H_4 \cdot O \cdot CH_3$. B. Durch Erhitzen von [4-Methoxy-phenyl]-[4. β -dimethoxy-styryl]-keton mit Eisessig und konz. Bromwasserstoffsäure (Malkin, Robinson, Soc. 127, 375). Gelbe Prismen (aus Alkohol). F: 92°. Liefert beim Kochen mit verd. Natronlauge α -Oxy- α . β -bis-[4-methoxy-phenyl]-propionsäure (Syst. Nr. 1147).
- 13. 1-Phenyl-3-[2.4-dioxy-phenyl]-propandion-(1.3), 2.4-Dioxy-dibenzoulmethan, 2.4-Dioxy- ω -benzoyl-acetophenon $C_{1s}H_{1s}O_4=C_sH_s\cdot CO\cdot CH_s\cdot CO\cdot C_tH_s(OH)_s$.
- 2.4 Dimethoxy- dibenzovlmethan, 2.4 Dimethoxy- ω -benzovl-acetophenon $C_{17}H_{16}O_4=C_8H_5\cdot CO\cdot CH_2\cdot CO\cdot C_6H_3(O\cdot CH_3)_2$ (H 435; E I 709). Liefert beim Kochen mit 1 % iger Natronlauge

- 2.4-Dimethoxy-benzoesäure und Benzoesäure im Verhältnis 4,5:1 (Bradley, Robinson, Soc. 1926, 2364). Kupfersalz. F: 193°.
- 2.4-Diäthoxv-dibenzovlmethan, 2.4-Diäthoxv- ω -benzoyl-acetophenon $C_{19}H_{20}O_4=C_6H_5\cdot CO\cdot CH_3\cdot CO\cdot C_2H_3(O\cdot C_2H_5)_2$ (H 435). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: Tasari, Acta phytoch. 3, 306, 307; C. 1927 II, 1949.
- 14. 1-Phenyl-3-[2.5-dioxy-phenyl]-propandion-(1.3), 2.5-Dioxy-dibenzoulmethan, 2.5-Dioxy- ω -benzoyl-acetophenon $C_{15}H_{12}O_4=C_4H_5\cdot CO\cdot CH_2\cdot CO\cdot C_6H_3(OH)_2$.
- 2.5-Diäthoxy-dibenzoylmethan, 2.5-Diäthoxy- ω -benzoyl-acetophenon $C_{19}H_{20}O_4=C_6H_5$: $CO\cdot Cl_8\cdot CO\cdot Cl_8\cdot Cl_8\cdot CO\cdot Cl_8\cdot CO\cdot Cl_8\cdot Cl_8\cdot CO\cdot Cl_8\cdot CO\cdot Cl_8\cdot CO\cdot Cl_8\cdot CO\cdot Cl_8\cdot Cl_8\cdot CO\cdot Cl_8\cdot Cl_8\cdot CO\cdot Cl_8\cdot C$
- 15. 1-[2-Oxy-phenyl]-3-[4-oxy-phenyl]-propandion-(1.3), 2.4'-Dioxy-dibenzoulmethan, 2-Oxy-w-[4-oxy-benzoyl]-acetophenon $C_{15}H_{12}O_4=H0\cdot C_6H_4\cdot C0\cdot CH_2\cdot C0\cdot C_6H_4\cdot OH$.
- 2.4'-Dimethoxy-dibenzoylmethan, 2-Methoxy- ω -anisoyl-acetophenon $C_{17}H_{16}O_4=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot CH_3\cdot CO\cdot C$
- 4'-Methoxv-2-ëthoxv-dibenzoylmethan, 2-Äthoxy- ω -anisoyl-acetophenon $C_{18}H_{18}O_4=C_2H_5\cdot O\cdot C_8H_4\cdot CO\cdot CH_2\cdot CO\cdot C_8H_4\cdot O\cdot CH_3$. B. Aus 2-Äthoxy-acetophenon und Anissäureäthylester in Gegenwart von Natrium (Tasaki, Acta phytoch. 8, 307, 308; C. 1927 II, 1949). Nadeln (aus Alkohol). F: 90—91°. Ultraviolett-Absorptionsspektrum in alkoh. Lösung: T.
- 16. 1-Phenyl 3-[3.4-dioxy-phenyl] propandion (1.3), 3.4-Dioxy-dibenzoylmethan, 3.4-Dioxy- ω -benzoyl-acetophenon $C_{18}H_{12}O_4=C_6H_5\cdot CO\cdot CH_2\cdot CO\cdot C_6H_3(OH)_8$.
- 3.4-Dimethoxy-dibenzovlmethan, 3.4-Dimethoxy- ω -benzovl-acetophenon, ω -Veratroyl-acetophenon $C_{17}H_{16}O_4=C_6H_5\cdot CO\cdot CH_2\cdot CO\cdot C_6H_3(O\cdot CH_3)_2$. B. Durch Kondensation von Veratrumsäureäthylester mit Acetophenon bei Gegenwart von Natrium in Äther (Gulland, Robinson, Soc. 127, 1501). Heligelbe Blättchen (aus Methanol). F: 67° (G., R.). Leicht löslich in den meisten organischen Lösungsmitteln (G., R.). Liefert beim Kochen mit 1% iger Natronlauge ca. 60% Veratrumsäure (Bradley, R., Soc. 1926, 2365). Die alkoh. Lösung gibt mit Eisenchlorid eine grünlichbraune Färbung (G., R.). Kupfersalz. Hellgrüne Blättchen (aus Benzol). F: 250° (G., R.).
- 17. $1-[3-Oxy-phenyl]-3-[4-oxy-phenyl]-propandion-(1.3), 3.4'-Dioxy-dibenzoulmethan, 4-Oxy-<math>\omega$ -[3-oxy-benzoyl]-acetophenon $C_{15}H_{12}O_4=HO\cdot C_6H_4\cdot CO\cdot CH_2\cdot CO\cdot C_4H_4\cdot OH$.
- 3.4'-Dimethoxy-dibenzovimethan, 4-Methoxy- ω -[3-methoxy-benzovl]-acetophenon $C_{17}H_{16}O_4 = CH_3 \cdot O \cdot C_6H_4 \cdot CO \cdot CH_2 \cdot CO \cdot C_6H_4 \cdot O \cdot CH_3$. B. Durch Einw. von Natriumamid auf 4-Acetyl-anisol und 3-Methoxy-benzoesäure-äthylester in Äther (Bradley, Robinson, Soc. 1926, 2365). Hellgelbe Nadeln (aus Petroläther), Blättchen (aus Alkohol). F: 91°. Leicht löslich in den meisten organischen Lösungsmitteln. Die alkoh. Lösung gibt mit Eisenchlorid eine tiefrote Färbung. Liefert beim Kochen mit 1% iger Natronlauge ein Gemisch aus Anissäure und 3-Methoxy-benzoesäure, das 21—24% Anissäure enthält. Kupfersalz. Hellgrüne Nadeln (aus Benzol). F: 218°.
- 18. 1.3-Bis-[4-oxy-phenyl]-propandion-(1.3), 4.4'-Dioxy-dibenzoulmethan, 4-Oxy- ω -[4-oxy-benzoyl]-acetophenon $C_{15}H_{12}O_4=HO\cdot C_6H_4\cdot CO\cdot CH_2\cdot CO\cdot C_4H_4\cdot OH$.
- 4.4'- Dimethoxy- dibenzovimethan, Dianisoyimethan, 4-Methoxy- ω anisoyi- acetophenon $C_{17}H_{16}O_4=(CH_3\cdot O\cdot C_6H_4\cdot CO\cdot CH_2)$ CO. B. Durch Kondensation von Anissäureäthylester mit 4-Methoxy-acetophenon bei Gegenwart von Natrium (Tasaki, Acta phytoch. 3, 308; C. 1927 II, 1949). Nadeln (aus Alkohol). F: 114°. Ultraviolett-Absorptionsspektrum in alkoh. Lösung: T.
- 19. 1-[4-Oxy-phenyl]-2-[6-oxy-2-methul-phenul]- ithandion-(1.2), 6.4'-Dioxy-2-methyl-benzil $C_{15}H_{12}O_4=H0\cdot C_6H_4\cdot C0\cdot C0\cdot C_6H_3(CH_3)\cdot OH.$
- 6.4'- Dimethoxy-2-methyl-benzil C₁₇H₁₆O₄ = CH₃· O·C₆H₄· CO·CO·C₆H₃(CH₃)· O·CH₃.

 B. Bei der Oxydation von 4.6-Dimethoxy-2'.methyl-benzoinimid-hydrochlorid mit Fehlingscher Lösung in verd. Alkohol unter gelindem Erwärmen (ASAHINA, ISHIDATE, J. pharm. Soc. Japan 1925, Nr. 521, S. 3; C. 1926 I, 82). Krystallinisches Pulver (aus Alkohol). F: 96°. Liefert

beim Erhitzen mit alkoh. Natronlauge unter Luftabschluß auf 60—70° 6.4'-Dimethoxy-2-methyl-benzilsäure (Syst. Nr. 1147).

20. 3.7.8-Trioxy-10-oxo-1-methyl-9.10-dihydro-anthracen, 2.5.6-Trioxy-4-methyl-anthron-(9) bzw. 3.7.8.10-Tetraoxy-1-methyl-anthracen, 2.5.6-Trioxy-4-methyl-anthranol-(9) $\mathrm{C_{15}H_{13}O_4}$, Formel I bzw. II.

- 2.5.6-Trimethoxy-4-methyl-anthron-(9) bzw. 2.5.6-Trimethoxy-4-methyl-anthranol-(9) $C_{18}H_{18}O_4 = (CH_3 \cdot O)_2C_6H_2 < \begin{array}{c} CH_3 \\ CO \\ \end{array} > C_6H_2(CH_3) \cdot O \cdot CH_3$ bzw. desmotrope Form. B. Beim Aufbewahren von 5.6.4'-Trimethoxy-2'-methyl-diphenylmethan-carbonsäure-(2) mit Schwefelsäure (D: 1,84) (BISTRZYCKI, KRAUER, Helv. 6, 763). Nadeln (aus Eisessig oder Alkohol). F: 163° bis 164°. In der Hitze leicht löslich in Chloroform, ziemlich leicht in Benzol, mäßig in Eisessig, ziemlich schwer in Alkohol. Löst sich in konz. Schwefelsäure erst mit braungelber, dann mit grüner Farbe.
- 21. 1.5.6-Trioxy-10-oxo-2-methyl-9.10-dihydro-anthracen, 4.7.8-Trioxy-3-methyl-anthron-(9) bzw. 1.5.6.10-Tetraoxy-2-methyl-anthracen, 4.7.8-Trioxy-3-methyl-anthranol-(9) $C_{15}H_{12}O_4$, Formel III bzw. IV.
- 4-0xy-7.8'-dimethoxy-3-methyl-anthron-(9) bzw. 4-0xy-7.8-dimethoxy-3-methyl-anthron-(9) C₁₇H₁₆O₄, Formel V (X = H) bzw. desmotrope Form. B. Beim Aufbewahren einer Suspension von 2'-0xy-3.4-dimethoxy-3'-methyl-diphenylmethan-carbonsäure-(2) in 85% iger Schwefelsäure bei Zimmertemperatur (Jacobson, Adams, Am. Soc. 47, 286). Gelber Niederschlag. Wird durch Chromtrioxyd in starker Essigsäure zu 1-0xy-5.6-dimethoxy-2-methyl-anthrachinon oxydiert.
- 1-Brom-4-oxy-7.8-dimethoxy-3-methyl-anthron-(9) bzw. 1-Brom-4-oxy-7.8-dimethoxy-3-methyl-anthranol-(9) $C_{17}H_{15}O_4Br$, Formel V (X = Br) bzw. desmotrope Form. B. Analog der vorangehenden Verbindung (Jacobson, Adams, Am. Soc. 46, 2793). Gelber Niederschlag. Wird durch Chromtrioxyd in Eisessig zu 4-Brom-1-oxy-5.6-dimethoxy-2-methyl-anthrachinon oxydiert.

22. 3.5.6-Trioxy-9 (oder 10)-oxo-2-methyl-9.10-dihydro-anthracen, 3.5.6 (oder 2.7.8)-Trioxy-2 (oder 3)-methyl-anthron-(9) bzw. 3.5.6.9 (oder 3.5.6.10)-Tetraoxy-2-methyl-anthracen, 3.5.6 (oder 2.7.8)-Trioxy-2 (oder 3)-methyl-anthranol-(9) $C_{15}H_{12}O_4$, Formel VI oder VII bzw. desmotrope Formen. Zur Konstitution vgl. Keimatsu, Hirano, Tanabe, J. pharm. Soc. Japan 49, 63; C. 1929 II, 995.—B. Durch Erhitzen von 3.5.6-Trioxy-2-methyl-anthrachinon mit Jodwasserstoffsäure (K., H., J. pharm. Soc. Japan 49, 20; C. 1929 I, 2533).—Gelblichbraune Tafeln (aus Alkohol + Benzol). F: $223-224^{\circ}$.

23. 3.5.8 - Trioxy - 9 (oder 10) - oxo - 2 - methyl - 9.10 - dihydro - anthracen, 3.5.8 (oder 2.5.8) - Trioxy - 2 (oder 3) - methyl - anthron - (9) bzw. 3.5.8.9 (oder 3.5.8.10) - Tetraoxy - 2 - methyl - anthracen, 3.5.8 (oder 2.5.8) - Trioxy - 2 (oder 3) - methyl - anthranol - (9) $C_{15}H_{12}O_4$, Formel VIH oder IX bzw. desmotrope Formen, Rhabarberanthron. B. Durch Erhitzen von 3.5.8-Trioxy - 2 - methyl - anthrachinon mit Jodwasserstoffsäure (Krimatsu, Hirano, J. pharm. Soc. Japan 49, 20; C. 1929 I, 2533). — Gelblichbraune Tafeln (aus Alkohol). F: 238—239°.

24. 3.7.8-Trioxy-10-oxo-2-methyl-9.10-dihydro-anthracen, 2.5.6-Trioxy-3-methyl-anthron-(9) bzw. 3.7.8.10-Tetraoxy-2-methyl-anthracen, 2.5.6-Trioxy-3-methyl-anthranol-(9) $C_{15}H_{12}O_4$, Formel X bzw. XI.

- 2.5.6-Trimethoxy-3-methyl-anthron-(9) bzw. 2.5.6-Trimethoxy-3-methyl-anthranol-(9) $C_{18}H_{18}O_4 = (CH_2 \cdot O)_2C_6H_2 < C_6 \\ C_6H_2(CH_2) \cdot O \cdot CH_3$ bzw. desmotrope Form. B. Beim Aufbewahren von 5.6.4'-Trimethoxy-3'-methyl-diphenylmethan-carbonsäure-(2) mit Schwefelsäure (D: 1,84) bei Zimmertemperatur (BISTRZYCKI, KRAUER, Helv. 6, 757). Nadeln (aus Eisessig). F: 204—205°. In der Hitze ziemlich leicht löslich in Eisessig, mäßig in Benzol, sehr schwer in Alkohol und Aceton. Löst sich in kalter konzentrierter Schwefelsäure mit bräunlichgelber Farbe, die bald in Grün übergeht. Unlöslich in kalten verdünnten Alkalilaugen; löst sich etwas bei längerem Kochen mit gelber Farbe.
- 25. 4.5.7-Trioxy-9 (oder 10)-oxo-2-methyl-9.10-dihydro-anthracen, 4.5.7 (oder 1.6.8)-Trioxy-2 (oder 3)-methyl-anthron-(9) bzw. 4.5.7.9 (oder 4.5.7.10)-Tetraoxy-2-methyl-anthracen, 4.5.7 (oder 1.6.8)-Trioxy-2 (oder 3)-methyl-anthranol-(9) $C_{15}H_{12}O_4$, Formel XII oder XIII bzw. desmotrope Formen, Emodinanthranol, Emodinol, Emodinanthron (H 436; E I 709). Konnte entgegen den Angaben von Hesse (A. 388 [1912], 88; 413 [1917], 363, 369, 373) im Chrysarobin nicht nachgewiesen werden (EDER, HAUSER, Ar. 263, 326). B. Beim Kochen von 1-Brom-4-oxy-5.7-dimethoxy-2-methyl-anthrachinon mit Jodwasserstoffsäure (D: 1,5) in Eisessig (JACOBSON, ADAMS, Am. Soc. 46, 1316). Zersetzt sich bei 250—258° (J., A.).
- 26. 1.4.10-Trioxy-9-oxo-2-methyl-9.10-dihydro-anthracen, 1.4.10-Trioxy-2-methyl-anthron-(9) bzw. 9.10-Dioxy-1.4-dioxo-2-methyl-1.2.3.4-tetrahydro-anthracen C₁₆H₁₂O₄, Formel XIV bzw. XV, 2-Methyl-dihydrochinizarin. B. Durch Reduktion von 2-Methyl-chinizarin mit Zinn und CHa CH(CH₃) Salzsäure (ZAHN, OCHWAT, A. XV. XIV. 462, 92). — Braungelbe Nadeln (aus Methanol). F: 114-115°. oн Sehr leicht löslich in allen OH Lösungsmitteln. — Liefert beim Erhitzen mit p-Toluidin und Borsäure auf 125° und Einleiten von Luft 4-p-Toluidino-1-oxy-2-methyl-anthrachinon (Syst. Nr. 1878).

5. Oxy-oxo-Verbindungen $C_{16}H_{14}O_4$.

- 1. 1-Phenyl-4-[2.4-dioxy-phenyl]-butandion-(2.4), [2.4-Dioxy-benzoyl]-phenacetyl-methan, 2.4-Dioxy- ω -phenacetyl-acetophenon $C_{16}H_{14}O_4=C_6H_5\cdot CO\cdot CH_2\cdot CO\cdot C_8H_8(OH)_2$.
- [2.4 Diäthoxy benzoyl] phenacetyl methan , 2.4 Diäthoxy ω phenacetyl acetophenon $C_{20}H_{22}O_4=C_6H_5\cdot CH_2\cdot CO\cdot CH_2\cdot CO\cdot C_6H_3(O\cdot C_2H_5)_3$ (H 437). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: Tasaki, Acta phytoch. 8, 311; C. 1927 II, 1949.
- 2. $[4-Oxy-phenyl]-[4.6-dioxy-2-methyl-styryl]-keton, 4-Oxy-\omega-[4.6-dioxy-2-methyl-benzyliden]-acetophenon, 4.6.4'-Trioxy-2-methyl-chalkon <math>C_{16}H_{14}O_4$, s. nebenstehende Formel.
- 3. 1.2-Bis [6-oxy-3-methyl-phenyl] äthandion, 6.6'-Dioxy-3.3'-dimethyl-benzil $C_{14}H_{14}O_4 = HO \cdot C_0H_3(CH_4) \cdot CO \cdot CO \cdot C_0H_3(CH_8) \cdot OH$.
- 6-Oxy-6'-methoxy-3.3'-dimethyl-benzil $C_{17}H_{14}O_4 = HO \cdot C_6H_3(CH_3) \cdot CO \cdot CO \cdot C_6H_3(CH_2) \cdot O \cdot CH_3$. Beim Kochen von 6.6'-Dimethoxy-3.3'-dimethyl-benzil in Eisessig mit 50% iger

Bromwasserstoffsäure (Schönberg, Kraemer, B. 55, 1183). — Prismen (aus Benzin). F: ca. 113°. Löslich in Alkalilaugen. Die Lösung in konz. Schwefelsäure ist grünblau.

6.6'- Dimethoxy-3.3'- dimethyl-benzil C₁₈H₁₈O₄ = CH₃·O·C₆H₃(CH₃)·CO·CO·C₆H₃(CH₃)·O·CO₆C₈. B. Man kocht 6-Methoxy-3-methyl-benzaldehyd mit Kaliumcyanid in verd. Alkohol, gießt in Wasser und oxydiert das erhaltene Öl in siedendem 50% igem Alkohol mit Fehlingscher Lösung (Schönberg, Kraemer, B. 55, 1182). Beim Schütteln von 6-Oxy-6'-methoxy-3.3'-dimethyl-benzil mit Dimethylsulfat und Alkali (Sch., K., B. 55, 1184). — Blättchen (aus Alkohol). F: 183°. Ultraviolett-Absorptionsspektrum in alkoh. Lösung: Sch., K., B. 55, 1177. Leicht löslich in Eisessig und Chloroform, schwer in Alkohol und Äther mit gelber Farbe. Gibt mit konz. Schwefelsäure eine rote Färbung. — Die Lösung in Eisessig liefert beim Kochen mit 50% iger Bromwasserstoffsäure 6-Oxy-6'-methoxy-3.3'-dimethyl-benzil. Reagiert nicht mit o-Phenylendiaminhydrochlorid in siedendem Alkohol. — Das Bis-phenylhydrazon schmilzt bei 197°.

6. Oxy-oxo-Verbindungen $C_{18}H_{18}O_4$.

- $\begin{array}{lll} 1.4-Bis-[6-oxy-3-methyl-phenyl]-butandion-(1.4),& 1.2-Bis-[6-oxy-3-methyl-benzoyl]-\ddot{a}than,& 6.6'-Dioxy-3.3'-dimethyl-succinophenon& $C_{18}H_{18}O_4$\\ &=HO\cdot C_6H_3(CH_3)\cdot CO\cdot CH_2\cdot CH_2\cdot CO\cdot C_6H_3(CH_3)\cdot OH.&B.& Beim Erhitzen von Bernsteinsäure-di-p-tolylester mit 20 Tln. Aluminiumchlorid auf 130° (FRES, A. 442, 270). Blättchen (aus Eisessig). F: 187°. Ziemlich schwer löslich in Benzin und Alkohol, löslich in Benzol und Eisessig. Löst sich in Natronlauge und in konz. Schwefelsäure mit gelber Farbe. Liefert beim Behandeln mit Brom in Eisessig 5.5'(1)-Dibrom-6.6'-dioxy-3.3'-dimethyl-succinophenon, in Bromwasserstoff-Eisessig 1.2-Dibrom-1.2-bis-[6-oxy-3-methyl-benzoyl]-äthan.$
- 6.6'-Diacetoxy-3.3'-dimethyl-succinophenon $C_{22}H_{22}O_6=CH_3\cdot CO\cdot O\cdot C_6H_3(CH_3)\cdot CO\cdot CH_2\cdot CH_2\cdot CO\cdot C_6H_3(CH_3)\cdot O\cdot CO\cdot CH_3$. B. Bei der Einw. von Acetanhydrid und Schwefelsäure auf 1.2-Bis-[6-oxy-3-methyl-benzoyl]-äthan (FRIES, A. 442, 270). Nadeln. F: 163°.
- 5.5 (?)-Dibrom-6.6'-dioxy-3.3'-dimethyl-succinophenon $C_{18}H_{16}O_4Br_8 = HO \cdot C_8H_2Br(CH_3) \cdot CO \cdot CH_2 \cdot CH_2 \cdot CO \cdot C_8H_2Br(CH_3) \cdot OH$. B. Aus 1.2-Bis-[6-oxy-3-methyl-benzoyl]-āthan und der berechneten Menge Brom in Eisessig (Fries, A. 442, 270). Nadeln (aus Eisessig). F: 232°. Ziemlich leicht löslich in Xylol, löslich in Alkohol, Benzol und Eisessig, schwer löslich in Benzin. Löslich in Natronlauge.

Diacetat $C_{22}H_{20}O_6Br_g = [CH_3 \cdot CO \cdot O \cdot C_6H_2Br(CH_3) \cdot CO \cdot CH_2-]_2$. Krystalle (aus Alkohol). F: 140° (Fries, A. 442, 270).

1.2-Dibrom-1.2-bis-[6-oxy-3-methyl-benzov1]-äthan $C_{18}H_{16}O_4$ $Br_2 = HO \cdot C_6H_3(CH_3) \cdot CO \cdot CHBr \cdot CHBr \cdot CO \cdot C_6H_3(CH_3) \cdot OH$. B. Aus 1.2-Bis-[6-oxy-3-methyl-benzoy1]-äthan beim Behandeln mit Brom in Bromwasserstoff-Eisessig (Fries, A. 442, 271). — Hellgelbe Krystalle (aus Eisessig). F: 183°. Löslich in Eisessig und Benzol, ziemlich schwer löslich in Alkohol, schwer in Benzin.

Diacetat $C_{23}H_{20}O_{e}Br_{2}=CH_{3}\cdot CO\cdot O\cdot C_{e}H_{3}(CH_{3})\cdot CO\cdot CHBr\cdot CHBr\cdot CO\cdot C_{e}H_{3}(CH_{3})\cdot O\cdot CO\cdot CH_{3}$. Nadeln. F: 187° (Fries, A. 442, 271).

7. Oxy-oxo-Verbindungen $C_{20}H_{22}O_4$.

1.4-Bis-[6-oxy-2.4-dimethyl-phenyl]-butandion-(1.4), 1.2-Bis-[6-oxy-2.4-dimethyl-benzoyl]-\(\text{ithan}\), 6.6'-Dioxy-2.4.2'.4'-tetramethyl-succinophenon \(\text{C}_{20}\text{H}_{22}\text{O}_4\), s. nebenstehende Formel. B. Beim Erhitzen von Bernsteins\(\text{ure-bis-}[3.5-dimethyl-phenyl-ester]\) in 20 Tln. Aluminiumehlorid auf 130° (FRIES, A. 442, 272). — Bl\(\text{Bittchen}\) (aus Eisessig). F: 141°. L\(\text{Oslich}\) in Benzol und Eisessig, ziemlich schwer l\(\text{Oslich}\) in Benzin und Alkohol.

i) Oxy-oxo-Verbindungen $C_n H_{2n-20} O_4$.

1. Oxy-oxo-Verbindungen $C_{14}H_8O_4$.

1. 4.9 - Dioxy - 1.10 - dioxo - 1.10 - dihydro - anthracen, 4.9 - Dioxy - anthrachinon - (1.10) $C_{14}H_8O_4$, Formel I (R = H) ist desmotrop mit 1.4 - Dioxy - anthrachinon, S. 492.

4-0xy-9-žihoxy-anthrachinon-(1.10) $C_{16}H_{12}O_4$, Formel I ($R=C_2H_5$). B. Beim Kochen von 9-Chlor-4-oxy-anthrachinon-(1.10) (S. 387) mit alkoh. Salzsžure (Green, Soc. 1926, 1434). — Rötlichbraune Nadeln (aus Alkohol). F: 135°. Sehr leicht löslich

in kaltem Benzol, löslich in kaltem Alkohol. Die Lösung in konz. Schwefelsäure ist rötlich. — Liefert beim Erwärmen mit konz. Schwefelsäure auf 100° Chinizarin.

2. 1.2 - Dioxy - anthrachinon, Alizarin C₁₄H₈O₄, Formel II (H 439; E I 710). B. Zur Bildung durch Kalischmelze von 2.3-Dichlor-anthrachinon (Kircher, A. 238, 348; H 439) vgl. Phillips, Am. Soc. 49, 477; zur Bildung durch Kalischmelze von 2.3-Dibrom-anthrachinon (Graber, Liebermann, A. Spl. 7, 289; H 439) vgl. Grandmough, C. r. 173, 718. Alizarin entsteht ferner bei der Kalischmelze von 2-Chlor-1-oxy-anthrachinon, von 3-Chlor-2-oxy-anthrachinon (M. Tanaka, Pr. Acad. Tokyo 3 [1927], 84, 85) und von 3-Jod-2-oxy-anthrachinon (Hardacre, Perkin, Soc. 1929, 188). Beim Erhitzen von 2-Amino-1-oxy-anthrachinon mit 20% iger Salzsäure im Rohr auf 250° (Brass, Ziegler, B. 58, 760). Bei kurzem Erhitzen von Phthalsäureanhydrid mit 2-Chlor-phenol, konz. Schwefelsäure und Borsäure auf 240—255° (M. Tanaka, Pr. Acad. Tokyo 3, 85; C. 1927 II, 567; M. Tanaka, N. Tanaka, Bl. chem. Soc. Japan 3, 286; C. 1929 I, 752). In geringer Menge beim Erhitzen von Brenzcatechin mit Phthalsäureanhydrid in Gegenwart von japanischer saurer Erde, neben Hystazarin (M. Ta., Watanabe, Bl. chem. Soc. Japan 3, 289; C. 1929 I, 752). Neben Hystazarin und anderen Produkten beim Erhitzen von Brenzcatechinäthylenäther mit Phthalsäureanhydrid, Aluminiumchlorid und Natriumchlorid auf 130—140° oder besser auf 170—180° (Raudnitz, J. pr. [2] 123, 287, 288).

Darstellung im Laboratoriumsmaßstab durch Erhitzen von anthrachinon-2-sulfonsaurem Natrium mit Natriumchlorat und Natronlauge unter Druck (vgl. H 440): H. E. FIERZ-DAVID, L. BLANGEY, Grundlegende Operationen der Farbenchemie, 5. Aufl. [Wien 1943], S. 298. Zur technischen Darstellung durch Schmelzen von 2-Chlor-anthrachinon mit Natriumchlorat und Natronlauge oder von anthrachinon-2-sulfonsaurem Natrium mit Natriumnitrat und Natronlauge vgl. Scottish Dyes Ltd., D.R.P. 507 210; Frdl. 16, 1266. Reinigung von technischem Alizarin durch aufeinanderfolgendes Behandeln mit verd. Natronlauge, teilweises Sättigen mit Kohlendioxyd, Kochen der ausgeschiedenen Natriumsalze mit Barytwasser und Zerlegen des zurückbleibenden Barium-alizarinats mit Salzsäure: BÖESEKEN, R. 41, 782.

Physikalische Eigenschaften. Härte der Krystalle: Reis, Zimmermann, Z. Kr. 57, 485; Ph. Ch. 102, 329. Verbrennungswärme bei konstantem Volumen: 1449,2 kcal/Mol (Swietoslawski, Starczewska, J. Chim. phys. 23, 822; vgl. Valeur, A. ch. [7] 21, 567). — 1000 cm³ absol. Alkohol lösen bei 60° 3,7 g (Kartaschoff, Farine, Helv. 11, 822). Alizarin löst sich in flüssigem Ammoniak mit blauer, beim Abkühlen auf — 20° in Violett übergehender Farbe (Briner, Kuhn, Helv. 12, 1082). Einfluß auf die Krystallisation von Calciumcarbonat: Kohlschütter, Egg, Helv. 8, 700. Absorptionsspektrum in Alkohol: Majima, Kuroda, Acta phytoch. 1, 63; C. 1922 III, 677; in alkal. Na₂SO₃-Lösung: Moir, Soc. 1927, 1810; in Acetanhydrid bei Gegenwart von Pyroboracetat: Dimeoth, Ruck, A. 446, 126. Aufnahme von Alizarin durch Acetatseide aus alkoh. Lösung: Kartaschoff, Farine, Helv. 11, 826. Dissoziationskonstante in 96%igem Alkohol (durch potentiometrische Titration bestimmt): Treadwell, Schwarzenbach, Helv. 11, 398. Die Farbe der Lösungen schlägt bei ph 5,5—6,6 von Gelb nach Violett um (I. M. Kolthoff, Säure-Basen-Indicatoren, 4. Aufl. [Berlin 1932], S. 164, 392). Umschlagsbereich in wäßr. Aceton: Crax, Westrip, Trans. Faraday Soc. 21, 334; C. 1926 I, 3258. Einfluß von Dextrin, Gummi arabicum und Gelatine auf das Verhalten als Indicator: Gutbier, Brintzinger, Koll. Z. 41, 3; C. 1927 I, 1558; über Anwendung als Indicator vgl. ferner Kolthoff, Pharm. Weekb. 58, 966; C. 1921 IV, 566.

Chemisches und biochemisches Verhalten. Bei der Oxydation mit ozonisiertem Sauerstoff in Lösung tritt Chemiluminescenz auf (BISWAS, DHAR, Z. anorg. Ch. 178, 127). Geschwindigkeit der Oxydation mit Bleitetraacetat in Eisessig: DIMBOTH, HILOKEN, B. 54, 3055. Alizarin wird in Gegenwart von Borsäure in konz. Schwefelsäure durch Braunstein bei 15—20°, durch Bleidioxyd bei 40—50° zu 1.2.3.4-Tetraoxy-anthrachinon oxydiert (BAYER & Co., D.R.P. 421235; Frdl. 15, 662). Bei der trockenen Destillation in Gegenwart von Aluminium im Wasserstoff- oder Kohlendioxydstrom bei Dunkelrotglut entsteht als Hauptprodukt Anthracen (RAY, Duttr, J. indian chem. Soc. 5, 106; C. 1928 I, 2370). Liefert bei der Reduktion mit amalgamiertem Aluminium in 20% iger Kalilauge 1.2-Dioxy-anthracen (Hall, Perkin, Soc. 123, 2035, 2036 Anm.).

Bromierung zu 3-Brom-alizarin (H 442) erfolgt auch bei der Einw. von 1 Mol Brom in Pyridin (BARNETT, COOK, Soc. 121, 1384) oder beim Kochen mit Brom in Eisessig (DIMROTH, SCHULTZE, HEINZE, B. 54, 3047). Bei der Einw. von 2 Mol Brom in Pyridin entsteht hauptsächlich 3-Brom-

alizarin-pyridiumbromid-(4) (Syst. Nr. 3051), während man bei der Einw. von 3 Mol Brom in Pyridin vor allem Alizarin-bis-pyridiumbromid-(3.4) (Syst. Nr. 3051) erhält (B., C., Soc. 121, 1385, 1386). Beim Schütteln mit Bromwasser oder Brom-Kaliumbromid-Lösung und Behandeln des Reaktionsprodukts mit Wasser entsteht 3-Brom-anthradiohinon-(1.2;9.10) (D., Sch., H.); beim Behandeln des Reaktionsprodukts mit Pyridin erhält man 3-Brom-alizarin-pyridin umbromid-(4) (B., C.). Alizarin gibt mit Brom in Methanol unter Kühlung mit Kältemischung 3-Brom-4-methoxy-3.4-dihydro-anthradiohinon-(1.2;9.10) (Alizarinchinon-methoxybromid, S. 553), bei gelindem Erwärmen 3.4-Dibrom-alizarin (D., Sch., H., B. 54, 3049). Bei kurzer Einw. von Brom in absol. Alkohol entsteht Alizarinchinon-äthoxybromid (D., Sch., H.).

Aufnahme von Ammoniak durch Alizarin unter verschiedenen Drucken: Briner, Morf, Helv. 11, 942; Br., Kuhn, Helv. 12, 1082. Alizarin gibt beim Erwärmen mit Thionylchlorid im Wasserbad in Abwesenheit von Lösungsmitteln und Feuchtigkeit Thionylalizarin (S. 490) (Green, Soc. 125, 1450). Liefert bei der Einw. von Chlorsulfonsäure in Pyridin bei 70—80° (I. G. Farbenind., D.R. P. 491424; Frdl. 16, 1312) oder in Gegenwart von Dimethylanilin bei 50—60° (Gebauer-Füllnegg, Eisner, Ind. Eng. Chem. 20, 637; C. 1928 II, 601) Alizarin-β-schwefelsäure. In 72 %igem Alkohol gelöstes Alizarin greift Magnesium und Zink an (Zetzsche, Silbermann, Viell, Helv. 8, 598). Liefert beim Erhitzen mit überschüssigem Quecksilber(II)-acetat 4-Acetoxymercuri-1.2.5.8-tetraoxy-anthrachinon(?) (Whitmore, Leuck, Am. Soc. 51, 1951). Lackbildung bei der Reaktion mit Titanchloroacetat (E II 2, 119): Giua, Monath, Z. anorg. Ch. 166, 309.

Beim Erhitzen mit Glycerin und konz. Schwefelsäure in Gegenwart von Anilinsulfat auf 150° entsteht 3.4 (oder 5.6)-Dioxy-benzanthron (Cross, Perkin, Soc. 1930, 299; vgl. BASF, D.R.P. 187495; Frdl. 9, 817; vgl. a. Turski, Grynwasser, Roczniki Chem. 9, 78; C. 1929 I, 1693). Gibt mit Pyroboracetat und Acetanhydrid beim Erwärmen auf höchstens 50° den 1-Diacetylborsäureester des Alizarins, beim Kochen den Diacetylborsäureester des Alizarin-2-acetats

(Dimboth, Faust, B. 54, 3031). Kondensiert sich mit N-Oxymethyltrichloracetamid in konz. Schwefelsäure bei gewöhnlicher Temperatur zu 4(?)-Trichloracetaminomethyl-alizarin (v. Diesbach, D. R. P. 507 049; Frdl. 16, 1236). Beim Erhitzen mit Anilin und Zinn(II)-chlorid auf 170—180° erhält man 2-Anilino-cöramidonin (s. nebenstehende Formel; Syst. Nr. 3427) (BASF, D. R. P. 330572; Frdl. 18, 414). Gibt beim Behandeln mit Acetobromglucose in Chinolin in Gegenwart von Silberoxyd, zuletzt auf dem Wasserbad (Takahashi, J. pharm. Soc.

NH·CeH5

Japan 1925, Nr. 525, S. 4; C. 1926 I, 1646) oder in 2n-Natronlauge + Aceton (Glaser, Kahler, B. 60, 1352) Alizarin- $[\beta$ -d-glucopyranosid-tetraacetat]-(2) (Syst. Nr. 4753 E).

Übergang in die Galle bei intravenöser Injektion: KAUFTHEIL, NEUBAUER, Ar. Pth. 116, 304; C. 1927 I, 321. Aufnahme durch Erythrocyten: Shaw, Am. J. Hyg. 8, 598; C. 1929 I, 413.

Analytisches. Reinheitsprüfung: E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 8, 648. — Mikrochemischer Nachweis: Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 103; vgl. a. Kempf, Fr. 62, 289, 290, 292. Beim Schütteln einer Lösung in Chloroform mit Dinatriumphosphat-Lösung tritt eine blutrote Färbung auf (Dimroth, Faust, B. 54, 3032). Sehr verdünnte alkoholische Lösungen sind gelb und färben sich auf Zusatz von Borsäure bräunlich (Böeseken, R. 41, 783). Alizarin gibt mit überschüssigem Titantrichlorid eine weinrote Färbung, die durch Eisen(III)-salze sofort zerstört wird (Knecht, Soc. 125, 1542 Anm.). Colorimetrische Bestimmung von Alizarin als Ammoniumsalz: Laidlaw, Payne, Biochem. J. 16, 494. Alizarin läßt sich in mit Alizarinfarblacken gefärbter Baumwolle durch Auflösen in 70% iger Schwefelsäure, Zufügen von Alkali und Vergleich mit einer Lösung bekannten Alizaringehalts bestimmen (Minajew, Swietllakow, Melliand Textilb. 10, 796; C. 1929 II, 3188). — Alizarin kann auf Grund seiner großenteils durch Lackbildung verursachten Farbreaktionen z. B. zur colorimetrischen Bestimmung von Calcium (Laddlaw, Payne, Biochem. J. 16, 494) und zum Nachweis von Aluminium (Feigl, Stern, Fr. 60, 7; Hauser, Fr. 60, 88; Tananajew, Ж. 58, 220; C. 1926 II, 2327; Allardyce, Am. Soc. 49, 1991), von Zirkon, Titan und Thorium (de Boer, R. 44, 1071; Chem. Weelb. 21, 404; C. 1925 I, 133; Payelera, Mikroch. 4, 199; C. 1926 II, 3066) verwendet werden (vgl. F. Feigl., Quantitative Analyse mit Hilfe von Tüpfelreaktionen [Leipzig 1935], S. 238, 248). Die Färbung des Zirkonlacks wird durch Fluoride zerstört; hierauf beruht eine empfindliche Reaktion zum Nachweis von Fluoriden (de Boer, R. 44, 1072; Pa., Mikroch. 6, 149; C. 1929 I, 776).

Salze des Alizarins. NH₄C₁₄H₇O₄. Violett. Dissoziationsdruck bei 18°, 76° und 101°: 12, 69 und 98 mm (Beiner, Morf, Helv. 11, 942). Hydrolytische Adsorption an Aluminium-hydroxyd-Sol: Williamson, J. phys. Chem. 28, 491. — (NH₄)₂C₁₄H₄O₄. Vgl. darüber Beiner, Kuhn, Helv. 12, 982. — NaC₁₄H₇O₄. Hydrolytische Adsorption an Aluminiumhydroxyd-Sol: Williamson, J. phys. Chem. 28, 891; an Aluminiumhydroxyd-, Chrom(III)-hydroxyd- und Eisen(III)-hydroxyd-Sole: Weiser, Poeter, J. phys. Chem. 31, 1829; Wei., J. phys. Chem.

38, 1715; an Eisen(III)-hydroxyd-Sol: Bull, Adams, J. phys. Chem. 25, 662. — $CaC_{14}H_4O_4 + 2H_2O$. Blauschwarze mikrokrystalline Nadeln. Sehr schwer löslich in verd. Ammoniak (Laidlaw, Payne, Biochem. J. 16, 495). Wird durch Kohlendioxyd zersetzt. — $BiC_{14}H_7O_5 = C_{14}H_7O_4$ · BiO. Braunrote Fällung. Leicht löslich in Alkalilauge mit violetter Farbe (Maschmann, Ar. 1925, 726). — $[Cr(NH_3)_e](C_{14}H_7O_4)_3 + 3^1/2 H_2O$. Violett. Löst sich in Wasser mit rötlich violetter Farbe (King, Soc. 125, 1335). Gibt beim Kochen mit Wasser nach und nach das gesamte Ammoniak ab. — $(NH_4)_3[Fe(C_{14}H_4O_4)_3]$. Magnetische Susceptibilität: Welo, Phil. Mag. [7] 6, 496; C. 1928 II, 2627. — $[Co(NH_3)_5][Co(C_{14}H_4O_4)_3]$. Violetter Niederschlag. Unlöslich in Wasser, sehr schwer löslich in verd. Säuren und Alkalien (Morgan, Smith, Soc. 121, 166). Löst sich in heißer 5n-Natronlauge mit tiefvioletter Farbe unter Ammoniak-Entwicklung. Die Lösung in 10n-Salzsäure ist grün und wird beim Verdünnen blaßrot.

Funktionelle Derivate des Alizarins.

- 2-0xy-1-methoxy-anthrachinon, Alizarin-1-methyläther $C_{15}H_{10}O_4=C_6H_4(CO)_2C_6H_4(OH)\cdot O\cdot CH_4$ (H 444). V. In der Wurzelrinde von Morinda citrifolia L. (Simonsen, Soc. 117, 564). B. Neben wenig Alizarin-2-methyläther bei der Einw. von Diazomethan auf Alizarin-2-benzoat in Tetrachloräthan und Hydrolyse des erhaltenen Alizarin-1-methyläther-2-benzoats mit 1% iger methylalkoholischer Kalilauge (Pebkin, Storey, Soc. 1928, 230, 240). Neben überwiegenden Mengen 2-Methyläther bei der Einw. von Diazomethan auf Alizarin-2-acetat in Äther und Hydrolyse des Reaktionsprodukts mit Salzsäure in Eisessig (Kubota, Perkin, Soc. 127, 1893; vgl. Oesch, Perkin, Pr. chem. Soc. 30 [1914], 213). F: 179—181° (K., P.).
- 1-Oxy-2-methoxy-anthrachinon, Alizarin-2-methyläther $C_{15}H_{10}O_4=C_8H_4(CO)_2C_6H_2(OH)\cdot O\cdot CH_3$ (H 444; E I 712). B. s. im vorangehenden Artikel. Darstellung durch Methylierung von Alizarin mit Dimethylsulfat (H 444): Miller, Perkin, Soc. 127, 2687. Thermische Analyse des Systems mit 1.4-Dimethyl-2.5-dioxo-piperazin(Eutektikum bei 142° und 12,5 Gew.-% Alizarin-2-methyläther: Pfeiffer, Wang, Z. ang. Ch. 40, 987, 991. Liefert beim Kochen mit Zinn(II)-chlorid und 33% iger Salzsäure 1-Oxy-2-methoxy-anthron-(9) und wenig 4-Oxy-3-methoxy-anthron-(9) (M., P., Soc. 127, 2688).
- 1.2-Dimethoxy-anthrachinon, Alizarin-dimethyläther $C_{16}H_{12}O_4 = C_6H_4(CO)_2C_6H_2(O \cdot CH_3)_2$ (H 444; E I 712). F: 214—215° (MILLER, PERKIN, Soc. 127, 2687). Thermische Analyse des Systems mit 1.4-Dimethyl-2.5-dioxo-piperazin (Eutektikum bei 134°; ca. 13 Gew.-% Alizarin-dimethyläther): PFEIFFER, Wang, Z. ang. Ch. 40, 987, 991. Löst sich in konz. Schwefelsäure mit violetter Farbe (GOODALL, PERKIN, Soc. 125, 475).
- 1-0xy-2-acetoxy-anthrachinon, Alizarin-2-acetat $C_{18}H_{10}O_5=C_8H_4(CO)_2C_6H_2(OH)\cdot O\cdot CO\cdot CH_3$ (H 445). B. Bei 24-stdg. Aufbewahren von Alizarin mit Acetanhydrid und Kaliumacetat (Kubota, Perkin, Soc. 127, 1892). Beim Kochen von Thionylalizarin (S. 490) mit Eisessig (Green, Soc. 125, 1450). F: 204—206° (K., P.), 201—202° (G.). Liefert bei der Einw. von Diazomethan in Äther Alizarin-2-methyläther-1-acetat und wenig Alizarin-1-methyläther-2-acetat (K., P.).
- 2-Methoxy-1-acetoxy-anthrachinon, Alizarin-2-methyläther-1-acetat C₁₇H₁₂O₅ = C₆H₄(CO)₂C₆H₂(O·CH₃)·O·CO·CH₃ (H 445). B. Neben wenig Alizarin-1-methyläther-2-acetat durch Einw. von Diazomethan auf Alizarin-2-acetat in Äther (Kubota, Perkin, Soc. 127, 1892). Bei der Oxydation von 4-Oxy-3-methoxy-anthron-(9) oder von 1-Oxy-2-methoxy-anthron-(9) mit Chromtrioxyd in Eisessig (Miller, Perkin, Soc. 127, 2688). F: 204—206° (K., P.; P., Storey, Soc. 1928, 240).
- 1-Methoxy-2-acetoxy-anthrachinon, Alizarin-1-methyläther-2-acetat $C_{17}H_{12}O_5=C_6H_4(CO)_4C_6H_2(O\cdot CH_3)\cdot O\cdot CO\cdot CH_3$. B. s. im vorangehenden Artikel. F: 210—212° (KUBOTA, PERKIN, Soc. 127, 1893), 211—212° (PERKIN, STOREY, Soc. 1928, 240). Liefert bei der Hydrolyse Alizarin-1-methyläther (K., P.).
- 1.2-Diacetoxy-anthrachinon, Alizarin-diacetat $C_{18}H_{18}O_6 = C_6H_4(CO)_2C_6H_2(O \cdot CO \cdot CH_3)_2$ (H 445; E I 713). B. Durch Einw. von Acetanhydrid auf 1-Oxy-2-carbäthoxyoxy-anthrachinon in heißem Pyridin (Perkin, Story, Soc. 1929, 1418). Aus Thionylalizarin (S. 490) beim Kochen mit Acetanhydrid (Green, Soc. 125, 1450) oder beim Erhitzen mit Acetylchlorid im Rohr auf 150—170° (Gr., Soc. 1927, 2931). F: 187—190° (GOODALL, PERKIN, Soc. 125, 476).
- 1-0xy-2-carbāthoxyoxy-anthrachinon, O^2 -Carbāthoxy-alizarin, 2-Äthylcarbonato-alizarin $C_{17}H_{18}O_6=C_0H_4(CO)_9C_0H_2(OH)\cdot O\cdot CO_9\cdot C_2H_5$. B. Durch Einw. von Chlorameisensäureāthylester auf überschüssiges Alizarin in Pyridin (Perkin, Storey, Soc. 1928, 240). Gelbe Nadeln (aus Aceton). F: 138—140° (P., Storey). Bei kurzem Kochen mit Zinn(II)-

chlorid und Salzsäure in Eisessig entsteht 1-Oxy-2-carbäthoxyoxy-anthron-(9) (Perein, Story, Soc. 1929, 1418). Liefert mit Acetanhydrid in heißem Pyridin Alizarin-diacetat, in kaltem Pyridin 1-Acetoxy-2-carbäthoxyoxy-anthrachinon (P., Story, Soc. 1929, 1418). Bei der Einw. von Diazomethan in Äther erhält man 2-Methoxy-1-carbäthoxyoxy-anthrachinon und geringere Mengen 1-Methoxy-2-carbäthoxyoxy-anthrachinon (P., Storey, Soc. 1928, 240).

- 2-Methoxy-1-carbäthoxyoxy-anthrachinon, 0^1 -Carbäthoxy-alizarin-2-methyläther $C_{18}H_{14}O_6=C_6H_4(CO)_2C_6H_3(O\cdot CH_3)\cdot O\cdot CO_3\cdot C_2H_5$. B. Neben geringeren Mengen 1-Methoxy-2-carbäthoxyoxy-anthrachinon aus 1-Oxy-2-carbāthoxyoxy-anthrachinon und Diazomethan in Äther (Perkin, Storey, Soc. 1928, 240). Tafeln oder Prismen (aus Benzol). F: 213—215°. Liefert bei der Hydrolyse mit alkoh. Kalilauge Alizarin-2-methyläther.
- 1 Methoxy 2 carbāthoxvoxy anthrachinon, O²-Carbāthoxy alizarin 1 methylāther $C_{18}H_{14}O_6=C_6H_4(CO)_2C_6H_2(O\cdot CH_3)\cdot O\cdot CO_2\cdot C_2H_5$. B. s. im vorangehenden Artikel. Gelbe Nadeln (aus Alkohol). F: 145—147° (Perkin, Storey, Soc. 1928, 241). Liefert bei der Hydrolyse mit alkoh. Kalilauge Alizarin-1-methyläther.
- 1-Acetoxy-2-carbäthoxvoxy-anthrachinon, 0^2 -Carbäthoxy-alizarin-1-acetat $C_{19}H_{14}O_7=C_6H_4(CO)_2C_6H_2(O\cdot CO\cdot CH_3)\cdot O\cdot CO_2\cdot C_2H_5$. B. Bei der Einw. von Acetanhydrid auf 1-Oxy-2-carbāthoxyoxy-anthrachinon in kaltem Pyridin (Perkin, Story, Soc. 1929, 1418). Blaß grüngelbe Nadeln (aus Aceton + Alkohol). F: 177—179°.
- 1.2-Bis-carbāthoxyoxy-anthrachinon, Dicarbāthoxyalizarin, Diāthylcarbonato-alizarin $C_{20}H_{16}O_8 = C_6H_4(CO)_2C_6H_2(O \cdot CO_2 \cdot C_2H_5)_2$. B. Aus Alizarin und 2 Tln. Chlorameisensäureāthylester bei Gegenwart von Pyridin in Chloroform (Perkin, Storey, Soc. 1928, 240). Gelbe Nadeln (aus Alkohol). Schmilzt bei 150—157°. Ist gegen siedende Chromessigsäure beständig (P., Storey, Soc. 1929, 1418).
- 1 Oxy 2 phenoxyacetoxy anthrachinon, Alizarin 2 phenoxyacetat $C_{22}H_{14}O_6 = C_8H_4(CO)_2C_6H_2(OH)\cdot O\cdot CO\cdot CH_2\cdot O\cdot C_6H_5$. B. Beim Erhitzen von Thionylalizarin mit etwas überschüssiger Phenoxyessigsäure auf 150—170° (Green, Soc. 1927, 2932). Gelbe Nadeln (aus Benzol). F: 179°.

1.2-Thionyldioxy-anthrachinon, Thionylalizarin, Alizarinsulfit $C_{14}H_6O_5S=$

C₆H₄(CO)₂C₆H₂C₀SO. Das Mol.-Gew. ist in Naphthalin kryoskopisch bestimmt. — B. Durch mehrstündiges Erwärmen von Alizarin mit überschüssigem Thionylchlorid auf 100° unter Ausschluß von Feuchtigkeit (GREEN, Soc. 125, 1450). — Gelbgrüne Krystalle (aus Äther oder Benzol). F: 171—172°. — Färbt sich im zugeschmolzenen Röhrchen nach einigen Stunden orange; geht an feuchter Luft und beim Auflösen in Natronlauge oder konz. Schwefelsäure in Alizarin über (G., Soc. 125, 1450); Alizarin entsteht auch beim Kochen mit absol. Alkohol, bei der Einw. von heißem Phenol, beim Erhitzen mit Di- und Trichloressigsäure oder Dibromessigsäure auf 170° sowie bei 1-stdg. Kochen mit Anilin (G., Soc. 1927, 2930). Gibt beim Kochen mit Eisessig Alizarin-2-acetat; reagiert analog mit Benzoesäure und anderen aromatischen Säuren bei 150—170° (G., Soc. 1927, 2930). Liefert mit siedendem Benzoylchlorid Alizarin-dibenzoat, mit Benzoesäureanhydrid in Nitrobenzol bei 170° auch Alizarin-2-benzoat (G., Soc. 1927, 2931).

Mono-[1-oxy-anthrachinonyl-(2)]-sulfat, Alizarin-0²-sulfonsäure, Alizarin-β-schwefelsäure C₁₄H₈O₇S = C₆H₄(CO)₂C₆H₃(OH)·O·SO₃H. B. Aus Alizarin und Chlorsulfonsäure in Gegenwart von Dimethylanilin bei 50—60° oder in Gegenwart von Pyridin unter Kühlung (Gebauer-Fülnegg, Eisneb, Ind. Eng. Chem. 20, 637; C. 1928 II, 601) oder in Pyridin bei 70—80° (I. G. Farbenind., D. R. P. 491424; Frdl. 16, 1312). — Blättchen (aus Wasser). Leicht löslich in heißem Wasser, löslich in Alkalilauge mit roter Farbe (I. G. Farbenind.). — Wird durch verd. Mineralsäuren leicht verseift (I. G. Farbenind.). Färbt Wolle gelb, auf Aluminium- oder Chrombeize rot, Baumwolle rot, Acetatseide gelb (I. G. Farbenind.). — Mononatriumsalz. Goldgelbe Blättchen (G.-F., El.). — Dinatriumsalz. Krystalle (aus Natriumacetat-Lösung) (G.-F., El.). — Pyridinsalz. Gelb (G.-F., El.).

1-Diacefylborsäureester des Alizarins $C_{18}H_{18}O_8B = C_6H_4(CO)_3C_6H_2(OH)\cdot O\cdot B(O\cdot CO\cdot CH_2)_3$. B. Beim Erwärmen von Alizarin mit Pyroboracetat und Acetanhydrid auf höchstens 50° (Dimboth, Faust, B. 54, 3031). — Tiefrote Krystalle (aus absol. Chloroform). — Wird durch kaltes Wasser sehr schnell in Alizarin, Borsäure und Essigsäure zerlegt.

Diacetyiborsäureester des Alizarin-2-acetats $C_{30}H_{15}O_{2}B = C_{6}H_{4}(CO)_{2}C_{6}H_{2}(O \cdot CO \cdot CH_{3}) \cdot O \cdot B(O \cdot CO \cdot CH_{3})_{2}$. B. Beim Kochen von Alizarin mit Pyroboracetat und Acetanhydrid (Dimeoth, Faust, B. 54, 3031). — Orangerote Krystalle (aus Pyroboracetat-Lösung). — Wird durch kaltes Wasser leicht in Alizarin-2-acetat, Borsäure und Essigsäure gespalten.

Substitutionsprodukte des Alizarins.

3-Brom-1.2-dioxy-anthrachinon, 3-Brom-alizarin C₁₄H, O₄Br, s. nebenstehende Formel (H 446; E I 713). B. Durch Bromierung von Alizarin in siedendem Eisessig (Dimboth, Schultze, Heinze, B. 54, 3047) oder in kaltem Pyridin (Barnett, Cook, Soc. 121, 1384). Beim Kochen von 3-Nitro-alizarin mit Brom in Eisessig (B., C., Soc. 121, 1390). Beim Erhitzen von 1.3-Dibrom-2-oxy-anthrachinon mit verd. Natronlauge im Auto-

klaven auf 200° (HARDACRE, PERKIN, Soc. 1929, 185). — Gelbe Blättchen (aus Eisessig). F: 260—261° (D., Sch., H.). — Gibt bei der Einw. von Brom-Kaliumbromid-Lösung und Behandlung des Reaktionsprodukts mit Wasser 3-Brom-anthradichinon-(1.2;9.10) (D., Sch., H.). Liefert in Pyridin suspendiert bei der Einw. von 1 Mol Brom 3-Brom-alizarin-pyridiniumbromid-(4), bei der Einw. von 2 Mol Brom Alizarin-bis-pyridiniumbromid-(3.4) (Syst. Nr. 3051) (B., C., Soc. 121, 1385, 1388). Bei gelindem Erwärmen mit Salpetersäure (D: 1,42) in Eisessig entsteht 3-Nitro-alizarin (B., C., Soc. 121, 1390).

Diacetat $C_{18}H_{11}O_6Br = C_6H_4(CO)_2C_6HBr(O\cdot CO\cdot CH_3)_2$ (H 446; E I 713). F: 204—205° (Dimboth, Schultze, Heinze, B. 54, 3047), 201—202° (Hardacre, Perkin, Soc. 1929, 186).

3.4-Dibrom-1.2-dioxy-anthrachinon, 3.4-Dibrom-alizarin C₁₄H₆O₄Br₂, Formel I. B. Bei gelindem Erwärmen von Alizarin mit Brom in Methanol (DIMROTH, SCHULTZE, HEINZE, B. 54, 3049). — Gelbe Nadeln (aus Eisessig). F: 251—252°. Löslich in konz. Schwefelsäure mit gelbroter Farbe; die alkal. Lösung ist rotstichiger als die des Alizarins. — Gibt bei der Oxydation mit Permanganat in Sodalösung Phthalsäure. Beim Behandeln mit Brom-Kaliumbromid-Lösung entsteht 3.4-Dibrom-anthradichinon-(1.2;9.10).

Diacetat $C_{18}H_{10}O_6Br_2=C_6H_4(CO)_2C_6Br_2(O\cdot CO\cdot CH_3)_2$. Hellgelbe Nadeln (aus Eisessig). F: 199—200° (DIMROTH, SCHULTZE, HEINZE, B. 54, 3049).

3-Nitro-1.2-dioxy-anthrachinon, 3-Nitro-alizarin C₁₄H₇O₆N, Formel II (H 447; E I 713). B. Bei der Einw. von Salpetersäure (D: 1,42) auf 3-Brom-alizarin in Eisessig (Barnett, Cook, Soc. 121, 1390). — Zur Reinigung löst man in heißem Pyridin, vermischt mit siedendem absolutem Alkohol, filtriert heiß und krystallisiert das sich beim Abkühlen ausscheidende Pyridinsalz aus Eisessig um (R. Möhlau, H. Th. Bucherer, Farbenchemisches Praktikum, 3. Aufl. [Berlin-Leipzig 1926], S. 225). — Gibt bei der Einw. von Brom in siedendem Eisessig 3-Brom-alizarin (Ba., C.); beim Behandeln mit 2 Mol Brom in Pyridin unter Kühlung und Umkrystallisieren des Reaktionsprodukts aus 15%iger Bromwasserstoffsäure erhält man "Alizarin-4-pyridinium-3-nitrolbetain" (Formel III; Syst. Nr. 3051) (Barnett, Cook, Soc. 121, 1388, 1390). Aufnahme von Ammoniak: Briner, Kuhn, Helv. 12, 1089. Über Lackbildung bei der Umsetzung von kolloidal gelöstem 3-Nitro-alizarin mit Kupferacetat und Bariumacetat unter verschiedenen Bedingungen vgl. Liepatow, Ж. 57, 454; 58, 991; 59, 112, 969; 61, 1259; B. 61, 45; Z. anorg. Ch. 152, 76; 157, 25; 184, 233; Koll.-Z. 87, 227; 89, 130; C. 1926 I, 324; II, 1740; 1927 I, 2047; II, 1115; 1928 I, 2898.

Mikrochemischer Nachweis: Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 102, 103. Umschlagsbereich in wäßr. Aceton: Cray, Westrip, Trans. Faraday Soc. 21, 334; C. 1926 I, 3258.

NH₄C₁₄H₅O₅N. Braunrot. Dissoziationsdruck zwischen 0° (2,9) und 55° (23,5 mm): Briner, Kuhn, Helv. 12, 1091. — [Co(NH₃)₅][Co(C₁₄H₅O₆N)₃]. Fast unlöslich in Wasser, verd. Säuren und kalten verdünnten Alkalien; löst sich in heißer 5 n-Natronlauge unter Ammoniakentwicklung (Morgan, Smith, Soc. 121, 166). Löst sich in konz. Salzsäure mit olivgrüner, in konz. Schwefelsäure mit vorübergehender blauer Farbe.

Dimethyläther $C_{16}H_{11}O_6N=C_6H_6(CO)_3C_6H(NO_3)(O\cdot CH_3)_2$. B. Beim Erhitzen von 3-Nitroalizarin-kalium mit Dimethylsulfat und Natriumcarbonat auf 140° (Perkin, Story, Soc. 1929, 1416). — Gelbe Nadeln (aus Benzol). F: 168—171°.

4-Nitro-1.2-dioxy-anthrachinon, 4-Nitro-alizarin C₁₄H₇O₆N, Formel IV auf S. 492 (H 447). Gibt beim Behandeln mit 2 Mol Brom in Pyridin unter Kühlung und Umkrystallisieren des Reaktionsprodukts aus 12%iger Bromwasserstoffsäure, Alizarin-3-pyridinium-4-nitrolbetain" (Formel V; Syst. Nr. 3051) (Barnett, Cook, Soc. 121, 1382, 1389). Aufnahme von Ammoniakgas: Briner, Kuhn, Helv. 12, 1091. — NH₄C₁₄H₆O₆N. Braunrot. Dissoziationsdruck bei 20°: 8,3, bei 56°: 25,2 mm (Br., K.).

3. 1.3 - Dioxy - anthrachinon, Purpuroxanthin, Xanthopurpurin C₁₄H₈O₄, Formel VI (H 448; E I 714). B. Beim Erhitzen von 1.3-Dibrom-anthrachinon mit Kalkmilch im Rohr auf 225° (Battegay, Claudin, Bl. [4] 29, 1019). — F: 268—270° (Perkin, Story, Soc. 1929, 1415). Die sehr verdünnte alkoholische Lösung ist auch bei Gegenwart von Borsäure

gelb (BÖESEKEN, R. 41, 783). Dissoziationskonstante in 96% igem Alkohol (durch potentiometrische Titration bestimmt): TREADWELL, SCHWARZENBACH, Helv. 11, 398. — Liefert bei Einw. von 3 Mol Brom in Pyridin 2.4-Dibrom-1.3-dioxy-anthrachinon (BARNETT, COOK, Soc. 121, 1390). Beim Behandeln mit Acetanhydrid und Kaliumacetat in der Kälte erhält man 1-Oxy-3-acetoxy-anthrachinon (PERKIN, STOREY, Soc. 1928, 238).

3 - Oxy - 1 - methoxy - anthrachinon, Purpuroxanthin - 1 - methyläther $C_{15}H_{10}O_4 = C_6H_4(CO)_2C_6H_2(OH)\cdot O\cdot CH_3$ (H 449). B. Durch Einw. von Salzsäure auf 1-Methoxy-3-acetoxy-anthrachinon (Perkin, Storey, Soc. 1928, 239). — Gelbe Blättchen (aus Aceton). F: 311° bis 313°. — Gibt beim Erhitzen mit rauchender Salzsäure auf 180° Purpuroxanthin.

1.3-Dimethoxy-anthrachinon, Purpuroxanthin-dimethyläther $C_{16}H_{12}O_4=C_6H_4(CO)_2C_6H_8(O\cdot CH_9)_2$ (H 449). B. Beim Kochen von 1.3-Dinitro-anthrachinon mit Natriummethylat-Lösung (Dhar, Soc. 117, 1003). — F: 155°.

3-0xy-1-acetoxy-anthrachinon, Purpuroxanthin-1-acetat $C_{16}H_{10}O_5 = C_6H_4(CO)_2C_6H_3(OH) \cdot O \cdot CO \cdot CH_3$. B. Durch Einw. von Ammoniak auf eine Lösung von 1.3-Diacetoxy-anthrachinon in siedendem Aceton (Perkin, Story, Soc. 1929, 1409, 1415). — Blaß orangegelbe Nadeln (aus Methanol). F: 231—235°. Leicht löslich in Aceton. — Liefert bei der Hydrolyse mit Salzsäure Purpuroxanthin.

1-Oxy-3-acetoxy-anthrachinon, Purpuroxanthin-3-acetat $C_{16}H_{10}O_5 = C_6H_4(CO)_2C_6H_2(OH) \cdot O \cdot CO \cdot CH_3$. B. Beim Behandeln von 1.3-Dioxy-anthrachinon mit Acetanhydrid und Kaliumacetat in der Kälte (Perkin, Storey, Soc. 1928, 238). — Gelbe Nadeln (aus Alkohol). F: 144°. — Liefert bei Einw. von Diazomethan in Tetrachloräthan 1-Methoxy-3-acetoxy-anthrachinon.

1-Methoxy-3-acetoxy-anthrachinon, Purpuroxanthin-1-methyläther-3-acetat $C_{17}H_{12}O_5=C_6H_4(CO)_2C_9H_2(O\cdot CH_3)\cdot O\cdot CO\cdot CH_3$. B. Aus 1-Oxy-3-acetoxy-anthrachinon und Diazomethan in Tetrachlorathan (Perkin, Storey, Soc. 1928, 238, 239). — Gelbe Blättchen (aus Alkohol). F: 154—155°.

1.3 - Diacetoxy- anthrachinon, Purpuroxanthin-diacetat $C_{18}H_{12}O_6 = C_4H_4(CO)_2C_6H_2(O\cdot CO\cdot CH_2)_2$ (H 449). Gibt beim Behandeln mit Ammoniak in siedendem Aceton 3-Oxy-1-acetoxy-anthrachinon (Perkin, Story, Soc. 1929, 1409, 1415).

2.4-Dibrom-1.3-dioxy-anthrachinon, 2.4-Dibrom-purpuroxanthin C₁₄H₆O₄Br₂, Formel VII (H 449). B. Durch Einw. von 3 Mol Brom auf eine Suspension von Xanthopurpurin in Pyridin (Barnett, Cook, Soc. 121, 1390). — Gelbe Krystalle (aus Tetrachloräthan). F: 225—226°.

4. 1.4-Dioxy-anthrachinon, Chinizarin C₁₄H₈O₄, Formel VIII bzw. desmotrope Formen (H 450; E I 714). Bestimmte Reaktionen des Chinizarins lassen sich durch Annahme einer Desmotropie mit 4.9-Dioxy-anthrachinon-(1.10) (Formel IX) (Green, Soc. 1927, 2384) oder mit 9.10-Dioxy-anthrachinon-(1.4) (Formel X) (Zahn, Ochwat, A. 462, 76, 77) besser erklären als mit der klassischen Formel VIII.

B. und Darst. Beim Erhitzen von 2'.5'-Dioxy-benzophenon-carbonsäure-(2) mit konz. Schwefelsäure (Zahn, Ochwat, A. 462, 94). Zur Darstellung durch Erhitzen von 4-Chlor-phenol mit Phthalsäureanhydrid und konz. Schwefelsäure unter Zusatz von Borsäure (E I 714) vgl. Reynolds, Bigelow, Am. Soc. 48, 422; H. E. Firez-David, L. Blangey, Grundlegende Operationen der Farbenchemie, 5. Aufl. [Wien 1943], S. 226; 4-Chlor-phenol läßt sich durch Hydrochinon ersetzen (F.-D., Bl.). Aus Phthalsäureanhydrid und Hydrochinon beim Erhitzen auf 180—200° (Böberen, R. 41, 781), beim Erhitzen mit japanischer saurer Erde auf 260° bis 270° (Tanaka, Watanabe, Bl. chem. Soc. Japan 3, 288; C. 1929 I, 752) oder beim Eintragen äquimolekularer Mengen in Natriumchlorid + Aluminiumchlorid bei 200° und nachfolgenden

E II 8

493

Erhitzen auf 230-2400 (RAUDNITZ, B. 62, 512). In mäßiger Ausbeute beim Verschmelzen von 1.4-Dioxy-naphthalin und Maleinsäureanhydrid mit Natriumchlorid + Aluminiumchlorid bei 220° (ZAHN, OCHWAT, A. 462, 88). Durch Erhitzen von 4-Chlor-anthrachinon mit Borsäure und konz. Schwefelsäure auf 160° (ULLMANN, CONZETTI, B. 58, 833; Scottish Dyes Ltd., D.R.P. 490637; Frdl. 16, 1258). Durch Erwärmen von Leukochinizarin-sulfonsäure-(2) mit Wasser oder Sodalösung (Marschalk, Bl. [4] 41, 944). Aus Chinizarin-sulfonsäure-(2) durch Reduktion mit Zinn(II)-chlorid und alkoh. Salzsäure oder mit Na₂S₂O₄-Lösung bei gewöhnlicher Temperatur und Behandlung des Reaktionsproduktes mit warmem Wasser (M., Bl. [4] 41, 945) oder durch Reduktion mit Na₂S₂O₄ in Wasser bei 95—100⁶ (I. G. Farbenind., F. P. 618308; D. R. P. 568760 [1925]; C. 1928 II, 1624; Frdl. 18, 1280). Durch Erhitzen von 4-Amino-1-oxy-anthrachinon oder 1.4-Diamino-anthrachinon mit 20% iger Salzsäure unter Druck (Brass, Ziegler, B. 58, 763; Br., Albrecht, B. 61, 988). Durch Reduktion von 1-Amino-4-anilino-anthrachinonsulfonsäure-(2) mit Zinn(II)-chlorid und alkoh. Salzsäure und Erwärmen des Reaktionsprodukts mit Wasser (MARSCHALK).

Physikalische Eigenschaften. Löst sich in Acetanhydrid mit orangeroter Farbe und schwacher Fluorescenz, in Pyroboracetat-Lösung mit roter Farbe und intensiv gelber Fluorescenz (DIMBOTH, FAUST, B. 54, 3030; DI., RUCK, A. 446, 126). Die sehr verdünnte alkoholische Lösung ist auch in Gegenwart von Borsäure gelb (Börseken, R. 41, 782). Thermische Analyse des Systems mit 1.4-Dimethyl-2.5-dioxo-piperazin (Eutektikum bei ca. 137° und ca. 18 Gew.-% Chinizarin): Pfeiffer, Wang, Z. ang. Ch. 40, 986, 990. Absorptionsspektrum in sehr verdünnter alkoholischer Lösung: Majima, Kuroda, Acta phytoch. 1, 64; C. 1922 III, 677; in wäßrigalkalischer Na₂SO₃-Lösung: Moir, Soc. 1927, 1810; in Pyroboracetat-Lösung: Dimroth, Hilcken, B. 54, 3056; Di., Ruck, A. 446, 126. Abklingungszeit der Fluorescenz von Lösungen in Pentan: GAVIOLA, Z. Phys. 42, 861; C. 1927 II, 383. Dissoziationskonstante in 96% igem Alkohol (durch potentiometrische Titration bestimmt): TREADWELL, SCHWARZENBACH, Helv. 11, 398.

Chemisches Verhalten. Bei der Oxydation von Chinizarin mit 6 Mol Kaliumferricyanid in Wasser bei 25° erhält man 3-Oxy-2- $[\dot{\beta}$ -carboxy-acryloyl]-naphthochinon-(1.4) und andere Produkte (Scholl, Dahll, Hansgirg, B. 56, 2550). Chinizarin gibt bei der Oxydation mit Bleitetraacetat in Eisessig Anthradichinon (1.4;9.10) (E II 7, 860) (DIMROTH, FRIEDEMANN, Kammerer, B. 53, 484, 485); Geschwindigkeit dieser Reaktion: Di., Hilcken, B. 54, 3055. Chinizarin wird auch durch Schütteln mit Brom-Kaliumbromid-Lösung bei 0°, zweckmäßig in Gegenwart von Natriumacetat, oder durch Einw. von Bromwasser in Gegenwart von Natriumacetat in Anthradichinon-(1.4; 9.10) übergeführt (DI., SCHULTZE, HEINZE, B. 54, 3043), während bei der Behandlung mit überschüssigem Brom in Gegenwart von Wasser 2.3-Dibrom-2.3-dihydroanthradichinon-(1.4;9.10), beim Behandeln mit Brom in absol. Methanol unter Kühlung 3-Brom-2-methoxy-2.3-dihydro-anthradichinon-(1.4;9.10) erhalten wird (DI., Sch., Hei.) und die Einw. von 2 Mol Brom in Pyridin Chinizarin-2.3-bis-pyridiniumbromid (Syst. Nr. 3051) ergibt (Bar-NETT, COOK, Soc. 121, 1383). Chinizarin gibt bei der Reduktion mit Zinn und konz. Salzsäure in siedendem Eisessig höherschmelzendes Leukochinizarin (S. 478) (K. H. MEYER, SANDER, A. 420, 122). Bei der Reduktion mit Zinkstaub und Natronlauge unter Luftabschluß und Fällung mit verd. Säuren erhält man niedrigerschmelzendes Leukochinizarin (S. 479) (M., S.). Bei der Einw. von Phosphorpentachlorid auf Chinizarin in Nitrobenzol, zuletzt bei Siedetemperatur, entsteht 1.4-Dichlor-anthrachinon-tetrachlorid (E II 5, 547) (BARNETT, MATTHEWS, WILTSHIRE, R. 45, 563). Chinizarin liefert beim Kochen mit frisch destilliertem Thionylchlorid 9-Chlor-4-oxy-anthrachinon-(1.10) (S. 387) (GREEN, Soc. 1926, 1431), während beim Erhitzen mit Thionylchlorid im Rohr auf 135—140° 2.4-Dichlor-1-oxy-anthrachinon entsteht (RAUDNITZ, B. 62, 2763; vgl. Zahn, B. 67 [1934], 2068). Gibt beim Erhitzen mit Borsäure und rauchender Schwefelsäure und weiteren Erhitzen des entstandenen Borsäureesters mit rauchender Schwefelsäure und etwas Quecksilbersulfat auf 170—180° Chinizarin-sulfonsäure-(6) (I. G. Farbenind., D.R.P. 492000; Frdl. 16, 1247). Aufnahme von Ammoniakgas: Briner, Morf, Helv. 11, 942; Br., Kuhn, Helv. 12, 1084.

Chinizarin gibt bei längerem Erhitzen mit p-Toluolsulfonsäure-methylester oder -äthylester und Natriumcarbonat in Trichlorbenzol auf 160—170° Chinizarin-dimethyläther bzw. -diäthyläther (Zahn, Ochwat, A. 462, 95). Beim Erwärmen mit Pyroboracetat und Acetanhydrid auf dem Wasserbad entsteht der Bis-diacetylborsäureester (S. 494) (DIMROTH, FAUST, B. 54, 3024, 3030). Chinizarin gibt mit Athylendiaminhydrat ein dunkelviolettes Salz, das bei vorsichtigem Erwärmen in eine in Nadeln krystallisierende, in konz. Schwefelsäure mit rötlich-

blauer Farbe lösliche Verbindung übergeht (I. G. Farbenind., D.R.P. 478048; Frdl. 16, 1239). Gibt mit überschüssigem Titantrichlorid in Natriumtartrat-Lösung eine intensiv blaugrüne Färbung, die durch Eisen(III)-salze sofort zerstört wird (KNECHT, Soc. 125, 1542 Anm.). Farbreaktionen mit Zirkonium- und Hafniumsalzen: DE BOER, R. 44, 1074.

Salze und additionelle Verbindungen des Chinizarins. NH₄C₁₄H₇O₄: (Briner, Morf, Helv. 11, 942; Bri., Kuhn, Helv. 12, 1085). Dissoziations druck bei 180: 28 mm (Bri., M.). — Lithiumsalz. Rotviolett. Zersetzt sich beim Erhitzen ohne zu schmeizen (Sidgwick, Brewer, Soc. 127, 2381, 2386). Unlöslich in Toluol. — Natriumsalz. Blauviolett. 494

Zersetzt sich beim Erhitzen ohne zu schmelzen (S., B.). Unlöslich in Toluol. — Kaliumsalz. Blauviolett (S., B.). — Verbindungen der Alkalisalze mit Salicylaldehyd: Li₂C₁₄H₅O₄ + 2C₇H₆O₂. Gleicht der folgenden Verbindung (S., B., Soc. 127, 2387). — Na₂C₁₄H₆O₄ + 4C₇H₆O₂. Lachsrot. Wird durch organische Lösungsmittel, aber nicht durch heißes Wasser zersetzt (S., B.). — K₂C₁₄H₆O₄ + 4C₇H₆O₂. Gleicht der vorangehenden Verbindung (S., B.).

Funktionelle Derivate des Chinizarins.

- 1-0xv-4-methoxy-anthrachinon, Chinizarinmonomethviäther $C_{15}H_{10}O_4=C_6H_4(CO)_aC_6H_2(OH)\cdot O\cdot CH_3$ (E I 715). Liefert beim Verschmelzen mit Kaliumhydroxyd und Alkohol bei 150° im Stickstoffstrom und Behandeln des Reaktionsprodukts mit Luft 1.1'-Dioxy-4.4'-dimethoxy-dianthrachinonyl-(2.2') (I. G. Farbenind., D.R.P. 469135; Frdl. 16, 1209).
- 1.4-Dimethoxy-anthrachinon, Chinizarindimethyläther $C_{16}H_{12}O_4 = C_6H_4(CO)_2C_6H_2(O \cdot CH_3)_2$ (E I 715). Das H 452 beschriebene Präparat von Lagodzinski (B. 28, 117) war nicht einheitlich (Zahn, Ochwat, A. 462, 94 Anm.). B. Aus 2'.5'-Dimethoxy-benzophenon-carbonsäure-(2) bei längerem Aufbewahren oder kurzem Erwärmen mit konz. Schwefelsäure (Zahn, Ochwat, A. 462, 94). Bei längerem Erhitzen von Chinizarin mit p-Toluolsulfonsäure-methylester und Natriumcarbonat in Trichlorbenzol auf 160—170° (Z., O., A. 462, 95). Gelbe Krystalle (aus Alkohol oder Benzol), Nadeln (aus Eisessig). F: 170—171°. Leicht löslich in den meisten Lösungsmitteln; unlöslich in wäßr. Alkalien. Wird durch Na₂S₂O₄ und Natronlauge oder Essigsäure oder durch Zinkstaub und Essigsäure zu 1.4-Dimethoxy-2.3-dihydroanthrachinon reduziert.
- 1.4 Diäthoxy- anthrachinon, Chinizarindiäthyläther $C_{18}H_{16}O_4=C_6H_4(CO)_2C_6H_2(O\cdot C_2H_5)_2$ (H 452). B. Durch längeres Erhitzen von Chinizarin mit p-Toluolsulfonsäure-äthylester und Natriumcarbonat in Trichlorbenzol auf 160—170° (Zahn, Ochwat, A. 462, 95). F: 170° bis 171°. Liefert bei der Reduktion mit $Na_2S_2O_4$ in verd. Natronlauge 1.4-Diäthoxy-2.3-dihydroanthrachinon.
- 1-Oxy-4-acetoxy-anthrachinon, Chinizarinmonoacetat $C_{16}H_{10}O_5 = C_6H_4(CO_2)C_6H_2(OH) \cdot O \cdot CO \cdot CH_3$. B. Bei 12-tägigem Aufbewahren von Anthradichinon-(1.4; 9.10) mit Acetaldehyd im Sonnenlicht (DIMROTH, HILOKEN, B. 54, 3057). Gelborange Nadeln (aus Benzol). F: 186°.
- 1.4-Diacetoxy-anthrachinon, Chinizarindiacetat C₁₈H₁₉O₆ = C₆H₄(CO)₂C₆H₂(O·CO·CH₃)₂ (H 452). B. Durch Kochen von Chinizarin mit Acetanhydrid in Gegenwart von etwas konz. Schwefelsäure (Green, Soc. 1926, 1435). Neben 1.4.9-Triacetoxy-anthracen beim Kochen von 9.10-Dioxy-1.4-dioxo-1.2.3.4-tetrahydro-anthracen (höherschmelzendem Leukochinizarin, S. 478) oder dessen Diacetat mit Acetanhydrid und Natriumacetat (ZAHN, OCHWAT, A. 462, 77, 90). Durch Kochen von 9-Chlor-4-oxy-anthrachinon-(1.10) mit Acetanhydrid, auch in Gegenwart von konz. Schwefelsäure (G., Soc. 1926, 1432). Ist dimorph (Green, Soc. 1926, 1435). Höherschmelzende Form. Gelbe Prismen (aus Pyridin) oder Tafeln (aus Acetanhydrid), gelbliche Nadeln (aus Alkohol). F: 208° (G.). Geht beim Umkrystallisieren aus Acetanhydrid + Schwefelsäure in die niedrigerschmelzende Form über. Niedrigerschmelzende Form. Gelbe Nadeln (aus Acetanhydrid + Schwefelsäure). Wird bei ca. 120° hellorangefarben; F: 200—201° (G.). Geht beim Umkrystallisieren aus Pyridin, Acetanhydrid oder Alkohol in die höherschmelzende Form über (G.). Beide Formen besitzen einfaches Mol.-Gew. (kryoakopisch in Naphthalin) und (wahrscheinlich infolge gegenseitiger Umwandlung) identische Löslichkeiten in Benzol und Chloroform (0,70 g bzw. 5,0 g in 100 g Lösung bei 25°) (G., Soc. 1926, 1435, 1436).

Bei der Reduktion mit Zinkstaub in Eisessig in der Kälte entsteht eine hellgelbe, stark grün fluorescierende Lösung, die vielleicht 1.4-Diacetoxy-anthrahydrochinon enthält; die Lösung liefert beim Schütteln mit Luft Chinizarindiacetat zurück und gibt beim Kochen unter Luftabschluß 1.4-Diacetoxy-2.3-dihydro-anthrachinon (S. 479) (ZAHN, OCHWAT, A. 462, 89).

Chinizarin - di - metaborat $C_{14}H_6O_6B_2 = C_6H_4(CO)_2C_6H_8(O \cdot BO)_2$. B. Beim Aufbewahren, rascher beim Erwärmen der nachfolgenden Verbindung (Dimroth, Faust, B. 54, 3031). — Rotbraun. — Wird durch kaltes Wasser in Chinizarin und Borsäure zerlegt.

Bis-diacetylborsäureester des Chinizarins $C_{23}H_{18}O_{12}B_2 = C_6H_4(CO)_2C_6H_3[O\cdot B(O\cdot CO\cdot CH_3)_2]_2$. B. Beim Erwärmen von Chinizarin mit Pyroboracetat und Acetanhydrid auf dem Wasserbad (DIMROTH, FAUST, B. 54, 3030). — Rubinrote Krystalle. — Wird durch kaltes Wasser sehr leicht hydrolysiert. Geht beim Aufbewahren, rascher beim Erwärmen in Chinizarin-di-metaborat (s. o.) über.

Substitutionsprodukte des Chinizarins.

2-Fluor-1.4-dioxy-anthrachinon, 2-Fluor-chinizarin C₁₄H₇O₄F, Formel I. B. Beim Einleiten von wasserfreiem Fluorwasserstoff in eine Suspension von Anthradichinon-(1.4;9.10) (DIMBOTH, HILCKEN, B. 54, 3056). — Rote Prismen (aus Eisessig). Etwas schwerer löslich als

495

OH

VI.

HO

Chinizarin. Löst sich in Kalilauge mit blaustichigroter Farbe. Die Lösungen in Schwefelsäure und Borschwefelsäure sind blaustichiger als die des Chinizarins und fluorescieren nur schwach; die Lösung in Pyroboracetat + Acetanhydrid zeigt sehr starke Fluorescenz. Absorptionsspektrum in Pyroboracetat + Acetanhydrid: D., H.

Diacetat $C_{18}H_{11}O_6F = C_6H_4(CO)_2C_6HF(O\cdot CO\cdot CH_3)_2$. Gelbe Nadeln (aus Eisessig). F: 189° (DIMBOTH, HILCKEN, B. 54, 3056).

2-Chlor - 1.4-dioxy - anthrachinon, 2-Chlor - chinizarin C₁₄H₇O₄Cl, Formel II (H 452; E I 715). B. Beim Erhitzen von 2.4-Dichlor-1-oxy-anthrachinon mit konz. Schwefelsäure und Borsäure auf 156—160° (Ullmann, Conzetti, B. 58, 833). Durch Erhitzen von 3.4-Dichlorphenol mit Phthalsäureanhydrid und 100% iger oder schwach rauchender Schwefelsäure unter Zusatz von Borsäure auf 195—200° (The Newport Co., D.R.P. 491878; Frdl. 16, 1268). Aus Chlorhydrochinon und Phthalsäureanhydrid in Gegenwart von Aluminiumchlorid + Natriumchlorid bei 180° (Raudnitz, B. 62, 2764). — Fast unlöslich in Wasser und verd. Säuren, etwas löslich in Alkohol, leicht in Benzol und Toluol, sehr leicht in Anilin (The Newport Co.); fast unlöslich in Äther, schwer löslich in Alkohol, leicht in siedendem Benzol und Eisessig; die Lösungen sind orange (U., C.). Löst sich in 96% iger Schwefelsäure mit orangeroter, in 2% iger Natronlauge mit violettroter, beim Verdünnen blaustichig werdender Farbe (The Newport Co.). Absorptionsspektrum in Pyroboracetat-Lösung: Dimboth, Hiloken, B. 54, 3056.

Diacetat $C_{18}H_{11}O_6Cl = C_6H_4(CO)_2C_6HCl(O\cdot CO\cdot CH_8)_2$. Citronengelbe Nadeln (aus Eisessig). F: 209—210° (unkorr.) (RAUDNITZ, B. 62, 2764).

5.8-Dichlor - 1.4-dioxy - anthrachinon, 5.8-Dichlor - chinizarin $C_{14}H_6O_4Cl_3$, Formel III (E I 715). Liefert bei der Reduktion mit Zinn und Salzsäure in Eisessig 5.8-Dichlor-9.10-dioxy-1.4-dioxo-1.2.3.4-tetrahydro-anthracen (Zahn, Ochwat, A, 462, 91). Beim Erhitzen mit Anilin und Natriumacetat auf 170° entsteht 5.8-Dianilino-chinizarin (Z., O., A. 462, 90).

2-Brom-1.4-dioxy-anthrachinon, 2-Brom-chinizarin C₁₄H₇O₄Br, Formel IV (H 453). B. Aus 2.3-Dibrom-2.3-dihydro-anthradichinon-(1.4;9.10) beim Eintragen in kaltes Pyridin, beim Kochen mit Wasser oder Eisessig oder beim Einleiten von Schwefeldioxyd in eine Suspension in verd. Alkohol (Dimroth, Schullte, Heinze, B. 54, 3044). Beim Erhitzen von Phthalsäure-anhydrid mit 2.4-Dibrom-phenol, Schwefelsäuremonohydrat und Borsäure auf 210—230° (Tanaka, Pr. Acad. Tokyo 3, 346; C. 1927 II, 1955). — Rote Nadeln (aus Eisessig, Pyridin oder Tetrachloräthan); F: 228—230° (D., Sch., Heil.), 236° (Brass, Heide, B. 57, 106 Anm. 9); gelbbraune Nadeln (aus Nitrobenzol); F: 265—268° (T.). Leicht löslich in Nitrobenzol und Pyridin, schwer in anderen organischen Lösungsmitteln (T.). Löst sich in verd. Kalilauge mit blauer, in konz. Schwefelsäure mit hellroter Farbe (D., Sch., H.; T.). Absorptionsspektrum in verd. Kalilauge und in konz. Schwefelsäure: D., Sch., Heil; in Pyroboracetatlösung: D., Hilcken, B. 54, 3056. — Liefert bei der Oxydation mit Bleitet: aacetat in Eisessig 2-Brom-anthradichinon-(1.4; 9.10) (Dimroth, Friedemann, Kämmerer, B. 53, 485). Bei der Kalischmelze entsteht Purpurin (T.).

Diacetat $C_{18}H_{11}O_6Br = C_6H_4(CO)_2C_6HBr(O\cdot CO\cdot CH_3)_2$. Hellgelbe Nadeln (aus Eisessig). F: 216—218° (Dimroth, Schulltze, Heinze, B. 54, 3044), 226—229° (Tanaka, Pr. Acad. Tokyo 3, 346; C. 1927 II, 1955).

2.3-Dibrom - 1.4-dioxy- anthrachinon, 2.3-Dibrom - chinizarin C₁₄H₆O₄Br₂, Formel V (H 453).

B. Durch Einw. von konz. Schwefelsäure auf das Diacetat (s. u.) (DIMROTH, SCHULTZE, HEINZE, B. 54, 3045). — Über die Einheitlichkeit der aus Ö OH Chinizarin und Brom gewonnenen Präparate vgl.

Rhass Heine R 57 413 — Krystalle (aus Tetrachloräthan). F: 252—25

Chinizarin und Brom gewonnenen Präparate vgl.

Brass, Heide, B. 57, 113. — Krystalle (aus Tetrachloräthan). F: 252—253° (D., Sch., Heil.).

Löst sich in Kalilauge mit blauer, in Schwefelsäure mit violetter Farbe (D., Sch., Heil.). Absorptionsspektrum in Kalilauge und Schwefelsäure: D., Sch., Heil; in Pyroboracetat-Lösung: D., Hilcken, B. 54, 3056. — Gibt bei der Oxydation mit Bleitetraacetat in Eisessig bei 50—60°

2.3-Dibrom-anthradichinon-(1.4;9.10) (D., Friedemann, Kämmerer, B. 53, 486; vgl. Br., Heide, B. 57, 114).

Diacetat $C_{18}H_{10}O_8Br_2 = C_8H_4(CO)_2C_6Br_2(O\cdot CO\cdot CH_8)_2$. B. Beim Kochen von 2.3-Dibrom-chinizarin mit Acetanhydrid in Gegenwart von geschmolzenem Zinkchlorid (Brass, Heide,

B. 57, 114). Bei mehrtägigem Erwärmen von 2.3-Dibrom-2.3-dihydro-anthradichinon-(1.4;9.10) mit Acetanhydrid in wenig konz. Schwefelsäure auf 80° (Dimroth, Schultze, Heinze, B. 54, 3045). — Blaßgelbe Nadeln (aus Eisessig oder Acetanhydrid). Schmilzt unscharf bei 270° bis 271° (D., Sch., H.), bei 242° (B., Heide). Leicht löslich in Eisessig (B., Heide).

4. 1.5-Dioxy-anthrachinon, Anthrarufin C₁₄H₈O₄, Formel VI (H 453; EI 719). B. Bei 15-stdg. Erhitzen von 1.5-Dinitro-anthrachinon mit Kaliumacetat und etwas Eisessig auf ca. 170° (SCHWENK, J. pr. [2] 108, 108). — Darst. Durch Erhitzen von Anthrachinon-disulfonsäure-(1.5) mit Kalkwasser (vgl. H 453) und Calciumchlorid im Autoklaven auf 195° bis 200° (Ausbeute ca. 85%) (H. E. FIERZ-DAVID, L. BLANGEY, Grundlegende Operationen der Farbenchemie, 5. Aufl. [Wien 1943], S. 224). — Löst sich in Acetanhydrid bei Gegenwart von Pyroboracetat mit blauroter Farbe und starker Fluorescenz (DIMBOTH, RUCK, A. 446, 127). Absorptionsspektrum in alkal. Lösung in Gegenwart von Natriumsulfit: Moir, Soc. 1927, 1810; in Pyroboracetat-Lösung: Dr. R.

in Pyroboracetat-Lösung: DI., R. Wird durch Kaliumferricyanid in alkal. Lösung bei Zimmertemperatur nicht oxydiert (Scholl, Dahll, B. 57, 82). Liefert bei der Reduktion mit Zinn(II)-chlorid und siedender Salzsäure 4.8-Dioxy-anthron-(9) (Goodall, Perkin, Soc. 125, 473). Gibt beim Erwärmen mit Pyroboracetat und Acetanhydrid auf dem Wasserbad den Bis-diacetylborsäureester (s. u.) (Dimeoth, Faust, B. 54, 3033). — Gibt mit überschüssigem Titantrichlorid in Natriumtartratlösung eine intensiv blaugrüne Färbung, die durch Eisen(III)-salze sofort zerstört wird (Knecht, Soc. 125, 1542 Anm.). Löst sich in konz. Schwefelsäure mit roter, bei Anwesenheit von Salpetersäure mit gelber Farbe; die Reaktion eignet sich zum Nachweis von Salpetersäure (Wilson, J. Soc. chem. Ind. 44, 438 T; C. 1925 II, 2217).

1.5-Diacetoxy-anthrachinor, Anthrarufindiacetat $C_{19}H_{12}O_6=CH_3\cdot CO\cdot O\cdot C_6H_3(CO)_2C_9H_3\cdot O\cdot CO\cdot CH_3$ (H 455; E I 720). F: 251° (korr.) (Vorländer, *Ph. Ch.* 105, 243 Anm.).

1.5-Bis - carbäthoxyoxy - anthrachinon, Dicarbäthoxyanthrarufin $C_{20}H_{16}O_{8}=C_{2}H_{5}\cdot O_{8}C\cdot O\cdot C_{6}H_{3}(CO)_{8}C_{6}H_{3}\cdot O\cdot CO_{2}\cdot C_{2}H_{5}$. F: 225° (Vorländer, Ph. Ch. 105, 243 Anm.).

Bis-diacetylborsäureester des Anthrarufins $C_{22}H_{18}O_{12}B_2 = (CH_3 \cdot CO \cdot O)_2B \cdot O \cdot C_6H_3(CO)_2C_6H_3 \cdot O \cdot B(O \cdot CO \cdot CH_3)_3$. B. Beim Erwärmen von Anthrarufin mit Pyroboracetat in Acetanhydrid auf dem Wasserbad (Dimroth, Faust, B. 54, 3033). — Goldgelbe Blättchen. — Wird durch kaltes Wasser in Anthrarufin, Borsäure und Essigsäure gespalten.

1.5-Bis-methylmercapto-anthrachinon, Dithioanthrarufin-dimethyläther C_{1e}H₁₂O₃S₂, s. nebenstehende Formel. B. Bei längerem Erhitzen der Natriumsalze der Anthrachinon-disulfonsäure-(1.5) oder der 1-Methylmercapto-anthrachinon-sulfonsäure-(5) mit Methylmercaptan in Natronlauge (REID, MACKALL, MILLER, Am. Soc. 43, 2106, 2112). — Rote Nadeln (aus Benzol oder Alkohol). Verkohlt beim Erhitzen. Unlöslich in Wasser, schwer löslich in Alkohol, löslich in Benzol.

1.5-Bis-methylsulfon - anthrachinon $C_{1e}H_{12}O_{e}S_{2} = CH_{3} \cdot SO_{2} \cdot C_{e}H_{3}(CO)_{2}C_{e}H_{3} \cdot SO_{2} \cdot CH_{3}$. Bei der Einw. von rauchender Salpetersäure auf 1.5-Bis-methylmercapto-anthrachinon (Reid, Mackall, Miller, Am. Soc. 43, 2113). — Blaßgelbes Krystallpulver. Verkohlt beim Erhitzen. Sehr schwer löslich in den meisten Lösungsmitteln.

1-Methylmercapto - 5-äthylmercapto - anthrachinon $C_{17}H_{14}O_{2}S_{2}=C_{2}H_{5} \cdot S \cdot C_{6}H_{3}(CO)_{2}C_{6}H_{3} \cdot S \cdot CH_{3}$. B. Bei längerem Erhitzen von 1-methylmercapto-anthrachinon-5-sulfonsaurem Natrium mit Äthylmercaptan in Natronlauge (Reid, Mackall, Miller, Am. Soc. 48, 2106, 2112). — Gelbe Nadeln (aus Benzol oder Alkohol). F: 229°. Unlöslich in Wasser, schwer löslich in Alkohol, löslich in Benzol.

1-Methylsulfon-5-äthylsulfon-anthrachinon $C_{17}H_{14}O_6S_2=C_2H_5\cdot SO_2\cdot C_6H_3(CO)_2C_6H_3\cdot SO_2\cdot CH_3$. B. Analog 1.5-Bis-methylsulfon-anthrachinon (s. o.) (Reid, Mackall, Miller, Am. Soc. 48, 2113). — Gelbliche Nadeln. Schmilzt oberhalb 300°. Sehr schwer löslich in den meisten Lösungsmitteln.

1.5-Bis-äthylmercapto-anthrachinon, Dithioanthrarufin-diäthyläther $C_{16}H_{16}O_8S_3=C_8H_5$: $S\cdot C_6H_3(CO)_2C_6H_3\cdot S\cdot C_2H_5$ (E I 721). B. Analog 1.5-Bis-methylmercapto-anthrachinon (e. o.) (Reid, Mackall, Miller, Am. Soc. 43, 2112). — Orangefarbene Krystalle (aus Benzol oder Alkohol). F: 226,5°.

1.5-Bis-äthylsulfon-anthrachinon $C_{18}H_{16}O_{6}S_{3}=C_{2}H_{5}\cdot SO_{2}\cdot C_{6}H_{3}(CO)_{2}C_{6}H_{3}\cdot SO_{2}\cdot C_{2}H_{5}$. B. Analog 1.5-Bis-methylsulfon-anthrachinon (s. o.) (Reid, Mackall, Miller, Am. Soc. 48, 2113). — Gelbliche Nadeln. F: 269,5°. Sehr schwer löslich in den meisten Lösungsmitteln.

1-Methylmercapto - 5-propylmercapto - anthrachinon $C_{18}H_{16}O_{2}S_{2} = C_{2}H_{5} \cdot CH_{2} \cdot S \cdot C_{6}H_{2}(CO)_{2}$ $C_{6}H_{3} \cdot S \cdot CH_{2}$. B. Analog 1-Methylmercapto - 5-āthylmercapto - anthrachinon (s. o.) (Reid)

- MACKALL, MILLER, Am. Soc. 48, 2112). Orangefarbene Nadeln (aus Alkohol oder Benzol). F: 209°.
- 1-Methylsulfon-5-propvisulfon-anthrachinon $C_{18}H_{16}O_6S_9=C_2H_5\cdot CH_3\cdot SO_2\cdot C_6H_3(CO)_2C_6H_3\cdot SO_2\cdot CH_3$. B. Analog 1.5-Bis-methylsulfon-anthrachinon (S. 496) (Reid, Mackall, Miller, Am. Soc. 43, 2113). Gelbliche Krystalle. F: 291°. Sehr schwer löslich in den meisten Lösungsmitteln.
- 1-Äthylmercapto-5-propvlmercapto-anthrachinon $C_{19}H_{18}O_2S_2 = C_2H_5 \cdot CH_2 \cdot S \cdot C_8H_3(CO)_2$ $C_6H_3 \cdot S \cdot C_2H_5$. B. Analog 1-Methylmercapto-5-äthylmercapto-anthrachinon (Reid, Mackall, Miller, Am. Soc. 43, 2112). Orangefarbene Krystalle (aus Benzol oder Alkohol). F: 188,5°. Unlöslich in Wasser, schwer löslich in Alkohol, löslich in Benzol (R., Ma., Mi., Am. Soc. 43, 2106).
- 1-Äthylsuifon-5-propyisuifon-anthrachinon $C_{19}H_{18}O_6S_2=C_2H_5\cdot CH_2\cdot SO_2\cdot C_8H_3(CO)_2C_6H_3\cdot SO_2\cdot C_2H_5$. B. Analog 1.5-Bis-methylsulfon-anthrachinon (S. 496) (Reid, Mackall, Miller, Am. Soc. 43, 2113). Gelbliche Nadeln. F: 243,5°. Sehr schwer löslich in den meisten Lösungsmitteln.
- 1.5 Bis propylmercapto anthrachinon, Dithioanthrarufin dipropyläther $C_{20}H_{20}O_2S_2=C_2H_5\cdot CH_2\cdot S\cdot C_6H_3(CO)_2C_6H_3\cdot S\cdot CH_2\cdot C_2H_5$. B. Analog 1.5-Bis-methylmercapto-anthrachinon (S. 496) (Reid, Mackall, Miller, Am. Soc. 43, 2112). Orangefarbenes Krystallpulver (aus Benzol oder Alkohol). F: 227°.
- 1.5 Bis propylsulfon anthrachinon $C_{20}H_{20}O_6S_2=C_2H_5\cdot CH_2\cdot SO_2\cdot C_6H_3(CO)_2C_6H_3\cdot SO_2\cdot CH_2\cdot C_2H_5$. B. Analog 1.5-Bis-methylsulfon-anthrachinon (S. 496) (Reid, Mackall, Miller, Am. Soc. 48, 2113). Gelbliche Nadeln. F: 265°. Sehr schwer löslich in den meisten Lösungsmitteln.
- 1-Methylmercapto 5-isopropylmercapto anthrachinon $C_{18}H_{16}O_2S_2 = (CH_3)_2CH \cdot S \cdot C_6H_3$ (CO) $_2C_6H_3 \cdot S \cdot CH_3$. B. Beim Kochen von 1-isopropylmercapto-anthrachinon-5-sulfonsaurem Natrium mit Methylmercaptan und Natronlauge (Hoffman, Reid, Am. Soc. 45, 1835). Orangefarben. F: 184°. Liefert bei der Oxydation mit rauchender Salpetersäure 1-Methylsulfon-anthrachinon-sulfonsaure-(5) (charakterisiert als 1-Methylsulfon-5-butylmercapto-anthrachinon) und geringe Mengen 1-Methylsulfon-5-isopropylsulfon-anthrachinon.
- 1-Methylsulfon 5-isopropylsulfon anthrachinon $C_{18}H_{16}O_6S_2=(CH_3)_2CH\cdot SO_2\cdot C_6H_3(CO)_2$ $C_6H_3\cdot SO_2\cdot CH_3$. B. In geringer Menge bei der Oxydation von 1-Methylmercapto-5-isopropylmercapto-anthrachinon mit rauchender Salpetersäure (Hoffman, Reid, Am. Soc. 45, 1836). F: 235°.
- 1-Äthvimercapto-5-isopropylmercapto-anthrachinon $C_{19}H_{18}O_2S_2 = (CH_8)_2CH \cdot S \cdot C_6H_3(CO)_2$ $C_6H_3 \cdot S \cdot C_2H_5$. B. Analog 1-Methylmercapto-5-isopropylmercapto-anthrachinon (s. o.) (HOFFMAN, REID, Am. Soc. 45, 1835). Goldgelb. F: 163°.
- 1-Äthylsulfon-5-isopropylsulfon-anthrachinon $C_{19}H_{18}O_6S_2=(CH_3)_2CH\cdot SO_3\cdot C_6H_3(CO)_2C_6H_3\cdot SO_3\cdot C_2H_5$. B. Analog 1-Methylsulfon-5-isopropylsulfon-anthrachinon (s. o.) (HOFFMAN, REID, Am. Soc. 45, 1836). F: 213°.
- 1 Propylmercapto 5 isopropylmercapto anthrachinon $C_{20}H_{20}O_2S_2 = (CH_3)_2CH \cdot S \cdot C_6H_3$ (CO) $_2C_6H_3 \cdot S \cdot CH_2 \cdot C_2H_5$. B. Analog 1-Methylmercapto-5-isopropylmercapto-anthrachinon (s. o.) (HOFFMAN, REID, Am. Soc. 45, 1835). Goldgelb. F: 133°.
- 1-Propvisuifon-5-isopropylsuifon-anthrachinon $C_{20}H_{20}O_6S_2 = (CH_3)_2CH \cdot SO_2 \cdot C_6H_3(CO)_2C_6H_3 \cdot SO_2 \cdot CH_2 \cdot C_2H_5$. B. Analog 1-Methylsulfon-5-isopropylsulfon-anthrachinon (s. o.) (HOFFMAN, Reid), Am. Soc. 45, 1836). F: 203°.
- 1.5-Bis isopropylmercanto anthrachinon, Dithioanthrarufin-diisopropyläther $C_{20}H_{20}O_2S_2 = (CH_3)_2CH \cdot S \cdot C_6H_3(CO)_2C_6H_3 \cdot S \cdot CH(CH_3)_2$. B. Analog 1.5-Bis-methylmercapto-anthrachinon (S. 496) (HOFFMAN, REID, Am. Soc. 45, 1835). Orangefarben. F: 148°.
- 1.5-Bis-isopropylsulfon-anthrachinon $C_{20}H_{30}O_6S_2 = (CH_3)_2CH \cdot SO_2 \cdot C_6H_3(CO)_2C_6H_3 \cdot SO_2 \cdot CH(CH_3)_2$. B. Analog 1.5-Bis-methylsulfon-anthrachinon (S. 496) (Hoffman, Reid, Am. Soc. 45, 1836), F: 222°.
- 1-Methylmercapto 5-butvimercapto anthrachinon $C_{19}H_{18}O_{2}S_{2}=CH_{3}\cdot [CH_{2}]_{3}\cdot S\cdot C_{6}H_{3}(CO)_{2}$ $C_{6}H_{3}\cdot S\cdot CH_{3}\cdot
- 1-Methylmercapto 5-butylsulfon anthrachinon $C_{19}H_{18}O_4S_2 = CH_3 \cdot [CH_2]_3 \cdot SO_2 \cdot C_6H_3(CO)_2$ $C_6H_3 \cdot S \cdot CH_9$. B. Aus dem Natriumsalz der 1-Butylsulfon-anthrachinon-sulfonsäure-(5) und Methylmercaptan in siedender Natronlauge (HOFFMAN, REID, Am. Soc. 45, 1838). F: 228°.
- 1-Methylsulfon-5-butylmercapto-anthrachinon $C_{19}H_{18}O_4S_2 = CH_3 \cdot [CH_2]_3 \cdot S \cdot C_6H_3(CO)_2C_6H_3 \cdot SO_2 \cdot CH_3$. B. Bei der Oxydation von 1-Methylmercapto-5-isopropylmercapto-anthrachinon mit rauchender Salpetersäure und Umsetzung der erhaltenen, nicht näher beschriebenen 1-Methylsulfon-anthrachinon-sulfonsäure-(5) mit Butylmercaptan in siedender Natronlauge (HOFFMAN, REID, Am. Soc. 45, 1836). Gelb. F: 256°. Sehr schwer löslich in Wasser.

- 1-Methylsulfon-5-butylsulfon-anthrachinon $C_{19}H_{18}O_6S_3=CH_3\cdot [CH_2]_2\cdot SO_3\cdot C_6H_6(CO)_2C_6H_3\cdot SO_3\cdot CH_3$. Bei der Einw. von rauchender Salpetersäure auf 1-Methylmercapto-5-butylmercapto-anthrachinon (Reid, Mackall, Miller, Am. Soc. 48, 2113) oder auf 1-Methylmercapto-5-butylsulfon-anthrachinon (Hoffman, Reid, Am. Soc. 45, 1838). Gelbliche Krystalle. F: 264° (R., M., M.; H., R.). Sehr schwer löslich in den meisten Lösungsmitteln.
- 1-Äthvimercapto 5-butvimercapto anthrachinon $C_{20}H_{20}O_2S_2=CH_2\cdot[CH_2]_2\cdot S\cdot C_6H_5(CO)_2$ $C_6H_3\cdot S\cdot C_2H_5$. B. Analog 1-Methylmercapto 5-åthylmercapto anthrachinon (S. 496) (Reid, Machall, Miller, Am. Soc. 48, 2112). Rote Krystalle (aus Benzol oder Alkohol). F: 156°.
- 1-Äthylsuffon-5-butvimercapto-anthrachinon $C_{20}H_{20}O_4S_2=CH_2\cdot[CH_2]_2\cdot S\cdot C_0H_3\cdot(CO)_3C_0H_3\cdot SO_2\cdot C_2H_3$. B. Analog 1-Methylsulfon-5-butylmercapto-anthrachinon (S. 497) (HOFFMAN, Reid, Am. Soc. 45, 1836). Gelb. F: 210°. Sehr schwer löslich in Wasser.
- 1-Äthvimercapto-5-butvisuifon-anthrachinon $C_{20}H_{20}O_4S_2$ = $CH_3 \cdot [CH_2]_3 \cdot SO_3 \cdot C_6H_3 \cdot CO_3C_6H_3 \cdot S \cdot C_2H_3 \cdot B$. Analog 1-Methylmercapto-5-butylsulfon-anthrachinon (S. 497) (HOFFMAN, REID, Am. Soc. 45, 1838). F: 214°.
- 1-Äthylsulfon-5-butylsulfon-anthrachinon $C_{20}H_{20}O_{6}S_{1}=CH_{2}\cdot [CH_{2}]_{2}\cdot SO_{2}\cdot C_{6}H_{3}\cdot [CO]_{2}C_{6}H_{3}\cdot SO_{2}\cdot C_{2}H_{5}$. B. Bei der Einw. von rauchender Salpetersäure auf 1-Äthylmercapto-5-butylmercapto-anthrachinon (Reid, Mackall, Miller, Am. Soc. 48, 2113) oder auf 1-Äthylmercapto-5-butylsulfon-anthrachinon (Hoffman, Reid, Am. Soc. 45, 1838). Gelbliches Krystallpulver. F: 194° (R., M., M.; H., R.). Sehr schwer löslich in den meisten Lösungsmitteln.
- 1-Propylmercapto-5-butylmercapto-anthrachinon $C_{a_1H_{a_2}O_2}S_2 = CH_a \cdot [CH_a]_a \cdot S \cdot C_eH_e(CO)_a$ $C_eH_a \cdot S \cdot CH_a \cdot C_aH_b \cdot S \cdot C_aH_b \cdot S \cdot C_aH_b \cdot S \cdot C_aH_b \cdot S \cdot C_aH_b \cdot C_aH_b \cdot C_aH_b \cdot C_aH_b \cdot S \cdot C_aH_b \cdot C_$
- 1-Propylsulfon-5-butylmercapto-anthrachinon $C_{21}H_{22}O_4S_2 = CH_2\cdot[CH_2]_2\cdot S\cdot C_6H_3(CO)_2C_6H_3\cdot SO_2\cdot CH_2\cdot C_2H_5$. B. Analog 1-Methylsulfon-5-butylmercapto-anthrachinon (S. 497) (HOFFMAN, Reid), Am. Soc. 45, 1836). Gelb. F: 204°. Sehr schwer löslich in Wasser.
- 1-Propylmercapto-5-butylsulfon-anthrachinon $C_{21}H_{22}O_4S_2=CH_3\cdot[CH_2]_2\cdot SO_3\cdot C_6H_4(CO)_2$ $C_6H_3\cdot S\cdot CH_2\cdot C_2H_5$. B. Analog 1-Methylmercapto-5-butylsulfon-anthrachinon (S. 497) (HOFFMAN, REID, Am. Soc. 45, 1838). F: 201°.
- 1-Propvisuifon-5-butyisuifon-anthrachinon $C_{21}H_{22}O_6S_3 = CH_3 \cdot [CH_2]_3 \cdot SO_2 \cdot C_6H_3 \cdot (CO)_2C_6H_3 \cdot SO_2 \cdot CH_2 \cdot C_2H_5$. B. Bei der Einw. von rauchender Salpetersäure auf 1-Propylmercapto-5-buty mercapto-anthrachinon (Reid, Mackall, Miller, Am. Soc. 43, 2113) oder auf 1-Propylmercapto-5-butylsulfon-anthrachinon (Hoffman, Reid, Am. Soc. 45, 1838). Gelbliche Krystalle. F: 220° (R., M., M.; H., R.). Sehr schwer löslich in den meisten Lösungsmitteln.
- 1-Isopropvimercapto-5-butylmercapto-anthrachinon $C_{21}H_{22}O_2S_2=CH_2\cdot [CH_2]_2\cdot S\cdot C_6H_3\cdot (CO)_2$ $C_6H_3\cdot S\cdot CH(CH_2)_3$. B. Analog 1-Methylmercapto-5-isopropylmercapto-anthrachinon (S. 497) (HOFFMAN, Reid, Am. Soc. 45, 1835). Orangegelb. F: 114°.
- 1-Isopropvisulfon-5-butvisulfon-anthrachinon $C_{21}H_{22}O_6S_2=CH_3\cdot[CH_3]_3\cdot SO_3\cdot C_6H_3(CO)_2$ $C_6H_3\cdot SO_3\cdot CH(CH_3)_2\cdot B$. Analog 1-Methylsulfon-5-isopropylsulfon-anthrachinon (S. 497) (Hoffman, Reid, Am. Soc. 45, 1836). F: 186°.
- 1.5-Bis butvimercapto anthrachinon, Dithioanthrarufin dibutyläther $C_{22}H_{24}O_2S_2 = CH_3 \cdot [CH_2]_3 \cdot S \cdot C_6H_6(CO)_2C_6H_3 \cdot S \cdot [CH_2]_3 \cdot CH_3$. B. Analog 1.5-Bis-methylmercapto-anthrachinon (S. 496) (Reid, Mackall, Miller, Am. Soc. 43, 2112). Gelbe Nadeln (aus Benzol oder Alkohol). F: 159,5°.
- 1-Butylmercapto-5-butylsulfon-anthrachinon $C_{22}H_{24}O_4S_2 = CH_3 \cdot [CH_2]_3 \cdot S \cdot C_6H_3(CO)_2C_6H_3 \cdot SO_2 \cdot [CH_2]_3 \cdot CH_2$. B. Aus dem Natriumsalz der 1-Butylsulfon-anthrachinon-sulfonsäure-(5) und Butylmercaptan in siedender Natronlauge (HOFFMAN, REID, Am. Soc. 45, 1836, 1837). Gellb. F: 162°. Sehr schwer löslich in Wasser.
- 1.5 Bis butylsuifon anthrachinon $C_{23}H_{24}O_6S_2 = CH_3 \cdot [CH_2]_2 \cdot SO_x \cdot C_8H_8(CO)_2C_8H_3 \cdot SO_2 \cdot [CH_2]_3 \cdot CH_3$. B. Bei der Einw. von rauchender Salpetersäure auf 1.5 Bis butylmercapto-anthrachinon (Reid, Mackall, Miller, Am. Soc. 48, 2113) oder auf 1-Butylmercapto-5-butylsulfon-anthrachinon (Hoffman, Reid, Am. Soc. 45, 1838). Gelbliches Krystallpulver. F: 184,5° (R., M., M.; H., R.). Sehr schwer löslich in den meisten Lösungsmitteln.
- 1-Methylmercapto-5-isoamylmercapto-anthrachinon $C_{20}H_{20}O_2S_3 = C_5H_{11} \cdot S \cdot C_6H_3(CO)_2C_6H_3 \cdot S \cdot CH_3$. B. Analog 1-Methylmercapto-5-äthylmercapto-anthrachinon (8. 496) (Red), Mackall, Miller, Am. Soc. 48, 2112). Orangegelbe Blättchen (aus Benzol oder Alkohol). F: 175°.
- 1-Methylsuifon 5-isoamvisuifon anthrachinon $C_{20}H_{20}O_{2}S_{2}=C_{5}H_{11}\cdot SO_{5}\cdot C_{6}H_{2}(CO)_{2}C_{6}H_{5}\cdot SO_{2}\cdot CH_{3}$. B. Analog 1.5-Bis-methylsuifon-anthrachinon (S. 496) (Reid, Mackall, Miller, Am. Soc. 48, 2113). Gelbliche Krystalle. F: 266°. Sehr schwer löglich in den meisten Lösungsmitteln.

- 1-Äthylmercapto-5-isoamylmercapto-anthrachinon $C_{21}H_{22}O_2S_3=C_5H_{11}\cdot S\cdot C_6H_6(CO)_2C_6H_3\cdot S\cdot C_2H_5$. B. Analog 1-Methylmercapto-5-āthylmercapto-anthrachinon (S. 496) (REID, MACKALL, MILLER, Am. Soc. 48, 2112). — Goldgelbe Plättchen (aus Benzol oder Alkohol). F: 1520. Unlöslich in Wasser, schwer löslich in Alkohol, löslich in Benzol (R., M., M., Am. Soc. 43, 2106).
- 1-Äthylsulfon-5-isoamylsulfon-anthrachinon $C_{21}H_{22}O_6S_2=C_5H_{11}\cdot SO_2\cdot C_6H_3(CO)_2C_6H_3\cdot SO_2\cdot C_2H_5$. B. Analog 1.5-Bis-methylsulfon-anthrachinon (REID, MACKALL, MILLER, Am. Soc. 48, 2113). — Gelbliches Krystallpulver. F: 1980. Sehr schwer löslich in den meisten Lösungs-
- 1-Isopropylmercapto 5-isoamylmercapto anthrachinon $C_{22}H_{24}O_2S_3 = C_5H_{11} \cdot S \cdot C_6H_3(CO)_3$ C₆H₃· S·CH(CH₃)₂. B. Analog 1-Methylmercapto-5-isopropylmercapto-anthrachinon (S. 497) (HOFFMAN, REID, Am. Soc. 45, 1835). — Bräunlich. F: 97°.
- 1-Isopropylsulfon-5-isoamylsulfon-anthrachinon $C_{22}H_{24}O_6S_2 = C_5H_{11} \cdot SO_2 \cdot C_4H_3(CO)_2C_4H_3$ SO₂·CH(CH₃)₂. B. Analog 1-Methylsulfon-5-isopropylsulfon-anthrachinon (S. 497) (HOFFMAN, REID, Am. Soc. 45, 1836). — F: 172°.
- 1-Butyimercapto-5-isoamyimercapto-anthrachinon $C_{33}H_{34}O_{9}S_{2}=C_{5}H_{11}\cdot S\cdot C_{8}H_{2}(CO)_{8}C_{8}H_{3}$. $S\cdot [CH_{2}]_{8}\cdot CH_{3}$. B. Analog 1-Methylmercapto-5-āthylmercapto-anthrachinon (S. 496) (Reith, Mackall, Miller, Am. Soc. 48, 2112). Orangefarbene Nadeln (aus Benzol oder Alkohol). F: 134°.
- 1-Butylsulfon 5 isoamylmercapto anthrachinon $C_{23}H_{26}O_4S_2 = C_5H_{11} \cdot S \cdot C_6H_3(CO)_2C_6H_3$ SO₃·[CH₂]₃·CH₃. B. Analog 1-Methylmercapto-5-butylsulfon-anthrachinon (S. 497) (HOFFMAN, REID, Am. Soc. 45, 1838). — F: 152°.
- 1-Butylmercapto 5-isoamvisulfon-anthrachinon $C_{23}H_{26}O_4S_2 = C_5H_{11} \cdot SO_2 \cdot C_6H_3(CO)_9C_6H_3$ S [CH₂]₃·CH₃. B. Analog 1-Methylsulfon-5-butylmercapto-anthrachinon (S. 497) (HOFFMAN, REID, Am. Soc. 45, 1836). — Gelb. F: 1897. Sehr schwer löslich in Wasser.
- 1 Butylsulfon 5-isoamylsulfon anthrachinon $C_{33}H_{36}O_6S_8 = C_5H_{11} \cdot SO_2 \cdot C_6H_3(CO)_2C_6H_3 \cdot SO_2 \cdot [CH_2]_3 \cdot CH_3$. B. Bei der Einw. von rauchender Salpetersäure auf 1-Butylmercapto-anthrachinon (Reid, Mackall, Miller, Am. Soc. 48, 2113) oder auf 1-Butylsulfon-5-isoamylmercapto-anthrachinon (Hoffman, Reid, Am. Soc. 45, 1838). Gelbliches Krystallpulver. F: 203,5° (R., M., M.; H., R.). Sehr schwer löslich in den meisten Lösungsmitteln.
- 1.5-Bis-isoamylmercapto-anthrachinon, Dithioanthrarufin-diisoamyläther $C_{34}H_{38}O_{2}S_{2}=$ C₅H₁₁· S·C₆H₃(CO), C₆H₃· S·C₅H₁₁. B. Analog 1.5-Bis-methylmercapto anthrachinon (S. 496) (Reid, Mackall, Miller, Am. Soc. 48, 2112). — Gelbe Nadeln (aus Benzol oder Alkohol). F: 158.5°.
- 1.5-Bis-isoamylsulfon-anthrachinon $C_{24}H_{28}O_6S_2=C_5H_{11}\cdot SO_2\cdot C_6H_3(CO)_2C_6H_3\cdot SO_2\cdot C_5H_{11}$. B. Analog 1.5-Bis-methylsulfon-anthrachinon (REID, MACKALL, MILLER, Am. Soc. 48, 2113). Gelbliches Pulver. F: 202°. Sehr schwer löslich in den meisten Lösungsmitteln.
- 1-Butylsulfon 5-phenylmercapto-anthrachinon $C_{24}H_{20}O_4S_2=C_4H_5\cdot S\cdot C_4H_3(CO)_2C_4H_3\cdot SO_3\cdot [CH_2]_3\cdot CH_3$. B. Aus dem Natriumsalz der 1-Butylsulfon-anthrachinon-sulfonsäure-(5) und Thiophenol in siedender Natronlauge (HOFFMAN, REID, Am. Soc. 45, 1838). — Krystalle (aus Eisessig). Schmilzt nicht bis 350°.
- 1 Butylsulfon 5-[4-nitro phenylmercapto] anthrachinon $C_{24}H_{19}O_6NS_2=O_2N\cdot C_6H_4\cdot S\cdot$ C₆H₃(CO)₂C₆H₃·SO₄·[CH₂]₃·CH₃. B. Analog der vorangehenden Verbindung (HOFFMAN, REID, Am. Soc. 45, 1838). — Nicht ganz rein erhalten. Schmilzt oberhalb 300°. Unlöslich.
- 1.5-Bis-p-tolylmercapto-anthrachinon, Dithioanthrarufin-di-p-tolyläther $C_{as}H_{a0}O_{a}S_{2}=CH_{a}\cdot C_{e}H_{4}\cdot S\cdot C_{e}H_{3}\cdot CO_{a}C_{e}H_{3}\cdot S\cdot C_{e}H_{4}\cdot CH_{3}$ (H 457; E I 721). B. Man diazotiert 1.5-Diaminoanthrachinon mit Nitrosylschwefelsäure und behandelt das entstandene Diazoniumsulfat mit Thio-p-kresol in Natronlauge (I. G. Farbenind., D.R.P. 469911; Frdl. 16, 1251).
- $1-Methylmercap to -5-benzylmercap to-anthrachinon \quad C_{22}H_{10}O_2S_2 = C_6H_5\cdot CH_2\cdot S\cdot C_6H_3(CO)_2$ C. H. S. CH. B. Aus dem Natriumsalz der 1-Benzylmercapto-anthrachinon-sulfonsäure-(5) und Methylmercaptan in siedender Natronlauge (HOFFMAN, REID, Am. Soc. 45, 1834). — Goldgelbe Krystalle (aus Solventnaphtha). F: 276°.
- 1-Methylsulfon-5-benzylsulfon-anthrachinon $C_{22}H_{16}O_6S_3=C_6H_5\cdot CH_2\cdot SO_2\cdot C_6H_3(CO)_3C_6H_3\cdot SO_3\cdot CH_3$. Beim Erhitzen von 1-Methylmercapto-5-benzylmercapto-anthrachinon mit Chrom. essignaure (HOFFMAN, REID, Am. Soc. 45, 1834). - Krystalle (aus Eisessig). F: 280°.
- 1-Äthylmercapto 5-benzvimercapto anthrachinon $C_{22}H_{18}O_{2}S_{2}=C_{6}H_{5}\cdot CH_{2}\cdot S\cdot C_{6}H_{3}(CO)_{2}$ $C_{6}H_{2}\cdot S\cdot C_{2}H_{5}$. B. Analog 1-Methylmercapto-5-benzylmercapto-anthrachinon (s. o.) (Hoffman, Reid), Am. Soc. 45, 1834). Orangefarbene Krystalle (aus Solventnaphtha). F: 208°.

он

- 1-Athylsulfon-5-benzylsulfon-anthrachinon $C_{23}H_{18}O_{6}S_{2}=C_{6}H_{5}\cdot CH_{2}\cdot SO_{2}\cdot C_{6}H_{5}(CO)_{2}C_{6}H_{5}\cdot CH_{2}\cdot SO_{2}\cdot C_{6}H_{5}(CO)_{2}C_{6}H_{5}\cdot CH_{5}\cdot CH_{5}\cdot SO_{2}\cdot C_{6}H_{5}(CO)_{2}C_{6}H_{5}\cdot CH_{5}\cdot CH_{5$ SO₂·C₂H₅. B. Analog 1-Methylsulfon-5-benzylsulfon-anthrachinon (S. 499) (Hoffman, Reid, Am. Soc. 45, 1834). — Krystalle (aus Eisessig). F: 210°.
- 1-Propylmercapto 5-benzylmercapto anthrachinon $C_{24}H_{20}O_{2}S_{2} = C_{6}H_{5} \cdot CH_{2} \cdot S \cdot C_{6}H_{2}(CO)_{2}$ C₆H₃·S·CH₂·C₂H₅. B. Analog 1-Methylmercapto-5-benzylmercapto-anthrachinon (S. 499) (HOFF-MAN, Reid, Am. Soc. 45, 1834). — Orangefarbene Krystalle (aus Solventnaphtha). F: 210°.
- 1-Propvisuifon-5-benzylsuifon-anthrachinon $C_{24}H_{20}O_6S_2 = C_6H_5 \cdot CH_2 \cdot SO_5 \cdot C_6H_2(CO)_5C_6H_3 \cdot SO_5 \cdot CH_2 \cdot C_3H_5$. B. Analog 1-Methylsulfon-5-benzylsulfon-anthrachinon (S. 499) (HOFFMAN, Reid), Am. Soc. 45, 1834). Krystalle (aus Eisessig). F: 215°.
- 1- Isopropvimercapto 5 benzylmercapto anthrachinon $C_{24}H_{20}O_2S_2 = C_6H_5 \cdot CH_2 \cdot S \cdot C_6H_3 \cdot CO)_2C_6H_3 \cdot S \cdot CH(CH_3)_2$. B. Analog 1-Methylmercapto-5-benzylmercapto-anthrachinon (S. 499) (HOFFMAN, REID, Am. Soc. 45, 1834). Orangefarbene Krystalle (aus Solventnaphtha). F: 239°.
- 1-Isopronvisuiton 5-benzylsuiton anthrachinon $C_{24}H_{20}O_6S_2=C_6H_5\cdot CH_2\cdot SO_2\cdot C_6H_3(CO)_2$ $C_6H_3 \cdot SO_8 \cdot CH(CH_3)_8$. B. Analog 1-Methylsulfon-5-benzylsulfon-anthrachinon (S. 499) (HOFFMAN, REID, Am. Soc. 54, 1834). — Krystalle (aus Eisessig). F: 229°.
- 1-Butylmercapto-5-benzylmercapto-anthrachinon $C_{25}H_{22}O_2S_2=C_0H_5\cdot CH_2\cdot S\cdot C_0H_3(CO)_2$ $C_0H_3\cdot S\cdot [CH_2]_3\cdot CH_3$. B. Analog 1-Methylmercapto-5-benzylmercapto-anthrachinon (S. 499) (HOFFMAN, REID, Am. Soc. 45, 1834). Orangegelbe Krystalle (aus Solventnaphtha). F: 235°
- 1-Butylsulfon-5-benzylsulfon-anthrachinon $C_{25}H_{22}O_6S_2 = C_6H_5 \cdot CH_2 \cdot SO_2 \cdot C_6H_3(CO)_2C_6H_3$ SO₃·[CH₂]₃·CH₃. B. Analog 1-Methylsulfon-5-benzylsulfon-anthrachinon (S. 499) (HOFFMAN, REID, Am. Soc. 45, 1834). — Krystalle (aus Eisessig). F: 228°.
- 1-Isoamylmercapto-5-benzylmercapto-anthrachinon $C_{26}H_{24}O_2S_3 = C_6H_5 \cdot CH_2 \cdot S \cdot C_6H_3(CO)_2$ C₆H₃·S·C₅H₁₁. B. Analog 1-Methylmercapto-5-benzylmercapto-anthrachinon (S. 499) (Hoff-man, Reid, Am. Soc. 45, 1834). — Orangefarbene Krystalle (aus Solventnaphtha). F: 211°.
- 1-Isoamyisulion-5-benzylsulion-anthrachinon $C_{26}H_{24}O_6S_2=C_6H_5\cdot CH_2\cdot SO_2\cdot C_6H_3(CO)_2C_6H_3\cdot SO_2\cdot C_5H_{11}$. B. Analog 1-Methylsulion-5-benzylsulion-anthrachinon (S. 499) (HOFFMAN, Reid), Am. Soc. 45, 1834). Krystalle (aus Eisessig). F: 202°.
- 1.5-Bis-benzylmercapto-anthrachinon, Dithioanthrarufin-dibenzyläther $C_{38}H_{20}O_2S_2=C_8H_5$. $CH_2 \cdot S \cdot C_6H_3(CO)_2C_6H_3 \cdot S \cdot CH_2 \cdot C_6H_5$. Aus dem Dinatriumsalz der Anthrachinon-disulfonsäure-(1.5) und Benzylmercaptan in siedender Natronlauge (Hoffman, Reid, Am. Soc. 45, 1833). Dunkelorangefarbene Krystalle (aus Solventnaphtha). F: 176°.
- 1.5-Bis-[β -oxy-äthvimercapto]-anthrachinon, Dithioanthrarufin-bis-[β -oxy-äthvläther] $C_{18}H_{16}O_4S_2=HO\cdot CH_2\cdot CH_2\cdot C\cdot C_6H_3(CO)_2C_6H_3\cdot S\cdot CH_2\cdot CH_2\cdot OH$. B. Analog der vorangehenden Verbindung (HOFFMAN, REID, Am. Soc. 45, 1836). Orangefarbene Krystalle (aus Butylalkohol). F: 224°. Schwer löslich in Wasser.
- Diacetat $C_{23}H_{30}O_{6}S_{2}=CH_{3}\cdot CO\cdot O\cdot CH_{2}\cdot CH_{2}\cdot S\cdot C_{6}H_{3}(CO)_{2}C_{6}H_{3}\cdot S\cdot CH_{2}\cdot CH_{2}\cdot O\cdot CO\cdot CH_{3}.$ Gelbe Krystalle (aus Eisessig). F: 199° (HOFFMAN, REID, Am. Soc. 45, 1836).
- 5-Butylsulfon-1-äthylselen-anthrachinon $C_{30}H_{20}O_4SSe=CH_3\cdot [CH_2]_s\cdot SO_3\cdot C_6H_3(CO)_2C_6H_3\cdot Se\cdot C_2H_3$. Beim Kochen von 1-Butylsulfon-anthrachinon-sulfonsäure-(5) mit Athylselenmercaptan in Natronlauge (Shaw, Reid, Am. Soc. 48, 527). — Dunkelrote Nadeln (aus Wasser). Schmilzt nicht bis 300°.
- 5. 1.8-Dioxy-anthrachinon, Chrysazin, Istizin C₁₄H₈O₄, s. neben-stehende Formel (H 458; E I 722). B. Bei mehrstündigem Erhitzen von 1.8-Di nitro-anthrachinon mit Kaliumacetat und etwas Eisessig auf ca. 170º (SCHWENK, J. pr. [2] 108, 108). — Darst. Durch Erhitzen von Anthrachinon-disulfonsäure-(1.8) mit Kalkwasser (vgl. H 458) und Calciumchlorid im Autoklaven auf 195—2006; Ausbeute ca. 85% (H. E. FIERZ-DAVID, L. BLANGEY, Grundlegende Operationen der Farbenchemie, 5. Aufl. [Wien 1943], S. 224). — Färbt sich bei 160° orangerot;

F: 193° (Green, Soc. 1926, 2203). Dissoziationskonstante in 96% igem Alkohol (durch potentiometrische Titration bestimmt): TREADWELL, SCHWARZENBACH, Helv. 11, 398. Liefert beim Erhitzen mit Aluminiumchlorid und trockenem Pyridin auf 130-140° ein Dianthrachinonyl-Derivat (?) (braun; schwer löslich in organischen Lösungsmitteln, löslich in konz. Schwefelsäure mit dunkelblauer Farbe) (I. G. Farbenind., D. R. P. 485906; Frdl. 16, 1356). Bei gelindem Erwärmen mit Pyroboracetat und Acetanhydrid entsteht der Mono-

diacetylborsäureester des Chrysazins; beim Kochen bildet sich der Diacetylborsäureester des Chrysazinmonoacetats (Dimroth, Faust, B. 54, 3033). — Zur physiologischen Wirkung und zur Anwendung als Abführmittel (E I 722) vgl. noch Fühner, Ar. Pth. 105, 254; C. 1925 I, 2587; Fü., Fernandes, Ar. Pth. 124, 185; C. 1927 II, 1729; Kadlez, Wien. med. Wechr. 77, 299;

C. 1927 I, 2340; GORDONOFF, Ar. Pth. 126 [1926], 52.

- 1-Oxy-8-acetoxy-anthrachinon, Chrysazin-monoacetat $C_{16}H_{10}O_5=CH_3\cdot CO\cdot O\cdot C_6H_3(CO)_2$ $C_6H_3\cdot OH$. B. Durch Einw. von kaltem Wasser auf den Diacetylborsäureester des Chrysazin-monoacetats (Dimeoth, Faust, B. 54, 3033). Krystallisiert aus Eisessig in orangegelben Prismen vom Schmelzpunkt 178° oder in citronengelben Nadeln vom Schmelzpunkt 179°, die sich durch Impfen ineinander überführen lassen.
- 1.8-Diacetoxy-anthrachinon, Chrysazindiacetat $C_{18}H_{18}O_6=CH_3\cdot CO\cdot O\cdot C_8H_3(CO)_8C_8H_3\cdot O\cdot CO\cdot CH_3$ (H 460). Gelbe Tafeln (aus Pyridin). F: 244—245° (Green, Soc. 1926, 2203).
- Mono diacetylborsäureester des Chrysazins $C_{18}H_{18}O_8B = (CH_3 \cdot CO \cdot O)_2B \cdot O \cdot C_6H_3(CO)_2C_6H_3 \cdot OH$. Bei gelindem Erwärmen von Chrysazin mit Pyroboracetat in Acetanhydrid (Dimeoth, Faust, B. 54, 3033). Hellrote, goldgelb glänzende Krystalle. Wird durch heißes Wasser gespalten.
- Diacetylborsäureester des Chrysazin-monoacetats $C_{20}H_{18}O_9B = CH_8 \cdot CO \cdot O \cdot C_6H_3(CO)_2C_6H_3 \cdot O \cdot B(O \cdot CO \cdot CH_3)_2$. B. Beim Kochen von Chrysazin mit Pyroboracetat in Acetanhydrid (Dimroth, Faust, B. 54, 3033). Rote Krystalle. Wird durch kaltes Wasser in Chrysazin-monoacetat, Borsäure und Essigsäure gespalten.
- 1.8 Bis methylmercapto anthrachinon, Dithiochrysazin dimethyläther $C_{18}H_{12}O_2S_2 = CH_3 \cdot S \cdot C_6H_3(CO)_2C_6H_3 \cdot S \cdot CH_3$ (E I 723). B. Aus dem Dinatriumsalz der Anthrachinon-disulfonsäure-(1.8) und Methylmercaptan in siedender Natronlauge (Reid, Mackall, Miller, Am. Soc. 43, 2116). Bräunlichgelbe Nadeln. F: 222°.
- 1.8-Bis methylsulfon anthrachinon $C_{16}H_{12}O_6S_2 = CH_3 \cdot SO_2 \cdot C_6H_3(CO)_2C_6H_3 \cdot SO_2 \cdot CH_3$. B. Bei der Einw. von rauchender Salpetersäure auf 1.8-Bis-methylmercapto-anthrachinon (Reid, Mackall, Miller, Am. Soc. 48, 2116). Gelbliches Krystallpulver. F: 310°.
- 1-Methylmercapto-8-äthylmercapto-anthrachinon $C_{17}H_{14}O_2S_2=C_2H_5\cdot S\cdot C_6H_3(CO)_2C_6H_3\cdot S\cdot CH_3$. S. CH₃. B. Aus dem Natriumsalz der 1-Methylmercapto-anthrachinon-sulfonsäure-(8) und Äthylmercaptan in siedender Natronlauge (Reid, Mackall, Miller, Am. Soc. 48, 2116). Rote Krystalle. F: 210°.
- 1-Methylsulfon 8-äthylsulfon anthrachinon $C_{17}H_{14}O_8S_3=C_2H_5\cdot SO_2\cdot C_8H_3(CO)_2C_6H_3\cdot SO_2\cdot CH_3$. B. Analog 1.8-Bis-methylsulfon-anthrachinon (s. o.) (Reid, Mackall, Miller, Am. Soc. 43, 2116). Gelbliches Krystallpulver. F: 220°.
- 1.8-Bis-äthylmercapto-anthrachinon, Dithiochrysazin-diäthyläther $C_{18}H_{16}O_2S_2=C_2H_5\cdot S\cdot C_6H_3(CO)_2C_6H_3\cdot S\cdot C_2H_6$ (E I 723). F: 167,5° (Reid, Mackall, Miller, Am. Soc. 48, 2116).
- 1.8 Bis äthylsulfon anthrachinon $C_{18}H_{16}O_{6}S_{2}=C_{2}H_{5}\cdot SO_{2}\cdot C_{6}H_{3}(CO)_{2}C_{6}H_{3}\cdot SO_{2}\cdot C_{2}H_{5}$. B. Analog 1.8-Bis methylsulfon anthrachinon (s. o.) (Reid, Mackall, Miller, Am. Soc. 48, 2116). Gelbliches Krystallpulver. F: 228°.
- 1-Methylmercapto 8-propylmercapto anthrachinon $C_{18}H_{16}O_2S_2 = C_2H_5 \cdot CH_2 \cdot S \cdot C_6H_3(CO)_2$ $C_6H_3 \cdot S \cdot CH_3$. B. Analog 1-Methylmercapto 8-äthylmercapto anthrachinon (s. o.) (Reid, Mackall, Miller, Am. Soc. 48, 2116). Orangerote Nadeln. F: 173,5°.
- 1-Methylsulfon-8-propylsulfon-anthrachinon $C_{18}H_{16}O_{6}S_{2}=C_{2}H_{5}\cdot CH_{2}\cdot SO_{2}\cdot C_{6}H_{3}(CO)_{2}C_{6}H_{3}\cdot SO_{2}\cdot CH_{3}\cdot
- 1.8-Bis-propylmercapto-anthrachinon, Dithiochrysazin-dipropyläther $C_{20}H_{20}O_{2}S_{3}=C_{2}H_{5}\cdot CH_{2}\cdot S\cdot C_{6}H_{3}(CO)_{2}C_{6}H_{3}\cdot S\cdot CH_{2}\cdot C_{2}H_{5}$. B. Analog 1.8-Bis-methylmercapto-anthrachinon (s. o.) (Reid, Mackall, Miller, Am. Soc. 48, 2116). Rote Prismen. F: 142°.
- 1.8-Bis-propylsuifon-anthrachinon $C_{20}H_{20}O_{0}S_{2}=C_{2}H_{5}\cdot CH_{2}\cdot SO_{2}\cdot C_{6}H_{3}(CO)_{2}C_{6}H_{3}\cdot SO_{2}\cdot CH_{2}\cdot C_{2}H_{5}$. B. Analog 1.8-Bis-methylsulfon-anthrachinon (s. o.) (Reid, Mackall, Miller, Am. Soc. 48, 2116). Gelbliches Krystallpulver. F: 210°.
- 1-Methylmercapto-8-isopropylmercapto-anthrachinon $C_{18}H_{16}O_{2}S_{3}=(CH_{3})_{2}CH\cdot S\cdot C_{6}H_{3}(CO)_{2}$ $C_{6}H_{3}\cdot S\cdot CH_{3}$. B. Aus dem Natriumsalz der 1-Isopropylmercapto-anthrachinon-sulfonsäure-(8) und Methylmercaptan in siedender Natronlauge (HOFFMAN, REID, Am. Soc. 45, 1835). Rot. F: 189°.
- 1-Äthylmercapto-8-isopropylmercapto-anthrachinon $C_{19}H_{18}O_3S_2=(CH_3)_5CH\cdot S\cdot C_6H_3(CO)_2$ $C_6H_3\cdot S\cdot C_8H_5$. B. Analog 1-Methylmercapto-8-isopropylmercapto-anthrachinon (s. o.) (Hoffman, Reid), Am. Soc. 45, 1835). Rot. F: 176°.
- 1 Propyimercapto 8 isopropyimercapto anthrachinon $C_{20}H_{80}O_2S_2 = (CH_2)_2CH \cdot S \cdot C_0H_3$ (CO) $_2C_2H_3 \cdot S \cdot CH_2 \cdot C_2H_3$. B. Analog 1-Methylmercapto-8-isopropylmercapto-anthrachinon (s. o.) (HOFFMAN, Reid, Am. Soc. 45, 1835). Orangerot. F: 135°.
- 1.8-Bis-isopropylmercapto-anthrachinon, Dithiochrysazin-diisopropyläther $C_{50}H_{20}O_{2}S_{2}=(CH_{3})_{2}CH\cdot S\cdot C_{6}H_{2}(CO)_{2}C_{6}H_{3}\cdot S\cdot CH(CH_{2})_{2}$. B. Analog 1.8-Bis-methylmercapto-anthrachinon

- (S. 501) (HOFFMAN, REID, Am. Soc. 45, 1835). Orangerot. F: 181^o. Liefert bei der Oxydation mit rauchender Salpetersäure Anthrachinon-disulfonsäure-(1.8).
- 1-Methylmercapto-8-butylmercapto-anthrachinon $C_{10}H_{18}O_8S_8 = CH_8 \cdot [CH_8]_8 \cdot S \cdot C_6H_8(CO)_8$ $C_6H_8 \cdot S \cdot CH_9$. B. Analog 1-Methylmercapto-8-āthylmercapto-anthrachinon (S. 501) (Reid), Mackall, Miller, Am. Soc. 48, 2116). Orangefarbene Nadeln. F: 134°.
- 1-Methylsulfon-8-butylmercapto-anthrachinon $C_{10}H_{18}O_4S_2=CH_3\cdot[CH_2]_2\cdot S\cdot C_6H_3(CO)_3C_6H_3\cdot SO_2\cdot CH_3$. B. Analog 1-Methylsulfon-5-butylmercapto-anthrachinon (S. 497) (HOFFMAN, REID, Am. Soc. 45, 1836). Gelb. F: 162°. Sehr schwer löslich in Wasser.
- 1-Methylsulfon-8-butylsulfon-anthrachinon $C_{10}H_{10}O_0S_2 = CH_3 \cdot [CH_2]_3 \cdot SO_2 \cdot C_6H_3(CO)_3C_6H_3$. SO₂·CH₃. B. Bei der Einw. von rauchender Salpetersäure auf 1-Methylmercapto-8-butylmercapto-anthrachinon (Reid, Mackall, Miller, Am. Soc. 43, 2116). Gelbliches Krystallpulver. F: 169°.
- 1-Äthylmercapto-8-butylmercapto-anthrachinon $C_{so}H_{so}O_{s}S_{s}=CH_{s}\cdot[CH_{s}]_{s}\cdot S\cdot C_{e}H_{s}(CO)_{s}$ $C_{e}H_{s}\cdot S\cdot C_{s}H_{s}$. B. Analog 1-Methylmercapto-8-äthylmercapto-anthrachinon (Reid, Mackall, Miller, Am. Soc. 43, 2116). Orangegelbe Nadeln. F: 95°.
- 1-Athylsulfon-8-butvimercapto-anthrachinon $C_{20}H_{20}O_4S_2=CH_3\cdot[CH_2]_3\cdot S\cdot C_8H_3(CO)_3C_6H_3\cdot SO_2\cdot C_9H_8$. B. Analog 1-Methylsulfon-5-butylmercapto-anthrachinon (S. 497) (HOFFMAN, REID, Am. Soc. 45, 1836). Gelb. F: 140°. Sehr schwer löslich in Wasser.
- 1-Äthylsulfon-8-butylsulfon-anthrachinon $C_{30}H_{30}O_6S_2=CH_3\cdot[CH_2]_3\cdot SO_3\cdot C_6H_3(CO)_2C_6H_3\cdot SO_2\cdot C_3H_5$. B. Analog 1.8-Bis-methylsulfon-anthrachinon (S. 501) (Reid, Mackall, Miller, Am. Soc. 43, 2116). Gelbliches Krystallpulver. F: 128°.
- 1-Propylmercapto 8-butylmercapto-anthrachinon $C_{21}H_{22}O_2S_2 = CH_3 \cdot [CH_2]_3 \cdot S \cdot C_4H_3(CO)_2$ $C_6H_3 \cdot S \cdot CH_2 \cdot C_2H_5$. B. Analog 1-Methylmercapto-8-äthylmercapto-anthrachinon (S. 501) (Reid, Mackall, Miller, Am. Soc. 43, 2116). Orangefarbene Nadeln. F: 119,5°.
- 1-Propvisulfon-8-butylmercapto-anthrachinon $C_{21}H_{22}O_4S_2=CH_3\cdot[CH_2]_3\cdot S\cdot C_6H_3(CO)_3C_6H_3\cdot SO_2\cdot CH_3\cdot C_2H_5$. B. Analog 1-Methylsulfon-5-butylmercapto-anthrachinon (S. 497) (Hoffman, Reid, Am. Soc. 45, 1836). Gelb. F: 132°. Sehr schwer löslich in Wasser.
- 1-Propyisulfon-8-butylsulfon-anthrachinon $C_{21}H_{22}O_6S_2 = CH_3 \cdot [CH_2]_3 \cdot SO_2 \cdot C_6H_3 \cdot (CO)_2C_6H_3 \cdot SO_2 \cdot CH_3 \cdot C_2H_6$. B. Analog 1.8-Bis-methylsulfon-anthrachinon (S. 501) (Reid, Mackall, Miller, Am. Soc. 48, 2116). Gelbliches Krystallpulver. F: 200,5°.
- 1 Isopropylmercapto 8 butylmercapto anthrachinon $C_{31}H_{33}O_3S_3 = CH_3 \cdot [CH_3]_3 \cdot S \cdot C_6H_3(CO)_3C_6H_3 \cdot S \cdot CH(CH_3)_3$. B. Analog 1-Methylmercapto-8-isopropylmercapto-anthrachinon (S. 501) (HOFFMAN, Reid, Am. Soc. 45, 1835). Orangerot. F: 131°,
- 1.8-Bis butylmercapto anthrachinon, Dithiochrysazin dibutyläther $C_{22}H_{24}O_2S_2 = CH_3 \cdot [CH_2]_3 \cdot S \cdot C_6H_3(CO)_2C_6H_3 \cdot S \cdot [CH_2]_3 \cdot CH_3$. B. Analog 1.8-Bis-methylmercapto-anthrachinon (S. 501) (Reid, Mackall, Miller, Am. Soc. 48, 2116). Rote Nadeln. F: 131°.
- 1 Butylmercapto 8 butylsulfon anthrachinon $C_{22}H_{24}O_4S_2 = CH_2 \cdot [CH_2]_3 \cdot SO_2 \cdot C_6H_3(CO)_2$ $C_6H_3 \cdot S \cdot [CH_2]_3 \cdot CH_3$. B. Analog 1-Methylsulfon-5-butylmercapto-anthrachinon (S. 497) (Hoffman, Reid, Am. Soc. 45, 1836). Gelb. F: 126°. Sehr solwer löslich in Wasser.
- 1.8-Bis-butylsuifon-anthrachinon $C_{22}H_{24}O_6S_2=CH_3\cdot [CH_2]_3\cdot SO_2\cdot C_6H_3(CO)_2C_6H_3\cdot SO_2\cdot [CH_2]_3\cdot CH_3$. B. Analog 1.8-Bis-methylsuifon-anthrachinon (S. 501) (Reid, Mackall, Miller, Am. Soc. 48, 2116). Gelbliches Krystallpulver. F: 138°.
- 1 Butylmercapto 8 isobutylmercapto anthrachinon $C_{23}H_{24}O_{2}S_{3} = (CH_{2})_{2}CH \cdot CH_{2} \cdot S \cdot C_{0}H_{3}(CO)_{2}C_{0}H_{3} \cdot S \cdot [CH_{2}]_{3} \cdot CH_{3}$. B. Analog 1-Methylmercapto-8-äthylmercapto-anthrachinon (S. 501) (Reid, Mackall, Miller, Am. Soc. 48, 2116). Orangefarbene Prismen. F: 103,5°.
- 1-Butylsuifon-8-isobutylsuifon-anthrachinon $C_{22}H_{24}O_{2}S_{3} = (CH_{3})_{2}CH \cdot CH_{2} \cdot SO_{2} \cdot C_{6}H_{3}(CO)_{2}$ $C_{6}H_{3} \cdot SO_{2} \cdot [CH_{3}]_{3} \cdot CH_{3}$. B. Analog 1.8-Bis-methylsuifon-anthrachinon (S. 501) (Reid, Mackall, Miller, Am. Soc. 48, 2116). Gelbliches Krystallpulver. F: 168,5°.
- 1-Methylmercapto-8-isoamylmercapto-anthrachinon $C_{30}H_{30}O_3S_3 = C_3H_{11} \cdot S \cdot C_6H_3(CO)_2C_6H_3 \cdot S \cdot CH_3$. B. Analog 1-Methylmercapto-8-äthylmercapto-anthrachinon (S. 501) (Reid, Mackall, Miller, Am. Soc. 48, 2116). Orangefarbene Nadeln. F: 114°.
- 1-Methylsulfon 8 isoamylsulfon anthrachinon $C_{20}H_{20}O_6S_2=C_5H_{11}\cdot SO_2\cdot C_6H_8(CO)_2C_6H_3\cdot SO_2\cdot CH_3$. B. Analog 1.8-Bis-methylsulfon-anthrachinon (8. 501) (Reid, Mackall, Miller, Am. Soc. 48, 2116). Gelbliches Krystallpulver. F: 172°.
- 1-Propylmercapto-8-isoamylmercapto-anthrachinon $C_{22}H_{24}O_2S_2 = C_2H_{11} \cdot S \cdot C_2H_2(CO)_2C_2H_3 \cdot S \cdot CH_2 \cdot C_2H_3$. B. Analog 1-Methylmercapto-8-äthylmercapto-anthrachinon (S. 501) (Reid, Mackall, Miller, Am. Soc. 48, 2116). Orangefarbenes Pulver. F: 104°.
- 1-Propylsulfon 8-isoamylsulfon anthrachinon $C_{22}H_{24}O_{6}S_{3}=C_{5}H_{11}\cdot SO_{2}\cdot C_{6}H_{3}(CO)_{3}C_{6}H_{3}\cdot SO_{2}\cdot CH_{2}\cdot C_{2}H_{5}$. B. Analog 1.8-Bis-methylsulfon-anthrachinon (S. 501) (REID, MACKALL, MILLER, Am. Soc. 48, 2116). Gelbliches Krystalipulver. F: 147,5°.

- 1-Isopropvimercapto 8-isoamvimercapto anthrachinon $C_{22}H_{24}O_3S_2 = C_5H_{11} \cdot S \cdot C_6H_8(CO)_3$ $C_6H_3 \cdot S \cdot CH(CH_2)_2$. B. Analog 1-Methylmercapto 8-isopropylmercapto anthrachinon (S. 501) (HOFFMAN, REID, Am. Soc. 45, 1835). Orangerot. F: 109°.
- 1-Butylmercapto-8-isoamylmercapto-anthrachinon $C_{23}H_{26}O_2S_2 = C_5H_{11} \cdot S \cdot C_6H_3(CO)_2C_6H_3 \cdot S \cdot [CH_2]_3 \cdot CH_3$. B. Analog 1-Methylmercapto-8-āthylmercapto-anthrachinon (S. 501) (Reid), Mackall, Miller, Am. Soc. 48, 2116). Orangefarbene Krystalle. F: 116,5°.
- 1-Butylmercapte-8-isoamylsulfon-anthrachinon $C_{23}H_{26}O_4S_2=C_5H_{11}\cdot SO_2\cdot C_6H_3(CO)_2C_8H_3\cdot S\cdot [CH_2]_3\cdot CH_3$. B. Analog 1-Methylsulfon-5-butylmercapte-anthrachinon (S. 497) (Hoffman, Reid, Am. Soc. 45, 1836). Gelb. F: 121°. Sehr schwer löslich in Wasser.
- 1-Butylsulfon-8-isoamylsulfon-anthrachinon $C_{23}H_{26}O_6S_2=C_5H_{11}\cdot SO_2\cdot C_6H_3(CO)_2C_6H_3\cdot SO_2\cdot [CH_2]_3\cdot CH_3$. B. Analog 1.8-Bis-methylsulfon-anthrachinon (S. 501) (Reid, Mackall, Miller, Am. Soc. 43, 2116). Gelbliches Krystallpulver. F: 154°.
- 1.8-Bis-isoamvimercapto-anthrachinon, Dithiochrysazin-diisoamyläther $C_{24}H_{28}O_2S_2 = C_5H_{11} \cdot S \cdot C_6H_3(CO)_4C_6H_3 \cdot S \cdot C_5H_{11}$. B. Analog 1.8-Bis-methylmercapto-anthrachinon (S. 501) (Reid, Mackall, Miller, Am. Soc. 48, 2116). Orangefarbene Tafeln. F: 133°.
- 1.8-Bis-isoamyisuifon-anthrachinon $C_{24}H_{26}O_6S_2=C_5H_{11}\cdot SO_2\cdot C_6H_3(CO)_2C_6H_3\cdot SO_2\cdot C_5H_{11}$. B. Analog 1.8-Bis-methylsulfon-anthrachinon (S. 501) (Reid, Mackall, Miller, Am. Soc. 48, 2116). Gelbliches Krystallpulver. F: 176°.
- 1-Methylmercapto 8-benzvimercapto anthrachinon $C_{22}H_{16}O_2S_2 = C_6H_5 \cdot CH_2 \cdot S \cdot C_6H_3(CO)$ $C_6H_3 \cdot S \cdot CH_3$. B. Aus dem Natriumsalz der 1-Benzylmercapto-anthrachinon-sulfonsäure- $(8^3$ und Methylmercaptan in siedender Natronlauge (Hoffman, Reid, Am. Soc. 45, 1834). Rote Krystalle (aus Solventnaphtha). F: 262^0 .
- 1-Methylsulfon-8-benzylsulfon-anthrachinon $C_{23}H_{16}O_6S_3 = C_6H_5 \cdot CH_2 \cdot SO_2 \cdot C_6H_3 (CO)_2C_6H_3 \cdot SO_2 \cdot CH_3$. B. Beim Erhitzen von 1-Methylmercapto-8-benzylmercapto-anthrachinon mit Chromessigsäure (Hoffman, Reid, Am. Soc. 45, 1834). Krystalle (aus Eisessig). F: 255°.
- 1-Äthylmercapto-8-benzvimercapto-anthrachinon $C_{43}H_{18}O_2S_2 = C_6H_5 \cdot CH_2 \cdot S \cdot C_6H_3(CO)_2$ $C_6H_8 \cdot S \cdot C_2H_5$. B. Analog 1-Methylmercapto-8-benzylmercapto-anthrachinon (s. o.) (HOFFMAN, REID, Am. Soc. 45, 1834). Orangefarbene Krystalle (aus Solventnaphtha). F: 164°.
- 1-Äthylsulfon-8-benzylsulfon-anthrachinon $C_{23}H_{18}O_6S_2 = C_6H_5 \cdot CH_2 \cdot SO_2 \cdot C_6H_3 (CO)_2C_6H_3 \cdot SO_2 \cdot C_2H_5$. B. Analog 1-Methylsulfon-8-benzylsulfon-anthrachinon (s. o.) (Hoffman, Reid, Am. Soc. 45, 1834). Krystalle (aus Eisessig). F: 242,5°.
- 1-Propylmercapto 8-benzylmercapto anthrachinon $C_{24}H_{30}O_3S_2=C_6H_5\cdot CH_2\cdot S\cdot C_6H_3(CO)_3$ $C_6H_3\cdot S\cdot CH_2\cdot C_2H_5$. B. Analog 1-Methylmercapto 8-benzylmercapto anthrachinon (s. o.) (HOFFMAN, REID, Am. Soc. 45, 1834). Orangefarbene Krystalle (aus Solpentnaphtha). F: 181°.
- 1-Propvisuifon-8-benzylsuifon-anthrachinon $C_{24}H_{20}O_{e}S_{2}=C_{e}H_{5}\cdot CH_{2}\cdot SO_{2}\cdot C_{e}H_{3}(CO)_{2}C_{e}H_{3}\cdot SO_{2}\cdot CH_{2}\cdot C_{2}H_{5}$. B. Analog 1-Methylsulfon-8-benzylsulfon-anthrachinon (s. o.) (Hoffman, Reid, Am. Soc. 45, 1834). Krystalle (aus Eisessig). F: 227°.
- 1- Isopropvimercapto 8 benzylmercapto anthrachinon $C_{24}H_{20}O_2S_2 = C_6H_5 \cdot CH_2 \cdot S \cdot C_6H_3$ (CO)₂C₆H₃·S·CH·(CH₃)₂. B. Analog 1-Methylmercapto-8-benzylmercapto-anthrachinon (Hoffman, Reid, Am. Soc. 45, 1834). Orangerote Krystalle (aus Solventnaphtha). F: 229°.
- 1-Butvimercapto-8-benzylmercapto-anthrachinon $C_{35}H_{22}O_2S_2=C_6H_5\cdot CH_2\cdot S\cdot C_6H_3(CO)_2$ $C_6H_3\cdot S\cdot [CH_2]_3\cdot CH_3$. B. Analog 1-Methylmercapto-8-benzylmercapto-anthrachinon (Hoffman, Reid, Am. Soc. 45, 1834). Orangerote Krystalle (aus Solventnaphtha). F: 185°.
- 1-Butylsulfon-8-benzylsulfon-anthrachinon $C_{25}H_{22}O_{6}S_{2}=C_{6}H_{5}\cdot CH_{2}\cdot SO_{2}\cdot C_{6}H_{3}(CO)_{2}C_{4}H_{3}\cdot SO_{2}\cdot [CH_{2}]_{3}\cdot CH_{2}$. B. Analog 1-Methylsulfon-8-benzylsulfon-anthrachinon (Hoffman, Reid, Am. Soc. 45, 1834). Krystalle (aus Eisessig). F: 210°.
- 1-IsoamyImercapto-8-benzyImercapto-anthrachinon $C_{26}H_{24}O_2S_2 = C_6H_5 \cdot CH_2 \cdot S \cdot C_6H_3(CO)_2$ $C_6H_5 \cdot S \cdot C_6H_{11}$. B. Analog 1-Methylmercapto-8-benzyImercapto-anthrachinon (Hoffman, Reid), Am. Soc. 45, 1834). Orangerote Krystalle (aus Solventnaphtha). F: 1890.
- 1-Isoamylsulfon-8-benzylsulfon-anthrachinon $C_{26}H_{24}O_6S_8=C_6H_5\cdot CH_3\cdot SO_2\cdot C_6H_3(CO)_2C_6H_3\cdot SO_2\cdot C_6H_{11}$. B. Analog 1-Methylsulfon-8-benzylsulfon-anthrachinon (s. o.) (Hoffman, Reid, Am. Soc. 45, 1834). Krystalle (aus Eisessig). F: 201°.
- 1.8 Bis benzylmercapto anthrachinon, Dithiochrysazin dibenzyläther $C_{28}H_{20}O_2S_2 = C_0H_5 \cdot CH_2 \cdot S \cdot C_0H_3 \cdot S \cdot CH_2 \cdot C_0H_5 \cdot (E I 723)$. B. Aus dem Dinatriumsalz der Anthrachinon-disulfonsäure-(1.8) und Benzylmercaptan in siedender Natronlauge (Hoffman, Reid, Am. Soc. 45, 1833). F: 189° (vgl. dagegen die abweichende Angabe im Ergw. I).
- 1.8 Bis benzylstellon anthrachinen C₂₈H₂₀O₂S₂ = C₂H₅· CH₂· SO₂· C₂H₃(CO)₂C₄H₅· SO₂ CH₃· C₄H₅· SO₅ CH₄· C₅H₅. B. Beim Erhitzen von 1.8-Bis-benzylmercapto-anthrachinon mit Chromessigsäure (HOFFMAN, RMID, Avs. Soc. 45, 1834). Krystalle (aus Eisessig). F: 202°.

504

1.8-Bis - $[\beta$ -oxv-äthylmercapto] - anthrachinon $C_{10}H_{10}O_4S_2 = HO \cdot CH_2 \cdot CH_2 \cdot S \cdot C_0H_3(CO)_2$ $C_0H_2 \cdot S \cdot CH_3 \cdot CH_2 \cdot OH$. B. Analog 1.8-Bis-benzylmercapto-anthrachinon (HOFFMAN, REID, Am. Soc. 45, 1836). — Rote Krystalle (aus Butylalkohol). F: 206°. Schwer löslich in Wasser.

Diacetat $C_{22}H_{20}O_{6}S_{2} = CH_{3} \cdot CO \cdot O \cdot CH_{2} \cdot CH_{2} \cdot S \cdot C_{6}H_{3}(CO)_{1}C_{6}H_{3} \cdot S \cdot CH_{2} \cdot CH_{2} \cdot O \cdot CO \cdot CH_{3}$. Gelbe Krystalle (aus Eisessig). F: 159° (HOFFMAN, REID, Am. Soc. 45, 1836).

6. 2.3-Dioxy-anthrachinon, Hystazarin C₁₄H₈O₄, s. nebenstehende Formel (H 462; E I 723). B. In geringer Menge beim Erhitzen von Brenzeatechin mit Phthalsäureanhydrid in Gegenwart von japanischer saurer Erde, neben Alizarin (Tanaka, Watanabe, Bl. chem. Soc. Japan 8, 289; C. 1929 I, 752). Neben Alizarin und anderen Produkten beim Erhitzen von Brenzoatechinäthylenäther mit Phthalsäureanhydrid, Alu-

Ermizen von Breizzetechnatafyleintather int Fithalssatieramydrid, interminiumchlorid und Natriumchlorid auf 130—140° oder besser auf 170—180° (Raudnitz, J. pr. [2] 128, 286, 288). — Nach Bayer & Co. (D.R.P. 298345; E I 723) hergestelltes Hystazarin ist nicht frei von Alizarin (R., J. pr. [2] 128, 285). — Gelbe Nadeln (durch Sublimation). Schmilzt nicht bis 330° (R.). Löst sich in verd. Natronlauge und Ammoniak mit grüner, in konz. Schwefelsäure mit rotbrauner Farbe (R.). Die blaßgelbe Lösung in Acetanhydrid erfährt auf Zusatz von Pyroboracetat keine Farbvertiefung (Dimeoth, A. 446, 110). Dissoziationskonstante in 96 % igem Alkohol (durch potentiometrische Titration bestimmt): Treadwell, Schwarzentemperatur sofort zerstört (Scholl, Dahll, B. 57, 82). Wird durch amalgamiertes Aluminium und alkoh. Ammoniak nicht reduziert (Green, Soc. 1927, 556). Liefert bei der Einw. von 2 Mol Brom in Pyridin Hystazarin-bis-pyridiniumbromid-(1.4) (Syst. Nr. 3051) (Barnett, Cook, Soc. 121, 1388). Gibt beim Kochen mit Thionylchlorid Thionylbystazarin (s. u.) (Green, Soc. 1926, 2201). Aufnahme von Ammoniakgas: Briner, Morf, Helv. 11, 942. Liefert mit N-Oxymethyltrichloracetamid in konz. Schwefelsäure 2.3-Dioxy-1.4-bis-trichloracetaminomethyl-anthrachinon (De Diesbach, Gubser, Helv. 11, 1113; de D., D.R.P. 507049; Frdl. 16, 1236). — Gibt mit Zirkon- oder Hafniumsalzen in essigsaurer Lösung eine rote Färbung; bei Zusatz von verd. Salzsäure tritt die gelbe Lösungsfarbe des Hystazarins auf (de Boer, R. 44, 1075). Reines Hystazarin ist kein Beizenfarbstoff; gegenteilige Angaben (vgl. H 462) sind auf Verunreinigung mit Alizarin zurückzuführen (Raudnitz, J. pr. [2] 123, 286). — NH4 Cl4 H₇O₄. Tiefrot. Dissoziationsdruck bei 18°: 12 mm (Briner, Morf, Helv. 11, 942). — Das Calciumsalz ist blaßrot, das Bariumsalz schmutzig grün (R.).

- 2-0xv-3-methoxy-anthrachinon, Hystazarinmen methyläther $C_{15}H_{10}O_4 = C_6H_4(CO)_5C_6H_2$ (OH)·O·CH₃ (H 462). B. Beim Kochen von 2-Methoxy-3-acetoxy-anthrachinon mit alkoh. Kalilauge (BISTRZYCKI, ZEN-RUFFINEN, Helv. 3, 383). F: 234—235°; die Schmelze ist dunkelrotbraun. Löst sich in konz. Schwefelsäure mit violettstichig braunroter Farbe.
- 2 Methoxy 3 acetoxy anthrachinon, Hystazarin methyläther acetat $C_{17}H_{12}O_5=C_6H_4(CO)_2C_6H_2(O\cdot CH_3)\cdot O\cdot CO\cdot CH_3$. B. Bei kurzem Kochen von 3-Methoxy-2.9-diacetoxy-anthracen mit Chromtrioxyd in Eisessig (Bistrzycki, Zen-Ruffinen, Helv. 3, 382). Gelbliche Nadeln 'aus Eisessig). F: 200,5—201,5°; die Schmelze ist braungelb. Ziemlich leicht löslich in siedendem Eisessig und Benzol, sehr schwer in siedendem Alkohol. Löst sich in konz. Schwefelsäure mißfarben braunrot.
- 2.3-Diacetoxy-anthrachinon, Hvstazarindiacetat $C_{18}H_{18}O_6 = C_6H_4(CO)_2C_6H_2(O \cdot CO \cdot CH_3)_2$ (H 463). B. Beim Kochen von Thionylhystazarin mit Acetanhydrid (Green, Soc. 1926, 2202). Gelbliche Nadeln (aus Acetanhydrid), blaß grünlichgelbe Tafeln (aus Pyridin). F: 213° (unkorr.) (RAUDNITZ, J. pr. [2] 123, 288), 211—213° (G.), 208° (DIMBOTH, A. 446, 110).
- 2.3-Thionyldioxy-anthrachinon, Thionylhystazarin, Hystazarinsulfit $C_{14}H_6O_8S = C_6H_4(CO)_2C_6H_2 < O>SO$. B. Beim Kochen von Hystazarin mit Thionylchlorid (Green, Soc. 1926, 2201). Gelblichgrüne Tafeln. F: 200°. Gibt beim Aufbewahren an feuchter Luft oder beim Kochen mit Eisessig Hystazarin. Liefert beim Kochen mit Acetanhydrid Hystazarindiacetat.

7. 2.6 - Dioxy - anthrachinon, Anthraflavinadure, Anthraflavin C₁₄H₂O₄, Formel I (H 463; E I 723). Zersetzt sich von 360° an (Heller, Z. ang. Ch. 42, 172). Löslich in Sodalösung und in heißer Natriumacetat-Lösung (He.). Absorptionsspektrum in wäßrigalkalischer Lösung in Gegenwart von Na₂SO₃: Morr, Soc. 1927, 1810. Dissoziationskonstante

505

in 96% igem Alkohol (durch potentiometrische Titration bestimmt): TREADWELL, SCHWARZEN-BACH, Helv. 11, 398. — Wird durch alkal. Kaliumferrioyanid-Lösung bei Zimmertemperatur nicht oxydiert (SCHOLL, DAHLL, B. 57, 82). Liefert bei der Reduktion mit amalgamiertem Aluminium in siedendem wäßrigem oder wäßrig-alkoholischem Ammoniak oder verd. Alkali-lauge 2.6-Dioxy-anthracen (Hall, Perkin, Soc. 123, 2035). Bei der Reduktion mit Zinn(II)-chlorid und siedender Salzsäure erhält man 3.7-Dioxy-anthron-(9) (Goodall, Perkin, Soc. 125, 473). Gibt beim Erhitzen mit rauchender Schwefelsäure (15% SO₃) auf 125° und nachfolgenden Behandeln mit Salpeterschwefelsäure oder beim Behandeln mit 2 Mol Kaliumnitrat in konz. Schwefelsäure 1.5-Dinitro-2.6-dioxy-anthrachinon-disulfonsäure-(3.7); bei weiterer Einw. von überschüssiger Salpetersäure entsteht 1.3.5.7-Tetranitro-2.6-dioxy-anthrachinon (Heller, Z. ang. Ch. 42, 173). Beim Erhitzen mit 1.3.5.7-Tetrabrom-2.6-dioxy-anthrachinon auf 290—310° bildet sich 3.7-Dibrom-2.6-dioxy-anthrachinon (I. G. Farbenind., D. R. P. 484665; Frdl. 16, 1244). — Natriumsalz. Dunkelrote Nadeln (He.).

- 2.6-Dimethoxy-anthrachinon $C_{16}H_{12}O_4=CH_3\cdot O\cdot C_6H_3(CO)_2C_6H_3\cdot O\cdot CH_3$ (H 464). Wird bei langsamem Leiten über einen Kupfer-Zink-Katalysator im Wasserstoffstrom bei 375° zu 2.6-Dimethoxy-anthracen reduziert (I. G. Farbenind., D.R.P. 472825; Frdl. 16, 1189).
- 3.7-Dibrom-2.6-dioxy-anthrachinon, 3.7-Dibrom-anthraflavinsäure $C_{14}H_6O_4Br_2$, Formel II. B. Beim Erhitzen von 1.3.5.7-Tetrabrom-2.6-dioxy-anthrachinon mit 2.6-Dioxy-anthrachinon auf 290—310° (I. G. Farbenind., D.R.P. 484665; Frdl. 16, 1244). Gelbe Tafeln (aus Trichlorbenzol). Schmilzt nicht unterhalb 360°.
- x.x-Dibrom-2.6-dioxy-anthrachinon $C_{14}H_6O_4Br_2 = C_{14}H_4O_2Br_8(OH)_2$ (H 465). Ist ein Gemisch aus 2.6-Dioxy-anthrachinon und höher bromierten Produkten (I. G. Farbenind., D.R.P. 484665; *Frdl.* 16, 1243).
- 1.3.5.7 Tetrabrom 2.6 dioxy anthrachinon, 1.3.5.7 Tetrabrom anthraflavinsäure $C_{14}H_4O_4Br_4$, Formel III (H 465 als x-Tetrabrom 2.6 dioxy anthrachinon aufgeführt). Liefert beim Erhitzen mit 2.6-Dioxy-anthrachinon auf 290—310° 3.7-Dibrom 2.6-dioxy-anthrachinon (I. G. Farbenind., D.R.P. 484665; Frdl. 16, 1244).
- 1.5-Dinitro-2.6-dioxy-anthrachinon, 1.5-Dinitro-anthrafiavinsäure C₁₄H₆O₈N₂, Formel IV (H 465 als x.x-Dinitro-2.6-dioxy-anthrachinon aufgeführt). B. Beim Erhitzen von 1.5-Dinitro-2.6-dioxy-anthrachinon-disulfonsäure-(3.7) mit verd. Schwefelsäure auf 170° (HELLER, Z. ang. Ch. 42, 173). Schwer löslich in den meisten Lösungsmitteln außer Aceton. Gibt bei der Reduktion mit Natriumsulfid in alkal. Lösung 1.5-Diamino-2.6-dioxy-anthrachinon.

$$IV. \quad \underbrace{\begin{array}{c} O & NO_8 \\ NO_1O & O \end{array}}_{NO_1O & O} OH \qquad V. \quad \underbrace{\begin{array}{c} O_2N \\ NO_2O \\ NO_3O \end{array}}_{NO_3O} OH \qquad VI. \quad \underbrace{\begin{array}{c} O \\ NO_2O \\ O \end{array}}_{O} OH$$

- 1.3.5.7 Tetranitro 2.6 dioxy anthrachinon, 1.3.5.7 Tetranitro anthraflavinsäure $C_{14}H_4O_{12}N_4$, Formel V (H 465; E I 724). B. Durch Einw. von überschüssiger Salpetersäure auf das aus 2.6-Dioxy-anthrachinon und rauchender Schwefelsäure (15% SO_3) bei 125° erhaltene Sulfurierungsprodukt (Heller, Z. ang. Ch. 42, 173).
- 8. 2.7-Dioxy-anthrachinon, Isoanthraflavinsäure, Isoanthraflavin C₁₄H₈O₄, Formel VI (H 466; E I 724). Darst. Aus Anthrachinon-disulfonsäure-(2.7) durch Erhitzen des Natriumsalzes mit Natriumchlorat und Barytwasser im Autoklaven auf 170—180°; Ausbeute ca. 60% der Theorie (Hall, Perkin, Soc. 128, 2036). Absorptionsspektrum in wäßrig-alkalischer Lösung in Gegenwart von Na₂SO₂: Moir, Soc. 1927, 1810. Gibt bei der Reduktion mit Zinn(II)-chlorid und siedender Salzsäure 3.6-Dioxy-anthron-(9) (Goodall, Perkin, Soc. 125, 473), bei der Reduktion mit amalgamiertem Aluminium in siedendem wäßrigem oder wäßrig-alkoholischem Ammoniak oder siedender verdünnter Alkalilauge 2.7-Dioxy-anthracen (H., P., Soc. 123, 2035).
- 9. Dioxy-anthrachinon-Derivate mit ungewisser Stellung der Oxy-Gruppen.
- x-Tetranitro-x-dioxy-anthrachinon $C_{14}H_4O_{12}N_4=(O_2N)_4C_{14}H_2O_2(OH)_2$. B. Bei der Einw. von rauchender Salpetersäure auf 1.2.3.4.5.6.7.8-Oktahydro-anthracen (Boedtker, Rambech, Bl. [4] \$5, 632). Gelbe Krystalle. Schmilzt nicht bis 300°. Löslich in Benzol, sehr schwer löslich in Alkohol.
- x-0xy-x-methylmercapto-anthrachinon $C_{15}H_{10}O_3S=C_6H_4(CO)_2C_6H_2(OH)\cdot S\cdot CH_3$. B. Aus Phthalszureanhydrid und Methyl-[2-oxy-phenyl]-sulfid bei Gegenwart von Zinkehlorid bei 180° (Holt, Reid, Am. Soc. 46, 2336). Rosa, amorph (aus Äther + Petroläther). F: 188° (Zers.). Löslich in Äther, unlöslich in Petroläther.

- 10. 1.2 Dioxy phenanthrenchinon C₁₄H₈O₄, Formel I. B. Durch Verseifung von 1.2 Diocetoxy phenanthrenchinon mit alkoh. Natronlauge (FIESER, Am. Soc. 51, 1939). Dunkelrote Krystalle (aus Aceton). Zersetzt sich beim Erhitzen. Schwer löslich in Wasser, sehr leicht in Alkohol, Aceton und Eisessig. Löst sich in konz. Schwerelsäure mit roter, in Alkalien mit grüner, in Pyridin mit karminroter Farbe (F., Am. Soc. 51, 1939). Löst sich in Acetanhydrid mit roter, beim Erwärmen in Orange übergehender Farbe, in Pyroboracetat mit grüner, bei 60° in Rot übergehender Farbe (F., Am. Soc. 51, 2483). Normal-Redoxpotential in 0,1 n-wäßrig-alkoholischer Salzsäure (50% Alkohol) bei 25°: 0,380 V (F., Am. Soc. 51, 3105). Färbt ungebeizte Wolle blaß bläulichgrau, mit Aluminium- oder Chromsalzen gebeizte Wolle und Seide dunkelgrün (F., Am. Soc. 51, 1939).
- 1.2-Diacetoxy-phenanthrenchinon $C_{18}H_{12}O_6 = (CH_3 \cdot CO \cdot O)_2C_{14}H_4O_3$. B. Durch Oxydation von 1.2-Diacetoxy-phenanthren mit Chromsäure in Eisessig bei 40^6 (Fieser, Am. Soc. 51, 1939). Orangefarbene Nadeln. F: 257° (korr.; Zers.). Leicht löslich in Eisessig.

- 11. 1.4 Dioxy phenanthrenchinon C₁₄H₈O₄, Formel II. B. Durch Einw. von verd. Schwefelsäure auf 4-Azido-phenanthrenchinon, zuletzt auf dem Wasserbad, neben 4-Amino-1-oxy-phenanthrenchinon (Brass, Stadler, B. 57, 133; B., D.R.P. 430631; Frdl. 15, 793). Beim Kochen von 4-Amino-1-oxy-phenanthrenchinon mit verd. Schwefelsäure (B., St., B. 57, 135). Blauviolette Nadeln (aus Wasser). Ziemlich leicht löslich in Wasser und organischen Lösungsmitteln mit rotvioletter Farbe; löslich in konz. Schwefelsäure mit schwarzvioletter Farbe, sehr leicht löslich in Alkalilaugen mit grüner Farbe, durch Säuren fällbar (B., St., B. 57, 133). Löst sich in Acetanhydrid mit violetter, in Pyroboracetat-Lösung mit blaugrüner, beim Erwärmen in Grünbraun übergehender Farbe (Dimboth, A. 446, 115). Über Lichtabsorption in Lösung vgl. B., St., B. 57, 131. Normal-Redoxpotential in 0,1 n-wäßrig-alkoholischer Salzsäure (50% Alkohol) bei 25°: 0,379 V (Fieser, Am. Soc. 51, 3105). Gibt bei der Oxydation mit siedender verdünnter Chromschwefelsäure Phthalsäure (Brass, Stadler, B. 57, 134). Bei der Oxydation mit Silberoxyd oder Bleitetraacetat in Äther entsteht Phenanthrendichinon-(1.4; 9.10) (E II 7, 862) (B., St., B. 57, 133). Gibt beim Erwärmen mit Pyroboracetat einen krystallinen Diacetylborsäureester, der bei der Hydrolyse in ein nicht näher beschriebenes Monoacetat übergeht (Dimboth). Färbt ungebeizte und chromgebeizte Wolle schwarzviolett, Baumwolle auf Chrombeize grau, auf Eisenbeize grünlichgrau, auf Tonerdebeize grün (B., St., B. 57, 133).
- 1.4-Diacetoxy-phenanthrenchinon $C_{18}H_{19}O_6=(CH_3\cdot CO\cdot O)_3C_{14}H_4O_2$. B. Beim Kochen von 1.4-Dioxy-phenanthrenchinon mit Acetanhydrid (Brass, Stadler, B. 57, 134; B., D.R.P. 430631; Frdl. 15, 794). Bei der Oxydation von 1.4-Diacetoxy-phenanthren mit Chromsäure in Eisessig bei 40° (FIESER, Am. Soc. 51, 2470). Goldgelbe Prismen oder Nadeln (aus Eisessig oder Benzol + Ligroin). F: 183° (B., Sr.), 184° (korr.) (F.). Unlöslich in kaltem Alkohol (F.). Färbt sich beim Übergießen mit methylalkoholischer Kalilauge unter stufenweiser Hydrolyse erst violett, dann grün (B., Sr.).
- 12. 1.6-Dioxy-phenanthrenchinon C₁₄H₈O₄. Formel III. B. Durch Verseifung von 1.6-Diacetoxy-phenanthrenchinon mit alkoh. Natronlauge (FIESER, Am. Soc. 51, 2482). Rot. Löst sich in Schwefelsäure mit blaß violettroter, in Natronlauge mit hellroter, in Pyridin mit gelber, in Acetanhydrid mit gelber und in Pyroboracetat-Lösung mit roter Farbe.
- 1.6-Diacetoxy-phenanthrenchinon $C_{18}H_{18}O_6=(CH_8\cdot CO\cdot O)_2C_{14}H_6O_2$. B. Durch Oxydation von 1.6-Diacetoxy-phenanthren mit Chromsäure in Eisessig bei 60° (FIESER, Am. Soc. 51, 2481). Orangegelbe Nadeln (aus Alkohol oder Benzol). F: 221—222° (korr.).
- 13. 1.7-Dioxy-phenanthrenchinon C₁₄H₄O₄, Formel IV. B. Analog 1.6-Dioxy-phenanthrenchinon (Fieser, Am. Soc. 51, 2482). Dunkelrot. Löst sich in Schwefelsäure mit grüner, in Natronlauge mit violettroter, in Pyridin mit roter, in Acetanhydrid mit blaßroter bis orangegelber, in Pyroboracetat-Lösung mit grüner, bei 60° in Violettrot übergehender Farbe.
- 1.7-Diacetoxy-phenanthrenchinon $C_{19}H_{12}O_{4}=(CH_{3}\cdot CO\cdot O)_{2}C_{14}H_{4}O_{2}$. B. Analog 1.6-Diacetoxy-phenanthrenchinon (Fieser, Am. Soc. 51, 2481). Orangefarbene Plättchen (aus Benzol + Ligroin). F: 223—224° (korr.). Leicht löslich in Benzol,
- 14. 2.3-Dioxy phenanthrenchinen C₁₄H₂O₄, Formel V. B. Beim Verkochen von diazotiertem 2-Amino-3-oxy-phenanthrenchinen mit werd. Schwefelsäure (Brass, Ferrer, Stadler, B. 57, 124, 127). Rotbraune Nadeln (aus verd. Alkohol). Zeigt keinen Schmelz-

punkt. Schwer löslich in Wasser. Über Lichtabscrption in Lösung vgl. B., F., Sr., B. 57, 124. Löst sich in konz. Schwefelsäure mit rotbrauner Farbe. Wird durch verd. Natronlauge blau gefärbt und langsam mit rotvioletter Farbe gelöst. Färbt chromgebeizte Wolle und gebeizte Baumwolle aus der angesäuerten wäßrigen Lösung rotbraun. — NaC₁₄H₇O₄. Schwarzviolettes Pulver. Schwer löslich. — Dinatriumsalz. Tiefviolett. Leicht löslich.

- 15. 2.5-Dioxy-phenanthrenchinon C₁₄H₈O₄, Formel VI. Ist H 468 als 4.5-Dioxy-phenanthrenchinon formuliert worden; das von J. Schmidt, Kämpf (B. 36, 3750) benutzte Ausgangsmaterial ist 2.5-Diamino-phenanthrenchinon (H 14, 221) gewesen (Christie, Holderness, Kenner, Soc. 1926, 671; Kuhn, Albrecht, A. 455, 281; J. Schmidt, Priv.-Mitt.).—Löst sich in Pyroboracetat-Lösung mit orangeroter Farbe (Fieser, Am. Soc. 51, 2483).
- 2.5-Dimethoxy-phenanthrenchinon $C_{16}H_{12}O_4=(CH_3\cdot O)_2C_{14}H_6O_2$. Ist H 468 als 4.5-Dimethoxy-phenanthrenchinon beschrieben.
- 16. 2.6-Dioxy-phenanthrenchinon C₁₄H₈O₄, Formel VII. B. Durch Verseifung von 2.6-Diacetoxy-phenanthrenchinon mit alkoh. Natronlauge (FIESER, Am. Soc. 51, 2481, 2482). Braunrotes, hygroskopisches Pulver. Sehr leicht löslich in Eisessig und Alkohol, sehr schwer in Xylol. Löst sich in Schwefelsäure mit gelbgrüner, in Natronlauge mit roter, in Pyridin mit orangeroter, in Acetanhydrid und in Pyroboracetat-Lösung mit gelber Farbe (F., Am. Soc. 51, 2482, 2483). Normal-Redoxpotential in 0,1 n-wäßrig-alkoholischer Salzsäure (50% Alkohol) bei 25°: 0,401 V (FIESER, Am. Soc. 51, 3105). Wird leicht acetyliert (F., Am. Soc. 51, 2482).
- 2.6 Diacetoxy phenanthrenchinon $C_{18}H_{12}O_6 = (CH_3 \cdot CO \cdot O)_2C_{14}H_6O_2$. B. Durch Oxydation von 2.6 Diacetoxy phenanthren mit Chromsäure in Eisessig bei 60° (FIESER, Am. Soc. 51, 2181). Goldgelbe Plättchen (aus Alkohol). F: 220—221° (korr.). Mäßig löslich in Alkohol.
- 17. **2.7 Dioxy phenanthrenchinon** $C_{14}H_6O_4$, Formel VIII (H 467). B. Analog 2.6-Dioxy-phenanthrenchinon (FIESEB, Am. Soc. 51, 2482). Dunkelrote, mikrokrystalline Nadeln. Löst sich in Schwefelsäure mit brauner, in 0,1 n-Natronlauge mit grüner, in 6 n-Natronlauge mit gelber, in Pyridin mit roter, in Acetanhydrid und in Pyroboracetat-Lösung mit gelber Farbe (F., Am. Soc. 51, 2481, 2482). Normal-Redoxpotential in 0,1 n-alkoholischer Salzsäure bei 25°: 0,448 V (F., Am. Soc. 51, 3105).
- 2.7 Diacetoxy phenanthrenchinon $C_{18}H_{12}O_6 = (CH_3 \cdot CO \cdot O)_2C_{14}H_6O_3$ (H 467). B. Analog 2.6-Diacetoxy phenanthrenchinon (Fieser, Am. Soc. 51, 2481). Orangefarbene Nadeln (aus Eisessig). F: 244° (korr.) (F.; vgl. a. Brass, Nickel, B. 58, 208). Schwer löslich in Alkohol (F.).
- 18. 3.4-Dioxy-phenanthrenchinon, Morpholchinon C₁₄H₈O₄, Formel IX (H 467). Löst sich in Acetanhydrid mit blaß orangegelber, in Pyroboracetat + Acetanhydrid mit roter Farbe (Fieser, Am. Soc. 51, 2483). Normal-Redoxpotential in 0,1 n-wäßrig-alkoholischer Salzsäure (50% Alkohol) bei 25°: 0,385 V (F., Am. Soc. 51, 3105). Die Lösung in Pyroboracetat + Acetanhydrid scheidet beim Erwärmen dunkelrote Krystalle ab und wird beim Kochen erst braun, dann grün (F., Am. Soc. 51, 2483).

3.4-Diacetoxy-phenanthrenchinon $C_{18}H_{12}O_6=(CH_3\cdot CO\cdot O)_2C_{14}H_6O_2$ (H 468). F: 1976 (unkorr.) (Fieser, Am. Soc. 51, 947). Normal-Redoxpotential in 0,1n-wäßrig-alkoholischer Salzsäure (50% Alkohol) bei 25°: 0,488 V (F., Am. Soc. 51, 3105).

- 19. 3.6 Dioxy phenanthrenchinon C₁₄H₈O₄, Formel X. B. Analog 2.6 Dioxy-phenanthrenchinon (s. c.) (Fieser, Am. Soc. 51, 2482). Orangerote, mikrokrystalline Nadeln (aus Nitrobenzol). Sehr schwer löslich in Wasser, Alkohol und Eisessig, mäßig in Nitrobenzol; löst sich in Schwefelsäure und in Natronlauge mit roter, in Pyridin mit orangegelber, in Acetanhydrid und in Pyroboracetat-Lösung mit gelber Farbe (F., Am. Soc. 51, 2482, 2483). Normal-Redoxpotential in 0,1 n-alkoholischer Salzsäure bei 25°: 0,344 V (F., Am. Soc. 51, 3105).
- 3.6 Dimethoxy phenanthrenchinen $C_{16}H_{19}O_4 = (CH_3 \cdot O)_1C_{14}H_6O_2$. B. Durch Oxydation von 3.6-Dimethoxy-phenanthren mit Chromasaure in Eisessig bei $60-70^{\circ}$ (Fieser, Am. Soc. 51, 2484). Gelbe Nadeln (aus Eisessig). F: 241° (korr.) (F., Am. Soc. 51, 2484). Schwer löslich

in Alkohol, mäßig in Eisessig (F., Am. Soc. 51, 2484). Normal-Redoxpotential in 0,1 n-alkoholischer Salzsäure bei 25°: 0,387 V (F., Am. Soc. 51, 3105). — Liefert bei der Oxydation mit 30% igem Wasserstoffperoxyd in Eisessig bei 60—90° 5.5′-Dimethoxy-diphensäure und das Lacton der 2′-Oxy-5.5′-dimethoxy-diphenyl-carbonsäure-(2) (F., Am. Soc. 51, 2484).

3.6 - Diacetoxy - phenanthrenchinon $C_{18}H_{12}O_6 = (CH_3 \cdot CO \cdot O)_4C_{14}H_6O_2$. B. Analog 2.6-Diacetoxy-phenanthrenchinon (S. 507) (FIESER, Am. Soc. 51, 2481). — Gelbe Nadeln (aus Eisessig). F: 232° (korr.). Schwer löslich in Alkohol.

20. 4.5 - Dioxy - phenanthrenchinon C₁₄H₈O₄, Formel XI (H 468). Ist als 2.5-Dioxy-phenanthrenchinon (S. 507) zu formulieren (Christie, Holderness, Kenner, Soc. 1926, 671; Kuhn, Albrecht, A. 455, 281; J. Schmidt, Priv.-Mitt.).

4.5-Dimethoxy-phenanthrenchinon $C_{16}H_{12}O_4=(CH_3\cdot O)_2C_{14}H_4O_2$ (H 468). Ist als 2.5-Dimethoxy-phenanthrenchinon zu formulieren (vgl. die Angaben im vorangehenden Artikel).

2. Oxy-oxo-Verbindungen $C_{15}H_{10}O_4$.

1. 2.4 - Dioxy -1 - methyl - anthrachinon $C_{15}H_{10}O_4$, Formel XII. Das früher unter dieser Formel beschriebene Rubiadin (H 468) ist als 1.3 - Dioxy -2 - methyl - anthrachinon (s. u.) erkannt worden; vgl. a. die dort zitierte Literatur. — B. 2.4 - Dioxy 1 - methyl - anthrachinon entsteht beim Kochen von 2.4 - Dimethoxy 1 - methyl - anthrachinon mit Bromwasserstößaure und Eisessig

(STOUDER, ADAMS, Am. Soc. 49, 2045). Beim Erhitzen von 3.5-Dioxy-2-methyl-benzoesäure mit Benzoesäure in Gegenwart von konz. Schwefelsäure auf 125—130° (MITTER, Nature 120, 729; C. 1928 I, 1039; M., Sen, Paul, J. indian chem. Soc. 4, 539; C. 1928 I, 2086). — Orangefarbene Krystalle (aus Benzol). F: 251° (St., A.), 265—266° (M., Sen, P.). Sublimierbar (M., Sen, P.).

2.4-Dimethoxy-1-methyl-anthrachinon $C_{17}H_{14}O_4 = C_eH_4(CO)_2C_eH(CH_3)(O \cdot CH_3)_2$. B. Beim Kochen von 2.4-Dichlor-1-methyl-anthrachinon mit Natriummethylat-Lösung (Stouder, Adams, Am. Soc. 49, 2045). — Gelbe Nadeln (aus Chloroform). F: 162° .

2.4-Diacetoxy-1-methyl-anthrachinon $C_{19}H_{14}O_{6}=C_{6}H_{4}(CO)_{2}C_{6}H(CH_{3})(O\cdot CO\cdot CH_{3})_{2}$. B. Beim Kochen von 2.4-Dioxy-1-methyl-anthrachinon mit Acetanhydrid und Natriumacetat (Stouder, Adams, Am. Soc. 49, 2045) oder mit Acetanhydrid und etwas Pyridin (Mitter, Nature 120, 729; C. 1928 I, 1039; M., Sen, Paul, J. indian chem. Soc. 4, 539; C. 1928 I, 2086). — Gelbe Nadeln (aus Eisessig). F: 176,5° (St., A.), 181—182° (M.; M., Sen, P.).

2. 5.8-Dioxy-1-methyl-anthrachinon, 5-Methyl-chinizarin, Shikizarin C₁₅H₁₀O₄, s. nebenstehende Formel. Das Molekulargewicht wurde in Benzol bestimmt (Majima, Kuroda, Acta phytoch. 1, 54). — B. Bei der trockenen Destillation von Shikonin (S. 543) (Majima, Kuroda, Acta phytoch. 1, 54; C. 1922 III, 677). Durch Erhitzen von 5-Chlor-8-oxy-1-methyl-anthrachinon mit konz. Schwefelsäure und Borsäure auf 140—160° (Hayashi, Soc.

1927, 2524). — Dunkelrote Krystalle (aus Isobutylalkohol oder Eisessig), rote Nadeln (aus Alkohol). F: 233—234° (H.), 232° (M., K.). Sublimiert leicht (M., K.). Leicht löslich in Benzol und Eisessig, löslich in Aceton und Alkohol (M., K.). Absorptionsspektrum in alkoh. Lösung: M., K. Zeigt in Lösung Fluorescenz (M., K.). Löst sich in Alkalien mit violettblauer, in Schwefelsäure mit blaßroter Farbe (M., K.). — Bei der Oxydation mit Kaliumpermanganat in Aceton bildet sich 3-Methyl-phthalsäure (M., K.). Gibt bei der Zinkstaub-Destillation 1-Methylanthracen, geringe Mengen 2-Methyl-anthracen und Anthracen (M., K.).

5.8 - Diacetoxy - 1 - methyl - anthrachinon, Shikizarin - diacetat $C_{19}H_{14}O_6 = CH_8 \cdot C_6H_8(CO)_2$ $C_6H_8(O \cdot CO \cdot CH_3)_2$. Gelbe Nadeln. F: 217° (MAJIMA, KURODA, Acta phytoch. 1, 55; C. 1922 III, 677).

3. 1.3-Dioxy-2-methyl-anthrachinon, Rubiadin C₁₈H₁₀O₄, s. nebenstehende Formel (vgl. H 468). Zur Konstitution vgl. Stouder, Adams, Am. Soc. 49, 2044; Mitter, Nature 120, 729; C. 1928 I, 1039; M., Sen, Paul, J. indian chem. Soc. 4, 535; C. 1928 I, 2085; M., Gupta, J. indian chem. Soc. 5, 25; C. 1928 I, 2398; Jones, Robertson, Soc. 1930, 1699; Kubaka, J. pharm. Soc. Japan 55, 110; C. 1935 II, 3381. — B. Beim Erhitzen von Rubiadin-1-methyläther mit konz. Salzsäure im Rohr auf 140—150° (Simonsen, Soc. 117, 563). Beim Erhitzen von 3.5-Dioxy-4-methyl-benzoesäure mit Benzoesäure und konz. Schwefelsäure auf 120° (Kusaka, C. 1935 II, 3381) ¹). — F: 290° (Si.; Ku.).

¹⁾ MITTER, GUPTA (J. indian chem. Soc. 5, 25; C. 1928 I, 2398; vgl. M., Nature 120, 729; C. 1928 I, 1039) wollen Rubiadin auf demselben Wege erhalten haben; ihre Angaben sind aber unwahrscheinlich, da das von ihnen verwendete Ausgangsmaterial nicht 3.5-Dioxy-4-methylbenzoesäure gewesen ist (Asahina, Asano, B. 66 [1933], 689; Charlesworth, Robinson, Soc. 1934, 1531).

- 3 Oxy 1 methoxy 2 methyl anthrachinon, Rubiadin 1 methyläther $C_{16}H_{12}O_4 = C_6H_4(CO)_2C_6H(CH_8)(OH)\cdot O\cdot CH_3$ (vgl. H 468). Zur Konstitution vgl. Jones, Robertson, Soc. 1980, 1701, 1706. V. Findet sich, wahrscheinlich als Glykosid, in der Wurzelrinde von Morinda citrifolia (Simonsen, Soc. 117, 563). Goldgelbe Nadeln (aus Eisessig). F: 291° (S.; J., R.). Gibt beim Erhitzen mit konz. Salzsäure im Rohr auf 140—150° Rubiadin (S.).
- 1-0 y-3-methoxy-2-methyl-anthrachinon, Rubiadin·3-methyläther $C_{16}H_{12}O_4=C_6H_4(CO)_2C_6H(CH_3)(OH)\cdot O\cdot CH_3$. B. Beim Erhitzen von 2'-Oxy-4'-methoxy-3'-methyl-benzophenon-carbonsäure-(2) mit konz. Schwefelsäure und Borsäure auf dem Dampfbad (Jones, Robertson, Soc. 1980, 1704). Gelbe Tafeln (aus Eisessig). F: 186°. Schwer löslich in kaltem Alkohol und Eisessig. Löslich in alkoh. Natronlauge mit roter Farbe.
- 1.3-Dimethoxy-2-methyl-anthrachinon, Rubiadin-dimethyläther $C_{17}H_{14}O_4 = C_6H_4(CO)_2$ $C_6H(CH_3)(O\cdot CH_3)_2$. Das H 468 beschriebene Präparat vom Schmelzpunkt 181° war vermutlich unreiner Rubiadin-3-methyläther (Jones, Robertson, Soc. 1980, 1701). B. Rubiadin-dimethyläther entsteht bei 12-stdg. Kochen von 1.3-Dichlor-2-methyl-anthrachinon mit Natriummethylat-Lösung (J., R., Soc. 1980, 1703) und beim Kochen von Rubiadin oder Rubiadin-3-methyläther mit Methyljodid und Silberoxyd in Aceton (J., R., Soc. 1980, 1701, 1705). Gelbe Nadeln (aus Methanol). F: 158°. Leicht löslich in warmem Eisessig.
- 1-Methoxy-3-acetoxy-2-methyl-anthrachinon, Rubiadin-1-methyläther-3-acetat $C_{18}H_{14}O_5 = C_6H_4(CO)_2C_8H(CH_3)(O\cdot CH_3)\cdot O\cdot CO\cdot CH_3$ (vgl. H 468). Zur Konstitution vgl. Jones, Robertson, Soc. 1930, 1701, 1706. F: 174° (Simonsen, Soc. 117, 563; J., R.).
- 3 Methoxy 1 acetoxy 2 methyl anthrachinon, Rubiadin 3 methyläther 1 acetat $C_{18}H_{14}O_5 = C_6H_4(CO)_2C_6H(CH_3)(O\cdot CH_3)\cdot O\cdot CO\cdot CH_8$. Gelbliche Nadeln (aus Eisessig + Methanol). F: 200° (Jones, Robertson, Soc. 1930, 1705).
- 1.3-Diacetoxy-2-methyl-anthrachinon, Rubiadin-diacetat $C_{19}H_{14}O_6=C_8H_4(CO)_2C_8H(CH_3)(O\cdot CO\cdot CH_3)_2$. B. Beim Kochen von 1.3-Dioxy-2-methyl-anthrachinon mit Acetanhydrid in Gegenwart von etwas Pyridin (MITTER, GUPTA, J. indian chem. Soc. 5, 28; C. 1928 I, 2399). Gelbliche Nadeln (aus Alkohol). F: 225° (M., G.; Jones, Robertson, Soc. 1930, 1706).
- 4. 1.4-Dioxy-2-methyl-anthrachinon, 2-Methyl-chinizarin C₁₅H₁₀O₄, s. nebenstehende Formel (H 469; E I 725). Liefert beim Behandeln mit Bleitetraacetat in Eisessig 2-Methyl-anthradichinon-(1.4;9.10) (ZAHN, OCHWAT, A. 462, 92). Bei der Reduktion mit Zinn und Salzsäure entsteht 2-Methyl-dihydrochinizarin (S. 485).
- 1.4-Bis-äthylmercapto-2-methyl-anthrachinon $C_{19}H_{18}O_2S_2=C_6H_4(CO)_2C_6H(CH_3)(S\cdot C_2H_5)_2$. B. Durch Hydrolyse von 1.4-Dirhodan-2-methyl-anthrachinon mit siedender wäßrig-alkoholischer Kalilauge und Kochen der erhaltenen Lösung von 1.4-Dimercapto-2-methyl-anthrachinon mit Äthylbromid (Ruggli, Merz, Helv. 12, 96). Rote Krystalle (aus Toluol). Schmilzt bei 195—205°. Sehr leicht löslich in Chloroform, Trichloräthylen, Nitrobenzol und Pyridin, leicht in heißem Toluol, schwer in Benzol, Alkohol, Aceton, Eisessig und Tetrachlorkohlenstoff, unlöslich in Äther und Petroläther; die Lösungen sind tieforange. Löst sich in konz. Schwefelsäure mit bordeauxroter Farbe. Die Hydrosulfitküpe ist orangerot.
- 1.4-Bis benzylmercapto 2 methyl anthrachinon $C_{20}H_{22}O_2S_2 = C_6H_4(CO)_2C_6H(CH_3)(S \cdot CH_2 \cdot C_6H_5)_2$. B. Analog der vorangehenden Verbindung (Ruggell, Merz, Helv. 12, 96). Rotbraune Krystalle (aus Toluol + Ligroin). F: 96°. Unlöslich in Äther, Alkohol, Essigester und Petroläther, schwer löslich in Aceton, Schwefelkohlenstoff, Tetrachlorkohlenstoff und Eisessig, leichter in Benzol, leicht in anderen Lösungsmitteln.
- 1.4-Dirhodan-2-methyl-anthrachinon $C_{17}H_8O_8N_2S_2=C_6H_4(CO)_2C_6H(CH_8)(S\cdot CN)_2$. B. Aus 4-Brom-2-methyl-anthrachinon-diazoniumsulfat-(2) durch Umsetzung mit wäßr. Kaliumrhodanid-Lösung und Aufbewahren, Erwärmen oder Belichten des entstandenen roten Diazoniumrhodanids (Ruggli, Merz, Helv. 12, 77, 95). Olivgrüne Nadeln (aus Eisessig). F: 250° bis 251°. Unlöslich in Äther, Petroläther und Schwefelkohlenstoff, schwer löslich in Alkohol, Aceton und Tetrachlorkohlenstoff, ziemlich schwer in Essigester und Eisessig, leicht in heißem Trichloräthylen und Benzol und in kaltem Chloroform, Pyridin, Anilin und Nitrobenzol. Gibt beim Kochen mit wäßrig-alkoholischer Kalilauge nicht näher beschriebenes 1.4-Dimercapto-2-methyl-anthrachinon, das sich mit Äthyl'vromid zu 1.4-Bis-äthylmercapto-2-methylanthrachinon (s. o.) umsetzt. Bei der Oxydation mit heißer konzentrierter Salpetersäure entsteht 2-Methyl-anthrachinon-disulfonsäure-(1.4). Die orangerote Lösung in konz. Schwefelsäure gibt mit Wasser einen roten Niederschlag.
- 5. 1.5-Dioxy-2-methyl-anthrachinon C₁₅H₁₀O₄, Formel I. B. Durch Erhitzen von 1.5-Dimethoxy-2-methyl-anthrachinon mit Chlorwasserstoff-Eisessig im Rohr auf 190° bis 200° (MITTER, BISWAS, J. indian chem. Soc. 5, 776; C. 1929 I, 1692). Gelbe Krystalle (aus Eisessig). F: 190°.

- 1.5-Dimethexy-2-methyl-anthrachinen $C_{17}H_{16}O_4 = C_6H_4(CO)_2C_6H_2(O \cdot CH_3)_3$. B. Durch Einw. von Kaliummethylat-Lösung auf 1.5-Dinitro-2-methyl-anthrachinen (MITTER, BISWAS, J. indian chem. Soc. 5, 776; C. 1929 I, 1692). Krystalle (aus Eisessig). F: 176—177°.
- 1.5-Diacetoxy-2-methyl-anthrachinon $C_{19}H_{14}O_6=C_6H_4(CO)_2C_6H_3(O\cdot CO\cdot CH_9)_3$. Krystalle (aus Alkohol). F: 230° (MITTER, BISWAS, J. indian chem. Soc. 5, 776; C. 1929 I, 1692).
- 6. 1.6-Dioxy-2-methyl-anthrachinon C₁₈H₁₀O₄, Formel II. B. Neben 1.6-Dimethoxy-2-methyl-anthrachinon beim Erhitzen von 6.4'-Dimethoxy-5-methyl-benzophenon-carbonsäure-(2) mit konz. Schwefelsäure und Phosphorpentoxyd auf 140—150° (SIMONSEN, RAU, Soc. 119, 1347). Beim Erhitzen von 1.6-Dimethoxy-2-methyl-anthrachinon mit Aluminiumchlorid auf 200° (BHATTACHARYA, SIMONSEN, J. indian Inst. Sci. [A] 10, 9; C. 1927 II, 1476). Braune Nadeln (aus Eisessig). F: 280—281° (BH., S.). Ziemlich schwer löslich in Eisessig (S., R.). Löslich in Alkalien und in Schwefelsäure mit roter Farbe (S., R.). Beim Erhitzen mit Kaliumhydroxyd und Natriumarseniat auf 220—230° entsteht 1.5.6-Trioxy-2-methyl-anthrachinon (BH., S.).
- 1.6-Dimethoxy-2-methyl-anthrachinon $C_{17}H_{14}O_4 = CH_3 \cdot O \cdot C_6H_3(CO)_5C_6H_2(CH_3) \cdot O \cdot CH_3$. B. s. im vorangehenden Artikel. Entsteht ferner bei der Oxydation von 4.7-Dimethoxy-3-methylanthron-(9) mit Chromessigsäure auf dem Wasserbad (Bhattacharya, Simonsen, J. indian Inst. Sci. [A] 10, 9; C. 1927 II, 1476). Gelbe Nadeln (aus Eisessig oder Benzol). F: 1920 (BH., S.). Die Lösung in konz. Schwefelsäure ist tiefrot (S., Rau, Soc. 119, 1347).
- 1.6-Diacetoxy-2-methyl-anthrachinon $C_{19}H_{14}O_6 = CH_3 \cdot CO \cdot C \cdot C_6H_9(CO)_2C_6H_9(CH_8) \cdot O \cdot CO \cdot CH_8$. Schwefelgelbe Nadeln (aus Eisessig oder Alkohol). F: 212° (SIMONSEN, RAU, Soc. 119, 1347).

- 7. 3.4-Dioxy-2-methyl-anthrachinon, 3-Methyl-alizarin $C_{18}H_{10}O_4$, Formel III (H 469). Zur Bildung durch Erhitzen von 3-Oxy-2-methyl-anthrachinon mit Kaliumhydroxyd (H 469) vgl. Mrtter, Sen, J. indian chem. Soc. 5, 637; C. 1929 I, 1106. Sublimierbar. Gibt bei der Oxydation mit Braunstein in konz. Schwefelsäure sehr geringe Mengen 3-Methyl-purpurin. Liefert ein bei 262° schmelzendes Acetylderivat.
- 3.4-Dimethoxy-2-methyl-anthrachinon $C_{17}H_{14}O_4 = C_0H_4(CO)_2C_0H(CH_3)(O \cdot CH_3)_2$. B. Durch Einw. von Dimethylsulfat auf 3.4-Dioxy-2-methyl-anthrachinon in 10 % iger Natronlauge (MILLER, Perkin, Soc. 127, 2687). Krystalle (aus Benzol). F: 169—171°.
- 8. 4.5-Dioxy-2-methyl-anthrachinon, 3-Methyl-chrysazin, Chrysophanol, Chrysophansäure C₁₅H₁₀O₄, Formel IV (H 470; E I 725). V. In der Wurzel von Rheum Emodi Wall. (Himalaya-Rhabarber) (Holmström, Schweiz. Apoth.-Zig. 59, 187; C. 1921 III, 43) und von Rumex crispus L. var. japonicus Mak. (Murayama, Itagaki, J. pharm. Soc. Japan 1921, Nr. 70; C. 1921 III, 486). In der Droge Chrysarobin (Edeb, Hauser, Ar. 1925, 325, 339, 340). B. Beim Diazotieren von 5-Amino-4-oxy-2-methyl-anthrachinon in konz. Schwefelsäure und Erwärmen der Reaktions-Lösung auf 120° (Eder, Widmer, Helv. 6, 424; E., D.R.P. 397316; C. 1924 II, 1024; Frdl. 14, 1446). Beim Erwärmen von 6.2'-Dioxy-4'-methylbenzophenon-carbonsäure-(2) mit rauchender Schwefelsäure und Borsäure auf dem Wasserbad (E., W., Helv. 5, 17). Pharmakologische Wertbestimmung: Fühner, Ar. Pth. 105, 254; C. 1925 I, 2587. Löst sich in Ammoniak mit kirschroter Farbe, die nach 24 Stdn. in Violettrot und schließlich in Blau übergeht (Holmström). Die alkoh. Lösung gibt mit Eisenchlorid eine dunkelrotbraune Färbung (Ho.).
- 9. 4.8-Dioxy-2-methyl-anthrachinon C₁₅H₁₀O₄, Formel V. B. Beim Diazotieren von 8-Amino-4-oxy-2-methyl-anthrachinon in konz. Schwefelsäure und Erwärmen der Reaktions-Lösung auf 120° (EDER, WIDMER, Helv. 6, 424). Beim Erhitzen von 3.2'-Dioxy-4'-methyl-benzophenon-carbonsäure-(2) mit konz. Schwefelsäure auf 160—170° (E., W., Helv. 5, 16). Gelbe Blättchen (aus verd. Alkohol). F: 190—191° (E., W., Helv. 5, 16). Leicht löslich in Benzol, Alkohol und Eisessig, sehr schwer in kaltem Wasser. Löst sich in konz. Schwefelsäure mit roter Farbe. Unlöslich in kalter, löslich in warmer Sodalösung mit roter Farbe. Löslich in kalter Natronlauge.
- 10. 5.6-Dioxy-2-methyl-anthrachinon, 6-Methyl-alizarin C₁₅H₁₈O₄, Formel VI. B. Beim Erhitzen von 5-Oxy-6-methoxy-2-methyl-anthrachinon mit Aluminiumchlorid auf 220° (Mrtter, Biswas, J. indian chem. Soc. 5, 777; C. 1929 I, 1692). Gelbe Krystalle (aus Eisessig). F: 220°.

- 5-0xy-6-methoxy-2-methyl-anthrachinon $C_{16}H_{12}O_4 = CH_2 \cdot C_6H_4(CO)_2C_6H_2(OH) \cdot O \cdot CH_3$. B. Beim Erwärmen von 6-0xy-5-methoxy-4'-methyl-benzophenon-carbonsäure-(2) mit Borsäure und rauchender Schwefelsäure auf dem Wasserbad (MITTER, BISWAS, J. indian chem. Soc. 5, 777; C. 1929 I, 1692). Orangegelbe Krystalle (aus Eisessig). F: 200°.
- 6-Methoxy-5-acetoxy-2-methyl-anthrachinon $C_{18}H_{14}O_5=CH_2\cdot C_9H_4(CO)_2C_9H_2(O\cdot CH_2)$. O·CO·CH₂. Krystalle (aus Alkohol). F: 170° (MITTER, BISWAS, J. indian chem. Soc. 5, 777; C. 1929 I, 1692).
- 5.6 Diacetoxy 2 methyl anthrachinon $C_{19}H_{14}O_6 = CH_2 \cdot C_6H_4(CO)_9C_6H_2(O \cdot CO \cdot CH_9)_2$. Krystalle (aus Alkohol). F: 190° (MITTER, BISWAS, J. indian chem. Soc. 5, 778; C. 1929 I, 1692).

- 11. 1.5.6 Trioxy 4 formyl phenanthren, 1.5.6 Trioxy phenanthren-aldehyd-(4) $C_{18}H_{10}O_4$, Formel VII (R = H).
- 1.5.6-Trimethoxy-phenanthren-aldehyd-(4) C₁₈H₁₆O₄, Formel VII (R = CH₃). B. Neben 1.5.6-Trimethoxy-phenanthren-carbonsäure-(4) bei der Oxydation von 1.5.6-Trimethoxy-4-vinyl-phenanthren mit Permanganat in Aceton (Gulland, Virden, Soc. 1928, 926). Tafeln (aus Benzol + Ligroin). F: 151°. Leicht löslich in Benzol.
- Oxim $C_{18}H_{17}O_4N=(CH_3\cdot O)_3C_{14}H_6\cdot CH:N\cdot OH$. Mattgelbe Blättchen mit $^1/_2$ C_6H_6 (aus Benzol). Sintert bei $^1/_2$ $^$

Semicarbazon $C_{19}H_{19}O_4N_3=(CH_3\cdot O)_3C_{14}H_6\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Krystalle (aus Nitrobenzol). F: 243—246° (Zers.) (GULLAND, VIRDEN, Soc. 1928, 927). Schwer löslich in den gebräuchlichen Lösungsmitteln.

3. Oxy-oxo-Verbindungen $C_{16}H_{12}O_4$.

1. α.β-Bis-[4-oxy-benzoyl]-äthylen C₁₆H₁₂O₄=HO·C₆H₄·CO·CH:CH·CO·C₆H₄·OH. α.β-Bis-[4-methoxy-benzoyl]-äthylen, α.β-Dianisoyl-äthylen C₁₈H₁₆O₄ = CH₂·O·C₆H₄·O·CH·CO·C₆H₄·O·CH₃. B. Bei der Umsetzung von Fumarsäuredichlorid mit Anisol und Aluminiumchlorid in Schwefelkohlenstoff (CONANT, LUTZ, Am. Soc. 45, 1306). — Zinnoberrote Krystalle (aus Aceton). — Die Lösung in Chloroform verblaßt im Sonnenlicht unter Bildung einer gelblichen, bei 165,5° schmelzenden Substanz.

- 2. 5.6-Dioxy-2-[3-oxy-benzyliden]-hydrindon-(1) $C_{10}H_{12}O_4$, Formel IX (R=H).
- 5.6-Dimethoxy-2-[3-methoxy-benzyliden]-hydrindon-(1) $C_{10}H_{10}O_4$, Formel IX (R = CH₃). B. Aus 5.6-Dimethoxy-hydrindon-(1) und 3-Methoxy-benzaldehyd in warmer alkoholischer Kalilauge (Perkin, Rây, Robinson, Soc. 1926, 950). Blaßgelbe Nadeln (aus Essigester). F: 164—165°. Schwer löslich.
 - 3. "Dioxy-diacetyl-indacen" C₁₆H₁₂O₄, Formel X, s. E II 7, 859.

4. Oxy-oxo-Verbindungen C₁₇H₁₄O₄.

- 1. $1 [2 Oxy phenyl] 5 [3.4 dioxy phenyl] pentadien (1.4) on (3), 2.3'.4' Trioxy dibenzylidenaceton <math>C_{17}H_{14}O_4 = HO \cdot C_6H_4 \cdot CH \cdot CH \cdot CO \cdot CH : CH \cdot C_6H_8(OH)_3$.
- 2.4'-Dioxy-3'-methoxy-dibenzylidenaceton, Salicyliden-vanillyliden-aceton $C_{18}H_{16}O_4=HO\cdot C_8H_4\cdot CH\cdot CO\cdot CH\cdot CH\cdot C_8H_4(OH)\cdot O\cdot CH_3$. B. Durch längere Einw. von Salicylaldehyd auf Vanillylidenaceton in wäßrig-alkoholischer Natronlauge (Glaser, Tramer, J. pr. [2] 116,

- 334). Grünlichgelbe Krystalle (aus Alkohol). F: 155° (Zers.). Leicht löslich in Alkoholen, Aceton und Pyridin, schwerer in Äther, Benzol und Chloroform, sehr schwer in Xylol und Wasser. Leicht löslich in Alkalien.
- 2 Oxy 3'.4' dimethoxy dibenzylidenaceton, 2 Oxy 3'.4' dimethoxy distyrylketon, Salicyliden-veratryliden-aceton $C_{10}H_{18}O_4 = HO \cdot C_0H_4 \cdot CH \cdot CH \cdot CO \cdot CH \cdot CH \cdot C_0H_3(O \cdot CH_3)_2$. B. Aus Salicylidenaceton und Veratrumaldehyd in wäßrig-alkoholischer Natronlauge (Buck, Heilbron, Soc. 121, 1099). Grünliche Krystalle (aus Benzol). F: 140—141°; die Schmelze ist dunkelgrün. Mäßig löslich in Benzol,
- 3'-Methoxy-2.4'-diacetoxy-dibenzylidenaceton $C_{22}H_{20}O_6=CH_3\cdot CO\cdot O\cdot C_6H_4\cdot CH\cdot CH\cdot CO\cdot CH: CH\cdot C_6H_3(O\cdot CH_3)\cdot O\cdot CO\cdot CH_3$. B. Beim Erwärmen von Salicyliden-vanillyliden-aceton mit Acetanhydrid und Natriumacetat auf dem Wasserbad (Glaser, Tramer, J. pr. [2] 116, 335). Nadeln (aus Alkohol). F: 149°. Löslich in Alkohol, Aceton, Benzol, Pyridin, Äther, Chloroform und Xylol.
- 2. 1-Acetyl-4-[3.4-dioxy-cinnamoyl]-benzol, 4-[3.4-Dioxy-cinnamoyl]-acetophenon $C_{17}H_{14}O_4=CH_3\cdot CO\cdot C_6H_4\cdot CO\cdot CH: CH\cdot C_6H_3(OH)_2$.
- 1-Acetyl-4-[4-oxy-3-methoxy-cinnamoyl]-benzol, 4-Feruloyl-acetophenon $C_{18}H_{16}O_4=CH_3\cdot CO\cdot C_6H_4\cdot CO\cdot CH: CH\cdot C_6H_3(OH)\cdot O\cdot CH_3$. Das Mol.-Gew. ist in schmelzendem Campher bestimmt. B. Aus 1.4-Diacetyl-benzol und Vanillin in Eisessig in Gegenwart von wenig konzentrierter Schwefelsäure (Finger, Schott, J. pr. [2] 115, 284). Gelbe Krystalle (aus Alkohol). F: 158°. Leicht löslich in Eisessig, Aceton, Alkohol und Essigester. Löst sich in verd. Alkalien, Alkalicarbonat-Lösungen und Ammoniak mit orangegelber, in konz. Schwefelsäure mit rotvioletter Farbe. Die Farbe der Lösungen schlägt bei p_H 8 nach Orangegelb um.
- 4-[Acetyl-feruloyl]-acetophenon $C_{20}H_{18}O_5=CH_3\cdot CO\cdot C_8H_4\cdot CO\cdot CH:CH\cdot C_8H_3(O\cdot CH_3)\cdot O\cdot CO\cdot CH_3$. Gelbliche Krystalle (aus Petroläther + wenig Acetanhydrid). F: 161° (FINGER, SCHOTT, J. pr. [2] 115, 285). Leicht löslich in Alkohol, Benzol und Eisessig. Löst sich in kalter konzentrierter Schwefelsäure mit rotvioletter Farbe, in siedenden verdünnten Alkalien unter Verseifung mit roter Farbe.
- 3. $3-Oxy-2-[\beta-oxy-propyl]-anthrachinon-(1.4)$ $C_{17}H_{14}O_4$, s. nebenstehende Formel. B. Beim Erwärmen von 2-Methyl-[naphtho-2'.3':6.7-cumaranchinon-(4.5)] mit verd. Alkalien (FIESER, Am. Soc. 50, 473). Gelbe Nadeln (aus Benzol). F: 211—212°. Mäßig löslich in Benzol.

[AMMERLAHN]

k) Oxy-oxo-Verbindungen $C_n H_{2n-22} O_4$.

1. Oxy-oxo-Verbindungen C₁₆H₁₀O₄.

- 1. 1.4-Bis-[4-oxy-phenyl]-butin-(2)-dion-(1.4), Bis-[4-oxy-benzoyl]-acetylen $C_{1e}H_{10}O_4=HO\cdot C_eH_4\cdot CO\cdot C:C\cdot CO\cdot C_eH_4\cdot OH$.
- 1.4-Bis-[4-methoxy-phenyl]-butin-(2)-dion-(1.4), Dianisoylacetylen $C_{18}H_{14}O_4=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot C:C\cdot CO\cdot C_6H_4\cdot O\cdot CH_3$ (E I 727). Beim Einleiten von Ammoniak in eine Lösung von Dianisoylacetylen in Benzol erhält man α -Amino- α . β -dianisoyl-āthylen (S. 565) (Dupont, Bl. [4] 41, 1167). Reagiert analog mit Anilin in Benzol unter Bildung von α -Anilino- α . β -dianisoyl-āthylen (Syst. Nr. 1604), mit Piperidin in Benzol unter Bildung von α -Piperidino- α . β -dianisoyl-āthylen.
- 2. 2-[2.4-Dioxy-phenyl]-naphthochinon-(1.4), Resorcyl-α-naphthochinon C₁₆H₁₀O₄, s. nebenstehende Formel. B. Durch Oxydation von 1.4-Dioxy-2-[2.4-dioxy-phenyl]-naphthalin mit überschüssigem Eisenchlorid in Eisessig (Pummerer, Huppmann, B. 60, 1449). Braune Nadeln (aus Benzol). F: 218°. Sehr leicht löslich in Aceton, leicht in Alkohol, Äther und Benzol, schwer in Schwefelkohlenstoff, sehr schwer in Ligroin und Wasser. Nimmt beim Behandeln mit Acetanhydrid und Pyridin 2 Acetylgruppen auf.
- 3. 2 [3.4 Dioxy benzyliden] indandion (1.3) $C_{16}H_{10}O_4 = C_6H_4 < CO > C: CH \cdot C_6H_3(OH)_2$. Lichtabsorption des freien 2-[3.4-Dioxy-benzyliden]-indandions und des Kaliumsalzes: Radulescu, Ionescu, Bulet. Cluj 2, 183; C. 1924 II, 2845.

2-[4-Oxy-3-methoxy-benzyliden]-indandion-(1.3), 2-Vaniliyliden-indandion-(1.3) $C_{17}H_{12}O_4 = C_6H_4 < \begin{array}{c} CO \\ CO \end{array}$ C: $CH \cdot C_6H_3(OH) \cdot O \cdot CH_3$ (H 480). Lichtabsorption des freien Vanillylidenindandions und des Kaliumsalzes: RADULESCU, IONESCU, Bulet. Cluj 2, 183; C. 1924 II, 2845.

2. Oxy-oxo-Verbindungen $C_{19}H_{16}O_4$.

1. 7-Phenyl-1-[2.4-dioxy-phenyl]-heptadien-(1.6)-dion-(3.5), Cinnamoyl-[2.4-dioxy-cinnamoyl]-methan, 2.4-Dioxy-dicinnamoylmethan C₁₈H₁₆O₄ = C₆H₅·CH·CH·CO·CH₂·CO·CH·CH·C₆H₃(OH)₂. B. Durch Hydrolyse von 2.4-Bis-carbomethoxyoxy-dicinnamoylmethan mit kalter 5% iger Kalilauge (LAMPE, Mitarb., Roczniki Chem. 9, 455; C. 1929 II, 1916). — Rote, etwas Krystallbenzol enthaltende Nadeln (aus Benzol). F:158—161°. Löslich in Alkohol mit goldgelber Farbe und grünlicher Fluorescenz. — Färbt Baumwolle orangegelb.

Cinnamoyl- [2.4-bis-carbomethoxyoxy-cinnamoyl] - methan, 2.4-Bis-carbomethoxyoxy-dicinnamoylmethan $C_{23}H_{20}O_8 = C_6H_5$. CH: $CH\cdot CO\cdot CH_2\cdot CO\cdot CH: CH\cdot C_6H_3(O\cdot CO_2\cdot CH_3)_2$. B. Durch Einw. von 2.4-Bis-carbomethoxyoxy-cinnamoylchlorid auf das Natriumsalz des Cinnamoylacetons in Ather und Kochen des Reaktionsprodukts mit verd. Essigsäure (Lampe, Mitarb., Roczniki Chem. 9, 455; C. 1929 II, 1916). — Orangegelbe Blättchen oder Nadeln (aus Alkohol). F: 132—134°.

2. 1.7-Bis-[3-oxy-phenyl]-heptadien-(1.6)-dion-(3.5), Bis-[3-oxy-cinn-amoyl]-methan, 3.3'-Dioxy-dicinnamoylmethan C₁₅H₁₆O₄ = [HO·C₆H₄·CH·CH·CO]₂CH₂. B. Durch Hydrolyse von 3.3'-Bis-carbomethoxyoxy-dicinnamoylmethan mit Natronlauge (Lampe, Mitarb., Roczniki Chem. 9, 452; C. 1929 II, 1916). — Gelbe Prismen (aus verd. Alkohol). F: 193—195° (Zers.). Leicht lößlich in Alkohol, Aceton und Chloroform, schwer in Benzol und Toluol, unlöslich in Ligroin. Lößlich in konz. Schwefelsäure mit orangeroter Farbe. Gibt mit Eisenchlorid in Alkohol eine dunkelbraune Färbung. — Färbt Baumwolle gelb.

Bis-[3-carbomethoxyoxy-cinnamoyl]-methan, 3.3'-Bis-carbomethoxyoxy-dicinnamoyl-methan $C_{22}H_{20}O_8 = [CH_2 \cdot O_2C \cdot O \cdot C_6H_4 \cdot CH \cdot CO]_2CH_2$. B. Durch Einw. von 3-Carbomethoxyoxy-cinnamoylchlorid auf das Natriumsalz des 3-Carbomethoxyoxy-cinnamoylacetons in Chloroform oder Toluol bei Zimmertemperatur und Kochen des Reaktionsproduktes mit Essigsäure (LAMPE, Mitarb., Roczniki Chem. 9, 451; C. 1929 II, 1916). — Gelbe Nadeln (aus Ligroin). F: 120—122°. Leicht löslich in Aeton, Chloroform, Benzol und Toluol, schwerer in Methanol, Alkohol und Äther, unlöslich in Petroläther. Löst sich in konz. Schwefelsäure mit orangeroter Farbe und grünlicher Fluorescenz. Gibt mit Eisenchlorid in Alkohol eine dunkelbraune Färbung.

3. Oxy-oxo-Verbindungen $C_{40}H_{58}O_4$.

 $\begin{array}{lll} \textbf{Oxy-semi-}\beta\text{-}\textbf{carotinon} & C_{40}H_{58}O_4 = H_2C < \underbrace{CH_3} & C(CH_3)_8 > C(OH) \cdot CH \cdot CH \cdot C(CH_3) : \\ CH \cdot CH \cdot CH \cdot C(CH_3) \cdot CH \cdot CH \cdot CH \cdot CH \cdot C(CH_3) \cdot CH \cdot CH \cdot CH \cdot CC(CH_3) \cdot CH \cdot CH \cdot CO \cdot C(CH_3)_2 \cdot CH_2 \cdot CH_3 \cdot CH_2 \cdot CO \cdot CH_3 & s. & H & 30, & 89. \end{array}$

1) Oxy-oxo-Verbindungen $C_nH_{2n-24}O_4$.

1. Oxy-oxo-Verbindungen $C_{17}H_{10}O_4$.

1. 2.3.4-Trioxy-benzanthron, Isobenzanthragallol C₁₇H₁₀O₄, Formel I auf S. 514 (R = H). B. Aus 1.2.3-Trioxy-anthron-(9) bei ¹/₂-stdg. Erhitzen mit Glycerin und Kaliumdisulfat auf 190—200° oder bei ¹/₂-stdg. Kochen mit Acrolein in Eisessig unter Einleiten von Chlorwasserstoff (Cross, Perkin, Soc. 1927, 1302, 1305). — Gelbe Nadeln (aus Nitrobenzol). F: 319—321° (Zers.). Schwer löslich in Alkohol, Äther, Benzol und Eisessig. Färbt sich bei Behandlung mit Natronlauge rot. — Wird durch Methyljodid oder Dimethylsulfat nicht methyliert; gibt mit Diazomethan in Äther Isobenzanthragalloldimethyläther. Gibt bei langer Einw. von Acetanhydrid in Gegenwart von Pyridin Isobenzanthragallol-diacetat. — Färbt mit Aluminium-, Zinn-, Chrom- oder Eisensalzen gebeizte Wolle hellbraun, gelb, braun bzw. olive.

Dimethyläther, 4-Oxy-2.3-dimethoxy-benzanthron C₁₅H₁₄O₄, Formel I auf S.514 (R = CH₃).

B. Durch Einw. von Diazomethan auf 2.3.4-Trioxy-benzanthron in Äther (Cross, Perkin, Soc. 1927, 1303). — Gelbe Nadeln (aus Benzol). F: 152—153°. Schwer löslich in absol. Alkohol. — Läßt sich nicht weiter methylieren oder acetylieren. — Kaliumsalz. Gelbliche Nadeln. Färbt sich bei 130° dunkel, schmilzt bei 235—240°.

Diacetat, 4-0xy-2.3-diacetoxy-benzanthron $C_{11}H_{14}O_{6}$, Formel I (R = $CO \cdot CH_{3}$). B. Durch Einw. von Acetanhydrid auf 2.3.4-Trioxy-benzanthron in Pyridin (Cross, Perkin, Soc. 1927, 1299, 1303). — Gelbe Nadeln (aus Eisessig). F: 232—233°.

I.
$$O \cdot R$$
 II. $O \cdot R$ III. $O \cdot R$ III. $O \cdot R$ III. $O \cdot R$ III. $O \cdot R$

2. 2.5.6 - Trioxy - benzanthron, Isobenzflavopurpurin $C_{17}H_{10}O_4$, Formel II (R = H). B. Durch Einleiten von Chlorwasserstoff in eine Lösung von 1-Oxy-2.6-diacetoxy-anthron-(9) und Acrolein in siedendem Eisessig (Cross, Perkin, Soc. 1927, 1300, 1305). — Hellbraune Nadeln mit 1 $CH_3 \cdot CO_3H$ (aus Eisessig); geht bei 160° in essigsäurefreie, stumpfgelbe Nadeln vom Schmelzpunkt 293—295° (Zers.) über. Schwer löslich in Eisessig; löslich in Alkaliem mit gelber Farbe. — Gibt mit Acetanhydrid und Pyridin bei kurzem Kochen Isobenzflavopurpurindiacetat, bei langem Kochen ein bei 217—221° schmelzendes Gemisch aus Isobenzflavopurpurindiacetat und -triacetat (?). — Färbt mit Metallsalzen gebeizte Wolle gelb bis braun.

Dimethyläther, 5-Oxy-2.6-dimethoxy-benzanthron $C_{19}H_{14}O_4$, Formel II ($R=CH_3$). B. Beim Kochen von 5-Oxy-2.6-diacetoxy-benzanthron mit Methyljodid und alkoh. Kalilauge (Cross, Perkin, Soc. 1927, 1306). — Hellbraune Nadeln (aus Alkohol + Eisessig). F: 199—200°. — Kaliumsalz. Gelb, krystallin. Schmilzt nicht bis 300°.

Diacetat, 5-0xy-2.6-diacetoxy-benzanthron $C_{21}H_{14}O_6$, Formel II ($R=CH_3\cdot CO$). B. Bei 5-stdg. Kochen von 2.5.6-Trioxy-benzanthron mit Acetanhydrid und Pyridin (Cross, Perkin, Soc. 1927, 1305). — Gelbe Nadeln (aus Eisessig). F: 236°. — Liefert beim Kochen mit Methyljodid und alkoh. Kalilauge 5-0xy-2.6-dimethoxy-benzanthron.

3. 2.7.8 - Trioxy - benzanthron, Benzanthrapurpurin $C_{17}H_{10}O_4$, Formel III, B. Aus 3.4.6-Trioxy-anthron-(9) durch 1-stdg. Erhitzen mit Glycerin und ca. 77% iger Schwefelsäure auf 125—130° oder durch 1/2-stdg. Kochen mit Acrolein und Eisessig unter Einleiten von Chlorwasserstoff (Cross, Perkin, Soc. 1927, 1301, 1305). — Orangefarbene mikroskopische Nadeln (aus Alkohol). Schmilzt nicht bis 340°. Löst sich in Natronlauge mit violetter Farbe. — Färbt mit Aluminium-, Zinn-, Chrom- und Eisensalzen gebeizte Wolle hellbraun, orange, kastanienbraun bzw. dunkelbraun. — Sulfat $C_{17}H_{10}O_4 + H_2SO_4$ (bei 100°). Rote mikroskopische Nadeln.

Trimethyläther, 2.7.8-Trimethoxy-benzanthron $C_{20}H_{16}O_4 = (CH_3 \cdot O)_3C_{17}H_7O$. B. Durch Einw. von Dimethylsulfat auf 2.7.8-Trioxy-benzanthron oder 2.7.8-Triacetoxy-benzanthron in alkal. Lösung (Cross, Perkin, Soc. 1927, 1302). Durch Kochen von 2.7.8-Triacetoxy-benzanthron mit Methyljodid und methylalkoholischer Kalilauge (C., P.). — Goldgelbe Nadeln (aus Benzol). F: 185—185,5°.

Triacetat, 2.7.8 - Triacetoxy - benzanthron $C_{23}H_{16}O_7 = (CH_3 \cdot CO \cdot O)_3C_{17}H_7O$. B. Aus 2.7.8-Trioxy-benzanthron und Acetanhydrid in Pyridin (Cross, Perkin, Soc. 1927, 1301). – Gelbe Tafeln (aus Eisessig). F: 245—246°.

2. Oxy-oxo-Verbindungen $C_{18}H_{12}O_4$.

1. 3.6-Dioxy-2.5-diphenyl-benzochinon-(1.4), 3'.6'-Dioxy-terphenylchinon-(2'.5'), Polyporsäure C₁₈H₁₂O₄, s. nebenstehende Formel (H 480). Zur Zusammensetzung und Konstitution der Polyporsäure vgl. Kögl., A. 447, 80, 81. — V. Polyporsäure wurde von Stahlschmidt C₆H₅. OH (A. 187 [1877], 177; 195 [1879], 365) aus einem als Polyporus purpuraseens bezeichneten Pilz durch Extraktion mit Ammoniak und Fällung mit Salzsäure isoliert; Klingemann (A. 275 [1893], 90) konnte diesen Pilz nicht mehr auffinden; nach Bamberger, Landsiedl (M. 80 [1909], 673) hat wahrscheinlich Polyporus rutilans vorgelegen. Kögl (A. 447, 82) isolierte Polyporsäure aus P. nidulans. — B. Entsteht bei der Einw. von Oxalester auf Phenylessigester in Gegenwart von Natrium (H 480) nur in sehr geringer Menge; die Ausbeute läßt sich durch Einleiten von Sauerstoff in das Reaktionsgemisch bis auf 1,1% der Theorie erhöhen (K., A. 447, 81); über den Mechanismus der Bildung aus Oxalester und Phenylessigester vgl. K., A. 447, 81, 82. — Rhombisch; pleochroitisch (hellgelb-bordeauxrot) (Steinmetz, A. 447, 85). Schmilzt und sublimiert bei 305° (Shildner, Adams, Am. Soc. 58 [1931], 2377). Unlöslich in Wasser, Äther, Benzol, Schwefelkohlenstoff und Eisessig, sehr schwer löslich in Chloroform, Isoamylalkohol und Alkohol (St., A. 187, 183, 184). — Gibt bei der Oxydation mit Chromtrioxyd in siedendem Eisessig Benzoesäure (Kögl., A. 447, 84). Bei der Destillation mit Zinkstaub entsteht Terphenyl (K., A. 447, 84). Gibt bei der Einw.

- zimtsaure vom Schmeizpunkt 100,5° und 158°, α-Phenyl-α'-benzyl-bernsteinsäure und Oxalsäure (Kögl, Becker, A. 465, 237; vgl. Stahlschmidt, A. 195, 365). Salze: Stahlschmidt, A. 187 [1877], 185—193. (NH₄)₂C₁₈H₁₀O₄+2H₂O. Dunkelviolette Krystalle. Zerfällt bei Zimmertemperatur allmählich, bei 100° rasch in Polyporsäure und Ammoniak. Na₂C₁₈H₁₀O₄+2H₂O. Wird erst bei 180° wasserfrei. Violette Nadeln. Leicht löslich in Wasser. K₂C₁₈H₁₀O₄+2H₂O. Monokline, dunkelrotviolette Krystalle. Wird bei 120° wasserfrei. Ag₂C₁₈H₁₀O₄. Gleicht im Aussehen der Polyporsäure. Unlöslich in Wasser. MgC₁₈H₁₀O₄+3H₂O. Hellviolette Nadeln. CaC₁₈H₁₀O₄+3H₂O. Hellrote Krystalle. Gibt bei 120° 2 H₂O, den Rest bei 180° ab. Sehr schwer löslich in kaltem und heißem Wasser. SrC₁₈H₁₀O₄+4H₂O. Hellrote Nadeln. Gibt bei 120° 2H₂O, den Rest bei 180° ab; wird auch bei längerem Aufbewahren über Schwefelsäure wasserfrei. Fast unlöslich in Wasser. bei längerem Aufbewahren über Schwefelsäure wasserfrei. Fast unlöslich in Wasser. — $BaC_{18}H_{10}O_4+2H_2O$. Dunkelviolette Oktaeder. Wird erst bei 180° wasserfrei. Fast unlöslich in Wasser. — $BaC_{18}H_{10}O_4+2H_2O$. Hellrote Nadeln. Gibt bei 120° 2 H_2O , den Rest bei 150° bis 160° ab. Schwer löslich in Wasser. — Weitere Salze s. bei Sr., A. 187, 192—193.
- 3.6-Dimethoxy-2.5-diphenyl-benzochinon-(1.4), Polyporsäuredimethyläther $C_{20}H_{16}O_{4}=(CH_{3}\cdot O)_{2}(C_{6}H_{5})_{2}C_{6}O_{2}$. B. Aus Polyporsäure durch Behandlung des Silbersalzes mit Methyljodid (Stahlschmidt, A. 187 [1877], 193) oder durch Einw. von Diazomethan in Chloroform (Kögl, A. 447, 83). Beim Erhitzen von 2.5-Diphenyl-benzochinon-(1.4) mit Methanol und wasserfreiem Zinkchlorid im Rohr auf 160° (K., A. 465, 253). — Orangegelbes Krystallpulver (aus Alkohol + Benzin), orangerote Nadeln (aus Alkohol). F: 1920 (unkorr.) (K.), 1870 (unkorr.) (St.). Löslich in siedendem Alkohol (St.).
- 3.6-Diäthoxy-2.5-diphenyl-benzochinon-(1.4), Polyporsäurediäthyläther $C_{22}H_{20}O_4=(C_2H_5\cdot O)_2(C_6H_5)_2C_6O_3$. B. Aus dem Silbersalz der Polyporsäure und Athyljodid bei 100° (Stahlschmidt, A. 187 [1877], 193). Gelbe Nadeln oder orangerote Prismen (aus Alkohol). F: 134° (unkorr.); zersetzt sich bei höherer Temperatur. Löslich in Alkohol, Äther und Eisessig. Färbt sich am Sonnenlicht hellbraun.
- 3.6-Diacetoxy-2.5-diphenyl-benzochinon-(1.4), Polyporsäure-diacetat, Diacetylpolyporsäure $C_{22}H_{16}O_6=(CH_3\cdot CO\cdot O)_2(C_6H_5)_2C_6O_2$. B. Aus Polyporsäure beim Erhitzen mit Acetanhydrid auf 150—170° im Rohr (Stahlschmidt, A. 187 [1877], 195) oder beim Kochen mit Acetanhydrid und etwas konz. Schwefelsäure (Kögl., A. 447, 83). Gelbe Nadeln oder Blättchen (aus Eisessig). F: 209° (unkorr.) (K.), 205° (unkorr.) (St.). Unlöslich in Wasser, schwer löslich in Akhohol, Äther und Eisessig, leicht in einem Gemisch aus 2 Tln. Eisessig und 1 Tl. Alkohol (ST.).
- 3.6-Dioxy-2.5-bis-[4(?)-nitro-phenyi]-benzochinon-(1.4), Dinitropolyporsäure $C_{18}H_{10}O_8N_9$ = $(HO)_2(O_2N\cdot C_6H_4)_2C_6O_2$. B. Beim Erwärmen von Polyporsäure mit konz. Salpetersäure (Stahlschmidt, A. 195 [1879], 369). Krystalle (aus Wasser). F: 230°. Sublimierbar.
- 2.5 Bis [4-oxy phenyl] benzochinon (1.4), 4.4" - Dioxy - terphenylchinon - (2'.5'), p.p' - Dioxy-2.5-diphenyl-chinon C₁₈H₁₂O₄, s. nebenstehende Formel. B. Durch Kondensation von Chinon mit Phenol bei Gegenwart Ho OH von Aluminiumchlorid in Schwefelkohlenstoff bei 0° und Kochen

des Reaktionsproduktes mit Eisenchlorid in Eisessig (PUMMERER, PRELL, B. 55, 3114; Pu., D.R.P. 459739; C. 1928 I; 299; Frdl. 16, 419). — Braunrote Nadeln (aus Aceton). Sintert von 287° an unter Schwarzfärbung, schmilzt oberhalb 327°. In der Kälte sehr schwer löslich oder unlöslich in den meisten Lösungsmitteln außer Aceton, fast unlöslich in siedendem Xylol. Scheidet sich aus der Lösung in heißem Nitrobenzol beim Abkühlen nicht wieder aus. Löslich in konz. Schwefelsäure mit grüner, in verd. Natronlauge mit violetter, beim Aufbewahren in Braun übergehender Farbe. — Liefert bei der Reduktion mit Zinn(II)-chlorid und siedender alkoholischer Salzsäure 2.5-Bis-[4-oxy-phenyl]-hydrochinon.

2.5-Bis - [4-methoxy-phenyi] - benzochinon - (1.4), Di-p-anisylchinon $C_{20}H_{16}O_4 = CH_3 \cdot O \cdot C_6H_4 \cdot C_6H_2(:0)_3 \cdot C_6H_4 \cdot O \cdot CH_3$. B. Durch Kondensation von Chinon mit Anisol in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff bei 0° und Kochen des Reaktionsproduktes mit Eisenchlorid in Eisessig (PUMMERER, PRELL, B. 55, 3115; Pu., D.R.P. 459739; C. 1928 I, 2991; Frdl. 16, 419). — Orangerote Nadeln (aus Essigester). F: 231° (unkorr.). Leicht löslich in heißem Essigester und Eisessig, ziemlich leicht in heißem Benzol, schwer in warmem Ather und Alkohol. Löslich in Dimethylanilin mit braungelber, in konz. Schwefelsäure mit grüner Farbe. — Löst sich in warmer alkalischer Na₂S₂O₄-Lösung und wird durch Luft in gelben Flocken wieder ausgeschieden. Gibt bei der Reduktion mit Zinn(II)-chlorid und siedender alkoholischer Salzsäure 2.5-Bis-[4-methoxy-phenyl]-hydrochinon.

2.5-Bis-[4-āthoxy-phenyl]-benzochinon-(1.4), 2.5-Di-p-phenetyl-chinon $C_{22}H_{20}O_4$ = $C_2H_5 \cdot O \cdot C_6H_4 \cdot C_6H_4 \cdot O \cdot C_2H_5 \cdot O \cdot C_2H_5 \cdot B$. Analog der vorangehenden Verbindung

(PUMMERER, FIEDLER, B. 60, 1441). — Existiert in einer gelben und einer roten Form, die sich außer durch die Farbe auch durch die chemische Reaktionsfähigkeit unterscheiden. Bei kryoskopischen Bestimmungen in Phenol, p-Toluidin und Naphthalin zeigen beide Formen das einfache Mol.-Gew.

- a) Rote Form. Wird bei langsamer Krystallisation des Reaktionsproduktes aus Benzol, Aceton oder Essigester erhalten (PUMMERER, FIEDLER, B. 60, 1441). Rote, wahrscheinlich monokline Krystalle (Gross, FIEDLER). Färbt sich von 150° an gelb und schmilzt bei 186—187° (unkorr.). Ziemlich leicht löslich in Essigester, Aceton, Eisessig und Benzol, schwerer in Alkohol, unlöslich in Petroläther und Wasser. Geht bei der Vakuumsublimation, beim Verdünnen der Lösungen in Eisessig oder Schwefelsäure mit Wasser und bei der Oxydation der Hydrosulfitküpe mit Luft in die gelbe Form über. Die fein gepulverte rote Form reagiert mit Phenylhydrazin in verd. Essigsäure erst beim Erwärmen. Gibt mit Phenol die Verbindung der gelben Form mit 2 Mol Phenol.
- b) Gelbe Form. Wird neben der roten Form bei rascher Krystallisation aus Essigester, Benzol oder Aceton erhalten (Pummerer, Fiedler, B. 60, 1440). Bildung aus der roten Form s. bei dieser. Entsteht ferner beim Erhitzen der Verbindung mit Phenol (s. u.) auf 110° im Hochvakuum (P., F.). Gelbe Nadeln. Rhombisch (Gross, Fiedler). F: 186—187°. Zeigt dieselbe Löslichkeit wie die rote Form. Wird durch Phenylhydrazin in verd. Essigsäure bei gewöhnlicher Temperatur zu nicht näher beschriebenem 2.5-Bis-[4-āthoxy-phenyl]-hydrochinon reduziert; als Zwischenprodukt tritt ein grünschwarzes Chinhydron auf.

Verbindung der gelben Form mit Phenol C₂₂H₂₀O₄ + 2C₆H₆O. B. Aus gelbem oder rotem 2.5-Bis-[4-āthoxy-phenyl]-benzochinon-(1.4) und Phenol (PUMMERER, FIEDLER, B. 60, 1441). Rote Krystalle. Zerfällt im Hochvakuum bei 110° in gelbes 2.5-Bis-[4-āthoxy-phenyl]-benzochinon-(1.4) und Phenol. Wird durch Phenylhydrazin reduziert.

2.5-Bis-[4-acetoxy-phenyl]-benzochinon-(1.4) $C_{22}H_{16}O_6 = CH_3 \cdot CO \cdot O \cdot C_8H_4 \cdot C_6H_2(:O)_2 \cdot C_6H_4 \cdot O \cdot CO \cdot CH_2$. B. Beim Kochen von 2.5-Bis-[4-oxy-phenyl]-benzochinon-(1.4) mit Acetanhydrid (Pummerer, Prell, B. 55, 3114). — Prismen (aus Toluol). Sintert von 243° an, zersetzt sich bei 260°. In der Kälte schwer löslich in den meisten Lösungsmitteln.

3. Oxy-oxo-Verbindungen $C_{20}H_{16}O_4$.

1. 1.2 - Diphenyl - 1 - [2.4.5 - trioxy - phenyl] - äthanon, 2'.4'.5'-Trioxy-ms-phenyl-desoxybenzoin $C_{20}H_{16}O_4$, s. nebenstehende Formel.

 $HO \cdot \underbrace{\overset{\bullet}{\smile} \cdot CH(C_6H_5) \cdot CO \cdot C_6H_6}_{}$

Phenyl - [2.4.5 - trimethoxy - phenyl] - benzoyl - methan, HO
2'.4',5'-Trimethoxy - ms - phenyl - desoxybenzoln $C_{23}H_{22}O_4 = (CH_3 \cdot O)_3C_8H_8 \cdot CH(C_8H_8) \cdot CO \cdot C_8H_8$. B. Aus Oxyhydrochinontrimethyläther und Benzoin in Gegenwart von Chlorwasserstoff in Eisessig (Széki, Acta chem. Szeged 2, Nr. 1, S. 5; C. 1926 I, 1984). — Krystalle (aus Eisessig). F: 147,5°. Löslich in konz. Schwefelsäure mit roter Farbe.

- 2. 1-Phenyl-1.2-bis-[4-oxy-phenyl]-äthanolon, 4.4'-Dioxy-ms-phenyl-benzoin $C_{40}H_{14}O_4=HO\cdot C_0H_4\cdot C(C_0H_5)(OH)\cdot CO\cdot C_0H_4\cdot OH$.
- 4.4'-Diäthoxy-ms-phenyi-benzoin C₂₄H₂₄O₄ = C₂H₅· O·C₂H₄· C(C₂H₅) (OH)· CO·C₂H₄· O·C₂H₅. B. Aus 4.4'-Diāthoxy-benzil und Phenylmagnesiumbromid in Ather (Schönberg, Malohow, B. 55, 3751).— Nadeln (aus Benzin). F: 111°. Löslich in organischen Lösungsmitteln, unlöslich in Wasser. Löst sich in konz. Schwefelsäure mit roter Farbe.
 - 3. Tris-[4-oxy-phenyl]-acetaldehyd $C_{10}H_{16}O_4 = (HO \cdot C_6H_4)_3C \cdot CHO$.

Tris-[4-methoxy-phenyl]-acetaldehyd, Tri-p-anisylacetaldehyd $C_{23}H_{12}O_4 = (CH_2 \cdot O \cdot C_0H_4)_3C \cdot CHO$. B. Beim Kochen von Tris-[4-methoxy-phenyl]-āthylenglykol mit 20% iger Schwefelsäure (Orrow, Tiffeneau, C.r. 171, 475; Bl. [4] 29, 458). — Nadeln (aus Methanol). F: 125—126°. Sehr leicht löslich in Äther und Benzol, ziemlich schwer in kaltem Methanol. Löst sich in konz. Schwefelsäure mit rotvioletter Farbe. — Reduziert Fehlingsche Lösung nicht, ammoniakalische Silbernitrat-Lösung erst beim Kochen. Gibt beim Kochen mit alkoh. Kalilauge 4.4'.4"-Trimethoxy-triphenylmethan und Ameisensäure.

Oxim $C_{22}H_{22}O_4N=(CH_2\cdot O\cdot C_6H_4)_2C\cdot CH:N\cdot OH.$ Nadeln (aus Alkohol). F: 166—167° (Orechow, Tiffeneau, *Bl.* [4] 29, 458).

Semicarbazon $C_{24}H_{25}O_4N_2=(CH_2\cdot O\cdot C_6H_4)_2C\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Krystalle (aus Alkohol). F: 175—176° (Orechow, Tiffeneau, Bl. [4] 29, 459).

4. 1-Methyl-2.3-bis-[4-oxy-benzyliden]-cyclopentandion-(4.5) $C_{10}H_{16}O_{4}=HO\cdot C_{4}H_{4}\cdot CH:C\to CH\cdot CH_{3}$ $HO\cdot C_{4}H_{4}\cdot CH:C:C:CO\cdot CO$

1-Methyl-2.3-dianisyliden-cyclopentandion-(4.5) bzw. 1-Methyl-2.3-dianisyliden-cyclopenten-(5)-ol-(5)-on-(4) $C_{22}H_{20}O_4= {CH_3\cdot O\cdot C_6H_4\cdot CH:C-CH\cdot CH_3 \atop CH_3\cdot O\cdot C_6H_4\cdot CH:C\cdot CO\cdot CO}$ bzw. $CH_2\cdot O\cdot C_6H_4\cdot CH:C-C\cdot CH_3 \atop CH_3\cdot O\cdot C_6H_4\cdot CH:C\cdot CO\cdot C\cdot OH \atop CH_3\cdot O\cdot C_6H_4\cdot CH:C\cdot CO\cdot CO cdot CO \atop CH_3\cdot O\cdot C_6H_4\cdot CH:C\cdot CO\cdot CO\cdot CO \atop CH_3\cdot O\cdot C_6H_4\cdot CH:C\cdot CO\cdot CO \atop CH_3\cdot O\cdot C_6H_4\cdot CH:C\cdot CO\cdot CO\cdot CO \atop CH_3\cdot O\cdot C_6H_$

4. Oxy-oxo-Verbindungen C22H20O4.

2-[2-Methoxy-phenyi]-4-[2-methoxy-styryi]-1-acetyl-cyclohexen-(4)-on-(6) $C_{24}H_{24}O_4 = CH_3 \cdot O \cdot C_4H_4 \cdot CH \cdot CH_2 \cdot CH_3 \cdot CH(C_6H_4 \cdot O \cdot CH_3) \cdot CH \cdot CO \cdot CH_3$. B. In geringer Menge durch Einw. von 1,25 Mol Acetylaceton auf 2.2'-Dimethoxy-dibenzylidenaceton in warmer wäßrigalkoholischer Natronlauge (Heilbron, Forster, Soc. 125, 2068). — Blaßgelbe Prismen (aus Benzol + Ligroin). F: 174°. — Gibt beim Erhitzen mit Kaliumhypojodit-Lösung und methylalkoholischer Kalilauge 1-[2-Methoxy-phenyl]-3-[2-methoxy-styryi]-cyclohexen-(3)-on-(5).

5. Oxy-oxo-Verbindungen CasH40O4.

4.4'.4''-Trioxy-5.5'.5''-trimethyl-2.2'.2''-tri-isopropyl-triphenylmethan-aldehyd-(3) $C_{32}H_{40}O_4$, s. nebenstehende Formel. B. In geringer Menge neben anderen Produkten beim Einleiten von Chlorwasserstoff in ein Gemisch aus Carvacrol, Zinkeyanid, Aluminium-chlorid und Benzol bei ca. 0° und späteren Erwärmen auf 50° (Bell, Henry, Soc. 1928, 2221).

Semicarbazon $C_{33}H_{43}O_4N_3 = [C_3H_7\cdot C_6H_2(CH_3)(OH)]_2CH\cdot C_6H(CH_3)(C_3H_7)(OH)\cdot CH\cdot N\cdot NH\cdot CO\cdot NH_2$. Gelbliche Prismen (aus Pyridin oder Eisessig). F: 275° (Bell, Henry, Soc. 1928, 2221).

m) Oxy-oxo-Verbindungen $C_n H_{2n-26} O_4$.

1. Oxy-oxo-Verbindungen $C_{18}H_{10}O_4$.

1. 1.4-Dioxy - 2.3 - benzo - anthrachinon, 11.12 - Dioxy - naphthacen - chinon- $(9.10)^1$) (9.10-Dioxy - naphthacenchinon), Isoāthindiphthalid $C_{18}H_{10}O_4$, Formel I (H 482). B. Durch Eintragen äquimolekularer Mengen 1.4-Dioxy-naphthalin und

Phthalsäureanhydrid in eine Schmelze aus 1 Tl. Natriumchlorid und 5 Tln. Alum'n'umchlorid bei 200° und folgendes Erhitzen auf 230—240° (RAUDNITZ, B. 62, 512). — Braunrote Krystalle mit grünem Oberflächenglanz (aus Chlorbenzol), dunkelrote Nadeln (durch Sublimation im Vakuum). F: 349° (unkorr.) (RAU.). Lichtabsorption von Lösungen in Kalilauge, Schwefelsäure und Schwefelsäure + Borsäure: RAU., B. 62, 510; in Tetrachlorkohlenstoff und in rauchender Schwefelsäure: RADULESCU, BARBULESCU, Ph. Ch. [B] 5, 181. — Basisches Aluminiumsalz. Schwarz, grünglänzend. Unlöslich in organischen Lösungsmitteln (RAU.).

- 11.12-Diacetoxy-naphthacenchinon-(9.10) (9.10-Diacetoxy-naphthacenchinon) $C_{22}H_{14}O_6 = (CH_3 \cdot CO \cdot O)_2C_{18}H_8O_2$ (H 483). Absorptionsspektrum in Tetrachlorkohlenstoff und in rauchender Schwefelsäure: RADULESCU, BARBULESCU, Ph. Ch. [B] 5, 182.
- 2. 3.4-Dioxy-1.2-benzo-anthrachinon C₁₈H₁₀O₄, Formel II. B. Durch Hydrolyse von 3.4-Diacetoxy-1.2-benzo-anthrachinon mit alkoh. Alkalilauge (FIESER, DIETZ, Am. Soc. 51, 3147—3148). Dunkelrotes bis schwarzes Pulver. Sehr schwer löslich in Wasser. Löslich in Acetanhydrid mit hellroter, in Gegenwart von Borsäure mit grüner Farbe, in warmem Pyridin mit orangeroter Farbe; die Lösungen in anderen organischen Lösungsmitteln sind rot oder rotviolett. Löst sich in konz. Schwefelsäure mit blauer, in Alkalien mit bläulichgrüner Farbe.
- 3.4-Diacetoxy-1.2-benzo-anthrachinon $C_{22}H_{14}O_6=(CH_8\cdot CO\cdot O)_2C_{18}H_8O_2$. B. Bei der Oxydation von 3.4-Diacetoxy-1.2-benzo-anthracen mit Chromtrioxyd in Eisessig bei 70° (FIESER, DIETZ, Am. Soc. 51, 3147). Gelbe Prismen (aus Benzol oder Eisessig). F: 198—199°.

¹⁾ Bezifferung der von Naphthacen abgeleiteten Namen s. E II 5, 628.

OXY-OXO-VERBINDUNGEN C_nH_{2 n-26}O₄ UND C_nH_{2 n-28}O₄ [Syst. Nr. 811

2. Oxy-oxo-Verbindungen $C_{22}H_{18}O_4$.

1. 1.5-Dimethyl-2.4-bis-[4-oxy-benzoyl]-benzol C₂₂H₁₈O₄, Formel III.

1.5-Dimethyl-2.4-bis-[4-methoxy-benzoyl]-benzol, 4.6-Dianisoyl-m-xylol $C_{24}H_{22}O_4=(CH_2\cdot O\cdot C_6H_4\cdot CO)_3C_6H_3(CH_3)_2$. B. Durch Kondensation von 4.6-Dimethyl-isophthalsäure-diohlorid mit Anisol in Gegenwart von Aluminiumchorid (DE DIESBACH, STREBEL, Helv. 8, 566). — Prismen. F: 95°.

2. 1.4-Dimethyl-2.5-bis-[4-oxy-benzoyl]-benzol C22H18O4, Formel IV.

1.4-Dimethyl-2.5-bis-[4-methoxy-benzoyl]-benzol, 2.5-Dianisoyl-p-xylol $C_{24}H_{32}O_4=(CH_3\cdot CO)_2C_4H_4\cdot CO)_2C_4H_3\cdot CO$. B. Beim Erhitzen von 2.5-Dimethyl-terephthalsäure-dichlorid mit Anisol und Aluminiumchlorid auf 140° (de Diesbach, Helv. 6, 546). — Prismen (aus verd. Essigsäure). F: 177°. Sehr leicht löslich in Benzol, löslich in Alkohol, schwer löslich in Ather, unlöslich in Ligroin und Wasser. — Liefert beim Erhitzen mit Brom in Eisessig auf 170—180° 2.5-Bis-[3.5-dibrom-4-oxy-benzoyl]-terephthalsäure (?) (de D., Streebel, Helv. 8, 565).

3. Oxy-oxo-Verbindungen $C_{23}H_{20}O_4$

1. [2.5 - Dioxy - benzyliden] - diacetophenon $C_{23}H_{20}O_4 = (C_0H_5 \cdot CO \cdot CH_2)_3CH \cdot C_0H_3(OH)_3$.

[2-Oxy-5-methoxy-benzyliden]-diacetophenon $C_{24}H_{22}O_4=(C_0H_5\cdot CO\cdot CH_2)_2CH\cdot C_0H_3$ (OH)·O·CH₃. B. Neben [2-Oxy-5-methoxy-benzyliden]-acetophenon bei der Kondensation von 2-Oxy-5-methoxy-benzaldehyd mit Acetophenon in warmer wäßrig-alkoholischer Kalilauge (Irvine, Robinson, Soc. 1927, 2088). — Nadeln (aus Alkohol). F: 125°. — Gibt beim Kochen mit verd. Salzsäure 6-Methoxy-4-phenacyliden-flaven, β -[2-Oxy-5-methoxy-phenyl]-propiophenon und Acetophenon (I., R., Soc. 1927, 2093).

2. [3.4 - Dioxy - benzyliden] - diacetophenon $C_{23}H_{20}O_4 = (C_6H_5 \cdot CO \cdot CH_2)_2CH \cdot C_6H_3(OH)_2$.

Vanillylidendiacetophenon C₂₄H₂₂O₄ = (C₆H₅·CO·CH₂)₂CH·C₅H₃(OH)·O·CH₃. Das Mol.-Gew, ist in Benzol kryoskopisch bestimmt. — B. Neben Vanillylidenacetophenon bei der Kondensation von Vanillin mit Acetophenon in wäßrig-alkoholischer Natronlauge bei gewöhnlicher Temperatur (Nomura, Nozawa, Sci. Rep. Töhoku Univ. 7, 90; C. 1921 I, 1018). — Krystalle (aus Alkohol). F: 131—132°. Schwer löslich in verd. Alkohol und in 2%iger Natronlauge.

n) Oxy-oxo-Verbindungen $C_n H_{2n-28} O_4$.

1. Oxy-oxo-Verbindungen C10H10O4.

Methyläther der Enolform des 2.2'- Methenyl-bis-indandions - (1.3) C₂₀H₁₂O₄ C₈H₄CO_{CO}C₆H₄. B. Aus 2.2'-Methenyl-bis-indandion-(1.3) (E II 7, 864) und 4 Mol Dimethylsulfat in 50% iger Kalilauge (Ionescu, Georgescu, Bl. [4] 41, 888). Rosa Krystallpulver (aus Eisessig durch Wasser gefällt). F: 274°. Unlöslich in Alkalien.

2. Oxy-oxo-Verbindungen ConH12O4.

1. 4-[3.4-Dioxy-naphthyl]-naphthochinon-(1.2), 3'.4'-Dioxy-dinaphthyl-(1.1')-chinon-(3.4) oder Bis-[3-oxy-naphthalin-(1)]-indolignon

C₂₀H₁₂O₄, Formel I oder II (H 485). Zur Konstitution vgl. Fieser, Peters, Am. Soc. 58 [1931], 798. — B. Durch Einw. von 1 Atom Sauerstoff auf 3.4.3'.4'-Tetraoxy-dinaphthyl-(1.1') in waßrig-methylalkoholischer Kalilauge (Straus, Bernoully, Mautner, A. 444, 191). Aus

gleichen Teilen Dinaphthyl-(1.1')-dichinon-(3.4;3'.4') und 3.4.3'.4'-Tetraoxy-dinaphthyl-(1.1') beim Erwärmen in Eisessig (St., B., M., A. 444, 192). Beim Behandeln von Dinaphthyl-(1.1')-dichinon-(3.4;3'.4') mit Kalilauge, auch in Wasserstoffatmosphäre (St., B., M., A. 444, 192). Neben 3.4.3'.4'-Tetraoxy-dinaphthyl-(1.1') beim Behandeln von 1.2-Dioxy-naphthalin mit 1—2 Atomen Sauerstoff in wäßrig-methylalkoholischer Kalilauge (St., B., M., A. 444, 188) und bei der Einw. von 1,5—3 Atomen Sauerstoff auf 2-Oxy-tetralon-(1) oder 2-Acetoxy-tetralon-(1) in wäßrig-methylalkoholischer Kalilauge (St., B., M., A. 444, 193). — Schwarzblaue Blättchen (aus siedendem Eisessig durch Wasser gefällt). Sintert bei 245°, schmilzt bei 250—252°, zersetzt sich bei 255° (St., B., M., A. 444, 192). — Beim Behandeln mit Sauerstoff in alkal. Lösung entsteht neben anderen Produkten 2-Oxy-naphthochinon-(1.4) (St., B., M., A. 444, 193). Geschwindigkeit der Reaktion mit Sauerstoff in alkal. Lösung: St., B., M., A. 444, 173. Wird durch 1.2-Dioxy-naphthalin in wäßrig-methylalkoholischer Kalilauge in Wasserstoffatmosphäre zu 3.4.3'.4'-Tetraoxy-dinaphthyl-(1.1') reduziert (St., B., M., A. 444, 192).

2. 3-Oxy-2-[2-oxy-naphthyl-(1)]-naphthochinon-(1.4), 2.3'-Dioxy-dinaphthyl-(1.2')-chinon-(1'.4'), Dioxydinaphthochinon $C_{20}H_{12}O_4$, Formel III. B. Beim Kochen von 2.3'-Oxido-dinaphthyl-(1.2')-chinon-(1'.4') (Formel IV; Syst. Nr. 2488) mit alkoh. Natronlauge (CLEMO, SPENCE, Soc. 1928, 2817). — Hellrote chloroformhaltige Prismen (aus Chloroform), benzolhaltige Nadeln (aus Benzol), Rhomboeder (aus Eisessig). F: 222°. — Geht beim Erhitzen auf 250° in 2.1'-Oxido-dinaphthyl-(1.2')-chinon-(3'.4') (Formel V; Syst. Nr. 2488) über.

2.3'-Diacetoxy-dinaphthyl-(1.2')-chinon-(1'.4') $C_{24}H_{16}O_6 = CH_3 \cdot CO \cdot O \cdot C_{10}H_6 \cdot C_{10}H_4 \cdot C)_2 \cdot O \cdot CO \cdot CH_3$. Goldgelbe Nadeln (aus Alkohol). F: 167° (CLEMO, SPENCE, Soc. 1928, 2817). Löst sich in konz. Schwefelsäure mit rötlichbrauner Farbe, in heißer Kalilauge unter Verseifung mit roter Farbe.

3. Bis-[4-oxy-naphthalin-(2)]-indigo $C_{20}H_{12}O_4$, Formel VI (R = H).

Bis-[4-methoxy-naphthalin-(2)]-indigo $C_{22}H_{16}O_4$, Formel VI (R = CH₃). Diese Konstitution kommt der H 6, 979 beschriebenen Verbindung $C_{22}H_{16}O_4$ zu (Goldschmidt, Wessbecher, B. 61, 372). — B. Bei der Oxydation von 1-Oxy-4-methoxy-naphthalin mit Luft oder Kaliumferricyanid in alkal. Lösung (Russig, J. pr. [2] 62 [1900], 53), mit Eisenchlorid in Alkohol (R.) oder mit Bleidioxyd in siedendem Benzol (G., W., B. 61, 374). — Blaue, kupferglänzende Prismen (aus Pyridin oder Eisessig), blaue Nadeln (aus Benzol). F: 264,5° (korr.) (R.), 258° (G., W.). Sehr schwer löslich in den meisten Lösungsmitteln (R.; G., W.), etwas leichter in Benzol, Chloroform und siedendem Eisessig (G., W.). — Gibt bei gelindem Erwärmen mit 50%iger Salpetersäure Dinaphthyl-(2.2')-dichinon-(1.4;1'.4') (G., W., B. 61, 376). Liefert bei der Reduktion mit Zinkstaub und Eisessig in Benzol 1.1'-Dioxy-4.4'-dimethoxy-dinaphthyl-(2.2') (G., W.). Die Lösungen werden durch Triphenylmethyl entfärbt (G., W.). — Färbt Baumwolle aus der Küpe blau (Russig).

3. Oxy-oxo-Verbindungen C₂₂H₁₆O₄.

1.2 - Diphenyl - 4 - [3.4 - dimethoxy - phenyl] - buten - (2) - dion - (1.4), α - Phenyl - α - benzoyl- β - veratroyl - äthylen, α - Benzoyl - β - veratroyl - styrol $C_{24}H_{20}O_4=C_6H_5\cdot CO\cdot C(C_6H_5): CH\cdot CO\cdot C_6H_5(O\cdot CH_3)_2$. B. Durch Kondensation von Benzil mit 3.4 - Dimethoxy - acetophenon in Natrium-methylat-Lösung unter anfänglichem Erwärmen (Allen, Rosener, Am. Soc. 49, 2112). — Hellgelbe Krystalle (aus Eisessig). F: 177°. Schwer löslich in Eisessig, unlöslich in Chloroform.

4. Oxy-oxo-Verbindungen $C_{23}H_{16}O_4$.

5-Phenyl-1.3-bis-[4-oxy-phenyl]-pentadien-(1.3)-ol-(1)-on-(5), 1.3-Bis-[4-oxy-phenyl]-4-benzoyl-butadien-(1.3)-ol-(1), Pseudobase der 6-Phenyl-2.4-bis-[4-oxy-phenyl]-pyryliumsalze $C_{33}H_{18}O_4=C_6H_5\cdot CO\cdot CH\cdot C(C_6H_4\cdot OH)\cdot CH\cdot C(OH)\cdot C_6H_4\cdot OH$ bzw. desmotrope Formen. B. Bei der Einw. von Wasser auf die Anhydrobase der 6-Phenyl-2.4-bis-[4-oxy-phenyl]-pyryliumsalze (Syst. Nr. 2520) in Pyridin (Dilther, Burger, B. 54, 829). — Amorph. — Das entsprechende Dibenzoat (Syst. Nr. 905) schmilzt bei 147°.

OXY-OXO-VERBINDUNGEN C_nH_{2 n-28}O₄ BIS C_nH_{2 n-32}O₄ [Syst. Nr. 812

1.3 - Bis - [4-methoxy-phenyl] -4-benzoyl-butsdien-(1.3)-ol-(1), Pseudobase der 6-Phenyl-2.4 - bis - [4-methoxy-phenyl] - pyryliumsaize $C_{23}H_{22}O_4 = C_6H_5 \cdot \text{CO} \cdot \text{CH} : C(C_6H_4 \cdot \text{O} \cdot \text{CH}_3) \cdot \text{CH} : C(OH) \cdot C_9H_4 \cdot \text{O} \cdot \text{CH}_3$. B. Durch Behandlung einer wäßr. Lösung von 6-Phenyl-2.4-bis-[4-methoxy-phenyl]-pyryliumferrichlorid (Syst. Nr. 2428) mit Soda (Dilthey, Burger, B. 54, 827). — Fast farblose Krystalle (aus Petroläther); geht beim Abfiltrieren, auch unter Luftabschluß, und beim Aufbewahren in der Mutterlauge in eine nicht näher beschriebene gelbe Form über. F: 97—99°. Leicht löslich in Benzol, Aceton, Chloroform und Pyridin, schwerer in Alkohol und Äther. — Wird durch Eisessig oder konz. Schwefelsäure rot gefärbt und mit gelbgrüner Fluorescenz gelöst. Gibt mit konz. Salzsäure in Alkohol 6-Phenyl-2.4-bis-[4-methoxy-phenyl]-pyryliumchlorid-hydrochlorid (Syst. Nr. 2428). Bei 6-stdg. Erhitzen mit konz. Salzsäure im Rohr auf 160—180° entsteht 6-Phenyl-2.4-bis-[4-oxy-phenyl]-pyryliumchlorid.

5. Oxy-oxo-Verbindungen $C_{40}H_{52}O_4$.

 $\begin{array}{ll} \textit{Astaxanthin} & C_{40}H_{52}O_4 = \\ \left[\text{HO} \cdot \text{HC} < \stackrel{\text{CH}_3 \cdot \text{C}(\text{CH}_3)_2}{\text{CO} - \text{C}(\text{CH}_2)_2} > C \cdot \text{CH} \cdot \text{CH} \cdot \text{C}(\text{CH}_3) : \text{CH} \cdot \text{CH} \cdot \text{C}(\text{CH}_3) : \text{CH} \cdot \text{CH} = } \right]_3 \text{s. H 80, 102 Anm. 1.} \\ \end{array}$

o) Oxy-oxo-Verbindungen $C_n H_{2n-30} O_4$.

1. Oxy-oxo-Verbindungen C₂₀H₁₀O₄.

2.11-Dioxy-perylenchinon-(3.10) (?) C₂₀H₁₀O₄, Formel I. B. Durch Erhitzen von Naphthochinon-(1.2) mit Aluminiumchlorid oher Lösungsmittel oder in o-Dichlorbenzol (BASF, D.R.P. 412827; C. 1925 II, 619; Frdl. 15, 790), von Dinaphthyl-(1.1')-dichinon-(3.4;3'.4') mit Aluminiumchlorid (BASF, D.R.P. 412120; C. 1925 I, 2664; Frdl. 15, 790) oder von 3.4.3'.4'-Tetraoxy-dinaphthyl-(1.1') mit Aluminiumchlorid in Trichlorbenzol (BASF, D.R.P. 412120) auf 140—150°. — Grünlich schillernde Krystalle. Löslich in verd. Alkalien mit tiefblauer, in konz. Schwefelsäure mit blauvioletter Farbe. — Färbt Baumwolle aus der Küpe blauschwarz.

2. Oxy-oxo-Verbindungen $C_{21}H_{12}O_4$.

1-[4-Methoxy-benzoyl]-anthrachinon, 1-Anisoyl-anthrachinon $C_{22}H_{14}O_4$, Formel II E I 730). Zur Bildung aus Anthrachinon-carbonsäure-(1)-chlorid, Anisol und Aluminiumchorid E I 730) vgl. Scholl, Dehnert, Semp, B. 56, 1635; Sch., B. 61, 978. — Krystalle (aus Aceton). F: 205° (Sch., De., S.). — Liefert bei der Reduktion mit Zinkstaub und Eisessig in Kohlendioxyd-Atmosphäre bei 35° und Behandlung des Reaktionsprodukts mit siedender, Natriumchlorid und etwas Kaliumdichromat enthaltender konzentrierter Salzsäure "2-[4-Methoxyphenyl]-6.7-benzoylen- β -benzofuran" (Formel III; Syst. Nr. 2520) (Sch., De., S., B. 56, 1637; vgl. Sch., Donat, B. 66 [1933], 517; 67 [1934], 1920).

1-Anisoyl-anthrachinon-oxim-(9) $C_{22}H_{15}O_4N=C_6H_4$ $C(:N\cdot OH)$ $C_0H_3\cdot CO\cdot C_6H_4\cdot O\cdot CH_3$. Zur Konstitution vgl. Scholl, Müller, B. 64 [1931], 647. — B. Bei 15-stdg. Kochen von 1-Anisoyl-anthrachinon mit Hydroxylaminhydrochlorid und Natriumcarbonat in Alkohol; Ausbeute ca. 30% (Scholl, B. 61, 978). — Bräunlichgelbe Prismen (aus Toluol). F: 235—236° bei raschem Erhitzen (Sch.). Löslich in konz. Schwefelsäure mit orangeroter Farbe. — Liefert beim Behandeln mit Zinkstaub und wäßrig-alkoholischem Ammoniak im Dunkeln "2-[4-Methoxy-phenyl]-6.7-benzoylen- β . β '-benzopyrrol" (s. nebenstehende Formel; Syst. Nr. 3239) (Sch.; vgl. Sch., Böttger, Stix, B. 67 [1934], 1922).

3. Oxy-oxo-Verbindungen $C_{22}H_{14}O_4$.

Bis-[4-methoxy-naphtheyl-(1)], 4.4'-Dimethoxy- α -naphthil, 1.1'-Dimethoxy-4.4'-dinaphthil $C_{24}H_{18}O_4=CH_3\cdot O\cdot C_{10}H_4\cdot CO\cdot CO\cdot C_{10}H_6\cdot O\cdot CH_3$ (E I 730). Zur Bildung aus

α-Naphthol-methyläther und Oxalylchlorid vgl. Staudinger, Schlenker, Goldstein, Helv. 4. 337. — F: 228—229°.

4.4'-Diäthoxy- α -naphthil, 1.1'-Diäthoxy-4.4'-dinaphthil $C_{ye}H_{22}O_4 = C_2H_5 \cdot O \cdot C_{10}H_6 \cdot C_{10}H_6$ $CO \cdot CO \cdot C_{10}H_6 \cdot O \cdot C_2H_5$: B. Aus α -Naphthol-āthylāther und Oxalylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (STAUDINGER, SCHLENKER, GOLDSTEIN, Helv. 4, 337). — Gelbgrüne Blättchen (aus Eisessig). F: 220—221°.

4. Oxy-oxo-Verbindungen C24H18O4.

1.4-Bis-[4-methoxy-cinnamoyi]-benzol, Dianisal-p-diacetylbenzol C₂₆H₂₂O₄ = CH₃·O·C₆H₄·CH·CO·C₆H₄·CO·CH·CH·CO·C₆H₄·O·CH₃. B. Aus 1.4-Diacetyl-benzol und Anisaldehyd in wäßrig-alkoholischer Natronlauge (Pfeiffer, Kollbach, Haack, A. 460, 145). — Gelbes Krystallpulver (aus Toluol oder Eisessig). F: 212°. Leicht löslich in heißem Toluol und Eisessig, sehr schwer in heißem Alkohol, fast unlöslich in Äther. Löslich in konz. Schwefellen Eisessig, sehr schwer in heißem Alkohol, fast unlöslich in Äther. Löslich in konz. Schwefellen Eisessig, sehr schwer in heißem Alkohol, fast unlöslich in Äther. Löslich in konz. Schwefellen Eisessig, sehr schwer in heißem Alkohol, fast unlöslich in Äther. Löslich in konz. Schwefellen Eisessig, sehr schwer in heißem Alkohol, fast unlöslich in Äther. Löslich in konz. Schwefellen Eisessig, sehr schwer in heißem Alkohol, fast unlöslich in Äther. Löslich in konz. Schwefellen Eisessig in heißem Alkohol, fast unlöslich in Äther. Löslich in konz. Schwefellen Eisessig in heißem Alkohol, fast unlöslich in Äther. Löslich in konz. Schwefellen Eisessig in heißem Alkohol, fast unlöslich in Äther. Löslich in konz. Schwefellen Eisessig in heißem Alkohol, fast unlöslich in Äther. Löslich in konz. Schwefellen Eisessig in heißem Alkohol, fast unlöslich in Äther. Löslich in konz. Schwefellen Eisessig in heißem Alkohol in Ather Eisessig in heißem Al saure mit rotvioletter Farbe. — Perchlorat C₂₆H₂₂O₄+HClO₄. Violettschwarze Krystalle. Verpufft beim Erhitzen.

5. Oxy-oxo-Verbindungen $C_{27}H_{24}O_4$.

1.3.5-Trimethyl-2.4-bis - [4-methoxy - cinnamoyl]-benzol, 2.4-Bis-[4-methoxy-cinnamoyl]-mesitylen, Dianisal-diacetylmesitylen C₂₀H₂₈O₄, s. nebenstehende Formel. B. Aus 2.4-Diacetyl-mesitylen und Anisaldehyd in warmer wäßrig-alkoholischer Natronlauge (Pfeiffer, Kollbach,

$$\begin{array}{c} \operatorname{CH_3} \\ \operatorname{CH_3} \\ \cdot \operatorname{CO} \cdot \operatorname{CH} : \operatorname{CH} \cdot \operatorname{C_6H_4} \cdot \operatorname{O} \cdot \operatorname{CH_3} \\ \\ \cdot \operatorname{CO} \cdot \operatorname{CH} : \operatorname{CH} \cdot \operatorname{C_6H_4} \cdot \operatorname{O} \cdot \operatorname{CH_3} \end{array}$$

Alkohol), gelbliche Tafeln mit ½ C₂H₅·OH (aus Alkohol), gelbliche Tafeln mit ½ C₆H₆ (aus Benzol); schmilzt unter Abgabe der Krystall-Lösungsmittel bei 105—106° bzw. bei 93°. Fast unlöslich in Äther, leicht löslich in Alkohol, Benzol und heißem Eisessig. Die Lösung in konz. Schwefelsäure ist orangefarben. — Perchlorat $C_{29}H_{28}O_4 + 2HClO_4$. Zinnoberrote Krystalle. Verpufft beim Erhitzen. Nimmt an der Luft unter Gelbfärbung Wasser auf und wird über Phosphorpentoxyd wieder zinnoberrot.

p) Oxy-oxo-Verbindungen $C_n H_{2n-32} O_4$.

1. Oxy-oxo-Verbindungen $C_{22}H_{12}O_4$.

- 1. 7.12 Dioxy pentacenchinon (5.14) (?), 9.10 Dioxy 2.3 phthalylanthracen(?) $C_{22}H_{12}O_4$, Formel I bzw. desmotrope Form (E I 7, 493). B. Beim Erhitzen von 2-[2-Carboxy-benzoyl]-anthrachinon mit rauchender Schwefelsäure (40% SO_3) und geschmolzener Borsäure auf 150° (DE DIESBACH, CHARDONNENS, Helv. 7, 611).
- 2. 5.6-Dioxy-isopentaphenchinon- $(8.13)^1$) (?), 9.10-Dioxy-2.3-phthalyl-phenanthren (?), Chinhydron des 2.3-Phthalyl-phenanthrenchinons $C_{12}H_{12}O_4$, Formel II. B. Durch Reduktion von 2.3-Phthalyl-phenanthrenchinon mit Phenylhydrazin in heißem Eisessig (Clar, B. 62, 1577, 1581). — Braunrote Nadeln mit violettem Oberflächenglanz. F: ca. 375° (unkorr.; Zers.). Sehr schwer löslich in den gebräuchlichen Lösungsmitteln außer Pyridin. Löslich in konz. Schwefelsäure mit schmutzig-grünbrauner Farbe. Gibt mit alkoh. Natronlauge ein grünes Natriumsalz.

2. Oxy-oxo-Verbindungen $C_{24}H_{16}O_4$.

1. 2.6-Dioxy - 1.5 - dibenzoyl - naphthalin C₂₄H₁₆O₄, Formel III. B. Durch Kochen von 2.6-Dibenzoyloxy-naphthalin mit Aluminumchlorid in Tetrachloräthan (I. G. Francisco P. 1772-186 (1.67)). The property of the control of the Farbenind., D.R.P. 453280; Frdl. 16, 1405). In ca. 50% iger Ausbeute bei der Kondensation von 2.6-Dimethoxy-naphthalin mit Benzoylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (FIERZ-DAVID, JACCARD, Helv. 11, 1047). — Krystalle (aus Nitrobenzol). F: 275° (I. G. Farbenind., D. R. P. 453 280; F.-D., J.). — Liefert beim Verschmelzen mit Natriumchlorid und Aluminiumchlorid bei 140-150° unter Einleiten von Sauerstoff 1.6-Dioxy-3 4;8.9-

¹⁾ Bezifferung der von Isopentaphen abgeleiteten Namen s. E II 7, 778 Anm.

OXY-OXO-VERBINDUNGEN C_nH_{2n-32}O₄ Bis C_nH_{2n-38}O₄ [Syst. Nr. 814

dibenzo-pyrenchinon-(5.10) und 4.Bz2-Dioxy-benzanthron (I. G. Farbenind., D.R.P. 453280). 1.6-Dioxy-3.4;8.9-dibenzo-pyrenchinon-(5.10) entsteht auch beim Erwärmen von 2.6-Dioxy-1.5-dibenzoyl-naphthalin mit PCl₅ in Chlorbenzol auf 100—110° und Behandeln des Reaktions-produktes mit konz. Schwefelsäure bei 80—90° (I. G. Farbenind., D.R.P. 453997; Frdl. 16, 1408).

2. 4.8-Dioxy-1.5-dibenzoyl-naphthalin $C_{14}H_{16}O_4$, Formel IV (R = H).

4.8-Dimethoxy-1.5-dibenzoyl-naphthalin C₂₆H₂₀O₄, Formel IV IV.
(R = CH₃). B. Durch Kondensation von 1.5-Dimethoxy-naphthalin mit Benzoylchlorid in Gegenwart von Aluminiumchlorid in Schwefel-kohlenstoff (FIEEZ-DAVID, JACCARD, Helv. 11, 1047; JACCARD, Dissert.
[T. H. Zürich 1928], S. 64). — Fast farblose Blättchen (aus Nitrobenzol), farblose bis gelbe Nadeln (durch Sublimation). F: 362—364° (unkorr.) (J.). Löslich in siedendem Nitrobenzol, sehr schwer löslich in Pyridin, fast unlöslich in siedendem Alkohol, Benzol und Eisessig (J.).

q) Oxy-oxo-Verbindungen $C_nH_{2n-34}O_4$.

1. Oxy-oxo-Verbindungen C₂₅H₁₆O₄.

[a-Oxy-benzyl]-bindon, Phenyl-bindonyl-carbinol C₂₅H₁₆O₄ = C₆H₄ CO C: CC₆H₄ CO CH(OH) · C₆H₅. B. Aus Bindon und 1 Mol Benzaldehyd in wäßrig-

alkoholischer Kalilauge (RADULESCU, GEORGESCU, Bl. [4] 87, 1190). — Gelbes amorphes Pulver. F: 238° (Zers.). Unlöslich in den meisten organischen Lösungsmitteln. Löslich in Alkalien mit blauer, rasch in Rot übergehender Farbe. — Gibt beim Erhitzen auf den Schmelzpunkt Benzylidenbindon.

2. Oxy-oxo-Verbindungen $C_{36}H_{18}O_4$.

5 - Methoxy - 2 - [diphenyl - benzoyl - methyl] - benzochinon - (1.4) $C_{27}H_{20}O_4$, s. nebenstehende Formel. B. Durch Einw. von Salpetersäure (D: 1,48) auf nicht näher beschriebenes Diphenyl-[2.4.5-trimethoxy-phenyl]-benzoyl-methan in Eisessig unter Kühlung mit Kältemischung (Száki, B. 62, 1377). — Orangegelbe Krystalle (aus Eisessig). F: 181°.

3. Oxy-oxo-Verbindungen $C_{27}H_{20}O_4$.

1.7-Bis-[4-carbomethoxyoxy-naphthyl-(1)]-heptadien-(1.6)-dion-(3.5), Bis- $\{\beta$ -[4-carbomethoxyoxy-naphthyl-(1)]-acryloyl}-methan $C_{31}H_{24}O_8=(CH_3\cdot O_2C\cdot O\cdot C_{10}H_4\cdot CH:CH\cdot CO)_2CH_3$. B. Durch Einw. von β -[4-Carbomethoxyoxy-naphthyl-(1)]-acryloglaure-chlorid auf das Natriumsalz des $\{\beta$ -[4-Carbomethoxyoxy-naphthyl-(1)]-acryloyl}-acetons in Anisol + Chloroform und Kochen des Reaktionsprodukts mit verd. Essigsäure (LAMPE, Mitarb., Rozniki Chem. 9, 462; C. 1929 II, 1917). — Orangegelbe Krystalle (aus Alkohol). F: 120—124°. Die alkoh. Lösung fluoresciert gelbgrün. Löst sich in konz. Schwefelsäure mit kirschroter Farbe. Gibt mit Eisenchlorid in Alkohol eine braune Färbung.

r) Oxy-oxo-Verbindungen $C_nH_{2n-36}O_4$.

1. Oxy-oxo-Verbindungen $C_{M}H_{18}O_{4}$.

1.6-Dioxy-3.4; 8.9-dibenzo-pyrenchinon-(5.10) C₁₄H₁₂O₄, s. nebenstehende Formel. B. Beim Verschmelzen von 2.6-Dibenzoyloxy-naphthalin oder 2.6-Dioxy-1.5-dibenzoyl-naphthalin mit Natrium-chlorid und Aluminium-chlorid bei 140—150° unter Einleiten von Sauerstoff (I. G. Farbenind., D.R.P. 453 280; Frdl. 16, 1405). — Rotes Pulver. Löst sich in konz. Schwefelsäure mit violettroter Farbe. — Färbt Baumwolle aus roter Küpe violett; die Färbung ist säure- und chlorunecht.

2. Oxy-oxo-Verbindungen $C_{30}H_{24}O_4$.

- a) 1.2-Bis-[4-methoxy-phenyl]-3.4-dibenzoyl-cyclobutan vom Schmelzpunkt 164°, dimeres Anisylidenacetophenon A, Bis-[4-methoxy-chalkon] A, Di-p-methoxy-diphenyltruxinketon A C₃₂H₂₈O₄. Das Mol.-Gew. ist kryoskopisch in Benzol bestimmt. B. Neben harzigen Produkten beim Belichten von geschmolzenem und wiedererstartrem Anisylidenacetophenon (Stobbe, Henne, B. 59, 2262). Prismen (aus Alkohol). F: 164°. Ultraviolett-Absorptionsspektrum in Alkohol: St., H., B. 59, 2255. Leicht löslich in Benzol und Aceton, schwer in Äther, Alkohol und Ligroin. Depolymerisiert sich teilweise bei der Destillation unter vermindertem Druck; bei der Destillation unter gewöhnlichem Druck erhält man Anisylidenacetophenon und 4.4′-Dimethoxy-stilben. Wandelt sich bei 5-stdg. Erhitzen auf 180—200° in Bis-[4-methoxy-chalkon] B und harzige Produkte um; Umlagerung in Bis-[4-methoxy-chalkon] B erfolgt auch beim Kochen mit alkoh. Kalilauge, Pyridin, Piperidin, Eisessig oder Acetanhydrid + Natriumacetat sowie beim Kochen mit amalgamiertem Zink und konz. Salzsäure. Gibt bei der Oxydation mit Chromsäure in Eisessig Benzoesäure und Anissäure. Wird in Benzol-Lösung durch Natrium und Wasser nicht reduziert. Verharzt beim Erhitzen mit Jodwasserstoffsäure und rotem Phosphor auf 140°. Gibt beim Erhitzen mit alkoh. Ammoniak auf 150—160° das Monoimid des Bis-[4-methoxy-chalkons] B. Liefert beim Kochen mit Hydroxylaminhydrochlorid und Bariumcarbonat in Alkohol das zugehörige Monoxim (s. u.); beim Erhitzen mit Hydroxylaminhydrochlorid und Alkohol auf 120—130° erhält man Bis-[4-methoxy-chalkon] B, etwas 4.4′-Dimethoxy-stilben und harzige Produkte. Gibt mit Hydrazinhydrat in Alkohol ein farbloses, in organischen Lösungsmitteln unlösliches Produkt. Reagiert nicht mit Semicarbazid.

Monoxim $C_{32}H_{29}O_4N = (CH_3 \cdot O \cdot C_6H_4)_3C_4H_4(CO \cdot C_6H_5) \cdot C(:N \cdot OH) \cdot C_6H_5$. B. Beim Kochen von Bis-[4-methoxy-chalkon] A mit Hydroxylaminhydrochlorid und Bariumcarbonat in Alkohol (Stobbe, Hensel, B. 59, 2263). — Nadeln (aus Alkohol). F: 199° (Zers.).

b) 1.2-Bis-[4-methoxy-phenyl]-3.4-dibenzoyl-cyclobutan vom Schmelz-punkt 192°, dimeres Anisylidenacetophenon B, Bis-[4-methoxy-chalkon] B, Di-p-methoxy-diphenyltruxinketon B C₃₃H₂₈O₄ (E I 8, 580 Z. 16 v. o.). Das Mol.-Gew. ist in Benzol ebullioskopisch bestimmt. — B. Wurde einmal beim Erwärmen von Anisylidenacetophenon mit Cyclopentanon in Gegenwart von Diäthylamin oder Piperidin erhalten (Stobbe, Striegler, J. pr. [2] 86 [1912], 248 Anm.). Bildung aus Bis-[4-methoxy-chalkon] A s. oben. — Nadeln (aus Alkohol). F: 191—192° (Sto., Str.; Sto., Hensel, B. 59, 2262). Ultraviolett-Absorptionsspektrum in Alkohol: Sto., H., B. 59, 2255. Schwer Idslich in Äther (Sto., Str.). — Wird beim Erhitzen bis auf 200° nur wenig verändert; bei der Destillation unter gewöhnlichem Druck entstehen Anisylidenacetophenon, 4.4'-Dimethoxy-stilben und teerige Produkte (Stobbe, Hensel, B. 59, 2264). Entfärbt Brom in Chloroform und sodaalkalische Permanganat-Lösung nicht (Sto., Striegler, J. pr. [2] 86, 248 Anm.). Verharzt beim Erhitzen mit Jodwasserstoffsäure und Phosphor auf 140° (Sto., H.). Gibt mit alkoh. Ammoniak bei 150—160° das Monoimid (s. u.) (Sto., H.). Reagiert nicht mit Hydroxylaminhydrochlorid und Bariumcarbonat in Wasser; beim Erhitzen mit Hydroxylaminhydrochlorid auf 150—160° entstehen 4.4'-Dimethoxy-stilben und harzige Produkte (Sto., H.). Gibt mit Hydrazinhydrat in siedendem Eisessig das Dihydrazon (s. u.) (Sto., H.). Reagiert nicht mit Semicarbazid (Sto., H.).

Monoimid $C_{32}H_{30}O_3N = (CH_3 \cdot O \cdot C_6H_4)_3C_4H_4(CO \cdot C_6H_5) \cdot C(:NH) \cdot C_6H_5$. B. Beim Erhitzen von Bis-[4-methoxy-chalkon] A oder B mit alkoh. Ammoniak im Rohr auf 150—160° (Stobbe, Hensel, B. 59, 2264). — Nadeln (aus Alkohol). F: 154°. Leicht löslich in Alkohol und Benzol, schwer in Choroform. Unlöslich in kalter Salzsäure; verharzt beim Erwärmen. Die grüne Lösung in konz. Schwefelsäure färbt sich allmählich braunrot und scheidet dann beim Verdünnen mit Wasser blaurote Flocken aus. — Gibt ein bei 178° (Zers.) schmelzendes Phenylhydrazon.

Dihydrazon $C_{32}H_{32}O_2N_4=(CH_3\cdot O\cdot C_6H_4)_2C_4H_4[C(:N\cdot NH_2)\cdot C_6H_5]_2$. B. s. o. — Blättohen (aus Alkohol). F: 215° (Stobbe, Hensel, B. 59, 2264).

s) Oxy-oxo-Verbindungen C_nH_{2n-38}O₄.

1. Oxy-oxo-Verbindungen $C_{27}H_{16}O_4$.

1. α - [Anthrachinonyl - (2)] - β - [4 - α y - naphthoyl - (1)] - äthylen $C_{27}H_{16}O_4$, Formel I auf S. 524. B. Aus Anthrachinon-aldehyd-(2) und 4-Acetyl-naphthol-(1) in wäßrig-

OXY.OXO.VERBINDUNGEN C_nH_{2n-38}O₄ und C_nH_{2n-40}O₄ [Syst. Nr. 817

alkoholischer Natronlauge bei 50° (JACOB, Helv. 4, 784). — Gelbliche mikroskopische Nadeln (aus Nitrobenzol). Zersetzt sich bei 226—227°. Löst sich in konz. Schwefelsäure mit gelber Farbe.

 α -[Anthrachinonyl-(2)]- β -[4-methoxy-naphthoyl-(1)]-äthylen $C_{38}H_{18}O_4 = C_6H_4(CO)_sC_6H_3$. CH: $CH \cdot CO \cdot C_{16}H_6 \cdot O \cdot CH_8$. B. Aus Anthrachinon-aldehyd-(2) und 4-Acetyl-naphthol-(1)-methyläther in heißer alkoholischer Natronlauge (JACOB, Helv. 4, 785). — Gelbe Nadeln (aus Nitrobenzol). F: 228—229°. Löst sich in konz. Schwefelsäure mit roter Farbe.

I.
$$\bigcap_{0}^{O} \cdot \operatorname{CH} : \operatorname{CH} \cdot \operatorname{CO} \cdot \bigcap_{0}^{O} \cdot \operatorname{CH} : \operatorname{CH} \cdot \operatorname{CO} \cdot \bigcap_{0}^{O}$$

2. α-[Anthrachinonyl-(2)]-β-[1-oxy-naphthoyl-(2)]- äthylen C₂₇H₁₆O₄, Formel II. B. Aus Anthrachinon-aldehyd-(2) und 2-Acetyl-naphthol-(1) in wäßrig-alkoholischer Natronlauge bei 50° (Jacob, Helv. 4, 783). — Orangegelbe Nadeln (aus Nitrobenzol). F: 296° bis 297°. — Löst sich in konz. Schwefelsäure mit roter Farbe.

 α -[Anthrachinonyl-(2)]- β -[1-methoxy-naphthoyl-(2)]-āthylen $C_{28}H_{18}O_4 = C_6H_4(CO)_2C_6H_3$. CH: CH·CO·C₁₀H₆·O·CH₂. B. Aus Anthrachinon-aldehyd-(2) und 2-Acetyl-naphthol-(1)-methyläther in heißer alkoholischer Kalilauge (Jacob, Helv. 4, 784). — Gelbliche mikroskopische Blättehen (aus Eisessig). F: 214—215°. Löst sich in konz. Schwefelsäure mit roter Farbe. — Gibt beim Kochen mit Aluminiumehlorid in Benzol α-[Anthrachinonyl-(2)]- β -[1-oxy-naphthoyl-(2)]-āthylen.

2. Oxy-oxo-Verbindungen C28H18O4.

- 1. 2.2'- Dioxy 10.10' dioxo 9.10.9'.10' tetrahydro dianthryl (1.1'), 2.2'- Dioxy dianthronyl (1.1') bzw. 2.10.2'.10'- Tetraoxy dianthryl (1.1), 2.2'- Dioxy 1.1'- dianthranolyl C₂₈H₁₈O₄, Formel III bzw. desmotrope Form. B. Durch Reduktion von 2.2'- Dioxy-dianthrachinonyl-(1.1') mit Zinkstaub und siedendem wäßrigem Ammoniak oder mit Zinn(II)-chlorid und siedender Salzsure (Hardacre, Perkin, Soc. 1929, 187, 188). Gelbe Krystalle. Schwärzt sich bei 270°, schmilzt unschaft bei 290°. Fast unlöslich in den meisten organischen Lösungsmitteln. Löslich in Alkalien mit gelber Farbe. Beim Kochen mit Nitrobenzol entsteht 2.2'-Dioxy-helianthron (S. 526). Liefert mit Acetanhydrid in Pyridin 2.10.2'.10'- Tetraacetoxy-dianthryl-(1.1') (E II 6, 1149).
- 2. 2.2'-Dioxy-10.10'-dioxo-9.10.9'.10'-tetrahydro-dianthranyl-(9.9'), 2.2'-Dioxy-dihydrodianthron (2.2'-Dioxy-dianthron) bzw. 2.10.2'.10'-Tetraoxy-dianthryl-(9.9'), 2.10.2'.10'-Tetraoxy-dianthryl-(9.9') C₂₈H₁₈O₄, Formel IV (R = H) bzw. desmotrope Form. Das Mol.-Gew. des Diacetats ist in Naphthalin kryoskopisch bestimmt (Perkin, Whattam, Soc. 121, 293). B. Neben anderen Verbindungen bei der Reduktion von 2-Oxy-anthrachinon mit Zinkstaub und Ammoniak auf dem Wasserbad unter Luftabschluß (P., Wh., Soc. 121, 289, 292, 294). Durch Oxydation von 3-Oxy-anthron-(9) oder 3-Acetoxy-anthron-(9) mit Eisenchlorid in siedendem Eisessig (P., Wh., Soc. 121, 295), am besten in Gegenwart von Natriumacetat (Haller, Perkin, Soc. 125, 235). Nadeln (aus Alkohol), Krystalle mit 1 C₂H₄O (aus Aceton); gibt das Aceton bei 160° größtenteils ab. Schmilzt unscharf bei ca. 300° unter Grünfärbung (P., Wh., Soc. 121, 293). Löslich in ca. 500 Tln. siedendem Aceton, ziemlich schwer löslich in siedendem Alkohol (P., Wh.). Löslich in konz. Schwefelsäure mit gelber, in Natronlauge mit gelber, an der Luft allmählich in Rot übergehender Farbe (P., Wh.).

Gibt bei der Oxydation mit alkal. Permanganat-Lösung geringe Mengen 2.2'-Dioxyhelianthron (S. 526) (Perkin, Whattam, Soc. 121, 295; Haller, Perkin, Soc. 125, 235). Bei der Oxydation mit Kaliumferricyanid in alkal. Lösung erhält man je nach den Bedingungen 2.2'-Dioxy-dianthrachinon (S. 525) oder 2.2'-Dioxy-helianthron und etwas 2.2'-Dioxy-mesonaphthodianthron (H., P., Soc. 125, 235, 239). Gibt beim Kochen mit Jodwasserstoffsäure (D: 1,7) 3-Oxy-anthron-(9), bei der Reduktion mit Zinkstaub und wäßr. Ammoniak auf dem Wasserbad 3-Oxy-anthron-(9) und 2.2'-Dioxy-dianthranyl-(9.9') (P., Wh., Soc. 121, 293, 295). Liefert beim Kochen mit Acetanhydrid 2.2'-Diacetoxy-dihydrodianthron, beim Kochen mit Acetanhydrid und etwas Pyridin 2.10.2'.10'-Tetraacetoxy-dianthranyl-(9.9') (E II 6, 1149) (P., Wh., Soc. 121, 293, 294).

2.2'-Dimethoxy-dihydrodianthron, 2.2'-Dimethoxy-dianthron $C_{30}H_{20}O_4$, Formel IV (R = CH₃). B. Aus 2.2'-Dioxy-dihydrodianthron und Diazomethan in Aceton + Åther (Perkin, Whattam, Soc. 121, 294). — Nadeln (aus Aceton). F: 217°. Ziemlich schwer löslich in Aceton. Löslich in konz. Schwefelsäure mit gelber Farbe.

2.2'- Diacetoxy - dihydrodianthron, 2.2'- Diacetoxy - dianthron C₃₂H₃₂O₆, Formel IV (R = CO·CH₅). B. Durch 2-stdg. Kochen von 2.2'- Dioxy - dihydrodianthron mit Acetanhydrid (Perkin, Whattam, Soc. 121, 293). — Nadeln. F: 190—191°. Leicht löslich in Benzol, löslich in Eisessig, schwer löslich in Alkohol; die Lösungen in Benzol und Alkohol fluorescieren. Die Lösung in konz. Schwefelsäure ist gelb. — Gibt beim Kochen mit Acetanhydrid und etwas Pyridin 2.10.2'.10'-Tetraacetoxy-dianthranyl-(9.9').

3.3'-Dijod-2.2'-dioxy-dihydrodianthron, 3.3'-Dijod-2.2'-dioxy-dianthron $C_{23}H_{16}O_4I_2$, Formel V (R = H). B. Durch Oxydation von 3-Jod-2.10-diacetoxy-anthracen mit Eisenchlorid in heißem Eisessig (Hardacre, Perkin, Soc. 1929, 190). — Gelbe Nadeln. Färbt sich bei 255° dunkel; F: 267—268°. — Gibt bei der Oxydation mit Kaliumferricyanid in 10% iger Natronlauge und nachfolgenden Acetylierung in Gegenwart von Pyridin 3.3'-Dijod-2.2'-diacetoxy-dianthrachinon (S. 526). Bei der Oxydation mit Kaliumpersulfat in alkal. Lösung entsteht 3.3'-Dijod-2.2'-dioxy-helianthron (S. 527).

3.3'-Dijod-2.2'-diacetoxy-dihydrodianthron, 3.3'-Dijod-2.2'-diacetoxy-dianthron $C_{33}H_{20}O_6I_2$, Formel V ($R=CO\cdot CH_3$). B. Durch kurzes Kochen von 3.3'-Dijod-2.2'-dioxy-dihydrodianthron mit Acetanhydrid und etwas Schwefelsäure (Hardacre, Perkin, Soc. 1929, 190). — Tafeln (aus Acetanhydrid). Färbt sich bei 215° dunkel; F: 227—228°. Die Lösung in konz. Schwefelsäure ist gelb.

3. 9.9'-Dioxy-dihydrodianthron $C_{28}H_{18}O_4 = \left[OC < C_6H_4 < C(OH) - \right]_2$.
9.9'-Dimethoxy-dihydrodianthron, 9.9'-Dimethoxy-dianthron $C_{30}H_{22}O_4 = \left[OC < C_6H_4 < C(O \cdot CH_3) - \right]_2$ (E I 731). B. Durch Einw. von äther. Jodlösung auf die Natriumverbindung des Anthrahydrochinon-monomethyläthers (S. 215), neben Anthrachinon (SCHLENK, BERGMANN, A. 464, 41). — F: 236—238° (Zers.).

3. Oxy-oxo-Verbindungen C₃₀H₂₂O₄.

t) Oxy-oxo-Verbindungen $C_n H_{2n-40} O_4$.

2.2'-Dioxy-dianthranyl-(9.9')-chinon-(10.10'), 2.2'-Dioxy-dianthrachinon, 2.2'-Dioxy-dianthron C₁₈H₁₆O₄, Formel I auf S. 526 (R = H). Zur Konstitution vgl. HARDACRE, PERKIN, Soc. 1929, 180. — B. Bei der Oxydation von 2.2'-Dioxy-dihydrodianthron mit 1 Mol Kaliumferricyanid in kalter verdünnter Natronlauge (HALLER, PERKIN, Soc. 125, 239). Durch Hydrolyse des Diacetats (S. 526) mit wäßrig-alkoh. Natronlauge (PERKIN, YODA, Soc. 127, 1886). — Gelbliche Tafeln (aus wäßr. Pyridin). Wird bei ca. 280° schwarz (P., Y.). Schwer löslich in den üblichen Lösungsmitteln. Löslich in Alkalien mit orangegelber, an der Luft ziemlich beständiger Farbe; die kastanienbraune Lösung in konz. Schwefelsäure wird rasch braunschwarz und scheidet dann beim Verdünnen mit Wasser einen braunschwarzen Niederschlag aus (P., Y.). — Bei wochenlanger Bestrahlung der Lösung in absol. Alkohol mit Sonnenlicht entstehen 2.2'-Dioxy-mesonaphthodianthron (S. 528) und geringe Mengen 2.2'-Dioxy-helianthron (P., Y.); die letztgenannte Verbindung wird bei der Oxydation mit überschlussigem Kaliumferricyanid in 10%iger Natronlauge als Hauptprodukt erhalten (HALLER, P.; P., Y.). Gibt bei der Reduktion mit Zinkstaub und siedendem Ammoniak 3-Oxyanthron-(9) (P., Y.). Gibt eine orangegelbe, leicht oxydierbare Hydrosulfitküpe (P., Y.).

- 2.2'-Dimethoxy-dianthrachinon, 2.2'-Dimethoxy-dianthron $C_{20}H_{30}O_4$, Formel I ($R=CH_3$). B. Aus 2.2'-Dioxy-dianthrachinon und Dimethylsulfat in methylalkoholischer Kalilauge (Perken, Yoda, Soc. 127, 1887—1888). Gelbe Tafeln (aus Pyridin). Färbt sich bei ca. 270° grün; F: 297—299°. Wird am Licht orangefarben; bei der Belichtung von Lösungen in Benzol oder siedendem Aceton bildet sich 2.2'-Dimethoxy-mesonaphthodianthron; in Benzol-Lösung entsteht außerdem etwas 2.2'-Dimethoxy-helianthron (?).
- 2.2'-Diacetoxy-dianthrachinon, 2.2'-Diacetoxy-dianthron $C_{32}H_{20}O_6$, Formel I (R = CO·CH₃). B. Durch Behandeln von 2.10.2'.10'-Tetraacetoxy-dianthranyl-(9.9') (E II 6, 1149) mit Jod in Pyridin bei 80° (Perkin, Yoda, Soc. 127, 1886). Gelbliche Krystalle (aus Tetrachl räthan). F: 314—316°. Schwer löslich in den gebräuchlichen Lösungsmitteln; die Lösungen nehmen in der Hitze eine grüne Färbung an, die beim Abkühlen wieder verschwindet. Gibt bei wochenlangem Belichten einer Lösung in Benzol 2.2'-Diacetoxy-mesonaphthodianthron.
- 3.3'-Dijod-2.2'-diacetoxy-dianthrachinon, 3.3'-Dijod-2.2'-diacetoxy-dianthron $C_{32}H_{18}O_6I_4$, Formel II. B. Durch Oxydation von 3.3'-Dijod-2.2'-dioxy-dihydrodianthron (S. 525) mit Kaliumferricyanid in 10% iger Natronlauge und nachfolgende Acetylierung in Gegenwart von Pyridin (Hardacre, Perrin, Soc. 1929, 191). Hellgelbe Tafeln. F: 306—308°. Löslich in konz. Schwefelsäure mit roter, allmählich in Braunschwarz übergehender Farbe.

u) Oxy-oxo-Verbindungen $C_n H_{2n-42} O_4$.

Oxy-oxo-Verbindungen CzeH14O4.

1. 2.2'- Dioxy-mesobenzdianthron, 2.2'- Dioxy-helianthron C₂₈H₁₄O₄, Formel III (R = H). Zur Konstitution vgl. Hardacre, Perkin, Soc. 1929, 181. — B. In geringer Menge bei der Oxydation von 2.2'-Dioxy-dihydrodianthron mit Permanganat in verd. Natronlauge (Perkin, Whattam, Soc. 121, 296; Haller, Perkin, Soc. 125, 235). Neben etwas 2.2'-Dioxy-mesonaphthodianthron bei der Oxydation von 2.2'-Dioxy-dihydrodianthron mit 2 Mol Kaliumferricyanid in kalter verdünnter Natronlauge (Haller, P., Soc. 125, 235). Bei der Oxydation von 2.2'-Dioxy-dianthrachinon mit alkal. Kaliumferricyanid-Lösung (Haller, P., Soc. 125, 239; P., Yoda, Soc. 127, 1887). Entsteht infolge intermediärer Bildung von 2.2'-Dioxy-dihydrodianthron und 2.2'-Dioxy-dianthrachinon auch bei wiederholter Behandlung von 3-Oxyanthron-(9) mit alkal. Kaliumferricyanid-Lösung (Haller, P., Soc. 125, 232, 236). Neben anderen Produkten beim Erhitzen von 2-Oxy-anthrachinon mit Glucose und nitrathaltiger Kalilauge auf 170—180° (Bradshaw, P., Soc. 121, 920, 921; vgl. Haller, P., Soc. 125, 231). Beim Kochen von 2.2'-Dioxy-dianthronyl-(1.1') (S. 524) mit Nitrobenzol (Hardacre, Perkin, Soc. 1929, 188). Beim Kochen von 2.2'-Dioxy-dianthrachinonyl-(1.1') (Harder, P., Soc. 1929, 188) oder besser von 2.2'-Diacetoxy-dianthrachinonyl-(1.1') (Haller, P., Soc. 125, 237) mit Zinn(II)-chlorid und Salzsäure.

Orangerote Nadeln (aus Aceton). Zersetzt sich von 300° an, ist bei 350° noch nicht geschmolzen (Perkin, Whattam, Soc. 121, 297; Bradshaw, Perkin, Soc. 121, 920). Löslich in konz. Schwefelsäure mit bläulichvioletter, in verd. Alkalien mit roter Farbe (P., Wh.; B., P.). — Färbt Baumwolle aus der blaugrünen Küpe orange, chromgebeizte Wolle stumpf orange (Haller, Perkin, Soc. 125, 233).

- 2.2'-Dimethoxy-mesobenzdianthron, 2.2'-Dimethoxy-helianthron C₂₀H₁₈O₄, Formel III (R = CH₃). B. Aus 2.2'-Dioxy-helianthron und Diazomethan in Äther + Aceton (Bradshaw; Perkin, Soc. 121, 920). Über Bildung bei der Belichtung von 2.2'-Dimethoxy-dianthrachinon in Benzol vgl. Perkin, Yoda, Soc. 127, 1888. Orangefarbene Nadeln (aus verd. Essigsäure). F: 276° (B., P.). Gibt in siedender Eisessig-Salzsäure leicht hydrolysierbare braune Doppelsalze mit Zinn(IV)-chlorid und Eisen(III)-chlorid.
- 2.2'-Diacetoxy-mesebenzdianthron, 2.2'-Diacetoxy-helianthron C₂₂H₁₆O₆, Formel III (R = CO·CH₃). B. Durch Behandlung von 2.2'-Dioxy-helianthron mit Acetanhydrid und Pyridin (PERKIN, WHATTAM, Soc. 121, 297). Goldgelbe Nadeln oder orangefarbene Blättchen

(aus Aceton). Schmilzt teilweise zwischen 160—170°, wird wieder fest und schmilzt erneut bei 276° (P., Wh.; Bradshaw, Perkin, Soc. 121, 920); F: 277—279° (P., Yoda, Soc. 127, 1887). Ziemlich leicht löslich in Benzol (HALLER, P., Soc. 125, 239) mit grüner Fluorescenz (P., WH.; B., P.). Löslich in konz. Schwefelsäure mit violetter Farbe (P., Wh.; B., P.). — Geht bei

längerer Belichtung in Eisessig oder Benzol in 2.2'-Diacetoxy-mesonaphthodianthron (S. 528) über (HALLER, PERKIN, Soc. 125, 239). Liefert beim Erhitzen mit Aluminiumchlorid auf 140—160° geringe Mengen 2.2'-Dioxy-mesonaphthodianthron (HALLER, P.). Gibt bei der Oxydation mit Chromsäure in siedendem Eisessig 2.2'-Diacetoxy-dianthrachinonyl-(1.1') (Haller, P., Soc. 125, 236; vgl. Hardacre, P., Soc. 1929, 181). Liefert mit überschüssigem Brom in eiskaltem Pyridin 3.3'-Dibrom-2.2'-diacetoxy-helianthron (Hard., P., Soc. 1929, 185). Bei der Einw. von Jod in siedendem Pyridin und nachfolgenden Acetylierung erhält man je nach den Mengenverhältnissen 3-Jod-2.2'-diacetoxy-helianthron (Haller, P., Soc. 125, 237) oder 3.3'-Dijod-2.2'-diacetoxy-helianthron (HARD., PERKIN, Soc. 1929, 184).

- 3.3'-Dibrom-2.2'-diacetoxy-mesobenzdianthron, 3.3'-Dibrom-2.2'-diacetoxy-helianthron C₃₂H₁₆O₆Br₂, Formel IV. B. Durch Einw. von überschüssigem Brom auf 2.2'-Diacetoxy-helianthron in eiskaltem Pyridin (HARDACEE, PERKIN, Soc. 1929, 185). — Orangerote Nadeln (aus Acetanhydrid). F: 293—296°. Löslich in konz. Schwefelsäure mit blauer Farbe.
- 3-Jod-2.2'-dioxy-mesobenzdianthron, 3-Jod-2.2'-dioxy-helianthron $C_{28}H_{18}O_4I$, Formel V (R = H). Zur Konstitution vgl. Hardacre, Perkin, Soc. 1929, 180. B. Durch Hydrolyse des Diacetats mit Schwefelsäure in siedendem Eisessig (Haller, Perkin, Soc. 125, 237). -Rote Nadeln (aus Alkohol). Schmilzt nicht bis 350° (HALLER, P.). Schwer löslich in heißen verdünnten Alkalilaugen mit roter, in konz. Schwefelsäure mit blauer Farbe. — Färbt Baumwolle aus der grünen Küpe rot (HALLER, P.).
- 3-Jod-2.2'-diacetoxy-mesobenzdianthron, 3-Jod-2.2'-diacetoxy-helianthron $C_{32}H_{17}O_6I$, Formel V ($R=CO\cdot CH_3$). B. Bei kurzem Kochen von 2.2'-Diacetoxy-helianthron mit 1,5 Tln. Jod in Pyridin und nachfolgender Acetylierung (HALLER, PERKIN, Soc. 125, 237). — Orangegelbe Nadeln (aus Benzol). F: 282° (HALLER, P.). — Liefert bei längerer Belichtung in Benzol 3-Jod-2.2'-diacetoxy-mesonaphthodianthron (HARDACRE, PERKIN, Soc. 1929, 185).

- 3.3'-Dijod-2.2'-dioxy-mesobenzdianthron, 3.3'-Dijod-2.2'-dioxy-helianthron $m C_{28}H_{12}O_4I_8$, Formel VI (R = H). Zur Konstitution vgl. HARDACRE, PERKIN, Soc. 1929, 181. -Kochen des Diacetats mit Schwefelsäure in Eisessig oder besser mit etwas Diathylamin in Pyridin (H., P., Soc. 1929, 184). Durch Oxydation von 3.3'-Dijod-2.2'-dioxy-dihydrodianthron mit Kaliumpersulfat in verd. Natronlauge (H., P., Soc. 1929, 191). — Dunkelbraune Nadeln (aus Eisessig), grünglänzende Blättchen (aus Pyridin + Eisessig + Salzsäure). Sehr schwer löslich in den gebräuchlichen Lösungsmitteln. Löslich in konz. Schwefelsäure mit blauer Farbe. — Gibt eine grüne Hydrosulfitküpe.
- 3.3'-Dijod-2.2'-diacetoxy-mesobenzdianthron, 3.3'-Dijod-2.2'-diacetoxy-helianthron $C_{33}H_{16}O_{6}I_{3}$, Formel VI (R = CO·CH₃). B. Bei kurzem Kochen von 2.2'-Diacetoxy-helianthron mit 3 Tln. Jod in Pyridin und nachfolgender Acetylierung (HARDACRE, PERKIN, Soc. 1929, 184). — Orangefarbene Prismen aus Aceton). F: 268—270° (Zers.). Löslich in konz. Schwefelsäure mit grüner, rasch in Blau übergehender Farbe.
- 2. 4.4'-Dioxy-mesobenzdianthron, 4.4'-Dioxy-helianthron $C_{28}H_{14}O_4$ (entsprechend Formel VII).
- 4.4'-Dimethoxy-mesobenzdianthron, 4.4'-Dimethoxy-helianthron $C_{30}H_{18}O_4$, Formel VII (X = H). B. Beim Behandeln von 4.4'-Dimethoxy-dianthrachinonyl-(1.1') mit Kupferpulver und konz. Schwefelsäure bei 40° (ECKERT, HAMPEL, B. 60, 1698). — Metallisch glänzende Krystalle (aus Chlorbenzol). Löslich in konz. Schwefelsäure mit blauer Farbe. — Geht in Chlorbenzol-Lösung im Sonnenlicht in 4.4'-Dimethoxy-mesonaphthodianthron über.
- 3.3'-Dibrom-4.4'-dimethoxy-mesobenzdianthron, 3.3'-Dibrom-4.4'-dimethoxy-helianthron $C_{30}H_{16}O_4Br_2$, Formel VII (X = Br). B. Beim Behandeln von 3.3'-Dibrom-4.4'-dimethoxy-

dianthrachinonyl-(1.1') mit Kupferpulver in konz. Schwefelsäure (ECKERT, HAMPEL, B. 60, 1699). — Rote Nadeln (aus Nitrobenzol). Löslich in konz. Schwefelsäure mit blauer Farbe; die verd. Lösung erscheint in der Durchsicht rotviolett. — Geht in Chlorbenzol-Lösung im Sonnenlicht in 3.3'-Dibrom-4.4'-dimethoxy-mesonaphthodianthron über.

v) Oxy-oxo-Verbindungen $C_n H_{2n-44} O_4$.

Oxy-oxo-Verbindungen C28H12O4.

- 1. 2.2'- Dioxy mesonaphthodianthron, 2.2'- Dioxy 1.8.9.1'.8'.9'- naphthodianthron C₂₈H₁₂O₄, Formel I (R = H). Zur Konstitution vgl. Hardacre, Perkin, Soc. 1929, 181. B. Neben anderen Verbindungen beim Erhitzen von 2-Oxy-anthrachinon mit Glucose und nitrathaltiger Kalilauge auf 170—180° (Bradshaw, Perkin, Soc. 121, 921; vgl. Haller, P., Soc. 125, 234). Neben überwiegenden Mengen 2.2'- Dioxy-helianthron bei der Oxydation von 2.2'- Dioxy-dihydrodianthron mit 2 Mol Kaliumferricyanid in kalter verdünnter Natronlauge (Haller, P., Soc. 125, 235, 238; vgl. B., P., Soc. 121, 921). Neben geringen Mengen 2.2'- Dioxy-helianthron bei wochenlanger Belichtung einer Lösung von 2.2'- Dioxy-dianthrachinon in absol. Alkohol (Perkin, Yoda, Soc. 127, 1887). In geringer Menge beim Erhitzen von 2.2'- Diacetoxy-helianthron mit Aluminiumchlorid auf 140—160° (Haller, P., Soc. 125, 238). Orangebraunes Pulver. Schmilzt nicht bis 350° (Haller, P.). Fast unlöslich in Nitrobenzol, schwer löslich in Pyridin. Löslich in konz. Schwefelsäure mit roter Farbe. Gibt ein rotes, in Wasser fast unlösliches Natriumsalz und ein dunkelbraunes, mikrokrystallinisches Sulfat (Haller, P.).
- 2.2'- Dimethoxy mesonaphthodianthron $C_{30}H_{10}O_4$, Formel I (R = CH₃). B. Bei der Belichtung von 2.2'-Dimethoxy-dianthrachinon in Benzol oder siedendem Aceton (Perkin, Yoda, Soc. 127, 1888). Nicht rein erhalten. Mikroskopische Nadeln (aus Nitrobenzol). Schmilzt nicht bis 340°. Sehr schwer löslich in Pyridin. Löslich in Schwefelsäure mit roter Farbe.
- 2.2'-Diacetoxy-mesonaphthodianthron C₃₂H₁₆O₆, Formel I (R = CO·CH₃). B. Bei längerer Einw. von Licht auf Lösungen von 2.2'-Diacetoxy-dianthrachinon in Benzol (PERKIN, YODA, Soc. 127, 1886) oder von 2.2'-Diacetoxy-helianthron in Eisessig oder Benzol (HALLER, PERKIN, Soc. 125, 239). Gelbliche Nadeln (aus Nitrobenzol). Schmilzt nicht bis 350° (H... P., Soc. 125, 238, 239; P., Y.). Sehr schwer löslich in siedendem Benzol (H., P.). Löslich in konz. Schwefelsäure mit roter Farbe (H., P.; P., Y.). Wird durch Chromtrioxyd in siedendem Eisessig unter Bildung wasserlöslicher Produkte oxydiert (H., P.).
- 3-Jod-2.2'-diacetoxy-mesonaphthodianthron $C_{22}H_{15}O_{6}I$, Formel II. B. Bei 3-wöchiger Belichtung einer Lösung von 3-Jod-2.2'-diacetoxy-helianthron in Benzol (Hardacre, Perkin, Soc. 1929, 185). Gelbliche Nadeln. Schmilzt oberhalb 340°. Löslich in konz. Schwefelsäure mit roter Farbe. Gibt bei starkem Erhitzen Jod ab.

I.
$$\begin{array}{c} 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{array}$$
 O \cdot R II.
$$\begin{array}{c} 0 \\ \vdots \\ 0 \cdot \text{CO} \cdot \text{CH}_3 \\ \vdots \\ 0 \cdot \text{CO} \cdot \text{CH}_3 \end{array}$$
 III.
$$\begin{array}{c} 0 \\ \vdots \\ 0 \cdot \text{CH}_4 \\ \vdots \\ 0 \cdot \text{C} \cdot \text{CH}_5 \end{array}$$

2. 4.4'-Dioxy-mesonaphthodianthron C₂₈H₁₂O₄ (entsprechend Formel III).

- 4.4'- Dimethoxy-mesonaphthodianthron $C_{30}H_{16}O_4$, Formel III (X = H). B. Bei der Einw. von Sonnenlicht auf 4.4'- Dimethoxy-helianthron in Chlorbenzol (ECKERT, HAMPEL, B. 60, 1698). Rotbraune Kryställchen (aus Nitrobenzol). Löslich in konz. Schwefelsäure mit roter Farbe und intensiver Fluorescenz.
- 3.3'-Dibrom-4.4'-dimethoxy-mesonaphthodianthron $C_{20}H_{14}O_4B\hat{r}_2$, Formel III (X = Br). B. Aus 3.3'-Dibrom-4.4'-dimethoxy-helianthron in Chlorbenzol im Sonnenlicht (ECKERT, Hampel, B. 60, 1699). Braunrote Kryställchen. Sehr schwer löslich in Nitrobenzol. Zeigt in konz. Schwefelsäure keine Fluorescenz.

w) Oxy-oxo-Verbindungen $C_nH_{2n-48}O_4$.

Oxy-oxo-Verbindungen $C_{34}H_{20}O_4$.

1. 3.9-Bis-[2-oxy-benzoyl]-perylen,
3.9-Disalicoyl-perylen(?) C₃₄H₂₀O₄, s. neben.
stehende Formel, s. im Artikel 3.9-Bis-[2-chlor-benzoyl]-perylen, E II 7, 868.

2. 3.9-Bis-[4-oxy-benzoyl]-perylen C24H20O4, s. obenstehende Formel.

3.9-Bis-[4-methoxy-benzoyl]-perylen, 3.9-Dianisoyl-perylen $C_{36}H_{14}O_4 = (CH_3 \cdot O \cdot C_6H_4 \cdot CO)_2C_{20}H_{10}$. B. Durch Umsetzung von Perylen mit Anisoylchlorid und Aluminiumchlorid in Schwefelkohlenstoff, zuletzt auf dem Wasserbad (ZINKE, FUNKE, B. 58, 2225). — Goldgelbe Blättchen oder Nadeln (aus Nitrobenzol). F: 319,5° (Z., F.). Ultraviolett-Absorptionsspektrum in Benzol: Dadieu, Ph. Ch. [B] 2, 255, 256. Sehr schwer löslich in Alkohol, Benzol, Toluol und Eisessig, leicht in siedendem Nitrobenzol und Anilin; löst sich in konz. Schwefelsäure mit kornblumenblauer Farbe (Z., F.). — Liefert beim Erhitzen mit Aluminiumchlorid auf 170° nicht näher beschriebenes 7.7'-Dioxy-isoviolanthron und 7.7'-Dimethoxy-isoviolanthron; setzt man der Schmelze Braunstein zu, so bildet sich x-Chlor-7.7'-dimethoxy-isoviolanthron (?) $C_{36}H_{19}O_4Cl$ (dunkles Pulver; löslich in konz. Schwefelsäure mit blaugrüner Farbe) (Z., F., B. 58, 2223, 2225).

x) Oxy-oxo-Verbindungen C_nH_{2n-52}O₄.

Oxy-oxo-Verbindungen C₃₄H₁₆O₄.

1. 7.7'-Dioxy-isoviolanthron, 7.7'-Dioxy-isodibenzanthron C₃₄H₁₆O₄, Formel I, und Derivate s. o. im Artikel 3.9-Dianisoyl-perylen.

2. Bz2.Bz2'-Dioxy - isoviolanthron, Bz2.Bz2'-Dioxy - isodibenzanthron C₂₄H₁₆O₄, Formel II (R = H). B. Durch Oxydation von Isoviolanthron (E II 7, 815) mit Mangandioxyd in Schwefelsäuremonohydrat bei Zimmertemperatur oder in 10% igem Oleum unterhalb 5° (I. G. Farbenind., D.R.P. 468957; Frdl. 16, 1490) oder in Gegenwart von Borsäure in konz. Schwefelsäure bei 60° (Scottish Dyes Ltd., D.R.P. 418639; Frdl. 15, 765; Maki, Nagai, B. 70 [1937], 1871). — Schwarzes Pulver mit dunkel blaugrünem Strich. Löslich in konz. Schwefelsäure mit bräunlich rotvioletter Farbe (I.G. Farbenind.), mit dunkelbrauner Farbe (M., N.). — Färbt Baumwolle aus der blauen Küpe stumpf grünblau (M., N.).

Bz2.Bz2'-Dimethoxy-isoviolanthron, Bz2.Bz2'-Dimethoxy-isodibenzanthron C₃₆H₂₀O₄, Formel II (R = CH₃). Zur Konstitution vgl. FIEEZ-DAVID, Frdl. 15, 645. — B. Durch Verschmelzen von Bz1-Chlor-Bz2-methoxy-benzanthron mit alkoh. Kalilauge bei 145—150° (I. G. Farbenind., D.R.P 442511; Frdl. 15, 772) oder von Bz2.Bz2'-Dimethoxy-dibenzanthronyl-(Bz1.Bz1')-sulfid mit alkoh. Kalilauge bei 130—140° (I. G. Farbenind., D.R.P. 448262; Dioxy-isoviolanthron mit Dimethylsulfat und Natriumcarbonat in Nitrobenzol auf 150° (Scottish Dyes Ltd., D.R.P. 417068; Frdl. 15, 761, 762) oder in o-Dichlorbenzol auf 150° (Scottish Dyes Ltd., D.R.P. 417068; Frdl. 15, 761, 762) oder in o-Dichlorbenzol auf Siedetemperatur (Maki, Nagai, B. 70 [1937], 1871) oder mit p-Toluolsulfonsäuremethylester und Natriumcarbonat in Nitrobenzol auf 180° (I. G. Farbenind., D.R.P. 468957; Frdl. 16, 1490). — Dunkelviolettes, metallglänzendes Krystallpulver mit grünblauen Strich (aus Nitrobenzol). Ziemlich leicht löslich in hochsiedenden organischen Lösungsmitteln mit blauer Farbe und roter Fluorescenz; löslich in konz. Schwefelsäure mit bräunlichroter Farbe (M., N.). — Färbt Baumwolle aus blauer, rot fluorescierender Küpe rein blau (M., N.).

3. 3.3'-Dioxy-violanthron, 3.3'-Dioxy-dibenzanthron C₃₄H₁₆O₂, Formel III auf S. 530. B. Durch Verschmelzen von 3-Oxy-benzanthron (?) mit Kaliumhydroxyd und etwas

Alkohol bei 180—270° und Behandeln des Reaktionsproduktes mit Luft (Höchster Farbw., D.R.P. 414924; Frdl. 15, 771). — Fast schwarzes Pulver. Färbt Baumwolle aus dunkelblauer Küpe blau.

4. 5.5'-Dioxy-violanthron, 5.5'-Dioxy-dibenzanthron C₂₄H₁₆O₂, Formel IV (R = H). B. Beim Schmelzen von 5-Chlor-benzanthron mit Kaliumhydroxyd und Phenol bei 220° und Behandeln des Reaktionsprodukts mit Luft (Maki, J. Soc. chem. Ind. Japan Spl. 38, 635 B; C. 1936 II, 468, 469). — Schwarzes Pulver mit grauschwarzem Strich. Löst sich etwas in Phthalsäuredimethylester mit dunkelvioletter Farbe, fast unlöslich in Nitrobenzol, Die Lösung in konz. Schwefelsäure ist dunkelviolett und gibt beim Verdünnen einen grünlichschwarzen Niederschlag. Fast unlöslich in alkal. Na₂S₂O₄-Lösung; die Küpe färbt Baumwolle schwach graublau.

5.5'- Dimethoxy - violanthron, 5.5'- Dimethoxy - dibenzanthron $C_{24}H_{20}O_4$, Formel IV (R = CH₃). B. Beim Schmelzen von 5-Methoxy-benzanthron mit Kaliumhydroxyd und Phenol bei 190—210° und Behandeln des Reaktionsprodukts mit Luft (Maxi, J. Soc. chem. Ind. Japan Spl. 38, 634 B; C. 1936 II, 469). — Violettschwarzes Krystallpulver mit grünlichblauem Strich. Löslich in Phthalsäuredimethylester mit blauer Farbe, etwas löslich in Nitrobenzol mit dunkelgrünblauer Farbe, fast unlöslich in Chlorbenzol. Löslich in konz. Schwefelsäure mit dunkelvioletter Farbe. — Gibt mit alkal. Na₂S₂O₄-Lösung nach Zusatz von Alkohol bei 60° eine violettrote, orangerot fluorescierende Küpe, aus der Baumwolle grünstichig blau gefärbt wird.

5. 6.6'-Dioxy-violanthron, 6.6'-Dioxy-dibenzanthron C₃₄H₁₆O₄ Formel V (R=H). 6.6'-Dimethoxy-violanthron, 6.6'-Dimethoxy-dibenzanthron C₃₆H₂₀O₄, Formel V (R=CH₃). Ein Farbstoff, dem vielleicht diese Konstitution zukommt, s. im Artikel 6-Methoxy-benzanthron (S. 239).

- 6. 7.7'- Dioxy violanthron, 7.7'- Dioxy dibenzanthron C₃₄H₁₆O₄, Formel VI. B. Durch Verschmelzen von 7-Oxy-benzanthron (?) mit Kaliumhydroxyd und etwas Alkohol bei 180—250° (Höchster Farbw., D.R.P. 414203; Frdl. 15, 770). Fast schwarzes Pulver. Färbt Baumwolle aus violetter Küpe dunkelviolett.
- 7. Bz2.Bz2'-Dioxy-violanthron, Bz2.Bz2'-Dioxy-dibenzanthron C₂₄H₁₆O₂ Formel VII (R und R' = H). Zur Konstitution vgl. H. E. FIERZ-DAVID, Künstliche organische Farbstoffe, Ergänzungsband [Berlin 1935], S. 92. B. Durch Oxydation von Violanthron (E II 7, 818) mit Salpeterschwefelsäure bei 25—30° (BASF, D.R.P. 259370; C. 1918 I, 1743; Frdl. 11, 698) oder mit Braunstein in konz. Schwefelsäure bei 60° (BASF), zweckmäßig in Gegenwart von etwas Borsäure (MAKI, AOYAMA, J. Soc. chem. Ind. Japan Spl. 38, 640 B; C. 1936 II, 469). Violettschwarzes Pulver mit dunkelgrünem Strich (M., A.). Löst sich in Phthalsäuredimethylester etwas mit blauvioletter Farbe und roter Fluorescenz, in Nitrobenzol spurenweise mit grüner, beim Kochen in Braun übergehender Farbe und roter Fluorescenz (M., A.). Die Lösung in konz. Schwefelsäure ist rotviolett und gibt mit Wasser einen dunkelgrünen Niederschlag (M., A.).

Reduktion mit NaHSO₃: BASF, D.R.P. 259370; Frdl. 11, 698. Gibt beim Erhitzen mit Borsäure in hochsiedenden Lösungsmitteln, z. B. p-Toluidin (BASF, D.R.P. 260020; C. 1913 I, 2010; Frdl. 11, 699) oder beim Erhitzen mit Borsäure und gleichzeitigen oder nachfolgenden Bromieren (BASF, D.R.P. 280710; C. 1915 I, 32; Frdl. 12, 482) grüne Küpenfarbstoffe. Liefert beim Kochen mit Dimethylsulfat und Natriumcarbonat in Nitrobenzol Bz 2.Bz 2'-Dimethoxy-violanthron (Scottish Dyes Ltd., D.R.P. 417068; Frdl. 15, 760). Überführung in grünblaue Küpenfarbstoffe durch Ümsetzung mit Benzotrichlorid und mit 2-Trichlormethylanthrachinon: BASF, D.R.P. 395691; Frdl. 14, 896; vgl. BASF, D.R.P. 403394; Frdl. 14, 896. Bei der Umsetzung mit Äthylenbromid oder Äthylenglykol-di-p-toluolsulfonat in Gegenwart von Natriumcarbonat in siedendem Trichlorbenzol entsteht ein blauer Farbstoff; Ümsetzung mit Äthylenglykol-methyläther-p-toluolsulfonat und analogen Verbindungen ergibt blaugrüne bis grüne Farbstoffe, die sich besonders zum Färben von Zaponlacken eignen (I. G. Farbenind., D.R.P. 457005; Frdl. 16, 1381). Überführung in blaue bis blaugrüne Küpenfarbstoffe durch unsymmetrische Verätherung: I. G. Farbenind., D.R.P. 456582; Frdl. 16, 1488.

Beim Verschmelzen mit Zinkchlorid bei 310—320° und nachfolgenden Erhitzen mit p-Toluolsulfonsäuremethylester und Natriumcarbonat in Nitrobenzol auf 165—170° entsteht ein blauer Küpenfarbstoff (Lösung in Schwefelsäure weinrot, Küpe violett), der bei der Oxydation mit Braunstein in Gegenwart von Borsäure in konz. Schwefelsäure bei 60° und nochmaligen Umsetzung mit p-Toluolsulfonsäuremethylester in einen gelbgrünen Küpenfarbstoff (Küpe blau) übergeht (Höchster Farbw., D.R.P. 420146, 420147; Frdl. 15, 786). — Färbt Baumwolle aus blauer Küpe gelbstichig grün (BASF, D.R.P. 259370; Frdl. 11, 698; Maki, AOYAMA, J. Soc. chem. Ind. Japan Spl. 38 [1935], 640 B).

Bz2-Oxy-Bz2'-methoxy-violanthron, Bz2-Oxy-Bz2'-methoxy-dibenzanthron $C_{35}H_{16}O_{3}$, Formel V (R = H, R' = CH₃). B. Durch Einw. von p-Toluolsulfonsäuremethylester auf das Mononatriumsalz des Bz2.Bz2'-Dioxy-violanthrons (I. G. Farbenind., D.R.P. 456582; Frdl. 16, 1488). Durch Behandeln von Bz2.Bz2'-Dimethoxy-violanthron mit Schwefelsäuremonehydrat bei ca. 50° (I. G. Farbenind.). — Blauviolettes Krystallpulver. Löst sich in Nitrobenzol mit blauer Farbe, in Acetanhydrid + Pyridin mit violettblauer Farbe und schwacher roter Fluorescenz. — Liefert beim Erhitzen mit p-Toluolsulfonsäure-[β -chlor-āthylester] und Natrium-carbonat in Trichlorbenzol auf 210° oder beim Kochen mit Athylenglykol-di-p-toluolsulfonat in Nitrobenzol blaugrüne Küpenfarbstoffe. — Färbt Baumwolle grünlichblau.

Bz 2.Bz 2'- Dimethoxy-violanthron, Bz 2.Bz 2'- Dimethoxy - dibenzanthron, Indanthrefbrillantgrün B, Caledon Jade Green C₃₆H₂₀O₄, Formel VII (R und R' = CH₃). Zur Konstitution vgl. H. E. Fierz-David, Frdl. 15, 644; Künstliche organische Farbstoffe, Ergänzungsband [Berlin 1935], S. 92. — B. Beim Verschmelzen von Bz 2-Methoxy-benzanthron mit Kaliumhydroxyd und Alkohol bei 130—140° und Behandeln des Reaktionsproduktes mit Luft (Höchster Farbw., D.R.P. 413738; Frdl. 15, 766). Beim Kochen von Bz 2.Bz 2'-Dioxy-violanthron mit Dimethylsulfat und Natriumcarbonat in Nitrobenzol (Scottish Dyes Ltd., D.R.P. 447068; Frdl. 15, 760). Die blaue Küpe des Bz 2.Bz 2'-Dimethoxy-violanthrons wird beim Kochen von Bz 2.Bz 2'-Dioxy-violanthron mit Natriumcarbonat, Zinkstaub und Dimethylsulfat in Trichlorbenzol und Auflösen des rotbraunen Reaktionsproduktes in alkal. Na₂S₂O₄-Lösung erhalten (I. G. Farbenind., D.R.P. 470184; Frdl. 16, 1133). — Grünlichblaues bis grünschwarzes Pulver (aus Nitrobenzol). Löst sich in konz. Schwefelsäure mit rotvioletter Farbe (Scottish Dyes Ltd.). — Überführung in eine als Wollfarbstoff verwendbare Sulfonsäure: Scottish Dyes Ltd., D.R.P. 417068; Frdl. 15, 761; in grüne Küpenfarbstoffe (Indanthrenbrillantgrün G G, Indanthrenbrillantgrün 4 G; vgl. Schultz Tab., 7. Aufl., Nr. 1269) durch Chlorierung und Bromierung: I. G. Farbenind., D.R.P. 436828; Frdl. 15, 766; in grüne und blauviolette Küpenfarbstoffe durch Kondensation mit Aldehyden: I. G. Farbenind., D.R.P. 436829; Frdl. 15, 767; vgl. I. G. Farbenind., D.R.P. 438478; Frdl. 15, 768. — Färbt Baumwolle aus der blauen Küpe lebhaft grün (Höchster Farbw., D.R.P. 413738; Scottish Dyes Ltd., D.R.P. 417068; vgl. Schultz Tab., 7. Aufl., Nr. 1269, 1270).

Bz 2.Bz 2'-Diäthoxy-violanthron, Bz 2.Bz 2'-Diäthoxy-dibenzanthron $C_{38}H_{24}O_4$, Formel VII (R und R' = C_4H_5). B. Durch Kochen von Bz 2.Bz 2'-Dioxy-violanthron mit p-Toluolsulfonsäureäthylester und Natriumcarbonat in Trichlorbenzol (BASF, D.R.P. 398485; Frdl. 14, 897). — Krystalle (aus Trichlorbenzol). — Färbt Baumwolle aus der blauen Küpe blaugrün.

Ein auf ähnliche Weise durch Umsetzung von Bz 2.Bz 2'-Dioxy-violanthron mit Diäthylsulfat und Natriumcarbonat in siedendem Nitrobenzol erhaltener Farbstoff, der Baumwolle aus blauer Küpe bläulichviolett färbt (Scottish Dyes Ltd., F. P. 543910; D.R.P. 417068; Frdl. 15, 761), hat wahrscheinlich eine andere Konstitution (BASF).

Bz2-Oxy-Bz2'-butyloxy-violanthron, Bz2-Oxy-Bz2'-butyloxy-dibenzanthron $C_{38}H_{24}O_4$, Formel VII (R = H, R' = $[CH_2]_3 \cdot CH_3$). B. Durch Einw. von p-Toluolsulfonsäure-butylester auf Bz2.Bz2'-Dioxy-violanthron in indifferenten Verdünnungsmitteln in Gegenwart von Dinatriumphosphat (I. G. Farbenind., D.R.P. 456582; Frdl. 16, 1488). — Blauviolett. Löst sich in Nitrobenzol mit blauer Farbe, in Acetanhydrid + Pyridin mit violettblauer Farbe und roter Fluorescenz. — Liefert mit p-Toluolsulfonsäuremethylester und Natriumcarbonat in siedendem Nitrobenzol einen blaugrünen Küpenfarbstoff. — Färbt Baumwolle aus der Küpe marineblau.

Bz 2.Bz 2'-Bis-methylmercapto-violanthron, Bz 2.Bz 2'-Bis-methylmercapto-dibenzanthron C₃₈H₂₀O₂S₂, Formel VIII. B. Durch Verschmelzen von Bz 2-Methylmercapto-benzanthron mit Kaliumhydroxyd und Alkohol bei 140—180° und Behandeln des Reaktionsproduktes mit Luft (Höchster Farbw., D.R.P. 410011; Frdl. 15, 754). — Blauschwarz. — Färbt Baumwolle aus dunkelblauer Küpe grünlichblau. [OSTERTAG]

OXY-OXO-VERBINDUNGEN C_nH_{2n-2}O₅ BIS C_nH_{2n-8}O₅ [Syst. Nr. 820

4. Oxy-oxo-Verbindungen mit 5 Sauerstoffatomen.

a) Oxy-oxo-Verbindungen $C_n H_{2n-2} O_6$.

1. Oxy-oxo-Verbindungen CoH14Os.

1.1.3.3-Tetrakis-oxymethyl-cyclopentanon-(2) $H_{a}O_{1a}O_{5} =$ H_aC·C(CH_a·OH)_aCO. B. Aus 1 Mol Cyclopentanon und 4 Mol Formaldehyd in Kalkwasser (MANNICH, BROSE, B. 56, 843). — Tafeln von süßem Geschmack (aus Alkohol). F: 143° (korr.). Leicht löslich in Wasser, Alkohol und Methanol, schwer in Aceton, unlöslich in Äther und Benzol. — Bei der Reduktion mit Natrium und Alkohol entsteht ein gelbes, amorphes, unlösliches Pulver (M., Br., B. 56, 837). Beim Behandeln mit Formaldehyd und konz. Salzsäure erhält man den Bismethylen-

ather (s. nebenstehende Formel; Syst. Nr. 3011); mit Benzaldehyd und konz. Salzsäure entsteht der Bisbenzylidenäther (Syst. Nr. 3011) (M., Br., B. 56, 844).

2. Oxy-oxo-Verbindungen C₁₀H₁₈O₅.

1.1.3.3-Tetrakis-oxymethyl-cyclohexanon-(2) $C_{10}H_{18}O_5 =$

 $H_3C \subset CH_2 \cdot C(CH_3 \cdot OH)_3 \subset O$. B. Aus 1 Mol Cyclohexanon und 4 Mol Formaldehyd in Gegenwart von Kalkwasser (Mannich, Brose, B. 56, 840). — Krystalle (aus Alkohol). F: 143° (korr.). Leicht löslich in Wasser, Alkohol und Methanol, schwer in Aceton und Chloroform, unlöslich in Benzol. — Reagiert nicht mit den üblichen Keton-reagenzien (M., Br., B. 56, 836). Liefert mit Formaldehyd und Salzsäure den Bismethylenäther (s. nebenstehende Formel; Syst. Nr. 3011); mit Benzaldehyd und Salzsäure entsteht der Bisbenzylidenäther (Syst. Nr. 3011) (M., Br., B. 56, 840).

Tetraacetat $C_{18}H_{26}O_9 = (CH_3 \cdot CO \cdot O \cdot CH_2)_4C_8H_6O$. B. Aus 1.1.3.3-Tetrakis-oxymethylcyclohexanon-(2) beim Kochen mit Natriumacetat und Acetanhydrid (Mannich, Brose, B. 56, 840). — Stark lichtbrochende Prismen (aus Aceton + Petroläther). F: 140° (korr.).

b) Oxy-oxo-Verbindungen $C_n H_{2n-8} O_5$.

1. Oxy-oxo-Verbindungen $C_sH_2O_s$.

Bicyclo-[0.1.2]-pentandiol-(1.4)-trion-(2.3.5), Krokonsäure $C_5H_2O_5$, s. nebenstehende Formel (H 488). B. In geringer Menge bei der Einw. von Natronlauge auf die Disulfit-Verbindung des Glyoxals an der Luft (Homolka, B. 54, 1395).

2. Oxy-oxo-Verbindungen $C_6H_4O_5$.

6-Chlor-2.3.5 - tris - [2 - nitro - phenylmercapto] - benzochinon-(1.4) C₂₄H₁₃O₈N₃ClS₃, s. nebenstehende Formel. B. Beim Kochen von 1 Mol Chloranil mit 2 Mol 2-Nitro-thiophenol in Alkohol (FBIES, OCHWAT, B. 56, 1303; W. PENSE, Dissertation [Braunschweig 1922]). — Hellrote Krystalle (aus Xylol). Verpufft beim Erhitzen (P.). Sehr leicht löslich in heißem Nitrobenzol, löslich in heißem Xylol, fast unlöslich in Alkohol, Eisessig, Benzin, Benzol und Toluol (P.).

3. Oxy-oxo-Verbindungen C,H,O,.

3.6-Dloxy-2.4-dimethoxy-benzaldehyd $C_9H_{10}O_5$, Formel I. B. Entsteht in geringer Menge beim Einleiten von mit Kohlendioxyd verdünnter Blausäure und Chlorwasserstoff in eine warme Lösung von 2.5-Dioxy-1.3-dimethoxy-benzol in Essigester (CHAPMAN, PERKIN, ROBINSON,

CO · CH₃

CHO O · CHa но O · CHa но I. II. O·CH_a OH O·CH_a O·CH₃

CO · CHa

Schwefeldioxyd enthaltendem Wasser). F: 135° bis 136°. Löst sich in wäßr. Natronlauge mit goldgelber Farbe. Die alkoh. Lösung gibt mit wenig Eisenchlorid eine grüne, mit überschüssigem Eisenchlorid

Soc. 1927, 3029). — Hellbraune Nadeln (aus

eine braune Färbung. — Gibt ein schwer lösliches Semicarbazon.

6-Oxy-2.3.4-trimethoxy-benzaldehyd, Antiarolaldehyd $C_{10}H_{12}O_5$, Formel II. B. Beim Behandeln von Antiarol (E II 6, 1118) in Ather mit Blausaure und Chlorwasserstoff im Kohlendioxydstrom (Chapman, Perkin, Robinson, Soc. 1927, 3030). — Prismen (aus verd. Methanol), Nadeln (aus Wasser). F: 65°. Schwer löslich in siedendem Wasser, leicht in Alkohol, Ather, Benzol, Chloroform, Aceton und Eisessig. Löst sich in wäßr. Natronlauge mit grünlichgelber Farbe. Gibt mit Eisenchlorid in Wasser oder Alkohol eine bräunlichviolette Färbung.

Antiarolaidehyd - semicarbazon $C_{11}H_{15}O_5N_3=(HO)(CH_3\cdot O)_3C_6H\cdot CH:N\cdot NH\cdot CO\cdot NH_2$. Nadeln (aus 80% igem Alkohol). Wird bei 210^0 gelb und schmilzt bei 245^0 unter Zersetzung (Chapman, Perkin, Robinson, Soc. 1927, 3030).

4. Oxy-oxo-Verbindungen $C_8H_8O_8$.

1. 2.3.4.6-Tetraoxy-acetophenon C₈H₈O₅, Formel I.

но он OH Dimethyläther $C_{10}H_{12}O_5 = (HO)_2(CH_3 \cdot O)_2C_6H \cdot$ O · CH a OH CO·CH₃ (EI 731). Dieser Verbindung kommt viel-OH leicht die Konstitution eines 3.6-Dioxy-2.4-dimethoxy-acetophenons zu (MAUTHNER, J. pr. [2] 147 [1937], 290). — B. Beim Erwärmen
von Antiarol (E II 6, 1118) mit Acetylchlorid bei Gegenwart von Aluminiumchlorid in Nitrobenzol

auf dem Wasserbad, neben anderen Produkten (Charman, Perkin, Robinson, Soc. 1927, 3033). -Gelbe Prismen (aus Benzol). F: 160-161° (CH., P., R.).

2-0xy-3.4.6-trimethoxy-acetophenon C₁₁H₁₄O₅, Formel II. Diese Konstitution kommt der E I 732 als Trimethyläther vom Schmelzpunkt 105—107° bezeichneten Verleichen Verleich bindung zu (BARGELLINI, G. 49 II [1919], 57; HATTORI, Acta phytoch. 5, 103, 110; C. 1981 I, 1760; WESSELY, KALLAB, M. 60 [1932], 29; BAR., ZORAS, G. 64 [1934], 192; vgl. a. BAKER, Soc. 1941, 666). — F: 112—113° (H.; BAR., Z.). — Liefert beim Behandeln mit Veratrumaldehyd in wäßrig-alkoholischer Natronlauge 2'-Oxy-3.4.3'.4'.6'-pentamethoxy-chalkon (S. 602) (BAR.).

Eine Verbindung, die dem von Nierenstein (Soc. 111, 7) als 2-Oxy-3.4.6-trimethoxyacetophenon angeschenen Trimethyläther vom Schmelzpunkt 125-1260 entspricht, konnte Baker (Soc. 1941, 666, 668) nicht erhalten; der von Nierenstein (Soc. 111, 8) als 6-Oxy-2.3.4-trimethoxy-acetophenon angesehene Trimethyläther vom Schmelzpunkt 164-165° hat wohl auch nicht diese Konstitution; von Baker (Soc. 1941, 668) dargestelltes 6-Oxy-2.3.4-trimethoxy-acetophenon ist ein Öl (Kp₂₇: 184—186°).

2.3.4.6-Tetramethoxy-acetophenon $C_{12}H_{16}O_5 = (CH_3 \cdot O)_4C_6H \cdot CO \cdot CH_3$ (E I 732). Zur Bildung aus 1.2.3.5-Tetramethoxy-benzol durch Behandeln mit Acetylchlorid und Aluminium-chlorid vgl. Kuroda, C. 1929 II, 432; Soc. 1930, 767. — Nadeln. — Gibt beim Erwärmen mit Anisaldehyd in wäßrig-methylalkoholischer Kalilauge 2.3.4.6.4'-Pentamethoxy-chalkon.

2. 2.4.6. ω - Tetraoxy - acetophenon, ω - Oxy - phloracetophenon $C_8H_8O_5$, s. nebenstehende Formel.

OH 2.4.6-Trioxy- ω -methoxy-acetophenon, ω -Methoxy-phloracetophenon $C_9H_{10}O_5=(HO)_3C_9H_2\cdot CO\cdot CH_2\cdot O\cdot CH_3$. B. Man kondensiert 4-Methoxy-acetonitril mit Phloroglucin und zersetzt das entstandene salzsaure Imid

(Krystallpulver aus Methanol, das sich zwischen 238 und 241° zersetzt) durch Kochen mit Wasser (Slater, Stephen, Soc. 117, 316; Robinson, Venhataraman, Soc. 1929, 63). — Nadeln mit 1 H₂O (aus Wasser). Schmilzt wasserfrei bei 192° (Sl., St.). — Liefert beim Erhitzen mit Acetanhydrid und wasserfreiem Natriumacetat auf 170° sowie beim Erhitzen mit Acetylsalicylsäureanhydrid und dem Natriumsalz der Acetylsalicylsäure auf 160° und nachfolgenden Verseifen mit wäßriger oder alkoholischer Kalilauge 5.7-Dioxy-3-methoxy-2-methyl-chromon (Syst. Nr. 2553) (Kalff, Robinson, Soc. 127, 1972); beim Erhitzen mit 2-Methoxy-benzoesäure-anhydrid und dem Natriumsalz der 2-Methoxy-benzoesäure auf 1800 und nachfolgenden Verseifen erhält man 5.7-Dioxy-3-methoxy-2-[2-methoxy-phenyl]-chromon (Syst. Nr. 2568) (K., R., Soc. 127, 1970). — Gibt mit Eisenchlorid in Wasser eine violette Färbung (SL., St.).

2.4.6. ω -Tetramethoxy-acetophenon $C_{13}H_{14}O_5 = (CH_3 \cdot O)_3C_4H_2 \cdot CO \cdot CH_2 \cdot O \cdot CH_3$ (H 491). B. Aus 2.4.6-Trioxy- ω -methoxy-acetophenon beim Behandeln mit Dimethylsulfat in verd. Natronlauge (SLATER, STEPHEN, Soc. 117, 316). — Krystalle (aus Methanol). F: 50°.

3. 3.4.5.ω - Tetraoxy - acetophenon C₆H₈O₅, s. nebenstehende

HO · OH CO · CH³ · OH

ω - 0 xy - 3.4.5 - trimethoxy - acetophenon $C_{11}H_{14}O_5 = (CH_5 \cdot O)_3C_5H_2 \cdot CO \cdot CH_2 \cdot OH$. B. Beim Kochen von 3.4.5-Trimethoxy-α-acetoxy-benzoylessigsäureäthylester mit 10% iger Schwefelsäure (Bradley, Robinson, Soc. 1928, 1551). — Nadeln (aus Benzol + Petroläter). F: 87—88°. Leicht in Albeit und Benzol Belieb in Wossen.

1928, 1551). — Nadeln (aus Benzol + Petroläther). F: 87—88°. Leicht löslich in Alkohol und Benzol, löslich in Wasser. — Reduziert Fehlingsche Lösung rasch. — Das Phenylosazon schmilzt bei 137—138°.

- 4-0xy-3.5.ω-frimethoxy-acetophenon C₁₁H₁₄O₅ = (HO)(CH₂·O)₂C₆H₃·CO·CH₃·O·CH₃. B. Beim Kochen von 3.5-Dimethoxy-4-acetoxy-benzoylchlorid mit der Natriumverbindung des α.γ-Dimethoxy-acetessigsäure-āthylesters und Behandeln des Reaktionsprodukts mit verd. Kalilauge erst bei Zimmertemperatur, dann bei Siedehitze (Bradley, Robinson, Soc. 1928, Kochen Lösungs-mitteln. Löst sich in verdünnten wäßrigen Alkalien mit gelber Farbe. Gibt mit alkoh. Eisenchlorid-Lösung eine schwache grüne Färbung.
- 3.4.5. ω -Tetramethoxy-acetophenon $C_{12}H_{16}O_5=(CH_3\cdot O)_3C_6H_2\cdot CO\cdot CH_2\cdot O\cdot CH_3$. B. Aus Trimethyläthergallussäurechlorid durch Umsetzung mit der Natriumverbindung des $\alpha.\gamma$ -Dimethoxy-acetossigsäureäthylesters in Äther auf dem Wasserbad und Behandlung des Reaktionsprodukts mit wäßr. Kalilauge erst bei Zimmertemperatur, dann in der Siedehitze (Pratt, Robinson, Soc. 127, 173). Nadeln (aus Benzol + Petroläther). F: 54°. Kp₁₅: 212°.
- ω-Oxy-3.5-dimethoxy-4-benzyloxy-acetophenon $C_{17}H_{18}O_5 = (C_6H_5 \cdot CH_2 \cdot O)(CH_3 \cdot O)_2C_6H_5 \cdot CO \cdot CH_2 \cdot OH$. B. Beim Kochen von 3.5-Dimethoxy-4-benzyloxy-ω-diazo-acetophenon (S. 535) mit wäßrig-alkoholischer Schwefelsäure (Bradley, Robinson, Soc. 1928, 1560). Entstand einmal beim Behandeln der Kaliumverbindung des 3.5-Dimethoxy-4-benzyloxy-benzoylessigsäure-äthylesters mit Dibenzoylperoxyd in Benzol in der Kälte und folgenden Erhitzen des Reaktionsprodukts mit Wasser im Rohr auf 160—170°, neben 3.5-Dimethoxy-4-benzyloxy-ω-benzoyloxy-acetophenon (Br., R., Soc. 1928, 1558). Nadeln (aus Petroläther + wenig Benzol), Krystalle (aus Wasser). F: 87—89° (Br., R., Soc. 1928, 1558). Löslich in heißem Wasser. Reduziert rasch Fehlingsche Lösung in der Kälte. Das Phenylosazon sintert bei 110° und schmilzt bei 131°.
- 3.5 Dimethoxy 4 benzyloxy ω acetoxy acetophenon $C_{19}H_{20}O_8 = (C_8H_5 \cdot CH_2 \cdot O)(CH_3 \cdot O)_9C_8H_2 \cdot CO \cdot CH_2 \cdot O \cdot CH_3$. B. Beim Erwärmen von 3.5 Dimethoxy 4 benzyloxy ω -diazo-acetophenon mit Eisessig auf 60—70° und nachfolgenden kurzen Kochen (Bradley, Robinson, Soc. 1928, 1560). Nadeln (aus Petroläther). F: 60,5—61°. Leicht löslich in Alkohol, Benzol und Chloroform. Wird durch warme Fehlingsche Lösung rasch oxydiert.
- ω-Methoxy-3.4.5-triacetoxy-acetophenon $C_{15}H_{16}O_8 = (CH_3 \cdot CO \cdot C)_8C_6H_2 \cdot CO \cdot CH_3 \cdot O \cdot CH_3$. Beim Kochen von 3.4.5-Triacetoxy-benzoylohlorid mit der Natriumverbindung des α.γ-Dimethoxy-acetessigsäuremethylesters in Äther, Behandeln des Reaktionsprodukts mit wäßrig-alkoholischer Kalilauge in einer Wasserstoff-Atmosphäre erst bei Zimmertemperatur, dann in der Siedehitze, und folgenden Erhitzen mit Acetylchlorid (GATEWOOD, ROBINSON, Soc. 1926, 1965). Tafeln (aus Alkohol). F: 132—133°. Unlöslich in kalter verdünnter Natronlauge.
- 3.4.5. ω -Tetramethoxy-acetophenon-semicarbazon $C_{13}H_{19}O_5N_3=(CH_2\cdot O)_3C_6H_2\cdot C(:N\cdot NH\cdot CO\cdot NH_2)\cdot CH_2\cdot O\cdot CH_3$. Nadeln (aus wäßr. Alkohol). F: 158° (Pratt, Robinson, Soc. 127, 173).

5. Oxy-oxo-Verbindungen C₁₆H₂₄O₅.

2.4.5.6-Tetraoxy-3-isoamyl-1-isovaleryl-benzol, 2.4.5.6-Tetraoxy-3-isoamyl-isovalerophenon, Humulohydrochinon C₁₆H₂₄O₅, s. nebenstehende Formel. Zur Konstitution vgl. Wieland, B. 58, 105, 2013; Wiel, Martz, B. 59, 2352. — B. Aus Humulon (S. 537) durch Hydrierung bei Gegenwart von Palladium(II)-chlorid in Methanol (Wöllmer,

$$\begin{array}{c} \text{HO} \cdot \overset{\bullet}{\bigodot} \cdot \text{CH}_3 \cdot \text{CH}(\text{CH}_3)_3 \\ \text{HO} \cdot \overset{\bullet}{\bigodot} \cdot \text{OH}_3 \cdot \text{CH}(\text{CH}_3)_3 \end{array}$$

B. 49 [1916], 791; WIELAND, B. 58, 110). Aus Humulochinon (S. 536) durch Reduktion mit schwefliger Säure in wäßrig-alkoholischer Lösung (Wö., B. 49, 790) oder mit Zinkstaub und Eisessig in der Kälte (Wie., B. 58, 110). — Gelbe Krystalle (aus Benzol). Schmilzt im offenen Röhrchen bei 118° (unter Rotfärbung) (Wie., B. 58, 111), unter Luftabschluß bei 123—125° (Wö., B. 49, 791). — Liefert beim Durchleiten von Luft durch die schwach erwärmte methylalkoholische Lösung (Wö., B. 49, 792) sowie beim Behandeln mit Sauerstoff in Gegenwart von Palladium (Wie., B. 58, 110) Humulochinon. Oxydation durch Sauerstoff bei Gegenwart von Bleiacetat: Wö., B. 58, 675.

6. Oxy-oxo-Verbindungen C₂₁H₈₄O₅.

3.5-Diisoamyl-1-isovaleryl-cyclohexen-(1)-diol-(2.3)-dion-(4.6), Tetrahydrokumulon C₁₁H₂₄O₁, s. nebenstehende Formel bzw. desmotrope Form. Zur Konstitution vgl. Wieland, B. 58, 2013; W.,

MAETZ, B. 59, 2352. — B. Das Bleisalz
entsteht aus 2.4.6-Trioxy-3.5-diisoamylisovalerophenon (S. 454) beim Schütteln (CH₃)₂CH-CH₂

c) Oxy-oxo-Verbindungen $C_n H_{2n-10} O_5$.

1. Oxy-oxo-Verbindungen $C_8H_6O_5$.

3.4.5-Trimethoxy- ω -oximino-acetophenon $C_{11}H_{13}O_5N$, s. nebenstehende Formel. B. Beim Aufbewahren von 3.4.5-Trimethoxy-acetophenon mit Isoamylnitrit und Natriumäthylat-Lösung in der Kälte (Sonn, B. 58, 1105). — Hellgelbe Nadeln (aus verd. Alkohol). F: 95°. $CH_3 \cdot O$ -Leicht löslich in Alkohol und Essigester, sehr schwer löslich in kaltem Wasser. — Liefert beim Behandeln mit Zinn(II)-chlorid und rauchender Salzsäure in kaltem Alkohol ω -Amino-3.4.5-trimethoxy-acetophenon.

 $\begin{array}{c} O \cdot CH^{2} \\ CH^{2} \cdot O \cdot \overbrace{\hspace{1cm} O \cdot CH^{2}} \\ CO \cdot CH : N \cdot OH \end{array}.$

3.5-Dimethoxy-4-benzyloxy- ω -oximino-acetophenon $C_{17}H_{17}O_5N = C_6H_5 \cdot CH_2 \cdot O \cdot C_6H_4(O \cdot CH_5)_2 \cdot CO \cdot CH : N \cdot OH$. B. Aus 3.5-Dimethoxy-4-benzyloxy-acetophenon beim Behandeln mit Isoamylnitrit und Natriumäthylat in Alkohol + Äther unter Kühlung (Bradley, Robinson, Soc. 1928, 1565). — Gelbe Prismen (aus Petroläther + wenig Chloroform). F: 107—108°.

[3.5-Dimethoxy-4-benzyloxy-phenyl]-glyoxal-dioxim $C_{17}H_{18}O_5N_8=C_6H_5\cdot CH_2\cdot O\cdot C_6H_2(O\cdot CH_9)_8\cdot C(:N\cdot OH)\cdot CH:N\cdot OH.$ Prismen (aus verd. Alkohol). F: 141—142° (Bradley, Robinson, Soc. 1928, 1566). — Gibt mit Nickel- und Kobaltacetat in verd. Alkohol orangerote bzw. rötlichbraune Niederschläge.

3.5-Dimethoxy-4-benzyloxy- ω -diazo-acetophenon $C_{17}H_{16}O_4N_2=C_6H_5\cdot CH_2\cdot O\cdot C_6H_2(O\cdot CH_2)_3\cdot CO\cdot CH:N:N.$ B. Beim Behandeln von 3.5-Dimethoxy-4-benzyloxy-benzoylchlorid mit Diazomethan in Äther bei —10° (Bradley, Robinson, Soc. 1928, 1559). — Citronengelbe Tafeln oder Prismen (aus Benzol + Petroläther). F: 122—123° (Zers.). Leicht löslich in Alkohol und Benzol, schwer in Äther, sehr schwer in Petroläther. — Wird durch Säuren und durch Jod in alkoh. Lösung unter Stickstoffentwicklung rasch zersetzt. Zersetzt sich in Diisoamyläther bei 130° in Gegenwart von Tonscherben unter Bildung eines bei 58—59° schmelzenden Produktes. Beim Kochen mit wäßrig-alkoholischer Schwefelsäure entsteht ω -Oxy-3.5-dimethoxy-4-benzyloxy-acetophenon (S. 534). Liefert beim Erwärmen mit Elsessig auf 60—70° und nachfolgenden kurzen Kochen 3.5-Dimethoxy-4-benzyloxy- ω -acetoxy-acetophenon (S. 534).

2. Oxy-oxo-Verbindungen $C_{10}H_{10}O_{5}$.

2.4.6-Trioxy-1.3-diacetyl-benzol, 2.4-Diacetyl-phloroglucin, Diacetophloroglucin C₁₀H₁₀O₅, Formel I
(H 493; E I 733). Zur Konstitution vgl.
Sonn, Winzer, B. 61, 2303.

CO CH₃
CO CH₃
CH₄O CH₅
CO CH₃
CH₅O CH₅
CO CH₅
CO CH₅
CO CH₆
CO CH₇
CO CH₇
CO CH₈
CO CH₈
CO CH₈
CO CH₈
CO CH₉
CO CH

2-0xy-4.6-dimethoxy-1.3-diacetyl-benzol, 2.4-Diacetyl-phloroglucin-1.5-dimethyläther $C_{12}H_{14}O_5$, Formel II. B. Aus Phloroglucindimethyläther und Acetonitril in Äther beim Einleiten von Chlorwasserstoff und Erwärmen des Reaktionsprodukts mit Wasser (Shinoda, J. pharm. Soc. Japan 1927, 111; C. 1928 I, 333). — Nadeln. F: 152—153°. Schwer löslich in Alkohol. — Gibt mit Eisenchlorid in Alkohol eine violette Färbung.

3. Oxy-oxo-Verbindungen $C_{11}H_{12}O_5$.

6 - Methoxy - 1 - methyl - 1.3 - diacetyl - cyclohexadien - (2.5) - ol - (2) - on - (4) $C_{12}H_{14}O_5 = OC C(CO \cdot CH_3) \cdot C(O^+ \cdot CH_3) \cdot CO^+ \cdot CH_3$ bzw. desmotrope Form. B. Aus einer Verbindung $C_{14}H_{16}O_7$ (Syst. Nr. 2532 bei Usnetolmethyläther) durch Erwärmen mit Zinkstaub und 30% iger Kalilauge auf 90° (Sohöpf, Heuor, A. 459, 285). — Nadeln (aus verd. Methanol). F: 97—99°. — Die alkoh. Lösung gibt mit Eisenchlorid eine rote Färbung.

2-Acetoxy-1-methyl-1.3-diacetyl-cyclohexadien-(2.5)-ol-(6)-on-(4) bzw. 2-Acetoxy-1-methyl-1.3-diacetyl-cyclohexen-(2)-dion-(4.6) C₁₃H₁₄O₆ =

OC C(CO·CH₃):C(O·CO·CH₂) C CO·CH₃ bzw. desmotrope Form. B. Beim Behandeln von Usnetol (Syst. Nr. 2532) mit Ozon in Chloroform oder Essigester unter Kühlung und Zersetzen des Reaktionsprodukts mit Wasser (SCHÖFF, HEUCK, A. 459, 283). — Stäbchen (aus Alkohol). F: 172°. Löslich in Alkalien mit gelber Farbe. Die alkoh. Lösung wird durch Eisenchlorid rot gefärbt. — Liefert beim Erhitzen mit 4n-Natronlauge auf dem Wasserbad 2-Methyl-phloroglucin. Beim Erwärmen mit methylalkoholischer Salzsäure entsteht 1-Methyl-1.3-diacetyl-cyclohexadien-(2.5)-diol-(2.6)-on-(4) (E II 7, 880).

4. Oxy-oxo-Verbindungen C16H22O5.

3.5 - Dioxy - 6 - isoamyl - 2 - isovalerylbenzochinon-(1.4), Humulochinon $C_{16}H_{22}O_5$, s. nebenstehende Formel. Zur Konstitution vgl. WIELAND, B. 58, 106, 2013; WIE., MARTZ, B. 59, 2352. — B. Aus Humulohydrochinon (S. 534) beim Durchleiten von Luft durch die schwach

$$(CH_3)_3CH \cdot CH_3 \cdot CH_3 \cdot CH_3 \cdot CH \cdot CH_3 \cdot CH \cdot CH_3)_2$$

$$HO \cdot \bigcup_{i=0}^{10} \cdot OH$$

erwärmte methylalkoholische Lösung (Wöllmer, B. 49 [1916], 792) oder beim Behandeln mit Sauerstoff in Gegenwart von Palladium (Wie., B. 58, 110). — Die aus Methanol krystallisierenden roten Nadeln enthalten Krystall-Methanol, das beim Schmelzen bzw. Aufbewahren im Vakuum entweicht. F: 63° (Wie., B. 58, 110), 63—64° (Wö., B. 49, 793). — Oxydation durch Sauerstoff in Gegenwart von Bleiacetat: Wö., B. 58, 675. Liefert bei der Reduktion mit schwessiger Säure in wäßrig-alkoholischer Lösung Humulohydrochinon (Wö., B. 49, 790; vgl. a. Wie., B. 58, 110); diese Verbindung entseth auch bei der Behandlung mit zinkstaub und Eisessig in der Kälte (Wie., B. 58, 110). Beim Aufbewahren oder Kochen mit verd. Natronlauge erhält man Dihydrohumulinsäure (S. 431) (Wie., B. 58, 111). Die Lösung in verd. Natronlauge liefert beim Behandeln mit einer 2 Äquivalenten Brom entsprechenden Menge Bromwasser unter Kühlung Isohumulinsäure (E II 7, 851) (Wie., B. 58, 111). Gibt mit o-Phenylendiamin in kaltem Alkohol eine Verbindung C₂₄H₂₆O₃N₂ (dunkelrote Nadeln aus Methanol; F: 109°; leicht löslich in Benzol, Petroläther, Chloroform und Essigester mit rotvioletter Farbe, löslich in Methanol, Alkohol und Essigsäure mit in der Kälte blauvioletter, in der Wärme rotvioletter Farbe) (Wö., B. 49, 793). — Kupfersalz. Grünes Pulver. Unlöslich in Kupferacetat-Lösung (Wö., B. 49, 793). — Bleisalz PbC₁₆H₂₀O₅. Gelbgrünes, vermutlich Essigsäure enthaltendes Pulver (Wö., B. 49, 793). Zersetzt sich beim Erhitzen auf 110° bis 120°. Löslich in Bleiacetat-Lösung mit gelber Farbe.

Monosemicarbazon $C_{17}H_{25}O_5N_8 = (HO)_5C_6O_2(C_5H_{11}) \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot C_4H_9$ (?). Rote Nadeln. F: 184—186° (Wieland, B. 58, 111).

5. Oxy-oxo-Verbindungen $C_{20}H_{30}O_5$.

 $\begin{array}{lll} \textbf{1.1-Bis-[2.6-dioxo-4.4-dimethyl-cyclohexyl]-butanol-(3),} & & [\gamma-Oxy-butyliden]-bis-dimethyl-dihydroresorcin,} & \text{Aldoldimedon } & \text{C}_{50}\text{H}_{50}\text{O}_{5} = \\ & & [\text{CH}_{3})_{2}\text{CC} & \text{CH}_{2}^{1}\text{CO} & \text{CH}_{2}^{1}\text{CH} & \text{CH}_{2}\text{CH}(\text{OH}) & \text{CH}_{3} & \text{bzw. desmotrope Formen.} & \textbf{B.} & \text{Aus Dimethyl-dihydroresorcin und Aldol in wäßrig-alkoholischer Lösung (Fricke, H. 116, 134).} & & \text{Krystalle (aus verd. Alkohol).} & \text{F: } 170-172^{\circ}. & \text{Sehr schwer löslich in heißem Wasser, Ligroin und Schwefelkohlenstoff, löslich in Alker und Benzol, leicht löslich in Alkohol,} & \text{Eisessig, Aceton und Chloroform; leicht löslich in Alkalilaugen.} & \text{Geht beim Umkrystallisieren aus } 96 \% igem Alkohol teilweise oder vollständig in Grotonyliden-bis-dimethyldihydroresorcin (E II 7, 854) über.} \\ \end{array}$

 $8 - [\gamma \cdot \gamma - Dimethyl - propenyl] - 5 - [\gamma \cdot \gamma - dimethyl - allyl] - 1 - isovaleryl-cyclohexen - (1)-diol - (2.3)-dion - (4.6), Humulon, <math>\alpha$ -Hopfenbittersäure (früher als α-Lupulinsaure bezeichnet) C₂₁H₃₀O₅, CO · CH₂ · CH(CH₂)₂

s. nebenstehende Formel bzw. desmotrope

ос—<u>с</u>—с.он

Formen. Zur Zussammensetzung und Konstitution vgl. Wöllmer, B. 49 [1:16] 782; 58, 674; Wieland, B. 58, 102, 2013; Wie., Martz, B. 59, 2352. — V. Im Hopfenmell, dem drüsigen Sekret der weiblichen Blüten- bzw. MARTZ, B. 59, 2302. — V. Im Hoptenmeni, dem drusigen Sekret der Weidignen Biuten- dzw. Fruchtstände des Hopfens (Hayduck, Wschr. Brau. 5 [1888] 937; C. 1889 I, 20; Lintner, Bungener, Z. Brauw. 14, 357; C. 1891 II, 710; Barth, Z. Brauw. 23, 594; C. 1900 II, 916; Siller, Z. Unters. Nahr.-Genuβm. 18, 242, 252; C. 1909 II, 1172). Isolierung aus Hopfendolden: Bamberger, Landsiedl, Z. Brauw. 25, 461; C. 1902 II, 745; vgl. dazu auch Walker, Wschr. Brau. 40, 163; 41, 161; C. 1924 I, 1455; II, 1524; Wöllmer, B. 49, 782. — Gelbliche Krystalle (aus Äther). F: 65—66,5° (Wöllmer, B. 49, 783). Leicht löslich in fast allen organischen Lösungsmitteln (Bam., La.; Wö., B. 49, 783), sehr schwer in Wasser (Wö., B. 49, 783). Konzentziertere Lösungen in Mathanol sind gelb (Suler). Leicht löslich in Albelieugen und Konzentriertere Lösungen in Methanol sind gelb (SILLER). Leicht löslich in Alkalilaugen und Ammoniak (BAM., L.). Löslichkeit in Puffergemischen: Wöllmer, Z. Brauw. 41 [1918], 2. Ammoniak (BAM., L.). Losichkeit in Fullergemischen: Wollmer, Z. Braw. 41 [1918], Z. Oberflächenspannung in Wasser ohne Zusatz sowie bei Zu atz von E ekt o yten oder von Emulsionskolloiden: Lüers, Baumann, Koll.-Z. 26, 203, 205; C. 1920 IV, 143, 186; vgl. a. Windisch, Kollbach, Banholzer, C. 1926 II, 668. Humulon ist der wesentlichste Schaumbildner des Bieres (Wi., K., Ban.). Struktur von auf Wasser ausgebreiteten dünnen Schichten: Adam, Pr. roy. Soc. [A] 119, 640; C. 1928 II, 1647. Adsorption aus wäßr. Lösung an Kohle: Lü., Bau., Koll.-Z. 26, 208; C. 1920 IV, 186. [a]_D. —212,0 (Alkohol; p = 6,5), —232,20 (Penrel) p. —7 (Wö. R. 49, 784) (Benzol; p = 7) (Wö., B. 49, 784).

Humulon verharzt bei längerem Erhitzen auf 100° an der Luft (Siller, Z. Unters. Nahr.-Genußm. 18, 263; C. 1909 II, 1172). Liefert bei der Hydrierung bei Gegenwart von Palladium(II)-chlorid in Methanol Humulohydrochinon (S. 534) und Isopentan (Wöllmer, B. 49, 791; Wieland, B. 58, 110). Addiert Brom (Siller; Wö., B. 49, 789). Zersetzt sich beim Kochen mit Wasser (Lüers, Baumann, Koll.-Z. 26, 186; C. 1920 IV, 186; vgl. a. Windisch, Kolbach, Grohn, C. 1925 I, 1918; Win., Ko., Schleicher, C. 1928 I, 428). Beim Kochen mit wäßrig-alkoholischer Natronlauge erhält man Humulinsäure (S. 451), 3-Methyl-buten-(1)-carbonsäure-(1), Essigsäure und Isobutyraldehyd (Wö., B. 49, 785; Wie., B. 58, 108; vgl. a. Barth, C. 1900 II, 916; Lintner, Schnell, Z. Brauw. 27, 666; C. 1904 II, 1227). Humulon reagiert mit Diazomethan unter Bildung einer zersetzlichen Verbindung (WIE., B. 58, 103). -Reagiert mit Diazomethan unter Didding einer zeitsetznehen verbindung (wils., B. 65, 105).

Bewirkt gemeinsam mit anderen Verbindungen den bitteren Geschmack des Hopfens (Remy, Wschr. Brau. 19, 614; C. 1902 II, 1279); der bittere Geschmack tritt bei der festen Substanz kaum, sondern nur bei Lösungen auf (Wö., B. 49, 784). Zur antiseptischen Wirkung des Humulons vgl. z. B. Hayduck, Wschr. Brau. 5, 945; C. 1889 I, 20; Barth, Z. Brauw. 24 [1901], 333; FORD, TATT, J. Inst. Brewing 80, 426; Wschr. Brau. 41, 115; C. 1924 II, 556; Walker, Wschr. Brau. 48, 82; C. 1926 II, 120; Windisch, Kollach, Schüren, C. 1927 II, 1626.

Giftwirkung bei Fröschen: FARKAS, Pflügers Arch. Physiol. 92 [1902], 61.

Humulon gibt mit Eisenchlorid in alkoh. Lösung eine rotviolette Färbung (Wöllmer, B. 49, 784); mit Eisen(III) acetat entsteht sofort eine intensiv rote Färbung (Wö., B. 58, 672). Läßt sich in alkoholischer oder wäßrig-alkoholischer Lösung mit Phenolphthalein als einbasische Säure titrieren (Wö., B. 49, 784). — Kupfersalz. Grün, amorph. Löslich in Alkohol (Bamberger, Landsiedi., Z. Brauw. 25, 461; C. 1902 II, 745; Wö., B. 49, 785). — Bleisalz. Gelbe Nadeln (BAM., LA.; vgl. a. LINTNER, SOHNELL, Z. Brauw. 27, 666; C. 1904 II, 1227; Wö., B. 49, 785). Zersetzt sich am Licht und an der Luft (BAM., LA.). Löslich in Bleiacetat-Lösung

mit gelber Farbe (Wö.).

e) Oxy-oxo-Verbindungen $C_n H_{2n-14} O_5$.

1. Oxy-oxo-Verbindungen CzoHaOz.

5.6.8-Trioxy-naphthochinon-(1.4), Naphthopurpurin $\rm C_{10}H_6O_5$, s. nebenstehende Formel (H 494). Zur Konstitution vgl. FIESER, Am. Soc. 50, 443. Diese Konstitution kommt auch der H 494 als Oxynaphthно azarin beschriebenen Verbindung zu (Dimroth, Roos, A. 456, 181, 191). — но B. Zur Bildung durch Oxydation von Naphthazarin mit Braunstein und konz. Schwefelsäure nach JAUBERT, C. r. 129, 684 vgl. D., R., A. 456, 190; vgl. dazu auch F., Am. Soc. 50, 460. Zur Bildung aus Naphthazarin durch Erhitzen mit wäßrig-alkoholischer Natronlauge (BASF, D.R.P. 167641; C. 1906 I, 1126) vgl. F., Am. Soc. 50, 460.

Entsteht beim Behandeln von 1.4.5.8-Tetraoxo-1.4.5.8-tetrahydro-naphthalin mit konz. Schwefelsäure (Zahn, Ochwat, A. 462, 86). Aus 5.6-Dioxy-naphthochinon-(1.4) durch Oxydation mit Braunstein und konz. Schwefelsäure (D., R., A. 456, 191). Das Kaliumsalz bildet sich aus 1.4.5.6.8-Pentaacetoxy-naphthalin beim Erwärmen mit alkoh. Kalilauge und folgenden Durchleiten von Luft (D., R., A. 456, 191). — Normal-Redoxpotential in 0,1 n-wäßrig-alkoholischer Salzsaure (50% Alkohol) bei 25° in Gegenwart von Lithiumchlorid: 0,243 V (F., Am. Soc. 50, 444). — In Chloroform gelöstes Naphthopurpurin oxydiert 2-Amino-naphthol-(1)-sulfonsäure-(4) (D., HILCKEN, B. 54, 3054). — Die orangefarbene Lösung in Acetanhydrid wird beim Erwärmen mit Pyroboracetat blaustichig rot (D., R., A. 456, 192). — B (C₁₀H₅O₅)₂. Mäßig löslich in Wasser (F., Am. Soc. 50, 460). — Pyridinsalz C₁₀H₆O₅ + C₅H₅N. Purpurrote Nadeln (D., R., A. 456, 192).

5.6.8-Triacetoxy-naphthochinon-(1.4), Naphthopurpurin-triacetat $C_{16}H_{12}O_8=(CH_3\cdot CO\cdot C_{16}H_{12}O_8)$ O)₃C₁₀H₃O₂. B. Bei der Einw. von Acetanhydrid auf 1.4.5.8-Tetraoxo-1.4.5.8-tetrahydronaphthalin in Gegenwart von konz. Schwefelsäure (ZAHN, OCHWAT, A. 462, 75, 86). — Hellgelbe Prismen. Schmilzt unscharf unter Rotfärbung bei 160-162°.

2. Oxy-oxo-Verbindungen $C_{11}H_8O_5$.

- 1. 1-[3.4.5-Trioxy-phenyl]-cyclopentadien-(1.3)-ol-(4)-on-(5), Purpurogallin, Pyrogallochinon $C_{11}H_0O_5$, s. nebenstehende Formel bzw. desmotrope Form (H 6, 1076; E 1 6, 538). Zur Konstitution') vgl. WILLSTÄTTER, HEISS, A. 433, 17, 24. — B. Purpurogallin entsteht neben anderen Produkten bei der Oxydation von Phenol mit Wasserstoffperoxyd in Gegenwart von Eisen(II)-sulfat (Goldhammer, Bio. Z. 189, 85) und bei der Oxydation von Pyrogallol mit Kaliumpersulfat in neutraler Lösung (Eller, A. 481, 152). Die Bildung aus Pyrogallol durch Einw. von Wasserstoffperoxyd bei Gegenwart von Peroxydase (vgl. E I 6, 536 im Artikel Pyrogallol) wird durch überschüssiges Wasserstoffperoxyd gehemmt (WI., Weber, A. 449, 179; WI., B. 59, 1872).

 Darstellung aus Pyrogallol durch Oxydation mit Kaliumferrievanid nach Hookee (B. 20, 3260; WI. Herse 4 482, 26 — Collegate und durch primary (aux Allegheit) H 6, 1076): WI., HEISS, A. 483, 26. — Gelbrote und dunkelrote Prismen (aus Alkohol oder Äther). Schmilzt bei raschem Erhitzen sowie beim Eintragen in ein Bad von 240° bei 278—280,5° (korr.; Zers.); bei langsamem Erhitzen findet nur Zersetzung statt (WI., HEISS). Die äther. Lösung enthält bei Zimmertemperatur in 100 cm³ ca. 0,2 g; leichter löslich in Alkohol und Methanol, sehr leicht in Aceton und Pyridin (WI., HEISS). Farbreaktionen: WI., HEISS, A. 483, 28; vgl. a. HERZIG, A. 482, 111.
- 1-[3.4-Dioxy-5-methoxy-phenyl]-cyclopentadien-(1.3)-ol-(4)-on-(5), Purpurogallin-monomethyläther $C_{12}H_{10}O_5 = HO \cdot C_5H_2O \cdot C_6H_2(OH)_2 \cdot O \cdot CH_2$. B. Beim Behandeln eines Gemisches von Pyrogallol und Pyrogallol-1-methyläther mit Wasserstoffperoxyd in Wasser bei Gegenwart von Peroxydase (WILSTÄTTER, HEISS, A. 483, 29). Beim Behandeln von 3-Methoxy-benzochinon-(1.2) mit Pyrogallol in Äther+Chloroform (W., HEISS). — Tief orangegelbe Prismen. F: 182—183°. — Liefert bei der Einw. von Diazomethan Trimethylpurpurogallin. — Mit Sodalösung entstehen bei Luftzutritt lavendelblaue bis tief rotviolette Färbungen; mit rauchender Salpetersäure tritt eine unbeständige rotviolette Färbung auf (W., HEISS).

Beim Erwärmen von Trimethyläthylpurpurogallin vom Schmelzpunkt 114—116° (S. 539) mit konz. Schwefelsäure erhielt HERZIG (A. 482, 106) einen roten Purpur ogallin-monomethyläther vom Schmelzpunkt 193—194°, der beim Behandeln mit Diazomethan ebenfalls in den Trimethyläther übergeht und über dessen Beziehung zu dem Monomethyläther von

WILLSTÄTTER sich nichts aussagen läßt.

1-[4-0xy-3.5-dimethoxy-phenyl]-cyclopentadien-(1.3)-ol-(4)-on-(5)(?), Purpurogallin-dimethyläther, Dimethylpurpurogallin $C_{19}H_{12}O_5 = HO \cdot C_5H_2 \cdot C_6H_2 \cdot C_6H_3 \cdot OH(?)$. B. Aus Purpurogallin-trimethyläther oder -tetramethyläther beim Erwärmen mit konz. Schwefelsäure (Herzig, A. 482, 105, 106). — Granatrote Nadeln (aus Methanol). F: 193—195°. — Liefert bei der Einw. von Diazomethan Purpurogallintrimethyläther. Beim Behandeln mit Acetanhydrid und konz. Schwefelsäure erhält man Purpurogallin-dimethyläther-diacetat.

1-[3.4.5-Trimethoxy-phenyl]-cyclopentadien-(1.3)-ol-(4)-on-(5), Purpurogallin-trimethyläther, Trimethylpurpurogallin $C_{14}H_{14}O_{5} = HO \cdot C_{5}H_{2}O \cdot C_{6}H_{2}(O \cdot CH_{3})_{3}$ (H 6, 1077; E I 6, 538). B. Aus Purpurogallinmonomethyläther (Präparat von Willstätter, Heiss und Präparat von Herzig; s. o.) beim Behandeln mit Diazomethan (Herzig, A. 432, 108; Willstätter, A. 433, 30). Entsteht auch beim Behandeln von Purpurogallindimethyläther mit Diazomethan (Her., A. 432, 108). Aus dem Tetramethyläther beim Kochen mit Jodwasserstoffsäure (D: 1,7) (W., Heiss, A. 433, 33). — Pleochroitische Prismen (hellgelb-dunkelgelb). F: 175—177° (W., Heiss). Löst sich schwerer in Äther als Purpurogallin; ziemlich leicht löslich in Aceton (W.,

¹) Zu obiger Formel vgl. indessen nach dem Literatur-Schlußtermin des 2. Ergänzungswerks [1. 1. 1930] BARLTROP, NICHOLSON, Soc. 1948, 116.

HEESS). — Liefert beim Erwärmen mit konz. Schwefelsäure Purpurogallindimethyläther (Her., A. 482, 105). Bei der Einw. von Diäthylsulfat und Kalilauge entsteht Trimethyläthylpurpurogallin vom Schmelzpunkt 105—107° (Her., A. 482, 104).

4-Methoxy-1-[3.4.5-trimethoxy-phenyl]-cyclopentadien-(1.3)-on-(5), Purpurogallinterramethyläther $C_{18}H_{16}O_5 = HC \cdot CH_{3} \cdot O \cdot C \cdot CO$ $C \cdot C_{6}H_{2}(O \cdot CH_{2})_{3}$ (E I 6, 538). Zur Bildung aus dem Trimethyläther durch Behandelm mit Dimethylsulfat und Kalilauge vgl. Willstätter, Heiss, A. 433, 32. — Blättchen (aus Methanol). F: 93° (W., Heiss). Sehr leicht löslich in heißem Methanol (W., Heiss). — Liefert beim Erwärmen mit konz. Schwefelsäure Dimethylpurpurogallin (Herzig, A. 432, 106). Beim Kochen mit Jodwasserstoffsäure (D: 1,7) erhält man Purpurogallintrimethyläther (W., Heiss). Reagiert nicht mit Hydroxylamin (W., Heiss). Beim Erwärmen mit alkoh. Kalilauge entsteht Trimethyläthylpurpurogallin vom Schmelzpunkt 114—116° (Her., A. 432, 102).

Trimethyläthylpurpurogallin vom Schmelzpunkt 114—116° $C_{16}H_{18}O_5 = (CH_3 \cdot O)_3(C_2H_5 \cdot O)C_{11}H_4O$. B. Aus Purpurogallin-tetramethyläther beim Erwärmen mit alkoh. Kalilauge (Herzig, A. 482, 102). — Krystalle (aus Methanol). F: 114—116°. — Liefert beim Erwärmen mit konz. Schwefelsäure Purpurogallin-monomethyläther vom Schmelzpunkt 193—194°.

Trimethyläthylpurpurogallin vom Schmelzpunkt 105—107° $C_{18}H_{18}O_5 = (CH_3 \cdot O)_3(C_2H_5 \cdot O)C_{11}H_4O$. B. Aus Trimethylpurpurogallin beim Behandeln mit Diäthylsulfat und Kalilauge (Herzig, A. 482, 104). — Krystalle (aus Methanol). F: 105—107°. — Liefert beim Erwärmen mit konz. Schwefelsäure ein Gemisch aus Purpurogallin-monomethyläther und -dimethyläther (Herzig, A. 482, 107).

Purpurogallin-trimethyläther-acetat, Acetylpurpurogallintrimethyläther $C_{16}H_{16}O_6=(CH_3\cdot CO\cdot O)(CH_3\cdot O)_3C_{11}H_4O$ s. H 6, 1077.

Purpurogaliin - dimethyläther - diacetat $C_{17}H_{16}O_7 = CH_3 \cdot CO \cdot O \cdot C_5H_2O \cdot C_6H_2(O \cdot CH_3)_2 \cdot O \cdot CO \cdot CH_3$. Aus Dimethylpurpurogallin beim Aufbewahren mit Acetanhydrid und konz. Schwefelsäure (Herzig, A. 482, 106). — Krystalle (aus Methanol). F: 180—181°.

Purpurogallin-tetraacetat, Tetraacetyl-purpurogallin $C_{10}H_{16}O_0 = (CH_3 \cdot CO \cdot O)_4C_{11}H_4O$ s. H 6, 1077; E I 6, 538.

2. 3.5.8-Trioxy-2-methyl-naphthochinon-(1.4), Oxydroseron HO C₁₁H₈O₅, s. nebenstehende Formel. Zur Konstitution vgl. Macbeth, Price, Winzor, Soc. 1935, 325; W., Soc. 1935, 336. — V. Findet sich neben geringeren Mengen Droseron (S. 465) in den Wurzelknollen von Drosera Whittakeri (Rennie, OH Soc. 51 [1887], 371). — Rote Tafeln (aus Eisessig). F: 192—193° (R.; W., Soc. HO OH 1935, 338). Löslich in Äther, ziemlich schwer löslich in Benzol und Schwefelkohlenstoff, löslich in siedendem Alkohol und Eisessig, sehr schwer löslich in siedendem Wasser; löslich in Ammoniak und Alkalilaugen mit tief violettroter Farbe (R.). Absorptionsspektrum: R., Soc. 51, 377; M., P., W., Soc. 1935, 327, 331. — Liefert bei der Reduktion mit Zinn(II)-chlorid in Alkohol oder Eisessig + Salzsäure 1.3.4.5.8-Pentaoxy-2-methyl-naphthalin (E II 6, 1152) (R., Soc. 51, 375). — NaC₁₁H₇O₅+2H₃O (bei 100°). Dunkel rötlichbraune Nadeln (R., Soc. 63 [1893], 1086). — Na₂C₁₁H₆O₅+ H₂O(?). Nadeln (R., Soc. 63, 1086). — Ca(C₁₁H₇O₅)₂+3H₃O (bei 100°). Dunkelbraun, krystallinisch (R., Soc. 63, 1086).

Triacetat $C_{17}H_{14}O_8=(CH_3\cdot CO\cdot O)_2C_6H_2$ $CO\cdot C\cdot CH_3$ Kochen mit überschüssigem Acetanhydrid in Gegenwart von wenig Zinkchlorid (Rennie, Soc. 63 [1893], 1084; Winzor, Soc. 1935, 338). — Gelbe Krystalle (aus Benzol), F: 153—154°; oder Krystalle mit 1 Mol Eisessig (aus Eisessig); F: 137—138°, gibt beim Erhitzen auf 120—130° den Krystall-Eisessig ab und schmilzt dann bei 153—154° (R.). F: 156° (Macbeth, W., Soc. 1935, 338).

f) Oxy-oxo-Verbindungen $C_n H_{2n-16} O_5$.

1. Oxy-oxo-Verbindungen C14H16Os.

1. 2.3.4.2'-Tetraoxy-benzophenon, 4-Salicoyl-pyroga'lol $C_{15}H_{10}O_{5}$, s. nebenstehende Formel (H 495). B. Beim Einleiten von Chlorwasserstoff in eine Lösung von 2-Acetoxy-benzonitril und Pyrogallol in Äther bei Gegenwart von Zinkchlorid und Kochen des

Reaktionsprodukts mit Wasser, neben anderen Produkten (ATKINSON, HEILBRON, Soc. 1926, 2690). — Gelbe Tafeln (aus Wasser). F: 149° (A., H.). Ultraviolett-Absorptionsspektrum; Tasaki, Acta phytoch. 2, 65; C. 1925 II, 1355.

2. 2.4.6.2'-Tetraoxy-benzophenon, 2-Salicoyl-phloroglucin $C_{13}H_{10}O_{5}$, s. nebenstehende Formel.

Imid $C_{13}H_{11}O_4N=HO\cdot C_4H_4\cdot C(:NH)\cdot C_6H_8(OH)_3$. Zur Konstitution vgl. Nishikawa, Robinson, Soc. 121, 840. — B. Das Hydrochlorid entsteht beim Einleiten von Chlorwasserstoff in eine ather. Lösung

OH OH

von Phloroglucin und Salicylsäurenitril bei Gegenwart von Zinkchlorid (Karre, Helv. 4, 993; N., R.). — Gelbe Blättchen (aus Alkohol) (K.); goldgelbe Nadeln (aus Alkohol) (N., R.). Zersetzt sich beim Erhitzen allmählich unter Schwarzfärbung (K.; N., R.). Leicht löslich in Pyridin (N., R.), sehr schwer in Alkohol, fast unlöslich in den meisten anderen organischen Lösungsmitteln (K.; N., R.). Unlöslich in verd. Salzsäure, leicht löslich in wäßrig-alkoholischer Salzsäure (N., R.). Löst sich in konz. Salpetersäure mit roter Farbe; die Lösung in konz. Schwefelsäure ist fast farblos (N., R.). Die Lösung in Alkohol gibt mit Eisenchlorid eine braune Färbung (N., R.). — Bei Zusatz von Zinkstaub zu der Suspension in heißer verdünnter Schwefelsäure tritt eine blaßrote Färbung auf (N., R.). Gibt beim Kochen mit verd. Natronlauge 1.3-Dioxy-xanthon (N., R.). — Wirkt lähmend auf die glatte Muskulatur und in sehr großen Dosen auch auf das Herz (K.). — Hydrochlorid. Nadeln (aus konzentrierter wäßriger oder aus wäßrig-alkoholischer Salzsäure) (K.; N., R.). Ziemlich leicht löslich in Wasser (K.).

3. 2.4.6.3'-Tetraoxy benzophenon, 2 [3-Oxy benzoyl]phloroglucin C₁₃H₁₀O₅, s. nebenstehende Formel. B. Beim Leiten
von trockenem Chlorwasserstoff in eine mit Zinkchlorid versetzte
Lösung von 3-Oxy-benzonitril und Phloroglucin in Äther, Behandeln
des Reaktionsprodukts mit 25%iger Schwefelsäure unter Kühlung
und folgenden Kochen mit Wasser (NISHIKAWA, ROBINSON, Soc. 121,

CO · OH OH

und folgenden Kochen mit Wasser (NISHIKAWA, ROBINSON, Soc. 121, 842). — Hellgelbe Blättchen (aus Wasser). Zersetzt sich bei raschem Erhitzen nach Dunkelfärbung bei 246°. Schwer löslich in Äther, leicht in Alkohol und heißem Wasser. Die Lösung in Alkalilauge ist orangefarben. Löst sich in konz. Schwefelsäure mit gelber, in konz. Salpetersäure mit roter Farbe. Die alkoh. Lösung wird durch Eisenchlorid purpurrot gefärbt. — Bei der Reduktion mit Zinkstaub und verd. Schwefelsäure entsteht eine orangefarbene Lösung, die später farblos wird.

4. 2.4.6.4' - Tetraoxy - benzophenon, 2 - [4 - Oxy - benzoyl] - phloroglucin C₁₃H₁₀O₅, s. nebenstehende Formel.

B. Beim Leiten von trockenem Chlorwasserstoff in eine mit Zink-HO OH chlorid versetzte Lösung von 4-Oxy-benzonitril und Phloroglucin in absol. Äther, Versetzen des Reaktionsgemisches mit 25% iger

Schwefelsäure und Kochen des in gelben Nadeln krystallisierenden Imidsulfats mit Wasser (NISHIKAWA, ROBINSON, Soc. 121, 843). — Hellbraune Prismen oder Nadeln mit 2 H-O (ans

(NISHIKAWA, ROBINSON, Soc. 121, 843). — Hellbraune Prismen oder Nadeln mit 2 H₂O (aus Wasser). F: 210° (rote Schmelze). Löst sich in Alkaliaugen mit gelber Farbe. Gibt mit Eisenchlorid in Alkohol eine braune Färbung. — Bei der Reduktion mit Zinkstaub und verd. Schwefelsäure entsteht eine anfangs orangefarbene Lösung, die später farblos wird.

- 2.4.6-Trioxy-4'-methoxy-benzophenon, 2-Anisoyl-phloroglucin $C_{14}H_{12}O_5=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot C_6H_2\cdot (OH)_3$. Be tropfenweiser Zugabe von Anisoylchlorid zu einer Lösung von Phloroglucin und Aluminiumchlorid in Nitrobenzol auf dem Wasserbad (K. W. Rosenmund, M. Rosenmund, B. 61, 2610). Gelbe Krystalle (aus verd. Alkohol). F: 177—178°. Gibt mit Eisenchlorid eine rotviolette Färbung.
- 2.4.6-Trioxy-4-carbāthoxyoxy-benzophenon $C_{16}H_{14}O_7 = C_2H_5 \cdot O_2C \cdot O \cdot C_6H_4 \cdot CO \cdot C_6H_2(OH)_3$. Beim Behandeln von Phloroglucin mit 4-Carbāthoxyoxy-benzoylehlerid bei Gegenwart von Aluminiumchlorid in Nitrobenzol bei 50° (K. W. Rosenmund, M. Rosenmund, B. 61, 2610). Gelbe Nadeln (aus verd. Alkohol). F: 172°.
- 5. 2.4.2'.4'-Tetraoxy-benzophenon C₁₃H₁₀O₅, s. nebenstehende Formel (H 496). B. Neben anderen Produkten beim Kochen von 2.4-Dioxy-2'.4'-diacetoxy-benzophenon-imid mit HO OH 25%iger Schwefelsäure (Shoesmith, Haldane, Soc. 125, 114) oder mit 0,5 n-Natronlauge (Atkinson, Heilbron, Soc. 1926, 2691). Gibt mit pararosanilinschwefliger Säure von verschiedenem Schwefligsäuregehalt violette Färbungen (Shoe., Sosson, Hetherington, Soc. 1927, 2223).
- 2.4.2'.4'-Tetramethoxy-benzophenon $C_{17}H_{18}O_5 = (CH_3 \cdot O)_5C_6H_3 \cdot CO \cdot C_6H_3 (O \cdot CH_3)_3$ (E I 734). B. Aus Resorcindimethyläther und Oxalylchlorid bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (Staudinger, Schlenker, Goldstein, Helv. 4, 341).

- 2.4-Dioxy-2'.4'-diacetoxy-benzophenon-imid $C_{17}H_{15}O_8N=(CH_3\cdot CO\cdot O)_2C_6H_3\cdot C(:NH)\cdot C_6H_3(OH)_2$. B. Das Hydrochlorid entsteht beim Einleiten von Chlorwasserstoff in eine Lösung von 2.4-Diacetoxy-benzonitril und Resorcin in Äther bei Gegenwart von Zinkchlorid (Shoesmith, Haldane, Soc. 125, 114). Das Hydrochlorid liefert beim Kochen mit 25% iger Schwefelsäure 2.4.2'.4'-Tetraoxy-benzophenon, β -Resorcylsäureamid und Resacetophenon (Shoesman). Beim Behandeln mit 0,5 n-Natronlauge erhält man 2.4.2'.4'-Tetraoxy-benzophenon und sehr wenig 3.6-Dioxy-xanthon (Atkinson, Helbron, Soc. 1926, 2691). $C_{17}H_{16}O_6N+HCl.$ Krystalle (aus verd. Salzsäure). Zersetzt sich bei 195° (Shoes, Ha.).
- 6. 2.4.3'.4'-Tetraoxy-benzophenon C₁₃H₁₀O₅ s. nebenstehende Formel (H 496). F: 199—200° (Tasaki, Acta phytoch. 2, 64; C. 1925 II, 1355). Ultraviolett-Absorptionsspektrum: T., Acta phytoch. 2, 65, 202; C. 1925 II, 1355; 1927 II, 2191.
- 7. 2.5.2'.5'-Tetraoxy-benzophenon $C_{13}H_{10}O_5$, s. nebenstehende Formel.

2.5.2'.5'-Tetramethoxy-benzophenon $C_{17}H_{18}O_5 = (CH_3 \cdot O)_2C_6H_3 \cdot CO \cdot C_6H_5(O \cdot CH_3)_2$ (H 497). B. Aus Hydrochinondimethyläther und Oxalylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (Staudinger, Schlenker, Goldstein, Helv. 4, 341).

но он он

OH

- 8. 2.5.2'.6' Tetraoxy benzophenon, Euxanthonsäure $C_{13}H_{10}O_5$, s. nebenstehende Formel (H 497). Liefert beim Kochen mit 25% iger Schwefelsäure Euxanthon (Robertson, Waters, Soc. 1929, 2241).
- 9. 3.4.3'.4'-Tetraoxy-benzophenon $C_{13}H_{10}O_5$, s. nebenstehende Formel (H 497). Lichtabsorption in alkal. Lösung bei Gegenwart von Na₂SO₃: More, Soc. 1927, 1817.
- 3.4.3'.4'-Tetramethoxy-benzophenon, 4-Veratroyl-veratrol,
 Veratrophenon, Veratron C₁₇H₁₈O₅ = (CH₃·O)₂C₆H₃·CO·C₆H₃(O·CH₃)₂ (H 497; E I 735).

 B. Aus Veratrol und Oxalylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (Staudinger, Schlenker, Goldstein, Helv. 4, 341; vgl. Habtwell, Kornberg, Am. Soc. 67 [1945], 1607). Zur Bildung aus Veratrol und Veratroylchlorid bei Gegenwart von Aluminiumchlorid (H 497; E I 735) vgl. Lawson, Perkin, Robinson, Soc. 125, 640; Vanzetti, G. 57, 170. Gibt mit Salpetersäure (D: 1,42) unter Kühlung 6.6'-Dinitro-3.4.3'.4'-tetramethoxy-benzophenon (L., P., R.).
- 6.6'- Dinitro 3.4.3'.4'- tetramethoxy- benzophenon, Dinitroveratron $C_{17}H_{16}O_9N_2$, s. nebenstehende Formel. B. Aus 3.4.3'.4'. Tetramethoxy-benzophenon und Salpetersäure (D: 1,42) unter Kühlung (Lawson, Perkin, Robinson, Soc. 125, 640). Nadeln (aus Eissessig). F: 225°. Schwer löslich in den meisten organischen Lösungsmitteln. Gibt mit konz. Schwefelsäure eine orangefarbene Lösung.

2. Oxy-oxo-Verbindungen C14H12Oz.

1. [2.4.6-Trioxy-phenyl]-[4-oxy-benzyl]-keton, 2.4.6.4'-Tetraoxy-desoxybenzoin C₁₄H₁₂O₅, s. nebenstehende Formel. B. Beim Sättigen einer Lösung von HO-6 4-Oxy-phenylacetonitril und Phloroglucin in absol. Äther mit Chlorwasserstoff bei 0° und Erhitzen des entstandenen Imidhydrochlorids mit Wasser (Baker, Robinson, Soc. 1926, 271

Imidhydrochlorids mit Wasser (Baker, Robinson, Soc. 1926, 2716). — Nadeln mit 1 H₂O (aus 50% igem Methanol). F: 259° (unter Rotfärbung und Zersetzung). Sehr schwer löslich in den üblichen organischen Lösungsmitteln.

- [2.4.6-Trioxy-phenyl]-[4-methoxy-benzyl]-keton, 2.4.6-Trioxy-4'-methoxy-desoxybenzoin $C_{15}H_{14}O_5=CH_3\cdot O\cdot C_6H_4\cdot CH_2\cdot CO\cdot C_6H_2(OH)_3$. B. Aus 4-Methoxy-phenylacetonitril und Phloroglucin in Äther durch Sättigen mit Chlorwasserstoff und Zersetzen des Reaktionsprodukts mit Wasser (Baker, Robinson, Soc. 1926, 2717). Prismen mit 1 H_2O (aus 50% igem Methanol). F: 192—193°. Gibt bei 140° nur langsam Krystallwasser ab. Die Lösungen in Alkalilaugen sind gelb. Gibt mit Eisenchlorid in alkoh. Lösung eine purpurrote Färbung. Liefert beim Erhitzen mit Zimtsäureanhydrid und zimtsaurem Natrium auf 180—200° 5-Oxy-7-cinnamoyloxy-3-[4-methoxy-phenyl]-2-styryl-chromon.
- 2. $[2.4-Dioxy-phenyl]-[2.\alpha-dioxy-benzyl]-keton, 2.4.2'-Trioxy-benzoin <math>C_{14}H_{18}O_5$, s. nebenstehende Formel.

542

- 2.4-Diexy-2'-methoxy-benzoin $C_{18}H_{14}O_5=CH_4\cdot O\cdot C_4H_4\cdot CH(OH)\cdot CO\cdot C_4H_3(OH)_2$. B. Bei längerem Kochen von salzsaurem 2.4-Dioxy-2'-methoxy-benzoin-imid mit Wasser (ISHIDATE, J. pharm. Soc. Japan 1927, Nr. 542, S. 47; C. 1927 II, 251). Prismen mit 1 H_2O (aus Alkohol), F: 171°; schmilzt wasserfrei bei 174°. Leicht löslich in Äther, Alkohol und Aceton, schwer in Benzol. Leicht löslich in Sodalösung; verhält sich beim Titrieren mit Alkalilaugen wie eine einbasische Säure. Reduziert heiße Fehlingsche Lösung. Gibt mit Eisenchlorid in Alkohol eine violettrote Färbung.
- 2.4 Dioxy 2' methoxy benzoin imid $C_{15}H_{15}O_4N = CH_3 \cdot O \cdot C_6H_4 \cdot CH(OH) \cdot C(:NH) \cdot C_6H_3(OH)_9$. B. Das Hydrochlorid entsteht bei der Kondensation von 2-Methoxy-benzaldehydcyanhydrin mit Resorein nach Hoesch (Ishidate, J. pharm. Soc. Japan 1927, Nr. 542, S. 47; C. 1927 II, 251). Hydrochlorid. Krystallin. Zersetzt sich bei 220°.

3. Oxy-oxo-Verbindungen C15H14O5.

- 1. 2.4.6-Trioxy-β-[4-oxy-phenyl]-propiophenon, [2.4.6-Trioxy-phenyl][4-oxy-β-phenäthyl]-keton, 4.2'.4'.6'-Tetraoxy-hydrochalkon, Phloretin
 C₁₈H₁₁O₅, s. nebenstehende Formel (H 498; E I 735).

 Zur Konstitution vgl. noch Tasaki, Acta phytoch. 2, 71;
 C. 1925 II, 1356. V. Im Extrakt frischer Apfelbaumblätter (Rivière, Pichard, C. r. 179, 777; Bl. [4] 37,
 196). B. Beim Leiten von Chlorwasserstoff in eine
 Lösung von β-[4-Oxy-phenyl]-propionsăurenitril und Phloroglucin in Äther unter Kühlung und
 Zersetzen des entstandenen Imidchlorids mit Wasser auf dem Wasserbad (Zemplén, Mitarb.,
 B. 61, 2492). Zur Bildung aus Naringenin durch Hydrierung in Gegenwart von Pa ladium
 (E I 735) vgl. K. W. ROSENMUND, M. ROSENMUND, B. 61, 2612. Krystalle (aus wäßr. Aceton).
 F: 262—264° (unter Bräunung) (Z., Mitarb.), 257° (R., R.). Ultraviolett-Absorption: T. —
 Die Lösung in Methanol liefert beim Behandeln mit Diazomethan in Äther neben anderen
 Produkten in der Hauptsache Phloretintrimethyläther (Wessely, Sturm, M. 53/54, 560).
 Die beim Kochen mit Acetanhydrid und Natriumacetat entstehende Verbindung ist nicht das
 Triacetat des 5.7-Dioxy-4-[4-oxy-β-phenäthyl]-cumarins (Clamician, Silber, B. 27, 1632;
 28, 1395), sondern 5.7-Diacetoxy-2-methyl-3-[4-acetoxy-benzyl]-chromon (King, Robertson,
 Soc. 1934, 403). Hemmung der durch Acetonhefe verursachten alkoholischen Gärung von
 Glucose durch Phloretin: Dann, Quastel, Biochem, J. 22, 253.
- 2.4.6-Trioxy- β -[4-methoxy-phenyl]-propiophenon, 2'.4'.6'-Trioxy-4-methoxy-hydrochalkon, Phloretin-monomethyläther $C_{16}H_{16}O_5=CH_3\cdot O\cdot C_6H_4\cdot CH_2\cdot CH_2\cdot CO\cdot C_6H_2(OH)_3$. B. Aus Phloroglucin und 4-Methoxy-hydrozimtsäurechlorid in Nitrobenzol bei Gegenwart von Aluminiumchlorid (Shinoda, Sato, J. pharm. Soc. Japan 48, 109; C. 1928 II, 1885). F: 201—202°.
- 2-0xy-4.6-dimethoxy-β-[4-methoxy-phenyl]-propiophenon, 2'-0xy-4.4'.6'-trimethoxy-hydrochalkon, Phloretintrimethyläther, O-Trimethyl-phloretin $C_{18}H_{20}O_5 = CH_3 \cdot O \cdot C_6H_4 \cdot CH_2 \cdot CH_2 \cdot CO \cdot C_6H_2(OH)$ (O·CH₃)₂⁴⁻⁶ (E I 736). B. Aus Phlorrhizin-trimethyläther (Syst. Nr. 4753 E) bei kurzem Kochen mit 4%iger Schwefelsäure und folgendem Erwärmen auf dem Wasserbad (Wessely, Sturm, M. 53/54, 558). Beim Behandeln von Phloretin in Methanol mit Diazomethan in Äther (W., St., M. 53/54, 560). Aus 2'-Oxy-4.4'.6'-trimethoxy-chalkon durch Hydrierung bei Gegenwart von Platin in Alkohol (W., St., M. 53/54, 561). Krystalle (aus verd. Methanol), F: 110,5° (nach vorherigem Sintern) (W., S .). Unlöslich in wäßr. Alkalilaugen (W., S .). Liefert beim Erwärmen mit Acetanhydrid und Natriumacetat auf dem Wasserbad Phloretin-trimethyläther-acetat (W., S .). Beim Erhitzen mit Acetanhydrid und Natriumacetat auf 160—170° erhält man neben dem Acetat auch 5.7-Dimethoxy-2-methyl-3-[4-methoxy-benzyl]-chromon (W., St.; vgl. King, Robertson, Soc. 1984, 403).
- 4.2'.4'-Trimethoxy-6'-acetoxy-hydrochalkon, Phloretin-trimethyläther-acetat $C_{20}H_{22}O_6 = CH_2 \cdot O \cdot C_8H_4 \cdot CH_2 \cdot CH_2 \cdot CO \cdot C_8H_3 \cdot (O \cdot CO \cdot CH_3)^8 \cdot (O \cdot CH_3)^{2-6}$. B. Aus Phloretintrimethyläther beim Erwärmen mit Acetanhydrid und Natriumacetat auf dem Wasserbad (Wesselly, Sturm, M. 58/54, 559). Krystalle (aus Methanol). F: 58—60°. Löslich in Äther.
- 2'-Oxy-4.4'.6'-triacetoxy-hydrochalkon, Phioretintriacetat $C_{21}H_{20}O_8 = CH_3 \cdot CO \cdot O \cdot C_6H_4 \cdot CH_2 \cdot CH_2 \cdot CO \cdot C_6H_2 \cdot CO \cdot C_6H_3 \cdot CO \cdot C_6H_4 \cdot CH_2 \cdot CO \cdot C_6H_2 \cdot CO \cdot C_6H_3 \cdot CO \cdot CO \cdot CH_3 \cdot CO \cdot CO \cdot CH_4 \cdot CO \cdot CH_3 \cdot CO \cdot CO \cdot CH_4 \cdot CO \cdot CH_3 \cdot CO \cdot CO \cdot CH_4 \cdot CO \cdot CH_3 \cdot CO \cdot CH_4 \cdot CO \cdot CH_3 \cdot CO \cdot CH_4 \cdot CO \cdot CH_4 \cdot CO \cdot CH_3 \cdot CO \cdot CH_4 \cdot CO \cdot CH_4 \cdot CO \cdot CH_3 \cdot CO \cdot CH_3 \cdot CO \cdot CH_4 \cdot CO \cdot CH_3 \cdot CO \cdot CH_4 \cdot CO \cdot CH_3 \cdot CO \cdot$

Hexabromphloretin C₁₅H₈O₅Br₆. B. Beim Behandeln von Dibromphlorrhizin mit überschüssigem Brom in Wasser + Ather (MISAKI, J. Biochem. Tokyo 5, 5; C. 1925 II, 1529).

Nadeln (aus Methanol). F: 150°. Leicht löslich in Alkohol und Eisessig, schwer in Benzol und Chloroform, unlöslich in Petroläther und kaltem Wasser.

- 2. 2.4-Dioxy- β -[2.4-dioxy-phenyl]-propiophenon, [2.4-Dioxy-phenyl]-[2.4-dioxy- β -phenäthyl]-keton, 2.4.2'.4'-Tetraoxy-hydrochalkon $C_{15}H_{14}O_5$, s. nebenstehende Formel. B. Neben [2.4-Dioxy-phenyl]-OHOHOHOMEN OHOHOMEN OHOMEN - 3. 2.4-Dioxy-β-[2.6-dioxy-phenyl]-propiophenon, [2.4-Dioxy-phenyl]-[2.6-dioxy-β-phenäthyl]-keton, 2.5.2'.4'-Tetraoxy-hydrochalkon C₁₅H₁₄O₅, s. nebenstehende Formel. B. s. bei der vorangehenden Verbindung. Nadeln (aus Alkohol). F: 228—229° (CHAPMAN, STEPHEN, Soc. 127, 891). Schwer löslich in heißem Wasser, leicht in heißem Alkohol und Eisessig. Löslich in verd. Natronlauge. Die alkoh. Lösung gibt mit Eisenchlorid eine rotbraune Färbung.
- 4. 2.4-Dioxy β [3.4 dioxy phenyl] propiophenon, 3.4.2'.4'-Tetraoxy hydrochalkon Ho. CH₂·CH₂·CH₂·CH₂·CO·OH C₁₈H₁₄O₅, s. nebenstehende Formel.
- 2.4-Dioxy- β -[3.4-dimethoxy-phenyl] proplophenon, 2'.4'- Dioxy-3.4-dimethoxy hydrochalkon, Homoveratrylresacetophenon $C_{17}H_{18}O_5=(CH_3\cdot O)_2C_6H_3\cdot CH_2\cdot CH_2\cdot CO\cdot C_6H_3(OH)_2$. B. Beim Einleiten von Chlorwasserstoff in eine Lösung von β -[3.4-Dimethoxy-phenyl]-propionitril und Resorcin in trockenem Ather bei 0° und nachfolgenden Erhitzen des entstandenen salzsauren Imids mit Wasser (BAKER, ROBINSON, Soc. 127, 1433). Nadeln (aus Methanol). F: 146—147°. Schwer löslich in Methanol. Liefert beim Erhitzen mit Acetanhydrid und wasserfreiem Natriumacetat auf 180° 7-Acetoxy-2-methyl-3-[3.4-dioxy-benzyl]-chromon.
- 2-0xy-4-methoxy- β -[3.4-dimethoxy-phenyl]-propiophenon, 2'-0xy-3.4.4'-trimethoxy-hydrochalkon, Dihydrobutein-trimethyläther $C_{18}H_{20}O_5 = (CH_3 \cdot O)_2C_8H_3 \cdot CH_2 \cdot CH_2 \cdot CO \cdot C_6H_3$ (OH)·O·CH₃ (E I 736). Liefert beim Kochen mit Acetanhydrid und Zinkchlorid und folgenden Behandeln mit Eisessig und mit einer gesättigten Lösung von Eisenchlorid in konz. Salzsäure das Eisenchlorid-Doppelsalz des 7.5'.6'-Trimethoxy-2-methyl-[indeno-1'.2':4.3-benzopyrylium-chlorids] (Syst. Nr. 2444) (Crabtree, Robinson, Soc. 121, 1036).
- 2 Oxy -4- äthoxy β [3 methoxy -4 äthoxy phenyl] propiophenon, 2'-Oxy-3-methoxy-4.4' diäthoxy hydrochalkon $C_{20}H_{24}O_5 = C_2H_5 \cdot O \cdot C_6H_3(O \cdot CH_2) \cdot CH_2 \cdot CH_2 \cdot CO \cdot C_6H_3(OH) \cdot O \cdot C_2H_5$. B. Durch Hydrierung von 2'-Oxy-3-methoxy-4.4'-diäthoxy-chalkon (Tasaki, Acta phytoch. 3, 293; C. 1927 II, 1950). Gelbliche Nadeln (aus Alkohol). F: 77—79°. Ultraviolett-Absorptionsspektrum: T.

4. Oxy-oxo-Verbindungen $C_{16}H_{16}O_5$.

5.8-Dioxy-2 (bzw. 6) - $[\alpha$ - oxy- δ -methyl- γ -pentenyl] - naphthochinon - (1.4) $C_{16}H_{16}O_5$, Formel I bzw. II.

$$I. \quad \underbrace{\overset{\mathbf{H} \circ}{\circ}}_{\mathbf{H} \circ} \underbrace{\overset{\circ}{\circ}}_{\mathbf{CH}(\mathrm{OH}) \cdot \mathrm{CH_2} \cdot \mathrm{CH} : \mathrm{C}(\mathrm{CH_3})_2}_{\mathbf{CH} \circ \mathrm{CH} : \mathrm{C}(\mathrm{CH_3})_2} \quad 1I. \quad \underbrace{\overset{\circ}{\circ}}_{\mathbf{O}} \underbrace{\overset{\circ}{\circ}}_{\mathbf{OH}}$$

a) Rechtsdrehende Form¹), Shikonin C₁₆H₁₆O₅, Formel I bzw. II. Zur Konstitution vgl. Brockmann, A. 521 [1936], 19, 20; B., Roth, Naturwiss. 28 [1935], 246; Kuroda, Wada, Scient. Pap. Inst. phys. chem. Res. 84 [1937/38], 1740. Das Mol.-Gew. wurde ebullioskopisch in Benzol bestimmt (Majma, Kuroda, Acta phytoch. 1, 50). — V. und B. Findet sich als Monoacetat (S. 544) in den Wurzeln von Lithospermum Erythrorhizon Sieb. et Zucc. und entsteht aus diesem Monoacetat durch aufeinanderfolgende Behandlung mit 2% iger

¹) Die inaktive Form (Shikalkin) wird nach dem Literatur-Schlußtermin des Ergänzungswerks II [1. I. 1930] von Brockmann (A. 521, 13, 36) beschrieben.

Natronlauge und mit 1 % iger Schwefelsäure (M., K., Acta phytoch. 1, 48, 49; C. 1922 III, 677). — Violettbraune Tafeln (aus Benzol). F: 147° (M., K.), 143° (korr.) (Brockmann, A. 521, 29). Ein optisch nicht einheitliches Präparat zeigte [a] (Benzol; c = 1,3) (B.). Ultraviolett-Absorption: M., K., Acta phytoch. 1, 63. Löslich in den meisten organischen Lösungsmitteln außer Petroläther und Ligroin (M., K.). Die Lösung in konz. Salpetersäure ist rötlichbraun; in konz. Schwefelsäure löst sich Shikonin mit gelber Farbe; die Lösung zersetzt sich beim Aufbewahren (M., K.). Löst sich mit bläulicher Farbe in Natriumcarbonat-Lösung und mit tiefblauer Farbe in verd. Natronlauge; die Lösung gibt mit Kohlendioxyd einen violettroten Niederschlag (M., K.). Die alkoh. Lösung gibt mit Eisenchlorid einen blauen, mit basischem Bleiacetat einen purpurroten Niederschlag (M., K.). Beim Behandeln einer alkal. Lösung mit ammoniakalischer Kupfersulfat-Lösung oder mit Fehlingscher Lösung erhält man einen braunroten Niederschlag (M., K.).

Shikonin liefert bei der trockenen Destillation Shikizarin (S. 508) (MAJIMA, KURODA, Acta phytoch. 1, 54; C. 1922 III, 678). Bei der Oxydation mit alkal. Permanganat-Lösung entstehen Ameisensäure, Maleinsäure, Fumarsäure und andere Produkte (M., K., Acta phytoch. 1, 58; C. 1922 III, 678). Gibt beim Ozonisieren in Chloroform neben anderen Produkten Acetonsuperoxyd (M., K.). Bei der Destillation mit Zinkstaub erhält man Naphthalin, 1-Methylanthracen und 2-Methyl-anthracen (M., K., Acta phytoch. 1, 56; C. 1922 III, 678). Bei der Hydrierung in Äther bei Gegenwart von Platinschwarz entsteht ein violettrotes Produkt (F: ca. 140°; unlöslich in Chloroform), das beim Aufbewahren in eine Verbindung Ca₃H₃₄O₉ (s. u.) übergeht (M., K., Acta phytoch. 1, 57; C. 1922 III, 678). Bei längerem Kochen mit Wasser bildet sich ein dunkles Produkt (M., K., Acta phytoch. 1, 50; C. 1922 III, 677). Shikonin liefert beim Erwärmen mit Acetanhydrid und überschüssigem Natriumacetat auf 50—60° Shikonintriacetat (M., K., Acta phytoch. 1, 52; C. 1922 III, 678). Wird die Acetylierung in Gegenwart von Zinkstaub durchgeführt, so erhält man Dihydroshikonin-pentaacetat (E II 6, 1155) (M., K., Acta phytoch. 1, 53; C. 1922 III, 678). Beim Behandeln mit Benzoylchlorid in Äther bei Gegenwart von Pyridin unterhalb 25° bildet sich Shikonindibenzoat (Syst. Nr. 905) (M., K., Acta phytoch. 1, 53; C. 1922 III, 678). — Na₂C₁₆H₁₄O₅. Indigoblau (M., K., Acta phytoch. 1, 50; C. 1922 III, 677). — CuC₁₆H₁₄O₅. Violettrot (M., K., Acta phytoch. 1, 51; C. 1922 III, 677).

Verbindung C₃₂H₃₄O₉. B. Durch Hydrierung von Shikonin in Äther bei Gegenwart von Platinschwarz und Aufbewahren des violettroten Reaktionsprodukts (Majima, Kuroda, Acta phytoch. 1, 57; C. 1922 III, 678). — Rote Nadeln (aus Chloroform). F: 224°.

Shikonin-monoacetat $C_{18}H_{18}O_6 = (CH_3 \cdot CO \cdot O)(HO)C_{10}H_3O_2 \cdot CH(OH) \cdot CH_2 \cdot CH : C(CH_3)_2$ oder $(HO)_2C_{10}H_3O_2 \cdot CH(O \cdot CO \cdot CH_3) \cdot CH_2 \cdot CH : C(CH_3)_2$. Das Mol.-Gew. wurde kryoskopisch in Benzol bestimmt (Majma, Kuroda, Acta phytoch. I, 51). — V. In den Wurzeln von Lithospermum Erythrorhizon; der durch Extraktion mit Petroläther gewonnene und auf Grund der größeren Löslichkeit in Petroläther von anderen Produkten abgetrennte Syrup krystallisiert sehwer (M., K., Acta phytoch. 1, 51; C. 1922 III, 677). — Krystalle (aus Petroläther). F: 85° bis 86°. Sehr leicht löslich in organischen Lösungsmitteln.

Shikonin-triacetat C₂₂H₂₂O₈ = (CH₃·CO·O)₂C₁₀H₃O₂·CH(O·CO·CH₃)·CH₂·CH:C(CH₃)₂. B. Beim Erwärmen von Shikonin mit Acetanhydrid und überschüssigem Natriumacetat auf 50—60° (MAJIMA, KURODA, Acta phytoch. 1, 52; C. 1922 III, 677). — Gelbe Nadeln (aus Alkohol). F: 113°. Leicht löslich in Chloroform, Benzol, Aceton und Eisessig, löslich in Äther und Petroläther. — Löst sich in verd. Alkalilaugen mit blauer Farbe; beim Ansäuern wird Shikonin gefällt; beim Behandeln mit alkoh. Alkalilaugen erhält man eine rotbraune Lösung, aus der beim Ansäuern kein Shikonin isoliert werden kann. Liefert beim Ozonisieren in Chloroform neben anderen Produkten Acetonsuperoxyd und 3.6-Dioxy phthalsäure.

Shikonin-monoxim $C_{16}H_{17}O_5N=(HO)_2C_{10}H_3O(:N\cdot OH)\cdot CH(OH)\cdot CH_2\cdot CH:C(CH_3)_2\cdot Krystalle (aus Benzol).$ F: 163° (Majima, Kuroda, Acta phytoch. 1, 54; C. 1922 III, 677).

b) Linksdrehende Form 1, Alkannin $C_{16}H_{16}O_5$, Formel I bzw. II. Zur Konstitution vgl. Brockmann, A. 521 [1936], 19, 20; Bro., Roth, Naturwiss. 23 [1935], 246; vgl. a. Raudnitz, Redlich, Fiedler, B. 64 [1931], 1835; Dieterle, Salomon, Nosseck, B. 64 [1931], 2086; Rau., B. 65 [1932], 159; Rau., Stein, B. 67 [1934], 1955; 68 [1935], 1479; Brand, Lohmann, B. 68, 1487. — V. In Form eines Angelicasäureesters (Brand, Lohmann, B. 68, 1489; Brockmann, A. 521, 24) in den Wurzeln von Alkanna tinctoria Tausch (Pelletter, A. ch. [2] 51 [1832], 191; A. 6 [1833], 27; Bolley, Wydler, A. 62 [1847], 141). — Isolierung: Libbermann, Römer, B. 20, 2428; Carnelutti, Nasini, B. 18, 1514; Brockmann, A. 521, 26. — Brauntote, kupferglänzende Prismen (aus Benzol und durch Sublimation im Hochvakuum). F: 149° (korr.) (Bro., A. 521, 27, 28). (α): — 160° (Benzol; c = 1,5), —227° (Chloroform; c = 0,7) (Bro.). Lichtabsorption in verschiedenen Lösungsmitteln: Bro. — Die rote alkoholische Lösung färbt sich auf Zusatz von Alkalien blau (Bolley, Wydler). — Versetzt man eine

¹⁾ Vgl. S. 543 Anm.

bis 829]

alkoh. Alkannin-Lösung mit einigen Tropfen einer Lösung von Magnesiumammoniumphosphat in verd. Salzsäure und darauf mit wenigen Tropfen einer wäßr. Ammoniumphosphat-Lösung, so tritt eine blauviolette Färbung auf; die Reaktion eignet sich zum Nachweis von Magnesium (EISENLOHE, B. 53, 1476).

5. Oxy-oxo-Verbindungen $C_{17}H_{18}O_{5}$.

Bis-[4-oxy-3-methoxy-β-phenäthyl]-keton, α.α'-Divanillylaceton C₁₉H₂₂O₅, s. nebenstehende Formel. B. Bei der Reduktion von Divanillylidenaceton mit Wasserstoff in Gegenwart von Platinschwarz oder mit Natriumamalgam in Wasser (Nomura, Hotta, Sci. Rep. Töhoku Univ. 14, 124; C. 1925 II, 1745). — Krystalle (aus verd. Alkohol oder Methanol). F: 89,5—90,5°.

Bis-[3.4-dimethoxy- β -phenäthyl]-keton, $\alpha.\alpha'$ -Diverstryl-aceton $C_{21}H_{26}O_5 = [(CH_3\cdot O)_2C_6H_3\cdot CH_2\cdot CH_2]_2CO$. B. Beim Schütteln von Bis-[4-oxy-3-methoxy- β -phenäthyl]-keton mit Dimethylsulfat in verd. Natronlauge (Nomura, Hotta, Sci. Rep. Tôhoku Üniv. 14, 125; C. 1925 II, 1745). — Krystalle (aus verd. Alkohol). F: 83,5—84,5°.

Bis - [3.4 - dimethoxy - β - phenäthyi] - ketoxim $C_{21}H_{27}O_5N = [(CH_3 \cdot O)_2C_6H_3 \cdot CH_2 \cdot CH_2]_2C: N \cdot OH.$ Krystalle (aus verd. Alkohol). F: 138,5—139,5° (NOMURA, HOTTA, Sci. Rep. Tõhoku Univ. 14, 125; C. 1925 II, 1746).

Bis- $[\alpha.\beta$ -dibrom- β -(3.4-dimethoxy-phenyl)-äthyl]-keton, Diverstrylidenaceton-tetrabromid $C_{21}H_{22}O_5Br_4=[(CH_3\cdot O)_2C_6H_3\cdot CHBr\cdot CHBr]_2CO$. B. Durch Einw. der berechneten Menge Brom auf Bis-[3.4-dimethoxy-benzyliden]-aceton in Chloroform (Dickinson, Heilbron, Irving, Soc. 1927, 1892). — Nadeln (aus Benzol). Wird bei 145° dunkel und schmilzt bei 152° (unter Zersetzung).

Bis- $[\alpha.\beta$ -dibrom- β -(3-methoxy-4-benzyloxy-phenyl)-äthyl]-keton, Bis-benzylvanillyliden-aceton-tetrabromid $C_{33}H_{30}O_5Br_4=[C_6H_5\cdot CH_2\cdot O\cdot C_6H_3(O\cdot CH_3)\cdot CHBr\cdot CHBr]_2CO$. B. Aus 3.3'-Dimethoxy-4.4'-dibenzyloxy-dibenzylidenaceton und der berechneten Menge Brom in Chloroform (Diokinson, Heilbron, Irving, Soc. 1927, 1896). — Nadeln (aus Benzol). F: 141° (Zers.). — Zersetzt sich sehr rasch.

Bis-[α , β -dibrom- β -(3-methoxy-4-acetoxy-phenyl)-äthyl]-keton, Bis-acetylvanillyliden-aceton-tetrabromid $C_{23}H_{22}O_7Br_4=[CH_3\cdot CO\cdot O\cdot C_6H_3(O\cdot CH_3)\cdot CHBr\cdot CHBr]_2CO$. B. Aus Bis-acetylvanillyliden-aceton und Brom in Chloroform (Glaser, Tramer, J. pr. [2] 116, 343). — Nadeln (aus Methanol). F: 159—161° (Zers.). Löslich in Methanol, Alkohol, Äther, Chloroform, Eisessig und Essigester.

6. Oxy-oxo-Verbindungen $C_{18}H_{20}O_{5}$.

Trimethylphloretin $C_{18}H_{20}O_5 = OC \underbrace{CH(CH_3) - CO}_{C(CH_3)_2} CO \underbrace{CH \cdot CO \cdot CH_2 \cdot CH_2 \cdot C}_{CO}H_4 \cdot OH(?)$ bzw. desmotrope Formen (H 5(0), Citronengelbe Krystalle (aus Alkohol + Äther), Monoklin prismatisch (DE ANGELIS, R. A. L. [5] 30 I, 348; C. 1922 I, 409). F: 152°.

g) Oxy-oxo-Verbindungen $C_n H_{2n-18} O_5$.

1. Oxy-oxo-Verbindungen C₁₈H₈O₈.

2.3.6.7-Tetraoxy-fluorenon $C_{13}H_8O_5$, s. nebenstehende Formel (R = H).

2.3.6.7-Tetramethoxy-fluorenon C₁₇H₁₆O₅, s. nebenstehende R·O·O·R Formel (R = CH₃). Zur Konstitution vgl. OLIVERIO, C. 1935 II, 8.0 O·R 3651; DREYFUSS, C. 1935 II, 3652. — B. Neben Veratrumsäure und etwas Veratrilsäure bei der Kalischmelze von Veratril (Vanzett, R. A. L. [5] 24 II [1915], 469; C. 1928 I, 2823). Bei der Oxydation von Veratrilsäure (V., G. 57, 169; C. 1928 I, 2824). — Lösungsmittelhaltige dunkelrote Nadeln (aus Eisessig), die bei 110—120° orangegelb werden (V.; O.). F: 198° (V.), 202—208° (O.). Sublimierbar (V.). Löslich in organischen Lösungsmitteln, unlöslich in Wasser und Alkalilauge (V.). Gibt mit konz. Schwefelsäure eine blaugrüne Färbung, die in Rosarot übergeht (V.).

motrope Form.

Syst. Nr. 829

2. Oxy-exe-Verbindungen $C_{14}H_{10}O_{5}$.

- 1. 2.9.10-Trioxy-1.4-dioxo-1.2.3.4-tetrahydro-anthracen, 2-Oxy-1.4-dioxo-1.2.3.4-tetrahydro-anthrahydrochinon, Leukochinizarin I C₁₄H₁₀O₅, s. nebenstehende Formel bzw. desmotrope Formen (H 511). B. Aus Purpurin (S.552) durch Reduktion mit Zinkstaub in kaltem Eisessig und Kochen des Reaktionsprodukts mit Eisessig unter Luftabschluß (K. H. Meyer, Sander, A. 420, 125), wahrscheinlich auch beim Kochen mit Zinn(II)-chlorid und konz. Salzsäure (Goodall, Perkin, Soc. 125, 473). Krystalle (aus Methanol). F: 162—163° (M., S.). Löslich in Natronlauge mit gelber Farbe (M., S.). Geht bei der Einw. von Natronlauge oder von konz.
- Schwefelsäure in Chinizarin über (M., S.).

 2. 1.2.6.7-Tetraoxy-anthron-(9) $C_{14}H_{10}O_5 = (HO)_2C_8H_2 < CO < C_8H_2(OH)_2$ bzw. des-
- 7-0xy-1.2.6-trimethoxy-anthron-(9) $C_{17}H_{16}O_5$, s. nebenstehende Formel. B. Beim Behandeln von 5.6-Dimethoxy-2-[4-oxy-3-methoxy-benzyl]-benzoesäure mit konz. HO Schwefelsäure bei Zimmertemperatur (Jacobson, Adams, CH₃·O Am. Soc. 47, 2016). Gelber Niederschlag.
- 1.2.6.7-Tetramethoxy-anthron-(9) C₁₈H₁₈O₅, s. nebenstehende Formel. B. Bei der Einw. von konz. Schwefelsäure auf 5.6-Dimethoxy-2-[3.4-dimethoxy-benzyl]-benzoesäure CH₈·O·(JACOBSON, ADAMS, Am. Soc. 47, 2016). Gelbe Nadeln CH₈·O·(aus verd. Essigsäure). F: 153—154° (korr.).
- CH³·O·CH³
 CO
 ·O·CH³
 - CH³·O·CH³

 CH³·O·CH³

OH

OH

·CO·CH;CH

- 3. 1.2.7.8-Tetraoxy-anthron-(9) $C_{14}H_{10}O_5 = (HO)_2C_6H_2 < CO_5 > C_6H_2(OH)_2$.
- 1-Oxy-2.7.8-trimethoxy-anthron-(9) C₁₇H₁₆O₅, s. nebenstehende Formel. Zur Konstitution vgl. Heller, Z. ang. Ch. 42, 172, 175. B. Bei Einw. von konz. Schwefelsäure und Borsäure auf 5.6-Dimethoxy-2-[3-oxy-4-methoxy-benzyl]-benzoesäure(?) (Puntambeker, Adams, Am. Soc. 49, 490). Rötlichbraun. Wird durch Chromessigsäure bei 60° zu 1-Oxy-2.7.8-trimethoxy-anthrachinon oxydiert.
 - 4. 2.3.5.6-Tetraoxy-anthron-(9) $C_{14}H_{10}O_5 = (HO)_2C_6H_2 < CO_{CH_2} > C_6H_3(OH)_2$
- 2.3.5.6-Tetramethoxy-anthron-(9) $C_{18}H_{18}O_5$, s. nebenstehende Formel. B. Beim Aufbewahren von 3.4-Dimethoxy-2-[3.4-dimethoxy-benzyl]-benzoesäure mit konz. Schwefelsäure (Bistrzycki, Krauer, Helv. 6, 767). Gelbliche Nadeln (aus Eisessig). F: 174—175°. Leicht löslich in heißem Benzol, mäßig löslich in Alkohol, Eisessig und Aceton. Die Lösung in kalter konzentrierter Schwefelsäure ist braunrot. Gibt bei der Oxydation mit Chromessigsäure 1.2.6.7-Tetramethoxy-anthrachinon.

3. Oxy-oxo-Verbindungen $C_{15}H_{12}O_5$.

- 1. $4 Oxy \omega [2.4.6 trioxy benzyliden] acetophenon, 2.4.6.4 Tetraoxy-chalkon <math>C_{15}H_{12}O_5$, s. nebenstehende Formel.
- 4-Methoxy ω [2 oxy 4.6 dimethoxy benzyliden] oH acetophenon, 2-0xy-4.6.4'-trimethoxy-chalkon $C_{18}H_{18}O_5$ = $CH_2 \cdot O \cdot C_6H_4 \cdot CO \cdot CH \cdot CH \cdot C_8H_2(OH)^2(O \cdot CH_3)_3^{4\cdot5}$. B. Bei längerem Behandeln von 2-0xy-4.6-dimethoxy-benzaldehyd mit 4-Methoxy-acetophenon in methylalkoholischer Kalilauge bei ca. 60° (Pratt, Robinson, Williams, Soc. 125, 205). Kaliumsalz. Orangegelbe Blättchen.
- 2. 2.3.4 Trioxy ω salicyliden acetophenon, HO OH [2.3.4 Trioxy phenyl] [2 oxy styryl] keton, 2.2'.3'.4'-Tetraoxy-chalkon, Salicyliden-gallaceto-HO Dhenon C₁₅H₁₂O₅, s. nebenstehende Formel. B. Aus Gallaceto-phenon und Salicylaldehyd in alkoh. Kalilauge bei 65° (Ellison, Soc. 1927, 1723). Gelbe Nadeln (aus verd. Methanol). Wird bei 205° schwarz und schmilzt bei 224—225° unter Zersetzung. Leicht löslich in Alkohol und Aceton, schwer in siedendem Xylol, unlöslich in Benzol,

Chloroform und Wasser. Gibt mit Alkalien und mit konz. Schwefelsäure tiefbraune Lösungen. — Geht bei der Einw. von siedender konzentrierter Salzsäure unter teilweiser Zersetzung in 2-[2.3.4-Trioxy-phenyl]-benzopyryliumchlorid (Syst. Nr. 2441) über.

- 2.4.6-Trimethoxy-ω-salicyliden-acetophenon, [2.4.6-Trimethoxy-phenyl]-[2-oxy-styryl]-keton, 2-Oxy-2'.4'.6'-trimethoxy-chalkon C₁₈H₁₈O₅ = (CH₃·O₃C₆H₂·CO·CH:CH·C₆H₄·OH. B. Bei der Kondensation von Phloracetophenon-trimethyläther mit Salicylaldehyd in wäßrig-alkoholischer Kalilauge bei 60° (CULLINANE, PHILPOTT, Soc. 1929, 1765). Gelbe Prismen (axalkohol). F: 205,5° (Zers.). Schwer löslich in Benzol, leicht in Äther, Alkohol und Aceton. Die Lösung in Natronlauge ist hellgelb. Wird beim Betandeln mit konz. Schwefelsäure rot gefärbt und mit orangegelber Farbe gelöst.
- 4. 2.4 Dioxy ω [3.4 dioxy benzyliden] OH OH acetophenon, 3.4.2'.4' Tetraoxy chalkon, Butein $C_{15}H_{12}O_5$, s. nebenstehende Formel (H 501; E I HO CO-CH:CH CO-OH. 737). Kommt nach Asahina, Shinoda, Inubuse (J. pharm. Soc. Japan 48 [1928], 29; C. 1928 II, 49) nicht als Glucosid in den Blüten von Butea frondosa vor, sondern entsteht bei der Einw. von Alkalilauge auf das Glucosid des Butins.
- 2-Oxy-4-āthoxy ω [3-methoxy-4-āthoxy benzyliden] acetophenon, 2'-Oxy-3-methoxy 4.4' diāthoxy chalkon $C_{20}H_{22}O_5=(C_2H_5\cdot O)(HO)C_6H_3\cdot CO\cdot CH:CH\cdot C_6H_3(O\cdot CH_3)\cdot O\cdot C_2H_5$ (H 502). Gelbe Nadeln (aus Alkohol). F: 120—122° (Tasaki, Acta phytoch. 3 [1927], 293).
- 5. 3.4 Dioxy ω [3.4 dioxy benzyliden] acetophenon, 3.4.3'.4' Tetraoxy chalkon $C_{18}H_{12}O_5$, s. nebenstehende Formel.
- 3.4-Dimethoxy- ω -veratryliden-acetophenon, 3.4.3'.4'Tetramethoxy-chalkon, [3.4-Dimethoxy-phenyl] [3.4-dimethoxy-styryl] keton $C_{19}H_{20}O_5 = (CH_3 \cdot O)_2C_6H_3 \cdot CO \cdot CH \cdot CH \cdot C_6H_3(O \cdot CH_3)_2$ (E I 738). Gelbe Prismen (aus Alkohol). F: 116° (PERKIN, RÂY, ROBINSON, Soc. 1926, 951).
- 6. 3.4-Dioxy- ω -[3.5-dioxy-benzyliden]-acetophenon, 3.5.3'.4'-Tetraoxy-chalkon $C_{15}H_{12}O_5$, s. nebenstehende Formel.
- 3.4-Dimethoxy ω [3.5 dimethoxy benzyliden] acetophenon, 3.5.3'.4'-Tetramethoxy chalkon $C_{19}H_{20}O_5 = (CH_3 \cdot O)_2C_6H_3 \cdot CO \cdot CH : CH \cdot C_6H_3(O \cdot CH_3)_2$. B. Aus 3.5-Dimethoxy-benzaldehyd und Acetoveratron in Alkohol beim Behandeln mit wäßr. Natronlauge (Mauthner, J. pr. [2] 100, 182). Gelbe Nadeln (aus verd. Alkohol). F: 103—104°. Leicht löslich in Alkohol, Benzol und heißem Ligroin, sehr schwer in Petroläther. Löst sich in konz. Schwefelsäure mit blutroter Farbe.
- 8. 2.4.6-Trioxy-w-[4-oxy-benzyliden]-aceto-phenon, 4.2'.4'.6'-Tetraoxy-chalkon C₁₅H₁₂O₅, s. nebenstehende Formel. Naringenin (H 503; E I 739), dem früher diese Konstitution zugeschrieben wurde, wird im Ergw. II als 5.7.4'-Trioxy-flavanon -(4) (Syst. Nr. 2556) abgehandelt.
- 2.4-Dioxy-6-methoxy- ω -anisyliden-acetophenon, 2'.4'-Dioxy-4.6'-dimethoxy-chalkon $C_{17}H_{16}O_5=(CH_3\cdot O)(HO)_2C_6H_3\cdot CO\cdot CH:CH\cdot C_6H_4\cdot O\cdot CH_3$. B. Beim Aufbewahren von Phloracetophenon-2-methyläther mit Anisaldehyd in wäßrig-alkoholischer Kalilauge unter Luftabschluß (Sonn, Bülow, B. 58, 1693). Bräunlichgelbe Krystalle (aus Methanol). F: 169°. Leicht löslich in Benzol, Alkohol und Aceton, schwer in Äther und Ligroin, unlöslich in Wasser. Die alkoh. Lösung gibt mit Eisenchlorid eine braunrote Färbung; die Lösung in konz. Schwefelsäure ist rot.

- 2-Oxy-4.6-dimethoxy- ω -anisyliden-acetophenon, 2'-Oxy-4.4'.6'-trimethoxy-chalkon $C_{19}H_{18}O_5=(CH_3\cdot O)_2(HO)C_6H_2\cdot CO\cdot CH: CH\cdot C_6H_4\cdot O\cdot CH_3$ (H 503; E I 739). F: 115—117° (Sonn, Bülow, B. 58, 1694).
- 2.4.6-Trimethoxy- ω -anisyliden-acetophenon, 4.2'.4'.6'-Tetramethoxy-chalkon, Trimethyl-sakuranetein $C_{19}H_{20}O_5=(CH_3\cdot O)_5C_6H_2\cdot CO\cdot CH:CH\cdot C_6H_4\cdot O\cdot CH_5$ (E I 739). B. Bei der Einw. von Dimethylsulfat auf Sakuranetin-diacetat (Syst. Nr. 2556) in aiedender alkoholischer Kalilauge (Asahina, Shinoda, Inubuse, J. pharm. Soc. Japan 1927, 133; C. 1928 I, 1672). Prismen (aus Alkohol). F: 119°.
- 2.4.6-Triacetoxy- ω -anisyliden-acetophenon, 4-Methoxy-2'.4'.6'-triacetoxy-chaikon, Triacetyl-isosakuranetein $C_{22}H_{20}O_8 = (CH_3 \cdot CO \cdot O)_3C_6H_2 \cdot CO \cdot CH \cdot CH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Aus Isosakuranetin (Syst. Nr. 2556) beim Erhitzen mit Acetanhydrid und Natriumacetat auf dem Wasserbad (HATTORI, J. pharm. Soc. Japan 48, 144; Acta phytoch. 4, 225; C. 1929 I, 761; II, 1803). Nadeln. F: 114—115°.
- 4-Methoxy-2.6-diacetoxy- ω -[4-acetoxy-benzyliden] acetophenon, 4'- Methoxy-4.2'.6'-tri-acetoxy-chalkon, Triacetyl-sakuranetein $C_{22}H_{20}O_3 = (CH_3 \cdot CO \cdot O)_2(CH_3 \cdot O)C_6H_2 \cdot CO \cdot CH$: $CH \cdot C_6H_4 \cdot O \cdot CO \cdot CH_3$. B. Aus Sakuranetin (Syst. Nr. 2556) beim Kochen mit Acetanhydrid und Natriumacetat (Asahina, Shinoda, Inubuse, J. pharm. Soc. Japan 48, 29; C. 1928 II, 49). Prismen. F: 146°. Die Lösung in konz. Schwefelsäure ist orangegelb.
- 2.4.6-Triacetoxy- ω -[4-acetoxy-benzyliden]-acetophenon, 4.2'.4'.6'-Tetraacetoxy-chalkon, Tetraacetyl-naringenein $C_{23}H_{20}O_9=(CH_3\cdot CO\cdot O)_3C_6H_2\cdot CO\cdot CH:CH\cdot C_6H_4\cdot O\cdot CO\cdot CH_3$. B. Beim Kochen von Naringenin (Syst. Nr. 2556) mit Acetanhydrid und Natriumacetat (Asahina, Inubuse, B. 61, 1516). Nadeln (aus Alkohol). F: 195° (A., I., B. 63, 249).
- 2.4.6-Trioxy- ω -[4-carbomethoxyoxy-benzyliden]-acetophenon, 2'.4'.6'-Trioxy-4-carbomethoxyoxy-chalkon $C_{17}H_{14}O_7=(HO)_2C_6H_3$. $CO\cdot CH:CH\cdot C_6H_4\cdot O\cdot CO_2\cdot CH_3$. B. Bei der Kondensation von 4-Carbomethoxyoxy-zimtsäurechlorid mit Phloroglucin in Gegenwart von Aluminiumchlorid in Nitrobenzol bei Zimmertemperatur, neben 5.7-Dioxy-4'-carbomethoxyoxy-flavanon-(4) (K. W. Rosenmund, M. Rosenmund, B. 61, 2611). Gelbe Krystalle (aus verd. Methanol). F: 166°.
- 9. 3.4.5-Trioxy-dibenzoylmethan, 3.4.5-Trioxy
 ω-benzoyl-acetophenon $C_{15}H_{12}O_5$, s. nebenstehende Formel

 bzw. desmotrope Formen.

 3.4.5-Trimethoxy-dibenzoylmethan, 3.4.5-Trimethoxyω-benzoyl-acetophenon $C_{18}H_{18}O_5 = C_6H_5 \cdot CO \cdot CH_2 \cdot CO \cdot C_6H_2 \cdot CO \cdot CH_2 \cdot CO \cdot CH_3 \cdot CO$
- 10. 3.4.3'-Trioxy-dibenzoylmethan, 3.4-Di- HO OH oxy-ω-[3-oxy-benzoyl]-acetophenon C₁₅H₁₂O₅, s. nebenstehende Formel bzw. desmotrope Formen.

Kochen mit 1% iger Natronlauge 3.4.5-Trimethoxy-benzoesäure und Benzoesäure. — Kupfer-

salz $Cu(C_{18}H_{17}O_5)_2$. Grüne Nadeln (aus Benzol). F: 254°.

- 3.4.3'-Trimethoxy-dibenzoylmethan, 3.4-Dimethoxy- ω -[3-methoxy-benzoyl]-acetophenon $C_{1a}H_{1a}O_5=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot CH_2\cdot CO\cdot C_6H_3(O\cdot CH_3)_2$. B. Bei längerer Einw. von Natrium auf eine äther. Lösung von 3-Methoxy-benzoesäureäthylester und Acetoveratron (Bradley, Robinson, Soc. 1926, 2366). Prismen (aus Alkohol). F: 78,5°. Gibt mit Schwefelsäure anfangs eine rote Färbung, dann eine gelbe Lösung. Die alkoh. Lösung gibt mit Eisenchlorid eine blutrote Färbung. Liefert beim Kochen mit 1%iger Natronlauge Veratrumsäure und 3-Methoxy-benzoesäure. Kupfersalz. Blaßgrüne Nadeln (aus Benzol). F: 223°. Schwer löslich in Benzol.
- 11. 3.4.4'-Trioxy-dibenzoylmethan, 3.4-Dioxy-w-[4-oxy-benzoyl]-acetophenon $C_{18}H_{12}O_{5}$,
 s. nebenstehende Formel bzw. desmotrope Formen.
- 3.4.4'-Trimethoxy-dibenzoylmethan, 3.4-Dimethoxy- ω -anisoyl-acetophenon $C_{18}H_{18}O_5=CH_3\cdot O\cdot C_8H_4\cdot CO\cdot CH_2\cdot CO\cdot C_6H_3(O\cdot CH_3)_2$. B. Bei der Einw. von Natrium oder Natriumamid auf Anissäureäthylester und A-oetoverstron oder auf Verstrumsäureäthylester und 4-Acetylanisol in Äther (Bradley, Robinson, Soc. 1926, 2366). Gelbe Nadeln (aus Alkohol). F: 97°. Liefert beim Kochen mit 1% iger Natronlauge Verstrumsäure und Anissäure. Kupfersalz. Blaßgrüne Nadeln (aus Benzol). F: 238°.

4. Oxy-oxe-Verbindungen C16H14O5.

2.6.4'-Trimethoxy-4-methyl-dibenzoylmethan, 2.6-Dimethoxy-4-methyl- ω -anisoyl-acetophenon $C_{10}H_{20}O_5$, s. nebenstehende Formel bzw. desmotrope $CH_3 \cdot O \cdot CH_2 \cdot CO \cdot CH_2 \cdot CO \cdot CH_3

5. Oxy-oxo-Verbindungen CasHasOs.

- 1. Salicyliden bis dimethyldihydroresorcin, Salicylaldimethon $C_{23}H_{28}O_5 = \left[(CH_2)_2C CH_2 \cdot CO CH \right]_2 CH \cdot C_6H_4 \cdot OH$ bzw. desmotrope Formen. B. Aus Salicylaldehyd und Dimethyldihydroresorcin in ca. 50% igem Alkohol (Bernardi, Ann. Chim. applic. 17, 164; C. 1927 II, 419). Blättchen (aus 50% igem Alkohol). F: 208—209°. Unlöslich in Wasser. Gibt mit konz. Schwefelsäure eine gelbe, mit Eisenchlorid in Alkohol eine gelbgrüne Färbung.
- 2. $[4-Oxy-benzyliden]-bis-dimethyldihydroresorcin, p-Oxybenzaldimethon <math>C_{83}H_{28}O_5=\left[(CH_3)_2C < CH_2 \cdot CO > CH\right]_2 CH \cdot C_6H_4 \cdot OH$. bzw. desmotrope Formen B. Bei der Kondensation von Dimethyldihydroresorcin mit 4-Oxy-benzaldehyd in alkoh. Lösung bei Zimmertemperatur (Vorländer, Fr. 77, 263). Blättchen und Tafeln (aus 50% igem Alkohol). F: 188—190° (korr.; Gelbfärbung). Leicht löslich in Aceton, Eisessig und Chloroform, löslich in Alkohol und Benzol, schwer löslich in Äther und Petroläther. Leicht löslich in Sodalösung. Gibt mit Eisenchlorid eine braunrote Färbung. Liefert beim Erhitzen mit Eisessig auf dem Wasserbad 1.8-Dioxo-3.3.6.6-tetramethyl-9-[4-oxy-phenyl]-oktahydroxanthen (Syst. Nr. 2536).

Anisyliden-bis-dimethyldihydroresorcin, p-Anisaldimethon $C_{24}H_{30}O_5 = \frac{CH_2 \cdot CO}{(CH_3)_2C \cdot CH_2 \cdot CO} \cdot CH \cdot C_6H_4 \cdot O \cdot CH_3$ bzw. desmotrope Formen. B. Bei der Kondensation von Dimethyldihydroresorcin mit Anisaldehyd in verd. Alkohol bei Zimmertemperatur (VORLÄNDER, Fr. 77, 264; BERNARDI, Ann. Chim. applic. 17, 164; C. 1927 II, 419). — Prismen (aus Alkohol), F: 144—145° (korr.) (V.). Blättchen, F: 142—143° (B.). Unlöslich in Wasser (B.), schwer löslich in Äther und Petroläther, leicht in Alkohol, Aceton, Eisessig und Benzol, sehr leicht in Chloroform (V.). Gibt mit Eisenchlorid eine dunkelbraune Färbung (V.). — Liefert beim Kochen mit Alkohol oder rascher beim Erhitzen mit Eisessig 1.8-Dioxo-3.3.6.6-tetramethyl-9-[4-methoxy-phenyl]-oktahydroxanthen (Syst. Nr. 2536) (V.).

h) Oxy-oxo-Verbindungen $C_n H_{2n-20} O_5$.

1. Oxy-oxo-Verbindungen $C_{14}H_8O_8$.

1. 1.2.3-Trioxy-anthrachinon, Anthragallol, Anthracenbraun, Alizarinbraun C₁₄H₈O₅, s. nebenstehende Formel (H 505; E I 740). Reinigung über das Triacetat: Dimboth, A. 446, 110.— F: 313° bis 314° (Green, Soc. 1926, 2202), 314° (Treadwell, Schwarzenbach, Helv. 11, 402). Die sehr verdünnte alkoholische Lösung ist gelb, bei Gegenwart von Borsäure bräunlich (Böeseken, R. 41, 783). Die Lösung in Acetanhydrid ist orangerot und wird durch Pyroboracetat (E II 2, 175) in der Kälte oliv gefärbt (D., A. 446, 110). Dissoziationskonstante in 96 %igem Alkohol (durch elektrometrische Titration mit 0,1 n-Natriumäthylat-Lösung ermittelt): T., Sch. — Gibt bei der Einwirkung von Brom in Pyridin sehr geringe Mengen eines stickstoffhaltigen Produkts (Barnett, Cook, Soc. 121, 13:9). Anthragallol liefert beim Kochen mit Thionylchlorid 2.3-Thionyl-anthragallol (S. 552) (G., Soc. 1926, 2202). Gibt mit Chlorameisensäureäthylester in Pyridin 2.3-Dicarbäthoxy-anthragallol (S. 551) (Perkin, Storey, Soc. 1928, 242). Bei kurzem Kochen mit Pyroboracetat (E II 2, 175) und Acetanhydrid entsteht der Diacetylborsäureester des 2.3-Diacetylanthragallols (S. 552) (D., A. 446, 110). — Mikrochemischer Nachweis auf Grund der Krystallisation aus Nitrobenzol und aus konz. Schwefelsäure: Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 103.

2.3 - Dioxy-1-methoxy-anthrachinon, Anthragallol-1-methyläther $C_{15}H_{10}O_5=C_6H_4(CO)_2$ $C_8H(OH)_8\cdot O\cdot CH_8$. B. Durch Einw. von Diazomethan auf 2.3-Di-p-toluolsulfonyl-anthragallol

- 1:3-Dioxy-2-methoxy-anthrachinon, Anthragaliol-2-methyläther $C_{15}H_{10}O_5=C_6H_4(CO)_2$ $C_6H(OH)_2\cdot O\cdot CH_3$. B. Durch Hydrolyse von Anthragaliol-2-methyläther-1-acetat (Perkin, Story, Soc. 1929, 1415) oder Anthragaliol-2-methyläther-1.3-diacetat (Kurota, P., Soc. 127, 1893) mit Salzsäure in Eisessig. Durch Diazotieren von 3-Amino-1.2-dimethoxy-anthrachinon und nachfolgendes Kochen (P., St., Soc. 1929, 1416). Nadeln (aus Benzol). F: 218—220° (K., P.). Löslich in verd. Alkalilaugen mit scharlachroter Farbe (K., P.). Liefert beim Behandeln mit Acetanhydrid und Kaliumacetat Anthragaliol-2-methyläther-3-acetat (P., St., Soc. 1929, 1409).
- 1.2-Dioxy-3-methoxy-anthrachinon, Anthragallol-3-methyläther $C_{15}H_{10}O_5=C_6H_4(CO)_2$ $C_6H(OH)_2\cdot O\cdot CH_3$ (H 506). B. Durch Hydrolyse von Anthragallol-3-methyläther-1.2-diacetat mit heißem alkoholischem Ammoniak (Kubota, Perkin, Soc. 127, 1894; vgl. P., Story, Soc. 1929, 1400, 1412). Rote Nadeln (aus Alkohol oder Aceton). F: 239—241° (K., P.), 242—243° (P., St.). Löslich in verd. Alkali mit tiefblauer Farbe (K., P.). Liefert bei der Einw. von Benzoylchlorid in Chloroform bei Gegenwart von Pyridin unter Eiskühlung Anthragallol-3-methyläther-2-benzoat (P., St.). Färbt mit Chrom-, Aluminium-, Zinn- und Eisensalzen gebeizte Wolle violettbraun, hellbraun, orangerot und schwarz (K., P.).
- 3-0xy-1.2-dimethoxy-anthrachinon, Anthragallol-1.2-dimethyläther $C_{10}H_{12}O_5=C_6H_4(CO)_2$ $C_8H(OH)(O\cdot CH_3)_2$ (H 506). B. In geringer Menge aus Anthragallol-2-acetat oder Anthragallol-2-benzoat durch Einw. von Diazomethan in Äther + Aceton und Hydrolyse des Reaktionsgemisches mit siedender 1% iger methylalkoholischer Kalilauge, neben viel Anthragallol-2.3-dimethyläther und wenig Anthragallol-1.3-dimethyläther (Perkin, Story, Soc. 1929, 1412, 1414). Durch Hydrolyse von Anthragallol-1.2-dimethyläther-3-acetat mit heißem wäßrig-alkoholischem Ammoniak (P., St., Soc. 1929, 1401, 1410). Gelbe Nadeln (aus Alkohol). Sintert bei 222° und schmilzt bei 230—232°.
- 2-Oxy-1.3-dimethoxy-anthrachinon, Anthragallol-1.3-dimethyläther $C_{16}H_{12}O_5=C_6H_4(CO)_2C_6H(OH)(O\cdot CH_3)_2$ (H 507). B. In geringer Menge neben anderen Produkten aus Anthragallol-2-acetat, Anthragallol-2-benzoat oder Anthragallol-3-methyläther-2-benzoat durch Einw. von Diazomethan in Äther + Aceton und Hydrolyse der Reaktionsprodukte mit siedender 1% iger methylalkoholischer Kalilauge (Perkin, Story, Soc. 1929, 1412, 1413, 1414). F: 218—220°.
- 1-Oxy-2.3-dimethoxy-anthrachinon, Anthragallol-2.3-dimethyläther $C_{16}H_{12}O_5=C_6H_4(CO)_2C_6H(OH)(O\cdot CH_3)_2$ (H 507). B. Aus Anthragallol-2.3-dimethyläther-1-benzoat durch Hydrolyse mit siedender 1 %iger methylalkoholischer Kalilauge (Perkin, Story, Soc. 1929, 1412). Gelbe Nadeln (aus Alkohol). F: 160—162°.
- 1.2.3-Trimethoxy-anthrachinon, Anthragalloltrimethyläther $C_{17}H_{14}O_5 = C_6H_4(CO)_2C_6H(O\cdot CH_3)_3$ (H 507). B. Aus Anthragallol-2-methyläther-3-acetat durch Einw. von Diazomethan in Ather, neben viel Anthragallol-1.2-dimethyläther-3-acetat (Perkin, Story, Soc. 1929, 1410). Blaß grüngelbe Nadeln (aus Alkohol). F: 167—169°.
- 1.3-Dioxy-2-acetoxy-anthrachinon, Anthragallol-2-acetat $C_{16}H_{10}O_6=C_6H_4(CO)_2C_6H(OH)_8$: O·CO·CH₃. B. Durch Kochen von 2.3-Thionyl-anthragallol (S. 552) mit Eisessig (Green, Soc. 1926, 2203; Perrin, Story, Soc. 1929, 1403, 1414). Goldbraune Stäbchen (aus Toluol). F: 210—2120 (Gr.), 219—2200 (P., St.). Löslich in kalter Sodalösung mit roter Farbe (P., St.). Liefert bei der Einw. von Diazomethan in Äther + Aceton 67% Anthragallol-2.3-dimethyläther-1-acetat, 15% Anthragallol-1.3-dimethyläther-2-acetat und wenig Anthragallol-1.2-dimethyläther-3-acetat (P., St.).
- 3 Oxy 2-methoxy-1-acetoxy-anthrachinon, Anthragallol-2-methyläther-1-acetat $C_{17}H_{12}O_6 = C_0H_4(CO)_2C_0H(OH)(O\cdot CH_3)\cdot O\cdot CO\cdot CH_3$. B. Durch Einw. von überschüssigem Ammoniak auf Anthragallol-2-methyläther-1.3-diacetat in siedendem Aceton (Perkin, Story, Soc. 1929, 1415). Gelbe Nadeln (aus Aceton). F: 205—208°. Liefert bei der Hydrolyse mit Salzsäure in Eisessig Anthragallol-2-methyläther. Bei der Einw. von Diazomethan in Äther + Aceton entsteht Anthragallol-2.3-dimethyläther-1-acetat.
- 1-Oxy-2-methoxy-3-acetoxy-anthrachinon, Anthragallol-2-methyläther-3-acetat $C_{17}H_{18}O_6 = C_9H_4(CO)_2C_9H(OH)(O\cdot CH_3)\cdot O\cdot CO\cdot CH_3$. B. Durch Behandeln von Anthragallol-2-methyläther mit Acetanhydrid und Kaliumacetat (Perkin, Story, Soc. 1929, 1409). Orangefarbene Nadeln (aus Aceton). F: 167—169,5°. Gibt bei der Einw. von Diazomethan in Äther Anthragallol-1.2-dimethyläther-3-acetat und wenig Anthragalloltrimethyläther.
- 2.3-Dimethoxy-1-acetoxy-anthrachinon, Anthragallol-2.3-dimethyläther-1-acetat $C_{18}H_{14}O_4$ = $C_4H_4(CO)_2C_6H(O\cdot CH_3)_2\cdot O\cdot CO\cdot CH_3$ (H 508), B. Aus Anthragallol-2-acetat oder besser

aus Anthragallol-2-methyläther-1-acetat bei der Einw. von Diazomethan in Äther + Aceton, neben anderen Produkten (Perkin, Story, Soc. 1929, 1414). — F: 168—170°.

- 1.2-Dimethoxy-3-acetoxy-anthrachinon, Anthragallol-1.2-dimethyläther-3-acetat $C_{18}H_{14}O_6 = C_6H_4(CO)_3C_6H(O\cdot CH_3)_2\cdot O\cdot CO\cdot CH_3$ (H 508). B. Durch Einw. von Diazomethan auf Anthragallol-2-methyläther-3-acetat in Äther, neben wenig Anthragalloltrimethyläther (Perkin, Story, Soc. 1929, 1409). Gelbe Nadeln (aus Aceton). F: 177—179°. Liefert bei der Hydrolyse Anthragallol-1.2-dimethyläther.
- 1-0xy-2.3-diacetoxy-anthrachinon, Anthragallol-2.3-diacetat, 2.3-Diacetyl-anthragallol C₁₈H₁₂O₇ = C₆H₄(CO)₂C₆H(OH)(O·CO·CH₃)₂. B. Aus Anthragallol durch kurzes Kochen mit der 10-fachen Menge Acetanhydrid oder durch langsames Zutropfenlassen von 2 Mol Acetanhydrid in trockenem Pyridin (DIMROTH, A. 446, 110) oder, neben etwas Anthragalloltriacetat, bei der Einw. von Acetanhydrid + wenig Pyridin in Eisessig in der Kälte (Kubota, Perkin, Soc. 127, 1893). Durch Behandeln von Anthragallotriacetat mit Ammoniak in warmem Aceton (P., Stork, Soc. 1929, 1416). Durch kurzes Kochen von 2.3-Thionyl-anthragallol (S. 552) mit Acetanhydrid (Green, Soc. 1926, 2202). Aus dem Diacetylborsäureester des 2.3-Diacetyl-anthragallols (S. 552) durch Einw. von kaltem Wasser (D.). Gelbe Blättchen (aus Eisessig oder Aceton). F: 214° (D.), 223—224° (K., P.; G.; P., St.). Gibt mit Diazomethan in Ather unter Eiskühlung Anthragallol-2-methyläther-1.2-diacetat (K., P.; P., Stork, Soc. 1929, 1400). Bei der Einw. von Benzoylchlorid auf Anthragallol-2-3-diacetat in Chloroform + wenig Pyridin erhält man Anthragallol-3-acetat-2-benzoat und Anthragallol-2-acetat-1 (oder 3)-benzoat (P., St., Soc. 1929, 1410). Die Lösung in Acetanhydrid wird auf Zusatz von Pyroboracetat orangefarben (D.). Lichtabsorption dieser orangefarbenen Lösung: D.
- 3-Methoxy-1.2-diacetoxy-anthrachinon, Anthragaliol-3-methyläther-1.2-diacetat $C_{19}H_{14}O_7 = C_6H_4(CO)_3C_6H(O\cdot CH_3)(O\cdot CO\cdot CH_3)_2$ (H 508). B. Aus Anthragaliol-2.3-diacetat und Diazomethan in Äther unter Eiskühlung, neben überwiegenden Mengen Anthragaliol-2-methyläther-1.3-diacetat (Kubota, Perkin, Soc. 127, 1894; P., Story, Soc. 1929, 1400). Gelbe Nadeln. F: 203—205° (K., P.), 204—206° (P., St., Soc. 1929, 1412). Liefert bei der Hydrolyse mit heißem alkoholischem Ammoniak Anthragaliol-3-methyläther (K., P.; vgl. P., St.).
- 2-Methoxy-1.3-diacetoxy-anthrachinon, Anthragallol-2-methyläther-1.3-diacetat $C_{19}H_{14}O_7 = C_6H_4(CO)_3C_6H(O\cdot CH_3)(O\cdot CO\cdot CH_3)_2$. B. siehe bei der vorangehenden Verbindung. Gelbe prismatische Nadeln (aus Aceton). F: 152—154° (Kubota, Perkin, Soc. 127, 1893). Liefert bei der Hydrolyse mit Salzsäure in Eisessig Anthragallol-2-methyläther (K., P.). Bei der Einw. von überschüssigem Ammoniak in siedendem Aceton erhält man Anthragallol-2-methyläther-1-acetat (P., Story, Soc. 1929, 1415).
- 1-Methoxy-2.3-diacetoxy-anthrachinon, Anthragallol-1-methyläther-2.3-diacetat $C_{19}H_{14}O_7 = C_0H_4(CO)_2C_0H(O\cdot CH_3)(O\cdot CO\cdot CH_3)_2$. B. Durch Acetylierung von Anthragallol-1-methyläther mit siedendem Acetanhydrid + Pyridin (Perkin, Story, Soc. 1929, 1417). Blaß grüngelbe Nadeln. F: 165—166°.
- 1.2.3-Triacetoxy-anthrachinon, Anthragallol-triacetat, Triacetylanthragallol $C_{30}H_{14}O_8=C_6H_4(CO)_2C_6H(O\cdot CO\cdot CH_3)_3$ (H 508). B. Durch Kochen von Anthragallol-2-benzoat mit Acetanhydrid und Pyridin (Perkin, Story, Soc. 1929, 1411). Gelbe Stäbchen (aus Pyridin). F: 188—189° (Green, Soc. 1926, 2203). Gibt bei der Einw. von Ammoniak in warmem Aceton Anthragallol-2.3-diacetat (P., St., Soc. 1929, 1416).
- 1-Oxy-2.3-bis-carbāthoxyoxy-anthrachinon, 2.3-Dicarbāthoxy-anthragallol, 2.3-Diāthylcarbonato-anthragallol $C_{20}H_{16}O_{9}=C_{6}H_{4}(CO)_{2}C_{6}H(OH)(O\cdot CO_{2}\cdot C_{2}H_{5})_{2}$. B. Aus Anthragallol und Chlorameisensäureäthylester in Pyridin (Perkin, Storey, Soc. 1928, 242). Orangefarbene Prismen (aus Aceton). F: 174—175°. Liefert mit Diazomethan in Tetrachlorāthan 1.3-Dicarbāthoxy-anthragallol-2-methyläther und geringe Mengen 2.3-Dicarbāthoxy-anthragallol-1-methyläther (P., Storey, Soc. 1928, 242; P., Story, Soc. 1929, 1403).
- 2-Methoxy-1.3-bis-carbāthoxyoxy-anthrachinon, 1.3-Dicarbāthoxy-anthragallol-2-methylāther $C_{21}H_{18}O_9=C_6H_4(CO)_8C_6H(O\cdot CH_3)(O\cdot CO_3\cdot C_2H_5)_2$. B. Aus 2.3-Dicarbāthoxy-anthragallol bei der Einw. von Diazomethan in Tetrachloräthan, neben wenig 2.3-Dicarbāthoxy-anthragallol-1-methylāther (Perkin, Storey, Soc. 1928, 242; P., Story, Soc. 1929, 1403). Gelbe Prismen (aus Aceton). F: 125—127°.
- 1-Methoxy-2,3-bis-carbāthoxyoxy-anthrachinon, 2.3-Dicarbāthoxy-anthragallol-1-methyläther $C_{21}H_{18}O_9=C_9H_4(CO)_2C_6H(O\cdot CH_2)(O\cdot CO_2\cdot C_2H_5)_2$. B. siehe bei der vorangehenden Verbindung. Blaßgelbe Nadeln (aus Alkohol). F: 196—197° (Perkin, Storey, Soc. 1928, 242; P., Story, Soc. 1929, 1403).

552

1-0xy-2.3-thionyldioxy-anthrachinon, 2.3-Thionyl-anthragallel C14H4O6S, s. nebenstehende Formel. B. Durch Kochen von Anthragallol mit Thionylchlorid (GREEN, Soc. 1926, 2202). — Grüngelbe Stäbchen. F: 218—220°. — Gibt beim Aufbewahren an der Luft Anthragallol. Beim Kochen mit Eisessig erhält man Anthragallol und 1.2-Dioxy-3-acetoxy-anthrachinon, beim Kochen mit Acetanhydrid 1-Oxy-2.3-diacetoxy-anthrachinon.

Diacetylborsäureester des 2.3-Diacetyl-anthragallols $C_{22}H_{17}O_{11}B = C_0H_0(CO)_2C_0H(O\cdot CO\cdot CO)$ CH₂)₂·O·B(O·CO·CH₂)₂. B. Bei kurzem Kochen von Anthragaliol mit Pyroboracetat (È II 2, 175) und Acetanhydrid (Dimeorn, A. 446, 110). — Orangefarbene Krystalle. — Wird durch kaltes Wasser leicht in Anthragallol-2.3-diacetat, Borsäure und Essigsäure gespalten.

2. 1.2.4-Trioxy-anthrachinon, Purpurin $C_{14}H_8O_5$, s. nebenstehende Formel (H 509; E I 740). B. Zur Bildung aus 2-Brom-chinizarin durch Alkalischmelze vgl. TANAKA, Pr. Acad. Tokyo 3, 346; C. 1927 II, 1956. Purpurin entsteht bei 3-stdg. Erhitzen von Phthalsäureanhydrid mit 2-Chlor-phenol, Schwefelsäure und Borsäure auf 2556 (TANAKA, TANAKA, Bl. chem. Soc. Japan 3, 286; C. 1929 I, 752). Beim Erhitzen von

2-Amino-1.4-dioxy-anthrachinon mit 20% iger Salzsaure im Rohr auf 250° (Brass, Ziegler, B. 58, 761). — Rote Nadeln (aus Eisessig). Verbrennungswärme bei konstantem Volumen: 1402,7 kcal/Mol (Valeur, A. ch. [7] 21 [1900], 568; vgl. Swietoslawski, Starczewska, J. Chim. phys. 28, 822). 3,6 g lösen sich in 1000 cm³ absol. Alkohol bei 60° (Kartaschoff, Farine, Helv. 11, 822). Löslich in 10% iger Dinatriumphosphat-Lösung (Dimroth, Friedemann, Kämmerer, B. 53, 483). Dissoziationskonstante in 96% igem Alkohol (durch elektrometrische Titration mit 0,1 n-Natriumäthylat-Lösung bestimmt): Treadwell, Schwarzenbach, Helv. 11, 402.

Purpurin gibt bei der Einw. von 4 Mol Kaliumferricyanid in sehr verd. Kalilauge bei 15° 2.5-Dioxy-p-chinon (Scholl, Dahll, B. 57, 82). Liefert beim Behandeln mit Zinkstaub in Eisessig in der Kälte und Kochen des Reaktionsprodukts mit Eisessig unter Luftabschluß 2-Oxy-1.4-dioxo-1.2.3.4-tetrahydro-anthrahydrochinon (S. 546) (K. H. MEYER, SANDER, A. 420, 124). Die gleiche Verbindung entsteht wahrscheinlich beim Kochen von Purpurin mit Zinn(II)chlorid in konz. Salzsäure (GOODALL, PERKIN, Soc. 125, 473). Bei der Einw. von Brom in Pyridin entsteht ein Gemisch aus 3-Brom-purpurin und brom- und stickstoffhaltigen Produkten (BARNETT, COOK, Soc. 121, 1389). Liefert beim Kochen mit Thionylchlorid 1.2-Thionyl-purpurin (S. 553) (GREEN, Soc. 1926, 2200). Bei der Einw. von Acetanhydrid und Pyridin (DIMROTH, FRIEDEMANN, KÄMMERER, B. 53, 482; P., STOREY, Soc. 1928, 237) oder Acetanhydrid und Kaliumacetat (P., Sr.) entsteht Purpurin-2-acetat. Gibt mit Pyroboracetat (E II 2, 175) in Acetanhydrid bei 50° den 1.4-Bis-diacetylborsäureester des Purpurins, bei höherer Temperatur das entsprechende Derivat des Purpurin-2-acetats (S. 553) (Di., Faust, B. 54, 3032). Bei der Einw. von Athylendiamin erhält man bei Zimmertemperatur eine orangegelb krystallisierende salzartige Verbindung; bei 90-95° löst sich diese Verbindung, und es scheiden sich Nadeln ab, die sich in konz. Schwefelsäure rötlichblau, in Borschwefelsäure blau lösen (I. G. Farbenind., D.R.P. 478048; *Frdl.* 16, 1239).

Färberisches Verhalten gegen Acetatseide: Kartaschoff, Farine, Helv. 11, 826. Einfluß von ZnO auf das Ausbleichen im Sonnenlicht in Gegenwart von Luft: Bhattacharya, Dhar, J. indian chem. Soc. 4, 303; C. 1928 I, 649. — Die sehr verdünnte alkoholische Lösung ist in Gegenwart von Borsäure bräunlich (Böeseken, R. 41, 783). Purpurin gibt mit Calciumsalzen in alkal. Medium eine purpurrote Verbindung; diese Reaktion dient zum mikrochemischen Nachweis von Calcium (Macallum, Ergebn. Physiol. 7 [1908], 611; Sampson, Sci. 62, 400; C. 1926 I, 990). Eine natriumtartrathaltige wäßrige Lösung gibt mit überschüssigem Titantrichlorid eine intensiv blaugrüne Färbung, die durch Eisen(III)-salze sofort zerstört wird (Knecht, Soc. 125, 1542 Anm.). Purpurin gibt mit Zirkonium- und Hafniumsalzen eine purpurrote Färbung, die gegen Salzsäure beständig ist (DE BOER, R. 44, 1074). Reinheitsprüfung: E. MERCE, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 511.

Kobalt (II) -kobalt - (III) -salz Co₃ [Co(C₁₄H₆O₅)₃]₂. B. Durch Erhitzen von Purpurin mit Kobalt (II)-chlorid, Natronlauge und Wasserstoffperoxyd auf dem Wasserbad (Morgan, Smith, Soc. 121, 167). Löst sich in heißem Pyridin fuchsinfarben, in 5n-Ammoniak und in Natronlauge blaustichig rot; die Lösung in Natronlauge wird beim Zufügen von verd. Essigsaure orangefarben. Löst sich in 10 n-Salzsaure grün, in konz. Schwefelsaure karminrot; beim Verdünnen der schwefelsauren Lösung fällt Purpurin aus.

"Leukochinizarin I" $C_{14}H_{10}O_5$ (H 511) s. S. 546. "Pseudonitropurpurin" $C_{14}H_{7}O_7N$ (H 512). Wird als 3-Nitro-2-oxy-anthradichinon-(1.4;9.10) (S. 568) erkannt (R. E. SCHMIDT, STEIN, BAMBERGER, B. 62, 1884).

- 1.4-Dioxy-2-methoxy-anthrachinon, Purpurin-2-methyläther $C_{15}H_{10}O_5 = C_6H_4(CO)_2C_6H$ (OH)₂·O·CH₃ (H 512; E I 740). B. Durch Einw. von Salzsäure auf Purpurin-2-methyläther-1.4-diacetat in Eisessig (Perkin, Storey, Soc. 1928, 238). Ziegelrote Nadeln. Liefert beim Kochen mit Brom und Eisessig 3-Brom-purpurin-2-methyläther (Dimroth, Schultze, Heinze, B. 54, 3047).
- 1-0xy-2.4-dimethoxy-anthrachinon, Purpurin-2.4-dimethyläther $C_{16}H_{12}O_5 = C_6H_4(CO)_2C_6H$ (OH)(O·CH₂)₂. B. Durch Hydrolyse von Purpurin-2.4-dimethyläther-1-acetat mit Salzsäure in Eisessig (Perkin, Storey, Soc. 1928, 238). Orangefarbene Nadeln. F: 186—189°.
- 1.4-Diexy-2-acetoxy-anthrachinon, Purpurin-2-acetat $C_{16}H_{10}O_6 = C_6H_4(CO)_2C_6H(OH)_2$ · O·CO·CH₃. B. Aus Purpurin durch Einw. von Acetanhydrid in Pyridin (DIMROTH, FRIEDE-MANN, KÄMMERER, B. 53, 482; PERKIN, STOREY, Soc. 1928, 237) oder von Acetanhydrid und Kaliumacetat (P., St.). Durch Kochen von 1.2-Thionyl-purpurin (s. u.) mit Eisessig (GREEN, Soc. 1926, 2200). Orangefarbene Nadeln (aus Alkohol), orangerote Krystalle (aus Benzol oder Toluol). F: 168—1700 (G.), 172—173° (D., F., K.), 179—180° (P., St.). Löslich in heißem Benzol und Eisessig, schwerer löslich in Alkohol mit grüngelber Fluorescenz (D., F., K.). Wird der Lösung in Chloroform durch konz. Sodalösung, aber nicht durch 10%ige Dinatriumphosphat-Lösung entzogen (D., F., K.). Liefert beim Schütteln mit Bleidioxyd in trockenem Benzol oder beim Behandeln mit Bleitetraacetat in Eisessig 2-Acetoxy-anthradichinon-(1.4; 9.10) (S. 568) (D., F., K., B. 53, 486). Bei der Einw. von Diazomethan in Tetrachloräthan, Äther oder Aceton entstehen Purpurin-2-methyläther-1-acetat und Purpurin-2.4-dimethyläther-1-acetat (P., St.).
- 4-0xy-2-methoxy-1-acetoxy-anthrachinon, Purpurin-2-methyläther-1-acetat $C_{17}H_{12}O_6=C_6H_4(CO)_2C_6H(OH)(O\cdot CH_3)\cdot O\cdot CO\cdot CH_3$. B. Durch Einw. von Diazomethan auf Purpurin-2-acetat in Tetrachloräthan, Äther oder Aceton, neben Purpurin-2-4-dimethyläther-1-acetat (Perkin, Storey, Soc. 1928, 238). Gelbe Nadeln (aus Aceton). F: 224—225°.
- 2.4-Dimethoxy-1-acetoxy-anthrachinon, Purpurin-2.4-dimethyläther-1-acetat $C_{18}H_{14}O_6=C_6H_4(CO)_2C_6H(O\cdot CH_3)_2\cdot O\cdot CO\cdot CH_3$. B. siehe bei der vorangehenden Verbindung. Gelbe Nadeln (aus Alkohol). F: 189—190° (Perkin, Storey, Soc. 1928, 238). Gibt bei der Hydrolyse mit Salzsäure und Eisessig Purpurin-2.4-dimethyläther.
- 1-0xy-2.4-diacetoxy-anthrachinon, Purpurin-2.4-diacetat $C_{18}H_{12}O_7=C_6H_4(CO)_2C_6H(OH)(O\cdot CO\cdot CH_3)_2$. B. Durch Einw. von Ammoniak auf Purpurintriacetat in warmem Aceton (Perkin, Story, Soc. 1929, 1415). Orangegelbe Nadeln (aus Eisessig). F: 203—205°.
- 2-Methoxy-1.4-diacetoxy-anthrachinon, Purpurin-2-methyläther-1.4-diacetat $C_{19}H_{14}O_7 = C_6H_4(CO)_2C_8H(O\cdot CH_3)(O\cdot CO\cdot CH_3)_2$. B. Durch Acetylierung von Purpurin-2-methyläther-1-acetat in Gegenwart von Pyridin (Perkin, Storey, Soc. 1928, 238). Gelbe Nadeln. F: 170° big 172°
- 1.2.4-Triacetoxy-anthrachinon, Purpurin-1.2.4-triacetat, Triacetylpurpurin $C_{20}H_{14}O_8=C_6H_4(CO)_2C_6H(O\cdot CO\cdot CH_3)_3$ (H 512). B. Durch kurzes Kochen von 1.2.4-Triacetoxy-anthracen mit Chromsäure in Eisessig (Fieser, Am. Soc. 50, 471). Gelbe Nadeln (aus Alkohol oder Pyridin). F: 202—203° (F.), 203—205° (Green, Soc. 1926, 2203). Löslich in Chloroform mit gelber Farbe (Dimroth, Friedemann, Kämmerer, B. 53, 483). Liefert bei der Einw. von Ammoniak in warmem Aceton Purpurin-2.4-diacetat (Perkin, Story, Soc. 1929, 1415).
- 4-0xy-1.2-thionyldioxy-anthrachinon, 1.2-Thionyl-purpurin $C_{14}H_6O_6S$, s. nebenstehende Formel. B. Durch Kochen von Purpurin mit Thionylchlorid (Green, Soc. 1926, 2200). Gelblichbraune Krystalle. F: 211° bis 213°. Wird durch Luftfeuchtigkeit rasch unter Bildung von Purpurin zersetzt. Beim Kochen mit Eisessig entsteht Purpurin-2-acetat.

0 OH

- 1.4-Bis-diacetylborsäureester des Purpurins $C_{32}H_{18}O_{13}B_2 = C_6H_4(CO)_2C_6H(OH)[O\cdot B(O\cdot CO\cdot CH_3)_2]_2$. B. Bei der Einw. von Pyroboracetat (E II 2, 175) und Acetanhydrid auf Purpurin bei 50° (Dimeoth, Faust, B. 54, 3032). Purpurrote Krystalle. Wird durch kaltes Wasser in Purpurin, Essigsäure und Borsäure gespalten.
- 1.4-Bis-diacetylborsäureester des Purpurin-2-acetats $C_{24}H_{20}O_{14}B_2=C_6H_4(CO)_2C_6H(O\cdot CO\cdot CH_3)_{1}[O\cdot B(O\cdot CO\cdot CH_3)_{2}]_2$. B. Beim Erhitzen von Purpurin mit Pyroboracetat (É II 2, 175) und Acetanhydrid bis zur Lösung (DIMROTH, FAUST, B. 54, 3032). Dunkelrote bis violettrote Krystalle. Zerfällt beim Aufbewahren in kaltem Wasser in Purpurin-2-acetat, Essigsäure und Borsäure.
- 3-Brom-1.2.4-trioxy-anthrachinon, 3-Brom-purpurin $C_{14}H_7O_5Br$, s. nebenstehende Formel (H 512). B. Durch Einw. von warmer konzentrierter Schwefelsäure auf 3-Brom-purpurin-4-methyläther-1.2-diacetat (Dimboth, Schultze, Heinze, B. 54, 3042).

- **554**
- 3-Brom-purpurin-2-methyläther C₁₅H₂O₅Br = C₆H₄(CO)₂C₆Br(OH)₂·O·CH₂. B. Aus 3-Brom-purpurin-2-methyläther-1.4-diacetat bei 2-stdg. Einw. von konz. Schwefelsäure (Dimboth, Schultze, Heinze, B. 54, 3046). Bei 7-stdg. Kochen von Purpurin-2-methyläther mit Brom und Eisessig (D., Sch., H., B. 54, 3047). Rote Nadeln (aus Nitrobenzol, Pyridin oder Eisessig). F: 260°. Schwer löslich in den üblichen Lösungsmitteln. Löslich in verd. Kalilauge mit roter Farbe; die rote Lösung in konz. Schwefelsäure wird auf Zusatz von Borsäure violett. Lichtabsorption dieser Lösungen: D., Sch., H.
- 3-Brom-purpurin-4-methyläther-1.2-diacetat $C_{19}H_{13}O_7Br = C_8H_4(CO)_2C_8Br(O\cdot CH_3)(O\cdot CO\cdot CH_3)_2$. B. Durch Einw. von Acetanhydrid und wenig konz. Schwefelsäure auf 3-Brom-4-methoxy-3.4-dihydro-anthradichinon-(1.2;9.10) (Dimeoth, Schultze, Heinze, B. 54, 3042). Liefert mit warmer konzentrierter Schwefelsäure 3-Brom-purpurin.
- 3-Brom-purpurin-2-methyläther-1.4-diacetat $C_{19}H_{13}O_7Br = C_0H_0(CO)_2C_0Br(O\cdot CH_3)(O\cdot CO\cdot CH_3)_2$. B. Aus 3-Brom-2-methoxy-2.3-dihydro-anthradichinon-(1.4;9.10) bei der Einw. von Acetanhydrid und wenig konz. Schwefelsäure (Dimroth, Schultze, Heinze, B. 54, 3046). Hellgelbe Krystalle (aus Benzol). F: 145°. Liefert beim Aufbewahren mit konz. Schwefelsäure 3-Brom-purpurin-2-methyläther.
- 3-Nitro-1.2.4-trioxy-anthrachinon, 3-Nitro-purpurin $C_{14}H_7O_7N$, s. nebenstehende Formel (H 512). B. Aus 3-Nitro-2-oxy-anthradichinon-(1.4;9.10) durch Reduktion mit schwefliger Säure oder Hydrochinon (R. E. Schmidt, Stein, Bamberger, B. 62, 1884). Wird durch Oxydationsmittel wie Salpetersäure oder Braunstein in konz. Schwefelsäure zu 3-Nitro-2-oxy-anthradichinon-(1.4;9.10) oxydiert.

- 1.4-Dioxy-2-phenyisulfon-anthrachinon, 2-Phenyisulfon-chinizarin $C_{20}H_{12}O_{6}S$, s. nebenstehende Formel. B. Durch Einw. von Benzolsulfinsäure auf Anthradichinon-(1.4;9.10) in kaltem Wasser (DIMROTH, HILCKEN, B. 54, 3057). Rote Nadeln (aus Pyridin). F: 250°. Löst sich in Kalilauge mit blauer Farbe, in Schwefelsäure ähnlich wie Chinizarin, aber ohne Fluorescenz.
 - O OH SO₃ · C₆ H₅
- 1.4 Diacetoxy 2 phenylsulfon anthrachinon $C_{24}H_{16}O_8S = C_6H_4(CO)_8C_6H(O \cdot CO \cdot CH_3)_2 \cdot SO_2 \cdot C_6H_5$. Gelbe Krystalle (aus Eisessig). F: 210° (Dimroth, Hilden, B. 54, 3057).
- 3. 1.2.5 Trioxy anthrachinon, Oxyanthrarufin C₁₄H₈O₅, s. nebenstehende Formel (H 512). B. Bei längerem Kochen von 5-Oxy-1.2-dimethoxy-anthrachinon mit Eisessig und konstantsiedender Bromwasserstoffsäure (Puntambeker, Adams, Am. Soc. 49, 489). Absorptionsspektrum in alkalischer und in schwefelsaurer Lösung: Bistrzycki, Krauer, Helv. 6, 760. Dissoziationskonstante in 96 %igem Alkohol (durch

но о он

- elektrometrische Titration mit 0,1 n-Natriumäthylat-Lösung bestimmt): Treadwell, Schwarzenbach, Helv. 11, 402. Bei der Einw. von Chlorsulfonsäure in Pyridin unterhalb 35—40° erhält man Oxyanthrarufin-O²-sulfonsäure (s. u.) (I. G. Farbenind., D.R.P. 491424; Frdl. 16, 1312). Liefert beim Erhitzen mit p-Toluidin und Zinn(II)-chlorid auf 160—175° eine bei 213—215° schmelzende, in Aceton leicht lösliche Verbindung und eine unterhalb 300° nicht schmelzende, in Aceton fast unlösliche Verbindung (BASF, D.R.P. 330572; Frdl. 13, 415).
- 5-0xy-1.2-dimethoxy-anthrachinon, Oxyanthrarufin-1.2-dimethyläther $C_{16}H_{12}O_5 = HO \cdot C_8H_3(CO)_5C_6H_2(O \cdot CH_3)_2$. B. Durch Oxydation von 5-0xy-1.2-dimethoxy-anthron-(9) mit Chromessigsäure und Behandeln des entstandenen Chromkomplexsalzes mit siedender 25% iger Bromwasserstoffsäure (Puntambeker, Adams, Am. Soc. 49, 489). Orangefarbene Nadeln (aus Alkohol). F: 230,5—231,5°. Gibt bei längerem Kochen mit Eisessig und konstantsiedender Bromwasserstoffsäure 1.2.5-Trioxy-anthrachinon.
- 1.2.5-Triacetoxy-anthrachinon, Oxyanthrarufin-triacetat $C_{20}H_{14}O_8 = CH_3 \cdot CO \cdot O \cdot C_6H_3$ (CO) $_2C_6H_3(O \cdot CO \cdot CH_3)_2$ (H 513). B. Beim Kochen von 1.2.5-Trioxy-anthrachinon mit Acetanhydrid und Natriumacetat (Puntambeker, Adams, Am. Soc. 49, 489). Gelbe Nadeln (aus Alkohol). F: 228—229°.
- Mono-[1.5-dioxy-anthrachinonyl-(2)]-sulfat, Oxyanthrarufin-0²-sulfonsäure $C_{14}H_8O_8S=HO\cdot C_8H_3(CO)_2C_6H_3(OH)\cdot O\cdot SO_3H$. B. Durch Einw. von Chlorsulfonsäure auf Oxyanthrarufin in Pyridin unterhalb 35—40° (I. G. Farbenind., D.R.P. 491424; Frdl. 16, 1312). Gelbe Nadeln (aus Wasser). Leicht löslich in heißem Wasser mit gelber Farbe. Löslich in Alkali mit roter Farbe. Beständig gegen starke Alkalien. Wird durch verd. Mineralsäuren und verd. Pyridin leicht verseift. Färbt Wolle aus schwefelsaurem Bad gelb, auf Aluminiumbeize rot, auf Chrombeize braun. Natriumsalz. Braungelbe Krystalle.

1.2.6-Trioxy-anthrachinon, Flavopurpurin C14H8O5, OH s. nebenstehende Formel (H 513; E I 741). B. Aus 1.6-Dibrom-anthra-OH chinon durch Alkalischmelze in Gegenwart von Luft (BATTEGAY, CLAUDIN, Bl. [4] 29, 1023). — Darst. durch Alkalischmelze von Anthra- HO chinon-disulfonsäure-(2.6) in Gegenwart von Nitrat: Scottish Dyes Ltd.,

D.R.P. 507210; Frdl. 16, 1267. — Dissoziationskonstante in 96% igem
Alkohol (durch elektrometrische Titration mit 0,1 n-Natriumäthylat-Lösung bestimmt):
TREADWELL, SCHWARZENBACH, Helv. 11, 402. — Bei der Reduktion mit Zinn(II)-chlorid in siedender Salzsäure entsteht 1.2.6-Trioxy-anthranol-(9) (Cross, Perkin, Soc. 1927, 1304). Kondensiert sich mit p-Toluidin bei Gegenwart von Zinn(II)chlorid bei 160-175° zu 2-p-Toluidino-6-oxy-14-methyl-coramidonin (s. nebenstehende Formel; Syst. Nr. 3428) (BASF,

D.R.P. 330572; Frdl. 18, 415). — Mikrochemischer Nachweis auf Grund der Krystallisation aus Nitrobenzol und konz. Schwefelsäure: Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 103. Eine natriumtartrathaltige wäßrige Lösung von Flavopurpurin gibt mit überschüssigem

:0 CH₃

Titantrichlorid eine intensiv blaugrüne Färbung, die durch

Eisen(III)-salze sofort zerstört wird (KNECHT, Soc. 125, 1542). — [Co(NH₃)₅][Co(C₁₄H₄O₅)₃].

B. Aus Flavopurpurin bei der Einw. von Kobaltchlorid, Ammoniak und Wasserstoffperoxyd bei 60° (Morgan, Smith, Soc. 121, 166). Dunkelpurpurroter Lack. Schwer löslich in Wasser, verd. Säuren, 5 n-Ammoniak und starker Alkalilauge, löslich in heißer Natronlauge unter Ammoniakentwicklung, unlöslich in 18 n-Ammoniak. Gibt mit konz. Salzsäure eine grüne, with heav Schwefolgere eine wichtete. mit konz. Schwefelsäure eine violette Färbung.

1.2.6 - Triacetoxy - anthrachinon, Flavopurpurin - triacetat $C_{30}H_{14}O_8 = CH_3 \cdot CO \cdot O \cdot C_6H_3(CO)_2C_6H_2(O \cdot CO \cdot CH_8)_2$ (H 515). B. Durch Oxydation von 1.2.6.9-Tetraacetoxy-anthracen mit Chromtrioxyd in Eisessig (Cross, Perkin, Soc. 1927, 1305). — Gelbe Nadeln. F: 208—211°.

5. 1.2.7 - Trioxy - anthrachinon, Anthrapurpurin, Isopurpurin, Oxyisoanthraflavinsäure C₁₄H₈O₅, s. nebenstehende Formel (H 516; E I 742). B. Aus 2.7-Dibrom-anthrachinon durch HO Alkalischmelze (Battegay, Claudin, Bl. [4] 29, 1025). Durch Erhitzen von Anthrapurpurin-trimethyläther mit Bromwasserstoffsäure (Kei-MATSU, HIRANO, TANABE, J. pharm. Soc. Japan 49, 63; C. 1929 II,

995). — Darst. durch Alkalischmelze von Anthrachinon-disulfonsäure-(2.7) in Gegenwart von Nitrat: Scottish Dyes Ltd., D.R.P. 507210; Frdl. 16, 1267. — Gelbe Nadeln. F: 372—374° (K., H., T.). Dissoziationskonstante in 96% igem Alkohol (durch elektrometrische Titration mit 0,1 n-Natriumäthylat-Lösung bestimmt): TREADWELL, SCHWARZENBACH, Helv. 11, 402.

Aufnahme von Ammoniak: BRINER, KUHN, Helv. 12, 1085. Liefert beim Kochen mit Thionylchlorid 7-Chlorsulfinyloxy-1.2-thionyldioxy-anthrachinon (S. 557) (Green, Soc. 1926, 2200). Gibt bei Einw. von siedendem Acetanhydrid und Eisessig in Gegenwart von Pyridin oder von Acetanhydrid und Kaliumacetat in der Kälte Anthrapurpurin-2.7-diacetat (Perkin, STOREY, Soc. 1928, 235). Bei tropfenweisem Zusatz von Chlorameisensäureäthylester zu einer Lösung in Pyridin bei ca. 30° entsteht 2.7-Dicarbäthoxy-anthrapurpurin (S. 557) (P., St.). Beim Erhitzen mit p-Toluidin und Zinn(II)-chlorid auf 160-175° erhält man eine in Natronlauge lösliche Verbindung, die sich in kaltem Pyridin mit roter, in konz. Schwefelsäure mit blauer Farbe löst, und eine in Natronlauge unlösliche, oberhalb 340° schmelzende, aus Chinolin krystallisierbare Verbindung (BASF, D.R.P. 330572; Frdl. 13, 415). — Zur abführenden Wirkung von Anthrapurpurin vgl. Lenz, Arch. int. Pharmacod. 28, 75; Ber. Physiol. 24, 461; C. 1924 II, 713; Fühner, Fernandez, Ar. Pth. 124, 187; C. 1927 II, 1729. — Mikrochemischer Nachweis auf Grund der Krystallisation aus Nitrobenzol und konz. Schwefelsäure: Beherns-KLEY, Organische mikrochemische Analyse [Leipzig 1922], S. 103. Eine natriumtartrathaltige wäßrige Lösung gibt mit überschüssigem Titantrichlorid eine intensiv blaugrüne Färbung, die durch Eisen(III)-salze sofort zerstört wird (KNECHT, Soc. 125, 1542).

Kobaltverbindungen: Co₃[Co(C₁₄H₆O₅)₃]₂. B. Durch Erhitzen einer Lösung von Anthrapurpurin in Natronlauge mit Kobaltchlorid und Wasserstoffperoxyd auf dem Wasserbad (MORGAN, SMITH, Soc. 121, 166). Löst sich in heißem Pyridin mit fuchsinroter, in 10 n-Salzsäure mit grüner Farbe. Wird durch Säuren zersetzt. — $[Co(NH_9)_5][Co(C_{14}H_6O_5)_3]$. B. Aus Anthrapurpurin bei der Einw. von Kobaltchlorid, Ammoniak und Wasserstoffperoxyd bei 60° (M., Sm.). Rötlichvioletter Lack. Wird beim Erwärmen purpurrot.

2.7 - Dioxy - 1 - methoxy - anthrachinen, Anthrapurpurin - 1 - methyläther $C_{15}H_{10}O_5=HO$ C₆H₂(CO)₂C₆H₂(OH)·O·CH₂. B. Aus Anthrapurpurin-2.7-diacetat in Nitrobenzol oder Aceton

- 1.7- Dioxy 2 methoxy anthrachinon, Anthrapurpurin 2 methyläther $C_{15}H_{10}O_5 = HO \cdot C_6H_3(CO)_2C_6H_2(OH) \cdot O \cdot CH_3$. B. siehe bei der vorangehenden Verbindung. Orangerote Nadeln (aus Alkohol). F: 308—309° (Perkin, Storey, Soc. 1928, 235). Schwerer löslich als Anthrapurpurin-1-methyläther. Gibt bei kurzer Einw. von siedendem Acetanhydrid Anthrapurpurin-2-methyläther-7-acetat, beim Behandeln mit Acetanhydrid und Pyridin Anthrapurpurin-2-methyläther-1.7-diacetat.
- 2-0xy-1.7-dimethoxy-anthrachinon, Anthrapurpurin-1.7-dimethyläther $C_{18}H_{18}O_5=CH_3\cdot O\cdot C_6H_3(CO)_2C_6H_3(OH)\cdot O\cdot CH_3$. B. Durch Kochen von Anthrapurpurin-1.7-dimethyläther-2-benzoat mit 2% iger methylalkoholischer Kalilauge (Perkin, Storey, Soc. 1928, 237). Gelbe Nadeln. F: 218—219°. Löslich in verd. Alkali mit roter Farbe. Bariumsalz. Löslich in Wasser.
- 1-Oxy-2.7-dimethoxy-anthrachinon, Anthrapurpurin-2.7-dimethyläther $C_{16}H_{12}O_5=CH_3\cdot O\cdot C_6H_3(CO)_2C_6H_2(OH)\cdot O\cdot CH_3$ (H 517). B. Aus Anthrapurpurin-triacetat bei der Einw. von Dimethylsulfat und Natronlauge, neben 1.2.7-Trimethoxy-anthrachinon (MILLER, PERKIN, Soc. 127, 2690). Durch Einw. von methylalkoholischer Kalilauge auf Anthrapurpurin-2.7-dimethyläther-1-benzoat (P., Storey, Soc. 1928, 237). Orangegelbe Nadeln (aus Benzol). F: 242—243° (P., St.). Liefert beim Kochen mit Zinn(II)-chlorid in 30%iger Salzsäure nicht näher beschriebenes 4-Oxy-3.6-dimethoxy-anthron-(9)(?) und andere Produkte (M., P.). Bariumsalz. Unlöslich in Wasser (P., St.).
- 1.2.7 Trimethoxy anthrachinon, Anthrapurpurin trimethyläther $C_{17}H_{14}O_5 = CH_3 \cdot O \cdot C_6H_3(CO)_2C_6H_2(O \cdot CH_3)_2$ (H 517). B. Durch Oxydation von 1.2.7.10-Tetramethoxy-anthracen mit Chromtrioxyd in siedender verdünnter Essigsäure (Macmaster, Perkin, Soc. 1927, 1308). Durch Erhitzen von 1.2.7-Trichlor anthrachinon mit Natriummethylat-Lösung (Keimatsu, Hirano, Tanabe, J. pharm. Soc. Japan 49, 63; C. 1929 II, 995). Durch Erhitzen von 3.5.6-Trimethoxy-anthrachinon-carbonsäure-(2) über den Schmelzpunkt (K., H., T.). Gelbe Nadeln. Gibt bei der Reduktion mit amalgamiertem Aluminium in siedendem wäßrig-alkoholischem Ammoniak 1.2.7-Trimethoxy-anthracen, bei der Reduktion mit Zinn(II)-chlorid und Salzsäure in siedendem Eisessig 3.4.6-Trimethoxy-anthranol-(9) (M., P.). Beim Erhitzen mit Bromwasserstoffsäure entsteht Anthrapurpurin (K., H., T.).
- 1.7-Dioxy-2-acetoxy-anthrachinon, Anthrapurpurin-2-acetat $C_{16}H_{10}O_6 = HO \cdot C_6H_3(CO)_2$ $C_6H_2(OH) \cdot O \cdot CO \cdot CH_3$. B. Beim Eintragen von 7-Chlorsulfinyloxy-1.2-thionyldioxy-anthrachinon in siedenden Eisessig (Green, Soc. 1926, 2201). Gelbe Krystalle. F: 296—298° (Zers.).
- 1-0xy-2-methoxy-7-acetoxy-anthrachinon, Anthrapurpurin-2-methyläther-7-acetat $C_{17}H_{19}O_6=CH_3\cdot CO\cdot O\cdot C_6H_3(CO)_2C_6H_2(OH)\cdot O\cdot CH_3$. B. Aus Anthrapurpurin-2-methyläther und siedendem Acetanhydrid in Abwesenheit von Pyridin (Perkin, Storey, Soc. 1928, 235). Orangegelbe Nadeln. F: 207°.
- 2.7 Dimethoxy -1- acetoxy anthrachinon, Anthrapurpurin 2.7 dimethyläther 1 acetat $\mathbb{C}_{18}\mathbb{H}_{14}\mathbb{O}_6 = \mathbb{C}\mathbb{H}_3 \cdot \mathbb{O} \cdot \mathbb{C}_6\mathbb{H}_3(\mathbb{C}\mathbb{O})_2\mathbb{C}_6\mathbb{H}_2(\mathbb{O} \cdot \mathbb{C}\mathbb{H}_3) \cdot \mathbb{O} \cdot \mathbb{C}\mathbb{O} \cdot \mathbb{C}\mathbb{H}_3$. B. Durch Acetylierung von Anthrapurpurin 2.7 dimethyläther (Perkin, Storey, Soc. 1928, 237). Blaßgelbe Nadeln. F: 228° bis 230°.
- 1.7 Dimethoxy 2 acetoxy anthrachinon, Anthrapurpurin -1.7- dimethyläther 2 acetat $C_{18}H_{14}O_6 = CH_3 \cdot O \cdot C_8H_3(CO)_2C_8H_2(O \cdot CH_3) \cdot O \cdot CO \cdot CH_3$. B. Durch Acetylierung von Anthrapurpurin-1.7-dimethyläther mit Acetanhydrid in Abwesenheit von Pyridin (Perkin, Storey, Soc. 1928, 237). Blaßgelbe Nadeln. F: 175—176°.
- 1-Oxy-2.7-diacetoxy-anthrachinon, Anthrapurpurin-2.7-diacetat $C_{18}H_{12}O_7 = CH_3 \cdot CO \cdot O \cdot C_6H_3(CO)_2C_6H_3(OH) \cdot O \cdot CO \cdot CH_3$. B. Aus Anthrapurpurin durch Einw. von gleichen Teilen siedendem Acetanhydrid und Eisessig in Gegenwart von Pyridin oder von Acetanhydrid und Kaliumacetat in der Kälte (Perkin, Storey, Soc. 1928, 235). Gelbe Nadeln (aus Alkohol und Eisessig). F: 192—193°. Eine Lösung in Nitrobenzol oder Aceton gibt bei Einw. von Diazomethan in Äther und Hydrolyse des Reaktionsprodukts mit Salzsäure in Eisessig Anthrapurpurin-1-methyläther und Anthrapurpurin-2-methyläther. Gibt bei der Einw. von Benzoylchlorid in Chloroform + Pyridin in der Kälte 1.7-Diacetoxy-2-benzoyloxy-anthrachinon.

Das H 517 beschriebene Anthrapurpurindiacetat vom Schmelzpunkt 175—178° ist nach Perkin, Storiev (Soc. 1928, 235) keine reine Verbindung.

2 - Methoxy - 1.7 - diacetoxy - anthrachinon, Anthrapurpurin - 2 - methyläther - 1.7 - diacetat $C_{19}H_{14}O_7 = CH_3 \cdot CO \cdot O \cdot C_9H_3(CO)_2C_9H_2(O \cdot CH_3) \cdot O \cdot CO \cdot CH_3$. B. Aus Anthrapurpurin-2-methyl-

ather und Acetanhydrid in Gegenwart von Pyridin (Perkin, Storey, Soc. 1928, 235). — Gelbe Blättehen. F: 154—155°.

- 1 Methoxy 2.7 diacetoxy anthrachinon, Anthrapurpurin -1 methyläther 2.7 diacetat $C_{19}H_{14}O_7 = CH_3 \cdot CO \cdot O \cdot C_9H_3(CO)_2C_6H_2(O \cdot CH_3) \cdot O \cdot CO \cdot CH_3$. B. Durch Einw. von Acetanhydrid auf Anthrapurpurin-1-methyläther (Perkin, Storey, Soc. 1928, 236). Blaßgelbe Blättehen (aus Aceton und Alkohol). F: 136—137°.
- 1.2.7-Triacetoxy anthrachinon, Anthrapurpurin triacetat, Triacetylanthrapurpurin $C_{20}H_{14}O_8 = CH_3 \cdot CO \cdot O \cdot C_6H_3(CO)_2C_6H_3(O \cdot CO \cdot CH_3)_2$ (H 517). B. Durch Oxydation von 1.2.7.10-Tetrascetoxy-anthracen mit Chromtrioxyd in Eisessig (GOODALL, PERKIN, Soc. 125, 473). Durch Einw. von 2 Mol Acetanhydrid auf Anthrapurpurin-2-acetat in heißem Pyridin (GREEN, Soc. 1926, 2201). Durch Kochen von 7-Chlorsulfinyloxy-1.2-thionyldioxy-anthrachinon (s. u.) mit Acetanhydrid (Gr.). Gelbe Blättchen (aus Pyridin). F: 225—227° (Gr.), 227° (HARDACRE, P., Soc. 1929, 192). Liefert bei der Einw. von Dimethylsulfat in Natronlauge Anthrapurpurin-2.7-dimethyläther und Anthrapurpurin-trimethyläther (MILLER, P., Soc. 127, 2690).
- 1-0xy-2.7-bis-carbāthoxyoxy-anthrachinon, 2.7-Dicarbāthoxy-anthrapurpurin, 2.7-Diāthylcarbonato-anthrapurpurin $C_{20}H_{16}O_{9}=C_{2}H_{5}\cdot O_{2}C\cdot O\cdot C_{6}H_{3}(CO)_{2}C_{6}H_{2}(OH)\cdot O\cdot CO_{2}\cdot C_{2}H_{5}$. B. Durch tropfenweisen Zusatz von Chlorameisensäureäthylester zu Anthrapurpurin in Pyridin bei ca. 30° (Perkin, Storry, Soc. 1928, 236). Goldgelbe Nadeln (aus Alkohol). F: 166° bis 167°. Liefert bei der Einw. von Diazomethan in Tetrachlorāthan 2.7-Dicarbāthoxy-anthrapurpurin-1-methyläther und geringere Mengen 1.7-Dicarbāthoxy-anthrapurpurin-2-methyläther, der bei der Verseifung in Anthrapurpurin-2-methyläther übergeht.
- 1 Methoxy 2.7 bis carbāthoxyoxy anthrachinon, 2.7 Dicarbāthoxy anthrapurpurin-1-methylāther $C_{21}H_{18}O_9=C_2H_5\cdot O_2C\cdot O\cdot C_0H_3(CO)_2C_0H_3(O\cdot CH_3)\cdot O\cdot CO_2\cdot C_2H_5$. B. Durch Einw. von Diazomethan auf 2.7-Dicarbāthoxy-anthrapurpurin in Tetrachlorāthan (Perkin, Storey, Soc. 1928, 236). Gelbe Nadeln (aus Methanol). F: 120—121°. Liefert bei der Hydrolyse mit siedender 1 % iger methylalkoholischer Kalilauge Anthrapurpurin-1-methylāther.
- 7-Chlorsulfinyloxy-1.2-thionyldioxy-anthrachinon, 1.2-Thionyl-7-chlorthionylanthrapurpurin $C_{14}H_5O_7ClS_2=ClOS\cdot O\cdot C_8H_3(CO)_2C_6H_2 \stackrel{\bigcirc}{\bigcirc} SO$. B. Durch Kochen von Anthrapurpurin mit Thionylchlorid (Green, Soc. 1926, 2200). Ockerfarbene Krystalle. F: 179° (Zers.). Sehr schwer löslich in den üblichen organischen Lösungsmitteln. Zersetzt sich rasch beim Aufbewahren an der Luft unter Bildung von Anthrapurpurin. Gibt beim Eintragen in siedenden Eisessig Anthrapurpurin-2-acetat, bei kurzem Kochen mit Acetanhydrid Anthrapurpurin-triacetat. Beim Erhitzen mit Benzoesäure auf 170° entsteht Anthrapurpurin-2-benzoat.
- 6. 1.2.8-Trioxy-anthrachinon, Oxychrysazin $C_{14}H_8O_5$, Formel I (H 518; E I 742). Absorptionsspektrum in alkalischer und in schwefelsaurer Lösung: BISTRZYCKI, KRAUER, Helv. 6, 760.
- 7. 1.3.8 Trioxy anthrachinon $C_{14}H_8O_5$, Formel II (E I 742). B. Beim Erhitzen von 1.8-Dioxy-3-methoxy-anthrachinon mit Eisessig und konz. Salzsäure im Rohr auf 190—200 $^\circ$ (EDER, HAUSER, Helv. 8, 135).
- 1.8 Dioxy 3 methoxy anthrachinon $C_{15}H_{10}O_5 = HO \cdot C_6H_3(CO)_2C_6H_2(OH) \cdot O \cdot CH_3$. B. In geringer Menge beim Diazotieren von 6-Amino-1.8-dioxy-3-methoxy-anthrachinon in konz. Schwefelsäure und Eintragen der Diazolösung in siedenden absoluten Alkohol (Eder, Hauser, Helv. 8, 134). Wurde nicht rein erhalten. F: 178—180°. Gibt beim Erhitzen mit Eisessig und konz. Salzsäure im Rohr auf 190—200° 1.3.8-Trioxy-anthrachinon.

8. 1.4.5 - Trioxy - anthrachinon C₁₄H₈O₅, Formel III (H 519; E I 742). Wird durch Bleitetraacetat und Eisessig zu 5-Oxy-anthradichinon-(1.4;9.10) oxydiert (DIMBOTH, HILCKEN, B. 54, 3059). Liefert beim Kochen mit Pyroboracetat (E II 2, 175) und Acetanhydrid den Bis-diacetylborsäureester des 1.5-Dioxy-4-acetoxy-anthrachinons (S. 558) (D., Faust, B. 54, 3034). Gibt mit Äthylendiamin eine in dunklen Nadeln krystallisierende Verbindung, die sich in konz. Schwefelsäure blau, in Borschwefelsäure grünstichig blau löst (I. G. Farbenind., D.R.P. 478048; Frdl. 16, 1239).

1.5 - Dioxy - 4 - acetoxy - anthrachinon $C_{16}H_{10}O_6 = HO \cdot C_6H_3(CO)_2C_6H_2(OH) \cdot O \cdot CO \cdot CH_3$. Bei der Spaltung des Bis-diacetylborsäureesters (s. u.) mit Wasser (DIMBOTH, FAUST, B. 54, 3034). — Gelbe Nadeln (aus Chloroform oder bleitetraacetathaltigem Eisessig). F: 165°.

Bis-diacetyiborsäureester des 1.5-Dioxy-4-acetoxy-anthrachinons $C_{24}H_{26}O_{14}B_2 = (CH_8 \cdot CO \cdot O)_2B \cdot O \cdot C_6H_3(CO)_2C_6H_3(O \cdot CO \cdot CH_3) \cdot O \cdot B(O \cdot CO \cdot CH_3)_4$. B. Beim Kochen von 1.4.5-Trioxy-anthrachinon mit Pyroboracetat (E II 2, 175) und Acetanhydrid (Dimroth, Faust, B. 54, 3034). — Rotbraune Krystalle. — Wird durch Wasser in 1.5-Dioxy-4-acetoxy-anthrachinon, Borsäure und Essigsäure gespalten.

- 9. 1.4.6 Trioxy anthrachinon $C_{14}H_8O_5$, Formel IV (E I 742). B. Durch Einleiten von Chlor in eine Lösung eines Gemisches von 1.6- und 1.7-Dioxy-anthrachinon in 98 % iger Schwefelsäure bei 70—75° und Erhitzen des Reaktionsgemisches mit Borsäure auf 160° (Scottish Dyes Ltd., D.R.P. 490637; Frdl. 16, 1258). Die Lösung in Eisessig ist orangefarben (DIMBOTH, HILOKEN, B. 54, 3053). Wird durch Bleitetraacetat in Eisessig zu 6-Oxy-anthradichinon-(1.4;9.10) oxydiert (D., H., B. 54, 3058). Gibt mit Acetanhydrid in Pyridin 1.4-Dioxy-6-acetoxy-anthrachinon (D., H., B. 54, 3059).
- 1.4-Dioxy-6-acetoxy-anthrachinon $C_{16}H_{10}O_6 = CH_3 \cdot CO \cdot O \cdot C_6H_3(CO)_4C_6H_4(OH)_2$. B. Aus 1.4.6-Trioxy-anthrachinon durch Einw. von Acetanhydrid in Pyridin (DIMROTH, HILCKEN, B. 54, 3059). Krystalle (aus Eisessig). Löslich in Chloroform.

10. 4 - Oxy - 3.4 - dihydro - anthradichinon - (1.2; 9.10) $C_{14}H_8O_5$, Formel V.

3-Brom-4-methoxy-3.4-dihydro-anthradichinon-(1.2;9.10), Alizarin chinon-methoxy-bromid $C_{15}H_5O_5Br$, Formel VI ($R=CH_3$). B. Durch Einw. von Brom auf Alizarin in Methanol unter Kühlung (DIMROTH, SCHULTZE, HEINZE, B. 54, 3048). — Gelbe Nadeln (aus Chloroform + Petroläther). Zersetzt sich bei ca. 200° und schmilzt bei 230°. Leicht löslich in den meisten organischen Lösungsmitteln, schwer in Äther und Petroläther. — Wird durch schweflige Säure, Bromwasserstoffsäure oder Jodwasserstoffsäure zu 3-Brom-alizarin reduziert (D., SCH., H., B. 54, 3048). Gibt mit Acetanhydrid und wenig konz. Schwefelsäure 3-Brom-purpurin-4-methyläther-1.2-diacetat (D., SCH., H., B. 54, 3042).

3-Brom-4-äthoxy-3.4-dihydro-anthradichinon-(1.2;9.10), Alizarin chinon-äthoxy-bromid $C_{16}H_{11}O_5Br$, Formel VI ($R=C_2H_5$). B. Durch Einw. von Brom auf Alizarin in absol. Alkohol (Dimroth, Schultze, Heinze, B. 54, 3049). — Gelbe Täfelchen (aus Chloroform + Petroläther). Sintert bei 180° und schmilzt bei ca. 205° (Zers.). Sehr leicht löslich in Chloroform, leicht in Benzol, Essigester und Aceton, schwer in Alkohol und Äther. — Wird durch schweflige Säure zu 3-Brom-alizarin reduziert.

11. 2 - Oxy - 2.3 - dihydro - anthradichinon - (1.4; 9.10) $C_{14}H_8O_5$, Formel VII.

3-Brom-2-methoxy-2.3-dihydro-anthradichinon-(1.4;9.10), Chinizarin chinon-methoxybromid C₁₅H₂O₅Br, Formel VIII. B. Durch Einw. von Brom auf Chinizarin in absol. Methanol unter Eiskühlung (DIMROTH, SCHULTZE, HEINZE, B. 54, 3045). — Gelbæ Krystalle (aus Benzol + Ligroin). F: 96°. Färbt sich am Licht oberflächlich braun. Ziemlich leicht löslich in Eisessig und Acetanhydrid, schwer in Benzol und Chloroform, leichter in Essigester; die Lösungen sind wenig haltbar. — Oxydiert Leukomalachitgrün. Wird durch Jodwasserstoffsäure oder schweflige Säure zu Chinizarin reduziert. Gibt mit Acetanhydrid und 1 Tropfen konz. Schwefelsäure 3-Brom-purpurin-2-methyläther-1.4-diacetat.

12. 1.2.4-Trioxy-phenanthrenchinon $C_{14}H_5O_5$, Formel IX. B. Aus 1.2.4-Triacetoxy-phenanthrenchinon durch Einw. von alkoh. Natronlauge in Stickstoff-Atmosphäre (FIESER, Am. Soc. 51, 1939). — Rote Krystallkrusten mit 1 C_2H_5 -OH (aus Alkohol). Sehr leicht löslich in Alkohol mit roter Farbe, löslich in Pyridin mit blauer Farbe, schwer löslich

in den meisten anderen Lösungsmitteln (F., Am. Soc. 51, 1940). Die Lösungen in Alkalien und in konz. Schwefelsäure sind grün (F., Am. Soc. 51, 1940), in Acetanhydrid orangegelb, in Pyroboracetat-Lösung grün bis rot (F., Am. Soc. 51, 2483). Normal-Redoxpotential in 0,1 n-alkoholischwäßriger Salzsäure (50% Alkohol) in Gegenwart von Lithiumchlorid bei 25°: 0,340 V (F., Am. Soc. 51, 3105). — Zersetzt sich beim Erhitzen (F., Am. Soc. 51, 1940). Bei Einw. von Luftsauerstoff wird die alkal. Lösung blaßrot und gibt beim Ansäuern Kohlendioxyd ab; die Lösung in Pyridin wird braun und scheidet eine schwarze, schwer lösliche Substanz ab (F., Am. Soc. 51, 1940). — Färbt mit Aluminiumsalzen gebeizte Wolle matt braun (F., Am. Soc. 51, 1940).

- 1.2.4 Triacetoxy phenanthrenchinon $C_{20}H_{14}O_8 = (CH_3 \cdot CO \cdot O)_3C_{14}H_8O_2$. B. Bei der Oxydation von 1.2.4 Triacetoxy phenanthren mit Chromsäure in Eisessig bei 40° (FIESER, Am. Soc. 51, 1939). Aus 1.2.4 Trioxy phenanthrenchinon und Acetanhydrid in Gegenwart von Schwefelsäure (F.). Orangefarbene Tafeln (aus Toluol). F: 227—228° (Zers.). Mäßig löslich in Toluol, leicht in Eisessig.
- 13. 1.3.4 Trioxy phenanthrenchinon C₁₄H₈O₅, Formel X. B. Bei der Einw. von kalter alkoholischer Natronlauge auf 1.3.4-Triacetoxy-phenanthrenchinon in Stickstoff-Atmosphäre (FIRSER, Am. Soc. 51, 1940). Dunkelrote Krystalle (aus Alkohol). Schwer löslich in Wasser, sehr leicht in Alkohol mit roter Farbe; die Lösung in Pyridin ist tiefrot und wird beim Verdünnen mit Wasser grün (F., Am. Soc. 51, 1940). Löst sich in konz. Schwefelsäure mit tiefroter, in Acetanhydrid mit rotgelber, in Pyroboracetat mit roter Farbe unter Abscheidung dunkelroter Krystalle (F., Am. Soc. 51, 1940, 2483). Die Lösung in Alkalien ist in dünner Schicht grün, in dicker Schicht im durchfallenden Licht grünlichrot und wird an der Luft blaßrosa (F., Am. Soc. 51, 1940). Normal-Redoxpotential in 0,1 n-alkoholisch-wäßriger Salzsäure (50% Alkohol) in Gegenwart von Lithiumchlorid bei 25°: 0,281 V (F., Am. Soc. 51, 3105). Färbt Seide und Wolle auf Aluminiumbeize mattgrün, auf Chrombeize bräunlichgrau (F., Am. Soc. 51, 1941).
- 1.3.4 Triacetoxy phenanthrenchinon $C_{20}H_{14}O_8 = (CH_3 \cdot CO \cdot O)_3C_{14}H_5O_2$. B. Bei der Oxydation von 1.3.4-Triacetoxy-phenanthren mit Chromsäure in Eisessig bei 40° (FIESER, Am. Soc. 51, 1940). Aus 1.3.4-Trioxy-phenanthren und Acetanhydrid in Pyridin oder in Gegenwart von wenig konz. Schwefelsäure (F.). Gelbe Nadeln (aus Eisessig). Sintert bei ca. 220° und zersetzt sich bei ca. 240°. Leicht löslich in Eisessig.

IX.
$$OH$$
 X. OH XI. OH OH

14. 2.3.4 - Trioxy - phenanthrenchinon C₁₄H₈O₅, Formel XI. B. In geringer Menge neben anderen Produkten durch Diazotieren von 3.4-Diamino-2-oxy-phenanthrenchinon oder 2.3-Diamino-4-oxy-phenanthrenchinon und Erhitzen der Diazolösungen auf dem Wasserbad (J. Schmidt, Spoun, B. 55, 1206; Schm., Schaier, B. 56, 1337). — Braunrotes Pulver. F: 185° (Zers.) (Schm., Schai., B. 56, 1337). Löslich in Wasser, sehr schwer löslich in Alkohol (Schm., Schai., B. 56, 1333, 1337). — Gibt mit o-Phenylendiamin-hydrochlorid ein Phenazin vom Schmelzpunkt 255—258° (Zers.) (Schm., Sp.). — Färbt in wäßr. Suspension Baumwolle auf Chrombeize violett, auf Eisenbeize braun, auf Aluminiumbeize rosa (Schm., Schai.).

Monosemicarbazon $C_{15}H_{11}O_5N_3=(HO)_3C_{14}H_5(:O):N\cdot NH\cdot CO\cdot NH_2$. Braunrotes Pulver. Zersetzt sich von 270° an (J. Schmidt, Spoun, B. 55, 1207).

2. Oxy-oxo-Verbindungen $C_{15}H_{10}O_5$.

- 1. 2.5.8-Trioxy-1-methyl-anthrachinon C₁₅H₁₀O₅, Formel I auf S. 560. B. Bei ½-stündigem Erhitzen von 3.6-Dimethoxy-2-[4-methoxy-3-methyl-benzoyl]-benzoesäure mit konz. Schwefelsäure und Borsäure auf 150° (Gardner, Adams, Am. Soc. 45, 2461). Bei 2-tägigem Erhitzen von 4.7-Dimethoxy-3.3-bis-[4-oxy-3-methyl-phenyl]-phthalid oder 4.7-Dimethoxy-3.3-bis-[4-methoxy-3-methyl-phenyl]-phthalid mit [3.6-Dimethoxy-phthalsäure]-anhydrid und konz. Schwefelsäure auf 125° (Graves, A., Am. Soc. 45, 2450; Ga., A.). Dunkelrote Nadeln (aus Chloroform). F: 270° (korr.) (Gr., A.; Ga., A.). Löst sich in Alkalien und in konz. Schwefelsäure mit bläulichroter Farbe (Gr., A.). Absorptionsspektrum von Lösungen in alkoh. Salzsäure und alkoh. Natronlauge: Gr., A., Am. Soc. 45, 2446. Bei der Zinkstaub-Destillation entsteht 1-Methyl-anthracen (Ga., A.).
- 5.8 Dioxy 2 methoxy 1 methyl anthrachinon $C_{16}H_{19}O_5 = (HO)_2C_4H_2(CO)_2C_4H_2(CH_3) \cdot O \cdot CH_3$. B. Durch kurzes Erhitzen von 3.6-Dimethoxy-2-[4-methoxy-3-methyl-benzoyl]-benzoesäure mit konz. Schwefelsäure auf 150° (Gardner, Adams, Am. Soc. 45, 2461). —

Dunkelrote Nadeln (aus Eisessig). F: 249—249,5° (korr.). Löst sich in konz. Schwefelsäure mit blauvioletter, in Alkalien mit blaustichig roter Farbe.

- 2. 2.7.8-Trioxy-1-methyl-anthrachinon (?) C₁₅H₁₉O₅, Formel II ¹). B. Beim Kochen von 2-Oxy-7.8-dimethoxy-1-methyl-anthrachinon (?) mit Eisessig und Bromwasserstoffsäure (D: 1,48) (Jacobson, Adams, Am. Soc. 47, 2017). Orangerote Nadeln (aus Nitrobenzol). Schmilzt oberhalb 330°.
- 2-0xy-7.8-dimethoxy-1-methyl-anthrachinon (?) $C_{17}H_{14}O_5 = (CH_2 \cdot O)_2C_6H_2(CO)_2C_6H_3(CH_3) \cdot OH$. B. Bei der Einw. von 95%iger Schwefelsäure auf 5.6-Dimethoxy-2-[4-oxy-3-methyl-benzyl]-benzoesäure und Oxydation des erhaltenen, nicht näher beschriebenen 2-Oxy-7.8-dimethoxy-1-methyl-anthrons-(9) mit Chromessigsäure (Jacobson, Adams, Am. Soc. 47, 2016). Gelbe Nadeln (aus Eisessig). Färbt sich bei 285° dunkel und schmilzt bei ca. 310°.
- 2.7.8-Triacetoxy-1-methyl-anthrachinon (?) $C_{21}H_{16}O_8 = (CH_3 \cdot CO \cdot O)_2C_6H_2(CO)_2C_6H_3(CH_8) \cdot O \cdot CO \cdot CH_8$. B. Beim Erhitzen von 2.7.8-Trioxy-1-methyl-anthrachinon (?) mit Acetanhydrid und Natriumacetat (Jacobson, Adams, Am. Soc. 47, 2017). Gelbliche Nadeln (aus Alkohol). F: 232—233° (korr.).
- 3. 3.7.8-Trioxy-1-methyl-anthrachinon C₁₅H₁₀O₅, Formel III. B. Beim Erhitzen von 3.7.8-Trimethoxy-1-methyl-anthrachinon mit Aluminiumchlorid auf 180° (BISTRZYCKI, KRAUER, Helv. 6, 764). Braune Nadeln (aus Nitrobenzol). Schmilzt nicht unterhalb 330°. Die Lösung in konz. Schwefelsäure ist violettstichig bräunlichrot und wird bei Borsäure-Zugabe rotviolett; die Lösung in Pyroboracetat ist hellrot; die Lösungen in Alkalien sind bräunlichrot und verblassen beim Aufbewahren. Absorptionsspektrum in alkal. Lösung und in konz. Schwefelsäure: B., K. Färbt Baumwolle auf Aluminiumbeize matt braunrot, auf Eisenbeize violettschwarz.
- 3.7.8 Trimethoxy 1 methyl anthrachinon $C_{18}H_{16}O_5 = (CH_3 \cdot O)_2C_6H_2(CO)_2C_6H_2(CH_3) \cdot O \cdot CH_3$. B. Bei der Oxydation von 2.5.6-Trimethoxy-4-methyl-anthron-(9) mit Chromtrioxyd in Eisessig (Bistrzycki, Krauer, Helv. 6, 764). Ĝelbe Nadeln (aus Eisessig). F: 197°. Mäßig löslich in siedendem Eisessig und Benzol, sehr schwer in Alkohol und Aceton. Die Lösung in konz. Schwefelsäure ist violettrot.
- 4. 4.5.8 Trioxy 1 methyl anthrachinon C₁₅H₁₀O₅, Formel IV. B. Beim Kochen von 4-Oxy-5.8-dimethoxy-1-methyl-anthrachinon mit gleichen Teilen konstant siedender Bromwasserstoffsäure und Eisessig (Graves, Adams, Am. Soc. 45, 2449). Bei 20 Min. langem Erhitzen von 3.6-Dimethoxy-2-[6-methoxy-3-methyl-benzoyl]-benzoesäure mit konz. Schwefelsäure auf 145—155° (Gardner, A., Am. Soc. 45, 2460). Rote Nadeln (aus Eisessig). F: 276° bis 278° (korr.) unter Sublimation (Ga., A.). Schwerer löslich in Aceton als 4-Oxy-5.8-dimethoxy-1-methyl-anthrachinon (Ga., A.). Löst sich in konz. Schwefelsäure je nach der Konzentration mit blauer bis blauroter Farbe, in Alkalien mit violettroter Farbe (Gr., A.; Ga., A.). Absorptionsspektrum von Lösungen in alkoh. Salzsäure und in alkoh. Natronlauge: Gr., A., Am. Soc. 45, 2446.
- 4-0xy-5.8-dimethoxy-1-methyl-anthrachinon $C_{17}H_{14}O_5=(CH_2\cdot O)_2C_6H_2(CO)_2C_6H_2(CH_3)\cdot OH$. B. Bei 1-stündigem Erhitzen von 3.6-Dimethoxy-2-[6-oxy-3-methyl-benzoyl]-benzoesäure mit konz. Schwefelsäure und wenig Borsäure auf dem Wasserbad (Graves, Adams, Am. Soc. 45, 2449). Rote Nadeln (aus Aceton oder Eisessig). F: 224° (korr.) (Gr., A.). Leichter löslich in Aceton als 4.5.8-Trioxy-1-methyl-anthrachinon (Gardner, A., Am. Soc. 45, 2460). Löst sich in Alkalien mit roter, in konz. Schwefelsäure je nach der Konzentration mit blauer bis blauroter Farbe (Gr., A.). Absorptionsspektrum von Lösungen in alkoh. Salzsäure und in alkoh. Natronlauge: Gr., A., Am. Soc. 45, 2447.
- 5. 4.7.8 Trioxy 1 methyl anthrachinon C₁₅H₁₀O₅, Formel V (vgl. H 520). B. Beim Kochen einer Lösung von 4-Oxy-7.8-dimethoxy-1-methyl-anthrachinon in Eisessig mit Bromwasserstoffsäure (D: 1,48) (JACOBSON, ADAMS, Am. Soc. 47, 2017). Rote Nadeln (aus Eisessig). Zersetzt sich bei 290° und schmilzt bei 301° (korr.).
- 4-0xy-7.8-dimethoxy-1-methyl-anthrachinon $C_{17}H_{14}O_5=(CH_3\cdot O)_2C_6H_2(CO)_2C_6H_2(CH_3)\cdot OH$ (vgl. H 520). B. Bei der Einw. von 85 % iger Schwefelsäure auf 5.6-Dimethoxy-2-[6-oxy-3-methyl-benzyl]-benzoesäure und Oxydation des erhaltenen, nicht näher beschriebenen

¹⁾ Die vom Original abweichende Formulierung ergibt sich aus der Verschiedenheit gegenüber 3.5.6-Trioxy-2-methyl-anthrachinon (S. 562), dessen Konstitution durch die von 3.5.6-Trichlor-2-methyl-anthrachinon (E II 7, 736) ausgehende Synthese bewiesen ist.

- 4-Oxy-7.8-dimethoxy-1-methyl-anthrons-(9) mit Chromessigsäure bei 50° (Jacobson, Adams, Am. Soc. 47, 2016). Gelbe Nadeln (aus Essigester). F: 168—169° (korr.). Die Lösung in Eisessig liefert beim Kochen mit Bromwasserstoffsäure (D: 1,48) 4.7.8-Trioxy-1-methyl-anthrachinon.
- 7.8-Dimethoxy 4 acetoxy 1 methyl anthrachinon $C_{19}H_{16}O_6 = (CH_3 \cdot O)_3C_6H_3(CO)_2C_8H_3$ (CH₃)·O·CO·CH₃. B. Aus 4-Oxy-7.8-dimethoxy-1-methyl-anthrachinon und Acetanhydrid in Gegenwart von Natriumacetat (Jacobson, Adams, Am. Soc. 47, 2017). Gelbe Nadeln (aus Alkohol). F: 173—174° (korr.).
- 4.7.8-Triacetoxy-1-methyl-anthrachinon $C_{21}H_{16}O_8 = (CH_3 \cdot CO \cdot O)_2C_6H_3(CO)_2C_6H_3(CH_3) \cdot O \cdot CO \cdot CH_3$. Beim Erhitzen von 4.7.8-Trioxy-1-methyl-anthrachinon mit Acetanhydrid und Natriumacetat (Jacobson, Adams, Am. Soc. 47, 2017). Gelbliche Nadeln (aus Alkohol). F: 204—205° (korr.).

6. 1.3.4 - Trioxy - 2 - methyl - anthrachinon, 3 - Methyl - purpurin C₁₅H₁₀O₅, Formel VI. B. Aus 2-Methyl-anthradichinon-(1.4;9.10) durch Einw. von Acetanhydrid in Gegenwart von konz. Schwefelsäure oder Zinkchlorid und Verseifen des Reaktionsprodukts mit konz. Schwefelsäure (Zahn, Ochwat, A. 462, 92). In geringer Menge bei längerem Kochen von 1.3-Dinitro-4-oxy-2-methyl-anthrachinon mit methylalkoholischer Natronlauge und Erhitzen des mit Salzsäure gefällten Reaktionsprodukts mit konz. Salzsäure und Eisessig im Rohr auf 190° (Eder, Manoukian, Helv. 9, 57). Durch Behandeln von 3-Methyl-alizarin mit Bleidioxyd in konz. Schwefelsäure (Mitter, Sen, J. indian chem. Soc. 5, 631; C. 1929 I, 1106). — Dunkelrote Nadeln (aus Xylol oder Chlorbenzol) vom Schmelzpunkt 265—267° (Z., O.), rote Nadeln mit 1 H₂O (aus 96° igem Alkohol) vom Schmelzpunkt ca. 268—270° (unter teilweiser Sublimation) (Cook, Turner, Soc. 1937, 88). Die zwischen 231° und 234° schmelzenden Präparate von Eder, Manoukian, von Mitter, Sen und von Mitter, Pal (J. indian chem. Soc. 7 [1930], 262) waren wahrscheinlich unrein (Z., O., A. 462, 93 Anm. 1). Sublimiert im Vakuum (E., Ma.). Löst sich in den üblichen organischen Lösungsmitteln mit gelber Farbe; die Lösung in Schwefelsäure ist karminrot, die Lösung in Soda violettstichig rosa (E., Ma.). — Liefert mit 1 Mol Acetanhydrid in Pyridin eine Monoacetylverbindung (s. u.), mit Acetanhydrid und konz. Schwefelsäure die Triacetylverbindung (s. u.) (Z., O.). — Bariumsalz. Violette Nadeln. Sehr schwer löslich in Wasser (E., Ma., Helv. 9, 58).

Monoacetat $C_{17}H_{12}O_6 = C_6H_4(CO)_2C_6(CH_3)(OH)_2 \cdot O \cdot CO \cdot CH_3$. B. Aus 1.3.4-Trioxy-2-methyl-anthrachinon und 1 Mol Acetanhydrid in Pyridin (Zahn, Ochwat, A. 462, 93). — Rote Nadeln. F: 204—206° (Z., O.), 213° (MITTER, Pal, J. indian chem. Soc. 7 [1930], 262).

- 1.3.4 Triacetoxy 2 methyl anthrachinon $C_{21}H_{16}O_6 = C_6H_4(CO)_2C_6(CH_3)(O \cdot CO \cdot CH_3)_3$. B. Durch Einw. von Acetanhydrid und konz. Schwefelsäure auf 1.3.4-Trioxy 2 methylanthrachinon (Zahn, Ochwat, A. 462, 93). Hellgelbe Nadeln. F: 207—208°.
- 7. 1.5.6 Trioxy 2 methyl anthrachinon, Morindon C₁₅H₁₀O₅, Formel VII auf S. 562 (H 525; E I 746). Zur Konstitution vgl. Jacobson, Adams, Am. Soc. 47, 287; Bhattachara, Simonsen, J. indian Inst. Sci. [A] 10, 6; C. 1927 II, 1476. B. Beim Erhitzen von 2.5-Dioxy-6-methyl-anthrachinon mit Kaliumhydroxyd und etwas Natriumarsenat auf 220° bis 230°; Isolierung über das Triacetylderivat (Bh., S., J. indian Inst. Sci. [A] 10, 9). Beim Kochen von 1-Oxy-5.6-dimethoxy-2-methyl-anthrachinon mit Bromwasserstoffsäure (D: 1,48) und Eisessig (J., A.). Orangerote Nadeln (aus Toluol). F: 281—282° (korr.) (J., A.), 275° (unkorr.) (Bh., S.). Bariumsalz. Violett. Schwer löslich (Bh., S.).
- 1-0xy-5.6-dimethoxy-2-methyl-anthrachinon, Morindon-5.6-dimethyläther $C_{17}H_{14}O_5 = (CH_3\cdot O)_2C_6H_2(CO)_2C_6H_2(CH_3)\cdot OH$. B. Durch Oxydation von 4-Oxy-7.8-dimethoxy-3-methylanthron-(9) mit Chromtrioxyd in starker Essigsäure (Jacobson, Adams, Am. Soc. 47, 286). Gelbe Nadeln (aus Eisessig oder Toluol). F: 138,5—139° (korr.).
- 5.6-Dimethoxy-1-acetoxy-2-methyl-anthrachinon, Morindon-5.6-dimethyläther-1-acetat $C_{19}H_{18}O_6 = (CH_3 \cdot O)_2C_6H_2(CO)_2C_6H_2(CH_3) \cdot O \cdot CO \cdot CH_3$. B. Beim Kochen von 1-Oxy-5.6-dimethoxy-2-methyl-anthrachinon mit Acetanhydrid und Natriumacetat (Jacobson, Adams, Am. Soc. 47, 287). Gelbe Nadeln (aus Eisessig). F: 185—185,5° (korr.).
- 1.5.6 Triacetoxy 2 methyl anthrachinon, Morindontriacetat $C_{21}H_{16}O_8 = (CH_3 \cdot CO \cdot O)_2C_8H_8(CO)_2C_8H_9(CH_3) \cdot O \cdot CO \cdot CH_8$ (H 526; E I 746). F: 255—256,5° (korr.) (JACOBSON, ADAMS, Am. Soc. 47, 287), 249° (unkorr.) (Bhattacharya, Simonsen, J. indian Inst. Sci. [A] 10, 9; C. 1927 II, 1477).

562

4-Brom-1-oxy-5.6-dimethoxy-2-methyl-anthrachinon $C_{17}H_{18}O_5$ Br, Formel VIII. B. Bei der Oxydation von 1-Brom-4-oxy-7.8-dimethoxy-3-methyl-anthron-(9) mit Chromtrioxyd in Eisessig (Jacobson, Adams, Am. Soc. 46, 2793). — Gelbe Nadeln (aus Eisessig). F: 193—193,5°. Löst sich in konz. Schwefelsäure mit tiefblauer Farbe.

VII.
$$HO : O : OH$$

$$CH_8 : O : OH$$

$$CH_8 : O : OH$$

$$CH_8 : O : OH$$

- 8. 1.5.8-Trioxy-2-methyl-anthrachinon C₁₅H₁₀O₅, Formel IX. B. Beim Kochen von 1-Oxy-5.8-dimethoxy-2-methyl-anthrachinon mit konstantsiedender Bromwasserstoffsäure und Eisessig (Graves, Adams, Am. Soc. 45, 2450). Rote Nadeln (aus Eisessig). Sublimiert bei 250—260°. Löst sich in Alkalien mit roter, in konz. Schwefelsäure mit blauroter Farbe. Absorptionsspektrum von Lösungen in alkoh. Salzsäure und in alkoh. Natronlauge: G., A., Am. Soc. 45, 2446.
- 1-Oxy-5.8-dimethoxy-2-methyl-anthrachinon $C_{17}H_{14}O_5 = (CH_3 \cdot O)_2C_8H_2(CO)_2C_8H_2(CH_3) \cdot OH$. B. Beim Erhitzen von 3.6-Dimethoxy-2-[2-oxy-3-methyl-benzoyl]-benzoesäure mit konz. Schwefelsäure und wenig Borsäure auf dem Wasserbad (Graves, Adams, Am. Soc. 45, 2450). Rote Nadeln (aus Eisessig). F: 165° (korr.). Löst sich in Alkalien mit roter, in konz. Schwefelsäure je nach der Konzentration mit blauer bis blauroter Farbe. Absorptionsspektrum von Lösungen in alkoh. Salzsäure und in alkoh. Natronlauge: G., A., Am. Soc. 45, 2447.

9. 1.7.8 - Trioxy - 2 - methyl - anthrachinon $C_{15}H_{10}O_5$, Formel X. B. Beim Erhitzen von 3.4-Dimethoxy-2-[2-oxy-3-methyl-benzoyl]-benzoesäure mit konz. Schwefelsäure und wenig Borsäure auf 135—140° (Jacobson, Adams, Am. Soc. 47, 288). — Bräunlichgelbe Nadeln (aus verd. Essigsäure). F: 287—288° (korr.). Löst sich in Alkohol mit gelber, in wäßr. Natronlauge mit schwach bläulichroter, in alkoh. Natronlauge mit roter, in alkoh. Salzsäure mit grünlichgelber und in konz. Schwefelsäure mit bläulichroter Farbe.

Morindon (H 525; E I 746), für das diese Konstitution früher in Betracht gezogen wurde, s. S. 561.

- 1.7.8-Trimethoxy 2 methyl anthrachinon $C_{18}H_{16}O_5=(CH_3\cdot O)_2C_6H_2(CO)_2C_6H_2(CH_3)\cdot O\cdot CH_3$. B. Man erhitzt 3.4-Dimethoxy-2-[2-oxy-3-methyl-benzoyl]-benzoesäure mit konz. Schwefelsäure auf 150° und schüttelt das Reaktionsprodukt mit Dimethylsulfat und konz. Kalilauge (Simonsen, Soc. 125, 726). Gelbe Nadeln (aus Essigester). F: 209—210°. Löst sich in konz. Schwefelsäure mit purpurroter Farbe.
- 10. 3.5.6-Trioxy-2-methyl-anthrachinon ¹), Chrysaron C₁₅H₁₀O₅, Formel I (H 527). Zur Konstitution vgl. Keimatsu, Hirano, Tanabe, J. pharm. Soc. Japan 49, 63; C. 1929 II, 995. B. Durch Erhitzen von 3.5.6-Trimethoxy-2-methyl-anthrachinon mit Bromwasserstoffsäure (K., H., J. pharm. Soc. Japan 49, 20; C. 1929 I, 2533). Goldgelbe Tafeln (aus Alkohol), Nadeln (aus Toluol). F: 165—166°. Liefert bei der Reduktion mit heißer Jodwasserstoffsäure 3.5.6(oder 2.7.8)-Trioxy-2(oder 3)-methyl-anthron-(9).
- 3.5.6-Trimethoxy-2-methyl-anthrachinon, Chrysaron-trimethyläther $C_{18}H_{16}O_5=(CH_3\cdot O)_2C_6H_2(CO)_2C_6H_2(CH_3)\cdot O\cdot CH_3$. Zur Konstitution vgl. Keimatsu, Hirano, Tanabe, J. pharm. Soc. Japan 49, 63; C. 1929 II, 995. B. Durch Erhitzen von 3.5.6-Trichlor-2-methyl-anthrachinon mit Natriummethylat-Lösung (K., H., J. pharm. Soc. Japan 49, 20; C. 1929 I, 2533). F: 193—194°.
- 3.5.6-Triacetoxy-2-methyl-anthrachinon, Chrysaron-triacetat $C_{21}H_{16}O_8=(CH_3\cdot CO\cdot O)_2C_6H_2(CO)_2C_6H_2(CH_3)\cdot O\cdot CO\cdot CH_3$ (H 527). Dunkelbraune Tafeln (aus Alkohol). F: 168—169° (Keimatsu, Hirano, J. pharm. Soc. Japan 49, 20; C. 1929 I, 2533).
- 11. 3.5.8-Trioxy-2-methyl-anthrachinon, Isoemodin, Rhabarberon C₁₈H₁₀O₅, Formel II (H 526). Zur Konstitution vgl. Keimatsu, Hibano, J. pharm. Soc. Japan 49, 20; 51, 19; C. 1929 I, 2533; 1931 I, 3348. Zum Vorkommen in der offizinellen Rhabarberwurzel (Hesse, A. 309, 42; H 526) vgl. Tutin, Cleweb, Soc. 99 [1911], 955. B. Durch Erhitzen

¹⁾ Die von Jacobson, Adams (Am. Soc. 47, 2017) unter dieser Formel beschriebene Verbindung ist vermutlich 2.7.8-Trioxy-1-methyl-anthrachinon (s. S. 560) (Bellstein-Redaktion).

- von 3.5.8-Trimethoxy-2-methyl-anthrachinon mit Bromwasserstoffsäure (K., H., J. pharm. Soc. Japan 49, 20; C. 1929 I, 2533). Gelblichbraune Blättchen (aus Alkohol), Nadeln (aus Toluol); sublimiert in Nadeln. F: 211—212° (K., H.). Schwer löslich in Sodalösung, leicht in Natronlauge mit purpurroter Farbe (K., H.). Die Lösung in konz. Schwefelsäure ist hellrot (K., H.). Mit Barytwasser entsteht ein hellroter Niederschlag (K., H.). Gibt mit Eisenchlorid eine dunkelrote Färbung (K., H.). Liefert bei der Reduktion mit Jodwasserstoffsäure 3.5.8(oder 2.5.8)-Trioxy-2(oder 3)-methyl-anthron-(9) (K., H.).
- 3.5.8-Trimethoxy-2-methyl-anthrachinon, Isoemodintrimethyläther $C_{18}H_{16}O_5=(CH_3\cdot O)_2C_6H_2(CO)_2C_6H_2(CH_3)\cdot O\cdot CH_3$. B. Durch Erhitzen von 3.5.8-Trichlor-2-methyl-anthrachinon mit Natriummethylat-Lösung (Keimatsu, Hirano, J. pharm. Soc. Japan 49, 20; C. 1929 I, 2533). F: 218—219°.
- 3.5.8 Triacetoxy 2 methyl anthrachinon, Isoemodintriacetat $C_{21}H_{16}O_8=(CH_3\cdot CO\cdot O)_2C_6H_2(CO)_2C_6H_2(CH_3)\cdot O\cdot CO\cdot CH_8$. Dunkelbraune Blättchen (aus Alkohol). F: 173—174° (Keimatsu, Hirano, J. pharm. Soc. Japan 49, 20; C. 1929 I, 2533; vgl. a. Tutin, Clewer, Soc. 99 [1911], 955).

- 12. 3.6.7 Trioxy 2 methyl anthrachinon $C_{18}H_{10}O_5$, Formel III. B. Durch Erhitzen von 3.6.7-Trimethoxy-2-methyl-anthrachinon mit Bromwasserstoffsäure (Keimatsu, Hirano, J. pharm. Soc. Japan 49, 20; C. 1929 I, 2533). F: 322—323°.
- 3.6.7 Trimethoxy 2 methyl anthrachinon $C_{18}H_{16}O_5 = (CH_3 \cdot O)_2C_6H_2(CO)_2C_6H_2(CH_3) \cdot O \cdot CH_3$. B. Durch Erhitzen von 3.6.7-Trichlor-2-methyl-anthrachinon mit Natriummethylat-Lösung (Keimatsu, Hirano, J. pharm. Soc. Japan 49, 20; C. 1929 I, 2533). F: 205—206°.
- 13. 3.7.8-Trioxy-2-methyl-anthrachinon C₁₈H₁₀O₅, Formel IV. B. Beim Erhitzen von 3.7.8-Trimethoxy-2-methyl-anthrachinon mit Aluminiumchlorid auf 220° (BISTRZYCKI, KRAUER, Helv. 6, 759). Rotbraune Nadeln (aus Nitrobenzol). F: 318—320°. Löst sich in Natronlauge mit bräunlichroter Farbe, die bei langem Aufbewahren am Licht fast verschwindet. Die Lösung in konz. Schwefelsäure ist violettstichig bräunlichrot und wird bei Zugabe von Borsäure violett. Löst sich in kaltem Acetanhydrid mit gelber, in Pyroboracetat-Lösung mit roter Farbe. Absorptionsspektrum in konz. Schwefelsäure und in Alkalilauge: B., K. Liefert beim Erhitzen mit Zinkstaub im Wasserstoffstrom zum schwachen Glühen 2-Methyl-anthracen. Färbt Baumwolle auf Tonerdebeize lebhaft rot, auf Eisenbeize bläulichschwarz.
- 3.7.8 Trimethoxy 2 methyl anthrachinon $C_{18}H_{16}O_5 = (CH_3 \cdot O)_2C_6H_2(CO)_2C_6H_2(CH_3) \cdot O \cdot CH_3$. Be ider Oxydation von 2.5.6-Trimethoxy-3-methyl-anthron-(9) oder [2.5.6-Trimethoxy-3-methyl-anthranyl-(9)]-acetat mit Chromtrioxyd in siedender Essigsäure (BISTRZYCKI, KRAUER, Helv. 6, 758). Hellgelbe Nadeln (aus Eisessig oder Alkohol). F: 218°. In der Siedehitze mäßig löslich in Benzol, leichter in Eisessig, sehr schwer löslich in Alkohol, fast unlöslich in Äther. Die Lösung in konz. Schwefelsäure ist violettstichig bräunlichrot.
- 3.7.8-Triacetoxy-2-methyl-anthrachinon $C_{21}H_{16}O_8 = (CH_3 \cdot CO \cdot O)_2C_6H_2(CO)_2C_6H_2(CH_3) \cdot O \cdot CO \cdot CH_3$. B. Beim Erhitzen von 3.7.8-Trioxy-2-methyl-anthrachinon mit Acetanhydrid und Natriumacetat (BISTRZYCKI, KRAUER, Helv. 6, 761). Gelbe Nadeln (aus Eisessig). F: 204—205° (unter Rotfärbung). In der Hitze ziemlich leicht löslich in Eisessig, mäßig in Benzol und Aceton, sehr schwer in Alkohol. Löst sich in verd. Natronlauge mit rotvioletter Farbe.

$$IV. \begin{tabular}{ll} HO & 0 & CH_3 & $V.$ & 0 & CH_3 & $VI.$ & HO & 0 & CH_3 \\ \hline \\ 0 & OH & $V.$ & $R\cdot O$ & 0 & $O\cdot R$ & $VI.$ & HO & 0 & OH \\ \hline \\ 0 & OH & OOH &$$

- 14. 4.5.6-Trioxy-2-methyl-anthrachinon $C_{15}H_{10}O_5$, Formel V (R = H).
- 4.5.6-Trimethoxy-2-methyl-anthrachinon $C_{18}H_{16}O_5$, Formel V (R = CH_3). B. In geringer Menge beim Erhitzen von 3.4-Dimethoxy-2-[2-oxy-4-methyl-benzoyl]-benzoesäure mit konz. Schwefelsäure auf 150° und Methylieren des Reaktionsprodukts mit Dimethylsulfat und konz. Kalilauge (Simonsen, Soc. 125, 724). Gelbe Nadeln (aus verd. Essigsäure). F: 164—165°. Ziemlich leicht löslich in verd. Essigsäure. Die Lösung in konz. Schwefelsäure ist blaustichig purpurrot.
- 15. 4.5.7-Trioxy-2-methyl-anthrachinon, Rheumemodin, Frangulaemodin, Emodin C₁₅H₁₀O₅, Formel VI (H 520; E I 743). V. Findet sich zu etwa 3% der

Trockensubstanz in dem Pilz Dermocybe sanguinea (Kögl, Postowsky, A. 444, 4). In sehr geringer Menge in der Wurzel von Rheum Emodi Webb (Holmström, Schweiz. Apoth.-Ztg. 59, 188; C. 1921 III, 43). Gehalt in Rhizoma Rhei: Brandt, Pharm. Ztg. 67, 521; C. 1922 IV, 919. In der Wurzel von Rumex crispus L. var. japonicus Makino (Murayama, Itagari, J. pharm. Soc. Japan 1921, Nr. 70; C. 1921 III, 486). Zum Vorkommen in Cassia-Arten (H 521) vgl: Gilg, Heinemann, Festschrift f. A. Tschibch [Leipzig 1926], S. 54; C. 1927 I, 2668. Zum Vorkommen im Chrysarobin (E I 743) vgl. Eder, Haubers, Ar. 1925, 338. — B. Durch Oxydation von Emodinanthranol (S. 485) mit Chromtrioxyd in Essigsäure bei 50° (Jacobson, Adams, Am. Soc. 46, 1316). Durch Diazotieren von 5.7-Diamino-4-oxy-2-methyl-anthrachinon in konz. Schwefelsäure und Erhitzen des Reaktionsgemisches auf dem Wasserbad (Eder, Widmer, Helv. 6, 981; E., D.R.P. 397316; C. 1924 II, 1024; Frdl. 14, 1448). In geringer Menge bei der fermentativen Spaltung der löslichen Glucoside aus der Rinde des Kreuzdorns (Rhamnus cathartica L.) mit dem Ferment des Rhamnus-Samens (Bridel, Charaux, C. r. 180, 859; A. ch. [10] 4, 92). — Zur Gewinnung von reinem Emodin aus Faulbaumrinde (H 521) vgl. Roulier, Dubreuil, Bl. Trav. Pharm. Bordeaux 66, 145; C. 1929 I, 888. — Absorptionsspektrum in konz. Schwefelsäure: Kögl., Postowski, A. 444, 4. — Gibt mit Acetobromglucose in Chinolin Gegenwart von Silberoxyd, zuletzt auf dem Wasserbad, Emodin-[β-d-glucosid-tetraacetat] (Таканавні, J. pharm. Soc. Japan 1925, Nr. 525, S. 6; C. 1926 I, 1646). — Einw. auf die Darmperistaltik der Katze: Lenz, Arch. int. Pharmacod. 28, 75; Ber. Physiol. 24, 461; C. 1924 II, 713. — Annähernde colorimetrische Bestimmung im Chrysarobin: Eder, Hauser, Ar. 1925, 338.

- 4.5 Dioxy 7 methoxy 2 methyl anthrachinon, Emodin monomethyläther, Physcion $C_{16}H_{12}O_5 = C_6H_2 C_0 C_6H_2 C_0 C_6H_2 (CH_3) \cdot OH$ (H 522; E I 743). Zum Vorkommen in Chrysarobin (E I 743) vgl. EDER, HAUSER, Ar. 1925, 338, 339. B. Durch Kochen von Emodinkalium mit Dimethylsulfat (EDER, HAUSER, Helv. 8, 143).
- 7-Methoxy-4.5-diacetoxy-2-methyl-anthrachinon, Emodin-methyläther-diacetat, Physcion-diacetat $C_{20}H_{16}O_7=(CH_3\cdot CO\cdot O)(CH_3\cdot O)C_6H_2(CO)_2C_6H_2(CH_3)\cdot O\cdot CO\cdot CH_3$ (H 523; E I 744). B. Durch Oxydation von Triacetylemodinol-monomethyläther (E II 6, 1135) mit Chromsäure in Eisessig bei 90—100° (EDER, HAUSER, Ar. 1925, 323). Zur Bildung aus Physcion durch Erhitzen mit Acetanhydrid und Natriumacetat nach Oesterle, Johann (Ar. 248, 484) vgl. E., H., Helv. 8, 131.
- 4.5.7-Triacetoxy-2-methyl-anthrachinon, Emodintriacetat $C_{21}H_{16}O_8 = (CH_3 \cdot CO \cdot O)_2C_6H_2$ (CO) $_2C_6H_2$ (CO) $_2C_6H_2$ (CO) $_2C_6H_3$ (CO) $_2C_6H_3$ (CO) $_2C_6H_3$ (EDER, Hauser, Helv. 8, 128).
- 1-Brom-4-oxy-5.7-dimethoxy-2-methyl-anthrachinon C₁₇H₁₈O₅Br, Formel I. B. Beim Erhitzen von 3.5-Dimethoxy-2-[5-brom-2-oxy-4-methyl-benzoyl]-benzoesäure mit rauchender Schwefelsäure (7% SO₄) und wenig Borsäure auf dem Wasserbad (Jacobson, Adams, Am. Soc. 46, 1315). Orangerote Nadeln (aus Eisessig). F: 208—209°. Liefert beim Kochen mit Jodwasserstomsäure (D: 1,5) in Eisessig Emodinanthranol (S. 435).
- 16. 4.5.8-Trioxy-2-methyl-anthrachinon C₁₅H₁₀O₅, Formel II. B. Beim Kochen von 4-Oxy-5.8-dimethoxy-2-methyl-anthrachinon mit Bromwasserstoffsäure in Eisessig (Graves, Adams, Am. Soc. 45, 2451). Rote Nadeln (aus Eisessig). F: 227° (korr.). Löst sich in Alkalien mit blauer, in konz. Schwefelsäure mit blauroter Farbe. Absorptionsspektrum der Lösung in alkoh. Salzsäure und alkoh. Natronlauge: G., A., Am. Soc. 45, 2446.
- 4-Oxy-5.8-dimethoxy-2-methyl-anthrachinon $C_{17}H_{14}O_5=(CH_2\cdot O)_2C_6H_2(CO)_2C_6H_2(CH_3)\cdot OH$. B. Beim Erhitzen von 3.6-Dimethoxy-2-[2-oxy-4-methyl-benzoyl]-benzoesäure mit rauchender Schwefelsäure (7% SO_3) und wenig Borsäure auf dem Wasserbad (Graves, Adams, Am. Sec. 45, 2451). Rote Nadeln (aus Eisessig). F: 172° (korr.). Löst sich in Alkalien mit roter, in konz. Schwefelsäure mit blauroter Farbe. Absorptionsspektrum der Lösung in alkoh. Salzsäure und alkoh. Natronlauge: G., A., Am. Soc. 45, 2447.

$$I. \xrightarrow{CH_3 \cdot O} \overset{O}{\overset{}{\overset{}}} \overset{Br}{\overset{}} \overset{O}{\overset{}} \overset{Br}{\overset{}} \overset{O}{\overset{}} \overset{HO}{\overset{}} \overset{O}{\overset{}} \overset{O}{\overset{}} \overset{O}{\overset{}} \overset{HO}{\overset{}} \overset{O}{\overset{}} \overset{O}{\overset{}} \overset{O}{\overset{}} \overset{CH_3}{\overset{}} \overset{O}{\overset{}} \overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}{\overset{O}}\overset{O}{\overset{O}{\overset{O}}\overset{O}{\overset{O}}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}{\overset{O}}\overset{O}{\overset{O}}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}{\overset{O}}\overset{O}{\overset{O}}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}{\overset{O}}\overset{O}{\overset{O}}{\overset{O}}{\overset{O}}\overset{O}{\overset{O}}\overset{O}{\overset{O}}{\overset{O}}{\overset{O}}\overset{O}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}\overset{O}{\overset{O}}{\overset{O}}{\overset{O}}\overset{O}{\overset{O}}{\overset{O}{$$

17. 4.7.8-Trioxy-2-methyl-anthrachinon $C_{15}H_{10}O_5$, Formel III (R = H).

4-Oxy-7.8-dimethoxy-2-methyl-anthrachinon $C_{17}H_{14}O_5$, Formel III (R = CH₃). B. Bei der Einw. von 85 % iger Schwefelsäure auf 5.6-Dimethoxy-2-[2-oxy-4-methyl-benzyl]-benzoesäure und Oxydation des entstandenen, nicht näher beschriebenen 4-Oxy-7.8-dimethoxy-2-methyl-anthrons-(9) mit Chromtrioxyd in Essigsäure (Jacobson, Adams, Am. Soc. 47, 2016). — Gelbe Nadeln (aus Essigester). F: 231,5—232,5° (korr.).

- 18. 4.5.2 Trioxy 2 methyl anthrachinon, Aloeemodin C₁₅H₁₀O₅, Formel IV (H 524; E I 745). Isoemodin (Rhabarberon), das im Ergw. I auf Grund der Angabe von Totin, Ciewer (Soc. 99, 948) mit Aloeemodin identifiziert wurde, wird von Keimatsu, Hirano (J. pharm. Soc. Japan 49, 20; 51, 19; C. 1929 I, 2533; 1931 I, 3348) als 3.5.8-Trioxy-2-methylanthrachinon (S. 562) erkannt. Eine Aloe aus Erythrea enthielt 0,33 % Aloeemodin (Anonymus, Giorn. Farm. Chim. 71, 57; C. 1922 IV, 202—203).
- 19. Chrysaron $C_{15}H_{10}O_5$ (H 527). Ist als 3.5.6-Trioxy-2-methyl-anthrachinon (S. 562) erkannt (Keimatsu, Hirano, Tanabe, J. pharm. Soc. Japan 49, 63; C. 1929 II, 995).

3. Oxy-oxo-Verbindungen $C_{16}H_{12}O_{\delta}$.

- 1. 1.4-Bis [4-oxy-phenyl] butantrion (1.2.4) $C_{16}H_{12}O_5 = HO \cdot C_6H_4 \cdot CO \cdot CO \cdot CH_4 \cdot CO \cdot C_6H_4 \cdot OH$.
- 1.4-Bis-[4-methoxy-phenyl]-butantrion-(1.2.4) imid (2) bzw. α -Amino $\alpha.\beta$ dianisoyläthylen, $\alpha.\beta$ -Dianisoyl-vinylamin $C_{18}H_{17}O_4N = CH_3 \cdot O \cdot C_6H_4 \cdot CO \cdot C(:NH) \cdot CH_2 \cdot CO \cdot C_6H_4 \cdot O \cdot CH_3$ bzw. $CH_3 \cdot O \cdot C_6H_4 \cdot CO \cdot C(NH_2) : CH \cdot CO \cdot C_6H_4 \cdot O \cdot CH_3$. B. Beim Einleiten von Ammoniak in eine Lösung von Dianisoylacetylen in Benzol (Dupont, Bl. [4] 41, 1167). Prismen (aus Alkohol). F: 107°.
- 2. 5.6-Dioxy-2-[2.3-dioxy-benzyliden]-hydrindon-(1) $C_{16}H_{12}O_{5} = (HO)_{2}C_{6}H_{2} < CO^{2} > C:CH \cdot C_{6}H_{5}(OH)_{2}.$

5.6-Dimethoxy-2-[2-oxy-3-methoxy-benzyliden]-hydrindon-(1) $C_{19}H_{19}O_5$, Formel V (R = H) (E I 746). — Kaliumsalz. Kupferrot (Perkin, Rây, Robinson, Soc. 1926, 953).

5.6 - Dimethoxy - 2 - [2.3 - dimethoxy - benzyliden] - hydrindon - (1) C₂₀H₂₀O₅, Formel V (R = CH₂) (E I 747). B. Beim Behandeln des Kaliumsalzes des 5.6-Dimethoxy-2-[2-oxy-3-methoxy-benzyliden]-hydrindons-(1) mit Dimethylsulfat (Perkin, Rây, Robinson, Soc. 1926, 953). — Gelbe Blättchen (aus Essigester + Methanol). — Liefert mit wasserfreiem Eisenchlorid und Acetanhydrid 5.6.5'.6'-Tetramethoxy - [indeno - 1'.2': 2.3 - benzopyryliumferrichlorid] (Formel VI; Syst. Nr. 2454).

$$VI. \begin{bmatrix} CH_3 \cdot O & & & & & \\ CH_3 \cdot O & & & & \\ CH_2 & \cdot O \cdot CH_3 \\ & \cdot O \cdot CH_3 \end{bmatrix} F_{eCl_4} \qquad VII. \quad \begin{array}{c} B \cdot O & & & \\ B \cdot O & & \\ \hline \end{array} CH_2 \\ C: CH \cdot & \cdot O \cdot R \\ C:$$

3. 5.6-Dioxy-2-[3.4-dioxy-benzyliden]-hydrindon-(1) $C_{16}H_{12}O_5$, Formel VII (R = H).

5.6 - Dimethoxy - 2 - [3.4 - dimethoxy-benzyliden]-hydrindon-(1), 5.6-Dimethoxy-2-veratryliden-hydrindon-(1) $C_{30}H_{20}O_5$, Formel VII (R = CH₃) (H 528). Die Lösung in Acetanhydrid liefert mit wasserfreiem Eisenchlorid anfangs unter Kühlung, zuletzt bei 40—50°, 6.7.5′.6′. Tetramethoxy-[indeno-1′.2′:2.3-benzopyryliumferrichlorid] (Formel VIII; Syst. Nr. 2454) (Perkin, Råy, Robinson, Soc. 1926, 952).

4. Oxy-oxo-Verbindungen $C_{17}H_{14}O_{5}$.

1. 1.5-Bis - [2.3-dioxy-phenyl] - pentadien - (1.4) - on - (3), Bis - [2.3-dioxy-benzyliden]-aceton, 2.3.2'.3'-Tetraoxy-dibenzylidenaceton $C_{17}H_{14}O_5$, Formel IX (R = H).

Bis-[2-oxy-3-methoxy-benzyliden]-aceton, 2.2'-Dioxy-3.3'-dimethoxy-dibenzylidenaceton-2.2'-Dioxy-3.3'-dimethoxy-distyrylketon $C_{19}H_{18}O_{5}$, Formel IX (R = CH₃). B. Durch Kondensation von 2-Oxy-3-methoxy-benzaldehyd mit Aceton oder Methyl-[2-oxy-3-methoxy-benzaldehyd m

styryl]-keton in Natronlauge (McGookin, Sinclair, Soc. 1926, 1578, 1580). — Orangefarbene Nadeln (aus verd. Alkohol). F: 182°.

2. 1.5-Bis -[2.4-dioxy - phenyl] - pentadien -(1.4) - on -(3), Bis -[2.4-dioxy-benzyliden]-aceton, 2.4.2'.4'-Tetraoxy-dibenzylidenaceton $C_{17}H_{14}O_{5}$, Formel X (R = H).

Bis-[2-oxy-4-methoxy-benzyliden]-aceton, 2.2'-Dioxy-4.4'-dimethoxy-dibenzylidenaceton, 2.2'-Dioxy-4.4'-dimethoxy-distyrylketon C₁₉H₁₈O₅, Formel X (R = CH₂). B. Durch kurzes Erwärmen von 2 Mol 2-Oxy-4-methoxy-benzaldehyd und 1 Mol Aceton unter Zusatz von Alkohol mit 20% iger Natronlauge auf dem Wasserbad (Mc Gookin, Sinclair, Soc. 1926, 1580). — Braune Tafeln (aus verd. Alkohol). F: 170°. Löslich in Alkohol, fast unlöslich in Benzol. Unbeständig. — Gibt beim Erwärmen mit Alkohol eine rote, intensiv grün fluorescierende Lösung. — Natriumsalz. Grüne Nadeln.

3. 1.5-Bis -[2.5-dioxy-phenyl]-pentadien -(1.4) - on -(3), Bis -[2.5-dioxy-benzyliden]-aceton, 2.5.2'.5'-Tetraoxy-dibenzylidenaceton $C_{17}H_{14}O_{5}$, Formel XI (R = H).

Bis-[2-oxy-5-methoxy-benzyliden]-aceton, 2.2'-Dioxy-5.5'-dimethoxy-dibenzylidenaceton, 2.2'-Dioxy-5.5'-dimethoxy-distyrylketon $C_{19}H_{18}O_5$, Formel XI ($R=CH_3$). B. Aus der gelben Form des Methyl-[2-oxy-5-methoxy-styryl]-ketons (S. 325) durch Einw. von starker Natronlauge und Ansäuern der wäßr. Lösung der erhaltenen grünen Nadeln (McGookin, Sinclair, Soc. 1926, 1578). — Orangefarbene Nadeln (aus Alkohol). F: 158°. Löslich in Aceton, fast unlöslich in Benzol.

4. 1.5-Bis-[3.4-dioxy-phenyl] - pentadien -(1.4) - on -(3), Bis -[3.4-dioxy-benzyliden]-aceton, 3.4.3'.4'-Tetraoxy-dibenzylidenaceton $\mathrm{C}_{17}\mathrm{H}_{14}\mathrm{O}_{5}$, Formel XII (R = H).

XII. HO
$$\cdot$$
 OH: CH \cdot CO \cdot CH: CH \cdot OH

Bis-[4-oxy-3-methoxy-benzyliden]-aceton, Divanillylidenaceton, 4.4'-Dioxy-3.3'-dimethoxy-dibenzylidenaceton, 4.4'-Dioxy-3.3'-dimethoxy-distyrylketon C₁₉H₁₈O₅, Formel XII (R = CH₃). B. Durch längere Einw. von Aceton auf Vanillin in konz. Salzsäure in der Kälte und Zer-CH₃). B. Durch langere Einw. von Aceton auf Vanilin in Konz. Salzsaure in der Kaite und Zersetzen des Hydrochlorids mit Natronlauge (Nomura, Hotta, Sci. Rep. Tôhoku Univ. 14, 123; Cl. 1925 II, 1745; Mc Gookin, Sinclair, Soc. 1926, 1581; Glaser, Tramer, J. pr. [2] 116, 339). Aus Methyl-[4-oxy-3-methoxy-styryl]-keton durch kurzes Kochen der farblosen Form mit 20% iger Natronlauge oder durch längeres Aufbewahren der gelben Form in alkal. Lösung (Mc G., S., Soc. 1926, 1579, 1581). — Blaßgelbe Nadeln (aus Chloroform oder Benzol + Toluol), orangerote Krystalle mit 1 Mol H₂O (aus verd. Alkohol). Schmelzpunkt der wasserfreien Form: 141,5—142,5° (N., H.), 142° (Mc G., S.), 143° (Vorländer, Koch, B. 62, 537); Schmelzpunkt der wasserhaltigen Form: 115,5—119,5° (N., H.), ca. 118° (V., K.), 121° (Mc G., S.). Ist nach Clasure Tramer leight lögligh in den üblighen organischen Lögungsmitteln einschlißigh GLASER, TRAMER leicht löslich in den üblichen organischen Lösungsmitteln einschließlich Benzol, sehr schwer in Wasser, unlöslich in Petroläther, nach McGookin, Sinclair leicht löslich in Alkohol und Aceton, ziemlich leicht in Chloroform, fast unlöslich in Benzol. Die Lösungen der wasserfreien gelben Form in Alkohol und in Benzol sind gelb, in Benzol + etwas Chlorwasserstoff rotgelb; die Lösung der krystallwasserhaltigen Form in Aceton + etwas Chlorwasserstoff ist rot; Verhalten dieser Lösungen im Ultramikroskop: V., K., B. 62, 539. Gibt mit Alkalilaugen kolloide rote Lösungen der Alkalisalze (NOMURA, HOTTA; GLASER, TRAMER, J. pr. [2] 116, 341; VORLÄNDER, KOCH, B. 62, 539); die Färbung ist noch in einer Verdünnung von 1:10000000 wahrnehmbar (GL., Tr.). Verhalten der alkal. Lösungen im Ultramikroskop: V., K. Löslich in Ammoniak, konz. Salzsäure und konz. Schwefelsäure (Gl., Tr.). Die gelbe Form wird durch Chlorwasserstoff in Abwesenheit von Wasser langsam, in Gegenwart von Wasser in fester oder gelöster Form sofort grün gefärbt; das grüne Produkt ist eine feste kolloide Lösung von kleinen Mengen farbiger Säureaddukte in den gelben Krystallen des reinen 4.4'-Dioxy-3.3'-dimethoxy-distyryl-ketons (V., K., B. 62, 536, 537). Die Lösung des grünen Produkts in absol. Alkohol ist weinrot, in verd. Alkohol und in Aceton braunrot; Verhalten dieser Lösungen im Ultramikroskop: V., K. Eine Lösung der gelben Form in 2n-Natronlauge gibt mit überschüssiger Salzsäure je nach der Konzentration gelbe, grüngelbe, grüne oder blauschwarze, mit 2 n-Salpetersäure und 2n-Überchlorsäure grüne Niederschläge, mit 2n-Schwefelsäure einen gelblichgrünen, mit 2n-Essigsäure einen gelben Niederschlag (V., K., B. 62, 538). — Divanillylidenaceton gibt bei der Hydrierung in Gegenwart von Platinschwarz oder bei der Reduktion mit Natriumamalgam in Wasser α.α'-Divanillyl-aceton (S. 545) (NOMURA, HOTTA, Sci. Rep. Töhoku Univ. 14, 124; C. 1925 II, 1745). Liefert beim Erwärmen mit Acetanhydrid und Natriumacetat dem Wasserbad ein Diacetat (s. u.) (Glaser, Tramer, J. pr. [2] 116, 341). Gibt mit Benzoylchlorid in eiskalter wäßrig-alkalischer Lösung ein Dibenzoat (Vorländer, Koch, B. 62, 538).

Natriumsalz. G'änzende grüne Nadeln (McGookin, Sinclair, Soc. 1926, 1581). — Hydrochlorid. Das aus alkoh. Lösung mit Chlorwasserstoff frisch gefällte blauschwarze Hydrochlorid enthält anfangs ca. 3 Mol Chlorwasserstoff, verliert bei 3-tägigem Aufbewahren im Vakuum ca. 2 Mol Chlorwasserstoff, wird dabei grün und verändert sich bei weiterem Aufbewahren kaum mehr (Vorländer, Koch, B. 62, 537). Es löst sich in absol. Alkohol, Aceton und Alkalilauge mit roter Farbe; Verhalten dieser Lösungen im Ultramikroskop: V., K. Das blauschwarze Hydrochlorid setzt sich mit Natronlauge nur langsam um, das grüne Hydrochlorid reagiert rasch (V., K.).

- Bis [3.4-dimethoxy benzyliden] aceton, Diveratrylidenaceton, 3.4.3'.4'-Tetramethoxy-dibenzylidenaceton, 3.4.3'.4'-Tetramethoxy distyrylketon $C_{21}H_{22}O_5 = [(CH_3 \cdot O)_2C_6H_3 \cdot CH : CH]_2O$ (H 528; E I 747). B. Aus 3.4-Dimethoxy-benzylidenaceton und Veratrumaldehyd in Alkohol bei Gegenwart von wenig 8%iger Natronlauge (Dickinson, Heilbron, Irving. Soc. 1927, 1892). F: 84°. Zersetzt sich bei längerem Aufbewahren unter Luftabschluß. Liefert mit der berechneten Menge Brom in Chloroform Bis-[α . β -dibrom-(3.4-dimethoxy-phenyl)-äthyl]-keton. Gibt mit Acetessigester und Natriumäthylat in siedendem Alkohol 2-[3.4-Dimethoxy-phenyl]-4-[3.4-dimethoxy-styryl]-cyclohexen-(4)-on-(6)-carbonsäure-(1)-äthylester.
- 3.3'-Dimethoxy-4.4'-diäthoxy-dibenzylidenaceton, 3.3'-Dimethoxy-4.4'-diäthoxy-distyrylketon $C_{23}H_{26}O_5=[C_2H_3\cdot O\cdot C_6H_3(O\cdot CH_3)\cdot CH:CH]_2CO$. B. Aus Vanillinäthyläther und Aceton in 50%igem Alkohol bei Gegenwart von wenig 10%iger Natronlauge bei Zimmertemperatur (Dickinson, Heilbron, Irving, Soc. 1927, 1894). Gelbe Nadeln (aus Alkohol). F: 123—124°.
- 3.3'-Dimethoxy-4.4'-dibenzyloxy-dibenzylidenaceton, 3.3'-Dimethoxy-4.4'-dibenzyloxy-distyrylketon, Bis-benzylvanillyliden-aceton $C_{33}H_{30}O_5=[C_8H_5\cdot CH_2\cdot O\cdot C_8H_3(O\cdot CH_3)\cdot CH:CH]_2CO$. B. Durch Kondensation von Vanillinbenzyläther mit Aceton oder mit 3-Methoxy-4-benzyloxy-benzylidenaceton in verdünnter wäßrig-alkoholischer Natronlauge (Dickinson, Heilbron, Irving, Soc. 1927, 1896). Goldgelbe Nadeln (aus Essigester). F: 155°. Liefert mit der berechneten Menge Brom in Chloroform Bis-[$\alpha.\beta$ -dibrom-(3-methoxy-4-benzyloxy-phenyl)-äthyl]-keton.
- 3.3'-Dimethoxy-4.4'-diacetoxy-dibenzylidenaceton, Bis-acetylvanillyliden-aceton $C_{23}H_{22}O_7 = [CH_3 \cdot CO \cdot O \cdot C_6H_3(O \cdot CH_3) \cdot CH : CH]_2CO$. B. Beim Erwärmen von wasserfreiem Divanillylidenaceton mit Acetanhydrid und Natriumacetat auf dem Wasserbad (Glaser, Tramer, J. pr. [2] 116, 341). Gelbe Krystalle (aus Alkohol). F: 182°. Leicht löslich in Aceton, Essigester, Benzol, Chloroform und Eisessig, schwerer in Alkohol und Äther, sehr schwer löslich in Xylol.

5. Oxy-oxo-Verbindungen $C_{18}H_{16}O_{5}$.

- 2-Methyl-1.5-bis-[3.4-dioxy-phenyl]-pentadien-(1.4)-on-(3), α -Methyl- $\alpha.\alpha'$ -bis-[3.4-dioxy-benzyliden]-aceton, 3.4.3'.4'-Tetraoxy- α -methyl-distyryl-keton $C_{18}H_{16}O_5=(HO)_2C_6H_3\cdot CH\cdot CH\cdot CO\cdot C(CH_3)\cdot CH\cdot C_6H_3(OH)_2$. B. Aus Protocatechualdehyd und Methyläthylketon in konz. Salzsäure unter Kühlung (IWAMOTO, Bl. chem. Soc. Japan 2, 53; C. 1927 I, 2730). Schwarzviolettes Pulver (aus Eisessig + Wasser). Zersetzt sich beim Erhitzen ohne zu schmelzen.
- α-Methyl-α.α'-divanillyliden-aceton, α.α'-Divanillyliden-methyläthylketon $C_{20}H_{20}O_5=CH_3\cdot O\cdot C_6H_3(OH)\cdot CH:CH\cdot CO\cdot C(CH_3):CH\cdot C_6H_3(OH)\cdot O\cdot CH_3$. B. Beim Sättigen einer gut gekühlten Mischung von Vanillin und Methyläthylketon mit trockenem Chlorwasserstoff (ICHKAWA, Sci. Rep. Töhoku Univ. 14, 129; Č. 1925 II, 1744). Ziegelroter Niederschlag (aus Benzol + Petroläther). Entfärbt sich bei 223° und wird bei 255° dunkel. Leicht löslich in Alkohol und Chloroform, schwerer in Benzol, schwer in den anderen gebräuchlichen Lösungsmitteln.
- α -Methyl- α . α' -diversityliden-aceton, 3.4.3'.4'-Tetramethoxy- α -methyl-distyrylketon $C_{22}H_{24}O_5=(CH_3\cdot O)_2C_6H_3\cdot CH:CH\cdot CO\cdot C(CH_3):CH\cdot C_6H_3(O\cdot CH_3)_2$. B. Aus Veratrumaldehyd und Methyläthylketon in konz. Salzsäure bei Zimmertemperatur (Iwamoto, Bl. chem. Soc. Japan 2, 53; C. 1927 I, 2730). Beim Behandeln von 3.4.3'.4'-Tetraoxy-α-methyl-distyrylketon mit Dimethylsulfat und Alkalilauge (I.). Gelbes amorphes Pulver (aus Benzol + Petroläther).

i) Oxy-oxo-Verbindungen $C_nH_{2n-22}O_5$.

1. Oxy-oxo-Verbindungen C14H4O5.

- 1. 2-Oxy-anthradichinon-(1.4; 9.10) $C_{14}H_{\bullet}O_{\delta}$, Formel I (R = H).
- 2-Acetoxy-anthradichinon-(1.4; 9.10), 2-Acetyl-purpurinchinon $C_{16}H_8O_6$, Formel I (R = CO·CH₃). B. Aus Purpurin-2-acetat durch Schütteln mit Bleidioxyd in trockenem Benzol oder beim Behandeln mit Bleitetraacetat in Eisessig (DIMROTH, FRIEDEMANN, KÄMMERER, B. 53, 486). Grünstichig gelbe Nadeln (aus Nitrobenzol + Schwefelkohlenstoff). F: 167° bis 168°. Löslich in Nitrobenzol mit gelber Farbe, schwerer löslich in Eisessig und Alkohol, sehr schwer löslich in Äther und Ligroin. Wird durch schweflige Säure in Eisessig zu Purpurin-2-acetat reduziert. Liefert mit Acetanhydrid in Gegenwart von wenig Schwefeltrioxyd enthaltender rauchender Schwefelsäure 1.2.3.4-Tetraacetoxy-anthrachinon.
- 3-Nitro-2-oxy-anthradichinon-(1.4;9.10) $C_{14}H_5O_7N$, Formel II. Diese Konstitution kommt der als "Pseudonitropurpurin" bezeichneten Verbindung $C_{14}H_7O_7N$ von Brasch (H512) zu (R. E. Schmidt, Stein, Bamberger, B. 62, 1884; vgl. jedoch Heller, Meetz, Siller, B. 62, 930). B. Aus 3-Nitro-purpurin durch Oxydation mit Salpetersäure oder mit Braunstein in konz. Schwefelsäure (Sch., St., B.). Wird durch schwache Reduktionsmittel wie schweflige Säure oder Hydrochinon wieder in 3-Nitro-purpurin übergeführt (Sch., St., B.).

- 2. 5-Oxy-anthradichinon (1.4; 9.10), 5-Oxy-chinizarinchinon C₁₄H₄O₈, Formel III. B. Durch Einw. von Bleitetraacetat auf 1.4.5-Trioxy-anthrachinon in Eisessig (DIMROTH, HILOKEN, B. 54, 3059). Braune Nadeln (aus Nitrobenzol oder Acetylentetrachlorid unterhalb 85°). Färbt sich bei 210° dunkel und schmilzt bei 220°. Schwer löslich in den meisten Lösungsmitteln. Die Lösung in Eisessig ist braungelb (D., H., B. 54, 3053). Oxydiert Leukomalachitgrün-Lösungen langsamer als 6-Oxy-anthradichinon-(1.4;9.10) (D., H., B. 54, 3062).
- 3. 6-Oxy-anthradichinon (1.4; 9.10), 6-Oxy-chinizarinchinon C₁₄H₆O₅, Formel IV. B. Aus 1.4.6-Trioxy-anthrachinon und Bleitetraacetat in Eisessig (DIMROTH, HILOKEN, B. 54, 3058). Braungelbe Krystalle (aus Aceton). Sintert bei 200°, zersetzt sich und schmilzt bei 215—220°. Die Lösung in Eisessig ist braungelb (D., H., B. 54, 3053). Oxydiert Leukomalachitgrün in Eisessig langsamer als Chinizarinchinon (D., H., B. 54, 3062). Wird durch Alkalilauge zersetzt. Gibt mit Acetanhydrid und wenig konz. Schwefelsäure 1.2.4.6- und 1.2.4.7-Tetraacetoxy-anthrachinon.

2. Oxy-oxo-Verbindungen $C_{16}H_{10}O_{5}$.

2-[3.4.5-Trioxy-phenyl]-naphthochinon-(1.4), Pyrogallyl- α -naphthochinon $C_{16}H_{10}O_5$, Formel V. B. Durch Oxydation von 1.4-Dioxy-2-[3.4.5-trioxy-phenyl]-naphthalin mit Chinon in Eisessig (Pummerer, Huppmann, B. 60, 1449). — Schwarze Nadeln (aus Eisessig). F: 270°. Sehr leicht löslich in Aceton, mäßig in Äther, Alkohol und Chloroform, sehwer in siedendem Benzol, sehr schwer in Wasser und Ligroin. Die Lösung in Alkali schäumt.

Triacetat $C_{22}H_{16}O_8 = C_{10}H_5(:O)_2 \cdot C_6H_3(O \cdot CO \cdot CH_3)_8$. B. Aus 2-[3.4.5-Trioxy-phenyl]-naphthochinon-(1.4) durch Erhitzen mit Acetanhydrid und Pyridin auf dem Wasserbad (PUMMERER, HUPPMANN, B. 60, 1443, 1450). — Hellbraune Nadeln (aus Benzol). F: 194° (Zers.). Sehr leicht löslich in Aceton und Chloroform, mäßig in Äther, Alkohol und Benzol, schwer in Ligroin, unlöslich in Wasser.

3. Oxy-oxo-Verbindungen C₁₇H₁₂O₁.

5-Methoxy-1.3-bis-[4-methoxy-phenyl]-cyclopentadien-(3.5)-ol-(4)-on-(2) $C_{20}H_{18}O_{5}$, Formel VI. B. Beim Behandeln von 4'.4''-Dimethoxy-vulpinsäuremethyläther (Formel VII; Syst. Nr. 2626) mit methylalkoholischer Kalilauge (Kögl., A. 465, 255). — Gelbe Nadeln (aus

H 8, 529—580

Syst. Nr. 831]

DIVANILLYLIDENCYCLOHEXANON

Eisessig). Sintert bei 135° und schmilzt bei 147°. Löslich in methylalkoholischer Kalilauge mit violetter Farbe.

4. Oxy-oxo-Verbindungen C₂₀H₁₈O₅.

- 1. 1-[3.4-Dioxy-phenyl]-3-[3.4-dioxy-styryl]-cyclohexen-(3)-on-(5) $C_{20}H_{10}O_{5}$. Formel VIII (R und R' = H).
- 1-[3.4-Dimethoxy-phenyi] 3 [3.4-dimethoxy-atyryi] cyclohexen-(3)-on-(5) $C_{14}H_{26}O_{5}$, Formel VIII (R und R' = CH₃). Diese Konstitution kommt der H 8, 291 als Veratralaceton aufgeführten Verbindung zu (vgl. E I 8, 627) (Dickinson, Heilbron, Irving, Soc. 1927, 1890). B. Durch Kondensation von Veratrumaldehyd mit Aceton in verd. Natronlauge unter Kühlung (D., H., I., Soc. 1927, 1893). Aus 3.4-Dimethoxy-benzylidenaceton und Aceton in Gegenwart einiger Tropfen 8%iger Natronlauge (D., H., I.). Durch Kochen von 2-[3.4-Dimethoxy-phenyl]-4-[3.4-dimethoxy-styryl]-cyclohexen-(4)-on-(6)-carbonsaure-(1)-athylester mit 20% iger Schwefelsaure und Eisessig (D., H., I., Soc. 1927, 1892). — Blaßgelbe Nadeln (aus Essigester). F: 168°. — Absorbiert 2 Mol Brom.
- 1-[3-Methoxy-4-propyloxy-phenyl]-3-[3-methoxy-4-propyloxy-styryl]-cyclohexen-(3)-on-(5) $C_{28}H_{24}O_5$, Formel VIII ($R=CH_3$, $R'=CH_2\cdot C_2H_5$). B. In geringer Menge bei längerer Einw. von 3-Methoxy-4-propyloxy-benzylidenaceton auf Aceton in sehr verdünnter wäßrig-alkoholischer Natronlauge (DICKINSON, HEILBRON, IRVING, Soc. 1927, 1895). — Blaßgelbe Nadeln (aus Essigester). F: 152—153°. — Absorbiert 2 Mol Brom.

Semicarbazon des 1-[3.4-Dimethoxy-phenyl]-3-[3.4-dimethoxy-styryl]-cyclohexen-(3)-ons-(5) $C_{25}H_{29}O_{5}N_{3}=(CH_{2}\cdot O)_{2}C_{6}H_{3}\cdot CH:CH\cdot CG_{6}H_{6}(:N\cdot NH\cdot CO\cdot NH_{2})\cdot C_{6}H_{3}(O\cdot CH_{3})_{2}$. Goldgelbe Krystalle. Schmilzt bei 226—2270 zu einer roten Flüssigkeit (Dickinson, Heilbron, IRVING, Soc. 1927, 1893).

1.3 - Bis - [3.4-dioxy - benzyliden] - cyclohexanon-(2) $C_{20}H_{18}O_5$, Formel IX.

1.3-Divaniliyliden-cyclohexanon-(2) $C_{32}H_{39}O_5 = [CH_3 \cdot O \cdot C_6H_3(OH) \cdot CH :]_3C_6H_4O$. B. Durch Versetzen einer Schmelze von Cyclohexanon und Vanillin mit wenig konz. Salzsäure auf dem Wasserbad (Samdahl, J. Pharm. Chim. [8] 7, 169; C. 1928 I, 2256). Durch Einleiten von Chlorwasserstoff in eine Lösung von Vanillin und Cyclohexanon in absol. Alkohol bei 0°, Lösen des Hydrochlorids in verd. Kalilauge und Fällen mit Essigsäure (VORLÄNDER, KOCH, В. 62, 540). Durch Hydrolyse des Diacetats mit siedendem Wasser (S.). — Gelbe Nadeln (aus Alkohol). F: 179° (korr.) (V., K.), 179—180° (S.). — Frisch gefälltes Divanillylidencyclohexanon wird durch verd. Salzsäure grün gefärbt (V., K.). Gibt mit konz. Schwefelsäure und konz. Salzsäure eine kräftige Violettfärbung (S.). Ist ein guter Indikator; einige Tropfen einer alkoh. Lösung (1:1000) färben verd. Säuren grünlichgelb; nach Neutralisation mit 0,01 n-Natronlauge wird die Lösung orangefarbig, bei weiterem Zusatz von Natronlauge rot; das Umschlagsintervall liegt zwischen pH 7,8 und 9,4 (S.). — Hy drochlorid. Ist frisch dargestellt dunkelblauviolett, wird beim Waschen mit trockenem Äther dunkelgrün und enthält nach raschem Trocknen über Phosphorpentoxyd und konz. Schwefelsäure weniger als 1 Mol Chlorwasserstoff (V., K.). Beim Zerlegen des blauvioletten Hydrochlorids mit siedendem Wasser entsteht ein hellgrünes, schwach chlorwasserstoffhaltiges krystallinisches Präparat (V., K.). Sowohl das blauviolette wie das grüne Hydrochlorid setzt sich mit Natronlauge nur sehr langsam um (V., K.).

- 1.3 Diveratryliden cyclohexanon (2) $C_{24}H_{24}O_5 = [(CH_3 \cdot O)_5C_4H_3 \cdot CH:]_2C_6H_6O$. B. Aus Cyclohexanon und Veratrumaldehyd in Natriumathylat-Lösung (Samdahl, J. Pharm. Chim. [8] 7, 164; C. 1928 I, 2256). Citronengelbe Nadeln (aus Alkohol). F: 149—150°. Sehr leicht löslich in Chloroform. Gibt mit konz. Schwefelsäure und konz. Salzsäure eine kräftige Violett-
- 1.3 Bis acetylvanillyliden cyclohexanon (2) $C_{26}H_{26}O_7 = [CH_3 \cdot CO \cdot O \cdot C_6H_3(O \cdot CH_3) \cdot CO \cdot O \cdot C_6H_3(O \cdot CH_3)]$ CH:]₂C₂H₂O. B. Durch Versetzen einer Schmelze von Cyclohexanon und Vanillinacetat mit wenig konz. Salzsäure auf dem Wasserbad (Samdahl, J. Pharm. Chim. [8] 7, 167; C. 1928 I, 2256). — Citronengelbe Nadeln (aus Alkohol). F: 190°. Löslich in Chloroform, schwer löslich

in kaltem Alkohol und in Äther, unlöslich in Wasser. — Gibt mit konz. Schwefelsäure und konz. Salzsäure eine kräftige Violettfärbung. · Die alkoh. Lösung wird auf Zusatz von sehr verd. Natronlauge bei Zimmertemperatur allmählich, beim Erwärmen sofort rot.

5. Oxy-oxo-Verbindungen $C_{s1}H_{s0}O_{s}$.

- 1. 1-Methyl-2.4-bis-[3.4-dioxy-benzyliden]-cyclohexanon-(3) $C_{21}H_{20}O_5$, Formel X auf S. 569 (R und R' = H).
- 1-Methyl-2.4-divanillyliden cyclohexanon-(3) $C_{23}H_{24}O_5$, Formel X auf S. 569 (R = H, R' = CH₃). B. Durch Versetzen einer Schmelze von inakt. 1-Methyl-cyclohexanon-(3) und Vanillin mit wenig konz. Salzsäure auf dem Wasserbad (Samdahl, J. Pharm Chim. [8] 7, 163, 171; C. 1928 I, 2256). Gelbe Nadeln (aus Alkohol). F: 171—172°. Gibt mit konz. Schwefelsäure und konz. Salzsäure eine kräftige Violettfärbung. Verhält sich als Indikator wie 1.3-Divanillyliden-cyclohexanon-(2) (S. 569).
- 1-Methyl 2.4-diveratryliden cyclohexanon-(3) $C_{25}H_{28}O_5$, Formel X auf S. 569 (R und R' = CH₃). B. Aus inakt. 1-Methyl-cyclohexanon-(3) und Veratrumaldehyd in Natriumäthylat-Lösung (Samdahl, J. Pharm. Chim. [8] 7, 163, 166; C. 1928 I, 2256). Gelbe Nadeln. F: 134° bis 135°. Löslich in Alkohol. Gibt mit konz. Schwefelsäure und konz. Salzsäure eine kräftige Violettfärbung.
- 1-Methyl-2.4-bis-acetylvanillyliden-cyclohexanon-(3) C₂₇H₂₈O₇, Formel X auf S. 569 (R = CH₃·CO, R' = CH₃). B. Durch Versetzen einer Schmelze von inakt. 1-Methyl-cyclohexanon-(3) und Vanillinacetat mit wenig konz. Salzsäure auf dem Wasserbad (Samdahl, J. Pharm. Chim. [8] 7, 163, 168; C. 1928 I, 2256). Nadeln (aus Äther). F: 141—142°. Wird durch siedenden Alkohol hydrolysiert.
- 2. 1-Methyl-3.5-bis-[3.4-dioxy-benzyliden]-cyclohexanon-(4) $C_{21}H_{20}O_5$, Formel XI (R und R' = H).

- 1-Methyl-3.5-divanillyliden-cyclohexanon-(4) $C_{23}H_{24}O_5$, Formel XI (R = H, R' = CH₃) B. Durch Versetzen einer Schmelze von 1-Methyl-cyclohexanon-(4) und Vanillin mit wenig konz. Salzsäure auf dem Wasserbad (Samdahl, J. Pharm. Chim. [8] 7, 170; C. 1928 I, 2256). Orangefarbige Krystalle (aus Alkohol). F: 169°. Nach der 5. Krystallisation sind die Krystalle citronengelb, nehmen aber allmählich ihre frühere Farbe wieder an. Im ultravioletten Licht fluorescieren die gelben Krystalle intensiv gelb, die orangefarbene Form bleibt dunkel. Gibt mit konz. Schwefelsäure und konz. Salzsäure eine kräftige Violettfärbung. Verhält sich als Indikator wie 1.3-Divanillyliden-cyclohexanon-(2) (S. 569).
- 1-Methyl-3.5-diveratryliden-cyclohexanon-(4) $C_{25}H_{28}O_5$, Formel XI (R und R' = CH_3). B. Aus 1-Methyl-cyclohexanon-(4) und Veratrumaldehyd in Natriumäthylat-Lösung (Samdahl, J. Pharm. Chim. [8] 7, 163; C. 1928 I, 2256). Gelbe Nadeln (aus Alkohol). F: 154° bis 155°. Gibt mit konz. Schwefelsäure und konz. Salzsäure eine kräftige Violettfärbung.
- 1-Methyl-3.5-bis-acetylvanillyliden-cyclohexanon-(4) $C_{27}H_{29}O_7$, Formel XI (R = CH₃·CO, R' = CH₃). B. Durch Versetzen einer Schmelze von 1-Methyl-cyclohexanon-(4) und Vanillinacetat mit wenig konz. Salzsäure auf dem Wasserbad (Samdahl, J. Pharm. Chim. [8] 7, 168; C. 1928 I, 2256). Gelbe Blättchen. F: 189°.

k) Oxy-oxo-Verbindungen C_nH_{2n-24}O₅.

1.4-Dimethyl-2-benzyliden - 5 - benzoyl - cyclohexandiol - (1.4)-dion - (3.6) $C_{22}H_{20}O_5 = C_6H_5 \cdot CH : C < C(CH_3)(OH) \cdot CO \cdot C_6H_5$. B. Beim Kochen von 1.4-Dimethyl-2-[α -oxy-benzyl]-5-benzoyl-cyclohexandiol - (1.4)-dion - (3.6) mit wasserfreier Ameisensäure (Diels, A. 434, 16). — Schwefelgelbe Krystalle. F: 238—243°. Unlöslich in Äther, sehr schwer löslich in Benzol und Eisessig, löslich in ca. 50 Tln. siedendem Methanol und Alkohol. — Liefert beim Erhitzen im Vakuum auf höhere Temperatur Benzylidendiacetyl.

Monoxim $C_{22}H_{21}O_5N=C_{22}H_{20}O_4:N\cdot OH.$ Krystalle (aus Acetonitril). F: 221—222° (Diels, A. 484, 17).

Mono-carbomethoxyhydrazon $C_{24}H_{24}O_6N_2=C_{23}H_{20}O_4:N\cdot NH\cdot CO_2\cdot CH_3$. Krystalle (aus verd. Methanol). Zersetzt sich oberhalb 220° unter Rotfärbung und schmilzt zwischen 240° und 243° (Diels, A. 434, 18).

571

Monosemicarbazon $C_{23}H_{23}O_5N_3=C_{22}H_{20}O_4:N\cdot NH\cdot CO\cdot NH_2$. Krystalle (aus Methanol). Zersetzt sich von 235° an unter Rotfärbung und schmilzt zwischen 245° und 248° (DIELS, A. 484, 18).

1) Oxy-oxo-Verbindungen $C_n H_{2n-30} O_5$.

4.1'-Dioxy-3-methoxy-1.2'-dinaphthyldiketon C₂₃H₁₆O₅, Formel I. B. Beim Erwärmen von [3-Methoxy-naphthalin-(1)]-[6.7-benzo-cumaron-(2)]-indolignon (Formel II; Syst. Nr. 2542) mit wäßrig-alkoholischer Natronlauge auf dem Wasserbad (Fries, Leue, B. 55, 761). — Gelbe Nadeln (aus Eisessig oder Alkohol). F: 186°. Schwer löslich in Benzin, leichter in Benzol. Leicht löslich in Sodalösung: — Löslich in konz. Schwefelsäure mit violetter Farbe; beim Verdünnen mit Wasser fällt [3-Methoxy-naphthalin-(1)]-[6.7-benzo-cumaron-(2)]-indolignon aus, das auch beim Erhlitzen auf 200°, bei der Einw. von Acetylchlorid oder Acetanhydrid sowie beim Einleiten von Chlorwasserstoff in die alkoh. Lösung erhalten wird. Bei der Reduktion mit Zinn(II)-chlorid in Eisessig in der Wärme erhält man 3-Oxy-2-[4-oxy-3-methoxy-naphthyl-(1)]-6.7-benzo-cumaran (Formel III). Kondensiert sich mit o-Phenylendiamin in siedendem Eisessig zu 2-[4-Oxy-3-methoxy-naphthyl-(1)]-3-[1-oxy-naphthyl-(2)]-chinoxalin. — Calciumsalz CaC₂₃H₁₄O₅. Hellgelbe Nadeln.

m) Oxy-oxo-Verbindungen $C_n H_{2n-32} O_5$.

1. Oxy-oxo-Verbindungen $C_{24}H_{16}O_5$.

2-Oxo-1.1-bis-[3.4-dioxy-phenyl]-acenaphthen, Bis-[3.4-dioxy-phenyl]-acenaphthenon, Dibrenz catechin-acenaphthenchinon $C_{24}H_{16}O_5$, Formel IV. B. Aus Acenaphthenchinon

und Brenzcatechin in Eisessig in Gegenwart von konz. Schwefelsäure auf dem Wasserbad (MATEI, B. 62, 2098). — IV. Krystalle (aus Eisessig oder verd. Alkohol). Zersetzt sich oberhalb 200° und schmilzt zwischen 250° und 270°.

$$V. \begin{array}{c} OC \longrightarrow C[C_6H_3(OH)_8]_2 \\ V. \\ \hline \ddot{O} & \ddot{O} & \ddot{O} \\ \hline \ddot{O} & \ddot{O} & \ddot{O} \\ \end{array}$$

Tetraacetat $C_{32}H_{24}O_9 = C_{10}H_6 \stackrel{C[C_0H_3(O\cdot CO\cdot CH_3)_2]_2}{CO}$. B. Beim Kochen von Bis-[3.4-di-oxy-phenyl]-acenaphthenon mit Acetanhydrid (MATEI, B. 62, 2098). — Rötlich, amorph. F: 97° bis 98°. Unlöslich in verd. Alkalien. — Wird durch konz. Alkalien langsam verseift.

2. Oxy-oxo-Verbindungen $C_{26}H_{20}O_5$.

Tris-[4-methoxy-phenyl]-[4-methoxy-benzoyl]-methan, [4-Methoxy-phenyl]-[4.4'.4''-trimethoxy-trityl]-keton, 4.4'.4''.4'''-Tetramethoxy- β -benzpinakolin $C_{30}H_{28}O_5 = (CH_3 \cdot O \cdot C_6H_4)_3C \cdot CO \cdot C_6H_4 \cdot O \cdot CH_3$. B. Beim Behandeln von 4.4'-Dimethoxy-benzophenon mit Zink und Eisessig auf dem Wasserbad (Tiffeneau, Orechow, Bl. [4] 37, 439). — Gelbliche Krystalle (aus Alkohol). F: 136—137°. Leicht löslich in heißem Benzol und Eisessig, schwer in Alkohol, fast unlöslich in Petroläther. Löst sich in Schwefelsäure mit intensiv roter Farbe. — Liefert beim Kochen mit 20%iger alkoholischer Kalilauge Anissäure und 4.4'.4''-Trimethoxy-triphenylmethan.

n) Oxy-oxo-Verbindungen $C_nH_{2n-34}O_5$.

6-Oxy-pentacendichinon-(5.14;7.12), 1-Oxy-2.3-phthalyl-anthrachinon, 6-Oxy-dinaphthanthracendichinon C₂₂H₁₀O₅, Formel V. B. Beim Diazotieren von 6-Amino-pentacendichinon-(5.14;7.12) mit Natriumnitrit in konz. Schwefelsäure und nachfolgenden Kochen mit Wasser (DE DIESBACH, JANZEN, Helv. 11, 730). — Rotbraune Nadeln

OXY. OXO . VERBINDUNGEN C_nH_{2n-84}O₅ BIS C_nH_{2n-16}O₆ [Syst. Nr. 837

(aus Nitrobenzol). Sublimiert gegen 300°, ohne zu schmelzen. Schwer löslich in den üblichen Lösungsmitteln außer Nitrobenzol und Anilin. — Die Hydrosulfitküpe ist blau und oxydiert sich an der Luft unter Violettfärbung und Bildung eines unlöslichen violettblauen Salzes, das beim Behandeln mit warmer verdünnter Schwefelsäure in ein braunrotes Produkt übergeht. [Kobel]

5. Oxy-oxo-Verbindungen mit 6 Sauerstoffatomen.

a) Oxy-oxo-Verbindungen $C_n H_{2n-8} O_6$.

1. Oxy-oxo-Verbindungen $C_cH_4O_c$.

2.3.5.6-Tetraoxy-benzochinon-(1.4), Tetraoxychinon C₆H₄O₆, s. nebenstehende Formel (H 534). B. Das Dinatriumsalz entsteht bei der Einw. von Luft auf die Natriumdisulfit-Verbindung des Glyoxals in Sodalösung bei ca. 50° oder in wäßr. Lösung bei Gegenwart von Magnesiumoxyd (HOMOLKA, B. 54, 1394; Höchster Farbw., D.R.P. 368741, 370222; C. 1923 II, 911; Frdl. 14, 433). — Leitfähigkeit in Wasser und in wäßr. Borsäure-Lösung bei 25°: Böeseken, Meuwissen, R. 45, 498.

Tetrakis - [2 - nitro - phenylmercapto] - benzochinon - (1.4) $C_{80}H_{16}O_{10}N_4S_4 = (O_2N \cdot C_6H_4 \cdot S)_4C_6O_2$. B. Beim Kochen von Chloranil mit überschüssigem 2-Nitro-thiophenol in Alkohol (FRIES, OCHWAT, B. 56, 1302). — Braungelbe Prismen (aus Nitrobenzol). Verpufft beim Erhitzen. Sehr schwer löslich in den gewöhnlichen Lösungsmitteln. — Wird von alkoh. Kalilauge und von konz. Schwefelsäure nur schwer angegriffen. Geht beim Kochen mit Nitrobenzol in eine in Nitrobenzol schwer lösliche Verbindung gleicher Zusammensetzung über. Beim Kochen mit Anilin entsteht 3.6-Dianilino-2.5-bis-[2-nitro-phenylmercapto]-benzochinon-(1.4)

2. Oxy-oxo-Verbindungen $C_8H_8O_6$.

2.4 - Dioxy - 3.6. ω - trimethoxy-acetophenon $C_{11}H_{14}O_6$, Formel I. B. Beim Sättigen einer äther. Lösung von wasserfreiem 2.5 - Dimethoxy-resorcin und Methoxy-acetonitril mit Chlorwasserstoff bei Zimmertempera-

tur und Verseifen des Reaktionsproduktes mit siedendem Wasser (Baker, Nodzu, Robinson, Soc. 1929, 79). — Nadeln (aus Wasser). F: 150—151°. Gibt mit alkoh. Eisenchlorid-Lösung eine intensive bläulichbraune Färbung.

2.6 - Dioxy - 3.4. ω - trimethoxy - acetophenon $C_{11}H_{14}O_6$, Formel II. B. Beim Sättigen einer äther. Lösung von 4.5-Dimethoxy-resorein und Methoxyacetonitril mit Chlorwasserstoff und Erhitzen des Reaktionsproduktes mit verd. Salzsäure (Chapman, Perkin, Robinson, Soc. 1927, 3033; Baker, Nodzu, Robinson, Soc. 1929, 81). — Blaßgelbe Nadeln (aus Wasser). F: 129—130° (Ch., P., R.). Leicht löslich in Alkohol und siedendem Wasser; die Lösung in 10% iger Natronlauge ist gelb (Ch., P., R.). Gibt mit Eisenchlorid in Alkohol eine grüne, in Braun übergehende, in Wasser eine bräunlichschwarze Färbung (Ch., P., R.). — Beständig gegen siedende 10% ige Natronlauge (Ch., P., R.).

b) Oxy-oxo-Verbindungen $C_n H_{2n-10} O_6$.

1. Oxy-oxo-Verbindungen $C_4H_2O_4$.

Cyclohexen-diol-tetron, Rhodixonsäure C₆H₂O₆=OC CO(OH):C(OH) CO (H 535).

B. Das Dinatriumsalz entsteht durch Luftoxydation von Glyoxal in Gegenwart von Natriumsulfit oder Natriumsulfit + Kaliumcarbonat in wäßr. Lösung sowie beim Kochen von dioxyweinsaurem Natrium mit Natriumsulfit-Lösung (Homolka, B. 54, 1395, 1396; Höchster Farbw., D.R.P. 371144, 371145, 371146; C. 1923 IV, 537; Frdl. 14, 434, 435). — Das Dinatriumsalz gibt in neutraler Lösung mit Barium, Strontium- oder Bleisalzen rötliche Niederschläge (Kolthoff, Pharm. Weekb. 62, 1017; C. 1926 I, 448). Anwendung des Dinatriumsalzes zum Nachweis von Barium und Strontium: Feigl, Mikrock. 2, 186; Koll.-Z. 25, 345; C. 1925 I, 1769, 2100.

TETRAOXYCHINON; CÖRULIGNON

2. Oxy-oxo-Verbindungen $C_{10}H_{10}O_6$.

2.4 - Dioxy - 5.6 - dimethoxy - 1.3 - diacetyl - benzol , 5.6 - Dimethoxy-2.4 - diacetyl - resorcin C₁₂H₁₄O₆, s. nebenstehende Formel. B. Neben anderen Verbindungen beim Erhitzen von 5-Oxy-1.2.3-trimethoxy-0+ OH₂ · O· OH benzol (Antiarol) mit Acetylchlorid in Nitrobenzol bei Gegenwart von CH₂ · O· OH Aluminiumchlorid (CHAPMAN, PERKIN, ROBINSON, Soc. 1927, 3032).—
Nadeln (aus verd. Alkohol). F: 92—93°. Leicht löslich in Äther, schwer in Wasser. Löst sich in wäßr. Natronlauge mit gelber Farbe; die Lösung ist beim Kochen beständig. Gibt mit alkoh. Eisenchlorid-Lösung eine tiefrote Färbung.

c) Oxy-oxo-Verbindungen $C_n H_{2n-12} O_6$.

2.4.6-Trioxy-1.3.5-triacetyl-benzol, 2.4.6-Triacetyl-phloroglucin, Triacetophloroglucin bzw. 1.3.5-Triacetyl-cyclohexantrion-(2.4.6) $C_{12}H_{12}O_6$, Formel III bzw. IV bzw. desmotrope Formen (H 536; E I 750). Verhalten gegen Brom in Chloroform: Sonn, Winzer, B. 61, 2305.

III.
$$HO \cdot OO \cdot OH_8$$
 $OO \cdot OH_8 \cdot OO \cdot HC \cdot OO \cdot CH_3$

d) Oxy-oxo-Verbindungen $C_n H_{2n-16} O_{\sigma}$.

1. Oxy-oxo-Verbindungen C12H8O6

3.5.3'.5'-Tetramethoxy-diphenochinon-(4.4'), Cörulignon, Cedriret C₁₆H₁₆O₆, s. nebenstehende Formel (H 537; E I 750). Auffassung als heteropolare Verbindung: Wizinger, Z. ang. Ch. 40, 943. — B. Bei der Oxydation von Pyrogallol-1.3-dimethyläther mit Natriumnitrit in verd. Essigsäure (Hunter, Woollett, Am. Soc. 43, 150). — Oxydiert in wäßrig-alkalischer Lösung ½ Mol Hydrazin unter Stickstoffentwicklung (H., Woo., Am. Soc. 43, 147).

2.2'-Dichlor-3.5.3'.5'-tetramethoxy-diphenochinon-(4.4'), Dichlorcedriret $C_{16}H_{14}O_6Cl_2 = O:C_6HCl(O\cdot CH_3)_2:C_6HCl(O\cdot CH_3)_2:O.$ B. Bei der Oxydation von 4-Chlor-pyrogallol-1.3-dimethyläther mit Chromtrioxyd in 20% iger Essigsäure (Levine, Am. Soc. 48, 2720). — Graue, violett glänzende Blättchen (aus Eisessig). Schwer löslich in Alkohol, Äther, Benzol und kaltem Eisessig, leicht in heißem Eisessig und Nitrobenzol. Gibt mit konz. Schwefelsäure keine Blaufärbung. — Liefert bei der Reduktion mit Schwefeldioxyd 2.2'-Dichlor-4.4'-dioxy-3.5.3'.5'-tetramethoxy-diphenyl.

2.2'-Dibrom-3.5.3'.5'-tetramethoxy-diphenochinon-(4.4'), Dibromcedriret $C_{16}H_{14}O_6Br_2=0:C_6HBr(O\cdot CH_3)_2:C_6HBr(O\cdot CH_3)_2:O.$ B. Bei der Oxydation von 4-Brom-pyrogaliol-1.3-dimethyläther mit Chromtrioxyd in 50% iger Essigsäure (Levine, Am. Soc. 48, 799). — Graue Blättehen (aus Nitrobenzol). F: 254°. Schwer löslich in den gewöhnlichen organischen Lösungsmitteln, leicht in Nitrobenzol. — Liefert bei der Reduktion mit Schwefeldioxyd in feuchtem Aceton 2.2'-Dibrom-4.4'-dioxy-3.5.3'.5'-tetramethoxy-diphenyl.

2. Oxy-oxo-Verbindungen C₁₂H₁₀O₆

- 1. 2.3.4.2'.4'-Pentaoxy-benzophenon C₁₃H₁₀O₅, Formel I auf S. 574 (H 538; E I 750). B. Neben etwas Gallacetophenon beim Einleiten von Chlorwasserstoff in eine äther. Lösung von Pyrogallol und 2.4-Diacetoxy-benzoesäure-nitril in Gegenwart von Zinkchlorid und Kochen des Reaktionsprodukts mit Wasser (ATKINSON, HEILBRON, Soc. 1926, 2690). Gelbe Nadeln mit 2 H₂O (aus verd. Alkohol). Erweicht bei 180°; F: 187°. Die alkal. Lösung ist hellgelb ohne Fluorescenz und wird beim Aufbewahren grüngelb und schließlich dunkelolivgrün.
- 2. 2.4.5.3'.4'-Pentaoxy-benzophenon C₁₈H₁₀O₅, Formel II auf S. 574. B. Beim Kochen des schwefelsauren Imids (S. 574) mit Wasser (Korczynski, Nowakowski, Bl. [4] 43, 335). Gelbe Nadeln (aus verd. Alkohol). F: 242°. Leicht löslich in den gebräuchlichen Lösungsmitteln. Löslich in Alkalien mit roter Farbe. Die alkoh. Lösung gibt mit Eisenchlorid eine grüne Färbung.

Imid $C_{18}H_{11}O_5N=(HO)_2C_5H_3\cdot C(:NH)\cdot C_6H_2(OH)_3$. B. Das Hydrochlorid entsteht beim Einleiten von Chlorwasserstoff in eine Lösung von Oxyhydrochinon und Diacetylprotocatechusäurenitril in Äther + Chloroform bei Gegenwart von ZnCl₂ (Korczynski, Nowakowski, Bl. [4] 48, 335). — $2C_{13}H_{11}O_5N+H_2SO_4$. Blättchen (aus Eisessig).

- 3. 2.4.6.2'.6'-Pentaoxy-benzophenon C₁₃H₁₀O₆, Formel III.
- 2.4.6-Trioxy-2'.6'-dimethoxy-benzophenon $C_{15}H_{14}O_6 = (CH_3 \cdot O)_3C_6H_3 \cdot CO \cdot C_6H_2(OH)_3$. B. Beim Einleiten von Chlorwasserstoff in eine äther. Lösung von 2.6-Dimethoxy-benzoesäurenitril und Phloroglucin in Gegenwart von $ZnCl_2$ und Kochen des Reaktionsproduktes mit Wasser (Korczynski, Nowakowski, Bl. [4] 43, 336). Krystalle (aus verd. Alkohol). F: 216—218°. Leicht löslich in Chloroform, Alkohol und Benzol, schwerer in Äther. Löslich in verd. Alkalien mit gelber Farbe. Gibt mit Eisenchlorid in Alkohol eine intensiv blaue Färbung.
- 4. 2.4.6.3'.4'-Pentaoxy benzophenon, Maclurin C₁₈H₁₀O₆, Formel IV (H 538; E I 751). B. Bei mehrwöchiger Einw. von Penicillium solitum auf eine 0,72% ige wäßrige, 5% Saccharose enthaltende Lösung von Acacatechin (Syst. Nr. 2452) (Hazleton, Nierenstein, Am. Soc. 46, 2103). Zur Isolierung aus Gelbholzextrakt und Trennung von Morin vgl. Zetzsche, Loosli, A. 445, 296. Beginnt bei 208—210° zu verhatzen; F: 220—222° (H., N.). Ultraviolett-Absorptionsspektrum in Alkohol: Tasaki, Acta phytoch. 2, 202; C. 1927 II, 2190. Gibt mit Magnesium in alkoh. Salzsäure eine rote Färbung (Shinoda, J. pharn. Soc. Japan 48, 35; C. 1928 II, 50). Versuche zur Trennung von Phenolen mit Hilfe von Formaldehyd in salzsaurer Lösung: Ware, Quart. J. Pharm. Pharmacol. 2, 254; C. 1929 II, 2703. AlC₁₈H₇O₆ + 2H₂O. Gelbes Pulver. Sehr schwer löslich in Alkohol. Wird am Licht dunkel. Zeigt keinen Schmelzpunkt und wird durch Wasser oder Alkalien zersetzt (Z., L., A. 445, 295). FeC₁₈H₇O₆ + 2H₂O. Grünschwarzes Pulver (Z., L., A. 445, 294).
- 3'.4'-Dioxy-2.4.6-trimethoxy-benzophenon, Maclurin-2.4.6-trimethyläther, Cotogenin $C_{16}H_{16}O_6 = (HO)_2C_6H_3 \cdot CO \cdot C_6H_2(O \cdot CH_3)_3$ (H 540). B. Beim Kochen von salzsaurem Diacetylcotogeninimid zunächst mit Wasser, dann mit wäßrig-methylalkoholischer Natronlauge (HOUBEN, FISCHER, J. pr. [2] 123, 107). Prismen und Tafeln (aus Wasser). Schmilzt bei schnellem Erhitzen bei 222,5° (korr.; Zers.). Gibt mit konz. Salpetersäure eine braune, mit konz. Schwefelsäure eine gelbe Färbung, die beim Erhitzen verschwindet. Die Lösungen in rauchender Salzsäure und in Natronlauge sind gelb.
- 2.3'-Dioxy-4.6.4'-trimethoxy-benzophenon, Maclurin-2.4.4'-trimethyläther $C_{16}H_{16}O_6=(CH_3\cdot O)(HO)$ $C_6H_3\cdot CO\cdot C_6H_2(O\cdot CH_3)_3\cdot OH$. Diese Konstitution dürfte auf Grund der Konstitutionsaufklärung des Protocotoins (Syst. Nr. 2842) und der Untersuchungen von Korczynski, Nowakowski (Bl. [4] 48, 336) dem H 540 beschriebenen Maclurin-x.x.x-trimethyläther zukommen.
- 4'-0xy-2.4.6.3'-tetramethoxy-benzophenon, Maclurin-2.4.6.3'-tetramethyläther $C_{17}H_{18}O_6 = (CH_3\cdot O)(HO)C_6H_3\cdot CO\cdot C_6H_2(O\cdot CH_3)_8$. Beim Kochen von schwefelsaurem 4'-0xy-2.4.6.3'-tetramethoxy-benzophenon-imid mit Wasser (Korczynski, Nowakowski, Bl. [4] 48, 336). Blättchen (aus Eisessig). F: 242°. Löslich in Alkalien mit gelber Farbe. Gibt mit heißer alkoholischer Eisenchlorid-Lösung eine braunrote Färbung.
- 3'-0xy-2.4.6.4'-tetramethoxy-benzophenon, Maclurin-2.4.6.4'-tetramethyläther $C_{17}H_{18}O_6 = (CH_3 \cdot O)(HO)C_6H_3 \cdot CO \cdot C_6H_3(O \cdot CH_3)_3$. Diese Konstitution dürfte auf Grund der Verschiedenheit von dem vorangehenden Tetramethyläther der H 540 als Maclurin-2.4.6.3'- oder 2.4.6.4'-tetramethyläther beschriebenen Verbindung zukommen.
- 2.4.6.3'.4' Pentamethoxy benzophenon, Maclurin-pentamethyläther $C_{18}H_{20}O_{g}=(CH_{3}\cdot O)_{1}C_{6}H_{3}\cdot CO\cdot C_{6}H_{2}(O\cdot CH_{3})_{3}$ (H 540). B. Aus Maclurin und Diazomethan in Äther (Hazleton, Nierenstein, Am. Soc. 46, 2104). F: 156—157° (H., N.). Liefert bei der Oxydation mit alkal. Permanganat-Lösung Phloroglucintrimethyläther und Veratrumsäure (Nierenstein, Am. Soc. 48, 1972).
- 3'.4'-Dioxy-2.4.6-trimethoxy-benzophenon-imid, Cotogeninimid $C_{16}H_{17}O_5N = (HO)_3C_6H_3$ · $C(:NH) \cdot C_6H_3(O \cdot CH_3)_3$. Beim Sättigen einer äther. Lösung von Phloroglucintrimethyläther, Diacetylprotocatechusäure-nitril und Zinkchlorid mit Chlorwasserstoff unter Kühlung und Verseifen des Reaktionsprodukts mit Natronlauge unter Petroläther (HOUBEN, FISCHER, J. pr. [2] 128, 107). Krystalle (aus Aceton + Petroläther). F: 265° (Zers.). Leicht löslich in Methanol, schwerer in Aceton, unlöslich in Äther. Die wäßr. Lösung ist gelb und wird durch

Natronlauge oder Salzsäure entfärbt. Gibt mit Eisenchlorid eine grüne Färbung. — Hydrochlorid. Leicht löslich in Wasser. — $C_{16}H_{17}O_5N + H_8SO_4$. Schwer löslich in Wasser.

- 4′-0xy-2.4.6.3′-tetramethoxy-benzophenon-imid $C_{17}H_{19}O_5N=(CH_3\cdot O)(HO)C_6H_3\cdot C(:NH)\cdot C_6H_3(O\cdot CH_2)_s$. B. Beim Einleiten von Chlorwasserstoff in eine äther. Lösung von Vanillinsäurenitril und Phloroglucintrimethyläther in Gegenwart von Zinkchlorid und Kochen des entstandenen Hydrochlorids mit Wasser (Korczynski, Nowakowski, Bl. [4] 43, 336). $C_{17}H_{19}O_5N+HCl$. Schwer löslich in kaltem Wasser. $2C_{17}H_{19}O_5N+H_2SO_4$. Gelbe Blättchen. Ziemlich leicht löslich in Alkohol, schwerer in kaltem Wasser. Liefert beim Kochen mit Wasser 4′-Oxy-2.4.6.3′-tetramethoxy-benzophenon.
- 2.4.6-Trimethoxy-3'.4'-diacetoxy-benzophenon-imid, Diacetylcotogeninimid $C_{90}H_{21}O_7N = (CH_2 \cdot CO \cdot O)_2C_6H_3 \cdot C(:NH) \cdot C_6H_2(O \cdot CH_3)_3$. B. Das Hydrochlorid bildet sich beim Sättigen einer äther. Lösung von Phloroglucintrimethyläther, Diacetylprotocatechusäure-nitril und Zinkchlorid mit Chlorwasserstoff bei 0^0 (Houben, Fischer, J. pr. [2] 123, 106). Unlöslich in wäßr. Natronlauge. Hydrochlorid. Hellgelbe Krystalle. Leicht löslich in Wasser.

IV. HO
$$\overset{\text{HO}}{\smile}$$
 OH V. HO $\overset{\text{OH}}{\smile}$ OH

- 5. 2.4.3'.4'.5'-Pentaoxy-benzophenon C₁₃H₁₀O₆, Formel V (H 541). Krystalle (aus Alkohol). F: 243—245° (Tasaki, Acta phytock. 2, 64; C. 1925 II, 1354). Ultraviolett-Absorptionsspektrum in Alkohol: T.
- 2.4 Dioxy 3'.4'.5' trimethoxy benzophenon $C_{16}H_{16}O_6 = (CH_3 \cdot O)_3C_6H_2 \cdot CO \cdot C_6H_3(OH)_2$. B. Beim Erwärmen von Resorcin mit Trimethyläthergallussäure in Gegenwart von Zinkchlorid auf ca. 150° (Bargellini, Grippa, G. 57, 140). Nadeln (aus Wasser oder verd. Alkohol). F: 165°. Leicht löslich in Alkohol und Eisessig, schwer in Benzol. Löslich in konz. Schwefelsäure mit intensiv gelber Farbe. Liefert beim Kochen mit Acetanhydrid und Natriumacetat 7-Acetoxy-4-[3.4.5-trimethoxy-phenyl]-cumarin (Syst. Nr. 2568).

3. Oxy-oxo-Verbindungen C14H12O6.

- 1. [2.4.6-Trioxy-phenyl]-[3.4-dioxy-benzyl]-keton, 2.4.6.3'.4'-Pentaoxy-desoxybenzoin $C_{14}H_{12}O_6=(HO)_2C_6H_3\cdot CH_2\cdot CO\cdot C_6H_2(OH)_3$.
- [2.4.6-Trimethoxy-phenyl]-[3.4-dimethoxy-benzyl]-keton, 2.4.6.3'.4'-Pentamethoxy-desoxybenzoin C₁₉H₁₂O₆, Formel VI. B. Beim Einleiten von Chlorwasserstoff in eine äther. Lösung von 3.4-Dimethoxy-phenylessigsäure-nitril und Phloroglucintrimethyläther in Gegenwart von Zinkchlorid und kurzen Kochen des Reaktionsprodukts mit wäßr. Ammoniak (Freudenberg, Cabrara, Cohn, A. 446, 91; Ca., Co., G. 56, 145). Tafeln (aus Methanol). F: 110° (F., Ca., Co.; Ca., Co.). Liefert beim Behandeln mit Methylmagnesiumjodid in Äther + Benzol und Destillieren des Reaktionsprodukts unter 1 mm Druck geringe Mengen 2.4.6.3'.4'-Pentamethoxy-α-methyl-stilben (E II 6, 1155) (F., Ca., Co.; Ca., Co.).

$$VI. \quad CH_3 \cdot O \xrightarrow{O \cdot CH_3} \cdot O \cdot CH_3 \qquad VII. \quad CH_3 \cdot O \xrightarrow{O \cdot CH_3 \cdot C$$

- 2. [3.4-Dioxy-phenyl]-[2.4.6-trioxy-benzyl]-keton, 3.4.2'.4'.6'-Pentaoxy-desoxybenzoin $C_{14}H_{12}O_6=(HO)_3C_6H_2\cdot CH_2\cdot CO\cdot C_6H_3(OH)_2$.
- [3.4-Dimethoxy-phenyl] [2.4.6-trimethoxy-benzyl] keton, 3.4.2'.4'.6'-Pentamethoxy-desoxybenzoin $C_{19}H_{22}O_{6}$, Formel VII. B. Bei der Kondensation von 2.4.6-Trimethoxy-phenylessigsäure-chlorid mit Veratrol bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff bei 50° (Freudenberg, Harder, A. 451, 219). Krystalle (aus Methanol). F: 144—145°. Liefert bei der Einw. von Methylmagnesiumjodid in Äther + Benzol und Destillation des Reaktionsprodukts unter 1 mm Druck 3.4.2'.4'.6'-Pentamethoxy- α -methyl-stilben (E II 6, 1155).
- 3. [3.4-Dioxy-phenyl]-[3.4-dioxy-benzoyl]-carbinol, 3.4.3'.4'-Tetraoxy-benzoin $C_{14}H_{12}O_6=(HO)_2C_6H_3\cdot CH(OH)\cdot CO\cdot C_6H_3(OH)_2$.
- 3.4.3'.4'-Tetramethoxy-benzoin, Veratroin C₁₈H₂₀O₆, Formel VIII auf S. 576. B. Beim Kochen von 3.4-Dimethoxy-benzaldehyd mit Kaliumcyanid in verd. Alkohol (Vanzetti, G. 57, 166). Durch Reduktion von 3.4.3'.4'-Tetramethoxy-benzil mit Eisen in siedender 95 %iger Essigsäure (V.). Gelbliches Öl. Liefert bei der Oxydation mit Fehlingscher Lösung 3.4.3'.4'-Tetramethoxy-benzil.

OXY. OXO . VERBINDUNGEN C_nH_{2 n-16}O₆ UND C_nH_{2 n-18}O₆ [Syst. Nr. 850

4. Oxy-oxo-Verbindungen $C_{15}H_{14}O_6$.

1. 2.3.4 - Trioxy - β - [3.4 - dioxy - phenyl] - propiophenon , [2.3.4 - Trioxy-phenyl] - [3.4-dioxy- β -phenäthyl] - keton, 3.4.2'.3'.4' - Pentaoxy-hydrochalkon $C_{16}H_{14}O_4 = (HO)_2C_6H_3 \cdot CH_2 \cdot CO \cdot C_6H_2(OH)_3$.

- 2-0xy-3.4-dimethoxy- β -[3.4-dimethoxy-phenyl]-propiophenon, [2-0xy-3.4-dimethoxy-phenyl]-[3.4-dimethoxy- β -phenäthyl]-keton, 2'-0xy-3.4.3'.4'-tetramethoxy-hydrochalkon $C_{19}H_{22}O_{6}$, Formel IX. B. Bei der Hydrierung von 2'-0xy-3.4.3'.4'-tetramethoxy-chalkon in Gegenwart von Palladium(II)-chlorid in Alkohol bei 60—65° (Crabtree, Robinson, Soc. 121, 1038). Blättchen (aus Alkohol). F: 88°. Leicht löslich in den meisten organischen Lösungsmitteln. Löst sich in sehr verdünnter wäßriger Natronlauge; auf Zusatz von mehr Natronlauge fällt eine Natriumverbindung aus. Läßt sich der alkal. Lösung durch Äther fast vollständig entziehen. Liefert beim Kochen mit wasserfreier Ameisensäure und geschmolzenem Zinkchlorid und Behandeln des Reaktionsprodukts mit Eisenchlorid in salzsaurer Lösung das Eisenchlorid-Doppelsalz des 7.8.5'.6'-Tetramethoxy-[indeno-2'.1':3.4-benzopyryliumchlorids] (Syst. Nr. 2454). Gibt mit Eisenchlorid in Alkohol eine intensive braunviolette Färbung.
- 2. 2.4.6 Trioxy β [3.4 dioxy phenyl] propiophenon, [2.4.6 Trioxy-phenyl] [3.4-dioxy β -phenäthyl] keton, 3.4.2'.4'.6' Pentaoxy hydrochalkon $C_{15}H_{14}O_6 = (HO)_2C_6H_3 \cdot CH_2 \cdot CH_3 \cdot CO \cdot C_6H_2(OH)_3$.
- 2-Oxy-4.6-dimethoxy- β -[3.4-dimethoxy-phenyl]-propiophenon, [2-Oxy-4.6-dimethoxy-phenyl]-[3.4-dimethoxy- β -phenäthyl]-keton, 2'-Oxy-3.4.4'.6'-tetramethoxy-hydrochalkon $C_{10}H_{22}O_6$, Formel X. B. Bei der Hydrierung von 2'-Oxy-3.4.4'.6'-tetramethoxy-chalkon in Gegenwart von Platin in Eisessig (Freudenberg, Cohn, B. 56, 2131). Beim Erhitzen von 4.6-Dimethoxy-2-[3.4-dimethoxy-benzyl]-cumaranon mit Zinkstaub in alkoh. Natronlauge auf dem Wasserbad (Fr., Fikentscher, Harder, A. 441, 162, 172). Krystalle (aus Methanol oder Alkohol). F: 127° (Fr., Fi., H.). Schwer löslich in den meisten Lösungsmitteln, leichter in Aceton und Benzol (Fr., C.).

$$\begin{array}{c} OH \\ CH_8 \cdot O \cdot \bigcirc \cdot CH_2 \cdot CH_3 \cdot CO \cdot \bigcirc \cdot \bigcirc \cdot CH_8 \\ CH_8 \cdot O \cdot \bigcirc \cdot CH_3 \cdot O \cdot \bigcirc \cdot CH_8 \\ \end{array} \quad \begin{array}{c} OH \\ CH_8 \cdot O \cdot \bigcirc \cdot CH_3 \cdot CH_3 \cdot CO \cdot \bigcirc \cdot CH_8 \\ CH_8 \cdot O \cdot \bigcirc \cdot CH_3 \cdot O \cdot \bigcirc \cdot CH_8 \\ \end{array} \quad \begin{array}{c} O \cdot CH_8 \cdot O \cdot \bigcirc \cdot CH_8 \cdot CH_3 \cdot O \cdot \bigcirc \cdot CH_8 \\ \end{array}$$

- 2.4.6-Trimethoxy- β -[3.4-dimethoxy-phenyl]-propiophenon, [2.4.6-Trimethoxy-phenyl]-[3.4-dimethoxy- β -phenäthyl]-keton, 3.4.2'.4'.6'-Pentamethoxy-hydrochalkon $C_{20}H_{24}O_{6}$, Formel XI. B. Bei der Hydrierung von 3.4.2'.4'.6'-Pentamethoxy-chalkon in Gegenwart von Platinschwarz in Alkohol oder Äther (Nierenstein, Soc. 117, 976). Nadeln (aus Alkohol). F: 91°. Löslich in den üblichen organischen Lösungsmitteln. Gibt mit Eisenchlorid in Alkohol eine blaßrote Färbung. Liefert bei der Reduktion mit Natrium und Alkohol 2.4.6.3'.4'-Pentamethoxy-dibenzylmethan.
- 2.4-Dimethoxy- β -[3.4-dimethoxy-phenyl]-propiophenon, [2.4-Dimethoxy- β -äthoxy-phenyl]-[3.4-dimethoxy- β -phenäthyl]-keton, 3.4.2'.4'-Tetramethoxy- β -äthoxy-hydrochalkon C₂₁H₂₆O₆, Formel XII. B. Beim Schütteln von 2'-Oxy-3.4.4'.6'-tetramethoxy-hydrochalkon mit Diäthylsulfat in wäßrig-alkoholischer Kalilauge (Freudenberg, Cohn, B. 56, 2131). Nadeln (aus Alkohol). F: 89—90°. Leicht löslich in Aceton, Eisessig, Essigester und Benzol, schwerer in Tetrachlorkohlenstoff, Alkoholen und Äther.
- 3. 3.4-Dioxy- β -[2.4.6-trioxy-phenyl]-propiophenon, [3.4-Dioxy-phenyl]-[2.4.6-trioxy- β -phenäthyl]-keton, 2.4.6.3'.4'-Pentaoxy-hydrochalkon $C_{15}H_{14}O_6=(HO)_1C_6H_2\cdot CH_2\cdot CH_3\cdot CO\cdot C_6H_3(OH)_2$.

3.4-Dimethoxy- β -[2-oxy-4.6-dimethoxy-phenyl]-propiophenon, [3.4-Dimethoxy-phenyl]-[2-oxy-4.6-dimethoxy- β -phenäthyl]-keton, 2-Oxy-4.6.3'.4'-tetramethoxy-hydrochalkon

PENTAMETHOXYHYDROCHALKON

C₁₉H₁₂O₆, Formel XIII. B. Bei der Hydrierung von 2-Oxy-4.6.3'.4'-tetramethoxy-chalkon in Methanol bei Gegenwart von Platinmohr (Freudenberg, Fikentscher, Wenner, A. 442, 319). Aus 5.7.3'.4'-Tetramethoxy-flaven bei kurzem Aufkochen mit Eisessig (Fr., Fl., W., A. 442, 316). Bei der Hydrierung von 5.7.3'.4'-Tetramethoxy-flavyliumchlorid mit 1 Mol Wasserstoff in Alkohol bei Gegenwart von Platin und einer Spur konz. Salzsäure (Freudenberg, Harder, A. 451, 221). — Nadeln (aus Methanol). F: 138° (Fr., H.). Leicht löslich in verd. Alkalien (Fr., Fl., W.). Die Lösung in konz. Schwefelsäure ist orangegelb (Fr., Fl., W.). — Liefert beim Sättigen der Lösung in Benzol mit Chlorwasserstoff 5.7.3'.4'-Tetramethoxy-flavy-liumchlorid (Syst. Nr. 2453) (Baker, Soc. 1929, 1603; vgl. Fr., Fl., W.).

3.4-Dimethoxy- β -[2.4.6-trimethoxy-phenyl]-propiophenon, [3.4-Dimethoxy-phenyl]-[2.4.6-trimethoxy- β -phenäthyl]-keton, 2.4.6.3'.4'-Pentamethoxy-hydrochalkon $C_{20}H_{24}O_{6}$, Formel XIV. B. Bei der Hydrierung von 2.4.6.3'.4'-Pentamethoxy-chalkon in Gegenwart von Platinmohr in Eisessig (Freudenberg, Fikentscher, Harder, A. 441, 180). Beim Behandeln von 2-Oxy-4.6.3'.4'-tetramethoxy-hydrochalkon mit Dimethylsulfat in wäßrig-methylalkoholischer Kalilauge (Fr., Fi., Wenner, A. 442, 317; Fr., H., A. 451, 222). — Nadeln (aus Methanol). F: 114° (Fr., H.).

Oxim $C_{20}H_{25}O_{6}N=(CH_{3}\cdot O)_{3}C_{6}H_{2}\cdot CH_{2}\cdot CH_{3}\cdot C(:N\cdot OH)\cdot C_{6}H_{3}(O\cdot CH_{3})_{2}$. Krystalle (aus Methanol). F: 140° (Freudenberg, Fikentscher, Harder, A. 441, 180).

4. 1-[3.4-Dioxy-phenyl]-1-[2.4.6-trioxy-phenyl]-propanon-(2), Methyl-[2.4.6.3'.4'-pentaoxy-benzhydryl]-keton $C_{15}H_{14}O_6=(HO)_3C_6H_3\cdot CH(CO\cdot CH_8)\cdot C_6H_3(OH)_2.$

- 3-Chlor-1-[3.4-dimethoxy-phenyl]-1-[2.4.6-trimethoxy-phenyl]-propanon-(2), Chlormethyl-[2.4.6.3'.4'-pentamethoxy-benzhydryl]-keton C₂₀H₂₃O₆Cl, Formel XV. B. Beim Behandeln von 2.4.6.3'.4'-Pentamethoxy-diphenylessigsäure-chlorid mit Diazomethan in Åther (Nierenstein, Soc. 117, 1153). Tafeln (aus Benzol). F: 102°. Liefert bei der Reduktion mit Natrium in siedendem Alkohol 2.4.6.3'.4'-Pentamethoxy-α-āthyl-diphenylmethan (E II 6, 1154) (N., Soc. 117, 1153). Beim Erhitzen mit Natriumdicarbonat in Wasser bildet sich Oxymethyl-[2.4.6.3'.4'-pentamethoxy-benzhydryl]-keton (S. 601) (N., Soc. 119, 166). Gibt beim Erhitzen mit Kaliumacetat in Alkohol Acetoxymethyl-[2.4.6.3'.4'-pentamethoxy-benzhydryl]-keton (N., Am. Soc. 48, 1974). Bei längerem Erhitzen mit Aluminiumchlorid in Benzol auf dem Wasserbad erhält man 5.7-Dimethoxy-3-oxo-4-[3.4-dimethoxy-phenyl]-chroman (Syst. Nr. 2568) (N., Soc. 119, 167).
- 5. 2.4.6.3'.4' Pentaoxy 3 äthyl benzophenon $C_{15}H_{14}O_6 = (HO)_2C_6H_3 \cdot CO \cdot C_6H(C_2H_5)(OH)_3$.
- 2.4.6.3'.4'-Pentamethoxy-3-äthyl-benzo-phenon C₂₀H₂₄O₆, Formel XVI (E I 751). Nadeln (aus verd. Alkohol). F: 127—129° (NIERENSTEIN, Soc. 117, 974). Liefert beim Erwärmen mit Zinkstaub in wäßrig-alkoholischer Kalilauge auf dem Wasserbad 2.4.6.3'.4'-Pentamethoxy-3-äthyl-benzhydrol (E II 6, 1162).

e) Oxy-oxo-Verbindungen $C_n H_{2n-18} O_6$.

1. Oxy-oxo-Verbindungen C14H10O6.

1. Bis-[2.4-dioxy-phenyl]-diketon, 2.4.2'.4'-Tetraoxy-benzil $C_{14}H_{10}O_{4}$, Formel I. B. Neben anderen Verbindungen beim Einleiten von Chlorwasserstoff und Dicyan in

eine Lösung von Resorcin in absol. Äther unter Kühlung und Behandeln des Reaktionsproduktes mit Wasser (Karrer, Ferla, Helv. 4, 206). — Bräunlichgelbe Krystalle (aus verd. Alkohol). F: 256° (Zers.). — Bis-phenylhydrazon $C_{20}H_{22}O_4N_4$. F: 263° (Zers.).

OXY-OXO-VERBINDUNGEN CnH2 n= 1806

2.4.2'.4'-Tetramethoxy-benzil $C_{18}H_{18}O_6 = (CH_3 \cdot O)_2C_8H_3 \cdot CO \cdot CO \cdot C_8H_3(O \cdot CH_3)_2$. B. Beim Schütteln von 2.4.2'.4'-Tetraoxy-benzil mit Dimethylsulfat und Natronlauge (Karrer, Ferla, Helv. 4, 209). — Prismen (aus Alkohol). F: 125—126°.

- 2. Bis -[3.4 dioxy phenyl] diketon, 3.4.3'.4' Tetraoxy benzil $C_{14}H_{10}O_6 = (HO)_aC_aH_3 \cdot CO \cdot CO \cdot C_4H_3(OH)_2$.
- 3.4.3'.4'-Tetramethoxy-benzil, Veratril C₁₈H₁₈O₆, Formel II (H 542; E I 751). B. Bei der Oxydation von 3.4.3'.4'-Tetramethoxy-benzoin (Veratroin) mit Fehlingscher Lösung (Vanzetti, G. 57, 166). In geringer Menge bei der Kondensation von Veratrol mit Oxalylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (Staudinger, Schlenker, Goldstein, Helv. 4, 341). Goldgelbe Nadeln (aus Alkohol oder Benzol). F: 223° (V., G. 57, 166), 220° (Brass, Stroebel, B. 63 [1930], 2619), 219—220° (Raiford, Talbot, Am. Soc. 54 [1932], 1094), 214° (Stau., Sch., G.). Unlöslich in Wasser und Äther (V., G. 57, 166). Liefert beim Erwärmen mit Kaliumäthylat-Lösung geringe Mengen 3.4.3'.4'-Tetramethoxy-benzilsäure (Veratrilsäure; Syst. Nr. 1185) (V., G. 57, 172). In der Kalischmelze entstehen neben Veratrumsäure etwas Veratrilsäure und 2.3.6.7-Tetramethoxy-fluorenon (S. 545) (V., R. A. L. [5] 24 II [1915], 469; G. 57, 168; C. 1928 I, 2823; Oliverio, C. 1935 II, 3651; Dreyfuss, C. 1985 II, 3652). Beim Erwärmen mit salzsaurem Hydroxylamin und wenig verd. Salzsäure erhält man eine krystallinische Verbindung vom Schmelzpunkt 110—113° (V., G. 57, 167).
- 3. 5.6.5'.6'- Tetraoxy diphenyl dialdehyd (3.3') $C_{14}H_{10}O_6 = OHC \cdot C_0H_2(OH)_2 \cdot C_6H_2(OH)_2 \cdot CHO$.
- 6.6'- Dioxy 5.5'- dimethoxy diphenyl dialdehyd (3.3'), Dehydrodivanillin, Divanillin C₁₀H₁₄O₆, Formel III (H 542; E I 752). B. Zur Bildung aus Vanillin durch Oxydation mit wäßr. Eisen (III)-chlorid-Lösung (H 542) vgl. Herissey, Delauney, J. Pharm. Chim. [7] 28, 258; C. 1924 I, 221. Optisches Verhalten der Krystalle: Keenan bei Power, Chesnut, Am. Soc. 47, 1769. Fast unlöslich in Wasser (H., D.).

4. 1.4.5.8.10-Pentaoxy-anthron-(9) bzw. 1.4.5.8.9.10-Hexaoxy-anthracen, 1.4.5.8-Tetraoxy-anthrahydrochinon $C_{14}H_{10}O_6$, Formel IV bzw. V, Leuko-1.4.5.8-tetraoxy-anthrachinon (H 543). B. Beim Kochen von 4.8-Diamino-1.5-dioxy-anthrachinon oder 4.8-Diamino-1.5-dioxy-anthrachinon-disulfonsäure-(2.6) mit $Na_2S_2O_4$ in alkal. Lösung (I. G. Farbenind., D. R. P. 436526; Frdl. 15, 661). — Natriumsalz. Prismen.

2. Oxy-oxo-Verbindungen $C_{15}H_{19}O_6$.

- 1. 2.3.4-Trioxy- ω -[2.3-dioxy-benzyliden]-acetophenon, 2.3.2'.3'.4'-Penta-oxy-chalkon $C_{1b}H_{1a}O_6=(HO)_aC_bH_2\cdot CO\cdot CH\cdot CH\cdot C_bH_3(OH)_2$.
- 2.3.4-Trimethoxy- ω -[2-oxy-3-methoxy-benzyliden]-acetophenon, [2.3.4-Trimethoxy-phenyl]-[2-oxy-3-methoxy-styryl]-keton, 2-Oxy-3.2'.3'.4'-tetramethoxy-chalkon $C_{19}H_{20}O_{6}$, Formel VI. B. Bei der Kondensation von 2-Oxy-3-methoxy-benzaldehyd mit 2.3.4-Trimethoxy-acetophenon in wäßrig-alkoholischer Kalilauge (Robinson, Mitarb., Soc. 125, 210). Gelbe Nadeln (aus Benzol). F: 145°. Schwer löslich.

VI.
$$CH_3 \cdot O \cdot O \cdot CH_3$$
 HO $O \cdot CH_3$ OH
$$VII. CH_3 \cdot O \cdot O \cdot CH : CH \cdot O \cdot CH_3$$

$$O \cdot CH_3$$

$$O \cdot CH_3$$

$$O \cdot CH_3$$

- 2. 2.4-Dioxy- ω -[2.4.6-trioxy-benzyliden]-acetophenon, 2.4.6.2'.4'-Penta-oxy-chalkon $C_{15}H_{12}O_6=(HO)_2C_6H_3\cdot CO\cdot CH:CH\cdot C_6H_2(OH)_3$.
- 2.4-Dimethoxy- ω -[2-oxy-4.6-dimethoxy-benzyliden]-acetophenon, [2.4-Dimethoxy-phenyl]-[2-oxy-4.6-dimethoxy-styryl]-keton, 2-Oxy-4.6-2'.4'-tetramethoxy-chalkon $C_{19}H_{20}O_{e}$, Formel VII. B. Beim Aufbewahren von 2-Oxy-4.6-dimethoxy-benzaldehyd mit 2.4-Dimethoxy-acetophenon in wäßrig-methylalkoholischer Kalilauge bei 60° (Pratt, Robinson, Soc. 127, 1134). Blaßgelbe Prismen (aus Methanol). F: 154°. Schwer löslich in Alkohol und Äther. Liefert beim Kochen mit kenz. Salzsäure in Gegenwart einer Spur Eisessig 5.7.2'.4'-Tetramethoxy-flavyliumchlorid (Syst. Nr. 2453). Kaliumsalz. Rot.

- 3. 3.4-Dioxy ω [2.4.6-trioxy-benzyliden] acetophenon, 2.4.6.3'.4'-Penta-oxy-chalkon $C_{15}H_{15}O_6 = (HO)_2C_6H_3\cdot CO\cdot CH\cdot CH\cdot C_6H_2(OH)_3$.
- 3.4-Dimethoxy-\$\omega\$-[2-oxy-4.6-dimethoxy-benzyliden]-acetophenon, [3.4-Dimethoxy-phenyl]-[2-oxy-4.6-dimethoxy-styryl]-keton, 2-0xy-4.6.3'.4'-tetramethoxy-chalkon \$C_{19}H_{20}O_6\$. Formel VIII. \$B\$. Bei der Kondensation von 2-0xy-4.6-dimethoxy-benzaldehyd mit 3.4-Dimethoxy-acetophenon in w\u00e4\u00e4rig-methylalkoholischer Alkalilauge (Pratt, Robinson, Williams, Soc. 125, 206; Freudenberg, Firentscher, Wenner, \$A\$. 442, 319). Gelbe Prismen (aus Toluol). F: 174° (Zers.) (Fr., Fi., We.), 178—179° (Zers.) (P., R., Wi.). Sehr schwer l\u00e4slich in Alkohol, \u00e4ther the und Essigester, schwer in Toluol, l\u00e5slich in hei\u00e4bem Aceton und in hei\u00e4bem Wasser mit gelber Farbe (P., R., Wi.). Die L\u00e5sung in konz. Schwefels\u00e4ure ist orangerot (P., R., Wi.). Gibt bei der Hydrierung in Gegenwart von Platinmohr in Methanol 2-0xy-4.6.3'.4'-tetramethoxy-hydrochalkon (S. 576) (Fr., Fi., We.). Beim Kochen mit konz. Salzs\u00e4ure entsteht 5.7.3'.4'-Tetramethoxy-flavyliumchlorid (Syst. Nr. 2453) (P., R., Wi.). Kaliumsalz. Orangefarbene Bl\u00e4ttchen (P., R., Wi.).
- 3.4-Dimethoxy- ω -[2.4.6-trimethoxy-benzyliden]-acetophenon, [3.4-Dimethoxy-phenyl]-[2.4.6-trimethoxy-styryl]-keton, 2.4.6.3'.4'-Pentamethoxy-chalkon $C_{20}H_{22}O_6 = (CH_3 \cdot O)_2C_6H_3 \cdot CO \cdot CH \cdot CH \cdot C_6H_2(O \cdot CH_3)_3$. B. Aus 2.4.6-Trimethoxy-benzaldehyd und 3.4-Dimethoxy-acetophenon in wäßrig-alkoholischer Natronlauge bei 40° (Freudenberg, Fikentscher, Harder, A. 441, 180). Gelbe Blättchen (aus Alkohol). F: 164—165°.
- 4. 2.4.6-Trioxy- ω -[2.4-dioxy-benzyliden]-acetophenon, 2.4.2'.4'.6'-Penta-oxy-chalkon $C_{18}H_{12}O_6=(HO)_8C_6H_2\cdot CO\cdot CH:CH\cdot C_6H_3(OH)_2.$

- 2-0xy-4.6-dimethoxy- ω -[2.4-dimethoxy-benzyliden]-acetophenon, [2-0xy-4.6-dimethoxy-phenyl]-[2.4-dimethoxy-styryl]-keton, 2'-0xy-2.4.4'.6'-tetramethoxy-chalkon $C_{19}H_{20}O_6$, Formel IX (H 543). Zur Bildung aus 2.4-Dimethoxy-benzaldehyd und 2-0xy-4.6-dimethoxy-acetophenon in alkoh. Natronlauge vgl. Cullinane, Philipott, Soc. 1929, 1764. Gelbe Nadeln (aus Alkohol). F: 128° (C., Ph.), 125° (MITTER, Saha, J. indian chem. Soc. 11 [1934], 260). Schwer löslich in Ligroin und Äther, leicht in heißem Alkohol, Chloroform, Aceton und Eisessig (C., Ph.). Die Lösung in konz. Schwefelsäure ist tiefrot (C., Ph.). Liefert bei der Einw. von Brom in Chloroform unter Kühlung und Kochen des Reaktionsprodukts (Zersetzungspunkt ca. 230°; leicht löslich in Chloroform und Aceton) mit wäßrig-alkoholischer Natronlauge 5-Brom-4.6-dimethoxy-2-[2.4-dimethoxy-benzyliden]-cumaranon(?) (Syst. Nr. 2568) (C., Ph.).
- 5. 2.4-Dioxy ω [3.4.5-trioxy-benzyliden] acetophenon, 3.4.5.2'.4'-Penta-oxy-chalkon $C_{15}H_{12}O_6 = (HO)_2C_6H_3 \cdot CO \cdot CH \cdot CH \cdot C_6H_2(OH)_3$.
- 2-0xy-4-methoxy- ω -[3.4.5-frimethoxy-benzyliden]-acetophenon, 2'-0xy-3.4.5.4'-tetramethoxy-chalkon $C_{10}H_{20}O_{6}$, Formel X. B. Beim Schütteln von 3.4.5-Trimethoxy-benzaldehyd mit 2-0xy-4-methoxy-acetophenon in wäßrig-alkoholischer Kalilauge (Dean, Nierenstein, Am. Soc. 47, 1681). Gelbe Nadeln (aus Alkohol). F: 132—133°. Löst sich in Alkalilauge mit gelber, in konz. Schwefelsäure mit tiefroter Farbe.
- 4-Methoxy-2-acetoxy- ω -[3.4.5-trimethoxy-benzyliden]-acetophenon, 3.4.5.4'-Tetramethoxy-2'-acetoxy-chalkon $C_{21}H_{22}O_7=(CH_3\cdot O)(CH_3\cdot CO\cdot O)C_6H_3\cdot CO\cdot CH:CH\cdot C_6H_2(O\cdot CH_3)_3$. Gelbe Nadeln (aus Alkohol). F: 125—127° (Dean, Nierenstein, Am. Soc. 47, 1681).

- 6. 2.3.4-Trioxy- ω -[3.4-dioxy-benzyliden]-acetophenon, 3.4.2'.3'.4'-Penta-oxy-chalkon $C_{15}H_{12}O_6 = (HO)_3C_6H_2\cdot CO\cdot CH: CH\cdot C_6H_3(OH)_2$.
- 2-Oxy-3.4-dimethoxy- ω -[3.4-dimethoxy-benzyliden]-acetophenon, 2'-Oxy-3.4.3'.4'-tetramethoxy-chalkon $C_{10}H_{20}O_6$, Formel XI (H 543). Zur Bildung aus 2-Oxy-3.4-dimethoxy-acetophenon und Veratrumaldehyd in wäßrig-alkoholischer Alkalilauge vgl. a. CRABTREE, ROBINSON, Soc. 121, 1038 Anm. F: 125°.
- 7. 2.4.6-Trioxy- ω -[3.4-dioxy-benzyliden]-acetophenon, 3.4.2'.4'.6'-Penta-oxy-chalkon $C_{1b}H_{12}O_6$, Formel XII auf S. 580 (H 543). Das früher so formulierte Eriodicty ol

ist von Shinoda, Sato (*J. pharm. Soc. Japan* 49, 5, 7; *C.* 1929 I, 1941, 1942; vgl. a. Asahina, Shinoda, Inubuse, *J. pharm. Soc. Japan* 48, 29; *C.* 1928 II, 49) als 5.7.3'.4'-Tetraoxy-flavanon (Formel XIII; Syst. Nr. 2568) erkannt worden 1).

- 2.4.6-Trioxy- ω -[4-oxy-3-methoxy-benzyliden]-acetophenon, 4.2'.4'.6'-Tetraoxy-3-methoxy-chalkon $C_{16}H_{14}O_6=(HO)_2C_6H_2\cdot CO\cdot CH: CH\cdot C_6H_3(OH)\cdot O\cdot CH_3$ (H 544). Das früher so formulierte Homoeriodictyol (Eriodictyonon) ist von Shinoda, Sato (*J. pharm. Soc. Japan* 49, 5, 7; *C.* 1929 I, 1941, 1942; vgl. a. Asahina, Shinoda, Inubuse, *J. pharm. Soc. Japan* 48, 29; *C.* 1928 II, 49) als 5.7.4'-Trioxy-3'-methoxy-flavanon (Syst. Nr. 2568) erkannt worden.
- 2.4.6-Trioxy- ω -[3-oxy-4-methoxy-benzyliden]-acetophenon, 3.2'.4'.6'-Tetraoxy-4-methoxy-chalkon $C_{16}H_{14}O_6=(HO)_3C_6H_2\cdot CO\cdot CH:CH\cdot C_6H_3(OH)\cdot O\cdot CH_3$ (H 544). Das früher so formulierte Hesperetin (Hesperitin) ist von Asahina, Shinoda, Inubuse (J. pharm. Soc. Japan 48, 29; C. 1928 II, 49) als 5.7.3'-Trioxy-4'-methoxy-flavanon (Syst. Nr. 2568) erkannt worden.
- 2.4.6 Trimethoxy ω [3.4 dimethoxy benzyliden] acetophenon, [2.4.6 Trimethoxy-phenyl]-[3.4-dimethoxy-styryl]-keton, 3.4.2'.4'.6'-Pentamethoxy-chalkon C₂₀H₂₂O₆ = (CH₃· O)₃C₆H₂·CO·CH: CH·C₆H₃(O·CH₃)₂ (H·545; E I 753). Die Lösung in konz. Salzsäure ist violettschwarz (Freudenberg, B. 58, 1426). Gibt bei der Hydrierung in Gegenwart von Platinschwarz in Alkohol oder Äther 3.4.2'.4'.6'-Pentamethoxy-hydrochalkon (S. 576) (Nierenstein, Soc. 117, 976), in Eisessig 2.4.6.3'.4'-Pentamethoxy-dibenzylmethan (E II 6, 1153) (F.).
- 2.4-Dimethoxy-6-äthoxy- ω -[3.4-dimethoxy-benzyliden]-acetophenon, [2.4-Dimethoxy-6-äthoxy-phenyl]-[3.4-dimethoxy-styryl]-keton, 3.4.2'.4'-Tetramethoxy-6'-äthoxy-chalkon $C_{21}H_{24}O_6$, Formel XIV. B. Aus 2.4-Dimethoxy-6-äthoxy-acetophenon und 3.4-Dimethoxy-benzaldehyd in wäßrig-alkoholischer Natronlauge bei 40—45° (FREUDENBERG, COHN, B. 56, 2130). Gelbe Tafeln (aus Alkohol). F: 136—137°. Schwer löslich außer in Aceton, Essigester und Eisessig. Löslich in konz. Schwefelsäure mit granatroter Farbe. Liefert bei der Hydrierung in Gegenwart von Platinmohr in Eisessig 2.4.3'.4'-Tetramethoxy-6-äthoxy-dibenzylmethan (E II 6, 1154).

4-Methoxy-2.6-diacetoxy- ω -[3.4-dimethoxy-benzyliden]-acetophenon, 3.4.4'-Trimethoxy-2'.6'-diacetoxy-chalkon $C_{22}H_{22}O_8$, Formel XV. B. Bei 5-stdg. Kochen von 5-Oxy-7.3'.4'-trimethoxy-flavanon mit Acetanhydrid und Natriumacetat (Shinoda, Sato, J. pharm. Soc. Japan 49, 5; C. 1929 I, 1941). — Gelbe Nadeln. F: 160° . — Gibt keine Färbung mit Magnesium und Salzsäure.

2.4.6 - Triacetoxy - ω - [4 - methoxy - 3 - acetoxy - benzyliden] - acetophenon, 4 - Methoxy - 3.2'.4'.6'-tetraacetoxy-chalkon $C_{24}H_{22}O_{10}$, Formel XVI (H 545; E I 753). Gibt weder mit Eisenchlorid noch mit Magnesium und Salzsäure eine Färbung (Asahina, Shinoda, Inubuse, J. pharm. Soc. Japan 48, 29; C. 1928 II, 49).

2.4.6 - Triacetoxy - ω - [3 - methoxy - 4 - acetoxy - benzyliden] - acetophenon, 3 - Methoxy - 4.2'.4'.6' - tetraacetoxy - chalkon $C_{24}H_{28}O_{10}$, Formel XVII (H 545; E I 753). F: 163—164°

¹⁾ Damit ist auch die Konstitution der H 544, 545 als 3.4.2'.6'-Tetraoxy-4'-methoxy-chalkon, 4.2'.6'-Trioxy-3.4'-dimethoxy-chalkon, Eriodictyol-dimethyläther, 2'-Oxy-3.4.4'.6'-tetramethoxy-chalkon und Eriodictyol-tetramethyläther beschriebenen Verbindungen in Frage gestellt.

(SHINODA, SATO, J. pharm. Soc. Japan 49, 5; C. 1929 I, 1941). — Gibt keine Färbung mit Magnesium und Salzsäure.

- 2.4.6-Triacetoxy- ω -[3.4-diacetoxy-benzyliden]-acetophenon, 3.4.2'.4'.6'-Pentaacetoxy-chalkon $C_{25}H_{25}O_{11} = (CH_3 \cdot CO \cdot O)_3C_6H_2 \cdot CO \cdot CH \cdot CH \cdot CH_3(O \cdot CO \cdot CH_3)_2$. B. Bei 5-stdg. Kochen von 5.7.3'.4'-Tetraoxy-flavanon (Eriodictyol; Syst. Nr. 2568) mit Acetanhydrid und Natriumacetat (Shinoda, Sato, J. pharm. Soc. Japan 49, 5; C. 1929 I, 1941). F: 196—197°. Gibt keine Färbung mit Magnesium und Salzsäure.
- 8. 2.3.4.6-Tetraoxy- ω -[4-oxy-benzyliden]-acetophenon, 4.2'.3'.4'.6'-Pentaoxy-chalkon $C_{15}H_{18}O_6=(HO)_4C_6H\cdot CO\cdot CH\cdot C_6H_4\cdot OH$.
- 2.3.4.6-Tetramethoxy-ω-[4-methoxy-benzyliden]-acetophenon, [2.3.4.6-Tetramethoxy-phenyl]-[4-methoxy-styryl]-keton, 4.2'.3'.4'.6'-Pentamethoxy-chalkon, β-Carthamidin-pentamethyläther C₂₀H₂₂O₆, Formel XVIII (E I 753). B. Zur Bildung aus 2.3.4.6-Tetramethoxy-acetophenon und Anisaldehyd in wäßrig-methylalkoholischer Kalilauge vgl. Kuroda, Pr. Acad. Tokyo 5, 86; C. 1929 II, 432; Soc. 1930, 767. Entsteht ferner aus β-Acetylcarthamidin (s. u.) beim Behandeln mit Dimethylsulfat in wäßrig-methylalkoholischer Kalilauge in Wasserstoff-Atmosphäre (K.). Existiert in zwei Modifikationen: aus Alkohol krystallisiert eine labile Form vom Schmelzpunkt 95—96°, die beim Abkühlen der Schmelze, beim Erhitzen sowie beim Animpfen in alkoh. Lösung in die stabile Form vom Schmelzpunkt 111—112° übergeht (Babgellini, Zoras, G. 64 [1934], 204; vgl. a. K.; Martinez, C. 1935 I, 1537). Absorptionsspektrum in verd. Alkohol: K. Leicht löslich in Chloroform und Benzol, schwerer in Alkohol und Äther (K.). Löst sich in konz. Schwefelsäure und in konz. Salzsäure mit roter Farbe (K.).
- 2.3.4.6-Tetraacetoxy- ω -[4-acetoxy-benzyliden]-acetophenon, 4.2'.3'.4'.6'-Pentaacetoxy-chalkon, β -Acetylcarthamidin $C_{25}H_{22}O_{11}=(CH_3\cdot CO\cdot O)_4C_6H\cdot CO\cdot CH:CH\cdot C_6H_4\cdot O\cdot CO\cdot CH_3$. Beim Erhitzen von 5.7.8.4'-Tetraoxy-flavanon (Carthamidin), 5.7.8.4'-Tetraacetoxy-flavanon (α -Acetylcarthamidin), 5.6.7.4'-Tetraoxy-flavanon (Isocarthamidin) oder 5.6.7.4'-Tetraacetoxy-flavanon (Acetylcarthamidin) mit Essigsäureanhydrid und wasserfreiem Natriumacetat auf 125—130° (Kuroda, Pr. Acad. Tokyo 5, 82; C. 1929 II, 432; Soc. 1930, 762). Rhomben (aus Methanol). F: 142°. Sehr leicht löslich in Chloroform und Aceton, schwer in kaltem Methanol und Äther. Gibt weder mit Eisenchlorid noch mit Magnesium und Salzsäure eine Farbreaktion. Liefert beim Behandeln mit Dimethylsulfat und wäßrig-methylalkoholischer Kalilauge 4.2'.3'.4'.6'-Pentamethoxy-chalkon.
- 9. 2.4.5.4'-Tetraoxy-dibenzoylmethan, 2.4.5-Trioxy- ω -[4-oxy-benzoyl]-acetophenon $C_{15}H_{12}O_6 = HO \cdot C_6H_4 \cdot CO \cdot CH_2 \cdot CO \cdot C_6H_2 (OH)_3$.

- 2.4.5.4′-Tetramethoxy-dibenzoylmethan, 2.4.5-Trimethoxy- ω -anisoyl-acetophenon $C_{10}H_{30}O_6$, Formel XIX. B. Beim Erhitzen von 2.4.5-Trimethoxy-acetophenon mit Anissäuremethylester in Gegenwart von Natrium auf 110° (BARGELLINI, GRIPPA, G. 57, 607). Gelbe Nadeln (aus Alkohol). F: 138—140°. Löslich in heißem Alkohol, Eisessig und Benzol, schwer in Äther. Löslich in konz. Schwefelsäure mit orangegelber Farbe. Gibt mit Eisenchlorid in Alkohol eine grüne Färbung. Liefert beim Kochen mit Bromwasserstoffsäure in Eisessig 6.7.4′-Trioxy-flavon.
- 10. x-Pentaoxy-x-methyl-anthron-(9), Rhamnicogenin, Rhamnicogenol C₁₈H₁₂O₆ = CH₃·C₁₄H₄(:0)(OH)₅. B. Aus Rhamnicosid C₂₆H₃₀O₁₅ (Glykosid der Primverose aus der Rinde von Rhamnus cathartica L. und verschiedenen anderen Rhamnus-Arten) durch Hydrolyse mit siedendem Wasser oder verd. Schwefelsäure bei 110—115°, besser durch Spaltung mit einem aus Cornus sanguinea L. gewonnenen Fermentpulver oder mit einem in der Rinde von Rhamnus cathartica L. enthaltenden Enzym (Bridel, Charaux, C. r. 180, 1049, 1220; A. ch. [10] 4, 103, 106, 109, 118; J. Pharm. Chim. [8] 2 [1925], 384, 385, 428, 435; Bl. Soc. Chim. biol. 7, 823, 829). Blaßgelbe, lösungsmittelhaltige Prismen (aus Essigester); die im Vakuum bei 60° getrocknete Substanz nimmt an der Luft 1 H₂O auf. Schmilzt lösungsmittelhaltig bei sehr raschem Erhitzen bei 177° (Maquennescher Block), lösungsmittelfrei bei 193° (Zers.) (B., Ch., C. r. 180, 1220; A. ch. [10] 4, 111; J. Pharm. Chim. [8] 2, 430). Sublimiert merklich bei 190°. Unlöslich in Wasser, schwer löslich in Essigester, löslich in Äther, Methanol, Alkohol und Aceton mit grüner Fluorescenz. Die Lösungen in Methanol, Alkohol und Aceton zersetzen sich rasch unter Abscheidung eines schwarzen Produkts, die Lösung in

OXY-OXO-VERBINDUNGEN C_nH_{2 n-18}O₆ UND C_nH_{2 n-20}O₆ [Syst. Nr. 851

Essigester ist etwas haltbarer. Löst sich in konz. Schwefelsäure unter Zersetzung mit gelber Farbe, in konz. Salpetersäure unter Entwicklung von Stickoxyden mit orangeroter Farbe. Löst sich in sehr verd. Natronlauge rosa mit grüner Fluorescenz, in Ammoniak rötlichviolett mit grüner Fluorescenz und wird der äther. Lösung durch Ammoniak entzogen; 2 %ige Natronlauge oder Kalilauge bewirkt Graublau- oder Violettfärbung und löst in der Wärme mit roter bis rotvioletter Farbe unter Zersetzung, 15 %ige Natronlauge löst schon in der Kälte rotviolett; 15 %ige Sodalösung färbt graublau und löst beim Kochen unverändert mit blaßroter Farbe. Gibt mit Eisenchlorid in absol. Alkohol eine smaragdgrüne Färbung. — Reduziert alkal. Kupferlösung nicht. Wird in wäßrig-methylalkoholischer Lösung durch den Glycerinextrakt aus Russula delica rasch unter Grünfärbung oxydiert.

3. Oxy-oxo-Verbindungen $C_{23}H_{26}O_6$.

Vanillyliden-bis-dimethyldihydroresorcin, Vanillaldimethon $C_{24}H_{30}O_6 = \left[(CH_2)_2C < CH_2 \cdot CO < CH_3 \cdot CH_3 \cdot CO + C_0H_3 \cdot CO + C_0$

Acetat $C_{26}H_{32}O_7 = \left[(CH_3)_2C < \begin{array}{c} CH_2 \cdot CO \\ CH_3 \cdot CO \end{array} \right] CH \cdot C_6H_3(O \cdot CH_3) \cdot O \cdot CO \cdot CH_3$. B. Aus Acetylvanillin und Dimethyldihydroresorcin in verd. Alkohol (Bernardi, Ann. Chim. applic. 17, 166; C. 1927 II, 419). — Krystalle. F: 167—168°.

f) Oxy-oxo-Verbindungen $C_n H_{2n-20} O_6$.

1. Oxy-oxo-Verbindungen C₁₄H₈O₆.

- 1. 1.2.3.4 Tetraoxy anthrachinon C₁₄H₈O₆, Formel I (H 548). B. Bei der Oxydation von Alizarin mit Mangandioxyd oder Bleidioxyd in Gegenwart von Borsäure in 96%iger Schwefelsäure bei 15—20° bzw. bei 40—50° (BAYER & Co., D. R. P. 421235; C. 1926 I, 1889; Frdl. 15, 662). Beim Verseifen von 1.2.3.4-Tetraacetoxy-anthrachinon mit Natronlauge unter Luftabschluß (DIMROTH, FRIEDEMANN, KÄMMERER, B. 58, 487). Orangefarbene Krystalle (B. & Co.). Dissoziationskonstante in 96%igem Alkohol (durch potentiometrische Titration bestimmt): TREADWELL, SCHWARZENBACH, Helv. 11, 402.
- 1.2.3.4-Tetraacetoxy-anthrachinon $C_{22}H_{16}O_{10} = C_6H_4(CO)_2C_5(O \cdot CO \cdot CH_3)_4$ (H 548). B. Beim Behandeln von 2-Acetoxy-anthradichinon-(1.4;9.10) mit Acetanhydrid und rauchender Schwefelsäure (DIMBOTH, FRIEDEMANN, KÄMMERER, B. 58, 487). Krystalle (aus Benzol). F: 205°.
- 2. 1.2.4.6 Tetraoxy anthrachinon, Oxyflavopurpurin C₁₆H₈O₆, Formel II (H 548; E I 755). B. Entsteht in Form des nicht näher beschriebenen Tetraacetats beim Behandeln von 6-Oxy-anthradichinon-(1.4;9.10) mit Acetanhydrid und wenig konz. Schwefelsäure (DIMROTH, HILCKEN, B. 54, 3058). Lichtabsorption in Schwefelsäure + Borsäure: D., H.

3. 1.2.4.7-Tetraoxy-anthrachinon, Oxyanthrapurpurin C₁₄H₈O₆, Formel III (H 549; E I 755). B. Entsteht in Form des nicht näher beschriebenen Tetraacetats beim Behandeln von 6-Oxy-anthradichinon-(1.4;9.10) mit Acetanhydrid und wenig konz. Schwefelsäure (DIMROTH, HILCKEN, B. 54, 3058). — Lichtabsorption in alkal. Lösung: D., H. — Die Lösung in Essigester wird beim Schütteln mit Natriumacetat-Lösung hellrot, mit Natrium-phosphat-Lösung rot, mit Natriumcarbonat-Lösung blaurot (DIMEOTH, FRIEDEMANN, KÄMMERER, B. 58, 483). — Gibt bei der Oxydation mit Bleitetraacetat in Eisessig eine braungelbe Lösung von nicht näher beschriebenem 2.7-Dioxy-anthradichinon-(1.4;9.10) (D., H.).

- 1.4-Dioxy-2.7-diacetoxy-anthrachinon, Oxyanthrapurpurin-2.7-diacetat $C_{18}H_{12}O_8=CH_3$: $CO \cdot O \cdot C_8H_3(CO)_2C_8H(OH)_2 \cdot O \cdot CO \cdot CH_8$. B. Bei der Einw. von Acetanhydrid auf 1.2.4.7-Tetraoxy-anthrachinon in wasserfreiem Pyridin (DIMROTH, FRIEDEMANN, KÄMMEREB, B. 53, 483). Orangefarbene Nadeln (aus Eisessig). F: 224—225°. Leicht löslich in Essigester; die Lösung wird beim Schütteln mit Dinatriumphosphat-Lösung hellrot, mit Natriumcarbonat-Lösung rot. Läßt sich durch Bleitetraacetat zu einem nicht sehr beständigen Dichinon oxydieren, das durch schweflige Säure in das Ausgangsmaterial übergeführt, durch überschüssiges Bleitetraacetat weiter oxydiert wird.
- 4. 1.2.5.6-Tetraoxy-anthrachinon, Rufiopin $C_{14}H_8O_6$, Formel IV (H 549). B. Beim Erhitzen von 1.2.5.6-Tetraoxy-anthrachinon-disulfonsäure-(3.7) mit verd. Schwefelsäure im Rohr auf 175-1850 (Heller, Z. ang. Ch. 42, 171, 174). In geringer Menge aus Protocatechusäure bei der trockenen Destillation (Kunz-Krause, Manicke, B. 53, 195; H.) oder beim Erhitzen mit 25 Tln. konz. Schwefelsäure auf 140—145° (Noelting, Boucart, Bl. [2] 37 [1882], 395). — Orangerote Nadeln (aus Eisessig). Schmilzt nicht bis 340° (H.). Schwer löslich in Alkohol, Eisessig und Toluol, leichter in Pyridin (H.). Löslich in konz. Schwefelsäure mit violetter Farbe (H.; BISTRZYCKI, KRAUER, Helv. 6, 769), in rauchender Schwefelsäure mit dunkelroter Farbe und blauer Fluorescenz (H.). Die Lösung in Schwefelsäure + Borsaure ist blauviolett (BI., KRAUER). Löslich in verd. Ammoniak mit blaustichig dunkelroter, in verd. Natriumcarbonat-Lösung mit dunkelroter, in verd. Alkalilauge mit violetter Farbe (H.; vgl. a. Bl., Krauer). Absorptionsspektrum in Alkalilauge und in konz. Schwefelsäure: BI., KRAUER. — Liefert beim Erwärmen mit Brom in Eisessig oder in Eisessig + Alkohol auf dem Wasserbad 3.7-Dibrom-rufiopin (HELLER, Z. ang. Ch. 42, 174). Beim Behandeln mit absol. Salpetersäure in Eisessig unter Kühlung bildet sich 3.7-Dinitro-rufiopin, während bei der Einw. von Salpeterschwefelsäure oder Salpetersäure-Dampf 3.7-Dinitro-2.5.6.8-tetraoxyanthradichinon-(1.4;9.10) (S. 606) entsteht (Heller, Mertz, Siller, B. 62, 932, 933; vgl. R. E. SCHMIDT, STEIN, BAMBERGER, B. 62, 1884). Gibt beim Erhitzen mit rauchender Schwefelsäure (20% SO₃-Gehalt) auf 135—140° Rufiopin-disulfonsäure-(3.7) (Syst. Nr. 1580) (H., Z. ang. Ch. 42, 174). Beim Erhitzen mit p-Toluidin und Zinn(II)-chlorid auf 160—175° entstehen 2-p-Toluidino-5.6-dioxy-14-methyl-coramidonin (Formel V; Syst. Nr. 3428) und ein in Aceton wenig lösliches Produkt (BASF, D.R.P. 330572; C. 1921 II, 559; Frdl. 13, 415). — Färbt chromgebeizte Wolle rotviolett, gebeizte Baumwolle rotbraun bis schwarzviolett (H.).

Eine von Puntambeker, Adams (Am. Soc. 49, 490) als 1.2.5.6-Tetraoxy-anthrachinon beschriebene Verbindung wurde von Heller (Z. ang. Ch. 42, 172, 175) als 1.2.7.8-Tetraoxy-anthrachinon (S. 585) erkannt.

1.2.5.6-Tetraacetoxy-anthrachinon, Rufiopin-tetraacetat $C_{22}H_{16}O_{10} = (CH_3 \cdot CO \cdot O)_2C_6H_2(CO)_2C_6H_2(O \cdot CO \cdot CH_3)_2$. B. Beim Kochen von 1.2.5.6-Tetraoxy-anthrachinon mit Acetanhydrid und Natriumacetat (Heller, Z. ang. Ch. 42, 174). — Blaßgelbe Nadeln (aus Alkohol oder Eisessig). F: 260—263° (Zers.) (H.). Unlöslich in verd. Alkalilauge (H.). — Wird von Salpetersäure in Eisessig nicht angegriffen (H., Mertz, Siller, B. 62, 936); dagegen entstehen beim Eintragen in konz. Salpetersäure gelbe Krystalle, die sich in Wasser mit braunroter Farbe lösen und bald unter Abspaltung der Acetylgruppen in 3.7-Dinitro-2.5.6.8-tetraoxy-anthradichinon-(1.4;9.10) (S. 606) übergehen (H., M., Si.; vgl. R. E. Schmidt, Stein, Bamberger, B. 62, 1884).

3.7-Dibrom-1.2.5.6-tetraoxy-anthrachinon, 3.7-Dibrom-rufiopin $C_{14}H_6O_6Br_2$, Formel VI. B. Beim Erwärmen von 1.2.5.6-Tetraoxy-anthrachinon oder 1.2.5.6-Tetraoxy-anthrachinon-disulfonsäure-(3.7) mit Brom in Eisessig oder Alkohol + Eisessig auf dem Wasserbad (Heller, Z. ang. Ch. 42, 174). — Krystalle (aus Alkohol oder Eisessig). Löslich in konz. Schwefelsäure mit violetter Farbe, in verd. Alkalilauge oder Ammoniak mit roter bis blauvioletter Farbe.

3.7-Dinitro-1.2.5.6-tetraoxy-anthrachinon, 3.7-Dinitro-rufiopin $C_{14}H_6O_{10}N_2$, Formel VII auf S. 584. B. Beim Behandeln von 1.2.5.6-Tetraoxy-anthrachinon mit absol. Salpetersäure in Eisessig unter Kühlung (Heller, Mertz, Siller, B. 62, 932). — Hellbraune Nadeln. Schmilzt nicht bis 300° (H., M., Si.). Löslich in hochsiedenden Lösungsmitteln (H., M., Si.). Schwer löslich in konz. Schwefelsäure mit rötlicher Farbe (H., M., Si.). Bildet mit Alkalien schwer lösliche dunkelblaue Salze, mit Pyridin ein schwarzes Salz (H., M., Si.). — Liefert beim Behandeln mit Salpeterschwefelsäure 3.7-Dinitro-2.5.6.8-tetraoxy-anthradichinon-(1.4; 9.10) (S. 606) (H.,

M., SI.; vgl. R. E. Schmidt, Stein, Bamberger, B. 62, 1884). — Färbt gebeizte Baumwolle braun bis schwarzviolett, chromgebeizte Wolle rotbraun (H., M., SI.).

5. 1.2.5.8-Tetraoxy-anthrachinon, Chinalizarin, Alizarinbordeaux B, Alizarincyanin 3 R¹) C₁₄H₈O₄, Formel VIII (H 549; E I 755). Die Lösungen in Säuren sind orangerot (Dimboth, Hilcken, B. 54, 3053; Hahn, Wolf, Jäger, B. 57, 1395). — Liefert bei der Einw. der berechneten Menge Bleitetraacetat in Eisessig eine tiefblaue Lösung des nicht näher beschriebenen 5.8-Dioxy-anthradichinons-(1.2;9.10), das beim Behandeln mit Essigsäureanhydrid und konz. Schwefelsäure in 1.2.4.5.8-Pentaacetoxy-anthrachinon übergeht; bei Anwendung von überschüssigem Bleitetraacetat in Eisessig erhält man eine hellgelbe Lösung von Anthratrichinon-(1.2;5.8;9.10) (E II 7, 882) (Dimboth, Hilcken, B. 54, 3052, 3055, 3060, 3063). Geschwindigkeit der Oxydation mit Bleitetraacetat in Eisessig: D., Hi. Bei der Einw. von Chlorsulfonsäure in Gegenwart von Pyridin unterhalb 35—40° bildet sich Chinalizarin-β-schwefelsäure (S. 584) (I. G. Farbenind., D.R.P. 491424; C. 1930 I, 3488; Frdl. 16, 1313). Mit Acetanhydrid in wasserfreiem Pyridin entsteht 1.5.8-Trioxy-2-acetoxy-anthrachinon (D., Friedemann, Kämmerer, B. 53, 483).

Anwendung zur Kernfärbung und Differenzierung von pflanzlichen Objekten: Kisser, Z. wiss. Mikr. 40, 128; 41, 372; C. 1924 I, 1417; 1925 I, 1887; O. Tunmann, L. Rosenthaler, Pflanzenmikrochemie, 2. Aufl. [Berlin 1931], S. 757. — Prüfung auf Reinheit: E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 565. — Mikrochemischer Nachweis auf Grund der Krystallisation aus Nitrobenzol: Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 103. — Die blauviolette alkalische Lösung wird durch kleinste Mengen Magnesium kornblumenblau gefärbt; die Reaktion ist noch bei Anwesenheit von 1γ Magnesium in 1 cm³ Lösung deutlich (Hahn, Wolf, Jäger, B. 57, 1394). Zum Nachweis kleinster Mengen Magnesium durch Chinalizarin vgl. ferner Hahn, C. 1925 II, 75; Ergriwe, Fr. 76, 355. Über Anwendung als Indikator bei der titrimetrischen Bestimmung von Magnesium und von Phosphorsäure vgl. Hahn, H. Meyer, B. 60, 975. Nachweis und Bestimmung von Beryllium mit Hilfe von Chinalizarin: H. Fischer, Wiss. Veröff. Siemens 5, 104, 109; C. 1927 I, 495; Fr. 78, 54; vgl. dazu Kolthoff, Am. Soc. 50, 393. Nachweis von Aluminium: Kolthoff, Chem. Weekb. 24, 447; C. 1927 II, 2087.

 $[\mathrm{Co}(\mathrm{NH_3})_5][\mathrm{Co}(\mathrm{C_{14}H_6O_6})_3]$. Dunkelblauer, bronzeglänzender Niederschlag. Unlöslich in Wasser, schwer löslich in verd. Säuren und Alkalien (Morgan, Smith, Soc. 121, 167). Löst sich in heißer 5 n-Natronlauge unter Ammoniakentwicklung mit blauer Farbe. Die Lösungen in konz. Salzsäure und konz. Schwefelsäure sind anfangs blau, später purpurrot.

1.5.8-Trioxy-2-acetoxy-anthrachinon, Chinalizarin-2-acetat $C_{16}H_{10}O_7 = (HO)_2C_6H_2(CO)_2$ $C_6H_3(OH)\cdot O\cdot CO\cdot CH_3$. B. Aus 1.2.5.8-Tetraoxy-anthrachinon und Acetanhydrid in wasserfreiem Pyridin (DIMBOTH, FRIEDEMANN, KÄMMERER, B. 58, 483). — Zinnoberrote Nadeln oder hellrote Krystalle (aus Xylol). F: 246—247° (D., F., K.). — Liefert bei der Oxydation mit Bleitetraacetat in Eisessig eine braungelbe Lösung des nicht näher beschriebenen 5-Oxy-6-acetoxy-anthradichinons-(1.4;9.10) (D., HILCKEN, B. 54, 3052, 3053, 3060).

Mono-[1.5.8-trioxy-anthrachinonyl-(2)]-sulfat, Chinalizarin- 0^2 -sulfonsäure, Chinalizarin- β -schwefelsäure $C_{14}H_8O_9S=(HO)_2C_8H_2(CO)_2C_8H_2(OH)\cdot O\cdot SO_3H$. B. Bei der Einw. von Chlorsulfonsäure auf 1.2.5.8-Tetraoxy-anthrachinon in Pyridin unterhalb 35—40° (I. G. Farbenind., D.R.P. 491424; C. 1980 I, 3488; Frdl. 16, 1313). — Gelbrote Krystalle. Löst sich in heißem Wasser mit orangeroter, in Alkalien mit violettroter Farbe. — Wird durch verd. Mineralsäuren und verd. Pyridin leicht verseift. — Färbt Wolle aus schwefelsaurem Bad orangerot, auf Aluminiumbeize rot, auf Chrombeize dunkelviolett.

6. 1.2.6.7 - Tetraoxy - anthrachinon C₁₄H₈O₆, Formel IX. B. Beim Kochen von 7-Oxy-1.2.6-trimethoxy-anthrachinon oder von 1.2.6.7-Tetramethoxy-anthrachinon mit Eisessig und konz. Bromwasserstoffsäure (Jacobson, Adams, Am. Soc. 47, 2017). Beim Erhitzen von 1.2.6.7-Tetramethoxy-anthrachinon mit Aluminiumchlorid auf 210° (BISTRZYCKI, KRAUER, Helv. 6, 768). — Orangefarbene Nadeln (aus Nitrobenzol). Schmilzt nicht bis 330° (B., K.; J., A.). Sehr schwer löslich in siedendem absolutem Alkohol, Benzol und Xylol, schwer in Nitrobenzol (B., K.). Löst sich in konz. Schwefelsäure mit violettroter, in Schwefelsäure + Borsäure mit braunvioletter Farbe (B., K.). Die Lösung in Natronlauge ist violett; die Lösungen in Sodalösung und in Ammoniak sind braunrot (B., K.). Absorptionsspektrum in Alkalilauge und in

¹⁾ Zu dieser Bezeichnung vgl. Schultz Tab. 7. Aufl., Nr. 1168.

konz. Schwefelsäure: B., K. — Färbt Baumwolle auf Aluminiumbeize braunrot, auf Eisenbeize schwarz (B., K.).

- 7-0xy-1.2.6-trimethoxy-anthrachinon $C_{17}H_{14}O_6 = (HO)(CH_3 \cdot O)C_6H_2(CO)_3C_6H_2(O \cdot CH_3)_3$. B. Bei der Einw. von konz. Schwefelsäure auf 4'-Oxy-3.4.3'-trimethoxy-diphenylmethan-carbonsäure-(2) und Oxydation des Reaktionsprodukts mit Chromessigsäure (JACOBSON, ADAMS, Am. Soc. 47, 2016). Gelbe Nadeln (aus Eisessig). F: 269—270° (korr.).
- 1.2.6.7-Tetramethoxy-anthrachinon $C_{18}H_{16}O_6=(CH_3\cdot O)_2C_8H_2(CO)_2C_6H_2(O\cdot CH_3)_3$ (H 551 als 1.2.5.6- oder 1.2.6.7- oder 1.2.7.8-Tetramethoxy-anthrachinon aufgeführt). Zur Konstitution vgl. Bistrzycki, Krauer, Helv. 6, 769. B. Bei kurzem Erwärmen von 5.6.3'.4'-Tetramethoxy-benzophenon-carbonsäure-(2) mit schwach rauchender Schwefelsäure auf ca. 60° (B., K., Helv. 6, 768). Bei der Oxydation von 2.3.5.6-Tetramethoxy-anthron-(9) (B., K., Helv. 6, 768) oder von 1.2.6.7-Tetramethoxy-anthron-(9) (Jacobson, Adams, Am. Soc. 47, 2017) mit Chromessigsäure. Gelbe Nadeln (aus Eisessig). F: 244—245° (korr.) (J., A.).
- 1.2.6.7-Tetraacetoxy-anthrachinon $C_{22}H_{16}O_{10} = (CH_3 \cdot CO \cdot O)_2C_6H_2(CO)_2C_6H_2(O \cdot CO \cdot CH_3)_2$.

 B. Beim Erhitzen von 1.2.6.7-Tetraoxy-anthrachinon mit Acetanhydrid und Natriumacetat (Jacobson, Adams, Am. Soc. 47, 2017). Hellgelbe Nadeln (aus Eisessig). F: 239—241° (korr.).
- 7. 1.2.7.8-Tetraoxy-anthrachinon C₁₄H₈O₆, Formel X (H 551). B. Beim Kochen von 1-Oxy-2.7.8-trimethoxy-anthrachinon mit Eisessig und Bromwasserstoffsäure (Puntambeker, Adams, Am. Soc. 49, 490; vgl. Heller, Z. ang. Ch. 42, 172, 175). Rote Nadeln (aus Eisessig). F: 316—318° (P., A.), ca. 315° (H.). Löst sich in Schwefelsäure + Borsäure mit blauer, in Sodalösung und in Ammoniak mit violetter Farbe (Bistraycki, Krauer, Helv. 6, 769). Absorptionsspektrum in Alkalilauge und in konz. Schwefelsäure: B., K. Liefert beim Behandeln mit absol. Salpetersäure in Eisessig 3.6-Dinitro-1.2.7.8-tetraoxy-anthrachinon, bei der Einw. von Salpeterschwefelsäure unter Kühlung 3.6-Dinitro-2.5.7.8-tetraoxy-anthradichinon-(1.4;9.10) (S. 606) (Heller, Mertz, Siller, B. 62, 937; vgl. R. E. Schmidt, Stein, Bamberger, B. 62, 1884).
- 1-0xy-2.7.8-trimethoxy-anthrachinon $C_{17}H_{14}O_6 = (CH_3 \cdot O)_2C_6H_2(CO)_2C_6H_2(O \cdot CH_3) \cdot OH$. B. Durch Oxydation von 1-0xy-2.7.8-trimethoxy-anthron-(9) mit Chromessigsäure bei 60° (Puntambeker, Adams, Am. Soc. 49, 490; vgl. Heller, Z. ang. Ch. 42, 172, 175). Hellorangefarbene Nadeln (aus Eisessig). F: 245—246° (P., A.).
- 1.8-Dloxy-2.7-diacetoxy-anthrachinon $C_{18}H_{12}O_8 = (CH_3 \cdot CO \cdot O)(HO)C_8H_2(CO)_2C_8H_2(O \cdot CO \cdot CH_3) \cdot OH$. B. Beim Kochen von 0,5 g 1.2.7.8-Tetraoxy-anthrachinon mit 2,5 cm³ Eisessig, 1 cm³ Acetanhydrid und 0,25 g Natriumacetat (Heller, Z. ang. Ch. 42, 175). Goldgelbe Nadeln (aus Eisessig). F: 242° (Zers.). Löslich in konz. Schwefelsäure mit bordeauxroter, in Ammoniak mit blutroter, in verd. Alkalilauge mit roter, in Blau übergehender Farbe.
- 1.2.7.8 Tetraacetoxy anthrachinon $C_{22}H_{16}O_{10} = (CH_3 \cdot CO \cdot O)_2C_6H_2(CO)_2C_6H_2(O \cdot CO \cdot CH_3)_2$ (H 551). B. Beim Kochen von 1 g 1.2.7.8 Tetraoxy anthrachinon mit 7 cm³ Acetanhydrid und 1 g Natriumacetat (Heller, Z. ang. Ch. 42, 175; vgl. a. Puntambeker, Adams, Am. Soc. 49, 490). Grünlichgelbe Nadeln (aus Eisessig). F: 236—238° (Zers.) (H.), 237—238° (P., A.).

- 3.6-Dibrom-1.2.7.8-tetraoxy-anthrachinon $\rm C_{14}H_{e}O_{6}Br_{2}$, Formel XI. B. Aus 1.2.7.8-Tetraoxy-anthrachinon und Brom in Alkohol (Heller, Z. ang. Ch. 42, 175). Goldgelbe Nadeln (aus Eisessig). Schwer löslich in den meisten Lösungsmitteln. Gibt ein bei 236—238° schme'zendes Acetylderivat.
- 3.6-Dinitro-1.2.7.8-tetraoxy-anthrachinon $C_{14}H_6O_{10}N_2$, Formel XII. B. Beim Behandeln von 1.2.7.8-Tetraoxy-anthrachinon mit absol. Salpetersäure in Eisessig (Heller, Mertz, Siller, B. 62, 937). Hellrote Nadeln (aus Eisessig). F: 295—296° (Zers.). Die Lösung in konz. Schwefelsäure ist orangerot, in verd. Ammoniak karminrot, in Alkalilauge rotbraun.
- 8. 1.3.5.7-Tetraoxy-anthrachinon, Anthrachryson $C_{14}H_8O_6$, Formel XIII auf S. 586 (H 551; E I 755). Gibt bei der Nitrierung mit Salpeterschwefelsäure 2.4.6.8-Tetranitro-1.3.5.7-tetraoxy-anthrachinon (Höchster Farbw., D.R.P. 73605; Frdl. 3, 246; Heller, Lindner, B. 55, 2675).
- 1.3.5.7-Tetramethoxy-anthrachinon, Anthrachryson-tetramethyläther $C_{18}H_{16}O_6=(CH_3\cdot O)_2C_6H_2(CO)_3C_6H_2(O\cdot CH_3)_2$ (vgl. E I 756). B. Aus Anthrachryson und Dimethylsulfat in ca. 6,7 %iger Natronlauge, zuletzt bei 70—80° (Heller, Linder, B. 55, 2677). Gelbe Nadeln (aus Eisessig). F: 238°; sublimiert bei höherer Temperatur. Löst sich in konz. Schwefelsäure

586

mit violettroter Farbe. — Liefert bei der Nitrierung mit Salpeterschwefelsäure unter Kühlung 2.4.6.8-Tetranitro-anthrachryson-tetramethyläther.

- 2.4.6.8 Tetranitro 1.3.5.7 tetraoxy anthrachinon, 2.4.6.8 Tetranitro anthrachryson C₁₄H₄O₁₄N₄, Formel XIV (R = H) (H 553). Zur Bildung durch Nitrierung von Anthrachryson mit Salpeterschwefelsäure vgl. Heller, Lindner, B. 55, 2674. Orangefarbene Blättchen (aus Essigester + Petroläther). Färbt sich von 200° ab braun und verpufft bei ca. 285°. Löslich in Wasser, Alkohol und Eisessig mit gelber Farbe, sonst meist schwer löslich. Löst sich in Sodalösung mit rubinroter Farbe. Liefert bei der Reduktion mit Zinn(II)-chlorid in salzsaurer Lösung oder mit Na₂S₂O₄ in alkal. Lösung Triaminoanthrachrysone von fraglicher Einheitlichkeit; bei der Reduktion mit Natriumsulfid und Alkaliauge entstand ein schwarzes amorphes Natriumsalz. Gibt beim Kochen mit wäßr. Ammoniak sowie beim Erhitzen mit Anilin oder p-Toluidin in verd. Sodalösung auf dem Wasserbad tiefviolette Lösungen. Färbt Wolle aus essigsaurem Bad orangefarben, chromgebeizte Wolle aus neutralem Bad rotbraun, chromgebeizte Baumwolle braun.
- 2.4.6.8-Tetranitro-1.3.5.7-tetramethoxy-anthrachinon, 2.4.6.8-Tetranitro-anthrachrysontetramethyläther $C_{18}H_{18}O_{14}N_4$, Formel XIV (R = CH₃). B. Durch Nitrierung von Anthrachryson-tetramethyläther mit Salpeterschwefelsäure unter Kühlung (Heller, Lindner, B. 55, 2678). Gelbe Nadeln (aus Eisessig). Bräunt sich von 220° an; F: 258° (Zers.). Schwer löslich in heißem Alkohol, löslich in Toluol und Essigester. Die Lösung in konz. Schwefelsäure ist orangefarben. Gibt beim Kochen mit Anilin in verd. Sodalösung 2.6-Dinitro-4.8-dianilino-anthrachryson-tetramethyläther. Färbt chromgebeizte Wolle rotbraun.

XIII.
$$\stackrel{\circ}{\text{Ho}} \stackrel{\circ}{\overset{\circ}{\text{U}}} \stackrel{\circ}{\overset{\circ}{\text{U}}} \stackrel{\circ}{\text{U}} \stackrel$$

- 9. 1.3.6.8-Tetraoxy-anthrachinon C₁₄H₈O₆, Formel XV.
- 1.6.8-Trioxy-3-methoxy-anthrachinon $C_{15}H_{10}O_6 = (HO)_2C_6H_2(CO)_2C_6H_3(OH) \cdot O \cdot CH_3$. B. In geringer Menge beim Diazotieren von 6-Amino-1.8-dioxy-3-methoxy-anthrachinon in konz. Schwefelsäure und Eintragen der Diazoniumsalz-Lösung in siedenden absoluten Alkohol (Eder, Hauser, Helv. 8, 136). Nicht rein erhalten. Löslich in kalter Sodalösung.
- 10. 1.4.5.8 Tetraoxy anthrachinon C₁₄H₈O₆, Formel XVI (H 553; E I 756). B. Durch Druckhydrolyse von 4.8-Diamino-anthrarufin oder 4.5-Diamino-chrysazin mit 20% iger Salzsäure bei 180° (Brass, Albrecht, B. 61, 989, 991). Grünglänzende Nadeln (aus Eisessig). Löslich in Eisessig, schwerer in Acetanhydrid mit roter Farbe und Fluorescenz (B., A.; vgl. a. Dimroth, Hilcken, B. 54, 3053). Schwer löslich in einer Lösung von Pyroboracetat in Acetanhydrid mit blauer Farbe und rötlicher Fluorescenz; beim Erwärmen wird die Lösung violettrot (B., A.). Liefert beim Behandeln mit der berechneten Menge Bleitetraacetat in Nitrobenzol + Eisessig eine tiefblauviolette Lösung von nicht näher beschriebenem 5.8-Dioxy-anthradichinon-(1.4;9.10), mit überschüssigem Bleitetraacetat entsteht eine gelbe Lösung von Anthratrichinon-(1.4;5.8;9.10) (E II 7, 883) (D., H.). Geschwindigkeit der Oxydation mit Bleitetraacetat in Eisessig: D., H. Bei der Oxydation mit Braunstein in konz. Schwefelsäure bildet sich 1.2.4.5.8-Pentaoxy-anthrachinon (S. 603) (D., H.).
- 1.4.5.8-Tetraacetoxy-anthrachinon $C_{22}H_{16}O_{10} = (CH_3 \cdot CO \cdot O)_2C_6H_2(CO)_2C_6H_2(O \cdot CO \cdot CH_3)_2$ (E I 756). F: 253° (Brass, Albrecht, B. 61, 992).

$$XVI. \underbrace{\begin{array}{c} 0 \\ \text{HO} \\ \text{O} \\ \text{O} \\ \text{OH} \\ \end{array}}_{\text{OH}} XVII. \underbrace{\begin{array}{c} 0 \\ \text{HO} \\ \text{O} \\ \text{OH} \\ \end{array}}_{\text{O}} \underbrace{\begin{array}{c} 0 \\ \text{OH} \\ \text{OH} \\ \text{O} \\ \text{O} \\ \end{array}}_{\text{O}} \underbrace{\begin{array}{c} 0 \\ \text{NH} \\ \text{NO}_{2} \\ \text{NH} \\ \text{O} \\ \text{O} \\ \text{CH}_{3} \\ \text{O} \\ \end{array}}_{\text{O}} \underbrace{\begin{array}{c} 0 \\ \text{NH} \\ \text{NO}_{2} \\ \text{O} \\ \text{O} \\ \text{CH}_{3} \\ \text{O} \\ \end{array}}_{\text{O}} \underbrace{\begin{array}{c} 0 \\ \text{NH} \\ \text{NO}_{2} \\ \text{O} \\ \text{O} \\ \text{CH}_{3} \\ \end{array}}_{\text{O}} \underbrace{\begin{array}{c} 0 \\ \text{NH} \\ \text{NO}_{2} \\ \text{O} \\ \text{O} \\ \text{CH}_{3} \\ \end{array}}_{\text{O}} \underbrace{\begin{array}{c} 0 \\ \text{NH} \\ \text{NO}_{2} \\ \text{O} \\ \text{O} \\ \text{CH}_{3} \\ \end{array}}_{\text{O}} \underbrace{\begin{array}{c} 0 \\ \text{O} \\ \text{CH}_{3} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{CH}_{3} \\ \end{array}}_{\text{O}} \underbrace{\begin{array}{c} 0 \\ \text{O} \\ \end{array}}_{\text{O}} \underbrace{\begin{array}{c} 0 \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \end{array}}_{\text{O}} \underbrace{\begin{array}{c} 0 \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \end{array}}_{\text{O}} \underbrace{\begin{array}{c} 0 \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \end{array}}_{\text{O}} \underbrace{\begin{array}{c} 0 \\ \text{O} \\ \text{O} \\ \text{O} \\ \end{array}}_{\text{O}} \underbrace{\begin{array}{c} 0 \\ \text{O} \\ \text{O} \\ \text{O} \\ \end{array}}_{\text{O}} \underbrace{\begin{array}{c} 0 \\ \text{O} \\ \text{O} \\ \text{O} \\ \end{array}}_{\text{O}} \underbrace{\begin{array}{c} 0 \\ \text{O} \\ \end{array}}_{\text{O}} \underbrace{\begin{array}{c} 0 \\ \text{O} \\ \end{array}}_{\text{O}} \underbrace{\begin{array}{c} 0 \\ \text{O} \\ \text{O} \\ \end{array}}_{\text{O}} \underbrace{\begin{array}{c} 0 \\ \text{O} \\ \end{array}}_{\text{O}} \underbrace{\begin{array}{c}$$

11. 2.3.6.7-Tetraoxy-anthrachinon $C_{14}H_8O_6$, Formel XVII.

2.3.6.7-Tetramethoxy-anthrachinon-diimid $C_{18}H_{18}O_4N_2 =$

(CH₃·O)₂C₆H₂C(:NH) C₆H₂(O·CH₃)₂. Das Mol.-Gew. wurde kryoskopisch in Thymol bestimmt (Keffler, Soc. 119, 1477, 1480). — B. Beim Behandeln von Veratrumsäurenitril mit Chlorsulfonsäure in Chloroform (K., Soc. 119, 1480). — Nadeln (aus Pyridin). F: 265°. Schwer löslich in Pyridin und Nitrobenzol, sehr schwer in Alkohol und Athylacetat. Die Lösung in konz. Schwefelsäure ist hell karminrot und wird beim Verdünnen mit Wasser orangegelb unter Abscheidung eines orangefarbenen Sulfats. Die Lösung in konz. Salzsäure ist gelb. — Ist beständig gegen heiße Kaliumpermanganat-Lösung. Bleibt beim Kochen mit

konz. Salzsäure unverändert; zersetzt sich beim Erhitzen mit konz. Salzsäure im Rohr auf 150° teilweise unter Bildung eines violettschwarzen Pulvers. Wird beim Kochen mit Dimethylsulfat und Natriumcarbonat in Nitrobenzol nicht verändert.

2.6-Dimethoxy-3.7-diathoxy-anthrachinon-dimid $C_{20}H_{22}O_4N_2 =$

 $(C_2H_5\cdot O)(CH_3\cdot O)C_6H_2 \underbrace{C(:NH)}_{C(:NH)} \underbrace{C_6H_2(O\cdot CH_3)\cdot O\cdot C_2H_5}_{C(:NH)}. \ \ \text{Das Mol.-Gew. wurde kryoskopisch in}$ Thymol bestimmt (Keffler, Soc. 119, 1477, 1482). — B. Beim Behandeln von 3-Methoxy-4-äthoxy-benzonitril mit Chlorsulfonsäure in Chloroform (K., Soc. 119, 1482). — Nadeln (aus Pyridin). F: 206°. Schwer löslich in niedrigsiedenden organischen Lösungsmitteln.

1.5 (?) - Dinitro - 2.3.6.7- tetramethoxy-anthrachinon - diimid $C_{18}H_{16}O_{8}N_{4}$, Formel XVIII. Beim Behandeln von 2.3.6.7- Tetramethoxy-anthrachinon - diimid mit kalter Salpetersäure (D: 1,42) (Keffler, Soc. 119, 1477, 1481). — Gelbe Krystalle (aus Pyridin). F: 306°. Löslich in heißem Nitrobenzol, Phenol, Thymol und Pyridin, schwer in den meisten anderen organischen Lösungsmitteln. Die Lösung in Schwefelsäure ist rötlichbraun. — Gibt beim Kochen mit Salpetersäure ein Gemisch von Oxydations- und Nitrierungsprodukten.

1.5 (oder 4.8) (?)-Dinitro-2.6-dimethoxy-3.7-diäthoxy-anthrachinon-diimid $C_{20}H_{20}O_8N_4=$ $(O_2N)(C_2H_5\cdot O)(CH_3\cdot O)C_6H < C(:NH) > C_6H(O\cdot CH_3)(O\cdot C_2H_5)\cdot NO_2$. B. Analog der vorangehenden Verbindung (Keffler, Soc. 119, 1477, 1482). — Gelbe Krystalle (aus Pyridin). F: 295°. Sehr schwer löslich.

12. 2.3.5.6-Tetraoxy - phenanthrenchinon $C_{14}H_8O_6$, Formel XIX (R und R'=H). 3.5-Dioxy-2.6-dimethoxy-phenanthrenchinon, Sinomenolchinon $C_{16}H_{12}O_6$, Formel XIX (R = CH $_3$, R' = H). B. Durch Verseifung von Diacetylsinomenolchinon oder Dibenzoylsinomenolchinon mit alkoh. Natronlauge in Wasserstoff-Atmosphäre (Goto, Sudzuki, Bl. chem. Soc. Japan 4, 168; C. 1929 II, 1927). — Braune Nadeln (aus Äthylacetat). F: 259—263°.

XIX.
$$O \cdot R$$
 $O \cdot R$ $O \cdot R$

- 2.3.5.6 Tetramethoxy phenanthrenchinon, Dimethylsinomenolchinon $C_{18}H_{16}O_6$, Formel XIX (R und R'= CH₃). B. Durch Behandlung von Sinomenolchinon mit Dimethylsulfat und Natronlauge (Goto, Sudzuki, Bl. chem. Soc. Japan 4, 169; C. 1929 II, 1927). — Rote Nadeln (aus Athylacetat).
- 2.6-Dimethoxy-3.5-diäthoxy-phenanthrenchinon, Diäthylsinomenolchinon $m C_{20}H_{20}O_6$, Formel XIX ($R = CH_3$, $R' = C_2H_5$). B. Durch Behandlung von Sinomenolchinon mit Diäthylsulfat und Natronlauge (Goto, Sudzuki, Bl. chem. Soc. Japan 4, 168; C. 1929 II, 1927). -Orangerote Nadeln. F: 174°.
- 2.6 Dimethoxy 3.5 diacetoxy phenanthrenchinon, Diacetylsinomenolchinon $C_{20}H_{16}O_{8}$, Formel XIX (R = CH₃, R' = CO·CH₃). B. Durch Oxydation von Sinomenol-diacetat (E II 6, 1135) mit Chromessigsäure (Goto, Sudzuki, Bl. chem. Soc. Japan 4, 168; C. 1929 II, 1927). — Orangerote Nadeln (aus Äthylacetat). F: 217—219°.
- 13. 2.3.6.7-Tetraoxy-phenanthrenchinon $C_{14}H_8O_6$, Formel XX. B. Durch Diazotieren von 2.7-Diamino-3.6-dioxy-phenanthrenchinon mit Nitrosylschwefelsäure und Verkochen (Brass, Nickel, B. 58, 210). — Rotbraun. Sehr schwer löslich in Alkohol, Eisessig, Nitrobenzol und Pyridin mit brauner Farbe. Die Lösungen in konz. Schwefelsäure und in Alkalilauge sind olivbraun. — Färbt chromgebeizte Baumwolle und Wolle schmutzigbraun.

2. Oxy-oxo-Verbindungen $C_{16}H_{12}O_6$.

1.4.5.8-Tetraoxy-2.6-dimethyl-anthrachinon C₁₆H₁₂O₈, s. nebenstehende Formel (H 554). Zur Bildung aus 2.5-Dioxy-4-methyl-benzoesäure durch Behandeln mit konz. Schwefelsäure bei 120—130° vgl. Flumiani, M. 45, 44. — Karminrote Krystalle CH₃. (aus Äthylbenzoat). F: 290—300° (bei schnellem Erhitzen). Sublimiert von 260° an. Absorptionsspektrum in konz. Schwefelsäure:

F. — Gibt bei der Destillation mit Zinkstaub im Wasserstoffstrom 2.6-Dimethyl-anthracen.

1.4.5.8 - Tetraacetoxy - 2.6 - dimethyl - anthrachinon $C_{24}H_{20}O_{10} = (CH_3 \cdot CO \cdot O)_2(CH_3)C_6H(CO)_2C_6H(CH_3)(O \cdot CO \cdot CH_3)_2$. B. Beim Kochen von 1.4.5.8-Tetraoxy-

2.6-dimethyl-anthrachinon mit Essigsäureanhydrid und etwas Natriumacetat (FLUMIANI, M. 45, 46). — Krystalle (aus Äthylacetat). F: 235—236°. Sehr sehwer löslich in Alkohol, Äther und Benzol, sehr leicht in Eisessig.

g) Oxy-oxo-Verbindungen $C_n H_{2n-22} O_6$.

1. Oxy-oxo-Verbindungen C10H16O4.

1. 1.7-Bis-[2.5-dioxy-phenyl]-heptadien-(1.6)-dion-(3.5), Bis-[2.5-dioxy-cinnamoyl]-methan C_{1,}H_{1e}O₆ = [(HO)₂C₄H₂· CH: CH· CO]₂CH₂. B. Beim Behandeln von Bis-[2.5-bis-carbomethoxyoxy-cinnamoyl]-methan mit 2n-Kalilauge in Aceton in Wasserstoff-Atmosphäre (Lampe, Mitalb., Roczniki Chem. 9, 458; C. 1929 II, 1916). — Nicht rein erhalten. Prismen (aus Methanol + Chloroform). F: 174—176° (Zers.). — Färbt Baumwolle hellgelb.

Bis - [2.5 - bis - carbomethoxyoxy - cinnamoyl] - methan $C_{27}H_{24}O_{14} = [(CH_3 \cdot O_3C \cdot O)_2C_6H_3 \cdot CH : CH \cdot CO]_2CH_2$. B. Durch Einw. von 2.5-Bis - carbomethoxyoxy-zimtssure - chlorid auf das Natriumsalz des 2.5-Bis-carbomethoxyoxy-cinnamoylacetons in Anisol und Kochen des Reaktionsprodukts mit verd. Essigssure (LAMPE, Mitarb., Roczniki Chem. 9, 457; C. 1929 II, 1916). — Örangegelbe Prismen (aus Alkohol). F: 194—196°. Ziemlich schwer löslich in Alkohol, sehr schwer in Äther. Die alkoh. Lösung fluoresciert gelbgrün und gibt mit Eisenchlorid eine braune Färbung. Die Lösung in konz. Schwefelsäure ist dunkelrot.

2. 1.7-Bis-[3.4-dioxy-phenyl]-heptadien-(1.6)-dion-(3.5), Bis-[3.4-dioxy-cinnamoyl]-methan $C_{19}H_{16}O_6=[(HO)_2C_6H_2\cdot CH\cdot CO]_2CH_2$.

Bis-[4-oxy-3-methoxy-cinnamoyl]-methan (Diferuloylmethan) vom Schmelzpunkt 178° bzw. 183°, natürliches Curcumin C₂₁H₂₀O₆ = [(CH₃·O)(HO)C₆H₃·CH:CH·CO]₂CH₂ bzw. desmotrope Monoenolform (H 554; E I 757). V. In den Wurzeln von Curcuma aromatica Salisb. (RAO, SHINTRE, J. Soc. chem. Ind. 47, 54 T; C. 1928 II, 903). — F: 177—178° (R. ,SH.). Einfluß von Licht auf die Leitfähigkeit in Isoamylalkohol: SOULAN, C. r. 172, 581. — Läßt sich durch Allylthioharnstoff (Thiosinamin) und durch Anethol nicht sensibilisieren (MUDROVCIC, Z. wiss. Phot. 26, 184, 187; C. 1929 I, 22).

2. Oxy-oxo-Verbindungen C₂₂H₂₂O₆.

(Diels, A. 484, 5, 14). — Krystalle (aus Alkohol). F: 151—153° nach vorherigem Sintern. Leicht löslich in Alkohol, Aceton, Essigester und Benzol, schwer in Äther, fast unlöslich in Petroläther und Ligroin. — Zersetzt sich beim Erwärmen mit Alkalien unter Abspaltung von Benzaldehyd. Liefert beim Kochen mit wasserfreier Ameisensäure 1.4-Dimethyl-2-benzyliden-5-benzoyl-cyclohexandiol-(1.4)-dion-(3.6) (S. 570). — Verbindung mit Hydrazincarbonsäuremethylester C₂₂H₂₂O₆ + C₂H₆O₂N₂. Krystalle (aus Alkohol). F: 130—132° (Zers.).

Monomethyläther C₃₃H₂₄O₅. B. Beim Behandeln von 1.4-Dimethyl-2-[\(\alpha\)-oxy-benzyl]-5-benzoyl-cyclohexandiol-(1.4)-dion-(3.6) mit Chlorwasserstoff in Methanol (Diels, A. 484, 5, 15). — Krystalle (aus Methanol). F: 169—171° (Zers.). Schwer löslich in heißem Methanol und Acetonitril, leichter in Aceton und Essigester.

h) Oxy-oxo-Verbindungen $C_n H_{2n-24} O_6$.

1. Oxy-oxo-Verbindungen $C_{18}H_{12}O_6$.

1. 3.6-Dioxy-2.5-bis-[4-oxy-phenyl]-benzochinon-(1.4), Atromentin C₁₈H₁₃O₆, Formel I. Zur Zusammensetzung und Konstitution vgl. Kögl., Becker, A. 465, 215; K., A. 465, 243, 245. — V. Findet sich in dem Pilz Paxillus (Agarious) atrotomentosus Batsch (Samtfuß) hauptsächlich in Form der Leukoverbindung (Leukoatromentin; E II 6, 1164) (Thörner, B. 11 [1878], 533; 12 [1879], 1630; Kögl., Postowsky, A. 440, 19; 445, 159 Anm. 2; K., B., A. 465, 223); Isolierung erfolgt durch Extraktion des getroekneten und pulverisierten Pilzes mit kalter 2%iger Natronlauge (K., P., A. 440, 20, 23; K., B., A. 465, 222). —

CURCUMIN: ATROMENTIN

B. Aus Atromentin-4'.4"-dimethyläther (S. 590) durch 1-stdg. Kochen mit Jodwasserstoffsäure (D: 1,7) und Eisessig und Erwärmen des Reaktionsprodukts mit 0,1 n-Natronlauge (K., A. 465, 252). Bei kurzem Kochen von Atromentin-3.6-dimethyläther (S. 590) mit gesättigter 465, 252). Bei kurzem Kochen von Atromentin-3.6-dimethyläther (S. 590) mit gesättigter Sodaldsung (K., A. 465, 253). — Braune metallglänzende Blättchen mit 1,5 Mol C₂H₄O₂ (aus Eisessig) (K., P., A. 440, 25; vgl. a. Th., B. 11, 533); tritt in zwei verschiedenen rhombischen Formen auf (Steinmetz, A. 440, 25; 445, 170). Krystallisiert aus Alkohol mit 1 Mol C₂H₄O; die von Lösungsmitteln befreite Substanz nimmt an der Luft 1 Mol H₂O auf (K., B.). Zersetzt sich bei höherer Temperatur (Th., B. 11, 533; K., P., A. 440, 25). Sublimiert sehr schwer in gelben Tafeln (Th., B. 11, 533; K., P., A. 440, 25). Absorptionsspektrum in Alkohol: Th., B. 12, 1630; vgl. a. K., P., A. 440, 25. Löslich in Pyridin, Alkohol und Eisessig, schwerer löslich in warmem Äther und Essigester, unlöslich in Aceton (K., P., A. 440, 25), Chloroform, Benzol, Schwefelkohlenstoff (Th., B. 11, 533; K., P., A. 440, 25), Ligroin und Wasser (Th., B. 11, 533). Löst sich in konz. Schwefelsäure mit brauner Farbe; auf Zusstz von Borsäure wird die Lösung grün (K., P., A. 440, 26). Die rote alkoholische Lösung auf Zusatz von Borsaure wird die Lösung grün (K., P., A. 440, 26). Die rote alkoholische Lösung wird auf Zusatz von Borsäure violett; beim Zufügen von Sodalösung geht die Färbung in Blau über und verblaßt allmählich (K., P., A. 440, 26). Mit warmer Sodalösung entsteht ein violettes, mit Natriumāthylat-Lösung ein grünes Natriumsalz (K., P., A. 440, 27; vgl. K., B., A. 465, 224).

Atromentin liefert bei der Zinkstaubdestillation Terphenyl (E II 5, 611) (Kögl., Postowsky, A. 440, 33; 445, 160, 164; vgl. Thörner, B. 11, 535; 12, 1634). Bei der Oxydation mit 3 %igem Wasserstoffperoxyd bildet sich in alkal. Lösung 4-Oxy-benzoesäure (K., P., A. 445, 161, 166), $HO \cdot C_0H_4 \cdot C = C \cdot O \cdot CO$

in saurer Lösung Atromentinsäurelacton (Syst. Nr. 2842)

in saurer Lösung Atromentinsäurelacton

OC·O·C — C·C₆H₄·OH

(K., Becker, A. 465, 212, 232). Beim Kochen mit 18 %iger Salpetersäure erhält man Oxalsäure,
3-Nitro-4-oxy-benzoesäure, etwas Pikrinsäure und 3'.3"(?)-Dinitro-atromentin (K., P., A. 445, 161, 166; vgl. Th., B. 12, 1632). Atromentin gibt bei der Hydrierung in Gegenwart von Platin in Eisessig oder 0,1 n-Natronlauge, beim Kochen mit Jodwasserstoffsäure (D: 1,96) und rotem Phosphor in Eisessig oder besser bei der Reduktion mit Na₂S₂O₄ in wäßrig-alkoholischer Suspension Leukoatromentin (E II 6, 1164) (K., P., A. 445, 168; K., B., A. 465, 225; vgl. a. Th., B. 12, 1633). Die reduzierende Acetylierung in Gegenwart von Zinkstaub führt zur Bildung von Leukoatromentin-hexaacetat (E II 6, 1164) (K., P., A. 440, 21, 28). Mit Brom in Eisessig entsteht eine gelbrote Lösung, die Proteine blaugrün färbt (K., P., A. 440, 26; vgl. Th., B. 12, 1630). Beim Einleiten von Wasserdampf in eine Lösung von Atromentin in 30%iger Kalilauge erhält man α-Oxo- \overrightarrow{OC} — $\overrightarrow{CH} \cdot \overrightarrow{C_6} \overrightarrow{H_4} \cdot \overrightarrow{OH}$

 β -[4-oxy-phenyl]- γ -[4-oxy-benzyl]-butyrolacton- γ -carbonsäure $O\dot{C} \cdot O \cdot \dot{C}(CO_2H) \cdot CH_2 \cdot C_6H_4 \cdot OH$ (Syst. Nr. 2626) (Kögl, Postowsky, A. 445, 168; K., Becker, A. 465, 240). Erhitzen mit 50% iger Kalilauge auf 140—165° liefert 4-Oxy-α-[4-oxy-benzyl]-zimtsäure vom Schmelzpunkt 183° (Syst. Nr. 1120); zuweilen entsteht daneben in geringer Menge eine isomere 4-Oxy-α-[4-oxy-benzyl]-zimtsäure vom Schmelzpunkt 164° (Syst. Nr. 1120) (K., P., A. 440, 21, 29; K., B., A. 465, 241). Atromentin gibt bei der Einw. von Diazomethan in Äther oder in Äther + Äthylacetat Atromentin-3.6-dimethyläther (K., P., A. 440, 21, 29; K., B., A. 465, 227). Bei kurzem Kochen mit Acetanhydrid und einer Spur konz. Schwefelsaure entsteht Atromentin-tetraacetat (K., B., A. 465, 224; vgl. a. Thörner, B. 11, 534; K., P., A. 440, 27). Beim Erhitzen mit Benzoesäureanhydrid im Rohr auf 160-1700 bildet sich vorwiegend eine in gelben Nadeln krystallisierende Verbindung vom Schmelzpunkt 285° (TH., B. 12, 1632). Atromentin färbt ungebeizte Wolle tabakbraun, chromgebeizte Wolle schmutzig olivgrün; die Färbungen sind ziemlich lichtbeständig (Kögl., Postowsky, A. 440, 20, 27).

Ammoniumsalz (NH₄)₂C₁₈H₁₀O₆. Gelbgrüne Krystalle (Kögl, Postowsky, A. 440, 26; vgl. a. Thörner, B. 11, 534; 12, 1631). Leicht löslich in Wasser und verd. Alkohol mit violetter Farbe, sehr schwer in Aceton und siedendem absolutem Alkohol, unlöslich in Chloroform, Äther, Schwefelkohlenstoff, Ligroin, Benzol und Toluol (Th., B. 12, 1631). Absorptionsspektrum in Alkohol: Th., B. 12, 1630. Wird leicht hydrolysiert (Th., B. 12, 1631). Gibt mit Metallsalzen farbige Niederschläge (Th., B. 12, 1631; K., P., A. 440, 27). — Pyridinsalz. Hellbraupe Nadeln (K. P. 4 448, 445) Hellbraune Nadeln (K., P., A. 445, 165).

$$I. \quad \underbrace{\text{Ho} \cdot \textbf{C}_{6}\textbf{H}_{4} \cdot \textbf{OH}}_{\textbf{O}} \quad \underbrace{\text{O}}_{\textbf{O}} \cdot \textbf{C}_{6}\textbf{H}_{4} \cdot \textbf{OH}}_{\textbf{O}} \quad III. \quad \underbrace{\text{Ho} \cdot \textbf{C}_{6}\textbf{H}_{4} \cdot \textbf{OH}}_{\textbf{O}} \quad \underbrace{\text{O}}_{\textbf{O}} \cdot \textbf{C}_{6}\textbf{H}_{4} \cdot \textbf{OH}}_{\textbf{O}} \quad III. \quad \underbrace{\text{CH}_{3} \cdot \textbf{O} \cdot \textbf{O}}_{\textbf{O}} \cdot \underbrace{\textbf{O} \cdot \textbf{CH}_{3}}_{\textbf{O}} \cdot \textbf{O} \cdot \textbf{CH}_{3}$$

3-0xy-6-methoxy-2.5-bis-[4-oxy-phenyl]-benzochinon-(1.4), Atromentin-3-methyläther $C_{19}H_{14}O_{6}$, Formel II. B. Bei der Einw. von methylalkoholischer Kalilauge auf Atromentintetraacetat (Kögl, Becker, A. 465, 216, 226). — Rotbraune Krystalle (aus Alkohol). F: 239°

(unkorr.). — Liefert bei kurzem Kochen mit 1n-Natronlauge Atromentin. Beim Behandeln mit Diazomethan entsteht Atromentin-3.6-dimethyläther. Beim Aufkochen mit Acetanhydrid und etwas konz. Schwefelsäure bildet sich Atromentin-3-methyläther-6.4'.4"-triacetat. Bei der Reduktion mit wäßrig-alkoholischer Na₂S₂O₄-Lösung und nachfolgenden Behandlung mit Acetanhydrid und etwas konz. Schwefelsäure erhält man Leukoatromentin-methyläther-pentaacetat (E II 6, 1164).

- 3.6-Dimethoxy-2.5-bis-[4-oxy-phenyl]-benzochinon-(1.4), Atromentin-3.6-dimethyläther $C_{20}H_{16}O_6$, Formel III auf S. 589. B. Bei der Einw. von Diazomethan auf Atromentin in Äther oder Äther + Äthylacetat (Kögl., Postowsky, A. 440, 29; K., Becker, A. 465, 227) oder auf Atromentin-3-methyläther in Äther (K., B., A. 465, 228). In geringer Menge beim Erhitzen von 2.5-Bis-[4-oxy-phenyl]-benzochinon-(1.4) mit absol. Methanol und geschmolzenem Zinkchlorid im Rohr auf 160° (K., A. 465, 245, 252). Violette Nadeln (aus wäßr. Pyridin). Schmilzt je nach Art des Erhitzens zwischen 270° und 310° (K., B.). Löslich in Alkalien mit rotbrauner Farbe (K., P.). Die Lösung in konz. Schwefelsäure ist schmutzig dunkelgrau und wird nach Zusatz von Borsäure grün (K., P.). Gibt bei kurzem Erhitzen mit Sodalösung Atromentin (K., B.; K.). Beim Behandeln mit Dimethylsulfat in methylalkoholischer Kalilauge bildet sich Atromentin-tetramethyläther (K., B.).
- 3.6 Dioxy-2.5 bis [4-methoxy-phenyl] benzochinon (1.4), Atromentin-4'.4"-dimethyläther $C_{20}H_{16}O_{6}$, Formel IV. B. In geringer Menge beim Behandeln von 4-Methoxy-phenylessigsäure-methylester mit Natrium in absol. Äther und Schütteln des Reaktionsprodukts mit Oxalsäurediäthylester unter Durchleiten von Sauerstoff (Kögl., A. 465, 244, 251). Bei kurzem Kochen von Atromentin-3.4'.4"-trimethyläther mit Sodalösung (K., Becker, A. 465, 231). Braune Blättchen (aus Eisessig). F: 290° (unkorr.) (K., B.). Liefert beim Erhitzen mit Jodwasserstoffsäure (D: 1,7) in Eisessig und Erwärmen des Reaktionsprodukts mit 0,1 n-Natronlauge Atromentin (K.).
- 3-0xy-6-methoxy-2.5-bis-[4-methoxy-phenyl]-benzochinon-(1.4), Atromentin-3.4'.4"-trimethyläther $C_{21}H_{18}O_6$, Formel V. B. Beim Erhitzen von Atromentin-tetramethyläther mit methylalkoholischer Kalilauge auf dem Wasserbad (Kögl., Becker, A. 465, 231). Rotbraune Nadeln (aus Methanol). F: 167^0 (unko.r.). Liefert bei kurzem Kochen mit Sodalösung Atromentin-4'.4"-dimethyläther.

- 3.6-Dimethoxy-2.5-bis-[4-methoxy-phenyl]-benzochinon-(1.4), Atromentin-tetramethyläther C₂₂H₂₀O₆, Formel VI. B. Beim Behandeln von Atromentin-3.6-dimethyläther mit Dimethylsulfat in methylalkoholischer Kalilauge (Kögl, Becker, A. 465, 217, 229). Aus Atromentin-4'.4''-dimethyläther und Diazomethan in Äther + Methanol (Kögl, A. 465, 244, 252). Beim Behandeln von Leukoatromentin mit Diazomethan in Äther + Methanol und Einengen des Reaktionsgemisches an der Luft (K., B., A. 465, 217, 229). Rotbraune Nadeln (aus Eisessig). F: 199° (unkorr.) (K., B.). Gibt bei der Reduktion mit Na₂S₂O₄-Lösung und Methylierung des Reaktionsprodukts mit Diazomethan oder Dimethylsulfat Leukoatromentin-hexamethyläther (E II 6, 1164) (K., B.). Liefert beim Erhitzen mit methylalkoholischer Kalilauge auf dem Wasserbad Atromentin-3.4'.4''-trimethyläther (K., B.).
- 3-Methoxy-6-äthoxy-2.5-bis-[4-methoxy-phenyl]-benzochinon-(1.4), Atromentin-3.4'.4''-trimethyläther-6-äthyläther $C_{23}H_{22}O_6$, Formel VII. B. Beim Behandeln von Atromentin-3.6-dimethyläther in Äthylalkohol mit Dimethylsulfat und methylalkoholischer Kalilauge (Köcl., Becker, A. 465, 217, 230). Orangefarbene Krystalle (aus Eisessig). F: 186° (unkorr.). Liefert beim Kochen mit 0,1 n-methylalkoholischer Kalilauge Atromentin-tetramethyläther. Bei der Reduktion mit $Na_2S_2O_4$ -Lösung und Methylierung des Reaktionsprodukts mit Dimethylsulfat in methylalkoholischer Kalilauge erhält man Leukoatromentin-hexamethyläther (E II 6, 1164).

$$\text{VII.} \quad \underbrace{\overset{C_{3}H_{5} \cdot O}{\text{C}_{6}H_{4} \cdot O \cdot CH_{3}}}_{\text{C} \cdot C_{6}H_{4} \cdot O \cdot CH_{3}} \quad \text{VIII.} \quad \underbrace{\overset{CH_{3} \cdot O}{\text{C}_{6}H_{4} \cdot O \cdot C}}_{\text{C} \cdot C_{6}H_{4} \cdot O \cdot CO \cdot CH_{3}}_{\text{C} \cdot C_{6}H_{4} \cdot O \cdot CO \cdot CH_{3}}$$

3.6-Dimethoxy-2.5-bis-[4-acetoxy-phenyl]-benzochinon-(1.4), Atromentin-3.6-dimethyläther-4'.4''-diacetat $C_{24}H_{20}O_8$, Formel VIII. B. Bei kurzem Kochen von Atromentin-3.6-dimethyläther mit Acetanhydrid und wenig konz. Schwefelsäure (Kögl., Becker, A. 465, 228). —

Orangefarbene Nadeln (aus Eisessig). F: 212º (unkorr.). — Liefert bei der Oxydation mit Chromtrioxyd in Eisessig 4-Acetoxy-benzoesäure.

3-Methoxy-6-acetoxy-2.5-bis-[4-acetoxy-phenyi]-benzochinon-(1.4), Atromentin-3-methyläther-6.4'.4"-triacetat $C_{25}H_{20}O_9$, Formel IX. B. Beim Aufkochen von Atromentin-3-methyläther mit Acetanhydrid und einem Tropfen konz. Schwefelsäure (Kögl., Becker, A. 465, 227). — Gelbe Nadeln (aus Alkohol). F: 202° (unkorr.).

- 3.6-Diacetoxy-2.5-bis-[4-acetoxy-phenyl]-benzochinon-(1.4), Atromentin-tetraacetat $C_{26}H_{20}O_{10}$, Formel X. B. Aus Atromentin beim Erhitzen mit Acetanhydrid im Rohr auf 140° bis 150° (Thörner, B. 11 [1878], 534), beim Kochen mit Natriumacetat und Acetanhydrid (Kögl, Postowsky, A. 440, 27) oder bei kurzem Aufkochen mit Acetanhydrid und etwas konz. Schwefelsäure (K., Becker, A. 465, 224). — Gelbe Krystalle (aus Eisessig). Krystallographisches: Steinmetz, A. 440, 28. F: 242° (unkort.) (K., B.). — Liefert beim Kochen mit Chromtrioxyd in Eisessig 4-Acetoxy-benzoesäure (K., P., A. 445, 166). Bei der Reduktion mit Zinkstaub in Eisessig oder wäßrig-alkoholischer Na₂S₂O₄-Lösung bildet sich Leukoatromentin-tetraacetat (E II 6, 1164) (K., P., A. 445, 165; K., B.). Bei der Einw. von methylalkoholischer Kalilauge entsteht Atromentin-3-methyläther (K., B.). Spaltet beim Behandeln mit wäßr. Pyridin eine Acetylgruppe ab (K., B.).
- 3'.3''(?)-Dinitro-atromentin $C_{18}H_{10}O_{10}N_2$, Formel XI. B. In geringer Menge neben anderen Verbindungen beim Kochen von Atromentin mit 18% iger Salpetersäure (Kögl., Postowsky, A. 445, 166; vgl. Thörner, B. 12, 1632). — Gelbe Nadeln (aus Eisessig). Schmilzt noch nicht bei 300°; verbrennt unter leichter Verpuffung (K., P.). Schwer löslich in den gebräuchlichen organischen Lösungsmitteln (K., P.). Löslich in Alkalien sowie in konz. Schwefelsäure mit rotbrauner Farbe (K., P.).

Triacetylderivat $C_{24}H_{16}O_{13}N_2=(O_2N)_2C_{18}H_6(:O)_2(OH)(O\cdot CO\cdot CH_3)_3$. B. Beim Behandeln von 3'.3''(?)-Dinitro-atromentin mit Acetanhydrid und Pyridin (Kögl., Postowsky, A. 445, 167). — Gelbe Prismen (aus Nitrobenzol). F: 282—284° (Zers.).

2. 2.5 - Bis - [2.4 - dioxy - phenyl] - benzochinon - (1.4), Diresorcylchinon $C_{18}H_{12}O_6$, Formel XII. B. Bei der Oxydation von Diresorcylchinhydron (s. u.) mit Chinon in siedendem Wasser (Pummerer, Huppmann, B. 60, 1447). — Dunkelbraune Nadeln (aus Wasser). F: 345° . Unlöslich in Chloroform, Schwefelkohlenstoff und Ligroin, leicht löslich in Alkohol, Aceton, Essigester und Alkalien. — Färbt chromgebeizte Wolle intensiv dunkelbraun.

Verbindung mit 2.5-Bis-[2.4-dioxy-phenyl]-hydrochinon, Diresorcylchin-hydron $C_{18}H_{12}O_6+C_{18}H_{14}O_6$. B. Aus Chinon und Resorcin in verd. Schwefelsäure bei Zimmertemperatur (Pummerer, Huppmann, B. 60, 1444, 1447). Krystalle (aus Wasser). Ziemlich schwer löslich in Äther mit brauner Farbe. Löst sich in heißem Wasser mit braunroter, in Sodalösung mit rotbrauner, in Natronlauge mit olivbrauner Farbe. Die Lösung in konz. Schwefelsäure ist anfangs blaugrün und wird dann mißfarben gelb. Läßt sich durch Extraktion mit siedender Benedik mit Chinon in mit siedendem Benzol in die Komponenten zerlegen. Liefert beim Behandeln mit Chinon in siedendem Wasser Diresorcylchinon. Bei der Reduktion mit Zinn(II)-chlorid in siedendem Eisessig entsteht Diresorcylhydrochinon (E II 6, 1165).

2. Oxy-oxo-Verbindungen $C_{10}H_{14}O_6$.

1. 2.2'.4'.2''.4''-Pentaoxy-fuchson, Resaurin $C_{19}H_{14}O_6 = [(HO)_{9}C_{6}H_{3}]_{9}C:C < CH = CH > CO (H 557; E I 759). B. Entsteht, meist in geringer Menge$ neben anderen Produkten, bei der Umsetzung von 3 Mol Resorcin mit 1 Mol Cyanamid bei 170°, mit 1 Mol Dibenzyleyanamid unter Durchleiten von Chlorwasserstoff in Äther, mit 3 Mol Carbodiphenylimid-dihydrochlorid in Äther unter nachfolgendem Erhitzen des Reaktionsprodukts auf 130° oder mit 1 Mol Zimtsäure in Gegenwart von Zinkehlorid bei 160° (Stober, SMITH, Soc. 121, 1805). — Färbt sich bei 230—240° dunkel, ohne zu schmelzen. Unlöslich in

OXY-OXO-VERBINDUNGEN C_nH_{2 n-24}O₆ BIS C_nH_{2 n-32}O₆ [Syst. Nr. 854

Chloroform, Petroläther, Benzol und Toluol, schwer löslich in Wasser und Äthylacetat, leicht in Methanol. Leicht löslich in Natriumcarbonat-Lösung, schwer in Natriumdicarbonat-Lösung. Die Lösungen in Alkalien sind dunkelrot. Verdünnte Lösungen fluorescieren grün, besonders bei Gegenwart von etwas Ammoniak.

XIII.
$$\mathbf{R} \cdot \mathbf{O} \cdot \mathbf{CH_{3}} \cdot \mathbf{C} \cdot \mathbf{CH} \cdot \mathbf{HC} \cdot \mathbf{CH_{3}} \cdot \mathbf{O} \cdot \mathbf{R}$$

2. 2.2'-Methenyl-bis-[4.5-dioxy-hydrindon-(1)] $C_{10}H_{14}O_{4}$, Formel XIII (R = H).

2.2'-Methenyl-bis-[4.5-dimethoxy-hydrindon-(1)] $C_{23}H_{23}O_6$, Formel XIII (R = CH₃). B. Beim Erhitzen von 4.5-Dimethoxy-2-oxymethylen-hydrindon-(1) auf 160° (RUHEMANN, B. 53, 276, 282). — Rote Prismen (aus Alkohol). F: 222°. Sehr schwer löslich in Alkohol.

i) Oxy-oxo-Verbindungen $C_n H_{2n-26} O_6$.

1. Oxy-oxo-Verbindungen $C_{18}H_{10}O_6$.

1.4.5.8-Tetraoxy-2.3-benzo-anthrachinon (?), 1.4.9.10-Tetraoxy-naphthacenchinon-(11.12)(?) C₁₈H₁₀O₆, Formel I. B. Beim Erhitzen von 5.8-Dioxy-2.3-dihydro-naphthochinon-(1.4) (E II 6, 1126) mit Phthalsäureanhydrid in Gegenwart von Aluminiumchlorid + Natriumchlorid auf 220° (Zahn, Ochwat, A. 462, 85). — Rötlichbraune Blättchen (aus Nitrobenzol). Schmilzt oberhalb 300°. Sehr schwer löslich in den üblichen Lösungsmitteln mit roter Farbe. Die Lösung in verd. Natronlauge ist blauviolett. Die rötlichblaue Lösung in konz. Schwefelsäure wird auf Zusatz von Borsäure grünblau.

1.4.5.8 - Tetraacetoxy - 2.3 - benzo - anthrachinon (?) $C_{26}H_{18}O_{10} = (CH_3 \cdot CO \cdot O)_4C_{18}H_6O_2$. B. Beim Behandeln von 1.4.5.8-Tetraoxy-2.3-benzo-anthrachinon (?) mit Acetanhydrid in Gegenwart von etwas konz. Schwefelsäure (Zahn, Ochwar, A. 462, 85). — Gelbe Nadeln. Wird beim Erhitzen allmählich rot und zersetzt sich.

2. Oxy-oxo-Verbindungen C₂₂H₁₈O₆.

- 1. 1.5 Dimethyl 2.4 bis [2.5 dioxy benzoyl] benzol $C_{22}H_{18}O_6$, Formel II (R = H).
- 1.5 Dimethyl 2.4 bis [2 oxy-5-methoxy-benzoyl] benzol, 4.6-Bis [2 oxy-5-methoxy-benzoyl] m xylol $C_{24}H_{22}O_6$, Formel II ($R=CH_3$). B. Beim Erhitzen von 4.6-Dimethylisophthalsäure-dichlorid mit Hydrochinondimethyläther in Gegenwart von Aluminiumehlorid auf 150° (DE DIESBACH, Helv. 6, 544). Grünlichgelbe Prismen (aus verd. Essigsäure). F: 139° bis 140°. Leicht löslich in Chloroform, Äther, Eisessig und Benzol, unlöslich in Wasser. Die Lösungen in Alkalien sind gelb.
- 2. 1.5-Dimethyl-2.4-bis-[3.4-dioxy-benzoyl]-benzol $C_{12}H_{18}O_{4}$, Formel III (R = H).
- 1.5-Dimethyl-2.4-bis-[3.4-dimethoxy-benzoyl]-benzol, 4.6-Diveratroyl-m-xylol C₂₆H₂₆O₆, Formel III (R = CH₂). B. Durch Kondensation von 4.6-Dimethyl-isophthalsäure-dichlorid mit Veratrol in Gegenwart von Aluminiumchlorid (DE DIESBACH, STREBEL, Helv. 8, 566). Prismen. F: 137°.
- 3. 1.4 Dimethyl 2.5 bis [3.4-dioxy benzoyl] benzol $C_{22}H_{18}O_6$, Formel IV (R = H).
- 1.4-Dimethyl-2.5-bis-[3.4-dimethoxy-benzoyl]-benzol, 2.5-Diveratroyl-p-xylol $C_{26}H_{26}O_4$, Formel IV (R = CH_2). B. Aus 2.5-Dimethyl-terephthalsaure-dichlorid und Veratrol in Gegenwart von Aluminiumchlorid (DE DIESBACH, STREBEL, Helv. 8, 566). Krystalle (aus Nitrobenzol). F: 245°.

593

3. Oxy-oxo-Verbindungen CatHasO6.

1.4-Bis-[5. α . β -tribrom-4-oxy-3-methoxy-hydrocinnamoyl]-benzol, Tetrabromid des 1.4-Bis-[5-brom-feruloyl]-benzols $C_{36}H_{30}O_{\delta}Br_{\delta}$, Formel V. B. Bei der Einw. von Brom auf 1.4-Diferuloyl-benzol (s. u.) in Eisessig oder auf 1.4-Bis-[5-brom-feruloyl]-benzol (s. u.) in

Äthylenbromid (FINGER, SCHOTT, J. pr. [2] 115, 286, 287). — Tafeln (aus Äthylenbromid), Zersetzt sich bei ca. 235°. Unlöslich in fast allen gebräuchlichen Lösungsmitteln, löslich in Pyridin mit roter Farbe (Reaktion mit dem Lösungsmittel?). Die Lösungen in Alkalien sind gelb.

k) Oxy-oxo-Verbindungen $C_n H_{2n-28} O_6$.

,, Iso - bis - $[\beta$ - naphthalinsulfoxyd - β - naphthochinon] " $C_{10}H_7 \cdot SO$ SO $\cdot C_{10}H_7$ $C_{40}H_{24}O_6S_2$, dem vielleicht die nebenstehende Konstitution zukommt, s. E II 6, 1095.

1) Oxy-oxo-Verbindungen $C_n H_{2n-80} O_6$.

1.4 - Bis - [4 - oxy - 3 - methoxy-cinnamoyi] - benzol, 1.4 - Diferuloyl-benzol C₂₆H₂₂O₆, s. nebenstehende Formel. B. Bei 8-tägigem Aufbewahren

von 1.4-Diacetyl-benzol mit überschüssigem Vanillin in Eisessig bei Gegenwart von wenig konz. Schwefelsäure (Finger, Schott, J. pr. [2] 115, 285). — Gelbe bis braune Krystalle (aus Alkohol oder Eisessig). F: 229°. Die Lösung in konz. Schwefelsäure ist blauviolett. Löslich in verd. Alkalien und Ammoniak mit roter Farbe, in alkoh. Ammoniak mit violetter Farbe, die beim Verdünnen mit Wasser langsam in Rot übergeht. Bei der Titration mit Alkalien erfolgt bei p_H 8 ein Farbumschlag von Blaßgelb nach Gelbbraun, bei p_H 10 nach Rotgelb. — Zersetzt sich beim Kochen mit konz. Natronlauge. Liefert mit Brom in Eisessig das Tetrabromid des 1.4-Bis-[5-brom-feruloyl]-benzols (s. o.).

1.4-Bis-acetylferuloyl-benzol $C_{30}H_{26}O_8=[CH_3\cdot CO\cdot O\cdot C_8H_3(O\cdot CH_3)\cdot CH\cdot CH\cdot CO]_2C_8H_4$. В. Beim Kochen von 1.4-Diferuloyl-benzol mit Acetanhydrid und Natriumacetat (FINGER, Schott, J. pr. [2] 115, 286). — Gelbe Prismen (aus Eisessig). F: 259°. Unlöslich in Alkohol und Äther, löslich in heißem Eisessig und heißem Acetanhydrid. Löst sich in konz. Schwefelsäure mit violetter Farbe. — Wird durch heiße Alkalien verseift.

1.4-Bis-[5-brom-feruloyl]-benzol $C_{26}H_{20}O_6Br_2=[CH_3\cdot O\cdot C_6H_2Br(OH)\cdot CH:CH\cdot CO]_2C_6H_4$. B. Bei ca. 10-tägigem Aufbewahren von 1.4-Diacetyl-benzol mit überschüssigem 5-Bromvanillin in Eisessig in Gegenwart von wenig konz. Schwefelsäure (FINGER, SCHOTT, J. pr. [2] 115, 286). — Gelbe Nadeln (aus Eisessig). F: 256°. Sehr schwer löslich in den gebräuchlichen Lösungsmitteln. Die Lösungen in Alkalilaugen sind rot, die Lösung in konz. Schwefelsäure ist dunkelviolett. — Gibt mit Brom in heißem Äthylenbromid das Tetrabromid des 1.4-Bis-[5-brom-feruloyl]-benzols (s. o.).

m) Oxy-oxo-Verbindungen $C_n H_{2n-32} O_6$.

1.4.5.8 - Tetraoxy - 2.3; 6.7 - dibenzo - anthrachinon,
5.7.12.14 - Tetraoxy - pentacenchinon - (6.13) C₂₂H₁₂O₃, s.
nebenstehende Formel. B. Beim Erhitzen von 1.4.10-Trioxyanthron-(9) (S. 478) mit überschüssigem Phthalsäureanhydrid in Gegenwart von Aluminiumchlorid auf 240° (FIESER, Am. Soc. 58 [1931],
3559; vgl. Bayer & Co., D.R.P. 298345; Frdl. 13, 391). — Grüne
Nadeln (aus Nitrobenzol). Unlöslich in den gewöhnlichen Lösungsmitteln, löslich in Nitrobenzol
mit roter Farbe (F.). Die Lösung in konz. Schwefelsäure ist grünblau (F.), blau mit roter Fluorescenz (Bayer & Co.). Löst sich in Alkalien mit blauer Farbe (Bayer & Co.; vgl. a. F.). —

594

Gibt beim Erhitzen mit Acetanhydrid und Borsäure-essigsäure-anhydrid eine blaue Lösung mit roter Fluorescenz (F.).

1.4.5.8 -Tetraacetoxy-2.3; 6.7-dibenzo-anthrachinon $C_{30}H_{30}O_{10} = (CH_3 \cdot CO \cdot O)_4C_{32}H_8O_3$. B. Beim Behandeln von 1.4.5.8 -Tetraoxy-2.3; 6.7-dibenzo-anthrachinon mit Acetanhydrid in Pyridin (Firser, Am. Soc. 53 [1931], 3559). — Orangefarbene Nadeln (aus Acetanhydrid). F: 315° (Zers.).

n) Oxy-oxo-Verbindungen $C_n H_{2n-34} O_6$.

Oxy-oxo-Verbindungen C22H10O6.

1. 1.8 - Dioxy - pentacendichinon - (5.14;7.12) $C_{22}H_{10}O_6$, Formel I. Zur Konstitution vgl. Machek, M. 58/54, 659; 55 [1930], 49. — B. Beim Diazotieren von 1.8-Diaminopentacendichinon-(5.14;7.12) in schwefelsaurer Lösung und Verkochen der Diazoniumsalz-Lösung (M., M. 58/54, 661, 665). — Orangegelbe Nadeln (aus Pyridin oder Nitrobenzol). F: 375° bis 380° (unter Dunkelfärbung). Sublimiert im Hochvakuum bei 270°. Sehr schwer löslich bis unlöslich in den gewöhnlichen Lösungsmitteln, löslich in heißem Pyridin und Nitrobenzol mit brauner Farbe. Löslich in konz. Schwefelsäure mit dunkelroter, in Alkalien mit rotvioletter Farbe. — Gibt mit Na $_2$ S $_2$ O $_4$ -Lösung eine blaugrüne Küpe, aus der sich durch Oxydation mit Luft das blauviolette Natriumsalz ausscheidet.

2. 1.11-Dioxy - pentacendichinon - (5.14;7.12) $C_{22}H_{10}O_6$, Formel II. Zur Konstitution vgl. Macher, M. 58/54, 659; 55 [1930], 49. — B. Analog der vorhergehenden Verbindung (M., M. 58/54, 661, 666). — Rotbraune Krystalle (aus Nitrobenzol). F: 304—305° (unter Dunkelfärbung). Sublimiert im Hochvakuum bei etwa 300°. Löst sich in konz. Schwefelsäure mit rotbrauner Farbe.

3. 2.9-Dioxy-pentacendichinon-(5.14; 7.12) $C_{22}H_{10}O_6$, Formel III.

1.4.8.11-Tetrabrom-2.9-dioxy-pentacendichinon-(5.14;7.12) (?), 1.4.8.11-Tetrabrom-2.9-dioxy-dinaphthanthracen-5.7.12.14-dichinon (?) C₂₂H₆O₆Br₄, Formel IV. B. Bei kurzem Erhitzen von 2.5-Bis-[2.5-dibrom-4-oxy-benzoyl]-terephthalsäure (?) mit konz. Schwefelsäure auf 200° (DE DIESBACH, STREBEL, Helv. 8, 560, 565). — Gelbliche Nadeln. Schmilzt nicht bis 330°. Schwer löslich in Nitrobenzol. Löslich in Alkalilauge mit roter Farbe. — Gibt eine grüne Hydrosulfitküpe.

4. 6.13-Dioxy-pentacendichinon-(5.14;7.12), 1.4-Dioxy-2.3-phthalyl-anthrachinon $C_{92}H_{10}O_{6}$, Formel V. Die Verbindung $C_{92}H_{10}O_{6}$ (H 10, 443), der diese Konstitution zugeschrieben wurde (vgl. Phillippi, M. 53/54, 641; Hernler, Sommer, M. 53/54, 647), wird von Marschalk (Bl. [5] 5 [1938], 156, 162) als Dilacton der 1.4.1'.4'-Tetraoxy-dinaphthyl-(2.2')-dicarbonsäure-(3.3') (Formel VI; Syst. Nr. 2842) erkannt.

o) Oxy-oxo-Verbindungen $C_n H_{2n-36} O_6$.

2.4.6-Trioxy-1.3.5-tribenzoyl-benzol, 2.4.6-Tribenzoyl-phloroglucin C₂₇H₁₈O₆, s. nebenstehende Formel. B. Beim Erhitzen von Phloroglucin-tribenzoat mit Aluminium-chlorid auf 130—140° (ROSENMUND, LOHFERT, B. 61, 2607). — Krystalle (aus Alkohol). F: 185°. Sehr schwer löslich in Wasser, schwer in kaltem, leicht in heißem Alkohol, sehr leicht in Tetra-chlorkohlenstoff.

$$\begin{array}{c} \textbf{HO} \cdot \\ \textbf{CO} \cdot \textbf{CGH}_5 \\ \textbf{OH} & \\ \textbf{OH} \end{array}$$

p) Oxy-oxo-Verbindungen $C_n H_{2n-38} O_6$.

1. Oxy-oxo-Verbindungen C28H18Oc.

- 1. 2.2'-Disalicoyl-benzil $C_{28}H_{18}O_6 = [HO \cdot C_6H_4 \cdot CO \cdot C_6H_4 \cdot CO \cdot C_9]_2$.
- 2.2'-Bis-[2-methoxy-benzoyl]-benzil, 2.2'-Di-o-anisoyl-benzil $C_{30}H_{22}O_6=[CH_3\cdot O\cdot C_6H_4\cdot CO\cdot C_6H_4\cdot CO-]_2$. B. Durch Oxydation von 9.12-Bis-[2-methoxy-phenyl]-diphensuccindadien-(9.11) (E II 6, 1051) mit Chromtrioxyd in Eisessig bei mäßiger Wärme (Brand, Hoffmann, B. 53, 818). Blaßgelbe Nadeln (aus Essigester oder Isoamylacetat). F: 244°. Sehr schwer löslich in Tetrachlorkohlenstoff, Alkohol, Äther, Eisessig und Benzol, schwer in siedendem Essigester, löslich in heißem Isoamylacetat. Gibt beim Kochen mit o-Phenylendiamin in Eisessig 2.3-Bis-[2-(2-methoxy-benzoyl)-phenyl]-chinoxalin (Syst. Nr. 3637).
- 2.2'-Bis-[2-āthoxy-benzoyl]-benzil $C_{33}H_{36}O_6=[C_2H_5\cdot O\cdot C_6H_4\cdot CO\cdot C_6H_4\cdot CO\cdot C_9]_2$. B. Analog der vorhergehenden Verbindung (Brand, Krey, J. pr. [2] 110, 18). Gelbe Säulen (aus Tetralin). F: 244—245°. Fast unlöslich in Alkohol, Benzol, Essigester, Isoamylacetat, Tetrachlorkohlenstoff, Ligroin und kaltem Tetralin, leicht löslich in Pyridin und heißem Tetralin. Löst sich in konz. Schwefelsäure mit brauner Farbe. Beständig gegen Oxydationsmittel wie Chromessigsäure, Chromschwefelsäure oder Kaliumpermanganat in saurer oder alkalischer Lösung. Liefert beim Erhitzen mit Wasserstoffperoxyd in Pyridin + Kalilauge 2'-Äthoxy-benzophenon-carbonsäure-(2). Beim Behandeln mit Salpetersäure in Gegenwart von Vanadinpentoxyd entstehen geringe Mengen Phthalsäure (?). Zersetzt sich beim Lösen in heißer alkoholischer Kalilauge. Läßt sich mit o-Phenylendiamin in siedendem Eisessig, Pyridin oder Chinolin auch bei Gegenwart von ZnCl₂ nicht kondensieren.
 - 2. 2.2'-Bis-[4-oxy-benzoyl]-benzil $C_{28}H_{18}O_6 = [HO \cdot C_6H_4 \cdot CO
- 2.2'-Bis-[4-methoxy-benzoyl]-benzil, 2.2'-Dianisoyl-benzil $C_{30}H_{22}O_6=[CH_3\cdot O\cdot C_6H_4\cdot CO\cdot C_9H_4\cdot CO-]_8$. B. Durch Oxydation von 9.12-Bis-[4-methoxy-phenyl]-diphensuccindadien-(9.11) (E II 6, 1051) mit Chromtrioxyd in Eisessig bei mäßiger Wärme (Brand, Hoffmann, B. 53, 819). Gelbe Nadeln (aus Essigester). F: 214°. Sehr schwer löslich in Alkohol, schwer in Benzol, löslich in heißem Eisessig und Essigester. Liefert beim Kochen mit o-Phenylendiamin in Eisessig 2.3-Bis-[2-(4-methoxy-benzoyl)-phenyl]-chinoxalin (Syst. Nr. 3637).
- 2.2'-Bis-[4-äthoxy-benzoyl]-benzil $C_{32}H_{36}O_6=[C_2H_5\cdot O\cdot C_6H_4\cdot CO\cdot C_6H_4\cdot CO\cdot]_8$. B. Aus 9.12-Bis-[4-äthoxy-phenyl]-diphensuccindadien-(9.11) (E II 6, 1051) durch Oxydation mit Chromtrioxyd in Eisessig in der Kälte oder bei Siedetemperatur oder mit Kaliumpermanganat in siedendem Aceton bei Gegenwart von Magnesiumsulfat (Brand, Krey, J. pr. [2] 110, 19). Gelbe Blättchen (aus Isoamylacetat). F: 215—216°. Schwer löslich in den meisten Lösungsmitteln, aus Benzol, Eisessig und Essigester umkrystallisierbar. Löst sich in konz. Schwefelsäure mit brauner Farbe. Liefert beim Erhitzen mit Wasserstoffperoxyd in Pyridin + Kalilauge 4'-Äthoxy-benzophenon-carbonsäure-(2). Zersetzt sich beim Lösen in alkoh. Kalilauge. Kondensiert sich mit o-Phenylendiamin in siedendem Eisessig zu 2.3-Bis-[2-(4-äthoxy-benzoyl)-phenyl]-chinoxalin (Syst. Nr. 3637).
- 3. 1.2.1'.2' Tetraoxy 10.10' dioxo 9.10.9'.10' tetrahydro dianthranyl (9.9'), 1.2.1'.2' Tetraoxy dihydrodianthron (Tetraoxydianthron) bzw. 1.2.10.1'.2'.10' Hexaoxy dianthranyl (9.9') C₂₈H₁₈O₆, Formel I bzw. desmotrope Form. B. Beim Erhitzen von 1.2.10-Triacetoxy-anthracen mit Eisenchlorid in Eisessig auf 85° und nachfolgenden Behandeln mit Salzsäure (Goodall, Perkin, Soc. 125, 474). Gelbe Nadeln (aus Alkohol). F: 268—270° (Zers.). Schwer löslich in Alkohol. Die Lösung in Schwefelsäure ist gelb und wird auf Zusatz von Salpetersäure violett. Liefert bei der Einw. von Isoamylnitrit in essigsaurer Lösung Alizarin. Gibt bei aufeinanderfolgender Einw. von Diazomethan in Ather und von Dimethylsulfat in alkal. Lösung 1.2.1'.2'-Tetramethoxy-dihydrodianthron. Beim Kochen mit überschüssiger alkoholischer Schwefelsäure bildet sich 1.1'-Dioxy-2.2'-diäthoxy-dihydrodianthron. Beim Behandeln mit Essigsäureanhydrid in Gegenwart oder Abwesenheit von Pyridin oder Schwefelsäure erhält man 1.2.10.1'.2'.10'-Hexaacetoxy-dianthranyl-(9.9') (E II 6, 1167). Färbt metallgebeizte Wolle gelb bis braun.

1.1'-Dioxy-2.2'-dimethoxy-dihydrodianthron, Dioxy-dimethoxy-dianthron $C_{30}H_{22}O_6$, Formel II (R = H). B. Durch Einw. von Diazomethan auf Desoxyalizarin (S. 372) in Ather's

596

(Perkin, Story, Soc. 1929, 1406, 1419, 1420). — Prismen (aus Eisessig). F: 290—292°. Schwerlöslich. — Liefert bei der Oxydation mit Chromessigsäure Alizarin-2-methyläther.

- 1.2.1'.2'-Tetramethoxy-dihydrodianthron, Tetramethoxy dianthron C₃₃H₂₆O₆, Formel II auf S. 595 (R = CH₃). B. Aus 1.2.1'.2'-Tetraoxy-dihydrodianthron bei aufeinander-folgender Einw. von Diazomethan in Äther und Dimethylsulfat in alkal. Lösung (Goodall, Perkin, Soc. 125, 475). Beim Behandeln von 1.1'-Dioxy-2.2'-diäthoxy-dihydrodianthron mit überschüssigem Dimethylsulfat in alkal. Lösung (G., P.). Nadeln (aus Eisessig). F: 255—256°.
- 1.1'-Dioxy-2.2'-diäthoxy-dihydrodianthron, Dioxy-diāthoxy-dianthron $C_{28}H_{26}O_6$, Formel III. B. Beim Kochen von 1.2.1'.2'-Tetraoxy-dihydrodianthron mit überschüssiger alkoholischer Schwefelsäure (GOODALL, PERKIN, Soc. 125, 474). Tafeln (aus Alkohol + Aceton). F: 271—274°. Schwer löslich. Liefert bei der Oxydation mit Chromtrioxyd in essigsaurer Lösung Alizarin-2-äthyläther. Bei der Einw. von überschüssigem Dimethylsulfat in alkal. Lösung bildet sich 1.2.1'.2'-Tetramethoxy-dihydrodianthron. Gibt bei der Acetylierung in Gegenwart von Pyridin 2.2'-Diäthoxy-1.10.1'.10'-tetraacetoxy-dianthranyl-(9.9)' (E II 6, 1167).

III.
$$\begin{bmatrix} c_3H_5 \cdot 0 & \vdots & \vdots & \vdots & \vdots \\ c_0 & \vdots & \vdots & \vdots & \vdots \\ c_0 & \vdots & \vdots & \vdots \\ c_0 & \vdots & \vdots & \vdots \\ c_0 $

- 4. 3.4.3'.4'-Tetraoxy-10.10'-dioxo-9.10.9'.10'-tetrahydro-dianthranyl-(9.9'), 3.4.3'.4'-Tetraoxy-dihydrodianthron $C_{28}H_{18}O_6$, Formel IV (R und R' = H).
- 4.4'-Dimethoxy-3.3'-bis-carbäthoxyoxy-dihydrodianthron C_3 ; $H_{30}O_{10}$, Formel IV ($R=CH_3$, $R'=CO_3\cdot C_2H_5$). B. Neben anderen Produkten bei der Einw. von Diazomethan auf 1-Oxy-2-carbäthoxyoxy-anthron-(9) in Aceton in Wasserstoff-Atmosphäre (Perkin, Story, Soc. 1929, 1419). Krystalle. F: ca. 290°. Schwer löslich. Liefert bei der Oxydation mit Chromessigsäure und Hydrolyse des Reaktionsprodukts mit methylalkoholischer Kalilauge Alizarin-1-methyläther.

2. Oxy-oxo-Verbindungen $C_{30}H_{22}O_{6}$.

4.4'-Bis-[4-oxy-3-methoxy-cinnamoyl]-diphenyl,
4.4'-Diferuloyl-diphenyl C₃₂H₂₆O₆, Formel V. B. V. Bei 3-tägiger Einw. von überschüssigem Vanillin auf 4.4'-Diacetyl-diphenyl in Eisessig bei Gegenwart von wenig konz. Schwefelsäure (FINGER, SCHOTT, J. pr. [2] 115, 290). — Gelbbraune Nadeln (aus Eisessig). F: 223°. Die Lösung in konz. Schwefelsäure ist bläulichrot. Löslich in verd. Alkalien und Ammoniak mit gelber, in konz. Ammoniak mit roter Farbe. Ist als Indikator verwendbar; bei p_H 10 erfolgt ein Farbumschlag von Farblos nach Bräunlich, bei p_H 11 ein schärferer Umschlag nach Rotgelb.

q) Oxy-oxo-Verbindungen $C_n H_{2n-42} O_6$.

1. Oxy-oxo-Verbindungen CasH14O6.

1. 2.2'-Dioxy-dianthrachinonyl-(1.1') C₂₈H₁₄O₆, Formel I (E I 760). B. Beim Kochen von 1-Chlor-2-benzoyloxy-anthrachinon oder besser von 1-Brom-2-benzoyloxy-anthrachinon mit Kupferpulver in Naphthalin und Behandeln des Reaktionsprodukts mit siedender 1 % iger methylalkoholischer Kalilauge (HARDACRE, PERKIN, Soc. 1929, 181, 186, 187). Beim Erhitzen von nicht näher beschriebenem Bis-[2-oxy-anthrachinonyl-(1)]-disulfid mit Kupferpulver und Naphthalin auf 230-240° (KOPETSCHNI, D.R.P. 362984; C. 1928 II, 1030; Frdl. 14, 854). Bei der Oxydation von 2.2'-Diacetoxy-helianthron (S. 526) mit siedender Chromessigsäure und Hydrolyse des entstandenen 2.2'-Diacetoxy-dianthrachinonyls-(1.1') mit Schwefelsäure in siedendem Eisessig (Haller, Perkin, Soc. 125, 236; vgl. Har., P., Soc. 1929, 181). — Orangegelbe Prismen oder Blättchen (aus Nitrobenzol). Schmilzt nicht bis 350° (HALLER, P.). Die Lösung in Schwefelsäure ist scharlachrot und wird am Tageslicht zunächst karminrot, dann violett und schließlich schwarzviolett (HALLER, P.). Löst sich in verd. Alkalilauge mit karminroter Farbe (HALLER, P.). - Liefert bei allmählichem Eintragen von Zinkstaub in die siedende ammoniakalische Lösung 3-Oxy-anthron-(9) und 2.2'-Dioxy-dianthronyl-(1.1') (S. 524); fügt man dagegen den Zinkstaub auf einmal hinzu, so erhält man nur die letztgenannte Verbindung (Hab., P.). Beim Kochen mit Zinn(II)-chlorid und Salzsäure entstehen 2.2'-Dioxy-dianthronyl-(1.1'), etwas 2.2'-Dioxy-helianthron (S. 526) und wahrscheinlich etwas 3-Oxy-anthron-(9) (HAR., P.). — Natriumsalz. Schwarzviolett (KOPETSCHNI).

DIOXYDIANTHRACHINONYL

- 2.2'-Dimethoxy-dianthrachinonyl-(1.1') C₃₀H₁₈O₆ = [C₆H₄(CO)₂C₆H₂(O·CH₃)-]₂ (E I 760).

 B. Bei wiederholter Behandlung von 2.2'-Dioxy-dianthrachinonyl-(1.1') mit Dimethylsulfat und Alkalilauge (Haller, Perkin, Soc. 125, 236). Gelbe Prismen (aus Eisessig). F: ca. 343° bis 344°. Löst sich in Schwefelsäure mit scharlachroter Farbe.
- 2.2'-Diacetoxy-dianthrachinonyl-(1.1') $C_{32}H_{18}O_8 = [C_6H_4(CO)_2C_6H_2(O \cdot CO \cdot CH_3)-]_2$. B. s. im Artikel 2.2'-Dioxy-dianthrachinonyl-(1.1'). Entsteht ferner beim Behandeln von 2.2'-Dioxy-dianthrachinonyl-(1.1') mit Acetanhydrid in Pyridin (Hardacre, Perkin, Soc. 1929, 186). Gelbe Tafeln (aus Acetanhydrid). F: 278—279° (Har., P.). Die Lösung in Sohwefelsäure ist scharlachrot und wird allmählich schwarz (Har., P.). Liefert beim Erhitzen mit Zinn(II)-chlorid und Salzsäure 2.2'-Dioxy-helianthron (Haller, Perkin, Soc. 125, 236).

- 2. 4.4'-Dioxy-dianthrachinonyl-(1.1') C₂₈H₁₄O₆, Formel II (E I 760). B. Beim Erwärmen von 4.4'-Dimethoxy-dianthrachinonyl-(1.1') mit konz. Schwefelsäure und Borsäure auf 150° (Eckert, Hampel, B. 60, 1697). Gibt beim Erwärmen mit Salpetersäure (D: 1,48) in Eisessig x-Nitro-4.4'-dioxy-dianthrachinonyl-(1.1'); zersetzt sich beim Erwärmen mit Salpetersäure (D: 1,48) in konz. Schwefelsäure.
- 4.4'- Dimethoxy-dianthrachinonyl-(1.1') $C_{30}H_{18}O_6 = [C_6H_4(CO)_2C_6H_2(O\cdot CH_3)-]_2$. B. Beim Erhitzen von 4-Chlor- oder 4-Brom-1-methoxy-anthrachinon mit Kupferpulver in Nitrobenzol unter Rückfluß (Eckert, Hampel, B. 60, 1697). Braune Krystalle (aus Nitrobenzol). Die Lösung in konz. Schwefelsäure ist braunrot. Liefert beim Behandeln mit Kupferpulver in konz. Schwefelsäure bei 40° 4.4'-Dimethoxy-helianthron.
- 3.3'-Dibrom-4.4'-dioxy-dianthrachinonyl-(1.1') C₂₈H₁₂O₆Br₂, Formel III. B. Beim Erhitzen von 4.4'-Dioxy-dianthrachinonyl-(1.1') mit Brom in Nitrobenzol auf 120—130° (ECKERT; HAMPEL, B. 60, 1697). Aus 3.3'-Dibrom-4.4'-dimethoxy-dianthrachinonyl-(1.1') durch Erhitzen mit konz. Schwefelsäure und Borsäure auf 150° (E., H.). Orangerote Nadeln. Sehr schwer löslich in Nitrobenzol. Die Lösung in konz. Schwefelsäure ist bräunlichgelb. Löst sich in verd. Kalilauge violettrot, beim Erkalten scheidet sich das Kaliumsalz aus. Wird durch methylalkoholische Kalilauge auch bei 130° unter Druck nicht angegriffen; bei höherer Temperatur erfolgt Zersetzung.
- 3.3'- Dibrom-4.4'- dimethoxy- dianthrachinonyl-(1.1') $C_{30}H_{16}O_6Br_2 = [C_6H_4(CO)_2C_6HBr(O\cdot CH_3)-]_2$. B. Beim Erhitzen von 2.4-Dibrom-1-methoxy-anthrachinon mit Kupferpulver in Nitrobenzol (Eckert, Hampel, B. 60, 1697). Gelbbraune Krystalle (aus Nitrobenzol). Sehr schwer löslich in heißem Nitrobenzol.
- x-Nitro-4.4'-dioxy-dianthrachinonyl-(1.1') $C_{28}H_{13}O_8N = O_2N \cdot C_{28}H_{11}O_4(OH)_2$. B. Beim Erwärmen von 4.4'-Dioxy-dianthrachinonyl-(1.1) mit Salpetersäure (D: 1,48) in Eisessig (ECKERT, Hampel, B. 60, 1699). Orangerote Krystalle (aus Nitrobenzol). Löst sich in konz. Schwefelsäure mit gelber, in siedender Alkalilauge mit rotvioletter Farbe.

- 3. 1.1'-Dioxy-dianthrachinonyl-(2.2') C₂₈H₁₄O₆. Formel IV (H 560; E I 760). B. Durch Schmelzen von 1-Oxy-anthrachinon mit Kaliumhydroxyd (vgl. H 560; E I 760) in Gegenwart von Alkohol oder Anilin bei 160° (I. G. Farbenind., D.R.P. 469135; Frdl. 16, 1208). Entsteht ferner beim Erhitzen von 1-Oxy-anthrachinon mit Aluminiumchlorid und trockenem Pyridin auf 130° (I. G. Farbenind., D.R.P. 485906; C. 1930 I, 2171; Frdl. 16, 1356). Zur Reinigung behandelt man das Rohprodukt in der Wärme mit Hypochlorit oder Permanganat-Lösung (I. G. Farbenind., D.R.P. 470503; Frdl. 16, 1210). Färbt Wolle aus der Küpe gelb (I. G. Farbenind., D.R.P. 469135, 470503).
- 1.1'-Dimercapto dianthrachinonyi (2.2') C₂₈H₁₄O₄S₂, Formel V. B. Beim Erhitzen von 1-Mercapto-anthrachinon mit Aluminiumchlorid und trockenem Pyridin auf 140° (I. G. Farbenind., D. R. P. 485906; C. 1980 I, 2171; Frdl. 16, 1356). Orangefarbene Nadeln. Fast unlöslich in sjedendem Nitrobenzol. Löst sich in konz. Schwefelsäure mit tiefgrüner Farbe.

OXY-OXO-VERBINDUNGEN $C_nH_{2n-42}O_6$ BIS $C_nH_{2n-46}O_6$ [Syst. Nr. 863

4. 8.3'-Dioxy - dianthrachino - nyl-(2.2') C_{28} H_{14} O_0 , Formel VI (R = H).

3.3' - Diacetoxy - dianthrachino - nyi-(2.2') C₃₂H₁₈O₈, Formel VI (R = CO· CH₃). B. Beim Kochen von 3-Jod-2-benzoyloxy-anthrachinon mit Kupferpulver in Naphthalin, Behandeln des Reaktionsprodukts mit siedender methylalkoholischer Kalilauge und Acetylieren

mit Acetanhydrid in Pyridin (HARDAGRE, PERKIN, Soc. 1929, 183, 189). — Nadeln (aus Benzol). F: 315°. Die Lösung in Schwefelsäure ist orangefarben.

5. 3.4.3'.4'-Tetraoxy-mesobenzdianthron, 3.4.3'.4'-Tetraoxy-helianthron $C_{28}H_{14}O_6$, Formel VII. B. Beim Behandeln von 3.4.3'.4'-Tetraoxy-dianthrachinonyl-(1.1') (S. 610) mit Kupferpulver in konz. Schwefelsäure bei 40—45° (Eckert, Hampel, B. 60, 1702). — Rote Nadeln (aus Nitrobenzol oder Schwefelsäure). Schwer löslich in heißem Nitrobenzol mit dunkelroter Farbe und braunroter Fluorescenz. Die Lösung in Kalilauge ist blauviolett und zersetzt sich nach einigen Tagen. — Geht bei wochenlangem Aufbewahren in Nitrobenzol oder konz. Schwefelsäure am Licht in 3.4.3'.4'-Tetraoxy-mesonaphthodianthron (s. u.) über. — Färbt tonerdegebeizte Wolle stumpf violett; ist auch als Küpenfarbstoff verwendbar. — Kaliumsalz. Blaue Krystalle.

2. Oxy-oxo-Verbindungen C₃₃H₂₄O₆.

2.4.6-Trioxy-1.3.5-tricinnamoyl-benzol,
Tricinnamoylphloroglucin C₃₃H₂₄O₆, s. nebenstehende Formel. B. Neben anderen Verbindungen bei der Einw. von Cinnamoylchlorid und Aluminum-chlorid auf Phloroglucin in Nitrobenzol (Shinoda, Sato, J. pharm. Soc. Japan 48, 111; C. 1928 II, 1885). — Hellgelbe Krystalle. F: 147,5°.

$$\begin{matrix} \mathbf{CO \cdot CH : CH \cdot C_6H_5} \\ \mathbf{HO \cdot } & \mathbf{OH} \\ \mathbf{C_6H_5 \cdot CH : CH \cdot CO \cdot } & \mathbf{OO \cdot CH : CH \cdot C_6H_5} \\ \end{matrix}$$

r) Oxy-oxo-Verbindungen $C_n H_{2n-44} O_6$.

1. Oxy-oxo-Verbindungen $C_{28}H_{12}O_6$.

3.4.3'.4' - Tetraoxy - mesonaphthodianthron C₂₈H₁₂O₆, Formel I. B. Bei wochenlanger Belichtung von 3.4.3'.4'-Tetraoxy-helianthron in Nitrobenzol oder konz. Schwefelsäure (Eckert, Hampel, B. 60, 1702). — Gelbe Krystalle. Die Lösung in konz. Schwefelsäure ist rotviolett mit starker orangeroter Fluorescenz. Löst sich in Alkalilauge mit violetter Farbe.

2. Oxy-oxo-Verbindungen $C_{so}H_{16}O_{e}$.

1. α.β-Bis-[2-oxy-anthrachinonyl-(1)]-äthylen C₂₀H₁₆O₄, Formel II. B. Aus 2-Oxy-1-trichloracetaminomethyl-anthrachinon beim Kochen mit überschüssiger verdünnter Natronlauge im Sauerstoffstrom oder beim Lösen in 10%iger Natronlauge, Versetzen mit überschüssiger Salzsäure und Schütteln mit Natriumnitrit (DE DIESBACH, GUBSER, Helv. 11, 1117; DE D., D.R. P. 507049; C. 1932 II, 296; Frdl. 16, 1238). Entsteht auf analoge Weise aus der Verbindung der Formel III (Syst. Nr. 3239) (DE D., G.; DE D.). Beim Kochen von α.α'-Bis-[2-oxy-anthrachinonyl-(1)]-äthylendiamin mit Nitrobenzol (DE D., G., Helv. 11, 1121; vgl. a. DE D., G., LEMPEN, Helv. 18 [1930], 126; DE D., G., Spoorenberg, Helv. 18, 1266). — Blaues Krystall-pulver (aus Nitrobenzol). Ist bei 400° noch nicht geschmolzen (DE D., G.). 0,1 g lösen sich in 1000 cm² siedendem Nitrobenzol mit roter Farbe (DE D., G.). Unlöslich in den gewöhnlichen organischen Lösungsmitteln (DE D., G.). Löst sich in konz. Schwefelsäure mit intensiy

DIPHTHALYLBENZOIN

blauer Farbe; die Lösung wird auf Zusatz von Kupferpulver grün (DE D., G.; DE D.). Die Lösung in wäßr. Alkalilauge ist blau und wird auf Zusatz von Wasserstoffperoxyd braun (DE D., G.). Löst sich in siedender alkoholischer Alkalilauge mit grüner Farbe (DE D., G.). — Liefert beim Kochen mit wäßr. Natronlauge im Sauerstoffstrom oder bei der Oxydation mit Permanganat oder Wasserstoffperoxyd 2-Oxy-anthrachinon-carbonsäure-(1) (DE D., G.). — Die grüne Hydrosulfitküpe färbt Baumwolle grün, an der Luft geht die Färbung erst in Blau, nach einiger Zeit, rascher bei Anwendung von Oxydationsmitteln, in Braun über (DE D., G.; DE D.).

2. 1.2-Di-anthrachinonyl-(1)-äthanolon, 2.3;2'.3'-Diphthalyl-benzoin bzw. 1.2-Di-anthrachinonyl-(1)-äthendiol, 2.3;2'.3'-Diphthalyl-stilbendiol C₃₀H₁₆O₆, Formel IV bzw. V. B. Bei der Oxydation von 1-Methyl-anthrachinon mit Mangandioxyd in 96% iger Schwefelsäure bei 60—70° (I. G. Farbenind., D.R.P. 481 291; C. 1929 II, 2609; Frdl. 16, 1270). — Graues Pulver. Löst sich in konz. Schwefelsäure mit blaustichig roter Farbe; Absorptions-spektrum dieser Lösung: I. G. Farbenind., D.R.P. 481 291. — Liefert beim Erwärmen mit Natriumnitrit in verd. Schwefelsäure auf 80—90° oder mit Natriumhypochlorit in verd. Schwefelsäure auf 90—100° 2.3.2'.3'-Diphthalyl-benzil (E II 7, 883) (I. G. Farbenind., D.R.P. 482840; C. 1930 I, 3240; Frdl. 16, 1271). Beim Eintragen in viel Alkohol bildet sich die Verbindung der Formel VI (Syst. Nr. 2842) (I. G. Farbenind., D.R.P. 481291; vgl. Scholl, Wallenstein, B. 69 [1936], 505). — Sulfat. Violette Krystalle (I. G. Farbenind., D.R.P. 481291; vgl. Scholl, W.).

VI.
$$\begin{bmatrix} c_{\mathbf{3}}\mathbf{H}_{\delta} \cdot \mathbf{0} & \mathbf{0} & c_{\mathbf{0}} \\ \vdots & \vdots & \ddots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0}} & c_{\mathbf{0}} \\ \vdots & \vdots & \vdots \\ c_{\mathbf{0}} & c_{\mathbf{0$$

4.4'-Dichlor-2.3; 2'.3'-diphthalyl-benzoin bzw. 4.4'-Dichlor-2.3; 2'.3'-diphthalyl-stilbendiol C₃₀H₁₄O₆Cl₂, Formel VII bzw. VIII. B. Analog der vorangehenden Verbindung (I. G. Farbenind., D.R. P. 481 291; C. 1929 II, 2609; Frdl. 16, 1270). — Liefert bei der Oxydation mit Salpetersäure (D: 1,5) in Nitrobenzol oder mit Chromtrioxyd in siedender Essigsäure 4.4'-Dichlor-2.3.2'.3'-diphthalyl-benzil (E II 7, 883) (I. G. Farbenind., D.R. P. 482 840; C. 1930 I, 3240; Frdl. 16, 1271). Bei der Einw. von Alkohol entsteht die Verbindung der Formel IX (Syst. Nr. 2842) (I. G. Farbenind., D.R. P. 481 291; vgl. SCHOLL, WALLENSTEIN, B. 69 [1936], 505).

3. Oxy-oxo-Verbindungen $C_{32}H_{20}O_6$.

α.β-Bis-[4-oxy-3-methyl-anthrachinonyl-(1)]-äthylen C₃₂H₂₀O₆, Formel X. B. Beim Kochen von 4-Oxy-3-methyl-1-trichloracetaminomethyl-anthrachinon mit 10%iger Natronlauge im Sauerstoffstrom (DE DIESBACH, GUBSER, Helv. 11, 1122). Aus der Verbindung

der Formel XI (Syst. Nr. 3239) durch Oxydation (DE D., G.). — Bronzefarbene Nadeln (aus Nitrobenzol). Sehr schwer löslich in Nitrobenzol mit braunroter Farbe. Die Lösung in konz. Schwefelsäure ist blau. — Gibt mit alkal. Na₂S₂O₄-Lösung ein grünes, fast unlösliches Salz. — Natriumsalz. Blau. Sehr schwer löslich.

mit rotvioletter Farbe.

OXY. OXO. VERBINDUNGEN C_nH_{2n-48}O₆ BIS C_nH_{2n-18}O₇ [Syst. Nr. 864

s) Oxy-oxo-Verbindungen $C_n H_{2n-48} O_6$.

[4 - Oxy - phenyl] - [indandion - (1.3) - yl-(2)] - bindonyl-methan, [4·Oxy-benzal] - indandion-bindon $C_{24}H_{20}O_6$, Formel I (R = H). I. B. Beim Kochen von 2·(4·Oxy-benzyliden]-indandion-(1.3) mit Dimethyldihydroresorcin und wenig Piperidin in Alkohol (Ionescu, Secareanu, Bulet. Cluj 3, 282; C. 1927 II, 71). — Gelbliche Krystalle (aus Alkohol). F: 275°. Löst sich in Alkohol mit rötlichvioletter, in alkoh. Alkalien

[4-Methoxy-phenyl] - [indandion - (1.3) - yl - (2)] - bindonyl - methan, Anisal - indandion-bindon C₃₅H₂₂O₆, Formel I (R = CH₃). B. Beim Kochen von 2-Anisyliden-indandion-(1.3) mit Indandion - (1.3) oder mit Dimethyldihydroresorcin und wenig Piperidin in Alkohol (IONESCU, SECAREANU, Bulet. Cluj 3, 265, 281; C. 1927 II, 72). — Gelbliches Krystallpulver. F: 310°. Sehr schwer löslich in siedendem Alkohol mit rötlicher Farbe; löslich in alkoh. Alkalien mit rotvioletter Farbe.

[4-Acetoxy-phenyl]-[indandion-(1.3)-yl-(2)]-bindonyl-methan, [4-Acetoxy-benzal]-indandion-bindon $C_{3e}H_{2e}O_7$, Formel I ($R=CH_3\cdot CO$). B. Beim Kochen von 2-[4-Acetoxy-benzyliden]-indandion-(1.3) mit Indandion-(1.3) oder Dimethyldihydroresorcin und wenig Piperidin in Alkohol (Ionescu, Secareanu, Bulet. Cluj 3, 264, 280; C. 1927 II, 71). — Gelbliche Krystalle (aus Alkohol oder Eisessig). F: 320°. Sehr schwer löslich in siedendem Alkohol mit rotvioletter Farbe; löslich in alkoh. Alkalien mit rotvioletter Farbe.

t) Oxy-oxo-Verbindungen $C_n H_{2n-52} O_6$.

7.8.7'.8'-Tetraoxy-violanthron, 7.8.7'.8'-Tetraoxy-dibenzanthron C₃₅H₁₈O₆, s. nebenstehende Formel. B. Beim Verschmelzen von 7.8-Dioxy-benzanthron (Benzalizarin, S. 416) mit Kaliumhydroxyd und wenig Alkohol bei 250° (Höchster Farbw., D.R.P. 414203; C. 1925 II, 859; Frdl. 15, 771). — Braunschwarzes Pulver. — Liefert beim Kochen mit p-Toluolsulfonsäure-methylester und calcinierter Soda in Nitrobenzol einen blauen Küpenfarbstoff (I. G. Farbenind., D.R.P. 443610; C. 1927 II, 336; Frdl. 15, 772). — Färbt Baumwolle aus blauvioletter Hydrosulfitküpe olivschwarz (Höchster Farbw.).

u) Oxy-oxo-Verbindungen $C_n H_{2n-54} O_6$.

,,Trinaphthochinolbenzol" C_{3e}H₁₈O₆, s. nebenstehende Formel. B. Beim Erhitzen von dekacyclen-trisulfonsaurem Natrium (Syst. Nr. 1543) mit Natriumhydroxyd und etwas Wasser auf 260° bis 280°, Eintragen der Schmelze in Wasser, Ansäuern und Behandeln des abgeschiedenen olivgrünen Reaktionsprodukts mit Luftsauerstoff in heißer Natriumsulfid-Lösung (Dziewonski, Pochwalski, Bl. Acad. polon. [A] 1925, 167, 176; C. 1926 I, 656). — Braun, amorph. Sehr schwer löslich in organischen Lösungsmitteln, löslich in Chinolin. Ziemlich leicht löslich in Ammoniak und alkoh. Kalilauge. — Liefert beim Erhitzen mit Chromschwefelsäure auf dem Wasserbad Tribenzoylenbenzoltricarbonsäure (Syst. Nr. 1391). Beim Erhitzen mit Zinkstaub und 3%iger Kalilauge in Gegenwart von

Erhitzen mit Zinkstaub und 3%iger Kalilauge in Gegenwart von Propylbromid bildet sich symm. Tripropyloxy-dekacyclen (E II 6, 1117). Beim Kochen mit Zinkstaub, Acetanhydrid und geschmolzenem Natriumacetat erhält man Triacetoxy-dekacyclen. — Färbt Baumwolle aus der Küpe tiefschwarz.

v) Oxy-oxo-Verbindungen $C_n H_{2n-58} O_6$.

 $\alpha.\alpha'-Bis-[4-chlor-phenyl]-\alpha.\alpha'-di-anthrachinonyl-(1)-lithylengiykol \ C_{42}H_{24}O_{0}Cl_{2}=[C_{6}H_{4}<\begin{matrix}CO\\CO\end{matrix}\\C_{6}H_{3}\cdot C(C_{6}H_{4}Cl)(OH)-]_{2}. \ \ Die\ E\ I\ 761\ \ unter\ \ dieser\ \ Formel\ \ beschriebene\ \ Ver-lithylengiykol$

601

bindung wird von Scholl, Donat (B. 66 [1933], 514; vgl. Scholl, B. 54, 2382) als "2-[4-Chlor-phenyl]-6.7-benzoylen- β , β '-benzofuran" $C_{21}H_{11}O_2Cl$ (s. nebenstehende Formel; Syst. Nr. 2473) erkannt. [MATERNE]

6. Oxy-oxo-Verbindungen mit 7 Sauerstoffatomen.

a) Oxy-oxo-Verbindungen $C_n H_{2n-16} O_7$.

1. Oxy-oxo-Verbindungen $C_{18}H_{10}O_7$.

2.3.4.3'.4'.5'-Hexaoxy-benzophenon $C_{13}H_{10}O_7$, s. nebenstehende Formel (H 561; E I 761). F: 275—280° (TASAKI, Acta phytoch. 2, 64; C. 1925 II, 1355). Absorptionsspektrum in Lösung: T.

2. Oxy-oxo-Verbindungen $C_{15}H_{14}O_7$.

- 1. 2.4.6-Trioxy- β -[3.4.5-trioxy-phenyl]-propiophenon, 3.4.5.2'.4'.6'-Hexaoxy-hydrochalkon $C_{15}H_{14}O_{7}=(HO)_{3}C_{6}H_{2}\cdot CH_{2}\cdot CH_{2}\cdot CO\cdot C_{6}H_{2}(OH)_{3}$.
- 2-Oxy-4.6-dimethoxy- β -[3.4.5-trimethoxy-phenyl]-propiophenon, 2'-Oxy-3.4.5.4'.6'-pentamethoxy-hydrochalkon $C_{20}H_{24}O_7$, s. nebenstehende CH₃·O·CH₂·CH₂·CH₂·CO·CH₃·O
- 2. Oxymethyl-[2.4.6.3'.4'-pentaoxy-benzhydryl]-keton, 1-[3.4-Dioxy-phenyl]-1-[2.4.6-trioxy-phenyl]-propanol-(3)-on-(2) $C_{15}H_{14}O_{7}=(HO)_{5}C_{6}H_{2}>CH\cdot CO\cdot CH_{2}\cdot OH.$

Acetoxymethyl-[2.4.6.3'.4'-pentamethoxy-benzhydryl]-keton $C_{22}H_{36}O_8 = (CH_3 \cdot O)_8C_6H_2 \rightarrow CH \cdot CO \cdot CH_2 \cdot O \cdot CO \cdot CH_3$. B. Beim Erhitzen von 3-Chlor-1-[3.4-dimethoxy-phenyl]-1-[2.4.6-trimethoxy-phenyl]-propanon-(2) mit Kaliumacetat in Alkohol (NIERENSTEIN, Am. Soc. 48, 1974). — Nadeln (aus Alkohol). F: 162°. Löslich in den gewöhnlichen organischen Lösungsmitteln außer Benzol und Chloroform. — Gibt beim Erhitzen mit Zinkstaub und Acetanhydrid auf 120—130° 2.3-Diacetoxy-1-[3.4-dimethoxy-phenyl]-1-[2.4.6-trimethoxy-phenyl]-propan.

b) Oxy-oxo-Verbindungen $C_n H_{2n-18} O_7$.

1. Oxy-oxo-Verbindungen $C_{14}H_{10}O_7$.

2.4 - Dioxy - 3'.4'.5'- trimethoxy - benzil $C_{17}H_{16}O_7=(HO)_3C_6H_3\cdot CO\cdot CO\cdot C_6H_3(O\cdot CH_3)_3$. Eine Verbindung, der Marsh, Stephen (Soc. 127, 1637) diese Konstitution zugeschrieben haben, ist von Borsche (B. 62, 1360) als Lacton der 2.4.2'.4'-Tetraoxy-3''.4''.5''-trimethoxy-triphenylessigsäure $C_{23}H_{20}O_8$ (Syst. Nr. 2569) erkannt worden.

OXY-OXO-VERBINDUNGEN C_nH_{2 n-18}O₇ Bis C_nH_{2 n-28}O₇ [Syst. Nr. 874

2. Oxy-oxo-Verbindungen C15H12O7.

- 1. 3.4.5-Trioxy- ω -[2.4.6-trioxy-benzyliden]-acetophenon, 2.4.6.3'.4'.5'-Hexaoxy-chalkon $C_{15}H_{12}O_7=(HO)_5C_6H_2\cdot CO\cdot CH\cdot CH\cdot C_6H_2(OH)_5$.
- 3.4.5-Trimethoxy-\omega-[2-oxy-4.6-dimethoxy-benzyliden]-acetophenon, 2-Oxy-4.6.3'.4'.5'-pentamethoxy-chalkon, [3.4.5-Trimethoxy-phenyl]-CH₃·O·CO·CH:CH·CO·CH₂
 [2-oxy-4.6-dimethoxy-styryl]-keton C₂₀H₂₂O₇, s. nebenstehende Formel. B. Beim Erwärmen von 3.4.5-Trimethoxy-acetophenon mit 2-Oxy-4.6-dimethoxy-benzaldehyd in wäßrig-methylalkoholischer Natronlauge auf ca. 60° (GATEWOOD, ROBINSON, Soc. 1926, 1963). Gelbe Prismen (aus Alkohol). Schmilzt bei 151—152° zu einer dunkelroten Flüssigkeit. Kalium verbindung. Orangefarbene Nadeln. Schwer löslich in verd. Kalilauge mit orangegelber Farbe.
- 2. 2.4.6 Trioxy- ω -[3.4.5 trioxy benzyliden] acetophenon, 3.4.5.2'.4'.6'-Hexaoxy-chalkon $C_{15}H_{12}O_7=(HO)_3C_6H_2\cdot CO\cdot CH\cdot C_6H_2(OH)_3$.
- 3.4.5.4'.6'-Pentamethoxy-2'-acetoxy-chalkon $C_{22}H_{24}O_8 = CH_3 \cdot CO \cdot O \cdot C_8H_2(O \cdot CH_3)_2 \cdot CO \cdot CH : CH \cdot C_8H_2(O \cdot CH_3)_8$. Beim Kochen von 5.7.3'.4'.5'-Pentamethoxy-flavanon mit Acetanhydrid (Dean, Nierenstein, Am. Soc. 47, 1680). Blaßgelbe Nadeln (aus Alkohol). F: 146—147°.
- 3. 2.3.4.6-Tetraoxy- ω -[3.4-dioxy-benzyliden]-acetophenon, 3.4.2'.3'.4'.6'-Hexaoxy-chalkon $C_{15}H_{12}O_7=(HO)_4C_6H\cdot CO\cdot CH:CH\cdot C_6H_6(OH)_2$.

Pentamethyläther, 2-Oxy-3.4.6-trimethoxy- ω -[3.4-dimethoxy-benzyliden]-acetophenon, 2'-Oxy-3.4.3'.4'.6'-pentamethoxy-chalkon $C_{30}H_{22}O_{7}$, Formel I (E I 762). B. Aus 2-Oxy-3.4.6-trimethoxy-acetophenon (S. 533) und Veratrumaldehyd in wäßrig-alkoholischer Natronlauge (Bargellini, G. 49 II [1919], 57). Das von Nierenstein (Soc. 111, 8) benutzte Ausgangsmaterial konnte Baker (Soc. 1941, 666, 668) nicht wieder erhalten.

- 4. 2.4.6.2'.4'-Pentaoxy-dibenzoylmethan $C_{15}H_{12}O_7 = (HO)_5C_6H_2 \cdot CO \cdot CH_2 \cdot CO \cdot C_6H_3(OH)_5$.
- 2-0xy-4.6.2'.4'-tetramethoxy-dibenzoylmethan, 2-0xy-4.6-dimethoxy-ω-[2.4-dimethoxy-benzoyl]-acetophenon C₁₀H₂₀O₇, Formel II. B. Aus 2-0xy-4.6-dimethoxy-acetophenon und 2.4-Dimethoxy-benzoesäuremethylester in Gegenwart von Natrium anfangs auf dem Wasserbad, schließlich bei 150—160° (Cullinane, Algar, Ryan, Scient. Pr. roy. Dublin Soc. 19, 79; C. 1929 II, 1919). Platten (aus Alkohol). F: 151°. Liefert bei kurzem Erwärmen mit Jodwasserstoffsäure (D: 1,7) 5.7.2'.4'-Tetramethoxy-flavon, bei längerem Kochen mit Jodwasserstoffsäure (D: 1,94) 5.7.2'.4'-Tetraoxy-flavon. Gibt mit Eisenchlorid in Alkohol eine olivgrüne Färbung. Löst sich in konz. Schwefelsäure mit gelber Farbe.
- 2.4.6.2'.4'-Pestamethoxy-dibenzoylmethan, 2.4.6-Trimethoxy- ω -[2.4-dimethoxy-benzoyl]-acetophenon $C_{20}H_{22}O_7 = (CH_3 \cdot O)_3C_6H_2 \cdot CO \cdot CH_2 \cdot CO \cdot C_6H_4 \cdot (O \cdot CH_3)_2$. B. Aus 2.4.6-Trimethoxy-acetophenon und 2.4-Dimethoxy-benzoesäuremethylester in Gegenwart von Natrium anfangs auf dem Wasserbad, schließlich bei 150—160° (Cullinane, Algae, Ryan, C. 1929 II, 1920). Tafeln (aus Alkohol). F: 153°. Liefert bei kurzem Erwärmen mit Jodwasserstoffsäure (D: 1,7) 7.2'.4'.6'-Tetramethoxy-flavon, beim Kochen mit Jodwasserstoffsäure (D: 1,94) 7.2'.4'.6'-Tetraoxy-flavon. Löst sich in konz. Schwefelsäure mit grünlichgelber Farbe und blaugführer Fluorescenz. Färbt sich mit Eisenchlorid in Alkohol oliv. Kupfersalz. Grün. Ziemlich leicht löslich in Benzol.

c) Oxy-oxo-Verbindungen $C_n H_{2n-20} O_7$.

1. Oxy-oxo-Verbindungen C14H2O7.

1.2.4.5.8 - Pentaoxy - anthrachinon, Alizarincyanin NS, HO OH Alizarincyanin R, Alizarincyanin 2R (vgl. Schultz Tab., 7. Aufl., Nr. 1172) C₁₄H₈O₇, s. nebenstehende Formel (H 563; E I 762). B. Durch он Oxydation von 1.4.5.8-Tetraoxy-anthrachinon mit Braunstein und konz. Schwefelsäure (Dimroth, Hilcken, B. 54, 3060). — Erzeugung von ÒН Doppelbrechung und Dichroismus durch Polieren auf Glas aufgetragener dünner Schichten: Zocher, Jacoby, Koll. Beih. 24, 379; C. 1927 II, 2041. Ausbreitung auf Wasser: Ramdas, C. 1926 II, 1935. — Wird durch Luft in alkal. Lösung zu 5.6.8-Trioxy-anthradichinon-(1.4;9.10) oxydiert (D., Hi.). In Gegenwart von Magnesiumsalzen ist die alkal. Lösung beständig (Hahn, Wolf, Jäger, B. 57, 1395 Anm.). Reaktion mit Äthylendiamin: I. G. Farbenind., D. R. P. 478048; Frdl. 16, 1239. — Anwendung von Alizarincyanin zu Kernfärbungen bei der Untersuchung pflanzlicher Objekte: Kisser, Z. wiss. Mikr. 40, 131; 41, 87; C. 1924 I, 1417; 1925 I, 1887; O. TUNMANN, L. ROSENTHALER, Pflanzenmikrochemie, 2. Aufl. [Berlin 1931], S. 757. — [Co(NH₃)₄][Co(NH₃)₅][Co(C₁₄H₅O₇)₃]. Dunkelpurpurroter Lack. Unlöslich in Wasser, kalten verdünnten Säuren oder Alkalien (Morgan, Smith, Soc. 121, 168). Löst sich in siedender 2n-Salzsäure mit roter, in 10 n-Salzsäure mit olivgrüner Farbe. Die Lösungen in konz. Schwefelsäure und sirupöser Phosphorsäure sind dunkeloliv-grün; beim Erwärmen geht die Farbe in Violett, beim Verdünnen in Karminrot über.

2. Oxy-oxo-Verbindungen $C_{15}H_{10}O_7$.

x-Pentaoxy-2-methyl-anthrachinon $C_{15}H_{10}O_7$, s. nebenstehende Formel. B. Aus Dermocybin (s. u.) beim Erwärmen mit konz. Schwefelsäure (Kögl., Postowsky, A. 444, 6). — Rote Krystalle (aus Toluol). F: 289° nach vorhergehendem Sintern. Schwer löslich in den gebräuchlichen organischen Lösungsmitteln. Löslich in konz. Schwefelsäure mit tiefvioletter, in Alkalilaugen mit rotvioletter Farbe. Die alkal. Lösung verblaßt beim Aufbewahren. Färbt chromgebeizte Wolle violettstichig rot. Absorptionsspektrum in konz. Schwefelsäure und in wäßr. Aluminiumsulfat-Lösung: K., P.

Monomethyläther, Dermocybin $C_{16}H_{12}O_7 = CH_3 \cdot C_{14}H_2O_2(OH)_4(O \cdot CH_3)$. V. In dem Pilz Dermocybe sanguinea (Kögl., Postowsky, A. 444, 5). — Rote Prismen oder Nadeln (aus Eisessig). F: 228—229° nach vorherigem Sintern. Leicht löslich in Pyridin, Eisessig, Alkohol und Äther, schwer in Ligroin, Petroläther und Schwefelkohlenstoff; die Lösungen sind dunkelrot. Löst sich in konz. Schwefelsäure mit violetter, in Alkalilaugen mit rotvioletter Farbe. Absorptionsspektrum in konz. Schwefelsäure: K., P. - Liefert bei der Destillation mit Zinkstaub 2-Methyl-anthracen. Gibt beim Erwärmen mit konz. Schwefelsäure x-Pentaoxy-2-methyl-anthrachinon (s. o.). — Färbt chromgebeizte Wolle violettstichig rot.

Dermocybin-tetraacetat $C_{24}H_{20}O_{11}=CH_3\cdot C_{14}H_2O_2(O\cdot CO\cdot CH_3)_4(O\cdot CH_3)$. B. Aus Dermocybin beim Kochen mit Acetanhydrid und wenig konz. Schwefelsäure (Kögl., Postowsky, A. 444, 5). — Gelbliche Nadeln (aus Alkohol). F: 182° nach vorhergehendem Sintern.

d) Oxy-oxo-Verbindungen $C_n H_{2n-22} O_7$.

5.6.8-Trioxy-anthradichinon-(1.4;9.10) $C_{14}H_6O_7$, s. nebenstehende Formel (H 564). B. Beim Einleiten von Luft in eine Lösung von 1.2.4.5.8-Pentaoxy-anthrachinon in Natronlauge (DIMROTH, HILCKEN, B. 54, 3060). — Dunkelviolette Nadeln (aus Pyridin + Wasser). Ist in frisch gefälltem Zustand etwas löslich in Wasser, schwer löslich in allen organischen Lösungsmitteln. Unzersetzt löslich in konz. Schwefelsäure

mit blauer Farbe ohne Fluorescenz. — Oxydiert Leukomalachitgrün-Lösung nicht. — Natriumsalz. Blaue Flocken.

5.6.8 -Triacetoxy - anthradichinon - (1.4; 9.10) $C_{20}H_{12}O_{10} = (CH_3 \cdot CO \cdot O)_3C_{14}H_3O_4$. B. Aus 5.6.8 -Trioxy - anthradichinon - (1.4; 9.10) beim Behandeln mit Acetanhydrid und konz. Schwefelsäure (Dimeoth, Hiloken, B. 54, 3061). — Braune Blättchen (aus Chloroform). Schwer löslich in Albert aus Albert a in Ather und Alkohol, leichter in Eisessig und Chloroform. - Gibt bei der Reduktion mit schwefliger Säure und nachfolgenden Verseifung 1.2.4.5.8-Pentaoxy-anthrachinon.

604

OXY-OXO-VERBINDUNGEN CnH2n-30O7 BIS CnH2n-20O8 ' [Syst.Nr. 876

e) Oxy-oxo-Verbindungen $C_n H_{2n-30} O_7$.

2-Oxy-4.6-dimethoxy-1.3-bis-[4-methoxy-cinn-amoyl]-benzol, 2.4-Bis-[4-methoxy-cinnamoyl]-phloro-glucin-1.5-dimethyläther C₂₂H₂₆O₇, s. nebenstehende Formel. B. Aus 2-Oxy-4.6-dimethoxy-1.3-diacetyl-benzol und Anisaldehyd in Gegenwart von Alkali (Shinoda, C. 1928 I, 333). — F: 170°.

f) Oxy-oxo-Verbindungen $C_n H_{2n-62} O_7$.

[4-Methoxy-phenyl]-di-bindonyl-methan, Anisyliden-bis-bindon $C_{44}H_{26}O_7 = \begin{bmatrix} C_6H_4 & CO \\ CO \end{bmatrix} C: C & C_6H_4 & CO \\ CH & CO \end{bmatrix}_2 CH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Neben anderen Produkten beim Kochen von Anisaldehyd mit Indandion-(1.3) und wenig Piperidin in Alkohol (Ionescu, Secareanu, Bulet. Cluj 3, 274; C. 1927 II, 71). Beim Kochen von 2-Anisyliden-indandion-(1.3) mit Indandion-(1.3) und wenig Ammoniak in Alkohol (I., S.). — Gelbes Krystallpulver (aus Benzol). F: 233°. Sehr schwer löslich in siedendem Alkohol mit rotvioletter Farbe; löslich in alkoh. Alkalien mit indigoblauer Farbe.

7. Oxy-oxo-Verbindungen mit 8 Sauerstoffatomen.

a) Oxy-oxo-Verbindungen $C_n H_{2n-16} O_8$.

2.6 - Dioxy - 3.4.3'.4'.5'-pentamethoxy - desoxyben-zoin, [2.6 - Dioxy - 3.4 - dimethoxy - phenyl] - [3.4.5 - tri-methoxy - benzyl]-keton C₁₉H₃₂O₆, s. nebenstehende For-CH₃·O·CO·CH₂·O·CH₃·O·CH₃ mel. B. Beim Sättigen einer Lösung von 3.4.5-Trimethoxy-phenylacetonitril und wasserfreiem 4.5-Dimethoxy-resorcin in absol. Äther mit Chlorwasserstoff bei 0° in Gegenwart von wasserfreiem Zinkchlorid und nachfolgenden Kochen des Ketimidhydrochlorids mit verd. Salzsäure (BAKER, ROBINSON, Soc. 1929, 158). — Prismen (aus Methanol). F: 162°. Löst sich in verd. Alkalien und in konz. Schwefelsäure mit blaßgelber Farbe. Gibt in alkoh. Lösung mit einer Spur Eisenchlorid eine grünlichviolette, mit überschüssigem Eisenchlorid eine olivgraue Färbung. — Liefert beim Erhitzen mit Acetanhydrid und wasserfreiem Natriumacetat auf 180° 5-Acetoxy-6.7.3'.4'.5'-pentamethoxy-2-methyl-isoflavon.

b) Oxy-oxo-Verbindungen $C_n H_{2n-18} O_8$.

1. Oxy-oxo-Verbindungen $C_{14}H_{10}O_8$.

2.4.6-Trioxy-3'.4'.5'-trimethoxy-benzil $C_{17}H_{16}O_8=(HO)_3C_6H_2\cdot CO\cdot CO\cdot C_6H_2(O\cdot CH_3)_3$. Eine Verbindung, der Marsh, Stephen (Soc. 127, 1637) diese Konstitution zugeschrieben haben, ist von Borsche (B. 62, 1360) als Lacton der 2.4.6.2'.4'.6'-Hexaoxy-3''.4''.5''-trimethoxy-triphenylessigsäure $C_{23}H_{20}O_{10}$ (Syst. Nr. 2569) erkannt worden.

2. Oxy-oxo-Verbindungen $C_{24}H_{80}O_8$.

Pseudoaspidin $C_{25}H_{32}O_8$. H 567, Z. 30 v. o. statt: " $C_{27}H_{43}O_5$ " lies: " $C_{27}H_{49}O_5N_4$ ".

c) Oxy-oxo-Verbindungen $C_n H_{2n-20}O_8$.

1. Oxy-oxo-Verbindungen $C_{14}H_8O_8$.

1. 1.2.3.5.6.7-Hexaoxy-anthrachinon, Rufigallussäure, Rufigallol C₁₄H₈O₈, s. nebenstehende Formel (H 567; E I 765). B. Bei der trockenen Destillation von Gallussäure (KUNZ-KRAUSE, MANICKE, HO OH B. 53, 199). — Verbrennungswärme bei konstantem Volumen:

1250,6 kcal/Mol (SWIETOSLAWSKI, STARCZEWSKA, J. Chim. phys. 28, 822; vgl. Valeur, A. ch. [7] 21 [1900], 569). Unlöslich in Chloroform, leicht löslich in Aceton (Ku.-Kr., M.). Die sehr verdünnte alkoholische Lösung ist farblos, in Gegenwart von Borsäure gelb (Böeseken, R. 41, 782). — Liefert beim Erhitzen mit Zinn(II)-chlorid und Salzsäure im Rohr auf 150° ein braunes krystallines Produkt, das sich schon beim Umkrystallisieren wieder zu Rufigallussäure oxydiert (Goodall, Perkin, Soc. 125, 473). — Mikrochemischer Nachweis auf Grund der Krystallisation aus Nitrobenzol: Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 103. Farbreaktionen mit Zirkonium-, Hafnium- und Thoriumsalzen: de Boer, R. 44, 1074, 1075. Anwendbarkeit für Kernfärbungen an pflanzlichen Objekten: Kisser, Z. wiss. Mikr. 41, 369; C. 1925 I, 1887.

- 2. 1.2.4.5.6.8 Hexaoxy anthrachinon, Anthracenblau но οн Alizarincyanin WRR¹) C₁₄H₈O₈, s. nebenstehende Formel (H 569; E I 765). Die Magnesiumsalz enthaltende alkalische Lösung OH ist an der Luft beständig (HAHN, WOLF, JÄGER, B. 57, 1395 Anm.). HO Beim Leiten von Luft in die Lösung in Natronlauge (DIMROTH, HO ÓН HILCKEN, B. 54, 3060) oder bei der Oxydation mit Braunstein in konz. Schwefelsäure bei 200 (R. E. Schmidt, Stein, Bamberger, B. 62, 1888) erhält man 2.5.6.8-Tetraoxy-anthradichinon-(1.4;9.10). Beim Nitrieren in schwefelsaurer Lösung entsteht 3.7-Dinitro - 2.5.6.8 - tetraoxy - anthradichinon - (1.4; 9.10) (Heller, Mertz, Siller, B. 62, 934; vgl. Sch., St., B.). Liefert bei der Einw. von Chlorsulfonsäure in Pyridin unterhalb 35-406 einen rotbraunen Schwefelsäureester, der sich in Alkali mit blauer Farbe löst und Wolle auf Chrombeize blau färbt (I. G. Farbenind., D.R.P. 491424; Frdl. 16, 1313). Mikrochemischer Nachweis auf Grund der Krystallisation aus Nitrobenzol und aus konz. Schwefelsäure: Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 103.
- 1.4 Dioxy 2.5.6.8 tetraacetoxy anthrachinon $C_{22}H_{16}O_{12}$, s. nebenstehende Formel. B. Durch Einw. von schweftliger Säure oder von Kaliumjodid und Schwefelsäure auf 2.5.6.8-Tetraacetoxy-anthradichinon-(1.4;9.10) CH₃·CO·O·O·O·CO·CH₃ (DIMROTH, HILCKEN, B. 54, 3062). Rote Nadeln (aus Eisessig). F: 220°.
- 3.7 Dinitro 1.2.4.5.6.8 hexaoxy anthrachinon $C_{14}H_6O_{18}N_2$, s. но $\mathbf{o}\mathbf{H}$ 0 nebenstehende Formel. B. Beim Behandeln von 3.7-Dinitro-2.6-dioxy-O₂N OH anthratrichinon-(1.4;5.8;9.10) oder von 3.7-Dinitro-2.5.6.8-tetraoxyanthradichinon (1.4; 9.10) mit schwachen Reduktionsmitteln, z. B. NO2 mit Hydrochinon in 2%iger Schwefelsäure (R. E. Schmidt, Stein, Bamberger, B. 62, 1887, 1888). Aus 3.7-Dinitro-2.5.6.8-tetraoxyanthradichinon-(1.4;9.10) bei 2-tägigem Aufbewahren einer konzentrierten wäßrigen Lösung mit wenig verd. Schwefelsäure oder durch Reduktion mit Na₂S-Lösung (Heller, Mertz, Siller, B. 62, 934, 935; vgl. Schm., St., B., B. 62, 1884, 1885, 1886). — Rote, grünlich schillernde Nadeln oder Blättchen (aus Essigester). Verpufft gegen 290°(H., M., Si.). Unlöslich in Wasser, löslich in heißem Essigester (H., M., Si.). Löst sich in konz. Schwefelsäure rotstichig blau (H., M., SI.). — Gibt beim Behandeln mit Alkalilauge oder Ammoniak, bei der Oxydation mit Salpetersäure in Eisessig oder beim Lösen in starken Säuren 3.7-Dinitro-2.5.6.8-tetraoxy-anthradichinon-(1.4;9.10) (H., M., SI.; vgl. Sch., St., B., B. 62, 1885). — Liefert bei der Reduktion mit heißer wäßrig-alkoholischer Natriumsulfid-Lösung oder mit Zinn(II)-chlorid in salzsaurer Lösung 3.7-Diamino-1.2.4.5.6.8-hexaoxy-anthrachinon (H., M., SI.). Färbt chromgebeizte Wolle tief dunkelbraun, mit verschiedenen Metallsalzen gebeizte Baumwolle blau bis dunkelbraun (H., M., Si.). — Das Pyridinsalz schmilzt bei 224° (H., M., Si.).

3. 1.2.4.5.7.8-Hexaoxy-anthrachinon $C_{14}H_8O_8 = (HO)_3C_6H(CO)_2C_6H(OH)_3$.

3.6 - Dinitro - 1.2.4.5.7.8 - hexaoxy - anthrachinon C₁₄H₆O₁₂N₂, s. nebenstehende Formel. B. Aus 3.6 - Dinitro - 2.5.7.8 - tetraoxy-anthradichinon-(1.4;9.10) bei 3-tägigem Aufbewahren einer 1%igen wäßrigen Lösung mit wenig verd. Schwefelsäure (Heller, Merrz, Siller, B. 62, 937; vgl. Schmidt, Stein, Bamberger, B. 62, 160 OH 1885). — Dunkelbraune Nadeln (aus Eisessig oder Pyridin). Verpufft bei 285° (H., M., Sl.). Unlöslich in Wasser, schwer löslich in heißem Essigester (H., M., Sl.). Löst sich in konz. Schwefelsäure mit rotvioletter, in verd. Alkalien und Ammoniak mit dunkelvioletter Farbe (H., M., Sl.).

¹⁾ Vgl. zu dieser Bezeichnung Schultz Tab., 7. Aufl., Nr. 1173.

OH

HO

2. Oxy-oxo-Verbindungen $C_{16}H_{12}O_{6}$.

1.4-Bis-[2.3.4 (oder 3.4.5)-trioxy-phenyl]-buten-(2)-dion-(1.4), $\alpha.\beta$ -Bis-[2.3.4 (oder 3.4.5)-trioxy-benzoyl]-athylen $C_{12}H_{12}O_{8} = (HO)_{1}C_{6}H_{2} \cdot CO \cdot CH \cdot CH \cdot CO \cdot C_{6}H_{1}(OH)_{2}$. B. Beim Erhitzen von Maleinsäureanhydrid mit 2 Mol Pyrogallol und Zinkchlorid auf hochstens 120° (Bogert, Ritter, Am. Soc. 47, 532). — Blaßgelbe Nadeln (aus Alkohol + Benzol). Färbt sich bei 180° dunkel und zersetzt sich bei 195° unter Entwicklung roter Dämpfe; erweicht im geschlossenen Röhrchen bei ca. 225° und schmilzt bei 231° (korr.). Leicht löslich in Alkohol, löslich in Eisessig, schwer löslich in Wasser, Äther und Anilin, unlöslich in Ligroin, Benzol und Essigester. Löst sich in Kalilauge mit tief rotbrauner Farbe und wird beim Ansäuern wieder ausgefällt. — Ist ein schwacher Beizenfarbstoff.

d) Oxy-oxo-Verbindungen $C_n H_{2n-22} O_8$.

Oxy-oxo-Verbindungen $C_{16}H_6O_8$.

- 1. 2.5.6.8-Tetraoxy-anthradichinon-(1.4;9.10) $C_{14}H_{\bullet}O_{\bullet}$, s. nebenstehende Formel (H 572). Zur Bildung aus 1.2.4.5.6.8-Hexaoxy-HO anthrachinon durch Oxydation mit Braunstein in konz. Schwefelsäure bei 20° vgl. Schmidt, Štein, Bamberger, B. 62, 1888; zur Bildung HO durch Oxydation der alkal. Lösung mit Luft vgl. Dimroth, Hilcken, B. 54, 3060. — Dunkelviolette Nadeln (aus Pyridin + Wasser). Etwas löslich in Wasser, schwer in organischen Lösungsmitteln (D., H.). — Oxydiert Leukomalachitgrün-Lösung nicht (D., H.).
- 2.5.6.8-Tetraacetoxy-anthradichinon-(1.4; 9.10) $C_{22}H_{14}O_{12} = (CH_3 \cdot CO \cdot O)_4C_{14}H_2O_4$. B. Aus dem Natriumsalz des 2.5.6.8-Tetraoxy-anthradichinons-(1.4; 9.10) beim Behandeln mit Acetanhydrid und konz. Schwefelsäure (DIMROTH, HILCKEN, B. 54, 3061). — Gelbbraune Blättchen (aus Eisessig oder Aceton). — Gibt bei der Reduktion mit schwefliger Säure oder Kaliumjodid und Schwefelsäure 1.4-Dioxy-2.5.6.8-tetraacetoxy-anthrachinon.
- 3.7-Dinitro-2.5.6.8-tetraoxy-anthradichinon-(1.4; 9.10) $C_{14}H_4O_{13}N_2$, s. untenstehende Formel. B. Aus 1.2.5.6-Tetraoxy-anthrachinon durch vorsichtige Behandlung mit rauchender Salpetersäure und konz. Schwefelsäure oder durch Einw. von Salpetersäuredämpfen (Heller, Mertz, Siller, B. 62, 933, 934; vgl. Schmidt, Stein, Bamberger, B. 62, 1884). Aus 1.2.4.5.6.8-Hexaoxy-anthrachinon durch O₂N oн Nitrieren in schwefelsaurer Lösung (H., M., Si.). Aus 3.7-Dinitro-NO₂ 1.2.4.5.6.8-hexaoxy-anthrachinon durch Oxydation mit Braunstein in konz. Schwefelsäure bei 20° (Sch., St., B., B. 62, 1889). — Dunkelblaue Nadeln mit 2 Mol Eisessig (aus Eisessig); der Krystall-Eisessig entweicht bei gewöhnlicher Temperatur allmählich, bei 120° quantitativ, wobei die Krystalle etwas violettstichig werden (H., M., Si.). Verpufft nach vorhergehendem Sintern bei 265° (H., M., Si.). Löslich in 120 Tln. Wasser bei Zimmertemperatur mit violetter Farbe, löslich in heißem Alkohol, Aceton und Essigester, schwer löslich in Benzol (H., M., SI.). Wird von konz. Schwefelsäure mit dunkelblauer, von Ammoniak mit blauer Farbe gelöst; Alkalilauge und Sodalösung geben schwer lösliche blaue Salze (H., M., SI.). — Liefert bei der Reduktion mit heißer, wäßrig-alkalischer Natriumsulfid-Lösung, mit Zinn(II)-chlorid in salzsaurer Lösung oder bei der Hydrierung mit Palladium-Bariumsulfat in Wasser 3.7-Diamino-1.2.4.5.6.8-hexaoxy-anthrachinon (H., M., Sl.). Beim Behandeln mit Hydrochinon in 2%iger Schwefelsäure (SCH., St., B.) oder bei der Einw. verd. Säuren (H., M., SI.; vgl. Sch., St., B.) erhält man 3.7-Dinitro-1.2.4.5.6.8-hexaoxy-anthrachinon; bei der Einw. von verd. Säuren entsteht daneben eine wasserlösliche Verbindung vom Schmelzpunkt ca. 225° (H., M., St.). Die wäßr. Lösung greift Magnesium unter Wasserstoffent-
- 2.5.7.8-Tetraoxy-anthradichinon-(1.4;9.10) $C_{14}H_{s}O_{s}$ s. nebenstehende Formel (X = H).

Krystalle. Löslich in Wasser mit blauvioletter Farbe (H., M., Śī.).

3.6-Dinitro-2.5.7.8-tetraoxy-anthradichinon-(1.4; 9.10) $C_{14}H_4O_{12}N_2$, s. nebenstehende Formel ($X=NO_2$). B. Aus 1.2.7.8-Tetraoxy-anthrachinon beim Behandeln mit konz. Salpetersäure und konz. Schwefelsäure unter Kühlung (Heller, Mertz, Siller, B. 62, 937; vgl. OH ·x Schmidt, Stein, Bamberger, B. 62, 1884). — Blauviolette Nadeln mit 2 Mol Eisessig (aus Eisessig), die beim Trocknen bei 120° rotstichig werden. Verpufft gegen 246° (H., M., SI.). Löst sich in Wasser violettrot, in konz. Schwefelsäure tiefblau, in Alkali und Ammoniak blaugrun:

wicklung an und bildet ein blaues Salz, das sich beim Aufbewahren in Lösung allmählich verändert (H., M., Si.). — Färbt chromgebeizte Wolle rotbraun, mit verschiedenen Metallsalzen gebeizte Baumwolle braun bis schwarzviolett (H., M., Si.). — Na₂C₁₄H₂O₁₂N₂. Blaue

OH

NO2

schwer löslich in überschüssiger Alkalilauge (H., M., Sl.). — Beim Stehenlassen einer mit etwas Schwefelsäure versetzten wäßrigen Lösung entsteht 3.6-Dinitro-1.2.4.5.7.8-hexaoxy-anthrachinon (H., M., SI.).

e) Oxy-oxo-Verbindungen $C_n H_{2n-24} O_8$.

3.7-Dinitro-2.6-dioxy-anthratrichinon-(1.4;5.8;9.10) $C_{14}H_{a}O_{12}N_{p}$, s. nebenstehende Formel. B. Aus 3.7-Dinitro-2.5.6.8-tetraoxy-anthradichinon-(1.4;9.10) bei der Einw. von überschüssiger Salpetersäure (Heller, Mertz, Siller, B. 62, 935; vgl. Schmidt, Stein, Bamberger, B. 62, 1884, 1887, 1889). — Gelbe Krystalle. Löslich in Salpetersäure (H., M., Sl.). Explodiert heftig durch rasches Erhitzen oder Schlag (Sch., St., B.). — Beständig gegen wasserfreie Agenzien; geht beim Behandeln mit Wasser sofort in 3.7-Dinitro-2.5.6.8-tetraoxy-anthradichinon-(1.4;9.10) über (H., M., Sl.). Wird beim Behandeln mit schwachen Reduktionsmitteln, z. B. Hydrochinon in 2%iger

f) Oxy-oxo-Verbindungen $C_n H_{2n-30} O_8$.

Schwefelsäure, zu 3.7-Dinitro-1.2.4.5.6.8-hexaoxy-anthrachinon reduziert (Sch., St., B.).

1. Oxy-oxo-Verbindungen CasHogOg.

6.7.6'.7'-Tetramethoxy-3.3'-dimethyl-5.5'-diisopropyl-dinaphthyl-(2.2')-dichinon-(1.4; 1'.4'), Apogossypolon - tetramethyläther, Pseudogossypolon - tetramethyläther C₃₂H₃₄O₈, Formel I (R = CH₃). Zur Konstitution vgl. Clark, Am. Soc. 51, 1482; Adams, Mitarb., Am. Soc. 60, 2176, 2200. Das Mol.-Gew. ist kryoskopisch in Campher bestimmt (Cl., Am. Soc. 51, 1477). — B. Beim Kochen von Apogossypol-hexamethyläther (E II 6, 1166) mit Chromschwefelsäure in Eisessig (Clark, Am. Soc. 51, 1478). — Gelbe Nadeln (aus Eisessig + Methanol). F: 210° (korr.) (CL.).

6.7.6'.7'-Tetraacetoxy-3.3'-dimethyl-5.5'-diisopropyl-dinaphthyl-(2.2')-dichinon-(1.4; 1'.4), Apogossypolon-tetraacetat, Pseudogossypolon-tetraacetat C₃₀H₃₄O₁₂, Formel I (R = CO-CH₃). Zur Konstitution vgl. Clark, Am. Soc. 51, 1482; Adams, Mitarb., Am. Soc. 60, 2175, 2199. Das Mol.-Gew. ist kryoskopisch in Campher bestimmt (Cl., Am. Soc. 51, 1477). — B. Beim Kochen von Apogossypol-hexaacetat (E II 6, 1166) mit Chromschwefelsäure in Eisessig (Cl., Am. Soc. 51, 1478). — Prismen (aus Methanol). Sintert bei 220° und schmilzt bei 230° (korr.) (CL.).

1.
$$\begin{bmatrix} R \cdot O \cdot & & & \\ R \cdot O \cdot & & & \\ (CH_3)_2 CH & O \end{bmatrix}_2$$
II.
$$\begin{bmatrix} OHC & O \cdot R \\ R \cdot O \cdot & CH_3 \\ (CH_3)_2 CH \end{bmatrix}_2$$
III.
$$\begin{bmatrix} R \cdot O \cdot HC - O \\ R \cdot O \cdot & CH_3 \\ (CH_3)_2 CH \end{bmatrix}_2$$

2. Oxy-oxo-Verbindungen $C_{30}H_{30}O_8$.

1.6.7.1'.6'.7'-Hexaoxy-3.3'-dimethyl-5.5'-diisopropyl-dinaphthyl-(2.2')-dialdehyd-(8.8'), Gossypol $C_{30}H_{30}O_8$, Formel II bzw. III bzw. IV auf S. 608 (R = H). Zur Zusammensetzung und Konstitution vgl. Clark, J. biol. Chem. 75, 728, 733; Am. Soc. 51, 1482; SCHMID, MARGULIES, M. 65 [1935], 391; ADAMS, Mitarb., Am. Soc. 59 [1937], 1723—1738; 60 [1938], 2158—2204. — V. In den Baumwollsamen und daher auch im Baumwollsatöl (MARCHLEWSKI, J. pr. [2] 60 [1899], 84). Gossypol ist in den Sekretbehältern ("glands") des Baumwollsamens lokalisiert und macht etwa 0,6 % des Samens aus (CARRUTH, Am. Soc. 40 [1918], 649; GALLUP, C. 1928 I, 213). Findet sich in sehr geringer Menge auch in den Baumwollsaathülsen (GILL, GREENUP, C. 1929 I, 1576). — Darst. Zur Entfernung der Hauptmenge des fetten Ols preßt man den Baumwollsamen bei 60° und extrahiert den zerriebenen Preßkuchen mit Petroläther unterhalb 50°; der Rückstand wird mit Äther extrahiert und der Atherextrakt eingeengt und mit Eisessig versetzt; man zerlegt die erhaltene Essigsäureverbindung durch Behandeln mit Äther und verd. Na₂S₂O₄-Lösung bei 60°; Ausbeute: 0,5% (CARRUTH, Am. Soc. 40 [1918], 647; KARRER, TOBLER, Helv. 15 [1932], 1207; CAMPBELL, MORRIS, ADAMS, Am. Soc. 59 [1937], 1723, 1726).

Existiert in drei krystallinen Formen¹): a) Hellgelbe Tafeln (aus Ligroin) vom Schmelzpunkt 214° (koff.) (Clark, J. biol. Chem. 75, 727; Campbell, Morris, Adams, Am. Soc. 59 [1937], 1725,

¹⁾ Neuerdings erhielten BOATNER, Mitarb. (Am. Soc. 69 [1947], 1271) Gossypol aus Äther + Petrolather mit der Zusammensetzung C₃₀H₃₂O₉ und dem Schmelzpunkt 182,5—183,5° (korr.).

OXY. OXO. VERBINDUNGEN C_nH_{2 n-30}O₈ BIS C_nH_{2 n-40}O₈ [Syst, Nr. 888

1728); krystallographische Angaben: Wherry, Keenan, J. biol. Chem. 75, 732. b) Gelbe Nadeln (aus Chloroform) vom Schmelzpunkt 199° (Ca., Mo., A.; vgl. Karrer, Tobler, Helv. 15 [1932], 1209). c) Gelbe, mikroskopische Nadeln (aus Äther + Petroläther) vom Schmelzpunkt 184° (SCHMID, MARGULIES, M. 65 [1935], 394; Ca., Mo., A.). Die drei Formen lassen sich durch Umkrystallisieren aus den entsprechenden Lösungsmitteln ineinander überführen (Ca., Mo., A.). Unlöslich in Wasser, sehr schwer löslich in Petroläther, löslich in Alkohol, Äther und Chloroform (Clark, J. biol. Chem. 75, 727; ROYCE, LINDSEY, Ind. Eng. Chem. 25 [1933], 1047); unlöslich in Wasser und in Petroläther (Kp: 30—60°), schwer löslich in Petroläther (Kp: 60—110°), Cyclohexan und Glycerin, sehr leicht in anderen organischen Lösungsmitteln (CA., Mo., A.). Leicht löslich in verd. Ammoniak und in Sodalösung (CL., J. biol. Chem. 75, 727). Löslich in Alkalilauge; die Lösung zersetzt sich langsam beim Aufbewahren durch Luftoxydation und färbt sich hierbei erst braun, dann purpurrot (CL., J. biol. Chem. 75, 727). Leicht löslich in methylalkoholischer Salzsäure mit brauner Farbe, die allmählich über Tiefgrün in Blau übergeht (CL., J. biol. Chem. 75, 727). Die Lösung in konz. Schwefelsäure ist tief scharlachrot (CL., J. biol. Chem. 75, 727).

Gossypol liefert beim Erhitzen über den Schmelzpunkt (CARRUTH, Am. Soc. 40 [1918], 659; CLARK, J. biol. Chem. 75, 734), besser beim Erhitzen mit Pyridinhydrochlorid in Toluol (MILLER, ADAMS, Am. Soc. 59 [1937], 1736; vgl. a. ADAMS, Mitarb., Am. Soc. 60 [1938], 2195), Anhydrogossypol ("Gossypol B") (Formel V; Syst. Nr. 2842). Liefert bei der Oxydation mit 5 Tln. Kaliumpermanganat in alkal. Lösung bei 0° Ameisensäure, Essigsäure, Isobuttersäure und

$$IV, \begin{bmatrix} R.O.CH & OR \\ O: & & \\ R.O.CH_3 \\ (CH_3)_2 CH \end{bmatrix}_2 V. \begin{bmatrix} HC.OO \\ O: & & \\ HO.CCH_3 \\ (CH_3)_2 CH \end{bmatrix}_2 VI. \begin{bmatrix} C_0H_5.N:HC & OH \\ HO.CCH_3 \\ (CH_3)_2 CH \end{bmatrix}_2$$

Kohlendioxyd (Cl., J. biol. Chem. 77, 83). Gibt beim Erwärmen mit 40%iger Natronlauge auf dem Wasserbad Apogossypol (E II 6, 1165) (Cl., J. biol. Chem. 78, 159, 161; vgl. A., Mitarb., Am. Soc. 60, 2199). Beim Erwärmen mit Anilin entsteht Gossypoldianil (Formel VI; Syst. Nr. Am. Soc. 60, 2199). Beim Erwarmen mit Anlin entsteht Gossypoldiani (Formel VI; Syst. Nr. 1604) (Carruth, Am. Soc. 40 [1918], 658; Cl.., J. biol. Chem. 75, 735; vgl. Cl., J. biol. Chem. 76, 231; A., Mitarb., Am. Soc. 60 [1938], 2194). — Gossypol ist giftig; zur Giftwirkung vgl. Whithers, Carruth, Chem. Abstr. 10 [1916], 230; 12 [1918], 838; Schwartze, Alsberg, J. Pharmacol. exp. Therap. 13 [1919], 504; 17 [1921], 344; C. 1924 II, 2405, 2864; Schw., C. 1926 II, 464; Menaul, C. 1924 II, 2679; Cl., J. biol. Chem. 75, 729; 76, 229; C. 1929 II, 3075; Gallup, Ind. Eng. Chem. 20, 59; C. 1928 I, 2099. — Quantitative Bestimmung von Gossypol als Gossypol-dianil: Carruth, J. biol. Chem. 32 [1917], 87; Am. Soc. 40 [1918], 658; Schwartze, Albergo, Laggic, Res. 95 [1922], 285; Chillip, Ind. Eng. Chem. 20, 60 ALSBERG, J. agric. Res. 25 [1923], 285; GALLUP, Ind. Eng. Chem. 20, 60.

Verbindung mit Essigsäure $C_{30}H_{30}O_8+C_2H_4O_2$. B. Beim Hinzufügen von Eisessig zu einer Lösung von Gossypol in Äther (Clark, J. biol. Chem. 75, 734). Gelbe Platten. Krystallographisches: Wherry, Keenan, J. biol. Chem. 75, 735. Erweicht bei 180° und schmilzt bei 189-190° (korr.) (CL.).

Eine als D-Gossypol (d-Gossypol) bezeichnete Verbindung isolierte Carruth (J. biol. Chem. 32 [1917], 87; Am. Soc. 40 [1918], 660; vgl. a. Whithers, Carruth, Chem. Abstr. 12 [1918], 838, 2393; Sherwood, Chem. Abstr. 20 [1926], 3050; Gallup, Ind. Eng. Chem. 19 [1927], 727; 20 [1928], 61) durch Extraktion von Baumwollsaat-Preßkuchen aus vorher erhitztem ("cooked") Samen mit Anilin bei 110° und Zerlegung(?) des gebildeten Anilinderivats mit alkoh. Kalilauge als gelbe Krystalle (aus Alkohol), die sich bei ca. 256° zersetzen. Clark (J. biol. Chem. 76, 231) konnte diese Angaben nicht bestätigen; das bei der Extraktion mit Anilin gebildetete Anilinderivat ist nach CLARK mit Gossypoldianil identisch und liefert bei der Zerlegung mit konz. Schwefelsäure gewöhnliches Gossypol. Die Entgiftung des Samens durch Erhitzen beruht nach Clark auf Bindung des Gossypols an Eiweiß.

Gossypol-hexaacetat $C_{43}H_{42}O_{14}$, Formel II bzw. III (auf S. 607) bzw. IV ($R=CH_3\cdot CO$). B. Aus Gossypol beim Kochen mit überschüssigem Acetanhydrid und Natriumacetat oder mit Acetanhydrid und Pyridin (Clark, J. biol. Chem. 75, 737). — Farblose Platten (aus Essigester + Methanol). Erweicht bei 255° und schmilzt bei 276—277° (korr.) unter Zersetzung (Cl., J. biol. Chem. 75, 737); sintert bei 265° und zersetzt sich bei 276—279° (MILLER, BUTTER-BAUGH, ADAMS, Am. Soc. 59, 1730). — Liefert beim Kochen mit Chromtrioxyd in Essigsäure Tetraacetylgossypolon (S. 611) (CL., Am. Soc. 51, 1476).

Gossypol-dioxim $C_{30}H_{32}O_8N_2$, s. nebenstehende Formel. B. Aus Gossypol bei kurzem Aufkochen mit Hydroxylamin in Alkohol (CLARK, J. biol. Chem. 75, 736). — Fast farblose Krystalle (aus verd. Alkohol). Färbt sich bei 225° dunkel und ist bei 315° noch nicht geschmolzen.

g) Oxy-oxo-Verbindungen $C_n H_{2n-38} O_8$.

Oxy-oxo-Verbindungen C, H18O8.

Methyläther (Nadeln; F: 215-216°).

1. 1.2.7.1'.2'.7'-Hexaoxy-dihydrodianthron, Hexaoxy-dianthron $C_{22}H_{18}O_{8}$, s. nebenstehende Formel. B. Durch Oxydation von 3.4 6-Trioxy-anthron (9) mit Wasserstoffperoxyd HO. in alkoh. Natronlauge (HARDACRE, PERKIN, Soc. 1929, 191). -Hellgrünes amorphes Pulver, das sich bei ca. 140° dunkel und bei 240' schwarz färbt. — Beim Kochen einer Lösung in Aceton bildet sich Anthra-purpurin. Beim Behandeln mit Diazomethan in Äther entsteht ein nicht näher untersuchter

1.2.7.1'.2'.7'- Hexamethoxy-dihydrodianthron, Hexamethoxydianthron $C_{34}H_{30}O_8 =$ $\begin{bmatrix} \text{OC} & \text{C}_6\text{H}_3(\text{O} \cdot \text{CH}_3)_2 \\ \text{C}_1\text{H}_3(\text{O} \cdot \text{CH}_3)_2 \end{bmatrix} \text{S. Beim Kochen von 3.4.6-Trimethoxy-anthron-(9) mit Eisen(III)-}$ chlorid in Eisessig (MACMASTER, PERKIN, Soc. 1927, 1309). — Nadeln (aus Alkohol + Eisessig). F: 224°. Sehr schwer löslich in Alkohol. Löst sich in Schwefelsäure mit gelber Farbe, die beim Erhitzen der Lösung in Rot übergeht.

1.2.7.1'.2'.7'-Hexaacetoxy-dihydrodianthron, Hexaacetoxydianthron $C_{40}H_{30}O_{14} = \left[\begin{array}{cccc} C_0H_2(O\cdot CO\cdot CH_3)_2 > CH - \\ C_0H_3(O\cdot CO\cdot CH_3)_2 > CH - \\ \end{array} \right]_2$. B. Durch Kochen von 1.2.7.10-Tetraacetoxy-anthracen mit Eisen(III)-chlorid in essignaurer Lösung, neben anderen Produkten (Hardache, Perkin, Soc. 1929, 191). Durch Acetylierung von Hexaoxydianthron mit Acetanhydrid (H., P., Soc. 1929, 192). — Nadeln (aus Aceton). F: 250—251°.

2. 2.3.4.2'.3'.4'-Hexaoxy-dihydrodianthron, Anthragalloldianthron $C_{28}H_{18}O_8$, s. nebenstehende Formel. B. Aus 2.3.4.2'.3'.4'-Hexaoxy-dianthron (s. u.) beim Kochen der Lösung in Eisessig oder beim Einleiten von Schwefeldioxyd in eine Suspension

in 50% igem Alkohol (Breare, Perkin, Soc. 123, 2610). Beim Kochen von gleichen Teilen 1.2.3-Trioxy-anthron (9) und 2.3.4.2'.3'.4'
Hexaoxy-dianthron in alkoh. Essigsäure (B., P., Soc. 123, 2610). Beim Kochen von 1.2.3-Trioxy-anthron-(9) mit Eisen (III)-chlorid in Eisessig + Alkohol (B., P., Soc. 123, 2608). — Gelbe Prismen. Krystallisiert aus Pyridin in fast farblosen pyridinhaltigen Tafeln. Färbt sich bei 230° violett und schmilzt bei 258—260°. Schwer löslich in Aceton und Eisessig. — Die alkal. Lösung färbt sich beim Aufbewahren an der Luft violett. -Die Suspension in alkoh. Essigsäure liefert beim Erwärmen mit Chinon 2.3.4.2'.3'.4'-Hexaoxy-dianthron. Gibt beim Behandeln mit Diazomethan in äther. Suspension einen Tetramethyläther (s. u.) und andere Produkte. Liefert beim Erwärmen mit Acetanhydrid in Pyridin 2.3.4.10.2.3.4.10'-Oktaacetoxy-dianthranyl-(9.9') (E II 6, 1170) und 2.3.4.2.3'.4'-Hexaacetoxy-dihydrodianthron; die letztgenannte Verbindung entsteht in größerer Menge bei Gegenwart von Schwefelsäure statt Pyridin oder bei der Acetylierung in kaltem Pyridin.

Tetramethyläther $C_{32}H_{36}O_8=(CH_3\cdot O)_4(HO)_2C_{28}H_{14}O_2$. B. Durch Einw. von Diazomethan auf 2.3.4.2'.3'.4'-Hexaoxy-dihydrodianthron in Äther (Breare, Perkin, Soc. 123, 2609). — Blaßgelbe Prismen (aus Dimethylanilin). F: 233—235°.

Hexaacetat, 2.3.4.2'.3'.4'-Hexaacetoxy-dihydrodianthron $C_{40}H_{30}O_{14} = (CH_3 \cdot CO \cdot O)_6C_{28}H_{14}O_2$. B. Aus 2.3.4.2'.3'.4'-Hexaoxy-dihydrodianthron und Acetanhydrid in kaltem Pyridin oder in Gegenwart von etwas Schwefelsäure beim Erwärmen (Breare, Perkin, Soc. 128, 2608, 2609). — Nadeln (aus Aceton). Färbt sich bei 250° rot und schmilzt bei 264° bis 266°. — Gibt bei Einw. von siedendem Acetanhydrid in Gegenwart von Pyridin 2.3.4.10.2'.3'.4'.10'-Oktaacetoxy-dianthranyl-(9.9') (E II 6, 1170).

h) Oxy-oxo-Verbindungen $C_n H_{2n-40} O_8$.

2.3.4.2'.3'.4' - Hexaoxy - dianthrachinon, 2.3.4.2'.3'.4'-Hexaoxy - dianthron, Anthragallol-dianthronchinon $C_{28}H_{16}O_8$, s. nebenstehende Formel. B. Beim Erwärmen von 1.2.3-Trioxy-anthron-(9) oder 2.3.4.2'.3'.4'-Hexaoxy-dihydro-dianthron mit Chinon in alkoh. Essigsäure (Breare, Perkin, Soc. 123, 2609, 2610). — Violettschwarze Nadeln (aus Toluol). F: 206—208°. Löst sich in konz. Schwefelsäure und in Alkalilauge mit rotvioletter Farbe; die Lösung in Alkalilauge färbt sich beim Erwärmen braun. — Gibt bei der Reduktion mit Zinn(II)-chlorid

. . .

und Salzsäure 1.2.3-Trioxy-anthron (9). Liefert beim Kochen mit gleichen Teilen 1.2.3-Trioxy-anthron-(9) in alkoh. Essigsäure, mit Essigsäure allein oder mit Wasser oder beim Einleiten von Schwefeldioxyd in die wäßrig-alkoholische Suspension 2.3.4.2'.3'.4'-Hexaoxy-dihydrodianthron. Färbt Wolle auf Chrom-, Aluminium- und Zinnbeize braun, auf Eisenbeize tiefschwarz.

i) Oxy-oxo-Verbindungen $C_n H_{2n-42} O_8$.

1. Oxy-oxo-Verbindungen C28 H14O8.

1. 3.4.3'.4'-Tetraoxy-dianthrachinonyl-(1.1'), Dializarin C₁₈H₁₄O₈, s. nebenstehende Formel. B. Durch Verseifen des Tetraacetats mit heißer Kalilauge oder konz. Schwefelsäure (ECKERT, HAMPEL, B. 60, 1701). — Orangegelbe Nadeln (aus Nitrobenzol). Sublimierbar. Sehr schwer löslich in heißem Nitrobenzol, unlöslich in niedrig siedenden Lösungsmitteln. Löslich in konz. Schwefelsäure mit orangeroter bis roter Farbe, in Alkalilaugen mit troter Farbe. — Liefert beim Erwärmen mit konz. Schwefelsäure und Kupferpulver 3.4.3'.4'-Tetraoxy-helianthron. — Färbt mit Tonerde gebeizte Wolle und chromgebeizte Baumwolle schwach braun. — Kaliumsalz. Blauviolette Kryställchen. In kaltem Wasser sehr schwer löslich.

Tetraacetat $C_{36}H_{22}O_{12} = [C_6H_4(CO)_2C_6H(O \cdot CO \cdot CH_3)_2]_2$. B. Durch Oxydation von 3.4.3'.4'-Tetraacetoxy-dianthryl-(1.1') mit Chromsäure in Eisessig (ECKERT, HAMPEL, B. 60, 1701). — Gelbe Krystalle (aus Eisessig).

2. 1.4.1'.4'- Dioxy - dianthrachinonyl - (2.2') $C_{28}H_{14}O_8 = [C_6H_4(CO)_2C_6H(OH)_2-]_2$.

1.1'- Dioxy - 4.4'- dimethoxy - dianthrachinonyl - (2.2') $C_{30}H_{18}O_8$, s. nebenstehende Formel. B. Durch Verschmelzen von 1-0xy-4-methoxy-anthrachinon mit alkoh. Kalilauge bei 150° und Behandeln des Reaktionsprodukts mit Luft (I. G. Farbenind., D.R.P. 469135; Frdl. 16, 1209). — Färbt Wölle aus alkal. Küpe braun.

2. Oxy-oxo-Verbindungen $C_{30}H_{18}O_8$.

 α , α' - B is - [2 - α xy - α thrachinonyl - (1)] - α thylenglykol $C_{30}H_{18}O_{8}$, Formel I. B. Beim Kochen der Verbindung der Formel II (Syst. Nr. 3239) mit Eisessig unter Luftabschluß

(DE DIESBACH, GUBSER, Helv. 11, 1116). — Krystalle (aus Nitrobenzol). 0,15 g lösen sich in 1000 cm³ siedendem Nitrobenzol mit grüner Farbe, unlöslich in den übrigen organischen Lösungsmitteln. Löst sich in konz. Schwefelsäure mit blaßvioletter, in Alkalilaugen mit blauer Farbe. Die Hydrosulfitküpe ist violett.

k) Oxy-oxo-Verbindungen $C_n H_{2n-76} O_8$.

2-Anisyliden-1.1-dibindonyl-indanon-(3), Anisyliden-indandionyliden-bis-bindon $C_{39}H_{30}O_8$, Formel III. B. Aus Bindon (E II 7, 839) und Anisaldehyd in Pyridin (Ionescu,

Bl. [4] 43, 451). — Gelbe krystallinische Masse (aus Eisessig). F: 242°. Löst sich in alkoh. Kalilauge mit indigoblauer Farbe.

8. Oxy-oxo-Verbindungen mit 9 Sauerstoffatomen.

2.4.6-Trioxy-1.3-bis-[3.4-dioxy-cinn-amoyl]-benzol, 2.4-Bis-[3.4-dioxy-cinn-amoyl]-phloroglucin C₂₄H₁₈O₉, s. nebenstehende Formel. B. Beim Erhitzen von Phloroglucin mit 3.4-Bis-carbomethoxyoxy-cinnamoylchlorid oder mit 3.4-Bis-carbāthoxyoxy-cinnamoylchlorid in Nitrobenzol in Gegenwart von Aluminiumchlorid (Shinoda, Sato, C. 1929 I, 1942). — Gelbe Krystalle mit 2H₂O. F: 267°. Schwer löslich. — Gibt mit Magnesium und Salzsäure keine Färbung.

9. Oxy-oxo-Verbindungen mit 10 Sauerstoffatomen.

6.7.6'.7'-Tetraacetoxy - 3.3'-dimethyl - 5.5'-diisopropyldinaphthyl - (2.2') - dichinon - (1.4; 1'.4') - dialdehyd - (8.8'),
Tetraacetylgossypolon C₃₈H₃₄O₁₄, s. nebenstehende Formel.
Zur Konstitution vgl. Clark, Am. Soc. 51, 1482; Adams,
Mitarb., Am. Soc. 60, 2199. Das Mol. Gew. wurde kryoskopisch in Campher bestimmt (Clark, Am. Soc. 51, 1477).

B. Beim Kochen von Gossypol-hexaacetat mit Chromtrioxyd in Essigsäure (Cl., Am. Soc. 51, 1476; vgl. Miller, Butterbaugh, Adams, Am. Soc. 59, 1730, 1731).

Gelbe Stäbchen und Nadeln (aus Eisessig + Äther). Färbt sich bei 210—230° schwarz, ohne zu schmelzen (Cl.).

Liefert mit Anilin in Methanol Tetraacetylgossypolon-dianil (Syst. Nr. 1604) (Cl.).

10. Oxy-oxo-Verbindungen mit 12 Sauerstoffatomen.

Filixsäure, Filicin C₃₅H₄₀O₁₂ (H 576). Physiologische Wirkung: Pennetti, Ber. Physiol. 37, 719; C. 1927 I, 1855. — Bestimmung im Farnkrautextrakt: Flück, Bl. Sci. pharmacol. 34, 266; C. 1927 II, 470.

11. Oxy-oxo-Verbindungen mit 16 Sauerstoffatomen.

Filmaron, Filmaronsäure $C_{47}H_{54}O_{16}$ (H 577). Physiologische Wirkung: Pennetti, Ber. Physiol. 37, 719; C. 1927 I, 1855. [Ammerlahn]

Register.

A.	Acetoxy-benzylidenindandion	Acetoxymethylen-cyclohexa-
	410.	non 14.
Acetamino-benzochinon 265.	— brombutyrylxylol 139.	- cyclohexanonsemicarbazon
— benzochinonoxim 266.	— campher 22, 23.	14.
naphthochinon 346.	— carbāthoxyoxyanthra:	Acetoxymethyl-hydrindon 158.
Aceto-s.a. Acetyl	chinon 490.	— isobutyrophenon 129.
Acetoacetyl-kresol 330, 332,	— chalkon 219.	— isopropylbenzophenon 210.
333.	- chlorpropylnaphthochinon	— menthon 10.
→ naphthol 360, 361.	352.	- pentamethoxybenzhydryl-
- naphtholmethyläther 360.	— cyclohexanon 4.	keton 601.
— phenol 327.	— cyclopentanon 3.	— propenylcyclopentenon 33.
— xylenol 335.	— dimethylbenzophenon 208.	— propiophenon 120.
Aceto-brenzcatechin 298.	— dimethylbutyrophenon	Acetoxy-naphthochinon 346.
— hemellitenol 133.	138.	- oxomethyldihydronaphthas
mesitol 134.	— dimethylhydrindon 161.	lin 168.
— naphthol 175, 176, 178.	— dimethylisobutyrophenon	— phenanthrenchinon 396,
— pseudocumenol 134.	139, 140.	397, 398.
- syringon 444.	— dinaphthylchinon 425.	— phenylaceton 106.
vanillon 293, 298.	— diphenylaceton 207.	- phenyldibenzocycloheptas
— vanillonäthyläther 299.	— epicampher 24, 25, 26, 27.	trienon 256.
vanillonsemicarbazon 299.	— epicamphersemicarbazon 26.	- phenyldimethoxystyryl
veratrol 294.	— hydrindon 152.	keton 480.
— veratron 298. — veratronazin 299.	— isobutyrophenon 119.	 phenylindandionylbindos nylmethan 600.
- veratronsemicarbazon 299.	- isobutyrophenonsemicarb	
Acetoxy-acetophenon 85, 89.	azon 119.	— phenylnaphthochinon 409. — phoron 16.
- acetophenonsemicarbazon	— isovalerophenon 127.	- propiophenon 104.
90.	Acetoxylenol 122, 125; s. a.	— tetralon 158.
- acetovanillon 447.	Oxydimethylacetophenon.	- tetramethylchromanon
acetoveratron 447.	Acetoxy-menthenon 21.	129.
- acetylnaphthalin 179.	— methoxycinnamylidens	- tetramethylcyclopenta-
- acetylnaphthalinoxim	acetophenon 404.	non 8.
acetat 176.	Acetoxymethyl-acetophenon	- tetramethylcyclopentanons
- äthylmercaptoanthrachinon	107, 109, 111.	oxim 8.
392.	— acetylisobutyrophenon 129.	- tetramethylcyclopentenon
- anisylidenacetophenon 376.	- anisylidenacetophenon 385.	16.
— anthrachinon 387, 388, 394.	— anthrachinon 399, 400, 401.	— tetramethylphenylcyclos
anthradichinon 568.	— benzhydrylketon 207.	hexadienon 180.
anthranylmethylenanthron	- benzophenon 199.	- trimethylcyclopentenon 15.
2 60.	— campher 28.	- veratrylidenacetophenon
benzaldoxim 71.	- cyclohexanon 7.	480.
— benzalindandionbindon 600.	— cyclopentanon 5, 6.	Acetyl-anisol 84; s. a. 82.
— benzanthron 238.	- cyclopentanonsemicarb=	- brenzcatechin 298.
benzhydrylnaphthochinon	azon 6.	- bromanisaldoxim 75.
428.	— cyclopentenon 12, 13.	— carthamidin 581.
benzoanthrachinon 422.	— cyclopentenonessigsäure	— carvacrol 140.
- benzophenon 186.	135.	— carvacrolmethyläther 140.
benzoylanthracen 256.	— cyclopentenonguanylhydr-	— cyclohexanol 7.
benzoylcarbinol 302.	azon 13.	— diphenyläther 85.
— benzoylnaphthalin 235.	— desoxybenzoin 206.	— diphenylsulfid 88.
benzylcyclohexanon 164.	— diacetylcyclohexadienolon	— dithiobrenzcatechin 301.
benzylidenacetophenon 219.	536.	— dithioresorcin 301.
- benzylidendiacetat 41.	— diacetylcyclohexendion 536.	— ieruloyiacetophenon 512.

Athoxy-naphthylmethylen-

cyclopentanon 228.

Acetyl-hydrochinon 297. - isovanillin 283. - kresol 107, 108, 109, 111, 112. kresolacetat 107, 109, 111. – kresoläthyläther 109. kresolisopropyläther 109. — kresolmethyläther 107, 108, 109, 111, 112. — menthanol 11. - menthanolsemicarbazon 11. — methoxybenziloxim 369. - naphthol 175, 176, 178, 179. - naphthol, Diacetylbors säureester 175, 178, 179. --- naphtholacetat 179. - naphtholäthyläther 175, 176. naphtholmethyläther 175, 176, 178, 179. – naphthyloxyessigsäure 175. --- nitromethoxybenzaldoxim 78. oxymethoxycinnamoyls benzol 512. phenol 81, 84. Acetylphenyl- s. a. Phenylacetyl-. Acetyl-phenylcarbinol 105. phenylthioglykolsäure 88. — phloroglucin 442. -- plumbagin 351. - protocatechualdehyd 283. purpurinchinon 568. -- purpurogallintrimethyls äther 539. pyrogallol 439, 444. — resorcin 294, 301. - rhizoninaldehyd 308. - thickresol 111. - thiokresolmethyläther 111. - thiophenol 84, 87. - thymol 140. - vanillin 283. - veratrol 294, 298. Aconitsäure-trisbromphenacyl= ester 92. trischlorphenacylester 90. Acryloylanisol 151. Athoxy-acenaphthenchinon 367. acetonaphthon 176; s. a. 175. acetophenon 85, 88. -- acetylacetophenon 327. — acetylnaphthalin 175, 176. anisoylacetophenon 483. anthracenaldehyd 230. benzaldehydsemicarbazon 73. benzaldoxim 43, 71. - benzanthron 238. - benzophenon 185.

benzophenonoxim 186.

— benzoylaceton 327.

REGISTER Athoxy-benzoylacetophenon 381, 382. benzoylpropen 157. Athoxybenzyliden-aceton 156. acetophenon 222, 225. acetophenonoxim 221. cyclopentanon 169. Athoxy-bromacetylnaphthalin 177. campher 22. chalkon 222, 223, 225. chalkonoxim 221. chloracetylnaphthalin 177. - chlorcinnamoylnaphthalin 246. cinnamoylnaphthalin 246. cyclohexanon 4. cyclohexylaceton 7. cyclohexylacetonsemicarb= azon 7. desoxybenzoin 192. desoxybenzoinoxim 192. dibenzoyläthylen 402. dibenzoylmethan 381, 382. Athoxydimethyl-benzophenon 207. — benzophenonoxim 208. - chalkon 229. cyclobutanon 6. cyclohexadienon 32. Athoxy-diphenylanisoylpropen **423**. diphenylcyclobutanon 228. diphenylmethoxyphenyl* butanon 421. ditolylpropenon 229. epicampher, dimerer 24. essigsäurebromphenacylester 92. essigsäurechlorphenacylester 90. formylanthracen 230. menthenon 21. Äthoxymethoxy-äthoxybenzy= lidenacetophenon 480. äthoxyphenylpropiophenon 472. cinnamoylnaphthalin 419. Äthoxymethyl-acetophenon acetophenonoxim 110. acetophenonsemicarbazon 110. allylcyclopentanon 16. benzylidenacetophenon 227. chalkon 227. cyclohexadienon 31. cyclopentanon 6. cyclopentenon 13. Athoxy-methylenacetophenon 1**5**1.

naphthaldehyd 174.

174.

naphthaldehydazin 173,

- naphthochinon 342, 345.

naphthyloxynaphthoyläthylen 428. Athoxyphenyl-anthron 252. benzylketon 192. brombenzylhydrindon 256. camphanon 170. methoxyathoxystyrylketon sulfonacetophenon 95. sulfonacetophenonoxim Athoxy-propionylacetophenon 330. salicylaldehyd 267. salicylidenacetophenon 379. triäthylcyclohexadienon 34. trichloracetylnaphthalin vinylphenylketon 151. zimtaldehyddiäthylacetal zimtaldehydsemicarbazon 151. Äthyl-acetoxynaphthylketazin 180. acetylphenol 121, 122. acrylsäurebromphenacylester 92. anisylketon 104. anthrachinonylsulfid 391. anthrachinonylsulfon 391. benzanthronylsulfid 241. benzoylvinyläther 151. Äthylcarbonato- s. a. Carbe äthoxy-. Äthylcarbonatoalizarin 489. Athylcotoin 467. Athyldimethoxyphenäthylketon 313. ketonsemicarbazon 313. ketoxim 313. Äthyl-dimethoxyphenylketon dioxybenzylidenoximid 284. dioxyphenylketon 305, 306. glykolsäurebromphenacyl= ester 92. glykolsäurechlorphenacyl= ester 90. hexensäurebromphenacylester 91. Äthylidenpropionsäurebrom= phenacylester 91. Äthylisovanillin 283. Athylmercapto-anthrachinon benzanthron 241. benzophenonoxim 191. benzylmercaptoanthrachinon 499, 503. butylmercaptoanthrachinon 498, 502.

Athylmercapto-butylsulfons anthrachinon 498. isoamylmercaptoanthrachinon 499. -- isopropylmercaptoanthra chinon 497, 501. - methylencampher 34. - naphthochinon 347. - propylmercaptoanthrachis non 497. Äthylmethoxy-anthranyl= : ketimid 233. - anthranylketimid, Acetyl= · · · derivat 233. --- benzylketon 116. --- methylphenylketon 120, 121. - phenylketon 104. - styrylketon 159. - styrylketondibromid 127. - styrylketoxim 159. Äthyloxy-methoxyphenäthyl= keton 312. methoxystyrylketon 329, 330. -- naphthylketazin 179. -- naphthylketon 179. - phenäthylketon 127. - phenylketon 103, 104. -- styrylketon 158, 159. Äthyl-phenacyläther 88. phenylmethoxyphenylbuta= non 211. protocatechualdoxim 284. Athylsulfon-anthrachinon 391. benzylsulfonanthrachinon 500, 503. butylmercaptoanthra= chinon 498, 502. butylsulfonanthrachinon 498, 502. --- isoamylsulfonanthrachinon 499. isopropylsulfonanthras chinon 497. propylsulfonanthrachinon 497. Äthyl-trimethoxyphenylketon 448. --- vanillin 283. ---- xanthogensäurephenacyl= ester 96. Aldoldimedon 536. Alizarin 487. Alizarin, Diacetylborsäure ester 490. Alizarin-acetat 489. - acetat, Diacetylborsäureester 490. - bordeaux B 584. -- braun 549. - ohinonäthoxybromid 558. — chinonmethoxybromid

558.

-- cyanin NS 603.

Alizarin-cyanin R 603. Anisal-acetylacetonhydros cyanin 2 R 603. cyanin 3 R 584. chlorid 334. acetyldiphenyl 253. cyanin WRR 605. campher 181, 182. diacetat 489. cinnamalaceton 236. -- dimethyläther 489. Anisaldazin 71. gelb A 466. Anisaldehyd 64; s. a. 40. - methyläther 489. Anisaldehyd-athylimid 68. – methylätheracetat 489. diäthylacetal 67. phenoxyacetat 490. methylimid 67. — schwefelsäure 490. methylsemicarbazon 72. sulfit 490. methylthiosemicarbazon sulfonsäure 490. Alkannin 544. oxybenzolazoformylhydr= Allylacetophenolmethyläther azon 72. semicarbazon 72. Allyloxy-anthrachinon 386, Anisaldimethon 549. Anisaldoxim 68, 69. methylcyclopentanon 6. Anisaldoxim-carbonsaureathyl= methylcyclopentenon 12, ester 71. 13. --- carbonsäureamid 68. methylencampher 34. -- diäthylaminoäthyläther 71. methylphenyldiketon= --- dinitrophenyläther 70. — methyläther 43, 68, 70. disemicarbazon 340. naphthochinon 342, 346. — nitrobenzyläther 70, 71. phenanthrenchinon 396, peroxyd 71. 397. pikryläther 70. Aloeemodin 565. Anisal-indandion 410. Amino-crotonoylnaphthol 360, - indandionbindon 600. Anishydramid 68. crotonoylnaphtholmethyl-Anisil 474. äther 361. Anisil-azin 475. - dianisoyläthylen 565. bischlorbenzylidenhydrazon formylisoanisaldoxim 68. - formylvanillinisoxim 284. dibenzylmercaptol 476. naphthochinon 346. dihydrazon 476. Aminooxy- s. Oxyamino-. — hydrazon 475. Aminosalicylidenhydrazino-Anisoin 470. äthan 44. Anisoinoxim 470. Amyl- s. a. Isoamyl-, Pentyl-. Anisoyl-acetaldehyd 323. Amyl-dimethoxyphenäthyl= -- aceton 328. keton 317. — acetophenon 382. dimethoxyphenäthylket= acetophenonmethyläther oxim 317. 379. dioxyphenylketon 314. acetophenonoxim 382. Amylidenzingeron 337. - äthylanthron 427. Amyl-methoxyphenylketon anthrachinon 520. 137. anthrachinonoxim 520. oxymethoxyphenäthyls - naphthol 410. keton 317. phloroglucin 540. oxymethoxystyrylketon propiophenon 385. 336. Anisyl- s. a. Methoxybenzyl-, Amyranonol 166. Methoxyphenyl. Amyrenonylacetat 171. Anisyl-aceton 105, 117. Amyrinoxyd 166. acetophenon 192. Anhydro-bisbromsalicyl= benzoylacetylen 230. - benzylketon 192. aldehyd 45. bisdibromoxydimethyl= — butanon 116, 118. benzaldehyd 114. — campher 170. bisdibromsalicylaldehyd — desoxybenzoin 246. diphenyläthanon 246. disalicylaldehyd 39. diphenylmethylketon 247. Anisal- s. a. Anisyliden-. glyoxal 321. Anisal-aceton 155. hexanon 137. — acetondibromid 117. Anisylidenacenaphthenon 252.

Anisyliden-acetaldehyd 150. -- aceton 155. -- acetophenon 218. acetophenon, dimeres **523.** acetophenonsemicarbazon 219. - bisbindon 604. --- bisdimethyldihydroresorcin 549. - campher 181, 182. -- cinnamylidenaceton 236. -- cyclohexylidenanisyliden= cyclohexanon 424. diacetophenon 424. diacetophenondisemicarb= azon 424. - dibenzylketon 254. --- dibindonylindanon 610. indandion 410. - indandionylidenbisbindon 610. nitroanisylidenaceton 407. - nitrocinnamylidenaceton 236, 237. piperiton 181. Anisyl-methylbutanal 128. - pentanon 126, 127, 128. - pentanoylcarbinol 314. propionylcarbinol 309. Anthracen-blau WR 605. - braun 549. Anthrachinol 214. Anthrachinonyl-mercaptan mercaptobenzanthron 392. metaborat 389. methoxynaphthoyläthylen oxynaphthoyläthylen 523, 524. rhodanid 392. -- sulfinessigsäure 392. sulfoxydessigsäure 392. — thioglykolsäure 392, 396. Anthrachryson 585. Anthrachrysontetramethyl äther 585. Anthraflavin 504. Anthraflavinsäure 504. Anthragallol 549. Anthragallol-acetat 550. anthranol 476. — diacetat 551. - dianthron 609. dianthronchinon 609. dimethyläther 550. -- dimethylätheracetat 550. — methyläther 549, 550. - methylätheracetat 550. - methylätherdiacetat 551.

-- triacetat 551.

trimethyläther 550.

Anthrahydrochinon 214, 215.

Anthrahydrochinon-dimethyl-Benzalizarin 416. äther 215. Benzalizarin-diacetat 417. dischwefelsäure 215. dimethyläther 416. methyläther 215. methyläther 416. Anthrapurpurin 555. methylätheracetat 416. Anthrapurpurin-acetat 556. Benzanisoin 358. – diacetat 556. Benzanisoin-oxim 359. dimethyläther 556. - semicarbazon 359. dimethylätheracetat 556. Benzanthrapurpurin 514. --- methyläther 555, 556. Benzanthronyl-anthrachinomethylätheracetat 556. nylsulfid 392. - methylätherdiacetat 556, mercaptoessigsäure 241. 557. sulfinessigsäure 242. - triacetat 557. sulfinessigsäuremethylester trimethyläther 556. 242. Anthrarobin 372. thioglykolsäure 241. Anthrarufin 496. thioglykolsäureäthylester Anthrarufin, Bisdiacetylbors 242. säureester 496. thioglykolsäureamid 242. Anthrarufindiacetat 496. thioglykolsäurenitril 242. Antiarol-aldehyd 533. Benzaurin 245. aldehydsemicarbazon 533. Benzaurin-dibenzoat 245. Apocynin 298. dimethyläther 245. Apogossypolon-tetraacetat 607. Benzhydryloxynaphthochinon tetramethyläther 607. 346. Benzochinon-dischwefels Arabonsäureanisylidenhydr= azid 72. chlorid 435. Asarylaldehyd 435. disulfensauredichlorid 435. Asarylaldehyd-semicarbazon thiosulfonsaure s. Chinon= 435. thiosulfonsäure. Benzoin 192, 193. semioxamazon 435. Asparaginsäure-bisbromphen= Benzoin-acetat 196. acylester 92. äthyläther 195. bischlorphenacylester 90. benzyläther 196. Aspidinol 450. — diäthylacetal 196. Astaxanthin 520. - methyläther 195. Atranol 304. --- oxim 196. Atranol-dimethyläther 305. - semicarbazon 196. oxim 305. Benzophloroglucin 466. semicarbazon 305. Benzoyl-acetonäthyläther tetraacetat 305. 156, 157. Atranorinsäure 304. acetonmethyläther 156, Atromentin 588. --- anisol 182, 184, 185. Atromentin-dimethyläther 590. dimethylätherdiacetat 590. - anisoyläthan 385. methyläther 589. anisoylmethan 382. methyläthertriacetat 591. anisoylstyrol 425. anthranol 256. tetraacetat 591. tetramethyläther 590. anthranolacetat 256. trimethyläther 590. anthranolmethyläther 256. trimethylätheräthyläther benzoin 423. 590. benzoindioxim 423. Aubépine 64. borneol 170. Aurin 417. -- borneolacetat 170. Aurinhydrat 418. borneoloxim 170. Azido-methoxyacetophenon 87. oxyacetophenon 87. borneolsemicarbazon 170. bornylacetat 170. - brenzcatechin 354. camphanol 170.

B.

carbinol 88. carbinolacetat 89. Baeckeol 450. carbinolacetatsemicarbazon Benzal- s. a. Benzyliden-. 90. Benzal-acetonaphthol 246. carbinolsemicarbazon 89. anisalaceton 232.

010	REGISTER	
Benzoyl-carvacrol 210.	Benzyl-oxynaphthochinon 343,	Bis-b
— carvacrolmethyläther 210.	346.	br
decandiol 318.	— oxynaphthylketon 236.	l b
— diphenyläther 186.	- oxyphenylstyrylketon 254.	br
- diphenylsulfid 191.	— phenacylsulfid 95.	br
Benzoylendihydroanthranol	- phenacylsulfon 95.	bu
257.	phenacylsulfoxyd 95.	C
Benzoyl-heptylalkohol 144.	- phloracetophenon 471.	- bu
hydrochinon 353.	resacetophenon 362.	4
isopropylakohol 115.	sulfinacetophenon 95.	Bisca
- kresol 198, 199, 201.	- sulfonacetophenon 95.	c
- kresolacetat 199.	- sulfonacetophenonoxim 98.	be
- kresolmethyläther 198,	- sulfonanthrachinon 392.	be
199.	— vanillin 283.	4
- naphthol 234, 235, 236.	Bernsteinsäure-bisbromphen=	be
- naphthol, Diacetylbor-	acylester 92.	4
saureester 235.	— bischlorphenacylester 90.	Bisca
octyläthylenglykol 318.	Bicyclopentandioltrion 532.	а
phenetol 185.	Bis- s. a. Di	- cir
phenol 182, 184.	Bisacetoxybenzyliden-aceton	cir
- phenoxyessigsaure 186.	407.	di
- phenoxyessigsäureäthyle	- cyclohexanon 413.	na
ester 186.	— cyclopentanon 412.	5
- phenoxyessigsäureäthyl-	Bisacetoxyphenyl-acenaphs	- na
esteroxim 187.	thenon 428.	Bis-ca
phenylbenzoylcarbinol 423.	- benzochinon 516.	— са
phenyltriphenylcarbinol	Bisacetylferuloylbenzol 593.	са
261.	Bisacetylvanillyliden-aceton	ch
phloroglucin 466.	567.	8
pyrogallol 466.	- acetontetrabromid 545.	ch
resorcin 352.	— cyclohexanon 569.	ch
thioanisol 191.	Bisäthoxy-benzoylbenzil 595.	ch
thymol 210.	- benzylidencyclohexanon	4
triphenylcarbinol 259.	413.	ch
veratrol 354.	benzylidencyclopentanon	នា
veratroylstyrol 519.	412.	ch
vinylalkohol 151.	- naphthylmethylencyclopen	ch
xylenol 207, 208, 209.	tanon 429.	ch
— yangonol 340.	— phenylbenzochinon 515.	n
Benzyl-anthrachinonylsulfid	Bisäthylmercapto-anthra=	Biscin
392.	chinon 496, 501.	n
— anthrachinonylsulfon 392.	— methylanthrachinon 509.	- sel
benzoin 248.	Bisäthylsulfonanthrachinon	su
- benzoinacetat 248.	496, 501.	Bisdel
benzoinoxim 248.	Bisbenzoylacetonyltellur=	Bisdib
bromanisaldoxim 75.	dichlorid 328.	8.1
Benzyliden-anisylidenaceton	Bisbenzoylphenoxy-diphenyl-	me
232.	äther 186.	ă.
- diphenacylsufonhydrazon	— diphenylätherdioxim 187.	me
99.	Bisbenzoylstyrylsulfid 225.	ă.
- pāonol 377.	Bisbenzylmercapto-anthras	— ph
Benzyl-mercaptoacetophenon	chinon 500, 503.	äi
95.	— methylanthrachinon 509.	ph
- mercaptoanthrachinon 392.	Bisbenzylsulfonanthrachinon	81
- methoxyanthranylketimid	503.	Bis-di
258.	Bisbenzylvanillyliden-aceton	8.0
methoxyanthranylketimid,	567.	dir
Acetylderivat 258.	— acetontetrabromid 545.	.54
methoxyphenylstyrylketon	Bis-biscarbomethoxyoxy	dir
254.	cinnamoylmethan 588.	02
orcacetophenon 366.	bromacetyldiphenyläther	din

promferuloylbenzol 593. romferuloylbenzol, Tetrabromid 593. romphenacylsuccinat 92. romsalicylidenaceton 405. utylmercaptoanthras chinon 498. 502. utylsulfonanthrachinon 498, 502. arbathoxyoxy-anthrachinon 490, 496. enzaldehyd 284. enzylidencyclohexanon 413. enzylidencyclopentanon 412. arbomethoxyoxy-benzaldehyd 284, 291. innamoylaceton 460. innamoylmethan 513. icinnamoylmethan 513. aphthylacryloylmethan 522. aphthylheptadiendion 522. arvon 171. arvonacetat 171. arvonsemicarbazon 171. hloracetyldiphenyläther hloracetylphenyläther 86. nloranisylidenaceton 407. hlormercaptobenzochinon alornaphthochinonyls sulfid 341. hloroxoindenylsulfid 166. alorphenacylsuccinat 90. nlorphenyldianthrachino= nyläthylenglykol 600. nnamylidenacetyldiphe: nyl-äther 231. lenid 232. ılfid 232. kalon 147. brom-dimethoxyphenylithylketon 545. ethoxyacetoxyphenyl. thylketon 545. ethoxybenzyloxyphenyl= thylketon 545. henylpropionyldiphenylther 203. enylpropionyldiphenyls ulfid 203. imethoxybenzyliden= ceton 567. methoxyphenäthylketon methoxyphenäthylket= xim 545. dimethylcyclohexenon 146. dimethylcyclohexenon-

acetat 146.

bromanisylidenaceton 407.

87.

oxybenzaldehyd 67.

--- oxybenzylketon 205.

Bis-dioxodimethylcyclohexyls butanol 536. dioxycinnamoylmethan

588.

dioxycinnamoylphloro: glucin 611.

Bisdioxyphenyl-acenaph= thenon 571.

acenaphthenontetraacetat 571.

-- benzochinon 591.

--- diketon 577.

-- heptadiendion 588.

Bis-diphenylyläthanolon 259. - formylphenylcarbonat 54.

— isoamylmercaptoanthra: chinon 499, 503.

-- isoamylsulfonanthrachinon 499, 503.

- isophoron 147.

-- isophoronacetat 147.

--- isophoronsemicarbazon 147.

isopropylmercaptoanthra= chinon 497, 501.

--- isopropylsulfonanthras chinon 497.

Bismethoxybenzoyl- s. a. Dianisoyl-.

Bismethoxybenzoyl-äthylen 511.

-- benzil 595.

— perylen 529.

Bismethoxy-benzylcyclos hexanon 386.

-- benzylidenaceton 405, 406.

- chalkon 523.

--- chalkondihydrazon 523.

-- chalkonimid 523.

--- chalkonoxim 523.

Bismethoxycinnamoyl-benzol 521.

--- diphenyläther 376.

- diphenyläthertetrabromid

- diphenylselenid 377.

- diphenylsulfid 377.

--- mesitylen 521.

- phloroglucindimethyläther 604.

Bismethoxycinnamylidenaceton 420.

— cyclohexanon 424. -- cyclopentanon 424.

Bismethoxy-formylphenoxy= diäthylsulfid 283.

— methylbenzylidencyclos pentanon 414.

naphthalinindigo 519.

- naphthoyl 520.

- phenäthylketon 366.

-- phenylacetaldehyd 359.

Bismethoxyphenyl-acetaldehydsemicarbazon 359.

--- acetophenon 419.

-- benzochinon 515.

benzoylbutadienol 520.

— butantrionimid 565. --- butindion 512.

desoxybenzoin 429.

— dibenzoylcyclobutan 523.

— pentanon 366.

Bismethoxystyrylketon 405.

Bismethoxytoluylphenylcarbonat 360.

Bismethylisopropylcyclohexyläthanolon 31.

Bismethylmercapto-anthrachinon 496, 501.

benzophenon 356. --- dibenzanthron 531.

dibenzanthronylsulfid 416.

violanthron 531.

Bis-methylphenacyldisulfid 113.

methylphenacylsulfid 113. methylsulfonanthrachinon

496, 501. nitroanisylidenaceton 407.

nitroformylphenylcarbonat 59.

nitrophenylmercapto= naphthochinon 461.

-- oxobornylsulfit 26.

--- oxobornylsulfitsemicarb= azon 26.

Bisoxyäthylmercapto-anthrachinon 500, 504.

anthrachinondiacetat 500, 504.

Bisoxyanthrachinonyl-äthylen 598.

äthylenglykol 610. Bisoxybenzoylperylen 529.

Bisoxybenzylcyclohexanon

Bisoxybenzyliden-aceton 405; s. a. 404.

cyclohexanon 413.

— cyclopentanon 411.

- hydrindon 427.

— indanon 427.

- thiocarbohydrazid 43.

Bisoxycinnamoylmethan 513. Bisoxydimethyl-benzo.....n 486.

phenylbutandion 486.

Bisoxymethoxy-benzoylxylol

--- benzylidenaceton 565, 566. cinnamoylbenzol 593.

cinnamoyldiphenyl 596. - cinnamoylmethan 588.

— phenäthylketon 545.

Bisoxymethyl-anthrachinonyläthylen 599.

benzoyläthan 486.

- isopropylbenzylidenaceton

isopropylbenzylidenaceton. Diacetylderivat 409.

isopropylphenylpentadienon 409.

phenylbutandion 486.

phenylphenanthron 429. Bisoxynaphthalinindolignon

518. Bisoxynaphthylketon 425. Bisoxyphenyl-acenaphthenon

benzochinon 515.

benzoylbutadienol 519.

diketon 474.

heptadiendion 513.

keton 354, 355.

pentadienon 404, 405.

phenanthron 429. propenon 375.

Bis-oxystyryldisulfid 98.

oxystyrylketon 404; s. a.

phenoxybenzylidencyclo=

pentanon 412. phenylbenzoylbutadienyl= sulfid 232.

propylmercaptoanthrachinon 497, 501.

propylsulfonanthrachinon 497, 501.

thioanthronylsulfid 217.

tolylmercaptoanthras chinon 499.

tolylmercaptodibenz* anthronylsulfid 417.

tribromoxymethoxyhydros cinnamoylbenzol 593.

— trichlorphenoxybenzo= chinon 434.

trimethylphenylbutenol= dion 408.

- trioxybenzoyläthylen 606.

-- trioxyphenylbutendion 606.

Bourbonal 282.

Brenzcatechindimethylindan= dion 459.

Brenztraubensäureanisidid 322.

Bromacetoveratron 301. Bromacetoxy-acetophenon 90.

anthrachinon 394.

dimethylbutyrophenon 139. --- epicampher 26.

— methyldesoxybenzoin 206. methylisobutyrophenon

129.

--- phoron 18.

Bromacetoxy-tetramethyle		
	bicyclopentanon 18; s. a. 20.	
	tetramethylcyclopentenon	
Bro	18. omacetyl-anisaldoxim 75.	
	anisol 86. brenzcatechindibenzyl=	
	äther 300. kresol 110, 113.	
	kresolmethyläther 110. naphthol 178.	
	naphtholäthyläther 177.	
	naphtholcarbonsäureäthylsester 176.	
	phenetol 87. resorcin 296.	
	thiokresolmethyläther 111.	
	omäthoxy-acetonaphthon 177.	
	acetonaphthonimid 177.	
	acetophenon 87. benzophenon 188.	
	benzylacetophenon 204.	
	benzylidena cetophenon 224.	
	chalkon 224. dihydroanthradichinon 558.	
	hydrochalkon 204.	
	methoxyphenylpropios phenon 363.	
	methylnaphtochinol 340.	
	methylnaphthochinolacetat 340.	
Bro	phenylpropiophenon 204. om-äthylbenzoylhexanol	
Di	146.	
	alizarin 491.	
	alizarindiacetat 491. anilsäure 433.	
	anilsäurediphenyläther 433.	
	anisaldehyd 74. anisaldehydsemicarbazon	
	74.	
	anisaldoxim 74, 75.	
	anisaldoximacetat 75. anisaldoximbenzyläther 75.	
	anisaldoximmethyläther	
	74, 75. anisylidenaceton 156.	
	anisylidenacetophenon 219.	
	benzoylcarbinol 90.	
	benzoylkresol 199, 200. benzoylkresolmethyläther	
	200.	
	mbenzyl-anisaldoxim 75.	
	benzoylpentanol 211. oxyphoron 16.	
	oxyphoron 10. oxytetramethylcyclo	
	pentenon 16.	
	oxytetramethylcyclos pentenonoxim 17.	
	oxytetramethylcyclo	
	pentenonoximacetat 17.	

```
Brom-benzylphloracetophe
                               Bromdioxy-benzophenon 353.
    nontrimethyläther 471.
                                  benzophenonimid 353.
   bromacetylnaphtol 178.
                                  butyrophenon 309.
   brombenzyloxyphoron 18.
                                  naphthochinon 462.
   brombenzyloxytetra-
                                  oxomethyldihydronaph=
    methylcyclopentenon 18.
                                   thalin 339.
   bromisobutyrylkresol 130.
                               Brom-gallacetophenon 441.
   brommethylnaphthyloxy=
                                  gallacetophenontriacetat
    oxomethyldihydronaph=
    thalin 168.
                                  isobutyloxybenzylaceto=
                                   phenon 204
   brompropionylnaphthol
    180.
                                  isobutyloxyphenylpropio:
   butyloxybenzylaceto=
                                   phenon 204.
    phenon 204.
                                  isobutyrylkresolacetat 129.
   butyloxyphenylpropio-
                                  jodnitrooxybenzaldehyd
    phenon 204.
                                   51, 80.
   caproylkresol 142.
                                  jodnitrosalicylaldehyd 51.
Bromcarbomethoxyoxytetras
                                  jodoxybenzaldehyd 48, 76.
                                  jodsalicylaldehyd 48.
    methyl-bicyclopentanon
                                  juglon 348.

    cyclopentenon 20.

                                  menthanolon 9.
Brom-chinizarin 495.
                                -- menthanolonacetat 9.
   chinizarindiacetat 495.
                               Brommethoxy-acetophenon 86.
   chloracetylbrenzcatechin
                                  acetophenonsemicarbazon
   diacetoxyacetophenon 297.
                                  acetoxybenzaldoxim 288.
   diäthoxybenzaldehyd 270.
                                  acetoxybenzaldoxim=
   diäthylacetylkresol 142.
                                   acetat 288.
   dibenzanthronylsulfid 243.
                                  acetoxybenzylidenaceton
   dibenzyloxyacetophenon
                                   327.
    300.
                                  äthoxybenzaldehyd 269,
Bromdimethoxy-acetophenon
                                   274.
    297, 301.
                                  äthoxybenzaldoxim 275
   anthranol 373.
                                   Z. 5 v. o.
   anthron 373.
                                  äthoxyhydrochalkon 363.
   benzaldehyd 269, 274, 276, 287, 288.
                                  anthrachinon 390, 394.
                                  benzaldehyd 45, 56, 57, 74.
   benzaldoxim 275, 287, 288.
                                  benzaldehydsemicarbazon
   benzaldoximacetat 287, 288.
   benzaldoximdinitrophenyl=
                                  benzaldoxim 45, 56, 57, 74,
    äther 287.
                                  benzaldoximacetat 45, 75.
   benzochinon 434.
   chalkon 377.
                                  benzaldoximbenzyläther 75.
   hydrindon 324.
                                  benzaldoximmethyläther
   hydrindonoxim 324.
                                   74, 75.
   hydrochalkon 363.
                                  benzanthron 239, 240.
   methylhydrindon 329.
                                  benzophenon 188.
   methylhydrindonoxim 329.
                                  benzophenonoxim 188.
                                  benzylacetophenon 204.
   oximinohydrindon 458.
   oximinomethylhydrindon
                                  benzylidenaceton 156.
    459.
                                  benzylidenacetophenon
   oxooximinohydrinden 458.
                                   219, 221, 223
   oxooximinomethylhydr.
                                  chalkon 219, 221, 223.
    inden 459.
                                  dihydroanthradichinon 558.
Bromdimethylphenyl<sup>2</sup>
                                  hydrochalkon 203, 204.
    pentanolon 142.
                                  hydrochalkonoxim 203.
Bromdinitro-oxybenzaldehyd
                                  methoxyphenylpropios
    51, 80,
                                   phenon 363.
   oxybenzaldehydsemi=
                               Brommethoxymethyl-acetos
    carbazon 51, 80.
                                   phenon 110.
   salicylaldehyd 51.
                                  anthrachinon 399.
   salicylaldehydsemicarb.
                                  benzophenon 200.
    azon 51.
                                  benzophenonoxim 200.
Bromdioxy-acetophenon 296.
                                  naphthochinol 339.
  anthrachinon 491, 495.
                                  naphthochinolacetat 340.
```

Brommethoxy-phenylacetaldehyd 101. phenylacetaldehydsemi= carbazon 101. phenylpropiophenon 204. - phoron 17. -- tetramethylcyclopentenon Brommethyl-anisaldoxim 75. - anisylketon 86. — benzoylpentanol 142. - isoanisaldoxim 74. --- mercaptobenzanthron 243. -- mercaptomethylaceto= phenon 111. mercaptomethylpropio= phenon 121. methoxyphenylketon 86. --- naphthochinolbrommethyl= naphthyläther 168. Bromnitro-benzoylkresol 200. benzyloxytetramethyl= cyclopentenon 18. diathoxybenzaldehyd 271. --- dimethoxybenzaldehyd diphenylanisoylpropan 250. — methoxyacetoxybenz= aldehyd 291. methoxyäthoxybenz= aldehyd 271. methoxydiphenylbutyros phenon 250. - oxybenzaldehyd 50, 79. --- oxybenzaldehydsemicarb azon 50, 79. oxymethoxybenzaldehyd 291. oxymethylbenzophenon 200. oxymethylbenzophenons oxim 200. --- oxyoxomethyldihydronaphthalin 168. --- salicylaldehyd 50. — salicylaldehydsemicarh: azon 50. -- vanillin 291. vanillinacetat 291. Bromönanthoylkresol 144. Bromoxobornylacetat 26. Bromoxy-acetophenon 90. acetylnaphthalin 178. — äthoxybenzaldehyd 269. - athoxyoxomethyldihydro naphthalin 340. anthrachinon 390, 394. — anthranol 213. -- anthron 213.

benzaldehyd 45, 56, 57, 74.

benzaldoxim 45, 56, 57, 74.

pentenolon 33.

benzaldehydsemicarbazon

-- benzanthron 239, 243.

74; s. a. 45.

— benzophenon 188.

Bromoxy-benzylidenaceton Bromphenacyl-acetat 90. 155. alkohol 90. benzylidenindandion 409. -- butyrat 90. bromacetylnaphthalin 178. -- capronat 91. brombutyrylxylol 139. isobutyrat 90. bromisobutyrylxylol 139. isovalerianat 91. brompropionylnaphthalin -- lactat 92. 180. -- margarat 91. butyrylxylol 138. palmitat 91. dimethoxyacetophenon --- propionat 90 444. rhodanid 100. dimethoxymethylanthra= --- stearat 91. chinon 562, 564. — valerianat 90. ${\bf dimethoxymethylanthra} \hbox{--}$ Brom-phloracetophenon: nol 484. dimethyläther 444. dimethoxymethylanthron phloracetophenon= 484. trimethyläther 444. dimethylacetophenonoxim propionylkresol 120. 124. propionylnaphthol 180. dimethylbutyrophenon 138. propionylthiokresol* diphenyldibenzoylxylol methyläther 121. **43**0. Brompropyloxy-benzylacetos phenon 204. Bromoxymethoxy-aceto= phenonoxim 296. benzylidenacetophenon acetophenonoximacetat 224. --- chalkon 224. benzaldehyd 269, 274, 276, phenylpropiophenon 204. 286, 287. Brom-purpurin 553. benzaldoxim 275, 287, 288. purpurinmethyläther 554. --- benzaldoximacetat 288. purpurinmethyläther= benzylidenaceton 327. diacetat 554. --- methylchalkon 385. resacetophenon 296. — oxomethyldihydronaph= resacetophenondiacetat thalin 339. 297. Bromoxymethyl-acetophenon resacetophenondimethyl-110, 113. äther 297. acetophenonoxim 113. rhodanacetophenon 100. acetophenonsemicarbazon - salicylaldehyd 45. 113. salicylaldehydsemicarb= anthrachinon 400. azon 45. benzophenon 199, 200. salicylaldoxim 45. benzophenonoxim 200. salicylidenaceton 155. caprophenon 142. salicylidenindandion 409. desoxybenzoin 206. -- tetramethylbioyclo= pentanolon 20. diäthylacetophenon 142. — naphthochinitrol 168. tetramethyloyclo= - naphthochinol 339. pentenolon 20. - naphthochinoldiacetat 340. triacetoxyacetophenon 441. önanthophenon 144. trimethoxyacetophenon palmitophenon 148. 444. propiophenon 120. trimethoxyhydrochalkon valerophenon 137. 471. Brom-oxynaphthochinon 348. trimethoxyphenylpropiooxyphenanthrenchinon phenon 471. – trioxyacetophenon 441. 397 Z. 31 v. o. oxyphoron 20. - trioxyanthrachinon 553. - valerylkresol 137. oxypropionylnaphthalin 180. Bromvanillin 286, 287. päonoloxim 296. Bromvanillin-acetatoxim 288. päonoloximacetat 296. - acetatoximacetat 288. - oxim 287, 288. palmitoylkresol 148. — oximacetat 288. pentadecyloxymethyl= phenylketon 148. -- semicarbazon 286, 287, 288. pentamethylencyclo= Brom-vanillylidenaceton 327.

- veratrumaldehyd 287, 288.

Brom-veratrumaldoxim 287, 288.

- veratrumaldoximacetat 288; s. a. 287. Buccocampher 20.

Butantricarbonsäuretriss salicylidenhydrazid 43.

Butein 547. Butenyl-methoxyphenylketon 159.

- oxynaphthochinon 343, 346.

- oxyphenylketon 159.

trimethoxyphenylketon 457.

- trimethoxyphenylketons semicarbazon 457.

- trioxyphenylketon 457.

- trioxyphenylketonsemis carbazon 457.

Buttersäure-bromphenacylester 90.

jodphenacylester 92.
 Butyl-acetylkresolmethyls
 åther 143.

- anisylketon 126.

- anthrachinonylsulfid 391.

anthrachinonylsulfon 391.

-- dimethoxyphenäthylketon 316.

dimethoxyphenäthylsketonsemicarbazon 316.

--- dimethoxyphenäthylketsoxim 316.

dioxyphenylketon 312.
 Butylidenzingeron 336.
 Butylmercapto-acetophenon 94.

- anthrachinon 391.

- benzylmercaptoanthraschinon 500, 503.

-- butylsulfonanthrachinon 498, 502.

essigsäurebromphenacyle
 ester 92.

-- isoamylmercaptoanthras chinon 499, 503.

-- isoamylsulfonanthrachinon 499, 503.

- isobutylmercaptoanthraschinon 502.

Butylmethoxyphenylketon 126.

Butyloxy-benzaldehyd 67. — benzophenon 185.

- benzophenonoxim 187.

— benzylidenactophenon 223.

--- chalkon 223.

methoxyphenäthylketon
 315, 316.

methoxystyrylketon 335, 336.

— methylphenyldiketons disemicarbazon 335.

- naphthochinon 342, 345.

- styrylketon 164.

Butyl-phenacylsulfid 94.

— salicylaldehyd 131.

Butylsulfon-athylselenanthra=

chinon 500.

anthrachinon 391.

- benzylsulfonanthrachinon 500, 503.

— isoamylmercaptoanthras chinon 499.

 isoamylsulfonanthrachinon 499, 503.

isobutylsulfonanthraschinon 502.

nitrophenylmercaptos
 anthrachinon 499.

phenylmercaptoanthraschinon 499.

Butylthioglykolsäurebroms phenacylester 92. Butyroxylenol 138.

Butyryl-anisol 115.

- brenzcatechin 309.

- carvacrol 145.

kresol 128.kresolmethyläther 128.

— oxymethylcampher 28.

- phenol 115.

phloroglucin 449.

- resorcin 309.

- thymol 145. - thymolmethyläther 145.

-- thymoloxim 145.

C.

Caledon Jade Green 531. Camphanolon 21, 23, 24, 25. Campherthiol 23.

Campheryl-carbinol 28.
— carbinolmethylphenyltrityl=

äther 28.
— isopropylalkohol 29.

-- mercaptan 23. -- methylcrotonat 29.

— methylsorbinat 29. Camphopropanol 29.

Camphoyl-äthylalkohol 11.
— äthylalkoholacetat 11.

— äthylalkoholbutyrat 11.

— äthylalkoholpropionat 11.

— carbinol 10.

carbinolacetat 10.carbinolbutyrat 11.

— carbinolpropionat 11. Camphylcarbinol 28.

Campnospermonol 165. Campnospermonol-acetat

166. — methyläther 166.

- methylätheroxim 466.

- oxim 166.

Caprinsaure-bromphenacyls

ester 91.

— jodphenacylester 93.

Capronsäure-bromphenacylester 91.

— jodphenacylester 93.

Caproyl-anisol 137.

— kresol 142.

- phloroglucin 450.

- resorcin 314.

- resorcinacetat 314.

- resorcindiacetat 314.

- resorcindimethyläther 314.

resorcinmethyläther 314.

Capryloyl-kresol 146. — phloroglucin 451.

— resorcin 316.

— thymol 147.

Caprylsäure-bromphenacylester 91.

— jodphenacylester 93. Capsanthin 415.

Capsanthindiacetat 415.

Carbäthoxy-alizarin 489.
— alizarinacetat 490.

-- alizarinmethyläther 490.

- anisaldoxim 71.

— fisetol 446. — fisetoldimethyläther 446.

- iridinaldehyd 438.

- isovanillin 284.

mercaptoacetophenon 96.
methoxybenzaldoxim 43,71.

Carbathoxyoxy-acetylnaphs thalin 175.

- benzaldehyd 54, 67.

bromacetylnaphthalin 176.

— methylenacetophenon 151. — resacetophenon 446.

Carbäthoxy-syringaaldehyd 438.

– vanillin 284.

Carbaminyl- s. Aminoformyl-. Carbomethoxy-fisetol 446.

iridinaldehyd 437.
isoeverninaldehyd 304

— isoeverninaldehyd 304. — orcylaldehyd 304.

Carbomethoxyoxy-benze aldehyd 67.

cinnamoylaceton 340.

--- naphthaldehyd 174. --- naphthylacryloylaceton

386.

— naphthylhexendion 386.

— resacetophenon 446. Carbomethoxy-phloraceto-

phenon 443.
— salicylidenmethylbenzyl=

keton 228. Carboxymethyldithiocarbamidsäurephenacylester 97.

Carthamidinpentamethyläther 581.

Carvacrolaldehyd 131, 132. Carvacrotinaldehyd 131. Carvacrotinaldehyd-methyl=

āther 132.
— semicarbazon 132.

Carvon, dimeres 171. Carvon, Verbindung mit Schwefelwasserstoff 21. Carvon-hydrosulfid 21. hydrosulfidtetrabromid 9. Carvotanaceton, Verbindung mit Schwefelwasserstoff 9. Carvotanacetonhydrosulfid 9. Cedriret 573. Cerin 234. Cetyl- s. a. Hexadecyl-. Cetyl-dioxyphenylketon 320. - methoxyphenylketon 148. oxybenzaldehyd 67. Chaulmoogroyl-resorcin 341. -- resorcindimethyläther 341. - resorcinmethyläther 341. -- resorcinoxim 341. Chinacetophenon 297. Chinacetophenon-diacetat 298. - methyläther 298. - oxim 298. oximacetat 298. Chinalizarin 584. Chinalizarin-acetat 584. schwefelsäure 584. sulfonsaure 584. Chinizarin 492. Chinizarin, Bisdiacetylbors säureester 494. Chinizarin-acetat 494. - chinonmethoxybromid 558. - diacetat 494. — diäthyläther 494. - dimetaborat 494. — dimethyläther 494. — methyläther 494. Chinon- s. a. Benzochinon-. Chinonthiosulfonsaure 266. Chinpropiophenon 305. Chloracetoacetyl-anisol 328. kresol 333. phenol 328. Chlor-acetovanillon 300. acetovanillonacetat 300. acetoveratron 300. Chloracetoxy-acetophenon 82, 86, 90. anthrachinon 389, 394. - benzaldehyd 54, 73. chalkon 220. — chalkondibromid 202. epicampher 26. epicamphersemicarbazon **26.** Chloracetoxylenol 124. Chloracetoxy-methylacetos pbenon 113. methylbutyrophenon 129. - naphthochinon 347. phoron 17. tetramethylcyclopentenon

Chloracetyl-anisol 82, 86, brenzcatechin 299. brenzcatechindiacetat 300. kresol 108, 110, 113. naphthol 177. — naphtholäthyläther 177. naphtholmethyläther 177. phenetol 86. phenol 82, 83, 86. resorcin 296. 379. veratrol 300. Chlorathoxy-acetonaphthon 177. acetophenon 86. benzanthron 239. benzophenon 187. diäthylcyclohexadienon naphthochinon 347. Chloräthylacetylphenol 121. Chloral-acetonaphthon 180. acetophenon 116. acetotoluon 129. acetoveratron 449. Chloranilsäure 433. 51. Chlor-anisaldehyd 73, 74. anisaldehydsemicarbazon anisylidenaceton 156. anthrahydrochinon 215. benzoylcarbinol 90. benzoylkresol 199, 201. benzoylnaphthol 235. benzylidenanisylidenaceton Chlorbrom-dimethoxybenzo= chinon 434. dioxyacetophenon 301. isobutyrylphenol 118. methoxybenzophenon 188. methylnaphthochinon 339. nitrooxybenzaldehyd 50, 79. nitrosalicylaldehyd 50. oxybenzaldehyd 46, 75. oxybenzophenon 189. oxvisobutyrophenon 118. oxymethoxyacetophenon 297. oxymethylnaphthochinols chlorbromoxymethyl= naphthyläther 339. resacetophenonmethyläther - salicylaldehyd 40. Chlor-butyrylkresol 128, 129. 74. butyrylphenol 115. chinizarin 495. chinizarindiacetat 495. chloracetylkresol 112. 243. cyclohexanolon 5. Chlordiacetoxy-acetophenon - benzophenon 183, 187. 296, 300. benzoylaceton 328. anthracen 214. desoxybenzoin 358. benzylacetophenon 204. benzylacetylaceton 334. — isobutyrophenon 311.

621 Chlor-diacetoxynaphthochinon 464; s. a. 462. dibromacetoxynaphtho= chinon 348. dihydrolapachol 352. Chlordimethoxy-acetophenon benzaldehyd 286, 292. benzylidenacetophenon chalkon 379. isoviolanthron 529. phenyltrimethoxyphenyl. propanon 577. propiophenon 306. Chlordimethylcyclohexenolon, Hypochlorit 14. Chlordinitro-oxyhenzaldehyd 51, 62, 63, 80. oxybenzaldehydoxim 63. oxybenzaldehydsemicarbs azon 51, 62, 63, 80. salicylaldehyd 51. salicylaldehydsemicarbazon Chlordioxy-acetophenon 296, anthrachinon 495. benzanthron 416. — benzofluorenon 417. benzophenon 353. — desoxybenzoin 358. desoxybenzoinoxim 358. isobutyrophenon 310. — isobutyrophenonsemicarb= azon 311. naphthochinon 462, 464. - naphthochinondiacetat 462; s. a. 464. Chlor-diphenylmethoxyphenyls butanon 250. gallacetophenon 441. iosbutyrylkresol 130. isobutyrylphenol 118. - isovalerylkresol 138. juglon 348. menthanolon 10. mercaptobenzanthron 242. Chlormethoxy-acetonaphthon acetophenon 82, 86. - acetoxyacetophenon 300. - anthrachinon 389, 394. benzaldehyd 44, 54, 55, 73, benzaldehydsemicarbazon benzaldoxim 45, 55. benzanthron 239, 240, benzochinonoxim 264.

622 Chlormethoxy-benzyliden aceton 156. benzylidenacetophenon — bismethoxyphenylpentadien 407; s. a. 404. -- bismethoxyphenylpropen — chalkon 219, 221, 225. - chinonoxim s. 264. — dibenzylidenaceton 232. - dimethylacetophenon 124. dimethylacetophenonoxim 124. distyrylketon 232. - hydrochalkon 202, 204. - hydrochalkonoxim 202. — methylacetophenon 113. - methylbenzophenon 198, 201. methylhydrochalkon 209. methylphenylpropiophenon phenylpropiophenon 204. propiophenon 104. Chlormethyl-acetoacetylphenol 333. – acetylphenol 110. mercaptobenzaldehyd 51, 80. – mercaptobenzaldoxim 52, 80. mercaptobenzanthron 244. methoxybenzhydrylketon pentamethoxybenzhydryl= keton 577. Chlor-naphthazarin 464. naphthazarindiacetat 464. Chlornitro-methoxyanthra= chinon 390. - methoxybenzaldehyd 49, - oxyacetophenon 84. oxybenzaldehyd 49, 50, 59, 60, 79. — oxybenzaldehydsemicarbs azon 50, 59, 60, 79. - oxybenzaldoxim 60. phenyloxychinonschwefel imin 266. - salicylaldehyd 49, 50. salicylaldehydsemicarbazon 50. Chlornitroso-oxyanisol 264. - resorcin 264. resorcinmethyläther 264. Chloroxodiphenyloxyphenylsbutan, Methyläther 250. Chloroxy-acetonaphthon 177. - acetonaphthonimid 177. — acetophenon 82, 83, 86, 90. – äthylacetophenon 121.

äthylacetophenonsemis

carbazon 122.

Chloroxy-anthrachinon 387, 389, 394. anthranol 213, 214. anthron 213, 214, 215. benzaldehyd 44, 45, 54, 55, benzaldehydsemicarbazon 55, 73; s. a. 45. benzaldoxim 44, 54, 55. benzanthron 239, 243. benzochinonoxim 264. benzophenon 183, 187. benzoylacetaldehyd 323. - benzoylaceton 328. - benzoylacetophenon 381. benzoylnaphthalin 235. benzylbenzylidenaceton 228. --- butyrophenon 115. chalkon 220. chalkondibromid 202. chinonoxim s. Chloroxy benzochinonoxim. desoxybenzoin 192. dibenzoylmethan 381. dibenzylidenaceton 232. dimethoxyacetophenon 444. dimethylacetophenon 124, 125. dimethylacetophenonoxim 124. dinaphthylketon 256. distyrylketon 232. formylacetophenon 323. hydrindon 153. indanon 153. --- isobutyrophenon 118. isobutyrylphenol 310. methoxyacetophenon 300. methoxybenzaldehyd 286. methoxychalkon 378. Chloroxymethyl-acetophenon 108, 110, 113. anthrachinon 399. benzophenon 198, 199, 200, 201. benzoylaceton 333. butyrophenon 128, 129. chalkon 226. isobutyrophenon 130. isovalerophenon 138. propiophenon 120, 121. Chloroxy-naphthochinon 347, **34**8. oxymethylenacetophenon 323. — phoron 19. propiophenon 103, 104. Chlor-phenacetylphenol 192. phenacylacetat 90. phenacylalkohol 90. phenacylrhodanid 100. phenylacetylcarbinol 106.

Chlorphenyl-acetylcarbinols thiosemicarbazon 106. methoxyanthranylketimid methoxyanthranylketimid, Acetylderivat 257. methoxyphenylaceton 207. propanolon 106. - sulfonacetophenon 95. Chlorphloracetophenondimethyläther 444. trimethyläther 444. Chlorpropionyl-anisol 104. kresol 120, 121. oxypropiophenon 103. phenol 103, 104. veratrol 306. Chlor-resacetophenon 296. resacetophenondiacetat rhodanacetophenon 100. salicylaldehyd 44. salicylaldehydsemicarbazon 45. salicylaldoxim 44. sulfinyloxythionyldioxy: anthrachinon 557. tetramethylbicyclopenta= nolon 19. tetramethylcyclopentes nolon 19. trichlorphenoxybenzochinon 266. trimethoxyacetophenon trimethoxybenzophenon **468.** trioxyacetophenon 441. trioxybenzophenon 466, 467, 468. trioxydesoxybenzoin 469. trisnitrophenylmercaptobenzochinon 532. vanillin 286. vanillinhydrazon 286. vanillinoxim 286. vanillinsemicarbazon 286. vanillinthiosemicarbazon veratrumaldehyd 286. Cholestandiolon 320. Cholestanoldion 338. Cholestanolon 148, 149. Cholestenolon 166. Chrysanthranol 373. Chrysarobin 383 Anm. Chrysaron 562. Chrysaron-triacetat 562. trimethyläther 562. Chrysazin 500. Chrysazin, Diacetylborsäures ester 501. Chrysazin-acetat 501. acetat, Diacetylborsäures ester 501.

Cyclohexanolon 3.

Chrysazindiacetat 501. Chrysophan-anthranol 383. - hydranthron 383. Chrysophanol 510. Chrysophansäure 510. Chrysophansäureanthron 383. Cignolin 373. Cinerolon 134. Cinnamoyl-biscarbomethoxy: oxycinnamoylmethan 513. -- carvacrolmethyläther 229. --- dioxycinnamoylmethan 513. -- diphenyläther 220. - diphenyläther, Dibromid 203. - diphenylsulfid 221. — diphenylsulfid, Dibromid 203. — kresol 226. - naphthol 246. -- naphtholäthyläther 246. -- naphtholmethyläther 246. phloroglucin 482. -- resorcin 377. - thymol 229. Citronensäure-triphenacylester - trisbromphenacylester 92. Cörulignon 573. Coniferylaldehyd 321. Cotogenin 574. Cotogeninimid 574. Cotoin 467. Cotoin-athyläther 467. -- diäthyläther 467. --- methyläther 467. methylätheräthyläther 467. Crotonsäurebromphenacylester Crotonoyl-anisol 157. --- kresol 160. - kresolacetat 160. kresolmethyläther 160. Cumaraldehyd 149, 150. Cumaraldehyd-methoxys methyläther 149, 150. --- methyläther 149, 150. semicarbazon 150. Cuminanisoinoxim 366. Cuminoinoxim 212. Cupron 196. Curcumin 588. Cyanselen-benzovlaceton 328. --- dibenzoylmethan 383. phenylacetylaceton 330. phenylpropionylaceton 334. Cyclobutyloxyphenylketon Cyclohexan-cyclopentenoldion: spiran 312. methoxycyclopentendion= spiran 312.

Cyclohexanolon, dimeres Äthyl= lactolid und Methyl= lactolid 4. Cyclohexanolon-acetat 4. äthyläther 4. - isoamyläther 4, 5. --- methoxyphenyläther 4. — methyläther 4, 5. -- naphthyläther 4. - phenyläther 4. Cyclohexendioltetron 572. Cyclohexyl-butanolon 8. butanolonsemicarbazon 8. dioxyphenylketon 336. methylresorcylketon 336. oxyacetophenon 88. oxyacetophenonhydrazon 90. oxyacetophenonsemicarb= azon 90. oxybenzhydrylketon 229. oxyphenylaceton 106. oxyphenylketon 164. phenacyläther 88. resorcylketon 336. Cyclopentan-cyclopentanolon spiran 18. cyclopentenoldionspiran 308. methoxycyclopentendion= spiran 308. Cyclopentanolon 3. Cyclopentanolon, polymeres 3. Cyclopentanolonacetat 3. Cyclopentenyldioxyphenyltri= decanon 341. Cyclopentyl-dioxyphenylketon 335. dioxyphenyltridecanon 338. — dioxyphenyltridecanonoxim oxyphenylketon 163. - resorcylketon 335. Cysteinsäurediphenacylester D. Decyl-dioxyphenylketon 318.

- methoxyphenylketon 146.
Dehydro-benzylidendinaphthol 260.
- brommethylnaphthol 168.
- divanillin 578.
- methylnaphthol 168.
- pyrethrolon 136.
Dermocybin 603.
Dermocybintetraacetat 603.
Desoxy-alizarin 372.
- anisoin 358.
- anthrapurpurin 478.

Desoxy-mesityloxyd 11. mesityloxydoxim 11 Z. 9 v. u. mesityloxydsemicarbazon 11, 12. Di- s. a. Bis-. Diaceto-phloroglucin 535. resorcin 456. Diacetoxy-acetophenon 298, 301, 302 acetylnaphthalin 351. anthrachinon 489, 492, 494, 496, 501, 504, anthrahydrochinon 494. -- benzaldazin 73. benzaldehyd 284. benzaldehydsemicarbazon 286. benzanthron 417. — benzoanthrachinon 517. — benzochinon 432. benzochinonoxim 432. --- benzophenon 354, 355. — benzylidenacetophenon 378. — bisacetoxyphenylbenzochinon 591. --- caprophenon 314. - chalkon 378. chinon 432. --- desoxybenzoin 357. - dianthrachinon 526. - dianthrachinonyl 597, 598. --- dianthron 525, 526. --- diazoacetophenon 455. -- dihydroanthrachinon 479. - dihydrodianthron 525. dimethylbenzophenon 365. dimethylsuccinophenon 486. - dinaphthylchinon 519. diphenylbenzochinon 515. distyrylketon 407. -- helianthron 526. --- mesobenzdianthron 526. --- mesonaphthodianthron 528. methylanthrachinon 508, 509, 510, 511. methylbenzylidendiacetat methyldesoxybenzoin 364. naphthacenchinon 517. naphthochinon 463. phenanthrenchinon 506, 507, 508. phenylcaprylaldehyd 317. phenylsulfonanthrachinon Diacetyl, dimeres 431. Diacetyl-anthragallol 551. anthragallol, Diacetylbors

säureester 552. cotogeninimid 575.

diphenyläther 85.

624

Diacetyl-diphenylätherdioxim 86.		
	diphenylselenid 88.	
	embelin 453.	
	methoxybenzildioxim 371.	
_	naphthol 361.	
	naphthol, Diacetylbor- säureester 362.	
	phloroglucin 535.	
	phloroglucinaldehyd 437.	
	1	
	535.	
	polyporsäure 515. protocatechualdehyd 284.	
	carbazon 286.	
	resorcin 456.	
	resorcindimethyläther 456.	
	resorcindimethyläthers dioxim 457.	
_		
Di	athoxy-acetylacetophenon	
	456. anthrachinon 494.	
	benzaldazin 72.	
	benzaldehyd 268.	
	benzil 474, 475.	
	benzophenon 355.	
	benzoylaceton 456. benzoylacetophenon 483.	
	485.	
	benzylidenacetophenon	
	378.	
	chalkon 378.	
	chinon 432, 434. dibenzanthron 531.	
	dibenzoylmethan 483.	
	dihydroanthrachinon 479.	
	dimethylbenzophenon 365.	
	dibenzylmercaptol 365.	
	dimethylthiobenzophenon 365.	
	diphenylbenzochinon 515.	
	naphthil 521.	
	phenacetylacetophenon	
	485.	
	phenylbenzoin 516.	
	propionylacetophenon 457. thiobenzophenon 356.	
	violenthron 531.	
Diā	thyl-acetylphenol 140, 141.	
	aminoäthylanisaldoxim	
	71.	
_	benzoylphenylcarbinol 211.	

REGISTER	
Diäthyl-bromacetylkresol 142.	Dibenzhydryl-acetoin 259. — acetoinacetat 259.
Diathylcarbonato- s. a. Dicarb-	— acetoinoxim 260.
āthoxy Diäthylcarbonato-alizarin	Dibenzoyl-diphenyläther 186. — diphenylätherdioxim 187.
490.	- diphenylselenid 191.
— anthragallol 551. — anthrapurpurin 557.	— diphenylsulfid 191. — diphenylsulfiddioxim 191.
Diäthyl-essigsäurejodphenacylsester 93.	— methanäthyläther 222. — methandiäthylacetal 204.
— methoxyphenylacetaldehyd	— methanmethyläther 222. Dibenzylacetoin 210.
137. — sinomenolchinon 587.	Dibenzylidendiphenacyl-sulfid
Dializarin 610.	225. — sulfondihydrazon 100.
Dializarintetraacetat 610. Dianisal-aceton 406.	Dibenzyloxy-acetophenon 299.
— cyclohexanon 413.	— benzil 475.
- cyclopentanon 412.	benzochinon 434.
Dianisaldazin 71.	— chinon 434. Dibrenzcatechinacenaphthen=
Dianisal-diacetylbenzol 521. — diacetylmesitylen 521.	chinon 571.
— suberon 413.	Dibromacetoxy-anthrachinon 395.
Dianisoyl-acetylen 512.	benzaldehyd 46, 76.
— äthylen 511. — benzil 595.	- benzaldoximacetat 47, 76.
— methan 483.	— benzylidendiacetat 47, 76.
perylen 529.	- chlorphenylpropiophenon 202.
— vinylamin 565.	- dimethylbenzaldehyd 114.
xylol 518. Dianisyl-acetaldehyd 359.	dimethylbenzylidens
— aceton 366.	diacetat 114. — methylbutyrophenon 129.
— chinon 515.	- methylmethoxyphenyl
— cyclohexanon 386. — diphenyläthanon 429.	propiophenon 366.
Dianisyliden-aceton 406.	— naphthochinon 348. Dibrom-acetylphenol 83, 87.
— acetonchlormethylat 407.	— äthoxybenzophenon 189.
— acetondimethylacetal 407.	alizarin 491.
cycloheptanon 413.cyclohexanon 413.	— alizarindiacetat 491. — anisaldehyd 75.
cyclopentanon 412.	anisil 476.
 cyclopentanontetrabromid 386. 	— anthraflavinsäure 505.
— diphenacylsulfid 380.	aurin 418. benzanthronylthioglykol
- hydrazin 71.	säure 243.
— thiocarbohydrazid 72.	bisbrommethoxybenzyl
Dianisyl-keton 355. — phenyläthanon 419.	cyclopentanon 386. bisoxymethylbenzoyls
— phenylpropanon 420.	äthan 486.
— thicketon 355.	bisoxymethylbenzoyl
Dianthrachinonyl-athanolon 599.	äthan, Diacetat 486. — bromisobutyrylkresol 130.
- āthendiol 599.	— butyrylanisol 115.
äther 393.	cedriret 573.
- disulfid 392. - sulfid 392, 395.	- chinizarin 495. - chinizarindiacetat 495.
— sulfon 392, 396.	- diacetoxyhelianthron 527.
— sulfoxyd 392, 396.	- diacetoxymesobenz
Dianthronyläther 215. Dibenzanthronyl-disulfid 238,	dianthron 527. — diathoxybenzil 476.
242.	- dibenzanthronyldisulfid
- sulfid 238, 241.	243

Dibromdihydrolapachol 352. Dibromdimethoxy-benzil 476.

 benzochinon 435. — benzophenon 355.

dianthrachinonyl 597.

— dibenzylidenaceton 407.

- helianthron 527.

- mesobenzdianthron 527.

- mesonaphthodianthron 528.

- phenylbutanon 310.

Dibrom-dimethylbrommethyl= chinol 32.

dinitroanisil 476..

— dinitrodimethoxybenzil

Dibromdioxy-anthrachinon 491, 492, 495, 505.

- benzaldoxim 289.

-- benzochinon 433.

— butyrophenon 309.

- caprophenon 314.

--- chinon s. 433.

- dianthrachinonyl 597.

-- dimethylsuccinophenon 486.

 dimethylsuccinophenons diacetat 486.

- distyrylketon 405.

- fuchson 418.

-- naphthochinon 464.

propiophenon 305. Dibrom-diphenacylsulfid 100.

- diphenacylsulfiddioxim 100. - diphenoxybenzochinon 433.

hemellitylchinol 32.

— hydrocinnamoylcarvacrol* methyläther 212.

isovalerylkresol 138.

juglon 348.

- kresolaurin 422.

- kresolbenzein 249.

Dibrommethoxy-acetoxybenze aldehyd 275, 288.

acetoxybenzaldoximacetat 288.

- acetoxybenzylidendiacetat 275, 288.

anthrachinon 390, 395.

- benzaldehyd 46, 57, 75.

benzochinonbrommethid

 benzochinonchlormethid 81.

— brommethylencyclohexas dienon 81.

butyrophenon 115.

chlormethylencyclos hexadienon 81.

dimethyltetralon 163.

diphenylätheraldehyd 76. phenoxybenzaldehyd 76.

phenylbutanon 117.

Dibrommethoxy-phenyls pentanon 127.

phenylpropiophenon 203. propiophenon 104.

tetramethylcyclopenta: non 8.

tribromdimethoxyphen= oxybenzochinon 435.

Dibrom-methylchinol 31. methylcyclohexadienolon

methylmethoxyphenyl= butanon 127.

methylnaphthochinol 168.

naphthazarin 464. nitroäthoxymethylcyclo=

hexadienon 31. nitroäthoxymethylcyclos.

hexenon 14. nitromethoxymethylcyclo:

hexenon 13.

nitrooxybenzaldehyd 50, 61, 79.

nitrosalicylaldehyd 50. Dibromoxy-acetonaphthon 178.

acetophenon 83, 87. acetophenonoxim 83.

acetoxynaphthochinon 465.

äthoxynaphthochinon 464.

anthrachinon 390, 395. benzaldehyd 46, 47, 57, 75.

— benzaldimin 47.

 benzaldoxim 47, 57, 76. — benzaldoximacetat 47.

-- benzophenon 189.

-- brombutyrylxylol 139.

- bromisobutyrylxylol 139. chlorphenylpropiophenon 202.

dimethoxyphenylpropio² phenon 471.

Dibromoxydimethyl-benz= aldehyd 114.

benzaldimid 114. benzophenon 208.

butyrophenon 139.

diisopropylfuchson 251.

fuchson 249.

isobutyrophenon 139. Dibromoxyfluorenon 212. Dibromoxymethoxy-benz=

aldehyd 275, 288, 289. benzaldehydsemicarbazon 289.

benzaldimid 275.

benzaldoxim 275, 288, 289.

— benzaldoximacetat 288. naphthochinon 464.

phenylpropiophenon 362. Dibromoxymethyl-isobutyros phenon 130.

isovalerophenon 138.

Dibromoxymethyl-methoxy phenylpropiophenon 366. phenylpropiophenon 209.

Dibrom-oxynaphthochinon **34**8.

oxyoxomethyldihydronaphthalin 168.

oxyphenanthrenchinon 397. phenetil 476.

phenoxyphenylpropios phenon 203.

phenylmercaptophenyls propiophenon 203.

propionylanisol 104.

propionylresorein 305. protocatechualdoxim 289.

purpuroxanthin 492.

rufiopin 583.

salicylaldehyd 46, 47.

salicylaldehydacetat 46. salicylaldehydtriacetat 47.

salicylaldimin 47.

salicylaldoxim 47.

tetramethoxydipheno.

chinon 573.

tetraoxyanthrachinon 583, 585.

tetraoxyanthrachinon, Acetylderivat 585.

thymolbenzein 251. toluchinol 31.

— trimethylaurin 422. trimethylchinol 32.

trimethylcyclohexadienolon 32.

Dibromvanillin 288, 289. Dibromvanillin-acetat 288. acetatoximacetat 288.

oxim 288, 289. oximacetat 288.

semicarbazon 288, 289.

triacetat 288.

Dibutyrylresorcin 458. Dicampheryl-disulfid 24.

sulfit 23. Dicaprovlresorcin 458.

Dicarbathoxy-alizarin 490. anthragallol 551.

anthragallolmethyläther

- anthrapurpurin 557. anthrapurpurinmethyl=

äther 557. anthrarufin 496.

— embelin **453**. protocatechualdehyd 284. Dicarbomethoxy-gallusaldehyd

phloracetophenon 444. protocatechualdehyd 284.

Dichloracetoxy-anthrachinon 390, 394

anthron 216.

Dichlor-acetoxyphenylanthron acetylphenol 83, 86. - äthoxyanthron 216. - athoxybenzylidendihydroanthracen 216. - äthoxyphenylanthron 253. - anisaldehyd 74. anthrahydrochinon 215, 216. - anthronylacetat 216. – anthronyläthyläther 216. — benzoin 196. benzyloxyanthron 216. — cedriret 573. - chinizarin 495. — diacetoxydihydronaphthos chinon 459. - dibenzanthronyldisulfid 242. - dibenzanthronylsulfid 238, — diindonylsulfid 166. -- dimethoxybenzochinon 434. - dimethoxydibenzylidens aceton 407. — dimethoxyphenylpropio= phenon 362. -- dinaphthochinonylsulfid 341. -- dinitroathoxyacetos phenon 84. dioxodiindenylsulfid 166. -- dioxyanthrachinon 495. -- dioxybenzochinon 433. dioxydihydronaphthos chinon 459. --- dioxydioxotetrahydros anthracen 479. -- dioxynaphthochinon 464. -- diphenacylsulfid 100. diphenacylsulfiddioxim — diphthalylbenzoin 599. — diphthalylstilbendiol 599. — juglon 348. Dichlormethoxy-benzaldehyd 56, 74. - benzophenon 187. benzophenonoxim 188. cyclohexendion 263. — diphenylätheraldehyd 74. - phenoxybenzaldehyd 74. phenylanthron 252. --- trichlordimethoxyphens oxybenzochinon 434. Dichlornitrooxy-benzaldehyd benzaldehydsemicarbazon 60, 61. benzaldoxim 60. Dichloroxyacetophenon 83,

Dichloroxy-acetophenonoxim anthrachinon 388, 389, 394. anthron 215, 216. — benzaldehyd 55, 56, 74. - benzaldoxim 56. — benzophenon 187. — methylacetophenon 112. naphthochinon 348. nitrophenylanthron 253. phenylanthron 252. Dichlor-tetramethoxydiphenos chinon 573. trioxyanthron 479. Dicinnamoyl-diphenyläther 221. diphenyläther, Tetras bromid 203. diphenylselenid 221. diphenylsulfid 221. diphenylsulfid, Tetrabromid 203. Dicinnamylidendiphenacyls sulfid 232. Dicyclohexyl-äthanolal 30. äthanoion 29. glykolaldehyd 30. glykolaldehydoxim 30. glykolaldehydsemicarbs azon 30. Diferuloyl-benzol 593. diphenyl 596. methan 588. Dihydro-buteintrimethyl äther 543. chaulmoogroylresorcin 338. — chinizarin 478. – humulinsäure 431. — lapachol 352. - shogaol 318. shogaolmethyläther 318. shogaolmethylätheroxim shogaolmethyläthersemi= carbazon 318. sorbinsäurebromphenacyl= ester 91. Diisoamylisovaleryl-cyclohexendioldion 535. phloroglucin 454. Diisopropylbenzoinoxim 212. Dijoddiacetoxy-dianthrachinon 526. dianthron 525, 526. dihydrodianthron 525. helianthron 527. mesobenzdianthron 527. Dijod-dijodmethoxyphenoxy benzaldehyd 77. dioxydianthron 525.

Dijod-dioxymesobenz dianthron 527. diphenoxybenzochinon 433. methoxydiphenylätheraldehyd 76. methoxyphenoxybenzaldehvd 76. nitrooxybenzaldehyd 61. nitrooxybenzaldehydsemicarbazon 61. nitrooxybenzaldoxim 61. oxybenzaldehyd 48, 76. oxybenzophenon 189. salicylaldehyd 48. Dimercapto-acetophenon 301. dianthrachinonyl 597. dibenzanthronylsulfid 416. Dimethoxy-acenaphthenchinon 473. acetophenon 294, 295, 298, 301, 302. - acetophenonazin 299. — acetophenonsemicarbazon 299, 301, 302. acetoxyacetophenon 440, acetoxyanthrachinon 550, 551, 553, 556. acetoxybenzaldehyd 436. — acetoxychalkon 480. acetoxymethylanthra= chinon 561. acetylacetophenon 456. acetyltoluol 307. Dimethoxyathoxy-acetophenon 443. benzophenon 467. dimethoxybenzylidenacetophenon 580. dimethoxyphenylpropio: phenon 576. phenyldimethoxyphen: äthylketon 576. phenyldimethoxystyryl= keton 580. Dimethoxyäthyl-acetophenon acetophenonoxim 311. — benzaldehyd 306. benzaldehydsemicarbazon 306. Dimethoxy-anisoylacetos phenon 548. anisylidenacetophenon 481. anthrachinon 489, 492, 494, 505. anthranol 373. anthron 373. benzaldazin 71. Dimethoxybenzaldehyd 267, 273, 276, 282, 291. Dimethoxybenzaldehyd- s. a. Veratrumaldehyd-.

dioxydihydrodianthron

525.

Dimethoxybenzaldehyddimethylacetal 268. semicarbazon 292. Dimethoxy-benzaldoxim 269, 285, 291. — benzaldoximdinitrophenyl= äther 285. benzaldoximmethyläther 285. -- benzanthron 416. benzil- 474. — benzilbischlorbenzylidens hydrazon 476. -- benzildihydrazon 476---- benzildioxim 474. — benzilhydrazon 475. — benzochinon 432, 433. - benzoin 470. - benzoinoxim 470. -- benzophenon 353, 354, 355. -- benzophenonchlorid 354. --- benzophenondibenzyls mercaptol 354, 356. --- benzovlaceton 456. benzoylacetophenon 482, 483. -- benzoyltriphenylmethan 429. benzpinakolin 429. - benzylaceton 310. - benzylacetophenon 362. Dimethoxybenzyliden- s. a. Veratryliden-. Dimethoxybenzyliden-aceton 326. - acetonsemicarbazon 327. acetophenon 374, 375, 378, 379, 380. --- aminoacetaldehyddiäthyl acetal 285. hvdrindon 403. Dimethoxybenzyloxy-acetos phenon 445. acetophenonsemicarbazon 445. acetoxyacetophenon 534. – benzaldehyd 438. - diazoacetophenon 535. - oximinoacetophenon 535. — phenylglyoxaldioxim 535. Dimethoxybis-acetoxyphenyl benzochinon 590. carbathoxyoxydihydro= dianthron 596. - chloracetyldiphenyläther methoxyphenylbenzos chinon 590. oxymethylphenylheptanon, Dimethyläther 367. oxyphenylbenzochinon **590.** Dimethoxycaprophenon 314.

Dimethoxycarbathoxyoxyacetophenon 446. benzaldehyd 438. Dimethoxy-chalkon 374, 375, 378, 379, 380. chalkonchlormethylat 376. chalkondichlorid 362. chalkondimethylacetal 376. chalkonsemicarbazon 377. chinon 432, 433. Dimethoxycinnamyliden-acetophenon 404. acetophenonchlormethylat 404. acetophenondimethylacetal 404. Dimethoxy-desoxybenzoin 358. diacetoxydibenzyliden* aceton 567. diacetoxyphenanthren= chinon 587. diacetylresorcin 573. Dimethoxydiathoxy-anthrachinondiimid 587. dibenzylidenaceton 567. distyrylketon 567. phenanthrenchinon 587. Dimethoxy-dianthrachinon 526. dianthrachinonyl 597. dianthron 524, 525, 526. dibenzanthron 530, 531. dibenzanthronylsulfid 417. dibenzoylmethan 482, 483. dibenzoylnaphthalin 522. dibenzylaceton 366. dibenzylacetonsemicarb= azon 366. dibenzyloxydibenzyliden= aceton 567. dibenzyloxydistyrylketon dicinnamylidenaceton 420. dicinnamylidenacetonoktabromid 366. dihydroanthrachinon 479. dihydrodianthron 524, 525. dimethoxybenzylidenacetophenon 547. dimethoxybenzyliden= hydrindon 565. Dimethoxydimethyl-benzil 486. benzophenon 365. benzophenonoxim 365. diphenochinon 470. indandion 460. thiobenzophenon 365. Dimethoxy-dinaphthil 520. diphenylbenzochinon 515. diphenyltruxinketon 523. distyrylketon 405, 406. ditolylchinon 470. helianthron 526, 527.

Dimethoxy-hydrindon 324. hydrindonoxyphenylacetal 324. hydrochalkon 362, 363. hydrochalkondimethyls acetal 363. hydrochalkonoxim 363. hydrochalkonsemicarbazon isodibenzanthron 529. isoviolanthron 529. laurophenon 319. mesobenzdianthron 526, mesonaphthodianthron 528. Dimethoxymethoxy-acetoxys acetophenon 447. benzoylacetophenon 548. benzylidenhydrindon 511. methoxybenzaldehyd 438. methoxyzimtaldehyd 455. methoxyzimtaldehydsemicarbazon 455. phenylpropiophenon 471. propionyloxyacetophenon 447. Dimethoxymethyl-acetophenon acetophenonoxim 307. acetophenonsemicarbazon anisoylacetophenon 549. anthrachinon 508, 509, 510. anthron 383. benzaldehyd 303, 304, 305. benzil 483. benzoinimid 472. benzophenon 360. benzylidenacetophenon 384. chalkon 384. distyrylketon 408. hydrindon 329. hydrindonoxim 329. Dimethoxy-naphthil 520. naphthochinon 461. nitrobenzylidenacetos phenon 378. oximinohydrindon 458. oximinomethylhydrindon oxoathylbenzylidenokta. hydrophenanthren 415. oxoathyloktahydrophene anthren 341. oxooximinohydrinden 458. oxooximinomethylhydr=: inden 459. oxydimethoxybenzyliden: acetophenon 578, 579. oxydimethoxyphenylpropiophenon 576. oxymethoxybenzylidenhydrindon 565.

Dimethoxy-oxymethylen-
acetophenon 455, 456.
oxymethylenhydrindon 459
— palmitophenon 320.
— phenanthrenchinon 507, 508.
phenoxyindenon 458.phenoxyindon 458.
Dimethoxyphenyl-acetaldehyd
303. — acetaldoxim 303.
aceton 306.
— acetonsemicarbazon 306.
- decanolon 452. - decanon 318.
- dimethoxystyrylcyclohexe-
non 569.
- dimethoxystyrylcyclohexes
nonsemicarbazon 569.
dimethoxystyrylketon 547
- dodecanon 319.
— heptadecanon 320. — heptanon 316.
- hexanon 315.
— methoxystyrylketon 481.
— nonanon 317.
octadecanon 320.
— octanon 317.
- oxydimethoxyphenäthyl
keton 576.
 oxydimethoxystyrylketon 578, 579.
oxystyrylketon 481.
pentanon 313.
propiolophenon 398.
— propiophenon 362, 363.
propiophenonoxim 363. tridecanon 320.
- trimethoxybenzylketon
<i>5</i> 75.
- trimethoxyphenäthylketon
577. trimethoxyphenylpropanos
lon 601.
- trimethoxystyrylketon 579.
— undecanon 319.
Dimethoxy-propiophenon 306.
— propiophenonsemicarbazon 306.
 salicylidenacetophenon 481.
- thiobenzophenon 354, 355.
— toluylaldehyd 303, 304, 305.
— toluylaldehydoxim 303. — toluylaldehydsemicarbazon
303.
tolylmethylketon 307.
trimethoxybenzylidens
acetophenon 579.
- trimethoxyphenylpropio:
phenon 577.
- trimethylbenzaldehyd 312 trimethylbenzaldehydoxim
312.

	REGISTER
	Dimethoxy-veratrylidensacetophenon 547.
•	— veratrylidenhydrindon 565 — veratryloxyacetophenon 443.
	— violanthron 239, 530, 531 — zimtaldehyd 322. Dimethyl-acetoacetylanisol
	335. — acetoacetylphenol 335.
	 acetylanisol 124, 125. acetyldiphenyläther 109. acetylphenol 122, 123, 124
	125. — acryloylkresol 162.
	— acryloylkresolacetat 163. — äthylacetylanisol 141. — äthylacetylphenol 141,
	142. — allylisovalerylcyclopentans oldion 451.
	- allyloxynaphthochinon 346.
	anisylacetaldehyd 119 benzoin 210 benzoylcarbinol 118.
	— benzoylcarbinolacetat 119. — benzovlcarbinoloxim 119.
	 benzoylcarbinolsemicarbs azon 119. benzoyldiphenyläther 199.
	benzoylphenylcarbinol 210. Dimethylbenzylidenbenzoyls cyclohexandiol-dion 570.
	— dioncarbomethoxyhydrazon 570.
	— dionoxim 570. — dionsemicarbazon 571. Dimethyl-bisdimethoxybens
	zoylbenzol 592. — bismethoxybenzoylbenzol 518.
	 bisoxymethoxybenzoyls benzol 592.
	 bisoxymethylphenylheptas non 366. bisoxymethylphenylheptas
	non, Dibromderivat 367. — butyrylphenol 138. — butyrylphenolacetat 138.
	 butyrylphenolmethyläther 138.
	— chinol 31. — cyclohexadienolon 31. — cyclohexandioldion 431.
	 cyclohexenon, dimeres 146. diacetyldiphenyldisulfid
	111. — diacetylphenol 335.
l	— dianthrachinonyldisulfid

```
Dimethyl-diisopropyldodekashydrobenzoin 31.
    dimethoxyphenylpentanon
     316.
    diphenacyldisulfid 113.
    diphenacylsulfid 113.
    diphenacylsulfiddioxim
     113 Z. 6 v. u.
    diphenylhexanolon 212.
    diphenylpentanolal 211.
    diphenyltetrahydropyranol
     211.
Dimethylentriphenylcarbinols
     diketon 427.
Dimethyl-iminochinol 32.
   isobutyrylphenol 139, 140.
   isobutyrylphenolmethyl*
     äther 139.
Dimethylmalonyl-brenzcates
     chin 459.
    brenzcatechindiacetat 460.
    brenzcatechindimethyl=
    äther 460.
   brenzcatechinmethyläther
    460.
   brenzcatechinmethyläther:
    acetat 460.
Dimethylmethoxymethylen-
    cyclohexanon 15.
   cyclohexanonmethylsemi=
    carbazon 15.
Dimethylmethoxyphenyl-acets
    aldehyd 119.
   acetaldehydsemicarbazon
Dimethyloxybenzylbenzoyls
    cyclohexandiol-dion 588.
   dionmethyläther 588.
Dimethyl-oxyisobutyrylbenzol
    139.
   oxyisobutyrylphenol 315.
   oxyisopropylpropionyl-
    cyclohexen 29.
   oxymethoxyphenylpenta-
    non 316.
   oxymethoxyphenylpente:
    non 336.
   oxymethylencyclohexanon
   oxyphenylpentenon 164.
   phenacylbicycloheptanol
   propenyldimethylallylisos
    valerylcyclohexendioldion
 - purpurogallin 538.
   pyrogallylacrolein 455.
   salicylaldehyd 114.
  sinomenolchinon 587.
   toluyltriphenylcarbinol
    259.
Dimethylvinyl- s. a. Isobutes
    nyl-.
                    200
```

dibenzylacetoin 212.

400, 402.

Dimethylvinyl-oxymethylphes nylketon 162. oxystyrylketon 169. Dinaphthyl-athanolon 257. naphthoylcarbinolimid 261. Dinitro-acetoxyphenanthrens chinon 398. acetylkresolmethyläther 108. - anisaldazin 78. anisaldehyd 80. anisaldehydsemicarbazon 80. --- anisaldoximmethyläther 80. --- anisil 476. - anthraflavinsäure 505. - anthrahydrochinon 217. - atromentin 591. - atromentintriacetat 591. - diathoxybenzil 476. dibenzoyldiphenyldisulfid 184. dibenzoyldiphenylsulfid diformyldiphenyldisulfid 52, 81. dimethoxybenzaldazin 78. — dimethoxybenzil 476. — dimethoxydiäthoxyanthra; chinondiimid 587. dimethoxydibenzyliden* aceton 407. dioxyacetophenon 297. — dioxyanthrachinon 505. dioxyanthratrichinon 607. dioxybenzochinon 433. Dinitrodiphenyldisulfid-dialdes hyd 52, 81. dialdehydbismethylimid 52. dialdehyddioxim 52, 81. Dinitro-diphenylsulfiddialdes hyd 81. - hemellitylchinol 33. - hexaoxyanthrachinon 605. kresolbenzein 250. Dinitromethoxy-benzaldehyd 62, 80. benzaldehydsemicarbazon 62. benzaldoxim 62. --- benzaldoximmethyläther - benzophenon 183, 190. methylacetophenon 108. Dinitrooxy-anthrachinon 391. anthron 217. benzaldehyd 51, 61, 62, 80. — benzophenon 190. benzophenonoxim 183. - benzylaceton 117. — dimethyldiisopropylfuchson

dimethylfuchson 250.

Dinitrooxy-methylanthras chinon 401. phenanthrenchinon 397, phenanthrenchinonoxim phenanthrenchinonsemicarbazon 398. Dinitro-phenetil 476. phenylanisaldoxim 70. phenylbutanolon 117. phenylmethoxybenz= aldoxim 43. phenylmilchsäuremethyl= keton 117. polyporsäure 515. resacetophenon 297. rufiopin 583. salicylaldehyd 51. Dinitrosophlorisocaprophenon Dinitrotetramethoxy-anthra= chinondiimid 587. benzaldazin 291. benzophenon 541. Dinitro-tetraoxyanthrachinon 583, 585. tetraoxyanthradichinon 606. thymolbenzein 251. trimethylchinol 33. trimethylcyclohexadienolon veratron 541. veratrumaldazin 291. Diosphenol 20. Diosphenol-acetat 21. äthyläther 21. — methyläther 20. Dioxo-hydrindyloxydioxo= hydrindyläther 339. oxybenzylhydrinden 403. oxybenzylidenhydrinden 409. Dioxyacetophenon 294, 237, 298, 301, 302. Dioxyacetophenon-imid 295. oxim 296, 298. oximacetat 296, 298. - semicarbazon 301. Dioxy-acetoxyanthrachinon 550, 553, 556, 558. acetoxvanthrachinon. Bisdiacetylborsäureester 558; s. a. 553. acetoxymethylaceto: phenon 449. acetylbenzol 294, 297, 298, 301. --- acetylnaphthalin 351.. acetylnaphthalin, Diaces chalkon 375, 377. tylborsäureester 351.

Dioxy-äthylacetophenon 312. athylacetylbenzol 312. anisylidenacetophenon 481. anthracen 213, 214. anthrachinon 486, 487, 492, 496, 500, 504, 505. anthrachinonylsulfat 554. anthradichinon 582, 584, 586. anthrahydrochinon 478. anthranol 371, 372, 373. anthron 371, 372, 373. benzaldazin 43. benzaldehyd 267, 272, 276, 277, 291. benzaldehydsemicarbazon Dioxybenzaldoxim 274, 285. Dioxybenzaldoxim-acetat 274. äthyläther 284. methyläther 284. propyläther 284. Dioxy-benzanthron 415, 416. benzil 473, 474. benzildioxim 473. benziloxim 473. benzoanthrachinon 517. benzochinon 432. benzochinonoxim 432. benzofluorenon 417. benzophenon 352, 353, 354, 355. benzophenonoxim 354. benzoylcyclohexan 336. benzoylcyclopentan 335. benzylidenacenaphthenon 422. benzylidenacetophenon 377. benzylidenglycylglycin= äthylester 268. benzylidenindandion 512. benzylisothioharnstoff 52. bismethoxyphenylbenzochinon 590. bisnitrophenylbenzo= chinon 515. bisoxyphenylbenzochinon butyrophenon 309. butyrophenonoxim 309. butyrylbenzol 309. caprophenon 314. caprophenonoxim 314. caproylbenzol 314. carbathoxyoxyaceto= phenon 446. carbäthoxyoxyanthracen 371. carbomethoxyoxyacetos phenon 443, 446.

Dioxy-chalkon, Acetylderivat 375 Z. 15 v. o.; Benzoyl= derivat 375 Z. 16 v. o. - chinon 432. --- desoxybenzoin 357, 358. -- desoxybenzoinimid 358. desoxybenzoinoxim 358. - diacetoxyanthrachinon 583, 585. - diacetoxybenzophenon= imid 541. -- diacetylbenzol 456. -- diacetylindacen 511. - diathoxydianthron 596. diathoxydihydrodianthron diäthylbenzaldehyd, Azin - diäthylbenzochinon 450. diäthylchinon 450. --- dianthrachinon 525. dianthrachinonyl 596, dianthranolyl 524. - dianthranylchinon 525. --- dianthron 524, 525. - dianthronyl 524. dibenzanthron 529, 530. dibenzopyrenchinon 522. dibenzoyldiallyltellur= dichlorid 328. --- dibenzoylnaphthalin 521. --- dibutyrylbenzol 458. -- dicaproylbenzol 458. - dicinnamoylmethan 513. - diformylbenzol 455. Dioxydihydro-anthrachinon **4**78. benzochinon 431. --- chinon 431. -- dianthron 524. naphthalinsulfonsäure 166, 167. -- naphthochinon 459. Dioxydiisopropyl-benzochinon 451. chinon 451. Dioxydimethoxy-acetophenon benzaldehyd 532. -- chalkon 547. -- diacetylbenzol 573. - dianthrachinonyl 610. - dianthron 595. dibenzylidenaceton 565, 566. dihydrodianthron 595. diphenyldialdehyd 578. distyrylketon 565, 566. - hydrochalkon 543. phenanthrenchinon 587. phenylpropiophenon 543.

Dioxydimethoxyphenyltris methoxybenzylketon 604. Dioxydimethyl-benzaldehyd benzaldehydsemicarbazon 308. benzaldoxim 308. benzochinon 448. benzophenon 364, 365. bisdibromisopropyldicyclohexylsulfid 9. diisopropenyldicyclohexyl= sulfid 21. diisopropyldicyclohexyl= sulfid 9. -- formylbenzol 308. indandion 459. isobutyrophenon 315. succinophenon 486. Dioxy-dinaphthochinon 519.
— dinaphthylchinon 518, 519. dinaphthylketon 425. dioxodibenzyl 473, 474. dioxohydrinden 458. dioxomethyltetrahydros anthracen 485. dioxotetrahydrodianthra= nyl 524. dioxotetrahydrodianthryl dioxybenzylidenacetos phenon 547. dioxyphenylpropiophenon diphenylbenzochinon 514. diphenylchinon 515; s. a. 514. diphenyldibenzophenazin 409 Z. 24 v. o. diphenyldivinyldisulfid 98. dipropionylbenzol 457. distyrylketon 404, 405. fluorenon 367. fluorenonoxim 367. formylnaphthalin 349, 350. formylpropylbenzol 311. fuchson 417. helianthron 526. hydrochalkon 362. indandion 458. isoamylisovalerylbenzos chinon 536. isobutyrophenon 310. isobutyrylbenzol 310. isocaprophenon 315. isocaproylbenzol 315. isodibenzanthron 529. isopentaphenchinon 521. isophthalaldehyd 455. isovalerophenon 313. isovalerylbenzol 313. isoviolanthron 529. laurophenon 319.

mesobenzdianthron 526. mesonaphthodianthron 528. Dioxymethoxy-acetophenon 440, 442, 445, 446. acetophenonimid 446. acetophenonsemicarbazon anisylidenacetophenon 547. anthracen 371. anthrachinon 549, 550, 553, 555, 556, 557. benzaldehvd 436, 437. benzoin 542. benzoinimid 542. benzophenon 467, 468. chalkon 481. desoxybenzoin 469. dibenzylidenaceton 511. dinaphthyldiketon 571. hydrochalkon 471. methylanthrachinon 559, 564. phenylcyclopentadienolon phenylpropiophenon 471. Dioxymethyl-anthracen 225. anthrachinon 508, 509, 510. benzaldehyd 303, 304. benzaldehydsemicarbazon --- benzaldoxim 305. — benzophenon 359. -- desoxybenzoin 364. --- desoxybenzoinoxim 364. diäthylacetophenon 316. diäthylacetophenonsemi= carbazon 316. distyrylketon 408. formylbenzol 303, 304. fuchson 420. hydrochalkon 366. isobutyrophenon 313. isobutyrophenonsemicarb= azon 313. isophthalaldehyd 456. isopropylbenzochinon 449. naphthochinon 465. phenylpropiophenon 366. Dioxy-naphthacenchinon 517. naphthaldehyd 349, 350. naphthochinon 461, 462, - naphthodianthron 528. naphthylnaphthochinon önanthoylbenzol 315. oxodihydroanthracen 371, 372, 373. oxofluoren 367. oxomethyldihydroanthras cen 383.

Dioxy-lauroylbenzol 319.

Dioxy-oxomethylenoktahydro-	Diama taimathalf	
inden 263.	Dioxy-trimethylfuchson 421.	Diphenylmethoxyphenyl-
	- undecylbenzochinon 452.	acetaldehyd 247.
oxymethylpentenyl=	- valerophenon 312.	butandion 423.
naphthochinon 543.	— valerylbenzol 312.	— butanon 250.
- palmitophenon 320 palmitoylbenzol 320.	- violanthron 529, 530.	— butanonoxim 250.
	— xylochinon 448.	butanonsemicarbazon 250.
- pelargonoylbenzol 317.	Diphenacyl-disulfid 98.	— butenon 254, 255.
pentacenchinon 521.	- sulfid 96.	— cyclobutanon 255.
- pentacendichinon 594.	- sulfiddioxim 98.	- pentadienolon 426.
pentamethoxydesoxy=	- sulfiddisemicarbazon 99.	- pentendion 426.
benzoin 604. perylenchinon 520.	— sulfidamianhana 00	pentendiondisemicarbazon
- phenacylcyclohexan 336.	— sulfidsemicarbazon 99. — sulfon 96.	426, 427.
- phenanthrenchinon 506,	- sulfonbenzylidenhydrazon	- propanon 248.
507, 508.	vgl. 99.	— pyranol 426.
Dioxyphenyl-acetophenon 357.	- sulfonbisbenzylidenhydr=	pyryliumsalze, Pseudobase 426.
- äthanphosphonsäure 89.	azon vgl. 100.	Diphenyloxyphenyl-butenon
- äthylcarbamidsäuremethyl=	— sulfondihydrazon 99.	254.
ester 101.	- sulfonhydrazon 99.	— pentadienolon 426.
benzochinon 465.	- sulfonsemicarbazon 99.	— pentandion 424.
benzochinondiacetat 465	- tellurdichlorid 100.	— pentendion 425, 426.
Z. 6 v. u.	- trithiocarbonat 97.	— pentendion 420, 420. — pentendiondisemicarbazon
benzylketon 357, 358.	Diphenetylchinon 515.	426.
decanon 318.	Diphenoxy-benzil 475.	- propenon 253.
- dioxyphenäthylketon 543.	- benzochinon 432.	- pyranol 426.
- dodecanon 319.	chinon 432.	- pyryliumsalze, Pseudobase
heptadecanon 320.	- dibenzanthronylsulfid 417.	426.
- heptanon 315.	- naphthochinon 461.	Diphenyl-phenacylcarbinol
- hexahydrobenzylketon 336.	Diphenyl-acetoin 209.	249.
 methoxybenzylketon 469. 	- acetoinoxim 209.	- propanolon 205, 206.
- methoxystyrylketon 481.	Diphenylacetoxyphenyl-pentas	- propenolon 222, 224.
 methylbenzylketon 364. 	dienolon 426.	Diphthalyl-benzoin 599.
- naphthochinon 512.	— pentendion 426.	- stilbendiol 599.
nonanon 317.	pyranol 426.	Dipropionylresorcin 457.
octadecanon 320.	- pyryliumsalze, Pseudobase	Diresorcyl-chinhydron 591.
- octanon 316.	426.	— chinon 591.
- phenäthylketon 362.	Diphenylanisyl-acetaldehyd	Dirhodan-dibenzylidenaceton
propiophenon 362.	247.	408.
- styrylketon 377.	acetaldehydoxim 247.	— diphenylpentadienon 408.
- sulfonanthrachinon 554.	- acetaldehydsemicarbazon	— methylanthrachinon 509.
tridecanon 319.	247.	Disalicoylperylen 529.
- undecanon 318.	- butanon 250.	Disalicylaldehyd 39.
Dioxyphthalyl-anthracen 521.	— cyclobutanon 255.	Disalicyliden-aceton 404.
anthrachinon 594.	Diphenyl-anisylidenaceton	cyclohexanon 413.
— phenanthren 521.	255.	— cyclopentanon 411.
Dioxy-propionylbenzol 305,	benzoin 259.	cystin 41.
306.	— benzoylcarbinol 247.	- diphenacylsulfid 380.
- propiophenon 305, 306.	— butanoldionoxim 386.	- hydrazin 43.
propylbenzaldehyd 311.	butanolon 209.	— thiocarbohydrazid 43.
terphenylchinon 514, 515.	— butenoldion 402.	Diselenbis-benzoylaceton 328.
- tetraacetoxyanthrachinon	butenolon 226.	— dibenzoylmethan 383. — phenylacetylaceton 330.
605.	— cyclopentadiendiolon 410.	— phenylpropionylaceton
- tetramethylsuccinophenon	cyclopentenoldion 410.	334.
486.	 dibenzoylbutindiol 525. dimethoxyphenylbutendion 	Dithioanthrahydrochinons
- thymochinon 449.		diphenyläther 217.
- toluylaldehyd 303, 304.	519. — glykolaldehyd 197.	Dithioanthrarufin-bisoxy=
trimethoxyacetophenon 572.	— glykolaidenyd 197. — glykolaidenydoxim 197.	äthyläther 500.
- trimethoxybenzil 601.	— glykolaidehydsemicarbazon	— diäthyläther 496.
- trimethoxybenzophenon	197.	— dibenzyläther 500.
574, 575.	- hexahydrobenzoylcarbinol	— dibutylather 498, 502.
- trimethoxybenzophenons	229.	- diisoamyläther 499.
imid 574.	— hexanolon 210.	- diisopropyläther 497.
		·

632

Dithioanthrarufin-dimethyläther 496.

dipropyläther 497.

- ditolyläther 499. Dithiobisbenzoylaceton 328. Dithiochrysazin-diäthyläther 501.

— dibenzyläther 503.

— dibutyläther 502.

- diisoamyläther 503.

diisopropyläther 501.

- dimethyläther 501.

dipropyläther 501.

Dithiokohlensäure-äthylester= phenacylester 96.

 carboxymethylesters phenacylester 97.

diphenacylester 97. Dithymolaldehydaceton 409. Ditolyl-phoron 366.

propenolon 229.

Divanillin 578.

Divanillylaceton 545.

Divanillyliden-aceton 566.

--- cyclohexanon 569. -- methyläthylketon 567.

Diveratroylxylol 592.

Diverstrylaceton 545.

Diverstryliden-aceton 567.

--- acetontetrabromid 545.

cyclohexanon 569. Dodecyl-dimethoxyphenyl=

keton 320.

— dioxyphenylketon 319.

— methoxyphenylketon 147. Dodekahydro-benzoin 29.

benzoinoxim 30.

 benzoinsemicarbazon 30. Droseron 465; s. a. 351 Z. 2 v. o.

Droserondiacetat 465.

Dypnopinakon 260.

F.

Elemol, Ketonalkohole aus -12, 29,

Embeliasaure 452. Embelin 452.

Embelin-bisäthylimid 453.

— bismethylimid 453.

- diacetat 453.

- dihydrazon 453.

-- dioxim 453.

--- disemicarbazon 453.

--- methylimid 453.

tetroxim 453.

Emodin 563. Emodin-anthranol 485.

-- anthron 485.

— methyläther 564.

methylätherdiacetat 564.

Emodinol 485.

REGISTER

Emodintriacetat 564. Eriodictyol 579.

Eriodictyol-dimethyläther 580 Anm.

tetramethyläther 580 Anm. Eriodictyonon 580.

Erucasäure-bromphenacyls ester 91.

jodphenacylester 93.

Erythrooxyanthrachinon 388. Euxanthonsäure 541.

Everninaldehyd 303.

F.

Ferulaaldehyd 321.

Ferulaaldehyd-benzyläther 322.

methoxymethyläther 322.

— methyläther 322. semicarbazon 322.

Feruloylacetophenon 512.

Filicin 611.

Filixsäure 611.

Filmaron 611.

Filmaronsäure 611.

Fisetol 445.

Fisetol-dimethyläther 445,

methyläther 445.

triacetat 446.

trimethyläther 446.

Flavopurpurin 555.

Flavopurpurin-anthranol 477.

triacetat 555.

Fluor-anisaldehyd 73.

anisaldehydsemicarbazon

--- anisaldoxim 73.

bromnitrooxybenzaldehyd 50, 79.

bromnitrooxybenzaldehyd=

semicarbazon 79.

bromnitrosalicyldehyd 50. bromoxybenzaldehyd 45,

46, 75. bromoxybenzaldehydoxim

bromoxybenzaldehyd=

semicarbazon 75. --- bromsalicylaldehyd 45, 46.

-- chinizarin 494.

-- chinizarindiacetat 495.

dinitrooxybenzaldehyd 51,

dinitrosalicylaldehyd 51. dioxyanthrachinon 494.

methoxybenzaldehyd 44,

methoxybenzaldehydsemi= carbazon 44.

methoxybenzaldoxim 44.

Fluornitrooxy-benzaldehyd 49, 79.

benzaldehydoxim 79.

benzaldehydsemicarbazon

Fluor-nitrosalicylaldehyd 49. oxybenzaldehyd 44, 73.

oxybenzaldehydsemis

carbazon 73; s. a. 44.

oxybenzaldoxim 44, 73.

salicylaldehyd 44.

salicylaldehydsemicarbazon

salicylaldoxim 44. Formyl- s. a. Oxymethylen-.

Formyl-diphenyläther 67.

oxymethylcampher 28. phenoxyessigsäure 40, 54.

phenoxypropionsäures

äthylester 41. tetrahydronaphthol 160. Frangulaemodin 563. Fumarsäurediphenacylester

89.

G.

Galaktonsäureanisyliden= hydrazid 72.

Gallacetophenon 439. Gallacetophenon-diacetat

dimethyläther 440.

dimethylätheracetat 440.

methyläther 440.

methylätherdiacetat 441.

triacetat 441.

--- trimethyläther 440.

Gallusaldehvd 437. Gallusaldehyd-dimethyläther

437. dimethylätherbenzyläther

438.

methyläther 437. methylätherdiacetat 438.

triacetat 438.

trimethyläther 438.

trimethyläthermethylimid 439.

pentaacetat 439.

Gallusaldoxim 439. Gentisinaldehyd 276. Gentisinaldehyd-dimethyl=

äther 276.

methyläther 276. Geranyloxymethylcyclo

pentenon 13. Gluconsäureanisylidenhydr=

azid 72. Glykolsäure-acetylnaphthyl-

bromphenacylester 92.

äther 175.

Hexaoxy-anthracen 578.

Glyoxylsäurebisoxodimethylcyclohexenylscetal 14.
Gossypol 607, 608.
Gossypol-dioxim 608.
hexascetat 608.
Grönhartin 365.
Guajacol-dimethylindandion 460.
phenacyläther 89.
Gulonsäureanisylidenhydrazid

H.

Hadromal 279. Heptadecyl-dimethoxy= phenylketon 320. - dioxyphenylketon 320. — methoxyphenylketon 148. Heptencarbonsäurebrom= phenacylester 91. Heptenyl-dimethoxyphens äthylketon 337. oxymethoxyphenäthyls keton 337. Heptyldimethoxyphenäthylketon 318. — ketonsemicarbazon 318. - ketoxim 318. Heptyl-dioxyphenylketon 316. oxymethoxyphenäthyl= keton 318. oxymethoxystyrylketon 337. oxymethylisopropyls phenylketon 147. oxymethylphenylketon 146. oxypropylphenylketon 147. Hesperetin 580. Hesperitin 580. Hexaacetoxy-dianthron 609. - dihydrodianthron 609. Hexabrom-aurin 419. — aurindiacetat 419. — dioxyfuchson 419. phloretin 542. Hexachlor-aurin 418. dioxyfuchson 418. Hexadecyl- s. a. Cetyl-. Hexadecyl-brenzcatechylketon 320. dimethoxyphenylketon 320. oxybenzaldehyd 67. Hexahydro-anisylcampher 35. benzovlresorcin 336. - methylsaligenylcampher 35. phenacetylresorcin 336. Hexamethoxy-dianthron 609. dihydrodianthron 609.

- hydrobenzamid 269.

Hexanitrodioxybenzaldazin 63.

anthrachinon 604, 605. benzophenon 601. chalkonpentamethyläther 602. dianthrachinon 609. dianthranyl 595. dianthron 609. dihydrodianthron 609. dihydrodianthronhexa= acetat 609. dihydrodianthronmethyl= äther 609. dihydrodianthrontetramethyläther 609. dimethyldiisopropyl= dinaphthyldialdehyd 607. Hexencarbonsäurebromphenacylester 91. Hexenyloxymethoxyphenäthylketon 337. Hexyl-anisylketon 142. benzoylcarbinol 144. dimethoxyphenäthyl= keton 317. dimethoxyphenäthyl= ketonsemicarbazon 318. dimethoxyphenäthyl= ketoxim 318. dioxyphenylketon 315. — methoxyphenylketon 142. methoxystyrylketon 165. --- methoxystyrylketon, dimeres 165. oxymethoxyphenäthyl= keton 317. oxymethoxystyrylketon 337. oxymethylphenylketon oxystyrylketon 165. Homoeriodictyol 580. Homosalicylaldehyd 101, 102, Homoveratrumaldehyd 303. Homoveratrumaldoxim 303. Homoveratrylresacetophenon 543. Hopfenbittersäure 537. Humulinsäure 451. Humulinsäure-oxim 452. semicarbazon 452. Humulochinon 536. Humulochinonsemicarbazon Humulohydrochinon 534. Humulon 537. Hydantoinsäureanisylidenhydrazid 72. Hydrindantin 339.

Hydro- s. a. Dihydro-, Tetra-

Hydrocampnospermonol 148.

hydro- usw.

Hydroanisamid 68.

Hydrocampnospermonolacetat 148. methyläther 148. - methylätheroxim 148. Hydrocinnamoin 210. Hydrocinnamoyl-naphthol 237. naphtholacetat 237. orcin 366. phloroglucin 471. resorcin 362. thymol 211. Hydrocotoin 467. Hydronaphthazarin 459. Hydroxylamino-methoxy: chalkon 382. phenylmethoxyphenyl= propenon 382. Hystazarin 504. Hystazarin-diacetat 504. methyläther 504. - methylätheracetat 504. --- sulfit 504. I. Imino-benzylanthranol= methyläther 256. butyrylnaphthol 360, 361. - xylochinol 32. Indanolon 152. Indanthren-brillantgrün B 531. brillantgrün GG 531. brillantgrün 4 G 531. Iridin-aldehyd 437. aldehydsemicarbazon 439. Isoacetovanillon 298. Isoacetovanillon-acetat 299. äthyläther 299. oxim 299. semicarbazon 299. Isoäthindiphthalid 517. Isoamyl-anthrachinonylsulfid 392. anthrachinonylsulfon 392. dioxyphenylketon 315. Isomylidenessigsäurebrom phenacylester 91. Isoamyl-isovalerylcyclopenta= noldion 431. isovaleryleyclopenten= diolon 431. mercaptoanthrachinon 392. mercaptobenzylmercapto= anthrachinon 500, 503. oxybenzophenon 186. oxybenzophenonoxim 187. oxycyclohexanon 4, 5. oxycyclohexanonoxim 4, 5. oxycyclohexanonsemi* carbazon 5. salicylaldehyd 137.

--- salicylaldehydsemicarbazon

sulfonanthrachinon 392.

137.

Isoamylsulfonbenzylsulfon= anthrachinon 500, 503. Isoanthraflavin 505. Isoanthraflavinsäure 505. Isobenzalizarin 415. Isobenzalizarin-acetat 415. — diacetat 415. - methyläther 415. - methylätheracetat 415. Isobenzanthragollol 513. Isobenzflavopurpurin 514. Isobisnaphthalinsulfoxyd= naphthochinon 593. Isobourbonal 282. Isobourbonal-oxim 285. semicarbazon 286. Isobutenyl-acetoxymethyl= phenylketon 163. kresylketon 162. -- oxymethylphenylketon 162. oxymethylphenylketoxim 163. --- oxystyrylketon 169. Isobuttersäure-bromphenacyl= ester 90. jodphenacylester 92. Isobutylanthrachinonyl-sulfid 392. - sulfon 392. Isobutyldimethoxyphenäthylketon 316. --- ketonsemicarbazon 316. ketoxim 316. Isobutyl-dioxyphenylketon 313. mercaptoanthrachinon 392. oxybenzaldehyd 67. oxybenzylidenacetophenon --- oxychalkon 223. oxymethoxyphenäthyls keton 316. oxymethoxystyrylketon 335. - oxyphenylketon 127, 128. - oxypropylphenylketon — oxystyrylketon 164. -- sulfonanthrachinon 392. Isobutyroxylenol 139, 140. Isobutyryl-anisol 118. - hydrochinonmethyläther 310. - kresol 129, 130. - kresolacetat 129. --- oxymethylcampher 28. — phenol 118. phloroglucin 449. resorcin 310. - thymol 145. - thymoloxim 145. Isocaproyl-phloroglucin 451. resorcin 315.

Isocotoin 467.

Isocrotonsäurebromphen= acylester 91. Isoemodin 562. Isoemodin-triacetat 563. trimethyläther 563. Isoeverninaldehyd 303. Isoheptensäurebromphenacylester 91. Isohexensäurebromphenacylester 91. Isohydrocotoin 467. Isolapachol 365. Isonaphthalinsulfonoxy: naphthochinon 461. Isonaphthazarin 461. Isonaphthazarin-dimethyl: ather 461. diphenyläther 461. - methyläther 461. Isonitroso- s. a. Oximino-. Isonitroso-anisylidenaceton 339. - benzoylbutanol 330. Isophoron, dimeres 147. Isopropyl-acrylsäurebrom= phenacylester 91. anisylketon 118. anthrachinonylsulfid 391. anthrachinonylsulfon 391. Isopropylidensalicyliden= aceton 169. Isopropylmercapto-anthra= chinon 391. benzylmercaptoanthra= chinon 500, 503. butylmercaptoanthrachinon 498, 502. isoamylmercaptoanthra= chinon 499, 503. Isopropylmethoxy-phenyl= keton 118. styrylcyclohexenon 181. Isopropyloxy-acetophenon 85. benzoylacetophenon 382. — benzylidenacetophenon 223. — chalkon 223. — dibenzoylmethan 382. methylacetophenon 109. methylacetophenonoxim

110.

500.

498.

- methylacetophenonsemi

styrylcyclohexenon 180.

Isopropylsulfon-anthrachinon

benzylsulfonanthrachinon

butylsulfonanthrachinon

isoamylsulfonanthrachinon

carbazon 110.

phenylketon 118.

styrylketon 162.

naphthochinon 342.

Isopurpurin 555. Isopyrethrolon-enol 136. enolacetat 136. Isorhizoninaldehyd 308. Isosaccharinsäureanisyliden= hydrazid 72. Isosafrovanillin 282. Isovaleriansäure-bromphen= acvlester 91. jodphenacylester 93. Isovaleryl-anisol 127. - brenzcatechin 313. carvacrol 146. kresol 138. kresolsemicarbazon 138. phenol 127, 128. phloroglucin 450. resorcin 313. thymol 146. thymolisovalerianat 146. - thymoloxim 146. Isovanillin 282. Isovanillin-acetat 283. - äthyläther 283. äthylätheroxim 285. Isovanillylidenaceton 326. Isozingeron 310. Isozingeronoxim 310. Istizin 500. Jod-acetoxyacetophenon 92. - acetoxyanthrachinon 395. — acetylresorcin 297. — acetylthiokresolmethyl= äther 111. äthoxybenzophenon 189. äthoxybenzylacetophenon 204. äthoxyphenylpropiophenon Jodanilsäurediphenyläther 433. Jod-anisaldehyd 76. anisaldehydsemicarbazon 76. anisaldoxim 76. — benzoylcarbinol 92. carvacrolaldehyd 132. — diacetoxyacetophenon 297. — diacetoxyhelianthron 527. diacetoxymesobenz= dianthron 527. diacetoxymesonaphtho: dianthron 528. dimethoxybenzaldehyd 289. dinitrooxybenzaldehyd 51, 80. dinitrooxybenzaldehyd= semicarbazon 51, 80. dinitrosalicylaldehyd 51. dinitrosalicylaldehydsemi=

carbazon 51.

dioxyacetophenon 297.

Joddioxy-helianthron 527. mesobenzdianthron 527. Jodnethoxy-acetophenon 87. anthrachinon 395. -- benzaldehyd 48, 76. - benzaldehydsemicarbazon 48. - benzaldoxim 48, 76. - benzophenon 189. — benzophenonoxim 189. — benzylacetophenon 204. --- phenylpropiophenon 204. Jodnethylmercaptomethyl= acetophenon 111. Jodnitro-oxybenzaldehyd 50, 61, 79. oxybenzaldehydsemicarb= azon 51, 79 salicylaldehyd 50. - salicylaldehydsemicarbazon Jodoso-methoxyacetophenon methoxyacetophenon: dichlorid 87. — oxyacetophenon 87. Jodoxy-acetophenon 92. - anthrachinon 395. --- anthranol 214. anthron 214. benzaldehyd 48, 57, 76. benzaldehydsemicarbazon 76; s. a. 48. - benzaldoxim 48, 76. -- benzophenon 189. - methoxyacetophenon 297. - methoxybenzaldehyd 289. methylisopropylbenzalde= hyd 131, 132. Jodphenacyl-acetat 92. alkohol 92. - butyrat 92. --- capronat 93. - isobutyrat 92. --- isovalerianat 93. lactat 93. --- margarat 93. palmitat 93. - propionat 92. stearat 93. -- valerianat 93. Jod-resacetophenon 297. resacetophenondiacetat resacetophenonmethyläther -- salicylaldehyd 48. - - salicylaldehydsemicarbazon 48. - salicylaldoxim 48. - thymolaldehyd 131.

— vanillin 289.

Juglon 347.

- veratrumaldehyd 289.

K, Keto- s. a. Oxo-, Keto-äthyloktahydromorphol= methyläther 341. amyrinacetat 171. -- borneol 25. dihydroamyrin 166. dihydrodicyclopentadien= glykol 263. Ketol s. Methylbenzoylcarbi nol, Phenylacetylcarbinol. Kohlensäureäthylesterbenzoyl= vinylester 151. Kresaurin 421. Kresol-aldehyd 101. --- aurin 421. benzein 249. Kresoxy- s. a. Tolyloxy-. Kresoxy-acetophenon 85. acetophenonoxim 86. benzophenon 186. — benzophenonoxim 187. benzylidenacetophenon 220. — butyrophenon 116. — butyrophenonoxim 116. — chalkon 220. methylacetophenon 109. — methylbenzophenon 199. propylphenylketon 116. Kresyl- s. a. Oxymethyl= p enyl-, Tolyl-. Kresylbenzyldiketondisemi carbazon 385. Krokonsäure 532.

I.

Lävulinsäurebromphenacyl ester 92. Lapachol 365. Lapacholmethyläther 365. Lauroyl-anisol 147. phloroglucintrimethyläther 454. resorcin 319. resorcindimethyläther 319. veratrol 319. Lawson 344. Leuko-chinizarin 478, 546. naphthazarin 459. tetraoxyanthrachinon 578. Linarodin 657. Lomatiol 472. Longifolon 35. Longifolon, Acetylderivat 35. Lupulinsäure 537.

M.

Maclurin 574. Maclurinpentamethyläther 574.

Maclurin-tetramethyläther trimethyläther 574. Maleinsäure-bisbromphenacyls ester 92. diphenacylester 89. Mandelaldehyd 101. Mannonsäureanisylidenhydrazid 72. Margarinsäure-bromphenacyl= ester 91. jodphenacylester 93. Menthaketoalkohol und Derivate 8. Menthanoldion 262, 263. Menthanolon 9. Menthantriolon 262. Menthenolon 20, 21. Menthenolonsemicarbazon Mercapto-acetophenon 84, 87, -- acetophenonoxim 98. --- acetophenonsemicarbazon 84, 98. --- anthrachinon 391. benzanthron 240. -- campher 23. — methylacetophenon 111. methylacetophenonsemis carbazon 111. Metaborsäureanthrachinonyls ester 389. Methenylbis-dimethoxy= hydrindon 592. indandion, Methyläther der Enolform 518. Methoxy-acenaphthenchinon **3**67. Lactolid (Bezeichnung) 3 Anm. acenaphthylenaldehyd 213. --- acetoacetylnaphthalin 360. acetonaphthon 175, 176, 178, 179. acetophenon 82, 84, 88, 657. acetophenonoxim 82, 84, 85. acetophenonsemicarbazon 89. acetoveratron 447. acetoveratronsemicarbazon Methoxyacetoxy-acetophenon 295, 299. acetoveratron 447. acetyltoluol 307. anthrachinon 489, 492, 504. - benzaldehyd 268, 283. — benzanthron 416. - benzylidenaceton 325. — benzylidenacetophenon 376. — bisacetoxyphenylbenzochinon 591. chalkon 374, 376. desoxybenzoin 357. dimethylbenzaldehyd 308.

— methylacetophenon 307.

Methoxyacetoxy-methyl= anthrachinon 509, 511. - methylbenzophenon 360. - methylchalkon 385. — methylchalkondibromid methyldesoxybenzoin 364. - methylphenylbenzylketon - phenylcaprylaldehyd 317. — trimethoxybenzylidens acetophenon 579. Methoxyacetyl-acetophenon 328. - anthracen 231. diphenyl 202. - diphenylsemicarbazon 202. -- naphthalin 175, 176, 178, 179. - naphthalinoxim 176. – phenyljodidchlorid 87. Methoxyäthoxy-acetophenon 299. - acetyltoluol 307. -- äthylacetophenon 311. - benzaldehyd 268, 273, 283. benzaldehydhydrazon 274. - benzaldoxim 274, 285. -- benzochinon 434. - benzophenon 355. Methoxyathoxybenzylidenaceton 326. - aceton, dimeres 326. - acetonsemicarbazon 327. acetophenon 374. Methoxyathoxy-bismethoxy= phenylbenzochinon 590. chalkon 374. — chinon 434. - dibenzoylmethan 483. - hydrochalkon 363. - methylacetophenon 307. --- methylacetophenonoxim 307. -- methylacetophenonsemis carbazon 307. methylbenzophenon 360. phenylpropiophenon 363. - thiobenzophenon 356. Methoxyäthyl-benzaldehyd 108. benzaldehydsemicarbazon 108. desoxybenzoin 209. desoxybenzoinoxim 209. desoxybenzoinsemicarb= azon 209. Methoxy-allylacetophenon 159. - allyoxybenzaldehyd 274. — aminocrotonoylnaphthalin 361. --- anisoylacetophenon 483. anisylidenacetophenon 375, **380.**

Methoxyanisylidenacetophes non-chlormethylat 376. dimethylacetal 376. semicarbazon 377. Methoxy-anthracenaldehyd anthracenaldoxim 230. anthrachinon 386, 387, 388, anthranylmethylenanthron 260. anthron 215. Methoxybenzaldehyd 40, 53, 64. Methoxybenzaldehyd-s. Anis= aldehyd-. Methoxybenzaldoxim 42, 43, 54, 68, 69. Methoxybenzaldoxim-carbon= säureäthylester 43, 71. carbonsäureamid 68. diäthylaminoäthyläther 71. dinitrophenyläther 43, 70. methylather 41, 43, 68, 70. nitrobenzyläther 43, 70, 71. pikryläther 43, 70. Methoxy-benzanthron 237, 238, 239, 243, 244. benzhydrylnaphthochinon 428. benzhydrylpropiophenon **250**. Methoxybenzil 368. Methoxybenzil-dimethylacetal= oxim 369, 370. dioxim 370, 371. dioximdiacetat 371. oxim 368, 369. oximacetat 369. oximdimethylacetal 369, 370. oximmethyläther 369. Methoxy-benzoanthrachinon **42**Ž. benzoanthron 244. benzochinon 264, 265. benzochinondichlorids. 263. benzochinondiphenyls methid 245. benzochinonimid 265. benzochinonoxim 264. benzofluorenon 244. benzoin 358, 359. benzoinoxim 359. benzoinsemicarbazon 359. benzophenon 182, 184, 185. benzophenonoxim 182, 183, 186. Methoxybenzoyl-s. a. Anisoyl-. Methoxybenzoyl-acetaldehyd 323. aceton 328. -- acetophenon 381, 382. acetophenonoxim 382. anthracen 256.

Methoxybenzoyl-anthrachinon **520.** naphthalin 234, 235. propen 157. vinylalkohol 323. Methoxybenzyl-aceton 116, 117. acetonsemicarbazon 117. acetophenon 202, 203. acetophenonoxim 202, 203. campher 170. desoxybenzoin 248. Methoxybenzyliden- s. a. Anisal-, Anisyliden-. Methoxybenzyliden-aceton 154, 155, 156. acetondibromid 117. acetonoxim 155. acetophenon 218, 220, 222, 225. campher 181, 182. diacetophenon 424. hydrindon 230. indandion 410. indanon 230. tetralon 233. Methoxybenzylnaphthochinon Methoxybenzyloxy-benzaldehyd 274, 283. benzaldoxim 286. benzylidenaceton 327. benzylidenacetonsemi= carbazon 327. phenylacetaldoxim 303. zimtaldehyd 322. Methoxybenzyltetralon 229. Methoxybis-brombenzoyläthan 384. brombenzoyläthylen 403. carbathoxyoxyanthrachinon 551, 557. chloracetyldiphenyläther chlorbenzoyläthan 384. chlorbenzoyläthylen 402. chlormethylbenzoyläthylen dimethylbenzoyläthylen methoxyphenylcyclopentadienolon 568. trimethylbenzoyläthylen Methoxy-bromanisylidenacetophenon 377. brombenzylacetophenon 203. brombenzylidenacetos phenon 221. bromphenylpropiophenon 203. butyrophenon 115. campher 22. camphersemicarbazon 23.

Methoxycaprophenon 137. Methoxycarbathoxy-benz= aldoxim 43, 71. oxyanthrachinon 490. - oxybenzaldehyd 284. Methoxy-carbomethoxyoxybenzaldehyd 268. carbomethoxyoxymethyl-benzaldehyd 304. carbomethoxyoxytoluyls aldehyd 304. chalkon 218, 220, 222, 225. chalkondibromid 203. -- chalkonsemicarbazon 219. chinon 265; s. a. Methoxy: benzochinon. chinondichlorid 263. - chloracetylnaphthalin 177. - chlorbenzylacetophenon 202. chlorbenzylidenaceto= phenon 221, 225. chlorphenylpropiophenon - chlorpropionylnaphthalin Methoxycinnamoyl-aceton **34**0. - diphenyl 253. diphenyläther 376. diphenylsulfid 377. - hydrinden 233. - naphthalin 246. - naphthol 419. – naphtholäthyläther 419. Methoxycinnamyliden-acetaldehyd 168. acetophenon 231. Methoxy-cinnamylnaphtho= chinon 419. crotonoylbenzol 157. - cyclohexanon 4, 5. cyclohexanonsemicarb= azon 5. cyclohexanspirocyclos pentendion 312. · cyclohexylaceton 7. cyclohexylacetonsemicarb azon 7. cyclopentanspirocyclos pentendion 308. cyclopentylbenzophenon 229. desoxybenzoin 192. - desoxybenzoinoxim 192. Methoxydiacetoxy-acetophenon 441, 447. acetoxybenzylidenacetos phenon 548. anthrachinon 551, 553, 556, 557. benzaldehyd 438.

dibenzylidenaceton 512.

— dimethoxybenzylidens

acetophenon 580.

Methoxydiacetoxy-methyls anthrachinon 564. methylbenzochinon 454. Methoxy-diathoxybenzo= phenon 467. diäthoxychalkon 480. diathoxyhydrochalkon 472. diäthyldesoxybenzoin 211. diathyldesoxybenzoinimid diathyldesoxybenzoinoxim diäthyldesoxybenzoinsemis carbazon 211. dibenzanthronylsulfid 417. dibenzopyrenchinon 430. dibenzoyläthan 384. dibenzoyläthylen 402. dibenzoylmethan 381, 382. dibenzylidenaceton 232. dibromphenylpropionyl= cymol 212. dimethoxybenzylidenaceto= phenon 480. dimethoxyphenylpropio= phenon 472 Methoxydimethyl-acetophenon 122, 123, 124, 125 acetophenonoxim 123, 125. acetophenonsemicarbazon 122, 123. äthylacetophenon 141. allylnaphthochinon 365. benzaldehyd 114, 115. benzophenon 207, 208. benzophenonoxim 208. benzoylaceton 335. butyrophenon 138. chalkon 228. cyclohexadienon 32. hydrindon 162. isobutyrophenon 139. phenylhydrindon 229. tetralon 163. Methoxy-dinitrophenylbenz= aldoxim 43. dioxophenylhydrinden 399. Methoxydiphenyl-acetaldehyd 196, 197. acetaldehydsemicarbazon 197. ätheraldehyd 67. äthylbenzochinon 420. anisoylpropen 423. benzoylmethylbenzochinon 522. butandion 384. butenon 226. cyclopentadienolon 410. cyclopentendion 410. isopropylbenzochinon 421. methoxyphenylbutanon Methoxy-ditoluyläthylen 408. epicampher 24.

Methoxy-epicampher, dimerer 24, 25. epicamphersemicarbazon formylacetophenon 323. formylcyclohexanon 262. fuchson 245. hexahydrobenzylcampher 35. hydrindon 152. hydrindonoxim 152, 153. hydrindonsemicarbazon hydrochalkon 202, 203. hydrochalkonoxim 202, 203. hydrochalkonsemicarbazon 204. hydrocinnamoylnaphthol 412. hydroxylaminochalkon 382. indanon 152. isobutyrophenon 118. isobutyrophenonoxim 118 Z. 5 v. u. isobutyrophenonsemicarb= azon 118. isodibenzanthron 430. isonitrosoacetophenon 321. isopropylbenzoinoxim 366. Methoxyisopropyloxy-benza aldehyd 283. benzaldehydsemicarbazon 286. benzylidenaceton 327. benzylidenacetonsemi= carbazon 327. Methoxy-isovalerophenon 127. isoviolanthron 430. menthenon 20. methoxyacetoxybenzyli= denacetophenon 480. methoxybenzaldehyd 67. methoxybenzoylacetos phenon 483. methoxybenzylidenaceto. phenon 379, 380. methoxycinnamyliden= acetophenon 404. methoxymethoxybenz= aldehyd 268, 283. methoxymethoxyzimt= aldehyd 321, 322. methoxyphenylpropios phenon 362. methoxyphenylpropio= phenonoxim 363. methoxyzimtaldehyd 149, Methoxymethyl-acetophenon 107, 108, 109, 111, 112. acetophenonoxim 107, 108, 110, 112. acetophenonsemicarbazon

107, 110, 112.

äthylacetophenon 132.

Methoxymethyl-anthrachinon	1
399, 400, 401.	1
— benzaldehyd 101, 102, 103.	1
— benzaldoxim 102.	1
- benzaldoximacetat 102.	
- benzanthron 244.	1
benzil 383.benzildioxim 383.	ŀ
— benzildisemicarbazon 383.	İ.
— benziloxim 383.	L
- benzochinonimid 292, 293.	l
— benzophenon 198, 199.	1.
— benzovlaceton 332.	
 benzylidenacetophenon 	1
226.	1
- butylacetophenon 143.	ŀ
- butyrophenon 128.	-
— chalkon 226, 227.	1
 chalkonsemicarbazon 227. chinonimid s. 292, 293. 	1
— cyclohexadienon 31.	١.
- cyclopentanon 5, 6.	-
- cyclopentanonsemicarb	
azon 5.	١-
- cyclopentenon 12, 13.	-
cyclopentenonguanyl	-
hydrazon 13.	١.
cyclopentenonsemicarb-]
azon 13.	-
 desoxybenzoin 206. diacetylcyclohexadienolon 	-
536.	_
- diathylacetophenon 144.	1
- dibenzoylmethan 385.	-
Methoxymethylen-acetophenon	ľ
151.	-
- benzoylaceton 339.	į
- cyclohexanon 14.	-
 dioxyphenylchinolin 88. phenylacetaldehyd 152. 	-
Methoxymethylhydrindon 158.	1
Methoxymethylisopropyl-	_
acetophenon 140.	
- acetophenonoxim 140.	_
— benzaldehyd 132.	
- benzophenon 210.	-
- benzylidenaceton 165.	
butyrophenon 145.chalkon 229.	-
— chalkonoxim 229.	-
Methorymethyl-nanhthalds	_
Methoxymethyl-naphthald= oxim 172, 173, 174.	
— naphthindenon 217.	J
- naphthylketon 178.	-
- naphthylketonsemicarbs	-
azon 178.	-
— perinaphthindenon 217.	
— phenylsulfonacetophenon	-
95.	_
— propenylcyclopentenon 33.	
— propiophenon 120, 121. — propiophenonoxim 120.	_
- valerophenon 137.	_
Methoxynaphthaldehyd 172,	_
173, 174.	_
•	

```
Methoxynaphthaldehyd-oxim
                               Methoxyphenyl-acetaldehyd
    173, 174.
                                   101.
   oximacetat 173, 174.
                                  acetaldehydsemicarbazon
 - oximmethyläther 172, 173,
                                   100.
                                  acetaldoxim 101.
   semicarbazon 173, 174.
                                  aceton 105.
                                  acetophenon 192.
Methoxy-naphthaldoxim 173,
                                  acetylcarbinol 306.

naphthochinon 342, 345.

                                  äthoxydiphenylallylketon

    naphthochinonsemicarbs

                                   423.
    azon 343, 347.
                                  anthron 252.
   nitroanisylidenacetos
                                  anthronhydrazon 252.
                                  benzanthron 258.
    phenon 377.
                                  benzhydrylketon 247.
   nitrobenzylacetophenon
    203.
                                  benzoylacetylen 230.
– nitrobenzylbenzaldoxim 43.
                                  benzoylcarbinol 359.
                                  benzoylpropen 226.

    nitrobenzylidenacetos

                                  benzyldiketon 380.
    phenon 221.
  nitrocinnamylidenacetos
                                  benzylglyoxal 380.
    phenon 231.
                                  benzylketon 192.
- nitrophenoxychalkon 376.
                                  butanon 116, 118.
— nitrophenylpropiophenon
                                  butanonsemicarbazon 116,
    203.
                                   118.
 – önanthophenon 142.
                                  camphanon 170.

    oximinoacetophenon 321.

                                  chalkon 253.
  oxooximinodimethyl=
                                  cyclopentendion 349.
    tetralin 341.
                                  desoxybenzoin 246, 247.
Methoxyoxy-benzaldoxim 285.
                                  desoxybenzoinoxim 247.

    benzylidenacetophenon 375.

                                  dibindonylmethan 604.
                                  dimethoxystyrylketon 480,
— dimethoxybenzylidenaceto<sup>*</sup>
   phenon 546.
                                   482.
— methoxybenzylidenaceto=
                                  dodecanon 147.
   phenon 480.
                                  glyoxal 321.
— methoxymethylbenzyliden=
                                  glyoxaloxim 321.
   acetophenon 485.

    heptadecanon 148.

- methylbenzylidenacetos
                                  hexadecanon 148.
   phenon 385.
                                 hexanolon 314.

    methylenacetophenon 323.

                                – hexanon 137.

    methylencyclohexanon 262.

                              - hexanonsemicarbazon 137.

    hexendion 340.

  phenylpropiophenon 362.
Methoxy-palmitophenon 148.

    indandion 399.

  pentamethylencyclopenten=
                                  indandionylbindonyl=
   dion 312.
                                   methan 600.
  pentamethylencyclopenten=
                                 mercaptochalkon 377.
   dionoxim 312.
                              Methoxyphenylmethoxy-

    phenacetylacetophenon

                                   acetoxystyrylketon 480.
                                  benzoylketazin 475.
– phenacylsulfontoluol 95.
                                  benzyldiketon 482.
  phenäthyloxynaphthyl*
                                 diphenylallylketon 423.
   keton 412.
                                 phenäthylketon 362.
– phenanthrenchinon 396,
                                 styrylacetylcyclohexenon
   398.
                                  517.
Methoxyphenoxy-acetophenon
                                 styrylcyclohexenon 412.
                                styrylketon 379, 380.

    benzaldehyd 67.

                              Methoxyphenyl-naphthochinon
  benzaldehydsemicarbazon
                                   409
                                 octadecanon 148.
  benzaldoxim 71.
                                 oxymethoxymethylstyryl-
– benzoindenon 367.
                                   keton 485.

chalkon 376.

                                  oxymethoxystyrylketon
  cyclohexanon 4.
                                   480, 482
  cyclohexanonsemicarbs
                                 oxymethylstyrylketon 385.
   azon 5.
                                 oxynaphthylketon 410.
  dibenzoyläthylen 402.
                                 pentadecanon 147.
- naphthindon 367.
                                 pentadienal 168.
```

Methoxyphenyl-pentanon 126, | Methoxy-triacetoxychalkon 127, 128. -- pentanonsemicarbazon 127, 128. - pentendion 339. propionaldehyd 106. - propionaldehydoxim 107. — propionaldehydsemicarbs azon 107. propionylcarbinol 309. propionylcarbinoloxim 309. - propionylcarbinolsemi= carbazon 309. -- propiophenon 202, 203. styrylketon 220. sulfonacetophenon 95. -- sulfonacetophenonoxim --- sulfonhydrochalkon 364. -- tetradecanon 147. --- tridecanon 147. --- trimethoxytritylketon 571. -- undecanon 146. — valerylcarbinol 314. Methoxy-phloracetophenon 533. - phoron 16. --- pikrylbenzaldoxim 43. pikryloxybenzaldoxim= pikryläther 285. propiophenon 104. Methoxypropyloxy-benz= aldehyd 274, 283. -- benzaldehydsemicarbazon 286. --- benzylidenaceton 327. — phenylmethoxypropyloxys styrylcyclohexenon 569. Methoxy-resacetophenon 445. - salicylaldehyd 267, 272, salicylidenacetophenon 374, — stearophenon 148. — styrylbenzhydrylketon 255. -- styrylglyoxaloxim 339. -- styryloxynaphthylketon tetraacetoxychalkon 580. tetramethylcyclopenta: non 8. tetramethylcyclopentenon --- tetramethylcyclopentenons oxim 17. -- tetramethylencyclopentens dion 308. tetramethylphenylcyclos hexadienon 180. - thiobenzaldehyd, polymerer 63.

— toluchinonimid 293.

534.

tolyloxychalkon 376.

--- triacetoxyacetophenon

Methylanisyliden-aceton 159. 548. acetondibromid 127. trimethoxyphenylcycloacetonoxim 159 pentadienon 539. acetophenon 227. trimethylcyclopentenon 15. acetoxybenzylidencyclovalerophenon 126. hexanon 414. veratrylidenacetophenon cyclohexanon 169. 480. Methyl-anisylketon 84, 657. vinylphenylketon 151. anthrachinonylsulfid 391. zimtaldehyd 149, 150. anthrachinonylsulfon 391, zimtaldehydhydrazon 150. zimtaldehydsemicarbazon benzanthronylsulfid 240; 150, 151. в. а. 244. zimtaldehydthiosemicarb= benzoin 206. azon 150, 151. benzoinoxim 206. zimtaldoxim 149. Methylbenzoyl- s. a. Toluyl-. zimtaldoximacetat 150. Methylbenzoyl-carbinol 104. zimtaldoximdinitrophenyl= carbinolacetat 104; s. a. äther 150. Methylacetoacetyl-anisol 332. carbinolsemicarbazon 104. phenol 330, 332, 333. diphenyläther 186. phenoldioxim 331, 333. vinyläther 151. phenoldioximhydrat 333. Methyl-benzylidencyclo phenoloximsemicarbazon pentanolon 169. bisacetoxybenzyliden= phenolsemicarbazon 331, cyclohexanon 414. 332 Z. 30 v. u. bisacetylvanillylidencyclo: Methyl-acetoveratron 307. hexanon 570. acetoveratronsemicarb= bisäthoxybenzylidencyclos azon 307. hexanon 414 acetoxymethylencyclo= bisdioxybenzylidenaceton hexanon 15. acetylcyclohexanol 7. bisdioxyphenylpentadienon acetyldiphenyläther 85. acetylphenol 107, 108, 109, b soxybenzylidenaceton 111, 112. 408. acetylthiophenol 111. bisoxybenzylidencyclos äthoxybenzylidenaceto= hexanon 413. phenon 227. bisoxyphenylpentadienon äthoxymethylencyclos hexanon 15. bromanisaldoxim 75. – bromisoanisaldoxim 74. äthoxynaphthylketon 175, — bromoxystyrylketon 155. 176. butenylcyclopentenolon – äthylacetylanisol 132. äthylacetylphenol 132, 133. 134. butenylisovalerylcycloāthylcotoin 467. äthylmethoxyphenyl= pentanoldion 451. butylacetylanisol 143. acetaldehyd 128. butyrylphenol 128. äthylsalicylaldehyd 124. alizarin 510. butyrylphloroglucin* alizarin, Acetylderivat methyläther 450. camphanolonoxim 28. allylcyclopentanolon 15, 16. capryloylphloroglucin 451. chinizarin 508, 509. allylcyclopentanolon: chinol 31. äthyläther 16. chrysazin 510. aminoacetylvinylphenol cinnamoyldiphenyläther 331, 332 aminoacetylvinylphenol: **22**0. semicarbazon 332. cotoin 467. cumarketon 153. aminocrotonoylanisol 333. cyclohexadienolon 31. aminocrotonoylphenol cyclohexandiolon 262.

cyclopentanolon 5.

cyclopentanolon,

polymeres 6.

331, 332.

anisaldoxim 70.

aminoembeliasaure 453.

amylcyclopentenolon 27.

Methylcyclopentanolonacetat 5, 6. dimethyläther 450. - äthyläther 6. isocaproylphloroglucin 451. isopropenylcyclohexanolon - allyläther 6. - methyläther 5, 6. Methylcyclopentenolon 12, 13. Methylisopropyl-acetylcyclo Methylcyclopentenolon-acetat hexanol 11. benzoylphenol 210. 12, 13. - äthyläther 13. cyclohexanoldion 262. allyläther 12, 13. -- cyclohexanolon 9. - geranyläther 13. cyclohexenolon 20. - methyläther 12, 13. essigsäurejodphenacylester Methyl-diacetoxyphenylketon formylphenol 131, 132. 301. — diacetylcyclohexadien= Methyl-isovalerylphenol 138. diolon 536. lactyloxyacetoveratron 447. diacetylphenol 333. Methylmercapto-athylmercaps toanthrachinon 496, 501. --- diäthylacetylanisol 144. - diäthylacetylphenol 143, anthrachinon 391. 144. benzaldehyd 51. --- dianisylidencyclohexanon - benzanthron 240, 244. 414. benzophenon 191. — dianisylidencyclopentan= benzophenonoxim 191. benzylmercaptoanthras dion 517. — dianisylidencyclopenteno» chinon 499, 503. lon 517. --- butylmercaptoanthra: - dihydrochinizarin 485. chinon 497, 502. - dimethoxybenzylketon 306. butylsulfonanthrachinon — dimethoxymethylphenyl* 497. benzochinon 470. isoamylmercaptoanthra= dimethoxyphenäthylketon chinon 498, 502. 310. isopropylmercaptoanthra= dimethoxyphenylhexanon chinon 497, 501. 316. methylacetophenon 111. dimethoxyphenylketon 301. methylpropiophenon 121. dimethoxystyrylketon 326. propylmercaptoanthras chinon 496, 501. dioxybenzylidenoximid 284. Methylmethoxy-acetoxys dioxynaphthylketon 351. - dioxyphenylketon 294, 297, styrylketon 325. äthoxystyrylketon 326. 298, 301. ${\bf dioxy propyl cyclohexanon}$ anthranylketimid 231. anthranylketon 231. --- diphenylmethoxyphenyl* benzhydrylketon 207. propanon 250. benziloxim 369. — dipropenylacetylcyclos benzylidenacetophenon 227. pentanol 34. benzyloxystyrylketon 327. divanillylidenaceton 567. - isobenzaldoxim 41, 68. — divanillylidencyclohexanon isopropyloxystyrylketon 570. $3\bar{2}7.$ diveratrylidenaceton 567. naphthaldoxim 172, 173, diveratrylidencyclohexanon 174. naphthylketon 175, 176. Methylenhydrindandiolon 263. naphthylketoxim 176. phenäthylketon 116, 117. Methyl-formylphenoxyessig² säure 103. Methylmethoxyphenyl-aceton gingerol 452. 118. – gingeroloxim 452. butyraldehyd 128. — hexensäurebromphenacyls - butyraldehydoxim 128. ester 91. butyraldehydsemicarbs - hydrocotoin 467. azon 128. iminobutyrylanisol 333. glyoxaloxim 322. iminobutyrylphenol 331, glyoxim 323. 332. glyoximdiacetat 323. keton 84, 657; s. a. 82. isoanisaldoxim 68. — isobutyrylphenol 129, 130. styrylketon 227.

Methyl-isobutyrylphloroglucin | Methyl-methoxypropyloxys styrylketon 327. methoxystyrylketon 154, -- methoxystyrylketoxim 155. -- methylaminocrotonoyl phenol 331. methyliminobutyrylphenol 331. naphthochinol 168. naphthochinolacetat 168. naphthochinolmethyl naphthyläther 168. naphthyloxyoxomethyl= dihydronaphthalin 168. nitrodimethoxyphenylhydracrylaldehyd 449. nitroisoanisaldoxim 77. nitrooxystyrylketon 155. — nitrophenylhydracryl= aldehyd 119. önanthoylphloroglucin 451. oximinosemicarbazono= butylphenol 332. oxoiminobutylphenol 331, Methyloxybenzyliden-aceton 159. acetonoxim 159. — acetophenon 227. anisylidencyclohexanon 413. Methyloxybenzylketon 105. Methyloxycyclohexyl-aceton 9. keton 7. ketonsemicarbazon 7. ketoxim 7. Methyloxy-dimethylbenz hydrylbenzophenon 259. isobenzaldoxim 67. isobutyrylphenol 313. isopropylcyclohexandion 263. isopropyldekalon 30. isopropyldekalonoxim 30. — isopropyldekalonsemi= carbazon 30. methoxyphenäthylketon 309, 310. methoxyphenylhexanon 316. methoxyphenylhexenon methoxystyrylketon 325, 326. methylcyclohexylketon 7. methylcyclohexylketon= semicarbazon 7. methylencyclohexanon 15. methylisopropylcyclo. hexanon 10. methylphenyldiketons disemicarbazon 329. methylstyrylketon 159. naphthylketazin 178.

Methyloxy-naphthylketimid 176.

naphthylketon 175, 176, 178, 179.

— naphthylketonhydrazon 176, 179.

naphthylketoxim 175.

-- oximinohydroxylamino butylphenol 333.

phenäthylketon 116, 117. Methyloxyphenyl-butenon 159.

— hexadienon 169.

hexenon 164.

--- keton 81, 84.

— pentenon 162. - styrylketon 227.

Methyl-oxystyrylketon 153,

— oxystyrylketoxim 154, 156. — pentadienylcyclopentenolon

pentylcyclopentenolon 27.

phenacetylphenol 206.

-- phenacyläther 88.

phenacylcarbinol 115. Methylphenyl- s. a. Tolyl-. Methylphenylacetyl-carbinol

-- carbinolacetat 118.

— carbinolacetatsemicarb* azon 118.

- carbinolsemicarbazon 118. . Methylphenyl-butanoldion=

oxim 330. --- butanolon 128.

heptadienolon 169.

- heptadienolonacetat 169.

methoxyphenylpropios phenon 250.

-- pentanolon 137.

pentenolon 162.

-- pentinolon 168.

-- pentinolonsemicarbazon 169.

propanolon 118.

Methylpropenyl-cyclopentenos

- cyclopentenolonacetat 33.

cyclopentenolonmethyls äther 33.

Methyl-propionylphenol 119, 120, 121.

propylacetylphenol 140. propylessigsäurejodphen=

acylester 93. protocatechualdoxim 284.

--- purpurin 561.

- purpurinacetat 561.

-- rhodanstyrylketon 156. salicylaldehyd 101, 102,

103.

 salicylidenacetophenon 227. salicylidencampher 181.

— salicylidenmethylbenzyl*

keton 227.

Methylsemicarbazonobutyryl= phenol 331.

Methylsulfon-athylsulfonanthrachinon 496, 501.

anthrachinon 391, 395. benzylsulfonanthrachinon

499, 503.

butylmercaptoanthras chinon 497, 502.

butylsulfonanthrachinon 498, 502.

isoamylsulfonanthrachinon 498, 502.

isopropylsulfonanthra= chinon 497.

propylsulfonanthrachinon 497, 501.

Methyl-trioxyphenylketon 439, 442, 444.

triphenylbenzoylcyclohexenol 260.

tropaaldehyd 106.

tropaaldehydoxim 107.

tropaaldehydsemicarb= azon 107.

vanillin 282.

veratrumaldoxim 285. Milchsäure-bromphenacyl= ester 92.

jodphenacylester 93. Morindon 561.

Morindon-dimethyläther 561.

dimethylätheracetat 561.

triacetat 561. Morpholchinon 507.

Myristoylanisol 147.

N.

Naphthalinsäure 344.

Naphthazarin 462, 463. Naphthazarin, Bisdiacetylbors säureester 464.

Naphthazarin-diacetat 463.

dichlorid 459.

- dichloriddiacetat 459.

Naphthochinon-oxynaphthyl= methid 256.

thiosulfonsäure 343, 347. Naphthoin 257.

Naphtholaldehyd 171, 173, 174. Naphtholylnaphthochinon 425.

Naphthopurpurin 537. Naphthopurpurintriacetat 538.

Naphthyl-benzoinoxim 258. naphthochinonylsulfon 343.

naphthoinimid 261. oxycyclohexanon 4.

sulfonnaphthochinon 343. Naringenin 547.

Nitranilsäure 433.

Nitro-acetoveratron 301.

acetoxyacetophenon 94. - acetoxybenzaldehyd 59.

Nitro-acetoxybenzylidens diacetat 59.

acetyldiphenyläther 85. acetylkresol 111.

acetylnaphthol 179.

acetylphenol 83. acetylveratrol 301.

äthoxybenzaldehyd 48, 59.

äthoxybenzaldehydsemi* carbazon 49.

äthoxybenzaldoxim 59.

äthoxybisnitrophenylpros panon 205.

alizarin 491.

alizarindimethyläther 491.

anisaldehyd 77.

anisaldehydsemicarbazon

Nitroanisaldoxim 77.

Nitroanisaldoxim-acetat 78.

- benzyläther 78. - methyläther 77, 78.

nitrobenzyläther 78.

Nitro-anisylidenacetophenon 220; s. a. 219.

anisylidendiacetat 77.

anthrahydrochinon 216, 217.

benzoyldiphenyläther 186.

benzoylphenylschwefel* bromid 184.

benzoylthiophenol 184.

benzylanisaldoxim 70, 71. benzylidenanisylidenaceton 233.

benzylmethoxybenz* aldoxim 43.

benzylnitromethoxybenz* aldoxim 49; s. a. 78. butylacetylkresolmethyl=

äther 143. butyrylphenol 115.

carbathoxyoxybenzaldehyd

chloracetylphenol 84.

cinnamoyldiphenyläther 220.

diacetoxyanthranol 373.

diacetoxyanthron 373. diacetyldesoxyalizarin

373. diäthoxybenzaldehyd 270,

Nitrodimethoxy-acetophenon

anisylidenacetophenon 481. benzaldehyd 270, 271, 275,

277, 290. benzaldehyddimethylacetal

270, 271. benzaldehydhydrazon 276,

benzaldehydsemicarbazon 271, 290; s. a. 291.

benzaldoxim 271, 275, 290. 41

Nitrodimethoxy-benzaldoxims acetat 290, 291. benzophenon 353. benzylidenhydrindon 403. — chalkon 377, 378. dibenzylidenaceton 407. — methylzimtaldehyd 328. - phenylmethoxystyrylketon Nitrodioxy-anthrachinon 491. benzophenon 353. benzophenonimid 353. - caprophenon 314. - dianthrachinonyl 597. methylbenzophenon 360. Nitro-diphenylanisoylcyclopropan 255. diphenylanisoylpropan 250. - diphenylanisoylpropen 254. — formylphenylschwefel* bromid 52. - mercaptobenzophenon 184. Nitromethoxy-acetophenons oxim 87. äthoxybenzaldehyd 270, 271, 275, 290. - äthoxybenzaldehydhydrazon 276. äthoxybenzaldoxim 276.
benzaldehyd 58, 77. - benzaldoxim 49, 77. - benzaldoximacetat 49, 78. benzaldoximbenzyläther 78. benzaldoximmethyläther 77, 78. benzaldoximnitrobenzyl äther 49, 78. benzanthron 240. -- benzochinondiazid 264. — benzophenon 183, 190. benzophenonoxim 183, 190. benzylidenacetophenon 219, 224. - benzylidendiacetat 77. — bisnitrophenylpropanon chalkon 219, 220, 221, 224. — cinnamoyldiphenyl 253. — cinnamylidenacetophenon dibenzylidenaceton 233. diphenylbutyrophenon 250. fluorenon 213. — hydrochalkon 203. -- methylanthrachinon 399. — methylbutylacetophenon 143 - naphthaldehyd 173. — nitrobenzylbenzaldoxim 49; s. a. 78. nitrophenylnitrophenylpropanon 205. Nitromethyl-acetylphenol 111. anthrahydrochinon 225. — isoanisaldoxim 77.

Nitromethyl-mercaptobensaldehyd 52, 81. mercaptobenzaldoxim 52, 81. mercaptobenzophenon 184. xanthonoxim 200. Nitrooxy-acetophenon 83. acetophenonoxim 83. acetophenonoximacetat 83. acetylnaphthalin 179. - äthoxybenzaldehyd 270. - anthrachinon 390, 395. anthradichinon 568. anthron 216, 217. benzaldehyd 48, 58, 77. benzaldehyd, Carbonat 59. benzaldehydsemicarbazon 59. benzaldehydtriacetat 59. benzaldoxim 48, 58, 59, 77. benzophenon 189, 190. benzylaceton 117. benzylidenaceton 155. - butyrophenon 115. chalkon 218. chlorphenylbutyrophenon 209. dimethoxychalkon 481. fluorenon 212. — hydrochinon 432. hydrozimtaldehyd 106. Nitrooxymethoxy-acetophenon acetophenonoxim 297. acetophenonoximacetat 297. anisylidenacetophenon 481. benzaldehyd 270, 275, 277, 289, 290. benzaldoxim 275, 290. phenylmethoxystyrylketon **481**. Nitrooxy-methylacetophenon 111. methylanthrachinon 399, 401. methylanthron 225. methylphenylindoxazen – naphthaldehyd 173. - naphthochinon 348. Nitro-paonol 297. päonoloxim 297. päonoloximacetat 297. pentamethylenbicyclopentanolon 33. phenacylacetat 94. Nitrophenoxy-acetophenon 85, anisylidenacetophenon 376. benzophenon 186. benzophenonoxim 187. chalkon 220. cinnamylidenacetophenon 231.

milchsäurealdehyd 106. milchsäuremethylketon Nitro-purpurin 554. resacetophenonmethyläther 297. salicylaldehyd 48. salicylaldoxim 48. salicylidenaceton 155. salicylidenacetophenon 218. Nitroso-acetoxyacetophenon benzoylcarbinol 93. dioxynaphthalin 343, 344. dioxytoluol 292, 293. kresorcin 293. methoxyphenol 264. methylresorcin 292. nitrooxymethylbenzochinonoxim 292, 293. nitrooxytoluchinonoxim 293. orcin 293. oxyacetophenon 93. oxyanisol 264. oxyhydrochinonacetat 432. oxyhydrochinondiacetat 432. pentamethylenbicyclos pentanolon 33. phenacylacetat 94. phenacylalkohol 93. phloroglucinaldehyd= methyläther 436. resorcin 265. resorcinmethyläther 264. trioxybenzol 432. Nitro-trimethoxyacetophenon trimethoxychalkon 481. trimethoxypropiophenon 448. - trioxyanthrachinon 554. trioxybenzophenon 468.vanillin 289, 290. – vanillinäthyläther 290. - vanillinoxim 290. veratrumaldehyd 290. veratrumaldehydhydrazon **29**0. veratrumaldehydsemicarbazon 290, 291. veratrumaldoxim 290. veratrumaldoximacetat 290, 291. Nonyl-dimethoxyphenathyl= keton 319. dimethoxyphenathylketoxim 319. dimethoxystyrviketon 338.

Nitrophenyl-benzanthronyl-

mercaptoacetophenon 95.

mercaptobenzanthron 241.

sulfid 241.

butanolon 117.

Nonyl-dimethoxystyrylketon, dimeres 338.

dioxyphenylketon 318.

 methoxystyrylketon, dimeres 165.

oxymethoxyphenäthylsketon 319.

oxymethoxystyrylketon338.

— oxystyrylketon 165. Nucin 347.

0.

Octanoylkresol 146. Octonyloxymethoxyphenäthylsketon 337.

Octyl-anisylketon 146.

- dimethoxyphenäthylketon 319.

- dimethoxyphenathyl-

ketonsemicarbazon 319. — dimethoxyphenāthylsketoxim 319.

- dioxyphenylketon 317.

methoxyphenylketon 146.oxymethoxyphenäthyl*

keton 318.

— oxymethoxystyrylketon 337.

Onanthoyl-anisol 142.

- kresol 144.

- phloroglucin 451.

— resorcin 315.

Onanthylidenzingeron 338. Oktabrombismethoxyphenylsnonanon 366.

Ononetin 469.
Ophioxylin 350.
Orcindialdehyd 456.
Orcylaldehyd 303, 308.
Orcylaldehyddimethyläther 304.

Oxanthranoläther 215. Oxanthron 214. Oxidocyclohexanol 3. Oximino- s. a. Isonitroso-. Oximino-äthylbenzoin 386.

— diphenylnaphthyläthanol 258.

— diphenylpropanol 206.

triphenylathylalkohol 247.
 Oxo-bisdioxyphenylacenaph
 then 571.

bisoxymethylphenyls dihydrophenanthren 429.
 bisoxyphenylacenaphthen

bisoxyphenylacenaphthe
 428.

bisoxyphenyldihydrophens
 anthren 429.

— borneol 25, 26. Oxobornyl-acetat 25, 26. — acetatsemicarbazon 26. Oxobornyl-chloracetat 26.
— trichloracetat 26.

Oxocyclohexyl-methoxysphenylpropan 165.

methoxyphenylpropansemiscarbazon 165.

- oxyoxocyclohexyläthan 263.

— phenylcarbinol 164.
Oxo-dioxybenzylidenacenaph

then 422.

— hydrindylcarbinol 158.

— isoborneolsemicarbazon 27.

-- isobornylacetat 27.
-- isobornylacetatsemicarb=

azon 27.
— methoxybenzylidenace=

naphthen 252.
— methylcyclohexylpropylen-

glykol 262.

— methyloxyisopropyldeka-

hydronaphthalin 30.

oximinomethoxyphenyl

buten 339.

— oximinophenylmethoxys

-- oximinophenylmethoxys phenylpropan 382.

 oxybenzyldekahydronaph= thalin 170.

 oxybenzylidenacenaphthen 252.

 oxydekahydronaphthyls dekahydronaphthalin 147.

- oxymethoxybenzylidenacenaphthen 422.

salicylidendekahydronaphs
 thalin 181.

Oxy-acenaphthylenaldehyd 213.

 acetoacetylnaphthalin 360, 361.

acetonaphthon 175, 176, 178, 179.

— acetonylbenzol 105.

acetophenon 81, 84, 88.
acetophenonoxim 82.

- acetophenonoximacetat 82.

- acetophenonsemicarbazon 89.

-- acetovanillon 446.

- acetoveratron 446.

acetoximinotriphenylpropen 248.

Oxyacetoxy-acetophenon 302.
— acetylnaphthalin 351.

- acetylnaphthalin, Diacetylborsaureester 352.

- anthrachinon 489, 492, 494, 501.

anthradichinon 584.benzaldehyd 283.

- benzochinonoxim 432.

caprophenon 314.desoxybenzoin 357.

— methylisobutyrophenon 313.

Oxyacetoxy-naphthechinon 462, 463.

— propylnaphthochinon 465. Oxyacetyl-acetophenon 327.

benzanthron 423.benzol 81, 84.

— diphenyl 201, 202.

— diphenyloxim 201.

— diphenylsemicarbazon 202.

— hemellitol 133. — mesitylen 134.

— naphthalin 175, 176, 178, 179.

- naphthalinazin 178.

— naphthalinhydrazon 176, 179.

- naphthalinimid 176.

— naphthalinoxim 175.

— naphthalinoximacetat 176.

- pseudocumol 134.

— xylol 122, 123, 124, 125. Oxyathoxy-acetophenon 295.

äthoxybenzylidenacetos
 phenon 481.

anthrachinon 487.

- benzaldehyd 267, 282.

— benzaldehydsemicarbazon 286.

— benzaldoxim 285.

 benzylidenacetophenon 376, 378.

— chalkon 376, 378, 379.

— methoxyäthoxybenzylidenacetophenon 547.

— methoxyäthoxyphenyl= propiophenon 543.

methoxyphenylpropios
 phenon 471.

— phenyläthoxystyrylketon 481.

Oxyathyl-acetophenon 121, 122.

— acetophenonoxim 122.

acetylbenzol 121, 122.
anthrachinonylsulfid 392.

mercaptoanthrachinon 392.
tetramethyloyolopentyls

keton 11. Oxyallyl-acetophenon 159.

— anthrachinon 411.

naphthochinon 356.phenanthrenchinon 411.

Oxy-aminocrotonoylnaphthalin 360, 361.

 aminodihydronaphthalins sulfonsäure 167.

— amyrin 166. — amyrinacetat 171.

 anisylidenacetophenon 375, 381.

— anthrachinon 386, 387, 388, 393.

— anthrachinon, Diacetylbors säurcester 389.

— anthrachinonylsulfat 490.

Oxy-anthradichinon 568. - anthrahydrochinon 372. - anthranol 213, 214.

Oxyanthranylmethylenanthron 260.

anthronacetat 260. - anthronmethyläther 260.

Oxy-anthrapurpurin 582.

- anthrapurpurindiacetat 583.

-- anthrarufin 554.

 anthrarufindimethyläther 554.

-- anthrarufinsulfonsäure 554.

- anthrarufintriacetat 554. - anthron 213, 214.

Oxybenzaldehyd 35, 52, 63. Oxybenzaldehyd, Carbonat 54. Oxybenzaldehyd-s. Salicylaldehyd-.

Oxy-benzaldimethon 549.

- benzaldoxim 42, 68.

--- benzaldoximacetat 42.

— benzaldoximdinitrophenyl= äther 68.

--- benzaldoximmethyläther

-- benzalindandionbindon 600.

- benzanthron 237, 238, 239,

Oxybenzhydryl-benzaldehyd 247.

— benzophenon 259.

- benzoyldiphenyl 261.

---- naphthochinon 428. Oxybenzil 368.

Oxybenzoanthrachinon 422. Oxybenzochinon 264. Oxybenzochinon-acetimid 265.

- acetimidoxim 266. — oxim 265.

— thiooximchlornitrophenyls äther 266.

Oxy-benzofluorenon 244.

- benzoin 359.

benzophenon 182, 184.

- benzophenonoxim 182, 186. Oxybenzoyl- s. a. Salicoyl-.

Oxybenzoyl-anthracen 256.

-- carbinol 302.

--- carbinolacetat 302.

— carbinolmethyläther 302.

-- cyclobutan 160.

- cyclohexan 164.

— cyclopentan 163.

cymol 210.

Oxybenzoylen-anthron 427.

anthron, Acetylderivat 427. dihydroanthracen 257.

Oxybenzoyl-naphthalin 234, 235.

 naphthalin, Diacetylbors saureester 235.

phlorogluoin 540.

- propen 157....

Oxybenzoylxylol 207, 208. Oxybenzyl-aceton 116, 117.

acetonoxim 117.

acetophenon 202, 203.

benzylidencyclohexanon 234.

bindon 522.

– camphanon 170.

campher 170.

cycloheptadecanon 165. cyclohexanon 164.

— dekalon 170.

dihydrozibeton 165.

Oxybenzyliden- s. a. Salicylal-, Salicyliden-.

Oxybenzyliden-acetaldehyd 150; s. a. 149.

aceton 153, 155, 156.

acetonoxim 156; s. a. 154.

acetophenon 217, 218, 220, 222, 224.

bisdimethyldihydroresorcin **549**.

campher 181.

gallacetophenon 547.

hydrindon 230.

- indandion 409.

- indanon 230.

— menthenon 180.

methoxybenzylidenaceton

oxybenzylidenaceton 405.

phenylacetylacetophenon

Oxybenzyl-indandion 403.

naphthochinon 410. naphthylketon 236.

Oxybis-äthylsulfondihydros naphthalin 167.

carbathoxyoxyanthras chinon 551, 557.

carbomethoxyoxys acetophenon 444.

carbomethoxyoxybenz: aldehyd 438.

chloracetyldiphenyläther

trimethylbenzoyläthylen

Oxy-bromphenylbenzofluorens

chinon 428. bromphenylchrysofluorens

chinon 428.

buccocampher 262, 263. buccocampher, Hydrat

butenylnaphthochinon 361. butylbenzaldehyd 131.

butylidenbisdimethyl. dihydroresorcin 536.

butyloxydibenzanthron 531.

butyloxyviolanthron 531. butyrophenon 115.

- butyrylbenzol 115.

Oxy-butyrylxylol 138.

campher 21, 22, 22 Anm.. 23, 24, 25.

camphersemicarbazon 23. Oxycarbathoxyoxy-anthras

chinon 489. anthron 371.

Oxycarbomethoxyoxy-acetos phenon 303.

methylbenzaldehyd 304.

– toluylaldehyd 304. Oxy-chalkon 217, 218, 220, 222,

224.

chinizarinchinon 568.

chinon 264.

chloracetylnaphthalin 177.

chlorbenzoylnaphthalin **235**.

chlorbenzylidenaceto= phenon 220.

chlorisoamylnaphthochinon 352.

chlornitrophenylmercapto=

naphthochinon 461. chlorphenyläthylstyryl=

keton 228. chlorpropylnaphthochinon 352.

cholestenol 166.

chrysazin 557.

chrysofluorenon 244.

cinnamoylaceton 340. cinnamoylnaphthalin 246.

cinnamoylxylol 228, 229.

cinnamylnaphthochinon

cyclohexylbutanon 9.

dekalyldekalon 147. desoxybenzoin 192.

Oxydiacetoxy-acetophenon 441.

anthrachinon 551, 553, 556.

anthranol 477. anthron 477.

benzaldehyd 437.

benzanthron 514. benzophenon 466.

Oxy-diacetylnaphthalin 361.

diäthoxychalkon 481. diathylacetophenon 140, 141.

diäthylacetylbenzol 140, 141.

diathylacetylkresol 316. — diäthylphenylphthalan 211.

dianisylidendicyclohexyli= den 424.

dibenzhydrylbenzaldehyd 261.

dibenzopyrenchinon 429.

dibenzoyläthylen 402. dibromisoamylnaphthochinon 352.

dicyclohexylacetaldehyd **3**0.

Oxy-diformylbenzol 321. dihydrolapachol 465. Oxydimethoxy-acetophenon 440, 442, 444, 445, 446. - acetophenonoxim 441, 444. anisylidenacetophenon **548**. anthrachinon 550, 553, 554, 556. - anthranol 477. - anthron 477, 556. — benzaldehyd 436, 437. - benzaldehydsemicarbazon 439. — benzanthron 513, 514. – benzophenon 467, 468. benzylidenacetophenon 480, 481, 482. benzyloxyacetophenon 534. bismethoxycinnamoyls benzol 604. chalkon 480, 481, 482. chalkondibromid 471. diacetylbenzol 535. — dibenzylidenaceton 512. — dimethoxybenzoylacetos phenon 602. dimethoxybenzylidenaceto= phenon 579. dimethoxyphenylpropio= phenon 576. distyrylketon 512. — methoxyphenylpropios phenon 542. Oxydimethoxymethyl-anthras chinon 560, 561, 562, 564. anthranol 484. anthron 484, 560, 561. — benzophenon 470. - chalkon 485. Oxydimethoxy-phenylcyclos pentadienolon 538. phenyldimethoxyphen* äthylketon 576. phenyldimethoxystyryl= keton 579. phenylstyrylketon 481, 482. trimethoxybenzylidens acetophenon 602. trimethoxyphenylpropio= phenon 601. zimtaldehyd 455. zimtaldehydsemicarbazon 455. Oxydimethyl-acetoacetyl= benzol 335. acetophenon 122, 123, 124, acetophenonoxim 122, 123, 124, 125. acetophenonsemicarbazon 122, 125. acetylbenzol 122, 123, 124,

āthylacetophenon 141, 142.

Oxydimethyl-athylacetos Oxy-epicampheroxim 25. epicamphersemicarbazon 25, 26. phenonoxim 141, 142. äthylacetophenonsemicarb= azon 141, 142. flavopurpurin 582. äthylacetylbenzol 141, 142. fluorenon 212, 213. - äthylendekalon 34. fluorenonazin 212. äthylhydrindon 164. fluorenonhydrazon 212. äthylhydrindonsemicarb= formylacenaphthylen 213. formyldiphenyl 191. azon 164. äthylindanon 164. formylnaphthalin 171, 173, - allylnaphthochinon 365. 174. formyltetrahydronaphtha= anthrachinon 404. benzaldehyd 114, 115. lin 160. benzaldehydsemicarbazon formyltriphenylmethan 247. fuchsonhydrat 245. 114. benzaldoxim 114, 115. heptyldimethoxyphenäthyl= benzaldoximacetat 114. keton 452. benzochinon 304. hexahydrobenzophenon benzophenon 207, 208. 164. hydrindon 152, 153. benzophenonoxim 207, 208. benzoylaceton 335. hydrindonoxim 153. butyrophenon 138. hydrochalkon 202, 203. butyrylbenzol 138. iminobutyrylnaphthalin chalkon 228, 229. 360, 361. chinon s. 304. iminotrinaphthyläthan 261. diacetylbenzol 335. — indandion 338. diisopropylfuchson 250. – indanon 152, 153. diphenylvaleraldehyd 211. isoamylbenzaldehyd 137. fuchson 249. isoamylnaphthochinon 352. hydrindon 160, 161. isoanthraflavinsäure 555. hydrindonsemicarbazon isoborneol 26. 161, 162. - isobutyrophenon 118. - isobutyrophenonoxim 119. indanon 160, 161. isobutyrophenon 139, 140. isobutyrophenonsemicarb= azon 119. isobutyrophenonsemicarb= azon 139. - isobutyroxylenol 315. isobutyrylbenzol 139, 140. isobutyrylbenzol 118. oxyisobutyrylbenzol 315. isobutyrylkresol 313. phenylbenzanthron 259. isobutyrylxylol 139, 140. phenylhydrindon 229. isolapachol 472. - isophthalaldehyd 321. phenylphthalan 210. propenylnaphthochinon Oxyisopropyl-benzophenon 365. 210. Oxydinaphthanthracen= phenylbutadienylketon 169. dichinon 571. phenylketon 118. Oxydinaphthylchinon 425. styrylketon 162. Oxydioxo-dihydrodibenzo= styrylketonacetat 162. pyren 429. styrylketonoxim 162. hydrinden 338. xylenylketon 139. Oxyisovalerophenon 127, 128. - methylhydrinden 339. phenylhydrinden 398. Oxyisovalerylbenzol 127, 128. tetrahydroanthrahydro: Oxymethoxy-acetophenon 293, chinon 546. **294**, **298**, **302**. tetrahydrodiphenanthryl acetophenonoxim 296, 293, ${\bf acetophenonoximacetat}$ Oxydiphenyl-acetaldehyd 197. 296, 298. aceton 205. - acetonsemicarbazon 206. acetophenonsemicarbazon aldehyd 191. hydrindon 254. acetoxyacetophenon 447. propiophenon 249. acetoxyanthrachinon 550, tetralon 255. 553, 556. Oxy-droseron 539. acetyltoluol 306.

äthoxyacetophenon 443.

athoxybenzophenon 467.

droserontriacetat 539.

epicampher 24, 25, 26.

O	cymethoxy-athoxybenzys
	lidenacetophenon 480.
	äthoxychalkon 480.
	äthoxyhydrochalkon 471. anthracen 215.
_	anthrachinon 489, 492, 494,
	504. anthranol 372, 373.
	anthranol 372, 373. anthranol, Acetylderivat 373 Z. 18 v. o.
	anthron 371, 372, 373.
	anthron, Acetylderivat 273 Z. 18 v. o.
Ox	ymethoxybenzaldehyd 267, 272, 276, 278, 282, 291.
Ox	ymethoxybenzaldehyd-s.a. Isovanillin-, Vanillin
Ox	ymethoxybenzaldehyd-
	methylimid 269.
<u></u>	semicarbazon 292. ymethoxy-benzaldimid 268.
	benzaldoxim 269, 274, 276,
	285.
	benzanthron 416. benzil 473.
	benzophenon 353.
	benzoylnaphthalin 410.
	benzylaceton 309, 310.
Ox	ymethoxybenzyliden- s. a. Vanillyliden
Ox	ymethoxybenzyliden-aceton
	325, 326.
	acetonoxim 327.
	acetophenon 374, 377, 378; s. a. 375, 381.
	bisdimethylamin 269.
	diacetophenon 518.
	glycylglycinäthylester 269. hydrindon 403.
_	indandion 513.
	methyläthylketon 329.
Ox	ymethoxy-bismethoxys
_	phenylbenzochinon 590. bisoxyphenylbenzochinon
	589.
	caprophenon 314.
	chalkon 374, 375, 377, 378, 379, 381.
	chalkondibromid 362.
	chalkonisoxim 382.
	chlorbenzylidenaceto
	phenon 378. cinnamylidenacetophenon
	404.
	desoxybenzoin 357.
_	diathoxychalkon 547.
_	diathoxyhydrochalkon 543. dibenzanthron 531.
	dimethoxyphenylpropio-
	phenon 543.
	dimethylbenzaldehyd 308. dimethylbenzaldoxim 308.
	dimethylbenzil 485.
	dimethylbenzophenon 364.

REGISTER	
Oxymethoxy-dimethylindans dion 460. — distyrylketon 405.	Oxymethylacetylbenzol 107, 108, 109, 111, 112. Oxymethylathyl-acetophenon
- hydrindon 324 hydrochalkon 362, 363 hydrochalkonsemicarbazon 363.	132, 133. — acetophenonsemicarbason 133. — acetylbenzol 132, 133.
- isobutyrophenon 310. Oxymethoxymethyl-aceto- phenon 306.	 benzaldehyd 122, 124. benzaldehydsemicarbazon 122. formylbenzol 122, 124.
acetophenonsemicarbazon 307.	Oxymethyl-äthylidenaceto- phenon 160.
- anthrachinon 509, 511 benzaldehyd 303, 304 benzophenon 359.	allylnaphthochinon 361. anisylidenacetophenon 385. anthrachinon 399, 400,
- benzophenonoxim 360 chalkon 385 chalkondibromid 366.	401. — anthranol 225. — anthron 225.
desoxybenzoin 364, phenylbenzylketon 364. Oxymethoxy-naphthochinon	— benzaldehyd 101, 102, 103. — benzaldehydsemicarbazon
461. — oxoāthyloktahydrophen	102. — benzil 383. — benzildisemicarbazon 383.
anthren 341. Oxymethoxyphenyl-benzylsketon 357.	- benzochinonoxim 292, 293. - benzophenon 198, 199, 201.
- decanon 318. - decenon 337.	benzophenonoxim 199. benzoylaceton 330, 332, 333.
- dodecanon 319. - dodecenon 338.	- benzylidenacetophenon 226. - benzylidenhydrindon 233.
— heptenon 335. — hexanon 315. — hexenon 334.	bromanisylidenacetophenon 385.
— nonanon 317. — nonenon 337. — octanon 317.	- bromönanthoylbenzol 144 butyrophenon 128 butyrophenonsemicarb
octenon 336. pentanon 312.	azon 128. — butyrylbenzol 128.
— propiophenon 362, 363. — undecanon 318. — undecenon 337, 338.	campher 28 caprophenon 142 caproylbenzol 142.
Oxymethoxy-toluylaldehyd 303, 304.	— capryloylbenzol 146. — carvomenthon 10.
— toluylaldehydoxim 304. — tolylmethylketon 306.	- chalkon 226, 227 chalkondibromid 209 chlorbenzylidenacetos
acetophenon 579. vinylmethoxyphenylketon	phenon 226. — crotonoylbenzol 160.
456. — vinylphenylketon 323.	- cyclohexanon 7 desoxybenzoin 206 desoxybenzoinsemicarb
— violanthron 531. — zimtaldehyd 321. — zimtaldehydsemicarbazon	azon 206. — diacetylbenzol 333. — diäthylacetophenon 143,
321, 322. Oxymethylacetoacetyls benzol 330, 332, 333.	144. — diāthylacetophenonoxim
Oxymethylacetophenon 107, 108, 109, 111, 112.	144. — diathylacetophenonsemi- carbazon 144.
Oxymethylacetophenon-imid	— diāthylacetylbenzol 143, 144.
- oxim 107, 108, 109, 112. - oximacetat 110. - semicarbazon 108, 113.	dibenzopyrenchinon 430. dimethylacryloylbenzol 162.

151.		
- acetoveratron 456.		
- camphanon 34.		
— campher 34.		
— campheranhydrid 34.		
- cyclohexanon 14.		
— epicampher 34.		
— phenylacetaldehyd 152.		
- resacetophenondimethyl		
ather 455.		
Oxymethyl-epicampheroxim 28.		
- hydrindon 158.		
- hydrindonoxim 158.		
indandion 339.		
- indanon 158.		
— isobutyrophenon 129, 130.		
— isobutyrophenonoxim 130.		
— isobutyrophenonsemicarbs		
azon 130.		
— isobutyrylbenzol 129, 130.		
Oxymethylisopropyl-		
acetophenon 140.		
- acetylbenzol 140. - benzaldehyd 131, 132.		
2011 <u>201</u> 2011		
benzochinon 311.benzophenon 210.		
- benzophenonoxim 210.		
- butyrophenon 145.		
- butyrophenonoxim 145.		
— butyrylbenzol 145.		
— capryloylbenzol 147.		
— chalkon 229.		
— chinon s. 311.		
desoxybenzoin 211.		
— isobutyrophenon 145.		
— isobutyrylbenzol 145.		
isovalerophenon 140.		
— isovalerylbenzol 146.		
- phenylpropiophenon 211.		
- propionylbenzol 143.		
propiophenon 143.		
Oxymethyl-isovalerophenon		
138.		
- isovalerylbenzol 138.		
— menthanon 10. — menthon 10.		
— menthon 10. — menthonacetat 10.		
— menthonic tat 10. — menthonic tat 10.		
— mercaptoanthrachinon 505.		
- naphthochinon 350.		
- nitrophenylpropionaldehyd		
119.		
- önanthophenon 144.		
— önanthoylbenzol 144.		
— oxyisobutyrylbenzol 313.		
— pentamethoxybenzhydryls		
keton 601.		
- phenylaceton 118.		
— phenylbenzyldiketons		
disemicarbazon 385.		
- phenylbenzylketon 206.		
phenylketon 88.		
— phenyltetrahydrofuran 127.		

168.

Oxymethylen-acetophenon

Oxymethyl-propionylbenzol Oxyoxo-phenylbenzyis 119, 120, 121. hydrinden 256. phenylbutan 116; s. a. propiophenon 119, 120, 121. propiophenonoxim 120. Phenylbutanolon. phenyldihydroanthracen propiophenonsemicarbs azon 120, 121, 252. phenylpropan 104, 105. - propylacetophenon 140. tetrahydronaphthalin 157. propylacetylbenzol 140. triphenyläthan 247. - tetrahydrocarvon 10. triphenylmethyldihydro-— tetramethylcyclopentyl= anthracen 261. keton 10. Oxyoxoverbindungen mit Oxy-naphthacenchinon 422. 2 O-Atomen 3. naphthaldehyd 171, 173, mit 3 O-Atomen 262. 174. mit 4 O-Atomen 431. - naphthaldehydoxim 172. -- mit 5 O-Atomen 532. - naphthaldehydoximacetat mit 6 O-Atomen 572. mit 7 O-Atomen 601. - naphthaldoxim 172. --- mit 8 O-Atomen 604. - naphthazarin 537. mit 9 und mehr O-Atomen Oxynaphthochinon 344, 347, 611. 348. Oxy-oxybenzylidenacetos Oxynaphthochinon-acetimid phenon 375. 346. oxydimethylpropenyl= - imid 343, 346. naphthochinon 472. - oxim 343, 344. oxyisoamylnaphthochinon naphthylbenzanthron 260. 465. naphthylchlornaphthyl= oxynaphthylnaphtho: keton 256. chinon 519. --- naphthylmethylenindan: oxypropylanthrachinon dion 425. 512. naphthylnaphthochinon oxypropylnaphthochinon 465. nitrodimethoxyphenyl= pentacendichinon 571. isobutyraldehyd 449. pentamethoxychalkon 602. — nitrophenylmercapto= pentamethoxyhydros naphthochinon 461. chalkon 601. pentylbenzophenon 211. nitrophenylpropionaldehyd phenacetylcymol 211. phenacetylnaphthalin 236. oximinotriphenylpropan phenanthrenchinon 396, 397, 398. oximinotriphenylpropan, phenanthrenchinonsemi= Benzoylderivat 248. carbazon 397. Oxyoxo-camphan 21, 23, phenoxyacetoxyanthra: 24, 25. chinon 490. dibenzyl 192. phenoxychalkon 380. – dihydroanthracen 213, 214. Oxyphenyl-acetaldehyd 100, Oxyoxodimethyläthylen-101. dekahydronaphthalin 34. acetaldehydsemicarbazon oktahydronaphthalin 145. 100, 101. oktahydronaphthalinacetat acetaldoxim 101. 145. aceton 105. oktahydronaphthalinsemis acetonsemicarbazon 105, carbazon 145. 106. Oxyoxo-dimethylphenylindan acetophenon 192. anthron 252. diphenyltetrahydronaph= benzanthron 258, 259. thalin 255. benzoylcarbinol 359. - fluoren 212, 213. benzyldiketondisemi= - hydrinden 152, 153. carbazon 380. benzylhydrindon 256. methyldihydroanthracen benzylketon 192. methyldihydronaphthalin butandion 327. butanon 116, 117.

Oxyphenyl-butenon 153, 155. butyraldehyd 117. — camphanon 169. — chalkon 253. — chlorstyrylcyclohexenon dimethoxystyrylketon 480. - dioxyphenylketon 468. — dodecenon 165. — fluorenon 251. - hexendion 340. — hexenon 162. indandion 398. — indandionylbindonyls methan 600. methoxyāthoxystyryl= keton 480. — methoxystyrylcyclos hexenon 412. naphthochinon 409. — nonadecanon 148. nonadecenon 165. — nonenon 165. oxyphenyldiketon 474. oxystyrylcyclohexenon oxystyrylketon 375. — pentanon 127. pentenon 158, 159. — phenacylchroman 424. - phenāthylketon 202. – propenal 149, 150. propionylcymol 211. - propionylnaphthalin 237. propiophenon 202, 203, 206. styrylketon 220. - tetrahydrofuran 117. — tolylpropenon 227. - valeraldehyd 127. Oxy-phoron 18. phthalylanthrachinon 571. propionylbenzol 103, 104. propionyldiphenyl 209. — propionylnaphthalin 179. - propiophenon 103, 104. propiophenonoxim 103. propiophenonsemicarbazon Oxypropyl-acetophenon 131. acetophenonsemicarbazon 131. — acetylbenzol 131. butyrophenon 143. butyrophenonsemicarbazon 143. - butyrylbenzol 143. — campher 29. capryloylbenzol 147. isovalerophenon 145. - isovalerophenonoxim 145. — isovalerophenonsemi= carbazon 145. - isovalerylbenzol 145.

- phenylketon 115.

propionylbenzol 138.

Oxypropyl-propiophenon 138. Oxy-triphenylphthalan 259. propiophenonsemitritylanthron 261. - tritylnaphthochinon 430. carbazon 138. veratrylidenacetophenon Oxy-resacetophenon 445. semicarotinon 513. vinylmethoxyphenylketon styrylmethoxystyrylketon 405. 323. tetrahydrocarvon 9. vinylphenylketon 151. xylochinon 304. - tetrahydrocarvonoxim 9. - zimtaldehyd 149, 150, 151. — tetrahydrocarvonsemi= - zimtaldehydsemicarbazon carbazon 9. tetralon 157. Oxytetramethoxy-benzos phenon 574. P. benzophenonimid 575. chalkon 578, 579; s. a. Päonol 294. 580 Anm. Päonol-acetat 295. dibenzoylmethan 602. oxim 296. hydrochalkon 576. oximacetat 296. Oxy-tetramethylbutyrolacton= Palmitinsäure-bromphenacyl= carbonsäuremethylester ester 91. thionyldioxyanthrachinon jodphenacylester 93. 552, 553. Palmitoyl-anisol 148. phloroglucintrimethyls thymochinon 311. toluchinonoxim 292, 293. äther 454. resorcin 320. toluylnaphthalin 236. resorcindimethyläther 320. tolylaceton 119, 121. triacetoxyhydrochalkon resorcinmethyläther 320. 542.Paraorsellinaldehyd 304. Pararosolsäure 417. triäthylacetophenon 145. triäthylacetophenonoxim Pelargonoyl-anisol 146. 145 Z. 11 v. u. phloroglucintrimethyläther 451. triäthylacetylbenzol 145. trichloracetylnaphthalin resorcin 317. Pentaacetoxychalkon 581. Pentadecyl-dioxyphenylketon Oxytrimethoxy-acetophenon 533, 534. 320. anthrachinon 585. methoxyphenylketon 148. Pentamethoxy-acetoxyanthron 546. benzaldehyd 533. chalkon 602. chalkon 546, 547, 548. äthylbenzophenon 577. benzophenon 574. dimethoxybenzyliden* acetophenon 602. chalkon 579, 580, 581. desoxybenzoin 575. hydrochalkon 542, 543. dibenzoylmethan 602. Oxytrimethyl-acetophenon 133, 134. hydrochalkon 576, 577. hydrochalkonoxim 577. acetophenonoxim 133, Pentamethylacetyl-cyclos acetophenonsemicarbazon pentanol 11. 133, 134. cyclopentanoloxim 11. - acetylbenzol 133, 134. cyclopentanolsemicarbazon benzaldehyd 125, 126. 11. 12. benzaldehydsemicarbazon cyclopenten 11. Pentamethylen-bicyclos 126. - formylbenzol 125, 126. pentanolon 33. - hydrindon 163. cyclopentenoldion 312. hydrindonsemicarbazon cyclopentenolon 33. 164. Pentaoxy-anthrachinon 603. anthron 578. indanon 163. Oxytriphenyl-benzodihydrobenzophenon 573, 574, furan 259. benzophenonimid 574. methylanthron 261. methylnaphthochinon chalkon 579. **43**0. fuchson 591.

Pentsoxymethyl-anthrachinon | Phenylacetoxy-anthranyl= 603

anthrachinonmethyläther 603.

- anthron 581.

Pentaphenylcyclobutanolon

Pentensäu.ebromphenacyls ester 91.

Pentenyloxymethoxyphens äthylketon 336.

Pentyl-s. a. Amyl-, Pentyl-anisylketon 137.

oxymethylphenyldiketons disemicarbazon 336.

Perhydrobenzoin 29. Phenacetyl-hydrochinon 358.

- kresol 206.

— naphthol 236. — phenol 192.

phloroglucin 469.

- resorcin 357.

 thymol 211. Phenacyl-acetat 89.

– alkohol 88.

carbothiolglykolsäure 96. Phenacylcarbothiolon-glykol= saure 97.

- glykolsäureäthylester 97. glykolsäuremethylester 97.

Phenacyl-dithiocarbaminos essigsäure 97.

- mercaptan 94.

— oxybenzylalkohol 89.

- oxybenzylbromid 89.

Phenathyloxynaphthylketon

Phenetil 475.

Phenetylbenzylketon 192.

Phenoxy-acetophenon 85, 88. anisylidenacetophenon 376.

-- benzaldehyd 67.

- benzanthron 239. --- benzophenon 186.

benzophenonoxim 187.

benzylidenacetophenon 220.

— chalkon 220.

chalkondibromid 203.

- cyclohexanon 4.

- dibenzoyläthan 384.

- dibenzoylathylen 402. diphenylbutandion 384.

- methylacetophenon 113.

- methylmercaptobenz anthron 417.

methyltolylketon 113.

— phenylaceton 106.

phenylacetonsemicarbs azon 106.

salicylidenacetophenon 380. Phenyl-acenaphthenyl-

athanolon 247.

acetonylcarbinol 117. acetoxyanthranylketon 256.

ketonacetylimid 257.

benzylindenon 257.

Phenylacetyl- s. a. Phens acetyl-

Phenylacetyl-carbinol 105.

carbinolacetat 106.

carbinolsemicarbazon 105,

carbinolthiosemicarbazon 105, 106.

Phenyläthoxyphenylketon 185.

Phenyläthyl- s. Phenäthyl-.

Phenyl-anisoylaceton 384. anisoylacetylen 230.

- anisoylcarbinol 358.

- anisylacetaldehyd 197.

– anisylglyoxim 370.

- anisylketon 185.

anisylpropiophenon 248.

- benzoin 247.

benzoinmethyläther 247.

- benzoinoxim 247.

- benzoylanisoyläthan 423.

benzoylanisoyläthan: dioxim 423.

benzoylanisoyläthylen 425. benzoylveratroyläthylen

519.

benzylbenzoylcarbinol 248.

 bindonylcarbinol 522. Phenylbismethoxyphenyl-

cyclopentenon 427. pentadienon 427.

propanon 420.

pyryliumsalze, Pseudobase 520.

Phenylbisoxyphenyl-pens tadienolon 519.

pyryliumsalze, Pseudobase 519.

Phenyl-butanolal 117.

– butanolon 115, 116, 117,

butenolon 156, 157.

– butyrylcarbinol 127. butyrylcarbinolsemicarbs

azon 127.

camphanolon 169.

chlormethoxystyrylketon

chlorphenylpentenolon

228. cumarinphenon 253.

cumarphenon 253.

cyclopentanolon 160. cyclopentantrion, Methyl-

äther der Enolform 349. cyclopentenoldion 349.

Phenyldibenzo-cycloheptadiens olon 254.

cycloheptatriendiol 254.

cycloheptatrienolon 256.

Phenyldimethoxy-benzhydryls keton 419.

benzhydrylketonoxim 420.

benzoylacetylen 398.

phenäthylketon 363.

styrylketon 374, 380; s. a. Dimethoxychalkon. Phenyl-dioxyphenyldiketon

473. ${f dioxy}{f pheny}{f hepta}{f diendion}$

dioxyphenylketon 352, 353, 354.

dioxyphenylpropenon 377. diphenylyläthanolon 247.

glykolaldehyd 101.

glykoloylacenaphthen 247.

hexanolon 137.

indandionylcarbinol 403.

isobutyrylcarbinol 128. isobutyrylcarbinolsemi= carbazon 128.

isovalerylcarbinol 137.

isovalerylcarbinoloxim 137.

isovalerylcarbinolsemicarb= azon 137.

Phenylmercapto-acetophenon 88, 94.

anisylidenacetophenon 377. benzophenon 191.

benzophenonoxim 191. benzylidenacetophenon

221. chalkon 221.

chalkondibromid 203.

- hydrochalkon 205.

phenylpropiophenon 205. Phenylmethoxy-athoxyphen=

äthylketon 363. äthoxystyrylketon 374.

anthranylketimid 256.

- anthranylketon 256. anthranylketonacetylimid

anthranylketonmethylimid

257.benzhydrylketon 246.

benzoylacetylen 230.

benzyldiketon 381.

benzylglyoxal 381. benzylketon 192.

methylbenzoylacetylen

naphthylketon 234, 235. phenäthylketon 203.

Phenylmethoxyphenyl-acet= aldehyd 196, 197.

aceton 207.

acetonoxim 207. acetonsemicarbazon 207.

butanon 209.

heptatrienon 236.

keton 185; s. a. 182, 184.

— pentadienon 231.

650

REGISTER

Phenyl-methoxyphenylpropios phenon 248. methoxystyrylketon 218, 225. naphthoylcarbinol 236. - naphthyläthanolon 236. - octanolon 144. oxanthranol 252. -- oxanthranoläthyläther 252. oxanthranolmethyläther 252. Phenyloxy-athoxystyrylketon **3**79. anthranylketon 256. — benzhydryldiketon 423. benzylketon 192. benzylketoxim 196. — dimethoxystyrylketon 480. dimethylphenylpropenon 228, 229. - methoxyphenäthylketon 363. -- methoxystyrylketon 374, 379; s. a. Oxymethoxy chalkon. - methylisopropylphenyl propenon 229. methylphenyldiketon 383. — methylphenylpropandions disemicarbazon 385. — methylphenylpropenon 226. - naphthylketimid 235. - naphthylketon 234, 235. — phenäthylketon 203. - phenoxystyrylketon 380. Phenyloxyphenyl-butenon 227. diketon 368. – keton 182, 184. ketoxim 186; s. a. 182.propandion, Derivate 380, 381, 382. -- propanon 202, 203. -- propenon 217, 218, 220. Phenyl-oxystyrylketon 217, 218. — pentanolal 127. — pentanolon 127. — phenacetylcarbinol 205. — phenacyläther 88. phenacylchromanol 424. - phenacylsulfid 94. — phenacylsulfon 95. phloracetophenon 469. -- propanolon 104, 105. -- propenolal 151, 152. — propenolon 151. propiolylkresolmethyl: ather 230. Phenylpropionyl- s. a. Hydrocinnamovi-. Phenylpropionyl-carbinol 116. - carbinoloxim 116. carbinolsemicarbazon 116. Phenylsalicyliden-aceton 227.

acetophenon 253.

Phenylsalicylidenbenzovls aceton 425. Phenylsulfon-acetophenon 95. benzylbenzylidenaceton benzylbenzylidencyclos pentanon 233. chinizarin 554. diphenylpentenon 228. — hydrochalkon 205. methoxyphenylpropiophenon 364. phenylpropiophenon 205. Phenyl-tolylpropenolon 226, trimethoxyphenylbenzoyl =methan 516. trioxyphenylpropenon 481, 482. undecandiolon 318. valerylcarbinol 137. valerylcarbinoloxim 137. valerylcarbinolsemicarb= azon 137. Phloracetophenon 442. Phloracetophenon-dimethyl= \ddot{a} ther 442. dimethylätheräthyläther dimethylätheroxim 444. – methyläther 442. — methylätheräthyläther 443. --- triacetat 443. trimethyläther 443, trimethylätherimid 444. Phlorbutyrophenon 449. Phlorcaprophenon 450. Phlorcaprylophenon 451. Phloretin 542 Phloretin-methyläther 542. triacetat 542. trimethyläther 542. trimethylätheracetat 542. Phlorisobutyrophenon 449. Phlorisocaprophenon 451. Phlorisovalerophenon 450. Phlorönanthophenon 451. Phloroglucinaldehyd 435. Phloroglucinaldehyd-diacetat dimethyläther 436. — dimethylätheracetat 436. methyläther 436. pentaacetat 437. triacetat 437. trimethyläther 436. Phloroglucindimethyläther= phenacyläther 89. Phlorstearophenon 454. Phthalylphenanthrenchinon, Chinhydron 521, Physciol 304. Physcion 564. Physciondiacetat 564.

Pikrylanisaldoxim 70.

Pikrvl-methoxybenzaldoxim **43**, 70. methoxypikryloxybenzaldoxim 285. Piperitonchlorhydrin 10. Plumbagin 350. Plumbagin-acetat 351. dioxim 351. oxim 351. Polyporsäure 514. Polyporsäure-diacetat 515. diathyläther 515. dimethyläther 515. Propenyl-anisylketon 157. kresylketon 160. methoxyphenylketon 157. oxymethylphenylketon 160. Propionsäure-bromphenacyls ester 90. jodphenacylester 92. Propionyl-anisol 104. brenzcatechin 306. carvacrol 143 hydrochinon 305. kresol 119, 120, 121. kresol, Tribromderivat 119. kresolacetat 120. kresolmethyläther 120, 121. naphthol 179. oxymethylacetophenon 111. oxymethylacetophenon: semicarbazon 112. oxymethylcampher 28. phenol 103, 104. phloroglucin 448. resorcin 305. resorcindimethyläther 306. thickresolmethyläther 121. thymol 143. thymoloxim 143. Propyl-acetylphenol 131. anisylketon 115. anthrachinonylsulfid 391. anthrachinonylsulfon 391. butyrylphenol 143. capryloylphenol 147. capryloylphenolsemicarbazon 147. dimethoxyphenäthylketon dimethoxyphenäthyl-ketoxim 315. dioxybenzylidenoximid 284. isovalerylphenol 145. Propylmercapto-anthrachinon 391. benzylmercaptoanthras chinon 500, 503. butylmercaptoanthrachinon 498, 502. butylsulfonanthrachinon

498.

chinon 502.

isoamylmercaptoanthra:

Propyl-mercaptoisopropylmercaptoanthrachinon 497, 501.

 methoxybenzylketon 126. — methoxyphenylketon 115.

 nitrooxyphenylketon 115. Propyloxy-benzaldehyd 67.

benzaldehydsemicarbazon 73.

— benzophenon 185.

benzophenonoxim 187.

— benzylidenacetophenon 223.

— chalkon 223.

- methoxyphenäthylketon

methoxystyrylketon 334.

— methylphenyldiketon= disemicarbazon 334.

-- naphthochinon 342, 345.

- phenyldiketondisemicarbs azon 330.

phenylketon 115.

— propylphenylketon 143.

styrylketon 162.

Propyl-propionylphenol 138. protocatechualdoxim 284.

Propylsulfon-anthrachinon 391. - benzylsulfonanthrachinon

500, 503.

 butylmercaptoanthrachinon 498, 502.

--- butylsulfonanthrachinon 498, 502.

--- isoamylsulfonanthrachinon

-- isopropylsulfonanthra: chinon 497.

Protocatechualdehyd 277; (o)-Protocatechualdehyd 267.

Protocatechualdehyd-acetat 283.

äthyläther 282.

-- diacetat 284.

-- dimethyläther 282.

-- methyläther 278, 282. Protocatechualdoxim 285.

Pseudoaspidin 604.

Pseudoaspidinol 450.

Pseudogossypolon-tetraacetat 607.

- tetramethyläther 607. Pseudonitropurpurin 568. Purpurin 552.

Purpurin, Bisdiacetylbors săureester 553.

Purpurin-acetat 553.

acetat, Bisdiacetylbors säureester 553.

- diacetat 553.

— dimethyläther 553.

-- dimethylätheracetat 553.

- methyläther 553.

— methylätheracetat 553.

methylätherdiacetat 553.

Purpurintriacetat 553. Purpurogallin 538. Purpurogallin-dimethyläther **538**.

- dimethylätherdiacetat 539. methyläther 538.

tetraacetat 539.

tetramethyläther 539.

trimethyläther 538.

 trimethylätheracetat 539. Purpuroxanthin 492.

Purpuroxanthin-acetat 492.

diacetat 492.

dimethyläther 492.

methyläther 492.

methylätheracetat 492.

Pyrethrolon 134.

Pyrethrolon-acetat 135.

acetat, Ozonid 135.

acetatsemicarbazon 136.

äthyläther 135.

äthyläthersemicarbazon 136.

enol 136.

enolsemicarbazon 136

Z. 15 v. u. methyläther 135.

methyläthersemicarbazon

ozonid 135 Z. 6 v. o. semicarbazon 136.

Pyrogallochinon 538. Pyrogallolaldehyd 435.

Pyrogallylnaphthochinon 568.

Resacctophenon 294. Resacetophenon-äthyläther 295.

dimethyläther 295.

imid 295.

methyläther 294.

methylätheracetat 295.

methylätheroxim 296.

oxim 296.

oximacetat 296.

Resaurin 591.

Resbutyrophenon 309. Rescaprylophenon 316.

Resisocaprophenon 315. Resodiacetophenon 456.

Resonanthophenon 315. Resorcin-dialdehyd 455.

methylätherphenacyläther 89.

Resorcyl-aldazin 274.

aldehyd 272.

aldehyddimethyläther 273.

aldehydmethyläther 272.

aldoxim 274.

chinon 465.

naphthechinon 512. Rhabarberanthron 484. Rhabarberon 562. Rhamnicogenin 581. Rhamnicogenol 581. Rheosmin 126. Rheosminoxim 126. Rheumemodin 563. Rhizonin-aldehyd 308.

aldoxim 308. Rhodan-acetophenon 84.

anthrachinon 392.

benzylidenaceton 156.

phenylbutenon 156.

Rhodizonsäure 572.

Rhodobromresochinon 465. Rosolsäure 420.

Rubiadin 508. Rubiadin-diacetat 509.

dimethyläther 509.

methyläther 509. methylätheracetat 509.

Rufigallol 604. Rufigallussäure 604.

Rufiopin 583.

Rufiopintetraacetat 583.

s.

Salicoyl-aceton 327.

cyclobutan 160.

cyclohexan 164.

cyclopentan 163. phloroglucinimid 540.

pyrogallol 539.

resorcin 468

Salicylal- s. a. Salicyliden-. Salicylalacetoxim 154. Salicylaldazin 43.

Salicylaldehyd 35.

Salicylaldehyd, polymerer 39. Salicylaldehyd-acetyloxim 42.

aminoäthylhydrazon 44.

dimethylacetal 41. methoxymethyläther 40.

methyläther 40. triacetat 41.

Salicylal-dimethon 549. dimethonanhydrid 39.

dimethonanhydrid, Acetyl= derivat 39; Benzoylderi vat 39.

Salicylaldoxim 42. Salicylalindandion 409. Salicyliden-acenaphthenon 252.

acetaldehyd 149. aceton 153.

acetonoxim 154.

acetophenon 217.

aminobernsteinsäure 41.

aminoessigsäure 41.

– aminoglutarsāure 41. — anisylidenaceton 405.

asparaginsäure 41.

 bisdimethyldihydroresorcin **549**.

652 Salicyliden-bisdimethyldihys droresorcinanhydrid 39. dekalon 181. — desoxybenzoin 253. — diacetophenon 424. — dibenzylketon 254. — dibenzylketonsemicarbazon 254. diglycin 41. gallacetophenon 546. glutaminsäure 41. — glycin 41. glycylglycin 41. - indandion 409. -- lysin 41. — methylbenzylketon 227. — methylbenzylketonsemi* carbazon 228. -- pinakolin 164. — piperiton 180. vanillylidenaceton 511. veratrylidenaceton 512. Saligeninphenacyläther 89. Schwefelsäuremethoxyformylphenylester 284. Sebacinsäurebisbromphenacyl= ester 92. Selenbis-benzoylaceton 328. dibenzovlmethan 383. Shikalkin 543 Anm. Shikizarin 508. Shikizarindiacetat 508. Shikonin 543. Shikonin-acetat 544. - oxim 544. — triacetat 544. Shogaol 337. Shogaol-acetat 337. äthyläther 337. - methyläther 337. Sinomenolchinon 587. Sorbinsäurebromphenacylester Stearinsäure-bromphenacyl= ester 91. - jodphenacylester 93. Stearoyl-anisol 148. - brenzcatechin 320. phloroglucin 454. phloroglucintrimethyläther 454. resorcin 320. veratrol 320. Styryl-athoxynaphthylketon 246. methoxynaphthylketon oxynaphthylketon 246. Sulfhydryl- s. Mercapto-. Syringaaldehyd 437. Syringaaldehyd-methoxymethyläther 438. methoxymethyläthersemi=

carbazon 439.

- semicarbazon 439.

T. Taigusäure 365. Tecomin 365. Tellurbisbenzovlaceton= dichlorid 328. Tetraacetoxy-acetoxybenzylis denacetophenon 581. anthrachinon 582, 583, 585, anthradichinon 606. benzoanthrachinon 592. chalkon 548. dibenzoanthrachinon 594. dimethylanthrachinon 587. dimethyldiisopropyldinaph: thyldichinon 607. dimethyldiisopropyldinaph= thyldichinondialdehyd 611. Tetraacetyl-gossypolon 611. naringenein 548. purpurogallin 539. Tetraäthylresorcin 34. Tetrabenzyl-acetoin 260. butanolon 260. Tetrabrom-anthraflavinsäure 505. benzaurin 245. - dioxyanthrachinon 505. dioxydinaphthanthracens dichinon 594. dioxynaphthochinon 464. dioxypentacendichinon 594. embelin 454. - naphthazarin 464. naphthazarindiacetat 464. oxyfuchson 245. Tetrachlordiphenacyldisulfid Tetradecylmethoxyphenyl= keton 147. Tetrahydro-humulon 535. pyrethrolon 27. pyrethrolonacetat 27. pyrethrolonmethyläther 27. pyrethrolonsemicarbazon 27. Tetrajod-diacetoxybenzo= phenon 355. dioxybenzophenon 355. methoxydiphenyläther: aldehyd 77. Tetrakis-nitrophenylmercapto= benzochinon 572. oxymethylcyclohexanon 532. oxymethylcyclohexanons tetraacetat 532. oxymethylcyclopentanon 532. Tetralolaldehyd 160. Tetralolaldehyd-oxim 160.

semicarbazon 160.

Tetralolon 157.

Tetramethoxy-acetophenon 533, 534. acetophenonsemicarbazon acetoxychalkon 579. äthoxychalkon 580. äthoxyhydrochalkon 576. anthrachinon 585. anthrachinondiimid 586. anthron 546. benzil 578. benzoin 575. benzophenon 540, 541. benzpinakolin 571. chalkon 547, 548. dianthron 596. dibenzoylmethan 581. dibenzylidenaceton 567. dihydrodianthron 596. dimethyldiisopropyldinaphthyldichinon 607. diphenochinon 573. distyrylketon 567. fluorenon 545. methoxybenzylidenaceto= phenon 581. methyldistyrylketon 567. phenanthrenchinon 587. phenylmethoxystyrylketon 581. Tetramethyl-bicyclopentanolon 18. bicyclopentanolonoxim 19. bicyclopentanolonoxim, Benzoylderivat 19. cyclopentanolon 7. cyclopentenolon 18. Tetramethylen-cyclopentas nolon 18. cyclopentanolonsemicarb= azon 18. cyclopentenoldion 308. Tetramethyl-oxyacetylcyclopentan 10. oxypropionylcyclopentan phenylcyclohexadienolon 180. phenylcyclohexadienolon= acetat 180. phenylcyclohexadienolon= methyläther 180. Tetranitro-anisil 476. anthrachryson 586. anthrachrysontetramethyläther 586. anthraflavinsäure 505. dimethoxybenzil 476. dioxyanthrachinon 505. - tetramethoxyanthrachinon tetraoxyanthrachinon 586. Tetraoxyacetophenondi-

methyläther 533.

Tetraoxy-acetophenontrimethyläther 533.

anthracen 476, 477, 478.
anthrachinon 582, 583, 584,

585, 586. — anthradichinon 606.

- anthrahydrochinon 578.

-- benzaldazin 274.

— benzil 577.

- benzoanthrachinon 592.

-- benzochinon 572.

- benzophenon 539, 540, 541.

-- chalkon 546, 547.

-- chinon 572.

- desoxybenzoin 541.

- dianthrachinonyl 610.

- dianthranyl 524.

- dianthron 595.

— dianthryl 524.

— dibenzanthron 600.

— dibenzanthrachinon 593.

-- dihydrodianthron 595.

--- dinydrodianthron 595. --- dimethylanthrachinon 587.

dioxotetrahydrodianthranyl
 595.

- helianthron 598.

- hydrochalkon 542, 543.

— isoamylisovalerophenon 534.

isoamylisovalerylbenzol
 534.

— mesobenzdianthron 598.

— mesonaphthodianthron 598.

-- methoxychalkon 580; s. a. 580 Anm.

— methylanthracen 484, 485.

- methyldistyrylketon 567.

- naphthacenchinon 592.

- pentacenchinon 593.

- phenanthrenchinon 587.

- tetraäthylbenzaldazin 313.

— violanthron 600.

Tetraphenyl-hexanolon 259.

- hexindioldion 525.

Thamnol 448.

Thamnoltriacetat 448.

Thiocarbamidsalicylaldehyd 52.

Thiokohlensäure-äthylestersphenscylester 96.

— äthylesterphenacylesters semicarbazon 100.

--- carboxymethylesterphens acylester 96.

Thiol- s. a. Mercapto-. Thiolcampher 23. Thionyl-alizarin 490.

- anthragallol 552.

chlorthionylanthrapurs
 purin 557.

— dioxyanthrachinon 490, 504.

- hystazarin 504.

— purpurin 553.

Thioschwefelsäurenaphthoschinonylester 343, 347.
Thymol-äthylketon 143.

— aldehyd 131.

— aldehydsemicarbazon 131.

— benzein 250.

- benzeinacetat 251.

benzeinmethyläther 251.

- methylketon 140.

- phenylketon 210.

— propylketon 145.

Thymotinaldehyd 131.

Thymyl-äthylketon 143. — benzylketon 211.

- heptylketon 147.

neptylketon 147.
 methylketon 140.

— phenäthylketon 211.

- phenylketon 210.

- propylketon 145.

- styrylketon 229.

Toluchinol 31.

Toluchinol-äthyläther 31.

— methyläther 31.

Toluoin 210.

Toluyl-brenzcatechin 359.

— naphthol 236.

- veratrol 360.

Tolyl-acetylcarbinol 119, 121.

— benzanthronylsulfid 241.

- mercaptoacetophenon 95.

- mercaptobenzanthron 241.

mercaptohydrochalkon 205.
mercaptophenylpropios

phenon 205.

— methoxyanthranylketimid 258.

— methoxyanthranylketimid, Acetylderivat 258.

Tolyloxy- s. a. Kresoxy-. Tolyloxy-anisylidenacetophenon 376.

dibenzoyläthan 384.
dibenzoyläthylen 402.

— naphthylketon 236.

- styrylketon 227.

Tolyl-phenacylsulfid 95. — phenacylsulfon 95.

— propanolon 119, 121. Tolylsulfon-acetophenon 95.

- benzylaceton 117.

benzylidenacetophenon
 224.

— chalkon 224.

— hydrochalkon 205.

— phenylbutanon 117.

— phenylpropiophenon 205. Traubensäure-bisbromphens

acylester 92.
— bischlorphenacylester 90.

Tri- s. a. Tris-. Triacetophloroglucin 573.

Triacetoxy-acetophenon 441, 443, 445, 446, 447.

acetoxybenzylidenacetos
 phenon 548.

Triacetoxy-anisylidenacetos phenon 548.

anthracen 479.

— anthrachinon 551, 553, 554, 555, 557.

anthradichinon 603.

benzaldehyd 437, 438.
benzaldoximacetat 439.

- benzanthron 514.

benzylidenacetophenon 482.

— benzylidendiacetat 437, 439.

-- chalkon 482.

 diacetoxybenzylidenacetos phenon 581.

- hydrochalkon 471.

- methoxyacetoxybenzyliden

acetophenon 580.
— methylanthrachinon 560,

561, 562, 563, 564.

- methylbenzaldehyd 448.

naphthochinon 538.phenanthrenchinon 559.

— phenylpropiophenon 471.

- phenylstyrylketon 482. Triacetyl-anthragallol 551.

- anthrapurpurin 557.

- cyclohexantrion 573.

— gallusaldehyd 438.

— gallusaldoximacetat 439. — isosakuranetein 548.

- phloracetophenon 443.

— phloroglucin 573.

- phloroglucinaldehyd 437.

— purpurin 553.

- sakuranetein 548.

— thamnol 448. Triäthylacetylphenol 145. Trianisylacetaldehyd 516. Tribenzoylphloroglucin 594.

Tribrom-acetoxybenzaldehyd 48.

- äthoxycyclopentendion 263.

dibenzanthronylsulfid 243.
hemellitylchinol 32.

— juglon 348.

- kresolaurin 422.

- methoxycyclopentendion 263.

— methoxyfluorenon 212.

nitroäthoxymethylcycloshexenon 14.

nitromethoxymethylcycloshexenon 14.

Tribromoxy-benzaldehyd 47,

- benzochinon 266.

-- chinon 266.

- dimethylbutyrophenon 139.

— dimethylhydrindon 161. — dimethylisobutyrophenon

139. — fluorenon 212.

— methoxybenzaldehyd 289.

Tribromoxy-methylisobutyros phenon 130. naphthochinon 347, 348. - phenanthrenchinon 397 Z. 31 v. o. Tribrom-salicylaldehyd 47. - trimethylaurin 422. — trimethylcyclohexadienolon 32. - vanillin 289. vanillinoxim 289. vanillinsemicarbazon 289. Tricarbäthoxygallusaldehyd 439. Tricarballylsäure-trisbrom phenacylester 92. trischlorphenacylester 90. Tricarbomethoxy-gallusaldes hyd 439. phloracetophenon 444. Trichlor-acetiminokresol 108. - acetoveratron 300. acetoxyanthrachinon 394. — acetoxyepicampher 26. — acetoxyepicamphersemis carbazon 26. Trichloracetyl-anisol 86. -- kresol 107, 112, 113. — kresoläthyläther 112. — kresolmethyläther 108, 110. - naphthol 177. — naphtholäthyläther 177. phenetol 86. phenol 86. veratrol 300. Trichlor-athoxyacetonaphthon – äthoxyacetophenon 86. — äthoxymethylacetophenon dibenzanthronylsulfid 243. — dimethoxyacetophenon **296, 3**00. - methoxyacetophenon 86. methoxybenzaldehyd 56. — methoxymethylacetos phenon 108, 110. Trichloroxy-acetonaphthon 177. — acetonaphthonimid 177. -- acetophenon 86. — anthrachinon 390, 394. — benzaldehyd 56. -- benzaldoxim 56. benzochinon 266. butyrophenon 116. butyrylnaphthalin 180. — chinon 266. — dimethoxybutyrophenon 449. - methylacetophenon 107, 112, 113. methylacetophenonimid — methylbutyrophenon 129.

Trichlor-resacetophenondimethyläther 296. tolylbutanolon 129. Tricinnamoylphloroglucin 598. Tridecylmethoxyphenylketon Trimethoxy-acetophenon 440. 441, 443, 445, 446, 447. acetophenonimid 444. acetophenonoxim 445. acetophenonsemicarbazon acetoxyhydrochalkon 542. anisoylacetophenon 581. anisylidenacetophenon 548. anthrachinon 550, 556. anthranol 478. anthron 478. benzaldehyd 435, 436, 438. benzaldehydsemicarbazon - benzaldehydsemioxamazon 435. benzaldoxim 439. benzanthron 514. benzophenon 467, 468, 469. benzophenonoxim 469. benzoylacetophenon 548. benzylidenacetophenon 482. benzylidenmethylamin 439. chalkon 480, 481, 482. diacetoxybenzophenonimid 575. diacetoxychalkon 580. dibenzoylmethan 548. dimethoxybenzoylacetos phenon 602. dimethoxybenzylidenaceto phenon 580. dimethoxyphenylpropiophenon 576. fluorenon 473. hydrochalkon 471, 472. hydrochalkonoxim 472. lauroylbenzol 454. methylanthrachinon 560, 562, 563. methylanthranol 484, 485. methylanthron 484, 485. methyldibenzoylmethan **549**. nonoylbenzol 451. oximinoacetophenon 535. oxydimethoxybenzyliden: acetophenon 602. oxymethoxybenzyliden= acetophenon 578. palmitoylbenzol 454. phenanthrenaldehyd 511. phenanthrenaldehydoxim 511. phenanthrenaldehydsemicarbazon 511. phenylacetaldehyd 448.

Trimethoxyphenyl-acetaldes hydsemicarbazon 448. cyclopentadienolon 538. desoxybenzoin 516. dimethoxybenzylketon 575. dimethoxyphenathylketon dimethoxystyrylketon 580. dodecanon 454 hexadecanon 454. nonanon 451. octadecanon 454. oxydimethoxystyrylketon 602. oxymethoxystyrylketon oxystyrylketon 547. pentenon 457. styrylketon 482. Trimethoxy-propiophenon 448. salicylidenacetophenon 547. stearoylbenzol 454. Trimethyl-acetylphenol 133, 134. athylpurpurogallin 539. allylsalicylisoaldoxim 41. aurin 421. benzhydrylbenzophenon 259. bicycloheptanolon 21, 23, 24, 25. bismethoxycinnamoyl= benzol 521. cyclopentenolon 15, cyclopentenolonacetat 15. cyclopentenolonmethyl= äther 15. oxybenzylbicycloheptanon 170. oxybenzylidenbicyclos heptanon 181. oxyisopropylacetylcyclopentan 12. oxyisopropylacetylcyclos pentansemicarbazon 12. oxymethylbiscycloheptanon 28. oxymethylenbicyclos heptanon 34. oxypropylbicyclohepta. non 29. phenylbicycloheptanolon phloretin 542, 545. purpurogallin 538. sakuranetein 548. salicylaldehyd 125, 126. salicylaldehydsemicarbazon 126. Trinaphthochinolbenzol 600. Trinitro-athoxyhydrochalkon methoxybenzophenon 190, methoxyhydrochalkon 205.

propanolon 248, 249.

propanolonoxim 248.

hvd 439.

phenon 444.

aldehyd 516.

516.

ester 97.

keton 319.

benzaldehyd 439.

acetaldehydoxim 516.

acetaldehydsemicarbazon

methoxybenzovlmethan

U.

dioxyphenylketon 319.

methoxyphenylketon 147.

REGISTER

Trinitro-methoxymethylanthrachinon 399. oxybenzaldehyd 63. oxybenzaldehyd, Azin 63. Trinitrophenyl. s. Pikryl.. Trioxy-acetophenon 439, 442, 444, 445. acetophenonsemicarbazon 445. acetoxyanthrachinon 584. anthracen 371, 372, 373. — anthrachinon 549, 552, 554, 555, 557, 558. - anthrachinonylsulfat 584. – anthradichinon 603. --- anthranol 476, 477, 478. — anthranolacetat 477. — anthranoldiacetat 477. - anthranoldimethyläther 477. - anthron 476, 477, 478. – benzaldehyd 435, 437. — benzaldoxim 439. --- benzanthron 513, 514. — benzophenon 466, 468. – benzylidenacetophenon 481, 482. bisdioxycinnamoylbenzol 611. — butyrophenon 449. — butyrylbenzol 449. — caprophenon 450. — caproylbenzol 450. --- carbathoxyoxybenzo= phenon 540. - carbomethoxyoxybenzylis denacetophenon 548. — carbomethoxyoxychalkon **548.** - chalkon 481, 482. — desoxybenzoin 469. - diacetylbenzol 535. diisoamylisovalerophenon 454. diisoamylisovalerylbenzol 454. — dimethoxybenzophenon 574. — dimethoxychalkon 580 Anm. dioxotetrahydroanthracen 546. — dioxybenzylidenacetos phenon 579. - hydrochalkon 471. indenon 458. — isobutyrophenon 449. — isobutyrylbenzol 449. - isocaprophenon 451. isocaproylbenzol 451.
isovalerophenon 450. isovalerylbenzol 450. Trioxymethoxy-acetophenon 533. - anthrachinon 586.

Trioxymethoxy-benzophenon Triphenyl-propanoldion 423. **540**. desoxybenzoin 541. hydrochalkon 542. Triscarbäthoxyoxybenzalde= phenylpropiophenon 542. Trioxymethyl-anthracen 383. Triscarbomethoxyoxy-acetos anthrachinon 559, 560, 561, 562, 563, 564, 565. Trismethoxyphenyl-acetanthranol 484, 485. anthron 484, 485. benzaldehyd 448. capryloylbenzol 451. desoxybenzoin 472. isocaproylbenzol 451. naphthochinon 539. önanthoylbenzol 451. Trithiokohlensäurediphenacyl= Trioxy-naphthochinon 537. önanthoylbenzol 451. oxodihydroanthracen 476, 477, 478. oxoinden 458. oxomethyldihydro. Undecyl-dimethoxyphenylanthracen 484, 485. - oxybenzylidenacetophenon oxymethoxybenzyliden= Undecylylresorcin 318. acetophenon 580. Ureidoessigsäureanisyliden= oxyphenylpropiophenon 542. phenanthrenchinon 558, 559. phenanthrenchinonsemi= carbazon 559. Trioxyphenyl-acetophenon 469. benzylketon 469. — cyclopentadienolon 538. methoxybenzylketon 541. — methylbenzylketon 472. naphthochinon 568. naphthochinontriacetat 568.

- octadecanon 454.

— oxybenzylketon 541.

pentenon 457.

oxyphenäthylketon 542.

oxystyrylketon 546, 547.

phenäthylketon 471.

styrylketon 481, 482.

Trioxy-propionylbenzol 448.

salicylidenacetophenon

propiophenon 471.

propiophenon 448.

- toluylaldehyd 448.

triacetylbenzol 573.

— tribenzoylbenzol 594. - tricinnamoylbenzol 598.

trimethoxybenzil 604.

Trioxytrimethyltriisopropyl=

trimethoxyhydrobenzamid

- aldehydsemicarbazon 517.

triphenylmethan-aldehyd

546.

517.

octanon 451.

hydrazid 72. v. Valeriansäure-bromphenacyl= ester 90. jodphenacylester 93. Valeryl-anisol 126. kresolmethyläther 137. oxymethylcampher 29. resorcin 312. Vanillalaceton 326. Vanillaldimethon 582. Vanillin 278. (o)-Vanillin 267. Vanillin-acetat 283, äthyläther 283. benzyläther 283. benzylätheroxim 286. hydramid 269. imid 268. isopropyläther 283. isopropyläthersemicarb= azon 286. methoxymethyläther 283. methyläther 267, 282. methylimid 269. oxim 269, 285. oximcarbonsăureamid 284. pikrylätheroximpikryl= äther 285. - propyläther 283. propyläthersemicarbazon

286.

schwefelsäure 284.

Vanillylidenacenaphthenon

Vanillyliden-aceton 326.	Verbindung C ₁₀ H ₁₈ O ₅ 135.	Verbindana C W O 949
¥	Verbilding U ₁₀ H ₁₈ U ₅ 100.	Verbindung C ₃₂ H ₂₈ O ₄ 218.
— acetonoxim 327.	$-C_{10}H_{16}O_{2}$ 10.	$-C_{32}H_{24}O_{9}$ 544.
acetophenon 374.	$-C_{10}H_{18}O_4$ 262.	- C ₈₂ H ₄₀ O ₄ 170.
- bisdimethyldihydroresorcin	$-(C_{10}H_{\bullet}O_{3}N)_{x}$ 117.	— C ₃₂ H ₃₂ O ₄ S 396.
582.	$- (C_{10}H_{10}O_{2}S)_{x}$ 121.	$-C_{33}H_{30}O_{5}$ 327.
- bisdimethyldihydro	$-C_{11}H_{18}$ 29.	- C ₃₃ H ₂₇ O ₂ Cl 64.
resorcinacetat 582.	$-C_{11}H_{12}O$ 152.	- C ₃₃ H ₂₇ O ₂ Br 64.
— diacetophenon 518.	$-C_{11}H_{18}O_{2}$ 27.	— C ₃₆ H ₂₆ O ₈ 393.
— indandion 513.	$-C_{11}H_{20}O_{2}$ 22.	$-C_{41}H_{36}O_4$ 40.
— methyläthylketon 330.	$-C_{12}H_{20}$ 29.	$-C_{43}H_{40}O_{4}$ 40.
— methylamylketon 336.	$-C_{12}H_{20}O_{2}$ 22.	$-C_{46}H_{28}O_{6}N_{2}S_{2}$ 343.
— methylbutylketon 335.	- C ₁₂ H ₈ O ₄ Br ₅ 466.	Vinyl-anisylketon 151.
— methylheptylketon 337.	$-C_{12}H_2:O_2N_3$ 27.	— methoxyphenylketon 151.
— methylhexylketon 337.	$-C_{14}H_{24}O_{2}$ 29.	
— methylisobutylketon 335.	$-C_{14}H_{26}O_2$ 12.	
— methylnonylketon 338.	$-C_{14}H_{10}O_4N_2$ 200.	W.
methyloctylketon 337.	$- C_{14}H_{10}O_6N_4S_2$ 81.	
— methylpropylketon 334.	$- C_{15}H_{14}O_{2}$ 218.	Weinsäurebisbromphenacyl-
— pinakolin 336.	$-C_{15}H_{16}O_{2}$ 218.	ester 92.
Vanirom 282.	$ C_{15}^{15}H_{18}^{10}O_{4}$ 129.	
Veratralaceton 326; s. a. 569.	$-C_{15}H_{18}N_2$ 19.	
Veratril 578.	$-C_{15}H_{29}C_{2}N_{3}$ 12.	x.
Veratroin 575.	$-C_{16}H_{14}O_3$ 380.	
Veratroldimethylindandion	- C ₁₆ H ₁₄ O ₆ 294.	Xanthopurpurin 492.
460.	$-C_{16}H_{16}O_{4}$ 32.	Xanthoxylin 442.
Veratron 541.	- C ₁₆ H ₁₈ O ₃ 65.	Xanthoxylinoxim 444.
Veratrophenon 541.	$-C_{17}^{18}H_{14}^{18}O_5^3$ 357.	Xylochinol 31.
Veratroyl-acetophenon 483.	$-C_{17}^{17}H_{22}^{14}O_{2}^{5}$ 181.	Xylochinol-äthyläther 32.
- veratrol 541.	$-C_{17}^{17}H_{24}^{23}O_{2}^{2}$ 22.	— äthylätherimid 32.
Veratrumaldehyd 282.	$-C_{18}^{17}H_{20}^{22}O_{3}^{2} 228.$	— imid 32.
(o)-Veratrumaldehyd 267.	C.H.O. 431	
Veratrumaldehydhydramid	$-C_{20}H_{16}O_{10}$ 431.	— methyläther 32.
269.	$-C_{22}H_{16}$ 255.	— methylätherimid 32.
Veratrumaldoxim 269, 285.	- C ₂₂ H ₁₀ O ₆ 594.	Xylorcylaldehyd 308.
Veratrylaceton 306.	$-C_{22}H_{16}O_{4}$ 519.	•
	- C ₂₂ H ₁₈ O ₂ 168.	₹7
Veratryliden-aceton 326.	- C ₂₂ H ₁₈ N ₄ 167.	Y.
— aceton, dimeres 326.	$-C_{22}H_{20}O_{8}$ 322.	37
acetondibromid 310.	- C ₂₂ H ₁₆ O ₂ Br ₂ 168.	Yangonol 340.
— acetonsemicarbazon 327.	- C ₂₂ H ₂₆ O ₃ N ₂ 536.	Yangonon 340.
— acetophenon 374.	$- C_{23}H_{18}OCl_{2}$ 216.	· ·
— aminoacetal 285.	$-C_{24}H_{18}O_5$ 257.	_
— hydrindon 403.	$-C_{24}H_{22}O_{13}$ 431.	Z.
— methylnonylketon 338.	$-C_{24}H_{28}O_{8}$ 299.	
Verbindung (C ₇ H ₈ OClBr ₈) _x 46.	- C ₂₈ H ₁₆ O ₈ 477.	Zingeron 310.
$- C_8H_8ON_2S 38.$	$-C_{29}H_{24}O_3S$ 356.	Zingeron-methyläther 310.
$ C_9 H_{16} O_2 8.$	$-C_{30}H_{24}O_4$ 206.	— oxim 310.
	·	•

Nachträge und Berichtigungen.

Ergänzungswerk II, Band 8.

Seite 84 Zeile 6—5 v. u. Eine von Klobb, Fandre (Bl. [3] 35 [1906], 1218) durch Destillation des Glykosids α-Linarin mit Fehlingscher Lösung erhaltene Substanz vom Schmelzpunkt 36,5° ("Linarodin") ist als 4-Methoxy-acetophenon zu formulieren (Merz, Wu, Ar. 1936, 130 Anm.).

Hauptwerk Band 9.

Seite 518 Zeile 31 v. o. statt "A. 247, 92" lies "A. 147, 92".

Ergänzungswerk I, Band 9.

Seite 29 Zeile 8 v. u. statt "rechtsdrehender" lies "optisch aktiver".

Ergänzungswerk I, Band 10.

Seite 285 Zeile 22 u. 18 v. u. statt "(Syst. No. 4331)" lies "(E I 27, 386)".

Hauptwerk Band 27.

Seite 143 Zeile 17 v. o. statt " β -Brom-propylamin" lies " γ -Brom-propylamin".

Hauptwork Band 28 (General-Sachregister).

Seite 1468, 2. Spalte, Zeile 5 v. u. statt "18 (324)" lies "18 (324, 325)".

" 1655, 1. Spalte, Zeile 9—8 v. u. statt "Pentadecyl-" lies "Octadecyl-".

Hauptwork Band 29 (General-Formelregister).

Seite 1336, 2. Spalte, Zeile 9—10 v. o. statt "2.2'-Dinitro-diphenyldisulfid-dialdehyd-(4.4')" lies "2.2'-Dinitro-diphenylsulfid-dialdehyd-(4.4')".

Hauptwerk Band 31.

- Seite 249 Zeile 19 v. o. ist zu ersetzen durch "ein als Ononetin bezeichnetes Gemisch aus 2.4-Dioxy-4'-methoxy-desoxybenzoin und anderen Produkten (v. He., M. 28, 142; vgl. Wessely, Leohner, M. 57 [1931], 306).
 - Zeile 20—21 v. o. ersetze den Passus "7-Oxy-4'-methoxy-isoflavon . . . M. 23, 143)"
 durch: "d-Glucose und ein als Formononetin bezeichnetes Gemisch aus 7-Oxy-4'-methoxy-isoflavon und anderen Produkten
 (v. He., M. 23, 143; vgl. We., Le., Dinjaški, M. 63 [1933],
 201)."
- Seite 502, 1. Spalte, Zeile 2 v. o. statt "263" lies "363".

Druck der Universitätsdruckerei H. Stürtz AG., Würzburg

AGRICULTURAL RESEARCH INSTITUTE
PUSA