

What is claimed is:

1. A fluorochemical composition comprising a major amount of organic solvent and 0.05% by weight to 5% by weight of fluorochemical oligomer dispersed or dissolved in said organic solvent and said fluorochemical oligomer being represented by the general formula:
5

wherein X represents the residue of an initiator or hydrogen;
M^f represents units derived from fluorinated monomers;
10 M^h represents units derived from a non-fluorinated monomers;
M^a represents units having a silyl group represented by the formula:

wherein each of Y⁴, Y⁵ and Y⁶ independently represents an alkyl group, an aryl group or a hydrolyzable group;

- 15 G is a monovalent organic group comprising the residue of a chain transfer agent;
n represents a value of 1 to 100;
m represents a value of 0 to 100;
r represents a value of 0 to 100;
and n+m+r is at least 2;
20 with the proviso that at least one of the following conditions is fulfilled: (a) G is a monovalent organic group that contains a silyl group of the formula:

wherein Y¹, Y² and Y³ each independently represents an alkyl group, an aryl group or a hydrolyzable group with at least one of Y¹, Y² and Y³ representing a hydrolyzable group; or (b) r is at least 1 and at least one of Y⁴, Y⁵ and Y⁶ represents a hydrolyzable group.

- 5 2. Fluorochemical composition according to claim 1 wherein at least one of Y¹, Y² and Y³ and/or at least one of Y⁴, Y⁵ and Y⁶ is a hydrolyzable group selected from the group consisting of halogen, an alkoxy group, an acyloxy group, an acyl group and an aryloxy group.
- 10 3. Fluorochemical composition according to claim 1 wherein said monovalent organic group G corresponds to the general formula:

- 15 wherein Y¹, Y², Y³ have the meaning as defined in claim 1 or 2 and wherein Q¹ represents an organic divalent linking group.
4. Fluorochemical composition according to claim 1 wherein M^f comprises a unit derived from a fluorinated monomer of the formula:
C₄F₉-Q²-E¹
- 20 wherein E¹ represents a free radical polymerizable group and Q² represents an organic divalent linking group.
5. Fluorochemical composition according to claim 1 wherein M^a is a unit derived corresponding to the formula:

25

wherein R¹, R² and R³ each independently represents hydrogen, an alkyl group, an aryl group or halogen, Q³ represents an organic divalent linking group, T represents O or NR with R being hydrogen, an aryl or a C₁-C₄ alkyl group, and Y⁴, Y⁵ and Y⁶ have the meaning as defined in claim 1.

5

6. Fluorochemical composition according to claim 1 wherein G corresponds to the formula:

10 wherein Q¹ and Q⁵ each independently represents an organic divalent linking group, T² represents O or NR with R being hydrogen, an aryl or a C₁-C₄ alkyl group, and Y¹, Y² and Y³ have the meaning as defined in claim 1.

7. Fluorochemical composition according to claim 1 wherein the composition is a homogeneous composition further comprising water and an organic or inorganic acid.

15

8. Fluorochemical composition according to claim 1 wherein the units derived from non-fluorinated monomers are units derived from non-fluorinated monomers corresponding to the general formula:

20

wherein R^h represents a hydrocarbon group, Q⁶ is a divalent linking group, s is 0 or 1 and E³ is a free radical polymerizable group.

25

9. Method of treating a substrate comprising applying to said substrate a composition according to claim 1.

10. Method of treating a substrate comprising applying to said substrate a composition according to claim 1 and exposing a thus obtained coated substrate to water and an organic or inorganic acid.

11. Method of treating a substrate according to claim 9 further comprising the step of exposing the coated substrate to an elevated temperature of 60°C to 300°C.
- 5 12. Method according to claim 9 wherein said substrate is selected from the group consisting of plastics, ceramics and glass.
- 10 13. Substrate comprising a coating derivable from the coating composition of any of claim 1 wherein the substrate is selected from the group consisting of plastics, ceramics and glass.
14. Fluorochemical oligomer corresponding to the formula:
- $$X-M^f_nM^h_mM^a_r-G$$
- wherein X represents the residue of an initiator or hydrogen;
- 15 M^f represents units derived from fluorinated monomers having the formula:
$$C_4F_9-Q^2-E^1$$
wherein E^1 represents a free radical polymerizable group and Q^2 represents an organic divalent linking group;
- 16 M^h represents units derived from non-fluorinated monomers;
- 20 M^a represents units having a silyl group represented by the formula:

wherein each of Y^4 , Y^5 and Y^6 independently represents an alkyl group, an aryl group or a hydrolyzable group, with the proviso that at least one of Y^4 , Y^5 and Y^6 represents a hydrolyzable group;

- 25 G represents a monovalent organic group comprising the residue of a chain transfer agent;
n represents an integer of 1 to 100;
m represents an integer of 0 to 100;

r represents an integer of 0 to 100;

and n+m+r is at least 2;

with the proviso that at least one of the following conditions is fulfilled: (a) G is a monovalent organic group that contains a silyl group of the formula:

5

wherein Y¹, Y² and Y³ each independently represents an alkyl group, an aryl group or a hydrolyzable group with at least one of Y¹, Y² and Y³ representing a hydrolyzable group; or (b) r is at least 1 and at least one of Y⁴, Y⁵ and Y⁶ represents a hydrolyzable group.

- 10 15. Fluorochemical oligomer having the formula:

wherein X represents the residue of an initiator or hydrogen;

M^f represents units derived from fluorinated monomers;

M^h represents units derived from non-fluorinated monomers;

- 15 M^a represents units having the formula:

wherein R¹, R² and R³ each independently represents hydrogen, an alkyl group, an aryl group or halogen, Q³ represents an organic divalent linking group, T represents O or NR

- 20 with R being hydrogen, an aryl or a C₁-C₄ alkyl group, and wherein each of Y⁴, Y⁵ and Y⁶ independently represents an alkyl group, an aryl group or a hydrolyzable group, with the proviso that at least one of Y⁴, Y⁵ and Y⁶ represents a hydrolyzable group; G represents a monovalent organic group comprising the residue of a chain transfer agent;

n represents an integer of 1 to 100;
m represents an integer of 0 to 100;
r represents an integer of 1 to 100;
and n+m+r is at least 2.

5

16. Fluorochemical oligomer according to claim 15 wherein G corresponds to the formula:

wherein Q¹ and Q⁵ each independently represents an organic divalent linking group, T² represents O or NR with R being hydrogen, an aryl or a C₁-C₄ alkyl group, and Y¹, Y² and Y³ each independently represents an alkyl group, an aryl group or a hydrolyzable group with at least one of Y¹, Y² and Y³ representing a hydrolyzable group.

17. Fluorochemical oligomer having the formula:

15 wherein X represents the residue of an initiator or hydrogen;
M^f represents units derived from fluorinated monomers;
M^h represents units derived from a non-fluorinated monomers;
M^a represents units having a silyl group represented by the formula:

20 wherein each of Y⁴, Y⁵ and Y⁶ independently represents an alkyl group, an aryl group or a hydrolyzable group, with the proviso that at least one of Y⁴, Y⁵ and Y⁶ represents a hydrolyzable group;

G corresponds to the formula:

wherein Q¹ and Q⁵ each independently represents an organic divalent linking group, T² represents O or NR with R being hydrogen, an aryl or a C₁-C₄ alkyl group, and Y¹, Y² and Y³ each independently represents an alkyl group, an aryl group or a hydrolyzable group with at least one of Y¹, Y² and Y³ representing a hydrolyzable group;

5 n represents an integer of 1 to 100;

m represents an integer of 0 to 100;

r represents an integer of 0 to 100;

and n+m+r is at least 2.

10

REDACTED