Bezier Curves and Surfaces (Redbook ch12)

27 March 2007 CMPT370 Dr. Sean Ho Trinity Western University

Review last time

- Bump mapping theory
- Creating a texture in OpenGL
 - Texture objects: glBindTexture()
 - Loading image data: glTexImage2D()
 - Using the framebuffer as a texture
- Applying a texture in OpenGL
 - Blending modes: glTexEnvf()
 - Texture coordinates: glTexCoord2f()
 - Auto-generated texcoords: glTexGen()
 - Spherical environmental mapping

What's on for today

- Polynomial curves and surfaces
- Cubic polynomial curves:
 - Interpolating (4 points)
 - Hermite (2 points + 2 derivatives)
 - Bezier (2 interpolating end points + 2 midpoints)
 - Using Bezier evaluators in OpenGL

Parametric representation

Recall a 1D curve in 3D can be represented as:

$$\mathbf{p}(u) = \begin{vmatrix} x(u) \\ y(u) \\ z(u) \end{vmatrix} \qquad \mathbf{p}'(u) = \begin{vmatrix} x'(u) \\ y'(u) \\ z'(u) \end{vmatrix}$$

- p'(u) is the tangent (velocity) vector
 - Usually limit u to interval [0,1] for simplicity
- For surfaces we have two parameters (u, v):

$$\mathbf{p}(u,v) = \begin{vmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{vmatrix} \qquad \frac{\partial \mathbf{p}}{\partial u}(u,v) = \begin{vmatrix} \partial x/\partial u \\ \partial y/\partial u \\ \partial z/\partial u \end{vmatrix} \qquad \frac{\partial \mathbf{p}}{\partial v}(u,v) = \begin{vmatrix} \partial x/\partial v \\ \partial y/\partial v \\ \partial z/\partial v \end{vmatrix}$$

Polynomial curves

- Restrict the functions x(u), y(u), z(u) to be polynomial (of degree n) in u: $p(u) = \sum_{k=0}^{n} c_k u^k$
 - Each coefficient c_k is a 3-vector
 - u^k are the n+1 basis functions
 - Often choose n=3: cubic polynomial
 - k=0...3, (x,y,z): need 12 numbers
- Similarly for surfaces: $p(u,v) = \sum_{j=0}^{n} \sum_{k=0}^{n} c_{jk} u^{j} v^{k}$

Interpolating Cubic Polynomials

- Simplest case, but rarely used in practice
- Four control points p₀, ..., p₃
- Fit a cubic polynomial through them
 - Space u evenly: $p_0 = p(0), p_1 = p(1/3), ...$

$$p_{0} = p(0) = c_{0}$$

$$p_{1} = p(\frac{1}{3}) = c_{0} + (\frac{1}{3})c_{1} + (\frac{1}{3})^{2}c_{2} + (\frac{1}{3})^{3}c_{3}$$

$$p_{2} = p(\frac{2}{3}) = c_{0} + (\frac{2}{3})c_{1} + (\frac{2}{3})^{2}c_{2} + (\frac{2}{3})^{3}c_{3}$$

$$p_{3} = p(1) = c_{0} + c_{1} + c_{2} + c_{3}$$

$$\begin{vmatrix} p_{0} \\ p_{1} \\ p_{2} \\ p_{3} \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & (\frac{1}{3}) & (\frac{1}{3})^{2} & (\frac{1}{3})^{3} \\ p_{1} \\ p_{2} \\ p_{3} \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & (\frac{1}{3}) & (\frac{1}{3})^{2} & (\frac{1}{3})^{3} \\ 1 & (\frac{2}{3}) & (\frac{2}{3})^{2} & (\frac{2}{3})^{3} \\ 1 & 1 & 1 & 1 \end{vmatrix}$$

Geometry matrix

- Invert this matrix to get the geometry matrix
 - Multiply the geometry matrix by the four control points to get the coefficients

$$\begin{vmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ -5.5 & 9 & -4.5 & 1 \\ 9 & -22.5 & 18 & -4.5 \\ -4.5 & 13.5 & -13.5 & 4.5 \end{vmatrix} \begin{vmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{vmatrix}$$

- The coefficients define the cubic polynomial that interpolates these control points
 - Can render, e.g., by using many small line segments (GL_LINE_STRIP)

Blending functions

- We can also look at the contribution each control point makes to the final curve
- For interpolating cubics:
 - $\bullet p(u) = b_0(u) p_0 + b_1(u) p_1 + b_2(u) p_2 + b_3(u) p_3$

Hermite polynomial curves

- Another way of defining cubic polynomials
- Specify start+end position+velocity
 - Also 12 numbers
- In matrix form:

$$\begin{vmatrix} p_0 \\ p_0' \\ p_3 \\ p_3' \\ p_3' \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{vmatrix} \begin{vmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{vmatrix}$$

 Invert to get Hermite geometry matrix from which we get the coefficients

Joining polynomial curves

- Each segment has 4 control points
 - $\bullet \{p_0, p_1, p_2, p_3\}, \{p_3, p_4, p_5, p_6\}, \dots$
- Kinds of continuity: differential:
 - C⁰: touching but may have corner
 - C¹: derivatives match (Hermite)
 - C²: curvatures match
- Geometric continuity:
 - G¹: velocity vectors in same direction but not necessarily same magnitude

Bezier curves

- Widely used, provided in OpenGL
- Use control points to indicate tangent vectors
 - Does not interpolate middle control points!

•
$$p'(0) = 3(p_1-p_0), p'(1) = 3(p_3-p_2)$$

- start+end velocity derived from control points
- Use Hermite form
- C⁰ but not C¹

$$\begin{vmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{vmatrix} \begin{vmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{vmatrix}$$

Bezier blending functions

Blending functions are smooth polynomials

•
$$b_0(u) = (1-u)^3$$

•
$$b_1(u) = 3u(1-u)^2$$

$$\bullet b_2(u) = 3u^2(1-u)$$

•
$$b_3(u) = 3u^3$$

Convex hull property

Why the factor of 3 in the definition of Bezier curves?

•
$$p'(0) = 3(p_1 - p_0)$$

•
$$p'(1) = 3(p_3 - p_2)$$

Ensures that the curve is contained within the convex hull of the four control points

Bezier evaluators in OpenGL

- Specify array (1D or 2D) of control points:
 - ◆ GLfloat ctrlpoints[4][3] = { {-4.0, -4.0, 0.0}, ...
- Create a Bezier evaluator: (type=GL_MAP1_VERTEX_3)
 - ◆ glMap1f(type, u_{min}, u_{max}, stride, order, points);
- Enable the evaluator:
 - glEnable(type);
- Evaluate the Bezier at a particular u/v:
 - glEvalCoord1f((GLfloat) u);
 - Use this instead of glVertex(), e.g., within glBegin(GL_LINE_STRIP)

