CompSci-230: Homework 4

Due February 18, 2019, in pdf format on Canvas.

Consider a distributed computing system with 5 physical processors, running a workload of 6 SPMD jobs:

 J_1 : has 4 VPs J_2 : has 3 VPs J_3 : has 4 VPs J_4 : has 1 VPs J_5 : has 7 VPs J_6 : has 2 VPs

Using the framework for spatial and temporal scheduling presented in class, a possible allocation/spatial schedule is shown below:

				6
6				5
5	5			5
3	4	5	5	3
1	3	5	3	2
1	2	1	1	2
π_1	π_2	π_3	π_4	π_5

Questions:

Assuming there is no VP migration,

- 1. From the above allocation derive a legal periodic temporal schedule. Clearly explain why your proposed temporal schedule is legal, give the number of cycles in its period and compute the schedule's idling ratio.
- 2. Try to find a new schedule (new or a modification of the given schedule) that has a better idling ratio, without making the schedule's period impractically large. Please explain clearly and show your work!
- 3. Is there a best periodic temporal schedule? That is a temporal schedule with a minimum idling ratio? If the answer is yes, do provide an example of such optimal schedule for this workload.

Hint: There are many right answers, but there are only a few best answers - can you find one of them?