

Enrolment No:	Name of Student:	
Department/ School:		

END TERM EXAMINATION ODD SEMESTER 2022-23

COURSE CODE - CSET523

MAX. DURATION:

2 HRS

COURSE TITLE-Data Science using Python

COURSE CREDIT 2-0-4

TOTAL MARKS:

35

GENERAL INSTRUCTIONS: -

- 1. Do not write anything on the question paper except name, enrolment number and department/school.
- 2. Carrying mobile phone, smart watch and any other non-permissible materials in the examination hall is an act of UFM.

SECTION A

Max Marks: 35 Marks

- Suppose you have a dataframe 'df'. You want to create groups based on the column key in the DataFrame and fill the nan values with group means using:
 filling_mean = lambda g: g.fillna(g.mean())

 1 Mark
 - a. df.groupby(key).aggregate(filling_mean)
 - b. df.groupby(key).filling_mean()
 - c. df.groupby(key).transorm(filling_mean)
 - d. df.groupby(key).apply(filling_mean)
- 2. Which of the following is not a valid expression to create a Pandas groupBy object from the dataframe shown below?
 1 Mark

Class Breadth

		D/ Cuden
name		
Sejal	Fruit	4 24
Arjun	Fruit	2 67
Aman	Vegitable	7 60
Himanshu	Vegitable	7.10
Deepak	Vegitable	4,90

- (i) grouped= df.groupby(['class','avg calories per unit']
- (ii) df.groupby('Sejal')
- (iii) df.groupby('class')
- (iv) df.groupby('class',axis=0)

3. What will be the output of the following code?

1 Mark

```
import pandas as pd

df1 = pd.DataFrame({'a': ['foo', 'bar'], 'b': [1, 2]})

df2 = pd.DataFrame({'a': ['foo', 'baz'], 'c': [3, 4]})

df1.merge(df2, how='inner', on='a')
```

(i) b 10 NaN foo bar 20 NaN foo NaN 3.0 1 baz NaN 4.0 (ii) b foo 1.0 3.0 bar 2.0 NaN 2 baz NaN 4.0 (iii) a b c

- (iv) None
- 4. If you reject a true null hypothesis, what does this mean?

0 foo 1 3

1 Mark

- (i) You have made a Type-I Error
- (ii) You have made a Type-II Error
- (iii) You have made a correct decision
- (iv) You have increased the power of a test.
- **5.** We have two dataframes df1 and df2 which are defined as import pandas as pd

data1 = {"name": ["Sally", "Mary", "John"], "age": [50, 40, 30]}

data2 = {"name": ["Sally", "Peter", "Micky"], "age": [77, 44, 22]}

dfl = pd.DataFrame(data1)

df2 = pd.DataFrame(data2)

Then the output of newdf = dfl.merge(df2, how='right') will be

- (i) Empty dataframe
- (ii) None

1 Mark


```
(iii)
             name
                   age
          0 Sally
                    50
             Mary
                    40
          2 John
                    30
     (iv)
               name age
               Saliy
                     77
               Peter
                     44
            2 Micky
                     22
                                                                                        2 Marks
6. What will be the value of c after the following code?
   import numpy as np
   a = np.arange(8)
   b = a[4:6]
   b[:] = 40
   c = a[3] + a[5]
                                                                                        2 Marks
7. What will be the output of the following code?
   import re
   p=re.compile('Data')
   r=p.match('Data Science using Python')
   print(r.group(0))
                                                                                         2 Marks
8. What will be the output of the following code?
   import re
    pattern=re.compile('CRICKET',re.I)
    match=pattern.search("I watch cricket regularly")
    print("Start index:", match.start())
    print("End index:", match.end())
    print("Tuple:", match.span())
                                                                                          2 Marks
9. Consider the following code. What will be the value of num?
   import re
     phone='+91-2333876589 My phone number'
     num=re.sub(r'\D','',phone)
                                                                                        2 Marks
10. Predict the output of the following code.
   import re
   string='PQPPPPPRPPPD'
   res=re.findall('P{1,2}',string)
   print(len(res))
```


11. Read the dataset taxis.csv and store it in a dataframe 'df'. Use groupby function to the 'df' based on 'color, payment' and store it in another dataframe. The new dataframe should be indexed on two columns as given above and should contain the number of passengers, distance, fare, tip, tolls, total in each colour.
3 Marks

Expected output:

		passengers	distance	fare	tip	tolls	total
payment	color						
cash	green	7	24.02	89.50	0.00	0	99.05
	yellow	1	0.79	5.00	0.00	0	9.30
credit card	green	2	11.47	35.53	1.00	0	37.83
	yellow	8	16.97	71.00	15.92	0	109.22

Using the original dataframe perform the group operation on each payment type and show the median, count, sum, and mean information of fare for each payment type and colour.

1 Mark

Expected output:

		fare			
		median	count	sum	mean
payment	color				
cash	green	10.750	6	89.50	14.916667
	yellow	5.000	1	5.00	5.000000
credit card	green	17.765	2	35.53	17.765000
	yellow	8.250	6	71.00	11.833333

Now create another column which will contain the fare standardized color using the formula (x-mean(x)/std(x)).

1 Mark

Expected output:

fare normalized color green 125.03 0.000000e+00 yellow 76.00 -3.330669e-16

The dataset is available on the last page Appendix-A for your reference.

12. Import the tips.csv dataset. Help the owner to know the boxplot of *days* with respect *total_bill*. You can consider seaborn library with 'whitegrid' style.

5 Marks

Expected Output:

The dataset is available on the last page Appendix-B for your reference

13. Find the P(X<6) using the norm.cdf() in scipy with mean=5 and s.d.=2. Generate population using np.arange function from -4 to 10 with a step 0.001. Use mean of 5 and s.d. =2 for plotting the normal distribution. Use the fill_between() to fill the region with green colour according to the condition P(X<6).</p>
5 Marks

Expected Output:

14. List of final marks of 14 students are given as: 183, 152, 178, 157, 194, 163, 144, 114, 178, 152, 118, 158, 172, 138. Perform t-test on the student data, whether the population mean, is less than 165
 Hypothesis

H0: There is no significant mean difference in marks. i.e., $\mu = 165$

H1: The population mean is less than 165. i.e., μ < 165.

Appendix-A

The dataset taxis.csv is given below for reference:

pickup	dropoff	passengers	distance	fare	tip	tolls	total color	payment	pickup_zone	dropoff zone	pickup boro	dropoff borough
23-03-2019 20:21	23-03-2019 20:27	. 1	1.6	7	2.15	0	12.95 yellow	credit card		UN/Turtle Bay S		. – .
04-03-2019 16:11	04-03-2019 16:19	1	0.79	5	0	0	9.3 yellow	cash	Upper West Side !			
27-03-2019 17:53	27-03-2019 18:00	1	1.37	7.5	2.36	0	14.16 yellow	credit card			Manhattan	
10-03-2019 01:23	10-03-2019 01:49	1	7.7	27	6.15	0				Yorkville West		
30-03-2019 13:27	30-03-2019 13:37		2.16	9	1.1	0		credit card		Yorkville West		
11-03-2019 10:37	11-03-2019 10:47	1	0.49	7.5	2.16	0			Times Sq/Theatre		Manhattan	
26-03-2019 21:07	26-03-2019 21:17	1	3.65	13	2	0			Battery Park City			
08-03-2019 14:25	08-03-2019 15:04	1	9.84	32.5	0	0	36.05 green		East Harlem South			the first the second of the second
27-03-2019 10:02	27-03-2019 10:25	1	8.74	23.5	0	0					Bronx	Bronx
02-03-2019 17:48	02-03-2019 18:10	1	8.97	26	. 0	0	26.8 green		Hamilton Heights		Manhattan	- : - : - : - : - : - : - : - : - : - :
08-03-2019 01:02	08-03-2019 01:07	1	1.05	6	0	0	7.3 green		Central Harlem			
13-03-2019 12:29	13-03-2019 12:42	1	1.4	9.5	0	0	10.3 green		Brooklyn Heights		and the second	Brooklyn
06-03-2019 18:27	06-03-2019 18:43	. 2	2.64	12	0	0	13.8 green	cas h	Downtown Brookl	The second second		Brooklyn
03-03-2019 09:30	03-03-2019 09:43	1	2.73	12	1	0				Van Cortlandt V		Bronx
04-03-2019 04:19	04-03-2019 04:21	I	0.12	3.5	0	0	4.8 green	cash	Hamilton Heights			

Appendix-B

The dataset tips.csv is given below for reference:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
•••				***			***
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2