This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Europaisches Patentamt

European Patent Office

Office européen des brevets

(1) Publication number:

0 684 313 A2

(12)

EUROPEAN PATENT APPLICATION

21 Application number: 95105693.6

(5) Int. CI.⁵: **C12N** 15/55, C12N 9/16, A23K 1/165

2 Date of filing: 15.04.95

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter

- (3) Priority: 25.04.94 EP 94810228
- Date of publication of application:29.11.95 Bulletin 95/48
- Designated Contracting States: _ AT BE CH DE DK ES FR GB IT LI NL

1 Applicant: F. Hoffmann-La Roche AG

CH-4002 Basel (CH)

- Inventor: Van Loon, Adolphus
 17 Waldshuterstrasse
 CH-4310 Rheinfelden (CH)
 Inventor: Mitchell, David
 2a Kundmannweg
 CH-4147 Aesch (CH)
- Representative: Braun, Axel et al F.Hoffmann-La Roche AG Grenzacherstrasse 124 Postfach 32 55 CH-4002 Basel (CH)
- Polypeptides with phytase activity.
- The present invention is directed to a DNA sequence coding for a polypeptide having phytase activity which DNA sequence is derived from specific groups of fungi, polypeptides encoded by such DNA sequences, vectors comprising such DNA sequences, bacteria or a fungal or yeast host transformed by such DNA sequences or vectors, a process for the preparation of a polypeptide by culturing such transformed hosts and composite feeds comprising one or more such polypeptides.

EP 0 684 313 AZ

Phytases (*myo*-inositol hexakisphosphate phosphohydrolases; EC 3.1.3.8) are enzymes that hydrolyze phytate (*myo*-inositol hexakisphosphate) to *myo*-inositol and inorganic phosphate and are known to be valuable feed additives.

A phytase was first described in rice bran in 1907 [Suzuki et al., Bull. Coll. Agr. Tokio Imp. Univ. 7, 495 (1907)] and phytases from Aspergillus species in 1911 [Dox and Golden, J. Biol. Chem. 10, 183-186 (1911)]. Phytases have also been found in wheat bran, plant seeds, animal intestines and in microorganisms [Howsen and Davis, Enzyme Microb. Technol. 5, 377-382 (1983), Lambrechts et al., Biotech. Lett. 14, 61-66 (1992), Shieh and Ware, Appl. Microbiol. 16, 1348-1351 (1968)].

The cloning and expression of the phytase from Aspergillus niger (ficuum) has been described by VanHartingsveldt et al., in Gene, 127, 87-94 (1993) and in European Patent Application, Publication No. 420 358 and from Aspergillus niger var awamori by Piddington et al. in Gene 133, 55-62 (1993).

Since phytases used so far in agriculture have certain disadvantages it is an object of the present invention to provide new phytases or more generally speaking polypeptides with phytase activity against inositol phosphates including phytases ("phytase activity") in large quantities with improved properties. Since it is known that phytases used so far loose activity during the feed pelleting process due to heat treatment, improved heat tolerance would be such a property.

So far phytases have not been reported in thermotolerant fungus with the exception of Aspergillus fumigatus [Dox and Golden et al., J. Biol. Chem. 10, 183-186 (1911)] and Rhizopus oryzae [Howson and Davies, Enzyme Microb. Technol. 5, 377-382 (1993)]. Thermotolerant phytases have been described originating from Aspergillus terreus Strain 9A-1 [Temperature optimum 70 °C; Yamada et al., Agr. Biol. Chem. 32, 1275-1282 (1968)] and Schwanniomyces castellii [Temperature optimum 77 °C; Segueitha et al., Bioeng. 74, 7-11 (1992)]. However for commercial use in agriculture such phytases must be available in large quantities. Accordingly it is an object of the present invention to provide DNA sequences coding for heat tolerant phytases. Improved heat tolerance of phytases encoded by such DNA sequences can be determined by assays known in the art, e.g. by the processes used for feed pelleting or assays determing the heat dependence of the enzymatic activity itself as described, e.g. by Yamada et al. (s.a.).

It is furthermore an object of the present invention to screen fungi which show a certain degree of thermotolerance for phytase production. Such screening can be made as described, e.g. in Example 1. In this way heat tolerant fungal strains, listed in Example 1, have been identified for the first time to produce a phytase.

30

Heat tolerant fungal strains, see e.g. those listed in Example 1, can than be grown as known in the art, e.g. as indicated by their supplier, e.g. the American Tissue Type Culture Collection (ATCC), Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSM), Agricultural Research Service Culture Collection (NRRL) and the Centralbureau voor Schimmelcultures (CBS) from which such strains are available or as indicated, e.g. in Example 2.

Further improved properties are, e.g. an improved substrate specificity regarding phytic acid [myo-inositol (1,2,3,4,5,6) hexakisphosphate] which is a major storage form of phosphorous in plants and seeds. For the complete release of the six phosphate groups from phytic acid an enzyme is required with sufficient activity against phytic acid and all other inositol phosphate molecules. Using e.g. Aspergillus niger phytase requires for this complete release the addition of the pH 2.5 acid phosphatase. Having only one enzyme with the required activity would be of clear advantage. For example, International Patent Application Publication No. 94/03072 discloses an expression system which allows the expression of a mixture of phytate degrading enzymes in desired ratios. However, it would be even more desirable to have both such activities in a single polypeptide. Therefore it is also an object of the present invention to provide DNA sequences coding for such polypeptides. Phytase and phosphatase activities can be determined by assays known in the state of the art or described, e.g. in Example 9.

Another improved property is, e.g. a so called improved pH-profile. This means, e.g. two phytin degrading activity maxima, e.g. one at around pH 2.5 which could be the pH in the stomach of certain animals and another at around pH 5.5 which could be the pH after the stomach in certain animals. Such pH profile can be determined by assays known in the state of the art or described, e.g. in Example 9. Accordingly it is also an object of the present invention to provide DNA sequences coding for such improved polypeptides.

In general it is an object of the present invention to provide a DNA sequence coding for a polypeptide having phytase activity and which DNA sequence is derived from a fungus selected from the group consisting of Acrophialophora levis, Aspergillus terreus, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus sojae, Calcarisporiella thermophila, Chaetomium rectopilium, Corynascus thermophilus, Humicola sp., Mycelia sterilia, Myrococcum thermophilum, Myceliophthora thermophila, Rhizomucor miehei, Sporotrichum cellulophilum, Sporotrichum thermophile, Scytalidium indonesicum and Talaromyces thermophilus or a DNA

sequence coding for a fragment of such a polypeptide which fragment still has phytase activity, or more specifically such a DNA sequence wherein the fungus is selected from the group consisting of Acrophialophora levis, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus terreus, Calcarisporiella thermophila, Chaetomium rectopilium, Corynascus thermophilus, Sporotrichum cellulophilum, Sporotrichum thermophile, Mycelia sterilia, Myceliophthora thermophila and Talaromyces thermophilus, or more specifically such a DNA sequence wherein the fungus is selected from the group consisting of Aspergillus terreus, Myceliophthora thermophila, Aspergillus fumigatus, Aspergillus nidulans and Talaromyces thermophilus. DNA sequences coding for a fragment of a polypeptide of the present invention can, e.g. be between 1350 and 900, preferably between 900 and 450 and most preferably between 450 and 150 nucleotides long and can be prepared on the basis of the DNA sequence of the complete polypeptide by recombinant methods or by chemical synthesis with which a man skilled in the art is familiar with.

Furthermore it is an object of the present invention to provide a DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence is selected from the following:

(a) the DNA sequence of Figure 1 [SEQ ID NO:1] or its complementary strand;

10

15

20

35

40

45

50

55

- (b) a DNA sequence which hybridizes under standard conditions with sequences defined under (a) or preferably with the coding region of such sequences or more preferably with a region between positions 491 to 1856 of such DNA sequences or even more preferably with a genomic probe obtained by preferably random priming using DNA of Aspergillus terreus 9A1 as described in Example 12.
- (c) a DNA sequence which, because of the degeneracy of the genetic code, does not hybridize with sequences of (a) or (b), but which codes for polypeptides having exactly the same amino acid sequences as the polypeptides encoded by these DNA sequences; and
- (d) a DNA sequence which is a fragment of the DNA sequences specified in (a), (b) or (c).

"Standard conditions" for hybridization mean in this context the conditions which are generally used by a man skilled in the art to detect specific hybridization signals and which are described, e.g. by Sambrook et al., "Molecular Cloning" second edition, Cold Spring Harbor Laboratory Press 1989, New York, or preferably so called stringent hybridization and non-stringent washing conditions or more preferably so called stringent hybridization and stringent washing conditions a man skilled in the art is familiar with and which are described, e.g. in Sambrook et al. (s.a.) or even more preferred the stringent hybridization and non-stringent or stringent washing conditions as given in Example 12. "Fragment of the DNA sequences" means in this context a fragment which codes for a polypeptide still having phytase activity as specified above.

It is also an object of the present invention to provide a DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence is selected from the following:

- (a) the DNA sequence of Figure 2 [SEQ ID NO:3] or its complementary strand;
- (b) a DNA sequence which hybridizes under standard conditions with sequences defined under (a) or preferably a region which extends to about at least 80 % of the coding region optionally comprising about between 100 to 150 nucleotides of the 5'end of the non-coding region of such DNA sequences or more preferably with a region between positions 2068 to 3478 of such DNA sequences or even more preferably with a genomic probe obtained by preferably random priming using DNA of Myceliophthora thermophila as described in Example 12.
- (c) a DNA sequence which, because of the degeneracy of the genetic code, does not hybridize with sequences of (a) or (b), but which codes for polypeptides having exactly the same amino acid sequences as the polypeptides encoded by these DNA sequences; and
- (d) a DNA sequence which is a fragment of the DNA sequences specified in (a), (b) or (c).
- "Fragments" and "standard conditions" have the meaning as given above.

It is also an object of the present invention to provide a DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence is selected from the following:

- (a) a DNA sequence comprising one of the DNA sequences of Figures 4 [SEQ ID NO:5], 5 [SEQ ID NO:7], 6 [SEQ ID NO:9] or 10 ["aterr21", SEQ ID NO:13: "aterr58": SEQ ID NO:14] or its complementary strand;
- (b) a DNA sequence which hybridizes under standard conditions with sequences defined under (a) or preferably with such sequences comprising the DNA sequence of Figure 4 [SEQ ID NO:5] isolatable from Talaromyces thermophilus, or of Figure 5 [SEQ ID NO:7] isolatable from Aspergillus fumigatus, or of Figure 6 [SEQ ID NO:9] isolatable from Aspergillus nidulans or of one or both of the sequences given in Figure 10 ["aterr21", SEQ ID NO:13: "aterr58": SEQ ID NO:14] isolatable from Aspergillus terreus (CBS 220.95) or more preferably with a region of such DNA sequences spanning at least 80 % of the coding region or most preferably with a genomic probe obtained by random priming using DNA of Talaromyces thermophilus or Aspergillus fumigatus or Aspergillus nidulans or Aspergillus terreus (CBS

220.95) as described in Example 12.

5

25

35

40

45

(c) a DNA sequence which, because of the degeneracy of the genetic code, does not hybridize with sequences of (a) or (b) but which codes for polypeptides having exactly the same amino acid sequences as the polypeptides encoded by these DNA sequences; and

(d) a DNA sequence which is a fragment of the DNA sequences specified in (a), (b) or (c).

It is furthermore an object of the present invintion to provide a DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence is selected from a DNA sequence comprising the DNA sequence of Figure 4 [SEQ ID NO:5] isolatable from Talaromyces thermophilus, of Figure 5 [SEQ ID NO:7] isolatable from Aspergillus fumigatus, of Figure 6 [SEQ ID NO:9] isolatable from Aspergillus nidulans or of Figure 10 ["aterr21": SEQ ID NO:13; "aterr58":SEQ ID NO:14] isolatable from Aspergillus terreus (CBS 220.95) or which DNA sequence is a degenerate variant or equivalent thereof.

"Fragments" and "standard conditions "have the meaning as given above. "Degenerate variant" means in this context a DNA sequence which because of the degeneracy of the genetic code has a different nucleotide sequence as the one referred to but codes for a polypeptide with the same amino acid sequence. "Equivalent" refers in this context to a DNA sequence which codes for polypeptides having phytase activity with an amino acid sequence which differs by deletion, substitution and/or addition of one or more amino acids, preferably up to 50, more preferably up to 20, even more preferably up to 10 or most preferably 5, 4, 3 or 2, from the amino acid sequence of the polypeptide encoded by the DNA sequence to which the equivalent sequence refers to. Amino acid substitutions which do not generally alter the specific activity are Known in the state of the art and are described, for example, by H. Neurath and R.L. Hill in "The Proteins" (Academic Press, New York, 1979, see especially Figure 6, page 14). The most commonly occurring exchanges are: Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Tyr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly as well as these in reverse (the three letter abbreviations are used for amino acids and are standard and known in the art).

Such equivalents can be produced by methods known in the state of the art and described, e.g. in Sambrook et al. (s.a.). Whether polypeptides encoded by such equivalent sequences still have a phytase activity can be determined by one of the assays known in the art or, e.g. described in Example 9.

It is also an object of the present invention to provide one of the aforementioned DNA sequences which code for a polypeptide having phytase activity which DNA sequence is derived from a fungus, or more specifically such a fungus selected from one of the above mentioned specific groups of fungi.

Furthermore it is an object of the present invention to provide a DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence hybridizes under standard conditions with a probe which is a product of a PCR reaction with DNA isolated from a fungus of one of the above mentioned groups of fungi and the following pair of PCR primer:

"ATGGA(C/T)ATGTG(C/T)TC(N)TT(C/T)GA" [SEQ ID NO:15] as sense primer and "TT(A/G)CC(A/G)GC(A/G)CC(G/A)TG(N)CC(A/G)TA" [SEQ ID NO: 16] as anti-sense primer.

"Standard conditions" have the meaning given above. "Product of a PCR reaction" means preferably a product obtainable or more preferably as obtained by a reaction described in Example 12 referring back to Example 11.

Furthermore it is an object of the present invention to provide a DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence hybridizes under standard conditions with a probe which is a product of a PCR reaction with DNA isolated from Aspergillus terreus (CBS 220.95) and the following two pairs of PCR primers:

(a) "ATGGA(C/T)ATGTG(C/T)TC(N)TT(C/T)GA" [SEQ ID NO:15] as the sense primer and "TT(A/G)CC(A/G)GC(A/G)CC(G/A)TG(N)CC(A/G)TA" [SEQ ID NO:16] as the anti-sense primer; and

(b) "TA(C/T)GC(N)GA(C/T)TT(C/T)TC(N)CA(C/T)GA" [SEQ ID NO: 17] as the sense primer and

"CG(G/A)TC(G/A)TT(N)AC(N)AG(N)AC(N)C" [SEQ ID NO: 18] as the anti-sense primer.

"Standard conditions" are as defined above and the term "product of a PCR reaction" means preferably a product obtainable or more preferably as obtained by a reaction described in Example 11.

It is furthermore an object of the present invention to provide a DNA sequence coding for a chimeric construct having phytase activity which chimeric construct comprises a fragment of a DNA sequence as specified above or preferably such a DNA sequence wherein the chimeric construct consists at its N-terminal end of a fragment of the Aspergillus niger phytase fused at its C-terminal end to a fragment of the Aspergillus terreus phytase, or more preferably such a DNA sequence with the specific nucleotide sequence as shown in Figure 7 [SEQ ID NO:11] and a degenerate variant or equivalent thereof, wherein "degenerate variant" and "equivalent" have the meanings as given above.

Furthermore it is an object of the present invention to provide a DNA sequence as specified above wherein the encoded polypeptide is a phytase.

Genomic DNA or cDNA from fungal strains can be prepared as known in the art [see e.g. Yelton et al., Procd. Natl. Acad. Sci. USA, 1470-1474 (1984) or Sambrook et al., s.a., or, e.g. as specifically described in Example 2.

The cloning of the DNA-sequences of the present invention from such genomic DNA can than be effected, e.g. by using the well known polymerase chain reaction (PCR) method. The principles of this method are outlined e.g. by White et al. (1989), whereas improved methods are described e.g. in Innis et al. [PCR Protocols: A guide to Methods and Applications, Academic Press, Inc. (1990)]. PCR is an in vitro method for producing large amounts of a specific DNA of defined length and sequence from a mixture of different DNA-sequences. Thereby, PCR is based on the enzymatic amplification of the specific DNA 10 fragment of interest which is flanked by two oligonucleotide primers which are specific for this sequence and which hybridize to the opposite strand of the target sequence. The primers are oriented with their 3' ends pointing toward each other. Repeated cycles of heat denaturation of the template, annealing of the primers to their complementary sequences and extension of the annealed primers with a DNA polymerase result in the amplification of the segment between the PCR primers. Since the extension product of each primer can serve as a template for the other, each cycle essentially doubles the amount of the DNA fragment produced in the previous cycle. By utilizing the thermostable Taq DNA polymerase, isolated from the thermophilic bacteria Thermus aquaticus, it has been possible to avoid denaturation of the polymerase which necessitated the addition of enzyme after each heat denaturation step. This development has led to the automation of PCR by a variety of simple temperature-cycling devices. In addition, the specificity of the amplification reaction is increased by allowing the use of higher temperatures for primer annealing and extension. The increased specificity improves the overall yield of amplified products by minimizing the competition by non-target fragments for enzyme and primers. In this way the specific sequence of interest is highly amplified and can be easily separated from the non-specific sequences by methods known in the art, e.g. by separation on an agarose gel and cloned by methods known in the art using vectors as 25 described e.g. by Holten and Graham in Nucleic Acid Res. 19, 1156 (1991), Kovalic et. al. in Nucleic Acid Res. 19, 4560 (1991), Marchuk et al. in Nucleic Acid Res. 19, 1154 (1991) or Mead et al. in Bio/Technology 9, 657-663 (1991).

The oligonucleotide primers used in the PCR procedure can be prepared as known in the art and described e.g. in Sambrook et al. (1989 "Molecular cloning" 2nd edt., Cold Spring Harbor Laboratory Press, Cold Spring Harbor).

The specific primers used in the practice of the present invention have been designed as degenerate primers on the basis of DNA-sequence comparisons of known sequences of the Aspergillus niger phytase, the Aspergillus niger acid phosphatase, the Saccharomyces cerevisiae acid phosphatase and the Schizosaccharomyces pombe acid phosphatase (for sequence information see, e.g. European Bioinformatics Institute (Hinxton Hall, Cambridge, GB). The degeneracy of the primers was reduced by selecting some codons according to a codon usage table of Aspergillus niger prepared on the basis of known sequences from Aspergillus niger. Furthermore it has been found that the amino acid at the C-terminal end of the amino acid sequences used to define the specific probes should be a conserved amino acid in all acid phosphatases including phytases specified above but the rest of the amino acids should be more phytase than phosphatase specific.

Such amplified DNA-sequences can than be used to screen DNA libraries of DNA of, e.g. fungal origin by methods known in the art (Sambrook et al., s.a.) or as specifically described in Examples 5-7.

Once complete DNA-sequences of the present invention have been obtained they can be integrated into vectors by methods known in the art and described e.g. in Sambrook et al. (s.a.) to overexpress the encoded polypeptide in appropriate host systems. However, a man skilled in the art knows that also the DNA-sequences themselves can be used to transform the suitable host systems of the invention to get overexpression of the encoded polypeptide. Appropriate host systems are for example fungi, like Aspergilli, e.g. Aspergillus niger [ATCC 9142] or Aspergillus ficuum [NRRL 3135] or like Trichoderma, e.g. Trichoderma reesei or yeasts, like Saccharomyces, e.g. Saccharomyces cerevisiae or Pichia, like Pichia pastoris, all available from ATCC. Bacteria which can be used are e.g. E. coli, Bacilli as, e.g. Bacillus subtilis or Streptomyces, e.g. Streptomyces lividans (see e.g. Anné and Mallaert in FEMS Microbiol. Letters 114, 121 (1993). E. coli, which could be used are E. coli K12 strains e.g. M15 [described as DZ 291 by Villarejo et al. in J. Bacteriol. 120, 466-474 (1974)], HB 101 [ATCC No. 33694] or E. coil SG13009 [Gottesman et al., J. Bacteriol. 148, 265-273 (1981)].

Vectors which can be used for expression in fungi are known in the art and described e.g. in EP 420 358, or by Cullen et al. [Bio/Technology 5, 369-376 (1987)] or Ward in Molecular Industrial Mycology, Systems and Applications for Filamentous Fungi, Marcel Dekker, New York (1991), Upshall et al. [Bio/Technology 5, 1301-1304 (1987)] Gwynne et al. [Bio/Technology 5, 71-79 (1987)], Punt et al. [J. of

Biotechnology 17, 19-34 (1991)] and for yeast by Sreekrishna et al. [J. Basic Microbiol. 28, 265-278 (1988), Biochem. 28, 4117-4125 (1989)], Hitzemann et al. [Nature 293, 717-722 (1981)] or in EP 183 070, EP 183 071, EP 248 227, EP 263 311. Suitable vectors which can be used for expression in E. coli are mentioned, e.g. by Sambrook et al. [s.a.] or by Fiers et al. in Procd. 8th Int. Biotechnology Symposium" [Soc. Franc. de Microbiol., Paris (Durand et al., eds.), pp. 680-697 (1988)] or by Bujard et al. in Methods in Enzymology, eds. Wu and Grossmann, Academic Press, Inc. Vol. 155, 416-433 (1987) and Stüber et al. in Immunological Methods, eds. Lefkovits and Pernis, Academic Press, Inc., Vol. IV, 121-152 (1990). Vectors which could be used for expression in Bacilli are known in the art and described, e.g. in EP 405 370, Procd. Nat. Acad. Sci. USA 81, 439 (1984) by Yansura and Henner, Meth. Enzym. 185, 199-228 (1990) or EP 207 459.

10

Either such vectors already carry regulatory elements, e.g. promotors or the DNA-sequences of the present invention can be engineered to contain such elements. Suitable promotor-elements which can be used are known in the art and are, e.g. for Trichoderma reesei the cbh1- [Haarki et al., Biotechnology 7, 596-600 (1989)] or the pki1-promotor [Schindler et al., Gene 130, 271-275 (1993)], for Aspergillus oryzae the amy-promotor [Christensen et al., Abstr. 19th Lunteren Lectures on Molecular Genetics F23 (1987), Christensen et al., Biotechnology 6, 1419-1422 (1988), Tada et al., Mol. Gen. Genet. 229, 301 (1991)], for Aspergillus niger the glaA- [Cullen et al., Bio/Technology 5, 369-376 (1987), Gwynne et al., Bio/Technology 5, 713-719 (1987), Ward in Molecular Industrial Mycology, Systems and Applications for Filamentous Fungi, Marcel Dekker, New York, 83-106 (1991)], alcA- [Gwynne et al., Bio/Technology 5, 71-719 (1987)], suc1-[Boddy et al. Current Genetics 24, 60-66 (1993)], aphA- [MacRae et al., Gene 71, 339-348 (1988), MacRae et al., Gene 132, 193-198 (1993)], tpiA- [McKnight et al., Cell 46, 143-147 (1986), Upshall et al., Bio/Technology 5, 1301-1304 (1987)], gpdA- [Punt et al., Gene 69, 49-57 (1988), Punt et al., J. of Biotechnology 17, 19-37 (1991)] and the pkiA-promotor [de Graaff et al., Curr. Genet. 22, 21-27 (1992)]. Suitable promotor-elements which could be used for expression in yeast are known in the art and are, e.g. the pho5-promotor [Vogel et al., Molecular and Cellular Biology, 2050-2057 (1989); Rudolf and Hinnen, Proc. Natl. Acad. Sci. 84, 1340-1344 (1987)] or the gap-promotor for expression in Saccharamyces cerevisiae und for Pichia pastoris, e.g. the aox1-promotor [Koutz et al. Yeast 5, 167-177 (1989); Sreekrishna et al., J. Basic Microbiol. 28, 265-278 (1988)].

Accordingly vectors comprising DNA sequences of the present invention, preferably for the expression of said DNA sequences in bacteria or a fungal or a yeast host and such transformed bacteria or fungal or yeast hosts are also an object of the present invention.

Cnce such DNA-sequences have been expressed in an appropriate host cell in a suitable medium the encoded phytase can be isolated either from the medium in the case the phytase is secreted into the medium or from the host organism in case such phytase is present intracellularly by methods known in the art of protein purification or described, e.g. in EP 420 358. Accordingly a process for the preparation of a polypeptide of the present invention characterized in that transformed bacteria or a host cell as described above is cultured under suitable culture conditions and the polypeptide is recovered therefrom and a polypeptide when produced by such a process or a polypeptide encoded by a DNA sequence of the present invention are also an object of the present invention.

Once obtained the polypeptides of the present invention can be characterized regarding their activity by assays known in the state of the art or as described, e.g. by Engelen et al. [J. AOAC Intern. 77, 760-764 (1994)] or in Example 9. Regarding their properties which make the polypeptides of the present invention useful in agriculture any assay known in the art and described e.g. by Simons et al. [British Journal of Nutrition 64, 525-540 (1990)], Schöner et al. [J. Anim. Physiol. a. Anim. Nutr. 66, 248-255 (1991)], Vogt [Arch. Geflügelk. 56, 93-98 (1992)], Jongbloed et al. [J. Anim. Sci., 70, 1159-1168 (1992)], Perney et al. [Poultry Science 72, 2106-2114 (1993)], Farrell et al., [J. Anim. Physiol. a. Anim. Nutr. 69, 278-283 (1993), Broz et al., [British Poultry Science 35, 273-280 (1994)] and Düngethoef et al. [Animal Feed Science and Technology 49, 1-10 (1994)] can be used. Regarding their thermotolerance any assay known in the state of the art and described, e.g. by Yamada et al. (s.a.), and regarding their pH and substrate specificity profiles any assays known in the state of the art and described, e.g. in Example 9 or by Yamada et al., s.a., can be used.

In general the polypeptides of the present invention can be used without being limited to a specific field of application for the conversion of phytate to inositol and inorganic phosphate.

Furthermore the polypeptides of the present invention can be used in a process for the preparation of compound food or feeds wherein the components of such a composition are mixed with one or more polypeptides of the present invention. Accordingly compound food or feeds comprising one or more polypeptides of the present invention are also an object of the present invention. A man skilled in the art is familiar with their process of prepration. Such compound foods or feeds can further comprise additives or components generally used for such purpose and known in the state of the art.

It is furthermore an object of the present invention to provide a process for the reduction of levels of phytate in animal manure characterized in that an animal is fed such a feed composition in an amount effective in converting phytate contained in the feedstuff to inositol and inorganic phosphate.

5 Examples

Specific media and solutions used

Complete medium (Clutterbuck)

10

Glucose	10 g/l
-CN solution	10 ml/i
Sodium nitrate	6 g/l
Bacto peptone (Difco Lab., Detroit, MI, USA)	2 g/l
Yeast Extract (Difco)	1 g/l
Casamino acids (Difco)	1.5 g/l
Modified trace element solution	1 ml/l
Vitamin solution	1 ml/l

20

M3 Medium

25

Glucose	10 g/l
-CN Solution	10 ml/i
Modified trace element solution	1 ml/l
Ammonium nitrate	2 g/l

30

M3 Medium - Phosphate

35 M3 medium except that -CN is replaced with -CNP

M3 Medium - Phosphate + Phytate

M3 Medium - Phosphate with the addition of 5 g/l of Na₁₂ Phytate (Sigma #P-3168; Sigma, St. Louis, MO, USA)

Modified trace element solution

45

CuSO4	0.04%
FeSO4∙7H₂O	0.08%
Na ₂ MoO ₄ • 2H ₂ O	0.08%
ZnSO₄ • 7H₂O	0.8%
B ₄ Na ₂ O ₇ • 10H ₂ O	0.004%
MnSO₄ • H₂ O	0.08%

50

Vitamin Solution

5	

Riboflavin	0.1%
Nicotinamide	0.1%
p-amino benzoic acid	0.01%
Pyridoxine/HCI	0.05%
Aneurine/HCI	0.05%
Biotin	0.001%

10

-CN Solution

15

KH₂PO₄ • 3H₂O 90 g/l K₂PO₄ • 3H₂O 10 g/l KCl 10 g/l MgSO₄ • 7H₂O 10 g/l

20

-CNP Solution

25

HEPES	47.6g/200 mls
KCI	2 g/200 mls
MgSO₄ • 7H₂ O	2 g/200 mls

30

Example 1

Screening fungi for phytase activity

35

40

45

Fungi were screened on a three plate system, using the following three media:

"M3"

(a defined medium containing phosphate),

"M3-P"

(M3 medium lacking phosphate) and

"M3-P + Phytate"

(M3 medium lacking phosphate but containing phytate as a sole phosphorus source).

Plates were made with agarose to decrease the background level of phosphate.

Fungi were grown on the medium and at the temperature recommended by the supplier. Either spores or mycelium were transfered to the test plates and incubated at the recommended temperature until growth was observed.

The following thermotolerant strains were found to exhibit such growth:

Myceliophthora thermophila [ATCC 48 102]

Talaromyces thermophilus [ATCC 20 186]

Aspergillus fumigatus [ATCC 34 625]

50 Example 2

Growth of fungi and preparation of genomic DNA

Strains of Myceliophthora thermophila, Talaromyces thermophilus, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus terreus 9A-1, and Aspergillus terreus CBS 220.95 were grown in Potato Dextrose Broth (Difco Lab., Detroit, MI, USA) or complete medium (Clutterbuck). Aspergillus terreus 9A-1 and Aspergillus nidulans have been deposited under the Budapest Treaty for patent purposes at the DSM in Braunschweig, BRD at March 17, 1994 under accession number DSM 9076 and at February 17, 1995 under accession

number DSM 9743, respectively.

Genomic DNA was prepared as follows:

Medium was innoculated at a high density with spores and grown O/N with shaking. This produced a thick culture of small fungal pellets. The mycelium was recovered by filtration blotted dry and weighed. Up to 2.0g was used per preparation. The mycelium was ground to a fine powder in liquid nitrogen and immediately added to 10 mls of extraction buffer (200 mM Tris/HCl, 250 mM NaCl, 25 mM EDTA, 0.5% SDS, pH 8.5) and mixed well. Phenol (7 mls) was added to the slurry and mixed and then chloroform (3 mls) was also added and mixed well. The mixture was centrifuged (20,000 g) and the aqueous phase recovered. RNase A was added to a final concentration of 250 µg/ml and incubated at 37 °C for 15 minutes. The mixture was then extracted with 1 volume of chloroform and centrifuged (10,000 g, 10 minutes). The aqueous phase was recovered and the DNA precipitated with 0.54 volumes of RT isopropanol for 1 hour at RT. The DNA was recovered by spooling and resuspended in water.

The resultant DNA was further purified as follows:

A portion of the DNA was digested with proteinase K for 2 hrs at 37 °C and then extracted repeatedly (twice to three times) with an equal volume of phenol/chloroform and then ethanol precipitated prior to resuspension in water to a concentration of approximately 1 µg/µl.

Example 3

20 Degenerate PCR

PCR was performed essentially according to the protocol of Perkin Elmer Cetus [(PEC); Norwalk, CT, USA]. The following two primers were used (bases indicated in brackets are either/or):

Phyt 8: 5' ATG GA(CT) ATG TG(CT) TCN TT(CT) GA 3' [SEQ ID NO:19] Degeneracy = 32

Tm High = 60°C/Tm Low 52°C

Phyt 9: 5' TT(AG) CC(AG) GC(AG) CC(GA) TGN CC(GA) TA 3' [SEQ ID NO:20]

Tm High = 70 ° C/Tm Low 58 ° C

A typical reaction was performed as follows:

30

35

45

50

25

All components with the exception of the Taq polymerase were incubated at 95 °C for 10 minutes and then 50 °C for 10 minutes and then the reaction placed on ice. The Taq polymerase (Amplitaq, Hoffmann-La Roche, Basel, CH) was then added and 35 cycles of PCR performed in a Triothermoblock (Biometra, Göttingen, DE) according to the following cycle profile:

95 °C/60"

50 °C/90"

72 °C/ 120"

An aliquot of the reaction was analysed on 1.5% agarose gel.

Example 4

Subcloning and sequencing of PCR fragments

PCR products of the expected size (approximately 146 bp predicted from the Aspergillus niger DNA-sequence) were excised from low melting point agarose and purified from a NACS - PREPAC - column (BRL Life Technologies Inc., Gaithersburg, MD, USA) essentially according to the manufacturer's protocol. The fragment was polyadenylated in 50 μl 100 mM Sodiumcacodylate pH6.6, 12.5 mM Tris/HCl pH 7.0,0.1 mM Dithiothreitol, 125 μg/ml bovine serum albumin, 1 mM CoCl₂, 20 μMdATP, 10 units terminal deoxytransferase (Boehringer Mannheim, Mannheim, DE) for 5 minutes at 37 °C and cloned into the p123T

vector [Mitchell et al., PCR Meth. App. 2, 81-82 (1992)].

Alternatively, PCR fragments were purified and cloned using the "Sure Clone" ligation kit (Pharmacia) following the manufacturers instructions.

Sequencing was performed on dsDNA purified on a Quiagen-column

5 (Diagen GmbH, Hilden, DE) using the dideoxy method and the Pharmacia T7 kit (Pharmacia, LKB Biotechnology AB, Uppsala, SE) according to the protocol supplied by the manufacturer.

Example 5

10 Construction and Screening of Lambda Fix II libraries

The fragments from Aspergillus terreus Strain 9A-1 and Myceliophthora thermophila were used to probe Bam HI and BgIII southerns to determine the suitable restriction enzyme to use to construct genomic libraries in the Lambda Fix II vector (Strategene, La Jolla, CA, USA). Lambda Fix II can only accept inserts from 9-23 kb. Southerns were performed according to the following protocol. Genomic DNA (10 µg) was digested in a final volume of 200 µl. The reaction without enzyme was prepared and incubated on ice for 2 hours. The enzyme (50 units) was added and the reaction incubated at the appropriate temperature for 3 hours. The reaction was then extracted with an equal volume of phenol/chloroform and ethanol precipitated. The resuspended DNA in loading buffer was heated to 65 °C for 15 minutes prior to separation on a 0.7% agarose gel (O/N 30 V). Prior to transfer the gel was washed twice in 0.2 M HCl/ 10'/room temperature (RT) and then twice in 1M NaCl/0.4M NaOH for 15' at RT. The DNA was transfered in 0.4M NaOH in a capillary transfer for 4 hours to Nytran 13N nylon membrane (Schleicher and Schuell AG, Feldbach, Zürich, CH). Following transfer the membrane was exposed to UV. [Auto cross-link, UV Stratalinker 2400, Stratagene (La Jolla, CA, USA)].

The membrane was prehybridized in hybridization buffer [50 % formamide, 1% sodium dodecylsulfate (SDS), 10% dextransulfate, 4 x SSPE (180 mM NaCl, 10 mM NaH₂ PO₄, 1 mM EDTA, ph 7.4)] for 4 hours at 42 °C and following addition of the denatured probe O/N at 42 °C. The blot was washed:

- 1 x SSPE/0.5 % SDS/RT/30 minutes
- 0.1 x SSPE/0.1 % SDS/RT/30 minutes
- 0.1 x SSPE/0.1 % SDS/65 C/30 minutes

Results indicate that Aspergillus terreus Strain 9A-1 genomic DNA digested with BamHI and Mycelioph-thora thermophila genomic DNA digested with BgIII produce fragments suitable for cloning into the lambda Fix II vector.

The construction of genomic libraries of Aspergillus terreus Strain 9A-1 and Myceliophthora thermophila in Lambda Fix II was performed according to the manufacturer's protocols (Stratagene).

The lambda libraries were plated out on 10 137 mm plates for each library. The plaques were lifted to Nytran 13N round filters and treated for 1 minute in 0.5 M NaOH/1.5 M NaCl followed by 5 minutes in 0.5 M Tris-HCl pH 8.0/1.5 M NaCl. The filters were then treated in 2 X SSC for 5 minutes and air dried. They were then fixed with UV (1 minute, UV Stratalinker 2400, Stratagene). The filters were hybridized and washed as above. Putative positive plaques were cored and the phage soaked out in SM buffer (180 mM NaCl, 8 mM MgSO₄ • 7H₂0; 20mMTris/HCl pH 7.5, 0.01% gelatin). This stock was diluted and plated out on 137 mm plates. Duplicate filters were lifted and treated as above. A clear single positive plaque from each plate was picked and diluted in SM buffer. Three positive plaques were picked. Two from Aspergillus terreus Strain 9A-1 (9A1λ17 and 9A1λ22) and one from Myceliophthora thermophila (MTλ27).

Example 6

Preparation of Lambda DNA and confirmation of the clones

50 Lambda DNA was prepared from the positive plaques. This was done using the "Magic Lambda Prep" system (Promega Corp., Madison, WI, USA) and was according to the manufactures specifications. To confirm the identity of the clones, the lambda DNA was digested with Pstl and Sall and the resultant blot probed with the PCR products. In all cases this confirmed the clones as containing sequences complementary to the probe.

55

45

Example 7

Subcloning and sequencing of phytase genes

5 DNA from 9A1λ17 was digested with Pstl and the resultant mixture of fragments ligated into pBluescript II SK+ (Stratagene) cut with Pstl and treated with shrimp alkaline phosphatase (United States Biochemical Corp., Cleaveland, OH, USA). The ligation was O/N at 16 °C. The ligation mixture was transformed into XL-1 Blue Supercompetent cells (Stratagene) and plated on LB Plates containing 0.5 mM isopropyl-β-D-thiogalactopyranoside (IPTG), 40 μg/ml 5-bromo-4-chloro-3-indoyl-β-D-galactopyranoside (Xgal), 50 μg/ml ampicillin.

DNA from 9A\17 was digested with BgI II and Xba I and the resultant mixture ligated into pBluescript II SK+ digested with BamHI/Xba I. Ligation, transformation and screening were performed as described above.

DNA from MT\27 was digested with Sall and the resultant mixture of fragments ligated into pBluescript II SK+ cut with Sall and treated with shrimp alkaline phosphatase. The ligation was O/N at 16 °C. The ligation mixture was transformed into XL-1 Blue Supercompetent cells and plated on LB Plates containing Xgal/IPTG and ampicillin.

Colonies from the above transformations were picked and "gridded" approximately 75 to a single plate. Following O/N incubation at 37 °C the colonies were lifted to a nylon filter ("Hybond-N", Amersham Corp., Arlington Heights, IL, USA) and the filters treated with 0.5M NaOH for 3 minutes, 1M Tris/HCl pH7.5 twice for 1 minute, then 0.5M Tris/HCl pH7.5/1.5 M NaCl for 5 minutes. The filters were air dried and then fixed with UV (2 minutes, UV Stratalinker 2400, Stratagene). The filters were hybridized with the PCR products of Example 5. Positive colonies were selected and DNA prepared. The subclones were sequenced as previously described in Example 4. Sequences determined are shown in Figure 1 (Fig. 1) for the phytase from Aspergillus terreus strain 9A1 and its encoding DNA sequence, Figure 2 for the phytase from Myceliophthora thermophila and its encoding DNA-sequence, Figure 3A shows a restriction map for the DNA of Aspergillus terreus (wherein the arrow indicates the coding region, and the strips the regions sequenced in addition to the coding region) and 3B for M. thermophila, and Figure 4 for part of the phytase from Talaromyces thermophilus and its encoding DNA sequence, Figure 5 for part of the phytase from Aspergillus fumigatus and its encoding DNA-sequence and Figure 6 for part of the phytase from Aspergillus nidulans and its encoding DNA-sequence. The sequences for the parts of the phytases and their encoding DNA-sequences from Talaromyces thermophilus, Aspergillus fumigatus and Aspergillus nidulans were obtained in the same way as described for those of Aspergillus terreus strain 9A1 and Myceliophthora thermophila in Examples 2-7. Bases are given for both strands in small letters by the typically used one letter code abbreviations. Derived amino acid sequences of the phytase are given in capital letters by the typically used one letter code below the corresponding DNA-sequence.

Example 8

Construction of a chimeric construct between A. niger and A. terreus phytase DNA-sequences

All constructions were made using standard molecular biological procedures as described by Sambrook et al., (1989) (Molecular cloning, A laboratory Manual, Cold Spring Harbor Laboratory Press, NY).

The first 146 amino acids (aa) of the Aspergillus niger phytase, as described in EP 420 358, were fused to the 320 C-terminal aa of the Aspergillus terreus 9A1 gene. A Ncol site was introduced at the ATG start codon when the A. niger phytase gene was cloned by PCR. The intron found in the A. niger phytase was removed by site directed mutagenesis (Bio-Rad kit, Cat Nr 170-3581; Bio-Rad, Richmond, CA, USA) using the following primer (werein the vertical dash indictes that the sequence to its left hybridizes to the 3'end of the first exon and the sequence to its right hybridizes to the 5'end of the second exon):

5'-AGTCCGGAGGTGACT|CCAGCTAGGAGATAC-3' [SEQ ID NO:21].

To construct the chimeric construct of phytases from A. niger and A. terreus an Eco 47III site was introduced into the A. niger coding sequence to aid cloning. PCR with a mutagenic primer (5' CGA TTC GTA gCG CTG GTA G 3') in conjunction with the T3 primer was used to produce a DNA fragment that was cleaved with Bam HI and Eco 47III. The Bam HI/Eco 47III fragment was inserted into Bam HI/Eco 47III cut p9A1Pst (Example 7). Figure 7 shows the amino acid sequence of the fusion construct and its encoding DNA-sequence.

Example 9

Expression of phytases

5 Construction of expression vectors

For expression of the fusion construct in A. *niger* an expression cassette was chosen where the fusion gene was under control of the inducible A. *niger* glucoamylase (*glaA*) promoter.

For the complete A. terreus 9A1 gene, expression cassettes with the constitutive A. nidulans glyceraldehyde-3-phosphate dehydrogenase (gpdA) promoter were made.

All genes used for expression in A. niger carried their own signal sequence for secretion.

Construction of vector pFPAN1

The A. niger glucoamylase (glaA) promoter was isolated as a 1960 bp Xhol/Clal fragment from plasmid pDH33 [Smith et al. (1990), Gene 88: 259-262] and cloned into pBluescriptSK*-vector (pBS) [Stratagene, La Jolla, CA, USA] containing the 710 bp BamHl/Xbal fragment of the A. nidulans trpC terminator. The plasmid with the cassette was named pGLAC. The fusion gene, as described in Example 8, was put under control of the A. niger glaA promoter by ligating the blunt ended Ncol/EcoRl fragment to the blunt ended Clal site and the EcoRV site of plasmid pGLAC. The correct orientation was verified by restriction enzyme digests. The entire cassette was transferred as a Kpnl/Xbal fragment to pUC19 (New England Biolabs, GmbH, Schwalbach, BRD), that carried the Neurospora crassa pyr4 gene (pUC19-pyr4), a selection marker in uridine auxotrophic Aspergilli, resulting in vector pFPAN1 (see Figure 8 with restriction sites and coding regions as indicated; crossed out restriction sites indicate sites with blunt end ligation).

Construction of vector pPAT1

The A. nidulans glyceraldehyd-3-phosphate dehydrogenase (gpdA) promoter was isolated as a ~2.3 kb EcoRl/Ncol fragment from plasmid pAN52-1 [Punt et al. (1987), Gene 56: 117-124], cloned into pUC19-Ncol (pUC19 having a Smal-site replaced by a Ncol-site), reisolated as EcoRl/ BamHI fragment and cloned into pBS with the trpC terminator as described above. The obtained cassette was named pGPDN. The A. terreus gene was isolated as a Ncol/EcoRl fragment, where the EcoRl site was filled in to create blunt ends. Plasmid pGPDN was cut with BamHI and Ncol. The BamHI site was filled in to create blunt ends. The Ncol/EcoRl(blunt) fragment of the A. terreus gene was cloned between the gpdA promoter and trpC terminator. The expression cassette was isolated as Kpnl/Xbal fragment and cloned into pUC19-pyr4 resulting in plasmid pPAT1 (see Figure 9; for explanation of abreviations see legend to Figure 8).

Expression of the fusion protein in Aspergillus niger

40 A) Transformation

45

50

55

The plasmid pFPAN1 was used to transform *A. niger* by using the transformation protocol as described by Ballance et al. [(1983), Biochem. Biophys. Res. Commun 112, 284-289] with some modifications:

- YPD medium (1 % yeast extract, 2% peptone, 2 % dextrose) was inoculated with 10⁶ spores per ml and grown for 24 hours at 30 °C and 250 rpm
- cells were harvested using Wero-Lene N tissue (No. 8011.0600 Wernli AG Verbandstoffabrik, 4852 Rothrist, CH) and once washed with buffer (0.8 M KCl, 0.05 M CaCl₂, in 0.01 M succinate buffer; pH 5.5)
- for protoplast preparation only lysing enzymes (SIGMA L-2265, St. Louis, MO, USA) were used
- the cells were incubated for 90 min at 30 °C and 100 rpm, and the protoplasts were separated by filtration (Wero-Lene N tissue)
 - the protoplasts were once washed with STC (1 M sorbitol, 0.05 M CaCl₂, 0.01 M Tris/HCl pH 7.5) and resuspended in the same buffer
- 150 μl protoplasts (~10⁸/ml) were gently mixed with 10-15 μg plasmid DNA and incubated at room temperature (RT) for 25 min
 - polyethylene glycol (60% PEG 4000, 50 mMCaCl₂, 10 mM Tris/HCl pH 7.5) was added in three steps, 150 μl, 200 μl and 900μl, and the sample was further incubated at room temperature (RT) for 25 min

- 5 ml STC were added, centrifuged and the protoplasts were resuspended in 2.5 ml YGS (0.5% yeast extract, 2% glucose, 1.2 M sorbitol)
- the sample was incubated for 2 hours at 30° C (100 rpm) centrifuged and the protoplasts were resuspended in 1 ml 1.2 M sorbitol
- the transformed protoplasts were mixed with 20 ml minimal regeneration medium (0.7% yeast nitrogen base without amino acids, 2% glucose, 1 M sorbitol, 1.5% agar, 20 mM Tris/HCl pH 7.5 supplemented with 0.2 g arginine and 10 mg nicotinamide per liter)
- the plates were incubated at 30 °C for 3-5 days

10 B) Expression

5

20

25

30

35

Single transformants were isolated, purified and tested for overproduction of the fusion protein. 100 ml M25 medium (70g maltodextrin (Glucidex 17D, Sugro Basel, CH), 12.5g yeast extract, 25g casein-hydrolysate, 2g KH₂PO₄, 2g K₂SO₄, 0.5g MgSO₄ • 7H₂O, 0.03g ZnCl₂, 0.02g CaCl₂, 0.05g MnSO₄ • 4H₂O, 0.05g FeSO₄ per liter pH 5.6) were inoculated with 10⁶ spores per ml from transformants FPAN1#11, #13, #16, #E25, #E30 respectively #E31 and incubated for 5 days at 30 °C and 270 rpm. Supernatant was collected and the activity determined. The fusion protein showed the highest activity with phytic acid as substrate at pH 2.5, whereas with 4-nitrophenyl phosphate as substrate it showed two activity optima at pH 2.5 and 5.0 (Table 1).

C) Activity assay

a) Phytic acid

A 1 ml enzyme reaction contained 0.5 ml dialyzed supernatant (diluted if necessary) and 5.4 mM phytic acid (SIGMA P-3168). The enzyme reactions were made in 0.2 M sodium acetate buffer pH 5.0, respectively 0.2 M glycine buffer pH 2.5. The samples were incubated for 15 min at 37 ° C. The reactions were stopped by adding 1 ml 15% TCA (trichloroacetic acid).

For the colour reaction 0.1 ml of the stopped sample was diluted with 0.9 ml destilled water and mixed with 1 ml reagent solution (3 volumes 1 M H_2SO_4 , 1 volume 2.5% (NH₄)₆Mo₇O₂₄, 1 volume 10% ascorbic acid). The samples were incubated for 20 min at 50° C and the blue colour was measured spetrophotometrically at 820 nm. Since the assay is based on the release of phosphate a phosphate standard curve, 11 - 45 nmol per ml, was used to determine the activity of the samples.

b) 4-nitrophenyl phosphate

A 1 ml enzyme reaction contained 100 μ l dialyzed supernatant (diluted if necessary) and 1.7 mM 4-nitrophenyl phosphate (Merck, 6850, Darmstadt, BRD). The enzyme reactions were made in 0.2 M sodium acetate buffer pH 5.0, respectively 0.2 M glycine buffer pH 2.5. The samples were incubated for 15 min at 37 °C. The reactions were stopped by adding 1 ml 15% TCA.

For the determination of the enzyme activity the protocol described above was used.

40

50

45

TABLE 1

SUBSTRATE Transformant * Phytic Acid * 4-Nitrophenyl phosphate pH 5.0 pH 2.5 pH 5.0 pH 2.5 A. niger 1) 0.2 1 1 2 FPAN1 # 11 6 49 173 399 **FPAN1 # 13** 2 21 60 228 FPAN1 # 16 1 16 46 153 FPAN1 # E25 3 26 74 228 FPAN1 # E30 3 43 157 347 FPAN1 # E31 3 39 154 271

Expression of the Aspergillus terreus 9A1 gene in Aspergillus niger

A. niger NW205 was transformed with plasmid pPAT1 as described above. Single transformants were isolated, purified and screened for overproduction of the A. terreus protein. 50 ml YPD medium were inoculated with 10⁶ spores per ml from transformants PAT1#3, #10, #11, #13 and #16 and incubated for 3 days at 30 °C and 270 rpm. Supernatant was collected and the activity determined as described above except that the pH for the enzyme reactions were different. The enzyme showed its main activity at pH 5.5 with phytic acid as substrate and at pH 3.5 with 4-nitrophenyl phosphate as substrate (Table 2).

TABLE 2

			SUBSTRATE					
Transformant	Transformant * Phytic Acid		nsformant * Phytic Acid		ransformant Phytic Ac		id *4-Nitrophenyl phosphate	
	pH 5.5	pH 3.5	pH 5.5	pH 3.5				
A. niger ¹⁾	0 0		0	0.1				
PAT1 # 3	10	0	0.2	0.7				
PAT1 # 10	0 9 0	.0	0.2	0.8				
PAT1 # 11	5	0	0.1	0.5				
PAT1 # 13	9	0	0.2	0.7				
PAT1 # 16	5	0	0.1	0.5				

^{*}Units per ml: 1 unit = 1 µmol phosphate released per min at 37 ° C

55

50

5

10

15

20

35

40

^{*} Units per ml: 1 unit = 1 μmol phosphate released per min at 37 ° C

¹⁾ not tranformed

¹⁾ not transformed

Example 10

Fermentation of Aspergillus niger NW 205 transformants

5 A) Transformant FPAN1#11

Preculture medium [30 g maltodextrin (Glucidex 17D), 5 g yeast extract, 10 g casein-hydrolysate, 1 g KH₂PO₄, 0.5g MgSO₄ •7H₂O, 3 g Tween 80 per liter; pH 5.5] was inoculated with 10⁶ spores per ml in a shake flask and incubated for 24 hours at 34 °C and 250 rpm.

A 10 liter fermenter was inoculated with the pre-culture to a final dilution of the pre-culture of 1:100. The batch fermentation was run at 30 °C with an automatically controlled dissolved oxygen concentration of minimum 25% (pO₂≥25%). The pH was kept at 3.0 by automatic titration with 5 M NaOH.

The medium used for the fermentation was: 35 g maltodextrin, 9.4 g yeast extract, 18.7 g casein-hydrolysate, 2 g KH_2PO_4 , 0.5 g $MgSO_4 \cdot 7H_2O$, 2 g K_2SO_4 , 0.03 g $ZnCl_2$, 0.02 g $CaCl_2$, 0.05 g $MnSO_4 \cdot 4H_2O$, 0.05 g $FeSO_4$ per liter; pH 5.6.

Enzyme activities reached after 3 days under these conditions were 35 units/ml respectively 16 units/ml at pH 2.5 respectively pH 5.0 with phytic acid as substrate and 295 units/ml respectively 90 units/ml at pH 2.5 respectively pH 5.0 and 4-nitrophenyl phosphate as substrate.

20 B) Transformant PAT1#11

Preculture, inoculation of the fermenter and the fermentation medium were as described above, except that the pH was kept at 4.5 by automatic titration with 5 M NaOH.

Enzyme activities reached after 4 days under these conditions were 17.5 units/ml at pH 5.5 with phytic acid as substrate and 2 units/ml at pH 3.5 with 4-nitrophenyl phosphate as substrate.

Example 11

30

35

40

45

Isolation of PCR fragments of a phytase gene of Aspergillus terreus (CBS 220.95)

Two different primer pairs were used for PCR amplification of fragments using DNA of Aspergillus terreus [CBS 220.95]. The primers used are shown in the Table below.

Fragment amplified	Primers	Oligonucleotide sequences (5' to 3')
8 plus 9 about 150 bp	8	ATGGA(C/T)ATGTG(C/T)TC(N)TT(C/T)GA [SEQ ID NO:8]
		Amino acids 254-259: MDMCSF
	9	TT(A/G)CC(A/G)GC(A/G)CC(G/A)TG(N)CC(A/G)TA [SEQ ID NO:9]
		Amino acids 296-301: YGHGAG
10 plus 11 about 250 bp	10	TA(C/T)GC(N)GA(C/T)TT(C/T)TC(N)CA(C/T)GA [SEQ ID NO:10]
		Amino acids 349-354: YADFSH
	11	CG(G/A)TC(G/A)TT(N)AC(N)AG(N)AC(N)C [SEQ ID NO:11]
		Amino acids 416-422: RVLVNDR

DNA sequences in bold show the sense primer and in italics the antisense primer. The primers correspond to the indicated part of the coding sequence of the *Aspergillus niger* gene. The combinations used are primers 8 plus 9 and 10 plus 11. The Taq-Start antibody kit from Clontech (Palo Alto, CA, USA) was used according to the manufacturer's protocol. Primer concentrations for 8 plus 9 were 0.2 mM and for primers 10 plus 11 one mM. Touch-down PCR was used for amplification [Don, R.H. et al. (1991), Nucleic Acids Res. 19, 4008]. First the DNA was denatured for 3 min at 95°C. Then two cycles were done at each of the following annealing temperatures: 60°C, 59°C, 58°C, 57°C, 56°C, 55°C, 54°C, 53°C, 52°C and 51°C, with an annealing time of one min. each. Prior to annealing the incubation was heated to 95°C for one min and after annealing elongation was performed for 30 sec at 72°C. Cycles 21 to 35 were performed as follows: denaturation one min at 95°C, annealing one min at 50°C and elongation for 30 sec at 72°C.

Two different PCR fragments were obtained. The DNA sequences obtained and their comparison to relevant parts of the phytase gene of Aspergillus terreus 9A1 are shown in Figure 10 [relevant parts of the phytase gene of Aspergillus terreus 9A1 "9A1"(top lines) (1) and the PCR fragments of Aspergillus terreus CBS 220.95 "aterr21" (bottom lines). Panel A: Fragment obtained with primer pair 8 plus 9 (aterr21). Panel B: Fragment obtained with primer pair 10 plus 11 (aterr58). DNA sequences of Aspergillus terreus CBS 220.95 (top lines) are compared with those of Aspergillus terreus 9A1 (1) (bottom lines). Panel A: The bold gc sequence (bases 16 plus 17) in the aterr21 fragment could possibly be cg (DNA sequencing uncertainty). Panel B: The x at position 26 of the aterr58 PCR fragment could possibly represent any of the four nucleotides].

_

10

Example 12

Cross hybridizations under non-stringent and stringent washing conditions

Five µg's of genomic DNA of each strain listed in Table 3 were incubated with 4 units of HindIII or Pstl. respectively, per μg of DNA at 37°C for 4 hours. After digestion, the mixtures were extracted with phenol and DNAs were precipitated with ethanol. Samples were then analyzed on 0.8% agarose gels. DNAs were transferred to Nytran membranes (Schleicher & Schuell, Keene, NH, USA) using 0.4M NaOH containing 1M NaCl as transfer solution. Hybridizations were performed for 18 hours at 42°C. The hybridization solution 20 contained 50% formamide, 1% SDS, 10% dextran sulphate, 4 x SSPE (1 x SSPE = 0.18M NaCl, 1 mM EDTA, 10 mM NaH₂PO₄, pH 7.4), 0.5% blotto (dried milk powder in H₂O) and 0.5 mg salmon sperm DNA per ml. The membranes were washed under non-stringent conditions using as last and most-stringent washing condition incubation for 30 min at room temperature in 0.1 x SSPE containing 0.1% SDS. The probes (labelled at a specific activity of around 109 dpm/µg DNA) used were the PCR fragments generated with primers 8 plus 9 (see Example 11) using genomic DNA of Myceliophthora thermophila; Mycelio. thermo., ; Aspergillus nidulans, Asperg. nidul.; Aspergillus fumigatus, Asperg. fumig.,; Aspergillus terreus 9A1, Asperg. terreus 9A1. Talaromyces thermophilus, Talarom. thermo. The MT2 genomic probe was obtained by random priming (according to the protocol given by Pharmacia, Uppsala, Sweden) and spans 1410 bp, from the BspEl site upstream of the N-terminus of the Mycelio. thermo. phytase gen to the Pvull site in the C-terminus (positions 2068 to 3478). The AT2 genomic probe was obtained by random priming and spans 1365 bp, from the Apal site to the Ndel site of the Asperg. terreus 9A1 phytase gene (positions 491 to 1856). The AN2 DNA probe was obtained by random priming and spans the complete coding sequence (1404 bp) of the Asperg. niger gene (EP 420 358). Results are given in Table 3. ["""except for weak signal corresponding to a non-specific 20kb fragment; In case of the very weak crosshybridization signal at 20 kb seen with DNA from Aspergillus niger using the PCR fragment from Talaromyces thermophilus this signal is unspecific, since it differs significantly from the expected 10 kb HindIII fragment, containing the phytase gene; """ signal due to only partical digest of DNA]. For cross-hybridizations with stringent washing conditions membranes were further washed for 30 min. at 65°C in 0.1 x SSPE containing 0.1% SDS. Results are shown in Table 4 [(1) only the 10.5-kb Hindill fragment is still detected, the 6.5-kb HIndIII fragment disappeared (see table 3)].

45

50

Table 3

			PCR Probes				omic bes	DNA Probes
Source of DNA used for cross-hybrization	Band (kb) detected with Probe of Asperg. fumig.	Band (kb) detected with Probe of Asperg. nidul.	with	Band (kb) detected with Probe of Mycello. thermo.	Band (kb) detected with Probe of Talarom. thermo.	Band (kb) detected with geno- mic Probe MT2 of Mycelio. thermo.	Band (kb) detected with geno- mic Probe AT2 of Asperg. terreus 9A1	Band (kb) detected with cDNA Probe AN2 of Asperg. niger (control)
Acrophialophora levis [ATCC 48380]	no	no	no	no	no	8-kb	no	no
Aspergillus niger [ATCC 9142] (control)	no	no	no	no	no⁴ `	no	no	10 kb HindIII
Aspergillus terreus [CBS 220.95]	no	no	11-kb HindIII	no	no .	no	II-kb HindIII	no
Aspergillus sojae [CBS 221.95]	no	no	no	no	no* ·	no	3.7-kb HindIII	no
Calcarisporiella thermophila [ATCC 22718]	no	no	10.5-kb HindIII	no	no	10.5-kb HindIII	10.5-kb HindIII	no
Chaetomium rectopilium [ATCC 22431]	no	no	no	no	no	>20-kb** HindIII	>20-kb** HindIII	no
Corynascus thermophilus [ATCC 22066]	no	no	no	no	no	10.5-kb HindIII	no	no
Humicola sp. [ATCC 60849]	no	no	no	no	no	9.5-kb HindIII	no	no
Mycelia sterilia [ATCC 20350]	no	no	no	6-kb HindIII	no	6-kb HindIII	6-kb HindIII	no

Мутососсит	no	no	no	T	1 7811			
thermophilum [ATCC 22112]				no	4.8-kb Hind III	no	no	no
Rhizomucor miehei [ATCC 22064]	no	3.8-kb Hind[]]	no	no	no	no	no	no
Sporotrichum cellulophilum [ATCC 20494]	no	no	no	6-kb HindIII	no	6-k5	6-kb	no
(MCC 20494)	ł	Ì		2.1/3.7-		and	and	
				kb Pstl		10.5-kb	10.5-kb	
						HindIII	HindIII	
Sporetrichum thermophile IATCC 224821	no	no	no	6-kb HindIII	6-kb HindIII	6-kb	6-kb	no
				2.1/3.7- kb Pstl		Hindll	Hind[]]	
cytalidium ndonesicum ATCC 468581	no	no	no	no	no	9-kb	no	no
						Hind[]]		
Aspergillus umigatus ATCC 34625]	2.3-kb HindIII	ņo	no	no	no	no	no	no
spergillus nidulans DSM 9743]	no	9.5-kb Hindlll	no	no	no	no	9.5-kb	no
							HindIII	
spergillus terreus A1 DSM 90761	no	no	10.5-kb HindIII	по	6.5-kb HindIII	10.5-kb	10.5-kb	ОЛ
						HindIII	Hind	
lyceliophthora ermophila NTCC 481021	no	no	no	6.5-kb HindIII	no	6.5-kb	6.5-kb	no
						HindIII	HindIII	
ilaromyces ermophilus ITCC 20186]	ло	no	no	no	9.5-kb HindIII	no	no	no

Table 4

	D. L.	1-6	1.0	n	-	Genomi	Genomic	DNA
Source of DNA used for	Asperg.	Asperg.	Asperg.	Probe Mycelio.	rrobe Talarom.	c Probe of MT2	Probe of AT2	Probe of AN2
cross-hybriziation	fumig.		terreus	thermo.	thermo.	Mycelio.	Asperg.	Asperg.
			9A1			thermo.	terreus	niger
							9A1	(control)
Acrophiolophora levis						yes		
Aspergillus niger (control)								yes
Aspergillus terreus (CBS			yes				yes	
116.46)								
Calcarisporiella			yes				yes	
thermophila								
Chaetomium rectopilium						yes		
Corynascus thermophilus						yes		
Sporotrichum				yes		yes	yes ⁽¹⁾	
cellulophilum					,			
Sporotrichum thermophile				yes		yes		
Aspergillus fumigatus	yes							
Aspergillusd nidulans		yes)				
Aspergillus terreus 9A1			yes				yes	
Mycelia sterilia						yes		
Myceliophthora				yes		yes		
thermophila								
Talaromyces thermophilus					yes			

SEQUENCE LISTING

A THE RESERVE OF THE PROPERTY OF THE PROPERTY

	(1) GENERAL INFORMATION:	
5	(i) APPLICANT: (A) NAME: F. HOFFMANN-LA ROCHE AG (B) STREET: Grenzacherstrasse 124 (C) CITY: Basle (D) STATE: BS	
10	(E) COUNTRY: Switzerland (F) POSTAL CODE (ZIP): CH-4002 (G) TELEPHONE: 061 - 688 25 05 (H) TELEFAX: 061 - 688 13 95	
	(I) TELEX: 962292/965542 hlr ch	
15	(ii) TITLE OF INVENTION: Polypeptides with phytase activity	
	(iii) NUMBER OF SEQUENCES: 21	
20	 (iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: Apple Macintosh (C) OPERATING SYSTEM: System 7.1 (Macintosh) (D) SOFTWARE: WORD 5.0 	
25	(vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: EP 94810228.0 (B) FILING DATE: 25-APR-1994	
	(2) INFORMATION FOR SEQ ID NO: 1:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2327 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
35	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: join(374420, 4691819)	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
	TCTAGAACAA TAACAGGTAC TCCCTAGGTA CCCGAAGGAC CTTGTGGAAA ATGTATGGAG	60
	GTGGACACGG CACCAACCAC CACCCGCGAT GGCGCACGTG GTGCCCTAAC CCCTTGCTCC	120
45	CTCAGGATGG AATCCATGTC GACTCTTTAC CCTCACCATC GCCTGGATGA AACCTCCCCG	180
	CTAAGCTCAC GACGATCGCT ATTTCCGACC GATTTGACCG TCATGGTGGA GGGCTGATTC	240
	GGTCGATGCT CCTGCCTTCA TTTCGGAGTT CGGAGACATG AAAGGCTTAT ATGAGGACGT	300
50	CCCAGGTCGG GGACGAAATC CGCCCTGGGC TGTGCTCCTT CGTCGGAAAC ATCTGCTGTC	360

	CGTG	atgg:	CT A	CC A	IG G t G 1	GC T	TT C: he L4	IT G	CC AT la II	rī Gī le Va	rg Ci	rc TC eu Se		rc GC al Al LO	CC TI	rG ≥u	409
5	CTC :			A G Ser		TGCA	ccc (CTCT.	ACGT	CC AJ	ATTC:	rctg	G GCI	ACTG	ACAA		460
10	CGGC	GCAG	C A	CA T	CG G er G	ly T	CC Co hr P 20	CG T ro L	TG G eu G	GC CC	LU A	GG G rg G 25	GC A	AA C ys H	AT AC is So	GC er	508
	GAC Asp 30	TGC Cys	AAC Asn	TCA Ser	GTC Val	GAT Asp 35	CAC His	GGC Gly	TAT Tyr	CAA '	TGC C Cys :	TTT Phe	CCT (Pro (GAA Glu	CTC '	TCT Ser 45	556
15	CAT His	AAA Lys	TGG Trp	GGA Gly	CTC Leu 50	TAC Tyr	GCG Ala	CCC Pro	TAC Tyr	TTC Phe	TCC Ser	CTC Leu	CAG (GAC Asp	GAG Glu 60	TCT Ser	604
20	CCG Pro	TTT Phe	CCT Pro	CTG Leu 65	GAC Asp	GTC Val	CCA Pro	GAG Glu	GAC Asp 70	TGT Cys	CAC His	ATC Ile	ACC Thr	TTC Phe 75	GTG Val	CAG Gln	652
	GTG Val	CTG Leu	GCC Ala 80	CGC Arg	CAC His	GGC Gly	GCG Ala	CGG Arg 85	AGC Ser	CCA Pro	ACC Thr	CAT His	AGC Ser 90	AAG Lys	ACC Thr	AAG Lys	700
25	GCG Ala	TAC Tyr 95	GCG Ala	GCG Ala	ACC Thr	ATT Ile	GCG Ala 100	GCC Ala	ATC Ile	CAG Gln	AAG Lys	AGT Ser 105	GCC Ala	ACT Thr	GCG Ala	TTT Phe	748
30	CCG Pro 110	GGC Gly	AAA Lys	TAC Tyr	GCG Ala	TTC Phe 115	CTG Leu	CAG Gln	TCA Ser	TAT Tyr	AAC Asn 120	TAC Tyr	TCC Ser	TTG Leu	GAC Asp	TCT Ser 125	796
	GAG Glu	GAG Glu	CTG Leu	ACT Thr	CCC Pro 130	Phe	GGG Gly	CGG Arg	AAC Asn	CAG Gln 135	CTG Leu	CGA Arg	GAT Asp	CTG Leu	GGC Gly 140	GCC Ala	844
35	CAG Gln	TTC Phe	TAC	GAG Glu 145	Arg	TAC	AAC Asn	GCC Ala	CTC Leu 150	ACC Thr	CGA Arg	CAC His	ATC Ile	AAC Asn 155	CCC Pro	TTC Phe	892
40	GTC Val	CGC	GCC Ala	Thr	GAT Asp	GCA Ala	TCC Ser	CGC Arg 165	GTC Val	CAC His	GAA Glu	TCC	GCC Ala 170	GIU	AAG Lys	TTC Phe	940
	GTC Val	GAG Glu 175	ı Gly	TTC Phe	CAA Gln	ACC Thr	GCT Ala 180	Arg	CAG Gln	GAC Asp	GAT Asp	CAT His 185	nis	GCC Ala	AAT Asn	CCC	988
45	CAC His	Glr	CCI	TCG Ser	CCT	CGC Arg	, Val	GAC Asp	GTG Val	GCC Ala	Ile 200	PLU	GAA Glu	GC	AGC Ser	GCC Ala 205	1036
50	TAC Tyr	AAC Asi	C AAC n Ası	C ACC	CTC	ı Glu	G CÀC 1 His	AGC Sea	C CTC	TGC Cys	1111	GCC Ala	TTC Phe	GAP Glu	TCC Ser 220	AGC Ser	1084

	ACC (GTC Val	Gly	GAC Asp 225	GAC Asp	GCG (GTC Val	VT9	AAC Asn 230	TTC Phe	ACC Thr	GCC Ala	GTG Val	TTC Phe 235	GCG Ala	CCG Pro	1132
5	GCG Ala	ATC Ile	GCC Ala 240	CAG Gln	CGC .	CTG Leu	GLu	GCC Ala 245	GAT As p	CTT Leu	CCC Pro	G1y GGC	GTG Val 250	CAG Gln	CTG Leu	TCC Ser	1180
10	ACC Thr	GAC Asp 255	GAC Asp	GTG Val	GTC Val	AAC Asn	CTG Leu 260	ATG Met	GCC Ala	ATG Met	TGT Cys	CCG Pro 265	TTC Phe	GAG Glu	ACG Thr	GTC Val	1228
	AGC Ser 270	CTG Leu	ACC Thr	GAC Asp	GAC Asp	GCG Ala 275	CAC His	ACG Thr	CTG Leu	TCG Ser	CCG Pro 280	TTC Phe	TGC Cys	GAC Asp	CTC Leu	TTC Phe 285	1276
15	ACG Thr	GCC Ala	ACT Thr	GAG Glu	TGG Trp 290	ACG Thr	CAG Gln	TAC Tyr	AAC Asn	TAC Tyr 295	CTG Leu	CTC Leu	TCG Ser	CTG Leu	GAC Asp 300	AAG Lys	1324
20	TAC Tyr	TAC Tyr	GGC	TAC Tyr 305	Gly	GGG Gly	GGC Gly	AAT Asn	CCG Pro 310	CTG Leu	GGT Gly	CCG Pro	GTG Val	Glr 315	GGG Gly	GTC Val	1372
	GGC Gly	TGG Trp	GCG Ala 320	Asn	GAG Glu	CTG Leu	ATG Met	GCG Ala 325	CGG Arg	CTA Leu	ACG Thr	CGC	GCC Ala 330		GTO Val	CAC L His	1420
25	GAC Asp	CAC His	The	TGC	GTC Val	AAC Asn	AAC Asn 340	Thr	CTC Leu	GAC Asp	GCG Ala	AGT Ser 345		GC0 Ala	ACC Th	TTC r Phe	1468
30	CCG Pro 350	Lei	AAC 1 Asr	GCC Ala	ACC Thi	CTC Leu 355	ТУГ	GCC Ala	GAC Asp	TTC Phe	TCC Ser 360		GAC Asp	AG Se	C AA r As	C CTG n Leu 365	1516
	GTG Val	TC(ATC	TT(TGG TI	o Ala	CTC Lev	GGC Gly	CTC Lev	TAC TY:		GGC Gly	C ACC	C GC	G CC a Pr 38	G CTG o Leu 0	1564
35	TCC Ser	G CA	G ACC	C TC	r Va	C GAC	AGC Se	GT(TCC L Ser 390	. 61	n Th	G GAG	c GG p G1	G TA y Ty 39		C GCC a Ala	1612
40	GCC Ala	C TG	G ACO	r Va	G CC	G TTO	C GCC	C GC' a Al	a Ar	g Al	G TA	C GT	C GA 1 G1 41		G AT	G CAG	
	TG: Cy:	r CG s Ar 41	g Al	C GA a Gl	G AA	G GA	G CC u Pr 42	o re	G GT	G CG l Ar	C GT g Va	G CT 1 Le 42		C A	AC G	AC CGG	1708
45	GT Va 43	l Me	G CC	G CI	G CA	T GG .s Gl 43	у Су	C CC	T AC	G GA	C AA	3 2	eu Gl	G C	GG I	GC AAC ys Lys 445	; 1756 ;
50	CG Ar	G GA	C GC	T TT	C GT ne Va 45	11 Al	G GG	G CI y Le	G AG	E PI	T GO ne Al	G CF	AG GC Ln Al	CG G La G	GC G ly G 4	GG AA0 1y Asi 60	1804

	TGG GCG GAT TGT TTC TGATGTTGAG AAGAAAGGTA GATAGATAGG TAGTACATAT Trp Ala Asp Cys Phe 465	1859
5	GGATTGCTCG GCTCTGGGTC GTTGCCCACA ATGCATATTA CGCCCGTCAA CTGCCTTGCG	1919
	CCATCCACCT CTCACCCTGG ACGCAACCGA GCGGTCTACC CTGCACACGG CTTCCACCGC	1979
	GACGCGCACG GATAAGGCGC TTTTGTTACG GGGTTGGGGC TGGGGGCAGC CGGAGCCGGA	2039
10	GAGAGAGACC AGCGTGAAAA ACGACAGAAC ATAGATATCA ATTCGACGCC AATTCATGCA	2099
	GAGTAGTATA CAGACGAACT GAAACAAACA CATCACTTCC CTCGCTCCTC TCCTGTAGAA	2159
	GACGCTCCCA CCAGCCGCTT CTGGCCCTTA TTCCCGTACG CTAGGTAGAC CAGTCAGCCA	2219
15	GACGCATGCC TCACAAGAAC GGGGGCGGGG GACACACTCC GCTCGTACAG CACCCACGAC	2279
	GTGTACAGGA AAACCGGCAG CGCCACAATC GTCGAGAGCC ATCTGCAG	2327
20 .	(2) INFORMATION FOR SEQ ID NO: 2: (i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 466 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
30	Met Gly Phe Leu Ala Ile Val Leu Ser Val Ala Leu Leu Phe Arg Ser 1 5 10 15	
	Thr Ser Gly Thr Pro Leu Gly Pro Arg Gly Lys His Ser Asp Cys Asn 20 25 30	
35	Ser Val Asp His Gly Tyr Gln Cys Phe Pro Glu Leu Ser His Lys Trp 35 40 45	
	Gly Leu Tyr Ala Pro Tyr Phe Ser Leu Gln Asp Glu Ser Pro Phe Pro 50 55 60	
40	Leu Asp Val Pro Glu Asp Cys His Ile Thr Phe Val Gln Val Leu Ala 65 70 75 80	
	Arg His Gly Ala Arg Ser Pro Thr His Ser Lys Thr Lys Ala Tyr Ala 85 90 95	
45	Ala Thr Ile Ala Ala Ile Gln Lys Ser Ala Thr Ala Phe Pro Gly Lys 100 105 110	
	Tyr Ala Phe Leu Gln Ser Tyr Asn Tyr Ser Leu Asp Ser Glu Glu Leu 115 120 125	
50	Thr Pro Phe Gly Arg Asn Gln Leu Arg Asp Leu Gly Ala Gln Phe Tyr 130 135 140	

		Glu 145	Arg	Tyr	Asn	Ala	Leu 150	Thr	Arg	His	Ile	Asn 155	Pro	Phe	Val	Arg	Ala 160
5		Thr	Asp	Ala	Ser	Arg 165	Val	His	Glu	Ser	Ala 170	Glu	Lys	Phe	Val	Glu 175	Gly
		Phe	Gln	Thr	Ala 180	Arg	Gln	Asp	Asp	His 185	His	Ala	Asn	Pro	His 190	Gln	Pro
10		Ser	Pro	Arg 195	Val	Asp	Val	Ala	Ile 200	Pro	Glu	Gly	Ser	Ala 205	Tyr	Asn	Asn
٠		Thr	Leu 210	Glu	His	Ser	Leu	Cys 215	Thr	Ala	Phe	Glu	Ser 220	Ser	Thr	Val	Gly
15		Asp 225	Asp	Ala	Val	Ala	Asn 230	Phe	Thr	Ala	Val	Phe 235	Ala	Pro	Ala	Ile	Ala 240
		Gln	Arg	Leu	Glu	Ala 245	qeA	Leu	Pro	Gly	Val 250	Gln	Leu	Ser	Thr	Asp 255	Asp
20		Val	Val	neA	Leu 260	Met	Ala	Met	Суз	Pro 265	Phe	Glu	Thr	Val	Ser 270	Leu	Thr
		qeA	Asp	Ala 275	His	Thr	Leu	Ser	Pro 280	Phe	Суз	Asp		Phe 285	Thr	Ala	Thr
25		Glu	Trp 290	Thr	Gln	Tyr	Asn	Tyr 295	Leu	Leu	Ser	Leu	Asp 300	Lys	Tyr	Tyr	Gly
		Tyr 305	Gly	Gly	Gly	Asn	Pro 310	Leu	Gly	Pro	Val	Gln 315	Gly	Val	Gly	Trp	Ala 320
30		Asn	Glu	Leu	Met	Ala 325	Arg	Leu	Thr	Arg	Ala 330	Pro	Val	His	Asp	His 335	Thr
		Суз	Val	Asn	Asn 340	Thr	Leu	Asp	Ala	Ser 345	Pro	Ala	Thr	Phe	Pro 350	Leu	Asn
35		Ala	Thr	Leu 355	Tyr	Ala	Asp	Phe	Ser 360	His	Ąsp	Ser	neA	Leu 365	Val	Ser	Ile
		Phe	Trp 370	Ala	Leu	Gly	Leu	Tyr 375	Asn	Gly	Thr	Ala	Pro 380	Leu	Ser	Gln	Thr
40		Ser 385	Val	Glu	Ser	Val	Ser 390	Gln	Thr	Asp	Gly	Tyr 395	Ala	Ala	Ala	Trp	Thr 400
		Val	Pro	Phe	Ala	Ala 405	Arg	Ala	Tyr	Val	Glu 410	Met	Met	Gln	СЛа	Arg 415	Ala
45	,	Glu	Lys	Glu	Pro 420	Leu	Val	Arg	Val	Leu 425	Val	Asn	qeA	Arg	Val 430	Met	Pro
		Leu	His	Gly 435	Суз	Pro	Thr	Asp	Lys 440	Leu	Gly	Arg	Суз	Lys 445	Arg	Asp	Ala
50	:	Phe	Val 450	Ala	Gly	Leu	Ser	Phe 455	Ala	Gln	Ala	Gly	Gly 460	Asn	Trp	Ala	Asp

Cys Phe

10

15

20

25

30

40

45

50

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3995 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: join (2208..2263, 2321..3725)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

GTCGACGAGG	CACACCACGC	CCGTCCTCGG	CGGGTCCGAG	AGGGCCGGGC	TCGGGTTCGA	60
CAAGGAGACG	GGCGTCCCTT	ceececec	TGCGGGTGTG	GGTGTTGCTG	TGGACGGTGA	120
GGAGGGGGAC	GGGCTGGGCG	TTGATGACGG	TACGAATGCG	AACGGACACÀ	GGCCGCTGAG	180
CGTGGGTGTT	GCGTTCTAAT	CTTTCTTTGT	GTGGGTGTGT	ACGTGTGGGT	GTGTATGTGT	240
TTGGGGGGG	GAATGTTCTT	GGTAATTATC	TTTCTACCCT	TCTTCTCTTT	CCTTTATTCT	300
GTTCAGCAGG	TATACCCCGT	GTAAGTGTAC	AGGATTATGG	GACGGGTGGG	TGGATGGACT	360
ACTTCTAGAA	GGACGGATAA	GGAAAAAGGG	GAAACACGAA	TATGGCGCCC	TGGGTGGCGC	420
GTCGAGCTGG	ATGCTTGACG	CCGGTCTGGC	AAACATTTTC	TTCTTCTAGC	ACCCAACCTA	480
GTACTTGATA	GAGTGTTTCG	GGGCCAGGCG	GTTTGCGCTG	TGTTTTTACC	AATCACCAAC	540
TAGTGCTACT	ACTATTATTG	CGGCTGTTGA	TGCAGCCGTG	TACCAAAAAT	GCCGCGGCAT	600
CTCCATTGAT	ACTTGTAGTT	TTGATAGATC	AATATTTGGG	AGGTTGCGCT	GGGCTGCTCT	660
GAAACCCCTC	TCTCTTGCTG	TACGTAACGT	ATGTGCACAG	TATGTCACCG	ACAAAGACGA	720
TTGCATGCGC	ATCGTTTTTT	GTTGTGTTTC	AGGCCTCGCT	CGTGTCTAGG	GTATAAACAC	780
ATTGAAGACT	ACATATGCGC	AAGACGTTGA	CATTAACGGG	GTCCTGCAGC	CGCCGCAGGT	840
GCATGTCGTG	ATTAATACCA	CGCGCCTGCG	TAAATTAGCT	AGCCGCCGCC	CTGTTTCACT	900
CGGTTAGAGA	CGGACAGGTG	AGACGGGTCT	CGGTTAAGCA	AGCAAATTGG	AATGCAAGGT	960
TGAAGGTGTA	ATCTGCATAG	CGTGGAAATG	AGAGGGCTCT	GTGGGCAGCC	AGGAAGGTGA	1020
GACGAAATGA	GGAAAGAGGC	ACCAGAAGCT	GTTGTTCTGA	AGTGCCCGTG	GTCATAGCTC	1080
	TACGGATGTC					1140
					TTTTGTCCTA	1200

	TTTTTGGATT TCAACTGTTT CTCTCGACTG TGCTCGGTAG CGACTATGCC GCAAGGTACA	126
	CTACATGTTG TACAATAATC ATACATCGAC CTTCCGTAGG AGTGCTGAAA TACCCGACCT	1320
5	GCTCTCTCTA GCAGGTGCCT AATGGCTTTC GTGTAACTCG ATCGAAACGG ATCAGCAAGT	1380
	CCATTTGCTG TTGGTTGAGA TGTACGATTT ACAAACACGT GGAGAGGTGA GCCACAGCGA	1440
	TAGGCTTCTG GAAGGATTCT GGCGTCTCGG AAAGAGGGCC ACTCGCCCCA CTAACCGGCG	1500
10	CCGATCTTGA CATGGGGCTC GCAGGGGGTT TAAGTGCACA CTACGGAGTA CGGATTACAC	1560
	AGTAGTGTAT GGGTGGGGGC GAGTTTGGGT GGCCTTGTGT GGGGCTCACC GGCTGCCTGT	1620
	TCTCGGGGAG TCTTGGCGGG CCGATTGGAC CCACCTAACC ACGGGTAGTC TTGGCCCGGC	1680
15	CAACTCACAC CGCCCTCATG TTTCGGAGCC AGTCAGGGAG GCAGGCACTA CTCAGTCAGG	1740
	TACACACGTC GGGCTCCTCG ATGCTGGGTG ACATCGAGGC GATACTGCAT TCCAACTACG	1800
	GTTGGCATAG GAGGTATCCT ATTCTAGAGC TGTTCTACGC CGGAACGTAA CCCGGGATAA	1860
20	CCCGGGATAT CGCTTCCCTG AGCGAGCGCG CTGCTGAGGA TCATACAACC CAACAACCGA	1920
	CGACGGTGCA AGAAGGTTGG GGGAAGGAAG AAATCAAGGA AAAAAAAATA GGGGGGGTGG	1980
:	GGACCAAGAG AGAAAGAAAG GAGAAAAAGGG TGGGGGGAGG GAAGAGAAAA AAAAAACGGA	2040
25	GGAATATGGC GTCGCTCTTC GACTGGTTCC GGAAGGGGGC ATCTGGGTAC ACATATGCAC	2100
	CTCTTCCGCA CGGCAGGGAT ATAAACCGGG AGTGCAGTCC CACCGATCAT GCTGAGTCCG	2160
30	CCCGTCTCCA GACTTCACGG TCGCAGAGGA CTAGACGCGC GGTGAAG ATG ACT GGC Met Thr Gly 1	2216
	CTC GGA GTG ATG GTG GTG GTC GGC TTC CTG GCG ATC GCC TCT CT Leu Gly Val Met Val Met Val Gly Phe Leu Ala Ile Ala Ser Leu 5 10 15	2263
35	GTAAGCAGCG ATTCCAGGGG TCCGGTGTGC GTTAAAAGAA AAAGCTAACG CCACCAG A	2321
	CAA TCC GAG TCC CGG CCA TGC GAC ACC CCA GAC TTG GGC TTC CAG TGT Gln Ser Glu Ser Arg Pro Cys Asp Thr Pro Asp Leu Gly Phe Gln Cys 20 35	2369
10	GGT ACG GCC ATT TCC CAC TTC TGG GGC CAG TAC TCG CCC TAC TTC TCC Gly Thr Ala Ile Ser His Phe Trp Gly Gln Tyr Ser Pro Tyr Phe Ser 40 45 50	2417
5	GTG CCC TCG GAG CTG GAT GCT TCG ATC CCC GAC GAC TGC GAG GTG ACG Val Pro Ser Glu Leu Asp Ala Ser Ile Pro Asp Asp Cys Glu Val Thr 55 60 65	2465
	TTT GCC CAA GTC CTC TCC CGC CAC GGC GCG AGG GCG CCG ACG CTC AAA Phe Ala Gln Val Leu Ser Arg His Gly Ala Arg Ala Pro Thr Leu Lys 70 75 80	2513
0	CGG GCC GCG AGC TAC GTC GAT CTC ATC GAC ACG ATC GAC GAT GCG	2561

	Arg	Ala 85	Ala	Ser	Tyr	Val	Asp 90	Leu	Ile	Ąsp	Arg	Ile 95	His	His	Gly	Ala	
5	ATC Ile 100	TCC Ser	TAC Tyr	GGG Gly	CCG Pro	GGC Gly 105	TAC Tyr	GAG Glu	TTC Phe	CTC Leu	AGG Arg 110	ACG Thr	TAT Tyr	GAC Asp	TAC Tyr	ACC Thr 115	2609
. 10	CTG Leu	GGC Gly	GCC Ala	GAC Asp	GAG Glu 120	CTC Leu	ACC Thr	CGG Arg	ACG Thr	GGC Gly 125	CAG Gln	CAG Gln	CAG Gln	ATG Met	GTC Val 130	AAC Asn	2657
	TCG Ser	GGC Gly	ATC Ile	AAG Lys 135	TTT Phe	TAC Tyr	CGC Arg	CGC Arg	TAC Tyr 140	CGC Arg	GCT Ala	CTC	GCC Ala	CGC Arg 145	AAG Lys	TCG Ser	2705
15	ATC Ile	CCC Pro	TTC Phe 150	GTC Val	CGC Arg	ACC Thr	GCC Ala	GGC Gly 155	CAG Gln	GAC Asp	CGC Arg	GTC Val	GTC Val 160	CAC His	TCG Ser	GCC Ala	2753
20	GAG Glu	AAC Asn 165	TTC Phe	ACC Thr	CAG Gln	GGC Gly	TTC Phe 170	CAC His	TCT Ser	GCC Ala	CTG Leu	CTÇ Leu 175	GCC Ala	GAC Asp	CGC Arg	GGG Gly	2801
	TCC Ser 180	ACC Thr	GTC Val	CGG Arg	Pro	ACC Thr 185	CTC Leu	CCC Pro	TAT Tyr	GAC Asp	ATG Met 190	GTC Val	GTC Val	ATC Ile	CCG Pro	GAA Glu 195	2849
25	ACC Thr	GCC Ala	GGC Gly	GCC Ala	AAC Asn 200	AAC Asn	ACG Thr	CTC Leu	CAC His	AAC Asn 205	GAC Asp	CTC Leu	TGC Cys	ACC Thr	GCC Ala 210	TTC Phe	2897
30	GAG Glu	GAA Glu	GGC Gly	CCG Pro 215	TAC Tyr	TCG Ser	ACC Thr	ATC Ile	GGC Gly 220	GAC Asp	GAC Asp	GCC Ala	CAA Gln	GAC Asp 225	ACC Thr	TAC Tyr	2945
	CTC Leu	TCC Ser	ACC Thr 230	TTC Phe	GCC Ala	GGA Gly	CCC Pro	ATC Ile 235	ACC Thr	GCC Ala	CGG Arg	GTC Val	AAC Asn 240	GCC Ala	AAC Asn	CTG Leu	2993
35	CCG Pro	GGC Gly 245	GCC Ala	AAC Asn	CTG Leu	ACC Thr	GAC Asp 250	GCC Ala	GAC Asp	ACG Thr	GTC Val	GCG Ala 255	CTG Leu	ATG Met	GAC Asp	CTC Leu	3041
40	TGC Cys 260	CCC Pro	TTC Phe	Glu	Thr	GTC Val 265	Ala	Ser	Ser	Ser	Ser	Asp	Pro	Ala	Thr	Ala	3089
	GAC Asp	GCG Ala	GGG Gly	GGC	GGC Gly 280	AAC Asn	GGG Gly	CGG Arg	CCG Pro	CTG Leu 285	TCG Ser	CCC Pro	TTC Phe	TGC Cys	CGC Arg 290	CTG Leu	3137
45	TTC Phe	AGC Ser	GAG Glu	TCC Ser 295	GAG Glu	TGG Trp	CGC Arg	GCG Ala	TAC Tyr 300	GAC Asp	TAC Tyr	CTG Leu	CAG Gln	TCG Ser 305	GTG Val	GGC Gly	3185
50	AAG Lys	TGG Trp	TAC Tyr 310	GGG Gly	TAC Tyr	GGG Gly	CCG Pro	GGC Gly 315	AAC Asn	CCG Pro	CTG Leu	GGG Gly	CCG Pro 320	ACG Thr	CAG Gln	GGG Gly	3233

O CONTRACTOR OF THE CHARLES AND AND THE CHARLES AND THE CHARLE

	GTC Val	GGG Gly 325	Pne	GTC Val	AAC Asn	GAG Glu	CTG Leu 330	Leu	GC0 Ala	G CGG	CTG Leu	Ala	Gly	GTC Val	CCC	GTG Val	328
5												335					
	CGC	GAC	GGC	ACC	AGC	ACC	AAC	CGC	ACC	CTC	GAC	GGC	GAC	CCG	CGC	ACC	332
	ALG	wab	Gly	Thr	Ser	Thr	Asn	Arg	Thr	Leu	Asp	Gly	Asp	Pro	Arc	Thr	332
	340					345					350	_	-		•	355	
	TTC	CCG	CTC	GGC	CGG	CCC	CTC	TAC	GCC	GAC	TTC	AGC	CAC	GAC	AAC	GAC	337
10	Phe	Pro	Leu	Gly	Arg 360	Pro	Leu	Tyr	Ala	Asp 365	Phe	Ser	His	Asp	Asn 370	Asp	
	ATG	ATG	GGC	GTC	CTC	GGC	GCC	CTC	GGC	GCC	TAC	GAC	GGC	GTC	CCG	CCC	2426
	Met	Met	Gly	Val 375	Leu	Gly	Ala	Leu	Gly 380	Ala	Tyr	Asp	Gly	Val 385	Pro	Pro	3425
15	CTC	GAC	AAG	ACC	GCC	CCC	ccc	C3.C									
	Leu	Asp	ry3	Thr	Ala	Arg	Arg	Asp	Pro	Glu	GAG	Leu	GGC	GGG Glv	TAC	GCG Ala	3473
			390					395					400	,	-3-	****	
	GCC	AGC	TGG	GCC	GTC	CCG	TTC	GCC	GCC	AGG	AŤC	TAC	GTC	GAG	AAG	ATG	3521
20		Ser 405	Trp	Ala	Val	Pro	Phe 410	Ala	Ala	Arg	Ile	Tyr 415	Val	Glu	Lys	Met	3321
	CGG	TGC	AGC	GGC	GGC	GGC	GGC	GGC	GGC	GGC	GGC	GGC	GAG	GGG	CGG	CAG	3569
	Arg	Суз	Ser	Gly	Gly	GIĀ	Gly	Gly	Gly	Gly	Gly	Gly	G1u	Gly	Arg	Gln	
25						425					430					435	•
	GAG :	AAG	GAT	GAG	GAG	ATG	GTC	AGG	GTG	CTG	GTG	AAC	GAC	CGG	GTG	ATG	3617
	Glu :	Lys .	Asp	GIU	Glu 440	Met	Val .	Arg	Val	Leu 445	Val	Asn	Asp .	Arg	Val 450	Met	
	ACG (CTG 2	AAG (GGG '	TGC	GGC (GCC (GAC (GAG	AGG (GGG	ATC	ጥርጥ	A C G	CTA	C1.1	3665
30	Thr 1	Leu 1	cys (Gly (455	Cys (Gly .	Ala i	Asp (Glu 460	Arg	Gly	Met	Суз	Thr 465	Leu	Glu	3665
	CGG T	TTC I	ATC (GAA 2	AGC 2	ATG (GCG :	TTT (GCG .	AGG (GG :	A A C	GGC 1	A A C	mc-c	CIM	2712
95	Arg F	e .	le (Glu S	Ser 1	det 1	Ala I	he 175	Ala .	Arg (Gly	Asn (Gly 1 480	Lys '	Trp	Asp	3713
	CTC T	-ya r	TTT C	GCT T	rgat <i>i</i>	ATGCC	CC AC	GCCC	GAG	A TTO	BAAC	AGAA	CTT	GTGA:	rgg		3765
	4	85															
o	GGGTA																3825
	ACTGG	CGAA	A TT	CAAG	TCTG	GGG	CCTG	CGG	CGT	CTGCA	TT C	CTCCC	TTCC	C TO	TTG'	TTACC	3885
	TTCTT	AATG	G TT	TTTT	TTTA	TTT	TTTA	TTT	TTCI	AAAT	TT 1	TCAC	CACAA	A CC	CTTT:	TATTG	3945
5	TCTTT	TTTT	C TT	CTTT	TTCT	TCT	TCTG	CAC	ATCG	GATG	GG A	ATTG	TCGA	.c			3995

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 487 amino acids
 (B) TYPE: amino acid
- (D) TOPOLOGY: linear

55

(ii) MOLECULE TYPE: protein																
		(xi)	SEC	UENC	E DE	SCRI	PTIC	N: S	EQ I	ID NO): 4:	:				
5	Met 1	Thr	Gly	Leu	Gly 5	Val	M t	Val	Val	Met 10	Val	Gly	Phe	Leu	Ala 15	Ile
	Ala	Ser	Leu	Gln 20	Ser	Glu	Ser	Arg	Pro 25	Суз	Asp	Thr	Pro	Asp 30	Leu	Gly
10	Phe	Gln	Cys 35	Gly	Thr	Ala	Ile	Ser 40	His	Phe	Trp	Gly	Gln 45	Tyr	Ser	Pro
	Tyr	Phe 50	Ser	Val	Pro	Ser	Glu 55	Leu	Asp	Ala	Ser	Ile 60	Pro	Asp	Asp	Суз
15	Glu 65	Val	Thr	Phe	Ala	Gln 70	Val	Leu	Ser	Arg	His 75	Gly	Ala	Arg	Ala	Pro 80
	Thr	Leu	Lys	Arg	Ala 85	Ala	Ser	Tyr	Val	Asp 90	Leu 、	Ile	Asp	Arg	Ile 95	His
20	His	Gly	Ala	Ile 100	Ser	Tyr	Gly	Pro	Gly 105	Tyr	Glu	Phe	Leu	Arg 110	Thr	Tyr
	Asp	Tyr	Thr 115	Leu	Gly	Ala	Asp	Glu 120	Leu	Thr	Arg	Thr	Gly 125	Gln	Gln	Gln
25	Met	Val 130	Asn	Ser	Gly	Ile	Lys 135	Phe	Tyr	Arg	Arg	Tyr 140	Arg	Ala	Leu	Ala
	Arg 145	Lys	Ser	Ile	Pro	Phe 150	Val	Arg	Thr	Ala	Gly 155	Gln	qeA	Arg	Val	Val 160
30	His	Ser	Ala	Glu	Asn 165	Phe	Thr	Gln	Gly	Phe 170		Ser	Ala	Leu	Leu 175	Ala
	Asp	Arg	Gly	Ser 180	Thr	Val	Arg	Pro	Thr 185		Pro	Tyr	Asp	Met 190	Val	Val
35	Ile	Pro	Glu 195	Thr	Ala	Gly	Ala	Asn 200	Asn	Thr	Leu	His	Asn 205	qeA	Leu	Суз
·	Thr	Ala 210	Phe	Glu	Glu	Gly	Pro 215		Ser	The	Ile	Gly 220		qeA	Ala	Gln
40	Asp 225		Tyr	Leu	Ser	Thr 230		Ala	Gly	Pro	11e 235	Thr	Ala	Arg	Val	Asn 240
	Ala	Asn	Leu	Pro	Gly 245	Ala	Asn	Leu	Thr	Asp 250		Ąsp	Thr	Val	Ala 255	Leu
45	Met	Ąsp	Leu	Cys 260		Phe	Glu	Thr	Val 265		Ser	Ser	Ser	Ser 270	Asp	Pro
	Ala	Thr	Ala 275		Ala	Gly	Gly	Gly 280		Gly	Arg	Pro	Leu 285	Ser	Pro	Phe
50	Cys	Arg 290		Phe	Ser	Glu	Ser 295		Trp	Arg	Ala	Tyr 300	Asp	Tyr	Leu	Glr

	Ser 305		Gly	Lys	Trp	Tyr 310	Gly	Tyr	Gly	Pro	Gly 315	Asn	Pro	Leu	Gly	Pro 320	
5	Thr	Gln	Gly	Val	Gly 325	Phe	Val	Asn	Glu	Leu 330	Leu	Ala	Arg	Leu	Ala 335	Gly	
	Val	Pro	Val	Arg 340	Asp	Gly	Thr	Ser	Thr 345	Asn	Arg	Thr	Leu	Asp 350	Gly	Asp	
10	Pro	Arg	Thr 355	Phe	Pro	Leu	Gly	Arg 360	Pro	Leu	Tyr	Ala	Asp 365	Phe	Ser	His	
4.	Asp	Asn 370	Asp	Met	Met	Gly	Val 375	Leu	Gly	Ala	Leu	Gly 380	Ala	Tyr	Asp	Gly	
15	Val 385	Pro	Pro	Leu	Asp	Lys 390	Thr	Ala	Arg	Arg	Asp 395	Pro	Glu	Glu	Leu	Gly 400	
	Gly	Tyr	Ala	Ala	Ser 405	Trp	Ala	Val	Pro	Phe 410	Ala	Ala	Arg	Ile	Tyr 415	Val	
20	Glu	Lys	Met	Arg 420	Cys	Ser	Gly	Gly	Gly 425	Gly	Gly	Gly	Gly	Gly 430	Gly	Glu	
	Gly	Arg	Gln 435	Glu	Lys	Asp	Glu	Glu 440	Met	Val	Arg	Val	Leu 445	Val	Asn	Asp	
25	Arg	Val 450	Met	Thr	Leu	Lys	Gly 455	cys	Gly	Ala	qeA	Glu 460	Arg	Gly	Met	Суз	
30	Thr 465	Leu	Glu	Arg	Phe	Ile 470	Glu	Ser	Met	Ala	Phe 475	Ala	Arg	Gly	Asn	Gly 480	
	Lys	Trp	Asp	Leu	Cys 485	Phe	Ala										
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	io: 5	;								
35		(i)	(E) LE 3) TY 3) SI		: 10 nucl EDNE	0 ba eic SS:	se p acid	airs l	ı							
10		(ii)	MOI	ECUI	E TY	PE:	DNA	(gen	omic	:)							
:5		(ix)		.) NA	: ME/K CATI			00									
		(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 5:						
0		C TT r Le 1	G GC	T CG	g As	C CA n Hi 5	C AC	A GA r As	C AC	r Le	G TC u Se 0	T CC	G TT o Ph	C TG	s Al	T .a. 5	46

	CTT TCC ACG CAA GAG GAG TGG CAA GCA TAT GAC TAC TAC CAA AGT CTG Leu Ser Thr Gln Glu Glu Trp Gln Ala Tyr Asp Tyr Tyr Gln Ser Leu 20 25 30	94
5	GGG AAT Gly Asn	100
10	(2) INFORMATION FOR SEQ ID NO: 6:	
:	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 33 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
20	Thr Leu Ala Arg Asn His Thr Asp Thr Leu Ser Pro'Phe Cys Ala Leu 1 5 10 15	
	Ser Thr Gln Glu Glu Trp Gln Ala Tyr Asp Tyr Tyr Gln Ser Leu Gly 20 25 30	
25	Asn	
	(2) INFORMATION FOR SEQ ID NO: 7:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 106 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
35	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2106	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	4.0
	T ACG GTA GCG CGC ACC AGC GAC GCA AGT CAG CTG TCA CCG TTC TGT Thr Val Ala Arg Thr Ser Asp Ala Ser Gln Leu Ser Pro Phe Cys 1 5 10 15	46
45	CAA CTC TTC ACT CAC AAT GAG TGG AAG AAG TAC AAC TAC CTT CAG TCC Gln Leu Phe Thr His Asn Glu Trp Lys Lys Tyr Asn Tyr Leu Gln Ser 20 25 30	94
	TTG GGC AAG TAC	106
50	Leu Gly Lys Tyr	

	(2) INFORMATION FOR SEQ ID NO: 8:	
5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 35 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
	Thr Val Ala Arg Thr Ser Asp Ala Ser Gln Leu Ser Pro Phe Cys Gln 1 5 10 15	
15	Leu Phe Thr His Asn Glu Trp Lys Lys Tyr Asn Tyr Leu Gln Ser Leu 20 25 30	
	Gly Lys Tyr 35	
	(2) INFORMATION FOR SEQ ID NO: 9:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 109 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: DNA (genomic)	
30	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2109	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
35	C ACC ATG GCG CGC ACC GCC ACT CGG AAC CGT AGT CTG TCT CCA TTT Thr Met Ala Arg Thr Ala Thr Arg Asn Arg Ser Leu Ser Pro Phe 1 5 10 15	46
	TGT GCC ATC TTC ACT GAA AAG GAG TGG CTG CAG TAC GAC TAC CTT CAA Cys Ala Ile Phe Thr Glu Lys Glu Trp Leu Gln Tyr Asp Tyr Leu Gln 20 25 30	94
40	TCT CTA TCA AAG TAC Ser Leu Ser Lys Tyr 35	109
4 5	(2) INFORMATION FOR SEQ ID NO: 10:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 36 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
io	(ii) MOLECULE TYPE: protein	

		(xi)	SEC	UENC	E DE	ESCRI	PTIC	: אכ	SEQ I	מא מז): 10):						
5	Thr 1	Met	Ala	Arg	Thr 5	Ala	Thr	Arg	Asn	Arg 10	Ser	Leu	Ser	Pro	Phe 15	Cys		
	Ala	Ile	Phe	Thr 20	Glu	Lys	Glu	Trp	Leu 25	Gln	Tyr	Asp	Tyr	Leu 30	Gln	Ser		
10	Leu	Ser	Lys 35	Tyr														
	(2)	INF	ORMA?	NOI	FOR	SEQ	ID I	10:	11:									
15		(i)	() ()	QUENCA) LE B) TY C) ST C) TO	engti Pe : Prant	nuci DEDNI	912 l leic ESS:	oase acid doul	pai:	rs								
		(ii)	MOI	LECUI	LE T	YPE:	DNA	(ge	nomi	c)			•					
20		(ix)	(2	ATURE A) N/ B) L(AME/I			1396		•				`				
25		(ix)	(2	ATURE A) NJ B) LO	ME/I			1398					٠					
		(xi) SE	QUENC	CE DI	ESCR:	IPTI(: NC	SEQ	ID NO): 1	1:						
30	ATG Met 1	GJ Y	GTC Val	TCT Ser	GCT Ala 5	GTT Val	CTA Leu	CTT Leu	CCT Pro	TTG Leu 10	TAT Tyr	CTC Leu	CTA Leu	GCT Ala	GGA Gly 15	GTC Val	4	8
25	ACC Thr	TCC Ser	GGA Gly	CTG Leu 20	GCA Ala	GTC Val	CCC Pro	GCC Ala	TCG Ser 25	AGA Arg	TAA neA	CAA Gln	TCC Ser	ACT Thr 30	TGC Cys	GAT Asp	9	6
35	ACG Thr	GTC Val	GAT Asp 35	CAA Gln	GGG Gly	TAT Tyr	CAA Gln	TGC Cys 40	TTC Phe	TCC Ser	GAG Glu	ACT Thr	TCG Ser 45	CAT His	CTT Leu	TGG Trp	14	4
40	GGT Gly	CAA Gln 50	TAC	GCG Ala	CCG Pzo	TTC Phe	TTC Phe 55	TCT Ser	CTG Leu	GCA Ala	AAC Asn	GAA Glu 60	TCG Ser	GTC Val	ATC Ile	TCC Ser	19	2
45	CCT Pro 65	GAT Asp	GTG Val	CCC	GCC Ala	GGT Gly 70	Суз	AGA Arg	GTC Val	ACT Thr	TTC Phe 75	GCT Ala	CAG Gln	GTC Val	CTC Leu	TCC Ser 80	24	10
70	CGT Arg	CAT His	GGA Gly	GCG Ala	CGG Arg 85	Tyr	CCG Pro	ACC	GAG Glu	TCC Ser 90	Lys	GJ A GGC	AAG Lys	AAA Lys	TAC Tyr 95	Ser	28	8 8
50	GCT Ala	CTC Leu	ATT Ile	GAG Glu	Glu	ATC Ile	CAG Gln	CAG Gln	AAC Asn	Val	ACC Thr	ACC Thr	TTT Phe	GAT Asp	Gly	AAA Lys	33	3 6

	5	T	AT yr	GC:	a E 1	rc c ne L 15	TG A eu L	AG A	ACA :	TAC Tyr	AAC Asn 120	Ty:	C AG	C T	rg g eu g	ly A	SCA 11a 125	GA: Asp	T GA	AC (CTG Leu	384	1
	•	A	CT hr	Pro 130	, E 1	rc G ie G	GA G ly G	AG C	AG G	AG 1u 35	CTA Leu	GT(C AA L As:	C TC n Se	r G	GC A ly I 40	TC le	AAC Lys	F TI	C :	rac ryr	432	!
	10		AG ln 45	CG(TA Ty	C A	AC G	ra r	TC A eu T 50	CC (CGA Arg	CAC	C ATO	C AA e As 15	n Pi	CC T	TC he	GTC Val	CG Ar	g A	SCC Nla	480	
	15	A(CC	GAT Asp	GC Al	A TO	EAL	GC G rg V	TC C	AC (GAA Glu	TCC	GC0 Ala	Gl	G AA u Ly	AG T	TC he	GTC Val	GA G1 17	u G	GC 11y	528	
		T7 Ph	C e	CAA Gln	AC:	C GC r Al 18	a AI	SA C	AG G Ln A	AC G	TAS	CAT His 185	His	GC GC	C AA a As	T C	ro i	CAC His 190	CA(G C	CT ro	576	
	20	TC Se	G (CCT Pro	CGC Arg 195	4 A CT	G GA 1 As	C G1	G GO	La I	le 00	CCC Pro	GAA Glu	GG(C AG Y Se	r A.	CC :	IAC Iyr	AA(18A	C A.	AC sn	624	
	25			CTG Leu 210	GA0	G CAC	C AG S Se	C CI	C TC	'S T	CC hr	GCC Ala	TTC Phe	GAA Glu	TC Se 22	r Se	C I	ACC Thr	GTC Val	G G	GC ly	672	
		GA: As ₁ 22:		SAC	GCG Ala	GTC Val	C GC	C AA a As 23	C TT n Ph 0	C A	CC hr	GCC Ala	GTG Val	TTC Phe 235	Ala	G CC	G G	CG la	ATC Ile	GC A1	La	720	
	3 <i>0</i>	CA(Glr	G C	:GC	CTG Leu	GAC Glu	GC0 Ala 245	AS	T CT P Le	T Co	CC (GGC Gly	GTG Val 250	CAG Gln	CTC	TC Se	C A	hr	GAC Asp 255	GA As	AC IP	768	
	35	GT(Val	6 G	TC	AAC Asn	CTG Leu 260	net	GCC Ala	C ATO	3 T(73 E	CCG Pro 265	TTC Phe	GAG Glu	ACC Thr	GT Va	ıs	GC er 70	CTG Leu	AC Th	C F	816	
		GAC Asp	G.	Jp,	GCG Ala 275	CAC His	ACC Thr	CTC	TC(G CC Pr 28	O P	TC he	TGC Cys	GAC Asp	CTC Leu	TTO Pho	e T	CG (GCC Ala	AC Th	T	864	
4	10	GAG Glu		3G / rp :	ACG Thr	CAG Gln	TAC)AA neA	TAC Ty: 295	Le	G C	TC eu	TCG Ser	CTG Leu	GAC Asp 300	Lys	G T	AC :	TAC Tyr	GG G1	C Y	912	
4	5	TAC Tyr 305	GI	SC (GG Gly	GGC Gly	TAA neA	CCG Pro 310	CTG Leu	GG G1	T C Y P	CG (Val	CAG Gln 315	GGG Gly	GTC Val	G G G I	GC 1	rGG Trp	GC(A1:	a	960	
-	,	AAC Asn	GA G1	.G C	TG æu	ATG Met	GCG Ala 325	CGG Arg	CTA Leu	AC Th	G C	rg P	SCC (Nla 1	CCC Pro	GTG Val	CAC His	GA As	p H	CAC lis	ACC Thi	3	1008	
50)	TGC Cys	GT Va	C A 1 A	311	AAC Asn 340	ACC Thr	CTC Leu	GAC Asp	GC0 Ala	3 S€	GT C	CG (GCC Ala	ACC Thr	TTC Phe	CC Pr	G C		AAC Asn	; 1	1056	

	GCC ACC CTC TAC GCC GAC TTC TCC CAC GAC AGC AAC CTG GTG TCG ATC Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Ser Asn Leu Val Ser Ile 355	1104
5	TTC TGG GCG CTG GGC CTG TAC AAC GGC ACC GCG CCG CTG TCG CAG ACC Phe Trp Ala Leu Gly Leu Tyr Asn Gly Thr Ala Pro Leu Ser Gln Thr 370 380	1152
: 10	TCC GTC GAG AGC GTC TCC CAG ACG GAC GGG TAC GCC GCC GCC TGG ACG Ser Val Glu Ser Val Ser Gln Thr Asp Gly Tyr Ala Ala Ala Trp Thr 385 390 395	1200
	GTG CCG TTC GCC GCT CGC GCG TAC GTC GAG ATG ATG CAG TGT CGC GCC Val Pro Phe Ala Ala Arg Ala Tyr Val Glu Met Met Gln Cys Arg Ala 405 410	1248
15	GAG AAG GAG CCG CTG GTG CGC GTG CTG GTC AAC GAC CGG GTC ATG CCG Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Met Pro 420 425	1296
. 20	CTG CAT GGC TGC CCT ACG GAC AAG CTG GGG CGG TGC AAG CGG GAC GCT Leu His Gly Cys Pro Thr Asp Lys Leu Gly Arg Cys Lys Arg Asp Ala 435	1344
	TTC GTC GCG GGG CTG AGC TTT GCG CAG GCG GGC GGG AAC TGG GCG GAT Phe Val Ala Gly Leu Ser Phe Ala Gln Ala Gly Gly Asn Trp Ala Asp 450 450	1392
25	TGT TTC TGATGTTGAG AAGAAAGGTA GATAGATAGG TAGTACATAT GGATTGCTCG Cys Phe 465	1448
	GCTCTGGGTC GTTGCCCACA ATGCATATTA CGCCCGTCAA CTGCCTTGCG CCATCCACCT	1508
30	CTCACCCTGG ACGCAACCGA GCGGTCTACC CTGCACACGG CTTCCACCGC GACGCGCACG	1568
	GATAAGGCGC TTTTGTTACG GGGTTGGGGC TGGGGGCAGC CGGAGCCGGA GAGAGAGACC	1628
	AGCGTGAAAA ACGACAGAAC ATAGATATCA ATTCGACGCC AATTCATGCA GAGTAGTATA	1688
35	CAGACGAACT GAAACAAACA CATCACTTCC CTCGCTCCTC TCCTGTAGAA GACGCTCCCA	1748
	CCAGCCGCTT CTGGCCCTTA TTCCCGTACG CTAGGTAGAC CAGTCAGCCA GACGCATGCC	1808
	TCACAAGAAC GGGGGGGGG GACACACTCC GCTCGTACAG CACCCACGAC GTGTACAGGA	1868
40	AAACCGGCAG CGCCACAATC GTCGAGAGCC ATCTGCAGGA ATTC	1914

(2) INFORMATION FOR SEQ ID NO: 12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 466 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

55

45

EP 0 684 313 A2

	Me	et G	ly V	al Se	r Al	.a Va 5	ıl Le	eu Le	eu P	ro I	eu T 10	yr L	eu L	eu A		y Val
5	Th	ır S€	er Gl	ly Le 2	u Al 0	a Va	.1 Pr	CA O	la Se	er A 25	rg A	sn G	ln Se		r Cy	3 Asp
	Th	r Va	l As	p Gl	n Gl	у Ту	r Gl	n Cy 4	/S P1	ne S	er G	lu Ti		er Hi 15	s Le	u Trp
. 10	G1	у G1 5	л Ту 0	r Al	a Pr	o Ph	e Ph 5	e Se 5	r Le	eu A	la A		lu S∈ 50	er Va	1 II	e Ser
	Pr 6	o As 5	p Va	l Pr	o Ala	a Gl	у Су. 0	s Ar	g Va	.1 T	ar Pl	ne Al 75	.a G1	n Va	l Le	u Ser 80
15	Ar	g Hi	s Gl	y Ala	85	Ty:	r Pro	o Th	r Gl	u Se	er Ly	/ s Gl	y Ly	s Ly	s T y:	r Ser
	Ala	a Le	u Ile	e Glu 100	ı Glu	ı Ile	e Glr	a Gla	n As:	n Va 5	1 Th	r Th	r Ph	e As ₁		/ Lys
20				,				120	Ú				12	5		Leu
	Thr	130	Ph€	e Gly	Glu -	Gln	135	Let	ı Val	l As	n Se	r G1		e Lys	Phe	Tyr
25						150					15	5				Ala 160
					103					1/	U				175	
30				Ala 180					185					190		
			1,,	Val				200					205			
35				His			213					220				
				Val		230					235	•				240
40					243					250					255	
				Leu 260					265					270		
45				His				280					285			
				Gln '		•	233					300				
50	Tyr (Gly	Gly	Gly 1	Asn E	Pro :	Leu (Gly	Pro	Val	Gln 315	Gly	Val	Gly		Ala 320

EP 0 684 313 A2

	Asn	Glu	Leu	Мt	Ala 325	Arg	Leu	Thr	Arg	Ala 330	Pro	Val	His	Asp	His 335	Thr	
5	Суз	Val	neA	Asn 340	Thr	Leu	Asp	Ala	Ser 345	Pro	Ala	Thr	Phe	Pro 350	Leu	Asn	
	Ala	Thr	Leu 355	Tyr	Ala	Asp	Phe	Ser 360	His	Asp	Ser	Asn	Leu 365	Val	Ser	Ile	
10	Phe	Trp 370	Ala	Leu	Gly	Leu	Tyr 375	Asn	Gly	Thr	Ala	Pro 380	Leu	Ser	Gln	Thr	
	Ser 385	Val	Glu	Ser	Val	Ser 390	Gln	Thr	Asp	Gly	Tyr 395	Ala	Ala	Ala	Trp	Thr 400	
15	Val	Pro	Phe	Ala	Ala 405	Arg	Ala	Tyr	Val	Glu 410	Met	Met	Gln	Cys	Arg 415	Ala	
	Glu	Lys	Glu	Pro 420	Leu	Val	Arg	Val	Leu 425	Val	Asn	Asp	Arg ,	Val 430	Met	Pro	
20	Leu	His	Gly 435		Pro	Thr	Asp	Lys 440	Leu	Gly	Arg	Cys	Lys 445	Arg	Asp	Ala	
	Phe	Val 450	Ala	Gly	Leu	Ser	Phe 455	Ala	Gln	Ala	Gly	Gly 460	Asn	Trp	Ala	Asp	
25	Cys 465	Phe															
	(2)	INF	ORMA	MOIT	FOR	SEQ	ID	NO:	13:								
30		(i	(A) L B) I	ENGT YPE: TRAN	H: 1 nuc	12 b leic ESS:	usti ase aci dou near	pair .d	:3							
35		(ii	.) MC	LECU	ILE T	YPE:	DNA	A (g€	enomi	ic)							
		(xi	L) SE	eQUE1	ICE I	ESCF	RIPT	ON:	SEQ	ID i	10: 3	13:					
40	GAC	GGT	CAGC	CTG	CCG	ACG A	CGC	GCAC	AC G	CIGIC	CGCC	3 TT	CTGC	GACC	TCT	TCACCGC	60
	CGC	CCGAC	STGG	ACGO	AGT	ACA A	CTA	CCTG	CT C	ICGC'	rgga(CAA	GTAC'	racg	TC		112
	(2)	IN	FORM	ATIO	1 FOE	R SE	ID	ΝО:	14:								
4 5		(:		(A) : (B) : (C) :	LENG: TYPE STRAI	TH:	00 b clei NESS	RIST ase ; c ac : do near	pair id uble								
50		(i.	i) M	OLEC	ULE '	TYPE	: DN	A (g	enom	ic)							

EP 0 684 313 A2

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
_	CAGTAACCTG GTGTCGATCT TCTGGNCGCTG GGTCTGTACA ACGGCACCAA GCCCCTGTCG	61
5	CAGACCACCG TGGAGGATAT CACCCGGACG	90
	(2) INFORMATION FOR SEQ ID NO: 15:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
	ATGGAYATGT GYTCNTTYGA	20
20	(2) INFORMATION FOR SEQ ID NO: 16:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16: TTRCCRGCRC CRTGNCCRTA	20
	(2) INFORMATION FOR SEQ ID NO: 17:	20
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
40	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
	TAYGCNGAYT TYTCNCAYGA	20
	(2) INFORMATION FOR SEQ ID NO: 18:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid	

	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
10	CGRTCRTTNA CNAGNACNC	19
	(2) INFORMATION FOR SEQ ID NO: 19:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	•	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
	ATGGAYATGT GYTCNTTYGA	20
25	(2) INFORMATION FOR SEQ ID NO: 20:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:	20
	TTRCCRGCRC CRTGNCCRTA	20
	(2) INFORMATION FOR SEQ ID NO: 21:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
45	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
50	AGTCCGGAGG TGACTCCAGC TAGGAGATAC	30

55 Claims

1. A DNA sequence coding for a polypeptide having phytase activity and which DNA sequence is derived from a fungus selected from the group consisting of Acrophialophora levis, Aspergillus terreus,

Aspergillus fumigatus. Aspergillus nidulans, Aspergillus sojae, Calcarisporiella thermophila. Chaetomium rectopilium, Corynascus thermophilus, Humicola sp., Mycelia sterilia, Myrococcum thermophilum. Myceliophthora thermophila, Rhizomucor miehei, Sporotrichum cellulophilum, Sporotrichum thermophile, Scytalidium indonesicum and Talaromyces thermophilus or a DNA sequence coding for a fragment of such a polypeptide which fragment still has phytase activity.

- A DNA sequence according to claim 1 wherein the fungus is selected from the group consisting of Acrophialophora levis, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus terreus, Calcarisporiella thermophila, Chaetomium rectopilium, Corynascus thermophilus, Sporotrichum cellulophilum, Sporotrichum thermophile, Mycelia sterilia, Myceliophthora thermophila and Talaromyces thermophilus.
- 3. A DNA sequence according to claim 2 wherein the fungus is selected from the group consisting of Aspergillus terreus, Myceliophthora thermophila, Aspergillus fumigatus, Aspergillus nidulans and
- A DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence is
 - (a) the DNA sequence of Figure 1 [SEQ ID NO:1] or its complementary strand:

5

10

15

- (b) a DNA sequence which hybridizes under standard conditions with sequences defined under (a);
- (c) a DNA sequence which, because of the degeneracy of the genetic code, does not hybridize with 20 sequences of (a) or (b), but which codes for polypeptides having exactly the same amino acid sequences as the polypeptides encoded by these DNA sequences; and
 - (d) a DNA sequence which is a fragment of the DNA sequences specified in (a), (b) or (c).
- 5. A DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence is 25
 - (a) the DNA sequence of Figure 2 [SEQ ID NO:3] or its complementary strand;
 - (b) a DNA sequence which hybridizes under standard conditions with sequences defined under (a);
- (c) a DNA sequence which, because of the degeneracy of the genetic code, does not hybridize with sequences of (a) or (b), but which codes for polypeptides having exactly the same amino acid 30 sequences as the polypeptides encoded by these DNA sequences; and
 - (d) a DNA sequence which is a fragment of the DNA sequences specified in (a), (b) or (c).
- A DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence is 35
 - (a) a DNA sequence comprising one of the DNA sequences of Figures 4 [SEQ ID NO:5], 5 [SEQ ID NO:7], 6 [SEQ ID NO:9]or 10 [SEQ ID NO: 13 and/or SEQ ID NO:14] or its complementary strand;
 - (b) a DNA sequence which hybridizes under standard conditions with sequences defined under (a);
 - (c) a DNA sequence which, because of the degeneracy of the genetic code, does not hybridize with sequences of (a) or (b) but which codes for polypeptides having exactly the same amino acid sequences as the polypeptides encoded by these DNA sequences; and
 - (d) a DNA sequence which is a fragment of the DNA sequences specified in (a), (b) or (c).
- A DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence is selected from a DNA sequence comprising the DNA sequence of Figure 4 [SEQ ID NO:5] isolatable 45 from Talaromyces thermophilus, of Figure 5 [SEQ ID NO:7] isolatabel from Aspergillus fumigatus, of Figure 6 [SEQ ID NO:9] isolatable from Aspergillus nidulans or of Figure 10 [SEQ ID NO:13 and/or SEQ ID NO:14] isolatable from Aspergillus terreus (CBS 220.95) or which DNA sequence is a degenerate 50
 - A DNA sequence as claimed in any one of claims 4 to 6 which codes for a polypeptide having phytase activity which DNA sequence is derived from a fungus.
- A DNA sequence according to claim 8 wherein the fungus is selected from a group as defined in claim 55
 - 10. A DNA sequence which codes for a polypeptide having phytase acitivity and which DNA sequence hybridizes under standard conditions with a probe which is a product of a PCR reaction with DNA

isolated from a fungus as defined in any one of claims 1 to 3 and the following pair of PCR primer: "ATGGA(C/T)ATGTG(C/T)TC(N)TT(C/T)GA" [SEQ ID NO:15] as sense primer and "TT(A/G)CC(A/G)CC(G/A)TG(N)CC(A/G)TA" [SEQ ID NO:16] as anti-sense primer.

- 11. A DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence hybridizes under standard conditions with a probe which is a product of a PCR reaction with DNA isolated from Aspergillus terreus (CBS 220.95) and the following two pairs of PCR primers:

 (a) "ATGGA(C/T)ATGTG(C/T)TC(N)TT(C/T)GA" [SEQ ID NO:15] as the sense primer and "TT(A/G)CC(A/G)GC(A/G)CC(G/A)TG(N)CC(A/G)TA" [SEQ ID NO:16] as the anti-sense primer; and
 (b) "TA(C/T)GC(N)GA(C/T)TT(C/T)TC(N)CA(C/T)GA" [SEQ ID NO: 17] as the sense primer and "CG(G/A)TC(G/A)TT(N)AC(N)AG(N)AC(N)C" [SEQ ID NO: 18] as the anti-sense primer.
 - 12. A DNA sequence coding for a chimeric construct having phytase activity which chimeric construct comprises a fragment of a DNA sequence as claimed in any one of claims 1 to 11.
- 13. A DNA sequence coding for a chimeric construct as defined in claim 12 which chimeric construct consists at its N-terminal end of a fragment of the Aspergillus niger phytase fused at its C-terminal end to a fragment of the Aspergillus terreus phytase.
- 14. A DNA sequence as claimed in claim 13 with the specific nucleotide sequence as shown in Figure 7 [SEQ ID NO:11] and a degenerate variant or aequivalent thereof.
 - 15. A DNA sequence as claimed in any one of claims 1 to 14 wherein the encoded polypeptide is a phytase.
 - 16. A polypeptide encoded by a DNA sequence as claimed in any one of claims 1 to 15.
 - 17. A vector comprising a DNA sequence as claimed in any one of claims 1 to 15.
- 18. A vector as claimed in claim 17 suitable for the expression of said DNA sequence in bacteria or a fungal or a yeast host.
 - 19. Bacteria or a fungal or yeast host transformed by a DNA sequence as claimed in any one of claims 1 to 15 or a vector as claimed in claim 17 or 18.
- 20. A composit food or feed comprising one or more polypeptides as defined in claim 16.
 - 21. A process for the preparation of a polypeptide as claimed in claim 16 characterized in that transformed bacteria or host cell as claimed in claim 19 is cultured under suitable culture conditions and the polypeptide is recovered therefrom.
 - 22. A polypeptide when produced by a process as claimed in claim 21.
- 23. A process for the preparation of a composit feed or food wherein the components of the compositionare mixed with one or more polypeptides as defined in claim 16.
 - 24. A process for the reduction of levels of phytate in animal manure characterized in that an animal is fed a composit feed as defined in claim 20 in an amount effective in converting phytate contained in the feedstuff to inositol and inorganic phosphate.
- 25. Use of a polypeptide according to claim 16 for the conversion of phytate to inositol phosphates, inositol and inorganic phosphate.

40

Fig. 1/1

tcta gtgg ctca ctaa ggtc ccca cgtg	gaca igga igct igat	tgc	gca gaa cga tcc	cca tcc cga tgc acg	acc atg tcg ctt aaa	acca toga ctat catt toca ctt	acto tto gco	cgc ctt ccg gga ctg tgc	gati taci acci gtt ggc cat	ggc cct gat cgg tgt tgt	gca cac ttg aga gct gct	cgt cat acc cat cct	ggt ege gte gaa tegt	gcco ctgo atgo aggo tcgo	gate gate gtge ctte gaae	gaa gagg atai acai	acc ggc tga tct	tge tga gga gct tag	ccg ttc cgt gtc	60 120 180 240 300 360 420 16
gtat	gca	acc	cct	cta	cgt	ccaa	att	ctc	tgg	gca	ctg	aca	acg	gcg	cag	Cac:	atc S	G ggg	CAC T	480 20
P CCC						caa: K	aca H	tag S	cga D	ctg C	caa N	ctc S	agt V	cga D	tca H	G G	cta Y	tca Q	atg C	540 40
cttt			act L	ctc	tca H	taa. K	atg W		act L	cta Y	.cgc	gcc	cta Y	ctt F	ctc S	cct L	cca Q	gga D	cga E	600 60
gtct	CCC		tcc	tct	gga.	.cgt	CCC P	aga E	gga D	ctg C	rtca H	.cat	cac T	ctt F	cgt V	gc'a Q	ggt V	gct L	ggc A	660 80
ccg							aac	cca	tag	rcaa	gac	caa	ggc	gta	cgc	ggc	gac	cat	tgc	720 100
R		G			s	P	T	н	s	K						. A		`	_ A	780
A	cat I	CCa Q	gaa K	gaç S	atgo A	Cac T	tgc A	gtt	P	G G	jcaa K	ata Y	A CGC	F	L	gca Q	S	Y	N	120
cta Y	ctc S	ctt L		ct S	etga E	igga E	gct L	gac	tcc P	ctt F	cgg G	g R	gaa N	cca Q	gct L	gcg R	aga D	tct L	ggg	840 140
cgc	cca Q	gtt F	cta Y	e E	agcg R	jcta Y	caa N	cgc A	cct	cac T	cccç R	gaca H	acat I	caa N	P	ctt F	.cgt V	.ccg R	A	900 160
cac	cga D	tgo A	ato S	ccc R			.cga	ato	cgc A	cga E	agaa K	igti F	cgt V	.cga	G rggg	rctt F	.cca	aac	cgc A	960 180
_	- aca	aas	cas	at c	atca	.cac	caa	tco	cca	100	agco	ctt	cgc	etcg	jegt	gga	cgt	ggc	cat	1020
R	Q	D	D	H	Н	A	N	₽	Н	Q	P	S	P	R	V	D	V	A	1	200
ccc P	cga E	agg G		A A			caa N		gct L	E E	agca H	aca S	gcct L	ctq C	gcac T	A A	ctt F	E	aatc S	1080 220
cag S				gcg.	acga D	acgo A	ggt V	.cg	cca N	act F	tca T	ccg A	ccg1 V	tgtt F	A A	gcc P	gge A	gat I	Lcgc A	1140 240
cca Q	gcg R	cct	gg: E	agg A	ccg:	atct L	t c	cgg G	gcg1 V	tgc Q	agci L	tgt S	CCA T	ccga D	acga D	cgt V	ggt V	caa N	acct L	1200 260
gat M	ggc A	cat M	.gt	gtc P	cgt! F	toga E	gad T	eggt V	cca S	gcc L	tga T	ccg D	acg: D	acgo A	cgca H	acac T	gc1 L	tgt: S	egee P	1260 280
gtt F	ctg	rcga D	CC.	tct F	tca T	cggc A	cca T	ctg: E	agt W	gga T	cgc. Q	agt Y	aca N	acta Y	acct L	gct L	ct S	cgc1 L	tgga D	1320 300
caa K	gta Y	cta Y	acg G	gct Y	acgo G	gegg G	G 1999	gca: N	atc P	cgc L	tgg G	gtc P	cgg V	tgc: Q	aggg G	gggt V	cg:	gct: W	gggc A	1380 320
αaa	cas	act	ga	taa	cac	aact	.aa	cac	aca	ccc	ccg	tgc	acg		acad	cct	gcg.	tca	acaa	1440 340
	cct		aca	саа	atc	caa	ca	cct	tcc	cqc	tga	acg	cca	ccci	tcta	acge	ccg.	act		1500 360

Fig. 1/2

~~~	cgad		- 2 2 /		~~+	<del></del>	tat c	:+ + c	at a	aac	act	aaa	cct	gta	caa	egge	cac	cgc	gcc	1560
Н	D	S	N	L	<b>V</b>	S	I	F	W	λ	L	Ğ	L	Y	N `	G	T	λ	P	380
~~+	gtc	rca(	720	-t c	cati	caac	TACT	ate	ctc	cca	gac	gga	cgg	gta	cgc	cgc	cgc	ctg	gac	1620
L	S	Q	T	S	V	E	S	V	S	Q	T	D	Ğ	Y	A	A	Α.	W	T	400
	gcc	~++	~~~	~~~	+~~		at a c	-at	cσa	gat	oat	gca	ata	tcg	cgc	cga	gaa	gga	gcc	1680
y v	p P	g C C	A	A	R	A	Y	V	E	M	M	Q	c ¯	R	Ā	E	K	E	P	420
	ggt								aat	cat	acc	act	σca	taa	ctq	ccc	tac	gga	caa	1740
gct	v.	gcg R	V	get L	y V	N	D	R	V	М	P	L	Н	Ğ	c	P	T	D	ĸ	440
	ggg								cat	cac	aaa	act	σασ	ctt	tac	gca	ggc	ggg	cgg	1800
gc:	.ggg	gcg R	C Grd	Caa K	geg R	D	A	F	V	A	G	L	ŝ	F	Ā	Q	A	G	G	460
gaa	actg	ggc	gga	ttg	ttt	ctg	atg	ttg	aga	aga	aag	gta	gat	aga	tag	gta	gta	cat	atg	1860 466
И	W	Α	D	С	F															
act aga aga	tgc tcca gcgc agag tagt	cct acg acc	cto gat ago	acc aag gtg	ctg gcg gaaa gaac	gac gett laac etga	gca ttg gac aac	acc tta aga aaa	gag logg laca loac tat	regg rggt Ltag Late	tgg jata cact	gggc atca tcc	tgg att ctc	ggg ggt ggt	gcag acgc acgc acct	cca ccaa ctc	gag itto icto	recg ato gtag	gag gaag gaag cag	2220
ac	gcat taca	.gcc	tca aaa	icaa	ggaa	acgg	100s 1333	cas	tcc	gtc	gaga	agco	cato	tg	cag				-	2327

## Fig. 2/1

gtcgacgaggcad	caccacgccc	gtectegge	gggtccgagag	ggccgggctcgggttcga	60
caaggagacggg	eqtecetteg	ggcgcggctg	gcgggtgtggg	ftgttgctgtggacggtga	120 180
ggagggggacggg	getgggeget stretaatet	ttctttata	gaatgtgtac	cggacacaggccgctgag gtgtgggtgtgtatgtgt	240
ttqqqqqqqqa	tattcttgg	taattatctt	tctacccttc	ttctctttcctttattct	300
gttcagcaggtat	accccgtgt	aagtgtacag	ggattatggga	cgggtgggtggatggact	360
acttctagaagga	cqqataagg	aaaaagggg	aaacacgaata	rtddedeeerdddradede	420 480
gtcgagctggatg	gettgaegee	ggtctggca	acattttctt	cttctagcacccaaccta	540
gtacttgatagag	gtgtttcggg	gecaggeggi	reaccotota	gtttttaccaatcaccaac accaaaaatgccgcggcat	600
ctccattgatact	totactycy	gatagatea	atatttqqqaq	gttgcgctgggctgctct	660
gaaacccctctct	ccttqctqta	cgtaacgtal	tgtgcacagta	itgtcaccgacaaagacga	720
ttgcatgcgcatg	cattttttgt	tgtgtttcag	ggcctcgctcg	gtgtctagggtataaacac	780
attgaagactaca	atatgcgcaa	gacgttgaca	attaacggggt	cctgcagccgccgcaggt	840 900
gcatgtcgtgatt	taataccacg	cgcctgcgt	aaattagctag	geegeegeeetgttteaet yeaaattggaatgeaaggt	960
cggttagagacgg	gacaggtgag	togaaatga	ggccaagcaag	gcaaattggaatgcaaggt gggcagccaggaaggtga	1020
gacgaaatgagg	aagaggcac	cagaagetg	ttgttctgaag	gtgcccgtggtcatagctc	1080
caggattaagtag	cggatgtccc	atgccaagc	tgctggcttcg	gaaagcgagtacggagtag	1140
totccattottca	acqaqqqatc	cccaatgtg	ttagacatgco	ctgaatcaattttgtccta	1200
tttttggatttc	aactgtttct	.ctcgactgt	gctcggtagcg	gactatgccgcaaggtaca	1200
ctacatgttgtac	caataatcat	acatcgacc	ttccgtaggag	gtgctgaaatacccgacct	
gctctctctagc	aggtgcctaa	racgattta	caaacacoto	tegaaaeggateageaagt gagaggtgageeacagega	
taggettetgga	aggattetge	catctcaga	aagagggca	tegeceactaaceggeg	1300
ccgatcttgacat	tagaactcac	agggggttt	aagtgcacact	tacggagtacggattacac	1300
agtagtgtatgg	atagagacas	gtttgggtg	gccttgtgtg	gggctcaccggctgcctgt	1020
tctcqqqqaqtc	tagcagaca	gattggacc	cacctaacca	cadacsaccadaccadac	1000
caactcacaccg	ccctcatgtt	teggageea	gtcagggagg	caggcactactcagtcagg atactgcattccaactacg	
of torcatagga	geteetegal	tctagagct	gttctacqcc	atactgcattccaactacg ggaacgtaacccgggataa	
cccgggatatcg	cttccctgag	cdadcdcdc	tgctgaggat	catacaacccaacaaccga	1920
cgacggtgcaag	aaqqttqqqq	gaaggaaga	aatcaaggaaa	aaaaaatagggggggtg	1900
ggaccaagagag	aaagaaagga	igaaaagggt	ggggggaggg	aagagaaaaaaaaacgga	2040
ggaatatggcgt	cgctcttcga	ctggttccg	gaagggggcat	tctgggtacacatatgcac	
ctcttccgcacg	gcagggatat	aaaccggga	grgeagreec	accgatcatgctgagtCCG	
cccgtctccaga	etteaeggte	gcagaggac	cagacgcgcg	gtgaagatgactggcctcg M T G L	_
gagtgatggtgg	tgatggtcgg	gcttcctggc	gatcgcctct	ctgtaagcagcgattccaq	, 2280
VHVV	M V G	F L A	IAS	L	19
				0.2.1.0.0.2.0.1.0.0.0.0.0.0.0.0.0.0.0.0.	2340
gggtccggtgtg	cgttaaaaga	aaaagctaa	cgccaccaga	caatccgagtcccggccat Q S E S R P (	
gcgacaccccag	acttgggctt	ccagtgtgg	tacggccatt	tcccacttctggggccag	2400
Ď T P Ď	L G F	QCG	TAI	SHFWGQ	46
					- 2460
actcgccctact	teteegtge	cccggagct	ggatgcttcg	ateccegacgactgcgage	7 66
SPYF	S V P	SEL	D A S		
taacatttaccc	aagtcctct	ccaccacaa	CGCGAGGGG	ccgacgctcaaacgggcc	2520
T F A Q	V L S	RHG	ARA	PTLKRA	A 86
cgagctacgtcg	atctcatcg	acaggateca	ccatggcgcc	atetectacgggccgggc	2580
S Y V D	LID	RIH	н G A	I S Y G P G	. 100
acqaqttcctc=	ggadgtatg:	actacacect	gggcgccgac	gageteacceggaeggge	2640
E F L R	TYD	Y T L	G A D	ELTRTG	126
agcagcagatgg	tcaactcgg	gcatcaagtt	ttaccgccgc	taccgcgctctcgcccgc	2700
QQMV	ท S G	I K F	YRR	YRALAR	K 146

# Fig. 2/2

																			~~1	- ~	~a c	tc	aac	c	gaç	jaa	ıct	2 2	276	0
		1	~		•	~		•	-	-	-	_		_				gt V												
•	3	•	-																					~~		-a	co	c :	282	0
								- ~1	- ~		-+0	ac1	t.c	ac	cg	ac	cg	cgg	gt	CC	aco	:gt	CC	39	500	T		T.	18	16
tc	acc	:ca	gg	gc.	ב <i>ב</i> י	cc 	aC	- C	-y	٠٠,	7 7	7.		Ă	Ď		R	g G	S		T	V	R		2	1		_	-	, •
	rr .	<i>(</i> 1)			_	n					_	_																		
																		_				~ ~ ~	CC	t.c	ca	ca	ac	G	200	30
+ 0	ccc	:t.a	ta	ac	at	qq	tc	gt	ca	tc	CC	gg	aa	ac	cg	ت	99	A A	N N	,	พ	т	L		H	N		D	20	) 6
																									. ~ ~	aπ	ra c	.a	~ ~	40
									~0	- a a	αa	cc	cc	ta	ct	cg	jac	cat	ccg	190	:ga	cga	ıcy	-	,cu	را د م	,	т	2	26
ac	ct	cts	gC a	CC	gc	:C L	-	.ya	77		22	p	,	Y	S	;	T	I	C	3	D	D	A		Q			-	_	_
																								• • •	700	:ac	144	-4		-
c	cta	cc'	tct	c	ac	cct	tto	gc	:cg	1 <b>g</b> a	cc	:Cā	יבנ	: 4 0	,09	,	9	<b>V</b>	1	N	À	N	1		₽	C	;	A	2	40
	-	_																					+ ~ (	7 A (	σac	: 0	46	uy.	20	60
_			- ~		~~:	a C (	ace	cσa	aca	3 C	gt	ccg	30	gC1	tga	ate	gga	L	T.C	-			1		~ T	٠,	v	A	2	66
C	caa	CC	cg.	a C 1	-9	40	30.		,	יין. יין	v		A	L	ı	M	D	L	. '	C	P	Ų. ₽	•	ت	•					
														~~	a C	αc	aa	g <b>g</b> gg	gc	gg	ca	acg	gg	cg	gc	cg	-	gc	3.	206
c	cto	ct	CC	tc	ct	CC	ga	CC	cg	gc.	aa	cg	gc	99	<u>.</u>	2~	22	G 333		Ğ	N	G	;	R	P		L	5	•	200
																								~+	$\sim$	аσ	T C	au		100
			~	+ ~	. ~ ~		-6+	αt	tc	aσ	cq	ag	tc	cg	ag	tg	lac	gcg	1c2	jca	icg	ac.	,	t.	, ⁽	, -	s	V	7	306 240
C	gc	201		. c y		, 9 -	7			ຣ໌	É	: -	S	E		W	R	. 7	*	Y,	ט		L	ш	~	•	_			•
																									~~~	TT (	::::::			
t	aq.	gca	aaç	jtç	g t	ac	gç	yg t	ac	:99	130	CG	194	, C &	,	, O .	7		G.	P	1	: (ð.	G	1	7	G		:	326
																							~~		\sim \sim 2	300				
			1	~~:	a (7)	cti	act	Εσο	cc	100	3 g0	ctq	39	ccq	399	33	ccc	200	gu	gc.	905	,	G 39.	T	9	s	T	1	N	346
,	ccg		aa	-9	39	7	7	7	5 A	Ŕ	1	L	Α	(3	V	I	?	V	ĸ		,	G	•	•					
	V		N	-				•	•	•														- 4			~~	a C	+ 3	3360
											-~		ca	cc.	t t	cc	cq	ctc	gg	CC	gg	ccc	CT	Ct	ac	yc	~~		E .	366 366
	acc	:gc	аc	CC	tc	ga	cg	gc	ga	-	روع	CA.	~~	-	r -	P	-	L	G	R		₽	L	Y		A	υ		E	500
																						~~~	·+ a	C0	rac	αa	cq			J 14 V
	+ ~ :	300	ca	ca	ac	aa	cq	ac	at	ga	tg	gg	cg	tc	CT	.cg	gc	gee				A .	Y	Ē	)	G	V	Ţ	P	386
	•	3	11			•	_																				ء ۾ .	acc	:t	3480 406
									. ~ ~		.~~	·co	rcc	rac	cc	g	jaa	gag	gct	cc	320	ggg	gca	ıcç	والا	13.	,		พ	406
	cg	cc	cct	CÇ	ac	caa	<b>1</b> 9 -	-	٠٩٠	ت.	. 9 -	פפי	ייי, ז	,	P	E	2	E	L	(	3	G	Y	2	PA.	A	-	2	••	
		P	L	I	)	K	7	ŗ	A	r			•	•	-		_	gaq												2540
																						_		_	~~	7	701			7
	a	αa	cco	rt.	:00	ca,	tt	cgo	ccq	gco	aç	3g	10	CT	3 C 9	300	-90	.y.a.	~ ~		7 D	ć	้ร	- (	G	G	(	G	G	426
		^	٧	•		•																		_ ~	300	<b>а</b> п	tσ	ct	αa	3600 446
									~~	a (1)	70	σC	αa	ca	qq.	ag	aa	gga	tg	ag	ga	gat	gg.	£ C	ay.	9 <del>9</del>	-9	т.	รับ	446
	go	:gg	cg	gc	gg	cg	gc	99	ug.	29	~ 3,2,	ים <del>כ</del>	77	0	F.	•	ĸ	D	E	:	Ε	М	V		R	٧		יי	•	• • •
																				7 A C	σα	gac	PP	gg	rat	gt	gt	ac	gc	3660 466
	+0	T 2 2	ca	ac	ca	qq	itg	at	ga	cg	ct	ga	ag	gg	g٢	gc	99	A A	, u g	,	. 크 _	ŽR.	Ğ	;	М	С		T	L	466
		N	י		•	•																			-~-	+ ~	. + ~	-+c	rct.	3720
										~~	a +	αc	cc	itt	to	rcc	jag	ggg	<b>3</b> 98	aac	:99	caa	agt	.gç	<b>3</b> 9a			~	, T	486
	t	aga	aac	:99	įtt	:Ca	3 7 6	:ga	aa			בכ	, • ;	, = -	7	ί.	R	G	1	N	G	K	M	ł	D	1	•	C	-	3720 486
																				at:	σat	aa	aaa	jt	aga	agt	tg1	cg	gta	3780 487
	٠	+ 0	at t	- <b>α</b> ε	ata	ato	qc	cca	109	jc	cc	gaç	ga	tç	jaa	a C a	<b>1</b> 96	lac		9 -	9-	- 5 5	,,,							48 /
		A																								~ ~	22	++	car	3840 3900 3960
											<b>-+</b> (	1		aa	ga.	at	caa	aaa	at	cg	gti	tag	ac	cg	ge	ya.		·		3900
	t	tc	ga	ga	tg	at	ag	てて	اه		ا با ہے اے م	·		フフ` ヘナ・	- C	αt	tc	aaa cct aac	gt	tg	tt	acc	tt	ct	ta	at	33			2060
	a	rtc	tg	gg	gc	ct	gc	gg	ca.	T C	cg	ca'	ر از 				~ = '	220	ćt	tt	ta	ttq	rtc	tt	tt	tt	tc	てて	CLI	3960 3995
																			-	•										3995
			~-		++	_ + ث	ac	ac	at	ca	ga	tg	gg	aa	tt	gt	cg	aC												



# Fig. 7/1

_	ato	399	cgt	ctc	tgo	tg	tct	cac	tt	cct	tt	gt a	tc	tcc	ta	gct 	gga	agt.	cac +			+	60
	tac	ccc	gca	gag	acc	jaca	aaga	atg	aa	gga	aaa	cat	ag	agg	fat	cga	cct	tca	gtg	gag	gcc G	tgac L	
61				-+-				+				+				+			+			atgc	120
	A	V	P	A	S	R	N	Q	)	S	T	С	, <b>D</b>	7	2	V	D	Q	G	Y	Q		
121				-+-				+				+				+			+			.cgaa + .gctt	180
	F	S	E	T	S	Н	L	й	1	G	Q	Y	A	. 1	?	F	F	S	Ľ	A	N	£	
181	ag	- <b>-</b> -	 gta	-+-	 3gg	gac	 tac	+		rcg	gcc	-+- :aa	 cgt	ct	cag	tg:	aaa	gcg	ragt	cca	ıgga	ctcc + igagg	240
	ca	tca	tac	ago	gge	ggt	atc	cga	300	ga	gto	ca	agg	gc	aaç	gaa	ata	ctc	cgc	tct	L	tgag	
241	gc	 agt	acc	tc	gcg	 cca	 tag	+ gct		 jct	 caç	gt.	tcc	cg	tto	-+- :tt:	 tat	gag	idec	aga		actc	300
201	ga	gat	cca	ıgc	aga	acq	tqa	cca	aco	ctt	tga	atg	gaa	aa	tat	gc	ctt	cct	gaa	igad	ata	acaac	360
301	ct E	cta	ggt	cg	tct	tgc	act	ggt	tg	gaa	act	cac	ctt	tt	ata	acg	gaa	gga	actt	ct	gtat Y	gttg	
361				+				+				-+-				-+-				+		+	420
	at Y	gt c S	gaa L	G G	cac A	gto . D	tac	tg )	ga L	ctg T	age P	gga F	ago	ct ;	Ct E	cgt Q	CC E	L	atc. V	agt.	S	ggccg G	•
421				+				-+-				-+-				-+-				+		geged +	- 480
	I	K	F	Y	Ç	} F	3	C	N	A	L	1	, 1	R	Н	I	N	P	F	٧	R	A	
481	t c	gct	ac	+ gta	 ggg	rege	agg	-+- gtg	 ct	 tag	gc.	-+-	tc	tto	aa	-+- gca	 igct		 cga	+- <b>-</b> agg	 ttt	ggcga	- 540
	cc	raca	agg	acq	ato	ato	caco	1CC	aa	tco	cc	acc	ag	cct	tc	gcc	tc	gcg	tgg	acg	tgg	A ccat	2
541	go	 :tg:		+ tgc	tag	rtaç	 gtg	-+- :gg	 tt	agg		-+- tg	jtc	gga	ag	cgc	gag		acc	+ tgc		ggta	+ 600



601	c c c	cga	age	gca	ago	gc	cta	ac.	aad	aa 	ca	cg 	ctq 	gga +	gca 	ca	gc	-ct	ct9 	ca 		gc:			јаа 	+	660
	σσο	gct E	t.c	cat	cc	ica	gai	ta	tto	itt	at.	gc	gad	cct	cgt	:gt	.cg	rga	gac	:gt	33	cg	gae	190		agg S	
661					+				-+-					+								- 1				gcc +	720
	tic	gtg T	ac	aσ	cco	act	ac	ta	ca	cca	qc	qq	rtt	gaa	gt	<b>3</b> 90	:99	JCA	Caa	igc	gc	99	با	, –	وسو	, – 9 5	
721					+				-+					+				- + -				- 1				ctg +	780
	σt	cgc R	aa	ac	ct	ccc	ac	ta	ga	ago	gc	CQ	<b>jca</b>	cgt	.cg	aca	399	3cg	gcı	cgc	Ly	Ca	CC	ay		99	
781					+-				+					+				-+-								gccg +	• • •
	t a	CC9	at	ac	ac	aσo	ca	ıac	ict	cto	300	ac	<b>itc</b>	gga	1Ct	gg	CE	gct	:gc	aca	356	jug	109	ac	49	-33-	
841					+-				+					+				-+-								ggac +	
	2.2	gad C	cac	:t.c	σa	σa.	agt	- 00	cca	rati	gad	:t	cac	cto	gcg	τc	аt	gu	:ga	tg	ga	-9-	190	gu	. <b>y</b> u		
901					-+-				1					-+-				-+-					. –			ggcg	•
	t t	Y.	tσa	a t. c	100	œα	ta	cc	ac c	cc	CQ	tt	agg	gcg.	acc	:ca	gg	CC	acg	τc	CC	CC	190	ي. د ي	Jac	cege	:
961					-+-					+				-+-												caac	
	+ 1	rac	tc	ga c	ct a	cc	ac	σc	ca	att	qc	qc	gc	<b>9</b> 99	ggo	ac	gt	:gc	rgg	Įτg	τg	ga	cg		9	gttg N	J
1021	a -	ccc	tc	ga	cgo -+•	ga 	gt	cc 	<b>9</b> 9	cca +	.cc	t t	.cc	cgc	tga	aac	.g	ca +		etc	ta 	cg 		ga (	stt 	ctc	: + 1080
	t.	aaa	aσ	ct	acc	act	ca	αa	CC	aat	gg	aa	ıgg	gcg	act	ttç	300	ggt	gg	gag	_f at	gc	<b>3</b> 3	CE	gae	agage S	3
1081	c -	acg	ac	ag 	ca:	acc	tg	gt	gt	cga +	tc	tt	ct	-+-	rcg(	ctç	399	gcc +	tg!	tac	:aa	cg	gc +-	ac 	cg(	egec	g + 1140
1001	~	+ ~~	+ ~	+ ~	at.	tac	TAC	ca	ca	act	ac	raa	aga	CCC	:qc	gae	CC	cgg	ac	atç	jιτ	.gc	cg	Ly	g c	b dcdd	c
1141	c	tgt	.cg	ca	ga -+	cct	:	gt	cg	aga +	ago	gt	ct	ccc	ag	ac	<b>gg</b>	acç	199	tac	-g	.cg	rcc -+-	gc 	ct	ggac 	g + 1200
	a	aca	ac	at	ct	aa a	PP	TC a	190	tci	ccc	TC	aga	ggg	gt C	tg	CC.	tgc	CC	aτ	1c	130	:99	cy	ya.	cccy	С

# Fig. 7/3

1201	gtgccgttcgccgctcgcgcgtacgtcgagatgatgcagtgtcgcgcgagaaggagccg	
1201	cacggcaagcggcgagcgcatgcagctctactacgtcacagcgcggctcttcctcggc V P F A A R A Y V E M M Q C R A E K E P	1260
1261	ctggtgcgcgtgctggtcaacgaccgggtcatgccgctgcatggctgccctacggacaag+ gaccacgcgcacgaccagttgctggcccagtacggcgacgtaccgacgggatgcctgttc L V R V L V N D R V M P L H G C P T D K	1320
1321	ctggggcggtgcaagcgggacgctttcgtcgcggggctgagctttgcgcaggcggggcggg	1380
1381	L G R C K R D A F V A G L S F A Q A G G  aactgggcggattgtttctgatgttgagaagaaaggtagataga	1440
1441	attgctcggctctgggtcgttgcccacaatgcatattacgcccgtcaactgccttgcgcc	1500
1501	atccacctctcaccctggacgcaaccgagcggtctaccctgcacacggcttccaccgcga+ taggtggagagtgggacctgcgttggctcgccagatgggacgtgtgccgaaggtggcgct	1560
1561	cgcgcacggataaggcgcttttgttacggggttggggctgggggcagccggagccggaga+ gcgcgtgcctattccgcgaaaacaatgccccaaccccgacccccgtcggcctcggcctct	1620
1621	gagagaccagcgtgaaaaacgacagaacatagatatcaattcgacgccaattcatgcaga+ ctctctggtcgcactttttgctgtcttgtatctatagttaagctgcggttaagtacgtct	1680
1681	gtagtatacagacgaactgaaacaaacacatcacttccctcgctcctctcctgtagaaga+catcatatgtctgcttgactttgtttgtgtagtgaagggagcgaggaggaggacatcttct	1740
1741	cgctcccaccagccgcttctggcccttattcccgtacgctaggtagaccagtcagccaga+ gcgagggtggtcggcgaagaccgggaataagggcatgcgatccatctggtcagtcggtct	1800
1801	cgcatgcctcacaagaacggggggggggacacactccgctcgtacagcacccacgacgt	1860
1861	gtacaggaaaaccggcagcgccacaatcgtcgagagccatctgcaggaattc	

Fig. 8





A			
9 <b>a</b> 1		gacggtcagcctgaccgacgacgcgcacacgctgtcgccgttctgcgacc	
aterr21	1		
9a1	1272	tcttcacggccactgagtggacgcagtacaactacctgctctcgctggac	1321
aterr21	51	tcttcaccgccgcgagtggacgcagtacaactacctgctctcgctggac	100
9a1	1322	aagtactacggc 1333	
aterr21	101	aagtactacgtc 112	
В			
9 <b>a</b> 1	1507	cagcaacctggtgtcgatcttctgggcgctgggcctgtacaacggcaccg	1556 50
aterr58		III	
9a1		cgccgctgtcgcagacctccgtcgagagcgtctcccagacg 1597	
	E 1	aggeset gt cgcagaccaccgtggaggatatcacccggacg 91	