

UNIVERSIDADE FEDERAL DE SERGIPE CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA DEPARTAMENTO DE COMPUTAÇÃO

Proposta de Aplicação Móvel para Autocuidado de Diabéticos com Acuidade Visual Prejudicada

Trabalho de Conclusão de Curso

Jonathan Kelvin de Jesus Santos

São Cristóvão - Sergipe

Lista de abreviaturas e siglas

API Application Programming Interface

DCOMP Departamento de Computação

DM Diabetes Mellitus

Dev Developer

DV Deficiência Visual

DVP Deficiência Visual Parcial

DVT Deficiência Visual Total

e-Mag Modelo de Acessibilidade em Governo Eletrônico

IBGE Instituto Brasileiro de Geografia e Estatística

OMS Organização Mundial da Saúde

PDV Pessoa(s) com Deficiência Visual

TA Tecnologias Assistivas

TTS Text-to-speech

SO Sistema Operacional

UFS Universidade Federal de Sergipe

UX User Experience

WHO World Health Organization

W3C World Wide Web Consortium

Sumário

0.1 Estudos Relacionados		os Relacionados	3
	0.1.1	Accessibility of Mobile Applications: Evaluation by Users with Visual	
		Impairment and by Automated Tools	3
	0.1.2	Can Everyone use my app? An Empirical Study on Accessibility in	
		Android Apps	4
	0.1.3	Effect of UX Design Guideline on the information accessibility for the	
		visually impaired in the mobile health apps	5
	0.1.4	Mobile Device Accessibility for the Visually Impaired: Problems Mapping	
		and Empirical Study of Touch Screen Gestures	6
	0.1.5	Observation Based Analysis on the Use of Mobile Applications for	
		Visually Impaired Users	9
	0.1.6	Prioritization of mobile accessibility guidelines for visual impaired users	9
0.2	Anális	e dos Resultados	12
Referêr	icias .		13

0.1 Estudos Relacionados

Durante o processo de seleção de artigos do MSL, foram encontrados alguns estudos secundários, estudo que realiza uma revisão de estudos primários relacionados a um tema específico (KITCHENHAM; CHARTERS, 2007). Embora tenham sido rejeitados no MSL, por se enquadrarem em algum dos critérios definidos na seção anterior, os estudos que realizaram revisões dentro do tema estudado neste trabalho foram considerados como estudos relacionados.

Assim, esta seção apresenta os principais problemas e propostas de soluções relacionados à acessibilidade de aplicações para dispositivos móveis identificados por esses estudos. No Quadro 1 estão listadas as informações de cada um desses estudos secundários.

Sigla	Título	Referência	Base de dados
AR1	Accessibility of Mobile Applications: Evaluation by Users with Visual Impairment and by Automated Tools	(MATEUS et al., 2020)	ACM Digital Library
AR2	Can Everyone use my app? An Empirical Study on Accessibility in Android Apps	(VENDOME et al., 2019)	Scopus
AR3	Effect of UX Design Guideline on the information accessibility for the visually impaired in the mobile health apps	(KIM et al., 2019)	Scopus
AR4	Mobile Device Accessibility for the Visually Impaired: Problems Mapping and Empirical Study of Touch Screen Gestures	(DAMACENO; BRAGA; CHALCO, 2016)	ACM Digital Library
AR5	Observation Based Analysis on the Use of Mobile Applications for Visually Impaired Users	(SIEBRA et al., 2016)	ACM Digital Library
AR6	Prioritization of mobile accessibility guidelines for visual impaired users	(QUISPE; SCA- TALON; ELER, 2020)	Scopus

Quadro 1 – Estudos relacionados identificados no processo de MSL.

Fonte: Autor

0.1.1 Accessibility of Mobile Applications: Evaluation by Users with Visual Impairment and by Automated Tools

O artigo apresenta um estudo comparativo de problemas de acessibilidade encontrados pelas ferramentas automatizadas MATE (*Mobile Accessibility Testing*) e *Accessibility Scanner*, com os problemas encontrados em um estudo anterior envolvendo 11 usuários com DV. Além disso, o trabalho sumarizou e categorizou os problemas mais encontrados pelos usuários. As principais categorias são listadas na Tabela 1.

Na Tabela 2 são listados os principais tipos de problemas, que apresentaram um total de pelo menos 10 observações. As categorias, de acordo com a Tabela 1, e os números de

Tabela 1 – Categorias dos tipos de problemas mais identificados.

Código	Categoria
CPF1	Botões
CPF2	Características do Sistema
CPF3	Conteúdo e Significado
CPF4	Controles, formulários e funcionalidades
CPF5	Imagem

Fonte: Rieger et al. (2020)

observações totais e para cada cada tipo de DV também são relacionados à cada tipo de problema. Como o artigo só menciona os tipos problemas encontrados com maior frequência por cada tipo de usuário, o número de observações de alguns não estão presentes na Tabela 2.

Tabela 2 – Problemas mais frequentes encontrados pelos usuários por tipo de DV.

Problema		DVT	DVP	Total
Feedback inapropriado	CPF4	34	15	49
Falta de informações	CPF1	22	8	30
Usuários presumiram que era uma funcionalidade	CPF4	18	9	27
Funcionalidades confusas ou não claras	CPF4	25	-	25
Apresentação padrão de elementos de controle ou formulário não adequada	CPF4	11	12	23
Sequências de interação confusas ou não claras	CPF4	15	6	21
Usuários não entenderam sentido do conteúdo		15	5	20
Organização do conteúdo inconsistente		12	6	18
Funcionalidade não funciona como esperado		6	10	16
Funcionalidades dos botões confusas ou não claras	CPF1	15	-	15
Expectativa de funcionalidade que não existe	CPF4	10	5	15
Sem alternativa textual	CPF5	14	-	14
Sistema muito lento	CPF2	-	11	11
Significado no conteúdo está perdido	CPF3	6	4	10

Fonte: Rieger et al. (2020)

Os resultados do estudo mostraram que 36 tipos de problemas foram encontrados somente pelos usuários, 11 somente pelas ferramentas e 3 por ambos os métodos. Evidenciando assim a necessidade de utilização de mais de um método para identificação dos problemas de acessibilidade. Além disso, o estudo mostrou a importância da utilização dessas ferramentas automatizadas, visto que parte significativa dos problemas podem ser identificados ainda no processo de desenvolvimento, reduzindo o esforço e, consequentemente, o custo para solucionálos.

0.1.2 Can Everyone use my app? An Empirical Study on Accessibility in Android Apps

Esse trabalho realizou um estudo piloto onde foi observado que desenvolvedores de aplicativos móveis raramente utilizam as APIs de Acessibilidade e que o uso de descrições alternativas para elementos de *interface* também é limitado. Assim, visando entender a perspectiva

desses desenvolvedores, o estudo também realizou uma investigação de postagens no *Stack Overflow*, identificando os aspectos de acessibilidade que os desenvolvedores implementavam e os que experienciavam dificuldades.

O estudo investigou aspectos de acessibilidade no geral, baseado em 336 discussões de desenvolvedores *Android* no *Stack Overflow*, sendo 159 dessas sobre acessibilidade à DV. Dessas 159 discussões, os principais aspectos discutidos foram sobre *feedbacks* sonoros e legibilidade (114 e 24 postagens, respectivamente) como mostra a Tabela 3.

Tabela 3 – Aspectos de acessibilidade à DV discutidos por devs Android no Stack Overflow.

Aspecto	Categoria
Alertas de acessibilidade	Feedbacks sonoros
Ampliação da tela	Legibilidade
Aspectos não funcionais	Feedbacks sonoros
Consciência de contexto	Feedbacks sonoros
Conteúdos, ações e gestos customizados	Feedbacks sonoros
Frameworks de terceiros	Feedbacks sonoros
Mobile web apps	Feedbacks sonoros
Problemas com serviços	Feedbacks sonoros
Sons e vibrações	Feedbacks sonoros
Suporte à Braille	Teclados alternativos
Tamanho de fonte	Legibilidade
Teclado customizado	Teclados alternativos
Transformações de cores	Transformações de cores

Fonte: Vendome et al. (2019)

No estudo piloto, o trabalho de Vendome et al. (2019) analisou 13.817 *apps Android* de código aberto, descobrindo que cerca de 50% deles tinham descrições alternativas para todos os elementos, enquanto cerca de 37% não tinha nenhuma. Além disso, o artigo apontou que apenas cerca de 2% desses *apps* utilizavam alguma API de acessibilidade no projeto.

0.1.3 Effect of UX Design Guideline on the information accessibility for the visually impaired in the mobile health apps

Acessibilidade de informações visuais para DV raramente é considerada ao projetar aplicações móveis para saúde (KIM et al., 2019). O artigo propõe um guia de diretrizes de acessibilidade à DV, chamado UXDG (*UX Design Guideline*), para resolver esse problema. 120 *apps* na área de saúde foram analisados quanto à taxa de conformidade com o guia.

A Tabela 4 lista as diretrizes do UXDG de acordo com as categorias. Na análise dos 120 *apps*, a média da taxa de conformidade com o guia foi de 39,24%, com a diretriz XD7 apresentando a maior taxa, com 71,67%, enquanto a XD9 apresentou a menor, com 5%.

O estudo realizou testes, conduzidos com 23 PDV e 23 sem DV, comparando *apps* selecionados da área da saúde antes e depois da aplicação do UXDG. Os resultados apontam que houve um aumento na velocidade de reconhecimento das informações depois de aplicar as

Tabela 4 – Diretrizes do UXDG por categoria.

Código	Diretriz	Categoria
XD1	Destacar as mídias que disparam ação	Aquisição de informação
XD2	Destacar as principais imagens que o usuário pode acessar	Aquisição de informação
XD3	Navegação intuitiva	Acessibilidade dos dados
XD4	Posicionar a caixa de pesquisa sempre no local	Busca de dados
XD5	Posicionar resultados de buscas logo após a caixa de texto	Busca de dados
XD6	Reconhecimento de voz para entrada de texto	Busca de dados
XD7	Resposta intuitiva do <i>menu</i> de acordo com intenção do usuário	Acessibilidade dos dados
XD8	Suporte à esquemas de cores alternativos	Melhora na exposição dos dados
XD9	Suporte de zoom in/out para os principais conteúdos	Melhora na exposição dos dados
XD10	Suporte para outros métodos entrada além do toque	Acessibilidade dos dados
XD11	Uso de fontes com alta legibilidade	Aquisição de informação

Fonte: Kim et al. (2019)

diretrizes. De acordo com o experimento, esse aumento aconteceu tanto para usuários com DV, aumento de 13,68%, quanto para os sem, de 32,41%.

0.1.4 Mobile Device Accessibility for the Visually Impaired: Problems Mapping and Empirical Study of Touch Screen Gestures

Esse artigo, através de um MSL, apresenta os problemas de acessibilidade enfrentados na utilização de dispositivos móveis por PDV encontrados na literatura. A Tabela 5 mostra, como categorias, 6 dos 7 grupos de problemas identificados no estudo, desconsiderando o de "borda não sensível ao toque", visto que é um problema relativo aos dispositivos físicos.

Tabela 5 – Categorias dos problemas mapeados na literatura.

Código	Categoria
CPM1	Botões
CPM2	Comandos de voz
CPM3	Entrada de dados
CPM4	Interação por gestos
CPM5	Leitor de tela
CPM6	Retorno ao usuário

Fonte: Damaceno, Braga e Chalco (2016)

Na Tabela 6 são listados os problemas relacionados à botões (CPM1), comandos de voz (CPM2) e retorno do usuário (CPM6) e o número de citações, que corresponde ao número de estudos onde o problema foi identificado. Sendo que os problemas relacionados aos botões físicos dos dispositivos foram desconsiderados, por estarem fora do controle da aplicação.

Tabela 6 – Problemas relacionados às categorias CPM1, CPM2 e CPM6.

Categoria	Problema	
CPM1	A grande proximidade entre os botões virtuais dificulta a interação	
CPM1	Os botões virtuais acarretam menor sensibilidade tátil	1
CPM2	Apenas um comando de voz é reconhecido por vez	2
CPM2	Há baixa privacidade ao emitir comandos de voz	1
CPM2	Há diminuição do desempenho do reconhecimento em condições de ruído	1
CPM2	Há diminuição do desempenho do reconhecimento devido à entonação e à acentuação	1
CPM2	Há dificuldade para ativar comando de voz	1
CPM2	Há necessidade de mentalizar instrução por voz, aumentando carga de memória do	1
	indivíduo	
CPM2	O reconhecimento de voz funciona apenas em alguns aplicativos	1
CPM2	O uso de comandos de voz é computacionalmente custoso	1
CPM6	Há ausência de retorno ao usuário, ao interagir com alguns elementos de interface	1
CPM6	Há dificuldade para compreender diferentes padrões vibratórios	1
CPM6	Há dificuldade para compreender a orientação da interface, utilizando apenas o	1
	retorno auditivo	
CPM6	Retorno auditivo é prejudicado em ambientes ruidosos	2
CPM6	Usar apenas o retorno auditivo não é o suficiente para a interação	1

Fonte: Damaceno, Braga e Chalco (2016)

A Tabela 7 mostra os problemas relacionados à entrada de dados (CM3) com o número de citações para cada problema. Os problemas que mencionavam teclado físico de dispositivos móveis foram desconsiderados, pois a aplicação a ser desenvolvida suporta apenas *smartphones*.

Tabela 7 – Problemas relacionados à entrada de dados (CM3).

Problema	Citações
A digitação de textos é lenta em teclados QWERTY virtuais	2
As teclas mais distantes das bordas são mais difíceis de encontrar do que as mais próximas das	1
bordas, em teclados virtuais QWERTY	
É preciso conhecer previamente Braille para ter bom desempenho de digitação utilizando esta	2
modalidade	
É preciso trocar o modo do teclado virtual, para acessar determinados caracteres	1
Há ausência de marca tátil para o número 5, no teclado numérico virtual, e para as letras "F" e	
"J" no teclado QWERTY virtual	
Há erros ao corrigir caracteres digitados equivocadamente, substituindo por fonemas semelhan-	
tes, em teclados virtuais	
Há erros de omissão de caracteres, faltando um ou mais ao digitar palavras em teclados virtuais	1
Há necessidade de confirmação de cada caractere digitado em teclados virtuais	
Há necessidade de navegar pelo teclado virtual para localizar os caracteres desejados	
Há um segundo de espera para entrar com cada tecla em teclados virtuais	
O teclado numérico virtual é denso dificultando, a interação	

Fonte: Damaceno, Braga e Chalco (2016)

A Tabela 8 lista os problemas relacionados à interação por gestos (CM4) com o número de citações para cada problema encontrado.

Tabela 8 – Problemas relacionados à interação por gestos (CM4).

Problema	Citações
A baixa flexibilidade de ângulo e velocidade dos gestos, por parte do sistema, dificultam seu	
reconhecimento	
Gestos representados pela forma da letra "L" são difíceis de fazer	2
Gestos representados por formas geométricas fechadas (círculo e triângulo) são difíceis de fazer	1
Gestos representados por formas geométricas são lentos de se fazer	1
Há conflito na desambiguação entre dois toques com um dedo e três toques com um dedo	1
Há dificuldade para fazer gestos estando em movimento	1
Há dificuldade para fazer gestos próximos à barra superior de sistemas	1
Há dificuldade para fazer gestos representados por símbolos, sendo maior no caso de pessoas	2
com deficiência visual de nascença	
Há dificuldade para fazer o gesto de dois toques com um dedo	1
Há dificuldade para se localizar na tela para realizar gestos	
Há erros na identificação de gestos multitoque, já que o sistema, por vezes, falha para reconhecer	1
mais de um dedo em contato com a tela	
Há falha de interpretação de gestos em geral, pelo sistema	4
Há mudança indevida de foco ao tentar fazer o gesto dois toques com um dedo	
Não é possível alterar mapeamento dos gestos às funções do sistema	1
Não há consistência de gestos entre diferentes sistemas	
Não há gestos que acionam as principais funções do sistema	
O toque acidental na tela, com outro dedo, prejudica o reconhecimento de gestos	
Os manuais de explicação de como fazer gestos de toque não são eficientes	
Quando um aplicativo aceita gestos de toque próprios, há conflito entre estes gestos e os do leitor de tela do sistema	

Fonte: Damaceno, Braga e Chalco (2016)

Por fim, são listados, na Tabela 9, os problemas relacionados a leitores de tela (CM5) com o número de citações.

Tabela 9 – Problemas relacionados a leitores de tela (CM5).

Problema	
A leitura é linear, demorando para se ter noção global da interface	2
A pronúncia de algumas palavras é problemática	1
A voz do leitor de tela é artificial	1
Alguns elementos de interface não são lidos	3
Há baixa familiaridade com o leitor de tela de dispositivos móveis	1
Há conflito ao usar o leitor de tela do sistema em conjunto com o leitor embutido em aplicativos	2
Há desconforto ao ouvir o leitor de tela em ambientes ruidosos	
Há leitura de apenas o que está em foco	
Não há controle de velocidade de leitura	
Não há um botão para interromper a leitura imediatamente	1
O foco do leitor de tela muda indevidamente	
O foco do leitor de tela não possui uma ordem de navegação lógica	
O leitor de tela é lento	
O texto lido é, por vezes, inadequado	1

Fonte: Damaceno, Braga e Chalco (2016)

0.1.5 Observation Based Analysis on the Use of Mobile Applications for Visually Impaired Users

O estudo realizou uma análise, envolvendo 5 PDV, com o objetivo de validar se a falta dos requisitos de acessibilidade levantados em um trabalho anterior realmente impactavam na utilização de *apps* móveis por PDV.

Tabela 10 – Categorias dos requisitos encontrados.

Código	Categoria
CRED1	Feedbacks audíveis
CRED2	Adaptação das informações visuais
CRED3	Navegação

Fonte: Siebra et al. (2016)

Os requisitos foram divididos em 3 categorias, como mostra a Tabela 10. Baseados na análise dos resultados, o estudo qualificou os requisitos em 3 níveis (Essencial, Desejável e Não observado). Como os requisitos "não observados", de acordo com o artigo, não foram mencionados pelos participantes dos testes, apenas os requisitos essenciais e desejáveis são listados na Tabela 11. Somente um requisito foi classificado como desejável, o RED7, o restante foi classificado como essencial.

Tabela 11 – Requisitos essenciais e desejáveis focados em DV.

Código	Problema	Categoria	
RED1	O nome do caractere que está sendo digitado deve ser ouvido	CRED1	
RED2	Nomes de elementos e imagens na tela devem ser ouvidos ao serem tocados ou		
	selecionados		
RED3	Feedback de ações/interações devem ser claros e fornecidos de forma tátil, voz ou	CRED1	
	eventos sonoros		
RED4	Estratégias para o uso de leitores de tela (ex.: atalhos para navegar na tela de forma mais	CRED1	
	eficiente)		
RED5	Prover uma chave "home" tátil de acesso fácil e rápido para que um usuário possa	CRED2	
	retornar a um lugar conhecido		
RED6	Prover documentação em formatos alternativos, utilizando fontes grandes	CRED3	
RED7	Permitir customizações pelo usuário e evitar que essas preferências sejam perdidas	CRED3	
RED8	Apresentar amplificador com zoom ajustável	CRED3	
RED9	Prover equivalências textuais claras para evitar erros quando os textos são lidos na tela	CRED3	
RED10	Brilho, contrate e cores ajustáveis	CRED3	
RED11	Prover alertas informativos por outros canais além do visual (ex.: voz)	CRED3	

Fonte: Siebra et al. (2016)

0.1.6 Prioritization of mobile accessibility guidelines for visual impaired users

O artigo apresenta uma proposta de priorização de diretrizes de acessibilidade que resultaram de estudos anteriores. Essas diretrizes foram baseadas no eMAG, porém diretrizes

como as da BCC (*BBC Mobile Accessibility Guidelines*) e recomendações da plataforma *Android* também foram consideradas. Para criação do *ranking*, o estudo utilizou um questionário que foi respondido 103 vezes, sendo 66 com DV, onde a análise se concentrou.

O estudo dividiu as diretrizes em 6 categorias que podem ser visualizadas na Tabela 12.

Tabela 12 – Categorias das diretrizes de acessibilidade *mobile* baseadas no eMAG.

Código	Categoria		
EGE	Estrutura		
EGC	Comportamento		
EGCI	Conteúdo/Informação		
EGAD	Apresentação/Design		
EGM	Multimídia		
EGF	Formulários		

Fonte: Quispe, Scatalon e Eler (2020)

O estudo considerou a priorização para 4 grupos diferentes, baseados no tipo de DV (baixa visão, visão parcial e os 2 tipos de cegueira: legal e total). E os resultados mostraram que existiam diferenças notáveis na percepção das diretrizes entre os grupos.

Assim, a partir desses resultados, o trabalho relacionou as diretrizes com as percepções de cada grupo e criou a lista de priorização que pode ser vista no Quadro 2. Onde a coluna id informa a ordem de priorização e os códigos que estão nas outras colunas são listados na Tabela 13 junto com as diretrizes.

Quadro 2 – Priorização de diretrizes de acessibilidade para usuários com DV.

Id	Visão parcial	Baixa visão	Cegueira legal	Cegueira total	Todas as DV
1	EGC2, G28	EGC4	EGAD3, G28	EGC3, EGAD1, EGAD2	EGC3
2	EGM1	EGC6, G28	EGC2, EGC6, EGAD1, EGM1	EGE1, EGC1, EGM1, G28	EGM1
3	EGAD3	EGM1	EGE1, EGM3	EGC2, EGC4, EGCI4, EGAD3, EGM3	EGC2, EGC4, EGAD1
4	EGC4, EGAD1	EGC2, EGAD1	EGC4	EGC6	EGC6, EGAD3
5	EGC6	EGC5	EGC5	EGC5	EGM3
6	EGC5, EGM3	EGCI4	EGC3, EGAD2		EGE1
7	EGC3, EGCI4	EGE1, EGC1, EGM3	EGC1		EGC3
8	EGC1	EGC3	EGCI4		EGC1, EGAD2
9	EGE1	EGAD2, EGAD3			EGC5, EGCI4
10	EGAD2				

Fonte: Quispe, Scatalon e Eler (2020)

Tabela 13 – Diretrizes de acessibilidade mobile baseadas no eMAG.

Código	Diretriz				
EGE1	Elementos de tela devem ser organização de maneira lógica e semântica.				
EGE2	As telas devem apresentar sequência lógica de leitura para navegação entre links, controles de				
	formulário e outros elementos.				
EGE3	Links na tela devem ser organizados para evitar confusão.				
EGE4	Informações devem ser divididas em grupos específicos para facilitar a procura e leitura dos				
	conteúdos.				
EGE5	Usuários devem ser informados se <i>links</i> abrem novas telas para poderem decidir se querem o não sair da tela atual.				
EGC1	Todas as funcionalidades na tela devem estar disponíveis a partir do teclado.				
EGC2	Todos os elementos de <i>interface</i> na tela devem ser acessíveis.				
EGC3	Redirecionamento automático de telas não deve acontecer.				
EGC4	Em telas com limite de tempo, deve haver opções para desligar ou ajustar o tempo.				
EGC5	Não deve haver efeitos visuais piscantes, intermitentes ou cintilantes na tela.				
EGC6	Conteúdos animados não devem iniciar automaticamente.				
EGCI1	A linguagem utilizada na tela deve ser especificada.				
EGCI2	Mudanças na linguagem dos conteúdos sempre devem ser especificadas.				
EGCI3	Títulos de telas devem ser descritivos, informativos e representativos com relação ao conteúdo				
	principal.				
EGCI4	Deve haver algum mecanismo para indicar ao usuário onde ele está no momento, no conjunto				
	de telas.				
EGCI5	Alvos de links devem ser identificados claramente, incluindo informações sobre se estão				
	funcionando ou se direcionam para outra tela.				
EGCI6	Todas as imagens devem possuir descrição textual.				
EGCI7	Documentos em formatos acessíveis devem estar disponíveis.				
EGCI8	Quando uma tabela é utilizada na tela, título e sumário apropriados devem ser fornecidos.				
EGCI9	Os textos nas telas devem ser fáceis de ler e entender.				
EGCI10	Totos as siglas, abreviações e palavras incomuns na tela devem possuir explicação.				
EGAD1	Deve haver uma taxa minima de contraste entre as cores de fundo e as de frente.				
EGAD2	Características sensoriais (ex. cores, formas e sons) não podem ser o único significado para				
	distinguir elementos de tela.				
EGAD3	O elemento ou área em foco deve ser evidente visualmente.				
EGM1	Vídeos que não incluem áudio devem fornecer alternativas como legendas.				
EGM2	Deve haver alternativas a conteúdo de áudio (ex. transcrição ou linguagem de sinais).				
EGM3	Conteúdos visuais que não estão disponíveis como áudio devem ser descritos.				
EGM4	Devem haver mecanismos para controlar áudios da aplicação.				
EGM5	Devem haver mecanismos para controlar animações que iniciam automaticamente.				
EGF1	Botões de imagem ou conteúdos de áudio em formulários devem possuir alternativas textuais				
EGF2	Todos os campos do formulário devem ser identificados.				
EGF3	Uma ordem lógica na navegação pelo formulário deve ser garantida.				
EGF4	Não devem haver mudanças automáticas quando um elemento do formulário é focado, para				
	não confundir ou desorientar o usuário.				
EGF5	Formulários devem possuir instruções de preenchimento.				
EGF6	Erros de entrada devem sempre ser descritos e as submissões de dados confirmadas.				
- ~	r				

Fonte: Quispe, Scatalon e Eler (2020)

0.2 Análise dos Resultados

Referências

DAMACENO, R. J. P.; BRAGA, J. C.; CHALCO, J. P. M. Mobile device accessibility for the visually impaired: Problems mapping and empirical study of touch screen gestures. In: *Proceedings of the 15th Brazilian Symposium on Human Factors in Computing Systems*. New York, NY, USA: Association for Computing Machinery, 2016. (IHC '16). ISBN 9781450352352. Disponível em: https://dl.acm.org/doi/10.1145/3033701.3033703. Citado 4 vezes nas páginas 3, 6, 7 e 8.

KIM, W. et al. Effect of ux design guideline on the information accessibility for the visually impaired in the mobile health apps. In: . Institute of Electrical and Electronics Engineers Inc., 2019. p. 1103–1106. Disponível em: https://www.scopus.com/inward/record.uri? eid=2-s2.0-85062552457&doi=10.1109%2fBIBM.2018.8621471&partnerID=40&md5= b0ac4a92a73fedbd9803f08ab427814e>. Citado 3 vezes nas páginas 3, 5 e 6.

KITCHENHAM, B.; CHARTERS, S. Guidelines for performing Systematic Literature Reviews in Software Engineering. 2007. Citado na página 3.

MATEUS, D. A. et al. Accessibility of mobile applications: Evaluation by users with visual impairment and by automated tools. In: *Proceedings of the 19th Brazilian Symposium on Human Factors in Computing Systems*. New York, NY, USA: Association for Computing Machinery, 2020. (IHC '20). ISBN 9781450381727. Disponível em: https://dl.acm.org/doi/10.1145/3424953.3426633>. Citado na página 3.

QUISPE, F.; SCATALON, L.; ELER, M. Prioritization of mobile accessibility guidelines for visual impaired users. In: . SciTePress, 2020. v. 2, p. 563–570. Cited By 0. Disponível em: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091396826&partnerID=40&md5=f30643b9bc6f6f843d4c94328b592afc. Citado 3 vezes nas páginas 3, 10 e 11.

RIEGER, C. et al. A model-driven approach to cross-platform development of accessible business apps. In: . New York, NY, USA: Association for Computing Machinery, 2020. (SAC '20), p. 984–993. ISBN 9781450368667. Disponível em: https://dl.acm.org/doi/10.1145/3341105.3375765. Citado na página 4.

SIEBRA, C. et al. Observation based analysis on the use of mobile applications for visually impaired users. In: *Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct*. New York, NY, USA: Association for Computing Machinery, 2016. (MobileHCI '16), p. 807–814. ISBN 9781450344135. Disponível em: https://dl.acm.org/doi/10.1145/2957265.2961848>. Citado 2 vezes nas páginas 3 e 9.

VENDOME, C. et al. Can everyone use my app? an empirical study on accessibility in android apps. In: . Institute of Electrical and Electronics Engineers Inc., 2019. p. 41–52. Cited By 13. Disponível em: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077219554&doi=10.1109%2fICSME.2019.00014&partnerID=40&md5=aea0355325a633ad2b12030536471926. Citado 2 vezes nas páginas 3 e 5.