Vectors 12C

- **1 a i** $|\overrightarrow{OA}| = \sqrt{1 + 4^2 + 8^2} = \sqrt{81} = 9$ $|\overrightarrow{OB}| = \sqrt{4^2 + 4^2 + 7^2} = \sqrt{81} = 9$ $\Rightarrow |\overrightarrow{OA}| = |\overrightarrow{OB}|$
 - ii $|\overrightarrow{AC}| = |\overrightarrow{OC} \overrightarrow{OA}| = |9\mathbf{i} + 4\mathbf{j} + 22\mathbf{k}|$ = $\sqrt{9^2 + 4^2 + 22^2} = \sqrt{581}$

$$|\overrightarrow{BC}| = |\overrightarrow{OC} - \overrightarrow{OB}| = |6\mathbf{i} - 4\mathbf{j} + 23\mathbf{k}|$$

$$= \sqrt{6^2 + 4^2 + 23^2} = \sqrt{581}$$

$$\Rightarrow |\overrightarrow{AC}| = |\overrightarrow{BC}|$$

- **b** The quadrilateral *OACB* has two pairs of equal adjacent sides, so it is a kite.
- 2 a Let O be the fixed origin.

$$|\overrightarrow{AB}| = |\overrightarrow{OB} - \overrightarrow{OA}| = |2\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}|$$

= $\sqrt{2^2 + 3^2 + 2^2} = \sqrt{17}$

$$|\overrightarrow{AC}| = |\overrightarrow{OC} - \overrightarrow{OA}| = |6\mathbf{j}| = 6$$

$$|\overrightarrow{BC}| = |\overrightarrow{OC} - \overrightarrow{OB}| = |-2\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}|$$
$$= \sqrt{2^2 + 3^2 + 2^2} = \sqrt{17}$$

So $|\overrightarrow{AB}| = |\overrightarrow{BC}|$ and the triangle is isosceles.

b If *AC* is the base of the triangle, then the height, *h*, will be given by:

$$\left(\frac{1}{2}|\overrightarrow{AC}|\right)^2 + h^2 = \left(|\overrightarrow{AB}|\right)^2$$

$$9 + h^2 = 17$$

$$h = \sqrt{8} = 2\sqrt{2}$$

Area of triangle ABC

$$= \frac{1}{2} \times 6 \times 2\sqrt{2} = 6\sqrt{2}$$

- **c** For *ABCD* to be a parallelogram, there are three possibilities:
 - i \overrightarrow{AD} and \overrightarrow{BC} are parallel and equal in magnitude.

Hence
$$\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{BC}$$

 $\overrightarrow{OD} = (2\mathbf{i} + \mathbf{j} + 5\mathbf{k}) + (-2\mathbf{i} + 3\mathbf{j} + 2\mathbf{k})$
 $= 4\mathbf{j} + 7\mathbf{k}$

Coordinates of D are (0, 4, 7).

ii \overrightarrow{CD} and \overrightarrow{AB} are parallel and equal in magnitude.

Hence
$$\overrightarrow{OD} = \overrightarrow{OC} + \overrightarrow{AB}$$

 $\overrightarrow{OD} = (2\mathbf{i} + 7\mathbf{j} + 5\mathbf{k}) + (2\mathbf{i} + 3\mathbf{j} - 2\mathbf{k})$
 $= 4\mathbf{i} + 10\mathbf{j} + 3\mathbf{k}$
Coordinates of D are $(4, 10, 3)$.

iii \overrightarrow{AD} and \overrightarrow{CB} are parallel and equal in magnitude.

Hence
$$\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{CB}$$

 $\overrightarrow{OD} = (2\mathbf{i} + \mathbf{j} + 5\mathbf{k}) + (2\mathbf{i} - 3\mathbf{j} - 2\mathbf{k})$
 $= 4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$
Coordinates of D are $(4, -2, 3)$.

3 a Let *O* be the fixed origin.

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$= (11\mathbf{i} + 2\mathbf{j} - 9\mathbf{k}) - (7\mathbf{i} + 12\mathbf{j} - \mathbf{k})$$

$$= 4\mathbf{i} - 10\mathbf{j} - 8\mathbf{k}$$

$$= 2(2\mathbf{i} - 5\mathbf{j} - 4\mathbf{k})$$

$$\overrightarrow{CD} = \overrightarrow{OD} - \overrightarrow{OC}$$

$$= (8\mathbf{i} + \mathbf{j} + 15\mathbf{k}) - (14\mathbf{i} - 14\mathbf{j} + 3\mathbf{k})$$

$$= -6\mathbf{i} + 15\mathbf{j} + 12\mathbf{k}$$

$$= -3(2\mathbf{i} - 5\mathbf{j} - 4\mathbf{k})$$

$$\overrightarrow{CD} = -\frac{3}{2}\overrightarrow{AB}$$
, so AB is parallel to CD .
 $AB: CD = 2:3$

3 **b**
$$\overrightarrow{BC} = 3\mathbf{i} - 16\mathbf{j} + 12\mathbf{k}$$

 $\overrightarrow{AD} = \mathbf{i} - 11\mathbf{j} + 16\mathbf{k}$

BC is not parallel to *AD*. So *ABCD* is a quadrilateral with one pair of parallel sides. So it is a trapezium.

4
$$(3a+b)\mathbf{i}+\mathbf{j}+ac\mathbf{k}=7\mathbf{i}-b\mathbf{j}+4\mathbf{k}$$

Comparing coefficients of **j**: b = -1

Comparing coefficients of **i**: $3a+b=7 \Rightarrow 3a-1=7$

$$3a+b=7 \implies 3a-8$$

$$a = \frac{8}{3}$$

Comparing coefficients of k:

$$ac = 4 \Rightarrow \frac{8}{3}c = 4$$

$$c = \frac{3}{2}$$

5 $\triangle OAB$ is isosceles.

If
$$|\overrightarrow{OA}| = |\overrightarrow{OB}|$$
:
 $\sqrt{10^2 + 23^2 + 10^2} = \sqrt{p^2 + 14^2 + 22^2}$
 $729 = p^2 + 680$
 $p^2 = 49$
 $p = \pm 7$

If
$$|\overrightarrow{OB}| = |\overrightarrow{AB}|$$
:
 $\overrightarrow{AB} = (p-10)\mathbf{i} + 37\mathbf{j} - 32\mathbf{k}$
 $\sqrt{p^2 + 14^2 + 22^2} = \sqrt{(p-10)^2 + 37^2 + 32^2}$
 $p^2 + 680 = (p-10)^2 + 1369 + 1024$
 $p^2 - (p-10)^2 = 2393 - 680$
 $p^2 - (p^2 - 20p + 100) = 1713$
 $20p = 1813$
 $p = \frac{1813}{20}$

If
$$|\overrightarrow{OA}| = |\overrightarrow{AB}|$$
:
 $\sqrt{729} = \sqrt{(p-10)^2 + 37^2 + 32^2}$
 $729 = (p-10)^2 + 1369 + 1024$
 $0 = (p-10)^2 + 2393 - 729$
 $0 = p^2 - 20p + 100 + 1664$
 $0 = p^2 - 20p + 1764$
 $b^2 - 4ac < 0$
So there are no solutions for p if $|\overrightarrow{OA}| = |\overrightarrow{AB}|$.

The three possible positions for *B* are (7, 14, -22), (-7, 14, -22) and $\left(\frac{1813}{20}, 14, -22\right)$.

6 a
$$|\overrightarrow{AB}| = \sqrt{7^2 + 1 + 2^2} = \sqrt{54}$$

 $|\overrightarrow{BC}| = \sqrt{1 + 5^2} = \sqrt{26}$
 $|\overrightarrow{AC}| = |\overrightarrow{AB} + \overrightarrow{BC}| = \sqrt{6^2 + 1 + 7^2} = \sqrt{86}$

$$\cos \angle ABC = \frac{54 + 26 - 86}{2 \times \sqrt{54} \times \sqrt{26}} = -0.080...$$

$$\angle ABC = 94.59...^{\circ}$$

Area of triangle

$$= \frac{1}{2} \times \sqrt{54} \times \sqrt{26} \times \sin 94.59...^{\circ}$$

= 18.67 (2 d.p.)

b Triangles *ABC* and *ADE* are similar with a side ratio of 1:3.

So area of triangle
$$ADE$$

= $9 \times$ area of triangle ABC
= $168.07 (2 \text{ d.p.})$

7 Suppose there is a point of intersection, *H*, of *OF* and *AG*.

$$\overrightarrow{OH} = r\overrightarrow{OF}$$
 for some scalar r.
 $\overrightarrow{AH} = s\overrightarrow{AG}$ for some scalar s.

But
$$\overrightarrow{OH} = \overrightarrow{OA} + \overrightarrow{AH} = \overrightarrow{OA} + s\overrightarrow{AG}$$

so $\overrightarrow{rOF} = \overrightarrow{OA} + s\overrightarrow{AG}$ (1)

Now
$$\overrightarrow{OF} = \overrightarrow{OB} + \overrightarrow{BD} + \overrightarrow{DF} = \mathbf{a} + \mathbf{b} + \mathbf{c}$$

and $\overrightarrow{AG} = \overrightarrow{AO} + \overrightarrow{OB} + \overrightarrow{BG} = -\mathbf{a} + \mathbf{b} + \mathbf{c}$

So (1) becomes

$$r(\mathbf{a}+\mathbf{b}+\mathbf{c})=\mathbf{a}+s(-\mathbf{a}+\mathbf{b}+\mathbf{c})$$

Comparing coefficients of a:

$$r=1-s$$

Comparing coefficients of **b**:

$$r = s$$

So $r = s = \frac{1}{2}$

$$\overrightarrow{OH} = \frac{1}{2}\overrightarrow{OF}$$
 and $\overrightarrow{AH} = \frac{1}{2}\overrightarrow{AG}$

So H is the midpoint of OF and of AG, and the diagonals bisect each other.

8
$$\overrightarrow{FP} = \overrightarrow{FB} + \overrightarrow{BO} + \overrightarrow{OA} + \overrightarrow{AP}$$

= $-\mathbf{c} - \mathbf{b} + \mathbf{a} + \frac{4}{3} \overrightarrow{AM}$

But
$$\overrightarrow{AM} = \overrightarrow{AO} + \frac{3}{4}\overrightarrow{OE}$$

$$= -\mathbf{a} + \frac{3}{4}(\mathbf{a} + \mathbf{b} + \mathbf{c})$$

$$= -\frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b} + \frac{3}{4}\mathbf{c}$$

So
$$\overrightarrow{FP} = -\mathbf{c} - \mathbf{b} + \mathbf{a} + \frac{4}{3} \left(-\frac{1}{4} \mathbf{a} + \frac{3}{4} \mathbf{b} + \frac{3}{4} \mathbf{c} \right)$$
$$= \frac{2}{3} \mathbf{a}$$

$$\overrightarrow{PE} = \overrightarrow{PA} + \overrightarrow{AG} + \overrightarrow{GE}$$

$$= -\frac{4}{3} \overrightarrow{AM} + \mathbf{c} + \mathbf{b}$$

$$= -\frac{4}{3} \left(\overrightarrow{AO} + \frac{3}{4} \overrightarrow{OE} \right) + \mathbf{c} + \mathbf{b}$$

$$= \frac{4}{3} \mathbf{a} - \mathbf{a} = \frac{1}{3} \mathbf{a}$$

Therefore *FP* and *PE* are parallel, so *P* lies on *FE*.

$$FP: PE = \frac{2}{3}|\mathbf{a}|: \frac{1}{3}|\mathbf{a}| = 2:1$$

Challenge

1
$$p\mathbf{a} + q\mathbf{b} + r\mathbf{c} = \begin{pmatrix} p + 2q - 5r \\ 3r \\ 4p - 3q + r \end{pmatrix} = \begin{pmatrix} 28 \\ -12 \\ -4 \end{pmatrix}$$

Comparing coefficients of **b**: r = -4

Comparing coefficients of **a**:

$$p+2q+20=28 \Rightarrow p+2q=8$$
 (1)

Comparing coefficients of **c**:

$$4p-3q-4=-4 \Rightarrow 4p-3q=0$$
 (2)

Substituting for p in (2):

$$4(8-2q)-3q=0 \Rightarrow q=\frac{32}{11}$$

Substituting for q in (1):

$$p + \frac{64}{11} = 8 \Rightarrow p = \frac{24}{11}$$

2
$$\overrightarrow{OM} = \frac{1}{2}\mathbf{a} + \mathbf{b} + \mathbf{c}$$

 $\overrightarrow{BN} = \mathbf{a} - \mathbf{b} + \frac{1}{2}\mathbf{c}$
 $\overrightarrow{AF} = -\mathbf{a} + \mathbf{b} + \mathbf{c}$

Suppose there is a point of intersection, X, of OM and AF.

$$\overrightarrow{AX} = r\overrightarrow{AF} = r(-\mathbf{a} + \mathbf{b} + \mathbf{c})$$
 for scalar r .
 $\overrightarrow{OX} = s\overrightarrow{OM} = s\left(\frac{1}{2}\mathbf{a} + \mathbf{b} + \mathbf{c}\right)$ for scalar s .

But
$$\overrightarrow{OX} = \overrightarrow{OA} + \overrightarrow{AX} = \mathbf{a} + r(-\mathbf{a} + \mathbf{b} + \mathbf{c})$$

so $s(\frac{1}{2}\mathbf{a} + \mathbf{b} + \mathbf{c}) = \mathbf{a} + r(-\mathbf{a} + \mathbf{b} + \mathbf{c})$

Comparing coefficients of **a** and **b**:

$$\frac{1}{2}s = 1 - r \text{ and } s = r$$
So $r = s = \frac{2}{3}$

Suppose there is a point of intersection, Y, of BN and AF.

$$\overrightarrow{AY} = p\overrightarrow{AF} = p(-\mathbf{a} + \mathbf{b} + \mathbf{c})$$
 for scalar p .
 $\overrightarrow{BY} = q\overrightarrow{BN} = q(\mathbf{a} - \mathbf{b} + \frac{1}{2}\mathbf{c})$ for scalar q .

But
$$\overrightarrow{BY} = \overrightarrow{BA} + \overrightarrow{AY} = \mathbf{a} - \mathbf{b} + p(-\mathbf{a} + \mathbf{b} + \mathbf{c})$$

so $q(\mathbf{a} - \mathbf{b} + \frac{1}{2}\mathbf{c}) = \mathbf{a} - \mathbf{b} + p(-\mathbf{a} + \mathbf{b} + \mathbf{c})$

Comparing coefficients of a and c:

$$q=1-p$$
 and $q=2p$

So
$$p = \frac{1}{3}, q = \frac{2}{3}$$

$$\overrightarrow{AX} = \frac{2}{3}\overrightarrow{AF}$$
 and $\overrightarrow{AY} = \frac{1}{3}\overrightarrow{AF}$

So the line segments OM and BN trisect the diagonal AF.