

"МАТЕМАТИКА БЕЗ ГРАНИЦИ" - 2014 г.

ФИНАЛ

21 юни 2014 г., гр. Несебър ОСМИ КЛАС

Задача 1. В 2014 килограма краставици водата е 99 %. Като престояли известно време
водата в тези краставици намаляла до 98 %. Тогава теглото на краставиците

волята в тези краставі	ици намаляла до 98 %.	Тогава теглото на кра	ставините					
водити в тези кристиві	пци памалила до 90 70.	Torubu Termoro nu kpu	ставиците					
А) намалява с 2 кг	Б) намалява 2 пъти	В) намалява с 4 кг	Г) намалява 4 пъти					
Задача 2. От три метални кубчета с ръбове 3 см, 4 см и 5 см след разтопяване са отлели ново кубче. Ръбът на новото кубче е:								
А) 6 см	Б) 7 см	В) 5,5 см	Г) 6,5 см					
Задача 3. Правоъгъл	пник е разделен чрез	з две пресичащи се	прави, успоредни на					
страните му, на 4 по	-малки правоъгълник	а, три от които имат	лица $3 cm^2$, $4 cm^2$ и					
$5 cm^2$. Да се намер	ои най- малката възг	можна стойност на	лицето на четвъртия					
правоъгълник.								
A) $6 cm^2$	b) $4,75 cm^2$	B) $3,75 cm^2$	Γ) 2,4 cm ²					
Задача 4. Вписаната в триъгълник АВС окръжност се допира до страната АВ в точката								
М. Ако АМ > ВМ, тогава е вярно, че								
A) AC < BC	Б) AC > BC	$\mathbf{B)} \ \mathbf{AC} = \mathbf{BC}$	Г) друг отговор					
Задача 5. Намерете	13- та цифра, отдя	існо на ляво, на чи	слото, получено при					
умножението на всички естествени числа от 1 до 50.								
A) 2	Б) 4	B) 6	Γ) 8					
Задача 6. Ако $x(x+1)(x+2)(x+3).(x+4)=a_5.x^5+a_4.x^4+a_3.x^3+a_2.x^2+a_1.x+a_0$ е								
тъждество, тогава $a_4 + a_2 + a_0$ е:								
A) 120	Б) 60	B) -60	Γ) -120					
Задача 7. Колко са точките в равнината с координати a и b , които са цели положителни								
числа и $3 a+3 b=a b$?								

B) 6

Б) 5

A) 3

 Γ) повече от 6

Задача 8. Намерете сборът на рационалните числа а и b, ако $1+\sqrt{2}$ е корен на уравнението $a. x^2 + bx + 3 = 0.$ **A)** -3 **b**) 6 **B**) 3 Γ) - 6 Задача 9. На бала Пепеляшка забелязала, че танцуват 20% от присъстващите кавалери и 30% от присъстващите дами (по онова време танцували по двойки и всяка двойка включвала кавалер и дама). Колко процента от присъстващите на бала са танцували? A) 22% **Б)** 24% **B)** 25% **Γ**) 27% **Задача 10.** Коя от точките е от графиката на функцията $y = \frac{2x}{x+|x|}$? **B)** C (5;2) **Б)** B (1;2) **A)** A (2;2) Γ) D (2;1) **Задача 11.** С колко сбора на числата в *2014*-тата тройка от редицата: (5, 6, 7), (8, 9, 10), (11, 12, 13), (14, 15, 16), е по-голям от сбора на числата в първата тройка. Задача 12. Точките M и N са среди на бедрата AD и BC на трапец ABCD с лице S. (AB>CD). Точките Р и Q са върху основата AB и PQNM е успоредник. Определете лицето на този успоредник. Задача 13. По колко начина можем да подредим 6 книги, така че две от тях винаги да са една до друга? Задача 14. Коя права е образ на правата у=х при ос на симетрия абсцисната ос? Задача 15. Ъглите при върховете А и В на триъгълник АВС са съответно 70 и 50 градуса. Точката M е вътрешна за триъгълника и $\angle MAC = \angle MCA = 40^{\circ}$. Да се пресметне $\angle BMC$. Задача 16. С пет еднакви правоъгълни плочки с размери х и у може да се сглоби правоъгълник с периметър 160 или правоъгълник с периметър 224,

плочка?

както е показано на чертежа. Колко е лицето на една

Задача 17. Единият корен на квадратното уравнение ax^2 - 3x + 3 - a = 0 е 2 пъти поголям от другия. Коя е най-голямата възможна стойност на параметъра a?

Задача 18 . В квадрат ABCD е избрана вътрешна точка M така, че $\not\prec MCD = 20^{\circ}$ и $\not\prec MAB = 65^{\circ}$. На колко градуса е равен quad MBC ?

Задача 19. Естествените числа m и n са такива, че 2n(m-1) = 209 - 7m.

На колко е равно произведението mn?

Задача 20. Квадрат със страна 7 е разделен на единични квадратчета и в оцветеното квадратче е поставена фигурата *генерал*. Генералът може да се мести на 4 или 5 квадратчета нагоре, надолу, наляво или надясно. Колко най-много квадратчета може да обиколи генералът, без да стъпва два пъти в едно и също квадратче?