Curs 8 LR(k) parsing

Terms

Reminder:

rhp = right handside of production lhp = left handside of production

- Prediction see LL(1)
- Handle = symbols from the head of the working stack that form (in order)
 a rhp

- *Shift reduce* parser:
- shift symbols to form a handle
- When a rhp is formed reduce to the corresponding lhp

LR(k)

- L = left sequence is read from left to right
- R = right use rightmost derivations
- k = length of prediction

- Enhanced grammar
- $G = (N, \Sigma, P, S)$
- G' = $(N \cup \{S'\}, \Sigma, P \cup \{S' \rightarrow S\}, S'), S' \notin N$

S' does NOT appear in any rhp

- **Definition 1**: If in a cfg $G = (N, \Sigma, P, S)$ we have $S \not=>_r \alpha Aw \Rightarrow_r \alpha \beta w$, where $\alpha \in (N \cup \Sigma)^*, A \in N, w \in \Sigma^*$, then any prefix of sequence $\alpha \beta$ is called *live prefix* in G.
- **Definition 2**: LR(k) item is defined as $[A \rightarrow \alpha.\beta,u]$, where $A \rightarrow \alpha\beta$ is a production, $u \in \Sigma^k$ and describe the moment in which, considering the production $A \rightarrow \alpha\beta$, α was detected (α is in head of stack) and it is expected to detect β .
- **Definition 3**: LR(k) item [A $\rightarrow \alpha$. β ,u] is *valid for the live prefix* $\gamma \alpha$ if: $S \Rightarrow_r \gamma Aw \Rightarrow_r \gamma \alpha \beta w$ $u = FIRST_k(w)$

Definition 4: A cfg G = (N, Σ , P, S) is LR(k), for k>=0, if

1.
$$S' \stackrel{*}{\Rightarrow}_r \alpha Aw \Rightarrow_r \alpha \beta w$$

2.
$$S' \stackrel{*}{\Rightarrow}_r \gamma Bx \Rightarrow_r \alpha \beta y$$

3.
$$FIRST_k(w) = FIRST_k(y)$$

$$\Rightarrow \alpha = \gamma AND A = BAND x = y$$

• $[A \rightarrow \alpha \beta.,u]$ – rhp detected - apply reduce

•
$$[A \rightarrow \alpha.\beta,u]$$
 - shift

⇒Working stack:

$$s_{init}X_1s_1...X_ms_m$$

where: \$ - mark empty stack

$$X_i \in N \cup \Sigma$$

s_i - states

LR(k) principle

- Current state
- Current symbol
- prediction

uniquely determines:

- Action to be applied
- Move to a new state

=> LR(k) table - 2 parts: action part + goto part

States

What a state contains?

- LR items all items corresponding to same live prefix
- closure

How to go from one state to another state? How many states?

- goto
- Canonical collection

What LR item will be in the same state?

• $[A \rightarrow \alpha.B\beta,u]$ valid for live prefix $\gamma\alpha =>$

$$S \stackrel{*}{\Rightarrow}_{dr} \gamma Aw \Rightarrow_{dr} \gamma \alpha B\beta w$$
$$u = FIRST_k(w)$$

• B
$$\rightarrow \delta \in P \Rightarrow S \stackrel{*}{\Rightarrow}_{dr} \gamma Aw \Rightarrow_{dr} \gamma \alpha B\beta w \stackrel{*}{\Rightarrow}_{dr} \gamma \alpha \delta w'$$

=> $[B \rightarrow .\delta,u]$ valid for live prefix $\gamma\alpha$

LR(k) parsing: LR(0), SLR, LR(1), LALR

- Define item
- Construct set of states
- Construct table

Executed 1 time

Parse sequence based on moves between configurations

LR(0) Parser

Prediction of length 0 (ignored)

1. LR(0) item: $[A \rightarrow \alpha.\beta]$

2. Construct set of states

- What a state contains Algorithm closure_LR(0)
- How to move from a state to another Function goto_LR(0)
- Construct set of states Algorithm ColCan_LR(0)

Canonical collection

Algorithm *Closure_LR(0)*

```
INPUT: I-element de analiză; G'- gramatica îmbogățită
OUTPUT: C = closure(I);
C := \{I\};
repeat
  for \forall [A \to \alpha.B\beta] \in C do
     for \forall B \rightarrow \gamma \in P do
        if [B \to .\gamma] \notin C then
           C = C \cup [B \rightarrow .\gamma]
        end if
     end for
   end for
until C nu se mai modifică
```

Function *goto_LR(0)*

goto : $P(\mathcal{E}_0) \times (N \cup \Sigma) \rightarrow P(\mathcal{E}_0)$ where \mathcal{E}_0 = set of LR(0) items

goto(s, X) = closure($\{[A \rightarrow \alpha X.\beta] | [A \rightarrow \alpha.X\beta] \in s\}$)

Algorithm *ColCan_LR(0)*

```
INPUT: G'- gramatica îmbogățită
OUTPUT: C - colecția canonică de stări
\mathcal{C} := \emptyset;
s_0 := closure(\{[S' \rightarrow .S]\})
\mathcal{C} := \mathcal{C} \cup \{s_0\};
repeat
   for \forall s \in \mathcal{C} do
      for \forall X \in N \cup \Sigma do
          if goto(s, X) \neq \emptyset and goto(s, X) \notin \mathcal{C} then
             \mathcal{C} = \mathcal{C} \cup goto(s, X)
          end if
       end for
   end for
until \mathcal{C} nu se mai modifică
```

3. Construct LR(0) table

one line for each state

- 2 parts:
 - Action: one column (for a state, action is unique because prediction is ignored)
 - Goto: one column for each symbol $X \in N \cup \Sigma$

Rules LR(0) table

- 1. if $[A \rightarrow \alpha.\beta] \in s_i$ then action(s_i)=shift
- 2. if $[A \rightarrow \beta] \in s_i$ and $A \neq S'$ then $action(s_i) = reduce I$, where $I = number of production <math>A \rightarrow \beta$
- 3. if $[S' \rightarrow S.] \in S_i$ then $action(s_i) = acc$
- 4. if $goto(s_i, X) = s_j$ then $goto(s_i, X) = s_j$
- 5. otherwise = error

Remarks

- 1) Initial state of parser = state containing $[S' \rightarrow .S]$
- 2) No shift from accept state:
 if s is accept state then goto(s, X) = Ø, ∀X ∈ N ∪ Σ.
- 3) If in state s action is reduce then goto(s, X) = \emptyset , \forall X \in N \cup Σ .
- 4) Argument G': Let G = ($\{S\}$, $\{a,b,c\}$, $\{S \rightarrow aSbS,S \rightarrow c\}$,S) states [$S \rightarrow aSbS$.] and [$S \rightarrow c$.] accept / reduce ?

Remarks (cont)

- 5) A grammar is NOT LR(0) if the LR(0) table contains conflicts:
 - shift reduce conflict: a state contains items of the form $[A \rightarrow \alpha.\beta]$ and $[B \rightarrow \gamma.]$, yielding to 2 distinct actions for that state
 - reduce reduce conflict: when a state contains items of the form $[A \to \alpha \beta.]$ and $[B \to \gamma.]$, in which the action is reduce, but with distinct productions

4. Define configurations and moves

• INPUT:

- Grammar G' = (NU{S'}, Σ, P U {S'->S},S')
- LR(0) table
- Input sequence $w = a_1 ... a_n$

• OUTPUT:

```
if (w ∈L(G)) then string of productions
else error & location of error
```

LR(0) configurations

 (α, β, π)

where:

- α = working stack
- β = input stack
- π = output (result) stack

Initial configuration: $(\$s_0, w\$, \varepsilon)$

Final configuration: $(\$s_{acc}, \$, \pi)$

Moves

1. Shift

```
if action(s_m) = shift AND head(\beta) = a_i AND goto(s_m, a_i) = s_j then (\$s_0x_1 ... x_m s_m, a_i ... a_n\$, \pi) \vdash (\$s_0x_1 ... x_m s_m a_i s_j, a_{i+1} ... a_n\$, \pi)
```

2. Reduce

if action(
$$s_m$$
) = reduce | AND (|) A $\rightarrow x_{m-p+1} ... x_m$ AND goto(s_{m-p} , A) = s_j **then** (\$ $s_0 ... x_m s_m$, $a_i ... a_n$ \$, π) \vdash (\$ $s_0 ... x_{m-p} s_{m-p} A s_j$, $a_i ... a_n$ \$, | π)

3. Accept

if $action(s_m) = accept then ($s_m,$, $\pi) = acc$

4. Error - otherwise

LR(0) Parsing Algorithm

INPUT:

- LR(0) table conflict free
- grammar G': production numbered
- - sequence = Input sequence $w = a_1...a_n$
- OUTPUT:

```
if (w ∈L(G)) then string of productions
else error & location of error
```

LR(0) Parsing Algorithm

```
if action(state) ='reduce I" then
     search_prod(l,rhp,lhp);
     alpha.pop(rhp);
     state = goto(head(alpha.state),lhp);
     alpha.push(lhp,state);
     phi.push(l);
else
     if action(state)='accept' then
       write(" success", out);
       end := true;
     if action(state) = 'error' then
       write(" error")
       end := true
```

Until end