

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по Лабораторной работе №7 по курсу «Моделирование» на тему: «Обслуживающий аппарат»

Студент _	ИУ7-73Б (Группа)	(Подпись, дата)	Миронов Г. А. (И. О. Фамилия)
Преподава	атель	(Подпись, дата)	Рудаков И. В. (И. О. Фамилия)

1 Задание

Провести моделирование системы, состоящей из генератора, блока памяти, и обслуживающего аппарата.

Генератор подает сообщения, распределенные по равномерному закону, они приходят в память и выбираются на обработку по закону из ЛР1. Количество заявок конечно и задано. Предусмотреть случай, возвращат обработанной заявки обратно в очередь.

Необходимо определить оптимальную длину очереди, при которой в системе не будет потерянных сообщений. Реализовать используя GPSS.

2 Теоретическая часть

2.1 Равномерное распределение

Говорят, что случайная величина X имеет равномерное распределение на отрезке [a;b], если её функция плотности имеет вид

$$f(x) = \begin{cases} \frac{1}{b-a}, a \le x \le b\\ 0, \text{иначе} \end{cases}$$
 (2.1)

Обозначается $X \sim R[a, b]$.

Соответствующая функция распределения:

$$F(x) = \begin{cases} 0, a < x \\ \frac{x-a}{b-a}, a \le x \le b \\ 1, x > b \end{cases}$$
 (2.2)

2.2 Распределение Пуассона

Говорят, что случайная величина X распределена по закону Пуассона с параметром $\lambda>0$, если она принимает значения $0,1,2,\ldots$ с вероятностями

$$P\{X = k\} = \frac{\lambda^k}{k!} * e^{-\lambda}, k \in \{0, 1, 2, \dots \}$$
 (2.3)

Обозначается $X \sim \Pi(\lambda)$.

Функция плотности распределения имеет вид:

$$P\{x = k\} = \frac{\lambda^k}{k!} * e^{-\lambda}, k \in \{0, 1, 2, \dots \}$$
 (2.4)

Тогда соответствующая функция распределения имеет вид:

$$F(x) = P\{X < x\}, X \sim \Pi(\lambda) \tag{2.5}$$

2.3 Формализация задачи

2.3.1 Δt модель

Данная модель заключается в последовательном анализе состояний всех блоков системы в момент времени $t + \Delta t$. Новое состояние определяется в соответствии с их алгоритмическим описанием с учетом действия случайных факторов. В результате этого анализа принимается решение о том, какие системные события должны имитироваться на данный момент времени.

Основной недостаток модели: значительные затраты и вероятность пропуска события при больших Δt .

3 Результат работы

3.1 Без повторов, 1000 заявок

Входные данные:

$$a, b = 1, 10$$

lambda = 4

Результаты моделирования:

$3.2 \ 10\%$ повторов, 1000 заявок

4.000

Входные данные:

$$a, b = 1, 10$$

lambda = 4

Результаты моделирования:

REQUIRED_QUEUE_LEN 6.000

$3.3\ \ 25\%$ повторов, 1000 заявок

Входные данные:

a, b = 1, 10

lambda = 4

total_tasks = 1000
repeat_percentage = 0.25
step = 0.01

Результаты моделирования:

REQUIRED_QUEUE_LEN

3.4~25% повторов, 10000 заявок

15.000

Входные данные:

a, b = 1, 10

lambda = 4

total_tasks = 10000
repeat_percentage = 0.25
step = 0.01

Результаты моделирования:

REQUIRED_QUEUE_LEN 52.000

$3.5 \ 50\%$ повторов, 10000 заявок

Входные данные:

a, b = 1, 10

lambda = 4

total_tasks = 10000
repeat_percentage = 0.5
step = 0.01

Результаты моделирования:

REQUIRED_QUEUE_LEN

4669.000

3.6 Итоговая таблица сравения

Полученные в ходе эксперимента данные, представлены в таблице 3.1.

Таблица 3.1 — Сводные данные по проведенным моделированиям системы и их параметрам

Кол-во	Процент	Шаг	Равномерное		Пуассона	Размер очереди
сообщений	повторов	Δt	a	b	λ	Δt
1000	0	0.1	1	10	4	4
1000	10	0.1	1	10	4	6
1000	25	0.1	1	10	4	15
10000	25	0.1	1	10	4	52
10000	50	0.1	1	10	4	4669

4 Исходный код программы

Листинг 4.1 – Исходный код программы

1		SIMULATE	
2		GENERATE	(UNIFORM(1,1,10))
3			
4	M_MEM	QUEUE	qMemory
5		SEIZE	Processor
6		DEPART	qMemory
7			
8		ADVANCE	(POISSON(2,4))
9		RELEASE	Processor
10		TRANSFER	.10, M_END, M_MEM
11			
12	M_END	SAVEVALUE	REQUIRED_QUEUE_LEN,QM\$qMemory
13			
14		TERMINATE	1
15		START	1000