Задачи из книги В.И.Арнольда «ОДУ»

Задача 1 (Задача 2, стр. 238). Сколько компонент связности имеет многообразие невырожденных матриц размера $n \times n$?

- □ Покажем, что это многообразие имеет 2 компоненты связности.
- 1°. Покажем, что всякую матрицу $A \in \mathbf{GL}(n,\mathbb{R})$ с $\det A > 0$ можно соединить отрезками и дугами окружностей с единичной матрицей так, что при движении вдоль полученной кривой определитель остаётся положительным. Разложим матрицу по первой строке: $\det A = \sum_k a_{1k} A_{1k} > 0 \Rightarrow \exists a_{1i} A_{1i} > 0$. Сделаем новую матрицу

 $A^{(1)}$, в которой $a_{1k} = 0 \ \forall \ k \neq i$:

$$A^{(1)} = \begin{pmatrix} 0 & \dots & 0 & a_{1i} & 0 & \dots & 0 \\ & & & * & & & \end{pmatrix}$$

Рассмотрим семейство матриц вида $M(t) = (1-t)A + tA^{(1)}, t \in [0,1].$ Тогда

$$\det M(t) = \det \left[(1-t)A + tA^{(1)} \right] = \det \left[A + t(A^{(1)} - A) \right] =$$

$$= \det \begin{pmatrix} (1-t)a_{11} & \dots & a_{1i} & \dots & (1-t)a_{1n} \\ a_{21} & \dots & & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & \dots & & a_{nn} \end{pmatrix} = a_{1i}A_{1i} + (1-t)B,$$

где $B=\sum_{k\neq i}a_{1k}A_{1k}$. Очевидно, $\det M(t)$ – непрерывная функция, линейная по t. Имеем $\det M(0)=\det A>0$,

кроме того, $\det M(1) = a_{1i}A_{1i} > 0$. Значит, уравнение $\det M(t) = 0$ на отрезке [0,1] корней не имеет, а нам только этого и надо: при движении по этому отрезку определитель сохраняет знак. Аналогично, зануляя далее строку за строкой, придём к матрице $A^{(n)}$ вида

$$A^{(n)} = \begin{pmatrix} 0 & \dots & 0 & a_{1i_1} & 0 & \dots & 0 \\ 0 & \dots & 0 & a_{2i_2} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & a_{ni_n} & 0 & \dots & 0 \end{pmatrix}$$

причём $\det A^{(n)} > 0$. Заметим, что все i_k здесь будут различны, иначе определитель был бы равен 0. Далее отнормируем элементы матрицы, домножив a_{ki_k} на соответствующие положительные числа. Это можно сделать, не изменив знака определителя, поскольку с точностью до знака он равен $a_{1i_1} \cdot \ldots \cdot a_{ni_n}$. Так мы придём к матрице N, у которой в каждой строке и в каждом столбце ровно один ненулевой элемент: 1 или -1. Очевидно, $N \in \mathbf{SO}(n)$, а любой собственный ортогональный оператор приводится к единичной матрице поворотами вокруг базисных векторов. Поворот — непрерывное преобразование, сохраняющее определитель. Таким образом мы приведём матрицу N к матрице E.

Совершенно аналогично можно показать, что любую матрицу с отрицательным определителем можно привести к матрице вида

$$\begin{pmatrix} -1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix}.$$

 2° . Докажем вспомогательное утверждение:

Теорема 1 (О пауке). Пусть A_i – связные подмножества топологического пространства \mathcal{X} , такие что $\bigcap_i A_i \neq \emptyset$. Тогда $A = \bigcup_i A_i$ – связное подмножество \mathcal{X} .

- \square В самом деле, допустим, что A несвязно. Тогда оно, по определению несвязного множества, разбивается на 2 открытых в A множества: $A=U_1\oplus U_2$. Рассмотрим точку, принадлежащую всем A_i , пусть она, для определённости, лежит в U_1 . Тогда найдётся A_k , точки которого лежат и в U_1 , и в U_2 . Рассмотрим $\widetilde{U}_1=U_1\cap A_k$ и $\widetilde{U}_2=U_2\cap A_k$. Множества \widetilde{U}_1 и \widetilde{U}_2 открыты в A_k по определению. Они образуют разбиение A_k . Но это противоречит связности A_k .
- ${f 3}^{\circ}$. Добьём задачу, применив теорему о пауке к связным кривым, соединяющим матрицу с E (для $\det > 0$) или с -E (для $\det < 0$).

Задача 2 (Задача 1, стр. 238). Связны ли многообразия, заданные уравнениями вида $x^2 + y^2 - z^2 = c, \ c \neq 0$ в $\mathbb{R}^3(\mathbb{R}\mathrm{P}^3)$?

 \square 1°. Рассмотрим случай \mathbb{R}^3 . Пусть сначала c>0, и для простоты выкладок c=1. Тогда получим однополостный гиперболоид. Рассмотрим сечения плоскостями y=0 и x=0. Рассмотрим стереографическую проекцию на каждую из плоскостей. Тогда все точки гиперболоида, за исключением двух гипербол, будут изображены на любой из карт, и для них связность очевидна. Если же точки попали на гиперболы, их надо непрерывно пошевелить, чтобы обе они были видны на одной карте. Значит, гиперболоид связен.

Если c < 0, то это двуполостный гиперболоид. Тогда он несвязен, ибо две его части лежат в разных полупространствах относительно плоскости z = 0. Следовательно, пересечение каких-то U_i и U_{i+1} будет пусто.

 $\mathbf{2}^{\circ}$. Рассмотрим случай $\mathbb{R}P^3$. Пусть c<0, тогда рассмотрим уравнение многообразия в неоднородных координатах: $\left(\frac{x}{t}\right)^2+\left(\frac{y}{t}\right)^2-\left(\frac{z}{t}\right)^2=-1$, т.е. уравнение вида $x_0^2+x_1^2+x_2^2=x_3^2$. Рассмотрим аффинную карту S_1 этого многообразия, заданную уравнением $x_0-x_3=1$. Посмотрим, как выглядит наше многообразие на этой аффинной карте, т.е. просто подставим в исходное уравнение $x_3=x_0-1$. Получим $x_1^2+x_2^2=1-2x_0$. Это будет параболоид. Найдём точки, которые не попали на данную карту. Они задаются условиями $x_0-x_3=0$ и $x_0^2+x_1^2+x_2^2=x_3^2$. Решая совместно эти уравнения, получаем единственную точку (1:0:0:1).

 $x_0^2+x_1^2+x_2^2=x_3^2$. Решая совместно эти уравнения, получаем единственную точку (1:0:0:1). Теперь рассмотрим карту S_2 , заданную уравнением $x_1-x_3=1$. Бесконечно удалённой по отношению к S_2 будет точка (0:1:0:1), а образом — параболоид. Таким образом, получаем, что наше многообразие связно.

Пусть теперь c>0. Рассматривая те же самые карты, получаем, что на первой карте не видны точки $(0:1:\pm 1:0)$, а по отношению ко второй не видны $(1:0:\pm 1:0)$. Так как точки не совпадают, получаем, что наше многообразие связно.