Augment the problem with data weights w_1,\dots,w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[\theta]$.

Let's annotate this.

Augment the problem with data weights w_1,\dots,w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[\theta]$.

Augment the problem with data weights w_1,\dots,w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[\theta]$.

Augment the problem with data weights w_1,\dots,w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[\theta]$.

Augment the problem with data weights w_1,\dots,w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[\theta]$.

Augment the problem with data weights w_1,\dots,w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[\theta]$.

Augment the problem with data weights w_1,\dots,w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[\theta]$.

Augment the problem with data weights w_1,\dots,w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[\theta]$.

Augment the problem with data weights w_1,\dots,w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[\theta]$.

Augment the problem with data weights w_1,\dots,w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[\theta]$.

Augment the problem with data weights w_1,\dots,w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[\theta]$.

Source and further reading

Beamer:

- Google "beamer tutorial"
- https://www.texdev.net/2014/01/17/the-beamer-slide-overlay-concept/

TikZ:

- https://www.overleaf.com/learn/latex/TikZ_package
- https://www.math.uni-leipzig.de/~hellmund/LaTeX/pgf-tut.pdf
- https://latexdraw.com/how-to-annotate-an-image-in-latex/
- https://tex.stackexchange.com/questions/9559/drawing-on-an-image-with-tikz