Notas em Computação Quântica

Ricardo Alvarenga 2024 SUMÁRIO SUMÁRIO

Sumário

1	Álg	ebra Li	inear	1
	1.1	Vetore	s	1
		1.1.1	Vetores com duas dimensões - \mathbf{R}^2	1
		1.1.2	Vetores com três dimensões - \mathbb{R}^3	2
		1.1.3	Vetores com n dimensões - \mathbb{R}^n	2
		1.1.4	Como colocar um vetor no plano $\mathbf{R}^3(x, y, z)$	2
		1.1.5	Tipos de Vetores	3
		1.1.6	Igualdade de Vetores	3
		1.1.7	Subtração de Vetores	3
		1.1.8	Produto Escalar dos Vetores (Multiplicação)	3
		1.1.9	Módulo de Um Vetor	3
		1.1.10	Ângulo de Dois Vetores	3
		1.1.11	Paralelismo e Ortogonalidade de Dois Vetores	3
		1.1.12	Projecão Ortogonal Entre Dois Vetores	3

Lista de Figuras

1	$ \text{Vetores } \mathbf{u} \in \mathbf{v} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	1
2	Vetores em \mathbb{R}^2	1
3	Vetores em \mathbb{R}^3	2
4	Vetor em \mathbb{R}^3	2
5	Subtração de Vetores	4

1 Álgebra Linear

1.1 Vetores

Vetores são seguimentos orientados (início em 0, 0) que estão sempre no plano cartesiano. Vetores são usados para representar grandezas escalares (massa, pressão, etc.) e grandezas físicas vetoriais (velocidade, força e deslocamento).

Figura 1: Exemplos de Vetores, ${\bf u}$ e ${\bf v}$

1.1.1 Vetores com duas dimensões - \mathbb{R}^2

 \mathbf{x} , \mathbf{y} podem assumir qualquer valor Real.

Figura 2: Vetores em \mathbb{R}^2 (x, y)

1.1.2 Vetores com três dimensões - \mathbb{R}^3

x, y, z podem assumir qualquer valor Real.

Figura 3: Vetores em \mathbb{R}^3 (x, y, z)

1.1.3 Vetores com n dimensões - \mathbb{R}^n

Os vetores com n dimensões são de difícil (ou impossível) representação gráfica. Um vetor \mathbf{R}^4 é indicado da seguinte forma: $\mathbf{R}^4(\mathbf{x},\,\mathbf{y},\,\mathbf{z},\,\mathbf{w})$

1.1.4 Como colocar um vetor no plano $R^3(x, y, z)$

Vetor $\mathbf{u} = (2,4,3)$

Figura 4: Vetor em \mathbb{R}^3

1.1.5 Tipos de Vetores

- Vetor Nulo: Todos valores iguais a zero. Ex: $\mathbf{v} = (0,0,0)$
- Vetor simétrico ou oposto: Ocorre quando dois vetores são opostos e contêm o mesmo módulo e mesma direção. Ex: $\mathbf{v} = (x,y)$, $-\mathbf{v} = (-x,-y)$
- Vetor unitário: Possui módulo (tamanho) igual a 1. $-\mathbf{v}$ = 1
- Vetores colineares ou paralelos: Ocorrem quando dois vetores tiverem a mesma direção, na mesma reta ou retas paralelas.
- Vetores coplanares: Quando dois vetores fazem parte de um mesmo plano.

1.1.6 Igualdade de Vetores

Dois vetores serão iguais se:

- $x_1 = x_2$
- $y_1 = y_2$
- $z_1 = z_2$ vetores em R^3
- $w_1 = w_2$ vetores em R^4
- u = (3, x + 4) v = (3, 8) se x = 4 os vetores serão iguais.

Sejam: u = (x - 1, 3), v = (3, 2y - 1). Determine o valor de x e y para que u = v.

$$x = 4, y = 2$$

1.1.7 Subtração de Vetores

$$A = (-1, 2)$$

$$B = (2, 1)$$

 $v=\overrightarrow{AB}$ o vetor está "perdido"
no plano cartesiano. Para corrigir isso, realizamos a subtração:

$$B - A = (2,1) - (-1,2) = (3,-1)$$

Que resulta no vetor t = (3, -1), conforme figura 5.

Outro exemplo: Dois vetores u = (-1, 3) e v = (10, 20), a subtração u - v resulta em (-11, -17).

1.1.8 Produto Escalar dos Vetores (Multiplicação)

- 1.1.9 Módulo de Um Vetor
- 1.1.10 Ângulo de Dois Vetores
- 1.1.11 Paralelismo e Ortogonalidade de Dois Vetores
- 1.1.12 Projeção Ortogonal Entre Dois Vetores

Figura 5: Subtração de Vetores