

"Reporte Práctica 1"

ALUMNO: ZARAZUA AGUILAR

LUIS FERNANDO

GRUPO: 2MM6

PROFESOR: YAÑEZ BARRAZA

ZENON

MATERIA: DISEÑO BÁSICO DE ELEMENTOS DE MÁQUINAS

Propiedades del Acero 1018 CD

Mechanical Properties

The following table shows mechanical properties of cold drawn AISI 1018 carbon steel.

Properties	Metric	Imperial
Tensile strength	440 MPa	63800 psi
Yield strength	370 MPa	53700 psi
Modulus of elasticity	205 GPa	29700 ksi
Shear modulus (typical for steel)	80 GPa	11600 ksi
Poisson's ratio	0.29	0.29
Elongation at break (in 50 mm)	15%	15%
Hardness, Brinell	126	126
Hardness, Knoop (converted from Brinell hardness)	145	145
Hardness, Rockwell B (converted from Brinell hardness)	71	71
Hardness, Vickers (converted from Brinell hardness)	131	131
Machinability (based on AISI 1212 steel. as 100 machinability)	70	70

Cálculos para la flecha 4 in con 30°.

Cálculos para el Eje a las condiciones dadas

Cálculos para el esfuerzo Máximo

Cálculos para el punto y ángulo deseado

RAr = 1.0e+03*(1.5650 0 0.6741)

RBr =1.0e+03 *(1.6077 -0.1533 -0.4245)

Esfuerzo Maximo = 5.9774e+03

Punto Max = 3.0008

Punto = 4

 $Sum_Cargas_yx_ind = -1.9877e+03$

Esfuerzo_Vyx_ind = -422.7341

Esfuerzo_Vyz_ind = -74.9139

 $Momento_Myx_ind = 4.2723e+03$

 $Momento_Myz_ind = 1.1217e+03$

<u>d = 2</u>

Esfuerzo_Normal_Carga_Axial_Maximo = -

169.5446

Esfuerzo_Normal_Momento_x_Maximo =

5.4396e+03

Esfuerzo_Normal_Momento_z_Maximo =

1.4282e+03

 $Angulo_Max = 280$

Angulo Min = 100

Angulo Real Maximo = 100

Esfuerzo_Normal_Resultante_Maximo = -

5.7746e+03

Ty = -3.0810e + 03

Esfuerzo_Cortante_Torque_Maximo = -

1.9614e+03

Esfuerzo Cortante Momento x Maximo = -

179.4139

Esfuerzo_Cortante_Momento_z_Maximo =-

31.7944

Esfuerzo_Cortante_Momento_x_ind = -179.4139

Esfuerzo Cortante Momento xR ind =-44.8535

Esfuerzo Cortante Momento z ind =-31.7944

Esfuerzo Cortante Momento zR ind =-23.8458

Esfuerzo Cortante Torque R ind =-1.9614e+03

Suma Cortantes N ind =-50.7672

Suma Cortantes T ind =-1.9596e+03

Factor Seguridad 1 = 12.6920

Factor Seguridad 2 = 14.3004

Resultados para el esfuerzo máximo

Punto =3.0008

Esfuerzo_Vyx_ind =-422.7341

Esfuerzo_Vyz_ind =-74.9139

Momento_Myx_ind =4.6947e+03

Momento Myz ind =1.1966e+03

d = 2

Esfuerzo_Normal_Carga_Axial_Maximo =-

169.5446

Esfuerzo_Normal_Momento_x_Maximo

=5.9774e+03

Esfuerzo_Normal_Momento_z_Maximo

=1.5235e+03

Esfuerzo_Normal_Resultante_Maximo

=6.3207e+03

th =100

Angulo Max = 280

Angulo_Min =100

Angulo_Real_Maximo = 100

Esfuerzo Normal Resultante Maximo =-

6.3207e+03

Ty =-3.0810e+03

Esfuerzo_Cortante_Torque_Maximo =-

1.9614e+03

Esfuerzo_Cortante_Momento_x_Maximo =-

179.4139

Esfuerzo Cortante Momento z Maximo =-

31.7944

Esfuerzo Cortante Momento x ind =-179.4139

Esfuerzo_Cortante_Momento_xR_ind =-174.0039

Esfuerzo_Cortante_Momento_z_ind =-31.7944

Esfuerzo_Cortante_Momento_zR_ind =-0.9587

Esfuerzo Cortante Torque R ind =-1.9614e+03

Suma Cortantes N ind =29.2713

Suma Cortantes T ind =-1.7899e+03

Factor Seguridad 1 = 7.4336

Factor Seguridad 2 = 7.6702