Isomorphism in Union-Closed Sets

Mohammad Javad Moghaddas Mehr ORAM 14, Cincinnati, March 2025

Outline

Introduction

Definitions and Theorems

Conclusion

Introduction

Introduction

- Definition of Union-Closed Families of Sets
- Péter Frankl's Union-Closed Set Conjecture
- Our Focus: Structural Properties of Isomorphisms

Definitions and Theorems

Definitions

Union-Closed Family: A collection $\mathcal{K} \subseteq 2^{[n]}$ is union-closed if for all $A, B \in \mathcal{K}$, we have $A \cup B \in \mathcal{K}$.

Isomorphism: A bijection $h: \mathcal{K}_1 \to \mathcal{K}_2$ such that:

$$h(A \cup B) = h(A) \cup h(B) \quad \forall A, B \in \mathcal{K}_1.$$

Main Theorem

Theorem: For every isomorphism $h: \mathcal{K}_1 \to \mathcal{K}_2$, there exists a corresponding hyperisomorphism $H: \bigcup \mathcal{K}_1 \to \bigcup \mathcal{K}_2$ such that:

$$\textit{h}(\textit{A}) = \{\textit{H}(\textit{a}) \mid \textit{a} \in \textit{A}\}, \quad \forall \textit{A} \in \mathcal{K}_1.$$

Conclusion

Conclusion

- Structural preservation under isomorphisms
- Connection to the Union-Closed Set Conjecture
- Future work: applications of hyperisomorphisms

Thank You!

Questions?