Ingeniería de los Computadores

Sesión 2. Superescalares: motivación y cauce

Motivación

- Dependencias estructurales provocan pérdidas de ciclos
 - > Ejemplo de una unidad FP vs. Varias unidades FP

Motivación

- Varias unidades funcionales permiten la ejecución fuera de orden
 - Validar riesgos WAR y WAW

 Se obtienen mejores prestaciones si se pueden procesar varias instrucciones en la misma etapa → procesamiento superescalar

Motivación

Cauce

Etapas

- Captación de instrucciones (IF)
- Decodificación de instrucciones (ID)
- Emisión de instrucciones (ISS)
- Ejecución de instrucciones (EX) Instrucción finalizada o "finish"
- Escritura (WB) Instrucción completada o "complete"
- Características del procesamiento superescalar
 - Diferentes tipos de órdenes: orden de captación, orden de emisión, orden de finalización
 - Capacidad para identificar ILP existente y organizar el uso de las distintas etapas para optimizar recursos

Motivación Cauce

Motivación Cauce

Emisión ordenada

Motivación Cauce

Emisión desordenada

Motivación Cauce

Procesamiento segmentado

Motivación Cauce

Superescalar: emisión ordenada/finalización ordenada

Motivación Cauce

Superescalar: emisión ordenada/finalización desordenada

Motivación Cauce

Superescalar: emisión desordenada/finalización ordenada

Motivación Cauce

Superescalar: emisión desordenada/finalización desordenada

Motivación Decodificación Cauce I-Cache I-Cache IF IF Un procesador segmentado escalar sólo ID/OF decodifica una instrucción por ciclo ID ISS

En un procesador superescalar se han de decodificar varias instrucciones por ciclo (y comprobar las dependencias con las instrucciones que se están ejecutando)

Motivación Cauce **Decodificación**

Motivación Cauce **Decodificación**

- Bits de predecodificación pueden indicar:
 - > Si es una instrucción de salto o no (se puede empezar su procesamiento antes)
 - El tipo de unidad funcional que va a utilizar (se puede emitir más rápidamente si hay cauces para enteros o coma flotante...)
 - > Si hace referencia a memoria o no

Motivación Cauce Decodificación **Emisión**

Motivación Cauce Decodificación **Emisión**

Ventana de instrucciones:

- La ventana de instrucciones almacena las instrucciones pendientes (todas, si la ventana es centralizada o las de un tipo determinado, si es distribuida)
- Las instrucciones se cargan en la ventana una vez decodificadas y se utiliza un bit para indicar si un operando está disponible (se almacena el valor o se indica el registro desde donde se lee) o no (se almacena la unidad funcional desde donde llegará el operando)
- Una instrucción puede ser emitida cuando tiene todos sus operandos disponibles y la unidad funcional donde se procesará. Hay diversas posibilidades para el caso en el que varias instrucciones estén disponibles (características de los buses, etc.)

Motivación Cauce Decodificación **Emisión**

Ejemplo de Ventana de Instrucciones

Dato no válido (indica desde dónde se recibirá el dato)

#	opcode	address	rb_entry	operand1	ok1	typ1	operand2	ok2	typ2	pred
2	MULTD	loop + 0x4	2	1	0	FPD	0	0	FPD	
1	LD	loop	(1)	0	0	INT	0	(1)	IMM	27.00

Lugar donde se almacenará el resultado

Dato válido (igual a 0)

Motivación Cauce Decodificación Emisión

- Orden: Emisión Ordenada o Desordenada
- Alineamiento: Emisión Alineada o No alineada

Ejemplos:

Alineada: SuperSparc (92), PowerPC (93, 95, 96), PA8000 (96), Alpha (92, 94, 95), R10000 (96)

No Alineada: MC88110 (93), PA7100LC (93), R8000 (94), UltraSparc (95)

Motivación Cauce Decodificación **Emisión**

Ventana de

Registros

add/sub: 2 mult: 1

[1] add r4,r1,r2 (2)

[2] mult r5,r1,r5 (5)

[3] sub r6,r5,r2 (2)

[4] sub r5,r4,r3 (2)

		•		
- 3				
			•	
	٠.	•		
	•	,		

Se han emitido [1] y [2]

sub r5	r4 0 add	[r3] 1 -
sub r6	r5 0 mult	[r2] 1 -

Instrucc.	ISS	EXE
add	(1)	(2)-(3)
mult	(1)	(2)-(6)
sub	(7)	(8)-(9)
sub	(7)	(8)-(9)

Ha terminado [1]

sub r5 [r4] 1 - [r3] 1 -

Ha terminado [2]: pueden emitirse [3] y [4]

[4] puede emitirse pero debe esperar a la [3]

Motivación Cauce Decodificación **Emisión**

Ventana de

Registros

add/sub: 2 mult: 1

[1] add r4,r1,r2 (2)

[2] mult r5,r1,r5 (5)

[3] sub r6,r5,r2 (2)

[4] sub r5,r4,r3 (2)

		•		
- 3				
			•	
	٠.	•		
	•	,		

Se han emitido [1] y [2]

sub r5	r4 0 add	[r3] 1 -
sub r6	r5 0 mult	[r2] 1 -

Instrucc.	ISS	EXE
add	(1)	(2)-(3)
mult	(1)	(2)-(6)
sub	(7)	(8)-(9)
sub	(7)	(8)-(9)

Ha terminado [1]

sub r5 [r4] 1 - [r3] 1 -

Ha terminado [2]: pueden emitirse [3] y [4]

[4] puede emitirse pero debe esperar a la [3]

Motivación Cauce Decodificación **Emisión**

Ventana de

Registros

add/sub: 2 mult: 1

[1] add r4,r1,r2 (2)

[2] mult r5,r1,r5 (5)

[3] sub r6,r5,r2 (2)

[4] sub r5,r4,r3 (2)

Se han emitido [1] y [2]

			_
sub	r5	r4 0 add	[r3] 1 -
sub	r6	r5 0 mult	[r2] 1 -

Instrucc.	ISS	EXE
add	(1)	(2)-(3)
mult	(1)	(2)-(6)
sub	(7)	(8)-(9)
sub	(4)	(5)-(6)

Ha terminado [1]

Se ha emitido [4] y ha terminado [2]: puede emitirse [3]

sub	r6	[r5]	1	=h	[r2] 1 -

Decodificación Motivación Cauce **Emisión**

mult: 1 Ventana de

Registros

add/sub: 1 [1] add r4,r1,r2

[2] mult r5,r1,r5 (5)

(2)

[3] sub r6,r5,r2 (2)

[4] sub r5,r4,r3 (2)

	п			
	н			
-			•	
- ^			,	
	v	,		
	٦	,		

Se han emitido [1] y [2]

sub	r5	r4 0 add	[r3] 1 -
sub	r6	r5 0 mult	[r2] 1 -

Instrucc.	ISS	EXE
add	(1)	(2)-(3)
mult	(1)	(2)-(6)
sub	(7)	(8)-(9)
sub	(10)	(11)-(12)

Ha terminado [1]

Ha terminado [2] y se ha emitido [3]. Cuando la unidad quede libre se emitirá [4]

sub r5 [r4]	1 - [r3] 1	-
-------------	------------	---

Motivación

Cauce

Decodificación

Emisión

sub r5	r4 0 add [r3] 1 -
sub r6	r5 0 mult [r2] 1 -
mult r5	[r1] 1 - [r5] 1 -
add r4	[r1] 1 - [r2] 1 -

add/sub: 1 mult: 1

[1] add r4,r1,r2 (2)

[2] mult r5,r1,r5 (5)

[3] sub r6,r5,r2 (2)

[4] sub r5,r4,r3 (2)

Se han emitido [1] y [2]

sub r5 r4 0 add [r3] 1 sub r6 r5 0 mult [r2] 1 -

Se ganan 3 ciclos

Ventana de

Registros

Instrucc.	ISS	EXE
add	(1)	(2)-(3)
mult	(1)	(2)-(6)
sub	(7)	(8)-(9)
sub	(4)	(5)-(6)

Ha terminado [1]

Se ha emitido [4] y ha terminado [2]: puede emitirse [3]

sub r6 [r5] 1 - [r2] 1 -

Motivación Cauce Decodificación **Emisión**

Estaciones de reserva

Motivación Cauce Decodificación Emisión

Estaciones de reserva

Motivación Cauce Decodificación **Emisión**

Estaciones de reserva. Ejemplo de uso (1)

Ciclo i: mul r3, r1, r2
Ciclo i+1: add r5, r2, r3
add r6, r3, r4

Ciclo i:

- Se emite la instrucción de multiplicación, ya decodificada, a la estación de reserva
- Se anula el valor de r3 en el banco de registros
- Se copian los valores de r1 y r2 (disponibles) en la estación de reserva

Motivación Cauce Decodificación **Emisión**

Estaciones de reserva. Ejemplo de uso (2)

Ciclo i + 1:

- La operación de multiplicación tiene sus operadores preparados (V_{S1} = 1 y V_{S2} = 1)
- Así que puede enviarse a la unidad de ejecución

Motivación Cauce Decodificación Emisión

Estaciones de reserva. Ejemplo de uso (3)

Ciclo i + 1 (cont.):

- Se emiten las dos instrucciones de suma a la estación de reserva
- Se anulan los valores de r5 y r6 en el banco de registros
- Se copian los valores de los operandos disponibles y los identificadores de los operandos no preparados

Motivación Cauce Decodificación Emisión

Estaciones de reserva. Ejemplo de uso (4)

Ciclos i + 2 ... i + 5:

- La multiplicación sigue ejecutándose
- No se puede ejecutar ninguna suma hasta que esté disponible el resultado de la multiplicación (r3)

Motivación Cauce Decodificación Emisión

Estaciones de reserva. Ejemplo de uso (5)

Ciclo i: mul r3, r1, r2
Ciclo i+1: add r5, r2, r3
add r6, r3, r4

Ciclo i + 6:

- Se escribe el resultado de la multiplicación en el banco de registros y en las entradas de la estación de reserva
- Se actualizan los bits de disponibilidad de r3 en el banco de registros y en la estación de reserva

Motivación Cauce Decodificación Emisión

Estaciones de reserva. Ejemplo de uso (6)

Ciclo i + 6 (cont.):

- Las sumas tienen sus operadores preparados (VS1 = 1 y VS2 = 1)
- Así que pueden enviarse a la unidad de ejecución

Motivación Cauce Decodificación Emisión

Estaciones de reserva. Ejemplo de uso (7)

Ciclo i: mul r3, r1, r2 Ciclo i+1: add r5, r2, r3

add r6, r3, r4

Ciclo i + 6 (cont.):

 Como sólo hay una unidad de ejecución, se envía la instrucción más antigua de la estación de reserva, la primera suma

Motivación Cauce Decodificación Emisión

Ejercicio

- Emisión ordenada/desordenada
- Recursos: 1 lw/sw, 1 add/sub, 1 mult/div
- Recursos: 1 lw/sw, 2 add/sub, 2 mult/div
- Latencia: lw/sw (5 ciclos), add/sub (2 ciclos), mult/div (5 ciclos)

Lw r1,0(r2) Add r2,r1,r3 Mult r3,r1,r2 Sub r4,r1,r2 Add r4,r1,r2 Div r4,r5,r6