100 MHz Dual-Channel Oscilloscope PM3267/PM3267U

Service Manual

9499 445 01111 821207/01

PHILIPS

100 MHz Dual-Channel Oscilloscope PM3267/PM3267U

Service Manual

9499 445 01111 821207/01

PHILIPS

IMPORTANT

In correspondence concerning this instrument, please quote the type number and serial number as given on the type plate.

NOTE:

The design of this instrument is subject to continuous development and improvement. Consequently, this instrument may incorporate minor changes in detail from the information contained in this manual.

CC	NTENTS		Page
1.	CHARACTERIS	TICS	1
	1.1.	Cathode ray tube	1
	1.2.	Vertical or Y-axis	
	1.3.	Trigger view	3
	1.4.	Horizontal or X-axis	
	1.5.	Triggering	
	1.6.	Additional characteristics	_
	1.7.	Options	
	1.8.	Mechanical data	
	1.9.	Environmental characteristics ,	9
2.	DESCRIPTION		14
	2.1.	Block diagram description	14
	2.2.	Circuit description of the vertical section	
	2.3.	Circuit description of the horizontal section	
	2.4.	C.R.T. display section, CAL generator and front-panel signal lamps	
	2.5.	The power supply	
	2.6.	Basic analog and digital circuits	
3.	DISMANTLING	THE INSTRUMENT	49
	3.1.	General information	49
	3.2.	Removing the instruments covers	49
	3.3.	Access to parts necessary for the adjustment of the instrument	49
4.	PERFORMANC	E CHECK	52
	4.1.	General information	52
	4.2.	Preliminary settings of the controls	52
	4.3.	Recommended test equipment	
	4.4.	Checking procedure	
5.	CHECKING AN	D ADJUSTING	76
	5.1.	General information	76
	5.2.	Recommended test equipment	76
	5.3.	Preliminary settings of the controls	76
	5.4.	Survey of adjusting elements and auxiliary equipment	
	5.5.	Adjusting procedure	
	5.6	Adjustment interactions	QΛ

10. MODIFICATION

6.	CORRECTIVE	MAINTENANCE	95
	6.1.	Important notes	95
	6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.2.5. 6.2.6. 6.2.7. 6.2.8.	Replacements Standard parts Special parts Transistors and integrated circuits Replacing knobs Removing the carrying handle Replacing the cathode ray tube Removing the printed circuit boards Soldering techniques	95 95 95 96 96 97 98
	6.3.	Recalibration after repair	102
	6.4.	Instrument repacking	102
	6.5. 6.5.1. 6.5.2. 6.5.3.	Trouble-shooting	102 102
	6.6.	Optional MTB gate output, DTB gate output, MTB sweep output and TTL or ECL triggering	103
	6.7.	Accessory information	105
7.	PARTS LIST		108
	7.1.	Parts indicated in the figures	108
	7.2.	Parts not indicated in the figures	114
	7.3.	Electrical parts	115
	7.4.	Location list of parts situated on the time-base unit A2	148
	7.5.	Location list of parts situated on the pre-amplifier and trigger unit 3	153
8.	DIAGRAMS AN	ID PRINT LAY-OUTS	161
	8.1.	Location of electrical parts	161
9.	VOLTAGE-WAY	VEFORMS IN THE INSTRUMENT	202
	9.1.	Introduction	202
	9.2.	Vertical deflection and triggering	203
	9.3.	Horizontal deflection	210
	9.4.	Power supply	214

LIST OF FIGURES

Fig. 1.1.	Rise-time measurement	7
Fig. 1.2.	Dimensions of the instrument	
Fig. 2.1.	Blockdiagram	12
Fig. 2.2.	Impedance converter	19
Fig. 2.3.	Continuous control circuit	20
Fig. 2.4.	Vertical channel selection logic	21
Fig. 2.5.	Important voltage waveforms in the MTB logic	
Fig. 2.6.	Important voltage waveforms in the Z-modulation control logic	
Fig. 2.7.	Important voltage waveforms in the alternate mode control logic	35
Fig. 2.8.	Important voltage waveforms in the DTB control logic	37
Fig. 2.9.	Converter-driver	40
Fig. 2.10.	Fly-back converter	41
Fig. 2.11.	Pulse-width modulation	42
Fig. 2.12.	Basic analog circuits	46
Fig. 2.13.	Basic digital circuits	46
Fig. 4.1.	Preliminary settings	51
Fig. 5.1.	Adjustment points top view	74
Fig. 5.2.	Adjustment points bottom view	74
Fig. 5.3.	Adjustment points right side	73
Fig. 5.4.	Geometry check	84
Fig. 5.5.	Dummy probe 2:1	87
Fig. 5.6.	Adjustment of HF square wave response	87
Fig. 6.1.	Removing the knobs	96
Fig. 6.2.	Removal of centre knobs from carrying handle	
Fig. 6.3.	Removal of time-base unit	99
Fig. 6.4.	Time-base unit removed	99
Fig. 6.5.	Removal of pre-amplifier and trigger unit	99
Fig. 6.6.	Pre-amplifier and trigger unit removed	99
Fig. 6.7.	Over-compensation (C2), attenuator probe	105
Fig. 6.8.	Correct compensation (C2), attenuator probe	105
Fig. 6.9.	Under-compensation (C2), attenuator probe	105
Fig. 6.10.	Preset potentiometers correctly adjusted, attenuator probe	105
Fig. 6.11.	Rounding due to incorrectly adjusted potentiometers, attenuator probe	105
Fig. 6.12.	Overshoot due to incorrectly adjusted potentiometers, attenuator probe	105
Fig. 6.13.	Mechanical parts of attenuator probe	106
Fig. 6.14.	Electrical parts of attenuator probe	107
Fig. 7.1.	Mechanical parts, front view	109
Fig. 7.2.	Mechanical parts, rear view	109
Fig. 7.3.	Internal view of bottom view of instrument	111
Fig. 7.4.	Mechanical parts, top view	112
Fig. 7.5.	Mechanical parts, unit 3 and 4 removed	
Fig. 7.6.	Mechanical parts, unit 2 removed	112
Fig. 7.7.	Time-base unit p.c.b. with component location raster	
Fig. 7.8.	Pre-amplifier and trigger unit p.c.b. with component location raster	152

Fig. 8.1,	Pre-amplifier and trigger unit (unit 3), p.c.b. lay-out	164
Fig. 8.2,	Final Y amplifier (unit 5), p.c.b. lay-out	166
Fig. 8.3.	Circuit diagram, vertical deflection	170
Fig. 8.4.	Pre-amplifier and trigger unit (unit 3), p.c.b. lay-out	171
Fig. 8.5.	Circuit diagram main time base triggering (unit 3)	173
Fig. 8.6.	Circuit diagram delayed time base triggering (unit 3)	176
Fig. 8.7.	Trigger selection unit (unit 4), p.c.b. lay-out	177
Fig. 8.8.	Time base unit (unit 2), p.c.b. lay-out	179
Fig. 8.9.	Circuit diagram main time base	184
Fig. 8.10.	Time base unit (unit 2), p.c.b. lay-out	185
Fig. 8.11.	Circuit diagram delayed time base	188
Fig. 8.12.	Final X/Z amplifier unit (unit 5), p.c.b. lay-out	189
Fig. 8.13.	Circuit diagram final X-amplifier, Z-amplifier, calibration unit and display section	192
Fig. 8.14.	Power supply unit (unit 6), p.c.b. lay-out	193
Fig. 8.15.	Circuit diagram of power supply and H.V. generator	196
Fig. 8.16.	Switch unit (unit 102), p.c.b. lay-out	198
Fig. 8.17,	Potentiometer unit (unit 103), wiring lay-out	200

1. CHARACTERISTICS

This instrument has been designed and tested in accordance with IEC Publication 348 for Class II instruments* and UL1244** and has been supplied in a safe condition. The present Service Manual contains information and warnings that shall be followed by the purchaser to ensure safe operation and to retain the instrument in a safe condition.

- This specification is valid after the instrument has warmed up for 15 minutes (reference temperature 23°C).
- Properties expressed in numerical values with tolerance stated, are guaranteed by the manufacturer.
 Numerical values without tolerances are typical and represent the characteristics of an average instrument.
- Inaccuracies (absolute or in %) relate to the indicated reference value.

1.1. CATHODE RAY TUBE

Measuring area 8 cm x 10cm.

Screen type P31 phosphor (GH). Phosphors optionally available:

P7 (GM), long persistence.

P11 (BE), blue, high photographic writing speed.

Acceleration voltage 10kV.

Display resolution 20 lines/div in vertical and horizontal direction.

Orthogonality Angle between X and Y trace $90^{\circ} \pm 1^{\circ}$.

Engravings cm divisions with 2mm subdivisions along central axes

and 3rd and 7th horizontal graticule lines. Dotted lines

at 1.5 and 6.5 div from top of display area.

Trace rotation Provides adjustment of a horizontal trace in parallel with

graticule lines. Screwdriver-operated adjustment at front

panel. Minimum overrange 40.

1.2. VERTICAL OR Y-AXIS

Display modes — Channel A only

Channel B onlyTrigger view only

- Channels A and B chopped

- Channels A and B alternated

Channels A, B and trigger view chopped
Channels A, B and trigger view alternated

- Channel A and B added

Polarity inversion Channel A and B can be inverted

Chopped mode:

display time per channel 900ns blanking time per channel 100ns

Frequency response (Ch. A and B)

DC coupled DC .. 100MHz (-3dB)

AC coupled 2Hz ... 100MHz (-3dB)

Denoted bandwidth in 2.5 and 10mV/div DC 80MHz / 2dB)

Derated bandwidth in 2,5 and 10mV/div DC ... 80MHz (--3dB)

Rise-time (Ch. A and B) ≤ 3.5ns

Derated rise-time in 2,5 and 10mV/div \leq 4.4ns

≤ 3% (≤ 4% p.p.) Pulse aberrations (Ch. A and B) Outside the centre 6 div additional pulse aberrations of 1%. In added and invert mode additional pulse aberrations of 1%. Deflection coefficients 2mV/div ... 10V/div in 1-2-5 sequence. Uncalibrated continuous control between the steps. Operation indicated by uncal LED. Error limit Input impedance $1m\Omega$ (± 1%) in parallel with 25pF (± 2.5pF). Difference in input cap, of vertical and trigger inputs ≤ 2pF. A Max. safe input voltage 400V (DC + AC peak) Rated input voltage 42V (DC + AC peak) Test voltage 500V (rms) according to IEC348. PM3267U only PM3267 only Dynamic range 24 div up to 40MHz. 8 div up to 100MHz. Shift range + and - 8 div from screen centre. Linearity error ≤ 3% Non linearity of CRT included. Measured at a frequency of 50kHz. Visible signal delay 30ns approx. at max. intensity and well-focused display. Base line instability ≤ 0.2 div between AMPL/DIV steps. Additional 0.2 div when switching between 20mV/div, 10mV/div, 5mV/div and 10mV/div ≤ 1 div when operating the invert switch. ≤ 2 div: 10mV ... 2mV/div ≤ 0.6 div when switching to or from added mode. ≤ 0.3 div when rotating the continuous AMPL/DIV control. Base line drift ≤ 0.5div/h. measured in 2mV/div Base line temp, coefficient ≤ 0.025 div/K. measured in 2mV/div Decoupling factor ≥ 40 dB at 50MHz ≥ 35 dB at 100MHz Input signal at one channel (up to full screen) shall not cause a display via the other channel, more than given by the stated value, according to IEC351.

Common mode rejection ratio (CMRR)

≥ 100 at 2MHz≥ 20 at 50MHz≥ 10 at 100MHz

All measured at 8 div common mode signal, after adjustment of continuous AMPL/DIV for max. CMRR and in equal AMPL/DIV settings.

 \leq 0.2 div at equal AMPL/DIV settings.

1.3. **TRIGGER VIEW**

Trigger view

Display of internal or external main time-base trigger

signal.

Frequency response

internal: DC ... 60MHz external: DC ... 70MHz Both in DC trigger coupling.

Rise-time

internal: ≤ 5.8ns external: ≤ 5ns

Both in DC trigger coupling.

Pulse aberrations

internal: 10% p.p. pushbutton MTB of S22 depressed.

external: \leq 6% (\leq 8% p.p.)

Deflection coefficients

internal: see Ch. A or B deflection coefficients.

external: 200mV/div.

Error limit

internal: ≤ 10% external: ≤ 3%

Trigger point

In screen centre ± 0.3 div.

Time delay between trig. view via external

trigger input and vertical channels

Dynamic range

+ and - 8 div up to 40MHHz

HORIZONTAL OR X-DEFLEXTION 1.4.

Display modes

MTB (main time-base)

MTB intensified

DTB (delayed time-base)

MTB and DTB in alternate time-base mode EXT X delfection via MTB trigger source

Trace separation

Symmetrical vertical separation between MTB and DTB

of ≥ 5 div

Main time-base

MTB modes

Auto pp, Auto, Trig, Single

In Auto pp and Auto modes a bright base line is displayed

if no trigger signal is present.

In Auto pp the trigger level is adjustable between the max

and min value of the trigger signal.

In Auto mode the trigger level range is independent on the

trigger signal.

In SINGLE the NOT TRIG'D LED is on after reset of the time-base and extinguishes after the start of the time-base.

Position range

+ and - 5 div from screen centre \leq 0.5 div/h.

Horizontal drift

Horizontal temp, coefficient

 \leq 0.025 div/K.

MTB time coefficients

50ns/div ... 0.5 s/div in 1-2-5- sequence. Uncalibrated continuous control between the steps. Operation

indicated by uncal LED.

Error Limit

± 3%. Measured over centre 8 div of screen.

Expansion (X MAGN pulled)

X10

Additional error in X MAGN mode

 \pm 2%. Excluded are the first and last 50ns of which additional error is \pm 5%. Measured over centre 8 div

of screen.

Expansion balance

1 div O-jump between expanded and unexpanded sweep should not deviate from centre graticule more than the specified value.

Linearity

5%. Excluded are the first and last 50ns. Deviation of first and last div with respect to centre 8 div.

Hold off

Continuously adjustable up to 10x minimum value.

Delayed time-base

DTB modes

Started after delay time.

Triggered upon first trigger after delay time.

Position range

Horizontal drift

Horizontal temp, coefficient

Error limit

Expansion (X MAGN pulled)

Additional error in X MAGN mode

Expansion balance

Linearity

DTB time coefficients

see main time-base

Delay time

Delay time error limit

Incremental delay error limit

Delay time jitter

50ns/div ... 1ms/div in 1-2-5- sequence. Uncalibrated continuous control between the steps. Operation indicated by uncal LED.

Variable between 5s and 500ns.

± 3% + 60ns.

0.5%

 $1: \ge 20.000$. Regardless of sweep speed.

External X deflection

Frequency response

Deflection coefficients

Error limit

Expansion

Additional error limit

Input impedance

DC ... 100kHz (-0.5dB). MTB trigger coupling in DC. For frequency response in non DC coupling refer to MTB trigger coupling.

internal: see Ch. A and B deflection coefficients. external X input: 200mV/div.

10%. Via Ch. A, Ch. B or external X input.

X10

2%

 $1M\Omega$ (± 1%) in parallel with 25pF (± 2.5pF). Input impedance such that a 10 : 1 attenuator probe after being adjusted on Ch. A or B can be applied to the ext. trig. input without readjustment.

400V (DC + AC peak) 42V (DC + AC peak)

Test voltage 500V (rms) according to IEC348.

** PM3267U only

* PM3267 only

Dynamic range

≥ 20 div

Position range

+ or - 5 div from screen centre

Linearity error

≤ 5%

Compression

≤ 1%

Phase shift between X and Y deflection

 $\leq 3^{\circ}$ at 100kHz

Horizontal drift

≤ 0.5 div/h. Measured at 2mV/div.

Horizontal temp, coefficient

≤ 0.025 div/K. Measured at 2mV/div.

X-deflection via line

8 div (± 10%) at line frequency.

1.5. TRIGGERING

Triggering of main time-base

Source

Cr

Ch. A, Ch. B, composite, external line.

Trigger coupling

DC, LF, HF. Bandpass:

DC: DC ... full bandwidth

LF: 2Hz ... 25kHz (External 7Hz ... 25kHz).

HF: 25kHz ... full bandwidth

Lower frequency limit 10Hz in auto and auto pp mode.

Slope

Level range:

trig, auto, single

Positive or negative

internal: + and - 8 div

external: + 1.6V and - 1.6V Within pp value of trigger signal.

auto pp

Fixed level.

TV

internal: 0.5 div up to 40MHz

1.5 div up to 100MHz

Sensitivity (in DC mode)

external: 100mV up to 40MHz

300mV up to 100MHz

TV triggering

Positive and negative video selection via slope switch.

TV frame triggering at MTB TIME/DIV 0.5 s/div ... 50μ s/div. TV line triggering at MTB

TIME/DIV 20µs/div ... 50ns/div.

TV trigger sensitivity

internal: 0.7 div synch. pulse.

external: 150mV synch. pulse.

NOT TRIG'D LED

LED is on in absence of trigger signal.

Triggering of delayed time-base

Source

Ch. A, Ch. B, MTB.

In MTB mode the DTB starts immediately after the

delay time.

Trigger coupling

Slope

Level range

Sensitivity

See main time-base triggering.

1.6. ADDITIONAL CHARACTERISTICS

Calibration voltage generator

Output 1.2V rectangular. Starting from zero level negative going.

Error limit \pm 1%. (\geqslant 1M Ω load impedance)

Frequency 2kHz approx.

Additional input

External Z-modulation DC coupled

TTL compatible "1" is normal intensity

"0" blanks display

Min, required pulse width 10ns

Power supply

AC ranges 90 ... 132V

195 ... 245V 210 ... 270V

Power consumption 45W

AC frequency 46 ... 440Hz

DC range 20 ... 32V
DC current 1.45A at 24V

1.7. OPTIONS

TTL triggering

Internal The correct TTL level is obtained with the AMPL/DIV in

position 2V/div.

External The correct TTL level is obtained via a 10 : 1 attenuator

probe.

ECL triggering

Internal The correct ECL level is obtained with the AMPL/DIV in

position 0.5V/div.

NOTE: Instead of TV triggering, you can modify the instrument for TTL or ECL triggering. If modified the main time-base triggering is automatically set for TTL or ECL triggering. The level control is not

operative then,

Sweep out MTB

Output voltage From -1.8V to +3.8V.

Output short-circuit protected.

Gate out MTB

Output voltage At TTL level: "high" during MTB sweep.

Output short-circuit protected.

Gate out DTB

Output voltage At TTL level: "high" during DTB sweep.

Output short-circuit protected.

Fig. 1.1. Rise-time measurement $t_R = t_2$ (90%) $- t_1$ (10%) (general formula)

NOTE: Bear in mind that inaccuracies of CRT and time-base and rise-time of generator (measured with an input pulse with a rise-time \leq 1ns) influence this measurement.

Rise-time measurement of a signal applied to the vertical inputs:

Bear in mind that the rise-time measured on the oscilloscope screen is influenced by the rise-time of the oscilloscope according to the formula:

$$T_R$$
 (measured) = $\sqrt{(T_R \text{ (signal)} ^2 + (T_R \text{ (oscilloscope)} ^2)^2}$

The measuring fault $\leq 3\%$, if the rise-time of the input pulse is ≥ 4 times the rise-time of the oscilloscope.

1.8. MECHANICAL DATA

Dimensions:

Depth 445mm.

Handle and controls excluded

Width

Handle excluded

Height

335mm. 137mm.

Feet excluded

Mass

10.6 kg. (23,3 lb)

Fig. 1.2. Dimensions of instrument

1.9. ENVIRONMENTAL CHARACTERISTICS

NOTE: The characteristics are valid only if the instrument is checked in accordance with the official checking procedure. Details on these procedures and failure criteria are supplied on request by the PHILIPS-organisation in your country, or by N.V. PHILIPS' GLOEILAMPENFABRIEKEN, TEST AND MEASURING DEPARTMENT, EINDHOVEN, THE NETHERLANDS.

Ambient temperature

Rated range of use $0^{\circ}\text{C} \dots + 40^{\circ}\text{C}$ Limit range of operation $-10^{\circ}\text{C} \dots + 55^{\circ}\text{C}$ Storage conditions $-40^{\circ}\text{C} \dots + 70^{\circ}\text{C}$

Humidity According to IEC68 dB

Bump 300m/s² half sine 11ms duration, 3 shocks per direction

with a total of 18

Vibration 20 minutes in each of 3 directions, 5 ... 55Hz

20 minutes in each of 3 directions, 5 ... 55Hz 1mm (PP) and 40m/s² max. acceleration

Altitude Limit range of operation: 5000m (15000 feet)

Limit range of transport: 15000m (50000 feet)

Recovery time 30 min. if ambient temperature is raised from -10° C

to +20°C at 60% relative humidity.

Electromagnetic interference Meets VDE 0871 and VDE 0875 Grenzwertklasse B.

2.

2.1.

2.1.1.

Fig. 2.1. Bockdiagram

2.1.2.

14

2. CIRCUIT DESCRIPTION

2.1. BLOCK DIAGRAM DESCRIPTION (see Fig. 2.1.)

2.1.1. Vertical Deflection

The vertical deflection system is located on the PRE-AMPLIFIER + TRIGGER UNIT 3, DELAY LINE UNIT 8 AND FINAL AMPLIFIER UNIT 9.

The instrument has two identical vertical channels, A and B: only channel A is described.

Channel A vertical input signal is fed via the SIGNAL COUPLING switch AC-0-DC (S17) to the HIGH IMPEDANCE ATTENUATOR, which is controlled via reed relays by the AMPL/DIV switch. Attenuation factors of x1, x10 and x100 are achieved in this portion of the attenuator circuit.

The IMPEDANCE CONVERTER adapts the output of the HIGH IMPEDANCE ATTENUATOR to the input of the LOW IMPEDANCE ATTENUATOR, which is also controlled via reed relays by the AMPL/DIV switch to give attenuatons of x1, x2 and x5.

For the three most sensitive ranges (2-5-10 mV/div), the signal is amplified by a factor of 10. This is achieved in the AMPLIFIER circuit controlled by the AMPL/DIV switch.

Via the CONTINUOUS AMPL/DIV, controlled by the AMPL/DIV continuous control, the signal is fed to the AMPLIFIER circuit. The AMPLIFIER stage converts the voltage signal into a current signal. From the TRIG, PICK-OFF of the AMPLIFIER, the channel A trigger signal is routed to both time-bases.

Returning to the display signal path, the output signal of the AMPLIFIER is fed to an integrated circuit comprising the vertical POSITION, the NORMAL/INVERT circuit and the VERTICAL CHANNEL SWITCH circuit. The vertical POSITION control circuit allows vertical shift of the c.r.t. trace. Incorporated in the POSITION control, the PULL TO INVERT switch controls the NORMAL/INVERT circuit.

The VERTICAL CHANNEL SWITCH is controlled by the vertical display mode switches A, ALT, TRIG VIEW, CHOP, ADD, B, via the VERTICAL CHANNEL SELECTION LOGIC circuit. In ALT mode, the A and B channel switching is controlled by the ALT pulse derived from the HORIZONTAL CHANNEL SELECTION LOGIC.

In the CHOP mode, the switching period between channels A and B is blanked by the Z amplifier (via the Z-logic) controlled by the CHOPPER BLANKING signal derived from the VERTICAL CHANNEL SELECTION LOGIC.

The TRIG VIEW signal, derived from the MTB trigger INTERFACE, can also be selected by the vertical display mode switches to enable display of the MTB trigger signal.

When the pushbutton ADD is depressed, the input signals of both vertical channels are added.

From the VERTICAL CHANNEL SWITCH, the selected vertical signal is fed via the DELAY LINE DRIVER to the DELAY LINE.

In the DELAY LINE DRIVER the current signal is converted to a voltage signal and the common-mode signals are also suppressed in this stage.

The COMP. TRIG. signal is routed to the TRIGGER INPUT STAGE of the time-base for composite triggering. From the DELAY LINE DRIVER, the adapted output signal is fed to the DELAY LINE, which gives sufficient delay to ensure that the steep leading edges of fast signals are displayed.

To reduce and to compensate for interference and distortion originating in the DELAY LINE, the signal is fed to the DELAY LINE COMPENSATION CIRCUIT before being applied to the FINAL VERTICAL AMPLIFIER. The vertical distance on the screen between the traces of the two time-bases in the ALT TB mode, is controlled by the trace separation signal applied to the FINAL VERTICAL AMPLIFIER.

The output signal of the FINAL VERTICAL AMPLIFIER feeds the vertical deflection plates of the c.r.t.

2.1.2. Horizontal Deflection

The triggering circuits for both the MTB and the DTB are located on the PRE-AMPLIFIER — TRIGGER UNIT 3. Both the main time-base and the delayed time-base are located on the TIME-BASE UNIT 2. The FINAL HORIZONTAL AMPLIFIER and the Z-AMPLIFIER are situated on the FINAL AMPLIFIER UNIT 5.

The trigger signals derived from the AMPLIFIER circuits of channel A and B, and from the DELAY LINE DRIVER are routed to the TRIGGER INPUT STAGE. These signals are in current form, which makes them less sensitive to interference; often a problem with long signal wires. In the TRIGGER INPUT STAGE, these current signals are converted into voltage form, and fed to the TRIGGER SELECTION CIRCUIT.

The EXT trigger signal from the EXT input socket, and the LINE signal from the LINE TRIGGER PICK-OFF are fed to the TRIGGER SELECTION CIRCUIT via the EXT-LINE TRIGGER INPUT circuit.

In this stage, the EXT and LINE trigger signals are converted to symmetrical current signals and adapted to the A, B and COMP signals.

The EXT-LINE TRIGGER INPUT stage is controlled by the EXT pushbutton and LINE (pushbuttons B and EXT depressed simultaneously).

In addition, the A and B trigger signals are fed to the TRIGGER SELECTION CIRCUIT of the DTB.

2.1.2.1. Main time-base

The trigger signals are selected by the MTB trigger source switches A, B, EXT, COMP, LINE, which control the TRIGGER SELECTION CIRCUIT.

Common-mode interference is reduced by using a symmetrical configuration for the TRIGGER SELECTION CIRCUIT output signal. This output current signal is fed to the TRIGGER AMPLIFIER INPUT STAGE. This stage converts the symmetrical current signal to an asymmetrical voltage signal, which is fed to the INTERFACE via the TRIGGER COUPLING stage. The coupling is controlled by the MTB trigger coupling switches DC, LF, HF.

Several signals are produced by the INTERFACE, e.g. X DEFL, TRIG VIEW and AUTO/TV.

The X-DEFL signal is an asymmetrical signal that is fed to the X DEFLECTION AMPLIFIER.

The symmetrical TRIG VIEW signal is routed to the VERTICAL CHANNEL SWITCH; the asymmetrical AUTO/TV signal is routed to the AUTO and TV CIRCUIT.

The FINAL TRIGGER AMPLIFIER comprises the SLOPE circuit under the control of the SLOPE switch incorporated in the LEVEL control. It permits positive and negative triggering.

The output of the FINAL TRIGGER AMPLIFIER is fed to the CURRENT-VOLTAGE CONVERTER. In the AUTO CIRCUIT, the TOP DETECTOR detects the amplitude of the AUTO SIGNAL. When in the AUTO Mode, the LEVEL range is determined by this detected amplitude. The MULTIPLEXER is an electronic switch which, depending on the selected mode, selects the different ranges for the LEVEL control.

Each mode has its own specific LEVEL range, for example:

TV: fixed level

AUTO : determined by TOP DETECTOR

TRIG : ± 8 divisions

X DEFL : 0 divisions (LEVEL inoperative)

If the instrument is provided with the TTL/ECL option, the TV pushbutton will function as the TTL or ECL mode switch.

The TV trigger signal is fed to the TV CIRCUIT.

When the TV pushbutton is selected, the TV CIRCUIT is inserted between the INTERFACE and the CURRENT-VOLTAGE CONVERTER of the MTB.

In the TV mode, the FINAL TRIGGER AMPLIFIER is switched off and also the LEVEL control is inoperative, a fixed trigger level being set.

For FRAME and LINE synchronisation, a frame or line filter is selected with the MTB TIME/DIV switch. Via the CURRENT-VOLTAGE CONVERTER, the trigger signal is routed to the SWEEP-GATING LOGIC. The SWEEP-GATING LOGIC determines the start of the MAIN TIME-BASE GENERATOR sweep. The SWEEP-GATING LOGIC is controlled by signals derived from the TRIGGER MODE SELECTION, the HOLD-OFF CIRCUIT and the CURRENT-VOLTAGE CONVERTER.

The TRIGGER MODE SELECTION is controlled by the MTB trigger mode selection pushbuttons AUTO, TRIG, SINGLE. In the AUTO mode, the MAIN TIME-BASE GENERATOR runs automatically when no trigger pulses are available.

In the TRIG mode, the MAIN TIME-BASE GENERATOR must be normally triggered by trigger signals derived from the CURRENT-VOLTAGE CONVERTER.

If the SINGLE pushbutton is selected, the SWEEP-GATING LOGIC will start the MAIN TIME-BASE GENERATOR for one sweep.

The MAIN GATE OUT signal (optional) is taken from the SWEEP-GATING LOGIC

This MAIN GATE OUT signal output is at logic H during the MTB sweep and L for other conditions.

The NOT TRIG LED lights up when the MTB is not triggered.

The MAIN TIME-BASE GENERATOR produces a sawtooth voltage, the repetition time being controlled by the TIME/DIV switch. To enable the capacitors that determine the repetition rate sufficient time to discharge, the HOLD-OFF CIRCUIT is employed. This time is adjustable with the HOLD-OFF control.

After the HOLD-OFF time, the HOLD-OFF CIRCUIT sends a signal to the SWEEP-GATING LOGIC, which in turn starts the next time-base sweep.

The repetition rate of the MTB sawtooth voltage is continuously variable with the continuous control CAL. The output sawtooth voltage from the MTB is fed to the HORIZONTAL CHANNEL SWITCH circuit.

2.1.2.2. Delayed time-base

Channel A and B trigger signals are fed to the DTB TRIGGER SELECTION CIRCUIT via the TRIGGER INPUT STAGE.

Trigger selection is controlled by the DTB trigger source selection pushbuttons A, B.

The symmetrical output current signal from the TRIGGER SELECTION CIRCUIT is converted to an asymmetrical voltage signal in the TRIGGER AMPLIFIER INPUT STAGE. This signal is then fed via the TRIGGER COUPLING circuit to the FINAL TRIGGER AMPLIFIER. Trigger coupling is selected by the DC, LF, HF pushbuttons.

The FINAL TRIGGER AMPLIFIER comprises the LEVEL/SLOPE controls and their associated circuits. The asymmetrical input voltage signal is converted to an asymmetrical current signal, which is fed to the CURRENT-VOLTAGE CONVERTER.

The output of the CURRENT-VOLTAGE CONVERTER and the output of the COMPARATOR are fed to the SWEEP-GATING LOGIC.

The COMPARATOR circuit compares the amplitude of the MTB sawtooth voltage with a d.c. voltage selected by the DELAY TIME control. If the amplitude of the MTB sawtooth is equal to the d.c. voltage, the COMPARATOR produces a signal that is then fed to the SWEEP-GATING LOGIC.

If the MTB pushbutton of the delayed time-base trigger source switches is depressed, the SWEEP-GATING LOGIC starts the DELAYED TIME-BASE GENERATOR immediately after the DELAY TIME selected.

If the A or B pushbutton is depressed, the SWEEP-GATING LOGIC detects the end of the delay time but waits for a trigger signal (A or B) from the CURRENT-VOLTAGE CONVERTER, after which the TIME-BASE GENERATOR starts.

The DELAYED GATE OUT is taken from the SWEEP-GATING LOGIC when this option is available. The output is at logic H during the DTB sweep and L for other conditions.

The DTB sawtooth voltage is produced in the DELAYED TIME-BASE GENERATOR under the control of the TIME/DIV switch and its continuous CAL control.

If the UNCAL LED lights up, it indicates that the continuous controls of one or both time-bases are not in the CAL position.

2.1.2.3. Horizontal channel selection and final horizontal amplifier

In the X DELFECTION AMPLIFIER the X DEFL signal derived from the MTB INTERFACE is amplified and fed to the HORIZONTAL CHANNEL SWITCH circuit.

The HORIZONTAL CHANNEL SWITCH selects the X DEFL, MTB and/or DTB signals under the control of the HORIZONTAL CHANNEL SELECTION LOGIC, which in turn is controlled by the horizontal display mode switches X DEFL, DTB, ALT TB, MTB.

If the X DEFL pushbutton is selected, the signal chosen by the MTB trigger source selection switches A, B, EXT, LINE, will determine the horizontal deflection.

Horizontal deflection is performed by the sawtooth output of the DELAYED TIME-BASE GENERATOR if the DTB pushbutton is selected.

Similarly, the MTB pushbutton selects the MAIN TIME-BASE GENERATOR sawtooth for horizontal deflection.

If the ALT TB pushbutton is selected, the HORIZONTAL CHANNEL SWITCH alternates from the MTB saw-tooth to the DTB sawtooth voltage at the end of everty time-base sweep.

The selected signal is routed to the FINAL HORIZONTAL AMPLIFIER via the HORIZONTAL PRE-AMPLIFIER. This pre-amplifier comprises the X POS potentiometer for horizontal shift of the trace, and its associated circuit. It also includes the X MAGNIFIER for x10 magnification of the horizontal deflection. If the X MAGN push-pull switch, incorporated in the X POS control, is pulled for x10 magnification the MAGN LED lights-up.

The signal is converted into symmetrical current form in the HORIZONTAL PRE-AMPLIFIER and fed to the FINAL HORIZONTAL AMPLIFIER to drive the horizontal deflection plates of the c.r.t.

2.1.3, CRT Display Section

The Z-LOGIC and Z PRE-AMPLIFIER stages are part of the TIME-BASE UNIT 2.

The Z-AMPLIFIER, CALIBRATION GENERATOR and TRACE ROTATION CIRCUIT are located on the FINAL AMPLIFIER UNIT 5. The supply voltages for the c.r.t. are derived from the POWER SUPPLYY UNIT 6.

The Z-LOGIC receives the following inputs to drive the Z PRE-AMPLIFIER and Z-AMPLIFIER:

- The external Z-MOD signal applied to the BNC connector on the rear panel. This Z-MOD signal must be TTL-compatible. An L level in gives trace blanking.
- Two signals produced in the MTB and DTB to unblank the trace during the sweeps.
- The chopper blanking signal from the VERTICAL CHANNEL SELECTION LOGIC to blank the trace during switching between channels A and B in the chopped mode.

The output signal from the Z-LOGIC that determines trace blanking or unblanking is routed to the Z PRE-AMPLIFIER. Here the trace intensity is determined by the front-panel INTENS potentiometer setting. In the Z AMPLIFIER, after amplification the Z-signal is split into two paths, an l.f. + d.c. and an h.f. path, because of the potential difference that exists between the Z AMPLIFIER output and the c.r.t. cathode (-1500 V).

The h.f. signals are fed via a high voltage capacitor directly to grid G1 of the c.r.t.

However, the d.c. and l.f. signals are blocked by this capacitor. These signals therefore are used to modulate an oscillator frequency, which is then passed via another high voltage capacitor and demodulated in the DEMO-DULATOR stage to retrieve the original signal.

The original h.f. and d.c. + l.f. signals are recombined on the grid G1

The c.r.t. supply voltages are derived from the 1500 V GENERATOR.

The CRT CIRCUIT comprises the FOCUS control circuit for the electron beam, and the preset potentiometers for GEOMETRY and ASTIGMATISM.

The post-acceleration anode potential of 8,5 kV is produced in the HV MULTIPLIER and derived from the -1500 V cathode supply.

A preset front-panel control TRACE ROTATION enables the trace to be aligned in parallel with the graticule lines. This preset controls the TRACE ROTATION CIRCUIT that drives the trace rotation coil situated on the c.r.t.

2.1.4. Power Supply

The instrument may be powered either by an a.c. supply voltage or by a 24 V battery supply voltage.

By means of the MAINS VOLTAGE ADAPTOR the instrument can be set to the local mains voltage. This circuit incorporates a fuse for the a.c. supply.

This a.c. supply voltage is fed via the double-insulated mains transformer to the full-wave RECTIFIER. A LINE trigger signal at mains frequency is fed via the LINE TRIGGER PICK-OFF circuit to the EXT-LINE TRIGGER INPUT.

From the RECTIFIER the unregulated d.c. supply is fed to the CONVERTER DRIVER. When a 24 V battery supply is used, this is fed via the DC PROTECTION + FUSE stage to the CONVERTER DRIVER. This protection stage safeguards the instrument against reversed polarity of the battery supply source.

THE CONVERTER DRIVER stage drives the CONVERTER transformer. The rectified +14V output-voltage is fed back as control via the REGULATOR + PROTECTION circuit.

In this way, the voltages on the secondary windings of the CONVERTER transformer are stabilised. After rectification and smoothing, the stabilised supply voltages are fed to the various electronic circuits in the instrument.

2.2. CIRCUIT DESCRIPTION OF THE VERTICAL SECTION

As the channel A and B attenuators are almost identical, only the channel A is described.

2.2.1. Input Signal Coupling (see Fig. 8.3.)

Input signals applied to input socket A (X2) can be either a.c.-coupled, d.c.-coupled or internally disconnected, depending on the coupling mode switch position of S17 (AC-O-DC).

In the AC position (S17A points 2 and 3) a blocking capacitor C501 paralleled by series circuit R502 and C502 are inserted in the signal path which prevents the d.c. component being applied to the attenuator. In this mode, the lower frequency limit is 2 Hz and some pulse droop may occur when low-frequency square-wave signals are displayed.

When DC is selected (S17A points 1 and 2 and S17B points 4 and 5) the complete input signal (a.c. + d.c. components) is fed to the attenuator input R503, R504, R506. Thus the full bandwidth of the oscilloscope is available.

If the 0 pushbutton is depressed, the input signal is isolated from the attenuator and the attenuator input is earthed, as a reference for calibration or trace centering, etc.

2.2.2. Attenuator and Impedance Converter (see Fig. 2.2. and 8.3)

The attenuator consists of a triple high-impedance voltage divider, an impedance converter and a low-impedance voltage divider.

High-impedance and low-impedance attenuator

The overall attenuation is determined by the combinations of the selected sections of the high- and low-impedance attenuator.

The voltage dividers of the high-impedance attenuator are controlled by reed relays.

Read relay K503 and K504 are activated in the AMPL/DIV (S9) positions 2 mV/DIV ... 100 mV/DIV (x 1 stage).

In the 0.2 V/DIV ... 1 V/DIV positions of S9, reed relays K506 and K507 are activated. The input signal is x10 attenuated by voltage divider R514 and R516.

When positions 2 V/DIV ... 10 V/DIV are selected, reed relays K501 and K502 are activated, and the input signal is $\times 100$ attenuated by voltage divider R509 and R511.

The low impedance attenuator reduces the gain by x1, x2 and x5, using the voltage dividers R553, R551, R552, R554 and R556, selected by the FET switches inside D503.

For the various attenuation positions, the following FET switches are conductive:

Attenuation positions	FET switches conductive
x5	D503/9, 11, 12
x2.5	D503, 5, 6, 8
x1	D503/1, 3, 4

The AMPL/DIV switch S9 controls the FET switches via resistors R557, R559 and R562. These resistors have high-ohmic values to eliminate parasitic capacitance effects on the FET gates, thus preventing any loss of bandwidth. The trimmers C504 and C512 are adjustable to obtain constant input capacitance in all attenuator settings. The high-impedance attenuator sections are made independent of frequency (i.e. the capacitive attenuation for a.c. signals is adjusted to conform with the resistive attenuation for d.c. signals) by means of trimmers C503, C508 and C511.

Impedance converter (see Fig. 2.2. and 8.3.)

The input signal is fed via FET V501 (in source-follower configuration), transistors V503, V504 and V508 to the low-impedance attenuator.

The special type FET V501, with very fast rise-time response, reduces the source impedance which prevents bandwidth loss.

The FET consists of a double gate. One gate is not used and connected to the drain via R521.

The input signal is applied to the other gate.

The diodes inside this FET protect the input source follower of the impedance converter against excessive voltage swings.

The l.f. part of the signal is fed to the inverting input, pin 2, of D502 via the LF gain potentiometer R538. This l.f. signal is compared with a d.c. voltage on pin 3 of D502 that is adjustable with R547 (attenuator balance).

The output of D502 (frequencies up to 300 Hz, determined by R539 and C527 is routed to the voltage divider R543, R518.

The input signal of the impedance converter is fed to the other end of the voltage divider. The average value of both signals is fed to the inverting input of the correction amplifier D501. To reduce distortion originated in the current source V507, transistor V506 is mounted between the low-ohmic output of D501 and the base of V507.

The collector of V506 is high-ohmic, so the distortion on the base and on the emitter of V507 is equal and is eliminated.

If the feedback l.f. signal is, for example, too small, the correction amplifier will drive transistor V507 so that the amplitude of the l.f. part of the input signal is compensated.

Potentiometer R538 permits adjustment of the l.f. feedback gain. The d.c. offset of the operational amplifiers D502, D501 can be compensated by preset R547 (A, ATT. BAL.).

Fig. 2.2, Impedance converter

Continuous Control Circuit (see Fig. 2.3. and 8.3.)

The output signal of the low-impedance attenuator is fed to the integrated circuit D504 (3.6) via the continuous circuit comprising FET D503 (13, 14, 16).

This FET is located between the signal path, pin 6 of D504 and earth, via resistor R584. This resistor compensates the output impedance of the low-impedance attenuator (50 Ω) and the impedance of the selected FET switch (30 Ω), as shown in Fig. 2.3.

This compensation is necessary to obtain an equal bias current for the inputs (6,3) of integrated circuit D504 The continuous control R7 drives the FET (pin 14) more, or less conductive via transistor V519 and resistors R567, R566 and R568.

In the CAL position of the CONT, control R7, the FET drain-source junction (pin 13 and 16) is at a high ohmic level and thus the signal is not attenuated.

The CONT. control R7 is connected between +5 V and transistor V722, which functions as a voltage source. This also supplies the CONT. control (R8) of channel B.

If R7 is not in the CAL position, the current I increases (Fig. 2.3.). This increased the gate-source voltage of the FET, which results in a low drain-source resistance. The lower drain-source resistance reduces the amplitude of the signal fed to pin 6 of integrated circuit D504.

The CAL position of the CONT. control can be adjusted with the CAL CONT. potentiometer R622 that controls the current I through transistor V521. The CONT. control range can be adjusted with potentiometer R619.

Fig. 2.3. Continuous control circuit

2.2.3. Amplifier

The channel A trigger signals for both time-bases are picked-off from pins 14 and 15 of integrated circuit D504 The circuit of D504 (known as a Cherry-stage) converts the voltage input signal into a current output signal (pins 12 and 13). Transistor V509 serves as a current source for D504.

In the three most sensitive AMPL/DIV positions (2,5, 10 mV/DIV) the amplifier has a gain of ten, controlled via D504, pin 2, from the AMPL/DIV switch.

Potentiometer R571 controls the current source circuit to give adjustment of the x1/x10 gain balance.

The x10 gain of the amplifier in the AMPL/DIV positions 2,5, 10 mV/DIV can be adjusted by potentiometer R586.

The supply voltage of D504 is applied to pin 9 via transistor V513.

In this way the temperature drift in the x10 gain mode is compensated to prevent bandwidth loss.

The gain x1 of channel B can be adjusted by potentiometer R779 to equalise the x1 gain of both vertical channels.

From the amplifier D504 (pins 12 and 13) the output current signal is routed to the vertical channel switch via transistors V516 and V517. These transistors function as a current mirror and also compensate for trace shift when the signal is inverted (POSITION control pulled). Potentiometer R604 (NORMAL/INVERT BAL) provides the shift compensation.

2.2.4. Vertical channel selection logic

VERTICAL DISPLAY MODE SWITCH			X501	-					D63	4	Α	B D632	TRIG VIEW
S1	В4	A1	А3	A4	B2	A2	P5	P6	P7	Р9	P8	P11	Р3
А	*	*	0	1	0	1	1	0	0	1	1	0	0
В	0	1	1	0	0	1	0	1	0	1	0	1	0
TRIG VIEW	1	0	1	0	0	1	0	1	1	0	0	0	1
СНОР	0	1	1	1	1	1	1→0 0→1	0→1 1→0	0	1	1→0 0→1	0→1 1→1	0
ALT	0	1	1	1	0	0	1→0 0→1	0→1 1→0	0	1	1→0 0→1	0→1 1→0	0 0
ADD	0	1	0	0	0	1	1	1	0	1	1	1	0
CHOP + TRIG VIEW	1	1	1	1	1	1	1 0 0	0 1 1	1 1 0	0 0 1	1 0 0	0 0 1	0 1 0
ALT + TRIG VIEW	1	1	1	1	0	0	1 0 0	0 1 1	1 1 0	0 0 1	1 0 0	0 0 1	0 1 0

= don't care

= vertical channel is selected

Fig. 2.4. Vertical channel selection logic

The vertical channel switches D831 and D631 are controlled by the vertical channel selection logic (D632, D634, D633) which, in turn, is controlled by the vertical display mode switches: A, ALT, TRIG VIEW, CHOP, ADD, B.

These switches control the vertical logic via connectors X204 (on SWITCH UNIT A102) and X501.

Positive logic is used in the digital circuits; i.e. '1' is +5 V (H) and logic '0' is 0 V (L).

The table, Fig. 2.4., indicates the logic used for vertical mode selection.

Selection of the various vertical display mode pushbuttons has the following result:

A depressed:

Pin 8 of D632 is H in this mode, opening the signal path for channel A in integrated

circuit D631.

Signals on D631 pins 5 and 6 are routed to output pin 13, 14.

B depressed:

Pin 11 of D632 is at H level in this mode, opening the signal path for channel B in inte-

grated circuit D631.

Signals on D631 pins 3 and 4 are routed to the output (pins 13, 14).

TRIG VIEW

depressed:

Pin 3 of D632 is H in this mode, opening the path for trigger view signals in integrated

circuit D831.

The trigger view signal from the INTERFACE of the trigger amplifier (V861, V862) is

routed to D831, pins 5 and 6, via transistors V831, V832.

In this mode, the TRIG VIEW signal is fed to the DELAY LINE DRIVER via the out-

puts (13, 14) of D831.

CHOP depressed:

Pins 8 and 11 of D632 are alternately H and L at a fixed frequency of 500 kHz approx., generated by the chopper oscillator, consisting of transistor V632 and two NAND gates of D633 (11, 12, 13) (4, 5, 6) and capacitor C643.

If D632-6 is at H level, transistor V631 starts the chopper oscillator. Transistor V632 is

blocked and C632 charges via R653.

If pins 12 and 13 of D633 are both H, its output goes to an L level, giving an H on pin 6 of D633. This H signal is fed back to the base of V632, which conducts and discharges C643 to give an L on D633-12.

Pin 6 of D633 goes L and blocks transistor V632, etc.

The chopper signal is applied to the clock inputs of the flip-flops D634 via D633, pins 10 and 8. The alternate pulse applied at D633-9 is overruled.

To and of the alternate pulse applied at 1000-9 is overfuled.

The J and K inputs (pins 2 and 3) and the preset and clear inputs (pins 4 and 15) of D634 are at level H, so this flip-flop switches on the chopper frequency applied to the clock input.

The input pin 10 of D634 is L and pin 14 is H, so output pin 7 is L in this mode, resulting in a level L on D632-3 (TRIG VIEW is off).

ALT depressed:

In the ALT mode, the chopper oscillator is switched off (D632-6 = L).

However, D633-10 is H, which means that the alternate pulses from the HORIZONTAL CHANNEL SELECTION LOGIC are applied to the clock inputs of flip-flops D634 (pins 1 and 13), which make the D632 outputs (pins 8 and 11) alternately H and L.

ADD depressed:

With ADD selected, D632 outputs 8 and 11 are both at H level.

Channel A and B signals are selected via pins 10 and 11 of D631, and are added in

integrated circuit D631.

CHOP+TRIG VIEW

depressed:

Vertical channels A, B and TRIG VIEW are displayed, the switching between these channels is being determined by the chopper oscillator. The chopper frequency is

applied to the clock inputs of flip-flops D634 (pins 1 and 13).

The outputs of D832 (pins 8, 11, 3) are alternately H and L, controlled by the clock

frequency (see Fig. 2.4.).

The display sequence is as follows:

Channel A TRIG VIEW Channel B

ALT+TRIG VIEW

depressed

Vertical channels A, B and TRIG VIEW are displayed, and in this mode the chopper oscillator is switched off, so D633-10 is at level H.

The alternate pulses are applied to the clock inputs of flip-flop D634, which control the switching between the three vertical channels. The display sequence is as follows:

Channel A TRIG VIEW Channel B

2.2.5. Vertical Channel Switch

The VERTICAL CHANNEL SWITCH consists of the two integrated circuits D831 and D631 (0Q0020), this IC being specially designed for application in vertical deflection systems.

This IC enables the following functions:

- Two differential input signals can be chopped (CHOP).
- One or two differential input signals can be selected (A and/or B).
- Two differential input signals can be added (ADD).
- Normal/invert mode is available per channel (PULL TO INVERT).
- Vertical Y shift is available per channel (POSITION).

The 000020 is controlled by the outputs of D632 (pins 8, 11, 3) as follows:

0Q0020		OUTPUT			
pins		pins			
10 11		13 and 14			
0 1 0	0 0 1	NO A B A + B			

The normal/invert function is controlled by the PULL TO INVERT switches S4 and S5 via pins 7 and 2 of D631. If these inputs (7.2) are at level L the signal is inverted.

The vertical Y shift is controlled by the POSITION controls R1 and R2.

The variable voltages derived from the sliders of these controls are applied to pin 8 (channel A) and pin 1 (channel B).

The TRIG VIEW signal is derived from the INTERFACE of the MTB trigger amplifier and applied to D831 (pins 5 and 6) via transistors V831, V832, which adapt the trigger view signal to the input level of the channel switch D831.

The balance of the symmetrical TRIG VIEW signal is adjustable with R841. The trigger view signal is controlled by the signal applied to D831.

If this input is H, it opens the trigger view signal path to the DELAY LINE DRIVER.

2.2.6. Delay-line driver

The delay-line driver consists of the Hooper stage V633/V634 and Cherry stage V636/V637. The Hooper stage has an additional compensation circuit with operational amplifier D636. One input of D636 measures the emitter voltage of V633/V634; the other input is connected to a reference voltage derived from voltage divider R692/R693. In the event of voltage differences between both inputs, the output of D636 compensates for this via R662/R663 to the bases of V663 and V664. As a result, under no signal conditions, the collector voltages of V633 and V634 are constantly held at 9 V. This is necessary in order to obtain equivalent dynamic ranges for both halves of the amplifier stage.

The Cherry stage V636/V637 output is applied to the delay line (Unit 8). The output impedance of this stage matches the impedance of the delay line.

A signal used for composite triggering is picked off from the collectors of V 633 and V634 by Cherry stage V833/V834.

2.2.7. Final vertical amplifier

The signal from the delay line (Unit 8) is terminated by the delay line compensation circuit consisting of Cherrry stage V1204/V1206 together with the common-current source V1203. The emitter circuit of V1204/V1206 comprises a number of square-wave signal adjustments, one of them formed by two varicapdiodes V1208 and V1207. Their capacitance value is determined by a d.c. voltage originating from NTC-resistor R1228. In this way, the amplifier is compensated for a decrease of rise-time in the event of higher ambient temperature. The Cherry stage V1204/V1206 is followed by a Hooper stage V1209/V1211. This stage also receives the trace separation control signal that gives a vertical shift between the main and delayed time-base displays in the alternate time-base mode.

The Hooper stage is followed by another Cherry stage V1213/V1214 with common-current source V1212. This stage incorporates a gain adjustment preset R1256 and a square-wave adjustment C1224. The Cherry stage drives output amplifier IC, D1201. The collector load resistors of the output amplifier are part of IC D1202. The vertical deflection plates of the CRT are driven by the output amplifier via coils D1203 and D1204. These coils form a resonant circuit together with the capacitive deflection plates of the CRT that results in an increase at the high frequency end of the bandwidth of the oscilloscope.

2.3. CIRCUIT DESCRIPTION OF THE HORIZONTAL SECTION

2.3.1. Main Time-base Triggering (see Fig. 8.5.)

a) Trigger selection circuit and trigger input stage (A, B, COMP)

The trigger signal from the vertical channel A is applied to shunt feedback amplifier V912, V913, as a symmetrical current signal. The output is a symmetrical voltage signal that is routed to the series feedback stage V873, V876 for MTB triggering, and to series feedback stage V872, V874 for DTB triggering. Channel A is selected as MTB trigger source if R918 in the emitter circuit of V873, V876 is connected to earth via the MTB trigger source selector switch S23, to switch on these transistors.

The trigger signal from vertical channel B is applied to shunt feedback amplifier V914, V916, which is followed by a series feedback stage V878, V879, for MTB triggering and a series feedback stage V877, V881 for DTB triggering. These amplifier stages are identical to those described above for channel A.

The composite trigger signal obtained from V833 and V834 in the delay line driver is applied to shunt feedback amplifier V917, V918.

This amplifier is followed by a series feedback stage, V882, V883 for MTB triggering. If R892 in the emitter circuit of V882, V883 is connected to earth via the MTB trigger source switch S23 via switching transistor V870, the composite signal is used for MTB triggering.

If in composite trigger mode TRIG VIEW is selected, a logic H level from D634-10 makes V880 conductive via R994 and V870 is switched off. Consequently, composite triggering is inhibited. In this event, V875 is conductive and an earth potential is applied to R918 via V860 to select channel A as MTB trigger source. As a result, it is not possible to switch on the trigger view and composite trigger modes together.

b) External and line trigger input

The external trigger signal can be applied to input socket X5. The signal is routed via a network that gives the correct external input impedance and sensitivity, and via C1109 (a.c.-component), R1122, R1123 (d.c.-component) to the gate of FET V1104. In the LF and HF trigger coupling modes the d.c. component of the signal is interrupted because the junction of R1122, R1123 is connected to earth via LF and HF switches S20.

FET V1104 is part of the balanced source-follower stage. One FET receives the external trigger signal and the other, the LINE trigger signal. The trigger source signal not desired is short-circuited to earth.

The LINE trigger signal, originated in the power supply, is routed via the potentiometer R891 (LINE) to the TRIGGER SELECTION UNIT.

The amplifier stage V1104 is followed by a series feedback stage V1102, V1103 that converts the asymmetrical input voltage signal into a symmetrical output current signal.

Transistor V1101 provides a common current-source in the emitter circuit, which is only switched in if EXT or LINE triggering is selected (an earth potential from trigger source selector switch S23).

For instruments with TTL trigger facilities (optional), the gain of the amplifier stage V1102, V1103 can be increased by a factor of 2.5 (relay contact K1101 closes in the TTL trigger mode).

c) Trigger amplifier input stage

This amplifier has two balanced inputs that apply an input signal to the common-base circuit V852, V853. The input current is routed via socket X859 and socket X863 for MTB triggering via channel A, B or composite. The input current signal is routed via sockets X861 and X862 for MTB triggering via the EXT input or LINE.

The common-base circuit V852, V853 is followed by a shunt feedback stage V851, V854 that converts the input current signal into an output voltage signal. This output signal is taken off asymmetrically and applied to the DC, LF, HF filter.

d) Trigger coupling

In the DC mode, relay contact K851 is closed and the signal is passed unattenuated via R868.

In the LF mode, K851 is open and switch contact S20C is closed. The signal is now passed via the series low-pass filter R872, C858, R869.

In the HF mode, K851 is open and switch contact S20D is closed (moving contact to earth). The signal is now passed via the high-pass filter C858, R872. Both in LF and HF modes, the d.c. component is blocked by C868. In the AUTO mode, the trigger signal is a.c.-coupled (K851 is open).

Only in the external X deflection mode together with AUTO mode can d.c. coupling be selected. If TTL trigger mode is available on the instrument, the signal is always d.c.-coupled (K851 closed).

e) Interface

This stage receives its input signal from the DC, LF, HF trigger coupling and produces asymmetrical output signals for the TOP DETECTOR, TV CIRCUIT and X DEFLECTION AMPLIFIER.

The INTERFACE also produces symmetrical output signals for TRIGGER VIEW and the FINAL TRIGGER AMPLIFIER.

The asymmetrical voltage signal from the TRIGGER COUPLING stage is applied to one gate of the symmetrical FET source-follower stage V887. The other gate of V887 receives a d.c. voltage that can be adjusted with the LEVEL control R6. As a result, the source outputs of V887 show a symmetrical voltage signal, the level of which can be varied by the LEVEL control.

The source-follower V887 is followed by an emitter-follower D853 (9,10,11) (6,7,8) with a common-current source V859. As the emitter-follower transistors are part of one IC, it results in better stability and closer-matched characteristics for these transistors. This technique is featured widely in the MTB and DTB trigger circuits.

An asymmetrical current signal for external X deflection is picked-off from D853-11 and routed via the switch unit to the horizontal channel switch on the time-base unit.

Another asymmetrical current signal is taken from D853-6 and is routed via shunt feedback amplifier V863 to the TOP DETECTOR and the TV CIRCUIT.

The symmetrical output voltage signal is available on D853-10 and D853-7, and applied to series feedback stage V862, V861, with common current source V864. This stage sends a symmetrical current signal to the vertical channel switch to facilitate trigger view.

f) Final trigger amplifier

The signal available on D853-10 and D853-7 is also applied to the series feedback amplifier D853 (12,13,14) and D853 (1,15,16). The common current source for this stage is D853 (2,3,4), switched on by an earth potential applied to R996 via selection switch S20A. In the external X deflection and TV trigger modes this is switched off and R996 floats.

In the TTL trigger mode (optional) the amplification of this stage is increased as relay contact K852 closes. The symmetrical output current signals are available on D853-12 and D853-1 and have phase shift of 180 degrees. Depending on the position of the +/- SLOPE switch S8, one of the two signals is used for MTB triggering. Selection is by switching diodes: V888, V889 for the + slope, V857, V858 for the - slope.

If the + slope is selected (S8 open), V889 blocks and the signal from D853-12 is routed via V888 to the MTB. Transistor V896 is not conducting so transistor V897 switches on. The positive potential on its emitter switches on diode V857 and the signal from D853-1 leaks away. Diode V858 is blocked and the connection between D853-1 and the MTB is interrupted.

If the - slope is selected (S8 closed), V889 conducts, so the signal from D853-12 leaks away. Diode V888 blocks so any signal at this point is also prevented from reaching the MTB.

In this event, transistor V896 conducts because the positive-going base potential and switches off transistor V897. Diode V857 blocks as a result, so diode V858 conducts and the output signal on D853-1 collector is routed to the input of the MTB.

g) TV circuit

With the TV CIRCUIT it is possible to trigger the MTB on television line signals (TIME/DIV = $20 \mu s...$ 0,05 $\mu s/DIV$) or TV frame signals (TIME/DIV = 0,5 s...50 $\mu s/DIV$).

In the TV mode, the FINAL TRIGGER AMPLIFIER is inoperative and instead, the TV CIRCUIT triggers the MTB. The LEVEL control R6 is also inoperative and the +/- slope switch S8 permits selection between positive and negative video signals.

The input of the TV circuit is the base of transistor V869. For positive video signals V869 functions as an amplifier with a phase shift of 180 degrees between base and collector. In this mode, collector resistor R983 is connected to +14 V via transistor V897, which is conducting.

For negative video signals, V896 functions as an emitter-follower. As a result, there is no phase shift between base and collector. This collector now functions as an emitter, connected to -7 V via R1011 and R983. In this situation, transistor V897 is not conducting. The collector of V869 is direct-coupled to the base of emitter-follower V871. This is followed by a clamping stage formed by C904 and the base-emitter junction of V899, the synchronisation pulses being available on its collector. These pulses have a top level of +5 V and a bottom level of 0 V approx. In the TV line trigger mode, the pulses are routed via diode V901, transistor V898 and switching diode V894 to the MTB trigger circuit.

In the TV frame trigger mode (MTB TIME/DIV = 0,5 s...50 μ s/DIV), switching transistor V909 conducts via the TIME/DIV switch. As a result, C917 and C918 are switched into the circuit and line trigger pulses are suppressed.

Only frame trigger pulses can now reach the MTB trigger circuit.

Transistor V908 functions as a 'current mirror' in order to give the correct current ratio between the current in the diode V894 and in transistor V898.

The TV CIRCUIT is switched off by a 0 V applied to the cathode of diode V901.

h) Multiplexer

This circuit stage produces the supply voltage for the MTB LEVEL control R6. The integrated circuit multiplexer D851 contains two 4-way analog switches that select the voltages applied to both ends of the LEVEL control. These voltages depend on the selected trigger mode.

The four possible modes are:

TV (TTL, ECL) mode
AUTO (peak-peak level mode)
TRIG mode
EXT X DEFL mode

Switch position depends on the logic levels at control inputs pins 10 and 9 of multiplexer D851.

In the TV (TTL, ECL) mode, the control input D851-10 is at logic L and input D851-9 is also L.

Thus, inside the multiplexer points 1+3 are interconnected and also points 12+13.

As a result, the potential from voltage divider R907,R909 is connected to both ends of R6. The position of R6 is now irrelevant and the trigger level is fixed.

Note that circuit differences necessary to adapt the instrument from TV into TTL, ECL triggering are indicated in the table given in the circuit diagram.

In the AUTO mode, the control input D851-10 is at logic H and D851-9 is L. Internally, multiplexer points 2+3 and points 15+13 are interconnected. This results in one end of R6 being connected to D852-1 output, which carries a voltage proportional to the top level of the trigger signal. The other end of R6 is connected to output D852-7. This operational amplifier output carries a voltage that is proportional to the bottom level of the trigger signal. In this mode the MTB stays triggered in all positions of the LEVEL control since the voltage on R6 is proportional to the signal voltage.

In the TRIG mode, the control input D851-10 is at logic H, D851-9 is H and internally, points 4+3 and points 11+13 are interconnected. As a result, one end of R6 is connected to -3 V approx. from voltage divider R884, R903, and the other end of R6 is connected to +3 V approx. from voltage divider R951, R952. The MTB trigger level can now be adjusted over approximately +8 or -8 divisions of the displayed signal.

In the modes described above, transistor V866 conducts and D851-6 is at logic L; as a result, the multiplexer input levels are applied to output pins 3 and 13. In the EXT X DEFLECTION mode however, transistor V866 blocks and D851-6 is at logic H. In this case, the multiplexer input levels are isolated from the outputs, which now float.

i) Top detector

This stage produces positive and negative output d.c. voltages that are proportional to the positive and negative top of the trigger signal. In the AUTO mode, these voltages are applied to the two ends of the LEVEL control R6. The input signal for the TOP DETECTOR is derived from shunt feedback stage V863. The positive top of this signal is rectified by diode V867 and smoothed by C872. The negative top is rectified by diode V868 and smoothed by C873.

Both voltages are applied to the non-inverting input of an operational amplifier D852 (inputs 3 and 5). The feedback loop of each amplifier is such that the gain is one These operational amplifiers operate as emitter-followers with a high input impedance and a low output impedance.

2.3.2. Delayed Time-base Triggering (see Fig. 8.6.)

a) Trigger selection circuit (A, B)

Series feedback amplifier V872, V874 receives the channel A signal for DTB triggering. Channel A is selected as a DTB trigger source if R886 in the emitter circuit of V872, V874 is connected to earth via the DTB trigger source switchcontacts S22A to make this stage conductive.

Series feedback amplifier V865, V895 receives the channel B signal for DTB triggering if R888 in the emitter circuit of V865, V895 is connected to earth via switch contacts S22B of the trigger source switch, which makes this stage conductive.

b) Trigger amplifier input stage

This is a balanced input amplifier that accepts input current signals via soxkets X871 and X872 when triggering the DTB via channel A or B. The common-base circuit V921, V922 is followed by a shunt feedback stage V923, V924 that converts the input current signal into an output voltage signal.

This output signal is taken off asymmetrically from V923 collector and applied to the DC, LF, HF filter.

c) Trigger coupling (DC, LF, HF)

In the DC mode, switch contact S19A is closed and the trigger signal is passed via R1080 without frequency attenuation.

In the LF mode, the d.c. path is interrupted and switch contact S19B is closed. The signal is now passed via the low-pass filter R1057, C929.

In the HF mode, the d.c. path is interrupted and switch contact S19C is now closed. The signal is passed via the high-pass filter C929, R1057. Both in the LF and HF modes, the d.c. component is blocked by the series capacitor C931.

d) Final trigger amplifier

The asymmetrical voltage signal from the TRIGGER COUPLING stage is applied to one gate of the symmetrical FET source-follower stage V919. The other gate receives a d.c. voltage, adjustable by the LEVEL control R4. As a result, the source outputs of V919 show a symmetrical voltage signal, the d.c. level of which is adjustable by R4. This signal is fed to an emitter-follower stage D854 (9,10,11) and D854 (6,7,8), part of integrated circuit D854. The symmetrical output voltage signal on emitters D854-10 and D854-7 is applied to the series feedback amplifier D854 (12,13,14) and D854 (2,3,4), with common-current source D854 (1,15,16).

The symetrical output current signals are available on collectors D854-12 and D854-2 and have a phase shift of 180 degrees. Depending on the position of the SLOPE switch S6, one of the two signals is selected for DTB triggering by means of switching diodes: V910, V906 for + slope, V892, V891 for - slope.

If the + SLOPE is selected (S6 open), V906 is not conducting and the signal from collector D854-12 is routed via diode V910 to the DTB.

Transistor V907 is not conducting and transistor V893 is therefore switched on. Diode V892 is blocked and the connection between collector D854-2 and the DTB is interrupted.

If the - SLOPE is selected (S6 closed), diode V906 now conducts, so the signal from collector D854-12 leaks away. Furthermore, diode V910 blocks and prevents any signal from collector D854-12 being passed to the DTB. The positive voltage applied to the base of V907 from S6 causes this transistor to conduct, which then turns off transistor V893. As a result, diode V891 is blocked and the output signal on collector D854-2 is routed via V892 to the input of the DTB.

2.3.3. Main Time-base (see Fig. 8.9)

For a fuller understanding of the functioning of the main time-base, important voltage waveforms in the MTB control logic are given in Fig. 2.5.

a) Auto mode without triggering (free-running time-base)

Consider the situation at the moment the main time-base starts.

With AUTO selected (S3A closed), NOR-gate output D209-13 is L and the switching transistors V233 and V234 are turned off. The MTB is therefore able ro run and produces a time-linear sawtooth voltage. This is picked-off by the Darlington pair V257, V258 and applied to the X deflection selector via emitter-follower V224 and switching diode V217.

b) Main time-base generator

The MTB is based upon the principle that a timing capacitance charged by a constant-current source is capable of generating a time-linear sawtooth voltage that is ideal for c.r.t. forward trace sweep and flyback.

Transistor V236 provides the current source, the base of which is connected to a fixed voltage in the CAL position of R10. This voltage is only varied when the continuous control R10 is moved from the CAL position. The emitter resistance of V236 may have ten different values (R109...R113) selectable by the TIME/DIV switch S15, which has 22 positions. Three timing capacitors are also selectable. Capacitor C226 is permanently in circuit, capacitor C234 is selectable via switching transistor V238 and C241, C242 and C243 paralleled capacitance via transistor V237. These transistors function in 'reversed' mode (collector-emitter reversed) during charging of the timing capacitors and in the 'normal' way during the discharge period.

The following table indicates the capacitors and adjustment potentiometers that are brought into circuit in the various positions of S15.

TIME/DIV range	Timing capacitors in circuit	Adjustment point		
0,05 μs 5 μs/DIV 10 μs 2 ms/DIV 5 ms 0,5 s/DIV	C226 C234 (via V238) C241, C242, C243 (via V237)	(+C226) (+C226)	_ R348 R347	

The MTB sawtooth voltage is also routed via voltage divider R327, R329 and emitter-follower V256 to the input of Schmitt trigger D214 (1,2,3), the end-of-sweep detector. It detects an H input level if the input voltage rises above +1,9 V, whereupon output D214-3 becomes L. This L level is applied to the set input, pin 4 of flip-flop D212, to make the inverting output (pin 6) logic L.

This L level is routed via NAND gate D211 (3,4,5,6) and NOR gate D209 (2,3,1) to input pin 12 of D209. Input pin 2 is always at logic L in the AUTO mode. If no trigger signal is present, the other input, pin 11 of D209 is permanently at L. The L level on input D209-12 makes output D209-13 go to level H, which makes transistors V233 and V234 conductive. Switching transistor V233 discharges the MTB timing capacitance and V234 takes over the current from current source V236. As a result, the MTB sweep is switched off.

The L level from the inverting output pin 6 of flip-flop D212 is applied to the base of switching transistor V271, to switch it off. The hold-off time now starts.

c) Hold-off circuit

The hold-off time-base circuit operates according to the same principle as for the MTB and DTB. Timing capacitors are charged by a constant-current source to generate a time-linear sawtooth voltage. The charging current can be adjusted in steps via the MTB TIME/DIV switch, which influences the voltage applied to the non-inverting input (pin 3) of operational amplifier D216. The HOLD-OFF potentiometer R11 permits continuous adjustment of the current.

The voltage on the hold-off timing capacitors is applied to the input of Schmitt trigger D214 (12,13,11) via Darlington pair V286, V272 and the voltage divider R339, R308.

If this voltage has reached a level of +1,9 V, an H level is detected. In this event, output D214-11 becomes L. This L level is applied to the reset input D212-1, which gives an H on inverting output pin 6. Switching transistor V271 conducts again and the hold-off time-base is switched off: the timing capacitance is discharge.

Schmitt output D214-11 and NAND gate input D211-3 are at level H when the hold-off capacitors are discharged. The H level on output pin 6 of flip-flop D212 is routed via D211 (3,4,5,6) and D209 (2,3,1) to D209-12 input and the time-base restarts.

Fig. 2.5, Important voltage waveforms in the MTB control logic

d) AUTO mode with trigger pulses

MTB trigger pulses are applied as a current signal to the CURRENT-VOLTAGE CONVERTER. If a trigger pulse occurs in this mode, transistors V291 and V292 convert the selected trigger source current signal into a voltage signal, and emitter-follower V293 makes D214-4 input logic L. This trigger pulse is applied at H level to clock input pin 11 of flip-flop D212, which switches over to make output pin 9 logic H. This cannot occur during the hold-off period because D214-5 is L, or reset input D212-13 is L.

The H level from D212-9 output switches off transistor V233 and diode V234 via NOR gate D209 (11,12,13) to start the time-base.

As described for the free-run mode, the end of the time-base sweep is detected and the hold-off time-base is started

When this occurs, output pin 6 of flip-flop D212 becomes L. This L level is routed via NAND gate D211 (1,2,13,12) and NOR gate D209 (8,9,10) to the reset input (13) of flip-flop D212. As a result, output pin 9 does L and the time-base is switched off. Moreover, the one-shot multivibrator D213 is triggered and output D213-6 stays at level L for 100 ms after the H to L transition of the clock input on pin 1.

If D213-6 is L, then D211-5 is also L. This means that it is not possible to start the time-base at the end of the hold-off period via the path D211 (3,4,5,6) and D209 (2,3,1). Now the MTB can only be started if a trigger pulse appears. An incoming trigger pulse is applied to the clock input (11) of flip-flp D212 to make output pin 9 logic H. This H level is applied to pin 11 of NOR gate D209, which makes output pin 13 a logic L and the MTB starts.

e) Triggered mode (see also AUTO mode with and without triggering)

In the triggered mode, the signal path that starts the MTB directly after the hold-off period (in auto free-run mode) is interrupted by an H level on NAND gate D209-2. This interrupted signal path is via D211 (3,4,5,6) and D209 (2,3,1).

The finish of the MTB sweep at the start of the hold-off period is identical to the situation described for AUTO mode. At the start of the hold-off period, input pin 2 of NAND gate D211 becomes L. As inputs 1 and 13 are both H, output pin 12 becomes H. This produces via NOR gate D209 (8,9,10) a logic L that is applied to reset input (13) of flip-flop D212. Consequently, the flip-flop switches over and the MTB stops.

f) SINGLE-SHOT mode (see also AUTO and TRIGGERED modes)

In this mode, the conditions of the Set-Reset (SR) flip-flop formed by NAND gates D211 (1,2,12,13) and D211 (8,9,10,11) are important.

Before the start of the hold-off period, the following apply:

D211 INPUTS	LEVEL		OUT	PUTS
2 1 13	! ! H ! H	only L in EXT X DEFL	12	L
11 9 10	L H	only L in AUTO and TRI	G 8	H

At the start of the hold-off period input pin 2 of D211 is made L and the flip-flop jumps to the set position (output 12 is H, output 8 is L).

This situation remains after the end of the hold-off period although input 2 is now H, because an L level from output 8 is applied to input 13 of D211. As a result of this SR flip-flop condition, the reset input pin 13 of flip-flop D212 stays at L and the time-base cannot be started by a further trigger pulse.

Only by forcing the SR flip-flop back to the reset condition (output 12 at L, output 8 at H) is it possible to re-trigger the time-base. Reset is achieved if the SINGLE/RESET pushbutton is depressed, to give an L level to input 10 of the SR flip-flop. However, the time-base can only be triggered if the SINGLE/RESET pushbutton is in the normal position. If it is depressed, the reset input (pin 13) of flip-flop D212 remains at level L via D214 (9,10,8) and D209 (8,9,10).

In the SINGLE mode, the signal path that starts the time-base directly after the hold-off period (in AUTO free-run mode) is interrupted by an H level on D209-2. This interrupted signal path is D211 (3,4,5,6) and D209 (2,3,1).

g) EXT X-DEFL mode

Input pin 1 of SR flipflop D211 is permanently at level L. Consequently, output D211-12 is H. This H level gives an L level on reset input pin 13 of D212, which inhibits the start of the time-base in this mode.

h) NOT TRIG'D indicator

The not triggered indicator, LED B1, is supplied with current from the current source V1512 on the FINAL AMPLIFIER UNIT A5 via X202-7.

If the time-base is running, flip-flop output D212-8 is L, this level being applied via diode V252 and via $\times 202-7$ to the anode of B1 to hold it off (see Fig. 8.12).

When trigger pulses occur with a time interval of 100 ms or less, pin 6 of one-shot multivibrator D213 is permanently at logic L. This L output is fed via diode V251 to the anode of B1 to switch it off.

In the SINGLE mode, the output 8 of flip-flop D211 is L from the start of the hold-off period until the moment when the SINGLE/RESET pushbutton is depressed. This L level is applied via diode V249 to the anode of B1 to hold it off.

The NOT TRIG'D indicator normally glows when awaiting a single-shot trigger.

i) HORIZONTAL CHANNEL SELECTION LOGIC & HORIZONTAL CHANNEL SWITCH

MTB only (S2D depressed or all horizontal display mode switches S2 released)

In this mode, S2D feeds a logic L to the set input (10) of flip-flop D207. The reset input (13) is H, therefore output pin 9 is H and inverting output pin 8 is L. This L level causes transistor V208 to conduct and thus opens a signal path for the MTB sweep via transistor V224 and the diode V217 to the input of the final X amplifier.

DTB only (S2B depressed)

In this mode, an L level is applied to the reset input pin 13 of D207. The set input (10) is H and inverting output pin 8 is H. The L output on pin 9 causes transistor V223 to conduct and thus opens the signal path for the DTB sweep via diodes V211 and V214 to the final X amplifier.

EXT X-DEFL only (S2A depressed)

In this mode, both the set input (10) and the reset input (13) of D207 are made logic L via diodes V294 and V295 and S2A-6 of the horizontal display mode switch. Consequently, outputs (pins 9 and 8) of flip-flop D207 are H and both the MTB and DTB sawtooths are prevented from reaching the input of the final X amplifier.

The external X deflection signal is now routed via transistors V203 and V204, in the X DEFLECTION AMPLIFIER, and switching diode V216 to the X FINAL AMPLIFIER.

ALT TB mode (S2C depressed)

Flip-flop D207 functions as a divide-by-two stage in this mode because the set and reset inputs are both at level H, and the data input (12) is connected to the inverting output (8). The signal applied to clock input (11) is the END OF SWEEP pulse. This signal goes L at the end of the MTB sweep and goes H when the MTB sweep reaches the 0 V level. When the clock-pulse input goes from L to H the condition of the flip-flop changes. For instance, output 9 goes H and the inverting output 8 goes L, so the MTB sawtooth is applied to the final X amplifier. After the L to H transition, on the clock input, output 9 is L and inverting output 8 is H, which applies the DTB sawtooth to the final X amplifier. At the next transition, the MTB is again applied, and so on.

j) Trace separation circuit

This stage is formed by integrated circuit D202, of which the transistors connected to pins 1, 15, 16 and 8, 9, 10 are not used (all pins wired to -7V). The TRACE SEPARATION CIRCUIT receives, via two outputs, current from R1238 and R1244 in the FINAL VERTICAL AMPLIFIER. These currents provide the trace shift in the ALT TB mode.

The transistor connected to pins 2 and 1, and the transistor connected to pins 7 and 8 are current sources.

If the ALT TB mode is not selected, the currents from both sources are equal because the switch contact S2C between pins 2 and 7 is closed. The output pin 1 of NOR gate D208 is at logic L. Therefore the current from R1244 is routed to D202-11 and via an internal transistor to the current source connected to pins 7, 8. The current from R1238 is routed to D202-14 and then via an internal transistor to the current source on pins 2, 1. When ALT TB mode is selected, the contact between pins 2 and 7 of D202 is open. Consequently, the current of both current sources is no longer equal. Current source pin 2, 1 carries a lower current than current source pin 7, 8. The difference depends on the setting of the TRACE SEPARATION potentiometer R15. With R15 at zero resistance both currents are identical. If the DTB is displayed, NOR gate output D208-1 is L and the routing of the currents of R1244 and R1238 over both current sources are identical to the situation without ALT TB selected. Only the magnitude of the currents differs, that from R1238 being higher than that from R1244. This results in a downwards shift of the time-base line in comparison with the situation where the currents in R1238 and R1244 are equal.

In the MTB sweep that follows, the MTB is displayed and the output D208-1 is now H. As a result, the currents from R1238 and R1244 in the FINAL VERTICAL AMPLIFIER are routed via another path in D202. The current from R1244 is routed to D202-12 and is lower than the current from R1238, which is routed to D202-13. In this case, the result is an upwards shift of the time-base line compared with the situation where the currents in R1238 and R1244 are equal.

k) Z-LOGIC

This stage sends a current signal to the Z amplifier to control the intensity of the spot on the c.r.t. screen. The spot intensity depends on the mode selected; e.g. MTB, MTB intensified by DTB, DTB, ALT TB, EXT X DEFL, and also on the position of the INTENS control R12.

During the hold-off period the display must be blanked. The current that determines the intensity is a summation of the collector currents of transistors V288 and V289. Both transistors are controlled by the logic circuits: V288 by NAND-gate output D218-12 and V289 by NAND-gate output D218-6.

If both logic outputs are L, V288 and V289 conduct and the display is unblanked. The logic levels on D218-12 and D218-6 as a function of the mode selected are given in Fig. 2.6.

Fig. 2.6 Important voltage waveforms in the Z-modulation control logic

MTB only

During the MTB sweep, input D217-2 is H, resulting in OR-gate output D217-3 and D218-13 becoming H during the sweep.

Input D217-5 is H if the MTB output signal is routed to the final X amplifier. As a result, OR-gate output D217-6 is H during this time, and also D218-1.

NAND-gate input D218-2 is permamently H so output **D218-12 is L during the MTB sweep** (see Fig. 2.6/1 for comparison).

Input D217-12 is H during the MTB sweep, so OR-gate output D217-11 is H and also D218-5.

Input D217-9 is H. As a result for gate output D217-8 is H and also D218-4.

Input D218-3 is H. Output D218-6 is L during the MTB sweep (compare with Fig. 2.6/1).

DTB only

Input D217-4 is H during the DTB sweep, which makes output D217-6 and input D218-1 logic H. Input D217-1 is H and consequently output D217-3 is H and also input D218-13.

Input D218-2 is permanently H, so output **D218-12 is L during the DTB sweep** (compare this with Fig. 2.6/3). Input D217-10 is H during the DTB sweep, which makes output D217-8 and also input D218-4 at logic H during the DTB sweep.

Input D206-2 is L, so output D206-3 and also input D217-13 go to logic H. Consequently, the OR-gate output D217-11 and input D218-5 are at logic H.

Input D218-3 is permanently at H so output D218-6 is L during the DTB sweep (compare this with Fig. 2.6/3).

MTB intensified by DTB

When this mode is selected, the input of the FINAL HORIZONTAL AMPLIFIER is derived from the MTB output and the DTB TIME/DIV switch does not occupy the OFF position.

Input D217-2 is H during the MTB sweep, which means that D217-3 and input D218-13 are also H during the sweep period.

Input D217-5 is H if the MTB output signal is routed to the final X amplifier. As a result, OR-gate output D217-6 and input D218-1 are also H.

With input D218-1 also H, the output of this 3 -input NAND gate **D218-12** is **L** during the MTB sweep (compare this with Fig. 2.6/2).

Input D217-10 is H during the DTB sweep, which means that output D217-8 is H during the DTB sweep and also input D218-4.

A logic L on input D206-2 makes output D206-3 and also input D217-13 logic H. Output D217-11 is therefore H and also input D218-5.

Input D218-3 is H, so output D218-6 is L during the DTB sweep (compare this with Fig. 2.6/2).

Therefore with L signal on NAND-gate output D218-12 during the MTB sweep, transistor V288 conducts. With an L signal on NAND-gate output D218-6 during the DTB sweep, transistor V289 conducts, and during that time the current from the Z amplifier doubles providing that preset R401 is in mid-position. This increase in current produces the intensified part of the MTB trace during the DTB sweep.

ALT TB mode

When ALT TB is selected, NAND-gate output **D218-6** is **L** during the **DTB** sweep, in the same way as described for the 'DTB only' mode (compare with Fig. 2.6/4 and Fig. 2.6/3).

For NAND-gate output D218-12 this situation is as follows:

- for one MTB sweep, the output is L during that MTB sweep,
- for the next MTB sweep the output is L during the DTB sweep.

This depends on the condition of flip-flop D207 (8...13), which switches the final X amplifier input alternately between MTB (D218-12 L during MTB sweep) and DTB (D218-12 L during DTB sweep).

The generation of these pulses occurs as follows:

- If the MTB is used for X-deflection then D217-1 is L. Pin 2 is H during the MTB sweep, so D217-3 and D218-13 are also H during the MTB sweep.
 Input D217-5 is also H, which makes output D217-6 a logic H.
 Thus input D218-1 is H and since input D218-2 is H, the three inputs of the NAND-gate are at H, which gives a logic L on output D218-12 during the MTB sweep (compare with Fig. 2.6/4).
- If the DTB is used for X-deflextion (the next MTB sweep) then D217-5 is L. Pin 4 is H during the DTB sweep, so D217-6 and D218-1 are also H during the DTB sweep.
 Input D217-1 is H, which makes output D217-3 and input D218-13 logic H. As the remaining input, D218-2 is H, then the NAND-gate output D218-12 is L during the DTB sweep (compare with Fig. 2.6/4).
- At the next MTB sweep, the MTB is again selected for X-deflection and D218-12 is L during the MTB sweep, and so on.

Display Blanking

In the foregoing circuit descriptions for display blanking in MTB, MTB intensified DTB and ALT TB modes, it is assumed that inputs 2 and 3 of D218 are permanently at logic H. However, there are certain conditions, listed below, when these inputs are L and the display is blanked.

- In the chopped mode of the vertical channels the display is blanked during switching over between channels,
 by connecting the cathode of diode V296 to earth for this period.
- If a logic L is applied to the external Z MOD input on the rear-panel, this signal is routed via diode V297 to inputs 2 and 3 of D218 for blanking purposes.
- The display is blanked if an incorrect mode is selected. This condition is detected by NAND gates D218 (9,10,11,8) and D206 (4,5,6) which together give a logic L on the cathode of diode V298.

Inputs D218-9/10 are H if X DEFL is selected or if the DTB TIME/DIV switch in OFF (V285 non-conductive).

Input D218-11 is H if ALT TB is selected or if the final X amplifier is fed from the DTB signal. As a result, output D218-8 is L (i.e. display blanked), if DTB TIME/DIV switch is OFF while DTB or ALT TB selected on S2. The display is also blanked if X DEFL is selected together with DTB or ALT TB for horizontal display.

I) ALTERNATE mode control logic (see Fig. 2.7)

This circuit produces clock-pulses for the vertical display mode logic. It consists of NOR gates D208 (1,2,3), D208 (11,12,13), D208 (8,9,10) and NAND gate D206 (8,9,10).

The pulses are routed via the switch unit to UNIT 3.

The vertical display switches from one channel to the other if output D206-8 goes from L to H.

The circuit operates as follows:

If the horizontal deflection is initiated by MTB or DTB only, input D208-11 is L. Normally, input D208-12 is H, but is L during the flybackperiod of the MTB (= discharge of timing capacitance). If input D208-12 goes from H to L (at start of MTB flyback) this transition is routed via D208 (11,12,13), D208 (8,9,10) and D206 (8,9,10), this triple inversion making output D206-8 go from L to H to switch the vertical channel display from one to the other.

Fig. 2.7 Important voltage-waveforms in the alternate mode control logic

If the ALT TB mode is selected, input D208/12 also goes from H to L at the start of the MTB flyback period. Input D208/11 is H if the MTB drives the final X amplifier, and L if the DTB drives the final X amplifier. As a result, the H to L transition of input D208/12 only gives a L to H transition of output D206/8 if the DTB drives the final X amplifier.

Thus the display sequence in the ALT TB mode combined with ALTernate vertical display is:

- Channel A with MTB intensified by DTB
- Channel A with DTB
- Channel B with MTB intensified by DTB
- Channel B with DTB
- Channel A with MTB intensified by DTB, and so on.

m) Stabilisation circuit

This circuit consists of operational amplifier D201 and transistor V200. The circuit converts +14 V into +12 V for the time-base, and the current drain from +14 V is constant. The reference voltage for the positive input of D201 is obtained via voltage divider R201, R202 from the +14 V supply. The negative input of D201 is connected to the +12 V output voltage. Any variation between reference voltage and output voltage is corrected via output D201-6 and emitter-follower V200.

2.3.4. Delayed Time-base (see Fig. 8.11)

The DELAYED TIME-BASE GENERATOR itself generates a time-linear sawtooth in the same way as described for the main time-base.

Transistor V229 is the constant-current source, with its base fed from a fixed d.c. voltage that is derived via the continuous TIME/DIV control R9. The base voltage of V229 is only changed if R9 is moved out of the CAL position. By means of the TIME/DIV switch S13, eight different emitter resistors can be selected for current source V229. Depending on the position of S13, only one timing capacitor C219 (fast sweep speeds) or two timing capacitors C219/C218 (slow sweep speeds) are switched into the circuit. Capacitor C218 is switched into the circuit by means of transistor V231.

This transistor functions in the 'reversed' mode (collector and emitter are reversed) during the charge of the timing capacitor and in the 'normal' way during the discharge.

Switching of V231 is controlled by TIME/DIV switch S13. The table below indicates the capacitors and adjustment potentiometers that are in circuit as a function of the position of S13.

TIME/DIV range	Timing capacitors in circuit	Adjustment point
0,05 μs5 μs/DIV	C219	R349
10 μs1 ms/DIV	C219, C218	R351

The time-base is switched on and off by means of the switching transistors V228 and V227. At the end of the DTB sweep V228 conducts and takes over the current from current source V229; V227 conducts at the start of the hold-off period in order to discharge the timing capacitance.

The DTB sawtooth is taken off by Darlington pair V219/V209 and routed to diode V211 in the X deflection selector. The sawtooth is also routed via emitter-follower V221 to the input of the end-of-sweep detector D203 (1,2,3).

a) COMPARATOR

This part of the circuit consists of transistors V259, V248 and current source V268 and it compares the MTB sawtooth voltage (applied to the base of V259) with an adjustable d.c. voltage from DELAY TIME potentiometer R3 (applied to the base of V248 via Darlington pair V246, V247).

At the moment that the instantaneous d.c. value of the MTB sawtooth exceeds the voltage on the base of V248, this transistor switches off, V259 conducts and the comparator switches over. Now V261 conducts and NAND-gate input D203-4 becomes H.

The comparator has a current source V268, which is switched on if the lower end of R358 is connected to earth via S13. With the DTB TIME/DIV switch S13 in the OFF position, R358 is floating and the current source is switched off. As a result, the comparator is inoperative and the DTB cannot be started. The voltage at both ends of the DELAY TIME control R3 is adjustable by presets R262 and R268.

b) START and STOP of DTB (see timing diagram Fig. 2.8)

Before the start of the DTB, the position of the SR flip-flop D204 (1,2,3) and D204 (4,5,6) is as follows:

Output D204-1 - L

Output D204-4 - H

Input D203-4 becomes H if the comparator switches over. Input D203-5 is H (during the MTB sweep). Consequently, output D203-6 becomes L together with input D204-12.

Input D204-11 is L, thus output D204-13 becomes H and is applied to the reset input, pin 1 of flip-flop D207. There are now two start possibilities for the DTB:

- Pushbutton MTB of S22 is depressed: the 'START' mode is selected and the DTB starts directly after the selected DELAY TIME.
 - In this mode, the set input, pin 4 of flip-flop D207 is connected to earth, so the inverted form of the signal on onput pin 1 of D207 appears on the output pin 6. If pin 1 goes H, then output pin 6 goes L, the switching transistor V228 turns off and the DTB starts.
- Pushbutton A or B of S22 is depressed: the TRIGGERED mode is selected and the DTB starts after the pre-selected time delay, only upon receipt of a trigger pulse.
 In this mode, the set input D207-4 is H, and D207 now functions as a normal flip-flop.
 After pin 1 has gone H, a clock-pulse on D207-3 is necessary to make output pin 6 logic L.

This clock-pulse occurs if V226, V212 (the CURRENT-VOLTAGE CONVERTER for the selected trigger source) and emitter-follower V225 make inverter inputs D203-12/13 logic L. As a result, the clock input D207-3 goes H and the flip-flop switches over: output pin 6 goes L and switch V228 now goes non-conductive and the time-base starts.

If the timing capacitance of the DTB is charged, the voltage across it rises linearly with time. This voltage is applied via the Darlington pair V219, V209, the voltage divider R239, R238 and emitter-follower V221 to the input of the Schmitt trigger D203 (1,2,3), which is the end-of-sweep detector.

If this voltage has reached a value of +1,9 V, the input level is detected as being H.

Output D203-3 now becomes L and is inverted to give H on output D203-8, which is applied to pin 6 of SR flip-flop D204 (1...6). The flip-flop switches over and gives a logic H on input D204-11.

Output D204-13 becomes L and also the reset input D207-1 and the DTB stops as switching transistor V228 conducts again. In this way, the charging of the timing capacitance stops, and these are discharged via V227 at the start of the hold-off period.

The situation described above is valid if the DTB sweep is completed before the MTB sweep (see Fig. 2.8. indicating the voltage waveforms for the DTB SWEEP COMPLETED mode, and also for the DTB SWEEP NOT COMPLETED mode).

In the DTB SWEEP NOT COMPLETED mode, the state of the RS flip-flop is not changed and the DTB is stopped if input D203-5 becomes L at the end of the MTB sweep. Now input D204-12 becomes H and flip-flop reset input D207-1 becomes L.

Fig. 2.8 Important voltage-waveforms in the DTB control logic

2.3.5. Final X Amplifier (see Fig. 8.13)

The input stage comprises a balanced series-feedback amplifier, V1371, V1372 with common current source V1373. The base of V1371 receives the output signal from the X-deflection selector. This signal can be the MTB or DTB sawtooth or the X DEFL. signal. The base of V1372 receives an adjustable d.c. voltage derived from the X POSITION control R5.

This control, R5, consists of two ganged sections, one of which has a degree of backlash to enable fine and coarse adjustment of the X position with one knob.

The amplification of the V1371, V1372 stage in increased by x10 if the X MAGN control is pulled. Relay K1371 is energised in this mode and additional emitter resistance (R1378 and R1381) is switched into circuit.

The collector of transistor V1371 drives one half of the final X amplifier, the other half being driven by the collector of V1372. The configuration of both amplifier halves is the same, but corresponding transistors are complementary (PNP vs NPN) so corresponding supply voltages are therefore reversed (V1316 vs V1312). One half of the final X amplifier consists of V1302 (NPN to adapt d.c. level). V1306 (PNP shunt-feedback amplifier), V1311 (PNP, to adapt d.c. level), V1312 (NPN, current source) and V1313 (NPN, output emitter-follower).

The signal conditions are as follows:

If the sawtooth voltage on the base of V1371 rises, the collector current falls. The voltage level on the junction R1307-R1318 does not change. Therefore the current is fed via transistor V1302 to the base of V1306. The base becomes more negative, so the collector potential of V1306 rises. Also the potential on the junction of collectors V1311, V1312 rises and is applied via emitter-follower V1313 to one horizontal deflection plate. During the flyback of the sawtooth, diode V1308 can conduct. The feedback components of V1306 are R1323, R1318 and C1308.

The other half of the final X amplifier consists of V1303 (PNP, to adapt d.c. level) V1307 (NPN, shunt-feedback amplifier), V1317 (NPN, to adapt d.c. level), V1316 (PNP, current source) and V1314 (PNP output emitter-follower).

The signal conditions are as follows:

If the sawtooth voltage on the base of V1371) rises, the collector current of V1372 also rises. The emitter of V1303 becomes more positive. (Resistor R1308 has a higher value than R1307 in the other half of the amplifier.)

Transistor V1303 starts conducting so the current to the base of V1307 rises. The voltage level on the collector of V1307 decreases and the potential on the base of V1314 also.

Via emitter-follower V1314 the signal is fed to the horizontal deflection plate XI.

The feedback components for V1307 are R1319, R1324 and C1309

2.4. CRT DISPLAY SECTION, CAL GENERATOR AND FRONT-PANEL SIGNAL LAMPS (see Fig. 8.13.)

a) Z-Amplifier

The signal from the Z-LOGIC on the time-base unit 2 that determines the c.r.t. spot intensity is applied to the base of emitter-follower V1503. From the emitter the signal feeds the output stage with shunt-feedback amplifier V1513 and current source V1511.

The output signal may contain d.c., l.f. and h.f. components to be applied to the Wehnelt cylinder G1 of the c.r.t. Since G1 is at a cathode potential of -1500 V, blocking capacitors are required between G1 and the Z amplifier output.

The h.f. component is routed via blocking capacitor C1512 to G1.

However, the d.c. and l.f. components are blocked. These components are filtered by the low-pass filter R1529, C1514 and applied to the modulator V1508, V1509. Here, the d.c. and l.f. components modulate an h.f. carrier signal to pass blocking capacitor C1513, and are then demodulated by V1514. Finally, the reconstituted d.c. and l.f. components are added to the h.f. component and applied to G1 of the c.r.t.

b) Signal lamps

The front-panel LED indicators POWER ON, VERT UNCAL, HOR UNCAL, MAGN X10 and NOT TRIG'D are connected in series, and fed from constant-current source V1504.

The POWER ON LED always glows when the instrument is switched on. The other are short-circuited by the relevant switches when not in operation, as listed below:

- Vertical and horizontal UNCAL LEDs short-circuited if continuous controls R7, R8, R9, R10 are in CAL position.
- The MAGN x10 LED is short-circuited by V1512, which is blocked if the MAGN x10 mode is selected.
- The NOT TRIG'D LED is short-circuited if a logic L from the MTB logic is applied to its anode.

c) Trace rotation circuit

This circuit determines the magnitude and sense of the current in the trace rotation coil around the neck of the c.r.t. Either npn transistor V1501 or pnp transistor V1502 conducts depending on the setting of the front-panel adjustment R14. This control also determines the magnitude of the current.

d) Calibration generator

The square-wave generator consists basically of an operational amplifier D1501 with an RC feedback loop. This feedback loop consisting of R1543 and C1517 determines the frequency of oscillation (2 kHz).

The generator is followed by output stage V1516, which is used in the 'reversed' mode; i.e. the collector is used as 'emitter' and the emitter used as 'collector'.

In this way, the saturation voltage is very low, which gives an accurate output voltage on socket X1. Resistors R1547, R1548, R1549 in the output circuit are high-precision types.

e) Graticule illumination lamps

The graticule illumination lamps are supplied via transistor V2, which is mounted on the chassis for an optimal heat-conduction.

2.5. THE POWER SUPPLY

The stabilised power supply for the oscilloscope consists of the following:

- an input circuit
- a converter driver
- a flyback converter
- a regulator and protection circuit
- secondary output rectifiers

2.5.1. Input circuit

The instrument can be set to operate from the following mains supply voltages: 110 V, 220 V and 240 Va.c., these nominal voltages being selected by the mains voltage selector S25 at the rear of the instrument.

Fuse F1402 protects the instrument against incorrect mains voltage settings or high mains fluctuations. A thermal fuse F1403 is located in the mains transformer T1406.

The secondary winding of T1406 is connected to the diode bridge V1431, where the input is rectified and smoothed by capacitor C1452.

The instrument may alternatively be powered by a battery supply of 20...28 V. This battery supply must be connected via the d.c. input connector X7 at the rear of the instrument.

If a battery supply is used, it is applied to resistor R1460 via the POWER ON switch S21 and connector X1407 pins 6 and 8. Protection is provided by the 2 A delayed-action fuse F1401. Diode V1436 also safeguards the input against incorrect polarity of the battery supply. This diode blocks in the event of reversed input. Resistor R1447 prevents capacitor C1452 being charged to excessive values by spikes that may be present on the battery supply.

To reduce the current flowing the C1441 at switch-on, resistor R1460 is mounted in series with the POWER ON switch S21.

2.5.2. Converter Driver and Flyback Converter

The converter driver consists of transistors V1438, V1413 and transformer T1404. The converter itself consists of the converter transformer T1402.

- The converter driver (see Fig. 2.9 and 8.14)

The circuit functions as follows:

The pulse-width of the square-wave current I1 that is applied to the base of transistor V1438 is determined by the integrated circuit D1402.

The frequency of the square-wave current is 26 kHz approximately.

If transistor V1438 starts to conduct (see point A of Fig. 2.9), its collector current 12 increases to 0,4 A during the period T1.

The current I2 is flowing via the primary winding of T1404 to the base of transistor V1413 (I3) and to the secondary winding of T1404 (I4).

The base current of V1413 (13) will increase by the same amount as the collector current of V1438 (12).

Transistor V1413 will conduct and its collector current I6 will increase to 4 A.

If the transistor V1438 is blocked (see point B of Fig. 2.9) its collector current 12 is switched off.

Because of this sudden switch-off, the current 14 will be maximum at this moment.

The current I4 is in anti-phase with respect to I2 and flows via diode V1437 to the supply voltage. In this way, the base current I3 of V1413 becomes negative (-0,4 A) during period T2, which rapidly blocks V1413.

The collector current I6 of V1413 is also switched off rapidly at this moment. The energy present in the transformer T1404 is fed to earth via diode V1419. This is realised by the negative current I1 during period T3. After $\approx 40 \,\mu\text{s}$, the procedure is repeated.

Resistor R1446 provides the base of V1413 with a d.c. current to speed-up the switching-on of this transistor.

Fig. 2.9 Converter-driver

The flyback converter (see Fig. 2.10)

The flyback converter functions as follows:

If transistor V1413 conducts under the control of base current **I**3, the collector current **I**6 increases to 4 A. During the period T1, the voltage level on the collector of V1413 is eat earth potential.

At the moment when V1413 is blocked its collector current **I**6 is switched off (see point B of Fig. 2.10). At the same time, the energy present in T1402, built up during period T1, is discharged via the secondary winding of T1402 during period T2.

This results in current 17 which, after rectification and smoothing, is fed to the various circuits in the instrument.

The energy that was present in T1402 is consumed at point A and the procedure described above is repeated after \approx 40 μ s.

Diode V1415, capacitor C1430 and resistors R1418, R1425 serve to eliminate the switching spikes present on the collector of transistor V1413.

Fig. 2.10 Fly-back converter

2.5.3. The Regulator and Protection Circuit (see Fig. 8.15)

The regulator circuit D1402, via transistors V1433 and V1428, controls the pulse-width of the square-wave current applied to the base of V1438.

At the moment of switch-on, the supply voltage for D1402 is delivered via the emitter-follower V1429 to pin 1 of D1402.

When the power supply has started, the transistor V1429 is blocked and the supply voltage for D1402 is derived from the secondary +14 V supply via diode V1426.

The regulator circuit is controlled by the following:

- The +14 V secondary output voltage fed back to D1402-3 via potentiometer R1474 and resistors R1452,
 R 1453 and R1456 for output voltage sensing.
 Potentiometer R1474 permits adjustment of the output voltages.
- The frequency of the sawtooth generator, determined by the value of C1448 and R1466 connected to pins 8 and 7 of D1402 respectively (26 kHz approx.).
- The current-limit circuit, adjustable by preset R1476, for output current sensing.

a) Output voltage sensing

The voltage level of the feedback voltage (on D1402-3) is compared with the amplitude of the sawtooth voltage in the pulse-width modulator (see Fig. 2.11). The pulse-width modulator is part of integrated circuit D1402.

MAT 950

Fig. 2.11 Pulse-width modulation

The pulse-width of the output square-wave voltage is determined by the level of the feedback voltage to D1402-3. For instance, if the output voltage is too high (see level B of Fig. 2.11), the pulse-width of the output voltage on pin 14 and pin 15 will be reduced.

If the output voltage is too low (see level A of Fig. 2.11), the pulse-width will increase.

Via transistor V1428, the square-wave current is applied to the base of V1438. Transistor V1428 functions as a current source, started by the pulse from D1402-14. The square-wave voltage from D1402-15 switches-off transistor V1438 rapidly via transistor V1433 and C1449.

A 'slow' start of the power supply is achieved by capacitor C1447, which is charged slowly by the reference voltage from D1402-2 via resistors R1448 and R1462.

The voltage level on pin 6 determines the duty cycle of the output square-wave voltage.

The maximum duty-cycle is also determined by the voltage level on D1402-6 which prevents the converter transformer T1402 going into saturation.

The +14 V feedback voltage is continuously checked. A voltage level is applied to D1402-10 via the Zener diode V1422 and R1439.

In the event of a short-circuit longer than approximately two seconds, the voltage level on pin 10 will fall to such a value that the output pulses on pins 14 and 15 of D1402 are blocked.

b) Output current sensing

The voltage level derived from potentiometer R1476 is applied to D1402-11 for current sensing. This voltage level is taken from the current transformer T1403, This transformer has no power losses so its dissipation is low.

If the voltage level on D1402-11 exceeds 0,48 V, the output pulses from pins 14 and 15 are cut-off. This means that the duty-cycle of the square-wave output voltage is reduced, which in turn reduces the output current of the power supply (e.g. in the event of a small overload).

If the voltage level on pin 11 of D1402 exceeds 0,6 V (e.g. in the event of a short-circuit), the power supply is immediately switched-off.

2.5.4. Output Circuits (see Fig. 8.15)

The output voltages taken from the secondary windings of transformer T1402 are rectified by diodes and smoothed by capacitors in conventional circuits.

The d.c. output voltages are fed to the various circuits of the instrument. The c.r.t. filament is also supplied by a secondary winding of T1402, via connector X1406, pins 1 and 2.

WARNING Note that pin 2 of connector X1406 is at -1500 V level.

If connector X1406 is removed from its socket, the +14 V supply voltage for the -1500 V converter is also interrupted for safety reasons. In this case, the connection between the connector pins 9 and 10 is interrupted.

2.5.5. -1500 V Generator and HV Multiplier (see Fig. 8.15)

The -1500 V supply consists of an oscillator and a regulator circuit.

The oscillator comprises transistor V1401, transformer T1401, capacitor C1415 and resistor R1417. The output signal voltage on the secondary winding of T1401 is rectified by diode V1403 and smoothed by C1408 and C1409.

The -1500 V is divided by resistors R1408, R1413 and fed back to the positive input of operational amplifier D1401-3 for output voltage sensing.

This part of the -1500 V output is compared with a reference voltage applied to the inverting input D1401-2. The reference voltage is extremely stable, and independent of temperature variations. This is achieved by Zener diode V1408. Tolerances in this Zener diode can be compensated for by preset R1471. Resistor R1434 and capacitor C1436 prevent unwanted oscillation in D1401.

The regulator part of the circuit functions as follows:

If for example the -1500 V output increases (i.e. goes more negative), the voltage level on the positive input D1401-3 decreases.

The output voltage of the comparator D1401-6 decreases to such a value that current is drawn from the oscillator via diode V1410.

Consequently, the oscillator amplitude decreases, resulting in a lower output voltage.

If the -1500 V is short-circuited, the voltage level on D1401-3 becomes positive, and the output voltage of the comparator D1401-6 increases. The current to the base of transistor V1401 increases as a result, and V1401 dissipates this current.

Diode V1410 prevents the transistor V1401 getting excessive base current when the instrument is switched on. At switch-on the diode blocks and the base current for V1401 is delivered via resistor R1426.

The -1500 V output is converted to 8,5 kV in the high-voltage multiplier D1403 and fed via connector X1414 to the post-acceleration anode of the c.r.t.

2.5.6. Line Trigger Pick-off (see Fig. 8.15)

The line trigger signal is derived from the secondary winding of the mains transformer via the connector X1407, pins 4 and 7.

The mains voltage sine-wave signal is applied to the transistor V1406 via resistors R1422 and R1423. The square-wave signal on the collector of V1406 is routed to a filter consisting of R1419, R1416, R1414 and C1416, C1417 and C1407, and transistor V1404.

This filter re-converts the square-wave voltage to a sine-wave voltage at the mains frequency.

This line trigger signal is routed via electrolytic capacitor C1406 to the TRIGGER SELECTION UNIT via the connector X858, pin 6.

2.6. BASIC ANALOG AND DIGITAL CIRCUITS

This section describes briefly the most important characteristics of the analog and digital circuits to be found in the instrument.

2.6.1. Basic Analog Circuits (see Fig. 2.12)

Series feedback amplifier

This is also called a Cherry configuration.

A voltage signal ΔU is applied to the input; the output produces a current signal $\Delta I = \frac{\Delta U}{R_E}$

Shunt feedback amplifier

This is also called a Hooper configuration.

A current signal ΔI is applied to the input; the output produces a voltage signal $\Delta U = \Delta I$. RF

- Series feedback amplifier followed by a shunt feedback amplifier

This combination of the two previous configurations is called a Cherry-Hooper circuit.

In this two-stage amplifier, both the input and the output are voltage signals. The gain of this amplifier is:

$$\frac{\Delta U_{OUT}}{\Delta U_{IN}} = \frac{R_{I}}{R_{E}}$$

- Emitter-follower

The emitter-follower is used as an impedance converter.

The input impedance is HIGH and the output impedance is LOW. The stage has a voltage gain of x1, and the output voltage signal is identical to the input voltage signal.

Darlington pair

This circuit consists of two emitter-followers connected in cascade. As a result, the input impedance is very high and the output impedance low.

Again, this stage has a voltage gain of x1 and the output voltage signal is identical to the input voltage signal.

- Common base circuit

This type of circuit is frequently used between amplifier stages for d.c. voltage level adaption or for buffering. The input impedance is low and the output impedance is high.

It has a current gain of x1, the output current signal being identical to the input current signal.

- Long-tailed pair

The division is as follows:

In the diagram of Fig. 2.12, the long-tailed pair is formed by transistors V1 and V2. Transistor V3 functions as a constant-current source for V1 and V2. The current drawn from V3 is divided between V1 and V2, the proportion depending on the base voltages applied (U1 and U2).

$$I_1 - I_2 = \frac{U1}{R_{E1}} - \frac{U2}{R_{E2}}$$

2.6.2. Basic Digital Circuits (see Fig. 2.13)

The type of logic used is TTL and the supply voltage +5 $\rm V.$

The logic levels used are defined as follows:

- a high level (H) constitutes an input between 2...5 V and an output between 2,4...5 V.
- a low level (L) constitutes an input between 0...0,8 V and an output of between 0...0,4 V.

The following types of logic circuit elements are used this instrument:

- AND-gate: In this gate, the output is only H if all the inputs are H. Therefore, if one input is low, the

state of the other inputs is irrelevant and the output is L.

NAND-GATE: the output is only L if all the inputs are H. Therefore, if one input is L the state of the other

inputs is irrelevant and the output is H.

OR-gate: the output is only L if all inputs are L. If one input is H, then the state of the other inputs

is irrelevant and the output is H.

NOR-gate: the output is only H if all inputs are L. Therefore, if one input is H, the state of the other

inputs is irrelevant and the output is L.

- D-FLIP-FLOP: One integrated circuit incorporates two flip-flops.

Each flip-flop has an output (pin 5 or 9) and an inverted output (pin 6 or 8). If the reset input R (pin 1 or 13) is made L it is activated and the flip-flop is forced to the reset state: output L and inverted output H. The set input S (pin 4 or 10) is active when L and forces the flip-flop to the set state: output H and inverted output L.

If the set and reset inputs are both H, the condition of the clock input CL (pin 3 or 11) and

the data input D (pin 2 or 12) are important.

The logic level on the data input (L or H) is clocked into the flip-flop if the clock goes L to

H - now the output also becomes L or H.

- JK FLIP-FLOP: One IC contains two flip-flops. Each flip-flop has an output (pin 5 or 9) and an inverted

output (pin 6 or 7). If the reset input R (pin 15 or 14) is made L, it is activated and the flip-flop is forced to the reset condition: output L and inverted output H.

The set input S (pin 4 or 10) is active when L and forces the flip-flop to the set condition : output is H and inverted output is L.

If both the set and reset inputs are H, the condition of the clock input C (pin 1 or 13), the J-input (pin 3 or 11) and the K-input (pin 2 or 12) are important.

If the clock input goes from H to L, the following occurs:

If J = L and K = L: the output states remain unchanged.

If J = H and K = L: the output becomes H and the inverting output L.

If J = L and K = H: the cutput becomes L and the inverting output H.

If J = H and K = H: the outputs switch to the opposite state.

Fig. 2.12 Basic analog circuits

Fig. 2.13 Basic digital circuits

		•
		•
		•

3. **DISMANTLING THE INSTRUMENT**

GENERAL INFORMATION 3.1.

WARNING: The opening of covers or removal of parts, except those of which access can be gained by hand, is likely to expose live parts, and also accessible terminals may be live.

49

The instrument shall be disconnected from all voltage sources before any adjustment, replacement or maintenance and repair during which the instrument will be opened.

If afterwards any adjustment, maintenance or repair of the opened instrument under voltage is inevitable, it shall be carried out only by a qualified person who is aware of the hazard involved. Bear in mind that capacitors inside the instrument may still be charged even if the instrument has been separated from all voltage sources.

ATTENTION

This section provides the dismantling procedures required for the removal of components during repair operations. All circuit boards removed from the oscilloscope should be adequately protected against damage, and all normal precautions regarding the use of tools must be observed. During dismantling procedures, a careful note must be made of all disconnected leads that they may be reconnected to their correct terminals during assembly.

Damage may result if the instrument is switched on when a circuit board has been removed, or if a circuit board is removed within one minute after switching off the instrument.

REMOVING THE INSTRUMENT COVERS

The instrument is protected by three covers: a front-panel protection cover, an instrument cover with carrying handle, and a rear panel.

To facilitate the removal of the instrument cover and rear panel, first ensure that the front cover is in position. Then proceed as follows:

- Hinge the carrying handle clear of the front cover by pushing both pivot centre buttons simultaneously.
- Stand the instrument on its protective front cover on a flat surface.
- Slacken the two coin-slot screws located on the rear panel.
- Lift the rear panel at the right-hand side. slit it a little to the right and take it off.
- Remove the four screws fixing the cast-aluminium profile.
- Remove the cast-aluminium profile.
- Remove the instrument cover by lifting it clear of the instrument.

NOTE: Bend out the cover at the side of the rubber feet so that the feet do not catch behind the frame parts.

ACCESS TO ADJUSTING ELEMENTS 3.3.

All instrument adjustment points are accessible after removing the instrument cover, the screening plate of the time-base (secured by two star-screws) and the screening plate of the attenuator (secured by six star-screws). The correct adjustment of the channel A and B attenuator sections is not disturbed if the screening plate is

Five adjustment points on the power supply (Unit 6) are accessible via holes in the right-hand chassis plate of the instrument.

NOTE: Always use an insulated adjustment tool.

Fig. 4.1 Preliminary settings

4. PERFORMANCE CHECK

4.1. GENERAL INFORMATION

WARNING: Before switching on, ensure that the oscilloscope has been installed in accordance with the instructions outlined in chapter 2 of the operating manual, Installation instructions.

This procedure is intended to be used for incoming inspection to determine the acceptability of newly purchased or recently recalibrated instruments.

It does not check every facet of the instrument's calibration; rather it is concerned primarily with those portions of the instrument which are essential to measurement accuracy and correct operation. Removing the instrument covers is not necessary to perform this procedure. All checks are made from the front panel.

If this test is started a few minutes after switching on, bear in mind that test steps may be out of specification, due to insufficient warming-up time. To avoid this situation, allow the specified warming-up time.

The performance checks are made with a stable, well-focused, low-intensity display. Unless otherwise noted, adjust the intensity and trigger-level controls as needed.

Note 1: At the start of every check, the controls always occupy the preliminary settings; unless other-

wise stated

Note 2: The input voltage has to be supplied to the A-input; unless otherwise stated.

Note 3: Set the TIME/DIV switches to a suitable position; unless otherwise stated.

4.2. PRELIMINARY SETTINGS OF THE CONTROLS

- Start this check procedure with NO input signals connected, ALL pushbuttons released and ALL switches
 in the CAL position.
- Depress the controls as indicated in figure 4.1.

4.3. RECOMMENDED TEST EQUIPMENT

Type of instrument	Required specification	Example of recommended instrument
Function generator	Freq: 1 Hz 10MHz Sine-wave/Square-wave Ampl.: 0 20Vpp DC offset 0 ± 5V Rise-time < 30ns Duty cycle 50%	Philips PM5134
Constant amplitude sine-wave generator	Freq: 100kHz 100MHz Constant ampl. of 120mVpp and 3Vpp	Tektronix SG503
Square-wave calibration generator	Freq: 10Hz 1MHz Ampl.: 50mV 60V Rise-time < 1ns Duty cycle 50%	Tektronix PG506
Time-marker generator	Repetition rate: 0.5s 0.05µs	Tekstronix TG501
TV pattern generator	Must have video output	Philips PM5519
Variable mains transformer	Well insulated output voltage 90 264Vac	Philips ord, number 2422 529 00005
DC power supply	Adjustable output: 20 32V Current: 1,8A	Philips PE1540
Moving-iron meter		
Dummy probe 2 : 1	$1 \mathrm{M}\Omega \pm 0.1\%$ //25pF	
Cables, T-piece, terminations, 20dB attenuator for the generators	General Radio types for fast rise-time square-wave and high freq. sine-wave BNC-types for other applications	

4.4. CHECKING PROCEDURE

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.1.	Power on				·
4.1.1a	Start power supply	Mains voltage 50Hz - 400Hz ± 10%	Switch power on S21	 Start at selected mains voltage ± 10% Pilot lamp B5 lights up. 	
4.1.2a 4.1.1b	Power consumption Start POWER SUPPLY	24V (x7 - rear side)	- Switch power on S21	45W from ac — Starts at dc supply voltages between 20V and 32V — Pilot lamp B5 light ups.	
4.1.2b	Power consumption			37W from dc.	
4.2.	CRT display				
4.2.1.	INTENS		- INTENS potentiometer R12	Normal INTENS adjusting	
4.2.2.	FOCUS		- FOCUS potentiometer R13	Trace sharpness adjusting	
4.2.3.	TRACE ROTATION		Screwdriver adjustment R14	Trace must be in parallel with horizontal graticule lines; if necessary readjust potentiometer TRACE ROTATION R14	
4.3.	Vertical or Y-axis				
4.3.1.	Display modes	Square-wave signal 10kHz ampl. 100mV to A input	- Depress A S1 - Ampl/div. to 20mV - Depress B S1 - Depress TRIG VIEW S1 - Depress CHOP S1	Square-wave 10kHz 5 div. high must be visible Trace channel B visible Trigger signal derived from A visible Traces of A and B visible	
			 Depress TRIG VIEW and CHOP S1 	Traces of A and B and TRIG VIEW visible	
			Depress ALTDepress TRIG VIEW and ALT S1	Traces of A and B visible Traces of A and B and TRIG VIEW visible	
		Square-wave signal 10kHz, ampl. 200mV to A and B input	Depress ADD S1AMPL/DIV switches to 50mV	Square-wave signal 10kHz, trace height 8 div. visible	
4.3.2.	Polarity inversion	Square-wave signal to A (B) input	Pull switch S4 (S5)	Square-wave signal is inverted	

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4,3.3.	Vertical deflection coefficients	Square-wave signal 10kHz to A input (B) AMPL 10mVp-p 20mVp-p 50mVp-p 100mVp-p 200mVp-p 500mVp-p 1 Vp-p 2 Vp-p	AMPL/DIV S9 (S11) 2mV 5mV 10mV 20mV 50mV 0.1V 0.2V	Trace height 5 DIV., + or -3% (± 0.15 div.) Trace height 4 DIV., + or -3% (± 0.12 div.) Trace height 5 DIV., + or -3% (± 0.15 div.) Trace height 5 DIV., + or -3% (± 0.15 div.) Trace height 4 DIV., + or -3% (± 0.12 div.) Trace height 5 DIV., + or -3% (± 0.15 div.) Trace height 5 DIV., + or -3% (± 0.15 div.)	
4.3.3.1	. Continuous control	5 Vp-p 5 Vp-p 10 Vp-p 20 Vp-p 50 Vp-p Square-wave signal 10kHz	0.5V 1 V 2 V 5 V 10 V — AMPL/DIV to 20mV	Trace height 4 DIV., $+$ or -3% (\pm 0.12 div.) Trace height 5 DIV., $+$ or -3% (\pm 0.15 div.) Trace height 5 DIV., $+$ or -3% (\pm 0.15 div.) Trace height 4 DIV., $+$ or -3% (\pm 0.12 div.) Trace height 5 DIV., $+$ or -3% (\pm 0.15 div.) — Continuous range 1 : $>$ 2.5 (\le 2 div.)	
		to A input (B) ampl. 100mV	Continuous control S10 ← (S12 ←)	Uncal led B3 lights up	
4.3.4.	Vertical positioning	Sine-wave signal 10kHz to input A (B) Amplitude160mVp-p	 AMPL/DIV to 20mV Set signal in vertical centre by means of position R1 (R2) Set AMPL/DIV to 10mV Position control R1 (R2) fully Position control R1 (R2) fully 	- Top of sine-wave visible on the screen on the vertical centre line Bottom of sine-wave visible on the vertical centre line.	
4.3.5.	Vertical deflection via dummy (Input impedance)	Square-wave signal 10kHz to input A via dummy (B) AMPL 20mVp-p 50mVp-p	AMPL/DIV S9 (S11) 2mV 5mV	Trace height 5 div., + or -3% (± 0.15 div.) Trace height 5 div., + or -3% (± 0.15 div.)	
0	25pF MAT1053 811006	100mVp-p 200mVp-p 500mVp-p 1 Vp-p 2 Vp-p 5 Vp-p 10 Vp-p 20 Vp-p	10mV 20mV 50mV 0.1V 0.2V 0.5V 1 V 2 V	Trace height 5 div., $+$ or -3% (\pm 0.15 div.) Trace height 5 div., $+$ or -3% (\pm 0.15 div.) Trace height 5 div., $+$ or -3% (\pm 0.15 div.) Trace height 5 div., $+$ or -3% (\pm 0.15 div.) Trace height 5 div., $+$ or -3% (\pm 0.15 div.) Trace height 5 div., $+$ or -3% (\pm 0.15 div.) Trace height 5 div., $+$ or -3% (\pm 0.15 div.) Trace height 5 div., $+$ or -3% (\pm 0.15 div.)	

•

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
		50Vp-p 50Vp-p	5V 10V	Trace height 5 div., + or -3% (± 0.15 div.) Trace height 2.5 div., + or -3%	
4.3.6.	Input coupling	Sine-wave signal 2kHz + DC offset to A input (B)	 Depress 0 of S17 (S18) Set the trace in the centre of the screen R1 (R2 ()) Depress AC of S17 (S18) 	Signal is visible on the screen, centre of the sine-wave is on the vertical centre of the screen.	
			- Depress DC of S17 (S18)	Signal is visible Centre of the sine-wave is on DC offset level	<u> </u> -
4.3.7.	Common mode rejection	Sine-wave signal 2MHz ampl. 0.16V to A and B input	 AMPL/DIV switches to 20mV Pull N/I switch S5 Set the continuous controls for minimum trace height difference Depress ADD of S1 	Rejection 40dB → trace height ≤ 0.08 div	
4.3.8.	Dynamic range	Sine-wave signal 40MHz, ampl. 2.4V to input A (B)	 Depress AC of S17 (S18) AMPL/DIV to 0.1V Shift trace with POSITION control R1 (R2 (R2)) 	24 div. trace height distortion-free visible on screen	
		Sine-wave signal 100MHz, ampl. 0.8V to input A (B)	- AMPL/DIV to 0.1V	8 div. trace height distortion-free visible on screen.	
4.3.9.	Decoupling factor	Sine-wave signal 100MHz to A input ampl. 160mV	- AMPL/DIV switches to 20mV - Depress B of S1	Cross talk from A to B ≤ 0.15 div	

STEP	VOLTAGE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.3.10.	Pulse aberration, rise time	Square-wave signal 1MHz, rise-time ≤ 1ns, ampl. 12mV to A input (B) Square-wave signal 1MHz, rise-time ≤ 1ns, ampl. 0.6V to input A (B) Square-wave signal 1MHz, rise-time ≤ 1ns, ampl. 50mV to input A (B)	 AMPL/DIV to 2mV Position controls R1 (R2) AMPL/DIV to 0.1V Positions control R1 (R2) AMPL/DIV to 10mV Set signal between dotted lines 	- Trace height 6 div., + and -3 div. from screen centre - Pulse aberrations ≤ 4% (≤ 5% p-p) - Trace height 6 div., + and - 3div. from screen centre - Pulse aberrations ≤ 3% (≤ 4% p-p) - Trace height 5 div. - Rise-time measured between 10% and 90% (4 div.) must be ≤ 3.5 ns	90%
4.3.11.	Visible signal delay	Square-wave signal 1MHz, rise-time ≤ 1ns ampl. 300mV to A input	AMPL/DIV to 50mV Pull X MAGN switch (S7) TIME/DIV switch to 0.05µs	- t ₁ (10%). - Visible signal delay 30ns approx. (6 div. - MAGN led B2 lights up 20mV/DIV 5ns/DIV MAT1172	

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.3.12.	Trace jump a) attenuator		 Depress 0 of S17 (S18) Set trace in the centre of the screen Switch AMPL/DIV switch between 10V 20 div Switch AMPL/DIV switch between 2mV and 20mV 	Trace jump ≤ 0.2 div. Trace jump ≤ 0.4 div.	
	b) normal/invert		 Depress 0 of S17 (S18) Trace in the centre of the screen Pull and push switch S4 (S5) AMPL/DIV: 10V 20mV/div AMPL/DIV: 10mV 2mV/div 	Trace jump ≤ 1 div Trace jump ≤ 2 div	
	c) continuous control		 Depress 0 of S17 (S18) Set trace in the centre of the screen Rotate the continuous control R7 (R8) 	Trace jump ≤ 0.3 div.	
4.3.13.	Bandwith channel A (B)	Sine-wave signal 500kHz ampl. 120mV to input A (B)	 TIME/DIV switch S15 to 5µs AMPL/DIV switch to 20mV Adjust generator to ampl. of input signal to trace height 6 div. 		
		Sine-wave signal 500kHz, 100MHz, ampl. 120mV to input A (B).		Trace height must be ≥ 4.2 div.	

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.4.	Trigger view				
4.4.1.	Sensitivity A (B)	Square-wave signal 1kHz to A input (B)	Depress TRIG VIEW S1. AMPL/DIV switch S9 (S11) to		
		AMPL. 10mV	2mV	Trace height 5 div. + or - 10% (± 0.5 div.)	
		20mV	5mV	Trace height 4 div. + or - 10% (± 0.4 div.)	İ
		50mV	10mV	Trace height 5 div. + or — 10% (± 0.5 div.)	
		100mV	20mV	Trace height 5 div. + or - 10% (± 0.5 div.)	
		200mV	50mV	Trace height 4 div. + or - 10% (± 0.4 div.)	
		500mV	0.1V	Trace height 5 div. + or - 10% (± 0.5 div.)	
		1 V	0.2V	Trace height 5 div. + or - 10% (± 0.5 div.)	
		2 V	0.5V	Trace height 4 div. + or - 10% (± 0.4 div.)	
		5 V	1 V	Trace height 5 div. + or - 10% (± 0.5 div.)	
		10 V	2 V	Trace height 5 div. + or - 10% (± 0.5 div.)	
		20 V	5 V	Trace height 4 div. + or - 10% (± 0.4 div.)	
		50 V	10 V	Trace height 5 div. + or — 10% (± 0.5 div.)	

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.4.2.	Sensitivity EXT	Sine-wave signal 1kHz to EXT input X5 Ampl. 1.2V	Depress EXT of S23Depress TRIG VIEW of S1	Trace height 6 div. ± 3% (± 0.18 div.)	
4.4.3.	Pulse aberrations	Square-wave signal 1MHz, Ampl. 120mV, rise time ≤ 1ns, to input A (B) Square-wave signal 1MHz,	 AMPL/DIV to 20mV Depress TRIG VIEW S1 Depress A (B) of S23. Depress TRIG VIEW S1 	Trace height 6 div. Pulse aberrations 10% p-p Trace height 6 div.	
		ampl. 1.2V, rise-time $\leq 1\mu$ s to input EXT X5.	- Depress EXT of S23	Pulse aberrations ≤ 6% (≤ 8% p-p)	
4.4.4.	Trigger threshold	Sine-wave signal 10kHz, ampl. 200mV to input A	Depress TRIG VIEW S1 Set AMPL/DIV to 0.2V Continuous control R7	Minimum triggered trace height ± 0.3 div. from screen centre	
4.4.5.	Time delay between vertical input displayed via A or B and external input displayed via trigger view.	Square-wave signal 1MHz, ampl. 1.2V, rise-time 1ns to A (B) input and to EXT input	 AMPL/DIV to 0.2V/DIV Depress ALT and TRIG VIEW of S1 TIME/DIV switch S15 to 0.05μs Pull X MAGN S7 Depress EXT of S23 	— Time delay between A (B) signal and EXT (via TRIG VIEW) signal must be 6ns approx.	
4.4.6.	Bandwith INT	Sine-wave signal 500kHz, ampl. 120mV to input A Sine-wave signal 500kHz 60MHz, ampl. 120mV	 Depress TRIG VIEW S1 AMPL/DIV to 20mV Adjust the generator to ampl. of the input signal to 6 div. trace height 	Turan hainka muus ka > 4.0 dii	
	Bandwidth EXT	to input A Sine-wave signal 500kHz, ampl. 3V to EXT input X5	 Depress TRIG VIEW S1 Depress EXT of S23 Adjust the generator to ampl. of the input signal to trace height 6 div. 	Trace height must be ≥ 4.2 div.	
		Sine-wave signal 500kHz 70MHz, ampl. 1.2V to EXT input X5		Trace height must be ≥ 4.2 div.	

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.5.	Horizontal or X-axis				
4.5.1.	Display modes Horizontal	Square-wave signal 2kHz, ampl. 120mV to input A	 — AMPL/DIV to 50mV — TIME/DIV MTB (S15) to 0.2ms — Depress MTB of S2 — TIME/DIV DTB (S13) to 50μs — Depress DTB of S2 — Depress ALT TB of S2 — Depress X DEFL of S2 — X POS control R5 	 Square-wave signal 2.4 div. high MTB (trace) Intensified part DTB visible Intensified part (DTB) visible over the entire screen width MTB trace with intensified part and DTB trace visible. Adjust vertical spacing between both displays with TRACE SEP control R15. Horizontal deflection is determined by the input signal A (2.4 div.) 	
	positioning range		− X POS control R5	of the screen End of trace to horizontal centre of the screen	
4.6.	Triggering of the main time-base			NOTE: If signal is triggered the NOT TRIG'D led B1 is off.	
4.6.1.	Trigger source and trigger coupling	Square-wave signal 2kHz ampl. 300mV to input A	 AMPL/DIV switch (S9) to 50mV Depress LF of S20 Depress TRIG VIEW of S1 Depress HF of S20 Depress B of S1 	Well triggered display Square-wave signal visible with roundings (LF filter) Differentiated square-wave visible	
		Square-wave signal 2kHz, 300mV to input B and EXT (X5)	 AMPL/DIV (S11) to 50mV Depress DC of S20 Depress B of S23 Depress EXT of S23 	Well triggered display Well triggered display	

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
		TV signal from TV pattern generator to input A (B)	 Depress TV of S20 Adjust A (B) AMPL/DIV to ≥ 0.7 div. sync. pulse amplitude Depress A (B) of S23 Depress A (B) of S1 	Check for stable triggering on TV frame pulses at MTB TIME/DIV settings 0.5s/div 50µs/div. and on TV line pulses at MTB TIME/DIV settings 20µs/div 50ns/div	
		Sine-wave signal 10kHz, ampl. 120mV to input A and CAL signal to input B	AMPL/DIV to 50mVDepress A and B (COMP) of S23Depress ALT of S1	Both input signals (that have no time relation) well triggered displayed (both input signals must overlap each other)	
		Sine-wave signal, derived from mains freq., ampl. 120mV to input A (B)	Depress A (B) of S1Depress B and EXT (LINE) of S23	Well triggered display	
4.6.2.	Trigger sensitivity INTERNAL	Sine-wave signal freq. ≤ 40MHz, ampl. 100mVp-p to input A	 AMPL/DIV to 0.2V Adjust generator to 0.5 div. trace height 	Signal triggers at trace height of ≥ 0.5 div.	
		Sine-wave signal freq. ≤ 100MHz, ampl. 150mVp-p to input A	 AMPL/DIV to 0.1V Adjust generator to 1.5 div. trace height 	Signal triggers at trace height of ≥ 1.5	
4.6.3.	Trigger sensitivity EXTERNAL	Sine-wave signal freq. ≤ 40MHz, ampl. 100mVp-p to inputs A and EXT (X5)	 – AMPL/DIV to 50mV – Depress EXT of S23 – Decrease amplitude of input signal 	Signal is well triggered at an amplitude ≥ 100mV (2 div trace height)	
		Sine-wave signal freq. ≤ 100MHz, ampl. 300mV p-p to inputs A and EXT (XE	- AMPL/DIV to 0.1V - Decrease amplitude of input signal - The contract of the	Signal is well triggered at an amplitude ≥ 300mV (3 div trace height)	
4.6.4.	Level range and triggering slope	Sine-wave signal ampl. 160mV, p-p freq. 1kHz to input A	 AMPL/DIV to 10mV Depress TRIG of S3 Depress TRIG VIEW of S1 LEVEL R6 Depress LF of S20 LEVEL R6 	Trace is triggered over ± 8 div., trigger point on positive slope	
			 Pull SLOPE S8 AMPL/DIV to 20mV Depress AUTO PP of S3 LEVEL R6 	Trigger point on negative slope Triggered signal over the complete LEVEL range	

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
		Sine-wave signal 1kHz, ampl. 3.2V to EXT input X!	 Depress EXT of S23 Depress TRIG of S3 LEVEL R6 	Trigger point adjustable over the complete amplitude (± 1.6V)	
4.6.5.	Trigger bandwith	Sine-wave signal 25kHz, ampl. 300mV to input A	 Depress DC of S20 Depress TRIG of S3 AMPL/DIV to 50mV Depress TRIG VIEW Set trace in the centre by means of R6 	Trace must be triggered	
			Decrease freq. of input signal to ≈ 1Hz (trace height 6 div.) Increase freq. of input signal to 100MHz	Trace must be triggered Trace must be triggered	
		Sine-wave signal, 25kHz to input A	 Depress DC of S20 Adjust ampl. of input signal so that trace height is 6 div. Depress LF of S20 Decrease freq. of input signal to 2Hz Depress HF of S20 Freq. of input signal 25kHz Increase freq. of input signal to 100MHz 	Trace height 6 div. Trace height ≥ 4.2 div. Trace height increases and signal must be triggered Trace height ≥ 4.2 div. Trace height increases and signal must be triggered	

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.7.	Main time-base			Measured over 8 div. in horizontal screen centre:	
4.7.1.	Time coefficients	Time-marker signal, repetition time: 0.05	- MTB TIME/DIV S15 to 0.05	Coefficient error $\leq +/-3\%$ Coefficient error $\leq 3/-3\%$ Coefficient error $\leq 3/-3\%$ Coefficient error $\leq +/-3\%$	
4.7.2.	Magnifier	Square-wave signal repetition time 0.1 \(\mu \) s to input A	 TIME/DIV to 1μs Pull X MAGN. S7 X pos R5 	 MAGN. led B2 lights up Coefficient error ≤ +/- 5% Trace adjustable over 100 div. 	
4.7.3.	Continuous control	As 4.7.2.	 TIME/DIV to 0.1μs Continuous control CAL R10 	 UNCAL led B4 lights up Continuous range 1 : ≥ 2.5 	

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.7.4.	Single shot	Square-wave signal 10kHz to input A	TIME/DIV to 0.1msDepress SINGLE of S3	Trace once visible During SINGLE shot action NOT TRIG'D led B1 lights up	
4.7.5.	Hold off	Square-wave signal repetition time 10 μ s to input A	TIME/DIV to 2μsHOLD OFF R11√	 Sweep HOLD OFF time can be varied by a factor of 10 → trace intensity decreases. 	
4.8.	Triggering of the delayed time-base				
4.8.1.	Trigger source, trigger coupling and trigger bandwith	Sine-wave signal 2kHz ampl. 300mV to input A	- AMPL/DIV to 0.1V - TIME/DIV MTB (S15) to 0.5ms - TIME/DIV DTB (S13) to 50µs	Well triggered intensified part (DTB signal)	
			Depress A of S22Adjust LEVEL R4	Well triggered intensified part	
			Depress DTB of S2 Increase freq. of input signal to 100MHz.	Trace must be well triggered	
			Depress HF of S19 Decrease freq. of input signal to 25kHz.	Trace must be well triggered.	
			Depress LF of S19 Decrease freq. of input signal to 2Hz.	Trace must be well triggered	
		Sine-wave signal 2kHz ampl. 300mV to input B	 Depress DC of S19 Depress MTB of S2 Depress B of S1 Depress B of S23 Depress B of S22 Adjust LEVEL R4 Depress MTB of S22 	- Well triggered intensified part - Intensified part well triggered independent of R4.	

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.8.2.	Trigger sensitivity	Sine-wave signal freq. ≤ 40MHz, ampl. 100mVp-p to input A	AMPL/DIV to 0.2V TIME/DIV MTB (S15) to 0.05µsec TIME/DIV DTB (S13) to 0.05µsec Depress A of S22 Depress DTB of S22 Adjust LEVEL R4 Adjust generator to 0.5 div. trace height	Signal triggers at trace height of ≥ 0.5 div.	
		Sine-wave signal freq. ≤ 100MHz, ampl. 300mVp-p to input A	 Adjust level R4 Adjust generator to 0.5 div. trace height 	Signal triggers at trace height of ≥ 1.5 div.	
4.8.3.	Level range and triggering slope	Sine-wave signal 1kHz ampl. 160mV to input A (B)	AMPL/DIV to 10mV TIME/DIV MTB (S15) to 0.5ms TIME/DIV DTB (S13) to 0.1ms Depress A (B) of S22 Depress DTB of S2 Adjust LEVEL R4 Pull slope S6	Trace is triggered over ± 8 div., trigger point on positive slope Trigger point on negative slope	

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.10.2.	Bandwidth via A	Sine-wave signal 10kHz to input A	 Depress A of S23 Depress DC of S20 Depress X DEFL of S2 Depress B of S1 Adjust ampl. of input signal for horizontal deflection 8 div. Increase freq. of input signal to 100kHz 	Horizontal deflection 8 div. Horizontal deflection 8 div. (–5%)	
		Sine-wave signal 1kHz to input A	 Depress LF of S20 Adjust ampl. of input signal for horizontal deflection 8 div. Increase freq. of input signal to 20kHz (ampl. same as above) Depress HF of S20 Increase freq. of input signal to 1MHz 	Horizontal deflection 8 div. Horizontal deflection decreases Horizontal deflection increases Horizontal deflection increases	
	Bandwidth via EXT. input (X5)	Sine-wave signal 10kHz to input EXT (ampl. 1.6V)	- Depress EXT of S23 - Adjust ampl. of input signal for 8 div. horizontal deflection - Increase freq. of input signal to 1MHz	Trace width 8 div. (-3%)	
4.10.3.	Dynamic range	Sine-wave signal 100kHz to input A	 Depress X DEFL of S2 Depress B of S1 AMPL/DIV to 0.2V Set ampl. of input signal for horizontal deflection 5 div. AMPL/DIV to 50mV 	Horizontal deflection 20 div.	

•

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.10.4.	Phase shift between X and Y ampl.	Sine-wave signal 2kHz, ampl. 120mV to input A	 Depress X DEFL of S2 Depress DC of S20 Adjust amplitude of input signal for a trace height of 6 div. Increase the freq. of the input signal to 100kHz Put A AMPL/DIV in 20mV position 	A line under an angle of 45° with respect to the horizontal graticule line visible Phase shift ≤ 3° Phase shift ≤ 3° MAT 985	
4.11.	Calibration		CAL X1	≈ 2kHz square-wave signal, ampl. 1.2Vp-p short-circuit protected	
4.12.	Z-Modulation	TTL compatible square- wave signal to input Z-MOD X6		Logic "1" is normal intensity Logic "0" is blanked	

Fig. 5.1. Adjustment points top view

Fig. 5.2. Adjustment points bottom view

Fig. 5.3. Adjustment points right side

5.

76

5.1.

5.2.

5.3.

justment points bottom view

Fig. 5.3. Adjustment points right side

5. CHECKING AND ADJUSTING

WARNING: The opening of covers or removal of parts, except those to which access can be gained by hand, is likely to expose live parts, and also accessible terminals may be live.

The instrument shall be disconnected from all voltage sources before any adjustment, replacement or maintenance and repair during which the instrument will be opened.

If afterwards any adjustment, maintenance or repair of the opened instrument under voltage is inevitable, it shall be carried out only by a qualified person who is aware of the hazard involved. Bear in mind that capacitors inside the instrument may still be charged even if the instrument has been separated from all voltage sources.

5.1. General Information

The following information provides the complete checking and adjusting procedure for the oscilloscope. As various control functions are interdependent, a certain order of adjustment is often necessary.

The procedure is, therefore, presented in a sequence which is best suited to this order, cross-reference being made to any circuit which may affect a particular adjustment.

Before any check or adjustment, the instrument must attain its normal operating temperature.

- Where possible, instrument performance is checked before an adjustment is made.
- Warming-up time under average conditions is 30 minutes.
- All limits and tolerances given in this section are calibration guides and should not be interpreted as instrument specifications unless they are also published in chapter 1. characteristics.
- Tolerances given are for the instrument under test and do not include test equipment error.
- The most accurate display adjustments are made with a stable, well-focused, low-intensity display. Unless
 otherwise stated, adjust the Intensity, Focus and Trigger Level controls as needed.
- Unless otherwise stated, the controls occupy the same position as in the previous check.

5.2. Recommended test equipment

As indicated in chapter 4.3.

Additional equipment for the checking and adjusting procedure:

Digital multimeter

e.g. PM 2522 (A) or PM 2524 e.g. PM 9246

H.T. probe

e a Philips 800N

Trimming tool set

e.g. Philips 800NTX

Resistor 130 Ω , 1,5 W

e.g. 120 Ω WR (4822 112 21083) in serial with

10 Ω WR (4822 112 51054)

5.3. Preliminary settings of the controls

See Fig. 4.1.

5.4. SURVEY OF ADJUSTING ELEMENTS AND AUXILIARY EQUIPMENT

ADJUSTMENT	ADJUSTING ELEMENT		ADJUSTING RESULT	RECOMMENDED INSTRUMENT AND INPUT SIGNALS	CHAPTER	FIGURES
POWER SUPPLY						
Supply voltage adjustment	R1474		$-7.5V + or -3^{O}/oo$ on pin 3 of X858	Digital multimeter	5.5.1.1.	5.2./5.3.
Current sensing	R1476		Extra load between pin 2 (+14V) and pin 1 of X858. Adjust so that current limit point is just not reached.	-	5.5.1.2.	5.3.
1500V supply voltage	R1471		$-1500V + or -3^{\circ}/oo$ on pins 7 and 14 of the c.r.t. socket.	Digital multimeter and HV probe	5.5.1.3.	5.3.
CRT DISPLAY ADJUSTMENTS						
Intensity	R1504		Point is just visible	_	5.5.2.1.	5.1.
Intens ratio	R401		DTB-trace must be well distinguished from MTB-trace	_	5.5.2.2.	5.1.
Trace rotation	R14		Trace runs exactly in parallel with the horizontal graticule line	_	5.5.2.3.	4.1.
Astigmatism	R1473		Trace as sharp as possible	Function generator (sine-wave signal 10kHz)	5.5.2.4.	5.3.
Geometry	R1472		Displayed vertical lines as straight as possible and signal must fall between hatched area shown in Fig. 5.4.	Function generator (sine-wave signal 100kHz and ≈ 50Hz)	5.5.2.5.	5.3./5.4.
BALANCE ADJUSTMENTS						
Attenuator balance channel A (B)	R547	(R747)	Trace jump minimal (AMPL/DIV setting 2mV and 5mV)	_	5.5.3.1.	5.2.
	R571	(R771)	Trace jump minimal (AMPL/DIV setting 10mV and 20mV)	_	5.5.3.1.	5.2.
Normal-Invert balance channel A (B)	R604	(R804)	Trace jump minimal	_	5.5.3.2.	5.2.
Final Y-amplifier balance	R1213		Trace in vertical mid of screen	_	5.5.3.3.	5.2.
Added balance	R660		Trace jump minimal when switching to added.			

ADJUSTMENT	ADJUSTI ELEMEN		ADJUSTING RESULT		RECOMMENDED INSTRUMENT AND INPUT SIGNALS	CHAPTER	FIGURES
LF CORRECTIONS AND SENSITIVITIES							
Continuous control of channel A (B)	R622	(R822)	Continuous attenuation start from counter clockwise-stop		Function generator (square-wave signal 10kHz)	5.5.4.1.	5.2.
	R617	(R817)	Trace height from 5 div. to ≤ when R7 (R8) are fully coun clockwise.		Function generator (square-wave signal 10kHz)	5.5.4.1.	5.2.
LF correction of channel A (B)	R538	(R738)	Pulse top as straight as possib	Pulse top as straight as possible		5.5.4.2.	5.2.
Gain x 1 channel A (B)	R1256	(R779)	Trace height 5 div. + or -3%		Calibration generator (square-wave signal 10kHz)	5.5.4.3.	5.2.
Gain x10 channel A (B)	R586	(R786)	Trace height 5 div. + or — 3%	6	Calibration generator (square-wave signal 10kHz)	5.5.4.4.	5.2.
Trigger view sensitivity EXT, A and B	R1104	R958 (A) R961 (B)	Trace height 4 div.		Calibration generator (square-wave signal 10kHz)	5.5.4.5.	5.2.
VERTICAL CHANNELS							
Attenuator square-wave response channel A (B)			Pulse top errors ≤ + or −1%		Square-wave generator,	5.5.5.1.	5.2.
			1	Trace height	Freq. 10kHz amplitude:		
			2-5-10mV		12mV-30mV-60mV		
	C509	(C709)	50 mV (6 div. 6 div. 6 div.	120mV 300mV 600mV		
	C511	(C711)	0.5 V	6 div. 6 div. 6 div.	1.2V 3 V 6 V		
	C503	(C703)	(2 V	6 div. 3 div.	12 V 15 V		
			(10 V	3 div.	30 V		

ADJUSTMENT	ADJUSTING ELEMENT	ADJUSTING RESULT	RECOMMENDED INSTRUMENT AND INPUT SIGNALS	CHAPTER	FIGURES
Input capacitance channel A (B)		Pulse top errors ≤ + or — 1% AMPL/DIV setting Trace height	Square-wave generator. rise-time ≤ 100ns, via dummy-probe 2 : 1 (fig. 5.5.) Freq. 10kHz Amplitude	5.5.5.2.	5.2.
		2 mV 6 div. 5 mV 6 div. 10 mV 6 div.	24 mV 60 mV 120 mV		
	Adjust C of dummy	20 mV 6 div. 50 mV 6 div. 0.1 V 6 div.	240 mV 600 mV 1.2 V		
	C512 (C712)	0.2 V 6 div. 0.5 V 6 div. 1 V 6 div.	2.4 V 6 V 12 V		
	C504 (C704)	2 V 6 div. 5 V 3 div. 10 V 1.5 div.	24 V 30 V 30 V		
Square-wave response channel A		AMPL/DIV setting:	Square-wave calibration generator, frequency 1MHz, rise-time ≤ 1ns, amplitude:	5.5.5.3.	5.2./5.6.
	C1211 C1224 C1206 R1217 C 544	20mV	120mV		
	C 536 C 546	50mV 2mV	300mV 12mV		
Square-wave response channel B.		AMPL/DIV setting:	Square-wave calibration generator, frequency 1MHz, rise-time ≤ 1ns, amplitude:	5.5.5.4.	5.2./5.6.
	C744 C736 C746	20mV 50mV 2mV	120mV 300mV 12mV		

•

ADJUSTMENT	ADJUSTI ELEMEN		ADJUSTING RESULT	RECOMMENDED INSTRUMENT AND INPUT SIGNALS	CHAPTER	FIGURES
Square-wave response trigger view via external trig. input	C1112 C1102			Square-wave function generator, frequency 10kHz, amplitude 2V. Square-wave calibration generator, frequency 1MHz, amplitude 2V, rise-time ≤ 1ns.	5.5.5.6.	5,3.
TRIGGERING						
Trigger symmetry	R1054		The distances between the trigger points and the top respectively the bottom of the sine-wave signal must be equal.	Sine-wave signal, 10kHz, ampl. 0.8V.	5.5.6.1.	5.2.
Trigger sensitivity	R388		Push and pull S8; trace must be triggered at trace height of 0.4 div.	Sine-wave signal, 10kHz, ampl. 0.8V.	5.5.6.2.	5.1.
Trigger balance channel A, B and EXT	R959 R962 R1103		Trace in vertical centre Trace in the vertical centre Trace in the vertical centre	_ _ ~	5.5.6.3. 5.5.6.3.	5.2. 5.2.
Composite balance	R964		Starting point of trace does not shift when switching to DC trigger coupling	Sine-wave signal, 10kHz, ampl. 0.8V	5.5.6.4.	5.2.
Trigger view balance	R841		Trace in the vertical centre	_	5.5.6.5.	5.2.
Trigger balance	R887	(A)	Start of trace on the vertical centre line	Sine-wave signal, 10kHz	5.5.6.6.	5.2.
DTB via A and B	R889	(B)	Start of trace on the vertical centre line	Sine-wave signal, 10kHz	5.5.6.6.	5.2.

ADJUSTMENT	ADJUSTING	ADJUSTING RESULT	RECOMMENDED INSTRUMENT	CHAPTER	FIGURES
	ELEMENT		AND INPUT SIGNALS		
TIME-BASE GENERATORS					
Main-time-base time coefficients		Check that the centre 8 cycles have a total width of 8 div. MTB TIME/DIV	Time-marker generator, pulse repetition rate:	5.5.7.1.	
		0.05 μs horizont, lin. of first three cycles 0.1 μs 0.2 μs 0.5 μs	0.05 μs 0.1 μs 0.2 μs 0.5 μs		
	R1384	0.5 μs 1 μs	1 0.5 μs		5.1.
	R1381	1 μs Pull X MAGN switch	0.1 µs		5.1.
		2 μs 5 μs 10 μs	2 μs 5 μs 10 μs		
		20 μs 50 μs	20 μs 50 μs		
	R348	0.1 ms 0.2 ms 0.5 ms	0.1 ms 0.2 ms 0.5 ms		5.1.
		1 ms 2 ms 5 ms	1 ms 2 ms 5 ms		
	R347	10 ms 20 ms 50 ms	10 ms 20 ms 50 ms		5.1.
		1 s 2 s 5 s	1 s 2 s 5 s		
		Continuous control range of R10 must be between 1 : 2.6 and 1 : 3			

ADJUSTMENT	ADJUSTING ELEMENT	ADJUSTING RESULT	RECOMMENDED INSTRUMENT AND INPUT SIGNALS	CHAPTER	FIGURES
Delayed time-base time coefficients		Check that the centre 8 cycles have a total width of 8 div. MTB TIME/DIV. DTB TIME/DIV.	Time-marker generator, pulse repetition rate:	5.5.7.4.	
	R349 R351	0.1 \mus	0.05 \mus 0.1 \mus 0.2 \mus 0.5 \mus 1 \mus 2 \mus 5 \mus 10 \mus 20 \mus 50 \mus 0.1 \ms 0.2 \ms		5.1. 5.1.
		1 ms 0.5 ms 2 ms 1 ms Continuous control range of R9 must be between 1 : 2.6 and 1 : 3	0.5 ms 1 ms		
Delay time multiplier	R268	Start of DTB trace on the second time- marker pulse when DELAY TIME control is set to 0.1	Time-marker generator pulse repetition rate 0.1ms.	5.5.7.5.	5.1.
	R262	Start of DTB trace on the tenth time- marker pulse when DELAY TIME control is set to 9.0	Time-marker generator pulse repetition rate 0.1ms	5.5.7.5.	5.1.
X-DEFLECTION Line mode via X DEFL	R891	Trace width must be 8 div.		5.5.8.1.	5.2.

. . .

5.5. ADJUSTING PROCEDURE

The adjusting elements are indicated in fig. 5.1., 5.2. and 5.3. for respectively top, bottom and right-hand side of the instrument.

5.5.1. Power supply

- Check that the voltage selector (S25) has been set to the local mains voltage.
- Connect the instrument to the mains voltage or to a 24V battery supply.
- Switch on the oscilloscope and check that the pilot lamp B5 lights up.
- Check that the power consumption (with graticule illumination on) does not exceed 45W from AC and 37W from a battery supply.

5.5.1.1. Supply voltage adjustment

- Check at nominal mains voltage or battery supply voltage that the voltage on pin 3 of X858 (see fig. 5.2.) is $-7.5V + \text{or } -3^{\circ}/\text{oo}$; if necessary readjust R1474 (fig. 5.3.).

5.5.1.2. Current sensing

- Connect a resistor of 130 Ω (1.5W) across pin 2 (+14V) and pin 1 (\checkmark) of X858 (fig. 5.2.).
- Adjust the maximum current by means of R1476 (fig. 5.3.), so that the current limit point is just not reached.
- Remove the resistor.

5.5.1.3. -1500V supply voltage

Check the -1500V supply voltage on pins 7 and 14 of the c.r.t. socket.
 This -1500V must be + or -30/oo; if necessary readjust R1471 (fig. 5.3.).

5.5.2. CRT display adjustments

5.5.2.1. Intensity

- Set the controls as indicated in fig. 4.1.
- Turn R401 (fig. 5.1.) fully to the left.
- Depress X DEFL of S2.
- Set the displayed point in the vertical and horizontal centre of the screen by means of the Y position R1 and the X pos. R5 controls.
- Depress 0 if S17.
- Turn the INTENS control R12 450 from the left hand stop.
- Check that the point is just visible; if necessary readjust R1504 (fig. 5.1.).

5.5.2.2. Intens ratio

- Depress MTB of S2.
- Depress DC of S17.
- Set the MTB TIME/DIV switch S15 to 5μ s.
- Set the DTB TIME/DIV switch S13 to 1 μ s.
- Set the DELAY TIME control R3 to 5.0.
- Set the INTENS control R12 so that the MTB trace is barely visible over the entire screen.
- Check that the intensified part (DTB part) is more brillant and can be well distinguished from the MTB trace; if necessary readjust R401 (fig. 5.1.).
- Set the DTB TIME/DIV S13 to OFF.
- If necessary readjust intensity adjustment R1504 (see chapter 5.5.2.1.).

5.5.2.3. Trace rotation

- Set the MTB TIME/DIV S15 to 0.1ms.
- Set the trace in the vertical centre of the screen by means of the POSITION control R1.
- Check that the trace runs exactly in parallel with the horizontal graticule line; if necessary readjust TRACE ROTATION R14 (front panel).

NOTE: If the adjustment range is not sufficient enough, remove connector X1502 (FINAL X/Z AMPLIFIER Unit 5), turn it 180° and reconnect it.

After that, repeat the procedure described above.

5.5.2.4. Focus and astigmatism

- Set the AMPL/DIV switch S9 to 0.1V.
- Depress 0 of S18.
- Set the MTB TIME/DIV switch S15 to 20 \mu s.
- Depress ALT of S1.
- Set the trace of channel B in the vertical centre of the screen by means of the POSITION control R2.
- Set the FOCUS control R13 1350 from its left hand stop.
- Apply a sine-wave signal, frequency 10kHz, 6 div, trace height to input A.
- Check that the traces are as sharp as possible; if necessary optimise with the aid of R1473 and small readjustments of R13 (fig. 5.3.).

5.5.2.5. Geometry (barrel and pin-cushion distortion)

- Depress A of S1.
- Set the AMPL/DIV switches S9 and S11 to 0.1V.
- Apply a sine-wave signal, frequency 100kHz, amplitude \approx 800mVp-p to input A.
- Adjust the trace height to 7.4 div. with R7.
- Set the MTB TIME/DIV switch S15 to 50μs.
- Apply a sine-wave signal, frequency ≈ 50 Hz/amplitude ≈ 1 Vp-p to input B.
- Depress X DEFL of S2.
- Depress B of S23.
- Adjust the horizontal deflection to 9.4 div. by means of the continuous control R8.
- Check that the displayed vertical and horizontal lines are as straight as possible and check that the signal falls between the hatched area shown in fig. 5.4.; if necessary readjust R1472 (fig. 5.3.).
- Remove the input signals.

MAT 981 A

Fig. 5.4. Geometry check

5.5.3. Balance adjustments

The balance adjustments of channels A and B are identical.

The knobs, sockets and adjustments of channel B are shown in brackets behind those of channel A.

5.5.3.1. Attenuator AMPL/DIV balance channel A (B)

- Set the controls as indicated in fig. 4.1.
- Depress A (B) of S1.
- Depress 0 of S17 and S18.
- Depress A (B) of S23.
- Set the trace in the vertical centre of the screen by means of POSITION control R1 (R2).
- Switch the AMPL/DIV control S9 (S11) between the positions 2mV and 5mV.
- Adjust R547 (R747) for minimal trace jump, fig. 5.2.
- Switch the AMPL/DIV control S9 (S11) between the positions 10mV and 20mV.
- Adjust R571 (R771) for minimal trace jump, fig. 5.2.

5.5.3.2. Normal-Invert balance channel A (B)

- Depress A (B) of S1.
- Put the AMPL/DIV control S9 (S11) in position 2mV.
- Set the trace in the vertical centre of the screen by means of POSITION control R1 (R2).
- Pull and push the normal-invert switch S4 (S5).
- Adjust R604 (R804) for minimal trace jump, fig. 5.2.

5.5.3.3. Final Y amplifier balance

- Interconnect both inputs of the delay line.
- Adjust R1213 (fig. 5.2.) on the final Y amplifier unit so that the trace is just in the vertical mid of the screen. Disconnect both inputs of the delay-line.
- Depress 0 of S17 and S18.
- Put the AMPL/DIV switches in position 20mV/div.
- Turn the channel A position control R1 fully counter clockwise.
- Turn the channel B position control R2 fully clockwise.
- Depress ADD of S1.
- Position the trace in the vertical mid of the screen by means of R660 (fig. 5.2.).
- Depress ALT of S1.
- Position the channel A and B traces in the vertical mid of the screen by means of R1 and R2.
- Depress ADD of S1 and read out the vertical distance between the trace and the vertical mid of the screen.
- Depress B of S1 and adjust R660 (fig. 5.2.) so that a vertical distance is obtained equal to the one measured in the previous step.
- Check the adjustment as follows: depress ALT of S1 and position the channel A and B traces in the vertical mid of the screen.
- Depress ADD and check if the trace is still in the vertical mid of the screen.

5.5.4. LF corrections and sensitivities

The LF corrections and sensitivity adjustments of channel A and B are identical.

The knobs, sockets and adjustments for channel B are shown in brackets behind those of channel A.

5.5.4.1. Continuous control of channel A (B)

- Depress A (B) of S1.
- Depress A (B) of S23.
- Set the AMPL/DIV switch S9 (S11) to 20mV.
- Apply a square-wave signal, freq. 10kHz, ampl. 100mV approx. to input A (B), giving 5 div. deflection on screen.
- Turn the continuous control CAL R7 (R8) 150 counter clockwise out of its CAL position.
- Check that the continuous attenuation starts at this position of the continuous control; if necessary readjust R622 (R822), fig. 5.2.
- Turn the continuous control CAL R7 (R8) fully counter clockwise.
- Check that the trace height is ≤ 2 div., if necessary readjust R617 (R817), fig. 5.2.

5.5.4.2. LF correction of channel A (B)

- Set the controls as indicated in fig. 4.1.
- Set the MTB TIME/DIV switch S15 to 20ms.
- Set the AMPL/DIV switch S9 (S11) to 20mV.
- Apply a square-wave signal, frequency 100Hz, ampl. 100mV to input A (B).
- Check that the pulse top is as straight as possible; if necessary readjust R538 (R738), fig. 5.2.

NOTE: Check if the AMPL/DIV balance, the normal/invert balance and the final Y amplifier balance are still within tolerance. If not repeat paragraphs 5.5.3.1., 5.5.3.2. and 5.5.3.3.

5.5.4.3. Gain X1 (sensitivity) channel A (B)

- Set the MTB TIME/DIV switch to 0.2ms.
- Apply a square-wave signal, freq. 10kHz, ampl. 100mV to input A (B).
- Set the AMPL/DIV switch S9 (S11) to 20mV.
- Depress A (B) of S1.
- Depress A (B) of S23.
- Check that the trace height is 5 div. + or -3%; if necessary readjust R1256 (R779), fig. 5.1. (fig. 5.2.).

5.5.4.4. Gain X10 (sensitivity) channel A (B)

- Depress A (B) of S1.
- Depress A (B) of S23.
- Set the AMPL/DIV switch S9 (S11) to 2mV.
- Apply a square-wave signal, freq. 10kHz, ampl. 10mV to input A (B).
- Check that the trace height is 5 div. + or -3%; if necessary readjust R586 (R786), fig. 5.2.

5.5.4.5. Trigger view sensitivity via EXT and A and B

- Set the controls as indicated in fig. 4.1.
- Set the AMPL/DIV switch S9 (S11) to 0.2mV.
- Apply a square-wave signal, freq. 10kHz, ampl. exactly 0.8V to input EXT (X5) and A and B.
- Apply a square-wave signal, freq. 10kHz, ampl. exactly 2V to input EXT (X5) and A and B.
- Depress TRIG VIEW of S1.
- Depress TRIG and AUTO PP of S3.
- Set the trace in the vertical centre by means of the LEVEL control R6,
- Depress EXT of S23.
- Check that the trace height is 4 div.; if necessary readjust R1104, fig. 5.2.
- Depress A of S23.
- Check that the trace height is exactly 4 div.; if necessary readjust R958, fig. 5.2.
- Depress B of S23.
- Check that the trace height is exactly 4 div.; if necessary readjust R961, fig. 5.2.

5.5.5. Square-wave response and bandwidth

The adjustments of channel A and B are identical.

The item numbers of the knobs, sockets and adjustments of channel B are shown in brackets behind those of channel A.

5.5.5.1. Attenuator square-wave response, channel A (B)

- Set the controls as indicated in fig. 4.1.
- Set the MTB TIME/DIV switch S15 to 20μs.
- Apply a square-wave signal freq. 10kHz, rise time ≤ 100ns to input A (B).
- Depress A (B) of S1.
- Depress A (B) of S23.
- Check the trace height of the displayed signal (indicated in the table below).
- Check the square-wave response; check that the pulse-top errors do not exceed + or -1%; if necessary readjust as indicated in the table below.

Channel A (B) AMPL/DIV S9 (S11)	Amplitude of input signal A (B)	Adjusting element channel A (B)	Trace height + or –1%
2 mV	12 mV		6 div.
5 mV	30 mV		6 div.
10 mV	60 mV		6 div.
20 mV	120 mV)		6 div.
50 mV	300 mV	C509 (C709)	6 div.
0.1 V	600 mV)		6 div.
0.2 V	1.2 V)		6 div.
0.5 V	3 V}	C511 (C711)	6 div.
1 V	6 V)	·	6 div.
2 V	12 V)		6 div.
5 V	15 V	C503 (C703)	3 div.
10 V	30 V)		3 div.
		see fig. 5.2.	

5.5.5.2. Input capacitance, channel A (B)

- Apply via a dummy probe (fig. 5.5.) a square-wave signal, freq. 10kHz, rise-time ≤ 100ns to input A (B).
- Check the square-wave response; check that the pulse top errors do not exceed + or 1%; if necessary readjust as indicated in the table below.
- Check the amplitude of the displayed signal.

Channel A (B) AMPL/DIV S9 (S11)	Amplitude of input signal A (B)	Adjusting element channel A (B)	Trace height + or -1%
2 mV	24 mV	_	6 div.
5 mV	60 mV	_	6 div.
10 mV	120mV	_	6 div.
20 mV	240 mV	Adjust Cd (dummy)	6 div.
50 mV	600 mV	_	6 div.
0.1 V	1.2 V	_	6 div.
0.2 V	2.4 V	C512 (C712)	6 div.
0.5 V	6 V	_	6 div.
1 V	12 V	_	6 div.
2 V	24 V	C504 (C704)	6 div.
5 V	30 V		3 div.
10 V	30 V		1.5 div.

Fig. 5.5. Dummy probe 2: 1

Remove input signal and dummy probe.

5.5.5.3. HF square-wave response channel A

- Set the controls as indicated in fig. 4.1.
- Set the AMPL/DIV switch S9 to 20mV.
- Apply to X2 (A) a square-wave signal at 120mV, frequency 1MHz and with a rise-time ≤ 1ns.
- Set the TIME/DIV switch S15 to 0.2μ s.
- Using C1211 and C1244 (fig. 5.2.) adjust the square-wave response as straight as possible (see fig. 5.6.).

Fig. 5.6. Adjustment of HF square-wave response

- Set the TIME/DIV switch S15 to $0.1\mu s$.
- Using C1206, R1217 and C544 (fig. 5.2.) adjust the square-wave response as straight as possible (fig. 5.6.).
- Set the AMPL/DIV switch S9 to 50mV.
- Apply to X2 (A) a square-wave signal of 300mV, frequency 1MHz and with a rise-time ≤ 1ns.
- Using C536 (fig. 5.2.) adjust the square-wave response as straight as possible (see fig. 5.6.).
- Set the AMPL/DIV switch S9 to 2mV.
- Apply (via a 20dB attenuator, if generator output voltage is too high) to X2 (A) a square-wave signal of 12mV, frequency 1MHz and with a rise-time ≤ 1ns.
- Using C546 (fig. 5.2.) adjust the square-wave response as straight as possible (fig. 5.6.)
- Check the bandwidth according to paragraph 5.5.5.8.

5.5.5.4. HF square-wave response channel B

- Set the controls as indicated in fig. 4.1.
- Set the AMPL/DIV switch S11 to 20mV.
- Apply to X4 (B) a square-wave signal of 120mV, frequency 1MHz and with a rise-time ≤ 1ns.
- Set the TIME/DIV switch S15 to 0.1μ s.
- Using C744 (fig. 5.2.) adjust the square-wave response as straight as possible (fig. 5.6.)
- Set the AMPL/DIV switch S11 to 50mV.
- Apply to X4 (B) a square-wave signal of 300mV, frequency 1MHz and with a rise-time ≤ 1ns.
- Using C736 (fig. 5.2.) adjust the square-wave response as straight as possible (see fig. 5.6.).
- Set the AMPL/DIV switch S11 to 2mV.
- Apply to X4 (B) a square-wave signal of 12mV, frequency 1MHz and with a rise-time ≤ 1ns (via a 20dB attenuator, if generator output voltage is too high).
- Adjust with C746 (fig. 5.2.) the square-wave response as straight as possible (fig. 5.6.).
- Check the bandwidth according to paragraph 5.5.5.8.

5.5.5.5. Square-wave response channel A (B) invert

- Depress A (B) of S1.
- Depress A (B) of S23.
- Pull the NORMAL-INVERT switch S4 (S5).
- Apply a square-wave signal, frequency 1MHz, rise-time ≤ 1ns to input A (B).
- Check the square-wave response of the inverted signal; if necessary readjust for an optimal result between NORMAL square-wave and INVERTed square-wave by means of the procedure given in section 5.5.5.3. and 5.5.5.4.

5.5.5.6. Square-wave response Trigger view via external trigger input and channel A and B

- Set the MTB TIME/DIV switch S15 to 20 \mu s.
- Depress TRIG VIEW of S1.
- Apply a square-wave signal, freq. 10kHz, amplitude 0.8V to input EXT (X5).
- Depress EXT of S23.
- Depress TRIG of S3.
- Set the trace in the vertical centre of the screen by means of the LEVEL control R6.
- Check that the pulse top is as straight as possible; if necessary readjust C1112 (fig. 5.3.).
- Increase the frequency of the input signal to 1MHz, rise-time ≤ 1ns, amplitude 0.8V.
- Set the MTB TIME/DIV switch S15 to 0.2µs.
- Adjust C1102 (fig. 5.3.) so that the overshoot and aberrations of the trigger view signal do not exceed 6% (9% p.p).
- Remove the input signal.
- Set the AMPL/DIV switch S9 (S11) to 20mV.
- Depress A (B) of S23.
- Apply a square-wave signal, freq. 1MHz, rise-time

 1ns, amplitude120mV to input A (B).
- Set the trace in the vertical centre of the screen by means of the LEVEL control R6.
- Check that the pulse-aberrations and overshoot do not exceed 10% p.p.

5.5.5.7. Chopper cross-talk from channel A to B

- Set the controls as indicated in fig. 4.1.
- Depress CHOP pushbutton of S1.
- Set the AMPL/DIV switches S9 and S11 to 20mV.
- Apply to X2 (A) a square-wave signal of 120mV, frequency 10kHz and with a rise-time ≤ 1ns.
- Put the TIME/DIV switch S15 to 0.1ms.
- Check that the cross-talk from channel A to B does not exceed 1.5% (0.1 div.).

5.5.5.8. Bandwidth check channel A (B)

- Depress the X MAGN switch S7 (X1).
- Set the MTB TIME/DIV switch S15 to 5μ s.
- Apply a sine-wave signal, freq. 50kHz, constant amplitude of 12mV to input A (B).
- Depress A (B) of S1.
- Depress A (B) of S23.
- Set the AMPL/DIV switch S9 (S11) to 2mV.
- Check that the trace height is exactly 6 div.
- Increase the frequency of the input signal from 50kHz to 80MHz (constant amplitude 12mV).
- Check that the trace height is ≥ 4.2 div. over the whole freq. range.
- Set the AMPL/DIV switch S9 (S11) to 20mV.
- Apply a sine-wave signal, freq. 50kHz, constant amplitude of 120mV to input A (B).
- Check that the trace height is exactly 6 div.
- Increase the frequency of the input signal from 50kHz to 100MHz (constant amplitude 120mV).
- Check that the trace height is ≥ 4.2 div. over the whole freq. range.
- If the specifications mentioned above are not met, readjust the instrument according to chapter 5.5.5.3.
 and 5.5.5.4.

5.5.5.9. Bandwidth check trigger view via channel A (B)

- Set the AMPL/DIV switch S9 (S11) to 2mV.
- Apply a square-wave signal, frequency 50kHz, constant amplitude of 12mV to input A (B).
- Depress A (B) of S23.
- Depress TRIG VIEW of S1.
- Set the trace in the vertical centre of the screen by means of the LEVEL control R6.
- Check that the trace height is exactly 6 div.
- Increase the frequency of the input signal from 50kHz to 60MHz (constant amplitude 12mV).
- Check that the trace height is ≥ 4.2 div.

5.5.5.10. Bandwidth check trigger view via EXT

- Depress EXT of S29.
- Apply a sine-wave signal, freq. 50kHz, constant amplitude 0.8V to input EXT (X5).
- Check that the trace height is exactly 4 div.
- Increase with frequency of the input signal to 70MHz (constant amplitude 0.8V).
- Check that the trace height is ≥ 2.8 div.
- Remove the input signal.
- If the specification mentioned above is not met readjust the instrument according to chapter 5.5.5.6.

5.5.6. Triggering

5.5.6.1. Trigger symmetry

- Set the controls as indicated in fig. 4.1.
- Set S15 to 50µs.
- Set S9 to .2V.
- Apply a sine-wave signal 1.6V p-p frequency 10kHz to input A.
- Adjust the generator to a trace height of 8 div.
- Push the SLOPE switch S8 for positive triggering.
- Set R6 fully clockwise.
- Note the starting-point of the trace.
- Pull the SLOPE switch S8 for negative triggering.
- Set R6 fully counter-clockwise.
- Note the starting-point of the trace.
- Check that in both situations described above, the distances between the trigger points and the top respectively the bottom of the sine-wave signal are equal; if necessary readjust R1054 (fig. 5.2.) for an optimal result.
- Remove the input signal.

5.5.6.2. Trigger sensitivity

- Set the controls as indicated in fig. 4.1.
- Set S9 and S11 to .2V.
- Apply a sine-wave signal 80mV, frequency 10kHz to the input A.
- Pull and push the SLOPE switch S8.
- Check that the trace is well triggered; if necessary readjust R388 (fig. 5.1.).

5.5.6.3. Trigger balance channel A, B and EXT

- Depress TRIG VIEW of S1.
- Depress AUTO PP and TRIG of S3.
- Depress 0 of S17 and S18.
- Depress LF of S20 and A of S23.
- Set the trace in the vertical centre of the screen by means of the LEVEL control R6.
- Depress DC of S20.
- Check that the trace is in the vertical centre of the screen; if necessary readjust R959 (see fig. 5.2.).
- Depress B of S23.
- Check that the trace is in the vertical centre of the screen; if necessary readjust R962 (see fig. 5.2.).
- Depress EXT of S23.
- Check that the trace is in the vertical centre of the screen; if necessary readjust R1103 (see fig. 5.2.).

5.5.6.4. Composite balance

- Depress A of S1.
- Depress A of S23.
- Depress AUTO (AUTO PP and TRIG) of S3.
- Put AMPL/DIV in position 0.2V.
- Release all the pushbuttons of S20.
- Depress DC of S17.
- Apply a sine-wave signal, frequency 10kHz to input X2 (A).
- Set the trace-height to 4 div.
- Set S15 to 10μs.
- Depress A and B (COMP) of S23.
- Adjust R964 (fig. 5.2.) so that the starting point of the trace does not shift when switching to position DC of S20.

5.5.6.5. Trigger view balance

- Depress TRIG VIEW of S1.
- Depress 0 of S17.
- Depress AUTO PP of S3.
- Depress DC of S20.
- Depress A of S23.
- Check that the trace is in the vertical centre of the screen; if necessary readjust R841 (see fig. 5.2.).

5.5.6.6. Trigger balance, DTB, via chennel A and B

- Depress A of S1.
- Set S9 and S11 to 0.2V.
- Set S13 and S15 to 50 μ s.
- Depress A of S22.
- Set the DELAY TIME control R3 fully counter-clockwise (to 0.0).
- Depress DTB of S2.
- Depress DC of S17 and S18.
- Apply a sine-wave signal, frequency 10kHz, amplitude 1.2V to input X2 (A).
- Release all switches of S19.
- Set the trace in the vertical centre of the screen by means of R1.
- Set the start of the trace on the vertical centre line of the screen by means of R4 (LEVEL DTB).
- Depress DC of S19.
- Check that the start of the trace is on the vertical centre line of the screen; if necessary readjust R887 (fig. 5.2.).
- Depress B of S1.
- Depress B of S22.
- Depress B of S23.
- Apply a sine-wave signal, frequency 10kHz, amplitude 1.2V to input X4 (B).
- Set the trace in the vertical centre of the screen by means of R2.
- Release all switches of \$19.
- Set the start of the trace on the vertical centre line of the screen by means of R4.
- Depress DC of S19.
- Check that the start of the trace is on the vertical centre line of the screen; if necessary readjust R889 (see fig. 5.2.).
- Remove the input signal.

5.5.7. Time-base generators

5.5.7.1. Main time-base time coefficients

- Set the controls as indicated in fig. 4.1.
- Set the AMPL/DIV switch S9 to 0.5V.
- Set the MTB TIME/DIV switch S15 to 1μ s.
- Apply a time-marker signal of \approx 2V, pulse repetition rate 1 μ s to input X2 (A).
- Check that the centre 8 cycles have a total width of 8 div; if necessary readjust R1384 (fig. 5.1.).
- Pull the X MAGN switch S7 (X10).
- Check if the MAGN led B2 lights up.
- Apply a time-marker signal, pulse repetition rate 0.1μ s to input X2 (A).
- Check that the centre 8 cycles have a total width of 8 div; if necessary readjust R1381 (fig. 5.1.).
- Push the X MAGN switch S7.
- Set the MTB TIME/DIV switch S15 to 0.1ms.
- Apply a time-marker signal, pulse repetition rate 0.1ms, to input X2 (A).
- Check that the centre 8 cycles have a total width of 8 div; if necessary readjust R348 (fig. 5.1.).
- Set the MTB TIME/DIV switch S15 to 10ms.
- Apply a time-marker signal, pulse repetition rate 10ms, to input X2 (A).
- Check that the centre 8 cycles have a total width of 8 div; if necessary readjust R347 (fig.5.1.).
- Check the other positions of the TIME/DIV switch S15, using the appropriate input signals, tolerances
 +/- 3%.
- Check that the trace-length in all TIME/DIV positions is > 10 div.
- Set the TIME/DIV switch S15 to 1 \mu s.
- Apply a time-marker signal, pulse repetition rate 1μ s to input X2 (A).
- Check that the control range of the continuous control R10 lies between 1:2.6 and 1:3.
- Check that the UNCAL led lights up when the continuous control R10 is not in CAL position.
- Set the continuous control R10 in CAL position.

5.5.7.2, X position range

- Set the MTB TIME/DIV switch S15 to 1ms.
- Apply a time-marker signal, pulse repetition rate 10ms, to input A.
- Check that the two displayed marker pulses can be horizontally shifted over a range of 10 div.
- Pull the X MAGN control S7 (X10).
- Check that the two time-marker pulses can be horizontally shifted over a range of 100 div.
- Depress the X MAGN control S7.

5.5.7.3. Hold off

- Set the MTB TIME/DIV switch S15 to 0.1 μ s.
- Apply a time-marker signal, pulse repetition rate 10μs, to input X2 (A).
- Turn the HOLD OFF control R11 counter clockwise.
- Check if the intensity of the displayed signal suddenly decreases.
- Set the TIME/DIV swith S15 to 10 us.
- Apply a time-marker signal, pulse repetition rate 0.1ms, to input X2 (A).
- Turn the HOLD OFF control control R11 counter clockwise.
- Check if the intensity of the displayed signal suddenly decreases.
- Set the TIME/DIV switch S15 to 5ms.
- Apply a time-marker signal, pulse repetition rate 0.1 sec, to input X2 (A).
- Turn the HOLD OFF control R11 counter clockwise.
- Check if the number of sweeps suddenly decreases (longer HOLD OFF time).
- Set the HOLD OFF control R11 fully clockwise.

5.5.7.4. Delayed time-base time coefficients

- Set the controls as indicated in fig. 4.1.
- Depress A of S22.
- Set the DELAY TIME control R3 to 0.
- Set the MTB TIME/DIV switch S15 to 2μs.
- Set the DTB TIME/DIV switch S13 to 1 \mu s.
- Apply a time-marker signal, pulse repetition rate 1μ s, to input X2 (A).
- Depress DTB of S2.
- Check that the centre 8 cycles have a total width of 8 div; if necessary readjust R349 (fig. 5.1.).
- Set the MTB TIME/DIV switch to 0.2ms.
- Set the DTB TIME/DIV switch to 0.1ms.
- Apply a time-marker signal, pulse repetition rate 0.1ms, to input A.
- Check that the centr 8 cycles have a total width of 8 div; if necessary readjust R351 (fig. 5.1.).
- Check the other positions of the DTB TIME/DIV switch S13 (keep the MTB TIME/DIV switch S15 one
 position slower than the DTB TIME/DIV switch) using the appropriate input signals, tolerances 2.5% (+ or
 1 subdiv.).
- Set the MTB TIME/DIV switch S15 to 5μs.
- Set the DTB TIME/DIV switch S13 to 1 us.
- Apply a time-marker signal, pulse repetition rate 1μ s, to input A.
- Check that the control range of the continuous control R9 lies between 1:2,6 and 1:3.
- Check that the UNCAL LED B4 lights up when the continuous control R9 is not in the CAL position.
- Set the continuous control R9 in CAL position.
- Remove the input signal.

5.5.7.5. Delay time multiplier

- Depress MTB of S2.
- Depress MTB of S22.
- Set the DELAY TIME control R3 to 1.0.
- Set the start of the trace exactly on the first vertical graticule line by means of the X POS control R5.
- Set the MTB TIME/DIV switch (S15) to 0.1ms.
- Set the DTB TIME/DIV switch (S13) to 0.1µs.
- Apply a time-marker signal, pulse repetition rate 0.1ms to input A.
- Check that the intensified part on the trace coincides with the starting point of the second time-marker pulse if necessary readjust R268 (fig. 5.1).
- Set the DELAY TIME control to 9.0.
- Check that the intensified part on the trace coincides with the starting point of the tenth time-marker pulse; if necessary readjust R262 (fig. 5.1.).
- Both adjustments are a little bit interdependent, so the procedure described above must be repeated until both conditions are fulfilled.
- Set the DELAY TIME control R3 to 0.

5.5.7.6. Checking the delay time jitter

- Set the MTB TIME/DIV switch S15 to 1ms.
- Set the DTB TIME/DIV switch S13 to $0.5\mu s$.
- Apply a sine-wave signal, frequency 1MHz to input X2 (A).
- Set the trace height to 6 div.
- Set the DELAY TIME control to 9.0.
- Depress DTB of S2.
- Check that the jitter of the DTB trace is ≤ 1 div.

5.5.8. X Deflection

5,5.8.1. Adjusting the LINE mode via X DEFL

- Connect the instrument to a mains voltage with a mains frequency of 50Hz.
- Depress B and EXT (LINE) of S23.
- Check that the trace width is 8 div; if necessary readjust R891 (fig. 5.2.).

5.6. ADJUSTMENT INTERACTIONS

This table shows you what adjustment points are affected (see horizontal row) after readjustment of a certain adjustment point in the vertical row.

The adjustment points that are affected may also need readjustment.

6. CORRECTIVE MAINTENANCE

WARNING:

The opening of covers or removal of parts, except those to which access can be gained by hand, is likely to expose live parts, and also accessible terminals may be live.

The instrument shall be disconnected from all voltage sources before any adjustment, replacement or maintenance and repair during which the instrument will be opened.

If afterwards any adjustment, maintenance or repair of the opened instrument under voltage is inevitable, it shall be carried out only by a qualified person who is aware of the hazard involved. Bear in mind that capacitors inside the instrument may still be charged even if the instrument has been separated from all voltage sources.

6.1. IMPORTANT NOTES

Damage may result if the instrument is switched on when a printed circuit board has been removed, or if a circuit board is removed within one minute after switching off the instrument.

How to open the instrument is outlined in chapter 3. "Dismantling the instrument".

WARNING:

The EHT-cable is unbreakely connected to the EHT multiplier unit. The cable can be disconnected from the CRT. When the EHT-cable is disconnected from the CRT the end of the cable must be discharged immediately by shorting it to the instruments earth.

6.2. REPLACEMENTS

6.2.1. Standard parts

Electrical and mechanical part replacements can be obtained through your local Philips organisation or representative. However, many of the standard electronic components can be obtained from other local suppliers.

Before purchasing or ordering replacement parts, check the parts list for value tolerance, rating and description.

NOTE:

Physical size and shape of a component may affect instrument performance, particularly at high frequencies. Always use direct-replacement components, unless it is known that a substitute will not degrade the instrument's performance.

6.2.2. Special parts

In addition to the standard electronic components, some special components are used.

These components are manufactured or selected by Philips to meet specific performance requirements.

6.2.3. Transistors and integrated circuits

Transistors and IC's (integrated circuits) should not be replaced unless they are actually defective. If removed from their sockets during routine maintenance return them to their original sockets. Unnecessary replacement or switching of semiconductor devices may affect the calibration of the instrument. When a transistor is replaced, check the operation of the part of the instrument that may be affected.

Any replacement component should be of the original type or a direct replacement. Bend the leads to fit the socket and cut the leads to the same length as on the component being replaced.

WARNING:

Silicone grease is used to facilitate the conduction of heat between power transistors and their heatsink (for instance on the power supply unit). Handle silicone grease with care. Avoid getting silicone grease in the eyes. Wash hands thoroughly after use.

6.2.4. Replacing knobs (see fig. 6.1.)

Single knobs and delay time multiplier knob

- Prise off cap A.
- Slecken screw (or nut) B.
- Pull the knob from the spindle.

Double knobs

- Prise off cap A and slacken screw B.
- Pull the inner knob from the spindle.
- Slacken nut C and pull the outer knob from the spindle.

When fitting a knob or cap, ensure that the spindle is in a position which allows reference lines to be coincident with the markings on the text plate of the oscilloscope.

When fitting the delay-time multiplier knob, turn the spindle of the potentiometer fully anti-clockwise, so that it occupies the "0" position. Adjust the knob so that its dial also occupies the "0" position and slide it on the potentiometer shaft: when doing this, take care that the stud of the knob fits correctly in the hole that is present in the front panel. After this screw B can be tightened again.

MAT 163

Fig. 6.1. Removing the knobs.

6.2.5. Removing the carrying handle

- Prise off the centre knobs from each pivot, using a screwdriver (Fig. 6.2.) in one of the small slots at the sides of the knobs.
- Remove the cross-slotted screws that are now accessible.
- Bend both arms of the handle slightly outwards and take it off the cabinet.
- Grip and arms of the carrying handle must be ordered separately (see list of mechanical parts). A complete
 carrying handle can easily be constructed by pressing the arms into the grip.

Fig. 6.2. Removal of centre knobs from carrying handle

6.2.6. Replacing the cathode ray tube (CRT)

WARNING: Handle the CRT carefully. Rough handling or scratching can cause the CRT to implode.

In particular be very careful with the side connections of the CRT. If these pins are bent the CRT is likely to develop a loss of vacuum.

- Remove the five side connections from the CRT.
- Unscrew the bracelet that secures the CRT in its rubber socket.
- Unplug the EHT-cable from the CRT.

WARNING: The EHT-cable is unbreakely connected to the EHT multiplier unit. The cable can be disconnected from the CRT. When the EHT-cable is disconnected from the CRT the end of the cable must be discharged immediately by shorting it to the instruments earth.

- Unplug the trace rotation cable from the X/Z final amplifier unit (3-pole connector).
- Remove the top support of the CRT screen that carries the graticule illumination lamps.
- Remove the screen bezel and contrast filter as indicated in section 5.3. of the operating manual.
- Remove the CRT socket.
- Carefully pull the CRT from the instrument through the front profile.
- After removing the two star screws that secure the rubber CRT support to the rear panel, remove the CRT shield.

IMPORTANT: When remounting the CRT shield, the rubber CRT support or the CRT itself follow the procedure in reversed sequence and take care that the CRT is pushed properly against the contrast filter in the front profile before fixing the bracelet.

6.2.7. Removing the printed circuit boards

6.2.7.1. Removing the trigger source unit (see fig. 6.5.A)

- Remove 2 screws in the unit.
- Remove 1 screw that secures the unit to the right chassis plate.
- Unplug 1 multipole connector.
- Unplug 2 coaxial connectors.
- Unplug one single pole connector.
- Slide the unit out of the front panel.

6.2.7.2. Removal of pre-amplifier and trigger unit

- Remove the trigger source unit as indicated in chapter 6.2.7.1. (see also fig. 6.5.A).
- Unplug the inputs of the delay-line cable and unscrew the attachment bracket.
- Unplug 3 coaxial connectors.
- Unplug 3 multipole connectors. One of them is a so called bottom-entry, that is attainable via a square hole
 in the right-hand chassis plate.
- Remove the 2 screws in the pushbutton switches that secure the unit to the front panel.
- Remove the metal screening plate from the attenuator part. This plate is attached by means of 6 selftapping screws (see also fig. 6.5.B).
- Remove the 6 fixing screws, that are equipped with washers.
- Lift the unit in the direction indicated in fig. 6.5.C.
- CHECK THAT THE CONTACTS AND THE POSITION-PINS OF THE SWITCH UNIT ARE FREE FROM THE PRE-AMPLIFIER AND TRIGGER UNIT IN ORDER TO PREVENT THAT THE CONTACTS ARE BEND IF THE UNIT IS TAKEN OUT OF THE INSTRUMENT (see fig. 6.6.).
- Take the unit out of the instrument in the direction indicated in fig. 6.5.D).

When remounting, follow the procedure above in reversed sequence and take care that the unit is correctly positioned above the position-pins before inserting the unit.

6.2.7.3. Removal of time base unit

- Remove the screening-plate.
- Unplug 5 coaxial cables.
- Unplug 2 single wire connectors (blue wire of x218, white wire of x217).
- Unplug 4 multipole connectors. One of them is a so called bottom-entry, that is attainable via a square hole
 in the right-hand chassis plate.
- Remove the 3 fixing screws, one of them (about in the middle of the unit) fixes also the screening-plate.
- Remove the 4 screws in the pushbutton switches that secure the unit to the front panel.
- Lift the unit in the direction indicated in fig. 6.3.A.
- CHECK THAT THE CONTACTS AND THE POSITION-PINS OF THE SWITCH UNIT ARE FREE FROM
 THE TIME BASE UNIT IN ORDER TO PREVENT THAT THE CONTACTS ARE BEND IF THE UNIT IS
 TAKEN OUT OF THE INSTRUMENT (see fig. 6.4.).
- Take the unit out of the instrument in the direction indicated in fig. 6.3.B.

When remounting, follow the procedure above in reversed sequence and take care that the unit is correctly positioned above the position-pins before inserting the unit.

Fig. 6.3. Removal of time-base unit

Fig. 6.5. Removal of pre-ampl. and trigger unit

Fig. 6.4. Time-base unit removed

Fig. 6.6. Pre-ampl. and trigger unit removed

100

6.2.7.4. Removal of switch unit and potentiometer unit

- Remove the time base unit as indicated in chapter 6.2.7.3.
- Remove the trigger source unit as indicated in chapter 6.2.7.1.
- Remove the pre-amplifier and trigger unit as indicated in chapter 6.2.7.2.
- Remove one multipole connector from the final X/Z amplifier unit.
- Remove one multipole connector from the pre-amplifier and trigger unit.
- Remove all the knobs from the front panel.
- Remove 4 star-screws, that secure the switch unit and potentiometer unit to the left and right-hand chassis
 panel.
- Lift the units upwards out of the instrument.
- The switch board can be separated from the potentiometer unit by means of 4 star screws (one of them is only attainable with a small screwdriver).

IMPORTANT: Repair of parts on the switch unit is not recommended because special tools are required for assembling. As a result the unit is only available as a complete spare part.

6.2.7.5. Removal of power supply EHT unit and mains transformer

- Unplug one four pole connector from the power supply. This connector is attached to a cable that comes from the rear plate.
- Unplug one coaxial lead on the time-base. This lead is from the BNC socket on the rear panel.
- Remove the two star screws that secure the rubber CRT socket to the rear plate (the CRT remains in position by means of its supports at the screen side).
- Remove six screws that secure the top and bottom of the rear plate to the chassis.
- Remove seven screws that secure the rear plate to the chassis. The rear plate can now be taken off.
- Remove the four star screws that secure the mains transformer to the rear plate.
- Remove if necessary the star screw that secures the power supply to its compartment. This screw is accessible via a hole in the pre-amplifier and trigger unit.

NOTE: This screw earths the power supply. When remounting the supply, fix this screw as tighty as possible.

- Slide the unit gently out of is compartment and remove if necessary the two wires from the EHT multiplier unit.
- To remove the EHT unit, snap it out of the two slots of the power supply compartment. To remove the
 post-accelerator connection cable first remove the time-base unit according chapter 6.2.7.3.

WARNING: The EHT is unbreakely connected to the EHT multiplier unit. The cable can be disconnected from the CRT. When the EHT-cable is disconnected from the CRT the end of the cable must be discharged immediately by shorting it to the instruments earth.

6.2.7.6. Replacement of thermal fus in mains transformer

The double isolation of the instrument is achieved by the isolation properties of the mains transformer. If the mains transformer should become too hot (for instance due to a secondary short-circuit) the isolation layer can be damaged. In order to prevent this, a thermal fuse is incorporated in the mains transformer. If the temperature of the transformer becomes too high, the fuse blows and the mains voltage is interrupted. The blown fuse can be replaced by a new one, if you are sure that the isolation layer of the transformer is not damaged.

For this proceed as follows: Remove the rear plate with the mains transformer. Desolder the two wires of the fuse and slide it out of its compartment within the transformer. Slide the new fuse into the compartment and solder the wires on to the soldering tags of the transformer.

6.2.7.7. Removal of final X/Z amplifier unit

- Unplug 6 multipole connectors.
- Unplug 1 coaxial cable.
- Unplug 2 single-wire connectors from the time-base.
- Remove very carefully the 2 side connections of the CRT.

WARNING: Handle the CRT carefully. Rough handling or scratching can cause the CRT to implode. In particular be very careful with the side connections of the CRT. If these pins are bent the CRT is likely to develop a loss of vacuum.

- Remove 3 fixing screws.
- Lift the unit a little out of its bottom fixing points.
- Unplug 2 wires, that originate from the CRT socket.

CAUTION: These wires carry the —1500Volt life voltages for the CRT; they may neither be touched nor be short-circuited to earth if the instrument is working.

- Unplug 2 wires, that originate from the CAL output socket on the front panel.
- Take the unit out of the instrument.

When remounting follow the procedure above in reversed sequence.

6.2.7.8. Removing the final vertical amplifier unit

- Unplug one multipole connector from the conductor side at the unit.
- Remove very carefully the two side connections of the Y-deflection plates from the CRT. It is also possible
 to unsolder the two connection wires on the unit.

WARNING: Handle the CRT carefully. Rough handling or scratching can cause the CRT to implode.

In particular be very careful with the side connections of the CRT. If these pins are bent the CRT is likely to develop a loss of vacuum.

- Remove the two screws that secure the unit to the left-hand chassis plate.
- Remove the two "star" screws in the heat-sink of the OM518 resistance network that secure the unit to the left-hand chassis plate.
- Unplug the two connections of the delay line from the conductor side of the unit.
- Remove one "star" screw that secures the delay line to the conductor side of the unit.

6.2.7.9. Removal of potentiometer from potentiometer unit

- For R7, R8, R9, R10 and R11: remove the pre-amplifier and trigger unit according to chapter 6.2.7.2.
 For R1, R2, R3, R4, R5 and R6: remove the time base unit according to chapter 6.2.7.3.
- Remove the fixing nut of the potentiometer.
- Unsolder the wires of the potentiometer and take it out of the coupling piece and the potentiometer unit.
- Remove the coupling-disc by pulling it of the potentiometer shaft. Bear in mind that the coupling discs of the potentiometers with a push-pull function are secured with a fixing-washer.

6.2.7.10. Removal of coupling piece

- Remove the potentiometer according to chapter 6.2.7.9.
- Pull the plastic fixing spring out of the coupling piece.
- Remove the coupling piece from the plastic shaft.
- Remove the knob from the plastic shaft; remove the plastic cap from the knob, remove the screw inside the knob and pull the knob off.
- Slide the plastic shaft backwards out of the instrument.

IMPORTANT: When rearranging the coupling piece take care that the flat side at the ends of the plastic shaft and the potentiometer shaft fits correctly in the hole of the coupling discs.

6.2.8. Soldering techniques

Ordinary 60/40 solder and a 35 ... 40 Watt pencil type soldering iron can be used for the majority of the soldering. If a higher wattage-rating soldering iron is used on the etched circuit boards, excessive heat can cause the etched circuit wiring to separate from the base material.

6.3. RECALIBRATION AFTER REPAIR

After any electrical component has been replaced the calibration of that particular circuit should be checked, as well as the calibration of other closely related circuits.

Since the power supply affects all circuits, calibration of the entire instrument should be checked if work has been done on the power supply.

For more detailed information see the interaction table (section 5.6).

6.4. INSTRUMENT REPACKING

If the instrument is to be shipped to a Service Centre for service or repair, attach a tag showing owner (with address) and the name of an individual at your firm who can be contacted. The Service Centre needs the complete instrument serial number and a fault description.

Save and re-use the packing in which your instrument was shipped. If the original packing is unfit for use or not available, repack the instrument in such a way that no danger occurs during transport.

6.5. TROUBLE-SHOOTING

6.5.1. Introduction

The following information is provided to facilitate trouble-shooting. Information contained in other sections of this manual should be used along with the following information to aid in locating the defective component. An understanding of the circuit operation is helpful in locating troubles, particularly where integrated circuits are used. Refer to the Circuit Description section for this information.

6.5.2. Trouble-shooting hints

If a fault appears, the following test sequence can be used to find the defective circuit part:

- Check if the settings of the controls of the oscilloscope are correct. Consult the operating instructions in the operating manual.
- Check the equipment to which the oscilloscope is connected and the interconnection cables.
- Check if the oscilloscope is well-calibrated. If not refer to section 5 (checking and adjusting).
- Visually check the part of the oscilloscope in which the fault is suspected. In this way, it is possible to find
 faults such as bad soldering connections, bad interconnection plugs and wires, damaged components or
 transistors and IC's that are not correctly plugged into their sockets.
- Location of the circuit part in which the fault is suspected: the symptom often indicates this part of the circuit. If the power supply is defective the symptom will appear in several circuit parts.

After having carried out the previous steps, individual components in the suspected circuit parts must be examined:

- Transistors and diodes. Check the voltage between base and emitter (0,7 Volt approx. in conductive state) and the voltage between collector and emitter (0,2 Volt approx. in saturation) with a voltmeter or oscilloscope. When removed from the p.c.b. it is possible to test the transistor with an ohmmeter since the base/emitter and base/collector junctions can be regarded as diodes. Like a normal diode, the resistance is very high in one direction and low in the other direction. When measuring take care that the current from the ohmmeter does not damage the component under test.
 - Replace the suspected component by a new one if you are sure that the circuit is not in such a condition that the new one will be damaged.
- Integrated circuits. In circuit testing cab be done with an oscilloscope or voltmeter. A good knowlegde of the circuit par under test is essential. Therefore first read the circuit discription in section 2.

6.7. **ACCESSORY INFORMATION**

6.7.1. Adjustments

Matching the probe to your oscilloscope

The measuring probe has been adjusted and checked by the manufacturer. However, to match the probe to your oscilloscope, the following manipulation is necessary.

Connect the measuring pin to the CAL socket of the oscilloscope.

A trimmer C2 (Fig. 6.13.) can be adjusted through a hole in the compensation box to obtain optimum squarewave response. See Fig. 6.7., 6.8. and 6.9.

Fig. 6.7. Over compensation (adjustment C2)

Fig. 6.8. Correct compensation (adjustment C2)

Fig. 6.9. Under-compensation (adjustment C2)

Adjusting the h.f. step response

The h.f. step response correction network has been adjusted by the manufacturer to match the oscilloscope input. For optimum pulse response, for separate delivered probes, the probe can be adjusted to match your particular oscilloscope. Later readjustment is only necessary if the probe is to be used with a different type of oscilloscope, or after replacement of an electrical component.

For the adjustment, proceed as follows:

Connect the probe to a fast pulse generator (rise-time not exceeding 1ns) which is terminated by its characteristic impedance. Dismantle the compensation box. Set the generator to 100kHz. Adjust R2 and R3 alternatively to obtain a display as shown in Fig. 6.10.

It is important that the leading edge is as steep, and the top is as flat, as possible. Incorrect settings of R2 and R3 give rise to pulse distortions as shown in Fig. 6.11, and 6.12.

MAT 615

Fig. 6.10. Preset potentiometers (correctly adjusted)

Fig. 6.11. adjusted potentiometers

Rounding due to incorrectly Fig. 6.12. Overshoot due to incorrectly (adjusted potentiometers)

6.7.2. Dismantling

Dismantling the probe (see Fig. 6.13)

The front part 11 of the probe can be screwed from the rear part 13. Item 11 can then be slid from 12 and 13. The RC combination 12 is soldered to 13. For replacement of 12 refer to the next section.

Dismantling the compensation box (see Fig. 6.13)

Unscrew the ribbed collar of the compensation box to the cable. The case 14 can then be slid sideways off the compensation box. The electrical components of the printed-wiring board are then accessible.

Fig. 6.13. Mechanical parts

6.7.3. Replacing parts

Assembling the probe

A new RC network is slid over the cable nipple, after which the cable core is soldered on to the resistor wire. When the measuring probe is assembled, the RC network must be at dead centre in the probe tip.

Replacing the cable assembly

Dismantle the compensation box.

Unsolder the connection between the inner conductor and the printed-wiring board. Keep the frame of the compensation box steady and loosen the cable nipple with a 5 mm spanner on the hexagonal part. Replace the cable and fit it, working in the reverse order.

6.7.4. Replacing the BNC

Dismantle the compensation box.

Unsolder the connection to the printed-wiring board. Hold the frame of the compensation box firmly and loosen the BNC with a 3/8 inch spanner. Replace the BNC and fit it, working in the reverse order.

Replace the probe tip

The damaged tip can be pulled out by means of a pair of pliers. A new tip must be firmly pushed in.

6.7.4. Parts List

Mechanical parts (see Fig. 6.13 and 6.14.)

Items 1 to 10 are standard accessories supplied with the probe.

Item	Ordering number	Qty	Description
1	5322 321 20223	1	Earth cable
2	5322 256 94136	1	Probe holder
3	5322 255 44026	10	Soldering terminals which may be incorporated in circuits as routine test points
4	5322 532 64223	2	Marking ring red
5	5322 532 64224	2	Marking ring white
5	5322 532 64225	2	Marking ring blue (not shown)
6	5322 268 14017	2	Probe tip
7	5322 462 44319	1	Insulating cap to cover metal part of probe during measurements in densely wired circuits
8	5322 462 44318	2	Cap facilitating measurements on dual-in-line integrated circuits
9	5322 264 24018	1	Wrap pin adaptor
10	5322 264 24019	1	Spring-loaded test clip
11	5322 264 24021	1	Probe shell with check-zero button
12	5322 216 54152	1	RC network
13	5322 320 14063	1	Cable assembly
14	5322 447 64016	1	Cap
15	5322 268 44019	1	BNC connector

Electrical parts

Item	Ordering number	Description
C1 C2	– 5322 125 54003	Part of RC network (not supplied separately) Trimmer 60 pF, 300 V
R1 R2 R3	 5322 101 14047 5322 100 10112	Part of RC network (not supplied separately) Potmeter 470 Ω , 20 %, 0.5 W Potmeter 1 k Ω , 20 %, 0.5 W

Fig. 6.14. Electrical parts

7. PARTS LIST

Subject to alteration without notice

7.1. PARTS INDICATED IN FIG. 7.1. ... 7.6.

item	Ord. number	Description
Fig. 7.1.		
1.	5322 414 30004	Ten turn knob (used for "delay time")
2.	5322 414 26415	Pushbutton grey (green (31 pcs./instrument).
3.	5322 414 25851	Pushbutton grey (used for "single").
4.	5322 447 94399	Instrument cover (without handle and feet).
5.	5322 414 74015	Cover, grey with line.
	5322 414 34091	Knob, dia 10mm.
6.	5322 414 74029	Cover, blue with line.
	5322 502 80002	Screw, selftapping
	5322 414 30003	Knob, dia 10mm.
	5322 414 34079	Knob, dia 19mm.
7.	5322 414 34217	Knob (used for "hold off").
	5322 492 64337	Fixing spring for this knob.
8.	5322 267 10004	BNC input socket (used for A, B and EXT).
9.	5322 268 14052	Calibration terminal.
	5322 325 84011	Grommet for calibration terminal.
10.	5322 447 94403	Front cover
11.	5322 462 44297	Rubber foot (of instrument cover).
12.	5322 447 90305	Cast alluminum front frame.
13.	5322 450 74009	Screen bezel.
14.	5322 480 34074	Contrast filter blue.
	5322 480 34046	Contrast filter grey
15.	5322 414 74015	Cover, grey with line.
	5322 414 34134	Knob, dia 10mm.
	5322 492 64337	Clamping spring for knob.
	5322 455 81005	Text plate
16.	5322 455 81004	Text plate PM3267U
	5322 455 81006	Sticker TTL (optional)
	5322 455 81002	Sticicker ECL (optional)
Fig. 7.2.		
20.	5322 498 54077	Grip of carrying handle.
	5322 498 54072	Bracket of carrying handle.
	5322 414 64053	Pushbutton knob.
	4822 502 30004	Selftapping screw.
	4822 532 10582	Washer
	5322 520 14267	Bearing bush, plastic.
	5322 530 84075	Spring.
	5322 528 34128	Ratchet.
21.	5322 464 90096	Cast alluminium rear frame.
22.	5322 447 90304	Plastic rear panel.
23.	5322 532 20749	BNC socket Z-Mod.
24.	5322 500 14228	Coin slot screw for rear panel.
	5322 530 70324	Circlip for coin slot screw.
25.	5322 462 44298	Foot (of rear panel).
•	4822 502 30096	Selftapping screw of rear panel foot.
26.	5322 325 64083	Line cable cleat, European type.
	5322 325 50101	Line cable cleat, USA type.
27.	4822 321 10084	Line cable, European type.
20	4822 321 10092	Line cable, USA type
28.	5322 263 40045	Mains voltage adaptor.

Fig. 7.1. Mechnical parts, front view

Fig. 7.2. Mechanical parts, rear view

Item	Ord. number	Description
Fig. 7.3.		
30.	5322 218 61017	Trigger selector unit (unit 4).
31.	5322 535 91232	Extension shaft, plastic (for unit 4).
32.	5322 218 61014	Pre-amplifier and trigger unit (unit 3).
33.	5322 532 74014	Rubber socket for CRT-shield.
33.	5322 492 64767	Bracelet, secures CRT in rubber socket.
34.	5322 218 61016	Final Y-amplifier (unit 9).
3 4 . 35.	5322 320 40093	Delay line cable (unit 8).
36.	5322 466 30124	CRT shield
30.	3322 400 30124	5/11 smort
Fig. 74.		
41.	5322 218 61012	Time base (unit 2)
42.	5322 502 60036	Screw M2,5 \times 8 (secures front of unit 2).
43.	5322 380 20136	CRT front support, plastic.
44.	5322 255.24015	Lamp holder (fits in CRT front support).
45.	5322 218 61015	Final X/Z amplifier (unit 5).
46.	4822 265 20051	24VDC input socket.
47.	5322 218 61013	Power supply (unit 6).
48.	5322 218 61003	EHT multiplier unit.
C:a 7 E		
Fig. 7.5.	5322 535 91585	Plastic shaft (AMPL/DIV, TIME/DIV continuous controls).
50.	5322 492 62451	Fixing spring, plastic.
	5322 532 60765	Coupling bush, plastic.
	5322 532 60763	Coupling disc, plastic.
E-1	5322 526 20335	Screw M2,5 x 8 (secures (front of unit 3).
51.	5322 502 60030	Plastic shaft (hold-off).
52.	5322 492 62451	Plastic spring.
	5322 492 02431	Coupling bush, plastic.
	5322 532 60763	Coupling disc, plastic.
	4822 530 70043	Spring washer, metal.
	4622 550 70043	Spring washer, metal.
Fig. 7.6.		
60.	5322 270 10048	Switch unit, complete (unit 102).
	5322 265 40186	Pin connector, 4 double pins.
	5322 265 40187	Pin connector, 7 double pins.
61.	5322 528 20338	Coupling piece for "delay time".
62.	5322 535 91415	Alluminium shaft (used for position and level controls).
	5322 492 62451	Fixing spring, plastic.
	5322 532 51241	Coupling bush, plastic.
	5322 528 20333	Coupling disc, plastic.
	4822 530 70043	Spring washer, metal.

7.3.	Electrical (parts					OR:	DER	INC	3 (cop	Ε	
B 1 B 2			4/I] 4/I]					322 322	13	_	348 348		
B 3 B 4 B 5		CQY	54/I] 54/I] 54/I]	ΙΙ			53	322 322 322	13	0	34: 34: 34:	87	5
C 1103			7PF F-20	+50		100		322 8 22		25 22	50 31		
C 110 C 110 C 110 C 110 C 110	5 6 7	6,8N 10N	F-20 F-20	+50 +50 +50	F	100 100 100 100 100	444	822 822 822 822 322	1:	22 22 22 22 22		42 4] 4]	29 14 14
C 110 C 111 C 111 C 111 C 120	2 3 4	10P 15P	7PF F	10 2 2 +50		100 500 500 100	5 4 4	822 322 822 822 822	1	22 25 22 22 22	50 31 31	19	34 35 37
C 120 C 120 C 120 C 120 C 121	13 14 16	10N 10N 2	F-20 F-20 F-20 7PF 7PF	+50		100 100 100	4 4 4	822 822 822 822 822	1	22 22 22 25 25	31 50	4)	l 4 l 4 38
C 121 C 121 C 121 C 121 C 121	l 6 l 7 l 8		F-20 F-20 F			100 100 100 100 100	4	822 822 822 822 822	1 1 2 1	22 22 22 22 22	31 31 31	0 6 4 1 4 1 3 1	14 14 16
C 122 C 122 C 122 C 122 C 122	22 23 24 2,	0-18	F 0,	+50	F	100 100 100	4 4 5	822 822 822 322 822	2 1 2 1 2 1	22 22 22 25 22	31 31 50	3 0 14 0 14	36 14 51
C 12: C 12: C 12: C 12: C 12:	28 29 31	22P 100P 22P 100P 22P	F	2 2 2 2 2		100 100 100 100	4	823 823 823 823	2 1 2 1 2 1	22 22 22 22 22	3: 3:	10 13 10 13	16 63 16
C 13 C 13 C 13 C 13 C 13	01 02 03	6 101	F 8NF 8NF 1F-2(10% 150+50		100 250V 250V 100 100		82 32 32 82 82	2 1 2 1 2 1	22 21 21 22 22	40	41 41 14	53 37 37 14
C 13 C 13 C 13	05 06 07 08	8,2		2 10 10 25P 25P	F	100 500 500 100) 6	82 82 82 82 82	2 1 2 1 2 1	22 22 22 22	3 3	11 11 10	53 75 75 52 52
C 13 C 13 C 13	310 311 314 315 316	101 101	PF-21 NF-21 NF-21 NF-21	0+50 0+50) } }	100 100 100 100 100) (482 482 482 482 482	2] 2] 2]	22 22 22 122	3 3	14 14 14	26 14 14 14 14
C 1: C 1: C 1:	317 318 319 320 321	101 3901	NF-2 NF-2 68NF PF 68NF	0+50 10% 2) 4 2	100 100 250 100 250) ! }	482 482 532 482 532	2] 2] 2]	122 123 121 122	3 4 3	14 41 14	14 14 37 26 37
C 1 C 1 C 1	322 323 326 327 372	4,71 4,71	68NF 22UF UF-1 UF-1 NF-2	40% 0+50 0+50	ξ))	250\ 10\ 63 63	3 .	532 482 532 532 482	2 1 2 2 2 2	121 124 124 124	2 2	09 42 42	37 43 11 11
C 1 C 1	373 401 402 403	150 330	20NF UF-1 UF-1 33UF	0+5(0+5())	35\ 2! 10\	5 0	532 482 482 482	2	124	2	07 06	74 03 84 945

```
ORDERING CODE
                                                   5322 124 14066
4822 122 30057
5322 121 41466
5322 121 41466
 1406
                                           16V
                         10UF 50%
                     2,7ÑF
                                           100
  1407
                                  10
C
                        13NF
                                           2KV
2KV
                                  5%
  1408
  1409
                         13NF
                                  5%
                     330UF-10+50
                                             10
                                                   4822 124 20684
                                             25
                                                   5322 124
                                                                24139
  1412
                     220UF-10+50
                                                   5322 124 24146
5322 121 40323
4822 121 40452
5322 121 44138
                      22UF-10+50
  1413
                                             63
C
                       100NF 10%
1,5UF 10%
47NF 10%
                                          100V
C
  1414
                                          100V
  1415
                                          250V
  1416
                                                   4822 121 40232
5322 124 24139
4822 124 21129
5322 124 21182
                        220NF 10%
                                          100V
C
  1417
                     220UF-10+50
                                             25
  1419
  1421
                      10UF-10+50
                                           160
Ċ
                       47UF-10+50
                                             63
C
  1422
                     330UF-10+50
                                             10
                                                   5322 124
  1423
                     330UF-10+50
330UF-10+50
                                             10
  1424
                                                   5322 124 21181
                                                   5322 124 21181
5322 124 21181
4822 124 20734
  1426
                                             10
                     330UF-10+50
68UF-10+50
  1427
                                             10
                                             63
C
  1428
                                          630V
  1430
                         10NF 10%
                                          630V
                                                   4822 121 40145
                        100NF 10%
C
  1431
                                                   4822 122 31414
4822 124 21129
4822 121 40145
5322 121 40308
                      10NF-20+50
10UF-10+50
                                           100
  1432
                                           160
  1433
                        100NF 10%
22NF 10%
  1434
                                          630V
  1436
                                          400V
                       10UF-10+50
                                            160
                                                   4822
                                                          124
                                                                21129
C
  1437
                       10UF-10+50
                                                   4822
                                           160
                                                          124
                                                                21129
  1438
C
                       100NF 10%
47UF-10+50
                                                   4822
5322
                                          630V
                                                         121 40145
124 21182
  1439
C
                                             63
  1441
                     100UF-10+50
                                                   4822 124 20679
  1442
                                             10.
                                                   5322 124 14081
5322 124 14066
4822 122 30128
4822 122 31414
                        6,8UF 20%
                                            25V
  1443
                         10UF 50%
C
  1444
                                            16V
  1445
                     4.7NF
                                           100
Ċ
                                  10
                       10NF-20+50
                                           100
  1446
C
                         33UF 40%
                                           107
                                                   4822 124
                                                                20945
  1447
                                                   4822 121 50568
4822 122 31414
                           2NF
                                          250V
                                  1%
  1448
                       10NF-20+50
                                           100
  1449
C1450
                                82pF
                                                                      4822 122 31208
                        100NF 10%
                                                   5322 121 40323
4822 124 70326
                                          100V
C 1451
                    4700UF-10+30
                                             40
  1452
C
                        220NF 10%
                                          250V
  1453
                                                   5322 121 44137
4822 122 31414
4822 122 31414
4822 124 20943
                          68NF 10%
                                          250V
  1501
                       10NF-20+50
10NF-20+50
                                            100
C
  1502
  1503
                                            100
Č
   1504
                         22UF 40%
                                            104
C
                       10NF-20+50
                                            100
   1506
                                                   4822 122 31214
4822 122 31414
4822 122 30128
4822 122 30027
                                            100
                    0,82PF 0,25PF
C
   1507
                       10NF-20+50
   1508
                                            100
                              10
   1509
                     4,7NF
                                            100
C
   1510
                        INF
                                   10
                                            100
                                                          122
                       10NF-20+50
                                            100
                                                   4822
                                                                31414
  1511
                        1,5NF 10%
                                         1600V
                                                   4822 121 40354
C
  1512
                                                   4822 121
4822 122
4822 124
                                         1600V
                        1,5NF 10%
                                                          121 40354
C
   1513
                                            100
                                                                30027
C
   1514
                        1NF
                                   10
                                                                20728
                       10UF-10+50
   1516
                                             63
                     4,7NF
                                            100
                                                   4822 122 30128
C
  1518
                       10NF-20+50
                                            100
                                                   4822 122 31414
                       4,7UF 20%
10NF-20+50
10NF-20+50
                                            25V
100
                                                   5322 124 14064
4822 122 31414
C
   1519
   1521
                                            100
                                                   4822
                                                          122
                                                                 31414
   1522
C
                       22UF-20+20
                                                   5322
                                                          124
                                             25
   1523
                                                   5322 124
                                                                24016
                       10UF-10+50
                                             63
                       15UF-20+20
                                                                24008
20688
20688
                                                   5322 124
   1526
                                             10
                       33UF-10+50
33UF-10+50
                                                   4822 124
4822 124
   201
                                             16
   202
                                             16
                                                    4822 122
                       10NF-20+50
                                            100
                                                                31414
   204
                                                   4822 122 31414
5322 124 14081
   206
207
208
                                            100
                       10NF-20+50
C
                        6,8UF 20%
                                            25V
                                                                14081
C
```

10NF-20+50

100

```
ORDERING CODE
                                        100
                                               4822 122 31414
C 209
                   10NF-20+50
  211
                    10NF-20+50
                                        100
                                        100
  212
                     1NF-20+50
                                               4822 122 30027
                   10NF-20+50
10NF-20+50
                                               4822
  213
                                                      122
                                                            31414
                                        100
  216
                                               4822 122 31414
                                       100
  218
                       47NF 10%
                                       250V
                                               5322
                                                      121
                                                            44138
  219
C
  221
                    10NF-20+50
                                        100
                                               4822 122 31414
                                               4822 122
4822 122
4822 122
                                                           31414
31414
                    10NF-20+50
10NF-20+50
                                        100
  222
C
  223
224
                                        100
C
                    10NF-20+50
                                                           31414
C
                                        100
   226
                                               5322 121
                                                            54229
                   10NF-20+50
10NF-20+50
  227
232
                                       100
                                               4822
                                                      122 31414
C
                                               4822 122 31414
5322 121 44138
4822 122 31414
                                        100
¢
                                      250V
  234
                       47NF 10%
  236
                    10NF-20+50
                                        100
                                6,8µF/25V
                                                                   5322 124 14081
C237
C 238
C 239
                    10NF-20+50
                                        100
                                               4822 122 31414
                                               4822 122
4822 124
                                                           31414
20709
  239
240
                    10NF-20+50
                                        100
                    15UF-10+50
                                         40
C
                     1.5UF 10%
1.5UF 10%
                                       100V
                                               5322
                                                      121
                                                            40227
  241
                                               5322 121
                                                            40227
                                       100V
   242
                                                            40227
                                       100V
                                               5322 121
C
   243
                     1.5UF 10%
                                               4822 122
4822 122
4822 122
                    10NF-20+50
  244
                                        100
                                                            31414
C
  245
č
                    10NF-20+50
                                        100
                                                            31414
                     1NF-20+50
                                                           30027
                                        100
C
                                               4822
                    10NF-20+50
                                        100
                                                      124
122
  248
249
250
251
                       15UF 10%
                                               4822
                                                            20977
                                        16V
C
                                               4822 122 31414
4822 122 31222
                   10NF-20+50
220PF 2
                                        100
Ċ
                                        100
                    10NF-20+50
                                               4822
                                                      122
                                                            31414
Č
                                        100
                                               4822 122
                    10NF-20+50
                                        100
                    10NF-20+50
                                        100
                                               4822 122 31414
C
   254
                                               4822 121 40257
4822 124 20709
4822 124 20709
4822 122 31414
  255
256
257
                    330NF 10%
15UF-10+50
15UF-10+50
                                       100V
C
                                         40
C
                                         40
   258
                    10NF-20+50
                                        100
   259
                    10NF-20+50
                                        100
                                               4822 122
                                                            31414
 C
                    10NF-20+50
                                               4822 122
   260
                                        100
                                                            31414
 Č
   261
262
263
                                               5322 122
4822 122
 Č
                   120PF
                                        100
                                                            34201
                                 2
                                                            30103
                    22NF-20+80
                                         40
 C
                   470PF
                                        100
                                               4822
                                                            30034
                                10
                    10NF-20+50
10NF-20+50
10NF-20+50
                                        100
                                               4822 122
                                                           31414
   264
                                                            31414
                                               4822
4822
5322
 C
   265
                                        100
                                                      122
   267
                                        100
                                                      122 31414
 C
                                                      121 40175
   268
                      470NF 10%
                                       100V
 Ċ
                                                            30045
                                        100
   269
                    27PF
   270
271
272
273
                    10NF-20+50
                                        100
                                               4822 122 31414
 C
                                               4822 122
5322 122
4822 122
                   10NF-20+50
3,9PF 0,25PF
                                                            31414
                                        100
 C
                                        100
                                                            34107
 Ċ
 Ċ
                    10NF-20+50
                                        100
                                                            31414
                                                4822 122
                   4,7PF 0,25PF
                                         100
                                                            31045
   275
276
277
                    10NF-20+50
10NF-20+50
 C
                                        100
                                               4822
                                                      122
                                               4822
                                                      122
                                                            31414
                                        100
 C
                                               4822 122
4822 122
                                                            30045
31045
                                        100
                   27PF
4,7PF
                                         100
   278
                           0,25PF
 C
                                                5322
                                                      122
   279
                   3,9PF 0,25PF
                                         100
   280
282
                                               4822
4822
                                                      122 31414
                     10NF-20+50
                                         100
                      220NF 10%
15UF 10%
 C
                                       100V
                                                       121
                                                            40232
                                                4822
 C
   283
                                        16V
                                                      124
                                                            20977
                    10NF-20+50
10NF-20+50
   284
                                         100
                                                4822
                                                       122
                                                            31414
 C
                                         100
                                                4822
    285
                     10NF-20+50
10NF-20+50
                                         100
                                                4822 122 31414
   286
 C
                                               4822 122
4822 122
4822 122
4822 122
                                                      122
                                                            31414
31414
   287
288
 C
                                         100
                     10NF-20+50
10NF-20+50
 C
                                         100
   289
291
                                         100
                                                            31414
                     10NF-20+50
                                         160
                                                            31414
```

651

```
ORDERING CODE
                           10NF-20+50
2,7NF 10
                                                            4822 122 31414
4822 122 31174
  292
                                                    100
C
                                                    500
C
   501
                              100NF 10%
                                                            4822 121 40012
5322 125 54026
                                                   400V
  502
                                 3PF
  503
  504
                              5,5PF
                                                             5322 125 54027
                          3,3PF 0,25PF
3,3PF 0,25PF
300PF 10
                                                            4822 122 31041
C
  505
                                                    100
                                                            4822 122 31188
5322 123 10168
  506
507
                                                    500
                                                    300
C
                            68PF
                                                            4822 122 31207
5322 125 54027
  508
                                           2
                                                    500
                              5,5PF
   509
                                                            4822 122 30053
5322 125 54026
                           680PF
                                                    100
C
   510
                                          10
   511
Č
                                3PF
                                                            5322 125 54027
4822 122 31188
  512
                              5,5PF
                           3,3PF 0,25PF
                                                    500
C
   513
                            30PF
                                         10
                                                            5322 123
  514
                                                    300
                                                                           34001
  521
                          100PF
                                                    100
                                                            4822 122 31316
                                           222
  522
523
524
Č
                           100PF
                                                    100
                                                            4822 122
                                                                           31316
                                                            4822 122 31316
4822 122 30128
4822 122 30128
Ċ
                           100PF
                                                    100
č
                           4,7NF
                                         10
                                                    100
  526
                           4,7NF
                                         10
                                                    100
                                                                          30128
                          2,7NF
                                                            4822 122 30057
4822 122 31316
4822 122 31414
4822 122 31414
                                                    100
                                         10
C
  527
  528
                           100PF
                                                    100
                            10NF-20+50
10NF-20+50
  529
                                                    100
   531
                                                    100
C
  536
č
                              3,5PF
                                                            5322 125
                                                                          50048
CC
  537
538
                            12PF
                                                    100
                                                            4822 122 31056
                            10NF-20+50
10NF-20+50
10NF-20+50
10NF-20+50
                                                            4822 122 31414
4822 122 31414
4822 122 31414
4822 122 31414
                                                    100
  539
C
                                                    100
C
   541
                                                    100
  542
                                                    100
                                                            4822 122 31069
5322 125 50051
5322 125 50051
  543
                            39PF
                                                    100
  544
546
551
                       2,0-18P TRIM
2,0-18P TRIM
C
Č
                           100PF
                                                            4822 122 31316
                                                    100
  552
                           100PF
                                            2
                                                    100
                                                            4822 122 31316
C 553
                           100PF
                                                    100
                                                            4822 122 31316
                                    6,8µF/25V
                                                                               5322 124 14081
C554
                            10NF-20+50
10UF 50%
33UF 40%
                                                            4822 122 31414
5322 124 14066
4822 124 20945
                                                    100
C 556
C 561
C 563
                                                    16V
                                                    10V
                            10NF-20+50
33UF 40%
33UF 40%
                                                    100
                                                            4822 122 31414
C 564
                                                            4822 124 20945
4822 124 20945
4822 122 31414
5322 124 14066
                                                    107
C 566
                                                    ĪŎŸ
C 568
C 569
                            10NF-20+50
                                                    100
C 572
                                10UF 50%
                                                    16V
                                                            4822 122 31414
4822 122 31414
4822 124 20945
4822 122 31414
                            10NF-20+50
10NF-20+50
                                                    100
C 573
                                                    100
C
   574
                                                    10V
                               33UF 40%
C 576
                            10NF-20+50
                                                    100
Č
   631
                             10NF-20+50
                                                            4822 122 31414
                                                    100
   632
                                                            4822 122 31414
C 633
C 634
                             10NF-20+50
                                                    100
                                                            4822 122 31414
4822 122 31414
4822 122 31414
4822 122 31414
                            10NF-20+50
10NF-20+50
                                                    100
                                                    100
C 636
                             10NF-20+50
                                                    100
C 637
                             10NF-20+50
                                                    100
   638
                                                            4822 122 31414
                                                    100
                             10NF-20+50
C 639
                                                            4822 122 31414
4822 122 31414
4822 122 31414
4822 122 30135
4822 122 31054
                           10NF-20+50
10NF-20+50
10NF-20+50
820PF 10
                                                    100
C 641
C 642
C 643
                                                    100
                                                    100
                             10PF
                                                    100
   644
                             22PF
                                                             4822 122
                                           2
                                                    100
C 646
                             22PF
                                                    100
                                                             4822 122
                                                                           31063
   647
                                                            4822 122 31036
4822 122 31036
                           2,2PF 0,25PF
2,2PF 0,25PF
                                                    100
C 648
                                                    100
   649
                                                             4822 122 31414
                             10NF-20+50
                                                    100
```

ORDERING CODE 22PF 100 2 4822 122 31063 C 653 4822 122 31316 4822 122 31316 4822 122 31174 C 654 C 656 100PF 2 100 100PF 100 2,7NF 657 10 500 500 701 C 702 C 703 100NF 10% 400V 4822 121 40012 4822 121 40012 5322 125 54026 5322 125 54027 4822 122 31041 4822 122 31188 3PF 5,5PF 3,3PF 0,25PF 3,3PF 0,25PF 703 704 C 100 705 C 706 500 300PF 68PF C 707 10 300 5322 123 10168 č 708 500 4822 122 31207 709 710 5322 125 54027 4822 122 30053 č 5,5PF 680PF 10 100 5322 125 54026 711 5,5PF 3,3PF 0,25PF 30PF 10 5322 125 54027 4822 122 31188 5322 123 34001 712 713 714 500 300 716 717 4822 122 4822 122 10NF-20+50 100 C 31414 10NF-20+50 31414 100 100PF C 721 100 4822 122 31316 4822 122 31316 4822 122 31316 4822 122 30128 4822 122 30128 722 723 724 2 C 100PF 100 100PF 100 C 4,7NF 10 100 4,7NF 726 10 100 727 728 729 731 4822 122 30057 4822 122 31316 4822 122 31414 4822 122 31414 C 2,7NF 10 100 100PF 100 C 10NF-20+50 10NF-20+50 č 100 100 3,5PF 736 5322 125 50048 122 122 12PF 737 100 4822 10NF-20+50 10NF-20+50 738 739 4822 100 31414 4822 122 31414 4822 122 31414 4822 122 31414 Č 100 741 742 10NF-20+50 C 100 10NF-20+50 100 C 743 **39PF** 100 4822 122 31069 2,0-18P TRIM 2,0-18P TRIM 5322 125 50051 5322 125 50051 4822 122 31316 4822 122 31316 744 746 C C 100PF 2 2 751 100 752 100PF 100 100PF 2 C 753 100 4822 122 31316 6,8µF/25V C754 5322 124 14081 756 760 10NF-20+50 220UF-10+50 4822 122 31414 4822 124 20681 100 1 0 761 33UF 40% 107 4822 124 20945 10NF-20+50 10NF-20+50 33UF-10+50 762 763 C 100 4822 122 31414 C 31414 20688 100 4822 122 4822 124 20688 4822 122 31414 4822 122 31414 C 764 16 766 10NF-20+50 C 100 10NF-20+50 767 100 10NF-20+50 4822 122 31414 5322 121 40323 4822 122 31414 4822 122 31414 C 768 100 771 772 773 100NF 10% 10NF-20+50 10NF-20+50 C 100V Č 100 31414 20586 100 150UF-10+50 780 4822 124 16 5322 124 4822 122 4822 122 4822 122 4822 122 781 6,8UF 20% 25V 124 14081 782 10NF-20+50 100 31414 783 784 10NF-20+50 10NF-20+50 Č 100 31414 Ċ 100 31414 10NF-20+50 786 100

```
10NF-20+50
                                          100
                                                  4822 122 31414
C 787
                                                  4822 122 31414
4822 124 20681
4822 124 20945
4822 122 31414
                   10NF-20+50
220UF-10+50
  788
                                          100
  800
                                           10
C
                       33UF 40%
                                          107
C
  801
                     10NF-20+50
                                          100
C 802
                                          107
                                                  4822 124 20945
4822 122 31414
4822 122 31414
C
  803
                        33UF 40%
                    10NF-20+50
Ċ
                                          100
  804
                    10NF-20+50
10NF-20+50
C 806
C 807
                                          100
                                          100
                                                  4822 122 31414
                    10NF-20+50
                                          100
                                                  4822 122 31414
  808
                                                  4822 122
4822 122
                                                                31414
31054
                    10NF-20+50
                                          100
C
  831
                    10PF
  851
                                          100
                                                  4822 122 31414
4822 122 31414
                     10NF-20+50
C 852
                                          100
                     10NF-20+50
  853
                                           100
                    10NF-20+50
                                                  4822 122
                                          100
C 854
                                                  4822 124 20945
4822 122 31414
4822 122 30053
                                          10V
C 856
                        33UF 40%
                   10NF-20+50
680PF 10
                                          100
C 857
                                          100
C 858
                   2.7PF 0,25PF
                                                  4822 122 31038
C 861
                                          100
                                                                         4822 124 20688
                                  33µF/16V
C860
C 862
                   2,7PF 0,25PF
                                          100
                                                  4822 122 31038
  863
                    33PF
                                          100
                                                  4822 122 31067
                                                  4822 122 31054
4822 122 31414
4822 124 20945
4822 121 40232
   864
                    10PF
                                          100
                    10NF-20+50
33UF 40%
220NF 10%
                                          100
  866
C 867
                                          10V
                                         100V
  868
                                                  4822 122 31056
4822 122 31067
4822 122 31414
4822 122 31414
                                          100
C
   869
                     12PF
  870
                     33PF
                                          100
                    10NF-20+50
10NF-20+50
  872
                                          100
   873
                                           100
                                                  4822 122
   874
                   3,3PF 0,25PF
                                           100
                                                                31041
                                                  4822 122
4822 122
4822 122
4822 122
                   3,3PF 0,25PF
C
                                          100
                                                                31041
   878
                                  2 2
   879
                     33PF
                                          100
                                                                31067
                     22PF
1PF
                                                                31063
   881
                                          100
C
                           0,25PF
                                                  4822
                                                                30104
   882
                                           100
   884
                                           100
                                                  4822 122 31056
                    10NF-20+50
6,8UF 20%
10NF-20+50
10NF-20+50
                                                  4822 122 31414
5322 124 14081
  885
                                           100
   888
                                           25V
                                                  4822 122 31414
4822 122 31414
4822 121 40232
                                          100
   889
C
Č
                                           100
   890
                                         100V
C
   893
                      220NF 10%
                   4,7PF 0,25PF
4,7PF 0,25PF
10NF-20+50
   896
                                           100
                                                   4822 122 31045
                                                  4822 122 31045
4822 122 31414
4822 122 31414
   897
                                           100
  898
                                           100
                     10NF-20+50
   899
                                          100
C
C
   900
                     10PF
                                           100
                                                   4822 122 31054
                                                  4822 122 31414
4822 122 31414
5322 121 44232
                                           100
   902
C
                     10NF-20+50
                     10NF-20+50
   903
                                           100
                        22NF 10%
   904
                                         400V
   905
                   100PF
                                           100
                                                   4822 122
                                                                31316
                                                   4822 122 31414
   906
                     10NF-20+50
                                           100
                                                  4822 122 31045
4822 122 31414
4822 122 31414
4822 122 31063
                   4,7PF 0,25PF
10NF-20+50
C
   907
                                           100
C
   908
                                           100
                     10NF-20+50
22PF 2
   909
                                           100
  910
                                           100
   911
                                                   4822 122 31414
                     10NF-20+50
                                           100
C
   913
                     10NF-20+50
                                           100
                                                   4822 122
                                                   4822 122 31414
4822 124 20688
4822 122 30098
                     10NF-20+50
                                           100
C
   914
                     33UF-10+50
                                           16
100
  915
C
   916
                    3,9NF
                                 10
                                                   4822 122
                    4,7NF
C
   917
                                  10
                                           100
                                                                30128
```

ORDERING CODE

ORDERING CODE 4822 122 30128 4822 122 31414 4822 122 31414 4822 122 31034 918 4,7NF 10 100 919 920 921 10NF-20+50 C 100 10NF-20+50 1,8PF 0,25PF Č 100 Č 100 4822 122 31414 922 10NF-20+50 100 0,25PF 1PF 0,25PF 100PF C 923 100 4822 122 31034 924 925 4822 122 30104 4822 122 31316 C 100 Ċ 100 4822 122 30104 4822 122 31034 č 926 1PF 0,25PF 100 927 1,8PF 0,25PF 100 1,8PF 0,25PF 680PF 10 100 C 4822 122 31034 4822 122 30053 928 4822 122 30053 4822 122 31067 929 100 930 **33PF** 2 100 4822 121 40232 931 220NF 10% 100V 10NF-20+50 4822 122 31414 932 100 4822 122 31316 4822 122 30104 4822 122 31067 4822 122 30104 4822 122 31067 C 933 100PF 100 1PF 0,25PF 33PF 2 934 935 C 100 C 100 1PF 0,25PF C 936 100 937 **33PF** 100 C 938 15PF 100 4822 122 31058 4822 122 4822 122 4822 122 4822 122 31414 31349 C 939 10NF-20+50 100 940 100 C 68PF 10NF-20+50 10NF-20+50 942 100 C 31414 C 944 100 31414 C 945 10NF-20+50 100 4822 122 31414 1201 216 54192 255 44246 D 0M504 5322 D HIC-P5185 PH 5322 D 1203 5322 116 90118 D 1204 5322 116 90118 4822 209 80617 5322 209 85662 5322 218 61003 4822 209 80617 מ 1401 UA741CN SC 1402 n TDA1060 PH D 1403 D 1501 UA741CN SC 201 UA741CN SC 4822 209 80617 D 202 TCA240 PH 4822 209 80629 5322 5322 203 SN74S132N-00 209 85267 D T N74L502N 209 85312 D 204 SC 5322 209 84823 5322 209 81474 SC D 206 N74LS00N D 207 74F74PC FA 5322 209 85312 5322 209 85407 5322 209 84996 5322 209 81474 5322 209 85563 SC SC D 208 N74LS02N D 209 N74S02N D 211 D 212 N74LS10N 74F74PC F٨ D 213 SN74LS122N-00 D 214 SN745132N-00 5322 209 85267 216 217 218 D 5Ċ 5322 LM308AN 209 86056 5322 5322 5322 SC D N74532N 209 85679 D N74510N 209 84954 501 209 86169 UA714HC FA D 502 UA714HC FA 209 86169 D 503 SD5000N SC 5322 209 85748 D 631 5322 5322 209 80991 209 84995 **PLIFIER** D 632 N74LS08N SC 5322 209 85201 D 633 ŠČ N74LS132N 5322 209 84237 4822 209 80617 5322 209 86434 5322 209 86169 D 634 SC N74LS112N D 636 SC UA741CN 637 D LM79L05ACZ NS 701 D UA714HC FA 702 UA714HC 209 86169

					UKDEI	KING	CODE	
D D	703 831 851 852 853	SD5000N PLIFIER HEF4052BP TL082CP ARRAY OQ	SC PH T 0127		5322 5322 5322	209 209 209	85748 80991 14233 86064 80992	
F K	854 1401 1402 1371 501	ARRAY OQ T2A 500 MAT			4822 4822 5322 5322	253 253 280 280	80992 30025 30017 20099 20101	
K K K	502 503 504 506 507				5322 5322 5322 5322 5322	280 280 280 280 280 280	20099 20101 20099 20101 20099	
K K K	701 702 703 704 706				5322 5322 5322 5322	280 280 280 280	20101 20099 20101 20099 20101	
KLL	707 851 1 1401 1402	COIL			5322 5322	280 134	20099 20099 44177 44014 64154	
LLL	1403 1404 2 4 501	COIL COIL COIL SPOEL ASSY COIL			5322 5322 5322 5322 5322	156 156 134 157 158	44014 44014 44177 51614 30199	
L	701 801 802 803	ASSY COIL COIL COIL	20		5322 5322 5322 5322	158 156 156 156	30199 44014 44014 44014	
R R R	10 1000 1001 1002 1003	10K 17,8 287 100 5,11	20 1 1 1 1	0.1W MR25 MR25 MR25 MR25	5322 5322 5322	116 116 116	40096 50418 54506 55549 54192	
R	1004 1005 1006 1007	48,7 100 100K		MR25 MR25 (/MR25 MR25	5322 4822	116 116	51268	5322 116 54154
R R R	1008 101 1011 1013 1014	1,15K 191K 5,9K 100K 10K 3,01K	1 0,5 1 1 1	MR25 MR25 MR25 MR25 MR25 MR25	5322 5322 4822 4822	116 116 116 116	50415 55363 50583 51268 51253 51246	
R R	1017 1019 102 1021	5,11K 274 113 274 1K	0,5 1 1	MR25 MR25 MR25 MR25 MR25 MR25	5322 5322 5322	116 116 116	54595 54504 54019 54504 51235	
R R R R R	1024 1026 1027	487 750 30,1 1K 487	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 4822 5322 4822 5322	116 116 116	55451 51234 50904 51235 55451	

1048 1049 1051 10556 11056 11057 11058 11060 11061 11061 11062 11066 11066 11066 11066 11067 11071 11077 11077 11078 11079 11080	1049 1051 1054 1056 1057 1058 1059 106 1060 1061	049 051 054 056 057		.045 .046 .047	104 1041 1042 1043 1044	1034 1036 1037 1038 1039	1029 103 1031 1032 1033
5,11 3,01K 4,02K 100 866 51,1K 196K 1,05K 866K 402K 100 11K 38,3 38,3 95,3K	5,11	5,11K 8,66K 100 1K	30,1 1K 48,7 9,53K 5,11K	274 30,1 1K 487 750	2,94K 30,1 1K 487 750	750 30,1 1K 487 750	750 1,05K 30,1 1K 487
	1	1 1 1 1	20 1 1 1	1 1 1 1	0,5 1 1 1	1 1 1 1	1 1 1 1
MR25 MR25 MR25 MR25 MR25 MR25 MR25 MR25	MR25	MR25 MR25 MR25 MR25	MR25 0.75W MR25 MR25 MR25	MR25 MR25 MR25 MR25 MR25 MR25	MR25 MR25 MR25 MR25 MR25	MR25 MR25 MR25 MR25 MR25	MR25 MR25 MR25 MR25 MR25
5322 4822 5322 5322 5322 4822 5322 5322 5322 5322 5322 4822 4822	5322	5322 5322 5322 4822	5322 5322 5322 5322 5322	5322 5322 4822 5322 4822	5322 5322 4822 5322 4822	4822 5322 4822 5322 4822	4822 5322 5322 4822 5322
116 116	116	116 116 116	116 100 116 116 116	116 116 116 116 116	116 116 116 116 116	116 116 116 116 116	116 116 116 116 116
512352 512362 5124648932 515455457 51555555 51555555 5155555 5155555 5155555 5155555 5155555 5155555 5155555 5155555 5155555 5155555 5155555 5155555 5155555 515555 515555 515555 515555 515555 515555 515555 5155	54192	55549	50904 10143 50511 54617 54595	50904	50904 51235 55451	51235	50904

RRRR RR	1094 1095 1096 1097 1098 1099	100 100	1 1 1 1 20	MR25 MR16 MR25 MR25 MR16 MR16	5322 5322 5322 5322 5322	116 116 116 116	5539 5453 5072 5539
R R R R	11 1101 1102 1103	10K 178 100 220	20 1 1 20	0.1W MR25 MR25	5322 5322 5322 5322	116 116 101	5449 5554 1400
R R R R R	1104 1105 1106 1107	220 10 3,01K 4,02K	20 1 1 1	0,5W MR25 MR25 MR25	5322 5322 4822 5322	116 116 116	5045 5124 5544
R R R R R R	1108 1109 111 1110 1111	402 178 2,94K 100 22,6K	0,5 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 5322 5322	116 116 116	54493 51399 55549 5048
R R R R R R	1113 1114 1115 1116 1117	48,7 48,7 4,22K 48,7 5,11K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 5322 5322	116 116 116	5051 5072 5051 5459
R R R R R	1118 1119 112 1121 1122	24,9 24,9 37,4K 5,11K 5,6M	0,5 1 5	MR25 MR25 MR25 MR25 VR25	5322 5322 5322 5322 4822	116 116 116 110	5090 5139 5459 7220
R R R R R R	1123 1124 1126 1127 1129	5,6M 100 750K 249K 162	5 0,5 1 1	VR25 MR25 MR30 MR25 MR25	4822 5322 5322 5322 5322	116	51700 54730
R R R R R R	113 1131 114 116 117	953K 205 18,2K 383K 191K	1 0,1 1 0,5	MR25 MR25 MR24E MR25 MR25	5322 5322 5322 5322 5322	116 116 116 116 116	5536! 51403 5533!
R R R R R	118 119 12 1201 1202	95,3K 37,4K 4,7K 1 2,15	0,5 20 1	MR25 MR25 0.1W MR25 MR25	5322 5322 5322 4822 5322	116 101	50567 51397 20691 51179 55536
R R R R R	1203 1206 1207 1208 1209	2,15 147 11K 2,61K 147	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 5322 5322	116 116 116 116 116	55536 50766 54623 50671 50766
R R R R R	121 1211 1212 1213 1214	18,2K 1,33K 215 1K 121	0,1 1 20 1	MR24E MR25 MR25 0.75W MR25	5322 5322 5322 5322 5322	116 116 116 100 116	51403 55422 55274 10143 54426
R R R R R	1216 1217 1218 1219 122	121 220 100 383 8,66K	1 20 1 1 1	MR25 0.75W MR25 MR25 MR25	5322 5322 5322 5322 5322	116 100 116 116 116	54426 10133 55549 55368 54613

R R	1221 1227 1228 1229	1,47K 10K 100K 178K	1 5 1	MR25 MR25 0.5W MR25	4822 5322	116 116	50635 51253 30236 54721
	1232 1233			/MR25 /MR25			5322 116 50451 5322 116 50483
R R	1234 1235 1236 1237	316 51,1 511 100	1 1 1	MR25 MR25 MR25 MR25	5322	116 116	54511 54442 51282 55549
R R R	1238 1239 1240 1241 1242	1K 422 51,1 316 511	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322	116 116 116	51235 50459 54442 54511 51282
R R R	1243 1244 1246 1247 1248	100 1K 422 237 16,2	1 1 1 1	MR25 MR25 MR25 MR25 MR25	4822 5322 5322	116 116 116	55549 51235 50459 50679 54431
R R R	1249 1251 1252 1253 1254	14,7 215 215 1,47K 316	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322	116 116 116	50412 55274 55274 50635 54511
R R R	1256 1257 1258 1259 1261	1K 14,7 3,83K 4,22K 162	20 1 1 1	0.75W MR25 MR25 MR25 MR25 MR25	5322 5322 5322		10143 50412 54589 50729 50417
R R R	1262 1263 1264 1266 1267	237 100 178 237 178	1 1 1 1	MR25 MR25 MR25 MR25 MR25 MR25		116 116	50679 55549 54492 50679 54492
R R R	1268 1269 13 1300 1301	100 100 2,2M 19,6K 100	1 20 1 1	MR25 MR30 0.1W MR25 MR25		116 101 116	55549 54852 20692 54641 55549
R R R	1302 1303 1304 1305 1306	4,02K 1 100 5,11 3,01K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	4822 5322 5322	116 116 116	55448 51179 55549 54192 51246
R1 R R	307 308 1309 1310 1311	2,61K 19,6K 4,22K	-	MR25 MR25 MR25 MR25 MR25	5322	116	5322 116 54532 5322 116 50515 50671 54641 50729
R R R	1312 1313 1314 1315 1316	140K 15,4K 3,01K 649 3,01K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 4822 5322 4822	116	54259 55459 51246 54532 51246
R R R	1317 1318 1319 1320	3,32K 301 301 649	1 1 1 1 7K5/N	MR25 MR25 MR25 MR25 MR25	5322	116 116	54005 55366 55366 54532 5322 116 54608

R 1322 R 1323 R 1324 R 1325 R 1326	487 46,4K 46,4K 147 487	1 1 1 1	MR25 MR25 MR25 MR25 MR25		50557 50557 50766
R1327 R 1328 R 1329 R 1330 R1331	86,6K 71,5K 147	1 1 1	MR25 MR25 MR25 MR25 MR25 /MR25	5322 116 5322 116 5322 116	54685
R 1332 R 1333 R 1334 R 1336 R 1337	16,2K 4,64K 953 402K 1	1 1 1 1	MR25 MR25 MR25 MR25 MR25		50484 54547 55283
R 1338 R 1339 R 1347 R1360	953 402K 1	1 1 1 31K6	MR25 MR25 MR25 /MR25	5322 116 5322 116 4822 116	55283
R 1361	18,7K	1	MR25	5322 116	55362
R 1362 R 1363 R 1370 R 1371 R 1372	511K 13,3K 10 26,1K 9,53K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 116	
R 1373 R 1374 R 1376 R 1377 R 1378	649 1,54K 3,01K 100 154	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 116 5322 116 4822 116 5322 116 5322 116	50586 51246
R 1381 R 1383 R 1384 R 1388 R 1389	100 1,54K 10K 10 4,22K	20 1 20 1	0,5W MR25 0,5W MR25 MR25		50586 10113 50452
R 1392 R 14 R 1401 R 1402 R 1403	953 22K 40,2K 1,27 1,27	20 1 1 1	MR25 0.1W MR25 MR25 MR25	4822 101 5322 116 5322 116	54547 20417 54665 51393 51393
R 1404 R 1406 R 1407 R 1408 R 1409	1,27 24,9K 2,2M 10K 15,4K	1 5 1	MR25 MR25 VR37 MR25 MR25	5322 116 4822 110 4822 116	51393 54648 42196 51253 55459
R 1411 R 1412 R 1413 R 1414 R 1416	1,2M 5,6M 10M 100K 100K	5 1 1 1	VR37 VR37 VR37 MR25 MR25	4822 110	42189 42207 42214 51268 51268
R 1417 R 1418 R 1419 R 1420 R 1421	1K 21,5 90,9K 4,02K 10K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 116 5322 116	55448
R 1422 R 1423 R 1424 R 1426 R 1428	100K 100K 196 6,81K 21,5K	1 1 1 1	MR25 MR25 MR25 MR25 MR25 MR25	5322 116	51268 55273 51252

R R R R R	1429 1430 1431 1432 1433	3,16K 100 51,1 51,1 13K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 116 5322 116	544¢
R R R R R	1434 1435 1436 1437 1438	100K 100 78,7K 13,3K 750	1 1 1 1	MR25 MR25 MR25 MR25 MR25	4822 116 5322 116 5322 116 5322 116 4822 116	
R R R R R	1439 1440 1441 1442 1443	3,83K 11 19,6 6,19K 261	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 116 5322 116 5322 116 5322 116 5322 116	5047 5542
R R R R R	1444 1446 1447 1448 1449	1K 2,49K 10K 5,9K 100K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	4822 116 5322 116 4822 116 5322 116 4822 116	512
R R R R R	1451 1452 1453 1456 1457	5,11K 4,64K 30,1K 14,7K 1,54K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 116 5322 116 5322 116 5322 116 5322 116	5048 546
R R R R R	1458 1459 1460 1461 1462	1,27K 100K 5,11 24,9K 4,64K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 116 4822 116 5322 116 5322 116 5322 116	512 541 546
R R R R R	1463 1464 1466 1467 1468	226 8,25K 23,7K 750 15,4K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 116 5322 116 5322 116 4822 116 5322 116	
R R R R R	1469 1470 1471 1472 1473	20,5K 100 100K 1M 220K	1 1 20 20 20	MR25 MR25 0.5W 0.5W	5322 116 5322 116 5322 101 5322 101 5322 101	
R R R R R	1474 1476 15 1501 1502	22K 330 22K 5,11 100	20 20 20 1 1	0.5W 0.5W 0.1W MR25 MR25	5322 101 5322 101 5322 101 5322 116 5322 116	541
R R R R R	1503 1504 1505 1506 1507	24,9K 22K 5,11 402 511	1 20 1 1 1	MR25 0.5W MR25 MR25 MR25	5322 116 5322 100 5322 116 5322 116 4822 116	101 541 545
R R R R R	1508 1509 1511 1512 1513	6,49K 511 40,2K 348K 8,66K	1 1 1 1	MR25 MR25 MR25 MR25 MR25 MR25	4822 116 5322 116	546 554
R R R R	1514 1516 1517 1519 1520	1,87K 5,11 36,5K 249 7,5K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 116 5322 116 5322 116 5322 116 5322 116	541° 507° 544°

					0112		ODDL
R R R R R	1521 1522 1523 1524 1526	7,5K 511 909 23,7K 100	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 4822 5322 5322 5322	116 116 116 116 116	51282 55278
R R R R R R	1527 1528 1529 1532 1533	7,87K 20,5K 12,1K 100K 46,4K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 4822 5322	116 116 116 116 116	50458 54643 50572 51268 50557
RRRRR	1536 1537 1538 1539 1541	100 383K 1M 511K 78,7K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 5322 5322	116 116 116 116 116	
R R R R R	1542 1543 1544 1546 1547	100K 59K 5,11K 1K 6,81K	1 1 1 1 0,1	MR25 MR25 MR25 MR25 MR24E	4822 5322 5322 4822 5322	116 116 116 116 116	51268 54678 54595 51235 54165
RRRRR	1548 1549 1551 1552 1553	909 1,47K 1 133 1K	0,1 1 1 1	MR25 MR24E MR25 MR25 MR25	5322 5322 4822 5322 4822	116 116 116 116 116	55278 54187 51179 54482 51235
RRRRR	16 17 2 201 202	22K 5,11K 10K 12,1K 2,05K	20 1 20 1 1	0.1W MR25 0.1W MR25 MR25	5322 5322 5322 5322 5322	101 116 101 116 116	40107 54595 40097 50572 50664
R R R R R	204 205 206 207 208	2,15K 511K 6,19K 2,15K 1K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 5322 4822	116 116 116 116 116	50767 55258 55426 50767 51235
R R R R R	209 211 212 214 216	9,09K 9,53K 2,37K 5,11 30,1	1 1 1 1	MR25 MR25 MR25 MR25 MR25	4822 5322 5322 5322 5322	116 116 116 116 116	51284 54617 54576 54192 50904
R R R R R R	217 218 219 220 221	237 6,19K 3,48K 1K 1,54K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 4822 5322	116 116 116 116 116	50679 55426 55367 51235 50586
R R R R R	222 223 224 226 227	15,4K 15,4K 6,19K 10K 17,8K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 4822 5322	116 116 116 116 116	55459 55459 55426 51253 54637
R R R R R	228 229 230 231 232	15,4K 10K 15,4K 6,19K 1,69K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 4822 5322 5322 5322	116 116 116 116 116	55459 51253 55459 55426 54567
R R R R R	233 234 236 237 238	5,11 5,11 464 3,01K 3,01K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 4822 4822	116 116 116 116 116	54192 54192 50536 51246 51246

ORDERING CODE R 239 715 **MR25** 5322 116 50571 51,1 33,2K 5,11K R 240 MR25 5322 116 54442 ī 4822 116 51259 5322 116 54595 R 241 R 242 MR25 MR25 1 1 R 243 5,11K MR25 5322 116 54595 1 R 244 5,11K **MR25** 5322 116 54595 246 247 5322 5,11K **MR25** 116 54595 5322 116 54595 5322 116 50511 4822 116 51234 5,11K **MR25** 248 48,7 MR25 R 1 750 51234 249 ī MR25 5322 116 55549 5322 116 54192 5322 116 54192 5322 116 55549 250 100 1 MR25 R 5,11 5,11 100 R 251 R 252 R 253 MR25 MR25 1 1 MR25 R 254 511 ī MR25 4822 116 51282 R 255 R 256 R 257 4822 116 51282 5322 116 54192 5322 116 50904 5322 116 54541 511 MR25 1 5,11 30,1 825 MR25 1 MR25 MR25 1 R 258 1 R 259 30,1 1 MR25 5322 116 50904 4822 116 51252 5322 116 54192 5322 101 14069 5322 116 50414 4822 116 51252 6,81K **MR25** R 260 R 261 5,11 MR25 R 262 22K 20 0.5W R 263 MR25 2,87K 1 **MR25** R 264 6,81K 1 MR25 265 1,87K 1 5322 116 50728 5322 116 55426 4822 116 51235 5322 101 14069 266 6,19K 1 MR25 R 267 R 268 1K 22K 1 MR25 20 0.5W R 269 154 1 MR25 5322 116 50506 33,2K 5,11K 33 R 271 1 MR25 4822 116 51259 5322 116 54595 4822 111 30067 5322 116 54192 R 272 R 273 MR25 1 CR16 MR25 5 5,11 274 R 1 275 100 1 MR25 5322 116 55549 40,2 1,33K 5,11 7,5 33 276 MR25 5322 116 50926 5322 116 55422 5322 116 54192 5322 116 54417 4822 111 30067 R 277 R 278 R 279 1 MR25 ī MR25 MR25 ī R 280 5 CR16 4822 111 30067 4822 116 51231 4822 116 51246 4822 116 51246 5322 116 54417 33 281 5 **CR16** 562 R 282 MR25 3,01K 3,01K 7,5 R 283 MR25 R 284 R 285 1 MR25 MR25 1 MR25 MR25 MR25 MR25 R 286 562 1 4822 116 51231 R 287 R 288 R 289 30,1 5322 116 50904 5322 116 54192 5322 116 50904 1 5,11 1 30,1 R 290 6,81K **MR25** 4822 116 51252 5322 116 54192 5322 116 54587 4822 116 51259 5322 116 50728 R 291 5,11 1 **MR25** MR25 MR25 292 3,65K 1 R R 293 R 294 33,2K 1 1,87K 1 MR25 R296 1K78/MR25 5322 116 50515 R 297 5,11 **MR25** 5322 116 54192 5322 116 54192 5322 116 54595 5322 103 50002 5322 116 55549 R 298 R 299 5,11 5,11K MR25 MR25 47K +47K 0,1W LIN R 100 R 301 MR25 1

					ORDERIN	IG CODE	
R R R	306 307 308 309 311	154K 5,11 2,87K 1,27K 5,11K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 13 5322 13 5322 13	16 54714 16 54192 16 50414 16 5055! 16 5459!	2 4 5
R R R	312 317 318 319 321	5,11 154K 2,26K 2,26K 2,26K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 11 5322 11 5322 1	16 54192 16 54719 16 50679 16 50679) 5 5
R R R	322 323 324 325 326	154K 5,11 33,2K 5,11 3,01K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 1 4822 1 5322 1	16 54719 16 54193 16 51259 16 54193 16 5124	2 9 2
R R R	327 328 329 331 332	649 5,11 3,01K 51,1 5,11	1 1 1 1 1 4K64	MR25 MR25 MR25 MR25 MR25	5322 1 4822 1 5322 1	16 5453; 16 5419; 16 5124; 16 5444; 16 5419;	2 5 2
R3 R R	334 336 337 338	5,11K 5,11K 30,1K		MR25 MR25 MR25 MR25 MR25	5322 11	16 54595 16 54595 16 54655	5322 116 54589
R R R	339 341 342 343 344	1,21K 5,11 590 825 6,19K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 11 5322 11 5322 11	16 54557 16 54192 16 50561 16 54541 16 55426	<u>.</u>
R R R	345 346 347 348 349	10M 6,19K 22K 22K 22K	5 1 20 20 20	VR25 MR25 0.5W 0.5W 0.5W	5322 10	6 55426 11 14069 11 14069	I
R R R	351 355 356 357 358	22K 30,1 1,87K 10K 10K	20 1 1 1 1	0.5W MR25 MR25 MR25 MR25		6 50904	
R R	359 360 361 362 363	30,1 5,11 2,26K 2,26K 33,2K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 11 5322 11 5322 11 5322 11 4822 11	6 50675 6 50675	
R R R	364 365 366 367 368	5,11K 5,11K 1,15K 825 4,64K	1 1 1 1	MR25 MR25 MR25 MR25 MR25 MR25		6 54595 6 50415 6 54541	
R R R	369 370 371 372 373	7,87K 5,11 27,4K 19,6K 75K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 11 5322 11 5322 11 5322 11 4822 11	6 54192 6 50559 6 54641	
R R R	374 375 376 377 378	59K 100 78,7K 61,9K 78,7K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 11 5322 11 5322 11 5322 11 5322 11	6 50533 6 50872	

R R R	R	R	R R R								
682	676 677 678 679 681	669 671 672 673 674	662 663 664 666 668	657 658 659 660 661	651 652 653 654 656	644 646 647 648 649	638 639 641 642 643	632 633 634 636 637	623 624 626 627 631	617 618 619 621 622	611 612 613 614 616
68,1 619	51,1 10 10 51,1 68,1	511 100 619 619 51,1	162 162 100 511 237	48,7 10 10 47K 75	10K 64,9 5,11K 3,01K 2,21K	5,11K 5,11K 5,11K 5,11K 5,11K	3,32K 75K 18,7K 1,05K 5,11K	64,9K 1,05K 6,49K 3,32K 6,49K	11K 1 2,49 1 18,7K	10K 2,26K 68,1K 115K 10K	1,05K 1,33K 1,05K 365K 348K
1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 20 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	20 1 1 1 20	1 1 1 1
MR25 MR25	MR25 MR25 MR25 MR25 MR25 MR25	MR25 MR25 MR25 MR25 MR25 MR25	MR25 MR25 MR25 MR25 MR25	MR25 MR25 MR25 0.75W MR25	MR25 MR25 MR25 MR25 MR25	MR25 MR25 MR25 MR25 MR25	MR25 MR25 MR25 MR25 MR25	MR25 MR25 MR25 MR25 MR25	MR25 MR25 MR25 MR25 MR25	0.75W MR25 MR25 MR25 0.75W	MR25 MR25 MR25 MR25 MR25 MR25
5322 4822	5322 5322 5322 5322 5322	4822 5322 4822 4822 5322	5322 5322 5322 4822 5322	5322 5322 5322 5322 5322	4822 5322 5322 4822 4822	5322 5322 5322 5322 5322	5322 4822 5322 5322 5322	5322 5322 5322 5322 5322	5322 4822 5322 4822 5322	5322 5322 5322 5322 5322	5322 5322 5322 5322 5322
116 116	116 116 116 116 116	116 116 116 116 116	116 116 116 116 116	116 116 116 101 116	116 116 116 116 116	116 116 116 116 116	116 116 116 116 116	116 116 116 116 116	116 116 116 116 116	100 116 116 116 100	116 116 116 116 116
54455 51232	54442 50452 50452 54442 54455	51282 55549 51232 51232 54442	50417 50417 55549 51282 50679	50511 50452 50452 14056 54459	51253 54453 54595 51246 51245	54595 54595 54595 54595 54595	54005 51267 55362 54552 54595	50514 54552 54603 54005 54603	54623 51179 51394 51179 55362	10141 50675 54683 54279 10141	54552 55422 54552 55641 55499

R 688 R 689 R 691 R 692 R 693	68,1 261 6,81K 12,1K 14,7K	1 1 1 1	MR25 MR25 MR25 MR25 MR25 MR25	5322 5322 4822 5322 5322	116 116 116 116 116	54455 54502 51252 50572 54632
R 694 R 7 R 701 R 702 R 703	110 10K 1K 10 348	1 20 1 1 1	MR25 0.1W MR25 MR25 MR25	5322 5322 4822 5322 5322	116 101 116 116 116	54474 40096 51235 50452 54515
R 704 R 705 R 706 R 708 R 709	75 90,9 10 100 988K	1 1 1 0,5	MR25 MR25 MR25 MR25 MR30	5322 5322 5322 5322 5322	116 116 116 116 116	54459 54466 50452 55549 51401
R 711 R 712 R 713 R 714 R 716	8,35K 23,7 172K 920K 92K	0,1 1 0,5 0,5 0,1	MR24E MR25 MR30 MR30 MR24E	5322 5322 5322 5322 5322	116 116 116 116 116	55148 54014 51399 55218 54875
R 717 R 718 R 719 R 721 R 722	23,7 825K 5,11 1M 511	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 5322 4822	116 116 116 116 116	54014 51398 54192 55535 51282
R 723 R 724 R 726 R 727 R 728	5,11 51,1 51,1 1,96K 31,6	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 5322 5322	116 116 116 116 116	54192 54442 54442 54571 54034
R 729 R 731 R 732 R 733 R 734	110 1K 825 162 4,02K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 4822 5322 5322 5322	116 116 116 116 116	54474 51235 54541 50417 55448
R 736 R 737 R 738 R 739 R 741	2,87K 6,49K 22K 7,87K 22,6K	1 1 20 1 1	MR25 MR25 0.5W MR25 MR25	5322 5322 5322 5322 5322	116 116 101 116 116	50414 54603 14069 50458 50481
R 742 R 743 R 744 R 746 R 747	11K 825K 11,5 11,5	1 1 1 20	MR25 MR25 MR25 MR25 0,5W	5322 5322 5322 5322 5322	116 116 116	51398
R 748 R 749 R 751 R 752 R 753	8,66K 12,1K 137 205 53,6	1 0,1 0,1 0,1	MR25 MR25 MR24E MR24E MR24E	5322 5322 5322 5322 5322	116 116 116 116 116	51404
R 754 R 755 R 756 R 757 R 758	82,5 464 82,5 1M 1M	0,1 1 0,1 1	MR24E MR25 MR24E MR25 MR25	5322 5322 5322 5322 5322	116 116 116 116 116	51405 50536 51405 55535 55535
R 759 R 760 R 761 R 762 R 763	1M 68,1 1M 1M	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 5322 5322	116	55535

ORDERING CODE **MR25** R 764 IM 5322 116 55535 766 767 MR25 MR25 5322 116 5322 116 1M 1 116 55535 1M 1 768 769 MR25 5322 116 55535 1M 511 ī MR25 4822 116 51282 5322 100 10141 5322 116 50474 5322 116 55448 5322 116 50414 0.75W 10K 20 771 42,2K 4,02K MR25 MR25 MR25 R 772 R 773 1 1 774 2,87K 1 776 215 ī MR25 5322 116 55274 MR25 MR25 0.75W MR25 5322 116 54466 5322 116 54466 5322 100 10135 5322 116 55273 5322 116 50671 90,9 R 777 1 90,9 778 779 R 1 20 R R 781 196 1 2,61K 782 1 **MR25** 5322 5322 783 10 1 MR25 R 116 82,5 1K R 784 R 786 R 787 ī MR25 116 54462 5322 110 10143 5322 116 54426 5322 116 55422 20 0.75W 121 MR25 1 1,33K **MR25** 1 R 788 5322 116 55422 4822 116 51268 5322 116 54515 4822 116 51253 1,33K **MR25** R 789 1 R 791 100K 1 MR25 MR25 MR25 R 792 348 R 793 10K R 794 14K ī MR25 5322 116 55571 5322 116 50412 5322 116 50412 5322 116 55278 5322 116 55278 5322 101 40096 R 796 R 797 R 798 R 799 14,7 1 MR25 MR25 MR25 MR25 14,7 1 909 1 909 10K 20 0.1W 2,05K **MR25** R 801 5322 116 50664 5322 116 50766 5322 116 50766 5322 100 10133 5322 116 55367 MR25 MR25 0.75W R 802 147 ī 147 ī R 803 220 20 R 804 3,48K MR25 R 806 1 R807 7K5/MR25 5322 116 54608 5322 116 55367 5322 116 55422 5322 116 54552 MR25 R 808 3,48K 1 MR25 R 809 1,33K 1 1,05K MR25 R 811 1,33K ī MR25 5322 116 55422 R 812 5322 116 54552 5322 116 55641 5322 116 55499 5322 100 10141 5322 116 50675 1,05K MR25 R 813 1 MR25 365K 348K R 814 1 MR25 R 816 1 0.75W MR25 20 R 817 10K 2,26K 1 R 818 68,1K MR25 1 5322 116 54683 R 819 MR25 0.75W 115K ī 5322 116 54279 R 821 5322 110 5322 116 5322 116 10K 20 10141 R 822 R 823 iiκ MR25 54623 1 649 54532 R 824 1 MR25 3,3K 5 0.5W 5322 116 R 826 5322 116 5322 116 5322 116 487 MR25 55451 R 827 R 828 215 MR25 55274 42,2 ī MR25 51052 R 831 51052 42,2 1 MR25 5322 116 R 832 5322 116 55274 5322 116 54595 5322 116 55274 5322 116 54552 5322 116 54595 MR25 215 833 1 MR25 MR25 5,11K 215 R 834 1 R 836 1 MR25 1,05K 1 837 R 838 5,11K MR25

5322 116 54552 5322 101 14069 5322 116 54558 5322 116 54504 5322 116 54442 1,05K R 839 1 **MR25** 0.5W MR25 22K 8,25K R 841 R 842 20 1 274 MR25 R 843 1 R 844 1 **MR25** 51,1 R 846 MR25 4822 116 51232 619 1 MR25 5322 116 54515 R 847 348 1 MR25 MR25 4822 116 51232 5322 116 54442 R 848 619 1 R 849 51,1 **MR25** 5322 116 55549 R 868 100 R 869 R 871 5322 116 55549 4822 116 51268 100 1 MR25 100K MR25 R870 1K/MR25 5322 116 54549 9,53K 536 5322 116 54617 5322 116 50621 5322 116 50904 R 872 1 MR25 MR25 R 873 1 30,1 R 874 1 **MR25** R 875 100 **MR25** 5322 116 55549 5322 116 50459 5322 116 50536 5322 116 50926 5322 116 50926 R 876 422 **MR25** MR25 MR25 R 877 464 40,2 R 878 ī R 879 MR25 1 R 880 100 MR25 5322 116 55549 5322 116 50581 5322 116 54552 4822 116 51246 5322 116 54606 R 881 2,49K MR25 MR25 MR25 R 882 1,05K 3,01K R 883 1 R 884 MR25 7,15K 1 R 886 1K MR25 1 4822 116 51235 R 887 R 888 100 5322 101 14011 4822 116 51235 5322 100 10138 20 0,5W MR25 ĭĸ 1 R 889 100 20 0.75W R 891 10K 20 0,5W 5322 100 10113 5322 116 55278 4822 116 51179 4822 116 51268 5322 116 50459 R 892 909 MR25 ٦ MR25 MR25 MR25 R 893 1 1 R 894 100K R 896 422 1 R 897 55549 100 1 **MR25** 5322 116 R 898 40,2 **MR25** 5322 116 50926 5322 116 50926 5322 116 50926 5322 101 40096 4822 116 51232 5322 116 55448 MR25 0.1W R 899 40,2 ĩ R 9 ÍŌK 20 R 901 619 1 MR25 R 902 4,02K 1 MR25 R 903 5,11K MR25 5322 116 54595 4822 116 51268 R 904 R 906 100K 1 MR25 4822 116 51268 5322 100 10139 100K **MR25** R 907 4,7K 20 0.75W R 910 MR25 5322 116 55549 100 1 5322 116 54694 4822 110 72214 4822 110 72214 5322 116 54448 R 911 90,9K MR25 1 R 912 VR25 VR25 MR25 10M 5 R 913 R 914 10M 5 59 R 917 5322 116 54448 59 MR25 R 918 750 1 **MR25** 4822 116 51234 48,7 R 919 R 921 MR25 MR25 MR25 5322 116 50511 5322 116 50511 5322 116 50511 1 1 R 922 48,7 R 923 48,7 1 MR25 5322 116 50511 R 924 5322 116 54448 4822 116 51234 5322 116 54448 5322 116 51394 59 **MR25** R 927 750 MR25 1 R 928 59 MR25 1 R 929 2,49 ī **MR25** R930 422E/MR25

5322 116 50459

					OKDEKTUG	CODE	
R R	932 933 933 934 936	402K 536 30,1 100	619 1 1 1	E/MR25 MR25 MR25 MR25 MR25 MR25	5322 116	55283 50621 50904 55549	5322 116 54529
R R R	937 938 939 940 941	287 46,4 464 5,11K 14,7	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 116		
R R R	942 943 944 945 946	48,7 562 48,7 100 1,69K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 116 5322 116	50511 51231 50511 55549 54567	
R R R	947 948 949 950 951	1,27K 487 100K 1K 2,49K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	4822 116	55451 51268 51235	
R R R	952 953 954 955 956	7,15K 105K 4,22K 14,7 12,7K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 116 5322 116	54698 50729	
R R R	957 958 959 960 961	8,25K 220 220 162 220	20 20 1 20	MR25 0.75W 0,5W MR25 0.75W	5322 100 5322 101	54558 10133 14009 50417 10133	
R R R	962 963 964 965 966	220 100 100 21,5 100	20 1 20 1 1	0,5W MR25 0,5W MR25 MR25	5322 101 5322 116	14009 55549 14011 50677 55549	
	970	2,49 48,7 5,11K 100K 5,11K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	4822 116		
R	972 973 974 975 976	2,37K 562 51,1K 21,5 866	1 1 1 1	MR25 MR25 MR25 MR25 MR25	4822 116 5322 116 5322 116	54576 51231 50672 50677 54543	
R R	977 978 979 980 981	4,02K 3,01K 1K 51,1K 1,78K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	4822 116 5322 116	55448 51246 51235 50672 50515	
	983 984 986	10K 5,11K 2,2M 511 316	1 5 1 1	MR25 MR25 VR25 MR25 MR25	4822 116 5322 116 4822 110 4822 116 5322 116	51253 54595 72196 51282 54511	
R	989 991 992	511 511 316 511 100K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	4822 116 4822 116 5322 116 4822 116 4822 116	51282 51282 54511 51282 51268	
R R	994 995 996 997 998	26,1K 26,1K 287 511 56,2	1 1 1 1	MR25 MR25 MR25 MR25 MR25			
R	999	14,7	1	MR25	5322 116	50412	

				UKDER	THG	CODE
T T T T	1401 1402 1403 1404 1406			5322 5322 5322 5322 5322 5322	142 148 142 158 146	60329 80046 70065 40085 30434
T V V V V V	801 1 1101 1102 1103	TRANSFORMER A D14-125GH/117 BC548C BF199 BF199		5322 5322 4822 4822 4822	142 131 130 130 130	50147 20093 44196 44154 44154
A A A A	1104	BFS21A	PH	5322	130	40709
	1106	BAV45	PH	5322	130	34037
	1203	BC558B	PH	4822	130	44197
	1204	BFQ24	PH	5322	130	41664
	1205	BAW62	PH	4822	130	30613
V V V V	1206	BFQ24	PH	5322	130	41664
	1207	BB405B	PH	5322	130	34953
	1208	BB405B	PH	5322	130	34953
	1209	BFQ24	PH	5322	130	41664
	1211	BFQ24	PH	5322	130	41664
A A A A	1212	BC548C	PH	4822	130	44196
	1213	BFQ22S	PH	5322	130	42031
	1214	BFQ22S	PH	5322	130	42031
	1302	BF422	PH	4822	130	41782
	1303	BF423	PH	4822	130	41646
V V V V	1306	BFQ24	PH	5322	130	41664
	1307	BFQ22	PH	5322	130	41709
	1308	BAW62	PH	4822	130	30613
	1309	BAW62	PH	4822	130	30613
	1311	BF423	PH	4822	130	41646
V V V V	1312	BF422	PH	4822	130	41782
	1313	BF422	PH	4822	130	41782
	1314	BF423	PH	4822	130	41646
	1316	BF423	PH	4822	130	41646
	1317	BF422	PH	4822	130	41782
V V V V	1318	BAW62	PH	4822	130	30613
	1319	BAW62	PH	4822	130	30613
	1371	BF324	PH	4822	130	41448
	1372	BF324	PH	4822	130	41448
	1373	BC558B	PH	4822	130	44197
A A A A	1374	BC548C	PH	4822	130	44196
	1401	BSW68A	PH	5322	130	44788
	1402	BAX12A	PH	5322	130	34605
	1403	BY476	PH	5322	130	34668
	1404	BC547B	PH	4822	130	40959
V V V V	1405	BAW62	РН	4822	130	30613
	1406	BC547B	РН	4822	130	40959
	1407	BAS11	РН	4822	130	41273
	1408	BZV10	РН	5322	130	34439
	1409	BYW29-150	РН	5322	130	34711
A A A A	1410	BAW62	PH	4822	130	30613
	1411	BAS11	PH	4822	130	41273
	1412	BYW29-150	PH	5322	130	34711
	1413	BDY90	PH	5322	130	44243
	1414	BYW29-150	PH	5322	130	34711
V V V V	1415	BAS11	PH	4822	130	41273
	1416	BAS11	PH	4822	130	41273
	1417	BAS11	PH	4822	130	41273
	1418	BAS11	PH	4822	130	41273
	1419	BAS11	PH	4822	130	41273
V V V V V	1421	BAW62	PH	4822	130	30613
	1422	BZX79-C10	PH	4822	130	34297
	1423	BZX79-C6V2	PH	4822	130	31111
	1424	BZX79-C12	PH	4822	130	34197
	1426	BAW62	PH	4822	130	30613

				ORDERING CO	DE
V V V V	1427 1428 1429 1432 1433	BAW62 BC547B BC547B BAW62 BC547B	PH PH PH PH PH	4822 130 40 4822 130 40 4822 130 30	613 959 959 613 959
V	1434 1436 1437 1438 1439	BAW62 BYW29-150 BAX12A 2N4033 BYW29-150	PH PH PH PH PH	5322 130 34 5322 130 34 5322 130 41	613 711 605 708 711
V V V	1441 1442 1501 1502 1503	BYW29-150 BYW29-150 BC548C BC558B BSX20	PH PH PH PH PH	5322 130 34 4822 130 44 4822 130 44	711 711 196 197 705
V V V V	1504 1507 1508 1509 1511	BC558B BAV21 BS568 BC548C BF450	PH PH PH PH PH	4822 130 30 5322 130 44 4822 130 44	197 842 247 196 237
V V V V	1512 1513 1514 1516 2	BC548C BF199 BAV21 BC548C BD938	PH PH PH PH PH	4822 130 44 4822 130 30 4822 130 44	196 154 842 196 029
V V V V	200 201 202 203 204	BC558B BAW62 BZX79-C3V0 BC558B BC558B	PH PH PH PH PH	4822 130 30 4822 130 31 4822 130 44	197 613 251 197 197
A A A A	205 206 207 208 209	BAW62 BAW62 BC548C BC558B BC548C	PH PH PH PH PH	4822 130 30 4822 130 44 4822 130 44	613 613 196 197
A A A A	211 212 213 214 216	BAW62 BFQ24 BC558B BAW62 BAW62	PH PH PH PH PH	5322 130 410 4822 130 441 4822 130 300	613 664 197 613 613
V V V V	217 218 219 220 221	BAW62 BAW62 BC548C BAW62 BC548C	PH PH PH PH PH	4822 130 443 4822 130 300	613 613 196 613
V V V	222 223 224 225 226	BAW62 BC558B BC558B BF324 BF324	PH PH PH PH PH	4822 130 443 4822 130 443 4822 130 414	613 197 197 448 448
V V V V	227 228 229 230 231	BSX20 BSX20 BC558B BA280 BC548C	PH PH PH PH PH	4822 130 413 4822 130 443 5322 130 343	705 705 197 302 196
>>>>>	232 233 234 235 236	BAW62 BSX20 BSX20 BC548C BC558B	PH PH PH PH PH	4822 130 413 4822 130 413 4822 130 443	613 705 705 196 197

				ORDERING	CODE	
V V V	237 238 239 240 241	BC548C BC548C BAW62 BAW62 BAW62	PH PH PH PH PH		44196 44196 30613 30613 30613	
VVV	242 243 244 245 246	BAW62 BAW62 BAW62 BAW62 BC548C	PH PH PH PH PH	4822 130 4822 130 4822 130 4822 130 4822 130	30613 30613 30613 30613 44196	
VVV	247 248 249 250 251	BC548C BC548C BAW62 BAW62 BAW62	PH PH PH PH PH	4822 130 4822 130 4822 130 4822 130 4822 130	44196 44196 30613 30613 30613	
VV	252 253 254 255 256	BAW62 BA280 BAW62 BAW62 BC548C	PH PH PH PH PH	4822 130 5322 130 4822 130 4822 130 4822 130	30613 34302 30613 30613 44196	
Ÿ	257 258 259	BC548C BC548C BC548C	PH PH PH	4822 130 4822 130 4822 130	44196 44196 44196	
> > > > >	263	BC558B BAW62 BAW62 BC558B BAW62 BZV46-C1V5	BZX79/C6 ^V PH PH PH PH PH PH	V8 4822 130 4822 130 4822 130 4822 130 4822 130 5322 130	44197 30613 30613 44197 30613 34865	4822 130 34278
V V V	268 269 271 272 273	BC548C BC548C BSX20 BC548C BC548C	PH PH PH PH PH		44196 44196 41705 44196 44196	
٧	274 276 277 278 279	BAW62 BAW62 BAW62 BAW62 BAW62	PH PH PH PH PH	4822 130 4822 130 4822 130 4822 130 4822 130	30613 30613 30613 30613	
A A A	281 282 283 284 285	BAW62 BAW62 BAW62 BC548C BC548C	PH PH PH PH PH	4822 130 4822 130 4822 130 4822 130 4822 130	30613 30613 30613 44196 44196	
A A A A	286 287 288 289 291	BC548C BC548C BFY90 BFY90 BF324	PH PH PH PH PH	4822 130 4822 130 4822 130 4822 130 4822 130	44196 44196 40493 40493 41448	
V V V V	292 293 294 295 296	BFQ24 BF324 BAW62 BAW62 BA280	PH PH PH PH PH	5322 130 4822 130 4822 130 4822 130 5322 130	41664 41448 30613 30613 34302	
V V V V	297 298 299 300 301	BA280 BAW62 BAW62 BAW62 BAW62	PH PH PH PH PH	4822 130 4822 130	34302 30613 30613 30613 30613	

			ORDERING CODE	
V 501	ON905	PH	5322 130 41904	
V 502	BZX79-C5V6	PH	4822 130 34173	
V 503	BF324	PH	4822 130 41448	
V 504	BFW30	PH	5322 130 40379	
V 506	BC558B	PH	4822 130 44197	
V 507	BF199	PH	4822 130 44154	
V 508	BF199	PH	4822 130 44154	
V 509	BC548C	PH	4822 130 44196	
V 511	BC548C	PH	4822 130 44196	
V 512	BZX79-B6V8	PH	4822 130 34278	
V 513 V 514 V 516 V 518 V 519	BC558B BZV46-C2V0 24 BAW62 BF450	PH PH PH PH	4822 130 44197 4822 130 31248 5322 130 41993 4822 130 30613 4822 130 44237	
V 521	BC548C	PH	4822 130 44196	
V 631	BC548C	PH	4822 130 44196	
V 632	BSX20	PH	4822 130 41705	
V 633	BFQ24	PH	5322 130 41664	
V 634	BFQ24	PH	5322 130 41664	
V 636	BFQ225	PH	5322 130 42031	
V 637	BFQ225	PH	5322 130 42031	
V 701	ON905	PH	5322 130 41904	
V 702	BZX79-C5V6	PH	4822 130 34173	
V 703	BF324	PH	4822 130 41448	
V 704	BFW30	PH	5322 130 40379	
V 706	BC558B	PH	4822 130 44197	
V 707	BF199	PH	4822 130 44154	
V 708	BF199	PH	4822 130 44154	
V 709	BC548C	PH	4822 130 44196	
V 711 V 712 V 713 V 714 V 716	BC548C BZX79-B6V8 BC558B BZV46-C2V0 24	РН РН РН РН	4822 130 44196 4822 130 34278 4822 130 44197 4822 130 31248 5322 130 41993	
V 718	BAW62	PH	4822 130 30613	
V 719	BF450	PH	4822 130 44237	
V 721	BC548C	PH	4822 130 44196	
V 722	BC548C	PH	4822 130 44196	
V 831	BF324	PH	4822 130 41448	
V 832	BF324	PH	4822 130 41448	
V 833	BFQ22S	PH	5322 130 42031	
V 834	BFQ22S	PH	5322 130 42031	
V 851	BFQ24	PH	5322 130 41664	
V 852	BF450	PH	4822 130 44237	
V 853 V 854 V856	BF450 BFQ24	PH PH BC558B	4822 130 44237 5322 130 41664	4822 130 44197
V 857	BAW62	PH	4822 130 30613	
V 858	BAW62	PH	4822 130 30613	
V 859	BC548C	PH	4822 130 44196	
V 860	BAW62	PH	4822 130 30613	
V 861	BF199	PH	4822 130 44154	
V 862	BF199	PH	4822 130 44154	
V 863	BC558B	PH	4822 130 44197	
V 864	BC548C	PH	4822 130 44196	
V 865	BF199	PH	4822 130 44154	
V 866	BC548C	PH	4822 130 44196	
V 867	BA280	PH	5322 130 34302	
V 868	BA280	PH	5322 130 34302	

				ORDERING GODE
A A A A	869 870 871 872 873	BF199 BC548C BC548C BF199 BF199	PH PH PH PH PH	4822 130 44154 4822 130 44196 4822 130 44196 4822 130 44154 4822 130 44154
V V V V	874 875 876 877 878	BF199 BC548C BF199 BZX79-C4V7 BF199	PH PH PH PH PH	4822 130 44154 4822 130 44196 4822 130 44154 4822 130 34174 4822 130 44154
V V V V	879 880 881 882 883	BF199 BC548C BZX79-C6V2 BF199 BF199	PH PH PH PH PH	4822 130 44154 4822 130 44196 4822 130 31111 4822 130 44154 4822 130 44154
V V V V	888	BAW62 BZX79-C4V7 BFS21A BAW62 BAW62	PH PH PH PH PH	4822 130 30613 4822 130 34174 5322 130 40709 4822 130 30613 4822 130 30613
V V V V	891 892	BZX79-C6V8 BAW62 BAW62 BC548C BAW62	PH PH PH PH PH	4822 130 34278 4822 130 30613 4822 130 30613 4822 130 44196 4822 130 30613
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	896 897	BF199 BC548C BC548C BC548C BC548C	PH PH PH PH PH	4822 130 44154 4822 130 44196 4822 130 44196 4822 130 44196 4822 130 44196
V V V V		BAW62 BAW62 BAW62 BAW62 BAW62	PH PH PH PH PH	4822 130 30613 4822 130 30613 4822 130 30613 4822 130 30613 4822 130 30613
V V V V	908 909	BC548C BC558B BC548C BAW62 BF450	PH PH PH PH PH	4822 130 44196 4822 130 44197 4822 130 44196 4822 130 30613 4822 130 44237
A A A	914	BF450 BF450 BF450 BF450 BF450	PH PH PH PH PH	4822 130 44237 4822 130 44237 4822 130 44237 4822 130 44237 4822 130 44237
V V V	921 922 923	BFS21A BF450 BF450 BFQ24 BFQ24	PH PH PH PH PH	5322 130 40709 4822 130 44237 4822 130 44237 5322 130 41664 5322 130 41664

Fig. 7.7. Time-base unit p.c.b. with component location raster

	Capaci	tors
	C201	A11
	C202	A11
	C203	A12 B13
	C204 C206	B13
	C207	C12
	C208	B15
	C209	C14
	C211	B13/C13
	C212	C15
	C213	C15
	C216 C218	C14 C15
	C218	C15
	C221	C17
	C222	D13/C13
	C223	D13
	C224	D14/C14
	C226 C227	D15/D16 A12
	C232	D14
	C234	D16
	C236	D16
	C237	D16
	C238	D17/D16
	C240 C241	C17 D16/E15
	C241	D16/E16
	C243	D16/E16
	C244	D16
	C246	D16
	C247 C248	D16/E16 D17
	C249	D13/E13
	C250	F13
	C251	D14
	C252	F17
	C253 C254	E14 E13
	C255	E14
	C256	E16
	C257	E12
	C258	F14
	C259 C260	F13 F17
	C261	F13
	C262	F12
	C263	F12
	C264	F13
	C265 C266	D14/C14 F17
	C267	F15
	C268	F12/F13
	C269	D14
L	C270	D14

MAT 1179

Capacitors C201 A11 C202 A11 C203 A12 C204 B13 C206 B13 C12 C207 C208 B15 C14 C209 C211 B13/C13 C212 C15 C213 C15 C14 C216 C15 C218 C15 C219 C221 C17 D13/C13 C222 C223 D13 C224 D14/C14 C226 D15/D16 C227 A12 C232 D14 C234 D16 D16 C236 C237 D16 C238 D17/D16 C17 C240 D16/E15 C241 C242 D16/E16 C243 D16/E16 C244 D16 D16 C246 C247 D16/E16 D17 C249 D13/E13 C250 F13 D14 C251 C252 F17 C253 E14 E13 C254 C255 E14 E16 C257 E12 C258 F14 F13 C259 F17 C260 F13 C261 C262 F12 C263 F12 C264 F13 C265 D14/C14 C266 F17 C267 F15 F12/F13 C268 D14 C269

D14

C270

7.4. LOCATION LIST OF PARTS SITUATED ON THE TIME-BASE UNIT A2 (see Fig. 7.7)

C271 C14	R216 A11	R276 D14
C272 C14	R217 A11/B11	R277 D14/C14
C273 C14	R218 B13	R278 D14/C14
C274 C14/D14	R219 A13	R279 C15
	1	R282 D15
C275 D14	R220 B13	R283 D15
C276 D14	R221 A13	R284 D15
C277 D14	R222 B16	R285 D15
C278 E14	R223 B16	R286 D15
C279 E14	R224 B16	R287 D16
C280 E14	R226 B16	R288 D14
		R289 D16
C282 B15/B14	R227 C16	R290 D16 (TS)
C283 E14	R228 C16	R291 D17
C284 E14	R229 B17	R291 D17
C286 D14	R230 C16	R293 D17
C287 B17	R231 B16/B17	·
C288 D14	R232 C16/C17	R294 D17 and D16 (TS)
C289 D14	R233 C14	R296 D17
C1372 B15	R234 C14	R297 D13/E13
C1373 B16	R236 B14/C14	R298 D14/E14
	R237 C14	R299 E13
C1374 A15		R300 E12
	R238 C14	R301 D17
Integrated circuits	R239 C14	R306 D15/E12
D201 A11/A12	R241 C15	R307 E13
D202 B14/B13	R242 F12	R308 E13
D203 C13	R243 C12/C13	R309 E13
D204 C13	R244 C12	1
D204 C13	R246 D11	1
1	R247 C12	R312 E14
D207 D13/C13	R248 C14	R317 E15
D208 D12	R249 C14	R318 E15
D209 D13		R319 E15
D211 D12/E12	R250 B14/C14	R321 E15
D212 D13/E13	R251 D13/C13	R322 E15
D213 E12	R252 C14	R323 E16
D214 E13	R253 D14	R324 E17
D216 F13	R254 C14	
D217 C12/B12	R255 C14	
D217 C12/B12	R256 C15	
D210 B12/B13	R257 C15	· ·
Polov	R258 C16	R328 E16
Relay	R259 C15	R329 E17
K1371 B16	R259 C15	R331 E17
	R261 C17	R332 E17
Resistors	R261 C17	R333 E17
R201 A11	R263 C17	R334 E17
R202 A12	R263 C17	R336 E11/E12
R204 A13	R264 C17 R265 C16 (TS)	R337 D11
R206 B14	R266 C16	· ·
R207 A13/B13	R267 C16	l l
R208 B14	R268 C17	R339 F13
R209 A14/B14	R269 B17	R341 F13
	R271 B17	R342 F14
	R272 E12	R343 F14
		R344 F14
R214 A15/B15	R274 D13	R345 F14
	R275 C14	R346 F14

(TS) = located on track side

R347	F15	R404	B12/A12	V239	D11/D12
R348	F15	R405	A13	V240	D16 (TS)
R349	F16/F15	R406	A12	V241	D11/D12
R351	F16	1		V242	D15/E15
1		R407	C12/C13	V243	D15/E15
R352	F16	R1370	A17	V243	
R353	F16	R1371	B15	1	D15/E15
R354	F16	R1372	B15	V245	D15 (TS)
R355	A12	R1373	B15	V246	D16
R356	F17	R1374	B15	V247	D17
R357	F17	1		V248	D17
11357	1-17	R1376	A16/B16	V249	E12
R358	F17	R1377	C17	V250	C15 (TS)
R359	F12	R1378	A16/B16	V251	E12
R360	C13/B13	R1379	A15/B15	V252	E13
R361	F11	R1381	A15/B15	V253	C16 (TS)
R362	F12	R1383	A15/B15	V254	C16 (TS)
1		1 1303	A15/B15	V255	F11
R363	F13	R1384	A16/B16	V256	E16
R364	C12	R1388	A17/B17	V257	E16
R365	B12	R1389	B17	V258	E17
R366	C11	R1392	B17	V259	E17
R367	F14	V200	B12/A12	V260	D17
			•	V261	E17
R368	F14	V201	A14	V261	E17 E11/E12
R369	F14	V202	A14	1	
R370	B13	V203	B14	V263 V264	E11/E12 F13
R371	F15	V204	B14	ı	
R372	F15	V205	B14	V265	E11
R373	F15	1		V266	F14
1		V206	B13	V267	F17
R374	F15	V207	B16	V268	F17
R375	C11	V208	C16	V269	F12
R376	F15	V209	C15	V271	F12
R377	F16/F15	V211	C15	V272	F13
R378	F16	V212	C14	V273	F14
F379	F16	V213	C16	V274	F15
R381	F16	V213	C16	V276	F15
R382	F16	1		V277	F15
1		V216	C16	V278	F15
R383	F16	V217	C16/C17	V279	F16
R384	D14	V218	C11	V281	F16
R385	D14	V219	C15	V282	F11
R386	E14	V220	C12	V283	F11
R387	E14	V220	C14	V284	F12
R388	D15/E15	V221	C14	V285	C11
				V286	F13
R389	E14/E15	V223	C16	V287	F14
R390	E14	V224	C16	V288	B13/B12
R391	E14	V225	B14	V289	A13/A12
R392	E14/D14	V226	D14	V291	D14
R393	E14	V227	C15	V291	E14
		V228	C15/C16	V 292 V 293	E14 E14
R394	E15/E14	V229	C16	V 293 V 294	D11/D12
R395	E14	V230	D16 (TS)	i	1
R396	E14	V231	D15	V295	D12
R397	E15	V232	D16	V296	B12
R398	B13	V233	D15	V297	B12
R399	B12			V298	B12
1		V234	D16	V299	A12
R400	B12	V235	D11	V1371	B16
R401	B12	V236	D16	V1372	A16
R402	B12	V237	D15	V1373	B15
R403	B12	V238	D15/D16	V1374	B17
			···		

Fig. 7.8. Pre-amplifier and trigger unit p.c.b. with component location raster

7.5. LOCATION LIST OF PARTS SITUATED ON THE PRE-AMPLIFIER AND TRIGGER UNIT 3 (see Fig. 7.8).

154

LOCATIO	ON LIST OF PARTS SITU	ATED ON TI	HE PRE-AMPLIFIER	AND TRIGGER	R UNIT 3 (see Fig. 7.8).
Capcitors					
C501	F1	C573	C6	C729	D1
C502	F1	C574	C6	0,20	
C503	F2	0074	00	C731	D1
C503	F3	CEZC	DA	1 6/31	וט
C504	гэ	C576	D4	0700	5.0
0500				C736	D6
C506	F2	C631	E8	C737	D6
C507	F3	C632	E8	C738	C5
C508	F2	C633	D8	C739	C5
C509	F3	C634	D8		
				C741	C5
C511	E2	C636	E9	C742	C7
		C637	E9	C743	D6
C513	E2	C638	C10	C744	D6
C514	E3	C639	C10	0,	
1		0000	010	C746	D6, E6
C521	F4	C641	C10	0740	00, 20
C522	F5	1		0754	50
		C642	B10	C751	D8
C523	F5	C643	E10		
		C644	E10	C753	D8
C526	E4, F4	C646	E10	C754	E7
C527	E5	C647	D9		
C528	E4	C648	D9	C756	D8
C529	F1	C649	D9		
		1		C760	B10
C531	F1	C651	D10	C761	B10
		555.	510	C762	B10
C536	F6	C653	C9	C763	
C537	E6	i		l l	C10
C537	E4	C654	C8, C9	C764	F10
1					
C539	E4	C656	C9	C766	C8
		C657	C10	C767	D8
C541	E4			C768	F6
C542	E7	C702	E1		
C543	E6	C703	D2	C771	F10
C544	E6	C704	D3	C772	E9
				C773	D9
C546	F6	C706	D2		
		C707	D3	C780	B10
C551	E8	C708	E2	C781	B10
C552	E8	C709	E3	C782	B10
C553	F8	0,00	LJ	i	
C554	F8	C711	Γn	C783	C10
0334	10	C711	E2	C784	F7
CEEC	Ε0.	C712	E2		
C556	F9	C713	E2	C786	D7, D8
0504		C714	E3	C787	D7
C561	F5			C788	F1
		C716	C4		
C563	E4	C717	C4	C800	A9
C564	E6	1		C801	B10
		C721	D4	C802	B10
C566	E4	C722	D5	C803	F10
		C723	D5	C804	F9
C568	D4			C804	
C569	C6	C726	D4	1	E10
5500				C807	D9
C572	EE	C727	D5	C808	D1
0072	E5	C728	D4	1	

C831	D9	C921	DC CC	R513	F2
1	u u		B6, C6	1	
C851	A2	C922	B1	R514	E2
C851	A2	C923	B7	R516	E3
C852	A7	C924	B7	R517	E4, F4
C853	A7	C925	C2	R518	E4
1		C926	B8	R519	F4
C854	A7	C927	B8	1	F- 4
C856	A9	C928	B8	R521	F4
C857	A9	C929	C1	R522	F4
C858	A1			R523	F4
ļ		C930	C2	R524	F4
C861	A2	C931	C1, C2	İ	
C862	A2	C932	C2	R526	E5
C863	A2	C933	C2	R527	F4
C864	A2	C934	C1	R528	F5
C866	A7	C935	C3	R529	F5
C867	A9	C936	C2	R531	F5
1				R532	F5
C868	A1	C938	C2	i	
C869	B3	C939	C3	R533	E5
C870	B2			R534	E5
C872	A5	C940	C3	R536	E4
C873	A5	C942	B4	R537	F5
C874	B6	C944	C3, C4	R538	E6, E5
i		C945	C3	R539	E5
C878	A7	55.5			
C879	A2	Integrate	d circuit	R541	E5
C881	A1	-		R543	E4
		D501	E4, F4	R544	E6
C884	B3	D502	E5	N544	E0
C885	B4	D503	F6	R546	C6
C888	В9	D504	E7, F7	R547	E4
				R548	F5
C889	A9	D631	D8, E8	R549	C6
C890	B 4	D632	E9	1	
C893	A4	D633	E10	R551	F5
1		D634	E9	R552	F5
C896	B7	D636	C10	F553	F5
C897	A8			R554	F6
C898	A9	D701	D4	R555	F6
C899	B2	D702	D5	R556	F6
C900	B2	D703	D6	F557	F5
C902	B5, C5	D704	D7	R558	E5, F6
				1	E5, F6 F6
C903	B5	D831	D9	R559	
C904	B5	D851	A6	R560	E6
C905	B2	D852	A5	R561	E6
C906	B5	D853	B2, B3	R562	E6
C907	B6	D854	C2, C3	R564	E6
C908	C5	5004	02, 00		
C909	A3	Pasisas		R566	F6
C910	B2, B3	Resistors	•	R567	F6
C911	A3	R501	F1	R569	E7
		R502	F1	i	
C913	C5	R503	F1	R571	E7
C914	C3	R504	F1	R572	E7
C915	A3	R506	F1	R573	E6
C916	B4, C4			R574	E6
C917	B5	R508	F2		
C918	B5	R509	F2	R576	E6
C919	A8, A9	R511	F3	R577	E6
C920	C1	R511	F4	R578	E6
5525	V 1	noiz	Г 4		
<u></u>				<u> </u>	

			· · · · · · · · · · · · · · · · · · ·		
R582	F6	R651	E10	R722	E4
R583	F6	R652	E10	R723	D4
R584	F6	R 653	E10	R724	D4
R586	F6	R 654	E10	R726	D5
R587	F6	R656	E10	R727	D4
R588	F7	R657	F10	1	
I .	F7	R658	D9	R729	D5
R589	Γ/	R659	D9	R732	D5
R591	F7	R660	D9	R733	D5
R592	F7	R661	D9	R734	D5
R 59 3	E7	R662	D9	R736	D4
R594	E7	R663	D9	R737	D5
R596	F7	R664	C9	R738	D5
R597	F7			R739	D5
R598	F7	R666	C9	1	1
R 59 9	F7	R668	D9	R741	D5
R601	F 7	R669	C9	R742	C5
R602	F7	R671	C9	R743	D4
R603	F8	R672	C9	R744	C5
R604	E8	R673	C9	R746	C4
R606	E8	R674	C9	R747	C4
R607	E8			R748	C5
R608	E8	R676	C9	R749	C5
R609	E8	R678	C9	R751	E5
		R679	C9	R752	E5
R611	E8	R681	C9	R753	D5
R612	F8	R682	C9	R754	E6
R613	E8	R683	C10	R755	D6
R614	F 7	R684	C8	R756	E6
R616	F8	R686	C9	R757	D5
R617	F8	R687	C9	R758	C5
R618	F8	R688	C9	R759	D6
R619	F9	R689	C9	R760	D6
R621	F9			R761	C5
R622	F9	R691	D9	R762	D6
R623	F9	R692	C10	R763	C5
R624	A10	R693	C10	R764	D6
R626	A10	R694	C10	R766	D6
R627	A10	R701	E1	R767	D6
1		R702	E1	R768	D6
R632	F9	R703	E1	R769	C7
R633	E8	R704	E1		l
R634	F8	R706	D1	R771	C7
R636	F8	R708	D2	R773	C6
R637	F8	R708	D2 D2	R774	C6
R638	F8			R776	C6
R639	C7	R711	D3	R777	C6, D6
R641	D8	R712	D4	R778	D6
R642	D8	R713	D2	R779	D6
R643	D10	R714	E2	R781	D6
R644	C10	R716	E3	R782	D6
R646	E9	R717	E4	R783	D6
R647	E9	R718	D4	R784	D6
R648	E9	R719	D4	R786	E7
R649	E10			R785	E7 E7
				R788	D7
				R789	D7
			·	1	<i>-</i> ,

R791	E7	R878	A2	R953	A4
R792	D7	R879	A2 A2	R954	B5
R793	D7	R880,	A3, B3	R955	A3
	D7	R881	A3, B3 A3	R956	A5
R794		R882	A3 A3	R957	A5
R796	D7			R958	B6
R797	D7	R883	B3	R959	A6
R798	D7	R884	B6	R960	A3
R799	D7	R886	A7	R961	A7
R801	D7	R887	B7	R962	A7
R802	D7	R888	A7, A8	R963	A8
R803	D8	R889	A7, A8	R964	A8
R804	D8	R891	A8, A9	R965	B2
		į.		R966	A8
R806	D8	R893	A9	R967	A9
R807	D8	R894	A3	R968	B1
R808	D8	R896	A2	R969	B2
R809	D8	R898	A2	R970	A9
R811	D8	R899	A2	R971	B2
R812	D8	1		R972	B3, B4
R813	D8	R901	B3	R973	A4
R814	E7	R902	B3	R974	B4
R816	E8	R903	B6	1	B2
R817	E8	R912	A5	R975	
R818	E8	R913	A5	R976	A3
R819	D7	R914	B6	R977	B5
1		R917	В7	R979	B5
R821	C8	R918	A7	R980	B5
R823	C8	R919	B6	R982	B5
R824	E7	1			
R826	E7	R921	B6	R984	B5
R827	E7	R922	A8	R986	A6, B6
R828	E7	R923	A8	R987	B6
·		R927	A7	R988	B6
R831	D10	R928	A8	R991	A7
R832	C10	R929	A9	R992	A7
R833	D10	R930	A2	R993	B9
R834	D10	R931	A2	R994	В9
R836	D10	R932	B1	R995	A9
R837	D10	R933	A2	R996	B2
R838	D10	R934	A2	R997	B2
R839	D10	R936	A3	R998	C2
R841	D10	R937	B2	R999	B3
R842	D10	R938	A1	R1000	B3
R843	D10	R939	A2	R1001	B2
R844	B8	R940	B1	R1002	B3
		R941	B3	İ	
R846	C8	R942	A4	R1004	B4
R847	C8	R943	A4 A4	R1005	B4
R848	C8	R944	B4	R1006	C3
R849	B8	R945	B3	R1007	C3
R868	A1	R946	A4	R1008	B4
R869	A1	R947	A3, A4	R1011	B5
R871	A2	R948	A3, A4 A4	R1013	B5
R872	A1	1,545	, v i	R1014	B5
R873	A2			1	
R874	A2 A2	}		R1016	B5
R875	B2			R1017	B5
R876	A2			R1019	B6
R877	A2 A2				
	~	L			

R1021	В7	R1092 C2	V636 C9
R1022	B6	R1093 C2	V637 C9
R1023	C6	R1094 C2	
			V701 D4
R1024	B6	R1095 B7	V702 E4
R1026	B 6	R1096 C2	V703 D5
R1027	B7	R1097 C2	V706 D4, D5
R1028	B6, C6	R1098 B7	V700 D4, D5
R1029	B7	R1099 B8	
			V708 D5
R1031	B7	Reed Relays	V709 D6
R1032	B7	K501 F2	V711 E7
R1033	C7	K502 F3	V712 D7
R1034	B7	K502 F3 K503 F2	V713 D7
R1036	B7		V714 D7
R1037	B8	K504 F3	
R1038	B8	K506 E2	V716 D8
R1039	B8	K507 E3	V718 C8
1		K701 D2	V719 E7
R1041	B8		
R1042	B8		V721 D8
R1043	B8	K703 D2	V722 E7
R1044	B8	K704 D3	V831 D10
R1045	B8	K706 E2	V832 D10
R1046	B8	K707 E3	V833 C8
R1047	B8	K851 A1, A2	V834 C8
R1048	В9	N051 A1, A2	
R1049	B8	0.7	V851 A2
R1051	B8	Coils	V852 A2
!		L701 D5	V853 A2
R1056	C1	L801 A10	V854 A2
R1057	C1	L802 B10	V856 A2
R1058	C2		V857 B4
R1059	C2	L803 A10	V858 B3
R1060	C3	-	
R1061	B2	Transformer	V860 A8
R1062	C3	T801 B3	V861 A3
R1063	C3		V862 B3
R1064	C3	Semiconductors	V863 A3
R1065	C3	V501 F4	V864 A4
R1066	C3		V865 B7
R1067	B4	V502 F4	V867 A4, A5
R1068	C5	V503 F5	V868 A5
R1069	B4	V504 F5	V869 A4
		V506 F5	V870 A8
R1071	C5	V507 F5	V870 A3
R1072	C1	V508 F5	
R1073	B2	V509 E6	V872 B6
R1076	C2		V873 B6
R1077	C2	V511 F7	V874 B7
		V512 F7	V875 A8
R1079	C2	F513 F7	V876 B6
R1080	C1	V514 E7	V877 B4
R1081	C2	V516 E8, F8	V878 B7
R1082	C1	·	V879 B7, B8
R1083	C3	V518 F9	V880 B9
R1084	C4	V519 F7	V881 B4
R1085	B3	V521 F9	V882 A8
R1086	C1	V631 E10	V883 A8
R1087	C1		V884 B1
R1088	C1	V632 F10	V885 C3
R1089	C2	V633 D9	
R1090	B6	V634 D9	

V887	В2	
V888	В3	
V889	B4	
V890	C3	
V891	C3	
V892	C3	
V893	C4	
V895	B8	
V896	B4	
V897	B5	
V898	B4	
V899	В6	
V901	B5	
V902	B5	
V903	B1	
V904	B1	
V907	C4	
V908	B4	
V909	B5	
V910	C3	
V912	C6	
V913	B7	
V914	B7	
V916	В8	
V917	B8	
V918	В8	
V919	C2	
V921	C2	
V922	C2	
V923	C1	
V924	C2	

8. DIAGRAMS AND PRINT LAY-OUTS

8.1. LOCATION OF ELECTRICAL PARTS

Item numbers of $C \dots$, $R \dots$, $V \dots$ and $K \dots$ have been divided in groups which relate to the circuit, the unit and the circuit diagram, according the following table.

Itemnumber	Location	Unit	Figure
1 99	Potentiometer unit, front and rear side	103	8.17.
100 199	Switch unit	102	8.16.
200 499	Time base unit	2	8.8./8.10.
1370 1399			
500 1099 [′]	Preamplifier and trigger unit	3	8.1./8.3.
1100 1199	Trigger selection unit	4	8.7.
1200 1299	Final Y amplifier	. 9	8.2.
1300 1369	Final X/Z amplifier	5	8.12.
1500 1599			
1400 1499	Power supply	6	8.14

NOTE: The components on the time base unit (unit 2) and the preamplifier and trigger unit (unit 3) can be found with the location lists in chapter 7.4. and 7.5.

Fig. 8.1. Pre-amplifier and trigger-unit (unit 3), p.c.b. lay-out

Fig. 8.2. Final Y-amplifier (unit 9), p.c.b. lay-out

Fig. 8.3. Circuit diagram vertical deflection (attenuator, channel switch, final Y-amplifier)

Fig. 8.4. Pre-amplifier and trigger-unit (unit 3), p.c.b. lay-out

Fig. 8.5. Circuit diagram main time-base triggering (unt 3)

'g. 8.6. Circuit diagram delayed time-base triggering (unit 3)

Fig. 8.7. Trigger selecton unit (unit 4), p

Fig. 8.7. Trigger selection unit (unit 4), p.c.b. lay-out

Fig. 8.8. Time-base unit (unit 2), p.c.b. lay-out

Fig. 8.9. Circuit diagram main time-base (unit 2)

Fig. 8.9. Circuit diagram main time-base (unit 2)

Fig. 8.10. Time-base unit (unit 2), p.c.b. lay-out

Fig. 8.11. Circuit diagram delayed time-base (unit 2)

Fig. 8.12. Final X/Z amplifier unit (unit 5), p.c.b. lay-out

Fig. 8.13. Circuit diagram final X-amplifier, calibration unit and display section

Fig. 8.14. Power supply unit (unit 6), p.c.b. lay-out

Fig. 8.15. Circuit diagram of power supply and H.V. generator

MAT 1194

Fig. 8.16. Switch unit (unit 102), p.c.b. lay-out

Fig. 8.17. Potentiometer unit (unit 103), wiring lay-out

202

9. VOLTAGE WAVEFORMS IN THE INSTRUMENT

9.1. INTRODUCTION

The waveforms given in this chapter are typical values and represent an average instrument.

So the waveforms measured in your "oscilloscope under test" can differ somewhat from the values given in this manual. The waveforms are listed in 3 chapters:

- 9.2. Vertical deflection and triggering
- 9.3. Horizontal deflection
- 9.4. Power supply

The measurement can be started at every desired point because settings of "measuring oscilloscope" and "oscilloscope under test" that differ from the "standard" settings are indicated beside the waveforms. The test points are marked on the units.

The required test equipment consists of an oscilloscope of 100 MHz (e.g. Philips PM 3262) with a suitable 10:1 attenuator probe.

The input square wave signal for the "oscilloscope under test" can be obtained from a function generator (e.g. Philips PM 5127).

Standard-settings for the "oscilloscope under test"

- Depress the Y-position controls to the non-inverted position (S4 and S5).
- Push the channel A and B signal coupling switches in the AC position (S17 and S18).
- Depress pushbutton A (or B) of the vertical display mode selector S1.
- Set the channel A and B AMPL/DIV controls in the 1 V/div. position and their verniers to CAL.
- Depress pushbutton MTB of the horizontal display mode selector (S2).
- Depress the time base magnifier X MAGN (S7).
- Depress pushbutton AUTO PP of trigger mode selector (S3).
- Set the MTB in the 0.1 ms/div. position and its vernier to CAL.
- Set the DTB TIME/DIV switch in the OFF position and its vernier to CAL.
- Depress pushbutton DC of the MTB and DTB trigger coupling controls (S20 and S19).
- Depress pushbutton A (or B) of the MTB trigger source selector (S23).
- Depress pushbutton MTB of the DTB trigger source selector (S22).
- $-\,$ Apply a square-wave signal on 6 Vp-p/10 kHz to the input sockets A, B and EXT.
- Set the signal in the middle of the screen by means of the channel A (or B) position controls (R1 and R2).
- Set the HOLD OFF control in the CAL position.
- Adjust the DELAY TIME control to 5,00.

Standard-settings of the "measuring oscilloscope"

- The waveforms are measured on channel A, the required AMPL/DIV position is indicated beside every waveform.
- The vertical position of the main time base line without input signal is indicated beside every waveform with a "0".
- The instrument is triggered on channel A.
- Only the MTB is used and the required TIME/DIV position is indicated beside every waveform.
- The MTB trigger coupling control occupies the DC position.

The units on which voltage waveforms can be measured are:

- Unit 2: Time base unit
- Unit 3: Preamplifier and trigger unit; for measurements on test points M23 ... M29, the trigger source selection unit must be lifted.
- Unit 4: Trigger selection unit, the test point on this unit (M27) is not indicated. For the location of M27 refer to the p.c.b. lay-out of the unit.
- Unit 6: Power supply.

9.2 VERTICAL DEFLECTION AND TRIGGERING

Unit 3

Measuring oscilloscope: 0.1 V/div. 20 μ s/div. DC input coupling Oscilloscope under test: M1 = channel A M4 = channel B

Measuring oscilloscope: 10 mV/div. 20 μ s/div. DC input coupling Oscilloscope under test: M2 = channel A M6 = channel B

Measuring oscilloscope: 2 mV/div. 20 μs/div. DC input coupling Oscilloscope under test: M3 = channel A M7 = channel B

Measuring oscilloscope: 5 mV/div. 20 μ s/div. AC input coupling Oscilloscope under test: Select vertical display (S1) via channel A and B.

Measuring oscilloscope:
0.1 V/div.
1 ms/div.
DC input coupling
Oscilloscope under test:
Select vertical display mode
(S1) ALT combined with
TRIG VIEW

Measuring oscilloscope: 0.1 V/div. 0.2 μs/div. DC input coupling Oscilloscope under test: Select vertical display mode (S1) CHOP

Measuring oscilloscope: 5 mV/div. $20 \,\mu\text{s/div}$. AC input coupling Oscilloscope under test:

M16/M17: MTB triggering on channel A.

M18/M19: MTB triggering on

channel B.

Measuring oscilloscope: 5 mV/div. $20 \,\mu s/div$. AC input coupling Oscilloscope under test: MTB triggering via COMP. Waveform depends on channel A and B position control.

Depress ALT of S1

NOTE: For the following measurements the Trigger selection unit must be lifted.

Measuring oscilloscope: 20 mV/div. 20 μ s/div. AC input coupling Oscilloscope under test: Select MTB triggering via channel A and B.

Measuring oscilloscope: 20 mV/div. 20 μ s/div. AC input coupling Oscilloscope under test: Select MTB triggering via the EXT input. Apply the channel A/B input signal to EXT input socket.

Measuring oscilloscope:
20 mV/div.
20 µs/div.
AC input coupling
Oscilloscope under test:
Select MTB triggering via COMP.
Waveform depends on channel A
and B position controls.

Measuring oscilloscope: 20 mV/div. 5ms/div. AC input coupling Oscilloscope under test: Select MTB triggering via LINE.

Measuring oscilloscope: 20 mV/div. 20 μs/div. AC input coupling Oscilloscope under test: DC trigger coupling of MTB.

Measuring oscilloscope: 20 mV/div 20 μ s/div. AC input coupling Oscilloscope under test: LF trigger coupling of MTB.

Measuring oscilloscope: 20 mV/div. 20 μ s/div. AC input coupling Oscilloscope under test: HF trigger coupling of MTB.

Measuring oscilloscope: 50 mV/div. 20 μs/div. AC input coupling

Measuring oscilloscope:
10 mV/div.
20 μs/div.
AC input coupling
Oscilloscope under test:
This test point is located on the trigger selection unit.
Select MTB triggering via the EXT input. Apply the channel A/B input signal to the EXT input socket.

Measuring oscilloscope: 20 mV/div. 20 μ s/div. AC input coupling Oscilloscope under test: Select DTB triggering on channel A and B

Measuring oscilloscope: 20 mV/div. 20 μ s/div. AC input coupling

Measuring oscilloscope: 20 mV/div. 20 μs/div. AC input coupling. Oscilloscope under test: LF trigger coupling of DTB.

Measuring oscilloscope: 20 mV/div. 20 µs/div. AC input coupling Oscilloscope under test: HF trigger coupling of DTB.

9.3 HORIZONTAL DEFLECTION

Unit 2

Measuring oscilloscope: 0.1 V/div. 20 μs/div. DC input coupling

Measuring oscilloscope: 0.2 V/div. 0.5 ms/div. DC input coupling

Measuring oscilloscope:
0.2 V/div.
0.5 ms/div.
DC input coupling
Oscilloscope under test:
Turn the HOLD OFF control fully anti-clockwise.

Measuring oscilloscope:
0.2 V/div.
0.5 ms/div.
DC input coupling.
Oscilloscope under test:
Select ALT TB mode (S2).
Adjust the DTB to 20µs/div.
Operate the HOLD OFF control to avoid "double" triggering.

Measuring oscilloscope: 0.2 V/div. 0.2 ms/div. DC input coupling.

Measuring oscilloscope: 0.2 V/div. 0.5 ms/div. DC input coupling. Oscilloscope under test: Select ALT TB mode (S2). Adjust the DTB to 20 μ s/div.

Measuring oscilloscope:
0.1 V/div.
20 µs/div.
DC input coupling
Oscilloscope under test:
Adjust the DTB to 20 µs/div.
Select ALT TB mode (S2).
Depress A of S22

Measuring oscilloscope:
0.2 V/div.
0.2 ms/div.
DC input coupling.
Oscilloscope under test:
Adjust the DTB to 20 μs/div.
Select DTB mode (S2).

Measuring oscilloscope:
0.1 V/div.
0.5 ms/div.
DC input coupling.
Oscilloscope under test:
Adjust the DTB to 20 μs/div.
Select DTB mode (S2).

Measuring oscilloscope: 0.1 V/div. 0.5 ms/div. DC input coupling Oscilloscope under test: Adjust the DTB to 20 μ s/div. Select DTB mode (S2).

Measuring oscilloscope: 0.1 V/div. 0.5 ms/div. DC input coupling. Oscilloscope under test: Adjust the DTB to 20 μ s/div. Select ALT TB mode (S2). Operate the HOLD OFF control to avoid "double" triggering.

Measuring oscilloscope: 0.1 V/div. 0.5 ms/div. DC input coupling Oscilloscope under test: Adjust the DTB to $20~\mu s/div$. Select ALT TB mode (S2).

9.4. POWER SUPPLY

Unit 6

Measuring oscilloscope: 0.1 V/div. 5 ms/div. DC input coupling

Measuring oscilloscope: 2 V/div. 20 μ s/div. DC input coupling

Measuring oscilloscope: 2 V/div. 10 μ s/div. DC input coupling

10. MODIFICATIONS

MODIFICATIONS:

Fig. 1. Time base unit, p.c.b. lay out.

Fig. 2. Preamplifier and trigger unit, p.c.b. lay out.

Fig. 3. Final X/Z amplifier, p.c.b. lay out.

Fig. 4. Final Y amplifier, p.c.b. lay out.

PHILIPS

Scientific & Analytical Equipment Test & Measuring Instruments Industrial Automation Advanced Automation Systems Welding Scientific & Industrial Equipment Division

01-07-83

TEST AND MEASURING EQUIPMENT

OSC 159

OSCILLOSCOPE PM 3267/02

Already published: OSC 149.

Subject: modifications introduced starting with the /02 production series.

Note: this service information sheet must be used together with service manual 9499 445 01111.

1. NEW UNITS.

Starting with the /02 production series four printed circuit boards with a modified lay-out are introduced. The differences between the new units and the ones published in your service manual are minimal. The lay-out adaptions concern additional components that were soldered upon the unit and that are now integrated in the printed wiring. The adapted units are:

- Unit 2: time base unit (see fig. 1).
- Unit 3: preamplifier and trigger unit (see fig. 2).
- Unit 5: final X/Z amplifier (see fig. 3).
- Unit 9: final Y amplifier (see fig. 4).

Note: as the new units have the same electrical and mechanical characteristics as the old ones the service ordering codes have not been changed.

2. MODIFICATIONS OF CIRCUITRY.

- 2.1. Correction of parts list.
- Change C915 from 33uF into 6,8 uF/25V (5322 124 14081).
- Change R538 and R738 into service codenr. 5322 101 14042 (resistance value unchanged).
- Remove C930.
- V852, V853, V921 and V922 must be changed from BF450 into BF324 (4822 130 41448).
- Change C927 and C928 into 2,7 pF (4822 122 31038).
- C861, C862, C911, C963 and C978 are not necessary anymore on the unit.
- V861 and V862 are changed from BF199 into BFQ22S (5322 130 42031).
- Change C710 from 3,3 into 680 pF (4822 122 30053).

- 2.2. This modification avoids bandwidth decrease at higher ambient temperatures in the AMPL/DIV settings 2, 5 and 10 mV/div.
- Change V514 and V714 from BZV46 into BAW62 (4822 130 30613).
- Change R592 and R792 from 348 Ohm into 348 k.Ohm (5322 116 54325).
- Change R601 and R801 from 2,05 k.Ohm into 316 Ohm (5322 116 54511).
- Change R588, R589, R788 and R789 from 1,33 into 1,78 k.Ohm (5322 116 50515).
- Change R573 and R773 from 4,02 into 5,11 k.0hm (5322 116 54595).
- Change R602, R603, R802 and R803 from 147 into 178 Ohm (5322 116 54492).
- Change R598, R599, R798 and R799 from 909 Ohm into 1,21 k.Ohm (5322 116 54557).
- Change R922 and R923 from 48,7 into 10 0hm (5322 116 50452).
- 2.3. For a better trigger view pulse response via the vertical channels. (In combination with p.c.b. lay out alterations).
- Add C921, C923, C924 and C926 (2,7 pF, 4822 122 31038).
- Add C863 and C879 (15 pF, 4822 122 31058).
- Add C869 (3,3 pF, 4822 122 31041).
- Remove C851 and C864.
- Change C881 from 15 into 27 pF (4822 122 30045).
- Change C896 from 4,7 into 5,6 pF (4822 122 31047).
- Change C910 from 22 into 100 pF (4822 122 31316).
- Change C882 from 1,8 into 0,68 pF (4822 122 31215).
- Change C940 from 68 into 330 pF (4822 122 31353).
- Change C869 from 100 into 1 Ohm (4822 166 51179).
- Remove R874, R934 and R972.
- Change R938 from 46,4 into 133 Ohm (5322 116 54482).
- Change R1082 from 100 into 1 0hm (4822 116 51179).
- Change R942 and R944 from 48,7 into 1 Ohm (4822 116 51179).
- 2.4. In order to avoid DTB oscillations.

Add a series circuit consisting of a capacitor C946 (4,7 pF, $4822\ 122\ 31045$) and a resistor R1070 (51,1 Ohm, 5322 116 54442) between D854/1 and earth.

- 2.5. For an extended vertical positioning range. Change R633 and R642 from 1,05 into 1,15 k.Ohm (5322 116 50415).
- 2.6% For suppression of channel A and B base line distortion at the start of the time base.
- Add a capacitor C789 (10 nF, 4822 122 31414) between the "+14 Volt" side of R722 and the "earth" side of C538 (on conductor side of unit).
- Add a capacitor C790 (10 nF, 4822 122 31414) between the "+14 Volt" side of R527 and the base of V506 (earth). Also this capacitor must be added on the conductor side of the unit.

CODING SYSTEM OF FAILURE REPORTING FOR QUALITY ASSESSMENT OF T & M INSTRUMENTS

(excl. potentiometric recorders)

The information contents of the coded failure description is necessary for our computerized processing of quality data.

Since the reporting of repair and maintenance routines must be complete and exact, we give you an example of a correctly filled-out PHILIPS SERVICE Job sheet.

1	2	3		4									
Country	Day Month Year	Typenumber /Version		Factory/Serial no.									
3 2 1 5 0 4 7 5		0 P M 3 2 6 0 0 2		D O 0 7 8 3									
CODED FAILURE DESCRIPTION (6)													
(5)													
Nature of call Location		Componen	nt/sequence no. C	ategory									
Installation Pre sale repair Preventive maintenance Corrective maintenance Other		R 0 0 6	+	Job completed Working time ® This									
Detailed description of the information to be entered in the various boxes: ①Country: 3 2 = Switzerland													
②Day Month Year 1 5 0 4 7 5 = 15 April 1975													
③Type number/Version O P M 3 2 6 0 0 2 = Oscilloscope PM 3260, version 02 (in later oscilloscopes this number is placed in front of the serial no)													
(a) Factory/Serial number D O O O O 7 8 3 = DO 783 These data are mentioned on the type plate of the instrument													
_	call: Enter a cross in thure description	e relevant box											
Location		Component/seque	nce no.	Category									
	7												
These four boxes are used to isolate the problem area. Write the code of the part in which the fault occurs, e.g. unit no or mechanical item no of this part (refer to 'PARTS LISTS' in the manual). Example: 0001 for Unit 1 000A for Unit A 0075 for item 75 If units are not numbered, do not fill in the four boxes; see Example Job sheet.		graticule, 990002 Knob (inc etc.) 990003 Probe (on to instrum 990004 Leads and 990005 Holder (v fuse, boar 990006 Complete board, h.	y component. conent d in the circuit signation is etters must be rom the left) and boxes and be written (in the last digit most box) in d boxes. ified in the //Not applicable r rack (text tolem, grip, rail, etc.) et. dial knob; cap, and it attached thent) l associated plugs alve,transistor, and, etc.) unit (p.w. t. unit, etc.) r (only those ype number) tation (manual; ant, etc.) bject	O Unknown, not applicable (fault not present, intermittent or disappeared) 1 Software error 2 Readjustment 3 Electrical repair (wiring, solder joint, etc.) 4 Mechanical repair (polishing, filing, remachining, etc.) 5 Replacement (of transistor, resistor, etc.) 6 Cleaning and/or lubrication 7 Operator error 8 Missing items (on pre-sale test) 9 Environmental requirements are not met									

 $\ensuremath{ \begin{tabular}{ll} \ensuremath{ \bigcirc} \ensuremath{ \begin{tabular}{ll} \ensuremath{ \bigcirc} \ensuremath{ \ensuremath{ \ensuremath{ \bigcirc} \ensuremath{ \ensuremath{ \ensuremath{ \bigcirc} \ensuremath{ \en$

® Working time: Enter the total number of working hours spent in connection with the job (excluding travelling, waiting time, etc.), using the last box for tenths of hours.

- 1	1	2	=	1,2	working	hours	(1	h	12	min.

Sales and service all over the world

Alger: Bureau de Liaison Philips, 24 bis Rue Bougainville, El Mouradia, Alger; tel.: 565672

Argentina: Philips Argentina S.A., Cassila de Correo 3479, (Central), 1430 Buenos Aires; tel. (1)70-12421/70-2325/2905/6488

Australia: Philips Scientific & Industrial Equipment Division, Centre Court, 25 - 27 Paul Street, P.O. Box 119, North Ryde/NSW 2113; tel. (2)888-8222

Bangla Desh: Philips Bangla Desh Ltd., P.O. Box 62; Ramna, Dacca; tel. 283332

België/Belgique: Philips and MBLE associates, Philips Scientific and Industrial Equipment Division; 80 Rue des Deux Gares; 1070 Bruxelles, tel. (2) 523.00.00

Bolivia: Industrias Bolivianas Philips S.A., Cajón Postal 2964. La Paz; tel.: 50029/55270/55604

Brasil: Philips Do Brasil Ltda,
Avenida 9 de Julho 5229; Caixa Postal 8681;
CEP 01407 - Sao Paulo (S.P.);
tel. 2825722
Service Centre:
Sistemas Profissionais
Rua Amador Bueno, 474,
Caixa Postal 3159 - S. Amaro
CEP 04752 - Sto Amara (S.P.);
tel. (11) 2476522

Canada: Philips Test and Measuring Instruments Inc., 6 Leswyn Road, Toronto (Ontario) M6A-1K2; tel. (416) 789-7188

Chile: Philips Chiléna S.A., Division Professional, Avda. Santa Maria 0760; Casilla Postal 2687, Santiago de Chile; tel. 770038

Colombia: Industrias Philips de Columbia S.A., Calle 13 no. 51–39, Apartado Aereo 4282, Bogota; tel. 2600600

Danmark: Philips Elektronik-Systemer A/S, Afd. for Industri og Forskning; Strandlodsvej 4, P.O. Box 1919, 2300 København S, tel. (1) 572222

Deutschland (Bundesrepublik): Philips GmbH, Unternehmensbereich Elektronik für Wissenschaft und Industrie, Miramstrasse 87, Postfach 310 320; 35 Kassel-Bettenhausen; tel. (561) 5010

Ecuador: Philips Ecuador S.A., Casilla 343, Quito; tel. 239080

Egypt: Resident Delegate Office of Philips Industries, 5 Sherif Street, Corner Eloui. P.O. Box 1687, Cairo; tel. 754118/754259/754077.

Eire: Philips Electrical (Ireland) Ltd. Newstead, Clonskeagh, Dublin 14; tel. (1) 693355

España: Philips Ibérica S.A.E.,
Dpto Aparatos de Medida, Martinez Villergas 2,
Apartado 2065, Madrid 27;
tel (1) 4042200
Service Centre:
Dpto Tco. de Instrumentación,
Calle de Albasanz 75, Madrid 17;
tel. (1) 2047100

Ethiopia: Philips Ethiopia (Priv. Ltd. Co.), Ras Abebe Areguay Avenue, P.O.B. 2565, Addis Ababa; tel. 448300

Finland: See Suomi

France: S.A. Philips Industrielle et Commerciale, Division S&I, 105 Rue de Paris, 93 002 Bobigny; tel. (1) 8301111

Great Bittain: Pye Unicam Ltd., York Street, Cambridge CB1-2PX, tel. (223) 358866 Service Centre: Beddington Lane, Croydon, Surrey CR9-4EN; tel. (1) 6843670

Greece: See Hellas

Hellas: Philips S.A. Hellénique, 54 Avenue Syngrou, P.O. Box 153, Athens 403; tel. (1) 9215311

Hong Kong: Philips Hong Kong Ltd., P.O.B. 210B, St. George's Building, 21st floor, Hong Kong city; tel. (5) 249246 Service Centre: Hopewell Centre, 16th floor, No. 17, Kennedy Road, Wanchai, Hong Kong; tel. (5) 283575

India: Peico Electronics & Electricals Ltd., S&I Equipment, Shivsagar Estate, Block "A", Dr. Annie Besant Road, P.O.B. 6598, Worli, Bombay 4000 18 (WB); tel. 391431

Indoneiia: P.T. Philips Development Corporation, Jalan Let. Jen Haryone M.T. Kav. 17, P.O.B. 2287, Jakarta-Selatan; tel. (21) 820808 Iran: Philips Iran Ltd., P.O.B. 1297, Teheran; tel. 662281/5

Iraq: Philips Iraq W.L.L., Munir Abbas Building, 4th floor; South Gate, P.O. box 5749, Baghdad; tel. 8880409

Island: Heimilisteaki SF, Saetún 8, Reykjavík;

Islas Canarias: Philips Ibérica S.A.E., Triana 132, Las Palmas, Gasilla 39-41, Santa Cruz de Tenerife

Italia: Philips S.p.A., Sezione S&I/T&M; Viale Eivezia 2, 20052 Monza; tel. (39) 36351

Japan: See Nippon

Jordan: Philips Delegate Office, P.O. Box 35268, Amman; tel. 43998

Kenya: Philips (Kenya) Ltd., 01 Kalou Road, Industrial Area, P.O.B. 30554, Nairobi; tel. 557999

Kuwait: Delegate Office of Philips Industries, P.O. Box 3801, Safat, Kuwait; tel. 428678

Lebanon: Philips Middle East S.A.R.L., P.O. Box 11670, Beirut, tel. 382300

Malaysia: Philips Malaysia Sdn Bhd., Lot 2, Jalan 222, Section 14, P.O. Box 2163, Petaling Jaya, Selangor; tel. 574411

México: Philips Mexicana S.A. de C.V., Div. Cientifico Industrial, Calle Durango 167, Apartado Postal 24—328, Mexico 7 (D.F.); tel. 544-91-99

Morocco: S.A.M.T.E.L., Casa Bandoeng, B.P. 10896, Casabianca; tel. 303192

Nederland: Philips Nederland B.V., Hoofdgroep PPS, Boschdijk 525, Gebouw VB, 5600 VB Eindhoven; tel. 793333 Service centre: Technische Service Prof. Aktiviteiten Hurksestraat 42, Gebouw HBK, 5600 MC Eindhoven; tel. 723094

Ned. Antillen: Philips Antillana N.V., Postbus 523, Willemstad, Curação; tel. 37575/37475

New Zealand: Philips Electrical Industries of N.Z. Ltd., Scientific and Industrial Equipment Division; Horlor Street, P.O. Box 2097, Naenae, Wellington; tel. 678639

Nigeria: Associated Electronic Products (Nigeria) Ltd., Ikorodu Road, P.O.B. 1921, Lagos; tel. 900160/61

Nippon: NF Trading Co. Ltd., Kirimoto Bldg. 11-2, Tsunashima Higashi 1 - Chome, Kohoku-ku, Yokohama

Norge: Norsk A.S. Philips, Industri og Forskning, Essendrops gate 5, Postboks 5040, Oslo 3; tel. (2) 463890 Service Centre: Postboks 1 Manglerud, Oslo 6; tel. (2) 336270

Oesterreich: Oesterreichische Philips Industrie GmbH, Abteilung Industrie Elektronik, Breitenfurterstrasse 219, A-1230 Wien; tel. (222)-841611/15.

Pakistan: Philips Electrical Co. of Pakistan Ltd., El-Markz, M.A. Jinnach Road, P.O.B. 7101, Karachi 3; tel. 70071

Paraguay: Philips del Paraguay S.A., Casilla de Correo 605, Asunción; tel. 48045/46919

Perú: Philips Peruana S.A., Av. Alfonso Ugarte 1268 Apartado Aereo 1841, Lima 100, tel. 326070

Philippines: Philips Industrial Development Inc., 2246 Pasong Tamo, P.O.B. 911, Makati Rizal, 3116, Manila; tel. 868951/868959

Portugal: Phillips Portuguesa S.A.R.L., Av. Eng.^o Duarte Pacheco 6, Apartado 1331, Lisboa 1000; tel. (19) 683121/9 Service Centre: Servicos Técnicos Profissionais, Outurela, 2795 Linda-a-Velha; tel. (19) 2180071

Saoudi Arabia: Delegate Office Philips Industries, Sabreen Blgd., Airport Road, P.O. Box 9844, Riyadh; tel. 4777808/4778463

Schweiz-Suisse-Svizzera: Philips A.G., Allmendstrasse 140, Postfach, CH-8027 Zürich; tel. (1) 4882211/4882629

Singapore: Philips Singapore Private Ltd., Lorong 1, Tao Payoh, 1st floor, P.O. Box 340, Toa Payoh Central Post Office, Singapore 1231; tel. (2) 538811 Service Centre: 403 Delta House, 4th floor, No. 2 Alexandra Road, Singapore 0315; tel. 2712555

South Africa: South African Philips (Pty) Ltd., 2 Herb Street, New Doornfontein, P.O.B. 7703, Johannesburg 2000; tel. (11) 6140411

South-Korea: Philips Electronics (Korea) Ltd., P.O. Box 3680, Seoul; tel, 794 4202 Suomi: Oy Philips Ab., Kaivokatu 8, P.O. Box 10255, 00101 Helsinki 10; tel. 17271 <u>Service Centre:</u> P.O. Box 11, SF-02631 Espoo 63; tel. (0) 523122

Sverige: Svenska A.B. Philips, Philips Industrielektronik, Lidingövägen 50, Fack, S11584 Stockholm; tel. (8) 635000

Syria: Philips Moyen-Orient S.A., Rue Fardoss 79, Immeuble Kassas and Sadate, B.P. 2442, Damas, tel. 118605/221650/228003

Taiwan: Philips Taiwan Ltd., San Min Building, P.O. Box 22978, Taipei: tel. (2) 5631717

Tanzania: Philips (Tanzania) Ltd., Box, 20104, Dar es Salaam; tel. 29571/4

Thailand: Philips Electrical Co. of Thailand Ltd., 283 Silom Road, P.O. Box 961, Bangkok 5; tel. 233-6330/9

Tunisia: S.T.I.E.T., 32 bis, Rue Ben Ghedhahem, Tunis: tel. 244268/243025

Türkiye: Türk Philips Ticaret A.S., Posta Kutusu 504, Beyoglu, Istanbul 1; tel. 435910

United Arab Emirates: Philips Delegate Office, P.O. Box 2567, Dubai; tel. 220641/220642

Uruguay: Industrias Philips del Uruguay S.A., Avda Uruguay 1287, Casilla de Correo 294, Montevideo; tel. 915641/44

U.S.A.:
Philips Test and Measuring Instruments Inc., California, Garden Grove 92645
12882 Valley View Street, Suite 9;
tel.: (213) 594-8741/ (714) 898-5000
California, Milpitas 99035
489 Valley Way;
tel. (408) 946-6722
Florida, Orlanda 32805
750 S Orange Blossom Trail, Suite 206;
tel. (305) 422-8131
Georgia, Notcross 30071
7094 Peachtree Industrial Blvd., Suite 220;
tel. (404) 586-0238
Illinois, Elk Grove Village 60007
175 Scott Street;
tel. (312) 640-7860
Massachusetts, Woburn 01801
21 Olympia Avenue;
tel. (617) 935-3972
Minnesota, Minneapolis 55420
7801 Metro Parkway, Suite 109;
tel. (612) 854-2426
New Jersey, Mahwah 07430

Venezuela: Industrias Venezolanas Philips S.A., Apartado Aereo 1167, Caracas 107; tel. (2) 393811/353533

tel. (201) 529-3800, Toll-free (800) 631-7172

Zaire:S.A.M.E./S.Z.A.R.L., B.P. 16636, Kinshasa, tel. 31887/8

Zembia: Philips Electrical Zambia Ltd., Mwenbeshi Road, P.O.B. 31878, Lusaka; tel. 218511/218701

Zimbabwe: Philips Electrical (PVT) Ltd., 62, Umtali Road, P.O. Box 994, Beverley/Salisbury; tel. 47211

For information on change of address: N.V. Philips' Gloeilampenfabrieken, Test and Measuring Instruments, Building TQ III-4, 5600 MD Eindhoven - The Netherlands

For countries not listed: N.V. Philips' Gloeilampenfabrieken, S&I Export; Test and Measuring Instruments , Building TQIII-3, 5600 MD Eindhoven - The Netherlands