Documentation

Lucas Guesser Targino da Silva January 11, 2023

Contents

1		re Market
	1.1	Basic Definitions
	1.2	Problem Definitions
		1.2.1 Definitions
	1.3	Problem Description
	1.4	Solution - Dynamic Programming
		1.4.1 Initial State
		1.4.2 Optimal Substructure
	1.5	Solution - Simple

4 CONTENTS

Chapter 1

Share Market

1.1 Basic Definitions

Definition 1 (Natural). Given $v \in \mathbb{N}$, we define:

$$\mathbb{N}_v = \{ n \in \mathbb{N} : n \geqslant v \} \tag{1.1}$$

Definition 2 (Range). Given $n \in \mathbb{N}_2$, we define the **Range of** n as:

$$[[n]] = \{0, \dots, n-1\} = \{i \in \mathbb{N} : i < n\}$$

$$(1.2)$$

Definition 3 (Square). Given $n \in \mathbb{N}_2$, we define the **Square of** n as:

$$sq(n) = [[n]] \times [[n]] \tag{1.3}$$

1.2 Problem Definitions

You are given an array in which the ith element is the price of a given stock on the day i. You are permitted to complete at most 1 transaction (i.e. buy once and sell once). What is the maximum profit you can gain?

Notice that you cannot sell a stock before buying it.

1.2.1 Definitions

Definition 4 (Price Tuple). Given $n \in \mathbb{N}_2$, a **Price Tuple** p is a positive real tuple with n elements:

$$p = \langle p_0, \dots, p_{n-1} \rangle \in \mathbb{R}^n_+ \tag{1.4}$$

Definition 5 (Operation Pair). Given $n \in \mathbb{N}_2$, an **Operation Pair** ω is a pair:

$$\omega = \langle b(\omega), s(\omega) \rangle \in sq(n) \quad , b < s \tag{1.5}$$

when the context is clear enough, we will simply write $\omega = \langle b(\omega), s(\omega) \rangle = \langle b, s \rangle$.

Definition 6 (Ascending Operation Pair). Given $n \in \mathbb{N}_2$ and a Price Tuple p, an Operation Pair $\omega = \langle b, s \rangle$ is said to be **Ascending** when:

$$p_b \leqslant p_{b+1} \leqslant \dots \leqslant p_{s-1} \leqslant p_s \tag{1.6}$$

Definition 7 (Maximal Operation Pair). Given $n \in \mathbb{N}_2$ and a Price Tuple p, we say that an Ascending Operation Pair $\omega = \langle b, s \rangle$ is a **Maximal Operation Pair**, or simply that ω is **Maximal**, when it is Ascending and it satisfies the conditions:

$$p_s - p_b \geqslant p_{s+1} - p_b$$
 , if $s + 1 < n$ (1.7)

$$p_s - p_b \geqslant p_s - p_{b-1}$$
 , if $b - 1 > 0$ (1.8)

Theorem 1. Given $n \in \mathbb{N}_2$ and a Price Tuple p, an Operation Pair $\omega = \langle b, s \rangle$ is Maximal if and only if the following conditions are satisfied:

$$p_s \geqslant p_{s+1}$$
 , if $s+1 < n$ (1.9)

$$p_b \leqslant p_{b-1}$$
 , if $b-1 > 0$ (1.10)

Proof. It comes directly from the inequalities of the Definition 7.

Definition 8 (Independent Operation Pairs). Given two Operation Pairs ω, ω' , we say that ω, ω' are **Independent** when:

$$s(\omega) < b(\omega') \lor s(\omega') < b(\omega) \tag{1.11}$$

moreover, given a set of Operation Pairs $S = \{\omega_0, \dots, \omega_{m-1}\}$, we say that S is independent when it satisfies:

$$\forall \omega \forall \omega' \, (\omega \in S \land \omega' \in S \to \omega, \omega' \text{ are independent}) \tag{1.12}$$

i.e. all Operation Pairs $\omega, \omega' \in S$ are pairwise Independent.

Definition 9 (Operation Set). Given $n \in \mathbb{N}_2$, an **Operation Set** $S \subseteq sq(n)$ is a set which satisfies:

- 1. $\forall \omega (\omega \in S \to \omega \text{ is an Operation Pair})$
- 2. S is independent

Moreover, we denote the set of all possible Operations Set by:

$$\Omega_n = \{ S \subseteq sq(n) : S \text{ is an Operation Set} \}$$
 (1.13)

Definition 10. Given an $n \in \mathbb{N}_2$, a Price Tuple p, and an Operation Set $S \in \Omega_n$, the price $\rho(S)$ of S is:

$$\rho(S) = \sum_{\omega \in S} p_{s(\omega)} - p_{b(\omega)}$$
(1.14)

Lemma 1. Given an $n \in \mathbb{N}_2$ and a Price Tuple p, if a Operation Set $S^* \in \Omega_n$ is has optimal price, then all Operation Pairs of S^* are Maximal, i.e.:

$$\rho\left(S^{*}\right) = \max_{S \in \Omega_{n}} \left[\rho\left(S\right)\right] \to \forall \omega \left(\omega \in S^{*} \to \omega \text{ is Maximal}\right)$$

$$(1.15)$$

Proof. Suppose $S^* \in \Omega_n$ is a Operation Set with optimal price. Suppose by contradiction that $\exists \omega \, (\omega \in S^* \wedge \omega \text{ is not Maximal})$, and let $\omega = \langle b, s \rangle$ be such Operation Pair. By Theorem 1, one of the following cases must be true:

- 1. $p_s < p_{s+1}$, if s+1 < n
- 2. $p_b > p_{b-1}$, if b-1 > 0

Case 1

Suppose that $p_s < p_{s+1}, s+1 < n$.

Case 1.1

Suppose in addition that $\omega' = \langle b, s+1 \rangle$ is independent of all $\omega \in S^* \setminus \{\omega\}$. Let $S' = (S^* \setminus \{\omega\}) \cup \{\omega'\}$. Notice that

$$\rho(\omega) = p_{s(\omega)} - p_{b(\omega)} < p_{s(\omega')} - p_{b(\omega')} = \rho(\omega')$$
(1.16)

Therefore $\rho(S^*) < \rho(S')$ (because S^* and S' differ only in the elements above), contradicting the optimality of S^* .

Case 1.2

Suppose in addition that $\exists \omega'(\omega' \in S^* \land b(\omega') = s+1)$, and let $\omega' = \langle s+1, s' \rangle$ be such Operation Pair. Let $\omega'' = \langle b, s' \rangle$ and $S'' = (S^* \cup \omega'') \setminus \{\omega, \omega'\}$. Notice that

$$\rho(\omega) + \rho(\omega') =$$

$$(p_{s(\omega)} - p_{b(\omega)}) + (p_{s(\omega')} - p_{b(\omega')}) =$$

$$(p_s - p_b) + (p_{s'} - p_{s+1}) =$$

$$(p_{s'} - p_b) + (p_s - p_{s+1}) <$$

$$p_{s'} - p_b =$$

$$\rho(\omega'')$$

$$(1.17)$$

Therefore $\rho(S^*) < \rho(S'')$ (because S^* and S' differ only in the elements above), contradicting the optimality of S^* .

Case 1 - Conclusion

The hypothesis $p_s < p_{s+1}$, s+1 < n leads to a contradiction. Therefore, if S^* is optimal, then $p_s \ge p_{s+1}$, s+1 < n, as we wanted to prove.

Case 2

Suppose that $p_b > p_{b-1}, b-1 > 0$. The proof of this case is similar to the proof of the Case 1.2.1, but this uses b and b-1 instead of s and s-1.

Definition 11. Given an $n \in \mathbb{N}_2$, let $\omega = \langle b, s \rangle \in sq(n)$ be an Operation Pair. We say that i is included in ω , and denote by $i \triangleright \omega$, when $b \leqslant i \leqslant s$.

Definition 12. Given an $n \in \mathbb{N}_2$ and a Price Tuple p, we say that an Operation Set $S \in \Omega_n$ is Great when:

$$\forall i ((i \in [[n-1]] \land p_i < p_{i+1}) \to (\exists \omega (\omega \in S \land i \triangleright \omega \land (i+1) \triangleright \omega)))$$

$$(1.18)$$

i.e. the indices of all ascending pairs of p are included in ω .

Lemma 2. Given an $n \in \mathbb{N}_2$ and a Price Tuple p, if a Operation Set $S^* \in \Omega_n$ is has optimal price, then S^* is Great.

Proof. Suppose by contradiction that S^* is not Great, i.e.

$$\exists i ((i \in [[n-1]] \land p_i < p_{i+1}) \land (\nexists \omega (\omega \in S \land i \triangleright \omega \land (i+1) \triangleright \omega)))$$

$$\tag{1.19}$$

and let i be such value.

Case 1

Suppose that $i \triangleright \omega \land \neg (i+1 \triangleright \omega)$ for some $\omega \in S^*$. If $i+1 \triangleright \omega'$ for some ω' , then join ω and ω' to get an Operation Set with cost greater than S^* . If that is not the case, extend ω to include i+1 to get an Operation Set with cost greater than S^* . In all cases, the original hypothesis contradicts the optimality of S^* .

Case 2

Suppose that $\neg(i \triangleright \omega) \land i + 1 \triangleright \omega$ for some $\omega \in S^*$. This case is similar to the previous one, except that the Operation Pair has to be extended backwards instead of forwards.

Case 3

Suppose that $\forall \omega (\omega \in S^* \to (\neg(i \triangleright \omega) \land \neg(i+1 \triangleright \omega)))$. Create a new Operation Set $S' = S^* \cup \{\langle i, i+1 \rangle\}$, which has greater cost, contradicting the optimality of S^* .

Conclusion

The cases above cover all possible cases. Therefore, the lemma has been proven by contradiction.

Lemma 3. Given an $n \in \mathbb{N}_2$ and a Price Tuple p, if an Operation Set $S^* \in \Omega_n$ satisfy:

- 1. $\forall \omega \ (\omega \in S^* \to \omega \ is \ Maximal)$
- 2. S^* is Great

then S has optimal price, i.e $\rho(S) = \max_{S' \in \Omega_n} [\rho(S')].$

It is tiresome to write this proof so I won't.

Theorem 2. Given an $n \in \mathbb{N}_2$ and a Price Tuple p, an Operation Set $S^* \in \Omega_n$ has optimal price if and only if it satisfies:

- 1. $\forall \omega \ (\omega \in S^* \to \omega \ is \ Maximal)$
- 2. S^* is Great

Proof. Lemmas 1 and 2 prove the \Rightarrow part. Lemma 3 proves the \Leftarrow .

1.3 Problem Description

Input a Price Tuple p

Output a value $z \in \mathbb{R}$

Goal $\max z$

1.4 Solution - Dynamic Programming

Given that you buy on a day i, while the value does not decrease, you keep it. If it will drop the next day, you sell it.

9

1.4.1 Initial State

Find the first pair $\langle b, s \rangle$ for which the price increases, i.e. the first pair of consecutive indices for which $p_s - p_b > 0$.

1.4.2 Optimal Substructure

Let:

- 1. $\langle b_l, s_l \rangle$ be the last operation;
- 2. p_{s_l} be the price of the last sell;
- 3. i the index of the current day;
- 4. p_i the stock price of the current day;
- 5. p_{i-1} the stock price of the previous day;

Cases:

- 1. if $(s_l == i 1) \land (p_{s_l} \leq p_i)$
 - (a) replace $\langle b_l, s_l \rangle$ by $\langle b_l, i \rangle$
 - (b) rationale: if the stock price is increasing, you keep it;
- 2. if $(s_l < i 1) \land (p_{i-1} \leqslant p_i)$
 - (a) add $\langle i-1,i\rangle$
 - (b) rationale: if you have no stock and it will increase, you buy and sell it;
- 3. the others are cases in which the stock price drops, and there is nothing to do;

Complexity: $\mathcal{O}(n)$

1.5 Solution - Simple

Algorithm 1 Simple-Algoruithm

- 1: $\Delta p \leftarrow [\langle p_{i+1} p_i \rangle \ for \ i \in \{0, \dots, n-2\}]$
- 2: $\Delta p \leftarrow filter(\Delta p, (>=0))$
- 3: $r \leftarrow sum(\Delta p_{>})$
- 4: return r

The filter takes care of removing the drops on the price, while the sum of the differences computes the gains.

Complexity: $\mathcal{O}(n)$