图论作业(第一周)

黄瑞轩 PB20111686

Prob. 1

当 G 是完全图时,u(G) 个顶点共可以构造 $\mathrm{C}^2_{\nu(G)}$ 条边,此时有 $\varepsilon(G)=\mathrm{C}^2_{\nu(G)}$;

当 G 不是完全图时,增补缺失的边,使其成为完全图 G' ,则有

$$arepsilon(G) < arepsilon(G') = \mathrm{C}^2_{
u(G')} = \mathrm{C}^2_{
u(G)}$$

综上,有

$$\varepsilon(G) \leq \mathrm{C}^2_{\nu(G)}$$

Prob. 7 (1)

对于完全二分图 $K_{m,n}$,设其顶点按二分图的定义可分成两个部分,分别是 M,N。由完全二分图的定义可知,M 中元素之间没有道路,N 中元素之间没有道路。

对于 M 中任意一个元素 v ,这个元素与 N 中元素均有一条道路,遍历 M ,则 M 中元素与 N 中元素的道路(构成的边)数为

$$\varepsilon(K_{m,n}) = mn$$

Prob. 7 (2)

设二分图 G 的顶点按二分图的定义可分成两个部分,分别是 M,N,则 |N|=
u(G)-|M|,由1以及7(1)可知

$$arepsilon(G) \leq |M||N| = |M|(
u(G) - |M|) \leq rac{
u^2(G)}{4}$$

等号当且仅当 G 是完全图,且 |M|=|N| 时取得。

Prob. 8

设 V'' 为 V' 中去掉所考察的 k 条边的关联后所构成的图,再设

$$V_1 = \{v | v \in V'', \deg v \equiv 1 \pmod{2}\}\$$

 $V_2 = \{v | v \in V'', \deg v \equiv 0 \pmod{2}\}$

现在补上刚刚所去掉的 k 条边的关联,假设有 x 条边加到了 V_1 所含顶点,则有 k-x 条边加到了 V_2 所含顶点,记

$$V_1' = \{v | v \in V', \deg v \equiv 1 \pmod{2}\}\$$

 $V_2' = \{v | v \in V', \deg v \equiv 0 \pmod{2}\}\$

则有

$$|V_1'| = |V_1| + k - 2x$$

 $|V_2'| = |V_2| - k + 2x$

由推论1.1知, $|V_1| \equiv 1 \pmod{2}$, 因此

$$|V_1'| \equiv 1 + k \pmod{2}$$

则
$$|V_1'|\equiv 1 ({
m mod}\ 2)\Leftrightarrow k\equiv 0 ({
m mod}\ 2)$$
, $|V_1'|\equiv 0 ({
m mod}\ 2)\Leftrightarrow k\equiv 1 ({
m mod}\ 2)$ 。

Prob. 14 (1)

简单图无环,简单图若有7个顶点,则每个顶点出度至多为6。故7,6,5,4,3,3,2不是简单图的度数序列。

简单图无重边,简单图若有 7 个顶点,不存在两个顶点,这两个顶点的出度都为 6 ,否则这两个顶点之间一定有重边。故 6,6,5,4,3,3,1 不是简单图的度数序列。

Prob. 14 (2)

 $\sum d_i = 2\varepsilon$ 是偶数是显然的,下面证明后续结论。

设前 k 个点构成的 G 的子图 G' , 则

$$\sum_{v_i \in V(G')} \deg v_i = 2arepsilon(G') \leq 2 ext{C}_k^2 = k(k-1)$$

现在考虑后 n-k 个点 v_{k+1},\ldots,v_n 对前 k 个点的最大入度贡献。对于 $v_j,k+1\leq j\leq n$,设其对前 k 个点的最大入度贡献为 s_j 。若 $d_j< k$,则 $s_j=d_j$;若 $d_j\geq k$,由于没有环和重边, $s_j=k$ 。即 $s_j=\min\{d_j,k\}$ 。故

$$egin{aligned} \sum_{i=1}^k d_i & \leq \sum_{v_i \in V(G')} \deg v_i + \sum_{j=k+1}^n s_j \ & = k(k-1) + \sum_{j=k+1}^n \min\{d_j, k\} \end{aligned}$$

证毕。

Prob. 15

首先, G 的生成子图含有二分图是显然的, 因此由 G 的二分生成子图构成的集合 $S \neq \emptyset$ 。

取 S 中边数最多的一个元素 H_0 ,这个图被划分为 X,Y,即 $V(H_0)=X\cup Y$ 。

假设 H_0 中有一个顶点 u_0 ,不妨设其在 X 中,它满足 $\deg_{H_0}(u_0) < \deg_G(u_0)/2$ 。

因为 u_0 不再与 X 中的元素相邻,故 u_0 与 Y 中 $\deg_{H_0}(u_0)$ 个元素相邻,由于 $H_0 \subseteq G$,故在 G 中 u_0 仍与 Y 中那些点保持相邻, $\deg_{H_0}(u_0) < \deg_G(u_0)/2$ 表示 u_0 与 X 中 $\deg_G(u_0) - \deg_{H_0}(u_0) > \deg_{H_0}(u_0)$ 个点相邻。

再取 S 的一个元素 H_1 , 其可被划分为 $X-\{u_0\},Y\cup\{u_0\},\ u_0$ 与 $X-\{u_0\}$ 之间的边会保留,与 Y 之间的边会被删除,则

$$\varepsilon(H_1) = \varepsilon(H_0) + \deg_X(u_0) - \deg_H(x_0) > \varepsilon(H_0)$$

这与 H_0 是边数最多的二分子图矛盾,故假设不成立,故 H_0 中任意一个顶点 u,有

$$\deg_{H_0}(u) \geq \deg_G(u)/2$$

这样的 H_0 就是一个我们所要找的 H, 证毕。

Prob. 16

假设 G 中最长的轨道是 $v_1v_2 \dots v_{l+1}$, 若轨道长度 l < k 则

$$\deg(v_1) \geq k > l$$

代表除了 v_2, \ldots, v_{l+1} 这 l个点之外, v_1 一定还与其他不同的点相邻,即存在一个 v_0 ,使得 $v_0v_1\ldots v_{l+1}$ 也是轨道,这与 $v_1v_2\ldots v_{l+1}$ 是最长轨道矛盾,故假设不成立,一定有长度为 k 的轨道。

Prob. 18

假设 G 不是连通图,有 ω 个连通片 G_1,\ldots,G_ω ,记其顶点个数分别是 ν_1,\ldots,ν_ω ,其中 $\nu_i\geq 1(1\leq i\leq\omega)$,则其边数之和最多是

$$egin{aligned} arepsilon &= \sum_{i=1}^{\omega} \mathrm{C}_{
u_i}^2 = \sum_{i=1}^{\omega} rac{
u_i^2 -
u_i}{2} = rac{1}{2} \Big(\sum_{i=1}^{\omega}
u_i^2 -
u \Big) \ &= rac{1}{2} \Bigg[\left(\sum_{i=1}^{\omega}
u_i \right)^2 - \sum_{i
eq j}
u_i
u_j -
u \Bigg] \ &= rac{1}{2} (
u^2 -
u - \sum_{i
eq j}
u_i
u_j \Big) \end{aligned}$$

要证明假设与条件矛盾,这个问题化为证明

$$2\nu \leq \sum_{i \neq j} \nu_i \nu_j + 2$$

注意到

$$egin{aligned} 2\sum_{i=1}^n
u_i & \leq \sum_{i=1}^{n-1} (
u_i
u_{i+1} +
u_{i+1}
u_i) +
u_n
u_1 +
u_1
u_n \ & \leq \sum_{i
eq j}
u_i
u_j \ & \leq \sum_{i
eq j}
u_i
u_j + 2 \end{aligned}$$

从而假设与条件矛盾,G 是连通图。

Prob. 19 (1)

假设 G 有 ω 个连通片 G_1, \ldots, G_{ω} , 边 e 的顶点 u, v 。

若 u,v 间除了 e 还有其他道路,则考察 G 中任意两点的连通性,仍然不变,原来通过 e 的道路可以改为通过其他道路通过。此时

$$\omega(G-e)=\omega(G)$$

若 u,v 间除了 e 没有别的道路,则考察 G 中任意两点的连通性,可以划分为以下三种:

- 1°原来连通,不经过u,v;
- 2° 原来连通, 经过 u, v;
- 3°原来就不连通。
- 1°, 3°的连通性仍属于原来的连通片; 2°会导致原来2°所属的连通片被分成两个连通片, 即

$$\omega(G-e)=\omega(G)+1$$

综上,原不等式得证。

Prob. 19 (2)

考虑一个星图 G,去掉度数最高的那个顶点,会导致连通片个数增加 |V(G)|-2,不一定满足原来的公式。