Las respuestas no razonadas, o no que utilicen estrictamente la notación indicada, no serán consideradas como válidas, aunque sean correctas. Recuadra CLARAMENTE tu respuesta a cada apartado. Consigna tu NIA, nombre y apellidos completos en todas las hojas que entregues.

Entrega las respuestas a las preguntas 1-4 en el mismo conjunto de hojas, y las 5 y 6 en hojas SEPARADAS del resto.

- 1. [1 pto.] Imagina que Alicia desea enviar un correo electrónico a Bernardo, cuyo buzón es thepunisher@marvel.com, y que ambos utilizan un cliente de correo nativo (como Outlook o Thunderbird). De forma razonada, responde a las siguientes cuestiones:
 - 1. Dibuja un esquema y describe los elementos y pasos necesarios para que Alicia envíe el correo a Bernardo, éste pueda recibirlo y leerlo correctamente.
 - 2. Enumera y describe brevemente los protocolos y entidades involucradas para llevar a cabo todo el proceso de manera correcta.
- 2. [1 pto.] En el contexto de las colas de mensajes:
 - 1. Enumera los tipos de patrones de colas de mensajes estudiados en clase.

Solución: Arquitectura simple, colas de trabajo, productor/consumidor, publicador/suscriptor (o enrutador y topics), petición/respuesta.

2. ¿Cómo se evita la pérdida de mensajes en las colas de mensajes?

Solución: Utilizando confirmación de mensajes. El consumidor envía un ACK cuando ha terminado de procesar correctamente el mensaje.

3. ¿Qué función básica tiene un exchange?

Solución: Definir a qué cola enviar cada mensaje.

4. Imagina que deseas diseñar una aplicación de mensajería que haga uso de colas de mensajes para las comunicaciones. ¿Qué tipo de *exchange* sería el más adecuado para enviar los mensajes adecuados a una serie de canales? ¿Y para enviar un mensaje a todos los usuarios de la plataforma?

Solución: De tipo topic y fanout, respectivamente.

- 3. [1 pto.] Las redes P2P pueden clasificarse esencialmente en base a cómo buscan la información:
 - Haz un diagrama de esta clasificación, y enumera y describe los tipos existentes.
 - Comenta las ventajas y desventajas de cada una de ellos.
- 4. [1 pto.] EXTRA: Esta pregunta solo puntúa si en el resto del examen se ha obtenido una calificación igual o superior a 5.

Describe brevemente la ceremonia de intercambio de claves de los servidores raíz DNS, explicando a alto nivel los pasos que se realizan y las personas involucradas.

Problemas

5. [5 ptos.] Imagina un usuario que navega a través de una red corporativa donde existe un DNS local recursivo, y cuyas tablas de traducción se encuentran descritas más abajo. Considera que el establecimiento de una conexión TCP consume un tiempo t_c , la consulta a cualquier servidor DNS, t_d , y el envío de cualquier otra cantidad de datos, $f \cdot t_m$, donde f es la cantidad de Kbytes a transmitir. Cualquier otro tiempo de carga, puede considerarse despreciable (consulta al resolver, renderización del navegador, etc.). Considera que el resolver de la máquina no cachea información. En esta situación,

DNS local

DIV	o local
Dominio	Dirección IP
TLD .com	X.X.X.X

Servidor raíz E

Dominio	Dirección IP
TLD .com	X.X.X.X
TLD .es	X.X.X.X
TLD.org	X.X.X.X

TLD .es

Dominio	Dirección IP
nameserver.nintendo.es	X.X.X.X
•••	•••

TLD .com

Dominio	Dirección IP
NS apple.com	X.X.X.X
•••	•••

nameserver.nintendo.es

Dominio	Dirección IP
nintendo.es	X.X.X.X
mail.nitendo.es	X.X.X.X
•••	

nameserver.apple.com

	1.1
Dominio	Dirección IP
apple.com	X.X.X.X

- 1. (1.5 ptos.) ¿Cuánto tiempo tardaría el DNS local en resolver las siguientes peticiones? Éstas se reciben y resuelven secuencialmente. Detalla los cálculos.
 - a) nintendo.es
 - b) apple.com
 - c) smtp.nintendo.es

Solución:

a) **nintendo.es**: Al no encontrarse en el DNS local la dirección de la página solicitada ni la dirección del TLD.es, es necesario realizar el proceso completo:

$$t_{nintendo} = t_d(local) + t_d(raiz) + t_d(TLD.es) + t_d(NS) = 4t_d$$

 $b)\,$ ${\bf apple.com};$ Al encontrarse el TLD.com, se reduce el proceso:

 $t_{apple.com} = t_d(local) + t_d(TLD.com) + t_d(NS) = 3t_d$

- c) smtp.nintendo.es: Debido a la primera consulta, en el DNS local ya se encuentra la dirección del nameserver. $t_{smtp.nintendo} = t_d(local) + t_d(NS) = 2t_d$
- 2. (0.5 ptos.) ¿Cómo queda la tabla de traducción del DNS local tras todas las resoluciones?

	DNS local	
Dominio TLD .com TLD .es nameserver.nintendo .es	Dominio	Dirección IP
	TLD .com	X.X.X.X
	TLD .es	X.X.X.X
	X.X.X.X	
Solucion:	nintendo .es	X.X.X.X
nameserver.apple .com apple .com smtp.nintento.es	nameserver.apple .com	X.X.X.X
	X.X.X.X	
	smtp.nintento.es	X.X.X.X
	•••	•••

3. (2 ptos.) Después de las resoluciones anteriores, un usuario desea visitar la página https://www.apple.com/index.html, de tamaño 1 Kbytes, que contiene 8 objetos de 2Kbytes, todos alojados en el propio servidor.

En esta situación, detalla los cálculos necesarios para obtener el tiempo que tardaría el usuario en cargar la página y todo su contenido. Considera que el servidor Web de Apple utiliza HTTP/1.1, y permite 3 conexiones simultáneas desde el mismo cliente. Considera que el navegador NO realiza pipelining de recursos.

Solución: En este caso, la IP se encuentra directamente en el servidor local, por lo que el tiempo de resolución DNS es t_d . Falta ahora calcular los tiempos de conexión y descarga de contenidos. Sin pipelining: Primero se calculan los tiempos de descarga de los objetos

- $Conexion_1(t_{c1}) = t_c + O_1 + O_4 + O_7 = t_c + 3 * (f * tm) = t_c + 6t_m$
- $Conexion_2(t_{c2}) = t_c + O_2 + O_5 + O_8 = t_c + 3 * (f * tm) = t_c + 6t_m$
- $Conexion_3(t_{c3}) = t_c + O_3 + O_6 = t_c + 2 * (f * tm) = t_c + 4t_m$

 $t_{dw} = max(t_{c1}, t_{c2}, t_{c3}) = t_c + 6t_m$

 $T_{total} = t_{dns} + t_{dw} = t_d + tc + 6_t m$

Tambien sería válido tener en cuenta el index de forma separada:

 $t_{index} = t_d(local) + t_c + 1KByte * tm = t_d + t_c + t_m$

 $T_{total} = t_{index} + t_{dw} = (t_d + t_c + t_m) + (t_c + 6_t m) = t_d + 2t_c + 7t_m$

4. (1 pto.) Finalmente, calcula el tiempo necesario para que el usuario pueda cargar en el navegador la página http://apple.es, si al realizar la petición se recibe una redirección a través de la siguiente respuesta HTTP:

HTTP/1.1 301 Moved Permanently

Content-Length: 0

Location: https://www.apple.com/index.html

Solución: En este caso, el tiempo de resolución de DNS es $t_{dns} = t_d(local) + t_d(TLD.es) + t_d(nameserver) = 3t_d$.

Una vez obtenida la IP, se debe tratar de conectar a la pagina: t_c . Pero al enviar la peticion HTTP, se redirecciona a otro servidor https://www.apple.com/index.html. Por lo tanto, hay que resolverlo. Al tenerlo directamente en el DNS local, el tiempo de resolución es t_d . Falta sumarle el tiempo de conexión y descarga de la página principal: t_d+t_c , que al no haber cambiado, se mantiene en caché el contenido.

 $t_{total} = 3t_d + t_d + t_d + t_c = tc + 5td$

- 6. [2 ptos.] Imagina una aplicación distribuida que utiliza un patrón de cola de trabajo, con una única cola llamada EX. A ella están conectados un único proceso productor, que genera mensajes a una tasa de p men/s y varios consumidores, que los procesan a un ritmo de c men/s. El reparto de la carga entre los consumidores se hace con el mecanismo habitual en este patrón. En esta situación, responde razonadamente a las siguientes cuestiones:
 - 1. ¿Cuántos consumidores son necesarios como mínimo para que el tamaño de la cola no crezca indefinidamente?
 - 2. Imagina ahora que el tamaño de los mensajes fuera muy desigual. ¿Qué mecanismo podría utilizarse para hacer un reparto más justo de la carga? Descríbelo brevemente.

Solución:

1. Se trata simplemente de igual la tasa de envio y procesamiento de mensajes. La situación en la que los consumidores procesan más rápidamente que el productor inserta mensajes se produce si:

$$p \le n \cdot c = n \ge p/c$$

donde n es el número de consumidores.

2. El mecanismo se denomina **envío justo** (o *fair dispatch*, e indica al broker que no proporcione un nuevo mensaje a un trabajador hasta que éste no haya confirmado el anterior.