Homework 5

ALECK ZHAO

March 29, 2018

- 1. In class we showed that the class of context free languages is closed under union. This question studies intersection and complement of context free languages. Consider the languages $A = \{a^mb^nc^n : m, n \ge 0\}$ and $B = \{a^nb^nc^m : m, n \ge 0\}$.
 - (a) Give a context-free grammar for each of A and B. Then use A and B to show that the class of context free languages is not closed under intersection.

Solution. For A, we have the rules

$$S \to aS \mid ST \mid \varepsilon$$
$$T \to bTc \mid \varepsilon$$

and for B, we have the rules

$$S \to aSb \mid ST \mid \varepsilon$$
$$T \to cT \mid \varepsilon$$

Then $A \cap B = \{a^k b^k c^k : k \ge 0\}$, which is not a context-free language, so the class of context free languages is not closed under intersection.

(b) Use (a) and DeMorgan's Law to show that the class of context-free languages is not closed under complementation.

Proof. Suppose the class of CFLs was closed under complement. Let C and D be CFLs. Then by assumption C^c and D^c are both CFLs, and thus $C^c \cup D^c$ is a CFL since CFLs are closed under union. By DeMorgan's Law, this is $(C \cap D)^c$ and thus its complement $C \cap D$ is also a CFL. However, if we take C = A and D = B from above, we have a contradiction since $A \cap B$ is not a CFL. Thus, the class of CFLs is not closed under complement.

2. Let $D = \{xy : x, y \in \{0,1\}^* \text{ and } |x| = |y| \text{ but } x \neq y^{\mathcal{R}} \}$. Give a context-free grammar for D, and formally prove that your grammar generates the given language.

Solution. D is all even-length non-palindromes. We claim that the following rules generate D:

$$\begin{split} S \rightarrow 0S0 \mid 1S1 \mid 1T0 \mid 0T1 \\ T \rightarrow 00T \mid 01T \mid 10T \mid 11T \mid \varepsilon \end{split}$$

Claim 1: every string generated by this grammar is in D. Proceed by induction on the number of steps n in a derivation. For the base case, n=2, since we cannot terminate in 1 step. For n=2, the possible steps taken are $S \to 1T0 \to 10$ or $S \to 0T1 \to 01$, which are both in D. Now, for the inductive hypothesis, suppose that all strings s derivable from the grammar in at most N steps are in D, where $N \ge 2$. Let s' be a string that is derived in N+1 steps.

Now, if the first step to derive s' was either $S \to 0S0$ or $S \to 1S1$, then for the remaining N steps, S is mapped to an even length non-palindrome by hypothesis, and thus 0S0 and 1S1 are both even length non-palindromes, and thus in D. If the first step was $S \to 1T0$ or $S \to 0T1$, then s' is not a palindrome since its first and last symbols are different. s' also has even length because each rule for T always adds 2 or 0 symbols. Thus, $s' \in D$, so the claim is proved by induction.

Claim 2: every string in D can be generated by this grammar. Proceed by induction of the length ℓ of the string, which can only be even. The base case is $\ell=2$ since for $\ell=0$, the empty string is palindromic. For $\ell=2$, the strings are 01 and 10, which can be generated as $S\to 0T1\to 01$ and $S\to 1T0\to 10$, respectively. Now, for the inductive hypothesis, suppose that all strings in D of length at most 2N can be generated by this grammar, where $N\geq 1$. Let $s'\in D$ be a string of length 2N+2.

If s' starts and ends with 0, then it can be written as 0s0, where s is an even length non-palindrome since $s' \in D$, and in particular |s| = 2N, so s can be generated by the grammar, so s' can be generated by this grammar with the first step $S \to 0S0$. The case with s' starts and ends with 1 is identical.

If s' starts with 0 and ends with 1, then it can be written as 0s1, where |s| = 2N. The first step must have been $S \to 0T1$, and now the rules for T generate every even length string (this is obvious). Thus, s' can be generated by this grammar. The case when s' starts with 1 and ends with 0 is proved similarly, so the claim is proved by induction.

3. Prove that the language $L = \{0^{2^n} : n \ge 0\}$ is not context-free.

Proof. Suppose L was context-free. Then by the pumping lemma, there exists an integer p that is the pumping length. Consider the string $s=0^{2^{2p}}=uvxyz$. Then since $|vxy|\leq p$, it follows that $0<|vy|\leq |vxy|\leq p$. Now let

$$s' = uv^0 x y^0 z = uxz$$

where

$$|s'| = 2^{2p} - |vy| \implies 2^{2p} > |s'| \ge 2^{2p} - p$$

Now, in order to have $s' \in L$, we must have $|s'| = 2^{2p-k}$ for some $k \ge 1$. That is,

$$2^{2p-k} \ge 2^{2p} - p \implies p \ge 2^{2p} - 2^{2p-k} \ge 2^{2p} - 2^{2p-1} = 2^{2p-1}$$

However, for all $p \ge 0$, this is not true (easy to see, or by induction), thus there is no satisfactory pumping length, so L is not context-free.

4. Let B be the language of all palindromes over $\{0,1\}$ containing an equal number of 0s and 1s. Show that B is not context-free.

Proof. Suppose B was context-free. Then by the pumping lemma, there exists an integer p that is the pumping length. Consider the string $s = 0^p 1^{2p} 0^p = uvxyz$. There are 2 cases.

Case 1: v and y both contain only 1s. Here, $s' = uv^2xy^2z$ will have more 1s than 0s, so $s' \notin B$.

Case 2: either v or y contains a positive number of 0s. Any 0s contained in vxy must come from the same block of 0s, since $|vxy| \le p$ so the middle block of 1s can't be "crossed." Then in $s' = uv^2xy^2z$, the number of 0s in the beginning and ending blocks won't be the equal anymore, so s' will not be a palindrome.

Thus, B is not context-free. \Box