Lecture 5: Block codes

Course instructor: Alexey Frolov

Teaching Assistant: Stanislav Kruglik stanislav.kruglik@skolkovotech.ru

February 9, 2017

Outline

1 Definitions and geometric interpretation

2 Bounds on code parameters

3 Linear codes

Outline

Definitions and geometric interpretation

2 Bounds on code parameters

3 Linear codes

Noisy transmission

Binary symmetric channel

A. Frolov

Lecture 5

Why do we need encoder and decoder?

Example

Let $p = 10^{-3}$.

The probability of correct reception of n bits is equal to

$$P_0(n) = (1-p)^n = 0.999^n.$$

Note, that

- P₀ decreases exponentially;
- $P_0(10^3) < 0.37$;
- $P_0(10^5) < 5 \cdot 10^{-5}$;

Block and convolutional coding

Main idea: add redundancy and use it to deal with errors.

Coding methods:

- Block codes. Information is split in blocks of k bits. Each block is encoded independently. As a result we obtain blocks of length n.
- Convolutional codes. The output of a convolutional encoder (potentially) depends on all the previous input bits.

Convolutional coding

Block coding

Code rate

- $\{1, 2, ..., M\}$ message set;
- $Q = \{0, \ldots, q-1\};$
- $\mathbf{x} = \Psi(i) \in Q^n$ codeword;
- $C = \{ \mathbf{x} = \Psi(i), i = 1, ..., M \}$ code;
- codebook a table with all codewords listed;
- $\mathbf{y} \sim P(y^n|x^n)$ received sequence;
- $\hat{i} = \Psi^{-1}(\mathbf{y})$ decoding rule.
- $R = \frac{\log_q M}{n} = \frac{k}{n}.$

Systematic encoding

k information symbols, n-k check symbols.

How to decode?

$$\Psi: \left\{ \begin{array}{l} 00 \to 00001 \\ 01 \to 01010 \\ 10 \to 10111 \\ 11 \to 11100 \end{array} \right.$$

$$y = 10101$$

×	$P(\mathbf{y} \mathbf{x})$
00001	$p^2(1-p)^3$
01010	$ ho^5$
10111	$p(1-p)^4$
11100	$p^2(1-p)^3$

$$ho^5 <
ho^2 (1-
ho)^3 <
ho (1-
ho)^4$$
 $ightharpoonup {f x} = 10111, \ {f i} = 10$

Maximum likelihood decoding

ML decoding:

- $i = \Psi^{-1}(\mathbf{x}).$

Lemma

Let
$$C = \{x_i\}$$
, $p < 0.5$ and $P(\mathbf{y}|\mathbf{x}) = \max_i P(\mathbf{y}|\mathbf{x}_i)$, then
$$d(\mathbf{y}, \mathbf{x}) = \min_i d(\mathbf{y}, \mathbf{x}_i),$$

where d(y, x) denotes the number of elements in which y and x differ.

Hamming distance

Definition

Let $\alpha, \beta \in \mathbb{Q}^n$.

$$d(\alpha,\beta) = |\{i : \alpha(i) \neq \beta(i)\}|.$$

Example

$$\alpha = 01101$$

$$\beta = 00111$$

$$d(\alpha,\beta)=2.$$

Weight and number

Definition

- $||\alpha|| = d(\alpha, \mathbf{0})$ weight of α ;
- $|\alpha| = \sum_{i=1}^{n} \alpha_i q^{n-i}$ number (lexicographic order) of α ;

Ball and sphere

Definition

Let us consider a metric space (Q^n, d) , then a ball and sphere are defined as follows

$$B_r(\alpha) = \{ \beta \in Q^n : d(\alpha, \beta) \le r \}$$

and

$$S_r(\alpha) = \{\beta \in Q^n : d(\alpha, \beta) = r\}$$

Ball and sphere

$$|S_r(\alpha)| = \binom{n}{r}(q-1)^r$$

and

$$|B_r(\alpha)| = \sum_{i=0}^r |S_r(\alpha)| = \sum_{i=0}^r \binom{n}{i} (q-1)^i$$

$$q=2$$

- $\{0,1\}^n$ Boolean cube;
- $\{0,1\}_k^n = \{\alpha \in \{0,1\}^n : ||\alpha|| = k\}$ Boolean cube layer;
- The set of points of $\{0,1\}^n$ with fixed n-k coordinates is called k-dimensional facet.

$$*0*10 = \left\{ egin{array}{c} 00010 \\ 00110 \\ 10010 \\ 10110 \end{array}
ight\}$$

$\overline{\{0,1\}^{n-1} \to \{0,1\}^n}$

Small dimensions

Code

Definition

- Code $C \subseteq Q^n$;
- Minimum code distance

$$d(\mathcal{C}) = \min_{a,b \in \mathcal{C}; a \neq b} d(a,b).$$

Detection and correction of errors

Theorem

Assume the code C can correct t errors, then

$$d(C) \geq 2t + 1$$
.

Geometric interpretation

Error corrected

Error detected

Error undetected

Odd distance

$$d = 5 \implies t = 2, s = 4, s' = 2$$

even distance

$$d = 6 \implies t = 2, s = 5, s' = 3$$

Error correction and error detection

Theorem

Assume d(C) = d, then

$$t = \left\lfloor \frac{d-1}{2} \right\rfloor$$

and

$$s = d - 1$$
.

Outline

Definitions and geometric interpretation

2 Bounds on code parameters

3 Linear codes

Definition of $A_q(n, d)$

Definition

$$A_q(n,d) = \max_{\mathcal{C} \subseteq Q^n, d(\mathcal{C}) = d} |\mathcal{C}|.$$

Note, that size and rate maximization are equal tasks.

In what follows we omit the index q in case of q = 2.

Hamming bound

Let $\alpha \in Q^n$. Let us introduce a notation

$$V_t = V_q(t) = |B_t(\alpha)| = \sum_{i=0}^n \binom{n}{i} (q-1)^i.$$

Theorem (Hamming bound)

$$A_q(n,d) \leq \frac{q^n}{V_t}.$$

Definition

The code is called a *perfect* code if $|\mathcal{C}| = \frac{q^n}{V_t}$.

Example

A code $C = \{000, 111\} \subset \{0, 1\}^3$ is a perfect code.

Proof of Hamming bound

Balls of radius *t* do not intersect!

$$A_q(n,d)V_q(t) \leq q^n$$
.

Varshamov-Gilbert bound

Theorem (Varshamov-Gilbert bound)

$$A_q(n,d) \geq \frac{q^n}{V_{2t}}.$$

Proof

$$\mathbf{x}_3 \notin B_{2t}(\mathbf{x}_1) \cup B_{2t}(\mathbf{x}_2)$$

 $\mathcal{C}_3 = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ corrects t errors.

Assume we constructed *m* codewords and can not add more

$$q^n = |\bigcup_{i=1}^m B_{2t}(\mathbf{x}_i)| \leq mV_{2t}.$$

Richard Wesley Hamming

Edgar Nelson Gilbert

Singleton bound

Theorem (Singleton bound)

$$A_q(n,d) \leq q^{n-d(\mathcal{C})+1}$$
.

Proof.

Consider the codebook and delete d-1 columns from it. All the words are different in the resulting table.

Plotkin bound

Theorem (Plotkin bound)

$$d(\mathcal{C}) \leq \frac{q-1}{q} \frac{M}{M-1} n.$$

Proof

$$S=\sum_{u,v\in\mathcal{C}}d(u,v).$$

Note, that

$$S \geq M(M-1)d$$

Consider the first column of the codebook. Let t_i be the number of times i appears in the first column.

$$\sum_{i=0}^{q-1} t_i (M-t_i) = \ell.$$

Finally,

$$\ell = M^2 - \sum_{i=0}^{q-1} t_i^2 \le M^2 - q \left(\frac{M}{q}\right)^2 = M^2 \frac{q-1}{q}.$$

Asymptotic regime, $n \to \infty$

$$\frac{d}{n} \to \delta$$
, $\frac{\log_q M}{n} = \frac{k}{n} \to R$

Definition

A code family $\{C_n\}$ is said to be *asymptotically good* if there exist constants $R, \delta > 0$:

- $\bullet \ \frac{\log_q M_n}{n} = \frac{k_n}{n} \ge R > 0;$
- $\frac{d_n}{n} \geq \delta > 0$;

Asymptotic regime, $n \to \infty$, q = 2

Hamming bound

$$R \leq 1 - h(\delta/2)$$
.

Varshamov-Gilbert bound

$$R \geq 1 - h(\delta)$$
.

Singleton bound

$$R \leq 1 - \delta$$
.

Plotkin bound

$$R \leq \frac{1}{2}(1-\delta).$$

Proof hints

To derive asymptotic form of Hamming and Varshamov–Gilbert bounds use the following inequality

$$\sum_{i=0}^{W} \binom{n}{i} \le 2^{nh\left(\frac{W}{n}\right)} \quad \text{for} \quad W \le n/2.$$

Proof hints

To derive asymptotic form of Plotkin bound use the shortening method

Lemma

$$A_q(n,d) \leq qA_q(n-1,d).$$

Proof.

Consider the codebook and split it into q parts in dependence on the first symbol, i.e.

$$\mathcal{C} = \left[egin{array}{ccc} 0 & \mathcal{C}_0' \ 1 & \mathcal{C}_1' \ \dots \ q-1 & \mathcal{C}_{q-1}' \end{array}
ight]$$

At least one of the codes C_i' contains |C|/q codewords. At the same time $d(C_i') \ge d(C)$ for all i.

Asymptotic regime, $n \to \infty$

Outline

1 Definitions and geometric interpretation

2 Bounds on code parameters

3 Linear codes

Linear code

Definition

A subgroup of Abelian group \mathbb{F}_q^n is called a group code.

Definition

A subspace C of a vector space \mathbb{F}_q^n is called a linear (n, k) code, where $k = \dim C$.

Definition

G is a generator matrix for the code C if the rows of G form a basis in C.

Minimum distance

Lemma

Let C be a linear code, then

$$d(\mathcal{C}) = \min_{a \in \mathcal{C}, a \neq 0} ||a||.$$

Dual code and parity check matrix

Definition (Dual code)

$$C^{\perp} = \{ v \in \mathbb{F}_q^n : v \perp \mathcal{C} \}.$$

Definition (Parity check matrix)

H is a basis of C^{\perp} .

Varshamov-Gilbert bound

Theorem

If

$$\sum_{j=0}^{d-2} {n-1 \choose j} (q-1)^j < q^{n-k},$$

then the exists a linear $(n, k, \geq d)_q$ code.

Proof

Proof.

Construct a parity check matrix column by column. Assume we have already added \hat{n} columns and want to add one more column. As any d-1 columns are linerly independent (because of the distance) we can not add this number of columns (linear combinations of d-2 columns)

$$\sum_{j=0}^{d-2} {\hat{n} \choose j} (q-1)^j,$$

If this number is less, than the total number of columns (q^{n-k}) we can continue the procedure.

Practically all linear codes are good!

We randomly generate each bit of the parity-check matrix \mathbf{H} of size $(n-k) \times n$ according to a Bernoulli distribution Bern(1/2). Let us consider a fixed word \mathbf{x} of length n and weight W>0. The probability of this word to be a codeword (or a probability of the syndrome to be equal to zero) can be calculated as follows

$$Pr(\mathbf{Hx} = \mathbf{0}) = 2^{-(n-k)}.$$

Indeed, let us find any non-zero bit (say, bit i) in \mathbf{x} . Choose all the elements (except the column i) in \mathbf{H} arbitrarily. The probability to choose the i-th column such, that the syndrome is equal to zero is $2^{-(n-k)}$.

Practically all linear codes are good!

Now consider the following event E: the code includes at least one codeword with weight $W \leq \delta n$. We have

$$\Pr(E) \le \sum_{i=1}^{\delta n} \binom{n}{i} 2^{-(n-k)}$$
 (union bound).

Finally,

$$\sum_{i=1}^{\delta n} \binom{n}{i} 2^{-(n-k)} \le 2^{-n(1-R-h(\delta))}$$

and we see, that the probability (or fraction) of bad codes decrease exponentially with n for any $R < 1 - h(\delta)$.

Exercise, 2 points

Prove

Lemma (Bassalygo's lemma)

Let $L \subset \mathbb{F}_q^n$, $A_q^{(L)}(n,d)$ is the maximal number of words with distance d in L, then

$$\frac{A_q(n,d)}{q^n} \leq \frac{A_q^{(L)}(n,d)}{|L|}$$

Thank you for your attention!