

VII Semester B.E. (Electrical and Electronics) Degree Examination, June/July 2013 (2K6 Scheme)

EE 704 : DIGITAL SIGNAL PROCESSING

Time: 3 Hours Max. Marks: 100

	,	Titolis iviax. Iviano. I	00
		Instruction : Answer any five full questions.	
1.	a)	Find DFT of the sequence x (n) such that x (n) = $1.0 \le n \le 2$ = 0 elsewhere	
		Plot $ X(k) $ and $< X(k)$ for $N = 4$.	8
	b)	Consider the sequence $x(n) = 4\delta(n) + 3\delta(n-1) + 2\delta(n-2) + \delta(n-3)$. Let $X(k)$ be 6 point DFT of $x(n)$. Find the finite length sequence $y(n)$ which has 6pt DFT $Y(k) = W_6^{4k} X(k)$.	8
	c)	P.T. DFT of x $(N - n) = X (N - k)$.	4
2.	a)	For the sequence x_1 (n) = (2 1 1 2) and x_2 (n) = (1 -1 -1 1) compute i) Circular convolution of x_1 (n) and x_2 (n) ii) Linear convolution of x_1 (n) and x_2 (n) iii) What value of 'N' is needed so that linear and circular convolution yield the same result on N point interval.	e 8
	b)	Derive Radix 2 algorithm for DIT FFT for $N = 8$.	8
	c)	Write a note on chirp Z transforms.	4
3.	a)	Find the 8 point DFT of $(2, 1, 2, 1)$ using DIF – FFT. Draw signal flow graph with intermediate values.	10
	b)	Derive the expression for N th order and cut off frequency Ω_c for a butterworth filter starting from frequency domain specifications of low pass filter.	10
4.	a)	Determine the order of a Chebyshev digital filter that meets the following specifications	
		1) 1 db ripple in passband $0 \le \omega \le 0.3\pi$	
		2) At least 60 db attenuation in shopband 0.35 $\pi \le \omega \le \pi$.	8

JE-770

b) Design a digital filter H (z) that when used in A/D - H(z) - D/A structure gives an equivalent analog filter with following specifications:

Passband ripple \leq 3 db at passband edge = 500 hz shopband attenuation \geq 15 db at shopband edge = 750 Hz sampling rate = 2 Khz. Filter is to be designed by performing bilinear transformation on an analog system. Use butterworth.

12

5. a) Show that FIR filters have linear phase.

8

b) Design a FIR linear phase digital filter using Hamming window with N = 7 and cut off frequency 0.2 π .

6

c) Compare IIR and FIR filters.

6

- 6. a) Realise the following forms of an IIR filter taking H (z) = $\frac{\left(z+1\right)\left(z+4\right)}{\left(z+3\right)\left(z+5\right)\left(z+2\right)}$
 - i) Direct form I
 - ii) Parallel form

40

iii) Direct form II.

10

b) Realise an FIR filter having a linear phase with the following impulse response

i)
$$h(n) = \delta(n) + 2\delta(n-1) + 3\delta(n-2) + 2\delta(n-3) + \delta(n-4)$$

ii)
$$h(n) = \delta(n) + \delta(n-1) + 2\delta(n-2) + 2\delta(n-3) + \delta(n-4) + \delta(n-5)$$
.

7. a) Highlight the key features of CSX DSP processor as compared to general purpose processor.

6

b) Explain with block diagram the architecture of TMS 320 processor and motorolla DSP 56000.

14

8. Explain the following (any four):

 $(5 \times 4 = 20)$

- i) Frequency transformation of Analog filter
- ii) Kaiser window design of FIR filter
- iii) Impulse Invariant design
- iv) Frequency sampling design of FIR filter
- v) Gibbs phenomena.