Name: Umair Ahmed Younas

Reg : SP22-BCS-047 AI Assignment

Table 1: Activation Functions in Deep Learning

Reference	Function	Explanation	Benefits	Limitations	Data Type
Y. LeCun, L.	Sigmoid	$f(x) = \frac{1}{1+e^{-x}}$, maps to	Smooth, prob-	Vanishing gradi-	Binary clas-
Bottou, G. B.		(0,1).	abilistic output,	ents, not zero-	sification
Orr, and KR.			differentiable.	centered, costly.	
Müller, "Effi-					
cient backprop,"					
in Neural Net-					
works: Tricks of					
the Trade, G. B.					
Orr and KR.					
Müller, Eds.					
Berlin, Ger-					
many: Springer,					
1998, pp. 9–50.					
Y. LeCun et al.,	Tanh	$f(x) = \tanh(x), \text{ maps}$	Zero-centered,	Vanishing	Recurrent
1998 (same as		to (-1,1).	stronger gra-	gradients, com-	networks
above)			dients than	putationally	
,			sigmoid.	intensive.	
V. Nair and	ReLU	$f(x) = \max(0, x), \text{ zero}$	Simple, avoids	Dying ReLU,	Image data
G. E. Hin-		for negatives.	vanishing gradi-	not zero-	
ton, "Rectified			ents, fast.	centered.	
linear units im-					
prove restricted					
Boltzmann ma-					
chines," in <i>Proc.</i>					
27th Int. Conf.					
Mach. Learn.					
(ICML), Haifa,					
Israel, 2010, pp.					
807-814.					
A. L. Maas,	Leaky ReLU	$f(x) = \max(\alpha x, x),$	Prevents dy-	Needs tuning	Sparse data
A. Y. Han-	-	$\alpha \approx 0.01.$	ing ReLU,	α , not zero-	
nun, and A. Y.			allows negative	centered.	
Ng, "Rectifier			gradients.		
nonlinearities					
improve neural					
network acous-					
tic models," in					
Proc. 30th Int.					
Conf. Mach.					
Learn. (ICML),					
Atlanta, GA,					
USA, 2013, vol.					
30, no. 1, p. 3.					

Continued on next page

Table 1 – Continued from previous page

${\bf Table} \ 1-Continued \ from \ previous \ page$						
Reference	Function	Explanation	Benefits	Limitations	Data Type	
DA. Clevert, T. Unterthiner, and S. Hochre-	ELU	$\begin{cases} f(x) = x \text{ if } x > 0, \text{ else} \\ \alpha(e^x - 1). \end{cases}$	Zero-centered, smooth negative region.	Slower, needs tuning α .	Continuous data	
iter, "Fast and accurate			region.			
deep network learning by ex-						
ponential linear						
units (ELUs)," in <i>Proc. Int.</i>						
Conf. Learn. Represent.						
(ICLR), San Juan, Puerto						
Rico, 2016.	SELU	C1-1 DIII (/)	Self-	N 1 : C -	D	
G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochre-	SELU	Scaled ELU, $f(x) = \lambda x$ if $x > 0$, else $\lambda \alpha(e^x - 1)$.	normalizing, robust to noise.	Needs specific initialization, sensitive to hy- perparameters.	Dense net- works	
iter, "Self- normalizing						
neural networks," in <i>Proc.</i>						
Adv. Neural Inf. Process. Syst. (NeurIPS),						
Long Beach, CA, USA, 2017, pp. 971–980.						
D. Hendrycks and K. Gimpel, "Gaussian error	GELU	$f(x) = x \cdot \Phi(x), \Phi:$ Gaussian CDF.	Smooth, combines ReLU and dropout.	Computationally complex, less interpretable.	NLP, transformers	
linear units (GELUs)," arXiv preprint			diopout.	moorprovable.		
arXiv preprint arXiv:1606.08415 2016.	,					
P. Ramachandran, B. Zoph, and Q. V. Le,	Swish	$f(x) = x \cdot \operatorname{sigmoid}(x).$	Smooth, outperforms ReLU in some tasks.	Computationally costly, less intuitive.	Deep net- works	
"Searching for activation functions,"						
arXiv preprint arXiv:1710.05941	,					
D. Misra, "Mish: A self	Mish	$f(x) = x \cdot \tanh(\ln(1 + e^x)).$	Smooth, non- monotonic,	Costly, less studied.	Generative models	
regularized non-monotonic		,	preserves negatives.			
neural activa- tion function,"						
arXiv preprint arXiv:1908.08681	,					
2019.				Continue	d on next page	

Continued on next page

Table 1 – Continued from previous page

Table 1 – Continued from previous page					
Reference	Function	Explanation	Benefits	Limitations	Data Type
H. Zheng, Z. Yang, W. Liu, J. Liang, and Y. Li, "Improving deep neural networks using softplus units," in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Killarney, Ireland,	Softplus	$f(x) = \ln(1 + e^x),$ smooth ReLU.	Smooth, fully differentiable.	Vanishing gradients, costly.	Regression tasks
X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks," in Proc. 13th Int. Conf. Artif. Intell. Stat., Chia Laguna Resort, Sardinia, Italy, 2010, pp. 249–256.	Softsign	$f(x) = \frac{x}{1+ x }, \text{ maps to}$ (-1,1).	Smooth, bounded, simpler than tanh.	May have vanishing gradients.	General tasks
K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers," in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Santiago, Chile, 2015, pp. 1026–1034.	PReLU	$f(x) = \max(\alpha x, x), \ \alpha$ learned.	Adapts to data, improves Leaky ReLU.	More parameters, risks overfitting.	Image data
Y. LeCun et al., 1998 F. Rosenblatt, "The perceptron: A probabilistic model," Psychol. Rev., vol. 65, no. 6, pp. 386–408, 1958.	Linear Binary Step	f(x) = x, direct pass-through. $f(x) = 1 if x > 0$, else 0.	Simple, no computation cost. Fast, simple for binary tasks.	No non-linearity, limited use. Not differentiable, unsuitable for deep learning.	Regression output Basic classification

Continued on next page

Table 1 – $Continued\ from\ previous\ page$

Reference	Function	Explanation	Benefits	Limitations	Data Type
A. Krizhevsky,	Softmax	$f(x_i) = \frac{e^{x_i}}{\sum_i e^{x_j}}.$	Outputs prob-	Costly for many	Multi-class
I. Sutskever,		$\sum_{j} C^{-j}$	abilities for	classes.	classification
and G. E. Hin-			multi-class.		
ton, "Imagenet					
classification					
with deep					
convolutional					
neural net-					
works," in <i>Proc.</i>					
Adv. Neural					
Inf. Process.					
Syst. (NIPS),					
Lake Tahoe,					
NV, USA, 2012,					
pp. 1097–1105.					