PATENT ABSTRACTS OF JAPAN

(11)Publication number:

03-157816

(43)Date of publication of application: 05.07.1991

(51)Int.CI.

G11B 7/00 G11B 7/24

(21)Application number: 01-296550

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

15.11.1989

(72)Inventor: NISHIUCHI KENICHI

YAMADA NOBORU AKAHIRA NOBUO

(54) OPTICAL INFORMATION RECORDING MEMBER AND OPTICAL INFORMATION RECORDING AND REPRODUCING DEVICE

(57)Abstract:

PURPOSE: To allow reproducing and recording even if the absorption spectra before and after the recording and the wavelength of a light source vary by providing transparent separating layers between plural recording information layers and recording layers and providing an administration region which administers the intensity of the light with which the respective recording layers are irradiated in the specific part of the recording member. CONSTITUTION: The information recording member is constituted by providing the transparent separating layers 4a to 4b between the respective recording layers 3a to 3b. The administration region 21a for the reproducing power corresponded to the respective recording layers is provided in the specific part of the recording member. The reproducing power is controlled according to the signal from the administration region 21a at the time of reproducing information. Recording is executed successively from one end of the recording layer 3c furthest from the incident light of a light beam

or the recording power is controlled according to the quantity of the reflected light from the optical recording member at the time of recording signals. The reproducing or recording of the signals is possible in this way even in such a case in which the absorption spectra change in the wavelength region of the reproducing light before and after the recording.

⑩ 日本国特許庁(JP)

⑪特許出願公開

平3-157816 ⑫ 公 開 特 許 公 報 (A)

®Int. Cl. 5

識別記号

庁内整理番号

@公開 平成3年(1991)7月5日

G 11 B 7/00

7/24

Q B 7520-5D 8120-5D

審査請求 未請求 請求項の数 9 (全9頁)

60発明の名称

光学情報記録部材および光学情報記録再生装置

願 平1-296550 @特

22出 願 平1(1989)11月15日

個発 明 者 内 西

健

大阪府門真市大字門真1006番地 松下電器產業株式会社內

70発明者

Ш 田 昇

大阪府門真市大字門真1006番地 松下電器産業株式会社内

個発 明 者 赤平

夫

大阪府門真市大字門真1006番地 松下電器産業株式会社内

の出 願 人

松下電器産業株式会社

大阪府門真市大字門真1006番地

79代 理 人

弁理士 粟野 重孝 外1名

明細書

1. 発明の名称

光学情報記録部材および光学情報記録再生装

2. 特許請求の範囲

- (1)複数の情報記録層と前記記録層の間に透明 な分離層を設けた構成からなる光学情報記録部材 において、前記記録層の少なくとも2層は情報再 生用の光源の波長に対し一定の吸収または回折を 伴う記録層から構成され 前記記録部材の特定の 部分に前記各記録欄に照射する光の強度を管理す る管理領域を設けたことを特徴とする光学情報記 经部林。
- (2) 各記録層に照射する光の強度を管理する管 理領域を、 光顔に最も近い記録層上のデータ領域 に近接する領域に設けることを特徴とする請求項 1 記載の光学情報記録部林
- 〈3〉複数の情報記録層と前記記録層の間に透明 な分離層を設けた構成からなる光学情報記録部材 上に光を照射し 前記記録層の情報を再生する装

置において、 再生用の光源と、 前記光源からの光 ビームを前記記録部材上に導く光学的手段と、 前 記記録部材の一部に設けられた管理領域からの情 報にしたがって 前記記録層に照射する光の強度 を設定することを特徴とする光学情報記録再生装

- (4) 光源からの光ビームを前記記級部材上に導 く光学的手段が 前記光源からの光ピームを着脱 可能な平行平板を介して前記記録層上に集光する ことを特徴とする請求項3記載の光学情報記録装
- (5)複数の情報記録層と前記記録層の間に透明 な分離層を設けた構成からなる光学情報記録部材 上に光を照射し、 前記記録層の情報を再生する装 置において 前記記録層の少なくとも1層は記録 可能あるいは書き換え可能である記録層から構成 され 記録再生用の光顔と 前記光源からの光ビ ームを前記記録部材上に導く光学的手段と 前記 記録部材の記録状態を管理する手段と 前記記録 状態を確認する手段からの出力に対応させて名層

-2-

に対して独立の光強度を設定することを特徴とする光学情報記録再生装配。

- (6) 記録部材の記録状態を管理する手段が、光学情報記録層からの反射光量を検出する手段から構成されることを特徴とする精求項5記載の光学情報記録再生装置。
- (7) 光願からの光ビームを記録部材上に導く光学的手段が 前記光源からの光ビームを着脱可能な平行平板を介して記録層上に集光することを特徴とする請求項5記載の光学情報記録装置。

-3-

書ファイル データファイルへと応用が盛んに行われている追記型の光ディスク、第三は記録消却は の可能な光ディスクである。 これらの装置の辞細は 例えば「光ディスク技術」(尾上守夫監修 ラジオ技術社出版 平成元年2月10日)に記録されている。 第二および第三の光記録は いずれもヒートモードの記録であり、 照射した光のにより行われる。

一方 次世代の光記録材料としては フォトンモードで記録できる有機色素等を用いたフォトクロミック材料が検討されている。 これらの材料を用いて 吸収スペクトルの異なる性質の薄膜を積溜することにより光多重記録を行い 光ディスクの記録密度を大幅に向上させる方法が提案されている。

発明が解決しようとする課題

上記のような光多重記録のための記録材料には 各層の記録前後の吸収スペクトラムと信号再生用 の光源の被長を一致させる必要がある。 しか し 次記録を行なうことを特徴とする光学情報記録再 生装配

(9) 記録層の少なくとも I 層は書き換えが可能である記録層で構成され 前記記録媒体への記録部材への記録部材への記録部は、
前側に対し
を開始し、
順次光ピームの入射側の層に記録を行ない、
一旦全ての層に記録が行なわれた後に、
き換えモードで動作を行なうことを特徴とする請求項 8 記載の光学情報記録再生装置。

3. 発明の詳細な説明

産業上の利用分野

本発明は 複数の情報記録層を備えた光記録部 林 および記録部材上に情報を記録再生する装置 に関する。

従来の技術

レーザー光等の高密度エネルギー光東を利用して情報の記録・再生を行う技術は既に公知であり、第一はコンパクトディスクやレーザディスクに代表される再生専用の光ディスクである。 第二は文

-4-

光記録装置の 光源としては半導体レーザが一般的であるが 現在室標で連続発振可能な半導体レーザの波長は 850、780、670 n m と限られた範囲である。

本発明は 複数の記録階を積層してなる多層構造の光学情報記録部材に対し 各記録層の材料組成が同一 あるいは各記録層の材料は異なるが記録前後で吸収スペクトルが再生光の被長領域で変化するような場合においても 信号の再生あるいは記録が可能である光学情報記録部材および記録

-6-

再生装置を提供することを目的とする

課題を解決するための手段

情報記録部材を各記録層の間に透明な分離層を 設けた構成とし、記録部材の特定の部分に各記録 層に対応させた再生パワーの管理領域を設ける。

情報の再生時には管理領域からの信号に応じて再生パワーを制御する。また、信号の記録時には光ピームの入射側に対し最も離れた記録層の一端から順次記録を行なう。あるいは、光記録部材からの反射光量に応じて記録パワーを制御する。

作用

各記録層の間に透明な分離層を設けることにより、記録層間を一定の距離にする事ができ、目的とする記録層に近接した層からの影響を小さくすることができる。

また再生光のパワーを各記録層に応じて変化させることにより、 各記録層から一定の損幅を持つ再生信号を得ることができ、記録層に形成された、情報を誤りなく復調することができる。

また 記録を光ピームの入射側に対し最も離れ

-7-

表面には光ピームのトラッキング用の記録方向に一定の乗さを持つガイドトラック、またはサンプルサーボトラッキング用の凹凸ピットが形成されている。

記録層 3 a, 3 b, 3 c を構成する材料には 再生専用 1回だけ記録可能な追記型 再記録の 可能な書換え型の3種類がある。 再生専用では 基板であるいは分離層4の表面に凹凸ピットを情 報として形成したものを用い、 記録層の材料の機 能としては一定の反射率 透過率を示す幕膜で 例えばAl,Au等の金属材料が適用できる。 この場合 の記録状態は凹凸ピットの回折による反射光量あ るいは透過光量の変化を 利用して信号の再生を 行なう。 追記型の記録材料としては、Te-0,Te-Pd -Q Sb-Se, BiTe等の相変化を利用するもの 即ち アモルファスー結晶間の光学定数の差を利用して 信号を記録する。 また Te-C, TeSs, 有機色素材料 等の形状変化による回折あるいは記録膜の有無に よる反射光量あるいは透過光量の変化を利用して 記録を行なう記録材料がある。 書換え型には 照

た記録層の一端から順次記録を行なうことにより、 各層に対し1つの記録パワーを設定するだけで確 実な記録が行なわれる。

さらに 光記録部材からの反射光量に応じて記録パワーを制御することで 各記録層の記録状態にかかわらず任意の記録層に記録することが可能となる。

寅施例

(実施例1)

第2図は 本発明に用いる光学情報記録部材の一実施例を示す断面図である。 光学情報記録部材である光ディスク 1 は基板 2 上に複数の情報記録層 3 a、 3 b、 3 cを備え 各記録層の間は 分離層 4 a、 4 bにより熱的に かつ光学的に分離されている。情報記録層 3 は 凹凸虫 光学的な速度差あるいはピットからなる情報パターンが形成されている。

光ディスク用の基板 2 としては ポリカーボネートやポリメチルメタアクリレート (PMMA) 等の樹脂材料 及びガラスが用いられる 基板の

-8-

射された光を吸収し昇温することにより、アモルファスー結晶間あるいは結晶ー結晶間の相変化するもの、形状の変化を生じるもの、磁気光学効果を利用した光磁気記録材料がある。アモルファスー結晶間の相変化には、GeTe、GeTeSb、GeSbTeSe、InSe、InSbTe、InSeT1Co等の材料が、また結晶ーいるには、InSb、AgZn系等の材料を用いることができる。光磁気記録材料としては、MnBi、GdTbFe、TbPeCo系の材料やCo-Pt、Co-Pd等の超構発できる。前記3種類の薄膜のほとんどは物見選択性の少なな、単に積層するだけでは情報の再生は困難である。また、光により直接変移するスピロピラン系に代表されるフォトクロミック材料等も適用できる。

名記録層に形成された情報を、分離して独立に再生可能とするため透明分離層 4 a, 4 b を記録 贈聞に設ける。透明分離層 4 a, 4 b は解射光の波長に対して、光吸収が小さく薄膜の形成が容易であることが要求され、SiOs、ZnS、SiN、AlN等の誘電体材料あるいはPMMA、ポリスチレン等の樹脂材料

-9-

-10-

第2 図以外に 記録圏 3 c と保護圏の間に 透明分離圏と反射圏を設け、 照射した光の利用効率を高める方法がある。 反射圏用の材料としては入射光に対し一定の反射率を示すものでA 1、 A u などの金属が用いられる。

次に第1図により、本発明の記録装置の一実施例を説明する。全体は、レーザ駆動部A、光学系B、再生制御部Cから構成される。

レーザ駆動部 A は 光ディスク 1 からの情報を 再生する場合には コントローラ 6 からの制御信

-11-

ーザ 8 を用いる。 レーザ駆動部 A により変調された半導体レーザ 8 の光はコリメータレンズ 1 4 により平行光となり、 偏向ビームスブリッター 1 5 で反射され、 1 / 4 被長板 1 6 を透過し、対物レンズ 1 2 により所定の光学長を有する平行平板 1 3 経て光ディスク 1 の情報記録面上に集光される。

また、情報記録層からの反射光は、再び平行平板13、対物レンズ12、1/4波長板16を経て、偏向ビームスプリッター15を透過し、光検出器17に入射する。光検出器により光電変換された信号17sは、再生制御部Cのプリアンブ18により増幅される。

再生制御部 C は、フォーカス・トラッキング制御部 1 9 によりブリアンンブ信号 1 8 c からフォーカスエラー信号、トラッキング信号を作成し、制御信号に従って対物レンズ 1 2 を支持するボイスコイル 2 0 を駆動する。この結果、光ディスク1上の記録層の所定の位置に光ピームを照射することができる。

光学系Bは 基本的に従来の光ディスク装置と同じ構成であるが 異なる点は光ディスク 1 が複数の記録層の中から目的の層に光を集光する手段が必要である。 ここでは 対物レンズ 1 2 と光ディスク 1 の間に光路長を変更用の透明平板 1 3 を設け、目的とする記録層に応じて平行平板の厚さを選択する方法を用いた。

光ディスク上に信号を記録 あるいは記録され た信号を再生するための光源としては 半導体レ

-12-

のディスク管理領域 2 1 aにあらかじめ形成されたデータ信号の管理信号を復編し、光ピームの照射で位置の管理 信号を復編に対応した照射パワーの情報などの検出を行からの信号 1 8 c ののでは、プリアンブからの信号 1 8 c の高周波成分を用いて、記録層上のコータ信号 2 3 s は、バッファメモリ 2 4 に一次書積され、外部装置に出力される。

第3 図により、多層構造の光ディスク上に光を 集光するためのフォーカシング法について説明す る。光ディスクの分野で用いられる対物レンンは 所定の光学長、例えば屈折率が1.5 であり、厚 さ1.2 mmの基材を透過した後に正しく無点を 結ぶ構成(各種収差が小さい状態)となって対物レ ンズ1 2 と光ディスク」の間に透明な平行平板1 3を設ける。 即ち、目的とする記録層3から対物 レンズ12までの間で、平行平板13と、光ディ スク基板 2 と、透明分離層 4 の厚さを合計した値 (光学長)が 1. 2mmとなるように各層の値を 設定する。例えば記録簡3a、3b、3cの厚さ は1μm以下と、透明分離層4a、4bの厚さに 比べ十分に小さくする。 透明分離層 3 a、 3 b が 共に100μmであれば透明平板の厚さは 10 0 μ m と 2 0 0 μ m、 光ディスク基板の厚さは 1 mmとする。 この場合、ディスク基板と透明分離 層と透明平板は それぞれの屈折率が 1. 5に近 い程 光の集光状態が最適となる なお光ディス クは 未記録の状態で各記録層がほぼ均等に光を 吸収するよう各層の厚さを設定する 即ち 第3 図 (a) の平行平板がない場合は光源からの最終 の記録層3cを (b)は平行平板13aが10 0 μmであり記録層 3 b を (c)は平行平板 1 3 a が 2 0 0 μ m で あ り 記 録 層 3 c を 再 生 す る。 以上のように、目的とする記録層に対応して、平 行平板を選択することにより、 任意の記録層に光

を集光することができる。

一方 名層におけるトラッキングの制御は 従来の光ディスクの方式を用い 連続ガイドトラックの場合はブッシュブル方式 サンブルピットの場合は サンブルサーボ方式により行なう。以上のような方式により 任意の記録層の任意の位置に光を照射することが可能となる。

-16-

-15-

ここで L = 8 3 0 n m. N A = 0. 5、 n = 1. 5、 a = 1 0 即ちクロストーク量 2 0 d B とすると、記録層間隔は d = 3. 7 μ m となる。即ち許容できるクロストーク量が決定されたならば、式1より求められた値以上に記録層間隔を設定すれば良い。なお、式1 は厳密には各層の回折の影響を考慮する必要があるが、各種記録層の記録原理及び材料特性の影響によりその値は様々である。

NA/n))

ここでは記録層3aと3b上の光スポットと比より近似的に求めた結果である。 式 1 からさらににクロストーク影響を小さくするためには 記録層間隔を大きく取定すれば良いことがわかる。 しかい 記録層の間隔を大きくするに従って、 光検出器 17に到達する光量が減少するため、 再生信号の振幅が低下し、 データの復霧時にエラーを生じる。

 最内周部等のデータ領域の周囲に光学的に記録する場合や 他の方法としてはディスクを保護するためのカートリッジの一部に磁気的 光学的あるいは半導体メモリ等の手段で設けられる。 この領域に記録された値を 再生装置にディスクをセットした時点で 読みだすことにより データの確実な再生が行なわれる。

次に 多層構造ディスクの記録方法について説明する。 前述のように 各記録層は近接する記録層の影響により、記録膜に到達する光の強度が低下する。 このため 第3回の第1の記録層3aにデータをランダムに記録した場合には 光源の出力が一定であったとしても 第1層3aの記録状態により、第2層3b、第3層3cに到達する光量が変化する。

本発明においては 記録層の特定の位置 例えば第1層のデータ記録領域の外側にディスクの管理領域を設け、光ディスクのデータ記録閲歴を管理する。管理情報に従ってデータの記録開始点を光の入射側に対し最も離れた位置にある記録層か

-19-

ーと同様に2つの消去パワーを設定する。 (事施例2)

ここでは 予め各記録階に対応した照射パワー を設定せずに 照射パワーを制御する方法につい て説明する。

データの再生時に一旦所定のパワーの光を照射した後に、自的とする記録層からの反射光量に応じて、解射パワーにパワーサーボを行なう。 例えば第2層3bを再生する場合 光検出器17に到達する光量は第1層の吸収 あるいは回折の影響により反射光量が著しく低下すると 同時に再生振幅が低下する。この反射光量が一定となるように、再生光光線のパワーにサーボをかける。

記録あるいは記録清去の可能な記録層の場合は 予め光ディスクの各層が未記録状態の反射光量 順次記録状態の反射光量を測定し、それぞれの状態における。 各層の反射光量と記録に必要な光源の出力が実験的に求めておく。 これらの結果をコントローラ 8 に記憶させることで、 反射率測定部 2 2 からの出力信号をもとに、目的とする記録層 ら順次記録する方法をとる。以上の構成とすることで、記録光を照射する層よりも光源側の記録層は、常に未記録伏態であり、 集光される光は記録ビットによる光の回折及び、 吸収率の変化を解消することができる。 この結果、記録時のレーザ光の照射パワーは、それぞれ記録層に対応して1種類の値を設定するだけで記録が可能となる。

-20-

に必要な光想の光出力が特定され、この結果に従ってレーザ駆動回路 1 0 を駆動することにより、信号の記録が行なわれる。以上の構成によれば、各層の記録状態を制限することなく、 かつ記録パワー不足等による記録エラーを回避できる。

ここまでは 反射光量に応じてパワーサーボを 行なう場合であったが 他の方法としては 再生 信号の振幅によりパワーサーボを加える方法があ る。 データの記録に際して 常にデータの先頭の 部分に一定のパターンからなる信号を記録する構 成とし この振幅に対してサーボを行なう。

以上の構成とすることにより複数の記録層からなる光ディスクの任意層に、データを再生、記録 あるいは記録消去することが可能となった。

(実施例3)

ここまでは、単一の光源を用いて複数の記録層 を再生する構成であったが、本発明は、複数の光 源を用いて記録再生する場合においても同様に適 用できる。

第4図は、複数の記録層に対応して、それぞれ

-21-

-22-

単独の発光波長の異なる3つの光源26a、26b、28cを設けた例である。即ち、対物レンでには、12の色収差を利用し、それぞれの波長に位置に記録層3a、3b、3cが位置をを設定する。なは、ここで用いる対物レンズは、である。がは、ここで色収差のクラを化減することができる。記録層間のクロストークを低減することができる。

第5 図は 同一被長の複数光線を用いる方法であり、光線 2 8 a、 2 8 b、 2 8 c と 3 リメイン 3 以 5 とにより、対物レンズ 1 2 を透過した後の光の点により、対物レンズ 1 2 を透過した後の光の点にはなり、対物レンズ 1 2 を透過した後の光の点に発出器の詳細は省略した。第1 図に示した光光と同様の構成で、光路中に偏向ビームス 5 シーあるいはハーフミラー等により入射光路を引きした 3 個の光検出器を設ければよい。

-23-

での記録状態による回折を無視することができ、 有利である。

以上の方法により、複数の情報記録層からの情報が再生可能となり、 光記録部材の記録容量の向上が図れる。

発明の効果

本発明により、複数の情報記録層からの情報が再生可能な記録部材の提供 およびそれらの部材に対し信号の記録・再生が可能となり、 光記録部材の記録容量の向上が図れる。

4. 図面の簡単な説明

第1図は本発明の一実施例における記録再生装置全体の構成図 第2図は光情報記録部材の断面図 第3図は単一ピームによる多層構造記録媒体の焦点制御の順理図 第4図は複数ピームによる多層構造記録媒体の焦点制御の構成図 第5図は複数ピームによる多層構造記録媒体の焦点制御の構成図である。

1・・・光ディスク、 2・・・基板 3・・・記録圏 4・・・分雑圏 7・・・駆動回路 8・・・光源 1 2・・・

各光源のパワーは 実施例」と同様に名層に対応した値を設定する。 その方法としては 予め各値をディレクトリー等で管理する方法 あるいは 照射した光の反射光量に応じて照射パワーを変化させるいずれにも対応できる。

以上のような構成によれば 複数層を同時に再 生 あるいは記録することが可能となる。

ここでは情報層が3層の場合について述べたが 情報層が2層の場合、情報層の吸収率が低く、ま た回折効果の少ない情報層を積層することでさら に多層の場合の情報再生も可能である。

-24-

対物レンズ 17・・・光検出器 13・・・平行平板 21・・・ディスク管理部 21a・・・ディスク管理領域 22・・・反射率測定部

代理人の氏名 弁理士 粟野重孝 ほか1名

第 4 図

第 5 図

