Assignment - 5

NAME : ESHAN DANAYAKAPURA JAGADEESH

UTA 1D: 1001667159

1. a).

- 6). Re Degree hewistic = 5 MRV = 3
 - R_i Degree henristic = 5 MRV = 2
 - C Degree hevoustics = 3

 MRV = 1
 - 5 Degree hevoristie = 3 MRV = 1
 - Degree heuristie = 2 MRV = 1

V = Blue

Re = Blue

I = Red

C = Ggreen

W = Green

S = Que Red

D= Green

2). The Psuedocode is:

CHECK_EQUIVALENCE (KBI, KBZ) returns True or False: return TT-Entails? (KBI, KBZ) and TT-Entails? (KBZ, FBI)

- 3. a). Yes. KB entails SI because in whichever cary

 KB is tome, SI is also tome and since SI is

 also tome in all worlds in which KB is

 tome: KB entails: SI.
 - b). No. Statement Not (KB) does not entail Not(s) because there are 2 cases where the Not(kB) and NOT(s) are not same which are in Case and case 4 where they have different value and hence NoT(s1) is not same in all world in which NOT (KB) is torre and hence NOT(kB) does not embail NOT(S1)

4). [Α	В	С	D	KB
1	True	True	True	Tome	False
1	Tome	True	True	foilse	Tome
}	Teme	Tome	false	True	Torne
٩ •	Tome	Torre	False	False	True
1	Tome	False	Toure	True	True
	True	False	Tome	False	False
]	Tour	False	false	Tome	Tome
¥	Tome	False	False	False	Tome
9	False	Torre	Tome	Tour	Tome
1b	False	Tome	Tome	False	True
1	Forlse	Time	False	Tome	Torre
-1	False	Tome	False	False	Tome
	False	False	True	Tome	True
	False	False	Tome	False	Tome
	False	False	False	Tome	True
13	False	False	False	False	Tome

from the truth table, the following stockment on he derived from that: ~(A AB A C A D) A ~(A A ~(B) A C A ~(D)) CNF form => (NAVNBV~CVND) A (NAVBV NCVD) A (=> B 5). B => C $D \Rightarrow A$ C AND E => F E D Converting to horn form, $A \Rightarrow B$ $B \Rightarrow A$ D=>A B=> C CAND E =>F 1). Forward chaining Given D Applying modes Ponens (MP) to D => A D gives A Applying MP to A => B A gives B Applying MP to B => C B gives C Applying MP to C AND E=>F

Gr S using
$$C$$
 AND $E \Rightarrow F$

Grs
$$\begin{bmatrix} C \\ E \\ F \end{bmatrix}$$
 using $B \Rightarrow C$

E is already time

GS
$$\begin{vmatrix} B \\ c \end{vmatrix}$$
 using $A \Rightarrow B$

Using MP, D=>A .: A is Terre

Using MP, A=>B .: B is terre

Using MP, B=>C .: C is true

Using MP, CAND E=>F .: F is true

initially D and E are torne

: KB F F

ii). Resolution: Resolution Algorithm KBATX is unstatistiable (AC=>B) N (B =>C) N (D=>A) N [(CNE)=)F] NENDATE Eliminate (=) (A => B) N(B=>A) N (B=>C) N (D=>A) N (CCNE) => F) N EN DN 7 F Eliminate => (TAVB) A (TBVA) A (TBVC) A (TDVA) A (T(CAE) VF) AEADA 7F (TAVB) N(TBVA) N(TBVC) N(TDVA) N(TCVTEVF) NENDATF c'VE'VF DIVA BVC EVE D'VD A'VA B'VB A'vc

6). A = Raining on Mary 1, 2017

B = John gines Mary a check & \$10,000

on May 2, 2017

This can be wrothen as Propositional statement as $(A \Rightarrow B)$

C = Many must mow the lawn on May 3,2017 $(B \Rightarrow C)$

Part (a) $(A = > B) \land (B = > c)$

Post (b) 7 A NB NC

Part (c) Yes contract was violated since even though it did not rain on May 1, 2017. John played \$10,000 on May 2, 2017.

Hence contract is false and enemls are true i-e 7A => B is false in contract, but event says it is touch

7). Constants:

Shadow, John, Mary, Smoot phone, Laptop Poedicates:

Dog(X): X is a dog

Gane (x, y, z): x gane y to 2

Male (X): X is, male

Variables: X, Y, Z

Semantics:

Game (John, Shadow, Mary)

Male (Shadow) => Grame (Mary, Smartphone, John)

Male (Shadow) => Grame (Mary, Laptop, John)

Male (Shadow) => Grame (Mary, Laptop, John)

(Hx)(Hy) [Grame (John, X, Y) N Day (x) N Male(x)]

Grame (Mary, Laptop, John)

- 8). Taller (John, y) taller (x, Son(x))
 unification { x/John, y/Son(x)}
 - Taller (y, Barony), taller (Barony, x) Unification { x/Barony, Y/Barony }
 - Taller (2, Jane), talles (Bob, Jane) Unification {x/bob}
 - Taller (Son(x), Jane), taller (Bob, Jane) Unification fails for given predicate
- Taller (Barry, Jane), taller (x, y) Unifications - { x/Barry, y/John }