A Multimodal Method to Detect DeepFake Videos

Jinchen Wu · Weijian Zhang · Ruoye Wang

Overall Project Goals

- Multimedia forgery threats
- DeepFake: face-swapping
- Our aim:
 learning-based
 deepfake video
 detection

https://www.youtube.com/watch?v=_q16aJTXVRE&t=87s

Specific Aims

Multimodal framework

- Visual-audio features
- Deepfake video detection

Performance

Comparable to state-of-the-art techniques on DFTIMIT and DFDC datasets

Comparison

- With different architectures and results
- Why their performance differ?

Current State of the Art

DeepFake detection categories

- Intra-frame visual artifacts
- Inter-frame inconsistencies
- Multimodel features

Current State of the Art: unimodal

Approaches

- Intra-frame visual artifacts: DNN during face wrapping [1], discontinuity of head pose [2]
- Inter-frame inconsistencies: [3][4] combine CNN and LSTM for detection

Limitations

- Low performance
- Various unutilized features
- Vulnerable to manipulated audio

Current State of the Art: multimodal

Mittal et al.[5]: congruence between emotions

- Double Siamese network
- Extract features and vectors from emotion and audio respectively

Hosler et al.[6]:

- LSTM network: predict emotions from Low-level Descriptors
- Train real-fake detector from predicted emotion

Novelty

Multimodal architecture

- Measure similarities
- Use similarities

LSTM

- Combine with bimodal architecture
- Evaluate the results

Investigate losses

 Different combinations affect performance

Performance

- Of different frameworks
- On DFTIMIT and DFDC datasets

Importance

Framework designs

Inspiration on audio-visual frameworks

LSTM

Insight on its influence on similarity measurement

Datasets

Deeper understanding on DFTIMIT and DFDC

Datasets

DFTIMIT[11]

- 32 different people from VIDTIMIT[14]
- Manipulated with FS-GAN[13]
- Real audio channel
- Choose HQ over LQ
- Each video: 512*384 resolution, 25 fps, ≈4s duration

DFDC[12]

- Undisclosed manipulations
- Audio/visual/audio-visual
- Each video: 30 fps, ≈ 10s duration

Principle of data selection

- Requirement: audio and visual channels
- DFTIMIT:
 - Frontal angles
 - 3 out of 32 subjects
 - Correct learning outcome
- DFDC:
 - Computational limitation
 - Same size
 - Different folders

Technical Approach

Transition from midterm presentation

- Initially, Emotions Don't Lie[5]
- Prob 1: Require the inputs of a real and fake video pair
- Prob 2: Framework too complicated

Inspirations

- Directly model the similarity between visual and audio features
- Contrastive loss from Chung and Zisserman et al.[7]
- Imposition of cross-entropy loss from Chugh et al.[8]
- Extract visual features using 3D-CNNs[9]
- Extract audio MFCC[10] features using ResNet architectures

Platform

Preprocessing

- 1-second segments (FFMpeg)
- S3FD to crop faces
- Python_speech_features for MFCC features

Training and testing

PyTorch to build the network

Runtime environment

Google CoLab using one GPU

Results for DFTIMIT

Results for DFDC

Results for DFDC (LSTM)

AUC:0.44

L1+L2+L3

AUC:0.78

L1+L2

DFDC 53.3 55.9 61.9 72.7 84.4 90.55 83.19 77.52(LSTM DFTIMIT-HQ 74.4 53.2 62.1 93.2 94.9 96.8 99.9 Modality V V V AV AV AV AV		Capsule[15]	HeadPose[2]	VA-MLP[16]	FWA[1]	Siamese-based[5]	AV-dissona nce[6]	Our method
	DFDC	53.3	55.9	61.9	72.7	84.4	90.55	83.19 77.52(LSTM)
Modality V V V V AV AV AV	DFTIMIT-HQ	74.4	53.2	62.1	93.2	94.9	96.8	99.9
	Modality	V	V	V	V	AV	AV	AV

Discussions

Advantages

- Achieved perfect performance on DFTIMIT and decent results on DFDC
- Analyzed the effects to the performance using different loss combinations

Disadvantages

- The size of training samples is relatively small due to computation limit
- The performance of the LSTM based network is not good as expected

Future directions

- Test our models on bigger and more SOTA datasets
- Improve the architecture of the LSTM based network
- Try different advanced feature extraction networks and analyze the results
- Improve the techniques used in data preprocessing, e.g.
 face alignment, overlapping, etc.

Team member contributions

- Jinchen Wu:
- Coding of entire projects
- Data cleaning
- Training and evaluating
 DFDC dataset
- Slides

- Weijian Zhang:
- Idea exploring
- Co-coding of LSTM network
- Training DFTIMIT dataset
- Training DFDC dataset using
 - LSTM network
- Slides and report

- Ruoye Wang:
- Evaluating DFTIMIT dataset
- Slides and report

Reference

- [1] Yuezun Li and Siwei Lyu. 2018. Exposing deepfake videos by detecting face warping artifacts. arXiv preprint arXiv:1811.00656 (2018). https://arxiv.org/abs/1811.00656
- [2] Xin Yang, Yuezun Li, and Siwei Lyu. 2019. Exposing deep fakes using inconsistent head poses. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 8261–8265. https://arxiv.org/abs/1811.00661
- [3] David Güera and Edward J Delp. 2018. Deepfake video detection using recurrent neural networks. In 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 1–6.
- [4] Ekraam Sabir, Jiaxin Cheng, Ayush Jaiswal, Wael AbdAlmageed, Iacopo Masi, and Prem Natarajan. 2019. Recurrent convolutional strategies for face manipulation detection in videos. Interfaces (GUI) 3 (2019), 1.
- [5] Mittal, T., Bhattacharya, U., Chandra, R., Bera, A., & Manocha, D. (2020). Emotions Don't Lie: A Deepfake Detection Method using Audio-Visual Affective Cues. ArXiv, abs/2003.06711. https://arxiv.org/abs/2003.06711
- [6] Hosler, Brian, et al. "Do deepfakes feel emotions? A semantic approach to detecting deepfakes via emotional inconsistencies." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021.
- [7] Joon Son Chung and Andrew Zisserman. 2017. Out of Time: Automated Lip Sync in the Wild. 251–263. https://doi.org/10.1007/978-3-319-54427-419
- [8] Chugh, Komal, et al. "Not made for each other-audio-visual dissonance-based deepfake detection and localization." Proceedings of the 28th ACM international conference on multimedia. 2020.
- [9] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. 2017. Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet? CoRR abs/1711.09577 (2017). arXiv:1711.09577 http://arxiv.org/abs/1711.09577
- [10] Nelson Mogran, Hervé Bourlard, and Hynek Hermansky. 2004. Automatic Speech Recognition: An Auditory Perspective. Springer New York, New York, NY, 309–338. https://doi.org/10.1007/0-387-21575-1 6
- [11] Pavel Korshunov and Sébastien Marcel. 2018. Deepfakes: a new threat to face recognition? assessment and detection. arXiv preprint arXiv:1812.08685 (2018).
- [12] BrianDolhansky,RussHowes,BenPflaum,NicoleBaram,andCristianCanton Ferrer. 2019. The Deepfake Detection Challenge (DFDC) Preview Dataset. arXiv preprint arXiv:1910.08854 (2019).
- [13] GitHub-shaoanlu/faceswap-GAN:Adenoisingautoencoder+adversarial losses and attention mechanisms for face swapping. https://github.com/shaoanlu/ faceswap-GAN. (Accessed on 02/16/2020).
- [14] Conrad Sanderson. 2002. The vidtimit database. Technical Report. IDIAP.
- [15] H. H. Nguyen, J. Yamagishi, and I. Echizen. 2019. Capsule-forensics: Using Capsule Networks to Detect Forged Images and Videos. In ICASSP 2019 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2307–2311.
- [16] F. Matern, C. Riess, and M. Stamminger. 2019. Exploiting Visual Artifacts to Expose Deepfakes and Face Manipulations. In 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW). 83–92.

Ilhank you

Questions?