SVKM's D. J. Sanghvi College of Engineering

Program: B.Tech in Chemical Academic Year: 2022 Duration: 3 hours

Engineering Date: 09.01.2023

Time: 10:30 am to 01:30 pm

Subject: Process Dynamics and Control (Semester VII)

Marks: 75

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover page of the Answer Book, which is provided for their use.

- (1) This question paper contains three pages.
- (2) All Questions are Compulsory.
- (3) All questions carry equal marks.
- (4) Answer to each new question is to be started on a fresh page.
- (5) Figures in the brackets on the right indicate full marks.
- (6) Assume suitable data wherever required, but justify it.
- (7) Draw the neat labelled diagrams, wherever necessary.

Question No.		Max. Marks
Q1 (a)	Mention the hardware components used in a control system. OR	[05]
	Why is linearization required in process dynamics? Explain with an example.	[05]
Q1 (b)	A control system having transfer function as $G(s) = \frac{Y(s)}{X(s)} = \frac{5}{1.8 s^2 + 3s + 5}$ is given step change of magnitude 5. Find the (i) Value of Y(t) at t = 0.5min. (ii) Overshoot (iii) Cyclical frequency	[10]
	This the (i) value of 1(t) at t = 0.5mm. (ii) overshoot (iii) eyenear frequency	
Q2 (a)	Two noninteracting tanks are connected in series. The time constants are τ_1 =0.5 and τ_2 =1.0; R ₂ =1. Find the response of the level in tank 2 if step change of 5 units is made in the inlet flow rate to tank 1. Find height of tank 2 after 5min.	[10]
	OR	
	Test stability of the given characteristic equation using Routh Hurwitz method. $1 + \frac{K}{(15s+1)(60s+1)} = 0$	[10]
Q2 (b)	Write short note on Ziegler Nichols Tuning method.	[05]
Q3 (a)	A thermometer having first order dynamics is at steady state temperature of 30°C is subjected to impulse of magnitude 50 °C. The time constant for thermometer is 6 second. Calculate the temperature indicated by thermometer at t=3second and t=18sec.	[05]

******* 1 *******

	OR	
	Considering Proportional controller; $Gv = \frac{1}{2s+1}$; $Gp = Gd = \frac{1}{5s+1}$; $Gm = 1$, find the closed loop transfer function considering servo problem.	[05]
	(Gc) Gr (Gr) Yu)	
Q3 (b)	For the following tank heating system with water, (Assume Specific heat capacity as 4.184 KJ/kg °C). (a) Determine the response equation of the outlet temperature of the tank to a step change in the inlet temperature from 60 to 70 °C. Find the temperature after 5 min. (Here assume no change in heat input). (b) Determine the response of the outlet temperature of the tank to a step increase in the heat input of 42 kW. Find the temperature after 5 min. (Here assume no change in inlet temperature).	[10]
	T: = 60°C 200 L/min V=1000 L T=80°C	
Q4 (a)	An aqueous solution is mixed in a tank. The density of solution is 900 kg/m^3 . The feed rate is $1.5 \text{ m}^3/\text{min}$ and the volume of tank is 1.5 m^3 . The steady state concentration of the solution is 0.03 kmol/m^3 . The inlet concentration of the feed is given step change and increased to 0.08 kmol/m^3 . Calculate the outlet concentration of the solution for $t=1 \text{ min}$ and $t=1.5 \text{ min}$.	[10]
	OR Plot Root locus diagram for the open loop; $G_{OL} = \frac{Kc}{(s+1)(2s+1)}$. Comment on the stability of system with varying values of Kc.	[10]
Q4 (b)	A pneumatic controller is used to control as the temperature changes from 90- $105~^{\circ}$ C for the output change from 30 to 90 kN/ m^2 . Calculate the gain of the controller.	[05]

******* 2 *******

Q5 (a)	Explain any two.	
	i. Transportation lag	[05]
	ii. Damping coefficient	[05]
	iii. Cascade controllers	[05]
	iv. Transfer Function	[05]
Q5 (b)	Show that in case of Proportional control of a stirred tank heater for servo problem there is an offset.	[05]

******** 3 *******

******* 4 ******