CURSO OMOP

Cohort Survival

Variable de estudio es el <u>tiempo hasta que se produce un acontecimiento.</u>

Tiene un <u>tiempo de inicio</u> y, cuando se produce un acontecimiento concreto, un <u>tiempo final</u> (días, semanas, meses).

Variable de estudio es el <u>tiempo hasta que se produce un acontecimiento.</u>

Tiene un <u>tiempo de inicio</u> y, cuando se produce un acontecimiento concreto, un <u>tiempo final</u> (días, semanas, meses).

En el análisis de supervivencia, estudiamos la duración desde que un participante entra en un estudio (baseline), hasta que:

- * Se produce el evento de interés
- ---> Finaliza el estudio y el evento no ha ocurrido (aún)
- Se pierde el seguimiento del participante
- ▲ El participante experimenta un evento diferente que hace imposible un seguimiento posterior

En el análisis de supervivencia, estudiamos la duración desde que un participante entra en un estudio (baseline), hasta que:

- X Se produce el evento de interés---→ Finaliza el estudio y el evento no ha ocurrido (aún)
- Se pierde el seguimiento del participante
 - El participante experimenta un evento diferente que hace imposible un seguimiento posterior

Time-to-event desconocido Censura (censoring)

En el análisis de supervivencia, estudiamos la duración desde que un participante entra en un estudio (baseline), hasta que:

- * Se produce el evento de interés
- ---> Finaliza el estudio y el evento no ha ocurrido (aún)
- Se pierde el seguimiento del participante
- ▲ <u>El participante experimenta un evento diferente que hace imposible un seguimiento posterior*</u>

Time-to-event desconocido =

Censura (censoring)

Kaplan Meier Curve

Representación gráfica de la tasa de supervivencia o función de supervivencia. No hacemos asunciones

Log Rank Test

Compara la distribución del tiempo hasta que se produce un acontecimiento de dos o más muestras independientes

Cox Regression

Comprueba si hay otros parámetros que influyen en la curva

Developed by Edward Burn, Kim López-Güell, Marti Catala, Xintong Li, Danielle Newby, Nuria Mercade-Besora

Instalación

```
install.packages("CohortSurvival")*
install.packages("devtools")
install_github("darwin-eu/CohortSurvival")
```

Librerias

```
library(CDMConnector)
library(CohortSurvival)
library(dplyr)
library(ggplot2)
library (gt)
```

Single Event Survival

Estimar la supervivencia para un acontecimiento de interés determinado mediante cohortes del modelo de datos comunes OMOP

```
estimateSingleEventSurvival(
  cdm,
 targetCohortTable,
 targetCohortId = NULL,
 outcomeCohortTable,
 outcomeCohortId = NULL,
 outcomeDateVariable = "cohort start date",
 outcomeWashout = Inf,
  censorOnCohortExit = FALSE,
  censorOnDate = NULL,
 followUpDays = Inf,
  strata = NULL,
  eventGap = 30,
  estimateGap = 1,
 restrictedMeanFollowUp = NULL,
 minimumSurvivalDays = 1
```

Single Event Survival

Estimar la supervivencia para un acontecimiento de interés determinado mediante cohortes del modelo de datos comunes OMOP

```
estimateSingleEventSurvival(
  cdm,
 targetCohortTable,
                                                                   Objeto CDM
 targetCohortId = NULL,
 outcomeCohortTable,
 outcomeCohortId = NULL,
 outcomeDateVariable = "cohort start date",
 outcomeWashout = Inf,
  censorOnCohortExit = FALSE,
  censorOnDate = NULL,
 followUpDays = Inf,
  strata = NULL,
  eventGap = 30,
  estimateGap = 1,
  restrictedMeanFollowUp = NULL,
 minimumSurvivalDays = 1
```

Single Event Survival

Estimar la supervivencia para un acontecimiento de interés determinado mediante cohortes del modelo de datos comunes OMOP

```
estimateSingleEventSurvival(
  cdm,
  targetCohortTable,
 targetCohortId = NULL,
 outcomeCohortTable,
 outcomeCohortId = NULL,
 outcomeDateVariable = "cohort start date",
 outcomeWashout = Inf,
  censorOnCohortExit = FALSE,
  censorOnDate = NULL,
 followUpDays = Inf,
  strata = NULL,
  eventGap = 30,
  estimateGap = 1,
  restrictedMeanFollowUp = NULL,
 minimumSurvivalDays = 1
```

Tabla que contiene la cohorte objetivo para el análisis de supervivencia

Single Event Survival

Estimar la supervivencia para un acontecimiento de interés determinado mediante cohortes del modelo de datos comunes OMOP

```
estimateSingleEventSurvival(
  cdm,
 targetCohortTable,
 targetCohortId = NULL,
  outcomeCohortTable,
 outcomeCohortId = NULL,
  outcomeDateVariable = "cohort start date",
  outcomeWashout = Inf,
  censorOnCohortExit = FALSE,
  censorOnDate = NULL,
 followUpDays = Inf,
  strata = NULL,
  eventGap = 30,
  estimateGap = 1,
  restrictedMeanFollowUp = NULL,
 minimumSurvivalDays = 1
```

Tabla que contiene la cohorte de resultados o acontecimientos de interés para los cuales se quieren calcular las estimaciones de supervivencia

Single Event Survival

Estimar la supervivencia para un acontecimiento de interés determinado mediante cohortes del modelo de datos comunes OMOP

```
estimateSingleEventSurvival(
  cdm,
 targetCohortTable,
 targetCohortId = NULL,
 outcomeCohortTable,
  outcomeCohortId = NULL,
  outcomeDateVariable = "cohort start date",
  outcomeWashout = Inf,
  censorOnCohortExit = FALSE,
  censorOnDate = NULL,
 followUpDays = Inf,
  strata = NULL,
  eventGap = 30,
  estimateGap = 1,
  restrictedMeanFollowUp = NULL,
 minimumSurvivalDays = 1
```

Identificación de las cohortes de acontecimientos a incluir. Solo se puede considerar un resultado (y, por lo tanto, una identificación)

Single Event Survival

Estimar la supervivencia para un acontecimiento de interés determinado mediante cohortes del modelo de datos comunes OMOP

```
estimateSingleEventSurvival(
  cdm,
 targetCohortTable,
                                                                     Estratificar
 targetCohortId = NULL,
 outcomeCohortTable,
 outcomeCohortId = NULL,
 outcomeDateVariable = "cohort start date",
 outcomeWashout = Inf,
  censorOnCohortExit = FALSE,
  censorOnDate = NULL,
 followUpDays = Inf,
  strata = NULL,
  eventGap = 30,
  estimateGap = 1,
  restrictedMeanFollowUp = NULL,
 minimumSurvivalDays = 1
```

Ejemplo MGUS

El dataset MGUS2 contiene 1341 pacientes secuenciales con gammopatía monoclonal de significado incierto (MGUS)

```
cdm <- CohortSurvival::mockMGUS2cdm()</pre>
```

contiene: <u>person</u>, <u>observation_period</u>, visit_occurrence, <u>mgus_diagnosis</u>, <u>progression</u>, <u>death cohort</u>

Ejemplo MGUS

Esta referencia de cdm contiene tres tablas de cohortes de interés:

1) Cohorte de diagnóstico MGUS

```
cdm$mgus diagnosis %>%
glimpse()
Rows: ??
Columns: 10
Database: DuckDB v0.9.1 [ilopez@Windows 10 x64:R 4.3.2/:memory:]
$ subject id
           <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,...
$ cohort start date <date> 1981-01-01, 1968-01-01, 1980-01-01, 1977-01-0...
$ cohort end date <date> 1981-01-01, 1968-01-01, 1980-01-01, 1977-01-0...
$ age
                    <dbl> 88, 78, 94, 68, 90, 90, 89, 87, 86, 79, 86, 89...
$ sex
                    <fct> F, F, M, M, F, M, F, F, F, F, M, F, M, F, M, F...
                    <dbl> 13.1, 11.5, 10.5, 15.2, 10.7, 12.9, 10.5, 12.3...
$ hgb
                    <dbl> 1.30, 1.20, 1.50, 1.20, 0.80, 1.00, 0.90, 1.20...
$ creat
$ mspike
                    <dbl> 0.5, 2.0, 2.6, 1.2, 1.0, 0.5, 1.3, 1.6, 2.4, 2...
$ age group
                    <chr> ">=70", ">=70", "<70", ">=70", ">=70", ...
```

Ejemplo MGUS

Esta referencia de cdm contiene tres tablas de cohortes de interés:

2) Cohorte de progresión MGUS

Ejemplo MGUS

Esta referencia de cdm contiene tres tablas de cohortes de interés:

3) Cohorte de muerte

Ejemplo MGUS - Single Event Survival

En este ejemplo, podemos obtener estimaciones de supervivencia para la muerte después de un diagnóstico de MGUS

PlotSurvival

Graficar los resultados de supervivencia

```
plotSurvival(
    result,
    ribbon = TRUE,
    facet = NULL,
    colour = NULL,
    cumulativeFailure = FALSE,
    riskTable = FALSE,
    riskInterval = 30
)
```

Resultados de supervivencia

PlotSurvival

Graficar los resultados de supervivencia

```
plotSurvival(
  result,
  ribbon = TRUE,
  facet = NULL,
  colour = NULL,
  cumulativeFailure = FALSE,
  riskTable = FALSE,
  riskInterval = 30
)
```

Atributos que facilitan la visualización de los datos

PlotSurvival

Graficar los resultados de supervivencia

```
plotSurvival(
  result,
  ribbon = TRUE,
  facet = NULL,
  colour = NULL,
  cumulativeFailure = FALSE,
  riskTable = FALSE,
  riskInterval = 30
)
```

TRUE or FALSE

Permite graficar como probabilidad de fallo acumulado en vez de probabilidad de supervivencia

PlotSurvival

Graficar los resultados de supervivencia

```
plotSurvival(
  result,
  ribbon = TRUE,
  facet = NULL,
  colour = NULL,
  cumulativeFailure = FALSE,
  riskTable = FALSE,
  riskInterval = 30
)
```

Añade una tabla de riesgo debajo del grafico de supervivencia, para el cual podemos definir el intervalo de tiempo que queramos

Ejemplo MGUS - Survival plot

Ejemplo MGUS - Survival plot

Ejemplo MGUS - Survival plot

Ejemplo MGUS - Stratified results

Ejemplo MGUS - Stratified Survival plot

Competing risk

Estimar la supervivència per a un esdeveniment determinat i el risc competitiu mitjançant cohorts en el model de dades comuns OMOP

```
estimateCompetingRiskSurvival(
  cdm,
 targetCohortTable,
 targetCohortId = NULL,
 outcomeCohortTable,
 outcomeCohortId = NULL,
 outcomeDateVariable = "cohort start date",
  outcomeWashout = Inf,
  competingOutcomeCohortTable,
  competingOutcomeCohortId = NULL,
  competingOutcomeDateVariable = "cohort_start_date",
  competingOutcomeWashout = Inf,
  censorOnCohortExit = FALSE,
 censorOnDate = NULL.
 followUpDays = Inf,
 strata = NULL,
  eventGap = 30,
  estimateGap =1, restrictedMeanFollowUp = NULL, minimumSurvivalDays = 1)
```

Ejemplo MGUS - Competing risk

Diagnòstic de MGUS

El paquete también permite estimar la supervivencia de un riesgo competitivo.

Ejemplo MGUS - Cumulative Failure plot

Probabilidad de experimentar un acontecimiento específico en un momento dado, teniendo en cuenta la presencia de acontecimientos de riesgo competitivo

tableSurvival()

Resumen de las estimaciones de supervivencia

```
tableSurvival(
X,
times = NULL,
timeScale = "days",
header = c("estimate),
type = "gt",
groupColumn = NULL,
.options = list()
)
```

tableSurvival()

Resumen de las estimaciones de supervivencia

```
tableSurvival(
X,
times = NULL,
timeScale = "days",
header = c("estimate),
type = "gt",
groupColumn = NULL,
.options = list()
)
```

Resultados de estimateSingleEventSurvival o estimateCompetingRiskSurvival

tableSurvival()

Resumen de las estimaciones de supervivencia

```
tableSurvival(
X,
times = NULL,
timeScale = "days",
header = c("estimate"),
type = "gt",
groupColumn = NULL,
.options = list()
)
```

Tiempos a los que reportar la supervivencia en la tabla resumen y la escala de dichos tiempos (días, semanas o años)

tableSurvival()

Resumen de las estimaciones de supervivencia

```
tableSurvival(
X,
times = NULL,
timeScale = "days",
header = c("estimate"),
type = "gt",
groupColumn = NULL,
.options = list()
)
```

Vector que contiene los elementos que deberían ir en el encabezado. Está permitido que sean: cdm_name, group, strata, additional, variable, estimate y settings

Ejemplo MGUS – Summarize results

Resumen de las estimaciones de supervivencia

tableSurvival(MGUS_death)

					Estimate name					
CDM name	Target cohort	Age group	Sex	Outcome name	Number records	Number events	Median survival (95% CI)	Restricted mean survival (SE)		
mock	mgus_diagnosis	overall	overall	death_cohort	1,384	963	98.00 (92.00, 103.00)	133.00 (4.00)		
		<70	overall	death_cohort	574	293	180.00 (158.00, 206.00)	197.00 (8.00)		
		>=70	overall	death_cohort	810	670	71.00 (66.00, 77.00)	86.00 (3.00)		
		overall	F	death_cohort	631	423	108.00 (100.00, 121.00)	143.00 (6.00)		
			М	death_cohort	753	540	88.00 (79.00, 97.00)	125.00 (6.00)		
		<70	F	death_cohort	240	109	215.00 (179.00, 260.00)	220.00 (13.00)		
			М	death_cohort	334	184	158.00 (139.00, 189.00)	183.00 (10.00)		
			F	death_cohort	391	314	82.00 (75.00, 94.00)	96.00 (4.00)		
			М	death_cohort	419	356	61.00 (54.00, 70.00)	80.00 (5.00)		

Ejemplo MGUS – Summarize results

Resumen de las estimaciones de supervivencia

tableSurvival(MGUS_death, times = c(1, 7, 30, 365), timeScale = days)

CDM name	Target cohort	Age group	Sex	Outcome name	Estimate name							
					Number records	Number events	Median survival (95% CI)	Restricted mean survival (SE)	1 days survival estimate	7 days survival estimate	30 days survival estimate	365 days survival estimate
mock	mgus_diagnosis	overall	overall	death_cohort	1,384	963	98.00 (92.00, 103.00)	133.00 (4.00)	96.97 (96.07, 97.87)	90.89 (89.39, 92.42)	79.39 (77.28, 81.55)	6.84 (3.36 13.92)
		<70	overall	death_cohort	574	293	180.00 (158.00, 206.00)	197.00 (8.00)	96.86 (95.45, 98.30)	93.55 (91.57, 95.58)	87.45 (84.78, 90.20)	16.38 (8.43, 31.81)
		>=70	overall	death_cohort	810	670	71.00 (66.00, 77.00)	86.00 (3.00)	97.04 (95.88, 98.21)	89.00 (86.87, 91.18)	73.67 (70.70, 76.77)	-
		overall	F	death_cohort	631	423	108.00 (100.00, 121.00)	143.00 (6.00)	96.83 (95.47, 98.21)	92.70 (90.70, 94.76)	81.89 (78.94, 84.96)	6.90 (2.57 ₎ 18.58)
			М	death_cohort	753	540	88.00 (79.00, 97.00)	125.00 (6.00)	97.08 (95.88, 98.29)	89.38 (87.20, 91.60)	77.29 (74.35, 80.34)	8.94 (5.53 _, 14.44)

Funciones extras:

<u>Crear Cohorte de Muerte</u>

Crea una cohorte de muerte en el objeto cdm

```
generateDeathCohortSet(
  cdm,
  name,
  cohortTable = NULL,
  cohortId = NULL
)
Nombre de la cohorte para la cual
  crear una cohorte de muerte
```

Funciones extras: addCohortSurvival()

Añade información sobre supervivencia a una cohorte ya existente

```
addCohortSurvival(
    x,
    cdm,
    outcomeCohortTable,
    outcomeCohortId = 1,
    outcomeDateVariable = "cohort_start_date",
    outcomeWashout = Inf,
    censorOnCohortExit = FALSE,
    censorOnDate = NULL,
    followUpDays = Inf)
Tabla con la cohorte a la que
    queremos añadir información sobre
    supervivencia
```

Se añaden <u>2 nuevas columnas</u> a la tabla x. Una columna llamada "<u>days_to_exit</u>" hasta la salida de la cohorte (por evento o censura). La columna "<u>status</u>" indica si el paciente ha tenido el **evento (1) o no (0).**

Funciones extras: addCohortSurvival()

Añade información sobre supervivencia a una cohorte ya existente

```
addCohortSurvival(
    x,
    cdm,
    outcomeCohortTable,
    outcomeCohortId = 1,
    outcomeDateVariable = "cohort_start_date",
    outcomeWashout = Inf,
    censorOnCohortExit = FALSE,
    censorOnDate = NULL,
    followUpDays = Inf)
Cohorte con nuestro evento de
    interés
```

Se añaden <u>2 nuevas columnas</u> a la tabla x. Una columna llamada "<u>days_to_exit</u>" con el numero de días hasta la salida de la cohorte (por evento o censura).

La columna "status" indica si el paciente ha tenido el evento (1) o no (0).

Funciones extras: addCohortSurvival()

Añade información sobre supervivencia a una cohorte ya existente

```
cdm$mgus_diagnosis <- cdm$mgus_diagnosis %>%
  addCohortSurvival(
    cdm = cdm,
    outcomeCohortTable = "death cohort",
    outcomeCohortId = 1
cdm$mgus diagnosis
Source: SQL [?? x 13]
Database: DuckDB v1.1.3 [ilopez@Windows 10 x64:R 4.4.1/:memory:]
 cohort definition id subject id cohort start date cohort end date
                                                                                   hgb creat mspike age group days to exit status
                                                                       age sex
                                                                     <dbl> <fct> <dbl> <dbl> <dbl> <chr>
                                                                                                                      <int> <dbl>
                <int>
                                                    <date>
                            <int> <date>
                                1 1981-01-01
                                                    1981-01-01
                                                                        88 F
                                                                                  13.1
                                                                                         1.3
                                                                                                 0.5 > = 70
                                                                                                                          30
                                                                                  11.5
                                2 1968-01-01
                                                    1968-01-01
                                                                        78 F
                                                                                         1.2
                                                                                                 2 >=70
                                                                                                                          25
                                                                                  10.5
                                                    1980-01-01
                                                                                         1.5
                                                                                                 2.6 > = 70
                                                                                                                                  1
                                3 1980-01-01
                                                                        94 M
                                                                        68 M
                                                                                  15.2
                                                                                         1.2
                                                                                                1.2 < 70
                                                                                                                          92
                                4 1977-01-01
                                                    1977-01-01
                                5 1973-01-01
                                                    1973-01-01
                                                                        90 F
                                                                                  10.7
                                                                                         0.8
                                                                                                     >=70
                                                                        90 M
                                                                                  12.9
                                                                                                 0.5 > = 70
                                6 1990-01-01
                                                    1990-01-01
                                                                                         1
                                                                                                                                  1
                                7 1974-01-01
                                                    1974-01-01
                                                                        89 F
                                                                                  10.5
                                                                                         0.9
                                                                                                1.3 > = 70
                                                                                                                         151
                                                                                                                                  1
                                                                        87 F
                                                                                  12.3
                                8 1974-01-01
                                                    1974-01-01
                                                                                        1.2
                                                                                                 1.6 > = 70
                                                                                                                                  1
                                                                                   9.4
                              10 1981-01-01
                                                    1981-01-01
                                                                        79 F
                                                                                        1.1
                                                                                                2.3 > = 70
                                                                                                                                  1
                                                                                                                         136
                                                                                  11.8
                               11 1972-01-01
                                                    1972-01-01
                                                                        86 M
                                                                                         1
                                                                                                 2.3 > = 70
i more rows
i 1 more variable: time <dbl>
```

Funciones extras: addCompetingRiskCohortSurvival()

Añade información de supervivencia de riesgo competitiva a una cohorte ya existente

```
addCompetingRiskCohortSurvival(
 х,
 cdm,
                                                               Se añaden 2 nuevas columnas.
 outcomeCohortTable,
 outcomeCohortId = 1,
                                                         Una columna llamada "days_to_exit" con el
 outcomeDateVariable = "cohort start date",
 outcomeWashout = Inf,
                                                      numero de días hasta la salida de la cohorte (por
 outcomeCensorOnCohortExit = FALSE,
                                                                      evento o censura).
 outcomeCensorOnDate = NULL,
 outcomeFollowUpDays = Inf,
                                                         La columna "status" indica si el paciente ha
  competingOutcomeCohortTable,
 competingOutcomeCohortId = 1,
                                                      tenido el evento (1) o el evento competente (2) o
 competingOutcomeDateVariable = "cohort start date",
                                                            no tubo evento o fue censurado (0).
 competingOutcomeWashout = Inf,
  competingOutcomeCensorOnCohortExit = FALSE,
  competingOutcomeCensorOnDate = NULL.
  competingOutcomeFollowUpDays = Inf )
```

Funciones extras: addCompetingRiskCohortSurvival())

Añade información de supervivencia de riesgo competitiva a una cohorte ya existente

```
addCompetingRiskCohortSurvival(
 х,
 cdm,
                                                              Se añaden 2 nuevas columnas.
 outcomeCohortTable,
 outcomeCohortId = 1,
                                                        Una columna llamada "days_to_exit" con el
 outcomeDateVariable = "cohort start date",
 outcomeWashout = Inf,
                                                      numero de días hasta la salida de la cohorte (por
 outcomeCensorOnCohortExit = FALSE,
                                                                     evento o censura).
 outcomeCensorOnDate = NULL,
 outcomeFollowUpDays = Inf,
                                                        La columna "status" indica si el paciente ha
  competingOutcomeCohortTable,
 competingOutcomeCohortId = 1,
                                                      tenido el evento (1) o el evento competente (2)
 competingOutcomeDateVariable = "cohort start date",
                                                          o no tubo evento o fue censurado (0).
 competingOutcomeWashout = Inf,
  competingOutcomeCensorOnCohortExit = FALSE,
  competingOutcomeCensorOnDate = NULL.
  competingOutcomeFollowUpDays = Inf )
```

Cohort Survival package

Resumen de funciones que ofrece el paquete:

- Estimación de supervivencia (un solo acontecimiento): estimateSingleEventSurvival()
- Graficar la supervivencia: plotSurvival()
- Estimación del riesgo competitivo: estimateCompetingRiskSurvival()
- Resumen de estimaciones: tableSurvival()
- Crear una cohorte de muerte: generateDeathCohortSet()
- Añadir información sobre supervivencia a una cohorte: addCohortSurvival() & addCompetingRiskCohortSurvival

Con el output también se pueden utilizar otros paquetes.