

SRM Institute of Science and Technology College of Engineering and Technology School of Computing

SET

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu Academic Year: 2023-24 (EVEN)

Test: CLA-2 T3 Date: /04/2024

Course Code & Title: 21CSC204J Design and Analysis of Algorithms Duration: 1 hour 40 min Year & Sem: II Year / IV Sem Max. Marks: 50

Course Articulation Matrix:

Course Outcome	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	Pro	Program Spe Outcome	
													PSO-	PSO-	PSO-
CO1	2	1	2	1	-	-	-	-		3	-	3	3	1	-
CO2	2	1	2	1	-	-	-	-		3	-	3	3	1	-
CO3	2	1	2	1	-	-	-	-		3	-	3	3	1	-
CO4	2	1	2	1	-	-	-	-		3	-	3	3	1	-
CO5	2	1	2	1	-	-	-	-		3	-	3	3	1	-

	Part – A (8 x 1 = 8 Marks) Instruc	tions: Ans	swer al	l		
Q.	Question	Marks	BL	С	PO	PI
No				О		Code
1	A city planner needs to connect all new residential areas with roads in such a way that the total length of the roads is minimized, but every area can be reached from any other. This approach to road planning is most similar to which graph theory concept?		L1	3	2	
	A) Dijkstra's Shortest Path B) Minimum Spanning Tree (Answer) C) Eulerian Path D) Maximal Flow					
2	Question: Consider a graph with four vertices (A, B, C, D) connected by the following weighted edges: A-B (3), A-C (1), B-C (7), B-D (5), C-D (4). What is the total weight of the Minimum Spanning Tree (MST) of this graph?	1	L1	3	2	
	A) 10 B) 12 C) 9 D) 11 Answer is 8					
3	Consider a chain of matrices with dimensions.	1	L2	3	2	
3	2×3, 3×6, and 6×4. What is the minimum number of scalar multiplications needed to multiply these three matrices together?	1	L2	3	2	
	A) 72(Answer) B) 96 C) 144 D) 64					
4	How many solutions exist for placing 4 queens on a 4x4 chessboard so that no two queens threaten each other?	1	L2	4	2	
	A) 1 B) 2(Answer) C) 4					

D) None of the above			

5	In a version control system, a software developer needs to find out whether there are any cyclic dependencies in a project's build dependency graph. Which graph traversal method is most suitable for detecting these cycles? A) Prims Algorithm B) Depth First Search (DFS) (Answer) C) Dijkstra's Algorithm	1	L1	4	2	
	D) Floyd-Warshall Algorithm					
	If a data analyst is working with a graph to model website traffic, involving various paths through which users can navigate from one page to another, and needs to analyze potential improvements to user navigation, which algorithm would provide the most comprehensive insight?		L2	4	2	
	A) Floyd-Warshall Algorithm(Answer) B) Dijkstra's Algorithm C) BFS Algorithm D) DFS Algorithm					
	During a series of interviews, a company utilizes a strategy that combines both random selection and ranking to decide on hires. This is to minimize the total hiring cost. What concept from algorithm design does this most closely resemble?	1	L2	5	2	
	A) Greedy algorithm B) Dynamic programming C) Las Vegas algorithm(Answer) D) Monte Carlo algorithm					
8	If X reduces to Y in polytime and if X is NP-hard, then Y is NP-hard. If Y also happens to be in NP, then Y is NP-complete. For decision problems X and Y, if X reduces to Y in polynomial time, and if X is NP-hard then which of the following is true?	1	L1	5	2	
	 A) Y is NP-hard(Answer) B) Y is NP-complete C) If X can be solved in polynomial time, then Y can be solved in polynomial time D) Y is in NP 					

SRM Institute of Science and Technology College of Engineering and Technology School of Computing

SET D

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2023-24 (EVEN)

Test: CLA-2 T3 Date: /04/2024

Course Code & Title: 21CSC204J Design and Analysis of Algorithms Duration: 1 hour 40 min

Year & Sem: II Year / IV Sem Max. Marks: 50

Course Articulation Matrix:

Course Outcome	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	Pro	Program Speci Outcomes	
													PSO- 1	PSO-	PSO-
CO1	2	1	2	1	-	-	-	-		3	-	3	3	1	-
CO2	2	1	2	1	-	-	-	-		3	-	3	3	1	-
CO3	2	1	2	1	-	-	-	-		3	-	3	3	1	-
CO4	2	1	2	1	-	-	-	-		3	-	3	3	1	-
CO5	2	1	2	1	-	-	-	-		3	-	3	3	1	-

		Part -	- R (3 s	z 5 = 15 N	Marks)	Instruct	tions: A	nswer	all		
9	You are						5	L	3	2	
	pathways						3	2	3	2	
	park effic							2			
	_	-		-							
	,	re A (Entrance Plaza), B (Botanical Gardens), C Children's Play Area), D (Observation Deck), and									
	E (Ampl										
	for the pa				COSt CSt	muco					
	Tor the pe	icii vi ay s a	us 1011	· · · · ·							
		A	В	C	D	E					
	A	0	40	10	90	inf					
	В	40	0	30	60	50					
	C	10	30	0	70	80					
	D	90	60	70	0	20					
	E	Inf	50	80	20	0					
	accessibl Answer: To conn expenditi minimum represent	ect all d ure, we'll spanni	attraction use Prin ng tree	ıs with n's algor (MST)	the leas ithm to fi of the	ind the					
	Step 1: In										
	Start wit	•									
	choose v	ertex A	(Entrance	e Plaza)	as the s	tarting					
	point.		_			_					
	Initialize				t of edges	and a					
	set conta			1.							
	Step 2: P	_		-							
	At each s										
	vertex in	the MST	to a verte	ex not yei	t in the M	ST.					

	in the I Step 3: The seg	MST. Final F quence o	of pathway	onstruc	ction is de	termined					
			which ed	_							
			ninimum s								
	sequen	ce of pa	thway cor	istruction	are as fo	ollows:					
	1. A - 0 2. C - 1 3. B - 1	3: \$30									
	4. E - 1										
		,									
	the Ch Garder finally	ildren's is (B), fo to the C	he Entran Play Ared ollowed by Observatio	a (C), the y the Amp n Deck (I	n to the E phitheater D).	Botanical (E), and					
			riently cor	inects all	attractio	ns while					
	mınımı	zing exp	enditure.								
10	You are	a consu	ltant task	ed with e	nhancing	the	5	L	4	2	
	emerger	ncy serv	ice respon	se times	across a n	etwork		3			
	_		clinics w		-						
			al patient								
			s vital for								
	_		etwork co l H1 (Mai		-						
			ith Clinic								
		,	(West Er		-	-					
			o various								
	road cor										
			rent trave	l times (ii	n minutes)					
	between	the fac	ilities:								
	From/	H1	H2	Н3	H4	H5					
	To H1	_	10	15	∞	30					
	H2	-	-	25	$\frac{\infty}{15}$	20					
	H3	-	_	-	10	40					
	H4	-	-	-	-	25					
	H5	-	-	-	-	-					
		e the ci	irrent net	work and	d identify	possible					
					-	be faster					
	than dire				-						
	Ш1 4° 11	7/1. Alala	wah initi	, II. v a a 4 4 -	infinit:	indication					
		H1 to H4: Although initially set to infinity (indicating no direct route), the shortest path calculated is 2									
	minutes,			niesi pai	п сиссии	neu is 25					
				s 30 mim	ites, and	this is the					
	H1 to H5: Direct route is 30 minutes, and this is the shortest path as there are no shorter indirect route										
	through other nodes.										
	_			ath is 35	minutes,	improved					
			-			rating an					
	1 00 .		t route.					1	1	1	

11	You are provided with a text document containing the sentence "say hello world and welcome". Your task is to develop a method to find the specific phrase "hello world" within this larger text. Implement the Rabin-Karp string matching algorithm to locate the exact position of the phrase "hello world" within the given text. Step 1: Choose a Prime Number We'll choose a prime number to use as the base for hashing. Let's use 101. Step 2: Compute Hash Value for the Phrase Calculate the hash value for the phrase "hello world" using the selected prime number and a rolling hash function. plaintext Copy code hash("hello world") = (h * 101 + ord('h')) % MOD = 104 % MOD = 104 % MOD = 104 Step 3: Compute Hash Value for Substrings Iterate through the text and compute the hash value for each substring of length equal to the phrase "hello world". Step 4: Compare Hash Values Compare the hash value of each substring with the hash value of the phrase "hello world". Step 5: Handle Collisions If the hash values of two substrings match, but the substrings themselves do not match, handle collisions by performing a character-by-character comparison. Step 6: Return Position of Match If a match is found, return the starting position of the	5	L 3	5	2	
	Consider edge cases such as empty text or phrase, text shorter than the phrase, or phrases longer than the text.					
	$Part - C (3 \times 9 = 27 \text{ M})$				_	
12. A	As a mission planner for an upcoming interstellar exploration, you are faced with a crucial challenge. The spacecraft has a limited payload capacity, and you must decide which scientific equipment and supplies to include on board.	9	L3	3	2	
	Provide a solution that outlines your strategy for item selection using principles from the fractional knapsack problem. Detail the calculations necessary to					

	ITEMS	WEIGHT (kg)	VALUE (Science Points)					
	Spectrometer	50	300					
	Telescope	150	500					
	Sample Collection Kits	25	350					
	Life Support Supplies Communicatio	100	600					
	n Equipment							
	Navigation Tools	80	400					
	Photography Gear	60	250					
	Carrying Capaci	ty: 500 kilograms						
		est possible scier	of resources that ntific value within					
	Value-to-Weight	Ratio						
	Telescope Sample Collection Life Support Communication Navigation Photography Gea The optimal select	50 = 6 50 = 3.33 25 = 14 00 = 4 100 = 6 180 = 5 180 = 6 180 = 6						
			(or)	,			1	1
12. B	workflow for dat datasets represen	a analysis involv ted as matrices. ations significan	the computational ing multiple large. The sequence of atly impacts the	9	L3	3	2	
	Given Matrices (d	limensions):						
	Matrix A: 30x50 Matrix B: 50x20 Matrix C: 20x60 Matrix D: 60x25							

	Matrix E: 25x40					
	Apply a dynamic programming approach to determine the most efficient order for multiplying these matrices. Detail the steps and calculations needed to minimize the computational cost.					
	M and K Table (6 marks)					
	Here's the k table for the given matrices:					
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	Solution (3 marks) : $(A \times (B \times (C \times (D \times E))))$					
10	T7 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		T 2			<u>'</u>
13. A	You've stumbled upon a secret chamber in an ancient castle, filled with cryptic codes written on the walls. To uncover the castle's hidden treasures, you must decipher a code by selecting the correct combination of symbols. Each symbol has a unique value, and your goal is to find the combination that sums up to a specific target value without exceeding it. Find the optimal combination of symbols to achieve the target value using a state space tree and pseudocode with the Backtracking Approach. Using the example treasure chest and target value: Symbol Values: {3, 6, 8, 10} Target Value: 14 Algorithm/Pseudocode – 3 marks	9	L3	4	2	
	State Space tree- 4marks Solution- 2 marks					
	(or)					
13. B	Imagine you are managing a team of explorers on a quest to find treasure in a remote jungle. Each explorer can carry only a limited weight in their backpack(W), but there are various valuable artifacts scattered throughout the jungle, each with its own weight (w) and value (V). Using the branch and bound approach, how would you advise your team to efficiently select the most valuable artifacts to carry back to the base camp, considering the weight constraints of their backpacks using $0/1$ Knapsack? Explain the process step by step, including how you would create branches, estimate bounds, and prune. branches to ensure an optimal solution. $n = 4$, $V = \{10, 10, 12, 18\}$, $w = \{2, 4, 6, 9\}$ and $W = 15$	9	L3	4	2	
	Algorithm/Pseudocode – 3 marks Branch and bound – 4 marks Solution- 2 marks					

14. A	You are tasked with devising a randomized hiring algorithm to select the best candidate for a job position from a pool of applicants. In this scenario, each candidate arrives for an interview in a random order, and you must make an immediate decision to either hire or reject the candidate after the interview. The goal is to maximize the probability of selecting the best candidate while minimizing the number of interviews conducted. Apply a randomized hiring algorithm that integrates probabilistic techniques to prioritize candidates for interviews and determine hiring decisions. 1. Initialization: Set a threshold value kk indicating the number of initial candidates to interview. 2. Interviewing Candidates: Interview the first kk candidates without making any hiring decisions. Keep track of the candidate with the highest score encountered so far. 3. Probabilistic Hiring: After interviewing the initial kk candidates, continue interviewing the remaining candidates one by one. For each candidate \(\hat{n}\), with score \(SiSi\): If \(Si\) max_j=>max_j=S_j, hire candidate \(\hat{n}\) with probability \(pp\). Otherwise, reject candidate \(i\). 4. Adjusting Parameters: Adjust the values of kk and \(pp\) based on the number of candidates and the desired trade-off between exploration (interviewing more candidates) and exploitation (hiring candidates with higher scores). 5. Termination: Stop the interviewing process after a predetermined number of interviews or when all candidates have been interviewed.	9	L3	5	2	
	(or)					
14. B	Determine how to formulate the scheduling problem as a Boolean Satisfiability (SAT) problem. In this problem scenario, you are organizing a conference and need to assign timeslots to different sessions. There are five sessions: A, B, C, D, and E. However, due to scheduling constraints and room availability, certain sessions cannot be held concurrently. The constraints are as follows: Sessions A and B cannot be held at the same time. Sessions C and D cannot be held at the same time. Session E must be held either concurrently with session A or session C. Express the scheduling constraints as clauses in	9	L3	5	2	

conjunctive normal form (CNF).			
1. Sessions A and B cannot be held at the same time: $\neg A \vee \neg B$ 2. Sessions C and D cannot be held at the same time: $\neg C \vee \neg D$ 3. Session E must be held either concurrently with session A or session C: $(E \wedge A) \vee (E \wedge \neg A) \vee (E \wedge C) \vee (E \wedge \neg C)$			

^{*}Program Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy.

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Approved by the Audit Professor/Course Coordinator