SFERA ŞI CERCUL ÎN SPAŢIU

0.1 EXERCIŢII REZOLVATE

1. Să se determine centrul și raza sferei S de ecuație

$$S: x^2 + y^2 + z^2 - 6x - 8y = 0.$$

Rezolvare.

Cu termenii care conțin x respectiv cu cei cu y formăm pătrate: $x^2-6x+9-9+y^2-8y+16-16+z^2=(x-3)^2+(y-4)^2+z^2-25=0$ adică

$$S: (x-3)^2 + (y-4)^2 + z^2 = 5^2$$

de unde sfera are centrul C(3,4,0) și raza R=5.

2. Să se scrie ecuația sferei S de diametru [AB] unde A(2,1,0) și B(0,1,2). Rezolvare.

Centrul sferei este mijlocul C al segmentului [AB], de unde $C=\frac{1}{2}A+\frac{1}{2}B$, deci $C\left(\frac{2+0}{2},\,\frac{1+1}{2},\,\frac{0+2}{2}\right)$, adică C(1,1,1). Raza sferei va avea lungimea R, jumătate din distanța $d(A,B)=\sqrt{8}$, deci $R=\sqrt{2}$. În final

$$S: (x-1)^2 + (y-1)^2 + (z-1)^2 = 2.$$

3. Considerăm planele

$$\alpha_1$$
: $x + y + z - 1 = 0$, α_2 : $2x + z - 1 = 0$

și punctul $M(2,-1,0),\ M\in\alpha_1$. Să se scrie ecuația sferei S al cărei centru $C\in\alpha_2$ și care e tangentă la planul α_1 în M.

Rezolvare.

Pentru că sfera e tangentă la planul α_1 , raza prin M va fi perpendiculară în M la α_1 , deci dreapta ei suport d va fi determinată de punctul M și vectorul director $\overline{N}_{\alpha_1} = (1, 1, 1)$ și va avea ecuațiile parametrice

$$d: \begin{cases} x = 2 + t \\ y = -1 + t \\ z = 0 + t. \end{cases}$$

Centrul C este punctul de intersecție $C=d\cap\alpha_2$ deci e acel punct de pe d ce satisface 2(2+t)+t-1=0 adică pentru t=-1, deci C(1,-2,-1).

Raza sferei are lungimea R egală cu cea a segmentului [CM], adică $R = \sqrt{3}$. Vom avea

$$S: (x-1)^2 + (y+2)^2 + (z+1)^2 = 3.$$

4. Să se determine centrul și raza cercului

$$C: \begin{cases} (x-1)^2 + (y+4)^2 + z^2 = 9\\ 2x - y + z = 0. \end{cases}$$

Rezolvare.

Cercul reprezintă intersecția sferei $S: (x-1)^2+(y+4)^2+z^2=9$ de centru C'(1,-4,0) cu planul $\alpha: 2x-y+z=0$. Centrul cercului va fi punctul C de intersecție a planului α cu dreapta d, perpendiculara dusă din punctul C' pe planul α , care are vectorul director $\overline{N}_{\alpha}=(2,-1,1)$. Dreapta are ecuațiile

$$d: \begin{cases} x = 1 + 2t \\ y = -4 - t \\ z = 0 + t \end{cases}$$

și punctul C se obține pentru 2(1+2t)-(-4-t)+t=0, deci pentru t=-1 de unde C(-1,-3,-1).

Pentru un punct P de pe cerc, din teorema lui Pitagora, avem

$$d^{2}(C', P) = d^{2}(C, P) + d^{2}(C', C).$$

Dar d(C', P) e lungimea razei sferei, iar după un calcul simplu, $d^2(C, C') = 6$. De aici, lungimea razei cercului este $r = \sqrt{3}$.

0.2 EXERCIŢII PROPUSE

1. Să se determine centrul şi raza, apoi să se reprezinte grafic sfera, în fiecare dintre cazurile de mai jos.

(a)
$$x^2 + y^2 + z^2 - 2x + y = 0$$
;

(b)
$$z = \pm \sqrt{2 - x^2 - y^2 + x}$$
;

Răspuns. (a)
$$\left(1, -\frac{1}{2}, 0\right), \frac{\sqrt{5}}{2}$$
; (b) $\left(\frac{1}{2}, 0, 0\right), \frac{3}{2}$;

2. Să se scrie ecuația sferei de diametru OM, unde M(1,2,3).

Răspuns.
$$\left(x - \frac{1}{2}\right)^2 + (y - 1)^2 + \left(z - \frac{3}{2}\right)^2 = \frac{7}{2}$$
.

3. Să se determine $\alpha \in \mathbb{R}$ astfel încât planul de ecuație $y = \alpha$ să fie tangent la sfera de ecuație $x^2 + y^2 + z^2 - 6x - 4z + 9 = 0$ și să se arate că M(1, 2, 3) este un punct exterior sferei.

Răspuns.
$$\alpha \in \{-2, 2\}$$
.

- 4. Fie sfera $S: x^2+y^2+z^2-2\sqrt{3}\,x+1=0$. Să se determine $\alpha\in\mathbb{R}$ astfel încât dreapta de ecuații $x=y=\alpha z$ să fie
 - (a) exterioară sferei;
 - (b) tangentă sferei;
 - (c) secantă.

Răspuns. (a)
$$\alpha \in (-1,1)$$
; (b) $\alpha \in \{-1,1\}$; (c) $\alpha \in (-\infty,-1) \cup (1,\infty)$.

5. Scrieți ecuațiile planului tangent în punctul curent la sferă, în fiecare dintre cele trei cazuri de la Problema 1.

 $R \check{a} spuns$. Dacă punctul curent aparținând sferei este (a,b,c) atunci

(a)
$$2(a-1)(x-a) + (2b+1)(y-b) + 2c(z-c) = 0;$$

(b)
$$(2a-1)(x-a) + 2b(y-b) + 2c(z-c) = 0;$$

6. Determinați ecuația sferei tangente la planul π : x + y - 2z = 0 în punctul M(1,1,1) și la planul π' : x + y - 2z = 13.

Răspuns.
$$\left(x - \frac{25}{12}\right)^2 + \left(y - \frac{25}{12}\right)^2 + \left(z + \frac{7}{6}\right)^2 = \frac{169}{24}$$
.

7. Scrieți ecuația sferei de rază 1 aflate în primul octant (i.e. $x\geq 0,\ y\geq 0,\ z\geq 0$), care este tangentă la planele de coordonate.

Răspuns.
$$(x-1)^2 + (y-1)^2 + (z-1)^2 = 1$$
.

8. Determinați centrul și raza cercurilor obținute prin intersecția planului de ecuație x+y+z=0 cu sferele definite la Problema 1.

Răspuns. (a)
$$\sqrt{\frac{7}{6}}$$
, $\left(\frac{5}{6}, -\frac{2}{3}, -\frac{1}{6}\right)$; (b) $\sqrt{\frac{13}{6}}$, $\left(\frac{1}{3}, -\frac{1}{6}, -\frac{1}{6}\right)$;

9. Determinați raza și centrul sferei care trece prin origine și prin punctele A(1,0,0), B(0,1,1) și C(0,0,1).

Răspuns.
$$\frac{\sqrt{3}}{2}$$
, $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$.

10. Determinați ecuația sferei tangente la planul π : x+y-2z=0 în punctul M(1,1,1) și la planul π' : -x+2y+z=0.

3

$$\begin{split} R \breve{a} spuns. \ \left(x - \frac{3}{5}\right)^2 + \left(y - \frac{3}{5}\right)^2 + \left(z - \frac{9}{5}\right)^2 &= \frac{24}{25} \ \ \text{$\$$} \mathrm{i} \\ \left(x - \frac{9}{7}\right)^2 + \left(y - \frac{9}{7}\right)^2 + \left(z - \frac{3}{7}\right)^2 &= \frac{24}{49} \ . \end{split}$$

11. Scrieți ecuația sferei ce trece prin punctul $M\left(R,R,R\right)$ (unde R>0) și cercul de ecuații

$$\begin{cases} x^2 + y^2 + z^2 = R^2 \\ x + y + z = R. \end{cases}$$

Răspuns.
$$x^2 + y^2 + z^2 = R(x + y + z)$$
.

12. Determinați centrul și raza sferei înscrise în tetraedrul definit de planele de ecuații 3x - 2y + 6z = 18, x = 0, y = 0, z = 0.

Răspuns.
$$(x-1)^2 + (y+1)^2 + (z-1)^2 = 1$$
.

13. Determinați planele tangente sferei $S: x^2+y^2+z^2-2x+2z=0$ care trec prin dreapta de ecuații $x=2,\ y=3.$

Răspuns.
$$(y-3)+(3\pm 4)(x-2)=0$$
, i.e. $x-y+1=0$ și $7x+y-17=0$.

14. Găsiți centrul și raza cercului de ecuații $x^2+y^2+z^2-10y=0, x^2+y^2+z^2+x-8y+2z-19=0.$

$$R \breve{a} spuns. (1,7,2), 4.$$

15. Scrieți ecuația planului ce trece prin centrul Q al suprafeței $x^2 + y^2 + z^2 - 2x + y - 3z = 0$ și este perpendicular pe dreapta OQ.

$$R \breve{a} spuns. \ 2x - y + 3z = 7.$$

16. Determinați ecuația locului geometric al punctelor a căror distanță față de origine este dublul distanței la punctul (0, -3, 0).

Răspuns.
$$x^2 + (y+4)^2 + z^2 - 4 = 0$$
.

17. Să se determine centrul sferei $S: x^2+y^2+z^2-2x-2z=0$ și raza cercului $C=S\cap\pi,$ unde $\pi: x-y=0.$

(examen, Ingineria sistemelor, 2014)

- 18. * Fie planul (π) 2x + y 2z + 5 = 0 şi punctele A(17, 8, 28) şi $B\left(-9, -\frac{19}{2}, -9\right)$.
 - a) Să se determine poziția relativă a sferelor centrate în A și respectiv B, tangente la planul (π) .
 - b) Să se determine punctul $M \in (\pi)$ pentru care dist(M;A) + dist(M;B) este minimă.

(concurs "Traian Lalescu", profil neelectric, faza finală, Timișoara, 2014)

19. Determinați $m \in \mathbb{R}$ astfel încât punctele A(1,0,0), B(0,1,0), C(0,0,1) și D(m,m,m) să definească o sferă și scrieți ecuația acesteia în cazul m=1.

Răspuns.
$$m \neq \frac{1}{3}$$
; $x^2 + y^2 + z^2 - x - y - z = 0$.

- 20. Fie sfera $S: x^2+y^2+z^2=1$. Stabiliți poziția relativa față de sfera S a:

 - a) punctului A(1, 1, 1)b) dreptei d: $\frac{x-1}{0} = \frac{y+1}{1} = \frac{z}{1}$ c) planului α : x-y+z-1=0.

Răspuns. a), b): exterior; c) planul taie sfera după un cerc

21. Scrieți ecuațiile cercului circumscris triunghiului OAB dacă O(0,0,0), A(1,0,0), B(1,1,1).

Răspuns. y - z = 0, $x^2 + y^2 + z^2 - x - y - z = 0$