Übungsblatt 10 zur Kommutativen Algebra

Aufgabe 1. (m+m+1+1) Erste Schritte mit der Dimension von Ringen

Bestimme für die folgenden Ringe ihre Dimension. Dabei ist K ein Körper.

- a) *K*
- b) K[X]
- c) $\mathbb{Z}/(90)$
- d) K[X,Y]/(XY)

Aufgabe 2. (3) Beispiel für den Struktursatz artinscher Ringe

Schreibe den artischen Ring $\mathbb{Z}/(90)$ als Produkt artinscher lokaler Ringe. Gib also artinsche lokale Ringe A_1, \ldots, A_n und einen Isomorphismus $\mathbb{Z}/(90) \to A_1 \times \cdots \times A_n$ an.

Aufgabe 3. (m+2+3+m) Artinität über einem Körper

a) Seien R ein Ring und M ein einfacher R-Modul. Zeige, dass M isomorph zu einem R-Modul der Form R/\mathfrak{m} ist, wobei \mathfrak{m} ein maximales Ideal in R ist.

Sei im Folgenden A eine endlich erzeugte lokale Algebra über einem Körper K. Sei \mathfrak{m} das maximale Ideal von A.

- b) Sei $M = M_0 \supsetneq M_1 \supsetneq \cdots \supsetneq M_n = 0$ eine Kompositionsreihe eines A-Moduls M. Zeige, dass M als K-Vektorraum von Dimension $\dim_K M = n \cdot \dim_K (A/\mathfrak{m})$ ist.
- c) Zeige, dass A genau dann als Ring artinsch ist, wenn A als K-Vektorraum endlich dimensional ist. Zeige weiter, dass in diesem Fall $\dim_K A = \ell(A) \cdot \dim_K (A/\mathfrak{m})$ gilt.
- d) Zeige den ersten Teil der Behauptung aus Teilaufgabe c) auch für den Fall, dass A nicht lokal ist.

Aufgabe 4. (2+m+2+0) Eine elementare Charakterisierung der Dimension

Für ein Ringelement $x \in A$ sei \mathfrak{b}_x das Ideal $(x) + (\sqrt{(0)} : x)$.

- a) Sei \mathfrak{p} ein minimales Primideal. Sei $x \in A$. Zeige, dass $\mathfrak{b}_x \not\subseteq \mathfrak{p}$.
- b) Sei $\mathfrak{p} \subsetneq \mathfrak{q}$ eine echte Inklusion von Primidealen. Sei $x \in \mathfrak{q} \setminus \mathfrak{p}$. Zeige, dass $\mathfrak{b}_x \subseteq \mathfrak{q}$.
- c) Zeige für $n \geq 0$: Genau dann gilt dim $A \leq n$, wenn dim $A/\mathfrak{b}_x \leq n-1$ für alle $x \in A$.
- d) Folgere: Ein Ring ist genau dann von Dimension $\leq n$, wenn für je n+1 Ringelemente x_0, \ldots, x_n eine Zahl $r \geq 0$ mit

$$(x_0 \cdots x_n)^r \in (x_0 \cdots x_{n-1})^r (x_n^{r+1}) + (x_0 \cdots x_{n-2})^r (x_{n-1}^{r+1}) + \cdots + (x_0)^r (x_1^{r+1}) + (x_0^{r+1})$$
 existiert.