Cursul 2

Şiruri de numere reale. Polinoame

Şiruri de numere reale

Definiția 2.1 Se numește șir de numere reale o funcție $f: \mathbb{N} \to \mathbb{R}$.

Pentru fiecare $n \in \mathbb{N}$, vom nota cu x_n , valoarea funcției f în punctul $n \in \mathbb{N}$, adică $x_n = f(n)$.

Numerele $x_0, x_1, x_2, ...$ se numesc **termeni ai şirului**, iar x_n se numeşte **termenul general al şirului** f, sau **termenul de rang** n al şirului. Un şir cu termenul general x_n , se va nota $(x_n)_{n\in\mathbb{N}}$ sau $(x_n)_{n\geq 0}$.

Dacă primii k termeni ai şirului, $x_0, x_1, \ldots, x_{k-1}$, nu sunt definiți, adică funcția este definită pe mulțimea $\{n \in \mathbb{N} \mid n \geq k\} = \{k, k+1, k+2, \ldots\}$, atunci vom nota şirul prin $(x_n)_{n \geq k}$.

Şirul $(x_n)_{n\in\mathbb{N}}$ se numeşte **şir constant** dacă mulțimea valorilor sale este formată dintr-un singur element, adică $x_n = c, \forall n \in \mathbb{N}$, unde $c \in \mathbb{R}$.

Definiția 2.2 Spunem că un șir de numere reale $(x_n)_{n\in\mathbb{N}}$ este:

- i) mărginit inferior dacă există $\alpha \in \mathbb{R}$ astfel încât $\alpha \leq x_n, \forall n \in \mathbb{N}$;
- ii) mărginit superior dacă există $\beta \in \mathbb{R}$ astfel încât $x_n \leq \beta, \forall n \in \mathbb{N}$;
- iii) mărginit dacă există $\alpha, \beta \in \mathbb{R}$ astfel încât $\alpha \leq x_n \leq \beta, \ \forall n \in \mathbb{N}$.
- iv) nemărginit dacă $(x_n)_{n\in\mathbb{N}}$ nu este mărginit (adică fie nu este mărginit superior, fie nu este mărginit inferior, sau fie nu este mărginit nici superior, nici inferior).

Observație: Un şir $(x_n)_{n\in\mathbb{N}}$ este *mărginit* dacă și numai dacă există $M\in\mathbb{R}$, astfel încât $|x_n|\leq M$, $\forall n\in\mathbb{N}$.

Exemple:

- 1. Şirul $x_n = (-1)^n, n \in \mathbb{N}$ este mărginit deoarece $|x_n| \leq 1, \forall n \in \mathbb{N}$.
- 2. Şirul $x_n = 3^n, n \in \mathbb{N}$ este nemărginit, deoarece este mărginit inferior $(x_n \geq 0, \forall n \in \mathbb{N})$, dar nu este mărginit superior.
- 3. Şirul $x_n = -n, n \in \mathbb{N}$ este nemărginit, nu este mărginit inferior, dar admite margine superioară $(x_n \leq 0, \forall n \in \mathbb{N})$.
 - 4. Şirul $x_n = (-1)^n 3^n, n \in \mathbb{N}$ este nemărginit, nefiind mărginit superior și nici inferior.

Definiția 2.3 Spunem că un șir de numere reale $(x_n)_{n\in\mathbb{N}}$ este:

- i) crescător (strict crescător) dacă $x_{n+1} \ge x_n$ (respectiv $x_{n+1} > x_n$), pentru orice $n \in \mathbb{N}$;
- ii) descrescător (strict descrescător) dacă $x_{n+1} \le x_n$ (respectiv $x_{n+1} < x_n$), pentru orice $n \in \mathbb{N}$;
- iii) (strict) monoton dacă este sau (strict) crescător, sau (strict) descrescător.

Exemple:

- 1. Şirul $x_n = 1 \frac{1}{n}, n \in \mathbb{N}$ este strict crescător.
- 2. Şirul $x_n = -n, n \in \mathbb{N}$ este şir strict descrescător.
- 3. Şirul $x_n = 1 + \frac{(-1)^n}{n}$, $n \in \mathbb{N}^*$ nu este monoton.
- 4. Şirul $x_n = c, n \in \mathbb{N}$, unde c este o constantă reală, este simultan crescător şi descrescător.

Definiția 2.4 Spunem că un şir $(x_n)_{n\in\mathbb{N}}$ este **convergent** dacă există un element $l\in\mathbb{R}$, numit **limita** şirului $(x_n)_{n\in\mathbb{N}}$, astfel încât:

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N} : |x_n - l| < \varepsilon, \forall n \geq n_{\varepsilon}.$$

În acest caz spunem că $(x_n)_{n\in\mathbb{N}}$ converge la l, și scriem $x_n\to l$, sau $\lim_{n\to\infty}x_n=l$.

Definiția 2.5 Fie $(x_n)_{n\in\mathbb{N}}$ un șir de numere reale. Spunem că:

- i) $sirul(x_n)_{n\in\mathbb{N}}$ are $limit_n + \infty$ dacă $\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N} : x_n > \varepsilon, \forall n \geq n_{\varepsilon}$;
- ii) şirul $(x_n)_{n\in\mathbb{N}}$ are limita $-\infty$, dacă $\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}: x_n < -\varepsilon, \forall n \geq n_{\varepsilon}$.

Definiția 2.6 Spunem că șirul de numere reale $(x_n)_{n\in\mathbb{N}}$ este **divergent** dacă nu este convergent, adică dacă fie nu are limită, fie are limita $+\infty$ sau $-\infty$.

Teorema 2.7 Dacă un șir de numere reale are limită, atunci aceasta este unică.

Demonstrație: Presupunem că șirul $(x_n)_{n\in\mathbb{N}}$ converge la două elemente $x,y\in\mathbb{R}, x\neq y$. Fie $\varepsilon:=\frac{|x-y|}{2}>0$. Atunci, conform definiției 2.4, există $n_{\varepsilon}, n'_{\varepsilon}\in\mathbb{N}$ astfel încât $|x_n-x|<\varepsilon, \, \forall n\geq n_{\varepsilon}$ și $|x_n-y|<\varepsilon, \forall n\geq n'_{\varepsilon}$. Așadar, există $n''_{\varepsilon}=\max\{n_{\varepsilon},n'_{\varepsilon}\}\in\mathbb{N}$ astfel încât $\forall n\geq n''_{\varepsilon}$ să avem

$$|x - y| = |x - x_n + x_n - y| \le |x_n - x| + |x_n - y| < 2\varepsilon = |x - y|,$$

ceea ce este absurd, întrucât |x-y| > 0. Prin urmare, nu putem avea $x \neq y$.

Propoziția 2.8 Orice șir convergent este mărginit.

Demonstrație: Fie $x_n \to x$. Atunci, pentru $\varepsilon = 1$, există $n_1 \in \mathbb{N}$ astfel încât $|x_n - x| < 1$, pentru orice $n \ge n_1$. Aşadar, putem scrie

$$|x_n| \le |x_n - x| + |x| < 1 + |x|, \forall n \ge n_1.$$

Dacă fixăm $M = \max\{|x_1|, |x_2|, ..., |x_{n_1-1}|, 1+|x|\}$, atunci avem $|x_n| \leq M, \forall n \in \mathbb{N}$, adică șirul $(x_n)_{n \in \mathbb{N}}$ este mărginit.

Exercițiul 1: Arătați că șirul $x_n = \frac{1}{n}, n \in \mathbb{N}$ este convergent la 0.

Soluție: Vom folosi Definiția 2.4. Fie $\varepsilon > 0$ arbitrar. Observăm că are loc relația

$$|x_n - 0| = \left|\frac{1}{n} - 0\right| = \frac{1}{n} < \varepsilon.$$

cu condiția ca $n > \frac{1}{\varepsilon}$. Atunci, aleg $n_{\varepsilon} = \left[\frac{1}{\varepsilon}\right] + 1$, iar pentru $n \ge n_{\varepsilon}$, avem $|x_n - 0| < \varepsilon$, și deci $\lim_{n \to \infty} x_n = 0$.

Exercițiul 2: Arătați că șirul $x_n = \frac{2n+4}{n+3}, n \in \mathbb{N}$ este convergent având limita 2.

Soluție: Fie $\varepsilon > 0$ arbitrar. Atunci are loc:

$$|x_n - 2| = \left| \frac{2n+4}{n+3} - 2 \right| = \frac{2}{n+3} < \varepsilon$$

cu condiția ca $\frac{2}{n+3} < \varepsilon \Leftrightarrow n+3 > \frac{2}{\varepsilon} \Leftrightarrow n > \frac{2}{\varepsilon} - 3$.

Atunci, $n_{\varepsilon} = \left[\frac{2}{\varepsilon} - 3\right] + 1 = \left[\frac{2}{\varepsilon}\right] - 2$, iar pentru $n \ge n_{\varepsilon}$, $|x_n - 2| < \varepsilon$, de unde, $\lim_{n \to \infty} x_n = 2$.

Exercițiul 3: Să se arate că șirul $x_n = 3n - 2, n \in \mathbb{N}$ are limita $+\infty$.

Soluție: Fie $\varepsilon > 0$, arbitrar ales. Observăm că $x_n = 3n - 2 > \varepsilon$ dacă $n > \frac{\varepsilon + 2}{3}$.

Aşadar, luând $n_{\varepsilon} = \left[\frac{\varepsilon + 2}{3}\right] + 1$, obţinem că $x_n > \varepsilon$, deci $\lim_{n \to \infty} x_n = +\infty$.

Definiția 2.9 Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale şi $(n_k)_{k\in\mathbb{N}}$ un şir strict crescător de numere naturale. Şirul $(x_{n_k})_{k\in\mathbb{N}}$ se numește **subșir** al şirului $(x_n)_{n\in\mathbb{N}}$.

Teorema 2.10 Fie $(x_n)_{n\in\mathbb{N}}$ un şir convergent la $x\in\mathbb{R}$. Dacă $(x_{n_k})_{k\in\mathbb{N}}$ este un subşir al lui $(x_n)_{n\in\mathbb{N}}$, atunci $(x_{n_k})_{k\in\mathbb{N}}$ converge la x.

Demonstrație: Fie x_n un şir convergent la $x \in \mathbb{R}$. Atunci $\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}$ astfel încât $|x_n - x| < \varepsilon, \forall n \ge n_{\varepsilon}$. Pe de altă parte, $(n_k)_{k \in \mathbb{N}}$ este un şir strict crescător, deci există $k_{\varepsilon} \in \mathbb{N}$ astfel încât

$$n_k \ge n_{\varepsilon}, \forall k \ge k_{\varepsilon}.$$

Aşadar,
$$|x_{n_k} - x| < \varepsilon, \forall k \ge k_\varepsilon$$
, deci $\lim_{k \to \infty} x_{n_k} = x$.

Corolarul 2.11 i. Dacă un șir are un subșir divergent, atunci acel șir este divergent.

ii. Dacă un șir conține două subșiruri convergente cu limite diferite, atunci șirul este divergent.

Exemple:

- 1. Şirul $x_n = (-1)^n, n \in \mathbb{N}^*$, este divergent. Acesta conține subșirul $((-1)^{2k})_{k \in \mathbb{N}^*}$ cu limita 1 și subșirul $((-1)^{2k+1})_{k \in \mathbb{N}^*}$ cu limita -1.
- 2. Şirul $x_n = (-1)^n n$, $n \in \mathbb{N}$ este divergent, deoarece conține subșirul x_{2k} cu limita $+\infty$.
- 3. Spunem că şirul $(x_n)_{n\in\mathbb{N}}$ este periodic dacă există $p\in\mathbb{N}^*$, astfel încât $x_{n+p}=x_n, \forall n\in\mathbb{N}$. Numărul p se numește perioadă a şirului. Orice şir periodic de perioada $p\geq 2$ este divergent.

Propoziția 2.12 (Proprietăți ale șirurilor convergente) Fie $(x_n)_{n\in\mathbb{N}}$ și $(y_n)_{n\in\mathbb{N}}$ două șiruri de numere reale, convergente la $x\in\mathbb{R}$, respectiv la $y\in\mathbb{R}$. Atunci au loc următoarele afirmații:

- (P1) $\lim_{n \to \infty} |x_n| = |x|;$
- $(P2) \lim_{n \to \infty} (x_n \pm y_n) = x \pm y;$
- $(P3) \quad \lim_{n \to \infty} (x_n \cdot y_n) = x \cdot y;$
- (P4) dacă $y \neq 0$, atunci există un rang $n_0 \in \mathbb{N}$ astfel încât $y_n \neq 0, \forall n \geq n_0$ iar $\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{x}{y}$;
- (P5) $dac \ \ x_n \leq y_n, \forall n \in \mathbb{N}, \ atunci \ x \leq y;$
- (P6) (criteriul cleştelui) dacă există şirul $(z_n)_{n\in\mathbb{N}}$ astfel încât $x_n \leq z_n \leq y_n, \forall n \in \mathbb{N}$, iar x = y, atunci şirul $(z_n)_{n\in\mathbb{N}}$ este convergent şi $\lim_{n\to\infty} z_n = x$;

Exercițiul 4: Să se calculeze limita șirului $x_n = \frac{\sin n}{n}, n \in \mathbb{N}^*.$

 $Soluţie: \quad \text{Cum } -1 \leq \sin n \leq 1, \forall n \in \mathbb{N}^*, \text{ avem } -\frac{1}{n} \leq \frac{\sin n}{n} \leq \frac{1}{n}, \forall n \in \mathbb{N}^*. \quad \text{Cum } \lim_{n \to \infty} \left(-\frac{1}{n}\right) = \lim_{n \to \infty} \frac{1}{n} = 0, \text{ din criteriul cleştelui rezultă că } \lim_{n \to \infty} \frac{\sin n}{n} = 0.$

Propoziția 2.13 (Criteriul majorării) Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale şi fie $x\in\mathbb{R}$. Dacă există un şir $(\alpha_n)_{n\in\mathbb{N}}$ convergent la zero astfel încât

$$|x_n - x| < \alpha_n, \forall n \in \mathbb{N}$$

atunci (x_n) este convergent și $\lim_{n\to\infty} x_n = x$.

Demonstrație: Fie $\varepsilon > 0$, fixat. Cum $\alpha_n \to 0$, există $n_{\varepsilon} \in \mathbb{N}$, astfel încât pentru orice $n \geq n_{\varepsilon}$ să avem $|\alpha_n| < \varepsilon$. Prin urmare, $|x_n - x| \leq \alpha_n \leq |\alpha_n| < \varepsilon$, pentru orice $n \geq n_{\varepsilon}$, adică $\lim_{n \to \infty} x_n = x$.

Exercițiul 5: Să se arate că șirul $x_n = \frac{n^2 + 2n}{n^2 + n + 1}, n \in \mathbb{N}^*$, converge la 1.

Soluție: Evaluăm $|x_n - 1|$:

$$|x_n - 1| = \left| \frac{n^2 + 2n}{n^2 + n + 1} - 1 \right| = \left| \frac{n - 1}{n^2 + n + 1} \right| \le \frac{n}{n^2} = \frac{1}{n}.$$

Cum $\alpha_n = \frac{1}{n} \to 0$, atunci, aplicând criteriul majorării, obținem $\lim_{n \to \infty} x_n = 1$.

Teorema 2.14 (Teorema convergenței monotone (Weierstrass))

Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale.

- i) Dacă şirul $(x_n)_{n\in\mathbb{N}}$ este crescător şi mărginit superior, atunci acesta converge la $\sup\{x_n\}_{n\in\mathbb{N}}$;
- ii) Dacă şirul $(x_n)_{n\in\mathbb{N}}$ este descrescător şi mărginit inferior, atunci acesta converge la $\inf\{x_n\}_{n\in\mathbb{N}}$.

Putem rezuma teorema de mai sus în felul următor: Orice șir monoton și mărginit este convergent.

Demonstrație: i) Cum şirul $(x_n)_{n \in \mathbb{N}}$ este mărginit superior, admite margine superioara; fie $\alpha = \sup\{x_n\}_{n \in \mathbb{N}}$. Conform Teoremei 2.4, avem $x_n \leq \alpha, \forall n \in \mathbb{N}$ și $\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N} : \alpha - \varepsilon < x_{n_{\varepsilon}}$. Cum şirul (x_n) este crescător avem $x_n \geq x_{n_{\varepsilon}}, \forall n \geq n_{\varepsilon}$. Combinând cele două inegalități obținem, pentru $\varepsilon > 0$, că $\alpha - \varepsilon < x_n, \forall n \geq n_{\varepsilon}$. Aşadar, avem

$$|x_n - \alpha| = \alpha - x_n < \varepsilon, \ \forall n \ge n_{\varepsilon}.$$

Cum ε era ales arbitrar, obținem că x_n converge la α . Punctul ii) se demonstrează similar, considerând șirul $(-x_n)_{n\in\mathbb{N}}$ și utilizând punctul i).

Exercițiul 6: Să se demonstreze convergența următorului șir

$$x_n = \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n}, n \in \mathbb{N}^*.$$

Solutie: Studiem mărginirea și monotonia șirului. Observăm că

$$0 < x_n < \frac{1}{n+1} + \frac{1}{n+1} + \dots + \frac{1}{n+1} = \frac{n}{n+1} < 1, \forall n \in \mathbb{N}^*.$$

Aşadar, şirul este mărginit. Studiem acum monotonia:

$$x_{n+1} - x_n = \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1} = \frac{1}{2(n+1)(2n+1)} > 0,$$

adică șirul este strict crescător. Conform Teoremei lui Weierstrass, șirul $(x_n)_{n\in\mathbb{N}^*}$ este convergent.

Teorema 2.15 Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale.

- i) Dacă şirul $(x_n)_{n\in\mathbb{N}}$ este crescător şi nemărginit, atunci $\lim_{n\to\infty} x_n = +\infty$.
- ii) Dacă şirul $(x_n)_{n\in\mathbb{N}}$ este descrescător şi nemărginit, atunci $\lim_{n\to\infty} x_n = -\infty$.

În ambele cazuri, şirul $(x_n)_{n\in\mathbb{N}}$ este divergent.

Lema 2.16 Dacă $(x_n)_{n\in\mathbb{N}}$ este un şir de numere reale, atunci există un subşir al său care este monoton.

Teorema 2.17 (Bolzano-Weierstrass) Din orice şir mărginit $(x_n)_{n\in\mathbb{N}}$ se poate extrage un subşir $(x_{n_k})_{k\in\mathbb{N}}$ convergent.

Teorema 2.18 (Stolz-Cesàro) Fie $(x_n)_{n\in\mathbb{N}}$ şi $(y_n)_{n\in\mathbb{N}}$ două şiruri de numere reale astfel încât $(y_n)_{n\in\mathbb{N}}$ este strict monoton şi nemărginit. Dacă există $\lim_{n\to\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=x\in\overline{\mathbb{R}}$, atunci există $\lim_{n\to\infty}\frac{x_n}{y_n}$ şi este egală cu x.

Exercițiul 7: Să se calculeze limita șirului $\lim_{n\to\infty} \frac{\ln n}{n}$

Soluție: Fie $x_n = \ln n$ și $y_n = n, n \in \mathbb{N}^*$. Observăm că $(y_n)_{n \in \mathbb{N}^*}$ este strict crescător, cu limita $+\infty$. Calculăm

$$\lim_{n \to \infty} \frac{x_{n+1} - x_n}{y_{n+1} - y_n} = \frac{\ln(n+1) - \ln n}{n+1 - n} = \lim_{n \to \infty} \ln \frac{n+1}{n} = 0.$$

Aşadar, conform Teoremei Stolz-Cesàro, există $\lim_{n\to\infty}\frac{x_n}{y_n}=0$.

Definiția 2.19 Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale. Spunem că $(x_n)_{n\in\mathbb{N}}$ este şir Cauchy sau şir fundamental dacă

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N} : |x_n - x_m| < \varepsilon, \forall n, m \in \mathbb{N}, n, m \ge n_{\varepsilon}.$$

Definiția 2.19 se poate scrie și sub următoarea formă echivalentă:

Definiția 2.20 Spunem că șirul $(x_n)_{n\in\mathbb{N}}$ este **șir Cauchy** sau **șir fundamental** dacă pentru orice

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N} : |x_{n+p} - x_n| < \varepsilon, \forall n, p \in \mathbb{N}, n \ge n_{\varepsilon}.$$

Intuitiv, într-un şir Cauchy de la un rang încolo toți termenii sunt apropiați unul de celălalt.

Propoziția 2.21 Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale. Dacă $(x_n)_{n\in\mathbb{N}}$ este Cauchy atunci el este mărginit.

În particular, cum este mărginit, $(x_n)_{n\in\mathbb{N}}$ admite un subșir convergent.

Teorema 2.22 (Cauchy) Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale. Atunci $(x_n)_{n\in\mathbb{N}}$ este convergent dacă şi numai dacă este şir Cauchy.

Demonstrație:

 \implies : Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale convergent la $x\in\mathbb{R}$. Aşadar, vom avea

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N} : |x_n - x| < \frac{\varepsilon}{2}, \forall n \in \mathbb{N}, n \ge n_{\varepsilon}.$$

Prin urmare, dacă $n, m \in \mathbb{N}, n, m \ge n_{\varepsilon}$, avem

$$|x_n - x_m| \le |x_n - x| + |x - x_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

aşadar, şirul este fundamental.

 \Leftarrow : Presupunem că (x_n) este un şir fundamental. Conform Propoziției 2.21, rezultă că (x_n) este şir mărginit (demonstrația acestui rezultat este similară cu cea a Propoziției 2.8: dacă $\varepsilon = 1$, atunci $|x_n| \leq |x_{n_1}| + |x_n - x_{n_1}| < 1 + |x_{n_1}|, \forall n \geq n_1$). Conform Teoremei Bolzano-Weierstrass, şirul mărginit (x_n) conține un subșir convergent $(x_{n_k})_{k \in \mathbb{N}}$. Fie $x \in \mathbb{R}$ limita acestui subșir. Arătăm că $(x_n)_{n \in \mathbb{N}}$ converge la x. Fie $\varepsilon > 0$. Cum $x_{n_k} \to x$, rezultă că există $k_{\varepsilon} \in \mathbb{N}$ astfel încât

$$|x_{n_k} - x| < \frac{\varepsilon}{2}, \forall k \in \mathbb{N}, k \ge k_{\varepsilon}.$$

Pe de altă parte, cum (x_n) este şir Cauchy, există $n_{\varepsilon} \in \mathbb{N}$ astfel încât

$$|x_m - x_n| < \frac{\varepsilon}{2}, \forall n, m \in \mathbb{N}, n, m \ge n_{\varepsilon}.$$

Fie $n'_{\varepsilon} \in \mathbb{N}$, cu $n'_{\varepsilon} = \max\{n_{\varepsilon}, n_{k_{\varepsilon}}\}$ și k'_{ε} astfel încât $n_{k'_{\varepsilon}} \geq n'_{\varepsilon}$. Dacă $n \geq n_{k'_{\varepsilon}}$, rezultă

$$|x_n - x| \le |x_n - x_{n_{k_{\varepsilon}'}}| + |x_{n_{k_{\varepsilon}'}} - x| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

deoarece $n \ge n_{k'_{\varepsilon}} \ge n_{\varepsilon}$ și $k'_{\varepsilon} \ge k_{\varepsilon}$. Prin urmare, șirul (x_n) este convergent cu limita x.

Exercițiul 8: Arătați că șirul $x_n = \frac{\sin x}{2} + \frac{\sin 2x}{2^2} + \dots + \frac{\sin nx}{2^n}, n \in \mathbb{N}, x \in \mathbb{R}$ este un șir Cauchy, deci convergent.

Soluție: Fie $\varepsilon > 0$ și $n, p \in \mathbb{N}$. Atunci, avem:

$$|x_{n+p} - x_n| = \left| \frac{\sin(n+1)x}{2^{n+1}} + \dots + \frac{\sin(n+p)x}{2^{n+p}} \right| \le \left| \frac{\sin(n+1)x}{2^{n+1}} \right| + \dots + \left| \frac{\sin(n+p)x}{2^{n+p}} \right|$$
$$\le \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{n+p}} = \left(\frac{1}{2}\right)^n \left[1 - \left(\frac{1}{2}\right)^p\right] < \frac{1}{2^n}, \forall p \in \mathbb{N}.$$

Am obținut o majorare independentă de $p \in \mathbb{N}$, și, în plus, $\frac{1}{2^n} \to 0$. Deci, există $n_{\varepsilon} \in \mathbb{N}$, astfel încât $\frac{1}{2^n} < \varepsilon, \forall n \geq n_{\varepsilon}$. Prin urmare, $|x_{n+p} - x_n| < \varepsilon$, deci șirul $(x_n)_{n \in \mathbb{N}}$ este convergent.

Exercițiul 9: Arătați că șirul $x_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}, n \in \mathbb{N}^*$ nu este Cauchy.

 $Soluție: \text{ Vom arăta că există } \varepsilon > 0 \text{ astfel încât } \forall n \in \mathbb{N}^*, \exists p \in \mathbb{N} \text{ astfel încât } |x_{n+p} - x_n| \geq \varepsilon.$

$$|x_{n+p} - x_n| = \frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n+2}} + \dots + \frac{1}{\sqrt{n+p}} > \frac{p}{\sqrt{n+p}}.$$

Luând $\varepsilon = \frac{1}{\sqrt{2}}, n \in \mathbb{N}^*$ arbitrar, și p = n, obținem $|x_{n+p} - x_n| \ge \frac{\sqrt{n}}{\sqrt{2}} \ge \varepsilon$. Deci șirul $(x_n)_{n \in \mathbb{N}}$ nu este Cauchy.

Puncte limită ale unui șir

Definiția 2.23 Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale.

- a) Spunem că $x \in \mathbb{R}$ este **punct limită** al şirului $(x_n)_{n \in \mathbb{N}}$, dacă există un subşir $(x_{n_k})_{k \in \mathbb{N}}$ astfel încât $x_{n_k} \to x$.
- b) Vom nota mulțimea tuturor punctelor limită cu $L(x_n)$.

Conform Lemei 2.16, avem $L(x_n) \neq \emptyset$, pentru orice şir $(x_n)_{n \in \mathbb{N}}$ de numere reale.

Definiția 2.24 Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale.

a) Se numește limită inferioară a lui $(x_n)_{n\in\mathbb{N}}$ marginea inferioară a mulțimii $L(x_n)$.

$$\liminf_{n \to \infty} x_n = \underline{\lim}_{n \to \infty} x_n = \inf L(x_n)$$

b) Se numește limită superioară a șirului $(x_n)_{n\in\mathbb{N}}$ marginea superioară a mulțimii $L(x_n)$;

$$\limsup_{n \to \infty} x_n = \overline{\lim}_{n \to \infty} x_n = \sup L(x_n).$$

Teorema 2.25 Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale.

1) Avem:

$$\liminf_{n \to \infty} x_n \le \limsup_{n \to \infty} x_n;$$

2) Dacă $(x_n)_{n\in\mathbb{N}}$ este un şir convergent la un element $x\in\overline{\mathbb{R}}$, atunci $L(x_n)=\{x\}$ şi are loc:

$$\liminf_{n \to \infty} x_n = \limsup_{n \to \infty} x_n = x;$$

3) Pentru orice şir $(x_n)_{n\in\mathbb{N}}$, se poate arăta că există un subşir monoton descrescător al acestuia, care să conveargă la $\varinjlim_{n\to\infty} x_n$ şi, respectiv, un subşir monoton crescător care să conveargă la $\varlimsup_{n\to\infty} x_n$.

Propoziția 2.26 Fie $(x_n)_{n\in\mathbb{N}^*}$ un șir de numere reale pozitive. Atunci are loc

$$\liminf_{n\to\infty}\,\frac{x_{n+1}}{x_n}\le \liminf_{n\to\infty}\sqrt[n]{x_n}\le \liminf_{n\to\infty}\sqrt[n]{x_n}\le \limsup_{n\to\infty}\,\frac{x_{n+1}}{x_n}.$$

 $\hat{I}n~particular,~dac a~exist a~\lim_{n\to\infty}\frac{x_{n+1}}{x_n},~atunci~exist a~si~\lim_{n\to\infty}\sqrt[n]{x_n},~av\^{a}nd~loc~egalitatea$

$$\lim_{n \to \infty} \sqrt[n]{x_n} = \lim_{n \to \infty} \frac{x_{n+1}}{x_n}.$$

Polinoame

Fie $(K, +, \cdot)$ un corp comutativ, unde K este una dintre mulţimile $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_p$, cu $p \in \mathbb{N}^*$ număr prim. Vom considera mulţimea funcţiilor definite pe \mathbb{N} şi cu valori în K, $\mathcal{F}(\mathbb{N}, K) = \{f : \mathbb{N} \to K\}$. Cum avem $f(n) = a_n, \forall n \in \mathbb{N}$, vom putea construi un şir de elemente din K, pe care îl vom nota cu $(a_n)_{n \in \mathbb{N}}$.

În cele ce urmează, ne interesează o submulțime $\mathcal{P} \subset \mathcal{F}(\mathbb{N}, K)$ formată din şirurile $(a_n)_{n \in \mathbb{N}}$ pentru care termenii sunt nuli cu excepția unui număr finit dintre ei. Aşadar, elementele lui \mathcal{P} sunt de forma $(a_0, a_1, \ldots, a_n, 0, 0, \ldots)$, cu $a_n \neq 0$ și îl vom numi **polinom** cu coeficienți în K. Vom nota cu

$$X = (0, 1, 0, ...), X^2 = (0, 0, 1, ...), X^3 = (0, 0, 0, 1, ...), ..., X^n = (0, 0, ..., 0, 1, 0, ...),$$

vom numi X nedeterminata pe K. Cu aceste observații vom putea scrie polinomul $f=(a_0,a_1,\ldots,a_n,0,\ldots)$, cu $a_n\neq 0$ astfel

$$f = (a_0, 0, ...) + (0, a_1, 0, ...) + ... + (0, 0, ..., a_n, 0, ...) = a_0 + a_1 X + ... + a_n X^n$$
.

Scrierea polinomului f în forma

$$f = a_n X^n + a_{n-1} X^{n-1} + ... + a_1 X + a_0$$
, unde $a_0, a_1, ..., a_n \in K$, iar $a_n \neq 0$,

reprezintă forma algebrică a polinomului f, ordonat după puterile descrescătoare ale lui X. Mulţimea polinoamelor de nedeterminată X cu coeficienți în K se notează cu K[X]. Elementele $a_0, a_1, ..., a_n$ se numesc coeficienții polinomului, a_n se numește coeficientul dominant, iar a_0 termenul liber. Polinoamele de forma $f = a_0, a_0 \in K$ se numesc polinoame constante, iar f = 0 se numește polinom nul.

Vom numi gradul polinomului $f \neq 0$, și vom nota $\operatorname{grad}(f)$, cel mai mare număr natural n cu proprietatea că $a_n \neq 0$.

Fie $f, g \in K[X]$ două polinoame de grad m, respectiv n,

$$f = a_m X^m + \dots + a_1 X + a_0, \quad g = b_n X^n + \dots + b_1 X + b_0,$$

unde $a_i, b_j \in K$, $a_m, b_n \neq 0$. În plus, convenim ca $a_i = 0$ pentru i > m şi $b_j = 0$ pentru j > n.

- Egalitatea a două polinoame: Spunem că polinomul f este egal cu polinomul g, și scriem f = g, dacă și numai dacă m = n, și $a_i = b_i, \forall i \geq 0$. În particular, $f = 0 \Leftrightarrow a_i = 0, \forall i \geq 0$.
- Adunarea polinoamelor f si q este un polinom de grad $\max\{m,n\}$, notat $f+q \in K[X]$ si definit prin

$$f+q=(a_n+b_n)X^p+\ldots+(a_1+b_1)X+(a_0+b_0)$$
, unde $p=\max\{m,n\}$

• Produsul polinoamelor f,g, notat $f\cdot g$ este un polinom de grad m+n, scris sub forma

$$f \cdot g = (a_0 b_{m+n} + a_1 b_{m+n-1} + \dots + a_{m+n} b_0) X^{m+n} + \dots + (a_0 b_2 + a_1 b_1 + a_2 b_0) X^2 + (a_0 b_1 + a_1 b_0) X + a_0 b_0,$$

Funcția polinomială. Rădăcini ale unui polinom

Fie $f \in K[X]$, $f = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0$, si fie $x \in K$.

1. Se numește valoarea polinomului f în x elementul

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0.$$

2. Elementul $x \in K$ este o **rădăcină** a polinomului f dacă f(x) = 0.

Teorema 2.27 Fie $f, g \in K[X]$ și fie $x \in K$. Atunci

- (f+g)(x) = f(x) + g(x);
- $(f \cdot g)(x) = f(x)g(x)$.

Definiția 2.28 Fie $f \in K[X]$ un polinom nenul. Se numește **funcție polinomială** atașată polinomului f, funcția $\tilde{f}: K \to K$, definită prin $\tilde{f}(x) = f(x), \forall x \in K$.

Aşadar, vom numi funcție polinomială de grad n funcția

$$f: K \to K, \ f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

unde $n \in \mathbb{N}$ iar coeficienții satisfac $a_i \in K, a_n \neq 0$.

Împărțirea a două polinoame

A împărți polinomul f la polinomul nenul g, înseamnă a determina polinoamele $q, r \in K[X]$ astfel încât $f = g \cdot q + r$ și grad(r) < grad(g).

Teorema 2.29 (Teorema împărțirii cu rest) Fie $f, g \in K[X]$ două polinoame, astfel încât $g \neq 0$. Atunci există și sunt unice $q, r \in K[X]$ cu proprietățile

- a) $f = q \cdot q + r$;
- b) grad(r) < grad(g).

Polinomul f se numește $de\hat{i}mpărțit, g$ se numește $\hat{i}mpărțitor$, iar q și r se numesc $c\hat{a}tul$ respectiv restul împărțirii.

Având în vedere relația $f = g \cdot q + r$, avem următoarea egalitate grad(q) = grad(f) - grad(g).

Fie $f, g \in K[X], g \neq 0$, două polinoame de grad m, respectiv n, unde $f = a_m X^m + a_{m-1} X^{m-1} + \ldots + a_1 X + a_0$, $g = b_n X^n + b_{n-1} X^{n-1} + \ldots + b_1 X + b_0$, cu $m \geq n$.

În cele ce urmează, vom descrie algoritmul împărțirii polinomului f la q:

- ullet Se ordonează cele două polinoame după puterile descrescătoare ale lui X;
- Se dispun polinoamele ca mai jos

$$(f): \underbrace{\begin{array}{c|c} a_m X^m + a_{m-1} X^{m-1} + \ldots + a_1 X + a_0 & b_n X^n + b_{n-1} X^{n-1} + \ldots + b_1 X + b_0 & :(g) \\ \hline \end{array}}_{}$$

• Se împarte primul termen al lui f la primul termen al lui g, şi avem $a_m b_n^{-1} X^{m-n}$. Acest termen îl vom pune în schema, sub împărțitor. Se înmulțește rezultatul astfel obținut cu împărțitorul g și se scade acest produs din f și se obține polinomul f_1 . Procedăm îm mod similar până când gradul restului $grad(f_s)$ este strict mai mic decât gradul lui g.

$$(f): \begin{array}{c|c} a_{m}X^{m} + a_{m-1}X^{m-1} + \ldots + a_{1}X + a_{0} & b_{n}X^{n} + b_{n-1}X^{n-1} + \ldots + b_{1}X + b_{0} : (g) \\ \hline -a_{m}X^{m} - a_{m}b^{n-1}b_{n}^{-1}X^{m-1} - \cdots & a_{m}b_{n}^{-1}X^{m-1} + \ldots \\ \hline (f_{1}): & (a_{m-1} - a_{m}b_{n-1}b_{n}^{-1})X^{m-1} + \ldots \\ \hline & (f_{2}): & \\ \hline -Restul \ (f_{s}) & \\ \end{array}$$

Exemplu: Să se împartă polinomul $f \in \mathbb{C}[X], f = X^4 + X^2 + 1$ la polinomul $g \in \mathbb{C}[X], g = X - 1$.

$$\begin{array}{c|c}
(f): X^4 + X^2 + 1 \\
-X^4 + X^3 \\
\hline
(f_1): X^3 + X^2 + 1 \\
-X^3 + X^2 \\
\hline
(f_2): 2X^2 + 1 \\
-2X^2 + 2X \\
\hline
(f_3): 2X + 1 \\
-2X + 2 \\
\hline
Restul 3
\end{array}$$

Fie $f \in K[X]$, $f = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0$ un polinom nenul de gradul n, şi fie $g = X - a \in K[X]$.

Teorema 2.30 Restul împărțirii polinomului $f \in K[X]$ la polinomul $g = X - a \in K[X]$ este egal cu valoarea f(a) a polinomului f în a.

Vom nota cu $q = b_{n-1}X^{n-1} + \ldots + b_1X + b_0$, câtul împărțirii polinomului f la g. Din teorema împărțirii cu rest vom obține

$$f = (X - a)q + r = (X - a)(b_{n-1}X^{n-1} + \dots + b_1X + b_0) + r.$$

Aşadar, dacă ordonăm după puterile lui X avem

$$f = b_{n-1}X^n + (b_{n-2} - ab_{n-1})X^{n-1} + \ldots + (b_1 - ab_2)X^2 + (b_0 - ab_1)X + r - ab_0.$$

Identificând coeficienții lui f obținem

$$a_n = b_{n-1}$$

 $a_{n-1} = b_{n-2} - ab_{n-1}$
...
 $a_2 = b_1 - ab_2$
 $a_1 = b_0 - ab_1$
 $a_0 = r - ab_0$.

Prin urmare, vom determina coeficienții câtului: $b_{n-1}, b_{n-2}, \ldots, b_1, b_0$ și a restului r, după schema lui Horner

Coeficienții lui f	a_n	a_{n-1}	a_{n-2}	 a_1	a_0
a	$b_{n-1} = a_n$	$b_{n-1}a + a_{n-1}$	$b_{n-2}a + a_{n-2}$	 $b_1a + a_1$	$b_0a + a_0$
	b_{n-1}	b_{n-2}	b_{n-3}	 b_0	r

Coeficienții lui q

Restul

Exemplu: Reluam același exemplu ca mai sus: Să se împartă polinomul $f \in \mathbb{C}[X], f = X^4 + X^2 + 1$ la polinomul $g \in \mathbb{C}[X], g = X - 1$.

Vom utiliza schema lui Horner:

Coeficienții lui f	$a_4 = 1$	$a_3 = 0$	$a_2 = 1$	$a_1 = 0$	$a_0 = 1$
a = 1	1	$b_2 = 1 \cdot 1 + 0 = 1$	$1 \cdot 1 + 1 = 2$	$1 \cdot 2 + 0 = 2$	$1 \cdot 2 + 1 = 3$
	b_3	b_2	b_1	b_0	Restul

Asadar,
$$f = X^4 + X^2 + 1 = (X - 1)(1 \cdot X^3 + 1 \cdot X^2 + 2 \cdot X + 2) + 3$$
.

Definiția 2.31 Fie $f, g \in K[X]$ două polinoame. Spunem că g divide polinomul f, și vom nota g|f, dacă există $h \in K[X]$ astfel încât $f = g \cdot h$.

Polinomul g se numește **divizor** al polinomului f, iar polinomul f se numește **multiplu** al polinomului g.

Proprietăți ale relației de divizibilitate

Fie $f, g, h \in K[X]$ polinoame cu coeficienți în corpul K. Atunci are loc

- Reflexivitate: $f|f, \forall f \in K[X]$;
- Tranzitivitate: dacă f|g și g|h, atunci f|h;
- Polinomul nul f = 0 este divizibil cu orice alt polinom;
- Polinomul constant $f = a, a \neq 0$ este divizor pentru oricare polinom din K[X];

Definiția 2.32 Un polinom $d \in K[X]$ se numește **cel mai mare divizor comun** al polinoamelor f și g dacă

- 1. d este divizor comun al lui f și g, adică d|f și d|g;
- 2. $dacă d_1$ este un alt divizor comun al lui f și g, atunci $d_1|d$.

Dacă d este cel mai mare divizor comun pentru f și g, el se notează c.m.m.d.c.(f,g), sau, mai simplu, (f,g).

Teorema 2.33 Fie $f, g \in K[X]$. Atunci există un cel mai mare divizor comun al lui f și g.

Definiția 2.34 Fie $f,g \in K[X]$ două polinoame cu coeficienți în K. Atunci $m \in K[X]$ se numește **cel mai** mic multiplu comun al lui f și g dacă

- $f|m \ \text{$i$ } g|m \ (m \ este \ multiplu \ comun \ pentru \ f \ \text{i } g);$
- oricare ar fi $m_1 \in K[X]$, multiplu comun pentru f și g, rezultă $m|m_1$.

Vom nota cel mai mic multiplu comun al lui f și g cu c.m.m.m.c(f,g) sau [f,g].

Teorema 2.35 (Bezout) Fie $f, g \in K[X]$ cu $g \neq 0$ și fie $\alpha \in K$. Atunci:

- a) α este rădăcină a lui f dacă şi numai dacă f se divide cu $X \alpha \in K[X]$;
- b) Dacă f se divide cu g și α este rădăcină a lui g, atunci α este rădăcină a lui f.

Definiția 2.36 Fie $f \in K[X]$, cu $f \neq 0$ și fie $m \in \mathbb{N}^*$. Elementul $\alpha \in K$ se numește **rădăcină multiplă de** ordinul m, dacă f se divide cu $(X - \alpha)^m$, dar nu se divide cu $(X - \alpha)^{m+1}$.

Numărul $m \in \mathbb{N}^*$ se numește **ordinul de multiplicitate** al rădăcinii α . Dacă m = 1, rădăcina α se numește **rădăcină simplă**, dacă $m = 2, 3, \ldots$, atunci α se numește rădăcină **dublă**, **triplă**,...

Definiția 2.37 Fie $f \in K[X]$ un polinom de gradul $n, n \in \mathbb{N}^*, f = a_n X^n + \ldots + a_1 X + a_0$.

- O ecuație de forma $a_n x^n + ... + a_1 x + a_0 = 0$ se numește ecuație algebrică de gradul n cu coeficienți în K și necunoscuta x.
- $a_0, a_1, \ldots, a_n \in K$ se numesc coeficienții ecuației, n se numește gradul ecuației.
- Elementul $\alpha \in K$ cu proprietatea că $f(\alpha) = 0$ se numește soluție a ecuației.

Teorema 2.38 (Teorema fundamentală a algebrei) O ecuație algebrică de grad cel putin 1 cu coeficienți complecși, admite cel putin o soluție complexă.

Observație: Din teorema fundamentală a algebrei rezultă că o ecuație algebrică de gradul $n \in \mathbb{N}^*$ cu coeficienți complecși are exact n soluții complexe.

Definiția 2.39 • Polinomul nenul $f \in K[X]$ se numește **reductibil** peste corpul K dacă există $g, h \in K[X]$ de grad cel putin 1, astfel încât $f = g \cdot h$.

• Un polinom $f \in K[X]$ cu $grad(f) \ge 1$, care nu este reductibil peste K, se numește **ireductibil** peste K.

Observație:

- 1. Orice polinom de gradul 1 din K[X] este polinom ireductibil peste K.
- 2. Dacă $f \in \mathbb{R}[X]$ este un polinom nenul, atunci el este ireductibil numai în următoarele cazuri: fie este de gradul 1, fie f este de gradul 2, dar nu are rădăcini reale. Așadar, orice polinom $f \in \mathbb{R}[X]$ de grad $n \geq 3$ este polinom reductibil peste \mathbb{R} .

Teorema 2.40 Fie $f \in \mathbb{C}[X]$, $f = a_n X^n + \ldots + a_1 X + a_0$, un polinom de grad n cu coeficienții din \mathbb{C} .

- a) Dacă $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ sunt rădăcini ale lui f atunci $f = a_n(X \alpha_1)(X \alpha_2) \cdot \ldots \cdot (X \alpha_n)$.
- b) Dacă $\alpha_1, \ldots, \alpha_k \in \mathbb{C}$ sunt rădăcini distincte ale lui f, de multiplicitate $m_1, \ldots, m_k \in \mathbb{N}^*$ atunci

$$f = a_n (X - \alpha_1)^{m_1} (X - \alpha_2)^{m_2} \cdot \dots \cdot (X - \alpha_k)^{m_k}.$$

Observație: Dacă polinoamele $f,g \in K[X]$ sunt descompuse în produse de factori ireductibili, atunci

- \bullet (f,g) este produsul factorilor ireductibili comuni, luați la puterea cea mai mică;
- \bullet [f,g] este produsul factorilor ireductibili comuni sau necomuni, luați la puterea cea mai mare.

Inegalități remarcabile

1. Inegalitatea mediilor

Fie $n \in \mathbb{N}^*$ şi $x_1, x_2, \dots, x_n \in \mathbb{R}^{*, 1}_+$. Introducem următoarele notații:

$$\begin{split} m_a &:= \frac{x_1 + x_2 + \ldots + x_n}{n} - \textit{media aritmetică} \text{ a numerelor } x_1, \ldots, x_n; \\ m_g &:= \sqrt[n]{x_1 \cdot \ldots \cdot x_n} - \textit{media geometrică} \text{ a numerelor } x_1, \ldots, x_n; \\ m_h &:= \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_n}} - \textit{media armonică} \text{ a numerelor } x_1, \ldots, x_n. \end{split}$$

Atunci, are loc inegalitatea mediilor

$$\frac{x_1 + x_2 + \ldots + x_n}{n} \ge \sqrt[n]{x_1 \cdot \ldots \cdot x_n} \ge \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_n}}.$$

Fiecare dintre aceste relații devine egalitate dacă și numai dacă $x_1 = x_2 = \ldots = x_n$

2. Inegalitatea lui Hölder

Fie $n \in \mathbb{N}^*, a_1, ..., a_n, b_1, ..., b_n \in \mathbb{R}_+$ şi fie $p, q \in \mathbb{R}_+^*$, astfel încât $\frac{1}{p} + \frac{1}{q} = 1$. Atunci, are loc:

$$\sum_{i=1}^{n} a_i b_i \le \left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{n} b_i^q\right)^{\frac{1}{q}}.$$
 (1)

Este ușor de arătat că are loc și următoarea inegalitate numită inegalitatea lui Hölder cu ponderi

$$\sum_{i=1}^{n} \lambda_i a_i b_i \le \left(\sum_{i=1}^{n} \lambda_i a_i^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{n} \lambda_i b_i^q\right)^{\frac{1}{q}},\tag{2}$$

 $^{^1\}mathrm{Reamintim}$ că $\mathbb{R}_+ = [0,\infty),$ iar $\mathbb{R}_+^* = \mathbb{R}_+ \setminus \{0\} = (0,\infty)$

 $\lambda_1,...,\lambda_n,a_1,...,a_n,b_1,...,b_n\in\mathbb{R}_+$ și $p,q\in\mathbb{R}_+^*$ astfel încât $\frac{1}{p}+\frac{1}{q}=1.$

Dacă p=q=2, atunci din (1) obținem inegalitatea Cauchy-Buniakowski-Schwarz

$$\sum_{i=1}^{n} a_i b_i \le \left(\sum_{i=1}^{n} a_i^2\right)^{\frac{1}{2}} \cdot \left(\sum_{i=1}^{n} b_i^2\right)^{\frac{1}{2}}.$$
 (3)

În relația (3) egalitatea are loc dacă și numai dacă există $u, v \in \mathbb{R}$, cu $u^2 + v^2 \neq 0$, astfel încât $ua_i + vb_i = 0$, pentru orice $i \in \{1, 2, ..., n\}$.

3. Inegalitatea lui Minkowski

Fie $n \in \mathbb{N}^*, a_1, ..., a_n, b_1, ..., b_n \in \mathbb{R}_+^*$ şi fie $p \in \mathbb{R}_+^*$.

i) Dacă $p \ge 1$, atunci

$$\left(\sum_{i=1}^{n} (a_i + b_i)^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} b_i^p\right)^{\frac{1}{p}}.$$
(4)

ii) Dacă 0 , atunci

$$\left(\sum_{i=1}^{n} (a_i + b_i)^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} b_i^p\right)^{\frac{1}{p}}.$$
 (5)

În ambele cazuri, dacă $p \neq 1$, egalitatea are loc dacă și numai dacă n-uplele $(a_1, ..., a_n)$ și $(b_1, ..., b_n)$ sunt proporționale.

4. Inegalitatea lui Carleman

Pentru orice $n \in \mathbb{N}^*$ și $a_1, a_2, ..., a_n \in \mathbb{R}_+$ are loc inegalitatea

$$\sum_{i=1}^{n} (a_1 a_2 \cdot \dots \cdot a_i)^{\frac{1}{i}} \le e \sum_{i=1}^{n} a_i.$$
 (6)

Egalitatea are loc doar când $a_1 = a_2 = ... = a_n = 0$.

Bibliografie orientativă

- [1] A. Precupanu, Bazele analizei matematice, Editura Universității "Al. I. Cuza", Iași, 1993.
- [2] M. Burtea, G. Burtea, Matematică. Manual pentru clasa a XII-a, Editura Carminis.
- [3] G. Păltineanu, Analiză matematică, Editura Universitaria, Craiova, 2002,
- [4] R. Luca-Tudorache, Analiză matematică. Calcul diferențial, Editura Tehnopress, Iași, 2015.
- [5] S. Chiriță, Probleme de matematici superioare, Editura Did actică și Pedagogică, București, 1989.
- [6] M. O. Drâmbe, Inegalități. Idei și metode., Editura GIL, Zalău, 2003.