Министерство образования и науки Российской Федерации Московский физико-технический институт (Государственный университет) Факультет общей и прикладной физики Кафедра биофизики

Пинина Юлия Михайловна

Изучение взаимодействия мембранных белков и липидов

Выпускная квалификационная работа бакалавра

Научный руководитель:

д.ф.-м.н. Гущин И.Ю.

Содержание

1 Введение				
2	Литературный обзор	4		
	2.1 Мембранные белки	4		
	2.2 Бактериородопсин	5		
3	Материалы и методы	6		
	3.1 Подраздел 1	6		
	3.2 Подраздел 2	6		
4	Результаты и обсуждение	7		

1 Введение

Мембранные белки играют ключевую роль во многих клеточных процессах и занимают около трети кодирующей части генома. В силу своего расположения они постоянно взаимодействуют с окружающими липидами мембранного бислоя. Липиды регулируют как их расположение и активность, так и межбелковое взаимодействие. В свою очередь, белки оказывают влияние на конфигурацию и свойства липидов.

Бактериородопсин - интегральный мембранный белок, осуществляющий перенос протона через бислой [1]. Впервые бактериородопсин был открыт у архей, мембраны которых имеют некоторую специфичность: вместо обычных жирных кислот гидрофобные части их липидов состоят из изопреновых групп и являются разветвленными. Благодаря таким метильным «ответвлениям» мембраны становятся очень прочными, но при этом сохраняют гибкость. Это влияет и на характер взаимодействия с белком.

В данной работе будет проанализировано взаимодействие бактериородопсина с разветвленными и неразветвленными липидами при моделировании методом молекулярной динамики и проведено сравнение с экспериментальными данными.

2 Литературный обзор

Клетка — основной строительный блок всех организмов — отделена от окружающей среды клеточной мембраной, которая обладает не только барьерной, но также и транспортной, механической, рецепторной, ферментативной и другими функциями.

Такое разнообразие обусловлено строением. Мембрана главным образом состоит из трех классов липидов (фосфолипиды, гликолипиды и холестерол) и мембранных белков. Липиды при этом формируют бислой: их углеводородные хвосты образуют внутреннюю гидрофобную часть мембраны, а гидрофильные полярные головы обращены в сторону воды. Мембранные белки могут быть встроены в бислой только на одной стороне (интегральные монотопические), пронизывать мембрану наскозь (интегральные политопические, или трансмембранные) или быть связаны с бислоем, не встраиваясь в него (периферические).

Далее рассмотрим потробнее основные компоненты мембраны и их взаимодействие. Под мембранными белками будут иметься в виду только трансмембранные белки.

2.1 Мембранные белки

Большое количество функций клеточных мембран во многом обеспечивается разнообразием функций мембранных белков: различные белки участвуют в транспорте ионов и воды, передаче сигналов, ферментативных процессах, межклеточном узнавании и др. Важность этих процессоа для клеточной жизнедеятельности в сочетании с фактом, что около 25% белков являются мембранными [2], делает мембранные белки объектом огромного числа исследований.

Основопологающим этапом изучения белков является решение их пространственной структуры. Классический метод, применяемый для этого, – кристаллизация белков и рентгеноструктурный анализ кристаллических структур. Однако, если в случае растворимых белков этот метод не представляет сложности, то универсальных методов кристаллизации мембранных белков нет. Это связано с тем, что вне своего естественного окружение – липидного бислоя – мембранные белки нестабильны. Нестабильность можно избежать воспроизведением свойств исходно окружающих белок липидов. Поэтому для солюбилизации мембранных белков применяют детергенты - амфифильные молекулы, которые, замещая липиды бислоя и связываясь с гидрофобной частью белка, разрушают мембрану, сохраняя при этом нативное состояние белка. Выбор детергента представляет собой отдельную трудность: разные детергенты по-разному действуют на одни и те же белки, и теоретически предсказать взаимодействие между детергентами, липидами и белком нельзя. Боллее того,

кристаллизация солюбилизировнного происходит вместе с детергентом, что также накладывает условия на его выбор.

Трудности кристаллизации мембранных белков объясняют малое количество решенных структур высокого разрешения по сравнению с растворимыми белками. Тем не менее, число решаемых с высоким разрешением структур мембранных белков растет с экспоненциальной зависимостью [3], и к 2020 году число уникальных структур должно достигнуть $\sim 2,800$ единиц.

2.2 Бактериородопсин

Таблица 1: Среднее число пар, рождённых одиночным (слева) и двумя сталкивающимися (справа) циркулярно-поляризованными импульсами e-типа из вакуума, $\Delta=0.1$

$I \cdot 10^{-28},$ BT/cm ²	E_0/E_S	N	$I \cdot 10^{-26},$ BT/cm ²	E_0/E_S	N
0.6	0.203	1.94(-5)	1.0	0.0262	2.36(-8)
0.8	0.234	5.57(-2)	1.5	0.0321	3.12(-3)
1.0	0.262	13.4	2.0	0.0371	3.85
1.5	0.321	7.57(4)	2.5	0.0414	5.20(2)
2.0	0.371	1.42(7)	3.0	0.0454	2.01(4)
2.5	0.414	5.29(8)	4.0	0.0524	3.59(6)
3.0	0.454	7.89(9)	5.0	0.0586	1.33(8)
4.0	0.524	3.70(11)	6.0	0.0642	1.95(9)
5.0	0.586	5.35(12)	7.0	0.0693	1.61(10)
6.0	0.642	4.05(13)	8.0	0.0741	8.94(10)
8.0	0.741	7.17(14)	9.0	0.0786	3.75(11)
10.0	0.829	5.33(15)	10.0	0.0829	1.28(12)

3 Материалы и методы

Текст раздела

3.1 Подраздел 1

3.2 Подраздел 2

Текст подраздела

4 Результаты и обсуждение

Список литературы

- [1] Lanyi Janos K. Bacteriorhodopsin // Annual Review of Physiology. 2004. Vol. 66. P. 665–668.
- [2] T.J. Stevens, I.T. Arkin. Do More Complex Organisms Have a Greater Proportion of Membrane Proteins in Their Genomes? // Proteins. -2000. Vol. 39, no. 4. P. 417–420.
- [3] S.H. White. Biophysical dissection of membrane proteins // Nature. 2009. Vol. 459. P. 344–346.