Arithmétique : DS du 3 novembre 2008

Durée : 1h30. Sans document. Les exercices sont indépendants.

- EXERCICE 1. Combien d'éléments contient le groupe multiplicatif A^* de l'anneau $A = \mathbb{F}_2[X]/(X^4+1)$? Faire la liste des éléments de A^* . Le groupe (A^*, \times) est-il cyclique?
- **Solution.** On a $X^4+1=(X+1)^4$, ainsi les polynômes premiers avec X^4+1 sont les polynômes premiers avec X+1, c'est-à-dire les polynômes n'ayant pas 1 comme racine, ou encore les polynômes qui s'écrivent comme une somme d'un nombre impair de monômes. On a donc :

$$A^* = \{1, X, X^2, X^3, 1 + X + X^2, 1 + X + X^3, 1 + X^2 + X^3, X + X^2 + X^3\}$$

et $|A^*|=8$. On a clairement $X^4=1$ dans A, d'où $(X^i)^4=(X^4)^i=1$ et $(X^i+X^j+X^k)^4=(X^i)^4+(X^j)^4+(X^k)^4=(X^4)^i+(X^4)^j+(X^4)^k=1+1+1=1$. Donc tous les éléments de A^* sont d'ordre au plus 4 et A^* n'est pas cyclique.

- Exercice 2.
 - a) Montrer que le polynôme $P(X) = X^6 + X + 1 \in \mathbb{F}_2[X]$ est irréductible et primitif.
 - **Solution.** On vérifie que P(X) n'est divisible ni par X, X+1, ni par $1+X+X^2$, ni par $1+X+X^3$, ni par $1+X^2+X^3$. Il n'est donc divisible par aucun polynôme irréductible de degré 1,2,3 et est donc lui-même irréductible. Soit α la classe de X dans $K=\mathbb{F}_2[X]/(P)$. Les ordres des éléments de K^* sont des diviseurs de $2^6-1=63$. Tout diviseur propre de $63=3^2\times 7$ est un diviseur de $9=3\times 3$ ou de $21=3\times 7$. Pour montrer que α est primitif il suffit de vérifier que $\alpha^9\neq 1$ et $\alpha^{21}\neq 1$. Or le calcul montre que $\alpha^9=\alpha^4+\alpha$ et $\alpha^{21}=\alpha^5+\alpha^4+\alpha^3+\alpha+1$.
 - b) Quels sont les sous-corps du corps \mathbb{F}_{64} à 64 éléments?
 - **Solution.** Ce sont les sous-corps de la forme \mathbb{F}_{2^i} où i > 0 est un diviseur de 6, soit \mathbb{F}_2 , \mathbb{F}_4 , \mathbb{F}_8 .
 - c) Soit α une racine de P(X) dans \mathbb{F}_{64} . Soit $\beta = \alpha^5 + \alpha^4 + \alpha^3 + \alpha + 1$. Montrer que β appartient au sous-corps à quatre éléments de \mathbb{F}_{64} .
 - **Solution.** Il suffit de vérifier que $\beta^4=\beta$ ou $\beta^3=1$. On peut utiliser le calcul de la question précédente qui a fait apparaître que $\beta=\alpha^{21}$ ou bien refaire un calcul.

- d) Soit $\gamma = \alpha^4 + \alpha^3$. Combien d'éléments a le sous-corps $\mathbb{F}(\gamma)$ de \mathbb{F}_{64} ?

 Solution. On a $\gamma^4 = \alpha^4 + \alpha^2 + \alpha \neq \alpha$ et $\gamma^8 = \gamma$. On en déduit que $\mathbb{F}(\gamma)$ a huit éléments.
- e) Quel est le polynôme minimal de γ ?
 - Solution. Le calcul montre que

$$\gamma = \alpha^4 + \alpha^3
\gamma^2 = \alpha^3 + \alpha^2 + \alpha + 1
\gamma^3 = \alpha^3 + \alpha^2 + \alpha.$$

On en déduit que $\gamma^3 + \gamma^2 + 1 = 0$ et donc que $P_{\gamma}(X) = X^3 + X^2 + 1$.

- Exercice 3.
 - a) Utiliser la factorisation de $X^{27} X$ dans $\mathbb{F}_3[X]$ pour trouver le nombre de polynômes unitaires irréductibles de degré 3 sur \mathbb{F}_3 .
 - Solution. On a

$$\begin{array}{rcl} X^{27} - X & = & X^{3^3} - X \\ & = & X(X-1)(X-2) \prod_{\deg P = 3, P \text{irréd}} P(X). \end{array}$$

Il y a donc (27-3)/3 = 8 polynômes unitaires irréductibles de degré 3.

- b) Combien y a-t-il d'éléments primitifs dans le groupe multiplicatif de \mathbb{F}_{27} ? en déduire le nombre de polynômes unitaires irréductibles primitifs de degré $3 \text{ sur } \mathbb{F}_3$.
 - Solution. On a $\phi(26)=12$ éléments primitifs dans \mathbb{F}_{27}^* , donc 12/3=4 polynômes unitaires irréductibles primitifs de degré 3.
- c) Montrer que le polynôme $P(X) = X^3 X^2 + 1 \in \mathbb{F}_3[X]$ est irréductible. **Solution.** Il suffit de vérifier qu'il n'est pas divisible par un polynôme de degré 1, ou qu'il n'a pas de racine dans \mathbb{F}_3 . Or P(0) = 1, P(1) = 1, P(-1) = -1.
- d) Montrer que le polynôme $X^3-X^2+1\in\mathbb{F}_3[X]$ est primitif. - **Solution.** L'ordre d'un élément non primitif de \mathbb{F}_{27}^* est un diviseur propre de 26, donc divise 2 ou 13. Si α est la classe de X dans $\mathbb{F}_3[X]/(P)$, on a clairement $\alpha^2\neq 1$ et le calcul montre que $\alpha^{13}=-1\neq 1$.
- e) Soit α une racine de $X^3 X^2 + 1$ dans \mathbb{F}_{27} . Écrire tous les polynômes unitaires irréductibles primitifs de $\mathbb{F}_3[X]$ sous la forme

$$(X - \alpha^i)(X - \alpha^j)(X - \alpha^k).$$

- **Solution.** Ces polynômes sont de la forme $(X - \alpha^i)(X - \alpha^{3i})(X - \alpha^{9i})$ où i est premier avec 26. On trouve donc :

$$(X - \alpha)(X - \alpha^{3})(X - \alpha^{9})$$

$$(X - \alpha^{5})(X - \alpha^{15})(X - \alpha^{19})$$

$$(X - \alpha^{7})(X - \alpha^{21})(X - \alpha^{11})$$

$$(X - \alpha^{17})(X - \alpha^{25})(X - \alpha^{23}).$$

- f) Quel est le plus petit entier i > 1 tel que $\beta = \alpha^i$ n'est pas primitif? Solution. C'est i = 2.
- g) Trouver le polynôme minimal $P_{\beta}(X)$ de β .
 - Solution. Le calcul nous donne :

$$\beta = \alpha^{2}$$

$$\beta^{2} = \alpha^{2} - \alpha - 1$$

$$\beta^{3} = -\alpha^{2} - \alpha.$$

D'où l'on déduit $\beta^3-\beta^2-\beta-1=0.$ Le polynôme minimal de β est donc : $P_{\beta}(X)=X^3-X^2-X-1.$

- h) Que vaut la période de la suite $(\beta^i)_{i\geqslant 0}$ dans \mathbb{F}_{27} ? Que vaut la période π de la suite $(a_i)_{i\geqslant 0}$ définie par $a_i=\operatorname{Tr}(\beta^i)$ où Tr désigne l'application trace de \mathbb{F}_{27} dans \mathbb{F}_3 ?
 - **Solution.** La période de la suite (β^i) est l'ordre de $\beta=\alpha^2$, soit 13. La période π de $a_i=\operatorname{Tr}(\beta^i)$ est donc un diviseur de 13, et ce n'est pas 1 sinon on aurait $\operatorname{Tr}(\beta^i)=\operatorname{Tr}(1)=0$ pour tout i, et on aurait au moins 13 éléments distincts de \mathbb{F}_{27} de trace nulle. Mais l'on sait que \mathbb{F}_{27} contient autant d'éléments de trace 0, que de d'éléments de trace 1, que d'éléments de trace 2, soit 9 de chaque. Donc $\pi=13$.
- i) Écrire les π premiers termes $a_0, a_1, \ldots, a_{\pi-1}$ de la suite (a_i) .
 - Solution. 0101200221222.