BME2322 – Logic Design

The Instructors:

Dr. Görkem SERBES (C317)

gserbes@yildiz.edu.tr

https://avesis.yildiz.edu.tr/gserbes/

Lab Assistants:

Nihat AKKAN

nakkan@yildiz.edu.tr

https://avesis.yildiz.edu.tr/nakkan

LECTURE 5

ANDs and ORs with > 2 Inputs

More Building Blocks

In a CMOS gate, rising inputs lead to falling outputs and vice-versa, so CMOS gates are naturally inverting. Want to use NANDs and NORs in CMOS designs... But NAND and NOR operations are not associative, so wide NAND and NOR gate can't use a chain or tree strategy. Stay tuned for more on this!

XOR is very useful when implementing parity and arithmetic logic. Also used as a "programmable inverter": if A=0, Z=B; if A=1, Z=~B

Wide fan-in XORs can be created with chains or trees of 2-input XORs.

Universal Building Blocks

NANDs and NORs are <u>universal</u>:

Any logic function can be implemented using only NANDs (or, equivalently, NORs). Good news for CMOS technologies!

Which one to chose?

Wide NANDs and NORs

Most logic libraries include 2-, 3- and 4-input devices:

But for a large number of inputs, the series connections of too many MOSFETs can lead to very large effective R. Design note: use trees of smaller devices...

CMOS Sum-of-products Implementation

Simplification of Boolean Functions: Two Methods

- Algebraic method by using Identities & Theorem
- Graphical method by using Karnaugh Map method
 - —The K-map method is easy and straightforward.
 - A K-map for a function of n variables consists of 2ⁿ cells, and,
 - in every row and column, two adjacent cells should differ in the value of only one of the logic variables.

Logic Simplification

Can we implement the same function with fewer gates? Before trying we'll add a few more tricks in our bag.

BOOLEAN ALGEBRA:

OR rules:
$$a + 1 = 1$$
, $a + 0 = a$, $a + a = a$

AND rules:
$$a1 = a, a0 = 0, aa = a$$

Commutative:
$$a + b = b + a$$
, $ab = ba$

Associative:
$$(a + b) + c = a + (b + c)$$
, $(ab)c = a(bc)$

Distributive:
$$a(b+c) = ab + ac$$
, $a + bc = (a+b)(a+c)$

Complements:
$$a + \overline{a} = 1$$
, $a\overline{a} = 0$

Absorption:
$$a + ab = a$$
, $a + \overline{a}b = a + b$ $a(a + b) = a$, $a(\overline{a} + b) = ab$

Reduction:
$$ab + \overline{a}b = b$$
, $(a+b)(\overline{a}+b) = b$
DeMorgan's Law: $\overline{a} + \overline{b} = \overline{ab}$, $\overline{a}\overline{b} = \overline{a+b}$

DeMorgan's Law:
$$\overline{a} + \overline{b} = \overline{ab}$$
, $\overline{a}\overline{b} = \overline{a+b}$

Boolean Minimization

Let's (again!) simplify

$$Y = \overline{C}\overline{B}A + CB\overline{A} + CBA + \overline{C}BA$$

Using the identity

$$\alpha A + \alpha \overline{A} = \alpha (A + \overline{A}) = \alpha \cdot 1 = \alpha$$

$$Y = \overline{CBA} + CB\overline{A} + CBA + \overline{CBA}$$

$$Y = \overline{CBA} + CB + \overline{CBA}$$

$$Y = \overline{CA} + CB$$

Can't he come up with a <u>new</u> example???

Hey... I could write a program to do that

Truth Tables with "Don't Cares"

One way to reveal the opportunities for a more compact implementation is to rewrite the truth table using "don't cares" (-- or X) to indicate when the value of a particular input is irrelevant in determining the value of the output.

								_	
		A			C	В	A	Y	
0	0	0	0		0	X	0	0	-
0	0	1	1		0	x	1	1	$\rightarrow \overline{C}A$
Λ	1	0	_	_			_	-	CA
			1		1	0	x	n	
0	1	1	1						
			1		1	1	x	1	$\rightarrow CB$
1	0	0	0		•	•	41	•	$\rightarrow CB$
			1		v	0	0	_	
1	U	1	U		^	U	U		
1	1	0	1		x	1	1	1	$\rightarrow BA$
			1			•	•	•	-BA
1	1	1	1						

Note: Some input combinations (e.g., 000) are matched by more than one row in the "don't care" table. It would be a bug if all the matching rows didn't specify the same output value!

The Case for a Non-minimal SOP

Karnaugh Maps: A Geometric Approach

K-Map: a truth table arranged so that terms which differ by exactly one variable are adjacent to one another so we can see potential reductions easily.

Truth Table									
C	В	A	Y						
0	0	0	0						
0	0	1	1						
0	1	0	0						
0	1	1	1						
1	0	0	0						
1	0	1	0						
1	1	0	1						
1	1	1	1						

Here's the layout of a 3-variable K-map filled in with the values from our truth table:

C\AB	00	01	11	10
0	0	0	1	1
1 /	0	1	1	0

e. 000 001 111

101

Why did he

shade that row Gray?

It's cyclic. The left edge is adjacent to the right edge. (It's really just a flattened out cube).

Karnaugh Map Advantages

- Minimization can be done more systematically
- Much simpler to find minimum solutions
- Easier to see what is happening (graphical)
- Almost always used instead of boolean minimization.

2-Variable Karnaugh Map

A different way to draw a truth table: by folding it

A B index F 0 0 0 0 1 B 0 1 1 1 1 1 3 0

Some Examples

K-Map of three variable

Another Approach for 3 variable K-Map

Minterm Expansion to K-Map

Minterms are the 1's, everything else is 0

Remember Minterms

 Boolean function can be expressed algebraically from a given truth table

Forming sum of ALL the minterms that produce 1

in the function

Example: Consider the function defined by the truth table

$$F(X,Y,Z) = X'Y'Z' + X'YZ' + XY'Z + XYZ$$

$$= m_0 + m_2 + m_5 + m_7$$

$$= \sum m(0, 2, 5, 7)$$

X	Y	Z	m	F
0	0	0	$ \mathbf{m}_0 $	1
0	0	1	m_1	0
0	1	0	m ₂	1
0	1	1	m_3	0
1	0	0	m_4	0
1	0	1	m ₅	1
1	1	0	m_6	0
1	1	1	m ₇	1

Extending K-maps to 4-variable Tables

4-variable K-map F(A,B,C,D):

\AB CD\	00	01	11	10	
00	0	1	1	1	\
01,	1	1	1	1	`
11	1	1	1	1)
10	1	0	0	1	
_				_	

Again it's cyclic. The left edge is adjacent to the right edge, and the top is adjacent to the bottom.

For functions of 5 or 6 variables, we'd need to use the 3rd dimension to build a 4x4x4 K-map. But then we're out of dimensions...

Finding Implicants

An implicant

- is a rectangular region of the K-map where the function has the value 1 (i.e., a region that will need to be described by one or more product terms in the sum-of-products)
- has a width and length that must be a power of 2: 1, 2, 4
- can overlap other implicants
- is a prime implicant if it is not completely contained in any other implicant.

C\AB	00	01	11	10	$-A\overline{C}$
0	0	0	1	1	
1	旦	0	0	0	
,	${AI}$	\overline{SC}			

C\AB	00	01	11	10	
0 1	1	0	0	1	•
1	1	1	0	1	
	-	-AC		<	\overline{B}

• can be uniquely identified by a single product term. The larger the implicant, the smaller the product term.

Finding Prime Implicants

We want to find all the prime implicants. The right strategy is a greedy one.

- Find the uncircled prime implicant with the greatest area
 - Order: $4x4 \Rightarrow 2x4$ or $4x2 \Rightarrow 4x1$ or 1x4 or $2x2 \Rightarrow 2x1$ or $1x2 \Rightarrow 1x1$
 - Overlap is okay
- Circle it
- Repeat until all prime implicants are circled

\AB CD\	00	01	11	10
00	0	1	E	Ī
01	1	1	1	1
11	Ð	1	1	
10	1	0	0	1

Write Down Equations

Picking just enough prime implicants to cover all the 1's in the KMap, combine equations to form minimal sum-of-products.

Prime Implicants, Glitches & Leniency

This circuit produces a glitch on Y when A=1, B=1, C: 1→0

To make the circuit lenient, include product terms for ALL prime implicants.

Example 1

Ci	Х	Υ	index	S	Со
0	0	0	0	0	0
0	0	1	1	1	0
0	1	0	2	1	0
0	1	1	3	0	1
1	0	0	4	1	0
1	0	1	5	0	1
1	1	0	6	0	1
1	1	1	7	1	1

$$S = \sum_{m(1, 2, 4, 7)}$$

$$Co = \sum m(3, 5, 6, 7)$$

Example 1

$$S = \sum_{m=0}^{\infty} m(1, 2, 4, 7)$$

$$Ci$$

$$Ci$$

$$XY$$

$$0 \quad 1$$

$$00 \quad 0 \quad 1$$

$$01 \quad 1 \quad 0$$

$$11 \quad 0 \quad 1$$

$$10 \quad 1 \quad 0$$

$$11 \quad 0 \quad 1$$

$$10 \quad 1 \quad 0$$

$$11 \quad 1 \quad 1$$

$$10 \quad 0 \quad 1$$

Example 2

Don't Care

- A don't-care term is an input to a function that the designer does not care about
- Because that input would never happen
- Example:
 - BCD number (0-9, A-F) are 4 bits, don't care about input A-F
 - Suppose a system have 5 type of input
 - Unfortunately we can't have 2 input line
 - Make 3 input line and last 3 sequence as don't care
 - S0, S1, S2,S3,S4, X,X,X == > 000, 001....,111

Some combinations of input signal values could **never occur**, or, when they occur, the output signal values do not matter (**don't care**). The corresponding minterms can be used, or not, in order to optimize the final circuit.

EXAMPLE: BCD to 7-segment decoder.

EXAMPLE: BCD to 7-segment decoder.

x3	x2	xl	x0	a	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	0	0	1	1
1	0	1	0							
1	0	1	1							
1	1	0	0							
1	1	0	1							
1	1	1	0							
1	1	1	1							

x3	x2	хl	x0	a	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	0	0	1	1
1	0	1	0							
1	0	1	1							
1	1	0	0							
1	1	0	1							
1	1	1	0							
1	1	1	1							

$$b = \bar{x}_3.\bar{x}_2 + \bar{x}_2.\bar{x}_1 + \bar{x}_3.\bar{x}_1.\bar{x}_0 + \bar{x}_3.x_1.x_0$$

X 3	<i>X</i> ₂	<i>x</i> ₁	X ₀	b	С
0	0	0	0	1	1
0	0	0	1	1	1
0	0	1	0	1	0
0	0	1	1	1	1
0	1	0	0	1	1
0	1	0	1	0	1
0	1	1	0	0	1
0	1	1	1	1	1
1	0	0	0	1	1
1	0	0	1	1	1
1	0	1	0	1	0
1	0	1	1	1	1
1	1	0	0	1	1
1	1	0	1	0	1
1	1	1	0	0	1
1	1	1	1	1	1

$$b = \bar{x}_2 + \bar{x}_1.\bar{x}_0 + x_1.x_0$$

 ϵ

Dealing With Don't Cares

Circle the x's that help get bigger groups of 1's Don't circle the x's that don't

$$a = \bar{x}_3. x_1 + \bar{x}_3. x_2. x_0 + x_3. \bar{x}_2. \bar{x}_1$$

$$b = \bar{x}_3. \bar{x}_2 + \bar{x}_2. \bar{x}_1 + \bar{x}_3. \bar{x}_1. \bar{x}_0 + \bar{x}_3. x_1. x_0$$

$$c = \bar{x}_2. \bar{x}_1 + \bar{x}_3. x_0 + \bar{x}_3. x_2$$

$$d = \bar{x}_2. \bar{x}_1. \bar{x}_0 + \bar{x}_3. \bar{x}_2. x_1 + \bar{x}_3. x_1. \bar{x}_0 + \bar{x}_3. x_2. \bar{x}_1. x_0$$

$$e = \bar{x}_2. \bar{x}_1. \bar{x}_0 + \bar{x}_3. x_1. \bar{x}_0$$

$$f = \bar{x}_3. \bar{x}_1. \bar{x}_0 + \bar{x}_3. x_2. \bar{x}_1 + \bar{x}_3. x_2. \bar{x}_0 + x_3. \bar{x}_2. \bar{x}_1$$

$$g = \bar{x}_3. \bar{x}_2. x_1 + \bar{x}_3. x_2. \bar{x}_1 + \bar{x}_3. x_2. \bar{x}_0 + x_3. \bar{x}_2. \bar{x}_1$$

$$a = x_1 + x_2.x_0 + x_3$$

$$b = \bar{x}_2 + \bar{x}_1.\bar{x}_0 + x_1.x_0$$

$$c = \bar{x}_1 + x_0 + x_2$$

$$d = \bar{x}_2.\bar{x}_0 + \bar{x}_2.x_1 + x_1.\bar{x}_0 + x_2.\bar{x}_1.x_0$$

$$e = \bar{x}_2.\bar{x}_0 + x_1.\bar{x}_0$$

$$f = \bar{x}_1.\bar{x}_0 + x_2.\bar{x}_1 + x_2.\bar{x}_0 + x_3$$

$$g = \bar{x}_2.\bar{x}_0 + x_2.\bar{x}_1 + x_1.\bar{x}_0 + x_3$$

35	total	26
24	AND	15
7	OR	7
4	INV	4

5-Variable Karnaugh Map

ВС					
DE		00	01	11	10
•	00	m16	m20	m28	m24
•	01	m17	m21	m29	m25
•	11	m19	m23	m31	m27
•	10	m18	m22	m30	m26

This is the A=0 plane

This is the A=1 plane

The planes are adjacent to one another (one is above the other in 3D)

Alternate Version

☐ Five-Variable Maps.

Five-Variable Map Structure

Alternate Version of Five-Variable Map

5-Variable Karnaugh Map Example

6-Variable Karnaugh Map

Alternate Version

☐ Six-Variable Maps

Six Variable Map Structure