

GARRA HIDRÁULICA: FORÇA QUE GERA MOVIMENTO

Arthur Rosa Rossatto¹, João Vítor Antunes de Souza², Felipe Chimendes dos Santos³

Curso Técnico em Informática, Instituto Federal Farroupilha – Campus Júlio de Castilhos

O experimento demonstra o princípio de Pascal, que afirma que a pressão aplicada a um fluido confinado é transmitida uniformemente em todas as direções. A máquina hidráulica, fundamentada nesse princípio, é um sistema de transferência de força que utiliza a pressão exercida em um fluido para mover um pistão, gerando força contrária à pressão interna. O projeto será exibido na Feira de Ciências e Tecnologia, mostrando como a força aplicada em líquidos permite gerar movimento. Durante o experimento, seringas serão utilizadas para mover um braço mecânico. Ao pressionar o êmbolo de uma seringa, a pressão é transmitida pelo líquido, movimentando outra seringa que aciona o braço, exemplificando o funcionamento dos sistemas hidráulicos. Esse processo destaca como a hidráulica permite movimentos precisos e eficazes, amplamente aplicados em máquinas. A experiência visa demonstrar a eficiência, segurança e precisão dos sistemas hidráulicos na transferência de energia e geração de movimento.

Palavras-chave: Física, Hidráulica, Mecânica.

¹arthur.2022301917@aluno.iffar.edu.br

²joao.2022303448@aluno.iffar.edu.br

³felipe.2021303891@aluno.iffar.edu.br