SEANCE N°7

Objectifs: Savoir interpréter les diagrammes d'équilibre liquide-solide, construire des courbes d'analyse thermique (CAT) et appliquer la loi de phases de Gibbs.

Consignes/Activités d'introduction: Apprendre et comparer les différents types de diagrammes d'équilibre liquide-solide : solides miscibles, non miscibles et partiellement miscibles, construire en fonction de composition du système des CAT.

Contenu : Chapitre 3, suite, Cours en présentiel souhaitable

Diagramme d'équilibre liquide-solide : solides miscibles, non miscibles et partiellement miscibles

Activités :

- 1. Etudier les diagrammes : solides miscibles, non miscibles et partiellement miscibles,
- 2. Identifier les domaines,
- 3. Construire en fonction de composition du système des CAT,
- 4. Déterminer les masses des phases en utilisant la règle de segments inverses.

3.4 Analyse thermique

L'analyse thermique permet d'obtenir les diagrammes d'équilibre liquide – solide. Il est basé sur la détermination expérimentale des températures de changement de phase.

La courbe de variation T=f(t) est la courbe de refroidissement ou d'analyse thermique. (CAT) Lorsque V>0 la CAT représente une portion linéaire dont la pente dépend de la capacité calorifique du système (dQ=cdT). S'il y a changement de composition du système la droite de CAT change de pente.

Lorsque V=0, le système est invariant, la CAT représente une portion de droite horizontale jusqu'à la disparition d'une phase, la variance devient supérieure à 0.

3.5 Diagrammes d'équilibre liquide-solide

Pour les diagrammes d'équilibre liquide –solide on considère les isobares à P=1atm. Les courbes :

 $T=f(X_B^l)$ liquidus ; courbe de solidification commençante du liquide

 $T=f(X_B^S)$ solidus ; courbe de fusion commençante du solide.

On considère trois types de diagrammes :

1. quel que soit le titre en B de la solution, le solide obtenu après la cristallisation totale est monophasé : c'est un cristal mixte de A et de B ;

Figure 3.4 : Diagramme d'équilibre liquide-solide avec miscibilité totale du solide

- 2. quel que soit le titre en B de la solution, le solide obtenu après la cristallisation totale est biphasé :
- les deux phases solides ne sont pas miscibles, les deux phases étant les deux constituants purs

Figure 3.5 : Diagramme d'équilibre liquide-solide avec non miscibilité du solide

A la température T_E les deux phases solides apparaissent simultanément au cours du refroidissement. Le point E est appelé point eutectique. Les cristaux de A et de B se déposent simultanément constituant un mélange eutectique sur les cristaux de A ou B déjà déposés

• les constituants A et B forment un compose défini C (A_nB_m)

Figure 3.6 : Diagramme d'équilibre liquide-solide avec la formation d'un composé stable

• les constituants A et B forment un composé instable M

Figure 3.7 : Diagramme d'équilibre liquide-solide avec la formation d'un composé instable

Le point P est appelé le point pereutectique.

A la température T>T_P le composé M n'existe pas. La composition d liquide ne correspond pas à la composition du composé chimique formé.

3. le nombre de phases solides dépend du titre en \boldsymbol{B} ; les solides sont partiellement miscibles

Figure 3.8 : Diagramme d'équilibre liquide-solide avec miscibilité partielle

S₁: solution solide d'Etain dans Plomb,

S₂: solution solide de Plomb dans Etain,

E: point eutectique,

D et F : solubilité maximale des solutions solides.