主管 领导 审核 签字

哈尔滨工业大学(深圳)2019/2020 学年秋季学期

高等数学 A 试题(期末)

题号	_	=	Ξ	四	五	六	七	八	九	+	总分
得分											
阅卷人											

注意行为规范 遵守考场纪律

一、填空题(每小题2分,共4小题,满分8分)

1. 曲线
$$y = \frac{x^2 - 2}{x + 5}$$
 的斜渐近线方程是______.

2. 抛物线 $y = x^2 - x$ 在点 (1,0) 处的曲率半径 $R = ____$

3. 定积分
$$\int_{-\sqrt{\frac{\pi}{2}}}^{\sqrt{\frac{\pi}{2}}} \left[|x| \cos(x^2) + \frac{(\sin x)^3}{1+x^{20}} \right] dx = \underline{\qquad}$$

4. 极限
$$\lim_{n\to\infty} \frac{1}{n} \left(\arctan \frac{1}{n} + \arctan \frac{2}{n} + \dots + \arctan \frac{n}{n} \right) = \underline{\hspace{1cm}}$$

二、选择题(每小题2分,共4小题,满分8分,每小题中给出的四个选 项中只有一个是符合题目要求的,把所选项的字母填在题后的括号内)

- 1. 设函数 f(x) 连续,且 $\int_0^{e^x} f(e^x t) dt = e^{3x}$,则 f(x) = (
- (A) $3x^2$; (B) x^3 ; (C) e^{2x} ; (D) e^{3x} .

2. 下列反常积分哪一个是发散的(C)

(A)
$$\int_0^1 \frac{dx}{\sqrt{x}}$$
; (B) $\int_0^2 \frac{dx}{(x-1)^{\frac{2}{3}}}$; (C) $\int_2^{+\infty} \frac{dx}{x \ln x}$; (D) $\int_1^{+\infty} \frac{dx}{x \sqrt{1+x}}$.

- 3. 星形线 $x = a \cos^3 t$, $y = a \sin^3 t$ (a > 0)的全长(对应 $0 \le t \le 2\pi$)为(
 - (A) 3a; (B) 4a; (C) 5a; (D) 6a.

4. 读
$$I_1 = \int_0^{\frac{\pi}{4}} \frac{\tan x}{x} dx$$
, $I_2 = \int_0^{\frac{\pi}{4}} \frac{x}{\tan x} dx$,则()

(A) $I_1 > I_2 > 1$; (B) $1 > I_1 > I_2$; (C) $I_2 > I_1 > 1$; (D) $1 > I_2 > I_1$.

三、(5 分) 设函数 $f(x) = x^3 - 6x^2 + 9x + 1$,(1) 求函数 f(x) 的单调区间和极值; (2) 确定方程 f(x) = 0 的实根个数; (3) 求曲线 y = f(x) 的凸凹区间和拐点.

	2. (3 分) 计算定积分 $\int_0^1 \frac{x^2}{\sqrt{(4-x^2)^3}} dx$.	
	 : :<	
一	密 3. (4 分) 计算极限 $\lim_{x\to 0} \frac{\int_0^{\ln(1+2x)} \sin(t^2) dt}{(1-\cos x)\tan x}$.	
班号	· · · · · · · · · · · · · ·	
学院		

4. (3分) 求微分方程 $y'' + \frac{2}{1-y}(y')^2 = 0$ 的通解.

5. (3分)设有一半径为1米的圆板,垂直放在水中,圆板的圆心与水平面距离为2米,假设水的密度 $\rho=1000$ 千克/米³,重力加速度g=10米/秒²,试求圆板的一侧所受水的压力. (注:水的压强计算公式为 $P=\rho gh$,其中h为水的深度.)

七、(3 分) 设函数 f(x) 在区间 [a,b]上有二阶连续导函数,且 $f(\frac{a+b}{2}) = 0$, $M = \max_{a \le x \le b} |f''(x)|$ (即 $M \neq |f''(x)|$ 在 [a,b]上的最大值),证明: $\int_a^b |f(x)| dx \le \frac{(b-a)^2}{4} |f'(\frac{a+b}{2})| + \frac{M(b-a)^3}{24}.$