Inequalities

Consider the curve $y=rac{x^2+4x-9}{3x-1}$ and let's find the inequality when $rac{x^2+4x-9}{3x-1}<0$.

First, solve the inequality.

$$rac{x^2 + 4x - 9}{3x - 1} < 0$$
 $x^2 + 4x - 9 < 0$
 $-2 - \sqrt{13} < x < -2 + \sqrt{13}$

Sketch the graph.

https://www.desmos.com/calculator/nrqs3psyjv

Here, we can see that when y < 0, there are 2 separate points to consider.

With our original inequality, x cannot be between $-2-\sqrt{13}$ and $-2+\sqrt{13}$, because then y would be above zero.

So, instead we have to take $x<-2-\sqrt{13} \text{ and } x>-2+\sqrt{13} \text{ instead.}$

If we instead find y>0, then x must be greater than $-2-\sqrt{13}$ but it cannot be the vertical asymptote(because it doesn't exist), so we get $-2-\sqrt{13} < x < \frac{1}{3}$ and

Inequalities 2

 $x>-2+\sqrt{13}.$ ($rac{1}{3}$ is the vertical asymptote)

Finding ranges

We can find the range of the curve using 2 methods.

Let's use this function $y=rac{x^2+1}{x-2}$ with this graph.

https://www.desmos.com/calculator/wmuuow4fuv

Inequalities 3

Method 1: Differentiation

$$\frac{dy}{dx} = \frac{x^2 - 4x - 1}{(x-2)^2}$$

Find the turning point, $rac{x^2-4x-1}{(x-2)^2}=0$

 $x=2\pm\sqrt{5}$ is our 2 turning points.

If you substitute these 2 values into the original equation, you get the range of y.

So, $y < 4 - 2\sqrt{5}$ and $y > 4 + 2\sqrt{5}$ is our range (i.e., y can only exist within that range.)

Method 2: Using discriminants

$$y = \frac{x^2 + 1}{x - 2}$$

Cross multiply.

$$xy - 2y = x^2 + 1$$

$$x^2 + xy + 2y + 1 = 0$$

Using $b^2-4ac<0$, we can find the values of which y do not exist.

$$y^2 - 4(1)(2y + 1) < 0$$

$$y^2 - 8y - 4 < 0$$

This gives us the same answer $y < 4 - 2\sqrt{5}$ and $y > 4 + 2\sqrt{5}$

Let's look at another type of curve. In $y=\frac{1}{x^2+3x+6}$, it has no vertical asymptotes because the denominator will never be ${\sf zero}(x^2+3x+6=0)$ has no solutions). Also note that when |x| becomes larger, y approaches 0, so the horizontal asymptote is y=0.

https://www.desmos.com/calculator/bywo7d90g6

If we cross multiply the equation, we get $x^2y+3xy+6y-1=0$, from which we can find the discriminant.

$$b^2 - 4ac < 0$$
 $(3y)^2 - 4(y)(6y - 1) < 0$ $9y^2 - 24y^2 + 4y < 0$ $-15y^2 + 4y < 0$ $y(-15y + 4) < 0$

And so we get y < 0 and $y > \frac{4}{15}$.

So, the range is $0 < y \leq \frac{4}{15}$ (less than or equal here because it **must** be bigger than $\frac{4}{15}$, but it **can** be $\frac{4}{15}$).

5