

A CLOSER LOOK AT FEW-SHOT CLASSIFICATION

Wei-Yu Chen, Yen-Cheng Liu & Zsolt Kira, Yu-Chiang Frank Wang, Jia-Bin Huang, ICLR, 2019

Wonhee Cho

Vision and Learning Laboratory School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea

Emails: wonhee4274@cau.ac.kr Site: github.com/WonHee94

Index

- **01** Background
- **02** Overview of Few-shot classification
- **03** Experimental Results
- **04** Conclusions

Background; Few-shot Learning(FSL)

- Q. Can a machine learn a new task with few-shot data like a human?
- Deep learning model relies on training a network with **abundant labeled instances**.
- Humans can distinguish a knife only by few-shot images.
- The human **annotation cost** as well as **the scarcity of data in some classes** (e.g., rare species) significantly limit.
- N-way K-shot classification
 - [Support set] vs [Query set]
 - (Intra-Support set) N: #class; K: #support data for each class
- Few-shot classification aim
 - Learn a classifier to recognize unseen classes during training with limited labeled examples.

Background; Meta-Learning

Meta-training

Meta-testing

Q) What is Meta-learning?

- Few-shot classification method as meta-learning if the prediction is conditioned on a small support set S.[1]
- It makes the training procedure explicitly learn to learn from a given small support set.
- Episodic Training method
 - Through N-way k-shot classification training, It is a method to derive the learning rules of the model by learning a variety of tasks. [Learning to learn]

Background; Meta-Learning

Meta-learning Problem

A Simple View

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \mathbf{E}_{D_{Task} \sim p(D)} [L_{\theta}(D_{Task})]$$

• Minimize loss function $L_{\theta}(D_{Task})$ from Sampled dataset D_{Task}

Meta learning Objective

Training in the same way as testing

$$\theta^* = \underset{\theta}{\operatorname{argmax}} \mathbf{E}_{B \subset D} \left[\sum_{(x,y) \in B} P_{\theta}(y|x) \right]$$
; Supervised Learning object
$$= \underset{\theta}{\operatorname{argmax}} \mathbf{E}_{L \subset L} \left[\mathbf{E}_{S \subset D, B \subset D} \left[\sum_{(x,y) \in B} P_{\theta}(x,y,S) \right] \right]$$
; Meta-learning object

• Maximize Classification output $P_{\theta}(y|x)$ from Sampled dataset point (S^i, B^i)

Background; Meta-Learning

Meta-learning Intuition

- Aim
- Reducing prediction errors of unenabled data by using some given labeling sets for fast learning.
- Intuition
- In training, we give a little fake to the dataset, making it similar to the test environment. => 'Fast learning'

Related Work

- Initialization based Methods:
 - Learning Good Model initialization
 - Finn, Model Agnostic Meta-Learning
 - Nichol & Schulman, Reptile
 - Learning Optimizer
 - Ravi & Larochelle, Optimization as a model for few-shot learning

Related Work

- Distance metric learning based Methods: "learning to compare"
 - Cosine similarity
 - Vinyals, Matching Networks for one shot learning
 - Euclidean distance
 - Snell, Prototypical Networks for Few-shot Learning
 - Relation module
 - Sung, Learning to Compare: Relation network for few-shot learning
 - Graph neural network
 - Garcia & Bruna, Few-shot learning with Graph Neural Networks
- Hallucination based methods: "learning to augment"
- Domain adaptation: Reduce the domain shifht between source and target domain

Related Work

- Hallucination based methods: "learning to augment"
 - Hariharan & Girshick, Low-shot visual recognition by shrinking and hallucinating features
 - Antoniou, Data augmentation generative adversarial networks
 - Wang, Low-shot learning from imaginary data

Limitations

- Two main challenges of few-shot classification
 - 1. The discrepancy of the implementation details among multiple FSL algorithms obscures the relative performance gain.
 - 2. While the current evaluation focuses on recognizing novel class with limited training examples
 - ⇒ Novel classes are sampled from the same dataset.
 - \Rightarrow The lack of domain shift between the base and novel classes makes the evaluation scenarios unrealistic.

Contribution

- 1. A consistent comparative analysis of several representative few-shot classification algorithms.
- ⇒ Deeper backbones significantly reduce the performance differences among methods on datasets with limited domain differences.
- 2. Modified baseline method that achieves competitive performance when compared with the SOTA.
- 3. A new experimental setting for evaluating the cross-domain generalization ability for few-shot classification.
- \Rightarrow Reducing intra-class variation is an important when the feature backbone is shallow.
- ⇒ But not critical when using deeper backbones.

Few-shot classification Baseline

Training stage

$L_{\rm pred}$ Feature Classifier extractor

Fine-tuning stage

Training Stage: Train f_{θ} , W_{b}

Fine-tuning Stage: Forward f_{θ} , Fine-tune W_n

Loss: Cross-Entropy Loss

Few-shot classification_Baseline++

Training stage

Fine-tuning stage

W = $[w_1, w_2, ..., w_c]$ for each class Cosine Similarity between $f_{\theta}(x_i)$ and w_j -> Softmax Reduce Intra-class Variations

Meta-learning based Few-shot classification

Meta-training stage

Meta-testing stage

MatchingNet

ProtoNet

(a) Few-shot

RelationNet

Experiments

- Mini-ImageNet: 600 images per class (100), 64 base class, 16 validation class, 20 novel class
- CUB-200-2011: 200 classes, 11,788 images, 100 base class, 50 validation class, 50 novel class
- Backbone: Conv-4
- Adam Optimizer
- Data Augmentation

600 test episode with 95% confidence * w/o data augmentation

	1-shot		5-shot	
Method	Reported	Ours	Reported	Ours
Baseline	-	42.11 ± 0.71	-	62.53 ± 0.69
Baseline*3	41.08 ± 0.70	36.35 ± 0.64	51.04 ± 0.65	54.50 ± 0.66
MatchingNet ³ Vinyals et al. (2016)	43.56 ± 0.84	48.14 ± 0.78	55.31 ±0.73	63.48 ± 0.66
ProtoNet	-	44.42 ± 0.84	-	64.24 ± 0.72
ProtoNet [#] Snell et al. (2017)	49.42 ± 0.78	47.74 ± 0.84	68.20 ± 0.66	66.68 ± 0.68
MAML Finn et al. (2017)	48.07 ± 1.75	46.47 ± 0.82	63.15 ± 0.91	62.71 ± 0.71
RelationNet Sung et al. (2018)	50.44 ± 0.82	49.31 ± 0.85	65.32 ± 0.70	66.60 ± 0.69

Table 2: **Few-shot classification results for both the** *mini***-ImageNet and** *CUB* **datasets.** The Baseline++ consistently improves the Baseline model by a large margin and is competitive with the state-of-the-art meta-learning methods. All experiments are from 5-way classification with a Conv-4 backbone and data augmentation.

	CUB		mini-ImageNet	
Method	1-shot	5-shot	1-shot	5-shot
Baseline	47.12 ± 0.74	64.16 ± 0.71	42.11 ± 0.71	62.53 ± 0.69
Baseline++	60.53 ± 0.83	79.34 ± 0.61	48.24 ± 0.75	66.43 ± 0.63
MatchingNet Vinyals et al. (2016)	60.52 ± 0.88	75.29 ± 0.75	48.14 ± 0.78	63.48 ±0.66
ProtoNet Snell et al. (2017)	50.46 ± 0.88	76.39 ± 0.64	44.42 ± 0.84	64.24 ± 0.72
MAML Finn et al. (2017)	54.73 ± 0.97	75.75 ± 0.76	46.47 ± 0.82	62.71 ± 0.71
RelationNet Sung et al. (2018)	62.34 ± 0.94	77.84 ± 0.68	49.31 ± 0.85	66.60 ± 0.69

Figure 3: **Few-shot classification accuracy vs. backbone depth**. In the CUB dataset, gaps among different methods diminish as the backbone gets deeper. In *mini*-ImageNet 5-shot, some meta-learning methods are even beaten by Baseline with a deeper backbone. (Please refer to Figure A3 and Table A5 for larger figure and detailed statistics.)

	$mini$ -ImageNet \rightarrow CUB
Baseline	$65.57{\pm}0.70$
Baseline++	$62.04{\pm}0.76$
MatchingNet	53.07±0.74
ProtoNet	62.02 ± 0.70
MAML	51.34 ± 0.72
RelationNet	57.71 ± 0.73

Table 3: **5-shot accuracy under the cross-domain scenario with a ResNet-18 backbone.** Baseline outperforms all other methods under this scenario.

Figure 4: **5-shot accuracy in different scenarios** with a ResNet-18 backbone. The Baseline model performs relative well with larger domain differences.

Q & A

Thank You