ASSIGNMENT – 2 Python Programming

Assignment Date	25-09-2022
Student Name	SHYAM SUNDAR B
Student Roll Number	813819106093
Maximum Marks	2 Mark

Question-1:

1. Importing Required Package

Solution:

import pandas as pd import seaborn as sns import numpy as np from matplotlib import pyplot as plt %matplotlib inline

Question-2:

2. Loading the Dataset

Solution:

df = pd.read_csv("/content/Churn_Modelling.csv")

df

Output:

3. Visualizations

Question-3:

3.1 Univariate Analysis

Solution:

sns.displot(df.Tenure)

Output:

3.2 Bi-Variate Analysis

Solution:

df.plot.line()

Output:

3.3 Multi - Variate Analysis

Solution:

sns.lmplot("Age","NumOfProducts",df,hue="NumOfProducts",fit_reg=False);

Output:

4. Perform descriptive statistics on the dataset.

Question-4:

Solution:

df.describe()

Output:

5. Handle the Missing values.

Question-5:

Solution:

```
data = pd.read_csv("Churn_Modelling.csv")
pd.isnull(data["Gender"])
```

Output:

Question-6:

6. Find the outliers and replace the outliers. Solution:

```
Solution.
```

```
df["Tenure"] = np.where(df["Tenure"] >10, np.median,df["Tenure"])
df["Tenure"]
```

Output:

Question-7:

7. Check for Categorical columns and perform encoding.

Solution:

```
pd.get\_dummies(df, columns=["Gender", "Age"], prefix=["Age", "Gender"]). \\ head()
```

Output:

Output:

```
        C*
        HasCrCard
        IsActiveMember
        ...
        Gender_78
        Gender_80
        Gender_81
        Gender_82
        Gender_83
        Gender_84
        Gender_85
        Gender_88
        Gender_92

        1
        1
        ...
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
```

Question-8:

- 8. Split the data into dependent and independent variables
- 8.1 Split the data into Independent variables.

Solution:

```
X = df.iloc[:, :-2].values
print(X)
```

Output:

8.2 Split the data into Dependent variables.

Solution:

```
Y = df.iloc[:, -1].values
print(Y)
```

Output:

```
[1 0 1 ... 1 1 0]
```

Question-9:

9. Scale the independent variables

Solution:

```
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df[["RowNumber"]] = scaler.fit_transform(df[["RowNumber"]])
print(df)
```

Output:

Question-10:

10. Split the data into training and testing

Solution:

```
from sklearn.model_selection import train_test_split
train_size=0.8
X = df.drop(columns = ['Tenure']).copy()
y = df['Tenure']
X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8)
test_size = 0.5
X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5)
print(X_train.shape), print(y_train.shape)
print(X_valid.shape), print(y_valid.shape)
print(X_test.shape), print(y_test.shape)
```

Output:

```
[* (8000, 13)
(8000,)
(1000, 13)
(1000,)
(1000, 13)
(1000,)
(Mone, None)
```