AA 2022-2023 - Fisica - CdL Ingegneria e Scienze Informatiche

Luigi Guiducci - Esercitazioni

1) In un filo passa una corrente costante di 2.5 A. Quanti elettroni passano attraverso una sezione del filo in cinque minuti?

$$[n \simeq 4.7 \times 10^{21}]$$

2) Una rotaia di alimentazione di un treno della metropolitana ha sezione $5.3 \times 10^{-3} \text{ m}^2$ ed è fatta di acciaio con una resistività di $3 \times 10^{-7} \Omega \text{m}$. Qual è la resistenza di 1 km di rotaia?

$$[R \simeq 57 \text{ m}\Omega]$$

3) Un filo ha una resistenza di 40 m Ω ; viene fuso e si ricava un filo lungo il triplo. Quanto vale la resistenza del nuovo filo?

$$[R' \simeq 360 \text{ m}\Omega]$$

4) Nel sistema di resistenze in figura, si ha $R_1 = 5.0 \ \Omega$, $R_2 = 3.0 \ \Omega$ e $R_3 = 4.0 \ \Omega$. Si trovi la differenza di potenziale tra i punti c e d. Se la d.d.p. tra i punti a e b è di $8.0 \ V$, si dica la d.d.p. ai capi di ciascuna resistenza e qual è la corrente che scorre in ciascuna di esse.

[
$$V_c - V_d = 0$$
; $V_1 = 5.0 \text{ V}$; $V_2 = 3.0 \text{ V}$; $I_1 = I_2 = 1.0 \text{ A}$]

5) Le resistenze usate nei circuiti hanno delle potenze massime nominali raccomandate. Supponiamo di collegare in parallelo una resistenza $R_1 = 200~\Omega$ e una resistenza $R_2 = 400~\Omega$ con entrambe le resistenze aventi una $P_{max} = 0.50~\text{W}$. Qual è la massima corrente che può circolare in questo sistema? Qual è la massima d.d.p. che si può applicare agli estremi? Quali sono le potenze dissipate in questa condizione?

[
$$I_{max} \simeq 75$$
 mA; $V_{max} \simeq 10$ V; $P_1 \simeq 0.5$ W; $P_2 \simeq 0.25$ W]

6) Nel circuito in figura, si trovi il valore di & in modo che circoli una corrente di 2 A in senso antiorario, poi il valore di & in modo che circoli una corrente di 2 A in senso orario.

$$[\mathscr{E}_1 \simeq 4 \text{ V}; \mathscr{E}_2 \simeq 36 \text{ V}]$$

7) Nel circuito in figura si ha $V_B=6.0~{\rm V}$, $R_1=12~\Omega$, $R_2=25~\Omega$, $R_3=18~\Omega$, $R_4=4.5~\Omega$. Si calcoli la resistenza equivalente del circuito, la corrente nella resistenza R_3 , la corrente nella resistenza R_1 e la potenza dissipata nella resistenza R_4 .

[
$$R^{eq} \simeq 7.41 \ \Omega$$
; $I_3 \simeq 0.33 \ A$; $I_1 \simeq 0.322 \ A$; $P_4 \simeq 1.02 \ W$]

8) Nel circuito in figura, si trovi il valore di R in modo che la corrente che passa in R sia $I_R = 0.50$ A con senso da a a b.

$$[R \simeq 2.2 \Omega]$$

9) Un condensatore viene caricato da una batteria da 26 V attraverso una resistenza da 6.2 k Ω . 3.1 ms dopo la chiusura dell'interruttore, la differenza di potenziale sul condensatore è di 13 V. Quanto vale la capacità del condensatore?

$$[C \simeq 0.72 \,\mu\text{F}]$$

10) Si mostri che il circuito rappresentato a destra funziona come un *Digital to Analog Converter* (DAC, convertitore digitale-analogico). Un numero intero c viene rappresentato in notazione binaria per mezzo dei quattro bit $c_3c_2c_1c_0$, dove ciascun bit può chiudere (se vale '1') o aprire (se vale '0') il corrispondente interruttore, e può dunque rappresentare tutti gli interi nell'intervallo [0,15]. La differenza di potenziale $V_b - V_a$ rappresenta il numero stesso, in mV.

11) Nel circuito rappresentato in figura, si ha $V_B=12~\rm V$, $R_1=1.0~\Omega$, $R_2=10~\Omega$, $R_3=9.0~\Omega$, $R_4=5.0~\Omega$ e $C=2.2~\mu{\rm F}$. Si trovi la tensione e la carica del condensatore quando è completamente carico (S chiuso). Poi S viene aperto: quanto tempo occorre perché C si scarichi fino al 3% della carica iniziale?

[
$$V_C \simeq 6.8 \text{ V}; Q_C \simeq 15 \ \mu\text{C}; t^* \simeq 48 \ \mu\text{s}$$
]