FRE6871 R in Finance

Lecture#3, Fall 2022

Jerzy Pawlowski jp3900@nyu.edu

NYU Tandon School of Engineering

September 19, 2022

Simulating Single-period Defaults

Consider a portfolio of credit assets (bonds or loans) over a single period of time.

At the end of the period, some of the assets default. while the rest don't.

The default probabilities are equal to p_i .

Individual defaults can be simulated by comparing the probabilities p_i with the uniform random numbers u_i .

Default occurs if u_i is less than the default probability p_i:

 $u_i < p_i$

$$u_i < p_i$$

Simulations in R can be accelerated by pre-computing a vector of random numbers, instead of generating them one at a time in a loop.

Vectors of random numbers allow using vectorized functions, instead of inefficient (slow) for() loops.

```
> # Calculate random default probabilities
> set.seed(1121)
> nassets <- 100
> defprobs <- runif(nassets, max=0.2)
> mean(defprobs)
> # Simulate number of defaults
> unify <- runif(nassets)
> sum(unify < defprobs)
> # Simulate average number of defaults using for() loop (inefficient
> nsimu <- 1000
> set.seed(1121)
> defaulty <- numeric(nsimu)
> for (i in 1:nsimu) { # Perform loop
    unify <- runif(nassets)
    defaultv[i] <- sum(unifv < defprobs)
+ } # end for
> # Calculate average number of defaults
> mean(defaultv)
> # Simulate using vectorized functions (efficient way)
```

> unifm <- matrix(runif(nsimu*nassets), ncol=nsimu)

> plot(density(defaultv), main="Distribution of Defaults", xlab="number of defaults", ylab="frequency") > abline(v=mean(defaultv), lwd=3, col="red")

> defaulty <- colSums(unifm < defprobs)

> # Plot the distribution of defaults > x11(width=6, height=5)

> set.seed(1121)

> mean(defaultv)

Asset Values and Default Thresholds

Defaults can also be simulated using normally distributed variables a_i called asset values, instead of the uniformly distributed variables u_i .

The asset values a_i are the *quantiles* corresponding to the uniform variables u_i : $a_i = \Phi^{-1}(u_i)$ (where $\Phi()$ is the cumulative *Standard Normal* distribution).

Similarly, the default probabilities p_i are also transformed into default thresholds t_i , which are the quantiles: $t_i = \Phi^{-1}(p_i)$.

Before, default occurred if u_i was less than the default probability p_i : $u_i < p_i$.

Now, default occurs if the asset value a_i is less than the default threshold t_i : $a_i < t_i$.

The asset values a_i are mathematical variables which can be negative, so they are not actual company asset values

- > # Calculate default thresholds and asset values
- > defthresh <- qnorm(defprobs)
- > assets <- qnorm(unifm)
- > # Simulate defaults
- > defaultv <- colSums(assets < defthresh)
- > mean(defaultv)

Distribution of Asset Values

- > # Plot Standard Normal distribution
- > x11(width=6, height=5) > xlim <- 4: defthresh <- gnorm(0.025)
- > curve(expr=dnorm(x), type="1", xlim=c(-xlim, xlim),
- + xlab="asset value", ylab="", lwd=3,
- + col="blue", main="Distribution of Asset Values")
- > abline(v=defthresh, col="red", lwd=3)
- > text(x=defthresh-0.1, y=0.15, labels="default threshold", + lwd=2. srt=90. pos=3)
- > # Plot polygon area
- > xvar <- seg(-xlim, xlim, length=100)
- > yvar <- dnorm(xvar)
- > intail <- ((xvar >= (-xlim)) & (xvar <= defthresh))
 > polygon(c(xlim, xvar[intail], defthresh).
- + c(-1, yvar[intail], -1), col="red")
- + C(-1, yvar[intail], -1), col= leu

> library(microbenchmark)

> summary(microbenchmark(forloop={for (i in 1:nsimu) {

times=10))[, c(1, 4, 5)]

Vasicek Model of Correlated Asset Values

So far, the asset values are independent from each other, but in reality default events are correlated.

The Vasicek model introduces correlation between the asset values a:.

Under the Vasicek single factor model, the asset value a; is equal to the sum of a systematic factor s, plus an idiosvncratic factor z::

$$a_i = \sqrt{\rho} \, s + \sqrt{1 - \rho} \, z_i$$

Where ρ is the correlation between asset values.

The variables s, z_i , and a_i all follow the Standard Normal distribution $\phi(0,1)$.

The Vasicek model resembles the CAPM model, with the asset value equal to the sum of a systematic factor plus an idiosyncratic factor.

The Bank for International Settlements (BIS) uses the Vasicek model as part of its regulatory capital

requirements for bank credit risk: http://bis2information.org/content/Vasicek_model https://www.bis.org/bcbs/basel3.htm https://www.bis.org/bcbs/irbriskweight.pdf

```
> # Define correlation parameters
> rho <- 0.2
> rho_sqrt <- sqrt(rho) ; rho_sqrtm <- sqrt(1-rho)
> nassets <- 5 ; nsimu <- 10000
> # Calculate vector of systematic and idiosyncratic factors
> sysv <- rnorm(nsimu)
> idiosyncv <- rnorm(nsimu*nassets)
> # Simulate asset values using vectorized functions (efficient way
> assets <- rho_sqrt*sysv + rho_sqrtm*idiosyncv
> dim(assets) <- c(nsimu, nassets)
> # Asset values are standard normally distributed
> apply(assets, MARGIN=2, function(x) c(mean=mean(x), sd=sd(x)))
> # Calculate correlations between asset values
> cor(assets)
> # Simulate asset values using for() loop (inefficient way)
> # Allocate matrix of assets
> assets <- matrix(nr=nsimu, nc=nassets)
> # Simulate asset values using for() loop
> for (i in 1:nsimu) { # Perform loop
+ assets[i, ] <- rho_sqrt*sysv[i] + rho_sqrtm*rnorm(nassets)
+ } # end for
> cor(assets)
> # benchmark the speed of the two methods
```

rho_sqrt*sysv[i] + rho_sqrtm*rnorm(nassets)}},

vectorized={rho_sqrt*sysv + rho_sqrtm*rnorm(nsimu*nassets)},

Vasicek Model of Correlated Defaults

Under the Vasicek model, default occurs if the asset value a; is less than the default threshold t;:

$$a_i = \sqrt{\rho}s + \sqrt{1 - \rho}z_i$$

 $a_i < t_i$

The systematic factor s may be considered to represent the state of the macro economy, with positive values representing an economic expansion, and negative values representing an economic recession.

When the value of the systematic factor s is positive. then the asset values will all tend to be bigger as well, which will produce fewer defaults.

But when the systematic factor is negative, then the asset values will tend to be smaller, which will produce more defaults

This way the Vasicek model introduces a correlation among defaults.

- > # Calculate random default probabilities > nassets <- 5
- > defprobs <- runif(nassets, max=0.2)
- > mean(defprobs)
- > # Calculate default thresholds
- > defthresh <- qnorm(defprobs) > # Calculate number of defaults using vectorized functions (effici-
- > # Calculate vector of number of defaults > rowMeans(t(assets) < defthresh)
- > defprobs
- > # Calculate number of defaults using for() loop (inefficient way)
- > # Allocate matrix of defaultm > defaultm <- matrix(nr=nsimu, nc=nassets)
- > # Simulate asset values using for() loop
- > for (i in 1:nsimu) { # Perform loop
- defaultm[i,] <- (assets[i,] < defthresh)
- + } # end for
- > colSums(defaultm) / nsimu
- > defprobs
- > # Calculate correlations between defaults
- > cor(defaultm)

Asset Correlation and Default Correlation

Default correlation is defined as the correlation between the Boolean vectors of default events.

The Vasicek model introduces correlation among default events, through the correlation of asset values.

If asset values have a positive correlation, then the defaults among credits are clustered together, and if one credit defaults then the other credits are more likely to default as well.

Empirical studies have found that the asset correlation ρ can vary between 5% to 20%, depending on the default risk.

Credits with higher default risk tend to also have higher asset correlation, since they are more sensitive to the economic conditions

Default correlations are usually much lower than the corresponding asset correlations.

- > # Define default probabilities
- > nassets <- 2 > defprob <- 0.2
- > defthresh <- qnorm(defprob)
- > # Define correlation parameters
- > rho <- 0.2
- > rho_sqrt <- sqrt(rho) ; rho_sqrtm <- sqrt(1-rho)
- > # Calculate vector of systematic factors
- > nsimu <- 1000 > sysy <- rnorm(nsimu)
- > # Simulate asset values using vectorized functions
- > assets <- rho_sqrt*sysv + rho_sqrtm*rnorm(nsimu*nassets)
- > dim(assets) <- c(nsimu, nassets)
- > # Calculate number of defaults using vectorized functions
- > defaultm <- t(t(assets) < defthresh)
- > # Calculate correlations between defaults
- > cor(defaultm)
- > # Calculate average number of defaults and compare to defprob
- > colSums(defaultm) / nsimu
- > defprob

Cumulative Defaults Under the Vasicek Model

To simplify, we can assume that the number of assets is very large and that they all have the same default probabilities $p_i = p$, so the default threshold is equal to $t = \Phi^{-1}(p)$.

Then the asset value a_i follows the Normal distribution with mean equal to $\sqrt{\rho}s$ and standard deviation equal to $\sqrt{1-\rho}$

So the conditional default probability p(s), given the systematic factor s, is equal to:

$$p(s) = \Phi(\frac{t - \sqrt{\rho}s}{\sqrt{1 - \rho}})$$

If the systematic factor s is fixed, then the defaults are all independent, and the percentage of the portfolio that defaults x, is equal to the conditional default probability x = p(s).

We can invert the previous formula to obtain the systematic factor s:

$$s = \frac{\sqrt{1-\rho}\,\Phi^{-1}(x) - t}{\sqrt{\rho}}$$

Since the systematic factor s follows the *Standard Normal* distribution, then the portfolio cumulative default probability P(x) is equal to:

$$P(x) = \Phi(\frac{\sqrt{1-\rho}\,\Phi^{-1}(x) - t}{\sqrt{\rho}})$$

Jerzy Pawlowski (NYU Tandon)

Cumulative Default Distribution And Correlation

The cumulative portfolio default probability P(x):

$$P(x) = \Phi(\frac{\sqrt{1-\rho}\,\Phi^{-1}(x) - t}{\sqrt{\rho}})$$

Depends on the correlation parameter ρ .

If the correlation ρ is very low (close to 0) then the percentage x of the portfolio defaults is always very close to the default probability p, and the cumulative default probability curve is steep close to the expected value of p.

If the correlation ρ is very high (close to 1) then the percentage x of the portfolio defaults has a very wide dispersion around the default probability p, and the cumulative default probability curve is flat close to the expected value of p.

This is because with high correlation, the assets will tend to all default together or not default.

- > # Define cumulative default distribution function
- > cumdefdistr <- function(x, defthresh=(-2), rho=0.2)
- pnorm((sgrt(1-rho)*gnorm(x) defthresh)/sgrt(rho))
- > cumdefdistr(x=0.2, defthresh=anorm(defprob), rho=rho)
- > # Plot cumulative default distribution function
- > defprob <- 0.4; defthresh <- gnorm(defprob)
- > curve(expr=cumdefdistr(x, defthresh=defthresh, rho=0.05),
- + xlim=c(0, 0.999), lwd=3, xlab="percent default", vlab="probabili
- + col="green", main="Cumulative Default Probabilities")

Cumulative Default Probabilities

- > # Plot default distribution with higher correlation
- > curve(expr=cumdefdistr(x, defthresh=defthresh, rho=0.2),
- + xlim=c(0, 0.999), add=TRUE, lwd=3, col="blue", main="") > # Add legend
- > legend(x="topleft",
- + legend=c("high correlation", "low correlation"),
- + title=NULL, inset=0.05, cex=0.8, bg="white".
- bty="n", lwd=6, lty=1, col=c("blue", "green"))
- > # Add unconditional default probability
- > abline(v=defprob, col="red", lwd=3)
- > text(x=defprob, v=0.0, labels="default probability",
 - 1wd=2, srt=90, pos=4)

September 19, 2022

Distribution of Defaults Under the Vasicek Model

The probability density f(x) of portfolio defaults is equal to the derivative of the cumulative default distribution P(x):

$$f(x) = \frac{\sqrt{1-\rho}}{\sqrt{\rho}} \exp(-\frac{1}{2\rho}(\sqrt{1-\rho}\Phi^{-1}(x)-t)^2 +$$

$$\frac{1}{2}\Phi^{-1}(x)^2)$$

If the correlation ρ is very low (close to 0) then the probability density f(x) is centered around the default probability p.

If the correlation ρ is very high (close to 1) then the probability density f(x) is wide, with significant probability of large portfolio defaults and also small portfolio defaults.

- > # Define default probability density function
- > defdistr <- function(x, defthresh=(-2), rho=0.2)
- sqrt((1-rho)/rho)*exp(-(sqrt(1-rho)*qnorm(x) -
- defthresh)^2/(2*rho) + qnorm(x)^2/2)
- > # Define parameters
- > rho <- 0.2 ; rho_sqrt <- sqrt(rho) ; rho_sqrtm <- sqrt(1-rho) > defprob <- 0.3; defthresh <- qnorm(defprob)
- > defdistr(0.03, defthresh=defthresh, rho=rho)
- > # Plot probability distribution of defaults
- > curve(expr=defdistr(x, defthresh=defthresh, rho=0.1),
- + xlim=c(0, 1.0), lwd=3,
- + xlab="Default percentage", ylab="Density",
- + col="green", main="Distribution of Defaults")

- > # Plot default distribution with higher correlation
- > curve(expr=defdistr(x, defthresh=defthresh, rho=0.3), + xlab="default percentage", ylab="",
- + add=TRUE, lwd=3, col="blue", main="")
- > # Add legend
- > legend(x="topright". legend=c("high correlation", "low correlation"),
- + title=NULL, inset=0.05, cex=0.8, bg="white",
- btv="n", lwd=6, ltv=1, col=c("blue", "green"))
- > # Add unconditional default probability
- > abline(v=defprob, col="red", lwd=3)
- > text(x=defprob, v=2.
- + labels="default probability",
- + 1wd=2, srt=90, pos=2)

Distribution of Defaults Under Extreme Correlations

If the correlation ρ is close to 0, then the asset values a; are independent from each other, and defaults are also independent, so that the percentage of portfolio defaults is very close to the default probability p.

In that case, the probability density of portfolio defaults is very narrow and is centered on the default probability p.

If the correlation ρ is close to 1, then the asset values a; are almost the same, and defaults occur at the same time, so that the percentage of portfolio defaults is either 0 or 1.

In that case, the probability density of portfolio defaults becomes bimodal, with two peaks around zero and 1.

- > # Plot default distribution with low correlation
- > curve(expr=defdistr(x, defthresh=defthresh, rho=0.01),
- + xlab="default percentage", ylab="", lwd=2,
- + col="green", main="Distribution of Defaults")
- > # Plot default distribution with high correlation
- > curve(expr=defdistr(x, defthresh=defthresh, rho=0.99),
- + xlab="percentage of defaults", ylab="density",
- + add=TRUE, lwd=2, n=10001, col="blue", main="")

Distribution of Defaults

- > # Add legend
- > legend(x="top",
- + legend=c("high correlation", "low correlation"),
- + title=NULL, inset=0.1, cex=0.8, bg="white",
- + bty="n", lwd=6, lty=1, col=c("blue", "green"))
- > # Add unconditional default probability
- > abline(v=0.1, col="red", lwd=2)
- > text(x=0.1, v=10, lwd=2, pos=4,
- + labels="default probability")

Numerical Integration of Functions

The function integrate() performs numerical integration of a function of a single variable, i.e. it calculates a definite integral over an integration interval.

Additional parameters can be passed to the integrated function through the dots "..." argument of the function integrate().

The function integrate() accepts the integration limits -Inf and Inf equal to minus and plus infinity.

```
> # Get help for integrate()
> ?integrate
> # Calculate slowly converging integral
> func <- function(x) {1/((x+1)*sqrt(x))}
> integrate(func, lower=0, upper=10)
> integrate(func, lower=0, upper=Inf)
> # Integrate function with parameter lambda
> func <- function(x, lambda=1) {
    exp(-x*lambda)
+ } # end func
> integrate(func, lower=0, upper=Inf)
> integrate(func, lower=0, upper=Inf, lambda=2)
> # Cumulative probability over normal distribution
> pnorm(-2)
> integrate(dnorm, low=2, up=Inf)
> str(dnorm)
> pnorm(-1)
> integrate(dnorm, low=2, up=Inf, mean=1)
> # Expected value over normal distribution
> integrate(function(x) x*dnorm(x), low=2, up=Inf)
```

Portfolio Loss Distribution

The expected loss (EL) of a credit portfolio is equal to the sum of the default probabilities p; multiplied by the loss given default LGD (aka the loss severity - equal to 1 minus the recovery rate):

$$EL = \sum_{i=1}^{n} p_i LGD_i$$

Then the *cumulative loss distribution* is equal to:

$$P(x) = \Phi(\frac{\sqrt{1-\rho}\,\Phi^{-1}(\frac{x}{LGD}) - t}{\sqrt{\rho}})$$

And the default distribution is the derivative, and is equal to:

$$\begin{split} f(x) &= \frac{\sqrt{1-\rho}}{LGD\sqrt{\rho}} \exp(-\frac{1}{2\rho}(\sqrt{1-\rho}\Phi^{-1}(\frac{x}{LGD})-t)^2 + \\ &\qquad \qquad \frac{1}{2}\Phi^{-1}(\frac{x}{LGD}))^2 \end{split}$$

- > # Vasicek model parameters
- > rho <- 0.1; lgd <- 0.4
- > defprob <- 0.05; defthresh <- qnorm(defprob)
- > # Define Vasicek cumulative loss distribution
- > cumlossdistr <- function(x, defthresh=(-2), rho=0.2, lgd=0.4) pnorm((sqrt(1-rho)*qnorm(x/lgd) - defthresh)/sqrt(rho))
- > # Define Vasicek loss distribution function
- > lossdistr <- function(x, defthresh=(-2), rho=0.2, lgd=0.4)
 - sqrt((1-rho)/rho)*exp(-(sqrt(1-rho)*qnorm(x/lgd) defthresh)^2/(2*rho) + qnorm(x/lgd)^2/2)/lgd

Portfolio Loss Density

- > # Plot probability distribution of losses
- > x11(width=6, height=5) > curve(expr=lossdistr(x, defthresh=defthresh, rho=rho),
- + cex.main=1.8, cex.lab=1.8, cex.axis=1.5, + type="1", xlim=c(0, 0.06),
- + xlab="loss percentage", ylab="density", lwd=3,
- + col="blue", main="Portfolio Loss Density")
- > # Add line for expected loss
- > abline(v=lgd*defprob, col="red", lwd=3) > text(x=lgd*defprob-0.001, v=35, labels="expected loss", lwd=3, po

Collateralized Debt Obligations (CDOs)

Collateralized Debt Obligations (cash *CDOs*) are securities (bonds) collateralized by other debt assets.

The CDO assets can be debt instruments like bonds, loans, and mortgages.

The *CDO* liabilities are *CDO* tranches, which receive cashflows from the *CDO* assets, and are exposed to their defaults.

CDO tranches have an attachment point (subordination, i.e. the percentage of asset default losses at which the tranche starts absorbing those losses), and a detachment point when the tranche is wiped out (suffers 100% losses).

The *equity tranche* is the most junior tranche, and is the first to absorb default losses.

The *mezzanine tranches* are senior to the *equity tranche* and absorb losses ony after the *equity tranche* is wiped out.

The *senior tranche* is the most senior tranche, and is the last to absorb losses.

CDO Tranche Losses

Single-tranche (synthetic) *CDOs* are credit default swaps which reference credit portfolios.

The expected loss EL on a CDO tranche is:

$$EL = \frac{1}{d-a} \int_a^d (x-a) f(x) dx + \int_d^{LGD} f(x) dx$$

Where f(x) is the density of portfolio losses, and a and d are the tranche attachment (subordination) and detachment points.

The difference (d-a) is the tranche *thickness*, so that *EL* is the expected loss as a percentage of the tranche notional.

A single-tranche *CDO* can be thought of as a short option spread on the asset defaults, struck at the attachment and detachment points.

> # Define Vasicek cumulative loss distribution
> cumlossdistr <- function(x, defthresh=(-2), rho=0.2, lgd=0.4)
+ pnorm((sqrt(1-rho)*qnorm(x/lgd) - defthresh)/sqrt(rho))
> # Define Vasicek loss distribution function
> # (vectorized version with error handling for x)
> lossdistr <- function(x, defthresh=(-2), rho=0.1, lgd=0.4) {
+ qnormv <- ifelse(x/lgd < 0.999, qnorm(x/lgd), 3.1)
> sqrt((1-rho)/rho)*exp(-(sqrt(1-rho)*exporm v defthresh)^2/(2*ri

- > defprob <- 0.2; defthresh <- qnorm(defprob)
- > rho <- 0.1; lgd <- 0.4
- > attachp <- 0.15; detachp <- 0.2
- > # Expected tranche loss is sum of two terms > tranchel <-
- + # Loss between attachp and detachp
- + integrate(function(x, attachp) (x-attachp)*lossdistr(x,
- + defthresh=defthresh, rho=rho, lgd=lgd),
- + low=attachp, up=detachp, attachp=attachp)\$value / (detachp-attach + # Loss in excess of detachp
- + (1-cumlossdistr(x=detachp, defthresh=defthresh, rho=rho, lgd=lg
 > # Plot probability distribution of losses
- > curve(expr=lossdistr(x, defthresh=defthresh, rho=rho),
- + cex.main=1.8, cex.lab=1.8, cex.axis=1.5,
- + type="1", xlim=c(0, 3*lgd*defprob),
- + xlab="loss percentage", ylab="density", lwd=3,
- + col="orange", main="CDO Tranche Losses")
- > # Add line for expected loss
- > abline(v=lgd*defprob, col="red", lwd=3)
 > text(x=lgd*defprob-0.001, y=4, labels="expected loss",

+ } # end lossdistr

Portfolio Value at Risk

Value at Risk (VaR) measures extreme portfolio loss (but not the worst possible loss), defined as the quantile of the loss distribution, corresponding to a given confidence level α .

A loss exceeding the EL is called the Unexpected Loss (UL), and can be calculated from the *portfolio loss distribution*.

- > # Add lines for unexpected loss
- > abline(v=0.04, col="blue", lwd=3)
- > arrows(x0=0.02, y0=35, x1=0.04, y1=35, code=3, lwd=3, cex=0.5) > text(x=0.03, y=36, labels="unexpected loss", lwd=2, pos=3)
- > # Add lines for VaR
- > abline(v=0.055, col="red", lwd=3)
- > arrows(x0=0.0, y0=25, x1=0.055, y1=25, code=3, lwd=3, cex=0.5)
- > text(x=0.03, y=26, labels="VaR", lwd=2, pos=3)
- > text(x=0.055-0.001, y=10, labels="VaR", lwd=2, srt=90, pos=3)

Portfolio Value at Risk

Conditional Value at Risk

The Conditional Value at Risk (CVaR) is equal to the average of the VaR for confidence levels less than a given confidence level α :

$$\mathrm{CVaR} = \frac{1}{\alpha} \int_0^\alpha \mathrm{VaR}(\rho) \, \mathrm{d}\rho = \frac{1}{\alpha} \int_{\mathrm{VaR}}^{LGD} x \, f(x) \, \mathrm{d}x$$

The Conditional Value at Risk is also called the Expected Shortfall (ES), or Expected Tail Loss (ETL).

- > varisk <- 0.04; varmax <- 4*lgd*defprob
- > # Calculate CVaR
- > cvar <- integrate(function(x) x*lossdistr(x, defthresh=defthresh,
- low=varisk, up=lgd)\$value
- > cvar <- cvar/integrate(lossdistr, low=varisk, up=lgd, defthresh=de
- > # Plot probability distribution of losses
- > curve(expr=lossdistr(x, defthresh=defthresh, rho=rho),
- + type="1", xlim=c(0, 0.06), + xlab="loss percentage", ylab="density", lwd=3,
- + col="blue", main="Conditional Value at Risk")
- > # Add line for expected loss
- > abline(v=lgd*defprob, col="red", lwd=3)
- > text(x=lgd*defprob-0.001, y=10, labels="expected loss", lwd=2, s

Conditional Value at Risk

- > # Add lines for VaR
- > abline(v=varisk, col="red", lwd=3)
- > text(x=varisk-0.001, y=10, labels="VaR",
- + 1wd=2, srt=90, pos=3) > # Add shading for CVaR
- > vars <- seg(varisk, varmax, length=100)
- > densy <- sapply(vars, lossdistr,
- defthresh=defthresh, rho=rho)
- > # Draw shaded polygon
- > polygon(c(varisk, vars, varmax), density=20,
 - c(-1, densy, -1), col="red", border=NA)
- > text(x=varisk+0.005, v=0, labels="CVaR", lwd=2, pos=3)

4 D > 4 B > 4 B > 4 B >

Value at Risk Under the Vasicek Model

Value at Risk (VaR) measures extreme portfolio loss (but not the worst possible loss), defined as the quantile of the loss distribution, corresponding to a given confidence level α .

The *quantile* of the loss distribution (the VaR), for a given a confidence level α , is given by the inverse of the cumulative loss distribution:

$$VaR(\alpha) = LGD \cdot \Phi(\frac{\sqrt{\rho}\Phi^{-1}(\alpha) + t}{\sqrt{1-\rho}})$$

- > # VaR (quantile of the loss distribution)
- > varfun <- function(x, defthresh=qnorm(0.1), rho=0.1, lgd=0.4)
- + lgd*pnorm((sqrt(rho)*qnorm(x) + defthresh)/sqrt(1-rho))
- > varfun(x=0.99, defthresh=defthresh, rho=rho, lgd=lgd)
- > # Plot VaR
- > curve(expr=varfun(x, defthresh=defthresh, rho=rho, lgd=lgd),
- + type="1", xlim=c(0, 0.999), xlab="confidence level", ylab="VaR", lwd=3,
- + col="orange", main="VaR versus Confidence Level")
- > # Add line for expected loss
- > abline(h=lgd*defprob, col="red", lwd=3)
- > text(x=0.2, y=lgd*defprob, labels="expected loss", lwd=2, pos=3)

Value at Risk and Confidence Levels

The confidence levels of \it{VaR} values can also be calculated by integrating over the tail of the loss density function.

```
> # Integrate lossdistr() over full range
> integrate(lossdistr, low=0.0, up=lgd,
      defthresh=defthresh, rho=rho, lgd=lgd)
> # Calculate expected losses using lossdistr()
> integrate(function(x) x*lossdistr(x, defthresh=defthresh, rho=rho
      low=0.0, up=lgd)
> # Calculate confidence levels corresponding to VaR values
> vars <- seg(0.07, 0.12, 0.001)
> confls <- sapply(vars, function(varisk) {
    integrate(lossdistr, low=varisk, up=lgd, defthresh=defthresh, rl
+ }) # end sapply
> confls <- cbind(as.numeric(t(confls)[, 1]), vars)
> colnames(confls) <- c("levels", "VaRs")
> # Calculate 95% confidence level VaR value
> confls[match(TRUE, confls[, "levels"] < 0.05), "VaRs"]
> plot(x=1-confls[, "levels"],
```


y=confis[, "VaRs"], lwd=2, xlab="confidence level", ylab="VaRs", t="1". main="VaR Values and Confidence Levels")

Conditional Value at Risk Under the Vasicek Model

The CVaR values can be calculated by integrating over the tail of the loss density function.

```
> # Calculate CVaR values
> cvars <- sapply(vars, function(varisk) {
    integrate(function(x) x*lossdistr(x, defthresh=defthresh, rho=rl
        low=varisk, up=lgd)}) # end sapply
> confls <- cbind(confls, as.numeric(t(cvars)[, 1]))
> colnames(confls)[3] <- "CVaRs"
> # Divide CVaR by confidence level
> confls[, "CVaRs"] <- confls[, "CVaRs"]/confls[, "levels"]
> # Calculate 95% confidence level CVaR value
> confls[match(TRUE, confls[, "levels"] < 0.05), "CVaRs"]
> # Plot CVaRs
> plot(x=1-confls[, "levels"], y=confls[, "CVaRs"],
      t="1", col="red", lwd=2,
      vlim=range(confls[, c("VaRs", "CVaRs")]),
      xlab="confidence level", ylab="CVaRs",
      main="CVaR Values and Confidence Levels")
```



```
> # Add VaRs
> lines(x=1-confis[, "levels"], y=confis[, "VaRs"], lwd=2)
> # Add legend
> legend(x="topleft", legend=c("CVaRs", "VaRs"),
+ title="default probability = 5%
+ correlation = 10%
+ loss given default = 40%",
+ inset=0.1, cer=0.8, bg="white", bty="n",
+ lwd=6, lty=1, colec("red", "black"))
```

Simulating Portfolio Losses Under the Vasicek Model

If the default probabilities p_i are not all the same, then there's no formula for the *portfolio loss distribution* under the Vasicek Model.

In that case the portfolio losses and \it{VaR} must be simulated.

- > # Define model parameters
- > nassets <- 300; nsimu <- 1000; lgd <- 0.4
- > # Define correlation parameters
- > rho <- 0.2; rho_sqrt <- sqrt(rho); rho_sqrtm <- sqrt(1-rho)
- > # Calculate default probabilities and thresholds
- > set.seed(1121)
- > defprobs <- runif(nassets, max=0.2)</pre>
- > defthresh <- qnorm(defprobs)
- > # Simulate losses under Vasicek model
- > sysv <- rnorm(nsimu)
- > assets <- matrix(rnorm(nsimu*nassets), ncol=nsimu)
- > assets <- t(rho_sqrt*sysv + t(rho_sqrtm*assets))
- > losses <- lgd*colSums(assets < defthresh)/nassets

VaR and CVaR Under the Vasicek Model

The function density() calculates a kernel estimate of the probability density for a sample of data, and returns a list with a vector of loss values and a vector of corresponding densities.

```
> # Calculate VaR from confidence level
> confl <- 0.95
> varisk <- quantile(losses, confl)
> # Calculate the CVaR as the mean losses in excess of VaR
> cvar <- mean(losses[losses > varisk])
> # Plot the density of portfolio losses
> x11(width=6, height=5)
> densv <- density(losses)
> plot(densy, xlab="loss percentage", ylab="density",
      cex.main=1.8, cex.lab=1.8, cex.axis=1.5,
      lwd=3, col="blue", main="Portfolio Loss Distribution")
> # Add vertical line for expected loss
> exploss <- lgd*mean(defprobs)
> abline(v=exploss, col="red", lwd=3)
> xmax <- max(densv$x); ymax <- max(densv$y)
> text(x=exploss, y=(6*ymax/7), labels="expected loss".
```

Portfolio Loss Distribution


```
> # Draw shaded polygon for CVaR
                                                                   > intail <- (densy$x > varisk)
                                                                   > xvar <- c(min(densv$x[intail]), densv$x[intail], max(densv$x))
                                                                   > polygon(xvar, c(-1, densy$v[intail], -1), col="red", border=NA, d
                                                                    > # Add text for CVaR
> text(x=varisk, y=4*ymax/5, labels="VaR", lwd=2, pos=4, cex=1.8)
                                                                   > text(x=5*varisk/4, v=(vmax/7), labels="CVaR", lwd=2, pos=4, cex=1
                                                                    > # Add text with data
                                                                   > text(xmax, ymax, labels=paste0(
                                                                       "Expected Loss = ", format(100*exploss, digits=3), "%", "\n",
                                                                    + "Loss severity = ", format(100*lgd, digits=3), "%", "\n",
```

"Correlation = ", format(100*rho, digits=3), "%", "\n", "VaR = ", format(100*varisk, digits=3), "%", "\n", "CVaR = ", format(100*cvar, digits=3), "%"), adi=c(1, 1), cex=1.8, lwd=2)

lwd=2, pos=4, cex=1.8)

> abline(v=varisk, col="red", lwd=3)

> # Add vertical line for VaR

Simulating VaR Under the Vasicek Model

The VaR can be calculated from the simulated portfolio losses using the function quantile().

The function quantile() calculates the sample quantiles. It uses interpolation to improve the accuracy. Information about the different interpolation methods can be found by typing ?quantile.

- > # Calculate VaRs from confidence levels
 > confls <- seg(0.93, 0.99, 0.01)</pre>
- > vars <- quantile(losses, probs=confls)
- > plot(x=confls, y=vars, t="1", 1wd=2,
- + xlab="confidence level", ylab="VaRs",
- + main="Simulated VaR and Confidence Levels")

Simulating CVaR Under the Vasicek Model

The CVaR can be calculated from the frequency of tail losses in excess of the VaR.

The function table() calculates the frequency distribution of categorical data.

```
> # Calculate CVaRs
> cvars <- sapply(vars, function(varisk) {
    mean(losses[losses >= varisk])
+ }) # end sapply
> cvars <- cbind(cvars, vars)
> # Alternative CVaR calculation using frequency table
> # first calculate frequency table of losses
> # tablev <- table(losses)/nsimu
> # Calculate CVaRs from frequency table
> # cvars <- sapply(vars, function(varisk) {
      tailrisk <- tablev[names(tablev) > varisk]
      tailrisk %*% as.numeric(names(tailrisk)) / sum(tailrisk)
> # }) # end sapply
> # Plot CVaRs
> plot(x=confls, v=cvars[, "cvars"],
      t="1", col="red", lwd=2,
      vlim=range(cvars).
      xlab="confidence level", vlab="CVaRs",
      main="Simulated CVaR and Confidence Levels")
```



```
> # Add VaRs
> lines(x=confls, y=cvars[, "vars"], lwd=2)
> # Add legend
> legend(x="topleft", legend=c("CVARS", "VARS"), bty="n", title=NULL, inset=0.05, cex=0.8, bg="white",
```

+ lwd=6, lty=1, col=c("red", "black"))

Function for Simulating VaR Under the Vasicek Model

The function calc_var() simulates default losses under the Vasicek model. for a vector of confidence levels, and calculates a vector of VaR and CVaR values

```
> calcvar <- function(defthresh, # Default thresholds
                lgd=0.6, # loss given default
                rho_sqrt, rho_sqrtm, # asset correlation
                nsimu=1000, # number of simulations
                confls=seq(0.93, 0.99, 0.01) # Confidence levels
   # Define model parameters
    nassets <- NROW(defthresh)
    # Simulate losses under Vasicek model
   sysv <- rnorm(nsimu)
   assets <- matrix(rnorm(nsimu*nassets), ncol=nsimu)
   assets <- t(rho_sqrt*sysv + t(rho_sqrtm*assets))
   losses <- lgd*colSums(assets < defthresh)/nassets
   # Calculate VaRs and CVaRs
    vars <- quantile(losses, probs=confls)
   cvars <- sapply(vars, function(varisk) {
     mean(losses[losses >= varisk])
   }) # end sapply
    names(vars) <- confls
    names(cvars) <- confls
    c(vars, cvars)
     # end calcuar
```

Standard Errors of VaR Using Bootstrap Simulation

The values of VaR and CVaR produced by the function calc_var() are subject to uncertainty because they're calculated from a simulation.

We can calculate the standard errors of VaR and CVaR by running the function calc_var() many times and repeating the simulation in a loop.

This bootstrap will only capture the uncertainty due to the finite number of trials in the simulation, but not due to the uncertainty of model parameters.

```
> # Define model parameters
> nassets <- 300; nsimu <- 1000; lgd <- 0.4
> rho <- 0.2; rho_sqrt <- sqrt(rho); rho_sqrtm <- sqrt(1-rho)
> # Calculate default probabilities and thresholds
> set.seed(1121)
> defprobs <- runif(nassets, max=0.2)
> defthresh <- qnorm(defprobs)
> # Define number of bootstrap simulations
> nboot <- 500
> # Perform bootstrap of calcvar
> set.seed(1121)
> bootd <- sapply(rep(lgd, nboot), calcvar,
    defthresh=defthresh,
    rho_sqrt=rho_sqrt, rho_sqrtm=rho_sqrtm,
    nsimu=nsimu, confls=confls) # end sapply
> bootd <- t(bootd)
> # Calculate vectors of standard errors of VaR and CVaR from bootd
```

> stderr_var <- apply(bootd[, 1:7], MARGIN=2, function(x) c(mean=mean(x), sd=sd(x))) > stderr_cvar <- apply(bootd[, 8:14], MARGIN=2, function(x) c(mean=mean(x), sd=sd(x))) > # Scale the standard errors of VaRs and CVaRs > stderr var[2,] <- stderr var[2,]/stderr var[1,] > stderr cvar[2,] <- stderr cvar[2,]/stderr cvar[1,]

Standard Errors of VaR at High Confidence Levels

The standard errors of *VaR* and *CVaR* are inversely proportional to square root of the number of loss events in the simulation that exceed the *VaR*.

So the greater the number of loss events, the smaller the standard errors, and vice versa.

But as the confidence level increases, the *VaR* also increases, and the number of loss events decreases, causing larger standard errors.

So the as the confidence level increases, the standard errors of VaR and CVaR also increase.

The scaled (relative) standard errors of VaR and CVaR also increase with the confidence level, making them much less reliable at very high confidence levels.

The standard error of CVaR is even greater than that of VaR.

- > # Plot the standard errors of VaRs and CVaRs
- > x11(width=6, height=5) > par(mar=c(3, 3, 2, 1) oma=c(0, 0
- > par(mar=c(3, 3, 2, 1), oma=c(0, 0, 0, 0), mgp=c(2, 1, 0))
 > plot(x=colnames(stderr_cvar), y=stderr_cvar[2,],
- t="1", col="red", lwd=2,
- + ylim=range(c(stderr_var[2,], stderr_cvar[2,])),
- + xlab="confidence level", ylab="standard error",
- + main="Scaled standard errors of CVaR and VaR")
- > lines(x=colnames(stderr_var), y=stderr_var[2,], lwd=2)
- > legend(x="topleft", legend=c("CVaRs", "VaRs"), bty="n",
- + title=NULL, inset=0.05, cex=0.8, bg="white",
- + lwd=6, lty=1, col=c("red", "black"))

Standard Errors of VaR Using Parallel Bootstrap

The scaled standard errors of VaR and CVaR increase with the confidence level, making them much less reliable at very high confidence levels.

```
> library(parallel) # load package parallel
> ncores <- detectCores() - 1 # number of cores
> cluster <- makeCluster(ncores) # Initialize compute cluster
> # Perform bootstrap of calcvar for Windows
> clusterSetRNGStream(cluster, 1121)
> bootd <- parLapply(cluster, rep(lgd, nboot),
   fun=calcvar, defthresh=defthresh.
   rho sart=rho sart, rho sartm=rho sartm.
   nsimu=nsimu, confls=confls) # end parLapply
> # Bootstrap under Mac-OSX or Linux
> bootd <- mclapply(rep(lgd, nboot).
   FUN=calcvar, defthresh=defthresh.
   rho sart=rho sart, rho sartm=rho sartm.
   nsimu=nsimu, confls=confls) # end mclapply
> bootd <- rutils::do call(rbind, bootd)
> stopCluster(cluster) # Stop R processes over cluster
> # Calculate vectors of standard errors of VaR and CVaR from bootd
> stderr var <- apply(bootd[, 1:7], MARGIN=2,
     function(x) c(mean=mean(x), sd=sd(x)))
> stderr cvar <- apply(bootd[, 8:14], MARGIN=2,
     function(x) c(mean=mean(x), sd=sd(x)))
> # Scale the standard errors of VaRs and CVaRs
> stderr vars <- stderr var[2, ]/stderr var[1, ]
```


- > # Plot the standard errors of VaRs and CVaRs > x11(width=6, height=5)
- > plot(x=colnames(stderr_cvar), y=stderr_cvars, t="1", col="red", lwd=2,
- vlim=range(c(stderr_vars, stderr_cvars)),
- xlab="confidence level", ylab="standard error", main="Scaled standard errors of CVaR and VaR")
- > lines(x=colnames(stderr_var), y=stderr_vars, lwd=2)
- > legend(x="topleft", legend=c("CVaRs", "VaRs"), bty="n",
- + title=NULL, inset=0.05, cex=0.8, bg="white",
- + lwd=6, lty=1, col=c("red", "black"))

> stderr cvars <- stderr cvar[2,]/stderr cvar[1,]

Vasicek Model With Uncertain Default Probabilities

The previous bootstrap only captured the uncertainty due to the finite simulation trials, but not due to the uncertainty of model parameters, such as the default probabilities and correlations.

The below function calc_var() can simulate the Vasicek model with uncertain default probabilities.

```
> calcvar <- function(defprobs, # Default probabilities
                lgd=0.6, # loss given default
                rho_sqrt, rho_sqrtm, # asset correlation
                nsimu=1000, # number of simulations
                confls=seq(0.93, 0.99, 0.01) # Confidence levels
   # Calculate random default thresholds
   defthresh <- qnorm(runif(1, min=0.5, max=1.5)*defprobs)
   # Simulate losses under Vasicek model
   nassets <- NROW(defprobs)
   sysv <- rnorm(nsimu)
   assets <- matrix(rnorm(nsimu*nassets), ncol=nsimu)
   assets <- t(rho_sqrt*sysv + t(rho_sqrtm*assets))
   losses <- lgd*colSums(assets < defthresh)/nassets
   # Calculate VaRs and CVaRs
   vars <- quantile(losses, probs=confls)
   cvars <- sapply(vars, function(varisk) {
     mean(losses[losses >= varisk])
  }) # end sapply
   names(vars) <- confls
   names(cvars) <- confls
   c(vars, cvars)
    # end calcuar
```

Standard Errors Due to Uncertain Default Probabilities

The greatest contribution to the standard errors of *VaR* and *CVaR* is from the uncertainty of model parameters, such as the default probabilities, correlations, and loss severities.

For example, a 50% uncertainty in the default probabilities can produce a 20% uncertainty of the VaR.

> library(parallel) # load package parallel

> ncores <- detectCores() - 1 # number of cores

```
> cluster <- makeCluster(ncores) # Initialize compute cluster
> # Perform bootstrap of calcvar for Windows
> clusterSetRNGStream(cluster, 1121)
> bootd <- parLapply(cluster, rep(lgd, nboot),
   fun=calcvar, defprobs=defprobs,
   rho_sqrt=rho_sqrt, rho_sqrtm=rho_sqrtm,
   nsimu=nsimu, confls=confls) # end parLapply
> # Bootstrap under Mac-OSX or Linux
> bootd <- mclapply(rep(lgd, nboot),
   FUN=calcvar, defprobs=defprobs,
   rho_sqrt=rho_sqrt, rho_sqrtm=rho_sqrtm,
   nsimu=nsimu, confls=confls) # end mclapply
> bootd <- rutils::do_call(rbind, bootd)
> stopCluster(cluster) # Stop R processes over cluster
> # Calculate vectors of standard errors of VaR and CVaR from boots
> stderr_var_param <- apply(bootd[, 1:7], MARGIN=2,
     function(x) c(mean=mean(x), sd=sd(x)))
> stderr_cvar_param <- apply(bootd[, 8:14], MARGIN=2,
     function(x) c(mean=mean(x), sd=sd(x)))
```

Standard Errors of VaR

> # Plot the standard errors of VaRs under uncertain default probab

Relative Errors Due to Uncertain Default Probabilities

The scaled (relative) standard errors of VaR and CVaR under uncertain default probabilities decrease with higher confidence level, because the standard errors are less dependent on the confidence level and don't increase as fast as the VaR does.

```
> # Scale the standard errors of VaRs and CVaRs
> stderr_vars <- stderr_var_param[2, ]/
+ stderr_vars <- stderr_cvar_param[2, ]/
> stderr_cvars <- stderr_cvar_param[2, ]/
+ stderr_cvar_param[1, ]</pre>
```

Relative Standard Errors of VaR and CVaR with Uncertain Default Probabilities


```
> # Plot the standard errors of VaRs and CVaRs
> x11(width=6, height=5)
> plot(x=colnames(stderr_cvar_param),
+ y=stderr_cvars, t="1", col="red", lwd=3,
+ ylim=range(c(stderr_vars, stderr_cvars)),
+ xlab="confidence level", ylab="standard error",
+ main="Relative Standard Errors of VaR and CVaR
+ with Uncertain Default Probabilities")
> lines(x=names(stderr_vars), y=stderr_vars, lwd=3)
> legend(x="topright", legendec("CVaR", "VaR"), bty="n",
+ title=NULL, inset=0.05, cox=1.0, bg="white", bty="n",
```

+ lwd=6, lty=1, col=c("red", "black"))

Model Risk of Credit Portfolio Models

Credit portfolio models are subject to very significant model risk due to the uncertainties of model parameters, such as the default probabilities, correlations, and loss severities.

Model risk is the risk of incorrect model predictions due to incorrect model specification, and due to incorrect model parameters.

Jon Danielsson at the London School of Economics (LSE) has studied the model risk of *VaR* and *CVaR* in: Why Risk is So Hard to Measure, and in Model Risk of Risk Models.

Jon Danielsson has pointed out that there's not enough historical data to be able to accurately calculate the credit model parameters.

Jon Danielsson and Chen Zhou have demonstrated that accurately estimating *CVaR* at 5% confidence would require decades of price history, something that simply doesn't exist for many assets.

Plotting Using Expression Objects

It's sometimes convenient to create an *expression* object containing plotting commands, to be able to later create plots using it.

The function quote() produces an *expression* object without evaluating it.

The function eval() evaluates an expression in a specified environment.

```
> # Create a plotting expression
> expv <- quote(f
   par(mar=c(2, 2, 2, 1), oma=c(1, 1, 1, 1))
   degf <- 2:20
   rangev <- (1:NROW(degf))
   indeks <- 4
   # Plot a curve
   curve(expr=dchisq(x, df=degf[indeks]),
 xlim=c(0, 30), vlim=c(0, 0.2),
 xlab="", ylab="", lwd=3, col="red")
    # Add grev lines to plot
   for (it in rangev[-indeks]) {
      curve(expr=dchisg(x, df=degf[it]).
   xlim=c(0, 30), vlim=c(0, 0.2),
   xlab="", ylab="", lwd=2, col="grey80", add=TRUE)
      # end for
    # Add title
   title(main="Chi-squared Distributions", line=-1.5, cex.main=1.5)
    # Add legend
   text(x=20, y=0.15, labels=paste0("Degrees of freedom=",
       degf[indeks]), pos=1, cex=1.3)
+ }) # end quote
```

```
Chi-squared Distributions

Degrees of freedom=5

So o 5 10 15 20 25 30
```

- > # View the plotting expression
- > expv
- > # Create plot by evaluating the plotting expression > x11(width=6, height=4)
- > eval(expv)

Animated Plots Using Package animation

The package *animation* allows creating animated plots in the form of *gif* and *html* documents.

The function saveGIF() produces a $\it gif$ image with an animated plot.

The function saveHTML() produces an $\it html$ document with an animated plot.

```
> library(animation)
> # Create an expression for creating multiple plots
> expv <- quote({
    par(mar=c(2, 2, 2, 1), oma=c(1, 1, 1, 1))
   degf <- 2:20
   rangev <- (1:NROW(degf))
   # Set image refesh interval
   animation::ani.options(interval=0.5)
   # Create multiple plots with curves
   for (indeks in rangev) {
      curve(expr=dchisq(x, df=degf[indeks]),
   xlim=c(0, 30), ylim=c(0, 0.2),
    xlab="", vlab="", lwd=3, col="red")
      # Add grev lines to plot
      for (it in rangev[-indeks]) {
        curve(expr=dchisg(x, df=degf[it]).
      xlim=c(0, 30), ylim=c(0, 0.2),
      xlab="", ylab="", lwd=2, col="grey80", add=TRUE)
        # end for
      # Add title
      title(main="Chi-squared Distributions", line=-1.5, cex.main=_...
      # Add legend
      text(x=20, y=0.15, labels=paste0("Degrees of freedom=",
       degf[indeks]), pos=1, cex=1.3)
      # end for
     # end quote
```

```
Chi-squared Distributions
                           Degrees of freedom=5
  0.05
> # Create plot by evaluating the plotting expression
> x11(width=6, height=4)
> eval(expv)
> # Create gif with animated plot
> animation::saveGIF(expr=eval(expv),
    movie.name="chi squared.gif".
    img.name="chi squared")
> # Create html with animated plot
> animation::saveHTML(expr=eval(expv).
    img.name="chi_squared",
    htmlfile="chi squared.html".
```

description="Chi-squared Distributions") # end saveHTML

33 / 40

Dynamic Documents Using R markdown

markdown is a simple markup language designed for creating documents in different formats, including pdf and html.

R Markdown is a modified version of markdown, which allows creating documents containing math formulas and R code embedded in them.

An *R Markdown* document (with extension .Rmd) contains:

- A YAML header.
- Text in R Markdown code format.
- Math formulas (equations), delimited using either single "\$" symbols (for inline formulas), or double "\$\$" symbols (for display formulas),
- R code chunks, delimited using either single " "" backtick symbols (for inline code), or triple " """ backtick symbols (for display code).

The packages *rmarkdown* and *knitr* compile R documents into either *pdf*, *html*, or *MS Word* documents

```
title: "My First R Markdown Document"
author: Jerzy Pawlowski
date: 'f format(Sys.time(), "%m/%d/%Y")''
output: html_document
---
'''{f setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)

# install package quantmod if it can't be loaded success
if (!require("quantmod"))
   install.packages("quantmod")
```

R Markdown
This is an *R Markdown* document. Markdown is a simple t

One of the advantages of writing documents *R Markdown*

You can read more about publishing documents using *R* h
https://algoquant.github.io/r,/markdown/2016/07/02/Publi
You can read more about using *R* to create *HTML* docum

https://algoquant.github.io/2016/07/05/Interactive-Plots

Clicking the **Knit** button in *RStudio*, compiles the

```
'''{r cars}
summary(cars)
'''
```

Example of an *R* code chunk:

Plots in *R Markdown* documents

Plots can also be embedded, for example:
'''{r pressure, echo=FALSE}

plot(pressure)

Package shiny for Creating Interactive Applications

The package *shiny* creates interactive applications running in R, with their outputs presented as live visualizations.

Shiny allows changing the model parameters, recalculating the model, and displaying the resulting outputs as plots and charts.

A shiny app is a file with shiny commands and R code.

The shiny code consists of a shiny interface and a shiny server.

The *shiny interface* contains widgets for data input and an area for plotting.

The *shiny server* contains the R model code and the plotting code.

The function shiny::fluidPage() creates a GUI layout for the user inputs of model parameters and an area for plots and charts.

The function shiny::renderPlot() renders a plot from the outputs of a live model.

The function shiny::shinyApp() creates a shiny app from a *shiny interface* and a *shiny server*.

```
> ## App setup code that runs only once at startup.
> ndata <- 1e4
> stdev <- 1.0
> ## Define the user interface
> uiface <- shiny::fluidPage(
    # Create numeric input for the number of data points.
    numericInput("ndata", "Number of data points:", value=ndata),
    # Create slider input for the standard deviation parameter.
    sliderInput("stdev", label="Standard deviation:",
          min=0.1, max=3.0, value=stdev, step=0.1),
    # Render plot in a panel.
    plotOutput("plotobj", height=300, width=500)
+ ) # end user interface
> ## Define the server function
> servfun <- function(input, output) {
    output$plotobj <- shiny::renderPlot({
      # Simulate the data
      datav <- rnorm(input$ndata, sd=input$stdev)
      # Plot the data
      par(mar=c(2, 4, 4, 0), oma=c(0, 0, 0, 0))
      hist(datay, xlim=c(-4, 4), main="Histogram of Random Data")
    }) # end renderPlot
     # end servfun
> # Return a Shiny app object
> shinv::shinvApp(ui=uiface, server=servfun)
```

Running Shiny Apps in RStudio

A *shiny app* can be run by pressing the "Run App" button in *RStudio*.

When the *shiny app* is run, the *shiny* commands are translated into *JavaScript* code, which creates a graphical user interface (GUI) with buttons, sliders, and boxes for data input, and also with the output plots and charts.

Positioning and Sizing Widgets Within the Shiny GUI

The functions shiny::fluidRow() and shiny::column() allow positioning and sizing widgets within the *shiny* GUI.

mainPanel(dygraphs::dygraphOutput("dyplot"), width=12)

Create output plot panel

end fluidPage interface

Shiny Apps With Reactive Expressions

The package *shiny* allows specifying reactive expressions which are evaluated only when their input data is updated.

Reactive expressions avoid performing unnecessary calculations.

If the reactive expression is invalidated (recalculated), then other expressions that depend on its output are also recalculated.

This way calculations cascade through the expressions that depend on each other.

The function shiny::reactive() transforms an expression into a reactive expression.

```
> ## Define the server function
> servfun <- shiny::shinyServer(function(input, output) {
    # Get the close and volume data in a reactive environment
    closep <- shiny::reactive({
      # Get the data
      ohlc <- get(input$symbol, data_env)
      closep <- log(quantmod::Cl(ohlc))
      volumes <- quantmod::Vo(ohlc)
      # Return the data
      cbind(closep, volumes)
    }) # end reactive code
    # Calculate the VWAP indicator in a reactive environment
    vwapv <- shinv::reactive({
      # Get model parameters from input argument
      look back <- input$look back
      # Calculate the VWAP indicator
      closep <- closep()[, 1]
      volumes <- closep()[, 2]
      vwapv <- HighFreq::roll_sum(se_ries=closep*volumes, look_back
      volume_rolling <- HighFreq::roll_sum(se_ries=volumes, look_ba
      vwapv <- vwapv/volume_rolling
      vwapv[is.na(vwapv)] <- 0
      # Return the plot data
      datav <- cbind(closep, vwapv)
      colnames(datav) <- c(input$symbol, "VWAP")
      datav
    }) # end reactive code
    # Return the dygraph plot to output argument
    output$dyplot <- dygraphs::renderDygraph({
      colnamev <- colnames(vwapv())
      dygraphs::dygraph(vwapv(), main=paste(colnamev[1], "VWAP")) %
+ dyAxis("y", label=colnamev[1], independentTicks=TRUE) %>%
+ dyAxis("y2", label=colnamev[2], independentTicks=TRUE) %>%
+ dySeries(name=colnamev[1], axis="y", label=colnamev[1], strokeWid
+ dySeries(name=colnamev[2], axis="y2", label=colnamev[2], strokeWi
+ }) # end output plot
+ }) # end server code
```

Reactive Event Handlers

Event handlers are functions which evaluate expressions when an event occurs (like a button press).

The functions shiny::observeEvent() and shiny::eventReactive() are event handlers.

The function shiny::eventReactive() returns a value, while shiny::observeEvent() produces a side-effect, without returning a value.

The function shiny::reactiveValues() creates a list for storing reactive values, which can be updated by event handlers.

```
> ## Define the server function
> servfun <- shiny::shinyServer(function(input, output) {
   # Create an empty list of reactive values.
    value s <- reactiveValues()
   # Get input parameters from the user interface.
    nrows <- reactive({
      # Add nrows to list of reactive values.
      value s*nrows <- input$nrows
      input$nrows
    }) # end reactive code
   # Broadcast a message to the console when the button is pressed
   observeEvent(eventExpr=input$button, handlerExpr={
      cat("Input button pressed\n")
    }) # end observeEvent
    # Send the data when the button is pressed.
   datav <- eventReactive(eventExpr=input$button, valueExpr={
     # eventReactive() executes on input$button, but not on nrows(
     cat("Sending", nrows(), "rows of data\n")
     datav <- head(mtcars, input$nrows)
     value_s$mpg <- mean(datav$mpg)
      datav
    }) # end eventReactive
       datav
   # Draw table of the data when the button is pressed.
   observeEvent(eventExpr=input$button, handlerExpr={
     datay <- datay()
      cat("Received", value_s*nrows, "rows of data\n")
     cat("Average mpg = ", value_s$mpg, "\n")
     cat("Drawing table\n")
     output$tablev <- renderTable(datav)
    # end observeEvent.
+ }) # end server code
```

Homework Assignment

Required

- Study all the lecture slides in FRE6871_Lecture_3.pdf, and run all the code in FRE6871_Lecture_3.R
- Read about the bootstrap technique in: bootstrap_technique.pdf and doBootstrap_primer.pdf
- Read about applying the importance sampling technique for calculating CVaR: Muller CVAR Importance Sampling.pdf

Recommended

- Read about why CVaR is a coherent risk measure: https://en.wikipedia.org/wiki/Expected_shortfall https://en.wikipedia.org/wiki/Coherent_risk_measure#Value_at_risk
- Read about why CVaR has very large standard errors:
 Danielsson CVAR Estimation Standard Error.pdf
 http://www.bloomberg.com/view/articles/2016-05-23/big-banks-risk-does-not-compute