概率论与数理统计

主讲:四川大学 徐小湛教授

本课程的视频在百度传课 http://www.chuanke.com 在百度传课搜:徐小湛

四川大学 徐小湛

我的QQ: 2243414853

微博: @川大徐小湛

微信: scuxuxz

Email: xuxzmail@163.com

前面我们讲了

二项分布和泊松分布

现在我们来讲

几何分布和超几何分布

(一) 几何分布

几何分布与伯努利试验有关

QQ: 2243414853

设随机试验E只有两个可能的结果: A和 A

则称E为伯努利试验。 四川大学 徐小湛

设 P(A)=p (0 则 <math>P(A)=1-p

将 E 独立重复进行n次,称为 n重伯努利试验。

设X表示n重伯努利试验中

事件A第一次发生时的试验次数,

则X是一个随机变量,

X可能的取值为1, 2, ..., n。

四川大学徐小湛

下面来求 X 的分布律。

设X表示n重伯努利试验中,事件A第一次发生时的试验次数,则X是一个随机变量,

X可能的取值为1,2,...,n。下面来求X的分布律。

四川大学 徐小湛

用 A_i 表示事件A在第i次试验中发生 (i=0,1,...,n)

假设第k次试验中A第一次发生,则

$$P\{X = k\} = P(\overline{A_1} \cdots \overline{A_{k-1}} A_k)$$
 四川大学
徐小湛
$$= P(\overline{A_1}) \cdots P(\overline{A_{k-1}}) P(A_k) = (1-p) \cdots (1-p) p$$

$$=(1-p)^{k-1}p$$

定义(几何分布)设在多重伯努利试验中,事件A发生的概率为p(0 ,记<math>X为A第一次发生时的试验次数,则X取值 k的概率 四川大学 徐小湛 四川大学 $P\{X=k\}=(1-p)^{k-1}p$ (k=1,2,...) 徐小湛

称X服从参数为p的几何分布,记作 $X \sim G(p)$

称X服从参数为p的几何分布,记作 $X \sim G(p)$

$$P\{X = k\} = (1-p)^{k-1} p \qquad (k = 1, 2, ...)$$

$$\sum_{k=1}^{\infty} (1-p)^{k-1} p = p \sum_{k=1}^{\infty} (1-p)^{k-1} = p \cdot \frac{1}{1-(1-p)}$$

$$= p \cdot \frac{1}{p} = 1 \qquad \text{几何级数(等比级数)}$$

四川大学徐小湛

掷一颗色子,直到1点出现为止,求掷色 子的次数X的分布律。

解 X 服从参数 p=1/6 的几何分布,

徐小湛

$$X \sim G(1/6)$$

四川大学 徐小湛
$$P\{X=k\} = (1-\frac{1}{6})^{k-1} \cdot \frac{1}{6} = \frac{1}{6} (\frac{5}{6})^{k-1}$$
 四川大学

用Excel计算

$$(k = 1, 2, ...)$$

$$P\{X=k\} = (1-\frac{1}{6})^{k-1} \cdot \frac{1}{6} = \frac{1}{6} (\frac{5}{6})^{k-1} \quad (k=1,2,...)$$

A	В	С	D E
k	$P\{X=k\}$	$P\{X \leq k\}$	p=1/6
1	0. 166667	0. 166667	
2	0. 138889	0. 305556	Excel程序
3	0. 115741	0. 421296	
4	0. 096451	0. 517747	
5	0. 080376	0. 598122	0.180000
6	0. 066980	0.665102	0.160000 四川大学
7	0. 055816	0. 720918	0.140000
8	0. 046514	0. 767432	0.120000
9	0. 038761	0.806193	0.080000
10	0. 032301	0.838494	0. 060000
11	0. 026918	0.865412	0. 040000
12	0. 022431	0.887843	0.020000
13	0. 018693	0. 906536	0.000000
14	0. 015577	0. 922113	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 15	0. 012981	0. 935095	变量及其分布律 (III) 12

几何分布的性态

Excel程序

k	$P\{X=k\}, p=0.2$	$P\{X=k\}, p=0.5$	$P\{X=k\}, p=0.8$	p=0.2
1	0. 200000	0. 500000	0.800000	p=0.5
2	0. 160000	0. 250000	0. 160000	p= 0.8
3	0. 128000	0. 125000	0. 032000	
4	0. 102400	0.062500	0.006400	
5	0.081920	0. 031250	0.001280	
6	0.065536	0. 015625	0.000256	
7	0.052429	0.007813	0.000051	
8	0.041943	0.003906	0.000010	
9	0. 033554	0.001953	0.000002	
10	0. 026844	0.000977	0.000000	
11	0. 021475	0.000488	0.000000	为川大学
12	0.017180	0.000244	0.000000	徐小湛
13	0. 013744	0.000122	0.000000	
14	0. 010995	0.000061	0.000000	
15	0.008796	0.000031	0.000000	
		I	I	

四川大学 徐小湛

第16讲 离散型随机变量及其分布律 (III) 13

百萬倍影

四川大学 徐小湛

第16讲 离散型随机变量及其分布律 (III) 14

(二)超几何分布

本课程的视频在百度传课 http://www.chuanke.com 在百度传课搜:徐小湛 在第一章第4节例4(第6讲), 我们讲了这样一个例子:

设有N件产品,其中有D件次品。

今从中任取n件, 四川大学 徐小湛

问其中恰有k件次品($k \leq D$)的概率是多少?

现在来复习一下这个例子。

四川大学徐小湛

设有N件产品,其中有D件次品。今从中任取n件,问其中恰有k件次品($k \le D$)的概率是多少?

四川大学 徐小湛

k件次品

n-k件正品

取n件产品

Step 1 C_D^k 种取法 Step 2 C_{N-D}^{n-k} 种取法

D件次品

N-D件正品

C_N 种取法 四川大学 徐小湛

N件产品

设有N件产品,其中有D件次品。今 从中任取n件,问其中恰有k件次品 (k ≤ D)的概率是多少?

百度传说 四川大学 徐小湛

四川大学能小总

在N件产品中取n件(不放回)的取法有 C_N^n 种

在**D**件次品中取**k**件的取法有 C_D^k 种 $N(S) = C_N^n$

$$N(S) = C_N^n$$

在N-D件正品中取n-k件的取法有 C_{N-D}^{n-k} 种

由乘法原理,在N件产品中取n件,其中恰有k

件次品的取法有 $C_D^k \cdot C_{N-D}^{n-k}$ 种 $N(A) = C_D^k \cdot C_{N-D}^{n-k}$

$$N(A) = C_D^k \cdot C_{N-D}^{n-k}$$

设有N件产品,其中有D件次品。今从中任取n件, 问其中恰有k件次品($k \leq D$)的概率是多少?

在 N 件产品中取 n 件(不放回)的取法有 C_N^n 种

四川大学統小湛 在**D**件次品中取**k**件的取法有 C_D^k 种 $N(S) = C_N^n$

在N-D件正品中取n-k件的取法有 C_{N-D}^{n-k} 种 A_{k-D}^{n-k} 种 A_{k-D}^{n-k} 种 A_{k-D}^{n-k}

由乘法原理,在N件产品中取n件,其中恰有k

件次品的取法有 $C_D^k \cdot C_{N-D}^{n-k}$ 种 $N(A) = C_D^k \cdot C_{N-D}^{n-k}$

$$P(A) = \frac{N(A)}{N(S)} = \frac{C_D^k \cdot C_{N-D}^{n-k}}{C_N^n}$$
 (k =0,1,2,..., n)

设有N件产品,其中有M件次品。从中任取n件,则其中恰有k件次品($k \leq M$)的概率是

把D改成M传染

$$\frac{C_M^k \cdot C_{N-M}^{n-k}}{C_N^n}$$

四川大学 徐小湛

设随机变量X表示取出n件产品中的次品数,

则
$$P{X=k} = \frac{C_M^k \cdot C_{N-M}^{n-k}}{C_N^n}$$
 $k=0,1,...,n$ 四川大学

称X服从参数为n, M, N的超几何分布, 徐小湛

记为 $X \sim H(n, M, N)$

Hypergeometric distribution

四川大学 徐小湛

第16讲 离散型随机变量及其分布律 (III) 20

例2 从合格率为90%的100件产品中抽出30个 检查,求其中不合格产品个数X的分布律。

解 X 服从参数为 n=30 M=10 N=100 的超几何分布: $X \sim H(30,10,100)$

$$P\{X=k\} = \frac{C_{10}^{k} \cdot C_{90}^{30-k}}{C_{100}^{30}} \qquad k = 0, 1, 2, ..., 10$$

四川大学 徐小湛

$$P\{X = k\} = \frac{C_M^k \cdot C_{N-M}^{n-k}}{C_N^n}$$

四川大学徐小湛

从合格率为90%的100件产品中抽出30个检查, 求其中不合格产品个数X的分布律。

$$P\{X=k\} = \frac{C_{10}^{k} \cdot C_{90}^{30-k}}{C_{100}^{30}} \qquad k=0,1,2,...,10$$
我们用Fycol来计算

我们用Excel来计算

$$P\{X=k\} = \frac{C_M^k \cdot C_{N-M}^{n-k}}{C_N^n} = \text{Hypgeomdist(k, n, M, N)}$$

QQ: 2243414853

四川大学 徐小湛

百度传媒

抽取数

次品数

产品数

$$P\{X=k\} = \frac{C_{10}^{k} \cdot C_{90}^{30-k}}{C_{100}^{30}} \qquad k = 0, 1, 2, ..., 10$$

$$k = 0, 1, 2, ..., 10$$

 $\{X \leq k\}$

四川大学 徐小湛

n=30

M = 10

N = 100

0 0.022917 0.022917 1 0.112708 0.135625 2 0.237232 0.372857 3 0.281163 0.300000 4 0.207578 0.250000 5 0.099637 0.200000 6 0.031451 0.150000 7 0.006438 0.100000 9 0.000058 0.050000 10 0.000002 0.000000	k	$P\{X=k\}$		I) {	X<:	=k	}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0.022917		0.	0	229	91	7
3 0. 281163 4 0. 207578 0. 250000 5 0. 099637 0. 200000 6 0. 031451 0. 150000 7 0. 006438 0. 100000 9 0. 000058 0. 050000 10 0. 0000002	1	0.112708		0.	1	35	62	5
3 0. 281163 4 0. 207578 0. 250000 5 0. 099637 0. 200000 6 0. 031451 0. 150000 7 0. 006438 0. 100000 9 0. 000058 0. 050000 10 0. 0000002	2	0. 237232		n	3'	79	25	7
5 0.099637 0.200000 6 0.031451 0.150000 7 0.006438 0.100000 8 0.000058 0.050000 10 0.000002 0.000000	3	0. 281163	0.	300000				
6 0. 031451 7 0. 006438 0. 150000 8 0. 000817 0. 100000 9 0. 000058 0. 050000 10 0. 000002	4	0. 207578	0.	250000				
7 0.006438 0.150000 8 0.000817 0.100000 9 0.000058 0.050000 10 0.000002	5	0.099637	0.	200000				
7 0.006438 8 0.000817 9 0.000058 10 0.000002	6	0. 031451						
9 0. 000058 0. 050000 10 0. 000002	7	0.006438	0.	150000				
10 0.000002	8	0.000817	0.	100000			\blacksquare	
10 0.000002	9	0.000058	0.	050000				
M. □ Mt. → 0.000000	10	0.000002						
次品数 里个概率 1 2	次品数	单个概率	0.	000000		1	2	

四川大学 徐小湛

第16讲 离散型随机变量及其分布律 (III) 23

超几何分布与二项分布的关系

当产品总数N很大时,采用不放回抽样,次品率几乎没有变化,因此不放回抽取n件产品近似于有放回抽取n件产品,从而近似于n重伯努利试验。

因此当N很大时,超几何分布与二项分布近似:

$$\frac{C_M^k \cdot C_{N-M}^{n-k}}{C_N^n} \approx C_n^k p^k (1-p)^{n-k} \qquad p = \frac{M}{N} \quad \text{四川大学}$$
徐小湛

- 例3 500件产品的合格率为90%, (1) 不放回地抽出30个检查, 求其中不合格产品个数X的分布律。 (2) 有放回抽出30个检查, 求其中不合格产品个数 Y的分布律。
 - 解(1) X~H(30,50,500) ^{四川大学} 徐小湛

$$P\{X=k\} = \frac{C_{M}^{k} \cdot C_{N-M}^{n-k}}{C_{N}^{n}} \qquad P\{X=k\} = \frac{C_{50}^{k} \cdot C_{450}^{30-k}}{C_{500}^{30}}$$

(2) Y 服从参数为 n=30 p=0.1 的二项分布: $Y \sim b(30,0.1)$ 四川大学 徐小湛

$$P{Y=k} = C_{10}^{k}(0.1)^{k}(0.9)^{10-k}$$
 $k=0,1,2,...,10$

四川大学 徐小湛

$$P\{X=k\} = \frac{C_{50}^{k} \cdot C_{450}^{30-k}}{C_{500}^{30}} \quad P\{Y=k\} = C_{10}^{k} (0.1)^{k} (0.9)^{10-k}$$

A	В	C	D	E	F
k	$P\{X=k\}$	$P\{Y=k\}$	n=	30	抽取数
0	0. 038323	0. 042391	M =	50	次品数
1	0. 136544	0. 141304	N=	500	产品数
2	0. 229893	0. 227656	p=	0. 1	次品率
3	0. 243480	0. 236088			
4	0. 182179	0. 177066	T	wool	程序
5	0. 102535	0. 102305	L	xcei.	<u>作生/丁</u>
6	0.045130	0. 047363			
7	0. 015944	0. 018043			
8	0.004605	0.005764		DL	川大学
9	0.001102	0. 001565			ハハつ
10	0.000221	0.000365		1	余小湛
次品数	超几何分布	二项分布			

百度传源

$$P\{X=k\} = \frac{C_{50}^{k} \cdot C_{450}^{30-k}}{C_{500}^{30}} \quad P\{Y=k\} = C_{10}^{k} (0.1)^{k} (0.9)^{10-k}$$

$$P\{Y=k\} = C_{10}^{k}(0.1)^{k}(0.9)^{10-k}$$

四川大学猴小湛

四川大学 徐小湛

第16讲 离散型随机变量及其分布律 (III) 27

我们学了以下离散型随机变量及其分布律

四川大学 徐小湛

0-1分布(两点分布) $X \sim b(1,p)$

$$P{X = k} = p^{k}(1-p)^{1-k} \quad (k = 0, 1) \quad (0$$

二项分布 $X \sim b(n, p)$

$$(0$$

$$P\{X=k\} = C_n^k p^k (1-p)^{n-k} \quad (k=0,1,2,...)$$

泊松分布 $X \sim \pi(\lambda)$

四川大学徐小湛

$$P\{X=k\} = \frac{\lambda^k}{k!} e^{-\lambda} \quad (k=0,1,2,...) \quad (\lambda > 0)$$

四川大学 徐小湛

第16讲 离散型随机变量及其分布律 (III) 28

几何分布 $X \sim G(p)$

四川大学 徐小湛

$$P{X = k} = (1-p)^{k-1} p \quad (k = 1, 2, ...) \quad (0$$

超几何分布 $X \sim H(n, M, N)$

四川大学徐小湛

$$P\{X=k\} = \frac{C_M^k \cdot C_{N-M}^{n-k}}{C_N^n} \qquad (k=0,1,2,...n)$$

百度传媒 四川大学 徐小湛

它们之间的关系

四川大学能小港

超几何分布 二项分布

泊松分布

$$\frac{C_M^k \cdot C_{N-M}^{n-k}}{C_N^n} \approx C_n^k p^k (1-p)^{n-k} \approx \frac{\lambda^k}{k!} e^{-\lambda}$$

(p = M/N)

 $(\lambda = np)$

N和M比n大得多

N较大,p较小

请继续看下一讲 第17讲 随机变量的分布函数

本课程的视频在百度传课 http://www.chuanke.com 在百度传课搜:徐小湛

本课程主要参考教材

第四版

浙江大学

四川大学 徐小湛

我的QQ: 2243414853

微博: @川大徐小湛

微信: scuxuxz

Email: xuxzmail@163.com