"When I was working on my Ph.D., I developed a computer algorithm to look for rapid changes in populations' DNA.

Our DNA changes constantly over generations, but if certain changes spread through a population more quickly than others, they are probably the beneficial results of natural selection. This is the protection we give ourselves to survive."

-- Pardis Sabeti

Alignment type

 $S_1 = FTFTALILLAVAV$

 $S_2 = FTALLLAAV$

- Global
 - o the whole of each sequence is included, end to end

FTFTALILLAVAV F--TAL-LLA-AV

- Local
 - o only the best matching parts of each sequence

FTALILLA FTAL-LLA

- Glocal
 - global in query (small), local in reference (big)

FTFTALILL-AVAV FTAL-LLAAV

How many possibilities?

GAATC	GAAT-C	-GAAT-C
CATAC	C-ATAC	C-A-TAC
GAATC-	GAAT-C	GA-ATC
CA-TAC	CA-TAC	CATA-C

 How many different alignments of two sequences of length n exist?

Number of Possible Alignments

- given sequences of length *m* and *n*
- assume we don't count as distinct $\begin{array}{cc} C- & \text{and} & -C \\ -G & \end{array}$
- we can have as few as 0 and as many as min{m, n} matched positions
- therefore the number of possible alignments is given by

$$\sum_{k=0}^{\min\{m,n\}} \binom{n}{k} \binom{m}{k} = \binom{n+m}{n}$$

Note that because gaps are ambiguous, I'm using the matched positions to define a distinct alignment. The number of positions that match will *always* be the same number (k) in each sequence. So each alignment chooses k positions to match from the original sequences.

Number of Possible Alignments

• there are $\binom{2n}{n} = \frac{(2n)!}{(n!)^2} \approx \frac{2^{2n}}{\sqrt{\pi n}}$

possible global alignments for 2 sequences of length n

- e.g. two sequences of length 100 have $\approx 10^{77}$ possible alignments
- this is way TOO MANY TO ENUMERATE!!!
- but we can use *dynamic programming* to find an optimal alignment efficiently

Most basic comparison: identity

Sequence A: CTTAACT

Sequence B: CGGATCAT

Nucleic Acids Dot Plots

http:// arbl.cvmbs.colostate.e du/molkit/dnadot/ index.html

You begin to see "diagonals" when there is a long string of matches.

Be sure to note axis labels!

Dynamic programming

- A systematic means of calculating the BEST alignment given a particular scoring scheme.
- Yes, it's a weird name.
- DP is closely related to recursion and to mathematical induction.
- We can prove that the resulting score is optimal.

Dynamic Programming

- Breaks the problem into overlapping subproblems
- Uses memorization to keep solutions to subproblems we've already seen.
- works for either DNA or protein sequences, although the substitution matrices used differ
- finds an optimal alignment

Three legal moves

- A <u>match</u> pairs the next two characters in each sequence.
- An <u>insertion</u> introduces a gap in the sequence along the top edge.
- A <u>deletion</u> introduces a gap in the sequence along the left edge.

Dynamic Programming Idea

- consider last step in computing alignment of AAAC with AGC
- three possible options; in each we'll choose a different pairing for end of alignment, and add this to the best alignment of previous characters

Global alignment algorithm:

Needleman-Wunsch.

- Align sequence x and y.
- F is the DP matrix; s is the substitution matrix; d is the linear gap penalty.

$$F(0,0) = 0$$

$$F(i,j) = \max \begin{cases} F(i-1, j-1) + s(x_i, y_j) \\ F(i-1, j) + d \\ F(i, j-1) + d \end{cases}$$

Lets first consider the simple scoring scheme · · ·

- Problem: find the best pairwise alignment of GAATC and CATAC.
- Use a linear gap penalty of -4.
- Use the following substitution matrix:

	Α	С	G	Т
Α	10	-5	0	-5
С	-5	10	-5	0
G	0	-5	10	-5
Т	-5	0	-5	10

DP in equation form

$$F(i-1, j-1) \qquad F(i, j-1)$$

$$S(x_i, y_j) \qquad d$$

$$F(i-1, j) \longrightarrow d \longrightarrow F(i, j)$$

		In	itializ	ation		
		G	Α	А	Т	С
	0					
С						
Α						
Т						
Α						
С						

Introducing a gap						
		G	А	А	Т	С
	0 —	-4				
С						
Α						
Т						
Α						
С						
		l		ļ		

DP matrix						
		G	Α	Α	Т	С
	0 –	→ -4				
С	-4 –	→ -8				
Α						
Т						
Α						
С						

Traceback

- Start from the lower right corner and trace back to the upper left.
- Each arrow introduces one character at the end of each aligned sequence.
- A <u>horizontal</u> move puts a gap in the <u>left</u> sequence.
- A <u>vertical</u> move puts a gap in the <u>top</u> sequence.
- A diagonal move uses one character from each sequence.

Multiple solutions

GA-ATC CATA-C

GAAT-C

CA-TAC

GAAT-C C-ATAC

GAAT-C -CATAC When a program returns a sequence alignment, it may not be the only best alignment.

Needleman-Wunsch

Scoring Scheme:

	Α	С	G	Т
Α	2	-7	-5	-7
C	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Find the optimal alignment of AAG and AGC. Use a gap penalty of d=-5.

	А	А	G
А			
G			
С			

F(i-1, j-1)	F(i, j-1)
s(x)	(x,y_j) d
$F(i-1,j) \longrightarrow c$	$d \longrightarrow F(i,j)$

Needleman-Wunsch

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Find the optimal alignment of AAG and AGC. Use a gap penalty of d=-5.

		Α	А	G
	0			
Α				
G				
С				

F(i-1, j-1)	F	(i, j-1)
·	$s(x_i, y_j)$	d
F(i-1,j)	_	1

Needleman-Wunsch

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Find the optimal alignment of AAG and AGC. Use a gap penalty of d=-5.

		Α	Α	G
	0 →	-5 →	-10 →	-15
Α	- 5			
G	-10			
С	-15			

$$F(i-1, j-1) \qquad F(i, j-1)$$

$$S(x_i, y_j) \qquad d$$

$$F(i-1, j) \longrightarrow d \longrightarrow F(i, j)$$

Needleman-Wunsch

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Find the optimal alignment of AAG and AGC. Use a gap penalty of d=-5.

		А	А	G
	0 _	-5 →	-10 →	-15
А	-5	2 -	-3 →	-8
G	-10	-3	-3	-1
С	-15	-8	-8	-6

Needleman-Wunsch

Find the optimal alignment of AAG and AGC. Use a gap penalty of d=-5.

- Start from the lower right corner and trace back to the upper left.
- Each arrow introduces one character at the end of each aligned sequence.
- A horizontal move puts a gap in the left sequence.
- A vertical move puts a gap in the top sequence.
- A diagonal move uses one character from each sequence.

Needleman-Wunsch

Find the optimal alignment of AAG and AGC. Use a gap penalty of d=-5.

- Start from the lower right corner and trace back to the upper left.
- Each arrow introduces one character at the end of each aligned sequence.
- A horizontal move puts a gap in the left sequence.
- A vertical move puts a gap in the top sequence.
- A diagonal move uses one character from each sequence.

AAG- AAG--AGC A-GC