Izbor modela i skupa obeležja

Primenjeni algoritmi

Izbor modela

Neka je model predstavljen u obliku

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_k x^k$$

- Potrebno je odrediti $k \in \{0,1,2,\ldots,10\}$
- Zadatak je odabrati model iz skupa modela $\mathcal{M} = \{M_1, M_2, \dots, M_d\}$

Primer 1

Graphs of Polynomial Functions:

Constant Function (degree = 0)

Cubic Function (deg. = 3)

Linear Function (degree = 1)

Quartic Function (deg. = 4)

Quadratic Function (degree = 2)

Quintic Function (deg. = 5)

Modelovanje polinomom 1. reda

Modelovanje polinomom 25. reda

Modelovanje polinomom 4 reda

Analiza greške za različite modele

Unakrsna validacija (*Cross validation*)

- Trenirati svaki model M_i na obučavajućem skupu S dobiju se hipoteze h_i
- Izabrati hipotezu sa najmanjom greškom
 - Ovo ne radi. Ako se izabere polinom velikog reda on će bolje fitovati podatke iz obučavajućeg skupa S i dati manju obučavajuću grešku. Ali nije dobra zato što daje veliku varijansu kod pojave novih podataka veća greška.
- Algoritmi validacije:
 - Jednostavna unakrsna validacija
 - K-tostruka validacija
 - Validacija jednostruke eliminacije

Jednostavna unakrsna validacija

- 1. Na slučajan način se podeli skup S na S_{train} (npr. 70% podataka) obučavajući skup i S_{cv} (preostalih 30%) validacioni skup
- 2. Trenira se svaki model na skupu S_{train} i dobijaju hipoteze h_i
- 3. Bira se hipoteza h_i sa najmanjom greškom $\varepsilon_{S_{CV}}(h_i)$ na validacionom skupu S_{cv}
- Nedostatak: "Gubitak" oko 30% podataka

K-tostruka unakrsna validacija

- 1. Slučajno se podeli skup S na k disjunktnih podskupova sa m/k primera u svakom: S_1, S_2, \dots, S_k
- 2. Svaki model M_i se određuje iz:

```
For j = 1,...,k trenirati model M_i na S_1 \cup ... \cup S_{j-1} \cup S_{j+1} \cup ... S_k (sve sem S_j) i dobiti hipotezu \hat{h}_{ij} testirati hipotezu \hat{h}_{ij} na S_j \longrightarrow \hat{\varepsilon}_{S_j} (\hat{h}_{ij}) Odrediti grešku modela kao e_i = \frac{1}{k} \sum_{j=1}^k \hat{\varepsilon}_{S_j} (\hat{h}_{ij})
```

- 3. Bira se model M_i sa najmanjom greškom
- Tipičan izbor za k=10

5 —tostruka unakrsna validacija

	degrees	cross_valid
0	4	0.010549
1	5	0.010637
2	7	0.010665
3	6	0.010887
4	8	0.011182
5	3	0.011695
6	9	0.011757
7	11	0.011769
8	10	0.011902
9	12	0.012642

Validacija jednostruke eliminacije

- Ako je broj primera jako mali uzima se k=m
 - Svaki model se obučava na svakom podskupu m-1
 - Testira se na jednom (izostavljenom) primeru
 - Uzima se prosek

Izbor svojstava

- Ako je broj svojstava d veoma velik $n\gg m$ samo je mali skup svojstava relevantan
- Zadatak: izabrati poskup "značajnih" svojstava
- Postoji ukupno 2^m poskupova obimna pretraga
- Algoritmi:
 - Algoritmi omotača
 - Pretraga unapred dodavanje svojstava
 - Pretraga unazad uklanjanje svojstava
 - Rangirajući algoritmi
 - Uzajamna informacija svojstva i izlaza korelacija

Algortimi omotača – pretraga unapred

- 1. Polazi se od praznog skupa svojstava $\mathcal{X} = \emptyset$
- 2. Odlika $x_j \notin \mathcal{X}$ sa najmanjom greškom se dodaje u skup $\mathcal{X} = \mathcal{X} \cup x_j$
- 3. Ako postoji još neizabranih odlika > korak 2
- 4. U suprotnom vrati podskup X, kraj

Algortimi omotača – pretraga unazad

- 1. Polazi se od skupa svih svojstava ${\mathcal X}$
- 2. Eliminiše se u svakoj iteraciji jedno svojstvo x_j sa najvećom greškom $\mathcal{X} = \mathcal{X} \setminus x_j$
- 3. Ako postoji još neizabranih odlika > korak 2
- 4. U suprotnom vrati podskup X, kraj