Espaces Vectoriels de Dimension finie Sous-Espaces Vectoriels

MPSI 2

1 Dimension de sous-espaces vectoriels

Soit E un \mathbb{K}_{EV} de dimension finie.

Propriété 1.0.1

Soit F un S_{EV} de E.

Alors:

- F est de dimension finie.
- $\dim(F) \leqslant \dim(E)$
- $F = E \iff \dim(F) = \dim(E)$

On raisonne sur une base de F.

2 Somme de sous-espaces vectoriels

Soit E un \mathbb{K}_{EV} de dimension finie. Soient F et G deux S_{EV} de E.

Définition 2.0.1

On appelle somme de F et G le sous-espace vectoriel engendr par $F \cup G$

Notation: $F + G = \text{Vect}(F \cup G)$

Propriété 2.0.2

$$F + G = \{x \in E, \ \exists (x_F, x_G) \in F \times G, \ x = x_F + x_G\}$$

Propriété 2.0.3

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G)$$

On raisonne avec les bases de F, G, et $F \cap G$, et avec le thorme de la base incomplte sur $F \cap G$.

3 Somme directe, espaces supplmentaires

Soit E un \mathbb{K}_{EV} de dimension n.

Définition 3.0.2

Soient F et G deux S_{EV} de E.

- La somme F + G est <u>directe</u> si $F \cap G = \{0_E\}$
- ullet F et G sont supplmentaires de E si $F \oplus G = E$

Notation: Somme directe de F et G: $F \oplus G$

Propriété 3.0.4

$$\varphi_1 \colon F \times G \longrightarrow F + G$$

 $(x_F, x_G) \longmapsto x_F + x_G$
 $\varphi_1 \text{ est linaire et surjective.}$

- F et G sont en somme directe ssi φ_1 est injective.
- F et G sont en somme directe ssi tout lment de F + G s'crit comme manire unique comme CL d'Iments de F et de G.

Définition 3.0.3

$$\sum_{i=1}^{p} E_i = \text{Vect}\left(\bigcup_{i=1}^{p} E_i\right)$$

Définition 3.0.4

Soit
$$\varphi \colon E_1 \times \ldots \times E_p \longrightarrow E_1 + \ldots + E_p$$

 $(x_1, \ldots, x_p) \longmapsto x_1 + \ldots + x_p$

La somme $\sum_{i=1}^{p} E_i$ est directe ssi φ est injective, c'est à dire si tout lment de $E_1 + ... + E_p$ s'crit comme CL unique d'Iments de $\{E_1 \times ... \times E_p\}$.

Notation: $\bigoplus_{i=1}^{p} E_i$

Propriété 3.0.5

F+G est une somme directe ssi la runion d'une base de F et d'une base de G est une base de F+G.

Corollaire 3.0.1

$$\dim(F \oplus G) = \dim(F) + \dim(G)$$

Corollaire 3.0.2

- Si F et G sont supplmentaires de E, alors $\dim(F) + \dim(G) = \dim(E)$
- Tous les S_{EV} supplmentaires de F dans E sont de dimension $\dim(E) \dim(F)$