Assignment1

李鹏宇

October 16, 2024

Contents

1	Tasl	k 1: P;	$[\mathbf{yt}]$	ho	n	基	础															2
	1.1	Flatte	en l	ist	5					 									 			4
		1.1.1	Α	λlg	ori	ith	m	S		 									 			
		1.1.2	F	lx_{l}	oer	im	er	ts		 									 			
	1.2	Chara	$\operatorname{ct}\epsilon$	er	coı	ınt	t.			 									 			;
		1.2.1	Α	Λlg	ori	ith	m	S		 			 						 			
		1.2.2	F	$2x_1$	er	im	er	ts		 									 			;
2	Tasl 2.1 2.2	x 2: 基 模型配 实验结	记置	Ž				•		 												
3	Tasl	x 3: 基																				!
	3.1	Word2			or														 			Į
	3.2	模型面	_																			
	3.3	训练与			ť					 									 			,
	3 4	案例分	个标	ŕ																		

1 Task 1: Python 基础

本任务包括两个部分: flatten list 和 char count,每一个问题都实现了两种不同的算法,对它们的效率进行比较。

1.1 Flatten list

1.1.1 Algorithms

```
我分别基于 for-loop、列表推导式和 extend 方法实现了三种算法:
\#Using\ for-loop
def flatten_list_for(input_list):
    result = []
    for sublist in input_list:
        for item in sublist:
            result.append(item)
    return result
# Using python list comprehension
def flatten_list_list ( nested_list : list ) :
    return [item for sublist in nested list for item in sublist]
# Using extend method
def flatten_list_extend(nested_list: list):
    result = []
    for sublist in nested_list:
        result.extend(sublist)
    return result
```

1.1.2 Experiments

通过对总元素数量为 $10^3, 10^4, 10^5, ..., 10^7$ 的列表进行展平,记录算法耗时,得到如下结果 (table1, figure1)。这表明三种算法都是 O(N) 复杂度,但是相比较使用 list 的 extend 方法效率最高,其后是 list comprehension 和 for-loop。

Input Size	list_comprehensions (s)	list_extend (s)	for_loop (s)
10^{3}	0.000000	0.000000	0.000000
10^{4}	0.000000	0.000000	0.000000
10^{5}	0.003000	0.002000	0.005002
10^{6}	0.044864	0.033000	0.064002
10^{7}	0.520547	0.428107	0.742279

Table 1: Comparison of Timing for Different Methods on flatten list at Various Input Sizes

Figure 1: Compare three methods on flatten list task.

1.2 Character count

1.2.1 Algorithms

我分别基于字典推导式、使用内置方法的 for-loop 和 naive for-loop 方法实现了三种算法:

```
# Using dictionary comprehension
def char count dict(input str: str):
    return {char: input_str.count(char) for char in set(input_str)}
# Using for-loop with builtin methods
def char_count_for(input_str: str):
    char\_count = \{\}
    for char in input_str:
        char_count[char] = char_count.get(char, 0) + 1
    return char_count
# Using naive for-loop
def char_count_naive_for(input_str: str):
    char count = \{\}
    for char in input_str:
        if char in char_count:
            char count [char] += 1
        else:
            char\_count[char] = 1
    return char_count
```

1.2.2 Experiments

我下载了 wiki 的示例数据,将文本切分成 $10^3, 10^4, 10^5, ..., 10^7$ 的 slice,作为 character count 的测试,得到如下结果 (table2, figure2)。这表明三种算法都是 O(N) 复杂度,但是其中使用字典推导式的算法最快,而使用的 get 方法的 for-loop 要快于 naive for-loop 实现。

(a) Plot over input size.

(b) Plot over log input size.

Figure 2: Compare three methods on char count task.

Input Size	dict_comprehensions (s)	for_loop (s)	naive_for_loop (s)
10^{3}	0.000000	0.000000	0.000000
10^{4}	0.000000	0.002002	0.001367
10^{5}	0.006053	0.014441	0.018172
10^{6}	0.066294	0.109994	0.145695
10^{7}	0.654463	1.175184	1.558554

Table 2: Comparison of Timing for Different Methods on char count at Various Input Sizes

2 Task 2: 基于 CNN 的文本分类

在本任务中,我实现了一个卷积神经网络(CNN)用于中文句子的分类。首先,根据文本进行分词,建立词表,并转换为 one-hot 编码。CNN 网络包含嵌入层、卷积层、最大池化层和全连接层。在训练时,我采用 early stopping, 设置 patience 为 5, 当验证集上的损失连续五次不减后停止训练。

2.1 模型配置

我的 CNN 模型配置如下:

• Embedding Layer: 词向量维度为 100

• Convolution Layer: 使用三种不同卷积核大小(3, 4, 5), 每种 10 个卷积核

• Activation Function: ReLU

• Max Pooling

• Dropout: 0.5

• Fully Connected Layer: 输出 4 种类别

• Patience: 5

2.2 实验结果

在训练集分类准确率 93%, 验证集上的分类准确率为 77%。在验证集上使用 early stopping 达到了最优模型,避免了过拟合。最终在测试集上的准确率为 78%。

Figure 3: Caption

Epoch	Train Loss	Train Acc	Dev Loss	Dev Acc
0	1.3426	0.3594	1.1230	0.5615
1	1.0722	0.5289	0.9916	0.6211
2	0.9391	0.6056	0.9092	0.6396
3	0.8099	0.6697	0.8353	0.6689
4	0.7229	0.7063	0.7637	0.6846
5	0.6333	0.7502	0.7230	0.7002
6	0.5505	0.7890	0.6839	0.7158
7	0.4866	0.8167	0.6699	0.7246
8	0.4218	0.8382	0.6380	0.7344
9	0.3796	0.8532	0.6233	0.7471
10	0.3276	0.8762	0.6229	0.7490
11	0.2905	0.8904	0.6258	0.7539
12	0.2570	0.9080	0.6409	0.7539
13	0.2284	0.9122	0.6397	0.7588
14	0.1990	0.9252	0.6446	0.7627
15	0.1875	0.9314	0.6511	0.7715

Table 3: Training and Validation Loss and Accuracy

3 Task 3: 基于 RNN 的机器翻译

本任务中,我实现了一个基于 LSTM 和注意力机制的 RNN 模型,用于日文到英文的机器翻译。

3.1 Word2Vector

首先,我用空格对英语文本进行分词,用 sudachipy 对日语进行分词,然后基于文本构建词汇表。

```
class EngLang:
   def tokenize(self, sentence):
        return sentence.split(''
class JpnLang:
```

def tokenize(self, sentence):
 tokens = self.tokenizer_obj.tokenize(sentence, self.mode)
 return [token.surface() for token in tokens]

其次,我分别采用 Cbow 和 Skip-gram 算法训练 word embedding。最后,我通过将词向量映射到二维平面、计算相似度、利用现有相似度数据集测试等方法,评估训练得到的词嵌入。从表格4可以看出,相似的词汇之间具有很高的相似度。但是去除 OOV 之后,在 wordsim 数据集上测试相似度和相关性的表现都不好 (table5),这可能是因为用于训练的数据太少,不足以捕捉词汇间更精细的关系。

Figure 4: Embedding trained by Cbow

Figure 5: Embedding trained by Skip-gram

3.2 模型配置

RNN 模型配置如下:

Word Pair	Similarity
(Tom, Mary)	0.7510916
(He, She)	0.9654538
(in, on)	0.8808856

Table 4: Similarity Scores Between Word Pairs

Model	Similarity	Relatedness
skipgram	0.1071	0.0167
cbow	0.1304	0.0546

Table 5: Spearman Correlation for Different Models

• Embedding Layer:使用 Cbow 算法训练的词向量,维度为 100

• LSTM: 单层 LSTM, 隐藏层维度为 100

• Attention: Bahdanau attention

• Fully Connected Layer: (hidden_size, output_size) 🗗 (100, 100)

• Dropout: 0.1

3.3 训练与测试

当不采用 early stopping 的时候,训练集和验证集上的损失函数曲线见图6,可以看出 validation loss 在后续 epoch 上出现上扬趋势,说明训练出现过拟合现象。于是,我添加了 early stopping 机制,发现在第 35 个 epoch 模型训练就停止了 (figure7)。观察模型在验证集上的 bleu score 和 perplexity 变化 (figure8),可以发现在这些评价指标上的表现逐步提高。最后在测试集上,得到 Loss=0.79, BLEU=0.049, PPL=2.22。

3.4 案例分析

以下是几个翻译案例的输出:

Figure 6: Train without early stopping.

Figure 7: Train with early stopping.

Figure 8: BLEU and Perplexity on validation set

- Case 1: 私の名前は爱です -> My name is orange. <EOS>
- Case 2: 昨日はお肉を食べません -> I don't eat meat tonight. <EOS>
- Case 3: いただきますよう -> I try. <EOS>
- Case 4: 秋は好きです -> Fall is delicious. <EOS>
- Case 5: おはようございます -> How's your date you? <EOS>

从中可以看出,我们的模型正确翻译了部分单词,一些单词尽管错误,但是仍比较相关,句子整体比较可读。模型能力较差的原因,一则可能是我们用于训练的数据太少,导致 word embedding 效果不好,一则可能是模型架构简单,可以考虑改变 embedding dim、更多层 lstm 与其他 attention 机制。