Homework exercise sheet 1

submission date: 28-11-2014

Exercise 1:

Let us assume we have two stars - star A and star B. Star A has an apparent magnitude of $m_A = -1.5$ mag (very bright) and its distance to Earth is $d_A = 8.6$ light-years (very close). Star B has an apparent magnitude of $m_B = 1.25$ mag, but is way further away with a distance of $d_B = 2570$ light-years.

- a) Discuss advantages and disadvantages of using magnitudes instead of fluxes.
- b) Calculate the absolute magnitude of both stars.
- c) The bolometric correction (B.C. = $m_V m_{bol}$) is 0.35 mag for star A and 0.1 mag for star B. Calculate the luminosity of both stars in solar units ($M_{bol,\odot} = 4.74$ mag).
- d) The effective temperature of star A is $T_{eff,A} = 8525$ K and $T_{eff,B} = 9900$ K for star B. Calculate the radii of both stars in solar units ($T_{eff,\odot} = 5780$ K).
- e) The binary system ϵ Lyrae consists of ϵ^1 Lyr with $m_1 = 4.82$ mag and ϵ^2 Lyr with $m_2 = 4.77$ mag. The two components cannot be resolved by the human eye. What is the apparent magnitude of the system ϵ Lyrae?

Exercise 2:

Barnard's Star is an orange star in the constellation Ophiuchus. It has the largest known proper motion (motion perpendicular to the line of sight: $\mu = 10.3577$ "/yr) and the fourth largest parallax angle (p = 0.54901"). In the spectrum of Barnard's star, the H α absorption line is observed to have a wavelength of 656.034 nm when measured from Earth.

- a) Determine the radial velocity of Barnard's Star.
- b) Determine the transverse velocity of Barnard's Star.
- c) Calculate the speed of Barnard's Star through space.