Wrap-Up

Martin Beisel, Felix Gemeinhardt, Marie Salm, Benjamin Weder

- Session 1 (09:00 10:30): An Introduction to Quantum Computing
- Session 2 (11:00 12:30): Quantum Software Engineering
- Session 3 (14:00 15:30): Quantum Workflows
- Session 4 (16:00 17:30): Operation of Hybrid Quantum Applications

Introduction to Quantum Computing

1. Motivation and Overview

- Classical computing faces severe scaling issues
- QC is applicable to a variety of computational problems
- There are diverse approaches to quantum computing

2. Basic Working Principles

- QC harnesses quantum mechanical phenomena
- Mathematically its linear algebra

3. Near-term Applications are

- Quantum chemistry
- Quantum optimization
- Quantum machine learning

Introduction to Quantum Computing

4. Challenges and Limitations

- Interesting challenges remain regarding quantum hardware, software, and their interaction
- Quantum computers will always be special purpose machines
- The potential is worth the effort

5. Quantum Software Engineering

- Which concepts from classical SE can be applied to QC?
- What are sound SE principles for engineering quantum software?
- What are quantum-specific challenges and how to consider them?

- Session 1 (09:00 10:30): An Introduction to Quantum Computing
- Session 2 (11:00 12:30): Quantum Software Engineering
- Session 3 (14:00 15:30): Quantum Workflows
- Session 4 (16:00 17:30): Operation of Hybrid Quantum Applications

Quantum Software Lifecycle – Interwoven Lifecycle

Approach of the NISQ Analyzer

- Session 1 (09:00 10:30): An Introduction to Quantum Computing
- Session 2 (11:00 12:30): Quantum Software Engineering
- Session 3 (14:00 15:30): Quantum Workflows
- Session 4 (16:00 17:30): Operation of Hybrid Quantum Applications

Workflows for Quantum Computing

- Workflows enable orchestration and integration of heterogeneous applications
 - Definition of activities, control flow, and data flow

- Advantages:
 - Scalability
 - Robustness
 - Monitoring
 - Advanced Exception Handling
 - Portability via standardized languages (BPMN, BPEL)

Quantum Modeling Extension (QuantME)

quantum computation task

quantum circuit loading task

data preparation task

quantum circuit execution task

readout error mitigation task

result evaluation task

optimization task

warm-starting task

quantum hardware selection sub-process

circuit cutting sub-process

QuantME Modeling

Automatic QuantME Modeling Construct Replacement

Manual Refinement

Quantum Service Ecosystem

- Session 1 (09:00 10:30): An Introduction to Quantum Computing
- Session 2 (11:00 12:30): Quantum Software Engineering
- Session 3 (14:00 15:30): Quantum Workflows
- Session 4 (16:00 17:30): Operation of Hybrid Quantum Applications

Hands-On Session: Route Planning for Package Delivery Drivers

- Hybrid Quantum Application:
 - MaxCut and TSP solved using variational quantum algorithms
 - Additional classical pre- and post-processing steps

Hands-On Session: Route Planning for Package Delivery Drivers

Resulting routes for 3 drivers and 10 destinations:

Thanks for your participation!