Simulations on N-Body problems with Relativistic Corrections

Stability on the restricted three bodies problem

Julián Jiménez-Cárdenas¹

¹Fundación Universitaria Konrad Lorenz, Bogotá.

 $\verb|juliano.jimenezc@konradlorenz.edu.co|\\$

Contents

- 1 Potential Energy
 - Schwarszchild de Sitter Potential Augmented and Effective Potential
- 2 Critical and Stable Points Constraints
- **3** Movement Equations
 - Potential Energy for an infinitesimal mass Hamiltonian Rotating Equilibria
- 4 References

Potential Energy in Schwarszchild de Sitter metric

The potential associated to the Schwarszchild de Sitter metric, is given by

$$U(r) = \frac{k}{r} + \frac{A}{r^2} + \frac{B}{r^3}$$
 (1)

where k = GM, $A = \frac{\Lambda c^2}{6}$ and $B = \frac{GML^2}{c^2}$.

Augmented and Effective Potential

Augmented Potential

An infinitesimal mass in the presence of two masses M_1 , M_2 such that $M_1 + M_2 = 1$, with relativistic coefficients A_1 , A_2 , and oblateness parameters B_1 and B_2 , respectively; has an augmented potential

$$U_a(r) = -\frac{1}{r} \left(1 + \frac{A_1 + A_2}{r} + \frac{B_1 + B_2}{r^2} \right) + \frac{r^2 \omega^2}{2}$$
 (2)

Effective Potential

and an effective potential

$$U_{eff}(r) = -\frac{1}{r} \left(1 + \frac{A_1 + A_2}{r} + \frac{B_1 + B_2}{r^2} \right) + \frac{l^2}{2r^2}$$
 (3)

Constraint for ω

ω

Under an escalation of the space, we look for the critical points located at r = 1. For that, the equation

$$U'_{eff}(r)|_{r=1}=0$$

must holds. This implies that

$$\omega^2 = 1 + 2(A_1 + A_2) + 3(B_1 + B_2) \tag{4}$$

Constraint for oblateness coefficients

Equilibrium points

In order to guarantee the stability of the orbit, we look for the minimal points of the potential, *i.e.*

$$U''_{eff}(r)|_{r=1}>0,$$

where we get

$$B_1 + B_2 < 1/3,$$
 (5)

as expected[1].

Restricted Three Bodies Problem

Problem Statement

On the rotating system, the primaries are localized in $-\mu$ and $1-\mu$, and have parameters $(1\mu, B_1, A_1)$ and (μ, B_2, A_2) , respectively[3]. The potential energy is given by

$$U(x_1, x_2) = -(1 - \mu) \left(\frac{1}{\rho_1} + \frac{A_1}{\rho_1^2} + \frac{B_1}{\rho_1^3} \right) - \mu \left(\frac{1}{\rho_2} + \frac{A_2}{\rho_2^2} + \frac{B_2}{\rho_2^3} \right)$$
 (6)

where

$$\rho_1 = \sqrt{(x_1 + \mu)^2 + x_2^2}$$
, $\rho_2 = \sqrt{(x_1 + \mu - 1)^2 + x_2^2}$

Movement Equations

Hamiltonian

Denoting $x = (x_1, x_2)$ and $y = (y_1, y_2)$, the dynamics of the rotating system are determined by the Hamiltonian

$$H(x,y) = \frac{1}{2}y^2 - \omega(x_1y_2 - x_2y_1) + U(x).$$

Movement Equations

The movement equations would be:

$$\frac{d^2x}{dt^2} = -\omega Ky + \frac{\partial U(x)}{\partial x} \quad , \quad \frac{d^2x}{dt^2} = -\omega Ky + \frac{\partial U(x)}{\partial x}$$

Rotating Equilibria

Rotating Equilibria

Additionally, the rotating equilibria are found in the points that satisfy[2]

$$-\omega^2 x + \frac{\partial U}{\partial x} = 0. (7)$$

From the last equation we get a system of two equations that, due to the linear independence of the powers of ρ_i , can be resumed into the following equality

$$\frac{1}{\rho_1^3} + \frac{2A_1}{\rho_1^4} + \frac{3B_1}{\rho_1^5} = \frac{1}{\rho_2^3} + \frac{2A_1}{\rho_2^4} + \frac{3B_1}{\rho_2^5} = \omega^2$$
 (8)

References

References

- [1] Arredondo, A., Jianguang, G., Stoica, C., Tamayo C.: On the restricted three body problem with oblate primaries, Astrophys Space Sci (2012)
- [2] Meyer, K.: Periodic Solutions of the N-Body Problem. In: Lecture Notes in Mathematics, vol. 1719. Springer, Berlin (1999)
- [3] Meyer, K., Hall, G.: Introduction to Hamiltonian Dynamical Systems and the N-body Problem. Springer, New York (1992)

References

References

[4] Jiménez, J.: https://github.com/julian20250/RelativisticPotential