# Comparing Differential Evolution to Classical and Evolutionary Optimization

STAT 540 Project Adaku Uchendu

### **Problem Definition**

#### Main Objective

For an objective function  $f: X \subset \mathbb{R}^D \to \mathbb{R}$  where the feasible region  $X \neq \emptyset$ , the minimization problem is to find  $x* \in X$  such that  $f(x*) \leq f(x) \ \forall x \in X$  where  $f(x*) \neq -\infty$ .

#### Data Description

- Car MSRP Kaggle dataset
- Dimensions: 8084 observations x 16 features
- Used only 8 Features: Number of doors, Engine HP, highway MPG, city mpg, Engine cylinders,
  Year, Popularity
- MSRP group: Ordinary, Deluxe, Super-deluxe, Luxury, Super-luxury

#### Regression model

$$Y = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_7 x_7 + \epsilon$$

# **Optimization Algorithms**

- Classical Algorithms
  - Gradient Descent: first-order
  - Stochastic Gradient Descent: first-order
  - Newton-Raphson: *second-order*
  - Quasi-Newton ('BFGS'): second-order
- Evolutionary Algorithms
  - Particle Swarm Optimization: direct search or zero-order
  - **Differential Evolution:** *direct search or zero-order*

## Differential Evolution

- 1: Generate initial population  $P^0 = \{\vec{x}_1^0, \vec{x}_2^0, ..., \vec{x}_N^0\}$
- 2: Let t = 0
- 3: repeat
- 4: **for** each individual  $\vec{x}_i^t$  in the population  $P^t$  **do**
- 5: Generate three random integers  $\eta$ ,  $r_2$  and
- 6:  $r_3 \in \{1,2,...,N\} \setminus i$ , with  $r_1 \neq r_2 \neq r_3$
- 7: Generate a random integer  $j_{rand} \in \{1, 2, ..., D\}$
- 8: **for** each parameter *j* **do**

9: 
$$u_{i,j}^{t+1} = \begin{cases} x_{r_3,j}^t + F \times (x_{r_1,j}^t - x_{r_2,j}^t), \\ \text{if } (rand \le CR || j = rand[1,D]) \\ x_{i,j}^t, \text{ otherwise} \end{cases}$$

- 10: end for
- 11: Replace  $\vec{x}_i^t$  with the child  $\vec{u}_i^{t+1}$  in the population  $P^{t+1}$ ,
- 12: if  $\vec{u}_i^{t+1}$  is better, otherwise  $\vec{x}_i^t$  is retained
- 13: end for
- 14: t = t + 1
- 15: **until** the termination condition is achieved



### Initialization and Mutation

• Initialization: Define upper and lower bounds for each parameter:

$$x_j^L \le x_{j,i,1} \le x_j^U$$

Then randomly select the initial parameter values uniformly on the intervals  $[x_i^L, x_i^U]$ .

• Mutation: For a given parameter  $x_{i,G}$  randomly select 3 vectors -  $x_{r1,G}$ ,  $x_{r2,G}$ , and  $x_{r3,G}$ , such that i, r1, r2, and r3 are distinct. Next, perform

$$v_{i,G+1} = x_{r1,G} + F(x_{r2,G} - x_{r3,G})$$

where mutation factor  $F \in [0, 2]$  and  $v_{i,G+1}$  is called the donor vector.

## Recombination and Selection

• **Recombination:** The trial vector  $u_{i,G+1}$  is developed from the elements of the target vector,  $x_{i,G}$ , and the elements of the donor vector,  $v_{i,G+1}$ . Elements of the donor vector enter the trial vector with probability CR;

$$v_{j,i,G+1} = \begin{cases} v_{j,i,G+1} & if \ rand_{j,i} \le CR \ or \ j = I_{rand} \\ x_{j,i,G} & if \ rand_{j,i} > CR \ and \ j \ne I_{rand} \end{cases}$$

where  $rand_{i,j}$   $U[0,1], I_{rand}$  is a random integer from  $[1,\ldots,D]$  and  $I_{rand}$  ensures that  $v_{i,G+1} \neq x_{i,G}$ .

• **Selection:** The target vector,  $x_{i,G}$  is compared to the trial vector,  $v_{i,G+1}$  and the one with the lowest function value is admitted to the next generation:

$$x_{i,G+1} = \begin{cases} u_{i,G+1} & if \ f(u_{i,G+1}) \le f(x_{i,G}), \ i = 1, 2, \dots, N \\ x_{i,G} & otherwise \end{cases}$$

## Variants of Differential Evolution

| Variant               | Mathematical Formulation                                                                   |  |
|-----------------------|--------------------------------------------------------------------------------------------|--|
| Best/1/Exp            | $x_{i,j,G+1} = best_{j,G} + F.(x_{r1,j,G} - x_{r2,j,G})$                                   |  |
| Rand/1/Exp            | $x_{i,j,G+1} = x_{r1,j,G} + F(x_{r2,j,G} - x_{r3,j,G})$                                    |  |
| RandToBest/1/Exp      | $x_{i,j,G+1} = x_{i,j,G} + F.(best_{i,G} - x_{i,j,G}) + F.(x_{r_{1,j,G}} - x_{r_{2,j,G}})$ |  |
| $\mathrm{Best/2/Exp}$ | $x_{i,j,G+1} = best_{i,G} + F.(x_{r1,i,G} + x_{r2,i,G} - x_{r3,i,G} - x_{r4,j,G})$         |  |
| Rand/2/Exp            | $x_{i,j,G+1} = x_{r1,i,G} + F.(x_{r2,i,G} + x_{r3,i,G} - x_{r4,i,G} - x_{r5,i,G})$         |  |
| Best/1/Bin            | $x_{j,i,G+1} = best_{i,G} + F.(x_{r1,i,G} - x_{r2,i,G})$                                   |  |
| Rand/1/Bin            | $x_{j,i,G+1} = x_{r1,j,G} + F(x_{r2,j,G} - x_{r3,j,G})$                                    |  |
| RandToBest/1/Bin      | $x_{j,i,G+1} = x_{i,j,G} + F.(best_{i,G} - x_{i,j,G}) + F.(x_{r_{1,j,G}} - x_{r_{2,j,G}})$ |  |
| Best/2/Bin            | $x_{j,i,G+1} = best_{i,G} + F.(x_{r1,i,G} + x_{r2,i,G} - x_{r3,i,G} - x_{r4,i,G})$         |  |
| Rand/2/Bin            | $x_{j,i,G+1} = x_{r1,i,G} + F.(x_{r2,i,G} + x_{r3,i,G} - x_{r4,i,G} - x_{r5,i,G})$         |  |

Table 1: Differential Evolution variants

# DE with Ackley's function

$$f(x_0 \cdots x_n) = -20exp(-0.2\sqrt{\frac{1}{n}\sum_{i=1}^n x_i^2}) - exp(\frac{1}{n}\sum_{i=1}^n cos(2\pi x_i)) + 20 + e$$
$$-32 \le x_i \le 32$$

minimum at  $f(0, \dots, 0) = 0$ 



## Results

| f     | Function   | Definition                                                                                                                 | Bound                  | Global minimum     |
|-------|------------|----------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------|
| $f_1$ | Rosenbrock | $F(\vec{x_i}) = \sum_{i=1}^{n-1} 100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2$                                                     | $-15 \le x_i \le 15$   | $x_i = [1.0, 1.0]$ |
| $f_2$ | Ackley     | $F(\vec{x_i}) = -20 \exp(-0.2\sqrt{\frac{1}{n}\sum_{i=1}^n x_i^2}) - \exp(\frac{1}{n}\sum_{i=1}^n \cos 2\pi x_i) + 20 + e$ | $-32 \le x_i \le 32$   | $x_i = [0, 0]$     |
| $f_3$ | Sphere     | $F(\vec{x_i}) = \sum_{i=1}^n x_i^2$                                                                                        | $-100 \le x_i \le 100$ | $x_i = \vec{0}$    |

Table 2: Test Objective functions

| Algorithm | Iteration | $f_1$ | $f_2$           | $f_3$          |
|-----------|-----------|-------|-----------------|----------------|
| DE        | 100       | 0.434 | $5.610e^{-12}$  | $4.326e^{-25}$ |
| PSO       | 100       | 0.325 | $4.441e^{-16}$  | $1.706e^{-21}$ |
| GD        | 100       | 0.132 | $4.501e^{-05}$  | $4.315e^{-05}$ |
| SGD       | 100       | 0.123 | $1.965e^{-06}$  | $2.167e^{-05}$ |
| QN        | 100       | 0.999 | $3.911e^{-10}$  | $2.885e^{-07}$ |
| NR        | 100       | 0.999 | $-7.943e^{-09}$ | $1.961e^{-13}$ |

|                      | RMSE      |
|----------------------|-----------|
| Baseline             | 0.4094    |
| DE                   | 1318.6819 |
| PSO                  | SR        |
| GD                   | 0.5465    |
| $\operatorname{SGD}$ | 0.5859    |
| NR                   | NA        |
| QN                   | NA        |

Table 3: Results of the Test Objective functions with the Optimization algorithms

Table 5: Results of the Optimization algorithm with the Linear Regression model

## Summary

- One of the most popular Evolutionary algorithm
- Performs well on problems with large dimensions
- Does not guarantee convergence to global minima
- More efficient and accurate than Genetic algorithms
- Applications:
  - Black-box Adversarial attack (i.e. One-Pixel)
  - Design of digital filters
  - Optimization of fermentation of alcohol

**AllConv** 



CAR(99.7%)



NiN

FROG(99.9%)



AIRPLANE(85.3%)

VGG



HORSE DOG(70.7%)



DOG CAT(75.5%)



FROG(86.5%)



CAR AIRPLANE(82.4%)



DEER DOG(86.4%)



CAT BIRD(66,2%)



DEER **AIRPLANE(49.8%)** 



BIRD FROG(88.8%)



SHIP AIRPLANE(88.2%)



HORSE DOG(88.0%)



SHIP AIRPLANE(62.7%)



CAT DOG(78.2%)