Exercise 3

Kai Schneider

May 10, 2021

Task 1 Proofs

a.)

given $(\mathscr{T}v)(s) = \max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma v(s')]$ show that \mathscr{T} is a γ -contraction:

To prove: $||\mathscr{T}\upsilon-\mathscr{T}\upsilon'||\leqslant \gamma||\upsilon-\upsilon'||$

$$\begin{split} ||\mathscr{T}\upsilon - \mathscr{T}\upsilon'|| &= ||\max_{a} \sum_{s',r} p(s',r|s,a)[r+\gamma\upsilon] - \max_{a} \sum_{s',r} p(s',r|s,a)[r+\gamma\upsilon']|| \\ &= ||\max_{a} \left[\sum_{s',r} p(s',r|s,a)[r+\gamma\upsilon] - \sum_{s',r} p(s',r|s,a)[r+\gamma\upsilon'] \right]|| \\ &= ||\max_{a} \sum_{s',r} p(s',r|s,a) \left[[r+\gamma\upsilon] - [r+\gamma\upsilon'] \right]|| \\ &= ||\max_{a} \gamma \sum_{s',r} p(s',r|s,a)[\upsilon - \upsilon']|| \\ &= \gamma ||\max_{a} \sum_{s',r} p(s',r|s,a)[\upsilon - \upsilon']|| \\ &\leq \gamma ||\upsilon - \upsilon'|| \end{split}$$

b.)

finite $MDP(S, A, R, p, \gamma), r \in [r_{min}, r_{max}] \ \forall r \in R$

I:

prove $\frac{r_{min}}{1-\gamma} \le v(s) \le \frac{r_{max}}{1-\gamma}$

with:
$$\upsilon = \mathbb{E}\left[\sum_{i=0}^{\infty} \gamma^{i} R_{t+i+1} | S_{t} = s\right]$$

$$\mathbb{E}\left[\sum_{i=0}^{\infty} \gamma^{i} r_{min} | S_{t} = s\right] \leq \upsilon \leq \mathbb{E}\left[\sum_{i=0}^{\infty} \gamma^{i} r_{max} | S_{t} = s\right]$$

$$\mathbb{E}\left[r_{min} \sum_{i=0}^{\infty} \gamma^{i} | S_{t} = s\right] \leq \upsilon \leq \mathbb{E}\left[r_{max} \sum_{i=0}^{\infty} \gamma^{i} | S_{t} = s\right]$$

$$\mathbb{E}\left[\frac{r_{min}}{1-\gamma} | S_{t} = s\right] \leq \upsilon \leq \mathbb{E}\left[\frac{r_{max}}{1-\gamma} | S_{t} = s\right] \quad \text{for } 0 \leq \gamma \leq 1$$

$$\Leftrightarrow \frac{r_{min}}{1-\gamma} \leq \upsilon \leq \frac{r_{max}}{1-\gamma}$$

II:

prove
$$|v(s) - v(s')| \le \frac{r_{max} - r_{min}}{1 - \gamma}$$

again with:
$$\upsilon = \mathbb{E}\left[\sum_{i=0}^{\infty} \gamma^{i} R_{t+i+1} | S_{t} = s\right]$$

$$|\upsilon(s) - \upsilon(s')| \leq \left|\mathbb{E}\left[\frac{r_{max}}{1 - \gamma} | S_{t} = s\right] - \mathbb{E}\left[\frac{r_{min}}{1 - \gamma} | S_{t} = s'\right]\right| \quad \text{see (I)}$$

$$|\upsilon(s) - \upsilon(s')| \leq \left|\frac{r_{max}}{1 - \gamma} - \frac{r_{min}}{1 - \gamma}\right| = \frac{r_{max} - r_{min}}{1 - \gamma}$$

Task 2 Programming

a.)

The algorithm converges in 43 steps with the folling optimal value function:

0.01543432	0.01559069	0.02744009	0.01568004
0.02685371	0.0	0.05978021	0.0
0.0584134	0.13378315	0.1967357	0.0
0.0	0.2465377	0.54419553	0.0

b.)

The optimal policy is:

$$(2, 3, 2, 3, 0, 0, 0, 0, 3, 1, 0, 0, 0, 2, 1, 0)$$