Výroková a predikátová logika - VII

Petr Gregor

KTIML MFF UK

ZS 2018/2019

Platnost ve struktuře

Nechť φ je formule jazyka L a \mathcal{A} je struktura pro L.

- φ je *pravdivá* (*platí*) *ve struktuře* A, značeno $A \models \varphi$, pokud $A \models \varphi[e]$ pro každé ohodnocení $e: \text{Var} \to A$. V opačném případě píšeme $A \not\models \varphi$.
- φ je *lživá v A*, pokud $\mathcal{A}\models \neg \varphi$, tj. $\mathcal{A}\not\models \varphi[e]$ pro každé $e\colon \mathrm{Var}\to A$.
- ullet Pro každé formule $arphi,\,\psi,$ proměnnou x a strukturu ${\mathcal A}$ platí
 - $(1) \qquad \mathcal{A} \models \varphi \qquad \Rightarrow \quad \mathcal{A} \not\models \neg \varphi$
 - (2) $\mathcal{A} \models \varphi \wedge \psi \Leftrightarrow \mathcal{A} \models \varphi \text{ a } \mathcal{A} \models \psi$
 - $(3) \qquad \mathcal{A} \models \varphi \lor \psi \quad \Leftarrow \quad \mathcal{A} \models \varphi \text{ nebo } \mathcal{A} \models \psi$
 - (4) $\mathcal{A} \models \varphi \quad \Leftrightarrow \quad \mathcal{A} \models (\forall x)\varphi$
- Je-li φ sentence, je φ pravdivá v $\mathcal A$ či lživá v $\mathcal A$ a tedy implikace (1) platí i obráceně. Je-li φ nebo ψ sentence, implikace (3) platí i obráceně.
- Z (4) plyne, že $\mathcal{A} \models \varphi$ právě když $\mathcal{A} \models \psi$, kde ψ je *generální uzávěr* φ , tj. formule $(\forall x_1) \cdots (\forall x_n) \varphi$, v níž x_1, \ldots, x_n jsou všechny volné proměnné φ .

Platnost v teorii a logická platnost

- Teorie jazyka L je libovolná množina T formulí jazyka L (tzv. axiomů).
- Model teorie T je L-struktura A taková, že $A \models \varphi$ pro každé $\varphi \in T$, značíme $A \models T$.
- *Třída modelů* teorie T je $M(T) = \{A \in M(L) \mid A \models T\}$.
- Formule φ je *pravdivá v T* (*platí v T*), značíme $T \models \varphi$, pokud $\mathcal{A} \models \varphi$ pro každý model \mathcal{A} teorie T. V opačném případě píšeme $T \not\models \varphi$.
- Formule φ je *lživá* v T, pokud $T \models \neg \varphi$, tj. je lživá v každém modelu T.
- Formule φ je *nezávislá v T*, pokud není pravdivá v T ani lživá v T.
- Je-li $T=\emptyset$, je M(T)=M(L) a teorii T vynecháváme, případně říkáme "v logice". Pak $\models \varphi$ značí, že φ je pravdivá ((logicky) platí, tautologie).
- Důsledek T je množina $\theta^L(T)$ všech sentencí jazyka L pravdivých v T, tj. $\theta^L(T) = \{ \varphi \in \operatorname{Fm}_L \mid T \models \varphi \text{ a } \varphi \text{ je sentence} \}.$

Příklad teorie

Teorie uspořádání T jazyka $L = \langle \leq \rangle$ s rovností má axiomy

$$x \le x$$
 (reflexivita)
 $x \le y \land y \le x \rightarrow x = y$ (antisymetrie)
 $x \le y \land y \le z \rightarrow x \le z$ (tranzitivita)

Modely T jsou L-struktury $\langle S, \leq_S \rangle$, tzv. uspořádané množiny, ve kterých platí axiomy T, např. $\mathcal{A} = \langle \mathbb{N}, \leq \rangle$ nebo $\mathcal{B} = \langle \mathcal{P}(X), \subseteq \rangle$ pro $X = \{0, 1, 2\}$.

- Formule φ ve tvaru $x \leq y \vee y \leq x$ platí v \mathcal{A} , ale neplatí v \mathcal{B} , neboť např. $\mathcal{B} \not\models \varphi[e]$ při ohodnocení $e(x) = \{0\}, e(y) = \{1\}$, je tedy nezávislá v T.
- Sentence ψ ve tvaru $(\exists x)(\forall y)(y \leq x)$ je pravdivá v \mathcal{B} a lživá v \mathcal{A} , je tedy rovněž nezávislá v T. Píšeme $\mathcal{B} \models \psi$, $\mathcal{A} \models \neg \psi$.
- Formule χ ve tvaru $(x \le y \land y \le z \land z \le x) \rightarrow (x = y \land y = z)$ je pravdivá v T, píšeme $T \models \chi$, totéž platí pro její generální uzávěr.

Nesplnitelnost a pravdivost

Problém pravdivosti v teorii lze převést na problém existence modelu.

Tvrzení Pro každou teorii T a sentenci φ (stejného jazyka)

$$T, \neg \varphi$$
 nemá model \Leftrightarrow $T \models \varphi$.

Důkaz Z definic plynou ekvivalence následujících tvrzení.

- (1) $T, \neg \varphi$ nemá model,
- (2) $\neg \varphi$ neplatí v žádném modelu teorie T,
- (3) φ platí v každém modelu teorie T,
- (4) $T \models \varphi$. \square

Poznámka Předpoklad, že φ *je sentence, je nutný pro* $(2) \Rightarrow (3)$.

Např. teorie $\{P(c), \neg P(x)\}$ nemá model, ale $P(c) \not\models P(x)$, kde P je unární relační symbol a c je konstantní symbol.

Základní algebraické teorie - příklady

• *Teorie grup* nad jazykem $L = \langle +, -, 0 \rangle$ s rovností má axiomy

$$x+(y+z)=(x+y)+z$$
 (asociativita +)
 $0+x=x=x+0$ (neutralita 0 k +)
 $x+(-x)=0=(-x)+x$ (-x je inverzní prvek k x)

- Teorie komutativních grup má navíc ax. x + y = y + x (komutativita +)
- *Teorie okruhů* je jazyka $L = \langle +, -, \cdot, 0, 1 \rangle$ s rovností, má navíc axiomy

$$1 \cdot x = x = x \cdot 1$$
 (neutralita $1 \cdot k \cdot 1$) $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ (asociativita $\cdot 1$) $x \cdot (y + z) = x \cdot y + x \cdot z$, $(x + y) \cdot z = x \cdot z + y \cdot z$ (distributivita $\cdot k \cdot 1$)

- Teorie komutativních okruhů má navíc ax. $x \cdot y = y \cdot x$ (komutativita ·)
- Teorie těles stejného jazyka má navíc axiomy

$$x \neq 0 \to (\exists y)(x \cdot y = 1)$$
 (existence inverzního prvku k ·) $0 \neq 1$ (netrivialita)

Vlastnosti teorií

Teorie T jazyka L je (sémanticky)

- $sporn\acute{a}$, jestliže v ní platí \perp (spor), jinak je $bezesporn\acute{a}$ ($splniteln\acute{a}$),
- kompletní, jestliže není sporná a každá sentence je v ní pravdivá či lživá,
- extenze teorie T' jazyka L', jestliže $L' \subseteq L$ a $\theta^{L'}(T') \subseteq \theta^L(T)$, o extenzi T teorie T' řekneme, že je jednoduchá, pokud L = L', a konzervativní, pokud $\theta^{L'}(T') = \theta^L(T) \cap \operatorname{Fm}_{L'}$,
- ekvivalentni s teorii T', jestliže T je extenzi T' a T' je extenzi T,

Struktury A, B pro jazyk L jsou *elementárně ekvivalentní*, značeno $A \equiv B$, platí-li v nich stejné formule.

Pozorování Nechť T a T' jsou teorie jazyka L. Teorie T je (sémanticky)

- (1) bezesporná, právě když má model,
- (2) kompletní, právě když má až na elementární ekvivalenci jediný model,
- (3) extenze T', právě když $M(T) \subseteq M(T')$,
- (4) ekvivalentní s T', právě když M(T) = M(T').

Podstruktura

Nechť $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ a $\mathcal{B} = \langle B, \mathcal{R}^B, \mathcal{F}^B \rangle$ isou struktury pro jazyk $L = \langle \mathcal{R}, \mathcal{F} \rangle$.

Rekneme, že \mathcal{B} je (indukovaná) podstruktura \mathcal{A} , značeno $\mathcal{B} \subseteq \mathcal{A}$, pokud

- (i) $B \subseteq A$,
- (ii) $R^B = R^A \cap B^{\operatorname{ar}(R)}$ pro každé $R \in \mathcal{R}$.
- (iii) $f^B = f^A \cap (B^{\operatorname{ar}(f)} \times B)$, tj. $f^B = f^A \upharpoonright B^{\operatorname{ar}(f)}$, pro každé $f \in \mathcal{F}$.

Pozorování Množina $C \subseteq A$ je doménou nějaké podstruktury struktury A, právě když C je uzavřená na všechny funkce struktury A (včetně konstant).

- Pak příslušnou podstrukturu značíme A | C a říkáme, že je to restrikce (parcializace) struktury A na C.
- Množina $C \subseteq A$ je *uzavřená* na funkci $f: A^n \to A$, pokud $f(x_0,\ldots,x_{n-1})\in C$ pro každé $x_0,\ldots,x_{n-1}\in C$.

Např. $\mathbb{Z} = \langle \mathbb{Z}, +, \cdot, 0 \rangle$ je podstrukturou $\mathbb{Q} = \langle \mathbb{Q}, +, \cdot, 0 \rangle$ a lze psát $\mathbb{Z} = \mathbb{Q} \upharpoonright \mathbb{Z}$. Dále $\mathbb{N} = \langle \mathbb{N}, +, \cdot, 0 \rangle$ je jejich podstrukturou a $\mathbb{N} = \mathbb{Q} \upharpoonright \mathbb{N} = \mathbb{Z} \upharpoonright \mathbb{N}$.

Platnost v podstruktuře

Nechť \mathcal{B} je podstruktura struktury \mathcal{A} pro (pevný) jazyk L.

Tvrzení Pro každou otevřenou formuli φ a ohodnocení $e: \mathrm{Var} \to B$ platí $\mathcal{B} \models \varphi[e]$ právě když $\mathcal{A} \models \varphi[e]$.

 $D\mathring{u}kaz$ Je-li φ atomická, plyne tvrzení z definice platnosti při ohodnocení. Dále snadno indukcí dle struktury formule.

Důsledek Otevřená formule platí ve struktuře A, právě když platí v každé podstruktuře $B \subseteq A$.

Teorie T je otevřená, jsou-li všechny její axiomy otevřené formule.

Důsledek Každá podstruktura modelu otevřené teorie *T* je modelem *T*.

Např. každá podstruktura grafu, tj. modelu teorie grafů, je rovněž grafem, zveme ho podgraf. Obdobně např. podgrupa nebo Booleova podalgebra.

Generovaná podstruktura, expanze, redukt

Nechť $\mathcal{A}=\langle A,\mathcal{R}^A,\mathcal{F}^A \rangle$ je struktura a $X\subseteq A$. Označme B nejmenší podmnožinu množiny A obsahující X, která je uzavřená na všechny funkce struktury \mathcal{A} (včetně konstant). Pak strukturu $\mathcal{A}\upharpoonright B$ značíme rovněž $\mathcal{A}\langle X\rangle$ a podstruktura říkáme, že je to \mathcal{A} generovaná množinou X.

Např. pro $\underline{\mathbb{Q}} = \langle \mathbb{Q}, +, \cdot, 0 \rangle$, $\underline{\mathbb{Z}} = \langle \mathbb{Z}, +, \cdot, 0 \rangle$ a $\underline{\mathbb{N}} = \langle \mathbb{N}, +, \cdot, 0 \rangle$ je $\underline{\mathbb{Q}} \langle \{1\} \rangle = \underline{\mathbb{N}}$, $\underline{\mathbb{Q}} \langle \{-1\} \rangle = \underline{\mathbb{Z}}$ a $\underline{\mathbb{Q}} \langle \{2\} \rangle$ je podstruktura na všech sudých přirozených číslech.

Nechť \mathcal{A}' je struktura pro jazyk L' a $L \subseteq L'$ je jazyk. Odebráním realizací symbolů, jež nejsou v L, získáme z \mathcal{A}' strukturu \mathcal{A} , kterou nazýváme *redukt* struktury \mathcal{A}' na jazyk L. Obráceně, \mathcal{A}' je *expanze* struktury \mathcal{A} do jazyka L'.

Např. $\langle \mathbb{N}, + \rangle$ je redukt $\langle \mathbb{N}, +, \cdot, 0 \rangle$. Naopak, struktura $\langle \mathbb{N}, +, c_i \rangle_{i \in \mathbb{N}}$ taková, že $c_i = i$ pro všechna $i \in \mathbb{N}$, je expanze $\langle \mathbb{N}, + \rangle$ o jména prvků z \mathbb{N} .

◆□▶◆□▶◆壹▶◆壹▶ 壹 めの○

Věta o konstantách

Věta Nechť φ je formule jazyka L s volnými proměnnými x_1, \ldots, x_n a T je teorie jazyka L. Označme L' rozšíření L o nové konstantní symboly c_1, \ldots, c_n a T' teorii T nad jazykem L'. Pak

$$T \models \varphi$$
 právě když $T' \models \varphi(x_1/c_1, \dots, x_n/c_n)$.

extstyle ext

$$\mathcal{A} \models \varphi[e(x_1/c_1^{A'},\ldots,x_n/c_n^{A'})], \quad \text{tj. } \mathcal{A}' \models \varphi(x_1/c_1,\ldots,x_n/c_n).$$

 (\Leftarrow) Je-li $\mathcal A$ model teorie T a e ohodnocení, nechť $\mathcal A'$ je expanze $\mathcal A$ na L' o konstanty $c_i^{A'}=e(x_i)$ pro všechna i. Jelikož $\mathcal A'\models \varphi(x_1/c_1,\dots,x_n/c_n)[e']$ pro libovolné ohodnocení e', platí i

$$\mathcal{A}' \models \varphi[e(x_1/c_1^{A'},\ldots,x_n/c_n^{A'})], \quad \text{tj. } \mathcal{A} \models \varphi[e]. \quad \Box$$

Definovatelné množiny

Zajímá nás, které množiny lze v dané struktuře zadefinovat.

• Množina definovaná formulí $\varphi(x_1,\ldots,x_n)$ ve struktuře $\mathcal A$ je množina

$$\varphi^{\mathcal{A}}(x_1,\ldots,x_n) = \{(a_1,\ldots,a_n) \in A^n \mid \mathcal{A} \models \varphi[e(x_1/a_1,\ldots,x_n/a_n)]\}.$$

 $\mathsf{Zkr\'{a}cen\'{y}m}\ \mathsf{z\'{a}pisem},\ \varphi^{\mathcal{A}}(\overline{x}) = \{\overline{a} \in A^{|\overline{x}|} \mid \mathcal{A} \models \varphi[e(\overline{x}/\overline{a})]\},\ \mathsf{kde}\ |\overline{x}| = n.$

• Množina definovaná formulí $\varphi(\overline{x},\overline{y})$ s parametry $\overline{b}\in A^{|\overline{y}|}$ ve struktuře $\mathcal A$ je

$$\varphi^{\mathcal{A},\overline{b}}(\overline{x},\overline{y}) = \{\overline{a} \in A^{|\overline{x}|} \mid \mathcal{A} \models \varphi[e(\overline{x}/\overline{a},\overline{y}/\overline{b})]\}.$$

Např. pro $\varphi=E(x,y)$ je $\varphi^{\mathcal{G},b}(x,y)$ množina sousedů vrcholu b v grafu \mathcal{G} .

• Pro strukturu \mathcal{A} , množinu $B \subseteq A$ a $n \in \mathbb{N}$ označme $\mathbf{Df}^n(\mathcal{A}, B)$ třídu všech množin $D \subseteq A^n$ definovatelných ve struktuře \mathcal{A} s parametry z B.

Pozorování $\mathrm{Df}^n(\mathcal{A},B)$ je uzavřená na doplněk, sjednocení, průnik a obsahuje \emptyset , A^n . Tedy tvoří podalgebru potenční algebry $\underline{\mathcal{P}}(A^n)$.

Příklad - databázové dotazy

Filmy	název	$re \check{z} is \acute{e} r$	herec	Program	kino	$n\'{a}zev$	čas
	Lidé z Maringotek	M. Frič	J. Tříska		Světozor	Po strništi bos	13:15
	Po strništi bos	J. Svěrák	Z. Svěrák		Mat	Po strništi bos	16:15
	Po strništi bos	J. Svěrák	J. Tříska		Mat	Lidé z Maringotek	18:30

Kde a kdy mohu dnes vidět film s Janem Třískou?

select *Program.kino*, *Program.čas* **from** *Filmy*, *Program* **where** *Filmy.název* = *Program.název* **and** *herec* = 'J. Tříska';

Totéž dostaneme jako množinu $\varphi^{\mathcal{D}}(x,y)$ definovanou formulí $\varphi(x,y)$

$$(\exists n)(\exists r)(P(x,n,y) \land F(n,r,'J. Tříska'))$$

ve struktuře $\mathcal{D}=\langle D, Filmy, Program, c^D \rangle_{c \in D}$ jazyka $L=\langle F, P, c \rangle_{c \in D}$, kde $D=\{\text{`Po strništi bos', 'J. Tříska', 'Mat', '13:15', ...}\}$ a $c^D=c$ pro každé $c \in D$.

Booleovy algebry

Teorie Booleových algeber jazyka $L=\langle -,\wedge,\vee,0,1\rangle$ s rovností má axiomy

$$\begin{array}{lll} x \wedge (y \wedge z) = (x \wedge y) \wedge z & \text{(asociativita } \wedge) \\ x \vee (y \vee z) = (x \vee y) \vee z & \text{(asociativita } \vee) \\ x \wedge y = y \wedge x & \text{(komutativita } \wedge) \\ x \vee y = y \vee x & \text{(komutativita } \vee) \\ x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z) & \text{(distributivita } \wedge k \vee) \\ x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z) & \text{(distributivita } \wedge k \wedge) \\ x \wedge (x \vee y) = x, & x \vee (x \wedge y) = x & \text{(absorbce)} \\ x \vee (-x) = 1, & x \wedge (-x) = 0 & \text{(komplementace)} \\ 0 \neq 1 & \text{(netrivialita)} \end{array}$$

Nejmenší model je $\underline{2}=\langle 2,-_1,\wedge_1,\vee_1,0,1\rangle$. Konečné Booleovy algebry jsou (až na izomorfismus) právě $\underline{n2}=\langle n2,-_n,\wedge_n,\vee_n,0_n,1_n\rangle$ pro $n\in\mathbb{N}^+$, kde jednotlivé operace *(na binárních n-ticích)* jsou operace z $\underline{2}$ "po složkách".

Vztah výrokové a predikátové logiky

- Výrokové formule s (*univerzálními*) spojkami ¬, ∧, ∨ (případně s ⊤, ⊥)
 lze považovat za Booleovské termy. Hodnota výroku φ při daném
 ohodnocení je pak hodnotou termu v Booleově algebře 2.
- Algebra výroků nad ℙ je Booleova algebra (i pro ℙ nekonečné).
- Reprezentujeme-li atomické formule v otevřené formuli φ (bez rovnosti) pomocí prvovýroků, získame výrokovou formuli, která je pravdivá, právě když φ je pravdivá.
- Výrokovou logiku lze zavést jako fragment predikátové logiky pomocí nulárních relačních symbolů (*syntax*) a nulárních relací (*sémantika*), přičemž A⁰ = {∅} = 1 a tedy R^A ⊆ A⁰ je R^A = ∅ = 0 anebo R^A = {∅} = 1.