

Logical Reasoning & Knowledge Based System

Practice3

실습 1. Python Library

Numpy

- Rank, Zeros, Ones, Identity, Random
- Array Indexing
- Data type
- Array Math

Pandas

- Object creation
- Viewing Data
- Import csv dataset
- Selection
- Setting
- Operation
- merge

Matplotlib

pyplot

Pandas Exercise

1. Load Packages

2. Import DataSet

[2]:									
t[2]:		InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
	0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	12/1/10 8:26	2.55	17850.0	United Kingdom
	1	536365	71053	WHITE METAL LANTERN	6	12/1/10 8:26	3.39	17850.0	United Kingdom
	2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	12/1/10 8:26	2.75	17850.0	United Kingdom
	3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	12/1/10 8:26	3.39	17850.0	United Kingdom
	4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	12/1/10 8:26	3.39	17850.0	United Kingdom

3. Create a bar graph with the 10 countries that have the most 'Quantity' ordered except UK

In [3]: # group by the Country

sort the value and get the first 10 after UK

create the plot

Set the title and labels

show the plot

실습 2. KNN (scikit-learn)

Iris data set classification

[setosa]

[versicolor]

[virginica]

실습 2. KNN (scikit-learn)

Plot Decision Regions

실습 3. Weighted KNN Implementation

k-Nearest Neighbor method

- 1. Define distance functions
- Example
 - $d_{sex}(A, B) = |A B|$ (female:0, male:1)
 - $d_{age}(A, B) = |A B| / max difference$
 - $\bullet d = d_{sex} + d_{age}$

•
$$d_{sum}(c5, c1) = |0 - 1| + |20 - 40| / 20 = 2.0$$

•
$$d_{sum}(c5, c2) = |0 - 1| + |20 - 20| / 20 = 1.0$$

•
$$d_{sum}(c5, c3) = |0 - 0| + |20 - 30| / 20 = 0.5$$

•
$$d_{sum}(c5, c4) = |0 - 1| + |20 - 30| / 20 = 1.5$$

실습 3. Weighted KNN Implementation

2. Predict value from neighbors

Weighted average of neighbor values f_i (Y = +1, N = -1)

Let
$$w_i = \frac{1}{d_{ij}}$$
, $W = \sum w_i$
 $f_j = \sum f_i \cdot \frac{w_i}{W}$

Example

■ 3-NN
$$\rightarrow$$
 c3, c2, c4
c3: f₃ = -1(N), d₃₅ = 0.5, w₃ = 2.0
c2: f₂ = +1(Y), d₂₅ = 1.0, w₂ = 1.0
c4: f₄ = +1(Y), d₄₅ = 1.5, w₄ = 0.67
■ f₅ = [(-1*2.0) + (1*1.0) + (1*0.67)] / 3.67 = -0.09 \rightarrow N

실습 3. Weighted KNN Implementation

```
def getPredictionsWeightedKNN(trainingSet, testSet, k):
   predictions = []
    for i in range(len(testSet)):
       neighbors = getNeighbors(trainingSet, testSet[i], k, distance=distance)
        weights = []
       fi_wi = []
        for neighbor in neighbors:
           d_ij = neighbor[1]
           label = neighbor[2]
            f_i = function_i(label)
       if f_j <= 0:
            prediction = 0
       elif f_j > 0:
            prediction = 1
       predictions.append(prediction)
    return predictions
```