Hands-on Machine Learning

15. Recurrent Neural Networks

What if we have variable-size inputs?

Before:

Now:

$$x_1 = (x_{1,1}, x_{1,2}, x_{1,3}, x_{1,4})$$

$$x_2 = (x_{2,1}, x_{2,2}, x_{2,3})$$

$$x_3 = (x_{3,1}, x_{3,2}, x_{3,3}, x_{3,4}, x_{3,5})$$

Examples:

classifying sentiment for a phrase (sequence of words)

predicting price of a stock (sequence of numbers)

classifying the activity in a video (sequence of images)

What if we have variable-size inputs?

$$x_1 = (x_{1,1}, x_{1,2}, x_{1,3}, x_{1,4})$$

$$x_2 = (x_{2,1}, x_{2,2}, x_{2,3})$$

$$x_3 = (x_{3,1}, x_{3,2}, x_{3,3}, x_{3,4}, x_{3,5})$$

- + very simple, and can work if necessary
- doesn't scale very well for very long sequences

Simple idea: zero-pad up to length of longest sequence

$$(x_{i,1}, x_{i,2}, x_{i,3}, 0, 0, 0) \longrightarrow \bigcirc$$

One Input per Layer

$$x_1 = (x_{1,1}, x_{1,2}, x_{1,3}, x_{1,4})$$

$$x_2 = (x_{2,1}, x_{2,2}, x_{2,3})$$

$$x_3 = (x_{3,1}, x_{3,2}, x_{3,3}, x_{3,4}, x_{3,5})$$

what happens to the missing layers?

each layer:

$$\bar{a}^{\ell-1} = \begin{bmatrix} a^{\ell-1} \\ x_{i,t} \end{bmatrix} \quad z^{\ell} = W^{\ell} \bar{a}^{\ell-1} + b^{\ell} \qquad a^{\ell} = \sigma(z^{\ell})$$

Variable Layer Count

- ➤ The shorter the sequence, the fewer layers we have to evaluate
- ➤ But the total number of weight matrices increases with max sequence length!

each layer:

$$\bar{a}^{\ell-1} = \begin{bmatrix} a^{\ell-1} \\ x_{i,t} \end{bmatrix}$$
$$z^{\ell} = W^{\ell} \bar{a}^{\ell-1} + b^{\ell}$$
$$a^{\ell} = \sigma(z^{\ell})$$

Sharing Weight Matrices

i.e.,
$$W^{\ell_i} = W^{\ell_j}$$
 for all i, j
 $b^{\ell_i} = b^{\ell_j}$ for all i, j

- We can have as many "layers" as we want!
- > This is called a **recurrent** neural network (RNN).
- We could also call this a "variable-depth" network.

Recurrent Neural Networks

➤ What we just learned:

➤ RNNs are just neural networks that share weights across multiple layers, take an input at each layer, and have a variable number of layers

What you often see in textbooks/classes:

Recurrent Neural Networks

- Recurrent neural networks (RNNs) are a class of artificial neural network commonly used for sequential data processing.
- RNNs can work on sequences of arbitrary lengths, rather than on fixed-sized inputs.

1. Recurrent Neurons and Layers

Recurrent Neuron

At each time step t, the recurrent neuron receives the inputs $x_{(t)}$ as well as its own output from the previous time step, $\hat{y}_{(t-1)}$.

A layer of recurrent neurons

> Output of a recurrent layer: $\hat{\mathbf{y}}_{(t)} = \phi(\mathbf{W}_{x}^{\mathrm{T}}\mathbf{x}_{(t)} + \mathbf{W}_{y}^{\mathrm{T}}\hat{\mathbf{y}}_{(t-1)} + \mathbf{b})$

Memory Cell

- ➤ Since the output of a recurrent neuron at time step t is a function of all the inputs from previous time steps, you could say it has a form of memory.
- A part of a neural network that preserves some state across time steps is called a *memory cell* (or simply a *cell*).
- A layer of recurrent neurons, is a very basic cell, capable of learning only short patterns (typically about 10 steps long).
- A cell's state at time step t, denoted $\mathbf{h}_{(t)}$ is a function of inputs at that time step and its state at the previous time step: $\mathbf{h}_{(t)} = f(\mathbf{x}_{(t)}, \mathbf{h}_{(t-1)})$

Hidden State of a Cell

Its output at time step t, denoted $\hat{\mathbf{y}}_{(t)}$, is also a function of the previous state and the current inputs.

Sequence-to-Sequence Network

- A sequence-to-sequence RNN can simultaneously take a sequence of inputs and produce a sequence of outputs.
- Example: you feed it the data over the last N days, and you train it to output the series value shifted by one day into the future (i.e., from N-1 days ago to tomorrow).

Sequence-to-Vector Network

- Sequence-to-vector network: you could feed the network a sequence of inputs and ignore all outputs except for the last one.
- Example: you feed the network a sequence of words corresponding to a movie review, and the network would output a sentiment score.

Vector-to-Sequence Network

- Vector-to-sequence network: you could feed the network the same input vector over and over again at each time step and let it output a sequence.
- Example: the input could be an image (or the output of a CNN), and the output could be a caption for that image.

Encoder-Decoder Network

- You could have a sequence-to-vector network, called an encoder, followed by a vector-to-sequence network, called a decoder.
- Example: feed the network a sentence in English, the encoder would convert this sentence into a single vector representation, and then the decoder would decode this vector into a sentence in French.

Training RNNs

Backpropagation through time (BPTT): unroll the RNN through time and then use regular backpropagation.

Time Series and ARMA Model Family

Chicago's Transit Authority Dataset

> Task: build a model to forecast the number of passengers that will ride on bus and rail the next day.

```
import pandas as pd
from pathlib import Path

path = Path("datasets/ridership/CTA_-_Ridership_-_Daily_Boarding_Totals.csv")
df = pd.read_csv(path, parse_dates=["service_date"])
df.columns = ["date", "day_type", "bus", "rail", "total"] # shorter names
df = df.sort_values("date").set_index("date")
df = df.drop("total", axis=1) # no need for total, it's just bus + rail
df = df.drop_duplicates() # remove duplicated months (2011-10 and 2014-07)
```

df.head()			
	day_type	bus	rail
date			
2001-01-01	U	297192	126455
2001-01-02	W	780827	501952
2001-01-03	W	824923	536432
2001-01-04	W	870021	550011
2001-01-05	W	890426	557917

Daily Ridership in Chicago

- Weekly seasonality: a similar pattern is clearly repeated every week.
- Naive forecasting: simply copying a past value to make our forecast.
 - > It is often a great baseline.

Autocorrelated Time Series

Error of Naive Forecast

Measure the mean absolute error (MAE):

Measure the mean absolute percentage error (MAPE):

```
targets = df[["bus", "rail"]]["2019-03":"2019-05"]
(diff_7 / targets).abs().mean()

bus     0.082938
rail     0.089948
```

Yearly Seasonality

12-month Difference

- > Differencing removes the yearly seasonality and long-term trends.
- For stationary time series, statistical properties remain constant over time, without any seasonality or trends.

The ARMA Model Family

The *autoregressive moving average* (ARMA) model forecasts using a simple weighted sum of lagged values and corrects these forecasts by adding a moving average of the last few forecast errors:

$$\hat{y}_{(t)} = \sum_{i=1}^{p} \alpha_i y_{(t-i)} + \sum_{i=1}^{q} \theta_i \epsilon_{(t-i)}$$
with $\epsilon_{(t)} = y_{(t)} - \hat{y}_{(t)}$

- \triangleright Autoregressive component: the weighted sum of the past p values of the time series, using the learned weights α_i .
- Moving average component: the weighted sum over the past q forecast errors $\epsilon_{(t)}$, using the learned weights θ_i .

Stationary Assumption

- > The ARMA model assumes that the time series is stationary.
 - > If it is not, then differencing may help.
- One round of differencing eliminates any linear trend:

$$[3, 5, 7, 9, 11] \xrightarrow{\text{differencing}} [2, 2, 2, 2]$$

Two rounds of differencing eliminates quadratic trends:

$$[1, 4, 9, 16, 25, 36] \xrightarrow{\text{differencing}} [3, 5, 7, 9, 11] \xrightarrow{\text{differencing}} [2, 2, 2, 2]$$

 \blacktriangleright d consecutive rounds of differencing computes an approximation of the $d^{\rm th}$ order derivative of the time series, and eliminate polynomial trends up to degree d.

ARIMA and SARIMA Models

- ➤ The *autoregressive integrated moving average* (ARIMA) model runs *d* rounds of differencing to make the time series more stationary, then it applies a regular ARMA model.
 - When making forecasts, it uses this ARMA model, then it adds back the terms that were subtracted by differencing.
- The *seasonal ARIMA* (SARIMA) model: similar to ARIMA, but adds a seasonal component for a given frequency (e.g., weekly), using the exact same ARIMA approach. It has a total of seven hyperparameters:
 - \triangleright the same p, d, and q hyperparameters as ARIMA
 - > P, D, and Q hyperparameters to model the seasonal pattern
 - \triangleright P, D, and Q are just like p, d, and q, but they are used to model the time series at t-s, t-2s, t-3s, etc.
 - > s: the period of the seasonal pattern.

Forecasting Using ARIMA Class

- Assume today is the last day of May 2019, and we want to forecast the rail ridership for "tomorrow", the 1st of June, 2019.
- Use ARIMA class from statsmodels library:

The MAE for a 3-month period forecast using SARIMA is 32,041, which is significantly lower than the MAE we got with naive forecasting (42,143).