标题 title

作者 author

2023年7月27日

前言

目录

前言		i
第一部分	分 科学的逻辑	1
第一章	合情推理	2
第二章	Markov 链与决策	3
第二部	分 信息与数据	4
第三章	信息论基础	5
§3 . 1	熵	5
	3.1.1 概念的导出	5
	3.1.2 概念与性质	8
	3.1.3 熵与通信理论	13
§3 . 2	Kullback-Leibler 散度	16
	3.2.1 定义	16
	3.2.2 两个关于信息的不等式	18
	3.2.3 在机器学习中的应用:语言生成模型	19
§3. 3	附录: Shannon 定理的证明	20
§3.4	习题	21
§3.5	章末注记	23
第四章	Johnson-Lindenstrauss 引理	25
§4.1	机器学习中的数据	25

§4.2	矩法与集中不等式	26
§4. 3	J-L 引理的陈述与证明	30
§4 . 4	J-L 引理的应用	34
§4 . 5	习题	35
§4.6	章末注记	35
第五章	差分隐私	36
§5.1	数据隐私问题	36
§5.2	差分隐私的定义与性质	38
§5. 3	差分隐私的应用	42
	5.3.1 随机反应算法	42
	5.3.2 全局灵敏度与 Laplace 机制	43
	5.3.3 DP 版本 Llyod 算法	45
§5 . 4	差分隐私与信息论	46
§5.5	习题	47
§5.6	章末注记	47
第三部	分 决策与优化	48
第三部:		
第六章		49
第六章	凸分析	49
第六章	凸分析 决策与优化的基本原理	48 49 49 50
第六章	凸分析 决策与优化的基本原理	49 49
第六章 §6.1	凸分析 决策与优化的基本原理	49 49 50
第六章 §6.1 §6.2	凸分析决策与优化的基本原理6.1.1 统计决策理论6.1.2 优化问题6.1.3 例子: 网格搜索算法	49 49 50 53
第六章 §6.1 §6.2	凸分析决策与优化的基本原理6.1.1 统计决策理论6.1.2 优化问题6.1.3 例子: 网格搜索算法凸函数	49 49 50 53 55 58
第六章 §6.1 §6.2	凸分析决策与优化的基本原理6.1.1 统计决策理论6.1.2 优化问题6.1.3 例子: 网格搜索算法凸函数凸集	49 49 50 53 55 58
第六章 §6.1 §6.2 §6.3	凸分析决策与优化的基本原理6.1.1 统计决策理论6.1.2 优化问题6.1.3 例子: 网格搜索算法凸函数凸集6.3.1 基本定义和性质	49 49 50 53 55 58 60
第六章 §6.1 §6.2 §6.3 第七章	凸分析 决策与优化的基本原理 6.1.1 统计决策理论 6.1.2 优化问题 6.1.3 例子: 网格搜索算法 凸函数 6.3.1 基本定义和性质 6.3.2 分离超平面定理	49 49 50 53 55 58 60 62
第六章 §6.1 §6.2 §6.3 第七章 §7.1	凸分析决策与优化的基本原理6.1.1 统计决策理论6.1.2 优化问题6.1.3 例子: 网格搜索算法凸函数凸函数凸集6.3.1 基本定义和性质6.3.2 分离超平面定理	49 49 50 53 55
第六章 §6.1 §6.2 §6.3 第七章 §7.1 §7.2	凸分析决策与优化的基本原理6.1.1 统计决策理论6.1.2 优化问题6.1.3 例子: 网格搜索算法凸函数凸集6.3.1 基本定义和性质6.3.2 分离超平面定理对偶理论条件极值与 Lagrange 乘子法	49 49 50 53 55 58 60 62 63

7.3.2 弱对偶定理,强对偶定理	73
§7.4 应用: 支持向量机(SVM)	77
第八章 不动点理论	80
§8.1 Banach 不动点定理	80
§8.2 Brouwer 不动点定理	83
§8.3 不动点的一般视角	86
第四部分 逻辑与博弈	87
第九章 动态博弈	82
第十章 静态博弈	83
第五部分 认知逻辑	84
第十一章 模态逻辑基础	85
第十二章 认知逻辑与共同知识	86

第一部分

科学的逻辑

第二部分

信息与数据

第三部分 决策与优化

第八章 不动点理论

考虑优化算法 A,它在函数 f 上的的收敛性如何? 算法运行所产生的点列记为 $\{x_n\}$,它满足 $x_{n+1} = A(x_n)$. 如果关注序列 x_n 本身,那么这是一个数学分析的思路,通过寻找不同量之间的联系,来分析收敛性. 如果从算法 A 本身来看,这是一个算子法与泛函分析的思路,研究算法本身的性质,收敛性往往归结为吸收点的存在性. 后者是更加抽象且现代的思路。在本章中,我们将看到,从算子的角度来理解收敛性,最终问题就归结到了不动点理论。

不动点的定义是非常直接的,考虑一个集合 X 以及它到自身的映射 $f: X \to X$,元 素 $a \in X$ 称为映射 $f: X \to X$ 的不动点,如果 f(a) = a. 本章将介绍三种不动点存在性 定理。

§8.1 Banach 不动点定理

为了陈述不动点定理,我们需要引入一些数学概念。

定义 8.1 (度量与度量空间) 集合 X 上的度量 (或距离) d 是映射

$$d: X \times X \to \mathbb{R}$$

满足条件

- 非负性: $d(x_1, x_2) \ge 0$, 并且 $d(x_1, x_2) = 0 \iff x_1 = x_2$.
- 对称性: $d(x_1,x_2) = d(x_2,x_1)$.
- 三角不等式: $d(x_1, x_3) \le d(x_1, x_2) + d(x_2, x_3)$.

其中 x_1, x_2, x_3 是X的任意元素.

此时, (X,d) 或 X 被称为度量空间.

下面给出一些度量的例子。

例8.1 考虑实数集 IR,要成为度量空间,可以装备以下度量:

- 平凡的离散度量: $\forall x_1 \neq x_2 d(x_1, x_2) \equiv 1, d(x, x) = 0.$
- $d(x_1, x_2) = |x_1 x_2|$.

考虑向量空间 \mathbb{R}^n ,要成为度量空间,可以装备以下度量:

- Minkowski 度量 $(L^p \, \underline{\mathfrak{g}} \, \underline{\mathfrak{g}})$: $d(x_1, x_2) = (\sum_{i=1}^n |x_1^i x_2^i|^p)^{1/p} \, (p \ge 1)$.
- Manhattan 度量 $(L^1$ 度量) : $d(x_1, x_2) = \sum_{i=1}^n |x_1^i x_2^i|$.
- Euclid 度量 $(L^2$ 度量): $d(x_1, x_2) = \sqrt{\sum_{i=1}^n |x_1^i x_2^i|^2}$.
- Chebyshev 度量(L^{∞} 度量): $d(x_1,x_2)=\max_i |x_1^i-x_2^i|=\lim_{p\to\infty} (\sum_{i=1}^n |x_1^i-x_2^i|^p)^{1/p}$.

我们的目标是找到一类和实数集非常像的度量空间。实数集一个非常重要的性质是实数列收敛当且仅当它是 Cauchy 列。我们把这一性质抽象出来,就得到了如下定义:

例 8.2 度量空间 (X,d) 的点列 $\{x_n : n \in \mathbb{N}\}$ 称为 **Cauchy** 列,如果对于任何 $\epsilon > 0$,都可以找到序号 $N \in \mathbb{N}$,使得对于任何大于 N 的序号 $m, n \in \mathbb{N}$, $d(x_m, x_n) < \epsilon$ 成立.

度量空间 (X,d) 称为**完备的**,如果任意 Cauchy 列 $\{x_n:n\in\mathbb{N}\}$ 都收敛: $\exists a\in X, \lim_{n\to\infty}d(a,x_n)=0.$

度量空间的任何收敛点列显然是 Cauchy 列,完备性本质上只是假设 Cauchy 收敛准则在该空间成立.

下面是一些完备度量空间的例子

例 8.3 • L^p 度量下下 \mathbb{R}^n 是完备的.

- 使用度量 $d(x_1, x_2) = |x_1 x_2|$,则 $X = \mathbb{R} \setminus \{0\}$ 不是完备度量空间. 考虑 $\{x_n = \frac{1}{n}: n \in \mathbb{N}\}$,它是 *Cauchy* 列,但该点列在 X 中没有极限(极限是 0).
- [0,1] 到自身的连续函数空间 C([0,1]) 在 L^{∞} 度量下是完备的. 此时

$$d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|,$$

完备性由一致收敛得到,函数空间是泛函分析中一个典型的研究对象.

下面我们给出与 Banach 不动点定理相关的概念:

定义 8.2 (压缩映射) 度量空间 (X,d) 到自身的映射 $f: X \to X$ 称为压缩映射,如果存在 0 < q < 1,使得不等式

$$d(f(x_1), f(x_2)) \le q \cdot d(x_1, x_2)$$

对于X中的任何两个点 x_1, x_2 都成立.

用 $\delta - \epsilon$ 语言容易证明压缩映射一定是连续映射:

引理 8.1 压缩映射 $f: X \to X$ 是连续映射.

压缩映射一定有不动点,这就是 Banach 不动点定理:

定理 8.1 (Banach 不动点定理,压缩映像原理) 完备度量空间 (X,d) 到自身的压缩映射 $f: X \to X$ 具有唯一的不动点 a.

此外,对于任何点 $x_0 \in X$, 迭代序列 $x_0, x_1 = f(x_0), \cdots, x_{n+1} = f(x_n), \cdots$ 收敛到 a. 收敛速度由以下估计给出:

$$d(a,x_n) \leq \frac{q^n}{1-q}d(x_1,x_0).$$

证明 首先证明存在性。 $d(x_{n+1},x_n) \leq qd(x_n,x_{n-1}) \leq \cdots \leq q^n d(x_1,x_0)$. 从而

$$d(x_{n+k},x_n) \le d(x_n,x_{n+1}) + \dots + d(x_{n+k-1},x_{n+k})$$

$$\le (q^n + \dots + q^{n+k-1})d(x_1,x_0) \le \frac{q^n}{1-q}d(x_1,x_0).$$

因此 $\{x_n\}$ 是 Cauchy 列,存在极限 $\lim_{n\to\infty} x_n = a \in X$. 结合压缩映射的连续性,有 $a = \lim_{n\to\infty} x_{n+1} = \lim_{n\to\infty} f(x_n) = f(\lim_{n\to\infty} x_n) = f(a)$.

然后证明唯一性。若 f 还有其他不动点 a_1,a_2 ,则 $0 \le d(a_1,a_2) = d(f(a_1),f(a_2)) \le qd(a_1,a_2)$. 而这当且仅当 $d(a_1,a_2) = 0$,即 $a_1 = a_2$ 时才可能成立. 最后证明收敛速度. 对 $d(x_{n+k},x_n) \le \frac{q^n}{1-q}d(x_1,x_0)$. 取 $k \to \infty$,得到 $d(a,x_n) \le \frac{q^n}{1-q}d(x_1,x_0)$.

例 8.4 (落在地面上的地图) 将一座公园的地图铺开在公园地面上,则地面上恰有唯一一点与地图上对应的点重合. 设公园可以用有界的面闭区域 Ω 表示. 设地图的压缩比是 $\lambda \in (0,1)$. 现在固定一个平面直角坐标系,把地图铺在区域 Ω 内,则从 Ω 内的点 x (公园中的地点) 到地图上对应点 x' 的变换由下面的公式给出:

$$x' = f(x) := \lambda Rx + b.$$

其中R和b分别为旋转和平移变换.

考虑 $\|\lambda R\| = \sup_{\|x\|=1} \|\lambda Rx\| = \lambda < 1$, 由 Banach 不动点定理可知, 压缩映射 f(x) 有唯一不动点 a = f(a).

例 8.5 (梯度下降的收敛性) 我们优化目标是寻找二阶可微凸函数 $f(x), x \in \mathbb{R}^n$ 的最小值. 使用梯度下降方法: 每次往最小梯度方向移动. 假设对任意 $x \in \mathbb{R}^n$,

$$L \le \lambda_{\min}(\nabla^2 f(x)) \le \lambda_{\max}(\nabla^2 f(x)) \le U.$$

其中 $\nabla^2 f(x)$ 是f的Hessian矩阵(二次导数 $), U \ge L > 0$ 为给定的常数 $, \lambda_{\min}(A), \lambda_{\max}(A)$ 表示矩阵A的最小、最大特征值.

我们要证明:梯度下降能收敛到最小值点,且具有指数收敛速度.

先看一下证明的思路,我们要设法证明梯度下降算法是完备度量空间中的一个压缩映射。首先,二阶可微凸函数的最小值点充分必要地满足 $\nabla f(x)=0$. 其次, $\nabla f(x)=0$ $\iff x \in \mathbb{R}^n$ 是梯度下降算子 $T^{(\alpha)}$ 的不动点,其中 $T^{(\alpha)}: x \mapsto x - \alpha \nabla f(x)$,这里 $\alpha \in \mathbb{R}^+$ 为步长. 最后, $T^{(\alpha)}$ 是一个完备度量空间的压缩映射,其压缩系数为 $q(\alpha)=1-L\alpha$. 因此梯度下降可以收敛至唯一的最小值点,收敛速度可以由压缩系数估计.

为了使 $q(\alpha)$ 确实一个压缩系数,我们需要 $\alpha < \min L^{-1}$. $T^{(\alpha)}$ 的不动点恰好满足 $\nabla f(x) = 0$,因此是最小值点. 我们只需要证明 $T^{(\alpha)}$ 是压缩映射,并给出压缩系数 由有限增量原理:

$$\left\| \mathcal{T}^{(\alpha)} x - \mathcal{T}^{(\alpha)} y \right\| \leq \sup_{z \in [x,y]} \left\| I - \alpha \nabla^2 f(z) \right\|_2 \cdot \left\| x - y \right\|_2.$$

最后,注意到 $\|I - \alpha \nabla^2 f(z)\|_2$ 等于 $I - \alpha \nabla^2 f(z)$ 特征值的最大模,根据条件可知特征值的最大模 $\leq 1 - L\alpha$.

§8.2 Brouwer 不动点定理

下面我们考虑更一般的度量空间中的不动点定理,为此我们需要引入连续映射的概念。

定义 8.3 设 X 和 Y 是度量空间 (X,d_X) , (Y,d_Y) , 映射 $f: X \to Y$ 在点 $a \in X$ 连续,指的是

$$\forall \epsilon > 0 \exists \delta > 0 \forall x \in X(d_X(a, x) < \delta \Rightarrow d_Y(f(a), f(x)) < \epsilon).$$

如果它在每个点 $x \in X$ 连续, 称 f 为连续映射. X 到 Y 的连续映射的集合记为 C(X,Y).

当度量空间为欧氏空间时,连续映射的定义与欧氏空间中连续映射的定义相同.接 下来,我们还需要几个集合的概念。

定义 8.4 (开集、闭集和紧集) 考虑度量空间 (X,d), $a \in X$ 的邻域 $B(a,\delta) := \{x \in X | d(a,x) < \delta\}$.

- 集合 G 是开集G 指的是对于任何点 $x \in G$, 满足 $B(x,\delta) \subset G$ 的邻域 $B(x,\delta)$ 存在.
- 集合F是闭集,如果它的补集 $X\setminus F$ 是(X,d)中的开集.
- 集合K 是**紧集**,如果从X 中任何覆盖K 的开集族中可以选出有限个开集来覆盖K.

当度量空间为欧氏空间时,开集和紧集的定义与欧氏空间中的定义相同,紧集等价于有界闭集,后一条在一般的度量空间不一定成立!

有了上面的准备,我们就可以叙述 Brouwer 不动点定理了:

定理 8.2 (Brouwer 不动点定理) 设 $M \subset \mathbb{R}^n$ 是一个非空紧凸集,而 $F: M \to M$ 是一个连续函数. 则存在 $x \in M$ 使得 F(x) = x 成立.

Brouwer 不动点定理可以通过该实际的例子来理解:将一张白纸平铺在桌面上,再将它揉成一团(不撕裂),放在原来白纸所在的地方,那么只要它不超出原来白纸平铺时的边界,那么白纸上一定有一点在水平方向上没有移动过.这个断言依据 Brouwer 不动点定理在 \mathbb{R}^2 的情况,因为把纸揉皱是一个连续的变换过程.

另一个例子:大商场等地方可以看到的平面地图,上面标有"您在此处"的红点.如果标注足够精确,那么这个点就是把实际地形映射到地图的连续函数的不动点.

下面我们看一个 Brouwer 不动点定理的应用例子。首先引入矩阵**不可约**的概念:对于n阶方阵A而言,如果存在一个置换矩阵(通过交换单位阵的列获得)P使得 $P^{\mathsf{T}}AP$ 为一个分块上三角阵,我们就称矩阵A是可约的,否则就称该矩阵是不可约的.

定理 8.3 (Perron-Frobenius 定理) 设 $A = (a_{ij})$ 为 $n \times n$ 不可约实矩阵,所有元素均非负, $a_{ij} \ge 0$,则下列结论成立.

- 存在一个实特征值 r, 其他特征值 λ 的模均不超过 r, 即 $|\lambda| \leq r$.
- 存在一个与 r 对应的特征向量, 其所有元素恒正.
- $\min_i \sum_i a_{ii} \le r \le \max_i \sum_i a_{ii}$.

证明 首先证明 A 存在一个正的特征值 r > 0. 考虑单纯形 $S := \{x \in \mathbb{R}^n | x \ge 0, \sum_i x_i = 1\}$. 则 $\forall x \in S$,有 $Ax \ge 0$.

断言 Ax > 0,若不然,A 存在某一列全 0(由 $x \ge 0$ 和 A 非负可得). 此时可通过置换阵将该 0 列交换到第一列,则得到的矩阵为分块上三角,与不可约性矛盾.

可以在 S 上定义映射

$$T(x) = \frac{1}{\rho(x)} Ax,$$

其中 $\rho(x) > 0$ 使得 $T(x) \in S$.

显然 T(x) 是 $S \to S$ 的连续映射. S 是一个有界凸闭集. 由 Brouwer 不动点定理,存在 $x_0 \in S$, $x_0 = T(x_0) = \frac{1}{g(x_0)}Ax_0$.

令 $r = \rho(x_0)$, 则可得 r 为 A 的一个正的特征值.

我们接下来证明,与r 对应的特征向量所有元素恒正. 由之前的证明,与r 对应的特征向量 $x_0 \in S$,则 $x_0 \ge 0$. 我们证明 $x_0 > 0$.

考虑 $A = PBP^{-1}$, 其中 P 是置换矩阵, 则

$$PBP^{-1}x_0 = rx_0 \implies B(P^{-1}x_0) = r(P^{-1}x_0).$$

记 $\tilde{x}_0 = P^{-1}x_0$. 取 B 使得 $\tilde{x}_0 = (\xi, 0)^{\mathsf{T}}, \xi > 0$. 则

$$\left(\begin{array}{cc} B_{11} & B_{12} \\ B_{21} & B_{22} \end{array}\right) \left(\begin{array}{c} \xi \\ 0 \end{array}\right) = \left(\begin{array}{c} r\xi \\ 0 \end{array}\right).$$

此时 $B_{21}\xi = 0$,由 $\xi > 0$ 可得 $B_{21} = 0$.这与不可约矛盾,因此 $x_0 > 0$.

然后我们证明: 若 α 是 A 的任意特征值,有 $|\alpha| \le r$. 设 $0 \le B \le A$, $By = \beta y$. 记 $y^* = |y| = (|y_i|)_i$. 于是有

$$|\beta|y^* = |\beta y| = |By| \le By^* \le Ay^*$$
.

由 A^{T} 不可约,存在特征值 $r_1 > 0$ 和特征向量 $x_1 > 0$, $A^{\mathsf{T}}x_1 = r_1x_1$. 因此有

$$|\beta| x_1^\mathsf{T} y^\star \le x_1^\mathsf{T} A y^\star = r_1 x_1^\mathsf{T} y^\star.$$

由 $x_1^\mathsf{T} y^* > 0$,则 $|\beta| \le r_1$. 令 B = A 可得 $|\alpha| \le r_1$,特别地 $r \le r_1$. 同样有 $r_1 \le r$,故 $r = r_1$.

最后证明:

$$\min_{i} \sum_{j} a_{ij} \le r \le \max_{i} \sum_{j} a_{ij}.$$

以这样的方式获得 \tilde{A} : 将 A 的每一行都扩增(不减小某个元素),使得每一行都达到 $\max_i \sum_i a_{ij}$. 此时 $\max_i \sum_i a_{ij}$ 成为 A 的一个正特征值,且特征向量 $\tilde{x}_0 = \frac{1}{n} \cdot \mathbf{1} \in S$. 由之前

的结论,假设 $0 \le A \le \tilde{A}$,可以得到 \tilde{A} 的正特征值 $\tilde{r} \ge r$. 因此 $r \le \max_i \sum_j a_{ij}$. 同理缩小 A 可得 $\min_i \sum_j a_{ij} \le r$.

Perron-Frobenius 定理在 Markov 链中的有非常重要应用。回忆 Markov 链的平稳分布: 满足矩阵方程 $\pi=\pi P$ 和 $\sum_i \pi_i=1$. 设该 Markov 链状态有限且对应的转移矩阵 P 是 (非负实) 不可约方阵. 由 Perron-Frobenius 定理, P 存在一个特征值 $1=\min_i \sum_j a_{ij} \le r \le \max_i \sum_j a_{ij} = 1$,对应一个正特征向量 $x_0 \in S = \{x \in \mathbb{R}^n | x \ge 0, \sum_i x_i = 1\}$. 因此不可约有限状态 Markov 链必然存在平稳遍历分布.

§8.3 不动点的一般视角

第四部分

逻辑与博弈

第五部分

认知逻辑

参考文献

- [Bre57] Leo Breiman. The Individual Ergodic Theorem of Information Theory. *The Annals of Mathematical Statistics*, 28(3):809–811, 1957.
- [CT12] Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*. John Wiley & Sons, 2012.
- [Huf52] David A. Huffman. A Method for the Construction of Minimum-Redundancy Codes. *Proceedings of the IRE*, 40(9):1098–1101, September 1952.
- [Inf] Information | Etymology, origin and meaning of information by etymonline. https://www.etymonline.com/word/information.
- [Jay02] Edwin T. Jaynes. *Probability Theory: The Logic of Science*. Cambridge University Press, 2002.
- [KL51] S. Kullback and R. A. Leibler. On Information and Sufficiency. *The Annals of Mathematical Statistics*, 22(1):79–86, 1951.
- [LLG⁺19] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension, October 2019.
- [McM53] Brockway McMillan. The Basic Theorems of Information Theory. *The Annals of Mathematical Statistics*, 24(2):196–219, June 1953.
- [RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In *Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations*, pages 318–362. MIT Press, Cambridge, MA, USA, January 1986.

- [Rob49] Robert M. Fano. The Transmission of Information. March 1949.
- [Sha48] C. E. Shannon. A mathematical theory of communication. *The Bell System Technical Journal*, 27(3):379–423, July 1948.
- [Shi96] A. N. Shiryaev. *Probability*, volume 95 of *Graduate Texts in Mathematics*. Springer, New York, NY, 1996.
- [Tin62] Hu Kuo Ting. On the Amount of Information. *Theory of Probability & Its Applications*, 7(4):439–447, January 1962.
- [Uff22] Jos Uffink. Boltzmann's Work in Statistical Physics. In Edward N. Zalta, editor, *The Stanford Encyclopedia of Philosophy*. Metaphysics Research Lab, Stanford University, summer 2022 edition, 2022.
- [李10] 李贤平. 概率论基础. 高等教育出版社, 2010.

索引

Cauchy 列, 81	紧集,84		
Perron-Frobenius 定理, 84	距离,80		
不动点, 80	连续,83 连续映射,83		
不动点定理	建实际别,03		
Banach ∼, 82	闭集,84		
Brouwer ~, 84			
不动点理论,80			
不可约矩阵,84			
压缩映射,82			
压缩映射原理,82			
完备空间, <mark>81</mark>			
度量,80			
$L^1 \sim , 81$			
$L^2 \sim$, 81			
$L^{\infty} \sim$, 81			
$L^p \sim$, 81			
Chebyshev ∼, 81			
Euclid ∼, 81			
Manhattan ∼, 81			
Minkowski ~, 81			
离散~,81			
绝对值~, 81			
度量空间,80			
开集,84			
梯度下降,83			