Assignment 3

Ruofei HUANG(z5141448) Anqi ZHU(z5141541)

May 28, 2018

1 Task 1

1.1 Some useful symbol definitions about manipulating words

A word, as mentioned in the assignment specification, is defined as a finite sequence of letters over L = 'a', ..., 'z'. The specification already defines the relationship of ' \leq ' between a word v and a word w (which means v is a prefix of w or w itself if $v \leq w$).

So we would like to further this definition and define a relationship of '<' when v is a pure prefix of w which cannot be w itself if v < w. That means:

$$v < w \Leftrightarrow v \le w \land v \ne w$$

We also would like to define a symbol |w| that represents the length of a word w. We formally define this by:

$$|w| = \begin{cases} 0 & \text{if } w = \epsilon \\ 1 + |w'| & \text{else} \end{cases}$$

where $\exists l \in L \ \{w = w' \ l\}$

1.2 Syntactic(Abstract) Data Type *Dict*

Inspired by the program sketch and the assignment statement, we could describe the syntactic data type Dict as below (the encapsulated state would be a dictionary word set W).

$$\begin{split} Dict &= (W = \phi, \\ & \left(\begin{array}{l} \mathbf{proc} \ addword^{Dict}(\mathbf{word} \ w) \cdot b, W : [\mathtt{TRUE}, b = b_0 \wedge W = W_0 \cup \{w\}] \\ \mathbf{func} \ checkword^{Dict}(\mathbf{word} \ w) : \mathbb{B} \cdot \mathbf{var} \ b \cdot b, W : [\mathtt{TRUE}, b = (w \in W_0)]; \ \mathbf{return} \ b \\ \mathbf{proc} \ delword^{Dict}(\mathbf{word} \ w) \cdot b, W : [w \in W, b = b_0 \wedge W = W_0 \backslash \{w\}] \end{array} \right)) \end{split}$$

2 Task 2

2.1 Data Type Refinement

Now we would like to refine Dict to a second data type DictA where we replace W with a trie t. We would also like to define the domain of a t as $\mathbf{dom}(t)$. We shall use this definition later in our refinement.

2.1.1 Inductive Relation Predicate

The correspondence between the two state space W and t is captured by the inductively defined predicate.

$$r = (W = \{w \in \mathbf{dom}(t) | t(w) = 1\})$$

which we can translate into a relation function that transfers a concrete state space t to an abstract state space W:

$$f(t) = \{w \in \mathbf{dom}(t) | t(w) = 1\}$$

With that in mind, we can propose the initialisation predicate and corresponding operations of Dict A.

2.1.2 Initialisation Predicate

We would like to define the initialisation predicate of DictA as follows:

$$init^{DictA} = (t := \{\epsilon \mapsto 0\})$$

2.1.3 Operations

We would like to define the operations of DictA as follows:

```
\begin{aligned} \mathbf{proc} \ addword^{DictA}(\mathbf{word} \ w) \cdot b, t : \\ & \big[ \ \mathsf{TRUE}, b = b_0 \land \\ & t = \left( \begin{array}{c} w \not\in \mathbf{dom}(t) \land t = t_0 \cup \{w \mapsto 1\} \cup \{w' < w \land w' \not\in \mathbf{dom}(t) | w' \mapsto 0\} \\ & w \in \mathbf{dom}(t) \land t = (t_0 : w \mapsto 1) \\ \end{array} \right) \big] \\ & \mathbf{func} \ checkword^{DictA}(\mathbf{word} \ w) : \mathbb{B} \cdot \mathbf{var} \ b \cdot b, t : \\ & \big[ \mathsf{TRUE}, t = t_0 \land b = (w \in \mathbf{dom}(t) \land t(w) = 1) \big]; \ \mathbf{return} \ b \\ & \mathbf{proc} \ delword^{DictA}(\mathbf{word} \ w) \cdot b, t : \\ & \big[ \mathsf{TRUE}, b = b_0 \land (w \not\in \mathbf{dom}(t) \lor t := (t : w \mapsto 0)) \big] \end{aligned}
```

2.2 Proof of Refinement

Now we would like to start proving the refinements of the initialization and each operation from t to W.

We start from proving the refinement between $init^{DictA}$ and $init^{Dict}$.

$$init^{DictA} \Rightarrow init^{Dict}[f^{(t)}/W]$$

 $\Leftrightarrow \quad \langle \text{Definition of } init^{DictA} \text{ and } init^{Dict} \rangle$
 $\forall w \in \mathbf{dom}(t) (t(w) = 0) \Rightarrow W = \phi$

Since all our precondition of concrete is trivial which all of them are TRUE, we don't need to proof the condition (3_f) . But condition (4_f) must be checked for all three operations. For the addword we proof:

$$pre_{addword^{Dict}}[f^{(t_0)}/w] \wedge post_{addword^{DictA}}$$

$$\Leftrightarrow \quad \langle \text{Definition of } addword^{Dict} \text{ and } addword^{DictA} \rangle$$

$$\text{TRUE}[f^{(t_0)}/w] \wedge b = b_0 \wedge t = t_0 \cup \{w \mapsto 1\} \cup \{w' < w \wedge w' \notin \mathbf{dom}(t) | w' \mapsto 0\}$$

$$\Rightarrow \quad \langle \text{Definition of } f \rangle$$

$$f(t) = f(t_0 \cup \{w \mapsto 1\} \cup \{w' < w \wedge w' \notin \mathbf{dom}(t) | w' \mapsto 0\})$$

$$\Leftrightarrow \quad \langle \text{Logic} \rangle$$

$$f(t) = f(t_0) \cup \{w\}$$

$$\Leftrightarrow \quad \langle \text{Definition of } addword^{Dict} \text{ and } addword^{DictA} \rangle$$

$$post_{addword^{Dict}}[f^{(t_0),f(t)}/w_0,w]$$

For the *checkword* we proof:

$$pre_{checkword^{Dict}}[f^{(t_0)}/W] \wedge post_{checkword^{DictA}}$$

$$\Leftrightarrow \quad \langle \text{Definition of } checkword^{DictA} \text{ and } checkword^{Dict} \rangle$$

$$\text{TRUE}[f^{(t_0)}/W] \wedge b = (w \in \mathbf{dom}(t) \wedge t = t_0)$$

$$\Rightarrow \quad \langle \text{Definition of } f \rangle$$

$$b = (w \in f(t)) \wedge t = t_0$$

$$\Leftrightarrow \quad \langle \text{Definition of } checkword^{DictA} \text{ and } checkword^{Dict} \rangle$$

$$post_{checkword^{Dict}}[f^{(t_0)},f^{(t)}/W_0,W]$$

For the *delword* we proof:

$$pre_{delword^{Dict}}[f^{(t_0)}/W] \wedge post_{delword^{DictA}}$$

$$\Leftrightarrow \quad \langle \text{Definition of } delword^{DictA} \text{ and } delword^{Dict} \rangle$$

$$w \in f(t_0) \wedge b = b_0 \wedge (w \notin \mathbf{dom}(t) \vee t := t : w \mapsto 0)$$

$$\Rightarrow \quad \langle \text{Definition of } f \rangle$$

$$f(t) = f(t_0) \backslash \{w\}$$

$$\Leftrightarrow \quad \langle \text{Definition of } delword^{DictA} \text{ and } delword^{Dict} \rangle$$

$$post_{delword^{Dict}}[f^{(t_0),f(t)}/W_0,W]$$

3 Task 3

We derive our code in to fours part by *init* and its operations.

3.1 init

From the spec we have:

$$\mathbf{dom}(t) = \{\epsilon\} \land f(t) = \phi$$

$$\sqsubseteq \quad \langle \text{ass} \rangle$$

$$t := \{\epsilon \mapsto 0\}$$

3.2 addword

From the spec we have:

```
proc addword^{DictA}(\mathbf{word}\ w).

b, t : [\text{TRUE}, b = b_0 \land t = t_0 \cup \{w \mapsto 1\} \cup \{w' < w \land w' \notin \mathbf{dom}(t) | w' \mapsto 0\}] \sqcup_{(A1)} 

(A1) \sqsubseteq \qquad \langle \text{c-frame} \rangle
t : [\text{TRUE}, t = t_0 \cup \{w \mapsto 1\} \cup \{w' < w \land w' \notin \mathbf{dom}(t) | w' \mapsto 0\}]
```

3.3 checkword

From the spec we have:

```
func checkword^{DictA}(\mathbf{word}\ w)

\mathbb{B} \cdot \mathbf{var}\ b \cdot b, t : [TRUE, b = (w \in \mathbf{dom}(t) \land t = t_0)]; \ \mathbf{return}\ b \rfloor_{(C1)}
```

```
(C1) \sqsubseteq \langle \text{c-frame} \rangle
\mathbb{B} \cdot \mathbf{var} \ b \cdot b : [\text{TRUE}, b = (w \in \mathbf{dom}(t))]; \ \mathbf{return} \ b
\sqsubseteq \quad \langle \text{proc}, \ 0 \leq |w| \ \rangle
\mathbf{return} \ doCheckword(w, 0);
```

Where we define a recursive procedure call to do the dirty work also align the pre and post condition:

3.4 delword

From the spec we have:

```
proc delword^{DictA}(\mathbf{word}\ w)

\mathbf{b} \cdot b, t : [\text{TRUE}, b = b_0 \land (w \notin \mathbf{dom}(t) \lor t := t : w \mapsto 0)] \sqcup_{(D1)} \mathbf{b}
```