# Exercise: Lightest and Heaviest Stone



Attempt 1 Score:

1/1

Fig. View Feedback

Anonymous Grading: no

### **Unlimited Attempts Allowed**

1/19/2024 to 2/4/2024

#### ∨ Details

You are given  $n \geq 2$  stones each having a distinct weight. You are also given a two-pan balance scale. Given two stones, the scale can determine which stone is *heavier* and which is *lighter*, but cannot determine the actual weight of the stones. Give a divide and conquer algorithm that uses only  $\frac{3n}{2} - 2$  weighings to find the heaviest and lightest stones. Prove by induction that it uses  $\frac{3n}{2} - 2$  weighings.

You may assume that n is a power of 2.

#### ∨ View Rubric

## **Lightest and Heaviest Stone**

| Criteria                                       | Ratings               |                   | Pts             |
|------------------------------------------------|-----------------------|-------------------|-----------------|
| Correct DC algorithm (no points for iterative) | 0.5 pts<br>Full Marks | 0 pts<br>No Marks | / 0.5 pts       |
| Valid proof of number<br>of weighings          | 0.5 pts<br>Full Marks | 0 pts<br>No Marks | / 0.5 pts       |
|                                                |                       |                   | Total Points: 0 |

Recursively find the lightest and heaviest stone:

For stones 0, 1, and 2, the solution is trivial. For stones greater than 2 (n > 2), we will split the array in half  $\left(\frac{n}{2}\right)$  and recursively find the heaviest and lightest stones from each subsets. We can call the heaviest and lightest stones from each subset as  $h_1, h_2, l_1, l_2$  respectively. Then, we will compare which ones are the heaviest between  $h_1$  and  $h_2$ . Same with picking the lightest stones between  $l_1$  and  $l_2$ .

Let  $T\left( n\right) =$  number of weights of n stones

Base case: n=2

$$T(2) = \frac{3(2)}{2} - 2 = 3 - 2 = 1$$

$$T\left( 2
ight) =$$
 1  $T\left( n
ight) =2T\left( rac{n}{2}
ight) +2$ 

By induction, we want to show that  $T\left( n
ight) =rac{3n}{2}-2$ 

Assume that  $T\left(k
ight)=rac{3k}{2}-2$  for  $n>k\geq 2$ 

$$egin{split} T\left(n
ight) &= 2T\left(rac{n}{2}
ight) + 2 \ &= 2\left(rac{3\left(rac{n}{2}
ight)}{2} - 2
ight) + 2 = 2\left(rac{3n}{4} - 2
ight) + 2 = rac{3n}{2} - 2. \end{split}$$

< >

(https://canvas.uh.edu/courses/10626/modules/items/849845)

(https://canvas.uh.edu/courses/10626/modules/i