CNC Maroc 2005 - Math I

Par M. TAIBI Professeur en MP* Lycée Moulay Youssef Rabat

I. Résultats préliminaires

A- Un Résultat de dérivation

1. La formule de Taylor-young à l'ordre 2 appliquée à f entre x_0 et $x_0 + h$ donne :

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + h^2\varepsilon_1(h)$$
 avec $\lim_{h\to 0} \varepsilon_1(h)$ (1)

De même si l'on applique la formule de Taylor-young à l'ordre 2 appliquée à f entre $x_0 - h$ et x_0 , on aura :

$$f(x_0 - h) = f(x_0) - hf'(x_0) + \frac{h^2}{2}f''(x_0) + h^2\varepsilon_2(h) \quad avec \quad \lim_{h \to 0} \varepsilon_2(h) \quad (2)$$

2. Si l'on pose $\Delta_f^2(x_0, h) = \frac{f(x_0 + h) + f(x_0 - h) - 2f(x_0)}{h^2}$, par (1) et (2), on a : $\frac{f(x_0 + h) + f(x_0 - h) - 2f(x_0)}{h^2} = f''(x_0) + \varepsilon_1(h) + \varepsilon_2(h) \text{ et puis } \lim_{h \to 0^+} \left(\frac{f(x_0 + h) + f(x_0 - h) - 2f(x_0)}{h^2}\right) = \frac{f''(x_0 + h) + f''(x_0 - h) - 2f''(x_0)}{h^2}$ $\lim_{h \to 0^+} (f''(x_0) + \varepsilon_1(h) + \varepsilon_2(h)) = f''(x_0). \text{ Donc}:$

$$\lim_{h \to 0^+} \Delta_f^2(x_0, h) = f''(x_0)$$

3. Si f'' = 0 sur l'intervalle \mathbb{R} , alors f est affine sur \mathbb{R} .

B- Un résultat de convergence

On suppose que $(v_n)_n$ converge simplement sur \mathbb{R} vers la fonction nulle.

- 1. On suppose en plus que $(b_n)_n$ est bornée : $\exists M \ge 0$ tel que $\forall n \in \mathbb{N}^*, |b_n| \le M$
 - 1.1 Montrons que $\lim_{n \to \infty} \int_{0}^{2\pi} v_n^2(x) dx = 0$

On a : • Pour tout n, v_n est continue sur R

- $(v_n)_n$ converge simplement vers la fonction nulle, donc $(v_n^2)_n$ converge aussi vers la fonction nulle. Pour tout $x \in \mathbb{R}$ et tout entier $n \ge 1$, $0 \le v_n^2(x) \le b_n^2 \sin^2(nx) \le b_n^2 \le M^2$.

Par le théorème de convergence dominée, on a : $\lim_{n \to \infty} \int_{0}^{2\pi} v_n^2(x) dx = \int_{0}^{2\pi} 0 dx = 0$

1.2 Pour tout entier n > 0, on a : $\int_{0}^{2\pi} v_n^2(x) dx = b_n^2 \int_{0}^{2\pi} \sin^2(nx) dx = \pi b_n^2$, donc $\lim_{n \to \infty} \pi b_n^2 = \lim_{n \to \infty} \int_{0}^{2\pi} v_n^2(x) dx = 0$, et puis $\lim_{n \to \infty} b_n = 0$.

2. .

2.1 Pour tout $n \in \mathbb{N}^*$, on a : $c_n = \min(1, |b_n|) \leq 1$, donc $(c_n)_n$ est bornée .

Pour $x \in \mathbb{R}$, et $n \in \mathbb{N}$, on a:

$$|w_n(x)| = |c_n \sin(nx)|$$

$$= |c_n| |\sin(nx)|$$

$$\leq |b_n| |\sin(nx)| = |b_n \sin(nx)| = |v_n(x)|$$

Comme $(v_n)_n$ converge simplement vers la fonction nulle, alors $(w_n)_n$ converge aussi vers la fonction nulle

2.2 D'après la question 1.), la suite $(c_n)_n$ converge vers 0. Soit $\varepsilon = \frac{1}{2} < 1$, il existe donc $n_0 \in \mathbb{N}$ tel que $|c_n| \leqslant \varepsilon = \frac{1}{2}$ pour tout $n \geqslant n_0$ et par $c_n = \min(1, |b_n|)$, on a : $|c_n| = |b_n|$ pour tout $n \ge n_0$ et par suite $\lim_n b_n = 0$.

II. Série trigonométriques dont la somme est continue.

On suppose ici $\sum u_n$ converge simplement sur \mathbb{R} vers et que sa somme f est continue sur \mathbb{R} .

1. .

- 1.1 On sait que (hypothèse) la série numérique $\sum u_n(x)$ converge pour tout $x \in \mathbb{R}$, donc la suite $(u_n(x))_n$ converge vers 0 pour tout $x \in \mathbb{R}$, et par suite la suite de fonctions $(u_n)_n$ converge simplement vers la function nulle sur R.
- 1.2 Pour x = 0, on a: $\sum u_n(0)$ converge, donc $\lim u_n(0) = 0$. Mais $u_n(0) = a_n \cos(n.0) + b_n \sin(n.0) = a_n$, donc
- 1.3 On sait que, piur tout $x \in \mathbb{R}$, $\lim_{n} (a_n \cos(nx) + b_n \sin(nx)) = 0$, en échangeant x en -x, on a aussi $\lim(a_n\cos(nx)-b_n\sin(nx))=0$ et par différence, on obtient : $\lim(2b_n\sin(nx))=0$ et apr suite : $\lim v_n(x)=0$

En conclusion : la suite de fonctions $(v_n)_n$ converge sipmement vers la rollier.

Autre façon : On peut écrire $v_n(x) = u_n(x) - a_n \cos(nx)$ pour tout $x \in \mathbb{R}$, donc : $|v_n(x)| \leq \underbrace{|u_n(x)|}_{\downarrow} - \underbrace{|u_n(x)|}_{\downarrow}$

et puis $(v_n)_n$ converge simplement vers la fonction nulle sur $\mathbb R$. D'après la question I-2.2.1 la suite $(b_n)_n$ converge vers 0.

- 2.1 Pour tout $x \in \mathbb{R}$, et $n \in \mathbb{N}^*$, on a: $\frac{|u_n(x)|}{n^2} \leqslant \frac{|a_n| + |b_n|}{n^2} = o(\frac{1}{n^2}) \operatorname{car} a_n \to 0 \text{ et } b_n \to 0$. Comme $\sum \frac{1}{n^2} a_n = o(\frac{1}{n^2}) \operatorname{car} a_n = o(\frac{1}{n^$ converge, il en résulte que $\sum \frac{u_n}{n^2}$ converge normalement (donc uniformément) sur R.

On pose $-F(x) = \sum_{n=1}^{+\infty} \frac{u_n(x)}{n^2}$ pour tout $x \in \mathbb{R}$.

Comme chaque fonction $\frac{1}{n^2}u_n$ est continue sur \mathbb{R} et que $\sum \frac{1}{n^2}u_n$ converge uniformément sur \mathbb{R} vers -F, il en résulte (thm. du cours) que -F est continue sur \mathbb{R} .

Conclusion : F est continue sur R .

2.2 Pour chaque n, u_n est 2π -périodique sur \mathbb{R} , donc F est aussi 2π -périodique sur \mathbb{R} .

Pour $n \in \mathbb{N}^*$, on a: $a_n(F) = \frac{1}{\pi} \int_{0}^{2\pi} F(x) \cos(nx) dx = -\frac{1}{\pi} \int_{0}^{2\pi} \sum_{k=1}^{+\infty} \frac{u_k(x)}{k^2} \cos(nx) dx$

Mais $\left|\frac{u_k(x)}{k^2}\cos(nx)\right| \leqslant \frac{\|u_k\|_{\infty}}{k^2}$ et que $\sum \frac{\|u_k\|_{\infty}}{k^2}$ converge (donc $\sum_{k=1}^{+\infty} \left(x \mapsto \frac{u_k(x)}{k^2}\cos(nx)\right)$ converge uniform

mément sur $\mathbb R$)., donc le théorème d'interversion de $\int\limits_0^{2\pi}$ et \sum s'applique, il en résulte que

$$a_{n}(F) = -\sum_{k=1}^{+\infty} \frac{1}{k^{2}} \frac{1}{\pi} \int_{0}^{2\pi} u_{k}(x) \cos(nx) dx$$

$$= -\sum_{k=1}^{+\infty} \frac{1}{k^{2}} \left(a_{k} \frac{1}{\pi} \int_{0}^{2\pi} \cos(kx) \cos(nx) dx + b_{k} \frac{1}{\pi} \int_{0}^{2\pi} \sin(kx) \cos(nx) dx \right)$$

$$= -\sum_{k=1}^{+\infty} \frac{1}{k^{2}} a_{k} \delta_{n,k}, \text{ avec } \delta_{k,n} = \begin{cases} 1 & \text{si } k = n \\ 0 & \text{si } k \neq n \end{cases}$$

$$= -\frac{a_{n}}{n^{2}}$$

- 3. Si $\varphi(t) = \begin{cases} \left(\frac{\sin(t)}{t}\right)^2 & si \quad t \neq 0 \\ 1 & si \quad t = 0 \end{cases}$, on pose $g(t) \begin{cases} \frac{\sin(t)}{t} & si \quad t \neq 0 \\ 1 & si \quad t = 0 \end{cases}$, alors $\varphi = g^2$.
 - 3.1 Or pour $t \neq 0$, on a : $g(t) = \frac{\sin(t)}{t} = \frac{1}{t} \sum_{n=0}^{\infty} (-1)^n \frac{t^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{t^{2n}}{(2n+1)!}$ relation qui reste aussi valable pour t=0, donc g est developpable en série entière sur \mathbb{R} , elle est donc de classe C^{∞} sur \mathbb{R} et par suite $\varphi = g^2$ est aussi de classe C^{∞} sur \mathbb{R} . En particulier $\varphi = g^2$ est de classe C^1 sur \mathbb{R} , avec $arphi'(t)=2g(t)g'(t)=rac{\sin(2t)}{t^2}-rac{2\sin^2(t)}{t^3} ext{ pour tout } t\in\mathbb{R}$.
 - 3.2 D'après la question précédente φ' est continue sur $[0,+\infty[$ et qu'au voisinage de $+\infty, \varphi'(t)=O(\frac{1}{f^2})$, et $t\mapsto \frac{1}{t^2}$ est intégrable au voisinage de $+\infty$, donc φ' est intégrable sur $[0,+\infty[$.

4.
$$S_0(x) = 0$$
 et $S_n(x) = \sum_{k=1}^n u_k(x)$ pour $n \in \mathbb{N}^*$.

4.1 Pour
$$n \ge 1$$
, $u_n(x+2h)+u_n(x-2h)-2u_n(x) = a_n \left[\cos(nx+2nh)+\cos(nx-2nh)-2\cos(nx)\right]+b_n \left[\sin(nx+2nh)+\sin(nx+2nh)+\sin(nx+2nh)+\sin(nx+2nh)\right]+b_n \left[\sin(nx+2nh)+\sin(nx+2n$

$$\frac{F(x+2h) - F(x-2h) - 2F(x)}{4h^2} = -\sum_{n=1}^{\infty} \frac{1}{n^2} \frac{u_n(x+2h) + u_n(x-2h) - 2u_n(x)}{4h^2}
= -\sum_{n=1}^{\infty} \frac{4}{n^2} \frac{u_n(x+2h) + u_n(x-2h) - 2u_n(x)}{4h^2}
= -\sum_{n=1}^{\infty} \frac{4}{n^2} \frac{u_n(x+2h) + u_n(x-2h) - 2u_n(x)}{4h^2}
= \sum_{n=1}^{\infty} u_n(x) \left[\frac{\cos^2(nh) - 1}{n^2h^2} \right]$$

$$= \sum_{n=1}^{n-1} u_n(x) \left[\frac{\cos^2(nh) - 1}{n^2h^2} \right]$$
 et comme $-\frac{\cos^2(nh) - 1}{n^2h^2} = \left(\frac{\sin(nh)}{nh}\right)^2 = \varphi(nh)$, on obtient :

$$\Delta_F^2(x, 2h) = \frac{F(x+2h) - F(x-2h) - 2F(x)}{4h^2} = \sum_{n=1}^{\infty} u_n(x)\varphi(nh)$$

4.2 Avec
$$u_n = S_n - S_{n-1}$$
, on a:
$$\sum_{n=1}^{+\infty} u_n(x)\varphi(nh) = \sum_{n=1}^{+\infty} \left(S_n(x) - S_{n-1}(x)\right)\varphi(nh)$$
$$= \sum_{n=1}^{+\infty} S_n(x)\varphi(nh) - \sum_{n=1}^{+\infty} S_{n-1}(x)\varphi(nh)$$
$$= \sum_{n=1}^{+\infty} S_n(x)\varphi(nh) - \sum_{n=0}^{+\infty} S_n(x)\varphi(nh) - \sum_{n=0}^{+\infty}$$

Comme $\sum_{n=1}^{+\infty} (\varphi(nh) - \varphi((n+1)h)) = \varphi(0) = 1 \operatorname{car} \varphi(nh) \underset{n \to \infty}{\longrightarrow} 0$, on a : $f(x) = \sum_{n=1}^{+\infty} f(x) (\varphi(nh) - \varphi((n+1)h))$ et par suite :

$$\Delta_F^2(x,2h) - f(x) = \sum_{n=0}^{+\infty} S_n(x) \left(\varphi(nh) - \varphi((n+1)h) \right) - \sum_{n=1}^{+\infty} f(x) \left(\varphi(nh) - \varphi((n+1)h) \right)$$
$$= \sum_{n=0}^{+\infty} \left(S_n(x) - f(x) \right) \left(\varphi(nh) - \varphi((n+1)h) \right)$$

D'où le résultat demandé.

4.3 Soit $\varepsilon > 0$ et $A = \int_0^{+\infty} |\varphi'(t)| dt$.

Comme φ' est continue et non identiquement nulle sur $[0, +\infty[$, alors $A=\int_0^{+\infty}|\varphi'(t)|\,dt>0$.

- i) Pour $x \in \mathbb{R}$, comme $(S_n)_n$ converge simplement vers f sur R, il existe alors $N \in \mathbb{N}^*$ tel que : $|S_n(x) f(x)| \leqslant \frac{e}{2A}$ pour tout $n \geqslant N$.
- ii) Pour $n \in \mathbb{N}$ et h > 0, on a : $\varphi(nh) \varphi((n+1)h) = -\int_{nh}^{(n+1)h} \varphi'(t)dt$, donc :

$$|\varphi(nh) - \varphi((n+1)h)| \leqslant \int_{nh}^{(n+1)h} |\varphi'(t)| dt$$
 et par suite :

$$\left| \sum_{n=N}^{+\infty} \left(S_n(x) - f(x) \right) \left(\varphi(nh) - \varphi((n+1)h) \right) \right| \leq \sum_{n=N}^{+\infty} \underbrace{\left| S_n(x) - f(x) \right| \left| \varphi(nh) - \varphi((n+1)h) \right|}_{\leqslant \frac{\varepsilon}{2A}} \right)}_{\geqslant 0}$$

$$\leq \frac{\varepsilon}{2A} \sum_{n=N}^{+\infty} \int_{nh}^{(n+1)h} \left| \varphi'(t) \right| dt$$

$$\leq \frac{\varepsilon}{2A} \int_{Nh}^{+\infty} \left| \varphi'(t) \right| dt$$

$$\leq \frac{\varepsilon}{2}$$

iii) D'après
$$ii$$
), pour $n \ge N$ et $h > 0$, on a: $\left| \Delta_F^2(x,2h) - f(x) \right| \le \sum_{k=0}^{N-1} |S_k(x) - f(x)| \left| \varphi(nh) - \varphi((n+1)h) \right| + \frac{\varepsilon}{2}$.

Comme φ est continue en 0, on a : $\lim_{h\to 0} |\varphi(kh) - \varphi((k+1)h)| = 0$, donc $\lim_{h\to 0} \sum_{k=0}^{N-1} |S_k(x) - f(x)| |\varphi(nh) - \varphi((n+1)h)| = 0$ et par suite $\lim_{h\to 0} \left|\Delta_F^2(x,2h) - f(x)\right| = 0$ c'est à dire $\lim_{h\to 0} \frac{F(x+2h) - F(x-2h) - 2F(x)}{4h^2} = f(x)$.

5. .

- 5.1 Pour $x \in \mathbb{R}$, $F_1(x) = \int\limits_0^x (x-t)f(t) = x\int\limits_0^x f(t) \int\limits_0^x tf(t)$ et comme f est une fonction continue sur \mathbb{R} , il en résulte que F_1 est de classe C^1 avec $F_1'(x) = \int\limits_0^x f(t)dt + xf(x) xf(x) = \int\limits_0^x f(t)dt$. F_1' est donc la primitive de f qui s'annule en 0, d'où $F_1''(x) = f(x)$ pour tout $x \in \mathbb{R}$. En Conclusion F_1 est de classe C^1 sur \mathbb{R} , avec $F_1'' = f$.
- 5.2 Pour $x \in \mathbb{R}$ et h > 0, on pose H = 2h, on a : $h \to 0^+ \Leftrightarrow H \to 0^+$. Comme $\lim_{H \to 0} \Delta_F^2(x, H) = \lim_{h \to 0} \Delta_F^2(x, 2h) = f(x)$ et $\lim_{h \to 0} \Delta_{F_1}^2(x, 2h) = \lim_{H \to 0} \Delta_{F_1}^2(x, H) = F_1''(x) = f(x)$, il en résulte que $\lim_{h \to 0} \Delta_{(F-F_1)}^2(x, 2h) = \lim_{h \to 0} \left(\Delta_F^2(x, 2h) - \Delta_{F_1}^2(x, 2h)\right) = 0$, donc $g = F - F_1$ est affine En déduit que $F = g + F_1$ est de classe C^2 sur \mathbb{R} car g affine et F_1 de classe C^2 sur \mathbb{R} , avec $F''(x) = F_1''(x) = f(x)$.
- 5.3 Pour tout x, $f(x) = \sum_{n=1}^{\infty} u_n(x)$ et u_n est 2π -périodique sur \mathbb{R} , pour tout entier n, donc f est 2π -périodique sur \mathbb{R} .

On a:
$$a_n(f) = a_n(F'') = -nb_n(F')$$

 $= -n^2a_n(F)$
 $= -n^2(-\frac{a_n}{n^2})$
 $= a_n$
 $b_n(f) = b_n(F'') = na_n(F')$
 $= -n^2b_n(F) = b_n(F)$

Car la série trigonométrique de somme F convege uniformément sur $\mathbb R$.

III. Séries trigonométriques impaires

A. Une étude de l'application précedente

On suppose que $\sum v_n$ converge simplement ves $f \in C^0(\mathbb{R}, \mathbb{R})$

- 1. La série trigonométrique $\sum v_n$ converge simplement sur \mathbb{R} , donc $(v_n)_n$ converge simplement vers la fonction nulle, et par suite $b_n \to 0$.
- 2. Pour tout $x \in \mathbb{R}$, $\frac{|v_n(x)|}{n^2(n^2+1)} \leqslant \frac{|b_n|}{n^2(n^2+1)} = o(\frac{1}{n^4})$ et que $\sum \frac{1}{n^4}$ converge, donc $\sum \frac{|b_n|}{n^2(n^2+1)}$ converge et par suite $\sum \frac{v_n}{n^2(n^2+1)}$ converge normalement sur \mathbb{R} .

Dans la suite $\psi(x) = \sum_{n=1}^{\infty} \frac{v_n(x)}{n^2(n^2+1)}$ pour tout $x \in \mathbb{R}$.

Si
$$\psi_n(x) = \frac{v_n(x)}{n^2(n^2+1)}$$
, alors:

- ψ_n est de classe C^2 sur \mathbb{R} et $\psi_n'(x) = \frac{v_n'(x)}{n^2(n^2+1)} = \frac{b_n \cos(nx)}{n(n^2+1)}$ pour tout $x \in \mathbb{R}$ et tout entier $n \geqslant 1$.
- $\forall (x,n) \in \mathbb{R} \times N$, $|\psi_n'(x)| \leq \frac{|b_n|}{n(n^2+1)} = o(\frac{1}{n^3})$, donc $\sum \psi_n'$ converge normalement (donc uniformément) sur \mathbb{R} .
- $\bullet \forall (x,n) \in \mathbb{R} \times N$, $|\psi_n''(x)| \leq \frac{|b_n|}{(n^2+1)} = o(\frac{1}{n^2})$, donc $\sum \psi_n''$ converge normalement (donc uniformément) sur \mathbb{R}

Le théorème de dérivation terme à terme montre que ψ est de classe C^2 , et $\psi''(x) = \sum_{n=1}^{\infty} \psi_n''(x) = -\sum_{n=1}^{\infty} \frac{b_n \sin(nx)}{(n^2+1)}$

3.