

# GMWM Package - Part I A Computationally Efficient Platform for Inertial Sensor Calibration

Stéphane Guerrier

Department of Statistics University of Illinois at Urbana-Champaign

joint work with James Balamuta (UIUC) Roberto Molinari (U. Geneva) Jan Skaloud (EPFL) Xinyu Zhang (CAS)

September 16, 2015

## Outline

#### Part I

#### Introduction

- Latent time series models
- GMWM estimator
- 6 GMWM-based model selection
- Why use the GMWM?

## @ GMWM package

- Software architecture
- ② Computational efficiency
- A List of features

#### Part II

#### GMWM Demo

- Loading data
- Computing WV and AV
- Visualization
- Estimation and inference
- Model selection

#### Conclusions

- Advantages of the GMWM
- Opcoming features

## **IMU** Calibration

# Errors in Inertial Sensors

- Possible causes:
  - Non-orthogonalities of the sensor axes
  - Environmental conditions (e.g. temperature)
  - Electronics
  - Dynamics
  - Others
- Error types:
  - Deterministic (calibration models, physical models, ... )
  - Random error components (typically latent time series models,...)

## Correct stochastic sensor error modeling implies:

- Correct stochastic assumptions for inference
- Better navigation or post-processing performance

Stéphane Guerrier GMWM Package September 16, 2015 3 / 16

# An easy latent time series model



## Remarks:

Simple linear regression model:

$$y_{t} = \omega t + \varepsilon_{t}$$

$$\varepsilon_{t} \stackrel{iid}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$$

- MLE is perfectly fine.
- What if we add an AR(1) process?

Stéphane Guerrier GMWM Package September 16, 2015

# Adding an autoregressive process



#### Remarks:

- Not a linear regression model but a state space model.
- Computing the likelihood is not an easy task (Kalman filter).
- MLE (in fact EM-KF) fails.

## The GMWM estimator

#### Definition:

The GMWM estimator is the solution of the following optimization problem

$$\hat{ heta} = \mathop{\mathsf{argmin}}_{ heta \in \Theta} \, \left( \hat{
u} - 
u( heta) 
ight)^\mathsf{T} \Omega \left( \hat{
u} - 
u( heta) 
ight)$$

in which  $\Omega$ , a positive definite weighting matrix, is chosen in a suitable manner such that the above quadratic form is convex.

## Theoretical results (under technical conditions)

- $\bullet$   $\nu(\theta)$  is one-to-one in  $\Theta$ .
- $oldsymbol{\hat{ heta}}$  is consistent and asymptotically normally distributed.
- $\Omega = \mathbf{V}^{-1}$  (where  $\mathbf{V} \equiv \text{cov}(\hat{\nu})$ ) is asymptotically optimal.
- $(\hat{\nu} \nu(\hat{\theta}))^T \Omega^* (\hat{\nu} \nu(\hat{\theta}))$  is asymptotically  $\chi^2$ .

Stéphane Guerrier **GMWM Package** 

## GMWM model selection criterion

## The Wavelet Variance Information Criterion (WVIC)

We define the WVIC as:

$$\mathsf{WVIC} = \mathbb{E}\left[\mathbb{E}_0\left[\left(\hat{\boldsymbol{\nu}}^0 - \boldsymbol{\nu}(\hat{\boldsymbol{\theta}})\right)^T\boldsymbol{\Omega}\left(\hat{\boldsymbol{\nu}}^0 - \boldsymbol{\nu}(\hat{\boldsymbol{\theta}})\right)\right]\right].$$

This model selection criterion is specifically developed for the GMWM estimation technical (as the  $C_p$  for LS or AIC with MLE).

### Theoretical results (under technical conditions)

- Guerrier et al. 2015 proposed an unbiased estimator of WVIC using bootstrap method (WIC\*).
- Zhang et al. 2015 proposed an asymptotically unbiased estimator of WVIC that does not require the use of simulation (WIC). They also proved that this method is loss efficient.

# Why use the GMWM?

### Summary

- Reliable, efficient and flexible estimation method that can estimate the parameters of state space models for which other methods (e.g. MLE) fails. Generally good finite sample performance.
- Well defined statistical properties: consistent and asymptotically normally distributed for large class of models. This is (in general) not the case for Allan variance based methods.
- Orrect inference for the parameters and allows for goodness-of-fit test(s).
- Automatic model selection based on criterion (equivalent of AIC for MLE). This selection procedure is loss efficient.
- Computationally inexpensive: can estimate complex latent with millions of observation in less ks a second on a typical computer.

# Design of the GMWM R Package

## Design Principles

- Fast
  - Estimate large time series (10<sup>6</sup> and more) quickly.
  - Rapidly iterate over different models.
- Simple
  - Accessible to everyone.
  - Straightforward commands.
- Portable
  - Reusable across different computational platforms.
  - Possibly usable in embedded computer systems.

James Balamuta GMWM Package September 16, 2015 9 / 16

## Software Architecture

## Backend of GMWM Package

- The internals of the package are based solely on the matrix functions afforded by the Armadillo templated C++ Matrix Algebra Library.
- This enables the code to be portable to any computational platform that supports calling C++ functions.
- However, there is a dependency on R's graphics and optimization functions.

## Frontend of GMWM Package

- The user interacts with GMWM backend through R's GUI.
- To facilitate this, we use a package called RcppArmadillo, which facilitates the transference of R objects into C++.
- The graphics generated require R-specific packages ggplot2, scales, grid, and gridExtra.

James Balamuta GMWM Package September 16, 2015 10 / 16

# Why use R?

### Benefits of R

- It's a FREE mature open source platform
- Similar to MATLab rapid prototyping from interpreter-architecture
- Able to integrate Fortran, C, C++, and Python code via wrappers
- Easy install and distribution of latest statistical methods
- Support from Fortune 500 companies (e.g. Oracle and Microsoft)
- But...







James Balamuta GMWM Package September 16, 2015 11 / 16

# High-Performance Computing

## Optimizing for Speed

- The GMWM package is very computationally efficient since a lot of work was put forth to decrease the amount of time required for each task required to compute the GMWM estimator.
- So, not only is the code for the GMWM estimation fast, but also for other parts of the package such as bootstrapping, inference, robustness, et cetera is also very quick.

#### Result:

The GMWM is able to estimate complex time series models with sample sizes of about  $10^6$  observations in less than a second.

# Timings on Decomposition

| Function               |        | Ν      |        |
|------------------------|--------|--------|--------|
|                        | 100    | 1,000  | 10,000 |
| AV MO (gmwm R package) | 0.0000 | 0.0005 | 0.0261 |
| AV MO (avar R package) | 0.0074 | 0.1053 | 4.0189 |
| AV TO (gmwm R package) | 0.0002 | 0.0001 | 0.0003 |
| AV TO (avar R package) | 0.0009 | 0.0104 | 0.1053 |

Table: Computational time in seconds performed on an iMac Late 2013 (3.5ghz i5 with 8 GB 1600 Mhz)

#### Note:

The AV gmwm-based implementation is (at least!) 100 times faster.

James Balamuta GMWM Package September 16, 2015 13 / 16

# Package Features

- User-friendly syntax for time series model specification and simulation.
- Efficient computation of AV and WV (DWT or MODWT).
- Diverse error signal visualization and model-validation options.
- Tailor-made GMWM estimation for IMU calibration models.
- Model Selection via bootstrapped or asymptotic methods.
- Robust alternatives for all features against contaminated data.
- And many more..

James Balamuta GMWM Package September 16, 2015 14 / 16

# Open Source + Collaboration

## Open Source License

The GMWM project has been released using the **Q Public License**.



## Collaborate with us on GitHub!

The GMWM is currently hosted on GitHub underneath the SMAC-group @ UIUC user account. To contribute, fork a copy and submit a pull request with any new features or bug fixed!

https://github.com/SMAC-group/GMWM



# Thank you very much for your attention!

## A special thanks to

- Dr. Yannick Stebler (EPFL/u-blox)
- Prof. Maria-Pia Victoria-Feser (U. Geneva)
- Wenchao Yang (UIUC)

# Any questions?

## More info...

http://publish.illinois.edu/SMAC-group stephane@illinois.edu

