THÔNG TIN VỀ LUẬN ÁN TIẾN SĨ

1. Họ và tên nghiên cứu sinh: Nguyễn Thị Phương Lệ Chi 2. Giới tính: Nữ

3. Ngày sinh: 02/02/1989 4. Nơi sinh: Phú Yên

- 5. Quyết định công nhận nghiên cứu sinh: Số 3972/QĐ-ĐHKHTN ngày 24 tháng 11 năm 2016 của Giám đốc Đai học Quốc gia Hà Nôi.
- 6. Các thay đổi trong quá trình đào tạo: Không
- 7. Tên đề tài luận án: Nghiên cứu tổng hợp vật liệu xúc tác quang chứa tantan nitrua và ứng dụng trong xử lý môi trường.
- 8. Chuyên ngành: Hóa môi trường
- 9. Mã số: 9440112.05
- 10. Cán bộ hướng dẫn khoa học: Hướng dẫn chính: GS.TS. Nguyễn Văn Nội

Hướng dẫn phụ: PGS.TS. Nguyễn Minh Phương

11. Tóm tắt các kết quả mới của luận án:

Quá trình thực hiện các nội dung nghiên cứu của luận án đã thu được những kết quả sau:

- Đã tổng quan các nghiên cứu về vật liệu xúc tác quang thế hệ mới có năng lượng vùng cấm hẹp và tiềm năng ứng dụng trong lĩnh vực xử lý môi trường và chuyển hóa năng lượng. Phân tích rõ vai trò của khác hợp phần biến tính của một số hệ vật liệu thế hệ mới trên cơ sở vật liệu tantan nitrua.
- Đã tổng hợp thành công vật liệu Ta_3N_5 (E_{bg} = 2,1 eV), $BiVO_4$ (E_{bg} = 2,19 eV) và $g-C_3N_4$ (E_{bg} = 2,52 eV) bằng phương pháp thủy nhiệt/nhiệt pha rắn.
- Đã tổng hợp 7 vật liệu $Ta_3N_5/BiVO_4$ ở các điều kiện tổng hợp khác nhau. Kết quả thu được cho thấy, điều kiện thích hợp để tổng hợp vật liệu $Ta_3N_5/BiVO_4$ gồm: nhiệt độ nung 600 $^{\circ}$ C, tỷ lệ khối lượng $Ta_3N_5/BiVO_4$ là 2% (TB-5-600), có $E_{bg}=1,82$ eV, hiệu suất phân hủy RhB đạt 89,30% sau 6 giờ chiếu sáng.
- Đã tổng hợp 8 mẫu vật liệu Ta_3N_5/g - C_3N_4 ở các điều kiện khác nhau. Kết quả thu được cho thấy, điều kiện thích hợp để tổng hợp vật liệu Ta_3N_5/g - C_3N_4 gồm: nhiệt độ nung 550 °C, tỷ lệ khối lượng Ta_3N_5/g - C_3N_4 là 2% (TCN-2-550), có E_{bg} = 1,91 eV, hiệu suất phân hủy RhB đạt 90,26% sau 3 giờ chiếu sáng.
- Đã tổng hợp 3 mẫu vật liệu V- Ta_3N_5 ở với tỉ lệ khối lượng V/Ta khác nhau. Kết quả thu được cho thấy, vật liệu V- Ta_3N_5 /g- C_3N_4 tổng hợp ở tỷ lệ khối lượng V/Ta là 2% (2% V- Ta_3N_5), có E_{bg} = 1,82 eV, hiệu suất phân hủy RhB đạt 75,15% sau 6 giờ chiếu sáng.
 - Kết quả phân tích động học quá trình quang phân hủy RhB cho thấy, sự phân hủy

RhB trên các xúc tác $Ta_3N_5/BiVO_4$, $Ta_3N_5/g-C_3N_4$ và V- Ta_3N_5 tuân theo phương trình động học bậc nhất Langmuir-Hinshelwood. Giá trị k_{RhB} của TB-5-600, TCN-2-550 và V- Ta_3N_5 lần lượt là 0,42160 h⁻¹ (sau 6 giờ phân hủy); 0,74572 h⁻¹ (sau 3 giờ phân hủy) và 0,2213 h⁻¹ (sau 6 giờ phân hủy).

- Đã đề xuất cơ chế quang xúc tác phân hủy các chất hữu cơ trên 2 hệ vật liệu lai ghép thế hệ mới là $Ta_3N_5/BiVO_4$ (gốc HO^{\bullet} quyết định chính) và $Ta_3N_5/g-C_3N_4$ (gốc O_2^{\bullet} quyết định chính), góp phần làm cơ sở định hướng cho các nghiên cứu về việc lai ghép các vật liệu bán dẫn ứng dụng trong lĩnh vực xử lý môi trường.
- Đã đánh giá khả năng chuyển hóa CO_2 thành CH_4 trên vật liệu $Ta_3N_5/BiVO_4$ và V- Ta_3N_5 , các giá trị thu được lần lượt là 425 μ mol. g-1cat. h-1 và 322 μ mol. g-1cat. h-1.
- Kết quả thực nghiệm thu được cho thấy tiềm năng ứng dụng của các vật liệu này trong quá trình phân huỷ chất hữu cơ ô nhiễm trong môi trường cũng như phản ứng chuyển hóa CO₂.
 12. Khả năng ứng dụng thực tiễn:
- Các kết quả nghiên cứu về quy trình tổng hợp các hệ vật liệu thế hệ $Ta_3N_5/BiVO_4$, $Ta_3N_5/g-C_3N_4$ và $V-Ta_3N_5$ đã tạo ra những vật liệu xúc tác quang bán dẫn thế hệ mới có năng lượng vùng cấm hẹp có khả năng thay thế cho các vật liệu xúc tác quang truyền thống như.
- Các kết quả nghiên cứu về vật liệu xúc tác quang thế hệ mới trên cơ sở tantan nitrua nhằm ứng dụng làm chất xúc tác quang trong vùng ánh sáng nhìn thấy đã góp phần làm đa dạng hóa các loại vật liệu mớicó khả năng ứng dụng trong xử lý môi trường nước ô nhiễm.

13. Các hướng nghiên cứu tiếp theo:

Đánh giá khả năng chuyển hóa ${\rm CO_2}$ thành các nhiên liệu tái sinh trên vật liệu ${\rm Ta_3N_5/g\text{-}C_3N_4}$.

- Nghiên cứu triển khai, ứng dụng các vật liệu xúc tác quang thế hệ mới tổng hợp trên cơ sở tantan nitrua trong xử lý nước thải ô nhiễm bởi các hợp chất hữu cơ độc hại khó phân hủy sinh học.
- 14. Các công trình công bố liên quan đến luận án:
- 1. Thi Dieu Cam Nguyen, **Thi Phuong Le Chi Nguyen**, Hung Thanh Tung Mai, Van-Duong Dao, Minh Phuong Nguyen, Van Noi Nguyen (2017), "Novel photocatalytic conversion of CO₂ by vanadium-doped tantalum nitride for valuable solar fuel production", *Journal of Catalysis*, 352, pp.67–74 (Q1, IF = 7,732).
- **2. Nguyễn Thị Phương Lệ Chi**, Mai Hùng Thanh Tùng, Nguyễn Thị Diệu Cẩm, Trương Thanh Tâm, Trần Thị Thu Phương, Nguyễn Thị Minh Thư, Nguyễn Minh Phương, Nguyễn Văn Nội (2017), "Tổng hợp vật liệu Ta₃N₅ và đánh giá hoạt tính quang xúc tác khử CO₂ trong vùng ánh sáng khả kiến", *Tạp chí Hóa học*, tập 55(5E1,2), tr.17-21.

- **3. Nguyễn Thị Phương Lệ Chi**, Lê Quỳnh Như, Trương Thanh Tâm, Nguyễn Thị Diệu Cẩm, Nguyễn Tấn Lâm, Nguyễn Thị Minh Thư, Trần Thị Thu Phương, Nguyễn Minh Phương, Mai Hùng Thanh Tùng (2018), "Tổng hợp vật liệu composit Ta₃N₅/BiVO₄ có hoạt tính quang xúc tác cao trong vùng ánh sáng khả kiến", *Tạp chí Hóa học*, tập 56(3), tr.350-354.
- 4. Lê Quỳnh Như, **Nguyễn Thị Phương Lệ Chi**, Nguyễn Thị Diệu Cẩm (2019), "Điều chế vật liệu xúc tác quang BiVO₄ bằng phương pháp thủy nhiệt", *Tạp chí Phân tích Lý, Hóa và Sinh học*, tập 24, tr.60-65.
- **5. Nguyễn Thị Phương Lệ Chi**, Cao Văn Hoàng, Bùi Thị Ngọc Trúc, Nguyễn Tiến Trung, Phạm Thanh Đồng, Nguyễn Thị Diệu Cẩm, Nguyễn Minh Phương, Nguyễn Văn Nội (2020), " Tổng hợp, đặc trưng và hoạt tính quang xúc tác của vật liệu bán dẫn hữu cơ g- C_3N_4 trong vùng ánh sáng nhìn thấy", *Tạp chí Phân tích Lý, Hóa và Sinh học* .
- **6. Nguyễn Thị Phương Lệ Chi**, Nguyễn Thị Diệu Cẩm, Cao Văn Hoàng, Mai Hùng Thanh Tùng, Phạm Thanh Đồng, Nguyễn Minh Phương, Nguyễn Văn Nội (2020), "Ảnh hưởng của nhiệt độ tổng hợp đến hoạt tính quang xúc của vật liệu Ta₃N₅/g-C₃N₄", *Tạp chí Phân tích Lý, Hóa và Sinh học* (đã nhận đăng ngày 11/11/2019).

Các công trình công bố có liên quan khác

- 1. Van-Duong Dao, **Nguyen Thi Phuong Le Chi**, Doan Van Thuan, Thanh-Dong Pham, Dinh-Trinh Tran, Minh Phuong Nguyen, Phuong Thao, Minh Viet Nguyen, Nguyen Thi Dieu Cam, Nguyen Manh Tuong, Nhat Minh Dang, Ho-Suk Choi (2019), "Superior stability and photocatalytic activity of Ta₃N₅ sensitized/protected by conducting polymers for water splitting", *Journal of Alloys and Compounds*, 775, pp.942-949.
- 2. Nguyen Thi Thanh Truc, Nguyen Thi Hanh, Minh Viet Nguyen, **Nguyen Thi Phuong Le Chi**, Nguyen Van Noi, Dinh Trinh Tran, Minh Ngoc Ha, Do Quang Trung, Thanh-Dong Pham (2018), "Novel direct Z-scheme Cu₂V₂O₇/g-C₃N₄ for visible light photocatalytic conversion of CO₂ into valuable fuels", *Applied Surface Science*, 457, pp.968–974.

Ngày tháng 08 năm 2020

Cán bộ hướng dẫn

Nghiên cứu sinh

INFORMATION ON DOCTORAL THESIS

1. Full name: Nguyen Thi Phuong Le Chi 2. Sex: female

3. Date of birth: 02/02/1989 4. Place of birth: Phu Yen

5. Admission decision number: No. 3972/ QD-DHKHTN 24/11/2016 of the President of Vietnam National University, Hanoi.

6. Changes in academic process:

7. Official thesis title: Research on synthesis of photocatalytic materials contain tantalum nitride and application in environmental treatment.

8. Major: Environmental Chemistry 9. Code: 9440112.05

10. Supervisors: Main instruction: Prof. Dr. Nguyen Van Noi

Additional guidance: Assoc.Prof. Dr. Nguyen Minh Phuong

- 11. Summary of the new findings of the thesis:
- We successfully synthesized the Ta_3N_5 ($E_{bg}=2.1$ eV), $BiVO_4$ ($E_{bg}=2.19$ eV) và g- C_3N_4 ($E_{bg}=2.52$ eV) using solid phase thermal method/combining with sonification, hydrothermal.
- We successfully synthesized seven the $Ta_3N_5/BiVO_4$ materials under different conditions. The obtained resuls show that, optimum conditions to synthesize $Ta_3N_5/BiVO_4$: the optimal $Ta_3N_5/BiVO_4$ ratio in the heterojunction system was 5 %, temperature 600 °C (TB-5-600). The band gap energy of $Ta_3N_5/BiVO_4$ was approximately 1.82 eV and degradation of RhB dye using TB-5-600 in aqueous environment is 89.30% under visible light (after 6 hours).
- We successfully synthesized eight the Ta_3N_5/g - C_3N_4 materials under different conditions. The obtained resuls show that, optimum conditions to synthesize Ta_3N_5/g - C_3N_4 : the optimal Ta_3N_5/g - C_3N_4 ratio in the heterojunction system was 2 %, temperature 550 °C (TCN-2-550). The band gap energy of Ta_3N_5/g - C_3N_4 was approximately 1.91 eV and degradation of RhB dye using TCN-2-550 in aqueous environment is 90,26% under visible light (after 3 hours).
- Three V doped Ta_3N_5 (V- Ta_3N_5) materials was synthesized. The optimal V doping ratio in the V/Ta was 2 % (2%V- Ta_3N_5). The V dopants, which existed in the Ta_3N_5 lattice, could act as an intermediate band (V 3d) between the valence band (N 2p) and the conduction band (Ta 5d) of the Ta_3N_5 to increase electron hole separation efficiency of the photocatalysts. Thus, the photocatalytic activity of the V- Ta_3N_5 was much higher than that of the Ta_3N_5 . Degradation of RhB dye using V- Ta_3N_5 in aqueous environment is 75,15% under visible light (after 6 hours).

- The reaction rate of RhB on $Ta_3N_5/BiVO_4$, $Ta_3N_5/g-C_3N_4$ and V- Ta_3N_5 were found to obey pseudo first-order kinetics represented by the Langmuir-Hinshelwood model. The value of reaction rate constants for RhB degradation are 0,42160 h⁻¹ (after 6 hours); 0,74572 h⁻¹; (after 3 hours) and 0,2213 h⁻¹ (after 6 hours), respectively.
- Proposed possible mechanism of our established $Ta_3N_5/BiVO_4$ (HO radical main factor) and Ta_3N_5/g - C_3N_4 (O_2 radical main factor) systems for photocatalytic degradation of RhB pollutants under light visible region.
- Used the V-Ta₃N₅ and Ta₃N₅/BiVO₄ for the CO₂ conversion to produce valuable solar fuels. The production rates of CH₄ generated from the photocatalytic reduction of CO₂ by 2% V/Ta and Ta₃N₅/BiVO₄ under visible light are 425 and 322 (μ mol. g⁻¹cat. h⁻¹), respectively.
- Evaluated the ability to convert CO_2 into CH_4 into renewable fuels on $Ta_3N_5/BiVO_4$ and $V-Ta_3N_5$ materials.

12. Paratical applicability, if any:

Thesis researching and preparing modified materials Ta₃N₅/BiVO₄, Ta₃N₅/g-C₃N₄, V-Ta₃N₅ from tantalum nitride to catalyze the decomposition of some toxic organic compounds in water environment is a direction High scientific and practical significance.

The results obtained from the assessment of the ability to convert CO_2 into renewable fuels on $Ta_3N_5/BiVO_4$ and $V-Ta_3N_5$ materials show the potential for application of these materials in CO_2 conversion reaction, aiming to solve two current heating issues are global warming and fuel scarcity.

13. Further research directions, if any

Evaluate the ability to convert CO_2 into renewable fuels on Ta_3N_5/g - C_3N_4 materials. Evaluate the ability to decompose some toxic organic compounds in the water environment by $V-Ta_3N_5$ material to choose the most suitable materials for practical application.

14. Thesis-related publications:

- 1. Thi Dieu Cam Nguyen, **Thi Phuong Le Chi Nguyen**, Hung Thanh Tung Mai, Van-Duong Dao, Minh Phuong Nguyen, Van Noi Nguyen (2017), "Novel photocatalytic conversion of CO₂ by vanadium-doped tantalum nitride for valuable solar fuel production", *Journal of Catalysis*, 352, pp.67–74 (Q1, IF = 7,732).
- **2. Nguyễn Thị Phương Lệ Chi**, Mai Hùng Thanh Tùng, Nguyễn Thị Diệu Cẩm, Trương Thanh Tâm, Trần Thị Thu Phương, Nguyễn Thị Minh Thư, Nguyễn Minh Phương, Nguyễn Văn Nội (2017), "Tổng hợp vật liệu Ta₃N₅ và đánh giá hoạt tính quang xúc tác khử CO₂ trong vùng ánh sáng khả kiến", *Tap chí Hóa học*, tập 55(5E1,2), tr.17-21.

- **3. Nguyễn Thị Phương Lệ Chi**, Lê Quỳnh Như, Trương Thanh Tâm, Nguyễn Thị Diệu Cẩm, Nguyễn Tấn Lâm, Nguyễn Thị Minh Thư, Trần Thị Thu Phương, Nguyễn Minh Phương, Mai Hùng Thanh Tùng (2018), "Tổng hợp vật liệu composit Ta₃N₅/BiVO₄ có hoạt tính quang xúc tác cao trong vùng ánh sáng khả kiến", *Tạp chí Hóa học*, tập 56(3), tr.350-354.
- 4. Lê Quỳnh Như, **Nguyễn Thị Phương Lệ Chi**, Nguyễn Thị Diệu Cẩm (2019), "Điều chế vật liệu xúc tác quang BiVO₄ bằng phương pháp thủy nhiệt", *Tạp chí Phân tích Lý, Hóa và Sinh học*, tập 24, tr.60-65.
- **5. Nguyễn Thị Phương Lệ Chi**, Cao Văn Hoàng, Bùi Thị Ngọc Trúc, Nguyễn Tiến Trung, Phạm Thanh Đồng, Nguyễn Thị Diệu Cẩm, Nguyễn Minh Phương, Nguyễn Văn Nội (2020), " Tổng hợp, đặc trưng và hoạt tính quang xúc tác của vật liệu bán dẫn hữu cơ g-C₃N₄ trong vùng ánh sáng nhìn thấy", *Tạp chí Phân tích Lý, Hóa và Sinh học* (đã nhận đăng ngày 2/12/2019).
- **6. Nguyễn Thị Phương Lệ Chi**, Nguyễn Thị Diệu Cẩm, Cao Văn Hoàng, Mai Hùng Thanh Tùng, Phạm Thanh Đồng, Nguyễn Minh Phương, Nguyễn Văn Nội (2020), "Ảnh hưởng của nhiệt độ tổng hợp đến hoạt tính quang xúc của vật liệu Ta₃N₅/g-C₃N₄", *Tạp chí Phân tích Lý, Hóa và Sinh học* (đã nhận đăng ngày 11/11/2019).

Other thesis-related publications:

- 1. Van-Duong Dao, **Nguyen Thi Phuong Le Chi**, Doan Van Thuan, Thanh-Dong Pham, Dinh-Trinh Tran, Minh Phuong Nguyen, Phuong Thao, Minh Viet Nguyen, Nguyen Thi Dieu Cam, Nguyen Manh Tuong, Nhat Minh Dang, Ho-Suk Choi (2019), "Superior stability and photocatalytic activity of Ta₃N₅ sensitized/protected by conducting polymers for water splitting", *Journal of Alloys and Compounds*, 775, pp.942-949.
- 2. Nguyen Thi Thanh Truc, Nguyen Thi Hanh, Minh Viet Nguyen, **Nguyen Thi Phuong Le Chi**, Nguyen Van Noi, Dinh Trinh Tran, Minh Ngoc Ha, Do Quang Trung,
 Thanh-Dong Pham (2018), "Novel direct Z-scheme Cu₂V₂O₇/g-C₃N₄ for visible light
 photocatalytic conversion of CO₂ into valuable fuels", *Applied Surface Science*, 457,
 pp.968–974.

 **Date:/08/2020

Supervisor

PhD Student