FYS2140 - Oblig 8

Aleksander Hansen, gruppe 1

 $26.\ \mathrm{mars}\ 2012$

Oppgave 1

a) For 0 < x, y, z < a, blir TUSL:

$$-\frac{\hbar^2}{2m} \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} \right) = E\psi$$

Den separable løsningen kan skrives på formen: $\psi(x, y, z) = X(x)Y(y)Z(z)$. Setter vi dette inn i TUSL over og deler på XYZ får vi:

$$-\frac{\hbar^2}{2m}\left(\frac{1}{X}\frac{d^2X}{dx^2}+\frac{1}{Y}\frac{d^2Y}{dy^2}+\frac{1}{Z}\frac{d^2Z}{dz^2}\right)=E$$

Vi har nå tre ledd på venstre side som er funksjoner av x,y og z respektivt. Disse leddene må være konstant, ellers kunne vi ha variert et ledd uten at de andre hadde endret seg samtidig som summen av leddene var konstant. Noe som ikke går. Vi får altså at:

$$\frac{1}{X}\frac{d^2X}{dx^2} + \frac{1}{Y}\frac{d^2Y}{du^2} + \frac{1}{Z}\frac{d^2Z}{dz^2} = -\frac{2m}{\hbar^2}E = (k_x^2 + k_y^2 + k_z^2)$$

Hvor k_x , k_y og k_z er separasjonskonstantene. Og $E \equiv \frac{\hbar^2}{2m}(k_x^2 + k_y^2 + k_z^2)$. Dette leder til tre diff. likninger:

$$\frac{d^2X}{dx^2} = -k_x^2 X, \quad \frac{d^2Y}{dy^2} = -k_y^2 Y, \quad \frac{d^2Z}{dz^2} = -k_z^2 Z$$

Med de kjente løsningene:

$$X(x) = A_x \sin(k_x x) + B_x \cos(k_x x)$$

$$Y(y) = A_u \sin(k_u y) + B_u \cos(k_u y)$$

$$Z(z) = A_z \sin(k_z z) + B_z \cos(k_z z)$$

Siden X(0)=Y(0)=Z(0)=0 så er $B_x=B_y=B_z=0$. Og siden X(a)=Y(a)=Z(a)=0 så er $\sin(k_xa)=\sin(k_ya)=\sin(k_za)=0$. Som medfører at $k_x=n_x\pi/a$, $k_y=n_y\pi/a$ og $k_z=n_z\pi/a$, for $n_x,n_y,n_z=1,2,3,...$ Vi får derfor at:

$$E = \frac{\hbar^2}{2m} \frac{\pi^2}{a^2} (n_x^2 + n_y^2 + n_z^2)$$

og,

$$\psi(x, y, z) = A_x A_y A_z \sin(\frac{n_x \pi}{a} x) \sin(\frac{n_y \pi}{a} y) \sin(\frac{n_z \pi}{a} z)$$

b) De første permutasjonene av $n_x,\,n_y$ og n_z for de laveste energiene:

n_x	n_y	n_z	$(n_x^2 + n_y^2 + n_z^2)$
1	1	1	3
1	1	2	6
1	2	1	6
2	1	1	6
1	2	2	9
2	1	2	9
2	2	1	9
1	1	3	11
1	3	1	11
3	1	1	11
2	2	2	12
1	2	3	14
1	3	2	14
2	1	3	14
2	3	1	14
3	1	2	14
3	2	1	14

De seks første laveste energiene (E) med degenerasjonsgrad (d):

$$E_{1} = \frac{3\pi^{2}\hbar^{2}}{2ma}, \quad d = 1$$

$$E_{2} = \frac{3\pi^{2}\hbar^{2}}{ma}, \quad d = 3$$

$$E_{3} = \frac{9\pi^{2}\hbar^{2}}{2ma}, \quad d = 3$$

$$E_{4} = \frac{11\pi^{2}\hbar^{2}}{2ma}, \quad d = 3$$

$$E_{5} = \frac{6\pi^{2}\hbar^{2}}{ma}, \quad d = 1$$

$$E_{6} = \frac{7\pi^{2}\hbar^{2}}{ma}, \quad d = 6$$

c) Degenerasjonsgraden til E_{14} er 4. Jeg vet ikke hvorfor det er mer interessant enn andre tilfeller.

Oppgave 2

Antar vi at det finnes to løsninger ψ_1 og ψ_2 med samme energi E:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi_1}{dx^2} + V\psi_1 = E\psi_1$$

$$-\frac{\hbar^2}{2m}\frac{d^2\psi_2}{dx^2} + V\psi_2 = E\psi_2$$

Multipliserer vi den første likningen med ψ_2 og den andre med ψ_1 :

$$-\frac{\hbar^2}{2m}\psi_2\frac{d^2\psi_1}{dx^2} + V\psi_2\psi_1 = E\psi_2\psi_1$$

$$-\frac{\hbar^2}{2m}\psi_1 \frac{d^2\psi_2}{dx^2} + V\psi_2\psi_1 = E\psi_2\psi_1$$

og trekker den andre fra den første får vi:

$$-\frac{\hbar^2}{2m} \left(\psi_2 \frac{d^2 \psi_1}{dx^2} - \psi_1 \frac{d^2 \psi_2}{dx^2} \right) = 0$$

Siden

$$\left(\psi_2 \frac{d^2 \psi_1}{dx^2} - \psi_1 \frac{d^2 \psi_2}{dx^2}\right) = \frac{d}{dx} \left(\psi_2 \frac{d\psi_1}{dx} - \psi_1 \frac{d\psi_2}{dx}\right)$$

følger det at,

$$\psi_2 \frac{d\psi_1}{dx} - \psi_1 \frac{d\psi_2}{dx} = K$$

Hvor K er konstant. For normaliserbare løsninger har vi at $\psi(x) \to 0$ når $x \to \pm \infty$. Derfor må konstanten være lik 0, og vi har:

$$\psi_2 \frac{d\psi_1}{dx} = \psi_1 \frac{d\psi_2}{dx} \Rightarrow \frac{1}{\psi_1} \frac{d\psi_1}{dx} = \frac{1}{\psi_2} \frac{d\psi_2}{dx}$$

Vi integrerer på begge sider å får:

$$\ln \psi_1 = \ln \psi_2 + C \Rightarrow \psi_1 = c\psi_2$$

Altså ψ_1 og ψ_2 er ikke distinkte løsninger siden de er lineært avhengige.