

(11)Publication number:

10-309178

(43)Date of publication of application: 24.11.1998

(51)Int.CI.

A23L 1/30 A61K 35/74 C12N 1/20 //(C12N 1/20 C12R 1:01

(21)Application number : 09-134482

(71)Applicant: WAKAMOTO PHARMACEUT CO

LTD

(22)Date of filing:

09.05.1997

(72)Inventor: AIBA TAKESHI

SUZUKI NOBUYUKI KOKUBO NAOMI HIRATA HARUHISA SAITO YOSHIAKI KOGA YASUHIRO

(54) ANTIALLERGIC AGENT AND FERMENTED FOOD CONTAINING BIFIDUS BACTERIUM AS ACTIVE COMPONENT

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain an antiallergic agent and a fermented food having excellent safety and effective for inducing peroral immune tolerance to intestinal normal bacterial flora and preventing the occurrence of food allergy by using a bifidus bacterial strain capable of curing food allergy as an active component.

SOLUTION: This agent contains a human-originated bifidus bacterial strain capable of curing food allergy and belonging to Bifidobacterium infantis, Bifidobacterium breve, Bifidobacterium longum or Bifidobacterium bifidum as an active component. The bifidus bacterial strain is preferably Bifidobacterium infantis JCM 1222 and/or Bifidobacterium breve JCM 1192 and the daily administration rate of the bifidus bacteria for adult is 1×106 , preferably 1×108 to 1×100 in terms of the number of living cells.

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出顧公開番号

特開平10-309178

(43)公開日 平成10年(1998)11月24日

番号 FI 技術表示箇所
A23L 1/30 Z
A61K 35/74 ABF A
C12N 1/20 A
審査請求 未蘭求 請求項の数3 FD (全5頁)
(71)出願人 000100492
わかもと製薬株式会社
日 東京都中央区日本橋室町1丁目5番3号
(72)発明者 相場 勇志
月 2 東京都中央区日本橋室町 1 丁 目 5 番 3 号
「第 わかもと製薬株式会社内
日程 (72)発明者 鈴木 信之
東京都中央区日本橋室町 1 丁目 5 番 3 号
わかもと製薬株式会社内
(72) 発明者 小久保 直美
東京都中央区日本橋室町 1 丁目 5 番 3 号
わかもと製薬株式会社内
最終頁に統く

(54) 【発明の名称】ビフィズス菌を有効成分とする抗アレルギー剤および醗酵食品

(57) 【要約】

【目的】 本発明は経口免疫寛容を誘導することにより 食物アレルギーの発症を防止または治療できる乳酸菌製 剤および醗酵食品を提供する。

【構成】 食物アレルギーを治療する能力を有するヒト由来のピフィズス菌、ピフィドバクテリウム・インファンティス(Bifidobacterium infantis)、ピフィドバクテリウム・ブレーベ(Bifidobacterium breve)、ピフィドバクテリウム・ロンガム(Bifidobacterium longum)、ピフィドバクテリウム・ピフィダム(Bifidobacterium bifidum)を有効成分とする抗アレルギー剤および醗酵食品。

【特許請求の範囲】

【節求項1】 食物アレルギーを治療する能力を有する ビフィズス菌を有効成分とする抗アレルギー剤および配

【請求項2】 ピフィズス菌がヒト由来であり、ピフィ ドバクテリウム・インファンティス (Bifidoba cterium infantis), ビフィドバクテ リウム・プレーベ (Bifidobacterium ドバクテリウム・ピフィダム (Bifidohacte rium bifidum) に属する菌株である請求項 1 記載の抗アレルギー剤および醗酵食品。

【請求項3】 ピフィズス菌がピフィドバクテリウム・ インファンティスJCM 1222およびピフィドパク テリウム・プレーベJCM 1192の両菌株またはい ずれか一方の菌株である請求項1記載の抗アレルギー剤 および醗酵食品。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は食物アレルギーを治療す る能力を有するピフィズス菌を有効成分とする抗アレル ギー剤および醗酵食品に関する。

[0002]

【従来の技術】食物アレルギー罹患者の数は世界的に増 加の傾向にあり特に先進国においてその増加は著しい。 従来、食物アレルギーの予防・治療には原因食物の除去 や抗アレルギー剤の投与が行われてきた。しかし、原因 食物の除去には、風者の肉体的・精神的発育の阻害、食 物の逐択にともなう家族の負担や集団生活の制限等多く の問題がある。また、抗アレルギー剤の長期使用にも副 作用の問題がある。さらに現在までの知見からは食物と アレルギーの関係を理論的に説明するには困難な点が数 多く、画一的な治療法を立て難いのが現状である。

【0003】ところで先進国における近年の食物アレル ギー患者数の増加に対する説明の中で有力なものの一つ として、ヒトが種々の病原微生物に感染する機会が減少 したためであるとする説がある。わが国でもこの数十年 の間に住宅衛生環境が改善され、予防接種が徹底され、 そして各人の栄養状態が良好となったため、感染症によ る周産期死亡が激減し、幼児期、学童期においても感染 症にほとんど罹患しなくなっている。このように微生物 による強力な侵襲を受けなくなり、いわば我々が無菌動 物化してきたため、無菌動物のように抗原刺激に対して 過剰に反応する、すなわちアレルギー症状を呈するよう になってきたというものである。

【0004】無菌動物は帝王切開により母体より無菌的 に取り出した胎児をアイソレーターの中で減菌飼料を与 えて育て離代したもので文字面り体内には全く微生物を

食物抗原の侵入に対して過剰に応答を示すことが知られ ている。Wannemuehlerらは、グラム陰性桿 菌の細胞壁の構成成分であるリポ多糖を投与することに より無菌マウスに容易に経口免疫寛容(生体にとって最 も大量の抗原刺激である食物抗原に対する過剰な免疫応 . 答を防ぐための調節機構)を誘導できることを報告し、 グラム陰性桿菌を含む腸内常在菌袋が、通常は消化管免 疫系の経口抗原に対する免疫寛容の維持に関与している ことを示している (J. Immunol., 129:959,1982)。また人 <u>fidobacterium longum</u>)、ピフィ 10 工栄養の乳児は母乳栄養の乳児に比べ、アレルギー疾患 の罹患率および高1gE血症の発症率が有意に高いとい う報告がある(Juto et al., J.Allcrgy Clin. Immuno 1.,66:402-407,1980; Rowntree et al., Archives of D isease in Childhood,60:727-735,1985) が、弁野ら (乳児栄養と腸内フローラ、光岡知足編 脇内フローラ と栄養pp13-33,学会出版センター,1983)は数便菌 数を調 べた結果、人工栄養児では母乳栄養児に比べピフィズス 菌の菌数が有意に低く、逆にクロストリジウム、シュー ドモナスの菌数および検出率が高いことを報告してい 20 る。以上のように腸内常在菌叢と経口免疫寛容維持能の 間には密接な関係があり、食物アレルギーはこの経口免 疫寛容が何らかの原因で破綻した代表的な例と予測され る。このような現状に鑑み、経口免疫寛容の誘導維持能 の高い菌種を腸内常在菌漿の優勢菌種にして食物アレル

[0005]

【発明が解決しようとする課題】本発明の目的は脳内常 在菌器に経口免疫寛容を誘導することにより、食物アレ ルギーの発症を防ぎ、治療するのに有効かつ安全な抗ア 30 レルギー剤もしくはそれらの効力が発揮できる醗酵食品 を提供することにある。

ギーを予防・治療する薬剤の創製が望まれている。

[0006]

【課題を解決するための手段】本発明者らは通常マウス と無菌マウスの経口免疫寛容誘導試験の比較から脳内常 在菌漿が経口免疫寛容誘導を維持していることを確認し た。そこで誘導維持能の良好な菌種を見出し、優勢に保 てれば食物アレルギーの予防・治療に有用であると考 え、研究を進めた結果、母乳栄養児の最優勢菌種である ピフィズス南が良好な誘導維持能を持つことを見出し、 40 本発明を完成するにいたった。すなわち、本発明は、ビ フィズス菌を有効成分とする医薬品または醗酵食品を用 いて、経口免疫寛容を誘導維持することにより食物アレ ルギーの治療あるいは予防に極めて有用な手段を提供す るものである. 【0007】本発明に用いるピフィズス菌としてはヒト

由来のピフィズス菌、ピフィドパクテリウム・インファ ンティス (Bifidobacterium infa idobacteriumbreve), ピフィドバク 持たない。無菌動物の生体防御機構の特徴の一つとして 50 テリウム・ロンガム (B<u>ifidabacterium</u>

10

3

LONBUM)、ピフィドバクテリウム・ピフィダム (Bifidohacterium hifidum) などが挙げられるが、特に乳児の腸内に多く見られるピフィドバクテリウム・インファンティス、ピフィドバクテリウム・ブレーベが例示される。具体的にはピフィドバクテリウム・インファンティスJCM 1222、ピフィドバクテリウム・プレーベJCM 1192などが好適である。これらの菌株は例えば理化学研究所微生物系統保存施設に保存されており、分額を受けることにより容易に入手可能な菌株である。

【0008】本発明のピフィズス菌の菌体を取得するための培養方法および菌体分離方法には特に制限はなく、通常の方法でよい。また菌体としては純粋に分離した菌体のほか、菌体含有物(培養物、懸濁物、ヨーグルト等菌体を含有した醗酵食品)を含む。本菌体の乾燥方法としては凍結乾燥が好適である。

【0009】本発明の有用ピフィズス菌を医薬品として 投与する場合、本有用ピフィズス菌を純粋培養し遠心分 離などの方法により集菌後、適切な安定剤を加え凍結乾 燥して得られる凍乾菌体を有効成分として単剤で投与す 20 ることも可能であり、また、局外規ビフィズス菌、局外 規ラクトミン、局外規耐性乳酸菌などの他の整腸生菌成 分と同時に投与しても良い。これらの製剤は常法に従っ て種々の形態で投与される。その投与形態としては例え ば散剤、顆粒剤、錠剤、カプセル剤、シロップ剤などの 形態が好ましく経口的に安全に投与することができる。 これらの各租製剤は常法に従って、主薬に賦形剤、結合 剤、崩壊剤、コーティング剤、潤滑剤、安定剤、矯味矯 臭剤、溶解補助剤、懸濁剤、希釈剤などの医薬の製剤技 術分野において通常使用しうる既知の補助剤を用いて製 30 剤化することができる。投与量においては対象疾患、疾・ 病の程度によって異なるが、例えば成人に対して生菌数 で1日1×10 個以上、好ましくは1×10 ~1× 10 個を症状に応じて1日1回または数回に分けて投 与することができる。また、本有用ピフィズス菌はヨー グルトなどの醗酵食品としての形態あるいはヨーグルト 味などの錠菜としても投与が可能である。例えば牛乳や 羊乳などにヨーグルト製造上のスターター菌であるラク トバシラス・ブルガリカス、ラクトバシラス・アシドフ ィルス、ラクトバシラス・ヘルベチカス、ストレプトコ ッカス・サーモフィルス、ストレプトコッカス・ラクチ スなどの酪農乳酸菌と本発明の有用ピフィズス菌を接種 し混合培養あるいは各々単独培養後に混ぜ合わせること によって醗酵乳やヨーグルトを製造することができる。 また、本発明の有用ピフィズス菌の凍乾菌体を用いて通 常の製菓方法に従ってヨーグルト味などの錠菓を製造す ることができる。次に実施例をもって群都に本発明を説 明するが、これによって本発明が限定されるものではな

(0 0 1 0)

(実施例)

[試験例1] 無菌マウスとSPFマウスの経口免疫寛容誘導試験

1) 試験方法

無菌マウス (BALB/c雄) はTrexler型プラー スチックアイソレーターを用い放茵した飼料および水を 与えて飼育した。 S P F マウス (BALB/c雄) は常 法に従って飼育した。経口免疫寛容誘導は5週令時(-1週とする)より1日1回4日間連続卵白アルブミン (OVA、生化学工業)を経口投与(5mg/dav) し、その後 0 週 (6 週 分 時) より O V A 1 m g と A l u m (Pierce) 0. 1 mgを腹腔内に投与、以後2 週目毎にこの腹腔内投与を行った。0週、3週、5週、 7週、9週にマウスより血清を採取し各種抗体価を測定 した。総免疫グロブリンE(IgE)、OVA特異的免 疫グロブリンG1(IgG1)の測定は酵素免疫測定法 (ELISA) を用いて常法に従って行った。OVA特 異的抗体価の定量では、OVA1mg+Aium0.1 mgをSPFマウスに0、2週に腹腔免疫し3週目に採 血した血清(数匹分をプールしたもの)を標準血清(1 00unit/ml)として用いた。

【0011】結果を図1に示す。OVA抗原の腹腔内投与後9週目までの観察期間中、経口免疫寛容誘導を加えたSPFマウスでは、総IgE値はいずれも検出限界値程度であり、経口免疫寛容が成立することが確認された。ところが、無菌マウスでは、総IgE値は経口免疫寛容誘導にもかかわらず有意な高値を維持していた。すなわち無菌マウスでは経口免疫寛容誘導に対して抵抗性になっていることが示された。

0 【0012】 [試験例2】 ピフィドバクテリウム・インファンティスJCM 1222株およびピフィドバクテリウム・プレーペJCM 1192株による無菌マウスにおける経口免疫寛容誘導試験

1) 細菌の培養と試験菌液の調製方法

ピフィドバクテリウム・インファンティス(JCM 1222)、ピフィドバクテリウム・ブレーベ(JCM 1192)、クロストリジウム・パーフリンジェンス(Closiridium perfringens
JCM 1290)は理化学研究所より購入した。各菌株の継代培養はGAM培地を用いてN、80%、H、10%、CO、10%条件下でいずれも37℃で行った。各菌株はGAM broth 10mlを用いて37℃、3日間嫉気培養した。培後終了後、遠心分離(3.000rpm、15分)により菌体を集め10mlに再懸濁したもの(約2×10°/ml)を試験菌液として用いた。これらの菌液はまず無菌のBALB/c雌マウスに経口接種し、それから生まれた子を菌定着マウスとして実験に用いた(各5匹)。また対照として無菌およ

びSPFマウスも実験に用いた(各5匹)。

0 【0013】2)試験方法

無菌マウスおよび菌定着マウスはTrexler型プラ スチックアイソレーターを用い、減菌した飼料および水 を与えて飼育した。経口免疫寛容誘導試験および抗体価 測定は試験例1に記載したのと同様の方法で行った。結 果を図2に示す。ピフィドパクテリウム・インファンテ ィス定着マウスでは、絵IgE、OVA特異的IgGl の両方が有意な低値となり経口免疫寛容再誘導が成立し た。また、ピフィドパクテリウム・ブレーペでは、特に 総IgEが低値となり軽度ではあるが、経口免疫寛容再 誘導が成立した。一方、クロストリジウム・パーフリン 10 リウム・ブレーベJCM 1192の配合錠剤の製造 ジェンスでは再誘導が成立しなかった。

【0014】 [実施例1] ピフィドバクテリウム・イ ンファンティスJCM 1222またはピフィドバクテ リウム・ブレーペJCM 1192の乾燥菌末の調製 ピフィドパクテリウム・インファンティスJCM 12 22およびピフィドバクテリウム・ブレーベJCM 1 192を各々0、3%の炭酸カルシウムを含むブリック ス・リバー液体培地に接種後、37℃、18~24時間 静置培養を行なった。培養終了後、7,000 rpm、 15分間遠心分離を行い培袋液の1/100畳の濃縮菌 体を得た。

【0015】次いで、各々の濃縮菌体にグルタミン酸ソ ーダ5% (重量)、可溶性澱粉5% (重量)、ショ糖5 % (重量) および硫酸マグネシウム 7 水和物 1 % (重 量)を含む分散媒と同量混合し、pH7.0に修正後、 - 40℃以下で凍結してから凍結乾燥を行った。得られ た各々の凍結乾燥菌末を60メッシュのフルイで粉末化 して両菌株の乾燥菌末を調製した。

【0016】 [実施例2] スターター菌ラクトバシラ ス・アシドフィルスとピフィドバクテリウム・インファ ンティスJCM 1222またはピフィドパクテリウム ・プレーペJCM 1192の混合培袋による醗酵乳の 型造

醗酵乳のスターター菌であるラクトパシラス・アシドフ ィルスを脱脂粉乳11.5%、酵母エキス0.5%、ア スコルビン酸 0. 03%を含む還元脱脂乳培地に接種 し、37℃、16時間培養したものをバルクスターター とした。一方、生乳および脱脂粉乳からなる原料ミック スに実施例1で脚製したピフィドパクテリウム・インフ

ァンティスJCM 1222またはピフィドパクテリウ ム・ブレーベJCM 1192の培養液と先に調製した パルクスターター (ラクトパシラス・アシドフィルスの 培登液)をそれぞれ5%づつ接種し、38℃、16時間 培養を行い、各々2種類の醗酵乳を得た。本発明の菌株 を用いて製造した醗酵乳は風味が良好、かつ美味であり 喀好性の高い製品であった。

【0017】 [実施例3] ピフィドパクテリウム・イ ンファンティスJCM 1222またはピフィドバクテ 第12改正日本薬局方解説書製剤総則「錠剤」の規定に 準拠し、実施例 1 で調製したピフィドパクテリウム・イ ンファンティス J C M 1 2 2 2 乾燥菌末 2 m g (南 数、 5 × 1 0 ° 相当)またはピフィドバクテリウム・ブ レーペJCM 1192乾燥菌末2mg (菌数、6.5 ×10 相当)と乳糖(日局) 6 1 mg、澱粉(日局) 116.2mg、結合剤としてポリビニルピロリドンK 25 (日局) 20 mg、滑沢剤としてステアリン酸マグ ネシウム (日局) 0. 8 m g を加えて均一に混合し、打 錠機で圧縮成型し1錠当たり200mgの素錠(2種 類)を作り、さらに、ヒドロキシプロピルセルロースを 用いてフィルムコーティングを施して白色のフィルムコ ーティングされた錠剤(2種類)を製造した。

【発明の効果】本発明は経口免疫寛容誘導維持能の高い ヒト由来のピフィズス菌、特にピフィドパクテリウム・ インファンティスまたはピフィドパクテリウム・ブレー べを有効成分とする抗アレルギー剤および醗酵食品を提 供するものである。本発明のピフィズス菌製剤あるいは 本ピフィズス菌を含んだ醗酵食品を用いて、食物アレル

【図面の簡単な説明】

ギーの予防や治療が可能となる。

[0018]

【図1】卵白アルプミンに対する経口免疫寛容誘導後の、 血中総IgE値の変化(SPFマウスと無菌マウスの比

【図2】ビフィズス菌を定着した無菌マウスに経口免疫 寛容を誘導して9週間後の血中総IgE値と卵白アルブ ミン特異的IgGl値

(図1)

[図2]

フロントページの統き

(72)発明者 平田 晴久

東京都中央区日本橋室町1丁目5番3号

わかもと製薬株式会社内

(72)発明者 斎藤 嘉章

東京都中央区日本橋室町1丁目5番3号

わかもと製薬株式会社内

(72)発明者 古賀 泰裕

神奈川県伊勢原市上粕屋246東海大学伊

勢原職員住宅307

BEST AVAILABLE COPY