1 Batch Normalization

1. For each batch B of size m, and each dimension in $x=(x^1,x^2,\cdots,x^d)$,

For each batch
$$B$$
 of size m , and each dimension $\mu_{B,d} = \frac{1}{m} \sum_{i=1}^m x_i^d$
$$\sigma_{B,d}^2 = \frac{1}{m} \sum_{i=1}^m (x_i^d - \mu_{B,d})^2$$
 Normalization:
$$\hat{x}_i^d = \frac{x_i^d - \mu_{B,d}}{\sqrt{\sigma_{B,d}^2 + \epsilon}}$$
 where ϵ is a constant to avoid dividing by 0 .

$$\hat{x}_i^d = \frac{x_i^d - \mu_{B,d}}{\sqrt{\sigma_{B,d}^2 + \epsilon}}$$

2.
$$y_i^d = \gamma^k \hat{x}_i^d + \beta^k$$
$$\frac{\partial E}{\partial \gamma^k} = \frac{\partial E}{\partial y_i^k} * \frac{\partial y_i^k}{\partial \gamma^k} = \frac{\partial E}{\partial y_i^k} * \hat{x}_i^k$$
$$\frac{\partial E}{\partial \beta^k} = \frac{\partial E}{\partial y_i^k} * \frac{\partial y_i^k}{\partial \beta^k} = \frac{\partial E}{\partial y_i^k}$$

$$\frac{\partial E}{\partial \beta^k} = \frac{\partial E}{\partial y_i^k} * \frac{\partial y_i^k}{\partial \beta^k} = \frac{\partial E}{\partial y_i^k}$$

2 Convolution

- 1. $(5-2) \times (5-2) = 3 \times 3 = 9$
- 2. Values after forward propagate

239	194	238
201	232	260
154	172	213

The gradient backpropagated out of this layer.

2	7	2
1	6	8
4	-1	1