

USB-2416

USB-based 24-bit, Isolated, High-Channel-Count Multifunction DAQ Device

User's Guide

Your new Measurement Computing product comes with a fantastic extra —

Management committed to your satisfaction!

Thank you for choosing a Measurement Computing product—and congratulations! You own the finest, and you can now enjoy the protection of the most comprehensive warranties and unmatched phone tech support. It's the embodiment of our mission:

To provide data acquisition hardware and software that will save time and save money.

Simple installations minimize the time between setting up your system and actually making measurements. We offer quick and simple access to outstanding live FREE technical support to help integrate MCC products into a DAQ system.

Limited Lifetime Warranty: Most MCC products are covered by a limited lifetime warranty against defects in materials or workmanship for the life of the product, to the original purchaser, unless otherwise noted. Any products found to be defective in material or workmanship will be repaired, replaced with same or similar device, or refunded at MCC's discretion. For specific information, please refer to the terms and conditions of sale.

Harsh Environment Program: Any Measurement Computing product that is damaged due to misuse, or any reason, may be eligible for replacement with the same or similar device for 50% of the current list price. I/O boards face some harsh environments, some harsher than the boards are designed to withstand. Contact MCC to determine your product's eligibility for this program.

30 Day Money-Back Guarantee: Any Measurement Computing Corporation product may be returned within 30 days of purchase for a full refund of the price paid for the product being returned. If you are not satisfied, or chose the wrong product by mistake, you do not have to keep it.

These warranties are in lieu of all other warranties, expressed or implied, including any implied warranty of merchantability or fitness for a particular application. The remedies provided herein are the buyer's sole and exclusive remedies. Neither Measurement Computing Corporation, nor its employees shall be liable for any direct or indirect, special, incidental or consequential damage arising from the use of its products, even if Measurement Computing Corporation has been notified in advance of the possibility of such damages.

Trademark and Copyright Information

Measurement Computing Corporation, InstaCal, Universal Library, and the Measurement Computing logo are either trademarks or registered trademarks of Measurement Computing Corporation. Refer to the Copyrights & Trademarks section on mccdaq.com/legal for more information about Measurement Computing trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies.

© 2013 Measurement Computing Corporation. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any means, electronic, mechanical, by photocopying, recording, or otherwise without the prior written permission of Measurement Computing Corporation.

Notice

Measurement Computing Corporation does not authorize any Measurement Computing Corporation product for use in life support systems and/or devices without prior written consent from Measurement Computing Corporation.

Life support devices/systems are devices or systems that, a) are intended for surgical implantation into the body, or b) support or sustain life and whose failure to perform can be reasonably expected to result in injury. Measurement Computing Corporation products are not designed with the components required, and are not subject to the testing required to ensure a level of reliability suitable for the treatment and diagnosis of people.

Table of Contents

Preface	
About this User's Guide	5
What you will learn from this user's guide	5
Conventions in this user's guide	5
Where to find more information	5
Chapter 1	
Introducing the USB-2416	6
Overview: USB-2416 features.....	6
Functional block diagram	6
Chapter 2	
Installing the USB-2416	7
What comes with your USB-2416 shipment?.....	7
Hardware	7
Software.....	7
Documentation.....	7
Optional components	7
Unpacking.....	7
Installing the software	8
Installing the hardware	8
Connecting to an AI-EXP32 with the DSUB37 expansion connector.....	8
Configuring the hardware	9
Connecting the board for I/O operations	9
Connectors, cables – main I/O connector.....	9
Screw terminal pinout – differential	10
Screw terminal pinout – single-ended.....	11
Chapter 3	
Functional Details	12
USB-2416 components.....	12
LEDs	13
USB connector.....	13
External power connector	13
Screw terminal wiring	13
Analog/TC input terminals	13
Analog input mode.....	14
Thermocouple inputs	14
Noise filtering, data rate, and throughput rate.....	15
Multiple-channel throughput rates	16
Input isolation	16
Digital I/O.....	17
Internal pull-up/pull-down capability.....	18
External pull-up/pull-down capability	19
Counter input terminals (CTR0, CTR1)	19
USB-2416 mechanical drawings	20
Chapter 4	
Calibrating the USB-2416	21
Calibration methods.....	21

Factory calibration	21
Self calibration.....	21
Chapter 5	
Specifications	22
Analog input	22
Channel configurations.....	23
Compatible sensors.....	23
Accuracy	23
Thermocouple measurement accuracy	23
Analog input DC voltage measurement accuracy:	32
Input bandwidth.....	34
Noise performance.....	34
Channel switching error.....	35
Throughput rate	36
Analog input calibration	37
Digital input/output.....	37
Counter	38
Memory	38
Microcontroller.....	38
Power.....	39
USB specifications	39
Environmental	39
Mechanical	40
Screw terminal connector type and pinout	40
Screw terminal pinout.....	41
Optional AI-EXP32 expansion module	43
AI-EXP32 Screw terminal pinout.....	45
USB-2416 screw terminal pinout (with AI-EXP32 attached)	47
Declaration of Conformity	48

About this User's Guide

What you will learn from this user's guide

This user's guide explains how to install, configure, and use the USB-2416 so that you get the most out of its analog input, thermocouple (TC) input, digital I/O, and counter/timer I/O features.

Conventions in this user's guide

For more information

Text presented in a box signifies additional information and helpful hints related to the subject matter you are reading.

Caution! Shaded caution statements present information to help you avoid injuring yourself and others, damaging your hardware, or losing your data.

bold text **Bold** text is used for the names of objects on a screen, such as buttons, text boxes, and check boxes.

italic text *Italic* text is used for the names of manuals and help topic titles, and to emphasize a word or phrase.

Where to find more information

Additional information about the USB-2416 is available on our website at www.mccdaq.com. You can also contact Measurement Computing Corporation by phone, fax, or email with specific questions.

- Knowledgebase: kb.mccdaq.com
- Phone: 508-946-5100 and follow the instructions for reaching Tech Support
- Fax: 508-946-9500 to the attention of Tech Support
- Email: techsupport@mccdaq.com

Introducing the USB-2416

Overview: USB-2416 features

The USB-2416 is supported under popular Microsoft® Windows® operating systems. The USB-2416 is a multifunction measurement and control board designed for the USB bus.

The USB-2416 is a full-speed (up to 1 kS/s), multiplexed 24-bit measurement system that provides up to 16 differential and up to 32 single-ended (SE) analog inputs. It offers software-selectable analog input ranges of ± 20 V, ± 10 V, ± 5 V, ± 2.5 V, ± 1.25 V, ± 0.625 V, ± 0.312 V, ± 0.156 V, and ± 0.078 V.

It also protects your computer by providing a minimum of 500 VDC input isolation between field wiring and the USB interface.

You can configure up to 16 of the analog inputs as differential thermocouple (TC) inputs. In thermocouple mode, the USB-2416 includes built-in cold-junction compensation and open thermocouple detection.

You can add up to 32 single-ended or up to 16 differential channels by connecting the USB-2416 to an AI-EXP32 expansion module. Each channel is software-configurable as single-ended or differential. You lose one SE channel for each channel pair configured differentially.

The device has eight lines of digital I/O and two 32-bit counters. You can expand up to 24 DIO channels by connecting the USB-2416 to an AI-EXP32 expansion module.

Six banks of removable screw-terminal blocks provide connectivity to the analog input channels, digital I/O lines, and counter/timer channels.

Functional block diagram

USB-1208LS functions are illustrated in the block diagram shown here.

Figure 1. Functional block diagram

Installing the USB-2416

What comes with your USB-2416 shipment?

As you unpack your USB-2416, verify that the following components are included.

Hardware

- USB-2416
- USB cable (2-meter length)
- PS-5V2AEPS - 10 Watt regulated power supply plugs into the external power connector of the USB-2416.

Software

- MCC DAQ CD

Documentation

In addition to this hardware user's guide, you should also receive the *Quick Start Guide*. This booklet provides an overview of the MCC DAQ software you received with the device, and includes information about installing the software. Please read this booklet completely before installing any software or hardware.

Optional components

Expansion devices that are compatible with the USB-2416 must be ordered separately. If you ordered the following product with your device, it should be included with your shipment.

AI-EXP32

Analog input expansion module adds up to 16 differential or 32 single-ended inputs to the USB-2416.

ACC-202 Din-rail kit

Accessory for mounting a USB-2416 to a standard DIN rail. Use the thread-forming screws to attach the DIN rail clip to your device.

Unpacking

As with any electronic device, you should take care while handling to avoid damage from static electricity. Before removing the USB-2416 from its packaging, ground yourself using a wrist strap or by simply touching the computer chassis or other grounded object to eliminate any stored static charge.

If any components are missing or damaged, notify Measurement Computing Corporation immediately by phone, fax, or e-mail:

- Knowledgebase: kb.mccdaq.com
- Phone: 508-946-5100 and follow the instructions for reaching Tech Support
- Fax: 508-946-9500 to the attention of Tech Support
- Email: techsupport@mccdaq.com

For international customers, contact your local distributor. Refer to the International Distributors section on our website at www.mccdaq.com/International.

Installing the software

Refer to the *Quick Start Guide* for instructions on installing the software on the MCC DAQ CD. This booklet is available in PDF at www.mccdaq.com/PDFmanuals/DAQ-Software-Quick-Start.pdf.

Installing the hardware

To connect the USB-2416 to your system, turn your computer on, and then do the following:

1. Connect the PS-5V2AEPS power supply to the USB-2416's external power connector, and plug the other end into a power outlet.
2. Connect the USB cable to the USB-2416 USB connector and to a USB port on your computer. A USB2.0 port is recommended.

When you connect the USB-2416 to a computer for the first time, a **Found New Hardware** dialog opens when the operating system detects the device. When the message closes, the installation is complete.

The **power LED** (bottom LED) blinks during device detection and initialization, and then remains solid if properly detected. If not, check if the USB-2416 has sufficient power. When the device is first powered on, there is usually a momentary delay before the power LED begins to blink, or come on solid.

Caution! Do not disconnect any device from the USB bus while the computer is communicating with the USB-2416, or you may lose data and/or your ability to communicate with the USB-2416.

Connecting to an AI-EXP32 with the DSUB37 expansion connector

Use the 37-pin expansion connector to connect the USB-2416 to an AI-EXP32 expansion module.

To connect the two devices directly to each other, follow these steps.

1. Disconnect the USB cable from the USB-2416.
2. Remove the external power cable from the USB-2416.
3. Connect the two devices together by inserting the AI-EXP32 DSUB37 connector into the DSUB37 connector on the USB-2416.

Figure 2. USB-2416 directly connected to an AI-EXP32

4. Turn the connected modules over and secure the connection by screwing the connection plate to both modules, as shown below.

Figure 3. USB-2416 secured to an AI-EXP32

5. Connect the external power supply to the power input port of the USB-2416, and then plug it into an AC outlet.
6. Connect the USB cable from the USB-2416 to the host computer USB port.

Connect to a USB 2.0 high speed hub to achieve the highest transfer rate (480 Mbps). When connected to a USB 1.1 full-speed port, the transfer rate is limited to 12 Mbps.

Configuring the hardware

Except for the DIO pull-up selection, all hardware configuration options on the USB-2416 are software controlled. You can select some of the configuration options using InstaCal, such as the analog input configuration (single-ended or differential channels). When measuring from thermocouples, make sure you configure the channels for differential mode.

Caution! Turn off power to all devices connected to the system before making connections. Electrical shock or damage to equipment can result even under low-voltage conditions.

Information on signal connections

General information regarding signal connection and configuration is available in the *Guide to Signal Connections*. This document is available on our web site at www.mccdaq.com/signals/signals.pdf.

Caution! Always handle components carefully, and never touch connector terminals or circuit components unless you are following ESD guidelines in an appropriate ESD-controlled area. These guidelines include using properly-grounded mats and wrist straps, ESD bags and cartons, and related procedures.

Avoid touching board surfaces and onboard components. Only handle boards by their edges. Make sure the USB-2416 does not come into contact with foreign elements such as oils, water, and industrial particulate.

The discharge of static electricity can damage some electronic components. Semiconductor devices are especially susceptible to ESD damage.

Connecting the board for I/O operations

Connectors, cables – main I/O connector

The following table lists the board connectors and compatible accessory products for the USB-2416.

Main connector specifications

Main connectors	Six banks of detachable screw terminals
Compatible accessory product for the 37-pin expansion connector	AI-EXP32 expansion board with screw terminals (connects directly to the USB-2416)

Screw terminal pinout – differential

Figure 4. 16-channel differential mode pinout

Differential connection guidelines

- When connecting differential voltage inputs to a "floating" voltage source, make sure there is a DC return path from each voltage input to ground. You make this path by connecting a resistor from each input to a GND pin (pins 18, 36, 39, 42, 44, 46, 66, 81, 84). A value of approximately 100 kΩ can be used for most applications.
Leave unused input channels either floating or tied to GND (pins 18, 36, 39, 42, 44, 46, 66, 81, 84).
Source impedances should be kept as small as possible to avoid settling time and accuracy errors.
- When configuring thermocouple sensors, keep any stray capacitance as small as possible relative to GND (pins 18, 36, 39, 42, 44, 46, 66, 81, 84) to avoid settling time and accuracy errors. For thermocouple channels, do not provide a return path to ground. This is done internally.

Screw terminal pinout – single-ended

Figure 5. 32-channel single-ended mode pinout

Figure 6. DSUB37 expansion connector pinout

The AI-EXP32 expansion port is intended to interface directly with the USB-2416. Do not attempt to use any of the expansion port pins for any other purpose.

Power-down the USB-2416 before you connect it the AI-EXP32 expansion board.

Functional Details

This chapter contains detailed information on all of the features available from the board, including:

- explanations of the physical device components
- a functional block diagram and mechanical drawings
- information on how to use the signals generated by the device
- diagrams of signals using default or conventional device settings

USB-2416 components

These USB-2416 components are shown in Figure 7 and Figure 8.

- One USB connector
- One external power connector
- Two LED indicators (**Power** and **Activity**)
- One 37-pin DSUB expansion connector
- Six removable screw terminal blocks

Figure 7. USB-2416 components – front view

Figure 8. USB-2416 components – rear view

LEDs

When the USB-2416 is connected to a computer, in its normal idle state both LEDs are lit solid green.

Power LED

The Power LED is the top LED on the right side of the USB-2416 housing.

The Power LED blinks when you plug the power supply into the USB-2416, and continues to blink while the device initializes the hardware. If it continues blinking for more than $\frac{1}{2}$ second, then there is a problem with the USB-2416 and you should cycle the power.

If an application issues a "blink LED" command, then the power LED blinks a few times.

Activity LED

The (USB) Activity LED is the bottom LED on the right side of the USB-2416 housing. It blinks rapidly when both the USB cable and external power cables are plugged in. It continues blinking rapidly while the device is connecting to the computer, and then turns solid.

Whenever the device receives a USB command, the Activity LED blinks off and then returns to solid green. When an analog in scan is running, the Activity LED blinks continuously.

USB connector

The USB connector is on the right side of the USB-2416 provides communication.

External power connector

The USB-2416 require external power through this connector to provide sufficient power for the USB-2416.

Connect the PS-5V2AEPS power supply to the external power supply connector. This power supply provides 5 VDC, 2 A power to the USB-2416.

Screw terminal wiring

The USB-2416 has six groups of screw terminals—three on each side of the housing. Each group has 16 connections. Pin numbers are identified in Figure 4 and Figure 5.

Analog/TC input terminals

You can connect up to 32 single-ended analog input connections or up to 16 differential analog/TC input connections to these screw terminal pins.

<ul style="list-style-type: none"> ▪ CH0H and CH0L ▪ CH1H and CH1L ▪ CH2H and CH2L ▪ CH3H and CH3L ▪ CH4H and CH4L ▪ CH5H and CH5L ▪ CH6H and CH6L ▪ CH7H and CH7L 	<ul style="list-style-type: none"> ▪ CH8H and CH8L ▪ CH9H and CH9L ▪ CH10H and CH10L ▪ CH11H and CH11L ▪ CH12H and CH12L ▪ CH13H and CH13L ▪ CH14H and CH14L ▪ CH15H and CH15L
--	--

You can select a unique input range or signal type for each channel. For example, one channel could be used for volts and another for temperature.

When connecting differential voltage inputs to a "floating" voltage source, make sure there is a DC return path from each voltage input to ground. You make this path by connecting a resistor from each input to a GND pin (pins 18, 36, 39, 42, 44, 46, 66, 81, 84). A value of approximately 100 k Ω can be used for most applications. This does not apply to channels configured for thermocouple input, as they have their own internal reference.

Leave unused input channels either floating or tied to GND (pins 18, 36, 39, 42, 44, 46, 66, 81, 84). Source impedances should be kept as small as possible to avoid settling time and accuracy errors.

Analog input mode

The USB-2416 makes high-resolution voltage measurements in either a single-ended or fully differential mode. You can configure the USB-2416 for the following voltage input ranges.

- $\pm 20\text{ V}$
- $\pm 10\text{ V}$
- $\pm 5\text{ V}$
- $\pm 2.5\text{ V}$
- $\pm 1.25\text{ V}$
- $\pm 0.625\text{ V}$
- $\pm 0.3125\text{ V}$
- $\pm 0.15625\text{ V}$
- $\pm 0.078125\text{ V}$

Each analog input channel has the following measurement parameters:

- signal type of volts or thermocouple type J, K, T, E, R, S, B, or N
- full scale voltage from -20 to + 20 VDC

Thermocouple inputs

You can make up to 16 high-resolution differential thermocouple measurements with the USB-2416. Built-in cold-junction sensors are provided for each of the screw-terminal blocks, and any supported TC type can be attached to any of the 16 thermocouple channels.

Do not connect thermocouples as *single-ended*—doing so can cause false readings.

You do not need to use ground-referencing resistors because the analog front-end circuit level-shifts the thermocouple's output into the common-mode input range of the A/D.

When configuring thermocouple sensors, keep any stray capacitance as small as possible relative to GND (pins 18, 36, 39, 42, 44, 46, 66, 81, 84) to avoid settling time and accuracy errors.

The USB-2416 also provides an open thermocouple detection (OTD) feature for each of the analog input channels configured for thermocouple measurement. This feature is automatically enabled as part of the overall acquisition process, and detects if an open-circuit condition exists at the thermocouple sensor.

The USB-2416 provides electrostatic discharge (ESD) protection for each of the thermocouple inputs. However, before handling thermocouple sensors, follow standard ESD practices and discharge any accumulated ESD charge.

The USB-2416 includes an ESD protection device at each of the analog input terminal block pins. If an ESD or transient voltage is coupled into the device, the input protection device(s) clamps the voltage to protect the thermocouple input circuitry from possible damage.

Once the thermocouple sensor is connected to the USB-2416, the configuration options have been selected, and the recommended 45 minute warm up has elapsed, the USB-2416 is ready to make high-resolution differential voltage measurements.

Cold junction compensation (CJC) is needed to compensate for the additional thermal EMF's generated by connecting the thermocouple leads to the USB-2416 terminal blocks.

CJC is performed using a high-resolution temperature sensor connected close to the USB-2416's terminal blocks. The USB-2416 includes four separate CJC sensors—two on each side of the PCB. Software corrects for the additional thermocouples created at the terminal.

Once the A/D and CJC data is collected, the application software uses this data to linearize to an accurate temperature reading. The thermocouple linearization uses the latest NIST linearization coefficients for each of the eight thermocouple types supported by the USB-2416.

Figure 9 below shows a typical thermocouple connection.

Figure 9. Differential thermocouple connection example

Noise filtering, data rate, and throughput rate

Although the USB-2416 A/D converter has a maximum data rate of 3,750 S/s, the actual throughput rate you observe for voltage and temperature data is determined by these formulas.

- Maximum single-channel throughput:

$$\frac{1}{\frac{1}{\text{data rate}} + 640 \mu\text{s}}$$

- Maximum multiple-channel throughput:

$$\frac{1}{\sum_n \left(\frac{1}{\text{data rate}} + 640 \mu\text{s} \right)}$$

where n is the number of channels

See Table 18 and Table 19 in the *Specifications* chapter for details.

This drop-off in throughput rate is due to the USB-2416's noise filtering feature. You can control the amount of the noise filtering by adjusting the data rate setting. By reducing the data rate, the averaging of samples increases, and noise drops correspondingly.

Figure 10 below illustrates this inverse relationship. This graph applies to the A/D converter only—do not expect this level of performance from the USB-2416 itself.

Figure 10. USB-2416 A/D converter data rate vs. noise graph

If low noise is your main concern, you can operate the USB-2416 at very low data rates starting from 2.5 S/s. At low rates, much of the noise is averaged out of the data, and issues such as reference noise become less important.

At higher data rates, higher-frequency noise sources are not averaged out and begin to be troublesome. These noise sources include the noise inherent in the A/D converter itself, which is not reducible.

Since thermocouples can pick up noise in your environment, select a data rate based on the primary noise frequency. For example, to reduce the effect of 60 Hz noise, select a data rate of 60 (or a sub-multiple of 60, such as 10 or 20).

Multiple-channel throughput rates

When setting different sample rates for different channels, be aware that all channels will be sampled within the same *sample window* based on the channel with the lowest sample rate.

For example, if you set a 10 Hz data rate for channel 0, and a 50 Hz data rate for channel 1, basically, both channels pass the same number of samples per second to the host computer. However, more averaging is performed on channel 0's samples; therefore, channel 0 is sampled at a higher resolution.

The USB-2416's A/D converter performs averaging, and the number of averages equals $30,000/\text{data rate}$.

In this example, channel 0 is sampled 3000 times over 100 ms, and all samples are averaged into one sample. Then, channel 1 is sampled 600 times over 20 ms, and samples are likewise averaged into one sample.

The final samples are available to you at a maximum rate of about 8 Hz (8.245 Hz).

Figure 11. USB-2416 data rate vs. resolution example

Input isolation

The USB-2416 is an isolated data acquisition device. The analog input, digital I/O, counters, and all the digital control/timing are referenced to an isolated ground as shown in the figure below. This ground is physically and electrically separate from the ground used by the circuit connected to the system bus interface.

Isolation provides a barrier between the host computer and potentially hazardous voltages by physically and electrically separating two parts of the measurement device.

- The *non-isolated* ground is common to the chassis ground of the computer, while the *isolated* ground is not.
- All analog measurements are made relative to the isolated ground. See Figure 12 for details.

Figure 12. USB-2416 input isolation diagram

When making measurements in industrial environments, DAQ devices can encounter hazardous voltages, transients, large common mode voltages and fluctuating ground potentials. Any one of these issues can seriously degrade the measurement accuracy of the device and possibly damage the measurement instrument. To overcome these issues, some DAQ devices provide physical and electrical isolation. Some of the benefits of isolation include:

- Safety:** A DAQ device employing physical and electrical isolation helps to keep high voltages and transients from damaging the system-side host PC.
- Ground loops:** Improper grounding of the signal source that the DAQ device is measuring is one of the most common sources of noise and measurement inaccuracies. Isolation improves the measurement accuracy by physically preventing ground loops. Ground loops—a common source of noise and error—are the results of a measurement system having multiple grounds at different potentials.
- Common mode rejection:** With isolation, a DAQ device can measure small signals in the presence of large common mode voltages. Isolation increases the measurement system's ability to reject common mode voltages. The common mode voltage is the signal that is common to both the positive and negative inputs of the measurement device, but is not part of the signal to measure.

Digital I/O

The USB-2416 provides up to eight digital I/O lines with read/write rates of 500 port reads or single bit reads per second.

Digital input voltage ranges of 0 V to 15 V are permitted, with thresholds of 0.6 V (low) and 2.6 V (high). Each DIO channel is an *open-drain*, which, when used as an output, is capable of sinking up to 150 mA for direct drive applications. The maximum sink current is 150 mA per eight-channel bank, or if all eight channels are used, 18 mA (maximum) per channel.

Figure 13 is an example of a typical DIO connection. The figure represents connections for one channel. The other seven channels are connected in the same manner.

Figure 13. Digital output connection example

Internal pull-up/pull-down capability

Each of the eight DIO bits on the USB-2416 has a $47\text{ k}\Omega$ pull-up/pull-down resistor. To configure these bits for the 0 V pull-down option, you must open the USB-2416 case to access the three-pin jumper labeled JP1.

To open the case and set the JP1 jumper, do the following.

1. Turn over the USB-2416 and rest it on its top on a flat, stable surface.
2. Remove the five screws shown in Figure 14 from the bottom of the module.
3. Holding both the top and bottom sections of the module, turn it over, rest it on the surface, and carefully remove the top portion of the case.

Figure 14. Location of screws connecting bottom and top sections of case

Figure 15. Location of JP1

The pull-up/pull-down voltage is common to all of the internal $47\text{ k}\Omega$ resistors.

External pull-up/pull-down capability

You can also place an external pull-up resistor on any of the DIO bits. This enables you to pull the DIO bit up to a voltage that exceeds the internal +5 V pull-up voltage.

When using external pull-up resistors, note the following:

- You should either remove the JP1 jumper or store it by attaching it to one of the three pins.
- When using external pull-up resistors, the internal resistors cause slight impedance shifts to digital lines in the "on" state as the number of lines in the "off" state changes.

Figure 16. Digital I/O external resistor configuration

Counter input terminals (CTR0, CTR1)

Two 32-bit event counters are built into the USB-2416. Each counter accepts frequency inputs up to 1 MHz.

Refer to the *Screw terminal pinout* diagrams starting on page 10 for the location of these pins. The internal counter increments when the TTL levels transition from low to high. The counter can count frequencies of up to 1 MHz.

USB-2416 mechanical drawings

Figure 17. Circuit board (top) and enclosure dimensions

Calibrating the USB-2416

Measurement Computing calibrates the USB-2416 using an NIST-traceable calibration method. This method stores a correction factor for each AIN range in non-volatile memory on the device at the time of calibration.

Allow a 45 minute warm-up period before calibrating the USB-2416.

Calibration methods

Factory calibration

Measurement Computing's Manufacturing Test department performs the initial factory calibration. You can return the USB-2416 once a year for a new factory calibration and calibration certificate.

Self calibration

Use InstaCal to calibrate the USB-2416 whenever the ambient temperature changes by more than ± 10 °C from the last self-calibration

You can perform this procedure with thermocouple and voltage inputs connected to the input terminal blocks.

Specifications

All specifications are subject to change without notice.

Typical for 25 °C unless otherwise specified.

All specifications apply to all temperature and voltage input channels unless otherwise specified.

Specifications in *italic* text are guaranteed by design.

Analog input

Table 1. General analog input specifications

Parameter	Conditions	Specification
A/D converter type		ADS1256, 24-bit Sigma Delta
A/D data rates		3750 samples per second (S/s), 2000 S/s, 1000 S/s, 500 S/s, 100 S/s, 60 S/s, 50 S/s, 25 S/s, 10 S/s, 5 S/s, 2.5 S/s
Throughput		Single channel: 2.5 Hz to 1102.94 Hz, software selectable Multiple channels: 0.16 Hz to 1102.94 Hz, software selectable (see tables 18 and 19 for details)
Number of channels		Up to 32 channels individually software-configurable as single-ended or differential Thermocouples require differential mode. For each channel configured as differential, you essentially lose one single-ended channel. You can add channels by connecting to an AI-EXP32.
<i>Input isolation</i>		500 VDC minimum between field wiring and USB interface
Channel configurations		Temperature sensor input, software programmable to match sensor type
		Voltage input
Input voltage range	Thermocouple mode	±0.078125 V
	Voltage mode (Note 1)	±20 V, ±10 V, ±5 V, ±2.5 V, ±1.25 V, ±0.625 V, ±0.3125 V, ±0.15625 V, ±0.078125 V, software-configurable
Absolute maximum input voltage	CxH-CxL relative to GND	±30 V maximum (power on) ±10 V maximum (power off)
Input impedance		2 GΩ (power on) 390Ω (power off)
Input leakage current		±10.6 nA
Input capacitance		590 pf
Maximum working voltage (signal + common mode)	Voltage mode: ±20V range	±20.01 V maximum
	Voltage mode: all other voltage input ranges	±10.25 V maximum
Common mode rejection ratio (Note 1)	Thermocouple mode, ($f_{IN} = 60$ Hz)	110 dB
	Voltage mode, ($f_{IN} = 60$ Hz, all input ranges)	90 dB
ADC resolution		24 bits
Crosstalk	Adjacent channels	100 dB
Input coupling		DC
Channel gain queue	Up to 64 elements	Software configurable channel and range
Warm-up time		45 minutes minimum
Open thermocouple detect		Automatically enabled when the channel is configured for a thermocouple sensor.

CJC sensor accuracy	15 °C to 35 °C	± 0.15 °C typical
	0 °C to 55 °C	± 0.5 °C maximum

Note 1: Placing a notch of the A/D digital filter at 60 Hz (setting A/D data rate = 60 S/s, 10 S/s, 5 S/s or 2.5 S/s) further improves the common mode rejection of this frequency.

Channel configurations

When any item is changed, the firmware stores channel configurations in the EEPROM of the isolated microcontroller. An external application issues commands over the USB to make changes, and the configuration is made non-volatile through the use of the EEPROM.

When connecting differential voltage inputs to a floating voltage source, provide a DC return path from each voltage input to ground. To do this, connect a resistor from each input to a GND pin (pins 18, 36, 39, 42, 44, 46, 66, 81, 84). A value of approximately 100 kΩ can be used for most applications.

Leave unused input channels either floating or tied to GND (pins 18, 36, 39, 42, 44, 46, 66, 81, 84).

Source impedances should be kept as small as possible to avoid settling time and accuracy errors.

For each voltage/thermocouple channel configured as differential, you essentially lose one single-ended channel. You can add channels by connecting to an AI-EXP32.

Table 2. Channel configurations

Channel	Category	Specification
CxH/CxL	Thermocouple	16 differential channels
CxH/CxL	Voltage	32 individually-configurable channels that can be configured as either single-ended or differential.
CxH/CxL	Voltage	

Compatible sensors

Table 3. Compatible sensor type specifications

Parameter	Conditions
Thermocouple	J: -210 °C to 1200 °C
	K: -270 °C to 1372 °C
	R: -50 °C to 1768 °C
	S: -50 °C to 1768 °C
	T: -270 °C to 400 °C
	N: -270 °C to 1300 °C
	E: -270 °C to 1000 °C
	B: 0 °C to 1820 °C

Accuracy

Thermocouple measurement accuracy

Thermocouple measurement accuracy specifications include polynomial linearization error, cold-junction compensation measurement error, and system noise. These specs are for one year, or 3000 operating hours, whichever comes first.

There is a CJC sensor for each terminal block of the module. The accuracy listed below assumes the screw terminals are at the same temperature as the CJC sensor.

The accuracy errors shown do not include the inherent accuracy error of the thermocouple sensor itself. Contact your thermocouple supplier for details on the actual thermocouple sensor accuracy limitations.

Connect thermocouples to the USB-2416 such that they are floating with respect to GND (pins 18, 36, 39, 42, 44, 46, 66, 81, 84, 93, and 94).

When configuring thermocouple sensors, keep any stray capacitance relative to GND (pins 18, 36, 39, 42, 44, 46, 66, 81, 84) as small as possible to avoid settling time and accuracy errors.

The USB-2416 GND and DGND pins are isolated from earth ground. You can connect thermocouple sensors to voltages referenced to earth ground as long as isolation between the GND/DGND pins and earth ground is maintained.

Table 4. J type thermocouple accuracy specifications, including CJC measurement error.
All specifications are (\pm).

A/D data rate	Sensor temperature range	Accuracy error maximum	Accuracy error typical	Tempco ($^{\circ}\text{C}/^{\circ}\text{C}$)
3750 S/s	-210 °C	2.572 °C	1.416 °C	0.022
	0 °C	0.935 °C	0.469 °C	
	1200 °C	1.869 °C	1.456 °C	
2000 S/s	-210 °C	2.572 °C	1.416 °C	0.022
	0 °C	0.935 °C	0.469 °C	
	1200 °C	1.869 °C	1.456 °C	
1000 S/s	-210 °C	2.572 °C	1.416 °C	0.022
	0 °C	0.935 °C	0.469 °C	
	1200 °C	1.869 °C	1.456 °C	
500 S/s	-210 °C	2.442 °C	1.334 °C	0.022
	0 °C	0.881 °C	0.415 °C	
	1200 °C	1.821 °C	1.408 °C	
100 S/s	-210 °C	2.442 °C	1.334 °C	0.022
	0 °C	0.881 °C	0.415 °C	
	1200 °C	1.821 °C	1.408 °C	
60 S/s	-210 °C	2.442 °C	1.334 °C	0.022
	0 °C	0.881 °C	0.415 °C	
	1200 °C	1.821 °C	1.408 °C	
50 S/s	-210 °C	2.442 °C	1.334 °C	0.022
	0 °C	0.881 °C	0.415 °C	
	1200 °C	1.821 °C	1.408 °C	
25 S/s	-210 °C	2.442 °C	1.334 °C	0.022
	0 °C	0.881 °C	0.415 °C	
	1200 °C	1.821 °C	1.408 °C	
10 S/s	-210 °C	2.442 °C	1.334 °C	0.022
	0 °C	0.881 °C	0.415 °C	
	1200 °C	1.821 °C	1.408 °C	
5 S/s	-210 °C	2.442 °C	1.334 °C	0.022
	0 °C	0.881 °C	0.415 °C	
	1200 °C	1.821 °C	1.408 °C	
2.5 S/s	-210 °C	2.442 °C	1.334 °C	0.022
	0 °C	0.881 °C	0.415 °C	
	1200 °C	1.821 °C	1.408 °C	

To achieve the thermocouple accuracies listed above, the USB-2416 should be warmed up for 45 minutes after the initial power on. The accuracies listed above are only guaranteed if the USB-2416 is housed in its plastic enclosure.

Table 5. K type thermocouple accuracy specifications, including CJC measurement error.
All specifications are (\pm).

A/D data rate	Sensor temperature range	Accuracy error maximum	Accuracy error typical	Tempco ($^{\circ}\text{C}/^{\circ}\text{C}$)
3750 S/s	-210 °C	2.917 °C	1.699 °C	0.029
	0 °C	1.017 °C	0.526 °C	
	1372 °C	2.478 °C	2.022 °C	
2000 S/s	-210 °C	2.917 °C	1.699 °C	0.029
	0 °C	1.017 °C	0.526 °C	
	1372 °C	2.478 °C	2.022 °C	
1000 S/s	-210 °C	2.917 °C	1.699 °C	0.029
	0 °C	1.017 °C	0.526 °C	
	1372 °C	2.478 °C	2.022 °C	
500 S/s	-210 °C	2.735 °C	1.524 °C	0.029
	0 °C	0.948 °C	0.457 °C	
	1372 °C	2.396 °C	1.941 °C	
100 S/s	-210 °C	2.735 °C	1.524 °C	0.029
	0 °C	0.948 °C	0.457 °C	
	1372 °C	2.396 °C	1.941 °C	
60 S/s	-210 °C	2.735 °C	1.524 °C	0.029
	0 °C	0.948 °C	0.457 °C	
	1372 °C	2.396 °C	1.941 °C	
50 S/s	-210 °C	2.735 °C	1.524 °C	0.029
	0 °C	0.948 °C	0.457 °C	
	1372 °C	2.396 °C	1.941 °C	
25 S/s	-210 °C	2.735 °C	1.524 °C	0.029
	0 °C	0.948 °C	0.457 °C	
	1372 °C	2.396 °C	1.941 °C	
10 S/s	-210 °C	2.735 °C	1.524 °C	0.029
	0 °C	0.948 °C	0.457 °C	
	1372 °C	2.396 °C	1.941 °C	
5 S/s	-210 °C	2.735 °C	1.524 °C	0.029
	0 °C	0.948 °C	0.457 °C	
	1372 °C	2.396 °C	1.941 °C	
2.5 S/s	-210 °C	2.735 °C	1.524 °C	0.029
	0 °C	0.948 °C	0.457 °C	
	1372 °C	2.396 °C	1.941 °C	

To achieve the thermocouple accuracies listed above, the USB-2416 should be warmed up for 45 minutes after the initial power on. The accuracies listed above are only guaranteed if the USB-2416 is housed in its plastic enclosure.

Table 6. N type thermocouple accuracy specifications, including CJC measurement error.
All specifications are (\pm).

A/D data rate	Sensor temperature range	Accuracy error maximum	Accuracy error typical	Tempco (°C/°C)
3750 S/s	-200 °C	3.480°C	2.030 °C	0.029
	0 °C	1.201 °C	0.659 °C	
	1300 °C	1.991 °C	1.600 °C	
2000 S/s	-200 °C	3.480°C	2.030 °C	0.029
	0 °C	1.201 °C	0.659 °C	
	1300 °C	1.991 °C	1.600 °C	
1000 S/s	-200 °C	3.480°C	2.030 °C	0.029
	0 °C	1.201 °C	0.659 °C	
	1300 °C	1.991 °C	1.600 °C	
500 S/s	-200 °C	3.196°C	1.750 °C	0.029
	0 °C	1.096 °C	0.553 °C	
	1300 °C	1.915 °C	1.524 °C	
100 S/s	-200 °C	3.196°C	1.750 °C	0.029
	0 °C	1.096 °C	0.553 °C	
	1300 °C	1.915 °C	1.524 °C	
60 S/s	-200 °C	3.196°C	1.750 °C	0.029
	0 °C	1.096 °C	0.553 °C	
	1300 °C	1.915 °C	1.524 °C	
50 S/s	-200 °C	3.196°C	1.750 °C	0.029
	0 °C	1.096 °C	0.553 °C	
	1300 °C	1.915 °C	1.524 °C	
25 S/s	-200 °C	3.196°C	1.750 °C	0.029
	0 °C	1.096 °C	0.553 °C	
	1300 °C	1.915 °C	1.524 °C	
10 S/s	-200 °C	3.196°C	1.750 °C	0.029
	0 °C	1.096 °C	0.553 °C	
	1300 °C	1.915 °C	1.524 °C	
5 S/s	-200 °C	3.196°C	1.750 °C	0.029
	0 °C	1.096 °C	0.553 °C	
	1300 °C	1.915 °C	1.524 °C	
2.5 S/s	-200 °C	3.196°C	1.750 °C	0.029
	0 °C	1.096 °C	0.553 °C	
	1300 °C	1.915 °C	1.524 °C	

To achieve the thermocouple accuracies listed above, the USB-2416 should be warmed up for 45 minutes after the initial power on. The accuracies listed above are only guaranteed if the USB-2416 is housed in its plastic enclosure.

Table 7. R type thermocouple accuracy specifications, including CJC measurement error.
All specifications are (\pm).

A/D data rate	Sensor temperature range	Accuracy error maximum	Accuracy error typical	Tempco ($^{\circ}\text{C}/^{\circ}\text{C}$)
3750 S/s	-50 °C	4.826 °C	3.133 °C	0.082
	250 °C	2.117 °C	1.424 °C	
	1768 °C	2.842 °C	2.347 °C	
2000 S/s	-50 °C	4.826 °C	3.133 °C	0.082
	250 °C	2.117 °C	1.424 °C	
	1768 °C	2.842 °C	2.347 °C	
1000 S/s	-50 °C	4.826 °C	3.133 °C	0.082
	250 °C	2.117 °C	1.424 °C	
	1768 °C	2.842 °C	2.347 °C	
500 S/s	-50 °C	4.065 °C	2.379 °C	0.082
	250 °C	1.805 °C	1.113 °C	
	1768 °C	2.619 °C	2.123 °C	
100 S/s	-50 °C	4.065 °C	2.379 °C	0.082
	250 °C	1.805 °C	1.113 °C	
	1768 °C	2.619 °C	2.123 °C	
60 S/s	-50 °C	4.065 °C	2.379 °C	0.082
	250 °C	1.805 °C	1.113 °C	
	1768 °C	2.619 °C	2.123 °C	
50 S/s	-50 °C	4.065 °C	2.379 °C	0.082
	250 °C	1.805 °C	1.113 °C	
	1768 °C	2.619 °C	2.123 °C	
25 S/s	-50 °C	4.065 °C	2.379 °C	0.082
	250 °C	1.805 °C	1.113 °C	
	1768 °C	2.619 °C	2.123 °C	
10 S/s	-50 °C	4.065 °C	2.379 °C	0.082
	250 °C	1.805 °C	1.113 °C	
	1768 °C	2.619 °C	2.123 °C	
5 S/s	-50 °C	4.065 °C	2.379 °C	0.082
	250 °C	1.805 °C	1.113 °C	
	1768 °C	2.619 °C	2.123 °C	
2.5 S/s	-50 °C	4.065 °C	2.379 °C	0.082
	250 °C	1.805 °C	1.113 °C	
	1768 °C	2.619 °C	2.123 °C	

To achieve the thermocouple accuracies listed above, the USB-2416 should be warmed up for 45 minutes after the initial power on. The accuracies listed above are only guaranteed if the USB-2416 is housed in its plastic enclosure.

Table 8. S type thermocouple accuracy specifications, including CJC measurement error.
All specifications are (\pm).

A/D data rate	Sensor temperature range	Accuracy error maximum	Accuracy error typical	Tempco ($^{\circ}\text{C}/^{\circ}\text{C}$)
3750 S/s	-50 °C	4.510 °C	2.930 °C	0.088
	250 °C	2.165 °C	1.468 °C	
	1768 °C	3.187 °C	2.597 °C	
2000 S/s	-50 °C	4.510 °C	2.930 °C	0.088
	250 °C	2.165 °C	1.468 °C	
	1768 °C	3.187 °C	2.597 °C	
1000 S/s	-50 °C	4.510 °C	2.930 °C	0.088
	250 °C	2.165 °C	1.468 °C	
	1768 °C	3.187 °C	2.597 °C	
500 S/s	-50 °C	3.798 °C	2.226 °C	0.088
	250 °C	1.853 °C	1.156 °C	
	1768 °C	2.922 °C	2.332 °C	
100 S/s	-50 °C	3.798 °C	2.226 °C	0.088
	250 °C	1.853 °C	1.156 °C	
	1768 °C	2.922 °C	2.332 °C	
60 S/s	-50 °C	3.798 °C	2.226 °C	0.088
	250 °C	1.853 °C	1.156 °C	
	1768 °C	2.922 °C	2.332 °C	
50 S/s	-50 °C	3.798 °C	2.226 °C	0.088
	250 °C	1.853 °C	1.156 °C	
	1768 °C	2.922 °C	2.332 °C	
25 S/s	-50 °C	3.798 °C	2.226 °C	0.088
	250 °C	1.853 °C	1.156 °C	
	1768 °C	2.922 °C	2.332 °C	
10 S/s	-50 °C	3.798 °C	2.226 °C	0.088
	250 °C	1.853 °C	1.156 °C	
	1768 °C	2.922 °C	2.332 °C	
5 S/s	-50 °C	3.798 °C	2.226 °C	0.088
	250 °C	1.853 °C	1.156 °C	
	1768 °C	2.922 °C	2.332 °C	
2.5 S/s	-50 °C	3.798 °C	2.226 °C	0.088
	250 °C	1.853 °C	1.156 °C	
	1768 °C	2.922 °C	2.332 °C	

To achieve the thermocouple accuracies listed above, the USB-2416 should be warmed up for 45 minutes after the initial power on. The accuracies listed above are only guaranteed if the USB-2416 is housed in its plastic enclosure.

Table 9. B type thermocouple accuracy specifications, including CJC measurement error.
All specifications are (\pm).

A/D data rate	Sensor temperature range	Accuracy error maximum	Accuracy error typical	Tempco ($^{\circ}\text{C}/^{\circ}\text{C}$)
3750 S/s	250 °C	5.489 °C	3.956 °C	0.14
	700 °C	2.283 °C	1.743 °C	
	1820 °C	2.202 °C	1.842 °C	
2000 S/s	250 °C	5.489 °C	3.956 °C	0.14
	700 °C	2.283 °C	1.743 °C	
	1820 °C	2.202 °C	1.842 °C	
1000 S/s	250 °C	5.489 °C	3.956 °C	0.14
	700 °C	2.283 °C	1.743 °C	
	1820 °C	2.202 °C	1.842 °C	
500 S/s	250 °C	4.387 °C	2.885 °C	0.14
	700 °C	1.879 °C	1.340 °C	
	1820 °C	1.962 °C	1.601 °C	
100 S/s	250 °C	4.387 °C	2.885 °C	0.14
	700 °C	1.879 °C	1.340 °C	
	1820 °C	1.962 °C	1.601 °C	
60 S/s	250 °C	4.387 °C	2.885 °C	0.14
	700 °C	1.879 °C	1.340 °C	
	1820 °C	1.962 °C	1.601 °C	
50 S/s	250 °C	4.387 °C	2.885 °C	0.14
	700 °C	1.879 °C	1.340 °C	
	1820 °C	1.962 °C	1.601 °C	
25 S/s	250 °C	4.387 °C	2.885 °C	0.14
	700 °C	1.879 °C	1.340 °C	
	1820 °C	1.962 °C	1.601 °C	
10 S/s	250 °C	4.387 °C	2.885 °C	0.14
	700 °C	1.879 °C	1.340 °C	
	1820 °C	1.962 °C	1.601 °C	
5 S/s	250 °C	4.387 °C	2.885 °C	0.14
	700 °C	1.879 °C	1.340 °C	
	1820 °C	1.962 °C	1.601 °C	
2.5 S/s	250 °C	4.387 °C	2.885 °C	0.14
	700 °C	1.879 °C	1.340 °C	
	1820 °C	1.962 °C	1.601 °C	

To achieve the thermocouple accuracies listed above, the USB-2416 should be warmed up for 45 minutes after the initial power on. The accuracies listed above are only guaranteed if the USB-2416 is housed in its plastic enclosure.

Table 10. E type thermocouple accuracy specifications, including CJC measurement error.
All specifications are (\pm).

A/D data rate	Sensor temperature range	Accuracy error maximum	Accuracy error typical	Tempco ($^{\circ}\text{C}/^{\circ}\text{C}$)
3750 S/s	-200 °C	2.413 °C	1.352 °C	0.017
	0 °C	1.069 °C	0.551 °C	
	1000 °C	1.575 °C	1.211 °C	
2000 S/s	-200 °C	2.413 °C	1.352 °C	0.017
	0 °C	1.069 °C	0.551 °C	
	1000 °C	1.575 °C	1.211 °C	
1000 S/s	-200 °C	2.413 °C	1.352 °C	0.017
	0 °C	1.069 °C	0.551 °C	
	1000 °C	1.575 °C	1.211 °C	
500 S/s	-200 °C	2.306 °C	1.244 °C	0.017
	0 °C	1.017 °C	0.499 °C	
	1000 °C	1.539 °C	1.175 °C	
100 S/s	-200 °C	2.306 °C	1.244 °C	0.017
	0 °C	1.017 °C	0.499 °C	
	1000 °C	1.539 °C	1.175 °C	
60 S/s	-200 °C	2.306 °C	1.244 °C	0.017
	0 °C	1.017 °C	0.499 °C	
	1000 °C	1.539 °C	1.175 °C	
50 S/s	-200 °C	2.306 °C	1.244 °C	0.017
	0 °C	1.017 °C	0.499 °C	
	1000 °C	1.539 °C	1.175 °C	
25 S/s	-200 °C	2.306 °C	1.244 °C	0.017
	0 °C	1.017 °C	0.499 °C	
	1000 °C	1.539 °C	1.175 °C	
10 S/s	-200 °C	2.306 °C	1.244 °C	0.017
	0 °C	1.017 °C	0.499 °C	
	1000 °C	1.539 °C	1.175 °C	
5 S/s	-200 °C	2.306 °C	1.244 °C	0.017
	0 °C	1.017 °C	0.499 °C	
	1000 °C	1.539 °C	1.175 °C	
2.5 S/s	-200 °C	2.306 °C	1.244 °C	0.017
	0 °C	1.017 °C	0.499 °C	
	1000 °C	1.539 °C	1.175 °C	

To achieve the thermocouple accuracies listed above, the USB-2416 should be warmed up for 45 minutes after the initial power on. The accuracies listed above are only guaranteed if the USB-2416 is housed in its plastic enclosure.

Table 11. T type thermocouple accuracy specifications, including CJC measurement error.
All specifications are (\pm).

A/D data rate	Sensor temperature range	Accuracy error maximum	Accuracy error typical	Tempco ($^{\circ}\text{C}/^{\circ}\text{C}$)
3750 S/s	-200 °C	2.821 °C	1.676 °C	0.027
	0 °C	1.050 °C	0.558 °C	
	400 °C	0.957 °C	0.595 °C	
2000 S/s	-200 °C	2.821 °C	1.676 °C	0.027
	0 °C	1.050 °C	0.558 °C	
	400 °C	0.957 °C	0.595 °C	
1000 S/s	-200 °C	2.821 °C	1.676 °C	0.027
	0 °C	1.050 °C	0.558 °C	
	400 °C	0.957 °C	0.595 °C	
500 S/s	-200 °C	2.644 °C	1.505 °C	0.027
	0 °C	0.979 °C	0.487 °C	
	400 °C	0.912 °C	0.551 °C	
100 S/s	-200 °C	2.644 °C	1.505 °C	0.027
	0 °C	0.979 °C	0.487 °C	
	400 °C	0.912 °C	0.551 °C	
60 S/s	-200 °C	2.644 °C	1.505 °C	0.027
	0 °C	0.979 °C	0.487 °C	
	400 °C	0.912 °C	0.551 °C	
50 S/s	-200 °C	2.644 °C	1.505 °C	0.027
	0 °C	0.979 °C	0.487 °C	
	400 °C	0.912 °C	0.551 °C	
25 S/s	-200 °C	2.644 °C	1.505 °C	0.027
	0 °C	0.979 °C	0.487 °C	
	400 °C	0.912 °C	0.551 °C	
10 S/s	-200 °C	2.644 °C	1.505 °C	0.027
	0 °C	0.979 °C	0.487 °C	
	400 °C	0.912 °C	0.551 °C	
5 S/s	-200 °C	2.644 °C	1.505 °C	0.027
	0 °C	0.979 °C	0.487 °C	
	400 °C	0.912 °C	0.551 °C	
2.5 S/s	-200 °C	2.644 °C	1.505 °C	0.027
	0 °C	0.979 °C	0.487 °C	
	400 °C	0.912 °C	0.551 °C	

To achieve the thermocouple accuracies listed above, the USB-2416 should be warmed up for 45 minutes after the initial power on. The accuracies listed above are only guaranteed if the USB-2416 is housed in its plastic enclosure.

Analog input DC voltage measurement accuracy:

Table 12. DC Accuracy components and specifications. All values are (\pm)

Range	A/D data rate	Gain error (% of reading)	Offset error	INL error (% of range)	Absolute accuracy	Gain temperature coefficient (% reading/ $^{\circ}$ C)	Offset temperature coefficient (μ V/ $^{\circ}$ C)
± 20 V	3750 S/s	0.003	98 μ V	0.0008	857.600 μ V	0.0006	3
	2000 S/s	0.003	61 μ V	0.0008	821.185 μ V	0.0006	3
	1000 S/s	0.003	27 μ V	0.0008	787.226 μ V	0.0006	3
	500 S/s	0.003	12 μ V	0.0008	772.193 μ V	0.0006	3
	100 S/s	0.003	11 μ V	0.0008	771.014 μ V	0.0006	3
	60 S/s	0.003	15 μ V	0.0008	774.689 μ V	0.0006	3
	50 S/s	0.003	12 μ V	0.0008	771.603 μ V	0.0006	3
	25 S/s	0.003	12 μ V	0.0008	772.070 μ V	0.0006	3
	10 S/s	0.003	13 μ V	0.0008	773.400 μ V	0.0006	3
	5 S/s	0.003	14 μ V	0.0008	773.579 μ V	0.0006	3
± 10 V	3750 S/s	0.003	42 μ V	0.0008	421.600 μ V	0.0006	3
	2000 S/s	0.003	36 μ V	0.0008	416.004 μ V	0.0006	3
	1000 S/s	0.003	15 μ V	0.0008	395.252 μ V	0.0006	3
	500 S/s	0.003	7 μ V	0.0008	387.216 μ V	0.0006	3
	100 S/s	0.002	8 μ V	0.0008	288.470 μ V	0.0006	3
	60 S/s	0.002	10 μ V	0.0008	290.090 μ V	0.0006	3
	50 S/s	0.002	8 μ V	0.0008	287.719 μ V	0.0006	3
	25 S/s	0.002	6 μ V	0.0008	285.672 μ V	0.0006	3
	10 S/s	0.002	6 μ V	0.0008	285.982 μ V	0.0006	3
	5 S/s	0.002	6 μ V	0.0008	286.003 μ V	0.0006	3
± 5 V	3750 S/s	0.003	21 μ V	0.0008	210.800 μ V	0.0006	2
	2000 S/s	0.003	21 μ V	0.0008	210.712 μ V	0.0006	2
	1000 S/s	0.003	8 μ V	0.0008	198.254 μ V	0.0006	2
	500 S/s	0.002	6 μ V	0.0008	146.499 μ V	0.0006	2
	100 S/s	0.002	7 μ V	0.0008	147.285 μ V	0.0006	2
	60 S/s	0.002	8 μ V	0.0008	148.216 μ V	0.0006	2
	50 S/s	0.002	6 μ V	0.0008	146.196 μ V	0.0006	2
	25 S/s	0.002	6 μ V	0.0008	145.996 μ V	0.0006	2
	10 S/s	0.002	6 μ V	0.0008	145.820 μ V	0.0006	2
	5 S/s	0.002	6 μ V	0.0008	145.817 μ V	0.0006	2
± 2.5 V	3750 S/s	0.002	13 μ V	0.0008	83.000 μ V	0.0006	1
	2000 S/s	0.002	13 μ V	0.0008	83.062 μ V	0.0006	1
	1000 S/s	0.002	9 μ V	0.0008	79.487 μ V	0.0006	1
	500 S/s	0.0015	9 μ V	0.0008	66.232 μ V	0.0006	1
	100 S/s	0.0015	9 μ V	0.0008	66.685 μ V	0.0006	1
	60 S/s	0.0015	10 μ V	0.0008	67.014 μ V	0.0006	1
	50 S/s	0.0015	8 μ V	0.0008	65.314 μ V	0.0006	1
	25 S/s	0.0015	8 μ V	0.0008	65.901 μ V	0.0006	1
	10 S/s	0.0015	8 μ V	0.0008	65.759 μ V	0.0006	1
	5 S/s	0.0015	8 μ V	0.0008	65.800 μ V	0.0006	1
	2.5 S/s	0.0015	8 μ V	0.0008	65.769 μ V	0.0006	1

Range	A/D data rate	Gain error (% of reading)	Offset error	INL error (% of range)	Absolute accuracy	Gain temperature coefficient (% reading/ $^{\circ}\text{C}$)	Offset temperature coefficient ($\mu\text{V}/^{\circ}\text{C}$)
1.25 V	3750 S/s	0.0025	7 μV	0.0008	48.050 μV	0.0006	1
	2000 S/s	0.0025	9 μV	0.0008	50.632 μV	0.0006	1
	1000 S/s	0.0025	8 μV	0.0008	49.359 μV	0.0006	1
	500 S/s	0.0025	8 μV	0.0008	49.709 μV	0.0006	1
	100 S/s	0.0025	8 μV	0.0008	49.604 μV	0.0006	1
	60 S/s	0.0025	8 μV	0.0008	49.417 μV	0.0006	1
	50 S/s	0.0025	8 μV	0.0008	49.610 μV	0.0006	1
	25 S/s	0.0025	8 μV	0.0008	49.584 μV	0.0006	1
	10 S/s	0.0025	8 μV	0.0008	49.482 μV	0.0006	1
	5 S/s	0.0025	8 μV	0.0008	49.489 μV	0.0006	1
	2.5 S/s	0.0025	8 μV	0.0008	49.489 μV	0.0006	1
$\pm 0.625 \text{ V}$	3750 S/s	0.003	7 μV	0.0005	28.775 μV	0.0006	1
	2000 S/s	0.003	7 μV	0.0005	28.679 μV	0.0006	1
	1000 S/s	0.003	6 μV	0.0005	27.762 μV	0.0006	1
	500 S/s	0.003	6 μV	0.0005	28.167 μV	0.0006	1
	100 S/s	0.003	6 μV	0.0005	28.088 μV	0.0006	1
	60 S/s	0.002	6 μV	0.0005	21.709 μV	0.0006	1
	50 S/s	0.002	6 μV	0.0005	21.773 μV	0.0006	1
	25 S/s	0.002	6 μV	0.0005	21.746 μV	0.0006	1
	10 S/s	0.002	6 μV	0.0005	21.927 μV	0.0006	1
	5 S/s	0.002	6 μV	0.0005	21.803 μV	0.0006	1
	2.5 S/s	0.002	6 μV	0.0005	21.784 μV	0.0006	1
$\pm 0.3125 \text{ V}$	3750 S/s	0.005	7 μV	0.0006	24.500 μV	0.0006	1
	2000 S/s	0.005	6 μV	0.0006	23.443 μV	0.0006	1
	1000 S/s	0.005	6 μV	0.0006	23.086 μV	0.0006	1
	500 S/s	0.005	6 μV	0.0006	23.094 μV	0.0006	1
	100 S/s	0.005	6 μV	0.0006	23.084 μV	0.0006	1
	60 S/s	0.005	6 μV	0.0006	23.288 μV	0.0006	1
	50 S/s	0.005	6 μV	0.0006	23.232 μV	0.0006	1
	25 S/s	0.005	6 μV	0.0006	23.191 μV	0.0006	1
	10 S/s	0.005	6 μV	0.0006	23.125 μV	0.0006	1
	5 S/s	0.005	6 μV	0.0006	23.182 μV	0.0006	1
	2.5 S/s	0.005	6 μV	0.0006	23.127 μV	0.0006	1
$\pm 0.15625 \text{ V}$	3750 S/s	0.006	6 μV	0.0005	15.856 μV	0.0006	1
	2000 S/s	0.006	6 μV	0.0005	15.793 μV	0.0006	1
	1000 S/s	0.006	6 μV	0.0005	15.902 μV	0.0006	1
	500 S/s	0.006	6 μV	0.0005	16.118 μV	0.0006	1
	100 S/s	0.006	6 μV	0.0005	15.877 μV	0.0006	1
	60 S/s	0.006	6 μV	0.0005	16.014 μV	0.0006	1
	50 S/s	0.006	6 μV	0.0005	16.122 μV	0.0006	1
	25 S/s	0.006	6 μV	0.0005	15.903 μV	0.0006	1
	10 S/s	0.006	6 μV	0.0005	15.927 μV	0.0006	1
	5 S/s	0.006	6 μV	0.0005	15.981 μV	0.0006	1
	2.5 S/s	0.006	6 μV	0.0005	15.979 μV	0.0006	1

Range	A/D data rate	Gain error (% of reading)	Offset error	INL error (% of range)	Absolute accuracy	Gain temperature coefficient (% reading/ $^{\circ}\text{C}$)	Offset temperature coefficient ($\mu\text{V}/^{\circ}\text{C}$)
$\pm 0.078125 \text{ V}$	3750 S/s	0.035	6 μV	0.0009	33.547 μV	0.0006	1
	2000 S/s	0.035	6 μV	0.0009	34.252 μV	0.0006	1
	1000 S/s	0.035	6 μV	0.0009	33.696 μV	0.0006	1
	500 S/s	0.035	6 μV	0.0009	34.002 μV	0.0006	1
	100 S/s	0.035	6 μV	0.0009	34.005 μV	0.0006	1
	60 S/s	0.035	6 μV	0.0009	33.866 μV	0.0006	1
	50 S/s	0.035	6 μV	0.0009	34.026 μV	0.0006	1
	25 S/s	0.035	6 μV	0.0009	33.933 μV	0.0006	1
	10 S/s	0.035	6 μV	0.0009	33.937 μV	0.0006	1
	5 S/s	0.035	6 μV	0.0009	33.969 μV	0.0006	1
	2.5 S/s	0.035	6 μV	0.0009	33.934 μV	0.0006	1

Input bandwidth

Table 13. input bandwidth

A/D data rate	-3db Bandwidth (Hz)
3750 S/s	1615
2000 S/s	878
1000 S/s	441
500 S/s	221
100 S/s	44.2
60 S/s	26.5
50 S/s	22.1
25 S/s	11.1
10 S/s	4.42
5 S/s	2.21
2.5 S/s	1.1

Noise performance

For the peak to peak noise distribution test, a differential input channel is connected to GND at the input terminal block, and 50,000 samples are acquired at the maximum rate available at each setting.

Table 14. Peak to Peak noise performance specifications (μV)

	A/D data rate										
Range	3750 S/s	2000 S/s	1000 S/s	500 S/s	100 S/s	60 S/s	50 S/s	25 S/s	10 S/s	5 S/s	2.5 S/s
$\pm 20 \text{ V}$	230.31	186.92	126.84	100.14	57.22	57.22	49.59	47.58	23.84	23.84	14.31
$\pm 10 \text{ V}$	126.84	100.14	71.76	45.06	30.52	30.52	26.70	19.07	11.92	9.54	9.54
$\pm 5 \text{ V}$	56.74	47.56	34.21	25.87	16.21	14.31	14.31	14.30	5.96	4.77	4.77
$\pm 2.5 \text{ V}$	32.96	28.79	17.94	14.19	7.51	7.09	7.09	5.72	3.81	2.86	2.38
$\pm 1.25 \text{ V}$	18.57	17.52	13.83	9.30	5.48	5.48	5.01	3.81	3.34	3.34	2.86
$\pm 0.625 \text{ V}$	18.88	16.58	8.45	7.41	5.32	4.80	4.38	3.86	2.50	2.61	1.98
$\pm 0.3125 \text{ V}$	15.33	14.76	8.19	6.94	4.75	4.69	4.49	3.70	3.34	2.56	2.45
$\pm 0.15625 \text{ V}$	13.28	16.84	7.47	6.61	5.70	4.48	4.48	4.24	2.66	3.07	2.29
$\pm 0.078125 \text{ V}$	13.47	15.02	9.17	6.88	4.28	4.16	4.00	3.57	2.28	2.13	2.40

Table 15. RMS noise performance specifications (μ VRMS)

	A/D data rate										
Range	3750 S/s	2000 S/s	1000 S/s	500 S/s	100 S/s	60 S/s	50 S/s	25 S/s	10 S/s	5 S/s	2.5 S/s
± 20 V	34.90	28.32	19.22	15.17	8.67	8.67	7.51	7.22	3.61	3.61	2.17
± 10 V	19.22	15.17	10.87	6.83	4.62	4.62	4.05	2.89	1.81	1.44	1.44
± 5 V	8.60	7.21	5.18	3.92	2.46	2.17	2.17	2.16	0.90	0.72	0.72
± 2.5 V	4.99	4.36	2.72	2.15	1.14	1.07	1.07	0.87	0.58	0.43	0.36
± 1.25 V	2.81	2.66	2.10	1.41	0.83	0.83	0.76	0.58	0.51	0.51	0.43
± 0.625 V	2.86	2.51	1.28	1.12	0.81	0.73	0.66	0.58	0.38	0.40	0.30
± 0.3125 V	2.32	2.24	1.24	1.05	0.72	0.71	0.68	0.56	0.51	0.39	0.37
± 0.15625 V	2.01	2.55	1.13	1.00	0.86	0.68	0.68	0.64	0.40	0.47	0.35
± 0.078125 V	2.04	2.28	1.39	1.04	0.65	0.63	0.60	0.54	0.35	0.32	0.36

Table 16. Noise-free resolution specifications (bits)

	A/D data rate										
Range	3750 S/s	2000 S/s	1000 S/s	500 S/s	100 S/s	60 S/s	50 S/s	25 S/s	10 S/s	5 S/s	2.5 S/s
± 20 V	17.4	17.7	18.2	18.6	19.4	19.4	19.6	19.6	20.6	20.6	21.4
± 10 V	17.2	17.6	18.1	18.7	19.3	19.3	19.5	20.0	20.6	21.0	21.0
± 5 V	17.4	17.6	18.1	18.5	19.2	19.4	19.4	19.4	20.6	21.0	21.0
± 2.5 V	17.2	17.4	18.1	18.4	19.3	19.4	19.4	19.7	20.3	20.7	21.0
± 1.25 V	17.0	17.1	17.4	18.0	18.8	18.8	18.9	19.3	19.5	19.5	19.7
± 0.625 V	16.0	16.2	17.1	17.3	17.8	18.0	18.1	18.3	18.9	18.8	19.2
± 0.3125 V	15.3	15.3	16.2	16.4	17.0	17.0	17.0	17.3	17.5	17.9	17.9
± 0.15625 V	14.5	14.1	15.3	15.5	15.7	16.1	16.1	16.1	16.8	16.9	17.1
± 0.078125 V	14.5	14.3	15.0	15.4	16.1	16.2	16.2	16.4	17.0	17.1	16.9

Channel switching error

Table 17. Step response accuracy specifications

	Accuracy										
Range	3750 S/s	2000 S/s	1000 S/s	500 S/s	100 S/s	60 S/s	50 S/s	25 S/s	10 S/s	5 S/s	2.5 S/s
± 20 V	0.0011%	0.0006%	0.0004%	0.0003%	0.0002%	0.0002%	0.0002%	0.0002%	0.0001%	0.0001%	0.0001%
± 10 V	0.0010%	0.0008%	0.0005%	0.0004%	0.0002%	0.0002%	0.0003%	0.0002%	0.0001%	0.0001%	0.0001%
± 5 V	0.0009%	0.0008%	0.0004%	0.0004%	0.0003%	0.0002%	0.0002%	0.0002%	0.0001%	0.0001%	0.0001%
± 2.5 V	0.0010%	0.0007%	0.0008%	0.0004%	0.0003%	0.0002%	0.0002%	0.0002%	0.0002%	0.0001%	0.0001%
± 1.25 V	0.0013%	0.0009%	0.0008%	0.0007%	0.0004%	0.0004%	0.0003%	0.0003%	0.0003%	0.0003%	0.0003%
± 0.625 V	0.0022%	0.0016%	0.0011%	0.0011%	0.0007%	0.0007%	0.0005%	0.0005%	0.0004%	0.0005%	0.0003%
± 0.3125 V	0.0031%	0.0031%	0.0020%	0.0017%	0.0015%	0.0012%	0.0010%	0.0010%	0.0012%	0.0009%	0.0009%
± 0.15625 V	0.0056%	0.0062%	0.0048%	0.0037%	0.0032%	0.0025%	0.0024%	0.0021%	0.0019%	0.0022%	0.0016%
± 0.078125 V	0.0114%	0.0123%	0.0076%	0.0070%	0.0041%	0.0051%	0.0046%	0.0036%	0.0032%	0.0030%	0.0034%

Channel switching error is defined as the accuracy that can be expected after one conversion when switching from a channel with a DC input at one extreme of full scale to another channel with a DC input at the other extreme of full scale, expressed in terms of percentage of full scale value.

Throughput rate

The single channel throughput rate is calculated using this formula:

$$\text{Maximum throughput} = \frac{1}{\frac{1}{\text{data rate}} + 640 \mu\text{s}}$$

Table 18. Single channel throughput rate specifications

A/D data rate	Maximum throughput (Hz)
3750 S/s	1102.94
2000 S/s	877.19
1000 S/s	609.76
500 S/s	378.79
100 S/s	93.98
60 S/s	57.78
50 S/s	48.45
25 S/s	24.61
10 S/s	9.94
5 S/s	4.98
2.5 S/s	2.50

The multiple-channel throughput rate is calculated using this formula:

$$\text{Maximum throughput} = \frac{1}{\sum_{n=1}^n \left(\frac{1}{\text{data rate}} + 640 \mu\text{s} \right)}, \text{ where } n \text{ is the number of channels.}$$

Table 19. Multiple-channel throughput rate specifications (Hz)

	3750 S/s	2000 S/s	1000 S/s	500 S/s	100 S/s	60 S/s	50 S/s	25 S/s	10 S/s	5 S/s	2.5 S/s
Number of input channels											
1	1102.94	877.19	609.76	378.79	93.98	57.78	48.45	24.61	9.94	4.98	2.50
2	551.47	438.60	304.88	189.39	46.99	28.89	24.22	12.30	4.97	2.49	1.25
3	367.65	292.40	203.25	126.26	31.33	19.26	16.15	8.20	3.31	1.66	0.83
4	275.74	219.30	152.44	94.70	23.50	14.45	12.11	6.15	2.48	1.25	0.62
5	220.59	175.44	121.95	75.76	18.80	11.56	9.69	4.92	1.99	1.00	0.50
6	183.82	146.20	101.63	63.13	15.66	9.63	8.07	4.10	1.66	0.83	0.42
7	157.56	125.31	87.11	54.11	13.43	8.25	6.92	3.52	1.42	0.71	0.36
8	137.87	109.65	76.22	47.35	11.75	7.22	6.06	3.08	1.24	0.62	0.31
9	122.55	97.47	67.75	42.09	10.44	6.42	5.38	2.73	1.10	0.55	0.28
10	110.29	87.72	60.98	37.88	9.40	5.78	4.84	2.46	0.99	0.50	0.25
11	100.27	79.74	55.43	34.44	8.54	5.25	4.40	2.24	0.90	0.45	0.23
12	91.91	73.10	50.81	31.57	7.83	4.82	4.04	2.05	0.83	0.42	0.21
13	84.84	67.48	46.90	29.14	7.23	4.44	3.73	1.89	0.76	0.38	0.19
14	78.78	62.66	43.55	27.06	6.71	4.13	3.46	1.76	0.71	0.36	0.18
15	73.53	58.48	40.65	25.25	6.27	3.85	3.23	1.64	0.66	0.33	0.17
16	68.93	54.82	38.11	23.67	5.87	3.61	3.03	1.54	0.62	0.31	0.16

Analog input calibration

Table 20. Analog input calibration specifications

Parameter	Specifications
Recommended warm-up time	45 minutes minimum
Calibration	Firmware calibration
Calibration interval	1 year
Calibration reference	+10.000 V, ± 5 mV maximum. Actual measured values stored in EEPROM Tempco: 5 ppm/ $^{\circ}$ C maximum Long term stability: 30 ppm/1000 hours

Digital input/output

Table 21. Digital input specifications

Number of I/O	8 channels
Configuration	Each DIO bit can be independently read from (DIN) or written to (DOUT). The DIN bits can be read at any time whether the DOUT is active or tri-stated.
Input voltage range	0 to +15 V
Input type	CMOS (Schmitt trigger)
Input characteristics	47 k Ω pull-up/pull-down resistor, 28 k Ω series resistor
Maximum input voltage range	0 to +20 V maximum (power on/off, relative to DGND pins 93 and 94)
Pull-up/pull-down configuration	All pins pulled up to +5 V via individual 47 k Ω resistors (the JP1 shorting block default position is pins 1 and 2). Pull down capability is available by placing the JP1 shorting block across pins 2 and 3.
Transfer rate (software paced)	500 port reads or single bit reads per second typical.
Input high voltage	1.3 V minimum, 2.2 V maximum
Input low voltage	1.5 V maximum, 0.6 V minimum
Schmitt trigger hysteresis	0.4 V minimum, 1.2 V maximum

Note 2: DGND pins (pins 93, 94) are recommended for use with digital input and digital output pins. The DGND and GND pins are common and are isolated from earth ground.

Table 22. Digital output specifications

Number of I/O	8 channels
Configuration	Each DIO bit can be independently read from (DIN) or written to (DOUT). The DIN bits may be read at any time whether the DOUT is active or tri-stated
Output characteristics	47k Ω pull-up, open drain (DMOS transistor)
Pull-up configuration	All pins pulled up to +5 V via individual 47 k Ω resistors (the JP1 shorting block default position is pins 1 and 2).
Transfer rate (software paced)	Digital output – 500 port writes or single-bit writes per second typical.
Output voltage range	0 to +5 V (no external pull up resistor, internal 47 k Ω pull-up resistors connected to +5V by default) 0 to +15 V maximum (Note 5)
Drain to source breakdown voltage	+50 V minimum
Off state leakage current (Note 6)	0.1 μ A
Sink current capability	150 mA maximum (continuous) per output pin, 150 mA maximum (continuous) for all eight channels
DMOS transistor on-resistance (drain to source)	4 Ω

Note 3: Each DMOS transistor's source pin is internally connected to GND.

Note 4: DGND pins (pins 93, 94) are recommended for use with digital input and digital output pins. The DGND and GND pins are common and are isolated from earth ground.

Note 5: The external pull-up is connected to the digital output bit through an external pull-up resistor. Adding an external pull-up resistor connects it in parallel with the internal 47k Ω pull-up resistor of that particular digital input/output bit. Careful consideration should be made when considering the external pull-up resistor value and the resultant pull-up voltage produced at the load.

Note 6: Does not include the additional leakage current contribution that may occur when using an external pull-up resistor.

Counter

Table 23. CTR specifications

Parameter	Conditions	Specification
Pin name		CTR0, CTR1
Number of channels		2 channels
Resolution		32-bits
Counter type		Event counter
Input type		Schmitt trigger, rising edge triggered
Input source		CTR0 (pin 43) CTR1 (pin 45)
Counter read/writes rates (software paced)	Counter read Counter write	System dependent, 500 reads per second. System dependent, 500 reads per second.
Input characteristics	Each CTRx input pin	562 K Ω pull-up resistor to +5V, 10 k Ω series resistor
Input voltage range		± 15 V maximum
Maximum input voltage range	<i>CTR0, CTR1 relative to GND and DGND (pins 18,36,39,42,44,46,66,81,84,93,94)</i>	± 20 V maximum (power on/off)
Input high voltage		1.3 V minimum, 2.2 V maximum
Input low voltage		1.5 V maximum, 0.6 V minimum
Schmitt trigger hysteresis		0.4 V minimum, 1.2 V maximum
Input bandwidth (-3 db)		1 MHz
Input capacitance		25 pf
Input leakage current		± 120 nA
Input frequency		1 MHz maximum
High pulse width		500 ns, minimum
Low pulse width		500 ns, minimum

Note 7: The DGND and GND pins (*pins 18,36,39,42,44,46,66,81,84,93,94*) are common and are isolated from earth ground.

Memory

Table 24. Memory specifications

EEPROM	4096 bytes isolated micro reserved for sensor configuration 256 bytes USB micro for external application use
--------	---

Microcontroller

Table 25. Microcontroller specifications

Type	One high-performance 8-bit RISC microcontroller with USB interface (non-isolated) One high-performance 16-bit RISC microcontroller for measurements (isolated)
------	---

Power

The USB-2416 product includes an AC power adapter (MCC part number PS-5V2AEPS).

Table 26. Power specifications

Parameter	Conditions	Specification
Supply current (Note 8)	Quiescent current	330 mA
External power input (Note 9)		+5 V, ±5%
External power supply	MCC p/n PS-5V2AEPS (included)	+5 VDC, 10 W, 5% regulation
Voltage supervisor limits	4.5 V > V _{ext} or V _{ext} > 5.5 V	PWR LED = Off; (power fault)
	4.5 V < V _{ext} < 5.5 V	PWR LED = On
+5V user output voltage range	Available at terminal block pin 35	4.9 V minimum to 5.1 V maximum
User +5V user output current	Available at terminal block pin 35	10 mA maximum
Isolation	Measurement system to PC	500 VDC minimum

Table 27. AC power requirements

Parameter	Conditions	Specification
Output voltage		+5 V, ±5%
Output wattage		10 watts
Power jack configuration		Two conductor
Power jack barrel diameter		6.3mm
Power jack pin diameter		2.0mm
Power jack polarity		Center positive

Note 8: This is the total quiescent current requirement for the USB-2416 which includes up to 10 mA for the status LED. This does not include any potential loading of the digital I/O bits or the +5V user terminal.

Note 9: This specification applies to the actual voltage level at the input to the external power connector of the USB-2416.

USB specifications

Table 28. USB specifications

USB device type	USB 2.0 (full-speed)
Device compatibility	USB 1.1, USB 2.0
USB cable type	A-B cable, UL type AWM 2527 or equivalent. (minimum 24 AWG VBUS/GND, minimum 28 AWG D+/D-)
USB cable length	5 meters maximum

Environmental

The environmental specifications listed in Table 29 apply only to the USB-2416 and not to the AC power adapter.

Table 29. Environmental specifications

Operating temperature range	0 to 50° C maximum
Storage temperature range	-40 to 85 ° C maximum
Humidity	0 to 90% non-condensing maximum

Mechanical

Table 30. Mechanical specifications

Dimensions	245 mm (L) x 146 mm (W) x 50mm (H)
User connection length	5 meters maximum

Screw terminal connector type and pinout

Table 31. Screw terminal connector specifications

Connector type	Detachable screw terminal
Wire gauge range	16 AWG to 30 AWG

Screw terminal pinout

For additional channel configurations when using the optional AI-EXP expansion device, refer to the "[Optional AI-EXP32 expansion module](#)" section on page 43.

Table 32. 16-channel differential mode pinout

Do not connect to terminal block pins labeled "NC."

Pin	Signal name	Pin description	Pin	Signal name	Pin description
1	NC	No connect	49	NC	No connect
2	CH0H	Channel 0 HI	50	CH15L	Channel 15 LO
3	CH0L	Channel 0 LO	51	CH15H	Channel 15 HI
4	NC	No connect	52	IC14	No connect
5	IC0	No connect	53	4WC14	No connect
6	CH1H	Channel 1 HI	54	CH14L	Channel 14 LO
7	CH1L	Channel 1 LO	55	CH14H	Channel 14 HI
8	4WC1	No connect	56	IC13	No connect
9	IC1	No connect	57	4WC13	No connect
10	CH2H	Channel 2 HI	58	CH13L	Channel 13 LO
11	CH2L	Channel 2 LO	59	CH13H	Channel 13 HI
12	4WC2	No connect	60	IC12	No connect
13	IC2	No connect	61	4WC12	No connect
14	CH3H	Channel 3 HI	62	CH12L	Channel 12 LO
15	CH3L	Channel 3 LO	63	CH12H	Channel 12 HI
16	4WC3	No connect	64	IC11	No connect
17	IC3	No connect	65	4WC11	No connect
18	GND	Analog ground	66	GND	Analog ground
19	CH4H	Channel 4 HI	67	CH11L	Channel 11 LO
20	CH4L	Channel 4 LO	68	CH11H	Channel 11 HI
21	4WC4	No connect	69	IC10	No connect
22	IC4	No connect	70	4WC10	No connect
23	CH5H	Channel 5 HI	71	CH10L	Channel 10 LO
24	CH5L	Channel 5 LO	72	CH10H	Channel 10 HI
25	4WC5	No connect	73	IC9	No connect
26	IC5	No connect	74	4WC9	No connect
27	CH6H	Channel 6 HI	75	CH9L	Channel 9 LO
28	CH6L	Channel 6 LO	76	CH9H	Channel 9 HI
29	4WC6	No connect	77	IC8	No connect
30	IC6	No connect	78	4WC8	No connect
31	CH7H	Channel 7 HI	79	CH8L	Channel 8 LO
32	CH7L	Channel 7 LO	80	CH8H	Channel 8 HI
33	4WC7	No connect	81	GND	Analog ground
34	IC7	No connect	82	NC	No connect
35	+5V	+5V output	83	NC	No connect
36	GND	Analog ground	84	GND	Analog ground
37	NC	No connect	85	DIO7	Digital input/output
38	NC	No connect	86	DIO6	Digital input/output
39	GND	Analog ground	87	DIO5	Digital input/output
40	NC	No connect	88	DIO4	Digital input/output
41	NC	No connect	89	DIO3	Digital input/output
42	GND	Analog ground	90	DIO2	Digital input/output
43	CTR0	Counter input Ch0	91	DIO1	Digital input/output
44	GND	Analog ground	92	DIO0	Digital input/output
45	CTR1	Counter input Ch1	93	DGND	Digital I/O ground
46	GND	Analog ground	94	DGND	Digital I/O ground
47	NC	No connect	95	NC	No connect
48	NC	No connect	96	NC	No connect

Table 33. 32-channel single-ended mode pinout

Do not connect to terminal block pins labeled "NC."

Pin	Signal name	Pin description	Pin	Signal name	Pin description
1	NC	No connect	49	NC	No connect
2	CH0H	Channel 0	50	CH15L	Channel 31
3	CH0L	Channel 16	51	CH15H	Channel 15
4	NC	No connect	52	IC14	No connect
5	IC0	No connect	53	4WC14	No connect
6	CH1H	Channel 1	54	CH14L	Channel 30
7	CH1L	Channel 17	55	CH14H	Channel 14
8	4WC1	No connect	56	IC13	No connect
9	IC1	No connect	57	4WC13	No connect
10	CH2H	Channel 2	58	CH13L	Channel 29
11	CH2L	Channel 18	59	CH13H	Channel 13
12	4WC2	No connect	60	IC12	No connect
13	IC2	No connect	61	4WC12	No connect
14	CH3H	Channel 3	62	CH12L	Channel 28
15	CH3L	Channel 19	63	CH12H	Channel 12
16	4WC3	No connect	64	IC11	No connect
17	IC3	No connect	65	4WC11	No connect
18	GND	Analog ground	66	GND	Analog ground
19	CH4H	Channel 4	67	CH11L	Channel 27
20	CH4L	Channel 20	68	CH11H	Channel 11
21	4WC4	No connect	69	IC10	No connect
22	IC4	No connect	70	4WC10	No connect
23	CH5H	Channel 5	71	CH10L	Channel 26
24	CH5L	Channel 21	72	CH10H	Channel 10
25	4WC5	No connect	73	IC9	No connect
26	IC5	No connect	74	4WC9	No connect
27	CH6H	Channel 6	75	CH9L	Channel 25
28	CH6L	Channel 22	76	CH9H	Channel 9
29	4WC6	No connect	77	IC8	No connect
30	IC6	No connect	78	4WC8	No connect
31	CH7H	Channel 7	79	CH8L	Channel 24
32	CH7L	Channel 23	80	CH8H	Channel 8
33	4WC7	No connect	81	GND	Analog ground
34	IC7	No connect	82	NC	No connect
35	+5V	+5V output	83	NC	No connect
36	GND	Analog ground	84	GND	Analog ground
37	NC	No connect	85	DIO7	Digital input/output
38	NC	No connect	86	DIO6	Digital input/output
39	GND	Analog ground	87	DIO5	Digital input/output
40	NC	No connect	88	DIO4	Digital input/output
41	NC	No connect	89	DIO3	Digital input/output
42	GND	Analog ground	90	DIO2	Digital input/output
43	CTR0	Counter input Ch0	91	DIO1	Digital input/output
44	GND	Analog ground	92	DIO0	Digital input/output
45	CTR1	Counter input Ch1	93	DGND	Digital I/O ground
46	GND	Analog ground	94	DGND	Digital I/O ground
47	NC	No connect	95	NC	No connect
48	NC	No connect	96	NC	No connect

Optional AI-EXP32 expansion module

Use the AI-EXP32 (sold separately) for applications that need additional analog/thermocouple input and digital I/O channels. See Measurement Computing web site for product details.

The AI-EXP32 expansion port is intended to interface with a USB-2416 series product. Do not try to use any of the expansion port pins for any other purpose.

Table 34. AI-EXP32 37-pin connector pinout

Do not connect to terminal block pins labeled "NC."

Pin	Signal name	Pin description
1	GND	Analog ground
2	NC	No connect
3	GND	Analog ground
4	NC	No connect
5	GND	Analog ground
6	VCC	+12 V power
7	NC	No connect
8	NC	No connect
9	IM_A2	I/O control signal
10	IM_A1	I/O control signal
11	IM_A0	I/O control signal
12	IMEN10	I/O control signal
13	IMEN9	I/O control signal
14	IMEN8	I/O control signal
15	IMEN7	I/O control signal
16	DIO_LOAD2	I/O control signal
17	DIO_LOAD1	I/O control signal
18	NC	No connect
19	NC	No connect
20	+3.3V_ISO	+3.3 V power
21	GND	Analog ground
22	+5 VA	+5 V analog power
23	+20.5V	+20.5 V power
24	GND	Analog ground
25	-20.5V	-20.5 V power
26	VDD_ISO	+5 V digital power
27	EXTDIO_INT	I/O control signal
28	CM_A3	I/O control signal
29	SM_A1	I/O control signal
30	SM_AO	I/O control signal
31	CM_A2	I/O control signal
32	SCL	Serial I/O control signal
33	SDA	Serial I/O control signal
34	MOSI	Serial I/O control signal
35	SCK	Serial I/O control signal
36	NC	No connect
37	NC	No connect

The multiple-channel throughput rate calculation is based on the following formula:

$$\text{Maximum throughput} = \frac{1}{\sum_n(\frac{1}{\text{data rate}} + 640\mu\text{s})}, \text{ where } n \text{ is the number of channels}$$

Table 35. Multiple-channel throughput rate specifications (Hz),
USB-2416 and optional AI-EXP32 expansion module.

	3750 S/s	2000 S/s	1000 S/s	500 S/s	100 S/s	60 S/s	50 S/s	25 S/s	10 S/s	5 S/s	2.5 S/s
Number of input channels											
1	1102.94	877.19	609.76	378.79	93.98	57.78	48.45	24.61	9.94	4.98	2.50
2	551.47	438.60	304.88	189.39	46.99	28.89	24.22	12.30	4.97	2.49	1.25
3	367.65	292.40	203.25	126.26	31.33	19.26	16.15	8.20	3.31	1.66	0.83
4	275.74	219.30	152.44	94.70	23.50	14.45	12.11	6.15	2.48	1.25	0.62
5	220.59	175.44	121.95	75.76	18.80	11.56	9.69	4.92	1.99	1.00	0.50
6	183.82	146.20	101.63	63.13	15.66	9.63	8.07	4.10	1.66	0.83	0.42
7	157.56	125.31	87.11	54.11	13.43	8.25	6.92	3.52	1.42	0.71	0.36
8	137.87	109.65	76.22	47.35	11.75	7.22	6.06	3.08	1.24	0.62	0.31
9	122.55	97.47	67.75	42.09	10.44	6.42	5.38	2.73	1.10	0.55	0.28
10	110.29	87.72	60.98	37.88	9.40	5.78	4.84	2.46	0.99	0.50	0.25
11	100.27	79.74	55.43	34.44	8.54	5.25	4.40	2.24	0.90	0.45	0.23
12	91.91	73.10	50.81	31.57	7.83	4.82	4.04	2.05	0.83	0.42	0.21
13	84.84	67.48	46.90	29.14	7.23	4.44	3.73	1.89	0.76	0.38	0.19
14	78.78	62.66	43.55	27.06	6.71	4.13	3.46	1.76	0.71	0.36	0.18
15	73.53	58.48	40.65	25.25	6.27	3.85	3.23	1.64	0.66	0.33	0.17
16	68.93	54.82	38.11	23.67	5.87	3.61	3.03	1.54	0.62	0.31	0.16
17	64.88	51.60	35.87	22.28	5.53	3.40	2.85	1.45	0.58	0.29	0.15
18	61.27	48.73	33.88	21.04	5.22	3.21	2.69	1.37	0.55	0.28	0.14
19	58.05	46.17	32.09	19.94	4.95	3.04	2.55	1.30	0.52	0.26	0.13
20	55.15	43.86	30.49	18.94	4.70	2.89	2.42	1.23	0.50	0.25	0.12
21	52.52	41.77	29.04	18.04	4.48	2.75	2.31	1.17	0.47	0.24	0.12
22	50.13	39.87	27.72	17.22	4.27	2.63	2.20	1.12	0.45	0.23	0.11
23	47.95	38.14	26.51	16.47	4.09	2.51	2.11	1.07	0.43	0.22	0.11
24	45.96	36.55	25.41	15.78	3.92	2.41	2.02	1.03	0.41	0.21	0.10
25	44.12	35.09	24.39	15.15	3.76	2.31	1.94	0.98	0.40	0.20	0.10
26	42.42	33.74	23.45	14.57	3.61	2.22	1.86	0.95	0.38	0.19	0.10
27	40.85	32.49	22.58	14.03	3.48	2.14	1.79	0.91	0.37	0.18	0.09
28	39.39	31.33	21.78	13.53	3.36	2.06	1.73	0.88	0.35	0.18	0.09
29	38.03	30.25	21.03	13.06	3.24	1.99	1.67	0.85	0.34	0.17	0.09
30	36.76	29.24	20.33	12.63	3.13	1.93	1.61	0.82	0.33	0.17	0.08
31	35.58	28.30	19.67	12.22	3.03	1.86	1.56	0.79	0.32	0.16	0.08
32	34.47	27.41	19.05	11.84	2.94	1.81	1.51	0.77	0.31	0.16	0.08

AI-EXP32 Screw terminal pinout

Table 36. 32-channel differential mode pinout

Do not connect to terminal block pins labeled "NC."

Pin	Signal name	Pin description	Pin	Signal name	Pin description
1	CH16H	Channel 16 HI	49	CH31L	Channel 31 LO
2	CH16L	Channel 16 LO	50	CH31H	Channel 31 HI
3	CH17H	Channel 17 HI	51	CH30L	Channel 30 LO
4	CH17L	Channel 17 LO	52	CH30H	Channel 30 HI
5	CH18H	Channel 18 HI	53	CH29L	Channel 29 LO
6	CH18L	Channel 18 LO	54	CH29H	Channel 29 HI
7	CH19H	Channel 19 HI	55	CH28L	Channel 28 LO
8	CH19L	Channel 19 LO	56	CH28H	Channel 28 HI
9	CH20H	Channel 20 HI	57	CH27L	Channel 27 LO
10	CH20L	Channel 20 LO	58	CH27H	Channel 27 HI
11	CH21H	Channel 21 HI	59	CH26L	Channel 26 LO
12	CH21L	Channel 21 LO	60	CH26H	Channel 26 HI
13	CH22H	Channel 22 HI	61	CH25L	Channel 25 LO
14	CH22L	Channel 22 LO	62	CH25H	Channel 25 HI
15	CH23H	Channel 23 HI	63	CH24L	Channel 24 LO
16	CH23L	Channel 23 LO	64	CH24H	Channel 24 HI
17	GND	Analog ground	65	GND	Analog ground
18	GND	Analog ground	66	GND	Analog ground
19	+5VUSER	+5V output	67	NC	No connect
20	NC	No connect	68	NC	No connect
21	DIO8	Digital input/output	69	DIO23	Digital input/output
22	DIO9	Digital input/output	70	DIO22	Digital input/output
23	DIO10	Digital input/output	71	DIO21	Digital input/output
24	DIO11	Digital input/output	72	DIO20	Digital input/output
25	DIO12	Digital input/output	73	DIO19	Digital input/output
26	DIO13	Digital input/output	74	DIO18	Digital input/output
27	DIO14	Digital input/output	75	DIO17	Digital input/output
28	DIO15	Digital input/output	76	DIO16	Digital input/output
29	DGND	Digital ground	77	DGND	Digital ground
30	DGND	Digital ground	78	DGND	Digital ground
31	NC	No connect	79	NC	No connect
32	NC	No connect	80	NC	No connect

Table 37. 32-channel single-ended mode pinout

Do not connect to terminal block pins labeled "NC."

Pin	Signal name	Pin description	Pin	Signal name	Pin description
1	CH16H	Channel 16	33	CH31L	Channel 63
2	CH16L	Channel 48	34	CH31H	Channel 31
3	CH17H	Channel 17	35	CH30L	Channel 62
4	CH17L	Channel 49	36	CH30H	Channel 30
5	CH18H	Channel 18	37	CH29L	Channel 61
6	CH18L	Channel 50	38	CH29H	Channel 29
7	CH19H	Channel 19	39	CH28L	Channel 60
8	CH19L	Channel 51	40	CH28H	Channel 28
9	CH20H	Channel 20	41	CH27L	Channel 59
10	CH20L	Channel 52	42	CH27H	Channel 27
11	CH21H	Channel 21	43	CH26L	Channel 58
12	CH21L	Channel 53	44	CH26H	Channel 26
13	CH22H	Channel 22	45	CH25L	Channel 57
14	CH22L	Channel 54	46	CH25H	Channel 25
15	CH23H	Channel 23	47	CH24L	Channel 56
16	CH23L	Channel 55	48	CH24H	Channel 24
17	GND	Analog ground	49	GND	Analog ground
18	GND	Analog ground	50	GND	Analog ground
19	+5VUSER	+5V output	51	NC	No connect
20	NC	No connect	52	NC	No connect
21	DIO8	Digital input/output	69	DIO23	Digital input/output
22	DIO9	Digital input/output	70	DIO22	Digital input/output
23	DIO10	Digital input/output	71	DIO21	Digital input/output
24	DIO11	Digital input/output	72	DIO20	Digital input/output
25	DIO12	Digital input/output	73	DIO19	Digital input/output
26	DIO13	Digital input/output	74	DIO18	Digital input/output
27	DIO14	Digital input/output	75	DIO17	Digital input/output
28	DIO15	Digital input/output	76	DIO16	Digital input/output
29	DGND	Digital ground	61	DGND	Digital ground
30	DGND	Digital ground	62	DGND	Digital ground
31	NC	No connect	63	NC	No connect
32	NC	No connect	64	NC	No connect

USB-2416 screw terminal pinout (with AI-EXP32 attached)

Table 38. USB-2416 single-ended mode pinout with AI-EXP32 connected

Do not connect to terminal block pins labeled "NC."

Pin	Signal name	Pin description	Pin	Signal name	Pin description
1	NC	No connect	49	NC	No connect
2	CH0H	Channel 0	50	CH15L	Channel 47
3	CH0L	Channel 32	51	CH15H	Channel 15
4	NC	No connect	52	IC14	No connect
5	IC0	No connect	53	4WC14	No connect
6	CH1H	Channel 1	54	CH14L	Channel 46
7	CH1L	Channel 33	55	CH14H	Channel 14
8	4WC1	No connect	56	IC13	No connect
9	IC1	No connect	57	4WC13	No connect
10	CH2H	Channel 2	58	CH13L	Channel 45
11	CH2L	Channel 34	59	CH13H	Channel 13
12	4WC2	No connect	60	IC12	No connect
13	IC2	No connect	61	4WC12	No connect
14	CH3H	Channel 3	62	CH12L	Channel 44
15	CH3L	Channel 35	63	CH12H	Channel 12
16	4WC3	No connect	64	IC11	No connect
17	IC3	No connect	65	4WC11	No connect
18	GND	Analog ground	66	GND	Analog ground
19	CH4H	Channel 4	67	CH11L	Channel 43
20	CH4L	Channel 36	68	CH11H	Channel 11
21	4WC4	No connect	69	IC10	No connect
22	IC4	No connect	70	4WC10	No connect
23	CH5H	Channel 5	71	CH10L	Channel 42
24	CH5L	Channel 37	72	CH10H	Channel 10
25	4WC5	No connect	73	IC9	No connect
26	IC5	No connect	74	4WC9	No connect
27	CH6H	Channel 6	75	CH9L	Channel 41
28	CH6L	Channel 38	76	CH9H	Channel 9
29	4WC6	No connect	77	IC8	No connect
30	IC6	No connect	78	4WC8	No connect
31	CH7H	Channel 7	79	CH8L	Channel 40
32	CH7L	Channel 39	80	CH8H	Channel 8
33	4WC7	No connect	81	GND	Analog ground
34	IC7	No connect	82	NC	No connect
35	+5V	+5V output	83	NC	No connect
36	GND	Analog ground	84	GND	Analog ground
37	NC	No connect	85	DIO7	Digital input/output
38	NC	No connect	86	DIO6	Digital input/output
39	GND	Analog ground	87	DIO5	Digital input/output
40	NC	No connect	88	DIO4	Digital input/output
41	NC	No connect	89	DIO3	Digital input/output
42	GND	Analog ground	90	DIO2	Digital input/output
43	CTR0	Counter input Ch0	91	DIO1	Digital input/output
44	GND	Analog ground	92	DIO0	Digital input/output
45	CTR1	Counter input Ch1	93	DGND	Digital I/O ground
46	GND	Analog ground	94	DGND	Digital I/O ground
47	NC	No connect	95	NC	No connect
48	NC	No connect	96	NC	No connect

CE Declaration of Conformity

Manufacturer: Measurement Computing Corporation
Address: 10 Commerce Way
Suite 1008
Norton, MA 02766
USA
Category: Electrical equipment for measurement, control and laboratory use.

Measurement Computing Corporation declares under sole responsibility that the product

USB-2416

to which this declaration relates is in conformity with the relevant provisions of the following standards or other documents:

EC EMC Directive 2004/108/EC: General Requirements, EN 61326-1:2006 (IEC 61326-1:2005).

Emissions:

- EN 55011 (2007) / CISPR 11(2003): Radiated emissions: Group 1, Class A
- EN 55011 (2007) / CISPR 11(2003): Conducted emissions: Group 1, Class A

Immunity: EN 61326-1:2006, Table 3.

- IEC 61000-4-2 (2001): Electrostatic Discharge immunity.
- IEC 61000-4-3 (2002): Radiated Electromagnetic Field immunity.
- IEC 61000-4-4 (2004): Electric Fast Transient Burst Immunity.
- IEC 61000-4-5 (2001): Surge Immunity.
- IEC 61000-4-6 (2003): Radio Frequency Common Mode Immunity.
- IEC 61000-4-11 (2004): Voltage Interrupts.
- To maintain compliance to the standards of this declaration, the following conditions must be met.
- The host computer, peripheral equipment, power sources, and expansion hardware must be CE compliant.
- All I/O cables must be shielded, with the shields connected to ground.
- I/O cables must be less than 3 meters (9.75 feet) in length.
- The host computer must be properly grounded.
- Equipment must be operated in a controlled electromagnetic environment as defined by Standards EN 61326-1:2006, or IEC 61326-1:2005.
-

Declaration of Conformity based on tests conducted by Chomerics Test Services, Woburn, MA 01801, USA in July, 2008. Test records are outlined in Chomerics Test Report #EMI5075.08. Further testing was conducted by Chomerics Test Services, Woburn, MA. 01801, USA in February, 2009. Test records are outlined in Chomerics Test report #EMI5271.09.

We hereby declare that the equipment specified conforms to the above Directives and Standards.

Carl Haapaoja, Director of Quality Assurance

Measurement Computing Corporation
10 Commerce Way
Suite 1008
Norton, Massachusetts 02766
(508) 946-5100
Fax: (508) 946-9500
E-mail: info@mccdaq.com
www.mccdaq.com