Оптимальные планы для оценивания производных в полиномиальной регрессионной модели без свободного члена

Барсуков Егор Вячеславович, гр. 16-Б.04мм

Санкт-Петербургский государственный университет Математико-Механический факультет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н., профессор В. Б. Мелас

Санкт-Петербург 2020 г.

Уравнение регрессии

$$y_j = \theta^{\top} f_j(x_j) + \varepsilon_j, \quad j = 1 \dots N, x_j \in \mathcal{X}$$

- N количество экспериментов;
- f(x) вектор регрессионных функций;
- $oldsymbol{ heta} heta = (heta_1, \dots, heta_m)^ op$ неизвестные параметры;
- ullet x_1,\ldots,x_N условия проведения эксперимента;
- *X* множество планирования;
- $\varepsilon_1, \dots, \varepsilon_N$ случайные величины, характеризующие ошибки наблюдений.
 - Несмещенные $\mathbb{E}\varepsilon_i = 0$
 - ullet Некоррелированные $\mathbb{E} \varepsilon_i \varepsilon_i = 0$ для $i \neq j$
 - ullet Равноточные $\mathbb{E} arepsilon_i^2 = \sigma$ для всех i

План эксперимента и информационная матрица

Определение

Точным планом эксперимента называется следующая дискретная вероятностная мера

$$\xi = \begin{pmatrix} x_1 & \dots & x_m \\ \omega_1 & \dots & \omega_m \end{pmatrix}, \quad x_i \in \mathcal{X},$$

Определение

Для плана эксперимента определим его информационную матрицу

$$M(\xi) = \int_{\mathcal{X}} f(x) f^{\top}(x) \xi(dt).$$

С-оптимальный план эксперимента

Определение

С-оптимальным планом эксперимента для данного вектора c называется план минимизирующий функцию Φ

$$\Phi(\xi) = \begin{cases} c^\top M(\xi)^- c, & \text{если } \exists v, \text{ такой, что } c = M(\xi) v \\ +\infty, & \text{иначе} \end{cases}$$

где $M(\xi)^-$ — псевдообратная матрица к информационной матрице плана

- С-оптимальный план минимизирует дисперсию МНК-оценки $\theta^{\top}c$;
- В общем виде задача нахождения таких планов не решена

Постановка задачи

Определение

Если $c = f'(z) = (f'_1(z), \dots, f'_m(z))^{\top}$ то соответствующий план называется планом для оценки производной в точке z.

- Целью работы является описание оптимальных планов для оценки производной в модели $f(x) = (x, \dots, x^m)$ при носителе $\mathcal{X} = [0, d]$.
- Это имеет практический смысл, если существует априорное знание о значении функции в нулевой точке и эксперимент проводится на положительном отрезке.
- Решение задачи отличается от того, которое получается при носителе, границе которого не принадлежит ноль, которое описано в [Dette et al., 2019].
- Разработать алгоритм численно решающий задачу нахождения c оптимальных планов для произвольного c.

Теорема Элвинга [Dette et al., 2010]

Теорема

Допустимый план ξ^{\star} с носителем $x_1,\ldots,x_m\in\mathcal{X}$ и весами ω_1,\ldots,ω_m является c-оптимальным тогда и только тогда, когда существует $p \in \mathbb{R}^k$ и константа h такие, что выполняются следующие условия:

$$\left| p^{\top} f(x_i) \right| = 1$$
 $i = 1..m \leqslant n$ (1a) $\left| p^{\top} f(x) \right| \leqslant 1$ $x \in \mathcal{X}$ (1b)

$$\left| p^{\top} f(x) \right| \leqslant 1$$
 $x \in \mathcal{X}$ (1b)

$$c = h \sum_{i=1}^{m} \omega_i f(x_i) p^{\top} f(x_i).$$
 (1c)

Кроме того

$$h^2 = c^{\top} M^-(\xi^*) c$$

Веса у плана для оценки производной [Dette et al., 2019]

Для набора точек x_1^*,\dots,x_k^* определим множество базисных многочленов

$$L_i(z) = \frac{z \prod_{l \neq i} (z - x_l^*)}{x_i^* \prod_{l \neq i} (x_i^* - x_l^*)}, i = 1, \dots k$$

Теорема

Оптимальный план для оценивания производной полиномиальной модели без свободного члена с опорными точками x_1^*,\dots,x_m^* , где m=n или m=n-1 имеет веса вычисленные по следующей формуле:

$$\omega_i = \frac{|L_i'(z)|}{\sum_{j=1}^m \left| L_j'(z) \right|},$$

Носитель плана

С помощью теоремы Элвинга было доказано, что если оптимальный план для оценивания производной с носителем [0,1] состоит из n точек, то носитель состоит из экстремальных точек следующего многочлена

$$S_n(x) = T_n\left(x\left(1 + \cos\frac{\pi}{2n}\right) - \cos\frac{\pi}{2n}\right),$$

где T_n — многочлен Чебышёва первого рода степени m. Таким образом носитель плана находится в точках

$$x_i^* = \frac{\cos\frac{(n-i)\pi}{n} + \cos\frac{\pi}{2n}}{1 + \cos\frac{\pi}{2n}}, \quad i = 1, \dots, n$$

Корни производных базисных многочленов

- $\{L_i(z)\}_{i=1}^n$ базисные многочлены построенные по точкам x_1^*, \dots, x_n^* ;
- u_1^i, \dots, u_{n-1}^i корни производной i-го базисного многочлена, упорядоченные по возрастанию

Было доказано, что тогда корни производных базисных многочленов упорядочены следующим образом

$$u_1^n < u_1^{n-1} < \ldots < u_1^1 < u_2^n < u_2^{n-1} < \ldots < u_{n-1}^1.$$

Оптимальный план на отрезке с началом в нуле для оценки производной

Теорема

План с носителем $\{x_i^*\}_{i=1}^n$ является оптимальным планом для оценивания производной полиномиальной модели без свободного члена в точке z при $\mathcal{X} = [0,1]$ тогда и только тогда, когда выполняется одно из следующих условий:

- $z \in (-\infty, u_1^n)$
- $z \in (u_i^1, u_{i+1}^n), i = 1, \dots, n-2$
- $z \in (u_{n-1}^1, +\infty)$

Результаты

Были описаны оптимальные планы размера n для нахождения производной в полиномиальной модели без свободного члена с областью моделирования на положительном отрезке и показано, в каких точках z их не существует.

Список литературы

- H. Dette, V. Melas, and Pepelyshev A. Optimal designs for estimating the slope of a regression. Statistics, 44(6):617-628, 2010.
- H. Dette, V. Melas, and P. Shpilev. Some explicit solutions ofc-optimal design problems for polynomial regression with no intercept. Annals of the Institute of Statistical Mathematics. 2019.