

SIPMOS ® Power Transistor

- N channel
- Enhancement mode
- Avalanche-rated
- Pb-free lead plating; RoHS compliant

BUZ 31

Pin 1	Pin 2	Pin 3
G	D	S

Туре	V _{DS}	I _D	R _{DS(on)}	Package	Ordering Code	
BUZ 31	200 V	14.5 A	0.2 Ω	PG-TO-220 AB	C67078-S.1304-A2	

Maximum Ratings

Parameter	Symbol	Values	Unit
Continuous drain current	I _D		А
$T_{\rm C}$ = 30 °C		14.5	
Pulsed drain current	I _{Dpuls}		
$T_{\rm C}$ = 25 °C		58	
Avalanche current, limited by T_{jmax}	I _{AR}	14.5	
Avalanche energy, periodic limited by T_{jmax}	E _{AR}	9	mJ
Avalanche energy, single pulse	E _{AS}		
$I_{\rm D}$ = 14.5 A, $V_{\rm DD}$ = 50 V, $R_{\rm GS}$ = 25 Ω			
$L = 1.42 \text{ mH}, T_j = 25 \text{ °C}$		200	
Gate source voltage	V_{GS}	± 20	V
Power dissipation	P _{tot}		W
$T_{\rm C}$ = 25 °C		95	
Operating temperature	$T_{\rm j}$	-55 + 150	°C
Storage temperature	T _{stg}	-55 + 150	
Thermal resistance, chip case	R _{thJC}	≤ 1.32	K/W
Thermal resistance, chip to ambient	R _{thJA}	75	
DIN humidity category, DIN 40 040		E	
IEC climatic category, DIN IEC 68-1		55 / 150 / 56	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Static Characteristics					
Drain- source breakdown voltage	V _{(BR)DSS}				V
$V_{\rm GS} = 0 \text{ V}, \ I_{\rm D} = 0.25 \text{ mA}, \ T_{\rm j} = 25 ^{\circ}\text{C}$		200	-	-	
Gate threshold voltage	V _{GS(th)}				
$V_{\text{GS}} = V_{\text{DS}}$, $I_{\text{D}} = 1 \text{ mA}$		2.1	3	4	
Zero gate voltage drain current	l _{DSS}				μΑ
V_{DS} = 200 V, V_{GS} = 0 V, T_{j} = 25 °C		-	0.1	1	
$V_{\rm DS}$ = 200 V, $V_{\rm GS}$ = 0 V, $T_{\rm j}$ = 125 °C		-	10	100	
Gate-source leakage current	I _{GSS}				nA
$V_{GS} = 20 \text{ V}, \ V_{DS} = 0 \text{ V}$		-	10	100	
Drain-Source on-resistance	R _{DS(on)}				Ω
$V_{GS} = 10 \text{ V}, I_D = 9 \text{ A}$		-	0.16	0.2	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Dynamic Characteristics					
Transconductance	g _{fs}				S
$V_{DS} \ge 2 * I_D * R_{DS(on)max}, I_D = 9 A$		5	10	-	
Input capacitance	C_{iss}				pF
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	840	1120	
Output capacitance	C_{oss}				
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	180	270	
Reverse transfer capacitance	C_{rss}				
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	95	150	
Turn-on delay time	$t_{d(on)}$				ns
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 10 \; {\rm V}, \; I_{\rm D} = 3 \; {\rm A}$					
$R_{\rm GS}$ = 50 Ω		-	12	20	
Rise time	t _r				
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 10 \; {\rm V}, \; I_{\rm D} = 3 \; {\rm A}$					
$R_{\rm GS}$ = 50 Ω		-	50	75	
Turn-off delay time	t _{d(off)}				
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 10 \; {\rm V}, \; I_{\rm D} = 3 \; {\rm A}$					
$R_{\rm GS}$ = 50 Ω		-	150	200	
Fall time	t_{f}				
$V_{\rm DD} = 30 \; \rm V, \; V_{\rm GS} = 10 \; \rm V, \; I_{\rm D} = 3 \; \rm A$					
$R_{\rm GS} = 50~\Omega$		-	60	80	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Reverse Diode					
Inverse diode continuous forward current	IS				А
<i>T</i> _C = 25 °C		-	-	14.5	
Inverse diode direct current,pulsed	I _{SM}				
$T_{\rm C}$ = 25 °C		-	-	58	
Inverse diode forward voltage	V_{SD}				٧
$V_{GS} = 0 \text{ V}, I_{F} = 29 \text{ A}$		-	1.1	1.6	
Reverse recovery time	t _{rr}				ns
$V_{\rm R}$ = 100 V, $I_{\rm F} = I_{\rm S}$, $di_{\rm F}/dt$ = 100 A/ μ s		-	170	-	
Reverse recovery charge	Q_{rr}				μC
$V_{R} = 100 \text{ V}, I_{F} = I_{S}, di_{F}/dt = 100 \text{ A/}\mu\text{s}$		-	1.1		

Power dissipation

$$P_{\text{tot}} = f(T_{\text{C}})$$

Drain current

 $I_{\mathsf{D}} = f(T_{\mathsf{C}})$

parameter: V_{GS} ≥ 10 V

Safe operating area

$$I_{\mathsf{D}} = f(V_{\mathsf{DS}})$$

parameter: D = 0.01, $T_C = 25$ °C

Transient thermal impedance

 $Z_{\mathsf{th\ JC}} = f(t_{\mathsf{p}})$

parameter: $D = t_p / T$

Typ. output characteristics

 $I_{\mathsf{D}} = f(V_{\mathsf{DS}})$

parameter: $t_p = 80 \mu s$

Typ. transfer characteristics $I_D = f(V_{GS})$

parameter: $t_p = 80 \mu s$

 $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

Typ. drain-source on-resistance

 $R_{\mathrm{DS (on)}} = f(I_{\mathrm{D}})$

parameter: V_{GS}

Typ. forward transconductance $g_{fs} = f(I_D)$

parameter: $t_p = 80 \mu s$,

 $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

Drain-source on-resistance

 $R_{\text{DS (on)}} = f(T_{j})$

parameter: $I_D = 9 \text{ A}$, $V_{GS} = 10 \text{ V}$

Gate threshold voltage

 $V_{\text{GS (th)}} = f(T_{j})$

parameter: $V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$

Typ. capacitances

 $C = f(V_{DS})$

parameter: $V_{GS} = 0V$, f = 1MHz

Forward characteristics of reverse diode

 $I_{\mathsf{F}} = f(V_{\mathsf{SD}})$

parameter: T_j , $t_p = 80 \mu s$

Avalanche energy $E_{AS} = f(T_j)$

parameter: $I_D = 14.5 \text{ A}, V_{DD} = 50 \text{ V}$

 R_{GS} = 25 Ω , L = 1.42 mH

Typ. gate charge

 $V_{\mathsf{GS}} = f(Q_{\mathsf{Gate}})$

parameter: $I_{D \text{ puls}} = 20 \text{ A}$

Drain-source breakdown voltage

 $V_{(BR)DSS} = f(T_j)$

