A MARGINALISED BAYESIAN NOISE WAVE CALIBRATION METHOD

Christian J. Kirkham, William J. Handley, Samuel A. K. Leeney, Jiacong Zhu, Harry T. J. Bevins, Dominic J. Anstey, Eloy de Lera Acedo

REACH CALIBRATION

METHOD

- Fit polynomials to Noise Wave Parameters of the LNA $T_s(
 u) = X_{
 m unc} T_{
 m unc} + X_{
 m cos} T_{
 m cos} + X_{
 m sin} T_{
 m sin} + X_{
 m NS} T_{
 m NS} + X_{
 m L} T_{
 m L}$
- Analytically marginalise over polynomial coefficients
- Numerically sample calibrator noise parameters and polynomial order

BENEFITS

- Samples polynomial order posterior with nested sampling other methods use gradient descent methods which can get stuck in local minima
- Doesn't make the assumption that all calibrators have same noise
 - Calibrator PSDs have radiometric noise e.g. hot load will have higher noise
 - Noise is scaled inversely by reflection coefficient e.g. open/ short loads will have higher noises

NOISE ESTIMATION

- Assume PSD noise is Gaussian and S11 noise is negligible
- Propagate noise through noise wave parameter equation
- **Compare** calibrated temperature noise with analytic estimation

$$(\sigma_{T_s})^2 = rac{(T_{
m NS}^{
m fit})^2 (X_{
m L})^2}{E^2} igg(\sigma_A^2 + \sigma_B^2 - 2\sigma_{AB} + rac{D^2}{E^2} (\sigma_B^2 + \sigma_C^2 - 2\sigma_{BC}) - rac{2D}{E} \sigma_{DE} igg)$$

TESTING

- Mock dataset using REACH LNA measurements
- Seven datasets with increasing complexity

RESULTS

 Comparison of this work to the conjugate priors method (Roque et al. 2021)

