Transistori nMOSFET

- Il terminale di Source è per definizione a tensione minore o uguale di quello di drain
- V_{TN} è positiva (tipicamente 0.2 0.25 volte V_{DD})
- V_{DSATN} > 0 è direttamente proporzionale ad L: pertanto se $V_{min} = V_{DSATN}$ la corrente nel transistore tende ad essere indipendente da L
- Idealmente $I_G = I_B = 0$ A. I_{DS} è positiva (scorre da D a S) $K'_n = \mu_n C_{ox} = \mu_n \varepsilon_{ox}/t_{ox}$; $a'_n = W/L$, $\lambda_n > 0$, $k_n = k'_n *W/L$ Effetto body: V_{TN} cresce al crescere di $V_{SB} > 0$

v_{ss} (v)

$$I_{DS} = k'_n \frac{w}{L} V_{min} (V_{GS} - VTN - Vmin/2) (1 + \lambda_n V_{DS})$$

per
$$V_{GS} > V_{TN} > 0$$

$$V_{min} = \min(V_{GS} - VTN, V_{DS}, VDSATN)$$

$$V_{TN} = V_{TN0} + \gamma_n \left(\sqrt{2\varphi_F + V_{SB}} - \sqrt{2\varphi_F} \right) \quad \text{con } V_{TN0} > 0$$
 e $\gamma_n > 0$

(c) Luca Selmi - Univ. di Modena

(c) Luca Selmi - Univ. di Modena

Corrente sottosoglia di nMOSFET

La corrente sottosoglia (cioè per VGS< VTN) non è esattamente zero ma è descritta dalla equazione

$$I_{DS} = I_S \exp\left(\frac{V_{GS}}{n V_{th}}\right) \left(1 - \exp\left(-\frac{V_{DS}}{V_{th}}\right)\right) (1 + \lambda V_{DS})$$

La corrente sottosoglia per VGS=0V viene solitamente indicata con il simbolo IOFF

$$\begin{split} \log 10(I_{DS}) &= log 10 \left(I_S \left(1 - \exp\left(-\frac{V_{DS}}{V_{th}} \right) \right) (1 + \lambda V_{DS}) \right) \\ &+ log 10 \left(\exp\left(\frac{V_{GS}}{n V_{th}} \right) \right) \\ y &= p + \frac{ln \left(\exp\left(\frac{x}{n V th} \right) \right)}{\ln(10)} = p + \frac{x}{n * V th * ln(10)} = m \; x + p \end{split}$$

- Dove p è indipendente da V_{GS}, V_{th} = K_B*T/q = 26 mV a 300 K e m=1/[n*60 mV/dec] a temperatura ambiente di 300 K. «n» prende il nome di fattore di idealità e vale 1 per transistori ideali. Il fattore 1/m prende il nome di «subthreshold swing» e rappresenta la variazione di tensione V_{GS} necessaria a modificare la corrente di sottosoglia di un fattore 10.
- In scala semilogy la caratteristica I_D-V_{GS} sottosoglia appare dunque una retta che interseca l'asse delle ordinate in corrispodenza della corrente I_{DS}=IOFF

(c) Luca Selmi - Univ. di Modena

UNIMORE

Transistori pMOSFET

- Il terminale di Source è per definizione a tensione maggiore o uguale di quello di drain
- V_{TP} è negativa (tipicamente 0.2 0.25 volte -VDD)
- V_{Dsatp} è negativa e direttamente proporzionale ad L: pertanto se V_{min} = |V_{Dsatp}| la corrente nel transistore tende ad essere indipendente da L
- Idealmente $I_G = I_B = 0$ A, I_{SD} è positiva (scorre da S a D)
- $k'_p = \mu_p C_{ox} = \mu_p \varepsilon_{ox} / t_{ox} > 0$; $a'_p = W/L$, $\lambda_p < 0$, $k_p = k'_p * W/L$
- Effetto body: V_{TP} cala al crescere di V_{BS} > 0 (cioè V_{TP} cresce in valore assoluto al crescere di V_{BS} > 0)

$$I_{SD} = k'_{p} \frac{w}{L} V_{min} (V_{SG} - |V_{TP}| - V_{min}/2) (1 + |\lambda_{p}| V_{SD}) \text{ per } V_{SG} > |V_{TP}|$$

$$V_{min} = \min(V_{SG} - |V_{TP}|, V_{SD}, |V_{DSATP}|)$$

$$V_{TP} = V_{TP0} - \gamma_p \left(\sqrt{2\varphi_F + V_{BS}} - \sqrt{2\varphi_F} \right) \ \, \text{con} \, V_{TP0} < 0 \, \text{e} \, \gamma_p > 0$$

(c) Luca Selmi - Univ. di Modena

4

Esempio: nMOSFET con an=1

$$\begin{split} V_{GS} &= 2.5V \quad \rightarrow \quad V_{GS} - V_{Tn} = 2.5V - 0.4V = 2.1V > 0 \\ V_{DS} &= 2.5V \quad \rightarrow \quad V_{\min} = (V_{GS} - V_{Tn} = 2.1V, V_{DS} = 2.5V, V_{DSATn} = 0.4V) = 0.4V \\ I_d &= k'_n \, a_n V_{\min} \bigg[\big(V_{GS} - V_{Tn} \big) - \frac{V_{\min}}{2} \bigg] \big(1 + \lambda_n V_{DS} \big) \\ I_d &= 100 \times 10^{-6} \times 1 \times 0.4 \times \bigg[\big(2.1 \big) - \frac{0.4}{2} \bigg] \big(1 + 0.1 \times 2.5 \big) = 95 \times 10^{-6} \, A = 95 \, \mu A \end{split}$$

$$\begin{split} V_{GS} &= 1.25 V \quad \rightarrow \quad V_{GS} - V_{Tn} = 1.25 V - 0.4 V = 0.85 V > 0 \\ V_{DS} &= 1.25 V \quad \rightarrow \quad V_{\min} = (V_{GS} - V_{Tn} = 0.85 V, V_{DS} = 1.25 V, V_{DSATn} = 0.4 V) = 0.4 V \\ I_d &= k'_n \, a_n V_{\min} \bigg[\big(V_{GS} - V_{Tn} \big) - \frac{V_{\min}}{2} \bigg] \big(1 + \lambda_n V_{DS} \big) \end{split}$$

$$I_d = 100 \times 10^{-6} \times 1 \times 0.4 \times \left[(0.85) - \frac{0.4}{2} \right] (1 + 0.1 \times 1.25) = 29.25 \times 10^{-6} A = 29.25 \mu A$$

(c) Luca Selmi - Univ. di Modena

Esempio: pMOSFET con ap=4

$$\begin{split} V_{S} &= 2.5V \quad V_{G} = 0V \quad V_{D} = 0V \\ V_{SG} &= 2.5V \quad \rightarrow \quad V_{SG} - |V_{Tp}| = 2.5V - 0.4V = 2.1V > 0 \\ V_{SD} &= 2.5V \quad \rightarrow \quad V_{\min} = (V_{SG} - |V_{Tp}| = 2.1V, V_{SD} = 2.5V, |V_{DSATp}| = 0.4V) = 0.4V \\ I_{d} &= k'_{p} \, a_{p} V_{\min} \left[\left(V_{SG} - |V_{Tp}| \right) - \frac{V_{\min}}{2} \right] (1 + |\lambda_{n}| |V_{SD}) \\ I_{d} &= 25 \times 10^{-6} \times 4 \times 0.4 \times \left[(2.1) - \frac{0.4}{2} \right] (1 + 0.1 \times 2.5) = 95 \times 10^{-6} \, A = 95 \, \mu A \end{split}$$

$$\begin{split} V_S &= 2.5V \quad V_G = 1.25V \quad V_D = 1.25V \\ V_{SG} &= 1.25V \quad \rightarrow \quad V_{SG} - |V_{T_P}| = 1.25V - 0.4V = 0.85V > 0 \\ V_{SD} &= 1.25V \quad \rightarrow \quad V_{\min} = (V_{SG} - |V_{T_P}| = 0.85V, V_{SD} = 1.25V, |V_{DSAT_P}| = 0.4V) = 0.4V \\ I_d &= k'_p \, a_p V_{\min} \bigg[\bigg(V_{SG} - |V_{T_P}| \bigg) - \frac{V_{\min}}{2} \bigg] \bigg(1 + |\lambda_n| \, |V_{SD} \bigg) \\ I_d &= 25 \times 10^{-6} \times 4 \times 0.4 \times \bigg[\bigg(0.85 \bigg) - \frac{0.4}{2} \bigg] \bigg(1 + 0.1 \times 1.25 \bigg) = 29.25 \times 10^{-6} \, A = 29.25 \, \mu A \end{split}$$

(c) Luca Selmi - Univ. di Modena

4

Invertitore CMOS

V_{DD} rappresenta la tensione di alimentazione. Storicamente assume il valore di 5V ma nelle tecnologie attuali può essere 3.3V, 2.5V, 1.8V, 1.2V

Tale inverter è chiamato CMOS acronimo di *Complementary MOS* e il motivo è dato dal fatto che sfrutta sia dispositivi MOS di tipo p che n.

La presenza di uno switch di tipo n- e uno di tipo p- garantisce che nel caso di transizioni istantanee dell'ingresso non sia mai presente (né in condizioni stazionarie né in transitorio) un percorso di corrente diretto tra alimentazione e massa causa di consumo di potenza

(c) Luca Selmi - Univ. di Modena

Progettazione per $V_M = V_{DD}/2$

$$k_n = k'_n \left(\frac{W}{L}\right)_n = \mu_n C_{OX} \left(\frac{W}{L}\right)_n = \mu_n C_{OX} a_n$$

$$k_p = k'_p \left(\frac{W}{L}\right)_n = \mu_p C_{OX} \left(\frac{W}{L}\right)_n = \mu_p C_{OX} a_p$$

Se i parametri tecnologici dei transistori $k_n = k'_n \left(\frac{W}{L}\right)_n = \mu_n C_{OX} \left(\frac{W}{L}\right)_n = \mu_n C_{OX} a_n$ Se i parametri tecnologici dei transistori sono simmetrici ($V_{TN} = |V_{TP}|$ e $V_{DSATN} = |V_{DSATP}|$, $\lambda_n = |\lambda_p|$), allora è possibile compensare la maggiore mobilità del transistore a canale n con un più elevato fattore di forma del transistore a canale n fattore di forma del transistore a canale p

Tipo NMOS	V _{TH} (V)	V _{DSAT} (V) 0.4	k' (A/V ²) 100x10 ⁻⁶	λ (V ⁻¹)

Considerazioni sulla soglia logica

- La soglia logica è funzione del rapporto fra i fattori di forma an e ap
- La condizione ideale (che rende la caratteristica simmetrica e massimizza i margini di rumore) è quella in cui V_M=V_{DD}/2
- In un circuito tipico, in cui si punta a minimizzare le dimensioni totali, i due fattori di forma corrisponderanno ai minimi consentiti dal processo
- Nei processi moderni, tipicamente si ha che:
 - Le tensioni di soglia di NMOS e PMOS sono uguali
 - La V_{DSATp} è leggermente maggiore della V_{DSATn}
 - La mobilità degli elettroni è storicamente circa 2-3 volte quella delle lacune ma i due valori stanno diventando molto simili tra loro nelle tecnologie più moderne che utilizzano strained Silicon
- Per avere $V_M = V_{DD}/2$ dobbiamo avere r=1

$$r = \frac{k_p V_{DSATp}}{k_n V_{DSATn}} = \frac{\mu_p V_{DSATp} W_p L_n}{\mu_n V_{DSATn} W_n L_p}$$

- Se L_n=L_p=L_{min} e se le V_{DSAT} sono molto simili):

 - $r=1 \rightarrow W_p = (\mu_n V_{DSATn}/\mu_p V_{DSATp}) W_n$ $r=1 \rightarrow W_p \approx \mu_n/\mu_p W_n \rightarrow a_p \approx \mu_n/\mu_p a_n$

(c) Luca Selmi - Univ. di Modena

Margini di immunità ai disturbi

- Per calcolare i margini di rumore è necessario trovare VIL e VIH.
- Questo calcolo è complesso se si usano le definizioni standard.
- Eseguiamo il calcolo approssimando la VTC come una curva spezzata, costituita da 3 tratti.
- VIL viene ora definito come il punto di intersezione della retta centrale (a pendenza g) con VOH e VIH come l'intersezione con VOL

(c) Luca Selmi - Univ. di Modena

Calcolo del guadagno di tensione

Il calcolo del guadagno di tensione può essere effettuato con una metodologia di linearizzazione della VTC nell'intorno della soglia logica. Questa metodologia porta come risultato

$$\frac{dV_{out}}{dV_{in}} = \frac{dV_{out}}{dI_{ds}} \frac{dI_{ds}}{dV_{in}} = -\frac{g_{mn} + gmp}{g_{dn} + gdp}$$

• Dove i termini gm e gd sono tutti positivi e definiti come

$$g_{mn} = rac{dI_{DSn}}{dV_{GSn}}$$
 $g_{mp} = rac{dI_{SDp}}{dV_{SGp}}$ $g_{dn} = rac{dI_{DSn}}{dV_{DSn}}$ $g_{dp} = rac{dI_{SDp}}{dV_{SDp}}$

Valori tipici di g in tecnologie moderne si aggirano attorno a 10-30

(c) Luca Selmi - Univ. di Modena

UNIMORE

Sintesi relativa alle caratteristiche statiche

- Le tensioni nominali di uscita sono rispettivamente VDD e 0 dunque coprono il massimo intervallo di tensioni possibile (SL=VDD)
- Il valore delle tensioni nominali VOH e VOL NON dipende dalle dimensioni dei MOS (logica ratioless, ossia NON a rapporto)
- L'invertitore può essere progettato per avere VM=VDD/2, con conseguente massimizzazione dei margini di immuità ai disturbi
- In condizioni statiche esiste sempre un percorso a bassa impedenza (idealmente un corto circuito) verso massa o verso l'alimentazione (a seconda che sia chiuso lo NMOS o il PMOS)
- In condizioni statiche NON esiste un percorso di corrente diretto fra alimentazione e massa → consume static nullo
- L'impedenza di ingresso è molto elevata (idealmente infinita) perché rappresentata dal terminale di gate di un transistor MOS

(c) Luca Selmi - Univ. di Modena

