CH08-320201 Algorithms and Data Structures

Lecture 7/8 — 27 Feb 2018

Prof. Dr. Michael Sedlmair

Jacobs University
Spring 2018

This & that

- "homework is too hard"
 - Strategies:
 - background reading (the Cormen book gives background to most of the things that we are talking about in class)
 - go to tutorials and ask questions
 - use the Moodle discussion forum
 - What will change:
 - Me: will try to have a closer connection between level of difficulty/rigor between class and homework
 - A little bit of independent thinking will remain to be necessary for assignments (important for learning effect)
 - in general —> tell me/us your feedback, it's not supposed to be a "one man show"
- medical excuse policy refined:
 - http://vis.jacobs-university.de/teaching/ads/18s/

2. Sorting and Searching

Recall: Sorting Problem

Input:

- sequence $\langle a_1, a_2, \ldots, a_n \rangle$ of numbers.

Output:

- permutation <*a*′₁, *a*′₂, ..., *a*′_n>
- such that $a'_1 \le a'_2 \le \dots \le a'_n$

Recall: Insertion & Merge Sort

Time	comp	lavity.
	COIIIP	ICAILY .

ne comple	AILY.	Insertion Sort	Merge Sort
Best Ca	se	Θ(n)	Θ(n lg n)
Average C	Case	$\Theta(n^2)$	Θ(n lg n)
Worst Ca	ase	$\Theta(n^2)$	Θ(n lg n)

Visualizations:

http://www.sorting-algorithms.com/insertion-sorthttp://www.sorting-algorithms.com/merge-sort

How about storage space complexity?

In situ

• Definition:

 In-situ algorithms refer to algorithms that operate with Θ(1) memory.

• In-situ sorting:

- Sorting algorithms that need only a constant number of additional storings.

• Insertion Sort:

- In-situ sorting.

Merge Sort:

- Not in-situ sorting.

2.1 Heap Sort

Motivation

- Try to develop an in-situ sorting algorithm with asymptotic runtime Θ(n lgn).
- Use a sophisticated data structure to support the computations.

Data structure: Heap

Defintion.

A (binary) heap data-structure is an array which can be viewed as a nearly complete binary tree:

each level is completely full except possibly the last level, which is filled from left to right.

Heap as array

A heap can be stored as an array:

Heap as array

The array A representing the heap has two attributes:

- A.length
- A.heapsize

such that $0 \le A.heapsize \le A.length$.

There are only *A.heapsize* valid elements of the heap.

A[1] is the root of the heap (root of the binary tree).

Heap as array

Given index i of an element of A, we can calculate:

```
Parent(i): return floor (i/2);
                                                 // Right shift by 1 bit.
Left(i): return 2i;
                                                 // Left shift by 1 bit.

    Right(i): return 2i + 1;

                                                 // Left shift by 1 bit
                                                 // and set LSB to 1
```

Max-heap property

In a max-heap, for every node i (other than the root),

 $A[Parent(i)] \ge A[i].$

Recall: Height of a rooted tree

- The height of a node x is the length of the longest simple downward path from x to a leaf.
- The height of a rooted tree is the height of its root.

Heap height

Theorem:

A heap with n elements has height $h = \lfloor \lg n \rfloor$.

Heap height

Proof:

Heap height h implies that there are h + 1 levels (levels 0 to h).

As a heap is a nearly complete binary tree, the last guaranteed complete level is level h - 1.

The level h may be incomplete but has at least one element.

Number of elements in complete levels 0 to h - 1 is

$$1 + 2 + 2^2 + \dots + 2^{h-1} = 2^h - 1$$
.

So, $n > 2^h - 1$ or (since it is an integer) $n \ge 2^h$.

If all levels 0 to h were complete, the number of elements would be 2^{h+1} - 1. So, $n \le 2^{h+1}$ - 1.

Heap height

Proof (continued):

Combining the two inequalities:

$$2^{h} \le n \le 2^{h+1} - 1$$
As $2^{h+1} > 2^{h+1} - 1 \ge 2^{h}$ for $h \ge 0$,
 $h+1 > \lg(2^{h+1} - 1) \ge h$
Thus, $\lg(2^{h+1} - 1) = h + \alpha$ with $\alpha \in [0,1)$,
which leads to $h \le \lg n \le h + \alpha$ with $\alpha \in [0,1)$.
Hence, $h = \lceil \lg n \rceil$.

Precondition:

When Max-Heapify (A, i) is called,

binary-trees rooted at Left(i) and Right(i) are valid max-heaps, but A[i] may be smaller than its children.


```
MAX-HEAPIFY (A, i)

1 \quad l = \text{Left}(i)
```

- r = RIGHT(i)
- 3 **if** $l \le A$. heap-size and A[l] > A[i]
- largest = l
- 5 **else** largest = i
- 6 if $r \le A$.heap-size and A[r] > A[largest]
- 1 largest = r
- 8 **if** $largest \neq i$
- 9 exchange A[i] with A[largest]
- 10 MAX-HEAPIFY(A, largest)

Complexity:

It is $O(h) = O(\lg n)$,

as in the worst case the new element has to go down all the way to the last level.

Converting an existing array A to a max-heap

- Call Max-Heapify, on what set?
 - all inner nodes
 - —> float them down if necessary (Max-Heapify)
 - not necessary to call on leaves node

Leaves of a heap of size n

Let n = A.heapsize.

Where is the parent of the last element of a heap?

At index $\lfloor n/2 \rfloor$.

Therefore, the element at index $\lfloor n/2 + 1 \rfloor$

does not have a child in the heap, and hence is a leaf.

In a heap, there are $\lceil n/2 \rceil$ leaves:

from index $\lfloor n/2 + 1 \rfloor$ to n.

Each leaf is the root of a valid max-heap of size 1.

Converting an existing array A to a max-heap

BUILD-MAX-HEAP (A)

- 1 A.heap-size = A.length
- 2 for $i = \lfloor A.length/2 \rfloor$ downto 1
- 3 MAX-HEAPIFY(A, i)

Loop invariant:

At the start of each iteration of the for loop, each node i + 1, ..., n is the root of a max-heap.

Converting an existing array A to a max-heap

Initialization: $i = \lfloor n/2 \rfloor$.

Nodes with indices > i are leaves.

Maintenance:

At iteration i, nodes with indices i + 1, ..., n are roots of valid max-heaps, but the i-th node is not (necessarily).

But this is exactly the precondition of Max-Heapify.

Termination: i = 0.

Node i = 1 is the root of a valid max-heap.

 A
 4
 1
 3
 2
 16
 9
 10
 14
 8
 7

What is the time complexity?

Theorem:

Let m_h be the number of nodes of height h in any n element heap T(n).

Then,
$$m_h(T,n) \leq \left\lceil \frac{n}{2^{h+1}} \right\rceil$$

(Proof by induction over h)

Time complexity:

Time needed by Max-Heapify when called on a node of height h is O(h).

Therefore, total cost of Build-Max-Heap(A) is upper bounded by

$$\sum_{h=0}^{\lfloor \lg n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h) = O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}\right)$$
$$= O\left(n \sum_{h=0}^{\infty} \frac{h}{2^h}\right)$$
$$= O(n).$$

using
$$\sum_{k=0}^{\infty} k x^k = \frac{x}{(1-x)^2}$$
 if $|x| < 1$.

Time complexity:

Conclusion:

We can convert an unordered array into a max-heap in linear time.

Heap Sort

- Start by generating a max-heap.
- The maximum element of a max-heap is at the root.
- Put it in its right sorted place at n = A. heapsize by swapping it with the last element A[n], which now becomes A[1].
- Decrement the heap size to create a smaller heap and thus implicitly remove the last element (the maximum) from the heap.
- The new A[1] may not satisfy the max-heap property, so float it down.
- Iterate.

```
HEAPSORT(A)

1 BUILD-MAX-HEAP(A)

2 for i = A.length downto 2

3 exchange A[1] with A[i]

4 A.heap-size = A.heap-size = 1

5 MAX-HEAPIFY(A, 1)
```


Runtime Analysis

HEAPSORT(A)

```
1 BUILD-MAX-HEAP(A)

2 for i = A.length downto 2

3 exchange A[1] with A[i]

4 A.heap-size = A.heap-size -1

5 MAX-HEAPIFY(A, 1)
```

• RuntimeCosts: O(n) + O(n | g | n) = O(n | g | n)

- MemoryCosts:
 O(1), i.e., in-situ sorting
- Visualization: <u>http://www.sorting-algorithms.com/heap-sort</u>

Heap as a data structure

- Heaps are a data structure that can be used for other purposes, as well.
- In particular, a max-heap is often used to build a max-priority queue.

Max-priority queues

Definition:

A priority queue is a data structure for maintaining a set S of elements, each with an associated value called a key.

Definition:

A max-priority queue is a priority queue that supports the following operations:

- Maximum(S): return element from S with largest key.
- Extract-Max(S): remove and return element from S with largest key.
- Increase-Key(S,x,k): increase the value of the key of element x to k,
 where k is assumed to be larger or equal than the current key.
- Insert(S,x): add element x to set S.

Maximum (S)

HEAP-MAXIMUM(A)

1 return A[1]

Costs: O(1)

Extract-Max (S)

```
HEAP-EXTRACT-MAX(A)
```

Costs: O(lg n)

```
HEAP-INCREASE-KEY (A, i, key)
```

```
if key < A[i]
error "new key is smaller than current key"

A[i] = key
while i > 1 and A[PARENT(i)] < A[i]
exchange A[i] with A[PARENT(i)]

i = PARENT(i)</pre>
```


HEAP-INCREASE-KEY (A, i, key)

```
if key < A[i]
error "new key is smaller than current key"

A[i] = key
while i > 1 and A[PARENT(i)] < A[i]
exchange A[i] with A[PARENT(i)]

i = PARENT(i)</pre>
```

Costs: O(lg n)

Insert (S,x)

MAX-HEAP-INSERT (A, key)

- 1 A.heap-size = A.heap-size + 1
- 2 $A[A.heap-size] = -\infty$
- 3 HEAP-INCREASE-KEY (A, A.heap-size, key)

Costs: O(lg n)