

Funktionentypen

beyond linear

 $gy_{\scriptscriptstyle fms}$  LERBERMATT

©Jorma Wassmer

# Inhaltsverzeichnis

| 1.         | Einleitung                     |                                                                        |    |  |  |  |  |  |
|------------|--------------------------------|------------------------------------------------------------------------|----|--|--|--|--|--|
| 2.         | Der                            | Funktionsbegriff                                                       | 5  |  |  |  |  |  |
|            | 2.1.                           | Funktionen                                                             | 5  |  |  |  |  |  |
|            | 2.2.                           | Inversfunktionen                                                       | 8  |  |  |  |  |  |
|            | 2.3.                           | Der Differenzenquotient                                                | 10 |  |  |  |  |  |
| 3.         | •                              | Quadratische Funktionen 13                                             |    |  |  |  |  |  |
|            | 3.1.                           | Erste Beobachtungen                                                    | 13 |  |  |  |  |  |
|            | 3.2.                           | Begriffe und Mathematik                                                | 14 |  |  |  |  |  |
|            | 3.3.                           | Mehr Anwendungen                                                       | 16 |  |  |  |  |  |
|            | 3.4.                           | Scheitelform                                                           | 18 |  |  |  |  |  |
|            | 3.5.                           | Maxima & Minima                                                        | 23 |  |  |  |  |  |
|            | 3.6.                           | Rechnerische Lösung von quadratischen Gleichungen                      | 24 |  |  |  |  |  |
|            |                                | 3.6.1. Die reinquadratische Gleichung                                  | 24 |  |  |  |  |  |
|            |                                | 3.6.2. Die allgemeine quadratische Gleichung                           | 25 |  |  |  |  |  |
|            |                                | 3.6.3. Beziehungen zwischen Koeffizienten und Lösungen einer quadrati- |    |  |  |  |  |  |
|            |                                | schen Gleichung                                                        | 26 |  |  |  |  |  |
| 4.         | Trigonometrische Funktionen 29 |                                                                        |    |  |  |  |  |  |
|            | 4.1.                           | Die Sinusfunktion                                                      | 29 |  |  |  |  |  |
|            | 4.2.                           | Die Cosinusfunktion                                                    | 30 |  |  |  |  |  |
|            | 4.3.                           | Die Tangensfunktion                                                    | 31 |  |  |  |  |  |
|            |                                | Das Bogenmass                                                          | 31 |  |  |  |  |  |
|            |                                | Zusammenhänge zwischen Sinus, Cosinus und Tangens                      | 36 |  |  |  |  |  |
|            |                                | Überblick über die Berechnung des rechtwinkligen Dreiecks              | 38 |  |  |  |  |  |
|            |                                | Der Sinussatz                                                          | 38 |  |  |  |  |  |
|            | 4.8.                           | Der Cosinussatz                                                        | 39 |  |  |  |  |  |
|            | 4.9.                           | Anwendungen                                                            | 42 |  |  |  |  |  |
| 5.         | Pote                           | enzfunktionen                                                          | 45 |  |  |  |  |  |
| <b>J</b> . |                                | Potenzen mit rationalen Exponenten                                     | _  |  |  |  |  |  |
|            | 0.1.                           | 5.1.1. Rückblick                                                       |    |  |  |  |  |  |
|            |                                | 5.1.2. Erweiterung der Potenzgesetze                                   |    |  |  |  |  |  |
|            |                                | 5.1.3. Potenzen mit irrationalen Exponenten                            | 47 |  |  |  |  |  |
|            | 5.2.                           | Potenzfunktionen                                                       | 48 |  |  |  |  |  |
|            | •                              | Wurzelfunktionen                                                       | 48 |  |  |  |  |  |
|            | 0.0.                           | viuizeirumeionen                                                       |    |  |  |  |  |  |
| 6.         | •                              | onentialfunktionen                                                     | 50 |  |  |  |  |  |
|            | 6.1.                           |                                                                        | 50 |  |  |  |  |  |
|            | 6.2.                           | 1                                                                      | 51 |  |  |  |  |  |
|            | 6.3.                           | Wachstum und Zerfall                                                   | 53 |  |  |  |  |  |

|                               | ogarithmen                                 |  |  |  |  |  |  |
|-------------------------------|--------------------------------------------|--|--|--|--|--|--|
| 7.                            | 1. Die Logarithmusfunktion                 |  |  |  |  |  |  |
| 7.                            | 2. Übliche Bezeichnungen und Schreibweisen |  |  |  |  |  |  |
| 7.                            | 3. Rechenregeln                            |  |  |  |  |  |  |
|                               | 4. Die Logarithmensätze                    |  |  |  |  |  |  |
| 7.                            | 5. Graphen von Logarithmenfunktionen       |  |  |  |  |  |  |
| 7.                            | 6. Weitere Anwendungen                     |  |  |  |  |  |  |
| 7.                            | 7. Gleichungen mit Variablen im Exponenten |  |  |  |  |  |  |
| 7.                            | 8. Die Euler'sche Zahl                     |  |  |  |  |  |  |
| A. R                          | elationen                                  |  |  |  |  |  |  |
| B. A                          | bbildungen                                 |  |  |  |  |  |  |
| C. Biquadratische Gleichungen |                                            |  |  |  |  |  |  |
| D. L                          | isungsstrategien für Gleichungen           |  |  |  |  |  |  |
|                               |                                            |  |  |  |  |  |  |
| E. F                          | ınktionsverwandtschaften                   |  |  |  |  |  |  |
|                               | inktionsverwandtschaften<br>1. Einleitung  |  |  |  |  |  |  |
| $\mathbf{E}$                  |                                            |  |  |  |  |  |  |
| $\mathbf{E}$                  | <ol> <li>Einleitung</li></ol>              |  |  |  |  |  |  |
| $\mathbf{E}$                  | 1. Einleitung                              |  |  |  |  |  |  |
| $\mathbf{E}$                  | 1. Einleitung                              |  |  |  |  |  |  |
| $\mathbf{E}$                  | 1. Einleitung                              |  |  |  |  |  |  |
| $\mathbf{E}$                  | 1. Einleitung                              |  |  |  |  |  |  |
| $\mathbf{E}$                  | 1. Einleitung                              |  |  |  |  |  |  |
| E<br>E                        | 1. Einleitung                              |  |  |  |  |  |  |
| E<br>E                        | 1. Einleitung                              |  |  |  |  |  |  |
| E<br>E<br>E                   | 1. Einleitung                              |  |  |  |  |  |  |
| E<br>E<br>E<br>E              | 1. Einleitung                              |  |  |  |  |  |  |

# 1. Einleitung

Die QR-Codes am Computer können so benutzt werden, dass das Code-Quadrat mit gehaltener linker Maustaste in einen Browser gezogen wird.

# 2. Der Funktionsbegriff

#### 2.1. Funktionen

In der Mathematik betrachtet man oft Abbildungen, bei denen die Zielmenge eine Zahlenmenge ist. Solche Abbildungen werden Funktionen genannt. Bei Funktionen ist es üblich, die Urbilder als Argumente, die Bilder als Funktionswerte, die Ausgangsmenge als Definitionsmenge und die Bildmenge als Wertemenge zu bezeichnen.

#### **Definition 2.1: Funktion**

Eine  $Funktion\ f$  ist eine Abbildung, die jedem Element der Definitionsmenge genau ein Element aus einer Zahlenmenge zuordnet.



**Bemerkung.** Falls nicht anders festgelegt, so sind Definitions- und Wertemenge gleich  $\mathbb{R}$ .

Der Funktionsbegriff ist für die Mathematik zentral, da er in den Naturwissenschaften, in der Technik, in den Wirtschaftswissenschaften und auch in vielen andern Wissensgebieten eine grosse Rolle spielt. Denn Funktionen bieten die Möglichkeit, Abhängigkeiten zwischen verschiedenen Grössen zu beschreiben.

Beispiel 1. Lässt man einen Stein vom Dach des schiefen Turms von Pisa fallen, so wird durch

$$h(t) = 56 - 4.9t^2$$

die Höhe h des Steins, in Metern über dem Erdboden, t Sekunden nach dem Fallenlassen beschrieben.

Übung 1. Wie hoch ist der schiefe Turm von Pisa? Wie viele Meter über dem Boden ist der Stein nach 2 Sekunden Flugzeit? Wann trifft der Stein auf den Boden auf?

Beispiel 2. Die Funktion, welche vorschreibt, eine Zahl zu quadrieren notieren wir kurz mit

$$f(x) = x^2$$
.

Es ist dann beispielsweise  $f(2) = 2^2 = 4$ ,  $f(0) = 0^2 = 0$ ,  $f(-3) = (-3)^2 = 9$ , .... Praktisch ist häufig die Illustration einer Funktion in einem Koordinatensystem. Man zeichnet also die Zahlenpaare  $(2 \mid 4), (0 \mid 0), (-3 \mid 9), \ldots$ 

**Bemerkung.** In y = f(x) heisst x Argument von f und y bzw. f(x) Wert von f.

Übung 2 (Funktionen). Nenne Beispiele aus dem Alltag, denen Funktionen zugrunde liegen.

Übung 3 (Schreibweise). Gegeben sei die Funktion

$$g(x) = x^2 - 2x + 3$$

- (a) Berechne  $g(2), g(3), g(4) g(-4), g(a^2)$ .
- (b) Für welchen Wert x ist  $g(x) = x^2, 2, 3$ ?

Übung 4 (Schreibweise 2). Es sei

$$h(z) = z^3 - z + 2$$

Berechne h(3), h(-1), h(0).

Übung 5 (Schreibweise 3). Betrachte

$$s(t) = \frac{t+2}{t-1}$$

Berechne s(0), s(-2), s(1), s(10). Für welche Argumente t ist der Funktionswert s(t) = 1, 2, -5, 0?

Übung 6 (Schreibweise 4). Berechne für

$$f(x) = 2^x - 1$$

f(1), f(3), f(10). An welcher Stelle wird der Funktionswert 31?

Übung 7 (Zellteilung). Ein Einzeller vermehrt sich alle 5 Minuten durch Zellteilung. Welche Funktion beschreibt diesen Sachverhalt? Nach welcher Zeit entwickeln sich aus einem Einzeller mehr als 1000 Zellen? Wie viele Zellen haben sich aus nur einem Einzeller nach 35 Minuten entwickelt?

# Definition 2.2: Nullstelle



Gilt für einen Wert x der Definitionsmenge f(x) = 0, so heisst x Nullstelle der Funktion f.

Nullstellen sind also — wie der Name sagt — diejenigen Stellen, an denen der Funktionswert gerade 0 ist.

Übung 8 (Nullstellen). Ermittle die maximale Definitionsmenge  $\mathbb{D}$ , die minimale Wertemenge  $\mathbb{W}$  und die Nullstellen der Funktion  $f: x \mapsto$ 

(a) 2x - 6 (b) 3x + 1 (c)  $x^2$  (d)  $\sqrt{x}$  (e)  $x^3$  (f)  $\frac{1}{x}$  (g)  $x^2 + 1$  (h)  $\sqrt{x - 5}$ 

Übung 9 (Nullstellen 2). Ermittle die Definitionsmenge  $\mathbb D$  und die Nullstellen der Funktion  $f:x\mapsto$ 

(a) 
$$(x-2)(x+3)$$
 (b)  $\frac{1}{x-4}$  (c)  $x^2-7x+12$  (d)  $(x+100)(x^2-49)$  (e)  $\sqrt{x+6}$ 

Übung 10 (Schreibweise 5). Drücke die folgenden Aussagen kurz und prägnant in mathematischer Schreibweise aus:

- (a) Durch die Funktion f wird der Zahl 5 die Zahl 132 zugeordnet.
- (b) Die Funktion h nimmt für x = -2 den Funktionswert 18 an.
- (c) Die Zahl 7 gehört nicht zur Definitionsmenge der Funktion f.
- (d) Die Funktion f ordnet der Zahl 3 einen grösseren Wert zu als der Zahl 8.
- (e) Alle Funktionswerte der Funktion f sind positiv.
- (f) Die Funktion f nimmt jede positive Zahl als Funktionswert an.
- (g) Die Funktion f ordnet jeder reellen Zahl das um 7 vermehrte Quadrat dieser Zahl zu.
- (h) Die Funktion f ordnet jeder reellen Zahl das Quadrat der um 3 vergrösserten Zahl zu.
- (i) Die Funktion f ordnet jeder reellen Zahl den um 13 vergrösserten Kehrwert dieser Zahl zu.
- (j) Die Funktion f ordnet jeder reellen Zahl den Kehrwert der um 4 verminderten Zahl zu.

# Definition 2.3: Graph

Sei  $f: \mathbb{D} \longrightarrow \mathbb{W}$  eine Funktion. Die Menge aller Punkte

$$\{(x \mid y) \mid y = f(x), x \in \mathbb{D}\}\$$

heisst Graph der Funktion f.



Übung 11 (Graph). Zeichne den Graphen der Funktion  $f(x) = x^3$ .

Übung 12 (Definition Funktion). Können die folgenden Darstellungen Graphen von Funktionen sein? Woran erkennt man, ob eine Funktion dargestellt wird oder nicht?



# 2.2. Inversfunktionen

Durch die Funktionsvorschrift

$$f(x) = 2x - 3$$

ist jedem x genau ein y-Wert zugeordnet.

Übung 13. Wie sieht der Graph von f aus?

Umgekehrt ist in diesem Fall durch f eine Funktion  $f^{-1}$  definiert, die jedem Funktionswert y genau einen x-Wert zuordnet.



Übung 14 (Wertetabelle). Veranschauliche dir diesen Zusammenhang anhand einer Wertetabelle für die obige Funktion.

#### **Definition 2.4: Inversfunktion**

Gilt für eine Funktion f

$$x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

dann heisst  $f^{-1}$  mit  $f^{-1}(f(x)) = x$  die Inversfunktion von f.



Bemerkung. Die Voraussetzung, dass f injektiv ist, ist wesentlich.

# Definition 2.5: Injektivität

Eine Funktion heisst injektiv, wenn es zu jedem  $y \in \mathbb{W}$  höchstens ein  $x \in \mathbb{D}$  gibt.



Übung 15 (Injektivität). Überzeuge dich davon, dass für eine Funktion

$$f: \mathbb{D} \longrightarrow \mathbb{W}$$

mit  $x_1, x_2 \in \mathbb{D}$  die Definition von "injektiv" äquivalent zur Aussage

$$x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

ist.

Übung 16 (Injektivität 2). Kann man, ausgehend von der Funktion

$$f(x) = x^2, \qquad \mathbb{D} = \mathbb{R},$$

eine Inversfunktion angeben?

**Bemerkung.** Man findet den Funktionsterm von  $f^{-1}$  in dem man die Gleichung

$$f(x) = y$$

nach x auflöst. Anschliessend vertauscht man noch die Bezeichnung y mit x, weil üblicherweise x die freie Variable darstellt und man dafür die horizontale Achse verwenden will.

Beispiel 3. Die Inversfunktion zu

$$f(x) = 3x - 2$$



ist demnach

$$y = 3x - 2$$
 (+2)  

$$y + 2 = 3x$$
 (÷3)  

$$\frac{y+2}{3} = x$$
  

$$f^{-1}(x) = \frac{x+2}{3} = \frac{1}{3}x + \frac{2}{3}$$

Übung 17 (Spiegelung). Zeichne die Graphen von f und  $f^{-1}$  aus dem Einführungsbeispiel in dasselbe Koordinatensystem, nachdem du den Funktionsterm von  $f^{-1}$  gefunden hast.

Übung 18 (Winkelhalbierende). Zeige, dass der Graph von  $f^{-1}$  Spiegelbild des Graphen von f an der Winkelhalbierenden y = x durch den ersten und dritten Quadranten ist.

Hint: Betrachte einen beliebigen Punkt auf dem Graphen von f und sein Pendant auf dem Graphen von  $f^{-1}$ . Skizziere diese Situation und argumentiere geometrisch.

# Satz 2.1: Achsensymmetrie der Inversfunktion

Die Graphen von f und  $f^{-1}$  sind achsialsymmetrisch bezüglich der Winkelhalbierenden durch den ersten und dritten Quadranten.

Beweis. Siehe Übung 18

#### 2.3. Der Differenzenguotient

Manchmal ist man an der Änderung einer Funktion interessiert. Beispielsweise ist die Schwankung des SMI über einen Tag oder sogar nur über einen Monat relevant. Wie die Schwankungen tagsüber verliefen, ist für den Aktienanleger unbedeutend. Also betrachtet man die Änderung einer Grösse über einem bestimmten Zeitabschnitt. Dabei vergleicht man Anfangs- und Endwert bezüglich der Dauer der Beobachtung.

#### Definition 2.6: Differenzenquotient



er Quotient

$$\frac{\Delta f(x)}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

gibt die durchschnittliche Änderung der Funktion im Intervall  $[x_1, x_2]$  an. Diesen Quotienten nennt man Differenzenquotienten.



Abbildung 1: Durchschnittliche Änderungsrate

# **Definition 2.7: Intervall**

Die Menge

$$\{ x \in \mathbb{R} \mid x_1 \le x \le x_2 \}$$

wird Intervall genannt und mit  $[x_1, x_2]$  bezeichnet. Selbstverständlich muss der Funktionswert an jeder Stelle des Intervalls definiert sein, d.h. das Intervall ist eine Teilmenge der Definitionsmenge von f.

Übung 19. Berechne die durchschnittliche Änderung der Funktion  $f: x \mapsto$ 

(a) 
$$x^2$$
 über  $[0,1], [2,3], [0,3], [-2,-1], [x_1,x_2]$ 

(b) 
$$\frac{1}{x}$$
 über  $[0.5, 2], [-7, -2], [-1, 1], [x_1, x_2]$ 

(c) 
$$x^2 - 2x + 1$$
 über  $[-3, 4], [0, 6], [-2, 2]$ 

Übung 20. Die Tabelle zeigt die Tarif- und Lebenskostenindizes (Index 1977  $\sim 100$ ) für die Schweiz.

|      | Fahrpreis Bahn | Gesamtlohnindex | Konsumentenpreise |
|------|----------------|-----------------|-------------------|
| 1977 | 100            | 100             | 100               |
| 1979 | 101.5          | 106.6           | 104.4             |
| 1980 | 102.6          | 112.3           | 108.6             |
| 1981 | 107.9          | 119.3           | 115.7             |
| 1982 | 115.4          | 127.7           | 122.2             |
| 1983 | 125.1          | 132.5           | 125.8             |
| 1984 | 128.8          | 136.2           | 129.5             |
| 1985 | 131.1          | 140.4           | 133.9             |
| 1986 | 133.3          | 145.4           | 135.0             |
| 1987 | 130.3          | 148.9           | 137.0             |
| 1988 | 130.2          | 154.1           | 139.5             |

- (a) Zeichne farbig in dasselbe Koordinatensystem die Graphen der Funktionen, die durch diese Tabelle dargestellt werden.
- (b) Berechne die durchschnittliche Änderung der drei Funktionen in den Intervallen [1977, 1988] und [1986, 1988].

# Definition 2.8: Monotonie

Eine Funktion f heisst  $monoton\ wachsend$  im Intervall I, wenn die durchschnittliche Änderung für jedes Teilintervall von I positiv oder Null ist. Entsprechend nennt man f  $monoton\ fallend$ , wenn für jedes Teilintervall von I die durchschnittliche Änderung negativ oder Null ist.

Übung 21. In welchen Intervallen sind die Funktionen aus Übung 19 monoton wachsend, monoton fallend?



# 3. Quadratische Funktionen

# 3.1. Erste Beobachtungen

Quadratische Funktionen, beziehungsweise die Graphen davon, haben bemerkenswerte Eigenschaften. Im Folgenden wollen wir zuerst ein Beispiel anschauen, das die Grundlage vieler Anwendungen im Alltag illustriert. Anschliessend wird auf die Mathematik von quadratischen Funktionen und ihren Graphen eingegangen.

**Beispiel 4.** Stellen Sie sich den unten abgebildeten Graphen der Funktion

$$f(x) = \frac{1}{4}x^2$$

als Spiegel vor. Zeichnen Sie vier parallel zur y-Achse einfallende Lichtstrahlen und konstruieren Sie ihre Reflexion. Beachten Sie dabei, dass die Tangente an den Graphen von f an der Stelle x die Steigung  $\frac{1}{2}x$  hat.

Beispiel 1 zeigt die wichtigste Eigenschaft der Graphen von quadratischen Funktionen. Alle parallel zur y-Achse einfallenden Strahlen werden in ein





Abbildung 2: Parabolspiegel in Odeillo



und denselben Punkt reflektiert. Dieser ausgezeich-

nete Punkt hat natürlich einen eigenen Namen verdient: man nennt ihn *Brennpunkt*. Tatsächlich kann es dort sehr sehr heiss werden! Abbildung 2 zeigt den grössten Parabolspiegel der Welt, welcher zu Forschungszwecken dient und das Sonnenlicht "bündelt". Damit werden im Häuschen, das im Brennpunkt steht, Temperaturen bis zu 4000 °C erreicht.

#### 3.2. Begriffe und Mathematik





Eine Funktion heisst quadratisch, wenn sie sich mit einer Funktionsgleichung der Form

$$f(x) = ax^2 + bx + c \quad (a \neq 0)$$

darstellen lässt.

Bemerkung. Spezialfall: Funktionen der Form

$$f(x) = ax^2$$

haben die bequeme Eigenschaft, dass ihr Graph durch den Ursprung geht und dort, je nachdem ob a>0 oder a<0 ist, ihren Tief- bzw. Hochpunkt haben.

Übung 22 (Graphen). Zeichne in dasselbe Koordinatensystem die Graphen der Funktionen  $f:x\mapsto$ 

(a) 
$$x^2, \frac{1}{2}x^2, 2x^2, -\frac{1}{4}x^2$$

(b) 
$$x^2 + 1, -x^2 + 1, \frac{1}{2}x^2 - 2, -2x^2 + 3, \frac{1}{5}x^2 - 1$$

#### Definition 3.2: Parabel und Scheitelpunkt

Der Graph einer quadratischen Funktionen nennt man Parabel. Der Tief- bzw. Hochpunkt heisst Scheitel.

#### Satz 3.1: Brennpunkteigenschaft

Die Parabel der Funktion

$$f(x) = ax^2$$

ist achsialsymmetrisch zur y-Achse. Die x-Achse ist Tangente im Scheitel. Jeder parallel zur y-Achse einfallende Lichtstrahl wird an der Parabel so gespiegelt, dass er durch den Brennpunkt geht.

Beweis. Später.  $\Box$ 

# Satz 3.2: Symmetrie

Der Scheitel halbiert das vom Brennpunkt auf die Leitlinie gefällte Lot. Dieses liegt auf der Symmetrieachse der Parabel.

Beweis. Siehe Übung 25.

Man kann zeigen, dass jede Parabel der Funktion  $f(x) = ax^2$  sich in der Form

$$f(x) = \frac{1}{4p}x^2$$

schreiben lässt, wobei p just die Hälfte des Abstandes des Lots Brennpunkt-Leitlinie ist.

Übung 23 (Brennpunkt). Berechne den Brennpunkt der Funktion aus dem Einführungsbeispiel.

Bemerkung. Dem aufmerksamen Leser wird nicht entgangen sein, dass man die Möglichkeit hat, die Parabel sowohl auf geometrische als auch auf algebraische Weise zu definieren. Nämlich

geometrisch: Jede Kurve mit der Eigenschaft, dass alle ihre Punkte von einem bestimmten Punkt (Brennpunkt) und einer bestimmten Geraden (Leitlinie) den gleichen Abstand haben, heisst Parabel.



Abbildung 3: Kochen

algebraisch: Eine Parabel ist der Graph einer Funktion der Form  $f(x) = \frac{1}{4p}x^2$ .

Die Möglichkeit verschiedener Interpretationen gilt nicht nur für Parabeln, sondern auch für viele andere Kurven.

**Übung 24** (Geometrie). Zeichne einen Punkt B und eine Gerade l, die nicht durch diesen Punkt läuft. Konstruiere anschliessend die Menge aller Punkte, welche von B und l denselben Abstand haben.



Übung 25 (Wo ist der Brennpunkt?). Zeige, dass für eine quadratische Funktionen der Form

$$f(x) = ax^2$$

ein beliebiger Punkt Q auf der Parabel von f vom Brennpunkt  $\left(0\,|\,\frac{1}{4a}\right)$  und von der Leitgeraden  $l(x)=-\frac{1}{4a}$  den gleichen Abstand hat. Wieso reicht es, dies nur für die Normalparabel zu zeigen?

# 3.3. Mehr Anwendungen

Folgende Bilder zu Anwendungen von quadratischen Funktionen unter Ausnützung der Parabeleigenschaften.



Abbildung 4: Signalverstärkung



Abbildung 5: Scheinwerfer

#### 3.4. Scheitelform

Wir haben gesehen, dass der Graph von

$$f(x) = ax^2$$

eine Parabel ist. Die Parabel ist für a > 0 nach oben, für a < 0 nach unten geöffnet. Für |a| < 1 ist sie weiter, für |a| > 1 enger als die Normalparabel. Ihr Scheitel ist S(0|0).

Der Graph von

$$f(x) = ax^2 + v \quad (a, v \in \mathbb{R})$$

entsteht durch Verschiebung einer Parabel in y-Richtung um |v| Einheiten. Für v>0 ist die Parabel nach oben, für v<0 nach unten verschoben. Ihr Scheitel ist  $S\left(0\,|\,v\right)$ .



(a) 
$$(x-2)^2$$
,  $(x+2)^2$ ,  $\frac{1}{2}(x-1)^2$ ,  $-2(x+2)^2$ ,  $x^2+6x+9$ 

(b) 
$$(x-1)^2 + 1$$
,  $\frac{1}{2}(x+2)^2 - 3$ ,  $-2(x+3)^2 + 44$ ,  $x^2 - 3x - 2$ .

Der Graph von

$$f(x) = a(x - u)^2 \quad (a, u, \in \mathbb{R})$$

entsteht durch Verschiebung einer Parabel in x-Richtung um |u| Einheiten. Die Parabel ist für u > 0 nach rechts, für u < 0 nach links verschoben. Ihr Scheitel ist  $S(u \mid 0)$ .

Der Graph von

$$f(x) = a(x - u)^2 + v \quad (a, u, v \in \mathbb{R})$$

ist die in x-Richtung um |u| Einheiten und in y-Richtung um |v| Einheiten verschobene Parabel mit der Gleichung  $y = ax^2$ .

#### **Definition 3.3: Scheitelform**

Da man in dieser Darstellung aus dem Funktionsterm direkt den Scheitel  $S\left(u\,|\,v\right)$  ablesen kann, nennt man

$$f(x) = a(x - u)^2 + v$$

Scheitelgleichung oder Scheitelform der Parabel.

Durch Umformen der Scheitelgleichung erhält man die Normalform  $f(x) = ax^2 + bx + c$ . Umgekehrt kann man  $f(x) = ax^2 + bx + c$  durch quadratische Ergänzung immer in die Scheitelgleichung überführen.



**Bemerkung.** Beachten Sie, dass der Parameter a bei beiden Formen denselben Wert hat.

Übung 27 (a bleibt a). Zeigen Sie die Aussage aus obiger Bemerkung.

**Beispiel 5.** Es ist klar, dass man durch Ausmultiplizieren und Zusammenfassen aus der Scheitelform die Form  $ax^2 + bx + c$  erhält. Wie erhält man umgekehrt die Scheitelform? Sei

$$f(x) = 3x^2 - 30x + 37.$$

Wir generieren nun eine Form  $(x-u)^2$  und passen v "künstlich" an. Man nennt das folgende Vorgehen quadratische Ergänzung:



$$f(x) = 3x^{2} - 30x + 37$$
$$= 3[(x - 5)^{2} - 25] + 37$$
$$= 3(x - 5)^{2} - 38$$

Der Scheitel ist somit  $S(5 \mid -38)$  und der Graph lässt sich sofort skizzieren.

## Definition 3.4: Polynom 2. Grades

Die Funktion

$$f(x) = ax^2 + bx + c \quad (a, b, c \in \mathbb{R})$$

mit  $a \neq 0$  heisst quadratische Funktion; oder ganzrationales Polynom 2. Grades, falls  $a,b,c \in \mathbb{Q}$ .

**Bemerkung.** Ihr Graph ist eine Parabel; ihre Symmetrieachse ist die Parallele zur y-Achse durch den Scheitel S. Die Parabel ist für a > 0 nach oben, für a < 0 nach unten geöffnet.

Übung 28 (Scheitelgleichung). Zeichne in dasselbe Koordinatensystem die Graphen der quadratischen Funktionen  $x\mapsto$ 



(a) 
$$x^2 - 6x + 11, 2x^2 - 3x, -x^2 + 6x - 7,$$

(b) 
$$0.5x^2 - 4x + 7$$
,  $0.25x^2 - 2x + 1$ ,  $-0.1x^2 - x - 1$ .

Hint: Ermittle die Scheitelgleichung und damit die Koordinaten des Scheitels.

Übung 29 (Parabel, ist nicht linear...). Wie lautet die Gleichung der Parabeln?



Übung 30 (Gebiete). Schraffiere in einem Koordinatensystem die Punktmenge

- (a)  $\mathbb{M} = \{ (x|y) \mid y < 2 x^2 \text{ und } y > 2x x^2 \}$
- (b)  $M = \{ (x|y) \mid y < 1 x^2 \text{ und } y \ge x 1 \}$
- (c)  $\mathbb{M} = \{ (x|y) \mid y \le 2 0.5x^2 \text{ und } y > x 2 \}$

Übung 31 (Gleichungen). Ermittle die Scheitelgleichung der Parabel mit dem ScheitelS so, dass sie durch den Punkt P geht.

- (a) S(2|4), P(3|3)
- (b) S(2|4), P(-1|7)
- (c) S(-2|-3), P(0|0)

Übung 32 (Parameter hie und da). Ermittle die Gleichung  $y = x^2 + bx + c$  einer Parabel so, dass sie durch die Punkte  $A(2 \mid -7)$  und  $B(-3 \mid 8)$  geht.



Übung 33 (Parameter hie und da und dort). Ermittle die Gleichung  $y = ax^2 + bx + c$  einer Parabel so, dass sie durch die Punkte A, B und C geht.

- (a)  $A\left(1\,|\,0\right), B\left(-1\,|\,1\right)$  und  $C\left(2\,|\,1\right)$
- (b) A(1|2), B(3|4) und C(5|1)

**Übung 34** (Lastwagen). Ein Brückenbogen hat die Form einer Parabel. Die Scheitelhöhe beträgt 4 m, die Spannweite 8 m.



- (a) Kann ein Lastwagen mit einer Höhe von 3.5 m und einer Breite von 2.1 m passieren?
- (b) Wie breit darf der Lastwagen höchstens sein?
- (c) Kann der Lastwagen aus (a) zugleich mit einem Pkw der Höhe 1.6 m und der Breite 1.8 m passieren, wenn zwischen ihnen ein Abstand von 0.3 m bleiben soll?

Übung 35 (Vinyl). Die Einnahmen einer Schallplattenfirma in Abhängigkeit des Verkaufspreises x (in Fr./Schallplatte) einer Schallplatte können durch den Funktionsterm

$$E(x) = 600x - 30x^2$$

beschrieben werden. Die Kosten in Abhängigkeit des Verkaufspreises pro Platte betragen

$$K(x) = 4320 - 180x.$$

Zeichne in einem geeigneten Koordinatensystem die Graphen der beiden Funktionen E und K. In welcher Bandbreite kann der Preis pro Platte liegen, wenn die Firma ohne Verlust arbeiten will? Welchen Preis soll sie festlegen, damit der Gewinn möglichst gross wird? Beantworte die Fragen mit Hilfe der Graphik!

**Bemerkung.** Die letzte Aufgabe kann auch rechnerisch gelöst werden. Der Gewinn G(x) der Firma lässt sich nämlich mit Hilfe der Funktionen E und K durch den Funktionsterm

$$G(x) = E(x) - K(x)$$

$$= (600x - 30x^{2}) - (4320 - 180x)$$

$$= -30x^{2} + 780x - 4320$$

$$= 750 - 30(x - 13)^{2}$$

beschreiben. Der Graph von G ist eine nach unten geöffnete Parabel. Die x-Koordinate des Scheitels gibt den Preis pro Platte an, den die Firma verlangen muss, um einen möglichst grossen Gewinn zu erzielen. Die y-Koordinate des Scheitels entspricht dem maximalen Gewinn.

Übung 36 (Leistung). Die Abbildung 6 auf Seite 22 zeigt die Kennlinien eines Dieselmotors. Drehmoment, Leistung und Kraftstoffverbrauch (in g Kraftstoff pro kWh) sind als Funktionen der Drehzahl aufgetragen.

Welche der drei Kurven kann man durch Parabeln nähern? Stelle die Gleichungen auf und prüfe die Güte der Näherung durch Berechnung einiger Zwischenwerte. Hint: Wähle bei der Leistung (1000 | 70) als Ursprung und gib die Koordinaten als Gittereinheiten an. Man erhält die Punkte (0 | 2.5), (4 | 11.2), (8 | 13.6). Beim Kraftstoffverbrauch erhält man mit dem Punkt (1000 | 180) als Ursprung in Gittereinheiten die Punkte (0 | 1.8), (4 | 1.2), (8 | 1.7).



Abbildung 6: Kennlinien eines Dieselmotors

# 3.5. Maxima & Minima

Der grösste bzw. kleinste Wert einer Wertemenge heisst Maximum bzw. Minimum. Die quadratische Funktion

$$f(x) = ax^2 + bx + c = a(x - u)^2 + v$$

hat für

$$x = u = -\frac{b}{2a}$$

ein Maximum, falls a < 0, bzw. ein Minimum, falls a > 0. Das Maximum bzw. Minimum ist v = f(u).

Begründung: Der Term  $(x-u)^2$  ist nicht negativ; für a<0 wird  $f(x)\leq v$  und für a>0 wird  $f(x)\geq v$ . Das Gleichheitszeichen gilt aber nur für x=u.

Übung 37 (Extremwerte). Ermittle das Maximum bzw. das Minimum der folgenden Terme für  $x \in \mathbb{R}$ .

$$x^{2} - 8x + 25, 3 - 2x - x^{2}, x^{2} + x - 18, -x^{2} + 6x + 2.$$

Übung 38 (Maximize). Welches Rechteck vom Umfang 160 cm hat den grössten Inhalt?

Übung 39 (Maximize again). Mit 120 m Zaun soll ein möglichst grosses rechteckiges Feld abgegrenzt werden,

- (a) auf offenem Gelände,
- (b) wenn an einer Seite ein Fluss die Grenze bildet.

Wie gross wird jeweils das Feld?

Übung 40 (Maximize once again). Ein Jazzlokal hat bei einem Eintritt von 8 Fr. durchschnittlich 240 Besucher. Würde man den Eintrittspreis um 0.5 Fr., 1 Fr. usw. erhöhen, so ginge die Besucherzahl um 10, 20 usw. zurück. Bei welchem Eintrittspreis sind die Einnahmen am grössten?

Übung 41 (Turbine). Die Leistung einer Turbine hängt von der Drehzahl n ab. Die Gleichung

$$L = 300n - 0.8n^2$$

gibt die Leistung einer Turbine in Watt an. Bei welcher Drehzahl hat diese Turbine die grösste Leistung? Wie hoch ist diese?

Übung 42 (Lampe). Der Schirm einer Stehlampe soll die Form einer quadratischen Säule haben. Für das Gestell stehen 440 cm Draht zur Verfügung.

- (a) Welche Ausmasse hat der Lampenschirm, wenn der Mantel zur dekorativen Gestaltung möglichst gross sein soll? Wie gross ist diese Mantelfläche?
- (b) Wie sind die Ergebnisse, wenn für eine entsprechende Hängelampe die Oberfläche maximal sein soll?

#### 3.6. Rechnerische Lösung von quadratischen Gleichungen

#### 3.6.1. Die reinquadratische Gleichung

#### Definition 3.5: Reinquadratische Gleichung

Eine reinquadratische Gleichung ist eine Gleichung der Form

$$x^2 - c = 0$$

wobei  $c \in \mathbb{R}$ .

#### Satz 3.3: Lösung der reinquadratischen Gleichung

Die reinquadratische Gleichung hat für c<0 keine Lösung, für c=0 die Lösung

x=0und für c>0 die Lösungen

$$x_1 = \sqrt{c}$$
 und  $x_2 = -\sqrt{c}$ 

Beweis. Einsetzübung.

# 3.6.2. Die allgemeine quadratische Gleichung

# Definition 3.6: Quadratische Gleichung

Eine Gleichung heisst quadratisch, wenn sie sich in der Form

$$ax^2 + bx + c = 0$$

schreiben lässt, wobei  $a, b, c \in \mathbb{R}$  und  $a \neq 0$  ist.



# Satz 3.4: Lösungsformel der quadratischen Gleichung

Die quadratische Gleichung  $ax^2 + bx + c = 0$  hat die Lösungen

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Die Anzahl der Lösungen hängt vom Term unter der Wurzel ab.



Beweis. Quadratische Ergänzung.

#### Definition 3.7: Diskriminante

Der Term unter der Wurzel,  $D = b^2 - 4ac$ , heisst Diskriminante.

#### Satz 3.5: Anzahl Lösungen einer quadratischen Gleichung

Die quadratische Gleichung  $ax^2 + bx + c = 0$  hat

- zwei Lösungen, falls  $b^2 4ac > 0$
- eine Lösung, falls  $b^2 4ac = 0$
- keine Lösung, falls  $b^2 4ac < 0$

Beweis. Nach Definition der Wurzel.

Übung 43. Gib je ein Beispiel einer reinquadratischen Gleichung die keine Lösung bzw. zwei Lösungen hat.

Übung 44. Bringe die Gleichung

$$7x^2 = -(33x + 36)$$

in die Form  $ax^2 + bx + c = 0$ , und bestimme die Koeffizienten a, b und c.

Übung 45. Bestimme die Lösungsmenge der Gleichung

$$7x^2 + 33x + 36 = 0$$

Übung 46. Bestimme die Lösungsmenge der Gleichung

$$80x^2 - 166x + 51 = 0$$

Übung 47. Bestimme die Lösungsmenge der Gleichung

$$x^2 - 2x + 1 = 0$$

Übung 48. Bestimme die Lösungsmenge der Gleichung

$$3x^2 - 2x + 1 = 0$$

Übung 49. Bestimme die Lösungsmenge der Gleichung

$$x^2 + 2ex - 3e^2 = 0$$

Übung 50. Bestimme die Lösungsmenge der Gleichung

$$x^2 - 4x + 3 + 2a - a^2 = 0$$

# 3.6.3. Beziehungen zwischen Koeffizienten und Lösungen einer quadratischen Gleichung

# Satz 3.6: von Viëta

Sind  $x_1$  und  $x_2$  Lösungen der Gleichung  $x^2 + px + q = 0$ , so gilt:

$$x_1 + x_2 = -p \quad \text{und} \quad x_1 \cdot x_2 = q$$

Beweis. Übung

#### Satz 3.7: Linearfaktor-Zerlegung

Sind  $x_1$  und  $x_2$  die Lösungen der Gleichung  $x^2 + px + q = 0$  so lässt sich diese stets in Linearfaktoren zerlegen:

$$(x-x_1)(x-x_2) = 0$$

Bemerkung. Dieser Satz eignet sich vor allem zum Kreieren von quadratischen Gleichungen mit vorgegebener Lösung und zum Lösen von quadratischen Gleichungen mit ganzzahligen Lösungen.

Übung 51. Löse mit Zerlegung in Linearfaktoren:

(a) 
$$x^2 - 8x + 15 = 0$$
 (c)  $18x^2 - 9x + 1 = 0$ 

(c) 
$$18x^2 - 9x + 1 = 0$$

(b) 
$$x^2 + 9x + 18 = 0$$

(b) 
$$x^2 + 9x + 18 = 0$$
 (d)  $x^2 - (a+b)x + ab = 0$ 

Übung 52. Gib eine quadratische Gleichung an, die folgende Lösung hat:

(a) 
$$x_1 = 2$$
 und  $x_2 = 3$ . (b)  $x_1 = \frac{1}{2}$  und  $x_2 = \pi$ .



Abbildung 7: Definition der Winkelfunktionen

# 4. Trigonometrische Funktionen

## 4.1. Die Sinusfunktion

Erinnerung. Ein rechtwinkliges Dreieck ist bestimmt durch zwei Seiten oder eine Seite und einen spitzen Winkel. Gleichschenklige Dreiecke, Rechtecke etc. lassen sich auf rechtwinklige Dreiecke zurückführen.

Übung 53 (Sinus). Zeichne zwei rechtwinklige Dreiecke, bei denen ein spitzer Winkel 35° beträgt. Bestimme bei beiden Dreiecken das Verhältnis

$$\frac{\text{Gegenkathete des 35}^{\circ} \text{ Winkels}}{\text{Hypotenuse}} = \frac{g}{h}$$

Als Gegenkathete bezeichnet man diejenige Kathete, welche dem gegebenen Winkel gegenüber liegt.

Weil die beiden Dreiecke ähnlich sind, sind die berechneten Verhältnisse theoretisch gleich gross; und zwar für sämtliche rechtwinkligen Dreiecke mit dem Winkel 35°. Deshalb hat man festgelegt:

#### **Definition 4.1: Sinus**

In einem rechtwinkligen Dreieck heisst das Verhältnis von Gegenkathete zu Hypotenuse Sinus des der Kathete gegenüberligenden Winkels, und man schreibt

$$\sin(\alpha) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} = \frac{g}{h}$$



**Bemerkung.** Für die Bezeichnungen im rechtwinkligen Dreieck wählt man passend h für die Hypotenuse, a für die Ankathete und g für die Gegenkathete.

Übung 54 (Sin-Taste). Berechne mit dem TR  $\sin(35^{\circ})$ .



Übung 55 (Graph Sin). Zeichne den Graphen der Sinusfunktion  $f(x) = \sin(x)$  im Intervall [0°, 90°]. Berechne dazu mit dem Taschenrechner die entsprechenden Funktionswerte. (Wähle Winkel, deren Sinus du exakt bestimmen kannst.)

Übung 56 (Gugel-Hopf). In einem rechtwinkligen Dreieck beträgt die Hypotenuse 12 cm und ein spitzer Winkel 25°. Wie lang sind die Katheten?

Übung 57 (Sonnenkollektor). Ein rechteckiger Sonnenkollektor der Länge 2 m soll mit einem Neigungswinkel von 75° gegenüber der Horizontalen so an eine Hauswand gestellt werden, dass die eine Breite die Wand und die andere den Boden berührt. In welcher Höhe über dem Boden berührt die eine Breite die Hauswand?

Übung 58 (Wetterballon). Ein kugelförmiger Wetterballon mit Durchmesser  $d=16\,\mathrm{m}$  wird unter einem Sehwinkel  $\alpha=22'$  beobachtet. Wie weit ist der Ballon vom Beobachter entfernt?

# 4.2. Die Cosinusfunktion

#### Definition 4.2: Cosinus

In allen rechtwinkligen Dreiecken mit einem spitzen Winkel  $\alpha$  ist das Verhältnis von Ankathete von  $\alpha$  zu Hypotenuse aus Gründen der Ähnlichkeit gleich gross. Man nennt es Cosinus des der Kathete anliegenden Winkels.

$$\cos(\alpha) = \frac{\text{Ankathete}}{\text{Hypotenuse}} = \frac{a}{h}$$

Übung 59 (aha). Zeichne ein Bild zur Cosinus-Definition.

Übung 60 (Graph Cos). Zeichne den Graphen der Funktion

$$f(x) = \cos(x)$$

auf dem Intervall  $[0^{\circ}, 90^{\circ}]$ .

Übung 61 (Leiter). Eine Leiter mit der Länge l = 6.4 m lehnt an einer Wand. Ihr Fuss ist a = 2.8 m von der Wand entfernt. Wie gross ist ihr Neigungswinkel?

**Bemerkung.** Den Winkel in obiger Aufgabe bestimmt man mit der Inversfunktion des Cosinus,  $\cos^{-1}$  oder auch arccos (sprich "Arcus-Cosinus") genannt, indem man sie auf beide Seiten der Gleichung anwendet:

$$\cos(\alpha) = \frac{2.8}{6.4}$$

$$\cos^{-1}(\cos(\alpha)) = \cos^{-1}\left(\frac{2.8}{6.4}\right)$$

$$\alpha = \cos^{-1}\left(\frac{2.8}{6.4}\right) \approx 64.1^{\circ}$$

**Bemerkung.** Wie üblich bei Funktionen steht das " $^{-1}$ " nicht für den Kehrwert, sondern für Inversfunktion von f.

Übung 62 (Bahnstrecke). Eine Bahnstrecke hat auf der Karte  $1 \div 25\,000$  eine Länge von  $s = 18\,\mathrm{mm}$  und fällt unter  $\alpha = 8^{\circ}$ . Wie lang ist sie?

Übung 63 (Erdrotation). Mit welcher Geschwindigkeit bewegen wir uns aufgrund der Erdrotation? Überlege dir zuerst anhand einer Skizze, welche Daten du zur Beantwortung der Frage benötigst, und beschaffe diese, um die Geschwindigkeit konkret zu berechnen.



#### 4.3. Die Tangensfunktion

## Definition 4.3: Tangens

Im rechtwinkligen Dreieck bezeichnet man das Verhältnis der Gegenkathete eines spitzen Winkels  $\alpha$  zur Ankathete als den Tangens des Winkels  $\alpha$ .

$$\tan \alpha = \frac{\text{Gegenkathete}}{\text{Ankathete}} = \frac{g}{a}$$

Übung 64 (geht auch). Zeichne ein Bild zur Tangens-Definition.

Übung 65 (Graph Tan). Zeichne den Graphen der Tangensfunktion

$$f(x) = \tan(x)$$

über dem Intervall  $[0^{\circ}, 90^{\circ}]$ .

Übung 66 (Tanne). Wie hoch ist eine Tanne, wenn ihr Schatten  $s=27.5\,\mathrm{m}$  lang ist und die Sonnenstrahlen unter dem Winkel  $\alpha=38^{\circ}50'$  einfallen?

**Übung 67** (Münster). Unter welchem Erhebungswinkel erscheint die Spitze des Berner Münsters ( $h = 161 \,\mathrm{m}$ ) von einer Stelle aus, die in waagrechter Richtung  $e = 150 \,\mathrm{m}$  vom Fuss des Turmes entfernt ist? (Augenhöhe  $a = 1.5 \,\mathrm{m}$ )

**Übung 68** (Walmdach). Ein Walmdach ist  $a = 12 \,\mathrm{m}$  lang,  $b = 8.8 \,\mathrm{m}$  breit und  $h = 4.8 \,\mathrm{m}$  hoch. Die Firstlänge beträgt  $l = 5.4 \,\mathrm{m}$ . Bestimme durch Zeichung und Rechnung den Neigungswinkel der Dachflächen und der Grate.



Bemerkung. Um sich die Definitionen der drei Winkelfunktionen sin, cos und tan zu verinnerlichen, gibt es zahlreiche Eselsbrücken.

#### 4.4. Das Bogenmass

Um die Graphen der Sinus- und Cosinus-Funktion zu zeichnen verwendet man üblicherweise das sogenannte Bogenmass.



Abbildung 8: Definition des Bogenmass

# Definition 4.4: Bogenmass



Unter dem Bogenmass arc  $\alpha$  des Winkels  $\alpha$  versteht man den Quotienten

$$\operatorname{arc} \alpha = \frac{b}{r}.$$

Die "Einheit" des Bogenmasses heisst Radian, rad.

Bemerkung. Aus Ähnlichkeitsgründen ist das Bogenmass unabhängig von der Wahl des Kreisradius.

Das Bogenmass gibt uns also die Möglichkeit, Winkel als dimensionslose Zahlenwerte darzustellen. Da das Bogenmass unabhängig von der Wahl des Kreisradius ist, denke ich mir jeweils einfach für einen gegebenen Winkel das Bogenmass als Länge des entsprechenden Kreisbogens im Einheitskreis. Weil dort r=1 ist, vereinfacht sich das Bogenmass nämlich zu

$$\operatorname{arc} \alpha = \frac{b}{1} = b.$$

Für das Bogenmass in einem beliebigen Kreis gilt

# Satz 4.1: Bogenlänge

$$b = r \cdot \operatorname{arc} \alpha$$

Beweis. Folgt direkt aus der Definition.

Übung 69 (Rad). Erstelle eine Tabelle für das Bogenmass zu den folgenden Winkel im Gradmass:  $360^{\circ}$ ,  $180^{\circ}$ ,  $90^{\circ}$ ,  $45^{\circ}$ ,  $1^{\circ}$ ,  $\alpha$ .

Der folgende Satz gibt das Rezept an, wie man zu einem Winkel  $\alpha$  im Gradmass das zugehörige Bogenmass arc  $\alpha$  bestimmt.

#### Satz 4.2: Grad in Radian

$$\operatorname{arc}\alpha = \frac{\pi \cdot \alpha}{180^{\circ}}$$

Beweis. Es gilt

$$\operatorname{arc} \alpha = \frac{b}{r}$$

wobei die Länge des Bogens b abhängig vom Winkel  $\alpha$  ist und den Bruchteil  $\frac{\alpha}{360^{\circ}}$  des ganzen Kreisumfangs  $2\pi r$  ausmacht. Also

$$\operatorname{arc} \alpha = \frac{2\pi r \cdot \frac{\alpha}{360^{\circ}}}{r} = \frac{2\pi \cdot \alpha}{360^{\circ}} = \frac{\pi \cdot \alpha}{180^{\circ}}$$

**Bemerkung.** Der Taschenrechner kann Winkel unter anderem im Bogen- oder Gradmass darstellen. Setzt man im Mode die Variable Angle auf "Rad", so interpretiert er Winkel im Bogenmass (Radian), wählt man "Deg", so erwartet er Winkel im Gradmass (Degree).

Übung 70 (TR-Mode). Zeichne die Graphen der Sinus- und Cosinus-Funktion. Wähle auf der x-Achse die Winkel im Bogenmass.

Aus der vorigen Aufgabe lässt sich folgender Satz ablesen:

#### Satz 4.3: Sinus-Cosinus-Beziehung

Die Graphen der Sinus- und Cosinus-Funktion sind zueinander achsialsymmetrisch bezüglich der Parallelen zur y-Achse durch den Punkt  $(\frac{\pi}{4} | 0)$ .

Es gibt offenbar zu jedem Sinus-Wert einen gleich grossen Cosinus-Wert und umgekehrt. Diese Tatsache lässt sich durch folgende Formel ausdrücken:

$$\sin(\alpha) = \cos(90^{\circ} - \alpha)$$
$$\cos(\alpha) = \sin(90^{\circ} + \alpha)$$

Beweis der beiden vorherigen Sätze. Nach Definition

Wir wollen die beiden eben kennengelernten Winkelfunktionen betrachten und stellen sie als Funktion in Abhängigkeit des Winkels dar. Dabei kann man in natürlicher Weise die Funktionen für beliebige Winkel definieren. Die Graphen von

$$f(\alpha) = \sin(\alpha)$$

und

$$g(\alpha) = \cos(\alpha)$$

sehen wie folgt aus:





Abbildung 9: Graph von  $\sin(x)$ 



Abbildung 10: Graph von  $\cos(x)$ 



Abbildung 11: Graphen der Winkelfunktionen



# 4.5. Zusammenhänge zwischen Sinus, Cosinus und Tangens

Wir betrachten ein rechtwinkliges Dreieck mit Hypotenuse h. Aus der Figur erkennt man:

### Satz 4.4: Beziehungen zwischen den Winkelfunktionen

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \tag{2}$$

Beweis. Übung

**Bemerkung.** Anstelle von  $(\sin(\alpha))^2$  schreibt man kürzer  $\sin^2(\alpha)$  (sprich:,,Sinusquadrat Alpha"); dito für die anderen Winkelfunktionen.

Bemerkung. Hat man die Sinus-Werte beliebiger Winkel, so lassen sich daraus auch die Cosinus- und Tangens-Werte berechnen. Man benutzt dazu den obigen Satz.

Übung 71 (Kopfrechnen). Es sei  $\sin(\alpha) = 0.6$ . Berechne mit Hilfe der Formeln aus Satz  $4\cos(\alpha)$  und  $\tan(\alpha)$ . (ohne TR)

**Übung 72** (exakt). Berechne die Werte der trigonometrischen Funktionen für die Winkel  $30^{\circ}$ ,  $45^{\circ}$  und  $60^{\circ}$  mit Hilfe der Definitionen. Gib die Werte als Brüche an. (ohne TR)

Bemerkung. Auf diese Weise lassen sich die trigonometrischen Funktionswerte nur für spezielle Winkel berechnen. Zur Berechnung der Sinus-Werte beliebiger Winkel, kann man folgende Formel verwenden, die wir später herleiten werden (im SF AM):

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

#### Bemerkung.

- n! bedeutet  $1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$ , sprich "n Fakultät".
- Die Formel gilt nur, wenn x im Bogenmass angegeben wird.

Übung 73 (Sin-Reihe). Berechne mit der oben angegebenen Formel sin(45°) näherungsweise mit den ersten vier Summanden, und vergleiche das Resultat mit dem Wert aus Übung 72.

Übung 74 (umschreiben). Schreibe  $1 + \tan^2(\alpha)$  als Term mit Cosinus-Werten.

Übung 75 (vereinfachen). Vereinfache

(a) 
$$tan(\alpha) \cdot cos(\alpha)$$

(d) 
$$\sqrt{1 + \cos(\alpha)} \cdot \sqrt{1 - \cos(\alpha)}$$

(b) 
$$\sin^3(\alpha) + \sin(\alpha) \cdot \cos^2(\alpha)$$

(e) 
$$\sin^4(\alpha) - \cos^4(\alpha)$$

(c) 
$$\frac{\sin(\alpha)}{\tan(\alpha)}$$

(f) 
$$\frac{1}{\cos^2(\alpha)} - 1$$

# 4.6. Überblick über die Berechnung des rechtwinkligen Dreiecks

Übung 76 (Zahnradbahn). Eine Zahnradbahn steigt auf einer Strecke  $s=1350\,\mathrm{m}$  mit  $13.5\,\%$ . Wie gross ist der Neigungswinkel und der Höhenunterschied?

Übung 77 (Fluss). Um die Breite eines Flusses zu bestimmen, hat man am Ufer die Standlinie  $\overline{AB} = 85 \,\mathrm{m}$  abgesteckt. Der A gegenüberliegende Punkt C des anderen Ufers wird in B unter einem Winkel von  $\alpha = 53^{\circ}16'$  gepeilt.

Übung 78 (gleichschenklig). In einem gleichschenkligen Dreieck ist  $a=65.4\,\mathrm{m}$  und  $c=54.7\,\mathrm{m}$ . Berechne die fehlenden Winkel sowie den Flächeninhalt.

Übung 79 (n-Eck). Berechne den Umfang eines regelmässigen n-Ecks, dessen Umkreisradius r=0.5 beträgt für

- (a) ein 4-Eck
- (c) ein 100-Eck
- (b) ein 10-Eck+
- (d) ein 1000-Eck

Welcher Zahl nähert sich der Umfang für ein "sehr sehr viel-Eck".

### 4.7. Der Sinussatz

### Satz 4.5: Sinussatz



In einem beliebigen Dreieck gilt

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$$

In Worten: Im Dreieck ist das Verhältnis jeder Seite zum Sinus des gegenüberliegenden Winkels eine Konstante.

Man erhält diese schöne Beziehung, wenn man den Flächeninhalt eines Dreiecks bestimmen will, ohne dabei die Höhe in der Flächenformel auftauchen zu lassen.

Beweis. Für ein beliebiges Dreieck gilt:

$$F = \frac{1}{2}c \cdot h_c$$

Nun wollen wir  $h_c$  eliminieren. Wir finden

$$\sin(180^{\circ} - \alpha) = \frac{h_c}{b}$$

also  $h_c = b \cdot \sin(180^\circ - \alpha)$  oder  $h_c = b \cdot \sin(\alpha)$ . Letzteres ist klar, wenn man sich den Graphen des Sinus vor Augen führt. Wir können also nun

$$F = \frac{1}{2}c \cdot h_c = \frac{1}{2}c \cdot b\sin(\alpha) = \frac{1}{2}bc\sin(\alpha)$$



Abbildung 12: Illustration zum Sinussatz

schreiben. Durch zyklische Vertauschung erhält man

$$F = \frac{1}{2}bc\sin(\alpha) \tag{3}$$

$$F = \frac{1}{2}bc\sin(\alpha) \tag{3}$$

$$F = \frac{1}{2}ab\sin(\gamma) \tag{4}$$

$$F = \frac{1}{2}ac\sin(\beta) \tag{5}$$

$$F = \frac{1}{2}ac\sin(\beta) \tag{5}$$

Setzt man nun z.B. (3)=(4), hat man

$$c\sin(\alpha) = a\sin(\gamma),$$

woraus unmittelbar

$$\frac{a}{\sin(\alpha)} = \frac{c}{\sin(\gamma)}$$

folgt. Durch Kombination von (3)=(5) und (4)=(5) erhält man durch Gleichsetzen die Behauptung.

Man findet ferner folgende Überraschung.

### **Satz 4.6**

Diese Konstante ist gleich dem Umkreisdurchmesser des Dreiecks

$$\frac{a}{\sin \alpha} = 2r$$

Beweis. Der Beweis ist eine Übungsaufgabe.

### 4.8. Der Cosinussatz

# Satz 4.7: Cosinussatz



Abbildung 13: Veranschaulichung zum Beweis des Cosinussatz



In einem beliebigen Dreieck gilt

$$a^2 = b^2 + c^2 - 2bc\cos\alpha$$

Beweis. Aus einem beliebigen Dreieck zieht man die Beziehungen

$$\cos(\alpha) = \frac{q}{b} \tag{6}$$

$$b^2 = q^2 + h_c^2 \tag{7}$$

$$b^2 = q^2 + h_c^2 (7)$$

$$a^{2} = h_{c}^{2} + (c - q)^{2}, (8)$$

löst (7) und (8) nach  $h_c^2$  auf und setzt gleich:

$$b^2 - q^2 = a^2 - c^2 + 2cq - q^2,$$

also

$$b^2 = a^2 - c^2 + 2cq.$$

Aus (6) folgt  $q = b\cos(\alpha)$  und oben eingesetzt

$$b^2 = a^2 - c^2 + 2cb\cos(\alpha).$$

Daraus folgt die Behauptung.

Übung 80 (Allgemeiner Pythagoras). Welche Beziehungen entstehen durch zyklische Vertauschung beim Cosinussatz? Warum kann man den Cosinussatz als "Verallgemeinerter Pythagoreischer Lehrsatz" bezeichnen?

Übung 81 (Konstruktion). In den folgenden Aufgaben ist vor der Berechnung der fehlenden Dreiecksstücke  $(a,b,c,\alpha,\beta,\gamma,A,r)$  eine Konstruktion angebracht, um die Anzahl der Lösungen festzustellen.

(a) 
$$a = 67.4$$
,  $b = 49.8$ ,  $c = 77.6$  (d)  $b = 5$ ,  $c = 4$ ,  $\beta = 70^{\circ}$ 

(b) 
$$a = 3.18, b = 3.74, \gamma = 104.3^{\circ}$$
 (e)  $b = 23.2, c = 36.7, \beta = 36.4^{\circ}$ 

(c) 
$$b = 5.33$$
,  $\alpha = 68.4^{\circ}$ ,  $\gamma = 35.3^{\circ}$  (f)  $a = 7$ ,  $b = 1$ ,  $\beta = 10^{\circ}$ 

Verallgemeinere die verschiedenen Fälle und fasse die Ergebnisse in einer Tabelle zusammen.

Übung 82 (Umkreis & Fläche). Zeige, dass sich für jedes Dreieck

(a) der Umkreisradius nach der Formel

$$r = \frac{abc}{4A}$$

(b) der Flächeninhalt nach der Formel

$$A = \frac{a^2 \sin \beta \sin \gamma}{2 \sin \alpha}$$

berechnen lässt. Welche Formeln entstehen durch zyklische Vertauschung?

Übung 83 (Winkel). In einem Dreieck gilt

$$\sin \alpha \div \sin \beta \div \sin \gamma = \sqrt{3} \div \sqrt{4} \div \sqrt{5}$$

Wie gross sind die Winkel?

Übung 84 (Stollen). Zwei waagrechte Bergwerkstollen gehen von einem Punkt A aus unter dem Winkel 75°. Sie haben die Länge  $AB = 325 \,\mathrm{m}$  bzw.  $AC = 275 \,\mathrm{m}$ . Wie lang wird ein Verbindungsstollen von B nach C? Unter welchem Winkel gegen BA muss man ihn von B aus vorantreiben?

Übung 85 (illegale, digitale, radikale Fans). Zwei Funkpeilstationen der Swisscom liegen 12.8 km voneinander entfernt, wobei  $F_1$  sich genau nördlich von  $F_2$  befindet. Ein Piratensender wird von  $F_1$  aus unter 284.4° und von  $F_2$  aus unter 313.2° angepeilt. Die Winkel werden von Osten aus im positiven Sinn gemessen. In welcher Entfernung von  $F_1$  und  $F_2$  liegt der Sender?

Übung 86 (Schiff). Von einer Küstenstation aus wird ein Schiff in 28 km Entfernung in Richtung N35.2°O gesichtet. 30 Minuten später erscheint das Schiff in Richtung N12.3°W, 19.4 km entfernt. Welchen Kurs nimmt das Schiff? Wie gross ist seine durchschnittliche Geschwindigkeit.

Übung 87 (Blockhouses). The angle subtended by 2 blockhouses at a certain point is 35° and on walking 5 miles towards one the angle is found to be 58.5°; what is then the distance of the person from the second?

Übung 88 (Vermessung der Welt). In der Landvermessung wird manchmal noch die folgende Methode zur Höhenbestimmung benutzt: Messung einer horizontalen Standlinie AB (326.7 m), der Horizontalwinkel  $\alpha$  und  $\beta$  (83.1°, 64.5°), der Höhenwinkel  $\gamma$  und  $\delta$  (26.05°, 23.93°). Der letzte Winkel dient zur Kontrolle. Wie hoch liegt P über C? Vergleichen Sie die beiden Ergebnisse miteinander.



Abbildung 14: Höhenprofil zu Übung 88 von Seite 41



Abbildung 15: Graph eines EKG

# 4.9. Anwendungen



Bei vielen Anwendungen kommen periodisch sich wiederholende Erscheinungen vor; für ihre mathematische Beschreibung sind die trigonometrischen Funktionen zuständig. Figur 15 auf Seite 42 zeigt ein typisches EKG, das elektrische Impulse des Herzens anzeigt.

Übung 89 (EKG). Jedes kleine Quadrat in der Figur entspricht 0.04s, jedes grosse Quadrat also 0.2s. Wie oft schlägt demnach das Herz der Versuchsperson in einer Minute?

Wir haben bereits die elementaren Funktionen sin, cos und tan kennengelemt; sie sind periodisch mit der Periode  $2\pi$  bzw.  $\pi$ .

Übung 90 (Modifizierte Wellen). Zeichne in dasselbe Koordinatensystem die Graphen der Funktionen  $x\mapsto$ 

- (a)  $\sin(2x), \sin(x/2),$
- (b)  $2\cos x, 0.5\cos x,$

- (c)  $\sin(x + \pi/2), \sin(x \pi/4),$
- (d)  $2\cos(x + \pi/3), 3\cos(x \pi/2)$ .

Übung 91 (Superposition). Zeichne den Graphen der Funktion  $f: x \mapsto$ 

- (a)  $\sin x + \sin 2x$ , (c)  $x + \sin x$ ,
- (b)  $2\sin x \cos 2x$ , (d)  $\tan x + 1/\tan x$ .

Hinweis: Zerlege den Funktionsterm in zwei Teile:  $f(x) = f_1(x) + f_2(x)$  und zeichne zunächst die Graphen von  $f_1$  und  $f_2$ . Addiere dann die Ordinaten der Punkte mit derselben Abszisse (Superposition, Überlagerung).

Übung 92 (Turn up the Heat). Eine Fabrik, die 1000x Heizkessel herstellt, rechnet damit, dass die Kosten

$$K(x) = 10000x(200 + 20\sin(\frac{\pi}{12}x))$$

Franken betragen. Wie hoch sind die Kosten bei der Produktion von 18000 Kessel? Wie viele Kessel werden hergestellt, wenn die Kosten 4200000 betragen?

Übung 93 (brrrr). A mathematical model for the temperature in Fairbanks (Alaska) is

$$T(x) = 21 \sin \left[ \frac{2\pi}{365} (x - 101) \right] - 4,$$

where T(x) is the temperature in degrees Celsius on day x, with x = 0 corresponding to January 1 and x = 365 corresponding to December 31. Calculate the temperature on January 1, March 1, May 22, July 5, December 31.

Übung 94 (Stausee). Abbildung 16 auf Seite 44 zeigt den Füllungsgrad der Schweizer Stauseen in Prozent (100% entsprechen 8390 GWh) für den Winter 1990/91 und die Schwankungsbreite der hydrologischen Jahre 1971 bis 1989.

Ermittle den Funktionsterm, der in Abhängigkeit der Zeit t in Monaten den ungefähren Füllungsgrad in % angibt.

Übung 95 (Biorhythmus). Nach der Theorie der Biorhythmen sollen die Leistungen und das Verhalten eines Menschen in wellenförmigen Schwingungen verlaufen. Dabei unterscheidet man den physischen, den emotionalen und den intellektuellen Rhythmus. Der physische Rhythmus bezieht sich auf die körperliche Leistung und Ausdauer, seine Periode beträgt 23 Tage. Der emotionale Rhythmus wird mit der Seele, dem Wohlbefinden und der Lust und Laune in Verbindung gebracht. Seine Periode beträgt 28 Tage. Der intellektuelle Rhythmus bezieht sich auf den Verstand, das Erkenntnis- und Denkvermögen. Seine Periode beträgt 33 Tage. Alle Rhythmen können durch Sinus- oder Cosinuskurven beschrieben werden. Sie beginnen mit der Geburt. Heinz hat am 1. Januar 1993 bei allen Rhythmen den Höchststand erreicht.



Abbildung 16: Füllgrad Schweizer Stauseen



Abbildung 17: Duplo Telemetrie

(a) Gib einen Funktionsterm der Art

$$E(t) = a\cos(bt)$$

für den emotionalen Rhythmus so an, dass Werte von -10 bis 10 angenommen werden (t in Tagen). Wie fühlt sich Heinz am 13. Mai?

(b) Gib einen Funktionsterm der Art

$$I(t) = a + b\cos(ct)$$

für den intellektuellen Rhythmus so an, dass Werte von 0 bis 100 angenommen werden (t in Tagen). Welchen Wert erreicht Heinz am 22. Mai?

Übung 96 (ArcSin). Die Sinusfunktion ist im Intervall  $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$  monoton wachsend; sie hat also für dieses Intervall eine Umkehrfunktion. Ihr Name ist Arcus-Sinus und wird mit arcsin oder sin<sup>-1</sup> bezeichnet.

$$f^{-1}(x) = \arcsin(x)$$

Überlege dir, welchen Wertebereich die Funktion hat und zeichne den Graphen von arcsin durch Spiegelung des Graphen von sin an der 1. Winkelhalbierenden. Verfahre ebenso für cos und tan.

# 5. Potenzfunktionen

### 5.1. Potenzen mit rationalen Exponenten

### 5.1.1. Rückblick

Wir wollen unsere Rechenregeln für Potenzen erweitern, um Potenzgesetze für reelle Zahlen vollumfänglich verstehen und interpretieren zu können. Wir brauchen dazu folgende, bereits bekannte, Regeln und Begriffe.



Erinnerung. Sie kennen die Potenzgesetze. In Kurzform lauten sie:

$$a^n \cdot a^m = a^{n+m} \tag{9}$$

$$a^n \cdot b^n = (ab)^n \tag{10}$$

$$(a^n)^m = a^{n \cdot m} \tag{11}$$

$$a^{-n} = \frac{1}{a^n}$$
 (12)  
 $a^0 = 1$  (13)

$$a^0 = 1 \tag{13}$$



Bisher waren die Exponenten m und n jeweils natürliche Zahlen. Im nächsten Abschnitt werden wir sehen, dass auch rationale Zahlen Sinn machen.

Weiter ruft man sich die Definition der n-ten Wurzel einer Zahl in Erinnerung: Die n-te Wurzel aus einer positiven Zahl a, ist diejenige positive Zahl, deren n-te Potenz a beträgt. Man schreibt dafür  $\sqrt[n]{a}$ .

Motivation. Die Potenzgesetze funktionieren bis anhin tadellos, wenn m und n ganze Zahlen sind. Was ist, wenn man im Exponenten rationale Zahlen zulässt? Ist  $3^{\frac{1}{2}}$  eine Zahl? Wenn ja, welche?

Sollen die Potenzgesetze weiterhin gelten, dann ist  $3^{\frac{1}{2}} \cdot 3^{\frac{1}{2}} = 3^{\frac{1}{2} + \frac{1}{2}} = 3^1 = 3$ . Also  $3^{\frac{1}{2}} \cdot 3^{\frac{1}{2}} = 3$ . Wir wissen, dass  $\sqrt{3} \cdot \sqrt{3} = 3$  und legen deshalb fest:

$$3^{\frac{1}{2}} = \sqrt{3}$$
.

Übung 97 (Wurzeln). Bestimme nach obigem Muster die Wurzeldarstellung von  $8^{\frac{1}{3}}$ . Betrachte dazu  $8^{\frac{1}{3}}$  dreimal mit sich selbst multipliziert.

# 5.1.2. Erweiterung der Potenzgesetze

Es zeigt sich, dass jede Wurzel als Potenz mit rationalem Exponenten dargestellt werden kann. Man erweitert die Potenzgesetze deshalb intuitiv auf rationale Exponenten und definiert:

### Definition 5.1: Wurzeln als Potenz

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

Man kann also jede Wurzel in eine Potenz verwandeln und dann mit den bekannten Potenzgesetzen rechnen. Dies ist beim Umformen und Vereinfachen von Wurzeln enorm hilfreich. Wir fassen unsere Überlegungen in einem Satz zusammen.

Weil wir mit Exponenten wie mit rationalen Zahlen rechnen können gilt allgemein

### Satz 5.1: Potenzgesetz V

$$a^{\frac{n}{m}} = \sqrt[m]{a^n}$$

Beweis. Schreibübung.

Übung 98 (Potenzgesetze). Schreibe mit einer einzigen Wurzel.

(a) 
$$\sqrt[3]{a\sqrt{a}}$$
 (b)  $\sqrt[4]{a\sqrt[3]{a\sqrt{a}}}$  (c)  $\sqrt[n]{\sqrt[n]{a}}$  (d)  $\sqrt[n]{a} \cdot \sqrt[n]{a}$ 

Übung 99 (TR). Bestimme mit dem Taschenrechner folgende Werte

(a) 
$$\sqrt[3]{10}$$
 (b)  $\sqrt[6]{100}$  (c)  $\sqrt[1000]{3}$  (d)  $\sqrt[10^6]{3}$ 

Übung 100 (Gewicht). Berechnen Sie die Kraft, mit der ein Mensch der Masse 50 kg von der Erde angezogen wird.

(a) am Nordpol (b) am Äquator

Übung 101. Rückblick. Berechnen Sie die Inversfunktion von  $f(x) = \frac{1}{x}$ .

Übung 102 (Wurzel x). Führe mit dem TR für eine beliebige, positive Zahl folgendes Verfahren mehrmals durch:

- $\bullet$  x eintippen
- $\sqrt{x}$  berechnen
- $\bullet$  das Resultat als neues x nehmen

Gegen welchen Wert strebt x, wenn man diese Schleife oft ausführt?

### 5.1.3. Potenzen mit irrationalen Exponenten

Es ist möglich, Potenzen mit irrationalen Exponenten zu definieren. Man tut dies mit einer Streckenschachtelung im Exponenten. Ohne Beweis akzeptieren wir folgenden

### Satz 5.2: Irrationale Exponenten

lle Potenzgesetze gelten auch für Potenzen mit irrationalen Exponenten.

Damit ist das Kapitel Potenzgesetze abgeschlossen; für das gymnasiale Momentum.

Übung 103 (ohne TR). Bestimme ohne TR — exakt oder näherungsweise — folgende Werte.

(a)  $\sqrt{10^6}$ 

(b)  $\sqrt[\pi]{10^6}$ 

(c)  $3^{\frac{\pi}{6.28}}$  (d)  $64^{\frac{1}{\pi}}$  (e)  $\pi^{\pi}$  (e)  $\pi^{0.5}$ 

### 5.2. Potenzfunktionen

### Definition 5.2: Potenzfunktion

Funktionen der Form

$$f(x) = x^n \quad (n \in \mathbb{Z})$$

heissen Potenzfunktionen.

Übung 104 (Graphen). Zeichne in dasselbe Koordinatensystem die Graphen der Funktionen  $x \mapsto$ 

(a) 
$$x^2, x^4, x^{-2}, x^{-4}$$
 (b)  $x^3, x^5, x^{-1}, x^{-3}$ .

**Bemerkung.** Die Graphen der Funktionen  $f(x) = x^n$ , für n gerade, sind achsensymmetrisch zur y-Achse, da für gerade Exponenten  $(-x)^n = x^n$ . Für n ungerade, sind die Graphen punktsymmetrisch zum Ursprung des Koordinatensystems, da  $(-x)^n = -x^n$ .

**Bemerkung.** Potenzfunktionen mit negativen Exponenten n sind für x=0 nicht definiert. Ihre Graphen bestehen aus zwei Asten, die für gerade Exponenten symmetrisch zur y-Achse, für ungerade Exponenten symmetrisch zum Ursprung liegen. Für x-Werte von hinreichend grossem Betrag werden die Funktionswerte dem Betrage nach beliebig klein, d.h. der Graph kommt für solche x-Werte der x-Achse beliebig nahe. Man sagt: Die x-Achse ist Asymptote des Graphen. Für hinreichend nahe bei 0 gelegene x-Werte werden die Funktionswerte dem Betrage nach beliebig gross, d.h. der Graph kommt für solche x-Werte der y-Achse beliebig nahe. Die y-Achse ist ebenfalls eine Asymptote des Graphen. Die undefinierte Stelle x = 0 nennen wir *Polstelle*.

### 5.3. Wurzelfunktionen

Übung 105 (Graphen 2). Zeichne für  $x \in \mathbb{R}^+$  in dasselbe Koordinatensystem die Graphen der Funktionen

(a) 
$$f(x) = x^2$$
 und  $g(x) = x^{\frac{1}{2}} = \sqrt[2]{x}$  (b)  $f(x) = x^3$  und  $g(x) = x^{\frac{1}{3}} = \sqrt[3]{x}$ 

(b) 
$$f(x) = x^3 \text{ und } g(x) = x^{\frac{1}{3}} = \sqrt[3]{x}$$

### Definition 5.3: Wurzelfunktion

Funktionen der Form

$$f(x) = x^{\frac{1}{n}} = \sqrt[n]{x} \quad (n \in \mathbb{Z} \setminus \{0\})$$

### heissen Wurzelfunktionen.

Die Definitionsmenge der Wurzelfunktionen ist  $\mathbb{R}_0^+$ . Sie sind für  $\mathbb{R}_0^+$  die Umkehrfunktionen von  $f(x) = x^n$ . Ihre Graphen entstehen deswegen aus den Graphen von f durch Spiegelung an der 1. Winkelhalbierenden.

**Übung 106** (Wurzeln). Ermittle den Parameter a so, dass der Graph von  $f(x) = x^a$  durch den Punkt

(a) 
$$P(2|512)$$
 (b)  $P(243|3)$  (c)  $P(-1|-1)$  geht.

Übung 107 (Graphen 3). Zeichne den Graphen der Quadratwurzelfunktion

$$f(x) = \sqrt{x}$$

für 0 < x < 10 und die Parallele zur x-Achse durch den Punkt  $P(0 \mid 8)$ . Schneidet die Kurve die Parallele, wenn man sie nach rechts fortgesetzt denkt? Wo?

Übung 108 (Wind). Mit zunehmender Höhe nimmt die Windgeschwindigkeit zu. Für windschwache Gebiete kann man die gegenseitige Abhängigkeit durch die Funktion

$$f(x) = 0.2\sqrt{x} + 1$$

beschreiben. Dabei ist x die Masszahl der in Meter gemessenen Höhe. Der Funktionsterm gibt die in m/s gemessene Windgeschwindigkeit an. Zeichne den Graphen der Funktion für 0 < x < 600. In welcher Höhe erreicht die Windgeschwindigkeit  $7 \, \text{m/s}$ ?

Übung 109 (Verschieben). Zeichne den Graphen der Funktion

$$f(x) = \frac{1}{8}x^3.$$

Verschiebe den Graphen

- (a) um 3 Einheiten nach oben,
- (b) um 2 Einheiten nach rechts,
- (c) um 2 Einheiten nach links und anschliessend um 1 Einheit nach unten.

Gib jeweils die Gleichung der neuen Kurve an.

Übung 110 (Schnittpunkte). Zeichne die Graphen der Funktionen

$$f(x) = x^{-1} - 2$$
 und  $g(x) = 4 - x^{-1}$ 

in ein Koordinatensystem.

- (a) Wo schneiden die Graphen die x-Achse?
- (b) Wo schneiden sich die beiden Graphen?

Übung 111 (Gebiete). Zeichne für x > 0 die Graphen der Funktionen

$$f(x) = 2x^{0.5}$$
  $g(x) = 0.5x^{1.5}$   $h(x) = 2x^{-2}$ 

in ein Koordinatensystem.

- (a) Berechne die Schnittpunkte von je zwei dieser drei Graphen.
- (b) In wie viel Gebiete wird die Ebene durch diese drei Graphen geteilt?
- (c) Beschreibe dasjenige Gebiet durch Ungleichungen, in dem P(2|2) liegt.

Übung 112 (Konsum). Die Konsumausgaben C eines Haushalts hängen vom Haushaltseinkommen Y in folgender Weise ab:

$$C(Y) = 80\sqrt{0.2Y + 36},$$

Y und C(Y) in Fr./Monat.

- (a) Ermittle die mathematische Definitionsmenge der Konsumfunktion. Entspricht diese Menge der ökonomischen Definitionsmenge?
- (b) Wie hoch ist das Existenzminimum?
- (c) Von welchem Monatseinkommen an wird die monatliche Sparsumme positiv?
- (d) Bei welchem Monatseinkommen verbraucht der Haushalt für Konsumzwecke genau 90% seines Einkommens? (Sparquote ist 10%)

Übung 113 (Angebot & Nachfrage). Die Angebots- und Nachfragefunktion für ein wirtschaftliches Gut seien gegeben durch

$$p_A(x) = 2x^{\frac{1}{2}}, \quad p_N(x) = 4 + \frac{2}{x},$$

 $0\,\mathrm{ME} < x\,\mathrm{ME} < 8\,\mathrm{ME}$ , wobei die Preise in  $^{GE}/\mathrm{ME}$  angegeben sind. Stelle die Situation graphisch dar und lies die Gleichgewichtsmenge, den Marktpreis und den Gesamterlös ab.

# 6. Exponentialfunktionen

### 6.1. Einleitung

Seit der Pandemie von SARS2 CoV19 im Jahr 2020 ist der Begriff des *exponentiellen Wachstums* in aller Munde. Ein Beispiel aus einer Tageszeitung — dem Tagesspiegel Ausgabe vom 12.3.21 — fand ich hier: Wie exponentielles Wachstum unser Leben beeinflusst Dieser wichtige Typ Funktion soll nun in diesem Kapitel ergründet werden.



Beispiel 6. Ein Schüler verbreitet zu Beginn der grossen Pause im Gymnasium Lerbermatt ein Gerücht. Alle Minuten erzählt ein Wissender einem Nicht-Eingeweihten das Gerücht. Wie lange dauert es, bis alle Schüler des Gymnasiums über das Gerücht in Kenntnis gesetzt worden sind?

Bei den Potenzfunktionen sind die Exponenten immer Konstanten, bei den Exponentialfunktionen ist die Basis konstant und der Exponent variabel.

# **Definition 6.1: Exponential funktion**

Eine Funktion der Form

$$f(x) = b^x$$

mit  $b \in \mathbb{R}^+$  heisst Exponential funktion zur Basis b.

Beispiel 7. Anwendungen, die durch Exponentialfunktionen beschrieben werden sind:

- Ausbreitung von Krankheiten/Epidemien
- Radioaktiver Zerfall
- Zellvermehrung

### 6.2. Graphen

Übung 114 (Graphen). Zeichne in dasselbe Koordinatensystem die Graphen der Funktionen

(a) 
$$2^x$$
,  $3^x$ ,  $2.7^x$  (b)  $4^x$ ,  $\left(\frac{1}{4}\right)^x$ ,  $10^x$ 

Übung 115 (Potenz vs Exponent). Vergleiche das Verhalten (insbesondere das Wachstum) der beiden Funktionen

$$p(x) = x^2 \quad \text{und} \quad e(x) = 2^x$$

Bemerkung. Der Graph der Exponentialfunktionen

$$f(x) = b^x$$

liegt oberhalb der x-Achse und geht durch den Punkt  $(0 \mid 1)$ . Für b > 1 ist der Graph steigend (f monoton wachsend) und die negative x-Achse Asymptote; für 0 < b < 1 ist der Graph fallend (f monoton fallend) und die positive x-Achse Asymptote.



Abbildung 18: Joke During SARS2-CoV19 Lockdown in 2020

### Satz 6.1: Wachstum- & Zerfall

Die Kurven mit den Gleichungen  $y=b^x$  und  $y=\left(\frac{1}{b}\right)^x$  liegen symmetrisch zueinander bezüglich der y-Achse.

Beweis. Übung.

Übung 116 (durchschnittliche Änderung). Berechne für die Funktionen der Übung 114 die durchschnittlichen Steigungen in den Intervallen [0,1] und [-1,0].

Übung 117 (Verschieben). Zeichne den Graphen von  $f(x) = 2^x$  in ein Koordinatensystem.

- (a) Verschiebe den Graphen in positiver x-Richtung um 3 Einheiten.
- (b) Spiegele den Graphen an der x-Achse.
- (c) Verschiebe den Graphen in negativer y-Richtung um 4 Einheiten.
- (d) Spiegele den Graphen an der y-Achse.
- (e) Spiegele den Graphen am Ursprung des Koordinatensystems.

Geben Sie jeweils die Gleichung der Bildkurve an.

Übung 118 (Exponent). Es sei

$$f(x) = b^x$$
 und  $g(x) = a \cdot b^x$ .

Der Punkt P liegt auf dem Graphen von f. Berechne b für

- (a)  $P = (1.5 \mid 27)$
- (b) P = (4 | 9)

Die Punkte R und Q liegen auf dem Graphen von g. Berechne a und b für

- (c) R(0|2), Q(2|18)
- (d)  $R(-2|20), Q=(3|\frac{5}{8})$

### 6.3. Wachstum und Zerfall

Die Exponentialfunktionen spielen bei der Beschreibung von zeitabhängigen Wachstumsund Zerfallserscheinungen eine ausserordentlich wichtige Rolle.

# Definition 6.2: Exponentialfunktion allgemein

Ist t die Masszahl der Zeit, so bezeichnet man die Funktion

$$f(t) = ab^t$$

für b>1 als exponentielle Wachstumsfunktion, für 0< b<1 als exponentielle Zerfallsfunktion.

**Bemerkung.** Zum Zeitpunkt t = 0 gilt

$$f(0) = ab^0 = a.$$

Also ist (0|a) der Schnittpunkt mit der y-Achse, und man nennt a den Anfangswert von f. Der Parameter b ist ein Mass für das Wachstum bzw. den Zerfall und wird deshalb Wachstums- bzw. Zerfallsfaktor genannt.

Übung 119 (Bakterien). Bei einer Bakterienkultur ohne Raum- und Nahrungsmangel wächst die Individuenzahl exponentiell. Um 8 Uhr waren es 2300 und um 12 Uhr 36800 Individuen.

- (a) Nimm 2300 als Anfangswert an und ermittle den Wachstumsfaktor b. Wie lautet demnach die entsprechende Wachstumsfunktion?
- (b) Welches ist die Individuenzahl um 9 Uhr, um 11 Uhr, um 13.30 Uhr?

Übung 120 (Wald). Ein Waldbestand, in dem kein Holz geschlagen wird, wächst exponentiell. Er beträgt heute 72 342 m<sup>3</sup>, vor zwölf Jahren betrug er 48 228 m<sup>3</sup>.

- (a) Wie hoch war der Waldbestand vor fünf Jahren?
- (b) Wie hoch wird er heute in sieben Jahren sein?

Übung 121 (Bakterienkultur). In einer Bakterienkultur ist

$$f(t) = 10^4 \cdot 2^{\frac{t}{2}}$$

die Anzahl der Bakterien zum Zeitpunkt t. In welcher Zeitspanne  $\Delta t$  verdoppelt, vervierfacht, verachtfacht sich die Anzahl?

**Bemerkung.** In der Praxis werden viele Wachstumsprozesse dadurch beschrieben, dass man neben dem Startwert a noch die jährliche Zunahme der betrachteten Grösse in Prozenten angibt. Man denke einfach an die wohlbekannte Zinseszinsrechnung.

**Beispiel 8.** Es sei f(0) = a = 10000 die Anzahl der Einwohner einer Stadt, deren jährliches Wachstum 2% beträgt. Nach einem Jahr hat die Stadt

$$f(1) = f(0) + 0.02 \cdot f(0) = f(0) \cdot (1 + 0.02) = 10200$$

Einwohner. Nach zwei Jahren sind es

$$f(2) = f(1) \cdot (1 + 0.02) = f(0) \cdot (1 + 0.02)^2$$

Einwohner und analog nach t Jahren

$$f(t) = 10000 \cdot 1.02^t$$

Einwohner.

Übung 122 (Schweiz). Vom Jahr 1875 zum Jahr 1985 ist die Wohnbevölkerung der Schweiz von 2 750 300 auf 6 455 900 angewachsen. Wieviel Prozent betrug die jährliche Zunahme, wenn man annimmt, dass die Bevölkerung von Jahr zu Jahr gleich viele Prozent zugenommen hat? In Wirklichkeit verlief die Zunahme unregelmässig; siehe dazu Tabelle 1 auf Seite 55.



**Übung 123** (Kapital). Leiten Leite die Formel für das Kapital K(n) nach n Jahren in Abhängigkeit des Startkapitals  $K_0$  und Zinsfusses p her. Vergleichen Sie mit der Formelsammlung.

Übung 124 (Susanna). Susanne erhält zur Eröffnung eines Jugendsparbuches von ihrer Bank zu ihrer Einlage von 100 Franken ein Eröffnungsgeschenk von 50 Franken. Über welchen Betrag wird sie bei einem Jahreszins von 5.5% in 10 Jahren verfügen können?

Übung 125 (Manhatten). Im Jahre 1627 wurde die Insel Manhattan (New York) für 24\$ den Indianern abgekauft. Im Jahre 1970 betrug der Wert nur des Landes 6 Milliarden Dollar. Welches ist die konstant angenommene jährliche Wertzunahme in Prozent?

Übung 126 (Toto). Ein 57 jähriger Fussballfan und seine 59 jährige Schwester teilen einen Totogewinn von 50000 Franken so, dass sie im Zeitpunkt der Pensionierung (Frauen: 62 Jahre, Männer: 65 Jahre) gleich viel besitzen. Wieviel erhält jedes der Geschwister bei einem Zinssatz von 4.5%?

| Jahr | Zunahme in Prozent |
|------|--------------------|
| 1875 | 0.78               |
| 1902 | 1.15               |
| 1918 | -0.06              |
| 1937 | 0.36               |
| 1948 | 0.84               |
| 1965 | 1.01               |
| 1976 | 0.27               |

Tabelle 1: Zunahme der Wohnbevölkerung der Schweiz

# 7. Logarithmen

**Beispiel 9.** Nach welcher Zeit t sinkt die Menge  $m_0$  eines radioaktiven Stoffes mit der Halbwertszeit T=30 y auf einen Zehntel des ursprünglichen Wertes? Wir bezeichnen die Zeit mit t und nehmen als Einheit 30 y, die Masse zu Beginn sei  $m_0$ . Also haben wir für die Restmasse m zur Zeit t:

$$m(t) = m_0 \cdot \left(\frac{1}{2}\right)^t.$$

Um zu berechnen, wann noch  $\frac{m_0}{10}$ übrig sind, lösen wir die zugehörige Gleichung nach tauf:

$$\frac{m_0}{10} = m_0 \cdot \left(\frac{1}{2}\right)^t \tag{:m_0}$$

$$\frac{1}{10} = \left(\frac{1}{2}\right)^t \tag{()^{-1}}$$

$$10 = 2^t$$

Das Auflösen nach t gelingt uns leider nicht, weil die gesuchte Variable im Exponenten steht; Wir sind gezwungen zu raten. Wegen  $2^3 < 10 < 2^4$  ist 3 < t < 4, und man findet rasch als Näherung

$$t \approx 3.32$$

Antwort: Man hat nach ca. 99.6 y noch einen Zehntel der ursprünglichen Masse.

Diese Lösung ist unbefriedigend, da wir t nicht genau bestimmen konnten. Das Problem liegt darin, dass wir zur Exponentialfunktion  $f(x) = 2^x$  zwar den y-Wert 10 kennen, nicht aber den x-Wert. Wir suchen also die Inversfunktion der Exponentialfunktion  $2^x$ ,



Abbildung 19: Radioaktiver Zerfall

die zu gegebenem y-Wert den ursprünglichen x-Wert liefert. Wie das geht kommt im nächsten Abschnitt.

# 7.1. Die Logarithmusfunktion

Wir möchten also eine gegebene Gleichung mit Variable im Exponenten lösen können. Dafür gehen wir von den bereits bekannten Exponentialfunktionen aus. Die Exponentialfunktion

$$f(x) = b^x$$

ist für 0 < b < 1 streng monoton fallend und für b > 1 streng monoton wachsend. Deshalb existiert eine Umkehrfunktion  $f^{-1}$ . Diese nennt man Logarithmusfunktion zur Basis b und bezeichnet sie mit  $\log_b$ .

Übung 127 (Existenz der Inversfunktion). Wie lautet das Kriterium für die Existenz einer Inversfunktion? Nenne eine Funktion, welche keine Inversfunktion besitzt.



Übung 128 (check Spiegelung). Zeichne die Funktion  $f(x) = 2^x$  und den Graphen der Inversfunktion  $f^{-1}(x) = \log_2(x)$ . Siehst du den bekannten graphischen Zusammenhang zwischen Funktion und Inversfunktion?

Übung 129 (verschieben). Betrachte den Graphen der Funktion  $f(x) = \log_2(x)$  in einem Koordinatensystem.

- (a) Verschiebe den Graphen in positiver x-Richtung um 2 Einheiten.
- (b) Spiegle den Graphen an der x-Achse.

Gib jeweils die Gleichung der Bildkurve an.

Mit der log Taste kann man Werte von Variablen in Exponenten bestimmen. Um sie korrekt einsetzen zu können, wollen wir erst definieren, was wir unter einem Logarithmus verstehen wollen. Die Definition entspricht grundsätzlich einer Regel zum Umschreiben von Exponentialfunktionen.



## Definition 7.1: Logarithmus

Unter dem *Logarithmus* von y zur Basis b, geschrieben

$$\log_b y$$
,

versteht man die<br/>jenige Zahl, welche als Exponent der Basis b den Wer<br/>tyergibt. Mathematisch notiert wird diese Aussage übersichtlich:

$$x = \log_b y \quad \Leftrightarrow \quad b^x = y.$$

y nennt man Numerus und b Basis des Logarithmus.

**Bemerkung.** Bei Betrachtung obiger Äquivalenz wird klar, dass der Logarithmus nur für  $y, b \in \mathbb{R}^+$  und  $b \neq 1$  definiert ist

Übung 130 (check Definitionsbereich). Überlege kurz, welche Probleme entstünden, wenn man  $y,b\in\mathbb{R}$  zulassen würde.

### Beispiele.

- $\bullet$  Den Logarithmus von y zur Basis b finden, ist gleichwertig mit der Beantwortung der Frage: "b hoch was gibt y? "
- $\log_2 8 = 3$ : Der Logarithmus von 8 zur Basis 2 ist 3, denn  $2^3 = 8$ .
- $\log_{10} 100 = 2$ , weil  $10^2 = 100$ .
- $\log_{\frac{1}{3}} \frac{1}{9} = 2$ , da  $(\frac{1}{3})^2 = \frac{1}{9}$ .



Übung 131 (Kopfrechnen). Bestimme

- (a)  $\log_{10} 1000$ ,  $\log_{10} 1000000$ ,  $\log_{10} 10^6$ , (c)  $\log_2 4$ ,  $\log_2 1024$ ,  $\log_2 \frac{1}{4}$ ,  $\log_2 \frac{1}{512}$
- (b)  $\log_{10} 0.1$ ,  $\log_{10} 0.01$ ,  $\log_{10} \frac{1}{10}$ ,  $\log_{10} \frac{1}{100}$  (d)  $\log_e 1$ ,  $\log_e e$ ,  $\log_e e^3$ ,  $\log_e \frac{1}{e^4}$

Der folgende Satz folgt direkt aus der Definition und bringt meine saloppe Formulierung aus dem obigen Beispiel auf den Punkt.

# Satz 7.1: Exponenten-Eigenschaft

Jeder Logarithmus ist ein Exponent.

Beweis. trivial  $\Box$ 

# 7.2. Übliche Bezeichnungen und Schreibweisen

Erstens werde ich anstelle von  $\log_b(y)$  nun oft  $\log_b(x)$  schreiben. Das y habe ich verwendet, um klar darzustellen, dass der Logarithmus  $x = \log_b(y)$  die Umkehrfunktion einer Exponentialfunktion  $y = b^x$  ist. In andern Worten wird hier der Schritt "Vertauschung der Variablen"— der ja beim Algorithmus zur Bestimmung von Inversfunktionen als letzter erfolgt — schliesslich vorgenommen. Zweitens kommt als Basis b des Logarithmus

$$\log_b x$$

oft eine der drei Zahlen 2, e (Euler'sche Zahl) oder 10 vor. Deshalb legt man folgende, kürzere Schreibweisen fest:

- $\log_{10} x = \log x = \lg x$  (10er Logarithmus)
- $\log_{e} x = \ln x$  (Logarithmus naturalis)
- $\log_2 x = \text{lb } x$  (Logarithmus dualis)

**Bemerkung.** Die  $\boxed{\log}$  - Taste auf dem Taschenrechner ist also der Logarithmus zur Basis 10.

Drittens werde ich oft die Klammer um den Numerus weglassen, falls das Argument der Logarithmusfunktion klar ersichtlich ist. So wie das unter "Zweitens" bereits geschehen ist. Manchmal schreibe ich den Numerus in Klammer, um deutlich zu kennzeichnen, was alles zum Logarithmus gehört. Zum Beispiel

$$\log_{3.5}(4x^3 + 2x - 1).$$

Übung 132 (Graphen). Lasse von deinem Taschenrechner folgende Logarithmusfunktionen zeichnen.



Abbildung 20: Die Graphen von ln(x), log(x), und lb(x)

- $f(x) = \log(x)$
- $g(x) = \ln(x)$

Übung 133 (Wachstum). Die Funktion

$$f(x) = \log_b(x)$$

ist für b>1 eine monoton wachsende Funktion. Allerdings ist dieses Wachstum sehr langsam. Um einen Eindruck davon zu bekommen, denke man sich ein Koordinatensystem, dessen x-Achse mehrere Äquatorumfänge lang ist. Die Einheit sei 1 cm. Überprüfe die Abbildung 21 für den Graphen von  $\log(x)$  und zeichne die Werte von zwei weiteren "Erdumrundungen" in Abbildung 21 auf Seite 60 ein.

Übung 134 (tippen ist leicht). Berechne mit dem TR folgende Logarithmen, und kontrolliere deine Berechnung, indem du 10 "hoch" dein jeweiliges Resultat eintippst.

- (a) log 7
- (d)  $\log 0.101$
- (b) log 1001
- (e)  $\log 10^{-23}$
- (c) log 1024
- (f)  $\log 0.5$

### 7.3. Rechenregeln

Wir werden in Kürze Graphen von Logarithmen zu beliebigen Basen anschauen. Damit wir aber mit dem TR Logarithmenfunktionen zu beliebigen Basen b erstellen können



Abbildung 21: Log der Äquator-Vielfachen

(wir haben ja bloss die log- und die ln-Taste), brauchen wir Umformungsregeln.

# 7.4. Die Logarithmensätze

Es folgen vier Logarithmenregeln. Die erste ist hilfreich beim Eintippen in den Taschenrechner. Die letzte beschreibt, wie man Gleichungen nach einer im Exponenten stehenden Variablen auflöst. Damit werden Sie dann in der Lage sein, für unser Ausgangsproblem auf Seite 1 den exakten Wert von t zu bestimmen.

Die erste Regel besagt, dass jeder Logarithmus zu einer beliebigen Basis b als Quotient von Logarithmen zu einer beliebigen Basis n geschrieben werden kann.

### Satz 7.2: Taschenrechner-Regel



$$\log_b x = \frac{\log_n x}{\log_n b}$$

Um diesen Satz zu beweisen, brauchen wir eine der folgenden drei Rechenregeln, die leicht mit der Definition nachgewiesen werden können.

### Satz 7.3: Rechenregeln für Logarithmen

Es gilt

$$\log_b(u \cdot v) = \log_b u + \log_b v \tag{14}$$



$$\log_b \frac{u}{v} = \log_b u - \log_b v \tag{15}$$

$$\log_b u^n = n \cdot \log_b u \tag{16}$$

Beweis. Nach Definition; also Übung. Hinweis: Erinnere dich daran, dass ein Logarithmus die Inversfunktion einer Exponentialfunktion ist und daher die Gesetze ähnlich zu den Potenzgesetzen sein müssen.  $\Box$ 

Beweis zu Satz ??. Es sei  $\log_b x = y$ , also  $b^y = x$ . Diese Exponentialgleichung logarithmieren wir auf beiden Seiten

$$\log_n b^y = \log_n x.$$

Mit der dritten Logarithmenregel folgt dann

$$y \cdot \log_n b = \log_n x \quad \Leftrightarrow \quad y = \frac{\log_n x}{\log_n b}$$

Daraus folgt unmittelbar die Behauptung.

### 7.5. Graphen von Logarithmenfunktionen

Wir haben bereits die Graphen von wichtigen Logarithmusfunktionen gesehen. Sollte Ihnen der Verlauf der Graphen von Logarithmusfunktionen noch nicht klar sein, dann zeichnen Sie ein paar Graphen anhand von Wertetabellen oder mit dem Taschenrechner.

Übung 135 (e). Skizziere die Graphen der Funktionen  $f(x) = \log_e(x)$  und  $g(x) = \log_{\frac{1}{2}}(x)$  in ein und dasselbe Koordinatensystem. Was fällt auf?

Übung 136 (Und immer wieder grüsst die Inversfunktion.). Skizziere die Graphen der Funktionen  $f(x) = \ln x$  und  $g(x) = e^x$  in ein und dasselbe Koordinatensystem. Was fällt auf? Erkläre das Ergebnis.

Übung 137 (Kopfrechnen 2). Vereinfache  $e^{\ln 2}$ ,  $\ln(e^2)$ ,  $e^{\ln(x)}$ ,  $\ln(e^x)$ ?

# Satz 7.4: Eigenschaften der Logarithmusfunktion

Graphen von Logarithmusfunktionen haben folgende Eigenschaften:

- Sie gehen alle durch den Punkt (1 | 0).
- Die Graphen von  $f(x) = \log_b(x)$  und  $g(x) = \log_{\frac{1}{b}}(x)$  sind achsialsymmetrisch bezüglich der x-Achse.

Beweis. Wir betrachten eine beliebige Logarithmusfunktion  $f(x) = \log_b(x)$ . Also  $f(1) = \log_b(1)$  genau dann, wenn  $b^{f(1)} = 1$ , dh. f(1) = 0 und der erste Punkt ist bewiesen.

Um den zweiten Punkt zu verifizieren betrachten wir:

$$g(x) = \log_{\frac{1}{b}}(x) = \log_{b^{-1}}(x) = \frac{\log_b(x)}{\log_b(b^{-1})}$$
$$= \frac{\log_b(x)}{-\log_b(b)} = -\log_b(x) = -f(x).$$

Also sind die Graphen von f(x) und g(x) symmetrisch bezüglich der x-Achse.

Übung 138 (Es gibt nur einen Logarithmus...). Gegeben sei die natürliche Exponentialfunktion

$$f(x) = e^x$$

- (a) Zeichne den Graphen von f und spiegle diesen an der Winkelhalbierenden durch den 1. und 3. Quadranten. Überlege, dass durch die Spiegelung der Graph einer neuen Funktion g entsteht.
- (b) Bestimme die Funktionswerte von g an den Stellen e,  $e^2$ ,  $e^{-1}$  und  $\sqrt{e}$ .
- (c) Gib die Funktion g an.

Schliesslich halten wir noch fest, was wir zu Beginn einfach in den Raum geworfen haben:

#### Satz 7.5: Log als Inversfunktion von Exp

Jede Logarithmusfunktion ist die Inverse einer Exponentialfunktion und vice-versa.

Beweis. Wir bestimmen die Inversfunktion einer beliebigen Exponentialfunktion:

$$y = b^x \Leftrightarrow x = \log_b(y).$$

Variablen umbenennen und die Inversfunktion mit  $f^{-1}$  bezeichnen:  $f^{-1}(x) = \log_b(x)$ . Die Umkehrung gilt ebenfalls, weil wir ausschliesslich Identitäten und Äquivalenzen verwendet haben.

### 7.6. Weitere Anwendungen

Logarithmen kann man benutzen, um Zahlen zu berechnen, welche ausserhalb der Kapazität des TRs liegen.



Abbildung 22: PH-Ring

**Beispiel 10.** Wir wollen  $x = 2^{4000}$  berechnen. Eingetippt in den TR erhalten wir leider nur die obere Kapazitätsgrenze; der TR ist überfordert.

Wir helfen der Rechenmaschine etwas nach, indem wir sie instrumentalisieren:

$$\log(x) = \log(2^{4000}) = 4000 \cdot \log(2) = 1204.1199$$

Das bedeutet

$$x = 10^{1204.1199} = 10^{1204+0.1199}$$
$$= 10^{0.1199} \cdot 10^{1204} = 1.318 \cdot 10^{1204}$$

Übung 139 (Mensch > Maschine). Berechne

$$9^{(9^9)}$$

**Übung 140** (pH-Wert). Der pH-Wert ist ein Mass für die  $H_3O^+$ -Konzentration einer Lösung. Es gilt

$$pH = -\log H$$

wobei H die Konzentration von  $H_3O^+$  in mol/1 bezeichnet.

- (a) Für Tomaten ist  $H=6.3\cdot 10^{-5}\,\mathrm{mol/l}$ , für Milch  $H=4\cdot 10^{-7}\,\mathrm{mol/l}$ . Berechne die zugehörigen pH-Werte.
- (b) Welcher pH-Wert hat eine Lösung mit H = 0 mol/l?

Übung 141 (Dezibel). Die Lautstärke L eines Geräuschs von der Intensität I ist definiert durch

$$L = 10 \cdot \log \left(\frac{I}{I_0}\right) \, \mathrm{dB}.$$



Abbildung 23: Schallpegel-Tabelle

dB steht für Dezibel, nach dem amerikanischen Ingenieur Graham Bell (1847–1922); dem Erfinder des Telefons.  $I_0$  bedeutet die Intensität eines Geräuschs, das vom menschlichen Ohr gerade noch wahrgenommen werden kann.

- (a) Die Geräuschintensität normaler Unterhaltung ist etwa eine Million mal so gross wie  $I_0$ . Welchem Dezibel-Wert entspricht das?
- (b) Eine Intensitätszunahme von 10 Dezibel empfindet das menschliche Ohr als Verdoppelung der Lautstärke. Welcher Intensitätszunahme in Prozent entspricht dies?
- (c) Ein Düsenflugzeug entwickelt beim Start eine Intensität von  $10^{13}I_0$ . Dezibel-Werte von mehr als 90 dB gelten als gehörschädigend; ist es die angegebene Intensität?

Übung 142 (Richterskala). Die Stärke von Erdbeben R gibt man durch Werte der sogenannten Richter-Skala an. Diese ist definiert durch

$$R = \log\left(\frac{B}{B_0}\right),\,$$

wobei  $B_0$  die Intensität eines gerade noch wahrnehmbaren Bebens bezeichnet.

- (a) Das Beben von San Francisco im Jahr 1906 hatte eine Intensität von  $B = B_0 \cdot 10^{8.25}$ . Welchem Wert auf der Richter-Skala entspricht dies?
- (b) Welche Intensitätsänderung bedeutet eine Zunahme von 1 auf der Richterskala?



Abbildung 24: Aufzeichnung des Erdbebens von Basel vom 22. Juni 2004

# 7.7. Gleichungen mit Variablen im Exponenten

Klar, alle Abschnitte dieses Kapitels Logarithmen sind wichtig; aber dies ist der wichtigste. Die Lösung unseres Ausgangsproblems, die Bestimmung von Variablen in Exponenten, soll an einem Beispiel vorgeführt werden.

### Beispiel 11. Wir lösen die Gleichung

$$6^{x-1} = 10$$

nach x auf. Dies können wir auf zwei Arten tun.

### 1. Mit Logarithmieren auf beiden Seiten:

$$\log 6^{x-1} = \log 10$$
 (Regel (3))  

$$(x-1) \cdot \log 6 = 1$$
 (\$\ddot \log 6\$)  

$$x - 1 = \frac{1}{\log 6}$$
 (+1)  

$$x = \frac{1}{\log 6} + 1 \approx 2.285$$

### 2. Mit der Definition:

$$6^{x-1} = 10 \Leftrightarrow x-1 = \log_6 10$$
 (Satz ??)  
$$x-1 = \frac{\log 10}{\log 6}$$
 (+1)  
$$x = \frac{1}{\log 6} + 1$$

Kontrolle:

$$6^{2.285-1} \approx 10$$

Übung 143 ("Exponentialgleichung"). Löse nach x auf:

$$2000 \cdot 1.025^x = 3750$$

Übung 144 (Homework). Stelle drei Gleichungen auf, bei denen die Variable im Exponenten vorkommt. Löse diese und überprüfe deine Resultate durch Einsetzen in die ursprüngliche Gleichung.

**Übung 145** (Weltbevölkerung). Nach UNO-Angaben lebten 1988 auf der Erde 5113 Millionen Menschen; die jährliche Wachstumsrate betrug 1.7%. Wann wird unter der Annahme, dass diese Zuwachsrate konstant bleibt, jedem Menschen nur noch ein Stehplatz von  $\frac{1}{4}$  m<sup>2</sup> zur Verfügung stehen? (Die Landfläche beträgt 29% der Erdoberfläche.)

Übung 146 (Konsum). Der Landesindex der Konsumentenpreise betrug im September 1981 94.5 Punkte und im September 1987 109.7 Punkte.

- (a) Berechne den Landesindex im September 1989 unter der Annahme von exponentiellem Wachstum.
- (b) Wann wird der Landesindex 130 Punkte erreichen?

Übung 147 (Spannung). Die Spannung U (in Volt) einer 12-Volt-Batterie beträgt während des Einschaltvorganges im Zeitpunkt t (in Sekunden)

$$U(t) = a(1 - b^t)$$

Man misst U(0.1) = 10.22.

- (a) Bestimme die Parameter a und b.
- (b) Wie gross ist die Spannung nach 0.2 Sekunden?
- (c) Wann beträgt die Spannung 6 Volt?

Übung 148 (Zerfall). Beim radioaktiven Zerfall wird meistens die sogenannte Halbwertszeit angegeben. Die Halbwertszeit ist die Zeit, in der die Hälfte der zu Beginn vorhandenen Atome zerfallen ist.

(a) Berechne die Halbwertszeit für Strontium 89, für das die Zerfallsfunktion die Form

$$N(t) = N_0 \cdot 0.98636808^t$$

hat (t in Tagen).

(b) Für Uran 239 beträgt die Halbwertszeit  $T_{1/2} = 23.5$  Minuten. Stelle die Gleichung der Zerfallsfunktion auf, wenn zu Beginn  $N_0$  Atome vorhanden sind.

Übung 149 (Altersbestimmung). In lebenden Organismen besteht Kohlenstoff aus stabilen Atomkernen sowie einem Anteil  $(3 \cdot 10^{-8}\%)$  aus radioaktiven Atomkernen  $C_{14}$ , die durch kosmische Strahlung entstehen. Sobald ein organischer Stoff stirbt, nimmt der  $C_{14}$ -Anteil mit einer Halbwertszeit von 5736 Jahren exponentiell ab.

- (a) Im Jahre 1960 stellte man in der Leinwand einer altägyptischen Königsmumie einen  $C_{14}$ -Anteil von  $1.75 \cdot 10^{-8}\%$  fest. Datiere auf hundert Jahre genau.
- (b) 1950 wurde in der Höhle von Lascaux (Frankreich) Holzkohlenreste mit einem  $C_{14}$ -Anteil von  $0.435 \cdot 10^{-8}\%$  gefunden. Berechne das Alter dieser Holzkohle.

Übung 150 (Info). In der Informationstheorie versteht man unter dem Informationsgehalt H eines Ereignisses mit der Wahrscheinlichkeit p den Logarithmus von  $\frac{1}{p}$  zur Basis 2.

$$H = \log_2 \frac{1}{p}$$
 (Einheit: 1 bit)

Welche Wahrscheinlichkeit gehört zum Informationsgehalt 0, 1, 0.5, 5, 10.2 bit? Eine Münze wird viermal geworfen. Berechne den Informationsgehalt der Ereignisse

- (a) nie Kopf,
- (b) genau einmal Kopf,
- (c) genau zweimal Kopf,
- (d) genau dreimal Kopf
- (e) viermal Kopf.

### 7.8. Die Euler'sche Zahl

Die geeignetste Basis für eine Exponentialfunktion

$$f(x) = b^x$$

ist die Zahl e, eine Zahl, die in vielen Anwendungen vorkommt. Der Buchstabe e wurde zu Ehren des in Riehen geborenen Mathematikers LEONHARD EULER (1707-1783) gewählt. Wie  $\pi$  ist die Euler'sche Zahl irrational, und ihre Dezimaldarstellung beginnt mit

$$e = 2.71828182845904523536028747135266...$$

Was es mit der Zahl e auf sich hat, können wir an dieser Stelle nur zu einem kleinen Teil erfahren, denn ihre Bedeutung wird erst nach und nach mit fortschreitendem Stoff klarer werden. Eine Möglichkeit, die Zahl e kurz und bündig zu charakterisieren, ist diese:

e ist die einzige positive Zahl, für die

$$e^x \ge 1 + x \quad \forall x \in \mathbb{R}$$



Abbildung 25: 10-Franken Note alter Serie: Leonard Euler

Übung 151 (guckst du!). Zeichne mit dem TR  $e^x$  und x+1.

Übung 152 (eingeklemmt). Zeichne mit dem TR  $e^x$ ,  $2^x$  und  $3^x$  und betrachte einen kleinen Ausschnitt um (0|1).

Eine weitere schöne Eigenschaft ist folgende.

**Bemerkung.** Alle Exponentialfunktionen  $b^x$  schneiden die y-Achse im Punkt (0 | 1). Sucht man für eine Exponentialfunktion  $b^x$  eine Basis b so, dass die Steigung des Graphen beim Schnittpunkt mit der y-Achse exakt  $45^{\circ}$ , also 1, beträgt, dann folgt b = e.

Obwohl die bisherige Argumentation von einem strengen mathematischen Gesichtspunkt aus betrachtet ein bisschen zu schlampig ist, geben wir uns mit ihr zufrieden. Auch ein genauerer Beweis liefert dasselbe Resultat.

Um die Basis Euler'sche Zahl zu berechnen, gehen wir folgendermassen vor: Wir wählen ein positives x und betrachten jene Basis b, für die

$$b^x = 1 + x$$

oder, nach b aufgelöst

$$b = (1+x)^{\frac{1}{x}}$$

ist. Dies ist genau jene Basis, für die der Graph von  $b^x$  die Gerade 1+x in einem Punkt mit der (positiven) x-Koordinate x schneidet. Wenn wir nun x immer kleiner machen

| n         | $\left(1+\frac{1}{n}\right)^n$ |
|-----------|--------------------------------|
| 1         | 2                              |
| 2         | 2.25                           |
| 10        | 2.59                           |
| 100       | 2.70                           |
| 1000      | 2.716                          |
| 100000    | 2.71826                        |
| 100000000 | 2.71828                        |

Tabelle 2: Approximation an e

 $(x \to 0)$ , wird b immer näher an e heran rücken. Wir berechnen sinngemäss

$$\left(1 + \frac{1}{n}\right)^n$$

für grosse natürliche Zahlen n, also  $n \to \infty$ .

# Definition 7.2: Euler'sche Zahl

Es ist denkbar, als Definition für die Euler'sche Zahl

$$e := \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n = 2.718281828\dots$$

zu verwenden.



# Definition 7.3: Natürliche Exponentialfunktion und logarithmus naturalis

Die entsprechende Exponentialfunktion

$$\exp(x) = e^x$$

bezeichnet man als die natürliche Exponentialfunktion.

Die entsprechende Logarithmusfunktion, also die Umkehrfunktion von  $x \mapsto e^x$ ,

wird natürliche Logarithmusfunktion genannt:

$$\exp^{-1}(x) = \log_{e}(x) =: \ln(x)$$

**Bemerkung.** Der Taschenrechner stellt mit speziellen Tasten sowohl die Funktionswerte  $e^x$  als auch die Funktionswerte  $\ln(x)$  zur Verfügung.

Bemerkung. Fortgeschrittene Rechner verwenden selbstverständlich als Basis einer Exponentialfunktion e und bezeichnen den lin oft als log.

Später werden wir in erster Linie nur noch diese beiden Funktionen verwenden, da sich alle anderen Exponential- und Logarithmusfunktionen auf diese beiden Funktionen zurückführen lassen. Diese schöne Tatsache wollen wir mit den beiden nächsten Übungen untermauern.

Übung 153 (umschreiben). Stelle die Exponentialfunktion  $f(x) = 3.5 \cdot 2^x$  als natürliche Exponentialfunktion der Form

$$f(x) = a \cdot e^{cx}$$

dar.

Übung 154 (Es gibt nur eine Basis...). Überlege dir, dass jede Exponentialfunktion  $f(t) = a \cdot b^t$  sich in die Form

$$f(t) = d \cdot e^{ct}$$

umwandeln lässt.

Finde eine Formel für die Parameter c und d bei der natürlichen Exponentialfunktion, wenn die Parameter a und b gegeben sind.

Übung 155 (Epidemie). Für die Zeit während der Ausbreitung einer Epidemie kann man die Anzahl der nach t Tagen infizierten Individuen durch die folgende Modellfunktion angeben:

$$N(t) = \frac{M}{1 + c\mathrm{e}^{-at}}$$

Für eine bestimmte Epidemie seien M = 1000, c = 999 und a = 0.4.

- (a) Wie viele Individuen sind nach 0, 10, 20, 30 Tagen infiziert?
- (b) Nach wie vielen Tagen sind 200, 500, 950 Individuen infiziert?
- (c) Zeichne den Graphen der Funktion.

**Übung 156** (Forellen). In einer Forellenzuchtanstalt wurde bei gleichartigen Forellen die jeweils nach t Monaten erreichte durchschnittliche Länge L cm gemessen. Aus den Messungen ergab sich das "Wachstumsgesetz":

$$L(t) = 25(1 - e^{-0.25t})$$

- (a) Berechne die Länge nach 0, 4, 8 Monaten.
- (b) Wann waren die Forellen etwa 10,20 cm lang? Wann werden sie 25 cm lang sein?

# A. Relationen

Personen oder auch Dinge stehen oft in Beziehung. Es gibt verwandtschaftliche oder freundschaftliche Beziehungen. Es gibt Beziehungen von Menschen zu ihrer Heimat, von Eigentümern zu ihrem Besitztum, oder auch zwischen Konjunktur und Arbeitslosigkeit, zwischen Qualität und Preis etc.

Manche Beziehungen lassen sich graphisch darstellen und mathematisch beschreiben. Im Folgenden werden Menge und Beziehungen zwischen ihren Elementen betrachtet.

Beispiel 12. Es gibt eine Beziehung, in der Mathematik sagt man *Relation*, zwischen den Mitgliedern dieser Klasse und den möglichen Freifächern, welche Angeboten werden.



Bemerkung. Unter einer Relation R zwischen den

Elementen der Mengen  $\mathbb{A}$  und  $\mathbb{B}$  versteht man eine beliebige Beziehung (Zuordnung), wodurch jedem Element  $x \in \mathbb{A}$  kein, genau ein oder mehr als ein Element  $y \in \mathbb{B}$  zugeordnet wird. Man schreibt

$$R: \mathbb{A} \longrightarrow \mathbb{B}$$

**Beispiel 13.** Im obigen Beispiel steht R für "zu einem Klassenmitglied das Freifach zuordnen",  $\mathbb{A}$  für die Menge der Schülerinnen und Schüler der Klasse und  $\mathbb{B}$  für die Menge der angebotenen Freifächer.

**Bemerkung.** Offensichtlich kann jede Relation als Menge von geordneten Paaren  $(x \mid y)$  notiert werden. Um eine Relation via Mengenlehre zu definieren brauchen wir noch folgende

### Definition 1.1: Produktmenge

Die *Produktmenge* zweier Mengen  $\mathbb{A}$  und  $\mathbb{B}$  ist die Menge aller geordneten Paare  $(a \mid b)$ , wobei  $a \in \mathbb{A}$  und  $b \in \mathbb{B}$  ist. Man schreibt

$$\mathbb{A} \times \mathbb{B} = \{ (a \mid b) \mid a \in \mathbb{A} \text{ und } b \in \mathbb{B} \}.$$

Damit lässt sich der Relationsbegriff auch rein mengentheoretisch definieren. Wir betrachten zuerst noch ein Beispiel zur Produktmenge.

**Beispiel 14.**  $\mathbb{R} \times \mathbb{R}$ , kurz  $\mathbb{R}^2$ , ist die Menge aller Punkte einer Ebene. Die Paare  $(x \mid y)$  können als Punkte in einem rechtwinkligen Koordinatensystem veranschaulicht werden.

**Übung 157.** Beschreibe die Menge  $\mathbb{R}^3$ . Welche Form/Schreibweise hat ein Punkt in dieser Menge?

# Definition 1.2: Relatio



Eine Relation R zwischen den Elementen der Mengen  $\mathbb{A}$  und  $\mathbb{B}$  ist eine Teilmenge der Produktmenge  $\mathbb{A} \times \mathbb{B}$ .

Bemerkung. Die Darstellung der Relationen in einem rechtwinkligen Koordinatensystem nennt man den Graphen der Relation.

Für die folgenden Übungen erinnern wir uns an die Definition des Betrags:

### Definition 1.3: Betrag

Für jede reelle Zahl x ist der Betrag von x definiert durch

$$|x| = \begin{cases} x & \text{falls } x \ge 0 \\ -x & \text{falls } x < 0 \end{cases}$$

Übung 158. Beachte, dass x und y als reelle Zahlen zu betrachten sind, falls keine andere Vereinbarung vorliegt. Zeichne den Graphen der Relation

(a) 
$$R = \{ (x | y) | y \le x \}$$

(b) 
$$R = \{ (x | y) | x < 2 \text{ und } y < 4, x, y \in \mathbb{Z} \}$$

(c) 
$$R = \{ (x | y) | |x| \le 5 \}$$

(d) 
$$R = \{ (x | y) | |y| > 3 \}$$

(e) 
$$R = \{ (x | y) | |x| + |y| \le 4 \}$$

Übung 159. Wie lautet die Relation, die durch den folgenden Graphen veranschaulicht wird?



# B. Abbildungen

In manchen Ländern ist der Preis einer Ware oft nicht eindeutig festgelegt. Dem einen macht das Handeln zwar Spass, dem andern wäre es aber lieber, wenn die Relation zwischen Ware und Preis einer eindeutigen Zuordnung entspricht. Ist eine Relation nämlich nicht eindeutig festgelegt, so können Missverständnisse auftreten.

Verlagshäuser und Buchhändler haben die ISBN (Internationale Standardbuchnummer) eingeführt, um Missverständnisse auszuschalten. Durch die ISBN ist jedem Buch x genau eine Buchnummer y zugeordnet. In der Mathematik spielen die Relationen, die sich auf die gesamte Ausgangsmenge bezie-



hen und eine eindeutige Zuordnung schaffen, eine besonders wichtige Rolle.

#### Definition 2.1: Abbildung

Eine Abbildung f von einer Ausgangsmenge  $\mathbb{A}$  in eine Zielmenge  $\mathbb{B}$  ist eine Relation, die jedem Element  $x \in \mathbb{A}$  genau ein Element  $y \in \mathbb{B}$  zuordnet. Man schreibt

$$f:\mathbb{A}\longrightarrow\mathbb{B}$$

oder für Elemente

$$y = f(x)$$
.

Man nennt y das Bild von x, x das Urbild von y.

Bemerkung. Jede Abbildung ist eine Relation, aber nicht jede Relation eine Abbildung.

Übung 160 (geometrische Abbildungen). Nenne vier geometrische Abbildungen und überlege dir, warum der Name Abbildung gerechtfertigt ist.

# C. Biquadratische Gleichungen

#### Definition 3.1: Biquadratische Gleichung

Gleichungen, in denen die Variable nur in der zweiten und vierten Potenz vorkommt, nennt man biquadratisch.

Beispiel 15. Die Gleichung

$$2x^4 - 3x^2 - 20 = 0$$

ist biquadratisch.

Solche Gleichungen sind wegen  $x^4 = (x^2)^2$  mit den Methoden zur Lösung von quadratischen Gleichungen lösbar. Man reduziert durch eine Substitution die biquadratische Gleichung auf eine quadratische und löst diese. Danach bleiben noch quadratische Gleichungen übrig, die einfach gelöst werden können.

Wir *substituieren* in der Gleichung aus dem Beispiel die biquadratische Variable, d.h. wir setzen

$$x^2 = z$$

und erhalten

$$2z^2 - 3z - 20 = 0.$$

Nun können wir einfach nach z lösen, was

$$z_1 = -2.5$$
 und  $z_2 = 4$ 

liefert. Da  $x^2 = z$  haben wir noch die Lösungen von

$$-2.5 = x^2$$
 und  $4 = x^2$ 

zu bestimmen. Die erste Gleichung hat keine Lösung in  $\mathbb{R}$  und die zweite liefert

$$x_1 = 2$$
 und  $x_2 = -2$ .

Natürlich kann man das Verfahren der Substitution auch auf höher gradige Gleichungen anwenden.

Übung 161. Wie viele Lösungen kann eine biquadratische Gleichung haben?

Übung 162. Gib je eine biquadratische Gleichung mit keiner, einer, zwei, drei und eine mit vier Lösungen.

Übung 163. Bestimme alle Lösungen der Gleichung

$$x^4 - 13x^2 = -36.$$

Übung 164. Bestimme alle Lösungen der Gleichung

$$(x^2+4)^2 - 25(x^2+4) + 100 = 0.$$

# D. Lösungsstrategien für Gleichungen

Abschliessend zu den quadratischen Funktionen möchte ich bemerken, dass man nun die gängigen Mittel zum Lösen von Gleichungen der Mittelschulmathematik kennt. Nebst linearen Gleichungen trifft man auch auf solche, bei denen die Variable im Nenner auftaucht, auf Wurzelgleichungen (die auf lineare oder quadratische zurückgeführt werden können) oder eben auf quadratische bzw. Gleichungen. Das heisst, es ist nützlich, wenn man eine Art Schema zur Analyse das vorliegenden Gleichungstyps parat hat. Damit kann man nach Analyse die passende Lösungsstrategie wählen.





Abbildung 26: Vorgehen beim Lösen von Gleichungen

# E. Funktionsverwandtschaften

#### E.1. Einleitung

In diesem Abschnitt wollen wir uns Funktionen anschauen, welche insofern miteinander verwandt sind, als dass deren Graphen durch eine Translation, eine Streckung oder eine Drehung ineinander übergeführt werden können. Es geht darum, allgemeine Aussagen über die Ähnlichkeit ihrer Funktionsgleichungen machen zu können, wenn ihre Graphen kongruent sind; und vice versa. Eine Anwendung ist:

**Übung 165.** Die Osterhasen stehen bald wieder in den Regalen; lecker! Für deren Produktion hat ein Betrieb Fixkosten von  $10'000\,\text{CHF}$  und Kosten pro Hase von  $0.50\,\text{CHF}$ . Stelle die Kostenfunktion k(x) auf, welche die Produktionskosten k in Abhängigkeit der Anzahl produzierten Osterhasen x angibt. Wähle eine geeignete Skala für Ihr Koordinatensystem und zeichne den Graphen.

Aufgrund unvorhergesehener Probleme bei der Produktion steigen die Fixkosten um 25 %. Bestimme die angepasste Kostenfunktion  $k_a(x)$  und zeichne deren Graphen.

**Übung 166.** Zeichne die Graphen von  $f(x) = x^2$ ,  $g(x) = (x-2)^2$  und  $h(x) = (x+3)^2$  in ein und das selbe Koordinatensystem.

Übung 167. Zeichne die Graphen von  $f(x) = \log(x)$ ,  $g(x) = \log(x+1)$  und  $h(x) = 1 + \log(x)$  in ein und das selbe Koordinatensystem.

Übung 168. Zeichne die Graphen von  $f(x) = x^2$ ,  $g(x) = (x+1)^2 - 2$  und  $h(x) = (x-2)^2 + 1$  in ein und das selbe Koordinatensystem.

Übung 169. Zeichne die Graphen von  $f(x) = 2^x$ ,  $g(x) = 2^{x-1}$  und  $h(x) = \frac{1}{2}2^x$  in ein und das selbe Koordinatensystem.

#### E.2. Untersuchung der Verwandtschaften

**Beispiel 16.** Wir betrachten den Graphen einer beliebigen Funktion y = f(x). Wie sieht der Graph der Funktion g(x) aus, der aus dem Graphen von f entsteht, indem man letzteren um 1 in y-Richtung verschiebt? Wie lautet die Funktionsgleichung von g?



#### E.2.1. Verschiebung in y-Richtung

Wir verschieben den Graphen von f um 1 in y-Richtung und erhalten folgendes Bild:



Wegen der Verschiebung um 1 in y-Richtung ist jeder Wert von g(x) um 1 grösser als der entsprechende Wert von f(x). Deshalb ist g(x) = f(x) + 1.

Allgemein kann man also sagen, dass der Graph von f(x) + a aus dem Graphen von f(x) durch eine Verschiebung parallel zur y-Achse um den Wert a hervorgeht.

# E.2.2. Verschiebung in x-Richtung

Verschiebe den Graphen von f um 1 in x-Richtung und zeichne ihn. Wie lautet die Funktionsgleichung g(x) des neuen Graphen? Formuliere eine Verschiebung in x-Richtung um den Wert a allgemein.



#### E.2.3. Einschub

Für das Folgende ist es praktisch, den Begriff der affinen Abbildung einzuführen.

## Definition 5.1: Affinität

Eine Abbildung (Funktion/Translation) heisst affin, wenn die Verbindungsgeraden Ausgangspunkt P – Bildpunkt P' alle parallel sind. Die Richtung dieser Parallelen

heisst Affinitätsrichtung.

#### Satz 5.1: Linearität der Affinität

Der Abstand eines Bildpunktes von einer festen Geraden (der sogenannten Affinitätsachse) beträgt das k-fache des Abstandes des Ausgangspunktes von dieser Geraden, wobei  $k \in \mathbb{R}$ . k heisst Affinitätsfaktor.

Beispiel 17. Betrachte den Graphen der Funktion  $f(x)=x^2$  auf deinem TR. Anschliessend lässt du zusätzlich den Graphen von  $g(x)=\frac{1}{2}x^2$  von deinem TR zeichnen. Die Translation, welche den Graphen von f in g überführt ist eine affine Abbildung mit Affinitätsfaktor  $k=\frac{1}{2}$  und hat als Affinitätsachse die x-Achse. Die Affinitätsrichtung ist parallel zur y-Achse.

#### E.2.4. Streckung in y-Richtung

Bilde den Graphen von f affin in y-Richtung ab, wobei du als Affinitätsachse die x-Achse wählst und k = 2. Wie lautet die Funktionsgleichung g(x)?



# E.2.5. Streckung in x-Richtung

Zeichne den Graphen von g(x) = f(2x). Bestimme Affinitätsachse, Affinitätsrichtung und Affinitätsfaktor dieser Translation, die den Graphen von f in denjenigen von g überführt.



## E.2.6. Spiegelung an der x-Achse

Zeichne den Graphen von g, welcher durch Spiegelung des Graphen von f an der x-Achse entsteht, und bestimme die Funktionsgleichung von g. Gib anschliessend an, um welche affine Abbildung es sich hierbei handelt.



## E.2.7. Spiegelung an der y-Achse

Zeichne den Graphen von g, welcher durch Spiegelung des Graphen von f an der y-Achse entsteht, und bestimme die Funktionsgleichung von g. Gib anschliessend an, um welche affine Abbildung es sich hierbei handelt.



## E.3. Zusammenfassung

| Der Graph von | geht aus dem Graphen von $f(x)$ hervor durch                                                                           |
|---------------|------------------------------------------------------------------------------------------------------------------------|
| f(x) + a      | eine Translation parallel zur $y$ -Achse um $a$                                                                        |
| f(x-a)        | eine Translation parallel zur $x$ -Achse um $a$                                                                        |
| af(x)         | eine affine Abbildung mit Affinitätsrichtung $y$ -Achse, Affinitätsachse $x$ -Achse und Affinitätsfaktor $a$           |
| f(ax)         | eine affine Abbildung mit Affinitätsrichtung $x$ -Achse, Affinitätsachse $y$ -Achse und Affinitätsfaktor $\frac{1}{a}$ |



# E.4. Ganzrationale Funktionen

In vorherigen Kapiteln haben wir die affinen und die quadratischen Funktionen behandelt. Sie sind Spezialfälle der ganzrationalen Funktionen n-ten Grades (Polynomfunktionen). Eine Funktion der Gestalt

$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n$$

heisst ganzrational vom Grade n, wenn n eine natürliche Zahl und  $a_0,a_1,a_2,\ldots,a_n$  rationale Zahlen und natürlich  $a_0\neq 0$  bedeuten. Für n=1 hat man

$$f(x) = a_0 x + a_1,$$

also eine affine Funktion, für n=2 ergibt sich

$$f(x) = a_0 x^2 + a_1 x + a_2,$$

| x    |    | -3  | -2 | -1  | 0   | 1  | 2  | 3  |
|------|----|-----|----|-----|-----|----|----|----|
| f(x) | r) | 449 | 42 | -47 | -10 | 33 | 34 | 17 |

also eine quadratische Funktion.

Die Zeichnung eines sauberen Graphen einer ganzrationalen Funktion grösser als 2. Grades erfordert Methoden der Differentialrechnung. Wir müssen uns hier deshalb mit einem Beispiel für n=4 und einer Wertetabelle bescheiden.

#### Beispiel 18. Wir betrachten

$$f(x) = 3x^4 - 14x^3 + 54x - 10$$

anhand einer Wertetabelle:

Übung 170 (Graph 4. Grades). Übertrage die Punkte in das Koordinatensystem und zeichne den entsprechenden Graphen.



Übung 171 (Graphen). Zeichne den Graphen von  $f: x \mapsto$ 

- (a)  $-x^3 + x^2$
- (b)  $8x^3 12x^2 + 2x + 1$ .

Übung 172 (Promille). The polynomial function

$$A(x) = -0.015x^3 + 1.058x$$

gives the approximate alcohol concentration (in tenths of a percent) in an average person's blood-stream x hours after drinking about eight ounces of 100-proof whisky. The function is approximately valid for  $x \in [0, 8]$ .

| x    | -10  | -4   | -3   | -2.5 | -2.3 |
|------|------|------|------|------|------|
| f(x) | 1.75 | 2.5  |      |      |      |
| x    | -2.1 | -1.9 | -1.5 | 0    | 2    |
| f(x) |      |      |      |      |      |

- (a) Graph A(x).
- (b) Using the graph you drew for part (a), estimate the time of maximum alcohol concentration.
- (c) In one state, a person is legally drunk if the blood alcohol concentration exceeds 0.15%. Use the graph from part (a) to estimate the period in which this average person is legally drunk.

Übung 173 (Sin als ganzrationale Funktion). Im Kapitel über trigonometrische Funktionen wird die Reihenentwicklung

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

vorgestellt.

- (a) Betrachte die Güte der Näherung, wenn x zwischen -90 und  $90^{\circ}$  gewählt wird. Berechne dazu beispielsweise  $\sin(\frac{\pi}{3})$  bzw die entsprechende Reihe bis zum 4-ten Summanden.
- (b) Betrachte graphisch die Güte der Näherung, indem du zum Graphen der Sinusfunktion sukzessive die Entwicklungen x,  $x-\frac{x^3}{3!}$ ,  $x-\frac{x^3}{3!}+\frac{x^5}{5!}$ , etc. skizzierst.

#### E.5. Gebrochenrationale Funktionen

#### Definition 5.2: Gebrochenrationale Funktionen

Eine Funktion der Gestalt

$$f(x) = \frac{Z(x)}{N(x)},$$

mit Z(x) und  $N(x) \neq 0$  ganzrationalen Funktionen, heisst gebrochenrational.

Auch hier wollen wir uns vorerst nur mit einigen einfachen Beispielen bescheiden. Betrachten wir zu

$$f(x) = \frac{3x+2}{2x+4}, \quad \mathbb{D} = \mathbb{R} \setminus \{-2\},$$

charakteristische Werte

Übung 174 (gebrochen rational). Vervollständige die Wertetabelle, übertrage die Punkte in das Koordinatensystem und zeichne den entsprechenden Graphen ins vorgezeichnete Koordinatensystem.



Die Gerade x=-2 ist Polstelle, die Gerade y=1.5 eine horizontale Asymptote. Die Funktion aus Übung 174 gehört zu den einfachsten gebrochenrationalen Funktionen von der Gestalt

$$f(x) = \frac{ax+b}{cx+d}$$
 mit  $ad \neq bc$ .

Der Graph ist eine Hyperbel. Sie ist punktsymmetrisch bezüglich  $(-\frac{d}{c}|\frac{a}{c})$  und hat als Asymptote bzw. Polstelle die Geraden mit den Gleichungen  $y=\frac{a}{c}$  und  $x=-\frac{d}{c}$ .

Übung 175 (gebrochene Graphen). Zeichne den Graphen von  $f: x \mapsto$ 

(a) 
$$\frac{0.5x-2}{x-2}$$

(b) 
$$\frac{4x}{x-1}$$

(c) 
$$\frac{2-x}{x-4}$$

Übung 176 (Steuerrate). Durch die Funktion

$$f(x) = \frac{6000 - 60x}{120 - x}$$

kann man zu jeder Steuerrate x (50%  $\leq x\% \leq 100\%$ ) die entsprechenden Einnahmen f(x) in GE berechnen. Wie gross sind die Einnahmen für 50%, 80%, 100%? Zeichne den Graphen der Funktion. Wann sind die Steuereinnahmen 40 GE?



Abbildung 27: Logarithmische Skala

Übung 177 (Polgeraden & Asymptoten).

(a) Berechne die Parameter a und b so, dass der Graph der Funktion

$$f(x) = \frac{a}{b+x}$$

durch die Punkte (2|1) und (-4|-2) geht.

(b) Berechne die Parameter a, c und d so, dass der Graph der Funktion

$$g(x) = \frac{ax+1}{cx+d}$$

durch den Punkt (0|1) geht und die Geraden mit den Gleichungen y=2 bzw. x=0.5 als Asymptote bzw. Polgerade hat.

 $\ddot{\mathbf{U}}$ bung 178 (interpretiere). Diskutiere (Asymptoten, Polstellen) den Graphen der Funktion

$$f(x) = \frac{2x - 1}{x^2 - 4}.$$

#### E.6. Logarithmische Skala

Manchmal verwendet man bei der Darstellung von Funktionen die sogenannte logarithmische Skala. Dabei bedeutet eine Einheit eine Zehnerpotenz. Als Illustration soll die Funktion  $f(x) = 10^x$  einerseits im üblichen Koordinatensystem und andererseits im Koordinatensystem mit logarithmischer y-Achse dienen. Die logarithmisch eingeteilte Achse beginnt bei 1.

Übung 179 (Log-Skala). Ist dir eine logarithmisch skalierte Graphik bereits begegnet? Ein Beispiel aus der Soziologie zeigt Abbildung 28 auf Seite 86.



Abbildung 28: Countdown to Singularity

# Abbildungsverzeichnis

| 1.  | Durchschnittliche Änderungsrate                  | 11 |
|-----|--------------------------------------------------|----|
| 2.  | Parabolspiegel in Odeillo                        | 14 |
| 3.  | Kochen                                           | 16 |
| 4.  | Signalverstärkung                                | 17 |
| 5.  | Scheinwerfer                                     | 17 |
| 6.  | Kennlinien eines Dieselmotors                    | 22 |
| 7.  | Definition der Winkelfunktionen                  | 29 |
| 8.  | Definition des Bogenmass                         | 32 |
| 9.  | Graph von $sin(x)$                               | 34 |
| 10. | Graph von $cos(x)$                               | 34 |
| 11. | Graphen der Winkelfunktionen                     | 35 |
| 12. | Illustration zum Sinussatz                       | 39 |
| 13. | Veranschaulichung zum Beweis des Cosinussatz     | 40 |
| 14. | Höhenprofil zu Übung 88 von Seite 41             | 42 |
| 15. | Graph eines EKG                                  | 42 |
| 16. | Füllgrad Schweizer Stauseen                      | 44 |
| 17. | Duplo Telemetrie                                 | 45 |
| 18. | Joke During SARS2-CoV19 Lockdown in 2020         | 52 |
| 19. | Radioaktiver Zerfall                             | 56 |
| 20. | Die Graphen von $ln(x)$ , $log(x)$ , und $lb(x)$ | 59 |
| 21. | Log der Äquator-Vielfachen                       | 60 |
| 22. | PH-Ring                                          | 63 |
| 23. | Schallpegel-Tabelle                              | 64 |

| 24. | Aufzeichnung des Erdbebens von Basel vom 22. Juni 2004 | 65 |
|-----|--------------------------------------------------------|----|
| 25. | 10-Franken Note alter Serie: Leonard Euler             | 68 |
| 26. | Vorgehen beim Lösen von Gleichungen                    | 76 |
| 27. | Logarithmische Skala                                   | 85 |
| 28. | Countdown to Singularity                               | 86 |