Recursion Theory and Fragments of Arithmetic

Yang Yue

Department of Mathematics National University of Singapore

February 22, 2013

Outline

Classical Recursion Theory

Reverse Mathematics

Reverse Recursion Theory

Ramsey's Theorem for Pairs

Forward and Reverse Recursion Theory

- ▶ Reverse Recursion Theory is the "reverse" expression of Recursion Theory on weak fragments of arithmetic.
- Turing model of computation
- Many equivalent definitions including Σ^0_1 definability in arithmetic
- Modern Slogan: Recursion Theory studies definability.

Turing Functionals

- ▶ Turing reducibility $\leq_{\mathcal{T}}$ and Turing degrees.
- ▶ We say $A \leq_T B$ if there is a Turing machine M such that with B as oracle M computes A.
- ▶ Definition: A Turing functional Φ is an r.e. set of triples of the form $\langle x, y, \sigma \rangle$ where $x, y \in \mathbb{N}$ and $\sigma \in \mathbb{N}^*$ satisfying monotonicity and consistency.
- ▶ One can further "rewrite" σ as a pair of finite sets P, N such that $P \cap N = \emptyset$.
- ▶ $A \leq_T B$ iff for some Turing functional Φ , $\Phi(B) = A$.

Degree Theory and Priority Methods

- Since 1944 Post's work, people focus mainly on degrees.
 Turing degrees and r.e. degrees (Both structures are complicated).
- Friedberg and Muchnik invented priority method to solve Post's problem, which asks if there is an intermediate r.e. degree, i.e., 0 < a < 0'.</p>
- Later Shoenfield and Sacks invented "infinite injury" method to show jump inversion theorems.
- In 1970's, Lachlan invented more complicated priority method.

Reverse Mathematics Motivation: Hilbert Program

- Hilbert Program: Justify "infinitary" math by "finitary" means.
- Program failed because of Gödel's Theorems. But...
- Motivating question: Let's find out the exact amount of "infinitary" tools needed.

Gödel Hierarchy

- ▶ Let T_1 and T_2 be theories. We say $T_1 < T_2$ iff T_2 proves the consistency of T_1 .
- It turns out an almost linear hierarchy, quite robust (with some noise though).

Gödel Hierarchy

```
strong { : measurable cardinal : ZFC :
medium \begin{cases} \begin{array}{c} \mathbb{Z}^2 \\ \vdots \\ \Pi_1^1 \text{-CA} \\ \text{ATR}_0 \\ \text{ACA}_0 \end{array} \end{cases}
      \textit{weak} \left\{ \begin{array}{l} WKL_0 \\ RCA_0 \\ \vdots \\ \text{bounded arithmetic} \\ \vdots \end{array} \right.
```

Goal of Reverse Mathematics

- Goal: What set existence axioms are needed to prove the theorems of ordinary, classical (countable) mathematics?
- To achieve this goal, we have to discover new proofs.

Second Order Arithmetic \mathbb{Z}_2

- ► Two sorted language: (first order part) Numbers, +, ×; (second order part) Sets; ∈.
- ▶ Most of "standard mathematics" can be done in \mathbb{Z}_2 .

Subsystems of \mathbb{Z}_2 - The Big Five

Basic axioms and

- ▶ RCA₀: Σ_1 -induction and Δ_0 -comprehension for $\varphi \in \Delta_0$, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- WKL₀: RCA₀ and every infinite binary tree has an infinite path. (essentially compactness)
- ▶ ACA₀: RCA₀ and for φ arithmetic, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- ► ATR₀:
- □ Π¹₁-CA₀.

A closer look at RCA₀

- A set is called decidable or recursive or computable if there is an algorithm which decides its membership. E.g. the set of all prime numbers.
- Models of RCA₀: Closure under ≤_T and Turing join.
- ▶ In the (minimal) world RCA₀, only recursive sets exist.
- ► RCA₀ is the place to do constructive/finitary mathematics.

Recent Developments

- ▶ (old results) Simpson's book (2009) about classical math theorems and their correspondence with big five.
- (Beyond the Big Five): Mummert and Simpson 2005 provide an example of reverse mathematics at the level of Π₂¹-CA. The results are in the area of general topology.
- More and more exceptions (chaos around Ramsey's Theorem).

Motivations of Reverse Recursion Theory

- Under the influence of Reverse Mathematics, around 1980's, Groszek and Slaman studied "Reverse Recursion Theory".
- They work in first order Peano arithmetic and use the amount of induction to measure the complexity of recursion theoretic theorems.
- Recall: In Recursion Theory, the constructions are verified by induction; in particular, in priority arguments.
- Another motivation: Studying computability in more general domains, like in α-recursion theory.

Fragments of Peano Arithmetic

- ▶ We always assume the language has exponential function and satisfies $PA^- + B\Sigma_1$.
- Let $I\Sigma_n$ denote the induction schema for Σ_n^0 -formulas; and $B\Sigma_n$ denote the Bounding Principle for Σ_n^0 formulas.
- ▶ (Kirby and Paris, 1977) $\cdots \Rightarrow I\Sigma_{n+1} \Rightarrow B\Sigma_{n+1} \Rightarrow I\Sigma_n \Rightarrow \cdots$
- ▶ (Slaman 2004) $I\Delta_n \Leftrightarrow B\Sigma_n$.

Codes and \mathcal{M} -finite sets

- ▶ Let \mathcal{M} be a model of $PA^- + B\Sigma_1$. In \mathcal{M} we can do basic arithmetic.
- ▶ For example, every $a \in \mathcal{M}$ has a unique binary expansion $a(0)a(1) \dots a(l-1)$.
- ▶ We say a codes a set X iff for all i, $i \in X$ iff a(i) = 1.
- ▶ If X is coded then we call X is \mathcal{M} -finite.

Recursion Theory on ${\mathcal M}$

- ▶ A set $A \subset M$ is r.e iff A is Σ_1^0 -definable in \mathcal{M} with parameters.
- ▶ A set A is recursive iff A and $M \setminus A$ are r.e.
- A Turing functional Φ in M is an r.e. set of quadruples (x, y, P, N) satisfying the monotone and consistency conditions as before.
- So we can study recursion theory on weak fragments of Peano arithmetic.

Some Results in Reverse Recursion

- ▶ Over $PA^- + B\Sigma_1$: $I\Sigma_1 \Leftrightarrow$ Existence of low r.e. sets \Leftrightarrow Sacks Splitting Theorem
- ▶ Over $PA^- + B\Sigma_2$: $I\Sigma_2 \Leftrightarrow$ Existence of high r.e. sets \Leftrightarrow Minimal Pair Theorem
- As in Reverse Mathematics, new proofs are required when working in fragments.

Application one: Classifying Theorems

- It is difficult to classify priority methods, because of the different ways to label requirements.
- Reverse recursion offers an intrinsic measure of complexity of theorems.
- ▶ Example: Over $B\Sigma_2$, $I\Sigma_2$ \Leftrightarrow the existence of maximal sets \Leftrightarrow the existence of Friedberg numbering.
- As in Reverse Mathematics, people are exploring both higher and wider areas.

Frank Plumpton Ramsey (1903 - 1930)

Ramsey "was a British mathematician who, in addition to mathematics, made significant and precocious contributions in philosophy and economics before his death at the age of 26."

Ramsey's Theorem (History)

- Ramsey's Theorem appeared in his 1930 paper On a problem of formal logic.
- "While this theorem is the work Ramsey is probably best remembered for, he only proved it in passing, as a minor lemma along the way to his true goal in the paper, solving a special case of the decision problem for first-order logic, ..."
- Today it is an entire branch of mathematics, known as Ramsey theory.

Ramsey's Theorem

Definition

For $A \subseteq \mathbb{N}$, let $[A]^n$ denote the set of all n-element subsets of A.

Theorem (Ramsey, 1930)

Suppose $f : [\mathbb{N}]^n \to \{0, 1, ..., k-1\}$. Then there is an infinite set $H \subseteq \mathbb{N}$ which is f-homogeneous, i.e., f is constant on $[H]^n$.

If we think of f as a k-coloring of the n-element subsets of \mathbb{N} , then all n-element subsets of H have the same color.

Informal reading: Within some sufficiently large systems, however disordered, there must be some order.

Sketch of a Proof for Pairs

Statement: If we colour pairs of natural numbers in two colors (Red and Blue), then there is an infinite subset $H \subset \mathbb{N}$, such that any pair formed by elements in H is coloured by the same colour.

Proof (idea). We enumerate a binary tree based on the colouring as illustrated by the following example:

Sketch of Proof (conti.)

We obtain an infinite binary tree. So there is an infinite branch of the tree. For example, the path $0 \rightarrow 1 \rightarrow 4 \rightarrow 5 \rightarrow \cdots$.

We can then read from the branch a homogeneous set by taking the "starting points of the red edges" (or blue).

Remarks

- We have used a version of Weak König Lemma.
- This tree is an "r.e. tree", so this version of Weak König Lemma is stronger than WKL₀.
- Applications in logic: Ramsey cardinals, indiscernibles, Paris and Harrington Theorem etc.

Ramsey's Theorem and Reverse Mathematics

- Motivating questions: What are the complexity of the homogenous set? What are the logical consequences of Ramsey's Theorem?
- After 40-year efforts of recursion theorists and reverse mathematicians, we now know:
 - ► ACA₀ is strictly stronger than RT₂, whereas WKL₀ is incomparable with RT₂.
 - ► RT₂² is strictly stronger than $B\Sigma_2$, but is strictly weaker than $I\Sigma_2$.
- Working on fragments helps.