Теортест-1 (Вариант 19)

Тема – определенный интеграл

Задача 1

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F дифференцируема на [a,b];
- 2. F ограничена на [a, b];
- 3. F первообразная для f на [a,b];
- 4. F не убывает на [a, b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

- 1. $\int f(1/x)dx = -\int \frac{f(t)dt}{t^2}$;
- 2. $\int f(\sqrt{x})dx = 2 \int f(t)\sqrt{t}dt;$
- 3. $\int f(x)d(2x) = \int \frac{f(\sqrt{t})}{\sqrt{t}}dt;$
- 4. $\int \frac{f(x)}{\ln x} dx = \int f(e^t) dt$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Выберите все верные утверждения:

- 1. Длина замкнутой кривой равна нулю;
- 2. Длина любой кривой не меньше длины отрезка, соединяющего ее начало и конец;
- 3. Длина любого пути не меньше длины вписанной в его носитель ломаной;
- 4. Длина спрямляемой кривой конечна;
- 5. Длина кривой зависит от параметризации;

Задача 4

Выберите все верные утверждения для данной функции, заданной на отрезке [a,b]:

- 1. Верхняя сумма Дарбу является наибольшей из всех интегральных сумм для данного разбиения;
- 2. Верхняя сумма Дарбу не меньше любой интегральной суммы для данного разбиения;
- 3. При измельчении разбиения верхняя сумма Дарбу увеличивается;
- 4. При измельчении разбиения верхняя сумма Дарбу уменьшается;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть функция u=u(x) – первообразная для функции v=v(x) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. v = u' + C;
- 2. v' = u + C;
- 3. u' = v + C:
- 4. u = v' + C:

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f непрерывна на [a, b] и f(a + b) = 1;
- 2. f непрерывна в точке a и f(b) = 1;
- 3. f(a) = f(b) = 1;
- 4. f(a) > 0, f(b) > 0;

Задача 7

Выберите все верные утверждения (тела А и В имеют объем):

- 1. объем любого сечения тела A равен нулю;
- 2. объем A всегда неотрицателен;
- 3. объем треугольника равен нулю;
- 4. если $A \subset B$, то объем A меньше объема B;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Пусть функции $f, g: [a, b] \to \mathbb{R}$. Выберите все верные утверждения:

- 1. Если f интегрируема на [a,b], то |f| тоже интегрируема на [a,b];
- 2. Если |f| интегрируема на [a,b], то f тоже интегрируема на [a,b];
- 3. Если $c \in [a, b]$ и f интегрируема на [a, c) и на [c, b], то f интегрируема и на [a, b];
- 4. Если f и g интегрируемы на [a, b], то $f \cdot g$ тоже интегрируема на [a, b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Выберите все верные утверждения:

- 1. первообразная дробно-рациональной функции является дробно-рациональной функцией;
- 2. если все корни знаменателя дробно-рациональной функции кратные, то ее первообразная является дробно-рациональной функцией;
- 3. если первообразная дробно-рациональной функции f(x) является дробно-рациональной, то все корни знаменателя f(x) кратные;
- 4. если первообразная дробно-рациональной функции f(x) выражается через логарифм, то знаменатель f(x) имеет только простые вещественные корни;

Задача 10

Функция $f\in R[0,10]$ и $-1\leq f(x)\leq 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_{-\ln 2}^0 \frac{f(x)}{e^x} dx$:

- 1. [0.5; 5];
- 2. [-10; 0];
- 3. [-2; 10];
- 4. [-1; 5];