Analysis I Compactness

Daniel Yu

September 16, 2024

Contents

1	Compact Sets	3
	Characterization of Compact Sets in \mathbb{R}^n 2.1 Suprenum and Infinitum in \mathbb{R}	5
3	Compact Sets in \mathbb{R}^n	7

CONTENTS 2

1 Compact Sets

Definition 1. A set of **open** sets $\{U_{\alpha}\}_{{\alpha}\in I}$ where I is a set of indicies is called an **open cover of** E if

$$E \subseteq \bigcup_{\alpha \in I} U_{\alpha}$$
.

Definition 2. If $\{U_{\alpha}\}_{{\alpha}\in I}$ is an open cover in E and $I_1\subseteq I$ such that

$$E \subseteq \bigcup_{\alpha \in I_1} U_{\alpha}$$
.

then $\{U_{\alpha}\}_{{\alpha}\in I_1}$ is called a **subcover** of $\{U_{\alpha}\}_{{\alpha}\in I}$

Definition 3. The set $E \subseteq X$ is compact in X if any open cover of E has a finite subcover

Totally bounded X: can be covered with finitely many $N(x, \varepsilon)$, for any $\varepsilon > 0$.

Figure 1: Compact Set

Definition 4. A subset $E \subseteq X$ is **bounded** if $\exists x_0 \in X, r > 0$, such that $E \subseteq B_r(x_0)$

Proposition 1. If $E \subseteq X$ is compact then E is bounded

Proof. By Contradiction

Assume that E is compact but not bounded. Take $x_0 \in X$ and consider the open cover of E, $U_n = \{B_n(x_0)\}$ for $n = 1, \ldots, n$. We know that each of these balls $B_n(x_0)$ is open by definition. Then $E \subseteq \bigcup_{n\geq 1} B_n(x_0)$. Since E is compact, then there exists finite subcover, so $\bigcup_{n\geq 1} B_n(x_0)$ is composed of finitely many balls. Then, $\exists 1 \leq n_1 < n_< \ldots < n_k$ such that $E \subseteq \bigcup_{j=1}^k B_{n_j}(x_0) = B_{n_k}(x_0)$ and E is contained in a ball with largest radius and this means E is bounded which is a contradiction! \square

Note. In this proof, we are constructing a finite subcover of concentric balls starting from the origin with increasing radius, one possible out of many.

Definition 5. The **haussdorff property** is defined as follows. For any $x \neq y$ in (X, ρ) metric space. Then $\exists r_1, r_2 > 0$ such that $B_{r_1}(x) \cap B_{r_2}(y) = \emptyset$. This **Haussdorff space** is also known as the **T2 axiom**.

Note. This is always true for metric spaces

Proof. By contradiction

Take $0 < r < \frac{\rho(x,y)}{2}$. Assume $\exists z \in X$ such that $z \in B_r(x) \cap B_r(y)$. Then, by the triangle inequality:

$$\rho(x, y) \le \rho(x, z) + \rho(z, y) < r + r = 2r.$$

$$\frac{\rho(x,y)}{2} < r.$$

However, this contradicts the assumption $0 < r < \frac{\rho(x,y)}{2}$. Therefore, such a point z cannot exist. Any metric space must be haussdorff.

Proposition 2. If $E \subseteq X$ is compact then it is a closed set in X.

Proof. Assume that E is compact. We will use the fact that we already proved if a set U is open, then it's complement U^c is closed. So we will show $X \setminus E$ is an open set. If E = X then E is closed since it is the whole metric space and metric spaces are closed sets. Assume $E \neq X$. Then, take $x \in X \setminus E$. For any $y \in E$, $\exists r_y > 0$ such that $B_{r_y}(x) \cap B_{r_y}(y) = \emptyset$. Then, $\{B_{r_y}(y)\}_{y \in E}$ is an open cover of E (in fact, even the centers would cover E). Since E is compact $\exists y_1, \ldots, y_N \in E$ such that $E \subseteq \bigcup_{j=1}^N B_{r_{y_j}}(y_j)$, a finite subcover. Take $r = \min\{r_{y_i}, r_{y_2}, \ldots, r_{y_N}\} > 0$. This means $\forall 1 \leq j \leq N$:

$$B_r(x) \cap B_{y_i}(y_j) \subseteq B_{r_i}(x) \cap B_{r_i}(y_j) = \emptyset.$$

So,

$$B_r(x) \cap (\cup_{j=1}^N B_{r_j}(y_j)) = \emptyset.$$

Then, $B_r(x) \cap E = \emptyset$ and $B_r(x) \subseteq X \setminus E$. Since we can make this argument for any $x \in X \setminus E$, then $X \setminus E$ is open. And E must be closed set in X.

Proposition 3. Let $E \subseteq X$ compact and $A \subseteq E$ and A closed in X. Then, A is compact in X.

Proof. Let $\{U_{\alpha}\}_{\alpha\in I}$ be an open cover of A. We will prove that it has a finite subcover. Since A is closed, then $X\setminus A$ is open and we get $\{\{U_{\alpha}\}_{\alpha\in I}, X\setminus A\}$ which is an open cover of E. Since E is compact, \exists a finite subcover of E, $\{U_{\alpha_1}, U_{\alpha_2}, \dots, U_{\alpha_N}, X\setminus A\}$. Then, $\{U_{\alpha_1}, \dots, U_{\alpha_N}\}\subseteq \{U_{\alpha_1}, U_{\alpha_2}, \dots, U_{\alpha_N}, X\setminus A\}$ and is a finite subcover of A.

Proposition 4. Let E be a compact set and let $S \subseteq E$ compact that has infinitely many element. Then \exists a limit point of S inside E. (will be used later on when talking about convergence).

Proof. By Contradiction

Assume E is compact and $S \subseteq E$ and S has infinitely many points and S does not have a limit point in E. This means that since $S \subseteq E$, if there is no limit point in E, then S does not have a limit point in general. Then for $\forall y \in E$ we have that y is not a limit point of S meaning,

 $\forall y \in E, \exists r_y > 0$ such that $B_{r_y}(y)$ contains only finnitely many points from S.

Then,

$$\{B_{r_y}(y)\}_{y\in E}.$$

is an open cover of E. Since E is compact, \exists a finite subcover of E:

$$\{B_{r_{y_1}}(y_1), \ldots, B_{r_{y_N}}(y_N)\}$$
 where $y_1, \ldots, y_N \in E$.

Then, $E \subseteq \bigcup_{i=1}^N B_{r_{y_j}}(y_j)$ and since N is a finite number and for each $B_{r_{y_j}}(y_j)$ there only exist finitely many elements from S, then this means that |E| is finite and since $S \subseteq E$, S has only finitely many elements, but this is a contradiction!

2 Characterization of Compact Sets in \mathbb{R}^n

2.1 Suprenum and Infinitum in \mathbb{R}

Definition 6. M is an **upper bound** of $E \subseteq \mathbb{R}$ if $\forall x \in E, x \leq M$

Definition 7. Let $E \subseteq \mathbb{R}$ and let E be bounded above (i.e. \exists an upper bound of E), then alpha = sup(E) is known as the **suprenum** of E if it satisfies:

- 1. α is an upper bound
- 2. $\forall \varepsilon > 0$, the interval $(\alpha \varepsilon, \alpha] \cap E \neq \emptyset$

Remark. Maximum vs Suprenum

Maximum can be thought of as the suprenum that belongs to the set. However, **the suprenum may not necessarily belong to the set** (think limits). The same holds for the minimum and infinitum.

Definition 8. Then the infinitum $\beta = inf(E)$ is defined as:

- 1. β is a lower bound
- 2. $\forall \varepsilon > 0$, the interval $[\beta, \beta + \varepsilon) \cap E \neq \emptyset$

Figure 2: Suprenum and Infinitum vs Maximum and Minimum

Theorem 1. If $E \subseteq \mathbb{R}$ is bounded above then $\exists sup(E)$. A similar statement holds for inf(E) if E is bounded below.

Proposition 5. The sup(E), E is bounded above, is unique.

Proof. By Contradiction

Assume that there exists two suprenum $\alpha_1, \alpha_2, \alpha_1 \neq \alpha_2$. Then WLOG, let $\alpha_1 < \alpha_2$. This means that for α_1 in E, by definition, $\exists \varepsilon_1$ such that the interval $(\alpha_1 - \varepsilon_1, \alpha_1] \cap E \neq \theta$ and for α_2 in E, $\exists \varepsilon_2$ such that $(\alpha_2 - \varepsilon_2, \alpha_2] \neq \theta$. However, because $\alpha_1 < \alpha_2$ then $\alpha_1 \in (\alpha_2 - \varepsilon_2, \alpha_2]$ which is non-empty with intersection with E, so there are elements $\alpha_1 < \alpha_1 + \varepsilon_1 \in E$. This means that α_1 is not an upper bound and can't be a suprenum!

Proposition 6. If M is an upper bound of $E \subseteq \mathbb{R}$ then $sup(E) \leq M$.

Proof.

Lemma 1. Let $I_1 \supseteq I_2 \supseteq \ldots \supset I_k \supseteq \ldots$ be a sequence of closed intervals

$$I_k = [a_k, b_k] \subseteq \mathbb{R}$$
 for all $k = 1, 2, \dots$

Then,

$$\bigcap_{k=1}^{\infty} I_k \neq \emptyset.$$

Proof. Assume $I_1 \supseteq I_2 \supseteq \ldots \supset I_k \supseteq \ldots$ are closed intervals. Then for any given $k \ge 1$, $a_l \le b_k$, $\forall l \ge 1$ (i.e. all the "lower bound"'s are smaller than any "upper bound"). Then b_k is an upper bound of $\{a_1, a_2, \ldots\}$ so through *Theorem 1*: $\alpha = \sup_{l \ge 1} \{a_l\}$ exists and

$$\alpha \leq b_k \forall k \in 1, 2, \dots$$

. Then, α is a lower bound for $\{b_k|k\in\mathbb{N}\}$. And by theorem 1 again,

$$\exists \beta = \inf\{b_k | k \in \mathbb{N}\}.$$

and, $\alpha \leq \beta$. Then, $\forall k \in \mathbb{N}$,

$$a_k \le \alpha \le \beta \le b_k \Leftrightarrow [\alpha, \beta] \subseteq I_k$$
.

So.

$$\bigcap_{k=1}^{\infty} I_k \supset [\alpha, \beta].$$

and the intersection is non-empty as $[\alpha, \beta]$ contains at least 1 element (when $\alpha = \beta$)

Note. If the intervals were not closed. For example: $I_n = (0, \frac{1}{n})$ for n = 1, 2, 3, ..., then $\bigcap_{n \geq 0} I_n = \emptyset$

Theorem 2. If $a \leq b$, then $I = [a, b] \subseteq \mathbb{R}$ is compact.

Proof. By contradiction

Assume that I is not compact, then \exists an open cover $\{U_{\alpha}\}_{{\alpha}\in A}$ of the interval I that does not have a finite subcover. Take the midpoint of the interval $\frac{a+b}{2}$ and split $I_1=I$ into

$$I_1' = \left[a, \frac{a+b}{2}\right]$$

and

$$I_1''=[\frac{a+b}{2},b]$$

. One of these intervals cannot be covered by finitely many sets from the collection $\{U_{\alpha}\}_{{\alpha}\in A}$, otherwise if both could be covered by finitely many, then I would have a finite subcover. Let us call this non-finitely covered interval $I_2\subseteq I_1$. Continuing with this process for I_n , we construct $I_1\supseteq I_2\ldots\supseteq I_k\supseteq\ldots$, where:

- 1. $I_k \supset I_{k+1} \forall k \ge 1$
- 2. $\forall k \geq 1, I_k$ can not be covered by finitely many sets from $\{U_\alpha\}_{\alpha \in A}$
- 3. $|I_k| = \frac{b-a}{2k-1}, k = 1, 2, \dots$

By Lemma 1, $\exists x \in \cap_{k=1}^{\infty} I_k$. Then $\exists \beta \in A$ such that $x \in U_{\beta}$. Since U_{β} is open, $\exists \varepsilon > 0$ such that $U_{\beta} \supseteq (x - \varepsilon, x + \varepsilon)$ for some $\varepsilon > 0$. It now follows from property (3), that $\exists k \ge 1$ such that $I_k \subseteq (x - \varepsilon, x + \varepsilon) \subseteq U_{\beta}$. This is a contradiction with property (2) because I_k can be covered by $\{U_{\beta}\}$ which is a finite subcover of size 1! Thus, I = [a, b] is compact

3 Compact Sets in \mathbb{R}^n

Consider the rectangular box I_n :

$$[a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_n, b_n] = \{(x_1, \ldots, x_n) \in \mathbb{R}^n | a_k \le x_k \le b_k \forall k = 1, 2, \ldots \}.$$

Theorem 3. $n \geq 1, I^n$ is bounded in \mathbb{R}^n The proof follows the argument in theorem (2)

Theorem 4. $E \subseteq \mathbb{R}^n$ is compact $\Leftrightarrow E$ is closed and bounded.

Proof. \rightarrow : Since E is compact \rightarrow E is closed and bounded by prop 1 and 2.

 \leftarrow : Assume that E is closed and bounded in \mathbb{R}^n . Then \exists a rectangular box B inside \mathbb{R}^n such that $E \subseteq B$ (we can consider the ball centered at E, then draw a box around it). But now realize that E is closed and B is compact (by theorem 3) and by Proposition 3, this means that E is compact.

Note. The above is not true in general, i.e. $E \subseteq X \not\Leftrightarrow E$ is closed and bounded. For example, consider X = [0,1) and $\rho(x,y) = |x-y|$, so (X,ρ) is the metric space. Define $E = [\frac{1}{2},1)$. Then E is closed and bounded in X. But E is not compact. Consider the open cover of \mathcal{E} ,

$$U_k = \left(0, 1 - \frac{1}{k+2}\right)k = 1, 2, 3, \dots$$

Then, $\bigcup_{k\geq 1} U_k \supseteq E$. But this open cover does not have a finite subcover that covers E!

$$\lim_{k\to\infty} U_k = (0,1).$$

So there is no way to contain $(1-\varepsilon,1)\subseteq E$ as $\varepsilon\to 0$ with finite subsets, it gets closer and closer but never reaches.