

Continental Engineering Services

Cyber Security in Automotive - Zero to 100 23/24

Table of contents

- 1. Cybersecurity
 - a) Cybersecurity in the world
 - b) Cybersecurity in the automotive area
 - C) Automotive cybersecurity threats
 - Cybersecurity Incidents by category
- 2. Automotive standards and regulations
- 3. Cybersecurity at Continental Engineering Service (CES)
 - a) CES environment
 - b) A real life example
 - Security features (Secure Mileage; Secure ECU Modes; Secure boot; Secure flashing/update).
- 4. Live demo

What we see

Security in automotive

What about cars

What about cars ...

MARCH 5, 2020 | ANDY GREENBERG

Hackers Can Clone Millions of Toyota, Hyundai, and Kia Keys

Encryption flaws in a common anti-theft feature expose vehicles from major manufacturers.

FEBRUARY 16, 2017 | ANDY GREENBERG

Android Phone Hacks Could Unlock Millions of Cars

JULY 21, 2015 | ANDY GREENBERG

Hackers Remotely Kill a Jeep on the Highway— With Me in It

I was driving 70 mph on the edge of downtown St. Louis when the exploit began to take hold.

id that Volkswagen stores secret ave almost all its vehicles since

APRIL 24, 2017 | ANDY GREENBERG

Just a Pair of These \$11 Radio Gadgets Can Steal a Car

A technique that allows thieves to silently unlock and drive away cars is getting cheaper and easier than ever.

AUGUST 4, 2016 | ANDY GREENBERG

Hackers Fool Tesla S's Autopilot to Hide and Spoof Obstacles

Researchers try out methods of jamming and spoofing the car's radar, ultrasonic sensors, and cameras---with disturbing results.

The worrying numbers

- Collection and exchange of data opens a security and privacy concern to the future
- Cybersecurity incidents are increasing dramatically
- Careless development opens new doors for black-hats

84.5% Rem_{ote}

2022 97% Remote

2022 **63% Black Hat** 2016-2019

Top incidents in 2022

Q1:

- Hacker remotely controls 25 American OEM EVs around the world.
- Several vulnerabilities were found in multiple charging stations which allowed remote attackers to impersonate charging station admin users and carry out actions on their behalf.
- Two major OEMs vulnerable to replay attacks let hackers remotely unlock and start vehicles

Q2:

- Chinese OEM vehicles were found to be vulnerable to attacks via update Processes.
- Hackers targeted vehicles of an American OEM through Bluetooth attacks.
- Japanese automotive supplier hit by ransomware attack.

2022

Q3:

- A hacker gained control over a head unit of Japanese automotive through the dashboard's API.
- Popular vehicle GPS tracker gives hackers admin privileges.
- Three ransomware attacks were launched against a Tier-1 supplier.
- A new mobile app vulnerability was discovered, enabling man-in-the-middle attacks on EV OEMs.

Q4:

- Italian OEM hit by ransomware attack.
- Japanese OEM customers affected by data breach in its mobile app
- Cyber attack shuts down Denmark's largest train company.
- Chinese EV OEM impacted by a data breach and ransomware demand of \$2.25 million in Bitcoin.

How it started ...

How it will be in the future ...

Automotive Connectivity

What do hackers see?

Anything is possible

- We can make someone just **UNCOMFORTABLE**
- Or make them go CRAZY
- Or just make it **STOP**

> Video

Which type of attack do you know in the automotive area? > Video

Internal

Standards, Regulations and Framework and

-) ISO/SAE 21434
 - Guidance the best practice for automotive CS development
- > UNECE R155
 - Threat categories
- > AUTomotive Open System Architecture (AutoSAR)

ISO/SAE 21434

- Standard for automotive cybersecurity
- Security Development Lifecycle (SDL) process
- Threat Analysis and Risk Assessment (TARA) detailed

ISO/SAE 21434 - STRIDE

Threat	Desired property	Threat Definition								
Spoofing	Authenticity	Pretending to be something or someone other than yourself								
Tampering	Integrity	Modifying something on disk, network, memory, or elsewhere								
Repudiation	Non-repudiability	Claiming that you didn't do something or were not responsible; can be honest or false								
Information disclosure	Confidentiality	Providing information to someone not authorized to access it								
Denial of service	Availability	Exhausting resources needed to provide service								
Elevation of privilege	Authorization	Allowing someone to do something they are not authorized to do								

ISO/SAE 21434 - TARA

ID	Threat	Asset	1.		Operational	_					Window of Opportunity			Treatment Options	Measures
IU	 IIIIcat	Asset	Impact	Impact	Impact	Impact	Level	Equipment	Expertise	about IOE	Opportunity	Level	Level	Options	ivicasures
	Tampering of sensor	∕ ·sensor	Medium	None	Medium	None	High	Bespoke	Expert	Critical	Small	None	QM	Acceptance	

ISO/SAE 21434 – Security Goals

Requirements:

- 1. Secure Mileage
- 2. Secure ECU Modes
- **3.** Secure Boot
- 4. Secure Flashing/Update
- 5. Secure Communication

with other ECUs (Live Demo)

- **6.** Secure Diagnostics
- 7. Secure Debug

• • •

Cybersecurity in CES

Where is CES in the automotive industry supply chain?

Source: "https://www.indx.com/"

Project Lifecycle in CES Continental **Engineering** Services **Interiors** C&B Continental **Engineering** Services D&E OEM CyberSecurity **ADAS** X-Tech

Continental Engineering Services

Internal

Cybersecurity is transversal to all segments

C&B - MK100

Automotive security in CES, why?

- > Brands are focus on new features/functionality
- Lack of awareness, everyone always think their implementation is good
- These is a lack of people with experience/knowledge in security
- Few security standards and regulations for the automotive world

CES Environment

CES Environment

CES Environment

Project Security and Privacy manager (Security Concept)

- The key interface to the customer
- Studies the threats and defines strategies to reduce the risk (TARA)
- Plan and organize all the security-related topics of a project (e.g Technical Security Concept)
- Supports the developers and testers during the development of the projects

Let's get technical

Where to start?

Where to start?

How do we achieve security on ECU level?

Example - Electronic Control Unit (ECU)

Example ECU

Requirements:

- 1. Secure Mileage
- 2. Secure ECU Modes
- 3. Secure Boot
- 4. Secure Flashing/Update
- **5.** Secure Communication

with other ECUs (Live Demo)

Even if the costumer does not request ...

ALWAYS CLOSE/DISABLE THE JTAG

Secure Mileage

Example ECU

Secure ECU Mode

Example ECU

Dedicated Modes

Authenticated transition

- Switchover authorized
- The Extended Mode value will be stored in the EEPROM

- The ECU will continue in the Default mode
- The token will not be stored

Concerns

- How do we ensure an attacker cannot exchange the key on the ECU by its own?
 - > The keys are part of a certificate chain integrated into the Software
- How do we protect against replay attacks?
 - Each token signed has a timestamp, which is then compared. Only if the timestamp is newer than the one stored, the token is accepted
- > How do we reduce the exposure of the key used?
 - > We do not directly sign with the certificates in the SW, we use an intermediate one that is sent with the token

Secure element

Integrity

- One-way function (e.g SHA) or Symmetric Key Cryptography (e.g AES-CMAC)
- > The secret (e.g key) is stored in a trustable physical computing device (e.g HSM)

Handle secure elements

- Production environment is considered secure and trustable
- 2. Request the Gen of Sym keys for secure boot (API Call)
- 3. Trigger the Secure Boot procedure to start (API Call)
- The Secure Boot procedure shall generate 2 CMAC's (e.g CBC-MAC)

Secure boot challenges

- > What problems are introduced in development due to secure boot?
 - Developers can not flash locally built software
- Why not simply bypass secure boot altogether during development?
 - › Because it will never be tested
 - Possible impact with other applications will go unnoticed

Secure Flashing/Update

Secure element

Integrity

- One-way function (e.g SHA) or Symmetric Key Cryptography (e.g AES-CMAC)
- > The secret (e.g public key) is stored in a trustable physical computing device (e.g HSM)

Non-repudiation

> Digital signatures (e.g ECDSA) offers non-repudiation when it comes to binary exchange

Handle secure elements

Secure Flashing/Update

The secure flashing will try to ensure that only trustable and reliable Software is flashed into memory

- 1. A hash of the binary is generated
- The digested binary requires to be signed
- The original binary and the resulting signed hash of the binary are sent out to memory
- 4. The received data will be parser and a reverse process validates the data

Secure flashing/updates challenges

- What problems are introduced in development due to secure flashing/update?
 - Developers depend normally on an external source to get the necessary ingredients to be able to flash a new software version
- Why not simply bypass secure flashing/update procedure during development?
 - Because it will never be tested

Questions?

Live demo

Questions?

