Arquitetura de Computadores I 2ª série de problemas – soluções 7.11.2014

I - Invocação de funções

1. Converta a função C para assembly do MIPS. Siga as convenções de invocação de funções do MIPS.

```
unsigned int sum(unsigned int n)
  if (n == 0) return 0;
  else return n + sum(n-1);
 }
Versão assembly:
               $a0, $0, cont
sum:
       bgt
                $v0, $a0
       mov
       jr
                $ra
       addi
               $sp, $sp, -8
cont:
                $ra, 4($sp)
       SW
                $a0, 0($sp)
       SW
       addi
                $a0, $a0, -1
               sum
       jal
       lw
                $ra, 4($sp)
       lw
                $a0, 0($sp)
       addi
                $sp, $sp, 8
                $v0, $a0, $v0
       add
                $ra
       jr
```

2. Nas aulas foi traduzida para assembly a seguinte versão recursiva do cálculo de factorial(n):

```
int fact (int n)
{
  if (n < 1) return (1);
  else return n * fact(n - 1);
}</pre>
```

Faça a tradução de uma versão iterativa de factorial(n). Indique o conteúdo do stack durante a execução da versão recursiva e da versão iterativa.

```
int fact (int n)
{
  int i, produto;
  produto = 1;
  for (i = 1; i <= n; i++)
  {
     produto = produto*i;
}</pre>
```

```
return (produto);
}
```

Versão assembly:

 $1^{\underline{a}}$ versão: sendo i e produto variáveis da função, segue-se a convenção de as alocar a registos \$s:

Alocação de Registos: \$a0 - n; \$s0 - i; \$s1 - produto

```
$sp, $sp, -8
      addi
      SW
              $s1, 4($sp)
      SW
              $s0, 0($sp)
      li
              $s1, 1
              $s0, 1
      li
loop: bgt
              $s0, $a0, end
             $s1, $s1, $s0
      mul
      addi
             $s0, $s0, 1
      jmp
             loop
             $v0, $s1
end: mov
              $s1, 4($sp)
      lw
              $s0, 0($sp)
      lw
              $sp, $sp, 8
      addi
      jr
              $ra
```

Stack (versão iterativa):

Address	Antes	Durante		Depois	
	\$sp			\$sp	
-4			\$s1		
-8		\$sp>	\$s0		

2ª versão: sendo a função terminal (não invoca nenhuma função), alocar as suas variáveis a registos \$t, dispensando assim a salvaguarda no stack:

```
Alocação de Registos: $a0 - n; $t0 - i; $t1 - produto
```

```
li
              $t1, 1
      li
              $t0, 1
              $t0, $a0, end
loop: bgt
              $t1, $t1, $t0
      mul
      addi
              $t0, $t0, 1
      jmp
              loop
              $v0, $t1
end: mov
      jr
              $ra
```

Stack (versão recursiva- - ver slides teórica):

	Valor do argumento de invocação				Retorno			
Address	n	n-1	•••	0	•••			
\$spold ->	n	n		n		n	n	
-4	L1+8	L1+8		L1+8		L1+8	L1+8	
-8 \$spnew		n-1		n-1		n-1		
-12		L1+8		L1+8		L1+8		
-16								
-20								
•••	•••	•••	•••	•••	•••			
-8(n-1) \$sp				0				
				L1+8				
-8n \$spnew								

II - Aritmética inteira

3. Represente em 2's complement com 16 bits os operandos e execute as operações a seguir indicadas:

- 4. Dispõe-se de um multiplicador série, análogo ao apresentado nas aulas, para inteiros *unsigned* representados em 4-bits. Pretende-se utilizá-lo para multiplicar 1011 por 1010.
 - a) Preencha a tabela indicando o valor dos registos a cada passo da execução do algoritmo de multiplicação e fazendo a respetiva descrição (shift left, shift right, add / no add).
 - b) Que alterações teria de introduzir no desenho do multiplicador para multiplicar valores em complemento para 2 utilizando o algoritmo de Booth? Assuma o mesmo conjunto de bits para o multiplicando e o multiplicador, mas representando agora valores em complemento para 2, e preencha de novo a tabela com a indicação dos vários passos do algoritmo de Booth.
 - c) Que modificações teria de introduzir no algoritmo de Booth e no esquema do multiplicador para poder utilizá-lo para efetuar multiplicações tanto signed como unsigned? Preencha de novo a tabela com a descrição dos passos da execução da multiplicação no seu multiplicador de Booth dos mesmos operandos unsigned.

Produto	Multiplicando	Multiplicador	Descrição	Step
0000 0000	0000 1011	1010	Valores Iniciais	Step 0
0000 0000	0000 1011	1010	0 - Shift	
0000 0000	000 1011	101	1 - Add	Step 1
0001 0110	000 1011	101	Shift	Step 2
0001 0110	00 1011	10	0 - Shift	Step 3
0001 0110	01 011	1	1 - Add	Step 4

Resultado: 0110 1110 (110)₁₀

b) Booth 2's complement -5 x -6

Produto	Multiplicando	Multiplicador	Descrição	Step
0000 0000	1111 1011	1010	Valores Iniciais	Step 0
0000 0000	1111 1011	1010	00 - Shift	Step 1
0000 1010	1111 011	1010	10 - Sub	Step 2
0000 1010	111 011	1010	Shift	Step 3
1111 0110	1110 11	101	01 - Add	Step 4
1111 0110	110 11	101	Shift	Step 5
0001 1110	101 1	10	10 - Sub	Step 6

Resultado: 0001 1110 (+30)

c) Booth Unsigned 11 x 10

- 1º representar os operandos em complemento para 2 (juntar bit de sinal): 01011 e 01010
- 2° gama de valores dos operandos: $(0...2^{4}-1) =>$

=> Resultado < (28-1) => representável em 9 bits

Produto	Multiplicando	Multiplicador	Descrição	Step
0 0000 0000	0 0000 1011	0 1010	Valores Iniciais	Step 0
0 0000 0000	0 0001 011	01010	00 - Shift	Step 1
1 1110 1010	0 0001 011	01010	10 - Sub	Step 2
1 1110 1010	0 0010 11	0101	Shift	Step 3
0 0110 1110	0 0010 11	0101	01 - Add	Step 4
0 0110 1110	0 0101 1	010	Shift	Step 5
1 1011 1110	0 0101 1	010	10 - Sub	Step 6
1 1011 1110	0 1011	01	Shift	Step 7
0 0110 1110	0 1011	01	01 - Add	Step 8

Resultado (unsigned): 0110 1110 (o resultado é representável em 8 bits, pelo que o 9º bit é desnecessário)

- 5. Pretende-se efetuar a divisão de inteiros de 4 bits usando um divisor idêntico ao apresentado nas aulas e no livro. Preencha a tabela indicando o valor dos registos a cada passo da execução do algoritmo de divisão e fazendo a respetiva descrição (shift left, shift right, sub). O valor do Divisor é 4 (0100, com 0000 bits à direita para o right shift*), o Dividendo é 6 (inicialmente colocado no registo *Resto*).
- * o número de shifts à direita terá de ser de 4 para preservar o valor do divisor. (há um erro no P&H Computer Organization and Design o numero de iterações do ciclo indicado é errado para a divisão inteira).

Quociente	Divisor	Resto	Descrição	Step
0000	0100 0000	0000 0110	Valores Iniciais	Step 0
		1 100 0110	Resto = Resto-Divisor	Step 1
0000		0000 0110	Resto<0 => Resto+Divisor	Step 2
	0010 0000		Shift rigth Divisor	Step 3
		1 110 0110	Resto = Resto-Divisor	Step 4
0000		0000 0110	Resto<0 => Resto+Divisor	Step 5
	0001 0000		Shift rigth Divisor	Step 6
		1 111 0110	Resto = Resto-Divisor	Step 7
0000		0000 0110	Resto<0 => Resto+Divisor	Step 8
	0000 1000		Shift rigth Divisor	Step 9
		1 111 1110	Resto = Resto-Divisor	Step 10
0000		0000 0110	Resto<0 => Resto+Divisor	Step 11
	0000 0100		Shift rigth Divisor	Step 12
0001		0000 0010	Resto = Resto-Divisor	Step 13

Quociente = 0001; Resto = 0010

III - Vírgula Flutuante (representação standard IEEE)

6. a) Qual o valor em decimal do número representado em precisão simples como

Sinal: -

Expoente: 01111101 = 125 - 127 = -2

Significando: 1,001 = 1,125 Valor = $1,125 \times 2^{-2}$

b) Converta o valor para precisão dupla

- 7. Neste problema usa-se um formato de representação em 8-bits IEEE 754-like, normalisado com 1 sign bit, 4 exponent bits, e 3 mantissa bits. O expoente é codificado em excesso-7. A ordem dos campos no número é (sign, exponent, mantissa). É usado unbiased rounding to the nearest even como especificado no standard IEEE.
 - a) Codifique os seguintes números neste formato:
 - (a) 0.0011011₂

0 1010 110

(b) 16.0_{10}

0 1011 000

b) Some 1.011 + 0.0011011 indicando o valor dos bits de guarda, de arredondamento e do sticky bit

1.011 + 0.0011011 1.1001011 guard bit = 1; round bit = 0; sticky bit = 1

- d) Qual o valor em decimal de 1 1010 101
 1,625x2³
- e) Indique para cada um dos pares de numeros seguintes qual o que representa o maior valor

(1) 0 0100 100 e 0 0100 111 0 0 0100 111 (2) 0 1100 100 e 1 1100 101 0 1100 100

8. Represente no formato IEEE precisão simples o valor -11/16 (-0.6875)

1 01111110 011000000000000000000000

9. A e B estão representados no formato IEEE 754 precisão simples.

 a) Determine A+B. Indique também o valor dos bits de guarda e de arredondamento e do sticky bit.

ExpA - ExpB = 1101 = 13

-SignificandB = 010111111110011111111111

SignificandA + (-SignificandB)x2-13 =

SignificandA+B =11000000000010111111111 Guard bit = 0; Round bit = 0; Sticky bit = 1

A+B = 0.10001100.11000000000001011111111

b) Determine B*A

 $\begin{array}{l} \text{SignA*B} = 1 \\ \text{ExpA+ExpB} = 10001100 + 01111111 - 01111111 = 10001100 \\ \text{SignificandA*SignificandB} = \end{array}$

guard round sticky

Normalizar resultado: ExpA*B = ExpA+ExpB+1 = 10001101

A*B = 1 10001101 00011000001010100000001