Organizační úvod

TODO!!!

Úvod

TODO!!!

1 Shodná zobrazení

Definice 1.1

Zobrazení $f: \mathbb{R}^n \to \mathbb{R}^n$ se nazývá shodné (nebo shodnost), jestliže pro každé dva body $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^n$ platí $||f(\mathbf{X}) - f(\mathbf{Y})|| = ||\mathbf{X} - \mathbf{Y}||$.

Lemma 1.1

Přímo z definice plyne, že složení dvou shodností je shodnost, shodnosti jsou prostá zobrazení a inverzní zobrazení ke shodnosti je opět shodnost.

 $D\mathring{u}kaz$

Triviální.

TODO!!!

Definice 1.2 (Grupa)

Množinu s jedinou binární operací (M, \circ) nazveme grupou, jestliže je tato operace asociativní, existuje pro ní neutrální (jednotkový) prvek a ke každému prvku existuje prvek inverzní.

Důsledek (Grupa shodností)

Shodnosti jsou surjektivní a vzhledem ke skládání tvoří grupu, kterou budeme označovat $\mathbb{E}(n)$.

 $D\mathring{u}kaz$

Shodná zobrazení jsou tvaru $f(\mathbf{X}) = \mathbf{A} \cdot \mathbf{X} + \mathbf{p}$, $g(\mathbf{X}) = \mathbf{B} \cdot \mathbf{X} + \mathbf{q}$, kde \mathbf{A} a \mathbf{B} jsou ortogonální. Potom

$$f^{-1} = \mathbf{A}^{-1} \cdot \mathbf{X} - \mathbf{A}^{-1} \cdot \mathbf{p}, (g \circ f)(\mathbf{X}) = (\mathbf{B} \cdot \mathbf{A}) \cdot \mathbf{X} + \mathbf{B} \cdot \mathbf{p} + \mathbf{q}.$$

1

Definice 1.3 (Přímé zobrazení)

Zobrazení f nazveme přímé, jestliže det $\mathbf{A} = 1$, a nepřímé, jestliže det $\mathbf{A} = -1$. Přímá zobrazení tvoří podgrupu $\mathbb{E}_+(n)$. Zobrazení, pro která je \mathbf{A} jednotková matice nazýváme posunutí a tvoří podgrupu označovanou (pokud nehrozí nedorozumění) rovněž \mathbb{R}^n . Zobrazení, pro která je \mathbf{p} nulový vektor tvoří podgrupu označovanou $\mathbb{ON}(n)$ (ortonormální grupa).

Důkaz

To, že jsou to podgrupy se dokáže jednoduše přes uzavřenosti.

Poznámka

Shodná zobrazení můžeme vyjádřit jako kartézský součin, ale grupové operace by pak nefungovali. Proto je množina shodných zobrazení definovaná tzv. semidirektním součinem: $\{(\mathbf{A}, \mathbf{p})\} = \mathbb{ON} \ltimes \mathbb{R}^n$.

Věta 1.2

Pro každou shodnost $f \in \mathbb{E}(n)$ tvaru $f(\mathbf{X}) = \mathbf{A} \cdot \mathbf{X} + \mathbf{p}$ platí maticová rovnost zapsaná blokově jako

$$\begin{pmatrix} f(\mathbf{X}) \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{A} & \mathbf{p} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ 1 \end{pmatrix}.$$

Navíc zobrazení, které každé shodnosti přiřazuje tuto matici rozměrů $(n+1) \times (n+1)$, tj.

$$f \mapsto \begin{pmatrix} \mathbf{A} & \mathbf{p} \\ 0 & 1 \end{pmatrix}$$
,

je vnoření grupy $\mathbb{E}(n)$ do grupy regulárních matic $\mathbb{GL}(n+1)$.

 $D\mathring{u}kaz$

Plyne z maticového násobení.

Definice 1.4 (Asociovaný homomorfismus, samodružné směry, samodružné

Mějme shodné zobrazení $f(\mathbf{X}) = \mathbf{A} \cdot \mathbf{X} + \mathbf{p}$. Jeho body splňující $f(\mathbf{X}) = \mathbf{X}$ nazýváme samodružné body. Lineární zobrazení $f_{\mathbf{A}} : \mathbb{R}^n \to \mathbb{R}^n$ dané maticí \mathbf{A} nazýváme asociovaným homomorfismem k zobrazení f a vlastní směry tohoto zobrazení nazýváme samodružné směry zobrazení f.

Řekneme, že množina M je samodružná množina zobrazení f, jestliže ji zobrazení zachovává (jako celek, ne nutně každý její bod zvlášť). Přesněji jestliže platí

$$\forall \mathbf{X} \in \mathbb{R}^n : \mathbf{X} \in \mathbb{M} \implies f(\mathbf{X}) \in M.$$

Lemma 1.3

Přímka $p: C + \langle \mathbf{v} \rangle$ je samodružnou množinou shodnosti f právě tehdy, $když \langle \mathbf{v} \rangle$ je jeho samodružný směr a f(C) - C je násobkem \mathbf{v} .

 $D\mathring{u}kaz$

At $\mathbf{D} = \mathbf{C} + \mathbf{v}$. Z linearity je p samodružná právě tehdy, když $f(\mathbf{C}), f(\mathbf{D}) \in p$. To už dokážeme rozepsáním.

Věta 1.4 (Klasifikační věta v \mathbb{R}^2)

Pro každou shodnost $f \in \mathbb{E}(2)$ nastane právě jedna z těchto možností:

f je přímá shodnost a

- má všechny body samodružné a všechny směry samodružné s vlastním číslem 1. Pak jde o identitu.
- má právě jeden samodružný bod, pak ji nazýváme otočení. Samodružné směry pak nemá buď žádné, nebo všechny s vlastním číslem -1. Tedy jde libovolné otočení nebo o otočení o π (= středová souměrnost).
- nemá žádný samodružný bod a všechny směry jsou samodružné s vlastním číslem 1.
 Pak ji nazýváme posunutí.

f je nepřímá shodnost. Pak má právě dva samodružné směry, jeden s vlastním číslem 1 a jeden s vlastím číslem -1 a

- buď má právě jednu přímku samodružných bodů, pak ji nazýváme osová souměrnost,
- nebo nemá žádné samodružné body, pak ji nazýváme posunutá osová souměrnost.