Weather generators and phenological models to study climate change impacts on grapevines and apples

Arnaud GONIN

Internship tutors :
David MÉTIVIER (INRAE - MISTEA)
Bénédicte FONTEZ (Institut Agro - MISTEA)

Outline

- Stochastic weather generators
 - Principle
 - Model
- 2 Phenological models
 - Introduction
 - BRIN model for Grapevine
 - Apple Model
 - With simulated TG (Apple)
- 3 Conclusion

I. Stochastic weather generators

Recorded daily maximum temperature (TX) at Lille from 1st May 2003 to 1st November 2003 (source : ECA&D)

With 5000 simulations:

$$T_t = M_t + S_t + X_t$$
 where

- T_t is the recorded temperature (TN, TG or TX)
- M_t is the trend
- S_t is the seasonality
- X_t is the stochastic part

Recorded temperature T_t

Trend M_t

Stochastic part X_t

- Trend : $M_t = 0$ (for now)
- Seasonality: Parametric function with a periodicity of 365.25 days:

$$S_t = \mu + \sum_{k=1}^{K} \alpha_k \cos(\omega kt) + \beta_k \sin(\omega kt)$$

With $\omega = 2\pi/365.25$, α_k and β_k coefficients to estimate and K the order (K = 5 in our work).

Stochastic part ∼ AR(p) model i.e :

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \phi_p X_{t-p} + \sigma \varepsilon_t$$

With ε_t a noise, ϕ_i and σ coefficients to estimate and p the order (we have chosen p=1).

Problem: Some features change during a year:

Model with different parameters for each month:

$$X_{t} = \phi_{1,m(t)}X_{t-1} + \phi_{2,m(t)}X_{t-2} + \dots + \phi_{p,m(t)}X_{t-p} + \sigma_{m(t)}\varepsilon_{t}$$

With ε_t a noise and m(t) the month of the date t.

- \rightarrow $(p+1) \times 12$ parameters for the stochastic part.
 - All parameters (μ , α_k , β_k , $\phi_{i,j}$ and σ_j) estimated with basic statistical methods (Regression and Maximum likelihood estimation).
 - To simulate new series :
 - 1 Initial conditions: $\hat{X}_1 = X_1, \hat{X}_2 = X_2, \dots, \hat{X}_p = X_p$.
 - 2 X_t simulated with the equation above. (ε_t is the term which makes it "random")
 - 3 T_t simulated by adding the periodic function of S_t .

II. Phenological models

Apple phenology dates simulated for the 2023-2024 period in Bonn, according to the parameters estimated in Legave and al. - 2013

Chilling period onset: 1st of August

Chilling quantity required C_c : 119.0 (chilling units)

Heating quantity required $G_{hc}: 13236^{\circ}C$

 Q_{10c} : 2.17 T_{0Bc} : 8.19°C

CPO: 30th of October

Chilling function F_c : Triangular T_c : 1.1°C

Chilling quantity required C: 56.0 (chilling units)

 $I_c: 20.{^{\circ}C}$

Heating quantity required *H* : 83.58 p (forcing units)

Forcing function F_h : Exponential

 $T_h: 9.0^{\circ} C$

Too early budbirsts make the plant vulnerable to a risk of freezing :

Simulated BB Min-Max interval
Simulated BB [0.25 ; 0.75] quantile interval
Predicted BB in Montpellier

Simulated EB Min-Max interval
Simulated EB [0.25; 0.75] quantile interval
Predicted EB in Montpellier

Simulated EB Min-Max interval
Simulated EB [0.25; 0.75] quantile interval
Predicted EB in Bonn

Simulated EB Min-Max interval
Simulated EB [0.25; 0.75] quantile interval
Predicted EB in Nantes

Conclusion

- We have studied and implemented a model that is able to generate temperature series but with a too simple modeling of the trend.
- We have implemented phenological models and applied them on stations from different climates in France, and we noticed that there is an evolution across the years since ≈ 1980 .
- Finally, we have applied phenological on simulated series, and the results show that it is required to consider a better model for the trend if we want more realistic temperature series.

Thanks you!