Theoretical Investigation of Generalization Bound for Residual Networks Supplementary Material

Anonymous Author(s)

Affiliation e-mail

1 Proof Details for Technical Lemmas

In this section, we show the details of our main results:

Lemma 1.1. With fixed values for t, function space \mathcal{F} and function space \mathcal{G} , the following inequality holds:

$$\mathbb{E}_{\epsilon} \exp \left(t \left(\sup_{f \in \mathcal{F}} \left| \sum_{i=1}^{n} \epsilon_{i} f(x_{i}) \right| + \sup_{g \in \mathcal{G}} \left| \sum_{i=1}^{n} \epsilon_{i} g(x_{i}) \right| \right) \right)$$

$$\leq 2\mathbb{E}_{\epsilon} \exp \left(t \left(\sup_{f \in \mathcal{F}} \sum_{i=1}^{n} \epsilon_{i} f(x_{i}) + \sup_{g \in \mathcal{G}} \left| \sum_{i=1}^{n} \epsilon_{i} g(x_{i}) \right| \right) \right).$$

Lemma 1.2. With fixed values for t, p, q, and the function space \mathcal{F} , we have:

$$\mathbb{E}_{\epsilon} \exp \left(t \sup_{\substack{\|\mathbf{M}\|_{p,q} \leqslant c \\ f \in \mathcal{F}}} \left\| \sum_{i=1}^{n} \epsilon_{i} \sigma \circ \left(\mathbf{M}(\sigma \circ f(x_{i}), 1)^{T} \right) \right\|_{p^{*}} \right)$$

$$\leq 2\mathbb{E}_{\epsilon} \exp\bigg(tc\rho d^{\left[\frac{1}{p^*} - \frac{1}{q}\right]_+} \bigg(\sup_{f \in \mathcal{F}} \bigg\| \sum_{i=1}^n \epsilon_i \sigma \circ f(x_i) \bigg\|_{p^*} + \bigg| \sum_{i=1}^n \epsilon_i \bigg| \bigg) \bigg),$$

where d is the column dimension of matrix M.

Proof.

$$\mathbb{E}_{\epsilon} \exp \left(t \sup_{\substack{\|\mathbf{M}\|_{p,q} \leqslant c \\ f \in \mathcal{F}}} \left\| \sum_{i=1}^{n} \epsilon_{i} \sigma \circ (\mathbf{M}(\sigma \circ f(x_{i}), 1)^{T}) \right\|_{p^{*}} \right)$$

$$\leq \mathbb{E}_{\epsilon} \exp \left(t\right)$$

$$\sup_{\substack{\|\mathbf{a}\|_q \leqslant c \\ \|\mathbf{V}_j\|_p = \mathbf{a}[j] \\ j \in \mathcal{F}}} \left(\sum_{j=1}^d \left| \sum_{i=1}^n \epsilon_i \sigma \circ (\mathbf{V}_j (\sigma \circ f(x_i), 1)^T) \right|^{p^*} \right)^{\frac{1}{p^*}} \right)$$

$$\leq \mathbb{E}_{\epsilon} \exp \left(tcd^{\left[\frac{1}{p^*} - \frac{1}{q}\right]_+} \right)$$

$$\cdot \sup_{ \|\mathbf{V}_{j}\|_{p} = 1 \atop f \in \mathcal{F}} \left| \sum_{i=1}^{n} \epsilon_{i} \sigma \circ (\mathbf{V}_{j}(\sigma \circ f(x_{i}), 1)^{T}) \right|$$
 (1)

$$\leq 2\mathbb{E}_{\epsilon} \exp\left(tc\rho d^{\left[\frac{1}{p^*} - \frac{1}{q}\right]_+} \left(\sup_{f \in \mathcal{F}} \left\| \sum_{i=1}^n \epsilon_i \sigma \circ f(x_i) \right\|_{p^*} + \left| \sum_{i=1}^n \epsilon_i \right| \right) \right), \tag{2}$$

where step (1) follows Lemma 1.4, step (2) follows the triangle inequality.

Lemma 1.3. $\forall \mathbf{x}_i \in \mathcal{S} \subset \mathcal{X}; \forall \mathcal{RN}_{n,q,\mathbf{c}}^{k,\mathbf{d}}$

$$Z_0 \triangleq \left\| \sum_{i=1}^n \epsilon_i \mathbf{x}_i \right\|_{p^*},$$

$$Z_{j} \triangleq \sup_{f \in \mathcal{RN}_{p,a,\mathbf{c}}^{k,\mathbf{d}}} \left\| \sum_{i=1}^{n} \epsilon_{i} \sigma \circ f_{j}(\mathbf{x}_{i}) \right\|_{p^{*}}, \ 1 \leqslant j \leqslant k,$$

where $\sigma \circ f_i \triangleq \widetilde{\mathcal{F}}_i \circ ... \circ \widetilde{\mathcal{F}}_1$. For any $j = 0, 1, \cdots, k$ and any $t \in \mathbb{R}$, ϵ_i , the Rademacher Random Variable is:

$$\mathbb{E}_{\epsilon} \exp(tZ_j)$$

$$\leq 8^{j} \exp \left(\frac{t^{2} n s_{j}^{2}}{2} + \prod_{l=1}^{j} \left(c_{j,2} c_{j,1} \rho^{2} (d_{j,1} d_{j,2})^{\left[\frac{1}{p^{*}} - \frac{1}{q}\right]_{+}} \right) d_{0}^{\frac{1}{p^{*}}} \sqrt{n(C(p))} \right),$$

$$s_0 = 1$$

$$s_{j} = (c_{j,2}c_{j,1}\rho^{2}(d_{j,1}d_{j,2})^{\left[\frac{1}{p^{*}} - \frac{1}{q}\right]_{+}} + 1)s_{j-1} + c_{j,2}c_{j,1}\rho^{2}(d_{j,1}d_{j,2})^{\left[\frac{1}{p^{*}} - \frac{1}{q}\right]_{+}} + c_{j,2}\rho d_{j,2}^{\left[\frac{1}{p^{*}} - \frac{1}{q}\right]_{+}},$$

$$j = 1, 2, \dots, k.$$

$$C(p) \triangleq \begin{cases} 2\log(2d_0) & p \in \{1\} \cup (2, \infty), \\ \min(p^* - 1, 2\log(2d_0)) & p \in (1, 2]. \end{cases}$$

Proof of Lemma 1.3. We prove this lemma by induction. When j = 0, according to Lemma 5 of [Xu and Wang(2018)],

 $\mathbb{E}_{\epsilon} Z_0 \leqslant d_0^{\frac{1}{p^*}} \sqrt{nC(p)}$. Note that Z_0 is a deterministic function of the i.i.d.random variables $\epsilon_1, \epsilon_2, \cdots, \epsilon_n$, which satisfies:

$$|Z_0(\epsilon_1,\cdots,\epsilon_i,\cdots,\epsilon_n)-Z_0(\epsilon_1,\cdots,-\epsilon_i,\cdots,\epsilon_n)|$$

$$\leq 2 \max \|\mathbf{x}_i\|_{p^*} \leq 2d_0^{\frac{1}{p^*}} \max \|\mathbf{x}_i\|_{\infty}$$

By assuming that $\|\mathbf{x}\|_{\infty} \le 1$ for any input \mathbf{x} and [Bousquet et al.(2003)Bousquet, Boucheron, and Lugosi], we have:

$$\mathbb{E}_{\epsilon} \exp(tZ_0) = \mathbb{E}_{\epsilon} \exp(t(Z_0 - \mathbb{E}_{\epsilon} Z_0)) * \exp(t\mathbb{E}_{\epsilon} Z_0)$$

$$\leq \exp\left(\frac{t^2 n}{2} + t\sqrt{n(C(p))}\right)$$

for any $t \in \mathbb{R}$. Then, for j > 0,

$$\mathbb{E}_{\epsilon} \exp(tZ_j)$$

$$= \mathbb{E}_{\epsilon} \exp \left(t \sup_{\substack{\|\mathbf{M}_{j,2}\|_{p,q} \leq c_{j,2} \\ \|\mathbf{M}_{j,1}\|_{p,q} \leq c_{j,1} \\ f \in \mathcal{RN}_{p,q,c}^{k,\mathbf{d}}}} \left\| f_{j-1}(\mathbf{x}_{i}) \right\| + \sum_{i=1}^{n} \epsilon_{i} \sigma \left(\mathbf{M}_{j,2} (\sigma \circ \mathbf{M}_{j,1} (\sigma \circ f_{j-1}(\mathbf{x}_{i}), 1)^{T}, 1) \right) \right\|_{p^{*}} \right)$$

$$\leq \mathbb{E}_{\epsilon} \exp \left(t \sup_{ \substack{\|\mathbf{M}_{j,2}\|_{p,q} \leqslant c_{j,2} \\ \|\mathbf{M}_{j,1}\|_{p,q} \leqslant c_{j,1} \\ f \in \mathcal{RN}_{p,q,\mathbf{c}}^{k,\mathbf{d}} }} \left\{ \left\| \sum_{i=1}^{n} \epsilon_{i} \sigma \circ f_{j-1}(\mathbf{x}_{i}) \right\|_{p^{*}} \right.$$

+
$$\left\| \sum_{i=1}^{n} \epsilon_{i} \sigma \left(\mathbf{M}_{j,2} \left(\sigma \circ \mathbf{M}_{j,1} \left(\sigma \circ f_{j-1}(\mathbf{x}_{i}), 1 \right)^{T}, 1 \right)^{T} \right) \right\|_{p^{*}} \right\} \right)$$
 (3)

$$\leq 2\mathbb{E}_{\epsilon} \exp \left(t \sup_{\substack{\|\mathbf{M}_{j,1}\|_{p,q} \leq c_{j,1} \\ f \in \mathcal{RN}_{p,q,\mathbf{c}}^{k,\mathbf{d}}}} \left\{ \left\| \sum_{i=1}^{n} \epsilon_{i} \sigma \circ f_{j-1}(\mathbf{x}_{i}) \right\|_{p^{*}} + c_{j,2} \rho d_{j,2}^{\left[\frac{1}{p^{*}} - \frac{1}{q}\right]_{+}} \left\| \sum_{i=1}^{n} \epsilon_{i} (\sigma \circ \mathbf{M}_{j,1}(\sigma \circ f_{j-1}(\mathbf{x}_{i}), 1)^{T}, 1) \right\|_{p^{*}} \right\} \right)$$

$$\leq 4\mathbb{E}_{\epsilon} \exp\left(t \sup_{f \in \mathcal{RN}_{p,q,\mathbf{c}}^{k,\mathbf{d}}} \left\{ c_{j,2} c_{j,1} \rho^{2} (d_{j,1} d_{j,2})^{\left[\frac{1}{p^{*}} - \frac{1}{q}\right]_{+}} \right. \\
\left. \left\| \sum_{i=1}^{n} \epsilon_{i} (1, \sigma \circ f_{j-1}(\mathbf{x}_{i})) \right\|_{p^{*}} + \left\| \sum_{i=1}^{n} \epsilon_{i} \sigma \circ f_{j-1}(\mathbf{x}_{i}) \right\|_{p^{*}} \right\} \\
+ t c_{j,2} \rho d_{j,2}^{\left[\frac{1}{p^{*}} - \frac{1}{q}\right]_{+}} \left| \sum_{i=1}^{n} \epsilon_{i} \right| \right) \tag{5}$$

$$\leq 4\mathbb{E}_{\epsilon} \exp\left(t(c_{j,2}c_{j,1}\rho^2(d_{j,1}d_{j,2})^{[\frac{1}{p^*}-\frac{1}{q}]_+}+1\right)$$

$$\begin{split} & \cdot \sup_{f \in \mathcal{RN}_{p,q,\mathbf{c}}^{k,\mathbf{d}}} \left\| \sum_{i=1}^{n} \epsilon_{i} \sigma \circ f_{j-1}(\mathbf{x}_{i}) \right\|_{p^{*}} \\ & + t(c_{j,2}c_{j,1}\rho^{2}(d_{j,1}d_{j,2})^{\left[\frac{1}{p^{*}} - \frac{1}{q}\right]_{+}} + c_{j,2}\rho d_{j,2}^{\left[\frac{1}{p^{*}} - \frac{1}{q}\right]_{+}}) |\sum_{i=1}^{n} \epsilon_{i}| \end{split}$$

$$\leqslant 4 \left[2\mathbb{E}_{\epsilon} \exp\left(r_{j} t(c_{j,2} c_{j,1} \rho^{2} (d_{j,1} d_{j,2})^{\left[\frac{1}{p^{*}} - \frac{1}{q}\right]_{+}} + c_{j,2} \rho d_{j,2}^{\left[\frac{1}{p^{*}} - \frac{1}{q}\right]_{+}} \right) \sum_{i=1}^{n} \epsilon_{i} \right]^{\frac{1}{r_{j}}}$$
(6)

$$\cdot \left[\mathbb{E}_{\epsilon} \exp \left(r_{j}^{*} t(c_{j,2}j, 1\rho^{2}(d_{j,1}d_{j,2})^{\left[\frac{1}{p^{*}} - \frac{1}{q}\right]_{+}} + 1 \right) \right]$$

$$\cdot \sup_{f \in \mathcal{RN}_{p,q,\mathbf{c}}^{k,\mathbf{d}}} \left\| \sum_{i=1}^{n} \epsilon_{i} \sigma \circ f_{j-1}(\mathbf{x}_{i}) \right\|_{p^{*}} \right]^{\frac{1}{r_{j}^{*}}}$$
(7)

$$\leq 8^{j} \exp\left(\frac{t^{2} n s_{j}^{2}}{2} + t \prod_{l=1}^{j} \left(c_{j,2} c_{j,1} \rho^{2} (d_{j,1} d_{j,2})^{\left[\frac{1}{p^{*}} - \frac{1}{q}\right]_{+}} + 1\right) \sqrt{nC(p)}\right).$$

Here, step (3) follows the triangle inequality, then step (4)

and step (5) follow Lemma 1.2. Step (7) holds for $r_j > 1$ and $\frac{1}{r_j} + \frac{1}{r_j^*} = 1$ according to the Hölder Inequality $\mathbb{E}(|XY|) \leqslant \mathbb{E}(|X|^r)^{\frac{1}{r}} \cdot \mathbb{E}(|Y|^{r^*})^{\frac{1}{r^*}}$. Since $|\sum_{i=1}^n \epsilon_i|$ also satisfies:

$$\left|\left|\sum_{i=1}^{n} \epsilon_{i}\right| - \left|\epsilon_{1} + \dots + \left(-\epsilon_{i}\right) + \dots + \epsilon_{n}\right|\right| \leq 2\left|\epsilon_{i}\right| = 2.$$

According to [Bousquet et al.(2003)Bousquet, Boucheron, and Lugosi], we have the inequation: $\mathbb{E}_{\epsilon} \exp(t \sum_{i=1}^n \epsilon_i) \leq \exp(\frac{t^2 2}{2})$. Thus, by taking

$$r_{j} = \frac{c_{j,2}c_{j,1}\rho^{2}(d_{j,1}d_{j,2})^{\left[\frac{1}{p^{*}} - \frac{1}{q}\right] + 1}}{c_{j,2}c_{j,1}\rho^{2}(d_{j,1}d_{j,2})^{\left[\frac{1}{p^{*}} - \frac{1}{q}\right] + 1} + c_{j,2}\rho d_{j,2}^{\left[\frac{1}{p^{*}} - \frac{1}{q}\right] + }} \cdot s_{j-1} + 1$$

and using the induction assumption, we obtain the final result. $\hfill\Box$

Proof of Theorem 3.2.

$$n\hat{\mathfrak{R}}_{\mathcal{S}}(\mathcal{RN}_{p,q,\mathbf{c}}^{k,\mathbf{d}})$$

$$=\mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{RN}_{p,q,\mathbf{c}}^{k,\mathbf{d}}} \sum_{i=1}^{n} \epsilon_{i} f(\mathbf{x}_{i}) \right]$$

$$\leqslant \frac{1}{t} \log \mathbb{E}_{\epsilon} \exp \left(t \sup_{f \in \mathcal{RN}_{p,q,\mathbf{c}}^{k,\mathbf{d}}} \sum_{i=1}^{n} \epsilon_{i} f(\mathbf{x}_{i}) \right)$$

$$\leqslant \frac{1}{t} \log \mathbb{E}_{\epsilon} \exp \left(t c_{k+1} \rho d_{k+1}^{\left[\frac{1}{p^{*}} - \frac{1}{q}\right] +} \right.$$

$$\cdot \sup_{f \in \mathcal{RN}_{p,q,\mathbf{c}}^{k,\mathbf{d}}} \left\| \sum_{i=1}^{n} \epsilon_{i} (1, \sigma \circ f_{k}(\mathbf{x}_{i})) \right\|_{p^{*}}$$

$$\leq \frac{1}{t}c_{k+1}\rho d_{k+1}^{\left[\frac{1}{p^*}-\frac{1}{q}\right]+} \left((3k+2)\log 2 + \frac{nt^2s_k^2}{2} + t \prod_{j=1}^k \left(c_{j,2}c_{j,1}\rho^2(d_{j,1}d_{j,2})^{\left[\frac{1}{p^*}-\frac{1}{q}\right]+} + 1 \right) \sqrt{nC(p)} \right)$$

If we choose
$$t = \frac{\sqrt{(6k+4)\log 2}}{\sqrt{n}s_{k+1}}$$
, then
$$\hat{\mathfrak{R}}_{\mathcal{S}}(\mathcal{RN}_{p,q,\mathbf{c}}^{k,\mathbf{d}})$$
 $\leqslant c_{k+1}\rho d_{k+1}^{\lfloor \frac{1}{p^*} - \frac{1}{q} \rfloor +} \left(\sqrt{\frac{(6k+4)\log 2}{n}}s_{k+1} + \prod_{l=1}^{j} \left(c_{j,2}c_{j,1}\rho^2(d_{j,1}d_{j,2})^{\lfloor \frac{1}{p^*} - \frac{1}{q} \rfloor +} + 1\right)\sqrt{nC(p)}\right)$

Lemma 1.4. [Xu and Wang(2018)] $\forall p, q \geqslant 1, s_1, s_2 \geqslant 1, \epsilon \in \{1, -1\}^n$, and all functions $h : \mathbb{R}^{m_1} \to \mathbb{R}^{s_1}$, we have:

$$\sup_{\mathbf{M} \in \mathbb{R}^{s_1 \times s_2}} \frac{1}{\|\mathbf{M}\|_{p,q}} \left\| \sum_{i=1}^n \epsilon_i \cdot \sigma \left(\mathbf{M}^T h(\mathbf{x}_i) \right) \right\|_{p^*}$$

$$\leq s_2^{\left[\frac{1}{p^*} - \frac{1}{q}\right]_+} \sup_{\mathbf{v} \in \mathbb{R}^{s_1}} \frac{1}{\|\mathbf{v}\|_p} \left| \epsilon_i \cdot \sigma[\langle \mathbf{v}, h(\mathbf{x}_i) \rangle] \right|.$$

Lemma 1.5. [Ledoux and Talagrand(2013)] An upper bound of the Rademacher Complexity of \mathcal{RG}_{γ} is:

$$\hat{\mathfrak{R}}_S(\mathcal{RG}_{\gamma}) \leqslant \gamma \cdot \hat{\mathfrak{R}}_S(\mathcal{RN}_{p,q,\mathbf{c}}^{k,\mathbf{d}}).$$

Lemma 1.6. [Mohri et al.(2012)Mohri, Talwalkar, and Rostamizadeh] Let $\mathbf{z} \triangleq (\mathbf{x}, y) \sim \mathcal{D}, (\mathbf{x}, y) \in \mathcal{X} \times \mathcal{Y}, \mathcal{S} \triangleq \{\mathbf{z}_1, ..., \mathbf{z}_n\}$ is a dataset of m i.i.d samples selected from the distribution \mathcal{D} . Let $\mathcal{N} \subset \{f | f : \mathcal{X} \times \mathcal{Y} \rightarrow [a, a+1]\}$ Fix $\delta \in (0, 1), \forall k \in \mathbb{N}^+, \forall d_i \in \mathbb{N}^+ \quad i = 1, ..., k$. With probability of at least $1 - \delta$ over the generation of \mathcal{S} , it holds that:

$$\mathbb{E}_{\mathcal{D}}[g] - \hat{\mathbb{E}}_{\mathcal{S}}[g] \leqslant 2\mathfrak{R}_n(\mathcal{N}) + \sqrt{\frac{\log(1/\delta)}{2n}}.$$

Proof of Theorem 4.3

Proof. With Lemma 1.6, we have a probability of at least $1 - \delta$:

$$\begin{split} \mathbb{E}_{\mathcal{D}}[g] - \hat{\mathbb{E}}_{\mathcal{S}}[g] &\leqslant 2\mathfrak{R}_n(\mathcal{RG}_{\gamma}) + \sqrt{\frac{\log(1/\delta)}{2n}} \\ \hat{\mathbb{E}}_{\mathcal{S}}[g] - \mathbb{E}_{\mathcal{D}}[g] &= \mathbb{E}_{\mathcal{D}}[-g] - \hat{\mathbb{E}}_{\mathcal{S}}[-g] \\ &\leqslant 2\mathfrak{R}_n(\mathcal{RG}_{\gamma}) + \sqrt{\frac{\log(1/\delta)}{2n}} \\ &\Longrightarrow \left| \mathbb{E}_{\mathcal{D}}[g] - \hat{\mathbb{E}}_{\mathcal{S}}[g] \right| \leqslant 2\mathfrak{R}_n(\mathcal{RG}_{\gamma}) + \sqrt{\frac{\log(1/\delta)}{2n}}. \end{split}$$

According to Lemma 1.5:

$$\mathfrak{R}_n(\mathcal{RG}_{\gamma}) \leqslant \sup_{\mathcal{S}} \hat{\mathfrak{R}}_{\mathcal{S}}(\mathcal{RG}_{\gamma}) \leqslant \gamma \cdot \hat{\mathfrak{R}}_{\mathcal{S}}(\mathcal{RN}_{p,q,\mathbf{c}}^{k,\mathbf{d}}).$$

The combination of the results above and Theorem 3.2 lead to the ultimate conclusion.

2 Full data for Numerical Experiments

In this section, we display all the data from numerical experiments. seWe train two simple networks and calculate the generalization bound for each network. While both of the networks share the same initialization and parameters, ResNets shortcut structure is added to the second network.

2.1 Experiments Design

We first set Net-A and Net-B as two fully connected DNNs with four hidden layers. Then, we add a residual shortcut to Net-B between the second layer and the third one. The parameters are shown in Figure 2. Through the course of several experiments, we found that the choice of widths did not greatly affect the general conclusion; hence, we arbitrarily selected the width parameters.

Figure 1: The parameter setting of Net-A and Net-B.

Both networks are trained on the MNIST dataset with a batch size of 100, a learning rate of 0.001, and ten epochs. We first initialize the weights of Net-A using the Xavier Initialization and set all the bias components as 0.1. As a control group, Net-B shares all the initialized parameters with Net-A. We vary the scale of the initialization before training, that is, we divide the weights from the Xavier Initialization by the 'scale'.

After training Net-A and Net-B, we calculate the $\ell_{2,2}$ -norm of their weights, respectively. For Net-A, we denote the $\ell_{2,2}$ -norm as $\{a,b,c,d,e\}$ in order. Similarly, we calculate $\{a',b',c',d',e'\}$ from Net-B. We obtain evidence that supports our original hypothesis by setting the scale as 10, 15, 20, 25, and other larger numbers. For each scale, we repeat the experiment fifty times.

2.2 Results

In Tables 1-4, we display the results for a selection of scales. $GB \triangleq abcde, GB' \triangleq a'(b'c'+1)d'e'$, where 'GB' stands for 'Generalization Bound'.

$$\Delta GB \triangleq GB' - GB, \Delta acc \triangleq B \ acc - A \ acc$$

The results suggest that with the same initialization and training strategy, the ResNet structure has a lower generalization bound than DNN (more than 95% of the data hold a'(b'c'+1)d'e'-abcde<0). Since A acc and B acc are close, and B acc is usually larger (approximately 80% of the data hold Δ acc>0), we conclude that the ResNets structure contributes to better generalization properties.

GB	A acc	GB'	B~acc	ΔGB	$\Delta \ acc(\%)$		GB	A acc	GB'	B acc	ΔGB	$\Delta \; acc(\%)$
85665.89	0.9708	72200.5	0.9727	-13465.4	0.19	-	108746.1	0.9705	73219.09	0.9747	-35527	0.42
113891.8	0.9761	92663.38	0.9779	-21228.4	0.18		168290.1	0.9732	139676.6	0.9766	-28613.5	0.34
106829.8	0.9726	74785.51	0.9749	-32044.2	0.23		172926.2	0.9761	138797.1	0.9753	-34129.1	-0.08
112395.5	0.9718	70269.14	0.9771	-42126.3	0.53		101993.6	0.976	70107.49	0.9757	-31886.1	-0.03
99327.02	0.9763	83384.86	0.9778	-15942.2	0.15		134602.7	0.9632	90798.18	0.9733	-43804.5	1.01
102978.5	0.9763	86616.9	0.9735	-16361.6	-0.28		195945.8	0.9766	137226.7	0.9742	-58719.1	-0.24
105634.9	0.977	85034.96	0.9759	-20599.9	-0.11		129337.1	0.9755	117983	0.9759	-11354.1	0.04
88553.07	0.9716	80143.38	0.9788	-8409.69	0.72		168796.1	0.9739	107425.9	0.9769	-61370.2	0.3
115178.6	0.9708	83685.9	0.9764	-31492.7	0.56		108898.1	0.9723	67926.36	0.9754	-40971.8	0.31
114659.9	0.9762	70251.56	0.9779	-44408.4	0.17		100404.4	0.9712	67844.54	0.9742	-32559.9	0.3
99282.85	0.9712	73568.03	0.98	-25714.8	0.88		100856.3	0.9712	76093.32	0.976	-24763	0.48
146976	0.9743	81176.17	0.9731	-65799.9	-0.12		131944.2	0.9683	89209.46	0.9784	-42734.7	1.01
101798.5	0.9773	71842.18	0.9761	-29956.3	-0.12		113163.8	0.9737	83232.78	0.9731	-29931	-0.06
117157.1	0.9719	87056.01	0.9733	-30101.1	0.14		223271	0.9757	125029.1	0.9775	-98241.9	0.18
98932.96	0.9744	83293.12	0.9763	-15639.8	0.19		159851.6	0.9762	132680.1	0.9707	-27171.4	-0.55
90232.57	0.9738	80481.85	0.9754	-9750.71	0.16		161889.9	0.9746	113205.2	0.9785	-48684.7	0.39
110141.9	0.975	85637.88	0.9747	-24504	-0.03		91169.26	0.9746	79804.93	0.9774	-11364.3	0.28
105118.1	0.965	73673.75	0.9752	-31444.3	1.02		139318.5	0.9745	114826.1	0.9772	-24492.4	0.27
88778.92	0.9708	82105.02	0.9799	-6673.9	0.91		79801.2	0.9748	92302.49	0.9782	12501.3	0.34
107076.8	0.9737	81956.33	0.9805	-25120.5	0.68		147532.1	0.974	91971.79	0.9731	-55560.4	-0.09
100937.7	0.9696	85669.53	0.9765	-15268.2	0.69		94015.51	0.9719	90148.42	0.9717	-3867.08	-0.02
108476.8	0.9685	83434.51	0.9759	-25042.3	0.74		88318.33	0.9752	71322.27	0.9751	-16996.1	-0.01
110783.9	0.9754	83634.4	0.976	-27149.5	0.06		129711.6	0.9712	90716.89	0.9748	-38994.7	0.36
102716.6	0.973	80970.26	0.9768	-21746.4	0.38		147862.8	0.975	99873.86	0.9764	-47988.9	0.14
108043.8	0.971	83420.95	0.9765	-24622.8	0.55		125593.9	0.976	112645.7	0.9743	-12948.2	-0.17
94687.19	0.9764	73752.66	0.9749	-20934.5	-0.15		123896.4	0.9736	72091.85	0.9737	-51804.6	0.01
102615.4	0.9732	71980.7	0.9744	-30634.7	0.12		215997.2	0.9735	141175.2	0.9766	-74822.1	0.31
80745.93	0.974	72335.14	0.9758	-8410.79	0.18		147922.2	0.9733	107571	0.9737	-40351.3	0.04
84831.58	0.9721	72048.62	0.9728	-12783	0.07		161565.3	0.9757	77536.68	0.9684	-84028.6	-0.73
106013	0.974	76638.36	0.976	-29374.6	0.2		162033.8	0.9739	116951.6	0.9751	-45082.2	0.12
113551.4	0.9726	78923.43	0.9765	-34627.9	0.39		109949.2	0.9688	91202.2	0.9768	-18747	0.8
97025.65	0.9727	77701.22	0.974	-19324.4	0.13		138363.3	0.9728	107571.8	0.9736	-30791.5	0.08
130017.4	0.9759	70928.66	0.9744	-59088.7	-0.15		166892.3	0.9756	128974.9	0.9797	-37917.4	0.41
104986.7	0.9733	81410.43	0.9749	-23576.3	0.16		173282.6	0.9767	135428.4	0.9705	-37854.2	-0.62
113713.1	0.9717	77424.75	0.9772	-36288.3	0.55		108453.9	0.9764	96636.78	0.9761	-11817.1	-0.03
95741.99	0.9752	84426.64	0.9753	-11315.3	0.01		118971.6	0.975	113436.7	0.9737	-5534.96	-0.13
90725.41	0.9713	73615.43	0.9768	-17110	0.55		90118.51	0.9764	68059.32	0.9744	-22059.2	-0.2
85339.72	0.9745	82977.7	0.9709	-2362.01	-0.36		147896.2	0.9727	121315.4	0.9755	-26580.9	0.28
89103.94	0.9732	77290.57	0.9744	-11813.4	0.12		105111.5	0.9742	92290.25	0.973	-12821.3	-0.12
104909.9	0.9744	78088.55	0.9755	-26821.3	0.11		87627.02	0.9728	90106.48	0.9756	2479.465	0.28
142222.7	0.975	86345.11	0.9748	-55877.6	-0.02		125547.7	0.9768	107105	0.9789	-18442.7	0.21
82819.93	0.9745	73815.73	0.9767	-9004.2	0.22		161633.7	0.9754	113952.3	0.973	-47681.4	-0.24
89951.42	0.9702	77795.07	0.9767	-12156.4	0.65		190887.7	0.9742	117740.2	0.9738	-73147.5	-0.04
112541.1	0.9751	82422.37	0.9766	-30118.7	0.15		146509.2	0.9753	98301.79	0.9747	-48207.4	-0.06
101843.1	0.9731	80280.58	0.9700	-21562.6	-0.14		94129.34	0.9733	69508.67	0.9747	-246207.4	-0.28
93776.51	0.9724	71715.94	0.971	-21302.0	0.07		134662.3	0.9741	119447.8	0.9713	-15214.5	0.19
102584.7	0.9762	78701.02	0.9715	-23883.7	0.07		220545.9	0.9789	155478.2	0.9676	-65067.7	-1.13
117927.4	0.9762	94773.64	0.9703	-23153.8	0.03		121319.7	0.9764	90496.86	0.9070	-30822.8	-0.06
89059.24	0.9744	76695.6	0.9771	-23133.8	0.27		184569.9	0.9781	155472.6	0.9738	-30822.8	-0.34
94930.14	0.9732	65332.5	0.9734	-12303.0	0.22		134801.9	0.9781	91216.67	0.9747	-43585.2	-0.34
24930.14	0.9/13	03332.3	0.9777	-49391.0	0.04	_	134001.9	0.9747	91410.07	0.9702	-43363.2	-0.43

Table 1: Scale=10 Table 2: Scale=15

GB	A acc	GB'	B acc	ΔGB	$\Delta \ acc(\%)$	•	GB	A acc	GB'	B acc	ΔGB	$\Delta \ acc(\%)$
206819.7	0.9735	149181.6	0.9788	-57638	0.53		129060.8	0.975	80157.64	0.9789	-48903.2	0.39
134944.9	0.969	67766.2	0.9742	-67178.7	0.52		116770	0.9742	115572.9	0.9756	-1197.11	0.14
215699.1	0.9749	172461.6	0.9792	-43237.5	0.43		180311.5	0.9728	94015.31	0.9753	-86296.2	0.25
142532	0.9713	99076.15	0.9731	-43455.9	0.18		81695.72	0.9712	97502.72	0.9768	15807	0.56
111196.9	0.9725	88863.99	0.9758	-22332.9	0.33		70339.24	0.969	96708.3	0.9722	26369.06	0.32
110522.2	0.9736	85652.5	0.9742	-24869.7	0.06		161126.5	0.9745	111803	0.9728	-49323.5	-0.17
192722.1	0.9682	130982.7	0.9774	-61739.4	0.92		171432	0.9766	125859.2	0.979	-45572.8	0.24
162015.8	0.9738	119673.4	0.9745	-42342.4	0.07		185124.8	0.9733	111503.7	0.9727	-73621.2	-0.06
162374.2	0.9748	129703.1	0.9759	-32671.1	0.11		95928.25	0.9751	122182.5	0.974	26254.29	-0.11
139917	0.9726	90177.83	0.9764	-49739.2	0.38		248100.2	0.975	150702.5	0.9783	-97397.6	0.33
252037.6	0.9771	168998.1	0.9755	-83039.4	-0.16		144332.9	0.976	137356.4	0.9756	-6976.55	-0.04
111346.7	0.9732	104922.8	0.9785	-6423.9	0.53		139907.5	0.9643	92087.47	0.9742	-47820	0.99
132943.7	0.9735	88195.92	0.9766	-44747.8	0.31		197729.3	0.9751	105092.7	0.9702	-92636.6	-0.49
121860.6	0.9692	86238.74	0.9738	-35621.8	0.46		133659.6	0.9692	83610.34	0.973	-50049.2	0.38
126338.7	0.9748	70088.84	0.9735	-56249.8	-0.13		166810.5	0.9756	109556.8	0.9711	-57253.8	-0.45
259681.3	0.9764	137511.8	0.9775	-122170	0.11		215482	0.9753	106431.5	0.9765	-109051	0.12
115183.4	0.9738	88351.95	0.9773	-26831.4	0.11		132191.5	0.9733	138159	0.9766	5967.517	0.12
243982.3	0.9738	151450.4	0.9752	-92531.8	0.22		229476.5	0.9733	187085.7	0.978	-42390.8	0.35
175222.2	0.9743	119932.2	0.9732	-92331.8 -55290	0.09		114423.9	0.9744	68021.57	0.978	-42390.8 -46402.4	0.30
157423.5	0.9733	81937.48	0.975	-75486.1	0.17		175951.7	0.9711	92180.24	0.9736	-83771.4	0.25
190885.8	0.9729	126687.3	0.9786	-64198.5	0.57		227923.2	0.9735	127754.4	0.9727	-100169	-0.08
145072.8	0.9767	83695.12	0.9758	-61377.7	-0.09		237130.8	0.9744	152768.2	0.9751	-84362.6	0.07
159327.9	0.9707	125827.7	0.9753	-33500.2	0.46		179370.1	0.9785	115282	0.9779	-64088.2	-0.06
180391.7	0.9754	126209.2	0.9741	-54182.5	-0.13		136100.1	0.9717	97372.44	0.971	-38727.7	-0.07
186597.4	0.9762	127360.8	0.9773	-59236.7	0.11		202884.9	0.972	147474.8	0.9746	-55410.1	0.26
179753.8	0.9739	89983.29	0.9721	-89770.5	-0.18		194838.9	0.9724	167291.7	0.9777	-27547.2	0.53
113526.2	0.9736	93217.38	0.9742	-20308.8	0.06		226949.2	0.9718	138557.9	0.9734	-88391.3	0.16
264911.9	0.9744	141855.1	0.9772	-123057	0.28		229911	0.9744	112083.5	0.975	-117827	0.06
125033.6	0.9751	100900	0.9753	-24133.6	0.02		225847.8	0.9701	117439.9	0.971	-108408	0.09
206385.9	0.9781	151574	0.9763	-54812	-0.18		150469.4	0.9762	122022.3	0.9768	-28447.1	0.06
258121.2	0.9744	115381.6	0.9684	-142740	-0.6		199424.7	0.9727	161146.8	0.9751	-38277.9	0.24
139498.8	0.9757	132229.5	0.9774	-7269.34	0.17		75988.98	0.9737	67617.81	0.9747	-8371.17	0.1
161296.5	0.9789	145447.2	0.972	-15849.3	-0.69		115167	0.9719	79137.97	0.9737	-36029.1	0.18
217909.5	0.976	121569.8	0.9774	-96339.7	0.14		142186.5	0.9724	108195	0.975	-33991.5	0.26
151276.1	0.9737	140211.6	0.9748	-11064.6	0.11		168483.7	0.9756	131832.8	0.9763	-36650.9	0.07
230531.8	0.9766	131415.8	0.9778	-99116	0.12		204477.8	0.9735	131656.3	0.9767	-72821.5	0.32
64147.79	0.9712	96333.62	0.9771	32185.83	0.59		104340.1	0.9722	98541.52	0.9764	-5798.63	0.42
116678.1	0.9729	73338.27	0.977	-43339.8	0.41		166664.1	0.9703	88882.58	0.9739	-77781.5	0.36
185406.2	0.9765	119991.2	0.9766	-65415	0.01		201134.9	0.9742	124193	0.9762	-76942	0.2
197436.3	0.9761	147389.9	0.9748	-50046.4	-0.13		186433.4	0.9718	121085.2	0.9758	-65348.1	0.4
192323.4	0.9736	147702.4	0.9784	-44621	0.48		130126.4	0.9725	84957.7	0.9748	-45168.7	0.23
173957.4	0.9754	136337.6	0.9785	-37619.8	0.31		125552.7	0.9757	93532.42	0.9749	-32020.3	-0.08
192256.2	0.974	129720.4	0.9754	-62535.9	0.14		177650.2	0.9723	74234.16	0.9739	-103416	0.16
118567.4	0.9772	93850.88	0.9785	-24716.6	0.13		151234.9	0.9703	81138.59	0.9776	-70096.3	0.73
136173.6	0.973	112977.5	0.9735	-23196.1	0.05		195276.5	0.9752	155498.7	0.9778	-39777.8	0.26
86711.27	0.9705	76979.04	0.9746	-9732.22	0.41		212627	0.9776	114918.9	0.9753	-97708.1	-0.23
146491	0.9725	133536.6	0.9779	-12954.4	0.54		213248.8	0.9755	155703.2	0.9744	-57545.6	-0.23
158410.3	0.9732	97535.61	0.9728	-60874.7	-0.04		206634.1	0.97	85726.04	0.9716	-120908	0.16
96131.15	0.9732	108291.7	0.9728	12160.51	0.4		150207.3	0.9733	66226.4	0.9710	-83980.9	0.10
129003.3	0.9713	73880.03	0.9733	-55123.3	0.4		176965.5	0.9733	146542.1	0.9759	-30423.4	0.21
129003.3	0.7739	13000.03	0.974	-33123.3	0.01		1/0905.5	0.9734	140342.1	0.7739	-30423.4	0.23

Table 3: Scale=20 Table 4: Scale=25

References

- [Bartlett et al.(2017)Bartlett, Foster, and Telgarsky] Bartlett, P. L., Foster, D. J., and Telgarsky, M. (2017), "Spectrally-normalized margin bounds for neural networks," in *NIPS*.
- [Bousquet et al.(2003)Bousquet, Boucheron, and Lugosi] Bousquet, O., Boucheron, S., and Lugosi, G. (2003), "Concentration inequalities," *Advanced Lectures on Machine Learning: ML Summer Schools*, 208–240.
- [Fan et al.(2018)Fan, Yu, and Huang] Fan, Y., Yu, J., and Huang, T. S. (2018), "Wide-activated Deep Residual Networks based Restoration for BPG-compressed Images," in *CVPR Workshops*.
- [Golowich et al.(2018a)Golowich, Rakhlin, and Shamir] Golowich, N., Rakhlin, A., and Shamir, O. (2018a), "Size-Independent Sample Complexity of Neural Networks," in *Proceedings of the 31st Conference On Learning Theory*, eds. Bubeck, S., Perchet, V., and Rigollet, P., PMLR, vol. 75 of *Proceedings of Machine Learning Research*, pp. 297–299.
- [Golowich et al.(2018b)Golowich, Rakhlin, and Shamir] (2018b), "Size-Independent Sample Complexity of Neural Networks," in *COLT*.
- [Goodfellow et al.(2016)Goodfellow, Bengio, and Courville] Goodfellow, I., Bengio, Y., and Courville, A. (2016), Deep Learning.
- [He et al.(2016)He, Zhang, Ren, and Sun] He, K., Zhang, X., Ren, S., and Sun, J. (2016), "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778.
- [Huang et al.(2017)Huang, Liu, van der Maaten, and Weinberger] Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2017), "Densely Connected Convolutional Networks," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2261–2269.
- [Ledoux and Talagrand(2013)] Ledoux, M. and Talagrand, M. (2013), *Probability in Banach Spaces: isoperimetry and processes*, Springer Science & Business Media.
- [Li et al.(2018)Li, Lu, Wang, Haupt, and Zhao] Li, X., Lu, J., Wang, Z., Haupt, J., and Zhao, T. (2018), "On Tighter Generalization Bound for Deep Neural Networks: CNNs, ResNets, and Beyond," *arXiv preprint arXiv:1806.05159*.
- [Mohri et al.(2012)Mohri, Talwalkar, and Rostamizadeh] Mohri, M., Talwalkar, A., and Rostamizadeh, A. (2012), Foundations of machine learning (adaptive computation and machine learning series), Mit Press Cambridge, MA.
- [Neyshabur et al.(2017)Neyshabur, Bhojanapalli, McAllester, and Srebro] Neyshabur, B., Bhojanapalli, S., McAllester, D., and Srebro, N. (2017), "A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks," CoRR, abs/1707.09564.

- [Neyshabur et al.(2015)Neyshabur, Tomioka, and Srebro] Neyshabur, B., Tomioka, R., and Srebro, N. (2015), "Norm-Based Capacity Control in Neural Networks," in *COLT*.
- [Shalev-Shwartz and Ben-David(2014)] Shalev-Shwartz, S. and Ben-David, S. (2014), *Understanding Machine Learning: From Theory to Algorithms*, New York, NY, USA: Cambridge University Press.
- [Srivastava et al.(2015)Srivastava, Greff, and Schmidhuber] Srivastava, R. K., Greff, K., and Schmidhuber, J. (2015), "Highway Networks," *CoRR*, abs/1505.00387.
- [Sun et al.(2016)Sun, Chen, Wang, Liu, and Liu] Sun, S., Chen, W., Wang, L., Liu, X., and Liu, T.-Y. (2016), "On the Depth of Deep Neural Networks: A Theoretical View," in *AAAI*.
- [Xu and Wang(2018)] Xu, Y. and Wang, X. (2018), "Understanding Weight Normalized Deep Neural Networks with Rectified Linear Units," in *Advances in Neural Information Processing Systems*, pp. 130–139.