DM on Strings

Marina Ermolaeva Daniel Edmiston

February 10, 2017

Introduction

- What this project is:
 - Formalization of Distributed Morphology (DM) and the syntax-morphology interface
 - What we do:
 - Test a core assumption in DM
 - Probe linearization's place in the grammar
 - Solidify intuitions re: nature of operations
- What this project is not:
- Advocacy for a particular proposal
 - What we don't do:
 - Give in-depth, data-driven analysis

Introduction

• DM's core assumption: Syntax all the way down i.e. Morphology over binary trees

(1) e.g. English comparative

• 'smarter' vs. 'more intelligent': derived by morphology over syntax-like structure

Introduction

• BUT: Expressiveness of morphology (Karttunen et al. 1992, a.o.) vs. syntax (Shieber 1985) very different

(2) Morphology vs. Syntax

 If morphology is regular, strings should be sufficient! No need for trees!

But that means...

- If morphology runs on strings:
 - (i) Linearization occurs BEFORE Morphology!
 - (ii) DM needs to be recast
- This project is that recasting
- We propose the following architecture:
 - 1 Syntax: derivation over feature structures (FS)
 - 2 Linearization: strings of FSs
 - **3** Morphology: Finite-state transducer-strings of FSs to phonological information

Outline

- 1 Introduction
- Outline
- 3 Introducing DM
- Regular languages
- **5** Syntactic assumptions
- 6 DM over strings
- English Examples
- 8 Conclusion

Introducing DM

- Theoretical framework for Morphology (Halle & Marantz 1993)
- Morphology's role: Transfer information from syntax to phonology
- Morphology: between spell-out and PF
- (3) Morphology's place in the Y-model Syntactic derivation

Introducing DM

- Input to morphology is output from syntax
- Output of morphology is input to phonology
- Architecture of morphology: several (partially) ordered operations
 - Vocabulary Insertion
 - Fusion/Fission
 - Impoverishment/Obliteration
 - Readjustment
 - Local Dislocation

Vocabulary Insertion

- Vocabulary Insertion (VI)–DM's flagship operation
- Introduces phonological information to derivation
- (4) Instance of VI: derivation of worked

$$[WORK]$$
 [+PAST] \rightarrow 'work' 'ed'

Vocabulary Insertion

- VI: swaps morphosyntactic features for phonological info
- Operates on (potentially context-dependent) VI rules
- (5) VI rules deriving worked
 - a. $[WORK] \rightarrow 'Work'$
 - b. $[+PAST] \rightarrow 'ed'$
- Operates cyclically (inside-out)

Vocabulary Insertion

- Context-dependency + cyclicity
- (6) Derivation for unfaithful

a.

b.

- (7) VI rules deriving *unfaithful*
 - a. $[UN] \rightarrow 'un'$
 - b. $[FAITH] \rightarrow 'faith'$
 - c. $[ADJ] \rightarrow 'ful' / \{[FAITH], [FRUIT], ...\}$

Fusion

- Fusion–Pre-VI operation
- Targets certain pairs of feature-sets
- (8) 'worse' derived by Fusion

- VI operates as usual on fused feature set
- (9) $[BAD, CMPR] \rightarrow 'worse'$

Readjustment

- Readjustment: Post-VI operation
- Change phonological information in certain contexts
- (10) Readjustment rule for English ablaut a. $/ei/ \rightarrow /ei/ / X _ Y[PAST], X = \sqrt{SHAKE}, \sqrt{TAKE}, ...$
 - Captures changes in roots—but not true suppletion

Local Dislocation

- "Movement after syntax" (Embick & Noyer 2001)
- (11) Input: (Conjunct1 X Y) -que (Conjunct2 W Z)
 Surface: (Conjunct1 X Y) t (Conjunct2 W-que Z)
 - Sensitive to (morpho)phonology
- (12) a. circum-que ea loca around-and those places 'and around those places'
 - b. in rēbus-que in things-and 'and in things'

Regular Languages

 Hypothesis: Morphology can be described with regular relations (e.g. Koskenniemmi 1983)—we adapt methods from phonology

- Our follow up hypothesis: Strings are sufficient for morphology (Kaplan & Kay 1994)
- What are strings? What are regular languages/relations?

Regular Grammar

Regular languages—describable by regular grammars

(13) Regular grammar G_R

$$N = \{S, A\}$$

 $\Sigma = \{a\}$
 $P = \{S \rightarrow aA, A \rightarrow aA, A \rightarrow \epsilon \}$
 $S \in N$

(14) Derivation of aaaa by G_R

$$i S \rightarrow aA$$

ii
$$A \rightarrow aA$$
 (giving aaA)

iii
$$A \rightarrow aA$$
 (giving aaaA)

iv
$$A \rightarrow a$$
 (giving aaaa)

Representing Regular Languages

- Different ways to represent RLs
- Regular expressions:
 - a⁺
 - a*(b)c*
 - a\b c
 - ...

(15) FSA for a^+

Representing Regular Relations

• FST: representation of regular relation

(16) Roman → Greek FST

 Claim: Syntax/Morphology interface is (describable by) an EST

Minimalist Grammars

• A set of syntactic features:

```
 F = \textit{Base} \ \cup \\ \{ = f \mid f \in \textit{Base} \} \ \cup \ \{ f = \mid f \in \textit{Base} \} \cup \\ \{ + f \mid f \in \textit{Base} \} \ \cup \\ \{ - f \mid f \in \textit{Base} \}  (category features) (selectors) (licensors) (licensees)
```

• A set of lexical items:

```
Lex \subset \Sigma^* \times F^*, where \Sigma is a set of phonological units
```

• Two generating functions: merge and move

Merge

Move

Assembling morphological words

- Head movement: $[\chi_P X^0 ... [\gamma_P ... Y^0 ...]] \rightarrow [\chi_P Y^0 X^0 ... [\gamma_P ...]]$
- Lowering: $[\chi_P X^0...[\gamma_P...Y^0...]] \rightarrow [\chi_P...[\gamma_P Y^0-X^0...]]$
 - Embick & Noyer 2001: Lowering only applies after all syntactic movement.
- Mirror Theory (Brody 1997, Kobele 2002): *strong* and *weak* nodes.
 - =f (normal merge)
 - =>f (strong node; merge with Head Movement)
 - <=f (weak node; merge with Lowering)
- Syntax inserts *boundary symbols* (#) between morphological words.

Head Movement

- The selecting expression must be nonderived;
- The selected expression must be a non-mover.

Lowering

- The selecting expression must be nonderived;
- The selected expression must be a non-mover.

MGs over feature structures

- Let Σ be a finite set of phonological units and M a finite set of (privative) features;
- Then the set of *feature structures* $FS = \mathcal{P}(M) \times (\Sigma \cup \{\epsilon, \textit{None}\})$, where *None* is the empty exponent;
- Let $fs = \langle x, y \rangle \in FS$. We define feat(fs) = x and exp(fs) = y;
- Lex \subset {fs | fs \in FS & exp(fs) = None} \times F*.

Underspecification and shorthand

 Morphological rules operate on underspecified feature structures:

$$FS_U = \mathcal{P}(M) \times (\Sigma \cup \{\epsilon, \textit{None}, ...\}),$$
 where ... stands for "any exponent".

• When discussing specific examples, we will sometimes use *informal* shorthand:

(xyz), where xyz is whatever information is needed to identify a set of feature structures in a given context.

Rewrite rules

- Morphological rules are of the form A → B / C_D
 such that A = A₁, ..., A_m and B = B₁, ..., B_n are sequences of underspecified feature structures, and C, D are regular expressions over FS_U ∪ {#};
- Let *r* be such a rule.

```
r is purely morphological iff exp(A_1) = ... = exp(A_m) = exp(B_1) = ... = exp(B_n) = None; r is feature-preserving iff \bigcup_{i=1}^m feat(A_i) = \bigcup_{j=1}^n feat(B_j); r is set-preserving iff feat(A_1) = ... = feat(A_m) = Feat(B_1) = ... = Feat(B_n)
```

Rule classes

- A rule r of the form A → B / C_D is...
 ... a fusion rule, iff |A| = 2, |B| = 1, and r is feature-preserving and purely morphological;
 ... a fission rule, iff |A| = 1, |B| = 2, and r is feature-preserving and purely morphological;
 ... an impoverishment rule, iff |A| = |B| = 1, and feat(B₁) ⊂ feat(A₁), and r is purely morphological.
- Captures insight that impoverishment is different from other operations!

Rule classes

- Bobaljik 2015: morphosyntactic features are rewritten by VI;
- For now: add phonological material, keep morphosyntactic features.
- A rule r of the form $A oup B \mid C_D$ is...

 ... a VI rule, iff |A| = 1, $|B| \ge 1$, $exp(A_1) = None$, $exp(B_j) \ne None$ for $1 \le j \le |B|$, and r is set-preserving;

 ... a readjustment rule, iff $exp(A_i) \ne None$ for $1 \le i \le |A|$, $exp(B_i) \ne None$ for $1 \le j \le |B|$, and r is set-preserving;

Instances

- DM rules (and our feature structures) are underspecified;
- FSTs can only operate over unanalyzable elements;
- We need to collect all instantiations of each rule.
- Let $fs \in FS_U$. Then $inst(fs) = \{x \mid x \in FS \ \& \ feat(x) \supseteq feat(fs) \ \& \ (exp(x) = exp(fs) \ or \ exp(fs) = ...)\};$
- Let X be a regular expression over underspecified feature structures.
 - Then $inst(X) = X[x_1 \mapsto \bigcup inst(x_1), ..., x_n \mapsto \bigcup inst(x_n)]$, where $\{x_1, ..., x_n\}$ is the set of all feature structures in X.

Building a transducer

- Assume that our grammar is a sequence of rules $r_1, ..., r_k$.
- Let r be the rewrite rule $A \to B \ / \ C_D$ such that $A = A_1, ..., A_m \in FS_U$ and $B = B_1, ..., B_n \in FS_U$;
- Then batch(r) is the set of all rules $a \to b \mid inst(C)_inst(D)$ where $a = a_1, ..., a_m \in FS$ and $b = b_1, ..., b_n \in FS$ such that $a_i \in inst(A_i)$ for $1 \le i \le m$, and $feat(b_j) = feat(B_j) \cup (\bigcup_{i=1}^m feat(a_i) \setminus \bigcup_{i=1}^m feat(A_i))$, and $exp(b_j) = exp(B_j)$ for $1 \le j \le n$.
- Kaplan & Kay 1994:
 - left-to-right, right-to-left, or simultaneous application of single rules;
 - simultaneous application of a rule set as batch rules;
 - ordered rules as transducer composition.

Cyclicity

- Bobaljik 2000: VI proceeds cyclically from the root outwards, *deleting* features it expresses;
 - Outwards-sensitive allomorphy is conditioned only by morphosyntactic features;
 - Inwards-sensitive morphology is conditioned only by morphophonological features.
- Counter-examples both ways: Deal & Wolf 2013, Gribanova & Harizanov 2015;
- VI rules need to be ordered, but not necessarily by depth of embedding.
- Which of these effects can be modelled by regular relations on strings?

Rule ordering: agreement in Itelmen

• Bobaljik 2000: outwards-sensitive allomorphy.

Order VI rules by the category of the nodes they apply to:
 VERB > CLASS > OBJ-AGR > SUBJ-AGR

Local Dislocation: clitics in Latin

- Embick & Noyer 2001: a head can interact with a linearly adjacent element in its complement.
 - (17) a. circum-que ea loca around-and those places 'and around those places'
 - b. in rēbus-que in things-and 'and in things'

Local Dislocation: clitics in Latin

- Input to morphology:
 #\QUE\#\CIRCUM\#\(EA\)#\(LOCA\)#
 #\QUE\#\(IN\)#\(RĒBUS\)#
- Rule ordering: N > D > P > Conj
- "Light" prepositions form a unit with the adjacent word: $\langle {\rm IN} \rangle \to in \star \\ \star \# \to \emptyset$
- Displacement via copy and deletion:

$$\emptyset \to \langle QUE \rangle / \# \langle QUE \rangle \# (\backslash \#)^* \# \langle QUE \rangle \to \emptyset / \# \#$$

Morphology from another dimension

• Unbounded nested dependencies:

- Incompatible with the core assumption;
- Any natural language examples?

Unfinished business

• Rules depending on each other's output:

$$\langle a \rangle \rightarrow a \mid \underline{\hspace{0.5cm}} (b \mid c)$$

 $\langle b \rangle \rightarrow b \mid \underline{\hspace{0.5cm}} a$

- Impossible to order the rules
- ... or apply them as a batch

English examples

(18) Derivation of John walks-VI only

Lexicon:

 $\langle \{D, JOHN, 3, sG\}, NONE \rangle :: d -k \\ \langle \{v, WALK\}, NONE \rangle :: =d v \\ \langle \{T, PRES, 3, sG\}, NONE \rangle :: <=v +k t$

Syntax:

VI Rules:

English examples

(19) Derivation of worse–Fusion + VI

Lexicon:

 ${Adj, BAD}, NONE$:: adj ${Cmpr, MORE}, NONE$:: =adj adj

Syntax:

Fusion: $\langle \text{MORE} \rangle \langle \text{BAD} \rangle \rightarrow \langle \text{MORE, BAD} \rangle$

VI Rules:

$$\left\langle \begin{array}{c} \{MORE,BAD\}, \\ \textit{None} \end{array} \right\rangle \rightarrow \left\langle \begin{array}{c} \{MORE,BAD\}, \\ |w| \end{array} \right\rangle \left\langle \begin{array}{c} \{MORE,BAD\}, \\ |r_i| \end{array} \right\rangle \left\langle \begin{array}{c} \{MORE,BAD\}, \\ |s| \end{array} \right\rangle$$

English examples

(20) Derivation of took–VI + Readjustment

Lexicon:

 $\langle \{v, TAKE\}, NONE \rangle :: v$ $\langle \{T, PST\}, NONE \rangle :: <=v t$

Syntax:

VI Rules:

$$\left\langle \begin{array}{c} \{ \mathsf{TAKE} \}, \\ \textit{None} \end{array} \right\rangle \rightarrow \left\langle \begin{array}{c} \{ \mathsf{TAKE} \}, \\ /t/ \end{array} \right\rangle \left\langle \begin{array}{c} \{ \mathsf{TAKE} \}, \\ /ei/ \end{array} \right\rangle \left\langle \begin{array}{c} \{ \mathsf{TAKE} \}, \\ /k/ \end{array} \right\rangle$$

$$\left\langle \begin{array}{c} \{ \mathsf{TNS} \}, \\ \textit{None} \end{array} \right\rangle \rightarrow \left\langle \begin{array}{c} \{ \mathsf{TNS} \}, \\ \epsilon \end{array} \right\rangle / \left\langle \begin{array}{c} \{ \mathsf{TAKE} \}, \\ /k/ \end{array} \right\rangle -$$

Readjustment

Conclusion

(21) Architecture of grammar

Conclusion

- Syntax/Morphology interface modelled by FST
- FST (morphology) works over strings—binary trees not needed
- Linearization PRE-morphology!
- Formalization like this helps make concrete intuitions, e.g. impoverishment vs. other operations
- Where to go from here:
 - Refine details, e.g. VI ordering rules
 - Address subregularity?

