AULA 19

Prof. Mathias

Programação Dinâmica

Análise de Algoritmos

Agenda

- Aula anterior
- Introdução
- Exemplo
- Exercícios
- Próxima aula

Aula Anterior

Algoritmo de Huffman - Método Guloso

Mathias Talevi ActinB, E, F, C, G, J, I, K = 13

Agenda

- Aula anterior
- Introdução

Introdução

- Método de dividir e conquistar, resolve problemas combinando as soluções para subproblemas.
- "Programação" refere-se a um método de tabular e não de codificar.
- Utilizado em problemas de otimização;
- Combina soluções de subproblemas;
- Subproblemas são dependente;
- A relação problema: geralmente expressada de forma recursiva.

Introdução

 Diferença entre o método guloso e programação dinâmica são as decisões geradas, pois para a dinâmica muitas decisões são geradas e para o guloso apenas uma decisão se produz.

Introdução

- Passos para produzir um algoritmo de programação dinâmica:
 - Caracterizar a estrutura de uma solução ótima
 - Definir recursivamente o valor de uma solução ótima
 - Calcular o valor de uma solução ótima de baixo para cima

Agenda

- Aula anterior
- Introdução
- Exemplo

- Como realizar multiplicação de matrizes realizando um número mínimo de operações?
- Multiplicar n matrizes, realizando o número mínimo de operações.

$$M = M_1 * M_2 * ... M_n$$

- As matrizes são multiplicadas aos pares, sabemos também que cada matriz M possui dimensões que devem ser respeitadas. Então esse é o problema:
 - Como determinar a melhor forma de realizar as multiplicações, ou seja, aquela que oferece o menor número de operações.

- Determinar com algoritmos de "força bruta" é impossível pois a complexidade é de 2^n.
- Pelo método de programação dinâmica alcançamos o resultado esperado.

• Exemplo:

$$M = M_1 * M_2 * M_3 * M_4$$

$$M = \{200, 2, 30, 20, 5\}$$

• Quantas multiplicações são realizadas nas sequências:

```
• M = (((M_1 * M_2) * M_3) * M_4)
```

•
$$M = (M_1 * ((M_2 * M_3) * M_4))$$

• Exemplo:

$$M = M_1 * M_2 * M_3 * M_4$$

$$M = \{200, 2, 30, 20, 5\}$$

• Quantas multiplicações são realizadas nas sequências:

```
• M = (((M_1 * M_2) * M_3) * M_4) = 152.000 \text{ operações}
```

•
$$M = (M_1 * ((M_2 * M_3) * M_4)) = 3400 \text{ operações}$$

• Considere a seguinte fórmula:

Seja Mij o mínimo de operações na realização de um produto

Mi+Mi+1*...*Mj

Como calcular então Mij?

- Então:
 - Para resolver este problema, tudo que precisamos é saber qual o melhor índice k tal que:

```
M = (M_1 * M_2 * ... M_4). * (M_{k+1} * M_{k+2} * ... * M_{k+n})
onde k varia de 1 até n-1
```

- Precisamente:
 - Seja Mij o número mínimo de operações para realizar o produto:
 - Mi * Mi+1* ... Mj
 - Podemos calcular Mij.

$$M_{ij} = m_{in}(M_{ik} + M_{k+1j} + b_{i-1}b_kb_j), k=i,...,j-1$$

 Então, tal expressão constitui uma solução dinâmica que propõe intuitivamente uma recorrência a ser implementada. Porém uma implementação botton-up seria mais interessamente devido a consulta apenas nos valores a serem calculados.

- Algoritmo necessário teria as seguintes características:
 - 1. Os Mi,i são calculados, para 1 ≤ i ≥ n, onde claramente Mii = 0 para todo i;
 - 2. Os Mi,i+1 são calculados, para 1 ≤ i ≥ n-1
 - 3. Os Mi,i+2 são calculados, para $1 \le i \ge n-2$ Mi,i+1 são calculados, para $1 \le i \ge n-1$

· Veja:

```
M1 * M2 * M3 * M4
200x2 2x30 30X20 20x5
b0*b1 b1*b2 b2*b3 b3*b4
```

- Mij = min{Mi,k+Mk+1,j+bi-1bkbj}
 Para i = j temos
- M_{1,1} = M_{2,2} = M_{3,3} = M_{4,4} = 0
 Para j=i+1 e i++ até n-1
- M_{1,2} = 12000; M_{2,3} = 1200; M_{3,4} = 3000
 Para j++
- $M_{1,3} = min\{(M_{1,1}+M_{2,3}+b_0b_1b_3), (M_{12}+M_{3,3}+b_0b_2b_3)\}$ = $min\{(0+1200+8000), (12000+0+120000)\}$ = 9200 (M1*(M2*M3))

Veja:

```
M1 * M2 * M3 * M4
200x2 2x30 30X20 20x5
b0*b1 b1*b2 b2*b3 b3*b4
```

- $M_{ij} = min\{M_{i,k}+M_{k+1,j}+b_{i-1}b_kb_j\}, k=i, ..., j-1$
- $M_{2,4} = min\{(M_{2,k}+M_{k+1,4}+b_1b_kb_4), k=2,3\}$
- $M_{2,4} = min\{(M_{2,2}+M_{3,4}+b_1b_2b_4), (M_{2,3}+M_{4,4}+b_1b_3b_4)\}$ = $min\{(0+3000+300), (1200+0+200)\}$ = $1400 ((M_2*M_3)*M_4)$

· Veja:

```
M1 * M2 * M3 * M4
200x2 2x30 30X20 20x5
b0*b1 b1*b2 b2*b3 b3*b4
```

- $M_{ij} = min\{M_{i,k}+M_{k+1,j}+b_{i-1}b_kb_j\}, k=i, ..., j-1$
- $M_{1,4} = min\{(M_{1,k}+M_{k+1,4}+b_0b_kb_4), k=1,...,3\}$
- M_{1,4} = min{(M_{1,1}+M_{2,4}+b₀b₁b₄),(M_{1,2}+M_{3,4}+b₀b₂b₄),(M_{1,3}+M_{4,4}+b₀b₃b₄)}
 = min{(0+1400+2000),(1200+3000+30000),
 (9200+0+20000)}
 = 3400 (M1*((M2*M3)*M4))
 A Resposta final é: (M1*((M2*M3)*M4))

Mathias Talevi Betim

- Problema da mochila
 - Conjunto de elementos a serem escolhidos para inserir em uma mochila, quais elementos devem ser escolhidos para obter maior valor na mochila?
 - Solução
 - Parte do pensamento:
 - Elemento n pode ou n\u00e3o estar na mochila.

$$f(i,w) = \begin{cases} f(i-1,w) \text{ se } pi > w \\ max\{f(i-1,w-pi) + vi, f(i-1,w)\} \text{ se } pi \leq w \end{cases}$$

Problema da mochila - Solução

$$f(i,w) = \begin{cases} f(i-1,w) \text{ se } pi > w \\ \max\{f(i-1,w-pi) + vi, f(i-1,w)\} \text{ se } pi \leq w \end{cases}$$

						w0	w1	w2	w3	w4	w5
						0	1	2	3	4	5
vi	0	pi	0	i=	0	0	0	0	0	0	0
vi	4	pi	2	i=	1	0					
vi	2	pi	1	i=	2	0					
vi	3	pi	4	i=	3	0					
vi	2	pi	2	i=	4	0					
vi	1	pi	1	i=	5	0					

Mathias Talevi Betim

$$f(i,w) = \begin{cases} f(i-1,w) \text{ se } pi > w \\ \max\{f(i-1,w-pi) + vi, f(i-1,w)\} \text{ se } pi \leq w \end{cases}$$

						w0	w1	w2	w3	w4	w5
						0	1	2	3	4	5
vi	0	pi	0	i=	0	0	0	0	0	0	0
vi	4	pi	2	i=	1	0	0	4	4	4	4
vi	2	pi	1	i=	2	0					
vi	3	pi	4	i=	3	0					
vi	2	pi	2	i=	4	0					
vi	1	pi	1	i=	5	0					

vi=4	pi=2	i=1	w=1	pi>w	f(i-1, w)	f(0, 1)	0
vi=4	pi=2	i=1	w=2	pi≤w	f(i-1, w-pi)+v1, f(i-1, w)	f(0,0)+4, f(0, 2)	4
vi=4	pi=2	i=1	w=3	pi≤w	f(i-1, w-pi)+v1, f(i-1, w)	f(0,1)+4, f(0, 3)	4
vi=4	pi=2	i=1	w=4	pi≤w	f(i-1, w-pi)+v1, f(i-1, w)	f(0,2)+4, f(0, 4)	4
vi=4	pi=2	i=1	w=5	pi≤w	f(i-1, w-pi)+v1, f(i-1, w)	f(0,3)+4, f(0, 5)	4

$$f(i,w) = \begin{cases} f(i-1,w) \text{ se } pi > w \\ \max\{f(i-1,w-pi) + vi, f(i-1,w)\} \text{ se } pi \leq w \end{cases}$$

						w0	w1	w2	w3	w4	w5
						0	1	2	3	4	5
vi	0	pi	0	i=	0	0	0	0	0	0	0
vi	4	pi	2	i=	1	0	0	4	4	4	4
vi	2	pi	1	i=	2	0	2	4	6	6	6
vi	3	pi	4	i=	3	0					
vi	2	pi	2	i=	4	0					
vi	1	pi	1	i=	5	0					

vi=2	pi=1	i=2	w=1	pi≤w	f(i-1, w-pi)+v1, f(i-1, w)	f(1,0)+2, f(1, 1)	2
vi=2	pi=1	i=2	w=2	pi≤w	f(i-1, w-pi)+v1, f(i-1, w)	f(1,1)+2, f(1, 2)	4
vi=2	pi=1	i=2	w=3	pi≤w	f(i-1, w-pi)+v1, f(i-1, w)	f(1,2)+2, f(1, 3)	6
vi=2	pi=1	i=2	w=4	pi≤w	f(i-1, w-pi)+v1, f(i-1, w)	f(1,3)+2, f(1, 4)	6
vi=2	pi=1	i=2	w=5	pi≤w	f(i-1, w-pi)+v1, f(i-1, w)	f(1,4)+2, f(1, 5)	6

$$f(i,w) = \begin{cases} f(i-1,w) \operatorname{se} \operatorname{pi} > w \\ \max\{f(i-1,w-\operatorname{pi}) + vi, f(i-1,w)\} \operatorname{se} \operatorname{pi} \leq w \end{cases}$$

						w0	w1	w2	w3	w4	w5
						0	1	2	3	4	5
vi	0	pi	0	i=	0	0	0	0	0	0	0
vi	4	pi	2	i=	1	0	0	4	4	4	4
vi	2	pi	1	i=	2	0	2	4	6	6	6
vi	3	pi	4	i=	3	0	2	4	6	6	6
vi	2	pi	2	i=	4	0					
vi	1	pi	1	i=	5	0					

vi=3	pi=4	i=3	w=1	pi>w	f(i-1, w)	f(2, 1)	2
vi=3	pi=4	i=3	w=2	pi>w	f(i-1, w)	f(2, 2)	4
vi=3	pi=4	i=3	w=3	pi>w	f(i-1, w)	f(2, 3)	6
vi=3	pi=4	i=3	w=4	pi≤w	f(i-1, w-pi)+v1, f(i-1, w)	f(2,0)+3, f(2, 4)	6
vi=3	pi=4	i=3	w=5	pi≤w	f(i-1, w-pi)+v1, f(i-1, w)	f(2,1)+3, f(2, 5)	6

$$f(i,w) = \begin{cases} f(i-1,w) \text{ se } pi > w \\ \max\{f(i-1,w-pi) + vi, f(i-1,w)\} \text{ se } pi \leq w \end{cases}$$

						w0	w1	w2	w3	w4	w5
						0	1	2	3	4	5
vi	0	pi	0	i=	0	0	0	0	0	0	0
vi	4	pi	2	i=	1	0	0	4	4	4	4
vi	2	pi	1	i=	2	0	2	4	6	6	6
vi	3	pi	4	i=	3	0	2	4	6	6	6
vi	2	pi	2	i=	4	0	2	4	6	6	8
vi	1	pi	1	i=	5	0					

vi=2	pi=2	i=4	w=1	pi>w	f(i-1, w)	f(3, 1)	2
vi=2	pi=2	i=4	w=2	pi≤w	f(i-1, w-pi)+v1, f(i-1, w)	f(3,0)+2, f(3, 2)	4
vi=2	pi=2	i=4	w=3	pi>w	f(i-1, w-pi)+v1, f(i-1, w)	f(3,1)+2, f(3, 3)	6
vi=2	pi=2	i=4	w=4	pi≤w	f(i-1, w-pi)+v1, f(i-1, w)	f(3,2)+2, f(3, 4)	6
vi=2	pi=2	i=4	w=5	pi≤w	f(i-1, w-pi)+v1, f(i-1, w)	f(3,3)+2, f(3, 5)	8

$$f(i,w) = \begin{cases} f(i-1,w) \text{ se } pi > w \\ \max\{f(i-1,w-pi) + vi, f(i-1,w)\} \text{ se } pi \leq w \end{cases}$$

						w0	w1	w2	w3	w4	w5
						0	1	2	3	4	5
vi	0	pi	0	i=	0	0	0	0	0	0	0
vi	4	pi	2	i=	1	0	0	4	4	4	4
vi	2	pi	1	i=	2	0	2	4	6	6	6
vi	3	pi	4	i=	3	0	2	4	6	6	6
vi	2	pi	2	i=	4	0	2	4	6	6	8
vi	1	pi	1	i=	5	0	2	4	6	7	8

vi=1	pi=1	i=5	w=1	pi≤w	f(i-1, w-pi)+v1, f(i-1, w)	f(4,0)+1, f(4, 1)	2
vi=1	pi=1	i=5	w=2	pi≤w	f(i-1, w-pi)+v1, f(i-1, w)	f(4,1)+1, f(4, 2)	4
vi=1	pi=1	i=5	w=3	pi>w	f(i-1, w-pi)+v1, f(i-1, w)	f(4,2)+1, f(4, 3)	6
vi=1	pi=1	i=5	w=4	pi≤w	f(i-1, w-pi)+v1, f(i-1, w)	f(4,3)+1, f(4, 4)	7
vi=1	pi=1	i=5	w=5	pi≤w	f(i-1, w-pi)+v1, f(i-1, w)	f(4,4)+1, f(4, 5)	8

$$f(i,w) = \begin{cases} f(i-1,w) \operatorname{se} \operatorname{pi} > w \\ \max\{f(i-1,w-\operatorname{pi}) + \operatorname{vi}, f(i-1,w)\} \operatorname{se} \operatorname{pi} \leq w \end{cases}$$

Problema da mochila - Solução

						w0	w1	w2	w3	w4	w5
						0	1	2	3	4	5
vi	0	pi	0	i=	0	0	0	0	0	0	0
vi	4	pi	2	i=	1	0	0	4	4	4	4
vi	2	pi	1	i=	2	0	2	4	6	6	6
vi	3	pi	4	i=	3	0	2	4	6	6	6
vi	2	pi	2	i=	4	0	2	4	6	6	8
vi	1	pi	1	i=	5	0	2	4	6	7	8

Resposta: A soma dos valores é 8; os valores que pertencem a mochila são 2,2,4.

Programação de linha de montagem

A Empresa x Computadores possuem duas linhas de montagens, uma placa mae entra em uma linha de montagem tem as peças adicionadas a ela em uma série de estações e um computador sai pronto no final da linha.

Cada linha de montagem possui n estações, numeradas com j=1,2..n. Denotamos o j-ésima estação na linha i (onde i é 1 ou 2) por S_{i,j} . A j-ésima estação da na linha 1 (S_{1,j}) executa a mesma ação que a j-ésima ação da linha 2 (S_{2,j}). Porém as estações foram construídas em épocas diferentes e com tecnologias diferentes, de forma que o tempo exigido em cada estação varia, até mesmo entre as estações na mesma posição nas duas linhas.

Programação de linha de montagem

Denotamos o tempo de montagem exigido na estação $S_{i,j}$ por a_{ij} . Conforme no exemplo um computador entra na estação 1 de uma das duas linhas de montagem e avança de cada estação para a seguinte. Também há um tempo de entrada e_i para a placa mãe entrar na linha de montagem i, e um tempo de saída x_i , para o computador concluído sair da linha de montagem i.

Programação de linha de montagem

_							e		t					
1	7	9	3	4	8	4	1 2	1 3	1	2	3	1	3	4
2	8	5	6	4	5	7	2 4	2 2	2	2	1	2	2	1

Mathias Talevi Betim

Agenda

- Aula anterior
- Introdução
- Exemplo
- Exercícios

Exercícios

- Aplique o algoritmo para multiplicar as 5 matrizes, onde b={30,35,15,5,10,20}
- Considerar a seguinte solução gulosa: a cada passo selecione o produto que requer um número mínimo de operações, como ficaria?
- Se precisar o número máximo de operações como seria esse algoritmo (solução)?

Exercícios

 Um motoboy precisa entregar alguns produtos e sua caixa tem capacidade de 10 kg, considere os produtos abaixo e determine quais produtos ele deve carregar para obter maior valor agregado na sua viagem.

Produtos	p1	p2	р3	p4	p5
Valores	4	6	4	2	2
Pesos	3	2	4	6	3

Exercícios - Produção

• Considere os exercícios citado nas aulas.

Agenda

- Aula anterior
- Introdução
- Exemplo
- Exercícios
- Próxima aula

Próxima aula

Classes de problemas (p, np, np-completo)

AULA 19

Prof. Mathias