4.3 Almost sure convergence and strong laws of large numbers

4.3.1 Almost sure convergence

4.3 Almost sure convergence and strong laws of large numbers

4.3.1 Almost sure convergence

Definition 1 Suppose that ξ and $\{\xi_n, n \geq 1\}$ are random variables defined on a common probability space (Ω, \mathcal{F}, P) .

If there exists a $\Omega_0 \in \mathcal{F}$ such that $P(\Omega_0) = 0$ and for any $\omega \in \Omega \setminus \Omega_0, \xi_n(\omega) \to \xi(\omega), (n \to \infty)$, then we say that ξ_n converges with probability one or almost surely to ξ , denoted by $\xi_n \to \xi$ a.s.

Theorem 1 Suppose that ξ and $\{\xi_n, n \geq 1\}$ are random variables defined on (Ω, \mathcal{F}, P) .

$$\xi_n(\omega) \to \xi(\omega)$$
 a.s. iff for any $\epsilon > 0$,

$$\lim_{n \to \infty} P(\sup_{k \ge n} |\xi_k - \xi| \ge \epsilon) = 0$$

i.e.,
$$\lim_{n \to \infty} P(\bigcup_{k \ge n} (|\xi_k - \xi| \ge \epsilon)) = 0.$$

$$\xi_n \to \xi \ a.s. \Rightarrow \xi_n \stackrel{P}{\to} \xi.$$

$$\xi_n \to \xi \ a.s. \Rightarrow \xi_n \stackrel{P}{\to} \xi.$$

Corollary 2. If for any $\epsilon > 0$, $\sum_{n=1}^{\infty} P(|\xi_n - \xi| \ge \epsilon) < \infty$, then $\xi_n \to \xi \quad a.s.$

$$\xi_n \to \xi \ a.s. \Rightarrow \xi_n \stackrel{P}{\to} \xi.$$

Corollary 2. If for any $\epsilon > 0$,

$$\sum_{n=1}^{\infty}P(|\xi_n-\xi|\geq\epsilon)<\infty$$
, then

$$\xi_n \to \xi$$
 a.s.

Proof. Note that

$$P(|\xi_n - \xi| \ge \epsilon) \le P(\bigcup_{k \ge n} (|\xi_k - \xi| \ge \epsilon))$$

$$\leq \sum_{k=0}^{\infty} P(|\xi_k - \xi| \geq \epsilon).$$

Proof of Theorem 1. For any $\epsilon > 0$, let

$$A_n^\epsilon = \{|\xi_n - \xi| \geq \epsilon\} \text{ and } A^\epsilon = \cap_{n=1}^\infty \cup_{k \geq n} A_k^\epsilon. \text{ Then } \xi_n(\omega) \not\to \xi(\omega) \text{ is equivalent to that, there is an } \epsilon_0 > 0 \text{ such that for any } N \text{ there is a } n \geq N \text{ for which } |\xi_n(\omega) - \xi(\omega)| \geq \epsilon_0.$$
 This is also equivalent to that, there is an m such that for any n there is a $k \geq n$ for which $|\xi_k(\omega) - \xi(\omega)| \geq 1/m$. So

$$\{\xi_n \not\to \xi\} = \bigcup_{\epsilon>0} A^{\epsilon} = \bigcup_{m=1}^{\infty} A^{\frac{1}{m}}.$$

Proof of Theorem 1. For any $\epsilon > 0$, let

 $A_n^\epsilon = \{|\xi_n - \xi| \geq \epsilon\} \text{ and } A^\epsilon = \cap_{n=1}^\infty \cup_{k \geq n} A_k^\epsilon. \text{ Then } \xi_n(\omega) \not\to \xi(\omega) \text{ is equivalent to that, there is an } \epsilon_0 > 0 \text{ such that for any } N \text{ there is a } n \geq N \text{ for which } |\xi_n(\omega) - \xi(\omega)| \geq \epsilon_0.$ This is also equivalent to that, there is an m such that for any n there is a $k \geq n$ for which $|\xi_k(\omega) - \xi(\omega)| \geq 1/m$. So

$$\{\xi_n \not\to \xi\} = \bigcup_{\epsilon>0} A^{\epsilon} = \bigcup_{m=1}^{\infty} A^{\frac{1}{m}}.$$

By the continuity theorem, we have

$$P(A^{\epsilon}) = P(\bigcap_{n=1}^{\infty} \bigcup_{k>n} A_k^{\epsilon}) = \lim_{n \to \infty} P(\bigcup_{k>n} A_k^{\epsilon})$$

which implies that the following relations hold:

$$0 = P(\{\xi_n \not\to \xi\}) \Leftrightarrow P(\bigcup_{m=1}^{\infty} A^{\frac{1}{m}}) = 0$$

$$\Leftrightarrow P(A^{\frac{1}{m}}) = 0, \forall m \ge 1$$

$$0 = P(\{\xi_n \not\to \xi\}) \Leftrightarrow P(\bigcup_{m=1}^{\infty} A^{\frac{1}{m}}) = 0$$

$$\Leftrightarrow P(A^{\frac{1}{m}}) = 0, \forall m \ge 1$$

$$\Leftrightarrow P(\bigcup_{k \ge n} A^{\frac{1}{m}}_k) \to 0, \forall m \ge 1$$

$$\Leftrightarrow P(\bigcup_{k \ge n} (|\xi_k - \xi| \ge \frac{1}{m})) \to 0, \forall m \ge 1$$

$$\Leftrightarrow P(\bigcup_{k \ge n} (|\xi_k - \xi| \ge \epsilon)) \to 0, \forall \epsilon \ge 0.$$

If $\xi_n \stackrel{P}{\to} \xi$, then there exists a sub-sequence $\{\xi_{n_k}\}$ such that

$$\xi_{n_k} \to \xi \ a.s.$$

If $\xi_n \xrightarrow{P} \xi$, then there exists a sub-sequence $\{\xi_{n_k}\}$ such that

$$\xi_{n_k} \to \xi \ a.s.$$

Proof. Let $\epsilon_k = 2^{-k}$. For any k, there exists a n_k such that

$$P(|\xi_n - \xi| \ge \epsilon_k) < \epsilon_k \ \forall n \ge n_k.$$

Without loss of generality, we can assume $n_1 < n_2 < \cdots < n_k < n_{k+1}$. Then for any $\epsilon > 0$, there is a k_0 such that $\epsilon_k < \epsilon$ for $k > k_0$.

So

$$\sum_{k=k_0}^{\infty} P(|\xi_{n_k} - \xi| \ge \epsilon) \le \sum_{k=k_0}^{\infty} P(|\xi_{n_k} - \xi| \ge \epsilon_k) \le \sum_{k=k_0}^{\infty} \epsilon_k < \infty.$$

Hence

$$\xi_{n_k} \to \xi \ a.s.$$

So

$$\sum_{k=k_0}^{\infty} P(|\xi_{n_k} - \xi| \ge \epsilon) \le \sum_{k=k_0}^{\infty} P(|\xi_{n_k} - \xi| \ge \epsilon_k) \le \sum_{k=k_0}^{\infty} \epsilon_k < \infty.$$

Hence

$$\xi_{n_k} \to \xi \ a.s.$$

$$\xi_n - \xi_m \stackrel{P}{\to} 0$$
 as $n, m \to \infty$ if any only if

$$\exists \xi, \ \xi_n \xrightarrow{P} \xi.$$

$$\xi_n - \xi_m \stackrel{P}{\to} 0$$
 as $n, m \to \infty$ if any only if

$$\exists \xi, \ \xi_n \stackrel{P}{\to} \xi.$$

Proof. The "if" part is obvious. For the "if" part, for each $\epsilon_k=2^{-k}$ there exists n_k such that

$$P(|\xi_n - \xi_m| \ge \epsilon_k) \le \epsilon_k, \ \forall n, m \ge n_k.$$

$$\xi_n - \xi_m \stackrel{P}{\to} 0$$
 as $n, m \to \infty$ if any only if

$$\exists \xi, \ \xi_n \stackrel{P}{\to} \xi.$$

Proof. The "if" part is obvious. For the "if" part, for each $\epsilon_k=2^{-k}$ there exists n_k such that

$$P(|\xi_n - \xi_m| \ge \epsilon_k) \le \epsilon_k, \ \forall n, m \ge n_k.$$

Without loss of generality, assume $n_k < n_{k+1}$. Then

$$P\left(|\xi_{n_{k+1}} - \xi_{n_k}| \ge \epsilon_k\right) \le \epsilon_k.$$

It follows that

$$\begin{split} P\left(\sum_{k=1}^{\infty}|\xi_{n_{k+1}}-\xi_{n_k}|=\infty\right)\\ =&P\left(\sum_{k=k_0}^{\infty}|\xi_{n_{k+1}}-\xi_{n_k}|=\infty\right)\\ \leq&P\left(\sum_{k=k_0}^{\infty}|\xi_{n_{k+1}}-\xi_{n_k}|\geq\sum_{k=k_0}^{\infty}\epsilon_k\right)\\ \leq&\sum_{k=k_0}^{\infty}\epsilon_k\to0 \text{ as } k_0\to\infty. \end{split}$$

Let $\xi_0=0$. For $\omega\in A=\{\sum_{k=1}^\infty |\xi_{n_{k+1}}-\xi_{n_k}|<\infty\}$, define $\xi(\omega)=\sum_{k=0}^\infty (\xi_{n_{k+1}}(\omega)-\xi_{n_k}(\omega))$, and for $\omega\in A$, define $\xi(\omega)=0$.

Then

$$\xi_{n_k} \to \xi \ a.s.$$

So,

$$\xi_{n_k} \stackrel{P}{\to} \xi.$$

It follows that

$$\xi_n = (\xi_n - \xi_{n_k}) + \xi_{n_k} \stackrel{P}{\to} \xi.$$

4.3.2 Strong laws of large numbers

Definition 2 Suppose that $\{\xi_n, n \geq 1\}$ is a sequence of random variables defined on (Ω, \mathcal{F}, P) . If there exist constant sequences $\{a_n, n \geq 1\}$ and $\{b_n, n \geq 1\}$ such that

$$\frac{1}{a_n} \sum_{k=1}^n \xi_k - b_n \to 0 \quad a.s.,$$

we say that $\{\xi_n\}$ obeys the strong law of large numbers (SLLN).

Theorem 2 (Borel) Suppose that $\{\xi_n\}$ is a sequence of i.i.d. random variables defined on (Ω, \mathcal{F}, P) with $P(\xi_n = 1) = p$, $P(\xi_n = 0) = 1 - p$, $0 . Let <math>S_n = \sum_{k=1}^n \xi_k$, then

$$\frac{S_n}{n} - p \to 0 \quad a.s.$$

Proof. We have

$$P\left(\frac{|S_n - np|}{n} \ge \epsilon\right)$$

$$= P\left(|S_n - np|^4 \ge (\epsilon n)^4\right)$$

Proof. We have

$$P\left(\frac{|S_n - np|}{n} \ge \epsilon\right)$$

$$= P\left(|S_n - np|^4 \ge (\epsilon n)^4\right)$$

$$\le \frac{1}{\epsilon^4 n^4} E|S_n - np|^4 \text{ (by Markov inequality)}.$$

Let $\eta_i = \xi_i - p$. Then

$$E|S_n - np|^4 = E|\sum_{i=1}^n \eta_i|^4 = \sum_{i,j,l,k} E\eta_i \eta_j \eta_l \eta_k$$

$$= \sum_i E\eta_i^4 + \sum_{i\neq j} E\eta_i^2 \eta_j^2$$

$$= n(q^4p + p^4q) + n(n-1)(pq)^2 \le n^2 pq.$$

Let $\eta_i = \xi_i - p$. Then

$$E|S_n - np|^4 = E|\sum_{i=1}^n \eta_i|^4 = \sum_{i,j,l,k} E\eta_i \eta_j \eta_l \eta_k$$

$$= \sum_i E\eta_i^4 + \sum_{i\neq j} E\eta_i^2 \eta_j^2$$

$$= n(q^4p + p^4q) + n(n-1)(pq)^2 \le n^2 pq.$$

So,

$$\sum_{n=1}^{\infty} P\left(\frac{|S_n - np|}{n} \ge \epsilon\right) \le \sum_{n=1}^{\infty} \frac{n^2 pq}{\epsilon^4 n^4} < \infty.$$

Hence $S_n/n \to p$ a.s.

Corollary Suppose that $\{\xi_n\}$ is a sequence of i.i.d. random variables defined on (Ω, \mathcal{F}, P) with $E\xi_n = \mu$, $E\xi_n^4 < \infty$. Let $S_n = \sum_{k=1}^n \xi_k$, then

$$\frac{S_n}{n} \to \mu$$
 a.s.

Proof. We have

$$P\left(\frac{|S_n - n\mu|}{n} \ge \epsilon\right)$$

$$= P\left(|S_n - n\mu|^4 \ge (\epsilon n)^4\right)$$

Proof. We have

$$P\left(\frac{|S_n - n\mu|}{n} \ge \epsilon\right)$$

$$= P\left(|S_n - n\mu|^4 \ge (\epsilon n)^4\right)$$

$$\le \frac{1}{\epsilon^4 n^4} E|S_n - n\mu|^4 \text{ (by Markov inequality)}.$$

Let
$$\eta_i = \xi_i - \mu$$
. Then $E\eta_i = 0$, $E\eta_1^4 = E(\xi_1 - \mu)^4 < \infty$,

$$E|S_n - n\mu|^4 = E \Big| \sum_{i=1}^n \eta_i \Big|^4 = \sum_{i,j,l,k} E \eta_i \eta_j \eta_l \eta_k$$

$$= \sum_i E \eta_i^4 + \sum_{i \neq j} E \eta_i^2 \eta_j^2$$

$$= nE(\xi_1 - \mu)^4 + n(n-1)(Var(\xi_1))^2$$

$$< n^2 c_0.$$

So,

$$\sum_{n=1}^{\infty} P\left(\frac{|S_n - n\mu|}{n} \ge \epsilon\right) \le \sum_{n=1}^{\infty} \frac{n^2 c_0}{\epsilon^4 n^4} < \infty.$$

Hence $S_n/n \to \mu$ a.s.

Theorem 3 (Kolmogorov, 1930) Suppose that $\{\xi_n, n \geq 1\}$ is a sequence of i.i.d. random variables defined on (Ω, \mathcal{F}, P) with $E|\xi_1| < \infty, E\xi_1 = \mu$. Let $S_n = \sum_{k=1}^n \xi_k$. Then

$$\frac{S_n}{n} \to \mu \quad a.s. \tag{1}$$

Theorem 3 (Kolmogorov, 1930) Suppose that $\{\xi_n, n \geq 1\}$ is a sequence of i.i.d. random variables defined on (Ω, \mathcal{F}, P) with $E|\xi_1| < \infty, E\xi_1 = \mu$. Let $S_n = \sum_{k=1}^n \xi_k$. Then

$$\frac{S_n}{n} \to \mu \quad a.s. \tag{1}$$

In fact, the converse of Theorem 2 also holds: if there exists a constant μ such that (1) holds, then the expectation of ξ_1 exists and equals to μ .

Theorem 4 Suppose that $\{\xi_n, n \geq 1\}$ is a sequence of independent random variables defined on (Ω, \mathcal{F}, P) with $E\xi_k = \mu_k$, $Var\xi_k < \infty$. Let $S_n = \sum_{k=1}^n \xi_k$. If

$$\sum_{n=1}^{\infty} \frac{Var\xi_n}{n^2} < \infty,$$

then

$$\frac{S_n - ES_n}{n} \to 0 \quad a.s.$$

Proof Theorem 3 from Theorem 4: Let

$$\eta_k = \xi_k I\{|\xi_k| \le k\}$$
. Then

$$\sum_{n=1}^{\infty} \frac{Var(\eta_n)}{n^2} \le \sum_{n=1}^{\infty} \frac{E[\xi_1^2 I\{|\xi_1| \le n\}]}{n^2}$$

$$= \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{E[\xi_1^2 I\{|\xi_1| \le n\}]}{n^2} dx$$

$$\le 2^2 \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{E[\xi_1^2 I\{|\xi_1| \le x\}]}{x^2} dx$$

$$= 2^2 \int_{1}^{\infty} E\left[\frac{\xi_1^2 I\{|\xi_1| \le x\}]}{x^2}\right] dx$$

$$= 2^2 E\left[\int_{1}^{\infty} \frac{\xi_1^2 I\{|\xi_1| \le x\}]}{x^2} dx\right] \le 4E[|\xi_1|] < \infty.$$

By Theorem 4,

$$\frac{\sum_{k=1}^{n}(\eta_k - E\eta_k)}{n} \to 0 \ a.s.$$

By Theorem 4,

$$\frac{\sum_{k=1}^{n}(\eta_k - E\eta_k)}{n} \to 0 \ a.s.$$

Also,

$$\frac{\sum_{k=1}^{n} E\eta_{k}}{n} = \frac{\sum_{k=1}^{n} E[\xi_{1}I\{|\xi_{1}| \leq k\}]}{n}$$

$$\to E\xi_{1} = \mu.$$

By Theorem 4,

$$\frac{\sum_{k=1}^{n}(\eta_k - E\eta_k)}{n} \to 0 \ a.s.$$

Also,

$$\frac{\sum_{k=1}^{n} E\eta_{k}}{n} = \frac{\sum_{k=1}^{n} E[\xi_{1}I\{|\xi_{1}| \leq k\}]}{n}$$

$$\to E\xi_{1} = \mu.$$

It follows that

$$\frac{\sum_{k=1}^{n} \eta_k}{n} \to \mu \ a.s.$$

Finally,

$$P(\eta_k \neq \xi_k \ i.o.) = P\left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \{\eta_k \neq \xi_k\}\right)$$
$$= \lim_{n \to \infty} P\left(\bigcup_{k=n}^{\infty} \{|\xi_k| \ge k\}\right) \le \lim_{n \to \infty} \sum_{k=n}^{\infty} P(|\xi_k| \ge k) = 0,$$

Finally,

$$P(\eta_k \neq \xi_k \ i.o.) = P\left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \{\eta_k \neq \xi_k\}\right)$$
$$= \lim_{n \to \infty} P\left(\bigcup_{k=n}^{\infty} \{|\xi_k| \ge k\}\right) \le \lim_{n \to \infty} \sum_{k=n}^{\infty} P(|\xi_k| \ge k) = 0,$$

because

$$\sum_{k=1}^{\infty} P(|\xi_k| \ge k) = \sum_{k=1}^{\infty} P(|\xi_1| \ge k) < \infty.$$

Hence.

$$\lim_{n\to\infty} \frac{\sum_{k=1}^n \xi_k}{n} = \lim_{n\to\infty} \frac{\sum_{k=1}^n \eta_k}{n} = \eta \ a.s.$$

The proof is completed.

$$\lim_{n \to \infty} \frac{S_n}{n} = \lim_{n \to \infty} \frac{\sum_{k=1}^n \xi_k}{n} = \mu \ a.s.$$

$$\lim_{n \to \infty} \frac{S_n}{n} = \lim_{n \to \infty} \frac{\sum_{k=1}^n \xi_k}{n} = \mu \ a.s.$$

Then

$$\frac{\xi_n}{n} = \frac{S_n}{n} - \frac{S_{n-1}}{n} = \frac{S_n}{n} - \frac{S_{n-1}}{n-1} \frac{n-1}{n} \to 0 \ a.s.$$

$$\lim_{n \to \infty} \frac{S_n}{n} = \lim_{n \to \infty} \frac{\sum_{k=1}^n \xi_k}{n} = \mu \ a.s.$$

Then

$$\frac{\xi_n}{n} = \frac{S_n}{n} - \frac{S_{n-1}}{n} = \frac{S_n}{n} - \frac{S_{n-1}}{n-1} \frac{n-1}{n} \to 0 \ a.s.$$

So,

$$P(|\xi_n| \ge n \ i.o.) = 0,$$

$$\lim_{n \to \infty} \frac{S_n}{n} = \lim_{n \to \infty} \frac{\sum_{k=1}^n \xi_k}{n} = \mu \ a.s.$$

Then

$$\frac{\xi_n}{n} = \frac{S_n}{n} - \frac{S_{n-1}}{n} = \frac{S_n}{n} - \frac{S_{n-1}}{n-1} \frac{n-1}{n} \to 0 \ a.s.$$

So,

$$P(|\xi_n| \ge n \ i.o.) = 0,$$

which will imply

$$\sum_{n=1}^{\infty} P(|\xi_1| \ge n) = \sum_{n=1}^{\infty} P(|\xi_n| \ge n) < \infty.$$

In fact, if

$$\sum_{n=1}^{\infty} P(|\xi_n| \ge n) = \infty.$$

In fact, if

$$\sum_{n=1}^{\infty} P(|\xi_n| \ge n) = \infty.$$

Then

$$P\left(\bigcap_{k=n}^{\infty} \{|\xi_k| < k\}\right) = \prod_{k=n}^{\infty} P\left(|\xi_k| < k\right) = \prod_{k=n}^{\infty} \left(1 - P\left(|\xi_k| \ge k\right)\right)$$
$$\le \exp\left\{-\sum_{k=n}^{\infty} P\left(|\xi_k| \ge k\right)\right\} = 0.$$

So,

$$P(\{|\xi_n| \ge n \ i.o.\}^C) = P\left(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} \{|\xi_k| < k\}\right) = 0.$$

Borel-Cantelli Lemma

Lemma

(1) If
$$\sum_{n=1}^{\infty} P(A_n) < \infty$$
, then

$$P(A_n \ i.o.) = 0.$$

(2) If
$$\sum_{n=1}^{\infty} P(A_n) = \infty$$
 and $\{A_n\}$ are independent events, then

$$P(A_n \ i.o.) = 1.$$

(1)

$$\begin{split} &P\left(A_{k} \;\; i.o.\right) = P\left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}\right) \\ &= \lim_{n \to \infty} P\left(\bigcup_{k=n}^{\infty} A_{k}\right) \leq \lim_{n \to \infty} \sum_{k=n}^{\infty} P\left(A_{k}\right) = 0. \end{split}$$

In fact, if

$$\sum_{n=1}^{\infty} P(A_n) = \infty.$$

In fact, if

$$\sum_{n=1}^{\infty} P(A_n) = \infty.$$

Then

$$P\left(\bigcap_{k=n}^{\infty} A_k^C\right) = \prod_{k=n}^{\infty} P\left(A_k^C\right)$$
$$\leq \exp\left\{-\sum_{k=n}^{\infty} P\left(A_k\right)\right\} = 0.$$

So,

$$P\left(\left\{A_n \ i.o.\right\}^C\right) = P\left(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k^C\right) = 0.$$

Example. (the Monte Carlo method) Let f(x) be a continuous function defined on [0,1] with values in [0,1], and let $\xi_1, \eta_1, \xi_2, \eta_2, \cdots$ be a sequence of independent random variables with a common uniform distribution in [0,1]. Define

$$\rho_i = \begin{cases} 1, & \text{if } f(\xi_i) \ge \eta_i, \\ 0, & \text{if } f(\xi_i) < \eta_i. \end{cases}$$

Then $\{\rho_i, i \geq 1\}$ are also i.i.d. random variables. Furthermore,

$$E\rho_1 = P(f(\xi_1) \ge \eta_1) = \int \int_{y \le f(x)} dx dy = \int_0^1 f(x) dx.$$

By Theorem 3, we have

$$\frac{1}{n} \sum_{k=1}^{n} \rho_k \to \int_0^1 f(x) dx \quad a.s.$$

Example. (the Monte Carlo method) Suppose $D \subset \mathbb{R}^d$ is a bounded area, $\int_D \big| g(\boldsymbol{x}) \big| d\boldsymbol{x} < \infty$. Compute $\int_D g(\boldsymbol{x}) d\boldsymbol{x}$.

Example. (the Monte Carlo method) Suppose

 $D\subset \mathbb{R}^d$ is a bounded area, $\int_D \left|g({m x})\right| d{m x} < \infty.$ Compute $\int_D g({m x}) d{m x}$.

解: Suppose that $D \subset A$ where A is a rectangle, and ξ is a random vector uniformly distributed in A. Denote

$$I_D(oldsymbol{x}) = egin{cases} 1, & ext{if } oldsymbol{x} \in D, \ 0, & ext{otherwise.} \end{cases}.$$

Example. (the Monte Carlo method) Suppose

 $D\subset \mathbb{R}^d$ is a bounded area, $\int_D \left|g(m{x})\right| dm{x} < \infty$. Compute $\int_D g(m{x}) dm{x}$.

解: Suppose that $D \subset A$ where A is a rectangle, and ξ is a random vector uniformly distributed in A. Denote

$$I_D(oldsymbol{x}) = egin{cases} 1, & ext{if } oldsymbol{x} \in D, \ 0, & ext{otherwise.} \end{cases}.$$

Then

$$E[g(\boldsymbol{\xi})I_D(\boldsymbol{\xi})] = \int_A \frac{g(\boldsymbol{x})I_D(\boldsymbol{x})}{m(A)} d\boldsymbol{x} = \frac{1}{m(A)} \int_D g(\boldsymbol{x}) d\boldsymbol{x}.$$

4.3 Almost sure convergence and strong laws of large numbers
4.3.2 Strong laws of large numbers

Let ξ_1, ξ_2, \ldots be i.i.d. copies of ξ .

Let ξ_1, ξ_2, \ldots be i.i.d. copies of ξ . Then by the strong law of large numbers,

$$\frac{1}{n} \sum_{i=1}^{n} g(\boldsymbol{\xi}_{i}) I_{D}(\boldsymbol{\xi}_{i}) \rightarrow E[g(\boldsymbol{\xi}) I_{D}(\boldsymbol{\xi})] \quad a.s.$$

$$= \frac{1}{m(A)} \int_{D} g(\boldsymbol{x}) d\boldsymbol{x}.$$

Let ξ_1, ξ_2, \ldots be i.i.d. copies of ξ . Then by the strong law of large numbers,

$$\frac{1}{n} \sum_{i=1}^{n} g(\boldsymbol{\xi}_{i}) I_{D}(\boldsymbol{\xi}_{i}) \rightarrow E[g(\boldsymbol{\xi}) I_{D}(\boldsymbol{\xi})] \quad a.s.$$

$$= \frac{1}{m(A)} \int_{D} g(\boldsymbol{x}) d\boldsymbol{x}.$$

So, for large n,

$$\int_{D} g(\boldsymbol{x}) d\boldsymbol{x} \approx \frac{m(A)}{n} \sum_{i=1}^{n} g(\boldsymbol{\xi}_{i}) I_{D}(\boldsymbol{\xi}_{i}).$$

If D is not bounded, we choose a probability density function $f(\boldsymbol{x}) > 0$, for example the d-dimensional standard normal density. $\boldsymbol{\xi}, \boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \ldots$ be i.i.d. random vectors with $f(\boldsymbol{x})$ being the pdf. Then

$$\frac{1}{n} \sum_{i=1}^{n} \frac{g(\boldsymbol{\xi}_{i}) I_{D}(\boldsymbol{\xi}_{i})}{f(\boldsymbol{\xi}_{i})} \to E \left[\frac{g(\boldsymbol{\xi}) I_{D}(\boldsymbol{\xi})}{f(\boldsymbol{\xi})} \right] a.s.$$

$$= \int \left[\frac{g(\boldsymbol{x}) I_{D}(\boldsymbol{x})}{f(\boldsymbol{x})} f(\boldsymbol{x}) \right] d\boldsymbol{x}$$

$$= \int_{D} g(\boldsymbol{x}) d\boldsymbol{x}.$$

Convergence rate of the SLLN:

Suppose that $\{\xi_i; i \geq 1\}$ be i.i.d. random variables, $E[\xi_1] = \mu$. Then

$$\frac{S_n}{n} \to \mu \ a.s.$$

The law of the iterated logarithm:

Theorem

Suppose $Var(\xi_1) = \sigma^2 < \infty$. Then

$$\limsup_{n \to \infty} \frac{S_n - n\mu}{\sqrt{2n \ln \ln n}} = \sigma \ a.s.$$
 (2)

On the other hand, if (2) holds for some μ and σ , then we must have $Var(\xi_1) = \sigma^2$ and $E\xi_1 = \mu$.

The law of the iterated logarithm tells that

$$\frac{S_n}{n} - \mu = O\left(\sqrt{\frac{\ln \ln n}{n}}\right) \quad a.s.$$

For the MC method, the error is about $\sqrt{\frac{\ln \ln n}{n}}$.