Anexo III (Tema 1) Ejemplos adicionales de Geometría Molecular

1. MOLÉCULAS CON 2 GRUPOS ELECTRÓNICOS EN TORNO AL ÁTOMO CENTRAL

1.1. Moléculas que adoptan una geometría lineal: AX2

2. MOLÉCULAS CON 3 GRUPOS ELECTRÓNICOS EN TORNO AL ÁTOMO CENTRAL

Moléculas con geometría triangular regular o irregular; AX_3 : BF_3 , BCl_3 , SO_3 , H_2CO , $COCl_2$, C_2H_4 , $C_2H_2F_2$, $[CO_3]^{2^2}$

Moléculas con geometría angular; **AX₂E:** SnCl₂, SO₂, O₃, NSF Moléculas lineales; **AXE₃**: HF

2.1. Moléculas con geometría triangular regular o irregular

AX₃: BF₃, BCl₃, SO₃, H₂CO, COCl₂, C₂H₄, C₂H₂F₂, [CO₃]²

1.- BF₃

BCI₃ es isoestructural con el BF₃. Idéntica geometría. D(B-CI)=176pm, a=120°

3.- SO₃

4.- H₂CO

5.- C₂H₄

5.- C₂H₂F₂

 $6.-[CO_3]^{2-}$

2.2. Moléculas con geometría angular

$AX_2E: SnCl_2, SO_2, O_3, NSF$

1.- SnCl₂

2.- SO₂

3.- O₃

4.- NSF

3. MOLÉCULAS CON 4 GRUPOS ELECTRÓNICOS EN TORNO AL ÁTOMO CENTRAL

Moléculas que adoptan una geometría tetraédrica regular o distorsionada

AX₄: CH₄, SiF₄, [NH₄]⁺, [SO₄]²⁻, [S₂O₃]²⁻, POF₃, POCl₃, NSF₃

Moléculas que adoptan una geometría de pirámide de base trigonal

AX₃E: NH₃, PH₃, AsH₃, PF₃, PCI₃, PBr₃, PI₃, [H₃O]⁺

Moléculas que adoptan geometría angular:

AX₂E₂: H₂O, H₂S, Cl₂O, OF₂, [NH₂]

3.1. Moléculas que adoptan una geometría tetraédrica regular o distorsionada

AX₄: CH₄, SiF₄, [NH₄]⁺, [SO₄]²⁻, [S₂O₃]²⁻, POF₃, POCl₃, NSF₃

1.- CH₄:

2.- SiF₄. Molécula isoelectrónica con la anterior (posee el mismo número de electrones y el mismo número de átomos). La estructura de Lewis es idéntica y la geometría también. Es una molécula apolar.

Geometría tetraédrica. D(Si-H)=154 pm. A(F-Si-F)=109.5°

3.- [NH₄]⁺

4.- [SO₄]²⁻

y otras 5 formas resonantes. El resultado es un híbrido de resonancia con los cuatro enlaces S-O equivalentes. OE=3/2.

Geometría tetraédrica con los angulos ideales. D(S-O)=150pm

5.- $[S_2O_3]^{2-}$

Molécula isoelectrónica con la anterior.

Geometría tetraédrica pero los ángulos va no tienen por qué ser identicos al tener un S terminal D(S-S)=201 pmD(S-O) = 150 pm

6.- POF₃

Tetraédro distorsionado. Los átomos periféricos no son identicos. Efecto fuertemente distorsionador del doble enlace

Polar

D(P-O)=145 pm D(P-F)=154 pmA(FPF)=102°

6.- POCI₃

Isoestructural con la anterior. Geometría tetraédrica distorsionada.

D(PO)=145pm, d(PCI)=198 pm, a(CIPCI)= 103.5. El ángulo es ligeramente mayor que en el caso anterior por que la menor electronegatividad del CI, retira menos densidad de carga en las proximidades del átomo central y por tanto, disminuye la distorsión que genera el doble enlace.

7.- NSF₃

Isoelectrónica con la anterior (N_V=32)

Geometría tetraédrica distorsionada. El efecto distorsionador del triple enlace es mayor que el del doble (casos anteriores)

D(SN)=140 pm D(SF)=160 p,m A(F-S-F)= 98°

POLAR

3.2. Moléculas que adoptan una geometría de pirámide de base trigonal

AX₃E: NH₃, PH₃, AsH₃, PF₃, PCI₃, PBr₃, PI₃, [H₃O]⁺

1.- NH₃

2.- PH₃ y AsH₃ Especies isoelectrónicas con el NH₃. Geometría pirámide triangular

Conforme el tamaño del átomo central aumenta, el orbital que aloja el atomo central aumenta de volumen y se cierra el ángulo de enlace. Las dos moléculas son polares

4.- Serie de los trihaluros de P. Todos ellos son polares

	PF ₃	PCI ₃	PBr ₃	PI ₃
D(P-X)	157 pm	204	218	243
A(X-P-X)	97.8°	101.1°	101.5°	102°

8.- [H₃O]⁺

3.3. Moléculas que adoptan geometría angular:

AX₂E₂: H₂O, H₂S, Cl₂O, OF₂, [NH₂]

1.- H₂O

- 2.- H₂S. Isoelectronica con el H₂O. Geometría angular. D(S-H)=135 pm, a=93.5°
- 3.- Cl₂O, OF₂ isoelectrónicas. Geometría angular. Ambas son polares

5.- [NH₂].

4. MOLÉCULAS CON 5 PARES ELECTRÓNICOS EN TORNO AL ÁTOMO CENTRAL.

Poliedro de coordinación regular: bipirámide trigonal

Moléculas que adoptan una estructura en bipirámide regular o distorsionada: PCI_5 , PF_3CI_2 , XeO_3F_2 , PF_3CI_2 , SOF_4 , $(IO_5)^{3-}$

Moléculas que adoptan una estructura disfenoidal o balancín: SF_4 , $[IO_2F_2]^T$, XeO_2F_2 Moléculas que adoptan una estructura en punta de flecha o T: CIF_3 Moléculas que adoptan una estructura lineal: I_3^T , XeF_2

4.1. Moléculas que adoptan una estructura en bipirámide regular o distorsionada.

1.- PCI₅

2.- PF₃Cl₂. Isoelectrónica con la anterior. La geometria de la molécula esta condicionada por la ocupación de las posiciones ecuatoriales por parte de los Cl

D(P-Fax)=150pm

D(P-Cleq)=200 pm

Distorsion en los angulos ecuatoriales al no ser equivalentes los tres átomos periféricos.

POLAR

3.- SOF₄

Bipirámide distorsionada. El doble enlace ocupa la posición ecuatorial. Cierra el angulo F-S-F

D(SO)=140 pm

D(SFec)=155pm D(SFax)=157 pm

A(FecSFec)=110°

Polar

4.- XeO₃F₂

5.- [IO₅]³⁻

No hay posiciones privilegiadas. Hay 10 formas resonantes que deslocalizan los dos dobles enlaces entre las 5 posiciones. Bipirámide regular

D(IO)=180 pm

APOLAR

4.2. Moléculas que adoptan una estructura disfenoidal o balancín

SF₄, [IO₂F₂]-, XeO₂F₂

1.- SF₄

Balancín. Efecto distorsionador del par solitario D(S_F_{ec})=154pm D(S_F_{ax})=164 pm A($F_{ec}S_{ec}$)=101.6° A($F_{ax}S_{ax}$)=173.6° POLAR

$2.-[IO_2F_2]^T$

3.- XeO₂F₂

Las posiciones axiales para los pares solitarios y los dobles enlaces

A(O-Xe-O)=120°

D(Xe-O)=180pm

D(Xe-F)=200pm

POLAR

4.3. Moléculas que adoptan una estructura en punta de flecha o T:

CIF₃

4.4. Moléculas que adoptan una estructura lineal

I₃-, XeF₂

1.- I₃

2.- XeF₂

5. MOLÉCULAS CON 6 PARES ELECTRÓNICOS EN TORNO AL ÁTOMO CENTRAL.

Poliedro de coordinación regular: octaedro

Moléculas que adoptan una estructura en octaedro regular o distorsionado: SF₆, IOF₅

Moléculas que adoptan una estructura pirámide de base cuadrada: XeOF₄, BrF₅

Moléculas cuadrado-planas: [ICI₄], XeF₄

5.1. Moléculas que adoptan una estructura en octaedro regular o distorsionado.

SF₆, IOF₅

1.- SF₆

2.- IOF₅

5.2. Moléculas que adoptan una estructura pirámide de base cuadrada

XeOF₄, BrF₅

1.- XeOF₄

2.- BrF₅

5.3. Moléculas cuadrado-planas

[ICl₄], XeF₄

1.- [ICl₄]⁻,

2.- XeF₄

