1 Supplementary Material

Figure 1: Estimated trait values for seed mass (a-c) and LNC (d-f) traits, correlated against species level cue responses to forcing (a & d), chilling (b & e), and photoperiod cues (c & f). Parameters were estimated using our joint trait-phenology model, with the grey line depicting the mean linear relationship between estimated trait effects and the slope of the cue response. The pink shading represents the distribution of the posterior estimates. Our model of seed mass estimated a negative correlation between height values and the response to forcing, chilling, and photoperiod cue responses (a - c). The estimated LNC values positively correlating with the response in forcing, chilling, and photoperiod (d - f). The species used in our illustrative examples in S?? are highlighted in each panel, with the relative small seeded species, *Populus tremula* shown in green, and the large seeded species, *Aesculus hippocastanum* shown in purple in panels a to c. In panels d to f, the species with low LNC, *Alnus glutinosa* is shown in green, and the species with high LNC, *Quercus ilex* shown in purple.

Figure 2: Comparisons of estimated cue responses of a species with an trait value associated with acquisitive growth strategies, shown in green, or conservative growth strategies, shown in purple. Associations between seed mass and forcing, chilling, and photoperiod are depicted on panels a to c and associations between LNC and each cue in panel d to f. The green points represent the budburst data for Populus tremula, a relatively small seeded species, while the green points are budburst data of the large seeded species, Aesculus hippocastanum. Dark bands represent the 50% credible interval for the posterior cue estimates for the full model. Opaque bands represent the 50% credible interval for the posterior cue estimates with a trait effect of zero. The negative value of the seed mass model's slope for each cue produces a more negative effect on the day of budburst when seed mass is included in the model. This suggests that trees that produce large seeds advance their budburst dates at a higher rate to increasing cues (a-c). The effect of seed mass however, is relatively small compared to that observed from other traits. Estimates of the cue responses in our LNC model were all positive and produced more positive slopes in the full model. This indicates that high SLA values are less responsive in their budburst to increasing forcing, chilling, and photoperiod values (d to f). The greater effect of slopes on taller trees and high SLA species is a artifact of the trait value itself being larger and not a reflection on the magnitidue of the response.

Table 1: Summary of dataset

				of dataset	1	
traitname	unitname	no.obs	no.spp	database	datasetid	reference
Height	m	26	8	bien	10_bien	http://datadryad.org/resource/doi:10.5
Height	m	2	2	bien	12_bien	http://datadryad.org/resource/doi:10.5
Height	m	27	19	bien	14_bien	http://datadryad.org/resource/doi:10.5
Height	m	18	16	bien	18_bien	
Height	m	90	19	bien	20 _bien	http://www.leda-traitbase.org/LEDApo
Height	m	10	10	bien	21_{-} bien	
Height	m	21	14	bien	22 _bien	Moles, Angela
Height	m	47036	19	bien	24 _bien	Reams, Greg
Height	m	5	5	bien	25 _bien	Grime, Hodgson, & Hunt
Height	m	8	5	bien	26 _bien	
Height	m	18	1	bien	3 _bien	http://datadryad.org/resource/doi:10.5
Height	\mathbf{m}	120	1	bien	5 _bien	http://datadryad.org/resource/doi:10.5
Height	\mathbf{m}	20	1	bien	$7_{\rm bien}$	http://datadryad.org/resource/doi:10.5
Height	\mathbf{m}	2	1	try	$156_{ ext{try}}$	Bond-Lamberty et al. (2002)
Height	\mathbf{m}	275	3	try	$186_{ ext{try}}$	unpub.
Height	m	28	19	try	20_{-} try	Wright et al. (2004)
Height	m	2	2	try	236 _try	Prentice et al. (2011)
Height	m	21	21	try	251_{try}	Schweingruber & Landolt (2005)
Height	m	35	2	try	275_{try}	unpub.
Height	m	5	5	try	28_try	Moles et al. (2004)
Height	m	1	1	try	54 _try	Cavender-Bares et al. (2006)
Height	m	11	10	try	$86_{\rm try}$	Diaz et al. (2004)
$\widetilde{\mathrm{LNC}}$	mg/g	287	12	try	130_try	Craine et al. (2009)
LNC	mg/g	44	2	try	154_try	Wilson et al. (2000)
LNC	mg/g	7	4	try	180_try	Wenxuan et al. (2012)
LNC	mg/g	7	3	try	181_try	Yahan et al. (2011)
LNC	mg/g	65	32	try	20_try	Wright et al. (2004)
LNC	mg/g	3	2	try	236_try	Prentice et al. (2011)
LNC	mg/g	120	20	try	240_try	Vergutz et al. 2012
LNC	mg/g	$\frac{1}{24}$	8	try	286_try	Atkin et al. (2015)
LNC	mg/g	72	$2\overline{2}$	try	342_try	Maire et al. (2015)
LNC	mg/g	2	1	try	37_try	Cornelissen et al. (2003)
LNC	$\frac{mg}{g}$	3216	37	try	412_try	unpub.
LNC	$\frac{mg}{g}$	6	2	try	443_try	Wang et al. 2017
Seed mass	mg mg	3	3	bien	12_{bien}	http://datadryad.org/resource/doi:10.5
Seed mass	mg	4	$\frac{3}{2}$	bien	17_bien	http://ucjeps.berkeley.edu/EFT.html
Seed mass	mg	250	37	bien	19_bien	http://www.kew.org/data/sid
Seed mass	mg	12	12	bien	2_bien	http://datadryad.org/resource/doi:10.5
Seed mass	mg	12	7	bien	9_bien	http://datadryad.org/resource/doi:10.5
SLA	mm2 mg-1	44	$\overset{7}{2}$	try	154_try	Wilson et al. (2000)
SLA	mm2 mg-1	204	3	try	186_try	unpub.
SLA	mm2 mg-1	93	33		20_try	Wright et al. (2004)
SLA	mm2 mg-1	93 2	33 2	try	20_try 236_try	Prentice et al. (2011)
	_			try		, ,
SLA	mm2 mg-1	102	18	try	25_try	Kleyer et al. (2008)
SLA	mm2 mg-1	83	2	try	275_try	unpub.
SLA	mm2 mg-1	40	3 11	try	286_try	Atkin et al. (2015)
SLA	mm2 mg-1	86	23	try	342_try	Maire et al. (2015)
SLA	mm2 mg-1	615	14	try	37_try	Cornelissen et al. (2003)
SLA	mm2 mg-1	6307	37	try	412_try	unpub.
SLA	mm2 mg-1	6	2	try	443_try	Wang et al. 2017
SLA	mm2 mg-1	20	2	try	$50_{\text{-try}}$	Shipley et al. (2002)
SLA	mm2 mg-1	42	2	try	54 _try	Cavender-Bares et al. (2006)
SLA	mm2 mg-1	1	1	try	$65_{ ext{-}}\mathrm{try}$	unpub.

Table 2:	Height	model	estimates
----------	--------	-------	-----------

Variable	mean	sd	X2.5.	X50.	X97.5.	Rhat
mu_grand	12.62	1.83	8.95	12.63	16.21	1.00
muPhenoSp	32.13	2.69	26.94	32.12	37.43	1.00
muForceSp	-10.81	2.81	-16.34	-10.77	-5.33	1.00
muChillSp	-4.42	4.05	-12.71	-4.35	3.34	1.00
muPhotoSp	1.44	2.23	-2.98	1.44	5.77	1.00
betaTraitxForce	0.18	0.19	-0.21	0.18	0.56	1.00
betaTraitxChill	-0.51	0.28	-1.04	-0.52	0.06	1.00
beta Traitx Photo	-0.30	0.16	-0.62	-0.30	0.02	1.00
$sigma_sp$	5.91	0.76	4.61	5.84	7.58	1.00
$sigma_study$	7.51	1.20	5.49	7.38	10.24	1.00
$sigma_traity$	5.39	0.02	5.36	5.39	5.43	1.00
sigmaPhenoSp	15.17	2.07	11.23	15.11	19.42	1.00
sigmaForceSp	4.95	1.18	2.99	4.84	7.56	1.00
$\operatorname{sigmaChillSp}$	8.63	2.19	5.25	8.33	13.72	1.00
sigmaPhotoSp	3.45	0.93	1.87	3.36	5.51	1.00
$sigmapheno_y$	14.22	0.25	13.74	14.22	14.72	1.00

Table 3: SLA model estimates

	rabic o.		HOGEL CDU	11110000		
Variable	mean	sd	X2.5.	X50.	X97.5.	Rhat
mu_grand	16.54	1.57	13.51	16.53	19.54	1.01
muPhenoSp	31.39	2.51	26.51	31.35	36.45	1.00
muForceSp	-10.95	2.67	-16.44	-10.89	-5.87	1.01
muChillSp	-16.49	4.62	-26.03	-16.33	-7.86	1.01
muPhotoSp	0.97	2.56	-4.29	1.02	5.74	1.02
${\bf betaTraitxForce}$	0.15	0.15	-0.13	0.15	0.45	1.01
${\bf betaTraitxChill}$	0.34	0.25	-0.12	0.33	0.84	1.01
beta Traitx Photo	-0.19	0.14	-0.47	-0.19	0.10	1.02
$sigma_sp$	7.78	0.97	6.12	7.70	9.89	1.00
$sigma_study$	3.27	0.96	1.82	3.12	5.49	1.00
sigma_traity	6.17	0.05	6.07	6.16	6.26	1.00
sigmaPhenoSp	13.96	2.10	10.03	13.91	18.20	1.00
sigmaForceSp	4.91	1.13	3.07	4.79	7.43	1.00
sigmaChillSp	10.48	2.29	6.60	10.28	15.35	1.00
sigmaPhotoSp	3.72	0.89	2.24	3.64	5.75	1.00
sigmapheno_v	14.21	0.26	13.71	14.21	14.72	1.00

Variable	mean	sd	X2.5.	X50.	X97.5.	Rha
mu_grand	1.84	0.48	0.90	1.84	2.77	1.00
muPhenoSp	31.43	2.70	26.33	31.40	36.84	1.00
muForceSp	-8.04	1.57	-11.19	-8.03	-4.98	1.00
muChillSp	-9.36	2.79	-15.05	-9.28	-4.02	1.00
muPhotoSp	-1.44	1.27	-3.90	-1.47	1.06	1.00
${\bf beta Traitx Force}$	-0.29	0.67	-1.58	-0.29	1.03	1.00
betaTraitxChill	-1.08	1.09	-3.20	-1.09	1.07	1.00
betaTraitxPhoto	-0.59	0.58	-1.74	-0.59	0.54	1.00
sigma_sp	1.62	0.19	1.30	1.60	2.03	1.00
sigma_study	0.97	0.10	0.77	0.97	1.16	1.00
sigma_traity	0.25	0.01	0.23	0.25	0.27	1.00
sigmaPhenoSp	14.93	2.29	10.62	14.89	19.61	1.00
sigmaForceSp	4.92	0.99	3.18	4.85	7.06	1.00
sigmaChillSp	10.65	2.53	6.44	10.37	16.20	1.00
sigmaPhotoSp	3.76	0.91	2.23	3.67	5.80	1.00
sigmapheno_y	14.16	0.25	13.69	14.15	14.64	1.00

	Table 5:		model est			
_Variable	mean	sd	X2.5.	X50.	X97.5.	Rhat
${ m mu_grand}$	22.65	1.41	19.90	22.65	25.44	1.00
$\operatorname{muPhenoSp}$	31.21	2.51	26.35	31.15	36.32	1.00
$\operatorname{muForceSp}$	-19.42	5.45	-30.39	-19.50	-8.61	1.01
$\operatorname{muChillSp}$	-26.48	7.09	-40.56	-26.52	-12.15	1.00
$\operatorname{muPhotoSp}$	-10.07	4.89	-19.99	-10.02	-0.60	1.01
betaTraitxForce	0.48	0.23	0.02	0.48	0.95	1.01
betaTraitxChill	0.70	0.30	0.09	0.70	1.30	1.00
betaTraitxPhoto	0.33	0.20	-0.06	0.33	0.73	1.01
$\operatorname{sigma_sp}$	5.12	0.61	4.05	5.07	6.44	1.00
sigma_study	3.54	0.97	2.07	3.40	5.78	1.00
sigma_traity	5.13	0.06	5.02	5.13	5.25	1.00
$\operatorname{sigmaPhenoSp}$	14.07	1.96	10.46	13.96	18.13	1.00
$\operatorname{sigmaForceSp}$	4.51	1.03	2.70	4.42	6.76	1.00
sigmaChillSp	8.92	2.02	5.73	8.63	13.60	1.00
sigmaPhotoSp	3.85	0.88	2.37	3.77	5.80	1.00
sigmapheno_y	14.22	0.26	13.73	14.21	14.73	1.00