

### PRIVACY RANKING

Wahlprojekt SS 2017

Letztes Update: 22. August 2017



Studienbereich Informatik Hochschule RheinMain



#### **GLIEDERUNG**

- 1. Einleitung
- 2. App Beispielcode
- 3. Webservice
- 4. Datenbeschaffung und Verarbeitung
- 5. Datenbank
- 6. Kategorisierung und Bewertung der Apps



#### **EINLEITUNG**

- ► Ziel des Projekts?
- ► Architektur (App Web Datenbank)
- ► Live-Demo der App









Unsere App halt



Gliederung Einleitung App Beispielcode Webservice Datenbeschaffung und Verarbeitung Datenbank Kategorisierung und Bewer

Webservice

## DATENBESCHAFFUNG UND

**VERARBEITUNG** 

#### WEBSITE GOOGLE PLAYSTORE



#### SCRAPING DER DATEN

- Zugriff auf den Webservice von Google
- ► https://play.google.com/store/xhr/getdoc?authuser=0
- ▶ POST (ids=app\_id, xhr=1)

```
[["gdar",1,[["me.pou.app","me.pou.app",1,3,
"/store/apps/details?id\u003dme.pou.app",
"/store/apps/details?id\u003dme.pou.app",
"https://play.google.com/store/apps/details
?id\u003dme.pou.app","https://market.android
.com/details?id\u003dme.pou.app","Pou",...
```

#### EXTRAHIEREN DER DATEN

- ► Schreiben eines Wrappers in Python
- ► Lokalisieren der nötigen Informationen

```
def extract_title(data):
    return _remove_emojis(data[0][2][0][8])

def extract_description(data):
    return _remove_emojis(data[0][2][0][9])

def extract_rating(data):
    return data[0][2][0][23]
```



#### MARIADB DATENBANK



# KATEGORISIERUNG UND BEWERTUNG

**DER APPS** 

Gliederung Einleitung App Beispielcode Webservice Datenbeschaffung und Verarbeitung Datenbank Kategorisierung und Bewer

#### **DATAMINING**

- ► Kategorisierung mithilfe von Clustering
- ► Auswahl zwischen den einzelnen Algorithmen
  - K-Means
    - ► Anzahl Cluster muss bekannt sein
  - Affinity propagation
    - ► Terminiert nicht
  - ▶ Mean-Shift
    - ► Terminiert nicht
  - ► Ward hierarchical clustering
    - ► Terminiert nicht
  - ► DBSCAN
    - ▶ Rauschen

#### **DBSCAN**



- ► Density-based spatial clustering of applications with noise
- ► Abstand (Epsilon) muss gut gewählt werden

#### TF-IDF

- ► Clustering-Algorithmen funktionieren nur mit numerischen Werten
- ▶ Text frequenzy
  - ▶ Je häufiger Wort in Text enthalten ⇒ bedeutend
  - ► Wert für *min-df* muss gut gewählt werden
- ► Inversed document frequenzy
  - ▶ Je häufiger Wort in allen Dokumenten enthalten ⇒ unbedeutend
  - ► Wert für *max-df* muss gut gewählt werden
- ▶ Dadurch entsteht Documents × Features Matrix
- ► Max. Feautures werden bestimmt.

#### **GUTE METRIC FINDEN**



Euclidian



L2



Cosine



Minkowski

#### **GUTE PARAMETER FINDEN - TESTDATEN**









#### GUTE PARAMETER FINDEN - GOOGLE PLAY DATEN









Gliederung Einleitung App Beispielcode Webservice Datenbeschaffung und Verarbeitung Datenbank Kategorisierung und Bewer

#### **GUTE PARAMETER FINDEN**

► max-df: 0.01

▶ min-df: 0.005

► eps: 0.45

► min-samples: 30

► features: 1500

- ⇒ 42 Cluster
- ⇒ Mehr als 50% Rauschen
- ⇒ 1 Cluster viel zu groß

Gliederung Einleitung App Beispielcode Webservice Datenbeschaffung und Verarbeitung Datenbank Kategorisierung und Bewer

#### KOMBINATION MIT ANDEREN ALGORITHMEN

- K-Means
  - ► Anzahl Cluster aus DBSCAN → mäßiger Erfolg
  - ► Anzahl GP Kategorien → mäßiger Erfolg
- Classifier
  - ► DecisionTree → miserabler Erfolg
  - ▶ BernoulliNB → miserabler Erfolg
  - ► MLP → miserabler Erfolg
  - ► AdaBoost → miserabler Erfolg
  - ► KNeighbors → akzeptabler Erfolg
- ⇒ Kein Verlust mehr durch Rauschen
- ⇒ Zu großer Cluster wurde noch größer
- ⇒ Cluster beinhaltet mehr als 50% apps

#### HIERARCHICAL DBSCAN

Aufteilung von zu großen Cluster in kleinere.

⇒ Sprengt den Arbeitsspeicher.

Dies liegt an der mieserablen Implementierung in SKLearn. Es ist besser, wenn du's selbst implementierst.

- Viele Leute bei Stackoverflow

Eigene Variante in Kombination mit KNeighbors:

- ► Zu große Cluster werden erneut mit DBSCAN geclustert (kleineres Epsilon)
- ▶ Dabei entstandendes Rauschen wird mithilfe KNeighbors neu verteilt
- ⇒ Clusterqualität wurde schlechter, kein guter Erfolg

Die Apps werden nach dem Einfluss auf die Privatsphäre bewertet.

1. Sammeln der Berechtigungen innerhalb eines Clusters

| Permissions |   |   |    |    |    |
|-------------|---|---|----|----|----|
| 0           | 4 | 9 | 10 | 11 | 12 |

Mit den Berechtigungen:

| ID | Name                 |  |  |  |
|----|----------------------|--|--|--|
| 0  | In-App-Purchases     |  |  |  |
| 4  | Calender             |  |  |  |
| 9  | Pictures/Media/Files |  |  |  |
| 10 | Storage              |  |  |  |
| 11 | Camera               |  |  |  |
| 12 | Microphone           |  |  |  |

2. Berechnung der Gewichtung

Besteht aus zwei Teilen:

 Relative häufigkeit von App die diese Berechtigung nicht haben

► Bösheit der Berechtigung

| 0.1 | 0.6 | 0.1 | 0.1 | 0.9 | 0.9 |
|-----|-----|-----|-----|-----|-----|

Diese werden miteinander multipliziert.

#### Permissions

| 0    | 4    | 9    | 10   | 11  | 12   |
|------|------|------|------|-----|------|
| 0.04 | 0.48 | 0.06 | 0.02 | 0.0 | 0.54 |

#### 3. Füllen der Matrix

#### Permissions

|      | ID   | 0    | 4    | 9    | 10   | 11  | 12   |
|------|------|------|------|------|------|-----|------|
| •    | 14   | 0.04 | 0.0  | 0.0  | 0.02 | 0.0 | 0.54 |
| SULL | 42   | 0.0  | 0.48 | 0.06 | 0.0  | 0.0 | 0.0  |
| (    | 145  | 0.04 | 0.0  | 0.0  | 0.02 | 0.0 | 0.0  |
|      | 465  | 0.04 | 0.0  | 0.06 | 0.02 | 0.0 | 0.54 |
|      | 1010 | 0.0  | 0.0  | 0.0  | 0.02 | 0.0 | 0.0  |

#### 4. Aufsummieren der Werte

#### Permissions

|     |      |      |      |      | 3310113 |     |      |        |
|-----|------|------|------|------|---------|-----|------|--------|
|     | ID   | 0    | 4    | 9    | 10      | 11  | 12   | $\sum$ |
|     | 14   | 0.04 | 0.0  | 0.0  | 0.02    | 0.0 | 0.54 | 0.6    |
| bbs | 42   | 0.0  | 0.48 | 0.06 | 0.0     | 0.0 | 0.0  | 0.54   |
| ≺   | 145  | 0.04 | 0.0  | 0.0  | 0.02    | 0.0 | 0.0  | 0.06   |
|     | 465  | 0.04 | 0.0  | 0.06 | 0.02    | 0.0 | 0.54 | 0.66   |
|     | 1010 | 0.0  | 0.0  | 0.0  | 0.02    | 0.0 | 0.0  | 0.02   |

#### 5. Aufteilen in 3 Gruppen mithilfe K-Means

| Apps | ID   | $\sum$ |
|------|------|--------|
|      | 14   | 0.6    |
|      | 42   | 0.54   |
|      | 145  | 0.06   |
|      | 465  | 0.66   |
|      | 1010 | 0.02   |

- ► Gut Grün
  - ▶ 80 120 degree
- ► Mittel Gelb
  - ▶ 30 79 degree
- ► Schlecht Rot
  - ▶ 0 29 degree

```
# 0 - 100
value = 100 - ((app_values[i] - min_value) *
    100.0) / (max_value - min_value)
# min_range - max_range
value = (value * (color_range[1] -
    color_range[0]) / 100) + color_range[0]
```