

UTILITY PATENT APPLICATION TRANSMITTAL		Attorney Docket No. 856063.579 First Inventor or Application Identifier Maurizio Peri et al. Title EMULATED EEPROM MEMORY DEVICE AND CORRESPONDING METHOD Express Mail Label No. EM417216320US
<small>Only for nonprovisional applications under 37 CFR § 1.53(b)</small>		<small>PTO</small> <small>04/25/19</small>
APPLICATION ELEMENTS <small>See MPEP chapter 600 concerning utility patent application contents.</small>		ADDRESS TO: <small>Box Patent Application Assistant Commissioner for Patents Washington, D.C. 20231</small>
<p>1. <input checked="" type="checkbox"/> General Authorization Form & Fee Transmittal (Submit an original and a duplicate for fee processing)</p> <p>2. <input checked="" type="checkbox"/> Specification [Total Pages] 36 - Descriptive Title of the Invention - Cross References to Related Applications - Statement Regarding Fed sponsored R & D - Reference to Microfiche Appendix - Background of the Invention - Brief Summary of the Invention - Brief Description of the Drawings (if filed) - Detailed Description - Claim(s) - Abstract of the Disclosure</p> <p>3. <input checked="" type="checkbox"/> Drawing(s) (35 USC 113) [Total Sheets] 18</p> <p>4. Oath or Declaration [Total Pages] 4 a. <input checked="" type="checkbox"/> Newly executed (original or copy) b. <input type="checkbox"/> Copy from a prior application (37 CFR 1.63(d)) <small>(for continuation/divisional with Box 17 completed)</small> i. <input type="checkbox"/> DELETION OF INVENTOR(S) Signed statement attached deleting inventor(s) named in the prior application, see 37 CFR 1.63(d)(2) and 1.33(b)</p> <p>5. Incorporation By Reference (useable if box 4b is checked) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered to be part of the disclosure of the accompanying application and is hereby incorporated by reference therein.</p>		p. 6. <input type="checkbox"/> Microfiche Computer Program (Appendix) <p>7. Nucleotide and Amino Acid Sequence Submission (if applicable, all necessary) a. <input type="checkbox"/> Computer-Readable Copy b. <input type="checkbox"/> Paper Copy (identical to computer copy) c. <input type="checkbox"/> Statement verifying identity of above copies</p>
ACCOMPANYING APPLICATION PARTS		
p. 8. <input checked="" type="checkbox"/> Assignment Papers (cover sheet & document(s)) 9. <input type="checkbox"/> 37 CFR 3.73(b) Statement <small>(when there is an assignee)</small> <input checked="" type="checkbox"/> Power of Attorney 10. <input type="checkbox"/> English Translation Document (if applicable) 11. <input type="checkbox"/> Information Disclosure Statement (IDS)/PTO-1449 <input type="checkbox"/> Copies of IDS Citations 12. <input type="checkbox"/> Preliminary Amendment 13. <input checked="" type="checkbox"/> Return Receipt Postcard 14. <input type="checkbox"/> Small Entity Statement(s) <input type="checkbox"/> Statement filed in prior application, Status still proper and desired 15. <input type="checkbox"/> Certified Copy of Priority Document(s) <small>(if foreign priority is claimed)</small> 16. <input checked="" type="checkbox"/> Other: Certificate of Express Mail Check No. 56025 for \$878		
17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information below and in a preliminary amendment		
<input type="checkbox"/> Continuation <input type="checkbox"/> Divisional <input type="checkbox"/> Continuation-In-Part (CIP) of prior Application No.: _____		
<i>Prior application information: Examiner _____ Group / Art Unit _____</i>		
<input checked="" type="checkbox"/> Claims the benefit of European Application No. 98203302.9 FILED September 30, 1998		
CORRESPONDENCE ADDRESS		
David V. Carlson Seed and Berry LLP 6300 Columbia Center; 701 Fifth Avenue Seattle, Washington 98104-7092 (206) 622-4900 phone; (206) 682-6031 fax		

Respectfully submitted,

TYPED or PRINTED NAME David V. Carlson
SIGNATURE
u:\float\jab1\856063.579 PTO/SB/05

REGISTRATION NO. 31,153
Date March 9, 1999

EMULATED EEPROM MEMORY DEVICE AND CORRESPONDING METHOD

TECHNICAL FIELD

The present invention relates to a method and device to emulate the features of an EEPROM memory device.

5 More specifically, the invention relates to an Emulated EEPROM memory device of the type included in a memory macrocell which is embedded in an integrated circuit comprising also a microcontroller and including a Flash EEPROM memory structure formed by a predetermined number of sectors.

10 The invention relates, particularly but not exclusively, to microcontroller electronic devices having an on-board resident memory. More specifically, the device may be a microcontroller or a microprocessor having a resident (on-board) and integrated memory macrocell circuit.

15 In the embodiment being described by way of example, the memory macrocell includes an embedded Flash memory portion to store programs and update codes for the microcontroller and an embedded EEPROM non-volatile memory portion to store data.

BACKGROUND OF THE INVENTION

As is well known, modern microcontrollers are provided with on-board memory circuits to store both programs and data on the same IC.

20 In this specific technical field there is a felt need to have at least an EEPROM portion of the memory macrocell to be used just as a non-volatile memory for parameter storage and for defining non-volatile pointers of the stored data.

25 However, Flash and EEPROM technologies are not compatible and the higher integration degree and much lower cost of the Flash devices would suggest to realize memory macrocell including just Flash memory cells.

The memory circuit structure should comprises three portions: a main Flash memory portion, a small OTP (One-Time-Programmable) portion and an EEPROM memory portion.

The Flash memory portion should include at least four sectors.

5 Flash and EEPROM portions have respective sense amplifiers so that one memory portion can be read while the other memory portion is written. However, simultaneous Flash and EEPROM write operations are not allowed. Also not allowed is erasing of the EEPROM portion while writing on the Flash portion.

10 Flash memory devices may be electrically erased by erasing the whole memory portion; while the EEPROMs may be erased on a byte by byte basis.

The memory macrocell has a register interface mapped in the memory area. All the operations are enabled through two control registers, one register FCR for the Flash (and OTP) portion operations and another one ECR for the EEPROM portion operations.

15 The status of a write operation inside the Flash portion can be monitored by a dedicated status register.

A known prior art solution allows the above operations by using an EEPROM software emulation addressing two Flash sectors which are dedicated to EEPROM emulation.

20 At each data update a pointer is added to find the new data. When a Flash sector is full all the data are swapped to the other sector. An unused sector is erased in background.

This solution presents good cycling performances in the same few bytes are continuously updated.

25 However, there are also some drawbacks which are listed hereinafter:
the best emulation is obtained by a huge managing software, at least 20 Kbytes, which must be stored in the same memory circuit;
it might be necessary to wait for erase suspend before accessing at the EEPROM for read and write operations;

a long read access time has been found during experimentation.

SUMMARY OF THE INVENTION

A first object of the present invention is that of providing a new method for emulating an EEPROM memory portion by using a Flash memory portion.

5 A further object of the present invention is to provide an innovative system which allows a Flash memory portion to emulate EEPROM byte alterability.

Another object of the present invention is that of providing a memory device comprising a Flash memory portion which may be accessed as a EEPROM memory portion during read, write and erase operations.

10 A further object of the present invention is that of providing a microprocessor or a microcontroller having an on-board memory portion including Flash sectors emulating EEPROM byte alterability.

An embodiment of the invention provides an EEPROM hardware emulation of a Flash memory portion.

15 The embodiment includes an integrated memory device having at least two sectors of a Flash memory structure that are used to emulate EEPROM byte alterability.

The feature and advantages of inventive method and device will appear from the following non-limiting description of a preferred embodiment given by way of 20 example with reference to the annexed drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1 shows a schematic diagram of a memory macrocell including a Flash memory portion and an EEPROM hardware emulation according to an embodiment of the present invention.

25 Figure 2 shows a schematic diagram of the inside structure of the EEPROM emulated memory portion of Figure 1.

Figure 3 shows a simplified and schematic view in greater detail of the EEPROM portion structure.

Figure 3A shows a simplified and schematic view of a register interface associated with the memory macrocell of Figure 1.

5 Figure 3B reports in a table form the addresses and size of each memory sector of the memory macrocell of Figure 1.

Figures 3C, 3D and 3E show schematic views of a Flash Control Register, an EEPROM Control Register, and a Flash Status Register, respectively;

10 Figure 4 is a high level flow-chart representing the steps of a method in accordance with an embodiment of the present invention;

Figure 4A shows a simplified and schematic view of a register interface associated with the EEPROM emulated portion of Figure 1;

Figure 4B reports in a table form the addresses and size of each EEPROM memory sector.

15 Figures 4C, 4D and 4E show a schematic view of a Flash Control Register, an EEPROM Control Register, and a Flash Status Register, respectively.

Figures 5 to 12 show simplified and schematic views of a series of updating phases concerning the EEPROM sectors of the memory macrocell of Figure 1.

20 Figure 13 is a diagram of the write time versus the memory size for the memory macrocell of Figure 1.

Figure 14 shows a simplified and schematic view of a state machine controlling an address counter inside the memory macrocell of Figure 1.

DETAILED DESCRIPTION

With reference to the annexed drawing, with 1 is globally indicated a 25 memory macrocell which is realized according to an embodiment of the present invention by a Flash EEPROM memory structure including an emulated EEPROM memory portion 2.

The memory macrocell 1 is embedded into an integrated circuit comprising also a microcontroller. The invention is specifically, but not exclusively, provided for an integrated microcontroller having an on-board non-volatile memory portion.

5 However, the principles of the invention may also be applied to an integrated memory circuit structure.

The memory macrocell 1 comprises a main 128 Kbyte Flash memory structure formed by a predetermined number of sectors, two of which are used to emulate EEPROM byte alterability. More specifically 8 Kbyte of the Flash memory 10 portion are used to emulate 1 Kbyte of an EEPROM memory portion.

Four sectors are provided for the Flash memory portion: a first 64 Kbyte sector F0; a second 48 Kbyte sector F1; a third 8 Kbyte sector F2 and a fourth 8 Kbyte sector F3.

A fifth 4 Kbyte sector F4 represents and corresponds to a first EEPROM 15 emulated sector E0, while a sixth 4 Kbyte sector F5 represents and corresponds to a second emulated EEPROM sector E1.

An 8 Kbyte test portion 3 of the Flash memory macrocell 1 is provided to store test flags.

Sense amplifiers circuit portions 4 and 5 are provided at opposite sides of 20 the memory macrocell 1, as shown in Figure 1.

Those sense amplifiers are connected to a program/erase controller 6 which cooperates with a dedicated registers interface 7 through a RAM buffer 8.

A 256 word ROM 9 is also connected to the controller 6.

The first and second EEPROM emulated sectors E0, E1 are each divided 25 in four blocks BLOCK 0, ..., BLOCK3 of the same size. Figure 2 shows schematically the emulated EEPROM structure.

Each block is divided in up to sixty-four pages and each page is formed by sixteen bytes.

It will be appreciated that the sizes and numbers of the sectors, blocks, pages, and bytes indicated herein are exemplary only and other sizes and numbers could be employed for each of those memory portions without departing from the invention.

At each page update, selected page data are moved to the next free block.

5 When a sector is full, all the pages are swapped to the other sector.

Figure 3 shows a simplified and schematic view in which each block includes only four pages instead of the sixty-four pages above mentioned. This simplified layout is used just to explain the EEPROM hardware emulation according to the invention.

10 Now, with specific reference also to the example of figure 5, the page updating procedure will be disclosed.

Each page inside each block must be identified to know in which block the updated page is. In this respect, a group of non-volatile pointers is used.

15 In each EEPROM sector E0, E1 some additional non-volatile memory locations are provided. Those locations are not accessible by the user.

Those locations are 256 bytes for each sector E0, E1 and are more than the amount strictly necessary to store the pointers. Only 66 locations are effectively used; 64 for the page pointers (one for each page) and other two for indicating the updating status of the other sector.

20 The above memory locations are programmed in the single bit mode (bit by bit); in other words, at each updating step different locations are programmed to "0" since in a Flash memory portion it's not possible to overwrite a memory location without a previous erasing of that location, but this would involve losing also the user's information.

25 The registers writing strategy must keep in consideration the fact that when a sector is erased even the registers included in that sector are erased too.

Therefore, the content of non-volatile registers is also stored in volatile memory locations to allow an efficient addressing of the EEPROM user's space.

The erasing phase is a time consuming operation for the periods of time which are normally acceptable for writing an EEPROM allocation. That's why the erasing phase is divided into a number of steps corresponding to the number of blocks, which are four in this example.

5 In this manner the EEPROM sector complementary to the one being updated will be surely erased even in the worst case in which the same page is continuously updated. In other words, after four writing phases a swap on the other sector is required.

10 The specific erasing phase is divided in four steps providing respectively:

- a pre-programming phase to "0" of half a sector;
- a subsequent pre-programming to "0" of the other half sector;
- erasing plus erasing verify on a sample of cells;
- full erasing.

15 Moreover, since the EEPROM updating phase may require a certain number of steps, a one bit flag is set when the updating phase is started and a different one bit flag is set when the updating phase is completed. This facilitates the recovery operation in case of a fault during updating.

20 In the example of Figure 5, the EEPROM sector 0 initially is fully erased (initial content is FFh) and error phase 0, the first pre-programming phase, has been completed to set the bits of the second half (blocks 2 and 3) of the EEPROM sector 1 to zero. Upon receiving an instruction to write 55h into the first location of page 1, the program/erase controller 6 writes the 55h into the first location of page 1 of block 1 rather than the corresponding location of block 0. In addition, the controller 6 performs 25 error phase 1, the second pre-programming phase, to set the bits of the first half (blocks 0 and 1) of the EEPROM sector 1 to zero.

In Figure 6, an AAh is being written into the last location of page 1. Rather than writing it into the block 1, the program/erase controller 6 writes the AAh into page 1 of block 2 and the 55h previously written into page 1 of block 1 is moved

into page 1 of block 2. In addition, the controller 6 performs error phase 2 to erase and erase verify a sample of cells of EEPROM sector 1 (Figure 6 shows all cells being erased because of the simplified example using pages of 4 bytes instead of 16).

5 In Figure 7, the program/erase controller 6 writes 33h, 66h, 99h, and CCh into page 0. Since in the example no data has already been written into page 0, the controller 6 writes the 4 data bytes into page 0 of block 1. In addition, the controller 6 performs error phase 3 to erase all of the bytes of EEPROM sector 1.

10 In Figure 8, AAh, 44h, and 88h are written into the first 3 locations of page 1. The new data are written into page 1 of block 3 and the unchanged AAh in the fourth location of page 1 is moved from block 2 to block 3. No erase is performed on 15 EEPROM sector 1 because it is already fully erased.

15 In Figure 9, 55h is being written into the last location of page 1. The program/erase controller 6 writes the 55h into last location of page 1 of block 0 of EEPROM sector 1 and moves all of the data from EEPROM sector 0 to block 0 of EEPROM sector 1. In addition, the controller 6 performs error phase 0 on EEPROM sector 0 by setting to zero the bytes of blocks 2 and 3 of EEPROM sector 0.

Let's now consider the example of Figure 14 showing a state machine 15 (PEC) controlling an address counter 20 which receives as input control signals CTL_SIGN, INCREMENT coming from the state machine 15.

20 The address counter 20 is output connected to an internal address bus 21 which is inside the memory macrocell 1.

25 The address counter 20 doesn't correspond to the usual address counter included into a Flash memory since it receives also control signals from the state machine 15 in order to control the loading of hard-coded addresses in volatile or non-volatile registers 25. The registers 25 may be read and updated by the microcontroller during a reset phase or by the state machine 15 after an EEPROM update.

The address bus 21 is connected to the input of a 16 byte RAM buffer 22 which is used for the page updating of the EEPROM. This RAM buffer 22 includes also

two additional bytes 23, 24 to store the page address during the page updating phase and the swap step.

When the user's program requires to write one or more byte in the EEPROM memory portion, the RAM buffer 22 is charged. Each charged memory 5 location of the RAM buffer 22 has a supplementary bit TOBEPROG which is set so that the state machine 15 is able to complete the charging phase with "old" data in non-flagged locations by just checking the content of the TOBEPROG bit during a subroutine "Page Buffer Filling" as will be later explained.

The state machine 15 is active for instance in controlling the EEPROM 10 page updating phase through an algorithm which will be disclosed in detail hereinafter.

Flash and EEPROM memory operations are controlled through the register interface 7 mapped in memory, see for instance the segment 22h in Figure 3A.

Flash Write Operations allows one to program (from 1 to 0) one or more bytes or erase (from 0 or 1 to 1) one or more sectors.

15 EEPROM Write Operations allows to program (from 0 or 1 to 0 or 1) one or more bytes or erase all the memory (from 0 or 1 to 1).

Set Protection Operations allows to set Access, Write or Test Mode Protections.

As previously disclosed, the memory 1 comprises three portions: four 20 main Flash sectors F0, F1, F2 and F3 for code, a small OTP zone included into the Flash and an EEPROM portion 2. Figure 3B reports in a table form the addresses and size of each memory sector.

The last four bytes of the OTP area (211FFCh to 211FFFh) are reserved for the Non-Volatile Protection Registers and cannot be used as storage area.

25 The Flash memory portion, including the OTP, and the EEPROM have duplicate sense amplifiers 4, 5, so that one can be read while the other is written. However, simultaneous Flash and EEPROM write operations are forbidden.

Both Flash and EEPROM memories can be fetched. Reading operands from Flash or EEPROM memories is achieved simply by using whatever microcontroller addressing mode with the Flash and in the EEPROM memory as source.

Writing in the Flash and in the EEPROM memories are controlled 5 through the register interface 7 as explained hereinafter.

The memory macrocell 1 has a register interface 7 mapped in the memory space indicated with the segment 22h (Figure 3A). All the operations are enabled through two control registers; A FCR (Flash Control Register) for the Flash (and OTP) operations and an ECR (EEPROM Control Register) for the EEPROM 10 operations. Those registers are shown in Figures 3C and 3D respectively,

The status of a write operation inside the Flash memory can be monitored through a dedicated status register: FSR (Flash Status Register) shown in Figure 3E.

1) FLASH MEMORY OPERATIONS

Four Write Operations are available for the Flash memory portion: Byte 15 program, Page Program, Sector Erase and Chip Erase. Each operation is activated by a sequence of three instructions:

OR	FCR,	#OPMASK ;	Operation selection
LD	ADD,	#DATA ;	Address and Data load
OR	FCR,	#080h ;	Operation start

The first instruction is used to select the desired operation, by setting bits FBYTE, FPAGE, FSECT or FCHIP of FCR. The second instruction is used to choose the address to be modified and the data to be programmed. The third instruction is used 25 to start the operation (set of bit FWMS of FCR).

FWMS bit and the Operation Selection bit of FCR are automatically reset at the end of the Write operation.

Once selected, but non yet started (FWMS bit still reset), one operation can be canceled by resetting the Operation Selection bit. The eventually latched 30 addresses and data will be reset.

In the following, when non differently specified, let's suppose than the Data Page Pointer DPR0 has been set to point to the desired 16 Kbyte block to modify, while DPR1 has been set to point to the Register interface:

5	SPP	#21	;	MMU paged registers
	LD	R241,	#089h	;
	LD	R240,	#000h	;
	LD	R240,	#001h	;
	LD	R240,	#002h	;
10	LD	R240,	#003h	;
	LD	R240,	#004h	;
	LD	R240,	#005h	;
	LD	R240,	#006h	;
	LD	R240,	#007h	;
15	LD	R240,	#084h	;

A) Byte Program

The Byte program operation allows to program 0s in place of 1s.

20	OR	0400h,	#010h	;	Set FBYTE in FCR
	LD	03CA7h,	#D6h	;	Address and Data load
	OR	0400h,	#080h	;	Set FWMS in FCR

The first instruction is used to select the Byte Program operation, by setting bit FBYTE of FCR. The second instruction is used to specify the address and the data for the byte programming. The third instruction is used to start the operation (set of bit FWMS of FCR).

If more than one pair of address and data are given, only the last pair is taken into account. It's not necessary to use a word-wide instruction (like LDW) to enter address and data: only one byte will be programmed, but it is unpredictable whether it will be the low or the high part of the word (it depends on the addressing mode chosen).

30 After the second instruction the FBUSY bit of FCR is automatically set. FWMS, FBYTE and FBUSY bits of FCR are automatically reset at the end of the Byte program operation (10 μ s typical).

The Byte Program operation is allowed during a Sector Erase Suspend, and of course not in a sector under erase.

B) Page Program

The Page Program operation allows to program 0s in place of 1s. From 1 to 16 bytes can be stored in the internal Ram before starting the execution.

```
5   OR      0400h,  #040h    ; Set FPAGE in FCR
LD      028B0h,  #0F0h    ; 1st Address and Data
LD      028B1h,  #0E1h    ; 2nd Add and Data (Opt.)
LD      028B2h,  #0D2h    ; 3rd Add and Data (Opt.)
...
10  LD      028Bxh,  #0xxh    ; xth Add and Data (Opt.)
...
LD      028beh,  #01Eh    ; 15th Add and Data (Opt.)
LD      028bfh,  #00Fh    ; 16th Add and Data (Opt.)
OR      0400h,  #080h    ; Set FWMS in FCR
```

15 The first instruction is used to select the Page Program operation, by setting bit FPAGE of FCR. The second instruction is used to specify the first address and the first data to be programmed. This second instruction can be optionally followed by up to 15 instructions of the same kind, setting other addresses and data to be programmed. All the addresses must belong to the same page (only the four LSBs of address can change). Data contained in page addresses that are not entered are left unchanged. The third instruction is used to start the operation (set of bit FWMS of FCR).

20 If one address is entered more than once inside the same loading sequence, only the last entered data is taken into account. It is allowed to use word-wide 25 instructions (like LDW) to enter address and data.

After the second instruction the FBUSY bit of FCR is automatically set. FWMS, FPAGE and FBUSY bits of FCR are automatically reset at the end of the Page Program operation (160 us typical).

The Page Program operation is not allowed during a Sector Erase 30 Suspend.

C) Sector Erase

The Sector Erase operation allows to erase all the Flash locations to 0ffh. From 1 to 4 sectors to be simultaneously erased can be entered before to start the

execution. This operation is not allowed on the OTP area. It is not necessary to pre-program the sectors to 00h, because this is done automatically.

	PP	#21	;	MMU paged registers	
5	LD	R240,	#000h	;	1st 16K page of Flash 1
	LD	R242,	#004h	;	1st 16K page of Flash 2
	LD	R243,	#007h	;	Flash 2 and Flash 3

First DPR0 is set to point somewhere inside the Flash sector 0, DPR2 inside Flash sector 1, DPR3 inside Flash sectors 2 and 3. DPR1 continues to point to the
10 Register interface.

	OR	04000h,	008h	;	Set FSECT in FCR
	LD	00000h,	000h	;	Flash 0 selected
	LD	08000h,	000h	;	Flash 1 selected (Opt. 9)
15	LD	0C000h,	000h	;	Flash 2 selected (Opt. 9)
	LD	0E000h,	000h	;	Flash 3 selected (Opt. 9)
	OR	04000h,	080h	;	Set FWMS in FCR

The first instruction is used to select the Sector Erase operation, by
20 setting bit FSECT of FCR. The second instruction is used to specify an address
belonging to the first sector to be erased. The specified data is “don't care.” This second
instruction can be optionally followed by up to three instructions of the same kind,
selecting other sectors to be simultaneously erased. The third instruction is used to start
the operation (set of bit FWMS of FCR).

Once selected, one sector cannot be deselected. The only way to deselect
25 the sector, is to cancel the operation, by resetting bit FSECT. It is allowed to use word-wide
instructions (like LDW) to select the sectors.

After the second instruction the FBUSY bit of FCR is automatically set.
FWMS, FSECT and FBUSY bits of FCR are automatically reset at the end of the Sector
Erase operation (1.5 s typical).

30 The Sector Erase operation can be suspended in order to read or to
program data in a sector not under erase. The Sector Erase operation is not allowed
during a Sector Erase Suspend.

C.1) Sector Erase Suspend/Resume

The Sector Erase Suspend is achieved through a single instruction.

OR 0400h, #004h ; Set FSUSP in FCR

This instruction is used to suspend the Sector Erase operation, by setting

5 bit FSUSP of FCR. The Erase Suspend operation resets the Flash memory to normal read mode (automatically resetting bits FWMS and FBUSY) in a maximum time of 15 μ s. Bit FSECT of FCR must be kept set during the Sector Erase Suspend phase: if it is software reset, the Sector Erase operation is cancelled and the content of the sectors under erase is not guaranteed.

10 When in Sector Erase Suspend the memory accepts only the following operations: Read, Sector Erase Resume and Byte program. Updating the EEPROM memory is not possible during a Flash Sector Erase Suspend.

The Sector Erase operation can be resumed through two instructions:

15 AND 04000h, #0FBh ; Reset FSUSP in FCR
OR 0400h, #080h ; Set FWMS in FCR

The first instruction is used to end the Sector Erase Suspend phase, by resetting bit FSUSP of FCR. The second instruction is used to restart the suspended operation (set of bit FWMS of FCR). After this second instruction the FBUSY bit of 20 FCR automatically set again.

D) Chip Erase

The Chip Erase operation allows to erase all the Flash locations to 0ffh.

This operation is simultaneously applied to all the 4 Flash sectors (OTP area excluded).

It is not necessary to pre-program the sectors to 00h, because this is done automatically.

25 OR 04000h, #020h ; Set FCHIP in FCR
OR 0400h, #080h ; Set FWMS in FCR

The first instruction is used to select the Chip Erase operation, by setting bit FCHIP of FCR. The second instruction is used to start the operation (setting of bit 30 FWMS of FCR).

It is not allowed to set the two bits (FCHIP and FWMS) with the same instruction.

After the second instruction the FBUSY bit of FCR is automatically set.

FWMS, FCHIP and FBUSY bits of FCR are automatically reset at the end of the Chip

5 Erase operation (3 s typical).

The Chip Erase operation cannot be suspended. The Chip Erase operation is not allowed during a Sector Erase Suspend.

2) EEPROM MEMORY OPERATIONS

10 Two Write Operations are available for the EEPROM memory: Page Update and Chip Erase. Each operation is activated by a sequence of three instructions:

OR	ECR,	#OPMASK ;	Operation selection
LD	ADD,	#DATA ;	Address and Data load
15 OR	ECR,	#080h ;	Operation start

The first instruction is used to select the desired operation, by setting bits EPAGE or ECHIP of ECR. The second instruction is used to choose the address to be modified and the data to be programmed. The third instruction is used to start the operation (set of bit EWMS of ECR).

20 EWMS bit and the Operation Selection bit of ECR are automatically reset at the end of the Write operation.

Once selected, but not yet started (EWMS bit still reset), one operation can be canceled by resetting the Operation Selection bit. The eventually latched addresses and data will be reset.

25 In the following, when not differently specified, let's suppose that the Data Page Pointer DPR0 has been set to point to the EEPROM to modify, while DPR1 has been set to point to the Register interface:

SPP	#21	;	MMU paged registers
30 LD	R241,	#089h ;	Register Interface
LD	R240,	#088h ;	EEPROM

It's important to note that the EEPROM operations duration are related to the EEPROM size, as shown in the table of Figure 4B.

A) Page Update

The page Update operation allows to write a new content. Both 0s in place of 1s and 1s in place of 0s. From 1 to 16 bytes can be stored in the internal Ram buffer before to start the execution.

	OR	04001h,	#040h	;	Set EPAGE in ECR
	LD	001C0g,	#0F0h	;	1st Address and Data
10	LD	001C1h,	#0E1h	;	2nd Add and Data (opt.)
	LD	001C2h,	#0D2h	;	3rd Add and Data (opt.)
			
	LD	001Cxh,	#0xxh	;	xth Add and Data (opt.)
			
15	LD	001ceh,	#01Eh	;	15th Add and Data (opt.)
	LD	001cfh,	#00Fh	;	16th Add and Data (opt.)
	OR	04001h,	#080h	;	Set EWMS in ECR

The first instruction is used to select the Page Update Operation, by setting bit EPAGE of EVR. The second instruction is used to specify the first address and the first data to be modified. This second instruction can be optionally followed by up to 15 instructions of the same kind, setting other addresses and data to be modified. All the addresses must belong to the same page (only the four LSBs of address can change). Data contained in page addresses that are not entered are left unchanged. The third instruction is used to start the operation (setting of bit EWMS of ECR).

If one address is entered more than once inside the same loading sequence, only the last entered data is taken into account. It is allowed to use word-wide instructions (like LDW) to enter address and data.

After the second instruction the EBUSY bit of ECR is automatically set. EWMS, EPAGE and EBUSY bits of ECR are automatically reset at the end of the Page Update operation (30 ms typical).

The Page Update operation is not allowed during a Flash Sector Erase Suspend.

B) Chip Erase

The Chip Erase operation allows to erase all the EEPROM locations to 0ffh.

5 OR 04001h, #020h ; Set ECHIP in ECR
 OR 04001h, #080h ; Set EWMS in ECR

The first instruction is used to select the Chip Erase operation, by setting bit ECHIP of ECR. The second instruction is used to start the operation (setting of bit EWMS of ECR).

10 It is not allowed to set the two bits (ECHIP and EWMS) with the same instruction.

After the second instruction the EBUSY bit of ECR is automatically set. EWMS, ECHIP and EBUSLY bits of ECR are automatically reset at the end of the Chip Erase operation (70 ms typical).

15 The Chip Erase operation cannot be suspended. The Chip Erase operation is not allowed during a Flash Sector Erase Suspend.

3) Protections Operations

Only one Write Operation is available for the Non Volatile Protection Registers: Set Protection operation allows to program 0s in place of 1s. From 1 to 4 bytes can be stored in the internal Ram buffer before to start the execution. This 20 operation is activated by a sequence of 3 instructions:

OR FCR, #002h ; Operation selection
LD ADD, #DATA ; Address and Data load
OR FCR, #080h ; Operation start

25 The first instruction is used to select the Set protection operation, by settling bit PROT of FCR. The second instruction is used to specify the first address and the first data to be programmed. This second instruction can be optionally followed by up to three interactions of the same kind, setting other addresses and data to be programmed. All the addresses must belong to the Non Volatile Protection registers 30 (only the two LSBs of address can change). Protection Registers contained in addresses that are not entered are left unchanged. Content of not selected bits inside selected

addresses are left unchanged, too. The third instruction is used to start the operation (setting of bit FWMS of FCR).

If one address is entered more than once inside the same loading sequence, only the last entered data is taken into account. It is allowed to use word-wide 5 instructions (like LDW) to enter address and data.

After the second instruction the FBUSY bit of FCR is automatically set. FWMS, PROT and FBUSY bits of FCR are automatically reset at the end of the Set protection operation (40 μ s typical).

Once selected, but not yet started (FWMS bit still reset), the operation 10 can be canceled by resetting PROT bit. The eventually latched addresses and data will be reset.

The Set Protection operation is not allowed during a Sector Erase Suspend.

In the following, when not differently specified, let's suppose that the 15 Data Page pointer DPR0 has been set so to point to the OTP area to modify, while DPR1 has been set so to point to the Register interface:

SPP	#21	;	MMU paged registers	
LD	R241,	#089h	;	Register Interface
LD	R240,	#084h	;	OTP

There are three kinds of protections: access protection, write protections and test modes disabling.

3.1) Non-Volatile Registers

The protection bits are stored in the last four locations of the OTP area 25 (from 211FFCh to 211FFFh), as shown in Figure 4A. All the available protections are forced active during reset, then in the initialization phase they are read from the OTP area.

The four non-volatile registers used to store the protection bits for the 30 different protection features are one time programmable (OTP).

The access to these registers is controlled by the protections related to the OTP area where they are mapped.

3.2) Set Access Protections

The Access Protections are given by bits APRA, APRO, APBR, APEE,

5 APEX of NVAPR.

OR	04000h,	#002h	;	Set PROT in FCR
LD	01FFCh,	#0F1h	;	Prog WPRS3-1 in NVWPR
OR	04000h,	#080h	;	Set FWMS in FCR

10 The first instruction is used to select the Set Protection operation, by setting bit PROt of FCR. The second instruction is used to specify the NVAPR address and the new protection content to be programmed. The third instruction is used to start the operation (setting of bit FWMS of FCR).

3.3) Set Write Protections

15 The Write Protections are given by bits WPBR, WPEE, WPRS3-0 of NVWPR.

OR	04000h,	#002h	;	Set Prot in FCR
LD	01FFDh,	#0F1h	;	Prog WPRS3-1 in NVWPR
20 OR	04000h,	#080h	;	Set FWMS in FCR

The first instruction is used to select the Set Protection operation, by setting bit PROT of FCR. The second instruction is used to specify the NVWPR address and the new protection content to be programmed. The third instruction is used to start the operation (setting of bit FWMS of FCR).

25 The Write Protections can be temporary disabled by executing the Set Protection operation and writing 1 into these bits.

OR	01000h, #002h	;	Set Prot in FCR	
LD	01FFDh,	#0F2h	;	Prog WPRS0 in NVWPR
30 OR	01000h, #080h	;	;	Temp Unprotected WPRS1
				Set FWMS in FCR

The non-volatile content of the temporary unprotected bit remains unchanged, but now the content of the temporary unprotected sector can be modified.

To restore the protection it needs to reset the micro or to execute another Set protection operation and write 0 into this bit.

3.4) Disable Test Modes

The Test Mode Protections are given by bits TMDIS and PWOK of

5 NVWPR.

OR	04000h, #002h ;	Set PROT in FCR
LDW	01FFEh, #05A7Ch ;	Prog NVPWD1-0
OR	04000h, #080h ;	Set FWMS in FCR

10 The first instruction is used to select the Set Protection operation, by setting bit PROT of FCR. The second instruction must be word-wide and it is used to specify the NVPWD1-0 address and the password to be programmed. The third instruction is used to start the operation (setting of bit FWMS of FCR). The second instruction automatically forces TMDIS bit of NVWPR to be programmed.

15 Once disabled the Test Modes can be enabled again only by repeating the disable test mode sequence with the right Password. If the given data is matching with the programmed password in NVPWD1-0, bit PWOK of NVWPR is programmed and Test Modes are enabled again.

20 If the given data is not matching, one of bits PWT2-0 of NVAPR is programmed. After three unmatching trials, when all bits PWT2-0 are programmed, Test Modes are disabled for ever.

Just as an example, hereinafter a program erase controller algorithm for the Flash/EEPROM macrocell 1 is reported. This algorithm uses a call subroutine instruction named CAL and return from subroutine instruction named RET with four nested levels allowed.

25 Available Instructions:

ALT	input ; Wait for input at 1
CMP	input ; Compare input and set a Flag if 1 (x3 instructions: three CMPi are existing, CMP1, CMP2, CMP3)
30 JMP	label ; Jump to label
JIF	label ; Jump to label if Flag = 1

```
JFN      label ; Jump to label if Flag = 0
CAL      label ; Call subr. (Store PC, Inc. SP and Jump to label)
CLF      label ; Call subr. if Flag = 1
RET      ; Return from subr. (Dec. SP and Jump to stored PC)
5   STO      output ; Set output at 1 (x5 instructions: 5 STOi instr. are
existing, STO1, STO2, ... STO5) {this instr. is used to activate any
Output signal of the PEC};
```

Input Variables:

10	NOTHING	= No variables => Realize a NOP with CMP NOTHING;
	ALLO	= Allo phase active
	ALLERASED	= All sectors erased
	DATOOK	= Data verified equal to the target
	ENDPULSE	= End of Prog or Erase pulse
15	ERSUSP	= Erase Suspended
	LASTADD	= Last Row or Column
	LASTSECT	= Last Sector
	MAXTENT	= Reached maximum tentative number allowed
	NORMOP	= Normal Read conditions restored
20	SOFTP	= Soft Program phase active
	SUSPREQ	= Erase Suspend request pending
	TOBEMOD	= Sector to be erased or byte to be programmed
	VPCOK	= Verify voltage reached by Vpcx;
	BYTERCY_FF	= Flash Byte Prog operation active or RECYCLE test mode
25	CHIPER_EE	= EEPROM Chip Erase operation active
	CSERASE_FF	= Flash Sector/Chip Erase operation active
	NEWERPH0	= Erase phase 1-3 active
	NEWERPH1	= Erase phase 2-3 active
	NEEDERASE	= Unused sector erase needed
30	NEEDSWAP	= Sector Swap needed
	PAGEPG_EE	= EEPROM Page Update operation active
	PAGENSP_FF	= Flash Page Prog operation active or NOSOFTPtest mode
	SELPAGE	= Selected Page to update
	SWAPFAIL	= Swap error => autosuspend needed;

Output Variables:

	NOTHING	= No variables => Used to reset other variables;
	ALLO	= Start/Stop Allo phase (toggle)
5	CUIRES	= Reset Command Interface and PEC
	ERASE	= Start/Stop Erase phase (toggle)
	HVNEG	= Start Erase pulse
	INCCOLM	= Increment Column Address
	INCROW	= Increment Row Address
10	INCSECT	= Increment Sector Address
	INCTENT	= Increment tentative number
	LOADADD	= Load column address from RAM BUFFER
	LOADSECT	= Load sector address from RAM BUFFER
	PROGRAM	= Start Prog pulse
15	READSUSP	= Stop the clock during erase suspend
	RESFLAG	= Eliminate current sector from the list to be erased
	SOFTP	= Start/Stop Soft Program phase (toggle)
	STOREADD	= Store column address in RAM BUFFER
	SWXATVCC	= Switch Vpcx at Vcc (read voltage)
20	VERIFY	= Set Verify mode
	VPCYON	= Switch On/Off Vpcy pump (toggle);
	ENDSWAP	= Reset NEEDSWAP (toggle)
	FORCESWAP	= Force NEEDSWAP=1 (toggle)
	INCPAGE	= Increment Page address
25	LDDATA	= Load data from RAM buffer
	LDNVCSS	= Load NVCSS address (from hardware)
	LDNVESP	= Load NVESP address (from hardware)
	LDOLDSECT	= Load Old sector address (from hardware)
	LDPAGE	= Load Page address from RAM BUFFER
30	LDPAGE2	= Load Page address from RAM BUFFER (for Sector Swap)
	LDVCSS	= Load VCSS address (from hardware)
	LDVESPA	= Load VESP address (from hardware)
	PAGE	= Start/Stop Page Program phase (toggle)
	READ	= Set/Reset read conditions (toggle)

STOREDATA = Store read data into the RAM buffer
STOREPAGE = Store page address in RAM BUFFER
STOREPAGE2 = Store page address in RAM BUFFER (for Sector Swap)
STOREPROT = Store Protection data into the RAM buffer
5 STORESECT = Store sector address in RAM BUFFER
SWAP = Set/Reset Sector Swap phase (toggle)
WRITEVS = Write Volatile Status;

Possible Operations:

10 Flash Byte Program (1 nesting level)
Flash Page Program (2 nesting levels)
Flash Chip/Sector Erase (3 nesting levels)
Flash Byte Program while Erase Suspend (4 nesting levels)
Set Protections (2 nesting levels) EEPROM Page Update
15 EEPROM Chip Erase (4 nesting levels)
CODE SIZE = 251 lines;

In this example, only EEPROM Page Update will be described

MAIN PROGRAM:

20 CMP PAGEPG_EE ; EEPROM Chip Update op. selected ?
JIF epgupd ; If yes jump to EEPROM Chip update routine
JMP main ; If no, then loop

SUBROUTINES:

1) SDELAY (the PEC clock is used to count a delay for analog signals settling)

25 CMP NOTHING ; NOP: delay cycle
RET ; 4 NOP + 1 CAL + 1 RET = 6 NOP

2) PROGRAM 1 BYTE (every byte is continuously programmed up to a positive verify

test)

sbytepg

```
5  STO    VERIFY      ; Verify Data to be programmed
  CMP    DATOOK      ; Compare read data with 00h
  JIF    sbpend      ; If DATOOK=1 => Return (the data is already OK)
  STO    PROGRAM      ; If DATOOK=0 => Apply Prog pulse
  ALT    ENDPULSE    ; Wait for end of Prog pulse
10  STO    INCTENT    ; If no Increment tentative number
  CMP    MAXTENT    ; Compare tentative number with maximum allowed
  JFN    sbytepg      ; If MAXTENT=0 => Retry
  sbpend RET        ; If MAXTENT=1 || DATOOK=1 => Return
```

15 3) PROGRAM 1 PAGE

spagepg

```
STO    LDDATA      ; Read Data and flag TOBEPROG from RAM buffer
CMP    TOBEMOD      ; Byte to be programmed?
JFN    sppincc      ; If no increment column
20  sppbyte
  CAL    sbytepg      ; Byte Program
  sppincc
  STO    INCCOLM    ; Increment Column address
  CMP    LASTADD      ; Last column ?
25  JFN    spagepg      ; If no restart program
  RET        ; If yes Return
```

4) PROGRAM 1 SECTOR

sssectpg

```
30  CAL    sbytepg      ; Byte Program
  STO    INCROW      ; Increment row
  CMP    LASTADD      ; Last Row ?
```

```
JFN    ssectpg    ; If no continue All0
      CMP    NOTHING    ; NOP: delay cycle
      STO    INCCOLM   ; Increment Column address
      CMP    LASTADD   ; Last column ?
5   JFN    ssectpg    ; If no program again
      RET    ; If yes Return
```

5) ERASE VERIFY 1 SECTOR (the sector is erased, read and verified byte after byte and after every erasing pulse starting from the last non erased byte; the subroutine
10 terminates when the last byte of the sector is erased)

```
servfy
      STO    VERIFY    ; Verify Data to be erased
      CMP    DATOOK   ; Compare read Data with 0FFh
      JFN    sevend   ; If DATOOK=0 => Return
15   STO    INCROW   ; If DATOOK=1 => Increment Row
      CMP    LASTADD   ; Last Row ?
      JFN    servfy   ; If no continue Erase Verify phase
      STO    INCCOLM   ; If yes increment Column address
      CMP    LASTADD   ; Last Column ?
20   JFN    servfy   ; If no continue Erase Verify phase
      STO    RESFLAG   ; If yes the current sector is erased
      sevend  RET    ; Return
```

EEPROM ROUTINES

25 1) PAGE BUFFER FILLING. This routine is used to fill all not selected addresses of the selected page with the old data written in those locations. Old Data are read from the old locations (using actual EESECT and EEBCK<1:0>, the Volatile registers) using normal read conditions (Vpcx = 4.5V) forced through signal READ.

Once Stored the old data in Ram, the local flag TOBEPROG for that byte is
30 automatically set.
ebufffil

```
STO      READ           ; Enter Read mode conditions
ebfloop
STO      LDDATA         ; Read flag TOBEPORG from RAM buffer
CMP      TOBEMOD        ; Byte to be programmed ?
5       JIF      ebfinc  ; If yes increment column
STO      VERIFY          ; If no Read Old Data (STO3)
STO      STOREDATA       ; Store Old Data in Ram Buffer (STO2)
ebfinc
STO      INCCOLM        ; Increment Column address (STO5)
10      CMP      LASTADD ; Last column ?
JFN      ebfloop        ; If no continue RAM filling
STO      READ           ; If yes exit Read mode
RET      .               ; Return
```

15 2) NON VOLATILE STATUS PROGRAM. This routine is used to program the Non Volatile Status Pointers NVESP, NVCSS0, NVCSS1.

```
estprg
CAL      sbytepg        ; Non Volatile Status Program
CMP      NOTHING         ; NOP: delay cycle
20      RET      .         ; Return
```

3) PAGE PROGRAM. This routine is used to program a Page taking the data from the RAM buffer. At first not selected page address in the Ram buffer are filled with the last valid data. Then the VIRG bit in NVESP is programmed to notify that the page program operation is started. Then after the page programming, the USED bit in NVESP is programmed to notify that the operation is concluded. At the end also the Volatile Block Pointers are updated

```
epagepg
STO      STOREPAGE       ; Store current Page Address in RAM
30      CAL      ebufffil ; Fill-in not selected page address
STO      LDNVESP         ; Load New NVESP address for current page
CAL      estprg          ; NVESP Program (VIRG bit)
STO      LDPAGE          ; Load New Page address from RAM
```

```
CAL     spagepg    ; Page Program
STO     LDNVESP    ; Load New NVESP address for current page
CAL     estprg     ; NVESP Program (USED bit)
STO     LDVESP     ; Load VESP address for current page (STO2)
5      STO     WRITEVS    ; Write Volatile Status BCK<1:0> (STO3)
RET     ; Return
```

4) SECTOR SWAP. This routine is used when in the current sector the 4 blocks for the selected page are already used. In this case the selected page is programmed in the new sector and all the other unselected pages must be swapped to the new sector.

SWAP=1 forces TOBEPROG=0 => in ebuffer routine all the Page data are copied into the RAM buffer

CHIPER_EE=1 forces TOBEPROG=1 => in ebuffer routine all the data in the Ram buffer are kept at FFh (reset value).

```
15    CHIPER_EE=1 forces SELPAGE=0 => no page selected
      esecswp
      STO     SWAP,PAGE ; Enter Sector Swap (STO4)
      esspage
      STO     LDPAGE2    ; Read selected page address from RAM (STO1)
20    CMP     SELPAGE    ; Current page is the selected for update ?
      JIF     essincp    ; If yes increment page
      CAL     epagepg    ; If no Page Program
      essincp
      STO     INCPAGE    ; Increment Page
25    CMP     LASTADD    ; Last Page ?
      JFN     esspage    ; If no swap current page
      CMP     SWAPFAIL    ; Swap fail ?
      JIF     sexit      ; If yes autosuspend
      STO     SWAP,PAGE    ; Exit Sector Swap phase
30    RET     ; Return
```

5) PROGRAM ALL0. This routine is used for program All0. This routine automatically program bit ACT of unused sector when the sector swap is done.

 eall0

```
    STO    ALL0         ; Enter All0 phase (STO4)
5    STO    LDOLDSECT  ; Load Old Sector address (STO1)
    CAL    ssectpg     ; Sector Program
    STO    ALL0         ; Exit All0 phase
    RET                 ; Return
```

10 6) ERASE. This routine is used for erase. Erase verify is made before the first erase pulse, since during Erase phase 3, the initial cells status is unknown.

 eerase

```
    STO    ERASE         ; Enter Erase phase (STO4)
    STO    LDOLDSECT  ; Load Old Sector address (STO1)
15  eervfy
    CAL    servfy     ; Erase Verify on all sector
    CMP    ALLERASED  ; All sector erased ?
    JIF    eerend     ; If yes exit erase phase
    eerpul
20  STO    HVNEG      ; If no apply Erase pulse
    ALT    ENDPULSE   ; Wait for end of Erase pulse
    CMP    NOTHING    ; NOP: reset the counter when HVNEG=1
    STO    INCTENT   ; Increment tentative number
    CMP    MAXTENT   ; Compare tentative number with maximum
25  allowed
    JFN    eervfy     ; If MAXTENT=0 => erase verify
    eerend
    STO    ERASE      ; If MAXTENT=1 => exit Erase phase
    RET                 ; Return
```

30

7) SECTOR ERASE. This routine is used to enter the needed erase phase on the unused sector, as explained by the following table:

 EPH<3:0> EEERPH<1:0> NEWERPH<1:0> NEEDSWAP NEEDERASE Er. Phase

0000	11	00	0	0	None
0000(1111)	11	00	1	1	0
1110	00	01	0	1	1
1100	01	10	0	1	2
5	1000	10	11	0	3

;

Erase phase 0 makes the All0 on the second half (status

included) (second half is programmed first just because it includes at the end of its 'address space' the NV status, whose bits must be programmed as soon as possible)

10 Erase phase 1 makes the All0 on the first half.

Erase phase 2 makes the Erase with verification of status only

Erase phase 3 completes the Erase

esecter

STO	LDNVCSS	; Load NVCSS0 address
15	CAL	estprg ; NVCSS0 Program (bit EPHS<3:0>)
	CMP	NEWERPH1 ;
	JFN	eseph01 ; If NEWERPH<1:0>=0X => Enter Erase Phase 0-1
	CAL	eerase ; If NEWERPH<1:0>=1X => Enter Erase Phase 2-3
	CMP	NEWERPH0 ;
20	JFN	eseend ; If NEWERPH<1:0>=10 => Exit Erase Phase 2-3
	eseph01	
	CAL	eall0 ; Program All0 (needed before any erase)
	eseend	
	STO	LDNVCSS ; Load NVCSS0 address
25	CAL	estprg ; NVCSS0 Program (bit EPHE<3:0>)
	STO	LDVCSS ; Load VCSS0 address (STO2)
	STO	WRITEVS ; Write Volatile Status ERPH<1:0> (STO3)
	CMP	NEEDSWAP ;
	JFN	eseret ; If NEEDSWAP=0 => exit Sector Erase
30	STO	ENDSWAP ; If NEEDSWAP=1 => ENDSWAP resets NEEDSWAP
	JMP	eseend ; Program NVCSS1 (CUR bit) and VCSS1 (EESECT)
	eseret	

RET ; Return

8) PAGE UPDATE. This routine is used to handle all the data transfers between blocks and sectors when an update of a page of the EEPROM is needed

5 epgupd

ALT	VPCOK	; Wait for Vpcx verify voltage (was Read mode)
STO	STOREPAGE2	; Store Page address in RAM (Sect Swap) (STO2)
STO	PAGE	; Enter Page Program phase (STO4)
CAL	epagepg	; Selected Page Program
10	STO	PAGE ; Exit Page Program phase
CMP	NEEDSWAP	; EEPROM Sector Swap needed ?
CLF	esecswp	; If yes Sector Swap
CMP	NEEDERASE	; Unused Sector Erase needed ?
CLF	esecter	; Unused Sector Erase
15	JMP	sexit ; Exit Page Update

The memory device and the method according to the invention allow a totally hardware emulation of an EEPROM memory portion.

No access differences are detectable between the emulated memory portion according to the invention and a standard EEPROM memory.

20 An immediate EEPROM access is available during the reading and writing phases of the emulated memory portion 2.

A further advantage is given by the Flash code execution running during EEPROM modify phase.

25 From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

CLAIMS

What we claim is:

1. An emulated EEPROM memory device, comprising a memory macrocell which is embedded into an integrated circuit having a microcontroller, the memory macrocell including a Flash memory structure formed by a predetermined number of sectors, wherein at least two sectors of the Flash memory structure are structured to emulate EEPROM byte alterability.

2. The emulated EEPROM memory device according to claim 1, wherein said EEPROM byte alterability is emulated by hardware means.

10 3. The emulated EEPROM memory device according to claim 1, wherein 8 Kbyte of the Flash memory structure are used to emulate 1 Kbyte of an EEPROM memory portion.

15 4. The emulated EEPROM memory device according to claim 1, wherein first and second EEPROM emulated sectors are each divided in a predetermined number of blocks of the same size and each block is divided in pages.

20 5. The emulated EEPROM memory device according to claim 1, wherein a state machine is provided for controlling an address counter which is output connected to an internal address bus running inside the memory macrocell, said address counter receiving control signals from the state machine in order to control the loading of hard-coded addresses in volatile or non-volatile registers which are read and updated by the microcontroller during a reset phase or by the state machine after an EEPROM update.

6. The emulated EEPROM memory device according to claim 5, wherein said internal address bus is connected to the input of a RAM buffer which is used for the page updating of the EEPROM including two additional byte for storing a page address during a page updating phase.

5 7. The emulated EEPROM memory device according to claim 1, wherein Flash and EEPROM memories operations are controlled through a register interface mapped into the memory.

8. A method for emulating features of an EEPROM memory device incorporated into a memory macrocell which is embedded into an integrated circuit that 10 also includes a microcontroller and a Flash memory structure formed by a predetermined number of sectors, comprising using at least two sectors of the Flash memory structure to emulate EEPROM byte alterability by dividing each of said at least two sectors into a pre-determined number of blocks of the same size and each block into a pre-determined number of pages and updating the emulated EEPROM memory 15 portion programming different memory locations in a single bit mode.

9. The method according to claim 8, wherein at a page update selected page data are moved to a next free block and, when an EEPROM sector is full, all the pages are swapped to the another EEPROM sector.

20 10. A Flash memory device for emulating an EEPROM, comprising: first and second Flash memory portions each including plural memory blocks with plural memory locations, each of the memory locations sharing an address with a corresponding memory location in each of the blocks of the first and second

Flash memory portions, all of the memory locations sharing a same address being a set of memory locations; and

a plurality of memory pointers each reflecting which memory block includes a current memory location for a set of memory locations, each set of memory

5 locations including a current memory location; and

a memory controller structured to, in response to receiving a request to write data to a selected address assigned to a selected one of the sets of memory locations, determine from a memory pointer associated with the selected address which memory location in the selected set is a next memory location following the current 10 memory location for the selected set and write the data in the next memory location.

11. The Flash memory device of claim 10 wherein the first and second Flash memory portions are part of first and second memory sectors, the first memory sector including a first set of the plurality of memory pointers associated with the first Flash memory portion and the second memory sector including a second set of 15 the plurality of memory pointers associated with the second Flash memory portion.

12. The Flash memory device of claim 10 wherein each block includes a plurality of memory pages with each memory page including a plurality of the memory locations and each of the memory pointers is a page pointer associated with a respective one of the memory pages.

20 13. The Flash memory device of claim 12 wherein the plurality of Flash memory portions include two Flash memory portions, each with four memory blocks, each memory block including 64 memory pages each with 16 memory locations that are able to store a data byte.

14. The Flash memory device of claim 10, further including a third 25 Flash memory portion not organized to emulate the EEPROM.

15. The Flash memory device of claim 14, further including first and second sense amplifiers, the first sense amplifier being coupled to, and structured to read, the first and second Flash memory portions and the second sense amplifier being coupled to, and structured to read, the third Flash memory portion.

5 16. A method of emulating an EEPROM using Flash memory, the method comprising:

dividing the Flash memory into first and second memory sectors each including a plurality of memory blocks, each memory block including plural memory pages each with plural memory locations;

10 assigning to each memory page of the first and second memory sectors a page address that is shared by a corresponding page in each of the memory blocks of the first and second memory sectors;

15 in response to a first write instruction to write to a selected page address, writing to a data page of a first memory block of the first memory sector; and

in response to a second write instruction to write data to the selected page address, writing to a data page of a second memory block of the first memory sector.

20 17. The method of claim 16, further comprising, in response to a third write instruction to write to the selected page address when a most recent write instruction to write to the selected page address was executed by writing to a last memory block of the first memory sector, executing the third write instruction by writing to a first memory block of the second memory sector.

18. The method of claim 16 wherein all memory pages sharing a same page address constitute a set of memory pages, the number of sets of memory pages equaling how many memory pages are in each memory block, the method further comprising:

5 assigning to each set of memory pages of the first and second memory sectors a page pointer that reflects which memory page in the set has been most recently updated; and

10 in response to each write instruction requesting to write data to the selected page address, determining which page pointer is associated with the selected page address, determining from the page pointer associated with the selected page address which memory page of the set of memory pages assigned the selected page address is next to be updated, and writing the data in the memory page that is determined to be the next memory page to be updated.

15 19. The method of claim 16, further comprising erasing the second memory sector while updating memory pages of the first memory sector.

20. The method of claim 19 wherein the erasing act is performed in plural erase phases, with each of the erase phases being triggered by writing data in the first memory sector.

EMULATED EEPROM MEMORY DEVICE AND CORRESPONDING METHOD

ABSTRACT OF THE DISCLOSURE

5 A method and device emulate the features of a EEPROM memory device. The device is included into a memory macrocell which is embedded into an integrated circuit comprising also a microcontroller. The device includes a Flash EEPROM memory structure formed by a predetermined number of sectors wherein at least two sectors of the Flash memory structure are used to emulate EEPROM byte
10 alterability.

2000 0000 0000 0000 0000 0000 0000 0000

FIG. 1

FIG. 2

Simplification: 4 pages (instead of 64) for each block

FIG. 3

FIG. 3A

Sector	Addresses	Max Size
OTP	211F80h to 211FFFFh	128 byte
Flash 0	000000h to 00FFFFh	64 Kbyte
Flash 1	010000h to 01BFFFFh	48 Kbyte
Flash 2	01C000h to 01DFFFFh	8 Kbyte
Flash 3	01E000h to 01FFFFh	8 Kbyte
Eeprom	220000h to 2203FFh	1 Kbyte

FIG. 3B

5/18

7	6	5	4	3	2	1	0
FWMS	FPAGE	FCHIP	FBYTE	FSECT	FSUSP	PROT	FBUSY

FIG. 3C

7	6	5	4	3	2	1	0
EWMS	EPAGE	ECHIP			WFIS	FEIEN	EBUSY

FIG. 3D

7	6	5	4	3	2	1	0
FERR	FSS6	FSS5	FSS4	FSS3	FSS2	FSS1	FSS0

FIG. 3E

User Software

Internal Logic

FIG. 4

211FFC _h	NVAPR
211FFD _h	NVWPR
211FFE _h	NVPWDO
211FFF _h	NVPWDT

FIG. 4A

00000000000000000000000000000000

Operation	Size	Min	Typ	Max
Page Update	256 byte	160 us	10 ms	30 ms
	512 byte	160 us	15 ms	50 ms
	1 Kbyte	160 us	30 ms	100 ms
Chip Erase	256 byte		35 ms	100 ms
	512 byte		45 ms	150 ms
	1 Kbyte		70 ms	300 ms

FIG. 4B

8/18

7	6	5	4	3	2	1	0
APRA	APRO	APBR	APEE	APEX	PWT2	PWT1	PWT0

FIG. 4C

7	6	5	4	3	2	1	0
TMDIS	PWOK	WPBR	WPEE	WPRS3	WPRS2	WPRS1	WPRS0

FIG. 4D

7	6	5	4	3	2	1	0
PWD7	PWD6	PWD5	PWD4	PWD3	PWD2	PWD1	PWD0

FIG. 4E

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

CYCLES per BYTE
 $100K * 8 / 1K * 64 = 51200$

FIG. 11

CYCLES per BYTE
 $100K \times 8 / 1K = 800$

FIG. 12

FIG. 13

三
三

FIG. 14

Declaration and Power of Attorney For Patent Application

Modulo di Dichiarazione Per Domanda di Brevetto

Italian Language Declaration

Io, sottoscritto inventore, dichiaro con il presente che:

Il mio domicilio, recapito postale e cittadinanza sono quelli indicati in calce accanto al mio nome,

Che mi reputo in buona fede essere l'inventore originario, primo e unico (qualora un solo nominativo appaia elencato appresso) o il coinventore (qualora i nominativi siano piu' di uno) primo e originario dell'invenzione da me rivendicata, e per la quale faccio domanda di brevetto. Tale invenzione è chiamata

e la sua descrizione è:

(contrassegnare uno dei due)

qui acclusa.

E' stata presentata il _____ as

Come Domanda Numero _____

ed e' stata rettificata il _____.
(se applicabile)

Dichiaro inoltre con il presente di aver letto e compreso il contenuto della specificazione sopra indicata, comprese le rivendicazioni, come rettificata da qualsiasi emendamento a cui si sia accennato sopra.

Riconosco il mio dovere di rivelare informazioni che costituiscano materiale per l'esame della presente domanda secondo i termini del Titolo 37, Codice dei Regolamenti Federali, Comma 1,56(a).

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

EMULATED EEPROM MEMORY DEVICE AND CORRESPONDING METHOD

the specification of which

(check one)

is attached hereto.

was filed on _____

as Application No. _____

and was amended on _____
(if applicable)

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the patentability and examination of this application in accordance with Title 37, Code of Federal Regulations, §1.56(a).

Italian Language Declaration

Con il presente rivendico i benefici di priorita' per l'estero come stabilito dal Titolo 35, Codice degli Stati Uniti, Comma 119, per qualsiasi domanda di brevetto (o brevetti) straniera o per qualsiasi certificato d' invenzione sotto elencato, ed ho anche elencato qui sotto tutte le domande di brevetto e certificati d'invenzione stranieri aventi una data di presentazione anteriore a quella della domanda per la quale si rivendica la precedenza:

Prior foreign applications

Domande dall'estero precedenti

			Priority claimed		
			Priorita	Rivendicata	
98203302.9	Europe	30 September 1998	<input checked="" type="checkbox"/> Yes Si	<input type="checkbox"/> No No	
(Number) (Numero)	(Country) (Paese)	(Day/Month/Year Filed) (Giorno, Mese de Anno di Presentazione)			
			<input type="checkbox"/> Yes Si	<input type="checkbox"/> No No	
			<input type="checkbox"/> Yes Si	<input type="checkbox"/> No No	

Con il presente rivendico il beneficio previsto dal Titolo 35, Codice degli Stati Uniti, Comma 120, per qualsiasi domanda (o domande) de brevetto sotto indicata, ed entro i limiti nei quali il materiale indicato in ciascuna delle domande di brevetto non e' stato rivelato nella precedente domanda di brevetto americana nel modo previsto dal primo paragrafo del titolo 35, Codice degli Stati Uniti, Comma 112, riconosco il mio dovere di rivelare il materiale d'informazione, cosi' come viene definito nel Titolo 37, Codice dei Regolamenti Federali, Comma 1.56(a), che possa essere venuto ad aggiungersi nel periodo intercorso tra la data di presentazione della domanda precedente e la data nazionale o internazionale PCT di presentazione di questa domanda:

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

Italian Language Declaration

PROCURA: Io, sottoscritto inventore, nomino con la presente il seguente Procuratore (o Procuratori) o Agente (Agenti) che s'incarica di perseguire questa pratica e di portare a termine tutte le operazioni necessarie all'Ufficio Brevetti e all'Ufficio Marchi di Fabbrica pertinenti a questa pratica. (Elencare il Nome e il Numero di Matricola):

Richard W. Seed, Reg. No. 16,557
 Robert J. Baynham, Reg. No. 22,846
 Edward W. Bulchis, Reg. No. 26,847
 George C. Rondeau, Jr., Reg. No. 28,893
 David H. Deits, Reg. No. 28,066
 William O. Ferron, Jr., Reg. No. 30,633
 Paul T. Meiklejohn, Reg. No. 26,569
 David J. Maki, Reg. No. 31,392
 Richard G. Sharkey, Reg. No. 32,629
 David V. Carlson, Reg. No. 31,153
 Maurice J. Pirlo, Reg. No. 33,273
 Karl R. Hermanns, Reg. No. 33,507
 David D. McMasters, Reg. No. 33,963

Christopher J. Daley-Watson, Reg. No. 34,807
 Michael J. Donohue, Reg. No. 35,859
 Steven D. Lawrenz, Reg. No. 37,376
 Robert G. Woolston, Reg. No. 37,263
 Ellen M. Bierman, Reg. No. 38,079
 Paul T. Parker, Reg. No. 38,264
 John C. Stewart, Reg. No. 40,188
 David W. Parker, Reg. No. 37,414
 Brian G. Bodine, Reg. No. 40,520
 Frank Abramonte, Reg. No. 38,066
 E. Russell Tarleton, Reg. No. 31,800
 Frederick M. Fliegel, Reg. No. 36,138
 Jan Carol Little, Reg. No. 41,181
 Thomas L. Ewing, Reg. No. 34,328

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith (list name and registration number)

Dennis M. De Guzman, Reg. No. 41,702
 Kevin S. Costanza, Reg. No. 37,801
 Dale C. Barr, Reg. No. 40,498
 Kevin S. Ross, Reg. No. 42,116
 Paul F. Rusyn, reg. No. 42,118
 John M. Wechkin, Reg. No. 42,216
 Thomas E. Loop, reg. No. 42,810
 Stephen J. Rosenman, Reg. 43,058
 Brian L. Johnson, Reg. No. 40,033
 Lisa K. Jorgenson, Reg. No. 34,845
 Mark E. McBurney, Reg. No. 33,114
 Robert D. McCutcheon, Reg. No. 38,717
 Theodore E. Galanthay, Reg. No. 24,122

Recapito per la Corrispondenza:

Send Correspondence to:
 David V. Carlson
 Seed and Berry LLP
 6300 Columbia Center
 701 Fifth Avenue
 Seattle, Washington 98104

Telefonare a: (Nome e Numero)

Direct Telephone Calls to: (name and telephone number)
David V. Carlson
 (206) 622-4900

Nome Completo dell'inventore primo e unico	Full name of sole or first inventor Maurizio PERI		
Firma dell'inventore	Data	Inventor's signature 	Date <i>17/04/99</i>
Residenza	Residence Bergamo, Italy		
Cittadinanza	Citizenship Italian		
Recapito o Casella Postale	Post Office Address Via Borgo Palazzo, 82-G I-24125 Bergamo, Italy		
Nome completo del secondo cointentore se applicabile	Full name of second joint inventor, if any Alessandro BRIGATI		
Firma del secondo inventore	Data	Second Inventor's signature 	Date <i>01/02/1999</i>
Residenza	Residence Castel S. Giovanni, Italy		
Cittadinanza	Citizenship Italian		
Recapito o Casella Postale	Post Office Address Via delle Rose, 11 I-29015 Castel S.Giovanni (Piacenza), Italy		

(Si prega di fornire stesse informazioni e firme di eventuali terzi e piu' coinvventori.)

(Supply similar information and signature for third and subsequent joint inventors.)

Italian Language Declaration

Nome Completo del terzo coinventore se applicabile		Full name of third inventor Marco Olivo	
Firma dell terzo inventore	Data	Third Inventor's signature <i>Marco Olivo</i>	Date <i>Jan. 1, 1998</i>
Residenza		Residence	
		Bergamo, Italy	
Cittadinanza		Citizenship Italian	
Recapito o Casella Postale		Post Office Address Via Tremana, 13-D I-24123 Bergamo, Italy	
Nome completo del quarto cointentore se applicabile		Full name of fourth joint inventor, if any	
Firma del quarto inventore	Data	Fourth Inventor's signature Date	
Residenza		Residence	
Cittadinanza		Citizenship	
Recapito o Casella Postale		Post Office Address	
Nome completo del _____ cointentore se applicabile		Full name of fifth joint inventor, if any	
Firma del _____ inventore	Data	Fifth Inventor's signature Date	
Residenza		Residence	
Cittadinanza		Citizenship	
Recapito o Casella Postale		Post Office Address	
Nome completo del _____ cointentore se applicabile		Full name of sixth joint inventor, if any	
Firma del _____ inventore	Data	Sixth Inventor's signature Date	
Residenza		Residence	
Cittadinanza		Citizenship	
Recapito o Casella Postale		Post Office Address	

(Si prega di fornire stesse informazioni e firme di eventuali terzi e piu' coinventori.)

(Supply similar information and signature for third and subsequent joint inventors.)