1 map concat

```
(.) :: (b -> c) -> (a -> b) -> a -> c
f \cdot g = \x -> f (g x)
concat :: [[a]] -> [a]
concat []
            = []
concat (x:xs) = x++(concat xs)
map :: (a -> b) -> [a] -> [b]
map f []
           = []
map f (x:xs) = (f x):(map f xs)
Claim 1.1.
map f.concat = concat.map (map f)
Proof. structural induction on xs
xs=[]
(map f.concat) xs = (map f.concat) []
                  = map f (concat [])
                  = map f []
                  = []
                  = concat []
                  = concat (map (map f) [])
                  = (concat.map (map f)) []
                  = (concat.map (map f)) xs
xs=(x:xs') structural induction on x
  x=[]
(map f.concat) xs = (map f.concat) (x:xs')
                  = map f (concat ([]:xs'))
                  = map f ([]++(concat xs'))
                  = map f (concat xs')
                  = (concat.map (map f)) xs'
                  = concat (map (map f) xs')
                  = []++(concat (map (map f) xs'))
                  = concat ([]:(map (map f) xs'))
                  = concat ((map f []):(map (map f) xs'))
                  = concat (map (map f) ([]:xs'))
                  = concat (map (map f) xs)
                  = (concat.map (map f)) xs
  x=(y:ys)
(map f.concat) xs = (map f.concat) (x:xs')
                  = map f (concat ((y:ys):xs'))
                  = map f ((y:ys)++(concat xs'))
                  = (f y):(map f (ys++(concat xs')))
                  = (f y):(map f (concat (ys:xs')))
```

```
## (f y):((concat.map (map f)) (ys:xs'))
= (f y):(concat (map (map f) (ys:xs')))
= (f y):(concat ((map f ys):(map (map f) xs')))
= (f y):((map f ys)++(concat (map (map f) xs')))
= ((f y):(map f ys))++(concat (map (map f) xs'))
= (map f (y:ys))++(concat (map (map f) xs'))
= (map f x)++(concat (map (map f) xs'))
= concat ((map f x):(map (map f) xs'))
= concat ((map f map f) (x:xs'))
= concat (map (map f) xs)
= (concat.map (map f)) xs
```

alternative proof

```
Proof. we show the equivalent claim
map f (concat xs) = concat (map (map f) xs)
structural induction on xs
xs=[]
map f (concat xs) = map f (concat [])
                  = map f []
                  = []
                  = concat []
                  = concat (map (map f) [])
                  = concat (map (map f) xs)
xs=(x:xs') structural induction on x
  x=[]
map f (concat xs) = map f (concat ([]:xs'))
                  = map f ([]++(concat xs'))
                  = map f (concat xs')
                  = concat (map (map f) xs')
                  = []++(concat (map (map f) xs'))
                  = concat ([]:(map (map f) xs'))
                  = concat ((map f []):(map (map f) xs'))
                  = concat (map (map f) ([]:xs'))
                  = concat (map (map f) xs)
  x=(y:ys)
map f (concat xs) = map f (concat ((y:ys):xs'))
                  = map f ((y:ys)++(concat xs'))
                  = (f y):(map f (ys++(concat xs')))
                  = (f y):(map f (concat (ys:xs')))
                  = (f y):(concat (map (map f) (ys:xs')))
                  = (f y):(concat ((map f ys):(map (map f) xs')))
                  = (f y):((map f ys)++(concat (map (map f) xs')))
                  = ((f y):(map f ys))++(concat (map (map f) xs'))
                  = (map f (y:ys))++(concat (map (map f) xs'))
                  = (map f x)++(concat (map (map f) xs'))
                  = concat ((map f x):(map (map f) xs'))
                  = concat (map (map f) (x:xs'))
                  = concat (map (map f) xs)
```

3

2 foldl map

```
foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f a []
              = a
foldl f a (x:xs) = foldl f (f a x) xs
Claim 2.1.
foldl f a.map g = foldl h a
         h b x = f b (g x)
Proof. we show the equivalent claim
foldl f a (map g xs) = foldl h a xs
                h b x = f b (g x)
by structural induction on xs
xs=[]
foldl f a (map g xs) = foldl f a (map g [])
                     = foldl f a []
                     = a
                     = foldl h a []
                     = foldl h a xs
xs=(x:xs')
foldl f a (map g xs) = foldl f a (map g (x:xs'))
                     = foldl f a ([g x]++(map g xs'))
                     = foldl f (f a (g x)) (map g xs')
                     = foldl h (f a (g x)) xs'
                     = foldl h (h a x) xs'
                     = foldl h a (x:xs')
                     = foldl h a xs
```

3 bag

```
data Bag a = ListBag [(a,Integer)] deriving (Eq,Show)
add :: Eq a => (a,Integer) -> (Bag a) -> (Bag a)
add (ele,count) (ListBag bag)
    |ele 'elem' map fst bag =
                            = ListBag (bag++[ele,count])
    otherwise
unite :: (Bag a) -> (Bag a) -> (Bag a)
unite (ListBag []) bagy = bagy
unite (ListBag (x:xs)) bagy = unite (ListBag xs) (add x bagy)
bag :: [a] -> (Bag a)
bag [] = Listbag []
bag(x:xs) = add(x,1)(bag xs)
Claim 3.1.
bag (xs++ys) = unite (bag xs) (bag ys)
Proof. structural induction on xs
xs=[]
bag (xs++ys) = bag ([]++ys)
             = bag ys
             = unite (ListBag []) (bag ys)
             = unite (bag []) (bag ys)
             = unite (bag xs) (bag ys)
xs=(x:xs')
bag (xs++ys) = bag ((x:xs')++ys)
             = add (x,1) (bag (xs'++ys))
             \stackrel{\text{IH}}{=} add (x,1) (unite (bag xs') (bag ys) )
             = unite (add (x,1) (bag xs')) (bag ys)
             = unite (bag (x:xs')) (bag ys)
             = unite (bag xs) (bag ys)
```