Question

47. Evaluate $\int_C \vec{F} \cdot d\vec{r}$, if $\vec{F}(x,y) = (xy^2 - 1)\vec{i} + (x^2y - x)\vec{j}$ and C is the circle of radius 1 centered at (1,2) and oriented counterclockwise.

A. 2

Β. π

C. 0

D. $-\pi$

E. -2

Solution

We can parameterize the curve ($x = 1 + \cos \theta$, $y = 2 + \sin \theta$), but then the solution becomes extremely complicated. Instead, we use Green's theorem:

$$\int_{C} F. dr = \iint_{P} \left(\frac{\delta Q}{\delta x} - \frac{\delta P}{\delta y} \right) dR$$

So, applying that in the problem, we see that $\frac{\delta Q}{\delta x}=(2xy-1)$ and $\frac{\delta P}{\delta y}=2xy$. Hence,

$$\iint\limits_R \left(\frac{\delta Q}{\delta x} - \frac{\delta P}{\delta y}\right) dR = \iint\limits_R \left((2xy - 1) - 2xy\right) dR = \iint\limits_R -1 \, dR$$

But what is R? It's simply a circle with radius 1. Fortunately, there is nothing to compute, as there is no dependency on x or y on the integral. Hence, the answer is $-\pi r^2 \to -\pi$.