

SEQUENCE LISTING

<110> Raucy, Judy
<120> Composition and Methods for Induction of Proteins Involved
in
Xenobiotic Metabolism
<130> PUR-00114.P.1.1.1.1
<150> US 10/222,679
<151> 2002-08-16
<150> US 09/832,621
<151> 2001-04-11
<150> US 60/196,681
<151> 2000-04-12
<150> US 60/241,391
<151> 2000-10-17
<160> 37
<170> PatentIn version 3.2
<210> 1
<211> 21
<212> DNA
<213> artificial sequence
<220>
<223> synthetic construct
<400> 1
atggaggtga gacccaaaga a
21

<210> 2
<211> 21
<212> DNA
<213> artificial sequence
<220>
<223> synthetic construct
<400> 2
ctcagctacc tgtgatgccg a
21

```
<210> 3
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 3
agactcacct ctgttcaggg aaa
23

<210> 4
<211> 16
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 4
caccttggaa gttggc
16

<210> 5
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 5
gattgttcaa agtggacccc a
21

<210> 6
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 6
tgtccttcct gaggaatgct a
21
```

<210> 7
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 7
atggaggtga gacccaaaga a
21

<210> 8
<211> 22
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 8
tcagctaccc cgtgatgccg aa
22

<210> 9
<211> 1305
<212> DNA
<213> Monkey

<400> 9
ctggaggtga gacccaaaga aggctggaac catgctgact ttgtatactg tgaggacaca
60

gagtttgctc ctggaaagcc cactgtcaac gcagatgagg aagttggggg tccccaaatc
120

tgcgtgtat gtggggacaa ggccactggt tatcacttca atgtcatgac atgtgaaggg
180

tgcaagggct ttttcaggag gccatgaaa cgcaacgccc gccttaggtg ccccttccgg
240

aaggcgccct gcgagatcac ccggaagacc cggcgacagt gccaggcctg ccggctgcgc
300

aagtgcctgg agagcggcat gaagaaggag atgatcatgt ccgacgcggc cgtagaggag
360

aggcgggcct tcatcaagag gaagaaaaga gaacggatcg ggactcagcc acccggagtg
420

caggggctga cggaggagca gcggatgatg atcagggagc tcatggacgc tcagatgaaa
480

acctttgaca ctaccttctc ccatttcaag aatttccggc tgccaggggt gcttagcagt
540

ggctgtgaga tgccagagtc tctgcaggcc ccatcgaggg aagaagctgc caagtggAAC
600

caggtcagga aagatctgtg gtctgtgaag gtctccgtgc agctgcgggg ggaggatggc
660

agtgtctgga actacaaacc cccagccgac aatggcggga aagagatctt ctccctgctg
720

ccccacatgg ctgacatgtc aacctacatg ttcaaaggca tcatcaactt tgccaaagtc
780

atctcctact tcagggacct gcccatttag gaccagatct ccctactgaa gggggccact
840

tttgagctgt gccagctgag attcaacaca gtattcaacg tggagactgg aacttggag
900

tgtggccggc tgtcctactg ctggaaagac cctgcaggtg gttccagca acttctgctg
960

gagcccatgc taaaattcca ctacatgctg aagaagctgc agctacacga ggaggagta
1020

gtgctgatgc aggccatctc cctcttctcc ccagaccgccc caggtgtggt gcagcaccac
1080

gtggggacc agctgcagga gcaatacgct attactctga agtcctacat tgaatgcaat
1140

cggccccagc ctgctcatag gttcctgttc ctgaagatca tggctatgct caccgagctc
1200

cgcagcatca acgcccagca cacccagcgg ctgctgcgca tccaggacat acacccctt
1260

gctacgcccc tcatgcagga gttgttcggc atcacgggta gctga
1305

<210> 10
<211> 434
<212> PRT
<213> Monkey

<400> 10

Leu Glu Val Arg Pro Lys Glu Gly Trp Asn His Ala Asp Phe Val Tyr
1 5 10 15

Cys Glu Asp Thr Glu Phe Ala Pro Gly Lys Pro Thr Val Asn Ala Asp
20 25 30

Glu Glu Val Gly Gly Pro Gln Ile Cys Arg Val Cys Gly Asp Lys Ala
35 40 45

Thr Gly Tyr His Phe Asn Val Met Thr Cys Glu Gly Cys Lys Gly Phe
50 55 60

Phe Arg Arg Ala Met Lys Arg Asn Ala Arg Leu Arg Cys Pro Phe Arg
65 70 75 80

Lys Gly Ala Cys Glu Ile Thr Arg Lys Thr Arg Arg Gln Cys Gln Ala
85 90 95

Cys Arg Leu Arg Lys Cys Leu Glu Ser Gly Met Lys Lys Glu Met Ile
100 105 110

Met Ser Asp Ala Ala Val Glu Glu Arg Arg Ala Leu Ile Lys Arg Lys
115 120 125

Lys Arg Glu Arg Ile Gly Thr Gln Pro Pro Gly Val Gln Gly Leu Thr
130 135 140

Glu Glu Gln Arg Met Met Ile Arg Glu Leu Met Asp Ala Gln Met Lys
145 150 155 160

Thr Phe Asp Thr Thr Phe Ser His Phe Lys Asn Phe Arg Leu Pro Gly
165 170 175

Val Leu Ser Ser Gly Cys Glu Met Pro Glu Ser Leu Gln Ala Pro Ser
180 185 190

Arg Glu Glu Ala Ala Lys Trp Asn Gln Val Arg Lys Asp Leu Trp Ser
195 200 205

Val Lys Val Ser Val Gln Leu Arg Gly Glu Asp Gly Ser Val Trp Asn
210 215 220

Tyr Lys Pro Pro Ala Asp Asn Gly Gly Lys Glu Ile Phe Ser Leu Leu
225 230 235 240

Pro His Met Ala Asp Met Ser Thr Tyr Met Phe Lys Gly Ile Ile Asn
245 250 255

Phe Ala Lys Val Ile Ser Tyr Phe Arg Asp Leu Pro Ile Glu Asp Gln
260 265 270

Ile Ser Leu Leu Lys Gly Ala Thr Phe Glu Leu Cys Gln Leu Arg Phe
275 280 285

Asn Thr Val Phe Asn Val Glu Thr Gly Thr Trp Glu Cys Gly Arg Leu
290 295 300

Ser Tyr Cys Leu Glu Asp Pro Ala Gly Gly Phe Gln Gln Leu Leu Leu
305 310 315 320

Glu Pro Met Leu Lys Phe His Tyr Met Leu Lys Lys Leu Gln Leu His
325 330 335

Glu Glu Glu Tyr Val Leu Met Gln Ala Ile Ser Leu Phe Ser Pro Asp
340 345 350

Arg Pro Gly Val Val Gln His His Val Val Asp Gln Leu Gln Glu Gln
355 360 365

Tyr Ala Ile Thr Leu Lys Ser Tyr Ile Glu Cys Asn Arg Pro Gln Pro
370 375 380

Ala His Arg Phe Leu Phe Leu Lys Ile Met Ala Met Leu Thr Glu Leu
385 390 395 400

Arg Ser Ile Asn Ala Gln His Thr Gln Arg Leu Leu Arg Ile Gln Asp
405 410 415

Ile His Pro Phe Ala Thr Pro Leu Met Gln Glu Leu Phe Gly Ile Thr
420 425 430

Gly Ser

<210> 11
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 11
atgacagcca ccccaacacg t
21

<210> 12
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 12
aaggaagtga gcatggcctc a
21

<210> 13
<211> 1104
<212> DNA
<213> Monkey

<400> 13
atgacagcca ccccaacacg tgatgtcatg gccagtaggg aagatgagct gaggaactgt
60

tggttatgtg gggaccaggc cacaggctac cacttcaacg cgctgacttg tgagggctgc
120

aagggtttct tcaggagaac agtcagcaaa agcattggtc ccacctgccc ctttgctgga
180

agctgtgaag tcagcaagat tcagaggcgc cactgcccag cctgcagggt gcagaagtgc
240

ttagatgctg gcatgaggaa agacatgata ctgtcggcag aagccctggc attgcggcga
300

gcaaaggcagg cccagcggcg ggcacagcaa acacctatgc aactgagtaa tgagcaagaa
360

gagttgatcc agacactctt gggggccac acccgccaca tgggcaccat gtttgaacag
420

tttgtgcagt ttaggcctcc agctcatctg ttcatccatc accagccctt gcccaccctg
480

gcccctgtgc tgcctctggc cacacacttc gcagacgtca acacgttcat ggtacagcaa
540
gtcatcaagt ttaccaagga cctgcctgtc ttccgttctc tgcccattga agaccagatc
600
tcccttctca agggagcagc tgtggaaatc tgtcatatcg tactcaatac cactttctgt
660
ctccaaacac aaaacttcct ctgcgggcct cttcgctaca caattgaaga cgccagccgt
720
gtatctcccg cagtgggtt ccaggttagag tttttggagt tgctcttca cttccatgga
780
acactacgaa aactgcagct ccaggagcct gagtatgtgc tcttggtgc catggccctc
840
ttctctcctg accgacctgg agttacccag agacatgaga ttgatcagct gcaagaggag
900
atggcactga ctctgcaaag ctacatcaag ggccagcagc aaaggccccg ggatcggttt
960
ctgtatgcga agttgctggg cctgctggct gagctccgga gcattaatga ggcctacggg
1020
taccaaatcc agcacatcca gggcctgtct gccatgatgc cattgctcca ggagatctgc
1080
agctgaggcc atgctcaatt cctt
1104

<210> 14
<211> 361
<212> PRT
<213> Monkey

<400> 14

Met Thr Ala Thr Pro Thr Arg Asp Val Met Ala Ser Arg Glu Asp Glu
1 5 10 15

Leu Arg Asn Cys Val Val Cys Gly Asp Gln Ala Thr Gly Tyr His Phe
20 25 30

Asn Ala Leu Thr Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Thr Val
35 40 45

Ser Lys Ser Ile Gly Pro Thr Cys Pro Phe Ala Gly Ser Cys Glu Val
50 55 60

Ser Lys Ile Gln Arg Arg His Cys Pro Ala Cys Arg Leu Gln Lys Cys
65 70 75 80

Leu Asp Ala Gly Met Arg Lys Asp Met Ile Leu Ser Ala Glu Ala Leu
85 90 95

Ala Leu Arg Arg Ala Lys Gln Ala Gln Arg Arg Ala Gln Gln Thr Pro
100 105 110

Met Gln Leu Ser Asn Glu Gln Glu Glu Leu Ile Gln Thr Leu Leu Gly
115 120 125

Ala His Thr Arg His Met Gly Thr Met Phe Glu Gln Phe Val Gln Phe
130 135 140

Arg Pro Pro Ala His Leu Phe Ile His His Gln Pro Leu Pro Thr Leu
145 150 155 160

Ala Pro Val Leu Pro Leu Val Thr His Phe Ala Asp Val Asn Thr Phe
165 170 175

Met Val Gln Gln Val Ile Lys Phe Thr Lys Asp Leu Pro Val Phe Arg
180 185 190

Ser Leu Pro Ile Glu Asp Gln Ile Ser Leu Leu Lys Gly Ala Ala Val
195 200 205

Glu Ile Cys His Ile Val Leu Asn Thr Thr Phe Cys Leu Gln Thr Gln
210 215 220

Asn Phe Leu Cys Gly Pro Leu Arg Tyr Thr Ile Glu Asp Ala Ala Arg
225 230 235 240

Val Ser Pro Ala Val Gly Phe Gln Val Glu Phe Leu Glu Leu Leu Phe
245 250 255

His Phe His Gly Thr Leu Arg Lys Leu Gln Leu Gln Glu Pro Glu Tyr
260 265 270

Val Leu Leu Ala Ala Met Ala Leu Phe Ser Pro Asp Arg Pro Gly Val
275 280 285

Thr Gln Arg His Glu Ile Asp Gln Leu Gln Glu Glu Met Ala Leu Thr
290 295 300

Leu Gln Ser Tyr Ile Lys Gly Gln Gln Arg Pro Arg Asp Arg Phe
305 310 315 320

Leu Tyr Ala Lys Leu Leu Gly Leu Leu Ala Glu Leu Arg Ser Ile Asn
325 330 335

Glu Ala Tyr Gly Tyr Gln Ile Gln His Ile Gln Gly Leu Ser Ala Met
340 345 350

Met Pro Leu Leu Gln Glu Ile Cys Ser
355 360

<210> 15
<211> 26
<212> DNA
<213> Homo sapiens

<400> 15
aacccaaactc ttctgacccc caatct
26

<210> 16
<211> 6
<212> DNA
<213> Homo sapiens

<400> 16
aggta
6

<210> 17
<211> 6
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(6)
<223> n is t or g

<400> 17
agntca
6

```
<210> 18
<211> 12
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(1)
<223> n is t or g

<220>
<221> misc_feature
<222> (2)..(2)
<223> n is any nucleotide

<220>
<221> misc_feature
<222> (9)..(9)
<223> n is a or c

<220>
<221> misc_feature
<222> (10)..(10)
<223> n is g or c

<400> 18
nngcgtgann aa
12

<210> 19
<211> 30
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 19
ttgcgtgcga ttgcgtgcga ttgcgtgcga
30

<210> 20
<211> 10
<212> DNA
<213> Homo sapiens

<400> 20
ttgcgtgcga
10
```

<210> 21
<211> 38
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 21
tcgatcgac gcaatcgac gcaatcgac gcaagttac
38

<210> 22
<211> 10
<212> DNA
<213> Homo sapiens

<400> 22
tcgcacgcaa
10

<210> 23
<211> 26
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 23
aaataagctt gaggagctca cctctg
26

<210> 24
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 24
aggttccat ggccaagtct gggat
25

<210> 25
<211> 24
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 25
atttgagctc tggggtcccc cttg
24

<210> 26
<211> 26
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct .

<400> 26
cacagctagc aatgatcaaa gatgac
26

<210> 27
<211> 24
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 27
taaagtgcac aaaaatttaa cgcg
24

<210> 28
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 28
agaggtgcac ggtatacaga c
21

<210> 29
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 29
ataaggtacc aactgttcat tggtc
25

<210> 30
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 30
aattctcgag cttataaaaa cacca
25

<210> 31
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 31
ggttggaaagc taacccttgt gattt
25

<210> 32
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 32
cgagatgggt aactgaagtg aacat
25

<210> 33
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 33
tcccgaaaaga tctgtgctct t
21

<210> 34
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 34
agtctcttcc aagcagtagg a
21

<210> 35
<211> 25
<212> DNA
<213> Homo sapiens

<400> 35
aatgaaccct atcataaact atgag
25

<210> 36
<211> 22
<212> DNA
<213> Homo sapiens

<400> 36
cctgtacttt cctgaccctg aa
22

<210> 37
<211> 21
<212> DNA
<213> Homo sapiens

<400> 37
aatgaacttg ctgaccctct g
21