Machine Learning in Finance

Lecture 8

RNN Applications and Attention Mechanisms

Arnaud de Servigny & Hachem Madmoun

Outline:

• The Sentiment Analysis Pipeline

The Various Applications of RNNs

• The Sequence to Sequence Framework

• Introducing the Attention Mechanism

Part 1: The Sentiment Analysis Pipeline

The Embedding Layer

- The **Embedding Layer** takes as input the sequences of integers. But all the sequences should be of the same length T, so that we can pack them into the same tensor:
 - Sequences that are shorter than T are padded with zeros.
 - Sequences that are longer that T are truncated.

• The Embedding Layer transforms the 2-dim input tensor of shape (N, T) into a tensor of shape (N, T, D).

The Sentiment Analysis Pipeline – Part 1 –

The Sentiment Analysis Pipeline - Part 2 -

• Let's keep track of the evolution of the tensor shape after each layer transformation:

The Forward Propagation

Part 2: The Various Applications of RNNs

The Various Applications of RNNs

- There are principally 4 types of applications to Recurrent Neural Networks.
 - One to Many: Mapping a vector to a sequence of vectors.
 - Many to One: Mapping a sequence of vectors to one vector.
 - Many to Many:
 - Aligned case: Mapping a sequence to another sequence of the same length T
 - <u>Unaligned case</u>: Mapping a sequence of length T_x into another sequence of length T_y (with $T_x
 eq T_y$)

The Many to One problem – The architecture –

• In the Many to One framework, the objective is to map a sequence $(X_i^1,\ldots,X_i^T)\in\mathbb{R}^{T imes D}$ into a vector $h_i^T\in\mathbb{R}^d$ using the LSTM layer \mathcal{E}_{θ} parameterized by θ

- So far, we have only discussed models that are part of the Many to One framework.
 - Sentiment Analysis (Lecture 6).
 - News Classification (programming session 7).
- Let us consider some examples in the next slides.

Stacking LSTM layers for a Multiclass classification Problem

Stacking LSTM layers for a Multiclass classification Problem

• Let's keep track of the evolution of the tensor shape after each layer transformation:

The Forward Propagation

Bidirectional LSTM for a Multiclass classification Problem

Bidirectional LSTM for a Multiclass classification Problem

Let's keep track of the evolution of the tensor shape after each layer transformation:

The Forward Propagation

The Many to Many Problem (Aligned case) - The Architecture -

- In the Many to Many framework, the objective is to map a sequence $(X_i^1,\dots,X_i^T)\in\mathbb{R}^{T imes D}$ into a sequence $(h_i^1,\dots,h_i^T)\in\mathbb{R}^{T imes d}$ using the LSTM layer \mathcal{E}_{θ} parameterized by θ
- We are considering the $oldsymbol{aligned}$ case where the input and the output sequences are of the same length T

The Many to Many Problem (Aligned case) - an Example -

- POS (Part Of Speech) Tagging is a typical example, where the objective is to tag each word
 of a sentence with its "Part-of-Speech" tag.
- Another popular model can be used for POS tagging: The Hidden Markov Model (HMM).

(See the Optional Reading) for more details about the HMM

The One to Many Problem – The Architecture –

- In the One to Many framework, the objective is to map a vector $X \in \mathbb{R}^D$ into a sequence $(h_i^1,\ldots,h_i^T) \in \mathbb{R}^{T imes d}$ using the LSTM layer $\mathcal{E}_{ heta}$ parameterized by heta
- The vector $X \in \mathbb{R}^D$ is typically the output of an encoder layer processing an image or another sequence for instance.
- At each step of the generation process, the output $\,h_i^t\,$ is fed back into the model to get the new hidden state $\,h_i^{t+1}\,$

The One to Many Problem – an Example –

- Image captioning is a typical example, where the description of an image is generated.
- An image is mapped into a feature vector, which in turn becomes the input for an LSTM architecture.

Interactive Session

Part 3: The Sequence to Sequence Framework

The Sequence to Sequence Framework –The architecture –

- For Many to Many applications, the LSTM models can only be applied in the aligned case (i.e, if the input and the output sequences are of the same length).
- However, if we want to learn a mapping from a sequence of input vectors of length T_x into a sequence of output vectors of length T_y (where $T_x \neq T_y$), we need to introduce a new framework, composed of two steps.
 - An encoder $\mathcal{E}_{ heta_e}$ maps the input sequence $(X_i^1,\dots,X_i^{T_x})\in\mathbb{R}^{T_x imes D_x}$ into the final hidden state $h_i^{T_x}$
 - A decoder \mathcal{D}_{θ_d} is initialized with the final encoder hidden state:

$$h_i^{T_x} = s_i^0$$

 We can then generate the sequence of hidden states associated with the decoder

$$(s_i^1,\ldots,s_i^{T_y})$$

The Sequence to Sequence Framework – an Example –

- A Typical example for the Sequence to Sequence Framework is Neural Machine Translation (NMT).
- We usually use **Teacher Forcing** during the training process.

The Sequence to Sequence Framework – an Example –

• During the prediction phase, at each iteration, the decoder output is fed back into the model.

Limitations of the Sequence to Sequence Framework

- There are two main challenges with the sequence to sequence framework using RNNs:
 - First, by feeding a single fixed length vector to the decoder, the encoder has to compress all the input information in few dimensions, which leads to a loss of information.
 - This architecture doesn't allow model alignment between the input and the output sequences.
- We would like each output sequence to selectively focus on relevant parts of the input sequence.

Part 4: Introducing the Attention Mechanism

Sequence to Sequence with Attention Mechanisms

- The vanilla Sequence to Sequence model has to boil the entire input sequence into a single vector.
- At each decoder time step $t_y \in \{1,\dots,T_y\}$, we would like the input vector to be: $c_i^{t_y} = \sum_{t_x=1}^{T_x} \alpha_i^{< t_y,t_x>} h_i^t$ such that: $\forall t_x \in \{1,\dots,T_x\}$ $\alpha_i^{< t_y,t_x>} \geq 0$ and $\sum_{t_x=1}^{T_x} \alpha_i^{< t_y,t_x>} = 1$

Vanilla Sequence to Sequence

Interactive Session

Query-Retrieval Modeling

- Attention mechanisms intuition originates from database Query-Retrieval Problems.
- In the following database, the query retrieval problem consists in searching a query through the keys in order to retrieve a value.

Query Retrieval Modeling – an Example –

Database (key/value)

Query Retrieval Modeling – an Example –

Attention Mechanism as a Soft Query-Retrieval Problem

Function	Equation
Dot Product	$a(q, k_i) = q^T k_i$
Scaled Dot Product	$a(q, k_i) = \frac{q^T k_i}{\sqrt{d_k}}$
Luong's Multiplicative alignment	$a(q, k_i) = q^T W k_i$
Bahdanau's Additive alignment	$a(q, k_i) = v_a^T \tanh \left(W_1 q + W_2 k_i \right)$
Feature-based	$a(q, k_i) = W_{imp}^T \text{act}(W_1 \phi_1(k_i) + W_2 \phi_2(q) + b)$
Kernel Method	$a(q, k_i) = \phi(q)^T \phi(k_i)$

Interactive Session

The Attention Weights

The Attention weights:

• The decoder input at time $t_y \in \{1, \dots, T_y\}$, also called the context vector is:

Wrap-up: The Sequence to Sequence model with Attention

Generating $(\hat{Y}_i^1, \dots, \hat{Y}_i^{T_y})$ using the final model:

- An Encoder $\mathcal{E}_{ heta_e}$ parameterized by $heta_e$ maps the input embeddings $(X_i^1,\dots,X_i^{T_x})$ to the decoder hidden states $(h_i^1,\dots,h_i^{T_x})$
- An Attention Layer \mathcal{A}_{θ_a} parameterized by θ_a is used to compute the attention weights $\alpha_i^{< t_y, t_x>}$ in order to get the context vector $c_i^{t_y}$, which be fed into the decoder at time $t_y \in \{1, \dots, T_y\}$
- A Decoder Layer $\mathcal{D}_{ heta_d}$ parameterized by $heta_d$ which generates the decoder hidden states $(s_i^1,\ldots,s_i^{T_y})$
- A final Dense Layer \mathcal{F}_{θ_f} parameterized by θ_f can be used to map each decoder hidden state $s_i^{t_y}$ into the prediction $\hat{Y}_i^{t_y}$

Programming Session

Go to the following link and take Quiz 8:

https://mlfbg.github.io/MachineLearningInFinance/