Trabalho Computacional 1 ONL

Disciplina:

ELE077 - Otimização Não Linear

Universidade Federal de Minas Gerais - Escola de Engenharia

Felippe Veloso Marinho, 2021072260

Introdução

Este relatório tem como objetivo colocar em prática os métodos de resolução de problemas irrestritos dados em sala de aula. Cada problema envolve a aplicação de métodos de otimização não linear a diferentes cenários práticos, incluindo controle de sistemas, regressão logística, maximização de lucros em campanhas promocionais e modelagem térmica. Neste momento, não serão apresentadas implementações ou resultados numéricos. Em vez disso, será estabelecida uma base teórica e estrutural para guiar a implementação futura dos algoritmos de otimização.

Questão 1

Neste problema, busca-se ajustar os parâmetros Kp, Ki e Kd de um controlador PID aplicado ao controle da temperatura de um forno industrial. O sistema é modelado por uma equação diferencial de primeira ordem, e o objetivo é minimizar o erro quadrático médio (MSE) da diferença entre a temperatura real T(t) e a temperatura de referência Tref ao longo de um intervalo de simulação.

A função-objetivo foi previamente implementada nos arquivos disponíveis e pode ser definida como:

$$\min_{K_p, K_i, K_d} \int_0^{T_{\text{sim}}} (T_{\text{ref}} - T(t, K_p, K_i, K_d))^2 dt$$

A dinâmica do sistema é dada pela EDO:

$$\frac{dT}{dt} = -\frac{T}{\tau} + \frac{K}{\tau}u(t)$$

Para obter o ajuste de ganhos foi feita a escolha da comparação dos métodos de **Gradiente Conjulgado** e o BFGS.

Para completar o código, foi utilizado a biblioteca scipy.optimize.minimize . A partir dele, foram extraídos os resultados passando a função objetivo pré implementada, o ponto_inicial e o método escolhido.

Foram escolhidos os métodos de BFSG e Gradiente Conjulgado.

Parâmetros PID otimizados com CG e BFSG:

Kp = 9.4084, Ki = 13.2000, Kd = -0.0000

Erro quadrático médio (MSE): 0.000000

Ambos os métodos convergiram para a mesma solução ótima com precisão numérica (MSE ≈ 0), o que pode indicar que a função objetivo é suave e bem comportado e o problema tem um mínimo global bem definido e acessível a partir do ponto inicial.

O fato de Kd ser aproximadamente igual a 0 sugere que o **termo derivativo não foi necessário** para alcançar um bom desempenho neste sistema específico. Ou seja, a escolha do método do gradiente acaba sendo mais adequada nesse problema por ser uma alternativa viável e mais leve pensando na não necessidade do uso da Hessiana.

Questão 2

Este problema aborda a minimização da função de custo da regressão logística regularizada, aplicada a um conjunto de músicas rotuladas como sucesso (1) ou não (0). O vetor de características de cada música possui 500 atributos.

A função a ser minimizada é a entropia cruzada regularizada:

$$J(\mathbf{w}) = -\frac{1}{m} \sum_{i=1}^{m} \left[y_i \log(h(\mathbf{x}_i; \mathbf{w})) + (1 - y_i) \log(1 - h(\mathbf{x}_i; \mathbf{w})) \right] + \frac{\lambda}{2} ||\mathbf{w}||^2$$

com:

$$h(\mathbf{x}_i; \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} \mathbf{x}_i}}$$

Saída do modelo logístico (função sigmoide)

O objetivo é encontrar o vetor de pesos w que minimiza a função de custo J(w) utilizando o conjunto de dados fornecidos com m = 1000 amostras e n = 500 características.

Por ser um problema de grande dimensão, um método que apresenta uma boa escalabilidade seria o ideal. Para isso, foi feita a escolha do **Gradiente Conjulgado** novamente.

O tempo de execução foi de 28m e 14s com o custo final (função J(w)) de 0.0924, 5 iterações e 8517 avaliações da função-objetivo.

O valor da função de custo indica que o modelo está com bom desempenho visto que como a função inclui **entropia cruzada + regularização L2**, valores baixos (próximos de 0) indicam alta probabilidade correta para os rótulos e sem overfitting.

Entretanto, nessa primeira análise o número de avaliações foi altíssimo para tão poucas interações. Uma sugestão é que o método está usando muitos passos pequenos com alta precisão.

Pesquisando sobre o uso da função minimize da biblioteca do scipy, foi visto que é possível a adição de um argumento com o gradiente da função. Isso é feito para reduzir o número de chamadas.

Isto feito, o número de avaliações da função-objetivo caiu de 8517 para 17. O que consequentemente diminuiu o tem de execução de aproximadamente 28m e 14s para 7.8s.

Porque isso aconteceu?

O uso do jac=gradiente reduz o custo da otimização **de forma exponencial** em alta dimensão, pois evita milhares de avaliações repetitivas.

Sem o uso do gradiente, para cada iteração é estimado

 $\partial J/\partial wi pprox J(wi+\epsilon) - J(wi)/\epsilon$ para cada um dos 500 pesos. O que significa que no mínimo 500 chamadas à função objetivo são necessárias por interação. Ao fornecer o gradiente, o algoritmo usa diretamente o gradiente vetorizado sem estimar nada numericamente. Cada iteração passa a exigir uma chamada da função objetivo + uma chamada do gradiente, sendo muito mais eficiente.

Avaliando o modelo de regressão

O custo final apresentado, como dito anteriormente, indica alta probabilidade de acerto do modelo. O cálculo da acurácia demonstra que o modelo classifica corretamente quase todas as amostras (98,27%). Isso sugere que o modelo aprendeu bem o padrão do conjunto de dados.

A matriz de confusão demonstrou os seguintes resultados:

0	173
0	9827

- TN (verdadeiros negativos) = 0
- FP (falsos positivos) = 173
- FN (falsos negativos) = 0
- TP (verdadeiros positivos) = 9827

O que foi um resultado um pouco preocupante. Há um desequilíbrio de classes, todos os exemplos de rótulo 0 forma classificados incorretamente como positivos. Indicando que o modelo prevê 1 mesmo quando deveria ser 0.

Depois do susto inicial, o conjunto de dados foi verificado e realmente a maior parte dos rótulos está para a classe 1. O que novamente mostra que o problema não está no ajuste dos pesos.

Classe 0: 173 amostras

Classe 1: 9827 amostras

Classe 0 representa 1.73% dos dados

Classe 1 representa 98.27% dos dados

Estratégias como oversampling ou undersamplig poderiam ser aplicadas mas fogem dos requisitos da questão.

Questão 3

Aqui, o objetivo é maximizar o lucro de uma campanha promocional ajustando os parâmetros: desconto d, tempo de duração t, e orçamento de marketing m. O lucro é modelado como:

$$L(d,t,m) = R(d,t,m) - C(d,t,m)$$

onde

$$R(d, t, b) = Vb * (1 + f1(d) + f2(t)) * log(1 + b)$$

- VB é o número de vendas sem promoção.
- f1(d) = -0.005d² + 0.2d é o incremento percentual nas vendas devido ao desconto.
- f2(t) = 0.05t é o incremento nas vendas proporcional ao tempo da promoção

$$C(d,t,m) = Cb + Cm(m) + P(d,t,m)$$

- CB é o custo fixo inicial.
- CM(m) = m é o custo de marketing.
- P(d, t) é uma penalização não contínua:
 - Penalização de R\$5000 se d > 30% (desconto muito agressivo).
 - Penalização de R\$2000 se t > 15 dias.

E importante frisar que:

- O desconto n\u00e3o pode ser menor que 0\u00c8 nem maior que 50\u00c8 (0 ≤ d ≤ 50).
- O tempo de duração da promoção não pode ser menor que 1 dia nem maior que 30 dias (1 ≤ t ≤ 30).
- O orçamento de marketing não pode ser menor que R\$1000 nem maior que R\$50000 (1000 ≤ m ≤ 50000).

A receita depende de funções não lineares dos parâmetros e o custo inclui penalizações descontínuas. Além disso, há restrições nas variáveis de decisão que devem ser tratadas como penalizações.

Sendo assim, a utilização de um método de resolução de problemas restritos acaba sendo utilizado, o método da penalização externa.

A implementação das funções e das penalidades assim como dito no enunciado foram feitas da seguinte forma:

```
# Função de custo negativa (para maximização do lucro)
def funcaoobjetivo(x):
d, t, m = x # Desconto (%), tempo (dias), orçamento (R$)
VB = 100000 # Vendas básicas
CB = 10000 # Custo fixo inicial
```

```
# Receita
f1 = -0.005 * d**2 + 0.2 * d
f2 = 0.05 * t
receita = VB * (1 + f1 + f2) * np.log(1 + m)
# Custo
custo_marketing = m
penalidades = 0
# Penalizações específicas do problema
if d > 30:
  penalidades += 5000
if t > 15:
  penalidades += 2000
# Restrições explícitas transformadas em penalizações grandes
if not (0 \le d \le 50):
  penalidades += 1e6
if not (1 <= t <= 30):
  penalidades += 1e6
if not (1000 <= m <= 50000):
  penalidades += 1e6
custo_total = CB + custo_marketing + penalidades
# Lucro
lucro = receita - custo_total
```

A escolha de um algoritmo foi feita com base no pequeno número de variáveis, a não existência de derivadas e as penalidades serem contínuas.

Para isso, a escolha do "Nelder-Mead" é adequada, pensando que é um método sem derivadas, robusto para problemas não suaves.

O algoritmo convergiu para os seguintes parâmetros ótimos:

Desconto = 20.00%,

- Tempo = 30.00 dias,
- Orçamento = R\$49949.02
- Lucro máximo estimado: R\$4806501.13

Os valores encontrados respeitam todas as restrições impostas e evitam penalizações, mostrando a eficácia da abordagem de penalização externa aliada ao método de busca heurística sem gradientes.

Questão 4

O último problema propõe a minimização de uma função quadrática de duas variáveis x1 e x2, que representam temperaturas em uma aleta unidimensional. A função a ser minimizada é:

$$f(x1, x2) = 0.6382x1^2 + 0.3191x2^2 - 0.2809x1x2 - 67.906x1 - 14.29x2$$

A implementação da função-objetivo é a seguinte:

```
# Função-objetivo
def funcaoobjetivo(x):
x1, x2 = x
return 0.6382 * x1**2 + 0.3191 * x2**2 - 0.2809 * x1 * x2 - 67.906 * x1 - 14.29
```

```
# Grade para x1 e x2
x1 = np.linspace(0, 150, 200)
x2 = np.linspace(0, 150, 200)
X1, X2 = np.meshgrid(x1, x2)

# Calcular os valores de f(x1, x2)
Z = 0.6382 * X1**2 + 0.3191 * X2**2 - 0.2809 * X1 * X2 - 67.906 * X1 - 14.29 * X2

# Plot das curvas de nível
plt.figure(figsize=(8, 6))
contours = plt.contour(X1, X2, Z, levels=50, cmap='viridis')
plt.clabel(contours, inline=True, fontsize=8)
plt.title("Curvas de Nível da Função f(x1, x2)")
```

```
plt.xlabel("x1 (Temperatura no ponto 1)")
plt.ylabel("x2 (Temperatura no ponto 2)")
plt.grid(True)
plt.show()
```

A função á ser otimizada é uma função convexa unimodal que pode ser representada pelas curvas de nível abaixo:

Tendo isso em vista, os algoritmos á serem escolhidos devem levar em consideração que é uma função convexa quadrática, as derivadas são bem definidas e suaves e são poucas variáveis.

Desta forma, a escolha de um método sem a necessidade de Hessiana explícita como o BFGS ou o método de Newton são adequados para a otimização do problema.

from scipy.optimize import minimize

```
# Ponto inicial arbitrário
ponto_inicial = [50, 50]

# Otimização
res = minimize(funcaoobjetivo, ponto_inicial, method='BFGS')

# Resultados
x1_opt, x2_opt = res.x
f_min = res.fun
```

Temperaturas ótimas:

- x1 = 64.3633,
- x2 = 50.7202
- Valor mínimo da função: f(x1, x2) = -2547.7231

O valor mínimo da função representa a **energia potencial associada à distribuição de temperatura** no regime permanente. Esse resultado sugere que as temperaturas x1x_1×1 e x2x_2×2 devem se estabilizar nesses valores para que o sistema atinja sua configuração de **mínima energia térmica**, conforme descrito pelo modelo.

A solução está de acordo com a natureza parabólica da função, conforme verificado pelas curvas de nível plotadas anteriormente. O algoritmo convergiu rapidamente para a solução ótima, o que reforça a adequação da escolha do método BFGS neste contexto.