۱۰.۲ جلسهی بیست و سوم

قضیه ۲۱۴: اگر T یک تئوری ω پایدار باشد، آنگاه برای هر $\kappa \geq \omega$ نیز κ پایدار است.

 $|S_1(M)| \leq \kappa$ و $\mathfrak{M} \models T$ میخواهیم نشان دهیم که $\mathfrak{M} \models T$ فرض کنید

تایپ $p(x)\in S_1(M)$ را در نظر بگیرید. بنا بر آنچه در جلسات قبل ثابت کردهایم، هر تئوری $p(x)\in S_1(M)$. $p(x)\in S_1(M)$. p(

 $\psi \in p$ قوجه کنید که برای هر

$$\alpha \leq \text{RM}(\phi \wedge \psi) \leq \alpha$$

و

$$d \le \deg(\phi \land \psi) \le d$$

پس $\operatorname{RM}(\phi \wedge \psi) = d$ و $\operatorname{RM}(\phi \wedge \psi) = \alpha$

$$RM(\phi \land \neg \psi) < \alpha$$

زیرا اگر میداشتیم α افزاری برای ϕ است، α آنگاه از آنجا که $\phi \wedge \psi, \phi \wedge \neg \psi$ افزاری برای ϕ است، درجهی مُرلی ϕ باید بیشتر از ϕ میبود.

همچنین توجه کنید که مجموعهای متناهی مانند $A\subseteq M$ موجود است، به طوری که محموعهای متناهی مانند $A\subseteq M$ موجود است، به طوری که $\mathrm{RM}(p)=\mathrm{RM}(p)=\mathrm{RM}(p)$ و $\mathrm{RM}(p)=\mathrm{RM}(p)$ مجموعهی همهی فرمولهایی از A است که پارامترهای آنها در مجموعهی A قرار دارند.) برای اثبات این گفته کافی است A را مجموعهی پارامترهایی بگیریم که در فرمول ِ (همان فرمول ِ دارای مینیمومِ مرتبه و درجه در تایپ) ظاهر شدهاند.

ادعا میکنیم که برای دانستن تعداد تایپهای روی M کافی است تعداد تایپهای روی $p,q\in \mathcal{M}$ زیرمجموعههای متناهی از M و مرتبه و درجهی مُرلی آنها را بدانیم. در واقع اگر $p,q\in \mathcal{M}$ و $p|_A$ و $p|_A$

 $p \neq q$ آنگاه p = q. اگر خواستههای ادعا برقرار باشند و $p \neq q$ آنگاه فرمول $\deg(p|_A) = \deg(q|_A) = \deg(q)$ آنگاه فرمولی چون ψ موجود است به طوری که $p \neq q$ و ψ و ψ و فرمول آنگاه فرمولی پون ψ موجود است به طوری که $p \neq q$ و ψ و ψ و ψ و کمینه مرتبه و درجه مرلی در $p|_A = q|_A$ باشد. از آنجا که $p \neq q$ داریم با کمینه مرتبه و درجه مرلی در $p \neq q$ و باشد. از آنجا که $p \neq q$ داریم $p \neq q$ و این ناقض که $p \neq q$ هما است. $p \neq q$ و این ناقض $p \neq q$ است.

تعداد زیرمجموعههای متناهی M حداکثر برابر با κ است. تعداد مرتبههای مُرلیِ ممکن نیز κ است (زیرا مرتبهی مُرلی به صورت پیوسته باید هر مقداری را اتخاذ کند؛ وقتی تعداد مجموعههای مورد نظر حداکثر κ است، حداکثر κ مقدار متفاوت می توان برای مرتبهی مُرلی تصور کرد). نیز تعداد حالات ممکن برای درجهی مرُلی شماراست. پس (بنا بر ادعای بالا) حداکثر تعداد تایپهای ممکن، κ است.

در خلال اثبات بالا به نکتهی زیر اشاره کردیم.

مشاهده ۲۱۵: گیریم T یک تئوریِ کاملاً متعالی باشد، $\mathfrak{M}\models T$ و $\mathfrak{M}(M)$ و تایپی باشد کامل. فرض کنیم فرمولِ $\phi\in p$ به گونهای باشد که زوجِ $(\mathrm{RM}(\phi),\deg\phi)$ ، با ترتیب قاموسی، کوچکترین عنصر در مجموعهی زیر باشد:

$$\{(RM(\psi), \deg \psi)|\psi \in p\}.$$

آنگاه با استفاده از معادله ی زیر می توان واقع شدن یا نشدن یک فرمول دلخواه را در p تحقیق کرد:

$$\psi \in p \Leftrightarrow \mathrm{RM}(\phi \land \neg \psi) < \alpha.$$

 $\lambda \leq \kappa$ قضیه ۲۱۶: فرض کنید که T یک تئوری ω پایدار باشد، κ کاردینالی باشد دلخواه و کاردینالی منتظم باشد (یعنی آنگونه که $\lambda = \lambda$ دارای مدلی λ است با اندازه ی λ . به ویژه اگر λ منتظم باشد، تئوری λ دارای مدلی اشباع با اندازه ی λ است.

طرح اثبات. مدل دلخواهِ $\mathfrak{M}\models T$ را در نظر بگیرید و زنجیری مقدماتی مانند $(\mathfrak{M}_i|i<\lambda)$ را از مدلهای T با استقراء چنان بسازید که

 $\mathfrak{M}_{\cdot} = \mathfrak{M}_{\cdot}$

 $|M_i| < \lambda$ برای هر $i < \lambda$ داشته باشیم ۲

- $\mathfrak{M}_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$ اگر $\alpha < \lambda$ حدی باشد، آنگاه α
- ۴. هر تایپ متعلق به $S_1(M_lpha)$ در M_{lpha+1} برآورده شود.

 λ مدلی \mathfrak{N} مدلی مین نشان دهید که $\mathfrak{N}=\bigcup_{i<\lambda}\mathfrak{M}_i$ قرار دهید که $\mathfrak{N}=\bigcup_{i<\lambda}\mathfrak{M}_i$ اشباع است.

قضیه ۲۱۷ (قضیه ی اصلیِ این جلسه): گیریم $\kappa \geq \aleph_1$ و فرض کنیم که T یک تئوریِ $\kappa = \kappa_1$ جازم باشد. آنگاه یگانه ی مدلِ $\kappa = \kappa_2$ (به هنگ ایزومرفیسم) از اندازه ی κ ، اشباع است.

اثبات. اگر α منتظم باشد، آنگاه از آنجا که هر تئوریِ جازم در یک کاردینالِ ناشمارا، ω پایدار است، بنا به قضیه ی قبل تئوری مورد نظر دارای مدلی اشباع با اندازه ی α است. اگر α تکین باشد، آنگاه برای هر α α کاردینالِ α α نیز α مدلی است بنابراین یگانه ی مدلِ α با اندازه ی α مدلی است برای هر α α کاردینال مدل یادشده، برای هر α α α نیز α اشباع است. پس این مدل، اشباع است.