2 Great product. Does not completely get rid of ... 1 41 **3** This gum is my favorite! I would advise every... 1 27 4 I also found out about this product because of... 1 22 In [11]: from sklearn.model_selection import train_test_split reviews_train,reviews_test = train_test_split(reviews,test_size=0.20, st ratify = reviews['Score'], random_state=33) In [12]: | #plot bar graphs of train and test Scores reviews_train['Score'].value_counts().plot(kind='bar') Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x7f695d330250> 70000 60000 50000 40000 30000 20000 10000 reviews_test['Score'].value_counts().plot(kind='bar') Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x7f695d287c50> 17500 15000 12500 10000 7500 5000 2500 In [14]: X_train,y_train = np.array(reviews_train['Text']),np.array(reviews_train ['Score']) X_test,y_test = np.array(reviews_test['Text']),np.array(reviews_test['Score']) Part 2 - Creating BERT Model In [15]: ## Loading the Pretrained Model from tensorflow HUB tf.keras.backend.clear_session() # maximum length of a seq in the data we have, for now i am making it as 55. You can change this max_seq_length = 128 # maximum seq_length should be less than 512 **#BERT** takes 3 inputs #this is input words. Sequence of words represented as integers input_word_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf .int32, name="input_word_ids") #mask vector if you are padding anything input_mask = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int 32, name="input_mask") #segment vectors. If you are giving only one sentence for the classifica tion, total seg vector is 0. #If you are giving two sentenced with [sep] token separated, first seq s egment vectors are zeros and #second seq segment vector are 1's segment_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.in t32, name="segment_ids") #bert layer bert_layer = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncase") d_L-12_H-768_A-12/1", trainable=False) pooled_output, sequence_output = bert_layer([input_word_ids, input_mask, segment_ids]) #Bert model #We are using only pooled output not sequence out. #If you want to know about those, please read https://www.kaggle.com/que stions-and-answers/86510 bert_model = Model(inputs=[input_word_ids, input_mask, segment_ids], out puts=pooled_output) In [16]: bert_model.summary() Model: "model" Layer (type) Output Shape Param # Connect ed to _____ input_word_ids (InputLayer) [(None, 128)] [] input_mask (InputLayer) [(None, 128)] [] segment_ids (InputLayer) [(None, 128)] keras_layer (KerasLayer) [(None, 768), 109482241 ['input _word_ids[0][0]', (None, 128, 768)] 'input _mask[0][0]', 'segme nt_ids[0][0]'] ______ Total params: 109,482,241 Trainable params: 0 Non-trainable params: 109,482,241 In [17]: | bert_model.output Out[17]: <KerasTensor: shape=(None, 768) dtype=float32 (created by layer 'keras_l ayer')> Part 3 - Tokenization In [18]: #getting Vocab file vocab_file = bert_layer.resolved_object.vocab_file.asset_path.numpy() do_lower_case = bert_layer.resolved_object.do_lower_case.numpy() In [20]: ! pip install sentencepiece Collecting sentencepiece Downloading sentencepiece-0.1.96-cp37-cp37m-manylinux_2_17_x86_64.many linux2014_x86_64.whl (1.2 MB) | 1.2 MB 12.5 MB/s Installing collected packages: sentencepiece Successfully installed sentencepiece-0.1.96 In [21]: import tokenization In [22]: tokenizer = tokenization.FullTokenizer(vocab_file,do_lower_case) Grader function 3 In [23]: #it has to give no error def grader_tokenize(tokenizer): out = **False** try: out=('[CLS]' in tokenizer.vocab) and ('[SEP]' in tokenizer.vocab except: out = **False** assert(out==True) return out grader_tokenize(tokenizer) Out[23]: True In [24]: X_train_tokens = list(map(lambda t: ['[CLS]'] + tokenizer.tokenize(t) + ['[SEP]'], X_train)) $X_{\text{test_tokens}} = \text{list}(\text{map}(\text{lambda} \ \text{t:} ['[CLS]'] + \text{tokenizer.tokenize}(\text{t}) +$ ['[SEP]'], X_test)) In [25]: | for i in range(len(X_train_tokens)): offby = max_seq_length - len(X_train_tokens[i]) **if** offby>0: X_train_tokens[i] = np.array(X_train_tokens[i] + ['[PAD]']*offby) else: X_train_tokens[i] = np.array(X_train_tokens[i][:max_seq_length-1] + ["[SEP]"]) In [26]: | for i in range(len(X_test_tokens)): offby = max_seq_length - len(X_test_tokens[i]) if offby>0: X_test_tokens[i] = np.array(X_test_tokens[i] + ['[PAD]']*offby) X_test_tokens[i] = np.array(X_test_tokens[i][:max_seq_length-1] + [" [SEP]"]) In [27]: | train_tokens = np.array(list(map(tokenizer.convert_tokens_to_ids, X_trai n_tokens))) test_tokens = np.array(list(map(tokenizer.convert_tokens_to_ids, X_test _tokens))) In [28]: | train_masks = np.zeros((train_tokens.shape[0], max_seq_length)) test_masks = np.zeros((test_tokens.shape[0],max_seq_length)) for k in range(len(train_tokens)): for j in range(len(train_tokens[k])): if train_tokens[k][j]!=0: $train_masks[k][j] = 1$ for m in range(len(test_tokens)): for 1 in range(len(test_tokens[m])): if test_tokens[m][1]!=0: $test_masks[m][1] = 1$ In [29]: | train_segments = np.zeros((train_tokens.shape[0], train_tokens.shape[1])) test_segments = np.zeros((test_tokens.shape[0], test_tokens.shape[1])) In [30]: import pickle pickle.dump((X_train, train_tokens, train_masks, train_segments, y_train_), open('/content/drive/MyDrive/NLP/train_data.pkl', 'wb')) pickle.dump((X_test, test_tokens, test_masks, test_segments, y_test), open ('/content/drive/MyDrive/NLP/test_data.pkl','wb')) In [31]: import pickle X_train, X_train_tokens, X_train_mask, X_train_segment, y_train = pickle .load(open("/content/drive/MyDrive/NLP/train_data.pkl", 'rb')) X_test, X_test_tokens, X_test_mask, X_test_segment, y_test = pickle.load (open("/content/drive/MyDrive/NLP/test_data.pkl", 'rb')) **Grader Function 4** In [32]: | def grader_alltokens_train(): out = **False** if type(X_train_tokens) == np.ndarray: $temp_shapes = (X_train_tokens.shape[1] == max_seq_length)$ and (X_t) rain_mask.shape[1]==max_seq_length) and \ (X_train_segment.shape[1]==max_seq_length) segment_temp = not np.any(X_train_segment) mask_temp = np.sum(X_train_mask==0) == np.sum(X_train_tokens==0) no_cls = np.sum(X_train_tokens==tokenizer.vocab['[CLS]'])==X_tra in_tokens.shape[0] no_sep = np.sum(X_train_tokens==tokenizer.vocab['[SEP]'])==X_tra in_tokens.shape[0] out = temp_shapes and segment_temp and mask_temp and no_cls and no_sep else: print('Type of all above token arrays should be numpy array not list') out = **False** assert(out==True) return out grader_alltokens_train() Out[32]: True Grader Function 5 In [33]: def grader_alltokens_test(): out = **False** if type(X_test_tokens) == np.ndarray: temp_shapes = (X_test_tokens.shape[1]==max_seq_length) and (X_te st_mask.shape[1]==max_seq_length) and \ (X_test_segment.shape[1]==max_seq_length) segment_temp = not np.any(X_test_segment) mask_temp = np.sum(X_test_mask==0) == np.sum(X_test_tokens==0) no_cls = np.sum(X_test_tokens==tokenizer.vocab['[CLS]'])==X_test _tokens.shape[0] no_sep = np.sum(X_test_tokens==tokenizer.vocab['[SEP]'])==X_test _tokens.shape[0] out = temp_shapes and segment_temp and mask_temp and no_cls and no_sep else: print('Type of all above token arrays should be numpy array not list') out = **False** assert(out==True) return out grader_alltokens_test() Out[33]: True Part 4 - Getting Embeddings from BERT Model In [34]: | bert_model.input Out[34]: [<KerasTensor: shape=(None, 128) dtype=int32 (created by layer 'input_wo rd_ids')>, <KerasTensor: shape=(None, 128) dtype=int32 (created by layer 'input_ma</pre> <KerasTensor: shape=(None, 128) dtype=int32 (created by layer 'segment_</pre> ids')>] In [35]: bert_model.output Out[35]: <KerasTensor: shape=(None, 768) dtype=float32 (created by layer 'keras_1</pre> ayer')> In [36]: X_train_pooled_output=bert_model.predict([X_train_tokens,X_train_mask,X_ train_segment]) In [37]: | X_test_pooled_output=bert_model.predict([X_test_tokens, X_test_mask, X_test t_segment]) In [38]: | pickle.dump((X_train_pooled_output, X_test_pooled_output), open('/conten t/drive/MyDrive/NLP/final_output.pkl','wb')) In [39]: | X_train_pooled_output, X_test_pooled_output= pickle.load(open('/content/ drive/MyDrive/NLP/final_output.pkl', 'rb')) **Grader Function 6** #now we have X_train_pooled_output, y_train #X_test_pooled_ouput, y_test def greader_output(): assert(X_train_pooled_output.shape[1]==768) assert(len(y_train)==len(X_train_pooled_output)) assert(X_test_pooled_output.shape[1]==768) assert(len(y_test)==len(X_test_pooled_output)) assert(len(y_train.shape)==1) assert(len(X_train_pooled_output.shape)==2) assert(len(y_test.shape)==1) assert(len(X_test_pooled_output.shape)==2) return True greader_output() Out[40]: True Part 5 - Training a NN with 768 features In [41]: | from sklearn.metrics import roc_auc_score def auc(y_true,y_pred): return roc_auc_score(y_true, y_pred, average='micro') In [42]: | from tensorflow.keras.layers import Input, Dense, Activation, Dropout, L from tensorflow.keras.models import Model In [43]: import tensorflow as tf y_train = tf.keras.utils.to_categorical(y_train,2) y_test = tf.keras.utils.to_categorical(y_test,2) In [52]: initializer = tf.keras.initializers.he_normal() input_layer = Input(shape=(X_train_pooled_output.shape [1],),name='input_data') = Dense(20, activation='relu', kernel_initi alizer=initializer, name = 'Dense_1')(input_layer) = Dense(15, activation='relu', kernel_initi Layer2 alizer=initializer, name = 'Dense_2')(Layer1) Layer3 = Dense(10, activation='relu', kernel_initi alizer=initializer, name = 'Dense_3')(Layer2) = Dense(5, activation='relu', kernel_initia Layer4 lizer=initializer, name = 'Dense_4')(Layer3) = Dense(2, activation='softmax', kernel_ini tializer=initializer, name = 'output_layer_to_classify_with_softmax')(La yer4) = Model(inputs=input_layer,outputs=output) model model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001, b eta_1=0.9, beta_2=0.999, epsilon=1e-08), loss='categorical_crossentropy', metrics=[auc], run_eagerly= True) model.summary() Model: "model_3" Layer (type) Output Shape Param # ______ input_data (InputLayer) [(None, 768)] Dense_1 (Dense) (None, 20) 15380 315 Dense_2 (Dense) (None, 15) Dense_3 (Dense) (None, 10) 160 Dense_4 (Dense) (None, 5) 55 output_layer_to_classify_wi (None, 2) 12 th_softmax (Dense) ______ Trainable params: 15,922 Non-trainable params: 0 from tensorflow.keras.utils import plot_model In [53]: plot_model(model, to_file='NN for NLP Transfer Learning.png', show_shape s=**True**) Out[53]: input: [(None, 768)] input_data InputLayer [(None, 768)]output: (None, 768) input: Dense 1 Dense (None, 20) output: (None, 20) input: Dense 2 Dense (None, 15) output: (None, 15) input: Dense_3 Dense (None, 10) output: (None, 10) input: Dense Dense_4 output: (None, 5) input: (None, 5) output_layer_to_classify_with_softmax Dense (None, 2)output: In [54]: from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint, Early Stopping, ReduceLROnPlateau import datetime log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S" tensorboard_callback = TensorBoard(log_dir=log_dir, histogram_freq=1) es = EarlyStopping(monitor='val_auc', mode='max', verbose=1,patience=5) mc = ModelCheckpoint('NLP.h5', monitor='val_auc', mode='max', save_best_ only=**True**, verbose=1) reduce_lr = ReduceLROnPlateau(monitor='val_auc', factor=0.8, patience=2, verbose=0) callback_list = [tensorboard_callback,es,mc,reduce_lr] In [55]: %load_ext tensorboard The tensorboard extension is already loaded. To reload it, use: %reload_ext tensorboard !rm -rf ./logs/ In [56]: In [57]: | model.fit(X_train_pooled_output,y_train,epochs=70,batch_size=512, validation_data=(X_test_pooled_output,y_test), callbacks = call back_list) Epoch 1/70 Epoch 00001: val_auc improved from -inf to 0.91188, saving model to NLP. - auc: 0.8890 - val_loss: 0.3687 - val_auc: 0.9119 - lr: 1.0000e-04 Epoch 2/70 0.9291 Epoch 00002: val_auc improved from 0.91188 to 0.93778, saving model to N LP.h5 - auc: 0.9291 - val_loss: 0.3378 - val_auc: 0.9378 - lr: 1.0000e-04 Epoch 3/70 Epoch 00003: val_auc improved from 0.93778 to 0.95035, saving model to N LP.h5 - auc: 0.9467 - val_loss: 0.2970 - val_auc: 0.9504 - lr: 1.0000e-04 Epoch 4/70 Epoch 00004: val_auc improved from 0.95035 to 0.95708, saving model to N LP.h5 - auc: 0.9554 - val_loss: 0.2762 - val_auc: 0.9571 - lr: 8.0000e-05 Epoch 5/70 0.9607 Epoch 00005: val_auc improved from 0.95708 to 0.96264, saving model to N - auc: 0.9607 - val_loss: 0.2615 - val_auc: 0.9626 - lr: 8.0000e-05 Epoch 6/70 0.9648 Epoch 00006: val_auc improved from 0.96264 to 0.96515, saving model to N - auc: 0.9648 - val_loss: 0.2462 - val_auc: 0.9651 - lr: 6.4000e-05 Epoch 7/70 0.9677 Epoch 00007: val_auc improved from 0.96515 to 0.96743, saving model to N LP.h5 - auc: 0.9677 - val_loss: 0.2357 - val_auc: 0.9674 - lr: 6.4000e-05 Epoch 8/70 Epoch 00008: val_auc improved from 0.96743 to 0.96992, saving model to N LP.h5 - auc: 0.9697 - val_loss: 0.2285 - val_auc: 0.9699 - lr: 5.1200e-05 Epoch 9/70 0.9715 Epoch 00009: val_auc did not improve from 0.96992 - auc: 0.9715 - val_loss: 0.2257 - val_auc: 0.9697 - lr: 5.1200e-05 Epoch 10/70 0.9725 Epoch 00010: val_auc improved from 0.96992 to 0.97185, saving model to N LP.h5 - auc: 0.9725 - val_loss: 0.2181 - val_auc: 0.9718 - lr: 4.0960e-05 Epoch 11/70 Epoch 00011: val_auc improved from 0.97185 to 0.97338, saving model to N LP.h5 - auc: 0.9734 - val_loss: 0.2145 - val_auc: 0.9734 - lr: 4.0960e-05 Epoch 12/70 0.9741 Epoch 00012: val_auc improved from 0.97338 to 0.97421, saving model to N - auc: 0.9741 - val_loss: 0.2127 - val_auc: 0.9742 - lr: 3.2768e-05 Epoch 13/70 0.9748 Epoch 00013: val_auc improved from 0.97421 to 0.97438, saving model to N - auc: 0.9748 - val_loss: 0.2087 - val_auc: 0.9744 - lr: 3.2768e-05 Epoch 14/70 0.9754 Epoch 00014: val_auc did not improve from 0.97438 - auc: 0.9754 - val_loss: 0.2078 - val_auc: 0.9740 - lr: 2.6214e-05 Epoch 15/70 0.9758 Epoch 00015: val_auc improved from 0.97438 to 0.97538, saving model to N LP.h5 - auc: 0.9758 - val_loss: 0.2065 - val_auc: 0.9754 - lr: 2.6214e-05 Epoch 16/70 Epoch 00016: val_auc improved from 0.97538 to 0.97545, saving model to N LP.h5 - auc: 0.9761 - val_loss: 0.2039 - val_auc: 0.9755 - lr: 2.0972e-05 Epoch 17/70 0.9764 Epoch 00017: val_auc did not improve from 0.97545 - auc: 0.9764 - val_loss: 0.2027 - val_auc: 0.9754 - 1r: 2.0972e-05 Epoch 18/70 Epoch 00018: val_auc improved from 0.97545 to 0.97571, saving model to N LP.h5 - auc: 0.9766 - val_loss: 0.2017 - val_auc: 0.9757 - lr: 1.6777e-05 Epoch 19/70 0.9767 Epoch 00019: val_auc improved from 0.97571 to 0.97596, saving model to N - auc: 0.9767 - val_loss: 0.2007 - val_auc: 0.9760 - lr: 1.6777e-05 Epoch 20/70 0.9769 Epoch 00020: val_auc did not improve from 0.97596 - auc: 0.9769 - val_loss: 0.2005 - val_auc: 0.9757 - lr: 1.3422e-05 Epoch 21/70 0.9771 Epoch 00021: val_auc improved from 0.97596 to 0.97620, saving model to N LP.h5 - auc: 0.9771 - val_loss: 0.1993 - val_auc: 0.9762 - lr: 1.3422e-05 0.9772 Epoch 00022: val_auc improved from 0.97620 to 0.97627, saving model to N - auc: 0.9772 - val_loss: 0.1988 - val_auc: 0.9763 - lr: 1.0737e-05 Epoch 23/70 0.9773 Epoch 00023: val_auc did not improve from 0.97627 - auc: 0.9773 - val_loss: 0.1986 - val_auc: 0.9762 - lr: 1.0737e-05 Epoch 24/70 0.9774 Epoch 00024: val_auc improved from 0.97627 to 0.97649, saving model to N - auc: 0.9774 - val_loss: 0.1979 - val_auc: 0.9765 - lr: 8.5899e-06 Epoch 25/70 0.9776 Epoch 00025: val_auc improved from 0.97649 to 0.97663, saving model to N - auc: 0.9776 - val_loss: 0.1975 - val_auc: 0.9766 - lr: 8.5899e-06 Epoch 26/70 0.9776 Epoch 00026: val_auc improved from 0.97663 to 0.97679, saving model to N LP.h5 - auc: 0.9776 - val_loss: 0.1973 - val_auc: 0.9768 - lr: 6.8719e-06 Epoch 27/70 Epoch 00027: val_auc improved from 0.97679 to 0.97689, saving model to N - auc: 0.9777 - val_loss: 0.1972 - val_auc: 0.9769 - lr: 6.8719e-06 Epoch 28/70

0.9777

0.9778

0.9778

0.9777

Epoch 29/70

Epoch 30/70

Epoch 31/70

Epoch 32/70

Epoch 00032: early stopping

In [58]: %tensorboard --logdir logs/fit

inflating: test.csv

Out[57]: <keras.callbacks.History at 0x7f68e2e45d90>

In [59]: ! unzip /content/test.csv-20211125T113253Z-001.zip

Archive: /content/test.csv-20211125T113253Z-001.zip

Epoch 00028: val_auc did not improve from 0.97689

Epoch 00029: val_auc did not improve from 0.97689

Epoch 00030: val_auc did not improve from 0.97689

Epoch 00031: val_auc did not improve from 0.97689

Epoch 00032: val_auc did not improve from 0.97689

- auc: 0.9778 - val_loss: 0.1963 - val_auc: 0.9767 - lr: 4.3980e-06

- auc: 0.9777 - val_loss: 0.1960 - val_auc: 0.9768 - lr: 4.3980e-06

- auc: 0.9779 - val_loss: 0.1959 - val_auc: 0.9768 - lr: 3.5184e-06

- auc: 0.9777 - val_loss: 0.1969 - val_auc: 0.9766 - lr: 5.4976e-06

In [8]:

In [10]:

Out[10]:

import pandas as pd
import numpy as np

reviews.head()

import tensorflow as tf
import tensorflow_hub as hub

from tensorflow.keras.models import Model

The tea was of great quality and it tasted lik...

My cat loves this. The pellets are nice and s...

In [9]: reviews = pd.read_csv('/content/drive/MyDrive/NLP/preprocessed.csv')

Text Score len

1 30

1 31

In [60]: test_df = pd.read_csv('/content/test.csv') In [61]: test_df.head() Out[61]: Text Just opened Greenies Joint Care (individually ... ${\bf 1} \quad \text{This product rocks :) My mom was very happy w/...}$ The product was fine, but the cost of shipping... 3 I love this soup. It's great as part of a meal... Getting ready to order again. These are great \dots In [62]: import re as re def remove_tags(string):
 result = re.sub('<.*?>','',string) return result In [63]: def transfer(df, model, max_seq_length, bert_model):
 df['Text'] = df['Text'].apply(lambda cw : remove_tags(cw)) = np.array(df['Text']) pre_token = list(map(lambda t: ['[CLS]'] + tokenizer.tokenize(t) + [
'[SEP]'], test)) for i in range(len(pre_token)): offby = max_seq_length - len(pre_token[i]) if offby>0: pre_token[i] = np.array(pre_token[i] + ['[PAD]']*offby) pre_token[i] = np.array(pre_token[i][:max_seq_length-1] + ["[SEP]"]) tokens_array = np.array(list(map(tokenizer.convert_tokens_to_ids, pr e_token))) = np.zeros((tokens_array.shape[0],max_seq_length)) masks_array for k in range(len(tokens_array)): for j in range(len(tokens_array[k])): if tokens_array[k][j]!=0: $masks_array[k][j] = 1$ segments_array = np.zeros((tokens_array.shape[0],tokens_array.shape[1 pooled_output = bert_model.predict([tokens_array,masks_array,segments _array]) predictions = model.predict(pooled_output) # Generate arg maxes for predictions
classes = np.argmax(predictions, axis = 1) unique, counts = np.unique(classes, return_counts=True)
return dict(zip(unique, counts)) In [64]: # count of datapoints classified as 1 or 0 in the form of dictionary out = transfer(test_df, model, max_seq_length, bert_model) print(out) {0: 36, 1: 316} **Observations:** 1. Out of 352 datapoints in the test dataset, model classified 36 points as 0 and 316 datapoints The following are the steps performed while solving this assignment: 2. Preprocessing the reviews csv file by removing all the html tags, assigning the score values as 1 if score is >3 and score value as 0 if score is <=2. Also dropping all the rows if the score value is 3. 3. Splitting into train and test data which gives X_train, X_test, y_train and y_test and checking if train and test data have the same distribution. 4. Creating tokens, masked array and segment arrays for X_{train} and X_{test} . 5. Getting Embeddings from BERT Model and extracting pooled_output, out of two outputs pooled_output, sequence_output which it produces. 6. Training the Neural Network using the embeddings obtained using BERT model without overfitting and underfitting. 7. Then, predicting the output for the test data which has not seen by the model. 8. Extracting the number of occurences of classes 0 or 1.