Pseudorandom Functions (PRF)
Last Time: Pseudorandom Generators (PRGs)
short input long output
security: when input (seed) chosen uniformly, output "looks uniform"
Can extend a PRG (FIFTY idea)
but no matter what, output length is polynomial function of input length (e.g. 6:50,132 -> 50,1322)
$\frac{\lambda}{ E } \xrightarrow{\zeta} \frac{\lambda^2}{ E }$
let's get greedy! from a \lambda-bit seed, get 2\lambda bits that "look uniform"
$\begin{array}{c} \searrow & ?? \\ \longleftarrow & \end{array}$
Change the game: poly-time also doesn't have time to read / write 2 bits
instead, ask for RANDOM ACCESS to long 22-length date
given seed k, index x, compute xth bit of this long string block
could be a poly-time computation

Det: A pseudorandom function F: {0,1} × {0,1} in -> {0,13out Seed/ "index" "block" Idea: Given $k \leftarrow \{0,1\}^2$, it defines a very long string F(k,000--) || F(k,00--01) ||--- || F(k,11---) $F(k,000\cdots)$ $F(k,000\cdots)$ $F(k,000\cdots)$ Security! random access to this huge string "looks like" random access to uniformly chosen string formal security def: F is a sewie PRF if: $|x = 50,13^{\times}|$ QUERY($x \in 50,13^{\text{in}}$):

return F(k,x) $|x = 50,13^{\text{in}}|$ $|x = 50,13^{\text{out}}|$ $|x = 50,13^{\text{out}}|$ return cache [x] = 50,13 out Why PREJ? fix k, (currying) then F(k, x): {0,1}in -> {0,1}out F(k, x) "looks like" randomly selected func {0,1}m→ {0,1}out Attacks:

A bad PRF: $F(k,x) = G(k) \oplus x$ where G is a PRG Hint: break F not G, break F even if G is an awesome PRG dea: this is (pseudo) OTP, so make 2 queries, both will use same k (two-time pad?)

distinguisher

choose x, + xz arbitrarily Z, = QUERY (x,) $Z_z = QUERY(x_z)$ return Z, & ZZ = X, & XZ

in PRF "real" "rand" Z, = G(h) # X, Z = {0,1} ~ zz = 6(6) 0 x2

in PRF

Proviput TRUE) Pr [output TRUE] $= \left\{ r \left[Z_2 = Z_1 \oplus X, \phi_{X_2} \right] \right\}$ = /2014