Problem 1:

Consider h(z) = p(z) if $z \in \mathbb{C}$, and $h(z) = \infty$ if $z = \infty$, with $p(z) = a_0 + a_1 z + \ldots + a_n z^n$ a nonconstant polynomial of degree n.

Then define k(z)=1/p(z) if $p(z)\in\mathbb{C}$, and k(z)=0 if $z=\infty$, and define g(z)=k(1/z) when $z\neq 0$ and g(z)=0 when z=0.

Now, when $|z| < \infty$, h is complex-differentiable at z because it is a polynomial.

If $z = \infty$, then $h(z) = \infty$. First, note that h has exclusively non-infinite values except at ∞ , so on any neighborhood of ∞ , h takes noninfinite values on that neighborhood. Next, we want to show that k is complex differentiable at ∞ . So, we want g to be complex differentiable at 0; consider g at 0; g(0) = 0. Elsewhere, $g(\zeta) = k(1/\zeta) = 1/p(1/\zeta) = 1/(a_0 + a_1 z^{-1} + a_2 z^{-2} \dots a_m z^{-n})$.

0. Elsewhere, $g(\zeta) = k(1/\zeta) = 1/p(1/\zeta) = 1/(a_0 + a_1 z^{-1} + a_2 z^{-2} \dots a_n z^{-n})$. Except at 0, this means that $g(\zeta) = \frac{z^n}{a_0 z^n + a_1 z^{n-1} + \dots + a_n}$. This is a holomorphic function except possibly at 0 (where it wasn't explicitly defined). However, the singularity here is removable, and this is clear (the limit as $z \to 0$ of that is just 0...so it's bounded around 0, so the singularity's removable). So, g is complex-differentiable at 0, so k is complex-differentiable at ∞ , so k is complex-differentiable at ∞ .

...So h is complex-differentiable everywhere.

Problem 2:

Let $\Omega \subset \mathbb{C}$ be bounded, $f_n \in C(\overline{\Omega})$, f_n all holomorphic on Ω , and $f_n \to f$ uniformly on $\partial \Omega$ where f is holomorphic on Ω .

Let $\epsilon > 0$. Pick N such that for all $n \geq N$, $|f_n - f| < \epsilon$ on $\partial \Omega$.

Now, $f_n - f$ is holomorphic on a domain; the maximum principles apply. So, $|f_n - f| < \epsilon$ for all $z \in \Omega$ (And also, for all $z \in \overline{\Omega}$) if $n \ge N$.

So for all $\epsilon > 0$ there is an N such that for all $n \geq N$, $|f_n - f| < \epsilon$ on $\overline{\Omega}$. That is, $f_n \to f$ uniformly on $\overline{\Omega}$, as desired.

Problem 3:

Consider e^{z^2} .

First, the 99th derivative of this at 0 is $\frac{99!}{2\pi i} \int\limits_{|z|=1}^{} \frac{e^{z^2}}{z^{100}} dz$. Now, $\frac{e^{z^2}}{z^{100}}$ is holomorphic except at 0; we can apply the residue theorem;

$$\frac{99!}{2\pi i} \int_{|z|=1}^{\infty} \frac{e^{z^2}}{z^{100}} dz = 99! \operatorname{Res}_0 \frac{e^{z^2}}{z^{100}}$$

An expansion of $\frac{e^{z^2}}{z^{100}}$ is $\sum_{n=0}^{\infty} \frac{z^{2n-100}}{n!}$. This has no 1/z term; thus, the residue of it is 0. That is,

$$\frac{99!}{2\pi i} \int_{|z|=1}^{\infty} \frac{e^{z^2}}{z^{100}} dz = 99! \operatorname{Res}_0 \frac{e^{z^2}}{z^{100}}$$
$$= 0$$

So the 99th derivative of e^{z^2} at 0 is 0. Next, the 100th derivative of e^{z^2} at 0 is $\frac{100!}{2\pi i} \int\limits_{|z|=1}^{e^{z^2}} \frac{e^{z^2}}{z^{101}} dz$. Now, $\frac{e^{z^2}}{z^{101}}$ is holomorphic except at 0; we can apply the residue theorem;

$$\frac{100!}{2\pi i} \int_{|z|=1}^{\infty} \frac{e^{z^2}}{z^{101}} dz = 100! \operatorname{Res}_0 \frac{e^{z^2}}{z^{101}}$$

An expansion of $\frac{e^{z^2}}{z^{101}}$ is $\sum_{n=0}^{\infty} \frac{z^{2n-101}}{n!}$. The coefficient attached to the 1/z term is 1/(51!); thus, the residue of it is 1/(51!). That is,

$$\frac{100!}{2\pi i} \int_{|z|=1}^{\infty} \frac{e^{z^2}}{z^{101}} dz = 100! \text{Res}_0 \frac{e^{z^2}}{z^{101}}$$
$$= 100! / 51!$$

So the 100th derivative of e^{z^2} at 0 is 100!/51!.

Problem 4:

(Note: I wikipedia'd this to make sure I got the right formula. I got it right the first time; hopefully walking through the logic is convincing enough that I'm not just copying from wikipedia.)

Let $P = (p_1, p_2, p_3) \in S^2$ be a point on the sphere in \mathbb{R}^3 . We define the stereographic projection of P onto \mathbb{C} by $SP : S^2 \to \mathbb{C}$ using the following logic:

First, we choose an argument in $[0, 2\pi)$ to be the same as the argument of the complex number (p_1, p_2) in $[0, 2\pi)$; this is because the line we use to define the stereographic projection goes in the same direction as (p_1, p_2) .

Next, we define a magnitude using similar triangles: we say that r = $\frac{\sqrt{p_1^2+p_2^2}}{1-p_3}$. This works in both the case where $p_3 \geq 0$ and $p_3 < 0$.

So,
$$SP(P) = \frac{\sqrt{p_1^2 + p_2^2}}{1 - p_3} e^{i\arg(p_1, p_2)}$$
.

That is,
$$SP(P) = \frac{\sqrt{p_1^2 + p_2^2}}{1 - p_3} \frac{p_1}{\sqrt{p_1^2 + p_2^2}} + i \frac{\sqrt{p_1^2 + p_2^2}}{1 - p_3} \frac{p_2}{\sqrt{p_1^2 + p_2^2}}$$

Simplifying, $SP(P) = \frac{p_1}{1 - p_3} + i \frac{p_2}{1 - p_3}$.

Problem 5:

Let $h: \mathbb{C} \to \mathbb{C}$ be a real-differentiable function.

$$\overline{h_z} = \frac{1}{2}\overline{h_x - ih_y}$$

$$= \frac{1}{2}\overline{h_x} - \overline{ih_y}$$

$$= \frac{1}{2}\overline{h_x} + i\overline{h_y}$$

$$= \overline{h_{\overline{z}}}$$

As desired.

Problem 6:

Let z_1, z_2 be fixed on the unit circle in \mathbb{R}^2 . Define $\alpha(z): D_1(0) \to \mathbb{R}$ to be the angle between the line segments $\overline{zz_1}$ and $\overline{zz_2}$. That is, $\alpha(z) = \arg(z_1 - z) - \arg(z_2 - z)$ Because α is continuous and is never zero, this means that α is either strictly positive or strictly negative. Without loss of generality, we can take α strictly positive, by relabeling points.

Class

We know that $\arg(z)$ is harmonic (where it matters) from the discussion in class*. So because sums/differences of harmonic functions are harmonic, the result is clear.

*(We know that $\log(z) = \log(|z|) + i\arg(z)$ is holomorphic except at 0...because $D_1(0)$ is simply connected, there's a branch of log that $\arg(z)$ is harmonic on...which is good enough.)

Problem 7:

Let Ω be an annulus, $u(z) = \log(|z|)$ for all $z \in \Omega$.

Let f be a holomorphic function on Ω with u = Re(f).

Then $u_x = \frac{x}{x^2+y^2}$ and $u_y = \frac{y}{x^2+y^2}$. But this means that $v_y = \frac{x}{x^2+y^2}$ and $v_x = -\frac{y}{x^2+y^2}$.

However, that system of equations is inconsistent; integrating v_y with respect to y yields $\arctan(y/x) + g(x)$ for some g, and differentiating this with respect to x yields $g'(x) + y/x\frac{1}{y^2+x^2}$, which is necessarily inconsistent with our given v_x .

So u cannot have been the real part of f. That is, u isn't the real part of any holomorphic function.

Problem 8:

Let u and u^2 be harmonic. Define $v = u^2 - u$.

Then:

$$v_{xx} = 2(u_x)^2 + u_{xx}(2u - 1)$$

$$v_{yy} = 2(u_y)^2 + u_{yy}(2u - 1)$$

$$v_{xx} + v_{yy} = 0$$

$$= 2(u_x)^2 + u_{xx}(2u - 1) + 2(u_y)^2 + u_{yy}(2u - 1)$$

$$= 2(u_x)^2 + 2(u_y)^2 \text{ (Cancellation because u is harmonic.)}$$

Because $(u_x)^2$ and $(u_y)^2$ must be nonnegative, this means that u_x and u_y are both identically zero.

So, u is constant.

Problem 9:

Let $u \geq 0$ be harmonic on $D_R(0)$ with R > 1 and u(0) = 1. Let r < 1.

Problem 10:

Consider $\cos(\sin(z))$.

By laboriously taking derivatives (that is, by applying wolframalpha rigorously), we get

$$a_0 = \cos(\sin(0)) = 1$$

$$a_1 = \sin(\sin(0))(-\cos(0)) = 0$$

$$a_2 = \frac{1}{2}(\sin(0)\sin(\sin(0)) - \cos^2(0)\cos(\sin(0))) = \frac{-1}{2}$$

$$a_3 = \frac{1}{6}(\sin(\sin(0))\cos^3(0) + 3\sin(0)\cos(0)\cos(\sin(0)) + \sin(\sin(0))\cos(0)) = 0$$

$$a_4 = \frac{5}{24}$$

Problem 11:

Let Ω be a "standard" open set, let $a_0, a_1, \ldots a_n \in \Omega$. Let $h \in \mathcal{O}(G)$, with G containing $\overline{\Omega}$. Define $w(z) = \prod_{j=0}^{n} (z - a_j)$. Consider $P(\xi) = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{h(z)}{w(z)} \frac{w(z) - w(\xi)}{z - \xi} dz$

Consider
$$P(\xi) = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{h(z)}{w(z)} \frac{w(z) - w(\xi)}{z - \xi} dz$$

$$\frac{1}{2\pi i} \int_{\partial\Omega} \frac{h(z)}{w(z)} \frac{w(z) - w(\xi)}{z - \xi} dz = \frac{1}{2\pi i} \int_{\partial\Omega} \frac{h(z)}{z - \xi} - \frac{h(z)w(\xi)}{w(z)(z - \xi)} dz$$

$$= h(\xi) - \frac{1}{2\pi i} \int_{\partial\Omega} \frac{h(z)w(\xi)}{w(z)(z - \xi)} dz$$

$$= h(\xi) - w(\xi) \frac{1}{2\pi i} \int_{\partial\Omega} \frac{h(z)}{w(z)(z - \xi)} dz$$

$$= h(\xi) - w(\xi) \frac{1}{2\pi i} \int_{\partial\Omega} \frac{h(z)}{w(z)(z - \xi)} dz$$

Note that at each a_i , w vanishes; so, $P(a_i) = h(a_i)$ for all j.

Next, note that $P(\xi)$ is a polynomial of degree at most n; it is the sum of a constant term and a polynomial of degree n multiplied by some constant.