1. Choose the equation of the function graphed below.

A.
$$f(x) = \sqrt{x+12} - 6$$

B.
$$f(x) = -\sqrt{x - 12} - 6$$

C.
$$f(x) = -\sqrt{x+12} - 6$$

D.
$$f(x) = \sqrt{x - 12} - 6$$

- E. None of the above
- 2. Choose the graph of the equation below.

C.

- D.
- E. None of the above.
- 3. What is the domain of the function below?

$$f(x) = \sqrt[5]{4x+5}$$

- A. The domain is $(-\infty, a]$, where $a \in [-1, -0.54]$
- B. $(-\infty, \infty)$
- C. The domain is $[a, \infty)$, where $a \in [-1.2, -0.77]$
- D. The domain is $[a, \infty)$, where $a \in [-3.52, -1.11]$
- E. The domain is $(-\infty, a]$, where $a \in [-1.34, -0.89]$
- 4. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{8x-8} - \sqrt{9x-4} = 0$$

- A. $x \in [-5, 0]$
- B. $x \in [-13, -6]$
- C. All solutions lead to invalid or complex values in the equation.
- D. $x_1 \in [-5, 0]$ and $x_2 \in [-1, 4]$
- E. $x_1 \in [-1, 3]$ and $x_2 \in [-1, 4]$

5. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{72x^2 + 6} - \sqrt{42x} = 0$$

- A. $x \in [0.24, 0.32]$
- B. $x_1 \in [0.24, 0.32]$ and $x_2 \in [-0.22, 0.46]$
- C. $x \in [0.28, 0.35]$
- D. All solutions lead to invalid or complex values in the equation.
- E. $x_1 \in [-0.43, -0.2]$ and $x_2 \in [-0.51, 0.09]$