Изчисляване на ограждащите конструкции и елементи на влажностен режим (евентуален кондензационен пад)

1. Изчисляване на влажностен режим на елементите на конструкцията на сгради.

Сградните ограждащи елементи на конструкцията на отопляеми сгради (помещения) с продължителна относителна влажност на въздуха под 70 % се изчисляват на влажностен режим (евентуален кондензационен пад).

Външните ограждащи елементи на конструкцията, както и вътрешните елементи, граничещи с неотопляеми пространства, се изчисляват на евентуален кондензационен пад (кондензирана влага). Подовете и стените, граничещи със земята, не се изчисляват на кондензационен пад.

Образуването на конденз по вътрешните повърхности на външните ограждащи елементи на конструкцията се предотвратява, ако техният коефициент на топлопреминаване удовлетворява условието:

$$U \le \frac{\alpha_i \left(\theta_i - \theta_s\right)}{\theta_i - \theta_e}, \quad W/m^2K$$
 (1.1),

където:

 θ_{s} е температурата на оросяване (°С);

 $\theta_{\text{e}}\,$ – изчислителна външна температура за съответната климатична зона (°C);

 α_i - коефициентът на топлопредаване на вътрешната повърхност.

Кондензиралите водни пари във вътрешността на ограждащите елементи на конструкцията не причиняват вреда на структурата на материала, когато:

1. общата влажност на материала (x_{uk}') , в структурата на който са кондензирали водни пари, в края на изчислителния период на дифузионно навлажняване е по-малка от максимално допустимата влажност (x_{max}) :

$$x'_{uk} = x'_r + \Delta x'_{dif} \le x_{max}$$
 (1.2),

където:

 x_{r}' е експлоатационната влажност, %;

 $\Delta x_{
m dif}$ - влажността на строителната конструкция в резултат на дифузионното навлажняване, %;

2. количеството кондензирали водни пари в резултат на дифузионното навлажняване Δx_{dif} се изпарява през периода на съхнене на строителната конструкция.

Стойностите на x_r ' и на x_{max} за различни строителни продукти (материали) са съгласно табл. 2 на приложение N = 4.

Не се допуска влагането на строителни продукти без данни за и в зони с очакван кондензационен пад.

Влажността на ограждащите елементи на конструкцията, в резултат на дифузионното навлажняване Δx_{dif} се изчислява съгласно тази част от методиката.

За сгради без климатични инсталации продължителността на периода на дифузионно навлажняване t_k и продължителността на периода на изпарение t_u на кондензираната влага в ограждащите конструкции и елементи се приемат по 1440 h. За тези сгради съхненето се изчислява при следните условия:

Източник: Правно-информационни системи "Сиела"

1.
$$\theta_{i} = \theta_{e} = 18 \, ^{\circ}\text{C};$$

2.
$$\varphi_i = \varphi_e = 65 \%;$$

където $^{\phi_i}$ и $^{\phi_e}$ са съответно относителната влажност на вътрешния и външния въздух.

За сгради с климатични инсталации или за сгради, в които генерирането на водна пара е технологично присъщо, съхненето на ограждащите конструкции и елементи се изчислява за действителната температура и относителна влажност на вътрешния и външния въздух, определени със заданието за проектиране.

Дифузионното навлажняване на сградните ограждащи конструкции и елементи през периода на кондензация се изчислява при следните условия:

- 1. при външна относителна влажност 90 %;
- 2. при температура на външния въздух θ_{e} :
- а) $^{\theta_e}$ = 5 °C, когато външната проектна температура е по-висока от минус 8,5 °C;
- б) $\theta_e = -5$ °C, когато външната проектна температура е в границите от минус 8,5 °C до минус 14,5 °C;
 - в) $\theta_e = -10$ °C, когато външната проектна температура е по-ниска от минус 14,5 °C.

За нови сгради, данните за температурата и относителната влажност на вътрешния въздух за периода на навлажняване се определят в заданието за проектиране.

Въздухопропускливостта и водонепропускливостта на прозорци и врати трябва да удовлетворяват най-малко:

- 1. изискванията за клас 1 за въздухопропускливост съгласно БДС EN 12207 и за водонепропускливост съгласно БДС EN 1027, при свръхналягане с разлика 150 Ра, или
- 2. изискванията за клас 2 за въздухопропускливост съгласно БДС EN 12207 и за водонепропускливост съгласно БДС EN 1027, при свръхналягане с разлика 300 Ра, или
- 3. изискванията за клас 3 за въздухопропускливост съгласно БДС EN 12207 и за водонепропускливост съгласно БДС EN 1027, при свръхналягане с разлика 600 Pa.

Горепосочените изисквания по т. 1 се прилагат за прозорци и балконски врати в сгради с ниско застрояване, както и за външни врати на първия или втория етаж в сгради.

Горепосочените изисквания по т. 2 се прилагат за прозорци и балконски врати в сгради с ниско и средно застрояване, както и за външни врати на третия или четвъртия етаж в сгради.

Горепосочените изисквания по т. 3 се прилагат за прозорци и балконски врати в сгради с високо застрояване, както и за външни врати на петия или по-висок етаж в сгради. Изискванията за водонепропускливост не се прилагат за прозорци и врати, чиято външна повърхност не е изложена на метеорологични въздействия.

2. Изчисляване на съпротивлението на дифузно преминаване на водна пара на слой строителен материал.

Съпротивлението на дифузионно преминаване на водна пара (z) в m²hPa/kg на един слой строителен материал се изчислява за стандартна температура 10 °C по формулата:

$$z = 1.5.10^{\circ}.\mu.d$$
 (2.1),

където:

μ е числото на дифузионно съпротивление на водна пара;

d – дебелината на слоя строителен материал, m.

При няколко слоя строителни материали, подредени един зад друг, съпротивлението на дифузионно преминаване на водна пара z на ограждащата конструкция или елемент се определя по формулата:

$$z = 1.5.10^6 (\mu_1.d_1 + \mu_2.d_2 + \dots + \mu_n.d_n)$$
 (2.2),

където:

 d_1, d_2, d_n са дебелините на отделните слоеве строителни материали, m;

 $\mu_1, \mu_2,, \mu_n$ - съответните числа на дифузионно съпротивление на водна пара съгласно табл. 1 на приложение № 4.

2. Плътността на дифузионния поток на водна пара (g) в $kg/(m^2h)$ без кондензационен пад се изчислява по формулата:

$$g = \frac{(p_i - p_e)}{z} \tag{2.3},$$

където:

 p_i е парциалното налягане на вътрешната повърхност на ограждащата конструкция или елемент, Ра;

 $\mathcal{P}_{\varepsilon}$ - парциалното налягане на външната повърхност на ограждащата конструкция или елемент, Pa .

- 2.1. Изчисляването на евентуален кондензационен пад в многослойни ограждащи конструкции и елементи с хомогенни слоеве е показано на фиг. 2.1 и 2.2. То се състои в следното:
- 2.1.1. Ограждащата конструкция или елемент се изобразява мащабно, като по абсцисата се нанасят слоевете на строителните материали, представени с мащаба на дифузионно-еквивалентните дебелини на въздушните прослойки, определени по формулата $s_d = \mu d$, а върху ординатата температурите на повърхностите на отделните слоеве, определени, както следва:
- 2.1.2. Температурата на вътрешната повърхност на ограждащата конструкция или елемент (θ_{0i}) в °C се определя по формулата:

$$\theta_{0i} = \theta_i - R_{zi} \cdot q_{(2.4)},$$

където

 θ_i е температурата на вътрешния въздух, °С;

 R_{zi} - съпротивлението на топлопредаване на вътрешната повърхност, което се определя съгласно БДС EN ISO 6946;

q - плътността на топлинния поток (W/m²), който се определя по формулата:

$$q = U(\theta_i - \theta_e)$$
 (2.5),

където U е коефициентът на топлопреминаване на строителния елемент, $W/(m^2K)$.

3.1.2. Температурите на границите между отделните хомогенни слоеве във вътрешността на ограждащата конструкция или елемент се определят, както следва:

$$\theta_{1} = \theta_{0i} - R_{1}.q$$

$$\theta_{2} = \theta_{1} - R_{2}.q$$

$$\vdots$$

$$\theta_{n} = \theta_{n-1} - R_{n}.q \quad (2.6),$$

където $\theta_1, \theta_2, \dots \theta_n$ са температурите на границите на отделните слоеве (номерирани по посоката на топлинния поток – отвътре навън), °С.

Фиг. 2.1. Схема на кривата на температурното разпределение

Върху напречното сечение на мащабно изобразените ограждаща конструкция или елемент се нанася диаграмата на максималното налягане на водната пара P_{\max} , което се отчита от табл. 2.1 в тази част от методиката в съответствие с температурното разпределение. Ходът на парциалното налягане се представя в дифузионната диаграма с права, която съединява налягането P_i и налягането P_i от двете повърхнини на ограждащата конструкция или елемент.

Фиг. 2.2. Схема на максималното и парциалното налягане през многослойна ограждаща конструкция или елемент, съответстващи на температурата, за изчисляване на евентуален кондензационен пад

Ако двете линии не се допират или пресичат, не съществуват условия за кондензация на

водни пари (при приетите изчислителни параметри на външния и вътрешния въздух (фиг. 2.2).

Ако линията, съответстваща на парциалното налягане, допре или пресече линията на максималното налягане, в ограждащата конструкция или елемент съществуват условия за кондензация на водни пари. Възможни са следните случаи:

- а) двете линии се допират в една, две или повече точки (фиг. 2.3 и 2.4); в тези случаи е възможен кондензационен пад съответно в една, две или повече равнини (на границата на съответните слоеве);
- б) двете линии се пресичат; в този случай от двете крайни точки на линията на парциалното налягане, намиращи се на вътрешната и външната повърхност на ограждащата конструкция или елемент, се прокарват тангенти към линията на максималното налягане, тъй като парциалното налягане на водната пара не може да бъде по-голямо от максималното налягане; точките на пресичане на тези тангенти с линията на парциалното налягане определят границите на зоната на кондензация, а хоризонталното разстояние между тях широчината на тази зона (фиг. 2.5).

Плътността на дифузионния поток g_i от помещението през ограждащата конструкция или елемент до равнината на конденза е:

$$g_i = \frac{p_i - p_{\text{max},w}}{z_i} \tag{2.7}.$$

Плътността на дифузионния поток g_e от равнината на кондензация навън е:

$$g_e = \frac{p_{\text{max},w} - p_e}{z_e} \tag{2.8}.$$

Количеството кондензирана влага W_k , което се отделя в равнината през периода на кондензация, се изчислява по формулата:

$$W_k = t_k (g_i - g_e) \tag{2.9}.$$

Плътността на дифузионния поток g_i о равнината на кондензация къ помещението е:

$$g_i = \frac{p_{\text{max,w}} - p_i}{z_i} \tag{2.10}$$

Плътността на дифузионния поток g_e о равнината на кондензация навън (и открито) е:

$$g_e = \frac{p_{\text{max,w}} - p_e}{z_e} \tag{2.11}$$

Изпареното количество кондензират влага W_u , което може да се отведе ограждащата конструкция или елементрез периода на изпаряване, изчислява, както следва:

$$W_u = t_u (g_i + g_e) \tag{2.12}$$

Фиг. 2.4а. Дифузия на водната пара с кондензационен пад в две равнини на ограждащата конструкция или елемент (между слоеве 1 и 2 и между слоеве 3 и 4)

Фиг. 2.4б. Дифузия на водната пара г време на изпарението сле кондензационен пад в две равнини в ограждащата конструкция или елемент

Плътността на дифузионния поток g_i от помещението през ограждащата конструкция или елемент до първата равнина на кондензация е:

$$g_i = \frac{p_i - p_{\text{max,wl}}}{z_1} \tag{2.13}.$$

Плътността на дифузионния поток g_zмежду първата и втората равнина на кондензация е:

$$g_z = \frac{p_{\text{max,wl}} - p_{\text{max,w2}}}{z_z}$$
 (2.14).

Плътността на дифузионния поток g_e от втората равнина на кондензация навън е:

$$g_{e} = \frac{p_{\text{max,w2}} - p_{e}}{z_{e}} \tag{2.15}$$

Количеството кондензирана влага W_k, което се образува в равнините 1 и 2 през периода на кондензация, се изчислява по формулите:

$$W_{k1} = t_k (g_i - g_z)$$
 (2.16),

$$W_{k2} = t_k (g_z - g_e) (2.17).$$

Плътността на дифузионния поток g_i първата равнина на кондензация къпомещението е:

$$g_i = \frac{p_{\text{max},w} - p_i}{z} \tag{2.18}$$

Плътността на дифузионния поток g_e втората равнина на кондензация навт (на открито) е:

$$g_e = \frac{p_{\text{max,w}} - p_e}{z}$$
 (2.19).

Изпареното количество кондензира: влага W_u , което може да бъде отведено ограждащата конструкция или елемен през периода на изпаряване, изчислява, както следва:

$$W_u = t_u (g_i + g_e) \tag{2.20}$$

Фиг. 2.5а. Дифузия на водната пара с кондензационен пад във вътрешността на ограждащата конструкция или елемент

Фиг. 2.5б. Дифузия на водната пара време на изпаряването сл кондензационен пад във вътрешността ограждащата конструкция или елемент

Плътността на дифузионния поток g_i от помещението до началото на зоната на кондензация е:

$$g_i = \frac{p_i - p_{\text{max,w1}}}{z_i}$$
 (2.21).

Плътността на дифузионния поток g_e от края на зоната на кондензация навън е:

$$g_{e} = \frac{p_{\max,w2} - p_{e}}{z_{e}} \tag{2.22}$$

Количеството кондензирана влага W_k , което се отделя в зоната през периода на кондензация, се изчислява по формулата:

$$W_k = t_k (g_i - g_e) \tag{2.23}.$$

Плътността на дифузионния поток g_i с средата на зоната на кондензация къ помещението е:

$$g_i = \frac{p_{\text{max,w}} - p_i}{z_i + 0.5 z_z}$$
 (2.24).

Плътността на дифузионния поток g_e с средата на зоната на кондензация навт (на открито) е:

$$g_e = \frac{p_{\text{max},w} - p_e}{0.5.z_z + z_e}$$
 (2.25).

Изпареното количество кондензна вла Wu, което може да се отведе о ограждащата конструкция или елемен през периода на изпаряване, се изчисляв както следва:

$$W_u = t_u (g_i + g_e) \tag{2.26}$$

Нарастването на влажността на материала в зоната на кондензация Δx_{dif} в % се изчислява по формулата:

$$\Delta x_{dif} = \frac{100.W_k}{d_z \cdot \rho} \tag{2.27}$$

където:

 W_k е количеството кондензирана влага, kg/m²;

 ${\rm d}_{z}$ - широчината на зоната на кондензация, m;

 ρ - плътността на материала в зоната на кондензация, kg/m^3 .

Таблица 2.1

Температура		Температура на оросяване θ_{s} (°C) при относителна влажност на въздуха (%)												
на въздуха,	30	35	40	45	50	55	60	65	70	75	80	85	90	95
°C														
30	10,5	12,9	14,9	16,8	18,4	20,2	21,4	22,7	23,9	25,0	26,2	27,2	28,2	29,1
29	9,7	12,0	14,0	15,9	17,5	19,0	20,4	21,7	23,0	24,1	25,2	26,2	27,2	28,1
28	8,8	11,1	13,1	15,0	16,6	18,1	19,5	20,8	22,0	23,2	24,2	25,2	26,2	27,1
27	8,0	10,2	12,2	14,1	15,7	17,2	18,6	19,9	21,1	22,2	23,3	24,3	25,2	26,1
26	7,1	9,4	11,4	13,2	14,8	16,3	17,6	18,9	20,1	21,2	22,3	23,3	24,2	25,1
25	6,2	8,5	10,5	12,2	13,9	15,3	16,7	18,0	19,1	20,3	21,3	22,2	23,2	24,1
24	5,4	7,6	9,6	11,3	12,9	14,4	15,8	17,0	18,2	19,3	20,3	21,3	22,2	23,1

Източник: Правно-информационни системи "Сиела"

27/08/2025 г.

I	I		1	l	1				1		1	l	1	
23	4,5	6,7	8,7	10,4	12,0	13,5	14,8	16,1	17,2	18,3	19,4	20,3	21,3	22,2
22	3,6	5,9	7,8	9,5	11,1	12,5	13,9	15,1	16,3	17,4	18,4	19,4	20,3	21,2
21	2,8	5,0	6,9	8,6	10,2	11,6	12,9	14,2	15,3	16,4	17,4	18,4	19,3	20,2
20	1,9	4,1	6,0	7,7	9,3	10,7	12,0	13,2	14,4	15,4	16,4	17,4	18,3	19,2
19	1,0	3,2	5,1	6,8	8,3	9,8	11,1	12,3	13,4	14,5	15,5	16,4	17,3	18,2
18	0,2	2,3	4,2	5,9	7,4	8,8	10,1	11,3	12,5	13,5	14,5	15,4	16,3	17,2
17	-0,6	1,4	3,3	5,0	6,5	7,9	9,2	10,4	11,5	12,5	13,5	14,5	15,3	16,2
16	-1,4	0,5	2,4	4,1	5,6	7,0	8,2	9,4	10,5	11,6	12,6	13,5	14,4	15,2
15	-2,2	-0,3	1,5	3,2	4,7	6,1	7,3	8,5	9,6	10,6	11,6	12,5	13,4	14,2
14	-2,9	-1,0	0,6	2,3	3,7	5,1	6,4	7,5	8,6	9,6	10,6	11,5	12,4	13,2
13	-3,7	-1,9	-0,1	1,3	2,8	4,2	5,5	6,6	7,7	8,7	9,6	10,5	11,4	12,2
12	-4,5	-2,6	-1,0	0,4	1,9	3,2	4,5	5,7	6,7	7,7	8,7	9,6	10,0	11,2
11	-5,2	-3,2	-1,8	-0,4	1,0	2,3	3,5	4,7	5,8	6,7	7,7	8,6	9,4	10,2
10	-6,0	-4,2	-2,6	-1,2	0,1	1,4	2,6	3,7	4,8	5,8	6,7	7,6	8,4	9,2

Таблица 2.2

Температура,	Максимално налягане на водната пара P _{max} , Pa										
°C	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9	
1	2	3	4	5	6	7	8	9	10	11	
30	4244	4269	4294	4319	4344	4369	4394	4419	4445	4469	
29	4006	4030	4053	4077	4101	4124	4148	4172	4196	4219	
28	3781	3803	3826	3848	3871	3894	3916	3939	3961	3984	
27	3566	3588	3609	3631	3652	3674	3695	3737	3793	3759	
26	3362	3382	3403	3423	3443	3463	3484	3504	3525	3544	
25	3169	3188	3208	3227	3246	3266	3284	3304	3324	3343	
24	2985	3003	3021	3040	3059	3077	3095	3114	3132	3151	
23	2810	2827	2845	2863	2880	3897	2915	2932	2950	2968	
22	2645	2661	2678	2695	2711	2727	2744	2761	2777	2794	

									l	
21	2487	2504	2518	2535	2551	2566	2582	2598	2613	2629
20	2340	2354	2369	2384	2399	2413	2428	2443	2457	2473
19	2197	2212	2227	2241	2254	2268	2283	2297	2310	2324
18	2065	2079	2091	2105	2119	2132	2145	2158	2172	2185
17	1937	1950	1963	1976	1988	2001	2014	2027	2039	2052
16	1818	1830	1841	1854	1866	1878	1889	1901	1914	1926
15	1706	1717	1729	1739	1750	1762	1773	1784	1795	1806
14	1599	1610	1621	1631	1642	1653	1663	1674	1684	1695
13	1498	1508	1518	1528	1538	1548	1559	1569	1578	1588
12	1403	1413	1422	1431	1441	1451	1460	1470	1479	1488
11	1312	1321	1330	1340	1349	1358	1367	1375	1385	1394
10	1228	1237	1245	1254	1262	1270	1279	1287	1296	1304
9	1148	1156	1163	1171	1179	1187	1195	1203	1211	1218
8	1073	1081	1088	1096	1103	1110	1117	1125	1133	1140
7	1002	1008	1016	1023	1030	1038	1045	1052	1059	1066
6	935	942	949	955	961	968	945	982	988	955
5	872	878	884	890	896	902	907	913	919	925
4	813	819	825	831	837	843	849	854	861	866
3	759	765	770	776	781	787	793	798	803	808
2	705	710	716	721	727	732	737	743	748	753
1	657	662	667	672	677	682	687	691	696	700
0	611	616	621	626	630	635	640	645	648	653
-0	611	605	600	595	592	587	582	577	572	567
-1	562	557	552	547	543	538	534	531	527	522
-2	517	524	509	505	501	496	492	489	484	480
-3	476	472	468	464	461	456	452	448	444	440
-4	437	433	430	426	423	419	415	412	408	405
-5	401	398	395	391	388	385	282	379	375	372

-6	368	365	362	359	356	353	350	347	343	340
-7	337	336	333	330	327	324	321	318	315	312
-8	310	306	304	301	298	296	294	291	288	286
-9	284	281	279	276	274	272	269	267	264	262
-10	260	258	255	253	251	249	246	244	242	239
-11	237	235	233	231	229	228	226	224	221	219
-12	217	215	213	211	209	208	206	204	202	200
-13	198	197	195	193	191	190	188	186	184	182
-14	181	180	178	177	175	173	171	169	168	167
-15	165	164	162	161	159	158	157	155	153	152
-16	150	149	148	146	145	144	142	141	139	138
-17	137	136	135	133	132	131	129	128	127	126
-18	125	124	123	122	121	120	118	117	116	115
-19	114	113	112	111	110	109	107	106	105	104
-20	103	102	102	100	99	98	97	95	95	94

3абележка. Стойностите на максималното налягане на водната пара от табл. 2.2 служат за определяне на парциалното налягане (p) в Ра по формулата:

$$p = \frac{\phi}{100} \cdot p_{\text{max}}$$

, където ϕ е относителната влажност на въздуха, %.

Приложение № 7 към чл. 42, ал. 6

Метод

за изчисляване на количеството топлина от преобразуване на слънчевата енергия при загряване на вода за битови нужди

1. Енергийният баланс на системата за загряване на вода чрез слънчева енергия за период от време един месец може да се запише в следния вид:

$$Q_u - Q_w + E = 0, (7.1)$$