

一、波的迭加与独立性传播原理

- 1. 波的传播具有独立性:相遇后各列波原有特性不变。
- 2. 在相遇空间中的任一点的振动为各列波在该点分别

引起的振动位移矢量和:
$$\vec{y}(x,t) = \sum_{i} \vec{y}_{i}(x,t)$$

二、波的干涉现象及其规律

相干条件:

- 1. 频率相同
- 2. 振动方向相同
- 3. 位相差恒定。

满足相干条件的波源/波

称为相干波源/相干波。

设:两相干波源 S_1 、 S_2 的振动方程分别为

$$y_{S1} = A_{10} \cos(\omega t + \varphi_1)$$

$$y_{S2} = A_{20} \cos(\omega t + \varphi_2)$$

在P点引起的振动:

$$y_{1P} = A_1 \cos(\omega t + \varphi_1 - \frac{2\pi}{\lambda} r_1)$$

$$y_{2P} = A_2 \cos(\omega t + \varphi_2 - \frac{2\pi}{\lambda} r_2)$$

相干波源S₁、S₂的振动方向相同:

$$y_{P} = y_{1P} + y_{2P} = A\cos(\omega t + \varphi)$$

其中:
$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\Delta\phi}$$

在P点引起的振动:

$$y_{1P} = A_1 \cos(\omega t + \varphi_1 - \frac{2\pi}{\lambda} r_1)$$

$$y_{2P} = A_2 \cos(\omega t + \varphi_2 - \frac{2\pi}{\lambda} r_2)$$

相干波源 S_1 、 S_2 的振动方向相同:

$$y_{P} = y_{1P} + y_{2P} = A\cos(\omega t + \varphi)$$

其中:
$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\Delta\phi}$$

$$\Delta \phi = (\varphi_2 - \varphi_1) - \frac{2\pi}{\lambda} (r_2 - r_1)$$

$$A = A(r_2 - r_1)$$
 $\overrightarrow{\mathbf{m}} : I \propto A^2$

$$\odot$$
 当 $\Delta \phi = (\varphi_2 - \varphi_1) - \frac{2\pi}{\lambda} (r_2 - r_1) = \pm 2k\pi$ 时: $(k = 0, 1, 2, \cdots)$

$$A = A_1 + A_2 = A_{max}$$
 干涉加强

$$\Delta \phi = (\varphi_2 - \varphi_1) - \frac{2\pi}{\lambda} (r_2 - r_1)$$

$$A = A(r_2 - r_1)$$
 $\overrightarrow{\mathbf{m}} : I \propto A^2$

即:各点A不同,但波强I稳定分布!(干涉特点)

 \odot 当 $\Delta \phi = (\varphi_2 - \varphi_1) - \frac{2\pi}{\lambda} (r_2 - r_1) = \pm 2k\pi$ 时: $(k = 0, 1, 2, \cdots)$

$$A = A_1 + A_2 = A_{max}$$
 干涉加强

$$=\pm(2k+1)\pi$$
 时:

$$A = |A_1 - A_2| = A_{min}$$
干涉减弱

波程差: $\Delta r = r_2 - r_1 \longrightarrow \Delta \phi = (\varphi_2 - \varphi_1) - \frac{2\pi}{\lambda} \Delta r$

者相干波源同位相,即: $\varphi_1 = \varphi_2$,则:

 \circ 当 $\Delta r = r_2 - r_1 = \pm 2k \cdot \frac{\lambda}{2}$ 时:

$$A = A_1 + A_2 = A_{max}$$

干涉加强

$$A = |A_1 - A_2| = A_{min}$$
干涉减弱

波程差: $\Delta r = r_2 - r_1 \longrightarrow \Delta \phi = (\varphi_2 - \varphi_1) - \frac{2\pi}{\lambda} \Delta r$

者相干波源同位相,即: $\varphi_1 = \varphi_2$, 则:

 \circ 当 $\Delta r = r_2 - r_1 = \pm 2k \cdot \frac{\lambda}{2}$ 时:

$$A = A_1 + A_2 = A_{max}$$

干涉加强

 \circ 当 $\Delta r = \pm (2k+1) \cdot \frac{\lambda}{2}$ 时:

$$A = \left| A_1 - A_2 \right| = A_{min}$$

干涉减弱

例 已知相干波源相距 $\lambda/4$, S_1 超前 S_2 相位 $\pi/2$,求 S_1 、 S_2 连线外侧及中垂线上的干涉结果。

$$m$$
 $\Delta \phi = (\varphi_2 - \varphi_1) - \frac{2\pi}{\lambda} (r_2 - r_1) = -\frac{\pi}{2} - \frac{2\pi}{\lambda} (r_2 - r_1)$ 若 $x > \frac{\lambda}{8}$,则: $r_2 - r_1 = \frac{\lambda}{4}$, $\Delta \phi = -\pi$ 干涉減弱

若
$$x < -\frac{\lambda}{8}$$
 ,则: $r_2 - r_1 = -\frac{\lambda}{4}$

$$\bullet$$
 当 $\Delta r = \pm (2k+1) \cdot \frac{\lambda}{2}$ 时:

$$A = \left| A_1 - A_2 \right| = A_{min}$$

干涉减弱

例 已知相干波源相距 $\lambda/4$, S_1 超前 S_2 相位 $\pi/2$,求 S_1 、 S_2 连线外侧及中垂线上的干涉结果。

解
$$\Delta \phi = (\varphi_2 - \varphi_1) - \frac{2\pi}{\lambda} (r_2 - r_1) = -\frac{\pi}{2} - \frac{2\pi}{\lambda} (r_2 - r_1)$$
 若 $x > \frac{\lambda}{8}$,则: $r_2 - r_1 = \frac{\lambda}{4}$, $\Delta \phi = -\pi$ 干涉減弱

若
$$x < -\frac{\lambda}{8}$$
 ,则: $r_2 - r_1 = -\frac{\lambda}{4}$

$$\Delta \phi = 0$$
 干涉加强

中垂线上:
$$r_2 - r_1 = 0$$
 $\Delta \phi = -\frac{\pi}{2}$

介于加强与减弱之间。(the end)

- 1. 波的叠加与独立传播原理:
- 2. 相干条件:同频率、同振动方向及恒定位相差。
- 3. 干涉加强与干涉减弱条件:

$$\Delta \phi = (\varphi_2 - \varphi_1) - \frac{2\pi}{\lambda} (r_2 - r_1) = \begin{cases} \pm 2k\pi \\ \pm (2k+1)\pi \end{cases}$$