AI-3001: Advanced Topics in Machine Learning

Aug-Nov 2022

Lecture 15: Bandit Optimization

Lecturer: Ganesh Ghalme Scribes: Ganesh Ghalme

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

15.1 Upper Confidence Bound (UCB) based Algorithm

In the UCB1 algorithm for each arm the algorithm maintains a UCB1 estimate and at each round the algorithm plays the arm with the highest UCB1 estimate. Such a UCB1 estimate for an arm $i \in [k]$ at round t is dependent on the empirical mean of the rewards of arm i and a confidence interval associated with arm i. To state it formally let $N_{i,t-1}$ denote the number of times arm i is pulled in t-1 rounds. Then the UCB1 estimate for arm $i \in [k]$ at round $t \geq 1$ is $\bar{\mu}_i(t) = 0$ if $N_{i,t-1} = 0$, otherwise $\bar{\mu}_i(t) = \hat{\mu}_{i,N_{i,t-1}}(t-1) + \sqrt{\frac{2\ln(t)}{N_{i,t-1}}}$ where $\hat{\mu}_{i,N_{i,t-1}}(t-1)$ is the empirical mean of the rewards of arm i after being pulled $N_{i,t-1}$ times in t-1 rounds and $\sqrt{\frac{2\ln(t)}{N_{i,t-1}}}$ is its associated confidence interval. For ease of notation, we will denote by c_{t,s_i} the confidence interval of arm i at time t when it is pulled s_i times i.e. $c_{t,s_i} = \sqrt{\frac{2\ln(t)}{s_i}}$. Technically for the first k rounds the algorithm plays each arm once to compute a non-zero UCB1 estimate for each arm and for every round $t \geq k+1$ it plays the arm with the highest UCB1 estimate. The total expected regret of UCB1 after T rounds is given by the following theorem, where $\Delta_i = \mu_1 - \mu_i$ for all $i \in [k]$, and $\Delta_i > 0$ as $\mu_1 > \mu_i$ for $i \neq 1$.

Theorem 15.1. For the MAB problem, the UCB1 has expected regret $\mathbb{E}[\mathcal{R}_{\text{UCB}}(T)] \leq \sum_{i \neq 1} (\frac{8 \ln T}{\Delta_i}) + (1 + \frac{\pi^2}{3}) \sum_{i \in [k]} \Delta_i$.

Proof. To bound the regret of the UCB1 algorithm, we first upper bound $\mathbb{E}[N_{i,T}]$ for $i \neq 1$, i.e. the expected number of pulls of a sub-optimal arm $i \neq 1$ in T rounds. Denote the arm pulled by the algorithm at the t-th round as i_t . In the equation below $\mathbb{I}\{i_t=i\}$ is an indicator random variable that is equal to 1 if $i_t=i$ and is 0 otherwise. In general $\mathbb{I}\{\mathsf{E}\}$ denotes an indicator random variable that is equal to 1 if the event E is true and is 0 otherwise.

$$N_{i,T} = 1 + \sum_{t=k+1}^{T} \mathbb{1}\{i_t = i\}$$

For any positive integer ℓ we may rewrite the above equation as

$$N_{i,T} \le \ell + \sum_{t=\ell}^{T} \mathbb{1}\{i_t = i, N_{i,t-1} \ge \ell\}$$
 (15.1)

If $i_t=i$ then $\bar{\mu}_1(t)<\bar{\mu}_i(t)$ i.e. $\hat{\mu}_{1,N_{1,t-1}}(t-1)+c_{t,N_{1,t-1}}<\hat{\mu}_{i,N_{i,t-1}}(t-1)+c_{t,N_{i,t-1}}$. Hence from Equation 15.1

$$N_{i,T} = \ell + \sum_{t=t_{\ell}}^{T} \mathbb{1}\{\hat{\mu}_{1,N_{1,t-1}}(t-1) + c_{t,N_{1,t-1}} < \hat{\mu}_{i,N_{i,t-1}}(t-1) + c_{t,N_{i,t-1}}, N_{i,t-1} \ge \ell\}$$

Here, t_{ℓ} is the time at which arm i is pulled for ℓ number of times. If arm i is not pulled for ℓ times in the entire run of an algorithm, we will use the upper bound of ℓ .

$$\leq \ell + \sum_{t=t_{\ell}}^{T} \mathbb{1} \{ \min_{0 < s_{1} < t} \hat{\mu}_{1,s_{1}}(t-1) + c_{t,s_{1}} < \max_{\ell \leq s_{i} < t} \hat{\mu}_{i,s_{i}}(t-1) + c_{t,s_{i}} \}$$

$$\leq \ell + \sum_{t=t_{\ell}}^{T} \sum_{s_{1}-1}^{t} \sum_{s_{2}-\ell}^{t} \mathbb{1} \{ \hat{\mu}_{1,s_{1}}(t-1) + c_{t,s_{1}} < \hat{\mu}_{i,s_{i}}(t-1) + c_{t,s_{i}} \}$$

At time t, $\hat{\mu}_{1,s_1}(t-1) + c_{t,s_1} < \hat{\mu}_{i,s_i}(t-1) + c_{t,s_i}$ implies that at least one of the following events is true

$$\{\hat{\mu}_{1,s_1}(t-1) \le \mu_1 - c_{t,s_1}\}\tag{15.2}$$

$$\{\hat{\mu}_{i,s_i}(t-1) \ge \mu_i + c_{t,s_i}\}\tag{15.3}$$

$$\{\mu_1 < \mu_i + 2c_{t,s_i}\}\tag{15.4}$$

The probability of the events in Equations 15.2 and 15.3 can be bounded using Hoeffding's inequality as:

$$\mathbb{P}(\{\hat{\mu}_{1,s_1}(t-1) \le \mu_1 - c_{t,s_1}\}) \le t^{-4}$$

$$\mathbb{P}(\{\hat{\mu}_{i,s_i}(t-1) \ge \mu_i + c_{t,s_i}\}) \le t^{-4}$$

The event in equation 15.4 $\{\mu_1 < \mu_i + 2c_{t,s_i}\}$ can be written as $\{\mu_1 - \mu_i - 2\sqrt{\frac{2\ln t}{s_i}} < 0\}$. Substituting $\Delta_i = \mu_1 - \mu_i$ and if $s_i \ge \lceil \frac{8\ln T}{\Delta_i^2} \rceil \ge \lceil \frac{8\ln t}{\Delta_i^2} \rceil$ then

$$\mathbb{P}\left(\left\{\Delta_i - 2\sqrt{\frac{2\ln t}{s_i}} < 0\right\}\right) = 0 \tag{15.5}$$

Thus if $\ell = \lceil \frac{8 \ln T}{\Delta_i^2} \rceil$ then

$$\begin{split} N_{i,T} &\leq \lceil \frac{8 \ln T}{\Delta_i^2} \rceil + \sum_{t = \frac{8 \ln T}{\Delta_i^2}}^T \sum_{s_1 = 1}^t \sum_{s_i = \frac{8 \ln T}{\Delta_i^2}}^t \mathbb{1} \{ \hat{\mu}_{1,s_1}(t-1) + c_{t,s_1} < \hat{\mu}_{i,s_i}(t-1) + c_{t,s_i} \} \\ \mathbb{E}[N_{i,T}] &\leq \lceil \frac{8 \ln T}{\Delta_i^2} \rceil + \sum_{t = \frac{8 \ln T}{\Delta_i^2}}^T \sum_{s_1 = 1}^t \sum_{s_i = \frac{8 \ln T}{\Delta_i^2}}^t 2t^{-4} \\ &\leq \lceil \frac{8 \ln T}{\Delta_i^2} \rceil + \sum_{t = \frac{8 \ln T}{\Delta_i^2}}^\infty \sum_{s_1 = 1}^t \sum_{s_i = \frac{8 \ln T}{\Delta_i^2}}^t 2t^{-4} \leq \frac{8 \ln T}{\Delta_i^2} + 1 + \frac{\pi^2}{3} \end{split}$$

In the last inequality we use $\sum_{t=\lceil \frac{8 \ln T}{\Delta_i^2} \rceil}^{\infty} \sum_{s_1=1}^{t} \sum_{s_i=\lceil \frac{8 \ln t}{\Delta_i^2} \rceil}^{t} 2t^{-4} \leq \sum_{t=1}^{\infty} 2t^{-2} = \frac{\pi^2}{3}$. Recall from Section ??, Equation ??, that

$$\mathbb{E}[\mathcal{R}_{\text{UCB}}(T)] = \sum_{i \in [k]} \Delta_i \cdot \mathbb{E}[N_{i,T}] \le \sum_{i \ne 1} \frac{8 \ln T}{\Delta_i} + (1 + \frac{\pi^2}{3}) \cdot \sum_{i \in [k]} \Delta_i$$

15.1.0.1 Distribution-free Regret Bound for UCB1

Theorem 15.2. For the MAB problem, the UCB1 has expected (distribution-free) regret $\mathbb{E}[\mathcal{R}_{\text{UCB}}(T)] = O(\sqrt{T \ln T})$.

Proof. Recall from Section 15.1 that the expected cumulative regret of the UCB1 algorithm in any round T is given by

$$\mathbb{E}[\mathcal{R}_{\text{UCB}}(T)] = \sum_{i \in [k]} \Delta_i \cdot \mathbb{E}[N_{i,T}].$$

To bound the above quantity, we begin by defining the event

$$C := \left\{ |\hat{\mu}_i(t) - \mu_i| \le \sqrt{\frac{2\ln T}{N_{i,t}}}, \forall i \in [k], \forall t \le T \right\}.$$

By applying Hoeffding's inequality, and taking union bound, we get

$$\mathbb{P}(\bar{C}) \le \frac{2kT}{T^4} \le \frac{2}{T^2}.$$

Next, we will bound the value of $\mathbb{E}[\mathcal{R}_{\text{UCB}}(T)]$ by conditioning on C and \bar{C} . Let us first bound $\mathbb{E}[\mathcal{R}_{\text{UCB}}(T)|C]$. Assume the event C holds and some arm $i_t \neq 1$ is pulled in round $t \in [T]$. Then, by definition of UCB1 algorithm, we have $\bar{\mu}_1(t) < \bar{\mu}_i(t)$. Then,

$$\mu_1 - \mu_{i_t} \le \mu_1 - \mu_{i_t} + \bar{\mu}_i(t) - \bar{\mu}_1(t)$$

= $(\mu_1 - \bar{\mu}_1(t)) + (\bar{\mu}_i(t) - \mu_{i_t})$

Since event C holds, we have

$$\mu_1 - \bar{\mu}_1(t) = \mu_1 - \hat{\mu}_1(t-1) - \sqrt{\frac{2 \ln T}{N_{i,t-1}}} \le 0.$$

and

$$\bar{\mu}_i(t) - \mu_{i_t} = \hat{\mu}_{i_t}(t-1) - \mu_{i_t} + \sqrt{\frac{2\ln T}{N_{i_t,t-1}}} \le 2 \cdot \sqrt{\frac{2\ln T}{N_{i_t,t-1}}}.$$

Therefore,

$$\mu_1 - \mu_{i_t} \le 2 \cdot \sqrt{\frac{2\ln T}{N_{i_t, t-1}}} \tag{15.6}$$

Now, consider any arm $i \in [k]$ and consider the last round $t_i \leq t$ when this arm was last pulled. Since the arm has not been pulled between t_i and t, we know $N_{i,t_i} = N_{i,t-1}$. Hence, applying the inequality in Equation 15.6 to arm i in round t_i , we get

$$\mu_1 - \mu_i \le 2 \cdot \sqrt{\frac{2 \ln T}{N_{i,t-1}}}, \text{ for all } t \le T$$

. Thus, the regret in t rounds is bounded by

$$\mathcal{R}(t) = \sum_{i \in [k]} \Delta_i \cdot N_{i,t} \le 2\sqrt{2 \ln T} \cdot \sum_{i \in [k]} \sqrt{N_{i,t}}.$$

Square root is a concave function, and hence from Jensen's inequality, we obtain

$$\sum_{i \in [k]} \sqrt{N_{i,t}} \le \sqrt{kt}.$$

Therefore, we have

$$\mathbb{E}[\mathcal{R}_{\text{UCB}}(T)|C] \le 2\sqrt{2kt\ln T}.$$

Hence, the expected cumulative regret in t rounds can be bounded as

$$\mathbb{E}[\mathcal{R}_{\text{UCB}}(T) = \mathbb{E}[\mathcal{R}_{\text{UCB}}(T)|C]\mathbb{P}(C) + \mathbb{E}[\mathcal{R}_{\text{UCB}}(T)|\bar{C}]\bar{\mathbb{C}}$$

$$\leq 2\sqrt{2kt\ln T} + t \cdot \frac{2}{T^2}$$

$$= O(\sqrt{kt\ln T}), \quad \forall t \leq T$$

Thus, the distribution-free regret bound of UCB1 algorithm at some time T is $O(\sqrt{KT \ln T})$.

15.2 Thompson Sampling Algorithm

Next we consider the Thompson sampling algorithm. We will not prove the regret guarantee of the Thompson Sampling algorithm here. Students can refer to [Agarwal et al and Kauffman et al] for the detailed proof. We provide important ideas in this lecture.

Algorithm 1: Thompson Sampling for Bernoulli Bandits

Input: number of arms K

Initialize: $S_i(0) = F_i(0) = 0 \ \forall i$

for $t = 1, 2 \cdots do$

- Sample:
 - $\lambda_i(t) \sim Beta(1 + S_i(t-1), 1 + F_i(t-1)) \ \forall i$
- Play arm:

 $i_t = \arg \max_i \lambda_i(t)$

• Observe Reward:

 $X_{i_t}(t) \in \{0, 1\}$

• Update:

$$-S_{i_t}(t) = S_{i_t}(t-1) + X_{i_t}(t)$$

$$- F_{i_t}(t) = F_{i_t}(t-1) + 1 - X_{i_t}(t)$$

$$-S_i(t) = S_i(t-1), F_i(t) = F_i(t-1) \ \forall i \neq i_t$$

Theorem 15.3. For any $\epsilon > 0$, there exists a problem dependent constant $C(\epsilon, \mu_1, \mu_2, \dots, \mu_K)$ such that the regret of Thompson sampling algorithm is given as:

$$R_T(\text{ThompsonSampling}) \le (1+\epsilon) \sum_{i,\mu_i \ne \mu^*} \frac{\Delta_i(\ln T + \ln \ln T)}{D(\mu_i||\mu^*)} + C(\epsilon,\mu_1,\mu_2,\dots,\mu_K).$$

15.2.1 Intuition

TODO!

15.3 Other Bandit Algorithms (Beyond bounded rewards)

TODO! KL-UCB, Bayes-UCB, (α, ψ) -UCB, UCB-Normal, MOSS (todo: introduce instance independent regret), Guassian Bandits, Best arm identification (pure exploration setting), infinite arms, Linear Bandits (LinUCB), Combinatorial bandits and semi-bandit feedback, knapsack-bandits, sleeping bandits ...

15.4 EXP4 (Contextual Bandits framework)

TODO!

15.5 Markovian Bandits

TODO! Gittins index, Whittle index, different interpretations, indexability