

Multimédia

TP1 - Compressão de Imagem

Dinis Isaev N°2021212927 Marcelo Gomes N°2021222994 Pedro Brites N°2021226319 Carlos Ferreira N°2021226028

Índice

1.4 Compressão com editor de imagem	2
5.5 Conversão para YCbCr	3
6.5 Sub-Amostragem	4
7.4 DCT	5
8.5/8.6 Quantização	6
9.5 Codificação DPCM dos coeficientes DC	7
10.5 Diferencas	8

1.4 Compressão com editor de imagem

	Original	75%	50%	25%
airport.bmp	2374 KB	158.3 KB	105.1 KB	67.9 KB
geometric.bmp	3 003 KB	60.7 KB	46.4 KB	34.5 KB
nature.bmp	5 760 KB	401 KB	303 KB	117 KB

Através do uso da fórmula da taxa de compressão:

	Qualidade alta	Qualidade média	Qualidade baixa
airport.bmp	93.33%	95.57%	97.14%
geometric.bmp	97.98%	98.45%	98.85%
nature.bmp	93.04%	94.74%	97.97%

Pode-se concluir que as imagens menos detalhadas como a *geometric* têm uma maior taxa de compressão.

5.5 Conversão para YCbCr

Y: airport.bmp

Cb: airport.bmp

Cr: airport.bmp

imagem vermelha: airport.bmp

imagem verde: airport.bmp

imagem azul: airport.bmp

Ao compararmos as imagens, destacamos grandes diferenças entre os modelos de cor RGB e YCbCr. Enquanto o RGB representa cores como combinações diretas de vermelho, verde e azul, o YCbCr representa cores como uma composição de luminância e crominância.

O canal Y, no modelo YCbCr, é responsável por capturar o brilho da imagem (o que vai resultar numa maior presença de informação), enquanto os canais Cb e Cr representam as diferenças de cor em relação a esse brilho. Em comparação com os canais RGB originais, observamos semelhanças em áreas de alta luminosidade no canal Y, pois este contém informações de intensidade e luminosidade. Por outro lado, os canais Cb e Cr isolam as informações de cor das informações de brilho, fornecendo uma separação clara entre esses aspetos da imagem.

6.5 Sub-Amostragem

	original	4:2:2	4:2:0	Taxa compressao 4:2:2	Taxa compressao 4:2:0
Cb	85.4kB	4.28kB	2.14kB	50%	75%
Cr	85.4kB	4.28kB	2.14kB	50%	75%

Nesta fase, fez-se um *resize* da imagem, para metade na horizontal, caso fosse *downsampling* 4:2:2, e metade na horizontal e na vertical, caso fosse *downsampling* 4:2:0. Podemos concluir que as taxas de compressão, aumentam conforme aumentamos o *downsampling*.

7.4 DCT

Podemos observar que os canais completos não conseguem explorar eficientemente as redundâncias na imagem, o que resulta numa compressão menos eficaz. Assim, o tamanho dos blocos é crucial, pois afeta tanto a qualidade da imagem quanto a taxa de compressão. Os blocos de 8x8 preservaram melhor a qualidade da imagem, enquanto os blocos de 64x64 resultaram numa qualidade inferior. Portanto, os blocos de 8x8 são mais adequados para aplicar a DCT e os processos subsequentes de compressão.

8.5/8.6 Quantização

Neste passo, aplicámos a quantização das imagens, baseado no fator de qualidade de compressão que queremos aplicar, usando a seguinte fórmula:

$$Valor\ quantizado(i,j) = \frac{DCT(i,j)}{Matriz\ Quantizaç\~ao(i,j)}, arredondado\ para\ inteiro$$

Quanto maior o fator de qualidade, mais baixo vão ser os valores da matriz, logo haverá menos destruição. Analisando as imagens acima, é possível notar uma grande diferença da imagem de fator qualidade 10 para a de fator 25, tal como da de fator 50 para a de fator 75, onde é possível ver melhor os detalhes. Por fim, na imagem de fator de qualidade 100 é possível ver toda a imagem sem falhas, mas com pouca compressão, pois apenas foram arredondados os valores quantizados.

Comparando com as imagens da alínea 7 (DCT), estas imagens ficam mais suaves, pois têm menos discrepâncias entre os valores das coordenadas dos pontos, já tendo sido divididas pela matriz de quantização.

9.5 Codificação DPCM dos coeficientes DC

A codificação DPCM dos coeficientes DC é aplicada à matriz resultante da aplicação da quantização no passo anterior. Nesta fase de compressão, a imagem obtida é parecida aquela representada na quantização do canal Y(passo anterior) com qualidade 75. As únicas diferenças entre estas imagens são os coeficientes DC.

10.5 Diferenças

Abaixo encontram-se a imagem descodificada e a imagem da diferença entre o canal Y da imagem original e da imagem descodificada respetivamente, usando 75 como parâmetro de qualidade:

Imagem diferenças: airport.bmp

Abaixo encontram-se as tabelas com os valores das várias métricas de distorção (MSE, RMSE, SNR, PSNR, max_diff e avg_diff) para diferentes parâmetros de qualidade.

airplane:

	10	25	50	75	100
MSE	565.853	288.520	165.006	88.007	12.047
RMSE	23.788	16.986	12.845	9.381	3.471
SNR	22.124	25.049	27.476	30.206	38.842
PSNR	20.604	23.529	25.956	28.686	37.322
max_diff	187.271	97.949	75.997	42.591	1.446
avg_diff	7.778	5.292	3.881	2.769	0.217

geometric:

	10	25	50	75	100
MSE	225.554	106.930	68.402	41.481	20.711
RMSE	15.018	10.340	8.271	6.441	4.551
SNR	26.598	29.840	31.780	33.952	36.968
PSNR	24.598	27.840	29.780	31.952	34.969
max_diff	79.815	60.456	39.859	27.598	1.176
avg_diff	3.762	1.286	1.030	0.474	0.054

nature:

	10	25	50	75	100
MSE	379.780	379.781	35.870	27.955	20.711
RMSE	19.487	19.488	5.989	5.287	4.551
SNR	21.177	21.178	31.426	32.508	36.968
PSNR	22.335	22.335	32.584	33.666	34.969
max_diff	116.203	116.203	49.320	31.106	1.176
avg_diff	7.861	7.861	2.262	2.042	0.054

Após uma breve análise dos resultados apresentados na tabela, nota-se que o MSE, o RMSE, o max_diff e o avg_diff, diminuem à medida que os parâmetros de qualidade aumentam, e o SNR e o PSNR também aumentam à medida que os parâmetros de qualidade aumentam. Estes dados estão de acordo com o esperado visto que o MSE e o RMSE é a diferença média entre os pixels da imagem comprimida e da imagem original e o SNR e o PSNR, usam o MSE como denominador no seu cálculo, ou seja, se o MSE aumenta, ambos diminuem, e como o MSE diminui ao aumentar o parâmetro de qualidade, o SNR e o PSNR aumentam.