Roll	No.:	

National Institute of Technology, Delhi

Name of the Examination: B.Tech.

Mid Semester Examination (Spring, 2023)

Branch

: ECE

Semester

: VIth

Title of the Course

: Basics of VLSI

Course Code

: ECB 351

Time: 1 Hour 30 Minutes

Maximum Marks: 25

Note: All questions are compulsory.

OURSE (COGNITIVE LEVELS	
CO1	Understand MOS transistor theory, its circuit models and short channel effects	Remembering (Level I) Understanding (Level II)
CO2	Calculate Noise Margins & Propagation Delay of CMOS Inverter and analyse the combinational CMOS circuit for speed, power & area	Applying (Level III) Analyzing (Level IV)
соз	Implement combinational & sequential CMOS circuit with various topologies like domino logic, PTL, etc.	Creating (Level VI)
CO4	Evaluating memories with efficient architectures to improve access times, power consumption	Evaluating (Level V)

Course	CO1	CO2
Outcomes(CO's)		
Questions No.	Q1, Q2, Q3	Q4, Q5

Answer the following questions.

- Q1. Explain the structure and operation of a MOSFET and justify its input and output [5 Marks] characteristics.
- **Q2.** Write short notes on:

[5 Marks]

- a. Body bias effect
- b. Impact Ionization
- Q3. Draw and explain the variation of the distributed (gate-to-channel) oxide capacitances [5 Marks] as a function of gate to source voltage.
- Q4. Draw the circuit of a CMOS inverter and explain the VTC of the static CMOS [5 Marks] inverter.
- Q5. Derive the expression for the dynamic power dissipation of the CMOS.

[5 Marks]