# Modelling drug combinations for cancer

Jing Tang, PhD, Group leader Institute for Molecular Medicine Finland, University of Helsinki, Finland December 6, 2017







### Fighting cancer



## Two Drugs Are Better than One—Modeling Drug Combinations in Cancer Therapy

#### Margaret K. Callahan

+ Author Affiliations

Science Translational Medicine 17 Jul 2013: Vol. 5, Issue 194, pp. 194ec116 DOI: 10.1126/scitranslmed.3006923

- + Maximize cancer selectivity
- Minimize drug resistance



#### Needs for predictive and testable models

• If it is necessary to inhibit multiple targets, how do we choose/predict which ones?



#### The research questions

- If drug A kills 30% of the cancer cells and drug B kills 20%, can we answer the following questions:
  - 1) What is the effect if drug A and B are combined?
  - 2) Whether such a combinatorial effect is beneficial compared to monotherapies?
  - 3) How to evaluate the statistical and therapeutic significances?

#### Target inhibition network approach



Drug target network + Drug sensitivity data = Target inhibition network

**Assumption: A drug combination can be inferred from their target combinations** 

Pal and Berlow, 2012, Pacific Symposium on biocomputing, 351-362 Tang et al. PLoS Comput Biol 2013; 9(9): e1003226.

#### TIMMA @R



### Test of drug combinations



Tang, et al., 2017; Methods Mol. Biol. 1636:485-506.

### Test of drug combinations

#### Reference models

- Highest single agency  $y_{HSA} = \max(y_1, y_2)$
- Bliss independence
- Loewe additivity

$$y_{\text{HSA}} = \max(y_1, y_2)$$

$$y_{\text{BLISS}} = y_1 + y_2 - y_1 y_2.$$

$$\frac{x_1}{X_{\text{LOEWE}}^1} + \frac{x_2}{X_{\text{LOEWE}}^2} = 1,$$

Zero interaction potency

$$\delta(\theta) = \frac{1}{2} \left( \frac{\frac{1}{1 + (\frac{m_1}{m_2})^{\lambda_2}} + (\frac{x_1}{m_{2 \to 1}})^{\lambda_{2 \to 1}}}{1 + (\frac{x_1}{m_{2 \to 1}})^{\lambda_{2 \to 1}}} + \frac{\frac{1}{1 + (\frac{m_1}{m_1})^{\lambda_1}} + (\frac{x_2}{m_{1 \to 2}})^{\lambda_{1 \to 2}}}{1 + (\frac{x_2}{m_{2 \to 1}})^{\lambda_{1 \to 2}}} \right) - \left( \frac{(\frac{x_1}{m_1})^{\lambda_1}}{1 + (\frac{x_2}{m_2})^{\lambda_2}} + (\frac{x_2}{m_2})^{\lambda_2}}{1 + (\frac{x_1}{m_1})^{\lambda_1}} + (\frac{x_2}{m_2})^{\lambda_2}} - \frac{(\frac{x_1}{m_1})^{\lambda_1}}{1 + (\frac{x_2}{m_2})^{\lambda_2}} + (\frac{x_2}{m_2})^{\lambda_2}} \right),$$

#### SynergyFinder @Bioconductor @web



#### The drug combination prediction pipeline



#### Acknowledgement



#### **FIMM**

**Personalized Cancer Medicine** 

**Caroline Heckman Jonathan Knowles** 

Samuli Eldfors

Riikka Karjalainen

Jarno Kivioja

Ashwini Kumar

Heikki Kuusanmäki

Muntasir Mamun Majumder

**Alun Parsons** 

**Cancer Systems Medicine** 

Olli Kallioniemi

Henrik Edgren

Poojitha Kota Venkata

Disha Malani

John Patrick Mpindi

Astrid Murumägi

Päivi Östling

Maija Wolf

**Chemical Systems Biology / HT Screening Unit** 

**Krister Wennerberg** 

**Evgeny Kulesskiy** 

Tea Pemovska

Laura Turunen

Anna Lehto

Arjan van Adrichem

**Computational Systems Medicine** 

**Tero Aittokallio** 

Zia ur Rehman

Liye He

Suleiman Khan

**Gopal Peddinti** 

Agnieszka Szwajda

Bhagwan Yadav

**Technology Center** 

Janna Saarela

Pekka Ellonen

Maija Lepistö

Pirkko Mattila

**European Research Council** 

 ${\color{red} \underline{\textbf{HUCH}}}$  Established by the European Commission

Kimmo Porkka Mika Kontro

IVIIKA KUITU

Satu Mustjoki

Erkki Elonen

Hanna Koskela

Mette Ilander

Emma Anderson

Paavo Pietarinen

Jaakko Vartia

Minna Lehto

Mervi Saari

TYKS:

Tuija Lundán

TAYS:

Hannele Rintala

Tero Pirttinen

Marja Sankelo