Cheatsheet di Algoritmi e Strutture Dati

Giacomo Scampini

15 luglio 2025

1 Complessità

1.1 Notazioni di Complessità Asintotica in Elenco

- f(n) = O(g(n)) **O grande** Limite asintotico superiore
- $f(n) = \Omega(g(n))$ Omega grande Limite asintotico inferiore
- $f(n) = \Theta(g(n))$ Theta grande Limite as intotico sia superiore che inferiore

1.2 Confronto Tramite Limiti

Dato il limite $L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$:

- Se L = 0, allora $\Theta(f(n)) < \Theta(g(n))$.
- Se L = c (con $c \neq 0, \infty$), allora $\Theta(f(n)) = \Theta(g(n))$.
- Se $L = \infty$, allora $\Theta(f(n)) > \Theta(g(n))$.

1.3 Gerarchia Fondamentale degli Ordini di Grandezza

Per costanti $k, h \in \mathbb{R}^+$ e a > 1:

$$\Theta(1) < \Theta((\log n)^k) < \Theta(n^h) < \Theta(a^n) < \Theta(n!) < \Theta(n^n)$$

1.4 Classi di Complessità Comuni

- $\mathcal{O}(1)$: Costante (es. accesso a un elemento di un array)
- $\mathcal{O}(\log n)$: Logaritmica (es. ricerca binaria)
- $\mathcal{O}(n)$: Lineare (es. scansione di una lista)
- $\mathcal{O}(n \log n)$: Lineare-logaritmica (es. merge sort, heapsort)
- $\mathcal{O}(n^2)$: Quadratica (es. bubble sort, selection sort)
- $\mathcal{O}(2^n)$: Esponenziale (es. problemi risolti con la forza bruta)
- \bullet $\mathcal{O}(n!)$: Fattoriale (es. problema del commesso viaggiatore con forza bruta)

2 Automi e TM

2.1 Complessità degli Automi

• DFSA (Automa a Stati Finiti Deterministico)

- Complessità Temporale: $T_A(n) = \Theta(n)$
- Complessità Spaziale: $S_A(n) = \Theta(1)$

• DPDA (Automa a Pila Deterministico)

- Complessità Temporale: $T_A(n) = \Theta(n)$
- Complessità Spaziale: $\Theta(0) \leq \Theta(S_A(n)) \leq \Theta(n)$

• k-DTM (Macchina di Turing Deterministica a k-nastri)

- Complessità Temporale: Nessun limite generale. Per calcolarla devi immaginare il funzionamento della macchina.
- Complessità Spaziale: $\Theta(S_M(n)) \leq \Theta(T_M(n))$

• SDTM (Macchina di Turing Deterministica a nastro singolo)

- Complessità Temporale: Nessun limite generale. Per calcolarla devi immaginare il funzionamento della macchina.
- Complessità Spaziale: $S_M(n) = \Omega(n)$, ciò significa che la complessità spaziale dev'essere almeno lineare, questo perché il nastro di input coincide con il nastro di memoria.

TIP: per il calcolo della complessità spaziale, ricordati di considerare il caso peggiore. Il caso peggiore può anche essere per una stringa che non viene accettata, ovvero $x \notin L$.

2.2 Contatori (Implementati su DTM)

- Complessità Spaziale: per contare fino a m, sono necessari $\Theta(\log m)$ simboli. Se m dipende dalla lunghezza dell'input n, la complessità spaziale diventa $S_M(n) = \Theta(\log n)$.
- Complessità Temporale (per eseguire *n* incrementi/decrementi):
 - $-T(n) = \Theta(n)$: se ad ogni modifica vengono visitate solo le cifre necessarie (userai questo in sede d'esame).
 - $-T(n) = \Theta(n \log n)$: se ad ogni modifica si visitano tutte le cifre del contatore.

3 RAM

3.1 Complessità delle RAM

3.1.1 Criteri di Costo

- Costo Costante: Ogni istruzione ha costo 1. Ogni cella di memoria ha costo 1, indipendentemente dal valore contenuto.
- Costo Logaritmico: Il costo di un'operazione e dello spazio occupato dipende dalla dimensione (logaritmo) dei valori numerici coinvolti.

$$l(x) := \begin{cases} \lfloor \log_2 x \rfloor + 1 & \text{se } x \neq 0 \\ 1 & \text{se } x = 0 \end{cases} \quad \text{N.B.: } l(x) = \Theta(\log x)$$

• Quando sceglierli: I due criteri sono equivalenti se la dimensione degli operandi è limitata da una costante. Se i numeri possono diventare arbitrariamente grandi, il criterio logaritmico è più realistico.

3.1.2 Calcolo del Costo Logaritmico (caso semplificato)

Sotto l'ipotesi di usare un numero costante di celle di memoria:

- Costo Spaziale: Lo spazio totale è la somma della "lunghezza" (logaritmo) di tutti i numeri più grandi salvati in ogni cella di memoria utilizzata. E' sempre $\Theta(\log i)$, dove i è il numero che viene calcolato in quell'istante.
- Gestione di un intero i (es. LOAD, STORE, READ, WRITE, JZ)
 - Costo Temporale: $\Theta(\log i)$
- Operazioni Aritmetiche (su operandi n_1, n_2)
 - Addizione (+), Sottrazione (-): $\Theta(\log n_1 + \log n_2)$
 - Moltiplicazione (*), Divisione (/): $\Theta(\log n_1 \cdot \log n_2)$

Come si calcola in generale il costo temporale in caso di costo algoritmico? In generale si prende l'operazione nell'utlimo istante, che può essere magari una somma o una moltiplicazione, e con una sommatoria si somma tutto. Usi l'approssimazione di Stirling per calcolare la complessità.

4 Equazioni di Ricorrenza

4.1 Algoritmo Divide et Impera

Un algoritmo che segue la strategia divide et impera si articola in tre fasi:

- Dividi: Il problema è scomposto in sottoproblemi più semplici della stessa forma.
- Impera: I sottoproblemi vengono risolti ricorsivamente.
- Combina: Le soluzioni dei sottoproblemi sono combinate per ottenere la soluzione del problema originale.

La sua complessità temporale T(n) è descritta da un'equazione di ricorrenza, tipicamente nella forma $T(n) = a \cdot T(n/b) + f(n)$.

4.2 Metodi di Risoluzione delle Ricorrenze

4.2.1 Risoluzione Diretta Esplicita

Consiste nello sviluppare iterativamente la ricorrenza fino a individuare un modello generale per esprimerne l'ordine di grandezza.

4.2.2 Metodo di Sostituzione

Consiste nel formulare un'ipotesi per la soluzione e nel verificarla rigorosamente tramite dimostrazione per induzione.

4.2.3 Metodo dell'Albero di Ricorsione

È una tecnica visuale per sviluppare le chiamate ricorsive e sommarne i costi livello per livello. È utile per formulare un'ipotesi di soluzione, da verificare poi con il metodo di sostituzione. Esempio di albero:

Figura 1: Esempio di un albero di ricorsione.

4.2.4 Metodo per Ricorrenze Lineari

Si applica a ricorrenze della forma $T(n) = \sum_{i=1}^{h} a_i T(n-i) + cn^k$. Posto $a := \sum a_i$, la soluzione (come limite superiore) è:

- $T(n) = O(n^{k+1})$ se a = 1.
- $T(n) = O(n^k a^n)$ se $a \ge 2$.

4.2.5 Teorema Master

Fornisce una soluzione "pronta" per ricorrenze della forma $T(n) = a \cdot T(n/b) + f(n)$ (con $a \ge 1, b > 1$). Si confronta f(n) con $n^{\log_b a}$:

- Caso 1: Se $f(n) = O(n^{\log_b a \epsilon})$ per qualche $\epsilon > 0$, allora $T(n) = \Theta(n^{\log_b a})$.
- Caso 2: Se $f(n) = \Theta(n^{\log_b a})$, allora $T(n) = \Theta(n^{\log_b a} \log n)$.
- Caso 3: Se $f(n) = \Omega(n^{\log_b a + \epsilon})$ per qualche $\epsilon > 0$ e se f(n) soddisfa una condizione di regolarità, allora $T(n) = \Theta(f(n))$.

Corollario del Teorema Master (Caso Polinomiale)

Una versione semplificata del teorema si applica quando f(n) è un polinomio della forma $\Theta(n^k)$. Data la ricorrenza $T(n) = a \cdot T(n/b) + \Theta(n^k)$:

- Caso 1: Se $k < \log_b a$, allora $T(n) = \Theta(n^{\log_b a})$.
- Caso 2: Se $k = \log_b a$, allora $T(n) = \Theta(n^k \log n)$.
- Caso 3: Se $k > \log_b a$, allora $T(n) = \Theta(n^k)$.

5 Pseudocodice

5.1 Sintassi di base

• Riga di commento

//...

• Assegnamento

i := j

• Operazioni

+, -, *, /, %

- 5.2 Istruzioni comuni
 - If-else

if condizione istruzioni else istruzioni

• Cicli

• Confronto di interi

>, <, >=, <=, =, !=

• Lettura dell'input

x := read()

• Restituzione in output

return x

while condizione istruzioni

for $i := n_1 \text{ to } n_2$ istruzioni

- 5.3 Oggetti e variabili
 - I dati composti sono organizzati come oggetti. Gli oggetti hanno attributi (campi):
 - x.attr è il valore dell'attributo attr dell'oggetto x.
 - Gli array sono oggetti, dotati dell'attributo length.
 - $-\ A[j]$ è l'elemento di indice j dell'array A.
 - $-\ A[i..j]$ è il sotto
array di A dall'i-esimo al j-esimo elemento.
- Una variabile che corrisponde ad un oggetto è un puntatore all'oggetto.
 - Dopo le istruzioni y := x, x.attr := 3 si ha y.attr = x.attr = 3.
- Un puntatore che non fa riferimento ad alcun oggetto ha valore NIL.
- $\bullet~$ Usa l'istruzione ALLOCATE(varname, length) per creare un nuovo array.

6 Algoritmi di Ordinamento

6.1 Algoritmi comuni

Algoritmo	Complessità temporale	Complessità spaziale	
Insertion sort	$\Theta(n^2)$	$\Theta(1)$	
Merge sort	$\Theta(n \log n)$	$\Theta(n)$	
Heapsort	$\Theta(n \log n)$	$\Theta(1)$	
Quicksort	$\Theta(n^2)$	$\Theta(1)$	
Counting sort	$\Theta(n+k)$	$\Theta(k)$	

6.2 Come Riconoscere la Complessità Logaritmica

Un algoritmo ha complessità logaritmica quando il problema si riduce in modo esponenziale a ogni passo. I principali indizi nel codice sono:

- La variabile del ciclo moltiplica o divide.
 - L'aggiornamento non è un'addizione/sottrazione (es. i := i + 1).
 - L'aggiornamento è una moltiplicazione o divisione per una costante c>1 (es. i := i * 2 oppure i := i / 2).
 - La variabile "salta" verso il valore finale, invece di "camminare". Questo richiede $\Theta(\log n)$ passi.
- Lo spazio del problema viene ridotto di una frazione costante.
 - L'algoritmo scarta una porzione significativa dei dati a ogni iterazione (es. metà, un terzo, etc.).
 - L'esempio classico è la Ricerca Binaria, che dimezza lo spazio di ricerca a ogni passo.
 - La ricorrenza associata è spesso nella forma T(n) = T(n/b) + O(1), la cui soluzione è $\Theta(\log n)$.
- Caso speciale $(\log \log n)$: la variabile esegue un "super-salto".
 - La variabile di controllo viene elevata a una potenza, tipicamente al quadrato (es. i := i * i).
 - La crescita è doppiamente esponenziale, portando a una complessità ancora minore di $\Theta(\log \log n)$.

7 Strutture Dati

7.1 Vettori (Array)

- A.length = lunghezza dell'array.
- A[i] = accesso a elemento i dell'array.
- A[i..j] = sottoarray da i a j.
- n = dimensione dell'array che è uguale a A.length.

7.2 Matrici

- M.height = numero di righe.
- M.width = numero di colonne.
- M[i][j] = accesso a riga i colonna j.
- \bullet n = dimensione dell'input che è uguale al numero di elementi, ovvero $M.height \times M.width$.
- n := M.size per una matrice quadrata, dove size è il numero di righe (o colonne).

7.3 Liste Concatenate

- L.head = puntatore alla testa della lista.
- x_f.next = NIL, dove x_f è l'ultimo elemento della lista.

7.3.1 Liste Singolarmente Concatenate

- x.key = dato contenuto nell'elemento x.
- x.next = puntatore all'elemento successivo.

7.3.2 Liste Doppiamente Concatenate

- x.key = dato contenuto nell'elemento x.
- x.next = puntatore all'elemento successivo.
- x.prev = puntatore all'elemento precedente.
- L.head.prev = NIL.

7.3.3 Liste Doppiamente Concatenate Circolari

- Utilizzano un nodo speciale detto sentinella (L.nil) al posto di L.head.
- L.nil.key = NIL.
- L.nil.next punta alla testa della lista.
- L.nil.prev punta alla coda della lista.
- La lista è "circolare": la prev della testa e la next della coda puntano a L.nil.
- Se la lista è vuota, L.nil punta a se stesso.

7.4 Tabelle Hash

- T = array di m celle (slot) che memorizza i dati.
- h(k) = funzione hash che mappa una chiave k a un indice della tabella.
- $\alpha = n/m =$ fattore di carico, definito come rapporto tra elementi e slot.

7.4.1 Scelta della dimensione m

- Per il **metodo della divisione** $(h(k) = k \pmod{m})$: scegliere **m** come un **numero primo** non troppo vicino a una potenza di 2.
- Per l'indirizzamento aperto $(h(k,i) = (h_1(k) + i \cdot h_2(k)) \pmod{m})$: se $h_2(k)$ è sempre dispari, scegliere m come una potenza di 2.

7.4.2 Risoluzione delle Collisioni

- Concatenamento (Chaining): Ogni cella della tabella T[j] punta a una lista concatenata di tutti gli elementi la cui chiave ha valore hash j. Le operazioni di inserimento, cancellazione e ricerca operano sulla lista corrispondente.
- Indirizzamento Aperto (Open Addressing): Tutti gli elementi sono memorizzati nella tabella stessa. Per inserire un elemento, si esamina (ispeziona) una sequenza di slot fino a trovarne uno vuoto.
 - Ispezione Lineare: La sequenza di ispezione è data da $h(k,i)=(h'(k)+i)\pmod{m}$ per $i=0,1,\ldots,m-1$.
 - Ispezione Quadratica: La sequenza di ispezione è data da $h(k,i) = (h'(k) + c_1i + c_2i^2) \pmod{m}$ per $i = 0, 1, \ldots, m-1$, con c_1, c_2 costanti ausiliarie.
 - **Double Hashing**: La sequenza di ispezione è data da $h(k,i) = (h_1(k) + i \cdot h_2(k)) \pmod{m}$ per $i = 0, 1, \ldots, m-1$, dove h_1 e h_2 sono funzioni hash ausiliarie.

7.4.3 Complessità (Hashing Uniforme)

- Numero medio di tentativi per accesso (indirizzamento aperto): $\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$
- $\bullet\,$ Valore atteso del numero di collisioni (concatenamento): $E[Y]=\frac{n(n-1)}{2m}$

7.5 Alberi

7.5.1 Alberi Binari di Ricerca (BST)

- T.root = puntatore alla radice dell'albero.
- x.key = chiave del nodo x.
- x.p = puntatore al nodo padre.
- x.left = puntatore al figlio sinistro.
- x.right = puntatore al figlio destro.
- x.leftsize = (opzionale) dimensione del sottoalbero sinistro del nodo.

7.5.2 Alberi di Ricerca Generici (GST)

- T.root = puntatore alla radice dell'albero.
- x.key = chiave del nodo x.
- x.p = puntatore al nodo padre.
- x.fs = puntatore al figlio più a sinistra (first son).
- x.lb = puntatore al fratello a sinistra (left brother).
- x.rb = puntatore al fratello a destra (right brother).

7.5.3 Alberi Rosso-Neri (RBT)

- Un RBT è un BST con attributi e proprietà aggiuntive.
- T.nil = nodo speciale sentinella che sostituisce i puntatori a NIL. Il suo colore è sempre BLACK.
- ullet x.color = attributo di ogni nodo che può essere RED o BLACK.
- bh(x) = altezza nera del nodo, ovvero il numero di nodi neri in ogni cammino da x (escluso) a T.nil (incluso).

Proprietà RB

- Ogni nodo è rosso o nero.
- La radice è nera (T.root.color = BLACK).
- Ogni foglia (il nodo sentinella T.nil) è nera.
- Se un nodo è rosso, allora entrambi i suoi figli sono neri.
- Per ogni nodo, tutti i cammini semplici da quel nodo alle foglie discendenti contengono lo stesso numero di nodi neri.

7.6 Grafi

8 Algoritmi BST GST RBT

- Attraversamento In-Ordine (In-order Traversal)
 - Descrizione: Questo algoritmo visita un albero binario di ricerca (BST) processando prima il sottoalbero sinistro, poi la radice e infine il sottoalbero destro. Il risultato è la stampa delle chiavi dei nodi in ordine non decrescente.
 - **Esempio:** Dato un albero con le chiavi disposte come nell'esempio del documento, la sequenza di output dell'attraversamento in-ordine è:

```
20, 30, 32, 34, 40, 50, 60, 65, 70, 75, 80, 85
```

La complessità temporale di questo algoritmo è $\Theta(n)$, dove n è il numero di nodi nell'albero.

• Attraversamento Pre-Ordine (Pre-order Traversal)

- Descrizione: L'attraversamento anticipato (o pre-ordine) visita prima la radice, poi ricorsivamente il sottoalbero sinistro e infine ricorsivamente il sottoalbero destro.
- Esempio: Utilizzando lo stesso albero di riferimento, l'output dell'attraversamento pre-ordine è:

```
50, 30, 20, 40, 32, 34, 70, 60, 65, 80, 75, 85
```

La complessità temporale è $\Theta(n)$.

• Attraversamento Post-Ordine (Post-order Traversal)

- **Descrizione:** L'attraversamento posticipato (o post-ordine) visita ricorsivamente prima il sottoalbero sinistro, poi il sottoalbero destro e infine la radice.
- **Esempio:** Per lo stesso albero, la sequenza di output generata è:

```
20, 34, 32, 40, 30, 65, 60, 75, 85, 80, 70, 50
```

La complessità temporale è $\Theta(n)$.

• Attraversamento per Livelli (Level-order Traversal)

- Descrizione: Questo algoritmo visita i nodi dell'albero livello per livello, da sinistra a destra, partendo dalla radice. Si avvale di una coda per tenere traccia dei nodi da visitare: la radice viene inserita in coda, e poi, in un ciclo, il nodo in testa alla coda viene rimosso, la sua chiave stampata e i suoi figli (se esistenti) vengono aggiunti alla coda.
- Esempio: Per l'albero di riferimento, l'output dell'attraversamento per livelli sarebbe:

```
50, 30, 70, 20, 40, 60, 80, 32, 65, 75, 85, 34
```

La complessità temporale è $\Theta(n)$.

9 Progetta Strutture Dati

9.0.1 Complessità Liste Concatenate

	Unsorted,	Sorted,	Unsorted,	Sorted,
	Singly linked	Singly linked	Doubly linked	Doubly linked
SEARCH (L,k)	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
INSERT (L,x)	$\Theta(1)$	$\Theta(n)$	$\Theta(1)$	$\Theta(n)$
DELETE (L,x)	$\Theta(n)$	$\Theta(n)$	$\Theta(1)$	$\Theta(1)$
SUCCESSOR (L,x)	$\Theta(n)$	$\Theta(1)$	$\Theta(n)$	$\Theta(1)$
PREDECESSOR (L,x)	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(1)$
MAXIMUM (L)	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
MINIMUM (L)	$\Theta(n)$	$\Theta(1)$	$\Theta(n)$	$\Theta(1)$