Taylor Residual Estimators via Automatic Differentiation

Andrew C. Miller, Nicholas J. Foti, and Ryan P. Adams

Expectation Objectives

$$X \sim \pi$$
, $X \in \mathbb{R}^D$

Random Variable

$$\mu_f \triangleq \mathbb{E}_{\pi}[f(X)]$$

$$= \int f(x)\pi(dx)$$

Estimand: expectation

Estimate μ_f efficiently

Monte Carlo Estimators

$$x^{(n)} \sim \pi$$
, for $n = 1, ..., N$

$$\hat{\mu}_f = \frac{1}{N} \sum_{n=1}^{N} f(x^{(n)})$$

Monte Carlo Estimator

$$\mathbb{E}\left[\hat{\mu}_f\right] = \mu_f$$

unbiased

$$\mathbb{V}[\hat{\mu}_f]$$

Monte Carlo variance

Expectation Objectives: Examples

e.g. Variational Inference Objective (ELBO)

$$p(X,\mathcal{D})\,,\,p(X\mid\mathcal{D})$$
 model, posterior $X\sim q_{m{\lambda}}$ posterior approximation $\mathcal{L}(m{\lambda})=\mathbb{E}_{X\sim q_{m{\lambda}}}\left[\ln p(X,\mathcal{D})-\ln q_{m{\lambda}}(X)
ight]$

- Variational Inference
- Importance Sampling
- Entropy Estimation
- Adversarial Learning

What if we have additional information?

differentiable structure in f(x)

$$\frac{\partial f}{\partial x}$$
, $\frac{\partial^2 f}{\partial x^2}$, ...

computable moments of $\pi(x)$

(distributions with moment generating functions)

$$\mathcal{M}_{x_0}^{(m)} = \mathbb{E}_{X \sim \pi} \left[(X - x_0)^m \right]$$
$$= \int (x - x_0)^m \pi(dx)$$

What if we have additional information?

differentiable structure in f(x)computable moments of $\pi(x)$

expand

$$f(x) = f(x_0) + (x - x_0)^{\mathsf{T}} \frac{\partial f}{\partial x}(x_0) + R_{x_0}(x)$$
 Taylor residual

integrate out lower moments

$$\mathbb{E}[f(X)] = \mathbb{E}\left[f(x_0) + (X - x_0)^{\mathsf{T}} \frac{\partial f}{\partial x}(x_0) + R_{x_0}(X)\right]$$
$$= f(x_0) + \left[\mathcal{M}_{x_0}^{(1)}\right]^{\mathsf{T}} \frac{\partial f}{\partial x}(x_0) + \mathbb{E}\left[R_{x_0}(X)\right]$$

constant

$$= f(x_0) + \left[\mathcal{M}_{x_0}^{(1)}\right]^{\mathsf{T}} \frac{\partial f}{\partial x}(x_0) + \mathbb{E}\left[R_{x_0}(X)\right]$$

shifted the variance to the residual term

Monte Carlo

$$\mu_f = \mathbb{E}[f(X)]$$

$$\mu_f = \mathbb{E}[f(X)]$$

$$\mu_f = \mathbb{E}[f(X)]$$

$$\mu_f = \mathbb{E}[f(X)]$$

$$R_{x_0}^{(1)}(x) = f(x) - f_{x_0}^{(1)}(x)$$

$$\mu_f = \mathbb{E}[f(X)]$$

$$R_{x_0}^{(1)}(x) = f(x) - f_{x_0}^{(1)}(x)$$

$$\mu_f = \mathbb{E}[f(X)]$$

$$R_{x_0}^{(1)}(x) = f(x) - f_{x_0}^{(1)}(x)$$

$$\mu_f = \mathbb{E}[f(X)]$$

$$\mu_f = \mathbb{E}[f(X)]$$

Taylor Residual Estimators

Assume we can compute ...

$$f(x) \qquad \left| \left[R_{x_0}^{(1)}(x) = f(x) - f_{x_0}^{(1)}(x) \right] \right|$$

$$\left[f_{x_0}^{(1)}(x) = f(x_0) + (x - x_0)^{\mathsf{T}} \left[\frac{\partial f}{\partial x}(x_0) \right] \right]$$

$$x \sim \pi$$

$$\hat{\mu}_f^{(1)} = f(x_0) + \left[\mathcal{M}_{x_0}^{(1)} \right]^\mathsf{T} \frac{\partial f}{\partial x}(x_0) + R_{x_0}^{(1)}(x)$$
 constant random

Taylor Residual Estimators

Assume we can compute ...

$$f(x) \qquad \left| \left(R_{x_0}^{(M)}(x) = f(x) - f_{x_0}^{(M)}(x) \right) \right|$$

$$f_{x_0}^{(M)}(x) = f(x_0) + \sum_{m=1}^{M} \frac{1}{m!} (x - x_0)^m \frac{\partial^m f}{\partial x^m}(x_0)$$

$$x \sim \pi$$

TRE M
$$\hat{\mu}_f^{(M)} = f(x_0) + \sum_m \frac{1}{m!} \mathcal{M}_{x_0}^{(m)} \frac{\partial^m f}{\partial x^m}(x_0) + R_{x_0}^{(M)}(x)$$
 constant random

Taylor Residual Estimators: Variance

Sufficient condition (first order)

$$\left|\frac{\partial f}{\partial x}(x_0)\right| \leq 2 \left|\mathbb{V}(X)^{-1}\mathbb{C}(X,f(X))\right|$$
 Local linear approx Population least squares coefficient

Taylor Residual Estimators: Variance

When will TREs have lower variance?

Experiments

$$x = [m, v]$$

 $v \sim \mathcal{N}(0, 3^2)$
 $y \sim \mathcal{N}(m, \exp(v/2))$

$$\dim(x) = 20$$

v

m

Experiments

Gaussian ELBO

$$q(x; \boldsymbol{\lambda}) = \mathcal{N}(\boldsymbol{\lambda}_{\mu}, \boldsymbol{\lambda}_{\sigma})$$

$$\mathcal{L}(\boldsymbol{\lambda}) = \mathbb{E}_{X \sim q} \left[\ln \pi(X, \mathcal{D}) - \ln q(X; \boldsymbol{\lambda}) \right]$$

TRE estimator of the ELBO: 320x lower variance than Monte Carlo at initialization; comparable at convergence

Optimization comparison

Experiments

Normalizing Flows ELBO (Planar Flow) $x_0 \sim \mathcal{N}(0, I_D)$ $x_1 = \phi(x_0; \boldsymbol{\lambda}_1)$ \cdots

$$x = x_L = \phi(x_{L-1}; \boldsymbol{\lambda}_L)$$

$$\mathcal{L}(\boldsymbol{\lambda}) = \underbrace{\mathbb{E}_q[\ln \pi(X, \mathcal{D})]}_{\text{model term}} - \underbrace{\mathbb{E}[\ln q(X; \boldsymbol{\lambda})]}_{\text{entropy term}}$$

Optimization comparison

TRE estimator of the ELBO: 40x lower variance than Monte Carlo at initialization; 2x lower at convergence

Future/Ongoing Work

What if the local Taylor approximation fails?

Future/Ongoing Work

What if the local Taylor approximation fails?

Thanks!

Questions? Comments?

acm@seas.harvard.edu
http://andymiller.github.io
twitter: @_amiller_