Дискретни структури

план на упражненията кн 1.1, зимен семестър 2022/2023

Kалоян Цветков kaloyants250gmail.com

ФМИ, СУ 1.0.3

Ресурси (теория и задачи) по Дискретни структури

- теория
- задачи
- ____ теория + задачи
 - сайт на Скелета (задачи от минали години)
 - записки на Мария Соскова
 - записки на Ангел Димитриев
 - лични записки (по упражненията)

Съдържание

1	Вън	ведение
	1.1	Съждения
	1.2	Логически операции
	1.3	Квантори
		1.3.1 За всеобщност - ∀
		1.3.2 За екзистенциалност - 🗦
		1.3.3 Задача:
	1.4	Множества и операции над тях
		1.4.1 Множества
		1.4.2 Дефиниране на множества
		1.4.3 Операции над множества
		1.4.4 Задачи
		1.4.5 мултимножество
		1.4.6 разбиване
		1.4.7 покритие
		1.4.8 разкрояване
2	Ип	дукция 13
4	2.1	дукция Стандартна индукция
	2.1	2.1.1 Задачи
	2.2	Силна индукция
	2.2	Опина индукции
3	Рел	ации 15
	3.1	Наредена двойка
	3.2	Декартово произведение
	3.3	Релация
	3.4	Домейн и кодомейн
	3.5	Свойства
		3.5.1 рефлексивност
		3.5.2 антирефлексивност
		3.5.3 симетричност
		3.5.4 антисиметричност
		3.5.5 силна антисиметричност
		3.5.6 транзитивност
	3.6	Интерпретации
		3.6.1 Матрица
		3.6.2 Граф (диаграма на Хасе)
		3.6.3 Задача
	3.7	Релации на еквивалентност

		3.7.1 1.	Iримери с модулна аритметика	17
		3.7.2 N	Iодифициране на рел. на екв.	17
		3.7.3 E	рой рел. на екв	18
	3.8	Наредби		18
		3.8.1 (2)	Нестрога) частична наредба	18
		3.8.2 C	Утрога частична наредба	18
		3.8.3 Л	Іинейна наредба	18
	3.9	Специал	ни елементи	18
		3.9.1 N	І инимален	18
		3.9.2 H	[ай-малък	18
		3.9.3 N	Таксимален	19
		3.9.4 H	[ай-голям	19
		3.9.5 T	Іример:	19
	3.10	Затваря	не на релации	19
		3.10.1 C	Эперации с релации	19
		3.10.2 p	ефлексивно	20
		3.10.3 c	иметрично	20
		3.10.4 т	ранзитивно	20
	3.11	Задачи:		20
1	Ф	/Та		01
4	-		F	21
	4.1			21
	4.2			21
	4.3			22
	4.4	-		22
	4.5		и безкрайно множество	22
	4.6			22
			Сомпозиция на инекции/сюрекции е инекция/сюрекция	22
			Ізследвайте за инективност/сюрективност функцията	2223
			Сонструиране на биекция	23 23
	4.7		иекциите се различават поне в две двойки	23 23
	4.7	=	10 МНОЖЕСТВО	2323
	4.9	-	на Кантор	2323
	4.10		и за биекции	2323
	4.10	=	10 MHOЖество	2323
			на Кантор	2324
	4.12		и за биекции	
			$\mathbb{N} \sim \mathbb{N} \times $	2424
	112		$R\sim (0,1)$	
	4.10		'	2525
		4.10.1 C	Обединение на изброими множества е изброимо	∠ى

5	Kon	ибинаторика 2	6
	5.1	Теория и примери	26
	5.2	Задачи	27
	5.3	Принцип на Дирихле	28
		5.3.1 Задачи	29
	5.4	Нютонов бином	29
	5.5	Принцип за включване и изключване	29
		5.5.1 Задачи	30
	5.6	Комбинаторни доказателства	31
	5.7	Броене на функции	31
6	Рек	урсия 3	2
	6.1	The rabbit problem	32
	6.2	Рекурентни уравнения	32
	6.3		32
		6.3.1 Алгоритъм за решаване:	32
			33
	6.4		33
		6.4.1 Задачи 3	33
7	Гра	.фи	5
	7.1	-	35
	7.2		36
	7.3		38
			38
			38
	7.4	граф на Петерсен	}9
8	Дър	рвета 4	0
	8.1	Дефиниция за дърво	10
	8.2		10
9	Пок	криващи дървета 4	.1
	9.1		11
			11
			11
		1	11
			12
		9.1.5 Dijkstra	

10	Хип	перкуб	44
	10.1	Дефиниция	44
		Задачи	
11	Бул	еви функции	4 6
	11.1	Задачи	46
	11.2	СДНФ	46
		11.2.1 Теорема на Бул	46
	11.3	МДНФ	46
		11.3.1 Алгоритъм за намиране	46
		11.3.2 Покритие на аргументите с образ 1	
	11.4	Полином на Жегалкин	
		11.4.1 определяне	
		11.4.2 Теорема на Жегалкин	
	11.5	Критерий на Пост-Яблонски	
		. — . Шеферови функции	
		11.6.1 Шеферова функция	
	11 7	Задачи	
		11.7.1 критерий	49

1 Въведение

1.1 Съждения

Изреченията, съдържащи информация, която може да се оцени като вярна и невярна, наричаме **съждения**.

Частта от съждението, която приписва признак, е предикат.

Предикатът може да бъде пресметнат като верен или грешен при прилагането му върху **субект**.

Пример:

"Този химикал е син." е вярно/грешно съждение, получено от пресмятането на предиката "Х е син." върху субекта "този химикал".

"Съществува просто число с 100,000,000 цифри"е съждение, но не знаем как да оценим като вярно или грешно все още.

(Най-голямото открито просто число има около 23,000,000 цифри $)^1$

1.2 Логически операции

Дефиниции чрез вектор/таблица от стойности и на интуитивно ниво.

отрицание

 \neg

p	$\neg p$
0	1
1	0

дизюнкция

V

p	q	$p \vee q$
0	0	0
0	1	1
1	0	1
1	1	1

конюнкция

Λ

p	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

¹Към датата 22 януари 2023 г.!

изключващо или

 \bigoplus

p	q	$p \oplus q$
0	0	0
0	1	1
1	0	1
1	1	0

импликация (ако ..., то ...)

 \rightarrow

p	q	$p \rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

биимпликация (еквивалентност)

 \longleftrightarrow

p	\overline{q}	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

Свойства:

комутативност

$$p \wedge q = q \wedge p \qquad p \vee q = q \vee p \qquad p \oplus q = q \oplus p$$

асоциативност

$$p \vee (q \vee r) = (p \vee B) \vee C \qquad p \wedge B) \wedge C) = (p \wedge B) \wedge C$$

дистрибутивност

$$p \vee (q \wedge r) = (p \vee q) \wedge (q \vee r) \qquad p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$$

закон за контапозицията закони на Де Морган

Нека p, q, r, s и t са следните съждения:

р: Ще разходя кучето преди обяд.

q: Сутринта ще спортувам.

r: Следобяд ще спортувам.

- s: Днес времето е хубаво.
- t: Днес влажността на въздуха е ниска.

Напишете логически изрази, съответстващи са следните изречения.

- 1. Няма да разходя кучето преди обяд.
- 2. Ще разходя кучето преди обяд и следобяд ще спортувам.
- 3. Днес ще спортувам или сутринта, или следобяд.
- 4. Днес ще спортувам сутринта или следобяд.
- 5. Ако днес времето е хубаво, следобяд ще спортувам.
- 6. Необходимо условие, за да спортувам днес следобяд е, времето да е хубаво.
- 7. Достатъчно условие, за да спортувам днес е времето да е хубаво и влажността да е ниска.

Квантори 1.3

1.3.1 За всеобщност - ∀

 $orall x \in A: P(x)$ - предикатът P се оценява като истина за всеки/за произволен едемент от множеството .

1.3.2 За екзистенциалност - ∃

 $\exists x \in A : P(x)$ - предикатът P се оценява като истина за някой (поне 1) от всички елементи на множеството A.

Кванторите са дуални: отрицанието на единия поражда другия.

$$\neg \exists x \in A : P(x) \longleftrightarrow \forall x \in A : \neg P(x)$$
$$\neg \forall x \in A : P(x) \longleftrightarrow \exists x \in A : \neg P(x)$$

$$\neg \forall x \in A : P(x) \longleftrightarrow \exists x \in A : \neg P(x)$$

1.3.3 Задача:

$$R(x)$$
 - " x е в стая <номер на стая>";

$$C(x)$$
 - " x следва $\overline{\mathrm{KH}}$ ";

$$F(x,y)$$
 - " x е приятел на y ";

Да се изразят твърденията чрез квантори и предикатите R, C, F.

"Някой следва КН."

$$\exists x : C(x);$$

"Всеки е приятел на себе си."

$$\forall x : F(x, x);$$

"Приятелството и неприятелството са взаимни."

$$\forall x : \forall y : F(x,y) \to F(y,x);$$
 (защо \longleftrightarrow не е необходимо)

"Всеки има приятел."

$$\forall x: \exists y: F(x,y);$$

"Всички в стая <номер на стая> следват КН."

 $\forall x : R(x) \to C(x);$

"Всеки в тази стая има приятел от КН, който не е в стаята."

 $\forall x : R(x) \to (\exists y : F(x,y) \land C(y) \land \neg R(y));$

"Хората в стаята, които не следват КН, имат приятел в стаята."

 $\forall x : R(x) \land \neg C(x) \rightarrow \exists y : R(y) \land F(x,y)$

"Да нямаш приятели е достатъчно условие да не следваш КН."

 $\forall x : (\forall y : \neg F(x,y)) \rightarrow \neg C(x)$. (контрапозиция?)

"Двама души са приятели тогава и само тогава, когато имат общ приятел от КН."

 $\forall x : \forall y : F(x,y) \longleftrightarrow \exists z : F(x,z) \land F(y,z) \land C(x)$

1.4 Множества и операции над тях

1.4.1 Множества

Множество - няма дефиниция; интуитивно: колекция от неща; всички математически обекти са изградени от множества.

1.4.2 Дефиниране на множества

чрез изброяване

чрез предикат

празно множество: $(\exists \emptyset :) \forall x : x \notin \emptyset$.

Дефиниции за равенство на множества, подмножество, строго подмножество.

$$A = B \stackrel{def}{\longleftrightarrow} \forall x : x \in A \longleftrightarrow x \in B$$
$$A \subseteq B \stackrel{def}{\longleftrightarrow} \forall x : x \in A \to x \in B$$
$$A \subset B \stackrel{def}{\longleftrightarrow} A \subseteq B \land A \neq B$$
$$\forall A : \emptyset \subseteq A \land \emptyset \subset A$$

Примери за равни множества (повторението и редът на елементите не е от значение) и подмножества.

$$\{1, 2, \emptyset\} = \{\emptyset, 1, 2\} = \{\emptyset, \emptyset, 1, 2, 1, 1\}$$
$$\{x, 1, y\} \subseteq \{2, y, 1, 5, z, x\}$$
$$\{x, 1, y\} \subset \{2, y, 1, 5, z, x\}$$
$$\{x, 1, y, z, 5, 2\} \subseteq \{2, y, 1, 5, z, x\}$$

1.4.3 Операции над множества

таблици (за произволен елемент "смятаме" резултат спрямо предикатите $x \in A$ и $x \in B$) Аналогии с логическите операции.

обединение

$$A \cup B := \{x | x \in A \lor x \in B\}$$

сечение

$$A\cap B:=\{x|x\in A\wedge x\in B\}$$

разлика

$$A \backslash B := \{x | x \in A \land x \not \in B\}$$

симетрична разлика

$$A\Delta B:=\{x|x\in A\oplus x\in B\}$$

Доказателтво, че:

•
$$A\Delta B = (A \cup B) \setminus (A \cap B)$$

A	B	$A \cup B$	$A \cap B$	$(A \cup B) \setminus (A \cap B)$	$A\Delta B$
0	0	0	0	0	0
0	1	1	0	1	1
1	0	1	0	1	1
1	1	1	1	0	0

$$\implies \forall x: x \in (A \cup B) \setminus (A \cap B) \leftrightarrow x \in A \Delta B \implies (A \cup B) \setminus (B \cap A) = A \Delta B$$

• $A\Delta B = (A\backslash B) \cup (B\backslash A)$.

A	B	$A \backslash B$	$B \backslash A$	$(A \backslash B) \cup (A \backslash B)$	$A\Delta B$
0	0	0	0	0	0
0	1	0	1	1	1
1	0	1	0	1	1
1	1	0	0	0	0

$$\implies \forall x: x \in (A \backslash B) \cup (A \backslash B) \leftrightarrow x \in A \Delta B \implies (A \backslash B) \cup (A \backslash B) = A \Delta B$$

Допълнение на множество

Универсално множество - съдържа всички разглеждани множества; определя се от контекста.

$$\overline{A} := U \backslash A; \qquad \overline{\overline{A}} = A.$$

Свойства:

• комутативност

$$A \cap B = B \cap A$$
 $A \cup B = B \cup A$ $A \triangle B = B \triangle A$

• асоциативност

$$A \cup (B \cup C) = (A \cup B) \cup C$$
 $A \cap (B \cap C) = (A \cap B) \cap C$ Обединение на няколко множества: $\bigcup_{i \in I} A_i := \{x | \exists i \in I : x \in A_i\}$

Сечение на няколко множества: $\bigcap_{i \in I} A_i := \{x | \forall i \in I : x \in A_i\}$

• дистрибутивност

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \qquad A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

празно множество

$$A \cup \emptyset = A$$
 $A \cap \emptyset = \emptyset$ $A \setminus \emptyset = A$

закони на Де Морган

$$\overline{A \cap B} = \overline{A} \cup \overline{B} \qquad \overline{A \cup B} = \overline{A} \cap \overline{B}$$

степенно множество

$$\mathcal{P}(A) = 2^A := \{x | x \subseteq A\}$$

Примери за степенни множества.

$$\mathcal{P}(\{1,2,3\}) = \{\emptyset, \{1\} \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}\}$$

$$\mathcal{P}(\{\emptyset, \{1,2\}, 7\}) = \{\emptyset, \{\emptyset\} \{\{1,2\}\}, \{7\}, \{\emptyset, \{1,2\}\}, \{\emptyset, 7\}, \{\{1,2\}, 7\}, \{\emptyset, \{1,2\}, 7\}\}\}$$

1.4.4 Задачи

Вярно ли е, че

$$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$$
 (не) $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$ (да)

1.4.5 мултимножество

Множество, в което броя на повторенията на елементите е от значение.

$$\{1,3,3,2,1\}=\{1,2,3\}\,$$
 разглеждани като множества $\{1,3,3,2,1\}
eq \{1,2,3\}\,$ разглеждани като мултимножества

1.4.6 разбиване

$$F=\{A_i|i\in I\}$$
 е разбиване на $A \stackrel{def}{\longleftrightarrow} Vi\in I: A_i
eq \emptyset$

$$\bigcup_{i\in I} A_i = A$$

$$\forall i,j\in I: i
eq j
ightarrow A_i \cap A_j = \emptyset$$

 $\{S\}$ разбиване ли е на S? (да $\longleftrightarrow S \neq \emptyset$)

1.4.7 покритие

1.4.8 разкрояване

$$F=\{A_i|i\in I\}$$
 е разкрояване на $A \stackrel{def}{\longleftrightarrow} \forall i\in I: A_i
eq \emptyset$
$$\bigcup_{i\in I} A_i \subseteq A$$
 $\forall i,j\in I: i
eq j o A_i\cap A_j = \emptyset$

2 Индукция

Плочки домино:

Бутнали сме първата плочка и знаем, че ако падне n-тата ще падне и n+1-вата. Тогава ще паднат всички плочки.

2.1 Стандартна индукция

$$P(0) \land (\forall n \in \mathbb{N} : (P(n) \to P(n+1))) \to \forall n \in \mathbb{N} : P(n)$$

Принцип на индукцията

- Проверяваме верността на твърдението за n = 0 (P(0));
- Допускаме, че твърдението е вярно за някое n (P(n));
- Доказваме, че твърдението е вярно и за n+1 $(P(n) \to P(n+1)).$
- Тогава $\forall n \geq 0 : P(n)$.

2.1.1 Задачи

Да се докаже, че $|2^A| = 2^{|A|}$.

Solution:

$$|A| = n + 1 \ge 1 \implies |A \setminus \{a\}| = n \ge 0 \implies |2^{A \setminus \{a\}}| = 2^n$$

 \implies All subsets of A not containing a are 2^n . All subsets of A are those not containing a and them unioned with $\{a\}$ \implies

$$\mathcal{P}(A) = \{x | x \subseteq A \land a \notin x\} \cup \{x | x \subseteq A \land a \in x\}$$

 $|\mathcal{P}(A)| = |\{x|x \subseteq A \land a \not\in x\}| + |\{x|x \subseteq A \land a \in x\}| \text{ (since they have no intersection)}$

$$|\mathcal{P}(A)| = |\mathcal{P}(A \setminus \{a\})| + |\{x | x \in \mathcal{P}(A \setminus \{a\}) \land a \in x\}|$$

they are $2.2^n = 2^{n+1}$.

Обобщен принцип на индукцията

$$P(n_0) \wedge (\forall n \ge n_0 : (P(n) \to P(n+1))) \to \forall n \ge n_0 : P(n)$$

- Проверяваме верността на твърдението за $n = n_0$ $(P(n_0));$
- Допускаме, че твърдението е вярно за някое n (P(n));
- Доказваме, че твърдението е вярно и за n+1 $(P(n) \to P(n+1)).$
- Тогава $\forall n \geq n_0 : P(n)$.

2.2 Силна индукция

$$P(0) \land (\forall n \in \mathbb{N} : ((\forall k \le n : P(k)) \to P(n+1))) \to \forall n \in \mathbb{N} : P(n)$$

3 Релации

3.1 Наредена двойка

$$(a,b) \stackrel{\text{def}}{=} \{a, \{a,b\}\}\$$
$$(a,b) = (c,d) \leftrightarrow a = c \land b = d$$

3.2 Декартово произведение

$$A \times B \stackrel{\mathrm{def}}{=} \{ (a, b) \mid a \in A \land b \in B \}$$

Пример:

$$\{1, 3, 5\} \times \{2, 4\} = \{(1, 2), (1, 4), (3, 2), (3, 4), (5, 2), (5, 4)\}\$$
 $\emptyset \times \{0, 2\} = \emptyset$

няма комутативност: $A \times B \neq B \times A$

Мощност на декартово произведение: $|A \times B| = |A|.|B|$ (доказателство с индукция по |A|)

3.3 Релация

релация е всяко подможество на декартово произведение

 $R \subseteq A_1 \times A_2 \times ... \times A_n$ - n-местна релация

при n=2: бинарна релация $R\subseteq A\times A$ - бинарна релация над A Пример за 3-местна релация:

 $(a,b,c) \in R \stackrel{def}{\Longleftrightarrow} a,b,c$ са страни на триъгълник.

Ако |A|=n, то колко са бинарните релации над $A\ (2^n)$

3.4 Домейн и кодомейн

$$dom\left(R
ight)=\{a|\exists b\in A:(a,b)\in R\}$$
 - домейн $range\left(R
ight)=\{b|\exists a\in A:(a,b)\in R\}$ - кодомейн, range

3.5 Свойства

$$R \subseteq A \times A$$

3.5.1 рефлексивност

$$\forall a \in A : (a, a) \in R$$

3.5.2 антирефлексивност

$$\forall a \in A : (a, a) \notin R$$

3.5.3 симетричност

 $\forall a,b \in A: (a,b) \in R \to (b,a) \in R$

3.5.4 антисиметричност

$$\forall a,b \in A: a \neq b \rightarrow ((a,b) \in R \rightarrow (b,a) \not\in R)$$
 (възможно е да има и несравними елементи) \longleftrightarrow

$$\forall a, b \in A : (a, b) \in R \land (b, a) \in R \rightarrow a = b$$

3.5.5 силна антисиметричност

$$\forall a, b \in A : (a, b) \in R \oplus (b, a) \in R$$

3.5.6 транзитивност

$$\forall a, b, c \in A : (a, b) \in R \land (b, c) \in R \rightarrow (a, c) \in R$$

3.6 Интерпретации

$$R = \{(1, 2), (1, 3), (1, 4), (3, 1), (2, 4), (3, 3), (2, 5), (5, 4), (5, 2)\}$$

3.6.1 Матрица

	1	2	3	4	5	6
1		X	Х	х		
2				х	х	
3	х		Х			
4						
5		X		х		
6						

3.6.2 Граф (диаграма на Хасе)

Интерпретация на свойствата с матрица и граф.

3.6.3 Задача

Какви свойства притежават релациите:

- $R \subseteq \mathbb{R} \times \mathbb{R}, R = \{(a, b) | a b \in \mathbb{Z}\}$
- $R \subseteq \mathbb{R} \times \mathbb{R} : \{(a,b) | a+b \ge 5\}$
- $R \subseteq 2^{\mathbb{N}} \times 2^{\mathbb{N}}, R = \{(a, b) | a \cap b \neq \emptyset\}$
- $R \subseteq \{0, 1, 2\}^2, R = \{(a, b) | a + b \ge 5\}$

3.7 Релации на еквивалентност

R е релация на еквивалентност $\stackrel{def}{\longleftrightarrow} R$ е рефлексивна, симетрична и транзитивна. Примери: равенство на числа, еднаквост и подобие на триъгълници.

$$[x]_{R} \stackrel{\mathrm{def}}{=} \{ y | (x, y) \in R \}$$

Теорема: (лекции и изпит)

$$R \subseteq A \times A$$

$$F_R:=\{[x]_R\,|x\in A\}\,$$
е разбиване на A

3.7.1 Примери с модулна аритметика

$$R \subseteq \mathbb{N} \times \mathbb{N}$$
$$aRb \leftrightarrow 4 \mid a - b$$

Да се докаже, че R е релация на еквивалентност. $R \subseteq \mathbb{Z} \times \mathbb{Z}$

$$xRy \leftrightarrow 2 \mid 2x - 5y$$

Да се докаже, че R е релация на еквивалентност.

3.7.2 Модифициране на рел. на екв.

Нека R_1, R_2 са релации на еквивалентност над A. Релации на еквивалентност ли са релациите:

- $R_1 \cup R_2$ (не)
- $R_1 \cap R_2$ (да)
- $R_1 \Delta R_2$ (не)

3.7.3 Брой рел. на екв.

Колко са релациите на еквивалентност над $A = \{1, 2, 3, 4\}$? (брой разбивания на 4-елементно множество)

3.8 Наредби

3.8.1 (Нестрога) частична наредба

R е частична наредба, когато е рефлексивна, антисиметрична и транзитивна. Примери: \geq, \leq, \subseteq .

3.8.2 Строга частична наредба

R е строга частична наредба, когато е антирефлексивна, антисиметрична и транзитивна.

Примери: $>, <, \subset$.

3.8.3 Линейна наредба

R е линейна (пълна) наредба, когато е рефлексивна, силно антисиметрична и транзитивна.

Колко елемента има линейна наредба над n-елементно множество? $\left(\frac{n^2+n}{2}\right)$

3.9 Специални елементи

$$R \subseteq A \times A$$

3.9.1 Минимален

$$a$$
е минимален $\stackrel{def}{\longleftrightarrow} \forall b \in A : b \neq a \to (b,a) \not \in R$

след обръщане на кванторите - "няма по-малък от него".

3.9.2 Най-малък

$$a$$
 е най-малък $\stackrel{def}{\longleftrightarrow} \forall b \in A : b \neq a \to (a,b) \in R$

"по-малък от всички други"

Възможно ли е да има повече от 1 най-малък/най-голям елемент в наредба? (не)

3.9.3 Максимален

$$a$$
 е максимален $\stackrel{def}{\longleftrightarrow} \forall b \in A : b \neq a \to (a,b) \not\in R$

след обръщане на кванторите - "няма по-голям от него".

Възможно ли е да има 0, 1, > 1 минимален/максимален елемент в частична наредба?

(0 - не (ако R е частична наредба, то R има минимален и максимален елемент (теорема)), 1 - да, 2 - да)

А в линейна?

(0 - не (линейната наредба е и частична), 1 - да, 2 - не)

3.9.4 Най-голям

$$a$$
 е най-голям $\stackrel{def}{\longleftrightarrow} \forall b \in A: b \neq a \to (b,a) \in R$

Възможно ли е да има повече от 1 най-малък/най-голям елемент в наредба? (не)

3.9.5 Пример:

Да се посочат минимални, максимални, най-големи и най-малки елементи

	1	2	3	4	5	6	7	8
1			Х	х				X
2	Х	Х	Х	х	X	Х	Х	X
3							Х	
4				х			х	
5								
6					х			X
7						х		X
8								

(При наличие на най-малък/най-голям, наличието на друг минимален/максимален е изключено.)

3.10 Затваряне на релации

3.10.1 Операции с релации

- Обратна релация: $R^{-1} = \{(b, a) \mid (a, b) \in R\}$
- Допълнение на релация: $\overline{R} = \{(a,b) \mid (a,b) \notin R\}$
- Композиция на релации: $S \circ R = \{(a,c) | \exists b \in A : (a,b) \in R \land (b,c) \in S\}$

$$R \subseteq A \times A$$

[&]quot;по-голям от всички други"

3.10.2 рефлексивно

$$refl(R) = R \cup \{(a, a) | a \in A\}$$

3.10.3 симетрично

$$sym(R) = R \cup R^{-1}$$

3.10.4 транзитивно

$$R^1=R; R^n=R\circ R^{n-1}$$
 при $n>1$ $trans(R)=\bigcup_{n\in\mathbb{N}^+}R^n$

Да се намери рефлексивното, симетричното и транзитивното затваряне на $R = \{(1,2),(2,1),(2,3),(3,4)\}$

3.11 Задачи:

Делимост

Да се докаже, че релацията | - "дели"е частична наредба над N. Да се посочат найголям, най-малък, минимален и максимален елемент или да се докаже, че такъв няма.

Комутативност

(свеждане до умножение на матрици)

Hека |A| = n.

Hека $S = \{x | xA\}.$

Нека $R \subseteq S \times S$.

 $R_1RR_2 \stackrel{\overline{def}}{\longleftrightarrow} R_1 \circ R_2 = R_2 \circ R_1$. Релация на еквивалентност ли е R? Докажете.

Две релации

Нека $R \subseteq A \times A$ е рефлексивна и транзитивна релация.

Нека $\sim \subseteq A \times A : a \sim b \leftrightarrow aRb \wedge bRa$.

Докажете, че \sim е релация на еквивалентност.

$$\mathbf{F} := \{ [x]_{\sim} \mid x \in A \}$$

$$\langle \subseteq F \times F : [a]_{\sim} \langle [b]_{\sim} \leftrightarrow \exists x \in [a]_{\sim} \exists y \in [b]_{\sim} : xRy$$

Да се докаже, че \langle е частична наредба.

4 Функции/Изброимост

$$f$$
 е (тотална) функция $\stackrel{def}{\longleftrightarrow} f \subseteq A \times B \wedge \forall a \in A: \exists! b \in B: (a,b) \in f$ (точно 1 образ)
$$f(x) = y \longleftrightarrow (x,y) \in f$$

$$f$$
 е частична функция $\stackrel{def}{\longleftrightarrow}$
$$f \subseteq A \times B \wedge \forall a \in A: \forall b_1 \in B: \forall b_2 \in B: (a,b_1) \in f \wedge (a,b_2) \in f \implies b_1 = b_2$$
 (най-много 1 образ)
$$f$$
 е функция и $f \subseteq A \times B$ - записваме $f: A \longrightarrow B$

Задача

Кои са релациите на еквивалентност $R \subseteq A \times A$, които са функции? (допускаме, че R има клас на еквивалентност с поне 2 елемента $a \neq b \implies aRb \wedge aRa \implies a = b \implies$ противоречие \implies само идентитетът е релация на еквивалентност и функция едновременно).

4.1 Свойства

$$f:A\longrightarrow B$$

- инекция: $\forall a_1 \in A : \forall a_2 \in A : a_1 \neq a_2 \longrightarrow f(a_1) \neq f(a_2)$ f е инекция $\longrightarrow |A| \leq |B|$ (необходимо условие за инекция) Примери: $f : \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x \backslash 2^x$ са инекции Примери: $f : \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x^2 \backslash sin(x) \backslash x^2 - 3x + 2$ не са инекции
- сюрекция: $\forall b \in B : \exists a \in A : f(a) = b$ f е сюрекция $\longrightarrow |A| \ge |B|$ Примери: $f : \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x$ $f : \mathbb{R} \longrightarrow (0,1); f(x) = \frac{1}{x}$ са сюрекции Примери: $f : \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x^2 \backslash \sin(x) \backslash x^2 3x + 2$ не са сюрекции
- биекция инекция и сюрекция (необходимо условие за сюрекция) $\forall b \in B: \exists! a \in A: f(a) = b$ f е биекция $\longrightarrow |A| = |B|$ (необходимо условие за биекция) Примери: $f: \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x^{2n+1}$ е биекции $\forall n \in \mathbb{N}$

Ако има инекция $A \longrightarrow B$, то има сюрекция $B \longrightarrow A$.

4.2 Образ на множество

Нека
$$f:A\longrightarrow B$$
 и $X\subseteq A$ $f(X)=\{f(x)|x\in X\}$

4.3 Композиция

Нека $f: A \longrightarrow B, g: B \longrightarrow C$ $g \circ f: A \longrightarrow C, (g \circ f)(x) = g(f(x))$

композиция на инекции/сюрекции/биекции е отново инекция/сюрекция/биекция

4.4 Обратна функция

Нека $f:A\longrightarrow B$ е биекция (при инекция обратната функция е частична).

$$f^{-1}: B \longrightarrow A, f^{-1}(y) = x \stackrel{def}{\longleftrightarrow} f(x) = y$$

4.5 Крайно и безкрайно множество

A е крайно $\stackrel{def}{\longleftrightarrow} \exists n \in \mathbb{N} : \exists f : I_n \longrightarrow A : f$ е биекция. A е безкрайно $\stackrel{def}{\longleftrightarrow} A$ не е крайно. (с квантори?)

4.6 Задачи

4.6.1 Композиция на инекции/сюрекции е инекция/сюрекция

Нека $f:A\to B$ и $g:B\to C$ са инекции.

Допускаме, че $a \neq b \in A$.

$$\implies f(a) \neq f(b) \in B \implies g(f(a)) \neq g(f(b)) \implies g \circ f$$
 е инекция.

Нека $f:A \to B$ и $g:B \to C$ са сюрекции.

Нека $z \in C \implies \exists y \in B: g(y) = z \implies \exists x \in A: f(x) = y. \implies g(f(x)) = g(y) = z \implies g \circ f$ е сюрекция.

4.6.2 Изследвайте за инективност/сюрективност функцията

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}: f(x,y) = \sqrt{x^2 + y^2}$$

$$f: \mathbb{N} \longrightarrow \mathbb{N}: f(x) = \begin{cases} x+1 & \text{,ако } x \text{ е четно} \\ x-1 & \text{,ако } x \text{ е нечетно} \end{cases}$$

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}: f(x,y) = (2x-y, -x+2y)$$

$$f: \mathbb{R} \setminus \{1\} \longrightarrow \mathbb{R} \setminus \{1\}: f(x) = \frac{x+1}{x-1}$$

$$f: \mathbb{R} \longrightarrow \mathbb{R}: f(x) = \frac{x}{x^2+1}$$

4.6.3 Конструиране на биекция

Да се построи биекция $f: \mathbb{N}^+ \longrightarrow \mathbb{N}^+$, че $\forall n \in \mathbb{N}: n \mid \sum_{i=1}^n f(i)$.

 $f(n+1) := \left\{ \begin{array}{ll} m & \text{ if } m \not\in \{f(1), f(2), ..., f(n)\} \ \ \text{(запазване на средното аритметично)} \\ m+n+1 & \text{ otherwise (увеличаване на средното аритметично с 1)}. \end{array} \right.$

4.6.4 Биекциите се различават поне в две двойки

Нека $f:A\longrightarrow A$ и $g:A\longrightarrow A$ са биекции и $\exists x_1\in A:f(a_1)\neq g(a_1)$. Да се докаже, че $\exists x_2\in A:x_1\neq x_2\land f(x_2)\neq g(x_2)$.

4.7 Изброимо множество

A е изброимо $\stackrel{def}{\longleftrightarrow} \exists f: \mathbb{N} \longrightarrow A: f$ е биекция. изброимост на $\mathbb{N} \times \mathbb{N}, \mathbb{Z}, \mathbb{Q}$ (записки) (диагонален метод на Кантор) (безкрайният хотел на Хилберт)

4.8 Теорема на Кантор

 $\forall A: \neg \exists f: A \longrightarrow 2^A: f$ е биекция. неизброимост на $2^{\mathbb{N}}$ има ли инекция $A \longrightarrow 2^A$ (да се построи) има ли сюрекция $A \longrightarrow 2^A$ (не?)

4.9 Примери за биекции

изброимост на $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{N} \times \mathbb{N}$, декартово произведение на изброими, изброимо на произволна степен.

4.10 Изброимо множество

A е изброимо $\stackrel{def}{\longleftrightarrow} \exists f: \mathbb{N} \longrightarrow A: f$ е биекция. изброимост на $\mathbb{N} \times \mathbb{N}, \mathbb{Z}, \mathbb{Q}$ (диагонален метод на Кантор)

4.11 Теорема на Кантор

 $\forall A: \neg \exists f: A \longrightarrow 2^A: f$ е биекция. неизброимост на $2^{\mathbb{N}}, \mathbb{R}$

4.12 Примери за биекции

4.12.1 $\mathbb{N} \sim \mathbb{N} \times \mathbb{N}$

• чрез 2 инекции

$$f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$$

$$\forall n \in \mathbb{N} : f(n) = (n, 0)$$

$$\Longrightarrow |\mathbb{N}| \le |\mathbb{N} \times \mathbb{N}|$$

$$g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

$$\forall m, n \in \mathbb{N} : g(m, n) = 2^m 3^n$$

$$\Longrightarrow |\mathbb{N} \times \mathbb{N}| \le |\mathbb{N}|$$

 \bullet чрез "обхождане"на $\mathbb{N} \times \mathbb{N}$

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$
 $orall i(ped), j(cтълб) \in \mathbb{N}: f(i,j) = rac{(i+j)(i+j+1)}{2} + j$

• алгебрична биекция

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$
$$\forall i, j \in \mathbb{N}: f(i, j) = 2^{i}(2j + 1) - 1$$

4.12.2 $\mathbb{R} \sim (0,1)$

• тригонометрична биекция

$$f: \mathbb{R} \to (0,1)$$
$$f(x) = \frac{1}{\pi} \arctan(x) + \frac{1}{2}$$

• експоненциална функция

$$f: \mathbb{R} \to (0,1)$$
$$f(x) = \frac{1}{1 + e^x}$$

• рационална функция

$$f:(0,1) \to \mathbb{R}$$

$$f(x) = \frac{ax+b}{x(x-1)}$$
 where $a,b \in \mathbb{R}, ab < 0, |a| > |b|$

• геометрична биекция

$$f: (0,1) \to \mathbb{R}$$
$$f(x) = \frac{\frac{2x-1}{\sqrt{1-(2x-1)^2}} + 1}{2}$$

Геометрична интерпретация:

неизброимост на $2^{\mathbb{N}}, \mathbb{R}, \mathbb{R} \times \mathbb{R}$ (защо?), \mathbb{C}

4.13 Задачи за биекции

- 1. Да се докаже, че множеството на булевите вектори (крайни редици от 0,1) е изброимо.
 - Да се докаже, че множеството на думите над азбуката $\{a,b\}$ е изброимо. (същата задача?)
- 2. Да се докаже, че множеството на крайните редици от естествени числа са изброимо много.

(да се направи сравнение между $2^{\mathbb{N}}$ и $\bigcup_{i\in\mathbb{N}} \mathbb{N}^i$)

4.13.1 Обединение на изброими множества е изброимо

Да се докаже, че A и B са изброими множества, то $A \cup B$ е изброимо.

5 Комбинаторика

5.1 Теория и примери

Принципи на събирането и умножението

Не се използват в теретичния си вид; описват броят начини събития да се случат в зависимост от зависимостта между тях.

1. на събирането

Нека $R = \{S_i | i \in I\}$ е разбиване на .

Тогава
$$|A| = \sum_{i \in I} |S_i|$$
.

2. на умножениетоо

Нека
$$|X| = n, |Y| = m$$
. Тогава $|X \times Y| = |X| \cdot |Y| = nm$.

Основни комбинаторни конфигурации (колко варианта има c/без наредба и c/без повторение (принцип на умножението :)):

1. с наредба и без повторение

броят на наредените k-орки без повторение от n-елементно множество начините да изберем и подредим k души от n в редица

$$V_n^k = \frac{n!}{(n-k)!}$$

при
$$k=n:V_n^n=P_n=n!$$
 - пермутация

2. с наредба и с повторение

броят на функциите $I_k \longrightarrow I_n$

по колко начина можем да си купим k-неща измежду асортимент от n.

$$n^k$$

3. без наредба и без повторение

<u>вариация</u> пермутация

$$C_n^k = \frac{n!}{k! \, (n-k)!} =: \binom{n}{k}$$
 - биномен коефициент

Да се докаже, че $\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}$.

Комбинаторно доказателство (чак след доказване на връзката с подмножествата) и алгебрично.

Идея за рекурсивна дефиниция на биномния коефициент чрез свойството.

Триъгълник на Паскал.

броят на k-елементните подмножества на n-елементно множество (да се докаже с индукция след доказване на основното свойство).

тъждества с биномни коефициенти

$$\sum_{i=0}^{n} \binom{n}{i} = 2^n$$

$$\binom{n}{k} = \binom{n}{n-k}$$

Да се докаже, че $|2^A| = 2^{|A|}$ (комбинаторно с използване на горното твърдение).

4. без наредба и с повторение

броят на начините да приберем k еднакви топчета в n чекмеджета броят на решенията на $x_1+x_2+...+x_k=n; \forall i\in I_k: x_i\geq 0$

$$S_n^k = C_{n+k-1}^k = \binom{n+k-1}{k} = \binom{n+k-1}{n-1}$$

броят на k-елементните мултимножества на n-елементно множество.

5.2 Задачи

- 1. Колко са булевите вектори с дължина n, които започват с 10 и завършват с 1?
- 2. Колко са булевите вектори, които започват и завършват с различна цифра?
- 3. Колко са булевите вектори, които съдържат поне 3 единици и поне 2 нули?
- 4. Колко са четирицифрените числа k, за които е изпълнено, че ако k е печетно, то k съдържа 0
- 5. Дадена е стандартна колода от 52 карти. По колко начина можем да изберем от тях 13, така че сред тях да има:
 - \bullet точно 1J
 - поне 1A
 - ullet не по-малко от 2Q
 - точно 3 седмици
 - ullet точно 1 боя, от която няма карти
 - най-много 2
 - ullet точно 2A и точно $2\spadesuit$
 - ullet точно 2A и не повече от 2igtriangle
 - не повече от 2 бои, в които имаме точно 1 карта.
- 6. Колко са булевите вектори с n нули и k единици, в които няма съседни единици? задачи

- 7. Колко различни думи могат да се получат, като се разместят буквите в думата:
 - "релация"
 - "конституционен"

(пермутации с повторения)

8. Колко правоъгълника със страни ≥ 2 има в шахматна дъска 8×8 ?

$$\binom{8}{2}^2 = \frac{\binom{64}{2}}{4} - \frac{2 \cdot 8 \cdot \binom{8}{2}}{2} = 784$$

- 9. По колко начина могат да седнат:
 - п човека на пейка;
 - \bullet n мъже и n жени на една пейка, като всяка жена седи до мъже, а всеки мъж седи до жени;
 - п човека на кръгла маса;
 - n мъже и n жени на кръгла маса, като всяка жена седи до мъже, а всеки мъж седи до жени;
- 10. Колко решения в естествени числа имат уравненията:

$$x_1 + x_2 + x_3 + x_4 = 15$$

$$x_1 + x_2 + x_3 + x_4 = 15, x_2 \ge 3$$

$$x_1 + x_2 + x_3 + x_4 = 15, x_2 \ge 3 \land x_3 \ge 5$$

$$x_1 + x_2 + x_3 + x_4 = 15, x_2 < 7$$

$$x_1 + x_2 + x_3 + x_4 = 15, x_2 < 7 \land x_3 < 6$$

$$x_1 + x_2 + x_3 \le 11$$

11. Колко идентификатора с дължина n могат да се съставят в езика Ada? (идентификаторите започват с буква и продължават с буква, цифра или _, като _ не могат да са съседни или в края на идентификатора)

5.3 Принцип на Дирихле

формално

Нека |A| = n и |B| = k. Тогава

$$n>k\longrightarrow \forall f:A\longrightarrow B:f$$
 не е инекция

контрапозиция води до споменатото НУ за инекция.

практично

Представен чрез топки в чекмеджета:

n топки трябва да разположим в m чекмеджета. Тогава:

- ullet има чекмедже с поне $\frac{n}{m}$ топки;
- ullet има чекмедже с най-много $\frac{n}{m}$ топки.

При $n = m + 1 \implies$ има чекмедже с поне 2 топки.

5.3.1 Задачи

- На избори гласуват 100 души за 3 кандидата. Колко най-малко гласове ще стигнат на победителя да спечели?
- На банкет има 3 маси и 4 вида питие, по 10 бутилки от всеки вид. Да се докаже, че има маса, на която има поне по 4 бутилки от 2 различни вида питие.
- Матрица 2022×2022 да се попълни с числата $0, \pm 1$, така че всички сборове по редове, стълбове и диагонали да са различни.
- Точки с цели координати в равнината са оцветени с 8 различни цвата. Да се докаже, че има 2 едноцветни точки на растояния по-малко от 3.
- 50 точки са разположени във вътрешността на квадрат със страна 35. Да се докаже, че поне 2 точки са на рзстояние по-малко от 8.

5.4 Нютонов бином

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$

Доказателства:

- комбинаторно
- \bullet с инукция по n

5.5 Принцип за включване и изключване

за две множества:
$$|A \cup B| = |A| + |B| - |A \cap B|$$

за три множества: $|A \cup B| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$

обобщен принцип:
$$|\bigcup_{i\in I_k}A_i|=\sum_{i=1}^k(-1)^{i-1}\sum_{1\leq j_1\leq\ldots\leq j_i\leq k}|\bigcap_{p\in I_i}A_{j_p}|=$$
 $=|A_1|+\ldots+|A_k|-(|A_1\cap A_2|+\ldots+|A_{k-1}\cap A_k|)+\ldots+(-1)^{k-1}|A_1\cup A_2\cup\ldots\cup A_k|$ Доказтелства:

- Комбинаторно: използваме $(1+x)^n = ... = 0$ при x = -1;
- С индукция по n.

5.5.1 Задачи

- 1. В група студенти всеки знае поне един от езиците Java, C++, Python. Java знаят 15 души, C++ знаят 13, а Python 10. C++ и Java знаят 5 човека, C++ и Python 5, Java и Python 3. Трима души знаят и трите езика. Колко души има в групата? (28 = 15 + 13 + 10 5 5 3 + 3)
- 2. В група пт 30 студенти Java знаят 15 души, C++ знаят 13, а Python 10. C++ и Java знаят 5 човека, C++ и Python 5, Java и Python 3. Трима души знаят и трите езика. Колко души не знаят нито един език в групата? (30 = x + 15 + 13 + 10 5 5 3 + 3)
- 3. Нека |A| = n и |B| = m. Колко са различните сюрекции $A \to B$?

$$\sum_{i=0}^{m-1} (-1)^i \binom{m}{i} (n-i)^n$$

4. Колко са пермутациите на $\{1,2,...,n\}$, такива, че $\forall i \in I_n: i$ не е на позиция i?

$$\sum_{i=0}^{m-1} (-1)^i \binom{m}{i} (n-i)!$$

 A_i - множеството от пермутациите, в които i е на позиция i; Отговорът е $|\overline{A_1} \cap \overline{A_2} \cap ... \cap \overline{A_k}|$.

- 5. Колко цели числа между 1 и 10000 съдържат цифрата 7? A_i множеството от числата, в които 7 е на позиция i; Броим всички числа без тези, които съдържат 7 на някоя позиция.
- 6. Колко думи с дължина 5 над азбуката $\{a,b,c,d,e\}$ имат поне 2 последователни a-та? (2 начина)

$$5^{5} - 4^{5} - {5 \choose 1} 4^{4} - {4 \choose 2} 4^{3} - {3 \choose 3} 4^{2} =$$

$$= 4.5^{3} - 3.5^{2} - 3.5 + 5 + 1 + 1 + 5 - 1 = 421$$

7. Колко решения в цели числа има уравнението:

$$x_1 + x_2 + x_3 + x_4 = 15, x_2 < 7 \land x_3 < 6 \land x_4 < 5$$

5.6 Комбинаторни доказателства

1. Ако
$$|A| = n$$
, то $|2^A| = 2^n$

2.

$$\sum_{i=0}^{n} \binom{n}{i}^2 = \binom{2n}{n}$$

3.

$${n \brace k} = {n-1 \brace k-1} + k {n-1 \brace k},$$

където $\binom{n}{k}$ е броят на разбиванията на n-елементно множество на k непразни множества.

5.7 Броене на функции

Нека |A|=n, |B|=m. Колко са функциите $f:A\longrightarrow B,$ които са:

• тотални

$$m^n$$

• частични

$$(1+m)^n$$

• инекции

вариация
$$V_m^n = \frac{m!}{(m-n)!}$$
 (при $m < n$ няма такива (Дирихле))

• сюрекции

$$\sum_{i=0}^{m} (-1)^{i} \binom{m}{i} (m-i)^{n}$$

6 Рекурсия

6.1 The rabbit problem

Задачата се състои в намиране броя на зайците, които ще се получат от една двойка за определен брой месеци при следните условия:

- всяка двойка плодоносни зайци дава прираст два заека на месец;
- новите зайци стават плодоносни на едномесечна възраст;
- зайците не умират никога.

Редицата от двойките за всеки месец е всъщност редицата на Фибоначи.

6.2 Рекурентни уравнения

- 1. Да се намери рекурентна зависимост за начините, по които n различни предмета могат да се подредят в редица.
- 2. Да се намери рекурентна зависимост за броя на естествените числа, чийто запис в десетична бройна система има n цифри, от които нулите са четен брой.
- 3. Да се намери рекурентна зависимост за броя на естествените числа, чийто запис в десетична бройна система има n цифри и няма съседни нули.

6.3 Хомогенни линейни рекурентни уравнения

От ред k с постоянни коефициенти:

$$c_0s_n + c_1s_{n-1} + c_2s_{n-2} + \dots + c_ks_{n-k} = 0$$

6.3.1 Алгоритъм за решаване:

• образуваме характеристично уравнение

$$c_0 x^n + c_1 x^{n-1} + c_2 x^{n-2} + \dots + c_k x_{n-k} = 0$$
$$c_0 x^k + c_1 x^{k-1} + \dots + c_k = 0$$

ullet записваме всичките му k корена в мултимножество

$$M = \{r_1, ..., r_k\}$$

• ако всички корени са различни, то решението на уравнението е

$$a_n = A_1 r_1^n + A_2 r_2^n + \dots + A_n r_k^n,$$

където числата A_i се определят от началните условия на рекурентното уравнение.

ullet ако има корен r_i , който се повтаря p пъти, то коефициентът пред r_i^n е

$$(A_{r_i,1}n^{p-1} + A_{r_i,2}n^{p-2} + \dots + A_{r_i,p}n^0)$$

6.3.2 Задачи

1. Да се реши рекурентното уравнение:

$$s_n = 7s_{n-1} - 10s_{n-2}, n > 1; s_0 = 0; s_1 = 3$$

2. Колко са думите с дължина n от азбуката $\{a,b,c,d,e\}$, в които няма последователни a-та?

6.4 Нехомогенни линейни рекурентни уравнения

От ред k с постоянни коефициенти:

$$c_0s_n + c_1s_{n-1} + c_2s_{n-2} + \dots + c_ks_{n-k} = f(n),$$

където f е от вида:

$$f(n) = Q_1(n)b_1^n + Q_2(n)b_2^n + \dots + Q_m(n)b_m^n$$

Алгоритъм за решаване:

• образуваме характеристично уравнение

$$c_0 x^n + c_1 x^{n-1} + c_2 x^{n-2} + \dots + c_k x_{n-k} = 0$$
$$c_0 x^k + c_1 x^{k-1} + \dots + c_k = 0$$

• записваме всичките му k корена, както и $b_1, ..., b_m$, съответно по $(deg(Q_1)+1), (deg(Q_2)+1), ..., (deg(Q_m)+1)$ пъти в мултимножество

$$M = \{r_1, ..., r_k, b_1, ..., b_1, b_2, ..., b_2, ..., b_m, ..., b_m, \}$$

• ако всички елементи на са различни, то решението на уравнението е

$$a_n = A_1 r_1^n + A_2 r_2^n + \dots + A_p b_m^n,$$

където числата A_i се определят от началните условия на рекурентното уравнение.

ullet ако има елемент q, който се повтаря p пъти, то коефициентът пред q^n е

$$(A_{q,1}n^{p-1} + A_{q,2}n^{p-2} + \dots + A_{q,p}n^0)$$

6.4.1 Задачи

1. Задачата за ханойските кули се състои от *п* диска, различни по размер един от друг, и 3 стълба. В началото дисковете са подредени на левия стълб, като найголемият е най-отдолу, а най-малкият - отгоре. Целта е кулата да бъде преместена на десния стълб. Може да се мести само по един диск на ход и не може по-голям диск да бъде поставен върху по-малък. Всеки ход е съставен от взимането на горния диск от даден стълб и в поставянето му най-отгоре на друг стълб. С колко най-малко хода може да се реши задачата?

2. Да се реши рекурентното уравнение:

$$s_n - 3s_{n-1} = 2, n > 1; s_1 = 2$$

3. Да се реши рекурентното уравнение:

$$s_n - 2s_{n-1} = 5 \cdot 2^n, n > 0; s_0 = 7$$

4. Да се реши рекурентното уравнение:

$$a_{n+3} = -5a_{n+2} - 8a_{n+1} - 4a_n + 2(-1)^n + (-2)^{n+3}$$

- 5. Колко са булевите вектори с дължина n, които нямат съседни 0?
- 6. Да се намери формула за $\sum_{i=0}^{n} i$.
- 7. Да се намери формула за $\sum_{i=0}^{n} i^3$.
- 8. Да се докаже, че $\left(3+\sqrt{5}\right)^{2022}+\left(3-\sqrt{5}\right)^{2022}\in\mathbb{Z}.$

7 Графи

7.1 Дефиниции

- Граф наричаме наредена двойка G(V, E), където V е множество на върховете (работим с краен брой), а $E \subseteq V \times V$ множество на ребрата;
- ullet Ако $E=\emptyset$ наричаме G празен граф;
- Ребро от вида $(v, v) \in E$ наричаме примка;
- G(V, E) е неориентиран граф $\stackrel{def}{\longleftrightarrow}$ е симетрична релация;
- Мултиграф наричаме наредена тройка G(V, E, f), където V е множество на върховете (работим с краен брой), E е множество, а $f: E \to V \times V$ функция, описваща ребрата;
- ullet (неориентирани графи) Степен на $v \in V$ наричаме

$$d(v) \stackrel{\text{def}}{=} |\{(v, u) | u \in V \land (v, u) \in E\}|;$$

 \bullet (ориентирани графи) Полустепен на изхода на $v \in V$ наричаме

$$d^+(v) \stackrel{\text{def}}{=} |\{(v, u) | u \in V \land (v, u) \in E\}|;$$

ullet (ориентирани графи) Полустепен на входа на $v \in V$ наричаме

$$d^{-}(v) \stackrel{\text{def}}{=} |\{(u, v) | u \in V \land (u, v) \in E\}|;$$

- Графът G(V, E) е k-регулярен $\stackrel{def}{\longleftrightarrow} \forall v \in V : d(v) = k;$
- G(V, E) е пълният граф с |V| =: n върха $\stackrel{def}{\longleftrightarrow} G$ е n-1 регулярен (игнорираме примките) (има ребро между всеки два различни върха);
- $G_1(V_1, E_1)$ е подграф на $G(V, E) \stackrel{def}{\longleftrightarrow} V_1 \subseteq V_2 \land E_1 \subseteq E_2$;
- G'(V', E') е клика в $G(V, E) \stackrel{def}{\longleftrightarrow} G'$ е подграф на $G \wedge G'$ е пълен граф;
- G'(V', E') е антиклика в $G(V, E) \stackrel{def}{\longleftrightarrow} G'$ е подграф на $G \wedge E' = \emptyset$;
- G(V,E) е двуделен граф $\stackrel{def}{\longleftrightarrow} \exists V_1, V_2 \subseteq V : V_1 \cup V_2 = V \land V_1 \cap V_2 = \emptyset \land \forall (u,v) \in E : (u \in V_1 \leftrightarrow v \in V_1);$
- p е път в $G(V, E) \stackrel{def}{\longleftrightarrow} p = (v_1 e_1 v_2 e_2 ... v_{k-1} e_{k-1} v_k)$, където $v_i \in V$ и $e_i = (v_i, v_{i+1})$;
- p е прост път в $G(V, E) \stackrel{def}{\longleftrightarrow} p = (v_1 e_1 v_2 e_2 ... v_{k-1} e_{k-1} v_k)$ и $\forall i, j : v_i \neq v_j$ (без повторение на върхове);

- p е цикъл в $G(V, E) \stackrel{def}{\longleftrightarrow}$ р е път в G и $v_1 = v_k$;
- p е Хамилтонов цикъл $\stackrel{def}{\longleftrightarrow} p$ минава през всички върхове и $\forall i, j : v_i = v_j \to i = 1 \land j = k;$
- ullet p е Ойлеров цикъл $\stackrel{def}{\longleftrightarrow} p$ минава точно веднъж през всяко ребро;
- G е свързан граф $\stackrel{def}{\longleftrightarrow} \forall u, v \in V : \exists p = (u...v);$ (алтернативна дефиниция чрез релация $\subseteq V \times V$ на достижимост)
- (за ориентирани графи) G е силно свързан граф $\stackrel{def}{\longleftrightarrow} \forall u,v \in V: \exists p=(u...v) \land \exists p=(v...u);$
- Допълнение на $G\left(V,E\right)$ наричаме графа $\overline{G}\left(V,\overline{E}\right)$;

7.2 Задачи

1. Да се докаже, че $\sum_{v \in V} d(v) = 2|E|$.

Решение: Всяко ребро е преобрено отляво и отдясно по точно 2 пъти.

2. Да се докаже, че $\sum_{v \in V} d^-(v) = \sum_{v \in V} d^+(v) = |E|$.

Решение: Всяко ребро е преобрено отляво и отдясно по точно 1 път.

3. Да се докаже, че върховете от нечетна степен в неориентиран граф са четен брой.

Решение: Допускаме, че графът G(V, E) съдържа нечетен брой върхове от нечетна степен. Тогава:

$$2|E|=\sum_{v\in V}d(v)=\sum_{v\in V,d(v)}d(v)+\sum_{v\in V,d(v)}d(v)$$
 е нечетно число \Longrightarrow противоречие

- 4. The hand-shaking lemma Нека G(V, E) е граф с поне два върха. Тогава $\exists u, v \in V, u \neq v : d(u) = d(v)$.
- 5. Нека G е неориентиран граф, всеки връх на който е от степен ≥ 2 . Да се докаже, че в G има цикъл.

Решение: Допускаме, че няма цикли. Нека p = x...y е най-дълъг път. Ако x и y не са инцидентни, то $\exists e = (x, u) \in E : u \notin p$. Тогава up е по-дълъг от $p \implies$ противоречие \implies в G е цикличен.

6. Нека G(V,E) е граф с n върха, всеки от които със степен $d(n) \geq \frac{n-1}{2}$. Да се докаже, че G е свързан.

Решение:

Допускаме, че G удовлетворява условията и G не е свързан.

Нека $G_1(V_1, E_1)$ е свързана компонента в G. Тогава $G_2(V_2, E_2) := G - G_1$ не е празен.

$$|V_1| + |V_2| = n \implies min(|V_1|, |V_2|) \le \frac{n}{2}$$

Случай 1:
$$|V_1| \leq |V_2|$$

$$|V_1| \leq \frac{n}{2} \implies$$
 най-високата степен на връх в G_1 е $|V_1| - 1 \leq \frac{n-2}{2} < \frac{n-1}{2}$

⇒ противоречие;

Аналогично за Случай 2. $\implies G$ е свързан.

7. Да се докаже, че

$$G(V,E)$$
 е свързан $\Longrightarrow |E| \ge |V| - 1$

Доказателство:

 \mathbb{C} индукция по |V|:

- $|V|=2 \implies |E|=1 \implies$ вярно е за 2
- Допускаме, че твърдението е вярно за |V| = n.
- Нека |V|=n+1 Допускаме, че |E|<|V|-1=n Допускаме, че $\forall v\in V: d(v)\geq 2.$ Тогава $\sum_{v\in V}\geq 2n+2>2n>2|E|$ \Longrightarrow противоречие.

 $\implies \exists v \in V : d(v) = 1$ (свързаността на G не позволява степен 0)

Знаем, че G-v е свързан и $|V\backslash \{v\}|=n \xrightarrow{\text{(от хипотезата)}} |E|-1 \geq |V\backslash \{v\}|-1=|V|-2$

$$\implies |E| \ge |V| - 1$$

8. Да се докаже, че G не е свързан $\Longrightarrow \overline{G}$ е свързан.

Решение:

Разглеждаме произволните върхове $u, v \in V$.

- u и v са в различни свързани компоненти $\implies (u,v) \not\in E \implies (u,v) \in \overline{E} \implies$ има път от u до v в \overline{G} ;
- u и v са в една свързана компонента Тогава $\exists x \in V$, такова че x е в друга свързана компонента $\Longrightarrow (u,x) \not\in E \land (v,x) \not\in E \Longrightarrow p = uxv$ е път от u до v в \overline{G} .
- \Longrightarrow има път между всеки два върха в $\overline{G} \Longrightarrow \overline{G}$ е свързан.
- 9. Да се докаже, че ако в граф има точно 2 върха с нечетна степен, то има път между тях.

- 10. Да се докаже, че всеки 2 най-дълги пътя в свързан граф имат общ връх.
- 11. Нека G(V, E) е граф с поне 6 върха. Тоава в G има 3-клика или 3-антиклика.

Решение:

Разглеждаме графа $G'=G+\overline{G}=K_{|V|}$, в който ребрата от G са оцветени в синьо, а ребрата от \overline{G} са оцветени в червено. Нека $v,x,y,z\in V$. В графа $G':d(v)\geq 5\Longrightarrow$ има поне 3 едноцветни ребра. БОО нека това са ребрата към x,y,z и те са сини. Разглеждаме следните 2 случая:

- някое от ребрата (x,y), (y,z), (x,z) е синьо. Нека БОО (x,y) е синьо. Тогава v,x,y образуват клика в G;
- никое от ребрата (x,y), (y,z), (x,z) не е синьо \implies те са червени. Тогава x,y,z образуват клика в \overline{G} \implies образуват антиклика в G.
- 12. Нека G(V, E) е несвързан граф. Колко най-много ребра има G?

Решение:

Нека G(V,E) има 2 свързани компоненти съответно с k и n-k върхове. Тогава G има най-много

$$f(k) = {k \choose 2} + {n-k \choose 2} = \frac{1}{2} (2k^2 - 2nk + n^2 - n)$$

функция на k, която достига максимум при k=1 (или k=n-1):

$$f(1) = f(n-1) = \binom{n-1}{2}$$

7.3 Обхождане на графи

7.3.1 BFS (в широчина) (опашка (FIFO))

Записваме началния връх в опашката.

Доката опашката не е празна

- -махаме първия връх от опашката
- -ако не е обходен, добавяме в опашката всички върхове, инцидентни с него, и го добавяме в списъка с обходените.

7.3.2 DFS (в широчина) (стек (LIFO))

Записваме началния връх в стека.

Доката стекът не е празен

- -махаме първия връх от стека
- -ако не е обходен, добавяме в стека всички върхове, инцидентни с него, и го добавяме в списъка с обходените.

7.4 граф на Петерсен

- 1. няма цикли с дължина < 5
- 2. не е планарен
- 3. не е Хамилтонов

Доказателство:

Допускаме, че графът на Петерсен има Хамилтонов цикъл с дължина 10.

Допускаме, че всеки връх е свързан със срещуположния му в цикъла

 $\implies 1 - 6 - 5 - 10 - 1$ е цикъл с дължина $4 \implies$ противорчие.

Нека БОО 1 не е свързан с 6 \implies е свързан с 5 (иначе има цикъл с дължина \leq 5)

Сега 10 не може да бъде свързан с друг връх,

понеже ще се получи цикъл с дължина ≤ 5 .

⇒ противоречие.

4. има Хамилтонов път

8 Дървета

8.1 Дефиниция за дърво

T(V,E) е дърво $\stackrel{def}{\longleftrightarrow} T$ е свързан ацикличен граф T(V,E) е гора $\stackrel{def}{\longleftrightarrow} T$ е ацикличен граф

8.2 Задачи

- 1. Да се докаже, че G(V, E) е дърво и $|V| \ge 2 \implies \exists u, v \in V : d(u) = d(v) = 1$
- 2. Нека G(V, E) е свързан граф. Нека c е цикъл в G и нека e е ребро от c. Тогава G-e е свързан.
- 3. Даден е графът $G\left(V,E\right), |V|=:n,n\geq 2.$ Да се докаже, че следните твърдения са еквивалентни:
 - (a) G е дърво;
 - (б) G е свързан с n-1 ребра;
 - (в) G е свързан, но при премахване на произволно ребро се получава несвързан граф;
 - (г) Всяка двойка върхове е свързана с точно 1 прост път
 - (д) G няма цикли, но при добавяне на ребро между произволни 2 върха се получава цикъл.

(свързан граф от еквивалентности (рекурсия:))

- 4. Нека G(V,E), |V|=2n е такъв, че n от върховете са от степен поне 3. Да се докаже, че в G има цикъл.
- 5. Нека T(V, E) е свързан граф. Да се докаже, че

$$G$$
 е дърво $\implies \forall v \in V : d(v) \geq 2 \rightarrow v$ е срязващ връх

6. Да се докаже, че ако в граф с n върха има n-1 висящи върха, то графът е или дърво, или не е свързан.

9 Покриващи дървета

9.1 MST

Даден е графът G(V, E).

 $T\left(V,E'\right)$ е покриващо дърво на $G\overset{def}{\longleftrightarrow}T$ е дърво и $E'\subseteq E.$

9.1.1 Дефиниция

Нека е дадена теглова функция $\omega: E \to \mathbb{N}$.

T(V, E') е минимално покриващо дърво (MST) на $G \stackrel{def}{\longleftrightarrow} T$ е покриващо дърво на G и за всяко покриващо дърво $T' = (V, E_0)$ е изпълнено:

$$\sum_{e \in E'} c(e) \le \sum_{e \in E_0} c(e)$$

9.1.2 Алгоритми

 $G(V,E), \omega: E \to \mathbb{N}:$

9.1.3 Prim

Визуализация на MST Prim algorithm

Добавяме най-лекото ребро с начало обходен връх и край необходен. Обявяваме необходения за обходен.

(върхът А е начален)

9.1.4 Kruskal

Визуализация на MST Kruskal algorithm

Сортираме ребрата според теглото им във възходящ ред и добавяме най-лекото ребро, необразуващо цикъл.

9.1.5 Dijkstra

Визуализация на MST Dijkstra algorithm

Последователно строи най-късите пътища от началния връх до останалите.

(върхът А е начален)

1	Α	0				
2	В	∞	$\begin{array}{ c c }\hline 4\\A \end{array}$			
3	С	∞	A			
4	D	∞	12/ B	$C = \frac{5}{C}$		
5	Е	∞	A			
7	F	∞	10	<i>D</i>	8/ IF\	G
6	G	∞	B	6 C		
8	Н	∞	15	13 F		

10 Хиперкуб

10.1 Дефиниция

п-мерният хиперкуб е графът

$$B_n(V, E)$$

$$V = \mathbb{J}_2^n = \{(a_1, ..., a_n) | a_i \in \mathbb{J}_2\}$$

$$E = \left\{ \left(\tilde{\alpha}^n, \tilde{\beta}^n \right) | \sum_{i=1}^n |\alpha_i - \beta_i| = 1 \right\}$$

наредба на върховете: $\tilde{\alpha} \preceq \tilde{\beta} \iff \forall i : \alpha_i \leq \beta_i$

- *n*-регулярен
- \bullet $|V|=2^n$
- $|E| = \frac{\sum_{\tilde{\alpha}^n \in V} d(v)}{2} = \frac{2^n n}{2} = 2^{n-1} n$
- B_n е двуделен

$$V_1 = \left\{ \alpha | \alpha \in \mathbb{J}_2^n \wedge \sum_{i=1}^n \alpha_i \equiv 0 \, (\mod 2) \right\} \quad V_2 = \left\{ \alpha | \alpha \in \mathbb{J}_2^n \wedge \sum_{i=1}^n \alpha_i \equiv 1 \, (\mod 2) \right\}$$

10.2 Задачи

- 1. Колко са различните максимални вериги в B_n ? (верига е последователност от върхове $\tilde{\alpha}_1, \tilde{\alpha}_2, ..., \tilde{\alpha}_n$, такива че $\forall i : \tilde{\alpha}_i \preceq \tilde{\alpha}_{i+1}$)
- 2. Да се намери броя на върховете в максимална антиклика на B_n . (2^{n-1})
- 3. Да се докаже, че B_n е хамилтонов за $n \geq 2$.
- 4. Да се докаже, че B_n не е планарен за $n \geq 4$.

Решение:

$$\forall n \geq 4 : B_4$$
 е подграф на B_n .

След прилагане на следните премахвания:

- (а) премахваме 1000;
- (б) премахваме 0100;
- (в) премахваме 1100 и добавяме (1110, 1101);
- (г) премахваме 0000;
- (д) премахваме 0001;
- (е) премахваме 1001 и добавяме (1101, 1011);
- (ж) премахваме 1010 и добавяме (1110, 1011);
- (з) премахваме 0101 и добавяме (0111, 1101);
- (и) премахваме 0110 и добавяме (0111, 1110);
- (к) премахваме 0011 и добавяме (0111, 1011);

Получаваме графът K_5 :

11 Булеви функции

Работим с (тотални) функции $f: \mathbb{J}_2^n o \mathbb{J}_2$

$$\mathbb{F}_2^n = \{ f | f : \mathbb{J}_2^n \to \mathbb{J}_2 \}$$

11.1 Задачи

- \bullet Да се намери броя на булевите функции на n променливи, които зависят от всичките си аргументи.
- Да се намери броя на булевите функции на n променливи, за които:
 - 1. върху k вектора стойността на функцията е фиксирана, а върху останалите е произволна;
 - 2. върху точно k аргумента има стойност 0, а върху останалите е 1.
- Да се намери броя на булевите функции на n променливи, за които $f(x_1, x_2, ..., x_n) =$ $f(x_2, x_1, ..., x_n)$.

11.2СДНФ

11.2.1 Теорема на Бул

Множеството $\{\neg, \land, \lor\}$ е пълно.

От $x \wedge y = \neg (\neg x \vee \neg y) \implies \{\neg, \vee\}$ е пълно. Аналогично и $\{\neg, \wedge\}$ е пълно.

11.3 МДНФ

11.3.1 Алгоритъм за намиране

- 1. Опростяване на конюнкти от СДНФ (различаващи се по една променлива)
- 2. Определяне на минималния брой необходими опростени конюнкти

11.3.2 Покритие на аргументите с образ 1

Всеки конюнкт "покрива" (имплицира; истинността му гарантира истинността на функцията) определени вектори. Задачата за МДН Φ се свежда до търсене на покритие 1 на всички вектори, за които стойността на функцията е 1.

- 1. дефинираме q_i конюнктът с етикет $i \in I$ (най-удобно с числови индекси) участва във формула;
- 2. образуваме конюнкция на дизюнкции на конюнктите, покриващи всеки ред:

$$\bigwedge_{\tilde{\alpha} \in \left\{\tilde{\beta} | f(\tilde{\beta}) = 1\right\}} \left(\bigvee_{i \in I \land \text{ конюнкт } i \text{ покрива } \tilde{\alpha}} q_i\right)$$

¹виж 1.4.7

3. след опростяване взимаме конюнктите с най-малка дължина.

```
Пример: f = (0110110001011001)
```

```
x y z
         w
  0
0
      0
         0
             0
0 \quad 0
     0 1
             1
      1 0
  0
             1
0
  0
      1
         1
             0
  1
      0 \quad 0
0
            1
  1
      0
0
        1
             1
  1
      1 0
             0
0
  1
      1
0
1
  0
      0 \quad 0
             0
1
  0
      0 \quad 1
             1
  0
      1
1
             0
      1 1
1 0
             1
1
  1
      0
1
  1
      0
         1
             0
1
  1
      1
         0
             0
1
         1
             1
```

Опростените конюнкти са $xzw(1), \overline{xz}w(2), \overline{yz}w(3), y\overline{zw}(4), \overline{x}y\overline{z}(5), x\overline{y}w(6), \overline{x}yz\overline{w}(7).$

Кои покриват в този ред 0001,0010,0100,0101,1001,1011,1100,1111:

$$(q_{2} \lor q_{3}) \land (q_{7}) \land (q_{4} \lor q_{5}) \land (q_{2} \lor q_{5}) \land (q_{3} \lor q_{6}) \land (q_{1} \lor q_{6}) \land (q_{4}) \land (q_{1}) =$$

$$= q_{1}q_{4}q_{7} \lor ((q_{2} \lor q_{3}) \land (q_{4} \lor q_{5}) \land (q_{3} \lor q_{6}) \land (q_{1} \lor q_{6}) \land (q_{2} \lor q_{5})) =$$

$$= (q_{1}q_{4}q_{7} \lor (q_{2} \lor q_{5})) \land ((q_{2}q_{4} \lor q_{2}q_{5} \lor q_{3}q_{4} \lor q_{3}q_{5}) \land (q_{3}q_{1} \lor q_{3}q_{6} \lor q_{6}q_{1} \lor q_{6})) =$$

$$= (q_{1}q_{2}q_{4}q_{7}q_{2}q_{4} \lor q_{1}q_{2}q_{4}q_{7}q_{2}q_{5} \lor q_{1}q_{2}q_{4}q_{7}q_{3}q_{4} \lor q_{1}q_{2}q_{4}q_{7}q_{3}q_{5}) \land (q_{3}q_{1} \lor q_{3}q_{6} \lor q_{6}q_{1} \lor q_{6}) \land$$

$$\land (q_{1}q_{5}q_{4}q_{7}q_{2}q_{4} \lor q_{1}q_{2}q_{4}q_{7}q_{2}q_{5} \lor q_{1}q_{2}q_{4}q_{7}q_{3}q_{4} \lor q_{1}q_{2}q_{4}q_{7}q_{3}q_{5}) \land (q_{3}q_{1} \lor q_{3}q_{6} \lor q_{6}q_{1} \lor q_{6}) =$$

$$= \underline{q_{1}q_{2}q_{3}q_{4}q_{7}} \lor \dots \lor \underline{q_{1}q_{2}q_{4}q_{6}q_{7}} \lor \dots \lor \underline{q_{1}q_{3}q_{4}q_{5}q_{7}}$$

 \implies МДН Φ се определят от $q_1q_2q_3q_4q_7,\ q_1q_2q_4q_6q_7$ и $q_1q_3q_4q_5q_7$

⇒ МДНФ са

$$xzw \vee \overline{xz}w \vee \overline{yz}w \vee y\overline{zw} \vee \overline{xy}z\overline{w}$$
$$xzw \vee \overline{xz}w \vee y\overline{zw} \vee x\overline{y}w \vee \overline{xy}z\overline{w}$$
$$xzw \vee \overline{yz}w \vee y\overline{zw} \vee \overline{x}y\overline{z} \vee \overline{xy}z\overline{w}$$

11.4 Полином на Жегалкин

Полином на Жегалкин наричаме формула от вида

$$f(x_1, x_2, ..., x_n) = a_0 \oplus \bigoplus_{1 \le i \le n} a_i x_i \oplus \bigoplus_{1 \le i \le j \le n} a_{ij} x_i x_j \oplus ... \oplus a_{12...n} x_1 x_2 ... x_n$$

11.4.1 определяне

1. начин:

заместване на \lor с \oplus и $\neg x$ с $1 \oplus x$ в СДН Φ ; опростяване до получване на ПЖ;

2. начин:

конструиране на система линейни уравнения по общия вид на ПЖ чрез заместване с всеки възможен аргумент.

11.4.2 Теорема на Жегалкин

Всяка булева функция може да се представи по единствен начин чрез полином на Жегалкин.

(еднакъв брой и сюрекция от полиномите към функциите (заради пълнотата на $\{1,\oplus,\wedge\}))$

11.5 Критерий на Пост-Яблонски

Множеството F е пълно $\iff F \not\subseteq T_0 \land F \not\subseteq T_1 \land F \not\subseteq M \land F \not\subseteq L \land F \not\subseteq S$

11.6 Шеферови функции

11.6.1 Шеферова функция

f е Шеферова функция $\stackrel{def}{\longleftrightarrow} \{f\}$ е пълно.

11.7 Задачи

- Да се намерят СДНФ, МДНФ и полином на Жегалкин на функциите:
 - -f = (1010)
 - $-f = (\overline{x} \to (y \to z) \oplus xz \oplus 1)$
 - f = (01101010)
 - f = (11011011)
- Пълно ли е множеството:
 - $-\{1,\wedge,\oplus\}$
 - $-\{x \to y, x \oplus y\}$
 - $\{f_1 = (10000001), f_2 = (0110), f_3 = (00110111)\}\$

$$- \{\overline{x}, 1, x (y \leftrightarrow z) \oplus \overline{x} (y \oplus z)\}$$
$$- \{xy \oplus z, x \oplus y \oplus 1, \overline{x}\}$$

- \bullet Намерете броя на n-местните булеви функции, които са от:
 - -L
 - $-L\cap T_0$
 - $-L\cap T_1$
 - $-L\cap S$

11.7.1 критерий

f е Шеферова функция $\iff f \not\in T_0 \cup T_1 \cup S$.

Доказателство:

Г⇒ Следва от критерия на Пост-Яблонски

 \sqsubseteq Нека $f \notin T_0 \cup T_1 \cup S$.

 $\overline{f}(\overline{x_1},...,\overline{x_n}) = 0 \oplus a_0 \oplus a_1 x_1 \oplus ... \oplus a_n x_n = f(x_1,...,x_n) \implies f \in S \implies$ противоречие $f \notin L \implies f$ е Шеферова.

Следствие: $M \cup L \subseteq T_0 \cup T_1 \cup S$

to be continued...