Substâncias

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

1 O mol e as massas molares

Números astronômicos de moléculas ocorrem mesmo em pequenas amostras: $1\,\mathrm{mL}$ de água contém 3×10^{22} moléculas, um número superior ao das estrelas do universo visível. Como você pode determinar esses números e registrá-los de modo simples e claro? Para não perder de vista números enormes de átomos, íons ou moléculas de uma amostra, precisamos de um modo eficiente de determinar e apresentar esses números.

1.1 O mol

Os químicos descrevem os números de átomos, íons e moléculas em termos de uma unidade chamada **mol**. 1 mol de objetos contém um determinado número de objetos igual ao número de átomos que existe em precisamente 12 g de carbono-12.

A massa do átomo de carbono-12 foi determinada por espectrometria como cerca de 2×10^{23} g. Isso significa que o número de átomos em exatamente 12 g de carbono-12 é

$$\text{N(carbono-12)} = \frac{12\,\text{g}}{2\times 10^{23}\,\text{g}} = 6\times 10^{23}$$

Como o mol é igual a este número, você pode aplicar a definição a qualquer objeto, não apenas a átomos de carbono. **1 mol** de qualquer objeto corresponde a 6×10^{23} desse objeto.

O mol é a unidade utilizada para medir a propriedade física formalmente chamada de **quantidade de substância**, n. Esse nome, porém, é pouco usado pelos químicos, que preferem referir-se a ela, coloquialmente, como **número de mols**.

Unidades Como qualquer unidade SI, o mol pode ser usado com prefixos. Por exemplo, 1 mmol = 1×10^{-3} mol e 1 nmol = 1×10^{-9} mol. Os químicos encontram essas quantidades pequenas quando utilizam produtos naturais raros ou muito caros e fármacos.

O número de objetos por mol, $6 \times 10^{23}\, \text{mol}^{-1}$, é chamado de **constante de Avogadro**, N_A . A constante de Avogadro é usada na conversão entre a quantidade química, n e o número de átomos, íons ou moléculas, N

$$N = nN_A$$

Unidades A constante de Avogadro *tem unidades*. Ela não é um número puro. Você ouvirá as pessoas se referirem com frequência ao número de Avogadro: elas estão se referindo ao número puro 6×10^{23} .

EXEMPLO 1 Conversão de número de átomos a mols

Um dispositivo de armazenamento de hidrogênio é capaz de estocar $1,2\times 10^{24}$ átomos do elemento.

Calcule a quatidade de hidrogênio no dispositivo.

Etapa 1. De
$$n = N/N_A$$

$$n = \frac{1.2 \times 10^{24} \text{ H}}{6 \times 10^{23} \text{ mol}^{-1}} = 2 \text{ mol H}$$

As quantidades de átomos, íons ou moléculas de uma amostra são expressas em mols e a constante de Avogadro é usada para a conversão entre o número de partículas e o número de mols.

1.2 A massa molar

Como você determina a quantidade de átomos presente em uma amostra, já que não é possível contá-los diretamente? Você pode calcular essa quantidade se conhecer a massa da amostra e a **massa molar**, M, a massa por mol de partículas.

- a. A massa molar de um *elemento* é a massa por mol de seus *átomos*.
- b. A massa molar de um *composto molecular* é a massa por mol de suas *moléculas*.
- c. A massa molar de um *composto iônico* é a massa por mol de suas *fórmulas unitárias*.

A unidade de massa molecular é sempre gramas por mol $(g \, mol^{-1})$. A massa da amostra é a quantidade (em mols) multiplicada pela massa por mol (a massa molar). Assim, se representarmos a massa total da amostra por m, podemos escrever

$$m = nM$$

Disso decorre que $\mathfrak{n}=\mathfrak{m}/M$. Isto é, para encontrar a quantidade de mols, \mathfrak{n} , divida a massa, \mathfrak{m} , da amostra pela massa molar da espécie presente.

EXEMPLO 2 Cálculo do número de átomos em uma amostra

Calcule o número de átomos de flúor em 22,8 g de F₂.

Etapa 1. De
$$n = m/M$$

$$n(F_2) = \frac{22,8 \text{ g}}{38 \text{ g mol}^{-1}} = 0,6 \text{ mol } F_2$$

Etapa 2. De
$$n = N/N_A$$

$$\begin{split} N(F_2) &= (0,\!6\,\text{mol}\ F_2) \times (6 \times 10^{23}) \\ &= 3,\!6 \times 10^{23}\ F_2 \end{split}$$

Etapa 3. Como cada molécula de F₂ contém dois átomos de F

$$N(F) = 3.6 \times 10^{23} F_2 \times \frac{2 F}{1 F_2}$$
$$= \boxed{7.2 \times 10^{23} F}$$

As massas molares dos elementos são determinadas por espectrometria de massas, que mede as massas dos isótopos e suas abundâncias relativas. A massa por mol dos átomos é a massa de

um átomo multiplicada pela constante de Avogadro (o número de átomos por mol):

$$M = m_{\text{átomo}} N_A$$

Quanto maior for a massa de um átomo, maior será a massa molar da substância. Porém, a maior parte dos elementos ocorre na natureza como uma mistura de isótopos. Na química, você quase sempre trata de amostras de elementos naturais, que têm a abundância natural dos isótopos. A massa média do átomo é determinada calculando a média ponderada, a soma dos produtos das massas de cada isótopo, $m_{isótopo}$, multiplicada por sua abundância relativa em uma amostra natural, $f_{isótopo}$.

$$m_{\text{\'atomo, m\'edia}} = \sum_{is\'otopos}^{\Sigma \text{ significa: soma dos membros a seguir}} f_{is\'otopo} m_{isotopo}$$

A massa molecular média correspondente é

$$M = m_{\text{átomo, média}} N_A$$

Assim, podemos escrever

$$M = \sum_{is\acute{o}topos} f_{is\acute{o}topo} M_{isotopo}$$

EXEMPLO 3 Cálculo da massa molar média

O cloro possui dois isótopos naturais: cloro-35 e cloro-37. A massa molar de um átomo de cloro-35 é $35\,\mathrm{g\,mol}^{-1}$ e a de um átomo de cloro-37 é $37\,\mathrm{g\,mol}^{-1}$. A composição de uma amostra natural típica de cloro é cerca de 75% de cloro-35 e 25% de cloro-37.

Calcule a massa molar de uma amostra típica de cloro.

Etapa 1. De M =
$$f_{cloro-35}M_{cloro-35} + f_{cloro-37}M_{cloro-37}$$

$$M = 0.75 \times 35 \,\mathrm{g} \,\mathrm{mol}^{-1} + 0.25 \times 37 \,\mathrm{g} \,\mathrm{mol}^{-1}$$
$$= \boxed{35.5 \,\mathrm{g} \,\mathrm{mol}^{-1}}$$

Ponto para pensar Apesar de existir apenas um isótopo natural do iodo, o iodo-127, sua massa molar é $126,9 \,\mathrm{g}\,\mathrm{mol}^{-1}$.

Para calcular as massas molares de compostos moleculares e iônicos, use as massas molares dos elementos presentes: a massa molar de um composto é a soma das massas molares dos elementos que constituem a molécula ou a fórmula unitária. É preciso levar em conta o número de átomos ou íons na fórmula molecular ou na fórmula unitária do composto iônico. Assim, 1 mol do composto iônico $Al_2(SO_4)_3$ contém 2 mols de Al, 3 mols de S e 12 mols de O. Portanto, a massa molar do $Al_2(SO_4)_3$ é

$$\begin{split} M(Al_2(SO_4)_3) &= 2M(Al) + 3M(S) + 12M(O) \\ &= 2(27\,g\,mol^{-1}) + 3(32\,g\,mol^{-1}) + 12(16\,g\,mol^{-1}) \\ &= \boxed{346\,g\,mol^{-1}} \end{split}$$

A massa molar é importante quando queremos saber o número de átomos de uma amostra. Seria impossível contar 6×10^{23} átomos de um elemento, mas é muito fácil medir uma massa igual à massa molar do elemento em gramas.

EXEMPLO 4 Cálculo da massa a partir do número de mols

Calcule a massa de 0,1 mol de H₂SO₄.

Etapa 1. A massa molar do H₂SO₄ é:

$$\begin{split} M &= 2M(H) + M(S) + 4M(O) \\ &= 2(1\,g\,mol^{-1}) + (32\,g\,mol^{-1}) + 4(16\,g\,mol^{-1}) \\ &= 98\,g\,mol^{-1} \end{split}$$

Etapa 2. Converta a quantidade em massa (m = nM).

$$m = (0,1\,\text{mol}) \times (98\,\text{g mol}^{-1}) = \boxed{9,8\,\text{g}}$$

Usa-se a massa molar de um composto, isto é, a massa por mol de suas moléculas ou fórmulas unitárias, para a conversão entre a massa de uma amostra e o número de moléculas ou fórmulas unitárias que ela contém.

2 A determinação da composição

A **fórmula empírica** de um composto expressa o número relativo de átomos de cada elemento do composto. Assim, por exemplo, a fórmula empírica da glicose, CH_2O , mostra que os átomos de carbono, hidrogênio e oxigênio estão na razão 1:2:1. Os elementos estão nessa proporção independentemente do tamanho da amostra. A fórmula molecular dá o número real de átomos de cada elemento da molécula. A **fórmula molecular** da glicose, $C_6H_{12}O_6$, mostra que cada molécula de glicose contém 6 átomos de carbono, 12 átomos de hidrogênio e 6 átomos de oxigênio.

Como a fórmula empírica informa apenas as proporções dos números de átomos de cada elemento, compostos distintos com fórmulas moleculares diferentes podem ter a mesma fórmula empírica. Assim, o formaldeído CH_2O , (o preservativo das soluções de formol), o ácido acético, $C_2H_4O_2$ (o ácido do vinagre), e o ácido lático, $C_3H_6O_3$ (o ácido do leite azedo), têm todos a fórmula empírica (CH_2O) da glicose, mas são compostos diferentes com propriedades diferentes.

2.1 A composição percentual em massa

Para determinar a fórmula empírica de um composto, começa-se por medir a massa de cada elemento presente na amostra. O resultado normalmente é apresentado na forma da composição percentual em massa, isto é, a massa de cada elemento expressa como uma percentagem da massa total:

$$f = \frac{massa\ do\ elemento\ na\ amostra}{massa\ da\ amostra}$$

Como a composição percentual em massa não depende do tamanho da amostra é uma propriedade **intensiva** - ela representa a composição de qualquer amostra da substância. A principal técnica de determinação da composição percentual em massa de compostos orgânicos desconhecidos é a análise por combustão.

A classificação das propriedades As propriedades são classificadas segundo sua dependência do tamanho da amostra. - Uma propriedade extensiva depende do tamanho (extensão) da amostra. - Uma propriedade intensiva não depende do tamanho da amostra.

Se a fórmula química de um composto já é conhecida, a composição percentual em massa pode ser obtida a partir daquela fórmula.

EXEMPLO 5 Cálculo da fração mássica de um elemento em um composto

Calcule a fração mássica de hidrogênio na água.

Etapa 1. De
$$f(H) = m(H)/m(H_2O)$$

$$\begin{split} f(H) &= \frac{(2\,\text{mol }H) \times (1\,\text{g}\,\text{mol}^{-1})}{(1\,\text{mol }H_2O) \times (18\,\text{g}\,\text{mol}^{-1})} \\ &= 0,\!112 \\ &= \boxed{11,\!2\%} \end{split}$$

A composição percentual em massa é obtida pelo cálculo da fração devida a cada elemento presente na massa total de um composto. O resultado é expresso em percentagem.

2.2 A determinação das fórmulas empíricas

Para converter a composição percentual em uma fórmula empírica, converta as percentagens em massa de cada tipo de átomo no número relativo de átomos de cada elemento. O procedimento mais simples é imaginar que a amostra tem exatamente 100 g de massa. Desse modo, a composição percentual em massa dá a massa em gramas de cada elemento. Então, a massa molar de cada elemento é usada para converter essas massas em mols e, depois, encontrar o número relativo de mols de cada tipo de átomo.

Dica Sempre que precisarmos calcular uma propriedade intensiva podemos utilizar uma base de cálculo.

EXEMPLO 6 Determinação da fórmula empírica a partir da composição percentual em massa

Uma amostra de um composto desconhecido foi enviada a um laboratório para uma análise de combustão. A composição encontrada foi 40,9% de carbono, 4,58% de hidrogênio e 54,5% de oxigênio.

Determine a fórmula empírica do composto.

Etapa 1. A massa de cada elemento em 100 g do composto é igual a sua percentagem em massa em gramas.

$$m(C) = 40,9 g$$

 $m(H) = 4,58 g$
 $m(O) = 54,5 g$

Etapa 2. Converta cada massa em quantidade de átomos usando a massa molar do elemento.

$$\begin{split} n(C) &= \frac{40.9 \, \text{g}}{12 \, \text{g mol}^{-1}} = 3,41 \, \text{mol C} \\ n(H) &= \frac{4,58 \, \text{g}}{1 \, \text{g mol}^{-1}} = 4,54 \, \text{mol H} \\ n(O) &= \frac{54,5 \, \text{g}}{16 \, \text{g mol}^{-1}} = 3,41 \, \text{mol O} \end{split}$$

Etapa 3. Divida cada quantidade de átomos pela menor quantidade (3,41 mol).

C:
$$\frac{3,41 \text{ mol}}{3,41 \text{ mol}} = 1,00$$

H: $\frac{4,54 \text{ mol}}{3,41 \text{ mol}} = 1,33 = \frac{4}{3}$
O: $\frac{3,41 \text{ mol}}{3,41 \text{ mol}} = 1,00$

Etapa 4. Como um composto só pode conter um número inteiro de átomos, multiplique pelo menor fator que gere um número inteiro para cada elemento (3).

$$3\times (C_1H_{4/3}O_1) = \boxed{C_3H_4O_3}$$

A fórmula empírica de um composto é determinada a partir da composição percentual em massa e da massa molar dos elementos presentes.

2.3 A determinação das fórmulas moleculares

Outra informação, a massa molar, é necessária para você descobrir a fórmula molecular de um composto molecular. Para encontrar a fórmula molecular, você precisará decidir quantas fórmulas unitárias empíricas são necessárias para explicar a massa molar observada.

EXEMPLO 7 Determinação da fórmula molecular a partir da fórmula empírica

A espectrometria de massas realizada em laboratório mostrou que a massa molar da amostra desconhecida com fórmula empírica $C_3H_4O_3$ é $176\,\mathrm{g\,mol}^{-1}$.

Determine a fórmula molecular do composto.

Etapa 1. Calcule a massa molar de uma fórmula unitária de $C_3H_4O_3$.

$$\begin{split} M(C_3H_4O_3) &= 3M(C) + 4M(H) + 3M(O) \\ &= 3(12\,g\,\text{mol}^{-1}) + 4(1\,g\,\text{mol}^{-1}) + 3(16\,g\,\text{mol}^{-1}) \\ &= 88\,g\,\text{mol}^{-1} \end{split}$$

Etapa 2. Divida a massa molar do composto pela massa da fórmula unitária empírica.

$$x = \frac{176 \,\mathrm{g} \,\mathrm{mol}^{-1}}{88 \,\mathrm{g} \,\mathrm{mol}^{-1}} = 2$$

Etapa 3. Multiplique os coeficientes na fórmula empírica pelo fator 2 para obter a fórmula molecular.

$$2\times (C_3H_4O_3) = \boxed{C_6H_8O_6}$$

3 Os estados da matéria

As substâncias e a matéria, em geral, podem assumir diferentes formas, chamadas de estados da matéria. Os três estados da matéria mais comuns são sólido, líquido e gás:

- a. Um sólido é uma forma da matéria que retém sua forma e não flui.
- b. Um **líquido** é uma forma fluida da matéria, que tem superfície bem definida e que toma a forma do recipiente que o contém.

 c. Um gás é uma forma fluida da matéria que ocupa todo o recipiente que o contém.

O termo **vapor** é usado para indicar que uma substância, normalmente sólida ou líquida, está na forma de gás. Por exemplo, a água existe nos estados sólido (gelo), líquido e vapor.

3.1 A natureza dos gases

As amostras de gases suficientemente grandes para serem estudadas são exemplos de **matéria em grosso** (*bulk*), isto é, matéria formada por um número muito grande de moléculas. Suas propriedades são consequência do comportamento coletivo dessas partículas. No caso de um gás, por exemplo, quando você pressiona o êmbolo de uma bomba para encher o pneu de sua bicicleta, você sente que o ar é compressível – isto é, que ele pode ser confinado em um volume menor do que o inicial. O ato de reduzir o volume de uma amostra de gás é chamado de compressão. A observação de que os gases são mais compressíveis do que os sólidos e líquidos sugere que existe muito espaço livre entre as moléculas dos gases.

3.2 A lei dos gases ideais

A lei dos gases ideais

$$PV = nRT$$

A constante R é chamada de **constante dos gases** e é *universal*, já que tem o mesmo valor para todos os gases. Em unidades SI (pressão em pascals, volume em metros cúbicos, temperatura em kelvins e quantidade em mols), R é obtido em joules por kelvin por mol:

$$R = 8.31 \, J \, K^{-1} \, mol^{-1}$$

para valores de volume e pressão expressos em outras unidades.

$$R = 0.0821 \text{ atm L K}^{-1} \text{ mol}^{-1} = 62.3 \text{ Torr L K}^{-1} \text{ mol}^{-1}$$

A lei dos gases ideais é um exemplo de **equação de estado**, isto é, uma expressão que mostra como a pressão de uma substância se relaciona com a temperatura, o volume e a quantidade de substância na amostra.

Leis-limite Um gás hipotético que obedece à lei dos gases ideais sob todas as condições é chamado de **gás ideal**. Todos os gases reais obedecem à equação com precisão crescente à medida que a pressão é reduzida até chegar a zero. A lei dos gases ideais, portanto, é um exemplo de uma **lei-limite**, isto é, uma lei que só é válida dentro de certos limites, neste caso, quando $P \to 0$. Embora a lei dos gases ideais seja uma lei-limite, ela é, na realidade, razoavelmente correta em pressões normais, logo, podemos usá-la para descrever o comportamento de muitos gases nas condições normais.

EXEMPLO 8 Cálculo da pressão de uma amostra

Uma tela de plasma possui células de 0,03 mm 3 contendo 10 ng de gás neônio a 34 °C.

Calcule a pressão no interior das células.

Etapa 1. Organize os dados. Converta a massa em quantidade (n = m/M) e a temperatura de graus Celsius em kelvins (adicione 273).

$$\begin{split} n &= \frac{10 \times 10^{-9} \, \text{g}}{20 \, \text{g mol}^{-1}} = 5 \times 10^{-10} \, \text{mol} \\ T &= (34 + 273) \, \text{K} = 307 \, \text{K} \\ V &= 0,\!03 \, \text{mm}^3 \times \frac{1 \, \text{L}}{10^6 \, \text{mm}^3} = 3 \times 10^{-8} \, \text{L} \end{split}$$

Etapa 2. Rearranje PV = nRT para P = nRT/V e substitua os dados, selecionando um valor de R expresso em atm e litros:

$$P = \underbrace{\frac{\overbrace{(5 \times 10^{-10} \, mol)}^{n} \times \overbrace{(0,082 \, atm \, L \, K^{-1} \, mol^{-1})}^{R} \times \overbrace{(307 \, K)}^{T}}_{\underbrace{(3E - 8L)}}$$

$$= \underbrace{0,4 \, atm}$$

As leis dos gases podem ser usadas, separadamente, nos cálculos em que uma só variável é alterada, como o aquecimento de uma quantidade fixa de gás sob volume constante. A lei dos gases ideais permite predições quando duas ou mais variáveis são alteradas simultaneamente.

$$\underbrace{\overbrace{\frac{P_1V_1}{n_1T_1}}^{\text{condições iniciais}}}_{\text{condições final}} = \underbrace{\frac{P_1V_1}{n_1T_1}}_{\text{condições final}}$$

Esta expressão é denominada **lei dos gases combinada**. Ela é uma consequência direta da lei dos gases ideais, não uma nova lei.

A lei dos gases ideais, PV = nRT, resume as relações entre a pressão, o volume, a temperatura e a quantidade de moléculas de um gás ideal e é usada para avaliar o efeito das mudanças nestas propriedades. Ela é um exemplo de lei-limite.

3.3 O volume molar e a densidade dos gases

A lei dos gases ideais também pode ser usada para calcular o volume molar de um gás ideal sob qualquer condição de temperatura e pressão

$$V_{m} = \frac{V}{n} = \frac{nRT/P}{n} = \frac{RT}{P}$$

Em **condições normais de temperatura e pressão** (CNTP), isto é, exatamente $0\,^{\circ}$ C (273 K) e 1 atm, o volume molar de um gás ideal é $22,4\,\mathrm{L\,mol}^{-1}$. A $25\,^{\circ}$ C (298 K) e 1 atm, as condições normalmente usadas para relatar dados químicos, o volume molar de um gás ideal é $24,5\,\mathrm{L\,mol}^{-1}$.

A densidade de massa, d, do gás, ou simplesmente **densidade**, como em qualquer outra substância, é a massa da amostra dividida por seu volume, d=m/V. De modo geral, a densidade dos gases é expressa em gramas por litro. Por exemplo, a densidade do ar é aproximadamente 1,6 g L^{-1} nas CNTP. A densidade é inversamente proporcional ao volume molar e, em determinada temperatura, é proporcional à pressão.

$$d = \frac{m}{V} = \frac{nM}{nV_m} = \frac{M}{V_m} = \frac{PM}{RT}$$

Essa equação mostra que - Em determinados valores de pressão e temperatura, quanto maior for a massa molar do gás, maior é a densidade. - Quando a temperatura é constante, a densidade de um gás aumenta com a pressão (a pressão aumenta devido à adição de material ou à redução do volume). - O aquecimento de um gás livre para se expandir sob pressão constante aumenta o volume ocupado pelo gás e, portanto, reduz sua densidade.

Ponto para pensar Por que os balões de ar quente flutuam no ar?

EXEMPLO 9 Cálculo da massa molar de um gás a partir de sua densidade

O composto orgânico volátil geraniol é um componente do óleo de rosas. A densidade de seu vapor a 260 °C e 103 Torr é $0,48\,\mathrm{g\,L^{-1}}$.

Calcule a massa molar do geraniol.

Etapa 1. Organize os dados. Converta a temperatura de graus Celsius em kelvins.

$$\begin{split} &d = 0,\!48\,g\,L^{-1} \\ &P = 103\,Torr \\ &T = (260 + 273)\,K = 103\,Torr \end{split}$$

Etapa 2. Rearranje a equação da densidade de um gás ideal (d = PM/RT) para o cálculo da massa molar

$$M = dRT/P$$

Etapa 3. Calcule a massa molar. Selecione um valor de R expresso em torr e litros:

$$M = \underbrace{\frac{\overset{d}{(0,48\,\text{g}\,L^{-1})} \times \overbrace{(62,4\,L\,\text{Torr}\,K^{-1}\,\text{mol}^{-1})}^{R} \times \overbrace{(533\,K)}^{T}}_{p}}_{\text{I}}$$

$$= \underbrace{155\,\text{g}\,\text{mol}^{-1}}^{\text{d}}$$

As condições normais de temperatura e pressão (CNTP) são (273 K) e 1 atm. As concentrações molares e as densidades dos gases aumentam quando eles são comprimidos, mas diminuem quando eles são aquecidos. A densidade de um gás depende de sua massa molar

Nível I

PROBLEMA 3.1

3A01

Assinale a alternativa que mais se aproxima da raiz da velocidade quadrática média das moléculas de nitrogênio a 21 °C.

PROBLEMA 3.2

3A02

Assinale a alternativa com a temperatura em que uma amostra de hélio possui mesma velocidade média que uma amostra de oxigênio a 800 K.

PROBLEMA 3.3

3A05

São necessários 40 s para 30 mL de argônio efundirem por uma barreira porosa. O mesmo volume de vapor de um composto volátil extraído de esponjas do Caribe leva 120 s para efundir pela mesma barreira nas mesmas condições.

Assinale a alternativa que mais se aproxima da massa molar desse composto.

PROBLEMA 3.4

3A06

Assinale a alternativa com o composto que difunde 1,24 vezes mais lentamente do que o criptônio na mesma temperatura e pressão?

PROBLEMA 3.5

3A07

Assinale a alternativa que mais se aproxima da contribuição do movimento rotacional para a capacidade calorífica a volume constante do HBr.

PROBLEMA 3.6

3A08

Assinale a alternativa que mais se aproxima da contribuição do movimento rotacional para a capacidade calorífica a volume constante do etano.

PROBLEMA 3.7

3409

Assinale a alternativa com o composto que possui maior capacidade calorífica.

PROBLEMA 3.8

3A10

Considere os processos químicos a seguir.

- 1. Formação da água gasosa a partir de H₂ e O₂.
- 2. Formação da amônia a partir de H₂ e N₂.
- **3.** Desidrogenação do etano forando eteno e H₂.
- 4. Combustão do metano.

Assinale a alternativa que relaciona os processos cujo valor absoluto da entalpia de reação aumenta com a temperatura.

PROBLEMA 3.9

3A03

Considere a distribuição de velocidades dos gases A, B e C.

Assinale a alternativa com a identidade de **A**, **B** e **C**, respectivamente.

PROBLEMA 3.10

3A04

Considere a distribuição de velocidades de três amostras de hélio, ${\bf A}, {\bf B}$ e ${\bf C}.$

Assinale a alternativa com a temperatura de **A**, **B** e **C**, respectivamente.

PROBLEMA 3.11

3A11

A altura de uma coluna de mercúrio a 15 °C é 760 mm.

Assinale a alternativa mais próxima da pressão atmosférica em Pascal.

Dados

• d(Hg)=13,6

O raio médio da terra é de 6371 km.

Assinale a alternativa que mais se aproxima da massa da atmosfera terrestre.

PROBLEMA 3.13

3A13

Uma amostra de 500 mL de gás medindo a 28 °C exerce pressão de 92 kPa.

Assinale a alternativa com a pressão exercida pela amostra quando for comprimida até $300\,\mathrm{mL}$ e resfriada até $25\,^{\circ}\mathrm{C}$.

PROBLEMA 3.14

3A14

Uma amostra de butano foi aquecida lentamente sob pressão de 0,80 bar. O volume do gás foi medido em diferentes temperaturas, sendo $0,0208 \, \mathrm{L} \, \mathrm{K}^{-1}$ a variação do volume com a temperatura.

Assinale a alternativa que mais se aproxima da massa da amostra.

PROBLEMA 3.15

3A15

Um sistema fechado e sem fronteiras móveis contém uma determinada massa gasosa inerte, que sofre aquecimento, com aumento de $5\,\%$ na pressão e de $15\,^\circ\text{C}$ na temperatura.

Assinale a alternativa que mais se aproxima da temperatura inicial.

PROBLEMA 3.16

3A16

Um recipiente de paredes rígidas, contendo apenas ar, aberto para a atmosfera, é aquecido de 27 °C a 127 °C.

Assinale a alternativa mais próxima da percentagem mássica de ar que saiu do recipiente, quando atingido o equilíbrio final.

PROBLEMA 3.17

3A17

Assinale a alternativa que mais se aproxima da massa molar do geraniol, cuja densidade do vapor a $260 \,^{\circ}$ C e $103 \,^{\circ}$ C r é $0,480 \,^{\circ}$ G L $^{-1}$.

PROBLEMA 3.18

3A18

3A19

Uma amostra de 4,4 g de um gás ocupa um volume de 3,1 L a $10\,^{\circ}\text{C}$ e 566 Torr.

Assinale a alternativa que apresenta a razão entre as massas específicas deste gás e a do hidrogênio gasoso nas mesmas condições de pressão e temperatura.

PROBLEMA 3.12 PROBLEMA 3.19

Após inalar ar na superfície, uma pessoa mergulha até uma profundidade de 200 m em apneia, sem exalar.

Assinale a alternativa que mais se aproxima da pressão parcial de oxigênio no pulmão do mergulhador.

PROBLEMA 3.20

3A20

Considere um recipiente de 320 L, ao qual são adicionados:

- 1. $30,000 \, \text{cm}^3$ de hélio a 760 Torr e 27 °C
- 2. 250 L de monóxido de carbono a 1140 Torr e −23 °C
- 3. 2 m³ de monóxido de nitrogênio a 0,273 atm e 0 °C

Assinale a opção que apresenta a pressão parcial do hélio na mistura gasosa cuja pressão total é de 4,5 atm.

PROBLEMA 3.21

3A27

O superóxido de potássio, KO₂, pode ser utilizado como purificador de ar porque reage com o dióxido de carbono liberando oxigênio e formando carbonato de potássio.

Assinale a alternativa que mais se aproxima da massa de KO₂ necessária para a produção de 22,4 L de oxigênio em CNTP.

PROBLEMA 3.22

3A28

Em recipiente fechado, mantido a volume e temperatura constantes, ocorre a reação:

$$X(g) \longrightarrow 2\,Y(g) + \frac{1}{2}\,Z(g)$$

Assinale a alternativa com a pressão no recipiente, sendo P_0 a pressão inicial e α o grau de reação.

PROBLEMA 3.23

3A23

Uma amostra de 1,264 g de Nitropenta ($C_5H_8N_4O_{12}$) é detonada num vaso fechado resistente de 0,05 dm³ de volume interno, pressurizado com quantidade estequiométrica de oxigênio puro, a 300 K.

Assinale a alternativa que mais se aproxima da pressão inicial do vaso.

PROBLEMA 3.24

3A24

Considere uma mistura gasosa constituída de propano, metano e monóxido de carbono. A combustão, com excesso de oxigênio, de 50 mL dessa mistura gasosa forma 70 mL de dióxido de carbono.

Assinale a alternativa que mais se aproxima da fração de propano na amostra.

PROBLEMA 3.25 3A25

Assinale a alternativa com a pressão parcial do oxigênio em uma amostra coletada sobre água a 25 °C e 745 Torr.

Dados

• $P_{\text{vap}}^{298 \, \text{K}}(\text{H}_2\text{O}) = 23,8 \, \text{Torr}$

PROBLEMA 3.26

3A26

A reação de $0,40\,\mathrm{g}$ de uma amostra de zinco impuro com excesso de ácido clorídrico, forma 127 mL de gás hidrogênio, coletado sobre água em $10\,^\circ\mathrm{C}$ sob pressão de 738 Torr.

Assinale a alternativa que mais se aproxima da pureza da amostra de zinco.

Nível II

PROBLEMA 3.27

3A29

Considere um tubo de 3 m de comprimento. Em uma das pontas do tubo é colocado um algodão com uma solução de ácido clorídrico e na outra é colocado um algodão com uma solução de amônia. Um aerossol branco é formado no interior do tubo.

Assinale a alternativa que mais se aproxima da distância entre o aerossol branco e o algodão com amônia.

PROBLEMA 3.28

3A46

No corredor de um laboratório são abertos, no mesmo instante, dois frascos. O frasco da esquerda contem etanoato de etila, enquanto o frasco da direita contem éter metílico. A distância entre os frascos é de 2,4 m.

Determine em que posições do laboratório é possível sentir o cheio dos compostos simultaneamente.

PROBLEMA 3.29

3A30

Considere duas garrafas, uma contendo 1 mol de He e outra 1 mol de Ar na mesma temperatura. Nessa temperatura, a raiz da velocidade quadrática média do Ar é $467~{\rm m\,s^{-1}}$. A distribuição de velocidades do argônio em diferentes temperaturas é apresentada a seguir.

- a. **Determine** a temperatura das garrafas.
- b. Determine a razão entre o número de átomos de hélio e de argônio com velocidade mais provável nessa temperatura.

PROBLEMA 3.30

3A31

Considere a distribuição de velocidades de uma amostra de hélio a 100 K e uma amostra de argônio.

Assinale a alternativa que mais se aproxima da temperatura da amostra de argônio.

PROBLEMA 3.31

3A32

O sólido poroso $\bf A$ é preenchido com ar em CNTP e inserido no recipiente $\bf B$, previamente evacuado. O recipiente $\bf B$ é carregado com gás hidrogênio.

Esboce o gráfico da pressão no recipiente **A** em função do tempo.

PROBLEMA 3.32

3A33

Considere um recipiente com dois compartimentos de volumes iguais separados por uma membrana de paládio, permeável apenas à passagem de hidrogênio. Inicialmente, o compartimento 1 contém 1 atm de hidrogênio e o compartimento 2 contém 1 atm de uma mistura de hidrogênio e nitrogênio.

Assinale a alternativa correta.

PROBLEMA 3.33

3A34

Um composto usado para preparar cloreto de polivinila (PVC) tem a composição 38,4% de carbono, 4,82% de hidrogênio e 56,8% de cloro em massa. São necessários 7,73 min para um determinado volume do composto efundir por uma rolha porosa, enquanto apenas 6,18 min para a mesma quantidade de argônio difundir na mesma temperatura e pressão.

Assinale a alternativa com a fórmula molecular do composto.

Em 2 min, 29,7 mL de hélio efundem por um orifício. Nas mesmas condições, $10 \, \text{mL}$ de uma mistura de CO e CO_2 efundem nesse mesmo intervalo de tempo.

- a. **Determine** a fração de CO₂ na mistura.
- b. Determine a composição dos gases que passam pelo orifício logo após o início da efusão.

PROBLEMA 3.35

3A37

Um balão selado feito de um material flexível deve ser projetado para transportar uma carga de 10 kg. O balão é preenchido com 22,4 m³ de argônio em CNTP.

Assinale a alternativa que mais se aproxima da temperatura mínima que o balão deve ser aquecido para que esse flutue na atmosfera em CNTP.

PROBLEMA 3.36

3A38

Assinale a alternativa que mais se aproxima da massa de carga útil que pode ser levantada por um balão de 10 kg de hidrogênio em CNTP.

PROBLEMA 3.37

3A21

Um frasco fechado contém 20 g de uma mistura hidrogênio e monóxido de nitrogênio. A pressão parcial do monóxido de nitrogênio é 3/2 da pressão parcial do hidrogênio molecular.

Assinale a alternativa que mais se aproxima da fração mássica do hidrogênio na mistura gasosa.

PROBLEMA 3.38

3A22

Todos os átomos de carbono de uma amostra de gás que contém 80 % de metano, 10 % de etano, 5 % de propano e 5 % de nitrogênio em volume são convertidos em butadieno.

Assinale a alternativa com a massa de butadieno formada a partir de 100 g do gás.

PROBLEMA 3.39

3A39

Uma amostra de $115\,\mathrm{mg}$ de eugenol foi colocada em um balão evacuado de $500\,\mathrm{mL}$ a $280\,^{\circ}\mathrm{C}$. A pressão exercida pelo eugenol no balão, nessas condições, foi $48,3\,\mathrm{Torr}$. Em uma experiência de combustão, $18,8\,\mathrm{mg}$ de eugenol produziram $50\,\mathrm{mg}$ de dióxido de carbono e $12,4\,\mathrm{mg}$ de água.

- a. Determine a massa molar do eugenol.
- b. Determine a fórmula molecular do eugenol

 Um cilindro contendo um hidrocarboneto ignitado. Os gases da exaustão são coletados em um cilindro a 375 K atingindo a pressão de 1,51 atm, com densidade de 1,391 g $\rm L^{-1}$.

- a. **Determine** a composição dos gases de exaustão.
- b. Determine a fórmula molecular do hidrocarboneto.

PROBLEMA 3.41

3A41

Um cilindro de ácido sulfídrico é conectado a outro de oxigênio em excesso, totalizando 24 L. Os produtos da reação ocupam um volume de 10 L nas mesmas condições.

Assinale a alternativa que mais se aproxima do volume do cilindro de ácido sulfídrico.

PROBLEMA 3.42

3A42

Considere um recipiente de paredes reforçadas com dissecante granulado no fundo. Nesse recipiente, previamente evacuado, introduz-se 0,7 atm de uma mistura de hidrogênio e argônio a $20\,^{\circ}$ C. Excesso de O_2 é adicionado à mistura até que a pressão passe ao valor de 1,00 atm. A mistura é ignitada e resfriada até $20\,^{\circ}$ C, sendo a pressão final de 0,85 atm.

Assinale a alternativa que mais se aproxima da fração molar de hidrogênio na mistura inicial.

PROBLEMA 3.43

3A4

Um reator batelada contem 5 mol de grafite e 112 L de oxigênio em CNTP. A mistura é ignitada e todo grafite é convertido, formando uma mistura de CO e CO₂. O processo é realizado em temperatura constante e a pressão aumenta em 20 % ao final do processo.

Assinale a alternativa que mais se aproxima da pressão parcial de gás carbônico no reator após a reação.

PROBLEMA 3.44

3A44

Gás metano é bombeado para uma câmara de combustão a uma taxa $200\,\mathrm{L\,s^{-1}}$, a 1,5 atm e temperatura ambiente. Ar é adicionado à câmara a 1 atm, na mesma temperatura, e a mistura gasosa é ignitada. Para garantir que todo o metano sofra combustão, a quantidade de oxigênio bombeada é três vezes maior que a quantidade necessária para a combustão completa de todo o metano. Uma fração de 5 % do carbono na corrente de exaustão estava na forma de monóxido e o restante na forma de dióxido de carbono.

- a. **Determine** a vazão de ar necessária para fornecer a quantidade de oxigênio necessária.
- b. **Verifique** se a concentração de monóxido de carbono na corrente de saída está na faixa permitida

Nível III

PROBLEMA 3.45 3A36

Esboce o gráfico da variação da capacidade calorífica molar em volume constante do iodo molecular em função da temperatura.

PROBLEMA 3.46

3A49

O sol é formado por plasma, um estado da matéria em que os elétrons foram removidos dos átomos de hidrogênio. No ponto médio entre o centro e a superfície do sol, a temperatura é 3,6 MK e a densidade é 1,2 g cm $^{-3}$.

- a. **Determine** a pressão nesse ponto.
- b. **Determine** a densidade de energia nesse ponto.

PROBLEMA 3.47

3A50

Um feixe de átomos de bismuto é direcionado a um cilindro de $15~\rm cm$ de diâmetro em rotação a $130~\rm Hz$ no vácuo. Uma pequena abertura no cilindro permite que os átomos atinjam a área alvo. Em um experimento a $850~\rm ^{\circ}C$, alguns átomos de bismuto acertaram o alvo a $2.8~\rm cm$ do centro.

- a. **Esboce** o gráfico da espessura da camada de bismuto na área alvo em função da distância do centro.
- b. **Determine** a velocidade dos átomos de bismuto.

PROBLEMA 3.48

3A47

O urânio é encontrado na natureza na forma de dois isotopos, urânio-235 e urânio-238. Para a construção de bombas nucleares, deve ser utilizado urânio enriquecido, isto é, contento pelo menos 99 % do isótopo urânio-235. Para o enriquecimento, o urânio é convertido em seu hexafluoreto, um gás, que efunde por uma barreira porosa. O processo é repetido até atingir a concentração desejada.

- a. **Determine** a fração de urânio-235 na natureza.
- b. **Determine** a fração de urânio-235 quando uma amostra de urânio natural passa por uma etapa de efusão.
- c. **Determine** o número de etapas necessárias para obter urânio enriquecido a partir do urânio natural.

PROBLEMA 3.49

3A48

Verifique a veracidade da frase: toda inspiração contém moléculas de ar que já estiveram nos pulmões de Wolfgang Amadeus Mozart (1756-1791).

Dados

- $T_{corpo} = 37 \,{}^{\circ}C$
- $V_{pulmão} = 500 \, mL$
- $f_{respirat\'{o}ria} = 12 \, min^{-1}$

PROBLEMA 3.50

3A51

Determine a distância média entre as moléculas de vapor d'água a 100 °C e 1 atm.

PROBLEMA 3.51 3A45

A transformação isovolumétrica de um gás triatômico hipotético A_3 em outro diatômico A_2 envolve a liberação de $54\,kJ$ por mol de A_3 . A capacidade calorífica molar, a volume constante do gás A_2 , é de $30\,J\,K^{-1}\,mol^{-1}$. Após a transformação isocórica de todo A_3 em A_2 ,

Determine o aumento percentual de pressão em um recipiente isolado quando o gás A_3 é convertido em A_2 em volume constante a $27\,^{\circ}\text{C}$.

Gabarito

Nível I

1.	A	2.	A	3.	C	4.	D	5.	D
6.	E	7.	E	8.	C	9.	E	10.	A
11.	C	12.	C	13.	C	14.	В	15.	В
16.	D	17.	D	18.	D	19.	В	20.	D
21.	E	22.	C	23.	В	24.	В	25.	E
26.	D								

Nível II

- 1. C
- 2. 17 m à esquerda ou 1 m à direita do frasco de etanoato de etila.
- **3.** a. 350 K
 - b. 0,32
- 4. C
- **5.** Em temperatura constante, quanto mais leves as moléculas de gás, mais rápida é a velocidade média. Portanto, a pressão aumentará inicialmente porque as moléculas de H₂, mais leves, serão efundidas no recipiente A mais rapidamente do que o ar escapará. No entanto, as pressões acabarão se igualando assim que os gases tiverem tempo de se misturar completamente.
- 6. D
- 7. B
- **8.** a. 50%
 - b. 55,6% CO e 44,4% CO₂
- 9. C
- 10. B
- 11. D
- 12 D
- **13.** a. $164 \,\mathrm{g}\,\mathrm{mol}^{-1}$
 - b. $C_{10}H_{12}O_2$
- **14.** a. 25 % CO₂, 75 % H₂O
 - b. C_2H_6
- 15. B
- 16. C
- 17. B
- **18.** a. $9000 \, L \, s^{-1}$
 - b. A concentração de monóxido de carbono está fora da faixa permitida, já que $x_{CO}=24\%$.

Nível III

- 1. Esboço
- 2. a. 354 atm
 - b. $53 \, MJ \, m^{-3}$
- 3. a. Distribuição de Maxwell-Boltzmann
 - b. $61,28 \,\mathrm{m}\,\mathrm{s}^{-1}$
- **4.** a. 0,72 %
 - b. 0,723%
 - c. 1148
- **5.** Verdadeiro, supondo que a atmosfera é uma mistura homogênea.
- **6.** 3,7 nm
- **7.** 650 %