Exhaust System Muffler Volume Optimization of Light Commercial Vehicle Using CFD Simulation

Mohd Babar Malik SC23M048

April 29, 2024

Index

- Introduction
- Methodology
- CFD Analysis
 - Design of Muffler 3D Modeling
 - Mesh preparation
 - Boundary conditions
- Results and Discussion
 - Exhaust Gases Path Lines
 - Pressure and Velocity Plot
 - Test Result
- Conclusions
- References

Introduction

- Functions of automotive exhaust system:
 - Carries hot exhaust gases from engine to atmosphere.
 - Attenuates engine noise through muffler efficiently.
- Exhaust gases originate in pulses, creating low-pressure areas.
- Back pressure from exhaust system decreases engine efficiency.
- Maximum engine output achieved with minimum back pressure.
- Muffler design aims for optimal back pressure without subsystem disruption.
- Increased back pressure may increase torque, but not directly related.
- Muffler diameter and profile optimized to control back pressure.
- Main objective of muffler: noise level optimization.

- Types of mufflers:
 - Reflective or reactive: Wave cancellation method for low frequencies.
 - Absorptive or dissipative: Converts energy into heat for high frequencies.
 - Hybrid: Combines reflective and absorptive properties, suitable for all frequencies.
- Existing system utilizes reflective type muffler.

Methodology

The cross section of a 3-cylinder muffler is explained in **Fig. 1**.

Fig.1. Internal construction of chambers

Fig.2. Major and minor axis of muffler.

- Muffler downsizing considered along length or width or both, with challenges in downsizing along minor axis due to pipe construction and tooling costs.
- Vehicle layout constraints favor downsizing along length.
- Two chambers inside muffler affect back pressure; volume changes in chambers 1 and 2 impact back pressure.

cont...

- Back pressure adjustments balanced by varying number of holes in inlet pipe.
- CFD analysis used to vary and analyze chambers C1 and C2, resulting in downsized muffler.
- Details tabulated in Table 2, with respective notations illustrated in Fig. 3.

Notation	Represents	Existing Muffler	Downsized Muffler	
A	Inlet pipe dia (mm)	50.8	50.8	
В	Outlet pipe dia (mm)	50.8	50.8	
C	Number of holes in inlet pipe	49	70	
D	Distance between baffles (mm)	200	170	
E	Distance between baffles (mm)	110	50	
F	Overall length (mm)	310	220	

Fig.3. Internal construction of muffler

- Muffler optimization historically relied on physical trials.
- Variables included pipe diameter, hole perforations, baffle placement, and damping volume.
- Modern simulation tools mitigate these challenges.
- Simulation aids in balancing conflicting factors like back pressure and noise.

Design of Muffler 3D Modeling

- Predict muffler system performance using CFD tool pre-release.
- Modify design inputs based on flow results.
- Utilize CATIA V5 for parametric CAD modeling.
- Achieve 3D associativity for easy updates.
- Identify problematic areas and adjust input parameters.
- Parameters include muffler length, diameters, hole count, and baffle position.
- Drastically reduce muffler design time.

Mesh preparation

- CAD data exported as STEP file from CATIA V5, then imported into CFD.
- Fluid domain extracted and converted into closed volume for CFD analysis.
- Tetrahedral mesh used with mesh quality of 0.2 for meshing the fluid domain.
- See Fig. 4 and Fig. 5 for meshed geometry of the muffler.

Fig.4. Meshed geometry of muffler (transparent view)

 $Fig. 5.\ Meshed\ geometry\ of\ muffler$

Boundary conditions

- Turbulence model: k epsilon
- Working fluid: Exhaust gas (density: $0.5508\,\mathrm{kg/m^3}$, viscosity: $3.814\times10^{-5}\,\mathrm{Pa.s}$)
- Mass flow rate: 180 kg/hr
- Inlet conditions: 400°C temperature
- Muffler outlet pressure: 1 atm
- Solver settings:

Results and Discussion

- CFD analysis conducted using ANSYS CFX for existing and newly designed mufflers.
- Results compared between existing muffler and final design concept.
- Final design features increased number of holes and termed as down-sized muffler.
- Fig. 6 and Fig. 7 depict 3D geometry and cross-sectional view of existing muffler, respectively.

Fig.6. Three dimensional view of existing muffler

Fig.7. Geometry existing design

• Fig. 8 and Fig. 9 depict the 3D geometry and cross-sectional view of the downsized muffler, respectively.

Fig.8. Three dimensional view of downsized muffler

Fig. 9. Geometry-downsized design

Exhaust Gases Path Lines

- Existing muffler flow analysis results depicted in Fig. 10.
- CFD analysis conducted for downsized muffler, maintaining identical boundary conditions as the existing muffler CFD analysis.
- Results plotted and illustrated in Fig. 11.

Fig.10. Air flow field - Existing design (Base model)

Fig.11. Air flow field - downsized design with same number of holes

- Exhaust flow denser in C1 & C2 chambers, increasing back pressure from 2.655 kPa to 2.949 kPa.
- Number of holes in inlet pipe increased from 49 to 70 to reduce back pressure.
- Contour plot for muffler with **70 holes (Fig. 12)** shows reduced pressure drop from **2.655 kPa to 2.472 kPa.**
- Optimized pressure drop comparable and better than existing muffler, improving exhaust flow restriction by 6.89%.

Fig. 12. Air flow field - downsized design with increased number of holes

Pressure and Velocity Plot

- Noise quality determined by pressure and velocity plots.
- Exhaust gases in pulse lead to discontinuous gas flow, creating varied noise.
- High velocity escaping gases can result in whistling noise.
- Analysis of pressure and velocity plots for existing and downsized mufflers conducted.
- Result: Total pressure and flow velocity remain unchanged.
- Concludes existing design maintains sound quality.
- Fig. 13 and Fig. 14 show the velocity plots of exhaust gases in the outlet at existing and down sized muffler.

Fig.13. Velocity contours-existing design

Inlet velocity 56.5m/s

Outlet velocity 55m/s

Fig.14. Velocity contours-downsized design

- Pressure is crucial for optimizing muffler noise levels.
- Comparison of pressure contours between existing and downsized mufflers indicates no change in noise level.
- Fig. 15 and Fig. 16 display pressure distributions for existing and downsized mufflers, respectively.

Fig.15. Total pressure- existing design

Fig.16. Total pressure- downsized design

Test Result

- CFD results for downsized muffler back pressure verified with vehicle-level test.
- Back pressure measured by inserting probe into pipe center; barometer connected for calculation.
- Quality of noise tested on vehicle with existing and downsized muffler, results tabulated in Table 3.

Table	3.Test results	comparison	between	existing	and do	ownsized	muffler

Parameter	Existing Muffler	Downsized Muffler		
Backpressure in Exhaust system (kPa)	2.655 kPa	2.472 kPa		
Quality of noise (Subjective)	Good	Good		

Conclusions

- Muffler downsizing increased back pressure from 2.655 kPa to 2.949 kPa.
- Increasing inlet pipe holes to 70 and adjusting baffle position to 170 mm reduced back pressure to 2.472 kPa.
- Downsized muffler outperforms existing in pressure reduction.
- Pressure drop improved by 6.89% in downsized muffler.
- No deterioration in noise quality or vehicle noise.
- Overall muffler volume reduced by 15%, leading to 2% weight reduction, cost, and fuel economy benefits.

References

- P.R. Kamble, S.S. Ingle, SAE Technical Paper. (2008) No. 2008-28-0104
- P. Ashok, P. Shivdayal, G. Umashanker, S. Mohan, SAE Technical Paper. (2014) No. 2014-01-2440.
- M.L. Munjal, A.V. Sreenath, M.V. Narsimhan, Journal of Sound and Vibration. 26 (1970) 173-191.
- M.L. Munjal, Journal of Sound and Vibration. 29 (1975) 105-119.

Thank You!