問題 11. 以下の写像について、単射・全射を調べよ。

.....

定義 (全射、単射)

写像 $f: A \to B$ とする。

f が単射であるとは、任意の x_A , $y_A \in A$ に対して $x_A \neq y_A \Rightarrow f(x_A) \neq f(y_A)$ となることをいう。(条件の対偶を取って考えることが多い) つまり、B の元に複数の A の元からの対応は存在しない。

f が全射であるとは、任意の $x_B \in B$ に対して $x_B = f(x_A)$ となる $x_A \in A$ が存在することをいう。つまり、B の全ての元は A の元からの対応が存在する。

.....

(a) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$

f は単射でも全射でもない。以下に反例を示す。

 $1,-1\in\mathbb{R}$ であり、 $1\neq -1$ である。しかし、 $f(1)=1,\ f(-1)=1$ より f(1)=f(-1) となるので、f は単射ではない。

 $-1 \in \mathbb{R}$ である。しかし、 $-1 = x^2$ を満たす $x \in \mathbb{R}$ は存在しない。よって、f は全射ではない。

.....

(b) $g: \mathbb{R} \to (0, \infty) \subset \mathbb{R}$, $g(x) = e^x$ g は全単射である。全射から示す。

実数 $\alpha>0$ を一つ取ってくる。これに対し $x=\log\alpha$ とすると $e^x=\alpha$ であり、 $\log\alpha\in\mathbb{R}$ であるので g は全射である。

正の実数 α, β を取ってくる。g は全射であるので、 $x_{\alpha}, x_{\beta} \in \mathbb{R}$ が存在し、 $\alpha = g(x_{\alpha}), \ \beta = g(x_{\beta})$ である。 $\lceil \alpha = \beta \Rightarrow x_{\alpha} = x_{\beta} \rfloor$ を示せればよい。 $g(x_{\alpha}) = e^{x_{\alpha}}$ であるが、 $\alpha = e^{x_{\alpha}}$ を満たす $x_{\alpha} \in \mathbb{R}$ は $x_{\alpha} = \log \alpha$ のみである。よって、 $\alpha = \beta$ であれば、 $\log \alpha = \log \beta$ であるので、 $x_{\alpha} = x_{\beta}$ である。

問題 12. $\lim_{x\to 1} x^3 = 1$ を証明せよ。なお、定義域は $[0,2] \subset \mathbb{R}$ とする。

.....

ε - δ 論法

$$\lim_{x \to a} f(x) = \alpha \tag{1}$$

$$\stackrel{\text{def}}{\iff} \forall \varepsilon > 0, \ \exists \delta > 0 \quad \text{s.t.} \quad 0 < |x - a| < \delta \Rightarrow |f(x) - \alpha| < \varepsilon$$
 (2)

.....

y = x - 1

$$\lim_{x \to 1} x^3 = \lim_{y \to 0} (y+1)^3 = \lim_{y \to 0} (y^3 + 3y^2 + 3y + 1) \tag{3}$$

 $\lim_{y\to 0} y^3 = 0 \ \text{を示す}_\circ$

 $\stackrel{g}{\forall}\varepsilon>0$ に対して、 $\delta=\sqrt[3]{\varepsilon}$ とする。この時、 $0<|y|<\delta$ となる y に対して $|y^3|=|y|^3<\delta^3=(\sqrt[3]{\varepsilon})^3=\varepsilon$ であるので、 $\lim_{y\to 0}y^3=0$ である。

同様に $\lim_{y\to 0} y^2 = 0$, $\lim_{y\to 0} y = 0$ である。

次に、 $\lim_{y\to 0} (y^3 + 3y^2 + 3y + 1) = 1$ を示す。

 $\forall \varepsilon > 0$ に対して、 $\delta = \min\{\sqrt[3]{\varepsilon/3}, \sqrt{\varepsilon/9}, \varepsilon/9\}$ とする。この時、 $0 < |y| < \delta$ となる y に対して、

$$|y^3 + 3y^2 + 3y + 1 - 1| = |y^3 + 3y^2 + 3y| \tag{4}$$

$$\leq |y^3| + 3|y^2| + 3|y| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$
 (5)

となる。

これにより $\lim_{y\to 0}(y^3+3y^2+3y+1)=1$ が言える。よって、 $\lim_{x\to 1}x^3=1$ である。

問題 13. $\lim_{x\to a}f(x)=\alpha,\ \lim_{x\to a}g(x)=\beta$ とする。このとき、 $\lim_{x\to a}f(x)g(x)=\alpha\beta$ が成り立つことを示せ。

f(x) と g(x) は $x \to a$ で極限を持つので、 $^{\forall} \varepsilon > 0$ に対して十分に小さな $\delta > 0$ が存在し、 $0 < |x - a| < \delta \Rightarrow |f(x) - \alpha| < \varepsilon, |g(x) - \beta| < \varepsilon$ である。また、 $-\delta < x - a < \delta$ において |f(x)| < K となる K が存在する。

これにより次のような変形ができる。

$$|f(x)g(x) - \alpha\beta| = |f(x)g(x) - f(x)\beta + f(x)\beta - \alpha\beta|$$
(6)

$$< K|g(x) - \beta| + |\beta||f(x) - \alpha|$$
 $< K\varepsilon + |\beta|\varepsilon$ (7)

そこで、 $|f(x)-\alpha|<rac{arepsilon}{2K},\ |g(x)-eta|<rac{arepsilon}{2|eta|}$ を満たすように δ を取りなおす事ができるので、|f(x)g(x)-lphaeta|<arepsilon となる。

よって、 $\lim_{x\to a} f(x)g(x) = \alpha\beta$ である。

問題 14. 次の値を求めよ。

(a)
$$\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

.....

次のグラフは、直線 $y = -\frac{\sqrt{3}}{2}$ を赤、曲線 $y = \sin x$ を青で描いたものである。

 $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ が表す値は赤と青の交点の x 座標を表している為、次のように複数の値が存在する。

$$\frac{4\pi}{3} + 2\pi m, \ \frac{5\pi}{3} + 2\pi n \qquad (m, n \in \mathbb{Z})$$
 (8)

関数 $\sin^{-1}x$ の値域を $-\frac{\pi}{2} \leq \sin^{-1}x \leq \frac{\pi}{2}$ とすれば、求めるべき値は $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3}$ となる。

(b) $\cos^{-1}\left(\sin\frac{\pi}{6}\right)$

 $\sin\frac{\pi}{6}$ は一つの値のみを表しており、 $\sin\frac{\pi}{6}=\frac{1}{2}$ である。 そこで次のグラフは、直線 $y=\frac{1}{2}$ を赤、曲線 $y=\cos x$ を青で描いたもので

よって、 $\cos^{-1}\left(\sin\frac{\pi}{6}\right)$ を満たす値は次のように複数ある。

$$\frac{\pi}{3} + 2\pi m, \ \frac{5\pi}{3} + 2\pi n \qquad (m, n \in \mathbb{Z})$$
 (9)

関数 $\cos^{-1}x$ の値域を $0\leq\cos^{-1}x\leq\pi$ とすれば、求めるべき値は $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}$ となる。

(c) $\lim_{x \to -\infty} \tan^{-1} x$

 $y=\tan x$ のグラフを描くと、次のように $x=\frac{\pi}{2}n \quad (n\in\mathbb{Z})$ を除いた点で定義される。

このグラフの原点を通る部分の区間 $-\frac{\pi}{2} < x < \frac{\pi}{2}$ を値域となるように $y = \tan^{-1} x$ のグラフを描くと次のようになる。

この為、極限は次のようになる。

$$\lim_{x \to -\infty} \tan^{-1} x = -\frac{\pi}{2} \tag{10}$$

(d)
$$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right)$$

上記グラフのように $\tan^{-1}x$ の値を $-\frac{\pi}{2}<\tan^{-1}x<\frac{\pi}{2}$ に制限すれば、 $\tan^{-1}\left(\frac{1}{2}\right)$ と $\tan^{-1}\left(\frac{1}{3}\right)$ は一つの値となる。

そこで、実数 a,b を次のように置く。

$$a = \tan^{-1}\left(\frac{1}{2}\right), \quad b = \tan^{-1}\left(\frac{1}{3}\right) \tag{11}$$

これにより、次のようになる。

$$\tan a = \frac{1}{2}, \quad \tan b = \frac{1}{3}$$
(12)

このとき、tan(a+b)を求める。

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} = \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \cdot \frac{1}{3}} = 1$$
 (13)

よって、次のように求まる。

$$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(1\right) = \frac{\pi}{4}$$
 (14)

 $y = \tan^{-1} x$ の値域を設定しないのであれば、直線 y = 1 と曲線 $y = \tan x$ の 交点から求められる。

よって、次の値となる。

$$\frac{\pi}{4} + \pi n \qquad (n \in \mathbb{Z}) \tag{15}$$

問題 15. $a,b>0,\; a,b \neq 1,\; x\in\mathbb{R}$ とする。このとき、 $(ab)^x=a^xb^x$ が成り立つことを示せ。

.....

 $x \in \mathbb{R}$ が有理数のとき、 $(ab)^x = a^x b^x$ であるので、 $x \in \mathbb{R}$ が無理数とする。

x に収束する有理数のコーシー列を $\{x_n\}_{n\in\mathbb{N}}$ とする。つまり、 $\lim_{n\to\infty}x_n=x$ である。

各 x_n は有理数であるので、 $(ab)^{x_n} = a^{x_n}b^{x_n}$ である。

 $\lim_{n \to \infty} a^{x_n} = a^x$, $\lim_{n \to \infty} b^{x_n} = b^x$ であることから、

$$a^{x} \times b^{x} = \lim_{n \to \infty} a^{x_n} \times \lim_{n \to \infty} b^{x_n} = \lim_{n \to \infty} (a^{x_n} b^{x_n})$$
 (16)

である。また、 $\lim_{n\to\infty}(ab)^{x_n}=(ab)^x$ であることから、 $(ab)^{x_n}=a^{x_n}b^{x_n}$ の極限を求めると $(ab)^x=a^xb^x$ が得られる。

問題 16. a>1 とする。このとき、-1< x<0 として、 $\lim_{x\to 0}a^x=1$ を証明せよ。

.....

0<-x<1 であるので、 $n\leq -\frac{1}{x}< n+1$ となる自然数 n が存在する。 $-1\leq -\frac{1}{n}\leq x<-\frac{1}{n+1}<0$ より

$$a^{-\frac{1}{n}} \le a^x < a^{-\frac{1}{n+1}} \tag{17}$$

であるので、数列 $\{a^{-\frac{1}{n}}\}_{n\in\mathbb{N}}$ と a^x の極限は一致する。

$$\lim_{n \to \infty} a^{-\frac{1}{n}} = \lim_{x \to 0} a^x \tag{18}$$

つまり、 $\lim_{n\to\infty}a^{-\frac{1}{n}}=1$ が示せればよい。

そこで、 $\forall \varepsilon > 0$ としたとき十分に大きな n に対して $|a^{-\frac{1}{n}}-1| < \varepsilon$ が成り立てばよい。 $0 < a^{-\frac{1}{n}} < 1$ であるので、絶対値を外し変形をする。

$$(1 - \varepsilon)^n < a^{-1} \tag{19}$$

二項定理より

$$(1-\varepsilon)^n = \sum_{i=0}^n {}_n C_i (-\varepsilon)^i = 1 - n\varepsilon + \frac{n(n-1)}{2} \varepsilon^2 + \dots + (-\varepsilon)^n$$
 (20)

である。

 $|a^{-\frac{1}{n}}-1|<\varepsilon$ が成立する様な状況を考えるので、 $0<\varepsilon<1$ に制限して考えても良い。

 $0 < \varepsilon < 1$ σ

$$1 - n\varepsilon < (1 - \varepsilon)^n < a^{-1} \tag{21}$$

となる。ここから、n は次を満たせば $|a^{-\frac{1}{n}}-1|<\varepsilon$ となることがわかる。

$$n > \frac{1}{\varepsilon} (1 - a^{-1}) \tag{22}$$

これにより、 $^{\forall} \varepsilon > 0$ に対して、 $|a^{-\frac{1}{n}}-1| < \varepsilon$ となる $n \in \mathbb{N}$ は存在することとなり、 $\lim_{n \to \infty} a^{-\frac{1}{n}} = 1$ であることがわかる。

 $\lim_{n\to\infty}a^{-\frac{1}{n}}=\lim_{x\to 0}a^x$ であるから、 $\lim_{x\to 0}a^x=1$ である。