Examen du 24 Mai 2023 13h30-16h30

Instructions:

- Tous les documents, téléphones portables, calculatrices... sont interdits.
- Le barème est donné à titre indicatif et est susceptible d'être modifié.
- La qualité de la rédaction sera prise en compte dans l'évaluation.

Exercice 1. (Question de cours). (4 pts)

1. Rappeler l'énoncé des inégalités de Cauchy.

On rappelle le théorème de Liouville : Soit $f:\mathbb{C} \longrightarrow \mathbb{C}$ une fonction holomorphe bornée. Alors f est constante.

2. Redémontrer ce théorème à partir des inégalités de Cauchy.

Exercice 2. (4 pts) Soit $\alpha > 0$. Calculer l'intégrale suivante, au moyen du théorème des résidus:

$$\int_{-\infty}^{\infty} \frac{e^{i\alpha t}}{t^2 + t + 1} dt.$$

On prendra garde à bien justifier les diverses majorations employées au cours du calcul. Comment effectuer le calcul si α < 0 ?

Exercice 3. (5 pts) Dans la suite, $\mathbb H$ désignera le demi-plan supérieur complexe :

$$\mathbb{H} = \{ z \in \mathbb{C} \mid \mathrm{Im}(z) > 0 \},\,$$

et l'on notera aussi $\Delta = D(0,1)$ le disque unité.

On considère deux applications holomorphes $\psi: z \in \mathbb{H} \longmapsto \frac{z-i}{z+i} \in \Delta$, et $\phi: z \in \Delta \longmapsto i\frac{1+z}{1-z} \in \mathbb{H}$.

- **1.** Montrer que si $z \in \mathbb{C}$, on a $|z+i|^2 |z-i|^2 = 4\mathrm{Im}(z)$, et vérifier ensuite que $\psi(z) \in \Delta$ pour tout $z \in \mathbb{H}$.
- 2. Montrer que si $z \in \mathbb{C} \{1\}$, on a $\operatorname{Re}\left(\frac{1+z}{1-z}\right) = \frac{1-|z|^2}{|1-z|^2}$ et vérifier ensuite que $\phi(z) \in \mathbb{H}$ pour tout $z \in \Delta$.
- 3. Montrer que $\psi: \mathbb{H} \to \Delta$ et $\phi: \Delta \to \mathbb{H}$ sont des applications holomorphes réciproques l'une de l'autre.

L'objectif des questions suivantes est de démontrer l'énoncé suivant :

(*) Soit $f: \mathbb{C} \to \mathbb{C}$ une application holomorphe non constante. Alors il existe $z \in \mathbb{C}$ tel que $\mathrm{Im}(f(z)) = 0$.

Pour ce faire, on raisonne par contraposée, et l'on considère une application holomorphe telle que $\text{Im}(f(z)) \neq 0$ pour tout $z \in \mathbb{C}$. On va montrer que f est constante.

- **4.** Justifier que l'on a ou bien Im(f(z)) > 0 pour tout $z \in \mathbb{C}$, ou bien Im(f(z)) < 0 pour tout $z \in \mathbb{C}$.
- **5.** Dans cette question, on suppose qu'on est dans le cas où Im(f(z)) > 0 pour tout $z \in \mathbb{C}$, et donc que $f(z) \in \mathbb{H}$ pour tout $z \in \mathbb{C}$. Utiliser le théorème de Liouville pour montrer que la fonction f est constante. (*Indication : considérer la fonction* $\psi \circ f$)
- **6.** Dans le cas où $\operatorname{Im}(f(z)) < 0$ pour tout $z \in \mathbb{C}$, comment peut-on montrer que f est constante?
- 7. L'énoncé (*) reste-t-il vrai si l'on remplace f par une application holomorphe $f:U\longrightarrow \mathbb{C}$, où $U\subset \mathbb{C}$ est un ouvert quelconque de \mathbb{C} ?

Exercice 4. (7 pts) Soit $f: \mathbb{C} \to \mathbb{C}$ une fonction holomorphe 1-périodique, c'est-à-dire telle que f(z+1) = f(z) pour tout $z \in \mathbb{C}$.

1. Dans cette question, on suppose que f ne s'annule pas en dehors du fermé

$$F = \{ z \in \mathbb{C} \mid -1 \le \operatorname{Im}(z) \le 1 \}.$$

(a). Justifier que f ne s'annule qu'en un nombre fini de points de l'ensemble $C = \{z \in \mathbb{C} \mid 0 \le \text{Re}(z) < 1\}$.

Notons $z_1,...,z_m$ les zéros de f dans C, et $a_1,...,a_m$ leurs multiplicités.

(b). Montrer que la fonction g définie par la formule

$$g(z) = \frac{f(z)}{\prod_{i=1}^{m} \sin(2\pi(z - z_i))^{a_i}}$$

est une fonction méromorphe n'ayant que des singularités éliminables sur C.

(c). Justifier que g ne s'annule pas sur \mathbb{C} , et en conclure qu'il existe une fonction holomorphe $h:\mathbb{C}\to\mathbb{C}$ telle que

$$f(z) = e^{h(z)} \prod_{i=1}^{m} \sin(2\pi(z - z_i))^{a_i}$$

pour tout $z \in \mathbb{C}$.

2. On ne fait maintenant plus d'hypothèse sur f en dehors de sa 1-périodicité. L'objectif de la question est de montrer qu'il existe une application holomorphe $h: \mathbb{C} \to \mathbb{C}$ telle que $f(z) = h(e^{2i\pi z})$ pour tout $z \in \mathbb{C}$.

On notera $\mathbb{R}_+ = \{t \in \mathbb{R} \mid t \geq 0\}$ et $\mathbb{R}_- = \{t \in \mathbb{R} \mid t \leq 0\}$.

(a). Montrer que l'application $z \in \mathbb{C} - \mathbb{R} \mapsto \frac{1}{2i\pi}(\text{Log}_1(z) - \text{Log}_2(z))$ est à valeurs dans \mathbb{Z} . Justifier qu'il existe des déterminations du logarithme $\text{Log}_1 : \mathbb{C} - \mathbb{R}_- \to \mathbb{C}$ et $\text{Log}_2 : \mathbb{C} - \mathbb{R}_+ \to \mathbb{C}$.

(b). Justifier qu'il existe deux entiers $k, l \in \mathbb{Z}$ tels que

$$Log_1(z) - Log_2(z) = 2i\pi k$$
 (resp. $Log_1(z) - Log_2(z) = 2i\pi l$)

pour tout $z \in \mathbb{C}$ tel que Im(z) > 0 (resp. tel que Im(z) < 0).

(c). Déduire de la question précédente que les deux fonctions holomorphes

$$h_1: z \in \mathbb{C} - \mathbb{R}_- \mapsto f\left(\frac{\log_1(z)}{2i\pi}\right)$$

et

$$h_2: \quad z \in \mathbb{C} - \mathbb{R}_+ \quad \mapsto \quad f\left(\frac{\operatorname{Log}_2(z)}{2i\pi}\right)$$

coincident sur l'ouvert $\mathbb{C} - \mathbb{R} = (\mathbb{C} - \mathbb{R}_{-}) \cap (\mathbb{C} - \mathbb{R}_{+})$.

(Indication : il faut utiliser le fait que f est 1-périodique).

- (d). Justifier qu'il est possible de définir une application holomorphe $h: \mathbb{C}^* \to \mathbb{C}$ telle que $h|_{\mathbb{C}-\mathbb{R}_-} = h_1$ et $h|_{\mathbb{C}-\mathbb{R}_+} = h_2$.
- (e). Montrer enfin que $f(z) = h(e^{2i\pi z})$ pour tout $z \in \mathbb{C}$ (Indication : commencer par montrer que $\frac{\log_1(e^{2i\pi z})}{2i\pi} z \in \mathbb{Z}$).
- (f). (Hors barème) Pour tout $t \in \mathbb{R}$, on considère la fonction $h_t : \mathbb{R} \to \mathbb{C}$

$$h_t: x \in \mathbb{R} \longrightarrow f(x+it) \in \mathbb{C}.$$

On suppose qu'il existe C > 0 tel que $||h_t||_{\infty} \le C$ pour tout $t \ge 0$. Montrer que les fonctions h_t convergent uniformément vers une fonction constante quand $t \longrightarrow +\infty$.