Active loads. Pseudo-NMOS Logic

- PMOS trasistor always conducting
- Saving Silicon area (no Rpull-up necessary)
- Used in ROM, PLA and FLASH

Active loads. Pseudo-NMOS Logic

Transference curve versus channel size (W/L)

The MOSFET in switching mode. Applications

Switch pushed → VGS = VDD → Mosfet On (closed switch) → LED ON

Switch released \rightarrow VGS = 0 \rightarrow Mosfet off (open switch) \rightarrow LED OFF

2.4 NMOS logic gates

Let's assume:

"
$$0$$
" = 0 V

Transistors in parallel

Va	Vb	M1(OFF/ON)	M2 (OFF/ON)	Vo
0	0	OFF	OFF	1
0	1	OFF	ON	0
1	0	ON	OFF	0
1	1	ON	0 N	0

2.4 NMOS logic gates

Let's assume:

"
$$0$$
" = 0 V

Transistors in series

Va	Vb	M1(OFF/ON)	M2 (OFF/ON)	Vo
0	0	OFF	OFF	1
0	1	OFF	OFF	1
1	0	OFF	OFF	1
1	1	ON	ON	0