

Plan:

- I. Réseau du transport ferroviaire en Afrique
- II. Etude du Maglev
- III. Illustration expérimentale
- IV. Modélisation de la physique des milieux magnétique
- V. Etude phénoménologique de la théorie de London
- VI. Théorie BCS: Introduction de l'approche quantique
- VII.Résolution numérique des équations trouvées

Réseau du transport ferroviaire en Afrique

Etude du Maglev

Comparaison entre le MAGLEV et le train classique ICE

l'I.C.E (Inter.City.Express), l'équivalent allemand du TGV français.

L'accélération:

La sécurité

le Maglev est imbattable. En effet, sa structure qui enveloppe la voie rend impossible les déraillements donc le risque est nul

La consommation

Freinage

Grâce à la technologie de non contact le freinage est plus efficace chez le MAGLEV

Influence sur l'Homme et son environnement:

Occupation au sol

Pollution: émission du CO2

MAGLEV=Magnétique+Lévitation

Fonctionnement du MAGLEV:

1-lévitation

2-propulsion

3-Freinage_

Types de MAGLEV:

ELECTROMAGNETIC

Electromagnets on the guideway levitate the car.

Electromagnets on the cars lift the cars.

INDUCTRACK

Permanent magnets levitate over passive colls.

Illustration expérimentale

Matériel requis :
Azote liquide refroidit à 30K près
Aimant
Matériau supraconducteur

Modélisation de la physique des milieux magnétique

moment magnétique m

dipôle magnétique

au niveau atomique

$$\overrightarrow{m} = \Sigma \overrightarrow{me} + \Sigma \overrightarrow{mn}$$

Aimantation M:

$$\vec{M} = \frac{1}{\Delta \tau} \sum_{i} \vec{m_i}$$

Classification des milieux magnétiques

Paramagnétisme

Ferromagnétisme

diamagnétique

Les atomes ne portent pas de moments magnétique permanents

Milieux conducteurs et supraconducteurs

Effet Meissner

Etude phénoménologique de la théorie de London

Etude phénoménologique

la loi fondamentale de la mécanique appliquée à l'un des porteurs soumis à l'action d'un champ magnétique

$$m\frac{\mathrm{d}\,\mathbf{v}}{\mathrm{d}\,t}=q(\mathbf{E}+\mathbf{v}\times\mathbf{B})$$

Régime quasi-stationnaire

$$\Delta \mathbf{B} = \frac{1}{\lambda_L^2} \mathbf{B}$$

Théorie BCS: Introduction de l'approche quantique

Paires de Cooper

Résolution numérique des équations trouvées

Théorie de London

L'invariance du système, au cours d'une translation effectuée parallèlement à Oxy, permet d'écrire l'équation différentielle à laquelle satisfait **B** sous la forme :

$$\frac{\mathrm{d}^2 \mathbf{B}}{\mathrm{d} z^2} - \frac{1}{\lambda_L^2} \mathbf{B} = \mathbf{0}$$

Quel que soit Z :

$$\mathbf{B}(z) = \mathbf{B}(0) \exp\left(-\frac{z}{\lambda_L}\right)$$

Le champ s'atténue donc exponentiellement à une profondeur de quelques λ_l il est pratiquement nul et l'effet Meissner total

Ordre de grandeur

$$\lambda_L^2 = \frac{m}{\mu_0 n q^2}$$

$$\lambda_L = \left(\frac{m_e}{\mu_0 n_s \, e^2}\right)^{1/2}$$

$$\left(\frac{0.91 \times 10^{-30}}{4\pi \times 10^{-7} \times 10^{28} \times 1.6^2 \times 10^{-38}}\right)^{1/2} = 53 \text{ nm}$$

Annexe:

```
import numpy as np
import matplotlib.pvplot as plt
t0 = 0.
tmax = 1.
dt = 1e-04
T = np.arange(t0,tmax,dt)
N = T.shape[0]
X = np.zeros((N))
V = np.zeros((N))
X[0] = 0.
V[0] = 0.
def F(t,w,F0):
    return F0*np.cos(np.pi*w*t)
k = 10.
W = 1000.
F0 = 0.01
r = 0.0001
M = 0.01
for i in range(N-1):
    X[i+1] = X[i] + dt*V[i]
    V[i+1] = V[i] + dt * (F(T[i], w, F0) - k*X[i]+r*V[i]),
plt.plot(T,X)
```

```
import numpy as np
import matplotlib.pyplot as plt
    Initialisation
a = 0.
b = 10.
n = 100
vdumb = np.zeros((2), float);
y = np.zeros((2), float)
fReturn = np.zeros((2), float);
k1 = np.zeros((2), float)
k2 = np.zeros((2), float);
k3 = np.zeros((2), float)
k4 = np.zeros((2), float)
v[0] = 3.;
y[1] = -5.
t = a:
h = (b-a)/n:
```

```
# Ici on définit l'équation différentielle d'ordre 2 à résoudre
def f(t,y):
    fReturn[0] = y[1]
    fReturn[1] = -100.*y[0]-2.*y[1] + 10.*np.sin(3.*t)
    return fReturn
def rk4(t,h,n):
    k1 = [0]*(n)
    k2 = [0]*(n)
                                                                     Y = []
                                                                     YY = []
    k3 = [0]*(n)
                                                                     T = []
    k4 = [0]*(n)
                                                                     while (t < b):
                                                                                                          # Boucle sur le temps
    fR = [0]*(n)
                                                                         if ((t + h) > b):
   ydumb = [0]*(n)
                                                                             h = b - t
                                                                                                          # Dernière étape
    fR = f(t, y)
                                                                         y = rk4(t,h,2)
                                                                         t = t + h
                                                                         Y.append(y[0])
    for i in range(0, n):
                                                                         YY.append(y[1])
       k1[i] = h*fR[i]
                                                                         T.append(t)
    for i in range(0, n):
                                                                     plt.plot(T,Y)
        ydumb[i] = y[i] + k1[i]/2.
    k2 = h*f(t+h/2., ydumb)
    for i in range(0, n):
        ydumb[i] = y[i] + k2[i]/2.
    k3 = h*f(t+h/2., ydumb)
    for i in range(0, n):
        ydumb[i] = y[i] + k3[i]
    k4 = h*f(t+h, ydumb)
    for i in range(0, 2):
        y[i] = y[i] + (k1[i] + 2.*(k2[i] + k3[i]) + k4[i])/6.
    return y
```

ONCLUSION