

Программирование в среде R

Шевцов Василий Викторович, директор ДИТ РУДН, shevtsov_vv@rudn.university

Множественная линейная регрессия. Отбор моделей.

swiss

> df <- swiss
> View(df)

^	Fertility [‡]	Agriculture [‡]	Examination [‡]	Education [‡]	Catholic [‡]	Infant.Mortality
Courtelary	80.2	17.0	15	12	9.96	22.2
Delemont	83.1	45.1	6	9	84.84	22.2
Franches-Mnt	92.5	39.7	5	5	93.40	20.2
Moutier	85.8	36.5	12	7	33.77	20.3
Neuveville	76.9	43.5	17	15	5.16	20.6
Porrentruy	76.1	35.3	9	7	90.57	26.6
Broye	83.8	70.2	16	7	92.85	23.6
Glane	92.4	67.8	14	8	97.16	24.9

- Данные 1888-го года по регионам,
- Fertility это количество детей до пяти лет, делённое на количество женщин до 50-ти лет и отмасштабированное, на 1000 домноженное;
- Agriculture это процент мужчин, занятых в сельском хозяйстве;
- Examination процент тех, кто получил высокий результат оценки на призывном пункте
- Catholic процент католиков (?)
- Infant.Mortality Смертность младенцев

Учет всех параметров

```
fit <- lm(Fertility ~ ., df)</pre>
```

```
> df <- swiss
> fit <- lm(Fertility~.,df)</pre>
> summary(fit)
Call:
lm(formula = Fertility ~ ., data = df)
Residuals:
          10 Median 30 Max
    Min
-15.2743 -5.2617 0.5032 4.1198 15.3213
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept) 66.91518 10.70604 6.250 1.91e-07 ***
Agriculture -0.17211 0.07030 -2.448 0.01873 *
Examination -0.25801 0.25388 -1.016 0.31546
Education -0.87094 0.18303 -4.758 2.43e-05 ***
Catholic 0.10412 0.03526 2.953 0.00519 **
Infant.Mortality 1.07705 0.38172 2.822 0.00734 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 7.165 on 41 degrees of freedom
Multiple R-squared: 0.7067, Adjusted R-squared: 0.671
F-statistic: 19.76 on 5 and 41 DF, p-value: 5.594e-10
```


Исключаем параметр

fit2 <- Im(Fertility ~ Examination + Education + Catholic + Infant.Mortality, df) исключено Agriculture

```
> fit2 <- lm(Fertility ~ Examination + Education + Catholic + Infant.Mortality, df)
> summary(fit2)
Call:
lm(formula = Fertility ~ Examination + Education + Catholic +
   Infant.Mortality, data = df)
Residuals:
    Min 10 Median 30
                                     Max
-14.7141 -5.1741 -0.6893 4.2776 14.7346
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept) 50.02821 8.66076 5.776 8.33e-07 ***
Examination -0.10580 0.26037 -0.406 0.686539
Education -0.70416 0.17969 -3.919 0.000322 ***
Catholic 0.08631 0.03649 2.365 0.022717 *
Infant.Mortality 1.30568 0.39150 3.335 0.001791 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.579 on 42 degrees of freedom
Multiple R-squared: 0.6639, Adjusted R-squared: 0.6319
F-statistic: 20.74 on 4 and 42 DF, p-value: 1.703e-09
```

Дисперсионный анализ

Модели значимо различаются

Исключаем параметр

fit3 <- Im(Fertility ~ Agriculture + Education + Catholic + Infant.Mortality, df) исключено Examination

```
> fit3 <- lm(Fertility ~ Agriculture + Education + Catholic + Infant.Mortality, df)
> summary(fit3)
Call:
lm(formula = Fertility ~ Agriculture + Education + Catholic +
   Infant.Mortality, data = df)
Residuals:
          1Q Median
    Min
                             30
                                    Max
-14.6765 -6.0522 0.7514 3.1664 16.1422
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 62.10131 9.60489 6.466 8.49e-08 ***
Agriculture -0.15462 0.06819 -2.267 0.02857 *
         -0.98026 0.14814 -6.617 5.14e-08 ***
Education
Catholic
         Infant.Mortality 1.07844
                        0.38187 2.824 0.00722 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 7.168 on 42 degrees of freedom
Multiple R-squared: 0.6993, Adjusted R-squared: 0.6707
F-statistic: 24.42 on 4 and 42 DF, p-value: 1.717e-10
```


Дисперсионный анализ

Модели не различаются

Автоматический подбор предикторов - step()

```
step(object, scope, scale = 0,
direction = c("both", "backward", "forward"),
trace = 1, keep = NULL, steps = 1000, k = 2, ...)
```

```
step(fit,direction = "backward")
```



```
> step(fit,direction = "backward")
Start: ATC=190.69
Fertility ~ Agriculture + Examination + Education + Catholic +
   Infant.Mortality
                 Df Sum of Sq RSS AIC
- Examination 1
                        53.03 2158.1 189.86
                             2105.0 190.69
<none>
- Agriculture 1 307.72 2412.8 195.10
- Infant.Mortality 1 408.75 2513.8 197.03
           1 447.71 2552.8 197.75
- Catholic
- Education 1 1162.56 3267.6 209.36
Step: AIC=189.86
Fertility ~ Agriculture + Education + Catholic + Infant.Mortality
                 Df Sum of Sq RSS
                                      ATC
<none>
                             2158.1 189.86
- Agriculture 1 264.18 2422.2 193.29
- Infant.Mortality 1 409.81 2567.9 196.03
- Catholic 1 956.57 3114.6 205.10 - Education 1 2249.97 4408.0 221.43
Call:
lm(formula = Fertility ~ Agriculture + Education + Catholic +
   Infant.Mortality, data = df)
Coefficients:
    (Intercept) Agriculture Education
                                                        Catholic
        62.1013
                        -0.1546
                                         -0.9803
                                                           0.1247
Infant.Mortality
         1.0784
```


Запись результатов в переменную

```
> summary(f4)
Call:
lm(formula = Fertility ~ Agriculture + Education + Catholic +
   Infant.Mortality, data = df)
Residuals:
    Min 10 Median 30 Max
-14.6765 -6.0522 0.7514 3.1664 16.1422
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 62.10131 9.60489 6.466 8.49e-08 ***
Agriculture -0.15462 0.06819 -2.267 0.02857 *
Education -0.98026 0.14814 -6.617 5.14e-08 ***
Catholic 0.12467 0.02889 4.315 9.50e-05 ***
Infant.Mortality 1.07844 0.38187 2.824 0.00722 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 7.168 on 42 degrees of freedom
Multiple R-squared: 0.6993, Adjusted R-squared: 0.6707
F-statistic: 24.42 on 4 and 42 DF, p-value: 1.717e-10
```


Диагностика модели

Два параметра

library(ggplot2)

ggplot(df, aes(x = Examination, y = Education))+

geom_point()

Два параметра

```
ggplot(df, aes(x = Examination, y = Education))+
  geom_point()+
  geom_smooth(method = "Im")
```


Анализ распределения

Улучшение распределения

ggplot(df, aes(x = Examination, y = Education))+

geom_point()+
geom_smooth()

Базовая модель

```
> lm1 <- lm(Education ~ Examination, df)</pre>
> summary(lm1)
Call:
lm(formula = Education ~ Examination, data = df)
Residuals:
    Min 10 Median 30 Max
-11.1427 -3.4877 -0.8833 2.7212 24.7560
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.9015 2.3507 -1.234 0.223
Examination 0.8418 0.1286 6.546 4.81e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.958 on 45 degrees of freedom
Multiple R-squared: 0.4878, Adjusted R-squared: 0.4764
F-statistic: 42.85 on 1 and 45 DF, p-value: 4.811e-08
```


Улучшенная модель

```
> lm2 <- lm(Education ~ Examination + Examination sq, df)
> summary(lm2)
Call:
lm(formula = Education ~ Examination + Examination sq, data = df)
Residuals:
         10 Median 3Q Max
    Min
-12.2922 -3.0945 -0.6397 1.5874 20.6391
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.96590 3.66352 1.901 0.06381.
Examination -0.49840 0.42147 -1.183 0.24334
Examination sq 0.03660 0.01106 3.308 0.00188 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 6.297 on 44 degrees of freedom
Multiple R-squared: 0.5898, Adjusted R-squared: 0.5712
F-statistic: 31.63 on 2 and 44 DF, p-value: 3.058e-09
```


Дисперсионный анализ

```
> anova(lm2,lm1)
Analysis of Variance Table

Model 1: Education ~ Examination + Examination_sq
Model 2: Education ~ Examination
   Res.Df   RSS Df Sum of Sq   F   Pr(>F)
1     44 1744.5
2     45 2178.4 -1   -433.95 10.945 0.001877 **
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Модели значимо различаются

Добавление значений

Формирование набора из предсказанных значений и разницы

df\$lm1_fitted <- lm1\$fitted df\$lm2_fitted <- lm2\$fitted df\$lm1_resid <- lm1\$resid

df\$lm2_resid <- lm2\$resid

df\$number <- 1:nrow(df)

Education [‡]	Catholic [‡]	Infant.Mortality	Examination_sq +	lm1_fitted [‡]	lm2_fitted [‡]	lm1_resid [‡]	lm2_resid [‡]	number [‡]
12	9.96	22.2	225	9.7250225	7.724693	2.274977472	4.2753070	1
9	84.84	22.2	36	2.1490872	5.293055	6.850912764	3.7069449	2
5	93.40	20.2	25	1.3073166	5.388866	3.692683352	-0.3888663	3
7	33.77	20.3	144	7.1997108	6.255359	-0.199710764	0.7446406	4
15	5.16	20.6	289	11.4085637	9.070242	3.591436295	5.9297581	5

Реальные значения + предсказанные

```
ggplot(df, aes(x = Examination, y = Education))+
  geom_point()+
  geom_line(aes(x = Examination, y = lm1_fitted), col = "red")+
  geom_line(aes(x = Examination, y = lm2_fitted), col = "blue")
```


Остатки

ggplot(df, aes(x = lm1_fitted, y = lm1_resid)) +
 geom_point() +
 geom_hline(yintercept=0,col="red", lwd=1)

Остатки распределяются неравномерно, есть выраженная тенденция

Исправленные остатки

```
ggplot(df, aes(x = lm2_fitted, y = lm2_resid)) +
  geom_point() +
  geom_hline(yintercept=0,col="red", lwd=1)
```


Независимость остатков

Остатки могут быть сгруппированы из-за:

- исследования двух разных наблюдения
- не группировки данных по испытуемым

ggplot(df, aes(x = number, y = lm1_resid)) + geom_point() +

geom_smooth()

Независимость остатков

ggplot(df, aes(x = number, y = lm1_resid)) +

geom_point() +

geom_smooth()

Распределение более сглаженное

Разброс остатков

ggplot(df, aes(x = lm1_fitted, y = lm1_resid)) +

geom_point()

В разбросах нет равномерности

Разброс остатков

ggplot(df, aes(x = Im2_fitted, y = Im2_resid)) +
 geom_point()

Распределение более упорядоченное

Распределение остатков

ggplot(df, aes(x = lm1_resid)) + geom_histogram(binwidth=4,fill="white",col="black"

Распределение скошено влево

ggplot(df, aes(x = lm2_resid)) +
geom_histogram(binwidth=4,fill="white",col="black")

Распределение улучшилось, хотя не идеально

Спасибо за внимание!

Шевцов Василий Викторович

shevtsov_vv@rudn.university +7(903)144-53-57

