# Министерство образования Республики Беларусь Учреждение образования "Белорусский Государственный университет информатики и радиоэлектроники"

Лабораторная работа №1

"Логистическая регрессия в качестве нейронной сети"
по учебной дисциплине "Машинное обучение"

Студент гр. 956241 Дубовик Н.О.

Выполнил:

Данные: В работе предлагается использовать набор данных notMNIST, который состоит из изображений размерностью 28×28 первых 10 букв латинского алфавита (А ... J, соответственно). Обучающая выборка содержит порядка 500 тыс. изображений, а тестовая — около 19 тыс.

Данные можно скачать по ссылке:

- <a href="https://commondatastorage.googleapis.com/books1000/notMNIST\_large.tar.gz">https://commondatastorage.googleapis.com/books1000/notMNIST\_large.tar.gz</a> (большой набор данных);
- <a href="https://commondatastorage.googleapis.com/books1000/notMNIST\_s">https://commondatastorage.googleapis.com/books1000/notMNIST\_s</a> <a href="mailtar.gz">mail.tar.gz</a> (маленький набор данных);

Описание данных на английском языке доступно по ссылке: <a href="http://yaroslavvb.blogspot.sg/2011/09/notmnist-dataset.html">http://yaroslavvb.blogspot.sg/2011/09/notmnist-dataset.html</a>

Результат выполнения заданий опишите в отчете.

В ходе выполнения лабораторной работы был использован датасет notMNIST\_large

### Задание 1.

Загрузите данные и отобразите на экране несколько из изображений с помощью языка Python;

Следующие изображения, из предоставленного датасета, были показаны с помощью библиотеки matplotlib.pyplot, рисунок 1.



Рисунок 1 – Изображения из датасета

## Задание 2.

Проверьте, что классы являются сбалансированными, т.е. количество изображений, принадлежащих каждому из классов, примерно одинаково (В данной задаче 10 классов).

Для этого задания была использована следующая функция:

```
def show_percentages(Y,classes):
   total=Y.shape[1]
   for i in range(len(classes)):
        count=np.count_nonzero(Y==i)
        print("{0} : {1:.2f}%".format(classes[i],count/total*100))
```

И ее результат, рисунок 2.

```
O2\lab1\lab.py "
A : 10.00%
B : 10.00%
C : 10.00%
D : 10.00%
F : 10.00%
G : 10.00%
H : 10.00%
J : 10.00%
```

Рисунок 2 – Результат проверки на сбалансированность классов

#### Задания 3/4.

Разделите данные на три подвыборки: обучающую (200 тыс. изображений), валидационную (10 тыс. изображений) и контрольную (тестовую) (19 тыс. изображений);

Проверьте, что данные из обучающей выборки не пересекаются с данными из валидационной и контрольной выборок. Другими словами, избавьтесь от дубликатов в обучающей выборке.

```
Для этих заданий использовался метод:
```

split dataset(X,Y,200000,10000,19000)

```
def split_dataset(X,Y,train_size, valid_size,test_size):
    train_index=train_size
    valid_index=train_index+valid_size
    test_index=valid_index+test_size

p=np.random.permutation(X.shape[1])

X_split=np.hsplit(X[:,p], [train_index,valid_index,test_index])
    Y_split=np.hsplit(Y[:,p], [train_index,valid_index,test_index])
    return X_split[0],X_split[1],X_split[2],Y_split[0],Y_split[1],Y_split[2]

С аргументами:
```

### Задание 5.

Постройте простейший классификатор (например, с помощью логистической регрессии). Постройте график зависимости точности классификатора от размера обучающей выборки (50, 100, 1000, 50000). Для

построения классификатора можете использовать библиотеку SkLearn (<a href="http://scikit-learn.org">http://scikit-learn.org</a>).

Был использован классификатор OneVsRestClassifier из библиотеки sklearn.multiclass.

Сам метод выглядит следующим образом:

Итоги его выполнения на выборках различного размера показаны на рисунке 3. По данному рисунку можно сделать вывод, что чем больше размер обучающей выборки, тем выше будет оценка.



Рисунок 3 — Зависимость точности классификатора от размера обучающей выборки