Lecture Notes on Robot to Table Calibration

Christoffer Sloth

October 20, 2019

Introduction 1

We consider the setup shown in Figure 1 where a robot is located on a table. Two coordinate frames are considered: World and Robot Base. To let the tool center point (TCP) move to a specific point on the table, it is necessary to know the coordinate transformation H_W^R from World to Robot Base.

Figure 1: Robot on table, where coordinate frames are attached to the table (World frame) and robot (Robot Base frame).

If the homogeneous transformation H_W^R is known, then the point p in Robot Base frame can be transformed to the point p' in World frame by

where $R_{\mathrm{W}}^{\mathrm{R}}$ is the rotation matrix and $T_{\mathrm{W}}^{\mathrm{R}} \in \mathbb{R}^3$ is the translation vector. In the following, we attempt to find a robot-table calibration given by H_W^R , by moving the TCP of the robot to different known points on the table p'_i for i = 1, ..., N (given in the World frame). When the TCP of the robot is at each point p'_i , it is possible to read the TCP position of the robot p_i for i = 1, ..., N (given in the Robot Base frame). These measured positions are used for finding the homogeneous transformation $H_{\mathrm{W}}^{\mathrm{R}}$ or rather $R_{\mathrm{W}}^{\mathrm{R}}$ and $T_{\mathrm{W}}^{\mathrm{R}} \in \mathbb{R}^3$ based on the relation (given by (1))

$$\boldsymbol{p}' = R_{\mathrm{W}}^{\mathrm{R}} \boldsymbol{p} + \boldsymbol{T}_{\mathrm{W}}^{\mathrm{R}} \tag{2}$$

2 Problem Formulation

This section poses the mathematical problem, which is solved to find the coordinate transformation $H_{\rm W}^{\rm R}$. The text is based on [1], which contains more details on the calibration. The problem is formulated as a least squares problem, i.e., we obtain the least squares solution to (2).

Problem 1. Given two sets of points $p_i, p'_i \in \mathbb{R}^3$ for i = 1, ..., N that are related as

$$\boldsymbol{p}_i' = R\boldsymbol{p}_i + \boldsymbol{T} + \boldsymbol{w}_i$$

where R is a rotation matrix, $T \in \mathbb{R}^3$ is a translation vector, and $\mathbf{w}_i \in \mathbb{R}^3$ is a noise vector. Find R and T that minimizes

$$\sum_{i} ||\boldsymbol{p}_{i}' - (R\boldsymbol{p}_{i} + \boldsymbol{T})|| \tag{3}$$

The least squares solution provides the least average error in the relation (2), and since noise is present (\mathbf{w}_i) then the solution is an approximation.

Example 1. Throughout this note, points $\mathbf{p}_i = (x_i, y_i, z_i)$ and $\mathbf{p}'_i = (x'_i, y'_i, z'_i)$ are considered. A scatter plot of the points is shown in Figure 2.

Figure 2: Scatter plot of points p_i (red) and p'_i (blue).

The red points are given in the World frame and the blue points are given in Robot Base frame.

3 Computation of Calibration

This section provides the theoretical background on solving Problem 1 and presents an algorithm for finding $H_{\mathbf{W}}^{\mathbf{R}}$. The following shows that Problem 1 can be solved by first finding the rotation matrix R and subsequently finding the translation vector $\mathbf{T} \in \mathbb{R}^3$.

A key to finding the calibration is the possibility to decompose the problem into two sequential steps, which is possible due to the following.

Lemma 1. If $\{\hat{R}, \hat{T}\}$ is a minimizer of (3) then $\{p'_i\}$ and $\{p''_i = \hat{R}p_i + \hat{T}\}$ have the same centroid.

Recall that the centroid of the points p_1, p_2, \ldots, p_N is

$$C_p = \frac{1}{N} \sum_{i=1}^{N} p_i$$

If $\{p'_i\}$ and $\{p''_i\}$ have the same centroid, then it is possible to transform the points to have a centroid at the origin and then find the rotation \hat{R} . The transformation of the centroid is found in the following example.

Example 2. To get a centroid of both $\mathbf{p}_i = (x_i, y_i, z_i)$ and $\mathbf{p}'_i = (x'_i, y'_i, z'_i)$ to be zero, we compute the centroid of both sets of points and subtract the centroid from each point. The centroids of the sets of points are

$$oldsymbol{C}_p = rac{1}{N} \sum_{i=1}^N oldsymbol{p}_i \qquad ext{ and } oldsymbol{C}_{p'} = rac{1}{N} \sum_{i=1}^N oldsymbol{p}_i'$$

Two new sets of points with zero centroid are defined as

$$q_i = p_i - C_p$$
 and $q'_i = p'_i - C_{p'}$

A scatter plot of the points is shown in Figure 3 from which it is seen that the centroid of the two sets of points is at the origin.

Figure 3: Scatter plot of points q_i (red) and q'_i (blue).

It is seen from Figure 3 that both sets of points have zero mean value.

When the centroid of the sets of points has been translated to the origin it is possible to find the rotation \hat{R} from the following result.

Proposition 1. Let $\{R,T\}$ be a minimizer of (3). Then R is also a minimizer of

$$\sum_{i} ||\boldsymbol{q}_{i}' - R\boldsymbol{q}_{i}|| \tag{4}$$

where

$$oldsymbol{q}_i = oldsymbol{p}_i - oldsymbol{C}_p \qquad and \ oldsymbol{q}_i' = oldsymbol{p}_i' - oldsymbol{C}_{p'}$$

Finding the minimizer of (4) can be accomplished via a singular value decomposition (SVD), which is often used in least squares optimization. A singular value decomposition of a matrix $A \in \mathbb{R}^{m \times n}$ with $m \leq n$ is

$$A = U\Sigma V^T$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices and $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix with nonnegative elements.

The SVD is used to finding the rotation matrix \hat{R} as explained in the following proposition.

Proposition 2. Let

$$U\Sigma V^T = H = \sum_{i=1}^{N} \boldsymbol{q}_i (\boldsymbol{q}_i')^T$$

be a SVD of H. Then $R = VU^T$ is a minimizer of (4).

The following example uses Proposition 2 to find the rotation matrix \hat{R}

Example 3. To compute the rotation that relates points q_i to points q'_i , we define the matrix

$$H = \sum_{i=1}^{N} \mathbf{q}_i (\mathbf{q}_i')^T = \begin{bmatrix} 0.1057 & 0.6680 & -0.0057 \\ -1.9019 & -0.1082 & 0.0227 \\ -0.0225 & -0.0098 & 0.0010 \end{bmatrix}$$

A singular value decomposition of H (computed in MATLAB with command svd) gives

$$U = \begin{bmatrix} -0.0853 & -0.9963 & 0.0129 \\ 0.9963 & -0.0854 & -0.0111 \\ 0.0122 & 0.0119 & 0.9999 \end{bmatrix}, V = \begin{bmatrix} -0.9962 & 0.0864 & 0.0116 \\ -0.0863 & -0.9962 & 0.0067 \\ 0.0121 & 0.0057 & 0.9999 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 1.9113 & 0 & 0 \\ 0 & 0.6588 & 0 \\ 0 & 0 & 0.0007 \end{bmatrix}$$

From this data, the rotation matrix is

$$R = VU^T = \begin{bmatrix} -0.0009 & 1.0000 & 0.0062 \\ -1.0000 & -0.0009 & 0.0004 \\ 0.0005 & -0.0062 & 1.0000 \end{bmatrix}$$

Figure 4 shows Rq_i and q'_i and it is seen that the two sets of points are aligned by the rotation as expected.

Figure 4: Scatter plot of points Rq_i (red circles) and q'_i (blue crosses).

The final step is to find the translation $T \in \mathbb{R}^3$, which can be accomplished by finding a transformation between the centroids, i.e.

$$\hat{\boldsymbol{T}} = \boldsymbol{C}_p' - \hat{R}\boldsymbol{C}_p$$

Example 4. The final result is illustrated in Figure 5 that shows the two original sets of points are aligned by the identified coordinate transformation.

Figure 5: Scatter plot of points $Rp_i + T$ (red circles) and p'_i (blue crosses).

To summarize, the coordinate transformation can be found via the following algorithm.

Algorithm 1 Robot-Table Calibration

Input: Points $p_i, p'_i \in \mathbb{R}^3$ for i = 1, ..., N.

Output: \hat{R}, \hat{T} Procedure:

Procedure:

1:
$$C_p \leftarrow \frac{1}{N} \sum_{i=1}^{N} p_i$$
2: $C_{p'} \leftarrow \frac{1}{N} \sum_{i=1}^{N} p'_i$
3: $q_i \leftarrow p_i - C_p$
4: $q'_i \leftarrow p'_i - C_{p'}$
5: $H \leftarrow \sum_{i=1}^{N} q_i (q'_i)^T$
6: $[U, \Sigma, V] \leftarrow \operatorname{svd}(H)$
7: $\hat{R} \leftarrow VU^T$
8: $\hat{T} \leftarrow C'_p - \hat{R}C_p$

▷ Compute centroid

2:
$$C_{p'} \leftarrow \frac{1}{N} \sum_{i=1}^{N} p_i$$

4:
$$\mathbf{q}_i' \leftarrow \mathbf{p}_i' - \mathbf{C}_p'$$

5:
$$H \leftarrow \sum_{i=1}^{N} \mathbf{q}_i(\mathbf{q}_i')^T$$

 ${\,\vartriangleright\,} \mathsf{Compute}\; \mathsf{SVD}$

6:
$$[U, \Sigma, V] \leftarrow \operatorname{svd}(H)$$

$$ightharpoonup$$
 Compute rotation matrix $ightharpoonup$ Compute translation vector

7:
$$\hat{R} \leftarrow VU^T$$

References

[1] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-D point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9(5):698-700, Sep. 1987.