

planetmath.org

Math for the people, by the people.

Steiner system

Canonical name SteinerSystem

Date of creation 2013-03-22 13:05:37 Last modified on 2013-03-22 13:05:37 Owner mathcam (2727) Last modified by mathcam (2727)

Numerical id 9

Author mathcam (2727)

Entry type Definition
Classification msc 51E10
Classification msc 05C65
Related topic Hypergraph

Related topic IncidenceStructures
Defines Steiner triple system

Definition. An $S(\tau, \kappa, \nu)$ **Steiner system** is a τ - $(\nu, \kappa, 1)$ design (i.e. $\lambda = 1$). The values τ, κ, ν are the parameters of the Steiner system.

Since $\lambda = 1$, a Steiner system is a simple design, and therefore we may interpret a block to be a set of points $(B = \mathcal{P}_B)$, which we will do from now on.

Given parameters τ, κ, ν , there may be several non-isomorphic systems, or no systems at all.

Let S be an $S(\tau, \kappa, \nu)$ system with point set P and block set B, and choose a point $P \in P$ (often, the system is so symmetric that it makes no difference which point you choose). The choice uniquely induces an $S(\tau-1, \kappa-1, \nu-1)$ system S_1 with point set $P_1 = P \setminus \{P\}$ and block set B_1 consisting of $B \setminus \{P\}$ for only those $B \in B$ that contained P. This works because for any $T_1 \subseteq P_1$ with $|T_1| = \tau - 1$ there was a unique $B \in B$ that contained $T = T_1 \cup \{P\}$.

This recurses down all the way to $\tau=1$ (a partition of $\nu-\tau+1$ into blocks of $\kappa-\tau+1$) and finally to $\tau=0$ (one arbitrary block of $\kappa-\tau$). If any of the divisibility conditions (see the entry http://planetmath.org/Designdesign for more detail) on the way there do not hold, there cannot exist a Steiner system with the original parameters either.

For instance, **Steiner triple systems** $S(2,3,\nu)$ (the first Steiner systems studied, by Kirkman, before Steiner) exist for $\nu = 0$ and all $\nu \equiv 1$ or 3 (mod 6), and no other ν .

The reverse construction, turning an $S(\tau, \kappa, \nu)$ into an $S(\tau+1, \kappa+1, \nu+1)$, need not be unique and may be impossible. Famously an S(4, 5, 11) and a S(5, 6, 12) have the Mathieu groups M_{11} and M_{12} as their automorphism groups, while M_{22} , M_{23} and M_{24} are those of an S(3, 6, 22), S(4, 7, 23) and S(5, 8, 24), with connexions to the binary Golay code and the Leech lattice.

Remark. A Steiner system S(t, k, n) can be equivalently characterized as a k-uniform hypergraph on n vertices such that every set of t vertices is contained in exactly one edge. Notice that any S(2, k, n) is just a k-uniform linear space.