Mecanique

David Wiedemann

Table des matières

1	Physique	5			
	1.1 Exemple de loi physique : l'addition des vitesse	5			
	1.2 Lois de conservation	6			
	1.3 Invariance par changement de referentiel	6			
2	La mecanique classique	7			
3	Objectifs du cours de mecanique generale	7			
4	Le modele du "point materiel"	7			
5	Mouvement Rectiligne Uniforme	8			
6	Mouvement rectiligne uniformement accelere	8			
7	Lois de newton				
8	Force de pesanteur et chute des corps	8			
9	Quelques notions mathematiques	9			
	9.1 Fonctions	9			
	9.2 Equations Differentielles	9			
10	Vecteurs	10			
11	Trigonometrie	10			
12	Oscillateurs Harmoniques	10			
	12.1 Modelisation de la force d'un ressort $\ \ldots \ \ldots \ \ldots$	11			
	12.2 Oscillateurs harmoniques a une dimension	11			
	12.3 Oscillateur harmonique amorti	14			
	12.4 Oscillateur force	15			
	12.5 Phenomes de resonnance	15			

13	Dynamique du point materiel	15
	13.1 Produit scaleaire	16
	13.2 Projections et composantes d'un vecteur	17
	13.3 Repere direct	18
	13.4 Produit vectoriel	18
	13.5 Mouvement avec vitesse scalaire constante	21
	13.6 Systeme de coordonnees	22
14	Description des rotations spatiales	22
	14.1 Interprétation du vecteur ω	24
	14.1.1 Cas particulier	24
	14.2 Vitesse et accélération en coordonnées cylindriques	24
	14.3 Pendule Mathématique	24
	14.4 Coordonnées sphériques	25
	14.5 Bille en équilibre dans un anneau en rotation	26
15	Travail, énergie, forces conservatives	26
	15.1 Forces de Frottement	26
	15.2 Forces de frottement sec	27
	15.3 Coefficients de frottement	27
	15.4 Impulsion et quantité de mouvement	27
	15.5 Travail et énérgie cinétique $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	28
	15.6 Travail et Puissance d'une force	28
	15.7 Théorème de l'énergie cinétique	29
	15.8 Voiture en accélération	29
	15.9 Conservation de l'énergie mécanique $\ \ldots \ \ldots \ \ldots \ \ldots$	29
	15.10 Travail de la force de pesanteur	30
	15.11 Travail de la force de rappel d'un ressort	30
	15.12Travail d'une force centrale en $\frac{1}{r^2}$	30
	15.13Forces conservatives	30
	15.14Energie potentielle	31
	15.15Théorème de l'énergie	31
	15.16Lugeur	31
	15.17 L'énergie mécanique : intégrale première	32
16	Gravitation, Moment Cinétique	32
	16.1 Lois de Kepler	32
	16.2 Le développement de la dynamique	33
	16.3 Mouvement central et loi des aires	33
	16.4 Mouvement central	33
	16.5 Déduction de la force de Gravitation en $\frac{1}{r^2}$	34
	16.6 Loi de gravitation universalle	3/1

	16.7	Champ de gravitation
		Energie potentielle gravifique
	16.9	Mouvement dans un potentiel central
		OIntégrales premières d'un mouvement central
		12eme loi et theoreme du moment cinétique
	16.13	2Systeme de points matériels
		38Système à l'équilibre
		4Centre de masse
		5Probleme a deux corps
17	Cho	cs ou collisions entre deux corps 39
	17.1	Chocs entre deux points materiels
	17.2	Choc elastique
18	Rot	ations Du Solide 40
	18.1	Corps Solide indeformable
	18.2	Vitesse et acceleration d'un point solide
	18.3	Mouvement plan-sur-plan
	18.4	Moment cinetique par rapport a un point quel conque 41
	18.5	Theoreme du Moment Cinetique Generalise 41
	18.6	Moment Cinetique d'un solide quelconque 41
	18.7	Moment d'inertie par rapport a un axe de rotation fixe 42
	18.8	Tenseur d'inertie
	18.9	Dynamique du solide avec axe fixe
19	Cha	ngements de Referentiel 43
Li	ist	of Theorems
	1	Definition (Point materiel)
	2	Definition (Referentiel)
	3	Definition (Repere)
	4	Definition (Produit scalaire)
	5	Definition (Produit vectoriel)
	6	Definition (Produit Mixte)
	7	Definition (Double produit vectoriel)
	8	Definition (Systeme de coordonnees)
	4	Theorème
	5	Theorème (Formule de Poisson)
	6	Theorème
	9	Definition
	7	Theorème (Gravitation Universelle)

10	Definition (Solide indeformable)	40
11	Definition	40
8	Theorème (Theoreme du Transfert)	41
12	Definition	42
9	Theorème (Theoreme de Steiner)	43

Lecture 1: Cours de Physique Generale

Wed 16 Sep

1 Physique

- Science dont le but est d'étudier et de comprendre les composants de la matiere et leurs interactions mutuelles.
- Sur la base des proprietes observees de la matiere et des interactions, le physicien tente d'expliquer les phenomenes naturels observables.
- Les "explications" sont données sous forme de lois aussi fondamentales que possible : elles resument notre comprehension des phenomenes physiques.
- Les maths sont le language qu'on utilise pour decrire ces phenomenes.

Exemple

Une particule se deplace sur un axe droit.

Au temps t_1 position $x_1 = x(t_1)$. Au temps t_2 position $x_2 = x(t_2)$. $\Delta x = x_2 - x_1$ et $\Delta t = t_2 - t_1$

Donc la vitesse moyenne

$$v_{moyenne} = \frac{\Delta x}{\Delta t}$$

Mais on peut faire diminuer Δt , pour connaître la vitesse moyenne sur un temps infinitesimal :

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx(t)}{dt} = \dot{x}(t)$$

Donc la vitesse instantanee est la derivee de la fonction x(t) par rapport a t.

On peut faire la meme chose avec l'acceleration

Au temps t_1 , vitesse $v_1 = v(t_1)$.

Au temps t_2 , vitesse $v_2 = v(t_2)$.

Donc l'acceleration moyenne est

$$a_{moyenne} = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$

Et donc par le meme raisonnement, l'acceleration instantanee est

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv(t)}{dt} := \dot{v}(t) = \ddot{x}(t)$$

1.1 Exemple de loi physique : l'addition des vitesse

Si je marche a la vitesse v_{marche} sur un tapis , alors la vitesse par rapport au sol est

$$V = v_{marche} + v_{tapis}$$

C'est la loi d'addition des vitesses de galilee. Ici, c'est une addition <u>vectorielle</u> qu'il faut faire.

Cette loi est

- independante des vitesses
- independante des objets en presence
- independante du temps (hier, aujourd'hui, demain)
- etc...

1.2 Lois de conservation

Ce sont les lois les plus fondamentales.

- Conservation de l'energie
- Conservation de la quantite de mouvement
- Conservation du moment cinetique

Ces lois sont valables dans toutes les situations (classiques, relativistes ou quantiques) .

Ne peuvent pas etre formulees mathematiquement de facon unique.

Resultent des principes "d'invariance" (ou de symmetrie) tres generaux.

1.3 Invariance par changement de referentiel

- Changement de referentiel (ou d'observateur) : Referentiel O'x'y'z' en mouvement par rapport au referentiel Oxyz
- Les lois de la physque sont-elles invariantes par rapport a n'importe quel changement de referentiel?
 - Autrement dit, si les observateurs O et O' font la meme experience, obtiendront-ils le meme resultat?
- Principe de Galilee :

Les lois de la physique sont les memes (i.e. invariantes) pour deux observateurs en mouvement rectiligne uniforme l'un par rapport a l'autre.

2 La mecanique classique

1. Mecanique:

science du mouvement (ou du repos) de systemes materiels caracterises par des variables d'espace et de temps.

$2. \ \ Cinematique:$

Description du mouvement.

3. Dynamique:

Etude de la relation entre le mouvement et les causes de sa variation(forces, lois de Newton, th. du moment cinetique).

4. Statique:

Etude et description de l'equilibre.

3 Objectifs du cours de mecanique generale

- \bullet Apprendre a mettre sous forme mathematique un probleme, une situation physique :
 - Definir le probleme, le modeliser
 - Choisir une description mathematique
 - Poser les equations regissant la physique du probleme
 - Resoudre et/ou discuter la solution
- Developper un "savoir-faire" pratique, mais egalement un esprit scientifique :
 - Reperer le sens physique derrière les equations
 - Savoir formaliser mathematiquement la donnée d'un probleme physique.

4 Le modele du "point materiel"

Definition 1 (Point materiel)

un systeme est assimile a un point geometrique auquel on attribue toute la masse de ce systeme, et dont l'état est decrit en tout temps par une (seule) position et une (seule) vitesse.

• Notion introduite par Newton.

On approxime un systeme a quelque chose de plus simple, le point peut etre "gros" (exemple : la terre, le soleil).

Pas applicable dans toutes les situations; le modele a des limites..

5 Mouvement Rectiligne Uniforme

Mouvement d'un point materiel se deplacant en ligne droite a vitesse constante. On definit un axe x associe a la trajectoire rectiligne, avec une origine O.

$$v(t) := \frac{dx(t)}{dt} = \dot{x}(t) = v_0 = \text{constante}$$

La solution s'obtient en integrant le dessus : $x(t) = v_0 t + x_0$, ou $x_0 = \text{constante}$. On appelle le resultat de cette integration l'equation horaire.

6 Mouvement rectiligne uniformement accelere

Ici

$$a(t) := \frac{d^2x(t)}{dt^2} = \ddot{x}(t) = a_0 = constante$$

C'est une equadiff d'ordre 2 faisant intervenir la derivee seconde de x(t). Solution

$$x(t) = a_0 \frac{t^2}{2} + v_0 t + x_0$$

$$v(t) = \frac{dx}{dt} = a_0 t + v_0$$

ou x_0 et v_0 sont des constantes.

7 Lois de newton

— mouvement rectiligne uniforme $\Rightarrow \overrightarrow{F} = \overrightarrow{0}$

$$--\overrightarrow{F}=m\overrightarrow{a}$$

— Action reaction $\overrightarrow{F} = -\overrightarrow{F}$

8 Force de pesanteur et chute des corps

 \bullet L'attraction terrestre donne lieu a une force verticale (le poids) proportionelle a la masse m :

$$F = mq$$

 $g \approx 9.8 \frac{m}{s^2}$

• Application de la 2eme loi de Newton :

Si le poids est la seule force appliquee a un point materiel

$$F = ma \Rightarrow a = g = constante$$

Dans le vide, les corps ont un mouvement uniformement accelere

Lecture 2: Notions Mathematiques

Wed 16 Sep

9 Quelques notions mathematiques

9.1 Fonctions

$$F(x) \xrightarrow{\text{derivee}} F'(x) = \frac{dF}{dx}(x) = \lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x}$$

Quand on parle d'un point dans l'espace, on aura tjrs 3 coordonnees

$$x(t) \longrightarrow x'(t) := \dot{x}(t) := \dot{x}$$

 $x''(t) := \ddot{x}(t) := \ddot{x}$

$$\frac{d}{dt}(x^2(t)) = 2x(t)\dot{x}(t) = 2x\dot{x}$$

Si je fais

$$\frac{d}{dx}(x^2) = 2x$$

9.2 Equations Differentielles

$$F''(x) = C$$

Pour resoudre

$$F'(x) = Cx + D$$

$$F(x) = \frac{1}{2}Cx^{2} + Dx + E$$

$$mg = F = ma = m\ddot{x}$$

$$\ddot{x} = -c^2 x$$

On devine la solution:

$$x(t) = A\sin(Ct) + B\cos(Ct)$$

$$\begin{split} \dot{x} &= AC\cos(Ct) - BC\sin(Ct) \\ \ddot{x}(t) &= -AC^2\sin(Ct) - BC^2\cos(Ct) \\ &= -C^2[A\sin(Ct) + B\cos(Ct)] = -C^2x(t) \end{split}$$

10 Vecteurs

$$\overrightarrow{v} = \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

$$\overrightarrow{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_1 \cdot \overrightarrow{e_1} + x_2 \cdot \overrightarrow{e_2} + x_3 \cdot \overrightarrow{e_3}$$

Le point (x_1, x_2, x_3) on l'atteint en faisant une combinaison lineaire de (e_1, e_2, e_3) .

11 Trigonometrie

Figure 1 – cercletrigo

Lecture 3: Oscillateurs Harmoniques

Wed 23 Sep

12 Oscillateurs Harmoniques

Considerer des systemes ayant des mouvements oscillatoires. Exemples :

- masse pendue a un ressort.
- pendule simple, pendule de torsion.
- vibrations.
- Resonateurs quartz (montres)
- oscillations du champ
- etc...

Remarque

Un mouvement oscillatoire permet de mesurer un intervalle de temps.

12.1 Modelisation de la force d'un ressort

La force exercee par un ressort est proportionelle a son deplaccement par rapport a sa position de repos.

Force de rappel :

$$\overrightarrow{F} = -k\overrightarrow{\Delta x}$$

k = constante elastique du ressort [N/m]

Figure 2 – ressort

Remarque

Ce modele n'est que valable pour des petits allongements

12.2 Oscillateurs harmoniques a une dimension

Loi de Hooke $F_x = -kx$ 2
eme loi de Newton F = ma

Figure 3 – Ressort plan horizontal

On arrive a

$$m\ddot{x} = -kx$$

But : connaissant k, m et les conditions initiales, determiner x(t) pour tout temps t.

Exemple

Posons $m=1kg, k=1\frac{N}{m}=1\frac{kg}{s^2}$ Conditions initiales : $x(0)=1m, v(0)=0\frac{m}{s}$

$$\Rightarrow a(0) = \frac{F(0)}{m} = k \frac{x(0)}{m} = -1 \frac{m}{s^2}$$

Accroissement de v entre t et $t + \Delta t$: $\Delta v = a(t)\Delta t$ car a(t) = dv(t)/dt

$$\Rightarrow v(t + \Delta t) = v(t) + a(t)\Delta t$$

Accroissement de x entre t et $t + \Delta t$:

$$\Rightarrow x(t + \Delta t) = x(t) + v(t)\Delta t$$

 $Verification \ analytique:$

On pose
$$x(t) = \cos(\omega_0 t) \Rightarrow x(0) = 1$$

$$v(t) = \frac{dx}{dt} = -\omega_0 \sin(\omega_0 t) \Rightarrow v(0) = 0.$$

$$a(t) = \frac{dv}{dt} - \omega_0^2 \cos(\omega_0 t) = -\omega_0^2 x(t)$$

$$Comme \ a(t) = -\frac{k}{m} x(t), \ on \ doit \ avoir :$$

$$a(t) = \frac{dv}{dt} - \omega_0^2 \cos(\omega_0 t) = -\omega_0^2 x(t)$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$

C'est la pulsation propre de l'oscillateur libre.

 $Solution\ generale\ et\ dependance\ par\ rapport\ aux\ conditions\ initiales$

Periode:

$$T = \frac{2\pi}{\omega_0}$$

Frequence

$$\nu = \frac{1}{T} = \frac{\omega_0}{2\pi}$$

Solution generale de $\ddot{x} = \omega_0^2 x = 0$:

$$x(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$$

ou

$$x(t) = C\sin(\omega_0 t + D)$$

Deux constantes d'integration a determiner en utilisant les conditions initiales

$$A=x_0$$

et

$$B = \frac{v_0}{\omega_0}$$

ou bien $x_0^2 = x_0^2 + (\frac{v_0}{\omega_0})^2$ et $\tan(D) = \omega_0 \frac{x_0}{v_0}$

Resolution de l'equation differentielle :

$$x(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$$

$$x(0) = A \cdot 1 + B \cdot 0 = A = x_0$$

$$\dot{x}(0) = -A\omega_0 \sin(0) + B\omega_0 \cos(0)$$

$$= B\omega_0 = v_0 \Rightarrow B = \frac{v_0}{\omega_0}$$

$$x(t) = C \sin(\omega_0 t + D), x_0, v_0$$

$$x(0) = C \sin(D) = x_0$$

$$\dot{x}(0) = C\omega_0 \cos(D) = v_0$$

$$\frac{1}{\omega_0} \tan(D) = \frac{x_0}{v_0}$$

$$\Rightarrow \tan(D) = \omega_0 \frac{x_0}{v_0}$$

$$C^2(\sin^2(D) + \cos^2(D)) = x_0^2 + \frac{v_0^2}{\omega_0^2}$$

$$\Rightarrow C = \sqrt{x_0^2 + \frac{v_0^2}{\omega_0^2}}$$

12.3 Oscillateur harmonique amorti

FIGURE 4 – oscillateur amorti

Par b on definira la force de frottement.

Deuxieme loi de Newton : $F + F_{frot} = ma$, alors

$$m\ddot{x} = -kx - b\dot{x}$$

Resolution

$$m\ddot{x} = -kx - b\dot{x} \Rightarrow \ddot{x} + 2\gamma\dot{x} + \omega_0^2 = 0 \text{ avec } \gamma = \frac{b}{2m} \text{ et } \omega_0 = \sqrt{\frac{k}{m}}$$

Ammortissement sous-critique
$$\begin{array}{c} \gamma < \omega_0 & x(t) = e^{-\gamma t} [A\cos(\omega_1 t) + B\sin(\omega_1 t)] \\ \text{avec } \omega_1 = \sqrt{\omega_0^2 - \gamma_2} \omega_0 \\ \\ \text{Ammortissement critique} & \gamma = \omega_0 & x(t) = e^{-\gamma t} [A + Bt] \\ \\ \text{Ammortissement sur-critique} & \gamma > \omega_0 & x(t) = e^{\gamma t} [A\exp(\omega_2 t) + B\exp(-\omega_2 t)] \\ \\ \text{avec } \omega_2 = \sqrt{\gamma^2 - \omega_0^2} \\ \end{array}$$

Figure 5 – types d'ammortissement

12.4 Oscillateur force

En pratique tout oscillateur s'amortit, mais on peut entretenir les oscillations a l'aide d'une force exterieure.

Exemples

- Balancoire pousse par un enfant.
- Voiture (avec suspension) passant sur des bosses
- Atome (electron lie) recevant un rayonnement electromagnetique

On ajoute une force periodique \overrightarrow{F}_{ext} Par exemple $F_{ext} = f \sin(\omega t)$ avec f = 1N

$$m\ddot{x} = -kx - b\dot{x} + F_{ext}$$

$$\ddot{x} + 2\gamma\dot{x} + \omega_0^2 = a_0\sin(\omega t) \text{ avec } \gamma = \frac{b}{2m}, \omega_0 = \sqrt{\frac{k}{m}}$$

Solution:

$$x(t) = x_{transitoire}(t) + \rho \sin(\omega t - \Phi)$$

avec

$$\rho = \frac{a_0}{\sqrt{(\omega_0^2 - \omega_2)^2 + 4\gamma^2 \omega^2}}$$

et

$$\tan(\Phi) = 2\gamma \frac{\omega}{\omega_0^2 - \omega^2}$$

12.5 Phenomes de resonnance

Resonnances desirables

- Circuitselectriques dans un tuner
- Tuyaux d'orgue
- Balancoire de jardin
- Amortisseurs d'une voiture
- Suspension du tambour d'une essoreuse a linge
- Structure de genie civil

Lecture 4: Dynamique du point materiel

Wed 30 Sep

13 Dynamique du point materiel

Notions abordees:

- reperes, rappels d'analyse vectorielle
- referentiel, position, vitesse, acceleration normale et tangentielle
- rotations, repere en rotation, mouvement circulaire uniforme
- vitesse et acceleration en coordonnees cylindriques et spheriques
- contraintes et forces de liaison

Definition 2 (Referentiel)

Un ensemble de N points $(N \ge 4)$, non coplanaires, immobiles les uns par rapport aux autres.

- La description du mouvement d'un systeme se fait toujours par rapport a un certain referentiel.
- L'observateur et les appareils de mesure sont immobiles par rapport au referentiel (ils "font partie" du referentiel)
- Le choice du referentie du referentiel est arbitraire

Definition 3 (Repere)

Origine O et trois axes orthogonaux definis par des vecteurs de longueur unite

Figure 6 – reperes

Vecteurs unitaires

$$|\hat{x}_1| = |\hat{x}_2| = |\hat{x}_3| = 1$$

Vecteurs orthonormaux

$$\hat{x}_1 \cdot \hat{x}_2 = \hat{x}_2 \cdot \hat{x}_3 = \hat{x}_3 \cdot \hat{x}_1 = 0$$

Base orthonormee

$$\hat{x}_i \cdot \hat{x}_j = \delta_{ij} = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ si } i \neq j \end{cases}$$

13.1 Produit scaleaire

Definition 4 (Produit scalaire)

$$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \left| \overrightarrow{b} \right| \cos \theta$$

FIGURE 7 – produit scalaire

 $En\ composantes$

$$\overrightarrow{a} \cdot \overrightarrow{b} = (a_1 \hat{x}_1 + a_2 \hat{x}_2 + a_3 \hat{x}_3) \cdot \ldots = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Proprietes

- $\ \ Commutativite$
- Distributivite
- __

13.2 Projections et composantes d'un vecteur

Projection de \overrightarrow{OP} sur l'axe u :

$$\overrightarrow{OP} \cdot \hat{u} = \left| \overrightarrow{OP} \right| \left| \overrightarrow{u} \right| \cos \theta = OP \cos \theta = OP'$$

$$\overrightarrow{OP} = \overrightarrow{OP'}\hat{u} + \overrightarrow{OP''}\overrightarrow{v} = \overrightarrow{OP} \cdot \hat{u}\hat{u} + \overrightarrow{OP}\hat{v}\hat{v}$$

Coordonnees cartesiennes du point P ou composantes du vecteur \overrightarrow{OP}

$$\begin{cases} x = \overrightarrow{OP} \cdot \hat{x} \\ y = \overrightarrow{OP} \cdot \hat{y} \\ z = \overrightarrow{OP} \cdot \hat{z} \end{cases}$$

Donc

$$\overrightarrow{OP} = x\hat{x} + y\hat{y} + z\hat{z}$$

13.3 Repere direct

Par convention, on n'utilise que des reperes dont la chiralite est definie par la "regle du tire bouchon" ou la "la regle de la main droite" .

FIGURE 8 – repere droit

13.4 Produit vectoriel

 $FIGURE\ 9-produit\ vectoriel$

Definition 5 (Produit vectoriel)

En composantes

$$\overrightarrow{a} \wedge \overrightarrow{b} = \begin{pmatrix} a_2b_3 = a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

Proprieteres

Definition 6 (Produit Mixte)

$$(\overrightarrow{a} \wedge \overrightarrow{b}) \cdot \overrightarrow{c} = \det(\overrightarrow{c}, \overrightarrow{a}, \overrightarrow{b})$$

Proprietes:

$$(\overrightarrow{a}\wedge\overrightarrow{b})\cdot\overrightarrow{c}=(\overrightarrow{c}\wedge\overrightarrow{a})\cdot\overrightarrow{b}=(\overrightarrow{b}\wedge\overrightarrow{c})\cdot\overrightarrow{a}$$

$$(\overrightarrow{a}\wedge\overrightarrow{b})\cdot\overrightarrow{c}=0\iff\overrightarrow{a},\overrightarrow{b}\text{ et }\overrightarrow{c}\text{ coplanaires (dans le meme plan)}$$

Definition 7 (Double produit vectoriel)

$$\overrightarrow{a}\wedge(\overrightarrow{b}\wedge\overrightarrow{c})=(\overrightarrow{a}\cdot\overrightarrow{c})\overrightarrow{b}=(\overrightarrow{a}\cdot\overrightarrow{b})\overrightarrow{c}$$

FIGURE 10 - trajectoire

Figure 11 – curviligne

Figure 12 – curviligne 2

Donc

$$\hat{\tau} \cdot \frac{d\hat{\tau}}{dt} = \frac{1}{2} \frac{d}{dt} (\hat{\tau}^2) = 0 \text{ car } \tau^2 = 1 \forall t$$

On peut approximer le mouvement localement par un cercle

Figure 13 – mouvement approxime par cercle

$$\overrightarrow{d}_n(t) = v(t)\frac{d\tau}{dt} = v(t)\frac{d\tau}{ds} \cdot \frac{ds}{dt} = v(t)^2 \cdot \frac{d\tau}{ds}$$

On peut calculer la norme de a_n

$$|\overrightarrow{a}_n(t)| = a_n(t) = v^2 \left| \frac{d\tau}{ds} \right|$$

$$= v^2 \frac{d\theta}{R(t)d\theta}$$

$$= \frac{v^2(t)}{R(t)}$$

13.5 Mouvement avec vitesse scalaire constante

Considerons un point materiel avec une vitesse scalaire $v=\frac{ds}{dt}$ constante non nulle

un vecteur vitesse qui change de direction au cours du temps

Acceleration

$$\overrightarrow{d} \cdot \overrightarrow{v} = \frac{d\overrightarrow{v}}{dt} \cdot \overrightarrow{v} = \frac{1}{2} \frac{d}{dt} (\overrightarrow{v}^2) = 0$$

pas de composante tangentielle : $a_t = \frac{dv}{dt} = 0$ Donc a est toujours perpendiculaire a v.

Force $\overrightarrow{F} = m\overrightarrow{a}$

Donc

$$F = ma = m\frac{v^2}{R}$$

force centripete

13.6 Systeme de coordonnees

Definition 8 (Systeme de coordonnees)

Parametrisation, a un certain temps t, de la position des points du referentiel au mouen de trois nombres reels.

Pour un referentiel donne il e xiste une infinite de systemes de coordonnes Exemples

- Coordonnes cartesiennes (x, y, z)
- Coordonnees cylindriques (ρ, ϕ, z)
- Coordonnes spheriques (r, Θ, ϕ)

Chaque vecteur du repere est parallele a la variation de la position due a une modification de la variable correspondante

Lecture 5: mercredi

Wed 07 Oct

14 Description des rotations spatiales

Une rotation spatiale est caractérisée par un axe de rotation (dans l'espace), un sens de rotation et un angle de rotation.

Deux points de vue

- Rotation dûn systeme physique dans un repère fixe
- Système physique décrit dans un repère en rotation

Theorème 4

Soit deux repères orthonormés droits de même origine, il existe toujours une rotation qui amène le premier sur le deuxième.

Figure 14 – repere

$$\hat{e_1} = \frac{d\hat{e_1}(t)}{dt} = E_{11}\hat{e}_1 + E_{21}\hat{e}_2 + E_{31}\hat{e}_3$$

$$\hat{e_2} = \frac{d\hat{e_2}(t)}{dt} = E_{12}\hat{e}_1 + E_{22}\hat{e}_2 + E_{32}\hat{e}_3$$

$$\hat{e_3} = \frac{d\hat{e_2}(t)}{dt} = E_{13}\hat{e}_1 + E_{23}\hat{e}_2 + E_{33}\hat{e}_3$$

est équivalent à dire

$$\dot{\hat{e}}_i = \frac{d\hat{e}_i}{dt} = \sum_{i=1}^3 E_{JI}\hat{e}_j$$

C'est une écriture presque matricielle. On peut écrire

$$\dot{\hat{e}}_i = E\hat{e}_i \text{ avec}$$

$$\begin{pmatrix} E_{11} & E_{12} & E_{13} \\ E_{21} & E_{22} & E_{23} \\ E_{31} & E_{32} & E_{33} \end{pmatrix}$$

On a un repère orthonormé $\Rightarrow \hat{e}_i \cdot \hat{e}_j = \delta_{ij}$

$$\frac{d}{dt}\delta_{ij} = 0 = \frac{d}{dt}(\hat{e}_i \cdot \hat{e}_j) = \dot{\hat{e}}_i \cdot \hat{e}_j + \hat{e}_i \cdot \dot{\hat{e}}_j = (E\hat{e}_i) \cdot \hat{e}_j + \hat{e}_i(E\hat{e}_j)$$

$$= (E_{1i}\hat{e}_i + E_{2i}\hat{e}_2 + E_{3i}\hat{e}_3) \cdot \hat{e}_j + \hat{e}_i(E_{1j}\hat{e}_i + E_{2j}\hat{e}_2 + E_{3j}\hat{e}_3) = E_{ji} + E_{ij}$$

On a donc 6 contraintes (ij=11,12,13,22,23,33)

Donc

$$\begin{pmatrix} 0 & E_{12} & E_{13} \\ -E_{12} & 0 & E_{23} \\ -E_{13} & -E_{23} & 0 \end{pmatrix} = \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix}$$

Pour un vecteur quelconque $\overrightarrow{r}(t)$.

$$\frac{d\overrightarrow{r}}{dt} = E\overrightarrow{r} \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix} \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix} = \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} \wedge \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix}$$

On a donc

Theorème 5 (Formule de Poisson)

$$\frac{d\hat{e}_i}{dt} = \overrightarrow{\omega} \wedge \hat{e}_i$$

14.1 Interprétation du vecteur ω

Si \overrightarrow{r} collinéaire à $\overrightarrow{\omega}$ alors $\frac{d\overrightarrow{r}}{dt}=0$, donc \overrightarrow{r} ne bouge pas. Donc $\overrightarrow{\omega}$ définit l'axe de rotation au temps t. Sens de $\overrightarrow{\omega}=$ sens de rotation

$$|d\overrightarrow{r}| = |\overrightarrow{\omega} \wedge \overrightarrow{r}|dt = |\overrightarrow{\omega}|dt|\overrightarrow{r}|\sin\theta$$

Mais $|d\overrightarrow{r}| = |\overrightarrow{r}| \sin \theta$

La norme de $\overrightarrow{\omega}$ est la vitesse angulaire de rotation.

14.1.1 Cas particulier

 $\overrightarrow{\omega} = \text{constante}$

Alors

$$\overrightarrow{v} = \frac{d\overrightarrow{r}}{dt} = \overrightarrow{\omega} \wedge \overrightarrow{r}$$

et

$$\overrightarrow{d} = \frac{d\overrightarrow{v}}{dt} = \frac{d}{dt}(\overrightarrow{\omega} \wedge \overrightarrow{r}) = \overrightarrow{\omega} \wedge \frac{d\overrightarrow{r}}{dt} = \overrightarrow{\omega} \wedge (\overrightarrow{\omega} \wedge \overrightarrow{r})$$

14.2 Vitesse et accélération en coordonnées cylindriques

Vitesse angulaire de rotation du repère

$$\overrightarrow{\omega} = \frac{d\phi}{dt}\hat{z} = \dot{\phi}\hat{z}$$

$$\overrightarrow{r} = \overrightarrow{OP} = \rho \hat{e}_{\rho} + z \hat{e}_{z}$$

$$\overrightarrow{v} = \dot{\overrightarrow{r}} = \dot{\rho} \hat{e}_{\rho} + \rho \dot{\hat{e}}_{\rho} + \dot{z} \hat{e}_{z} + z \dot{\hat{e}}_{z}$$

Par Poisson

$$\dot{\hat{e}}_{\rho} = \overrightarrow{\omega} \wedge \hat{e}_{rho} = \dot{\phi}\hat{e}_{z} \wedge \hat{e}_{\rho} = \dot{\phi}\hat{e}_{\phi}
\dot{\hat{e}}_{\phi} = \overrightarrow{\omega} \wedge \hat{e}_{\phi} = \dot{\phi}\hat{e}_{z} \wedge \hat{e}_{\phi} = -\dot{\phi}\hat{e}_{\rho}$$

Donc

$$\overrightarrow{v} = \dot{\overrightarrow{r}} = \dot{\rho}\hat{e}_{\rho} + \rho\dot{\hat{e}}_{\rho} + \dot{z}\hat{e}_{z} + z\dot{\hat{e}}_{z} = \dot{\rho}\hat{e}_{\rho} + \rho\dot{\phi}\hat{e}_{\phi} + \dot{z}\hat{e}_{z}$$

Donc

$$\overrightarrow{a} = \ddot{\overrightarrow{r}} = (\ddot{\rho} - \rho \dot{\phi}^2)\hat{e}_{\rho} + (\rho \ddot{\phi} + 2\dot{\rho} \dot{\phi} \hat{e}_{\phi} + \ddot{z} \hat{e}_z)$$

14.3 Pendule Mathématique

Contraintes

$$\begin{cases} \rho = L = \text{ connstante } \Rightarrow \dot{\rho} = 0, \ddot{\rho} = 0 \\ z = 0, \dot{z} = 0, \ddot{z} = 0 \end{cases}$$

Donc l'accélération est

$$\overrightarrow{a} = -L\dot{\phi}^2 \hat{e}_{\rho} + L\ddot{\phi}\hat{e}_{\phi}$$

On a aussi

$$m\overrightarrow{a} = \overrightarrow{F} + \overrightarrow{T}$$

Donc

$$\begin{cases} -mL\dot{\phi}^2 = F\cos\phi - T \sin \hat{e}_{\rho} \\ mL\ddot{\phi} = -F\sin\phi \sin \hat{e}_{\phi} \end{cases}$$

Donc

$$\ddot{\phi} = -\frac{F}{mL}\sin\phi = -\frac{g}{L}\sin\phi$$

Si les oscillations sont faibles, on a

$$\sin \phi \simeq \phi \Rightarrow \ddot{\phi} \simeq -\frac{g}{L}\phi$$

Theorème 6

La force de liaison = force exercée sur le point matériel pour qu il obéisse a une contrainte géométrique

- Toujours perp. à la courbe ou à la surfacce
- jamais de composante tangente à la courbe ou la surface (cad dans une direction ou le pout matériel peut bouger)
- La force de liaision devient nulle \iff la contrainte disparait.

Lecture 6: mercredi

Wed 14 Oct

14.4 Coordonnées sphériques

On a

$$\overrightarrow{\omega} = \dot{\phi}\hat{z} + \dot{\theta}\hat{e}_{\phi}$$

Derivees des vecteurs de base

$$\dot{e}_r = \overrightarrow{\omega} \wedge e_r = \dot{\theta}e_{\theta} + \dot{\phi}\sin\theta e_{\phi}$$
$$\dot{e}_{\theta} = \overrightarrow{\omega} \wedge e_{\theta} = -\dot{\theta}e_r + \dot{\phi}\cos\theta e_{\phi}$$
$$\dot{e}_{\phi} = \overrightarrow{\omega} \wedge e_{\phi} = -\dot{\phi}e_r - \dot{\phi}\cos\theta e_{\phi}$$

Position vitese et acceleration dans ce repère

$$\overrightarrow{r} = \overrightarrow{OP} = re_r$$

14.5Bille en équilibre dans un anneau en rotation

Referentiel = le laboratoire

Repere lié au référentiel : Oxyz

Vitesse angulaire de l'anneauè $\overrightarrow{\omega} = \omega \hat{z}$

Coordonnées sphériques : r, θ, ϕ

Contrainte : la bille reste sur l'anneau

$$\begin{cases} r = R, \dot{r} = 0, \ddot{r} = 0 \\ \dot{\phi} = \omega, \ddot{\phi} = 0 \end{cases}$$

Si bille en équilibre : $\dot{\theta} = 0, \ddot{\theta} = 0$

Forces s'exercant sur la bille

$$\begin{cases} \text{ poids de la bille} : m \overrightarrow{g} = -mg\dot{z} \\ \text{ force de liaison } \overrightarrow{N}. \overrightarrow{N}e_{\theta} = 0 \end{cases}$$

On obtient que

$$m \overrightarrow{g} = -mg \cos \theta e_r + mg \sin \theta e_\theta$$

$$\overrightarrow{N} = N_r e_r + N_\phi e_\phi$$

2
eme loi de newton : $\overrightarrow{N} + m \overrightarrow{g} = m \overrightarrow{a}$

$$\begin{cases} \operatorname{sur} e_r : N_r - mg \cos \theta = -mR\omega^2 \sin^2 \theta \\ \operatorname{sur} e_\theta : mg \sin \theta = -mR\omega^2 \sin \theta \cos \theta \\ \operatorname{sur} e_\phi : N_\phi = 0 \end{cases}$$

Pour la deuxieme equation, on a

soit $\sin \theta = 0 (\Rightarrow \theta = 0 \text{ ou } \pi)$

ou $\cos\theta = \frac{-g}{R\omega^2}$ (seulement si $|\omega| \geq \sqrt{\frac{g}{R}})$

15 Travail, énergie, forces conservatives

Forces de Frottement 15.1

- Forces exercees sur un corps par le fluide dans lequel il se déplace
- Ces forces s'opposent au mouvement du corps

$$\overrightarrow{F}_{frot} = -f(v)\hat{v}, f(v) > 0$$

- Elles résultent d'un grand nombre de phénomènes microscopiques, complexes à décrire
- On décrit donc les forces de frottement par des lois empiriques Tirées de l'expérience

Non-fondamentales

Approximatives

15.2 Forces de frottement sec

- \bullet Force F exercée par une surface sur un solide :
- composant normale à la surface N = force de liaison
- composante tangente à la surface $F_{frot}=$ force de frottement sec Lois de Coulomb :

si
$$v = 0$$
: $F_{frot} \le F_{frot}^{max} = \mu_s N$
si $v \ne =$: $\overrightarrow{F}_{frot} = -\mu_c N \frac{\overrightarrow{v}}{v}$

15.3 Coefficients de frottement

- Dépendent de
 - Natures des surfaces
 - Etat des surfaces
 - Température
- En général

$$\mu_c < \mu_s$$

- En premiere approximation ne dependent pas de
 - la vitesse (si $v \neq 0$)
 - la dimension des surfaces de contact (surfaces planes)

Ne dépendent pas de la dimension de la surface de contac

- Sirface pas parfaitement plane
- Surface de contact véritable proportionnelle à la charge

15.4 Impulsion et quantité de mouvement

- Point matériel de masse m soumis à une force F entre les points 1 et 2.
- Definition

$$d\overrightarrow{I} = \overrightarrow{F}dt \Rightarrow \overrightarrow{I}_{12} = \int_{1}^{2} d\overrightarrow{I} = \int_{t_{1}}^{t_{2}} \overrightarrow{F}dt$$

— Si F est la résultante des forces s'appliquant sur le point matériel

$$\overrightarrow{F} = m \overrightarrow{d} \Rightarrow \overrightarrow{I}_{12} = \int_{1}^{2} m \overrightarrow{d} dt = \int_{1}^{2} m d\overrightarrow{v}$$
$$= \int_{1}^{2} d(m \overrightarrow{v}) = m \overrightarrow{v}_{2} - m \overrightarrow{v}_{1} = \overrightarrow{p}_{2} - \overrightarrow{p}_{1}$$

ou on a défini

$$\overrightarrow{p} = m\overrightarrow{v}$$

La variation de la quantité de mouvement est égale à l'impilsion de la somme des forces. Donc, si m est constante, on a

$$\overrightarrow{F} = m \overrightarrow{a} \iff \overrightarrow{F} = \frac{d \overrightarrow{p}}{dt}$$

15.5 Travail et énérgie cinétique

Définition:

$$\delta W = \overrightarrow{F} \cdot d\overrightarrow{r} \Rightarrow W_{12} = \int_{1}^{2} \delta W = \int_{1}^{2} \overrightarrow{F} \cdot d\overrightarrow{r}$$

Si F est la résultante des forces s'appliquant sur le point matériel (et si m constante)

$$W_{12} = \int_{1}^{2} m \overrightarrow{d} d\overrightarrow{r} = \int_{1}^{2} m \frac{d\overrightarrow{v}}{dt} \cdot \overrightarrow{v} dt$$
$$= \int_{1}^{2} \frac{d}{dt} (\frac{1}{2} m \overrightarrow{v}^{2}) dt = K_{2} - K_{1}$$

où on a défini $K=\frac{1}{2}m\overrightarrow{v}^2$

La variation de l'énergie cinétique est égale au travail de la somme des forces.

15.6 Travail et Puissance d'une force

$$W_{12} = \int_{1}^{2} \delta W = \int_{1}^{2} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{1}^{2} F \cos \alpha ds = \int_{1}^{2} F_{t} ds$$

Seile la composante de \overrightarrow{F} tangente à la trajectoire travaile, la composante normale à la trajectoire ne travaille pas.

Puissance instantanée dûne force

$$P = \frac{\delta W}{dt} = \overrightarrow{F} \cdot \overrightarrow{v}$$

Lecture 7: Energie cinetique

Wed 21 Oct

$$d\overrightarrow{I} = \overrightarrow{F}dt \Rightarrow \overrightarrow{I}_{12} = \int_{1}^{2} \delta W$$

Puissance instantanee d'une force

$$P = \frac{\delta W}{dt} = \frac{\overrightarrow{F} \cdot d\overrightarrow{r}}{dt} = \overrightarrow{F} \cdot \overrightarrow{v}$$

15.7 Théorème de l'énergie cinétique

On a montré que le travail d'une force est egale a la difference des energies cinétiques.

Pour un point matériel :

$$K_2 - K_1 = W_{12} \iff \frac{dK}{dt} = P = \overrightarrow{F} \cdot \overrightarrow{v}$$

Pour un systeme de points materiels, on aura

$$K_2^{to} - K_1^{tot} = W_{12}^{tot,ext} + W_{12}^{tot,int} \iff \frac{dK^{tot}}{dt} = P^{tot,ext} + P^{tot,int}$$

15.8 Voiture en accélération

Forces extérieures s'exercant sur la voiture

- poids mg
- reaction du sol N
- frottements de la route sur les roues
- frottements de l'air sur la carrosserie

On peut appliquer la deuxieme loi de Newton

$$m\overrightarrow{g} + \overrightarrow{N} + \overrightarrow{F}_{route} + \overrightarrow{F}_{air} \Rightarrow \begin{cases} N = mg\\ ma = F_{route} - F_{air} \end{cases}$$

Clairement, F_{route} ne travaille pas (roulement sans glissement) aucune force extérieure ne travaille sauf F_{air}

Le travail de F_{air} est négatif et cause une diminution d'énergie cinétique mais l'énergie augment \Rightarrow il y a des forces internes dont letravail est positif

$$\frac{dK^{voiture}}{dt} = \underbrace{P^{tot,ext}}_{<0} + P^{tot,int} > 0$$

15.9 Conservation de l'énergie mécanique

- Si $W_{12} \neq 0$ alors l'énergie cinétique K n'est pas conservée
- Cependant, dans certains cas particuliers, \overrightarrow{F} ne dépend que de la position et "dérive du potentiel", cad qu'il existe une energie potentielle $V(\overrightarrow{r})$ tel que

$$W_{12} = \int_{1}^{2} \overrightarrow{F}(\overrightarrow{r}) \cdot d\overrightarrow{r} = V(\overrightarrow{r}_{1}) - V(\overrightarrow{r}_{2}) \forall \overrightarrow{r}_{1}, \overrightarrow{r}_{2} \iff \overrightarrow{F}(\overrightarrow{r}) = -\begin{pmatrix} \partial V(\overrightarrow{r}) / \partial x \\ \partial V(\overrightarrow{r}) / \partial y \\ \partial V(\overrightarrow{r}) / \partial z \end{pmatrix}$$

Si on peut ecrire notre force ainsi, on la nomme conservative Dans ce cas, on a

$$W_{12} = V(\overrightarrow{r}_1) - V(\overrightarrow{r}_2) = K_2 - K_1$$

On remarque alors que $K_1 + V(\overrightarrow{r}_1)$ est constante, on note donc

$$E = K + V(\overrightarrow{r})$$

15.10 Travail de la force de pesanteur

$$\begin{aligned} W_{12} &= \int_{1}^{2} \overrightarrow{F} d\overrightarrow{r'} = \int_{1}^{2} -mg \hat{e}_{z} \cdot d\overrightarrow{r'} \\ &= -\int_{1}^{2} mg dz = -[mgz]_{1}^{2} \\ &= mgz_{1} - mgz_{2} \end{aligned}$$

Le travail ne dépend que des coordonnées z des points 1 et 2 : il ne dépend pas de la trajectoire.

On peut s'imaginer une trajectoire de 1 a 2 et de 2 à 1

$$W_{1\to 2\to 1} = \int_{1}^{2} m \overrightarrow{g} \cdot d\overrightarrow{r} + \int_{2}^{1} m \overrightarrow{g} \cdot d\overrightarrow{r} = W_{12} + W_{21} = 0$$

On note

$$\oint m \overrightarrow{g} d\overrightarrow{r} = 0$$

15.11 Travail de la force de rappel d'un ressort

On a

$$\overrightarrow{F} = -k\Delta \overrightarrow{x} = -kx\hat{e}_x$$

Donc on pose

$$W_{12} = \int_{1}^{2} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{1}^{2} -kx dx$$
$$= -\left[\frac{1}{2}kx^{2}\right]_{1}^{2} = \frac{1}{2}kx_{1}^{2} - \frac{1}{2}kx_{2}^{2}$$

15.12 Travail d'une force centrale en $\frac{1}{r^2}$

On pose

$$W_{12} = \int_{1}^{2} \overrightarrow{F} \cdot d\overrightarrow{l'} = \int_{1}^{2} -\frac{GmM}{r^{2}} \hat{e}_{r} \cdot d\overrightarrow{l'} = -\frac{GmM}{r_{1}} + \frac{GmM}{r_{2}}$$

15.13 Forces conservatives

Ce sont les forces dont le travail ne dépend que des points de départ et d'arrivée (quels que soient ces points) , et non de la trajectoire entre les deux

Propriétés

- $-\oint \overrightarrow{F}.d\overrightarrow{r} = 0, \forall$ courbe fermée
- \exists une fonction $V(\overrightarrow{r})$ tel que

$$\int_{1}^{2} = -[V(\overrightarrow{r}_{2}) - V(\overrightarrow{r}_{1})], \forall \overrightarrow{r}_{1}, \overrightarrow{r}_{2}$$

— \exists une fonction $V(\overrightarrow{r})$ (potential) tell que

$$\overrightarrow{F}(\overrightarrow{r}) = -\overrightarrow{\nabla}V(\overrightarrow{r})$$

15.14 Energie potentielle

potentiel dont une force conservative dérive = energie potentielle du point matériel soumis a cette force.

L'énergie potentielle est définie à une constante arbitraire près.

On a

$$V = \int_{\text{ position du point matériel}}^{\text{ position de référence}} \overrightarrow{F} \cdot d\overrightarrow{r}$$

15.15 Théorème de l'énergie

- Point matériel soumis à
 - des forces conservatives $F_k = -\overrightarrow{\nabla}V_k(\overrightarrow{r})$
 - des forces conservatives de résultante \overrightarrow{F}^{NC}
- Energie mécanique

$$E(\overrightarrow{r},\overrightarrow{v}) = K(\overrightarrow{v}) + V(\overrightarrow{r}) = \frac{1}{2}m\overrightarrow{v}^2 + \sum_k V_k(\overrightarrow{r})$$

— Entre les points 1 et 2, on a

$$K_2 - K_1 = W_{12} = V(\overrightarrow{r}_1) - V(\overrightarrow{r}_2) + W_{12}^{NC}$$

$$\Rightarrow E_2 - E_1 = W_{12}^{NC} \iff \frac{dE}{dt} = P^{NC} = \overrightarrow{F}^{NC} \cdot \overrightarrow{v}$$

Donc la variation de l'énergie mécanique est égale au travail des forces non-conservatives.

— Si seules des forces conservatives travaillent

$$E = constante$$

15.16 Lugeur

Un lugeur part au repos au point 1 : quelle est sa vitesse au point 2 Point de départ 1 : $z_1=h, v_1=0$

$$E_1 = \frac{1}{2}mv_1^2 + mgz_1 = mgh$$

Point de d'arrivée $2: z_2 = 0, v_2 = ?$

$$E_2 = \frac{1}{2}mv_2^2 + mgz_2 = \frac{1}{2}mv_2^2$$

Or par le th de l'énergie cinétique, on a

$$E_2 - E_1 = W_{12}^{NC} = \int_1^2 \overrightarrow{F}_{frot} \cdot d\overrightarrow{r} = \int_1^2 -F_{frot} ds = -mg\mu_c \cos \alpha \frac{h}{\sin \alpha}$$

Donc

$$\frac{1}{2}mv_2^2 - mgh = -mg\mu_c \frac{h}{\tan \alpha}$$
$$\frac{1}{2}mv_2^2 = mgh(1 - \frac{\mu_c}{\tan \alpha})$$

Donc

$$v_2 = \sqrt{2gh(1 - \frac{\mu_c}{\tan \alpha})}$$

15.17 L'énergie mécanique : intégrale première

Si $E = \frac{1}{2}mv^2 + V(\overrightarrow{r})$ est constante, alors, par dérivation

$$0 = \frac{d}{dt}(\frac{1}{2}mv^2 + V(\overrightarrow{r})) = \frac{1}{2}m\frac{d}{dt}(\overrightarrow{v} \cdot \overrightarrow{v}) + \frac{dV(\overrightarrow{r})}{dt}$$
$$= m\overrightarrow{a} \cdot \overrightarrow{v} + \left(\frac{\partial V(\overrightarrow{r})}{\partial x}\frac{dx}{dt} + \frac{\partial V(\overrightarrow{r})}{\partial y}\frac{dy}{dt} + \frac{\partial V(\overrightarrow{r})}{\partial}\frac{dz}{dt}\right)$$
$$= m\overrightarrow{a} \cdot \overrightarrow{v} + \overrightarrow{\nabla}V(\overrightarrow{r}) \cdot \overrightarrow{v} = (m\overrightarrow{a} - \overrightarrow{F}) \cdot \overrightarrow{v}$$

Et donc $\overrightarrow{F} = m\overrightarrow{a}$

Lecture 8: Gravitation

Wed 28 Oct

16 Gravitation, Moment Cinétique

16.1 Lois de Kepler

- 2ème loi :(lois des aires) Le rayon-vecteur du Soleil à une planète balaie des aires égales en des temps égaux
- 1ère loi : (1609) Les Trajectoires des planètes sont des ellipses dont le soleil occupe l'un des foyers.
- 3eme loi : (1609) Les carrés des périodes de révolution sont proportionnels aux cubes des grands axes :

$$\frac{\text{période}^2}{\text{grand axe}^3} = \text{constante}$$

16.2 Le développement de la dynamique

- Qu'est-ce qui fait bouger les planètes
 - Avant Galilée/Nerwton
 - Le mouvement naturel d'un corps est l'immobilité
 - Une planète doit constamment être poussee dans la direction de son mouvement
 - Apres Galilée
 - Le mouvement naturel d'un corps est rectiligne uniforme
- Newton tire les consequences des lois de Kepler
 - La 2eme loi et la planeite de l orbite impliquent que la force (et donc l'acceleration) subie par une planete pointe toujours vers le soleil
 - En utilisant de plus la 3eme loi, Newton montrer que la force est proportionelle à $\frac{1}{\sigma^2}$
 - A partir de là, il prédit une trajectoire elliptique!

16.3 Mouvement central et loi des aires

Definition 9

Un point P de masse m a un mouvement central si son accélération passe toujours par un même point $O \iff \overrightarrow{r}(t) = \overrightarrow{OP}$ reste toujours parallèle à $\overrightarrow{a}(t)$

Conséquences Le vecteur moment cinétique $\overrightarrow{L}=\overrightarrow{r}\wedge m\overrightarrow{v}$ reste constant et le mouvement est plan.

$$\frac{d}{dt}(\overrightarrow{r} \wedge m\overrightarrow{v}) = \overrightarrow{v} \wedge m\overrightarrow{v} + \overrightarrow{r} \wedge m\overrightarrow{a} = 0$$

L'aire balayée par unité de temps par le vecteur $\overrightarrow{r}(t)$ est constante (loi des aires)

$$dA = \frac{1}{2}rvdt\sin(\overrightarrow{r},\overrightarrow{v}) \iff \frac{dA}{dt} = \frac{1}{2}|\overrightarrow{r}\wedge\overrightarrow{v}| = \frac{L}{2m}$$

Donc on a

mouvement central \iff moment cinetique constant \iff loi des aire+ mouvement dans un plan

16.4 Mouvement central

Composante horizontale

$$F_p = \overrightarrow{F} \cdot \hat{e}_\rho = -mg \cos \alpha \sin \alpha$$

Le support de $\overrightarrow{F_p}$ passe toujours par O

$$|\overrightarrow{F_p}| = mg\cos\alpha\sin\alpha$$

16.5 Déduction de la force de Gravitation en $\frac{1}{r^2}$

Supposons une orbite circulaire.

Calculons le moment cinétique

$$\overrightarrow{L}_O = \overrightarrow{r} \wedge m \overrightarrow{v} = m \overrightarrow{r} \wedge (\omega \wedge \overrightarrow{r})$$
$$= mr^2 \overrightarrow{\omega}$$

Par la 2ème loi de Kepler $\overrightarrow{L}=$ constante , on en déduit

$$\Rightarrow \overrightarrow{\omega} = \text{constante } \Rightarrow |\overrightarrow{v}| = v = \omega r$$

Donc on a un mouvement circulaire uniforme.

Par la 3eme loi de Kepler

$$T^2 = Cr^3$$

Par la deuxieme loi de Newton

$$F = ma = m\frac{v^2}{r} = \frac{m}{r}(\frac{2\pi r}{T})^2 = \frac{m}{r}\frac{r\pi^2r^2}{Cr^3} = \frac{4\pi^2}{C}m\frac{1}{r^2}$$

Posons $\xi = \frac{4\pi^2}{C}$, on a donc

$$=\xi m\frac{1}{r^2}$$

Donc

$$\Rightarrow T = 2\pi \sqrt{\frac{r^3}{\xi}}$$

16.6 Loi de gravitation universelle

Theorème 7 (Gravitation Universelle)

$$\overrightarrow{F} = -G\frac{Mm}{r^2}\hat{e}_r - G\frac{Mm}{r^3}\overrightarrow{r}$$

16.7 Champ de gravitation

Une masse ponctuelle M produit un champ gravitationnel $\overrightarrow{g}(\overrightarrow{r})$ à la position r :

 $\overrightarrow{g}(\overrightarrow{r}) - \frac{GM}{r^2} \frac{\overrightarrow{r}}{r}$

Quel est le champ gravitationnel produit par une masse M non ponctuelle supposée sphérique de rayon R et homogène? (par exemple la terre)

Réponse : Si $r \geq R$, le même champ que produirait une masse M ponctuelle située au centre de la terre (conséquence de la forme en $\frac{1}{r^2}$)

16.8 Energie potentielle gravifique

Energie potentielle

$$V(r) = -\frac{GMm}{r}$$

Approximation à la surface de la terre (h« R)

$$\begin{split} \frac{1}{r} &= \frac{1}{R+h} = \frac{R-h}{R^2-h^2} \simeq \frac{R-h}{R^2} = \frac{1}{R} - \frac{h}{R^2} \\ \Rightarrow V(r) &= -\frac{GMm}{r} \simeq -\frac{GMm}{R} + \frac{GM}{R^2}mh \end{split}$$

On a

$$V(r) = -\frac{GMm}{r}$$

$$\Rightarrow$$
 Force $= F_1 \hat{x}_1 + F_2 \hat{x}_2 + F_3 \hat{x}_3$

On a donc

$$F_i = -\frac{\partial V}{\partial x_i} = -\frac{\partial V}{\partial r} \cdot \frac{\partial r}{\partial x_i} = -\frac{GMm}{r^2} \frac{2x_i}{2r} - \frac{GMm}{r^2} \frac{x_i}{r}$$

Et donc

$$\overrightarrow{F} = -\frac{GMm}{r^2} \frac{\overrightarrow{r}}{r}$$

16.9 Mouvement dans un potentiel central

Si le potentiel ne dépend que de la distance à l'origine, V=V(r), alors on a une force centrale

$$\overrightarrow{F} = -\nabla V(r)$$

Force centrale \iff vecteur moment cinétique constante \Rightarrow mouvement plan Dans le plan du mouvement, on a

$$\begin{cases} \overrightarrow{r} = r\hat{e}_r \\ \overrightarrow{v} = \dot{r}\hat{e}_r + r\dot{\theta}\hat{e}_\theta \end{cases}$$

Constantes du mouvement

$$\overrightarrow{L} = \overrightarrow{r} \wedge m \overrightarrow{v} = mr\hat{e}_r \wedge (\dot{r}\hat{e}_r + r\dot{\theta}\hat{e}_\theta) = mr^2\dot{\theta}\hat{e}_z$$

de meme

$$E = \frac{1}{2}m\vec{v}^2 + V(r) = \frac{1}{2}m(\dot{r}\hat{e}_r + r\dot{\theta}\hat{e}_\theta)^2 + V(r) = \frac{m\dot{r}^2}{2} + \frac{L^2}{2mr^2} + V(r)$$

16.10 Intégrales premières d'un mouvement central

Point matériel soumis à une force centrale

$$\overrightarrow{F} = -\frac{dV}{dr}\hat{e}_r$$

 $\overrightarrow{ma} = \overrightarrow{F}$ projeté sur \hat{e}_{θ}

$$m(r\ddot{\theta} + 2\dot{r}\dot{\theta}) = 0 \iff \frac{d}{dt}(mr^2\dot{\theta}) = 0$$

 $\overrightarrow{ma} = \overrightarrow{F}$ projeté sur \hat{e}_r On obtient

$$\frac{d}{dt}\left(\frac{m\dot{r}^2}{2} + \frac{L^2}{2mr^2} + V(r)\right) = 0$$

Lecture 9: Systemes de points Materiels

Wed 04 Nov

16.11 2eme loi et theoreme du moment cinétique

La résultante des forces appliquées au point matériel P:

$$\overrightarrow{F} = \sum \overrightarrow{F}_i$$

Quantité de mouvement du point matériel de masse m

$$\overrightarrow{p}=m\overrightarrow{v}$$

En dérivant, et en appliquant la deuxieme loi de Newton, on trouve

$$\frac{d\overrightarrow{p}}{dt} = \overrightarrow{F}$$

Le moment de la force résultante \overrightarrow{F} par rapport à un point O du référentiel

$$\overrightarrow{M}_O = \overrightarrow{r} \wedge \overrightarrow{F} = \sum \overrightarrow{r} \wedge \overrightarrow{F}_i$$

Moment cinétique du point matériel par rapport au point ${\cal O}$:

$$\overrightarrow{L}_{O} = \overrightarrow{r} \wedge \overrightarrow{p} = \overrightarrow{r} \wedge m\overrightarrow{v}$$

Le théorème du moment cinétique dit

$$\frac{d\overrightarrow{L}_O}{dt} = \overrightarrow{M}_O$$

16.12 Systeme de points matériels

On suppose ue chaque point matériel P_a du système subit :

- une force extérieure ${\cal F}^{ext}_a$ dont l'origine est extérieure au système
- des forces intérieures $F^{\beta \to \alpha}$ exercées par les autres points P_{β} du système

On peut appliquer la troisième de Newton, à α et β . Donc

$$\overrightarrow{F}^{\beta \to \alpha} + \overrightarrow{F}^{\alpha \to \beta} = 0$$

et

$$\overrightarrow{M}^{\beta \to \alpha} + \overrightarrow{M}^{\alpha \to \beta} = (\overrightarrow{r}_{\alpha} - \overrightarrow{r}_{\beta}) \wedge \overrightarrow{F}^{\beta \to \alpha} = 0$$

$$\begin{split} \sum_{\alpha} \sum_{\beta \neq \alpha} \overrightarrow{F}^{\beta \to \alpha} &= 0 \\ \sum_{\alpha} \sum_{\beta \neq \alpha} \overrightarrow{M}^{\beta \to \alpha} &= 0 \end{split}$$

On définit la quantité de mouvement totale

$$\overrightarrow{p} = \sum_{\alpha} \overrightarrow{p}_{\alpha}$$

Si on dérive \overrightarrow{p} , on obtient

$$\frac{d\overrightarrow{p}}{dt} = \sum_{\alpha} \sum_{\beta \neq \alpha} \overrightarrow{F}^{\beta \to \alpha} + \sum_{\alpha} \overrightarrow{F}^{ext}_{\alpha} = \overrightarrow{F}^{ext}$$

On trouve donc

$$\frac{d\overrightarrow{p}}{dt} = \overrightarrow{F}^{ext}$$

De la même manière, on trouve,

$$\frac{d\overrightarrow{L}_{O}}{dt} = \sum_{\alpha} \overrightarrow{M}_{O,\alpha}^{ext} = \overrightarrow{M}_{O}^{ext}$$

On a donc trouvé les lois générales de la dynamique pour un système de points matériels

$$\frac{d\overrightarrow{p}}{dt} = \overrightarrow{F}^{ext}$$

$$\frac{d\overrightarrow{L}_O}{dt} = \overrightarrow{M}_O^{ext}$$

16.13 Système à l'équilibre

Un système est à l'équilibre si

$$\begin{cases} \overrightarrow{r}_{\alpha}(t) = \text{ constante} \\ \overrightarrow{v}_{\alpha}(t) = constante \end{cases}$$

Dans ce cas, on a

$$\begin{cases} \overrightarrow{p} = \sum_{\alpha} m_{\alpha} \overrightarrow{v}_{\alpha} = 0 \\ \overrightarrow{L}_{O} = \sum_{\alpha} \overrightarrow{r}_{\alpha} \wedge m_{\alpha} \overrightarrow{v}_{\alpha} = 0 \end{cases}$$

et donc

$$\begin{cases} \frac{d\overrightarrow{p}}{dt} = 0\\ \frac{d\overrightarrow{L}_O}{dt} = 0 \end{cases}$$

et donc

$$\overrightarrow{F}^{ext} = 0$$
 et $\overrightarrow{M}_O^{ext} = 0$

On appellera un système "partiellement isolé" selon une direction fixe \hat{u} :

$$\overrightarrow{F}^{ext} \cdot \hat{u} = 0 \Rightarrow \overrightarrow{p} \cdot \hat{u} = \text{ constante}$$

$$\overrightarrow{M}_O^{ext} \cdot \hat{u} = 0 \Rightarrow \overrightarrow{L}_O \cdot \hat{u} = \text{ constante}$$

16.14 Centre de masse

Le centre de masse est un point de l'espace G défini par

$$\overrightarrow{r}_G = \frac{1}{M} \sum_{\alpha} m_{\alpha} \overrightarrow{r}_{\alpha}$$

où M est la somme des masses.

Si les masses m_α sont constantes, la vitesse du centre de masse est

$$\overrightarrow{v}_G = \frac{d\overrightarrow{r}_G}{dt} = \frac{1}{M} \sum_{\alpha} m_{\alpha} \overrightarrow{v}_{\alpha} = \frac{\overrightarrow{p}}{M} \Rightarrow \overrightarrow{p} = M \overrightarrow{v}_G$$

Donc

$$\frac{d\overrightarrow{p}}{dt} = \overrightarrow{F}^{ext} \Rightarrow M\overrightarrow{a}_G = \overrightarrow{F}^{ext}$$

C'est le theoreme du centre de masse.

Lecture 10: Chocs ou collisions entre deux corps

Wed 11 Nov

On veut faire la somme

$$\sum_{\alpha} m_{\alpha} \overrightarrow{r}_{\alpha}^*$$

On a

$$\begin{split} & \sum_{\alpha} m_{\alpha} (\overrightarrow{r}_{\alpha} - \overrightarrow{r}_{G}) \\ & = \underbrace{\sum_{\alpha} \overrightarrow{r}_{\alpha}}_{=M\overrightarrow{r}_{G}} - \sum_{\alpha} m_{\alpha} \overrightarrow{r}_{G} = 0 \end{split}$$

La quantite de mouvement totale par rapport au centre de masse est

$$\sum_{\alpha} m_{\alpha} \overrightarrow{v}_{\alpha}^{*} = \sum_{\alpha} m_{\alpha} \frac{d}{dt} ()$$

16.15 Probleme a deux corps

$$\overrightarrow{R} = \frac{m_1 \overrightarrow{r'}_1 + m_2 \overrightarrow{r'}_2}{m_1 + m_2} = \text{ coordonnees du centre de masse}$$

$$\overrightarrow{r'} = \overrightarrow{r_1} - \overrightarrow{r_2} = \text{ coordonnees relatives}$$

On peut determiner l'equation du mouvement, on trouve

$$0 = (m_1 + m_2) \ddot{\vec{R}}$$

On trouve

$$\overrightarrow{F}_{2\rightarrow 1}(m_1+m_2)=m_1m_2\ddot{\overrightarrow{r}}$$

On trouve donc

$$\overrightarrow{F}_{2 \to 1} = \mu \ddot{\overrightarrow{r}}$$
 ou $\mu = \frac{m_1 m_2}{m_1 + m_2}$

La quatite de mouvement totale est

$$\overrightarrow{p}_{tot} = M\overrightarrow{\overrightarrow{V}}$$

En developpant le moment cinetique total, on trouve

$$\overrightarrow{L}_{tot,)} = \overrightarrow{R} \wedge M\overrightarrow{V} + \overrightarrow{L}_{tot,G}^*$$

le premier theorem de Koenig.

De meme, on trouve le deuxieme theoreme de Koenig

$$K_{tot} = \frac{1}{2}M\overrightarrow{V}^2 + K_{tot}^*$$

17 Chocs ou collisions entre deux corps

On peut separer une collision en 3 etapes

- L'etat initial, F = 0
- Collision, $F \neq 0, F = ???$
- etat final F = 0

17.1 Chocs entre deux points materiels

On choisit sans perte de géneralité, un referentiel dans lequel l'une des deux boules est initialement au repos.

Conservation de la quantite de mouvement totale

$$m_1 \overrightarrow{v}_{1i} = m_1 \overrightarrow{v}_{1f} + m_2 \overrightarrow{v}_{2f}$$

On peut projeter sur x et y

$$m_1 v_{1i} = m_1 v_{1f} \cos \theta_1 + m_2 v_{2f} \cos \theta_2$$

 $0 = m_1 v_{1f} \sin \theta_1 - m_2 v_{2f} \sin \theta_2$

17.2 Choc elastique

C'est quand la variation de l'energie cinetique est nulle..

Donc

$$m_2 v_{2f}^2 = m_1 v_{1i}^2 - m_1 v_{1f}^2$$

On substitue l'equation ci-dessus

$$m_1^2 v_{1i}^2 + m_1^2 v_{1f}^2 - 2m_1^2 v_{1i} v_{1f} \cos \theta_1 = m_2^2 v_{2f}^2$$

Finalement, on obtient

$$v_{1i}^2 + v_{1f}^2 - 2v_{1i}v_{1f}\cos\theta_1 = \frac{m_2^2}{m_1^2}v_{2f}^2 = \frac{m_2}{m_1^2}(m_1v_{1i}^2 - m_1v_{1f}^2) = \frac{m_2}{m_1}v_{1i}^2 - \frac{m_2}{m_1}v_{1f}^2$$

Lecture 11: Rotations Du Solide

Wed 18 Nov

18 Rotations Du Solide

18.1 Corps Solide indeformable

Definition 10 (Solide indeformable)

Systeme de points materiels fixes les uns par rapport aux autres.

Le nombre de points materiels peut etre tres grand, on remplace alors les sommes sur ces points par des integrales.

$$\overrightarrow{r}_G = \frac{1}{M} \int \overrightarrow{r} dm(\overrightarrow{r}) = \frac{1}{M} \int \overrightarrow{r} \rho(\overrightarrow{r}) d^3 \overrightarrow{r}$$

18.2 Vitesse et acceleration d'un point solide

On fixe un repere sur le solide, soit y un vecteur dans ce vecteur.

$$\frac{d\overrightarrow{y}}{dt} = \frac{d}{dt}(\sum y_i \hat{y}_i) = \sum y_i \frac{d\overrightarrow{y}_i}{dt} = \overrightarrow{\omega} \wedge \sum y_i \hat{y}_i = \overrightarrow{\omega} \wedge \overrightarrow{y}$$

Pour tout point P du solide

$$\overrightarrow{v}_p = \frac{d}{dt}(\overrightarrow{r}_A + \overrightarrow{AP}) = \overrightarrow{v}_A + \frac{d}{dt}\overrightarrow{AP} = \overrightarrow{v}_A + \overrightarrow{\omega} \wedge \overrightarrow{AP}$$

De meme

$$\overrightarrow{a}_p = \overrightarrow{a}_A + \dot{\overrightarrow{\omega}} \wedge \overrightarrow{AP} + \overrightarrow{\omega} \wedge (\overrightarrow{\omega} \wedge \overrightarrow{AP})$$

18.3 Mouvement plan-sur-plan

Definition 11

mouvement tel qu'un plan du solide S reste constamment dans un plan fixe Π du referentiel

 \Longrightarrow

a tout instant les vitesse de tous les points du solide sont paralleles a un plan fixe Π du referentiel

18.4 Moment cinetique par rapport a un point quelconque

$$\begin{split} \overrightarrow{L}_Q &= \sum_{\alpha} Q \overrightarrow{P}_{\alpha} \wedge m_{\alpha} \overrightarrow{v}_{\alpha} = \sum_{\alpha} (\overrightarrow{QO} + \overrightarrow{OP}_{\alpha}) \wedge m \overrightarrow{v}_{\alpha} \\ &= \overrightarrow{QO} \wedge \sum_{\alpha} m \overrightarrow{v}_{\alpha} + \sum_{\alpha} \overrightarrow{OP}_{\alpha} \wedge m \overrightarrow{v}_{\alpha} \\ &= \overrightarrow{L}_O + \overrightarrow{QO} \wedge M \overrightarrow{v}_G \end{split}$$

Theorème 8 (Theoreme du Transfert)

$$\overrightarrow{L}_Q = \overrightarrow{L}_O + \overrightarrow{QO} \wedge M\overrightarrow{v}_G$$

$$\overrightarrow{L}_{G} = \sum_{\alpha} \overrightarrow{r}_{\alpha}^{*} \wedge m_{\alpha} \overrightarrow{v}_{\alpha}$$

$$= \sum_{\alpha} \overrightarrow{r}_{\alpha}^{*} \wedge m_{\alpha} \overrightarrow{v}_{\alpha}^{*} + (\sum_{\alpha} m_{\alpha} \overrightarrow{r}_{\alpha}^{*}) \wedge \overrightarrow{v}_{G} = \overrightarrow{L}_{G}^{*}$$

Avec ca, on a donc que

$$\overrightarrow{L}_Q = \overrightarrow{L}_G^{(*)} + \overrightarrow{QG} \wedge M\overrightarrow{v}_G$$

18.5 Theoreme du Moment Cinetique Generalise

$$\frac{dL_Q}{dt} = \frac{d\overrightarrow{L}_O}{dt} + \frac{d}{dt}(\overrightarrow{QO} \wedge \overrightarrow{M}\overrightarrow{v}_G) = \overrightarrow{M}_O^{\text{ext}} + \overrightarrow{QO} \wedge \overrightarrow{M}\overrightarrow{a}_G - \overrightarrow{V}_Q \wedge \overrightarrow{M}\overrightarrow{v}_G$$

On a

$$\overrightarrow{M}_{Q}^{ext} = \sum_{\alpha} M_{Q,\alpha}^{\text{ext}} \ = \sum_{\alpha} \overrightarrow{QP}_{\alpha} \wedge \overrightarrow{F}_{\alpha}^{\text{ext}} \ = \sum_{\alpha} (\overrightarrow{QO} + \overrightarrow{OP}_{\alpha}) \wedge \overrightarrow{F}_{\alpha}^{ext} = \overrightarrow{QO} \wedge \overrightarrow{F}^{ext} + \sum_{\alpha} \overrightarrow{OP}_{\alpha} \wedge \overrightarrow{F}_{\alpha}^{ext}$$

Donc

$$\frac{d\overrightarrow{L}_Q}{dt} = \overrightarrow{M}_Q^{ext} - \overrightarrow{v}_Q \wedge M\overrightarrow{v}_G$$

On remarque que si Q = G, ou $\overrightarrow{v}_Q / / \overrightarrow{v}_G$, on a le theoreme du moment cinetique

Lecture 12: Moment Cinetique

Wed 25 Nov

18.6 Moment Cinetique d'un solide quelconque

Soit A un point du solide.

$$\overrightarrow{L}_{A} = \sum_{\alpha} \overrightarrow{AP}_{\alpha} \wedge m\overrightarrow{v}_{\alpha} = \sum_{\alpha} \overrightarrow{AP}_{\alpha} + m_{\alpha} (\overrightarrow{v}_{\alpha} + \overrightarrow{\omega} \wedge \overrightarrow{AP}_{\alpha})$$
 (1)

$$= \sum_{\alpha} m_{\alpha} \overrightarrow{AP}_{\alpha} \wedge \overrightarrow{v}_{A} + \sum_{\alpha} m_{\alpha} \left[\overrightarrow{AP}_{\alpha} \wedge (\overrightarrow{\omega} \wedge \overrightarrow{AP}_{\alpha}) \right]$$
 (2)

(3)

18.7 Moment d'inertie par rapport a un axe de rotation fixe

$$\overrightarrow{L}_C = \sum_{\alpha} m_{\alpha} \left[(\overrightarrow{CP})^2 \overrightarrow{\omega} - (\overrightarrow{CP}_{\alpha} \cdot \overrightarrow{\omega}) \overrightarrow{CP}_{\alpha} \right]$$

Si on projette L_C sur l'axe de rotation, on trouve

$$L_{\Delta} = \overrightarrow{L} \cdot \hat{\omega} = \omega \sum_{\alpha} m_{\alpha} d_{\alpha}^{2}$$

On definit

$$I_{\Delta} = \sum_{\alpha} m_{\alpha} d_{\alpha}^2$$

C'est le moment d'inertie du solide.

En developpant l'expression, on trouve

$$\overrightarrow{L}_G = \widetilde{I}_G \cdot \overrightarrow{\omega}$$

18.8 Tenseur d'inertie

Par rapport a un point A appartenant au solide

$$\overrightarrow{L}_A = \overrightarrow{AG} \wedge \overrightarrow{W}_A + \widetilde{I}_A \cdot \overrightarrow{\omega}$$

Lecture 13: Mouvement de Solides

Wed 02 Dec

Pour tout point C d'un solide, on peut toujours choisir un repere orthonorme tel que la matrice representant le tenseur d'inertie soit diagonale.

Definition 12

Le repere d'inertie est le repere dans lequel le tenseur est diagonal.

Les axes principaux d'inertie sont les axes du repere d'inertie.

Les moments d'inertie principaux sont les moments d'inerties par rapport aux axes principaux d'inertie.

Si le solide est symetrique, les axes suivants sont des axes principaux d'inertie au point ${\cal C}$

- Tout axe de symetrie
- L'axe passant par C et perpendiculaire a un plan de symetrie.
- Tout axe passant par C et perpendiculaire a un axe de symetrique d'ordre $n \geq 3$.

Theorème 9 (Theoreme de Steiner)

$$(\tilde{I}_A)_{ij} = (\tilde{I}_G)_{ij} + M \left[\overrightarrow{AG}^2 \delta_{ij} - (AG)_i (AG)_j \right]$$

Lecture 14: Changements de Referentiel

Wed 09 Dec

18.9 Dynamique du solide avec axe fixe

Quand un axe de rotation Δ est fixe, il est utile de projeter le theoreme du moment cinetique sur cet axe.

$$\begin{split} \frac{d\overrightarrow{L}_0}{dt} &= \overrightarrow{M}_0 \\ \frac{d(\overrightarrow{L}_0 \cdot \hat{u})}{dt} &= \overrightarrow{M}_0 \cdot \hat{u} \\ I_{\Delta}\omega' &= \sum_{\alpha} (\overrightarrow{r'}_{\alpha} \wedge \overrightarrow{F}_{\alpha}) \cdot \hat{u} \end{split}$$

ou $\overrightarrow{r}_{\alpha}$ et $\overrightarrow{F}_{\alpha}$ sont les composantes des forces perpendiculaires \hat{u} .

19 Changements de Referentiel

Point materiel P decrit dans deux referentiels differents Soit e_1, e_2, e_3 , un repere, on a

$$\overrightarrow{r}_p = \overrightarrow{OP}, \overrightarrow{v}_p = \frac{d\overrightarrow{r}_p}{dt}$$

Danns un autre referentiel, on aurait

$$\overrightarrow{r}'_p = \overrightarrow{O'P'}, \overrightarrow{v}'_p = \frac{d\overrightarrow{r}'_p}{dt'}$$

En mecanique classique, on a t' = t +constante.

L'espace est absolu $\overrightarrow{PQ} = \overrightarrow{r}_Q - \overrightarrow{r}_P = \overrightarrow{r}_Q' - \overrightarrow{r}_P' \forall P, Q$

Donc R' est un "solide" dans R.

Donc

$$\overrightarrow{OP} = \overrightarrow{OO'} + \overrightarrow{O'P}$$

et

$$\frac{d\overrightarrow{r}_{p}}{dt} = \frac{d\overrightarrow{r}_{O'}}{dt} + \frac{d\overrightarrow{r}_{P}'}{dt}$$

Donc

$$\overrightarrow{v}_p = \overrightarrow{v}_{O'} + \frac{d}{dt} \sum x_i' \hat{e}_i' = \overrightarrow{v}_{O'} + \underbrace{\sum x_i' \hat{e}_i'}_{=\overrightarrow{v}_p'} + \underbrace{\sum x_i' \overrightarrow{\omega} \wedge \hat{e}_i'}_{=\overrightarrow{\omega} \wedge \overrightarrow{O'P}}$$

Donc

$$\overrightarrow{v}_P = \overrightarrow{v}_P' + \overrightarrow{v}_{O'} + \overrightarrow{\omega} \wedge \overrightarrow{O'P}$$

Les deux derniers termes s'appellent la vitesse d'entrainement et le premier terme s'appelle la vitesse relative.

On peut maintenant calculer les accelerations.

On a

$$\begin{split} \overrightarrow{a}_P &= \overrightarrow{a}_{O'} + \frac{d}{dt} \left(\sum x_i' \hat{e}_i' \right) + \overrightarrow{\omega} \wedge \frac{d}{dt} \sum \dot{x}_i' \hat{e}_i' + \overrightarrow{\omega}' \wedge \overrightarrow{O'P} \\ &= \overrightarrow{a}_{O'} + \sum \ddot{x}_i' \hat{e}_i' + \sum \dot{x}_i' (\overrightarrow{\omega} \wedge \hat{e}_i') + \overrightarrow{\omega} \wedge \sum (\dot{x}_i' \hat{e}_i' + x_i' \overrightarrow{\omega} \wedge \hat{e}_i) + \overrightarrow{\omega}' \wedge \overrightarrow{O'P} \\ &= \overrightarrow{a}_{O'} + \overrightarrow{a}_p' + 2 \overrightarrow{\omega} \wedge \overrightarrow{v}_p' + \overrightarrow{\omega} \wedge (\omega \wedge \overrightarrow{O'P}) + \overrightarrow{\omega}' \wedge \overrightarrow{O'P} \end{split}$$

On a donc

$$\overrightarrow{a}_p = \overrightarrow{a}_p' + 2\overrightarrow{\omega} \wedge \overrightarrow{v}_p' + \overrightarrow{a}_{O'} + \overrightarrow{\omega} \wedge (\overrightarrow{\omega} \wedge \overrightarrow{O'P}) + \overrightarrow{\omega}' \wedge \overrightarrow{O'P}$$

Lecture 15: Changements de Referentiel 2

Wed 16 Dec