

planetmath.org

Math for the people, by the people.

group socle

Canonical name GroupSocle

Date of creation 2013-03-22 15:55:12 Last modified on 2013-03-22 15:55:12 Owner Algeboy (12884) Last modified by Algeboy (12884)

Numerical id 14

Author Algeboy (12884)

Entry type Definition Classification msc 20E34

Synonym socle Defines socle The *socle* of a group is the subgroup generated by all minimal normal subgroups. Because the product of normal subgroups is a subgroup, it follows we can remove the word "generated" and replace it by "product." So the socle of a group is now the product of its minimal normal subgroups. This description can be further refined with a few observations.

Proposition 1. If M and N are minimal normal subgroups then M and N centralize each other.

Proof. Given two distinct minimal normal subgroup M and N, [M, N] is contained in N and M as both are normal. Thus $[M, N] \leq M \cap N$. But M and N are distinct minimal normal subgroups and $M \cap N$ is normal so $M \cap N = 1$ thus [M, N] = 1.

Proposition 2. The socle of a finite group is a direct product of minimal normal subgroups.

Proof. Let S be the socle of G. We already know S is the product of its minimal normal subgroups, so let us assume $S = N_1 \cdots N_k$ where each N_i is a distinct minimal normal subgroup of G. Thus $N_1 \cap N_2 = 1$ and $N_1 N_2$ clearly contains N_1 and N_2 . Now suppose we extend this to a subsquence $N_{i_1} = N_1, N_{i_2} = N_2, N_{i_3}, \ldots, N_{i_j}$ where

$$N_{i_k} \cap (N_{i_1} \cdots N_{i_{k-1}}) = 1$$

for $1 \le k < j$ and $N_i \le N_{i_1} \cdots N_{i_j}$ for all $1 \le i \le i_j$. Then consider N_{i_j+1} .

As N_{i_j+1} is a minimal normal subgroup and $N_{i_1}\cdots N_{i_j}$ is a normal subgroup, N_{i_j+1} is either contained in $N_{i_1}\cdots N_{i_j}$ or intersects trivially. If N_{i_j+1} is contained in $N_{i_1}\cdots N_{i_j}$ then skip to the next N_i , otherwise set it to be $N_{i_{j+1}}$. The result is a squence N_{i_1},\ldots,N_{i_j} of minimal normal subgroups where $S=N_{i_1}\cdots N_{i_s}$ and

$$N_{i_i} \cap (N_{i_1} \cdots N_{i_{i-1}}) = 1, \quad 1 \le j \le s.$$

As we have already seen distinct minimal normal subgroups centralize each other we conclude that $S = N_{i_1} \times \cdots \times N_{i_s}$.

Proposition 3. A minimal normal subgroup is characteristically simple, so if it is finite then it is a product of isomorphic simple groups.

<i>Proof.</i> If M is a minimal normal subgroup of G and $1 < C < M$ is characteristic in M , then C is normal in G which contradicts the minimality of M . Thus M is characteristically simple.
Corollary 4. The socle of a finite group is a direct product of simple group.
<i>Proof.</i> As each N_{i_j} is characteristically simple each N_{i_j} is a direct product of isomorphic simple groups, thus S is a direct product simple groups.