Problem K Climbing Stairs

Time limit: 3 seconds

There is a long staircase over a mountain. It takes N-steps stairs to reach the top. Each time you can climb 1, 2, 3, \cdots , or H steps. But if you don't want to climb all the steps, you can hire bearers at 0^{th} step to take you to some k^{th} step and then climb to the top by yourself. But the bearers will charge you $0, 1, 2, \cdots$, or $k^H \times H^k$ dollars randomly by rolling a wheel. How many distinct methods (ANS) are there to reach the top? For the convenience of verifying the answer, please output $ANS \mod M$ for a given positive integer M.

Let us consider the example of H=2, and N=3. You can climb 1 step three times. The method is denoted as (1,1,1). You can climb 1 step and then climb 2 steps, which is denoted as (1,2). You can climb 2 steps and then climb 1 step, which is denoted as (2,1). Bearers can take you to the first step, and then you climb 1 step twice, which is denoted as (B1,1,1) with $1^2 \times 2^1 + 1$ methods. Bearers can take you to the first step, and then you climb 2 steps, which is denoted as (B1,2) with $1^2 \times 2^1 + 1$ methods. Bearers can take you to the second step, and then you climb 1 step, which is denoted as (B2,1) with $2^2 \times 2^2 + 1$ methods. Bearers can take you to the third step, which is denoted as (B3) with $3^2 \times 2^3 + 1$ methods. So the number of methods are $1+1+1+(1^2\times 2^1+1)+(1^2\times 2^1+1)+(2^2\times 2^2+1)+(3^2\times 2^3+1)=99$. If an integer M=5 is given, then please output 99 mod 5=4.

Technical Specification

- 1. There are at most 10 test cases.
- $2. \ 2 \le M \le 1,000,000,000.$
- 3. $0 \le k \le N$
- 4. $1 \le H \le 15$.
- 5. $1 < N < 10^{64}$

Input Format

The first line contains an integer indicating the number of test cases. Each test case contains three integers, M, H, and N.

Output Format

For each test case, please output the number \pmod{M} of distinct methods to reach the top.

Sample Input

2 999 2 3 8 1 3

Sample Output for the Sample Input

99 2