

ABES Engineering College, Ghaziabad Department of AS&H

Session: 2023-24 Semester: II Section: All Course Code: BAS203 Course Name: Engineering. Mathematics II

UNIT-I: Ordinary Differential Equation of Higher Order

Tutorial 2

C N =	W 60	Question
S.No.	KL, CO	
1	K3, CO1	(i) Determine the differential equation whose set of independent solutions are $\{1, x, x^2\}$ (AKTU-2017) (ii) Find the degree and order of the differential equation $\frac{d^2y}{dx^2} + \sqrt{1 + \left(\frac{dy}{dx}\right)^3} = 0$
2	K3, CO1	Solve $(D^2 - 3D + 2)y = x^2 + 2x + 1$ (AKTU-2015,2016)
3	K3, CO1	Solve $(D^2 + 2D + 1)y = x^2 e^{-x} \cos x$
4	K3, CO1	Solve $(D^2 - 2D + 4)y = e^x \cos x + \sin x \cos 3x$ (AKTU-2018)
5	K3, CO1	Solve $\frac{d^2y}{dx^2} + y = cosecx$ (AKTU-2022)
6	K3, CO1	Solve $\frac{dx}{dt} + \frac{dy}{dt} - 2y = 2cost - 7sint$ $\frac{dx}{dt} - \frac{dy}{dt} + 2x = 4cost - 3sint \text{ (AKTU-2011)}$
7	K3, CO1	Solve $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = x^3 e^x$ (AKTU-2016)
8	K3, CO1	Solve by variation of parameter $(D^2-1)y=2(1-e^{-2x})^{-1/2} \qquad \text{(AKTU-2021)}$
9	K3, CO1	Solve by changing the independent variable $x\frac{d^2y}{dx^2} - \frac{dy}{dx} - 4x^3y = 8x^3sinx^2 \text{ (AKTU-2022)}$
10	K4, CO1	The differential equation for a circuit in which self-inductance and capacitance neutralize each other is $L\frac{d^2i}{dt^2}+\frac{i}{c}=0$. Find the current i as a function of t, given that I is the maximum current and i =0 when t =0

Answers

1. (i)
$$(D-1)^3y = 0$$
, (ii) Order-2, Degree-2

2.
$$y = C_1 e^x + C_2 e^{2x} + 1/2 \left(x^2 + 5x + \frac{15}{2}\right)$$

3.
$$y = (c_1 + c_2 x)e^{-x} + e^{-x}(-x^2\cos x + 4x\sin x + 6\cos x)$$
.

4.
$$y = e^x (c_1 \cos\sqrt{3}x + c_2 \sin\sqrt{3} + (e^x \cos x)\frac{1}{2} - (\frac{1}{8})\cos 2x + 1/104(2\cos 4x - 3\sin 4x)$$

5.
$$y = c_1 cos x + c_2 sin x + sin x log sin x - x cos x$$

6.
$$x = c_1 \cosh \sqrt{2} t + c_2 \sinh \sqrt{2} t + 3 \cos t, y = c_3 \cosh \sqrt{2} t + c_4 \sinh \sqrt{2} t + 2 \sin t$$

7.
$$y = c_1 x + c_2 x^{-1} + \left(x - 3 + \frac{3}{x}\right) e^x$$

8.
$$y = c_1 e^x + c_2 e^{-x} - e^x \sin^{-1}(e^{-x}) - e^{-x}(e^{2x} - 1)^{1/2}$$

9.
$$y = c_1 e^{x^2} + c_2 e^{-x^2} - \sin x^2$$

$$10. i = I \frac{\sin t}{\sqrt{LC}}$$