

Iris data analysis example

Author: Do Thi Duyen

Overview: data analysis process

Data collection and preparation

Collect data

Prepare codebook

Set up structure of data

Enter data

Screen data for errors

Exploration of data

Descriptive Statistics

Graphs

Analysis

Explore relationship between variables

Compare groups

Iris setosa

Iris virginica

Iris versicolor

Iris flower data set

- Also called Fisher's Iris data set or Anderson's Iris data set
- Collected by Edgar Anderson and Gaspé Peninsula
- To quantify the morphologic variation of Iris flowers of three related species
- >iris

Draw a hypothesis that you can test!

Null hypothesis

Alternative hypothesis

• P-value < 0.05

Get data!

Some ways to read data in R:

- read.table, read.csv, read.xls, data.frame,...
- edit,...
- •

=> Hint: Never modify your raw data file; always work on a copy!

Exploration of data

Descriptive Statistics

Graphs

Some basic function in R to examine iris data:

```
>?iris
>names(iris)
>iris
>str(iris)
>iris$new_class_specis<-as.character(iris$Species)
>iris$new_class_specis<-NULL
>iris$Species <- gsub("%",'"',iris$Species))</pre>
>iris<-na.omit(iris)
```

Summarize and plot your data!

>summary(iris)

>plot(iris)

Descriptive statistics

Categorical:

Frequencies

Numerical:

Descriptives:

- mean
- standard deviation
- minimum
- maximum
- skewness (symmetry)
- kurtosis (peakness)

Scatter plot

Scatter plot

plot(iris, col=iris\$Species)

legend(7,4.3,unique(iris\$Species),col=1:length(iris\$Species),p ch=1)

Lattice library

Ggplot2 library

Box plot

Box plot

- >par(mfrow=c(1,2))
- > plot(iris\$Petal.Length)
- >boxplot(iris\$Petal.Length~ iris\$Species)

- > par(mfrow=c(2,2)) # to draw four figs in one window
- > for(i in 1:4) boxplot(iris[,i] ~ Species, data=iris, main=names(iris)[i])

Histogram

Histogram vs Bar chart

Outlier

Outlier

Histogram

- > par(mfrow=c(1,1))
- >hist(iris\$Petal.Length[1:50])

Subsetting:

- >iris\$Sepal.Length[1:50]
- >iris\$Sepal.Length[-(1:50)]

Select by name:

- >iris\$Sepal.Length[iris\$Species == "setosa"]
- Change the order of data frame:
- >iris.ordered<-iris[order(iris\$Sepal.Length),]

Build a statistical model!

Data mining:

- Predict:
 - Classification
 - Regression
 - Deviation detection
- Descript:
 - Clustering
 - Association Rule Discovery

Analysis

Explore relationships among variables

- Crosstabulation/Chi Square
- Correlation
- Regression/Multiple regression
- Logistic regression
- Factor analysis

Compare groups

- Non-parametric statistics
- T-tests
- One-way analysis of variance ANOVA
- Two-way between groups ANOVA
- Multivariate analysis of variance MANOVA

Clustering

Clustering

- Principle: based on measure of distances
- Algorithms:
 - Hierarchical clustering: bottom up, top down
 - Centroid-based clustering: k-mean, PAM, CLARA, CLARANS,...
 - Distribution-based clustering: STING, WAVECluster, CLIQUE,...
 - Density-based clustering: DBSCANS, OPTICS, DENCLUE,...
 - Model-based cluatering: statistical model + Neural network
 - ...

K-Mean

Classification

Clasification algorithms

- Linear classifiers: Fisher's linear discriminant analysis, Naive Bayes classifier,..
- Support vector machines: Least squares support vector
- Quadratic classifiers
- Kernel estimation: k-nearest neighbor
- Boosting (meta-algorithm)
- Decision trees: Random forests

• ...

Fisher's linear discriminant analysis (LDA)

Demo in R

Regression analysis

-2

 $Y \approx f(X, \beta)$

Regression analysis

Methods: Linear regression, Logistic regression, Poisson regression

Regression analysis is widely used for prediction and forecasting

Predict model

Linear regression

Analysis simple linear regression in R

Demo in R

Estimate

• Clustering: hard, using: user examine, similarity measure, classification algorithms, entropy, F-measure, pure,...

Clasification: holdout, k-fold cross validation,...

Regression: statistical hypothesis test

Report

References

- http://en.wikipedia.org/wiki/Iris_flower_data_set
- http://ykhoa.net/r/R/Chuong%2010.%20%20Phan%20tich% 20hoi%20qui%20tuyen%20tinh.pdf
- http://www.statsoft.com/Textbook/Elementary-Statistics-Concepts
- http://bis.net.vn/forums/p/366/628.aspx

Q&A

Thank for listening