252SE311: ວິສະວະກຳຊອບແວຣ໌

ການສ້າງ, ທົດສອບ ແລະ ບຳລຸງຮັກສາ

ບິດທີ 12

ການທິດສອບຊອບແວຣ໌

Software Testing

ເນື້ອໃນຫຍໍ້

- 🕈 ຄວາມຮູ້ເບື້ອງຕຶ້ນຂອງການທຶດສອບຊອບແວຣ໌
- 🕈 ການທຶດສອບລະດັບຫົວໜ່ວຍຍ່ອຍ
- 🕈 ການທຶດສອບລວມ
- 🕈 ການທຶດສອບລະບົບ
- 🕈 ການທິດສອບຊອບແວຣ໌ແບບວັດຖຸ
- 🕈 ກໍລະນີ ແລະ ການວາງແຜນການທຶດສອບ
- 🗢 ເຄື່ອງມືການທຶດສອບແບບອັດຕະໂນມັດ

- 🖔 ເປັນກິດຈະກຳທີ່ເຮັດຂຶ້ນເພື່ອປະເມີນ ແລະ ປັບປຸງຄຸນນະພາບ ຂອງຊອບແວຣ໌ ໂດຍການກວດຫາຂໍ້ຜິດພາດ ແລະ ບັນຫາທີ່ເກີດ ຂຶ້ນ ແລ້ວແກ້ໄຂຂໍ້ຜິດພາດ ແລະ ບັນຫາໃຫ້ຖືກຕ້ອງ
- ຈຸດປະສິງຂອງການທິດສອບຊອບແວຣ໌ແມ່ນເພື່ອພິສູດວ່າຊອບ ແວຣ໌ເຮັດວຽກໄດ້ຄົບທຸກໜ້າທີ່ຕາມຂໍ້ກຳໜິດຄວາມຕ້ອງການ ແລະ ແຕ່ລະໜ້າທີ່ສາມາດປະມວນຜົນຂໍ້ມູນໄດ້ຢ່າງຖືກຕ້ອງ

🦫 ຄຳສັບທີ່ຄວນຮູ້ຈັກ

- Error ແມ່ນການກະທຳຜິດ ໝາຍເຖິງຄ່າຈິງທີ່ໄດ້ຈາກການເຮັດວຽກ ບໍ່ກີງກັບຄ່າຖືກຕ້ອງ ນອກຈາກນັ້ນ ຍັງລວມເຖິງຜົນການຕັດສິນໃຈ ຜິດຈາກຄວາມຕ້ອງການ
- Fault "ຄວາມຜິດພາດ ຫຼື ຂໍ້ບົກພ່ອງ" ໝາຍເຖິງສະພາບທີ່ຂະບວນ
 ການປະມວນຜົນຂອງຊອບແວຣ໌ບໍ່ປົກກະຕິ
- Failure ໝາຍເຖິງຊອບແວຣ໌ຫຼືຮາດແວຣ໌ບໍ່ສາມາດເຮັດວຽກຕາມໜ້າທີ່ໃດໜຶ່ງ ລວມເຖິງບໍ່ສາມາດແຈ້ງເຕືອນຂໍ້ຜິດພາດ

🦴 ລະດັບການທຶດສອບຊອບແວຣ໌

- o ການທຶດສອບໃນລະດັບຫົວໜ່ວຍຍ່ອຍ (Unit Testing)
 - ເປັນການທຶດສອບແຕ່ລະພາກສ່ວນຍ່ອຍສຸດຂອງຊອບແວຣ໌ ເພື່ອປະເມີນການ
 ເຮັດວຽກໃນດ້ານຕ່າງໆ
- o ການທຶດສອບໃນລະດັບລວມ (Integration Testing)
 - ເປັນການທິດສອບການເຮັດວຽກຂອງກຸ່ມໂປຣແກຣມ ຊຶ່ງເປັນການທິດສອບ ຫລັງຈາກທີ່ເອົາແຕ່ລະພາກສ່ວນຍ່ອຍມາລວມເຂົ້າກັນ
- o ການທຶດສອບລະບົບ (System Testing)
 - ເປັນການທຶດສອບຊອບແວຣ໌ເມື່ອເອົາມາລວມເຂົ້າກັບອົງປະກອບອື່ນຂອງ
 ລະບົບ

ວິທີທາງໃນການທຶດສອບຊອບແວຣ໌

ວິທີທາງໃນການທຶດສອບ
 ຊອບແວຣ໌ທີ່ດີທີ່ສຸດແມ່ນ
 ການທຶດສອບຕາມຮອບ
 ຂອງການສ້າງຊອບແວຣ໌
 ໂດຍເລີ່ມຕົ້ນຈາກການທຶດ
 ສອບເທື່ອລະ ໂມດູນ ເອີ້ນ
 ວິທີການນີ້ວ່າ
 Incremental Testing
 Approach

🦴 ໂຄງສ້າງຕົ້ນໄມ້ຂອງການທຶດສອບຊອບແວຣ໌

- 🔖 ສາມາດທິດສອບຫລາຍໜ່ວຍຍ່ອຍ (Unit) ພ້ອມໆກັນໄດ້ 🔖 ສິ່ງທີ່ຕ້ອງທຶດສອບໃນລະດັບນີ້ມີດັ່ງນີ້
 - o ໂຄງສ້າງຂໍ້ມູນ (Data Structure) ໂຄງສ້າງຂໍ້ມູນ ພາຍໃນໂມດຸນ
 - o ເງື່ອນໄຂຂອງຂອບເຂດ (Boundary Condition) ຂອບເຂດຄ່າຂໍ້ ມູນທີ່ໂປຣແກຣມຕ້ອງປະມວນຜົນ
 - o ເສັ້ນທາງການປະມວນຜືນອິດສະຫລະ (Independent Process Path)- ແມ່ນເສັ້ນທາງການເຮັດວຽກທີ່ແຕກຕ່າງກັນຕາມເງື່ອນໄຂ
 - o ເສັ້ນທາງການປະມວນຜືນຂໍ້ຜິດພາດ ແລະ ການສະແດງຂໍ້ຜິດພາດ (Error Processing Path)

- White Box Testing
 - ເປັນວິທີທີ່ໃຊ້ເສັ້ນທາງຄວບຄຸມການເຮັດວຽກ ແລະ ໂຄງສ້າງຄວບຄຸມທີ່ໄດ້ຈາກການອອກແບບມາຊ່ວຍອອກແບບກໍລະນີທິດສອບ
 - ທຶດສອບສິ່ງຕ່າງໆຕໍ່ໄປນີ້
 - 1. ທິດສອບທຸກເສັ້ນທາງໃນຂະບວນການຈະຕ້ອງເຮັດວຽກຢ່າງຖືກຕ້ອງ
 - 2. ທຶດສອບການຕັດສິນໃຈທາງຕັກກະສາດທຸກການຕັດສິນໃຈ ທັງຄ່າທີ່ເປັນຈິງ ແລະ ຄ່າທີ່ບໍ່ເປັນຈິງ
 - 3. ທົດສອບການເຮັດວຽກພາຍໃນລູບຕາມຈຳນວນຄັ້ງຂອງການວິນລູບ
 - 4. ທຶດສອບໂຄງສ້າງຂໍ້ມູນພາຍໃນໃຫ້ຖືກຕ້ອງກ່ອນທີ່ຈະສິ່ງໄປປະມວນຜືນໃນໂປຣ ແກຣມຫຼືໜ່ວຍອື່ນ

- White Box Testing
 - o ການສ້າງກໍລະນິທິດສອບນັ້ນຈະຕ້ອງໄດ້ສ້າງ Flow chart ຫຼື Graph ສະແດງຂະບວນ ການເຮັດວຽກ (Process Flow Graph) ຈາກປະໂຫຍກຄຳສັ່ງໃນໂປຣແກຣມ ເພື່ອກຳ ໜິດເສັ້ນທາງການທິດສອບຈາກ Graph
 - ທຶດສອບທຸກໆເສັ້ນທາງ ລວມທັງຄ່າທີ່ເປັນຈິງ ແລະ ຄ່າທີ່ບໍ່ເປັນຈິງ
 - ເອົາຜົນໄດ້ຮັບມາປຽບທຽບກັບຂໍ້ມູນຊຸດທິດສອບ ວ່າເປັນໄປຕາມຜົນຂອງຊຸດທິດສອບບໍ່
 - ຜົນດີ: ສາມາດກວດສອບຫາຂໍ້ຜິດພາດຂອງໂປຣແກຣມໄດ້ຢ່າງລະອຽດ
 - ຜິນເສຍ: ໃຊ້ເວລາຫລາຍ, ຕົ້ນທຶນຫລາຍ

- White Box Testing
 - ສິມມຸດວ່າມີໂປຣແກຣມທີ່ຕ້ອງການທຶດສອບດັ່ງນີ້

```
function f1()
    while A {
        process X;
        if B
          4 if C
                  process Y;
         6 else process Z;
        else {
             process V;
          8 process W;
    } //end while
 //end function
```

🔖 ວິທີການທຶດສອບໃນລະດັບນີ້ມີ 2 ວິທີຄື:

White Box Testingກຳໜີດເສັ້ນທາງການທຶດສອບໂປຣແກຣມ

- ຈາກເສັ້ນທາງການເຮັດວຽກຂອງໂປຣແກຣມທັງໝົດເຫັນວ່າມີທັງໝົດ 4ເສັ້ນທາງທີ່ຕ້ອງທຶດສອບ
 - 1) 1, 10
 - 2) 1, 2, 3, 4, 6, 9, 1, 10
 - 3) 1, 2, 3, 4, 5, 9, 1, 10
 - 4) 1, 2, 3, 7, 8, 9, 1, 10

- Black Box Testing
 - o ບາງຄັ້ງເອີ້ນວ່າ Behavioral Testing
 - ແມ່ນການທຶດສອບການເຮັດວຽກຂອງຊອບແວຣ໌ໃນແຕ່ລະໜ້າທີ່ຕາມຂໍ້ກຳໜິດຄວາມຕ້ອງການ ເພື່ອເບິ່ງວ່າຊອບແວຣ໌ເຮັດວຽກໄດ້ຖືກຕ້ອງຕາມທີ່ກຳໜິດໄວ້ບໍ່
 ໂດຍບໍ່ຄຳນຶງເຖິງຄຳສັ່ງພາຍໃນ
 - ນອກຈາກນັ້ນຍັງເປັນການທຶດສອບປະສິດທິພາບຂອງຊອບແວຣ໌ ແລະ ເງື່ອນໄຂຂອບເຂດຂອງຂໍ້ມູນທີ່ປ້ອນເຂົ້າ

- Black Box Testing
 - ການທຶດສອບແບບກ່ອງດຳສາມາດຊ່ວຍໃຫ້ຄົ້ນພົບຂໍ້ຜິດພາດດັ່ງນີ້
 - 1. ໜ້າທີ່ການເຮັດວຽກຜິດພາດ
 - 2. ການເຮັດວຽກບໍ່ຄືບໜ້າທີ່
 - ຄວາມຜິດພາດຂອງພາກສ່ວນສື່ສານກັບລະບົບອື່ນ
 - 4. ຄວາມຜິດພາດຂອງການຕັດສິນໃຈເຮັດວຽກຕໍ່ຫຼືຢຸດເຮັດວຽກ
 - 5. ຄວາມຜິດພາດຂອງການປະມວນຜົນຂໍ້ມູນ

- Black Box Testing
 - ເປັນວິທີການທຶດສອບທີ່ມີການແບ່ງຂໍ້ມູນປ້ອນເຂົ້າອອກເປັນກຸ່ມດັ່ງນີ້
 - 1. ຄ່າຂໍ້ມູນຕ່ຳສຸດ
 - 2. ຄ່າຂໍ້ມູນສຸງສຸດ
 - 3. ຄ່າຂໍ້ມູນທີ່ເປັນຕົວແທນກຸ່ມເປັນຄ່າຂໍ້ມູນທີ່ໄກ້ຄຽງກັບຄ່າກາງ
 - 4. ຄ່າຂໍ້ມູນເກີນຂອບເຂດຂອງຂໍ້ມູນຂອງເງື່ອນໄຂແຕ່ລະຊ່ວງ

ການທຶດສອບການລວມຫົວໜ່ວຍຍ່ອຍ

- 🖔 ເປັນການທິດສອບການເຮັດວຽກຂອງກຸ່ມໂປຣແກຣມ ຫຼື ທິດ ສອບການລວມໂປຣແກຣມຍ່ອຍເຂົ້າດ້ວຍກັນ ໂດຍເຮັດໜ້າທີ່ ໃດໜຶ່ງຮ່ວມກັນ
- 🦫 ເປັນການທຶດສອບພາກສ່ວນສື່ສານການເຮັດວຽກຮ່ວມກັນ ລະຫວ່າງແຕ່ລະສ່ວນຍ່ອຍ
- 🔖 ສ່ວນທີ່ຈະຖືກທຶດສອບມີ 2 ຢ່າງຄື: ພາກສ່ວນສື່ສານ ແລະ ຜິນ ການເຮັດວຽກຂອງພາກສ່ວນລວມ
- ຈານທຶດສອບແບບລວມສາມາດເຮັດໄດ້ 2 ລັກສະນະຄື: ແບບລວມໜ່ວຍທັງໝົດແລ້ວທຶດສອບຄັ້ງດຽວ ແລະ ແບບເພີ່ມ ເທື່ອລະ ໂມດູນ

ການທຶດສອບການລວມຫຼວໜ່ວຍຍ່ອຍ

🦴 ການທຶດສອບແບບເພີ່ມເທື່ອລະ ໂມດູນມີ 2 ວິທີ

- o ການທຶດສອບແບບເພີ່ມໂມດູນຈາກເທິງລຶງລຸ່ມ (Top-down Appoach)
 - ເປັນການທິດສອບໂດຍເພີ່ມເທື່ອລະໂມດູນຈາກເທິງລົງລຸ່ມຕາມລຳດັບໂຄງສ້າງ ຄວບຄຸມ ໝາຍຄວາມວ່າ ຼີໂມດູນທີ່ຢູ່ລະດັບເທິງຈະເອີ້ນໃຊ້ ໂມດູນທີ່ຢູ່ລະດັບລຸ້ມ
 - ີ ມີຫລັກການທຶດສອບດັ່ງນີ້
 - 1. ຂະບວນການເຮັດວຽກໃດໜຶ່ງທີ່ຈະທຶດສອບຈະຕ້ອງມີໂມດຸນຫລັກເພື່ອຮັບ ຂໍ້ມູນທຶດສອບແລ້ວສິ່ງຜ່ານໄປຫາໂມດູນທຶດສອບ, ໂມດູນຫລັກເອີ້ນວ່າ Driver
 - 2. ຫາກໂມຼດູນທີ່ຈະຖືກທຶດສອບຕ້ອງການໂມດູນຍ່ອຍຈຶ່ງຈະສື່ມບຸນ ແຕ່ໃນ ຂະນະນັ້ນໂມດູນຍ່ອຍຍັງສ້າງບໍ່ແລ້ວ ທີມງານຈະຕ້ອງສ້າງ ໂມດູ້ນແທນ (Stub Module) ຂຶ້ນມາແທນເພື່ອທຶດສອບກ່ອນ ການທຶດສອບຈະເຮັດທຸກຄັ້ງທີ່ມີການເພີ່ມໂມດູນ

ການທຶດສອບການລວມຫຼວໜ່ວຍຍ່ອຍ

🦫 ການທຶດສອບແບບເພີ່ມເທື່ອລະ ໂມດູນູມີ 2 ວິທີ

- o ການທຶດສອບແບບເພີ່ມໂມດູນຈາກລຸ່ມຂື້ນເທິງ (Bottom-up Approach)
 - ຈະທຶດສອບໂດຍເລີ່ມຈາກໂມດູນລຸ່ມສຸດກ່ອນ ເປັນການລວມເອົາໂມດູນລູ່ມສຸດ
 ເຂົ້າກັນເປັນກຸ່ມ (Cluster) ເພື່ອທຶດສອບການເຮັດວຽກຮ່ວມກັນ
 - ຕ້ອງເຮັດ Driver ຂຶ້ນມາເພື່ອທິດສອບການເຮັດວຽກຂອງໂມດູນໃນລະດັບລູ່ມ
 ເມື່ອທິດສອບຮຽບຮ້ອຍແລ້ວຈຶ່ງຖອດ Driver ອອກ ແລ້ວແທນທີ່ດ້ວຍ
 Cluster ໃໝ່ທີ່ເພີ່ມເຂົ້າມາ ເຮັດແນວນັ້ນໄປເລື້ອຍໆ
 - o ເຄື່ອງມືທີ່ໃຊ້ແບ່ງ Cluster ໄດ້ດີທີ່ສຸດຄື Structure Chart
 - ການເລືອກວິທີການທຶດສອບລະບົບລວມຂຶ້ນຢູ່ກັບໂຄງສ້າງຄວບຄຸມການເຮັດວຽກຂອງລະບົບ
 - o ຖ້າເປັນລະບົບທີ່ຄວບຄຸມແລະຕັດສິນໃຈຢູ່ທາງເທິງໃຫ້ເລືອກ Top-down
 - ຖ້ຳເປັນລະບົບທີ່ການຄວບຄຸມຂຶ້ນຢູ່ກັບເງື່ອນໄຂທາງທຸລະກິດໃຫ້ເລືອກ Bottom up

ການທຶດສອບການລວມຫົວໜ່ວຍຍ່ອຍ

🦴 ການທຶດສອບແບບເພີ່ມເທື່ອລະ ໂມດູນມີ 2 ວິທີ

- ບໍ່ວ່າຈະເລືອກວິທີໃດກໍ່ຕາມຫລັງຈາກການທຶດສອບລະດັບລວມແລ້ວ ຈະຕ້ອງມີການເຮັດ Regression Testing ເພື່ອທຶດສອບການເຮັດ ວຽກຂອງໂມດູນຊໍ້າອີກເທື່ອໜຶ່ງ ໂດຍສາມາດທຶດສອບດ້ວຍກໍລະນີທຶດ ສອບຊຸດເດີມອີກ
- ແຕ່ເພື່ອເປັນການປະຢັດເວລາອາດຈະທຶດສອບສະເພາະສ່ວນທີ່ເພີ່ມເຂົ້າ
- ຖ້າຕ້ອງການທຶດສອບຊ້ຳທັງໝົດອີກເທື່ອໜຶ່ງສາມາດໃຊ້ເຄື່ອງມື
 Capture/Playback Tools

ການທິດສອບລະບົບ

- 🔖 ເປັນການທິດສອບການເຮັດວຽກຂອງລະບົບເມື່ອເອົາຊອບແວຣ໌ ມາລວມເຂົ້າກັບອົງປະກອບອື່ນໆໄດ້ແກ່ ອຸປະກອນ, ບຸກຄະລາ ກອນ ແລະ ຂໍ້ມູນ
- 🖔 ເພື່ອທຶດສອບວ່າລະບົບເຮັດວຽກໄດ້ຖືກຕ້ອງຕາມຂໍ້ກຳໜິດ ແລະ ຄວາມຕ້ອງການຂອງຜູ້ໃຊ້
- 🦴 ການທຶດສອບລະບົບແບ່ງອອກເປັນ 2 ລັກສະນະ
 - Alpha and Beta Testing
 - Runtime Operation Testing

ການທິດສອບລະບົບ

Alpha and Beta Testing

- ບາງຄັ້ງເອິ້ນວ່າ ການທຶດສອບການສິ່ງມອບ ຫຼື ການທຶດສອບການຍອມຮັບ ຂອງລູກຄ້າ ເນື່ອງຈາກລູກຄ້າເປັນຜູ້ທຶດສອບເອັງ
- Alpha Testing ເປັນການທຶດສອບລະບົບໂດຍຜູ້ໃຊ້ຢູ່ສະຖານທີ່ ຜະລິດຊອບແວຣ໌ໂດຍຜູ້ໃຊ້ໃຊ້ງານພາຍໄຕ້ສະຖານະການຈຳລອງຂຶ້ນ
- Beta Testing ເປັນການນຳເອົາຊອບແວຣ໌ໃປໃຫ້ຜູ້ໃຊ້ໄດ້ທົລອງໃຊ້ງານຊອບແວຣ໌ໃນສະຖານທີ່ຈິງດ້ວຍຕົນເອັງໂດຍບໍ່ມີທີມງານຄອຍສັງເກດ

ການທິດສອບລະບົບ

Runtime Operation Testing

- ເປັນການທຶດສອບຂະນະທີ່ລະບົບກຳລັງເຮັດວຽກຢູ່
- ສິ່ງທີ່ຕ້ອງທຶດສອບມີດັ່ງນີ້
 - ທີສອບການກູ້ຄືນ (Recovery Testing)
 - ທຶດສອບໃນກໍລະນີຂັບຂັນ (Stress Testing) ເປັນການທຶດສອບໃນສະຖານະ ການບໍ່ປົກກະຕິ ໂດຍລະບົບຈະຕ້ອງເຮັດວຽກຕໍ່ໄປໄດ້
 - ທຶດສອບສະມັດຕະພາບ (Performance Testing)
 - ທິດສອບການຮັກສາຄວາມປອດໄພ (Security Testing)
 - ການທຶດສອບການເຮັດເອກະສານ (Document Testing)

ການທຶດສອບຊອບແວຣ໌ແບບວັດຖຸ

🦴 ການທຶດສອບລະດັບຫົວໜ່ວຍຍ່ອຍ (Unit Testing)

- o ເອີ້ນວ່າ Class Testing ເນື່ອງຈາກວ່າ Class ຫຼື Object ໄດ້ລວມເອົາ ຂໍ້ມູນ ແລະ ພຶດຕິກຳໄວ້ນຳກັນ
- ການທຶດສອບ Class ຈະຕ້ອງພິຈະລະນາໃນສ່ວນດຳເນີນການແລະ ພຶດຕິກຳໃນແຕ່ລະສະຖານະການຂອງມັນ

ການທຶດສອບຊອບແວຣ໌ແບບວັດຖຸ

🦴 ການທຶດສອບລະບົບລວມ (Integration Testing)

- ວິທີທຶດສອບແບບ Top-down ແລະ Bottom-up ແມ່ນບໍ່ສາມາດໃຊ້
 ໄດ້ກັບຊອບແວຣ໌ແບບ Object
- o ວິທີທຶດສອບແບບລວມໜ່ວຍຂອງຊອບແວຣ໌ແບບ Object
 - Thread-based Testing ແມ່ນການລວມ Class ທີ່ຕອບສະໜອງຕໍ່ເຫດການ ດຽວກັນໄວ້ເປັນກຸ່ມດຽວກັນ ເອີ້ນວ່າ Thread ແລະ ແຕ່ລະ Thread ຈະຖືກ ທຶດສອບເປັນອິດສະຫລະ
 - Use-based Testing ເປັນການທຶດສອບທີ່ເລີ່ມຕົ້ນຈາກ Independent Class ຈາກນັ້ນຈຶ່ງເພີ່ມລະດັບຂຶ້ນໄປທີ່ Dependent Class ແຕ່ລະລະດັບຂຶ້ນໄປເລື້ອຍ ຈືນຄືບ

ກໍລະນີ ແລະ ການວາງແຜນການທົດສອບ

- ຈານອອກແບບກໍລະນີທິດສອບແມ່ນການກຳໜິດຊຸດຂໍ້ມູນເພື່ອ ປ້ອນເຂົ້າ (Input) ແລະ ຜິນໄດ້ຮັບທີ່ຄາດຫວັງ (Output) ໂດຍມີ ເປົ້າໝາຍເພື່ອຄົ້ນພຶບຂໍ້ຜິດພາດ ແລະ ຂໍ້ບົກພ່ອງຂອງຊອບແວຣ໌ ໃຫ້ຫລາຍທີ່ສຸດ
- ຈານວາງແຜນການທຶດສອບເປັນການກຳໜຶດລາຍລະອຽດການ ເຮັດວຽກ ໃນແຕ່ລະຂັ້ນຕອນຂອງຂະບວນການທຶດສອບ ສິ່ງທີ່ໄດ້ ຄື ເອກະສານແຜນການທຶດສອບ (Test Plan)
- 🖔 ແຜນການທຶດສອບ ແມ່ນເອກະສານທີ່ປະກອບດ້ວຍຊຸດຂໍ້ມູນທີ່ ປ້ອນເຂົ້າຂອງແຕ່ລະເສັ້ນທາງ ແລະ ຜີນຂອງການທຶດສອບແຕ່ລະ ເສັ້ນທາງ

ກໍລະນີ ແລະ ການວາງແຜນການທົດສອບ

🤟 ຕ້ອງກຳໜົດຮູບແບບເອກະສານສຳຫລັບຂຽນກໍລະນີທົດສອບແຕ່ລະກໍລະນີ ແລະ ຮູບແບບເອກະສານສຳຫລັບຂຽນແຜນທົດສອບ

Test Case Name:		Test Case ID:					
Purpose of Test:		Testing Object: (Unit, Module, Application, Class)					
Test Attribute:							
Test Focus: (Function, Feature, Interface, etc.)							
Test Type: (Alpha, Beta, Unit, Integration, System)							
Test Process:	ຄຳສັ່ງໃຊ້ທຶດສອບໃນກໍ່ລະນີຕ່າງໆ ເລີ່ມຈາກສະຖານະການເລີ່ມຕົ້ນ, ຂໍ້ມູນ ນຳເຂົ້າ ແລະ ຜົນຄາດວ່າຈະໄດ້ຮັບ						
Test Result:	ສະແດງຜົນຄາດວ່ ^ເ ທັງສອງ	າຈະໄດ້ຮັບ, ຜິນຈາກການທຶດສອບ ແລະ ປຽບທຽບຜິນ					
Action:	ການແກ້ໄຂ ແລະ ເ	ຜິນຕອບຮັບຈາກການທຶດສອບໃໝ່					

ກໍລະນີ ແລະ ການວາງແຜນການທົດສອບ

🤟 ຕ້ອງກຳໜົດຮູບແບບເອກະສານສຳຫລັບຂຽນກໍລະນີທົດສອບແຕ່ລະກໍລະນີ ແລະ ຮູບແບບເອກະສານສຳຫລັບຂຽນແຜນທົດສອບ

Project Name: _____Project ID: ______
Project Manager: _____QA Manager: _____

Test									
Test ID		Test Name	1	2	3	• • •	n	Planned Date	
ID	Tester							Completed	Successful

ເຄື່ອງມືການທິດສອບແບບອັດຕະໂນມັດ

Code Analysis Tools

- ເປັນເຄື່ອງມືທີ່ໃຊ້ວິເຄາະໂຄດໂປຣແກຣມ ແບ່ງອອກເປັນ 2 ປະເພດ
 - Static Analysis ໃຊ້ວິເຄາະໂຄດກ່ອນການ Run ໂປຣແກຣມ
 ປະກອບດ້ວຍກິນໄກຕ່າງໆດັ່ງນີ້
 - Code Analyzer ໃຊ້ວິເຄາະໄວຍະກອນ
 - Structure Checker ໃຊ້ສ້າງ Graph ສະແດງໂຄງສ້າງຄວບຄຸມ
 - Data Analyzer ໃຊ້ທຶບທວນໂຄງສ້າງຂໍ້ມູນ, ການປະກາດໃຊ້ຂໍ້ມູນ
 ແລະ ການປະກາດ Interface
 - Sequence Checker ໃຊ້ກວດສອບລຳດັບຂອງເຫດການ

ເຄື່ອງມືການທິດສອບແບບອັດຕະໂນມັດ

♦ Code Analysis Tools

- ເປັນເຄື່ອງມືທີ່ໃຊ້ວິເຄາະໂຄດໂປຣແກຣມ ແບ່ງອອກເປັນ 2 ປະເພດ
 - Dynamic Analysis ໃຊ້ວິເຄາະໂຄດໃນຂະນະ Run ໂປຣແກຣມ
 ຊ່ວຍໃຫ້ສາມາດເບິ່ງສະຖານະການຕ່າງໆໃນເວລາ Run ໂປຣແກຣມ
 - ບາງຄັ້ງເອີ້ນວ່າ Program Monitor
 - ສາມາດນັບຈຳນວນການເອິ້ນໃຊ້ຄອມໂພເນັ້ນຫຼືຈຳນວນແຖວໂຄດທີ່ກຳລັງ
 run ຢູ່ໄດ້ ຊ່ວຍໃຫ້ຮູ້ເຖິງເສັ້ນທາງການທິດສອບໂປຣແກຣມໄດ້ງ່າຍ

ເຄື່ອງມືການທຶດສອບແບບອັດຕະໂນມັດ

ເຄື່ອງມືການທຶດສອບແບບອັດຕະໂນມັດ

> Test Execution Tools

- ເປັນເຄື່ອງມືທີ່ໃຊ້ສ້າງຂະບວນການແບບອັດຕະໂນມັດ ຊ່ວຍໃນການວາງແຜນ ແລະ ດຳເນີນການທຶດສອບໄດ້ງ່າຍຂຶ້ນ
- ເຄື່ອງມືທີ່ເໝາະສົມກັບການທຶດສອບໃນລັກສະນະນີ້ໄດ້ແກ່
 - Capture and playback Tool
 - Stub and Driver
 - Automated Testing Environment

ເຄື່ອງມືການທຶດສອບແບບອັດຕະໂນມັດ

Test Execution Tools

- Capture and playback Tool
 - ໃຊ້ເບິ່ງ ຫຼື ບັນທຶກເຫດການການປ້ອນຂໍ້ມູນເຂົ້າ ແລະ ການຕອບສະໜອງຂອງໂປຣແກຣມ
- Stub and Driver
 - o ເປັນເຄື່ອງມືທີ່ຊ່ວຍໃຫ້ສາມາດປະສານການເຮັດວຽກຂອງ Stub ກັບ Driver ໄດ້ອັດຕະໂນມັດ
- Automated Testing Environment
 - ສາມາດຮ່ວມກັບເຄື່ອງມືອື່ນໆເພື່ອໃຫ້ມີຄວາມສາມາດຫລາຍຂຶ້ນໄດ້
 - ສ່ວນຫລາຍຈະເຊື່ອມຕໍ່ກັບພາກສ່ວນທຶດສອບຖານຂໍ້ມູນ, ເຄື່ອງມືວັດແທກຜົນ ໄດ້ຮັບ, ເຄື່ອງມືວິເຄາະໂຄດ, ໜ້າຕ່າງຂຽນໂຄດ, ເຄື່ອງມືສ້າງສະຖານະການແລະ ແບບຈຳລອງ ແລະ ອື່ນໆ

ເຄື່ອງມືການທິດສອບແບບອັດຕະໂນມັດ

♦ Test Case Generator

ເປັນເຄື່ອງມືສ້າງກໍລະນີທຶດສອບແບບອັດຕະໂນມັດ ເພື່ອຊ່ວຍໃຫ້
 ສາມາດສ້າງກໍລະນີທຶດສອບໄດ້ຄວບຄຸມທຸກສະຖານະການ ຫຼື ທຸກ ກໍລະນີ