(1) Determine each of the following sequences is convergent or divergent. For convergent
sequences, find the limit and prove it. For divergent sequences, prove that they are
divergent.

- (a) $a_n = (\frac{2}{3})^n$.
- (b) $b_n = 2^n$.
- (c) $c_n = \frac{\sin(2n)}{\sqrt{n}}$
- (d) $d_n = \sin(\frac{n\pi}{2})$.
- (e) $e_n = \sqrt{n^2 + 4n} n$.
- (f) $f_n = \frac{2^n}{n!}$.

(a)
$$\lim_{n \to 0} a_n = 0$$
. (Similar to the proof $\lim_{n \to 0} \frac{1}{n} = 0$ we did in class).

then
$$n7N \Rightarrow |cn-o| \leq \frac{1}{\sqrt{n}} < \frac{1}{\sqrt{N}} = \epsilon$$
.

then
$$n > N \Rightarrow |e_n - 2| = |\sqrt{\sqrt{n^2 + 4n}} - n - 2|$$

$$=\frac{4}{\sqrt{n^2+4n}+(n+2)}$$

$$<\frac{4}{2n}<\frac{2}{N}=\xi$$

(f).
$$\lim_{n\to\infty} f_n = 0$$
.
 $\forall \xi > 0$, Let $N = 3 + \frac{\log(\frac{4}{3\xi})}{\log 2}$.

Then for any now, we have:

$$\frac{2^{n}}{1} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{4} \cdot \frac{2}{3} \cdot$$

(2) (Squeeze lemma, **very useful**) Let (a_n) , (b_n) , (c_n) be three sequences satisfying $a_n \leq b_n \leq c_n$ for all n. Suppose that (a_n) and (c_n) both converge with $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = a$. Prove that $\lim_{n\to\infty} b_n = a$.

Let N= max {N1, N2}>0.

Then
$$n7N \Rightarrow a-2 < a_n \leq b_n \leq c_n < a+2$$

$$\Rightarrow$$
 $|b_n-a|< \varepsilon$.

(3) Let $a_n = \frac{n-\sin(n)}{n}$. Use the squeeze lemma to show that a_n converges and find the limit.

Pf: We have
$$1 - \frac{1}{n} \le \alpha_n \le 1 + \frac{1}{n}$$
 $\forall n$.

$$2 \text{ Im} (1 - \frac{1}{n}) = 2 \text{ Im} (1 + \frac{1}{n}) = 1$$

(4) Let $a_1 = 3$ and $a_{n+1} = \sqrt{3a_n + 10}$ for $n \ge 1$. Prove that (a_n) converges, and find the limit.

Claim:
$$\alpha_n \leq \alpha_{n+1} \leq 5$$
 $\forall n$.

Pf: Induction on n;
$$\alpha_1 = 3 < \alpha_2 = \sqrt{19} < 5$$
.

Suppose
$$a_{n-1} \leq a_n \leq 5$$
. Then:

$$||a_n \leq a_{n+1}|| \Leftrightarrow ||a_n \leq \sqrt{3a_n + 10}|$$

$$\Rightarrow "a_n \in 3a_n + 10" (5nu a_n > 0).$$

$$\iff (a_n-5)(a_n+2) \leq o''$$

$$|| a_{n+1} \leq 5|| \iff || \sqrt{3a_{n+10}} \leq 5||$$

$$|| a_n \leq 5||$$

Therefore
$$a_n \leq a_{n+1} \leq 5$$
.

We have
$$a_{n+1} = 3a_n + 10$$
.

$$\lim_{N \to \infty} \frac{2}{n \ln n} = \frac{2}{n}$$

$$\chi(m(20010) - 20010$$

$$q^2 = 3a + 10$$
.

(5) Show that if (a_n) converges to a, then the sequence of absolute values $(|a_n|)$ converges to |a|. Is the converse statement true?

$$-|a_n-a| \leq |a_n|-|a| \leq |a_n-a|$$

$$||a_n-a_n|| \leq ||a_n-a_n||.$$

$$n > N \implies |a_n - a| < \epsilon$$
.

$$||a_n|-|a|| \leq |a_n-a| < \varepsilon.$$

The converse statement is NOT true.

$$e_{iq}$$
 $(\alpha_n) = (-1, 1, -1, 1, ...) div.$

(6)	Let (a_n) be a sequence of nonzero real numbers. Suppose that $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n}\right = b$
	exists and is less than 1. Prove that $\lim_{n\to\infty} a_n = 0$. (Hint: Choose any c so
	that $b < c < 1$ and show that there exists $N > 0$ such that $ a_{n+1} < c a_n $ for all
	n > N.)

Since
$$\lim_{n \to \infty} \left| \frac{\alpha_{n+1}}{\alpha_n} \right| = b$$
,

at.
$$n > N \Rightarrow \left| \frac{|a_{n+1}|}{|a_n|} - b \right| < \varepsilon = c - b$$
.

$$\Rightarrow \frac{|a_{n+1}|}{|a_n|} < b+\varepsilon = c.$$

$$\Rightarrow$$
 $|a_{n+1}| < c|a_n|$.

Now fix any no >N. Then we have

$$0 < |\alpha_{n_0+k}| < c |\alpha_{n_0+(k+1)}| < \dots < c^k |\alpha_{n_0}|$$
 $\forall k > 0$.

Strue
$$0 < c < 1$$
, we have $lin(c^k |a_{no}|) = 0$.