University of South Bohemia

Faculty of Science

Praktika IV

Frank-Hertzův experiment

Datum: 18.10.2023 Jmeno: Martin Skok

Obor: Fyzika Hodnoceni:

1 Úkoly

Změřte závislost magnetického pole na rezonanční frekvenci vzorku DPPH (radikál 2,2-difenyl-1-pikrylhydrazylu) Určete jeho g faktor.

2 Seznam pomůcek

Počítač, 3B-NET log, 3B-NET lab program, jednostka s cívkami a se sondou, vzorek DPPH

3 Teorie

4 Postum měření

Sestavil jsem a zapnul obvod Vložil jsem vzorek DPPH Zapnul jsem počítač a spustil program 3B-NET lab Nastavil jsem potřebné paratemry a spustil osciloskop Nastavil jsem frekvenci na 40MHz a uložil data Toto jsem opakoval do frekvence kolem 80Mhz po intervalech kolem 5Mz Frekvence jsem ne vždy dokázal nastavit na přesnou hodnotu, tak jsem si vždy zapsal aktualňí hodnotu frekvence

5 Naměřená data

Figure 1: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole

Figure 2: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole

Figure 3: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole

Figure 4: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole

Figure 5: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole

Figure 6: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole

Figure 7: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole

Figure 8: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole

6 Zpracování dat

Tabulka 1:

Tabuika 1.				
index	$f_r[MHz]$	$U_r[V]$	$B_r[mT]$	g
0	45.0	0.486	1.773	1.813
1	50.014	0.542	1.977	1.807
2	55.195	0.584	2.13	1.851
3	60.104	0.63	2.298	1.869
4	65.049	0.687	2.506	1.854
5	70.107	0.732	2.67	1.876
6	75.087	0.785	2.864	1.873
7	77.962	0.809	2.951	1.887

$$\overline{g} = \sum_{i=1}^{n} \frac{g_i}{n}$$

 $\overline{g} = 1.8539$

$$\sigma_g = \sqrt{\frac{\sum_{i=1}^n (g_i - \overline{g})^2}{n-1}}$$

 $\sigma_g = 0.029307$

- 7 Diskuse
- 8 Závěr