Nome: Perdomeni 6n.m USN: 1BM18CS085

O Minimize the tollowing DFA using table tilling Algorithm where A is stead State. The states c. Godz core Final States.

	8 A	0	1
		O B	5
	B		F
ok.	<u>В</u>	D	M H
	DE	6	- H
-	E	F	11
4	F	G	B
	_(m	Ц	ß
	H	ュ	C
4	I	Α	E
		1	-

Table tilling algorism.

B								
* C	×	×		,				
D		Ø	X	1				
E		×	×					
*F	×	×		×	×		<u>,</u>	
6	10 pm	-04	×	1		X		11 24
7			×		-	×	×	X
N]	X	X	<u> </u>	D X	X E	4. F.	Gn	H
	A	13	C	Ψ.	<u> </u>			

Steb 1: COOSS the Combination of Final an NON-tinal States

(A,C) (A,F) (A,1) (B,C) (B,F) (B,1) (C,H) (C,G) (C,D) (C,G)

(D,1) (D,F) (E,1) (E,F) (F,G) (F,H) (G,1) (H,1)

conchat be Encircled Stebey:

Boxes where combinations of Final and Non-time re-tirel and Lett open.

Step 2: Check the 0 i/p and 1 i/p combinations of A and B

to	Steen	& W141	31
	5	0	1
VC	A. B)	(BC)	CE,F)
	(AID)	(B.E)	(E,4/
	(AIE)	(B,F)	(E,1)
	(A,G)	(B. 4)	(E'B)
	$\frac{A(H)}{A(H)}$	(B, I)	(E,C)
'	(B, H)	(C, 1)	(F.C)
	(B,6n)	(C, H)	(F, B)
	(B,D)	(c,E)	(J, H)
	(B. E.)	(C.F)	(F,1)
	C, F)	(DG)	(HIB)
	(C,I)	(b, A)	(11, E)
/	(DH)	E,1/	(1,0)
	(D, 6v)	(E,H)	(7,B)
-	Eら) E 別	(F, H)	(3, ()
-7	F(2)	(G,A)	(B, F)
	(6,H)	(H, 1)	(B, C)

Table

	ŧ							
				i	,	1, 1		
				1 1	1		-	P 19
1		V	1	11		1	. 40	
B	*						1	
* C	\times	X			-	-	-	7
		X	X	1		-	1	
<u>- リ</u>	X		X	* *		-	V	
* F	X	X		\times	X	-	- 1	
5 G		X	X		×	X	11	
<u> </u>	\overline{x}		×	\times		××	••	C.
\$ 7	X	×		\times	X		×	X
1	1	_	C	D	E	F	(5)	Ы
	AI	131				. 1		_

Hence the obmaining pairos are Evuivalent. -

_	ε	0	1
((d.D)	(B, 1=)	(E, H)
-	(M. G)	(B'H)	(E'B)
	(B, G)	(C, I)	(F,C)
	(B, E)	(C_iF)	(F,1)
*	(C,F)	(D, 6)	(h,O)
*	(C,2)	(D,A)	(H,E)
<	(D,G)	(E,#)	(H,B)
_	(E, L)	(F, J)	(⁷ , c)
_((F, 1)	(4.2)	(B,E)

Forom he above table. A=Dd D=G, dA=G

3	0	
(A,D,G)	(B.E.H)	(B, F, H)
(B.E.H)	(C,F,1)	(C,F,1)
(C,F,1)	(A10.6)	(E.B. H)
-		

Transition diagraem of minimised DFA.

pooblem 2:

consider the DFA given by Tochsition:

		_	19. 19. 19.	
	8	0	l	
~>	°V1	~2	973	
	2	73	α_{s}	7
K	√3	24	N3	
	24	N3	25	<u> </u>
¥	°5	2	25	
	-		1	

@ Dow the terble of distinguishabilites too this automotion (b) Construct the min. Steve evuivalent DFA

Table tilling algorithm.

W2	5			
~ 3	×	×		
24			×	
ve.	×	×		X
	~,	NZ	~ _	· CV4

Step 1: Cooss the Combination of Final and Non-Final

(01, 25) (21, 23) (21,25) (21,25) (23,24) (24,25) (and be enviroled states,

Boxes where combinedions of tinal and Non-tral state age Late Open.

skep 2: Check Olb and a 110 combinedian of AdB. to skept with.

8	O	1
y (21, NZ)	(~2,~3)	(~1"u")
X (~,.~4)	(\sim, \sim_3)	(ev3.~5)
(N, NA)	(~,~).	(~2·~2)
(ay, ~ 5	(~4,~1)	(~3.~2)

~ ~ 2	X			
N3	X	X		
42	×	- -	\times .	
25	\times	×		
	٥,	W2	4 ~3	PV

Stepj:

1: Only (a, va) and (az, vs) toom the evuivalent too given toonsition.

8	0	1
-> (2, Na)	(~3.~5)	(c,2'v?)
* (~,~s)	(N4,NL)	(~3.~5)

Reduced D.F.A

Pooblem 3: Repeat Exercise q.4.1 too the DFA

The same of the sa		
8	0	Ī
200	ev 2	°V _€
N ₂	م ا	~ 3
+ 23	~ ₂	2
°√4	ma.	0°2
7 5	24	25
4°6	are	art.

Step 1: cooss he combinetion at Final and Non-Final Steeles.

(v., v3) (v., v5) (v2, v3) (v2, v5) (v3, v4) (cv3, v5) (v4, v6) (4, v6) (4, v6)

Step 2: -1 (~2, ~1) (a,, v2) Care, No (ava) (N2,N4) (~1,~5) (Y2, Vy) (~c.~2)x (V,,V4) (~2,~2)x a, a) ~2, ~s) (NJ, NG) Cut'ul a. va)

After Step 2 and steps 3 we can say the or asono Emiralest Stell for the given tembre