M.AFEKIR - MARRAKECH

www.marocprepas.com

marocprepas@yahoo.fr

Satellites artificiels

Première partie Étude générale

- 1.2.

$$\mathcal{G}(r) = \frac{GM}{r^2}$$
 et $g_o = \frac{GM}{R_T^2}$; Soit: $G(r) = g_o \frac{R_T^2}{r^2}$

1.3.

$$\alpha_o = \frac{r_o v_o^2}{g_o R_T^2} \quad ; \qquad \beta_o = (\overrightarrow{TS}_o, \overrightarrow{v}_o) \quad et \quad \overrightarrow{f}_G = -mg_o \frac{R_T^2}{r^2} \vec{u}_r$$

1.3.1. Théorème du moment cinétique

$$\frac{d\overrightarrow{\sigma}_T}{dt} = \overrightarrow{M}_T(\overrightarrow{f}_G) = \overrightarrow{0} \implies \overrightarrow{\sigma} = \text{constante vectorielle}$$

Le mouvement du satellite est, donc, plan. Le plan du mouvement est le plan perpendiculaire, à chaque instant, au moment cinétique $\overrightarrow{\sigma}_T$ qui est une constante vectorielle égale à sa valeur initiale ; soit : $\overrightarrow{TS}_o \wedge m \overrightarrow{v}_o$. le plan du mouvement est le plan $(\overrightarrow{TS}_o, \overrightarrow{v}_o)$

1.3.2.

1.3.3. Moment cinétique du satellite

$$\overrightarrow{\sigma}_T = \overrightarrow{\sigma} = \overrightarrow{TS}_o \wedge m \overrightarrow{v}_o = m \overrightarrow{r}_o \wedge \overrightarrow{v}_o \implies \overrightarrow{\sigma} = m r_o v_o sin \beta_o \overrightarrow{u}_z \quad \text{ou} \quad \boxed{\sigma = m r_o v_o sin \beta_o \overrightarrow{v}_o}$$

1.4. Le vecteur HAMILTON \overrightarrow{H}

$$\overrightarrow{H} = m\overrightarrow{v} - \frac{K}{\sigma^2} \left(\overrightarrow{\sigma} \wedge \frac{\overrightarrow{r}}{r} \right) = m\overrightarrow{v} - \frac{K}{\sigma^2} \left(\overrightarrow{\sigma} \wedge \overrightarrow{u}_r \right)$$

$$\frac{d\overrightarrow{H}}{dt} = m\overrightarrow{a} - \frac{K}{\sigma^2} \left(\overrightarrow{\sigma} \wedge \frac{d\overrightarrow{u}_r}{dt} \right) = \overrightarrow{f}_G - \frac{K}{\sigma^2} \dot{\theta} \left(\overrightarrow{\sigma} \wedge \overrightarrow{u}_\theta \right)$$

$$\overrightarrow{f}_G = -mg_o \frac{R_T^2}{r^2} \overrightarrow{u}_r \quad \text{et} \quad \overrightarrow{\sigma} = \sigma \overrightarrow{u}_z = mr^2 \dot{\theta} \overrightarrow{u}_z \quad \Rightarrow \quad \boxed{\frac{d\overrightarrow{H}}{dt} = \left(-mg_o \frac{R_T^2}{r^2} - \frac{K}{mr^2} \right) \overrightarrow{u}_r}$$

H reste constante au cours du mouvement si et seulement si : $K = m^2 g_o R_T^2$

1.5. Hodographe H

1.5.1.

$$\overrightarrow{OA} = \overrightarrow{v} = \frac{\overrightarrow{H}}{m} + \frac{K}{m\sigma^2} \left(\overrightarrow{\sigma} \wedge \overrightarrow{u}_r \right) \quad \Rightarrow \quad \overrightarrow{OA} = \frac{\overrightarrow{H}}{m} + \frac{g_o R_T^2}{r_o v_o \sin \beta_o} \overrightarrow{u}_\theta$$

 \overrightarrow{H} étant constante du mouvement : $\overrightarrow{H}=\overrightarrow{H}(t=0)$; soit :

$$\begin{split} \overrightarrow{H} &= m \overrightarrow{v_o} - \frac{K}{\sigma} \overrightarrow{u_t} = m \overrightarrow{v_o} - \frac{m g_o R_T^2}{r_o v_o \sin \beta_o} \overrightarrow{u_t} = m v_o \cos \beta_o \overrightarrow{u_n} + m \left(v_o \sin \beta_o - \frac{g_o R_T^2}{r_o v_o \sin \beta_o} \right) \overrightarrow{u_t} \\ \overrightarrow{v} &= \frac{\overrightarrow{H}}{m} + \frac{g_o R_T^2}{r_o v_o \sin \beta_o} \overrightarrow{u_\theta} \quad \text{avec} \quad \overrightarrow{u_\theta} = -\sin \theta \overrightarrow{u_n} + \cos \theta \overrightarrow{u_t} \\ \\ \text{Soit} : \overrightarrow{v} \left(v_o \sin \beta_o - \frac{g_o R_T^2}{r_o v_o \sin \beta_o} \left(1 - \cos \theta \right) \right) \\ &= v_t \overrightarrow{u_t} + v_n \overrightarrow{u_t} \\ \\ v_o \cos \beta_o - \frac{g_o R_T^2}{r_o v_o \sin \beta_o} \sin \theta \right) \\ \\ \Longrightarrow \left(v_t - v_o \sin \beta_o + \frac{g_o R_T^2}{r_o v_o \sin \beta_o} \right)^2 + (v_n - v_o \cos \beta_o)^2 = \left(\frac{g_o R_T^2}{r_o v_o \sin \beta_o} \right)^2 \end{split}$$

L'hodographe H est, donc, un cercle dans le plan (\vec{u}_t, \vec{u}_n) :

• de centre :

$$\mathcal{C}\left(v_o \sin\beta_o - \frac{g_o R_T^2}{r_o v_o \sin\beta_o}, v_o \sin\beta_o\right)$$

• de rayon:

$$\mathcal{R} = \frac{g_o R_T^2}{r_o v_o \sin \beta_o}$$

1.5.2. Directions permises pour \vec{v}

	Origine O	A l'intérieur de ${\cal H}$	A l'extérieur de H	
1.5.3.	Direction permise	Toutes les directions	Celles délimitées par (D_1) et (D_2)	
	Tyep de trajectoire	elliptique ou circulaire	hyperbolique ou parabolique	

1.5.4.

$$\begin{cases} \overrightarrow{H} = m\vec{v}_o - \frac{K}{mr^2}\vec{u}_t \\ \vec{v}_o = v_o \cos\beta_o \vec{u}_n + v_o \sin\beta_o \vec{u}_t \\ K = m^2 q_o R_T^2 \end{cases} \Rightarrow \overrightarrow{H} = mv_o \cos\beta_o \vec{u}_n + m\left(v_o \sin\beta_o - \frac{g_o R_T^2}{r_o v_o \sin\beta_o}\right) \vec{u}_t$$

avec
$$\vec{u}_t = \sin\theta \vec{u}_r + \cos\theta \vec{u}_\theta = \vec{u}_\theta(t=0)$$
 et $\vec{u}_n = \cos\theta \vec{u}_r - \sin\theta \vec{u}_\theta = \vec{u}_r(t=0)$

Dans le cas d'un mouvement circulaire :

$$eta_o = rac{\pi}{2} \quad ext{et} \quad v_o^2 = rac{g_o R_T^2}{r_o}$$
 D 'où: $\overrightarrow{H} = m \left(v_o - rac{g_o R_T^2}{r_o v_o}
ight) \overrightarrow{u}_t = \overrightarrow{0}$

1.6.

$$\vec{\varepsilon} = \frac{1}{K} \vec{H} \wedge \vec{\sigma} = \frac{\vec{H} \wedge \vec{\sigma}}{m^2 g_o R_T^2}$$

1.6.1. \overrightarrow{H} et $\overrightarrow{\sigma}$ sont deux constantes vectorielles, donc : $\overrightarrow{\varepsilon}$ est aussi constante du mouvement. $\overrightarrow{\varepsilon} \in \text{ au plan polaire } (\overrightarrow{u}_r, \overrightarrow{u}_\theta)$.

1.6.2.

$$ec{r}.ec{arepsilon} \ = \ rac{r}{m^2g_oR_T^2}ec{u}_r.\left(\overrightarrow{H}\wedgeec{\sigma}
ight) \qquad {f avec} \quad : \qquad \overrightarrow{H}\wedgeec{\sigma} \ = \ \left(rac{\sigma^2}{r}-m^2g_oR_T^2
ight)ec{u}_r \ - \ m\sigma\dot{r}\,ec{u}_ heta$$

$$\mathbf{Soit:} \quad \vec{r}.\vec{\varepsilon} \ = \ \left(\frac{\sigma^2}{r} - m^2 g_o R_T^2\right) \frac{r}{m^2 g_o R_T^2} \ = \ r \, \|\vec{\varepsilon}\| \, \cos\left(\theta - \theta_o\right) \quad \underline{\mathbf{ou}} \quad \boxed{r \ = \ \frac{p}{1 \ + \ e \ \cos\left(\theta - \theta_o\right)}}$$

$$e = \|\vec{\varepsilon}\|$$
 et $p = \frac{\sigma^2}{K} = \frac{\sigma^2}{m^2 g_o R_T^2} = \alpha_o r_o \sin^2 \beta_o$

 θ_o est l'angle qui positionne l'axe de la conique par rapport à l'axe polaire.

1.6.3.

$$\vec{\varepsilon} = \left(-1 + \frac{\sigma^2}{rK}\right) \vec{u}_r - m\frac{\sigma}{K} \dot{r} \vec{u}_\theta = \vec{\varepsilon} (t = 0) = \left(-1 + \frac{\sigma^2}{r_o K}\right) \vec{u}_{r_o} - m\frac{\sigma}{K} \dot{r}_o \vec{u}_{\theta_o}$$

$$\dot{r}_o = v_o \cos \beta_o \implies \vec{\varepsilon} = \left(-1 + \frac{\sigma^2}{r_o K}\right) \vec{u}_{r_o} - m\frac{\sigma}{K} v_o \cos \beta_o \vec{u}_{\theta_o}$$

$$\Rightarrow e^2 = ||\vec{\varepsilon}||^2 = \left(\frac{\sigma}{K}\right)^2 \left(m^2 v_o^2 \cos^2 \beta_o + \left(-\frac{K}{\sigma} + \frac{\sigma}{r_o}\right)^2\right)$$

$$= \left(\frac{\sigma}{K}\right)^2 \left(m^2 v_o^2 \cos^2 \beta_o + \left(-\frac{K}{\sigma} + m v_o \sin \beta_o\right)^2\right)$$

$$= \left(\frac{\sigma}{K}\right)^2 \left(m^2 v_o^2 + \left(\frac{K}{\sigma}\right)^2 - 2\frac{K}{r_o}\right)$$

$$= 1 + m^2 v_o^2 \frac{\sigma^2}{K^2} - \frac{2\sigma}{K r_o}$$

$$= 1 - 2\alpha_o \sin^2 \beta_o + \alpha_o^2 \sin^2 \beta_o$$
ou
$$e^2 = 1 + \alpha_o (\alpha_o - 2) \sin^2 \beta_o$$

1.7. Nature de la trajectoire

1.7.1. Tableau des rsultats :

β_o	$e(\alpha_o)$	Allure du graphe
0	1	FIG.1
$\pi/6$	$\frac{1}{2}\sqrt{\alpha_o^2-2\alpha_o+4}$	FIG.2
$\pi/4$	$\sqrt{1+\frac{\alpha_o}{2}(\alpha_o-2)}$	FIG.3
$\pi/3$	$\sqrt{1+3\frac{\alpha_o}{4}(\alpha_o-2)}$	FIG.4
$\pi/2$	$ \alpha_o - 1 $	FIG.5

1.7.2.

e	$e=0$ et $\beta_o=\pi/2$			
Nature de la trajectoire	Cercle	Ellipse	Parabole	Hyperbole
α_o	$\alpha_o = 1$	$\alpha_o < 2$	$\alpha_o = 2$	$\alpha_o > 2$

La vitesse de libération v_{lib} correspond à l'état libre (ou de diffusion)où le mouvement est révolutif, \Longrightarrow Trajectoire hyperbolique e=1 ,ou $\alpha_o=2$; soit :

$$\alpha_o = \frac{r_o v_{lib}^2}{g_o R_T^2} = 2 \implies v_{lib} = \sqrt{\frac{2g_o R_T^2}{r_o}} = R_T \sqrt{\frac{2g_o}{z_o + R_T}}$$

1.7.3. La trajectoire est circulaire pour e = 0, soit :

$$\alpha_o (\alpha_o - 2) \sin^2 \beta_o + 1 = 0 \text{ et } \beta_o = \frac{\pi}{2}$$

Vitesse v_s du satellite sur son orbite circulaire :

$$\alpha_o (\alpha_o - 2) + 1 = 0 \implies \alpha_o = 1 = \frac{r_o v_s^2}{g_o R_T^2} \quad \text{ou} \quad v_s = R_T \sqrt{\frac{g_o}{r_o}} = R_T \sqrt{\frac{g_o}{z_o + R_T}}$$

- 1.8. On considère le cas : $\alpha_o = 1$ et $0 < \beta_o < \pi/2$.
- **1.8.1**. Dans ces conditions : $e=1-\sin^2\beta_o$ et on a $0<\beta_o<\pi/2$, d'où 0< e<1 : La trajectoire est, donc, élliptique.
 - **1.8.2**. Expression de θ_o en fonction de α_o

$$\alpha_o = 1 \implies e^2 = \cos^2 \beta_o \ et \ e \cos \theta_o = \frac{p}{r_o} - 1 = -\cos^2 \beta_o$$

$$\Rightarrow \cos \theta_o = -\cos \beta_o \quad \text{ou} \quad \boxed{\theta_o = \beta_o + \pi}$$

- **1.8.3**. θ_o est, aussi, l'angle entre $\overrightarrow{\varepsilon}$ et \overrightarrow{TS}_o : $\overrightarrow{\varepsilon}$ coincide, donc, avec le grand axe, dont les positions particulières sont telles que :
 - $\diamond \ \theta = \theta_o = \beta_o + \pi$: la position du périgée. et
 - $\theta = \theta_o + \pi == \beta_o + 2\pi$: la position de l'apogée.

Conséquence : le vecteur vitesse \vec{v}_o est collinéaire au vecteur excentricité $\vec{\varepsilon}$ et la position S_o appartient, donc, au petit axe.

Deuxième partie Satellites circulaires

2.1. Satellites en orbite basse

2.1.1. Théorème de la résultante cinétique

$$\overrightarrow{f}_G = -mg_o \frac{R_T^2}{R^2} \overrightarrow{u}_r = m\overrightarrow{a} = -m \frac{v^2}{R} \overrightarrow{u}_r + \frac{dv}{dt} \overrightarrow{u}_\theta \implies m \frac{v^2}{R} = mg_o \frac{R_T^2}{R^2} \text{ ou } v = R_T \sqrt{\frac{g_o}{R}}$$

2.1.2. Période T de révolution du mouvement du satellite et troisième loi de KEPLER

$$T = 2\pi \frac{R}{v} = \frac{2\pi}{R_T} \sqrt{\frac{R^3}{g_o}} \qquad \Rightarrow \qquad \frac{T^2}{R^3} = \frac{4\pi^2}{g_o R_T^2}$$

2.1.3. Le satellite pôlaire est tel que l'axe pôlaire N-S se trouve dans son plan de trajectoire . Il n'ya pas de restriction sur le plan de la trajectoire et sur le sens de rotation car la force gravitationnelle est à symétrie sphérique!!

2.2. Satellites géostationnaires

2.2.1. De tels satellites envoient des informations, auquelles ils sont déstinés, sans déphasage temporel.

Applications: Obsevation et détection: des séismes, des volcans et des incendies; télécommunication...

2.2.2.

$$\frac{T_o^2}{(z_G + R_T)^3} = \frac{4\pi^2}{g_o R_T^2} \quad \Rightarrow \quad \boxed{z_G = -R_T + \sqrt[3]{\frac{g_o R_T^2 T_o^2}{4\pi^2}}}$$

- **2.2.3**. Application numérique : $z_G \approx 35774 \mathrm{km}$
- **2.2.4**. Le plan de la trajectoire est le plan équatorial et le satellite tourne dans le même sens que la rotation de la Terre dans le repère géocentrique .

2.3. Transfert d'orbite

2.3.1. Lest trois trafectoires sont coplanaires (appartiennent au même plan).

2.3.2.

 \diamond Conservation du moment cinétique sur \mathbb{E}_H :

$$\sigma_A = \sigma_P \qquad \Rightarrow \qquad v_A R_G = v_P R_B$$

 \diamond Conservation du l'énergie sur \mathbb{E}_H :

$$\mathcal{E}_P = \mathcal{E}_A \qquad \Rightarrow \qquad \frac{1}{2} m v_P^2 - m g_o \frac{R_T^2}{R_B} = \frac{1}{2} m v_A^2 - m g_o \frac{R_T^2}{R_G}$$

♦ Combinaison des deux équations de conservation donne :

$$v_P^2 - v_A^2 = 2g_o R_T^2 \left(\frac{1}{R_B} - \frac{1}{R_G}\right) \Rightarrow \begin{cases} v_P = R_T \sqrt{\frac{2g_o R_G}{R_B (R_B + R_G)}} \\ v_A = R_T \sqrt{\frac{2g_o R_B}{R_G (R_B + R_G)}} \end{cases}$$

2.3.3. Variations de vitesses de transfert

$$\Delta v_1 = v_P - R_T \sqrt{rac{g_o}{R_B}}$$
 et $\Delta v_2 = -v_A + R_T \sqrt{rac{g_o}{R_G}}$

2.3.4. Durée de la phase de transfert sur l'ellipse de HOHMANN Soit T_H la période de révolution elliptique \mathbf{E}_H et soit a_H le demi-grand axe de l'ellipse \mathbf{E}_H , $2a_H=R_G+R_B$

$$\Delta t = rac{T_H}{2}$$
 avec $rac{T_H^2}{a_H^3} = rac{4\pi^2}{g_o R_T^2}$ donc : $\Delta t = rac{\pi}{2R_T} \sqrt{rac{(R_G + R_B)^3}{2g_o}}$

2.3.5. Soit c_H la position du foyer de l'ellipse \mathbb{E}_H par rapport à son centre

$$e_{H} = rac{c_{H}}{a_{H}}$$
 tels que :
$$\begin{cases} a_{H} = rac{R_{B} + R_{G}}{2} \\ c_{H} = a_{H} - R_{B} = rac{R_{G} - R_{B}}{2} \end{cases} \Rightarrow e_{H} = rac{R_{G} - R_{B}}{R_{B} + R_{G}}$$

Troisième partie Influence de l'atmosphère terrestre

3.1. Modèle de force de frottement

3.1.1. Variation de la quantité du mouvement

On considère le système (molécule - satellite) . La quantité du mouvement du système est :

- \diamond Avant le choc : $m \vec{v}_{\text{satellite}} + m' \vec{v}_{\text{molécule}} = m \vec{v} + m' \vec{0} = m \vec{v}$
- \diamond Après le choc : (m+m') $\vec{v}_{\rm syst}$ choc mou, et $\vec{v}_{\rm syst}$: vitesse du système après le choc La quantité du mouvement du satellite subit une variation :

$$\Delta \vec{p} = p_{\mathrm{après}} - p_{\mathrm{avant}} = m \vec{v}_{\mathrm{syst}} - m \vec{v} = m \left(\vec{v}_{\mathrm{syst}} - \vec{v} \right) = m \left(\frac{m}{m + m'} - 1 \right) \vec{v}$$

$$\mathrm{Soit} : \ \Delta \vec{p} = -\frac{m m'}{m + m'} \vec{v} \quad \mathrm{ou} : \quad \boxed{\Delta \vec{p} \approx -m' \vec{v}} \quad \mathrm{car} \quad m >> m'$$

- **3.1.2**. La variation de la quantité du mouvement du satellite pendant dt:
- \diamond Au cours du choc entre une molécule de masse m' et le satellite : $d\vec{p}_{\text{molécule}} \approx m'\vec{v}$
- \diamond Au cours du choc entre l'atmosphère de masse m' et le satellite supposé sphérique :

$$d\vec{p}_{atm} \approx \sum m'\vec{v} = m_{atm}\vec{v} = \mu(z)d\tau\vec{v} = \mu(z)\Sigma v dt\vec{v}$$

La force subit par le satellite de la part de l'atmosphère s'exprime par :

$$\overrightarrow{F} = \frac{d\vec{p}_{atm}}{dt} = -\mu(z)\Sigma v\vec{v}$$
 ou
$$\overrightarrow{F} = -k(z)v\vec{v} \quad \text{avec} \quad k(z) = \mu(z)\Sigma$$

3.1.3. Modèl d'atmosphère isotherme Équation de l'hydrostatique dans le champ de pesanteur :

$$\mu(z)\vec{g} = \overrightarrow{grad} p \quad \Rightarrow \quad -\mu(z)g = \frac{dp(z)}{dz}$$

Dans le cadre de l'approximation : $z << R_T$: $g \approx g_o$, donc :

$$-\mu(z)g_o = \frac{dp(z)}{dz} \quad \text{avec}: \quad p(z) = \frac{\mu(z)}{M}RT \quad \Rightarrow \quad \frac{d\mu(z)}{dz} = -\frac{Mg_o}{RT}\mu(z)$$
$$\Rightarrow \quad \mu(z) = \mu_o exp\left(-\frac{z}{H}\right) \quad \text{avec} \quad H = \frac{RT}{Mg_o}$$

 μ_o : masse volumique de l'air atmosphérique au voisinage de la surface de la Terre.

3.2. Freinage du satellite

3.2.1. Trajectoire circulaire du satellite dans le champ gravitationnel (Newtonnien) Le théorème de la résultante cinétique : $\overrightarrow{f}_g = m \vec{a}$

$$\Rightarrow mg_o \frac{R_T^2}{R^2} = m \frac{v^2}{R} \Rightarrow v^2 = \frac{g_o R_T^2}{R_T + z} \quad \text{ou} \quad 2v dv = -g_o \frac{R_T^2}{(R_T + z)^2} dz$$
Soit:
$$\frac{dv}{dz} = -\frac{R_T}{2(R_T + z)} \sqrt{\frac{g_o}{R_T + z}}$$

3.2.2. L'énergie mécanique du satellite :

$$E_m = E_c + E_p \text{ avec } \begin{cases} E_p = -mg_o rac{R_T^2}{R} \\ E_c = rac{1}{2}mv^2 = mg_o rac{R_T^2}{R} \end{cases} \Rightarrow E_m = -rac{E_p}{2} = -E_c$$

Au cours de la chute du satellite, son énergie potentielle déminue (perd de l'altitude) et, donc, son énergie cinétique augmente ; par conséquent : sa vitesse *augmente* !!

3.2.3. Variation de l'énergie mécanique

$$E_m = -\frac{1}{2}E_p = mg_o \frac{R_T^2}{R} \qquad \Rightarrow \qquad \boxed{\frac{dE_m}{dz} = \frac{mg_o R_T^2}{2(R_T + z)^2} = \frac{mg_o R_T^2}{2R^2}}$$

3.2.4. Travail des forces de frottement

$$\delta W(\overrightarrow{F}) = \overrightarrow{F} . d\overrightarrow{r} = -k(z)v\overrightarrow{v}.\overrightarrow{v}dt = -k(z)v^3dt, \quad \text{ou} \quad \boxed{\delta W(\overrightarrow{F}) = -\mu(z)\Sigma v^3dt}$$

3.2.5. Théorème de l'énergie mécanique

$$\frac{dE_m}{dt} = P\left(\overrightarrow{F}\right) = \frac{\delta W\left(\overrightarrow{F}\right)}{dt} \Rightarrow mg_o \frac{R_T^2}{2R^2} \frac{dz}{dt} = -\mu(z)\Sigma v^3 \Rightarrow \frac{dz}{dt} = -\mu(z)\Sigma v^3 \frac{2R^2}{mg_o R_T^2}$$

$$\frac{dz}{dt} = -\frac{2}{m}\mu(z)\Sigma vR \qquad \text{ou} \qquad \left[\frac{dz}{dt} = -B\mu(z)vR \quad \text{avec} \quad B = 2\frac{\Sigma}{m}\right]$$

3.2.6. D'après les résultats précédents

$$\frac{dz(t)}{dt} = -B\mu(z)vR = -2\frac{\Sigma}{m}R_T\sqrt{\frac{g_o}{R}}\mu_oRe^{-\frac{z(t)}{H}}$$

 $\text{Dans l'approximation } z << R_T \quad : \quad R \quad = \quad z(t) \, + \, R_T \quad \approx \quad R_T \quad \Rightarrow \quad \frac{dz(t)}{dt} \quad = \quad -2 \frac{\Sigma}{m} R_T \sqrt{R_T g_o} \mu_o e^{-\frac{z(t)}{H}}$

$$\Rightarrow$$
 $\mathbf{e}^{rac{z(t)}{H}} = -rac{t}{ au} + rac{C_o}{H} \Rightarrow \overline{z(t)} = H \ln \left(rac{C_o}{H} - rac{t}{ au}
ight)$ tel que : $C_o = \mathbf{e}^{rac{z(0)}{H}}$

Avec : $au = \frac{mH}{2\Sigma R_T \sqrt{R_T g_o} \mu_o}$: terme homogè ne à un temps.

3.2.7. Application numérique :

$$\tau = 6.45 \times 10^{-6} \, s$$

La durée $t_{
m chute}$ du chute d'un satellite, depuis l'altitude h, est telle que : $z(t_{
m chute})~=~0$

$$\implies$$
 $e^{\frac{z(t_{
m chute})}{H}} = \frac{t_{
m chute}}{ au} = e^{\frac{h}{H}}$ Soit: $t_{
m chute} = au e^{\frac{h}{H}} = 6,4.10^7 \, s$

3.2.8.

Vitesse d'agitation thermique est :
$$v_{\rm th} = 0.5 \, km s^{-1}$$

Dans l'approximation $z << R_T$, la vitesse du satellite est : $v_{\rm sat} \approx \sqrt{g_o R_T} = 7{,}75\,kms^{-1}$

$$\implies v_{\mathsf{th}} << v_{\mathsf{sat}}$$