分圆多项式与分圆域

Jiahai Wang

September 2024

目录

目录			1
1	分圆	多项式	2
2	分圆域 $\mathbb{Q}(\zeta_m)$		3
	2.1	分圆域 $\mathbb{Q}(\zeta_m)$ 的 Galois 群 \ldots	. :
	2.2	素数 p 在 $\mathbb{Z}[\zeta_m]$ 中的分解	. 4
	2.3	素数分圆域的代数整数环	. 6

Chapter 1

分圆多项式

Chapter 2

分圆域 $\mathbb{Q}(\zeta_m)$

考虑方程 $x^m - 1 = 0$ 的根 $\zeta_m = e^{\frac{2\pi i}{m}}$,则我们有

$$(x-1)(x-\zeta_m)\cdots(x-\zeta_m^{m-1}) = x^m - 1$$
 (2.1)

于是数域 $F = \mathbb{Q}(\zeta_m)$ 是多项式 $x^m - 1$ 的分裂域。接下来我们就来研究一下 m 次分圆域 $F = \mathbb{Q}(\zeta_m)$ 的性质。

2.1 分圆域 $\mathbb{Q}(\zeta_m)$ 的 Galois 群

Theorem 2.1. 设 G 为 F/\mathbb{Q} 的 Galois 群,则存在从 G 到 $U(\mathbb{Z}/m\mathbb{Z})$ 的单同态 θ 满足对于 $\sigma \in G$ 有 $\sigma(\zeta_m) = \zeta_m^{\theta(\sigma)}$ 。

证明. 由于 $\zeta_m^m = 1$,我们知道 $\sigma(\zeta_m)^m = 1$,于是 $\sigma(\zeta_m) = \zeta_m^{\theta(\sigma)}$ 其中 $\theta(\sigma) \in \mathbb{Z}/m\mathbb{Z}$ 。若 $\tau = \sigma^{-1}$,则 $\zeta_m = \tau \sigma(\zeta_m) = \tau(\zeta_m^{\theta(\sigma)}) = \zeta_m^{\theta(\sigma)\theta(\tau)}$ 。因此 $\theta(\sigma)\theta(\tau) = \bar{1}$ 。于是这一映射是 良定义的。

容易印证 θ 是一个群同态。当 $\theta(\sigma)=\bar{1}$ 时, $\sigma(\zeta_m)=\zeta_m$,于是 σ 为 G 中的单位元,因此 θ 是一个单同态。

根据这一性质我们可以得到推论: $[\mathbb{Q}(\zeta_m):\mathbb{Q}]$ 整除 $\phi(m)$ 。事实上,接下来我们想要证明更强的结论: $[\mathbb{Q}(\zeta_m):\mathbb{Q}] = \phi(m)$ 。

我们先给出 m 次分圆多项式 $\Phi_m(x)$ 的定义:

$$\Phi_m(x) = \prod_{(a,m)=1} (x - \zeta_m^a)$$
 (2.2)

Theorem 2.2. $x^m - 1 = \prod_{d|m} \Phi_d(x)$.

证明.
$$x^m-1=\prod_{l=0}^{m-1}(x-\zeta_m^l)=\prod_{d\mid m}\prod_{(i,m)=d}(x-\zeta_m^i)$$
。当 $(i,m)=d$ 时,设 $i=dj$,则

$$\begin{split} \prod_{(i,m)=d} (x-\zeta_m^i) &= \prod_{(j,m/d)=1} (x-\zeta_m^{dj}) \\ &= \prod_{(j,m/d)=1} (x-\zeta_{m/d}^j) \\ &= \Phi_{\frac{m}{d}}(x) \end{split}$$

于是
$$\Phi_m(x) = \prod_{(a,m)=1} (x - \zeta_m^a)$$
。

下面我们来研究 $\Phi_m(x)$ 的性质。

Lemma 2.3. 设 p 是一个素数且 $p \nmid m$,且 P 是 \mathcal{O}_K 中包含 p 的一个素理想,则 $1, \zeta_m, \zeta_m^2, \cdots, \zeta_m^{m-1}$ 在 \mathcal{O}_K/P 中互不相同,且若 P 的剩余类域指数为 f 则 $p^f \equiv 1 \pmod{m}$ 。

Theorem 2.4. $\Phi_m(x)$ 在 $\mathbb{Z}[x]$ 中是不可约的。

证明. 设 $f(x) \in \mathbb{Z}[x]$ 为 ζ_m 的最小多项式,我们先证明若素数 $p \nmid m$,则 ζ_m^p 也是 f(x) 的零点。记 P 是一个包含 p 的素理想。

由于 x^m-1 是 f(x) 的倍式,因此可以设 $x^m-1=f(x)g(x)$ 。 $w\in \mathcal{O}_K$ 则用 \bar{w} 表示 w 在 $\mathcal{O}_K\to\mathcal{O}_K/P$ 的自然同态的像。因此 $x^m-\bar{1}=\bar{f}(x)\bar{g}(x)\in\mathbb{Z}/p\mathbb{Z}[x]$,由于引理 1.3 知 $x^m-\bar{1}$ 在 \mathcal{O}_K/P 中有着互异的根,因此 $\bar{f}(x),\bar{g}(x)$ 有着互异的零点,由于 ζ_m^p 是 $x^m-\bar{1}$ 的根,因此若 $\bar{f}(\zeta_m^p)\neq 0$,则 $g(\zeta_m^p)=0$ 进而 $\bar{g}(\bar{\zeta}_m^p)=\bar{g}^p(\bar{\zeta}_m)=0$ 。因此 $\bar{g}(\bar{\zeta}_m)=\bar{0}\Rightarrow \bar{f}(\bar{\zeta}_m)\neq 0$,这与 $f(\zeta_m)=0$ 矛盾。

进而我们可以推出,若 (a,m)=1,则 ζ_m^a 是 f(x) 的根,这就表明 $\deg f(x) \geq \phi(m)=\deg \Phi_m(x)$ 。而另一方面, $\Phi_m(\zeta_m)=0$,于是 $f(x)|\Phi_m(x)$,因此有 $f(x)=\Phi_m(x)$ 。这样就证明了 $\Phi_m(x)$ 是不可约的。

从这一定理我们也可以推出 $[\mathbb{Q}(\zeta_m):\mathbb{Q}] = \phi(m)$ 以及 $Gal(\mathbb{Q}(\zeta_m)/\mathbb{Q}) \simeq U(\mathbb{Z}/m\mathbb{Z})$ 。

2.2 素数 p 在 $\mathbb{Z}[\zeta_m]$ 中的分解

我们本小节的主要结论是: 假设 $p \nmid m$, 则 (p) 在 \mathcal{O}_K 中是不分歧的。在研究此问题前,我们需要一些引理。

Lemma 2.5. 设 K/\mathbb{Q} 是一个代数数域且 $[K:\mathbb{Q}] = n$,设 $\alpha_1, \alpha_2, \cdots, \alpha_n \in \mathcal{O}_K$ 是 K 的一组 \mathbb{Q} 基。记 $d = \Delta(\alpha_1, \alpha_2, \cdots, \alpha_n)$,则

$$d\mathcal{O}_K \subset \mathbb{Z}\alpha_1 + \mathbb{Z}\alpha_2 + \cdots + \mathbb{Z}\alpha_n$$
.

证明:对于任一 $w \in \mathcal{O}_K$,存在有理数 $r_1, r_2, \cdots, r_n \in \mathbb{Q}$ 使得

$$w = \sum_{i=1}^{n} r_i \alpha_i.$$

两边乘以 α_i 并取迹得

$$\operatorname{tr}(w\alpha_j) = \sum_{i=1}^n r_i \operatorname{tr}(\alpha_i \alpha_j) \quad (j = 0, 1, \dots, n).$$

这构成了一个关于 r_1, r_2, \cdots, r_n 的 n 无线性方程组。注意到 $\operatorname{tr}(w\alpha_j), \operatorname{tr}(\alpha_i\alpha_j) \in \mathbb{Z}$ 。根据 Cramer 法则知,每个 r_i 可以写成一个整数除以 d 的形式(因为方程组的系数矩阵等于 d)。于是 $dw \in \mathbb{Z}\alpha_1 + \mathbb{Z}\alpha_2 + \cdots + \mathbb{Z}\alpha_n$ 。进而我们就得到了 $d\mathcal{O}_K \subset \mathbb{Z}\alpha_1 + \mathbb{Z}\alpha_2 + \cdots + \mathbb{Z}\alpha_n$ 。 Lemma 2.6. 判别式 $\Delta(1, \zeta_m, \zeta_m^2, \cdots, \zeta_m^{\phi(m)-1})$ 整除 $m^{\phi(m)}$ 。

通过这两个引理,我们可以推出当 $p \nmid m$ 时,代数整数环 \mathcal{O}_K 中的任一元素都可以 在模 p 意义下与 $\mathbb{Z}[\zeta_m]$ 中的一个元素等价。

Corollary 2.7. 设 $p \in \mathbb{Z}$ 为素数且 $p \nmid m$,则对于任意的 $w \in \mathcal{O}_K$,存在 $\sum a_i \zeta_m^i \in \mathbb{Z}[\zeta_m]$ 使得 $w \equiv \sum a_i \zeta_m^i \pmod{p}$ 。

Corollary 2.8. 若 $p \nmid m$, 且 n 满足 $p^n \equiv 1 \pmod{m}$, 则对于任意 $w \in \mathcal{O}_K$ 满足 $w^{p^n} \equiv w \pmod{p}$ 。

证明. 根据推论 2.3 知存在 $\sum a_i \zeta_m^i$ 使得 $w \equiv \sum a_i \zeta_m^i \pmod{p}$, 于是

$$w^p \equiv \sum a_i^p \zeta_m^{pi} \equiv \sum a_i \zeta_m^{pi} \pmod{p}.$$

重复 n 次得 $w^{p^n} \equiv w \pmod{p}$.

若 p 是素数且 $p \nmid m$, 则 (p) 在 \mathcal{O}_K 中是不分歧的。

证明. 假设 (p) 是分歧的,则存在素理想 P 使得 $P^2 \subset (p)$ 。于是我们可以取 $w \in P$ 但 $w \notin P^2$ 。于是 $w^{p^n} \equiv w \pmod{P}$ 。由于 $p^n \geq 2$,我们可以知道 $w \in P^2$,这与假设矛盾。因此 (p) 是不分歧的。

对于任意 $w \in \mathcal{O}_K$,有 $\sigma_p(w) \equiv w^p \pmod{p}$ 。

证明. 根据推论得存在 a_i 使得 $w \equiv \sum a_i \zeta_m^i \pmod{p}$, 于是

$$\sigma_p(w) \equiv \sum a_i \zeta_m^{ip} \equiv \sum a_i^p \zeta_m^{ip} \pmod{p}.$$

同时

$$w^p \equiv \left(\sum a_i \zeta_m^i\right)^p \equiv \sum a_i^p \zeta_m^{ip} \pmod{p}.$$

于是我们就证明了这个性质。

Corollary 2.9. 设 $P \in \mathcal{O}_K$ 中包含 p 的素理想,则 $\sigma_p P = P$ 。

证明. 由于对于 $\forall w \in P$, $\sigma_p w \equiv w^p \equiv 0 \pmod{P}$, 于是 $\sigma_p P \subset P$ 。又因为 $\sigma_p P$ 为极大理想,于是有 $\sigma_p P = P$ 。

Theorem 2.10. 假设 $p \not\in -$ 个素数且 $p \nmid m$, 且 $f \not\in m$, 是满足 $p^f \equiv 1 \pmod{m}$ 的最小的 正整数 f, 则在 \mathcal{O}_K 中有

$$(p) = P_1 P_2 \cdots P_q,$$

其中各个素理想 P_i 的剩余类域指数 $|\mathcal{O}_K/P_i| = f$ 且 $g = \phi(m)/f$ 。

证明. 由推论得 $\sigma_p \in G(P)$,于是 $\langle \sigma_p \rangle \subset G(P)$ 。设 g 为 (p) 的分裂次数,则考虑 G 在 $\{P_1, P_2, \cdots, P_q\}$ 上的群作用,得到

$$|G(P)| = \frac{|G|}{g} = \frac{\phi(m)}{g} = f$$

由于 f 是满足 $p^f \equiv 1 \pmod{p}$ 的最小的正整数,因此

$$|\langle \sigma_p \rangle| = f = |G(P)|$$

$$\exists \exists G(P) = \langle \sigma_p \rangle$$

2.3 素数分圆域的代数整数环

我们试图证明,当 l 为素数时, $K = \mathbb{Q}(\zeta_l)$ 的代数整数环 $\mathcal{O}_K = \mathbb{Z}[\zeta_l]$ 。 设 l 为素数,则 (l) 在 $\mathbb{Q}(\zeta_l)$ 中完全分歧,且记 $L = (1 - \zeta_l)$,则 $(l) = L^{l-1}$ 。

证明. 注意到 $l=\prod\limits_{i=1}^{l-1}(1-\zeta_l^i)$ 。设 $u_i=\frac{1-\zeta_l^i}{1-\zeta_l}$,我们试图证明它是代数整数环 \mathcal{O}_K 的单位元。事实上,由于 $l\nmid i$,我们能够找到 j 使得 $ij\equiv 1\pmod{l}$,因此

$$u_i^{-1} = \frac{1 - \zeta_l}{1 - \zeta_l^i} = \frac{1 - \zeta_l^{ij}}{1 - \zeta_l^i} = 1 + \zeta_l^j + \dots + \zeta_l^{j(i-1)} \in \mathcal{O}_K$$

于是 u_i 是单位元。

因此

$$l = \prod_{i=1}^{l-1} (1 - \zeta_l^i) = (1 - \zeta_l)^{l-1} \prod_{i=1}^{l-1} u_i$$

于是 $(l)=L^{l-1}$ 。同时,我们设 L 的剩余类域指数为 f,则由于分歧指数 e=l-1,因此根据 $efg=\phi(l)=l-1$,得 f=g=1。于是 $|\mathcal{O}_K/L|=l$ 。

若 l 是素数,则代数整数环 $\mathcal{O}_K = \mathbb{Z}[\zeta_l]$ 。

证明. 显然 $\mathbb{Z}[\zeta_l] \subset \mathcal{O}_K$ 。又因为 $1, \zeta_l, \zeta_l^2, \cdots, \zeta_l^{l-2}$ 为 K 的一组 \mathbb{Q} 基,则对于任意 $\alpha \in \mathcal{O}_K$,存在一列有理数 $\{a_i\}(1 \leq i \leq l-2)$ 使得

$$\alpha = a_0 + a_1 \zeta_l + \dots + a_{l-2} \zeta_l^{l-2}$$

考虑 ζ_l^i 的迹,容易计算 $\operatorname{tr}(\zeta_l^i) = -1(l \nmid i)$,而 $\operatorname{tr}(1) = l - 1$ 。于是

$$\operatorname{tr}(\alpha \zeta_l^{-s}) = -a_0 - a_1 - \dots - a_{s-1} + (l-1)a_s - a_{s+1} - \dots - a_{l-2}$$

于是 $\operatorname{tr}(\alpha\zeta_l^{-s} - \alpha\zeta_l) = la_s$ 。由于 $\operatorname{tr}(\alpha\zeta_l^{-s} - \alpha\zeta_l) \in \mathcal{O}_K \cap \mathbb{Q} = \mathbb{Z}$,于是 $la_s \in \mathbb{Z}$ 。 于是存在 $\{b_i\}(0 \le i \le l-2) \in \mathbb{Z}$,满足

$$l\alpha = la_0 + la_1\zeta_l + \dots + la_{l-2}\zeta_l^{l-2} = b_0 + b_1\lambda + \dots + b_{l-2}\lambda^{l-2}$$
 (*)

由于性质 3.1 得 $(l) = (\lambda)^{l-1}$,于是 $\lambda \mid b_0$,两边取范数得

$$N(\lambda) = \prod_{i=1}^{l-1} (1 - \sigma_i(\zeta_l)) = \prod_{i=1}^{l-1} (1 - \zeta_l^i) = l, \quad N(b_0) = b_0^{l-1}$$

于是 $l \mid b_0^{l-1} \Rightarrow l \mid b_0 \Rightarrow \lambda^{l-1} \mid b_0$ 。

再对 (*) 式两边模 λ^{l-2} 得 $\lambda^2 \mid b_1 \lambda \Rightarrow \lambda \mid b_1 \Rightarrow l \mid b_1$ 。 重复这个过程得知 $l \mid b_i (0 \le i \le l-2)$ 。记 $b_i = lb_i' (b_i' \in \mathbb{Z})$,则

$$\alpha = b_0' + b_1'\lambda + \dots + b_{l-2}'\lambda^{l-2}$$

这就推出了 $\alpha \in \mathbb{Z}[\zeta_l]$ 。于是 $\mathbb{Z}[\zeta_l] = \mathcal{O}_K$ 。