BUSINESS REPORT

PREDICTIVE MODELLING

TABLE OF CONTENTS

1.1)	Read the data and do exploratory data analysis. Describe the data briefly. (Check the null values, data types, shape, EDA). Perform Univariate and Bivariate
1.2)	Analysis
1.3)	Encode the data (having string values) for Modelling. Data Split: Split the data into test and train (70:30). Apply Linear regression. Performance Metrics: Check the performance of Predictions on Train and Test sets using R-square, RMSE
1.4)	Inference: Based on these predictions, what are the business insights and recommendations
2.1)	Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, write an inference on it. Perform Univariate and Bivariate Analysis. Do exploratory data analysis
2.2)	Encode the data (having string values) for Modelling. Data Split: Split the data into train and test (70:30). Apply Logistic Regression and LDA (linear discriminant analysis)
2.3)	Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model. Compare both the models and write inferences, which model is best/optimized
2.4)	Inference: Based on these predictions, what are the insights and recommendations?21

LIST OF FIGURES

Fig 1.1 - Boxplot and Histplot of Sales	3 3 4 4 4 5
Fig 2.1 - Histogram of Weight, Age of Occupation and Year of model of	
vehicle	12
Fig 2.2 - Boxplot of Weight	12
Fig 2.3 - Boxplot of Age of Occupation	13
Fig 2.4 - Boxplot of Year of model of vehicle	
Fig 2.5 - Heatmap of Car Crash (Weight, Age of Occupation and Year o	
model of vehicle)	
Fig 2.6 - Pair Plot of Crash Crash Dataset	15
Fig 2.7 - ROC Curve for Training & Testing data for Logistic	
Regression	
Fig 2.8 - Confusion Matrix of Training Data for Logistic Regression	
Fig 2.9 - Confusion Matrix of testing Data for Logistic Regression	19
Fig 2.10 - Confusion Matrix of both Training and testing Data for LDA	20
Model	
Fig 2.11 - ROC Curve for Training data for LDA	
Fig 2.12 - ROC Curve for Testing data for LDA	22

LIST OF TABLES

Table 1.1- Firm level data	1
Table 1.2 - Datatypes in the Dataset and Null check	2
Table 1.3 - Data Description of Firm Level Data	2
Table 1.4 - Null values present in data set of Investment Firm	6
Table 1.5 - encoded Data set of Firm	7
Table 1.6 - OLS Table	8
Table 2.1 - Car Crash Dataset	9
Table 2.2 - Datatypes of each column	10
Table 2.3 - Car Crash Data Description	10
Table 2.4 - Null Check on Car Crash Dataset	10
Table 2.5 - Null Check on Car Crash Dataset after imputing	11
Table 2.6 - Categorical columns of Car Crash Dataset	16
Table 2.7 - Encoded Car Crash Dataset ready for Model Building	16
Table 2.8 - 1st 5 Rows of Predictions on test set	16
Table 2.9 - Classification Table for Logistic Regression	18
Table 2.10 - Classification Table for Logistic Regression on Testing	
Data	19
Table 2.11 - Classification Table for LDA on Training Data	
Table 2.12 - Classification Table for LDA on Testing Data	20

Problem 1: Linear Regression

You are a part of an investment firm and your work is to do research about these 759 firms. You are provided with the dataset containing the sales and other attributes of these 759 firms. Predict the sales of these firms on the bases of the details given in the dataset so as to help your company in investing consciously. Also, provide them with 5 attributes that are most important.

1.1. Read the data and do exploratory data analysis. Describe the data briefly. (Check the null values, data types, shape, EDA). Perform Univariate and Bivariate Analysis.

Firm Dataset is shown Below

	sales	capital	patents	randd	employment	sp500	tobinq	value
0	826.995050	161.603986	10	382.078247	2.306000	no	11.049511	1625.453755
1	407.753973	122.101012	2	0.000000	1.860000	no	0.844187	243.117082
2	8407.845588	6221.144614	138	3296.700439	49.659005	yes	5.205257	25865.233800
3	451.000010	266.899987	1	83.540161	3.071000	no	0.305221	63.024630
4	174.927981	140.124004	2	14.233637	1.947000	no	1.063300	67.406408
754	1253.900196	708.299935	32	412.936157	22.100002	yes	0.697454	267.119487
755	171.821025	73.666008	1	0.037735	1.684000	no	NaN	228.475701
756	202.726967	123.926991	13	74.861099	1.460000	no	5.229723	580.430741
757	785.687944	138.780992	6	0.621750	2.900000	yes	1.625398	309.938651
758	22.701999	14.244999	5	18.574360	0.197000	no	2.213070	18.940140

Table 1.1- Firm level data

Data Dictionary for Firm level data:

- 1. sales: Sales (in millions of dollars).
- 2. capital: Net stock of property, plant, and equipment.
- 3. patents: Granted patents.
- 4. randd: R&D stock (in millions of dollars).
- 5. employment: Employment (in 1000s).
- 6. sp500: Membership of firms in the S&P 500 index. S&P is a stock market index that measures the stock performance of 500 large companies listed on stock exchanges in the United States
- 7. tobinq: Tobin's q (also known as q ratio and Kaldor's v) is the ratio between a physical asset's market value and its replacement value.
- 8. value: Stock market value.
- 9. institutions: Proportion of stock owned by institutions.

#	Column	Non-Null Count	Dtype
---	--------	----------------	-------

#	Column	Non-Null Count	Dtype
0	sales	759 non-null	float64
1	capital	759 non-null	float64
2	patents	759 non-null	int64
3	randd	759 non-null	float64
4	employment	759 non-null	float64
5	sp500	759 non-null	object
6	tobinq	738 non-null	float64
7	value	759 non-null	float64
8	institutions	759 non-null	float64

Table 1.2 - Datatypes in the Dataset and Null check

dtypes: float64(7), int64(1), object(1)

- We observe that tobing has missing Data which will be imputed later on.
- We shall be predicting Sales which will be our dependent variable and rest will be independent variable

	sales	capital	patents	randd	employment	tobinq	value
count	759.000000	759.000000	759.000000	759.000000	759.000000	738.000000	759.000000
mean	2689.705158	1977.747498	25.831357	439.938074	14.164519	2.794910	2732.734750
std	8722.060124	6466.704896	97.259577	2007.397588	43.321443	3.366591	7071.072362
min	0.138000	0.057000	0.000000	0.000000	0.006000	0.119001	1.971053
25%	122.920000	52.650501	1.000000	4.628262	0.927500	1.018783	103.593946
50%	448.577082	202.179023	3.000000	36.864136	2.924000	1.680303	410.793529
75%	1822.547366	1075.790020	11.500000	143.253403	10.050001	3.139309	2054.160385
max	135696.788200	93625.200560	1220.000000	30425.255860	710.799925	20.000000	95191.59116

Table 1.3 - Data Description of Firm Level Data

Plot of Histogram and Boxplot of each attribute is as shown below

Fig 1.1 - Boxplot and Histplot of Sales

Fig 1.2 - Boxplot and Histplot of Capital

Fig 1.3 - Boxplot and Histplot of Patents

Fig 1.4 - Boxplot and Histplot of R&D Stock

Fig 1.5 - Boxplot and Histplot of Employment

Fig 1.6 - Boxplot and Histplot of Tobin's q

Fig 1.7 - Boxplot and Histplot of Stock market value

Fig 1.8 - Boxplot and Histplot of Proportion of stock owned by institutions

- We see that all the numeric columns except Proportion of stock owned by institutions are all Right Skewed
- Proportion of stock owned by institutions is slightly Left skewed but has no Outliers

Bivariate Analysis

Heat Map and Pair Plot of the Data is as shown below

Fig 1.9 - Pairplot of Firm Dataset

Fig 1.10 - Heatmap of Firm Dataset showing correlation

- We see that Tobin q has no very minute correlation with any of the attributes
- Sales which is the dependant variable is highly correlated with Capital, R&D Stock,
 Employment And Moderate-to-High Correlated with Patents and Stock Market Value

1.2) Impute null values if present? Do you think scaling is necessary in this case?

Null Value Check

Columns	Null Value present
sales	0
capital	0
patents	0
randd	0
employment	0
sp500	0
tobinq	21
value	0
institutions	0

Table 1.4 - Null values present in data set of Investment Firm Scaling

 Feature Scaling is not required in Linear Regression models but is used depending on the training Algorithm that is being considered

- If Normal Equation is being implemented then there is No stepwise Optimization process hence feature scaling is not necessary.
- However when Gradient descent Algorithm is used, Scaling is recommended, otherwise the algorithm might take much longer to converge.

1.3) Encode the data (having string values) for Modelling. Data Split: Split the data into test and train (70:30). Apply Linear regression. Performance Metrics: Check the performance of Predictions on Train and Test sets using R-square, RMSE.

Only one Categorical Variable - sp500 (Membership of firms in the S&P 500 index)

sales	capital	patents	randd	employment	tobinq	value	institutions	sp500	
0	826.995050	161.603986	10.0	382.078247	2.306000	11.049511	1625.453755	80.27	0
1	407.753973	122.101012	2.0	0.000000	1.860000	0.844187	243.117082	59.02	0
2	8407.845588	6221.144614	138.0	3296.700439	49.659005	5.205257	25865.233800	47.70	1
3	451.000010	266.899987	1.0	83.540161	3.071000	0.305221	63.024630	26.88	0
4	174.927981	140.124004	2.0	14.233637	1.947000	1.063300	67.406408	49.46	0
754	1253.900196	708.299935	32.0	412.936157	22.100002	0.697454	267.119487	33.50	1
755	171.821025	73.666008	1.0	0.037735	1.684000	1.680303	228.475701	46.41	0
756	202.726967	123.926991	13.0	74.861099	1.460000	5.229723	580.430741	42.25	0
757	785.687944	138.780992	6.0	0.621750	2.900000	1.625398	309.938651	61.39	1
758	22.701999	14.244999	5.0	18.574360	0.197000	2.213070	18.940140	7.50	0

Table 1.5 - encoded Data set of Firm

Spliting Data into 70:30

Performing Simple Linear Regression using OLS model

Dep. Variable:	sales	R-squared:	0.936
Model:	OLS	Adj. R-squared:	0.935
Method:	Least Squares	F-statistic:	960.3
Date:	Tue, 22 Feb 2022	Prob (F-statistic):	1.37e-306
Time:	01:57:37	Log-Likelihood:	-4831.5
No. Observations:	531	AIC:	9681.
Df Residuals:	522	BIC:	9719.
Df Model:	8		
Covariance Type:	nonrobust		
Omnibus:	231.591	Durbin-Watson:	1.932
Prob(Omnibus):	0.000	Jarque-Bera (JB):	31508.283
Skew:	0.809	Prob(JB):	0.00
Kurtosis:	40.703	Cond. No.	2.90e+04

	coef	std err	t	P>(t)	0.025	0.975
const	52.8005	233.075	0.227	0.821	-405.080	510.681
capital	0.4142	0.027	15.565	0.000	0.362	0.467
patents	-5.0452	2.407	-2.096	0.037	-9.774	-0.317
randd	1.0261	0.127	8.052	0.000	0.776	1.276
employment	83.9581	3.629	23.136	0.000	76.829	91.087
tobinq	-31.4063	30.227	-1.039	0.299	-90.787	27.975
value	0.1267	0.022	5.886	0.000	0.084	0.169
institutions	1.0555	4.964	0.213	0.832	-8.697	10.808
sp500	-100.4375	267.857	-0.375	0.708	-626.648	425.773

Table 1.6 - OLS Table

Below are some of the Observations of Linear Refression Model

- 1. The variation in the independent variable which is explained by the dependent variable is 93.6378 %
- 2. The Root Mean Square Error (RMSE) of the model is for the training set is 2164.4938172647676
- 3. The Root Mean Square Error (RMSE) of the model is for testing set is 2953.569036057085
- 4. The coefficient of determination R^2 of the prediction on Train set 0.9363784533904187
- 5. The coefficient of determination R^2 of the prediction on Test set 0.892768228595857
- 6. The Root Mean Square Error (RMSE) of the model is for testing set is 2953.5690360571057
- 7. VIF Scores
- capital ---> 4.119837852562865
- patents ---> 3.8852813007814486
- randd ---> 6.229053691145338
- employment ---> 3.888358497441767
- tobing ---> 1.5665491224775512
- v-alue ---> 3.241413503399095
- institutions ---> 2.4474660981670664
- sp500 ---> 2.220617734070768

1.4) Inference: Based on these predictions, what are the business insights and recommendations.

- The RMSE value tells us that the average deviation between the predicted sales made by the model and the actual sales is 2953.56 (Test Data)
- We can Observe from the above predictions and calculations that RMSE for Training and testing data sets are moderately low. which indicates that Model Predictions are Quiet Good when compared to Actual Observations.
- Coefficient of Determination R^2 on Test data is 0.8927 which tells us that the predictor variables explain about 89% of the variance in the response variable.
- F statistic has a very low p value (practically low) Meaning that the model fit is statistically significant, and the explained variance isn't purely by chance.

- We can also observe that VIF(Variance inflation factor) is low which indicates that multicollinearity cease to exist.
- Important Attributes to sales are Employment, Capital & Patents.

Problem 2: Logistic Regression and Linear Discriminant Analysis

You are hired by the Government to do an analysis of car crashes. You are provided details of car crashes, among which some people survived and some didn't. You have to help the government in predicting whether a person will survive or not on the basis of the information given in the data set so as to provide insights that will help the government to make stronger laws for car manufacturers to ensure safety measures. Also, find out the important factors on the basis of which you made your predictions.

2.1) Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, write an inference on it. Perform Univariate and Bivariate Analysis. Do exploratory data analysis.

Data Set of Car Crash is as shown below

	dvcat	weight	Survived	airbag	seatbelt	frontal	sex	ageOFocc	yearacc	yearVeh	ě
0	55+	27.078	Not_Survived	none	none	1	m	32	1997	1987.0	un
1	25-39	89.627	Not_Survived	airbag	belted	0	f	54	1997	1994.0	no
2	55+	27.078	Not_Survived	none	belted	1	m	67	1997	1992.0	un
3	55+	27.078	Not_Survived	none	belted	1	f	64	1997	1992.0	un
4	55+	13.374	Not_Survived	none	none	1	m	23	1997	1986.0	un
				•••							
11212	25-39	3179.688	survived	none	belted	1	m	17	2002	1985.0	un
11213	10-24	71.228	survived	airbag	belted	1	m	54	2002	2002.0	no
11214	10-24	10.474	survived	airbag	belted	1	f	27	2002	1990.0	de
11215	25-39	10.474	survived	airbag	belted	1	f	18	2002	1999.0	de
11216	25-39	10.474	survived	airbag	belted	1	m	17	2002	1999.0	de

Table 2.1 - Car Crash Dataset

#	Column	Non-Null Count	Dtype
0	dvcat	11217 non-null	object
1	weight	11217 non-null	float64
2	Survived	11217 non-null	object
3	airbag	11217 non-null	object
4	seatbelt	11217 non-null	object
5	frontal	11217 non-null	int64
6	sex	11217 non-null	object
7	ageOFocc	11217 non-null	int64

#	Column	Non-Null Count	Dtype
8	yearacc	11217 non-null	int64
9	yearVeh	11217 non-null	float64
10	abcat	11217 non-null	object
11	occRole	11217 non-null	object
12	deploy	11217 non-null	int64
13	injSeverity	11140 non-null	float64
14	caseid	11217 non-null	object

Table 2.2 - Datatypes of each columns

	weight	frontal	ageOFocc	yearacc	yearVeh	deploy	injSever
count	11217.000000	11217.000000	11217.000000	11217.000000	11217.000000	11217.000000	11140.000
mean	431.405309	0.644022	37.427654	2001.103236	1994.177944	0.389141	1.825583
std	1406.202941	0.478830	18.192429	1.056805	5.658704	0.487577	1.378535
min	0.000000	0.000000	16.000000	1997.000000	1953.000000	0.000000	0.000000
25%	28.292000	0.000000	22.000000	2001.000000	1991.000000	0.000000	1.000000
50%	82.195000	1.000000	33.000000	2001.000000	1995.000000	0.000000	2.000000
75%	324.056000	1.000000	48.000000	2002.000000	1999.000000	1.000000	3.000000
max	31694.040000	1.000000	97.000000	2002.000000	2003.000000	1.000000	5.000000

Table 2.3 - Car Crash Data Description

Columns	Null Check
dvcat	0
weight	0
Survived	0
airbag	0
seatbelt	0
frontal	0
sex	0
ageOFocc	0
yearacc	0
yearVeh	0
abcat	0
occRole	0
deploy	0
injSeverity	77
caseid	0

Table 2.4 - Null Check on Car Crash Dataset

From the above table we can see that injSeverity has missing values. 'injSeverity' columns contains 5 levels so we impute the NaNs with their respective Modal Values.

Columns	Null Check
dvcat	0
weight	0
Survived	0
airbag	0
seatbelt	0
frontal	0
sex	0
ageOFocc	0
yearacc	0
yearVeh	0
abcat	0
occRole	0
deploy	0
injSeverity	0
caseid	0

Table 2.5 - Null Check on Car Crash Dataset after iumputing

Some Observations from the Dataset

- 1. Since there are some columns that have different data set we convert these columns into 'Object' datatype. Some of them are
- 'injSeverity' a numeric vector; 0: none, 1: possible injury, 2: no incapacity, 3:incapacity, 4: killed; 5: unknown, 6: prior death
- 'deploy' has 2 categories; 0 if an airbag was unavailable or did not deploy; 1 if one or more bags deployed,
- 'frontal' a numeric vector; 0 = non-frontal, 1=frontal impact
- 'yearacc' year of Accident; 1997, 1998, 1999, 2000, 2001, 2002
- 1. There are no Duplicate rows.
- 2. From the Dataset, Survived is 89.48% and Not Survived are 10.52%
- 3. Once the Columns are converted, we have only 3 columns with numeric datatype

Univariant Analysis

Histogram plot of Weight, Age of Occupation and Year of model of vehicle

Fig 2.1 - Histogram of Weight, Age of Occupation and Year of model of vehicle

- We can observe that Most of the Car weigh between 0 and 5000
- From the Age of occupant graph we see that most of the Occupant involved are between the age 20 to 40 and gradually the count decresses
- From the Year of the Model of Vehcile involved in Car Crash, we can observe that most of the Vehicles are between 1990 & 2000 year Model

Boxplot of Weight, Age of Occupation and Year of model of vehicle

Fig 2.2 - Boxplot of Weight

Fig 2.3 - Boxplot of Age of Occupation

Fig 2.4 - Boxplot of Year of model of vehicle

Bivariant Analysis

Fig 2.5 - Heatmap of Car Crash(Weight, Age of Occupation and Year of model of vehicle)

Fig 2.6 - Pair Plot of Crash Crash Dataset

2.2) Encode the data (having string values) for Modelling. Data Split: Split the data into train and test (70:30). Apply Logistic Regression and LDA (linear discriminant analysis).

&

2.3) Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model. Compare both the models and write inferences, which model is best/optimized.

	dvcat	Survived	airbag	seatbelt	frontal	sex	yearacc	abcat	occRole	deploy	injSe
0	55+	Not_Survived	none	none	1	m	1997	unavail	driver	0	4
1	25-39	Not_Survived	airbag	belted	0	f	1997	nodeploy	driver	0	4
2	55+	Not_Survived	none	belted	1	m	1997	unavail	driver	0	4
3	55+	Not_Survived	none	belted	1	f	1997	unavail	pass	0	4
4	55+	Not_Survived	none	none	1	m	1997	unavail	driver	0	4
			•••								

	dvcat	Survived	airbag	seatbelt	frontal	sex	yearacc	abcat	occRole	deploy	injSe
11212	25-39	survived	none	belted	1	m	2002	unavail	driver	0	0
11213	10-24	survived	airbag	belted	1	m	2002	nodeploy	driver	0	2
11214	10-24	survived	airbag	belted	1	f	2002	deploy	driver	1	3
11215	25-39	survived	airbag	belted	1	f	2002	deploy	driver	1	0
11216	25-39	survived	airbag	belted	1	m	2002	deploy	pass	1	0

Table 2.6 - Categorical columns of Car Crash Dataset

- From the above table which is a subset of dataframe crash, we have obtained columns of object type.
- survived cane be one hot encoded, seatbelt can be onehot encoded, abcat can be one hot encoded, occRule can be one hot encoded, sex can be on hot encoded.
- caseid column will be drop as it is unique for each rows and doesn't help much in predictions

	weight	ageOFocc	yearVeh	dvcat	Survived	frontal	yearacc	deploy	injSeverity	airbag_n
0	27.078	32	1987.0	4	0	1	0	0	4	1
1	89.627	54	1994.0	2	0	0	0	0	4	0
2	27.078	67	1992.0	4	0	1	0	0	4	1
3	27.078	64	1992.0	4	0	1	0	0	4	1
4	13.374	23	1986.0	4	0	1	0	0	4	1
							•••			
11212	3179.688	17	1985.0	2	1	1	5	0	0	1
11213	71.228	54	2002.0	1	1	1	5	0	2	0
11214	10.474	27	1990.0	1	1	1	5	1	3	0
11215	10.474	18	1999.0	2	1	1	5	1	0	0
11216	10.474	17	1999.0	2	1	1	5	1	0	0

Table 2.7 - Encoded Car Crash Dataset ready for Model Building

Data is Split in Training and Testing in the Ratio of 70:30

Logistic Regression is now performed on Dataset

0	1	
0	0.020437	0.979563
1	0.001929	0.998071
2	0.002533	0.997467
3	0.001698	0.998302
4	0.013546	0.986454

Table 2.8 - 1st 5 Rows of Predictions on test set

• Model Score=0.9802572920647051

AUC and ROC for Training data for Logistic Regression

Fig 2.7 - ROC Curve for Training data for Logistic Regression

ROC_AUC Score = 0.991

AUC and ROC for Test data for Logistic Regression

Fig 2.7 - ROC Curve for Testing data for Logistic Regression

ROC_AUC Score = 0.991

Confusion Matrix of Training Data is as shown Below

2.8 - Confusion Matrix of Training Data for Logistic Regression

	precision	recall	f1-score	support
0	0.93	0.88	0.90	826
1	0.99	0.99	0.99	7025
accuracy			0.98	7851
macro avg	0.96	0.94	0.95	7851
weighted avg	0.98	0.98	0.98	7851

Table 2.9 - Classification Table for Logistic Regression on Training Data

• We can see that Accuracy is 98% and F1 score close to 1

Confusion Matrix of Testing Data is as shown Below

2.9 - Confusion Matrix of testing Data for Logistic Regression

	precision	recall	f1-score	support
0	0.94	0.89	0.91	354
1	0.99	0.99	0.99	3012
accuracy			0.98	3366
macro avg	0.96	0.94	0.95	3366
weighted avg	0.98	0.98	0.98	3366

Table 2.10 - Classification Table for Logistic Regression on Testing Data

• We can see that Accuracy is 98% and F1 score close to 1

LDA Model

LDA is now performed on Dataset

Confusion Matrix of LDA model is as shown below

Fig 2.10 - Confusion Matrix of both Training and testing Data for LDA Model

	precision	recall	f1-score	support
0	0.91	0.70	0.70	826
1	0.97	0.99	0.98	7025
accuracy			0.96	7851
macro avg	0.94	0.84	0.88	7851
weighted avg	0.96	0.96	0.96	7851

Table 2.11 - Classification Table for LDA on Training Data

	precision	recall	f1-score	support
0	0.88	0.71	0.78	354
1	0.97	0.99	0.98	3012
accuracy			0.96	3366
macro avg	0.92	0.85	0.88	3366
weighted avg	0.96	0.96	0.96	3366

Table 2.12 - Classification Table for LDA on Testing Data

AUC and ROC for Training data on LDA Model

Fig 2.11 - ROC Curve for Training data for LDA

AUC for the Training Data: 0.968

AUC and ROC for Testing data on LDA Model

Fig 2.12 - ROC Curve for Testing data for LDA

AUC for the Test Data: 0.967

2.4)Inference: Based on these predictions, what are the insights and recommendations?

Observations

- 1. Model Score of Logistic Regression is 0.9824 where as Model Score of LDA is 0.9592
- 2. Accuracy on Test Data set for a Logistic Regression Model is 98% where as Accuracy on Test Data set for a LDA Model is 96%
- 3. ROC_AUC Score for Logistic Regression Model on Test set is 0.991 where as ROC_AUC Score for LDA Model on Test set is 0.967
- 4. Clearly we can conclude that Logistic Regression Model performs better than LDA model but LDA model also can be considered as the accuracy of it prediction is 96%

Clearly we can predict if Passenger/ Driver Survived or not with 98% Accuracy Using Logistic Regression Model given the relavent data used for prediction

THE END