Ellipic Curves over Real Numbers

Elliptic curve general form:

$$y^2 = ax^3 + bx + c$$

The secp256k1 curve form:

$$y^2 = x^3 + 7$$

Elliptic curve points:

EC-Point P(x,y) on the elliptic curve fulfills the curve equation.

EC-Point Addition over Real Numbers

- 1) Form a line with P1 & P2
- 2) Intersect resulting line with EC
- 3) Reflect intersection point across X-axis for P3

EC-Point Addition (Computation)

For an elliptic curve of form:

$$y^2 = ax^3 + bx + c$$

Computation of $P_3=P_1+P_2$

$$lacksquare P_3(x_3,y_3) = P_1(x_1,y_1) + P_2(x_2,y_2)$$

$$egin{array}{l} \circ \ s = rac{y_2 - y_1}{x_2 - x_1} \ ext{for} \ x_1
eq x_2 \end{array}$$

$$egin{array}{ll} \circ \ x_3 = s^2 - x_1 - x_2 \end{array}$$

$$\circ \ y_3 = s(x_1 - x_3) - y_1$$

The equations shown describe EC-point addition where $x_1 \neq x_2$.

EC Point Addition with **Infinity**

The Point at Infinity:

The (Inf/Inf) point is defined as a point which is infinitely far away in the direction of the y-axis.

Therefore, we can add a point P1 to the infinity point simply by connecting a vertical line through P1.

$$egin{split} P_1(x_1,y_1) + (Inf/Inf) &= P_1(x_1,y_1) \ P_1(x_1,y_1) + P_2(x_1,-y_1) &= (Inf/Inf) \end{split}$$

The infinity point is the group identity element

Scalar x EC Point

Scalar multiplication of an EC point P

■ s · P equals adding P to itself s times.

Point(x,y) + Point(x,y)

- Consider Line L'(P1,P2).
- Converges to tangent of P1, as P1 = P2.
 - \circ One intuitive reason for restrictions on a,b to avoid singular points

Distributivity:

- $\bullet (a + b) \cdot C = a \cdot C + b \cdot C$
- (Can be proved algebraically)

Commutativity/Associativity of Point Addition

EC point addition commutivity

- \blacksquare P1 + P2 = P2 + P1
- (Same intersection point)

EC point addition associativity

- Order of addition doesn't change result.
- Associativity proof is rather involved.
 - \circ (P1 + P2) + P3 = P1 + (P2 + P3)
 - (Associativity can be observed in example)
- Rather fragile property, reflection necessary!

Why reflect? Associativity

Without flipping:

$$\blacksquare A + B = C$$

Implies (why?):

- $\blacksquare B + C = A$
- -C+A=B
- ->A=0:(

Stirring the pot

So far we established the group structure of elliptic curves

- Point addition
- Identity element
- etc.

ECs are defined over an underlying field

- $y^2 = ax^3 + bx + c$
- So far it was always Q, but any field does the trick
 - The magic of abstract algebra
- ⇒Final step: ECs over finite fields

Elliptic Curves over \mathbb{F}_p

Point on elliptic curve over \mathbb{F}_p

- Point coordinates fulfill following equation:
- $y^2 = ax^3 + bx^2 + c \pmod{p}$

Example EC points:

- $y^2 = x^3 + 7$ over \mathbb{F}_{29}
- $P_1(3,18)$:

$$\circ 18^2 = 3^3 + 7 \pmod{29} = 5$$
 <

 $P_2(23,20)$:

$$\circ 20^2 = 23^3 + 7 \pmod{29} = 23$$
 <

 Note: Elliptic curve plots are a set of non-continuous points since finite fields themselves are noncontinuous.

EC-Point Addition over \mathbb{F}_p

EC-Point Addition over Reals \mathbb{R} :

Addition where x1 != x2:

$$s = \frac{y_2 - y_1}{x_2 - x_1}$$

$$x_3 = s^2 - x_1 - x_2$$

$$y_3 = s (x_1 - x_3) - y_1$$

Addition where P1 = P2:

$$s=rac{(3x_1^2+a)}{2y_1}$$

$$x_3 = s^2 - 2x_1$$

$$y_3 = s(x_1 - x_3) - y_1$$

Addition with infinity:

$$(x_1,y_1)+(\infty,\infty)=(x_1,-y_1)$$

EC-Point Addition over Prime \mathbb{F}_p :

 \leftarrow EC-point addition equations over \mathbb{R} apply to EC point addition over prime \mathbb{F}_p .

Example:

$$P_{3}\left(x_{3},y_{3}
ight) =P_{1}\left(3,18
ight) +P_{2}\left(23,20
ight)$$

$$s = \frac{20-18}{23-3} = 2 \cdot 20^{29-2} \; (mod \; 29) = 3$$

$$x_3 = 3^2 - 23 - 3 \pmod{29} = 12$$

$$y_3 = 3 \cdot (3-12) - 18 \ (mod \ 29) = 13$$

$$y^2=x^3+7$$
 over \mathbb{F}_{29}

Geometric intuition for EC-Point Addition over \mathbb{F}_p

Elliptic Curve Point Groups (I)

Symmetry: Each point P(x,y) has an inverse P(x,-y)

- P(x,y) + P(x,-y) = (Inf/Inf)
- Same relationship as over \mathbb{R}
- Blackboard: Prove that both points are on the curve

Points form a cyclic point group

- \bullet 1 \circ G
- 2 ∘ *G*
- **.**...
- $lacksquare |\mathbb{G}| \circ G = (Inf, Inf)$
- (Proof of cyclic behaviour omitted)

Elliptic Curve Point Groups (II)

1) Closed group operation (Point addition)

- $\circ \;\; \mathsf{EC}$ point addition over \mathbb{F}_p
- EC point addition is Associative & Commutative
- 2) Generator group element (G)

$$\circ \ G + G + G \ldots G + G + G = s \circ G = P \in \mathbb{G}$$

- \circ Finite number $|\mathbb{G}|$ of elements in cyclical group \mathbb{G}
- 3) Neutral group element (inf/inf)

$$\circ \ P + (inf, inf) = P$$

4) Group element inverse

$$\circ \ P(x,y) + P(x,-y) = (inf,inf)$$

Disrete Log over Elliptic Curves

Discrete Log Problem:

$$P = G + G + G \dots G + G + G = k \circ G$$

- \circ Given **P**, solve for **k**
- Number of Points $|\mathbb{G}|$ in Group: $\approx p$ (Schoof's Algorithm)
- $\circ~$ EC multiplication is more like a black-box-operation than modulo-exponentiation over \mathbb{F}_p
- \circ Only general discrete log solutions are known for Elliptic Curves $\mathcal{O}(\sqrt{|\mathbb{G}|})$
 - 160bit (group order) / 80bit (security)
 - 256bit (group order) / 128bit (security)
- In Comparison: Index-calculus(DH, DSA, Elgamal), Factorization(RSA)
 - 1040bit (group order) / 80bit (security)
 - 3072bit (group order) / 128bit (security)
- This is a conjecture! ($\mathcal{P} \stackrel{?}{=} \mathcal{NP}$)

Double and Add

Computing $P = k \circ G$ from known k must be efficient

$$26 \circ G = 11010 \circ G$$

- Bitscan from left to right.
- Value of Bit0 is 1: G
- \circ Value of Bit1 is 1: $2 \circ G + G = 3 \circ G$
- \circ Value of Bit2 is 0: $2 \circ 3G = 6 \circ G$
- \circ Value of Bit3 is 1: $2 \circ 6G + G = 13 \circ G$
- \circ Value of Bit4 is 0: $2 \circ 13G = 26 \circ G$

25 Group operations reduced to 6

 $\mathcal{O}(\log n)$ Complexity

Bitcoin Private & Public Keys

The secp256k1 EC point group:

Bitcoin private & public keys:

$$P = k \circ G$$

(Private key scalar k is chosen, secp256k1-point P is the public key)

The secp256k1 EC-Point Group is used to generate Bitcoin private/public keys.

Why secp256k1

secp256k1 has some special properties that speed up some operations

a=0

Prime order also chosen in a somewhat predictable manner

However, secp256k1 was virtually unused before Bitcoin

Bitcoin Public Key Point Serialisation

Private Key (32bytes)

secret * Generator Point

1 0x**04** x-coordinate (32bytes)

y-coordinate (32bytes)

1 + 32 + 32 = 65 bytes

 $\begin{array}{c|c}
\hline
0 \times 02/\\
0 \times 03
\end{array}$ x-coordinate (32bytes)

1 + 32 = 33 bytes

 $0428026f91e1c97db3f6453262484ef5f69f71d89474f10926aae24d3c3eeb5f00 \rightarrow x$ $c41b6810b8b305a05de2b4448d7e2a079771d4c018b923a9ab860e4b0b4f86f6 \rightarrow y$

 $0228026f91e1c97db3f6453262484ef5f69f71d89474f10926aae24d3c3eeb5f00 \rightarrow x$

• Uncompressed Public Key Point

The uncompressed public key point directly represents both x and y-coordinates.

Compressed Public Key Point

The compressed public key point implies its y-coordinate from its x coordinate.

A compressed public key begins with 0x02/0x03 to imply an even/odd y-coordinate.

Necessarily even/odd, because scalar field order is prime (odd). For given x, both +/-y values valid, which are complements in the odd field order.

Given x, +/-y can be found with the Tonelli–Shanks algorithm