Problem 9

Theorem 1.1. A hypercube Q_n is Hamiltonian. It has a girth of 4 for $n \geq 2$ and ∞ otherwise. It's diameter is n, it's order 2^n and it has a size of ?.

Proof. Let S be a set of cardinality |S| = n. We construct $Q_n = (V_Q, E_Q)$ by creating a vertex for each subset of S and moreover add edges between those subsets which differ by only one element. In the following, we will use binary representations of the vertices of Q_n since $V_Q = \mathcal{P}(S) \cong (\mathbb{Z}/2\mathbb{Z})^n$ (we can denote a 1 for including an element and a 0 for excluding an element in a subset).

Order: Since $V_Q = \mathcal{P}(S)$ and $|\mathcal{P}(S)| = 2^n$, the order of Q_n is 2^n .

Size:

Girth: We differ between two cases.

- Case 1: n = 1. Our graph contains exactly one edge and is therefore acyclic. Hence, the girth is ∞ for n = 1.
- Case 2: $n \geq 2$ Our graph contains the cycle $(\emptyset, \{a\}, \{a,b\}, \{b\}, \emptyset)$ $(a,b \in S)$ which has length 4. A shorter cycle (A, B, C, A) $(A, B, C \in V_Q)$ does not exist due to the property that two adjacent vertices differ by exactly one element. For such a cycle, B and A differed by one element, and hence A and C differed by two or are equal. However, a difference of zero or two elements between two consecutive elements renders any walk invalid. The edge $\{C,A\}$ could not be contained in Q_n .

From these considerations, for $n \geq 2$, the girth is 4.

Diameter: For any set $A \in V_Q$, we are able to get to any other element $B \in V_Q$ by inserting or removing a maximum of n elements. Thus, a path of length n is sufficient to walk from any A to any B. Furthermore, there exist A and B such that a path of length n is the shortest path between them. E.g. $A = \emptyset \in V_Q$, $B = S \in V_Q$. Thus, the diameter of Q_n is n.

Hamiltonian: A Hamiltonian cycle is equivalent to an enumeration of $(\mathbb{Z}/2\mathbb{Z})^n$ in which consecutive elements differ by exactly one element. We provide such an enumeration: the *Gray Code*^a. Thus, there exists a Hamiltonian cycle and Q_n is Hamiltonian.

^aFor n=2: 00,01,11,10,00. Generally, the k'th vertex in the Hamiltonian cycle is $k\otimes \lfloor \frac{k}{2}\rfloor$ whereby $\cdot\otimes\cdot$ denotes the exclusive or.

Theorem 1.2. A complete bipartite graph $K_{m,n}$ is Hamiltonian iff m = n. It's girth is 4 for $m, n \neq 1$ and and ∞ otherwise. It's diameter is 1 for m = n = 1 and 2 otherwise. The graph's order is m + n and it's size is $m \cdot n$.

Proof. Let $V = \{v_1, ..., v_m\}$ and $W = \{w_1, ..., w_n\}$ denote the two partitions of $K_{m,n} = (V_K, E_K)$.

Order: The first partition has m elements, the second n elements. Thus, $K_{m,n}$ has an order of m+n.

Size: Each of the m elements of the first partition are connected to each of the n elements in the second partition. Thus, $K_{m,n}$ has a size of $m \cdot n$.

Girth: If either m=1 or n=1, then all vertices of one partition are indicent to and only to the single vertex of the other partition. Hence, there is no cycle in $K_{1,n}$ or $K_{m,1}$ and the girth of $K_{m,n}$ is ∞ if n=1 or m=1.

If $m, n \neq 1$, each cycle must have even length since any two consectuive vertices in a path of $K_{n,m}$ are in different partitions. Thus, we require an even amount of edge-crossings to enclose a walk. Any cycle has a length of at least 3, thus the girth of $K_{m,n}$ has to exceed or be equal to 4.

Furthermore, we find such a cycle of length 4 easily since both partitions V, W have at least 2 vertices: $(v_1, w_1, v_2, w_2, v_1)$. From these considerations, the girth of $K_{m,n}$ must be equal to 4.

Diameter: For m = n = 1, there are exactly two vertices in different partitions. They have a distance of 1 and thus, the diameter of $K_{1,1}$ is 1.

Since two consectuive vertices in a path of $K_{n,m}$ are in different partitions V, W the distance between two vertices in the same partition has to be at least 2. Moreover, we find a path of distance 2 between $v_1 \in V$ to $v_2 \in V$: (v_1, w, v_2) for any $w \in W$. Thus, the diameter does not deceed 2.

For any two vertices in different partitions V, W, they are directly connected by a path of length 1. Hence, the diameter of $K_{m,n}$ is 2 if not m = n = 1.

Hamiltonian:

Graph Theory - Sheet 3 - November 12, 2013 J. Batzill (1698622), M. Franzen (1696933), J. Labeit (1656460)

Theorem 1.3. The Petersen graph is not Hamiltonian, it has a girth of 5, a diameter of 2, an order of 10 and a size of 15.

Proof. Order: The graph has 10 vertices and thus, it's order is 10.

Size: The graph has 15 edges and thus, it's size is 15.

Girth:

Diameter:

Hamiltonian:

Problem 11

For each even integer k > 1, the complete graph $K_{(n+1)}$ is a k-regular graph with no 1-factor. For each odd k > 1 we can construct a k-regular graph with no 1-factor in the following way.

In order to garantee that the graph has no 1-factor we can use Tutt's theorem. We construct the graph by starting of with one vertex v connected to k subgraphs S which are not inter-connected. Then we construct

Figure 1: Example with k=3

S=(V,E) in such a way that |V| is odd and that all vertices in V have degree k except of one vertex $u \in V$ with degree k-1. If we then connect u to v we get a k-regular graph. Using Tutt's theorem we know that the resulting graph has no 1-factor. Because if v is removed we get k components S with odd number of vertices and k is greater than 1.

In order to contruct S we first need the following lemma.

Lemma 2.0.1. For any odd integer k > 1 it is possible to construct (k-1)-regular graph G = (V, E) with k+1 vertices.

Proof. We can obtain G from K_{k+1} by removing by removing all the edges from K_{k+1} contained in a perfect matching. By removing the edges the degree of every vertex decreases exactly by one. K_{k+1} is by definition k-regular, hence G is k-1-regular. A perfect matching in K_{k+1} exists, because k+1 is even, and the condition from Tutte's theorem always holds in a complete graph. To find such a matching we can just randomly choose (u,v) edges and remove u and v from K_{k+1} .

Constructing a connected graph S = (V, E) with |V| = k + 2 and the degree sequence (k, k, ..., k, (k - 1)). First we construct a (k - 1)-regular graph S' = (V', E') with k + 1 vertices as described in the lemma. Then we can add one vertex to S' and connect it to all vertices in V' except of one vertex. Thus we get a new graph S. Because we only added one vertex |V| = |V'| + 1 = k + 2 and the degree of the newly added vertex is k. The degree of all the other vertices except of the last one is increased by one. Hence, S hat the degree sequence (k, k, ..., k, (k - 1)).

Figure 2: S' and S for k=3

Problem 12

In the following I will show that any graph G with 2n vertices and all degrees at least n has a 1-factor. I will show that if we divide such a G into two parts we can remove edges until we get an bipartite 1-regular graph. Then using the corollary of Hall's theorem we know we can find a perfect matching.

Theorem 3.1. Let G = (V, E) be a graph with |V| = 2n vertices with all degree at least n, then G has a 1-factor.

Proof. Because |V| = 2n we can divide the vertices V into two subsets $A, B \subset V$ with |A| = |B| = n and $A \cap B = \emptyset$.