CHƯƠNG 5 CÁC GIAO THỨC ĐIỀU KHIỂN LIÊN KẾT DỮ LIỆU

Điều khiển dòng (Flow Control)

- Bảo đảm cho máy phát không gởi dữ liệu quá nhanh
 - Ngăn ngừa việc tràn bộ đệm
- Thời gian truyền
 - Thời gian cần thiết để gởi tất cả các bit dữ liệu lên đường truyền.
- Thời gian lan truyền
 - Thời gian cần thiết để 1 bit đi từ nguồn đến đích.

Mô hình truyền Frame

Dùng lại và đợi (Stop-and-Wait)

- Máy phát truyền các frame dữ liệu
- Máy nhận nhận dữ liệu và trả lời bằng ACK
- Máy phát đợi ACK trước khi phát tiếp dữ liêu
- Máy nhận có thể ngưng bằng cách không gởi ACK
- Thích hợp khi chỉ có vài frame có kích thước lớn

Chia nhỏ gói tin

- Dữ liệu lớn được chia thành các frame có kích thước nhỏ
 - Kích thước bộ đệm có giới hạn
 - Lỗi được phát hiện sớm (khi cả gói dữ liệu đã nhận được)
 - Khi có lỗi, chỉ cần truyền lại frame nhỏ
 - Ngăn ngừa tình trạng 1 trạm làm việc chiếm đường truyền lâu
- Stop and wait trở nên không thích hợp

Sử dụng đường truyền của Stop and Wait

Điểu khiển dòng theo cửa số trượt (Sliding windows)

- Cho phép nhiều frame có thể truyền đồng thời
- Bên thu có bộ đệm với kích thước W
- Bên phát có thể truyền tối đa W frame mà không cần đợi ACK
- Cơ chế đánh số thứ tự cho các frame
- ACK có chứa số của frame kế tiếp đang được mong đợi
- Số thứ tự được quay vòng bởi kích thước cửa số (modulo 2^k)

Sơ đồ cửa số trượt

Ví dụ cửa số trượt

Cửa số trượt cải tiến

- Máy nhận có thể công nhận các gói tin đồng thời không cho phép truyền tiếp (Receive Not Ready)
- Cần phải gửi ACK thông thường khi muốn tiếp tục
- Trong trường hợp song công sử dụng kiếu đánh khăng
 - Nếu không có dữ liệu cần truyền gửi ACK
 - Nếu có dữ liệu mà không cần gửi ACK thì tiếp tục gửi số ACK cũ

Phát hiện lỗi

- Thêm các bit để có thể phát hiện ra lỗi trên đường truyền
- Sử dụng Parity
- Sử dụng CRC

Kiểm soát lỗi

- Bảo đảm dữ liệu nhận được đúng và chính xác
- Mất frame: frame không đến đích
- Frame sai: dữ liệu trong frame bị sai
- Cung cấp cơ chế cho việc truyền dữ liệu trong trường hợp dữ liệu bị mất hay sai sót trên đường truyền
 - Positive ACK xác nhận các frame nhận được
 - Truyền lại sau một thời gian time-out
 - Negative ACK (NAK) và truyền lại yêu cầu truyền lại (NAK) cho các frame bị hư

Tự động thực hiện lại Automatic Repeat Request

 Cơ chế cho phép các giao thức liên kết dữ liệu quản lý lỗi và yêu cầu truyền lại

Stop and Wait

- Máy gửi gởi một gói tin đến máy nhận
- Máy gửi đợi trả lời
- Nếu gói tin bị hỏng thì sẽ gửi lại
 - Máy gửi có định thời gian
 - Không nhận được trả lời quá thời gian Máy gửi gởi lại
- Nếu gói tin nhận được, nhưng ACK bị mất/hư?
 - Máy gửi gởi lại
 - Máy nhận sẽ nhận được 2 gói tin giống nhay
 - Sử dụng đánh số 0 và 1

Stop and Wait

Stop and Wait – ưu khuyết điểm

- Đơn giản
- Không hiệu quả

Go-back-N

- Frame điều khiển
 - □ RR receive ready = ACK acknowledge
 - □ REJ reply with rejection = NAK negative acknowledge
- Dựa trên cơ chế sliding window
 - Máy gửi truyền liên tục các Frame đến máy nhận (trong khi cơ chế điều khiển dòng còn cho phép)
 - Máy nhận chỉ nhận Frame theo đúng chỉ số tuần tự (hoặc)
 và gửi RR với só hiệu của Frame đang chờ nhận
- Khi có lỗi,
 - Máy nhận sẽ yêu cầu gửi lại và loại bỏ các frame tiếp theo đến khi nhận được sửa đổi
 - Máy gửi truyền lại tất cả các Frame sai kể từ Frame sai đầu tiên trở đi, bất kể các Frame sau là đúng hay sai

Frame hong

- Máy nhận phát hiện lỗi trong Frame thứ I
- Máy nhận truyền Frame REJ(i)
- Máy gửi nhận được Frame REJ(i)
- Máy gửi truyền lại Frame thứ I và các Frame tiếp theo

Frame mất (1)

- Frame i bị mất
- Máy gửi đã truyền Frame i+1
- Máy nhận nhận được Frame i+1 ngoài thứ tự
- Máy nhận truyền Frame REJ (i)
- Máy gửi quay trở lại Frame thứ i và gửi lại

Frame mất (2)

- Frame i mất và không có frame nào được gửi tiếp
- Máy nhận không nhận được gì và không trả lời
- Máy gửi đợi hết thời gian sẽ gửi ACK Frame với bít P cho bằng 1.
- Máy nhận truyền RR(i)
- Máy gửi truyền lại Frame i

Frame ACK bi hu

- Máy nhận nhận được Frame i, máy nhận truyền Frame RR(i+1), nhưng Frame này bị mất
- Máy gửi còn gửi các Frame tiếp theo như i+1, i+2.. Nên nếu máy gửi nhận được Frame RR(i+n) trước thời gian timeout thì được hiểu như bao gồm RR(i), RR(i+1)..
- Máy nhận đợi, sẽ gởi lại các Frame, kế từ Frame i
- Máy nhận được Frame REJ(i) báo thiếu hay hay hư thì sẽ gởi lại các Frame, kể từ Frame i

Go-back-N

Selective Reject

- Tương tự như Go-Back-N,
- Chỉ truyền lại các Frame bị hoảng hoặc time-out
- Máy nhận có thể nhận Frame không theo đúng tuần tự và máy nhận phải có buffer để lưu lại các Frame đến không theo đúng chỉ số tuần tự
- Giảm số lượng cần truyền lại
- Buffer cần phải đủ lớn
- Phức tạp hơn

Selective Reject

High-level Data Link Control – HDLC

- Giao thức điều khiển liên kết dữ liệu cấp cao (High-level Data Link Control – HDLC)
- Liên kết point-to-point hoặc multipoint
- Đặc điểm
 - Không phụ thuộc mã điều khiển
 - Khả năng thích ứng
 - Hiệu quả cao
 - Độ tin cậy cao

Các loại trạm làm việc HDLC

- Trạm cấp 1
 - Điều khiển hoạt động của liên kết
 - Frame phát ra gọi là các lệnh
 - Duy trì liên kết logic riêng cho các trạm cấp 2
- Trạm cấp 2
 - Hoạt động dưới sự điều khiển của trạm cấp 1
 - Frame phát ra gọi là các trả lời
- Trạm tố hợp
 - Có thể phát ra các lệnh và trả lời

Cấu hình liên kết

- Không cân bằng
 - Một trạm cấp 1 và một hoặc nhiều trạm cấp 2
 - Cho phép full duplex và half duplex
- Cân bằng
 - 2 trạm tổ hợp
 - Hỗ trợ full duplex và half duplex

Giao thức HDLC – chế độ truyền (1)

- Normal Response Mode (NRM)
 - Cấu hình không cân bằng
 - Trạm cấp 1 khởi động việc truyền đến trạm cấp 2
 - Trạm cấp 2 chỉ có thể truyền dữ liệu để đáp ứng lại lệnh từ trạm cấp 1
 - Dùng đường truyền dạng multi-drop
 - Máy chủ hoạt động như là trạm cấp 1
 - Các terminal hoạt động như là trạm cấp 2

Giao thức HDLC – chế độ truyền (2)

- Asynchronous Balanced Mode (ABM)
 - Cấu hình cân bằng
 - Trạm nào cũng có thể bắt đầu truyền mà không cần sự cho phép
 - Được dùng rộng rãi
 - Không tốn chi phí cho việc polling

Giao thức HDLC – chế độ truyền (3)

- Asynchronous Response Mode (ARM)
 - Cấu hình không cân bằng
 - Trạm cấp 2 có thể bắt đầu truyền mà không cần sự cho phép của trạm cấp 1
 - Trạm cấp 1 chịu trách nhiệm cho đường truyền
 - Ít dùng

Cấu trúc Frame của HDLC

- Truyền đồng bộ
- Truyền theo Frame
- Định dạng Frame chung cho việc trao đối dữ liệu và điều khiển

Cấu trúc Frame

(a) Frame format

Nghi thức HDLC – cờ điều khiển

- Dùng để phân định Frame cả ở 2 đầu
- 01111110
- Có thể dùng để kết thúc Frame này và bắt đầu Frame khác
- Máy nhận quét tìm cờ để đồng bộ
- Chèn thêm bit (bit stuffing) được dùng để tránh lẫn lộn dữ liệu chứa 01111110
 - 0 được chèn thêm vào mỗi khi chuỗi 5 số 1 liên tiếp xuất hiện
 - Nếu máy nhận phát hiện 5 số 1, nó kiểm tra bit kế tiếp
 - Nếu bit đó là 0, nó xóa bit 0 đó
 - Nếu bit là 1 và bit thứ 7 là 0, nó biết đây là cờ
 - Nếu bit thứ 6 và 7 đều là 1, bộ phát ra lệnh hủy bỏ

Chèn thêm bit

Original Pattern:

111111111111011111101111110

11111011111011011111010111111010

After bit-stuffing

Ví dụ các lỗi có thể

(b) An inverted bit splits a frame in two

(c) An inverted bit merges two frames

Trường địa chỉ

- Dùng để nhận diện trạm cấp 2 đã gởi hoặc sẽ nhận Frame
- Thường dài 8 bit
- Có thể mở rộng thành bội số của 7 bit
 - LSB của mỗi octet chỉ thị đây là octet cuối cùng (1) hay chưa (0)
- Địa chỉ toàn 1 (11111111) là địa chỉ broadcast

Trường điều khiển

- Khác nhau tùy thuộc vào loại Frame
 - Thông tin dữ liệu cần truyền đến người dùng (lớp trên)
 - Điều khiển dòng và điều khiển lỗi được gởi kèm (piggybacked) trong các khung thông tin
 - Giám sát dùng ARQ khi piggyback không được dùng
 - Không số hỗ trợ cho việc điều khiển liên kết
- 1 hoặc 2 bit đầu tiên của trường điều khiến dùng để nhận dạng loại Frame

Trường điều khiển

N(S) = Send sequence number N(R) = Receive sequence number S = Supervisory function bits M = Unnumbered function bits P/F = Poll/final bit

(c) 8-bit control field format

(d) 16-bit control field format

Bit Poll/Final

- Dùng tùy theo ngữ cảnh
- Frame lệnh
 - Bit P
 - 1 để mời gọi (poll) đáp ứng của các trạm ngang hàng
- Frame trả lời
 - Bit F
 - 1 để chỉ thị đáp ứng đối với lệnh mời gọi

Trường thông tin

- Chỉ có trong Frame thông tin và một số Frame không số
- Cần bao gồm một nhóm các octet
- Kích thước thay đối

Trường FCS - Frame Check Sequence Field

- Dùng để phát hiện lỗi
- CRC 16 bit
- Có thể dùng CRC 32 bit

Hoạt động của giao thức HDLC

- Trao đối Frame thông tin, Frame giám sát và Frame không số
- 3 giai đoạn
 - Khởi tạo
 - Trao đối dữ liệu
 - Ngắt kết nối

Ví dụ hoạt động

Ví dụ hoạt động (2)

HÉT CHƯƠNG 5