

Interactive Systems (ISY)

Hörsaalübung 01

Jan Feuchter jan.feuchter@hci.uni-hannover.de

ORGANISATORISCHES

Personen

- Vorlesung
 - Michael Rohs

Jan Feuchter

Präsenzübung

- Dienstag 09:45-11:15
- Vertiefung der Vorlesungsinhalte
- Beispiele
- Praktische Übungen
- Nachbesprechung Hausübungen

Ressourcen

- Kurs Homepage
 - Kursplan, Referenzen
 - https://www.pi.uni-hannover.de/de/hci/lehre/sommer-2024/interaktive-systeme
- Stud.IP
 - Foliensätze, Aufgaben, Ankündigungen, Diskussionen, Feedback
 - https://studip.uni-hannover.de/
- Upload Tool
 - Abgabe der Hausübung
 - https://assignments.hci.uni-hannover.de

Übungen und Scheinbedingungen

Übungen

- (meist) wöchentlich, Aufgaben lösen
- Bearbeitung erfolgt einzeln (außer explizit erlaubt)
- Abgabe per Submission-System
- Bonuspunkte für Klausur (max. 20% auf erreichte Klausurpunkte)
- Bonus gilt nur für das Semester, in dem der Bonus erarbeitet wurde
- Bonus hilft nicht beim Bestehen

Klausur

- Schriftlich, 90 Minuten
- Scheinbedingungen
 - Bestehen der Klausur
 - Schein ist benotet

Abgabe der Übungen

https://assignments.hci.uni-hannover.de

Submit your assignments

Abgabe der Übungen (2)

- Abgabe der Übung als .zip Archiv
 - Archiv enthält alle relevanten
 Dateien
- Deadline stets montags um 23:59

- Textaufgaben:
 - Nur PDF!
- Programmieraufgaben:
 - Jeweils in Aufgabe beschrieben
 - z.B. Export aus IntelliJ

Interaktive Systeme: Assignment 1									
Firstname: Jan Lastname: Wolff									
E-Mail: jan.wolff@hci.uni-hanno	ver.de								
Optional:	Please	fill out tl	ne surv	ey to giv	/e ano r	nymou	s feedba	ack	
	Strongly disagree			Neutral			Strongly agree	Undecided	
The assignment was easy to solve.	0	0	0	0	0	0	0	•	
I learned a lot while doing the assignment.	0	0	0	0	0	0	0	•	
The assignment was fun to work on.	0	0	0	0	0	0	0	•	
The assignment went along nicely with the lecture.	0	0	0	0	0	0	0	•	
In total I spent about X hours working on the assignment.									
Anything else about the assignment you want to tell us about? (At most 250 characters)									
no *.zip file selected Choos								Choose File	
Submit									

Lectures

Session	Date	Topic	Details
1	2.4.	Introduction	human performance, empirical research, modeling
2	9.4.	Interaction elements	input devices, interaction elements, states, layouts
	16.4.	Event handling	events, bindings, reactive programming, scene graph
3	23.4.	Scene graphs	event delivery, coordinate systems, nodes, animation, concurrency
4	30.4.	Interaction techniques	alignment and pointing techniques
5	7.5.	Interaction techniques	
6	14.5.	Web-based user interfaces	document object model, client-server issues
	21.5.	Pfingstwoche	
7	28.5.	Web-based user interfaces	reactive Programming for the Web
8	4.6.	Experiments and data analysis	designing experiments, hypothesis testing
9	11.6.	Modeling interaction	descriptive and predictive models, keystroke-level model, regression
10	18.6.	Visualization	visual encodings, perceptual accuracy, treemaps, dynamic queries
11	25.6.	Human-Centered Al	introduction to human-centered AI, human control and automation, examples
12	2.7.	Deep learning in HCI	guidelines for human-Al interaction, neural networks
13	9.7.	Deep learning in HCI	convolutional and recurrent NNs, face recognition, gesture recognition

Exkurse

- Reactive Programming
 - JavaFX
 - HTML, CSS, JavaScript
 - Web Frameworks: Vue.js, Svelte
- Statistics and Evaluation of Experiments
 - Python
 - Jupyter Notebooks
 - Seaborn, Pandas, etc.
- Deep Learning
 - Python
 - TensorFlow (Keras)

KURZE WIEDERHOLUNG

Simple Reaction Time

- Java ReactionTimeExperiment
 - modified from MacKenzie: http://www.yorku.ca/mack/HClbook/

Press key as quickly as possible after red box appears

Fragen

Sie fahren auf eine Ampel zu und diese springt von grün auf gelb.

Ist dies ein Beispiel für einen Simple Reaction Task?

Cognitive Operation in a Reaction Time Task

- Example: visual stimulus, button press as response
 - Retina converts light to nerve impulses
 - Transmitted to brain for perceptual processing
 - Neural activations in motor cortex
 - Nerve signals transmitted to hand
 - Muscle transforms nerve signal to physical movement
- Sensory stimuli and motor responses exist in outside world
 - Relatively easy to measure
- Cognitive operations within human brain
 - Difficult to measure

Physical Matching

- Stimulus 1: five-letter word w
- Random delay
- Stimulus 2: either w or v (v ≠w)

- User presses key₁ if S₁ = S₂,
 else presses key₂
- Probability $p(v=w) = p(v\neq w) = 0.5$

Name Matching

- Same as physical matching (match if v = w),
 except that appearance of second stimulus is different
 - UPPERCASE or lowercase, plain or **bold**, 18 or 20 point, etc.
- Cognitive demand is higher, because of appearance differences need to be decoded before symbolic comparison

Class Matching

- Stimulus 1: letter or digit (exclude '0', '0', '1', '1')
- Stimulus 2: letter or digit (exclude '0', '0', '1', '1')
- As in name matching there may be appearance differences
- Match if both stimuli are letters or if both are digits
- Cognitive demand is higher than for name matching, because consultations of longterm memory required

Fragen

Wodurch wird die Schwierigkeit von "class matching" bestimmt?

Beispiel für schwierigeres class matching als Ziffern vs. Buchstaben?

Results of Experiment on Reaction Tasks (MacKenzie)

- 14 students
- 3 blocks of 10 trials each (1st block practice)
- 2 orders (simple, physical, name, class)
- Mean times
 - Simple reaction:276 ms
 - Physical matching:482 ms (match)538 ms (no match)
 - Class matching:565 ms (mach)565 ms (no match)

Visual Search

- Search for target item in a set of items
- Search time depends on set size

000

match

Visual Search

W

 $H \mid W$

Leibniz Universität Hannover

Visual search time is ... the size of the search set.

- A. is independent of
- B. is a linear function of
- C. is a quadratic function of
- D. is a ... function of
- E. has an unknown relationship to

Which menu design is better?

64 menu items

A. 8 items on each menu, 2 levels deep

B. 2 items on each menu, 6 levels deep

Which of those is the best input device? Why?

- Task completion time
 - seconds

- Error rate
 - ratio of missed selections to all selections

Data is from the first study on input devices:

English, Engelbart, Berman. Display selection techniques for Text Manipulation. IEEE Trans. on Human Factors in Electronics. 1967.

SOFTWARE

Java: IntelliJ IDEA

https://www.jetbrains.com/idea/download

Java: OpenJDK und JavaFX

- OpenJDK 11
 - Installation provided by IntelliJ
 - Or via Oracle
 - https://www.oracle.com/java/technologies/downloads/#java11
 - Or via third parties
 - https://www.microsoft.com/openjdk#11
 - https://docs.aws.amazon.com/corretto/latest/corretto-11-ug/downloads-list.html
- OpenJFX 11 (JavaFX)
 - https://gluonhq.com/products/javafx/

Jupyter Notebook & Python

https://colab.research.google.com/

Jupyter Notebook & Python (lokale Alternative)

Anaconda:

https://www.anaconda.com/products/distribution#Downloads

Tutorial: Pandas, Seaborn, Numpy

- http://pandas.pydata.org/pandas-docs/stable/
- https://seaborn.pydata.org/examples/index.html
- https://www.numpy.org/devdocs/

NÄCHSTES ASSIGNMENT

Assignment 01

- Durchführen vom Reaction Time Experiment an Ihnen selbst
- Auswertung und Plotten der Messdaten via Python
- Teilen der Messwerte (anonym) in gemeinsames Google Spreadsheet
 - Nächste Woche: Arbeiten mit gemeinsam erfassten Messwerten

Assignment 01

- Abgabe bis Montag, 08.04., 23:59 Uhr
 via https://assignments.hci.uni-hannover.de/
- Abgabe besteht aus folgendem:
 - Eintragen der Daten in das Online Spreadsheet
 - Abgabe der aufgenommenen sowie angepassten CSV-Dateien
 - Abgabe der Jupyter Notebook Dateien für die einzelnen Aufgaben

Ab kommender Woche

- Interaktive Übungen während Hörsaalübung
 - Durchführung/Auswertung von Experimenten
 - Vertiefung von Konzepten durch Beispiele
 - Lösen und Vorstellen von kleineren Aufgaben
- Hilfreich für Bearbeitung der Assignments

Bestenfalls Laptop mit eingerichteter Entwicklungsumgebung mitnehmen