Review of IOPP to Algebraic Geometry Codes (S. Bordage, M. Lhotel, J. Nardi, H. Randriam)

Rayan Sandid, Parsa Tasbihgou

December 2023

IOPP for AG codes

- Motivation behind using AG codes
- Mathematical background to construct a general protocol
- Special settings

AG codes: Motivation

Algebraic Geometry codes (AG) generalize Reed-Solomon (RS) codes: $RS \ codes \subset AG \ codes$.

Drawbacks of RS-IOPPs:

- Alphabet size must be larger than block length of the code: $|\mathbb{F}| \ge block \ length;$
- Specific algebraic structure
- Operations over \mathbb{F} have high cost.

Advantages of AG code IOPPs:

- Constant rate and relative distance over constant-size fields.
- Closed under coordinate-wise multiplication.

AG codes: Algebraic curve \mathcal{X}

(Informal) An algebraic curve defined on a field $\mathbb F$ is a set of points in space that are the zeros of a set of polynomials

Figure: $y^2 = x^3 + x - 1$

AG codes: Divisors and Riemann-Roch spaces

- A divisor D on \mathcal{X} is a formal sum of points $D = \sum_{P \in \mathcal{X}} n_P P$. A divisor is effective if $n_P \geq 0$ for every point P.
- The set of divisors on a curve \mathcal{X} forms an additive group, denoted by $Div(\mathcal{X})$. This group is endowed with a partial order relation \geq such that $D \leq D'$ if D' D is effective.
- The Riemman-Roch space of a divisor $D \in Div(\mathcal{X})$ is the $\mathbb{F}-$ vector space defined by

$$L_{\mathcal{X}}(D) = \{ f \in \mathbb{F}(\mathcal{X}) | \operatorname{div}_{\mathcal{X}}(f) + D \ge 0 \} \cup \{ 0 \}$$

Group action on curves

We say a group G acts on a curve $\mathcal X$ if there is an application (action)

$$\bullet \cdot \bullet : G \times \mathcal{X} \to \mathcal{X}$$

such that $\forall g, g' \in G^2, \forall x \in \mathcal{X}, e \cdot x = x$ and

$$g \cdot (g' \cdot x) = gg' \cdot x.$$

If finite Abelian group Γ of order p acts on \mathcal{X} we can define \mathcal{X}/Γ and we can have the projection map $\pi: \mathcal{X} \to \mathcal{X}/\Gamma$.

$$\mathcal{X}/\Gamma = \{ Orb_{\Gamma}(P) | P \in \mathcal{X} \}$$

$$\mathbb{P}^1/\{1,-1\} = \{[x:1]|x \ge 0\} \cup \{P_\infty = [1:0]\}$$

AG codes

- Take $D \in Div(\mathcal{X})$ and $\mathcal{P} = \{P_1, \dots, P_n\} \subset \mathcal{X}(\mathbb{F})$ of size $n := |\mathcal{P}|$. An AG code $C = C(\mathcal{X}, \mathcal{P}, D)$ over an algebraic curve \mathcal{X} is the vector space of the image under the evaluations ev : $L(D) \to \mathbb{F}^n$ on the functions in the Riemann-Roch space L(D);
- Particularly, the AG codes on the curve \mathbb{P}^1 , the set of all lines through the origin in \mathbb{R}^2 correspond to the RS code.

Formally:

$$C(\mathbb{P}^1, \mathcal{P}, d \cdot P_{\infty}) = \mathsf{RS}[\mathbb{F}, \mathcal{P}, d]$$

where P_{∞} is the point at infinity of \mathbb{P}^1 .

Generalizing the FRI protocol

Three steps of FRI:

- Splitting polynomials: decomposing the vector space of degree $\leq d$ polynomials over $\mathbb F$ into two copies of vector space of degree $\leq d/2$ polynomials.
- Randomized folding: reducing the evaluation domain (block length) and the vector space of functions.
- Distance preservation: if f is δ -far from code $C = \mathsf{RS}(\mathbb{F}, \mathcal{P}, d)$, then $\mathsf{Fold}(f, z)$ is "almost" δ -far from code $C = \mathsf{RS}(\mathbb{F}, \mathcal{P}, d/2)$

Sequence of codes

We want to iteratively reduce the problem size so we can check proximity to a smaller code. We need a sequence of codes $\{C_i(\mathcal{X}_i, \mathcal{P}_i, D_i)\}_{i \in [r]}$

Sequence of Curves

Let $G \leq \operatorname{Aut}(\mathcal{X})$ be a "large" finite solvable group that acts on \mathcal{X} . $G = G_0 \,\triangleright\, G_1 \,\triangleright\, \ldots \,\triangleright\, G_r = \{1\}$ is a normal sequence for G, $\Gamma_i = G_i/G_{i+1}$ is Abelian and $|\Gamma_i| = [G_i; G_{i+1}] = p_i$. Γ_0 acts on $\mathcal{X}_0 = \mathcal{X}$ and defines $\mathcal{X}_1 = \mathcal{X}_0/\Gamma_0$. Similarly Γ_i acts on \mathcal{X}_i and defines $\mathcal{X}_{i+1} = \mathcal{X}_i/\Gamma_i$. Now we can define:

• (\mathcal{X}, G) -sequence of curves and projection maps

$$\mathcal{X} = \mathcal{X}_0 \xrightarrow{\pi_0} \mathcal{X}_1 \xrightarrow{\pi_1} \mathcal{X}_2 \xrightarrow{\pi_2} \dots \xrightarrow{\pi_{r-1}} \mathcal{X}_r = \mathcal{X}/G$$

$$\mathcal{X}_r = \frac{X_{r-1}}{\Gamma_{r-1}} = \frac{X_{r-2}}{\Gamma_{r-1}\Gamma_{r-2}} = \dots = \frac{X_0}{\Gamma_{r-1}\dots\Gamma_0} = \frac{X_0}{\frac{G_{r-1}}{G_r}\dots\frac{G_0}{G_1}} = \frac{\mathcal{X}}{\frac{G_0}{G_r}} = \frac{\mathcal{X}}{G}$$

A sequence of evaluation points

$$\mathcal{P} = \mathcal{P}_0 \xrightarrow{\pi_0} \mathcal{P}_1 \xrightarrow{\pi_1} \mathcal{P}_2 \xrightarrow{\pi_2} \dots \xrightarrow{\pi_{r-1}} \mathcal{P}_r = \mathcal{P}/G$$

Kani's theorem

Given a function $f: \mathcal{P}_i \to \mathbb{F}$, define p_i functions $\{f_j\}_{0 \le j \le p_i}$ such that f is the evaluation of a function in $L_{\mathcal{X}_i}(D_i)$ iff f_j is the evaluation of some function in $L_{\mathcal{X}_{i+1}}(E_j) \subseteq L_{\mathcal{X}_{i+1}}(D_{i+1})$.

$$f = \sum_{j=0}^{p-1} \mu^j f_j \circ \pi_i$$

for all $f \in L_{\mathcal{X}}(D), \mu \in \mathbb{F}(\mathcal{X}), f_j \in L_{\mathcal{X}/\Gamma}(E_j)$

Divisors E_i and functions μ_i are explicitly expressed in terms of D_i and \mathcal{X}_i .

Kani's theorem continued

Balancing functions

We want make sure that no f_j is in $L_{\mathcal{X}_{i+1}}(D_{i+1}) \setminus L_{\mathcal{X}_{i+1}}(E_j)$. We do this using balancing functions ν_j . They are defined such that:

$$f_j \in L_{\mathcal{X}_{i+1}}(D_{i+1}) \text{ and } \nu_j f_j \in L_{\mathcal{X}_{i+1}}(D_{i+1})$$

iff $f_j \in L_{\mathcal{X}_{i+1}}(E_j)$.

Existence of balancing functions depends on the Weierstrass semigroup of $support(D_{i+1})$.

If balancing functions exist for D_{i+1} , we say D_{i+1} is D_i -compatible. The folding operator is:

Fold[
$$f, \bar{z}$$
] = $\sum_{j=0}^{p_i-1} z_1^j f_j + \sum_{j=0}^{p_i-1} z_2^{j+1} \nu_{i+1,j} f_j$

Local computability

We want to compute $\operatorname{Fold}[f,z]$ on some point $p \in \mathcal{P}_{i+1}$. This point has exactly p_i pre-images under π_i .

Define $A_p = \{(\mu_i(\hat{p}), f(\hat{p})\}_{\hat{p} \in \pi^{-1}(p)} \text{ and } I_{f,p}(x) = \sum_{j=0}^{p_i-1} x^j a_{j,p} \text{ the } A_p\text{-interpolating polynomial, so } I_{f,p}(\mu_i(\hat{p})) = f(\hat{p}). \text{ Now, } f_j(p) = a_{j,p}. \text{ So, given } A_p, f_j(P) \text{ can be found by interpolation.}$

$$\mathsf{Fold}[f, \vec{z}] = \sum_{j=0}^{p_i-1} z_1^j f_j + \sum_{j=0}^{p_i-1} z_2^{j+1} \nu_{i+1,j} f_j$$

Completeness

Since $L_{\mathcal{X}_{i+1}}(E_j) \subseteq L_{\mathcal{X}_{i+1}}(D_{i+1})$, any linear combination of $L_{\mathcal{X}_{i+1}}(E_j)$ is a linear subspace of $L_{\mathcal{X}_{i+1}}(D_{i+1})$ so if $f \in C_i$ then for any $\vec{z} \in \mathbb{F}^2$, Fold $[f, \vec{z}] \in C_{i+1}$.

IOPP for AG codes

Setup

The prover and the verifyer agree on:

- ullet Starting curve ${\mathcal X}$
- Group $G \subset Aut(\mathcal{X})$
- Sequence (\mathcal{X}, G)
- Functions μ_i
- Divisors D_i .
- **Commit** The verifyer sends random field elements z_i to the prover and the prover sends the foldings $f_{i+1} = Fold[f_i, z_i]$ as oracles to the verifyer.
- Query First, the verifyer does a round consistancy check to see if all the oracles are really the folding of the previous one. The verifyer does this by comparing the two functions at a random point. Second, the veryfier reads the last code-word entirely and checks if it is in the last code C_r .