

NILKAMAL SCHOOL OF MATHEMATICS, APPLIED STATISTICS & ANALYTICS

TEXT-BASED COAL PRICE FORECASTING USING LSTM & NLP TECHNIQUES

Team Members:

Salita D'britto (A010)

Jay Kangane (A028)

Advait Raut (A053)

Indrayani Shinde (A065)

Akash Yadav (A072)

Mentor:

Mr. Rutik Bhurke

INTRODUCTION

- For the purpose of giving government and policymakers critical information and early warnings, an accurate forecasting model for future variations in coal prices is essential.
- First off, knowing what the trends in energy prices will be in near future helps producers determine whether an investment in the energy sector is sustainable. In contrast, consumers gain from projected energy prices by assessing how affordable energy will be in the future.
- Although price forecasting can be done based on financial indices, news articles can have a major influence on coal prices
- NLP allows us to extract valuable information from text data. Such information can be useful for predictive modelling, and can add additional features to the model.

OBJECTIVES

- Gather news article headlines, Coal Price, financial indices from 1st January, 2017 to 4th April, 2024.
- Use LDA to get average daily sentiment scores.
- Fit models like ARIMAX, Random Forest and LSTM for Prediction.
- To check if incorporating News Headlines' Sentiment Scores improves the models' evaluation.

LITERATURE REVIEW

Impact of News on the Commodity Market: Dataset and Results

Ankur Sinha, Tanmay Khandait

Production and Quantitative Methods Indian Institute of Management Ahmedabad Ahmedabad, India 380015

asinha@iima.ac.in, tanmayk@iima.ac.in

This research paper proposes a framework for extracting various dimensions of information from news headlines related to the gold commodity.

LITERATURE REVIEW

Text-based crude oil price forecasting: A deep learning approach

Xuerong Li^a, Wei Shang b.a.*, Shouyang Wang a.b

This paper emphasizes the importance of combining text features and financial features for improved forecasting accuracy.

School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China

b Academy of Mathematics and System Science, Chinese Academy of Sciences, Beijing 100190, China

NEWS HEADLINES

Daily news headlines and corresponding dates related to **Coal**, **Energy**, **Oil & Natural gas** are collected from various authentic sources like worldcoal.com, investing.com, reuters.com, etc.

Time period: 1st January 2017 to 4th April 2024

COAL PRICE

Daily Coal price of **United States of America** is collected from Businessinsider.com

FINANCIAL INDICES

The Financial Indices are fetched from authentic sources like investing.com. The following financial indices are collected:-

- Richards Bay Coal Futures
- Newcastle Coal Futures
- Argus-McCloskey Coal Futures
- Bloomberg Commodity Index
- Dow Jones Commodity Index

SENTIMENT SCORES

RoBERTa is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. It is used to get sentiment scores of each news headline.

The following sentiment scores are calculated:

- 1. Polarity (-1 to 1): 1 represents positive sentiment and -1 represents negative sentiment
- 2. Subjectivity (0 to 1): 1 indicates personal opinion and 0 indicates factual information

• SENTIMENT SCORES - POLARITY

HEADLINE	POLARITY
Explosion in Pakistan coal mine kills 12 miners	-0.9231
Lithium on its way up, hopeful juniors say	0.8725

• SENTIMENT SCORES - SUBJECTIVITY

HEADLINE	SUBJECTIVITY
Plunging Natural Gas Prices Is Bad News for Drillers	0.9187
Russia's Oil Exports By Sea Hit New 2024 Record	0.1877

• TEXT DATA

Text pre-processing involves transforming raw text into a more suitable format for analysis and modelling.

Preprocessing steps:

Tokenization

Stopwords Removal

Lemmatization

Remove Rare words

Remove frequent words

Original Sentence:

Tata Power to offset losses due to higher coal prices.

Tokenization: ['tata', 'power', 'to', 'offset', 'losses', 'due', 'to', 'higher', 'coal', 'prices', '.']

Removing stopwords: ['tata', 'power', 'offset', 'losses', 'higher', 'coal', 'prices']

Lemmatization: ['tata', 'power', 'offset', 'loss', 'high', 'coal', 'price']

Tokenization

Stopwords Removal

Lemmatization

Remove Rare words

Remove frequent words

Rare Words Removal:

Words like **fast**, **expert**, **bounce** having word frequency **below 15** are removed from the corpus because they rarely offer anything interesting.

Frequent Words Removal:

Words like **Coal**, **Price** having word frequency **above 1000** are removed to reduce noise and improve models ability to identify meaningful patterns.

Tokenization

Stopwords Removal

Lemmatization

Remove Rare words

Remove frequent words

Topic Modelling is a method for *unsupervised* classification of documents.

Topics

gene 0.04 dna 0.02 genetic 0.01

life 0.02 evolve 0.01 organism 0.01

brain 0.04 neuron 0.02 nerve 0.01

data 0.02 number 0.02 computer 0.01

Documents

Topic proportions & assignments

The main purpose of this statistical modelling algorithm is to understand the topics in the input data.

Topic Distribution

Document ¹	1 C	Documer	าt 2
-----------------------	-----	---------	------

ball law ball planet

ball law

planet law galaxy law

Document 3 Document 4

planet planet galaxy galaxy ball planet ball

Document	Sports	Sports Science		
1	0.6	0.4	0	
2	0	0.2	0.8	
3	0.2	0.8	0	
4	0.4	0.6	0	

Word Distribution:

ball

ball

ball

planet

galaxy

Document 3

planet planet galaxy

planet ball

law

planet

law

law

law

Document 4

planet

galaxy

ball

planet

ball

Topic	Ball Law		Ball Law Planet		Planet	Galaxy
Science	0	0	0.7	0.3		
Sports	Sports 1		0	0		
Politics	0	1	0	0		

Latent Dirichlet Allocation has two components:

- 1. Distribution of topics in a document
- 2. Distribution of words in a topic

Thus, we shall get 2 sets of distributions:

Probability that a word in a document is associated with topic j can be expressed as follows:

$$P(z_i = j | \mathbf{z}_{-i}, w_i, d_i, \cdot) \propto \frac{C_{w_i j}^{WT} + \eta}{\sum_{w=1}^{W} C_{w j}^{WT} + W\eta} \frac{C_{d_i j}^{DT} + \alpha}{\sum_{t=1}^{T} C_{d_i t}^{DT} + T\alpha}$$

Alpha and **eta** are hyperparameters, coming from Dirichlet distributions used to model the distribution of topics within documents and the distribution of words within topics.

PDF of Dirichlet Distribution when K = 3 as we change the vector α from $\alpha = (0.3, 0.3, 0.3)$ to (2.0, 2.0, 2.0)

Selecting Optimum Value of K (Number of topics)

Coherence: measures quality of topics generated. Higher values indicate that intratopic similarity is high.

Overlap: measures the inter-topic similarity. Higher value indicates that inter-topic similarity is high.

Optimum value of K: 6 Topics

Topic Names

Based on the top 15 words in each topic, the topics are given names. Example:

Most frequent words of topic 2: russia, iran, opec, russian, sanction, india, deal, product, export, venezuela, boost, south, tanker, million, iranian

Topic Name: International Relations and Trade

Energy Markets & Operations	International Relations & Trade	Environmental Sustainability	
Saudi Arabia & Investment	China & Global Demand	Crude Oil Market Analysis	

Final Output

The model is fit on the pre processed data, and **topic proportions** are obtained. Topics are allocated to each news headline, based on the topic proportion.

Example:

Sentence: Mechel increases exports from the Elga coalfield.

Topic Proportions:

International Relations & Trade: 0.523387

Saudi Arabia & Investment: 0.285559

.

Assigned Topic: International Relations & Trade

Snapshot of Data:

	Energy Markets	International Relations	Environmental	Saudi Arabia &	Global Demand	Crude Oil Market
Original Title	& Operations	& Trade	Sustainability	Investment	& China	Analysis Highest Topic
Kenya To Make Electricity Available For 100 Percent Of Its Population	0.0484	0.2855	0.2857	0.0476	0.2851	0.0476 Topic 3 Score
An Open Letter To The U.S. Energy Secretary Nominee	0.0478	0.0476	0.0476	0.0484	0.0490	0.7596 Topic 6 Score
The South American Nation Seeing An Oil And Gold Breakout	0.1935	0.0336	0.0324	0.0323	0.5147	0.1935 Topic 5 Score
Iran Picks 29 Foreign Companies To Bid In Oil, Gas Tenders	0.0323	0.4399	0.0330	0.0329	0.4288	0.0332 Topic 2 Score
36 Killed In IS Attack In Baghdad, More Attacks On The Way	0.2857	0.5234	0.0476	0.0476	0.0481	0.0476 Topic 2 Score
Venezuela Starts 95,000 Bpd Production Cut As Part Of OPEC Deal	0.0323	0.6632	0.0324	0.0328	0.2070	0.0323 Topic 2 Score
Libya Close To 700,000 Bpd In Daily Oil Output	0.0478	0.7612	0.0480	0.0477	0.0476	0.0476 Topic 2 Score
Energy Prices Rise More Than Other Commodities In 2016	0.7584	0.0476	0.0476	0.0499	0.0476	0.0488 Topic 1 Score
Analyst: Istanbul Attack Precursor To ISIS Strike On Saudi Oil	0.0323	0.5003	0.0323	0.3706	0.0324	0.0323 Topic 2 Score
Tancoal sustains record sales	0.2856	0.0476	0.5221	0.0494	0.0476	0.0476 Topic 3 Score
Mechel increases exports from the Elga coalfield	0.0480	0.5234	0.0478	0.2856	0.0476	0.0476 Topic 2 Score
Baralaba Coal Company appoints CEO	0.0625	0.0625	0.6851	0.0634	0.0630	0.0635 Topic 3 Score
Tata Power to offset losses due to higher coal prices	0.2308	0.0385	0.2307	0.2308	0.0385	0.2308 Topic 6 Score
Goldman Sachs Sees 84% Compliance With OPEC Cuts	0.1606	0.4505	0.0278	0.3055	0.0278	0.0278 Topic 2 Score

Weighted Sentiment Algorithm

Weighted average of sentiment scores is calculated to get daily sentiment scores. The Sentiment Scores of articles of a day will get more weight provided they fall in the topic which comprises of maximum articles on that day.

Concatenation

All columns are merged using the key column as **Date**. The final shape of the data is **1891** rows x **8** columns.

MISSING VALUES

Missing Values were imputed using **Simple Moving Average.**This Helps to smooth out fluctuations caused in the data by missing values.

SCALING

Scaled the Financial data using techniques like min-max scaling to ensure features have comparable scales.

Snapshot of Data

Date	weighted_Polarity	weighted_Subjectivity Richards_Bay_futures	Newcastle_futures	Dow_jones	Bloomberg_index	Argus_McCloskey_futures	Coal Price
02-01-2017	0.50	0.12 83.54	87.08	87.66	24.04	84.36	82.50
03-01-2017	0.41	0.32 84.20	90.50	86.61	23.79	82.40	84.20
04-01-2017	0.48	0.20 83.45	88.60	86.79	24.03	84.25	85.75
05-01-2017	0.50	0.44 83.75	85.70	87.04	24.22	85.65	84.75
06-01-2017	0.50	0.24 82.75	83.50	87.34	24.10	85.15	84.05
09-01-2017	0.49	0.22 82.90	82.05	86.49	23.81	84.25	86.40
10-01-2017	0.46	0.20 84.90	81.50	87.10	23.93	86.75	88.70
11-01-2017	0.46	0.29 85.65	82.15	87.12	24.09	88.55	88.60
12-01-2017	0.56	0.33 85.50	84.05	88.06	24.50	88.95	88.20
13-01-2017	0.47	0.22 85.60	83.50	88.41	24.52	88.45	88.05
16-01-2017	0.42	0.29 85.10	82.90	88.58	24.30	88.19	89.80
17-01-2017	0.47	0.31 87.75	84.55	88.97	24.63	89.75	89.95
18-01-2017	0.42	0.30 87.05	83.85	88.77	24.45	88.95	88.55
19-01-2017	0.58	0.27 86.15	83.45	88.35	24.34	88.75	89.20

NEURAL NETWORKS & LSTM

LSTM stands for **Long Short-Term Memory**, and it's a special type of neural network that's great at capturing patterns in sequences of data, like time series data or text.

LSTM is capable of learning long-term dependencies, which is its most significant advantage. It can remember information for long periods.

Model Architecture

(a) Recurrent Neural Network

(b) Feed-Forward Neural Network

In a **Feed-Forward**Neural Network, the input provided travels in a single direction

The Recurrent Neural
Network saves the
output of a layer and
feeds this output back to
the input to better
predict the outcome of
the layer

Model Architecture

Models:

M1: Text based

This model comprises only of Sentiment Scores

M2: Financial Index

This model comprises only of Financial Indices

M3: Combined Model

All features are included in this model

Evaluation metrics such as **RMSE** and **MAE** are used to evaluate the performance of the model.

Model Hyper Parameters

Model Description: The models were fit with 2 hidden layers and 40 neurons in each layer. Drop Out is 20%. The model is run in 32 batches for 500 epochs.

Evaluation of Models:

MODELS	RMSE	MAE
Text Based (M1)	16.38	13.34
Financial Indices (M2)	7.65	4.62
Combined Model (M3)	3.81	3.11

Actual vs Predicted Graph:

Financial Index Model

Combined Model

OTHER MODELS

Results of LSTM are compared with two other models, viz ARIMAX and Random Forest.

RMSE	Financial Model	Combined Model	Percentage Improvement	MAE	Financial Model	Combined Model	Percentage Improvement
ARIMAX	30.145	29.972	0.57%	ARIMAX	26.527	26.353	0.65%
Random Forest	4.81	4.098	14.80%	Random Forest	3.65	3.120	14.52%
LSTM	7.65	3.81	50.19%	LSTM	4.62	3.11	32.68%

CONCLUSION

- **Text data** was successfully extracted for the pre-decided time period and daily average sentiment scores were obtained.
- Sentiment Scores were included in the forecasting process, and models were evaluated for the same.
- **RMSE** shows that LSTM performed the best on combined data, and the inclusion of text data reduced RMSE by 50.19%.
- MAE shows that LSTM performed the best on combined data, and inclusion of text data reduced MAE by 32.68%.
- The Models were able to capture the movement in the data without overfitting, and inclusion of Text Data showed significant improvement in the results.

FUTURE SCOPE

- In addition to news headlines, incorporating the summaries of entire news articles can provide a more comprehensive understanding of the market sentiments and factors influencing coal prices.
- Extending the analysis beyond traditional news sources to include authentic social media posts and trending topics might allows us to capture real-time market dynamics and emerging trends.

THANK YOU!