Hey ML, what can you do for me?

Javier Pastorino – Ashis Kumer Biswas

Machine Learning Laboratory

Workshop on Machine Learning and Artificial Intelligence in Bioinformatics and Medical Informatics

IEEE AIKE 2020 - Irvine, CA

Virtual

UNIVERSITY OF COLORADO

DENVER | ANSCHUTZ MEDICAL CAMPUS

Agenda

- Motivation
- Problem Description
- Limitation of Existing Methods
- Methodology
- Experiments Datasets
- Results
- Limitations and Future Work

Motivation

- What other Interesting Problems can be solved with the same data?
- Lack of cross-domain expertise

Problem Description

- Given a raw, unprocessed dataset, identify machine learning tasks that can be predicted using the given dataset without knowledge of the ML algorithms.
- User Friendly Interface

Limitation of Existing Methods

- Manual data analysis needed to assess if a particular task can be predicted by ML.
- Mutual Information [9] and Total Correlation [7]
 - Measure the interaction between two or more features in terms of information sharing.
 - Used for Hierarchical Clustering [6]
- Straight Forward Empirical Experiments Did Not Predict Target Features Successfully.

[6] T. Ferenci et al., "Using total correlation to discover related clusters of clinical chemistry parameters," in IEEE SISY. Subotica, Serbia: IEEE, 10 2014, pp. 49–54.

[7] S. Watanabe, "Information Theoretical Analysis of Multivariate Correlation," IBM Journal of Research and Development, vol. 4, no. 1, pp. 66–82, 1960.

[9] T. M. Cover et al., Elements of Information Theory. New York, NY: Wiley, 2006.

Methodology

Methodology

Dataset Graph Generation

Graph Generation

- Represents the feature dimension as an undirected weighted graph
- Vertices: features in the dataset
- Edges: distance between features in terms of Mutual Information
 - amount of information a variable X contains about another variable Y

•
$$I(X;Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} \rightarrow [0,\infty)$$

•
$$w_{i,j} = 1 - I_{norm}(i;j)$$

Methodology Clustering

- Groups Communities of Features that share the same amount of information (MI)
- Spectral Clustering
- Optimization of Number of Clusters
 - Min #Clusters = 2; Max #Clusters=d
 - Grid search
 - Silhouette Metric to measure each configuration's performance:
 - Quantifies the quality of a set of clusters
 - Compares tightness and separations, inter/intra-cluster

Methodology

Ranking

Tentative Problem/Task:

• each computed cluster is considered a tentative predictive task

Candidate Task Definition:

- $\{x_1, ..., x_i\} \to \{y_1, ..., y_j\}$
- Target: $\{y_1, ..., y_i\}$
- Input: $\{x_1, \dots, x_i\}$ (the remainder features)

• Ranking Score:

- Conditional Entropy $\{x_1, ..., x_i\} o \{y_1, ..., y_j\}$
 - Provides the amount of information input X provides to predict target Y
 - $H(Y|X) = -\sum_{x} \sum_{y} p(x,y) \log p(y|x)$

Methodology Evaluation Strategy

top-k Precision and Recall

- ratio of ground truth retrieved in the ranking items
- ratio of raking items that belong to ground truth

Mean Reciprocal Rank @k

Measures how well the target is placed in the ranking

•
$$MMR(target) = \frac{1}{|k|} \sum_{i=1}^{|k|} \frac{1}{rank_i}$$

Experiments – Datasets

•	Dataset	# Features	# Data Samples
UCI	Abalone	9	4,177
	Auto MPG	8	406
	Bike Sharing	14	731
	Iris	5	150
	Naval Propulsion Plants	18	11,934
	Superconductivty	81	21,263
	Wine Quality	12	4,898
	Yacht Hydrodynamics	7	308
Kaggle	Avocado	14	18,250
	CellPrice	21	2,001

11

Experiments – Datasets Distribution Analysis

Data is not normal distributed: Shapiro-Wilk Test with p-value < 0.05

Results – Demo / Output Sample

Main Menu Available Datasets 1 - abalone 2 - auto-mpg 3 - avocado 4 - bike-sharing 5 - cellphone_price 6 - insurance car 7 - insurance health 8 - iris 9 - naval 10 - superconduct 11 - winequality-white 12 - yacht_hydrodynamics

Choose file to process [1-12]⊳ 8 iris Dataset File Selected

```
Processing File: ../data/iris.csv

Number of Features: 5
Number of Examples: 149
Optimized Number of Clusters: 5
```

```
Machine Learning Problem Recommendations for iris.csv

With a 80.5% confidence, we recommend that ['target'] can be predicted by a machine learning task.

With a 7.1% confidence, we recommend that ['sepal_width'] can be predicted by a machine learning task.

With a 6.7% confidence, we recommend that ['petal_width'] can be predicted by a machine learning task.

With a 3.1% confidence, we recommend that ['sepal_length'] can be predicted by a machine learning task.

With a 2.5% confidence, we recommend that ['petal_length'] can be predicted by a machine learning task.
```

Demo recording available at: https://github.com/jpastorino/heyml

Results – Performance

Limitations and Future Work

Limitations

• Information Graph Generation $O(d^2)$

Future Work

- Reach out to Data Domain Experts to validate other tasks.
- Work to optimize the use computational resources.
- Experiment with larger, complex datasets to improve the algorithm scalability.

Thank you!

Questions?

