Focus Tutorial Chapter 4 Exercises

Raoul Schaffranek

September 11, 2018

1 Exercise 4.1

For which stream s do we have that $\mathbf{dom}.s = \{\}$?

```
Solution Let s \in M^{\omega} be an untimed steam. Then \operatorname{dom}.s = \{\} if and only if s = \langle \rangle. By contradiction, assume \exists m \in M.s(0) = m then m \in \operatorname{dom}.s, thus \operatorname{dom}.s \neq \{\} Now, let s \in M^{\underline{\omega}} be a timed stream. Then \operatorname{dom}.s = \{\} if and only if s = \langle \rangle. By contradiction, assume \exists m \in M \cup \{\checkmark\}.s(0) = m then m \in \operatorname{dom}.s, thus \operatorname{dom}.s \neq \{\}.
```

2 Exercise 4.2

If $s \cap r = r$ for streams s and r, what can we conclude about s and r?

Solution Let $s, r \in M^{\omega}$ be untimed streams.

- 1. We observe that $s=\langle\rangle$ satsfies the proposition for every $r\in M^\omega$, because $s^\smallfrown r=\langle\rangle^\smallfrown r=r.$
- 2. If the proposition holds and $s \in M^*$ then $\forall n \in \mathbb{N}.s^n \sqsubseteq r$. We know that $s \cap r \sqsubseteq r$ because $s \cap r = r$ and \sqsubseteq is reflexive. We can generalize this observation to iterated streams of s like follows: $\forall n \in \mathbb{N}.s^n \cap r \sqsubseteq r$ and therefore $\forall n \in \mathbb{N}.s^n \sqsubseteq r$
- 3. Furthermore, we observe that if the proposition holds, we know that $s \notin M^{\infty}$ and $s \neq r$ cannot hold in conjunction.
 - By the definition of ${}^\frown$ we have $s{}^\frown r=s$ for all $r\in M^\omega$ and $r\neq s$ by assumption.
- 4. Corollary: $s \in M^{\infty} \Rightarrow s = r$.

The same observations can be made for timed streams, with the analogous proves.

3 Exercise 4.3

What is the length of the stream $(1,2)^3$?

Solution $\#(1,2)^3 = \#((1,2)^{\frown}(1,2)^{\frown}(1,2)) = \#(1,2,1,2,1,2) = 6.$

4 Exercise 4.4

Which stream $s \in \mathbb{N}^{\omega}$ fulfills the equation s = 1 & s?

Solution The stream $s \in \mathbb{N}^{\infty}$ with $\operatorname{\mathbf{dom}}.s = \{1\}$. We show that s is the only fixed point of the equation. First, observe that s is indeed a fixed point, because s & 1 = s holds. Moreover, s is the only fixed point. By contraction, assume there was another fixed point s' with $s' \neq s$. Then s' is either finite, in which case s' does not satisfy s' = 1 & s'. Or s and s' disagree on some message, i.e $\exists n \in \mathbb{N}.s'(n) \neq s(n) = 1$. Again, s' does not satisfy the equation.

5 Exercise 4.5

What can we conclude about a stream s for which $\mathbf{rt}.s = s$?

Solution Either $s = \langle \rangle$ or $s \in M^{\infty}$ and $\exists m \in M. \forall n \in \mathbb{N}. s(n) = m$. For the first case, we have $\mathbf{rt}. \langle \rangle = \langle \rangle$ by definition. Now, assume $s \neq \langle \rangle$. If s was finite, then clearly $\#\mathbf{rt}.s \neq \#s$, hence $\mathbf{rt}.s \neq s$. Thus, if s is not empty it must be infinite. Moreover, the domain of s must be a singelton-set. Assume otherwise, i.e. $\exists m. \land s(m) \neq s(m+1)$. For every such m we than have $\mathbf{rt}.s(m+1) \neq s(m+1)$, thus $\mathbf{rt}.s \neq s$.

6 Exercise 4.6

Prove that the following propositions holds. $r \sqsubseteq s \Rightarrow t^{r} \sqsubseteq t^{r}$

Solution By induction on the length of t. If $t = \langle \rangle$, we have $\langle \rangle \cap r \sqsubseteq \langle \rangle \cap s$ and thus $r \sqsubseteq s$ because $\langle \rangle$ is left-neutral with respect to \cap . If $\#t = \infty$, we have $t \cap r \sqsubseteq t \cap s$ which simplifies to $t \sqsubseteq t$, which holds because \sqsubseteq is reflexive. Now, assume that $r \sqsubseteq s \Rightarrow t \cap r \sqsubseteq t \cap s$ holds for streams t of some fixed length. We need to show $(m \& t) \cap r \sqsubseteq (m \& t) \cap s$. By definition of & we obtain $(\langle m \rangle \cap t) \cap r \sqsubseteq (\langle m \rangle \cap t) \cap s$, and because \cap is associative we further have $\langle m \rangle \cap (t \cap r) \sqsubseteq \langle m \rangle \cap (t \cap s)$. We can now apply the indution hypothesis proving the proposition.

7 Exercise 4.7

A function $f \in M^{\omega} \to M^{\omega}$ on streams is called prefix monotonic, if for all streams r and s: $r \sqsubseteq s \Rightarrow f(r) \sqsubseteq f(s)$ Show that the operator \mathbf{rt} is prefix monotonic.

Solution Assume the premise $r \sqsubseteq s$ holds. We show the conclusion by induction over the length of s.

- Case: $s = \langle \rangle$. Then, $r = \langle \rangle$ because its the only prefix of s. Thus, $\mathbf{rt}.r = \langle \rangle \sqsubseteq \mathbf{rt}.s$ follows directly, because the empty stream is a prefix of every stream.
- Case: s = m & t for some message m and stream t. Then, $\mathbf{rt}.s = t$. By induction over the length of r.
 - Case: $r = \langle \rangle$. Then $\mathbf{rt}.r = \langle \rangle \sqsubseteq \mathbf{rt}.s$, because the empty stream is a prefix of every stream.
 - Case: r = n & u for some message n and stream u. Then, $\mathbf{rt}.r = u$. Thus, $r \sqsubseteq s \Rightarrow u \sqsubseteq t \Rightarrow \mathbf{rt}.r \sqsubseteq \mathbf{rt}.s$.

8 Exercise 4.8

Given the stream r such that $r = \langle 1, 2 \rangle^{\widehat{}} r$

- 1. prove that $\#r = \infty$
- 2. describe the streams denoted by: $\{1\}$ \otimes r, $r|_{5}$, $\propto r$, $\mathbf{map}(r,g)$ where $g \in \mathbb{N} \to \mathbb{N}$ is defined as g(n) = if odd(n) then 1 else 2 fi

Solution 1 Assume, $\#r \neq \infty$. Then, $\#(\langle 1,2 \rangle ^\frown r) = 2 + r \neq r$. Thus, $r \neq \langle 1,2 \rangle ^\frown r$.

Solution 2

- $\{1\}$ \otimes r is a possibly infinite stream with $\mathbf{rng}.s = \{1\}$.
- $r|_5$ is a stream with #r = 5 and $r|_5 \sqsubseteq r$.
- $\propto r$ is a stream with $\mathbf{rng}.(\propto r) = \mathbf{rng}.r$, $\mathbf{dom}.(\propto r) = \mathbf{dom}.r$ and $\forall m \in \mathbb{N}.m < \#r \Rightarrow s(m) \neq s(m+1)$.
- $\operatorname{map}(r,g)$ is a stream with $\forall n \in (\operatorname{\mathbf{dom}} .r).\operatorname{\mathbf{map}}(r,g)(n) = g(n)$ and $\#r = \#\operatorname{\mathbf{map}}(r,g)$. In natural language: if m is the message of r at position n, then the stream $\operatorname{\mathbf{map}}(r,g)$ has a corresponding message at position n, that is 1 if m is odd and otherwise 2. Moreover, both streams have the same length.

9 Exercise 4.9

Given the timed stream r such that $r = \langle 1, \checkmark, 2 \rangle^{\frown} r$ describe the elements denoty by: $\overline{r}, r \downarrow_5, \mathbf{tm}(r, 5), \mathbf{ts}(r)$

Solution

- 1. \overline{r} is the unique solution to the equation: $r' = \langle 1, 2 \rangle^{\frown} r'$. In natural language: \overline{r} is the untimed stream, that is like r but with ticks \checkmark removed, or in otherwords: r alternates forever between messages 1 and 2.
- 2. $r \downarrow_5$ is $(1, 5, \checkmark, 1, 5, \checkmark, 1, 5, \checkmark, 1, 5, \checkmark, 1, 5, \checkmark)$
- 3. tm(r, 5) is 3
- 4. $\mathbf{ts}(r)$ is False because r is not time-synchrnonous.

10 Exercise 4.10

Given the stream r such that $r = \checkmark \& r$ prove that $\overline{r} = \langle \rangle$

Solution By contradiction, assume that $\overline{r} \neq \langle \rangle$. Then $\overline{r}(0) = m$ for some $m \in \mathbf{rng}.r$ with $m \neq \checkmark$. But then, the assumption $r = \checkmark \& r$ is violated.

11 Exercise 4.11

Which streams $r \in M^{\infty}$ fulfill the equation $\overline{r} = \sqrt{\ \& \ r}$

Solution Every stream r fulfills the equation. $\overline{\checkmark\&r} = M \ \circledS \ (\checkmark\&r) = M \ \circledS \ (\checkmark\checkmark)^{\sim} (M \ \circledS \ (\checkmark))^{\sim} (M \ \circledS \ r) = \langle \rangle^{\sim} (M \ \circledS \ r) = M \ \circledS \ r = \overline{r}.$