Forkortelser anvendt i dette dokument :

1) Lsb: Least Significant bit (Bit position 0)

2) Msb: Most Significant bit (Bit position 7, hvis det er en 8 bit størrelse.

Bit position 15, hvis det er en 16 bit størrelse.

Bit position 31, hvis det er en 32 bit størrelse.

Bit position 63, hvis det er en 64 bit størrelse).

Konverter mellem binære tal, decimale tal og hexa decimale tal

Dec	Bin	Hex	
90	0101 1010	0x5A	
1	0000 0001	0x01	
130	1000 0010	0x82	
170	1010 1010	0xAA	
32	0010 0000	0x20	
229	1110 0101	0xE5	
201	1100 1001	0xC9	

Ofte sætter man bit eller nulstiller bit i et register, eks. Sæt bit 5 og 3 i PortB => PortB |= (1 << 5) | (1 << 3). Dette kan oversættes til PortB = PortB | ((1 << 5) | (1 << 3)).

Sæt 1 bit i et 8 bit register eller variabel 0x3E

Sæt bit position 0:

 $0x3E \mid 0x01 = 0011 \ 1110b \ or \ 0000 \ 0001b = 0011 \ 1111b = 0x3F$

løsning i tabel ville være:

Var1	Var2	Resultat i hex	Bit position der skal sættes
0xF8	0x01	0xF9	0
0x9A	0x02	0x9A	1
129	0x04	0x85	2
1111 0011b	0x08	0xFB	3
0x7F	0x10	0111 0111 = 0x77	4
160	0x20	0xA0	5
160	0x40	0xE0	6
0x00	0x80	0x80	7

Sæt flere bit i et 8 bit register eller variabel 0x3E

Sæt bit position 0 og bit position 6:

0x3E | 0x41 = 0011 1110b | 0100 0001b = 0111 1111b = 0x7F

Var1	Var2	Resultat i hex	Bit position der skal sættes
0x38	0x41	0x79	0 og 6
0x9A	0x0A	0x9A	1 og 3
129	0x24	0xA5	2 og 5
1111 0011b	0x0C	0xFF	2 og 3
0x77	0x30	0111 0111 = 0x77	4 og 5
160	0x03	0xA3	0 og 1
160	0x4C	0xEC	2, 3 og 6
0x00	0xA6	0xA6	1 og 2 og 5 og 7

Clear 1 bit i et 8 bit register eller variabel 0x3F

nulstil bit position 0.

0x3F & 0xFE = 0011 1111b & 1111 1110b = 0011 1110b = 0x3E

Var1	Var2	Resultat i hex	Bit position der skal nulstilles
0xC7	0xFE	006	
UXC1	UXFE	0C6	0
0x88	0xFD	0x88	1
0x55	0xFB	0x51	2
1111 1011b	0xF7	0xF3	3
0x27	0xEF	0x27	4
160	0xDF	0x80	5
160	0xBF	0x20	6
0x81	0x7F	0x01	7

Clear flere bit i et 8 bit register eller variabel

nulstil bit position 0 og bit position 3.

0x3F & 0xF6 = 0011 1111b & 1111 0110b = 0011 0110b = 0x36

Var1	Var2	Resultat i hex	Bit position der skal nulstilles
0xC7	0x7E	0x46	0 og 7
0x88	0xDF	0x80	1 og 5
0x55	0xEB	Ox41	2 og 4
1111 1011b	0xB7	0xB3	3 og 6
0x27	0x6F	0010 0111 = 0x27	4 og 7
160	0x5F	0x00	5 og 7
163	0x7C	0x20	0 og 1 og 7
0x87	0x78	0x00	0 og 1 og 2 og 7

Den Sjove Opgave !!! :

Hans sætter 760kr i Embedded Programmerings banken i Logikland. I løbet af det første år Hans' penge står i banken, sker der følgende transaktioner med det indestående beløb på Hans' konto (det skal lige oplyses at alle indestående beløb på de forskellige konti og hermed også Hans' konto er indeholdt i en 16 bit variabel. Dette skal I huske på, når I laver jeres beregninger !!!). Husk også at regne i det/de rigtige talsystemer, Ellers kan I ikke regne opgaven.

Sluttelig husk at vise alle jeres beregninger. Når det er noget med penge, skal dokumentationen være i orden !!!

16bits

1) Hans' penge udsættes for en <u>bitvis OR</u> med Daniels penge. Her skal det oplyses, at Daniel har et beløb på 1586kr stående i banken.

760 i binær: 0000 0010 1111 1000 1586 i binær: 0000 0110 1111 0010

Resultat af bitvis OR: 0000 0110 1111 1010 = 1786

2) Det nye beløb udsættes nu for en **bitvis EXCLUSIVE OR** med Mihealas indestående i banken som er på 17185kr.

1786 i binær: 0000 0110 1111 1010 17185 i binær: 0100 0011 1000 0001

Resultat af bitvis XOR: 0100 0101 0111 1011 = 17787

3) Der laves nu en logisk OR med Emils penge. Emil har et indestående i banken på 4660kr.

17787 i binær: 0100 0101 0111 1011

4660 i binær: 0001 0010 0011 1100

Resultat af logisk OR: 0101 0111 0111 1111 = 22399

4) Herefter laves der en **bitvis AND** med Lasses beløb i banken. Lasse indestående er på 13398kr

22399 i binær: 0101 0111 0111 1111 13398 i binær: 0011 0100 0100 0110

Resultat af bitvis AND: 0001 0100 0100 0110 = 5190

5) Det nye beløb negeres nu.

5190 i binær: 0001 0100 0100 0110 Negeret: 1110 1011 1011 1001 = 60345

6) Herefter laves der en **logisk AND** med Rasmus' beløb i banken. Rasmus har et indestående beløb på 17767kr.

60345 i binær: 1110 1011 1011 1001 17767 i binær: 0100 0101 1011 0111

Resultat af logisk AND: 0100 0001 1011 0001 = 16817

7) På det nye beløb laves en bitvis OR med Niels' indestående i banken som er på 22136kr.

16817 i binær: 0100 0001 1011 00001

22136 i binær: 0101 0111 1111 1001 = 22521 Resultat af bitvis OR: 0101 0111 1111 1001 = 22521

8) Sluttelig laves der en **bitvis AND** med Omads indestående i banken. Omad har et indestående i banken på 61680kr.

22521 i binær: 0101 0111 1111 1001 61680 i binær: 1111 0000 0001 0000

Resultat af bitvis AND: 0101 0000 0001 0000 = 20496

Hvor meget har Hans i banken efter de ovennævnte operationer ???

Hans har 20496kr. i banken