2. SUPERVISED LEARNING

CURSO

Data Science Machine Learning & Deep Learning con Python

• Teorema de Bayes

$$P(Y/X) = \frac{P(X/Y) * P(Y)}{P(X)}$$

Información conocida

P(Y)
P(X/Y)

Información inferida

- Se basa en el teorema de Bayes.
- Supuesto "Naive": Independencia entre las características, dada una clase.

$$P(y \mid x_1, \ldots, x_n) = \frac{P(y)P(x_1, \ldots x_n \mid y)}{P(x_1, \ldots, x_n)}$$

Dado el supuesto:

$$P(x_i|y, x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) = P(x_i|y),$$

$$P(y \mid x_1, \dots, x_n) = \frac{P(y) \prod_{i=1}^n P(x_i \mid y)}{P(x_1, \dots, x_n)}$$

· La condición de optimización es:

$$egin{aligned} P(y \mid x_1, \dots, x_n) &\propto P(y) \prod_{i=1}^n P(x_i \mid y) \ & & & \downarrow \ & \hat{y} = rg \max_y P(y) \prod_{i=1}^n P(x_i \mid y), \end{aligned}$$

Support Vector Machine

• Maximizar la distancia entre las categorías y la recta que las separa.

SVM

 Su función objetivo considera dos tipos de errores: Clasificación y margen.

Árboles de Decisión

Componentes de un arbol

Lugar	Llúvias	Terreno	Fertilizantes	Aguas Subterráneas	Cosecha
Pı	Altas	Llanura	Si	Si	Óptima
P ₂	Bajas	Colinas	No	Si	Pobre
P3	Bajas	Meseta	No	Si	Moderada
P ₄	Altas	Meseta	No	Si	Moderada
P ₅	Altas	Llanura	Si	No	Óptima
P6	Bajas	Colinas	No	No	Pobre
P ₇	Bajas	Meseta	No	No	Pobre
P8	Medias	Meseta	No	No	Pobre
P9	Altas	Colinas	Si	Si	Moderada
Pio	Medias	Meseta	Si	Si	Óptima
PII	Altas	Meseta	Si	No	Óptima
P12	Medias	Meseta	Si	No	Moderada
P13	Altas	Colinas	Si	No	Moderada
P14	Bajas	Llanura	Si	Si	Moderada
P15	Medias	Llanura	Si	No	Moderada
P16	Bajas	Llanura	No	No	Pobre
P17	Bajas	Colinas	Si	No	Pobre
P18	Medias	Meseta	No	No	Pobre
P19	Altas	Llanura	No	Si	Moderada
P20	Medias	Colinas	Si	Si	Moderada

Decisiones de un árbol

Árboles de Decisión

Entropía

- Entropía: Controla la partición de los datos.
- Information Gain: Cantidad de información ganada por una variable debido a la observación de otra variable.

En las versiones más básicas, los árboles solo utilizaban variables explicativas categóricas.

Entropía

$$H(S) = \sum_{i=1}^{n} -p_i log_2(p_i)$$
 n categorías para una variable objetivo a predecir del dataset
 $H(S)$
 $si \ n = 2$

Cálculo de la entropía

Information Gain

Cálculo de gain

$$\Delta H(S, V) = H(S) - \sum_{c \in V} \frac{|V = c|}{|V|} H(V = c)$$

 $Terreno = \{llanura, meseta, colina\}$

$$H(T = c) = -\left(\frac{0}{6}log_2\left(\frac{0}{6}\right) + \frac{3}{6}log_2\left(\frac{3}{6}\right) + \frac{3}{6}log_2\left(\frac{3}{6}\right)\right) = 1$$

Terreno	Óptima	Moderada	Pobre	$\begin{pmatrix} 6 & 6 & 6 & 6 & 6 \end{pmatrix} \begin{pmatrix} 6 & 6 & 6 & 6 \end{pmatrix} \begin{pmatrix} 6 & 6 & 6 & 6 \end{pmatrix} \begin{pmatrix} 6 & 6 & 6 & 6 \end{pmatrix} \begin{pmatrix} 6 & 6 & 6 & 6 \end{pmatrix} \begin{pmatrix} 6 & 6 & 6 & 6 \end{pmatrix} \begin{pmatrix} 6 & 6 & 6 & 6 \end{pmatrix} \begin{pmatrix} 6 & 6 & 6 & 6 \end{pmatrix} \begin{pmatrix} 6 & 6 & 6 & 6 \end{pmatrix} \begin{pmatrix} 6 & 6 & 6 & 6 & 6 \end{pmatrix} \begin{pmatrix} 6 & 6 & 6 & 6 & 6 \end{pmatrix} \begin{pmatrix} 6 & 6 & 6 & 6 & 6 & 6 \end{pmatrix} \begin{pmatrix} 6 & 6 & 6 & 6 & 6 & 6 \end{pmatrix} \begin{pmatrix} 6 & 6 & 6 & 6 & 6 & 6 & 6 \end{pmatrix} \begin{pmatrix} 6 & 6 & 6 & 6 & 6 & 6 & 6 \end{pmatrix} \begin{pmatrix} 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \end{pmatrix} \begin{pmatrix} 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \end{pmatrix} \begin{pmatrix} 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \end{pmatrix} \begin{pmatrix} 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \end{pmatrix} \begin{pmatrix} 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6$
Colinas	0	3 (50%)	3 (50%)	$H(T = ll) = -\left(\frac{2}{6}log_2\left(\frac{2}{6}\right) + \frac{1}{6}log_2\left(\frac{1}{6}\right) + \frac{3}{6}log_2\left(\frac{3}{6}\right)\right) = 1.45$
Llanuras	2 (33%)	1 (17%)	3 (50%)	$H(T=m) = -\left(\frac{2}{-log_2}\left(\frac{2}{-}\right) + \frac{3}{-log_2}\left(\frac{3}{-}\right) + \frac{3}{-log_2}\left(\frac{3}{-}\right)\right) = 1.56$
Mesetas	2 (25%)	3 (37.5%)	3 (37.5%)	$H(T=m) = -\left(\frac{2}{8}log_2\left(\frac{2}{8}\right) + \frac{3}{8}log_2\left(\frac{3}{8}\right) + \frac{3}{8}log_2\left(\frac{3}{8}\right)\right) = 1.56$

Cálculo de gain

Random Forest

- Genera diversos árboles de decisión con submuestras, la regla de decisión final toma el promedio de los árboles generados.
- Usualmente el tamaño de las submuestras es el mismo que el de la muestra total.
- La ganancia de Random Forest, con respecto a los árboles de decisión tradicionales, es mayor precisión y evita el overfitting.

Random Forest Simplified

XGBoost

 El criterio de optimización considera dos componentes: Trainning Loss y Regularization.

$$obj(\theta) = L(\theta) + \Omega(\theta)$$

$$L(heta) = \sum_i (y_i - \hat{y}_i)^2$$

$$L(heta) = \sum_i [y_i \ln(1 + e^{-\hat{y_i}}) + (1 - y_i) \ln(1 + e^{\hat{y_i}})]$$

 $L(\theta)$ = Función que se desea optimizar

La predicción es la suma de la predicción de varios arboles.

Complejidad:

$$\Omega(f_t) = \gamma T + \frac{1}{2}\lambda \sum_{j=1}^{T} w_j^2$$

T: cantidad de hojas del árbol Wj: valor de la j-ésima hoja Gamma y Lambda son hiper-parámetros

Las predicciones son la suma de scores por cada árbol

www.diplomadosperu.com.pe