

Inpainting Masks

Simon Göppel https://applied-math.uibk.ac.at/

Inpainting Masks: Ellipsoids

An ellipsoid is defind by the equation

$$E^t_{abc} \colon \quad \frac{(x_1-t_1)^2}{a} + \frac{(x_2-t_2)^2}{b} + \frac{(x_2-t_3)^2}{c} \leq 1,$$

where $t=(t_1,t_2,t_3).$ Each single ellipsoid is shown in the Figure. Parameters $a,b,c\in\mathbb{N}$ and $t_i\in\mathbb{R}$ where generated in a random fashion and each ellipse was rotated by a random angle between 0° to 90° before adding to the full mask. This was iterated until the number of pixels that lie inside an ellipsoid exceeded a manually set threshold.

Figure: Visualization of 3D ellipsoid inpainting masks. The projections onto the first, second and third axis, respectively.

Inpainting Masks: α -shapes

First, we randomly select a number of points $x_i, i=1,\ldots N$, that satisfy

$$\epsilon_1 \le \|x_i - x_j\|_2 \le \epsilon_2,$$

for all $i,j=1,\ldots,N$ and manually chosen $\epsilon_1,\epsilon_2>0$. We then used the Python package α -shape^a to create the α -shape of the set $\{x_1,\ldots x_N\}$. For $\alpha=0$, the algorithm producedes the convex hull. Examples on the right where calculated for $\alpha=3$.

Figure: Visualization of concave inpainting masks. Two examples are shown in the top and bottom row. The projections onto the first, second and third axis, respectively.

^ahttps://pypi.org/project/alphashape/

Thank you for your attention!

https://applied-math.uibk.ac.at/