Statistics Bootcamp Day 2

17 September 2019

Welcome to bootcamp!

Our goals:

- Increase students' understanding of and confidence with basic statistical concepts.
- 2. Build students' programming intuition and data management skills.
- 3. Encourage collaboration and camaraderie among the graduate student cohort.

Overview of the week

Monday: mindset, descriptive & inferential statistics, summary statistics, and Stata workshop

Tuesday: graphing, exponents/logarithms, sampling distributions, and statistical significance

Wednesday: probability basics, file structure and data workflow

Thursday: variable types, functions, lines of best fit, prediction equations

Friday: matrix algebra basics, reading calculus

Today's learning objectives

...conduct basic exponent and logarithm computations

...present data as graphs and tables

...explain the difference between a population distribution, sample distribution, and a sampling distribution

...explain the logic of statistical significance and repeated sampling

Exponents and Logarithms

Exponential Functions

$$2 * 2 * 2 = 2^3 = 8$$

Logarithmic Functions

$$y = \log_a(x)$$

$$\log_2 8 = 3$$

Logarithms

• The inverse function of exponents:

$$2^3 = 8$$

• If no base is written, it is an implied base 10. $\log 1000 \text{ is the same as } \log_{10} 1000 = 3$

• "In" denotes a **natural log**. The base is e (approx. 2.72). $\ln 100 \text{ is the same as } \log_e 100 \approx 4.61$

One Statistics Application of Logs (among many!):

 Using log transformations can help to make a skewed distribution look more "Normal"

Instead of plotting a histogram of each person's income, we can take the log of each person's income and plot that.

Exponent Properties

1.
$$a^x a^y = a^{x+y}$$

$$2. \ a^{-x} = \frac{1}{a^x}$$

3.
$$a^{xy} = (a^x)^y$$

4.
$$a^0 = 1$$

Logarithm Properties

1.
$$\log_a(xy) = \log_a(x) + \log_a(y)$$

2.
$$\log_a(x^y) = y \log_a(x)$$

3.
$$\log_a(x)$$
 when $x \leq 0$ is undefined

Practice with exponents and logarithms

Presenting Data

Representing data visually using Stata:

- Download the updated dataset ("BootcampDay2.dta") from the Box folder and save it in your working directory from yesterday.
- 2. Open your do file from yesterday. Change the code so that your do file opens "BootcampDay2.dta" rather than "Workshop.dta".
- 3. Complete the self-directed handout from yesterday (through activity 5).
- 4. Try to recreate the graph(s) you drew by hand using Stata. If you make a graph you are really proud of, email it to us! (rgleit@stanford.edu)

lunch

Review

What is the difference between **descriptive statistics** and **inferential statistics**?

Review

What is meant by **signal** vs. **noise**?

Practice: Distributions — Part A Questions

- What do you notice about the three plots you made?
- What is the difference between what you plotted in 1, 2, and 3?

Practice: Distributions — Part B Questions

- What was different about the plots in part B compared to part A?
- What was similar about the plots in part B compared to part A?

Distributions

- What is a distribution?
- 3 types:
 - Population distribution
 - Sample distribution
 - Sampling distribution

Distributions

The distribution of means

- What happens to the sampling distribution as the number of repeated samples increases?
- What happens to the sampling distribution as the number of observations in each sample increases?

Sample size:

- Tangible
- You control this
- Bigger is better (>30)

100

https://istats.shinyapps.io/sampdist_cont/

Signal vs. Noise in the Sampling Distribution

Signal vs. Noise in the Sampling Distribution

Mean → **estimate**

Standard deviation → **standard error**

