Due: March 1, 2016	Name
--------------------	------

HOMEWORK SET # 4 ME/AE 6212 Advanced Finite Element Analysis

Write a computer program (MATLAB language or other programming languages like C, FORTRAN etc.) to solve the following two-variable second order system problem. (40 points)

$$[M]\{\ddot{u}\} \, + \, [C]\{\dot{u}\} \, + \, [K]\{u\} \! = \! \{F\}\,; \{u\,\}_{t_o} \! = \! \{\dot{u}\,\}_{t_o} \! = \! 0$$

where

$$[M] = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}; [C] = [K] = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}; \{F\} = \begin{Bmatrix} 1 \\ 2 \end{Bmatrix}$$

Using Newmark's Integration Scheme, solve for u_1 , u_2 , \dot{u}_1 , \dot{u}_2 , \ddot{u}_1 and \ddot{u}_2 for t = 15 sec with $\Delta t = 0.5$ sec.

Need a summary of numerical results in both tabular and graphical form along with listing of code and sample output. The summary should follow the problem statement.

Note: This is a solved problem in the handout (Example 5.29, pp. 328-330, Dhatt and Touzot).