

Final de Sistemas **Operativos**

31/07/2012

Nota:			

Apellido y Nombre	Profesor	Tomé conocimiento de la nota: (Sólo aplazos)		

Preguntas teóricas					Ejercicios	
1	2	3	4	5	1	2

- Explícitamente defina como VERDADERA o FALSA cada una de estas afirmaciones JUSTIFICANDO su respuesta en no más de 3 líneas. Además realice la teoría y los ejercicios en hojas diferentes para la mejor corrección.
 - 1. Una de las formas de prevención del deadlock es eliminar la condición de mutua exclusión, sobre los recursos.
 - 2. El trashing es independiente del tamaño de los frames de memoria, solo depende de la cantidad de procesos y el tamaño de la memoria.
 - 3. El Kernel del sistema operativo debe ser los más pequeño posible, esto se debe a que de esta forma es menos propenso a los fallos.
 - 4 El driver de un dispositivo se ejecuta cuando se enciende la máquina, cuando se conecta un dispositivo o cuando el este se enciende o apaga, ya que es el encargado de generar y mantener las estructuras de datos para la administración del dispositivo.
 - 5. La sincronización de procesos mediante semáforos permite liberar al procesador más rápidamente cuando un proceso no consigue un recurso.

B) PRÁCTICA

3.

Un sistema operativo posee un filesystem de tipo Unix, que maneja bloques lógicos de 4KB, sectores de 2KB y punteros de 32 bits. Los inodos cuentan con 10 punteros directos, 1 puntero indirecto simple, 1 puntero indirecto doble y 1 puntero indirecto triple. Por otro lado, para la planificación de procesos se utiliza el algoritmo Virtual Round Robin con un quantum = 4. Cada acceso a disco consume 2 unidades de tiempo, todas las E/S son lecturas (a bloques relativos de un archivo) y la tabla de inodos se encuentra en memoria.

Se encuentran en la cola de listos los procesos A y B (en ese orden) y las ejecuciones siguientes son:

A: CPU(6), E/S (Bloque 1025), CPU (5)

B: CPU(12), E/S (Bloque 19214), CPU (1)

C: CPU(2), E/S (Bloque 11), CPU(2), E/S (Bloque 2), CPU (1)

Realice el diagrama de Gantt correspondiente a la traza de ejecución de los procesos A, B y C.

- Indique en el diagrama en qué hubiera variado la ejecución si el algoritmo hubiese sido Round Robin tradicional. a)
- ¿Cuál es el tamaño máximo teórico de este filesystem? b)
- Se tiene un sistema de segmentación paginada, con páginas de 4096 bytes y un disco de paginación con una estructura de un file system que trabaja con asignación contigua. Dicho file system se encuentra en la partición que va desde la pista 1 a 700. En la primera parte de dicho file system se localiza el directorio para poder ubicar los procesos alojados para paginación por demanda. La estructura de cada entrada del directorio es la siguiente:

Id proceso | bloque_comienzo | bloque_fin | estado (Libre /Ocupado)

Siendo el tamaño del bloque el óptimo para minimizar el tiempo de servicio de las páginas.

En el momento actual se encuentran 6 procesos en ejecución y piden sus páginas en el siguiente orden.

ID	Tamaño	Página	Bit de	Bit de	Bit de El disco dispone de 1000 pistas 2 platos y 100 sectores, tiempo entre pistas 1ms, se	
	Proceso	Solicitada	Modificación	Presencia	pide :	
	(bytes)				1) Armar con los valores correspondientes a las entradas para estos 6 procesos	
234	150234	6	1	0	el directorio y calcular su tamaño.	
245	270 234	17	0	1	2) Sabiendo que la cabeza se encuentra inicialmente en la pista 1, cuanto tarda	
11	680212	49	0	0	en satisfacer cada uno de los pedidos de páginas, si utiliza algoritmo SSTF para	
567	77000	77	1	1	el disco y clock para la elección de la víctima.	
99	19111	1	0	0	3) Utilizando FIFO sería mejor para los usuarios, calcule los tiempos y justifique	
185	500121	345	1	0	su respuesta.	

El tiempo de duración del examen final será de 90' a contar desde el momento de comienzo del mismo. Si el alumno por algún motivo comenzara más tarde solo podrá utilizar el tiempo remanente.