

• Reward is negative: The objective reduces to

$$\max\left(\frac{\pi_{\theta}(a^{(t)} \mid s^{(t)})}{\pi_{\theta_{\text{old}}}(a^{(t)} \mid s^{(t)})}, (1 - \epsilon)\right) R^{(t)}$$

Then, the objective decreases with $\pi_{\theta}(a^{(t)} \mid s^{(t)})$. Once $\pi_{\theta}(a^{(t)} \mid s^{(t)}) < (1 - \epsilon)\pi_{\theta_{\text{old}}}(a^{(t)} \mid s^{(t)})$, the max kicks in, with a ceiling of $(1 - \epsilon)R^{(t)}$.

• Reward is positive: The objective reduces to

$$\min\left(\frac{\pi_{\theta}(a^{(t)} \mid s^{(t)})}{\pi_{\theta_{\text{old}}}(a^{(t)} \mid s^{(t)})}, (1+\epsilon)\right) R^{(t)}$$

Then, the objective increases with $\pi_{\theta}(a^{(t)} | s^{(t)})$. Once $\pi_{\theta}(a^{(t)} | s^{(t)}) > (1 + \epsilon)\pi_{\theta_{\text{old}}}(a^{(t)} | s^{(t)})$, the min kicks in, with a ceiling of $(1 + \epsilon)R^{(t)}$.

PPO-Clip as a Regularizer

Key insight: the new policy does not benefit by going far away from the old policy.

[OpenAI SpinningUp, Proximal Policy Optimization]

- Regularizer; similar to batch training jittering.
 - ϵ is a trainable hyperparameter.

PPO-Clip as a Regularizer

• Reward is positive: The objective reduces to

$$\min\left(\frac{\pi_{\theta}(a^{(t)} \mid s^{(t)})}{\pi_{\theta_{\text{old}}}(a^{(t)} \mid s^{(t)})}, (1+\epsilon)\right) R^{(t)}$$

Then, the objective increases with $\pi_{\theta}(a^{(t)} \mid s^{(t)})$. Once $\pi_{\theta}(a^{(t)} \mid s^{(t)}) > (1 + \epsilon)\pi_{\theta_{\text{old}}}(a^{(t)} \mid s^{(t)}),$ the min kicks in, with a ceiling of $(1 + \epsilon)R^{(t)}$

• Reward is negative: The objective reduces to

$$\max\left(\frac{\pi_{\theta}(a^{(t)} \mid s^{(t)})}{\pi_{\theta_{\text{old}}}(a^{(t)} \mid s^{(t)})}, (1 - \epsilon)\right) R^{(t)}$$

Then, the objective decreases with $\pi_{\theta}(a^{(t)} \mid s^{(t)})$. Once $\pi_{\theta}(a^{(t)} \mid s^{(t)}) < (1 - \epsilon)\pi_{\theta_{\text{old}}}(a^{(t)} \mid s^{(t)})$, the max kicks in, with a ceiling of $(1 - \epsilon)R^{(t)}$.

Key insight: the new policy does not benefit by going far away from the old policy.

- Regularizer; similar to batch training jittering.

 • is a trainable hyperparameter.