Linear Algebra

Dr François Pitié

Problem 1.

Assume
$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_p \end{pmatrix}$$
, is a vector of size $p \times 1$,

What is the size of

- 1. aa[⊤]
- 2. $\mathbf{a}^{\mathsf{T}}\mathbf{a}$
- 3. $\mathbf{a}\mathbf{a}^{\mathsf{T}}\mathbf{a}\mathbf{a}^{\mathsf{T}}$
- 4. $\mathbf{a}^{\mathsf{T}}\mathbf{a}\mathbf{a}^{\mathsf{T}}\mathbf{a}$

Problem 2.

Given no assumptions about matrices A, B and vectors a and b, compute the gradient $\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}}$ for

- 1. $E(\mathbf{w}) = \mathbf{w}^{\mathsf{T}}\mathbf{w}$
- 2. $E(\mathbf{w}) = (\mathbf{w} \mathbf{a})^{\mathsf{T}} \mathbf{A} (\mathbf{w} \mathbf{a})$
- 3. $E(\mathbf{w}) = (\mathbf{A}\mathbf{w} \mathbf{b})^{\top}(\mathbf{A}\mathbf{w} \mathbf{b})$
- 4. $E(\mathbf{w}) = (\mathbf{w} \mathbf{B}\mathbf{w})^{\mathsf{T}} \mathbf{A} (\mathbf{w} \mathbf{a})$