3/3: Relations binaires

- 1 Relations binaires et leurs éventuelles propriétés. 1
- 2 Relations d'équivalence.
- 3 Relations d'ordre.

Exercices 6

1 Relations binaires et leurs éventuelles propriétés.

Soit E un ensemble.

Définition 1.

On appelle **relation binaire** sur E un prédicat $\mathcal{R}(x,y)$ sur $E \times E$, c'est-à-dire une propriété dépendant de $(x,y) \in E \times E$ et pouvant être vérifiée ou pas par chaque couple (x,y) de $E \times E$.

Soit $(x,y) \in E^2$. Si la propriété $\mathcal{R}(x,y)$ est vérifiée, on dit que x et y sont **en relation**, et on note

$$x \mathcal{R} y$$
.

Remarque. On peut aussi définir plus rigoureusement (mais moins clairement) une relation binaire \mathscr{R} comme une partie de $E \times E$. Pour $(x,y) \in E \times E$, on dit alors que x est en relation avec y si $(x,y) \in \mathscr{R}$.

$\textbf{D\'efinition 2} \ (\textbf{Propri\'et\'es que poss\`e} \textbf{de \'eventuellement une relation binaire}).$

On dit qu'une relation binaire $\mathscr R$ sur E est

• réflexive si

$$\forall x \in E \quad x \mathcal{R} x,$$

• symétrique si

$$\forall (x,y) \in E^2 \quad x \mathcal{R} y \Longrightarrow y \mathcal{R} x,$$

• antisymétrique si

$$\forall (x,y) \in E^2 \quad (x \, \mathscr{R} \, y \ \text{ et } \ y \, \mathscr{R} \, x) \Longrightarrow x = y,$$

 \bullet transitive si

$$\forall (x, y, z) \in E^3 \quad (x \,\mathscr{R} \, y \ \text{et} \ y \,\mathscr{R} \, z) \Longrightarrow x \,\mathscr{R} \, z.$$

Exemples 3.

Soit \mathcal{D} l'ensemble des droites du plan, et E un ensemble quelconque.

Relation	réflexive?	symétrique?	antisymétrique?	transitive?
$= \sup E$				
$< sur \mathbb{R}$				
$\perp \operatorname{sur} \mathcal{D}$				
$\parallel \operatorname{sur} \mathcal{D}$				

1 MP2I PV

2 Relations d'équivalence.

Définition 4.

Sur un ensemble E, une **relation d'équivalence** est une relation binaire \sim qui est réflexive, symétrique et transitive.

Deux éléments x et y qui sont en relation (i.e. tels que $x \sim y$) sont dits **équivalents**.

Pour $x \in E$, on appelle **classe d'équivalence de** x l'ensemble des éléments qui sont équivalents à x; on notera ici cet ensemble [x]:

$$[x] := \{ y \in E \mid y \sim x \}.$$

Exemple Sur E, l'égalité est une relation d'équivalence (triviale). Que dire des classes d'équivalence?

Exemple 5 (Relation d'équivalence associée à une fonction).

Soit $f: E \to F$ une application. Pour $x, y \in E$, on pose $x \sim y$ si f(x) = f(y). La relation \sim est une relation d'équivalence sur E. Décrire les classes d'équivalence.

Définition 6.

1. Soit $\alpha \in \mathbb{R}$. Sur \mathbb{R} , la relation de **congruence** modulo α est définie par

$$\forall (x, y) \in \mathbb{R}^2 \quad x \equiv y[\alpha] \iff \exists k \in \mathbb{Z} \ x = y + k\alpha.$$

2. Soit $n \in \mathbb{Z}$. Sur \mathbb{Z} , la relation de **congruence** modulo n est définie par

$$\forall (p,q) \in \mathbb{Z}^2 \quad p \equiv q[n] \iff \exists k \in \mathbb{Z} \ p = q + kn.$$

Proposition 7.

Les relations de congruence sont des relations d'équivalence.

Proposition 8.

Soit E un ensemble et \sim une relation d'équivalence sur E. Pour $x, x' \in E$,

$$x \sim x' \iff x' \in [x] \iff [x] = [x'].$$

Théorème 9.

Les classes d'équivalence pour une relation d'équivalence sur un ensemble E forment une partition de cet ensemble.

3 Relations d'ordre.

Définition 10.

Sur un ensemble E, une **relation d'ordre** est une relation binaire \leq qui est réflexive, antisymétrique et transitive. Au sujet du couple (E, \leq) , on peut alors parler d'ensemble ordonné.

Définition 11.

Une relation d'ordre sur un ensemble E est dite **totale** si on peut toujours comparer deux éléments de E, c'est-à-dire que

$$\forall (x,y) \in E^2 \quad x \leq y \text{ ou } y \leq x.$$

Dans le cas contraire, on peut parler d'ordre partiel.

Remarque. Logique : prouver qu'un ordre \leq n'est pas total sur un ensemble E, c'est être en mesure d'exhiber deux éléments x et y de E pour lesquels les assertions $(x \leq y)$ et $(y \leq x)$ sont fausses.

Exemple 12 (Inégalités).

La relation \leq est une relation d'ordre sur \mathbb{R} . Il s'agit d'un ordre total.

La relation < n'est pas une relation d'ordre sur \mathbb{R} (elle n'est pas réflexive).

Exemple 13 (Inclusion).

Soit E un ensemble. La relation d'inclusion \subset est une relation d'ordre sur $\mathcal{P}(E)$.

Dès que E possède plus de deux éléments, il s'agit d'un ordre partiel.

Exemple 14 (Divisibilité sur les entiers positifs).

Soient p et q deux entiers naturels. On dit que p divise q si il existe un entier $k \in \mathbb{N}$ tel que q = kp; on note alors $p \mid q$. La relation | est une relation d'ordre (partielle) sur \mathbb{N} .

Exemple 15.

Soit $p \in \mathbb{N}^*$. L'ordre lexicographique est une relation d'ordre totale sur \mathbb{N}^p .

Deux p-uplets (x_1, \ldots, x_p) et (y_1, \ldots, y_p) sont comparés d'abord selon leur première coordonnée, puis selon la deuxième en cas d'égalité, etc...

Les p-uplets sont alors ordonnés comme dans un dictionnaire.

Pour cet ordre sur \mathbb{N}^3 , (1,2,4) est plus petit que (1,3,2), qui est lui-même plus petit que (1,3,4).

Les définitions qui suivent généralisent à des ensembles ordonnés quelconques le vocabulaire utilisé dans l'ensemble ordonné (\mathbb{R}, \leq) .

Définition 16.

Considérons deux ensembles, chacun muni d'une relation d'ordre : $(E, \underset{F}{\preceq})$ et $(F, \underset{F}{\preceq})$.

D'une application $f: E \to F$, on dit qu'elle est

• croissante si

$$\forall (x, x') \in E^2 \quad x \leq x' \implies f(x) \leq f(x').$$

• décroissante si

$$\forall (x, x') \in E^2 \quad x \leq x' \implies f(x') \leq f(x).$$

• monotone si elle est croissante ou décroissante.

Exemple 17.

Connaissons-nous des fonctions monotones (au sens de l'inclusion) de $\mathcal{P}(E)$ dans lui-même?

Définition 18 (Majorant, minorant).

Soit (E, \preceq) un ensemble ordonné et A une partie de E.

 \bullet On dit que A est **majorée** dans E si il existe un élément M de E tel que

$$\forall x \in A \quad x \prec M.$$

Dans ce contexte, M est appelé un **majorant** de A.

ullet On dit que A est **minorée** dans E si il existe un élément m de E tel que

$$\forall x \in A \quad m \prec x.$$

Dans ce contexte, m est appelé un **minorant** de A.

ullet On dit que A est **bornée** si elle est majorée et minorée.

Remarques.

- 1. L'existence d'un majorant ou d'un minorant pour une partie A de E n'est pas garantie.
- 2. Un majorant ou un minorant de A n'appartient pas nécessairement à A.
- 3. Un majorant ou un minorant n'est pas nécessairement unique.

Définition 19 (Maximum, minimum).

Soit (E, \preceq) un ensemble ordonné et A une partie de E.

- S'il existe un majorant de A qui appartient à A, alors cet élément est unique. Il est appelé plus grand élément de A ou encore **maximum** de A et noté $\max(A)$.
- S'il existe un minorant de A qui appartient à A, alors cet élément est unique. Il est appelé plus petit élément de A ou encore **minimum** de A et noté min(A).

Remarques.

- 1. L'existence d'un maximum ou d'un minimum n'est pas garantie.
- 2. Un maximum ou un minimum appartient nécessairement à A.

Exemple 20.

Soit E un ensemble. Alors $(\mathcal{P}(E), \subset)$ est un ensemble ordonné. $\mathcal{P}(E)$ possède-t-il un plus petit élément? Un plus grand élément?

Définition 21 (Borne supérieure, inférieure).

Soit (E, \preceq) un ensemble ordonné et A une partie de E.

- Si l'ensemble des majorants de A admet un plus petit élément, alors cet élément est unique. Il est appelé **borne supérieure** de A et noté $\sup(A)$.
- Si l'ensemble des minorants de A admet un plus grand élément, alors cet élément est unique. Il est appelé **borne inférieure** de A et noté $\inf(A)$.

Remarques.

- 1. Comme pour le maximum, l'existence d'une borne supérieure dans E n'est pas garantie.
- 2. En cas d'existence, la borne supérieure de A est le plus petit des majorants de A et la borne inférieure le plus grand des minorants de A.

Exemple 22 ((*) laissé en exercice, une fois apprivoisée la notion pour les parties de \mathbb{R}).

Soit E un ensemble. Dans l'ensemble ordonné $(\mathcal{P}(E), \subset)$, toute partie A de $\mathcal{P}(E)$ possède une borne supérieure ainsi qu'une borne inférieure : on a

$$\sup(A) = \bigcup_{X \in A} X$$
 et $\inf(A) = \bigcap_{X \in A} X$.

Exercices

16.1 $[\phi \phi \diamondsuit]$ Soit \mathscr{R} la relation définie sur $\mathbb R$ par :

$$x \mathcal{R} y \iff xe^y = ye^x.$$

- 1. Montrer que \mathcal{R} est une relation d'équivalence sur \mathbb{R} .
- 2. Préciser le cardinal de la classe d'équivalence d'un réel x.
- $\overline{\mathbf{16.2}}$ $[\blacklozenge \blacklozenge \diamondsuit]$ On considère la relation $\mathscr R$ définie sur $\mathbb N^*$ par

$$p \mathcal{R} q \iff \exists n \in \mathbb{N}^* : p^n = q.$$

Montrer que \mathscr{R} est une relation d'ordre partiel sur \mathbb{N}^* .

16.3 $[\blacklozenge \blacklozenge \diamondsuit]$ Soient $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ et $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$. On note $x \leq y$ si

$$\forall k \in [1, n] \quad : \quad \sum_{i=1}^k x_i \le \sum_{i=1}^k y_i.$$

- 1. Montrer que \leq est une relation d'ordre sur \mathbb{R}^n .
- 2. Si $n \geq 2$, montrer qu'il s'agit d'un ordre partiel.

$$\exists (p,q) \in (\mathbb{N}^*)^2 \quad px = qy.$$

- 1. Démontrer que \mathcal{R} est une relation d'équivalence.
- 2. Démontrer que pour cette relation, deux classes d'équivalences sont nécessairement en bijection.
- **16.5** $[\phi \phi \diamondsuit]$ Sur \mathbb{R} , on définit la relation \mathcal{R} par

$$x\mathcal{R}y \iff x^2 + 2y = y^2 + 2x.$$

- 1. Montrer que \mathcal{R} est une relation d'équivalence sur \mathbb{R} .
- 2. Déterminer la classe d'équivalence d'un réel a.

Pour $(x,y) \in E$, on note $x \sim y$ s'il existe $n \in \mathbb{N}^*$ et $x_0, \ldots, x_n \in E$ tels que

$$x_0 = x$$
, $x_0 \mathcal{R} x_1$, $x_1 \mathcal{R} x_2$, $x_{n-1} \mathcal{R} x_n$, $x_n = y$.

- 1. Montrer que \sim est une relation transitive sur E.
- 2. On suppose que \mathcal{R} est réflexive et symétrique. Montrer que \sim est une relation d'équivalence sur E.
- **16.7** $[\blacklozenge \blacklozenge \blacklozenge]$ Soit E un ensemble et A une partie de E. Pour deux parties X et Y de E, on note $X \sim Y$ lorsque $X \cap A = Y \cap A$, ce qui définit sur $\mathcal{P}(E)$ une relation binaire.
 - 1. Montrer que \sim est une relation d'équivalence.
 - 2. On note $\mathcal{P}(E)/\sim$ l'ensemble des classes d'équivalences pour \sim . Démontrer qu'il existe une bijection de $\mathcal{P}(A)$ dans $\mathcal{P}(E)/\sim$.