MAA4402 Notes

Oliver Deng

April 23, 2025

Contents

P		Complex Numbers	_ r agc o	
	1.1	Lecture 1	3	
		Properties of Complex Numbers — $3 \bullet$ Real and Imaginary Parts — $4 \bullet$ Inverses — $4 \bullet$ Absolute	Value — 4	
	1.2	Lecture 2	5	
	1.0	Properties of Conjugates and Absolute Values — 5		
	1.3	Lecture 3 Distance Between Points — 6 • Equation of a Circle — 6 • Polar Form of a Complex Number —	6	
	1.4	Lecture 4	7	
	1.1	Solving for Powers of Complex Numbers — 8	,	
Chapter 2		Analytic Functions	Page 11	
	2.1	Lecture 6	11	
		Functions and Mappings — 11		
	2.2	Lecture 7	12	
		Formal Definition of Limit — 12		
	2.3	Lecture 8	12	
	2.4	Properties of Limits — 12	19	
	2.4	Lecture 9 More Properties of Limits — 13 • Point of Infinity — 14 • Definition of Derivative — 14	13	
	2.5	Lecture 10	14	
		Differentiability — 14 • Necessary Conditions for Differentiability — 15		
	2.6	Lecture 11	16	
	2.7	Lecture 12	17	
		Sufficient Conditions for Differentiability — 17 \bullet Differentiability Rules — 17 \bullet Cauchy-Riemann Polar Coordinates — 17	Equations in	
	2.8	Lecture 13	19	
		Analytic Functions — 19		
	2.9	Lecture 14	20	
	2.40	Constant Functions — 20		
	2.10	Lecture 15 Harmonic Functions — 20	20	
		Transione Pulicions 20		
Chapter 3		Elementary Functions	Page 22	
	3.1	Lecture 15	22	
		The Exponential Function — 22		
	3.2	Lecture 16	23	
		The Logarithmic Function — 23		
	3.3	Lecture 17	25	
		Branches of Logarithms — 25 • Properties of Logarithms — 26		

		Complex Trigonometric Functions — $26 \bullet$ Properties of Complex Trig Functions — $26 \bullet$ Complex Power Function — $28 \bullet$ Branches of the Complex Power Function — 29				
Chapter 4			D 00			
mapter 4			Page 30			
	4.1	Lecture 19 Basic Integrals — 30	30			
	4.2	Lecture 20 Anti-Derivatives — 31 \bullet Curves and Contours — 31 \bullet Arc Length — 32 \bullet Contour Integral — 32	31			
	4.3	Lecture 21 Parameterizations — 32	32			
	4.4	Lecture 22 Properties of Integrals — 33 • Properties of Contour Integrals — 34	33			
	4.5	Lecture 23 Anti-Derivatives of Contour Integrals — 35	35			
	4.6	Lecture 24	36			
		Lecture 25	37			
	4.8	Lecture 26	38			
	1.0	Simply and Multiply Connected Domains — 38 • Deformation of Path — 38 • Cauchy's Integral 38				
	4.9	Lecture 27	39			
	4.10	Lecture 28 Maximum Modulus Principle — 41	41			
	4.11	Lecture 29 Cauchy's Inequality — 43 \bullet Liouville's Theorem — 43 \bullet Fundamental Theorem of Algebra — 44	42			
Chapter 5		Series	Page 45			
	5.1	Lecture 30 Convergence of Sequences — 45 • Convergence of Series — 45	45			
	5.2	Lecture 31 Taylor Series — 47 • Laurent Series — 47	47			
Chapter 6			D 40			
		Residues and Poles	Page 49			
	6.1	Lecture 32 Isolated Singular Points — 49	49			
	6.2	Lecture 33 Cauchy's Residue Theorem — 50	50			
	6.3	Lecture 34 Principal Part — $52 \bullet$ Types of Singularities — 52	52			
	6.4	Lecture 35 Residue at Infinity Theorem — 53	53			
	6.5	Lecture 36 Zeroes of Analytic Functions — 56	56			
	6.6	Lecture 37 Analytic Continuation — 57	57			
	6.7	Lecture 38 Riemann Zeta Function — 58	58			

3.4 Lecture 18

Chapter 1

Complex Numbers

1.1 Lecture 1

Definition 1.1.1: Complex Numbers

$$z = (x, y) = x + iy$$
 where $x, y \in \mathbb{R}$

Definition 1.1.2: Complex Addition

Let
$$z_1 = (x_1, y_1), z_2 = (x_2, y_2), \text{ where } x_1, x_2, y_1, y_2 \in \mathbb{R}$$

 $z_1 + z_2 = (x_1 + iy_1) + (x_2 + iy_2) := (x_1 + x_2) + i(y_1 + y_2)$

Definition 1.1.3: Complex Multiplication

$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + y_1 x_2)$$

1.1.1 Properties of Complex Numbers

Definition 1.1.4: Set of Complex Numbers

Let $\mathbb{C}=\{(x,y): x,y\in\mathbb{R}\}=\{x+iy: x,y\in\mathbb{R}\}$ be the set of complex numbers

Let $z, z_1, z_2, z_3 \in \mathbb{C}$. Then

1. $z_1 + z_2 = z_2 + z_1$

2. $z_1 z_2 = z_2 z_1$

3. $z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3$

4. z + 0 = z where 0 = (0, 0) = 0 + 0i

5. z * 1 = z where 1 = (1,0) = 1 + 0i

6.

$$z + (-z) = 0$$
 where $z = (x, y) = x + iy$ and $-z = (-x, -y) = (-x) + i(-y)$

7.

 $\mathbb C$ is closed under addition and multiplication

8.

$$z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$$

9.

$$z_1(z_2z_3) = (z_1z_2)z_3$$

1.1.2 Real and Imaginary Parts

Definition 1.1.5: Real and Imaginary Parts

Let z = x + iy where $x, y \in \mathbb{R}$

$$x = \Re(z) = \operatorname{Re}(z)$$

$$y = \Im(z) = \operatorname{Im}(z)$$

Example 1.1.1

$$\Re(2+3i) = 2 \text{ and } \Im(2+3i) = 3$$

1.1.3 Inverses

Theorem 1.1.1

Let $z=x+iy, x,y\in\mathbb{R}$. Then $\overline{z}=x-iy$. Then there exists a $w\in\mathbb{C}$ such that z*w=1. Namely, $w=\frac{\overline{z}}{z*\overline{z}}=\frac{1}{x^2+y^2}\overline{z}=\frac{x}{x^2+y^2}+i(\frac{-y}{x^2+y^2})$

Note

Since $z = (x, y) \neq (0, 0), x^2 + y^2 \neq 0$

Note

$$w = \frac{1}{z} = z^{-1}$$

Note

$$\frac{z_1}{z_2} = z_1(z_2^{-1}) \text{ if } z_2 \neq 0$$

1.1.4 Absolute Value

Definition 1.1.6: Absolute Value

Let $z = x + iy, x, y \in \mathbb{R}$. The absolute value of z is the distance between z and 0.

$$|z| = \sqrt{x^2 + y^2} = \sqrt{z * \overline{z}}$$

and

$$|z|^2 = z * \overline{z}$$

1.2 Lecture 2

1.2.1 Properties of Conjugates and Absolute Values

Theorem 1.2.1 Properties of Conjugates and Absolute Values Let $z, z_1, z_2 \in \mathbb{C}$. Then 1. $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ 2. $\overline{z_1 z_2} = \overline{z_1} * \overline{z_2}$ 3. If $z_2 \neq 0$, then $(\frac{z_1}{z_2}) = (\frac{\overline{z_1}}{\overline{z_2}})$ 4. $\Re(z) = \frac{1}{2}(z + \overline{z}) \text{ and } \Im(z) = \frac{1}{2i}(z - \overline{z})$ 5. $|z_1 z_2| = |z_1||z_2|$ 6. $\Re(z) \le |\Re(z)| \le |z|$ 7. $\Im(z) \le |\Im(z)| \le |z|$ 8. $|z_1 + z_2| \le |z_1| + |z_2|$ **Proof:** $|z_1 + z_2|^2 = (z_1 + z_2)(\overline{z_1 + z_2})$ $=(z_1+z_2)(\overline{z_1}+\overline{z_2})$ by (1) $=|z_1|^2+z_1\overline{z_2}+\overline{z_1}\overline{z_2}+|z_2|^2$ since $\overline{z_1}\overline{z_2}=\overline{z_1}*\overline{\overline{z_2}}=\overline{z_1}z_2$ $=|z_1|^2+2\Re(z_1\overline{z_2})+|z_2|^2$ since $z+\overline{z}=2\Re(z)$ by (4) $\leq |z_1|^2 + 2|z_1\overline{z_2}| + |z_2|^2$ by (6) $= |z_1|^2 + 2|z_1||\overline{z_2}| + |z_2|^2$ by (2) $= |z_1|^2 + 2|z_1||z_2| + |z_2|^2$ $= (|z_1| + |z_2|)^2$ So $|z_1 + z_2|^2 \le (|z_1| + |z_2|)^2$ And $|z_1 + z_2| \le |z_1| + |z_2|$ Since $|z_1 + z_2|, |z_1|, |z_2| \ge 0$ ☺

1.3 Lecture 3

1.3.1 Distance Between Points

Let $z_1 = x_1 + iy_1, z_2 = x_2 + iy_2$. Then the distance between z_1, z_2 is the distance between (x_1, y_1) and (x_2, y_2) . This is given by

$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = |(x_1 - x_2) + i(y_1 - y_2)| = |z_1 - z_2|$$

1.3.2 Equation of a Circle

Let $z_0 \in \mathbb{C}, R > 0$. Then let $S = \{z \in \mathbb{C} : |z - z_0| = R\}$ which is a circle cantered around z_0 with radius R.

1.3.3 Polar Form of a Complex Number

For $\theta \in \mathbb{R}$, $e^{i\theta} = \cos(\theta) + i\sin(\theta)$.

$$|e^{i\theta}| = \sqrt{\cos^2(\theta) + \sin^2(\theta)} = \sqrt{1} = 1$$

Let $z \in \mathbb{C}, z \neq 0, z = x + iy, x, y \in \mathbb{R}$.

$$r = \sqrt{x^2 + y^2} = |z| > 0$$
$$x = r\cos(\theta)$$
$$y = r\sin(\theta)$$

The polar form of z is

$$z = r\cos(\theta) + ir\sin(\theta)$$
$$= r(\cos(\theta) + i\sin(\theta))$$
$$= re^{i\theta}$$

Given $z \neq 0, z \in \mathbb{C}, r = |z|$ is unique.

$$\frac{y}{x} = \frac{r\sin(\theta)}{r\cos(\theta)} = \tan(\theta) \text{ if } x \neq 0$$

 θ is not unique.

Note

$$\theta \neq tan^{-1}(\frac{y}{r})$$

Each value of θ is called an argument of z and denoted by $\arg(z)$. The principal value of $\arg(z)$ is denoted by $\arg(z)$ and is the unique angle θ that satisfies $-\pi < \theta \le \pi$.

Note

arg(z) is a set of numbers.

Example 1.3.1 (Let $z = -\sqrt{3} + i$. Find the polar form of $z, |z|, \arg(z), \operatorname{Arg}(z)$.)

$$|z| = |-\sqrt{3} + i| = \sqrt{3 + 1} = \sqrt{4} = 2$$

$$\tan(\theta) = \frac{y}{x} = -\frac{1}{\sqrt{3}}$$

$$\tan(\frac{\pi}{6}) = \frac{1}{\sqrt{3}}$$

$$\theta = (\pi - \frac{\pi}{6}) + 2\pi n$$

$$\arg(z) = \frac{5\pi}{6} + 2\pi n \text{ where } n \in \mathbb{Z}$$

$$\operatorname{Arg}(z) = \frac{5\pi}{6}$$

So the polar form of $z = 2e^{i\frac{5\pi}{6}}$.

Note

Arg(z) is not defined at 0.

Theorem 1.3.1

Let $\theta, \phi \in \mathbb{R}$. Then $e^{i(\theta+\phi)} = e^{i\theta}e^{i\phi}$.

Proof:

$$\begin{split} e^{i(\theta+\phi)} &= \cos(\theta+\phi) + i\sin(\theta+\phi) \\ &= (\cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi) + i(\sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi)) \\ &= (\cos(\theta) + i\sin(\theta))(\cos(\phi) + i\sin(\phi)) \\ &= e^{i\theta}e^{i\phi} \end{split}$$

☺

Note

If $z = x + iy, x, y \in \mathbb{R}$, then

$$e^z = e^{x+iy} := e^x e^{iy} = e^x (\cos(y) + i\sin(y))$$

Theorem 1.3.2

Let $z_1, z_2 \in \mathbb{C}, z_1, z_2 \neq 0$. Then $\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$.

1.4 Lecture 4

Theorem 1.4.1 De Moivre's Theorem

Let $\theta \in \mathbb{R}$. Then $(e^{i\theta})^n = e^{in\theta}$ for n = 1, 2, 3, ... Following from this, $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$.

Proof: The result is clearly true for n = 1.

Assume $k \ge 1$ is a fixed integer and the result is true for n = k, i.e. $(e^{i\theta})^k = e^{ik\theta}$.

$$(e^{i\theta})^{k+1}(e^{i\theta})^k e^{i\theta} = e^{ik\theta}e^{i\theta}$$
 by the induction hypothesis
$$= e^{i(k\theta+\theta)}$$

$$= e^{i(k+1)\theta} \text{ and the result is true for } n=k+1$$
 Hence, $(e^{i\theta})^n = e^{in\theta}$ for all integers $n \geq 1$ by mathematical induction

Example 1.4.1 (Find $(1+i)^{100}$)

$$\begin{aligned} 1+i &= \sqrt{2}e^{\frac{\pi i}{4}}\\ (1+i)^{100} &= (\sqrt{2}e^{\frac{\pi i}{4}})^{100}\\ &= (\sqrt{2})^{100}(e^{\frac{\pi i}{4}})^{100}\\ &= 2^{50}e^{\frac{\pi i 100}{4}} \text{ by DeMoivre's theorem}\\ &= 2^{50}e^{25\pi i}\\ &= 2^{50}e^{\pi i}\\ &= -2^{50} \end{aligned}$$

Proposition 1.4.1 Let $z_1=r_1e^{i\theta_1}, z_2=r_2e^{i\theta_2}$ and $r_1,r_2>0$ and $\theta_1,\theta_2\in\mathbb{R}.$ $z_1=z_2\iff r_1=r_2$ and $\theta_1=\theta_2+2\pi n$ for some $n\in\mathbb{Z}$

1.4.1 Solving for Powers of Complex Numbers

We now try to find solutions of $z^n = 1$.

Example 1.4.2 (Solving
$$z^3 = 1$$
)

Let $z = re^{i\theta}, r > 0$ and $\theta \in \mathbb{R}$.

$$z^{3} = 1 \iff r^{3}e^{3i\theta} = 1e^{i\theta}$$
$$\iff r^{3} = 1, 3\theta = 0 + 2\pi n (n \in \mathbb{Z})$$
$$\iff r = 1, \theta = \frac{2\pi n}{3} (n \in \mathbb{Z})$$

For $n \in \mathbb{Z}$, $n = 3q + k(q \in \mathbb{Z}, k = 0, 1, 2)$

$$\frac{2\pi n}{3} = \frac{2\pi}{3}(3q+k)$$

$$= 2\pi q + \frac{2\pi k}{3}(q \in \mathbb{Z}, k = 0, 1, 2)$$
So $z^3 = 1 \iff z = e^{\frac{2\pi k i}{3}}(k = 0, 1, 2)$

The solutions are

$$z = z_0 = 1$$
and $z = z_1 = e^{\frac{2\pi i}{3}} = \cos(\frac{2\pi}{3}) + i\sin(\frac{2\pi}{3})$

$$= -\frac{1}{2} + \frac{\sqrt{3}i}{2}$$
and $z = z_2 = e^{\frac{4\pi i}{3}} = \cos(\frac{4\pi}{3} + i\sin(\frac{4\pi}{3}))$

$$= -\frac{1}{2} - \frac{\sqrt{3}i}{2}$$

Theorem 1.4.2

Let n be a positive integer. The equation $z^n = 1$ has n complex solutions

$$z = e^{\frac{2\pi ik}{n}}$$
 where $k = 0, 1, 2, \dots, n-1$

where the points on the unit circle are vertices of an n-gon, and the points are called **roots of unity**.

Theorem 1.4.3

Let $w \neq 0, w \in \mathbb{C}$. Let $w = \rho e^{i\phi} (\rho > 0, \phi \in \mathbb{R})$. The equation $z^n = w$ has n complex solutions

$$z = \rho^{\frac{1}{n}} e^{\frac{i\phi}{n} + \frac{2\pi ik}{n}}, k = 0, 1, 2, \dots, n - 1$$

Proof: Let $\tau = \rho^{\frac{1}{n}} \exp(\frac{i\phi}{n}) = p^{\frac{1}{n}} e^{\frac{i\rho}{n}}$

$$\tau^{n} = (\rho^{\frac{1}{n}} e^{\frac{i\phi}{n}})^{n}$$
$$= \rho e^{i\phi}$$
$$= w$$

 $\therefore z = \tau$ is a solution

$$z^{n} = w \iff (\frac{z}{\tau})^{n} = \frac{z^{n}}{\tau^{n}} = \frac{w}{w} = 1$$

$$\iff \frac{z}{\tau} = \exp(\frac{2\pi i k}{n}), k = 0, 1, \dots, n - 1$$

$$\iff z = \tau \exp(\frac{2\pi i k}{n}) = \rho^{\frac{1}{n}} \exp(\frac{i\phi}{n}) \exp(\frac{2\pi i k}{n}), k = 0, 1, \dots, n - 1$$

$$\iff z = \rho^{\frac{1}{n}} \exp(\frac{i\phi}{n} + \frac{2\pi i k}{n}), k = 0, 1, \dots, n - 1$$

⊜

Example 1.4.3 (Solve $z^4 = -16$)

$$-16 = 16e^{i\pi}$$
 where $\rho = 16, \phi = \pi$

There are 4 solutions:

$$z = 2\exp(\frac{\pi}{4}(1+2k)), k = 0, 1, 2, 3$$

The solutions are

$$z_k = 2\exp(\frac{\pi i}{4}(2k+1)), k = 0, 1, 2, 3$$

$$z_0 = 2(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}) = \sqrt{2}(1+i)$$

$$z_1 = \sqrt{2}(-1+i)$$

$$z_2 = \sqrt{2}(-1-i)$$

$$z_3 = \sqrt{2}(1-i)$$

Chapter 2

Analytic Functions

2.1 Lecture 6

2.1.1 Functions and Mappings

We will consider functions

$$f: S \mapsto \mathbb{C}$$
, where $S \subseteq \mathbb{C}$

where S is the domain of f.

Example 2.1.1 (Find the domain of each function.)

- 1. $f(z) = \frac{1}{z}$ Domain = $\{z \in \mathbb{C} : z \neq 0\}$
- 2. $\operatorname{Arg}(z)$

 $\mathrm{Domain} = \{z \in \mathbb{C} : z \neq 0\}$

Note Let
$$z \neq 0$$
. Then $z = \rho e^{i\phi}$ for some $\rho > 0, -\pi < \phi \leq \pi$.

$$Arg(z) = \phi$$

3. $\operatorname{Arc}(\frac{1}{z})$ $\operatorname{Domain} = \{z \in \mathbb{C} : z \neq 0\}$

Any complex function $f: S \mapsto \mathbb{C}$ can be written as f(z) = u(x,y) + iv(x,y) where $u,v \in \mathbb{R}$ and $z = x + iy, x, y \in \mathbb{R}$.

Example 2.1.2

Let $\mathbb{C} * = \mathbb{C} \setminus \{0\}$. $f : \mathbb{C} * \mapsto \mathbb{C}$ by $f(z) = \frac{1}{z}$ can be written as $f(z) = \frac{1}{z} = \frac{1}{x+iy} = \frac{1}{x+iy} \frac{x-iy}{x-iy} = \frac{x-iy}{x^2+y^2} = u+iv$ where $u = \frac{x}{x^2+y^2}$, $v = \frac{-y}{x^2+y^2}$.

Note

Let $A \subset S, f: S \to \mathbb{C}$. The image of A under the map f is

$$f(A) = \{ f(a) : a \in A \}$$

2.2 Lecture 7

2.2.1 Formal Definition of Limit

Recall that $\lim_{x\to a} f(x) = L$ if f(x) can be made arbitrarily close to L by choosing x close enough to to a (as long as $x \neq a$). Algebraically, this means that for every $\epsilon > 0$ there is a $\delta > 0$ such that $|f(x) - L| < \epsilon$ provided $0 < |x - a| < \delta$.

Now we examine the complex version of this:

$$\lim_{z \to z_0} f(z) = w_0 \tag{2.2.1}$$

Suppose f(z) is defined on a deleted neighborhood of z_0 .

Note

A deleted/punctured neighborhood

$$D'(z_0, R_0) = \{ z \in \mathbb{C} : 0 < |z - z_0 < |R_0 \}$$

We say the limit of f(z) as z approaches z_0 is w_0 and we write this as equation 2.2.1 if for every $\epsilon > 0$ there is a $\delta > 0$ such that $|f(z) - w_0| < \epsilon$ provided $0 < |z - z_0| < \delta$.

Example 2.2.1 (Prove $\lim_{z\to i}(2z+1)=1+2i$ using the formal definition.)

Proof Template: Suppose ϵ is any positive real number.

Choose $\delta = \text{something}$.

Then suppose $0 < |z - z_0| < \delta \dots |f(z) - w_0| < \epsilon$.

Hence $\lim_{z\to z_0} f(z) = w_0$.

⊜

Scratch: f(z) = 2z + 1, $z_0 = i$, $w_0 = 1 + 2i$. Let $\epsilon > 0$. We want $\delta > 0$ so if $0 < |z - z_0| < \epsilon$ i.e. $0 < |z - i| < \epsilon$ then $|f(z) - w_0| = |2z + 1 - (1 + 2i)| < \epsilon$. $|(2z + 1) - (1 + 2i)| = |2z - 2i| = 2|z - i| < \epsilon$. Take $\delta = \frac{\epsilon}{2}$

Proof: Suppose ϵ is any positive real number.

Choose $\delta = \frac{\epsilon}{2}$.

Then suppose $0 < |z - i| < \delta = \frac{\epsilon}{2}$.

We have $|(2z+1)-(1+2i)| = |2z-2i| = 2|z-i| < 2*\frac{\epsilon}{2} = \epsilon$, which is $|(2z+1)-(1+2i)| < \epsilon$.

Hence $\lim_{z\to i} (2z+1) = 1+2i$.

⊜

2.3 Lecture 8

2.3.1 Properties of Limits

Theorem 2.3.1 Theorem on Limits

Suppose f is defined on a punctured neighborhood of z_0 .

Let $f(z) = u(x, y) + iv(x, y), z = x + iy, x, y \in \mathbb{R}$.

Let $z_0 = x_0 + iy_0, x_0, y_0 \in \mathbb{R}$ and $w_0 = u_0 + iv_0, u_0, v_0 \in \mathbb{R}$.

Then

$$\lim_{z \to z_0} f(z) = w_0 \iff \lim_{(x,y) \to (x_0,y_0)} u(x,y) = u_0 \text{ and } \lim_{(x,y) \to (x_0,y_0)} v(x,y) = v_0$$

and we can apply rules we learned in calculus.

Example 2.3.1 (Find $\lim_{z\to 1+i}\frac{1}{z}$)

$$\frac{1}{z} = \frac{1}{x+iy} = \frac{x}{x^2+y^2} + i\frac{-y}{x^2+y^2}$$

$$\lim_{\substack{(x,y)\to(1,1)\\(x,y)\to(1,1)}} \frac{x}{x^2+y^2} = \frac{1}{2}$$

$$\lim_{\substack{(x,y)\to(1,1)\\z\to(1+i)}} \frac{-y}{x^2+y^2} = -\frac{1}{2}$$

2.4 Lecture 9

2.4.1 More Properties of Limits

Theorem 2.4.1

Suppose f(z) and g(z) are defined on a deleted neighborhood of z_0 , and

$$\lim_{z \to z_0} f(z) = w_0$$
 and $\lim_{z \to z_0} g(z) = w_1$

Then

1.

$$\lim_{z \to z_0} f(z) + g(z) = \lim_{z \to z_0} f(z) + \lim_{z \to z_0} g(z) = w_0 + w_1$$

2.

$$\lim_{z \to z_0} f(z)g(z) = w_0 w_1$$

3.

 $\lim_{z\to z_0} \gamma f(z) = \gamma w_0$ where γ is a complex constant

4.

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{w_0}{w_1} \text{ if } w \neq 0$$

5.

 $\lim_{z\to z_0}z^n=z_0^n \text{ if } n \text{ is a positive integer}$

Note

Also true if n is a negative integer and $z_0 \neq 0$.

6.

$$\lim_{z \to z_0} P(z) = P(z_0) \text{ if } P(z) \text{ is a polynomial}$$

7.

$$\lim_{z\to z_0}R(z)=\frac{P(z_0)}{Q(z_0)} \text{ if } Q(z_0)\neq 0, P(z), Q(z) \text{ are polynomials, and } R(z)=\frac{P(z)}{Q(z)} \text{ is a rational function}$$

2.4.2 Point of Infinity

What are limits to infinity? Suppose $z_0 \in \mathbb{C}$ and f(z) is defined on a deleted neighborhood of z_0 s. We say $\lim_{z\to z_0} f(z) = \infty$ if for every M>0 there is a $\delta>0$ such that |f(z)|>M for $0<|z-z_0|<\delta$.

Note

$$|f(z)| > M \iff |\frac{1}{f(z)} - 0| = |\frac{1}{f(z)}| = \frac{1}{|f(z)|} < \frac{1}{M} \iff |\frac{1}{f(z)}| < \frac{1}{M}$$

Theorem 2.4.2

1.

$$\lim_{z \to z_0} f(z) = \infty \iff \lim_{z \to z_0} \frac{1}{f(z)} = 0$$

2.

$$\lim_{z \to \infty} f(z) = w_0 \iff \lim_{z \to 0} f(\frac{1}{z}) = w_0$$

3.

$$\lim_{z \to \infty} f(z) = \infty \iff \lim_{z \to 0} \frac{1}{f(\frac{1}{z})} = 0$$

Example 2.4.1 (Show $\lim_{z\to\infty} \frac{z}{(z-1)(z-2)} = \infty$)

 $\lim_{z\to 1}\frac{(z-1)(z-2)}{z}=0.$ Therefore $\lim_{z\to 1}\frac{z}{(z-1)(z-2)}=\infty.$

2.4.3 Definition of Derivative

Suppose f(z) is defined on an open neighborhood of z_0

$$D(z_0, r_0) = \{z : |z - z_0| < r_0\} \text{ for some } r_0 > 0$$

f is differentiable at z_0 if the limit

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists, in which case we write

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

where $z - z_0 = \Delta z, z = z_0 + \Delta z$

2.5 Lecture 10

2.5.1 Differentiability

Note 👆

Let n be a positive integer.

$$f(z) = z^n$$
 is differentiable at all z

$$f'(z) = nz^{n-1}$$
 for all z

Example 2.5.1 (Determine the differentiability of $f(z) = \overline{z}$.)

Consider the limit

$$\lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\overline{z + \Delta z} - \overline{z}}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{\overline{z} + \overline{\Delta z} - \overline{z}}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\Delta z}$$

We show that the limit $\lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\Delta z}$ does not exist. Consider the limit along the real axis:

$$\lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\Delta z} = \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x} = 1$$

Now consider the limit along the imaginary axis:

$$\lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\Delta z} = \lim_{\Delta y \to 0} \frac{-i\Delta y}{\Delta y} = \lim_{\Delta y \to 0} \frac{-i}{i} = -1$$

These limits are not the same, and thus $\lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\overline{\Delta z}}$ does not exist. Hence, the function $f(z) = \overline{z}$ is differentiable nowhere, even though it is continuous.

Theorem 2.5.1

f(z) = u(x,y) + iv(x,y) is continuous at $z_0 = x = +iy_0$ iff u(x,y) and v(x,y) are continuous at (x_0,y_0) .

Example 2.5.2

 $f(z)=\overline{z}=x-iy$ is continuous everywhere since u(x,y)=x and v(x,y)=-y are continuous everywhere.

\mathbf{Note}

If f is differentiable at z_0 , then f is continuous at z_0 , but not necessarily the other way around.

2.5.2 Necessary Conditions for Differentiability

Theorem 2.5.2

Suppose f(z) is defined on an open neighborhood of z_0 . Suppose f(z) = u(x,y) + iv(x,y) where $z = x + iy, x, y \in \mathbb{R}$.

If f is differentiable at $z_0 = x_0 + iy_0$, then $\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial y}$ exist at the point (x_0, y_0) . Also,

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$$

at (x_0, y_0) .

 ${f Note}$

These are called the Cauchy-Riemann equations.

Furthermore,

$$f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0)$$

2.6 Lecture 11

Example 2.6.1

Let $f(z)=|z|^2=x^2+y^2$ where z=x+iy. Let $u=x^2+y^2, v=0$. Then $\frac{\partial u}{\partial x}=2x, \frac{\partial v}{\partial x}=0, \frac{\partial u}{\partial y}=2y, \frac{\partial v}{\partial y}=0$. So the partial derivatives $\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial y}$ exist for all (x,y). Plugging these into the Cauchy-Riemann equations, we get

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \end{cases} \iff \begin{cases} 2x = 0 \\ 0 = -2y \end{cases} \iff \begin{cases} x = 0 \\ y = 0 \end{cases}$$

So the Cauchy-Riemann equations hold only for (x, y) = (0, 0).

What does this theorem imply? It implies that f(z) is **not** differentiable at any point $z \neq 0$.

Proof: Suppose that f is differentiable at $z_0 = x_0 + iy_0$.

$$\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

exists.

Also.

$$\lim_{\substack{\Delta \to 0 \\ \text{(along the real axis)}}} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} \tag{2.6.1}$$

$$= \lim_{\substack{\Delta \to 0 \\ \text{(along the imaginary axis)}}} \frac{f(z_0 + \Delta z) - f(z_0}{\Delta z}$$
 (2.6.2)

and these 2 limits exist.

Along the real axis, $\Delta z = \Delta x$. Let $\Delta x \to 0$. Then

$$\frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \frac{u(x_0 + \Delta x, y_0) + iv(x_0 + \Delta x, y_0) - (u(x_0, y_0) + iv(x_0, y_0))}{\Delta x}
= \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x} + i\left(\frac{v(x_0 + \Delta x, y_0) - v(x_0, y_0)}{\Delta x}\right)
= \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial v}{\partial x}(x_0, y_0)$$

So equation (2.6.1) is equal to $\frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0)$. Along the imaginary axis, $\Delta z = i \Delta y$. Let $\Delta y \to 0$. Then

$$\begin{split} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} &= \frac{u(x_0, y_0 + \Delta y) + iv(x_0, y_0 + \Delta y) - (u(x_0, y_0) + iv(x_0, y_0))}{i\Delta y} \\ &= \frac{v(x_0, y_0 + \Delta y) - v(x_0, y_0)}{\Delta y} - i\left(\frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{\Delta y}\right) \\ &= \frac{\partial v}{\partial u}(x_0, y_0) - i\frac{\partial u}{\partial u}(x_0, y_0) \end{split}$$

So equation (2.6.2) is equal to $\frac{\partial v}{\partial y}(x_0, y_0) - i \frac{\partial u}{\partial y}(x_0, y_0)$.

Then

$$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}$$

So

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ at (x_0, y_0)

⊜

2.7Lecture 12

Sufficient Conditions for Differentiability

Theorem 2.7.1

Suppose f(z) = u(x,y) + iv(x,y) (where $z = x + iy, x, y, u, v \in \mathbb{R}$) is defined on an open neighborhood $D(z_0, r)$ of $z_0 = x_0 + iy_0$ for some r > 0.

Suppose the derivatives part $\frac{\partial u}{\partial x}$, $\frac{\partial v}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial y}$ exist at each point in $D(z_0, r)$ and are continuous at (x_0, y_0) .

Then if the Cauchy-Riemann equations $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ hold at (x_0, y_0) , then f is differentiable at

$$f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0)$$

Remember that you can have a function where the Cauchy-Riemann equations hold at a point but the derivative at that point does not exist.

2.7.2Differentiability Rules

Assume f(z) and g(z) are differentiable on some domain.

1.

$$\frac{d}{dz}(f(z) + g(z)) = f'(z) + g'(z)$$

2.

$$\frac{d}{dz}f(z)g(z) = f(z)g'(z) + f'(z)g(z)$$

3.

$$\frac{d}{dz}\frac{f(z)}{g(z)} = \frac{g(z)f'(z) - f(z)g'(z)}{(g(z))^2}$$

4.

$$\frac{d}{dz}f(g(z)) = f'(g(z))g'(z)$$
 provided that the range of $g \subseteq$ the domain of f

2.7.3Cauchy-Riemann Equations in Polar Coordinates

Theorem 2.7.2

Let $S = \{re^{i\theta} : r_1 < r < r_2, \theta_1 < \theta < \theta_2\}$ where $0 < \theta_2 - \theta_1 \le 2\pi$. Suppose $f(z) = u(r,\theta) + iv(r,\theta), z = re^{i\theta} \in S$. Suppose the partial derivatives $\frac{\partial u}{\partial r}, \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial \theta}$ exist and are continuous on S.

If the Cauchy-Riemann equations

$$\begin{split} \frac{\partial u}{\partial r} &= \frac{1}{r} \frac{\partial v}{\partial \theta} \\ \frac{\partial v}{\partial r} &= -\frac{1}{r} \frac{\partial u}{\partial \theta} \end{split}$$

hold at (r_0, θ_0) , then f is differentiable at $z_0 = r_0 e^{i\theta_0}$ and

$$f'(z_0) = e^{-i\theta_0} \left(\frac{\partial u}{\partial r}(r_0, \theta_0) + i \frac{\partial v}{\partial r}(r_0, \theta_0) \right).$$

Example 2.7.1

Define $g(z) = \sqrt{r}e^{\frac{i\theta}{2}}, z = re^{i\theta}$ for r > 0 and $-\pi < \theta < \pi$.

$$\begin{split} g(z) &= \sqrt{r}e^{\frac{i\theta}{2}} = \sqrt{r}\left(\cos(\frac{\theta}{2}) + i\sin(\frac{\theta}{2})\right) \\ &= \sqrt{r}\cos(\frac{\theta}{2}) + i\sqrt{r}\sin(\frac{\theta}{2}) \end{split}$$

Let $u = \sqrt{r}\cos(\frac{\theta}{2}), v = \sqrt{r}\sin(\frac{\theta}{2})$. The partial derivatives

$$\begin{split} \frac{\partial u}{\partial r} &= \frac{1}{2\sqrt{r}}\cos(\frac{\theta}{2})\\ \frac{\partial v}{\partial r} &= \frac{1}{2\sqrt{r}}\sin(\frac{\theta}{2})\\ \frac{\partial u}{\partial \theta} &= -\frac{\sqrt{r}}{2}\sin(\frac{\theta}{2})\\ \frac{\partial v}{\partial \theta} &= \frac{\sqrt{r}}{2}\cos(\frac{\theta}{2}) \end{split}$$

exist and are continuous for r > 0. The Cauchy-Riemann equations hold for r > 0 and $-\pi < \theta < \pi$ since

$$\begin{split} \frac{\partial u}{\partial r} &= \frac{1}{2\sqrt{r}}\cos(\frac{\theta}{2}) = \frac{1}{r}\left(\frac{\sqrt{r}}{2}\cos(\frac{\theta}{2})\right) = \frac{1}{r}\frac{\partial v}{\partial \theta} \\ \frac{\partial v}{\partial r} &= \frac{1}{2\sqrt{r}}\sin(\frac{\theta}{2}) = -\frac{1}{r}\left(-\frac{\sqrt{r}}{2}\sin(\frac{\theta}{2})\right) = -\frac{1}{r}\frac{\partial u}{\partial \theta} \end{split}$$

Hence g(z) is differentiable on D and

$$g'(z) = e^{-i\theta} \left(\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \right) = e^{-i\theta} \left(\frac{1}{2\sqrt{r}} \cos(\frac{\theta}{2}) + i \frac{1}{2\sqrt{r}} \sin(\frac{\theta}{2}) \right)$$

$$= \frac{1}{2\sqrt{r}e^{i\theta}} \left(\cos(\frac{\theta}{2}) + i \sin(\frac{\theta}{2}) \right)$$

$$= \frac{1}{2\sqrt{r}e^{i\theta}} e^{\frac{i\theta}{2}}$$

$$= \frac{1}{2\sqrt{r}e^{\frac{i\theta}{2}}}$$

$$= \frac{1}{2g(z)} \text{ for } z \in D$$

Note

 $g(z) = \sqrt{r}e^{\frac{i\theta}{2}}$ where $z = re^{i\theta}$ is the **principal square root** \sqrt{z} of z.

2.8 Lecture 13

2.8.1 Analytic Functions

Definition 2.8.1: Analyticity at a Point

f(z) is analytic at a point z_0 if f is differentiable at each point in some open neighborhood $D(z_0, r)$ of z_0 for some r > 0.

Definition 2.8.2: Openness

A set $S \subseteq \mathbb{C}$ is open if for every $z_0 \in S$, there is a $\delta_0 > 0$ such that

$$z_0 \in D(z_0, \delta_0) \subseteq S$$
.

Definition 2.8.3: Closedness

 $F\subseteq \mathbb{C}$ is closed if $F^c=\{z\in \mathbb{C}:z\not\in F\}$ is open.

Note

A set can be also be neither open nor closed.

Definition 2.8.4: Analyticity on an Open Set

f(z) is analytic on an open set if it is analytic at each point of the set.

This is equivalent to saying that f is differentiable at each point of S (assuming the set is open).

Definition 2.8.5: Entirety

f is entire if f(z) is analytic (which implies differentiable) at each point in \mathbb{C} .

Note

Any polynomial $p(z) = a_0 + a_1 z + \ldots + a_n z^n$ (each $a_j \in \mathbb{C}$) is entire.

Definition 2.8.6: Isolated Singularity

 z_0 is an isolated singularity of f(z) if f is **not** differentiable at z_0 but is differentiable on some deleted neighborhood $D'(z_0, r_0)$ of z_0 .

Theorem 2.8.1

Let D, E be open.

Suppose $f: D \to \mathbb{C}$ is analytic on D, and $g: E \to \mathbb{C}$ is analytic on E.

Then $g \circ f : D \mapsto \mathbb{C}$ is analytic provided $f(D) \subseteq E$.

Further, $\frac{d}{dz}g \circ f(z) = \frac{d}{dz}g(f(z)) = g(f(z)f'(z))$ for $z \in D$.

Note

We need to make sure f(z) is in the domain of g where g is analytic.

Example 2.8.1

Recall the principal square root function $g(z) = \sqrt{r}e^{\frac{i\theta}{2}}, r > 0, -\pi < \theta < \pi, z = re^{i\theta}$. g is analytic on $D = \{re^{i\theta} : r > 0, -\pi < \theta < \pi\}$ and we know $g'(z) = \frac{1}{2g(z)}$ for $z \in D$.

Let
$$G(z) = g(2z - 2 + i)$$
.

Show G is analytic on the half-plane $H = \{z : \text{Re}(z) > 1\}$ and $G'(z) = \frac{1}{g(2z-2+i)}, z \in H$.

Let h(z) = 2z - 2 + i. h(z) is entire because it's a polynomial.

 $G = g \circ h$, i.e. G(z) = g(h(z)) = g(2z - 2 + i). We need to make sure that if $z \in H$, h(z) is in D, which is the domain where g is analytic.

So suppose $z \in H$. z = x + iy, x > 1.

h(z) = 2z - 2 + i = 2x + iy - 2 + i = 2(x - 1) + i(2y + 1).

x > 1 so Re(h(z)) > 0 and $-\frac{\pi}{2} < \text{Arg}(h(z)) < \frac{\pi}{2}$ and $h(z) \in D$. So G is analytic on H and $G'(z) = g'(h(z))h'(z) = \frac{1}{2g(h(z))} * 2 = \frac{1}{g(2z-2+i)}$ for $z \in H$.

2.9 Lecture 14

2.9.1**Constant Functions**

Definition 2.9.1: Connectedness

An open set $S \subseteq \mathbb{C}$ is connected if any points $z_1, z_2 \in S$ can be connected by polygonal lines joined end-to-end and wholly contained in S.

Definition 2.9.2

A non-empty open and connected subset of \mathbb{C} is called a domain.

Theorem 2.9.1

Suppose $S \subseteq \mathbb{C}$ is a domain.

If $f: S \to \mathbb{C}$ is analytic on S, and f'(z) = 0 for all $z \in S$, then f is constant on S.

That is, f(z) = k for all $z \in S$ and some complex constant k.

Idea of Proof: Suppose $S \subseteq \mathbb{C}$ is a domain, f(z) = u(x,y) + iv(x,y) is analytic on D, and f'(z) = 0 for all $z \in S$.

We know $f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y} = 0$ for all $(x, y) \in S$. Basically, taking any straight lines to get between two points (since S is connected) will ensure that the

☺

derivative of u(x,y) and v(x,y) for any of those lines is 0. That means $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = \frac{\partial u}{\partial y} = 0$, and then f(z) is constant.

2.10 Lecture 15

2.10.1**Harmonic Functions**

Definition 2.10.1

Let $D \subseteq \mathbb{R}^2$ be a domain (open and connected). A function $f: D \mapsto \mathbb{R}$ is harmonic if the second-order partial derivatives of f(x,y) are continuous and satisfy the Laplace equation $f_{xx}+f_{yy}=0$ for all $(x,y)\in D$.

Example 2.10.1 $(h(x,y) = x^3 - 3xy^2)$

$$h_x = 3x^2 - 3y^2$$

$$h_y = -6xy$$

$$h_{xx} = 6x$$

$$h_{xy} = -6y$$

$$h_{yy} = -6x$$

$$h_{yx} = -6y$$

and the second-order partial derivatives are continuous for all (x, y).

 $h_{xx} + h_{yy} = 6x - 6x = 0$ for all (x, y).

Hence h(x, y) is harmonic on \mathbb{R}^2 .

Theorem 2.10.1

Let D be a domain in \mathbb{C} and suppose $f: D \mapsto \mathbb{C}$ is analytic on D.

Let f(z) = u(x, y) + iv(x, y) for $z = x + iy \in D(x, y, u, v \in \mathbb{R})$.

Then the functions u(x,y), v(x,y) are harmonic on D.

Proof: Suppose D is a domain and f = u(x,y) + iv(x,y) is analytic on D.

Then u and v satisfy the Cauchy-Riemann equations $u_x = v_y$ and $v_x = -u_y$ for $(x, y) \in D$.

By a later theorem, all partial derivatives of u(x,y) and v(x,y) to all orders exist and are continuous (since

⊜

f is analytic on D). $u_{xx} = \frac{\partial}{\partial x} \frac{\partial u}{\partial x} = \frac{\partial}{\partial x} \frac{\partial v}{\partial y} = \frac{\partial}{\partial y} \frac{\partial v}{\partial x} = \frac{\partial}{\partial y} (-\frac{\partial u}{\partial y}) = -u_{yy}$ and $u_{xx} + u_{yy} = 0$ and u(x, y) is harmonic on D. v(x,y) was left as an exercise.

Example 2.10.2

$$f(z) = z^3 = (x + iy)^3 \text{ is entire.}$$

$$= (x^3 + 3x^2(iy) + 3x(iy)^2 + (iy)^3)$$

$$= x^3 + 3x^2yi - 3xy^2 - iy^3$$

$$= (x^3 - 3xy^2) + i(3x^2y - y^3).$$

The theorem implies $u = x^3 - 3xy^2$ and $v = 3x^2y - y^3$ are harmonic on \mathbb{R}^2 .

Chapter 3

Elementary Functions

3.1 Lecture 15

3.1.1 The Exponential Function

Definition 3.1.1

$$\exp(z) = e^z := e^x e^{iy} = e^x (\cos(y) + i\sin(y)), z = x + iy, x, y \in \mathbb{R}$$

Properties:

1. $\exp(z)$ is entire and $\frac{d}{dx}e^z = e^z$

2. $\exp(z_1 + z_2) = \exp(z_1) \exp(z_2)$ for $z_1, z_2 \in \mathbb{C}$

3. $\exp(z) \neq 0$

Proof: Let $z = x + iy, x, y \in \mathbb{R}$.

$$\exp(z) = e^x e^{iy} |\exp(z)| = |e^x e^{iy}| = |e^x||e^{iy}| = e^x(1) = e^x > 0.$$

So $\exp(z) \neq 0$.

4. $\exp(z_1 - z_2) = \frac{\exp(z_1)}{\exp(z_2)}$

5. $\exp(z + 2\pi i) = \exp(z)$ for $z \in \mathbb{C}$ ($\exp(z)$ has period $2\pi i$)

6. The range of $\exp(z)=\{e^z:z\in\mathbb{C}\}=\mathbb{C}\setminus\{0\}$ (set of non-zero complex numbers)

Proof: Let $w \neq 0$. So $w = \rho e^{i\phi}$ for some $\rho > 0, \phi \in \mathbb{R}$.

We want to solve $e^z = w$.

$$e^{z} = w$$

$$\iff e^{x}e^{iy} = \rho e^{i\phi}$$

$$\iff e^{x} = \rho \text{ and } y = \rho + 2\pi n, n \in \mathbb{Z}$$

$$\iff x = \ln(\rho), y = \phi + 2\pi n, n \in \mathbb{Z}$$

$$\iff z = \ln(\rho) + i(\phi + 2\pi n), n \in \mathbb{Z}$$

☺

That is, $z = \ln |w| + i \arg(w)$.

So e^z can be any complex number except 0.

3.2 Lecture 16

3.2.1 The Logarithmic Function

Recall, $e^x = y \iff x = \ln(y)$ assuming y > 0.

Definition 3.2.1

The complex exponential is $\exp(z) = w \iff z = \ln|w| + i\arg(w)$ assuming $w \neq 0$, which is called "the complex log of w." It is a multi-valued function.

So $\exp(z) = w \iff z = \log(w)$ assuming $w \neq 0$.

Example 3.2.1 (Solve $e^z = -2$.)

$$z = \log(-2) = \ln|-2| + i\arg(-2)$$

= \ln(2) + i(\pi + 2\pi n), n \in \mathbb{Z}.

Example 3.2.2 (Find $\exp(\ln(2) + \frac{\pi i}{4})$.)

$$\exp(\ln(2 + \frac{\pi i}{4})) = e^{\ln(2)} e^{\frac{\pi i}{4}}$$

$$= 2(\cos(\pi/4) + i\sin(\pi/4))$$

$$= 2(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2})$$

$$= \sqrt{2} + i\sqrt{2}$$

$$= \sqrt{2}(1 + i).$$

Definition 3.2.2: Principal Log

Let $z \neq 0, z \in \mathbb{C}$.

The principal log of z is written Log(z) is defined by

$$Log(z) = \ln|z| + i Arg(z)$$

for $z \neq 0$.

Note

Remember that $-\pi < \text{Arg}(z) \leq \pi$.

Example 3.2.3

$$\begin{aligned} \log(1) &= \ln |1| + i \operatorname{Arg}(1) \\ &= \ln(1) + 0 = 0 \\ \operatorname{Log}(i) &= \ln |i| + i \operatorname{Arg}(i) \\ &= \ln(1) + i \frac{\pi}{2} = i \frac{\pi}{2} \\ \operatorname{Log}(-1) &= \ln |-1| + i \operatorname{Arg}(-1) \\ &= \ln(1) + i \pi = i \pi \\ \operatorname{Log}(-1 - i) &= \ln |-1 - i| + i \operatorname{Arg}(-1 - i) \\ &= \ln(\sqrt{2}) + i(-\frac{3\pi}{4}) \\ &= \frac{1}{2} \ln(2) - \frac{3\pi i}{4} \end{aligned}$$

Note

Log(z) is **not** continuous on the negative real axis.

$$\begin{split} \lim_{z \to 1 \\ (\text{on the upper half of a circle})} &= \lim_{\theta \to \pi^-} \operatorname{Log}(e^{i\theta}) \\ &= \lim_{\theta \to \pi^-} \ln(|e^{i\theta}|) + i \operatorname{Arg}(e^{i\theta}) \\ &= \lim_{\theta \to \pi^-} \ln(1) + i0 \\ &= i\pi \\ \lim_{z \to 1 \atop (\text{on the lower half of a circle})} &= \lim_{\theta \to \pi^+} \operatorname{Log}(e^{i\theta}) \\ &= \lim_{\theta \to \pi^+} \operatorname{Log}(e^{i\theta}) \\ &= \lim_{\theta \to \pi^+} \ln(|e^{i\theta}| + i \operatorname{Arg}(e^{i\theta})) \\ &= \lim_{\theta \to \pi^+} \ln(1) + i(\theta - 2\pi) \\ &= -\pi i \end{split}$$

The two limits are not equal so $\lim_{z\to -1} \text{Log}(z)$ does not exist. So Log(z) is defined on the negative real axis but is not continuous there.

Theorem 3.2.1

Let $D=\{re^{i\theta}: r>0, -\pi<\theta<\pi\}$. Log(z) is analytic on D and $\frac{d}{dz}\operatorname{Log}(z)=\frac{1}{z}$ for $z\in D$.

Proof: Let $z \in D$, $z = re^{i\theta}$, r > 0, $-\pi < \theta < \pi$.

Then $Log(z) = \ln |z| + i Arg(z) = \ln(r) + i\theta$.

So let $u = \ln(r), v = \theta$.

The partial derivatives

$$u_r = \frac{1}{r}$$

$$v_r = 0$$

$$u_\theta = 0$$

$$v_\theta = 1$$

exist and are continuous for r > 0.

 $u_r=\frac{1}{r}=\frac{1}{r}*1=\frac{1}{r}u_\theta$ and $v_r=0=-\frac{1}{r}*0=-\frac{1}{r}u_\theta$. So the Cauchy-Riemann equations hold for r>0 and $-\pi<\theta<\pi$.

So Log(z) is differentiable and analytic on D, and

$$\frac{d}{dz}\operatorname{Log}(z) = e^{-i\theta}\left(u_r + iv_r\right) = e^{-i\theta}\left(\frac{1}{r} + i0\right) = \frac{1}{re^{i\theta}} = \frac{1}{z}$$

for $z \in D$.

3.3 Lecture 17

3.3.1 Branches of Logarithms

Branches help you to work on the negative real axis.

Definition 3.3.1: Branches

Let $\alpha \in \mathbb{R}$.

Let $D_{\alpha} = \{re^{i\theta} : r > 0, \alpha < \theta < \alpha + 2\pi\}$. This is called a **branch cut**.

For $z \in D_{\alpha}$, $\log_{\alpha}(z) = \ln(r) + i\theta$ where $z = re^{i\theta}$, r > 0, $\alpha < \theta < \alpha + 2\pi$.

Note

 $\log_{\alpha}(z)$ does not mean $\log(z)$ to base α . We are just looking at it in the domain of the branch.

This function is a **branch** of $\log(z)$.

Note

 $Log(z) = log_{\alpha}(z)$, where $\alpha = -\pi$.

Theorem 3.3.1

Let α be a real number.

Let $D_{\alpha} = \{re^{i\theta} : r > 0, \alpha < \theta < \alpha + 2\pi\}.$ $z \in D_{\alpha}$, $\log_{\alpha}(z) = \ln(r) + i\theta$ where $z = re^{i\theta}$, r > 0, $\alpha < \theta < \alpha + 2\pi$.

This function is analytic on D_{α} , and its derivative is

$$\frac{d}{dz}\log_{\alpha}(z) = \frac{1}{z}.$$

Example 3.3.1 $(\alpha = \frac{\pi}{2}, \text{ so } \frac{\pi}{2} < \theta < \frac{5\pi}{2})$

$$|-i| = 1$$

$$\arg(-1) = -\frac{\pi}{2} + 2n\pi \text{ for } n \in \mathbb{Z}$$

$$\log_{\mathbb{Z}}(-i) = \ln|-i| + i(-\frac{\pi}{2} + 2\pi)$$

$$\log_{\frac{\pi}{2}}(-i) = \ln|-i| + i(-\frac{\pi}{2} + 2\pi)$$

$$3\pi$$

$$=0+i\frac{3\pi}{2}$$

$$\log_{\frac{\pi}{2}}(1) = \ln|1| + i(0 + 2\pi) = 2\pi.$$

3.3.2 Properties of Logarithms

1.
$$\exp(\log(z)) = z$$
 for $z \neq 0$

2.
$$\log(\exp(z)) = z + 2\pi i n$$
 $(n \in \mathbb{Z})$ for all z

3.
$$\operatorname{Log}(\exp(z)) = z \text{ if } -\pi < \operatorname{Im}(z) \le \pi$$

Proof: Let
$$z = x + iy, x, y \in \mathbb{R}$$
. $\exp(z) = e^x e^{iy}$

$$Log(exp(z)) = ln(e^x) + i \operatorname{Arg}(e^x e^{iy})$$

= $x + iy$ since $-\pi < y \le \pi$

⊜

⊜

4. $\log(z_1 z_2) = \log(z_1) + \log(z_2)$ for $z_1, z_2 \neq 0$

Note

In general, it is not necessarily true that $Log(z_1z_2) = Log(z_1) + Log(z_2)$ for $z_1, z_2 \neq 0$

3.4 Lecture 18

3.4.1 Complex Trigonometric Functions

Definition 3.4.1

$$\cos(z) := \frac{1}{2}(\exp(iz) + \exp(-iz))$$
$$\sin(z) := \frac{1}{2i}(\exp(iz) - \exp(-iz))$$

for $z \in \mathbb{C}$.

3.4.2 Properties of Complex Trig Functions

1. $\sin(z)$ and $\cos(z)$ are entire and $\frac{d}{dz}\sin(z)=\cos(z)$ and $\frac{d}{dz}\cos(z)=-\sin(z)$

Proof: $\exp(z), \exp(iz), \exp(-iz)$ are entire.

Hence, $\cos(z)$ and $\sin(z)$ are entire.

$$\frac{d}{dz}\sin(z) = \frac{d}{dz}(\frac{1}{2i}(\exp(iz) - \exp(-iz)))$$

$$= \frac{d}{dz}(\frac{1}{2i}(i\exp(iz) + i\exp(-iz)))$$

$$= \frac{1}{2}(\exp(iz) + \exp(-iz))$$

$$= \cos(z)$$

 $\frac{d}{dz}\cos(z)$ is similar.

2. $\sin(z_1 + z_2) = \sin(z_1)\cos(z_2) + \cos(z_1)\sin(z_2)$ $\cos(z_1 + z_2) = \cos(z_1)\cos(2) - \sin(z_1)\sin(z_2)$

3.
$$\sin(z + \pi/2) = \cos(z)$$

 $\cos(z + \pi/2) = -\sin(z)$

4.
$$\sin^2(z) + \cos^2(z) = 1$$

Proof:

$$(\sin(z))^{2} + (\cos(z))^{2} = \left(\frac{1}{2i}\left(e^{iz} - e^{-iz}\right)^{2} + \left(\frac{1}{2}\left(e^{iz} + ie^{-iz}\right)^{2}\right)\right)$$
$$= -\frac{1}{4}\left(e^{2iz} - 2 + e^{-2iz}\right) + \frac{1}{4}\left(e^{2iz} + 2 + e^{-2iz}\right)$$
$$= \frac{1}{2} + \frac{1}{2}$$
$$= 1$$

5. $|\sin(z)|^2 = (\sin(x))^2 + (\sinh(y))^2$

Proof: We use the fact that $\overline{\exp(z)} = \exp(\overline{z})$. $\sin(z) = \frac{1}{2i} (\exp(iz) - \exp(-iz))$

$$|\sin(z)|^2 = \sin(z)\overline{\sin(z)}$$

$$= \frac{1}{2i} (\exp(iz) - \exp(-iz)) \overline{\frac{1}{2i} (\exp(iz) - \exp(-iz))}$$

$$= \frac{1}{2i} (\exp(iz) - \exp(-iz)) \left(\frac{1}{-2i}\right) (\exp(-i\overline{z}) - \exp(i\overline{z}))$$

$$= \frac{1}{4} (\exp(i(z - \overline{z})) - \exp(i(z + \overline{z})) - \exp(-i(z + \overline{z})) + \exp(-i(z - \overline{z})))$$

⊜

☺

We know that $z + \overline{z} = 2x$, $z - \overline{z} = 2iy$

So
$$|\sin(z)|^2 = \frac{1}{4} \left(\left(e^{-2y} + e^{2y} \right) - \left(e^{2xi} + e^{-2xi} \right) \right)$$

 $(\sin(x))^2 + (\sinh(y))^2 = \left(\frac{1}{2i} \left(e^{ix} - e^{-ix} \right) \right)^2 + \left(\frac{1}{2} \left(e^y - e^{-y} \right)^2 \right)$
 $= -\frac{1}{4} \left(e^{2-ix} - 2 + e^{-2xi} \right) + \frac{1}{4} \left(e^{2y} - 2 + 2^{-2y} \right)$
 $= \frac{1}{4} \left(\left(e^{2y} + e^{-2y} \right) - \left(e^{2xi} + -2xi \right) \right)$

Hence $|\sin(z)|^2 = (\sin(x)^2 + (\sinh(y))^2$.

 \mathbf{Note}

It is not true that $|\sin(z)| \le 1$ for all $z \in \mathbb{C}$ because $|\sin(z)|^2$ goes to $+\infty$ if y goes to ∞ since $\sinh(y)$ goes to ∞ as y goes to ∞ .

 $|\cos(z)|^2 = (\cos(x))^2 + (\sinh(y))^2$

$$\sinh(x) = \frac{1}{2}(e^x - e^{-x})$$
$$\cosh(x) = \frac{1}{2}(e^x + e^{-x})$$

- 6. $(\cosh(t))^2 (\sinh(t))^2 = 1$ So the points $(x, y) = (\cosh(t), \sinh(t))$ are a hyperbola $y^2 - x^2 = 1$.
- 7. $\sin(z) = 0 \iff z = n\pi, n \in \mathbb{Z}$ $\cos(z = 0) \iff z = n\pi + \frac{\pi}{2}, n \in \mathbb{Z}$

Example 3.4.1 (Solve $\sin(z) = 2$.)

$$\sin(z) = 2$$

$$\iff \frac{1}{2i}(e^{iz} - e^{-iz}) = 2$$

$$\iff \frac{1}{2i}(w - \frac{1}{z}) = 2 \text{ where } w = e^{iz} \text{ (noting that } w \neq 0)$$

$$\iff w - \frac{1}{w} = 4i$$

$$\iff w^2 - 1 = 4iw$$

$$\iff w^2 - 4iw - 1 = 0$$

$$\iff w = \frac{4i \pm \sqrt{-12}}{2} = 2i \pm \sqrt{-3}$$

$$\iff w = i(2 \pm \sqrt{3})$$

$$\iff \exp(iz) = i(2 \pm \sqrt{3})$$

$$\iff iz = \log(i(2 \pm \sqrt{3}))$$

$$= \ln|i(2 \pm \sqrt{3}| + i\arg(i(2 \pm \sqrt{3}))$$

$$= \ln(2 \pm \sqrt{3}) + i\left(\frac{\pi}{2} + 2\pi n\right) \text{ for } n \in \mathbb{Z}$$

$$\iff z = (\frac{\pi}{2} + 2\pi n) - i\ln(2 \pm \sqrt{3}) \text{ for } n \in \mathbb{Z}$$

Note $0 < \sqrt{3} \approx 1.7 < 2, 2 - \sqrt{3} > 0$

3.4.3 Complex Power Function

Definition 3.4.2

$$z^c := e^{c \log(z)}$$

Note

This is function has multiple values.

The principal value of z^c is $PV(z^c) := \exp(c \operatorname{Log}(z))$ for $z \neq 0, c \in \mathbb{C}$.

Example 3.4.2 (Find i^i and $PV(i^i)$.)

$$\begin{split} i^i &= \exp(i\log(i)) \\ &= \exp(i(\ln|i| + i\arg(z))) \\ &= \exp(i(0 + i(\frac{\pi}{2} + 2\pi n))) \text{ for } n \in \mathbb{Z} \\ &= e^{-\left(\frac{\pi}{2} + 2\pi n\right)} \text{ for } n \in \mathbb{Z} \\ \mathrm{PV}(i^i) &= \exp(i\log(i)) = \exp(i(0 + i\frac{\pi}{2})) = e^{-\frac{\pi}{2}} \end{split}$$

3.4.4 Branches of the Complex Power Function

Assume c is a complex constant.

Let
$$\alpha \in \mathbb{R}$$
.
$$D_{\alpha} = \{re^{i\theta} : r > 0, \alpha < \theta < \alpha + 2\pi\}$$
 The branch of $\log(z) = \log_{\alpha}(z)$. The branch of z^c is $f_{\alpha}(z) = \exp(c\log_{\alpha}(z))$.
$$f'_{\alpha}(z) = \exp(c\log_{\alpha}(z))(c \cdot \frac{1}{z}) = c\frac{\exp(c\log_{\alpha}(z))}{\exp(\log_{\alpha}(z))} = c\exp((c-1)\log_{\alpha}(z)) = cz^{c-1}.$$

Chapter 4

Integrals

4.1 Lecture 19

4.1.1 Basic Integrals

Definition 4.1.1

Let w(t) = u(t) + iv(t) where u(t), v(t) are real-valued. w'(t) := u'(t) + iv'(t)

$$\int_a^b w(t)dt = \int_a^b (u(t) + iv(t)dt) := \int_a^b u(t)dt + i \int_a^b v(t)dt$$

assuming t is real.

Example 4.1.1 (Find $\frac{d}{dt}e^{it}$ and $\int_0^{\frac{\pi}{d}}e^{it}dt$.)

$$\frac{d}{dt}e^{it} = -\sin(t) + i\cos(t)$$

$$= i(\cos(t) + i\sin(t))$$

$$= ie^{it}$$

$$\int_0^{\frac{\pi}{4}} e^{it}dt = \int_0^{\frac{\pi}{4}} (\cos(t) + i\sin(t))dt$$

$$= \int_0^{\frac{\pi}{4}} \cos(t)dt + i\int_0^{\frac{\pi}{4}} \sin(t)dt$$

$$= \sin(t)|_0^{\pi/4} + i(-\cos(t))|_0^{\pi/4}$$

$$= \frac{\sqrt{2}}{2} + i(1 - \frac{\sqrt{2}}{2})$$

 $e^{it} = \cos(t) + i\sin(t)$

4.2 Lecture 20

4.2.1 **Anti-Derivatives**

Example 4.2.1

$$e^{it} = \cos(t) + i\sin(t)$$

$$W(t) = \frac{e^{it}}{i}$$

$$= -ie^{it} = \sin(t) - i\cos(t)$$

$$W'(t) = \cos(t) + i\sin(t) = e^{it} = w(t)$$
 So
$$\int_0^{\pi/4} e^{it} = W(\pi/4) - W(0)$$

$$= -i(e^{\pi/4} - e^0) = -i(\sqrt{2}/2 + i\sqrt{2}/2 - 1)$$

$$= \sqrt{2}/2 + i(1 - \sqrt{2}/2)$$

Theorem 4.2.1

Suppose $D \subseteq \mathbb{C}$ is a domain, $f: D \to \mathbb{C}$ is analytic, and $(a, b) \subset D$.

Let w(t) = f(t) for a < t < b.

Then w'(t) = f'(z) where z = t.

Example 4.2.2

 $f(z) = \exp(iz)$ is entire

 $f'(z) = i \exp(iz)$ $\frac{d}{dt}e^{it} = i \exp(it) = ie^{it}$

4.2.2**Curves and Contours**

Definition 4.2.1: Complex Curve

A curve in \mathbb{R}^2 is given by continuous functions $x = x(t), \ y = y(t), \ a \le t \le b$.

The complex version is defined as z(t) = x(t) + iy(t), $a \le t \le b$.

Definition 4.2.2: Smooth Curve

A curve given by $(x(t), y(t)), a \le t \le b$ is smooth if x'(t), y'(t) are continuous on (a, b) and $(x'(t), y'(t)) \ne b$ (0,0) for a < t < b.

The complex version is where $z'(t) = x'(t) + iy'(t) \neq 0$ for a < t < b.

4.2.3 Arc Length

Definition 4.2.3: Arc Length

The arc length of a smooth curve is

$$\int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt = \int_{a}^{b} |z'(t)| dt$$

since
$$\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = |z(t)|$$

4.2.4 Contour Integral

Definition 4.2.4: Contour Integral

Let C be a smooth curve parameterized by $z(t)=x(t)+iy(t),\ a\leq t\leq b.$ Suppose f(z) is continuous on C.

The contour integral

$$\int_C f(z)dz := \int_a^b f(z(t))z'(t)dt$$

where dz = z'(t)dt

Example 4.2.3

Find $\int_C \overline{z} dz$.

$$z = t(2+i), \ 0 \le t \le 1$$

$$= 2t + ti$$

$$z' = 2 + i$$

$$dz = (2+i)dt$$

$$\overline{z} = t(2-i)$$

$$\int_C \overline{z}dz = \int_0^1 t(2-i)(2+i)dt$$

$$= \int_0^1 5tdt$$

$$= \frac{5}{2}$$

4.3 Lecture 21

4.3.1 Parameterizations

We now look at parameterizations of specific shapes.

For a full circle:

$$|z - z_0| = r_0$$

$$z - z_0 = r_0 e^{it}$$

$$z = z_0 + r_0 e^{it}, \ 0 \le t \le 2\pi$$

For an arc of a circle:

$$z = z_0 + r_0 e^{it}, \ \alpha \le t \le \beta$$

For a line segment from z_1 to z_2 :

$$z = z_1 + t(z_2 - z_1), \ 0 \le t \le 1$$

Example 4.3.1 (Parameterize the line segment from -1 + i to 3.)

$$z = (-1+i) + t(3 - (-1+i))$$

$$= (-1+i) + t(4-i)$$

$$= (-1+4t) + i(1-t), \ 0 \le t \le 1$$

For a curve that is a graph of a function y = f(x):

 $a \le x \le b$ and y = f(x)

The curve C is parameterized by $z = t + if(t), \ a \le t \le b$

4.4 Lecture 22

4.4.1 Properties of Integrals

Provided that the integrals exist,

1.

$$\operatorname{Re}(\int_{a}^{b} f(t)dt) = \int_{a}^{b} \operatorname{Re}(f(t))dt$$

$$\operatorname{Im}(\int_{a}^{b} f(t)dt) = \int_{a}^{b} \operatorname{Im}(f(t))dt$$

2.

$$\int_{a}^{b} \omega_{0} f(t) dt = \omega_{0} \int_{a}^{b} f(t) dt$$

if ω_0 is a complex constant

3.

$$\left| \int_{a}^{b} f(t)dt \right| \leq \int_{a}^{b} |f(t)|dt$$

Proof: Case 1: f(t) is real-valued.

Then $-|f(t)| \le f(t) \le |f(t)|$.

Thus $-\int_a^b |f(t)|dt \le \int_a^b f(t)dt \le \int_a^b |f(t)|dt$.

So $\left| \int_a^b f(t)dt \right| \le \int_a^b |f(t)|dt$.

Case 2: $\int_{a}^{b} f(t)dt = 0$.

 $|\int_a^b f(t)dt| = 0 \le \int_a^b |f(t)|dt \text{ since } |f(t)| \ge 0| \text{ for } a \le t \le 1.$

Case 3: $\int_a^b f(t)dt = re^{i\theta}$ where r > 0, $\theta \in \mathbb{R}$.

 $|\int_a^b f(t)dt| = |re^{i\theta}| = r = e^{-i\theta} \int_a^b f(t)dt = \int_a^b e^{-i\theta} f(t)dt \text{ (since } e^{-i\theta} \text{ is a constant)}.$ $r = \text{Re}(r) \text{ (since } r \in \mathbb{R} \text{)}.$

Thus, $r = \text{Re}(\int_a^b e^{-i\theta} f(t) dt) = \int_a^b \text{Re}(e^{-i\theta} f(t) dt) \le \int_a^b |e^{-i\theta} f(t)| dt$ since $\text{Re}(x) \le |x|$.

Then, $\int_a^b |e^{-i\theta}f(t)|dt = \int_a^b |f(t)|dt$ since $|e^{-i\theta}f(t)| = |e^{-i\theta}||f(t)| = |f(t)|$.

So $\left| \int_a^b f(t)dt \right| = r \le \int_a^b |f(t)|dt$.

4.4.2 Properties of Contour Integrals

Provided that the integrals exist,

1.

$$\int_C (f(z)+g(z))dz = \int_C f(z)dt + \int_C g(z)dz$$

2.

$$\int_{C} \alpha f(z)dz = \alpha \int_{C} f(z)dz$$

if α is a complex constant.

3.

$$\int_{-C} f(z)dz = -\int_{C} f(z)dz$$

where -C is where you plug in -t into the parameterization of z, i.e. you use z(-t) for $-b \le t \le -a$

4. Suppose $|f(z)| \leq M$ for $z \in \mathbb{C}$.

Then

$$|\int_C f(z)dz| \le LM$$

where L is the length of C.

Proof: Assume $L = \text{Length of } C = \int_a^b |z'(t)| dt$ where C is parameterized by $z(t), \ a \le t \le b$.

Assume $|f(z)| \leq M$ for $z \in C$, for M is a constant.

 $|\int_C f(z)dz| = |\int_a^b f(z(t))z'(t)dt| \le \int_a^b |f(z(t))z'(t)|dt$ by property 3 of section 4.4.1 (the previous section). For a < t < b, $z(t) \in C$.

(3)

 $|f(z(t))| \le M$, and $|f(z(t))z'(t)| = |f(z(t))||z'(t)| \le M|z'(t)|$ for $a \le t \le b$.

 $|\int_C f(z)dz| \le |\int_a^b |f(z(t))z'(t)|dt \le \int_a^b M|z'(t)|dt = M\int_a^b |z'(t)|dt = ML.$

Example 4.4.1

Previously in example 4.2.3, we showed that the $\int_C \overline{z} dz = \frac{5}{2}$.

Now we find $\int_C \overline{z} dz$ for the curve that goes from the origin to i, and from i to 1+i.

We break this up into 2 curves:

$$C_a: z = 0 + t(i - 0) = it, \ 0 \le t \le 1$$

 $\overline{z}=-it$

dz = idt

$$\begin{split} \int_{C_a} \overline{z} dz &= \int_0^1 (-it) i dt \\ &= \int_0^1 t dt \\ &= \frac{1}{2} \end{split}$$

 $C_b: z = i + t, \ 0 \le t \le 2$

 $\overline{z} = t - i$

z = i + t

$$\int_{C_b} \overline{z} dz = \int_0^2 (t - i) dt$$
$$= 2 - 2i$$

So

$$\int_C \overline{z} dz = \int_{C_a} \overline{z} dz + \int_{C_b} \overline{z} dz = \frac{5}{2} - 2i$$

Note

Even though examples 4.2.3 and 4.4.1 start and finish at the same points, the contour of integral of \overline{z} over each of the curves are not equal. They will be equal if the function is analytic, but that will be proved later.

4.5 Lecture 23

Example 4.5.1 (Show that $\left|\int_C \frac{\overline{z}+1}{z^3-2} dz\right| \leq \pi/2$ where C is the arc of the circle |z|=2 from z=2 to z = 2i in the first quadrant.)

Let L be the length of C which is $\frac{1}{4} \cdot 4\pi = \pi$. For $z \in C$, $|\frac{\overline{z}+1}{z^3-2}| = |\overline{z}+1| \cdot \frac{1}{|z^3-2|} \le 3 \cdot \frac{1}{6} = \frac{1}{2} = M$ since $|\overline{z}+1| \le 3$ and $|z^3-2| \ge 6$.

So
$$\left| \int_C \left(\frac{\overline{z}+1}{z^3-2} \right) dz \right| \le LM = \pi \cdot \frac{1}{2} = \pi/2.$$

We also proved property 3 of section 4.4.1 and property 4 of section 4.4.2.

Anti-Derivatives of Contour Integrals

Suppose D is a domain and $f: D \to \mathbb{C}$ is continuous.

 $F:D\to\mathbb{C}$ is an anti-derivative of f if F is analytic on D and F'(z)=f(z) for $z\in D$.

Example 4.5.2

 $F(z) = \frac{1}{3}z^3$ is clearly an anti-derivative of $f(z) = z^2$.

Note

F'(z) = f(z) for $z \in \mathbb{C}$, F is entire and f is continuous.

Theorem 4.5.1

Suppose $D \subseteq \mathbb{C}$ is a domain, $F: D \to \mathbb{C}$ is analytic, C is a contour, $C \subset D$ parameterized by $\gamma(t)$, $a \leq t \leq b$.

1. Then

$$\frac{d}{dt}F(\gamma(t)) = F(\gamma(t))\gamma'(t)$$

2. If $f: D \to \mathbb{C}$ is continuous and F is an anti-derivative of f, then

$$\int_C f(t)dz = F(z_2) - F(z_1)$$

Proof:

$$\int_C f(z)dz = \int_a^b f(\gamma(t))\gamma'(t)dt$$

$$= \int_a^b F'(\gamma(t))\gamma'(t)dt$$

$$= \int_a^b \frac{d}{dt}F(\gamma(t))dt$$

$$= F(\gamma(t))|_{t=a}^{t=b}$$

$$= F(\gamma(b)) - F(\gamma(a)) = F(z_2) - F(z_1)$$

4.6 Lecture 24

Note

Part 2 of the previous theorem (4.5.1) is true for a general contour (i.e. a piecewise smooth contour that you break up into parts).

Example 4.6.1 (Find $\int_C z^2 dz$ where C is given as some funny curve that is really difficult to parameterize, where $z_1 = 1$ and $z_2 = 2i$.)

 $f(z)=z^2$ is continuous and has an entire analytic anti-derivative $F(z)=\frac{z^3}{3}$.

$$\int_C = F(2i) - F(1)$$

$$= \frac{(2i)^3}{3} - \frac{1}{3}$$

$$= -\frac{8i}{3} - \frac{1}{3}$$

$$= -\frac{1}{3}(1+8i).$$

Example 4.6.2 (Find $\int_C \sin(z) dz$ where C is given another random funny curve that is really difficult to parameterize but is also in a loop (i.e. a closed contour) starting from z = 1.)

 $f(z) = \sin(z)$ is continuous and has an entire anti-derivative $F(z) = -\cos(z)$. So

$$\int_C \sin(z)dz = F(1) - F(1)$$
$$= 0.$$

Theorem 4.6.1

Suppose f(z) is continuous and has an analytic anti-derivative on a domain D.

If C is a closed contour in D, then

$$\int_C f(z)dz = 0.$$

Theorem 4.6.2

Suppose $D \subseteq \mathbb{C}$ is a domain, and $f: D \to \mathbb{C}$ is continuous.

The following are equivalent:

- 1. f has an analytic anti-derivative F on D.
- 2. $\int_{C_1} f(z)dz = \int_{C_2} f(z)dz$ for any two contours $C_1, C_2 \in D$ that start and finish at the same points, i.e. f is **independent of path**.
- 3. $\int_C f(z)dz = 0$ for any closed contour $C \subset D$.

It is "clear" that $(1) \Longrightarrow (2)$ and $(1) \Longrightarrow (3)$. It is also "clear" that $(2) \Longleftrightarrow (3)$.

Idea of Proof of (2) \Longrightarrow (1) (find proof in book): Assume (2).

Let $z_0 \in D$ be fixed and let $z \in D$.

Let C_z be any contour for z_0 to z.

Define $F(z) + \int_{C_{-}} f(w)dw$.

It can be shown that F is differentiable in D and F'(z) = f(z).

☺

Theorem 4.6.3 Cauchy's Integral Theorem

Let C be a simple (doesn't cross itself) closed contour with positive orientation.

Let R be the closed region bounded by C ($R = C \cup$ (Whatever's inside C). R is not a domain.

Note

For some domain D, $R \subset D$ and f is analytic on D.

Suppose f(z) is continuous on R and analytic at each point of R, and suppose f' is continuous.

Then $\int_C f(z)dz = 0$.

Notice that these are the conditions that work for Green's Theorem.

Proof: Let f(z) = u(x,y) + iv(x,y) where $z = x + iy, x, y \in \mathbb{R}$.

$$\int_{C} f(z)dz = \int_{a}^{b} f(x(t) + iy(t))(x'(t) + iy'(t))dt$$

$$= \int_{a}^{b} (u(x(t), y(t)) + iv(x(t), y(t)))(x'(t) + iy'(t))$$

$$= \int_{a}^{b} (ux' - vy')dt + i \int_{a}^{b} (vx' + uy')dt$$

$$= \iint_{R} \left(-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dxdy + i \iint_{R} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dxdy \text{ by Green's Theorem}$$

$$= \iint_{R} 0 dxdy + i \iint_{R} 0 dxdy \text{ since } f \text{ is analytic so that } \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \text{ and } \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$$

$$= 0$$

☺

4.7 Lecture 25

We proved theorem 4.6.3.

Goursat proved that the condition that f' is continuous is **not** necessary.

Theorem 4.7.1 Cauchy-Goursat Theorem

Suppose C is a simple closed contour.

Suppose f is analytic at each point of the curve C and at each point inside C (i.e. analytic on every point in the region R).

\mathbf{Note}

This implies that f is analytic on a region slightly bigger than R.

Then

$$\int_C f(z)dz = 0.$$

4.8 Lecture 26

4.8.1 Simply and Multiply Connected Domains

Definition 4.8.1: Simple Connected Domain

A domain D is simply connected if any closed contour $C \subset D$ encloses only points in D (i.e. it has no "holes").

Definition 4.8.2: Multiply Connected Domains

Any domain that is **not** simply connected is multiply connected.

Theorem 4.8.1

Suppose f is analytic on a simply connected domain D. Then $\int_C f(z)dz = 0$ for all closed contours $C \subset D$.

Proof: Follows by the Cauchy-Goursat Theorem.

⊜

Corollary 4.8.1

Any analytic function on a simply connected domain D as an anti-derivative (analytic on D).

Corollary 4.8.2

Any entire function has an anti-derivative (which is also entire).

Theorem 4.8.2 The Cauchy-Goursat Theorem for Multiply Connected Domains

Suppose R is a closed region bounded by finitely many disjoint simple closed contours C_1, C_2, \ldots, C_n oriented so that any point in on the interior of R is on the "left."

Let $B = \bigcup_{j=1}^n C_j$.

If f is analytic on R then

$$\int_{B} f(z)dz = \sum_{j=1}^{n} \int_{C_{j}} f(z)dz = 0.$$

4.8.2 Deformation of Path

Suppose we are given a contour C_1 and we want to know $\int_{C_1} f(z)dz$. We can then look at a contour C_2 within C_1 that contains the "bad parts/singularities" of C_1 to make the contour easier to work with.

More formally, if C_1 , C_2 are simple closed contours (with positive orientation) and C_2 is inside C_1 , and f(z) is analytic on the closed region bounded by C_1 and C_2 , by the Cauchy-Goursat Theorem for multiply connected domains,

$$\int_{C_1} f(z)dz + \int_{-C_2} f(z)dz = 0.$$

So

$$\int_{C_1} f(z)dz = -\int_{-C_2} f(z)dz = \int_{C_2} f(z)dz.$$

4.8.3 Cauchy's Integral Formula

Let C be a simple closed contour with positive orientation. Suppose f is analytic on C and at each point inside C. Let z_0 be any point inside C. Then

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz.$$

Note

 $f(z_0)$ for z_0 inside C is completely determined by the values of f(z) for $z \in C$.

Lemma 4.8.1

Let C be the simple closed circle $|z - z_0| = R$ with positive orientation where $z_0 \in \mathbb{C}$ and R > 0.

$$\int_C \frac{1}{z - z_0} dz = 2\pi i.$$

Proof: Let $C: z=z_0+Re^{it}, 0 \le t \le 2\pi$ so that $dz=Rie^{it}dt$ and $z-z_0=Re^{it}$.

$$\int_C \frac{dz}{z - z_0} = \int_0^{2\pi} \frac{Rie^{it}}{Re^{it}} dt$$
$$= \int_0^{2\pi} i dt$$
$$= i \int_0^{2\pi} 1 dt$$
$$= 2\pi i$$

⊜

4.9 Lecture 27

We proved lemma 4.8.1.

Now we show that this applies for any f(z).

Let C be a simple closed contour with positive orientation.

Let z_0 be a point inside C.

If f(z) is analytic on C and at each point inside C, then

$$\frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz = f(z_0).$$

Proof: Suppose z_0 is inside C and f is analytic on C and inside C.

Let C_R be the simple circle $|z - z_0| = R$ with positive orientation and let C_R be inside C since the inside of C is a domain.

f(z) and $\frac{f(z)}{z-z_0}$ is analytic on the closed region bounded by C and C_R .

By the principle of deformation of paths,

$$\int_{C} \frac{f(z)}{z - z_{0}} dz = \int_{C_{R}} \frac{f(z)}{z - z_{0}} dz$$

$$= \int_{C_{R}} \frac{f(z) - f(z_{0}) + f(z_{0}) dz}{z - z_{0}}$$

$$= \int_{C_{R}} \frac{f(z) - f(z_{0}) dz}{z - z_{0}} + \int_{C_{R}} \frac{f(z_{0}) dz}{z - z_{0}}$$

$$= \int_{C_{R}} \frac{f(z) - f(z_{0}) dz}{z - z_{0}} + f(z_{0}) \int_{C_{R}} \frac{1}{z - z_{0}} dz$$

$$= \int_{C_{R}} \frac{f(z) - f(z_{0}) dz}{z - z_{0}} dz + f(z_{0}) 2\pi i$$

$$\frac{1}{2\pi i} \int_{C} \frac{f(z) dz}{z - z_{0}} = \frac{1}{2\pi i} \int_{C_{R}} \frac{f(z) - f(z_{0})}{z - z_{0}} dz + f(z_{0})$$

$$\left| \left(\frac{1}{2\pi i} \int_{C} \frac{f(z)}{z - z_{0}} dz \right) - f(z_{0}) \right| = \left| \frac{1}{2\pi i} \int_{C_{R}} \frac{f(z) - f(z_{0})}{z - z_{0}} dz \right|$$

Let M_R be the maximum of $|f(z) - f(z_0)|$ when $|z - z_0| \le R$. Since f is analytic at z_0 and continuous at z_0 ,

$$\lim_{R\to 0} M_R = 0.$$

So for $z \in C_R$, $|z - z_0| = R$,

$$\left| \frac{f(z) - f(z_0)}{z - z_0} \right| = \frac{|f(z) - f(z_0)|}{R} \le \frac{M_R}{R}.$$

Let L be the length of C_R which is $2\pi R$.

$$0 \le \left| \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz - f(z_0) \right| \le \frac{1}{2\pi} (2\pi R) \frac{M_R}{R} = M_R.$$

⊜

Hence $\frac{1}{2\pi i} \int_C \frac{f(z)}{z-z_0} dz = f(z_0).$

Example 4.9.1

Take the square centered at the origin with side lengths of 4 with a positive orientation. Find $\int_C \frac{\cos(z)}{z(z^2+8)} dz$.

$$z(z^2 + 8) = 0$$
 for $z = 0$, $z^2 = -8$, i.e. $z = 0, \pm i\sqrt{8}$

 $z(z^2 + 8) = 0$ for z = 0, $z^2 = -8$, i.e. $z = 0, \pm i\sqrt{8}$. Here $z_0 = 0$, $f(z) = \frac{\cos(z)}{z^2 + 8}$ and f(z) is analytic for $z \neq \pm 2\sqrt{2}i$ which lie outside C.

$$\int_C \frac{\cos(z)}{z(z^2+8)} dz = \int_C \frac{f(z)}{z-0} dz$$

$$= 2\pi i f(0) \text{ by the Cauchy Integral Formula}$$

$$= 2\pi (\frac{1}{8})$$

$$= \frac{\pi i}{4}$$

Theorem 4.9.1 Cauchy Integral Formula for Derivatives

Suppose C is a simple closed contour with positive orientation and z is a point inside C and f is analytic on C and inside C.

So by the Cauchy Integral Formula,

$$f(z) = \frac{1}{2\pi i} \int_C \frac{f(w)}{w - z} dw$$

$$f'(z) = \frac{1}{2\pi i} \frac{d}{dz} \int_C \frac{f(w)}{w - z} dw$$

$$= \frac{1}{2\pi i} \int_C \frac{\partial}{\partial z} \left(\frac{f(w)}{w - z}\right) dw \text{ which can be proved}$$

$$= \frac{1}{2\pi i} \int_C \frac{f(w)}{(w - z)^2} dw^2$$

$$f'(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^2} dz \text{ provided } z_0 \text{ is inside } C$$

It turns out that all derivatives $f^{(n)}z_0$ exist and

$$\frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-z_0)^{n+1}} dz$$

Example 4.9.2

Find $\int_C \frac{\sinh(z)}{z^4} dz$ where C is a square with side lengths of 2 centered at the origin with positive orientation. $f(z) = \sinh(z) = \frac{1}{2}(e^z - e^{-z})$ is entire.

Here $z_0 = 0$ is inside C and n = 3.

By the Cauchy Integral Formula for Derivatives,

$$\int_C \frac{\sinh(z)}{z^4} = 2\pi i \frac{f^{(3)}(0)}{3!} = \frac{2\pi i}{6} = \frac{\pi i}{3}$$

since $f^{(3)}(z) = \cosh(z)$.

4.10 Lecture 28

Maximum Modulus Principle 4.10.1

Lemma 4.10.1

Let f be analytic on an open disk $D(z_0, r)$ where $z_0 \in \mathbb{C}, r > 0$.

Suppose that $|f(z)| \leq |f(z_0)|$ for all $z \in D$.

Then f(z) is constant on D, i.e. $f(z) = f(z_0)$ for all $z \in D$.

Proof: Let $z_1 \in D$ with $z_1 \neq z_0$.

Let $\rho = |z_0 - z_1|$, and let C_ρ be the positively oriented circle with center z_0 and radius ρ . $f(z_0) = \frac{1}{2\pi i} \int_{C_\rho} \frac{f(z)}{z - z_0} dz$ by the Cauchy Integral Formula Parameterize C_ρ by $z = z_0 + \rho e^{it}$, $0 \le t \le 2\pi$.

We get

$$f(z_0) = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + \rho e^{it})}{\rho e^{it}} \rho i e^{it} dt$$

$$= \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + \rho e^{it}) dt$$

$$|f(z_0)| = \frac{1}{2\pi} \left| \int_0^{2\pi} f(z_0 + \rho e^{it}) dt \right|$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + \rho e^{it})| dt$$
Since $z_0 + \rho e^{it} \in D$ for $0 \le t \le 2\pi$
we get $|f(z_0 + \rho e^{it})| \le |f(z_0)|$.

Hence $\frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + \rho e^{it})| dt \le \frac{1}{2\pi} \int_0^{2\pi} |f(z_0)| dt$

$$= |f(z_0)|.$$
So $|f(z_0)| = \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + \rho e^{it})| dt$

$$|f(z_0)| = \frac{1}{2\pi} \int_0^{2\pi} |f(z_0)| dt$$

$$0 = \frac{1}{2\pi} \int_0^{2\pi} (|f(z_0)| - |f(z_0 + \rho e^{it})|) |dt$$

Since $|f(z_0)| - |f(z_0 + \rho e^{it})|$ is a continuous function on $[0, 2\pi]$, it must be 0 everywhere.

So $|f(z_0)| = |f(z_0 + \rho e^{it})|$ for $0 \le t \le 2\pi$.

Hence $|f(z_1)| = |f(z_0)|$ for all $z_1 \in D$.

Thus f(z) is constant on D.

The Maximum Modulus Principle states the following:

Let f be analytic on a domain D.

Assume f is not constant.

Then |f(z)| has no maximum on D.

This means there is no point $z_0 \in D$ such that $|f(z)| \leq |f(z_0)|$ for all $z \in D$.

4.11 Lecture 29

Example 4.11.1 (f(z) = z)

Let D(0,1) = D.

Then |z| < 1 and |f(z)| = |z| < 1.

There is no point z_0 in D such that $|f(z)| = |z| \le |z_0|$.

Idea of Proof: Suppose by way of contradiction that there is such a point z_0 such that $|f(z)| \le |f(z_0)|$ holds. Let $w \in D$, $w \ne z_0$.

Then there is a polygonal path from z_0 to w, and you can apply the previous lemma to every part of that path.

☺

Continuing this way, we eventually show that $f(w) = f(z_0)$.

This means f is constant on D, which is a contradiction.

So if f is analytic and non-constant on D then $|f(z)| \leq |f(z_0)|$ cannot happen.

Corollary 4.11.1

Let R be a closed bounded region in \mathbb{C} such that $R = D \cup \text{boundary of } D$ where D is a domain. Suppose f is analytic on D and continuous on R.

|f(z)| reaches its maximum on the boundary an nowhere inside provided f is not constant.

4.11.1 Cauchy's Inequality

Let R > 0 and suppose f is analytic on the closed disk $\overline{D}(z_0, R) = \{z : |z - z_0| \le R\}$.

Let C be the boundary of this disk $C = \{z : |z - z_0| = R\}$.

Suppose M_R is the max of |f(z)| on C.

Then

$$\left| f^{(n)}(z_0) \right| \le \frac{n! M_R}{R^n}.$$

Proof: By the previous corollary, $|f(z)| \le M_R$ for $z \in C$ and $|z - z_0| < R$.

By the Cauchy Integral formula for derivatives,

$$\frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi} \int_C \frac{f(z)}{(z - z_0)^{n+1}} dz$$

since z_0 is inside C.

$$\left| \frac{f(z)}{(z - z_0)^{n+1}} \right| \le \frac{M_R}{|z - z_0|^{n+1}} \text{ for } z \in C$$
$$= \frac{M_R}{R^{n+1}}$$

Length of $C=L=2\pi R$

$$\left| \frac{f^{(n)}(z_0)}{n!} \right| = \frac{1}{2\pi} \left| \int_C \frac{f(z)}{(z - z_0)^{n+1}} dz \right|$$

$$\leq \frac{1}{2\pi} 2\pi R \cdot \frac{M_R}{R^{n+1}}$$

$$= \frac{M_R}{R^n}$$

4.11.2 Liouville's Theorem

Theorem 4.11.1

Any bounded entire function is constant.

Proof: Let f be entire and bounded.

Then there is a constant M such that $|f(z)| \leq M$ for all $z \in \mathbb{C}$.

Let z_0 be any point in \mathbb{C} and let R be any positive real number.

Then $|f(z)| \leq M$ for z on the circle $|z - z_0| = R$.

By Cauchy's Inequality, $0 \le |f'(z)| \le \frac{M_R}{R^1}$ (M does **not** depend on R).

Letting $R \to \infty$ we get $|f'(z_0)| = 0$ and $f'(z_0) = 0$.

But z_0 was any complex number, so

$$f'(z) = 0$$

for all $z \in \mathbb{C}$.

Therefore f is a constant function, since \mathbb{C} is a domain.

⊜

4.11.3 Fundamental Theorem of Algebra

Theorem 4.11.2

Any complex polynomial $P(z) = a_0 + a_1 z + \ldots + a_n z^n$ where $(a_n \neq 0)$ and $n \geq 1$ has a complex root. That is, $P(z_0) = 0$ for some $z_0 \in \mathbb{C}$.

The proof of this relies on Liouville's Theorem.

Proof: We prove this by way of contradiction.

Consider $f(z) = \frac{1}{P(z)}$.

If P does **not** have any zeroes, then f is entire.

Observe that

$$\lim_{z \to \infty} f(z) = \lim_{z \to \infty} \frac{1}{a_0 + a_1 z + \dots + a_n z^n}$$

$$= \lim_{z \to \infty} \frac{1}{z^n} \left(\frac{1}{(a_n + \frac{a_{n-1}}{z} + \frac{a_{n-2}}{z^2} + \dots + \frac{a_0}{z^n})} \right)$$

$$= 0$$

By definition of a limit, there exists k > 0 such that $|f(z)| \le 1$ for any z such that $|z| \ge k$.

Since f is continuous, we know that there exists M>0 such that the max value of $|f(z)|\leq M$ for $z\in \overline{D}(0,k)$.

So the max of $|f(z)| \leq \max\{1, M\}$ for $z \in \mathbb{C}$.

So f is a bounded entire function.

By Liouville's Theorem, f is constant, which is a contradiction since P(x) is not constant and thus f is not constant.

⊜

So P(x) must have a complex root.

Corollary 4.11.2

Any complex polynomial can be completely factored.

 $P(z) = a_n(z - \alpha_1)(z - \alpha_2) \dots (z - \alpha_n)$ for some complex constants $\alpha_1, \alpha_2, \dots \alpha_n$ which are not necessarily distinct (i.e. multiplicity).

Chapter 5

Series

5.1 Lecture 30

We proved the FTA from the previous lecture.

5.1.1 Convergence of Sequences

Definition 5.1.1

An infinite sequence $z_1, z_2, \ldots, z_n, \ldots$ of complex numbers (also written $\{z_n\}_{n=1}^{\infty}$) converges to a complex number w if

$$\lim_{n \to \infty} |z_n - w| = 0.$$

If this is the case we say that the sequence has a limit point w and we write $\lim_{n\to\infty} z_n = w$.

Example 5.1.1

Let $z_n = 1 + \frac{e^{in}}{n}, n = 1, 2, ...$ We claim that $\lim_{n \to \infty} z_n = 1$.

$$|z_n - w| = |1 + \frac{e^{in}}{n} - 1|$$

$$= |\frac{e^{in}}{n}|$$

$$= \frac{|e^{in}|}{n}$$

$$= \frac{1}{n}$$

5.1.2 Convergence of Series

We want to make sense of infinite sums:

$$\sum_{n=1}^{\infty} z_n.$$

We define finite sums as

$$S_m := \sum_{n=1}^m z_n.$$

which is a sequence! More specifically, $\{S_m\}_{m=1}^{\infty}$ is the sequence of partial sums.

Definition 5.1.2

A series of complex numbers $\sum_n z^n$ is said to be convergent if there exists $w \in \mathbb{C}$ such that

$$\lim_{m\to\infty} S_m = w.$$

Example 5.1.2 (Geometric Series)

Consider

$$\sum_{n=0}^{\infty} z^n, |z| < 1.$$

Then we have

$$S_m = \sum_{n=0}^m z^n$$

$$= 1 + z + \dots + z^m$$

$$zS_m = z + z^2 + \dots + z^{m+1}$$

$$S_m - zS_m = 1 - z^{m+1}$$

$$= S_m(1 - z)$$

$$\implies S_m = \frac{1 - z^{m+1}}{1 - z}.$$

Also, observe that since |z| < 1, $\lim_{k \to \infty} z^k = 0$.

So
$$\lim_{m \to \infty} S_m = \frac{1}{1-z}$$
.

So

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}.$$

Definition 5.1.3: Power Series

Let $z_0 \in \mathbb{C}$.

A power series in $z - z_0$ is a series of the form

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n$$

where $a_0, a_1, \ldots a_n, \ldots \in \mathbb{C}$.

Example 5.1.3

The geometric series is a power series with $z_0 = 0$.

Example 5.1.4

$$\sum_{n=0}^{\infty} \frac{z^n}{n!} = e^z$$

for $|z| < \infty$.

5.2 Lecture **31**

5.2.1 Taylor Series

Theorem 5.2.1

Let $z_0 \in \mathbb{C}, r_0 > 0$.

Suppose that f is analytic on the disk $D(z_0, r_0)$.

Then the power series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

converges for every $z \in D$, and

$$\sum_{n=1}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n = f(z)$$

for all $|z - z_0| < r_0$.

Example 5.2.1 (MacLaurin Expansions, i.e. where $z_0 = 0$.)

1.
$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$$
, $|z| < 1$

2.
$$\frac{1}{1+z} = \frac{1}{1-(-z)} = \sum_{n=0}^{\infty} (-z)^n = \sum_{n=0}^{\infty} (-1)^n z^n$$
, $|z| < 1$

More generally,

$$\sum_{n=0}^{\infty} w^n = \frac{1}{1-w}, \ |w| < 1$$

for "some stuff" w.

3.
$$\sum_{n=0}^{\infty} (z^2)^n = \sum_{n=0}^{\infty} w^n = \frac{1}{1-w} (\text{for } |w| < 1) = \frac{1}{1-z^2} (\text{for } |z| < 1)$$

Note that $|w| = |z^2| = |z|^2 < 1 \implies |z| < 1$

5.2.2 Laurent Series

A Laurent expansion is a Taylor expansion that also allows for negative integers as exponents.

Theorem 5.2.2

Suppose f is analytic on the annulus (a ring) $r_2 < |z - z_0| < r_1$.

Let C be a simple closed contour with positive orientation around z_0 .

Then f has an expansion

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n, \ z \text{ s.t. } r_2 < |z - z_0| < r_1$$

$$= \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$
where $a_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^{n+1}} dz, \ b_n = a_{-n} = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^{-n+1}} dz.$

The expansion is called the Laurent expansion and it is unique.

The second sum is called the **principal part**.

In particular, $b_1 = a_{-1} = \frac{1}{2\pi i} \int_C f(z) dz$ is the **residue** of f at z_0 denoted $\operatorname{Res}_{z_0} f$.

Example 5.2.2 (Find the Laurent expansion about $z_0 = 0$ for $f(z) = \frac{1}{z(z-1)}$.)

First we look at 0 < |z| < 1.

$$f(z) = \frac{1}{z} \frac{1}{z - 1}$$

$$= \frac{1}{z} \left(-\frac{1}{1 - z} \right)$$

$$= \frac{1}{z} \left(-\sum_{n=0}^{\infty} z^n \right)$$

$$= -\sum_{n=0}^{\infty} z^{n-1}$$

$$= -\frac{1}{z} + \left(\sum_{n=0}^{\infty} -z^n \right).$$

Now we consider another annulus $1<|z|<\infty \implies |\frac{1}{z}|=\frac{1}{|z|}<1.$

$$f(z) = \frac{1}{z} \frac{1}{z - 1}$$

$$= \frac{1}{z} \frac{\frac{1}{z}}{1 - \frac{1}{z}}$$

$$= \frac{1}{z^2} \frac{1}{1 - \frac{1}{z}}$$

$$= \frac{1}{z^2} \left(\sum_{n=0}^{\infty} \left(\frac{1}{z} \right)^2 \right)$$

$$= \sum_{n=0}^{\infty} \frac{1}{z^{n+2}}$$

$$= \sum_{n=2}^{\infty} \frac{1}{z^n}$$

$$\implies a_n = 0, \ b_1 = 0, \ b_n = 1 \text{ for } n \ge 2.$$

Chapter 6

Residues and Poles

6.1 Lecture 32

6.1.1 **Isolated Singular Points**

Definition 6.1.1

We say that $z_0 \in \mathbb{C}$ is a singular point (or singularity) of the function f when:

- 1. f is not analytic at z_0
- 2. Each neighborhood of z_0 contains points at which f is analytic

Definition 6.1.2

We say the singularity of z_0 of f is **isolated** when there exists r > 0 such that f is analytic on the deleted/punctured neighborhood $D'(z_0, r) = \{z \in \mathbb{C} : 0 < |z - z_0| < r\}.$

Example 6.1.1 $(f(z) = \frac{e^z}{z^2+1}$ on $\mathbb{C} \setminus \{\pm i\})$

 $\pm i$ are singular points of f (and also the only ones).

Note

It wouldn't matter how you defined f at $\pm i$ because it's not differentiable.

They are also **isolated**; in fact, f is complex differentiable on $\mathbb{C} \setminus \{\pm i\}$.

Example 6.1.2 $(f(z) = \frac{1}{\sin(\frac{1}{z})})$

Singular points arise at z=0 and where $\sin(\frac{1}{z})=0$, i.e. $z=\frac{1}{n\pi}, n=\pm 1, \pm 2, \ldots$

The points $z = \frac{1}{n\pi}$ are isolated. z = 0 is not because each D'(0, r) contains $\frac{1}{n\pi}$ when $n \gg 0$.

Let z_0 be an isolated singular point of f and assume that f is analytic on $D' = D'(z_0, r)$. D' is a special kind of annulus and thus has a Laurent expansion.

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$
$$= \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} b_n (z - z_0)^{-n}$$

where C is any simple closed positively oriented contour in D' surrounding z_0 .

Example 6.1.3 (Calculate $I = \int_C \frac{e^z}{(z-1)^2} dz$ where C is the counterclockwise circle around z = 1.)

Let
$$f(z) = \frac{e^z}{(z-1)^2}$$
.

Then I is $\int_C f(z)dz = 2\pi i \operatorname{Res}_{z=1} f$ where C is in D'(1,r) with r > 1. Now we find an expansion of the form $f(z) = \sum_{n=-\infty}^{\infty} a_n(z-1)^n$ valid in D', and then $I = 2\pi i a_{-1}$.

$$\frac{e^z}{(z-1)^2} = \frac{e \cdot e^{z-1}}{(z-1)^2}$$

$$= \frac{e}{(z-1)^2} \cdot \left(1 + (z-1) + \frac{(z-1)^2}{2} + \dots\right)$$

$$= e\left((z-1)^{-2} + (z-1)^{-1} + \frac{1}{2} + \frac{1}{6}(z-1) + \dots\right)$$

The residue is $b_1 = a_{-1} =$ the coefficient of $(z-1)^{-1}$

So
$$\int_C \frac{e^z}{(z-1)^2} dz = 2\pi i e$$
.

Lecture 33 6.2

Cauchy's Residue Theorem

Theorem 6.2.1 Cauchy's Residue Theorem

Suppose C is a simple closed contour with positive orientation.

Suppose f(z) is analytic on C and inside C except for finitely many singularities z_1, z_2, \ldots, z_n inside the

Then

$$\int_{C} f(z)dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z).$$

Proof: Let C_1, C_2, \ldots, C_n be disjoint circles centered at $z_1, z_2, \ldots z_n$ inside C with negative orientation. Let $B = C \cup C_1 \cup \ldots \cup C_n$.

By the Cauchy-Goursat theorem for multiply connected domains,

$$0 = \int_{B} f(z)dz$$

$$= \int_{C} f(z)dz + \int_{C_{1}} f(z)dz + \dots \int_{C_{n}} f(z)dz$$

$$\int_{C} f(z)dz = -\sum_{k=1}^{n} \int_{C_{k}} f(z)dz$$

$$= \sum_{k=1}^{n} \int_{-C_{k}} f(z)dz$$

$$= 2\pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z).$$

Example 6.2.1

Find $\int_C \frac{e^z}{(z^2-1)} dz$ where C is the simple circle |z|=2 with positive orientation.

 $f(z) = \frac{e^z}{(z^2-1)} = \frac{e^z}{(z-1)(z+1)}$ has singularities at $z = \pm 1$.

So f(z) is analytic on C and inside C except for singularities at $z=\pm 1$ which lie inside C.

By Cauchy's Residue Theorem,

$$\int_C f(z) = \int_C \frac{e^z}{z^2 - 1} dz$$
$$= 2\pi i (\operatorname{Res}_{z=1} f(z) + \operatorname{Res}_{z=-1} f(z))$$

We want a series in powers of z - 1.

$$f(z) = \frac{e^z}{(z-1)(z+1)}$$
$$= \frac{1}{z-1} \cdot \frac{e^z}{z+1}$$

 $\frac{e^z}{z+1}$ is analytic for $z \neq -1$ so the Taylor series near z=1 exists.

$$\begin{split} g(z) &= \frac{e^z}{z+1} \text{ is analytic for } |z-1| < 2 \\ &= \sum_{n=0}^{\infty} \frac{g^{(n)}(1)}{n!} (z-1)^n \\ &= g(1) + \frac{g'(1)}{1!} (z-1) + \dots \\ &= \frac{e}{2} + \dots \text{ for } |z-1| < 2 \\ f(z) &= \frac{1}{z-1} (g(z)) \\ &= \frac{e}{2} (z-1)^{-1} + g'(1) (z-1)^0 + \dots \text{ for } 0 < |z-1| < 2 \end{split}$$

So
$$\operatorname{Res}_{z=1} f(z) = \frac{e}{2}$$

 $\frac{e^z}{z-1}$ is analytic for $z\neq 1$ so the Taylor series near z=-1 exists.

$$f(z) = \frac{1}{z+1} \cdot \frac{e^z}{z-1}$$

$$= \frac{1}{(z+1)} (h(z))$$

$$= \frac{1}{z+1} \left(\frac{e^{-1}}{-2} + \frac{h'(-1)}{1!} (z+1)^0 + \dots \right)$$

$$\operatorname{Res}_{z=-1} f(z) = -\frac{1}{2e}$$

So
$$\int_C f(z)dz = 2\pi i(\frac{e}{2} - \frac{1}{2e})$$

Theorem 6.2.2

Suppose $\phi(z)$ is analytic at $z=z_0$.

Let $f(z) = \frac{\phi(z)}{(z-z_0)^m}$ where m is a positive integer.

Then $\operatorname{Res}_{z=z_0} f(z) = \frac{\phi^{(m-1)}(z_0)}{(m-1)!}$

Proof: Since ϕ is analytic at $z=z_0$,

$$\phi(z) = \sum_{n=0}^{\infty} \frac{\phi^{(n)}(z_0)}{n!} (z - z_0)^n \text{ (for } z \text{ near } z_0) \text{ by Taylor's Theorem}$$

$$f(z) = \frac{\phi(z)}{(z - z_0)^m}$$

$$= \sum_{n=0}^{\infty} \frac{\phi^{(n)}(z_0)}{n!} (z - z_0)^{n-m} \text{ which is the Laurent Series near } z_0$$

 $\operatorname{Res}_{z=z_0} f(z) = \operatorname{Coefficient}$ of $(z-z_0)^{-1}$ in the Laurent Series of f(z) near $z=z_0$ We want n = m = 1, so n = m - 1

So
$$\operatorname{Res}_{z=z_0} f(z) = \sum_{n=0}^{\infty} \frac{\phi^{(m-1)}(z_0)}{(m-1)!}$$

6.3Lecture 34

We proved theorem 6.2.1 and theorem 6.2.2.

6.3.1 Principal Part

Suppose f(z) has an isolated singularity at $z=z_0$.

By Laurent's theorem,

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{m=1}^{\infty} \frac{b_m}{(z - z_0)^m}$$

for $0 < |z - z_0| < r_0$ for some $r_0 > 0$.

Like we described earlier, the second sum is the principal part of f(z) near $z=z_0$.

6.3.2Types of Singularities

There are three types of (isolated) singularities:

1. Removable Singularity

The principal part is 0.

Example 6.3.1

$$f(z) = \frac{\sin(z)}{z}$$

$$= \frac{1}{z}(z - \frac{z^3}{3!} + \frac{z^5}{5!} + \dots) = 1 - \frac{1}{3!}z^2 + \frac{1}{5!}z^4 + \dots \text{ for } z \neq 0 \text{ which is the Laurent Series.}$$

The principal part is 0, and so z=0 is a removable singularity. Let $g(z)=1-1-\frac{1}{3!}z^2+\frac{1}{5!}z^4+\ldots$ which is entire.

So f(z) = g(z) for $z \neq 0$.

2. Pole of Order m

The principal part has finitely many terms

$$\frac{b_1}{(z-z_0)^1} + \frac{b_2}{(z-z_0)^2} + \ldots + \frac{b_m}{(z-z_0)^m} \text{ where } b_m \neq 0.$$

In this case, the singularity $z=z_0$ is called a pole of order m.

Example 6.3.2

$$f(z) = \frac{1}{z^6(\cos(z) - 1)}$$

$$= -\frac{1}{2!} \cdot \frac{1}{z^4} + \frac{1}{4!} \cdot \frac{1}{z^2} - \frac{1}{6!} + \frac{1}{8!}z^2 + \dots \text{ for } z \neq 0.$$

The principal part near z=0 is $-\frac{1}{2!}\cdot\frac{1}{z^4}+\frac{1}{4!}\cdot\frac{1}{z^2}$ so that z=0 is a pole of order 4.

Note

$$\operatorname{Res}_{z=0} f(z) = \text{coefficient of } z^{-1} = 0.$$

3. Essential Singularity

The principal part has infinitely many non-zero terms.

Example 6.3.3

 $f(z) = \exp(\frac{1}{z})$ has a singularity at z = 0.

$$\exp(z) = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots \text{ for all } z$$

$$f(z) = \exp(\frac{1}{z})$$

$$= 1 + \frac{1}{z} + \frac{1}{2!} \cdot \frac{1}{z^2} + \frac{1}{3!} \cdot \frac{1}{z^3} + \dots \text{ for all } z \neq 0.$$

The principal part has infinitely many non-zero terms, so z=0 is an essential singularity.

Example 6.3.4

Let C be a contour around 0 with positive orientation.

Find $\int_C \exp(\frac{1}{z}) dz$.

$$\int_C \exp(\frac{1}{z}) dz = 2\pi i \operatorname{Res}_{z=0} f(z) \text{ by Cauchy's Residue Theorem}$$
$$= 2\pi i \cdot 1$$
$$= 2\pi i$$

6.4 Lecture 35

6.4.1 Residue at Infinity Theorem

Theorem 6.4.1

If a function f is analytic at all points of $\mathbb C$ except for a finite number of singularities that lie inside a simple closed contour C with positive orientation.

Then

$$\int_C f(z)dz = 2\pi i \operatorname{Res}_{z=0}(\frac{1}{z^2} f(\frac{1}{z})).$$

Proof: Choose R > 0 large enough so that C is inside C_R (center 0 and radius R with positive orientation).

So all the singularities $z_1, z_2, \ldots z_n$ are inside C which is inside C_R . So f(z) is analytic on the closed region bounded by C and C_R , hence $\int_C f(z)dz = \int_{C_R} f(z)dz$ by the Deformation of Paths Theorem.

$$C_R:\ z(t)=Re^{it},\ 0\leq t\leq 2\pi.$$

$$dz=Rie^{it}dt.$$

$$\int_{C_R}f(z)dz=\int_0^{2\pi}f(Re^{it})Rie^{it}dt$$

$$\tilde{C}_R:\ z(t)=\frac{1}{R}e^{-it},\ 0\leq t\leq 2\pi$$

$$dz=-\frac{i}{R}e^{-it}dt$$
 Let $g(z)=\frac{1}{z^2}f(\frac{1}{z})$
$$\int_{-\tilde{C}_R}g(z)dz=\operatorname{Res}_{z=0}g(z) \text{ since the only singularity of }g\text{ is at }z=0$$
 since if $|z|<\frac{1}{R},\ |\frac{1}{z}|>R,\ \text{and }f(\frac{1}{z})\text{ is analytic.}$ But
$$\int_{-\tilde{C}_R}g(z)dz=-\int_{\tilde{C}_R}g(z)dz$$

$$=-\int_0^{2\pi}g\left(\frac{1}{R}e^{-it}\right)\frac{-i}{R}e^{-it}dt$$

$$=-\int_0^{2\pi}\left(R^2e^{2it}\right)f(Re^{it})\left(\frac{-ie^{-it}}{R}\right)dt$$

$$=\int_0^{2\pi}f(Re^{it})iRe^{it}dt$$

$$=\int_{C_R}f(z)dz$$
 Hence
$$\int_Cf(z)dz=\int_{C_R}f(z)dz$$

$$=\int_{-\tilde{C}_R}g(z)dz$$

$$=2\pi i\operatorname{Res}_{z=0}g(z)$$
 So
$$\frac{1}{2\pi i}\int_Cf(z)dz=\operatorname{Res}_{z=0}(\frac{1}{z^2}f(\frac{1}{z})).$$

Example 6.4.1

Let C be the positively oriented circle |z| = 2. Find $\int_C \frac{4z-5}{z(z-1)} dz$.

1. First Method

 $f(z) = \frac{4z-5}{z(z-1)}$ is analytic except for singularities at z=0,1 which lie inside C. By Cauchy's Residue Theorem, $\int_C f(z)dz = 2\pi i \left(\operatorname{Res}_{z=0} f(z) + \operatorname{Res}_{z=1} f(z) \right)$ ☺

For
$$z=0$$

$$f(z)=\frac{4z-5}{z(z-1)}$$

$$=\frac{\phi(z)}{z} \text{ where } \phi(z)=\frac{4z-5}{z-1} \text{ which is analytic at } z=0$$

$$\operatorname{Res}_{z=0} f(z)=\phi(0)$$

$$=5$$

$$\operatorname{For } z=1$$

$$f(z)=\frac{4z-5}{z(z-1)}$$

$$=\frac{\psi(z)}{z-1} \text{ where } \psi(z)=\frac{4z-5}{z} \text{ which is analytic at } z=1$$

$$\operatorname{Res}_{z=1} f(z)=\psi(1)$$

$$=-1$$

$$=$$

$$\operatorname{So} \int_C f(z)dz=2\pi i(5-1)$$

2. Second Method

 $f(z) = \frac{4z-5}{z(z-1)}$ is analytic on all of $\mathbb C$ except for singularities at z=0,1 which both lie inside C. So by the Residue at Infinity Theorem,

$$\begin{split} \int_C f(z)dz &= 2\pi i \operatorname{Res}_{z=0} \left(\frac{1}{z^2} f\left(1/z\right)\right) \\ \operatorname{Let} g(z) &= \frac{1}{z^2} f\left(\frac{1}{z}\right) \\ &= \frac{1}{z^2} \left(\frac{4(\frac{1}{z}) - 5}{(\frac{1}{z})(\frac{1}{z} - 1)}\right) \\ &= \frac{\frac{4}{z} - 5}{(1 - z)} \cdot \frac{z}{z} \\ &= \frac{4 - 5z}{z(1 - z)} \\ &= \frac{\phi(z)}{z} \text{ where } \phi(z) = \frac{4 - 5z}{1 - z} \text{ which is analytic at } z = 0 \end{split}$$

$$\operatorname{Res}_{z=0} \left(\frac{1}{z^2} f\left(\frac{1}{z}\right)\right) = \operatorname{Res}_{z=0} g(z) \\ &= \frac{\phi(0)}{1} \\ &= 4 \\ \int_C f(z)dz = 2\pi i(4) \\ &= 8\pi i \end{split}$$

6.5 Lecture 36

We proved theorem 6.4.1.

6.5.1 Zeroes of Analytic Functions

f(z) has a zero of order m at z_0 if f(z) is analytic at $z = z_0$ and $0 = f(z_0) = f'(z_0) = \ldots = f^{(m-1)}(z_0)$ and $f^{(m)}(z_0) \neq 0$.

Since f is analytic at z = 0, it has a Taylor Series

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n \text{ for } |z - z_0| < R_0, \text{ some } R_0 > 0$$

$$= \sum_{n=m}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

$$= \frac{f^{(m)}(z_0)}{m!} (z - z_0)^m + \frac{f^{(m+1)}(z_0)}{(m+1)!} (z - z_0)^{m+1} + \dots$$

$$= (z - z_0)^m \left(\frac{f^{(m)}(z_0)}{m!} + \frac{f^{(m+1)}}{(m+1)!} (z - z_0)^1 + \dots \right)$$

$$= g(z) \text{ which is analytic at } z = z_0 \text{ and}$$

$$g(z_0) = \frac{f^{(m)}(z_0)}{m!} \neq 0$$

Theorem 6.5.1

Let f be analytic at z_0 .

The following are equivalent:

- 1. f has a zero of order m at z_0
- 2. $f(z) = (z z_0)^m g(z)$ where g(z) is analytic at z_0 and $g(z_0) \neq 0$

Theorem 6.5.2

Suppose $f:D\to\mathbb{C}$ is analytic and D is a domain.

Let $Z = Z(f) = \{z \in D : f(z) = 0\}$ be the set of zeroes.

Suppose $z_0 \in Z(f)$ and $\{z_n\}_{n=1}^{\infty} \subset Z(f)$ and $\lim_{n\to\infty} z_n = z_0$ and each $z_n \neq z_0$.

Then f(z) = 0 for all $z \in D$.

First we claim that $f^{(n)}(z_0) = 0$ for all n = 0, 1, 2, ...

Proof: We know $f(z_0) = 0$.

Suppose by way of contradiction that $f^{(n)}(z_0) \neq 0$ for some $n \geq 1$.

Let n_0 be the smallest such n.

So $f(z_0) = f'(z_0) = \ldots = f^{(n_0 - 1)}(z_0) = 0$ and $f^{(n_0)}(z_0) \neq 0$.

So $f(z) = (z - z_0)^{n_0} g(z)$ where g(z) is analytic at z_0 and $g(z_0) \neq 0$.

Here $n_0 \geq 1$.

 $0 = f(z_n) = (z_n - z_0)^{n_0} g(z_n)$ which implies $g(z_n) = 0$ for $n \ge 1$ since $z_n \ne z_0$ for $n \ge 1$.

But g is analytic at z_0 which implies g is continuous at z_0 .

So $\lim_{n\to\infty} g(z_n) = g(z_0)$ since $\lim_{n\to\infty} z_n = z_0$.

So $0 = g(z_0)$ which is a contradiction.

Hence our first claim is true.

This means $f^{(n)}(z_0) = 0$ for all $n \ge 0$.

Let $E = \{z \in D : f^{(n)}(z) = 0\}$ for all $n \ge 0$.

So $z_0 \in E$ and E is non-empty.

⊜

 $E = \bigcap_{n>1} E_n$ where $E_n = \{z \in D : f^{(n)}(z) = 0\}.$

Each E_n is closed since $f^{(n)}$ is continuous.

So E is closed.

Our second claim is that E is an open subset of D.

Proof: Let $w_0 \in E$.

So $f^{(n)}(w_0) = 0$ for all $n \ge 0$.

But f is analytic at w_0 so $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(w_0)}{n!} (z - w_0)^n$ for $z \in D(w_0, r_0)$ for some $r_0 > 0$.

So f(z) = 0 for all $z \in D(w_0, r_0)$.

Therefore $D(w_0, r_0) \subset Z(f)$ and $f^{(n)}(z_0) = 0$ for all $n \ge 0$, $z \in D(w_0, r_0)$.

So $D(w_0, r_0) \subset E$ and E is open.

Therefore E is a non-empty open and closed subset of D.

Hence E = D since D is open and connected by a theorem from Advanced Calculus.

It follows that f(z) = 0 for all $z \in D$.

6.6 Lecture 37

We proved theorem 6.5.2.

Corollary 6.6.1

Suppose $\mathbb{R} \subset D$ is a domain in \mathbb{C} and $f:D \to \mathbb{C}$ is analytic.

If f(x) = 0 for all $x \in \mathbb{R}$, then f(z) = 0 for all $z \in D$.

Proof: Suppose f(x) = 0 for all $x \in \mathbb{R}$.

Let $z_n = \frac{1}{n} \to 0 = z_0$ as $n \to \infty$ and $f(z_n) = f(0) = 0$.

The previous theorem implies f(z) = 0 for all $z \in D$.

Example 6.6.1

 $f(z) = \sin^2(z) + \cos^2(z) - 1$ is entire.

We know $f(x) = \sin_2(x) + \cos_2(x) - 1 = 0$ for all $x \in \mathbb{R}$.

So by the previous corollary, f(z) = 0 for all $z \in \mathbb{C}$ and $\sin^2(z) + \cos^2(z) = 1$ for all $z \in \mathbb{C}$.

Theorem 6.6.1

Suppose f and g are analytic on a domain D and f(z) = g(z) on some open disk $D(z_0, r_0) \subset D$.

Then f(z) = g(z) for all $z \in D$.

Proof: Let h(z) = f(z) - g(z).

Then h is analytic on D and h(z) = 0 for all $z \in D(z_0, r_0) \subset D$.

Let $z_n = z_0 + \frac{1}{n}$ for a large enough n.

Then z_n converges to z_0 .

Since $z_n \in D(z_0, r_0)$ and each $z_n \neq z_0$ and $h(z_n) = h(z_0) = 0$, the previous theorem implies $h(z_0) = 0$ for

(2)

all $z \in D$ and f(z) = g(z) for $z \in D$.

6.6.1 Analytic Continuation

Suppose f is analytic on a domain D.

Suppose g_1 and g_2 are analytic on a different domain D'.

Let $D \subset D'$.

Suppose $f(z) = g_1(z) = g_2(z)$ for $z \in D$.

Then $g_1(z) = g_2(z)$ for all $z \in D$.

6.7 Lecture 38

Example 6.7.1

Let $f(z) = \sum_{n=0}^{\infty} z^n$. Then f is analytic on the disc D(0,1).

So f(z) is defined for |z| < 1.

Let $g(z) = \frac{1}{1-z}$ for $z \neq 1$.

Then g is analytic on $\mathbb{C} \setminus \{1\}$.

So f(z) = g(z) for $z \in D(0,1)$.

Then g(z) is the analytic continuation of f(z) to $\mathbb{C} \setminus \{1\}$.

Riemann Zeta Function 6.7.1

Define $\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}$ where $s = \sigma + it$, $\sigma, t \in \mathbb{R}$.

$$n^{s} = \exp(s \ln(n))$$

$$|n^{s}| = |\exp((\sigma + it) \ln(n))|$$

$$= |\exp(2 \ln(n)) \exp(it \ln(n))|$$

$$= \exp(\sigma \ln(n))$$

$$= n^{\sigma}$$

The series converges for $Re(s) = \sigma > 1$.

$$\zeta(s) = \sum_{n=1}^{m} \frac{1}{n^{s}}$$

$$= \frac{m}{m^{s}} + \int_{1}^{m} \frac{\lfloor u \rfloor}{u^{s+1}} du$$
As $n \to \infty$, $\zeta(s) = s \int_{1}^{\infty} \frac{\lfloor u \rfloor}{u^{s+1}} du$ for $\operatorname{Re}(s) = \sigma > 1$

$$= s \int_{1}^{\infty} \frac{u}{u^{s+1}} du - s \int_{0}^{\infty} \frac{u - \lfloor u \rfloor}{u^{s+1}} du$$

$$= \frac{s}{s-1} - s \int_{1}^{\infty} \frac{u - \lfloor u \rfloor}{u^{s+1}} du \text{ converges for } \sigma > 0.$$

So $\zeta(s)$ can be analytically continued to

$$\frac{s}{s-1} + s \int_{1}^{\infty} \frac{u - \lfloor u \rfloor}{s^{s+1}} du$$

where the second part of the sum is analytic for $Re(s) = \sigma > 0$.

So there is a pole of order 1 at s=1.

The **Riemann Hypothesis** states that if $s = \sigma + it$, $0 < \sigma < 1$ and $\zeta(s) = 0$, then $\sigma = \frac{1}{2}$.

Corollary 6.7.1

The number of primes less than or equal to x is $\text{Li}(x) + O(\sqrt{x} \ln(x))$ where $\text{Li}(x) = \int_0^\infty \frac{1}{\ln(t)} dt \simeq \frac{x}{\ln(x)}$.