

# EEE105 "Electronic Devices"

Professor Richard Hogg,
Centre for Nanoscience & Technology, North Campus
Tel 0114 2225168,
Email - r.hogg@shef.ac.uk



#### Lecture 15

- Recap on p-n junctions
- Carrier distribution in the diode
- Application Light emitting diodes
- Application Lasers



#### p-n Junction



In a p-n junction the free carriers recombine in the region of the junction revealing charged dopant atoms

By assuming no net current, we can deduce the built in voltage  $V_0$ 

$$V_0 = \frac{k_B T}{q} ln \left( \frac{n_{(n)}}{n_p} \right)$$

This is a little smaller than the band-gap



#### Space Charge at a Junction



Poisson's equations relate the charge density to E-field and potential

Using this we can calculate the E-field in the junction and relate  $V_0$  to the doping densities and the width of the depletion region

$$\begin{aligned} x_{p0}N_{a} &= x_{n0}N_{d} \\ E_{0} &= -\frac{q}{\epsilon}N_{d}x_{n0} = -\frac{q}{\epsilon}N_{a}x_{p0} \\ W &= \left[\frac{2\epsilon(V_{0} - V_{f})}{q} \left(\frac{N_{a} + N_{d}}{N_{a}N_{d}}\right)\right]^{1/2} \end{aligned}$$



### Diode Equation – I(V<sub>f</sub>)





The total current in the diode is dominated by diffusion current

This is due to the diffusion of carriers over a potential barrier where they become minority carriers

These carriers diffuse into the majority carriers, where they recombine causing a current

P<sub>n</sub> I(Vf) is derived by calculating the amount of charge per unit time injected into the n and p-type regions



#### **Diode Equation**

$$I = I_0 \left[ exp \left( \frac{qV_f}{k_B T} \right) - 1 \right]$$



## The current is exponential in forward voltage

In reverse bias a "saturation current" is observed

$$I_0 = I_{e0} + I_{h0} = qA \left[ \frac{L_e n_p}{\tau_e} + \frac{L_h p_n}{\tau_h} \right]$$

(Can substitute these)

This directional behaviour is very useful – e.g. rectification



### Zero Applied Voltage





### Forward Bias, V<sub>f</sub>





### Reverse Bias, V<sub>r</sub>





#### **Carrier Densities**



In a diode we can get a high concentration of electrons and holes in the same place

We can get strong light emission ....

Light emitting diode (LED)



#### **Light Emission**



**Forward Bias** 



Forward bias brings electrons and holes together in large concentrations in the depletion region

#### Non-equilibrium case

Electrons and holes can readily recombine to give up their energy – this may create a photon

Si is very bad at this

Other semiconductors e.g. GaAs and InP are very good at this



### **Energy and Wavelength**



Light is emitted with the band-gap energy

The energy of a photon is given by

$$E = \frac{hc}{\lambda}$$

Where

c = speed of light,

h = Planck's constant

 $\lambda$ = wavelength



#### **LED**



### Direct and efficient method of generating light

LEDs find widespread use e.g.;

- Motion sensors
- Communications
- Displays
- Lighting

#### However

Total efficiency is poor – very efficient generation inside the semiconductor - but it is difficult to get the light out of the semiconductor, and focussing / direct / use it



#### Semiconductor Laser



#### Comprising;

- •p-n junction
- Optical confinement
- Optical feedback

External Efficiencies ~ >50%

27/01/2011 © The University of Sheffield

#### **Applications Include**

Data storage

Communications

**Printing** 

Displays

Healthcare...



### **Absorption of Light**



When we shine light of energy > band-gap

#### **Applications Include;**

Signals (reverse bias)Optical communications
Data storage
Imaging
Sensors

Power (forward bias)-Solar Cells



#### Summary

- Reviewed p-n junction
- Semiconductor diode under forward bias allows electrons and holes in large concentrations to co-exist in the same spatial location
- This can result in efficient light generation (depends on material)
- LEDs are vital components for a number of applications but their overall efficiency is poor, and the light is highly divergent
- Laser diodes have high external efficiency, directional beams and are also widely used for a huge number of applications