Speculative decoding

Кошелев Михаил

План

- Обзор проблемы
- Теоретическая основа спекулятивного декодирования
- Анализ и экспериментальные результаты
- ▶ Обзор аппроксимационных моделей
- ▶ Применимость к различным задачам и моделям
- Литература

Проблема

Very Easy

at the University...

Difficult

at the University of...

Алгоритм

- M_p = черновая модель
- $ightharpoonup M_q =$ основная модель
- ightharpoonup pf = префикс, $\gamma =$ кол во токенов

- ...

...

$$p_{\gamma}(x) = M_p(pf, x_1, \dots, x_{\gamma-1})$$
 x_{γ}

- ▶ Цель: взять токен из q(x)
- ► Случай 1: q(x) ≥ p(x), принимаем токен
- **С**лучай 2: q(x) < p(x), принимаем токен с вероятностью $\frac{q(x)}{p(x)}$
- Оставшийся случай: q(x) < p(x) и мы отвергли токен, тогда берем из распределения $(q(x) p(x))_+$

$$E(\# \text{ generated tokens}) = \frac{1 - \alpha^{\gamma + 1}}{1 - \alpha}$$

 $\hat{\mathbf{c}}$ - отношение арифметических операций на токен аппроксимационной модели M_q к арифметическим операциям целевой модели M_p .

Теорема 3.11. Ожидаемый коэффициент увеличения общего числа операций алгоритма равен $\frac{(1-\alpha)(\gamma \hat{c}+\gamma+1)}{1-\alpha^{\gamma+1}}$

Уравнение улучшения времени: $\frac{1-\alpha^{\gamma+1}}{(1-\alpha)(\gamma c+1)}$

Обзор аппроксимационных моделей

- ▶ Биграммная модель Т5-XXL
- $ightharpoonup M_q$ могут быть простыми эвристиками
- Можно использовать нерекурсивные модели

TASK	M_q	ТЕМР	γ	α	SPEED
EnDe	T5-SMALL ★	0	7	0.75	3.4X
ENDE	T5-BASE	0	7	0.8	2.8X
ENDE	T5-LARGE	0	7	0.82	1.7X
ENDE	T5-SMALL ★	1	7	0.62	2.6X
ENDE	T5-BASE	1	5	0.68	2.4X
EnDE	T5-LARGE	1	3	0.71	1.4X
CNNDM	T5-SMALL ★	0	5	0.65	3.1X
CNNDM	T5-BASE	0	5	0.73	3.0X
CNNDM	T5-LARGE	0	3	0.74	2.2X
CNNDM	T5-SMALL ★	1	5	0.53	2.3X
CNNDM	T5-BASE	1	3	0.55	2.2X
CNNDM	T5-LARGE	1	3	0.56	1.7X

Литература

- ▶ Deepmind Paper: https://arxiv.org/abs/2302.01318
- Google Paper: https://arxiv.org/abs/2211.17192