Dimensión métrica

• Sea M=(X,d) un espacio métrico. Si X es un conjunto infinito pondremos $|X|=+\infty$.

- Sea M=(X,d) un espacio métrico. Si X es un conjunto infinito pondremos $|X|=+\infty$.
- Un conjunto $A \subseteq X$ es un generador métrico de M si para todo par de puntos diferentes $x, y \in X$, existe un punto $a \in A$ tal que $d(x, a) \neq d(y, a)$.

2 / 17

Dimensión métrica

- Sea M = (X, d) un espacio métrico. Si X es un conjunto infinito pondremos $|X| = +\infty$.
- Un conjunto $A \subseteq X$ es un generador métrico de M si para todo par de puntos diferentes $x, y \in X$, existe un punto $a \in A$ tal que $d(x, a) \neq d(y, a)$.
- Un generador métrico ordenado (x_1,\ldots,x_r) induce un sistema de coordenadas en M, ya que la aplicación $\psi:X\to\mathbb{R}^r$ dada por $\psi(x)=\Big(d(x,x_1),\ldots,d(x,x_r)\Big)$ es inyectiva.

Dimensión métrica 2 / 17

- Sea M = (X,d) un espacio métrico. Si X es un conjunto infinito pondremos $|X| = +\infty$.
- Un conjunto $A \subseteq X$ es un generador métrico de M si para todo par de puntos diferentes $x, y \in X$, existe un punto $a \in A$ tal que $d(x, a) \neq d(y, a)$.
- Un generador métrico ordenado (x_1,\ldots,x_r) induce un sistema de coordenadas en M, ya que la aplicación $\psi:X\to\mathbb{R}^r$ dada por $\psi(x)=\Big(d(x,x_1),\ldots,d(x,x_r)\Big)$ es inyectiva.
- Informalmente, si un objeto en M conoce su distancia hasta cada punto de un generador métrico, entonces sabe exactamente dónde se encuentra en M.

4 D > 4 A > 4 B > 4 B > 9 Q

2 / 17

- Sea M=(X,d) un espacio métrico. Si X es un conjunto infinito pondremos $|X|=+\infty$.
- Un conjunto $A \subseteq X$ es un generador métrico de M si para todo par de puntos diferentes $x, y \in X$, existe un punto $a \in A$ tal que $d(x, a) \neq d(y, a)$.
- Un generador métrico ordenado (x_1,\ldots,x_r) induce un sistema de coordenadas en M, ya que la aplicación $\psi:X\to\mathbb{R}^r$ dada por $\psi(x)=\Big(d(x,x_1),\ldots,d(x,x_r)\Big)$ es inyectiva.
- Informalmente, si un objeto en M conoce su distancia hasta cada punto de un generador métrico, entonces sabe exactamente dónde se encuentra en M.
- Sea $\mathcal{R}(M)$ el conjunto de generadores métricos de M.

Dimensión métrica 2 / 17

- Sea M=(X,d) un espacio métrico. Si X es un conjunto infinito pondremos $|X|=+\infty$.
- Un conjunto $A \subseteq X$ es un generador métrico de M si para todo par de puntos diferentes $x, y \in X$, existe un punto $a \in A$ tal que $d(x, a) \neq d(y, a)$.
- Un generador métrico ordenado (x_1,\ldots,x_r) induce un sistema de coordenadas en M, ya que la aplicación $\psi:X\to\mathbb{R}^r$ dada por $\psi(x)=\Big(d(x,x_1),\ldots,d(x,x_r)\Big)$ es inyectiva.
- Informalmente, si un objeto en M conoce su distancia hasta cada punto de un generador métrico, entonces sabe exactamente dónde se encuentra en M.
- Sea $\mathcal{R}(M)$ el conjunto de generadores métricos de M.
- La dimensión métrica de M=(X,d) se define como $\dim_m(M)=\inf\{|A|:A\in\mathcal{R}(M).\}$

Dimensión métrica 2 / 17

- Sea M = (X,d) un espacio métrico. Si X es un conjunto infinito pondremos $|X| = +\infty$.
- Un conjunto $A \subseteq X$ es un generador métrico de M si para todo par de puntos diferentes $x, y \in X$, existe un punto $a \in A$ tal que $d(x, a) \neq d(y, a)$.
- Un generador métrico ordenado (x_1,\ldots,x_r) induce un sistema de coordenadas en M, ya que la aplicación $\psi:X\to\mathbb{R}^r$ dada por $\psi(x)=\Big(d(x,x_1),\ldots,d(x,x_r)\Big)$ es inyectiva.
- Informalmente, si un objeto en M conoce su distancia hasta cada punto de un generador métrico, entonces sabe exactamente dónde se encuentra en M.
- Sea $\mathcal{R}(M)$ el conjunto de generadores métricos de M.
- La dimensión métrica de M=(X,d) se define como $\dim_m(M)=\inf\{|A|:A\in\mathcal{R}(M).\}$
- Un conjunto $A \subseteq X$ es una base métrica de M si $A \in \mathcal{R}(M)$ y $|A| = \dim_m(M)$.

Dimensión métrica

Ejemplo

 $\dim_m(K_1+C_4)=2$. La figura muestra una base de K_1+C_4 y el correspondiente sistema de coordenadas

Calcula

Calcula

- \circ dim_m(C_n) =
- \circ dim $_m(Q_3) =$

- \circ dim_m $(C_n) = 2$
- $\bullet \ \dim_m(Q_3) = 3$

Calcula la dimensión métrica del grafo de Petersen.

5 / 17

Calcula la dimensión métrica del grafo de Petersen.

Los vértices en negro forman una base métrica.

Sea G = (V, E) un grafo conexo de orden $n \ge 2$.

Demuestra que $\dim_m(G) = 1$ si y solo si $G \cong P_n$.

Sea G = (V, E) un grafo conexo de orden $n \ge 2$.

Demuestra que $\dim_m(G) = 1$ si y solo si $G \cong P_n$.

Solución

• Como todo vértice de grado uno en P_n forma un generador métrico, $\dim_m(P_n) = 1$.

Sea G = (V, E) un grafo conexo de orden $n \ge 2$. Demuestra que $\dim_m(G) = 1$ si y solo si $G \cong P_n$.

Solución

- Como todo vértice de grado uno en P_n forma un generador métrico, $\dim_m(P_n) = 1$.
- Si $\dim_m(G)=1$, entonces para toda base métrica $\{w\}$ de G y todo $x,y\in V(G)$, con $x\neq y$, tenemos que $d(w,x)\neq d(w,y)$ Por lo tanto, el conjunto $\{d(w,x):x\in V(G)\setminus \{w\}\}$ tiene cardinal n-1, lo que implica que G tiene diámetro n-1, y por eso $G\cong P_n$.

6 / 17

Sea G un grafo conexo de orden $n \ge 2$ y diámetro D. Demuestra que

$$\dim_m(G) \leq n - D.$$

Sea G un grafo conexo de orden $n \ge 2$ y diámetro D. Demuestra que

$$\dim_m(G) \leq n - D.$$

Solución

Sea x_0,x_1,\ldots,x_D un camino diametral en G. Como $d(x_0,x_i)=i$ para todo $i\in\{1,\ldots,D\}$, el conjunto $X=V(G)\setminus\{x_1,\ldots,x_D\}$ es un generador métrico G, de ahí que $\dim_m(G)\leq |X|=n-D$.

Sea G un grafo conexo de orden $n \ge 2$.

Demuestra que $\dim_m(G) = n-1$ si y solo si $G \cong K_n$.

Sea G un grafo conexo de orden $n \ge 2$.

Demuestra que $\dim_m(G) = n-1$ si y solo si $G \cong K_n$.

Solución

Es fácil ver que $\dim_m(K_n)=n-1$. Por otro lado, si G tiene diámetro $D\geq 2$, por el ejercicio anterior, $\dim_m(G)\leq n-D\leq n-2$.

Calcula $\dim_m(P_n\square P_{n'})$ para todo par de enteros $n\geq 2$ y $n'\geq 2$.

Calcula $\dim_m(P_n \square P_{n'})$ para todo par de enteros $n \ge 2$ y $n' \ge 2$.

Solución

• Sean $V(P_n)=\{0,1,\ldots,n-1\}$ y $V(P_{n'})=\{0,1,\ldots,n'-1\}$, donde vértices consecutivos son adyacentes.

Calcula $\dim_m(P_n \square P_{n'})$ para todo par de enteros $n \ge 2$ y $n' \ge 2$.

- Sean $V(P_n) = \{0, 1, ..., n-1\}$ y $V(P_{n'}) = \{0, 1, ..., n'-1\}$, donde vértices consecutivos son adyacentes.
- Como $P_n \square P_{n'}$ no es un camino, $\dim_m(P_n \square P_{n'}) \ge 2$.

Calcula $\dim_m(P_n \square P_{n'})$ para todo par de enteros $n \ge 2$ y $n' \ge 2$.

- Sean $V(P_n) = \{0, 1, ..., n-1\}$ y $V(P_{n'}) = \{0, 1, ..., n'-1\}$, donde vértices consecutivos son adyacentes.
- Como $P_n \square P_{n'}$ no es un camino, $\dim_m(P_n \square P_{n'}) \ge 2$.
- Veamos que $\dim_m(P_n\square P_{n'})=2$. Con este fin, supongamos que $B=\{(0,0),(n-1,0)\}$ no es un generador métrico.

Calcula $\dim_m(P_n \square P_{n'})$ para todo par de enteros $n \ge 2$ y $n' \ge 2$.

- Sean $V(P_n) = \{0, 1, ..., n-1\}$ y $V(P_{n'}) = \{0, 1, ..., n'-1\}$, donde vértices consecutivos son adyacentes.
- Como $P_n \square P_{n'}$ no es un camino, $\dim_m(P_n \square P_{n'}) \ge 2$.
- Veamos que $\dim_m(P_n \square P_{n'}) = 2$. Con este fin, supongamos que $B = \{(0,0), (n-1,0)\}$ no es un generador métrico.
- En tal caso, para vértices diferentes (x,y) y (x',y') obtenemos $x+y=d_{P_n\square P_{n'}}((0,0),(x,y))=d_{P_n\square P_{n'}}((0,0),(x',y'))=x'+y'$ $n-1-x+y=d_{P_n\square P_{n'}}((n-1,0),(x,y))=d_{P_n\square P_{n'}}((n-1,0),(x',y'))=n-1-x'+y'.$

Calcula $\dim_m(P_n \square P_{n'})$ para todo par de enteros $n \ge 2$ y $n' \ge 2$.

- Sean $V(P_n) = \{0, 1, ..., n-1\}$ y $V(P_{n'}) = \{0, 1, ..., n'-1\}$, donde vértices consecutivos son adyacentes.
- Como $P_n \square P_{n'}$ no es un camino, $\dim_m(P_n \square P_{n'}) \ge 2$.
- Veamos que $\dim_m(P_n \square P_{n'}) = 2$. Con este fin, supongamos que $B = \{(0,0), (n-1,0)\}$ no es un generador métrico.
- En tal caso, para vértices diferentes (x,y) y (x',y') obtenemos $x+y=d_{P_n\square P_{n'}}((0,0),(x,y))=d_{P_n\square P_{n'}}((0,0),(x',y'))=x'+y'$ $n-1-x+y=d_{P_n\square P_{n'}}((n-1,0),(x,y))=d_{P_n\square P_{n'}}((n-1,0),(x',y'))=n-1-x'+y'.$
- Así, x = x', y = y', lo que es una contradicción. Por lo tanto, B es un generador métrico, y eso implica que $\dim_m(P_n \square P_{n'}) \le |B| = 2$.

Calcula $\dim_m(P_n \square P_{n'})$ para todo par de enteros $n \ge 2$ y $n' \ge 2$.

- Sean $V(P_n) = \{0, 1, ..., n-1\}$ y $V(P_{n'}) = \{0, 1, ..., n'-1\}$, donde vértices consecutivos son advacentes.
- Como $P_n \square P_{n'}$ no es un camino, $\dim_m(P_n \square P_{n'}) \ge 2$.
- Veamos que $\dim_m(P_n \square P_{n'}) = 2$. Con este fin, supongamos que $B = \{(0,0), (n-1,0)\}$ no es un generador métrico.
- En tal caso, para vértices diferentes (x,y) y (x',y') obtenemos $x+y=d_{P_n\square P_{n'}}((0,0),(x,y))=d_{P_n\square P_{n'}}((0,0),(x',y'))=x'+y'$ $n-1-x+y=d_{P_n\square P_{n'}}((n-1,0),(x,y))=d_{P_n\square P_{n'}}((n-1,0),(x',y'))=n-1-x'+y'.$
- Así, x = x', y = y', lo que es una contradicción. Por lo tanto, B es un generador métrico, y eso implica que $\dim_m(P_n \square P_{n'}) \le |B| = 2$.
- En conclusión, $\dim_m(P_n \square P_{n'}) = 2$.

Demuestra que para todo grafo conexo ${\cal G}$ de orden n y diámetro ${\cal D}$,

$$D^{\dim_m(G)}+\dim_m(G)\geq n.$$

Demuestra que para todo grafo conexo G de orden n y diámetro D,

$$D^{\dim_m(G)}+\dim_m(G)\geq n.$$

Demostración

Para toda base métrica $B = \{x_1, \dots, x_r\}$, la siguiente función es inyectiva.

$$\psi: V \setminus B \longrightarrow \{1, \ldots, D\}^r$$

$$\psi(x) = \Big(d(x,x_1),\ldots,d(x,x_r)\Big).$$

Por lo tanto,
$$n-r=|V\setminus B|\leq D^r$$
.

Demuestra que para todo grafo G de orden n y diámetro $D \geq 2$, $\dim_m(G) \geq \frac{\ln\left(\frac{nD}{D+1}\right)}{\ln(D)}$.

Demuestra que para todo grafo G de orden n y diámetro $D \geq 2$, $\dim_m(G) \geq \frac{\ln\left(\frac{nD}{D+1}\right)}{\ln(D)}$.

Solución

Como $D \ge 2$ y $\dim_m(G) \ge 1$, obtenemos $D^{\dim_m(G)} \ge D \cdot \dim_m(G)$. Por otro lado, del ejercicio anterior,

$$\begin{split} D^{\dim_m(G)} + \dim_m(G) &\geq n \\ D^{\dim_m(G)+1} + D \cdot \dim_m(G) &\geq n \cdot D \\ D^{\dim_m(G)+1} + D^{\dim_m(G)} &\geq n \cdot D \\ D^{\dim_m(G)}(D+1) &\geq n \cdot D \\ D^{\dim_m(G)} &\geq \frac{n \cdot D}{D+1} \\ \dim_m(G) &\geq \log_D\left(\frac{n \cdot D}{D+1}\right) = \frac{\ln\left(\frac{nD}{D+1}\right)}{\ln(D)}. \end{split}$$

Sea G un grafo conexo de orden n y sea $r \geq 2$ un número entero. Determina el valor de $\dim_m(G \circ K_r)$ sabiendo que $N[x] \neq N[x']$ para todo par de vértices diferentes $x, x' \in V(G)$.

Para todo $u \in V(G)$, el subgrafo de $G \circ K_r$ inducido por $V_u = \{u\} \times V(K_r)$ será denotado por H_u .

Para todo $u \in V(G)$, el subgrafo de $G \circ K_r$ inducido por $V_u = \{u\} \times V(K_r)$ será denotado por H_u .

Sea B una base métrica de $G \circ K_r$. Como para todo $u \in V(G)$, ningún vértice fuera de V_u distingue los vértices de V_u , el conjunto $B \cap V_u$ es un generador métrico de H_u , y por eso

$$\dim_m(G\circ K_r)=|B|=\sum_{u\in V(G)}|B\cap V_u|\geq \sum_{u\in V(G)}\dim_m(H_u)=n(r-1).$$

Para todo $u \in V(G)$, el subgrafo de $G \circ K_r$ inducido por $V_u = \{u\} \times V(K_r)$ será denotado por H_u .

Sea B una base métrica de $G \circ K_r$. Como para todo $u \in V(G)$, ningún vértice fuera de V_u distingue los vértices de V_u , el conjunto $B \cap V_u$ es un generador métrico de H_u , y por eso

$$\dim_m(G \circ K_r) = |B| = \sum_{u \in V(G)} |B \cap V_u| \ge \sum_{u \in V(G)} \dim_m(H_u) = n(r-1).$$

Sea X_u una base métrica de H_u para todo $u \in V(G)$, y tomemos dos vértices diferentes $(x,y),(x',y') \in V(G \circ K_r) \setminus X$.

13 / 17

Dimensión métrica

Para todo $u \in V(G)$, el subgrafo de $G \circ K_r$ inducido por $V_u = \{u\} \times V(K_r)$ será denotado por H_u .

Sea B una base métrica de $G \circ K_r$. Como para todo $u \in V(G)$, ningún vértice fuera de V_u distingue los vértices de V_u , el conjunto $B \cap V_u$ es un generador métrico de H_u , y por eso

$$\dim_m(G\circ K_r)=|B|=\sum_{u\in V(G)}|B\cap V_u|\geq \sum_{u\in V(G)}\dim_m(H_u)=n(r-1).$$

Sea X_u una base métrica de H_u para todo $u \in V(G)$, y tomemos dos vértices diferentes $(x,y),(x',y') \in V(G \circ K_r) \setminus X$. Como $H_u \cong K_r$ y X_u es una base métrica de H_u , tenemos que $x \neq x'$, ya que $|X_u| = r - 1$. Observe que si $x \not\sim x'$, entonces todo vértice en X_x distingue el par (x,y),(x',y'). Sea $x \sim x'$. Como $N[x] \neq N[x']$, sin perder generalidad podemos asumir que existe $x'' \in N(x') \setminus N(x)$, y por eso todo vértice en $X_{x''}$ distingue el par (x,y),(x',y'). Por lo tanto, X es un generador métrico de $G \circ K_r$. De ahí que $\dim_m(G \circ K_r) \leq \sum_{u \in V(G)} |X_u| = \sum_{u \in V(G)} \dim_m(H_u) = n(r-1)$.

Dimensión de adyacencia

- Sea G = (V, E) un grafo conexo.
- El par $(V, d_{G,2})$, donde $d_{G,2}(x,y) = \min\{d_G(x,y), 2\}$ es un espacio métrico.
- La dimensión métrica de $(V, d_{G,2})$ se conoce como la dimensión de adyacencia de G y se denota por $\dim_A(G)$.

Dimensión métrica

• La dimensión de adyacencia tiene sentido para grafos no conexos.

- La dimensión de adyacencia tiene sentido para grafos no conexos.
- Para todo grafo conexo G, se cumple que

$$\dim_A(G) \ge \dim_m(G)$$
.

- La dimensión de adyacencia tiene sentido para grafos no conexos.
- Para todo grafo conexo G, se cumple que

$$\dim_A(G) \ge \dim_m(G)$$
.

• Si G es un grafo de diámetro 2, entonces $\dim_A(G) = \dim_m(G)$.

Dimensión métrica

- La dimensión de adyacencia tiene sentido para grafos no conexos.
- Para todo grafo conexo G, se cumple que

$$\dim_A(G) \geq \dim_m(G)$$
.

- Si G es un grafo de diámetro 2, entonces $\dim_A(G) = \dim_m(G)$.
- Pon un ejemplo de grafo que muestre que el recíproco de la afirmación anterior no se cumple.

Dimensión métrica 15 / 17

Determina una base de adyacencia de $P_4 \odot P_5$.

Determina una base de adyacencia de $P_4 \odot P_5$.

Solución

Los vértices en negro forman una base de adyacencia de $P_4\odot P_5.$

Demuestra que para todo grafo conexo G de orden $n \ge 2$ y todo grafo H de orden n' > 2,

$$\dim_m(G\odot H)=n\cdot\dim_A(H).$$

Demuestra que para todo grafo conexo G de orden $n \geq 2$ y todo grafo H de orden $n' \geq 2$,

$$\dim_m(G\odot H)=n\cdot\dim_A(H).$$

Solución

Escribe los detalles y compara con los apuntes.

