タスク不変な表現学習のためのVAEの最適な事前分布

高橋大志¹,岩田具治¹,熊谷充敏¹,金井関利¹,山田真徳¹,山中友貴¹,鹿島久嗣² ¹NTT,²京都大学

1. Conditional Variational Autoencoder

- Variational Autoencoder (VAE) は教師なし表現学習のための強力な潜在変数モデルだが、学習データ数が少ない時性能が低下することが知られている
- この問題を解決するため、複数タスクからタスク不変な潜在 変数を学習する Conditional VAE (CVAE) が提案されている

standard Gaussian prior

downstream applications

• CVAEは、s が与えられた下でのx の条件付き確率を下記でモデル化する:

$$p_{\theta}(\mathbf{x}|s) = \int \underbrace{p_{\theta}(\mathbf{x}|\mathbf{z},s)p(\mathbf{z})d\mathbf{z}}_{\text{decoder prior}} = \mathbb{E}_{\underbrace{q_{\phi}(\mathbf{z}|\mathbf{x},s)}_{\text{encoder}}} \left[\frac{p_{\theta}(\mathbf{x}|\mathbf{z},s)p(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x},s)} \right]$$

• CVAEは、下記の対数尤度の下界である変分下界 (evidence lower bound, ELBO) を最大化するように学習される:

2. 問題と貢献

- CVAEは、ある程度 z の s への依存性を減らせるが、多くの場合はこのタスク依存性が残ってしまう
- ・ この研究の貢献は下記の3点:
- 1. タスク依存性の原因を調査し、**単純な事前分布**が原因の一つであることを明らかにした
- 2. タスク依存性を減らすという観点で、最適な事前分布を提案 した
- 3. 提案手法で学習した表現が複数のタスク上で有効であることを、理論的・実験的に示した

3. 相互情報量

• \mathbf{z} の s への依存性の原因を調べるために、二つの確率変数の相互的な依存性を測定する相互情報量 I(S; Z) を導入する

4a. 定理 1

• CVAEは、相互情報量 I(S;Z) をそのルーズな上界である $\mathcal{R}(\phi)$ を通して最小化している

• つまり、単純な事前分布 $p(\mathbf{z})$ が**タスク依存性の原因の一つ**であり、 $q_{\phi}(\mathbf{z}) = \int q_{\phi}(\mathbf{z}|\mathbf{x},s)p_{D}(\mathbf{x},s)\mathrm{d}\mathbf{x}$ がタスク依存性を減らす上での最適な事前分布である

4b. 定理 2

• 最適な事前分布を持つELBO $\mathcal{F}_{\text{Proposd}}(\theta,\phi)$ は、オリジナルの ELBO $\mathcal{F}_{\text{CVAE}}(\theta,\phi)$ よりも、常に大きいか等しい:

 $\mathcal{F}_{\text{Proposed}}(\theta, \phi) = \mathcal{F}_{\text{CVAE}}(\theta, \phi) + D_{KL}(q_{\phi}(\mathbf{z}) || p(\mathbf{z})) \ge \mathcal{F}_{\text{CVAE}}(\theta, \phi)$

• つまり、 $\mathcal{F}_{\text{Proposd}}(\theta, \phi)$ は $\mathcal{F}_{\text{CVAE}}(\theta, \phi)$ と比べて**より良い対数 尤度の下界**となっており、良い表現獲得に貢献する

5. 実験

USPS→MNIST における潜在変数の可視化

密度推定性能

	VAE	CVAE	Proposed	
USPS→MNIST	-163.25 ± 2.15	-152.32 ± 1.64	-149.08 ± 0.86	
MNIST→USPS	-235.23 ± 1.54	-211.18 ± 0.55	-212.11 ± 1.48	
Synth→SVHN	1146.04 ± 35.65	1397.36 ± 10.89	1430.27 ± 11.44	
SVHN→Synth	760.66 ± 8.85	814.63 ± 10.09	855.51 ± 11.41	

下流タスク (クラス分類) の性能

I MUDDING (D DINI) VOILIBU				
	VAE	CVAE	Proposed	
USPS→MNIST	0.52 ± 2.15	0.53 ± 0.02	0.68 ± 0.01	
MNIST→USPS	0.64 ± 0.01	0.67 ± 0.01	0.74 ± 0.02	
Synth→SVHN	0.20 ± 0.00	0.21 ± 0.00	0.19 ± 0.00	
SVHN→Synth	0.25 ± 0.01	0.25 ± 0.00	0.26 ± 0.00	