Свертка.

Блуменау Марк, магистратура ИИ

Почему полносвязные слои не решают всё?

Возьмем MNIST, 28 x 28 пикселей -> на вход 784 числа

На выходе 10 чисел (по кол-ву цифр)

Пусть в скрытом слое 1000 параметров, тогда итого:

(784+1)*1000 + (1000 + 1)*10 = 785,000 + 10,100 = очень много

А что значит очень много? Переобучиться не так уж сложно...

Но ведь есть дропаут!

Да в целом и без него можно уговорить

Table 1: Error rates on MNIST test set.

ID	architecture	test error for	best test	simulation	weights
	(number of neurons in each layer)	best validation [%]	error [%]	time [h]	[milions]
1	1000, 500, 10	0.49	0.44	23.4	1.34
2	1500, 1000, 500, 10	0.46	0.40	44.2	3.26
3	2000, 1500, 1000, 500, 10	0.41	0.39	66.7	6.69
4	2500, 2000, 1500, 1000, 500, 10	0.35	0.32	114.5	12.11
5	9 × 1000, 10	0.44	0.43	107.7	8.86

А если не получится, то будет дропаут, да?

Подумать на досуге: возьмем картинку 224 на 224. А дальше слои 1000, 500 и 100, 10.

Нет. Лучшее лекарство от проблем – убить параметры!

Специфика картинок

https://srome.github.io/Jitter,-Convolutional-Neural-Networks,-and-a-Kaggle-Framework/

Или нобелевка Hubel и Wiesel по медицине

уйти до сообщения в чате, без шуток)

Страшилка на ночь (впечатлительным просьба

Дали людям иголочку...

Вот это "нейронки" якобы пытаются повторить

Рис. 3.26. Оборудование для экспериментального обнаружения и изучения рецептивных полей

Х. Шиффман, Ощущение и восприятие, 5-е издание, 130 стр.

Х. Шиффман, Ощущение и восприятие, 5-е издание, 124 стр.

Давайте теперь соберем "похожее"

Повторим операцию много раз

Conv2d

Максимум свертки инвариантен к сдвигам

Вы только что придумали велосипед

OpenCV для классики

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Делай раз

$$\operatorname{Im}^{out}(x,y) = \sum_{i=0}^{d} \sum_{j=0}^{d} \left(K(i,j) \operatorname{Im}^{in}(x+i,y+j) + b \right)$$

Ho у нас обычно хотя бы RedGreenBlue

i=-d i=-d $\overline{c=1}$

$$\operatorname{Im}^{out}(x,y) = \sum_{i=1}^{d} \sum_{j=1}^{d} \sum_{i=1}^{C} \left(K(i,j,c) \operatorname{Im}^{in}(x+i,y+j,c) + b \right)$$

Хотим искать много паттернов

 $Im^{out}(x, y, t) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \left(K_t(i, j, c) Im^{in}(x + i, y + j, c) + b_t \right)$

А сколько параметров?

В терминах формулы:

$$\operatorname{Im}^{out}(x, y, t) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} \sum_{c=1}^{c} \left(K_t(i, j, c) \operatorname{Im}^{in}(x + i, y + j, c) + b_t \right)$$

 $((2d+1)^2*C+1)*T$

В других терминах: К - размер ядра, как в торче, С - каналы

$$K \cdot K \cdot C_{in} \cdot C_{out} + C_{out}$$

В чем подвох? Умножений не сильно мало

H, W – выходного тензора

$$H \cdot W \cdot C_{out} \cdot (K \cdot K \cdot C_{in})$$

Поле восприятия (у глаза не так)

Поле восприятия: 3 х 3

Receptive field

Поле восприятия: 5 х 5

Stride

Dilation

Pooling (max, etc.)

1	0	2	1	0	0	
0	1	3	2	1	2	
						+
						+
						L

В чем профит от всего этого?

Выигрываем в поле восприятия (а как будто хочется на последних слоях поле восприятия полное)

Уменьшаем размер картинки, количество слоев и параметров

А вдруг края важны?

Обычная свертка не работает при

Не увидим, что фильтр имеет хороший отклик при помещении центра в этот пиксель

0	0	1
0	0	1
1	1	1

Padding

https://github.com/vdumoulin/conv_arithmetic

Zero padding

0	0	0	0	0	0	0	0
0							0
0							0
0							0
0							0
0							0
0							0
0	0	0	0	0	0	0	0

*

Reflection

3	6	6	7	8				
8	7	1	2	3				
2	1	1	2	3	4	5	6	
7	6	6	7	8	9	8	7	
2	1	1	2	3				

Replication

1	1	1	2	3				
1	1	1	2	3				
1	1	1	2	3	4	5	6	
6	6	6	7	8	9	8	7	
1	1	1	2	3				

А как посчитать размер выходного "изображения"?

P. S.: Pooling тоже на самом деле так меняет, просто используйте формулу ниже :)

$$O = \frac{W - F + 2P}{S} + 1$$

W — размер входа, F — размер ядра,

Р — паддинг, S — шаг

Типичная архитектура в CV N лет назад

https://medium.com/@draj0718/convolutional-neural-networks-cnn-architectures-explained-716fb197b243

Flatten

Где почитать-посмотреть?

https://cs231n.github.io/