Electric Material

Current (1)

Current Type

$$I = \frac{dQ}{dt} = \int_{S} \vec{J} \cdot d\vec{S} = \int_{L} \vec{K} \cdot dL \vec{a}_{N}$$

I : Current (A)

 \vec{J} : Current density (A/m²)

 \vec{K} : Surface current (A/m)

Current (2)

Current Density

$$\vec{J} = \rho_{v} \vec{v}$$

 ρ_{v} : Volume charge density (C/m³)

 \vec{v} : Charge velocity (m/s)

Continuity of Current

$$\nabla \cdot \vec{J} = -\frac{\partial \rho_{v}}{\partial t}$$

Conductor

Conductor Characteristic

$$\vec{J} = \sigma \vec{E}$$

Conductivity and Resistivity

$$\sigma = \frac{1}{\rho}$$

 σ : Conductivity (S/m)

 ρ : Resistivety (Ω/m)

Dielectric (1)

Dipole Moment _F

$$\vec{p} = Q_b \vec{d}$$

$$\vec{p} = Q_b \vec{d}$$

$$\vec{p} = D_b \vec{d}$$

$$\vec{p} = Q_b \vec{d}$$

 \vec{p} : Dipole moment (C·m)

 \vec{p}_{total} : Total dipole moment (C·m)

 \vec{P} : Polarization (C/m²)

Q_b: Bound charge (C)

d: Distance form negative to positive charge (m)

Dielectric (2)

Dielectric Characteristic

$$\vec{D} = \varepsilon_r \varepsilon_0 \vec{E} = \varepsilon \vec{E}$$

 $\varepsilon = \varepsilon_r \varepsilon_0$: Permittivity (F/m)

 ε_r : Relative permittivity or dielectric constant

Electric Boundary Condition and Capacitance

Boundary Condition of Conductor (1)

Tangent

Boundary Condition of Conductor (2)

Normal

Boundary Condition of Dielectric (1)

Tangent

Boundary Condition of Dielectric (2)

Normal

Boundary Condition Dielectric (3)

Angle

A: E or D, i: 1 or 2

Capacitance

$$C = \frac{Q}{V}$$

C: Capacitance (F)

Example

กำหนดให้บริเวณที่ 1 (z>0) มี $\varepsilon_{r1}=10$ และบริเวณที่ 2 (z<0) มี $\varepsilon_{r2}=7$ มี $\vec{E}_2=20\vec{a}_x-50\vec{a}_y+100\vec{a}_z$ V/m จงหา \vec{E}_1 , \vec{D}_1 , \vec{D}_2 , θ_1 , θ_2

Solution (1)

หา
$$ar{D}_{\!\scriptscriptstyle 2}$$
 ได้

$$\begin{split} \vec{D}_2 &= \varepsilon_{r2} \varepsilon_0 \vec{E}_2 \\ &= 7 \times \frac{1}{36\pi} \times 10^{-9} \times \left(20\vec{a}_x - 50\vec{a}_y + 100\vec{a}_z \right) \\ &= 1.24\vec{a}_x - 3.09\vec{a}_y + 6.19\vec{a}_z \text{ nC/m}^2 \end{split}$$

พิจารณาในแนวสัมผัส

$$\vec{E}_{t1} = \vec{E}_{t2}$$

$$= 20\vec{a}_x - 50\vec{a}_y \text{ V/m}$$

$$\begin{aligned}
\vec{D}_{t1} &= \varepsilon_{r1} \varepsilon_0 \vec{E}_{t1} \\
&= 10 \times \frac{1}{36\pi} \times 10^{-9} \times \left(20\vec{a}_x - 50\vec{a}_y\right) \\
&= 1.77\vec{a}_x - 4.42\vec{a}_y \text{ nC/m}^2
\end{aligned}$$

Solution (2)

พิจารณาในแนวตั้งฉาก $\vec{D}_{N1} = \vec{D}_{N2} = 6.19\vec{a}_z \text{ nC/m}^2$ $\vec{E}_{N1} = \frac{1}{\varepsilon_{r1}\varepsilon_0} \vec{D}_N = \frac{1}{10 \times \frac{1}{36\pi} \times 10^{-9}} \times 6.19 \times 10^{-9} \vec{a}_z$ $= 70.01\bar{a}_z \text{ V/m}$ จะได้ $\vec{E}_1 = \vec{E}_{t1} + \vec{E}_{N1}$ $=20\vec{a}_{x}-50\vec{a}_{y}+70.01\vec{a}_{z}$ V/m $\vec{D}_{N1} = \vec{D}_{t1} + \vec{D}_{N1}$ $=1.77\vec{a}_x - 4.42\vec{a}_v + 6.19\vec{a}_z$ nC/m²

Solution (3)

หามุมได้

$$\theta_1 = \tan^{-1} \left(\frac{Et_1}{E_{N1}} \right) = \tan^{-1} \left(\frac{\sqrt{20^2 + (-50)^2}}{70.01} \right)$$
$$= 37.57^{\circ}$$

$$\theta_2 = \tan^{-1} \left(\frac{Et_2}{E_{N2}} \right) = \tan^{-1} \left(\frac{\sqrt{20^2 + (-50)^2}}{100} \right)$$

$$= 28.30^{\circ}$$

Quiz 4

กำหนดให้บริเวณที่ 1 (
$$z>0$$
) มี $\varepsilon_{r1}=10$ และบริเวณที่ 2 ($z<0$) มี $\varepsilon_{r2}=7$ มี $\bar{E}_1=20\bar{a}_x-50\bar{a}_y+100\bar{a}_z$ V/m จงหา \bar{E}_2 , \bar{D}_1 , \bar{D}_2 , θ_1 , θ_2

$$\bar{D}_{1} = 1.77\bar{a}_{x} - 4.42\bar{a}_{y} + 8.84\bar{a}_{z} \text{ nC/m}^{2}$$

$$\bar{E}_{2} = 20\bar{a}_{x} - 50\bar{a}_{y} + 142.83\bar{a}_{z} \text{ V/m}$$

$$\bar{D}_{2} = 1.24\bar{a}_{x} - 3.09\bar{a}_{y} + 8.84\bar{a}_{z} \text{ nC/m}^{2}$$

$$\theta_{1} = 28.30^{\circ}$$

$$\theta_{2} = 20.66^{\circ}$$

Assignment 4

กำหนดให้บริเวณที่ 1 (y>0) มี $\varepsilon_{r1}=6$ และบริเวณที่ 2 (y<0) มี $\varepsilon_{r2}=3$ มี $\bar{D}_2=2\bar{a}_x-\bar{a}_y+3\bar{a}_z$ nC/m² จงหา \bar{E}_1 , \bar{D}_1 , \bar{E}_2 , θ_1 , θ_2

$$\begin{split} \vec{E}_2 &= 75.40\vec{a}_x - 37.70\vec{a}_y + 113.10\vec{a}_z \text{ V/m} \\ \vec{E}_1 &= 75.40\vec{a}_x - 18.85\vec{a}_y + 113.10\vec{a}_z \text{ V/m} \\ \vec{D}_1 &= 4.00\vec{a}_x - 1.00\vec{a}_y + 6.00\vec{a}_z \text{ nC/m}^2 \\ \theta_1 &= 82.10^\circ \\ \theta_2 &= 74.50^\circ \end{split}$$

