

### министерство высшего и среднего СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ СССР

#### ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ

## ПРИБОРОСТРОЕНИЕ

TOM XXIII

№ 5

ОТ ДЕЛЬНЫЙ ОТТИСК

ИЗДАНИЕ ЛЕНИНГРАДСКОГО ИНСТИТУТА ТОЧНОЙ МЕХАНИКИ И ОПТИКИ 1981

УДК 621.391

# КВАЗИОПТИМАЛЬНАЯ ОЦЕНКА ШИРИНЫ СПЕКТРА МОЩНОСТИ СЛУЧАЙНОГО ПРОЦЕССА

А. П. ТРИФОНОВ, С. А. ГАЛУН

Воронежский государственный университет им. Ленинского комсомола

Рассмотрены условия аппаратурной реализации пирины спектра мощности гауссовского случайного процесса с помощью спектранализатора последовательного действия (квазиоптимального измерителя. Анализ характеристик оценки ширины спектра выполнен в предположении, что величина спектральной плотности процесса известна неточно.

Как известно [1, 2 и др.], спектральный анализ находит широкое применение в различных приложениях теории случайных процессов. К настоящему времени разработано большое число спектранализаторов параллельного и последовательного действия. Однако, как прави-

ло, синтез спектранализаторов выполняется в предположении, что форма измеряемого спектра мощности случайного процесса априори неизвестна. В то же время во многих случаях физические представления о механизме генерации процесса позволяют считать известной с некоторой точностью форму его спектра мощности и необходимо лишь измерить неизвестные параметры спектра мощности или функ-



Рис. 1

ции корреляции случайного процесса. Кроме того, весьма часто спектр мощности случайного процесса убывает довольно быстро за пределами некоторой полосы частот (рис. 1). При этом закон спадания спектра мощности, как правило, неизвестен. В таком случае полезной оказывается аппроксимация реального спектра мощности функцией вида

$$G_s(\omega, \Omega_0) = \begin{cases} N_s/2, & |\omega| \leqslant \Omega_0/2, \\ 0, & |\omega| > \Omega_0/2, \end{cases}$$
(1)

где  $\Omega_0$  — неизвестная ширина спектра мошности, которую надо измерить. Функция (1) представлена на рис. 1 штриховой линией.

В этой связи рассмотрим оценку параметра  $\Omega_0$  спектра мощности (1) гауссовского стационарного центрированного случайного процесса s(t) при условии, что на интервале [0;T] наблюдается сумма

$$x(t) = s(t) + n(t) \tag{2}$$

реализаций процесса s(t) и помехи n(t), причем s(t) и n(t) статистически независимы. Аддитивную помеху n(t) будем считать гауссовским белым шумом с односторонней спектральной плотностью  $N_0$ . Положим

вначале, что спектральная плотность  $N_s$  процесса s(t) априори известна и необходимо лишь измерить ширину спектра мощности  $\Omega_0$ , которая может принимать значения в интервале  $[\Omega_{\min}, \Omega_{\max}]$ . Для обработки процесса s(t) используем метод максимального правдоподобия [3, 4]. Логарифм функционала отношения правдоподобия с точностью до постоянных слагаемых составляет [3, 4]

$$M(\Omega) = \int_{0}^{T} \int_{0}^{T} x(t_1) x(t_2) \theta(t_1, t_2, \Omega) dt_1 dt_2 / 2 - H(\Omega) / 2.$$
 (3)

В (3) функция  $\theta(t_1, t_2, \Omega)$  находится из интегрального уравнения [4]

$$N_0\theta(t_1, t_2, \Omega)/2 + \int_0^T G_s(t_1-t, \Omega)\theta(t, t_2, \Omega)dt = 2G_s(t_1-t_2, \Omega)/N_0,$$
 (4)

где  $G_s(t_1-t_2, \Omega)$  — функция корреляции полезного сигнала s(t), а функция  $H(\Omega)$  определяется через свою производную соотношением [3]

$$dH(\Omega)/d\Omega = TN_s/(2\pi N_0) - \int_0^T \int_0^T \theta(t_1, t_2, \Omega) \partial G_s(t_1 - t_2, \Omega)/\partial \Omega dt_1 dt_2.$$

Оценка максимального правдоподобия параметра  $\Omega_0$  представляет собой положение абсолютного максимума функции (3), для получения которой надо найти решение уравнения (4). При произвольных значениях времени наблюдения T функцию  $\theta(t_1, t_2, \Omega)$  можно определить лишь численными методами. Полученный при этом измеритель реализуется с большими техническими трудностями и практического интереса не представляет. Кроме того, в точном решении уравнения (4) для произвольных T нет необходимости, поскольку сама модель спектра мощности (1) является приближенной. К тому же ошибки оценивания неизвестной ширины спектра мощности (1) обусловлены не только ограниченностью интервала наблюдения T, но и действием аддитивной помехи n(t).

Поэтому ограничимся рассмотрением измерителя (3) при  $T\gg 2\pi/\Omega_0$ , т. е. при условии высокой апостериорной точности оценки. Тогда, решив уравнение (4) с помощью преобразования Фурье, выражение (3)

можно переписать как

$$M(\Omega) = \frac{T_q}{\pi N_0 (1+q)} \int_0^{\Omega/2} s_T(\omega) d\omega - \frac{T\Omega}{4\pi} \ln(1+q), \qquad (5)$$

где  $s_T(\omega) = \left|\int\limits_0^T x(t) \exp(-j\omega t) \, dt\right|^2 / T$ — периодограмма реализации x(t),

а  $q=N_s/N_0$ . Таким образом, измеритель должен вырабатывать функцию (5) для всех  $\Omega \in [\Omega_{\min}; \Omega_{\max}]$ . В качестве оценки неизвестной ширины спектра  $\Omega_0$  используется значение  $\Omega_m$ , при котором  $M(\Omega)$  достигает абсолютного максимума. Измерения по (5) не являются оптимальными при конечных значениях времени наблюдения T. Однако получаемая с помощью этого измерителя оценка  $\Omega_m$  является асимптотически оптимальной при  $T \rightarrow \infty$ , так как при неограниченном увеличении времени наблюдения эта оценка сходится к оценке максимального

правдоподобия [3]. Кроме того, существенным достоинством измерения по (5) является относительная простота его реализации с помощью стандартных спектранализаторов. Один из способов построения измерителя (последовательный) поясняет рис. 2, где I— последовательный спектранализатор, анализирующий за время  $\Delta t \gg T$  диапазон частот [0;  $\Omega_{\rm max}$ ]; 2—решающее устройство, которое фиксирует положение  $t_m$  абсолютного максимума выходного сигнала на интервале  $[\Delta t \Omega_{\rm min}/\Omega_{\rm max}; \Delta t]$ ;  $s_0 = N_0(1+q)\ln(1+q)/2q$ . Оценка ширины спектра мощности  $\Omega_m$  однозначно связана с  $t_m$  соотношением  $\Omega_m = t_m \Omega_{\rm max}/\Delta t$ .



Рис. 2

Рассмотрим характеристики оценки ширины спектра мощности. На практике у случайного процесса со спектром мощности (1) обычно неизвестна не только ширина спектра мощности  $\Omega_0$ , но и спектральная плотность  $N_0$ . Поэтому при анализе измерителя (см. рис. 2) положим, что спектральная плотность процесса s(t) равна некоторой величине  $N_{s0} \neq N_s$ . Введем сигнальную  $S(\Omega)$  и шумовую  $N(\Omega)$  функции на выходе измерителя [3]

$$M(\Omega) = S(\Omega) + N(\Omega), \quad S(\Omega) = \langle M(\Omega) \rangle =$$

$$= \frac{T}{4\pi} \left\{ \frac{q^2}{\chi(1+q)} \min(\Omega_0, \Omega) - \Omega \left[ \ln(1+q) - \frac{q}{1+q} \right] \right\}, \quad (6)$$

$$N(\Omega) = M(\Omega) - \langle M(\Omega) \rangle,$$

где  $\chi = N_s/N_{s0}$  — параметр, характеризующий степень отклонения измерителя от асимптотически оптимального, для которого  $\chi = 1$ . При этом  $< N(\Omega) > = 0$  и

$$K_{N}(\Omega_{1}, \Omega_{2}) \equiv \langle N(\Omega_{1})N(\Omega_{2}) \rangle =$$

$$= \frac{Tq^{2}}{4\pi (1+q)^{2}} \begin{cases} \min(\Omega_{1}, \Omega_{2}) \left(1 + \frac{q}{\chi}\right)^{2}, & \min(\Omega_{1}, \Omega_{2}) < \Omega_{0}, \\ \min(\Omega_{1}, \Omega_{2}) + \frac{q}{\chi} \left(2 + \frac{q}{\chi}\right) \Omega_{0}, & \min(\Omega_{1}, \Omega_{2}) > \Omega_{0}. \end{cases}$$
(7)

Взаимно-однозначное непрерывное преобразование измеряемого параметра

$$\Omega = \frac{4\pi}{Tq^2} \begin{cases} l(1+q)^2/(1+q/\chi)^2, & l < l_0, \\ l(1+q)^2 - l_0(1+q)^2(q/\chi)(2+q/\chi)/(1+q/\chi)^2, & l > l_0, \end{cases}$$
 приводит выражения (6), (7) к виду  $\hat{M}(l) = M(\Omega(l)) = \hat{S}(l) + \hat{N}(l), \\ \langle \hat{N}(l) \rangle = 0, \langle \hat{N}(l_1) \hat{N}(l_2) \rangle = \min(l_1, l_2),$ 

$$\hat{S}(l) = \begin{cases} \Gamma_1(\chi, q) l, & l < l_0, \\ \Gamma_2(\chi, q) l_0 - [\Gamma_2(\chi, q) - \Gamma_1(\chi, q)] l, & l > l_0, \end{cases}$$

1e-

ки

1].

3)

а пи-

ия чеить зу-

еса 00щнера-

ΠΟ-Ω<sub>0</sub>, pe-(3)

(5)

(t), нк-

шитильлу-

нии ого где

$$l_{0} = \frac{Tq^{2}}{4\pi} \left( 1 + \frac{q}{\chi} \right)^{2} \Omega_{0} / (1+q)^{2},$$

$$\Gamma_{1}(\chi, q) = \left( \frac{1+q/\chi}{1+q} \right) \left[ q \left( \frac{1+q/\chi}{1+q} \right) - \ln(1+q) \right] / q^{2},$$

$$\Gamma_{2}(\chi, q) = \frac{1}{\chi} \left( \frac{1+q}{1+q/\chi} \right) \left[ \left( \frac{1+q}{1+q/\chi} \right) (2+q/\chi) \ln(1+q) / q - 1 \right].$$
(8)

C

II K

H

При сделанных выше предположениях функция M(l) представляет собой реализацию марковского гауссовского процесса, коэффициенты сноса и диффузии которого определяются выражениями

$$a(t) = \begin{cases} \Gamma_1(\chi, q), & l < l_0, \\ \Gamma_1(\chi, q) - \Gamma_2(\chi, q), & l > l_0; \end{cases} b = 1.$$

Для расчета характеристик оценки  $\Omega_m$  воспользуемся подходом, развитым в [5]. Решив аналогично [5] соответствующие уравнения Фоккера—Планка—Колмогорова, найдем вместе с распределением оценки ее смещение

$$d(\Omega_m/\Omega_0, \chi) \simeq (2\pi/Tq^2) \left[ \Gamma_1{}^3(2\Gamma_2 - \Gamma_1) (1+q)^2 - (\Gamma_2 - \Gamma_1)^3 (\Gamma_1 + \Gamma_2) \times (1+q)^2 / (1+q/\chi)^2 \right] \times \Gamma_1{}^{-2}\Gamma_2{}^{-2} (\Gamma_2 - \Gamma_1)^{-2}$$

и рассеяние (средний квадрат ошибки)

$$V(\Omega_m | \Omega_0, \chi) \simeq (\Re^{-2}/T^2q^4) \{ [2\Gamma_2^3 - \Gamma_1^2(\Gamma_2 - \Gamma_1)] (\Gamma_2 - \Gamma_1)^4 (1+q)^4 / (1+q)^4 + \Gamma_1^4 (1+q)^4 [2\Gamma_2^3 - (\Gamma_2 - \Gamma_1)^2 (2\Gamma_2 - \Gamma_1)] \} \Gamma_1^{-4}\Gamma_2^{-3} (\Gamma_2 - \Gamma_1)^{-4}.$$

Полагая в формулах (8)-(10)  $\chi=1$ , получаем смещение  $d_0(\Omega_m|\Omega_0)$  и рассеяние  $V_0(\Omega_m|\Omega_0)$  асимптотически оптимальной оценки. При этом условные смещение и рассеяние оценки ширины спектра мощности не зависят от истинного значения  $\Omega_0$  и совпадают с безусловными характеристиками. Кроме того, при любых q>0  $d_0(\Omega_m)\leqslant 0$ . Выражения для  $d_0(\Omega_m)$ ,  $V_0(\Omega_m)$  существенно упрощаются, если выполняется условие  $q\ll 1$ , но  $q^2T\Omega_0\gg 1$ . Тогда  $d_0(\Omega_m)\simeq -2\Re/3Tq$ ,  $V_0(\Omega_m)\simeq 416\pi^2/T^2q^4$ . Аналогично при  $q\gg 1$  имеем:  $d_0(\Omega_m)\simeq -2\pi/T$ ,  $V_0(\Omega_m)\simeq 16\pi^2/T^2$ .

Рассмотрим, в какой степени незнание спектральной плотности анализируемого случайного процесса влияет на точность квазиоптимальной оценки ширины спектра мощности. С этой целью на рис. З приведены графики, иллюстрирующие уменьшение точности оценки  $\mathbf{p}(\chi) = V(\Omega_m | \Omega_0, \chi)/V_0(\Omega_m)$  по сравнению с асимптотически оптимальной оценкой. Зависимости  $\mathbf{p}(\chi)$  рассчитаны для различных значений отношения спектральных плотностей  $q_0 = N_{s0}/N_0$  анализируемого процесса s(t) и помехи n(t). Характер кривых рис. З показывает, что чем больше отношение  $q_0$ , тем слабее требования к точности, с которой должна быть известна спектральная плотность  $N_{s0}$ . Так, при  $q_0 = 0.1$  и допустимом увеличении рассеяния оценки вдвое по сравнению с асимптотически оптимальной, необходимо при синтезе измерителя знать значение спектральной плотности  $N_{s0}$  с точностью  $-29\% \div +26\%$ . Когда  $q_0 = 10$ , точность оценки также уменьшается, если предполагаемое значение  $N_s$  отличается от  $N_{s0}$  не более, чем на  $-85\% \div +364\%$ . Наконец, при

 $q_0 = 100$  рассеяние оценки практически не отличается от асимптотически оптимального значения (при  $N_s = N_{s0}$ ), если  $N_s$  больше (или мень-

ше)  $N_{s0}$  не более, чем в 10 раз. Причем, как следует из рис. 3, величину  $N_s$ , для которой синтезирован измеритель рис. 2, следует выбирать несколько заниженной по сравнению с ожидаемым истинным значением спектральной плотности  $N_{s0}$ .



Рис. 3

#### ЛИТЕРАТУРА

 Мирский Г. Я. Аппаратурное определение характеристик случайных процессов. — М.: Энергия, 1972.

 Виленкин С. Я. Статистическая обработка результатов исследования случайных функций. — М.: Энергия, 1979.

 Куликов Е. И., Трифонов А. П. Оценка параметров сигналов на фоне помех. — М.: Сов. радио, 1978.

 Вопросы статистической теории радиолокации. Т. 1. Под ред. Г. П. Тартаковского.— М.: Сов. радио, 1963. Авторы: П. А. Бакут, И. А. Большаков, Б. М. Герасимов и др.
 Трифонов А. П. Прием сигнала с неизвестной длительностью на фоне белого шума. — Радиотехника и электроника, 1977, т. 22, № 1.

Рекомендована кафедрой

радиофизики

(8)

co-

ТЫ

311-

ke-

ee

о) не кпя не а-

e-

он оа ыа и-

0, ie Поступила в редакцию 13 мая 1980 г.