Tema: Método de Holt.

Proporcionados los siguientes datos (96), calcular el suavizamiento exponencial por medio del método de Holt (α = .1 y β = .1, que fue los que mejor ajustaron al modelo) y las métricas de evaluación ECM, MAE y MAPE respecto a la serie de tiempo.

No	t	Y _t
1	ene-51	318
2	feb-51	281
3	mar-51	278
4	abr-51	250
5	may-51	231
6	jun-51	216
7	jul-51	223
8	ago-51	245
9	sep-51	269
10	oct-51	302
11	nov-51	325
12	dic-51	347
13	ene-52	342
14	feb-52	309
15	mar-52	299

Tabla 1 15 primeros registros para Método de Holt.

Suavizamiento exponencial por el Método de Holt.

Para estimaciones de Y que estén dentro de los valores conocidos.

$$\hat{Y}_{t+p} = L_t + pT_t$$

Para estimaciones de Y que estén fuera de los valores conocidos (predicciones).

$$\hat{Y}_{t+p} = L_t + pT_{t-S+p}$$

Se empieza con el cálculo de L y T. Se ha definido la siguiente convención:

David Montaño Castro.

Tarea 3. Serie para Método de Holt.

Tema: Método de Holt.

$$L_{t} = \alpha Y_{t} + (1 - \alpha)(L_{t-1} + T_{t-1})$$

Después, utilizando el valor calculado de Lt:

$$T_{t} = \beta (L_{t} - L_{t-1}) + (1 - \beta)T_{t-1}$$

			Beta	0.1		
No	No t		L _t	T _t	Y _{t est}	
1	ene-51	318	318.0000	0.0000	318.0	
2	feb-51	281	314.3000	=\$F\$6*(E9-E8)+(1-\$F\$6)*F8	

Posteriormente, ya se puede calcular el valor de Y estimado (p = 1 para las estimaciones conocidas):

$$\hat{Y}_{t+p} = L_t + pT_t$$

No t		Y _t	L _t	T _t	Y _{t est}	
1	ene-51	318	318.0000	0.0000	318.0	
2	feb-51	281	314.3000	-0.3700	=D9+1*F9	

Métricas de evaluación.

Es necesario recordar que el error **e** es igual a la diferencia entre el valor real y el estimado de Y:

No	t	Y _t	L _t	T _t	Y _{t est}	е
1	ene-51	318	318.0000	0.0000	318.0	0.0
2	feb-51	281	314.3000	-0.3700	280.6	=D9-G9

Tema: Método de Holt.

Después, para poder evaluar el modelo, se va a recurrir a 3 métricas:

Error Cuadrático Medio.

En este caso, **K** tomará el valor de 0 puesto que no se va a tomar en cuenta el valor de la predicción que se realizará más adelante.

$$ECM = \sqrt{\frac{\sum_{t=1}^{n} (Y_t - \hat{Y}_t)^2}{n - K}}$$

Con lo que se obtiene un resultado

RMSE 2.39236749

• Error Absoluto Medio

$$EAM = \frac{\sum_{t=1}^{n} |Y_t - \hat{Y}_t|}{n}$$

Con lo que se obtiene un resultado

2.133

Error Absoluto Medio Relativo

EAMR =
$$\frac{\sum_{t=1}^{n} |Y_t - \hat{Y}_t| / Y_t}{n} 100$$

David Montaño Castro.

Tarea 3. Serie para Método de Holt.

Tema: Método de Holt.

Y _t		L _t	T _t	Y _{t est}	e	e ²	Abs(e)	Abs(e)/Yt
3	18_	318.0000	0.0000	318.0	0.0	-	-	0.00%
2	81	314.3000	-0.3700	280.6	0.4	0.137	0.370	=ABS(H9)/D9

Con lo que se obtiene un resultado:

MAPE

0.60%

Predicción.

Para ilustrar el concepto de predicción, se calculará un valor fuera de los valores conocidos:

$$\hat{Y}_{t+p} = L_t + pT_{t-S+p}$$

Por lo tanto, el valor pronosticado para enero del siguiente año es:

David Montaño Castro.

Tarea 3. Serie para Método de Holt.

Tema: Método de Holt.

Notamos una tendencia al alza con variaciones cíclicas. El ajuste es muy bueno a decir por los bajos valores de las métricas de error calculadas.

La tabla completa quedaría de la siguiente manera:

			Alfa	0.1					
			Beta	0.1					
No	t	Yt	Lt	T _t	Y _{t est}	е	e²	Abs(e)	Abs(e)/Yt
1	ene-51	318	318.0000	0.0000	318.0	0.0	-	-	0.00%
2	feb-51	281	314.3000	-0.3700	280.6	0.4	0.137	0.370	0.13%
3	mar-51	278	310.3370	-0.7293	277.3	0.7	0.532	0.729	0.26%
4	abr-51	250	303.6469	-1.3254	248.7	1.3	1.757	1.325	0.53%
5	may-51	231	295.1894	-2.0386	229.0	2.0	4.156	2.039	0.88%
6	jun-51	216	285.4357	-2.8101	213.2	2.8	7.897	2.810	1.30%
7	jul-51	223	276.6631	-3.4064	219.6	3.4	11.603	3.406	1.53%
8	ago-51	245	270.4310	-3.6889	241.3	3.7	13.608	3.689	1.51%
9	sep-51	269	266.9679	-3.6663	265.3	3.7	13.442	3.666	1.36%
10	oct-51	302	267.1714	-3.2794	298.7	3.3	10.754	3.279	1.09%
11	nov-51	325	270.0028	-2.6683	322.3	2.7	7.120	2.668	0.82%
12	dic-51	347	275.3011	-1.8716	345.1	1.9	3.503	1.872	0.54%
13	ene-52	342	280.2865	-1.1859	340.8	1.2	1.406	1.186	0.35%
14	feb-52	309	282.0905	-0.8869	308.1	0.9	0.787	0.887	0.29%
15	mar-52	299	282.9833	-0.7090	298.3	0.7	0.503	0.709	0.24%