

sandipan_dey ~

<u>Course</u>

Progress

<u>Dates</u>

Discussion

MO Index

☆ Course / 8 Initial Value Problems, Python Classes, ... / 8.6 Linear scalar IVP and expon...

Previous	B 4	=	Next >		
8.6.1 Linear	scalar IVP a	nd exponen	tial		
solution	solution ☐ Bookmark this page				
Д воокmark this pa	age				
	MIT 005 0000 07000				

MO2.4

MO2.5

The behavior of a linear scalar (M=1) IVP provides useful insight into the behavior of much more complex systems of equations. Further, many phenomena can be described by a linear scalar IVP. The meaning of linear is the \underline{f} is at most a linear function of \underline{u} . For the scalar M=1 case, consider the following linear differential model equation,

$$\frac{\mathrm{d}u}{\mathrm{d}t} = \lambda u \tag{8.48}$$

where $\pmb{\lambda}$ is a constant (i.e. independent of time). Thus, for this linear scalar IVP, $\pmb{f} = \pmb{\lambda} \pmb{u}$.

Recall that the derivative of the exponential function $\exp(\lambda t)$ is $\lambda \exp(\lambda t)$, i.e.

$$\frac{\mathrm{d}}{\mathrm{d}t}[\exp{(\lambda t)}] = \lambda \exp{(\lambda t)}$$
(8.49)

Comparing this to Equation (8.48), we see that the solution to that equation is,

$$u(t) = u_I \exp(\lambda t) \tag{8.50}$$

For $\lambda < 0$, then as t increases, the state u(t) decreases in magnitude. This is known as an exponentially decaying solution. And vice-versa, for $\lambda > 0$, the state u(t) increases in magnitude as t increases. This is known as an exponentially growing solution. An example of these solutions is shown for $\lambda = -1$ and $\lambda = 1$ with u(0) = 1 in Figure 8.11.

Discussions

All posts sorted by recent activity

© All Rights Reserved

Legare **8.11**: Example of exponentially decaying ($\lambda = -1$) and growing ($\lambda = 1$) solutions with Terms of Service & Honor (Side 1)

Privacy Policy

Next >

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

Blog

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>

one of the simplest, probably the