

Numbers with Fractions

Reference:

David Money Harris and Sarah L. Harris.
Digital Design and Computer Architecture,
2nd Edition. Elsevier – Morgan Kaufmann,
2013.

Numbers with Fractions

- Two common notations:
 - Fixed-point: binary point fixed
 - Floating-point: binary point floats to the right of the most significant 1

Fixed-Point Numbers

• 6.75 using 4 integer bits and 4 fraction bits:

01101100

0110.1100

$$2^2 + 2^1 + 2^{-1} + 2^{-2} = 6.75$$

- Binary point is implied
- The number of integer and fraction bits must be agreed upon beforehand

Fixed-Point Number Example

Represent 7.5₁₀ using 4 integer bits and 4 fraction bits.

Fixed-Point Number Example

• Represent 7.5₁₀ using 4 integer bits and 4 fraction bits.

01111000

Floating-Point Numbers

- Binary point floats to the right of the most significant 1
- Similar to decimal scientific notation
- For example, write 273₁₀ in scientific notation:

$$273 = 2.73 \times 10^{2}$$

• In general, a number is written in scientific notation as:

$$\pm \mathbf{M} \times \mathbf{B}^{\mathrm{E}}$$

- M = mantissa
- $\mathbf{B} = base$
- $-\mathbf{E} = exponent$
- In the example, M = 2.73, B = 10, and E = 2

Floating-Point Numbers

• Example: represent the value 228₁₀ using a 32-bit floating point representation

We show three versions –final version is called the **IEEE 754 floating-point standard**

Floating-Point Representation 1

1. Convert decimal to binary (don't reverse steps 1 & 2!):

$$228_{10} = 11100100_2$$

2. Write the number in "binary scientific notation":

$$11100100_2 = 1.11001_2 \times 2^7$$

- 3. Fill in each field of the 32-bit floating point number:
 - The sign bit is positive (0)
 - The 8 exponent bits represent the value 7
 - The remaining 23 bits are the mantissa

•	1 bit	8 bits	23 bits
	0	00000111	11 1001 0000 0000 0000 0000

Sign Exponent

Mantissa

Floating-Point Representation 2

• First bit of the mantissa is always 1:

$$-228_{10} = 11100100_2 = 1.11001 \times 2^7$$

- So, no need to store it: implicit leading 1
- Store just fraction bits in 23-bit field

<u>1 bit</u>	8 bits	23 bits
0	00000111	110 0100 0000 0000 0000 0000

Sign Exponent

Fraction

Excess Representation

- Besides sign-and-magnitude and complement schemes, the excess representation is another scheme.
- It allows the range of values to be distributed <u>evenly</u> between the positive and negative values, by a simple translation (addition/subtraction).
- Example: Excess-4 representation on 3-bit numbers. See table on the right.

Excess-4 Representation	Value
000	-4
001	-3
010	-2
011	-1
100	0
101	1
110	2
111	3

Floating-Point Representation 3

- bias = 0.5radix^s $1 = r^{s-1} 1$ (s adalah jumlah bit exponent)
- *Biased exponent*: bias = 127 (011111111₂)
 - Biased exponent = bias + exponent
 - Exponent of 7 is stored as:

$$127 + 7 = 134 = 0 \times 10000110_2$$

• The IEEE 754 32-bit floating-point representation of 228_{10}

1 b	it 8 bits	23 bits
0	10000110	110 0100 0000 0000 0000 0000

Sign Biased Fraction Exponent

in hexadecimal: 0x43640000

Floating-Point Example

Write -58.25₁₀ in floating point (IEEE 754)

Floating-Point Example

Write -58.25₁₀ in floating point (IEEE 754)

1. Convert decimal to binary:

$$58.25_{10} = 111010.01_2$$

2. Write in binary scientific notation:

$$1.1101001 \times 2^5$$

3. Fill in fields:

Sign bit: 1 (negative)

8 biased exponent bits: $(127 + 5) = 132 = 10000100_2$

23 fraction bits: 110 1001 0000 0000 0000 0000

1 bit 8 bits 23 bits

1 100 0010 0 110 1001 0000 0000 0000 0000

Sign Exponent

Fraction

in hexadecimal: 0xC2690000

Exercise

- 1. Nyatakan bilangan desimal (+78.75) dalam bentuk IEEE-754 single-precision floating-point. Tulis jawaban anda dalam hexadecimal.
- Nyatakan bilangan IEEE-754 single-precision floating-point format 0x C2220000 sebagai bilangan desimal

Floating-Point: Special Cases

Number	Sign	Exponent	Fraction
0	X	00000000	000000000000000000000000000000000000000
∞	О	11111111	000000000000000000000000000000000000000
- ∞	1	11111111	000000000000000000000000000000000000000
NaN	X	11111111	non-zero

Floating-Point Precision

• Single-Precision:

- 32-bit
- 1 sign bit, 8 exponent bits, 23 fraction bits
- bias = 127

Double-Precision:

- 64-bit
- 1 sign bit, 11 exponent bits, 52 fraction bits
- bias = 1023

IEEE Standard 754 Floating Point Numbers

The range of single precision numbers:

- As small as: $\pm 1.0000\ 0000\ 0000\ 0000\ 0000\ 000_2\ x\ 2^{-126}$
- As large as: ± 1. 1111 1111 1111 1111 1111 111₂ x 2⁺¹²⁷

	Denormalized	Normalized	Approximate Decimal
Single Precision	$\pm 2^{-149}$ to $(1-2^{-23})\times 2^{-126}$	$\pm 2^{-126}$ to $(2-2^{-23})\times 2^{127}$	$\pm \sim 10^{-44.85}$ to $\sim 10^{38.53}$
Double Precision	$\pm 2^{-1074}$ to $(1-2^{-52})\times 2^{-1022}$	+ 2-1022 to (2, 2-52) \ 21023	$+ \sim 10^{-323.3}$ to $\sim 10^{308.3}$
Double Frecision	$\pm 2^{-3}$ (0 (1-2 °-)×2 ·	$\pm 2^{-3}=10(2-2^{-3})\times 2^{-3}$	± ~10 ==== 10 ~10

Range of IEEE-754 Single-precision Numbers

Range of IEEE-754 Double-Precision Numbers

Floating-Point: Rounding

- Overflow: number too large to be represented
- Underflow: number too small to be represented
- Rounding modes:
 - Down
 - Up
 - Toward zero
 - To nearest
- **Example:** round 1.100101 (1.578125) to only 3 fraction bits
 - Down: 1.100
 - Up: 1.101
 - Toward zero: 1.100
 - To nearest: 1.101 (1.625 is closer to 1.578125 than 1.5 is)

Floating-Point Addition

- 1. Extract exponent and fraction bits
- 2. Prepend leading 1 to form mantissa
- 3. Compare exponents
- 4. Shift smaller mantissa if necessary
- 5. Add mantissas
- 6. Normalize mantissa and adjust exponent if necessary
- 7. Round result
- 8. Assemble exponent and fraction back into floating-point format

Floating-Point Addition Example

Add the following floating-point numbers:

0x3FC00000

Floating-Point Addition Example

1. Extract exponent and fraction bits

1 bit	8 bits	23 bits
0	01111111	100 0000 0000 0000 0000 0000
Sign	Exponent	Fraction
1 bit	8 bits	23 bits
0	10000000	101 0000 0000 0000 0000 0000

For first number (N1):

S = 0, E = 127, F = .1

For second number (N2):

S = 0, E = 128, F = .101

2. Prepend leading 1 to form mantissa

N1: 1.1

N2: 1.101

Floating-Point Addition Example

3. Compare exponents

127 - 128 = -1, so shift N1 right by 1 bit

4. Shift smaller mantissa if necessary

shift N1's mantissa: $1.1 >> 1 = 0.11 \ (\times 2^1)$

5. Add mantissas

$$0.11 \times 2^{1} \\ + 1.101 \times 2^{1} \\ \hline 10.011 \times 2^{1}$$

Floating Point Addition Example

6. Normalize mantissa and adjust exponent if necessary

$$10.011 \times 2^1 = 1.0011 \times 2^2$$

7. Round result

No need (fits in 23 bits)

8. Assemble exponent and fraction back into floating-point format

$$S = 0$$
, $E = 2 + 127 = 129 = 10000001_2$, $F = 001100$..

1 bit	8 bits	23 bits
0	10000001	001 1000 0000 0000 0000 0000

Sign Exponent Fraction

in hexadecimal: 0x40980000

Floating-Point Subtraction

Subtract the following floating-point numbers:

0x3FC00000

FP Multiplication Example

Multiply the following floating-point numbers:

0x3FC00000

Floating-Point Division Example

Divide the following floating-point numbers:

0x3FC00000

