Neptun kód: AZXX1Z Név: Soós Csaba

Beadás verziószáma: 1.

Feladat

Programozási tételek – Maximumkiválasztás

Utazási iroda legtávolabbi városa

Egy utazási iroda tárolja, hogy milyen távolságokra levő városokba mennyiért árul repülőjegyet. Írj programot, amely megadja a legtávolabbi városba a repülőjegy árát!

Bemenet

A standard bemenet első sorában a városok száma van ($1 \le N \le 100$), alatta pedig soronként egy-egy város távolsága ($1 \le T \le 20000$) és a repülőjegy ára van ($1 \le \mathring{A} \le 2000000$).

Kimenet

A standard kimenet első sorába egyetlen egész számot kell írni, a legtávolabbi városba a repülőjegy árát (ha több legtávolabbi város van, akkor közülük a legolcsóbbat)!

Példa

Bemenet Kimenet

6 30000

50 30000

1900 200000

2000 150000

900 38000

600 150000

2100 30000

Korlátok

Időlimit: 0.1 mp. Memórialimit: 32 MB

Pontozás: A tesztek 40%-ában a bemenet hossza≤20

Specifikáció

Be: n∈N, Tvaros=(tav:N x ar:N), varosok∈Tvaros[1..n]

Sa: maxtav∈N

Ki: minar∈N

Ef: 1<=n<=100 és

∀i∈[1..n]:(1<=varosok[i].tav<=20000 és 1<=varosok[i].tav<=2000000)

Uf: (,maxtav)=MAX(i=1..n, varosok[i].tav) és

(,,minar)=FELTMIN(i=1..n, varosok[i].ar, varosok[i].tav = maxtav)

Sablon

Feltételes minimumkeresés sablon

Feladat

Adott az egész számok egy [e..u] intervalluma, egy f:[e..u]→H függvény és egy T:[e..u]→Logikai feltétel. A H halmaz elemein értelmezett egy teljes rendezési reláció. Határozzuk meg, hogy az [e..u] intervallum T feltételt kielégítő elemei közül az f függvény hol veszi fel a legkisebb értéket, és mondjuk meg, mekkora ez az érték! [változó]

<mark>van</mark>:=hamis i=<mark>e..u</mark>

nem T(i)

Specifikáció és algoritmus:

```
Be: eEZ, uEZ

Ki: vanEL, minindEZ, minértEH

Ef: -

Uf: van = ∃iE[e..u]:(T(i)) és

van -> (minindE[e..u] és

minért=f(minind) és T(
```

minért=f(minind) és T(minind) és
∀i∈[e..u]:(T(i) -> minért>=f(i)))

Rövidítve:

Uf: (van, minind, minért) = FELTMIN(i = e..u, f(i), T(i))

Maximumkiválasztás sablon

Feladat

Adott az egész számok egy [e..u] intervalluma és egy f:[e..u]→H függvény. A H halmaz elemein értelmezett egy teljes rendezési reláció. Határozzuk meg, hogy az f függvény hol veszi fel az [e..u] nem üres intervallumon a legnagyobb értéket, és mondjuk meg, mekkora ez a maximális érték!

Specifikáció

```
Be: e∈Z, u∈Z
Ki: maxind∈Z, maxért∈H
Ef: e<=u
Uf: maxind∈[e..u] és
    ∀i∈[e..u]:(f(maxind)>=f(i)) és
    maxért=f(maxind)
```

Algoritmus

van és

T(i)

f(i)<minért

minért:=f(i)

minind:=i

nem <mark>van</mark> és

T(i)

<mark>van</mark>:=igaz

minind:=i

minért:=f(i)

Rövidítve:

```
Uf: (maxind, maxért) = MAX(i=e..u, f(i))
```

Visszavezetés

```
MAX: maxind, maxért \sim -, maxtav e..u \sim 1..n f(i) \sim varosok[i].tav FELTMIN: van, minind, minért \sim -,-,minar e..u \sim 1..n f(i) \sim varosok[i].ar
```

Algoritmus

T(i)

```
maxtav:=varosok[1].tav; minar:=varosok[1].ar
i=2..n

maxtav<varosok[i].ar

maxert:=varosok[i].tav

minar:=varosok[i].ar

maxtav=varosok[i].tav && varosok[i].ar<minar

minar:=varosok[i].ar

-</pre>
```

~ varosok[i].tav = maxtav

Kód (C#)

```
{
   struct Varos
  {
     public int tav;
     public int ar;
  };
   static void Main(string[] args)
   {
     int n = 0;
     int.TryParse(Console.ReadLine(), out n);
     Varos[] varosok = new Varos[n];
     string sor;
     int maxtav;
     int minar;
     for (int i = 0; i < n; i++)
     {
        sor = Console.ReadLine();
        int.TryParse(sor.Split(' ')[0], out varosok[i].tav);
        int.TryParse(sor.Split(' ')[1], out varosok[i].ar);
     }
     maxtav = varosok[0].tav;
     minar = varosok[0].ar;
     for (int i = 1; i < n; i++)
     {
        if (maxtav < varosok[i].tav)</pre>
        {
           maxtav = varosok[i].tav;
           minar = varosok[i].ar;
        }
```

```
else if (maxtav == varosok[i].tav && minar > varosok[i].ar)
{
         minar = varosok[i].ar;
     }
}
Console.WriteLine(minar);
}
```

Bíró pontszám és képernyőkép

Utolsó beadás eredménye				
Összpont: 100/				
Teszt#	Pont	Verdikt	futási idő	
1.1	3/3	Helyes	0.036 sec	
2.1	3/3	Helyes	0.032 sec	
3.1	3/3	Helyes	0.031 sec	
4.1	3/3	Helyes	0.031 sec	
5.1	3/3	Helyes	0.032 sec	
6.1	3/3	Helyes	0.031 sec	
7.1	3/3	Helyes	0.031 sec	
8.1	3/3	Helyes	0.031 sec	
9.1	4/4	Helyes	0.031 sec	
10.1	4/4	Helyes	0.034 sec	
11.1	4/4	Helyes	0.038 sec	
12.1	4/4	Helyes	0.031 sec	
13.1	4/4	Helyes	0.031 sec	
14.1	4/4	Helyes	0.031 sec	
15.1	4/4	Helyes	0.033 sec	
16.1	4/4	Helyes	0.032 sec	
17.1	4/4	Helyes	0.039 sec	
18.1	4/4	Helyes	0.031 sec	
19.1	4/4	Helyes	0.032 sec	
20.1	4/4	Helyes	0.031 sec	
21.1	4/4	Helyes	0.032 sec	
22.1	4/4	Helyes	0.032 sec	
23.1	4/4	Helyes	0.030 sec	
24.1	4/4	Helyes	0.031 sec	
25.1	4/4	Helyes	0.033 sec	
26.1	4/4	Helyes	0.032 sec	
27.1	4/4	Helyes	0.031 sec	

Saját tesztfájlok

1.

6	
50	30000
1900	200000
2000	150000
900	38000
600	150000
2100	30000

2.

4	
2	2
1	2
2	1
1	1

3.

3	
1	1
2	2
3	3

(github: https://github.com/csabisoos/elte/blob/main/1. felev/programozas gyak/beadando 1/beadando 1.md)