Research update: feedback control, device testing, and more

Joey Doll Group Meeting 11/4/2009

Today

- Amplifier and feedback circuitry
- Combined PR+PE testing
- Cantilever bending stress

Motivation

Sense of touch (TRNs)

Protein conformational changes

Sense of hearing (hair cells)

Performance Goals

- Rise time
 - 10 microseconds (turtle hair cell)
 - 1 microsecond (mammalian hair cell)
- Force resolution
 - 50 pN, 1 Hz 30 kHz (turtle)
 - 50 pN, 1 Hz 300 kHz (mammalian)
 - 30 pN, 1 Hz 10 kHz (TRN, single molecule)
- Closed loop force control
- Operation in fluid

The Device

Piezoresistive force detection Piezoelectric actuation

The Device

Feedback Circuit

Feedback Modeling

Uncompensated cantilever open loop response

Feedback Modeling

Step response of bessel and butterworth filters

Feedback Modeling

Closed loop, PID compensated, 2nd order Bessel, medium Q, lever = 100kHz, LP = 30kHz

PCB Layout

Circuits - Amplifiers

Circuits - Feedback

Analog Potentiometers

Digital Potentiometers

2.5"

Circuit Design

The circuit works

PR+PE Device Characterization

- Noise spectrum
- Piezoresistor resistance
- Electrical cross-talk
- Spring constant
- Force/displacement sensitivity
- Actuation distance

Noise spectra look good

1/f noise higher than expected

Two unknowns, one equation

- 1/f noise depends on alpha and the number of carriers
- Alpha could be higher or the number of carriers could be smaller
- Need an additional parameter for fitting

Piezoresistor resistance

Accidental etching

Adjusted resistance model

Alpha adjustment

Overall impact?

- Noise ~10x higher
 - Johnson noise 2.5x increase
 - 1/f noise 4x increase
- Sensitivity ~ 4x higher
 - Beta* 2x larger
 - Thickness 33% less
- Minimum detectable force increased by 2.5x, good enough for most applications

Resistance Analysis of PR Devices

Assumed 100 nm undercut from litho/etch to improve fit (will measure)

Resistance Analysis of PR Devices

PR interconnects

Doped Si interconnects

Al interconnects w/ 10-30 um square via

Sensitivity

- Have had measurement issues
- Fixed PR output independent of wheatstone bridge bias voltage
- Devices optimized for high force sensitivity, low displacement sensitivity (i.e. long, soft levers)
- Piezoelectric shaker voltage couples to piezoresistor input (microvolts/nm)
- If displacement sensitivity isn't high enough, the PR signal is overwhelmed by the cross-talk signal

Force vs. Displacement Tradeoff

New Experiment Plan

- AFM solves cross-talk problem
- But can't bounce the laser off of my devices
- Solution: mount the PR cantilever as a sample
- Can use for sensitivity, feedback

PE, PR Crosstalk

- Sensitivity and noise are great, but crosstalk could be the limiting factor
- Possible mechanisms
 - Capacitive: worse at higher frequencies, due to changing voltages in vicinity of each other
 - Mechanical: Piezoelectric bending changes piezoresistor resistance

There is capacitive crosstalk

Some mechanical crosstalk

Minimal crosstalk from PCB

Some crosstalk from cantilever PCB

Connected cantilever PCB, shorted the bondpads by wirebonding

Crosstalk – What next?

- Modeling required
- Affects highest speed measurements, not bad enough to stop system development
- Slower measurements (msec) fine
- Possible solution: compensation on silicon die by placing piezoelectric next to temperature compensation PR

Bending Stress

FWD Spot 4.756 3 20 µm E-Beam Mag 5.00 kV 3.51 kX Det SED Tilt 60.0°

Why?

How Big is an Atom?

Cantilever Tip Deflection

Compensation Strategy

- Solution for tensile stress at the top surface
 - Tensile at the bottom
 - Compressive at the top
- SiO2 is ideal
 - E = 80 GPa
 - Stress = 350 MPa
- But how?
 - Thermal: Consumes Si, thermal budget (more diffusion)
 - LTO: Poor uniformity, time to deposit thin layers
 - PSG: Thickness control, unknown parameters
- How much oxide thickness?

Compensation Oxide

$$\sum M = \sum_{i} \int (z - \bar{z}) \sigma_i dA$$

$$0 = w_{si} \int_0^{t_{si}} (z - \bar{z}) \sigma_{si}(z) dz + w_{oxide} \int_{t_{si}}^{t_{si} + t_{oxide}} (z - \bar{z}) \sigma_{oxide} dz$$

$$t_{oxide}^{2} \left(\frac{\sigma_{oxide}}{2}\right) + t_{oxide} \left(\frac{t_{si}\sigma_{oxide}}{2}\right) + \int_{0}^{t_{si}} (z - \frac{t_{si}}{2})\sigma_{si}(z)dz = 0$$

Postmortem on PR Fab

Failure types

Which designs broke?

Which designs broke?

Conclusions

- Piezoresistors are noisier, higher resistance than expected, but minimal impact on performance
- There is electrical crosstalk on the microsecond scale
- Devices usable for system testing and some measurements
- Usual sensitivity calibration method doesn't work for (some) devices, will start doing some characterization on the AFM

What's Next?

- Sensitivity, feedback testing on AFM
- System prep for bio experiments
- Fab 2.0

