Semantics of Functional Programming Lecture I: **PCF** and its Operational Semantics

Chen, Liang-Ting lxc@iis.sinica.edu.tw

Institute of Information Science, Academia Sinica

Formosan Summer School on Logic, Language, and Computation 2014

Overview

In this lecture, we will present simply typed lambda calculus in a different manner, where terms and typing rules are introduced separately. In this approach, terms might not be well-typed at all.

Then, we discuss its computational meaning by **one-step reduction** and define many-step reduction. Later we introduce the concept of **type safety**.

Finally, we extend simply typed lambda calculus with natural numbers and general recursion. This extension is called **PCF**, *Programming Computable Functional*. We formalise new features by what we have learnt later.

The approach à la Curry

We introduce a different approach to simply lambda calculus where terms and typing rules are introduced separately.

$$\frac{x \text{ var}}{x \text{ term}} \qquad \frac{\Gamma, x : \sigma, \Delta \vdash x : \sigma}{\Gamma, x : \sigma, \Delta \vdash x : \sigma} \text{ (var)}$$

$$\frac{x \text{ var}}{\lambda x. \text{ M}} \frac{\text{M} \text{ term}}{\text{term}} \qquad \frac{\Gamma, x : \sigma \vdash \text{M} : \tau}{\Gamma \vdash \lambda x. \text{ M} : \sigma \to \tau} \text{ (abs)}$$

$$\frac{\text{M} \text{ term}}{\text{M} \text{ N} \text{ term}} \qquad \frac{\Gamma \vdash \text{M} : \sigma \to \tau}{\Gamma \vdash \text{M} \text{ N} : \tau} \text{ (app)}$$

The existence of ill-typed terms

In contrast the approach \acute{a} la Church where every term is introduced with a type, there are ill-typed terms in the approach \grave{a} la Curry:

Example 1

 $(\lambda x. x) (\lambda x. x)$ is a term if x is a variable, because

However, $(\lambda x. x) (\lambda x. x)$ cannot be assigned a type unless $\sigma \to \sigma = \sigma$.

Reduction

One-step reduction relation → between terms is introduced to describe the flow of computation from a term to another term in a single step, regardless of types.

$$\frac{\frac{\mathsf{M} \rightsquigarrow \mathsf{M}'}{\mathsf{M} \; \mathsf{N} \rightsquigarrow \mathsf{M}' \; \mathsf{N}} \, (\rightsquigarrow \mathsf{-lapp})}{(\lambda x. \; \mathsf{M}) \; \mathsf{N} \rightsquigarrow \mathsf{M}[\mathsf{N}/x]} \, (\rightsquigarrow \mathsf{-app})$$

Example 2

 $(\lambda x. \lambda y. x)$ M N can be reduced to M by the following derivation

$$\frac{(\lambda x. \lambda y. x) \ \mathsf{M} \rightsquigarrow (\lambda y. \ \mathsf{M})}{((\lambda x. \lambda y. x) \ \mathsf{M}) \ \mathsf{N} \rightsquigarrow (\lambda y. \ \mathsf{M}) \ \mathsf{N}} (\rightsquigarrow -\mathsf{lapp})$$

Many-step reduction

As we will mostly discuss a sequence of reductions, it is convenient to define another relation \leadsto^* so that M \leadsto^* N means M reduces to N in finitely many steps.

Definition 3

The many-step reduction relation \rightsquigarrow^* is defined inductively by

Proposition 4 (Reflexivity of ↔*)

For every term M, $M \rightsquigarrow^* M$.

For example, one has

$$(\lambda x. \lambda y. x) \text{ M N} \rightsquigarrow^* (\lambda y. \text{ M}) \text{ N}$$

by the derivation

$$\frac{ (\lambda x. \lambda y. x) \ \mathsf{M} \rightsquigarrow (\lambda y. \ \mathsf{M})}{((\lambda x. \lambda y. x) \ \mathsf{M}) \ \mathsf{N} \rightsquigarrow (\lambda y. \ \mathsf{M}) \ \mathsf{N}} \frac{ (\lambda y. \ \mathsf{M}) \ \mathsf{N} \rightsquigarrow^* (\lambda y. \ \mathsf{M}) \ \mathsf{N}}{(\lambda x. y. x) \ \mathsf{M} \ \mathsf{N} \rightsquigarrow^* (\lambda y. \ \mathsf{M}) \ \mathsf{N}}$$

Exercise. Evaluate the following terms (formally or informally).

- $1 (\lambda x. x) y$
- $(\lambda x. \lambda y. \lambda z. y) M_0 M_1 M_2$

Induction on derivation

Every instance of M \leadsto * N must be constructed by one of cases, so we can analyse its structure case by case.

Proposition 5 (Transitivity of ↔*)

For every three terms M_0 , M_1 , and M_2 , if $M_1 \rightsquigarrow^* M_2$ and $M_2 \rightsquigarrow^* M_3$, then $M_1 \rightsquigarrow^* M_3$.

Given derivations of $M_1 \rightsquigarrow^* M_2$ and $M_2 \rightsquigarrow^* M_3$, we do case analysis on the derivation of $M_1 \rightsquigarrow^* M_2$. Also, we can assume that the premise satisfy this property, that is, the induction hypothesis.

Proof.

- 2 For $\frac{M_1 \rightsquigarrow M}{M_1 \rightsquigarrow^* M_2}$, we infer that $M \rightsquigarrow^* M_3$ by induction hypothesis, so we derive the goal

$$\frac{\mathsf{M}_1 \rightsquigarrow \mathsf{M} \qquad \mathsf{M} \rightsquigarrow^* \mathsf{M}_3}{\mathsf{M}_1 \rightsquigarrow^* \mathsf{M}_3}$$

Similarly, we can do induction on the formulation of terms, typing rules, and any other inductive definitions.

Exercise. Show that if $M \rightsquigarrow^* M'$ then $M N \rightsquigarrow^* M'$ N for any term N by induction on the derivation of $M \rightsquigarrow^* M'$.

Reductions on ill-typed terms

Reductions can be applied to ill-typed terms and sometimes it reduces to a well-typed closed term!

$$(\lambda x. x) (\lambda x. x) \rightsquigarrow^* (\lambda x. x)$$

On the other hand, the reduction of ill-typed terms may not stop at all.

$$(\lambda x. x x) (\lambda x. x x) \rightsquigarrow (x x)[(\lambda x. x x)/x]$$

= $(\lambda x. x x) (\lambda x. x x) \rightsquigarrow \cdots$

Type safety

In contrast to ill-typed terms, well-typed closed terms have some nice properties. First, every well-typed closed term can be reduced further or it is a value.

Theorem 6 (Progress Theorem)

If $\vdash M : \tau$, then either $M \rightsquigarrow M'$ for some M' or $M = \lambda x. M'$.

To show this property, we do the structural induction on the derivation of $\vdash M : \tau$ and either produce a derivation of $M \rightsquigarrow M'$ or show that $M = \lambda x. M'$.

Proof.

- **■** \vdash M : τ cannot be given by $\overline{\Gamma, x : \sigma, \Delta \vdash x : \sigma}$, since the context is empty.
- 2 For that case $\frac{x:\sigma \vdash M:\tau}{\vdash \lambda x.\,M:\sigma \to \tau}$ (abs) , $(\lambda x.\,M') \rightsquigarrow^* (\lambda x.\,M)$ we have already given a term in this form $\lambda x.\,M$.
- For $\frac{\vdash M : \sigma \to \tau \qquad \vdash N : \sigma}{\vdash M \; N : \tau}$ (app), by introduction hypothesis either M \leadsto M' for some M' or M = λx . M'. For the former case, we apply (\leadsto -lapp):

$$\frac{\mathsf{M} \rightsquigarrow \mathsf{M}'}{\mathsf{M} \; \mathsf{N} \rightsquigarrow \mathsf{M}' \; \mathsf{N}}$$

For the later case, we apply $(\sim -app)$

$$(\lambda x. M') N \rightsquigarrow M'[N/x]$$

Moreover, the type of a well-typed closed term is always preserved by reductions:

Theorem 7 (Preservation Theorem)

If $\vdash M : \tau$ and $M \rightsquigarrow M'$, then $\vdash M' : \tau$.

However, to show this property, we need the following lemma saying that types are preserved by substitution.

Lemma 8 (Substitution Lemma)

If $\Gamma, x : \sigma \vdash M : \tau$ and $\Gamma \vdash N : \sigma$, then $\Gamma \vdash M[N/x] : \tau$.

By the introduction on the derivation of $\vdash M : \tau$ and $M \rightsquigarrow M'$ at the same time.

Proof of Preservation Theorem.

- 2 For $\frac{x:\sigma \vdash M:\tau}{\vdash \lambda x.\,M:\sigma \to \tau}$, there is no reduction rule for $\lambda x.\,M$, so a derivation $(\lambda x.\,M) \leadsto M'$ cannot exist.
- For $\frac{\vdash M:\sigma\to\tau\quad \vdash N:\sigma}{\vdash M\;N:\tau} \text{, we do induction on the derivation of M}\;N\leadsto M'.$

Summary

A functional programming language consists of

- 1 type formulation rules,
- 2 term formulation rules,
- 3 typing rules, and
- 4 one-step reduction rules.

In particular, well-typed closed terms share type safety:

Progress Theorem for every well-typed closed term, it either can be reduced further or is a value;

Preservation Theorem for every well-typed closed term, its type is preserved by reduction.

Next, we add some features to simply typed lambda calculus and type safety remains.

Introduction to PCF

PCF, which stands for **Programming Computable Functionals**, is a functional programming language and it consists of

- simply typed lambda calculus,
- 2 natural numbers, and
- **3** general recursion (to be explained).

We will introduce the later two features step by step.

It has two rules of type formulation:

$$\begin{array}{ccc} \hline \text{nat set} & & \underline{\tau_1 \text{ set}} & \tau_2 \text{ set} \\ \hline & \tau_1 \to \tau_2 \text{ set} \end{array}$$

Still, 'set' is a synonyms of 'type'.

Term formulation, typing, and reduction for natural numbers

Every natural number is either zero or a successor of some natural number.

Zero term
$$\Gamma \vdash \text{zero : nat}$$
(z)M term
suc M term $\Gamma \vdash M : \text{nat}$
 $\Gamma \vdash \text{suc M : nat}$ (s)

The reduction of (suc M) is given by its subterm M:

$$\frac{\mathsf{M} \rightsquigarrow \mathsf{M}'}{\mathsf{suc}\;\mathsf{M} \rightsquigarrow \mathsf{suc}\;\mathsf{M}'} \, (\rightsquigarrow \mathsf{-suc})$$

Values: canonical elements

Value are basic forms of term of each kind of types and they are defined independent of their types in the approach à la Curry.

Definition 9

A **value** is a term of the following form:

Define **numerals** $\underline{0}$ for zero and $\underline{n+1}$ for suc \underline{n} inductively.

Example 10

By this formulation, we have well-typed values suc (suc zero), λx . suc x, and λx . x, and also ill-typed values suc λx . x, λy . y.

Moreover, we can do branching according to the argument is zero or not.

M term	M_0 term	x var	M_1 term
$ifz(M; M_0; x. M_1)$ term			
	•	,	
$\Gamma \vdash M : \mathtt{nat}$	$\Gamma \vdash M_0 : \tau$	$\Gamma, x : \mathtt{nat} \vdash$	$M_1:\tau$
$\frac{\Gamma \vdash M : \mathtt{nat} \Gamma \vdash M_0 : \tau \Gamma, x : \mathtt{nat} \vdash M_1 : \tau}{\Gamma \vdash \mathtt{ifz}(M; M_0; x. M_1) : \tau} (ifz)$			

accompanying with three reductions rules

$$\begin{split} &\frac{\mathsf{M} \rightsquigarrow \mathsf{M}'}{\mathsf{ifz}(\mathsf{M}; \mathsf{M}_0; x. \, \mathsf{M}_1) \rightsquigarrow \mathsf{ifz}(\mathsf{M}'; \mathsf{M}_0; x. \, \mathsf{M}_1)} \, (\rightsquigarrow \mathsf{-ifz}) \\ &\frac{}{\mathsf{ifz}(\mathsf{zero}; \mathsf{M}_0; x. \, \mathsf{M}_1) \rightsquigarrow \mathsf{M}_0} \, (\rightsquigarrow \mathsf{-ifz}_0) \\ &\frac{\mathsf{suc} \; \mathsf{M} \; \mathsf{val}}{\mathsf{ifz}(\mathsf{suc} \; \mathsf{M}; \mathsf{M}_0; x. \, \mathsf{M}_1) \rightsquigarrow \mathsf{M}_1[\mathsf{M}/x]} \, (\rightsquigarrow \mathsf{-ifz}_1) \end{split}$$

Example: predecessor

The predecessor of natural numbers can be defined as

$$\mathtt{pred} \coloneqq \lambda x.\,\mathtt{ifz}(x;\underline{0};y.\,y):\mathtt{nat}\to\mathtt{nat}$$

with the following typing derivation:

$$\frac{\Gamma \vdash x : \mathtt{nat} \quad \overline{\Gamma \vdash \underline{0} : \mathtt{nat}} \quad \overline{\Gamma, y : \mathtt{nat} \vdash y : \mathtt{nat}}}{\Gamma \vdash \mathtt{ifz}(x; \underline{0}; y. y) : \mathtt{nat}}$$

$$\frac{\Gamma \vdash \mathtt{ifz}(x; \underline{0}; y. y) : \mathtt{nat}}{\vdash \lambda x. \, \mathtt{ifz}(x; \underline{0}; y. y) : \mathtt{nat} \rightarrow \mathtt{nat}}$$

where $\Gamma := x : \mathtt{nat}$.

Exercise.

- I Show that pred $\underline{0} \rightsquigarrow^* \underline{0}$ and pred $\underline{n+1} \rightsquigarrow^* \underline{n}$ by induction on 0.
- 2 Define flip: nat \rightarrow nat such that flip $\underline{0} \rightsquigarrow^* \underline{1}$ and flip $\underline{n+1} \rightsquigarrow^* \underline{0}$.

Term formulation, typing rule, and reduction for general recursion

The Y operator, used to do general recursion, has the same term formulation as λ -abstraction and a similar typing rules.

$$\frac{x \text{ var} \quad M \text{ term}}{Yx. M \text{ term}} \qquad \frac{\Gamma, x : \sigma \vdash M : \sigma}{\Gamma \vdash Yx. M : \sigma} \text{ (Y)}$$

Each occurrence of Yx. M reduces to an substitution of x in M by itself:

$$\frac{}{\text{Yx. M} \rightsquigarrow \text{M[Yx. } M/x]} (\rightsquigarrow \text{-fix})$$

Example 11 (Divergent term)

Consider the term Yx.x which never reduces to any value

$$Yx. x \rightsquigarrow x[Yx. x] = Yx. x \rightsquigarrow Yx. x \rightsquigarrow \cdots$$

Example: calculating the factorials

The factorial of n is usually defined recursively

$$\mathtt{fact} \colon n \mapsto egin{cases} 1 & \text{if } n = 0 \\ n \times \mathtt{fact}(n') & \text{if } n = n' + 1 \end{cases}$$

This is a *fixpoint* of the higher-order function $F: (\mathbb{N} \to \mathbb{N}) \to (\mathbb{N} \to \mathbb{N})$ defined by

$$F(f) \colon n \mapsto \begin{cases} 1 & \text{if } n = 0 \\ n \times f(n') & \text{if } n = n' + 1 \end{cases}$$

for any $f: \mathbb{N} \to \mathbb{N}$, satisfying F(fact) = fact.

The higher-order function $F:(\mathbb{N}\to\mathbb{N})\to(\mathbb{N}\to\mathbb{N})$ can be presented in **PCF** as

$$\lambda.fF := \lambda f.$$

$$\lambda n.$$
ifz $(n; \underline{1}; m. n \times (f m))$

with the type $(\mathtt{nat} \to \mathtt{nat}) \to (\mathtt{nat} \to \mathtt{nat})$.

A fixpoint of $\lambda.f$ F can be given by Y.f F as the evaluation of $(\lambda f.F)(Yf.F)$ and Yf.F

$$(\lambda f. F)(Yf. F) \rightsquigarrow F[(Yf. F)/f]$$

 $Yf. F \rightsquigarrow F[(Yf. F)/f]$

shows that they reduce to the same term.

Exercise. Show that fact $\underline{n} \rightsquigarrow^* \underline{n!}$ by induction on \underline{n} .

Example: greatest common divisor

Example 12

The Euclidean algorithm for the greatest common divisor of two natural numbers can be defined recursively as follows: where $\mod x$ y is the reminader of x/y.

Type safety for **PCF**

Theorem 13 (Progress Theorem)

If $\vdash M : \tau$ then either M is a value or there exists M' such that $M \rightsquigarrow M'$.

Theorem 14 (Preservation Theorem)

If $\vdash M : \tau$ and $M \rightsquigarrow N$ then $\vdash N : \tau$.

All follow the same pattern in the situtaiton for simply typed lambda calculus.¹

¹To be proved in **Agda** formally.

Another reduction relation

Instead of the one-step reduction relation \rightsquigarrow , we turn to the **big-step** reduction relation \Downarrow between terms, formulating the notion that a term M reduce to a value V eventually.

simply typed lambda calculus

$$\frac{}{\lambda x.\,\mathsf{M} \Downarrow \lambda x.\,\mathsf{M}} \, (\Downarrow\text{-lam})$$

$$\frac{\,\mathsf{M} \Downarrow \lambda x.\,\mathsf{E}\, \qquad \mathsf{E}[\mathsf{N}/x] \Downarrow \mathsf{V}\, }{\,\mathsf{M}\,\,\mathsf{N} \Downarrow \,\mathsf{V}} \, (\Downarrow\text{-app})$$

natural numbers

$$\frac{}{\text{zero} \Downarrow \text{zero}} (\Downarrow \text{-zero})$$

$$\frac{M \Downarrow V}{\text{suc } M \Downarrow \text{suc } V} (\Downarrow \text{-suc})$$

if-zero test

 $\frac{\mathsf{M} \Downarrow \mathtt{zero} \quad \mathsf{M}_0 \Downarrow \mathsf{V}}{\mathtt{ifz}(\mathsf{M}; \mathsf{M}_0; \mathsf{x}. \, \mathsf{M}_1) \Downarrow \mathsf{V}} \, (\Downarrow \mathtt{-}\mathtt{ifz}_0)$

general recursion

$$M_0; x$$
.

$$\frac{\mathsf{M} \Downarrow \mathsf{suc} \; \mathsf{N} \qquad \mathsf{M}_1[\mathsf{N}/x] \Downarrow \mathsf{V}}{\mathsf{ifz}(\mathsf{M}; \mathsf{M}_0; x. \; \mathsf{M}_1) \Downarrow \mathsf{V}} \; (\Downarrow\text{-}\mathsf{ifz}_1)$$

 $\frac{M[Yx. M/x] \Downarrow V}{Yx. M \Downarrow V} (\Downarrow -fix)$

$$\frac{\frac{\vdots}{\underline{3} \Downarrow \text{suc } \underline{2}} \quad \frac{\vdots}{y[2/y] \Downarrow \underline{2}}}{\lambda x. \text{ ifz}(x; \underline{0}; y. y) \quad \text{ifz}(x; \underline{0}; y. y)} \frac{\lambda x. \text{ ifz}(x; \underline{0}; y. y)}{\lambda x. \text{ ifz}(x; \underline{0}; y. y) \underline{3} \Downarrow \underline{2}}$$

Figure: Derivation of pred $\underline{3} \Downarrow \underline{2}$

Exercise.

- **1** Show that fact $\underline{0} \Downarrow \underline{1}$.
- **2** Show that flip $\underline{0} \Downarrow \underline{1}$ and flip $\underline{n+1} \Downarrow \underline{0}$.

Reduction on values

We shell justify the intended meaning. Whenever $M \Downarrow V$, the term V is always a value; every value is in its simplest form.

Lemma 15

For every terms M and V, the term V is a value if $M \Downarrow V$.

Proof.

By induction on the derivation of $M \Downarrow V$.

Lemma 16

If V is a value, then $V \Downarrow V$.

Proof.

By induction on the derivation of V val.

Agreement of big-step and one-step semantics

Theorem 17

For every term M and V, $M \Downarrow V$ if and only if $M \rightsquigarrow^* V$ with V val.

Proof sketch.

- **1** Show that if $M \downarrow V$ then $M \rightsquigarrow^* V$ by induction on \downarrow and \rightsquigarrow^* .
- **2** Show that if $M \rightsquigarrow N \Downarrow V$ then $M \Downarrow V$.
- 3 Show that if $M \rightsquigarrow^* N \Downarrow V$ then $M \Downarrow V$.

In particular, every M \leadsto^* V with V val, has V \Downarrow V, so it follows that M \Downarrow V.

Corollary 18 (Preservation Theorem for ↓)

If $\vdash M : \tau$ and $M \Downarrow V$ then $\vdash V : \tau$.