第五次作业

- 7.1 Consider the traffic deadlock depicted in Figure 7.10.
- a. Show that the four necessary conditions for deadlock indeed hold in this example.
- b. State a simple rule for avoiding deadlocks in this system.

a.

互斥: 道路资源在某一时刻只能有一辆汽车通过;

占有并等待:正在通过某段道路的车辆占用了这段道路,并需要等待其前方的车辆离开前方的道路;

不可抢占: 道路只有在车辆通过后会被释放,车辆不能抢占其他车辆的位置;循环等待: 每辆车都在等待其前方的道路资源,四条道路连接成环,车辆的等待也形成闭环;

此案例满足死锁发生的四个必要条件。

b.

规定车辆不能在十字路口处停留,若路口前方的道路无法通过,则停留在路口后方等待。在这种规则下,车辆可以有序通过路口,不会出现路口被占用导致的循环等待。

7.11 Consider the following snapshot of a system:

	Allocation	Max	Available
	ABCD	ABCD	ABCD
P ₀	0012	0012	1520
P ₁	1000	1750	
P ₂	1354	2356	
P ₃	0632	0652	
P ₄	0014	0656	

Answer the following questions using the banker's algorithm:

- a. What is the content of the matrix Need?
- b. Is the system in a safe state?
- c. If a request from process P_1 arrives for (0,4,2,0), can the request be granted immediately?

a.

Need[i,j] = Max[i,j] - Allocation[i,j]

	Need	
	ABCD	
P ₀	0000	
P ₁	0750	
P ₂	1002	
P ₃	0020	
P ₄	0642	

b. 根据安全性算法,

	Allocation	Need	Work	Finish
	ABCD	ABCD	ABCD	
			1520	
P ₀	0012	0000	1532	True
P ₁	1000	0750	3 14 12 12	True
P ₂	1354	1002	2886	True
P ₃	0632	0020	2 14 11 8	True
P ₄	0014	0642	2 14 12 12	True

存在安全序列 {P0, P2, P3, P4, P1}, 系统处于安全状态。

- c. 若 P1 发出请求 0420,
 - (1) 0420 < 0750,即 Reqest[i,j] < Need[i,j],转下一步
 - (2) 0420 <= 1520,即 Request[i,j] <= Available[j],转下一步
 - (3) 系统尝试将资源分配给进程 P1,得到

	Allocation	Need	Available	
	ABCD	ABCD	ABCD	
P ₁	1420	0330	1100	

(4) 安全性算法:

	Allocation	Need	Work	Finish
	ABCD	ABCD	ABCD	
			1100	
P ₀	0012	0000	1112	True
P ₁	1420	0330	3 14 12 12	True

P ₂	1354	1002	2466	True
P ₃	0632	0020	2 10 9 8	True
P ₄	0014	0642	2 10 10 12	True

存在安全序列 {P0, P2, P3, P4, P1}, 系统处于安全状态。 因此 P1 的请求会被立即同意。