NAME:

For the following exercises, read the problems carefully and show all your work. Attach more pages if necessary. Avoid using a calculator or the computer to solve the exercises. Please, turn in your homework in ONE pdf.

1 Order of Operations, Summation, and Products

Simplify the following expressions:

1.
$$(3*4)/(3-2) + ((4+3)/7)$$

2.
$$(3*4)/(3-2) - ((4+3)/7)((2+10)/3)$$

3.
$$\sum_{i=1}^{3} 9 + \sqrt{9^i}$$

$$4. \sum_{i=1}^{10} 9 + 9i$$

5.
$$\prod_{x=1}^{5} 2x$$

6.
$$\sum_{i=1}^{n} i$$
 (Even if you already know the formula, try to derive it)

7.
$$\frac{2g+13}{3g} + \frac{4g-5}{4g}$$

8.
$$\frac{\frac{w^3z^4}{(w+1)(z-3)}}{\frac{(wz)^3}{(w-2)(z-3)}}$$

9.
$$\frac{\prod_{i=1}^{100} 2^i}{\prod_{i=2}^{100} 2^i}$$

10.
$$\sum_{i=1}^{N} (5^i - 5^{i-1})$$

2 Exponents and Logarithms

Simplify the following expressions:

1.
$$x^2x^5 + x^4x^3$$

2.
$$\frac{x^8}{(x^4)^2}$$

3.
$$\frac{x^8}{(x^8)^4}$$

4.
$$\sqrt[3]{1000}$$

5.
$$\sqrt[6]{10000000}$$

6.
$$\sqrt[3]{1000000}$$

7.
$$\log(2x^35x^8)$$

8.
$$\log\left(\frac{x-1}{10x}\right)$$

9.
$$5\log(x) - \log(x^4)$$

10.
$$\log_4(16)$$

Show that

$$ln\Big(\prod_{i=1}^{N}\frac{1}{\sqrt{2\pi}}e^{\frac{-(x_i-\mu)^2}{2}}\Big)$$

is equal to

$$-\frac{\ln(2\pi)N}{2} - .5\sum_{i=1}^{N} (x_i - \mu)^2$$

Show that

$$\prod_{i=1}^{n} ae^{x_i}$$

is equal to

$$e^{\sum x_i + nln(a)}$$

Now consider an applied problem.

The Cobb-Douglas production function relates labor (L) and capital (K) to production (Y), such that $Y = AK^{\beta}L^{\alpha}$. (The usefulness of such functions extends beyond economics; for example, Butler (2014) utilizes a Cobb-Douglas function when studying Congressional representation). Consider that regression equations are often specified in a form such as

$$Y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \varepsilon$$

where Y is the outcome, β_0 is the intercept, β_1, \ldots, β_k are coefficients, x_1, \ldots, x_k are the independent variables, and ε is an error term. Without worrying about the error term, manipulate the Cobb-Douglas production function so that it is in such a form, where β and α are the coefficients.

(Hint: A variable in a regression may actually be a "transformed" variable; for example, for various reasons a researcher with one independent variable x_1 may choose to estimate an effect β_1 using $Y = \beta_0 + \beta_1 \sqrt{x_1}$ rather than $Y = \beta_0 + \beta_1 x_1$, though you should note the coefficient's interpretation is changed.)