Tarea para entregar y discutir por equipos

Ejercicio 1

• Escriba un programa en Python que calcule la forma expandida

$$p(x) = x^5 - 5x^4 + 10x^3 - 10x^2 + 5x - 1$$
, del polinomio $(x - 1)^5$

- Para 200 valores de x en una vecindad pequeña de x=1, dígase $(0.9986 \le x \le 1.0014)$ y con $prec=Eps_M$, ejecute el programa para obtener p(x)/prec.
- Muestre los resultados en un gráfico lineal por tramos. ¿Qué observa?
- ¿Cuál es el intervalo de incertidumbre para la raíz numérica correspondiente a la raíz exacta x = 1.

Ejercicio 2

Sea la función $f(x) = x^3 + x - 1$

- Pruebe que la ecuación f(x) = 0 tiene una única solución x^* en el intervalo (0,1).
- Estime la ráiz de dicha ecuación utilizando el 3 iteraciones del método de Bisección.
- ¿Cuántas iteraciones del método de Bisección se necesitan para aproximar la solución exacta con un error de 10⁻⁶ ?
- Escriba el método de Newton para obtener la solución x^* y realice a mano tres iteraciones. Compare con el resultado del método de bisección
- Pídale a una IA (p.e. Copilot) que realice esta misma operación
- Pruebe que la sucesión x_k generada por el Método de Newton converge a x^* para cualquier valor inicial $x_0 \in \mathbb{R}$ y que

$$\lim_{k \to \infty} \frac{x_{k+1} - x^*}{(x_k - x^8)^2} = \frac{3x^*}{3(x^*)^2 + 1}$$

■ Interprete el inciso anterior en términos de error de discretización y tasa de convergencia

Ejercicio 3

Encuentre un problema práctico cercano a su profesión cuya respuesta implique el cálculo de los ceros de una función.