ANALISI MATEMATICA 2 Prof. F. Gazzola Programma dettagliato A.A.2019-20

Obiettivi

Scopo del corso è presentare, dando per acquisiti gli elementi di base del corso di Analisi 1, alcuni argomenti dell'Analisi Matematica indispensabili per l'utilizzo consapevole del linguaggio e degli strumenti delle discipline fisiche ed ingegneristiche.

Programma delle lezioni e delle esercitazioni

1 - Funzioni reali di due o più variabili reali

1.1 - Funzioni a valori reali

Elementi di topologia nel piano e nello spazio: insiemi aperti, chiusi, connessi; frontiera di un insieme; insiemi limitati. Limiti e continuità; teorema di Weierstrass. Teorema degli zeri. Derivate parziali, vettore gradiente, derivate direzionali: interpretazioni fisiche e geometriche. Curve (superficie) di livello. Differenziale, piano tangente, approssimazione lineare locale. Condizioni necessarie per la differenziabilità, formula del gradiente; condizione sufficiente di differenziabilità. Funzioni composte; regola di derivazione. Teorema del valor medio. Derivate seconde, teorema di Schwartz, matrice hessiana; differenziale secondo. Formula di Taylor al secondo ordine. Forme quadratiche e loro classificazione: metodo degli autovalori per il riconoscimento delle forme quadratiche. Ottimizzazione libera: punti stazionari; uso della formula di Taylor per il riconoscimento di massimi e minimi locali. Funzioni convesse. Ottimizzazione vincolata; metodo dei moltiplicatori di Lagrange.

1.2 - Funzioni a valori vettoriali

Continuità e differenziabilità: matrice Jacobiana. Differenziabilità delle funzioni composte.

2 - Integrali doppi e tripli

Integrale doppio di una funzione continua: proprietà ed applicazioni fisiche e geometriche (volumi, baricentri, momenti d' inerzia). Formule di riduzione a due integrali semplici successivi. Cambio di variabili; coordinate polari. Integrale triplo di una funzione continua. Formule di riduzione. Coordinate cilindriche e sferiche. Cenni agli integrali impropri doppi e tripli.

3 - Curve e campi vettoriali

Curve in forma parametrica nel piano e nello spazio. Curve regolari. Curve rettificabili: lunghezza di un arco di curva regolare.

Campi vettoriali. Integrali di linea di un campo vettoriale: lavoro e circuitazione. Campi vettoriali conservativi; potenziale; caratterizzazione dei campi conservativi come campi con circuitazione nulla. Vettore rotore, campi irrotazionali. Insiemi semplicemente connessi.

4 - Serie trigonometriche e serie di Fourier

Serie di funzioni. Convergenza semplice e convergenza totale. Serie di potenze: raggio e cerchio di convergenza; serie di Taylor; serie esponenziale nel campo complesso.

Polinomi trigonometrici e serie trigonometriche. Coefficienti e serie di Fourier di una funzione periodica.

Approssimazione in media quadratica. Disuquaglianza di Bessel; uquaglianza di Parseval. Convergenza puntuale

di una serie di Fourier. Forma esponenziale della serie di Fourier.

5 - Equazioni differenziali ordinarie

Modelli della meccanica classica e della dinamica delle popolazioni. Generalità: ordine, soluzione; problema di Cauchy. Riduzione di un'equazione scalare di ordine n ad un'equazione vettoriale del I ordine. Teorema di esistenza e unicità locale della soluzione di un problema di Cauchy.

Equazioni differenziali lineari scalari: principio di sovrapposizione, struttura dello spazio delle soluzioni dell'equazione omogenea e di quello dell'equazione completa.

Integrale generale delle equazioni lineari del primo ordine. Equazioni lineari del secondo ordine omogenee: lo spazio delle soluzioni ha dimensione 2; costruzione di un sistema fondamentale di integrali particolari per l'equazione omogenea a coefficienti costanti, ricerca di una soluzione particolare dell'equazione completa.

Vibrazioni libere, vibrazioni smorzate, vibrazioni forzate (in assenza di attrito). Equazioni di Eulero. Equazioni differenziali non lineari del primo ordine; equazioni a variabili separabili, equazioni omogenee, equazioni di Bernoulli.

6 - Sistemi differenziali lineari

Sistemi lineari: principio di sovrapposizione, struttura dello spazio delle soluzioni di un sistema omogeneo e di un sistema non omogeneo. Sistemi lineari omogenei: dimensione dello spazio delle soluzioni; sistema fondamentale di soluzioni; matrice Wronskiana. Sistemi lineari omogenei autonomi: costruzione di un sistema fondamentale di soluzioni; matrice esponenziale. Sistemi lineari completi: metodo della variazione delle costanti arbitrarie.

N.B. Una parte del programma, relativo alle equazioni differenziali lineari, verrà svolta in didattica innovativa con l'utilizzo di un M.O.O.C.. Le parti evidenziate in rosso sono leggermente divere rispetto all'AA precedente.

Bibliografia consigliata

Bramanti, M., Pagani, C.D., Salsa, S.: Analisi Matematica 2, Zanichelli, 2009.

Gazzola, F.: Analisi Matematica 2, Edizioni LaDotta, 2015.

Salsa, S., Squellati, A.: Esercizi di Analisi Matematica 2, Zanichelli, 2011.

Boella, M.: Analisi Matematica 2, Esercizi, Pearson Education, 2008.