Voltage Detector Series with Programmable Delay

The NCP302 and NCP303 series are second generation ultra-low current voltage detectors that contain a programmable time delay generator. These devices are specifically designed for use as reset controllers in portable microprocessor based systems where extended battery life is paramount.

Each series features a highly accurate undervoltage detector with hysteresis and an externally programmable time delay generator. This combination of features prevents erratic system reset operation.

The NCP302 series consists of complementary output devices that are available with either an active high or active low reset. The NCP303 series has an open drain N-Channel output with an active low reset output.

Features

- Quiescent Current of 0.5 μA Typical
- High Accuracy Undervoltage Threshold of 2.0%
- Externally Programmable Time Delay Generator
- Wide Operating Voltage Range of 0.8 V to 10 V
- Complementary or Open Drain Output
- Active Low or Active High Reset
- Specified Over the -40°C to +125°C Temperature Range (Except for Voltage Options from 0.9 to 1.1 V)
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Typical Applications

- Microprocessor Reset Controller
- Low Battery Detection
- Power Fail Indicator
- Battery Backup Detection

NCP302xSNxxT1 Complementary Output Configuration

^{*} Inverter for active low devices. Buffer for active high devices.

This device contains 28 active transistors.

Figure 1. Representative Block Diagrams

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

W

TSOP-5/ SOT23-5 CASE 483

xxx = Specific Device Code A = Assembly Location

Y = Year

= Work Week = Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information in the ordering information section on page 22 of this data sheet.

NCP303LSNxxT1 Open Drain Output Configuration

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Power Supply Voltage (Pin 2)	V _{in}	12	V
Delay Capacitor Pin Voltage (Pin 5)	V _{CD}	-0.3 to $V_{in} + 0.3$	V
Output Voltage (Pin 1) Complementary, NCP302 N-Channel Open Drain, NCP303	V _{OUT}	-0.3 to V _{in} + 0.3 -0.3 to 12	V
Output Current (Pin 1) (Note 2)	I _{OUT}	70	mA
Thermal Resistance Junction-to-Air	$R_{ heta JA}$	250	°C/W
Maximum Junction Temperature	T _J	+150	°C
Operating Ambient Temperature Range All Voltage Options: 0.9 V to 1.1 V All Voltage Options: 1.2 V to 4.9 V	T _A	-40 to +85 -40 to +125	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
Moisture Sensitivity Level	MSL	1	
Latchup Performance (Note 3) Positive Negative	ILATCHUP	200 200	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

should not be assumed, damage may occur and reliability may be affected.

1. This device series contains ESD protection and exceeds the following tests:

Human Body Model 2000 V per MIL–STD–883, Method 3015.

Machine Model Method 200 V.

2. The maximum package power dissipation limit must not be exceeded.

$$P_{D} = \frac{T_{J(max)} - T_{A}}{R_{\theta JA}}$$

3. Maximum ratings per JEDEC standard JESD78.

ELECTRICAL CHARACTERISTICS (For all values $T_A = -40$ °C to +125°C, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
NCP302/3 – 0.9 ($T_A = 25$ °C for voltage options from 0.9 to 1.1 V)		•	•	-	•
Detector Threshold (Pin 2, V _{in} Decreasing)	V _{DET} _	0.882	0.900	0.918	V
Detector Threshold Hysteresis (Pin 2, V _{in} Increasing)	V _{HYS}	0.027	0.045	0.063	V
Supply Current (Pin 2) $(V_{in} = 0.8 \text{ V})$ $(V_{in} = 2.9 \text{ V})$	l _{in}	- -	0.20 0.45	0.6 1.2	μΑ
Maximum Operating Voltage (Pin 2)	V _{in(max)}	-	-	10	V
Minimum Operating Voltage (Pin 2) (T _A = -40°C to 85°C)	V _{in(min)}	- -	0.55 0.65	0.70 0.80	V
Reset Output Current (Pin 1, Active Low 'L' Suffix Devices)	l _{OUT}				mA
Nch Sink Current, NCP302, NCP303 $(V_{OUT} = 0.05V, V_{in} = 0.70V)$ $(V_{OUT} = 0.50V, V_{in} = 0.85V)$		0.01 0.05	0.05 0.50	_ _	
Pch Source Current, NCP302 $(V_{OUT} = 2.4V, V_{in} = 4.5V)$		1.0	6.0	-	
Reset Output Current (Pin 1, Active High 'H' Suffix Devices)	l _{OUT}				mA
Nch Sink Current, NCP302, NCP303 ($V_{OUT} = 0.5 \text{ V}$, $V_{in} = 1.5 \text{ V}$)		1.05	2.5	-	
Pch Source Current, NCP302 $(V_{OUT} = 0.4 \text{ V}, V_{in} = 0.7 \text{ V})$ $(V_{OUT} = \text{GND}, V_{in} = 0.8 \text{ V})$		0.011 0.014	0.04 0.08	_ _	
C _D Delay Pin Threshold Voltage (Pin 5) (V _{in} = 0.99 V)	V _{TCD}	0.50	0.67	0.84	V
Delay Capacitor Pin Sink Current (Pin 5) $ (V_{in} = 0.7 \text{ V}, V_{CD} = 0.1 \text{ V}) $ $ (V_{in} = 0.85 \text{ V}, V_{CD} = 0.5 \text{ V}) $	I _{CD}	2.0 10	120 300	_ _	μΑ
Delay Pullup Resistance (Pin 5)	R_D	0.5	1.0	2.0	МΩ
NCP302/3 – 1.8	•	•	•	**	
Detector Threshold (Pin 2, V_{in} Decreasing) ($T_A = 25^{\circ}C$) ($T_A = -40^{\circ}C$ to $125^{\circ}C$)	V _{DET} _	1.764 1.746	1.800	1.836 1.854	V
Detector Threshold Hysteresis (Pin 2, V _{in} Increasing)	V _{HYS}	0.054	0.090	0.126	V
Supply Current (Pin 2) (V _{in} = 1.7 V) (V _{in} = 3.8 V)	I _{in}	_ _	0.23 0.48	0.7 1.3	μΑ
Maximum Operating Voltage (Pin 2)	V _{in(max)}	_	-	10	V
Minimum Operating Voltage (Pin 2) ($T_A = 25^{\circ}C$) ($T_A = -40^{\circ}C$ to $125^{\circ}C$)	V _{in(min)}	_ _	0.55 0.65	0.70 0.80	V
Reset Output Current (Pin 1, Active Low 'L' Suffix Devices)	l _{OUT}				mA
Nch Sink Current, NCP302, NCP303 $(V_{OUT} = 0.05V, V_{in} = 0.70V)$ $(V_{OUT} = 0.50V, V_{in} = 1.5V)$		0.01 1.0	0.05 2.0	- -	
Pch Source Current, NCP302 $(V_{OUT} = 2.4V, V_{in} = 4.5V)$		1.0	6.0	-	
Reset Output Current (Pin 1, Active High 'H' Suffix Devices)	l _{OUT}				mA
Nch Sink Current, NCP302, NCP303 (V_{OUT} = 0.5 V, V_{in} = 5.0 V)		6.3	11	_	
Pch Source Current, NCP302 ($V_{OUT} = 0.4 \text{ V}$, $V_{in} = 0.7 \text{ V}$) ($V_{OUT} = GND$, $V_{in} = 1.5 \text{ V}$)		0.011 0.525	0.04 0.6	- -	
C _D Delay Pin Threshold Voltage (Pin 5) (V _{in} = 1.98 V)	V _{TCD}	0.99	1.34	1.68	V

ELECTRICAL CHARACTERISTICS (continued) (For all values $T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
NCP302/3 - 1.8	•	•			
Delay Capacitor Pin Sink Current (Pin 5) $(V_{in} = 0.7 \text{ V}, V_{CD} = 0.1 \text{V})$ $(V_{in} = 1.5 \text{ V}, V_{CD} = 0.5 \text{V})$	I _{CD}	2.0 200	120 1600	_ _	μΑ
Delay Pullup Resistance (Pin 5)	R _D	0.5	1.0	2.0	MΩ
NCP302/3 - 2.0	•	•			
Detector Threshold (Pin 2, V_{in} Decreasing) ($T_A = 25^{\circ}C$) ($T_A = -40^{\circ}C$ to 125°C)	V _{DET} _	1.96 1.94	2.00	2.04 2.06	V
Detector Threshold Hysteresis (Pin 2, V _{in} Increasing)	V _{HYS}	0.06	0.10	0.14	V
Supply Current (Pin 2) (V _{in} = 1.9 V) (V _{in} = 4.0 V)	l _{in}	- -	0.23 0.48	0.8 1.3	μΑ
Maximum Operating Voltage (Pin 2)	V _{in(max)}	_	-	10	V
Minimum Operating Voltage (Pin 2) ($T_A = 25^{\circ}C$) ($T_A = -40^{\circ}C$ to $125^{\circ}C$)	V _{in(min)}	_ _	0.55 0.65	0.70 0.80	V
Reset Output Current (Pin 1, Active Low 'L' Suffix Devices)	l _{OUT}				mA
Nch Sink Current, NCP302, NCP303 $(V_{OUT} = 0.05V, V_{in} = 0.70V)$ $(V_{OUT} = 0.50V, V_{in} = 1.5V)$		0.01 1.0	0.14 3.5	- -	
Pch Source Current, NCP302 (V _{OUT} = 2.4V, V _{in} = 4.5V)		1.0	9.7	_	
Reset Output Current (Pin 1, Active High 'H' Suffix Devices)	lout				mA
Nch Sink Current, NCP302, NCP303 ($V_{OUT} = 0.5 \text{ V}, V_{in} = 5.0 \text{ V}$)		6.3	11	-	
Pch Source Current, NCP302 (V_{OUT} = 0.4 V, V_{in} = 0.7 V) (V_{OUT} = GND, V_{in} = 1.5 V)		0.011 0.525	0.04 0.6	- -	
C _D Delay Pin Threshold Voltage (Pin 5) (V _{in} = 2.2 V)	V _{TCD}	1.10	1.49	1.87	V
Delay Capacitor Pin Sink Current (Pin 5) $(V_{in} = 0.7 \text{ V}, V_{CD} = 0.1 \text{V})$ $(V_{in} = 1.5 \text{ V}, V_{CD} = 0.5 \text{V})$	I _{CD}	2.0 200	250 3600	- -	μΑ
Delay Pullup Resistance (Pin 5)	R_D	0.5	1.0	2.0	MΩ
NCP302/3- 2.7					
Detector Threshold (Pin 2, V_{in} Decreasing) ($T_A = 25$ °C) ($T_A = -40$ °C to 125°C)	V _{DET} _	2.646 2.619	2.700 -	2.754 2.781	V
Detector Threshold Hysteresis (Pin 2, V _{in} Increasing)	V _{HYS}	0.081	0.135	0.189	V
Supply Current (Pin 2) $(V_{in} = 2.6 \text{ V})$ $(V_{in} = 4.7 \text{ V})$	l _{in}		0.25 0.50	0.8 1.3	μΑ
Maximum Operating Voltage (Pin 2)	V _{in(max)}	-	-	10	V
Minimum Operating Voltage (Pin 2) ($T_A = 25^{\circ}C$) ($T_A = -40^{\circ}C$ to $125^{\circ}C$)	V _{in(min)}	- -	0.55 0.65	0.70 0.80	V
Reset Output Current (Pin 1, Active Low 'L' Suffix Devices)	l _{OUT}				mA
Nch Sink Current, NCP302, NCP303 $(V_{OUT} = 0.05V, V_{in} = 0.70V)$ $(V_{OUT} = 0.50V, V_{in} = 1.5V)$		0.01 1.0	0.14 3.5	- -	
Pch Source Current, NCP302 $(V_{OUT} = 2.4V, V_{in} = 4.5V)$		1.0	9.7	_	
Reset Output Current (Pin 1, Active High 'H' Suffix Devices)	I _{OUT}			1	mA
Nch Sink Current, NCP302, NCP303 ($V_{OUT} = 0.5 \text{ V}, V_{in} = 5.0 \text{ V}$)		6.3	11	_	

ELECTRICAL CHARACTERISTICS (continued) (For all values $T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
NCP302/3- 2.7	•	•			•
Pch Source Current, NCP302 (V_{OUT} = 0.4 V, V_{in} = 0.7 V) (V_{OUT} = GND, V_{in} = 1.5 V)		0.011 0.525	0.04 0.6	- -	
C_D Delay Pin Threshold Voltage (Pin 5) ($V_{in} = 2.97 \text{ V}$)	V _{TCD}	1.49	2.01	2.53	V
Delay Capacitor Pin Sink Current (Pin 5) $(V_{in} = 0.7 \text{ V}, V_{CD} = 0.1 \text{ V})$ $(V_{in} = 1.5 \text{ V}, V_{CD} = 0.5 \text{ V})$	ICD	2.0 200	250 3600	- -	μΑ
Delay Pullup Resistance (Pin 5)	R _D	0.5	1.0	2.0	МΩ
NCP302/3 - 3.0					
Detector Threshold (Pin 2, V_{in} Decreasing) ($T_A = 25$ °C) ($T_A = -40$ °C to 125°C)	V _{DET} _	2.94 2.91	3.00	3.06 3.09	V
Detector Threshold Hysteresis (Pin 2, V _{in} Increasing)	V _{HYS}	0.09	0.15	0.21	V
Supply Current (Pin 2) $ (V_{in} = 2.87 \text{ V}) $ $ (V_{in} = 5.0 \text{ V}) $	I _{in}		0.25 0.50	0.9 1.3	μΑ
Maximum Operating Voltage (Pin 2)	V _{in(max)}	-	-	10	V
Minimum Operating Voltage (Pin 2) ($T_A = 25^{\circ}C$) ($T_A = -40^{\circ}C$ to 125°C)	V _{in(min)}	- -	0.55 0.65	0.70 0.80	V
Reset Output Current (Pin 1, Active Low 'L' Suffix Devices)	I _{OUT}				mA
Nch Sink Current, NCP302, NCP303 $(V_{OUT} = 0.05V, V_{in} = 0.70V)$ $(V_{OUT} = 0.50V, V_{in} = 1.5V)$		0.01 1.0	0.14 3.5	- -	
Pch Source Current, NCP302 $(V_{OUT} = 2.4V, V_{in} = 4.5V)$		1.0	9.7	_	
Reset Output Current (Pin 1, Active High 'H' Suffix Devices)	l _{OUT}				mA
Nch Sink Current, NCP302, NCP303 ($V_{OUT} = 0.5 \text{ V}, V_{in} = 5.0 \text{ V}$)		6.3	11	_	
Pch Source Current, NCP302 $(V_{OUT} = 0.4 \text{ V}, V_{in} = 0.7 \text{ V})$ $(V_{OUT} = \text{GND}, V_{in} = 1.5 \text{ V})$		0.011 0.525	0.04 0.6	- -	
C _D Delay Pin Threshold Voltage (Pin 5) (V _{in} = 3.3 V)	V _{TCD}	1.65	2.23	2.81	V
Delay Capacitor Pin Sink Current (Pin 5) $(V_{in} = 0.7 \text{ V}, V_{CD} = 0.1 \text{ V})$ $(V_{in} = 1.5 \text{ V}, V_{CD} = 0.5 \text{ V})$	ICD	2.0 200	250 3600	- -	μΑ
Delay Pullup Resistance (Pin 5)	R_D	0.5	1.0	2.0	МΩ
NCP302/3 - 4.5					
Detector Threshold (Pin 2, V_{in} Decreasing) ($T_A = 25^{\circ}C$) ($T_A = -40^{\circ}C$ to $125^{\circ}C$)	V _{DET} -	4.410 4.365	4.500 -	4.590 4.635	V
Detector Threshold Hysteresis (Pin 2, V _{in} Increasing)	V _{HYS}	0.135	0.225	0.315	V
Supply Current (Pin 2) (V _{in} = 4.34 V) (V _{in} = 6.5 V)	l _{in}	- -	0.33 0.52	1.0 1.4	μΑ
Maximum Operating Voltage (Pin 2)	V _{in(max)}	-	-	10	V
Minimum Operating Voltage (Pin 2) ($T_A = 25^{\circ}C$) ($T_A = -40^{\circ}C$ to 125°C)	V _{in(min)}		0.55 0.65	0.70 0.80	V
Reset Output Current (Pin 1, Active Low 'L' Suffix Devices)	I _{OUT}				mA
Nch Sink Current, NCP302, NCP303 (V _{OUT} = 0.05V, V _{in} = 0.70V) (V _{OUT} = 0.50V, V _{in} = 1.5V)		0.01 1.0	0.05 2.0	- -	

ELECTRICAL CHARACTERISTICS (continued) (For all values $T_A = -40$ °C to +125°C, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
NCP302/3 - 4.5		•	•	•	•
Pch Source Current, NCP302 (V _{OUT} = 5.9V, V _{in} = 8.0V)		1.5	10.5	_	
Reset Output Current (Pin 1, Active High 'H' Suffix Devices)	l _{out}				mA
Nch Sink Current, NCP302, NCP303 $(V_{OUT} = 0.5 \text{ V}, V_{in} = 5.0 \text{ V})$		6.3	11	_	
Pch Source Current, NCP302 $(V_{OUT} = 0.4 \text{ V}, V_{in} = 0.7 \text{ V})$ $(V_{OUT} = \text{GND}, V_{in} = 1.5 \text{ V})$		0.011 0.525	0.04 0.6	- -	
C _D Delay Pin Threshold Voltage (Pin 5) (V _{in} = 4.95 V)	V _{TCD}	2.25	3.04	3.83	V
Delay Capacitor Pin Sink Current (Pin 5) $(V_{in} = 0.7 \text{ V}, V_{CD} = 0.1 \text{V})$ $(V_{in} = 1.5 \text{ V}, V_{CD} = 0.5 \text{V})$	I _{CD}	2.0 200	120 1600	- -	μА
Delay Pullup Resistance (Pin 5)	R _D	0.5	1.0	2.0	МΩ
NCP302/3 - 4.7					
Detector Threshold (Pin 2, V_{in} Decreasing) ($T_A = 25^{\circ}C$) ($T_A = -40^{\circ}C$ to $125^{\circ}C$)	V _{DET} _	4.606 4.559	4.700 -	4.794 4.841	V
Detector Threshold Hysteresis (Pin 2, V _{in} Increasing)	V _{HYS}	0.141	0.235	0.329	V
Supply Current (Pin 2) (V _{in} = 4.54 V) (V _{in} = 6.7 V)	l _{in}	_ _	0.34 0.53	1.0 1.4	μΑ
Maximum Operating Voltage (Pin 2)	V _{in(max)}	-	-	10	V
Minimum Operating Voltage (Pin 2) ($T_A = 25^{\circ}C$) ($T_A = -40^{\circ}C$ to 125°C)	V _{in(min)}	-	0.55 0.65	0.70 0.80	V
Reset Output Current (Pin 1, Active Low 'L' Suffix Devices)	lout				mA
Nch Sink Current, NCP302, NCP303 $(V_{OUT} = 0.05V, V_{in} = 0.70V)$ $(V_{OUT} = 0.50V, V_{in} = 1.5V)$		0.01 1.0	0.05 2.0	- -	
Pch Source Current, NCP302 (V _{OUT} = 5.9V, V _{in} = 8.0V)		1.5	10.5	_	
Reset Output Current (Pin 1, Active High 'H' Suffix Devices)	l _{OUT}				mA
Nch Sink Current, NCP302, NCP303 (V _{OUT} = 0.5 V, V _{in} = 5.0 V)		6.3	11	_	
Pch Source Current, NCP302 $(V_{OUT} = 0.4 \text{ V}, V_{in} = 0.7 \text{ V})$ $(V_{OUT} = \text{GND}, V_{in} = 1.5 \text{ V})$		0.011 0.525	0.04 0.6	- -	
C _D Delay Pin Threshold Voltage (Pin 5) (V _{in} = 5.17 V)	V _{TCD}	2.59	3.49	4.40	V
Delay Capacitor Pin Sink Current (Pin 5) $(V_{in} = 0.7 \text{ V}, V_{CD} = 0.1 \text{V})$ $(V_{in} = 1.5 \text{ V}, V_{CD} = 0.5 \text{V})$	lcD	2.0 200	120 1600	- -	μΑ
Delay Pullup Resistance (Pin 5)	R _D	0.5	1.0	2.0	МΩ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NCP302 and NCP303 series are measured with a 10 pF capacitive load. NCP303 has an additional 470 k pullup resistor connected from the reset output to +5.0 V. The reset output voltage waveforms are shown for the active low 'L' devices. Output time delay t_{D1} and t_{D2} are dependent upon the delay capacitance. Refer to Figures 30, 31, and 32. The upper detector threshold, V_{DET+} is the sum of the lower detector threshold, V_{DET-} plus the input hysteresis, V_{HYS} .

Figure 2. Measurement Conditions for t_{D1} and t_{D2}

Table 1. ELECTRICAL CHARACTERISTIC TABLE FOR 0.9 - 4.9 V

				Detec	Detector Threshold		Supply	Current	Nch Sink	Current	Pch Source
NCP302 Series	Detec	tor Thre	shold		ysteresi		V _{in} Low	V _{in} High	V _{in} Low	V _{in} High	Current
	V _{DET}	V _{DET} _ (V) (Note 4)			V _{HYS} (V)		I _{in} (μΑ) (Note 5)	I _{in} (μΑ) (Note 6)	I _{OUT} (mA) (Note 7)	I _{OUT} (mA) (Note 8)	I _{OUT} (mA) (Note 9)
Part Number	Min	Тур	Max	Min	Тур	Max	Тур	Тур	Тур	Тур	Тур
NCP302LSN09T1	0.882	0.9	0.918	0.027	0.045	0.063	0.20	0.45	0.05	0.5	2.0
NCP302LSN15T1	1.470	1.5	1.530	0.045	0.075	0.105					
NCP302LSN18T1	1.764	1.8	1.836	0.054	0.090	0.126	0.23	0.48			
NCP302LSN20T1	1.960	2.0	2.040	0.060	0.100	0.140	1				
NCP302LSN27T1	2.646	2.7	2.754	0.081	0.135	0.189	0.25	0.50			
NCP302LSN30T1,	2.940	3.0	3.060	0.090	0.150	0.210	1				
NCV302LSN30T1,	2.940	3.0	3.060	0.090	0.150	0.210	1				
NCP302LSN33T1	3.234	3.3	3.366	0.099	0.165	0.231	1				
NCP302LSN38T1	3.724	3.8	3.876	0.114	0.190	0.266					
NCP302LSN40T1	3.920	4.0	4.080	0.120	0.200	0.280					3.0
NCP302LSN43T1	4.214	4.3	4.386	0.129	0.215	0.301					
NCP302LSN45T1	4.410	4.5	4.590	0.135	0.225	0.315	0.33	0.52			
NCP302LSN47T1	4.606	4.7	4.794	0.141	0.235	0.329	0.34	0.53			

^{4.} Values shown apply at +25°C only. For voltage options greater than 1.1 V, V_{DET} limits over operating temperature range (-40°C to +125°C) are $V_{NOM} \pm 3\%$. For voltage options < 1.2 V, V_{DET-} is guaranteed only at ± 25 °C.

Table 2. ELECTRICAL CHARACTERISTIC TABLE FOR 0.9 - 4.9 V

				Detec	Detector Threshold			Current	Nch Sink	Pch Source Current	
NCP302 Series	Detec	tor Thre	shold	Н	ysteresi	s	V _{in} Low	V _{in} High	Current	V _{in} Low	V _{in} High
	V _{DET} _ (V) (Note 10)		V _{HYS} (V)		I _{in} (μΑ) (Note 11)	I _{in} (μΑ) (Note 12)	I _{OUT} (mA) (Note 13)	I _{OUT} (mA) (Note 14)	I _{OUT} (mA) (Note 15)		
Part Number	Min	Тур	Max	Min	Тур	Max	Тур	Тур	Тур	Тур	Тур
NCP302HSN09T1	0.882	0.9	0.918	0.027	0.045	0.063	0.20	0.45	2.5	0.04	0.08
NCP302HSN18T1	1.764	1.8	1.836	0.054	0.090	0.126	0.23	0.48			
NCP302HSN27T1	2.646	2.7	2.754	0.081	0.135	0.189	0.25	0.50			
NCP302HSN30T1	2.940	3.0	3.060	0.090	0.150	0.210					
NCP302HSN40T1	3.920	4.0	4.080	0.120	0.200	0.280					
NCP302HSN45T1	4.410	4.5	4.590	0.135	0.225	0.315	0.33	0.52			

^{10.} Values shown apply at +25°C only. For voltage options greater than 1.1 V, V_{DET} limits over operating temperature range (-40°C to +125°C)

^{5.} Condition 1: 0.9 - 2.9 V, $V_{\text{in}} = V_{\text{DET}} - 0.10 \text{ V}$; 3.0 - 3.9 V, $V_{\text{in}} = V_{\text{DET}} - 0.13 \text{ V}$; 4.0 - 4.9 V, $V_{\text{in}} = V_{\text{DET}} - 0.16 \text{ V}$ 6. Condition 2: 0.9 - 4.9 V, $V_{\text{in}} = V_{\text{DET}} + 2.0 \text{ V}$ 7. Condition 3: 0.9 - 4.9 V, $V_{\text{in}} = 0.7 \text{ V}$, $V_{\text{OUT}} = 0.05 \text{ V}$, Active Low 'L' Suffix Devices 8. Condition 4: 0.9 - 1.0 V, $V_{\text{in}} = 0.85 \text{ V}$, $V_{\text{OUT}} = 0.5 \text{ V}$; 1.1 - 1.5 V, $V_{\text{in}} = 1.0 \text{ V}$, $V_{\text{OUT}} = 0.5 \text{ V}$, $V_{\text{in}} = 1.5 \text{ V}$, $V_{\text{OUT}} = 0.5 \text{ V}$, Active Low 'L' Suffix Devices

^{9.} Condition 5: 0.9 — 3.9 V, V_{in} = 4.5 V, V_{OUT} = 2.4 V; 4.0 — 4.9 V, V_{in} = 8.0 V, V_{OUT} = 5.9 V, Active Low 'L' Suffix Devices

are V_{NOM} ±3%. For voltage options < 1.2 V, V_{DET} is guaranteed only at +25°C.

11. Condition 1: 0.9 — 2.9 V, V_{in} = V_{DET} – 0.10 V; 3.0 — 3.9 V, V_{in} = V_{DET} – 0.13 V; 4.0 — 4.9 V, V_{in} = V_{DET} – 0.16 V

12. Condition 2: 0.9 — 4.9 V, V_{in} = V_{DET} + 2.0 V

13. Condition 3: 0.9 — 1.4 V, V_{in} = 1.5 V, V_{OUT} = 0.5 V; 1.5 — 4.9 V, V_{in} = 5.0 V, V_{OUT} = 0.5 V, Active High 'H' Suffix Devices

14. Condition 4: 0.9 — 4.9 V, V_{in} = 0.7 V, V_{OUT} = 0.4 V, Active High 'H' Suffix Devices

15. Condition 5: 0.9 — 1.0 V, V_{in} = 0.8 V, V_{OUT} = GND; 1.1 — 1.5 V, V_{in} = 1.0 V, V_{OUT} = GND; 1.6 — 4.9 V, V_{in} = 1.5 V, V_{OUT} = GND, Active High 'H' Suffix Devices

Table 3. ELECTRICAL CHARACTERISTIC TABLE FOR 0.9 - 4.9 V

				Detec	tor Thre	shold	Supply	Current	Nch Sink Current		
NCP303 Series	Detec	tor Thre	shold		Hysteresis			V _{in} High	V _{in} Low	V _{in} High	
	V _{DET}	V _{DET} (V) (Note 16)			V _{HYS} (V)		I _{in} (μΑ) (Note 17)	l _{in} (μΑ) (Note 18)	I _{OUT} (mA) (Note 19)	I _{OUT} (mA) (Note 20)	
Part Number	Min	Тур	Max	Min	Тур	Max	Тур	Тур	Тур	Тур	
NCP303LSN09T1	0.882	0.9	0.918	0.027	0.045	0.063	0.20	0.45	0.05	0.5	
NCP303LSN10T1	0.980	1.0	1.020	0.030	0.050	0.070					
NCP303LSN11T1	1.078	1.1	1.122	0.033	0.055	0.077				1.0	
NCP303LSN13T1	1.274	1.3	1.326	0.039	0.065	0.091					
NCP303LSN14T1	1.372	1.4	1.428	0.042	0.070	0.098					
NCP303LSN15T1	1.470	1.5	1.530	0.045	0.075	0.105					
NCP303LSN16T1	1.568	1.6	1.632	0.048	0.080	0.112				2.0	
NCP303LSN17T1	1.666	1.7	1.734	0.051	0.085	0.119					
NCP303LSN18T1	1.764	1.8	1.836	0.054	0.090	0.126	0.23	0.48	1		
NCP303LSN20T1	1.960	2.0	2.040	0.060	0.100	0.140	1				
NCP303LSN22T1	2.156	2.2	2.244	0.066	0.110	0.154	1				
NCP303LSN23T1	2.254	2.3	2.346	0.069	0.115	0.161	1				
NCP303LSN24T1	2.352	2.4	2.448	0.072	0.120	0.168	1				
NCP303LSN25T1	2.450	2.5	2.550	0.075	0.125	0.175	1				
NCP303LSN26T1	2.548	2.6	2.652	0.078	0.130	0.182	1				
NCP303LSN27T1	2.646	2.7	2.754	0.081	0.135	0.189	0.25	0.50	1		
NCP303LSN28T1	2.744	2.8	2.856	0.084	0.140	0.196	1				
NCP303LSN29T1	2.842	2.9	2.958	0.087	0.145	0.203	1				
NCP303LSN30T1	2.940	3.0	3.060	0.090	0.150	0.210	1				
NCP303LSN31T1	3.038	3.1	3.162	0.093	0.155	0.217	1				
NCP303LSN32T1	3.136	3.2	3.264	0.096	0.160	0.224	1				
NCP303LSN33T1	3.234	3.3	3.366	0.099	0.165	0.231					
NCP303LSN34T1	3.332	3.4	3.468	0.102	0.170	0.238	1				
NCP303LSN36T1	3.528	3.6	3.672	0.108	0.180	0.252	1				
NCP303LSN38T1	3.724	3.8	3.876	0.114	0.190	0.266	1				
NCP303LSN40T1	3.920	4.0	4.080	0.120	0.200	0.280	1				
NCP303LSN42T1	4.116	4.2	4.284	0.126	0.210	0.294	1				
NCP303LSN44T1	4.312	4.4	4.488	0.132	0.220	0.308	1				
NCP303LSN45T1	4.410	4.5	4.590	0.135	0.225	0.315	0.33	0.52	1		
NCP303LSN46T1	4.508	4.6	4.692	0.138	0.230	0.322	1				
NCP303LSN47T1	4.606	4.7	4.794	0.141	0.235	0.329	0.34	0.53	1		
NCP303LSN49T1	4.802	4.9	4.998	0.147	0.245	0.343	1				

^{16.} Values shown apply at +25°C only. For voltage options < 1.2 V, V_{DET} is guaranteed only at +25°C.

17. Condition 1: 0.9 — 2.9 V, V_{in} = V_{DET} – 0.10 V; 3.0 — 3.9 V, V_{in} = V_{DET} – 0.13 V; 4.0 — 4.9 V, V_{in} = V_{DET} – 0.16 V

18. Condition 2: 0.9 — 4.9 V, V_{in} = V_{DET} + 2.0 V

19. Condition 3: 0.9 — 4.9 V, V_{in} = 0.7 V, V_{OUT} = 0.05 V, Active Low 'L' Suffix Devices

20. Condition 4: 0.9 — 1.0 V, V_{in} = 0.85 V, V_{OUT} = 0.5 V; 1.1 — 1.5 V, V_{in} = 1.0 V, V_{OUT} = 0.5 V; 1.6 — 4.9 V, V_{in} = 1.5 V, V_{OUT} = 0.5 V, Active Low 'L' Suffix Devices

10.5 T_A = 25°C 2.5 l_{in}, INPUT CURRENT (μA) 2.0 1.5 1.0 0.5 0 2.0 4.0 6.0 8.0 10 12 Vin, INPUT VOLTAGE (V)

Figure 3. NCP302/3 Series 0.9 V Input Current vs. Input Voltage

Figure 4. NCP302/3 Series 2.7 V Input Current vs. Input Voltage

Figure 5. NCP302/3 Series 4.5 V Input Current vs. Input Voltage

Figure 6. NCP302/3 Series 0.9 V Detector Threshold Voltage vs. Temperature

Figure 7. NCP302/3 Series 2.7 V
Detector Threshold Voltage vs. Temperature

Figure 8. NCP302/3 Series 4.5 V Detector Threshold Voltage vs. Temperature

3.5 3.0 V_{OUT}, OUTPUT VOLTAGE (V) 2.5 2.0 1.5 1.0 $T_A = 125^{\circ}C (303L \text{ only})$ 0.5 = 25°C (303L only) 0 0.5 1.5 2.0 2.5 3.0 3.5 1.0 V_{in}, INPUT VOLTAGE (V)

Figure 9. NCP302L/3L Series 0.9 V Reset Output Voltage vs. Input Voltage

Figure 10. NCP302L/3L Series 2.7 V Reset Output Voltage vs. Input Voltage

Figure 11. NCP302L/3L Series 4.5 V Reset Output Voltage vs. Input Voltage

Figure 12. NCP302H/3L Series 0.9 V Reset Output Sink Current vs. Input Voltage

Figure 13. NCP302H/3L Series 2.7 V Reset Output Sink Current vs. Input Voltage

Figure 14. NCP302H/3L Series 4.5 V Reset Output Sink Current vs. Input Voltage

20 I_{OUT}, OUTPUT SOURCE CURRENT (mA) T_A = 25°C $V_{OUT} = V_{in} -2.1 V$ V_{in} –1.5 V 15 V_{in} –1.0 V 10 V_{in} -0.5 V 5.0 0 0 2.0 4.0 6.0 8.0 10 V_{in}, INPUT VOLTAGE (V)

Figure 15. NCP302L Series 0.9 V Reset Output Source Current vs. Input Voltage

Figure 16. NCP302L Series 2.7 V
Reset Output Source Current vs. Input Voltage

Figure 17. NCP302L Series 4.5 V Reset Output Source Current vs. Input Voltage

Figure 18. NCP302H/3L Series 0.9 V Reset Output Sink Current vs. Output Voltage

Figure 19. NCP302H/3L Series 2.7 V Reset Output Sink Current vs. Output Voltage

Figure 20. NCP302H/3L Series 4.5 V Reset Output Sink Current vs. Output Voltage

 C_{D} DELAY PIN SINK CURRENT (mA) $V_{CD} = 0.5 \text{ V}$ 12 $T_A = -40^{\circ}C$ 10 8.0 T_A = 25°C 6.0 4.0 $T_A = 125^{\circ}C$ 2.0 <u>0</u> 0 0 0.5 1.5 2.5 3.0 2.0 V_{in}, INPUT VOLTAGE (V)

Figure 21. NCP302/3 Series 0.9 V C_D Delay Pin Sink Current vs. Input Voltage

Figure 22. NCP302/3 Series 2.7 V C_D Delay Pin Sink Current vs. Input Voltage

Figure 23. NCP302/3 Series 4.5 V C_D Delay Pin Sink Current vs. Input Voltage

Figure 24. NCP302/3 Series 0.9 V C_D Delay Pin Sink Current vs. Voltage

Figure 25. NCP302/3 Series 2.7 V C_D Delay Pin Sink Current vs. Voltage

Figure 26. NCP302/3 Series 4.5 V C_D Delay Pin Sink Current vs. Voltage

2.2 V_{in} = 2.97 V 2.1 2.0 V_{in} = 2.97 V 2.0 1.9 1.9 1.7 -50 -25 0 25 50 75 100 125 T_A, AMBIENT TEMPERATURE (°C)

Figure 27. NCP302/3 Series 0.9 V ${
m C_D}$ Delay Pin Threshold Voltage vs. Temperature

Figure 28. NCP302/3 Series 2.7 V C_D Delay Pin Threshold Voltage vs. Temperature

 $\label{eq:continuous} \mbox{Figure 29. NCP302/3 Series 4.5 V} \\ \mbox{C}_{\mbox{\scriptsize D}} \mbox{ Delay Pin Threshold Voltage vs. Temperature}$

Figure 30. NCP302/3 Series 0.9 V Output Time Delay vs. Capacitance

Figure 31. NCP302/3 Series 2.7 V Output Time Delay vs. Capacitance

Figure 32. NCP302/3 Series 4.5 V Output Time Delay vs. Capacitance

160 $C_D = 0.1 \mu F$ 140 t_{D2}, OUTPUT TIME DELAY (ms) 120 100 80 60 40 20 0 -25 25 50 75 100 125 -50 T_A, AMBIENT TEMPERATURE (°C)

Figure 33. NCP302/3 Series 0.9 V Reset Output Time Delay vs. Temperature

Figure 34. NCP302/3 Series 2.7 V Reset Output Time Delay vs. Temperature

Figure 35. NCP302/3 Series 4.5 V Reset Output Time Delay vs. Temperature

Figure 36. NCP302/3 Series Delay Resistance vs. Temperature

OPERATING DESCRIPTION

The NCP302 and NCP303 series devices consist of a precision voltage detector that drives a time delay generator. Figures 37 and 38 show a timing diagram and a typical application. Initially consider that input voltage Vin is at a nominal level and it is greater than the voltage detector upper threshold (V_{DET+}). The voltage at Pin 5 and capacitor C_D will be at the same level as V_{in}, and the reset output (Pin 1) will be in the high state for active low devices, or in the low state for active high devices. If there is a power interruption and V_{in} becomes significantly deficient, it will fall below the lower detector threshold (V_{DET}-) and the external time delay capacitor C_D will be immediately discharged by an internal N-Channel MOSFET that connects to Pin 5. This sequence of events causes the Reset output to be in the low state for active low devices, or in the high state for active high devices. After completion of the power interruption,

 V_{in} will again return to its nominal level and become greater than the V_{DET+} . The voltage detector will turn off the N–Channel MOSFET and allow pullup resistor R_D to charge external capacitor C_D , thus creating a programmable delay for releasing the reset signal. When the voltage at Pin 5 exceeds the inverter/buffer threshold, typically 0.675 V_{in} , the reset output will revert back to its original state. The reset output time delay versus capacitance is shown in Figures 30 through 32. The voltage detector and inverter/buffer have built—in hysteresis to prevent erratic reset operation.

Although these device series are specifically designed for use as reset controllers in portable microprocessor based systems, they offer a cost–effective solution in numerous applications where precise voltage monitoring and time delay are required. Figures 38 through 46 show various application examples.

Figure 37. Timing Waveforms

APPLICATION CIRCUIT INFORMATION

Figure 38. Microprocessor Reset Circuit

Figure 39. Battery Charge Indicator

Figure 40. Missing Pulse Detector or Frequency Detector

Figure 41. Microprocessor Reset Circuit with Additional Hysteresis

Comparator hysteresis can be increased with the addition of resistor $R_H.$ The hysteresis equations have been simplified and do not account for the change of input current I_{in} as V_{in} crosses the comparator threshold. The internal resistance, R_{in} is simply calculated using I_{in} = 0.26 μA at 2.6 V.

Vin Decreasing:

$$V_{th} = \left(\frac{R_H}{R_{in}} + 1\right) \left(V_{DET-}\right)$$

Vin Increasing:

$$V_{th} = \left(\frac{R_H}{R_{in} \parallel R_L} + 1\right) \left(V_{DET-} \, + \, V_{HYS}\right)$$

 $V_{HYS} = V_{in}$ Increasing – V_{in} Decreasing

Test Data										
V _{th} Decreasing (V)	V _{th} Increasing (V)	V _{HYS} (V)	R _H (Ω)	R _L (kΩ)						
2.70	2.84	0.135	0	_						
2.70	2.87	0.17	100	10						
2.70	2.88	0.19	100	6.8						
2.70	2.91	0.21	100	4.3						
2.70	2.90	0.20	220	10						
2.70	2.94	0.24	220	6.8						
2.70	2.98	0.28	220	4.3						
2.70	2.70	0.27	470	10						
2.70	3.04	0.34	470	6.8						
2.70	3.15	0.35	470	4.3						

Test Data									
C (μF)	C (μF) f _{OSC} (kHz)								
0.01	2590	21.77							
0.1	490	21.97							
1.0	52	22.07							

Figure 42. Simple Clock Oscillator

This circuit monitors the current at the load. As current flows through the load, a voltage drop with respect to ground appears across R_{sense} where $V_{\text{sense}} = I_{\text{load}} * R_{\text{sense}}$. The following conditions apply:

 $\begin{array}{ll} \text{If:} & \text{Then:} \\ I_{Load} < V_{DET-}/R_{sense} & \text{Reset Output} = 0 \ V \\ I_{Load} \geq (V_{DET-}+V_{HYS})/R_{sense} & \text{Reset Output} = V_{DD} \end{array}$

Figure 43. Microcontroller Systems Load Sensing

A simple voltage monitor can be constructed by connecting several voltage detectors as shown above. Each LED will sequentially turn on when the respective voltage detector threshold ($V_{DET-} + V_{HYS}$) is exceeded. Note that detector thresholds (V_{DET-}) that range from 0.9 V to 4.9 V in 100 mV steps can be manufactured.

Figure 44. LED Bar Graph Voltage Monitor

Figure 45. Undervoltage Detection with Independent Reset Signal Control

This circuit monitors V_{DD} for undervoltage. If the V_{DD} input falls below the detector threshold (V_{DET-}), then the capacitor on the C_D pin will be immediately discharged resulting in the reset output changing to its active state indicating that an undervoltage event has been detected. The addition of a logic gate (Logic 1) provides for reset output control which is independent of V_{DD} . If the output of the

logic gate is tristated the undervoltage detector will behave normally. If the tristate is de–asserted, the logic gate will pull the C_D pin low resulting in the Reset Output pin changing to an active state. This independent control is useful in power supply sequencing applications when the Reset Output is tied to the enable input of an LDO or DC–DC converter.

Figure 46. Multi-Rail Supply Undervoltage Monitor with Power Good

This circuit monitors multiple power supply rails for undervoltage conditions. If any of the three power supplies are in an undervoltage condition, the NCP302 reset output will be immediately set to an active low level. All three power supplies must be above their minimum voltage levels for the NCP302 reset output to generate a "Power Good" level (Reset Output = Power Supply 1 or V_P).

Optionally, R1 may be added to provide a smaller effective C_D pin pullup resistance, (R_D) , where $R_D' = R1 \mid\mid R_D$, with R_D (internal C_D pin pullup resistance)

approximately equal to $1.0\,\mathrm{M}\Omega$, and $R1 > 5\,\mathrm{k}\Omega$. If $R1 << R_D$, then R1 also can decrease the reset output delay time (t_{D2}) variance over the operating temperature range.

The Power Good signal time delay (t_{D2}) can be estimated by: $t_{D2} \approx R_D * C_D$, with R_D in Ohms, and C_D in Farads. If R1 is installed, then R_D ' is substituted for R_D . R_P is added only if using the NCP303 to replace the NCP302. This allows the Reset Output to be pulled up to V_D which can be the Power Supply 1 or an independent power supply rail.

ORDERING INFORMATION

Device	Threshold Voltage	Output Type	Reset	Marking	Package	Shipping [†]													
NCP302LSN09T1G	0.9			SBO	TSOP-5 (Pb-Free)														
NCP302LSN15T1G	1.5			SBI	TSOP-5 (Pb-Free)														
NCP302LSN18T1G	1.8			SBF	TSOP-5 (Pb-Free)														
NCP302LSN20T1G	2.0	1		SBD	TSOP-5														
NCV302LSN20T1G*				AHH	(Pb-Free)														
NCP302LSN27T1G	2.7			SAW	TSOP-5 (Pb-Free)														
NCP302LSN28T1G	2.8		-		ALA	TSOP-5 (Pb-Free)													
NCP302LSN30T1G	3.0		Active	SAT	TSOP-5														
NCV302LSN30T1G*			Low	ACJ	(Pb-Free)														
NCP302LSN33T1G	3.3			SAQ	TSOP-5 (Pb-Free)														
NCP302LSN38T1G	3.8									SAK	TSOP-5 (Pb-Free)								
NCP302LSN40T1G	4.0	CMOS		SAI	TSOP-5 (Pb-Free)	3000 / Tape & Reel (7 inch Reel)													
NCP302LSN43T1G	4.3					1											SAF	TSOP-5 (Pb-Free)	
NCP302LSN45T1G	4.5				SAL	TSOP-5 (Pb-Free)													
NCP302LSN47T1G	4.7					SAC	TSOP-5 (Pb-Free)												
NCP302HSN09T1G	0.9			SDO	TSOP-5 (Pb-Free)														
NCP302HSN18T1G	1.8			SFH	TSOP-5 (Pb-Free)														
NCP302HSN27T1G	2.7		Active	SDK	TSOP-5 (Pb-Free)														
NCP302HSN30T1G	3.0		High	SDI	TSOP-5 (Pb-Free)														
NCP302HSN40T1G	4.0]								-		SJH	TSOP-5 (Pb-Free)		
NCP302HSN45T1G	4.5			SDG	TSOP-5 (Pb-Free)														

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

NCVxxx: $T_{low} = -40$ °C, $T_{high} = +125$ °C. Guaranteed by design.

ORDERING INFORMATION

Device	Threshold Voltage	Output Type	Reset	Marking	Package	Shipping [†]					
NCP303LSN09T1G	0.9			SDE	TSOP-5						
NCV303LSN09T1G*				AMU	(Pb-Free)						
NCP303LSN10T1G	1.0	1		SDD	TSOP-5						
NCV303LSN10T1G*				SSM	(Pb-Free)						
NCP303LSN11T1G	1.1				SDC	TSOP-5					
NCV303LSN11T1G*				ADC	(Pb-Free)						
NCV303LSN12T1G*	1.2			TSOP-5 (Pb-Free)							
NCP303LSN13T1G	1.3	Open Drain			SDA	TSOP-5					
NCV303LSN13T1G*				SRS	(Pb-Free)						
NCP303LSN14T1G	1.4							Active Low	SCZ	TSOP-5	3000 / Tape & Reel (7 inch Reel)
NCV303LSN14T1G*			20.11	SRT	(Pb-Free)	(vinen rees)					
NCP303LSN15T1G	1.5			SCY	TSOP-5						
NCV303LSN15T1G*				SRU	(Pb-Free)						
NCP303LSN16T1G	1.6			SCX	TSOP-5						
NCV303LSN16T1G*				SRV	(Pb-Free)						
NCP303LSN17T1G	1.7			SCW	TSOP-5						
NCP303LSN18T1G	1.8						SCV	TSOP-5 (Pb-Free)			
NCP303LSN20T1G	2.0	1		SCT	TSOP-5						
NCV303LSN20T1G*				SRW	(Pb-Free)						

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

NCVxxx: $T_{low} = -40^{\circ}C$, $T_{high} = +125^{\circ}C$. Guaranteed by design.

ORDERING INFORMATION

Device	Threshold Voltage	Output Type	Reset	Marking	Package	Shipping [†]
NCP303LSN22T1G	2.2	2.2		SCR	TSOP-5	
NCV303LSN22T1G*				ADD	(Pb-Free)	
NCP303LSN23T1G	2.3			SCQ	TSOP-5	
NCV303LSN23T1G*				SRX	(Pb-Free)	
NCP303LSN24T1G	2.4	1		SCP	TSOP-5	
NCV303LSN24T1G*			SRY (Pb-Fre	(Pb-Free)		
NCP303LSN25T1G	2.5			SCO	TSOP-5	
NCV303LSN25T1G*				AHA	(Pb-Free)	3000 / Tape & Reel (7 inch Reel)
NCP303LSN26T1G	2.6	1		SCN	TSOP-5 (Pb-Free)	
NCP303LSN27T1G	2.7			SCM	TSOP-5 (Pb-Free)	
NCV303LSN27T1G*				CAP		
NCP303LSN28T1G	2.8	Open Drain	Active Low	SCL	TSOP-5 (Pb-Free)	
NCV303LSN28T1G*		Dialii	LOW	TAA		
NCP303LSN29T1G	2.9			SCK	TSOP-5 (Pb-Free)	
NCV303LSN29T1G*				SSK	TSOP-5 (Pb-Free)	
NCP303LSN30T1G	3.0			SCJ	TSOP-5 (Pb-Free)	
NCV303LSN30T1G*				SSA	TSOP-5 (Pb-Free)	
NCP303LSN31T1G	3.1			SCI	TSOP-5 (Pb-Free)	
NCV303LSN31T1G*				CAR	TSOP-5 (Pb-Free)	
NCP303LSN32T1G	3.2			SCH	TSOP-5 (Pb-Free)	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

NCVxxx: $T_{low} = -40$ °C, $T_{high} = +125$ °C. Guaranteed by design.

ORDERING INFORMATION

Device	Threshold Voltage	Output Type	Reset	Marking	Package	Shipping [†]	
NCP303LSN33T1G	3.3			SCG	TSOP-5		
		4			(Pb-Free)		
NCP303LSN34T1G	3.4			SCF	TSOP-5 (Pb-Free)		
NCV303LSN34T1G*				CAT	, ,		
NCP303LSN36T1G	3.6			SCD	TSOP-5 (Pb-Free)		
NCV303LSN36T1G*				SSC	, ,		
NCP303LSN38T1G	3.8			SCA	TSOP-5 (Pb-Free)		
NCP303LSN40T1G	4.0			SBY	TSOP-5		
NCV303LSN40T1G*				SSD	(Pb-Free)		
NCP303LSN42T1G	4.2			SBW	TSOP-5		
NCV303LSN42T1G*				SSE	(Pb-Free)		
NCV303LSN43T1G*	4.3	4.3		SBV	TSOP-5 (Pb-Free)		
NCP303LSN44T1G	4.4			SBU	TSOP-5 (Pb-Free)		
NCV303LSN44T1*				SSF	TSOP-5		
NCV303LSN44T1G*		Open Drain	Active Low		TSOP-5 (Pb-Free)	3000 / Tape & Reel (7 inch Reel)	
NCP303LSN45T1G	4.5	4.5	1		SBT	TSOP-5	
NCV303LSN45T1G*				SSG	(Pb-Free)		
NCP303LSN46T1G	4.6]		SBS	TSOP-5 (Pb-Free)		
NCV303LSN46T1*				SSH	TSOP-5		
NCV303LSN46T1G*					TSOP-5 (Pb-Free)		
NCP303LSN47T1G	4.7			SBR	TSOP-5 (Pb-Free)		
NCV303LSN47T1*				SSJ	TSOP-5		
NCV303LSN47T1G*					TSOP-5 (Pb-Free)		
NCP303LSN49T1G	4.9			SBP	TSOP-5 (Pb-Free)		
NCV303LSN49T1*				SSI	TSOP-5		
NCV303LSN49T1G*					TSOP-5 (Pb-Free)		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

NCVxxx: $T_{low} = -40$ °C, $T_{high} = +125$ °C. Guaranteed by design.

PACKAGE DIMENSIONS

TSOP-5 (SOT-23-5/SC59-5) CASE 483-02 ISSUE K

SIDE VIEW

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME
- Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE
- MINIMUM THICKNESS OF BASE MATERIAL.

 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A.
- 5. OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

	MILLIMETERS				
DIM	MIN	MAX			
Α	3.00 BSC				
В	1.50 BSC				
С	0.90	1.10			
D	0.25	0.50			
G	0.95 BSC				
Н	0.01	0.10			
J	0.10	0.26			
K	0.20	0.60			
М	0°	10 °			
S	2 50	3.00			

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opport

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910 **Japan Customer Focus Center** Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative