Subsets

Subsets

Subsets

Definition 1 (Subsets)

Let A and B be sets.

- To say that A is a subset of B (denoted $A \subseteq B$) means that for each x, if $x \in A$, then $x \in B$.
- To say that A is a proper subset of B (denoted $A \subseteq B$) means that $A \subseteq B$ and $A \neq B$.

Notes.

- The relation \subseteq is called *set inclusion*.
- The notation $B\supseteq A$ means the same as $A\subseteq B$ and is read "B is a superset of A."

Set Inclusion

Proposition 1 (Set Inclusion as Relation)

Set inclusion is reflexive, antisymmetric, and transitive. In other words

- **1** For each set A, we have $A \subseteq A$. (Reflexivity.)
- **2** For all sets A and B, if $A \subseteq B$ and $B \subseteq A$, then A = B. (Antisymmetry.)
- **3** For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$. (Transitivity.)

Empty Set

Proposition 2

For each set A, we have $\emptyset \subseteq A$.

- The proof involves a vacuously true statement.
- Conversely, if a set is a subset of any set, then it must be the empty set. In other words,

(S10E05) Let A be a set such that for each set B, we have $A\subseteq B$. Then $A=\varnothing$.

Exercise 1 (Subsets)

Answer the following questions.

- **1** Is $\{3,5\}$ a subset of $\{2,3,5\}$?
- **2** Is $\{2, \{3, 5\}\}$ a subset of $\{2, 3, 5\}$?
- **3** Write down all subsets of $\{1, 2, 3\}$.

Exercise 2 (∈ vs. ⊆)

Find two sets A and B such that:

 $\mathbf{2} \ A \in B \text{ and } A \nsubseteq B.$

 $A \notin B \text{ and } A \nsubseteq B.$