See the HiHW grading rubric posted on Carmen

Name: Gage Famer Recitation Instructor: Chris T.

A horizontal section of narrow pipe is filled with water whose – flow speed is negligible $(v_1 \approx 0)$. The **gauge** pressure inside – the pipe is $P_{gauge} = 4.0$ atm. There is a pinhole-sized leak in – the wall of the pipe, and water exits the hole with speed v_2 . — What is v_2 ? For the limit check, investigate what happens to v_2 — if the gauge pressure inside the pipe drops to zero $(P_{gauge} \rightarrow 0)$. —

Representation:	0	1	2
Physics Concept(s):	0	1	2
Initial Equation(s):	0	0.5	1
Symbolic Answer:	0		1
Units Check:	0	0.5	1
Limits Check:	0	0.5	1
Neatness:	-2	-1	0
Total:			
Correct Answer:	Y	N	

Due Date: 11/13/2022

Representation

Physics Concept(s) (Refer to the list posted on Carmen)

Initial Equations

(1) <u>Bernoulli Equation</u>

P,+ 2pv2+pgh,=P2+2pv2+pghe

Algebra Work (Symbols only. Don't plug in any numbers yet.)

$$P_{1} + \frac{1}{2}pV_{1}^{2} + pgK_{1} = P_{2} + \frac{1}{2}pV_{2}^{2} + pgk_{2}$$

$$P_{1} = P_{2} + \frac{1}{2}pV_{2}^{2}$$

$$\frac{1}{2}pV_{2}^{2} = P_{1} - P_{2}$$

$$V_{2}^{2} = \frac{2(P_{1} - P_{2})}{P}$$

$$V_{2} = \sqrt{\frac{2(P_{1} - P_{2})}{P}}$$

Symbolic Answer:
$$V_2 = \sqrt{\frac{2(P_1 - P_2)}{P}}$$

Units Check

$$M_S = \frac{a+m}{ky_{m3}} = \frac{N_{m2}}{ky_{m3}}$$

$$= \frac{kgm}{s^2} \div \frac{kg}{m^3} = \frac{kg}{ms^2} \cdot \frac{m^3}{kg}$$

$$\frac{M}{S} = \frac{m^2}{S^2} = \frac{M}{S}$$

Limits Check

a) As $P_{gauge} \rightarrow 0$, what limit does v_2 approach?

$$\lim_{P\to 0} V_2 = 0$$

b) Why does the result make physical sense?

If there is no pressure, there is nothing causing water to leave the hole

Numerical Answer:

(Obtain this by plugging numbers into your symbolic answer.)