A) Using logistic regression to analyze gisette data set.

The step size has been chosen to be 0.1. The following figure shows the log-likelihood vs iteration:

The test error and training error are shown as following:

iteration number	train error	test error
100	0.00166666666667	0.02
200	0	0.018
300	0	0.019
400	0	0.019
500	0	0.018
600	0	0.018
700	0	0.017
800	0	0.017
90	0	0.017
1000	0	0.017

Which has been plotted in the graph:

The code is given as following:

```
import numpy as np
import pandas as pd
import math
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
from sklearn import preprocessing
# reading data from the file
train data=pd.read csv('gisette train.data', sep='', header=None).dropna(1).as matrix()
train_labels=pd.read_csv('gisette_train.labels', sep=' ', header=None).as_matrix()
test_data=pd.read_csv('gisette_valid.data', sep=' ', header=None).dropna(1).as_matrix()
test_labels=pd.read_csv('gisette_valid.labels', sep=' ', header=None).as_matrix()
#normalize the data to mean 0 and std 1
train data norm = preprocessing.scale(train data)
test_data_norm = preprocessing.scale(test_data)
#take out the data size
N = train_data_norm.shape[0] #row size
NN = train data norm.shape[1] #column size
TN = test data norm.shape[0]
#add one extra column 1s at the beginning of the data
train data = np.hstack((np.ones((N, 1)), train_data_norm))
test_data = np.hstack((np.ones((TN, 1)), test_data_norm))
#functioin for the partial derivative
def partial_derivative(train_data_, train_label_, w):
   N = train_data_.shape[0]
   cofficiency = -train_data_ * train_label_
exp_number = -train_label_ * np.dot(train_data_, np.transpose(w))
   derivative = np.sum(cofficiency * np.exp(exp number) / (1 + np.exp(exp number)), axis=0)
   return np.expand dims(derivative, axis=0)
def gradient descent(train data , train label , w, steps, lambda, param):
   N = train data .shape[0]
   for \_ in range(steps):
       w_temp = w - param * _lambda * w - param/N * partial_derivative(train_data_,
train_label_, w)
       w = \overline{w} \text{ temp}
   return w
def log_likehood(train_data_, train_label_, w):
   likeihood = -np.sum(np.log(1 + np.exp(-train label * np.dot(train data ,
np.transpose(w))))
   return likeihood
def linear_regression_predit(w, test_data_):
   N = test_data_.shape[0]
   results = []
   for i in range(N):
       expvalue = math.exp(np.inner(test_data_[i, :],w))
       p = expvalue / (1 + expvalue)
```

```
if p > 0.5:
         results.append(1)
      else:
         results.append(-1)
   return results
_lambda = 0.001#0.001
param = 0.1
likehood list=[]
likehood xlabel=[]
train err list = []
test_err_list=[]
w = np.zeros(NN + 1)
w=np.expand dims(w, axis=0)
steps_ = 0
for i in iteration_list: #range(300, 1001):
   steps = steps + i
   w = gradient_descent(train_data, train_labels, w, i, _lambda, param)
   likehood = log_likehood(train_data, train_labels, w)
   likehood list.append(likehood)
   likehood xlabel.append(steps )
   #predicting
   train_pred=np.asarray(linear_regression_predit(w, train_data))
   # for i in range(1000):
       print(train_pred[i])
        print(train_labels[i])
   test_pred=np.asarray(linear_regression_predit(w, test_data))
   # print test_data.shape
   # print test_pred.shape
# print test_labels.shape
   #evaluate the error
   train_error=1-accuracy_score(train_labels, train_pred)
   test_error=1-accuracy_score(test_labels, test_pred)
  print('iteration number: ',steps_, 'train error: ', train_error, 'test error: ',
test error, 'likelyhood: ',likehood)
   #recording
   train err list.append(train error)
   test err list.append(test error)
plt.plot(likehood xlabel, train err list,label='training error')
plt.plot(likehood xlabel, test err list,label='test error')
#plt.plot(likehood xlabel, likehood list,label='likeihood')
plt.xlabel('iteration steps')
plt.ylabel('Error rate')
plt.legend(loc=1)
plt.show()
plt.plot(likehood xlabel, likehood list, label='likeihood')
plt.xlabel('iteration steps')
plt.ylabel('likeihood')
plt.legend(loc=1)
plt.show()
```

B)

1) Re-apply the method to madelon data set:

We get the log-likelihood vs iteration:

The test error and training error are shown as following:

iteration number	train error	test error
100	0.27	0.435
200	0.2675	0.42333333333
300	0.265	0.425
400	0.26	0.421666666667
500	0.26	0.42
600	0.2605	0.421666666667
700	0.261	0.42166666667
800	0.26	0.42333333333
90	0.26	0.42333333333
1000	0.2595	0.42333333333

Which has been plotted below:

2) We then reapply the method to arcene data set. We get the log-likelihood vs iteration:

The test error and training error are shown as following:

iteration number	train error	test error
100	0	0
200	0	0
300	0	0
400	0	0
500	0	0
600	0	0
700	0	0
800	0	0
90	0	0
1000	0	0

Which has been plotted below:

