Perturbation Analysis for Word-length Optimization

George A. Constantinides Imperial College, London

May 20, 2003

Word-length Optimization

- It's hard.
 - For linear time-invariant (LTI) systems, it's proven NP-hard
- It's necessary.
 - Infinite-precision datapaths do not exist
 - Changing representation can drastically affect area, power, speed, quality of output
- It's not supported in the vendor toolchains.
 - Someone has to do it by hand
- It's just not fun.

Contributions

- Uses a high-level design tool (Simulink) for input specification
- Eliminates specifying bit-true hardware in the design process
- Semi-automatic tradeoff of area, power, and speed against user-specified SNR
 - Tool called Right-Size
- Extends previous work on LTI system modeling to non-linear systems

Design Flow

LTI Systems

$$X(t) \longrightarrow T \longrightarrow y(t)$$
 $X(t-t_0) \longrightarrow T \longrightarrow y(t-t_0)$
(a)

Linearizing Systems

Assumption:

 Quantization errors induced by rounding or truncation are sufficiently small to not affect the macroscopic behavior of the system

$$Y[t] = f(X_1[t], X_2[t], ..., X_n[t])$$

 $x_i[t]$ is small perturbation on $X_i[t]$

$$y[t] \approx x_1[t] \frac{\partial f}{\partial X_1} + \dots + x_n[t] \frac{\partial f}{\partial X_n}$$

- Thus, each non-linear component can be locally linearized
 - Replaced by its "small-signal equivalent"
 - Now, output can be predicted as a linear, time-varying system

Multiply: Derivative Monitors

$$f(X_1, X_2) = X_1 X_2$$

$$\frac{\partial f}{\partial X_1} = X_2, \frac{\partial f}{\partial X_2} = X_1$$

- Evaluate the differential coefficients of the Taylor series model during simulation
- Coefficients written out to file

(a) multiplier node

(b) with derivative monitors

Multiply: Linearization

- Replace nonlinear component with Taylor model
- Read Taylor coefficients from previous step

(a) multiplier node

(b) its first-order
Taylor model

Multiply: Noise Injection

- Noise is the quantization error
- We can predict the sensitivity of a linear system to this additive noise (perturbation)
- Apply this transformation to each signal, propagating zeros from primary inputs

Example

Insert Derivative Monitors

Linearized DFG

Adding Noise (Quantization)

Scaling Analysis

- Each signal in a multiple word-length system has two parameters
 - Word-length (n)
 - Scaling (p)

- Perform simulation to find peak signal value reached by each signal
- Scale up by a safety factor (guard bits)

Word-length Optimization

- Two-stage algorithm
 - Compute an optimal uniform wordlength
 - Minimize area under user-defined maximum allowable error
 - Use heuristic to find smaller wordlengths for individual signals
 - Scale up optimal uniform wordlength by a fixed factor
 - Greedily reduce wordlength of individual signals bit by bit according to area pay-off
- All built using area models of Xilinx Coregen arithmetic units

Case Study: Adaptive Filtering

- Least-mean-square (LMS) filter
- Adapts filter coefficients for system identification

Results

- 90 filters between 1st and 10th order constructed
- Three designs synthesized
 - Uniform scaling and optimum uniform word-length
 - Scaling individually optimized for each signal and optimum uniform word-length
 - Individually optimized scaling and word-length
- Lower bound of output fixed at 34dB

Area vs. filter order

Power vs. filter order

Area vs. SNR bound

Power vs. SNR bound

