$\textbf{Lema 1} \ (\text{Teorema del conjunto generador}) \textbf{-} \ \textit{Sean } u_1, u_2, \cdots, u_p \ \textit{vectores de un espacio vectorial } V. \\ \textbf{Si } u_1 \ \textit{depende linealmente del conjunto } \{u_2, \cdots, u_p\}, \ \textit{entonces } \langle u_1, u_2, \cdots, u_p \rangle = \langle u_2, \cdots, u_p \rangle. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independiente, entonces } m \leqslant n. \\ \textbf{es linealmente independie$

DEMOSTRACIÓN:

Es obvio que $\langle\,u_2,\,\cdots\,,u_p\,\rangle\subseteq\langle\,u_1,\,u_2,\,\cdots\,,u_p\,\rangle.$ Veamos la inclusión contraria.

Si $u \in \langle u_1, u_2, \cdots, u_p \rangle$, existen $\alpha_1, \cdots, \alpha_p$ tales que $u = \alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_p u_p$ y como u_1 depende linealmente de los demás, existirán β_2, \cdots, β_p tales que $u_1 = \beta_2 u_2 + \cdots + \beta_p u_p$. Sustituyendo esta expresión en la anterior, obtenemos:

$$u = \alpha_1(\overbrace{\beta_2 u_2 + \dots + \beta_p u_p}^{u_1}) + \alpha_2 u_2 + \dots + \alpha_p u_p = (\alpha_1 \beta_2 + \alpha_2) u_2 + \dots + (\alpha_1 \beta_p + \alpha_p) u_p$$

En otras palabras, $u\in\langle\,u_2,\,\cdots\,,u_p\,\rangle$ lo cual implica que $\langle\,u_1,\,u_2,\,\cdots\,,u_p\,\rangle\subseteq\langle\,u_2,\,\cdots\,,u_p\,\rangle$

Sean dos subespacios vectoriales U y V, en un espacio vectorial definido sobre un cuerpo K Considérense las bases

$$ullet$$
 $B_1=\{a_1,\ldots,a_r,u_1,\ldots,u_p\}$

$$\bullet \ B_2=\{a_1,\ldots,a_\tau,v_1,\ldots,v_q\}$$

$$\bullet B_3 = \{a_1, \dots, a_r\}$$

•
$$B_4 = \{a_1, \dots, a_r, u_1, \dots, u_p, v_1, \dots, v_q\}$$

de modo que se cumpla $U\cap V=\mathrm{gen}(B_3)$, entonces $U=\mathrm{gen}(B_1)$ y $V=\mathrm{gen}(B_2)$, basta completar B_3 con los vectores correspondientes. Nota 1 Además, como $B_4=B_1\cup B_2$, se tiene $U+V=\mathrm{gen}(B_4)$. Nota 2

Es necesario demostrar primero que el sistema B_4 es efectivamente una base, para esto basta con que sus vectores sean linealmente independientes, ya que generan al subespacio suma U + V

Independencia entre los vectores de B₄

[mostrar]

Según las propiedades de la suma,

$$p+q+r=(p+r)+(q+r)-r$$

pero esto equivale a

$$\dim(U+V) = \dim(U) + \dim(V) - \dim(U \cap V)$$

Teorema 2 - Sean V y W espacios vectoriales y $T:V\longmapsto W$ lineal. Son equivalentes:

- (2) $ker(T) = {\vec{0}_V}.$
- (3) $\dim(V) = \dim(\operatorname{Im}(T))$.
- (4) T transforma las bases de V en bases de Im(T).
- (5) T conserva la independencia lineal.

DEMOSTRACIÓN:

- (1) \Rightarrow (2) Es inmediato pues $T(\vec{0}_V) = \vec{0}_W$
- (2) ⇒ (3) Es una consecuencia del teorema 1.

(3) \Rightarrow (4) Si $\mathcal{B}_V = \{v_1, \cdots, v_n\}$ es una base de V, entonces $T(\mathcal{B}_V) = \{T(v_1), \cdots, T(v_n)\}$ es un sistema generador de $\mathrm{Im}(T)$. Si fuera L.D., podríamos obtener una base de $\mathrm{Im}(T)$ con menos de n elementos de modo que sería $\dim(\mathrm{Im}(T)) < n = \dim(V)$!! En consecuencia, $T(\mathcal{B}_V)$ debe ser una base de $\mathrm{Im}(T)$.

(4) \Rightarrow (5) Si $\{v_1,\cdots,v_q\}$ es L.I. en V, completamos este conjunto hasta obtener una base de V. Sea $\mathcal{B}_V=\{v_1,\cdots,v_q,v_{q+1},\cdots,v_n\}$ dicha base. Entonces, $T(\mathcal{B}_V)=\{T(v_1),\cdots,T(v_q),T(v_{q+1}),\cdots,T(v_n)\}$ es una base de $\mathrm{Im}(T)$ lo que implica, en particular, que $\{T(v_1),\cdots,T(v_q)\}$ es L.I. en W.

(5) \Rightarrow (1) Resulta fácil probar que $v \neq \vec{\mathbf{0}}_V$ si y sólo si $\{v\}$ es L.I. Así pues, si $v \neq \vec{\mathbf{0}}_V$, entonces $\{T(v)\}$ es L.I. lo cual, implica que $T(v) \neq \vec{\mathbf{0}}_W$.

DEMOSTRACIÓN:

Supongamos que m > n. Tendríamos entonces $A = \{v_1, v_2, \dots, v_n, v_{n+1}, \dots, v_m\}$

– Puesto que \mathcal{B} es una base y $v_1 \neq \vec{0}$, existen $\alpha_1, \alpha_2, \dots, \alpha_n$ no todos nulos, tales que

$$v_1 = \alpha_1 e_1 + \alpha_2 e_2 + \cdots + \alpha_n e_n$$

Podemos suponer (reordenando si fuera necesario) que $\alpha_1 \neq 0$ y despejando e_1 en la ecuación anterior,

$$e_1 = \left(\frac{1}{\alpha_1}\right)v_1 + \left(\frac{-\alpha_2}{\alpha_1}\right)e_2 + \cdots + \left(\frac{-\alpha_n}{\alpha_1}\right)e_n$$

lo cual, combinado con el lema 1, implica que

$$V = \langle e_1, e_2, \cdots, e_n \rangle = \langle v_1, e_1, e_2, \cdots, e_n \rangle = \langle v_1, e_2, \cdots, e_n \rangle$$

– Puesto que $V=\langle\,v_1,\,e_2,\,\cdots\,,e_n\,\rangle$ y $v_2\neq\vec{\bf 0},$ existen $\beta_1,\,\beta_2,\,\cdots\,,\beta_n$ no todos nulos, tales que $v_2 = \beta_1 v_1 + \beta_2 e_2 + \dots + \beta_n e_n$

tonces el conjunto
$$\{v_1, v_2\}$$
 sería linealmente dependiente

Si fuese $\beta_2=\cdots=\beta_n=0$, entonces el conjunto $\{v_1,v_2\}$ sería linealmente dependiente. Podemos pues suponer (reordenando si fuera necesario) que $\beta_2\neq 0$. Despejando e_2 en la ecuación anterior,

$$e_2 = \left(\frac{-\beta_1}{\beta_2}\right)v_1 + \left(\frac{1}{\beta_2}\right)v_2 + \cdots + \left(\frac{-\beta_n}{\beta_2}\right)e_n$$

lo cual, combinado con el lema 1, implica que:

$$V = \langle v_1, e_2, \cdots, e_n \rangle = \langle v_2, v_1, e_2, \cdots, e_n \rangle = \langle v_1, v_2, \cdots, e_n \rangle$$

Continuando el proceso, obtenemos que $V=\langle v_1, v_2, \cdots, v_n \rangle$. Pero esto es absurdo pues implica que los vectores v_{n+1}, \cdots, v_m dependen linealmente del conjunto $\{v_1, v_2, \cdots, v_n\}$ lo cual, contradice el hecho de que $A=\{v_1, v_2, \cdots, v_n, v_{n+1}, \cdots, v_m\}$ es linealmente independiente. Así pues, $m\leqslant n$.

Teorema 1 - Si V y W son espacios vectoriales de dimensión finita y T : V → W es lineal, entonces:

 $\dim(V) = \dim(\ker(T)) + \dim(\operatorname{Im}(T))$

- El caso $\dim(\ker(T)) = n$ es trivial pues en ese caso T es la aplicación nula y $\dim(\operatorname{Im}(T)) = 0$.
- Así pues, asumiremos que $\dim(\ker(T)) < n$.

Supondremos, en primer lugar, que $\dim(\ker(T)) = p \ge 1$.

- (1) Sea $\mathcal{B}_k = \{v_1, \dots, v_p\}$ una base de $\ker(T)$.
- (2) Completamos \mathcal{B}_k hasta obtener una base de V. Sea $\mathcal{B}_V = \{v_1, \cdots, v_p, v_{p+1}, \cdots, v_n\}$ una base completada. Es evidente que $\ker(T) \cap \langle v_{p+1}, \cdots, v_n \rangle = \langle v_1, \cdots, v_p \rangle \cap \langle v_{p+1}, \cdots, v_n \rangle = \{\vec{\mathbf{0}}_V\}$ (*)
- (3) $T(\mathcal{B}_V) = \{T(v_1), \cdots, T(v_p), T(v_{p+1}), \cdots, T(v_n)\}$ es un sistema generador de $\operatorname{Im}(T)$ y, dado que $T(v_1)=\cdots=T(v_p)=\vec{\mathbf{0}}_W$, el conjunto $\{T(v_{p+1}),\cdots,T(v_n)\}$ también es un sistema generador de ${\rm Im}(T)$. Probaremos que este conjunto es L.I.
- (4) Si $\lambda_{p+1}, \cdots, \lambda_n \in \mathbb{R}$ son tales que $\lambda_{p+1}T(v_{p+1}) + \cdots + \lambda_nT(v_n) = \vec{\mathbf{0}}_W$, se tiene que:

$$\vec{\mathbf{0}}_W = T(\lambda_{p+1}v_{p+1} + \cdots + \lambda_n v_n) \implies \lambda_{p+1}v_{p+1} + \cdots + \lambda_n v_n \in \ker(T) \cap \langle v_{p+1}, \cdots, v_n \rangle \stackrel{(*)}{=} \{\vec{\mathbf{0}}_V\}$$

En otras palabras, $\lambda_{p+1}v_{p+1}+\cdots+\lambda_nv_n=\vec{\mathbf{0}}_V$ y como el conjunto $\{v_{p+1},\cdots,v_n\}$ es L.I. (es parte de una base), necesariamente debe ser $\lambda_{p+1} = \cdots = \lambda_n = 0$ lo que prueba que el conjunto $\{T(v_{p+1}), \cdots, T(v_n)\}$ es L.I. y, en consecuencia, es una base de $\mathrm{Im}(T)$.

En resumidas cuentas, hemos probado que $\dim(\operatorname{Im}(T)) = n - p$, lo que unido al hecho de que $\dim(\ker(T)) = p$ prueba el teorema.

- Finalmente, si $\dim(\ker(T)) = 0$, esto es $\ker(T) = \{\vec{0}_V\}$, podemos proceder de igual forma que en el caso anterior cambiando sólo algunos detalles. Dejamos al lector dichos detalles.

El teorema de la proyección

Teorema de la proyección - Sonn H un subespacio de \mathbb{R}^n y $\mathfrak{B}_H = \{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p\}$ una base ortonormal de H. Definimos la proyección sobre H, $\mathbb{P}_H : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ por

$$\mathsf{P}_{H}(\mathbf{x}) = (\mathbf{x} \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{x} \cdot \mathbf{u}_2)\mathbf{u}_2 + \cdots + (\mathbf{x} \cdot \mathbf{u}_p)\mathbf{u}_p$$

- (1) P_H es lineal, $Im(P_H) = H y P_H^2 = P_H$.
- (2) Para todo $\mathbf{x} \in \mathbb{R}^n$, se verifica que $\mathbf{x} \mathsf{P}_H(\mathbf{x}) \in H^\perp$
- (3) $ker(P_H) = H^{\perp}$.
- (4) Si $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{u} \in H$ y $\mathbf{u} \neq P_H(\mathbf{x})$, entonces $\|\mathbf{x} \mathbf{u}\| > \|\mathbf{x} P_H(\mathbf{x})\|$.
- (5) P_H(x) no depende de la base B_H elegida.

DEMOSTRACIÓN:

(1) - Sean \mathbf{x} , $\mathbf{y} \in \mathbb{R}^n$ y λ , $\mu \in \mathbb{R}$. El que P_H es lineal se prueba con un simple cálculo.

$$\begin{split} \mathsf{P}_{H}(\lambda \mathbf{x} + \mu \mathbf{y}) &= \left((\lambda \mathbf{x} + \mu \mathbf{y}) \cdot \mathbf{u}_{1} \right) \mathbf{u}_{1} + \dots \cdot \cdot + \left((\lambda \mathbf{x} + \mu \mathbf{y}) \cdot \mathbf{u}_{p} \right) \mathbf{u}_{p} \\ &= \left(\lambda (\mathbf{x} \cdot \mathbf{u}_{1}) + \mu (\mathbf{y} \cdot \mathbf{u}_{1}) \mathbf{u}_{1} + \dots \cdot \cdot + (\lambda (\mathbf{x} \cdot \mathbf{u}_{p}) - \mu (\mathbf{y} \cdot \mathbf{u}_{p})) \mathbf{u}_{p} \\ &= \lambda (\mathbf{x} \cdot \mathbf{u}_{1}) \mathbf{u}_{1} + \mu (\mathbf{y} \cdot \mathbf{u}_{1}) \mathbf{u}_{1} + \dots \cdot \cdot + \lambda (\mathbf{x} \cdot \mathbf{u}_{p}) \mathbf{u}_{p} + \mu (\mathbf{y} \cdot \mathbf{u}_{p}) \mathbf{u}_{p} \\ &= \lambda \left[(\mathbf{x} \cdot \mathbf{u}_{1}) \mathbf{u}_{1} + \dots \cdot (\mathbf{x} \cdot \mathbf{u}_{p}) \mathbf{u}_{p} \right] + \mu \left[(\mathbf{y} \cdot \mathbf{u}_{1}) \mathbf{u}_{1} + \dots \cdot (\mathbf{y} \cdot \mathbf{u}_{p}) \mathbf{u}_{p} \right] \\ &= \lambda \mathsf{P}_{H}(\mathbf{x}) + \mu \mathsf{P}_{H}(\mathbf{y}) \end{split}$$

Si $\mathbf{u} \in H$, entonces $\mathbf{u} = (\mathbf{u} \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{u} \cdot \mathbf{u}_2)\mathbf{u}_2 + \dots + (\mathbf{u} \cdot \mathbf{u}_p)\mathbf{u}_p \implies \mathsf{P}_H(\mathbf{u}) = \mathbf{u}$ y puesto que $\mathsf{P}_H(\mathbf{x}) \in H$ para todo $\mathbf{x} \in \mathbb{R}^n$, se tiene que $\mathsf{Im}(\mathsf{P}_H) = H$ y que $\mathsf{P}_H^2 = \mathsf{P}_H$.

(2) – Hay que probar que si $\mathbf{x} \in \mathbb{R}^n$ y $\mathbf{u} \in H$, entonces $(\mathbf{x} - \mathsf{P}_H(\mathbf{x})) \cdot \mathbf{u} = 0$ lo cual, es lo mismo, que probar que $\mathbf{x} \cdot \mathbf{u} = \mathsf{P}_H(\mathbf{x}) \cdot \mathbf{u}$ $\mathbf{x} \cdot \mathbf{u} = \mathbf{x} \cdot ((\mathbf{u} \cdot \mathbf{u}_1)\mathbf{u}_1 + \dots + (\mathbf{u} \cdot \mathbf{u}_p)\mathbf{u}_p) = (\mathbf{u} \cdot \mathbf{u}_1)(\mathbf{x} \cdot \mathbf{u}_1) + \dots + (\mathbf{u} \cdot \mathbf{u}_p)(\mathbf{x} \cdot \mathbf{u}_p)$

$$\mathbf{x} \cdot \mathbf{u} = \mathbf{x} \cdot ((\mathbf{u} \cdot \mathbf{u}_1)\mathbf{u}_1 + \dots + (\mathbf{u} \cdot \mathbf{u}_p)\mathbf{u}_p) = (\mathbf{u} \cdot \mathbf{u}_1)(\mathbf{x} \cdot \mathbf{u}_1) + \dots + (\mathbf{u} \cdot \mathbf{u}_p)(\mathbf{x} \cdot \mathbf{u}_p)$$

$$\mathsf{P}_H(\mathbf{x}) \cdot \mathbf{u} = ((\mathbf{x} \cdot \mathbf{u}_1)\mathbf{u}_1 + \dots + (\mathbf{x} \cdot \mathbf{u}_p)\mathbf{u}_p) \cdot \mathbf{u} = (\mathbf{x} \cdot \mathbf{u}_1)(\mathbf{u} \cdot \mathbf{u}_1) + \dots + (\mathbf{x} \cdot \mathbf{u}_p)(\mathbf{u} \cdot \mathbf{u}_p)$$

(3) - Si
$$\mathbf{x} \in \ker(P_H)$$
, entonces $P_H(\mathbf{x}) = \mathbf{0} \implies \mathbf{x} - \mathbf{x} - P_H(\mathbf{x}) \in H^{\perp} \implies \ker(P_H) \subseteq H^{\perp}$

- Si
$$\mathbf{x} \in H^{\perp}$$
 \longrightarrow $P_H(\mathbf{x}) - P_H(\mathbf{x}) - \mathbf{x} + \mathbf{x} \longrightarrow P_H(\mathbf{x}) \in H \cap H^{\perp} = \{\emptyset\} \longrightarrow \mathbf{x} \in \ker(P_H)$

(4) - Sean $\mathbf{x} \in \mathbb{R}^n$ y $\mathbf{u} \in H$ tales que $\mathbf{u} \neq \mathsf{P}_H(\mathbf{x})$.

$$\begin{split} \|\mathbf{x} - \mathbf{u}\|^2 &= \|\overbrace{\mathbf{x} - P_H(\mathbf{x})}^{aB^2} + \overbrace{P_H(\mathbf{x}) - \mathbf{u}}^{aB}\|^2 \\ &= \|\text{Teorema de Pitágoras}\| = \|\mathbf{x} - P_H(\mathbf{x})\|^2 + \|P_H(\mathbf{x}) - \mathbf{u}\|^2 > \|\mathbf{x} - P_H(\mathbf{x})\|^2 \end{split}$$

(5) - Sea $\mathfrak{B}'_H=\{u'_1,\,u'_2,\,\cdots,u'_p\}$ otra base ortonormal de H. Igual que en el caso anterior, podemos definir la proyección $\mathsf{P}'_H:\mathbb{R}^n\longmapsto H$ haciendo

$$\mathsf{P'}_H(\mathbf{x}) = (\mathbf{x} \cdot \mathbf{u'}_1)\mathbf{u'}_1 + (\mathbf{x} \cdot \mathbf{u'}_2)\mathbf{u'}_2 + \cdots + (\mathbf{x} \cdot \mathbf{u'}_p)\mathbf{u'}_p$$

Obviamente, se pueden reproducir todas las demostraciones anteriores para P'_H . Probaremos ahora que $\mathsf{P}'_H = \mathsf{P}_H$. Supongamos que para algún $\mathbf{x} \in \mathbb{R}^n$, se tiene que $\mathsf{P}'_H(\mathbf{x}) \neq \mathsf{P}_H(\mathbf{x})$:

- La demostración anterior, para $\mathsf{P}_H,$ prueba que $\|\mathbf{x}-\mathsf{P'}_H(\mathbf{x})\|>\|\mathbf{x}-\mathsf{P}_H(\mathbf{x})\|$
- La demostración anterior, para $\mathsf{P'}_H,$ prueba que $\|\mathbf{x}-\mathsf{P'}_H(\mathbf{x})\|<\|\mathbf{x}-\mathsf{P}_H(\mathbf{x})\|$

La contradicción anterior prueba que $P'_H(\mathbf{x}) = P_H(\mathbf{x})$ para todo $\mathbf{x} \in \mathbb{R}^n$.