1	2	3	4	Calificación

Análisis Avanzado - Recuperatorio del primer parcial 19/07/2021

1. Probar que el conjunto

$$C = \{(a_n)_{n\geq 1} \subseteq \mathbb{Z} : (a_n)_{n\geq 1} \text{ converge} \}$$

es numerable.

2. Sean (E,d) un espacio métrico y $S \subsetneq E$. Para cada $\varepsilon > 0$ consideremos el conjunto

$$S^{\varepsilon} = \{ x \in E : d(x, E \setminus S) \ge \varepsilon \}.$$

Probar que:

a) S^{ε} es cerrado para todo $\varepsilon > 0$.

$$b) S^{\circ} = \bigcup_{\varepsilon > 0} S^{\varepsilon}.$$

3. Consideremos en \mathbb{R}^n la métrica d_2 . Sea $f:\mathbb{R}^n\to\mathbb{R}^n$ una función continua. Fijemos M>0. Supongamos que para todo $\varepsilon>0$ existe $x\in B(0,M)$ tal que $d_2(x,f(x))<\varepsilon$. Probar que f tiene un punto fijo.

4. Consideremos en E = C([0,1]) la distancia d_{∞} . Para cada natural n sea $f_n \in E$ la función dada por

$$f_n(x) = \begin{cases} 0, & 0 \le x \le \frac{1}{n+1}, \\ \frac{1}{n+1/2} - \frac{1}{n+1} \cdot \left(x - \frac{1}{n+1}\right), & \frac{1}{n+1} \le x \le \frac{1}{n+1/2}, \\ \frac{1}{n+1/2} - \frac{1}{n} \cdot \left(x - \frac{1}{n}\right), & \frac{1}{n+1/2} \le x \le \frac{1}{n}, \\ 0, & \frac{1}{n} \le x \le 1. \end{cases}$$

Demostrar que no existe $K \subseteq E$ compacto tal que $\{f_n : n \ge 1\} \subseteq K$.

Justifique todas sus respuestas, no omita detalles y sea claro al escribir.