Arooba Jamil Khokhar 278077 Exercise # 5 Distributed Data Analytics

Exercise 1A

Check if the two datasets fulfill the stationary assumptions? Ideally you should write a function name stationary check and pass in a time series. This function should plot original series, rolling average and rolling std

DATASET(daily-minimum-temperatures-in-me)

It is a Stationary data set they do not have trend or Seasonal Effect

```
1 # -*- coding: utf-8 -*-
2 import matplotlib.pyplot as plt
3 import pandas as pd
4 import numpy as np
5 from pandas import Series
6 from matplotlib import pyplot
7 from statsmodels.tsa.stattools import adfuller
8
9 temp = pd.read_csv('daily-minimum-temperatures-in-me.csv', parse_dates=True, header=0, index_
10 series = temp["#Melbourne"]
11 plt.plot(series)
```


DATASET (AIRLINE PASSENGER)

It is non stationary data set that show seasonal effects, trends, and other

```
structures that depend on the time index

2

3 df = pd.read_csv("AirPassengers.csv", header=0)

4 timeseries = df["#Passengers"]

5 plt.plot(timeseries)
```


d write a function name stationary check and pass in a time series

```
def stationary_check(timeseries):
    rol_mean = pd.rolling_mean(timeseries, window=12)
    rol_std = pd.rolling_std(timeseries, window=12)

#Plot rolling statistics:
    orig = plt.plot(timeseries, color='blue',label='Original')
    mean = plt.plot(rol_mean, color='red', label='Rolling Mean')
    std = plt.plot(rol_std, color='black', label = 'Rolling Std')
    plt.legend(loc='best')
    plt.title('Moving mean & std')
    plt.show(block=False)
stationary_check(timeseries)
```


If one of the datasets do not fulfill the stationary assumption can you use smoothing technique i.e. taking rolling average to make it stationary?

```
log_timeseries = np.log(timeseries)#take the log to reduce the values
expwighted_avg = pd.ewma(log_timeseries, halflife=12)
difference = log_timeseries - expwighted_avg
stationary_check (difference)
```


To [446].

Exercise 1B:

• Write a python code that builds an ARIMA model

```
#series = read_csv('daily-minimum-temperatures-in-me.csv', header=0, parse_date's=[0], if
# fit model
model = ARIMA(series, order=(5,1,0))
model_fit = model.fit(disp=0)
print(model_fit.summary())
# plot residual errors
residuals = DataFrame(model_fit.resid)
residuals.plot()|
pyplot.show()
residuals.plot(kind='kde')
pyplot.show()
print(residuals.describe())
```


	AR	IMA Model	. Results			
Dep. Variable:	D.#Melbourne		No. Observations:		3649	
Model:	ARIMA(5, 1, 0)		Log Likelihood		-8495.810	
Method:	css-mle Sat, 02 Jun 2018 01:36:00		S.D. of innovations AIC BIC		2.482 17005.620 17049.036	
Date:						
Time:						
Sample:	02-01-1981		HQIC		17021.082	
	- 12-3	1-1990				
=========	coef	std err	Z .	P> z	[0.025	0.975]
const	-0.0013	0.017	-0.076	0.940	-0.035	0.033
ar.L1.D.#Melbourne	-0.3358	0.016	-20.469	0.000	-0.368	-0.304
ar.L2.D.#Melbourne	-0.3911	0.017	-23.037	0.000	-0.424	-0.358
ar.L3.D.#Melbourne	-0.2942	0.018	-16.804	0.000	-0.329	-0.260
ar.L4.D.#Melbourne	-0.2077	0.017	-12.235	0.000	-0.241	-0.174
ar.L5.D.#Melbourne	-0.1361	0.016	-8.298	0.000	-0.168	-0.104
		Poot	•	1.0	-	

	Real	Imaginary	Modulus	Frequency
AR.1	0.7142	-1.1395j	1.3448	-0.1609
AR.2	0.7142	+1.1395j	1.3448	0.1609
AR.3	-1.6724	-0.0000j	1.6724	-0.5000
AR.4	-0.6410	-1.4207j	1.5586	-0.3175
AR.5	-0.6410	+1.4207j	1.5586	0.3175

Split the data into train and validation. The time series data is usually split on the time not randomly. • Train the ARIMA model


```
# fit model
model = ARIMA(series, order=(5,1,0))
#3650

train_data = series[0:int(3650 * 0.8)]
validation_data = series[int(3650 * 0.8):]
print(len(train_data),len(validation_data))
```

use validation dataset to check the validation accuracy

```
forecast_array = model.forecast(steps=730)
putput = model_fit.forecast()
   yhat = output[0]
   predictions.append(yhat)
   obs = test[t]
   history.append(obs)
   print('predicted=%f, expected=%f' % (yhat, obs))
```

Exercise 2: Logistic Regression on the Olivetti faces dataset (5 points)

When program first starts, the loss is big. As more epochs are run, the accuracy continues to increase.

```
Epoch: 0001 cost= 6.033115935
Epoch: 0002 cost= 5.774913931
Epoch: 0003 cost= 4.939247543
Epoch: 0004 cost= 4.149745035
Epoch: 0005 cost= 3.630291149
Epoch: 0006 cost= 3.018514380
Epoch: 0007 cost= 2.564376166
Epoch: 0008 cost= 2.158875135
Epoch: 0009 cost= 1.831405316
Epoch: 0010 cost= 1.567071119
Epoch: 0011 cost= 1.353274047
Epoch: 0012 cost= 1.181682791
Epoch: 0013 cost= 1.042426887
Epoch: 0014 cost= 0.927122563
Epoch: 0015 cost= 0.830883344
Epoch: 0016 cost= 0.750456806
Epoch: 0017 cost= 0.683003995
Epoch: 0018 cost= 0.625729771
Epoch: 0019 cost= 0.576284829
Epoch: 0020 cost= 0.533035878
Epoch: 0021 cost= 0.494845811
Epoch: 0022 cost= 0.460887884
Epoch: 0023 cost= 0.430532374
Epoch: 0024 cost= 0.403282978
Epoch: 0025 cost= 0.378736738
Epoch: 0026 cost= 0.356559435
```

```
Epoch: 0083 cost= 0.070576954
Epoch: 0084 cost= 0.069539082
Epoch: 0085 cost= 0.068530526
Epoch: 0086 cost= 0.067550381
Epoch: 0087 cost= 0.066597353
Epoch: 0088 cost= 0.065670340
Epoch: 0089 cost= 0.064768341
Epoch: 0090 cost= 0.063890441
Epoch: 0091 cost= 0.063035597
Epoch: 0092 cost= 0.062203003
Epoch: 0093 cost= 0.061391753
Epoch: 0094 cost= 0.060601105
Epoch: 0095 cost= 0.059830243
Epoch: 0096 cost= 0.059078541
Epoch: 0097 cost= 0.058345291
Epoch: 0098 cost= 0.057629722
Epoch: 0099 cost= 0.056931305
Epoch: 0100 cost= 0.056249437
Epoch: 0101 cost= 0.055583531
Epoch: 0102 cost= 0.054933035
Epoch: 0103 cost= 0.054297426
Epoch: 0104 cost= 0.053676238
Epoch: 0105 cost= 0.053068976
Epoch: 0106 cost= 0.052475179
Epoch: 0107 cost= 0.051894396
Epoch: 0108 cost= 0.051326266
Epoch: 0109 cost= 0.050770289
```

```
Epoch: 0137 cost= 0.038946033
Epoch: 0138 cost= 0.038624752
Epoch: 0139 cost= 0.038308766
Epoch: 0140 cost= 0.037997918
Epoch: 0141 cost= 0.037692074
Epoch: 0142 cost= 0.037391157
Epoch: 0143 cost= 0.037095004
Epoch: 0144 cost= 0.036803558
Epoch: 0145 cost= 0.036516647
Epoch: 0146 cost= 0.036234235
Epoch: 0147 cost= 0.035956165
Epoch: 0148 cost= 0.035956165
Epoch: 0149 cost= 0.035412695
Epoch: 0150 cost= 0.035147145

Optimization Finished!

Now Testing on Test Set is : 1.0
```

Scalar Values:

Below are scalar values for Accuracy and Loss in TensorBoard.

Accuracy:

Loss:

Distributions:

Accuracy:

<u>Histograms:</u>

Below are histograms for Accuracy and Loss

Accuracy:

Loss:

Graph:

Below is the Tensor graph of the TensorBoard.

