Testing Irreducibility of polynomials over Q

Jiang-Hua Lu

The University of Hong Kong

Algebra II, HKU

Thursday Feb 13, 2025

Outline

In this file:

 $\ensuremath{ \mbox{\Large 0}} \ensuremath{\mbox{\Large }} \S 1.4 :$ Testing Irreducibility of polynomials over $\ensuremath{\mathbb{Q}}$

$\S 1.4$: Testing Irreducibility of polynomials over $\mathbb Q$

Again, Why testing irreducibility of $f(x) \in \mathbb{Q}[x]$?

• Every irreducible $f \in \mathbb{Q}[x]$ gives a field extension of \mathbb{Q} via

$$\mathbb{Q} \hookrightarrow \mathbb{Q}[x]/\langle f(x)\rangle.$$

Examples of irreducible $f(x) \in \mathbb{Q}[x]$?

Observation:

By clearing denominators, may assume that $f(x) \in \mathbb{Z}[x]$ but still want to test irreducibility of f(x) over \mathbb{Q} .

Goal:

• Test whether or not a non-constant $f(x) \in \mathbb{Z}[x]$ is irreducible over \mathbb{Q} .

Example:

$$\frac{1}{3}x^7 + 5$$
 is irreducible over $\mathbb{Q} \iff x^7 + 15 \in \mathbb{Z}[x]$ is irreducible over \mathbb{Q} .

Theoretical basis for our tools:

Recall Definition. For an integral domain R and non-constant $f(x) \in R[x]$,

ontent • a proper factorization of f(x) in R[x] is a product

$$f(x) = g(x)h(x),$$

where $g(x), h(x) \in R[x]$ are both non-constants.

Observations:

- For a general R, if $f(x) \in R[x]$ has a proper factorization in R[x], then f(x) reducible in R[x];
- Converse is not true in general:

$$f(x) = 2x + 4 = 2(x + 2) \in \mathbb{Z}[x]$$

is reducible in $\mathbb{Z}[x]$ but has no proper factorization in $\mathbb{Z}[x]$.

• If R is a field, $f(x) \in R[x]$ is reducible iff f(x) has a proper factorization in R[x].

Lemma

(Gauss' Lemma on proper factorizations): For non-constant
$$f(x) \in \mathbb{Z}[x]$$
, $f(x) = h(x) f(x)$, h , h as a proper factorization in $\mathbb{Z}[x]$.

Proof. If f has a proper factorization in $\mathbb{Z}[x]$ then f is reducible over \mathbb{Q}

- Assume that f(x) is reducible over \mathbb{Q} .
- So f(x) = g(x)h(x) for non-constant $g(x), h(x) \in \mathbb{Q}[x]$.
- Write $g(x) = \alpha g_1(x)$ and $h(x) = \beta h_1(x)$, where $\alpha, \beta \in \mathbb{Q}$ and $g_1(x), h_1(x) \in \mathbb{Z}[x]$ are both primitive. So $f(x) = \alpha \beta g_1(x) h_1(x)$.
- Write $\alpha\beta=\frac{a}{b}$ with $a,b\in\mathbb{Z},\ b>0$, and (a,b)=1. Then $bf(x)=ag_1(x)h_1(x)\in\mathbb{Z}[x].$
- Since (a, b) = 1, $b|g_1(x)h_1(x)$.
- By Gauss' Lemma on products of Primitive Elements, $g_1(x)h_1(x)$ is primitive.
- Thus b = 1, so f(x) has a proper factorization in $\mathbb{Z}[x]$.

Thus, for $f(x) \in \mathbb{Z}[x]$, non-constant, f(x) is irreducible over \mathbb{Q} (=) f(x) has no proper factorization in $\mathbb{Z}[x]$.

Same statement when & is replaced by any UFD R and F=Frac(R)

2nd proof using Gauss' Lemma relating irreducible elements in $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$:

- Suppose that $f(x) \in \mathbb{Z}[x]$ is reducible over \mathbb{Q} .
- Write $f(x) = \gamma h(x)$, where $\gamma = \text{cont}(f) \in \mathbb{Z}$, and $h(x) \in \mathbb{Z}[x]$ is primitive.
- By Gauss' Lemma relating irreducibile elements in $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$, $h(x) \in \mathbb{Z}[x]$ is reducible.
- Being primitive, h(x) has a proper factorization in $\mathbb{Z}[x]$.
- So $f(x)\gamma(x)$ has a proper factorization in $\mathbb{Z}[x]$.

Q.E.D.

Remark: Guass' Lemma on proper factorization holds when \mathbb{Z} is replaced by any R which is a UFD and \mathbb{Q} by $F = \operatorname{Fra}(\mathbb{R})$ both proofs work).

Tool 1: Quadratic or cubic polynomials:

Easy observation: If a quadratic or cubic $f(x) \in \mathbb{Z}[x]$ has a proper factorization, it must have a linear factor and thus a rational root. $a_0 S^n + a_1 Y S^{n-1} + - + a_{n-1} Y^{n-1} S + a_n Y^{n-1} = n$

Rational root test:

Lemma. If a polynomial

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \in \mathbb{Z}[x]$$

has a rational root $\frac{r}{s}$, where $r, s \in \mathbb{Z}$ are relatively prime, then $s|a_n$ and $r|a_0$.

If f is monic, i.e., if $a_n = 1$, then all of its rational roots are integers.

Proof. Since r/s is a root, one has

$$a_0s^n + a_1rs^{n-1} + \cdots + a_{n-1}r^{n-1}s + a_nr^n = 0.$$

The statement follows.

Example: If an integer D, $f(x) = x^2 - D$ is irreducible over \mathbb{Q} iff D is not the square of any integer.

In general, if $f(x) \in Z(x)$ is monic

w/ def 2 or 3, then f is irreducible

over Q iff f has no integer roots

Example. $f(x) = x^3 + 5x + 2 \in \mathbb{Z}[x]$:

Only possible integer roots are $\pm 1, \pm 2$,

Check neither is a root.

Thus f is irred, over G.

Tool 2: Reduction modulo *p*

Let p be a prime number and

$$\pi_p: \ \mathbb{Z} \longrightarrow \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$$
 , $\mathfrak{N} \longrightarrow \mathfrak{N}$

the projection. Have induced ring homomorphism

$$\pi_p: \mathbb{Z}[x] \longrightarrow \mathbb{F}_p[x].$$

Lemma. Suppose that $f \in \mathbb{Z}[x]$ is non-constant and leading coefficient not divisible by p. Then

$$\pi_p(f) \in \mathbb{F}_p[x]$$
 is irreducible $\Longrightarrow f(x) \in \mathbb{Q}[x]$ is irreducible.

Proof of Lemma. We show that f(x) has no proper factorization in $\mathbb{Z}[x]$.

- Suppose yes. Then f(x) = g(x)h(x), where $g(x), h(x) \in \mathbb{Z}[x]$ and deg(g) > 0 and deg(h) > 0.
- Then $\pi_p(f)=\pi_p(g)\pi_p(h)\in\mathbb{F}_p[x]$. The assumption on f implies that $\deg(\pi_p(f))=\deg(f)$ and

$$\deg(\pi_p(g)) > 0$$
 and $\deg(\pi_p(h)) > 0$,

- contradicting irreducibility of $\pi_p(f)$ in $\mathbb{F}_p[x]$.
- So f(x) has no proper factorization in $\mathbb{Z}[x]$.
- Thus f is irreducible in $\mathbb{Q}[x]$.

Example. Let
$$f(x) = 35x^3 + 3x^2 + 4x - 7$$
 and let $p = 2$.

The second of the secon

13 / 17

To continue Thursday

Tool 3: Eisenstein's criteria.

Theorem. Let
$$f(x) = a_0 + a_1 x + \cdots + a_{n-1} x^{n-1} + a_n x^n \in \mathbb{Z}[x]$$
.

1 If there exists prime number p such that

$$p|a_0, p|a_1, \cdots, p|a_{n-1}, p\nmid a_n, p^2\nmid a_0,$$

then f is irreducible over \mathbb{Q} ;

2 If there exists a prime number p such that

$$p|a_1, p|a_2, \cdots, p|a_n, p\nmid a_0, p^2\nmid a_n,$$

then f is irreducible over \mathbb{Q} .

Example: $f(x) = x^n + p$ is irreducible over \mathbb{Q} for any prime number p and any integer $n \ge 1$.

Example. For any integer $n \ge 1$,

$$f(x) = 2 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n$$

where $a_1, a_2, \cdots, a_{n-1}$ are even and a_n is odd, is irreducible in $\mathbb{Q}[x]$.

<u>Proof of Eisenstein's criteria</u>: Only need to prove 1), 2) being similar.

- Assume f has a proper factorization f(x) = g(x)h(x), where $g(x), h(x) \in \mathbb{Z}[x]$ with $\deg(h) > 0$ and $\deg(g) > 0$.
- Then $\pi_p(f) = \pi_p(a_n) x^n = \pi_p(g) \pi_p(h)$.
- Then $\pi_p(g) = bx^k$ and $\pi_p(h) = cx^l$ for some non-zero $b, c \in \mathbb{F}_p$ and k + l = n.
- Thus p divides all but one coefficients of g, and similarly for h.
- Since $\pi_p(g)\pi_p(h) = \pi_p(a_n)x^n \neq 0$, p does not divide the leading coefficients of g and of h.
- Since both g and h have positive degrees, p divides the constant terms of both g and h, contradicting the assumption that $p^2 \nmid a_0$.

Tool 4: Change of variables:

Observation:

If $f(x) \in \mathbb{Q}[x]$, by setting x = ay + b, where $a, b \in \mathbb{Q}$ and $a \neq 0$, one get

$$g(y) = f(ay + b) \in \mathbb{Q}[y],$$

and $f(x) \in \mathbb{Q}[x]$ is irreducible if and only if $g(y) \in \mathbb{Q}[y]$ is irreducible.

Example: Let p be a prime, and consider the polynomial

$$f(x) = 1 + x + x^2 + \dots + x^{p-1} = \frac{x^p - 1}{x - 1}.$$

Setting y = x - 1, one has

$$f(x) = f(y+1) = \frac{(y+1)^p - 1}{v} = y^{p-1} + C_1^p y^{p-2} + \dots + p$$

which is irreducible in $\mathbb{Q}[x]$ by Eisenstein's Criterion. Since f is primitive, it is also irreducible over \mathbb{Z} .