C.1: A person pulls a block of mass 7.00 kg on a frictionless surface with an applied force of 28.0 Newtons.

	А	
		-

a. Fill out the table below to analyze all of the forces acting on the block.

free-body diagram								
Н	orizo	ontal		١	/ert	ical		
force	sign	magnitude (N)		force	sign	magnitude (N)		
Fa	+	28		Fog		68.6		
				Fn	+	68.6		

C.2: A person pulls a block of mass 9.00 kg on a frictionless surface with an applied force of 3.00 Newtons.

a. Fill out the table below to analyze all of the forces acting on the block.

free-body diagram

H	orizo	ontal	Vertical			
force	sign	magnitude (N)	force	sign	magnitude (N)	
Fa	+	3	Fy	-	88.2	
			FN	+	88.2	

C.3: A person pulls a block of mass 5.00 kg on a frictionless surface upward at an angle of 30.0° with a force of 6.00 N.

- a. Only one force, the applied force, has both horizontal and vertical components. Break it into these two components.
- b. Fill out the table below to analyze all of the forces acting on the surface:

free-body diagram							
H	orizo	ontal		,	Vert	ical	
force	sign	magnitude (N)		force	sign	magnitude (N)	
Fax	+	5.196		Fay	+	3	
				Fg		49	
				FN	+	46	

C.4: A person pulls a block of mass 8.00 kg on a frictionless surface upward at an angle of 80.0° with a force of 8.00 N.

- a. Only one force, the applied force, has both horizontal and vertical components. Break it into these two components.
- b. Fill out the table below to analyze all of the forces acting on the surface:

free-body diagram

š						
Н	orizo	ontal	Vertical			
force	sign	magnitude (N)	force	sign	magnitude (N)	
Fux	+	1.289185	Fg	estimen.	78.4	

Directions: For full credit you must write formulas before you use them, show trigonometry and geometry you used in finding your answer, properly label quantities, and include units.

C.5: A person pulls a block with mass of 3.00 kg horizontally with a force of 12.5 Newtons while the block is moving to the right. The coefficient of kinetic friction between the block and the ground is 0.100.

a. Fill out the table below to analyze all of the forces acting on the block.

free-body diagram

Н	orizo	ontal	Vertical			
force	sign	magnitude (N)		force	sign	magnitude (N)
Fa	+	12.5		Fg	Lateratura	29,4
Frak	sociation.	2.94		Fn	+	29.4

C.6: A person pulls a block with mass of 8.00 kg horizontally with a force of 24.5 Newtons while the block is moving to the right. The coefficient of kinetic friction between the block and the ground is 0.0300.

a. Fill out the table below to analyze all of the forces acting on the block.

free-body diagram

			79			
Н	lorizo	ontal		\	/ert	ical
force	sign	magnitude (N)		force	sign	magnitude (N)
Fa	+	24.5		Fg	-	78.4

$$2F = 22.148 N \rightarrow 2F = m \cdot \alpha$$

$$2F = m \cdot \alpha$$

$$22.148 = 8 \times \alpha$$

$$\alpha = 2.77 = m/s^{2} \rightarrow 0$$

Directions: For full credit you must write formulas before you use them, show trigonometry and geometry you used in finding your answer, properly label quantities, and include units.

C.7: A person pulls a block of mass 1.20 kg on at an angle of 20.0° upward from the horizontal with a strength of 8.00 N while the block is moving to the right. The surface and block have a coefficient of kinetic friction of 0.150.

- a. Only one force, the applied force, has both horizontal and vertical components. Break it into these two components.
- b. Fill out the table below to analyze all of the forces acting on the surface:

	fre					
		Fg= m.g				
H	lorizo	= 1.2×(
force	sign	magnitude (N)	force	Verti	magnitude (N)	= 11.7
Fax	+	7.51-54	Fg	-	11.76	
FFIR	_	1,353576	Fay	+	2.736161	
			FN	+	9.023838	39

$$\Sigma F = 6.163964 N \rightarrow \Sigma F = m \cdot \alpha$$

$$6.163964 = 1.2 \times \alpha$$

$$\alpha = 5.14 \text{ M/s}^2 \rightarrow \infty$$

C.8: A person pulls a block of mass .400 kg on at an angle of 50.0° upward from the horizontal with a strength of 0.500 N. The surface and block have a coefficient of kinetic friction of 0.350.

- a. Only one force, the applied force, has both horizontal and vertical components. Break it into these two components.
- b. Fill out the table below to analyze all of the forces acting on the surface:

free-body diagram							Fg=m·g
							= .4 × 9.8
Н	loriz	ontal		Vert	ical		= 3.92
force	sign	magnitude (N)	force	sign	magnitude (N)		- 1916
Fax	+	0.32139\$	Fg	_	3.92		Fren = Mr. En
FFIR	heasth	1.2379422	Fey	†	0,3830	222	=.35×3.536978
			FN	+	3.536	478	= 1,2339422

c. Determine the net force and the acceleration of the block. Include both magnitude and direction in your answer.

$$2F = 0.96654822 \text{ A} = 0.9666482 \text{ A} = 0.9666$$

0,91654872= 4 ×a