Si \mathbb{K} est un corps commutatif de caractéristique nulle, et $n \in \mathbb{N}^*$, on munit l'espace vectoriel des vecteurs-lignes \mathbb{K}^n d'une structure de \mathbb{K} -algèbre grâce entre autres à la multiplication interne suivante:

$$(x_1, \ldots, x_n) \times (y_1, \ldots, y_n) = (x_1 y_1, \ldots, x_n y_n)$$

On ne vérifiera pas que \mathbb{K}^n est une algèbre, d'élément–unité $\varepsilon = (1, \dots, 1)$. En outre, pour $1 \leq i \leq n$, on désignera par e_i le vecteur $(\delta_{i,1}, \dots, \delta_{i,n})$, de sorte que $\{e_1, \dots, e_n\}$ est la base canonique \mathscr{B}_0 de \mathbb{K}^n dont les éléments de la duale seront appelés respectivement c_1, \dots, c_n .

Si E est une K-algèbre, on appellera forme multiplicative toute forme linéaire f vérifiant de plus $\forall (x,y) \in \mathcal{E}^2, f(xy) = f(x)f(y)$. Pour $a \in \mathcal{E}$, on désigne par m_a l'endomorphisme de l'espace vectoriel \mathcal{E} qui à x associe ax.

Dans tout le problème, on considère $n \in \mathbb{N}^*$ et on désigne par E l'algèbre \mathbb{K}^n .

Partie I

- **1.** Si f est une forme multiplicative sur E, que dire de $f(\varepsilon)$ et des $f(e_i)$? En déduire que les formes multiplicatives non nulles sur E sont les c_i .
- ${f 2.}$ Soit f un automorphisme d'algèbre de E, c'est-à-dire un morphisme bijectif de l'algèbre E sur ellemême.
- **2.1** Que dire de $\varphi \circ f$ si φ est une forme multiplicative non nulle?
- 2.2 En déduire tous les automorphismes d'algèbre de E. Quel en est le nombre?
- **3.** Soit $x = (x_1, \ldots, x_n) \in E$; déterminer le polynôme minimal μ_x . En déduire que $\mathbb{K}[x] = E$ si, et seulement si, les x_i sont tous distincts.
- **4.** Soit A une sous-algèbre de E; on désigne par d_1, \ldots, d_n les restrictions respectives des c_i à A. On suppose qu'il existe k, avec $1 \le k \le n$, tel que les d_1, \ldots, d_k soient toutes distinctes et que, pour tout l > k, il existe $i \le k$ tel que $d_l = d_i$.
- **4.1** Montrer que les d_i sont toutes non nulles.
- **4.2** Montrer que, si $i \neq j \in \{1, \ldots, k\}$, il existe $u_{i,j} \in A$ tel que $c_i(u_{i,j}) = 1$ et $c_j(u_{i,j}) = 0$.
- **4.3** Si $1 \le i \le k$, montrer qu'il existe $w_i \in A$ tel que $c_j(w_i) = \delta_{i,j}$ pour $1 \le j \le k$.
- $4.4 \text{ Les } w_i \text{ sont-ils liés}$? Quelle en est la somme? Quel est le sous-espace vectoriel de E qu'ils engendrent?
- **5.** Déduire des questions précédentes une méthode de construction de toutes les sous-algèbres de dimension k donnée, avec $1 \le k \le n$, de E. Combien y en a-t-il de dimension 2, de dimension n-1?
- **6.** Dans cette question, $\mathbb{K} = \mathbb{C}$. Soit A une \mathbb{C} -algèbre commutative de dimension finie n sans autre élément nilpotent que 0.
- **6.1** Si $a \in A$, on désigne par μ_a le polynôme minimal de m_a . Montrer que μ_a a tous ses zéros simples. [On pourra procéder en construisant un polynôme Q tel que Q(a) soit nilpotent.]
- **6.2** Montrer que m_a est diagonalisable puis qu'il existe une base \mathscr{B} de A formée de vecteurs propres de tous les $m_a, a \in A$.
- **6.3** Montrer que l'application $a \longmapsto \mathrm{M}_{\mathscr{B}}(m_a)$ est un isomorphisme d'algèbres de A sur l'algèbre des matrices diagonales de $\mathfrak{M}_n(\mathbb{C})$.

Partie II

1. Si $a = (a_1, \ldots, a_n)$, calculer la trace de m_a . Dans toute la suite, cette trace sera notée $\tau(a)$.

On appelle m-base de E toute base $\mathscr{B} = \{v_1, \ldots, v_n\}$ telle que

$$\forall i, j \in \{1, ..., n\}, \exists k \in \{1, ..., n\} \text{ tel que } v_i v_j = v_k$$

et, dans ce cas, on désignera par $M(\mathcal{B})$ la matrice de passage de \mathcal{B}_0 à \mathcal{B} .

- **2.** Si \mathscr{B} est une m-base et f un automorphisme d'algèbre de E, montrer que $f(\mathscr{B})$ est aussi une m-base.
- **3.** Si M (\mathcal{B}) est la matrice de passage de \mathcal{B}_0 à une m-base \mathcal{B} , montrer qu'il en va de même pour toute matrice déduite de M (\mathcal{B}) par permutation de lignes et/ou de colonnes.
- **4.** Soit \mathscr{B} une m-base, vérifier que la forme linéaire φ qui prend la valeur 1 en tous les éléments de \mathscr{B} est une forme multiplicative.
- **5.** Soit \mathcal{B} une m-base et M la matrice de passage de \mathcal{B}_0 à \mathcal{B} ; montrer qu'il existe dans M une ligne et une seule dont tous les coefficients valent 1. En déduire toutes les m-bases de \mathbb{K}^2 .
- **6.** Soit \mathscr{B} une m-base, et $a \in \mathscr{B}$.
- **6.1** Établir l'existence de $p(a) \in \mathbb{N}^*$ tel que $a^{p(a)+1} = a$.
- **6.2** Donner en fonction de n une majoration du nombre de m-bases de \mathbb{K}^n .
- **6.3** Dans cette sous-question, $\mathbb{K} = \mathbb{R}$ et $E = \mathbb{R}^n$; trouver une valeur de p(a) indépendante de n, de \mathscr{B} et de a. Améliorer la majoration trouvée dans la sous-question précédente.
- 7. Soit \mathscr{B} une m-base, et $a \in \mathscr{B}$. En utilisant l'application m_a , montrer que $\tau(a)$ est un entier compris entre 0 et n; à quelle condition a-t-on $\tau(a) = n$?
- **8.** Trouver toutes les m-bases \mathscr{B} telles que M (\mathscr{B}) possède exactement 2n-1 coefficients non nuls.

Partie III

On s'intéresse dans cette partie aux m-bases de \mathbb{K}^n dont tous les éléments sont inversibles au sens du produit interne. Une telle m-base sera dite *inversible*.

- 1. Montrer que toute m-base inversible \mathscr{B} contient l'unité ε .
- **2.** Si \mathscr{B} est une m-base inversible, et $a \neq \varepsilon \in \mathscr{B}$, montrer que $\tau(a) = 0$.
- **3.** Si $\mathscr{B} = \{v_1, \ldots, v_n\}$ est une m-base inversible, on pose $s = \sum_{1 \leq i \leq n} v_i$. Calculer $\tau(s)$ puis sv_i pour $1 \leq i \leq n$, et montrer que $s^2 = ns$. Montrer que $\frac{s}{n} \in \mathscr{B}_0$.
- **4.** Dans cette question, $\mathbb{K} = \mathbb{C}$; soit alors \mathscr{B} une m-base inversible de $E = \mathbb{C}^n$ et $M = M(\mathscr{B})$. Déterminer le produit matriciel $\overline{t}MM$. En déduire la valeur du module de det M.
- **5.** Dans cette question, $\mathbb{K} = \mathbb{R}$; on suppose que $\mathbf{E} = \mathbb{R}^n$ possède une m-base inversible \mathscr{B} .
- **5.1** Montrer que \mathcal{B} est un groupe pour la loi interne \times .
- **5.2** Montrer que $a \in \mathscr{B} \Longrightarrow a^2 = \varepsilon$. Montrer que l'on peut faire de l'ensemble fini \mathscr{B} un espace vectoriel sur le corps $\mathbb{Z}/2\mathbb{Z}$. En conclure que n est une puissance de 2.
- **6.** Si \mathscr{B} est une m-base inversible de \mathbb{R}^n , on pose $M=M(\mathscr{B})$ puis $\widetilde{M}=\begin{pmatrix}M&M\\M&-M\end{pmatrix}$. Montrer qu'il existe $\widetilde{\mathscr{B}}$ m-base inversible de \mathbb{R}^{2n} telle que $M\left(\widetilde{\mathscr{B}}\right)=\widetilde{M}$.
- 7. Pour quelles valeurs de n existe-t-il dans \mathbb{R}^n des m-bases inversibles?