

Curso libre:

Econometría básica con Python

Monitor encargado:

Juan Felipe Acevedo Pérez

Correo: uniic_bog@unal.edu.co

Teléfono: 3165000 ext 12301

Juan Felipe Acevedo Pérez

Monitor (a) Unidad de Informática

Variable dependiente discreta

Correo: uniic_bog@unal.edu.co

¿Variables discretas?

Clasificación de variables:

- Continuas: Toman valores de un conjunto <u>no</u> finito.
- Discretas: Toman valores de un conjunto <u>finito</u>.

Las variables categóricas corresponden únicamente a un número finito de valores (alternativas o categorías).

Correo: uniic_bog@unal.edu.co

¿Caso no binario?

Una variable categórica contiene k categorías (alternativas).

Si k > 2 entonces se trata de una variable **no binaria** (puede tomar más de dos valores).

Ejemplos:

- · Elección de la marca de cerveza que una persona va a consumir.
- Combo de comida que alguien elige cuando va a cine.

Codificación de variables

Para codificar una variable no binaria se emplean m valores (un valor distinto para cada una de las m alternativas).

Ejemplo:

Marcas de cerveza. *Marca* { 3 *si C. Colombia*

1 si Águila 2 si Póker 3 si C.Colombia 4 si Corona 5 si Heineken

Correo: uniic_bog@unal.edu.co

Modelos con variable dependiente discreta

Lo que se estima no es el valor que toma la variable dependiente sino la probabilidad de que esta tome un valor específico.

$$Prob[y_i = j | \mathbf{x}_i] = P_{ji} = F_j(\mathbf{x}_i, \mathbf{\gamma})$$

Dependiendo de la forma que adopte $F_j(x_i, \gamma)$ se tiene un modelo distinto: Logit Multinomial, Probit Multinomial, Logit Condicional, etc.

Restricción: un individuo (entidad), de las m alternativas posibles, solo puede elegir una.

Correo: uniic_bog@unal.edu.co

Datos empleados

La información empleada para trabajar con modelos con variable dependiente discreta **no binaria** puede encontrarse en dos formatos: **wide** y **long**.

- En el formato *wide*, la información para cada individuo (entidad) se presenta en una única fila.
- En el formato **long**, la información para cada individuo (entidad) se presenta en m filas, cada una de las cuales corresponde a una de las alternativas de la variable dependiente, la cual toma el valor de 1 una única vez y de 0 m-1 veces para cada individuo (¿Por qué?).

Correo: uniic_bog@unal.edu.co

Ejemplo de formato wide

Individuo	Marca elegida	y	Ingreso del individuo	\$Águila	\$Póker	\$C. Colombia	\$Corona	\$Heineken
Individuo	Póker	2	COP	COP	COP	COP	COP	COP
1			2,300,000	2,600	3,100	3,300	4,200	4,100
Individuo	C.	3	COP	COP	COP	COP	COP	COP
2	Colombia		3,000,000	3,300	3,600	4,000	5,700	5,500
Individuo	Corona	4	COP	COP	COP	COP	COP	COP
3			2,700,000	3,000	3,300	3,600	5,000	4,800
•								
•		٠						
Individuo	Águila	1	COP	COP	COP	COP	COP	COP
n			2,500,000	3,000	3,400	3,900	4,300	4,500

Correo: uniic_bog@unal.edu.co

Ejemplo de formato long

Individuo	Marca elegida	Alternativas	y_j	Ingreso del individuo	\$ Alternativa
Individuo 1	Póker	Águila	$y_1 = 0$	COP 2,300,000	COP 2,600
Individuo 1	Póker	Póker	$y_2 = 1$	COP 2,300,000	COP 3,100
Individuo 1	Póker	C. Colombia	$y_3 = 0$	COP 2,300,000	COP 3,300
Individuo 1	Póker	Corona	$y_4 = 0$	COP 2,300,000	COP 4,200
Individuo 1	Póker	Heineken	$y_5 = 0$	COP 2,300,000	COP 4,100
Individuo 2	C. Colombia	Águila	$y_1 = 0$	COP 3,000,000	COP 3,300
Individuo 2	C. Colombia	Póker	$y_2 = 0$	COP 3,000,000	COP 3,600
Individuo 2	C. Colombia	C. Colombia	$y_3 = 1$	COP 3,000,000	COP 4,000
Individuo 2	C. Colombia	Corona	$y_4 = 0$	COP 3,000,000	COP 5,700
Individuo 2	C. Colombia	Heineken	$y_5 = 0$	COP 3,000,000	COP 5,500
Individuo 3	Corona	Águila	$y_1 = 0$	COP 2,700,000	COP 3,000
Individuo 3	Corona	Póker	$y_2 = 0$	COP 2,700,000	COP 3,300
Individuo 3	Corona	C. Colombia	$y_3 = 0$	COP 2,700,000	COP 3,600
Individuo 3	Corona	Corona	$y_4 = 1$	COP 2,700,000	COP 5,000
Individuo 3	Corona	Heineken	$y_5 = 0$	COP 2,700,000	COP 4,800
•		·	·		·
Individuo n	Águila	Águila	$y_1 = 1$	COP 2,500,000	COP 3,000
Individuo n	Águila	Póker	$y_2 = 0$	COP 2,500,000	COP 3,400
Individuo n	Águila	C. Colombia	$y_3 = 0$	COP 2,500,000	COP 3,900
Individuo n	Águila	Corona	$y_4 = 0$	COP 2,500,000	COP 4,300
Individuo n	Águila	Heineken	$y_5 = 0$	COP 2,500,000	COP 4,500

Correo: uniic_bog@unal.edu.co

Variable dependiente en formato long y wide

Para el formato wide:

$$y = j$$

Para el formato *long*:

$$y_j = \begin{cases} 1 & \text{si } y = j \\ 0 & \text{si } y \neq j \end{cases}$$

Correo: uniic_bog@unal.edu.co Teléfono: 3165000 ext 12301

Variables explicativas

Las variables explicativas usadas en los modelos con variable dependiente discreta se clasifican en:

- Alternative-invariant regressors (también llamados case-specific regressors)
- Alternative-variant regressors (también llamados alternativespecific regressors)

La clasificación de las variables explicativas es muy importante ya que dependiendo de su tipo se puede o no utilizar un determinado modelo.

Correo: uniic_bog@unal.edu.co

Alternative-invariant regressors

Las variables de tipo *alternative-invariant regressors* no tienen correspondencia directa con determinada alternativa; los valores de estas variables varían entre individuos (entidades) pero no varían entre alternativas para el mismo individuo (entidad).

Ejemplo:

• El ingreso. ¿Por qué? Porque el ingreso **no** depende de la marca de cerveza elegida. El ingreso del Individuo 1 sigue siendo COP 2,300,000 sin importar si elige Águila, Póker, Corona, etc.

Correo: uniic_bog@unal.edu.co

Alternative-variant regressors

Las variables de tipo *alternative-variant regressors* tienen correspondencia directa con determinada alternativa, por lo que su valor depende de esta; los valores de estas variables varían entre alternativas y también pueden variar entre individuos.

Ejemplo:

• El precio. ¿Por qué? Porque el precio **sí** depende de la alternativa: el precio de Águila no es el mismo que el de Póker o el de Heineken. Dependiendo de la alternativa elegida se pagará un precio distinto.

Correo: uniic_bog@unal.edu.co

Modelo Logit Multinomial

El Modelo Logit Multinomial acepta **únicamente** variables de tipo alternative-invariant regressors.

La forma funcional que adopta es:

$$P_{ji} = Prob[y_i = j] = \frac{e^{(w_i^T \gamma_j)}}{\sum_{k=1}^{m} e^{(w_i^T \gamma_k)}}$$

en donde P_{ji} es la probabilidad de que el individuo i elija la alternativa j; w_i es el vector de variables **alternative-invariant** para el individuo (entidad) i y γ_j es el vector de coeficientes correspondientes a la alternativa j.

Correo: uniic_bog@unal.edu.co

Estimación en el Modelo Logit Multinomial

Para realizar la **estimación**, uno de los conjuntos de coeficientes se normaliza a cero, por lo que se obtienen m-1 conjuntos de coeficientes.

La **categoría base** corresponde a la alternativa cuyo conjunto de coeficientes se normaliza a cero. La **interpretación** de los demás coeficientes se hace con referencia a la categoría base.

Correo: uniic_bog@unal.edu.co

Coeficientes y Efectos Marginales

- Las magnitudes de los coeficientes en un modelo logit multinomial <u>no</u> tienen interpretación directa. Solo indican si aumenta (cuando el coeficiente es positivo) o disminuye (cuando el coeficiente es negativo) la probabilidad de que se elija la alternativa *j*, *en comparación* con la categoría base.
- Los coeficientes <u>no</u> cuantifican el impacto de una variable explicativa sobre la probabilidad; para esto se emplean los **efectos marginales**.
- Importante: ¡Los coeficientes son distintos dependiendo de la categoría base que se elija!

Correo: uniic_bog@unal.edu.co

Efectos Marginales

Los efectos marginales en el Modelo Logit Multinomial están dados por:

$$\frac{\partial P_{ji}}{\partial w_f} = P_{ji} \left(\gamma_{jf} - \sum_{k=1}^m P_{ki} \gamma_{kf} \right)$$

Importante: Los efectos marginales no necesariamente tienen el mismo signo que los coeficientes asociados.

Correo: uniic_bog@unal.edu.co

Medida "general" de efectos marginales

Al igual que en el Modelo Logit y el Modelo Probit, con n individuos (entidades) se obtienen n efectos marginales para la misma variable. Para hallar una medida "general" se puede usar efectos marginales **en la media** y efectos marginales **promedio**.

Importante: A diferencia de los coeficientes, <u>sin importar</u> la categoría base elegida, los efectos marginales siempre son los **mismos**.

Correo: uniic_bog@unal.edu.co

Medida "general" de efectos marginales

Importante: Los efectos marginales (cuantificados con una medida "general") de la misma variable <u>deben</u> sumar **0**. Es decir:

$$\sum_{j=1}^{m} \frac{\partial P_j}{\partial w_f} = 0$$

en donde $\frac{\partial P_j}{\partial w_f}$ es el efecto marginal de la variable w_f sobre la probabilidad de elegir la alternativa j y existen m alternativas.

Correo: uniic_bog@unal.edu.co

Referencias

- Katchova, A. (2013). Econometrics Probit and Logit Models.
- Katchova, A. (2013, 2). Econometrics Multinomial Probit and Logit Models.

Correo: uniic_bog@unal.edu.co

