# 3DPotatoTwin: Paired 3D Dataset of Potato Tubers for Plant Phenotyping Applications

Haozhou Wang, Pieter M. Blok, James Burridge, Ting Jiang, Wei Guo Graduate School of Agricultural and Life Sciences, University of Tokyo

# Background



Potato tuber

An important staple crop for food security





Conventional field investigation to capture tuber spatial variation

> Time-consuming, labor intensive, inaccurate

### High-throughput phenotyping









Computer vision

2D image analysis Inaccurate 3D shape









point cloud analysis

shape classification, yield estimation

## Data collection

#### High throughput on conveyer



#### High quality by indoor SfM



## Challenge: efficiency and quality trade-off



RGBD Conveyer 3D model

High efficiency | Low quality |



indoor SfM 3D model

Low efficiency

**High quality** 

ICP registration failed with large shape and color differences

# Target-assisting Data fusion method







Pin segmentation & rough registration

Match along z axis of pin position

Match along x/y axis of pin position

Three-axis stepwise rough matching around pin positions, then apply ICP registration for detail adjustment

## Results







Top view

Right side view

Back side view

Transformation matrix to rotate RGBD to SfM coordinate with 339 potato tubers

## Discussion & conclusion

#### Potential application

- Outdoor and indoor 3D recounstruction pipelines for small objects
- An approach for fusing the 3D models collected by different 3D reconstruction methods

#### Limitation and future work

- Performs better on irregular shapes, not suitable for standard spherical objects like grapes, tomatos, etc.
- Test the dataset feasibility for training shape completion deep learning networks
- Actual field applications for spatial variation of yield