FUNDAMENTOS DEL BIG DATA

Tipología, captura y preparación de los datos

Big Data

Ciencia de Datos

Machine Learning

Deep Learning

Inteligencia Artificial

Data mining

BIG DATA

- Técnicas para capturar, almacenar, homogeneizar, transferir, consultar,
 visualizar y analizar datos a gran escala y de manera sistemática
- Aumento exponencial de los datos y de las fuentes que los generan

Volumen

• Muchos tipos de datos para administrar y proteger

Variedad

THE INTERNET IN 2023 EVERY MINUTE

BIG DATA

Retos con información masiva:

- Calidad de los datos
- Privacidad y seguridad de la información

- Extracción de información relevante de conjuntos de datos: KDD (Knowledge Discovery in Databases)
- Métodos, procesos y sistemas que involucran tratamiento de datos para extraer conocimiento

Diagrama de Venn de la Ciencia de datos de Drew Conway

- Limpiar y optimizar los datos es uno de los mayores desafíos de la ciencia de datos: Dilema 80/20 de la ciencia de datos
- Se dedica aproximadamente el 80% del tiempo a generar, preparar y etiquetar datos y solo el 20% a construir y entrenar modelos

DATA GENERATION

- · Aquire data (search, make or buy)
- · Data generation
- · Data Augmentation

DATA PREPARATION

- · Store / load data
- · Organize data
- · Correct, normalize ..
- · Label & annotate data

TRAIN & EVALUATE MODEL

- · Choose model
- · Train model
- · Evaluate model
- · Deploy model

Para sacar beneficio a la cantidad de información disponible es necesario comprender cuáles son las categorías de datos y las fuentes de origen de los mismos

TIPOS DE DATOS

En base a su estructura:

- Estructurados
- Semiestructurados
- No estructurados

- Información que ha sido formateada y transformada en un modelo de datos bien definido
- Están altamente organizados de tal manera que se pueden buscar fácilmente
- Provienen de sistemas transaccionales, bases de datos relacionales y aplicaciones administrativas (por ejemplo, sistemas de ERP)

- Son los datos típicos de la mayoría de bases de datos relacionales
- Tienen un esquema determinado que define las tablas en las que se almacenan, qué tipo de campos tienen y cómo se relacionan entre ellas
- Se gestionan mediante un tipo de lenguaje de programación estructurado conocido como SQL (Structured Query Language)

Modelo Entidad-Relación, BBDD Relacional


```
create table libros(
  titulo varchar(20),
  autor varchar(30),
  editorial varchar(15),
  precio float,
  cantidad integer
);
insert into libros (titulo, autor, editorial, precio, cantidad)
  values ('El aleph', 'Borges', 'Emece', 45.50, 100);
insert into libros (titulo, autor, editorial, precio, cantidad)
  values ('Alicia en el pais de las maravillas', 'Lewis Carroll', 'Planeta', 25, 200);
insert into libros (titulo, autor, editorial, precio, cantidad)
  values ('Matematica estas ahi', 'Paenza', 'Planeta', 15.8, 200);
                                                                         Query
select * from libros;
                                                                                                              Limit to 1000 rows
                                                                                  drop table if exists libros;
select titulo, autor, editorial from libros;
                                                                                Ecreate table libros(
select titulo, precio from libros;
                                                                                    codigo integer unsigned auto increment,
                                                                                    titulo varchar(20) not null,
select editorial, cantidad from libros;
                                                                                    autor varchar(30),
                                                                                    editorial varchar(15),
                                                                                    precio float unsigned,
                                                                                   cantidad integer unsigned,
                                                                                   primary key (codigo)
```


- Datos en bruto y no organizados
- Sin estructura interna identificable
- Se presentan en muchos formatos con diversos grados de complejidad
- Fuentes heterogéneas y generados por humanos o máquinas

- ¿Qué relevancia tiene esta variedad de datos? ¿Qué relación guarda con el Big Data?
- Alrededor del 80 % de la información relevante para un negocio se origina en forma no estructurada
- El desafío para las organizaciones radica en comprender y extraer valor de los datos no estructurados
- Ventaja competitiva

- Se encuentran a medio camino entre los estructurados y los no estructurados
- Tienen un cierto nivel de estructura, jerarquía y organización, aunque carecen de un esquema fijo
- Se organizan mediante etiquetas semánticas que permiten agruparlos y crear jerarquías: Metadatos
- Se refieren a cualquier información que utilice un esquema de autodescripción

- Dos de los formatos más comunes de datos semiestructurados son:
 - XML (eXtensible Markup Language)
 - JSON (JavaScript Object Notation)

- Desarrollado por W3C (World Wide Web Consortium)
- Basado en SGML (Standard Generalized Markup Language)
- Utilizado para el almacenamiento e intercambio de datos entre distintas plataformas
- Define etiquetas personalizadas para la descripción y organización de datos

- Los documentos XML están formados por texto plano (sin formato) y contienen marcas o etiquetas
- Sintaxis:

Declaración XML

```
<persona>
  <nombre>Elsa</nombre>
  <mujer/>
  <fecha-de-nacimiento>
        <día>18</día>
        <mes>6</mes>
        <año>1996</año>
  </fecha-de-nacimiento>
  <ciudad>Pamplona</ciudad>
</persona>
```

• Un atributo proporciona información extra del elemento que lo contiene

```
<nombre color="negro" precio="12.56">Gorro de lana
```

```
<?xml version="1.0" encoding="UTF-8"?>
<br/>
<br/>
diblioteca>
  libro>
    <titulo>La vida está en otra parte</titulo>
    <autor>Milan Kundera
   <fechaPublicacion año="1973"/>
  </libro>
  libro>
   <titulo>Pantaleón y las visitadoras</titulo>
    <autor fechaNacimiento="28/03/1936">Mario Vargas Llosa</autor>
   <fechaPublicacion año="1973"/>
  </libro>
  libro>
   <titulo>Conversación en la catedral</titulo>
    <autor fechaNacimiento="28/03/1936">Mario Vargas Llosa</autor>
   <fechaPublicacion año="1969"/>
  </libro>
</biblioteca>
```

- Es un formato ligero de intercambio de datos
- Consisten en pares de atributos y valores
- Surgió como alternativa más simple y ligera al XML
- Aunque en sus orígenes estuvo ligado a JavaScript, se ha convertido en un estándar independiente de datos
- Rápida aceptación por la rapidez en la lectura y su menor tamaño

```
"departamento":8,
"nombredepto": "Ventas",
"director": "Juan Rodríguez",
"empleados":[
    "nombre": "Pedro",
    "apellido": "Fernández"
 },{
    "nombre": "Jacinto",
    "apellido": "Benavente"
```

```
"localizaciones": [
    "latitude": 40.416875,
    "longitude": -3.703308,
    "city": "Madrid",
    "description": "Puerta del Sol"
    "latitude": 40.417438,
    "longitude": -3.693363,
    "city": "Madrid",
    "description": "Paseo del Prado"
    "latitude": 40.407015.
    "longitude": -3.691163,
    "city": "Madrid",
    "description": "Estación de Atocha"
```

XML JSON

```
<empinfo>
  <employees>
    <employee>
       <name>James Kirk</name>
       <age>40></age>
    </employee>
    <employee>
       <name>Jean-Luc Picard</name>
       <age>45</age>
    </employee>
    <employee>
       <name>Wesley Crusher</name>
       <age>27</age>
    </employee>
  </employees>
</empinfo>
```

```
"empinfo":
        "employees": [
            "name": "James Kirk",
            "age": 40,
            "name": "Jean-Luc Picard",
            "age": 45,
            "name": "Wesley Crusher",
            "age": 27,
```

XML	JSON
<servers></servers>	{
<server></server>	Servers: [
<name>Server1</name>	{
<owner>John</owner>	name: Server1,
<created>123456</created>	owner: John,
<status>active</status>	created: 123456,
	status: active
	}
•	1
	}

Archivo colores1.json	Archivo colores2.json	Archivo colores3.json
{ "arrayColores":[{ "nombreColor":"rojo", "valorHexadec":"#f00" }, { "nombreColor":"verde", "valorHexadec":"#0f0" }, { "nombreColor":"azul", "valorHexadec":"#00f" }, { "nombreColor":"cyan", "valorHexadec":"#0ff" }, { "nombreColor":"magenta", "valorHexadec":"#f0f" }, { "nombreColor":"amarillo", "valorHexadec":"#ff0" }, { "nombreColor":"negro", "valorHexadec":"#000" } }	{ "rojo":"#f00", "verde":"#0f0", "azul":"#0ff", "cyan":"#f0f", "magenta":"#ff0", "negro":"#000" } }]	{ "rojo":"#f00", "verde":"#0f0", "azul":"#00f", "cyan":"#0ff", "magenta":"#f0", "amarillo":"#ff0", "negro":"#000" }

- Los metadatos son los "datos que describen datos"
- Están asociados a la mayoría de la información que se produce en el mundo digital
- Tratados masivamente y con técnicas de Big Data son una fuente extraordinaria e involuntaria de información personal
- Es común codificar metadatos usando XML o JSON

Anatomía de un tweet:

You are your Metadata: Identification and Obfuscation of Social Media Users using Metadata Information (2018) University College de Londres e Instituto Alan Turing

EXIF (Exchangeable image file format)

Metadatos incrustados dentro del propio archivo de imagen

	Info	Done	
Resolution		14 ~ 14	
Color profile		Display P3	
Device make	Apple		
Device model		iPhone X	
Lens model	iPhone X back dual camera 4mm f/1.8		
Aperture value		1.696	
Exposure time		1/15	
Exposure program		Normal	
Focal length		4 mm	
ISO speed		1600	
Flash		NO	
Red eye		NO	
F Number		f/1.8	
Metering mode		Pattern	
White balance		Auto	
Content Creator		13.0	
Longitude	1	04° 57' 22.771" W	

DICOM (Digital Imaging and Communication On Medicine)

Estándar de transmisión y almacenamiento de imágenes médicas

• En algunas ocasiones, los datos no estructurados se pueden clasificar dentro de los semiestructurados porque tienen uno o más atributos de clasificación

Ejemplo: Correo electrónico

TIPOS DE DATOS ALMACENAMIENTO

- Datos estructurados: Bases de Datos SQL
- Datos semiestructurados y no estructurados: Bases de Datos NoSQL (Not Only SQL)
- Existe una amplia variedad de Bases de Datos NoSQL

¿Flexibilidad?

¿Facilidad de análisis?

BBDD NoSQL

BBDD NoSQL

MODELO

CARACTERÍSTICAS

BB Clave-Valor

La más sencilla de las bases de datos NoSQL, los datos se representan como una colección de pares clave-valor. Los valores no requieren un esquema fijo. No existe el concepto de relaciones, pensadas para almacenar información básica y que pueda ser consultada de forma muy rápida.

BBDD de documentos

Los datos se almacenan de forma jerárquica en documentos basados en JSON, XML y BSON. Cada documento puede tener la misma estructura o una estructura diferente.

BBDD de grafos

Los datos se almacenan en una estructura de grafos

Clave - K	ey Valor - Value
	Juan Antonio Pérez natural de Villa del Mar,
7024816	0-N estudio en las mejores universidades del EEUU y ha sido padre recientemente.
	Manuel Rodríguez es fontanero de Olmedo y
3212384	no esta casado pero le encantaría encontrar pareja.
	• • •
2224562	Paloma García es una importante escritora de literatura infantil muy querida en su

BBDD NoSQL

student_id	age	score
1	12	77
2	12	68
3	11	75

```
"student_id":1,
"age":12,
"score":77
"student_id":2,
"age":12,
"score":68
"student_id":3,
"age":11,
"score":75
```


- La mala calidad de los datos es el <u>principal riesgo</u> al que se enfrenta la ciencia de datos
- Uno de los problemas "ocultos" más graves y persistentes. Implica:
 - Toma de decisiones estratégicas no acertadas
 - Deterioro en la imagen corporativa de la compañía
 - Ineficiencia en la toma de decisiones
 - Mala gestión de los clientes

- En Big Data resulta todavía más complicado lidiar con la calidad ya que los datos se suelen originar fuera del proyecto y tienen una vida independiente más allá de éste
- El investigador no tiene un control total sobre los datos
- Garbage in, garbage out (GIGO)
- El éxito depende principalmente de los datos de entrada

Big Data vs Smart Data

Big Data vs Smart Data

Los datos en sí mismos no generan ventajas competitivas, hay que extraer su valor a partir de su procesamiento y análisis

Big Data vs Smart Data

- Calidad de los datos: punto de inflexión entre ambos
- Smart Data son datos de calidad, listos para ser utilizados en la extracción de conocimiento y toma de decisiones
- **Preprocesamiento de datos**: fundamental para convertir datos almacenados en datos de calidad

PREPROCESAMIENTO DE LOS DATOS

¿Por qué es importante preprocesar datos?

Los datos reales pueden ser impuros, lo que provoca la extracción de patrones o reglas poco útiles. Causas:

- Datos incompletos: falta de valores de atributos, ...
- Datos con ruido
- Datos inconsistentes (incluyendo discrepancias)

PREPROCESAMIENTO DE LOS DATOS

- Obtener un conjunto de datos final que sea de calidad y útil para la fase de extracción de conocimiento
- Pasos:
 - Limpieza de los datos
 - OTransformación de los datos
 - O Reducción de la dimensionalidad

1. Valores ausentes o nulos:

- Interpolación: datos temporales, interpolar teniendo en cuenta los datos próximos
- Rellenar con un valor fijo: media, moda o valor 0.
- Rellenar utilizando regresión: predecir el valor perdido utilizando el resto de las variables del conjunto de datos.
- Considerar el vacío como una categoría: variables categóricas
- Eliminar el registro completo

- 2. Inconsistencia de datos: Errores en el formato o tipo de datos
- 3. Valores duplicados: Eliminar para evitar sesgos
- 4. Datos anómalos o atípicos (Outliers): Distorsión de los datos

Alrededor del 90% de los potenciales errores de calidad de datos se resuelven con:

- 1. Análisis de nulos y atípicos
- 2. Estadísticos básicos
- 3. Análisis longitudinal
- 4. Coherencia entre variables

TRANSFORMACIÓN DE DATOS

1. Normalizar: Escalar las variables a un intervalo (para distancias)

x - min(x)

• Mínima-máxima

• Puntuación z
$$\frac{[\max(x) - \min(x)]}{x - mean(x)}$$

$$\frac{x - mean(x)}{stdev(x)}$$

- 2. <u>Discretizar</u>: Convertir valores continuos en intervalos. Reducir el tamaño de datos y mejorar la precisión
 - Misma amplitud
 - Misma frecuencia
- 3. <u>Variables sintéticas o derivadas</u>
- 4. Formatear los datos para facilitar el análisis

TRANSFORMACIÓN DE DATOS

Día	Encargado 1	Encargado 2	Encargado 3
Lunes	Jose	Carlos	Antonio
Martes	David	Jose	Pablo
M iércoles	Carlos	Javier	Pablo

Día	Encargado
unes	Jose
Lunes	Carlos
unes	Antonio
Martes	David
Martes	Jose
Martes	Pablo
M iérco les	Carlos
M iérco les	Javier
M iérco les	Pablo

Comunidad Autónoma	Población	Comunidad Autónoma	2016	2015	2014
Andalucía		Andalucía	8.388.107	8.399.043	8.402.305
2016	8.388.107	Aragón	1.308.563	1.317.847	1.325.385
2015	8.399.043	Asturias, Principado de	1.042.608	1.051.229	1.061.756
2014	8.402.305	Balears, Illes	1.107.220	1.104.479	1.103.442
Aragón		Canarias	2.101.924	2.100.306	2.104.815
2016	1.308.563				
2015	1.317.847	Comunidad Autónoma	Año	Población	
2014	1.325.385	Andalucía	2016	8.388.107	
Asturias, Principado de		Andalucía	2015	8.399.043	
2016	1.042.608	Andalucía	2014	8.402.305	
2015	1.051.229	Aragón	2016	1.308.563	
2014	1.061.756	Aragón	2015	1.317.847	
Balears, Illes		Aragón	2014	1.325.385	
2016	1.107.220	Asturias, Principado de	2016	1.042.608	
2015	1.104.479	Asturias, Principado de	2015	1.051.229	
2014	1.103.442	Asturias, Principado de	2014	1.061.756	
Canarias		Balears, Illes	2016	1.107.220	
2016	2.101.924	Balears, Illes	2015	1.104.479	
2015	2.100.306	Balears, Illes	2014	1.103.442	
2014	2.104.815	Canarias	2016	2.101.924	
		Canarias	2015	2.100.306	
		Canarias	2014	2.104.815	