

FCC PART 22H, PART 24E MEASUREMENT AND TEST REPORT

For

Binatone Electronics International Ltd.

Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong, China

FCC ID: VLJ-THEBRICK

Report Type: **Product Type:** Original Report GSM phone leon then **Test Engineer:** Leon Chen Report Number: R2DG130821008-00C **Report Date:** 2013-10-30 Jerry Zhang Jerry Zhang EMC Manager **Reviewed By: Test Laboratory:** Bay Area Compliance Laboratories Corp. (Dongguan) No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, or any agency of the Federal Government.

* This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk "★" (Rev.2). This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S) TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
JUSTIFICATION	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
CONFIGURATION OF TEST SETUP	6
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS	8
FCC §1.1310 & §2.1093- RF EXPOSURE	9
APPLICABLE STANDARD	9
Test Result	9
FCC §2.1047 - MODULATION CHARACTERISTIC	10
FCC § 2.1046, § 22.913 (A) & § 24.232 (C) - RF OUTPUT POWER	11
APPLICABLE STANDARD	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	14
TEST DATA	14
FCC §2.1049, §22.917, §22.905 & §24.238 - OCCUPIED BANDWIDTH	16
APPLICABLE STANDARD	16
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §2.1051, §22.917(A) & §24.238(A) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
APPLICABLE STANDARD	
TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §2.1053, §22.917 & §24.238 - SPURIOUS RADIATED EMISSIONS	22
APPLICABLE STANDARD	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §22.917(A) & §24.238(A) - BAND EDGES	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
1 LU 1 LU 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1	,

Report No.: R2DG130821008-00C

FCC §2.1055, §22.355 & §24.235 - FREQUENCY STABILITY	28
APPLICABLE STANDARD	28
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	29
TEST DATA	29
DECLAPATION LETTER	31

Report No.: R2DG130821008-00C

FCC Part 22H/24E Page 3 of 31

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Binatone Electronics International Ltd.*'s product, model number: *The Brick Power (FCC ID: VLJ-THEBRICK)* (the "EUT") in this report was a *GSM phone*, which was measured approximately:5.0 cm (L) x 4.4cm (W) x 26.0 cm (H), rated input voltage: DC 3.7V from three kinds of lithium batteries (1000mA only for The Brick, 2000mA and 5200mA for The Brick Power) or DC 5V from adapter.

Report No.: R2DG130821008-00C

Adapter Information: MODEL: A31-501000

INPUT: AC 100-240V, 50/60Hz, 0.2A

OUTPUT: DC 5.0V, 1000mA

Note: the series product, model The Brick has better electromagnetic compatibility performance, the Brick hasn't the USB connector or power bank related components on PCBA, the Brick Power has the USB connector and power bank related components on PCBA. We selected The Brick Power for fully testing, and the difference between them please refers to the attached declaration letter.

* All measurement and test data in this report was gathered from production sample serial number: 130821008 (Assigned by BACL.Dongguan). The EUT was received on 2013-08-26.

Objective

This report is prepared on behalf of *Binatone Electronics International Ltd.* in accordance with Part 2-Subpart J, Part 22-Subpart H, and Part 24-Subpart E of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC rules for output power, modulation characteristic, occupied bandwidth, spurious emissions at antenna terminal, spurious radiated emission, frequency stability and band edge.

Related Submittal(s)/Grant(s)

FCC Part 15C DSS submissions with FCC ID: *VLJ-THEBRICK* for Bluetooth. FCC Part 15B JBP submissions with FCC ID: *VLJ-THEBRICK*.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 22 Subpart H - Public Mobile Services

Part 24 Subpart E - Personal Communication Services

Applicable Standards: TIA/EIA 603-D-2010, ANSI C63.4-2003.

All radiated and conducted emissions measurements were performed at Bay Area Compliance Laboratories Corp.(Dongguan), the radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 22H/24E Page 4 of 31

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

Report No.: R2DG130821008-00C

Test site at Bay Area Compliance Laboratories Corp. (Dongguan) has been fully described in reports submitted to the Federal Communications Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 02, 2012. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Dongguan) is an ISO/IEC 17025 accredited laboratory, and is accredited by National Voluntary Laboratory Accredited Program (Lab Code 500069-0).

The current scope of accreditations can be found at http://ts.nist.gov/standards/scopes/5000690.htm

FCC Part 22H/24E Page 5 of 31

SYSTEM TEST CONFIGURATION

Justification

The EUT was configured for testing according to TIA/EIA-603-D-2010.

The test items were performed with the EUT operating at testing mode.

Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
R & S	Universal Radio Communication Tester	CMU200	109038

Report No.: R2DG130821008-00C

Configuration of Test Setup

FCC Part 22H/24E Page 6 of 31

Block Diagram of Test Setup

Report No.: R2DG130821008-00C

FCC Part 22H/24E Page 7 of 31

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1310, §2.1093	RF Exposure	Compliance
\$2.1046; \$ 22.913 (a); \$ 24.232 (c)	RF Output Power	Compliance
§ 2.1047	Modulation Characteristics	Not Applicable
§ 2.1049; § 22.905 § 22.917; § 24.238	Occupied Bandwidth	Compliance
§ 2.1051, § 22.917 (a); § 24.238 (a)	Spurious Emissions at Antenna Terminal	Compliance
§ 2.1053 § 22.917 (a); § 24.238 (a)	Field Strength of Spurious Radiation	Compliance
§ 22.917 (a); § 24.238 (a)	Out of band emission, Band Edge	Compliance
§ 2.1055 § 22.355; § 24.235	Frequency stability vs. temperature Frequency stability vs. voltage	Compliance

Report No.: R2DG130821008-00C

FCC Part 22H/24E Page 8 of 31

FCC §1.1310 & §2.1093- RF EXPOSURE

Applicable Standard

FCC§1.1310 and §2.1093.

Test Result

Compliance, please refer to the SAR report: R1DG130821008-20A

Report No.: R2DG130821008-00C

FCC Part 22H/24E Page 9 of 31

FCC §2.1047 - MODULATION CHARACTERISTIC

According to FCC $\S 2.1047(d)$, Part 22H & 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

Report No.: R2DG130821008-00C

FCC Part 22H/24E Page 10 of 31

FCC § 2.1046, § 22.913 (a) & § 24.232 (c) - RF OUTPUT POWER

Applicable Standard

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

Report No.: R2DG130821008-00C

According to FCC §2.1046 and §24.232 (C), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications..

Test Procedure

GSM

Function: Menu select > GSM Mobile Station > GSM 850/1900

Press Connection control to choose the different menus

Press RESET > choose all the reset all settings

Connection Press Signal Off to turn off the signal and change settings

Network Support > GSM + only

MS Signal

> 33 dBm for GSM 850 > 30 dBm for GSM 1900

BS Signal Enter the same channel number for TCH channel (test channel) and BCCH channel

Frequency Offset > + 0 Hz

Mode > BCCH and TCH

BCCH Level > -85 dBm (May need to adjust if link is not stabe)

BCCH Channel > choose desire test channel [Enter the same channel number for TCH channel (test

channel) and BCCH channel] Channel Type > Off P0 > 4 dB

TCH > choose desired test channel

Hopping > Off

AFRF Enter appropriate offsets for Ext. Att. Output and Ext. Att. Input Connection Press Signal on to turn on the signal and change settings

GPRS/EGPRS

Function: Menu select > GSM Mobile Station > GSM 850/1900

Press Connection control to choose the different menus

Press RESET > choose all the reset all settings

Connection Press Signal Off to turn off the signal and change settings

Network Support > GSM + GPRS or GSM + EGSM

Main Service > Packet Data

Service selection > Test Mode A – Auto Slot Config. off

MS Signal Press Slot Config Bottom on the right twice to select and change the number of time slots and power setting

> Slot configuration > Uplink/Gamma

> 33 dBm for GPRS 850 > 30 dBm for GPRS 1900 > 27 dBm for EGPRS 850

> 26 dBm for EGPRS 1900

BS Signal Enter the same channel number for TCH channel (test channel) and BCCH channel

Frequency Offset > + 0 Hz

Mode > BCCH and TCH

BCCH Level > -85 dBm (May need to adjust if link is not stabe)

BCCH Channel > choose desire test channel [Enter the same channel number for TCH channel (test

channel) and BCCH channel]

FCC Part 22H/24E Page 11 of 31

Channel Type > Off P0 > Slot Config > TCH > Hopping > 4 dB

Unchanged (if already set under MS signal) choose desired test channel

Off Main Timeslot >

Network Coding Scheme > CS4 (GPRS) and MCS9 (EGPRS)

2E9-1 PSR Bit Stream Bit Stream >

AF/RF Enter appropriate offsets for Ext. Att. Output and Ext. Att. Input

Connection Press Signal on to turn on the signal and change settings

UMTS Rel 99

	Mode	Rel99	
	Subtest	-	
	Loopback Mode	Test Mode 1	
	Rel99 RMC	12.2kbps RMC	
	HSDPA FRC	Not Applicable	
	HSUPA Test	Not Applicable	
WCDMA General	Power Control Algorithm	Algorithm2	
Settings	βс	Not Applicable	
	βd	Not Applicable	
	βес	Not Applicable	
	βc/βd	8/15	
	βhs	Not Applicable	
	βed	Not Applicable	

Report No.: R2DG130821008-00C

UMTS Rel 6 HSDPA

	Mode	Rel6 HSDPA	Rel6 HSDPA	Rel6 HSDPA	Rel6 HSDPA	
	Subtest	1	2	3	4	
	Loopback Mode	Test Mode 1				
	Rel99 RMC	12.2kbps RMC				
	HSDPA FRC	H-Set1				
	HSUPA Test	Not Applicable				
WCDMA	Power Control Algorithm	Algorithm 2				
General	βc	2/15	12/15	15/15	15/15	
Settings	βd	15/15	15/15	8/15	4/15	
	βec	-	-	-	-	
	βc/βd	2/15	12/15	15/8	15/4	
	βhs	4/15	24/15	30/15	30/15	
	βed	Not Applicable				
	DACK	8				
	DNAK	8				
HSDPA	DCQI	8				
Specific	Ack-Nack repetition factor	3				
Settings	CQI Feedback (Table 5.2B.4)	4ms				
	CQI Repetition Factor (Table 5.2B.4)	2				
	Ahs = βhs/βc	30/15				

FCC Part 22H/24E Page 12 of 31

UMTS Rel 6 HSPA (HSDPA & HSUPA)

	Mode	Rel6 HSUPA	Rel6 HSUPA	Rel6 HSUPA	Rel6 HSUPA	Rei6 HSUPA	
	Subtest	1	2	3	4	5	
	Loopback Mode	Test Mode 1					
	Rei99 RMC	12.2kbps RMC)				
	HSDPA FRC	H-Set1					
	HSUPA Test	HSUPA Loopb	ack				
WCDMA	Power Control Algorithm	Algorithm2					
General	βc	11/15	6/15	15/15	2/15	15/15	
Settings	βd	15/15	15/15	9/15	15/15	0	
Settings	βec	209/225	12/15	30/15	2/15	5/15	
	βc/βd	11/15	6/15	15/9	2/15	-	
	βhs	22/15	12/15	30/15	4/15	5/15	
				47/15			
	βed	1309/225	94/75	47/15	56/75	47/15	
	DACK	8		•			
	DNAK	8					
HSDPA	DCQI	8					
Specific	Ack-Nack repetition factor	3					
Settings	CQI Feedback (Table 5.2B.4)	4ms					
Settings	CQI Repetition Factor (Table						
	5.2B.4)	2					
	Ahs = βhs/βc	30/15			T -	_	
	D E-DPCCH	6	8	8	5	7	
	DHARQ	0	0	0	0	0	
	AG Index	20	12	15	17	12	
	ETFCI (from 34.121 Table						
	C.11.1.3)	75	67	92	71	67	
	Associated Max UL Data Rate						
HSUPA	kbps	242.1	174.9	482.8	205.8	308.9	
Specific		E-TFCI 11			E-TFCI 11		
Settings		E-TFCI PO 4			E-TFCI PO 4		
Settings		E-TFCI 67			E-TFCI 67		
		E-TFCI PO 18			E-TFCI PO 18		
	Reference E_TFCIs	E-TFCI 71 E-TFCI PO 23		E-TFCI 11	E-TFCI 71 E-TFCI PO 23		
	_	E-TFC 75		E-TFCI PO 4	E-TFC 75		
		E-TFCI 75		E-TFCI 92	E-TFCI 75		
		E-TFCI PO 20		E-TFCI 92	E-TFCI 81		
		E-TFCI PO 27		18	E-TFCI PO 27		
	1	E-1F01F0 27		10	E-1FU1FU 2/		

Report No.: R2DG130821008-00C

Radiated method:

ANSI/TIA 603-D section 2.2.17

FCC Part 22H/24E Page 13 of 31

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum analyzer	FSEM 30	849016/001	2012-12-7	2013-12-6
Sunol Sciences	Antenna	JB3	A060611-1	2011-9-6	2014-9-5
TDK RF	horn antenna	HRN-0118	130 084	2012-9-6	2015-9-5
EMCO	Adjustable dipole antenna	3121C	9109-753	N/A	N/A
ETS LINDGREN	horn antenna	3115	000 527 35	2012-9-6	2015-9-5
HP	Signal Generator	8648A	3426A00831	2012-11-29	2013-11-28
Giga	Signal Generator	1026	320408	2013-5-9	2014-5-8
HP	HP AMPLIFIER	8447E	2434A02181	N/A	N/A
Mini-Circuit	Amplifier	ZVA-213-S+	054201245	N/A	N/A
R&S	EMI TEST RECEIVER	ESCI	100224	2013-5-6	2014-5-5

Report No.: R2DG130821008-00C

Test Data

Environmental Conditions

Temperature:	26.1 °C	
Relative Humidity:	64 %	
ATM Pressure:	100.1 kPa	

The testing was performed by Leon Chen on 2013-08-30.

Conducted Power

Cellular Band (Part 22H) & PCS Band (Part 24E)

		Conducted Output Power (dBm)						
Band	Channel No.	GSM	GPRS 1 TX Slot	GPRS 2 TX Slot	GPRS 3 TX Slot	GPRS 4 TX Slot		
	128	32.45	32.45	31.82	30.22	29.35		
Cellular	190	32.46	32.47	31.77	30.2	29.33		
	251	32.46	32.48	31.73	30.13	29.35		
	512	29.23	29.22	28.48	26.25	25.42		
PCS	661	29.3	29.22	28.41	26.5	25.66		
	810	29.35	29.23	28.43	26.77	25.97		

FCC Part 22H/24E Page 14 of 31

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

ERP & EIRP

			Substituted Method				
Channel No.	Polar (H/V)	Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)
			GS	M 850			
128 (824.2 MHz)	Н	106.11	31.1	0.0	1	30.1	38.4
190 (836.6 MHz)	Н	105.88	31	0.0	1	30.0	38.4
251 (848.8 MHz)	Н	105.70	30.9	0.0	1	29.9	38.4
			PCS	S 1900			
512 (1850.2 MHz)	V	94.24	22.3	11.4	1.4	32.3	33.0
661 (1880.0 MHz)	V	93.61	22.1	11.7	1.4	32.4	33.0
810 (1909.8 MHz)	V	93.20	22.1	11.8	1.4	32.5	33.0

Report No.: R2DG130821008-00C

FCC Part 22H/24E Page 15 of 31

FCC §2.1049, §22.917, §22.905 & §24.238 - OCCUPIED BANDWIDTH

Report No.: R2DG130821008-00C

Applicable Standard

FCC §2.1049, §22.917, §22.905 and §24.238.

Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 3 kHz (Cellular /PCS) and the 26 dB & 99% bandwidth was recorded.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum analyzer	FSP 38	100478	2013-6-16	2014-6-15

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.1 °C
Relative Humidity:	64 %
ATM Pressure:	100.1kPa

The testing was performed by Leon Chen on 2013-08-30.

Band	Channel No.	Mode	99% Occupied Bandwidth kHz	26 dB Occupied Bandwidth kHz
Cellular	190	GSM	244	312
PCS	661	GSM	244	314

FCC Part 22H/24E Page 16 of 31

GSM850

Report No.: R2DG130821008-00C

Date: 30.AUG.2013 19:27:05

GSM1900

Date: 30.AUG.2013 19:42:28

FCC Part 22H/24E Page 17 of 31

FCC §2.1051, §22.917(a) & §24.238(a) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

FCC §2.1051, §22.917(a) and §24.238(a).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1051.

Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for cellular and 1MHz for PCS. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Report No.: R2DG130821008-00C

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum analyzer	FSP 38	100478	2013-6-16	2014-6-15

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.6 °C
Relative Humidity:	53 %
ATM Pressure:	101.2 kPa

The testing was performed by Leon Chen on 2013-10-30.

Please refer to the following plots.

FCC Part 22H/24E Page 18 of 31

GSM850 Low Channel

Report No.: R2DG130821008-00C

Date: 30.OCT.2013 16:04:45

GSM850 Middle Channel

Date: 30.OCT.2013 16:04:10

FCC Part 22H/24E Page 19 of 31

GSM850 High Channel

Report No.: R2DG130821008-00C

Date: 30.OCT.2013 16:05:16

GSM1900 Low Channel

Date: 30.OCT.2013 15:47:52

FCC Part 22H/24E Page 20 of 31

GSM1900 Middle Channel

Report No.: R2DG130821008-00C

Date: 30.OCT.2013 15:49:14

GSM1900 High Channel

Date: 30.OCT.2013 15:48:35

FCC Part 22H/24E Page 21 of 31

FCC §2.1053, §22.917 & §24.238 - SPURIOUS RADIATED EMISSIONS

Report No.: R2DG130821008-00C

Applicable Standard

FCC § 2.1053, §22.917 and § 24.238.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \lg (TXpwr in Watts/0.001) - the absolute level$

Spurious attenuation limit in $dB = 43 + 10 \text{ Log}_{10}$ (power out in Watts)

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum analyzer	FSEM 30	849016/001	2012-12-7	2013-12-6
Sunol Sciences	Antenna	ЈВ3	A060611-1	2011-9-6	2014-9-5
TDK RF	horn antenna	HRN-0118	130 084	2012-9-6	2015-9-5
EMCO	Adjustable dipole antenna	3121C	9109-753	N/A	N/A
ETS LINDGREN	horn antenna	3115	000 527 35	2012-9-6	2015-9-5
HP	Signal Generator	8648A	3426A00831	2012-11-29	2013-11-28
Giga	Signal Generator	1026	320408	2013-5-9	2014-5-8
НР	HP AMPLIFIER	8447E	2434A02181	N/A	N/A
Mini-Circuit	Amplifier	ZVA-213-S+	054201245	N/A	N/A
R&S	EMI TEST RECEIVER	ESCI	100224	2013-5-6	2014-5-5

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

FCC Part 22H/24E Page 22 of 31

Test Data

Environmental Conditions

Temperature:	26.1 °C
Relative Humidity:	64 %
ATM Pressure:	100.1 kPa

The testing was performed by Leon Chen on 2013-08-30.

EUT Operation Mode: Transmitting

GSM 850

Report No.: R2DG130821008-00C

Frequency	Polar	S.A Reading	S.G. Level	Antenna Gain	Cable Loss	Absolute Level	Limit	Margin	
MHz	H/V	dΒμV	dBm	dBd/dBi	dB	dBm	dBm	dB	
Low Channel, fo = 824.2 MHz									
1648.400	Н	54.36	-46.8	10.5	1.5	-37.8	-13.0	24.8	
1648.400	V	60.34	-41.2	10.5	1.5	-32.2	-13.0	19.2	
2472.600	Н	46.32	-51.7	12.9	2.6	-41.4	-13.0	28.4	
2472.600	V	53.51	-43.2	12.9	2.6	-32.9	-13.0	19.9	
326.580	Н	34.52	-69.7	0.0	0.5	-70.2	-13.0	57.2	
326.580	V	30.57	-71.1	0.0	0.5	-71.6	-13.0	58.6	
	Middle Channel, fo = 836.6 MHz								
1673.200	Н	52.38	-48.7	10.6	1.5	-39.6	-13.0	26.6	
1673.200	V	59.67	-41.7	10.6	1.5	-32.6	-13.0	19.6	
2509.800	Н	47.34	-50.7	13.1	2.8	-40.4	-13.0	27.4	
2509.800	V	50.25	-46.8	13.1	2.8	-36.5	-13.0	23.5	
415.320	Н	32.58	-61.7	0.0	0.6	-62.3	-13.0	49.3	
415.320	V	30.47	-61.4	0.0	0.6	-62.0	-13.0	49.0	
			High Cha	nnel, fo = 8	48.8 MHz				
1697.600	Н	60.35	-40.7	10.8	1.5	-31.4	-13.0	18.4	
1697.600	V	57.86	-43.3	10.8	1.5	-34.0	-13.0	21.0	
2546.400	Н	48.36	-48.2	13.1	2.8	-37.9	-13.0	24.9	
2546.400	V	50.21	-46.9	13.1	2.8	-36.6	-13.0	23.6	
356.320	Н	33.21	-67.4	0.0	0.6	-68.0	-13.0	55.0	
356.320	V	31.47	-66.6	0.0	0.6	-67.2	-13.0	54.2	

FCC Part 22H/24E Page 23 of 31

GSM 1900

Report No.: R2DG130821008-00C

Frequency	Polar	S.A.Reading	S.G.Level	Antenna Gain	Cable Loss	Absolute Level	Limit	Margin	
MHz	H/V	dΒμV	dBm	dBd/dBi	dB	dBm	dBm	dB	
	Low Channel, fo = 1850.2 MHz								
3700.400	Н	49.89	-44.9	14.0	2.5	-33.4	-13.0	20.4	
3700.400	V	47.67	-46.7	14.0	2.5	-35.2	-13.0	22.2	
426.570	Н	34.23	-59.3	0.0	0.6	-59.9	-13.0	46.9	
426.570	V	32.58	-58.6	0.0	0.6	-59.2	-13.0	46.2	
	Middle Channel, fo = 1880.0 MHz								
3760.000	Н	51.34	-43	13.8	2.9	-32.1	-13.0	19.1	
3760.000	V	46.12	-46.9	13.8	2.9	-36.0	-13.0	23.0	
365.240	Н	33.52	-66	0.0	0.6	-66.6	-13.0	53.6	
365.240	V	32.69	-64.3	0.0	0.6	-64.9	-13.0	51.9	
		Н	igh Channel,	$f_0 = 1909.8$	8 MHz				
3819.600	Н	52.35	-41.5	13.6	3.3	-31.2	-13.0	18.2	
3819.600	V	48.56	-43.6	13.6	3.3	-33.3	-13.0	20.3	
425.630	Н	34.26	-59.3	0.0	0.6	-59.9	-13.0	46.9	
425.630	V	31.58	-59.7	0.0	0.6	-60.3	-13.0	47.3	

Notes: No emissions were detected below 1GHz.

FCC Part 22H/24E Page 24 of 31

FCC §22.917(a) & §24.238(a) - BAND EDGES

Applicable Standard

According to § 22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

Report No.: R2DG130821008-00C

According to \$24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency, RBW set to 10 kHz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum analyzer	FSP 38	100478	2013-6-16	2014-6-15

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.6 °C
Relative Humidity:	53 %
ATM Pressure:	101.2 kPa

The testing was performed by Leon Chen on 2013-10-30

Please refer to the following tables and plots.

FCC Part 22H/24E Page 25 of 31

Cellular Band, Left Band Edge

Report No.: R2DG130821008-00C

Date: 30.OCT.2013 16:06:59

Cellular Band, Right Band Edge

Date: 30.OCT.2013 16:06:16

FCC Part 22H/24E Page 26 of 31

PCS Band, Left Band Edge

Report No.: R2DG130821008-00C

Date: 30.OCT.2013 15:46:58

PCS Band, Right Band Edge

Date: 30.OCT.2013 15:44:54

FCC Part 22H/24E Page 27 of 31

FCC §2.1055, §22.355 & §24.235 - FREQUENCY STABILITY

Applicable Standard

FCC § 2.1055 (a), § 2.1055 (d), §22.355, §24.235

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below:

Frequency Tolerance for Transmitters in the Public M	obile Services

Report No.: R2DG130821008-00C

Frequency Range (MHz)	Base, fixed (ppm)	Mobile ≤3 watts (ppm)	Mobile ≤ 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

FCC Part 22H/24E Page 28 of 31

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Dongzhixu	Humidity tester	DP1000	201105083-3	2013-7-3	2014-7-2
Rohde&Schwarz	Universal Radio Communication Tester	CMU200	111787B	2013-3-16	2014-3-15

Report No.: R2DG130821008-00C

Test Data

Environmental Conditions

Temperature:	26.1 °C		
Relative Humidity:	64 %		
ATM Pressure:	100.1kPa		

The testing was performed by Leon Chen on 2013-08-30.

Cellular Band (Part 22H)

Middle Channel, f _c = 836.6 MHz					
Temperature	Voltage	Frequency Error	Frequency Error	Limit	
င	V_{DC}	Hz	ppm	ppm	
-30	3.7	-1	-0.001	2.5	
-20	3.7	-3	-0.004	2.5	
-10	3.7	2	0.002	2.5	
0	3.7	5	0.006	2.5	
10	3.7	-2	-0.002	2.5	
20	3.7	-4	-0.005	2.5	
30	3.7	3	0.004	2.5	
40	3.7	0	0.000	2.5	
50	3.7	-6	-0.007	2.5	
25	3.6	7	0.008	2.5	
25	4.2	1	0.001	2.5	

FCC Part 22H/24E Page 29 of 31

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

PCS Band (Part 24E)

Middle Channel, f _c = 1880.0 MHz					
Temperature	Voltage	Frequency Error	Frequency Error	Result	
ပ	V_{DC}	Hz	ppm		
-30	3.7	0	0.000	Pass	
-20	3.7	3	0.002	Pass	
-10	3.7	-2	-0.001	Pass	
0	3.7	1	0.001	Pass	
10	3.7	-3	-0.002	Pass	
20	3.7	2	0.001	Pass	
30	3.7	5	0.003	Pass	
40	3.7	-4	-0.002	Pass	
50	3.7	6	0.003	Pass	
25	3.6	-1	-0.001	Pass	
25	4.2	-7	-0.004	Pass	

Report No.: R2DG130821008-00C

FCC Part 22H/24E Page 30 of 31

DECLARATION LETTER

Binatone Electronics International Ltd.

Add: Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong, China Tel: 00852-28027388 Fax: 00852-28028138

DECLARATION OF SIMILARITY

Report No.: R2DG130821008-00C

2013-09-24

Dear Sir or Madam:

We, Binatone Electronics International Ltd., hereby declare that our product: GSM phone, models: The Brick and The Brick Power. Please see the difference between the models as below. Compared with The Brick Power, the model: The Brick has better electromagnetic compatibility performance.

A description of the differences between the tested model and those that are declared similar areas follows:

Models: The Brick hasn't the USB connector or power bank related components on PCBA.

The Brick Power has the USB connector and power bank related components on PCBA.

Please contact me should there be need for any additional clarification or information.

Best Regards,

Signature:

Patrick Cheung, Senior Product Manager

***** END OF REPORT *****

FCC Part 22H/24E Page 31 of 31