Конспект по теории графов VI семестр, 2022 год Современное программирование, факультет Математики и Компьютерных наук, СПбГУ (лекции Карпова Дмитрия Валерьевича)

Вячеслав Тамарин

19 февраля 2022 г.

 Лекция 1
 2

Оглавление

1	Пути и циклы		5
	1.1	Эйлеров путь и цикл	5
	1.2	Гамильтонов путь и цикл	6

Исходный код на https://github.com/tamarinvs19/theory_university

Глава 1

Пути и циклы

Лекция 1: 15 feb

Bce материалы можно найти на сайте https://logic.pdmi.ras.ru/~dvk/MKN/graph_th.

 \underline{note} . В этом разделе возможны кратные ребра.

1.1 Эйлеров путь и цикл

 $\underline{\mathbf{def}}$. Эйлеров путь в графе G — путь, проходящий по каждому ребру ровно один раз.

Эйлеров цикл в графе G — цикл, проходящий по каждому ребру ровно один раз.

Граф G — эйлеров, если в нем есть эйлеров цикл.

 $\underline{\operatorname{thm}}.$ Связный граф G — эйлеров, согда степени всех вершин G четны.

cor. Связный граф G имеет эйлеров путь, согда в нем либо нет вершин c нечетной степенью, либо их ровно две.

1.2 Гамильтонов путь и цикл

 $\underline{\mathbf{def}}$. Гамильтонов путь — простой путь, проходящий по каждой вершине графа.

Гамильтонов цикл — простой цикл, проходящий по каждой вершине графа.

Гамильтонов граф — граф, в котором есть гамильтонов цикл.

lm. Пусть n > 2, $a_1 \dots a_n$ — максимальный путь (по ребрам) в графе G, причем $d_G(a_1) + d_G(a_n) \geqslant n$. Тогда в графе есть цикл длины n.

 $N_G(v)$ — все вершины достижимые из вершины v в графе G.

 $d_G(v)$ — степень вершины v в графе G.

proof. Разберем несколько случаев:

- \bullet Если a_1 и a_n смежны, то $a_1a_2\ldots a_n$ искомый цикл.
- Иначе $N_G(a_1), N_G(a_n) \subset \{a_2, \dots a_{n-1}\}$, так как удлинить путь нельзя.

Если есть вершина a_k смежная с a_n и вершина a_{k+1} смежная с a_1 , то в графе есть цикл из n вершин

$$a_k$$
 a_{k-1}
 a_n

$$a_1a_2\ldots a_ka_na_{n-1}\ldots a_{k+1}.$$

Пусть $N_G(a_n) = \{a_{i_1}, \dots, a_{i_l}\}.$

Если хотя бы одна из вершин $a_{i_1+1}, \ldots, a_{i_l+1}$ лежит в $N_G(a_1)$, то, согласно утверждению выше, в графе есть цикл длины n.

Иначе $d_G(a_1) \leq n - 1 - d_G(a_n)$, а это противоречит условию.

$$d_G(u) + d_G(v) \geqslant v(G) - 1,$$

то в графе G есть гамильтонов путь.

2. Если v(G) > 2 и для любых двух несмежных вершин $u, v \in V(G)$ выполняется

$$d_G(u) + d_G(v) \geqslant v(G),$$

то в графе G есть гамильтонов цикл.

proof.

- 1. Докажем первое утверждение
 - Для двух вершин все очевидно. Далее предположим, что v(G) > 2.
 - Рассмотрим две вершины a и b и предположим, что они несмежные. По условию $d_G(a)+d_G(b)\geqslant v(G)-1$, поэтому $N_G(a)\cap N_G(b)\neq\varnothing$, следовательно, a и b связаны. Тогда граф G связен.
 - Теперь найдем наибольший простой путь $a_1 \dots a_n$ в графе G. Так как вершин больше двух, и граф связен, $n \ge 3$. Предположим, что это не гамильтонов путь, то есть $n \le v(G) 1$.

$$d_G(a_1) + d_G(a_n) \geqslant v(G) - 1 \geqslant n$$
.

- Так как граф связен, существует не вошедшая в этот цикл вершина, смежная с хотя бы одной из вершин цикла. Тогда из нее и цикла можно получить путь длиной n+1, противоречие.
- 2. По первому пункту уже есть гамильтонов путь, обозначим его за $a_1 \dots a_n$, где n = v(G).

Если a_1 и a_n смежны, то мы нашли гамильтонов цикл. Иначе

$$d_G(a_1) + d_G(a_n) \geqslant v(G) = n.$$

А тогда по лемме 1.2 в графе есть гамильтонов цикл.