Problem 4. Let $f: X \to Y$ be a continuous injective function with X compact and Y Hausdorff. Prove that X and f(X) are homeomorphic.

.

Proof. Since f is injective we have that f is a bijection between X and f(X). Thus, we just need to show that f^{-1} is continuous. So, let $U \in X$ be open and then consider $f(U) \in Y$. Since f is injective, any $x \in U$ is mapped to a unique point $f(x) = y \in f(X)$. Since Y Hausdorff, we have that there exist disjoint neighborhoods about y and any $p \in f(X) \setminus f(U)$. Note that X compact and f continuous implies that f(X) is also compact. Let $N_p(y)$ be an open set containing y such that it is disjoint from the open set $V_p \in f(X) \setminus f(U)$ containing the point p. Note then that this collection $\{V_p\}_{p \in f(X) \setminus f(U)}$ with the subspace topology (meaning each $V_p = O_p \cap f(X) \setminus f(U)$ for some O_p open in X) is a cover of $f(X) \setminus f(U)$ and has a finite subcover given by the collection $\{V_{p_i}\}_{i=1,\dots,n}$ since f(X) is compact. Finally we have that $\bigcap_{i=1}^n N_{p_i}$ is an open set containing y in f(U) disjoint from $f(X) \setminus f(U)$ and this implies that f(U) is open in f(X). Thus, X and f(X) are homeomorphic.