Foundations

Time series data: y_1, \ldots, y_T observed from random variables $\{Y_t\}$. In- $\det t$ typically records evenly spaced time. Goals: describe dynamics, diagnose structure, forecast Y_{T+h} , quantify forecast uncertainty. Random variables need not be independent; dependence structure guides how much information additional observations provide.

Notation. $\mu_t = \mathbb{E}(Y_t)$ (mean function), $\gamma_{t,s} = \text{Cov}(Y_t, Y_s), \ \rho_{t,s} = \mathbb{E}(Y_t)$ $\gamma_{t,s}/\sqrt{\gamma_{t,t}\gamma_{s,s}}, \ \sigma_t^2 = \gamma_{t,t}$. White noise (WN) $\{\varepsilon_t\}$: mean 0, variance σ_{ε}^2 , uncorrelated across lags.

Second-Order Structure

Core formulas.

$$\mathbb{E}(aU + bV) = a \,\mathbb{E}(U) + b \,\mathbb{E}(V),$$
$$|\rho_{t,s}| \le 1, \quad \rho_{t,t} = 1,$$
$$\operatorname{Cov}\left(\sum_{i=1}^{m} c_i Y_i, \sum_{j=1}^{n} d_j Y_j\right) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_i d_j \,\gamma_{i,j}.$$

$$\operatorname{Var}\left(\sum_{i=1}^{m} c_{i} Y_{i}\right) = \sum_{i=1}^{m} c_{i}^{2} \gamma_{i,i} + 2 \sum_{i=2}^{m} \sum_{j=1}^{i-1} c_{i} c_{j} \gamma_{i,j}.$$

Representative processes.

- WN: $Y_t = \varepsilon_t$, so $\mu_t = 0$, $\gamma_{t,s} = \sigma_{\varepsilon}^2 \mathbf{1}\{t = s\}$, $\rho_{t,s} = \mathbf{1}\{t = s\}$.
- Moving average MA(1): $Y_t = \varepsilon_t + a \varepsilon_{t-1}$ gives $\gamma_0 = (1 + a^2)\sigma_{\varepsilon}^2$, $\gamma_1 = a \sigma_{\varepsilon}^2$, $\gamma_k = 0$ for |k| > 1, so $\rho_1 = a/(1 + a^2)$. Random walk: $Y_t = \sum_{j=1}^t \varepsilon_j$ has $\mu_t = 0$, $\gamma_{t,s} = \sigma_{\varepsilon}^2 \min\{t,s\}$, $\rho_{t,s} = \sigma_{\varepsilon}^2 \min\{t,s\}$
- $\min\{t,s\}/\sqrt{ts}$ (nonstationary).

Stationarity

Definitions.

- Strict stationarity: joint distribution of $(Y_{t_1}, \ldots, Y_{t_k})$ equals that of $(Y_{t_1+h},\ldots,Y_{t_k+h})$ for all integers h.
- Weak (second-order) stationarity: $\mu_t = \mu$ for all t and $\gamma_{t,t+h} = \gamma_h$ depends only on lag h. Toeplitz covariance matrix: Γ_T has γ_0 on the diagonal, γ_1 on first off-diagonals, etc.

Strict \Rightarrow weak when $Var(Y_t) < \infty$; for Gaussian series, weak \Rightarrow strict.

Stationary covariance. If $\gamma_h = \text{Cov}(Y_t, Y_{t+h})$, then $\rho_h = \gamma_h/\gamma_0$. For stationary Gaussian processes, γ_h fully determines the joint distribution.

Estimating the Mean and Trends

Sample mean. $Y = T^{-1} \sum_{t=1}^{T} Y_t$ estimates a constant mean μ . Vari-

$$Var(\bar{Y}) = \frac{1}{T^2} \sum_{i=1}^{T} \sum_{j=1}^{T} \gamma_{i,j} = \frac{\gamma_0}{T} \left(1 + 2 \sum_{h=1}^{T-1} \left(1 - \frac{h}{T} \right) \rho_h \right).$$

White noise: $SE(\bar{Y}) = \sigma_{\varepsilon}/\sqrt{T}$. MA(1): replace $\rho_1 = a/(1+a^2)$ in expression above. Random walk: $Var(\bar{Y}) = \sigma_{\varepsilon}^2(2T+1)T + 1/6T$ grows with T.

Trend structures.

- Constant: $\mu_t = \mu$.
- Periodic (seasonality S): $\mu_{t+S} = \mu_t$.
- Linear: $\mu_t = \beta_0 + \beta_1 t$.
- Polynomial/cosine terms extend to quadratic or harmonic regressors.

OLS estimation. Fit $Y_t = \beta_0 + \beta_1 t + X_t$ by minimizing $\sum_{t=1}^{T} (y_t - y_t)$ $(\beta_0 - \beta_1 t)^2$. Closed forms:

$$\hat{\beta}_1 = \frac{\sum_{t=1}^{T} (t - \bar{t}) y_t}{\sum_{t=1}^{T} (t - \bar{t})^2}, \qquad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{t}, \quad \bar{t} = \frac{T+1}{2}.$$

Linear model representation: $Y = D\beta + e$, where D collects regressors (e.g., seasonal indicators). Residuals $\hat{X}_t = y_t - \hat{\mu}_t$ should behave approximately stationary; assess via plots, autocorrelation, and normality diagnostics.

Sample Autocorrelation

For weakly stationary data with sample mean \overline{Y} ,

$$\hat{\gamma}_k = \frac{1}{T} \sum_{t=1}^{T-k} (y_t - \bar{Y})(y_{t+k} - \bar{Y}), \qquad \hat{\rho}_k = \frac{\hat{\gamma}_k}{\hat{\gamma}_0}.$$

In practice the 1/T factor is often replaced by 1/(T-k), but emphasis is on the shape of $\hat{\rho}_k$. The acf function in R implements these estimates.

Linear Time Series Models

General linear process. $Y_t = \mu + \sum_{i=0}^{\infty} \psi_i \varepsilon_{t-i}$ with $\sum_{i=0}^{\infty} \psi_i^2 < \infty$ ensures $\gamma_h = \sigma_{\varepsilon}^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+h}$.

MA(q).

$$Y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q},$$

with $\gamma_h = 0$ for |h| > q and $\gamma_h = \sigma_{\varepsilon}^2 \sum_{j=0}^{q-h} \theta_{j+h} \theta_j$ for $0 \le h \le q$ (set $\theta_0 = 1$). Identified by a finite autocorrelation tail.

 $\overline{AR(1)}$.

$$Y_t - \mu = \phi(Y_{t-1} - \mu) + \varepsilon_t, \qquad |\phi| < 1$$

 $Y_t - \mu = \phi(Y_{t-1} - \mu) + \varepsilon_t, \qquad |\phi| < 1.$ Equivalent infinite MA: $Y_t = \mu + \sum_{j=0}^{\infty} \phi^j \varepsilon_{t-j}$. Variance $\gamma_0 = \sigma_{\varepsilon}^2 / (1 - \mu)$ ϕ^2), autocorrelation $\rho_h = \phi^{|h|}$.

 $\overline{\mathbf{AR}(p)}$. Backshift operator B gives $\phi(B)Y_t = \varepsilon_t$ with $\phi(B) = 1$ $\phi_1 B - \cdots - \phi_p B^p$. Stationarity requires all roots of $\phi(z) = 0$ satisfy |z| > 1 (equivalently $|\phi| < 1$ in AR(1)). Variance and covariance solve Yule-Walker equations.

ARMA Models and Invertibility

 $\overline{\mathbf{ARMA}(p,q)}$.

$$\phi(B)Y_t = \theta(B)\varepsilon_t, \quad \theta(B) = 1 + \theta_1B + \dots + \theta_qB^q.$$

Require stationarity (roots of ϕ outside unit circle) and invertibility (roots of θ outside unit circle) for identification and to express Y_t as both an infinite MA and an infinite AR. Noninvertible MA parameters can yield identical autocovariances (e.g., a vs. 1/a); choose invertible form to ensure uniqueness.

Invertibility via backshift. If $\theta(B)$ is invertible, then $(1 + \theta_1 B + \theta_1 B)$ $\cdots + \theta_q B^q)^{-1}$ expands as a convergent power series, leading to $Y_t = \sum_{i=1}^{n} \theta_q B^q$ $\sum_{j=1}^{\infty} \pi_j Y_{t-j} + \varepsilon_t$ with coefficients decaying geometrically.

Yule-Walker Relations

For stationary AR(p) with innovations variance σ_{ε}^2 and autocorrelations

$$\rho_k = \sum_{i=1}^p \phi_j \rho_{k-j}, \qquad k \ge 1.$$

The first p equations involve both positive and negative lags $(\rho_{-h} = \rho_h)$ and form a linear system in ϕ_1, \ldots, ϕ_p . For k > p, recursion supplies

 ρ_k . Once ρ_h are known, $\gamma_h = \gamma_0 \rho_h$ with $\gamma_0 = \sigma_\varepsilon^2 / \left(1 - \sum_{j=1}^p \phi_j \rho_j\right)$. **Backshift calculus.** $BY_t = Y_{t-1}, B^k Y_t = Y_{t-k}$. Operators satisfy $(I - \phi B)^{-1} = \sum_{j=0}^{\infty} \phi^j B^j$ when $|\phi| < 1$; similarly for higher-order polynomials after factoring into linear terms.