

Microeletrônica: Introdução ao Projeto Físico de Portas Lógicas

Rafael Schivittz, Roberto Almeida, Giane Ulloa, Fábio Silva Cristina Meinhardt, Paulo F. Butzen

Organização do Curso

- Aula 1 Álgebra booleana → Tabela Verdade
 → Rede de chaves.
 - Introdução ao NGSPICE → Fontes DC e PWL
- Aula 2 Transistores → Lógica Complementar
 » (Pull-up/Pull-down)
- Aula 3 Construção das portas lógicas complementares
 » INV, NAND2, NOR2, AOI
- Aulas 4, 5 e 6
 - Atrasos, Dimensionamento, Sub-circuitos.

Organização do Curso

- Aula 1 Álgebra booleana → Tabela Verdade
 → Rede de chaves.
 - Introdução ao NGSPICE → Fontes DC e PWL
- Aula 2 Transistores → Lógica Complementar
 » (Pull-up/Pull-down)
- Aula 3 Construção das portas lógicas complementares
 » INV, NAND2, NOR2, AOI
- Aulas 4, 5 e 6
 - Atrasos, Dimensionamento, Sub-circuitos.

Lógica booleana com Chaves

Lógica com Chaves

Lógica booleana com chaves

$$A = 0, B = 0 -> F = 0$$

$$A = 1, B = 0 -> F = 0$$

$$A = 0, B = 1 -> F = 0$$

$$A = 1, B = 1 -> F = 1$$

Lógica booleana com chaves

$$A = 0, B = 0 -> F = 0$$

$$A = 1, B = 0 -> F = 1$$

$$A = 0, B = 1 -> F = 1$$

$$A = 1, B = 1 -> F = 1$$

Chaves Complementares

Chave ativa com 0:

$$A = 0$$
, $B = 0 \rightarrow F = 1$

$$A = 0$$
, $B = 0 \rightarrow F = 1$

$$A = 0$$
, $B = 1 \rightarrow F = 0$

$$A = 0$$
, $B = 0 \rightarrow F = 1$

$$A = 0$$
, $B = 1 \rightarrow F = 0$

$$A = 1$$
, $B = 0 \rightarrow F = 0$

$$A = 0$$
, $B = 0 \rightarrow F = 1$

$$A = 0$$
, $B = 1 \rightarrow F = 0$

$$A = 1$$
, $B = 0 \rightarrow F = 0$

$$A = 1$$
, $B = 1 \rightarrow F = 0$

$$A = 0$$
, $B = 0 \rightarrow F = 1$

$$A = 0$$
, $B = 1 \rightarrow F = 0$

$$A = 1$$
, $B = 0 \rightarrow F = 0$

$$A = 1$$
, $B = 1 \rightarrow F = 0$

$$F = (\overline{A+B})$$

$$A = 0$$
, $B = 0 \rightarrow F = 1$

$$A = 0$$
, $B = 0 \rightarrow F = 1$

$$A = 0$$
, $B = 1 \rightarrow F = 1$

$$A = 0$$
, $B = 0 \rightarrow F = 1$

$$A = 0$$
, $B = 1 \rightarrow F = 1$

$$A = 1$$
, $B = 0 \rightarrow F = 1$

$$A = 0$$
, $B = 0 \rightarrow F = 1$

$$A = 0$$
, $B = 1 \rightarrow F = 1$

$$A = 1$$
, $B = 0 \rightarrow F = 1$

$$A = 1$$
, $B = 1 \rightarrow F = 0$

$$A = 0$$
, $B = 0 \rightarrow F = 1$

$$A = 0$$
, $B = 1 \rightarrow F = 1$

$$A = 1$$
, $B = 0 \rightarrow F = 1$

$$A = 1$$
, $B = 1 \rightarrow F = 0$

Transistores

- O que são transistores? Simplificando: são chaves. Dada uma entrada lógica (0 ou 1) permite a passagem de elétrons ou os impede.
- Podem ser utilizados para gerar circuitos físicos que implementam uma lógica digital.

Transistores NMOS

O Transistor NMOS

Funcionamento Simplificado: "uma chave eletrônica ideal"

Transistor NMOS - tecnologia

[International Technology Roadmap for Semiconductors, 2011]

Como trabalhar com transistors tão pequenos?

- Simuladores elétricos
 - NGSPICE
 - Download: http://ngspice.sourceforge.net/
- Modelos Preditivos: Reune características físicas dos componentes para uma determinada tecnologia.
 - Download: http://ptm.asu.edu/modelcard/HP/32nm_HP.pm

Como simular

- Colocar o modelo preditivo na mesma pasta do executável do NGSPICE;
- 2. Gerar o circuito em um arquivo texto simples .cir ou .txt;
- 3. No NGSPICE usar os comandos
 - > source <nome_do_seu_arquivo>.txt
 - > run
- 4. Para verificar a tensão em um nodo:
 - > plot nodo

Simulando um transistor NMOS

*Simulação transiente

.tran 0.01ns 5ns

.end

Fontes PWL da Simulação NMOS

Vfonte fonte gnd PWL (0ns 1 1ns 1...)

* Sempre colocar o tempo seguido de sua unidade, nesse caso *ns. Ex: Ons, 1ns*

Simulando um transistor NMOS

* Simulação NMOS .include 32nm HP.pm

* Fontes

Vfonte fonte gnd PWL (0ns 1 1ns 1 1.01ns 0 3ns 0 3.01ns 1 5ns 1)

Vcont cont gnd PWL (0ns 1 2ns 1 2.01ns 0 4ns 0 4.01ns 1 5ns 1)

*Transistor

MNnmos fonte controle saida gnd NMOS w=100n L=32n

*Simulação transiente

.tran 0.01ns 5ns

.end

Plot saída

Transistores PMOS

O Transistor PMOS

Funcionamento Simplificado: "uma chave eletrônica ideal"

Simulando um transistor PMOS

*Simulação transiente

.tran 0.01ns 5ns

.end

Fontes PWL da Simulação PMOS

Simulando um transistor PMOS

* Simulação PMOS .include 32nm HP.pm

* Fontes

Vvdd vdd gnd 1

Vfonte fonte gnd PWL (Ons 0 1ns 0 1.01ns 1 3ns 1 3.01ns 0 5ns 0)

Vcont cont gnd PWL (Ons 0 2ns 0 2.01ns 1 4ns 1 4.01ns 0 5ns 0)

*Transistor

MPpmos fonte controle saida vdd PMOS w=200n L=32n

*Simulação transiente

.tran 0.01ns 5ns

.end

Redes complementares

Redes Complementares

- NMOS:
 - Tem dificuldade para passar o valor 1
- PMOS:
 - Tem dificuldade para passar o valor 0

Solução?

Redes Complementares

- NMOS:
 - Tem dificuldade para passar o valor 1
- PMOS:
 - Tem dificuldade para passar o valor 0

Solução? Usar o que cada uma oferece de melhor.

Fámilia lógica CMOS

- Lógica Complementar (Saída negada)
- Rede pull-up: parte do circuito responsável por colocar a saída em 1 lógico
- Rede pull-down: parte do circuito responsável por colocar a saída em 0 lógico

Fámilia lógica CMOS

