Answers to Some Questions in Exercises

UNIT 1

```
1.11
         106.57 u
1.13
         143.1 pm
1.15
         8.97~g~cm^{-3}
1.16
         Ni^{2+} = 96\% and Ni^{3+} = 4\%
1.24
         (i) 354 pm
                             (ii) 2.26\times10^{22} unit cells
1.25
         6.02 × 1018 cation vacancies mol-1
                                                          UNIT 2
2.4
         16.23 M
                                                                 2.5
                                                                          0.617 m, 0.01 and 0.99, 0.67
2.6
         157.8 mL
                                                                 2.7
                                                                           1.5 \times 10^{-3} %, 1.25 \times 10^{-4} m
2.8
         17.95 m and 9.10 M
                                                                 2.9
2.15
         40.907 g mol-1
                                                                 2.16
                                                                          73.58 kPa
         12.08 kPa
2.17
                                                                 2.18
                                                                           10 g
         23 g mol<sup>-1</sup>, 3.53 kPa
2.19
                                                                 2.20
                                                                          269.07 K
2.21
         A = 25.58 u \text{ and } B = 42.64 u
                                                                 2.22
                                                                          0.061 M
2.24
         KCl, CH2OH, CH2CN, Cyclohexane
2.25
         Toluene, chloroform; Phenol, Pentanol;
         Formic acid, ethylelne glycol
2.26
                                                                 2.27
                                                                          2.45x10^{-8} M
         5 m
2.28
         1.424%
                                                                 2.29
                                                                          3.2 g of water
2.30
         4.575 g
                                                                 2.32
                                                                          0.65^{0}
2.33
         i = 1.0753, K_a = 3.07 \times 10^{-3}
                                                                 2.34
                                                                          17.44 mm Hg
         178×10<sup>-5</sup>
                                                                          280.7 torr, 32 torr
2.35
                                                                 2.36
         0.6 and 0.4
                                                                 2.39
                                                                          x(O_2) 4.6x10^{-5}, x(N_2) 9.22 \times 10^{-5}
2.38
                                                                          5.27x10<sup>-3</sup> atm.
2.40
         0.03 mol of CaCl<sub>o</sub>
                                                                 2.41
                                                          UNIT 3
3.4 (i) E^{\odot} = 0.34 \text{V}, \Delta_{c} G^{\odot} = -196.86 \text{ kJ mol}^{-1}, K = 3.124 \times 10^{34}
     (ii) E^{\odot} = 0.03 \text{V}, \Delta_r G^{\odot} = -2.895 \text{ kJ mol}^{-1}, K = 3.2
     (i) 2.68 V, (ii) 0.53 V, (iii) 0.08 V, (iv) -1.298 V
3.5
          1.56 V
3.6
          124.0 S cm<sup>2</sup> mol<sup>-1</sup>
3.8
          0.219~\rm{cm}^{-1}
3.9
3.11
          1.85 \times 10^{-5}
3.12
          3F, 2F, 5F
3.13
          1F, 4.44F
3.14
          2F, 1F
```

3.15

3.16

1.8258g

14.40 min, Copper 0.427g, Zinc 0.437 g

281 Answers...

UNIT 4

```
4.2 (i) 8.0 \times 10^{-9} \text{ mol } L^{-1} \text{ s}^{-1}; 3.89 \times 10^{-9} \text{ mol } L^{-1} \text{ s}^{-1}
```

4.4 bar^{-1/2}s⁻¹

4.6 (i) 4 times

times (ii) ¼ times

4.8 (i) $4.67 \times 10^{-3} \text{ mol } L^{-1} \text{s}^{-1}$

(ii) $1.98 \times 10^{-2} \text{ s}^{-1}$

4.9 (i) rate = $k[A][B]^2$

(ii) 9 times

4.10 Orders with respect to A is 1.5 and order with respect to B is zero.

4.11 rate law = $k[A][B]^2$; rate constant = 6.0 $M^{-2}min^{-1}$

4.13 (i) 3.47×10^{-3} seconds

(ii) 0.35 minutes (iii) 0.173 years

4.14 1845 years

4.16 4.6×10^{-2} s

4.17 0.7814 μg and 0.227 μg.

4.19 77.7 minutes

4.20 $2.20 \times 10^{-3} \text{ s}^{-1}$

4.21 $2.23 \times 10^{-3} \text{ s}^{-1}$, $7.8 \times 10^{-4} \text{ atm s}^{-1}$

4.23 $3.9 \times 10^{12} \text{ s}^{-1}$

4.24 0.135 M

4.25 0.158 M

4.26 232.79 kJ mol⁻¹

4.27 239.339 kJ mol⁻¹

4.28 24°C

4.29 $E_a = 76.750 \text{ kJ mol}^{-1}, \quad k = 0.9965 \times 10^{-2} \text{ s}^{-1}$

4.30 52.8 kJ mol⁻¹

UNIT 6

- **6.1** Zinc is highly reactive metal, it may not be possible to replace it from a solution of ZnSO₄ so easily.
- **6.2** It prevents one of the components from forming the froth by complexation.
- **6.3** The Gibbs energies of formation of most sulphides are greater than that for CS_2 . In fact, CS_2 is an endothermic compound. Hence it is common practice to roast sulphide ores to corresponding oxides prior to reduction.
- **6.5** CO
- 6.6 Selenium, tellurium, silver, gold are the metals present in anode mud. This is because these are less reactive than copper.
- 6.9 Silica removes Fe₂O₃ remaining in the matte by forming silicate, FeSiO₃.
- 6.15 Cast iron is made from pig iron by melting pig iron with scrap iron and coke. It has slightly lower carbon content (* 3%) than pig iron (* 4% C)
- **6.17** To remove basic impurities, like Fe_2O_3
- **6.18** To lower the melting point of the mixture.
- **6.20** The reduction may require very high temperature if CO is used as a reducing agent in this case.

6.21 Yes,
$$2Al + \frac{3}{2}O_2 \rightarrow Al_2O_3$$
 $\Delta_r G^{\ominus} = -827 \text{ kJ mol}^{-1}$

$$2\mathrm{Cr} + \frac{3}{2}\mathrm{O}_2 \rightarrow \mathrm{Cr}_2\mathrm{O}_3 \qquad \Delta_r\mathrm{G}^\ominus \ = -540 \ \mathrm{kJ} \ \mathrm{mol}^{-1}$$

Hence
$$Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr - 827 - (-540) = -287 \text{ kJ mol}^{-1}$$

- **6.22** Carbon is better reducing agent.
- **6.25** Graphite rods act as anode and get burnt away as CO and CO₂ during the process of electrolysis.
- 6.28 Above 1600K Al can reduce MgO.

UNIT 7

- **7.10** Because of inability of nitrogen to expand its covalency beyond 4.
- **7.20** Freons
- **7.22** It dissolves in rain water and produces acid rain.
- **7.23** Due to strong tendency to accept electrons, halogens act as strong oxidising agent.
- **7.24** Due to high electronegativity and small size, it cannot act as central atom in higher oxoacids.
- 7.25 Nitrogen has smaller size than chlorine. Smaller size favours hydrogen bonding.
- 7.30 Synthesis of O_2PtF_6 inspired Bartlett to prepare $XePtF_6$ as Xe and oxygen have nearly same ionisation enthalpies.
- **7.31** (i) +3 (ii) +3 (iii) -3 (iv) +5 (v) +5
- **7.34** ClF. Yes.
- **7.36** (i) $I_2 < F_2 < Br_2 < Cl_2$
 - (ii) HF < HCl < HBr < HI
 - (iii) $BiH_3 \le SbH_3 < AsH_3 < PH_3 < NH_3$
- **7.37** (ii) NeF₂
- **7.38** (i) XeF₄
 - (ii) XeF₂
 - (iii) XeO₃

UNIT 8

- 8.2 It is because Mn^{2+} has $3d^5$ configuration which has extra stability
- **8.5** Stable oxidation states.
 - $3d^3$ (Vanadium): (+2), +3, +4, and +5
 - 3d⁵ (Chromium): +3, +4, +6
 - 3d⁵ (Manganese): +2, +4, +6, +7
 - $3d^8$ (Nickel): +2, +3 (in complexes)
 - $3d^4$ There is no d^4 configuration in the ground state.
- 8.6 Vanadate VO_3^- , chromate CrO_4^{2-} , permanganate MnO_4^-
- **8.10** +3 is the common oxidation state of the lanthanoids
 - In addition to +3, oxidation states +2 and +4 are also exhibited by some of the lanthanoids.
- **8.13** In transition elements the oxidation states vary from +1 to any highest oxidation state by one For example, for manganese it may vary as +2, +3, +4, +5, +6, +7. In the nontransition elements the variation is selective, always differing by 2, e.g. +2, +4, or +3, +5 or +4, +6 etc.
- **8.18** Except Sc^{3+} , all others will be coloured in aqueous solution because of incompletely filled 3d-orbitals, will give rise to d-d transitions.
- **8.21** (i) Cr^{2+} is reducing as it involves change from d^4 to d^3 , the latter is more stable configuration (t_{2g}^3) Mn(III) to Mn(II) is from $3d^4$ to $3d^5$ again $3d^5$ is an extra stable configuration.
 - (ii) Due to CFSE, which more than compensates the $3^{\rm rd}$ IE.
 - (iii) The hydration or lattice energy more than compensates the ionisation enthalpy involved in removing electron from d^1 .
- **8.23** Copper, because with +1 oxidation state an extra stable configuration, $3d^{10}$ results.
- **8.24** Unpaired electrons $Mn^{3+} = 4$, $Cr^{3+} = 3$, $V^{3+} = 2$, $Ti^{3+} = 1$. Most stable Cr^{3+}
- **8.28** Second part 59, 95, 102.
- **8.30** Lawrencium, 103, +3

283 Answers...

```
8.36 Ti<sup>2+</sup> = 2, V<sup>2+</sup> = 3, Cr<sup>3+</sup> = 3, Mn<sup>2+</sup> = 5, Fe<sup>2+</sup> = 6, Fe<sup>3+</sup> = 5, CO<sup>2+</sup> = 7, Ni<sup>2+</sup> = 8, Cu<sup>2+</sup> = 9

8.38 M\sqrt{n(n+2)} = 2.2, n \approx 1, d^2 \text{ sp}^3, CN<sup>-</sup> strong ligand
```

= 5.3, n
$$\approx$$
 4, sp³, d^2 , H₂O weak ligand

= 5.9, $n \approx 5$, sp^3 , Cl^- weak ligand.

UNIT 9

9.5 (i) +3 (ii) +3 (iii) +2 (iv) +3 (v) +3

 $\textbf{9.6} \qquad \text{(i)} \ [Zn(OH)_4]^{2-} \qquad \text{(ii)} \ \ K_2[PdCl_4] \qquad \text{(iii)} \ \ [Pt(NH_3)_2Cl_2] \qquad \text{(iv)} \ \ K_2[Ni(CN)_4]$

(ix) $[CuBr_4]^{2-}$ (x) $[Co(NH_3)_5(NO_2)]^{2+}$

9.9 (i) $[Cr(C_2O_4)_3]^{3^n}$ Nil

(ii) $[Co(NH_3)_3Cl_3]$ - Two (fac- and mer-)

9.12 Three (two *cis* and one *trans*)

9.13 Aqueous $CuSO_4$ solution exists as $[Cu(H_2O)_4]SO_4$ which has blue colour due to $[Cu(H_2O)_4]^{2+}$ ions.

(i) When KF is added, the weak $\rm H_2O$ ligands are replaced by $\rm F$ ligands, forming $\rm [CuF_4]^{2^n}$ ions which is a green precipitate.

 $[{\rm Cu(H_{2}O)_{4}}]^{2+} \ + \ 4{\rm F^{-}} \quad \rightarrow \ [{\rm CuF_{4}}]^{2-} \ + \ 4{\rm H_{2}O}$

(ii) When KCl is added, Cl ligands replace the weak $\rm H_2O$ ligands forming $\rm [CuCl_4]^{2-}$ ions which has bright green colour.

 $[\mathrm{Cu}(\mathrm{H_2O})_4]^{2^+} + 4\mathrm{Cl}^- \ \rightarrow \ [\mathrm{CuCl_4}]^{2^-} + 4\mathrm{H_2O}$

9.14 $[Cu(H_2O)_a]^{2+} + 4 CN^- \rightarrow [Cu(CN)_a]^{2-} + 4H_2O$

As CN is a strong ligand, it forms a highly stable complex with Cu^{2+} ion. On passing H_2S , free Cu^{2+} ions are not available to form the precipitate of CuS.

9.23 (i) OS = +3, CN = 6, d-orbital occupation is $t_{2g}^{6} e_{g}^{0}$,

(ii) OS = +3, CN = 6, $d^3 (t_{2g}^{-3})$,

(iii) OS = +2, CN = 4, d^7 (t_{2g}^{5} e_{g}^{2}),

(iv) OS = +2, CN = 6, $d^5 (t_{2g}^{-3} e_g^2)$.

9.28 (iii)

9.29 (ii)

9.30 (iii)

9.31 (iii)

9.32 (i) The order of the ligand in the spectrochemical series :

 $H_{2}O < NH_{3} < NO_{2}$

Hence the energy of the observed light will be in the order:

 $[{\rm Ni(H_2O)_6}]^{2^+} < [{\rm Ni(NH_3)_6}]^{2^+} < [{\rm Ni(NO_2)_6}]^{4-}$

Thus, wavelengths absorbed (E = hc/λ) will be in the opposite order.

INDEX

Terms	Page No.	Terms	Page No.
Absorption	124	Collision frequency	117
Actinoid contraction	238	Collision theory of chemical reactions	117
Actinoids	215, 238	Column chromatography	166
Activated complex	114	Concentration of ores	158, 154
Activators	134	Concentration of solutions	36
Activation energy	114	Conductivity	75, 80
Adsorption	124	Conductors	26
Adsorption isotherm	127	Coordination compounds	244
Allotropic forms	180, 192	Coordination entity	247, 249
Ambidentate ligand	247	Coordination isomerism	251
Amorphous solids	2	Coordination number	14
Anisotropic	3	Coordination polyhedron	241
Anomalous behaviour of oxyg		Coordination theory	244
Antiferromagnetism	30	Copper matte	156, 161
Aqua regia	204	Corrosion	91
Arrhenius equation	113, 115	Cryoscopic constant	53
Atomic radii	171, 186, 198, 209	Crystal defects	24
Average rate	97	Crystal field splitting	257, 258
Avogadro constant	22	Crystal field theory	257
Azeotrope	48, 49	Crystal lattice	9
Batteries	88	Crystalline solids	2, 3, 4
Binary solutions	35, 43, 46	Dalton's law	2, 0, 1
Biochemical catalysis	133	Daniell cell	66
Black phosphorus	181	Denticity	247
Blast furnace	159, 160, 161	Dependence of rate on concentration	100
Blister copper	162	Depressants	154
Body-centred unit	9, 13	Dialyser	140
Bohr magneton	29, 228	Dialysis	140
Bonding in metal carbonyls	261	Diamagnetism	30, 227
Bravais lattices	10	Didentate	247
Bredig's arc	139	Diode	29
Brown ring test	180	Dislocation defect	25
Brownian movement	142	Dispersed phase	136, 137
Calcination	155, 159	Dispersed phase Dispersion medium	136, 137
Cast iron	160, 161	Dissociation constant	263
Catalyst	116, 130	Distillation	164
	110, 130	Ebullioscopic constant	51
Cell potential Chelate		_	76
Chemical kinetics	247	Electrical conductance	
	95 125	Electro dialysis	140
Chemisorption	125 252	Electrochemical cells	66 65
Chiral		Electrochemistry	
Chromatographic methods	165	_	3, 224, 227
Cis - isomer	252	Electrolytes	81
Classification of colloids	136	Electrolytic cell	85 164
Close-packed structures	14	Electrolytic refining	164
Coagulation	144	Electromotive force	68
Colligative properties	49, 58	Electron hole	28
		2	85 Index

Terms	Page No.	Terms	Page No.
Electron vacancy	28	Inhibitors	134
-	172, 187, 199	Inner transition metals	234
Electronic configuration	216	Instability constant	263
Electronic defect	28	Instantaneous rate of a reaction	98, 99
Electroosmosis	144	Insulators	27
Ellingham diagram	157, 158	Inter molecular forces	2
Emulsions	137, 145	Interstitial compounds	230
Enantiomers	252	Interstitial defect	25
End-centred unit	9	Intrinsic semiconductors	27
Enthalpy	126	Ionic conductance	77
Enzyme catalysis	133, 134	Ionic radii	171, 186, 198
Equilibrium constant	73	Ionic solids	5
f block elements	234	Ionisation enthalpy 171	, 187, 198, 209
Face centred unit	9, 13	Ionisation isomerism	253
Facial isomer	252	Isolation of elements	149
Faraday's law	85	Isomerism	251
Ferrimagnetism	30	Isotonic solution	56
Ferromagnetism	30, 228	Kinetic energy	115
First order reaction	106, 111	Kohlrausch law	83, 84
Froth floatation	154	Kraft temperature	138
Fractional distillation	174	Lanthanide contraction	219
Frenkel defect	24, 25	Lanthanoids	215
Frequency factor	113	Le Chateliers principle	40, 43
Freundlich isotherm	127	Leaching	154
Fuel cells	90	Lewis acids	247
Galvanic cell	66, 67, 90	Ligand field theory	254
Gangue	153	Ligands	247
Gels	137	Line defects	24
Geometric isomerism	251	Linkage isomerism	253
Giant molecules	5	Liquation	164
Gibbs energy	67, 74, 117	Long range order	2
Haber's process	131	Lyophilic colloids	137
Half-life	110	Lyophobic colloids	137
Hall heroult process	163	Magnetic separation	153
Halogens	197	Meridional isomer	252
Henry's law	41	Metal carbonyls	261
Heterogeneous catalysis	130	Metal excess defect	26
Heteroleptic complex	248	Metallic solids	5
Holme's signals	182	Metallurgy	153, 156
Homogeneous catalysis	130	Micelles	138
Homoleptic complex	248	Minerals	152
Hybridisation	255	Mischmetall	237
Hydrate isomerism	254	Molal elevation constant	51
Hydration enthalpy	224	Molality	39
Hydraulic washing	153	Molar conductivity	81
Hydro metallurgy	163	Molarity	38, 55
Hydrogen bonded molecular solids	5	Mole fraction	37, 50
Ideal solution	47	Molecularity of a reaction	103
	**		100

Chemistry 286

Monoclinic sulphur 192 Secondary battery	
	89
Mononuclear coordination compounds 249 Secondary valence	244, 245
Nernst equation 72, 73 Semi conductors	27
Noble gases 208 Semipermeable membrane	55
Non-ideal solution 47 Shape-selective catalysis	132
Non-polar molecular solids 4 Short range order	2
Octahedral voids 17, 19 Smoke screens	182
Optical isomerism 252 Solid state	2
Order of a reaction 102 Sols	137
Ores 152 Solubility	39
Osmotic pressure 54 Solvate isomerism	254
Ostwald's process 131 Stereo isomerism	254
Oxidation number 248 Stoichiometric defect	24
Oxidation state 199 Strong field ligands	258
Oxides of nitrogen 177 Structural isomerism	251
Oxoacids of halogens 205 Super cooled liquids	3
Oxoacids of phosphorus 184, 185 Surface chemistry	123
Oxoacids of sulphur 194 Temperature dependence of rate	113
Ozone 191 Tetrahedral permanganate	226
Packing efficiency 20 Tetrahedral voids	16, 18
Paper chromatography 166 Thermodynamics	156
Paramagnetism 29, 227 Trans isomer	251
p-block elements 170 Transition metals	215
Peptization 140 Tyndall cone	141
Physisorption 125 Tyndall effect	141
Pig iron 161 Ultrafiltration	140
Point defects 24 Unidentate	247
Polar molecular solids 5 Unit cells	7, 9
Polydentate 247 Units of rate constant	103
Primary battery 88 Units of rate of a reaction	97
Primary valence 244 Vacancy defect	25
Pseudo first order reaction 112 Valence bond theory	254, 257
Pseudo solids 3 Van arkel method	165
Purification of metal 153 Vapour phase refining	165
Pyrometallurgy 162 Vapour pressure	43, 46
Raoult's law 43, 46 Voltaic cell	66
Rate law 100, 101 Weak field ligands	254
Reaction rate constant 101 Werner's theory	244
Redox couples 67 Wheatstone bridge	75, 78
Red phosphorus 181 White phosphorus	181
Reverberatory furnace 156 Wrought iron	161, 167
Reverse osmosis 57 Zeolites	132, 133
Reverse osmosis 57 Zeolites Rhombic sulphur 192 Zero order Reaction	105, 111
	105, 111 143

