非定常摂動量子系の時間発展は,

$$\begin{cases} |\psi(t)\rangle_{\mathrm{I}} = \sum_{n} c_{n}(t) |n\rangle \\ \forall \mathrm{i} \ \hbar \frac{\mathrm{d}}{\mathrm{d}t} c_{m}(t) = \sum_{n} V_{mn}(t) \mathrm{e}^{i\omega_{mn}t} c_{n}(t) \end{cases}$$
(0.0.1)

で表されるのであった.一般に式 (0.0.1) を解くことはできないので,近似解を得ることを考える. $\hat{V}(t) \to \lambda \hat{V}(t)$ として $c_m(t)$ をべき級数展開すると,

$$c_m(t) = c_m^{(0)}(t) + \lambda c_m^{(1)}(t) + \lambda^2 c_m^{(2)}(t) + \cdots$$
(0.0.2)

となる. 式 (0.0.2) を式 (0.0.1) の第2式に代入すると,

$$\forall m \ i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \left(c_m^{(0)}(t) + \lambda c_m^{(1)}(t) + \lambda^2 c_m^{(2)}(t) + \cdots \right) = \sum_n \lambda V_{mn}(t) \mathrm{e}^{i\omega_{mn}t} \left(c_m^{(0)}(t) + \lambda c_m^{(1)}(t) + \lambda^2 c_m^{(2)}(t) + \cdots \right)$$
(0.0.3)

となるから,

$$\begin{cases} \lambda^0 : \quad \forall m \ \mathrm{i}\hbar \frac{\mathrm{d}}{\mathrm{d}t} c_m^{(0)}(t) = 0 \\ \lambda^1 : \quad \forall m \ \mathrm{i}\hbar \frac{\mathrm{d}}{\mathrm{d}t} c_m^{(1)}(t) = \sum_n V_{mn}(t) \mathrm{e}^{\mathrm{i}\omega_{mn}t} c_n^{(0)}(t) \end{cases}$$

$$(0.0.4)$$

式 (0.0.4) の λ^0 の項の結果より,

$$\forall m \ c_m^{(0)}(t) = \text{const.} \tag{0.0.5}$$

である.

 $t=t_0$ から摂動 $\hat{V}(t)$ を加え始めたときを考える. $t=t_0$ で系の量子状態が |i
angle であったとする.このとき,

$$c_m^{(0)}(t_0) = \delta_m^i \tag{0.0.6}$$

である. 式 (0.0.5) より、0 次の係数 $c_m(t)$ は時間変化しないので、

$$c_m^{(0)}(t) = \delta_m^i (0.0.7)$$

となる.この系の状態は初期状態 $|i\rangle$ に依ることがわかったので,これからは $c_m(t) \to c_{m,i}(t)$, $c_m^{(0)}(t) \to c_{m,i}^{(0)}(t)$, $c_m^{(1)}(t) \to c_{m,i}^{(1)}(t)$ のように書き替える.式 (0.0.4) の係数より,

$$i\hbar \frac{d}{dt} c_{m,i}^{(1)}(t) = \sum_{n} V_{mn}(t) e^{i\omega_{mn}t} c_{n,i}^{(0)}(t)$$
(0.0.8)

$$=V_{m,i}(t)e^{i\omega_{mi}t} \tag{0.0.9}$$

$$\Rightarrow c_{m,i}^{(1)}(t) = -\frac{i}{\hbar} \int_{t_0}^t V_{m,i}(t) e^{i\omega_{mi}t} dt$$
 (0.0.10)

となり, $c_{m,i}^{(1)}(t)$ が求まった.また,系の量子状態を λ^1 の項までで近似すると,

$$|\psi(t)\rangle_{\mathrm{I}} = \sum_{n} c_{n,i}(t) |n\rangle$$
 (0.0.11)

$$\simeq \sum_{n} \left(c_{n,i}^{(0)}(t) + c_{n,i}^{(1)}(t) \right) |n\rangle \tag{0.0.12}$$

$$=|i\rangle + \sum c_{n,i}^{(1)}(t)|n\rangle$$
 (0.0.13)

$$=\left|i\right\rangle+c_{i,i}^{(1)}(t)\left|i\right\rangle+\sum_{n\neq i}c_{n,i}^{(1)}(t)\left|n\right\rangle$$

と表される。なお今後のために, $c_{n,i}^{(1)}$ で n=i と $n\neq i$ に分けた。まとめると, $|\psi(t_0)\rangle_{\rm I}=|i\rangle$ の時間発展は以下のように書ける.

 $-|\psi(t_0)\rangle_{\mathrm{I}}=|i\rangle$ の時間発展

$$\begin{cases} |\psi(t)\rangle_{\rm I} &= \left(1 + c_{i,i}^{(1)}(t)\right)|i\rangle + \sum_{n \neq i} c_{n,i}^{(1)}(t)|n\rangle \\ c_{n,i}^{(1)}(t) &= -\frac{\mathrm{i}}{\hbar} \int_{t_0}^t V_{n,i} \mathrm{e}^{i\omega_{ni}t} \,\mathrm{d}t \end{cases}$$
(0.0.15)

また、始状態 $|i\rangle$ から終状態 $|f\rangle$ $(f \neq i)$ への遷移確率は、

$$|\langle f|\psi(t)\rangle_{\rm I}|^2 = \left| \left(1 + c_{i,i}^{(1)}(t) \right) \langle f|i\rangle + \sum_{n \neq i} c_{n,i}^{(1)}(t) \langle f|n\rangle \right|^2$$

$$= \left| c_{f,i}^{(1)}(t) \right|^2$$
(0.0.16)

である.

さて,このようにして得られた $|\psi\rangle_{\rm I}$ の時間発展について,次節では \hat{V} が一定のときを,次々節では \hat{V} が余弦関数で書けるときを議論する.

