Métodos Numéricos Taller 1: Image Denoising

9 de septiembre de 2015

Integrante	LU	Correo electrónico
Martin Baigorria	575/14	martinbaigorria@gmail.com
Federico Beuter	827/13	federicobeuter@gmail.com
Mauro Cherubini	835/13	cheru.mf@gmail.com
Rodrigo Kapobel	695/12	$rok_35@live.com.ar$

Reservado para la cátedra

Instancia	Docente	Nota
Primera entrega		
Segunda entrega		

${\rm \acute{I}ndice}$

1.	Condiciones para garantizar que una matriz tiene factorización LU	3
	1.0.1. Factorización LU	3
	1.0.2. Matriz Simétrica Definida Positiva	3
	1.0.3. Condiciones para garantizar que una matriz tiene factorización LU	3
2.	¿Es cierto que si una matriz es inversible entonces tiene factorizacion LU?. Y si tengo una matriz	
	que tiene factorizacion LU, ¿entonces es no singular? Demostrar o dar un contraejemplo.	3
	2.1. ¿Es cierto que si una matriz es inversible entonces tiene factorizacion LU?	3
	2.2. Una matriz que tiene factorizacion LU es no singular?	4
3.	Verdadero o Falso	4
	3.1. AA^t es una matriz simétrica	4
	3.2. Si A es no singular, entonces A^tA es SDP	
4.	Implementacion	5
	4.1. CheckCondLU.m	5
	4.2. CheckFromLU.m	
	4.3. CholFromBlocks.m	

1. Condiciones para garantizar que una matriz tiene factorización LU

1.0.1. Factorización LU

Dada una matriz A cuadrada de dimension $n \times n$, la factorización LU busca expresar la matriz A como producto de una matriz triangular inferior L (con unos en su diagonal) y una matriz triangular superior U. Es decir, buscamos L y U tal que A = LU.

1.0.2. Matriz Simétrica Definida Positiva

Definición Una matriz A de dimension $n \times n$ se dice simétrica definida positiva (sdp) si es simétrica y a su vez definida positiva.

Definición Una matriz se dice simétrica cuando $A = A^t$.

Definición Una matriz se dice definida positiva cuando $\forall x \in \mathbb{R}^n / x \neq 0, x^t A^t A x > 0.$

1.0.3. Condiciones para garantizar que una matriz tiene factorización LU

Las siguientes condiciones garantizan que una matriz A tenga factorización LU.

Proposición 1.1 A tiene todas sus submatrices principales NO singulares \iff A tiene factorización LU.

Proposición 1.2 A tiene todos sus menores distintos de cero \iff A tiene factorización LU.

Proposición 1.3 A es una matriz estrictamente diagonal dominante \implies A tiene factorización LU.

2. ¿Es cierto que si una matriz es inversible entonces tiene factorizacion LU?. Y si tengo una matriz que tiene factorizacion LU, ¿entonces es no singular? Demostrar o dar un contraejemplo.

2.1. ¿Es cierto que si una matriz es inversible entonces tiene factorizacion LU?

No, que A sea una matriz inversible es condición necesaria pero no suficiente. Lo que si vale es: A tiene todas sus submatrices principales NO singulares \iff A tiene factorización LU.

Como contra ejemplo al caso anterior tenemos:

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Que es inversible, pero su submatriz principal de 2x2 conformada integramente de unos, no lo es. Notemos que tras aplicar la primer iteración del algoritmo de Eliminación Gaussiana, habrá un 0 en la diagonal y un 1 por debajo en su misma columna, obligando a permutar la segunda y tercer fila. Por lo que para obtener la matriz LU, habrá que componer a A por una matriz de permutación, lo que nos deja una fatorización PLU.

2.2. Una matriz que tiene factorizacion LU es no singular?

Una matriz que tiene factorizacion LU no necesariamente es no singular. Consideremos el siguiente contraejemplo:

$$\underbrace{\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}}_{0} = \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}_{I} \times \underbrace{\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}}_{II}$$

La matriz nula no es inversible dado que det(0) = 0.

3. Verdadero o Falso

Sea $A \in \mathbb{R}^{n \times n}$, estudiemos las siguientes proposiciones:

3.1. AA^t es una matriz simétrica

Una matriz es simétrica si $A = A^t$ o lo que es lo mismo $A_{i,j} = A_{j,i} \ \forall j, i \in [1..n]$, pues se tiene que $A_{i,j}^t = A_{j,i}$.

$$(AA^t)_{i,j} = \sum_{k=1}^n A_{i,k} \times A_{k,j}^t = \sum_{k=1}^n A_{i,k} \times A_{j,k} = \sum_{k=1}^n A_{k,i}^t \times A_{j,k} = \sum_{k=1}^n A_{j,k} \times A_{k,i}^t = (AA^t)_{j,i}$$
 (1)

3.2. Si A es no singular, entonces A^tA es SDP

Una matriz es simétrica si y sólo si su traspuesta es simétrica. Por el inciso anterior AA^t es simétrica, lo que ocurre si y sólo si $(AA^t)^t = A^tA$ es simétrica.

La matriz A^tA es definida positiva si y sólo si satisface que $\forall x \in \mathbb{R}^n/x \neq 0, x^tA^tAx > 0$.

Dado x como antes, llamemos z := Ax. Para lo siguiente notemos que como A es **no** singular y $x \neq 0$ se tiene que $z \neq 0$.

Ahora como $\langle z, z \rangle = \sum_{i=1}^{n} z_i \times z_i = \sum_{i=1}^{n} (z_i)^2 \ge 0$ ya que $z \in \mathbb{R}^n$, se tiene que $\langle z, z \rangle = 0 \Leftrightarrow z = 0$; y como además sabemos que $z \ne 0$ entonces $\langle z, z \rangle > 0$.

Luego $0 \ll z, z \gg z^t z = (Ax)^t Ax = x^t A^t Ax$, lo que implica que $A^t A$ es definida positiva.

4. Implementation

4.1. CheckCondLU.m

Si todos los menores principales de una matriz son no singulares, entonces la matriz tiene factorizacion LU. Si todos los menores principales de una matriz tienen determinante positivo si y solo si la matriz tiene factorizacion de Cholesky.

4.2. CheckFromLU.m

Para verificar si la factorizacion de Cholesky es efectivamente valida, podemos computar nuevamente la matriz haciendo LL' y luego comparando elemento a elemento con la matriz A. Sin embargo, debemos recordar que estamos trabajando bajo aritmética finita, por lo que debemos tener algun tipo de tolerancia al error.

4.3. CholFromBlocks.m

Utilizando bloques, encontramos las siguientes expresiones para computar, a partir de la factorizacion de Cholesky de A_n y la matriz A_{n+1} , la factorizacion de Cholesky de la matriz A_{n+1} .

$$A_n = L_n L_n' \tag{2}$$

$$f_{n+1} = l_{n+1}L'_n \implies l_{n+1} = f_{n+1}L'_{n-1}$$
 (3)

Aqui la inversa de l'_n existe dado que todos los menores principales son no singulares. $det(A) = det(LL') = det(L) \times det(L') > 0$.

$$a_{n+1,n+1} = l_{n+1}l'_{n+1} + l^2_{n+1,n+1}$$

$$\tag{4}$$

$$l_{n+1,n+1} = \sqrt{a_{n+1,n+1} - l_{n+1}l'_{n+1}} \tag{5}$$