Digital Electronic Circuits Section 1 (EE, IE)

Lecture 8

Simplest SOP and POS: An Example

A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$Y = F(A,B,C)$$

= $\sum m(2,4,5,6,7)$

$$Y = A + B.C'$$

$$Y = (A + B).(A + C')$$

Here, realization of POS is costlier.

Cost Criteria

- **Literal Cost:** The number of times a literal appears in complemented or uncomplemented form (*L*).
- **Gate Input Cost:** The number of inputs to the gates in the implementation. It may not count NOT gates (*G*) or it may include NOT gate count (*GN*).

If the number of terms excluding single variable term is *T*, and the number of distinct inversions is *N*, then

$$G = L + T$$

$$GN = L + T + N$$

POS: 6 Gate inputs: G = 6

Cost Criteria: Examples

Implementation	L	Т	N	G	GN
Y = A.B + B.C + C.A	6	3	0	9	9
Y = (A+B).(B+C).(C+A)	6	3	0	9	9
Y = A.B.C + A'.B'.C'	6	2	3	8	11
Y = (A'+B).(B'+C).(C'+A)	6	3	3	9	12
Y = A.B + B'.C.D + A'.B'.D + B.C'.D	11	4	3	15	18
Y = (A+C').(A+D).(B'+C'+D).(B+C+D')	10	4	3	14	17

Considered: 2-Level implementation, no restriction in fan-in or kind of logic gates to be used (as in K-Map, QM simplification)

Implementation using only 2-input NAND gate: An Example

$$Y = A.B + C.D.E = ((A.B)'.(C.D.E)')' = ((A.B)'.((C.D)')'.E)')'$$

Total Cost (TC)
= No. of gate i/p
+ No. of gates

Cost: 5 Units (10 Gate inputs)

Common P.I.

01

10

0

 $\mathcal{B}C$

00

$$F_1 = B'.C + A.B$$

Individual implementation

$$G = 6 \times 2 = 12$$

 $TC = 12 + 3 \times 2 = 18$

$$F_2 = B'.C + A'.B$$

Common term need to be generated

$$F_1 = \sum m(0,1,3)$$

= $A'.B' + A'.C$

Individual implementation
$$G = 6 + 8 = 14$$
 $TC = 14 + 3 + 3 = 20$

$$F_1 = A'.B' + A'.B.C$$

 $F_2 = A'.B.C + A.B.C'$

$$F_2 = \sum m(3,6)$$

= A'.B.C + A.B.C'

Combined
$$G = 7 + 5 = 12$$
 $TC = 12 + 3 + 2 = 17$

F_1	=	Σ	m	(0,	,1,	3)
	=	A	'.B'	+	A	.C

Individual implementation G = 6 + 2 = 8TC = 8 + 3 + 1 = 12

$$F_2 = \sum m(3,7)$$

= B.C

Common term part of individual bigger group

$$F_1 = A'.B' + A'.B.C$$
 $F_2 = A'.B.C + A.B.C$
 $G = 7 + 5 = 12$
 $TC = 12 + 3 + 2$
 $= 17$

Individual: Less cost

Common term part of bigger group in which other members already covered

$$F_1 = B.C' + B.D + A'.B'.C$$

 $F_2 = B.D' + B.C + A.B'.D$

Combined Minimization

$$F_1 = B.C' + B.C.D + A'.B'.C$$

 $F_2 = B.D' + B.C.D + A.B'.D$

Individual
$$G = 10 + 10 = 20$$
 $TC = 20 + 4 + 4 = 28$

Combined
$$G = 11 + 8 = 19$$
 $TC = 19 + 4 + 3 = 26$

Any 3rd option?

$$F_1 = B.D + A'.B'.C$$

 $F_2 = B.C + A.B'.D$

$$G = 7 + 7 = 14$$

 $TC = 14 + 3 + 3 = 20$

Use of Don't Care

$$F_1 = B.C'.D' + B.C.D + A'.B'.C$$

 $F_2 = B.C'.D' + B.C.D + A.B'.D$

$$G = 12 + 6 = 18$$

 $TC = 18 + 4 + 2 = 24$

Individual G = 20, TC = 28

References:

☐ Donald P. Leach, Albert P. Malvino, and Goutam Saha, Digital Principles &

Applications 8e, McGraw Hill