Министерство образования и науки Российской Федерации Национальный исследовательский университет "Московский институт электронной техники" Институт микроприборов и систем управления им. Л. Н. Преснухина

Индивидуальное домашнее задание

По дисциплине "Интерфейсы вычислительных систем" Этап №2. Выбор электронной компонентной базы Вариант 1,6

Выполнил:

Студент группы ИВТ-32

Голев Андрей Дмитриевич

Рисунок 1. Структурная схема устройства машины на радиоуправлении

Предварительно составив структурную схему устройства машины на радиоуправлении, проведём отбор элементной базы.

1) Микроконтроллер

Согласно заданию, необходимо использовать микроконтроллер из серии **ESP32**.

ESP32 – серия недорогих микросхем с малым энергопотреблением китайской компании.

Будем искать какую-либо модель МК на отечественном рынке электронных товаров "ЧИП и ДИП". Отсортировав по стоимости (учитывая финансовые возможности среднего студента), я сделал выбор в пользу **ESP32-WROOM-32U** [4MB]

(https://www.chipdip.ru/product/esp32-wroom-32u-4mb).

Рисунок 2. ESP32-WROOM-32U

Данный микроконтроллер, согласно спецификации (https://static.chipdip.ru/lib/789/DOC015789371.pdf), содержит в себе АЦП для обработки радиосигналов, встроенный Wi-Fi-модуль и разъём для подключения внешней антенны, что пригодится для усиления сигнала, поступающего от пульта управления на МК. Также он поддерживает интерфейсы SPI, GPIO, JTAG и способен выдавать ШИМ-сигналы.

2) JTAG-разъём

Для программирования и отладки МК будем использовать интерфейс JTAG, для чего необходим соответствующий разъём. В качестве него подойдёт MTP125-1105S1 (https://www.chipdip.ru/product1/8003450148)

Рисунок 3. Разъем MTP125-1105S1

Спецификация: https://static.chipdip.ru/lib/789/DOC015789371.pdf

3) Коллекторный двигатель

Колёса машинки будут крутить коллекторные двигатели в количестве 4-х штук в двух направлениях с различной скоростью.

Для этого можно использовать электродвигатели QX-FC-260-12250 (https://www.chipdip.ru/product/qx-fc-260-12250?)

Рисунок 4. Электродвигатель QX-FC-260-12250

Спецификация: https://static.chipdip.ru/lib/069/DOC000069076.pdf

4) Драйвер двигателя

Чтобы МК мог управлять двигателями, необходим драйвер.

Каждой паре двигателей по драйверу, так нам подойдёт 2-х канальный драйвер L6205N (https://www.chipdip.ru/product/16205n), который содержит в себе два H-моста для регуляции направления работы 2-х двигателей (для чего и будем подавать ШИМ-сигнал). Подавая данный сигнал на один из двух входов, можно регулировать направление поворота двигателей.

Рисунок 5. L6205N в корпусе PowerDIP20

Спецификация: https://static.chipdip.ru/lib/563/DOC012563972.pdf

5) Сервопривод

Сервопривод необходим для поворота оси, соединяющей передние колёса машины.

Возьмём MTR-SERVO-FS90 (https://www.chipdip.ru/product/mtr-servo-fs90)

Рисунок 6. MTR-SERVO-FS90

Спецификация: https://static.chipdip.ru/lib/269/DOC006269872.pdf

6) Микрофон

К микроконтроллеру подключим МЭМС-микрофон со встроенным АЦП и SPI-интерфейсом PmodMIC3 (https://www.chipdip.ru/product/410-312-microphone-expansion-module). Это позволит прикрепить микрофон к корпусу машинки для лучшего восприятия звука. К основной плате подключать через проводки к штырям.

Рисунок 7. PmodMIC3

Спецификация: https://static.chipdip.ru/lib/735/DOC011735865.pdf

7) MX-RM-5V

Рисунок 8. Беспроводной приемник на 433 МГц

Теперь необходимо рассчитать источник питания. Занесём в таблицу напряжения и токи потребления, которые необходимы для потребления всех частей схемы.

	МК	MX-RM	Микрофон	Драйвер	Сервопривод
V, B	3.3	5	5	9	5
I, MA	500	4.5	70	2800	800

I. Расчёт ИИП на 5 В

Будем искать импульсный преобразователь напряжения на 5 В для MX-RM, микрофона и сервопривода.

Суммарный ток потребления составляет 874.5 мА.

Так в качестве регулятора можно взять LM22675MR-5.0 с выходным током в 1 A (https://www.chipdip.ru/product/lm22675mr-5.0-nopb-2).

Рисунок 9. LM22675MR-5.0

Спецификация:

https://static.chipdip.ru/lib/980/DOC000980754.pdf

Рисунок 10. Упрощённая схема подключения регулятора

В данном случае порт EN соединим к VIN, а порт FB сразу же к VOUT, то есть не без делителя напряжения.

Рассчитаем обвязку микросхемы, используя рекомендации из спецификации (с учётом ряда E24):

• Индуктивность:

$$L = \frac{(V_{in} - V_{out}) \cdot V_{out}}{0.3 \cdot I_{out} \cdot F_{sw} \cdot V_{in}}$$

where F_{sw} is the switching frequency and V_{in} should be taken at its maximum value

Рисунок 11. Формула расчёта индуктивности

$$L = \frac{(42 - 5) * 5}{0.3 * 0.8745 * 500000 * 42} = 33 \text{ мкГн}$$

• Конденсатор между пинами BOOT и SW:

Boot-Strap Supply

The LM22675 incorporates a floating high-side gate driver to control the power MOSFET. The supply for this driver is the external boot-strap capacitor connected between the BOOT pin and SW. A good quality 10 nF ceramic capacitor must be connected to these pins with short, wide PCB traces. One reason the regulator imposes a minimum off-time is to ensure that this capacitor recharges every switching cycle. A minimum load of about 5 mA is required to fully recharge the boot-strap capacitor in the minimum off-time. Some of this load can be provided by the output voltage divider, if used.

Таким образом, конденсатор будет иметь ёмкость 10 нФ.

• Входной конденсатор:

Согласно спецификации, для предотвращения пульсаций на входе рекомендуют ставить параллельно электролитический конденсатор на 22 мкФ и керамический на 2.2 мкФ.

• Выходной конденсатор:

Выходного электролитического конденсатора на 120 мкФ будет достаточно.

Диод:

Ha выходе необходим диод Шоттки (https://www.chipdip.ru/product/1n5817-stm).

II. Расчёт ИИП на 3.3 В

Ток потребления микроконтроллера составляет 500 мА.

Можно взять такой же регулятор LM22675MR, но с функцией подбора выходного напряжения (https://www.chipdip.ru/product/lm22675mr-adj-nopb?from=suggest_product).

Для получения 3.3 В воспользуюсь уже готовыми расчётами из спецификации.

Рисунок 12. Типичное применение регулятора

III. Расчёт источника питания

Суммарный ток потребления составляет 1374.5 мА, время автономной работы 10 минут = 1/6 часа. Ёмкость аккумулятора должна равняться $1374.5 * \frac{1}{6} = 230$ мАч

Подойдёт алкалиновая батарейка типа "Крона" с типичной ёмкостью до 1000 мАч и максимальным током разряда до 3 А (https://www.chipdip.ru/product/gp-1604a).

Рисунок 13. Батарейка типа "Крона"