2015年全国统一高考化学试卷(新课标Ⅱ)

– ,	选择题	(共7小题,	每小题6分,	满分	42分)		
1.	(6分)	食品干燥剂应	立无毒、无味	、无腐	蚀性及环境	意友好.	下列说法错误的
툿	是 ()					
A	. 硅胶	可用作食品干	燥剂				
E	3. P_2O_5	不可用作食品	干燥剂				
C	2. 六水	合氯化钙可用	作食品干燥剂	削			
Γ) . 加工	后具有吸水性	的植物纤维	可用作	食品干燥剂		
2.	(6分)	某羧酸酯的名	分子式为 C ₁₈ I	$H_{26}O_5$,	1mol 该酯的	完全水魚	解可得到 1mol 羧
酉	愛和 2m c	ol 乙醇,该羧	酸的分子式为	4 ()		
A	. C ₁₄ H	₁₈ O ₅ B.	$C_{14}H_{16}O_4$	С.	$C_{16}H_{22}O_5$	D	$C_{16}H_{20}O_5$
3.	(6分)	原子序数依次	r 增大的元素	a, b,	c、d,它们	门的最外	层电子数分别为
1	. 6. 7.	. 1. a□的电子	子层结构与氦	相同,	b和c的次	外层有	8 个电子, c□和
d	+的电子	层结构相同.	下列叙述错	误的是	()		
A	A. a 和j	其他3种元素	均能形成共作	化合物	, J		
Е	3. 元素	的非金属性次	序为 c>b>a	ı			
C	C. d 和非	其他3种元素:	均能形成离子	化合物	, U		
Γ) . 元素	a、b、c 各自	最高和最低化	化合价的	的代数和分别	别为0、	4, 6
4.	(6分)	N _A 代表阿伏	加德罗常数的	值. 下	下列叙述正确	角的是(
A	A. 60g Ī	丙醇中存在的	共价键总数为	J 10N _A			
Е	3. 1L 0.	1mol•L□1的 N	JaHCO₃溶液□	₱ HCC	O ₃ □和 CO ₃ 2□	离子数	之和为 0.1N _A
C	. 钠在:	空气中燃烧可	生成多种氧化	七物.2	23g 钠充分烷	然烧时转	
$1N_A$							
Γ). 235g	核素 92 ²³⁵ U 发	生裂变反应:	: 92 ²³⁵ U	J+ ₀ 1n 製要38 ⁹⁰	Sr+ ₅₄ ¹³⁶	Xe+10 ₀ ¹n 净产生
的中	i子(₀ ¹n)数为 10N _A					
5.	(6分)	分子式为 C5l	H ₁₀ O ₂ 且可与	碳酸氢	钠溶液反应	放出气	体的有机化合物
有	肓 ()					
Α	. 3种	В.	4 种	С.	5 种	D	. 6种

6. (6分)海水开发利用的部分过程如图所示. 下列说法错误的是()

- A. 向苦卤中通入 Cl₂是为了提取溴
- B. 粗盐可采用除杂和重结晶等过程提纯
- C. 工业生产常选用 NaOH 作为沉淀剂
- D. 富集溴一般先用空气和水蒸气吹出单质溴,再用 SO2 将其还原吸收
- 7. (6分)用图所示装置进行下列实验:将①中溶液滴入②中,预测的现象与 实际相符的是()

选项	①中物质	②中物质	预测②中的现象
А	稀盐酸	碳酸钠与氢氧化钠的混合溶液	立即产生气泡
В	浓硝酸	用砂纸打磨过的铝条	产生红棕色气体
С	氯化铝溶液	浓氢氧化钠溶液	产生大量白色沉淀
D	草酸溶液	高锰酸钾酸性溶液	溶液逐渐褪色

A. A

B. B

C. C D. D

二、解答题

8. (14分)酸性锌锰干电池是一种一次电池,外壳为金属锌,中间是碳棒, 其周围是有碳粉,二氧化锰,氯化锌和氯化铵等组成的填充物,该电池在放 电过程产生 MnOOH, 回收处理该废电池可以得到多种化工原料, 有关数据 下表所示:

溶解度/(g/100g 水)

温度/°C	0	20	40	60	80	100
化合物						
NH ₄ Cl	29.3	37.2	45.8	55.3	65.6	77.3
ZnCl ₂	343	395	452	488	541	614

化合物	Zn (OH) ₂	Fe (OH) ₂	Fe (OH) ₃
K _{sp} 近似值	10 ²¹⁷	10 ²¹⁷	10 ²³⁹

回答下列问题:
(1) 该电池的正极反应式为, 电池反应的离子方程式为:。
(2) 持续电流强度为 0.5A, 电池工作五分钟, 理论消耗锌g. (已经
F=96500C/mol)
(3) 废电池糊状填充物加水处理后,过滤,滤液中主要有 $ZnCl_2$ 和 NH_4Cl ,两
者可以通过分离回收,滤渣的主要成分是 MnO ₂ 、
和, 欲从中得到较纯的 MnO ₂ , 最简便的方法是, 其原理
是。
(4) 用废电池的锌皮制作 ZnSO ₄ •7H ₂ O 的过程中, 需除去铁皮中的少量杂质
铁,其方法是:加入稀 H_2SO_4 和 H_2O_2 ,溶解,铁变为加碱调节 pH
为时,铁刚好沉淀完全(离子浓度小于 1×10 ^{□5} mol•L ^{□1} 时,即可认
为该离子沉淀完全)。继续加碱调节 pH 为时,锌开始沉淀(假定
Zn^{2+} 浓度为 $0.1mol \cdot L^{\Box 1}$)。若上述过程不加 H_2O_2 的后果是,原因
是。
9. (14分) 甲醇既是重要的化工原料,又可作为燃料。利用合成气(主要成
分为 CO 、 CO_2 和 H_2)在催化剂的作用下合成甲醇,发生的主要反应如下:
①CO $(g) + 2H_2 (g) \rightleftharpoons CH_3OH (g) \triangle H_1$
$\textcircled{2}CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g) \triangle H_2$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
回答下列问题:

化学键	H2H	C?O	C≡O	H2O	C2H
E/	436	343	1076	465	413
(kJ. mol ^{⊡1}					
)					

(1) 已知反应①中的相关的化学键键能数据如下:

由此计算 \triangle H₁=____kJ. mol $^{\Box 1}$,已知 \triangle H₂= \Box 58kJ. mol $^{\Box 1}$,则 \triangle H₃=____kJ. mol $^{\Box 1}$

- (3) 合成气的组成 n(H₂)/n(CO+CO₂)=2.60 时体系中的 CO 平衡转化率 (a) 与温度和压强的关系如图 2 所示。a(CO)值随温度升高而______ (填"增大"或"减小"),其原因是_____。图 2 中的压强由大到小为 ,其判断理由是

- 10. (15 分) 二氧化氯(ClO₂, 黄绿色易溶于水的气体) 是高效、低毒的消毒剂, 回答下列问题:
- (1) 工业上可用 $KClO_3$ 与 Na_2SO_3 在 H_2SO_4 存在下制得 ClO_2 ,该反应氧化剂 与还原剂物质的量之比为_____.
- (2) 实验室用 NH_4Cl 、盐酸、 $NaClO_2$ (亚氯酸钠)为原料,通过以下过程制 备 ClO_2 :

- ①电解时发生反应的化学方程式为 .
- ②溶液 X 中大量存在的阴离子有 . .
- ③除去 ClO_2 中的 NH_3 可选用的试剂是_____(填标号) a. 水 b. 碱石灰
 - c. 浓硫酸 d. 饱和食盐水
 - (3) 用如图装置可以测定混合气中 ClO₂ 的含量:
- I. 在锥形瓶中加入足量的碘化钾,用 50mL 水溶解后,再加入 3mL 稀硫酸:
- II. 在玻璃液封装置中加入水. 使液面没过玻璃液封管的管口;
- III. 将一定量的混合气体通入锥形瓶中吸收;
- IV. 将玻璃液封装置中的水倒入锥形瓶中:
- V. 用 0.1000mol•L^{□1}硫代硫酸钠标准溶液滴定锥形瓶中的溶液(I_2 +2 S_2 O₃²□— 2I□+ S_4 O₆²□),指示剂显示终点时共用去 20.00mL 硫代硫酸钠溶液.在此过程中:
- ①锥形瓶内 ClO。与碘化钾反应的离子方程式为
- ②玻璃液封装置的作用是
- ③V 中加入的指示剂通常为_____,滴定至终点的现象是_____
- ④测得混合气中 ClO_2 的质量为______g.
- (4) 用 ClO₂处理过的饮用水会含有一定最的亚氯酸盐. 若要除去超标的亚氯酸盐,下列物质最适宜的是_____(填标号)a. 明矾 b. 碘化钾 c. 盐酸 d. 硫酸亚铁.

三、化学——选修 2: 化学与技术。(满分 15 分)

11. (15分) 苯酚和丙酮都是重要的化工原料,工业上可用异丙苯氧化法生产 苯酚和丙酮,其反应和工艺流程示意图如图:

相关化合物的物理常数

物质	相对分子质量	密度(g/cm [®] 3)	沸点/℃
异丙苯	120	0.8640	153
丙酮	58	0.7898	56.5
苯酚	94	1.0722	182

回答下列问题:

- (1) 在反应器 A 中通入的 X 是____。
- (2) 反应①和②分别在装置 和 中进行(填装置符号)。
- (3) 在分解釜 C 中加入的 Y 为少置浓硫酸,其作用是_____,优点是用量少,缺点是____。
- (4) 反应②为_____(填"放热"或"吸热") 反应。反应温度控制在 50□60°C,温度过高的安全隐患是____。

(5)中和釜 D 中加入的 Z 最适宜的是(填编号。已知苯酚是一种弱
酸)。
a. NaOHb. CaCO ₃ c. NaHCO ₃ d. CaO
(6)蒸馏塔 F 中的馏出物 T 和 P 分别为和,判断的依据
是。
(7) 用该方法合成苯酚和丙酮的优点是。
四、化学-选修 3: 物质结构与性质。 (满分 15 分)
12. (15 分) A、B、C、D 为原子序数依次增大的四种元素, A ^{2□} 和 B ⁺ 具有相
同的电子构型; C、D为同周期元素, C核外电子总数是最外层电子数的3
倍; D元素最外层有一个未成对电子. 回答下列问题:
(1)四种元素中电负性最大的是(填元素符号),其中 C 原子的核外
电子排布式为
(2) 单质 A 有两种同素异形体,其中沸点高的是(填分子式),原因
是, A和B的氢化物所属的晶体类型分别为和
(3) C和D反应可生成组成比为1:3的化合物E,E的立体构型为,
中心原子的杂化轨道类型为
(4) 化合物 D ₂ A的立体构型为,中心原子的价层电子对数
为, 单质 D 与湿润的 Na ₂ CO ₃ 反应可制备 D ₂ A, 其化学方程式
为
(5) A和B能够形成化合物F,其晶胞结构如图所示,晶胞边长 a=0.566nm,
F 的化学式为; 晶胞中 A 原子的配位数为; 列式计算晶体 F
的密度($g \cdot cm^{\square 3}$)(保留小数点后两位数字).

五、化学一选修 5: 有机化学基础 (满分 15 分)

13. (15分)聚戊二酸丙二醇酯 (PPG)是一种可降解的聚酯类高分子材料, 在材料的生物相容性方面有很好的应用前景. PPG的一种合成路线如下:

己知:

- ①烃 A 的相对分子质量为 70, 核磁共振氢谱显示只有一种化学环境的氢
- ②化合物 B 为单氯代烃: 化合物 C 的分子式为 C_5H_8
- ③E、F 为相对分子质量差 14 的同系物, F 是福尔马林的溶质

$$R_1$$
CHO + R_2 CH2CHO $\xrightarrow{\frac{1}{100}}$ R_1 CH - CH CHO

冋答下列问题:

- (1) A 的结构简式为 .
- (2) 由 B 生成 C 的化学方程式为 .
- (3) 由 E 和 F 生成 G 的反应类型为 , G 的化学名称为 .
- (4) ①由 D 和 H 生成 PPG 的化学方程式为:
- ②若 PPG 平均相对分子质量为 10000,则其平均聚合度约为_____(填标号).
- a. 48b. 58c. 76 d. 122
- (5) D的同分异构体中能同时满足下列条件的共有_____种(不含立体异构):
- ①能与饱和 NaHCO₃ 溶液反应产生气体②既能发生银镜反应,又能发生水解反应
- 其中核磁共振氢谱显示为 3 组峰,且峰面积比为 6: 1: 1 的是_____(写结构 简式)
- D的所有同分异构体在下列一种表征仪器中显示的信号(或数据)完全相同,该仪器是_____(填标号).
- a. 质谱仪 b. 红外光谱仪 c. 元素分析仪 d. 核磁共振仪.

2015年全国统一高考化学试卷 (新课标II)

参考答案与试题解析

- 一、选择题(共7小题,每小题6分,满分42分)
- 1. (6分)食品干燥剂应无毒、无味、无腐蚀性及环境友好.下列说法错误的 是()
 - A. 硅胶可用作食品干燥剂
 - B. P₂O₅不可用作食品干燥剂
 - C. 六水合氯化钙可用作食品干燥剂
 - D. 加工后具有吸水性的植物纤维可用作食品干燥剂
- 【考点】KF: 常见的食品添加剂的组成、性质和作用.
- 【分析】A. 硅胶具有吸水性, 无毒;
- B. P₂O₅ 吸水转化为酸;
- C. 六水合氯化钙不能吸水;
- D. 具有吸水性的植物纤维无毒.
- 【解答】解: A. 硅胶具有吸水性, 无毒,则硅胶可用作食品干燥剂,故 A 正确:
- B. P_2O_5 吸水转化为酸,导致食品变质,则 P_2O_5 不可用作食品干燥剂,故 B 正确:
- C. 六水合氯化钙不能吸水,则不能作食品干燥剂,故 C 错误;
- D. 具有吸水性的植物纤维无毒,则可用作食品干燥剂,故 D 正确; 故选: C。
- 【点评】本题考查物质的性质及食品干燥剂,为高频考点,把握物质的性质、 化学与生活的关系为解答的关键,侧重分析与应用能力的综合考查,题目难 度中等.
- 2. (6 分) 某羧酸酯的分子式为 $C_{18}H_{26}O_5$, 1mol 该酯完全水解可得到 1mol 羧

酸和 2mol 乙醇, 该羧酸的分子式为()

- A. $C_{14}H_{18}O_5$ B. $C_{14}H_{16}O_4$ C. $C_{16}H_{22}O_5$ D. $C_{16}H_{20}O_5$

【考点】1B:真题集萃:H3:有机物实验式和分子式的确定:M8:有关有机 物分子式确定的计算.

【分析】1mol 该酯完全水解可得到 1mol 羧酸和 2mol 乙醇,则说明酯中含有 2 个酯基,结合酯的水解特点以及质量守恒定律判断。

【解答】解:某羧酸酯的分子式为 $C_{18}H_{26}O_5$,1mol 该酯完全水解可得到 1mol 羧酸和 2mol 乙醇,说明酯中含有 2 个酯基,设羧酸为 M,

则反应的方程式为 $C_{18}H_{26}O_5+2H_2O\rightarrow M+2C_2H_6O$,

由质量守恒可知 M 的分子式为 $C_{14}H_{18}O_5$,

故选: A。

【点评】本题为 2015 年高考题,考查有机物的推断,为高频考点,把握酯化反 应中碳原子个数变化、官能团的变化为推断的关系,侧重酯的性质的考查, 题目难度不大。

- 3. (6分)原子序数依次增大的元素 a、b、c、d,它们的最外层电子数分别为 1、6、7、1. a□的电子层结构与氦相同,b 和 c 的次外层有 8 个电子,c□和 d⁺的电子层结构相同. 下列叙述错误的是()
 - A. a 和其他 3 种元素均能形成共价化合物
 - B. 元素的非金属性次序为 c>b>a
 - C. d 和其他 3 种元素均能形成离子化合物
 - D. 元素 a、b、c 各自最高和最低化合价的代数和分别为 0、4、6

【考点】8F: 原子结构与元素周期律的关系.

【分析】原子序数依次增大的元素 a、b、c、d, 它们的最外层电子数分别为 $1 \times 6 \times 7 \times 1$, a^{\square} 的电子层结构与氦相同,则 a 为 H 元素; b 和 c 的次外层有 8个电子,原子只能有 3个电子层,则 b 为 S 元素, c 为 Cl, c^{\square} 和 d^{+} 的电子 层结构相同,则d为K元素.

- A. H元素与 K元素形成的化合物为 KH,属于离子化合物;
- B. 同周期自左而右非金属性增强,氢化物中H元素为正价,其非金属性最弱:
- C. K元素与其它元素可以形成 KH、K2S、KCl;
- D. H元素最高正化合价为+1、最低负化合价为 \Box 1, S元素最高正化合价为+6、最低负化合价为 \Box 2, Cl元素最高正化合价为+7、最低负化合价为 \Box 1.
- 【解答】解:原子序数依次增大的元素 a、b、c、d,它们的最外层电子数分别为 1、6、7、1,a^{\square}的电子层结构与氦相同,则 a为 H 元素;b 和 c 的次外层有 8 个电子,原子只能有 3 个电子层,则 b 为 S 元素,c 为 Cl,c^{\square}和 d⁺的电子层结构相同,则 d 为 K 元素。
- A. H 元素与 S 元素、Cl 元素放出形成 H_2S 、HCl,二者属于共价化合物,但与 K 元素形成的化合物为 KH,属于离子化合物,故 A 错误;
- B. 同周期自左而右非金属性增强,氢化物中 H 元素为正价,其非金属性最弱,故非金属性 Cl>S>H,故 B 正确;
- C. K 元素与其它元素可以形成 KH、 K_2S 、KCI,均属于离子化合物,故 C 正确:
- D. H元素最高正化合价为+1、最低负化合价为□1, S元素最高正化合价为+6、最低负化合价为□2, Cl元素最高正化合价为+7、最低负化合价为□1,最高和最低化合价的代数和分别为 0、4、6,故 D 正确,

故选: A。

- 【点评】本题考查结构性质位置关系应用,推断元素是解题关键,侧重对元素 周期律的考查,题目涉及金属氢化物是中学知识的盲点,难度不大.
- 4. (6分) N_A代表阿伏加德罗常数的值. 下列叙述正确的是()
 - A. 60g 丙醇中存在的共价键总数为 10N_A
 - B. 1L 0.1mol•L□1 的 NaHCO3 溶液中 HCO3□和 CO32□离子数之和为 0.1NA
- C. 钠在空气中燃烧可生成多种氧化物. 23g 钠充分燃烧时转移电子数为 $1N_A$
 - D. 235g 核素 92^{235} U 发生裂变反应: 92^{235} U+ 0^{1} n 製变 38^{90} Sr+ 54^{136} Xe+ 100^{1} n 净产生

【考点】1B: 真题集萃: 4F: 阿伏加德罗常数.

【专题】518: 阿伏加德罗常数和阿伏加德罗定律.

【分析】A. 丙醇中含 7 个 C□H 键、2 个 C□C 键、1 个 C□O 键和 1 个 O□H 键;

- B. HCO₃□水解生成碳酸,结合原子守恒分析;
- C. 钠发生氧化反应后, Na 元素的化合价由 0 升高为+1 价;
- D. 92^{235} U+01n 製变 38^{90} Sr+ 54^{136} Xe+1001n 净产生的中子为 $10\Box 1=9$ 个.

【解答】解: A.60g 丙醇为 1mol, 丙醇中含 7 个 C□H 键、2 个 C□C 键、1 个 $C \cup O$ 键和 1 个 $O \cup H$ 键,存在的共价键总数为 11N₄,故 A 错误;

- B.1L 0.1mol•L□1的 NaHCO3溶液中 HCO3□和 CO32□离子数之和小于 0.1NA,碳 酸分子中含 C 原子, 故 B 错误;
- C.23g 钠充分燃烧时转移电子数为 $\frac{23g}{23g/mol}$ \times $(1\Box 0)$ $\times N_A$ = $1N_A$, 故 C 正确;
- D. $_{92}^{235}$ U+ $_0$ ln 製变 $_{38}^{90}$ Sr+ $_{54}^{136}$ Xe+ 10_0 ln 净产生的中子为 10□1=9 个,则 235g 核素 \mathfrak{g}^{235} U 发生裂变反应净产生的中子 (\mathfrak{g}^{1} n) 数为 9N_A, 故 D 错误; 故选: C。

【点评】本题考查阿伏伽德罗常数及计算,为高频考点,把握物质中的化学 键、物料守恒、盐类水解、氧化还原反应中转移电子计算等为解答的关键, 侧重分析与应用能力的综合考查,综合性较强,题目难度中等.

- 5. (6 分) 分子式为 $C_5H_{10}O_2$ 且可与碳酸氢钠溶液反应放出气体的有机化合物 有()
 - A. 3种

- B. 4 种 C. 5 种 D. 6 种

【考点】H6:有机化合物的异构现象.

【专题】532:同分异构体的类型及其判定.

【分析】分子式为 C、H10O2且可与碳酸氢钠溶液反应放出气体,则该有机物中

含有□COOH,所以为戊酸,戊酸的种类等于丁基的种类,写出丁基的种类即可.

- 【解答】解:分子式为 $C_5H_{10}O_2$ 且可与碳酸氢钠溶液反应放出气体,则该有机物中含有 \Box COOH,所以为戊酸,戊酸的种类等于丁基的种类,丁基(\Box C4H₉)的异构体有: \Box CH2CH2CH2CH3, \Box CH(CH3) CH2CH3, \Box CH2CH(CH3) CH3, \Box CH2CH3, \Box CH2CH3)3,故戊酸的有机物的异构体数目为 4,故选 B。
- 【点评】本题主要考查同分异构体书写、官能团的性质与确定等,难度中等, 注意利用丁基异构判断.
- 6. (6分)海水开发利用的部分过程如图所示. 下列说法错误的是()

- A. 向苦卤中通入 Cl₂是为了提取溴
- B. 粗盐可采用除杂和重结晶等过程提纯
- C. 工业生产常选用 NaOH 作为沉淀剂
- D. 富集溴一般先用空气和水蒸气吹出单质溴,再用 SO₂将其还原吸收

【考点】1B: 真题集萃: E7: 海水资源及其综合利用.

【分析】A. 向苦卤中通入 Cl。置换出溴单质, 分离得到溴;

- B. 粗盐中含有 Ca²⁺、Mg²⁺、SO₄^{2□}等杂质,精制时应加入试剂进行除杂,过滤 后向滤液中加入盐酸至溶液呈中性,再进行重结晶进行提纯;
- C. 工业常选用生石灰或石灰水作沉淀剂;
- D. 先用空气和水蒸气吹出单质溴,再用 SO_2 将其还原吸收转化为 HBr,达到 富集的目的.

【解答】解: A. 向苦卤中通入 Cl₂ 置换出溴单质,分离得到溴,通入 Cl₂ 是为

了提取溴, 故 A 正确;

- B. 粗盐中含有 Ca²⁺、Mg²⁺、SO₄^{2□}等杂质,精制时通常在溶液中依次中加入过 量的 BaCl₂溶液、过量的 NaOH 溶液和过量的 Na₂CO₃溶液,过滤后向滤液 中加入盐酸至溶液呈中性, 再进行重结晶进行提纯, 故 B 正确:
- C. 工业常选用生石灰或石灰水作沉淀剂, 故 C 错误;
- D. 海水提取溴一般用氯气置换溴离子转化为溴单质,用空气和水蒸气吹出单 质溴,再用 SO₂将其还原吸收转化为 HBr,达到富集的目的,故 D 正确, 故选: C。

【点评】本题考查海水资源的综合利用,注意掌握中学常见的化学工业,侧重 对化学与技术的考查,难度不大.

7. (6分) 用图所示装置进行下列实验:将①中溶液滴入②中,预测的现象与 实际相符的是()

选项	①中物质	②中物质	预测②中的现象
Α	稀盐酸	碳酸钠与氢氧化钠的混合溶液	立即产生气泡
В	浓硝酸	用砂纸打磨过的铝条	产生红棕色气体
С	氯化铝溶液	浓氢氧化钠溶液	产生大量白色沉淀
D	草酸溶液	高锰酸钾酸性溶液	溶液逐渐褪色

B. B

C. C D. D

【考点】U5: 化学实验方案的评价.

【分析】A. 先发生盐酸与 NaOH 的反应;

- B. 常温下, Al 遇浓硝酸发生钝化;
- C. NaOH 过量,开始不生成沉淀:

- D. 发生氧化还原反应.
 - 【解答】解: A. 先发生盐酸与 NaOH 的反应, 然后盐酸与碳酸钠反应生成碳酸氢钠, 最后盐酸与碳酸氢钠反应生成气体, 则现象不合理, 故 A 错误;
- B. 常温下, Al 遇浓硝酸发生钝化,则不能观察到红棕色气体,现象不合理,故 B 错误;
- C. NaOH 过量,开始不生成沉淀,反应生成偏铝酸钠和氯化钠,开始无现象,故 C 错误;
- D. 草酸与高锰酸钾发生氧化还原反应,溶液褪色,现象合理,故 D 正确;故选: D。
 - 【点评】本题考查物质的性质及实验装置的综合应用,为高频考点,为 2015 年高考真题,把握物质的性质、发生的反应、反应与现象的关系为解答的关键,侧重分析与实验能力的综合考查,综合性较强,题目难度中等.

二、解答题

8. (14分)酸性锌锰干电池是一种一次电池,外壳为金属锌,中间是碳棒, 其周围是有碳粉,二氧化锰,氯化锌和氯化铵等组成的填充物,该电池在放 电过程产生 MnOOH,回收处理该废电池可以得到多种化工原料,有关数据 下表所示:

溶解度/ (g/100g 水)

	0	20	40	60	80	100
温度/℃						
化合物						
NH ₄ Cl	29.3	37.2	45.8	55.3	65.6	77.3
ZnCl ₂	343	395	452	488	541	614

化合物	Zn (OH) ₂	Fe (OH) ₂	Fe (OH) ₃
K _{sp} 近似值	10 ²¹⁷	10 ²¹⁷	10 ²³⁹

回答下列问题:

(1) 该电池的正极反应式为<u>MnO₂+H++e□=MnOOH</u>, 电池反应的离子方程 第16页(共34页)

- 式为: 2MnO₂+Zn+2H+=2MnOOH+Zn²⁺。
- (2) 持续电流强度为 0.5A, 电池工作五分钟, 理论消耗锌<u>0.05</u>g. (已经 F=96500C/mol)
- (3) 废电池糊状填充物加水处理后,过滤,滤液中主要有 ZnCl₂和 NH₄Cl,两者可以通过<u>加热浓缩</u><u>冷却结晶</u>分离回收,滤渣的主要成分是 MnO₂、<u>碳粉</u>和<u>MnOOH</u>,欲从中得到较纯的 MnO₂,最简便的方法 是<u>空气中加热</u>,其原理是<u>碳粉转变为二氧化碳,MnOOH</u>氧化为二氧化锰_。
- (4) 用废电池的锌皮制作 $ZnSO_4 7H_2O$ 的过程中,需除去铁皮中的少量杂质铁,其方法是: 加入稀 H_2SO_4 和 H_2O_2 ,溶解,铁变为<u>Fe³+</u>加碱调节 pH 为<u>2.7</u>时,铁刚好沉淀完全(离子浓度小于 $1 \times 10^{\Box 5} mol L^{\Box 1}$ 时,即可认为该离子沉淀完全)。继续加碱调节 pH 为<u>6</u>时,锌开始沉淀(假定 Zn^{2+} 浓度为 $0.1 mol L^{\Box 1}$)。若上述过程不加 H_2O_2 的后果是<u> Zn^{2+} 和 Fe²+分离不开</u>,原因是<u>Zn(OH)2、Fe(OH)2 的 Ksp 相近</u>。
- 【考点】1B: 真题集萃; BH: 原电池和电解池的工作原理; P8: 物质分离和提纯的方法和基本操作综合应用.
- 【分析】(1)该电池的正极发生还原反应, MnO_2 被还原生成 MnOOH; 负极 锌被氧化生成 Zn^{2+} ,以此书写电池总反应式;
- (2) 持续电流强度为 0.5A,电池工作五分钟,则电量为 $0.5A \times 300s = 150C$,转移电子的物质的量为 150C ,以此计算消耗锌的质量、物质的量; 96500C/mol
- (3)填充物含有碳粉、二氧化锰,且生成 MnOOH等,在空气中加热时,碳粉、MnOOH可被氧化;
- (4) 铁加入稀 H_2SO_4 和 H_2O_2 ,可被氧化生成 Fe^{3+} ,铁刚好沉淀完全时离子浓度小于 1×10^{-5} mol $^{\bullet}L^{-1}$,结合 $Ksp=10^{-39}$ 计算 pH,并根据 Ksp 计算锌开始沉淀的 pH。
- 【解答】解: (1) 该电池的正极发生还原反应, MnO₂ 被还原生成 MnOOH, 电极方程式为 MnO₂+H⁺+e□=MnOOH, 负极锌被氧化生成 Zn²⁺, 电池总反应 式为 2MnO₂+Zn+2H⁺=2MnOOH+Zn²⁺,

故答案为: MnO₂+H++e□=MnOOH; 2MnO₂+Zn+2H+=2MnOOH+Zn²⁺;

(2) 持续电流强度为 0.5A,电池工作五分钟,则电量为 $0.5A \times 300s = 150C$,转移电子的物质的量为 $\frac{150C}{96500C/mol}$,则消耗 Zn 的质量为 $\frac{150C}{96500C/mol} \times \frac{1}{2} \times 65g/mol = 0.05g$,

故答案为: 0.05;

- (3) 滤液中主要有 ZnCl₂和 NH₄Cl,可通过加热浓缩、冷却结晶得到晶体,填充物含有碳粉、二氧化锰,且生成 MnOOH等,在空气中加热时,碳粉、MnOOH可被氧化,分别生成二氧化碳和二氧化锰,故答案为: 加热浓缩; 冷却结晶; 碳粉; MnOOH; 空气中加热; 碳粉转变为二氧化碳, MnOOH 氧化为二氧化锰;
- (4) 铁加入稀 H_2SO_4 和 H_2O_2 ,可被氧化生成 Fe^{3+} ,铁刚好沉淀完全时离子浓度小于 $1\times10^{\square5}$ mol \bullet L $^{\square1}$,因 $Ksp=10^{\square39}$,

则 c (OH[□]) =
$$\sqrt[3]{\frac{10^{-39}}{1 \times 10^{-5}}}$$
 mol/L $\approx 0.5 \times 10^{-11}$ mol/L, 此时 pH=2.7,

如锌开始沉淀,则 c(OH[□])=
$$\sqrt{\frac{10^{-17}}{0.1}}$$
mol/L=10^{□8}mol/L,此时 pH=6,

- 由表中数据可知 Zn (OH) $_2$ 、Fe (OH) $_2$ 的 Ksp 相近,如不加 H_2O_2 ,则 Zn^{2+} 和 Fe^{2+} 分离不开,
- 故答案为: Fe³⁺; 2.7; 6; Zn²⁺和 Fe²⁺分离不开; Zn (OH)₂、Fe (OH)₂的 Ksp 相近。
- 【点评】本题为 2015 年新课标卷考题,考查原电池知识以及物质的分离、提纯,侧重于原电池的工作原理以及实验基本操作和注意问题,题目难度中等,有利于培养学生良好的科学素养。
- 9. (14分) 甲醇既是重要的化工原料,又可作为燃料。利用合成气(主要成分为 CO、 CO_2 和 H_2)在催化剂的作用下合成甲醇,发生的主要反应如下:
- $(1)CO (g) +2H_2 (g) \rightleftharpoons CH_3OH (g) \triangle H_1$
- \bigcirc CO₂ (g) +3H₂ (g) \rightleftharpoons CH₃OH (g) +H₂O (g) \triangle H₂
- $(3)CO_2(g) +H_2(g) \rightleftharpoons CO(g) +H_2O(g) \triangle H_3$

回答下列问题:

化学键	H②H	CPO		HIO	C2H
			c≡o		
E/	436	343	1076	465	413
(kJ. mol ^{⊡1}					

(1) 已知反应①中的相关的化学键键能数据如下:

由此计算 \triangle H₁=<u>99</u>kJ. mol^{\square 1},已知 \triangle H₂= \square 58kJ. mol^{\square 1},则 \triangle H₃=<u>+41</u>kJ. mol^{\square 1}

- (2) 反应①的化学平衡常数 K 的表达式为 $_{\frac{c(CH_3OH)}{c(CO) \times c^2(H_2)}}$ _; 图 1 中能正确反映平衡常数 K 随温度变化关系的曲线为 $_{a}$ (填曲线标记字母),其判断理由是 $_{\frac{c}{c}}$ 反应①正反应为放热反应,平衡常数随温度升高而减小 $_{\frac{c}{c}}$ 。
- (3) 合成气的组成 n(H₂)/n(CO+CO₂)=2.60 时体系中的 CO 平衡转化率 (a)与温度和压强的关系如图 2 所示。a(CO)值随温度升高而<u>减小</u>(填"增大"或"减小"),其原因是<u>反应①正反应为放热反应,升高温度,</u>平衡向逆反应方向移动,平衡体系中 CO 的量增大,反应③为吸热反应,升高温度,平衡向正反应方向移动,又使平衡体系中 CO 的增大,总结果,随温度升高,CO 的转化率减小。图 2 中的压强由大到小为_P₃>P₂>P₁_,其判断理由是<u>相同温度下,反应③前后气体分子数不变,压强改变不影响其平衡移动,反应①正反应为气体分子数减小的反应,增大压强,有利于平衡向正反应方向移动,CO 的转化率增大,故增大压强有利于 CO 的转化率升高</u>

【考点】BB:反应热和焓变; CB: 化学平衡的影响因素.

- 【分析】(1)反应热=反应物总键能□生成物总键能;根据盖斯定律:反应②□反应①=反应③,反应热也进行相应的计算;
- (2) 化学平衡常数指可逆反应得到平衡时,各生成物浓度的化学计量数次幂的 乘积除以各反应物浓度的化学计量数次幂的乘积所得的比值;
- 化学平衡常数只受温度影响,根据温度对平衡移动的影响,进而判断温度对平 衡常数影响;
- (3) 由图可知,压强一定时,随温度的升高,CO的转化率降低,根据升高温度对反应①、③的影响,进行分析CO转化率变化原因;
- 相同温度下,反应③前后气体分子数不变,压强改变不影响其平衡移动,反应 ①正反应为气体分子式减小的反应,增大压强,有利于平衡向正反应方向移 动,CO 的转化率增大。
- 【解答】解: (1) 反应热=反应物总键能□生成物总键能,故△
 H₁=1076kJ. mol□¹+2× 436kJ. mol□¹□(3× 413+343+465)
 kJ. mol□¹=□99kJ. mol□¹;
- 根据盖斯定律:反应②□反应①=反应③,故 \triangle H₃= \triangle H₂□ \triangle H₁=□58kJ. mol $^{\Box 1}$ □ (□99kJ. mol $^{\Box 1}$) =+41kJ. mol $^{\Box 1}$,

故答案为: □99; +41;

(2) 反应①CO(g) +2H₂(g) \rightleftharpoons CH₃OH(g) 的平衡常数表达式 K= $\frac{c(CH_3OH)}{c(CO)\times c^2(H_2)};$

- 反应①正反应为放热反应,升高温度,平衡向逆反应方向移动,平衡常数减小,曲线 a 正确反映平衡常数 K 随温度变化关系,
- 故答案为: $\frac{c(CH_3OH)}{c(CO) \times c^2(H_2)}$; a; 反应①正反应为放热反应,平衡常数随温度升高而减小;
- (3)由图可知,压强一定时,随温度的升高,CO的转化率减小,反应①正反应为放热反应,升高温度,平衡向逆反应方向移动,平衡体系中CO的量增大,反应③为吸热反应,升高温度,平衡向正反应方向移动,又使平衡体系中CO的增大,总结果,随温度升高,CO的转化率减小;
- 相同温度下,反应③前后气体分子数不变,压强改变不影响其平衡移动,反应 ①正反应为气体分子数减小的反应,增大压强,有利于平衡向正反应方向移 动,CO 的转化率增大,故增大压强有利于 CO 的转化率升高,故压强: P_3 $>P_2>P_1$,
- 故答案为:减小;反应①正反应为放热反应,升高温度,平衡向逆反应方向移动,平衡体系中 CO 的量增大,反应③为吸热反应,升高温度,平衡向正反应方向移动,又使平衡体系中 CO 的增大,总结果,随温度升高,CO 的转化率减小:
- P₃>P₂>P₁; 相同温度下,反应③前后气体分子数不变,压强改变不影响其平 衡移动,反应①正反应为气体分子数减小的反应,增大压强,有利于平衡向 正反应方向移动,CO 的转化率增大,故增大压强有利于 CO 的转化率升 高。
- 【点评】本题考查反应热有关计算、平衡常数及其影响因素、化学平衡的影响 因素、化学平衡图象综合应用等,侧重考查学生分析计算能力,需要学生具 备扎实的基础,难度中等。
- 10. (15 分) 二氧化氯(ClO₂, 黄绿色易溶于水的气体) 是高效、低毒的消毒剂, 回答下列问题:
- (1) 工业上可用 $KClO_3$ 与 Na_2SO_3 在 H_2SO_4 存在下制得 ClO_2 ,该反应氧化剂 与还原剂物质的量之比为 2: 1 .

(2) 实验室用 NH_4Cl 、盐酸、 $NaClO_2$ (亚氯酸钠)为原料,通过以下过程制 备 ClO_2 :

- ②溶液 X 中大量存在的阴离子有 Cl^{\square} 、 OH^{\square} .
- ③除去 CIO_2 中的 NH_3 可选用的试剂是 \underline{c} (填标号) a. 水 b. 碱石灰 c. 浓 硫酸 d. 饱和食盐水
- (3) 用如图装置可以测定混合气中 ClO₂ 的含量:
- I. 在锥形瓶中加入足量的碘化钾,用 50mL 水溶解后,再加入 3mL 稀硫酸:
- II. 在玻璃液封装置中加入水. 使液面没过玻璃液封管的管口;
- III. 将一定量的混合气体通入锥形瓶中吸收;
- IV. 将玻璃液封装置中的水倒入锥形瓶中:
- V. 用 0.1000mol•L^{□1}硫代硫酸钠标准溶液滴定锥形瓶中的溶液(I_2 +2 S_2 O₃²[□]— 2I^{□+ S_4 O₆²□),指示剂显示终点时共用去 20.00mL 硫代硫酸钠溶液.在此过程中:}
- ① 锥形瓶内 ClO₂与碘化钾反应的离子方程式为 <u>2ClO₂+10I[□]+8H⁺—</u> 2Cl[□]+5I₂+4H₂O_
- ②玻璃液封装置的作用是 吸收残留的 CIO₂ 气体(避免碘的逸出)
- ③V 中加入的指示剂通常为<u>淀粉溶液</u>,滴定至终点的现象是<u>溶液由蓝色</u> 变为无色,且半分钟内不变色
- ④测得混合气中 ClO₂ 的质量为 0.02700 g.
 - (4) 用 ClO_2 处理过的饮用水会含有一定最的亚氯酸盐.若要除去超标的亚氯酸盐,下列物质最适宜的是<u>d</u>(填标号) a. 明矾 b. 碘化钾 c. 盐酸 d. 硫酸亚铁.

【考点】RD: 探究物质的组成或测量物质的含量; U3: 制备实验方案的设计.

【专题】18:实验分析题.

- 【分析】 (1) KClO₃在 H₂SO₄存在下与 Na₂SO₃反应,SO₃^{2□}被氧化成 SO₄^{2□},由 电 子 、 电 荷 守 恒 可 知 该 离 子 反 应 为 2ClO₃□+SO₃^{2□}+2H⁺— 2ClO₂+SO₄^{2□}+H₂O;
- (2)由生产流程可知氯化铵在盐酸溶液中进行电解,阴极生成氢气,阳极生成NCl₃,电解方程式为NH₄Cl+2HCl—<u>电解</u>NCl₃+3H₂↑,在NCl₃溶液中加入NaClO₂,可生成ClO₂、NH₃和X,X中含Cl[□]、OH[□];由信息可知,ClO₂易溶于水,所以不能利用水溶液吸收,氨气为碱性气体,利用性质差异分离提纯;
- (3) ①由题目信息可知, ClO_2 通入锥形瓶与酸性碘化钾溶液反应,氧化 I^{-} 为 I_2 ,自身被还原为 Cl^{-} ,同时生成水;
- ②玻璃液封装置可防止有害气体逸出;
- ③淀粉遇碘单质变蓝;
- ④根据关系式 $2ClO_2 \sim 5I_2 \sim 10Na_2S_2O_3$ 计算 n (ClO_2) ,再根据 m=nM 计算 m (ClO_2);
- (4) 亚氯酸盐具有氧化性, Fe^{2+} 将 ClO_2 [□]还原成 Cl[□], Fe^{2+} 被氧化为铁离子.
- 【解答】解: (1) KClO₃在 H₂SO₄存在下与 Na₂SO₃反应制得 ClO₂,可知 SO₃^{2□}被氧化成 SO₄^{2□},由电子、电荷守恒可知该离子反应为 2ClO₃□+SO₃^{2□}+2H⁺= 2ClO₂+SO₄^{2□}+H₂O,氧化剂为 KClO₃,还原剂为

Na₂SO₃,由离子反应可知该反应氧化剂与还原剂物质的量之比为 2:1,故答案为:2:1;

(2) ①由生产流程可知氯化铵在盐酸溶液中电解,阴极生成氢气,阳极生成NCl₃,电解方程式为NH₄Cl+2HCl———NCl₃+3H₂↑,

故答案为: NH₄Cl+2HCl———NCl₃+3H₂↑;

② 在 NCl₃溶 液 中 加 入 NaClO₂, 可 生 成 ClO₂、 NH₃和 X, 发 生 NCl₃+NaClO₂+H₂O→ClO₂+NH₃+NaOH+NaCl,溶液 X 中大量存在的阴离子有 Cl□、OH□,

故答案为: Cl□、OH□;

- ③a. ClO₂ 易溶于水,不能利用饱和食盐水吸收氨气,故错误;
- b. 碱石灰不能吸收氨气, 故错误;
- c. 浓硫酸可以吸收氨气,且不影响 ClO₂,故正确;
- d. ClO₂ 易溶于水,不能利用水吸收氨,故错误;

故答案为: c;

(3) ①由题目信息可知, ClO_2 通入锥形瓶与酸性碘化钾溶液反应,氧化 I^{-} 为 I_2 ,自身被还原为 Cl^{-} ,同时生成水,反应离子方程式为 $2ClO_2+10I^{-}+8H^{+}$ — $2Cl^{-}+5I_2+4H_2O$,

故答案为: 2ClO₂+10I□+8H+-2Cl□+5I₂+4H₂O;

- ②玻璃液封装置的作用是吸收残留的 ClO_2 气体(避免碘的逸出),故答案为: 吸收残留的 ClO_2 气体(避免碘的逸出);
- ③V中加入的指示剂通常为淀粉溶液,滴定至终点的现象是溶液由蓝色变为无色,且半分钟内不变色,故答案为:淀粉溶液;溶液由蓝色变为无色,且半分钟内不变色;
- ④含有 Na₂S₂O₃ 物质的量为 0.02 L×0.1mol/L=0.002 mol,则:

根据关系式: $2ClO_2 \sim 5I_2 \sim 10Na_2S_2O_3$,

2 10

 $n (ClO_2)$ 0.002mol

所以 n (ClO_2) =0.0004mol , 所以 m (ClO_2) =0.0004 mol × 67.5g/mol=0.02700g ,

故答案为: 0.02700;

- (4) 若要除去超标的亚氯酸盐, ac 均不能还原亚氯酸盐, b 中 KI 具有还原性 但氧化产物不适合饮用水使用, 只有 d 中 Fe²+将 ClO₂□还原成 Cl□, Fe²+ 被 氧化为铁离子, 且铁离子水解生成胶体可净化饮用水,则最适宜的是 d, 故 答案为: d.
- 【点评】本题考查物质含量的测定,为高频考点,为2015年高考真题,把握物质的性质、制备流程、发生的反应为解答的关键,侧重分析与实验、计算能力的综合考查,综合性较强,题目难度中等.

三、化学——选修 2: 化学与技术。(满分 15 分)

11. (15分)苯酚和丙酮都是重要的化工原料,工业上可用异丙苯氧化法生产 苯酚和丙酮,其反应和工艺流程示意图如图:

相关化合物的物理常数

物质	相对分子质量	密度(g/cm ^{®3})	沸点/℃
异丙苯	120	0.8640	153
丙酮	58	0.7898	56.5
苯酚	94	1.0722	182

回答下列问题:

- (1) 在反应器 A 中通入的 X 是 氧气或空气 。
- (2) 反应①和②分别在装置 A 和 C 中进行(填装置符号)。
- (3) 在分解釜 C 中加入的 Y 为少置浓硫酸,其作用是<u>催化剂</u>,优点是用量少,缺点是_腐蚀设备_。
- (4) 反应②为<u>放热</u>(填"放热"或"吸热")反应。反应温度控制在50□60°C,温度过高的安全隐患是 可能会导致(过氧化物)爆炸 。
- (5) 中和釜 D 中加入的 Z 最适宜的是<u>c</u>(填编号。已知苯酚是一种弱酸)。
- a. NaOHb. CaCO3c. NaHCO3d. CaO
 - (6)蒸馏塔 F 中的馏出物 T 和 P 分别为<u>丙酮</u>和<u>苯酚</u>,判断的依据是 丙酮的沸点低于苯酚。
 - (7) 用该方法合成苯酚和丙酮的优点是 原子利用率高 。

【考点】U3:制备实验方案的设计.

【专题】18:实验分析题;25:实验评价题;43:演绎推理法;547:有机实验综合.

【分析】用异丙苯氧化法生产苯酚和丙酮,由给予的反应信息,异丙苯与氧气

釜中在浓硫酸作催化剂条件下分解得到 、H_CC-CH₃,在中和釜中加入 Z,目的是中和硫酸,且不能与苯酚反应,可以是碳酸氢钠,然后用水洗涤,再经过蒸馏,由于丙酮的沸点低于苯酚,则 T 为丙酮、P 为苯酚。

- (1) 在反应器 A 发生信息中的反应①, 应通入氧气或空气;
- (2) 由上述分析可知, 反应①在 A 中发生, 反应②在 C 中发生;
- (3)浓硫酸起催化剂作用,浓硫酸腐蚀性强,会腐蚀设备;
- (4) 反应②的 \triangle H<0,为放热反应,含有过氧化物,温度过高,容易发生爆

炸,

- (5) 加入的 Z 中和硫酸, 且不能与苯酚反应;
- (6) 沸点越低越先蒸出,处于蒸馏塔的上部;
- (7) 由异丙苯最终得到苯酚和丙酮,原子利用率高。

【解答】解:用异丙苯氧化法生产苯酚和丙酮,由给予的反应信息,异丙苯与

釜中在浓硫酸作催化剂条件下分解得到 、H₂C-C-CH₃,在中和釜中加入 Z,目的是中和硫酸,且不能与苯酚反应,可以是碳酸氢钠,然后用水洗涤,再经过蒸馏,由于丙酮的沸点低于苯酚,则 T 为丙酮、P 为苯酚。

(1) 在反应器 A 发生信息中的反应①,故需要氧气或空气,所以 X 为氧气或空气,

故答案为: 氧气或空气;

(2) 由上述分析可知,反应①在反应器中发生,即A装置,反应②在分解釜中进行,即C装置,

故答案为: A; C;

故答案为:催化剂;腐蚀设备;

(4) 反应②的△H<0,为放热反应,有过氧化物存在,温度过高会导致爆炸,反应温度控制在50□60℃,

故答案为: 放热; 温度过高会导致爆炸;

- (5) 加入 Z 的目的是中和硫酸, 且不能与苯酚反应,
- a. NaOH 能与硫酸、苯酚反应, 故不选;
- b. CaCO₃ 为固体, 且与硫酸反应生成的硫酸钙微溶, 会阻止碳酸钙与硫酸的反

应, 故 b 不选:

- c. NaHCO₃能与硫酸反应,不与苯酚反应,故c选;
- d. CaO 能与苯酚反应,且与硫酸反应生成的硫酸钙微溶,会阻止氧化钙与硫酸的反应,故d不选;

故选: c:

(6)由于丙酮的沸点低于苯酚,沸点越低越先蒸出,处于蒸馏塔的上部,则T为丙酮、P为苯酚,

故答案为: 丙酮; 苯酚; 丙酮的沸点低于苯酚;

(7) 由异丙苯最终得到苯酚和丙酮,整个过程原子利用率高,

故答案为:原子利用率高。

【点评】本题考查有机物的制备实验方案,涉及对化学工艺流程、装置及试剂 的分析评价等,关键是根据实验目的与给予的反应信息理解工艺流程原理, 是对学生综合能力的考查,难度中等。

四、化学-选修 3: 物质结构与性质。(满分 15 分)

- 12. (15 分) A、B、C、D 为原子序数依次增大的四种元素, A^{2□}和 B⁺具有相同的电子构型; C、D 为同周期元素, C 核外电子总数是最外层电子数的 3 倍; D 元素最外层有一个未成对电子. 回答下列问题:
- (1) 四种元素中电负性最大的是<u>O</u>(填元素符号),其中 C 原子的核外电子排布式为 $1s^22s^22p^63s^23p^3$.
- (2) 单质 A 有两种同素异形体,其中沸点高的是 O_3 (填分子式),原因是 O_3 相对分子质量较大,范德华力较大 ; A 和 B 的氢化物所属的晶体 类型分别为 分子晶体 和 离子晶体 .
- (3) C和D反应可生成组成比为1:3 的化合物 E, E 的立体构型为<u>三角锥</u>形,中心原子的杂化轨道类型为 sp³.
- (4) 化合物 D_2A 的立体构型为<u>V形</u>,中心原子的价层电子对数为<u>4</u>,单 质 D与 湿 润 的 Na_2CO_3 反 应 可 制 备 D_2A , 其 化 学 方 程 式 为 $2Cl_2+2Na_2CO_3+H_2O=Cl_2O+2NaHCO_3+2NaCl$.
- (5) A和B能够形成化合物F,其晶胞结构如图所示,晶胞边长a=0.566nm,

F 的化学式为 Na_2O ; 晶胞中 A 原子的配位数为 8 ; 列式计算晶体 F 的密度($g \cdot cm^{\square 3}$) 2.27 $g \cdot cm^{\square 3}$ (保留小数点后两位数字).

【考点】9I: 晶胞的计算.

【专题】51B: 原子组成与结构专题: 51D: 化学键与晶体结构.

【分析】A、B、C、D为原子序数依次增大的四种元素,C、D为同周期元素,C核外电子总数是最外层电子数的3倍,则C为P元素;D元素最外层有一个未成对电子,D为Cl元素;

 $A^{2\square}$ 和 B^{+} 具有相同的电子构型,则 A 为 O 元素、B 为 Na 元素;

- (1) 四种元素电负性最大的为 O 元素, C 为 P 元素;
- (2) A 为 O 元素,有 O_2 、 O_3 两种同素异形体, O_3 相对分子质量较大,沸点较高,B 的氢化物为 NaH,为离子晶体:
- (3) C和D反应可生成化合物为PCl₃,为sp³杂化;
- (4) 化合物 D₂A 为 Cl₂O, 立体构型为 V 形, 氯气与湿润的 Na₂CO₃ 反应的方程式为 2Cl₂+2Na₂CO₃+H₂O=Cl₂O+2NaHCO₃+2NaCl;
- (5) A和B能够形成化合物 F为离子化合物,阴离子位于晶胞的定点和面心,阳离子位于晶胞的体心,则 Na 的个数为 8,O 的个数为 $8 \times \frac{1}{8} + 6 \times \frac{1}{2}$ =4,
- N(Na): N(O) = 2: 1,则形成的化合物为 Na_2O ,计算质量和体积,可计算密度.
- 【解答】解: A、B、C、D为原子序数依次增大的四种元素, C、D为同周期元素, C核外电子总数是最外层电子数的 3 倍,则 C为 P元素; D元素最外层有一个未成对电子, D为 Cl元素;

 A^{2} 和 B^{+} 具有相同的电子构型,则 A 为 O 元素、B 为 Na 元素;

(1) 四种元素分别为 O、Na、O、Cl, 电负性最大的为 O 元素, C 为 P 元素,

核外电子排布为 1s²2s²2p⁶3s²3p³,

故答案为: O; 1s²2s²2p⁶3s²3p³;

(2) A 为 O 元素,有 O_2 、 O_3 两种同素异形体,二者对应的晶体都为分子晶体,因 O_3 相对分子质量较大,则范德华力较大,沸点较高,A 的氢化物为水,为分子晶体,B 的氢化物为 NaH,为离子晶体,

故答案为: O₃; O₃相对分子质量较大, 范德华力较大; 分子晶体; 离子晶体;

(3) C 和 D 反应可生成组成比为 1: 3 的化合物为 PCl_3 , P 形成 $3 \land \delta$ 键,孤 电子对数为 $\frac{5-3\times 1}{2}$ =1,则为 sp^3 杂化,立体构型为为三角锥形,

故答案为: 三角锥形; sp3;

- (4) 化合物 D_2A 为 Cl_2O ,O 为中心原子,形成 $2 \land \delta$ 键,孤电子对数为 $\frac{6-2\times 1}{2}$ =2,则中心原子的价层电子对数为 4,立体构型为 V 形,
- 氯气与湿润的 Na₂CO₃反应可制备 Cl₂O, 反应的方程式为 2Cl₂+2Na₂CO₃+H₂O=Cl₂O+2NaHCO₃+2NaCl,

故答案为: V形; 4; 2Cl₂+2Na₂CO₃+H₂O=Cl₂O+2NaHCO₃+2NaCl;

- (5) A和B能够形成化合物 F为离子化合物,阴离子位于晶胞的顶点和面心,阳离子位于晶胞的体心,则 Na 的个数为 8,O 的个数为 $8 \times \frac{1}{8} + 6 \times \frac{1}{2}$ =4,
- N(Na): N(O)=2: 1,则形成的化合物为Na₂O,

晶胞中 O 位于顶点, Na 位于体心,每个晶胞中有 1 个 Na 与 O 的距离最近,每个定点为 8 个晶胞共有,则晶胞中 O 原子的配位数为 8,

晶胞的质量为
$$\frac{4 \times 62}{6.02 \times 10^{23}}$$
g,

晶胞的体积为 (0.566×10□7) 3cm3,

则晶体 F 的密度为
$$\frac{4 \times 62}{(0.566 \times 10^{-7})^3 \times 6.02 \times 10^{23}}$$
g•cm^{□3}=2.27 g•cm^{□3},

故答案为: Na₂O; 8; 2.27g•cm^{□3}.

【点评】本题考查物质结构和性质,为高频考点,侧重考查学生空间想象能力、知识运用能力,涉及晶胞计算、原子结构等知识点,采用均摊法、价层电子对互斥理论等理论分析解答,难点是晶胞计算,题目难度中等.

五、化学一选修 5: 有机化学基础 (满分 15 分)

13. (15分)聚戊二酸丙二醇酯 (PPG)是一种可降解的聚酯类高分子材料, 在材料的生物相容性方面有很好的应用前景. PPG的一种合成路线如下:

己知:

- ① A 的相对分子质量为 70, 核磁共振氢谱显示只有一种化学环境的氢
- ②化合物 B 为单氯代烃: 化合物 C 的分子式为 C₅H₈
- ③E、F 为相对分子质量差 14 的同系物, F 是福尔马林的溶质

$$R_1$$
CHO + R_2 CH2CHO $\stackrel{\frac{46}{10}}{\longrightarrow}$ NaOH R_1 CH - CH CHO

冋答下列问题:

- (1) A 的结构简式为 .
- (2) 由 B生 成 C的 化 学 方 程 式 为

$$Cl + NaOH$$
 $Cl + NaCl + H2O$ + NaCl + H₂O

- (3)由E和F生成G的反应类型为<u>加成反应</u>,G的化学名称为<u>3□羟基</u><u>丙醛</u>.
- (4) ① 由 D和 H生 成 PPG的 化 学 方 程 式 为:

- ②若 PPG 平均相对分子质量为 10000,则其平均聚合度约为_b_(填标号).
- a. 48b. 58c. 76 d. 122
- (5) D的同分异构体中能同时满足下列条件的共有<u>5</u>种(不含立体异构):

①能与饱和 NaHCO₃ 溶液反应产生气体②既能发生银镜反应,又能发生水解反应

- D的所有同分异构体在下列一种表征仪器中显示的信号(或数据)完全相同,该仪器是 c (填标号).
- a. 质谱仪 b. 红外光谱仪 c. 元素分析仪 d. 核磁共振仪.

【考点】HC:有机物的合成.

【分析】烃 A 的相对分子质量为 70, 核磁共振氢谱显示只有一种化学环境的

氢, $\frac{70}{12}$ =5...10,则 A 为 C₅H₁₀,结构为 () ; A 发生光照下取代反应生

【解答】解: 烃 A 的相对分子质量为 70,核磁共振氢谱显示只有一种化学环境

的氢, $\frac{70}{12}$ =5...10,则 A 为 C_5H_{10} ,结构为 (; A 发生光照下取代反应

 生成 B 为
 , B 发生消去反应生成 C 为
 , 化合物 C 的分

 子式为 C₅H₈; C 发生氧化反应生成 D 为 HOOC (CH₂) ₃COOH, E、F 为相

对分子质量差 14 的同系物,F 是福尔马林的溶质,则 F 为 HCHO,可知 E 为 CH_3CHO ,由信息④可知 E 与 F 反应生成 G 为 $OHCH_2CH_2CHO$,G 与氢气发生加成反应生成 H 为 $OHCH_2CH_2CHO$,D 与 H 发生缩聚反应生成

$$PPG \ (\ ^{HO} \left[\begin{smallmatrix} 0 & 0 & 0 \\ C-(CH_2)_3-C-O-(CH_2)_3-O \end{smallmatrix} \right]_{n}^{H} \) \ ,$$

- (1) A 的结构简式为 , 故答案为: ,
- (2) 由 B生 成 C的 化 学 方 程 式 为

$$Cl + NaOH \xrightarrow{\angle RP} + NaCl + H_2O$$

- (3)由E和F生成G的反应类型为加成反应,G的化学名称为3□羟基丙醛, 故答案为:加成反应;3□羟基丙醛;

- ② 若 PPG 平 均 相 对 分 子 质 量 为 10000, 则 其 平 均 聚 合 度 约 为 $\frac{10000}{12\times8+16\times4+1\times12} \approx 58, \text{ 故答案为: b;}$
 - (5) D的同分异构体中能同时满足①能与饱和 NaHCO₃ 溶液反应产生气体,含□COOH,②既能发生银镜反应,又能发生水解反应□COOCH,D中共 5 个C,则含 3 个 C□C□C 上的 2 个 H 被□COOH、□OOCH 取代,共为 3+2=5

种,含其中核磁共振氢谱显示为3组峰,且峰面积比为6:1:1的是

数据)完全相同,故答案为:5;

【点评】本题考查有机物的推断,为高频考点,为2015年高考真题,把握合成中碳链变化、官能团变化及反应条件推断物质为解答的关键,侧重分析与推断能力的综合考查,题目难度中等.