Orthonormal Basis

Definition: Orthonormal Basis

Let E be an inner product space over $\mathbb C$ and let $B = \{\vec x_n \mid n \in \mathbb N\}$ be an orthonormal system in E. To say that B is an *orthonormal basis* for E means $\forall \vec x \in E, \vec x$ can be written uniquely as:

$$\vec{x} = \sum_{n=1}^{\infty} \alpha_n \vec{x}_n$$

for some $\alpha_n \in \mathbb{C}$ and distinct $\vec{x}_n \in B$.

Examples

1).
$$H = L^2[-\pi, pi]$$
 with $\varphi_n(t) = \frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}} \sin nt, \frac{1}{\sqrt{\pi}} \cos nt$ for all $n \in \mathbb{N}$.

2).
$$H=L^2[-\pi,pi]$$
 with $\varphi_n(t)=\frac{1}{\sqrt{2\pi}}e^{-nt}$ for all $n\in\mathbb{Z}$.

Theorem

Let E be an inner product space over \mathbb{C} . Every complete orthonormal sequence in E is an orthonormal basis for E.

Proof

Assume (\vec{x}_n) is a complete orthonormal sequence in E. Assume $\vec{x} \in E$. Since (\vec{x}_n) is complete:

$$\vec{x} = \sum_{n=1}^{\infty} \langle \vec{x}, \vec{x}_n \rangle \, \vec{x}_n$$

Thus establishing existence where $\alpha_n = \langle \vec{x}, \vec{x}_n \rangle$.

Now, assume
$$\vec{x} = \sum_{n=1}^{\infty} \alpha_k \vec{x}_n = \sum_{n=1}^{\infty} \beta_k \vec{x}_n$$
.

$$0 = \|\vec{x} - \vec{x}\|^2 = \left\| \sum_{n=1}^{\infty} \alpha_n \vec{x}_n - \sum_{n=1}^{\infty} \beta_n \vec{x}_n \right\|^2 = \left\| \sum_{n=1}^{\infty} (\alpha_n - \beta_n) \vec{x}_n \right\|^2 = \sum_{n=1}^{\infty} |\alpha_n - \beta_n|$$

But this is only true for $\alpha_n - \beta_n = 0$.

 $\therefore \alpha_n = \beta_n$, thus establishing uniqueness.

Corollary

Let E be an inner product space and let $(\vec{x_n})$ be a complete orthonormal sequence in E:

$$\operatorname{Span}\{\vec{x}_1, \vec{x}_2, \ldots\}$$
 is dense in E .

Proof

Let $S = \operatorname{Span}\{\vec{x}_1, \vec{x}_2, \ldots\}.$

Assume $\vec{x} \in E$.

Since (\vec{x}_n) is complete:

$$\vec{x} = \sum_{n=1}^{\infty} \langle \vec{x}, \vec{x}_n \rangle \, \vec{x}_n$$

Let
$$S_n = \sum_{k=1}^n \langle \vec{x}, \vec{x}_k \rangle \vec{x}_k$$
.

 (S_n) is a sequence in S and $S_n \to \vec{x} \in E$.

Therefore S is dense in E.

Theorem

Let H be a Hilbert space and let (\vec{x}_n) be an orthonormal sequence in H:

$$(\vec{x}_n)$$
 is complete \iff $((\forall n \in \mathbb{N}, \vec{x} \perp \vec{x}_n) \implies \vec{x} = \vec{0})$

Proof

 \implies Assume (\vec{x}_n) is complete.

Assume
$$\forall n \in \mathbb{N}, \vec{x} \perp \vec{x}_n$$
. $\forall n \in \mathbb{N}, \langle \vec{x}, \vec{x}_n \rangle = 0$

But
$$(\vec{x}_n)$$
 is complete, so $\vec{x} = \sum_{n=1}^{\infty} \langle \vec{x}, \vec{x}_n \rangle \vec{x}_n = \vec{0}$.

$$\iff \mathsf{Assume} \; (\forall \, n \in \mathbb{N}, \vec{x} \perp \vec{x}_n) \implies \vec{x} = \vec{0}.$$

Assume $\vec{x} \in H$.

Since
$$H$$
 is Hilbert: $\sum_{n=1}^{\infty} \langle \vec{x}, \vec{x}_n \rangle \vec{x}_n = \vec{x}_* \in H$.

WTS: $\vec{x}_* = \vec{x}$.

Assume $n \in \mathbb{N}$:

$$\langle \vec{x}_* - \vec{x}, \vec{x}_n \rangle = \langle \vec{x}_*, \vec{x}_n \rangle - \langle \vec{x}, \vec{x}_n \rangle$$

$$= \left\langle \sum_{k=1}^{\infty} \langle \vec{x}, \vec{x}_k \rangle \vec{x}_k, \vec{x}_n \right\rangle - \langle \vec{x}, \vec{x}_n \rangle$$

$$= \left\langle \langle \vec{x}, \vec{x}_n \rangle \vec{x}_n, \vec{x}_n \right\rangle - \langle \vec{x}, \vec{x}_n \rangle$$

$$= \left\langle \vec{x}, \vec{x}_n \right\rangle \langle \vec{x}_n, \vec{x}_n \rangle - \langle \vec{x}, \vec{x}_n \rangle$$

$$= \left\langle \vec{x}, \vec{x}_n \right\rangle ||\vec{x}_n||^2 - \langle \vec{x}, \vec{x}_n \rangle$$

$$= \left\langle \vec{x}, \vec{x}_n \right\rangle \cdot 1 - \langle \vec{x}, \vec{x}_n \rangle$$

$$= \left\langle \vec{x}, \vec{x}_n \right\rangle - \langle \vec{x}, \vec{x}_n \rangle$$

$$= 0$$

And so, by assumption, $\vec{x}_* - \vec{x} = \vec{0}$.

 $\vec{x}_* = \vec{x}$ and thus (\vec{x}_n) is complete.

Theorem: Parseval's Formula

Let H be a Hilbert space and let (\vec{x}_n) be an orthonormal sequence in H:

$$(\vec{x}_n)$$
 is complete $\iff \forall \vec{x} \in H, ||\vec{x}||^2 = \sum_{n=1}^{\infty} |\langle \vec{x}, \vec{x}_n \rangle|^2$

Proof

 \implies Assume (\vec{x}_n) is complete.

Assume $\vec{x} \in H$:

$$\vec{x} = \sum_{n=1}^{\infty} \langle \vec{x}, \vec{x}_n \rangle \vec{x}_n$$

$$\|\vec{x}\|^2 = \langle \vec{x}, \vec{x} \rangle$$

$$= \left\langle \sum_{n=1}^{\infty} \langle \vec{x}, \vec{x}_n \rangle \vec{x}_n, \sum_{m=1}^{\infty} \langle \vec{x}, \vec{x}_m \rangle \vec{x}_m \right\rangle$$

$$= \sum_{n=1}^{\infty} \langle \langle \vec{x}, \vec{x}_n \rangle \vec{x}_n, \langle \vec{x}, \vec{x}_n \rangle \vec{x}_n \rangle$$

$$= \sum_{n=1}^{\infty} |\langle \vec{x}, \vec{x}_n \rangle|^2 \langle \vec{x}_n, \vec{x}_n \rangle$$

$$= \sum_{n=1}^{\infty} |\langle \vec{x}, \vec{x}_n \rangle|^2 \|\vec{x}_n\|^2$$

$$= \sum_{n=1}^{\infty} |\langle \vec{x}, \vec{x}_n \rangle|^2 \cdot 1$$

$$= \sum_{n=1}^{\infty} |\langle \vec{x}, \vec{x}_n \rangle|^2$$

$$\iff \text{Assume } \forall \, \vec{x} \in H, \left\| \vec{x} \right\|^2 = \sum_{n=1}^{\infty} \left| \langle \vec{x}, \vec{x}_n \rangle \right|^2$$

Assume $\vec{x} \in H$.

Let
$$S_n = \{\vec{x}_1, \dots, \vec{x}_n\}.$$

Let
$$\vec{y}_n = \operatorname{proj}_{S_n} \vec{x} = \sum_{k=1}^n \langle \vec{x}, \vec{x}_n \rangle \vec{x}_n$$
.

And so
$$\|\vec{y}_n\| = \sum_{k=1}^n |\langle \vec{x}, \vec{x}_n \rangle|^2$$
.

Note that $\vec{x} - \vec{y}_n \perp \vec{y}_n$. And so:

$$\begin{aligned} \|\vec{x}\|^2 &= \|(\vec{x} - \vec{y}_n) + \vec{y}_n\|^2 \\ \|\vec{x}\|^2 &= \|\vec{x} - \vec{y}_n\|^2 + \|\vec{y}_n\|^2 \\ \|\vec{x}\|^2 - \|\vec{y}_n\|^2 &= \|\vec{x} - \vec{y}_n\|^2 \\ \|\vec{x}\|^2 - \sum_{k=1}^n |\langle \vec{x}, \vec{x}_k \rangle|^2 &= \|\vec{x} - \sum_{k=1}^n \langle \vec{x}, \vec{x}_k \rangle \vec{x}_k \| \to 0 \end{aligned}$$

 $\therefore \vec{x} = \sum_{n=1}^{\infty} \langle \vec{x}, \vec{x}_n \rangle \vec{x}_n \text{ and thus } (\vec{x}_n) \text{ is complete.}$