# Chapter 3: Lebesgue Measure

Author: Meng-Gen Tsai Email: plover@gmail.com

### Section 3.1: Introduction

**Problem 3.1.** If A and B are two sets in  $\mathfrak{M}$  with  $A \subseteq B$ , then  $mA \leq mB$ . This property is called monotonicity.

Proof. Write

$$B = B \cap X = B \cap (A \cup \widetilde{A}) = (B \cap A) \cup (B \cap \widetilde{A}) = A \cup (B - A).$$

Here  $B \cap A = A$  comes from  $A \subseteq B$  (Problem 1.9). Notice that A and B - A are disjoint. Since m is a countably additive measure (m is nonnegative) on a  $\sigma$ -algebra  $\mathfrak{M}$ ,

$$mB = mA + m(B - A) > mA$$
.

**Problem 3.2.** Let  $\langle E_n \rangle$  be any sequence of sets in  $\mathfrak{M}$ . Then  $m(\bigcup E_n) \leq \sum mE_n$ . (Hint: Use Proposition 1.2) This property of a measure is called countable subadditivity.

As the argument in Problem 3.1.

*Proof.* Since  $\langle E_n \rangle$  is a sequence of sets in  $\sigma$ -algebra  $\mathfrak{M}$ , by Proposition 1.2 and its proof, there is a sequence  $\langle F_n \rangle$  of sets in  $\sigma$ -algebra  $\mathfrak{M}$  such that all  $F_n$  are pairwise disjoint,  $F_n \subseteq E_n$ , and

$$\bigcup E_n = \bigcup F_n.$$

Since m is a countably additive measure on a  $\sigma$ -algebra  $\mathfrak{M}$ ,

$$m\left(\bigcup E_n\right) = m\left(\bigcup F_n\right) = \sum mF_n \ge \sum mE_n.$$

The last inequality holds by applying Problem 3.1 on  $F_n \subseteq E_n$  for any n.  $\square$ 

**Problem 3.3.** If there is a set A in  $\mathfrak{M}$  such that  $mA < \infty$ , then  $m\varnothing = 0$ .

*Proof.* For such A, write  $A = A \cup \emptyset$ . A and  $\emptyset$  are disjoint. Since m is a countably additive measure on a  $\sigma$ -algebra  $\mathfrak{M}$ ,

$$mA = mA + m\varnothing$$
.

Since  $mA < \infty$ , we can cancel out mA on the both sides to get  $m\emptyset = 0$ .  $\square$ 

#### Section 3.2: Outer Measure

**Problem 3.5.** Let A be the set of rational numbers between 0 and 1, and let  $\{I_n\}$  be a finite collection of open intervals covering A. Then  $\sum l(I_n) \geq 1$ .

Idea. If  $\{I_n\}$  is a covering of [0,1] then we are done since the length of [0,1] is 1. However,  $\{I_n\}$  only covers A and not necessarily covers [0,1]. (For example,  $\{I_n\} = \left\{\left(-89, \frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, 64\right)\right\}$  covers A but not  $\frac{1}{\sqrt{2}}$ .) Hence, it is natural to consider the closure of A and the closure of  $I_n$ . Now  $\{\overline{I_n}\}$  is a (closed) covering of  $\overline{A} = [0,1]$ .

Proof.

$$1 = m^*[0, 1]$$
 (Proposition 3.1)  

$$= m^* \overline{A}$$
 (A is dense in [0, 1])  

$$\leq m^* \left( \overline{\bigcup I_n} \right)$$
 (Proposition 2.10)  

$$= m^* \left( \overline{\bigcup I_n} \right)$$
 (Proposition 2.10)  

$$\leq \sum m^*(\overline{I_n})$$
 (Proposition 3.2)  

$$= \sum l(\overline{I_n})$$
 (Proposition 3.1)  

$$= \sum l(I_n).$$
 (definition of length)

**Supplement.** Exercise about considering the closure. (Exercise 4.52 in T. M. Apostol, Mathematical Analysis, 2nd Edition.) Assume that f is uniformly continuous on a bounded set S in  $\mathbb{R}^n$ . Prove that f must be bounded on S.

Proof.

- (1) Since  $f: S \to T$  is uniformly continuous, given any  $\epsilon > 0$ , there is  $\delta > 0$  such that  $d_T(f(x), f(y)) < \epsilon$  whenever  $d_S(x, y) < \delta$ . Choose  $\epsilon = 1 > 0$ .
- (2) For such  $\delta > 0$ , construct an open covering of  $\overline{S} \subseteq \mathbb{R}^n$ . Pick a collection  $\mathscr{F}$  of open balls  $B(a;\delta) \subseteq \mathbb{R}^n$  where a runs over all elements of S.  $\mathscr{F}$  covers  $\overline{S}$

(by the definition of accumulation points). Since  $\overline{S}$  is closed and bounded (since S is bounded),  $\overline{S}$  is compact So there is a finite subcollection  $\mathscr{F}'$  of  $\mathscr{F}$  also covers  $\overline{S}$ , say

$$\mathscr{F}' = \{B(a_1; \delta)\}, B(a_2; \delta), ..., B(a_m; \delta)\}.$$

(3) Given any  $x \in S \subseteq \overline{S}$ , there is some  $a_i \in S$   $(1 \le i \le m)$  such that  $x \in B(a_i; \delta)$ . In such ball,  $d_S(x, a_i) < \delta$ . By  $(1), ||f(x) - f(a_i)|| < 1$ , or  $||f(x)|| < 1 + ||f(a_i)||$ . Therefore, for any  $x \in S$ ,

$$||f(x)|| < 1 + \max_{1 \le i \le m} ||f(a_i)||.$$

**Problem 3.6.** Prove Proposition 5: Given any set A and any  $\epsilon > 0$ , there is an open set O such that  $A \subseteq O$  and  $m^*O \le m^*A + \epsilon$ . There is a  $G \in G_{\delta}$  such that  $m^*G = m^*A$ .

Proof.

(1) Use the definition of the outer measure. By the definition of  $m^*$ , for such  $\epsilon > 0$  there exists a countable collection  $\{I_n\}$  of open intervals that covers A and

$$m^*A + \epsilon \ge \sum l(I_n).$$

- (2) Construct an open set O. Let  $O = \bigcup I_n \supseteq A$  which is the union of any collection of open sets  $I_n$ . By Proposition 2.7, O is open.
- (3) Show that  $m^*O \leq m^*A + \epsilon$ . By Proposition 3.2 and 3.1,

$$m^*O = m^*\left(\bigcup I_n\right) \le \sum m^*I_n = \sum l(I_n) \le m^*A + \epsilon.$$

Therefore, given any set A and any  $\epsilon > 0$ , there is an open set O such that  $A \subseteq O$  and  $m^*O \le m^*A + \epsilon$ .

(4) Construct  $G \in G_{\delta}$  in a natural way. Given any  $n \in \mathbb{N}$ , there exists an open set  $O_n$  such that  $O_n \supseteq A$  and  $m^*O_n \le m^*A + \frac{1}{n}$ . Let

$$G = \bigcap_{n=1}^{\infty} O_n \in G_{\delta}.$$

- (5) Show that  $m^*G = m^*A$ .
  - (a) Since  $A \subseteq O_n$  for any  $n \in \mathbb{N}$ ,  $A \subseteq \bigcap_{n=1}^{\infty} O_n = G$ . Thus  $m^*A \le m^*G$ .

(b) Since  $O_n \supseteq \bigcap_{n=1}^{\infty} O_n = G$  for any  $n \in \mathbb{N}$ ,

$$m^*A + \frac{1}{n} \ge m^*O_n \ge m^*G$$

for any  $n \in \mathbb{N}$ . Since  $n \in \mathbb{N}$  is arbitrary,  $m^*A \ge m^*G$ .

By (a)(b),  $m^*A = m^*G$ .

**Problem 3.7.** Prove that  $m^*$  is translation invariant.

*Proof.* Given  $E \in \mathfrak{M}$  and  $y \in \mathbb{R}$ .

(1)  $m^*(E+y) \leq m^*E$ . Let  $\{I_n\}$  of open intervals that cover E. Then  $\{I_n+y\}$  of open intervals that cover E+y. Notice that the definition of  $m^*$  and  $l(I_n+y)=l(I_n)$ , then

$$m^*(E+y) \le \sum l(I_n+y) = \sum l(I_n).$$

Take the infimum of all such sum  $\sum l(I_n)$ ,  $m^*(E+y) \leq m^*E$ .

(2)  $m^*(E) \le m^*(E+y)$ . Similar to (1).

By (1)(2),  $m^*(E+y) = m^*E$ , that is,  $m^*$  is translation invariant.  $\square$ 

**Problem 3.8.** Prove that if  $m^*A = 0$ , then  $m^*(A \cup B) = m^*B$ .

Proof.

- (1)  $m^*(A \cup B) \ge m^*B$  since  $A \cup B \supseteq B$  and the definition of  $m^*$ . (Any covering of  $A \cup B$  by open intervals is also a covering of B so that the latter infimum is taken over a larger collection than the former.)
- (2)  $m^*(A \cup B) \leq m^*B$ . By Proposition 3.2,

$$m^*(A \cup B) \le m^*A + m^*B = 0 + m^*B = m^*B.$$

By (1)(2),  $m^*(A \cup B) = m^*B$ .  $\square$ 

## Section 3.3: Measurable Sets and Lebesgue Measure

**Problem 3.9.** Show that if E is a measurable set, then each translate E + y of E is also measurable.

Proof.

(1) E is measurable if and only if for each set A, each  $y \in \mathbb{R}$ ,

$$m^*(A+y) = m^*((A+y) \cap E) + m^*((A+y) \cap \widetilde{E}).$$

- (a)  $(\Longrightarrow)$  E is measurable and A+y is a set (for any set A and  $y\in\mathbb{R}$ ).
- (b)  $(\Leftarrow)$  A = (A y) + y for any set A and  $y \in \mathbb{R}$ .
- (2) For any set E and  $y \in \mathbb{R}$ ,  $\widetilde{E+y} = \widetilde{E} + y$  by the definition of translation.
- (3) For any sets  $E_1$ ,  $E_2$  and  $y \in \mathbb{R}$ ,  $(E_1 \cap E_2) + y = (E_1 + y) + (E_2 + y)$  by the definition of translation.
- (4) For each set A and  $y \in \mathbb{R}$ ,

$$m^*((A+y)\cap (E+y)) + m^*((A+y)\cap (\widetilde{E+y}))$$

$$= m^*((A+y)\cap (E+y)) + m^*((A+y)\cap (\widetilde{E}+y)) \qquad ((2))$$

$$= m^*((A\cap E) + y) + m^*((A\cap \widetilde{E}) + y) \qquad ((3))$$

$$= m^*(A\cap E) + m^*(A\cap \widetilde{E}) \qquad (\text{Problem 3.7})$$

$$= m^*A \qquad (\text{Measurability of } E)$$

$$= m^*(A+y). \qquad (\text{Problem 3.7})$$

By (1), E + y is measurable.

**Problem 3.10.** Show that if  $E_1$  and  $E_2$  are measurable, then

$$m(E_1 \cup E_2) + m(E_1 \cap E_2) = mE_1 + mE_2.$$

*Proof.* Since the collection  $\mathfrak{M}$  of measurable sets is a  $\sigma$ -algebra (Theorem 3.10) and m is countable additive (Proposition 3.13),

$$m(E_1 \cup E_2) + m(E_1 \cap E_2) = \left( m(E_1) + m(E_2 \cap \widetilde{E_1}) \right) + m(E_2 \cap E_1)$$
$$= m(E_1) + \left( m(E_2 \cap \widetilde{E_1}) + m(E_2 \cap E_1) \right)$$
$$= m(E_1) + m(E_2).$$

 $(E_1 \text{ and } E_2 \cap \widetilde{E_1} \text{ are disjoint. } E_2 \cap \widetilde{E_1} \text{ and } E_2 \cap E_1 \text{ are disjoint too.}) \square$ 

**Problem 3.11.** Show that the condition  $mE_1 < \infty$  is necessary in Proposition 3.14 by giving a decreasing sequence  $\langle E_n \rangle$  of measurable sets with  $\varnothing = \bigcap E_n$  and  $mE_n = \infty$  for each n.

Proof. Set

$$E_n = (n, \infty)$$

for each  $n \in \mathbb{N}$ .

- (1)  $\langle E_n \rangle$  is a decreasing sequence of measurable sets.  $E_n \supseteq E_{n+1}$  by definition. Besides, each  $E_n$  is measurable by Lemma 3.11.
- (2)  $\bigcap E_n = \emptyset$ . For each  $x \in \mathbb{R}$ ,  $x \notin E_1$  if  $x \leq 1$ ;  $x \notin E_{[x]}$  if  $x \geq 1$  where  $x \mapsto [x]$  is the floor function.
- (3)  $mE_n = \infty$  for each n. The length of each  $E_n$  is  $\infty$  (Proposition 3.1).

**Problem 3.12.** Let  $\langle E_n \rangle$  be a sequence of disjoint measurable sets and A any set. Then  $m^* (A \cap \bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} m^* (A \cap E_i)$ .

Proof.

- (1)  $A \cap \bigcup_{i=1}^{\infty} E_i = \bigcup_{i=1}^{\infty} (A \cap E_i)$  (Problem 1.14).
- (2)  $m^* \left(\bigcup_{i=1}^{\infty} (A \cap E_i)\right) \leq \sum_{i=1}^{\infty} m^* (A \cap E_i)$  by the subadditivity of  $m^*$  (Proposition 3.2).
- (3) By Lemma 3.9.

$$m^* \left( \bigcup_{i=1}^n (A \cap E_i) \right) = \sum_{i=1}^n m^* (A \cap E_i)$$

for any  $n \in \mathbb{N}$ . Since  $\bigcup_{i=1}^{\infty} (A \cap E_i) \supseteq \bigcup_{i=1}^{n} (A \cap E_i)$ ,  $m^* (\bigcup_{i=1}^{\infty} (A \cap E_i)) \ge m^* (\bigcup_{i=1}^{n} (A \cap E_i))$  by the monotonicity of  $m^*$ . Thus,

$$m^* \left( \bigcup_{i=1}^{\infty} (A \cap E_i) \right) \ge \sum_{i=1}^{n} m^* (A \cap E_i)$$

for any  $n \in \mathbb{N}$ . Since  $\sum_{i=1}^{n} m^*(A \cap E_i)$  is bounded and increasing (by the non-negativity of  $m^*$ ),

$$m^* \left( \bigcup_{i=1}^{\infty} (A \cap E_i) \right) \ge \sum_{i=1}^{\infty} m^* (A \cap E_i).$$

By (2)(3),  $m^* (A \cap \bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} m^* (A \cap E_i)$ .  $\square$ 

#### Section 3.4: A Nonmeasurable Set

Section 3.5: Measurable Functions

Section 3.6: Littlewood's Three Principles