ALGEBRAIC FORMULAS

1.
$$(a+b)^2 = a^2 + 2ab + b^2$$
; $a^2 + b^2 = (a+b)^2 - 2ab$

2.
$$(a-b)^2 = a^2 - 2ab + b^2$$
; $a^2 + b^2 = (a-b)^2 + 2ab$

3.
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)$$

4.
$$(a + b) = a^3 + b^3 + 3ab(a + b); a^3 + b^3 = (a + b)^3 - 3ab(a + b)$$

5.
$$(a-b)^3 = a^3 - b^3 - 3ab(a-b)$$
; $a^3 - b^3 = (a-b)^3 + 3ab(a-b)$

6.
$$a^2 - b^2 = (a + b)(a - b)$$

7.
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

8.
$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

9.
$$a^n - b^n = (a - b)(a^{n-1} + a^{n-2b} + a^{n-3}b^2 + \dots + b^{n-1})$$

10.
$$a^n = a.a.a...n$$
 times

11.
$$a^m \cdot a^n = a^m + n$$

12.
$$\frac{a^m}{a^n} = a^{m-n} \quad \text{if } m > n$$

$$= 1$$
 if $m = n$

$$=\frac{1}{a^{m-n}}$$
 if $m < n$; $a \in R$, $a \neq 0$

13.
$$(a^m)^n = a^{mn} = (a^n)^m$$

$$(ab)^n = a^n \cdot b^n$$

$$(\frac{a}{b})^n = \frac{a^n}{b^n}$$

16.
$$a^0 = 1 \text{ where } a \in R, a \neq 0$$

17.
$$a^{-n} = \frac{1}{a^n}, \ a^n = \frac{1}{a^{-n}}$$

$$a^{\frac{p}{q}} = \sqrt[q]{a^p}$$

19. If
$$a^m = a^n$$
 and $a = \pm 1$, $a \neq 0$, then $m = n$

20. If
$$a^n = b^n$$
 where $n \neq 0$, then $a = \pm b$

GEOMETRIC FORMULAS

> SHAPES

1. Square

Perimeter:
$$P = 4s \text{ or } 2s + 2s$$

Area: $A = s^2$

2. Rectangle

Perimeter:
$$P = 2w + 2l$$

Area: $A = l \cdot w$

b

3. Triangles

Perimeter:
$$P = a + b + c$$

Area: $A = \left(\frac{1}{2}\right) \times b \times h$ or $\frac{bh}{2}$

- Types of triangle
 - a) Isosceles two equal sides
 - b) Equilateral all sides are equal
 - c) Right one 90° or right angle

• Sum of all angles (all triangles):

$$A + B + C = 180^{\circ}$$

4. Circle

Diameter: d = 2rCircumference: $C = 2\pi r$ or πd Area: πr^2

5. Rectangular Solid

$$Volume: v = l \times w \times h$$

Surface Area:
$$s = (2 \times h \times w) + (2 \times l \times h) + (2 \times l \times w)$$

 $s = 2hw + 2lh + 2lw$

6. Right Circular Cylinder $Volume: v = \pi r^2 h$

Surface Area: $s = 2\pi rh + 2\pi r^2$

> ANGLES

1. Complementary Angles

- ✓ Two angles are complementary if the sum of their measures is 90°.
- ✓ $\angle A + \angle B = 90^{\circ}$, therefore $\angle A$ and $\angle B$ are complementary

Figure 1.1

2. Supplementay Angles

- ✓ Two angles are supplementary if the sum of their measures is 180°
- ✓ $\angle 1$ and $\angle 2$ are supplementary angles.
- ✓ $\angle 2$ and $\angle 4$ are supplementary angles.

3. Opposite/Vertical Angles

- ✓ The intersection of two lines, m₁ and m₂, form four angles. Opposite (vertical) angles are congruent (have equal measures)
- ✓ $\angle 1$ and $\angle 4$ are congruent.
- ✓ $\angle 2$ and $\angle 3$ are congruent.

4. Alternate Interior and Exterior Angles

- ✓ Lines m_1 and m_2 are parallel.
- ✓ ∠4 and ∠5 are called alternate interior angles. Alternate interior angles are congruent.
- ✓ ∠1 and ∠8 are called alternate exterior angles. Alternate exterior angles are congruent. ✓ M₃

Figure 2.1. For numbers 2, 3 & 4

5. Straight Lines

- ✓ Straight lines have degrees measuring 180°.
- ✓ If D to B is a straight line then ∠DBC measures 180°

TRIGONOMETRIC FORMULAS

> RIGHT TRIANGLE

Assume that:

$$0 < \theta < \frac{\pi}{2}$$
 or $0^{\circ} < \theta < 90^{\circ}$

Adjacent

$$\sin\theta = \frac{opp}{hyp}$$

$$\csc\theta = \frac{hyp}{opp}$$

$$\cos\theta = \frac{adj}{hyp}$$

$$\sec \theta = \frac{hyp}{adj}$$

$$\tan \theta = \frac{opp}{adj}$$

$$\cot \theta = \frac{adj}{opp}$$

> UNIT CIRCLE

$$\sin \theta = \frac{y}{1}$$
 $\csc \theta = \frac{1}{y}$

$$\cos \theta = \frac{x}{1}$$
 $\sec \theta = \frac{1}{x}$

$$\tan \theta = \frac{y}{x}$$
 $\cot \theta = \frac{x}{y}$

Assume that θ can be any angle.

> IDENTITIES AND FORMULAS

1. Tangent and Cotangent Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

2. Reciprocal Identities

$$\sin \theta = \frac{1}{\csc \theta}$$
 $\csc \theta = \frac{1}{\sin \theta}$ $\cot \theta = \frac{1}{\cot \theta}$ $\cot \theta = \frac{1}{\tan \theta}$

3. Pythagorean Identities

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\tan^2 \theta + 1 = \sec^2 \theta$$
$$1 + \cot^2 \theta = \csc^2 \theta$$