Exercise 1. Let X be a Markov chain on E (not necessarily irreducible). Suppose that state $j \in E$ is positive recurrent and aperiodic. Show that

$$\lim_{n \to \infty} p_{ij}^{(n)} = \pi_j \mathbb{P}(\tau_j < \infty \mid X_0 = i), \qquad \tau_j = \inf\{n \ge 0 : X_n = j\},$$

where π is the stationary distribution of the chain restricted to the communicating class of j.

Solution. By the total probability formula, we have

$$p_{ij}^{(n)} = \mathbb{P}(X_n = j \mid X_0 = i) = \sum_{r=1}^n \mathbb{P}(\tau_j = r \mid X_0 = i) p_{jj}^{(n-r)}.$$

By considering the sub-chain with valued in the communicating class of j, we see that this sub-chain is irreducible and j is positive recurrent. We can thus apply a theorem from the class that gives that $p_{jj}^{(n-r)} \to \pi_j$. Since $\sum_{r=1}^n \mathbb{P}(\tau_j = r \mid X_0 = i) < \infty$, we obtain, by the dominated convergence theorem

$$p_{ij}^{(n)} = \mathbb{P}(X_n = j \mid X_0 = i) = \sum_{r=1}^n \mathbb{P}(\tau_j = r \mid X_0 = i) p_{jj}^{(n-r)} \to \pi_j \sum_{r=1}^\infty \mathbb{P}(\tau_j = r \mid X_0 = i)$$
$$= \pi_j \mathbb{P}(\tau_j < \infty \mid X_0 = i).$$

Exercise 2. Let X be a Markov chain with transition matrix P on $E = \{1, 2, 3, 4, 5\}$ given by

$$P = \begin{pmatrix} \frac{1}{3} & 0 & 0 & \frac{2}{3} & 0\\ 0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0\\ 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2}\\ \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0\\ 0 & 0 & \frac{1}{4} & 0 & \frac{3}{4} \end{pmatrix}.$$

- (a) Find the communicating classes of P. For the recurrent classes, find the corresponding stationary distributions.
- (b) Supposing that $X_0 \sim \alpha$ for a distribution α on E, find the limiting distribution of X_n when $n \to \infty$.

Hint: Suppose that X starts in a transcient state of E and find the limiting distribution in this case.

Solution. (a) The communicating classes of P are $\{1,4\}$, $\{3,5\}$ et $\{2\}$. Closed (and recurrent) classes are $\{1,4\}$ et $\{3,5\}$. The submatrix P_1 corresponding to $\{1,4\}$ is given by:

$$P_1 = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}.$$

The stationary distribution of the system $\pi_1 = (a, b)$ verifies

$$\begin{cases} \frac{a}{3} + \frac{b}{2} &= a, \\ \frac{2a}{3} + \frac{b}{2} &= b, \\ a + b &= 1. \end{cases}$$

The solution of this system is given by $\pi_1 = (\frac{3}{7}, \frac{4}{7})$. The submatrix P_2 corresponding to $\{3, 5\}$ is given by:

$$P_2 = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}.$$

The stationary distribution of the system $\pi_2 = (c, d)$ verifies

$$\begin{cases} \frac{c}{2} + \frac{d}{4} &= c, \\ \frac{c}{2} + \frac{3d}{4} &= d, \\ c + d &= 1. \end{cases}$$

The solution of this system is given by $\pi_2 = (\frac{1}{3}, \frac{2}{3})$.

(b) State 2 is the only transient state of the system. Starting from 2, we know that $P_{2i}^n \xrightarrow{n \to \infty} h(i)\pi(i)$ where

$$h(i) =: \mathbb{P}(T_i < \infty \mid X_0 = 2), i = 1, 3, 4, 5,$$

and $\pi(i)$ corresponds to the component of the stationary distribution relative to state i $(\pi(1) = \pi_1(1), \pi(3) = \pi_2(1), \pi(4) = \pi_1(2), \pi(5) = \pi_2(2)).$

We need to compute h(i) for i = 1, 3, 4, 5. Since $\{1, 4\}$ is a closed and recurrent class, we have that $\mathbb{P}(T_1 < \infty \mid X_0 = 4) = 1$. Since $\{3, 5\}$ is closed, we also have that $\mathbb{P}(T_1 < \infty \mid X_0 = 3) = 0$. Using this, we obtain:

$$h(1) = \frac{1}{4}h(1) + \frac{1}{2} \cdot 0 + \frac{1}{4} \cdot 1 \Longrightarrow h(1) = \frac{1}{3}.$$

Similarly, we find:

$$\begin{cases} h(3) = \frac{1}{4}h(3) + \frac{1}{2} & \Longrightarrow h(3) = \frac{2}{3}, \\ h(4) = \frac{1}{4}h(4) + \frac{1}{4} & \Longrightarrow h(4) = \frac{1}{3}, \\ h(5) = \frac{1}{4}h(5) + \frac{1}{2} & \Longrightarrow h(5) = \frac{2}{3}. \end{cases}$$

Since 2 is transient, $P_{22}^n \stackrel{n\to\infty}{\longrightarrow} 0$. We thus get:

$$P_{21}^n \to \frac{1}{3} \times \frac{3}{7} = \frac{1}{7}, P_{23}^n \to \frac{2}{9}, P_{24}^n \to \frac{4}{21}, P_{25}^n \to \frac{4}{9}.$$

Therefore, the transition matrix P^n converges to P_{∞} given by:

$$P_{\infty} = \begin{pmatrix} \frac{3}{7} & 0 & 0 & \frac{4}{7} & 0\\ \frac{1}{7} & 0 & \frac{2}{9} & \frac{4}{21} & \frac{4}{9}\\ 0 & 0 & \frac{1}{3} & 0 & \frac{2}{3}\\ \frac{3}{7} & 0 & 0 & \frac{4}{7} & 0\\ 0 & 0 & \frac{1}{3} & 0 & \frac{2}{3} \end{pmatrix}.$$

So, if $\alpha = (\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5)$ is the initial distribution of X, the limiting distribution of X_n , denoted by α_{∞} , is given by

$$\alpha_{\infty} = \alpha P_{\infty} = (\frac{3\alpha_1}{7} + \frac{\alpha_2}{7} + \frac{3\alpha_4}{7}, 0, \frac{2\alpha_2}{9} + \frac{\alpha_3}{3} + \frac{\alpha_5}{3}, \frac{4\alpha_1}{7} + \frac{4\alpha_2}{21} + \frac{4\alpha_4}{7}, \frac{4\alpha_2}{9} + \frac{2\alpha_3}{3} + \frac{2\alpha_5}{3}).$$

Exercise 3. Let $(X_n)_{n\geq 0}$ and $(Y_n)_{n\geq 0}$ be two independent Markov chains, aperiodic and irreducible, defined on the state spaces E and E', respectively. Show that $(X_n, Y_n)_{n\geq 0}$ is an aperiodic and irreducible Markov chain on $E \times E'$. Find an example of $(X_n)_{n\geq 0}$ and $(Y_n)_{n\geq 0}$ independent and irreducible, but for which $(X_n, Y_n)_{n\geq 0}$ is not irreducible.

Solution. We write $(p_{ij})_{i,j\in E}$ and $(q_{ij})_{i,j\in E'}$ for the transition probabilities for $(X_n)_{n\geq 0}$ and $(Y_n)_{n\geq 0}$ respectively. For all $i_0, i\in E, j_0, j\in E'$, there exist r>0 and s>0 with $p_{i_0i}^{(r)}>0$ and $q_{j_0j}^{(s)}>0$. If X_n and Y_n are aperiodic, then, by a theorem of the class, there exists n_0 such that for all $n\geq n_0$, we have $p_{ii}^{(n)}>0$ and $q_{jj}^{(n)}>0$. Thus, for all $m\geq r+s+n_0$, we have that $p_{i_0i}^{(m)}>0$ and that $q_{j_0j}^{(m)}>0$, and thus

$$P\{(X_m, Y_m) = (i, j) | (X_0, Y_0) = (i_0, j_0)\} = p_{i_0 i}^{(m)} q_{j_0 j}^{(m)} > 0.$$

Notice that this implies that the periodicity of $(X_n, Y_n)_{n \ge 0}$ is equal to 1.

For the counterexample, we consider $(X_n)_{n\geq 0}$ and $(Y_n)_{n\geq 0}$ to be two independent Markov chain on \mathbb{Z} . They are independent. Notice that if we start at (0,0), we can only reach vertices for which the sum of its coordinates is even. Hence (X_n, Y_n) is not irreducible.

Exercise 4. (Branching process with immigration) For $n \in \mathbb{N}$, let $(N_k^n)_{k\geq 0}$ be a sequence of independent random variables on \mathbb{Z}^+ with a common generating function $\phi(t) = E(t^{N_k^n})$. The branching process with immigration is defined as

$$X_n = N_1^n + \ldots + N_{X_{n-1}}^n + I_n, \qquad n \ge 0$$

where $(I_n)_{n\geqslant 0}$ is a sequence of independent random variables with values in \mathbb{Z}^+ with a common generating function $\psi(t)=E(t^{I_n})$. Show that if $X_0=1$ then

$$E(t^{X_n}) = \phi^{(n)}(t) \prod_{k=0}^{n-1} \psi(\phi^{(k)}(t)).$$

In the case where the number of immigrants in each generation is a Poisson random variable of parameter λ and $P(N_k^n = 0) = 1 - p$, $P(N_k^n = 1) = p$, find the proportion of time in the long run for which the population is 0.

Solution. The equation for $\mathbb{E}(t^{X_n})$ can be proved by induction by doing a one step decomposition. Indeed, for n = 1, the result is straightforward by independence

$$\mathbb{E}(t^{X_1}) = \mathbb{E}(t^{N^1 + I_1}) = \mathbb{E}(t^{N^1})\mathbb{E}(t^{I_1}) = \phi(t)\psi(t).$$

Suppose that this holds for n. We obtain

$$\mathbb{E}(t^{X_{n+1}}) = \mathbb{E}(\mathbb{E}(t^{X_{n+1}}|X_n)) =$$

$$= \sum_{k=0}^{\infty} \mathbb{E}(t^{X_{n+1}}|X_n = k)\mathbb{P}(X_n = k) =$$

$$= \sum_{k=0}^{\infty} \mathbb{E}(t^{N_1^{n+1}} + \dots + N_k^{n+1} + I_{n+1})\mathbb{P}(X_n = k) =$$

$$= \psi(t) \sum_{k=0}^{\infty} \phi(t)^k \mathbb{P}(X_n = k) =$$

$$= \psi(t)\mathbb{E}(\phi(t)^{X_n}).$$

We finally get, by using the induction relation:

$$\mathbb{E}(t^{X_n}) = \phi^{(n)}(t) \prod_{k=0}^{n-1} \psi(\phi^{(k)}(t)).$$

In the special case of immigration that has a Poisson law, we get:

$$\mathbb{E}(t^{X_n}) = (1 + p^n(t-1)) \exp\left(\lambda(t-1) \frac{1 - p^n}{1 - p}\right).$$

We conclude for $0 \le p < 1$

$$\lim_{n \to \infty} \mathbb{P}(X_n = 0) = \lim_{n \to \infty} \lim_{t \to 0} \mathbb{E}(t^{X_n})$$

$$= \lim_{n \to \infty} (1 - p^n) \exp\left(-\lambda \frac{1 - p^n}{1 - p}\right)$$

$$= \exp\left(-\frac{\lambda}{1 - p}\right).$$

That is the proportion of time for which the population is 0 since

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mathbb{P}(X_k = 0) = \lim_{n \to \infty} \mathbb{P}(X_n = 0) = \exp\left(-\frac{\lambda}{1-p}\right).$$

Exercise 5. (Metropolis–Hastings algorithm) Suppose that we have a distribution p (called target distribution) on a countable space E. Then, for each $x \in E$, let q_x be a distribution on E (called the proposal distribution) with $q_x(y) > 0$ whenever $q_y(x) > 0$, for all $y \in E$. The Metropolis–Hastings algorithm constructs a Markov chain $(X_n)_{n>0}$ as follows:

- (i). Let $X_0 = x_0 \in E$ be random fixed state.
- (ii). For $X_n = x$, choose a candidate y according to the proposal distribution q_x . Then let U be a uniform random variable on [0,1], the variable X_{n+1} is defined as

$$X_{n+1} = \begin{cases} y & \text{if } U \le \min\left(\frac{p(y)q_y(x)}{p(x)q_x(y)}, 1\right) \\ x & \text{otherwise.} \end{cases}$$

Show that if $(X_n)_{n\geq 0}$ is irreducible and aperiodic, then it is a reversible chain with respect to its stationary distribution p.

Solution. Note that in general, irreducibility and aperiodicity are simple to show given the proposal distribution. In particular, note that if there exist x, y such that the ratio $\frac{p(y)q_y(x)}{p(x)q_x(y)}$ is not always equal to 1 (which is generally the case), then there is a positive probability to stay in state x, and the chain is therefore aperiodic.

It is easy to show that the transition probability from x to y with $x \neq y$ is

$$p_{xy} = q_x(y) \min \left(\frac{p(y)q_y(x)}{p(x)q_x(y)}, 1 \right).$$

With this, we have by the detailed balance (suppose that $p(x)q_x(y) > p(y)q_y(x)$ wlog)

$$\pi_x \frac{q_x(y) \frac{p(y)q_y(x)}{p(x)q_x(y)}}{q_y(x)} = \pi_y$$

and thus $\pi_x = p(x)$ for all $x \in \mathbb{E}$. Moreover, by the previous exercise sheet, the chain is reversible with respect to its stationary distribution.