- Ausgewählte Lösungen zum 8. SL-Blatt für den 10. Dezember 2021
- 2) a) Die Sprache ist durch $L = \{x \in \{0,1\}^* \mid \exists y,z \in \{0,1\}^*. \ x = y1z\}$ gegeben.
 - b) Wir zeigen $x \in L$ gdw. $x \in L(A) = \{x \in \{0,1\}^* \mid \hat{\delta}(a,x) = b\}$ mittels Induktion über die Wortlänge n von x.
 - Basisfall: $n=0 \iff x=\epsilon$. Da $\epsilon \notin L$ und $\hat{\delta}(a,\epsilon)=a\neq b$ (der einzig akzeptierte Zustand), also $\epsilon \notin L(A)$, gilt die Behauptung.
 - Schritt: Sei x ein Wort der Länge n+1. Wir betrachten zwei Fälle, wobei der letzte Schritt jeweils aus dem Resultat der Zusatzübung folgt:
 - x = 0w: Es gilt

$$\begin{array}{l} 0w \in L \iff w \in L \\ \iff \hat{\delta}(a,w) = b \\ \iff \hat{\delta}(\hat{\delta}(a,0),w) = b \\ \iff \hat{\delta}(a,0w) = b \end{array}$$

• x = 1w: Es gilt

$$1w \in L \iff w \in \{0,1\}^*$$

$$\iff \hat{\delta}(b,w) = b$$

$$\iff \hat{\delta}(\hat{\delta}(a,1),w) = b$$

$$\iff \hat{\delta}(a,1w) = b.$$

Dass $\hat{\delta}(b,w)=b$ für ein beliebiges Wort über $\{0,1\}$ gilt ist leicht ersichtlich. Dies kann auch formell mittels Induktion üeber die Wortlänge von w überprüft werden.

3) Lösung. Wir konstruieren den Automaten A, sodass L = L(A).

Einen DEA können wir im Allgemeinen in eine rechtslineare Grammatik $G=(V,\Sigma,R,S)$ transformieren, indem wir für jede Kante (p,a,q) des Automaten A eine Regel $P\to aQ$ in der Grammatik erzeugen, wobei $P,Q\in V$ und $a\in\Sigma$. Dabei ist folgendes zu beachten:

- Wenn p oder q ein Startzustand ist, so ist P oder Q das Startsymbol von G.
- Wenn q ein akzeptierender Zustand ist, fügen wir $Q \to \epsilon$ zu unseren Regeln hinzu.
- Das Eingabealphabet Σ von A ist das Alphabet Σ von G.
- Alle Kanten, die zu Zustände führen, von denen nie ein akzeptierender Zustand erreicht werden kann, können weggelassen werden.

Umgekehrt können wir auch aus einer rechtslinearen Grammatik G (unter gewissen Voraussetzungen) einen DEA $A=(Q,\Sigma,\delta,s,F)$ generieren, indem wir für jede Regel $P\to axQ$, wobei $P,Q\in V,\ a\in \Sigma$ und $x\in \Sigma^*$ die erweiterte Übergangsfunktion $\hat{\delta}(p,xa)=q$ definieren. Dabei ist folgendes zu beachten:

- ullet Wenn P das Startsymbol ist, so ist p der Startzustand von A.
- Wenn Q leer ist, so ist q ein akzeptierender Zustand.
- Das Alphabet Σ von G ist das Eingabealphabet Σ von A.
- Für jedes unbekannte $\delta(q_1, a)$ generieren wir einen neuen Zustand $q_2 \in Q$ sodass $\delta(q_1, a) = q_2$ gilt.
- Alle nicht definierten kannten gehen zu einem neuen Zustand $r \in Q$.

Hinweis: Beachten Sie, dass im Allgemeinen die Konstruktion des Automaten aus einer (rechtslinearen) Grammatik einen sogenannten $nichtdeterministischen endlichen Automaten (NEA)^1$ generiert. Wir schränken uns aber auf solche Grammatiken ein, bei denen die resultierende Übergangsfunktion δ wohldefiniert ist.

Zusatzübung. Lösung. Im Basisfall ist $z = \epsilon$ und somit

$$\hat{\delta}(q, y\epsilon) = \hat{\delta}(q, y) = \hat{\delta}(\hat{\delta}(q, y), \epsilon).$$

Im Induktionsschritt müssen wir

$$\hat{\delta}(q,yza) = \hat{\delta}(\hat{\delta}(q,y),za)$$

zeigen. Es gilt die Induktionshypothese

$$\hat{\delta}(q, yz) = \hat{\delta}(\hat{\delta}(q, y), z)$$
.

¹Siehe https://de.wikipedia.org/w/index.php?title=Nichtdeterministischer_endlicher_Automat&oldid=213285292.

Wir erhalten

$$\begin{split} \text{(Definition 4.15)} & & \hat{\delta}(q,yza) = \delta(\hat{\delta}(q,yz),a) \\ \text{(IH)} & & = \delta(\hat{\delta}(\hat{\delta}(q,y),z),a) \\ \text{(Definition 4.15)} & & = \hat{\delta}(\hat{\delta}(q,y),za) \,. \end{split}$$