Haskell Notes v.0

Ichi Kanaya

2025

0.1 Haskell

TK. Haskell について.

0.2 変数

変数 x に値を代入するには次のようにする.*1

$$x = 1 \tag{1}$$

変数という呼び名に反して,変数の値は変えられない.そこで変数に値を代入するとは呼ばずに,変数名に値を**束縛**するという.式 (1) の右辺を**リテラル**と呼ぶ.

リテラルや変数には**型**がある.型は数学者の集合と似た意味で,整数全体の集合 $\mathbb Z$ に相当する**整数型**や,実数全体の集合 $\mathbb R$ に相当する**浮動** 小数点型がある.以下,誤解のおそれがない限り整数型を $\mathbb Z$ で,浮動 小数点型を $\mathbb R$ で表す.*2

数学者は変数 x が整数であることを $x \in \mathbb{Z}$ と書くが,本書では $x :: \mathbb{Z}$ と書く.これは記号 ϵ を別の用途に用いるためである.*3

変数の値がいつでも変化しないことを**参照透過性**と呼ぶ.プログラマーが変数の値を変化させたい理由はユーザー入力,ループ,例外,内部状態、大域ジャンプ、継続を扱いたいからであろう.しかし、後に見

^{*1} Haskell では x = 1 と書く.

^{*2} Haskell ではそれぞれ Int および Double を用いる.

^{*3} Haskell では x :: Int と書く.

0.3 関数 3

るようにループ,例外,内部状態,大域ジャンプ,継続に変数の破壊的 代入は必要ない.ユーザー入力に関しても章を改めて取り上げる.

本書では変数名を原則 1 文字として、イタリック体で表し、w, x, y, z のような n 以降のアルファベットを使う.

0.3 関数

関数 f は次のように定義できる.*4

$$fx = x + 1 \tag{2}$$

ここにx は関数 f の引数である.引数は括弧でくるまない.

本書では関数名を原則 1 文字として、イタリック体で表し、f,g,h のようにアルファベットの f 以降の文字を使う。ただし有名な関数についてはローマン体で表し、文字数も 2 文字以上とする。たとえば \sin などの三角関数や指数関数がそれにあたる。

変数 x に関数 f を**適用**する場合は次のように書く.*5

$$z = fx \tag{3}$$

関数 f が引数をふたつ取る場合は、次のように書く.*6

$$z = fxy \tag{4}$$

なお fxy は (fx)y と解釈される. 前半の (fx) は 1 引数の関数とみなせる.

^{*4} Haskell では f x = x+1 と書く.

^{*5} Haskell では z = f x と書く.

 $^{*^6}$ Haskell では z = f x y と書く.

TK. 有名な関数, 実数編.

0.4 関数合成

関数の**合成**は次のように書く.*⁷

$$k = g \bullet f \tag{5}$$

関数合成演算子 ● は以下のように左結合する.

$$k = h \bullet g \bullet f \tag{6}$$

$$= (h \bullet g) \bullet f \tag{7}$$

(8)

関数適用のための特別な演算子 \S があると便利である。演算子 \S は関数合成演算子よりも優先順位が低い。例を挙げる.**

$$z = h \S (g \bullet f) x \tag{9}$$

$$=h\left((g\bullet f)x\right)\tag{10}$$

0.5 IO サバイバルキット 1

プログラムとは合成された関数である.多くのプログラミング言語では、プログラムそのものに main という名前をつける.本書では「IO モナド」の章で述べる理由によって、main 関数をスラント体で main と書く.

^{*7} Haskell では k = g . f と書く.

^{*8} Haskell ではz = h\$ (g . f) x と書く.

実用的なプログラムはユーザからの入力を受け取り、関数を適用し、ユーザへ出力する。 Haskell ではユーザからの 1 行の入力を getLine で受け取り、変数の値を print で書き出せる。 ここに getLine と print は関数(ファンクション)ではあるが、特別に「 $ret{Po}$ とも呼ぶ。関数 main も $ret{Po}$ ションである。

引数 x の 1.5 乗を求める関数 f は次のように定義できる. *9

$$fx = x^{1.5} \tag{11}$$

ユーザからの入力に関数 f を適用してユーザへ出力するプログラムを Haskell で書くと次のようになる. * *10

$$main = print \bullet f \bullet read \heartsuit getLine \tag{12}$$

ここに関数 read は**文字列**であるユーザ入力を数に変換する関数である.また演算子 ♡ は新たな関数合成演算子で,アクションとアクションを合成するための特別な演算子である.詳細は「モナド」の章で述べる.

式 (12) は「main とは getLine した結果を read して f して print するものである」とも読める。そのため Haskell はどうしても手続き的に書きたいプログラマのために,以下のようなシンタックスシュガーを用意している。

f x = x ** 1.5

main = do

line <- getLine

^{*9} Haskell では f x = x ** 1.5 と書く.

 $^{^{*10}}$ Haskell では main = print . f . read =<< getLine と書く.

let x = read line
let y = f x
print y

このような書き方は「do 記法」の章で述べる.

0.6 ラムダ

関数とは,変数名に束縛された**ラムダ式**である.ラムダ式は次のように書く. *11

$$f = \backslash x \mapsto x + 1 \tag{13}$$

本書では無名変数 ◊ を用いた以下の書き方も用いる.*12

$$f = (\lozenge + 1) \tag{14}$$

$$= \langle x \mapsto x + 1 \tag{15}$$

無名変数が2回以上登場した場合は、その都度新しいパラメタを生成する。たとえば次のとおりである。 *13

$$f = \lozenge + \lozenge \tag{16}$$

$$= \langle x \mapsto (\langle y \mapsto x + y) \rangle \tag{17}$$

^{*11} Haskell では f = \x -> x+1 と書く.

^{*} 12 無名変数は Haskell には無いが,代わりに「セクション」という書き方ができる.式 (\Diamond + 1) は Haskell では (+1) と書く.

 $^{*^{13}}$ Haskell では f = (+) と書く.

0.7 ローカル変数

関数内で**ローカル変数**を使いたい場合は以下のように行う.*14

$$z = \text{let } \{y = 1\} \text{ in } x + y \tag{18}$$

ローカル変数はラムダ式のシンタックスシュガーである. 式 (18) は次の式と等価である.

$$z = (\y \mapsto x + y)1\tag{19}$$

ローカル変数の定義は次のように後置できる.*15

$$z = x + y \text{ where } \{y = 1\}$$

0.8 クロージャ

ラムダ式を返す関数は、ラムダ式内部に値を閉じ込めることができる。 たとえば

$$fn = \backslash x \mapsto n + x \tag{21}$$

のように関数を定義して良い. 関数 f に引数 n を与えると、新たな 1 引数関数が得られる. 例を挙げる.

$$n = 3 \tag{22}$$

$$g = fn \tag{23}$$

^{*&}lt;sup>14</sup> Haskell では z = let {y = 1} in x+y と書く. let 節内の式がひとつの場合, 中括弧は省略可能である. 式が複数になる場合は; で区切る.

^{*&}lt;sup>15</sup> Haskell では z = x+y where {y = 1} と書く. where 節内の式が一つの場合,中括弧は省略可能である. 式が複数になる場合は;で区切る.

この例では、関数 g の中に値 n=3 が閉じ込められているため g1 は 4 と評価される.値を閉じ込めたラムダ式を**クロージャ**と呼ぶ.

0.9 型

すべての変数,関数には**型**がある.代表的な型には整数型,浮動小数点型,ブール型,文字型がある.整数型を $\mathbb Z$ で,浮動小数点型を $\mathbb R$ で表すことはすでに述べたとおりである.

Haskell には 2 種類の整数型がある。ひとつは**固定長整数型**で,もうひとつは**多倍長整数型**である。Haskell では前者を Int で,後者を Integer で表す。多倍長整数型はメモリの許す限り巨大な整数を扱えるので,整数全体の集合に近いのであるが,本書では $\mathbb Z$ と書いて固定長整数型を意味することにする。

浮動小数点型には**単精度浮動小数点型**と**倍精度浮動小数点型**があり、 Haskell では前者を Float で、後者を Double で表現するが、単精度浮動小数点型はめったに用いられないため、今後 ℝ と書けば倍精度浮動小数点型の意味とする。

ブール型は論理値 True または False のいずれかしか値をとれない型で、今後 $\mathbb B$ と書く. * 16

本書では対応する,あるいは近い数学概念がある場合,型名をブラックボード体 1 文字で書く.文字型のように対応する数学概念がない場合はボールドローマン体を用いる.文字型は **Char** とする.* 17

^{*16} Haskell ではブール型を Bool と書く.

^{*17} Haskell では Unicode 文字型を Char と書く.

0.9 型

変数 x の型が \mathbb{Z} のとき、以下のように**型注釈**を書く.*18

$$x :: \mathbb{Z} \tag{24}$$

1引数関数の型は次のように注釈できる.*19

$$f:: \mathbb{Z} \to \mathbb{Z} \tag{25}$$

ここで関数 f は整数型の引数をひとつとり、整数型の値を返す. * 20 2 引数関数の方は次のように注釈できる. * 21

$$f:: \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z} \tag{26}$$

ここで関数 f は整数型の引数をふたつとり、整数型の値を返す. 型 $\mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}$ は $\mathbb{Z} \to (\mathbb{Z} \to \mathbb{Z})$ と解釈される.

 $(\mathbb{Z} \to \mathbb{Z})$ 型の関数を受け取り, $(\mathbb{Z} \to \mathbb{Z})$ 型の関数を返す関数は次の型を持つ。 *22

$$f:: (\mathbb{Z} \to \mathbb{Z}) \to (\mathbb{Z} \to \mathbb{Z}) \tag{27}$$

なお後半の括弧は省略可能なので

$$f:: (\mathbb{Z} \to \mathbb{Z}) \to \mathbb{Z} \to \mathbb{Z} \tag{28}$$

と書いても良い.

^{*18} Haskell では x :: Int と書く.

^{*19} Haskell では f :: Int -> Int と書く.

^{*20} 正確には → は型コンストラクタである.

^{*} 21 Haskell では f :: Int -> Int -> Int と書く.

^{*22} Haskell では以下のように書く.

0.10 条件

条件分岐は次のように書く.*²³

$$z = \text{if } x > 0 \text{ then } x \text{ else } -x \tag{29}$$

条件分岐の代わりに以下のような**パターンマッチ**も使える.*²⁴

$$f = \operatorname{case} x \text{ of } \begin{cases} 1 \to 1 \\ - \to 0 \end{cases} \tag{30}$$

この場合 $x \equiv 1$ ならば f は 1 を、そうでなければ f は 0 を返す.ここに _ はすべてのパターンに一致する記号である.パターンマッチは上から順に行われる.

関数定義にもパターンマッチを使える.*²⁵

$$\begin{cases}
f1 = 1 \\
f_{-} = 0
\end{cases}$$
(31)

関数定義には次のように**ガード**と呼ばれる条件を付与することがで

^{*} 23 Haskell では z = if x>0 then x else -x と書く.

^{*24} Haskell では以下のように書くのが一般的である.

^{*&}lt;sup>25</sup> Haskell では次のように書く.

きる.*26

$$\begin{cases} fx \mid_{x>0} = x \\ \mid_{\text{otherwise}} = -x \end{cases}$$
 (32)

ここに otherwise は _ の別名である.

0.11 関数の再帰呼び出し

関数は再帰的に呼び出せる. $n \ge 0$ を前提とすると, n 番目のフィボナッチ数を計算する関数 fib を次のように定義できる.*27

$$\begin{cases} \operatorname{fib} 0 = 0 \\ \operatorname{fib} 1 = 1 \\ \operatorname{fib} n = \operatorname{fib}(n-1) + \operatorname{fib}(n-2) \end{cases}$$
(33)

0.12 タプル

複数の変数をまとめてひとつの $\mathbf{9}$ プルにすることができる.例を挙げる. *28

$$z = (x, y) \tag{34}$$

$$f x | x > 0 = x$$

| otherwise = -x

*27 Haskell では次のように書く. ただし Haskell には符号なし整数型がないために nが正であることを別に担保する必要がある. またこのコードは無駄な再帰呼び出しを行っており実用的ではない.

^{*26} Haskell では次のように書く

タプルの型は、要素の型をタプルにしたものである.例えば \mathbb{Z} が2個からなるタプルの型は次のようになる.*29

$$z :: (\mathbb{Z}, \mathbb{Z}) \tag{35}$$

要素を含まないタプルを**ユニット**と呼ぶ. ユニットは次のように書 < *³⁰

$$z = () \tag{36}$$

ユニットの型は**ユニット型**で、型注釈を次のように書く.*31

$$z::() \tag{37}$$

0.13 リスト

任意の型について、その型の要素を並べた列をリストと呼ぶ.

ある変数がリストであるとき、その変数がリストであることを忘れないように x_s と小さくsを付けることにする.

空リストは次のように定義する.*32

$$x_{s} = [] \tag{38}$$

任意のリストは次のように: 演算子を用いて構成する.

$$x_{s} = x_{0} : x_{1} : x_{2} : \dots : []$$
 (39)

^{*29} In Haskell, z :: (Int, Int).

^{*30} Haskell では z = () と書く.

^{*31} Haskell では z :: () と書く.

^{*} 32 Haskell では xs = Π と書く.

0.13 リスト 13

リストの型はその構成要素の型をブラケットで包んで表現する.*33

$$x_{\mathbf{s}} :: [\mathbb{Z}] \tag{40}$$

リストは次のように構成することもできる.*34

$$x_s = [1, 2, \dots, 100]$$
 (41)

なお次のような**無限リスト**を構成しても良い.*35

$$x_{\rm s} = [1, 2, \dots] \tag{42}$$

リストとリストをつなぐ場合は**リスト結合演算子** # を用いる.*36

$$z_{\rm s} = x_{\rm s} \# y_{\rm s} \tag{43}$$

関数はリストを受け取ることができる。次の書き方では、関数 f は整数リストの最初の要素 x と残りの要素 x_s を別々に受け取り、先頭要素だけを返す、 *37

$$f:: [\mathbb{Z}] \to \mathbb{Z} \tag{44}$$

$$f(x:x_{\rm s}) = x \tag{45}$$

^{*33} Haskell では xs :: [Int] と書く.

^{*34} Haskell では xs = [1, 2..100] と書く.

^{*35} Haskell では xs = [1, 2..] と書く.

^{*36} Haskell では zs = xs ++ ys と書く.

^{*} 37 Haskell では f (x:xs) :: [Int] -> Int = x と書く.

0.14 内包表記

リストの構成には**内包表記**が使える. 例を挙げる.*38

$$x_{\rm s} = [x^2 \mid x \in [1, 2 \dots 100], \text{even } x]$$
 (46)

この例では数列 [1,2...100] のうち偶数だけを 2 乗したリストを作っている.

0.15 文字列

文字型のリストを文字列型と呼び **String** で表す. **String** 型は次のように予約語 type を用いて、**型シノニム**として定義される.

type
$$String = [Char]$$
 (47)

文字列型のリテラルは次のように書く、*39

$$x :: String = "Hello, World!"$$
 (48)

0.16 マップと畳み込み

リスト x_s の各要素に関数fを適用して、その結果をリスト z_s に格納するためには次のように**マップ演算子** \otimes を用いる.* *40

$$z_{\rm s} = f \otimes x_{\rm s} \tag{49}$$

^{*&}lt;sup>38</sup> Haskell では次のように書く.

 $xs = [x^2 | x \leftarrow [1, 2..100], x>50]$

^{*39} Haskellではx:: String = "Hello, World!" と書く.

^{*40} Haskell では zs = f 'map' xs と書く.

リスト x_s の各要素を先頭から順番に2項演算子を適用して、その結果を得るには畳み込み演算子を用いる。例えば整数リストの和は次のように書ける。 *41

$$z = \bigcup_{0}^{(\lozenge + \lozenge)} x_{s} \tag{50}$$

リスト x_s が $[x_0, x_1, \ldots, x_n]$ のとき、一般に

$$\bigcup_{\alpha}^{\mathbf{A}} x_{\mathbf{S}} = a \mathbf{A} x_{0} \mathbf{A} x_{1} \dots x_{n-1} \mathbf{A} x_{n}$$
 (51)

である.

畳み込み演算子には次の右結合バージョンが存在する.*⁴²

$$\bigsqcup_{a} \mathbf{x}_{s} = a \mathbf{A} \left(x_{0} \dots \left(x_{n-2} \mathbf{A} \left(x_{n-1} \mathbf{A} x_{n} \right) \right) \right)$$
 (52)

IO survival kit 2.

1 2 3

4 5 6

getContents

lines

words(S)

(read(s))(s)

 $fx_{\rm s} = {\rm sqrt} \bullet {\rm fromIntegral} \bullet {\rm sum} \S (\x \mapsto x \star x) \otimes x_{\rm s}$

f(s)

^{*41} Haskell では z = foldl 0 (+) xs と書く.

 $^{^{*42}}$ Haskell では foldr を用いる.

print

$$f :: [\mathbb{Z}] \to \mathbb{R} \tag{53}$$

$$fx_s = \operatorname{sqrt} \bullet \operatorname{fromIntegral} \bullet \operatorname{sum} \S (\backslash x \mapsto x * x) \otimes x_s$$
 (54)

readInt ::
$$String \to \mathbb{Z}$$
 (55)

$$readInt = read$$
 (56)

f :: [Int] -> Double

f[] = 0

f xs = sqrt . fromIntegral . sum $(x \rightarrow x * x)$ 'map' xs

readInt :: String -> Int

readInt = read

main = print . (f <\$>) . ((readInt <\$>) <\$>) . (words <\$>) . lines

0.17 Maybe

計算は失敗する可能性がある. 例えば

$$z = y/x \tag{58}$$

のときに $x \equiv 0$ であったとしたら、この計算は失敗する.プログラムが計算を失敗した場合、たいていのプログラマは大域ジャンプを試みる.

0.17 Maybe 17

しかし大域ジャンプは変数の書き換えを行うことであるから、別の方法が望まれる. Haskell では失敗する可能性がある場合には Maybe という機構が使える.

いま関数 f が引数 x と y を取り, $x \neq 0$ であるならば y/x を返すとする.もし $x \equiv 0$ であれば失敗を意味する \varnothing (ナッシング) を返すとする.すると関数 f の定義は次のようになる.

$$fyx = \text{if } x \neq 0 \text{ then } y/x \text{ else } \emptyset \dots (不完全)$$
 (59)

残念ながら上式は不完全である.なぜならば $x \neq 0$ のときの戻り値は数 であるのに対して, $x \equiv 0$ のときの戻り値は数ではないからである.そこで

$$f^{\dagger}yx = if x \neq 0 \text{ then }^{\text{Just}} \langle y/x \rangle \text{ else } \varnothing$$
 (60)

とする. ここに $J^{\text{ust}}(y/x)$ は数 y/x から作られる, Maybe で包まれた数である.

整数型 $\mathbb Z$ を Maybe で包む場合は $^?\langle\!\langle \mathbb Z\rangle\!\rangle$ と書く. Maybe で包まれた型を持つ変数は $x_?$ のように小さく ? をつける. 例を挙げる. *43

$$x_? :: {}^? \langle\!\langle \mathbb{Z} \rangle\!\rangle \tag{61}$$

Maybe で包まれた型を持つ変数は、値を持つか \emptyset (ナッシング)であるかのいずれかである。値をもつ場合は

$$x_? = ^{\text{Just}} \langle 1 \rangle \tag{62}$$

のように書く.*⁴⁴

^{*43} Haskell では xm :: Maybe Int と書く.

^{*44} Haskell では xm = Just 1 と書く.

Maybe 変数が値を持たない場合は

$$x_? = \varnothing \tag{63}$$

と書く.*⁴⁵

0.18 Maybe に対する計算

Maybe 変数に、非 Maybe 変数を受け取る関数を適用することは出来ない。そこで特別な演算子 (S) を用いる.* 46

$$z_? = (\lozenge + 1) \ \widehat{\text{S}} \ x_? \tag{64}$$

ここに演算子(S)は

$$^{\text{Just}} \langle fx \rangle = f \, (\hat{\mathbf{S}})^{\text{Just}} \, \langle x \rangle \tag{65}$$

$$\emptyset = f(\widehat{\mathbf{S}}) \emptyset$$
 (66)

と定義される.

0.19 Maybe **の中のリスト**

リストが Maybe の中に入っている場合は、リストの各要素に関数を 適用することができる. 例を挙げる.

$$x_? = ^{\text{Just}} \langle [1, 2, \dots, 100] \rangle \tag{67}$$

 $^{^{*45}}$ Haskell では xm = Nothing と書く.

^{*46} Haskell では zm = (+1) <\$> xm と書く.

0.20 型パラメタ

のとき,リストの各要素に関数 $f::\mathbb{Z} \to \mathbb{Z}$ を適用するには次のように書く.*47

$$z_? = (f \otimes) \, (\widehat{\mathbf{S}}) \, x_? \tag{68}$$

0.20 型パラメタ

型をパラメタとして扱うことができる。任意の型を \mathbf{a} と、ボールド体小文字で書く。ある型 \mathbf{a} の引数を取り、同じ型を返す関数の型は次のように書ける。 *48

$$f :: \mathbf{a} \to \mathbf{a} \tag{69}$$

型パラメタには制約をつけることができる。型の集合を**型クラス**と呼び、フラクチュール体で書く。たとえば数を表す型クラスは \mathfrak{N} um である。型パラメタ \mathbf{a} が型クラス \mathfrak{N} um に属するとき、上述の関数 f の型注釈は次のようになる.*49

$$f :: \mathfrak{Num} \supset \mathbf{a} \Rightarrow \mathbf{a} \to \mathbf{a} \tag{70}$$

型クラスは型に制約を与える.

TK. Num a => x :: a ならば x が持つべき演算子.

TK. 型クラスの例.

^{*47} Haskell では zm = (f < \$>) < \$> xm と書く. 最初の < \$> はリストの各要素に関数 <math>f を適用する演算子、2番目の < \$> は Maybe の中のリストの各要素に関数 f を適用する演算子である.

^{*48} Haskell では f :: a -> a と書く.

^{*49} Haskell では f :: Num a => a -> a と書く.

0.21 関手

型aのリストの変数は

$$x_{s} :: [\mathbf{a}] \tag{71}$$

という型注釈を持つ. これは

$$x_{\rm s} :: [] \langle \mathbf{a} \rangle$$
 (72)

のシンタックスシュガーである.

型 a 型の Maybe の変数は

$$x_? :: {}^? \langle \langle \mathbf{a} \rangle \rangle$$
 (73)

という型注釈を持つ.

普段遣いの関数

$$f :: \mathbf{a} \to \mathbf{a} \tag{74}$$

をリスト変数 xs に適用する場合は

$$z_{\rm S} = f \otimes x_{\rm S} \tag{75}$$

とする. 同じく関数 f を Maybe 変数 x? に適用する場合は

$$z_? = f \ (\$) \ x_? \tag{76}$$

とする.

リストも Maybe も元の型 $\mathbf a$ から派生しており、関数適用のための特別な演算子を持つことになる.そこで、リストや Maybe は**関手**という型クラスに属する、型パラメタを伴う型であるとする.関手の型クラス

0.21 関手 21

を \mathfrak{F} unctor で表す. 関手型クラスの a 型の変数を次のように型注釈する. *50

$$x_{\star} :: \mathfrak{Functor} \supset \mathbf{f} \Rightarrow^{\mathbf{f}} \langle \langle \mathbf{a} \rangle \rangle$$
 (77)

型クラス \mathfrak{F} unctor に属する型は \mathfrak{S} 演算子を持たねばならない. 演算子 \mathfrak{S} は次の形を持つ. * 51

$$z_{\star} = f(\widehat{S}) x_{\star} \tag{78}$$

演算子(S)の型は次のとおりである.

もし変数 x_{\star} の型がリストであれば

$$(S) = \emptyset \tag{80}$$

であると解釈する.

Function of parametric type with functor class:*52

$$f :: \mathfrak{Functor} \supset \mathbf{f} \Rightarrow \mathbf{a} \to {}^{\mathbf{f}} \langle \langle \mathbf{a} \rangle \rangle \tag{81}$$

Example function application:*53

$$z_{\star} = (\lozenge + 1) \, (\widehat{\mathbf{s}})^{\text{Just}} \, \langle x \rangle \tag{82}$$

^{*50} Haskell では xm :: Functor f => f a と書く.

^{*51} In Haskell, zm = f <\$> xm.

 $^{^{*52}}$ In Haskell, f :: Functor f => a -> f a.

^{*53} In Haskell, zm = (+1) <\$> Just x.

0.22 関手としての関数

$$f :: \mathbf{q} \to \mathbf{r} \tag{83}$$

Function as a functor:*54

$$f :: (\phi \to \mathbf{r}) \mathbf{q} = {}^{(\phi \to \mathbf{r})} \langle \langle \mathbf{q} \rangle \rangle$$
 (84)

Thus,

$$f_2 \bullet f_1 \equiv f_2 \ \text{(S)} \ f_1 \tag{85}$$

$$id \bullet f = id f = f \tag{86}$$

$$(h \bullet g) \bullet f = ((h \bullet) \bullet (g \bullet)) f \tag{87}$$

$$= h \bullet (g \bullet f) \tag{88}$$

0.23 アプリカティブ関手

Pure:*55

$$z_{\star} = {}^{\star} \langle x \rangle \tag{89}$$

Applicative map:*56

$$z_{\star} = f_{\star} \otimes x_{\star} \tag{90}$$

^{*54} In Haskell, f :: ((->) r) q.

^{*55} In Haskell, zm = pure x.

 $^{^{*56}}$ In Haskell, zm = f <*> xm.

0.24 モナド 23

where

$$f_{\star} :: {}^{\mathbf{f}} \langle \langle \mathbf{a} \to \mathbf{b} \rangle \rangle$$
 (91)

Applicative style:*57

$$z_{\star} = {}^{\star} \langle f \rangle \otimes x_{\star} \otimes y_{\star} \tag{92}$$

or*58

$$z_{\star} = f(\widehat{\mathbf{S}}) \, x_{\star} \otimes y_{\star} \tag{93}$$

or*59

$$z_{\star} = \llbracket f \, x_{\star} \, y_{\star} \rrbracket \tag{94}$$

0.24 モナド

Returning List.

$$. (95)$$

Returning Maybe:*60

$$f:: \mathbb{Z} \to {}^? \langle\!\langle \mathbb{Z} \rangle\!\rangle \tag{96}$$

$$fx = ^{\text{Just}} \langle x \rangle \tag{97}$$

 $^{^{*57}}$ In Haskell, zm = pure (+) <*> xm <*> ym.

 $^{^{*58}}$ In Haskell, zm = f <\$> xm <*> ym.

^{*59} In Haskell, zm = liftA2 f xm ym.

^{*60} In Haskell, f :: Int -> Maybe Int and f x = Just x.

Returning monad:

$$f :: \mathbb{Z} \to {}^{\mathbf{m}} \langle \! \langle \mathbf{a} \rangle \! \rangle \tag{98}$$

$$fx = {}^{\star} \langle x \rangle \tag{99}$$

Returning monadic value:*61

$$f :: \mathfrak{Monad} \supset \mathbf{m} \Rightarrow \mathbf{a} \rightarrow \mathbf{m} \langle \langle \mathbf{a} \rangle \rangle$$
 (100)

Monadic function binding:*62

$$z_{\star} = x_{\star} \xrightarrow{-\nabla} f_1 \xrightarrow{-\nabla} f_2 \tag{101}$$

where

$$f_1 :: \mathbb{Z} \to {}^? \langle \! \langle \mathbb{Z} \rangle \! \rangle$$
 (102)

$$f_2 :: \mathbb{Z} \to {}^? \langle\!\langle \mathbb{Z} \rangle\!\rangle.$$
 (103)

Function binding of monadic function and non-monadic function: *63

$$z_{\star} = x_{\star} \xrightarrow{\varphi} f \xrightarrow{\varphi} g' \text{ where } \{g'w = {}^{\star} \langle gw \rangle\}$$
 (104)

or

$$z_{\star} = x_{\star} - \Leftrightarrow (f \Rightarrow g') \text{ where } \{g'w = {}^{\star} \langle gw \rangle \}$$
 (105)

 $^{^{*61}}$ In Haskell, f :: Monad m => a -> m a.

^{*62} In Haskell, zm = xm >>= f1 >>= f2.

^{*63} In Haskell,

zm = xm >>= f >>= g'
where g' w = pure (g w)

0.25 種 **25**

where

$$f:: \mathbb{Z} \to {}^{?}\langle\!\langle \mathbb{Z} \rangle\!\rangle \tag{106}$$

$$g: \mathbb{Z} \to \mathbb{Z}.$$
 (107)

Another solution is:

$$z_{\star} = (g^{\star} \bullet f) \circ x_{\star} \tag{108}$$

where g^* means liftM g in Haskell.*64

0.25 種

$$\star \to \star \tag{109}$$

0.26 Data

 $\mathrm{Data:}^{*65}$

$$data Suit = Spade \lor Heart \lor Club \lor Diamond$$
 (110)

Data with parameters:*66

$$data V^{2} = V^{2} \{x :: \mathbb{Z}, y :: \mathbb{Z}\}$$
(111)

data Suit = Spade | Heart | Club | Diamond *66 In Haskell,

data $V2 = V2 { x :: Int, y :: Int}$

or data V2 = V2 Int Int.

 $^{*64 \}text{ In Haskell, zm}$ = (liftM g . f) xm.

^{*65} In Haskell,

0.27 型クラスとインスタンス

0.28 IO モナド

IO example:*67

$$main = getLine \xrightarrow{\varphi} print \gg {}^{\star} (0)$$
 (112)

0.29 Do 構文

Do notation:*68

$$z_{\star} = \operatorname{do} \left\{ x' \leftarrow x_{\star}; y' \leftarrow y_{\star}; fx'; gy' \right\} \tag{113}$$

0.30 モノイド

任意の関数 f に対して

$$id f = f (114)$$

なる関数 id があり、かつ任意の関数 f,g,h に対して

$$(h \bullet g) \bullet f = h \bullet (g \bullet f) \tag{115}$$

が成り立つとする. このとき関数はモノイドであるという.

 $^{^{*67}}$ In Haskell, main = getLine >>= print >> return 0.

^{*68} In Haskell, $z = do \{x' <- x; y' <- y; f x'; g y'\}.$

0.31 モノイド則 27

TK. 一般のモノイド.

0.31 モノイド則

型 \mathbf{a} の変数 $x, y, z :: \mathbf{a}$ について、特別な変数 $i :: \mathbf{a}$ および二項演算子 \bigcirc ただし $x \bigcirc y :: \mathbf{a}$ があり、

$$i \bigcirc x = x \dots$$
 (単位元の存在) (116)

$$(x \bigcirc y) \bigcirc z = x \bigcirc (y \bigcirc z) \dots (結合律) \tag{117}$$

であるとき、組み合わせ $(\mathbf{a}, \bigcirc, i)$ をモノイドと呼ぶ.

組み合わせ $(\mathbb{Z},+,0)$ や $(\mathbb{Z},\times,1)$ はモノイドである.

同じ型から同じ型への 1 引数関数を改めて $\mathbf{a} \to \mathbf{a}$ で表し、特別な変数 i を関数 id、二項演算子を \bullet とすると以下の関係が成り立つ.

$$id \bullet f = f \dots (単位元の存在)$$
 (118)

$$(h \bullet g) \bullet f = h \bullet (g \bullet f) \dots (結合律) \tag{119}$$

そこで組み合わせ $(\mathbf{a} \to \mathbf{a}, \bullet, \mathrm{id})$ はモノイドであると言える.

0.32 関手則

関手のマップ演算子 (S) は以下の**関手則**に従う.

$$id(\widehat{S})x_{\star} = idx_{\star} \tag{120}$$

$$(g \bullet f) (\widehat{S}) x_{\star} = ((g(\widehat{S})) \bullet (f(\widehat{S}))) x_{\star} \tag{121}$$

$$=g(\widehat{\mathbf{S}})(f(\widehat{\mathbf{S}})x_{\star}) \tag{122}$$

関手則は**関手(数学)**に由来する.

圏 \mathcal{C} の対象を X とする。圏 \mathcal{D} の対象は関手(数学) \mathfrak{F} によって対象 X と関係づけられる。圏 \mathcal{C} における \mathbf{h} $f: X \to Y$ が $\mathfrak{F} f: \mathfrak{F} X \to \mathfrak{F} Y$ に対応し、次の関係を満たす。

- $X \in \mathcal{C}$ に対して $\mathfrak{F}id_X = id_{\mathfrak{F}X}$
- $f: X \to Y$ および $g: Y \to Z$ に対して $\mathfrak{F}(g \bullet f) = (\mathfrak{F}g) \bullet (\mathfrak{F}f)$

いま

$$\begin{array}{c}
\operatorname{id}, \operatorname{id} \to \operatorname{id} \\
\mathbf{X} & \operatorname{\pi} \mathbf{X}
\end{array} \tag{123}$$

$$f(\widehat{S}) \to \mathfrak{F}f$$
 (124)

と対応付けると、関手(数学)が満たす法則と関手則は一致する.

0.33 アプリカティブ関手則

アプリカティブ関手のマップ演算子 ⊗ は以下の規則に従う.

$$^{\star} \langle \mathrm{id} \rangle \otimes x_{\star} = x_{\star} \tag{125}$$

$$^{\star} \langle f \rangle \otimes ^{\star} \langle x \rangle = ^{\star} \langle fx \rangle \tag{126}$$

$$f_{\star} \otimes^{\star} \langle x \rangle = {}^{\star} \langle \Diamond \S x \rangle \otimes f_{\star} \tag{127}$$

$$^{\star} \langle \lozenge \bullet \lozenge \rangle \otimes h_{\star} \otimes g_{\star} \otimes f_{\star} = h_{\star} \otimes (g_{\star} \otimes f_{\star}) \tag{128}$$

0.34 モナド則

モナドのマップ演算子♡は以下の規則に従う.

$$f^{\dagger} \heartsuit^{\star} \langle x \rangle = f^{\dagger} x \tag{129}$$

$$^{\star} \langle \Diamond \rangle \circ x_{\star} = x_{\star} \tag{130}$$

$$(g^{\dagger} \circ f^{\dagger}) \circ x_{\star} = g^{\dagger} \circ (f^{\dagger} \circ x_{\star}) \tag{131}$$

0.34 モナド則 29

次の**クライスリスター**すなわち

$$f^{\bigstar} = (f^{\dagger} \heartsuit \lozenge) \tag{132}$$

を用いると、モナド則は次のように書き換えられる.

$$(f^{\bigstar})^* \langle x \rangle = f^{\dagger} x \tag{133}$$

$$(^{\star}\langle \Diamond \rangle)^{\bigstar} x_{\star} = x_{\star} \tag{134}$$

$$\left(g^{\bigstar}f^{\dagger}\right)^{\bigstar}x_{\star} = g^{\bigstar}\left(f^{\bigstar}x_{\star}\right) \tag{135}$$