ISyE 3044 — Spring 2013 — Test #2

This test is 90 minutes. You're allowed two cheat sheets. **Just show your extremely neat answers** — **any intermediate steps, multiple answers, or untidiness will be penalized.** All questions are 3 points, except #1 (1 point) and #33 (6 points). Good luck!

1.	What is the secret word?
	Solution: Cramér.
2.	What is the Arena expression for a normal random variable with mean 4 and variance 9?
	Solution: NORM(4,3). □
3.	What was the capacity of the QUEUE block in our Area call center example?
	Solution: $0.$
4.	How many sets of servers did we use in our Arena call center example?
	Solution: 3. \square
5.	TRUE or FALSE? You can use a single Arena DECIDE block to conditionally route customers to one of three possible destinations.
	Solution: TRUE.

6. YES or NO? Is the linear congruential generator $X_{i+1} = (7X_i + 5) \mod(8)$ full period?

Solution: NO. If $X_0 = 1$, then we have $X_1 = 4$ and $X_2 = 1$, so it cycles after just 2 PRN's. \square

7. Again consider the generator $X_{i+1} = (7X_i + 5) \mod(8)$. Using $X_0 = 1$, calculate the PRN U_{123} .

Solution: By the previous question, we have $X_0 = 1$, $X_1 = 4$, $X_2 = 1$, $X_3 = 4$, ..., $X_{123} = 4$. This implies that $U_{123} = 0.5$. \square

8. Consider our desert island generator $X_{i+1} = 16807 X_i \mod(2^{31} - 1)$. If $X_0 = 76543$, find X_2 .

Solution: Using a very precise calculator (that keeps enough integer digits in storage), or using the algorithm from class, we find that

$$X_1 = 16807 X_0 \operatorname{mod}(2^{31} - 1)$$

$$= (16807)(76543) \operatorname{mod}(2^{31} - 1)$$

$$= 1286458201 \operatorname{mod}(2^{31} - 1)$$

$$= 1286458201.$$

Then, similarly,

$$X_2 = (16807)(1286458201) \mod(2^{31} - 1) = 637626211.$$

9. Consider the following 20 PRN's.

How many runs up and down do you get from this sequence?

Solution: Letting +/- denote an up / down move, respectively, we have

This translates to A = 6 runs. \square

10. Referring to Question 9, do a runs up and down test on this sequence of PRN's to decide whether or not they're independent. Use $\alpha=0.10$. Do you accept or reject independence?

Solution: By class notes, we have

$$\mathsf{E}[A] = \frac{2n-1}{3} = 13.0 \quad \text{and} \quad \mathsf{Var}(A) = \frac{16n-29}{90} = 3.23.$$

Then by the previous answer, we have

$$Z_0 = \frac{A - \mathsf{E}[A]}{\sqrt{\mathsf{Var}(A)}} = \frac{6 - 13}{\sqrt{3.23}} = -3.89.$$

Since $|Z_0| > z_{0.025} = 1.645$, we reject the null hypothesis of independence; and we conclude that the PRN's are dependent. \Box

11. Again referring to the data set from Question 9, let's conduct a χ^2 goodness-of-fit test to test the hypothesis that the numbers are Unif(0,1). We'll use 4 equal-probability intervals and level $\alpha = 0.10$. What's the value of the g-o-f statistic, χ_0^2 ?

Solution: The k = 4 intervals are [0, 0.25], (0.25, 0.5], (0.5, 0.75], and (0.75, 1], for which $E_1 = E_2 = E_3 = E_4 = 20/4 = 5$. We easily find $O_1 = 1$, $O_2 = 9$, $O_3 = 6$, and $O_4 = 4$. Thus,

$$\chi_0^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} = \frac{1}{5} \sum_{i=1}^k (O_i - 5)^2 = 6.8. \quad \Box$$

Note: Some of you may have divided the subintervals as open on the right: [0,0.25), [0.25,0.5), [0.5,0.75), and (0.75,1]. Amazingly, this changes the answer a little bit, because we then have $O_1=1$, $O_2=8$, $O_3=7$, and $O_4=4$, for which we obtain $\chi_0^2=6.0$.

12. Now referring to the instructions from Question 11, what's the appropriate χ^2 quantile value?

Solution: $\chi^2_{\alpha,k-1} = \chi^2_{0.10,3} = 6.25$.

13.	Again	referring	to	the	instructions	from	Question	11,	do	we	accept	or	reject	the
	null hy	ypothesis	of ı	unifo	ormity?									

Solution: Since $\chi_0^2 = 6.8 > 6.25$, we (barely) reject. \Box

Note: If you used the alternative subintervals (open on the right) when solving Question 11, you would have found that $\chi_0^2 = 6.0 < 6.25$, so that we (barely) accept! \Box

14. What is 1 XOR 1?

Solution: 0.

15. Consider a Tausworthe generator with $r=2, q=3, B_1=1, B_2=1, \text{ and } B_3=0.$ Find B_8 .

Solution: Using $B_i = (B_{i-r} + B_{i-q}) \operatorname{mod}(2) = (B_{i-2} + B_{i-3}) \operatorname{mod}(2)$, we quickly obtain

$$B_1 = 1$$
, $B_2 = 1$, $B_3 = 0$, $B_4 = 0$, $B_5 = 1$, $B_6 = 0$, $B_7 = 1$,

and then things start to repeat. (In fact, this makes sense since the bits are indeed supposed to repeat every $2^q - 1 = 7$ iterations.) In any case, $B_8 = B_1 = 1$.

16. Suppose the random variable X has p.d.f. $f(x) = 3x^2/8$ for $0 \le x \le 2$. Find the inverse of its c.d.f., i.e., $F^{-1}(U)$.

Solution: The c.d.f. is $F(x) = x^3/8$, for 0 < x < 2. Set $F(X) = X^3/8 = U$ and solve for $F^{-1}(U) = X = 2U^{1/3}$.

17. If X is standard normal, use the inverse transform method with U=0.933 to generate a realization of X.

Solution: The c.d.f. is $X = \Phi^{-1}(U) = \Phi^{-1}(0.933) = 1.5$.

18. Suppose that X has the *Pareto* distribution with c.d.f. $F(x) = 1 - (b/x)^a$, for x > b, where the constants a > 1 and b > 0. What is the distribution of the random variable F(X)?

Solution: By the Inverse Transform Theorem, $F(X) \sim \text{Unif}(0,1)$.

19. Referring to Question 18, suppose that we are dealing with a Pareto distribution with a=2 and b=1. Show how to generate a realization of X via inverse transform.

Solution: In this case, we use the ITT to set $F(X) = 1 - 1/X^2 = U$. Solving, we get $X = (1 - U)^{-1/2}$. \square

20. The number of years until a certain critical component fails is geometrically distributed with a probability parameter of 0.01. Use the PRN U=0.15 to generate a Geom(0.01) random variate via inverse transform.

Solution: By the ITT method from class,

$$X = \left\lceil \frac{\ell n(1-U)}{\ell n(1-p)} \right\rceil = \left\lceil \frac{\ell n(0.85)}{\ell n(0.99)} \right\rceil = 17. \quad \Box$$

I would have also accepted $X = \lceil \ln(U) / \ln(1-p) \rceil = 189$. In fact, I would've also accepted 16 or 188 (if you used a slightly different definition of the Geom(p)).

21. Show how to use the DISC expression in Arena to generate a random variable that equals -3 with probability 0.4 and 7.2 w.p. 0.6.

Solution: DISC(0.4, -3, 1.0, 7.2).

22. Suppose that $U_1 = 0.7$ and $U_2 = 0.1$ are realizations of two i.i.d. Unif(0,1)'s. Use the Box–Muller method to generate two i.i.d. standard normals.

Solution: We have

$$Z_1 = \sqrt{-2\ell n(U_1)}\cos(2\pi U_2) = 0.683$$

 $Z_2 = \sqrt{-2\ell n(U_1)}\sin(2\pi U_2) = 0.496$

23. Use your answer from Question 22 to generate a Cauchy random variable.

Solution: $Z_1/Z_2=1.377$. Would have also accepted $Z_2/Z_1=0.726$. \square

24. If U_1 and U_2 are i.i.d. Unif(0,1), name the distribution (with parameters) of $3\sqrt{-2\ell n(U_1)}\cos(2\pi U_2) + 2$.

Solution: $3 \operatorname{Nor}(0,1) + 2 \sim \operatorname{Nor}(2,9)$.

25. If U_1 and U_2 are i.i.d. Unif(0,1), name the distribution of $U_1 + U_2 - 1$.

Solution: Tria(-1,0,1).

26. Suppose that U_1, U_2, \dots, U_{40} are i.i.d. Unif(0,1). Name the approximate distribution (with parameters) of $\sum_{i=1}^{40} U_i$.

Solution: By the usual properties of the Unif(0,1) distribution,

$$\mathsf{E}\left[\sum_{i=1}^{40} U_i\right] = \sum_{i=1}^{40} \mathsf{E}[U_i] = \frac{n}{2} = 20 \quad \text{and} \quad \mathsf{Var}\left(\sum_{i=1}^{40} U_i\right) = \sum_{i=1}^{40} \mathsf{Var}(U_i) = \frac{n}{12} = \frac{40}{12}.$$

Then by the CLT, $\sum_{i=1}^{24} U_i \approx \text{Nor}(20, 3.33)$.

27. Suppose that $U_1 = 0.65$, $U_2 = 0.45$, $U_3 = 0.82$, $U_4 = 0.09$, and $U_5 = 0.26$. Use our acceptance-rejection technique from class to generate a Pois($\lambda = 2$) random variate. (You may not need to use all of the uniforms.)

Solution: The procedure is to generate uniforms until $\prod_{i=1}^{n+1} U_i < e^{-\lambda} = 0.1353$.

n = 0: Since $U_1 = 0.65 > 0.1353$, we reject and continue.

n = 1: Since $U_1U_2 = 0.2925 > 0.1353$, we reject and continue.

n = 2: Since $U_1U_2U_3 = 0.2399 > 0.1353$, we reject and continue.

n = 3: Since $U_1U_2U_3U_4 = 0.0216 < 0.1353$, we stop with n = 3.

28. Suppose that X_1, X_2, X_3, X_4 are i.i.d. Exp(3). Give an equation involving a *single* PRN U that you can use to generate a realization of max $\{X_1, X_2, X_3, X_4\}$.

Solution: Let $Y = \max\{X_1, X_2, X_3, X_4\}$. As we did for a similar example in class, the c.d.f. of Y is

$$G(y) = \Pr(Y \le y) = \Pr(\max \le y) = \Pr(\text{all } X_i \text{'s} \le y)$$
$$= (\Pr(X_1 \le y))^n = (1 - e^{-\lambda y})^n$$

By the Inverse Transform Theorem, set

$$G(Y) = (1 - e^{-\lambda Y})^n = U.$$

Solving, we eventually get

$$Y = -\frac{1}{\lambda} \ln(1 - U^{1/n}) = -\frac{1}{3} \ln(1 - U^{1/4}). \quad \Box$$

29. Suppose $X_i = \epsilon_i + \theta \epsilon_{i-1}$, where the ϵ_i 's are i.i.d. standard normal for $i = 1, 2, \ldots$ What is the name of the X_1, X_2, \ldots process?

Solution: First-order moving average process, or MA(1).

30. Referring to Question 29, find the variance of the sample mean of two consecutive observations, i.e., $Var((X_1 + X_2)/2)$.

Solution: By class notes, we know that the X_i 's are all Nor $(0, 1 + \theta^2)$ with $Cov(X_i, X_{i-1}) = \theta$. Thus,

$$\begin{aligned} \mathsf{Var}((X_1 + X_2)/2) &= \frac{1}{4} \left[\mathsf{Var}(X_1) + \mathsf{Var}(X_2) + 2\mathsf{Cov}(X_1, X_2) \right] \\ &= \frac{1}{2} \left[\mathsf{Var}(X_1) + \mathsf{Cov}(X_1, X_2) \right] \\ &= \frac{1}{2} \left[1 + \theta^2 + \theta \right]. \quad \Box \end{aligned}$$

31. TRUE or FALSE? The covariance function of an autoregressive process decays exponentially.

Solution: TRUE. □

32. TRUE or FALSE? Consider an M/M/1 queue. Let I_{i+1} denote the interarrival time between the *i*th and (i+1)st customers; let S_i be the *i*th customer's service time; and let W_i denote the *i*th customer's waiting time before service. Then

$$W_{i+1} = \max\{W_i + S_i - I_{i+1}, 0\}.$$

Solution: TRUE. □

33. Two types of customers arrive to a post office. The first type stands in line and waits for service at the counter, and then leaves. The second type goes to check his/her post office box, and then either leaves or joins the counter line (each with a 50% chance). Draw a crude, high-level Arena block diagram to model this system.

Table 1: Standard normal values

z	$\Pr(Z \leq z)$
1	0.8413
1.28	0.9000
1.5	0.9332
1.645	0.9500
1.96	0.9750
2	0.9773

Table 2: $\chi^2_{\alpha,\nu}$ values

$\nu \setminus \alpha$	0.10	0.05	0.025
2	4.61	5.99	7.38
3	6.25	7.81	9.35
4	7.78	9.49	11.14
5	9.24	11.07	12.83
6	10.65	12.59	14.45

Table 3: $t_{\alpha,\nu}$ values

$\nu \setminus \alpha$	0.10	0.05	0.025
7	1.415	1.895	2.365
8	1.397	1.860	2.306
9	1.383	1.833	2.262
10	1.372	1.812	2.228

Table 4: $F_{0.025,m,n}$ values

$n \setminus m$	3	4	5
3	15.44	15.10	14.88
4	9.98	9.60	9.36
5	7.76	7.39	7.15