Semester III BTech (Mathematics and Computing) End-Semester Examination

Discrete Mathematics - MAT 2138

Time: 3 Hours 02/12/2024 Max. Marks: 50

- 1A. Show that if A and B are finite sets, then the number of functions from A to B is $|B|^{|A|}$. (3) Hence show, by a suitable choice of B, that the number of subsets of A is $2^{|A|}$.
- 1B. Let \mathbb{Z} be the set of integers and $P = \mathcal{P}(\mathbb{Z})$ the power set of \mathbb{Z} . Define a relation \sim on S as follows: For any $A, B \in P$, $A \sim B$ if and only if $A \triangle B$ is a set of even integers. Show that \sim is an equivalence relation on P.
- 1C. Show that the set \mathbb{R} of real numbers is uncountable. (4)
- 2A. Construct a DFA that accepts the language of all strings over {a,b} that contain the substring aaa but does not contain aaaa. Also write the regular expression that generates this language.
- 2B. Convert the NFA given below to a DFA using the subset construction: (5)

- 3A. Show that for any graph G, if diam $G \ge 3$, then diam $\overline{G} \le 3$. (3)
- 3B. Show that the centre of any tree consists of either one vertex or two adjacent vertices. (3) Find the centre of the tree given below.

- 3C. Prove that a connected graph is bipartite if and only if all its cycles are even. (4)
- 4A. In the following network, find the shortest distances to the vertices A, B, D, E from the (5) vertex C using Dijkstra's algorithm.

- 4B. Prove that if A is the adjacency matrix of a graph G with vertices v_1, \ldots, v_n , then the (i,j)-entry of A^m is the number of walks of length m from v_i to v_j . Hence show that if $\dim G = k$, then $I + A + A^2 + \cdots + A^{k-1}$ has at least one zero entry.
- 5A. Using generating functions, find the number of ways of distributing (3)
 - (i) 20 identical objects into 4 distinct boxes such that each box is non-empty.
 - (ii) 20 distinct objects into 4 distinct boxes such that each box is non-empty.
- 5B. Using generating functions, solve the following recurrence relation: (3)

$$a_n = 2a_{n-1} - a_{n-2}$$

 $a_0 = 0$, $a_1 = 1$.

5C. Find the exponential generating function for the number of derangements from the recurrence relation: (4)

$$d_n = (n-1)(d_{n-1} + d_{n-2})$$

 $d_0 = 1, d_1 = 0.$