DSC 630 - Predictive Analytics

In [1]: # import libraries

Term Project - Summer 2024

David Berberena | Brian Mann

```
import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.linear_model import LinearRegression, Ridge
        from sklearn.metrics import r2_score, mean_squared_error
        from sklearn.metrics import accuracy_score, precision_recall_fscore_support
        from sklearn.model_selection import train_test_split, GridSearchCV
        from sklearn.pipeline import Pipeline
        from sklearn.preprocessing import StandardScaler, MinMaxScaler
        from sklearn.tree import DecisionTreeRegressor
        from sklearn ensemble import RandomForestRegressor, GradientBoostingRegressor, StackingRegressor
        from sklearn.base import BaseEstimator, RegressorMixin
        import statsmodels.api as sm
In [2]: # hide warnings
        import warnings
        warnings.filterwarnings('ignore')
        from sklearn.exceptions import ConvergenceWarning
```

Milestone 3 - Preliminary Analysis

```
In [3]: # dataset
url = 'https://www.kaggle.com/datasets/mrsimple07/restaurants-revenue-prediction'
```

Step 1: Reading and Describing the Data

```
In [4]: # reazd in the data and show the first few rows
    df = pd.read_csv('restaurant_revenue.csv')
    df.head()
```

Out[4]:	Number_of_Customers	Menu_Price	Marketing_Spend	Cuisine_Type	Average_Customer_Spending	Promotions	Reviews	Monthly_R
	0 61	43.117635	12.663793	Japanese	36.236133	0	45	350.
	1 24	40.020077	4.577892	Italian	17.952562	0	36	221.
	2 81	41.981485	4.652911	Japanese	22.600420	1	91	326.
	3 70	43.005307	4.416053	Italian	18.984098	1	59	348.
	4 30	17.456199	3.475052	Italian	12.766143	1	30	185.

```
In [5]: # get the size and shape
df.shape
```

Out[5]: (1000, 8)

```
In [6]: # check for missing values
        df.isna().sum()
Out[6]: Number_of_Customers
                                     0
        Menu_Price
                                     0
        Marketing_Spend
                                     0
        Cuisine_Type
                                     0
        Average_Customer_Spending
                                     0
        Promotions
                                     0
        Reviews
                                     0
        Monthly_Revenue
                                     0
        dtype: int64
```

In [7]: # assess common stats for numerical variables df.describe()

Out[7]:

	Number_of_Customers	Menu_Price	Marketing_Spend	Average_Customer_Spending	Promotions	Reviews	Monthly_Revenu
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.00000
mean	53.271000	30.219120	9.958726	29.477085	0.497000	49.837000	268.72417
std	26.364914	11.278760	5.845586	11.471686	0.500241	29.226334	103.98295
min	10.000000	10.009501	0.003768	10.037177	0.000000	0.000000	-28.97780
25%	30.000000	20.396828	4.690724	19.603041	0.000000	24.000000	197.10364
50%	54.000000	30.860614	10.092047	29.251365	0.000000	50.000000	270.21396
75%	74.000000	39.843868	14.992436	39.553220	1.000000	76.000000	343.39579
max	99.000000	49.974140	19.994276	49.900725	1.000000	99.000000	563.38133

Step 2: Histograms and Bar Charts

```
In [8]: # this function takes in a df and a column and prints out a histogram
def make_histogram(data, col):
    sns.histplot(data[col], color='#f56c42')
    plt.title(f'Histogram of {col}')
    plt.show()
```



```
In [10]: # this function takes in a df and a column and prints out a horizontal bar
# plot of the counts
def count_bar(data, col):
    counts = data[col].value_counts().reset_index()
    sns.barplot(data=counts, y=col, x='count', orient='h', palette='Set2')
    plt.title(f'Bar Plot of {col}')
    plt.show()
```


Step 3: Correlation and Scatterplots

```
In [12]: # create dummy variables for cuisine type and make it its own df
dum = pd.get_dummies(df, columns=['Cuisine_Type'])
dum.head()
```

Out[12]:

Number_of_Customers	Menu_Price	Marketing_Spend	Average_Customer_Spending	Promotions	Reviews	Monthly_Revenue	Cuisin
0 61	43.117635	12.663793	36.236133	0	45	350.912040	
1 24	40.020077	4.577892	17.952562	0	36	221.319091	
2 81	41.981485	4.652911	22.600420	1	91	326.529763	
3 70	43.005307	4.416053	18.984098	1	59	348.190573	
4 30	17.456199	3.475052	12.766143	1	30	185.009121	

```
In [13]: # find the correlation among all of the variales in the df
    corrs = dum.corr()
    plt.figure(figsize=(12,6))
# plot a heatmap of the correlations
    sns.heatmap(corrs, cmap="Oranges", annot=True)
    plt.show()
```


Monthly_Revenue vs. Menu_Price

Step 4: Grouping Revenue by Categories

```
In [16]: # group cuisine types and promotions by average monthly revenue
    types = df.groupby(by='Cuisine_Type').Monthly_Revenue.agg(np.mean).reset_index()
    proms = df.groupby(by='Promotions').Monthly_Revenue.agg(np.mean).reset_index()

In [17]: # print a barplot of revenue by cuisine type
    sns.barplot(data=types, x='Monthly_Revenue', y='Cuisine_Type')
    plt.show()
```



```
In [18]: types
Out[18]:
             Cuisine_Type Monthly_Revenue
           0
                American
                             269.604825
           1
                   Italian
                              263.699862
                             271.700186
           2
                Japanese
                             269.366082
                 Mexican
In [19]: # rename the 0's to NO and the 1's to YES
          proms.iloc[0,0] = 'NO'
          proms.iloc[1,0] = 'YES'
          # print a barplot of revenue by whether or not there was a promotion
          sns.barplot(data=proms, x='Monthly_Revenue', y='Promotions')
               NO
           Promotions
              YES
                             50
                                        100
                                                   150
                                                              200
                                                                          250
                                           Monthly_Revenue
In [20]: proms
Out[20]:
             Promotions Monthly_Revenue
           0
                   NO
                            267.188084
                   YES
                            270.278805
           1
In [21]: # Percent difference in aggregated monthly revenue for the presence of a promotional campaign
          # to establish the campaign's worth
```

% diff in aggregated monthly restaurant revenue with the presence of a promotional campaign: 1.15 67584291771071

Step 5: Modeling

```
In [32]: # Create a custom wrapper for statsmodels OLS
         class OLSWrapper(BaseEstimator, RegressorMixin):
             def __init__(self):
                 self.model = None
             def fit(self, X, y):
                 # Add a constant to the input features to account for the intercept
                 X = sm.add_constant(X)
                 self.model = sm.OLS(y, X).fit()
                 print(self.model.summary())
                 return self
             def predict(self, X):
                 # Add a constant for prediction
                 X = sm.add_constant(X)
                 return self.model.predict(X)
             def score(self, X, y):
                 predictions = self.predict(X)
                 # Return R-squared score
                 return 1 - np.sum((y - predictions) ** 2) / np.sum((y - np.mean(y)) ** 2)
         # Create a pipeline with a custom wrapper
         pipe = Pipeline([
             ('scale', StandardScaler()),
             ('model', OLSWrapper())
         ])
         # Set up a search space
         search_space = [{'model': [OLSWrapper()]},
                        {'model': [Ridge(max_iter=10000)],
                         'model__alpha': np.logspace(-4, 4, 50)}]
         # Perform grid search with cross-validation
         grid_search = GridSearchCV(pipe, search_space, cv=5, scoring='r2')
         gs = grid_search.fit(xtrain, ytrain)
         be = gs.best_estimator_
         print(f'Best estimator: {be}')
         # make a prediction using the test data
         pred = be.predict(xtest)
         # get R^2 and RMSE
         r2 = r2_score(ytest, pred)
         rmse = np.sqrt(mean_squared_error(ytest, pred))
         print(f"R^2: {r2}")
         print(f"RMSE: {rmse}")
```

OLS Regression Results

Dep. Varia Model:	ble:	Monthly_Rev		quared: R-squared:		0.680 0.675
Method:		Least Squ		tatistic:	•	148.7
Date:		Fri, 26 Jul		b (F-statis	tic):	1.83e-149
Time:				-Likelihood:		-3505.1
No. Observ	ations:	V	640 AIC		•	7030.
Df Residua			630 BIC			7075.
Df Model:			9	•		70751
Covariance	Type:	nonro	-			
=======	coe	======= f std err	 t	P> t	[0.025	0.975]
const	268 . 921	7 2 . 305	116.692	0.000	264 . 396	273 . 447
x1	75.825	6 2.316	32.734	0.000	71.277	80.374
x2	23.773	2 2.320	10.249	0.000	19.218	28.328
x3	26.829	0 2.318	11.574	0.000	22.277	31.381
x4	-1.617	3 2.317	-0.698	0.485	-6.167	2.932
x5	-4.156	7 2.319	-1.793	0.074	-8.710	0.397
x6	-1.065	6 2.316	-0.460	0.646	-5.614	3.483
x7	0.221	1 2.752	0.080	0.936	-5.183	5.625
x8	-1.968	0 2.783	-0.707	0.480	-7.432	3.496
x9	0.955	0 2.782	0.343	0.731	-4.507	6.417
Omnibus:			 2.109 Dur	bin-Watson:		 1.858
Prob(Omnib	us):	(3. 348 Jar	que-Bera (J	3):	2.068
Skew:		-6		b(JB):		0.356
Kurtosis:		2	2.995 Con	d. No.		1.98

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

=======		========					========
Dep. Varia	able:	Monthly_Rev			uared:		0.681
Model:			0LS	Adj.	R-squared:		0.676
Method:		Least Squ	ıares	F-sta	atistic:		149.3
Date:		Fri, 26 Jul	2024	Prob	(F-statistic)	:	7.29e-150
Time:		02:2	22:11	Log-l	_ikelihood:		-3497.4
No. Observ	vations:		640	AIC:			7015.
Df Residua	als:		630	BIC:			7059.
Df Model:			9	220.			, , , ,
Covariance	e Tyne:	nonro	•				
========	======================================		-=====				
	coef	std err		t	P> t	[0.025	0.975]
const	268.7920	2.277	118	 3.048	0.000	264 . 321	273.263
x1	75.2285	2.288	32	2.878	0.000	70.735	79.722
x2	26.1852	2.296	13	1.403	0.000	21.676	30.695
x3	25.7532	2.291	13	1.241	0.000	21.254	30.252
x4	0.4491	2.281	(197	0.844	-4.030	4.928
x5	-3.6046	2.297	-3	1.569	0.117	-8.116	0.907
x6	1.5748	2.293	(687	0.492	-2.928	6.078
x7	-0.1051			0.037	0.971	-5.695	5.485
x8	-2.0513			0.710	0.478	-7 . 722	3.619
x9	-0.9865			3.343	0.732	-6.633	4.660
7.5	0.3003	2:0/3	,	J. J-7J	01/32	0:055	4.000

Notes:

Skew:

Omnibus:

Kurtosis:

Prob(Omnibus):

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. $\,$ OLS Regression Results

Prob(JB):

Cond. No.

Durbin-Watson:

Jarque-Bera (JB):

1.889

0.877

0.645

2.16

============			
Dep. Variable:	Monthly_Revenue	R-squared:	0.692
Model:	0LS	Adj. R-squared:	0.687
Method:	Least Squares	F-statistic:	156.9
Date:	Fri, 26 Jul 2024	<pre>Prob (F-statistic):</pre>	1.76e-154
Time:	02:22:11	Log-Likelihood:	-3501.0
No. Observations:	640	AIC:	7022.

0.811

0.667

-0.013

2.821

Df Residuals: 630 BIC: 7067.

Df Model: 9 Covariance Type: nonrobust

=======	======== coef	======= std err	======== t	P> t	 [0.025	0.9751
const	272.0739	2.290	118.819	0.000	267.577	276.571
x1	75.8445	2.301	32.956	0.000	71.325	80.364
x2	25.5013	2.300	11.086	0.000	20.984	30.018
x3	27.4173	2.312	11.861	0.000	22.878	31.957
x4	-0.8585	2.298	-0.374	0.709	-5.371	3.654
x5	-3.6514	2.302	-1.586	0.113	-8.171	0.869
x6	-1.0937	2.301	-0.475	0.635	-5.612	3.424
x7	-0.9335	2.765	-0.338	0.736	-6.364	4.497
x8	-2.6698	2.808	-0.951	0.342	-8.184	2.844
x9	-0.9220	2.802	-0.329	0.742	-6 . 425	4.581
Omnibus:		 2.	153 Durbir	 n-Watson:		1.816
Prob(Omnib	us):	0.	341 Jarque	e-Bera (JB):	:	2.218
Skew:		-0.	137 Prob(J	IB):		0.330
Kurtosis:		2.	909 Cond.	No.		2.04

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. $\,$ OLS Regression Results

	:============		
Dep. Variable:	Monthly_Revenue	R-squared:	0.673
Model:	0LS	Adj. R-squared:	0.669
Method:	Least Squares	F-statistic:	144.2
Date:	Fri, 26 Jul 2024	<pre>Prob (F-statistic):</pre>	1.17e-146
Time:	02:22:11	Log-Likelihood:	-3511.7
No. Observations:	640	AIC:	7043.
Df Residuals:	630	BIC:	7088.
Df Model:	9		
Covariance Type:	nonrobust		

COVALIANC	с турс.	110111 01	,us c			
	coef	std err	t	P> t	[0.025	0.975]
const	270 . 4416	2.329	116.139	0.000	265 . 869	275.014
x1	74.6859	2.338	31.950	0.000	70.095	79.276
x2	24.5162	2.336	10.496	0.000	19.930	29.103
x3	26.7485	2.350	11.383	0.000	22.134	31.363
x4	0.4820	2.344	0.206	0.837	-4.122	5.086
x5	-3.7136	2.353	-1.578	0.115	-8.334	0.907
x6	-2.4734	2.344	-1.055	0.292	-7.076	2.129
x7	2.4353	2.819	0.864	0.388	-3.101	7.972
x8	1.5313	2.854	0.537	0.592	-4.073	7.136
x9	1.4608	2.862	0.510	0.610	-4.160	7.082
Omnibus:	=========		======================================	======== n-Watson:	========	1.849
D 1/0 '		-	000	D (1D)		0.200

Omnibus:	0.354	Durbin-Watson:	1.849
Prob(Omnibus):	0.838	Jarque-Bera (JB):	0.388
Skew:	-0.056	Prob(JB):	0.824
Kurtosis:	2.957	Cond. No.	2.05

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. $\,$ OLS Regression Results

Dep. Vari Model: Method: Date: Time:		Monthly_Rev Least Squ Fri, 26 Jul 02:2	0LS Adj ares F-9 2024 Pro	squared: i. R-squared: statistic: b (F-statist; -Likelihood:	ic):	0.685 0.681 152.5 8.41e-152 -3501.1
No. Obser Df Residu Df Model: Covarianc	als:	nonro	640 AIG 630 BIG 9	:		7022. 7067.
	coef	std err	1	P> t	[0.025	0.975]
const x1 x2	269.2980 75.1271 23.8531	2.309	117.580 32.533 10.342	0.000	264.800 70.592 19.324	273.796 79.662 28.382

```
x4
                       -1.0789
                                    2.303
                                               -0.468
                                                           0.640
                                                                      -5.601
                                                                                   3.444
                                                           0.168
                                                                      -7.754
         х5
                       -3.1992
                                     2.319
                                               -1.379
                                                                                    1.355
                       -3.7074
         x6
                                     2.302
                                               -1.611
                                                           0.108
                                                                      -8.228
                                                                                    0.813
                        0.8092
         x7
                                     2.792
                                                0.290
                                                           0.772
                                                                      -4.675
                                                                                    6.293
         x8
                        1.6568
                                     2.814
                                                0.589
                                                           0.556
                                                                      -3.870
                                                                                    7.184
         x9
                        0.9453
                                     2.796
                                                0.338
                                                                      -4.545
                                                           0.735
                                                                                    6.435
         Omnibus:
                                          0.884
                                                  Durbin-Watson:
                                                                                    1.863
         Prob(Omnibus):
                                          0.643
                                                  Jarque-Bera (JB):
                                                                                    0.883
         Skew:
                                         -0.090
                                                  Prob(JB):
                                                                                    0.643
                                                                                    2.06
         Kurtosis:
                                          2.976
                                                  Cond. No.
         Notes:
         [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
         Best estimator: Pipeline(steps=[('scale', StandardScaler()),
                          ('model', Ridge(alpha=7.9060432109076855, max_iter=10000))])
         R^2: 0.6937014067272136
         RMSE: 60.856889064989275
In [23]: # create a pipeline for a scale and model
         pipe = Pipeline([('scale', StandardScaler()), ('model', LinearRegression())])
In [24]: # set up a search space for linear regression and ridge regression
         search_space = [{'model': [LinearRegression()]},
                        {'model': [Ridge(max_iter=10000)],
                          'model__alpha': np.logspace(-4, 4, 50)}]
In [25]: # make a grid search cross-validation with 5-folds over the pipe and search space
         grid_search = GridSearchCV(pipe, search_space, cv=5, n_jobs=-1, verbose=0, scoring='neg_mean_square
In [26]: # this function takes in training and testing variables, fits
         # them to the grid search model, and prints out various results
         def run_tests(x, xt, y, yt):
             # fit the training data to the grid search
             gs = grid_search.fit(x, y)
             # get the best estimator
             be = gs.best_estimator_
             print(f'Best estimator: {be}')
             # make a prediction using the test data
             pred = be.predict(xt)
             # get R^2 and RMSE
             r2 = r2 \ score(yt, pred)
             rmse = np.sqrt(mean_squared_error(yt, pred))
             print(f"RMSE: {rmse}")
             print(f"R^2: {r2}")
             # print out the list of variables with their respective coefficients
             coefs = be.named_steps['model'].coef_
             print("\nFeature importance:")
             for feature, coef in zip(features, coefs):
                 print(f"{feature}: {coef:.4f}")
In [27]: run_tests(xtrain, xtest, ytrain, ytest)
         Best estimator: Pipeline(steps=[('scale', StandardScaler()),
                          ('model', Ridge(alpha=7.9060432109076855, max_iter=10000))])
         RMSE: 60.856889064989275
         R^2: 0.6937014067272136
         Feature importance:
         Number_of_Customers: 74.5995
         Menu_Price: 24.5487
         Marketing Spend: 26.0052
         Average_Customer_Spending: -0.5611
         Promotions: -3.5897
         Reviews: -1.3689
         Cuisine_Type_Italian: 0.4578
         Cuisine_Type_Japanese: -0.6830
         Cuisine_Type_Mexican: 0.2322
```

0.000

20.130

29.226

24.6782

2.316

10.656

х3

```
In [28]: # this function runs a tree regression model on the data using a parameter grid
         def run tree regression():
             # set the initial state of the regressor
             tree_reg = DecisionTreeRegressor(random_state=1)
             # define a grid of potential parameters
             param grid = {
                 'max_depth': [None, 10, 20, 30, 40, 50],
                 'min_samples_split': [2, 5, 10],
                 'min_samples_leaf': [1, 2, 4]
             }
             # create a grid search using 5 cross-folds on the tree regression model
             grid_search = GridSearchCV(estimator=tree_reg, param_grid=param_grid,
                                        cv=5, scoring='neg_mean_squared_error', n_jobs=-1, verbose=0)
             # apply the grid search to the training data
             grid_search.fit(xtrain, ytrain)
             # determine the best estimator
             be = grid search.best estimator
             # use the best model to make predictions on the test data
             preds = be.predict(xtest)
             RMSE = np.sqrt(mean_squared_error(ytest, preds))
             R_sqaured = r2_score(ytest, preds)
             # print out the results of the best model's performance
             print(f'Best estimator: {be}')
             print(f'RMSE: {RMSE}')
             print(f'R^2: {R_sqaured}')
In [29]: run_tree_regression()
         Best estimator: DecisionTreeRegressor(max depth=10, min samples leaf=4, min samples split=10,
                                random state=1)
         RMSE: 77.33858179980125
         R^2: 0.5053273330434154
In [33]: # this function creates an ensemble model of ridge, tree, random forest and gradient boosting
         # that applies a stacking regressor to the training data
         def run ensemble():
             # initialize each of the regression models
             ridge_reg = Ridge()
             tree_reg = DecisionTreeRegressor(random_state=1)
             rf_reg = RandomForestRegressor(random_state=1)
             gb_reg = GradientBoostingRegressor(random_state=1)
             # define the estimators for each model
             estimators = [
                 ('ridge', ridge_reg),
('tree', tree_reg),
                 ('rf', rf_reg),
                 ('gb', gb_reg)
             1
             # create a stack of models with a 5-fold cross-validation
             stacking_reg = StackingRegressor(
                 estimators=estimators,
             )
             # fit the stack to the training data
             stacking_reg.fit(xtrain, ytrain)
             # use the fitted model to make predictions on the test data
             ypred_train = stacking_reg.predict(xtrain)
             ypred_test = stacking_reg.predict(xtest)
             # gather the assessment metrics
             rmse = np.sqrt(mean squared error(ytest, ypred test))
             rsquared = r2_score(ytest, ypred_test)
             # print out the metrics
             print(f'RMSE: {rmse}')
             print(f'R^2: {rsquared}')
```

RMSE: 61.785734154105945

In [34]: run ensemble()

R[^]2: 0.6842801198816617