Dhaka International University

Department of Computer Science and Engineering

Course Code: 0533-102	Course Title: Physics Lab
Course Type (Core Course/Electives/ GED):	Basic Science
Year /Semester: 1st Semester	Academic Session:
Course Teacher: Md. Rakib Hossain	Credit Value: 1
Contact Hours: 2 hours	Total Marks: 50

<u>Rationale:</u> To exercise Physics laboratory- specially obtaining the characteristics of DC circuits including Series parallel circuits, characteristics of ohms' law, the basic circuit theorems and their applications to design and maintain such circuits.

Course Objectives:

The objectives of this course are

- 1. to access and use the most basic functions of electrical test and measurement equipment including oscilloscopes, multimeters, function generators and power supplies.
- 2. to analyze complex circuits using KCL and KVL.
- 3. to simplify circuit analysis using various circuit theorems.
- 4. to enable the students to build circuits and conduct experiments on it in a laboratory setting.
- 5. Record and document results of lab work using text and graphs.

Course Content:

Electricity: Different electrical units, Coulomb's law, Electric field, Electric potential, Gauss's law and its applications, Electric dipole, Electric field in dielectric media, Ohm's law and Kirchhoff's law with applications, AC voltage applied to circuits containing passive elements, Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum power transfer theorem, Reciprocity theorem, Millman's theorem, Substitution theorem, Analysis of series and parallel AC and DC networks.

Magnetism: Faradays and Lenz's law of electromagnetic induction, Self and Mutual induction, Biot-Savart law, Magnetic force on change in current, Ampere's law, Alternating voltage and current with their graphical representation, RMS value of a current and voltages, Introduction to transformers.

Course Learning Outcomes (CLOs): At the end of this course, students will be able to-

- 1. Apply theoretical knowledge in performing the lab measurements & develop skills in using electrical measuring devices.
- 2. Analyze series and parallel circuits.
- 3. Apply and execute different network theorem in circuit.
- 4. Perform of group works to solve the circuit related problems.

Mapping of CLOs with Program Learning Outcomes (PLOs):

CLOs	PLOs	Bloom's Taxonomy	Delivery Method	Assessment Strategy
		(Domain/Level)	& Activities	
CLO-1	PLO-A	Cognitive/ Apply,	Lab class, tools	Lab Work, Lab Report
CLO-2	PLO-B	Cognitive/ Create,	Lab class	Lab Work, Lab Report
CLO3	PLO-E	Cognitive/ Apply, Psychomotor/ Manipulation	Lab Class, Software and hardware tools	Lab work, Lab Report
CLO4	PLO-F	Cognitive/ Apply, Psychomotor/ Manipulation	Lab Class	Lab work

Course		Program Outcomes (POs)													Knowledge Profiles									Complex Eng. Problems (EP)							Complex Eng. Activity (EA)				
	P Eng. Knowledge	B Problem Analysis		D Investigation	E Modern tool	Engineer & Society	Su	H Ethics	I Teamwork	Communication	M Proj. Manage. & Fin.	T Life-long learning	ciences	ics	lamentals	Specialist	gn	93	noison	Research Literature	(3-K6, K8)	Range of conflicting requirements	Depth of analysis (no obvious solution)	issues)	Applicable codes (outside problem)	Stakeholder invol. (Outside group)	Interdependence (many components)				Consequences for society & envir.				
		C C P			С	A	A	A	P A	C A	A	Natural Sciences	Mathematics	Mathemat Eng. Fund	Eng. Fundamentals Eng. Specialist	Eng. Design	Eng. Practice	Comprehension	Research	Depth of knowledge (K3-K6, K8)	nflicting re	alysis (no o	Familiarity (infrequent issues)	codes (outs	invol. (Ou	ence (many	Range of resources	evel of interaction		es for socie					
	K1	-	K	K	K		K				ı		K	K	K	K	K	K	K	K	of kn	ot co	of an	ırity (able (older	pend	of re	f inte	tion	nenc	ı.			
	K	4	5	8	6		7						1	2	3	4	5	6	7	8	Depth	Range	Depth	Familia	Applica	Stakeho	Interde	Range	Level	Innovation	Consec	Familiarity			
				EP						Е											P	P	P	P	P	P	P	A	A	A	A	A			
	(P	1 +	two	or m	ore l	P2-P	7)			Α											1	2	3	4	5	6	7	1	2	3	4	5			
0533-102 (Physics Lab)	×	×			×	×							×	×	×	×		×	×		×		×		×					×					

<u>Mapping Course Learning Outcomes (CLOs) with the Teaching-Learning and Assessment Strategy:</u>

Week	Торіс	Teaching Learning Strategy	Assessment Strategy	Corresponding CLOs
1.	Familiarization of different equipment involved with Electrical Circuit Lab.	Demonstration Discussion	DemonstrationLab reportsViva	CLO-1
2.	Analyze linearity curve of Ohm's law.	Demonstration Discussion	DemonstrationLab reportsViva	CLO-2
3.	Verification of KCL and Current Divider Rule for DC circuits.	Demonstration Discussion	DemonstrationLab reportsViva	CLO-3 CLO-4
4.	Verification of KVL and Voltage Divider Rule for DC circuits.	Demonstration Discussion	DemonstrationLab reportsViva	CLO-3 CLO-4
5.	Analysis of series and parallel circuits.	DemonstrationDiscussionGroup work	DemonstrationLab reportsViva	CLO-1 CLO-2
6.	Verification of Superposition theorem.	Demonstration Discussion	DemonstrationLab reportsViva	CLO-3 CLO-4
7.	Verification of Thevenin's theorem.	Demonstration Discussion	DemonstrationLab reportsViva	CLO-3 CLO-4
8.	Verification of Norton's theorem.	Demonstration Discussion	DemonstrationLab reportsViva	CLO-3 CLO-4
9.	Verification of Maximum power transfer theorem.	Demonstration Discussion	DemonstrationLab reportsViva	CLO-3 CLO-4
10.	Project work	DemonstrationDiscussionGroup work	DemonstrationLab reportsViva	CLO-4

References:

1. Introductory Circuit Analysis - Robert L. Boylestad; Publisher: Prentice Hall; 12 Edition (January 15, 2010).

- 2. Electrical Technology B.L. Theraja; Publisher: Chand (S.) & Co Ltd, India (July 21, 2008).
- 3. Electronic Devices and Circuit Theory Robert L. Boylestad, Louis Nashelsky; Publisher: Prentice Hall; 10 Edition (July 31, 2008).
- 4. Engineering Circuit Analysis William Hayt, Jack Kemmerly, Steven Durbin; Publisher: McGraw-Hill Science/Engineering/Math; 7 Edition (February 20, 2007).