Capstone Project for Data Science - Car Accident Severity in Seattle

By: Camelia Melissa Mallek

Where do the majority of accidents occur?

Accident Address Types in Seattle

Accuracy Results for Decision Tree Model

	precision	recall	f1-score	support
0	0.69 0.39	0.72 0.35	0.70 0.37	36694 18557
accuracy macro avg weighted avg	0.54 0.59	0.53 0.59	0.59 0.53 0.59	55251 55251 55251

Decision Tree Model - Confusion Matrix

Accuracy Results for Logistic Regression Model

Accuracy scor	e of logistic precision		ion model: f1-score	0.595536733 support	2366835
	precision	recure	11 30010	Support	
0	0.72	0.69	0.70	38445	
1	0.35	0.38	0.37	16806	
accuracy			0.60	55251	
macro avg	0.53	0.54	0.53	55251	
weighted avg	0.61	0.60	0.60	55251	

Logistic Regression Model - Confusion Matrix

Accuracy Results for Support Vector Machine Model

Accuracy of SVM model: 0.5758628803098587								
	precision	recall	f1-score	support				
0	0.72	0.64	0.68	38445				
1	0.34	0.44	0.38	16806				
accuracy			0.58	55251				
macro avg	0.53	0.54	0.53	55251				
weighted avg	0.61	0.58	0.59	55251				

Support Vector Machine Model - Confusion Matrix

Conclusion

- The main takeaways from this project is that all of the machine learning models that were conducted had similar results and value can be derived from each of them
- The bulk of accidents occur in a particular address type (block) and this should be further considered as an indicator for which areas to avoid during certain driving conditions
- Future analysis should include different machine learning methods in order to further determine if there is an even more effective model type for this kind of data analysis