Lista 3

Arruti, Sergio, Jesús

Ej 29. Sea $M_{i\in I}$ una familia de grupos abelianos. Pruebe que $\coprod_{i\in I} M_i$ es un subgrupo abeliano de $\prod_{i\in I} M_i$.

 $\begin{array}{l} \textit{Demostraci\'on.} \ \ \text{Sean} \ x,y \in \coprod_{i \in I} M_i, \ \text{entonces} \ x,y \in \prod_{i \in I} M_i \ y \\ |supp(x)| < \infty, \ |supp(y)| < \infty. \ \ \text{Entonces} \ x-y = (x_i-y_i)_{i \in I} \in \prod_{i \in I} M_i, \\ \text{pero} \ x_i = 0, y_j = 0 \ \text{para casi toda} \ i \in I, \ j \in I, \ \text{asi} \ (x_i-y_i) \neq 0 \ \text{a lo m\'as} \\ \text{en} \ |supp(x)| + |supp(y)| < \infty \ \text{puntos.} \ \text{Por lo tanto} \ |supp(x-y)| < \infty \ \text{y} \\ \text{por lo tanto} \ (x-y) \in \coprod_{i \in I} M_i, \ \text{es decir}, \ \coprod_{i \in I} M_i \ \text{es subgrupo de} \ \prod_{i \in I} M_i. \end{array}$

Ej 30. Sea $\{M_i\}_{i\in I}$ una familia en Mod(R). Entonces $\coprod_{i\in I}M_i$ es un submódulo de $\prod_{i\in I}M_i$.

Demostración. Sean $G := \prod_{i \in I} M_i$ y $H := \coprod_{i \in I} M_i$. Si $I = \emptyset$ se tiene lo deseado, pues en tal caso $G = H = \{0\}$.

Supongamos que $I \neq \emptyset$. Por el Ej. 30 H es un subgrupo de G y así, en patícular, $\forall \ a,b \in H, \ a+b \in H$. Sea $r \in R$ y $a = (a_i)_{i \in I} \in H$. Dado que $r \bullet 0_i = 0_i, \ \forall \ i \in I$, se sigue que

$$\{i \in I \mid r \bullet a_i \neq 0\} \subseteq \{i \in i \mid a_i \neq 0\},$$

$$\implies supp (r \bullet a) \subseteq supp (a).$$

Con lo cual $r \bullet a$ tiene soporte finito, pues a lo tiene. De modo que $r \bullet a \in H$ y por lo tanto $H \in \mathcal{L}(G)$.

- **Ej 31.** Sea $\{M_i\}_{i\in I}$ una familia no vacía en Mod(R). Pruebe que:
 - a) Para cada $i \in I$, las inclusiones *i*-ésimas

$$inc_i: M_i \to \coprod_{i \in I} M_i$$

 $x \mapsto (y_t)_{t \in I}$

con

$$y_{t} = \begin{cases} x & t = i \\ 0 & t \neq i \end{cases}$$
$$Inc_{i}: M_{i} \to \prod_{i \in I} M_{i}$$
$$x \mapsto inc_{i}(x),$$

son monomorfismos en Mod(R).

b) Para cada $i \in I$, las proyecciones i-ésimas

$$Proy_{i}: \prod_{i \in I} M_{i} \longrightarrow M_{i}, \ Proy_{i}\left(m\right) = m_{i}$$

$$proy_{i}: \prod_{i \in I} M_{i} \longrightarrow M_{i}, \ proy_{i}\left(m\right) = m_{i}$$

son epimorfismos en Mod(R).

Demostración. (a) Primero veamos que estas funciones son morfismos. Considere $i \in I$. En vista que Inc_i está determinada por inc_i , bastará con mostrar que el ser morfismo se satisface para inc_i . Sean $x, y \in M_i$ y $r \in R$. Entonces

$$(inc_i(x+y))_t = \begin{cases} x+y & si \ i=t \\ 0 & si \ i \neq t \end{cases}$$
$$= (inc_i(x))_t + (inc_i(y))_t$$

e

$$(inc_i(rx))_t = \begin{cases} rx & si \ i = t \\ 0 & si \ i \neq t \end{cases}$$
$$= r \begin{cases} x & si \ i = t \\ 0 & si \ i \neq t \end{cases}$$
$$= r (inc_i(x))_t$$

Por lo que inc_i e Inc_i son morfismos.

Ahora, sean $i \in I$ y $x \in Ker(inc_i)$. Entonces $(inc_i(x))_t = (0)_t$. Es decir, en cada entrada $inc_i(x)$ es 0. En particular, para t = x. En consecuencia, x = 0. Por tanto, $inc_i(x)$ es monomorfismo.

Por otro lado, sean $i \in I$ y $x \in Ker(Inc_i)$. De esta forma, $x \in Ker(inc_i)$. Como inc_i es monomorfismo, x = 0. Por lo que Inc_i también lo es.

(b) Sea $i \in I$. $Proy_i$ es un epimorfismo. Dado $x \in M_i$, el elemento $m = (Inc_i(x))_t \in \prod_{i \in I} M_i$ satisface que $Proy_i(m) = x$.

De manera análoga, para cada $i \in I$, la proyección $proy_i$ es un epimorfismo, sustituyendo Inc_i por inc_i .

Ej 32. Sea $C = \coprod_{i \in I} M_i$ en Mod(R), via las inclusiones naturales $\{\mu_i \colon M_i \longrightarrow C\}_{i \in I}$. Pruebe que, para cada $H \in Mod(R)$, la función $\varphi_H \colon \operatorname{Hom} \left(\coprod_{i \in I} M_i, H\right) \longrightarrow \prod_{i \in I} \operatorname{Hom}_R \left(M_i, H\right), \ g \mapsto (g \circ \mu_i)_{i \in I}$, es un isomorfismo de grupos abelianos.

Demostración. Morfismo:

Sean
$$f, g \in \text{Hom}\left(\coprod_{i \in I} M_i, H\right)$$
 entonces

$$\varphi_{H}(f+g)(m) = ((f+g) \circ \mu_{i})_{i \in I}(m) = [(f+g)(\mu_{i}(m))]_{i \in I}$$

$$= (f(\mu_{i}(m_{i})))_{i \in I} + (g(\mu_{i}(m_{i})))_{i \in I}$$

$$= (f \circ \mu_{i})_{i \in I}(m) + (g \circ \mu_{i})_{i \in I}(m)$$

$$= \varphi_{H}(f)(m) + \varphi_{H}(g)(m).$$

Por lo tanto es morfismo de grupos.

Inyectividad y buena definición.

Como $\varphi_H(g)=(g\circ \mu_i)_{i\in I}$ entonces φ es el producto de composiciones de funciones, así que está bien definida. Ahora, si $\varphi_H(f)=\varphi_H(g)$ entonces $f_i=(f\circ \mu_i)=(g\circ \mu_i)=g_i \quad \forall i\in I$ y se tienen los siguientes diagramas conmutativos

$$\prod_{i \in I} M_i \xrightarrow{f} H$$

$$\prod_{i \in I} M_i \xrightarrow{g} H$$

$$\downarrow_{i \in I} M_i \xrightarrow{g} H$$

por la propiedad universal del coproducto existe un único morfismo h tal que $h \circ \mu_i = g_i = f_i = h \circ \mu_i$, por lo que f = g.

Suprayectividad:

Sea $f \in \prod_{i \in I} \operatorname{Hom}_R(M_i, H)$, entonces $f = (f_i)_{i \in I} \operatorname{con} f_i \in \operatorname{Hom}_R(M_i, H)$. Así por la propiedad universal del coproducto existe una única

$$g \colon \coprod_{i \in I} M_i \longrightarrow H$$
 en $Mod(R)$ tal que $g \circ \mu_i = f_i \quad \forall i \in I$. Por lo tanto $\varphi_H(g) = (g \circ \mu_i)_{i \in I} = (f_i)_{i \in I} = f$ por lo que φ_H es isomorfismo. \square

Ej 33. Sea $\{M_i\}_{i\in I}$ una familia en $Mod(R), N \in Mod(R)$ y $\{g_i: N \to M_i\}_{i\in I}$ una familia de morfismos de R-módulos. Entonces $\exists ! \ g: N \to \prod_{i\in I} M_i$ morfismo de R-módulos tal que $Proy_i \circ g = g_i, \ \forall \ i\in I$.

Demostración. Si $I = \emptyset$ entonces $\prod_{i \in I} M_i = \{0\}$ y el enunciado se reduce a verificar que existe un único morfismo de R-módulos de N en $\{0\}$, lo cual es inmediato.

Supongamos que $I \neq \emptyset$. Notemos que la función

$$g: N \to \prod_{i \in I} M_i$$
$$n \mapsto (g_i(n))_{i \in I}$$

es un morfismo de R-módulos, pues g_i lo es $\forall i \in I$, $(a_i)_{i \in I} + (b_i)_{i \in I} = (a_i + b_i)_{i \in I}$ y $r \bullet (a_i)_{i \in I} = (r \bullet a_i)_{i \in I}$. Sea $j \in I$, entonces

$$Proy_{j}(g(n)) = Proy_{j}((g_{i}(n))_{i \in I})$$

$$= g_{j}(n).$$

$$\implies Proy_{j} \circ g = g_{j}, \forall j \in I.$$

Finalmente, verifiquemos la unicidad. Sea $h: N \to \prod_{i \in I} M_i$ tal que $Proy_j \circ h = g_j, \ \forall \ j \in I$. Notemos que por lo anterior $Proy_j \circ h = Proy_i \circ g \ \forall \ j \in I$. Sea $n \in N, \ (y_i)_{i \in I} = g(n)$ y $(z_i)_{i \in I} = h(n)$, entonces

$$\begin{split} y_{j} &= Proy_{j}\left((y_{i})_{i \in I}\right) = Proy_{j}\left((g_{i}\left(n\right))_{i \in I}\right) = Proy_{j}\left(g\left(n\right)\right) \\ &= Proy_{j}\left(h\left(n\right)\right) = z_{j}, \ \forall \ j \in I. \\ &\implies g\left(n\right) = h\left(n\right) \ \forall \ n \in N. \\ &\implies g = h. \end{split}$$

Ej 34. Sea $\{M_i\}_{i\in I}$ en Mod(R), $P \in Mod(R)$ y $\{\pi_i : P \longrightarrow M_i\}_{i\in I}$. Pruebe que las siguientes condiciones son equivalentes.

- a) Existe un isomorfismo $\varphi:\prod_{i\in I}Mi\longrightarrow P$ en Mod(R) tal que para $i\in I,\, \pi_i\circ\varphi=Proy_i$
- b) $P y \{\pi_i : P \longrightarrow M_i\}_{i \in I}$ son un producto para $\{M_i\}_{i \in I}$

Demostración. $(a) \Rightarrow (b)$ Sean $M \in Mod(R)$ y $\{f_i : M \longrightarrow M_i\}i \in I$ una familia de morfismos en Mod(R). Dado que $\prod_{i \in I} M_i$ es un producto

para $\{M_i\}_{i\in I}$, existe un único morfismo $f:M\longrightarrow\prod_{i\in I}M_i$ tal que, para cada $i\in I$, $Proy_i\circ f=f_i$. Además, por hipótesis, existe $\varphi:\prod_{i\in I}Mi\longrightarrow P$ en Mod(R) tal que para $i\in I$, $\pi_i\circ\varphi=Proy_i$. De modo que

$$\pi_i \circ \varphi \circ f = Proy_i \circ f = f_i$$

Más aún, esta $\varphi \circ f$ es única. En efecto, si $g: M \longrightarrow P$ un morfismo tal que, para $i \in I$, $\pi_i \circ g = f_i$, entonces $\varphi^{-1} \circ g \in Hom_R\left(M, \prod_{i \in I} M_1\right)$ y

$$Proy_i \circ \varphi^{-1} \circ g = \pi_i \circ \varphi \circ \varphi^{-1} \circ g$$
$$= \pi_i \circ g$$
$$= f_i$$

Como $\prod_{i\in I} M_i$ y $\{Proy_i\}_{i\in I}$ es un producto para $\{M_i\}_{i\in I}, f=\varphi^{-1}\circ g$. Así, $\varphi\circ f=g$. En consecuencia, se tiene que P y $\{\pi_i: P\longrightarrow M_i\}_{i\in I}$ son un producto para $\{M_i\}_{i\in I}$.

Ej 35. Sea $P = \prod_{i \in I} M_i$ en Mod(R) via las proyecciones naturales $\{\pi_i \colon P \longrightarrow M_i\}_{i \in I}$. Pruebe que, para cada $H \in Mod(R)$, la función $\phi_H \colon \operatorname{Hom}_R(H, \prod_{i \in I} M_i) \longrightarrow \prod_{i \in I} \operatorname{Hom}_R(H, M_i), \ g \mapsto (\pi_i \circ g)_{i \in I}$, es un isomorfismo de grupos abelianos.

Demostraci'on. Primero veamos que es morfismo. Como π es morfismo $\forall i \in I$

$$\phi_H(g+f) = [\pi_i \circ (g+f)]_{i \in I} = [(\pi_i \circ g) + (\pi_i \circ f)]_{i \in I}$$
$$= (\pi_i \circ g)_{i \in I} + (\pi_i \circ f)_{i \in I} = \phi_H(g) + \phi_H(f).$$

Por lo tanto en morfismo de grupos abelianos.

Inyectividad y buena definición.

Como $\phi_H(g) = (\mu_i \circ g)_{i \in I}$ entonces ϕ_H es el producto de composiciones de funciones, así que está bien definida. Ahora, si $\phi_H(f) = \phi_H(g)$ entonces $f_i = (\mu_i \circ f) = (\mu_i \circ g) = g_i \quad \forall i \in I$ y se tienen los siguientes diagramas conmutativos

por la propiedad universal del producto existe un único morfismo h tal que $\mu_i \circ h = g_i = f_i = \mu_i \circ h$, por lo que f = g.

Suprayectividad:

Sea
$$h \in \prod_{i \in I} \operatorname{Hom}_{\mathbb{R}}(H, M_i)$$
, entonces $h = (h_i)_{i \in I}$ con $h_i \in \operatorname{Hom}_{\mathbb{R}}(H, M_i)$,

así por la propiedad universar del producto existe un único $g: H \longrightarrow P$ tal que $\pi_i \circ g = h_i$, por lo que $\phi_H(g) = (\pi_i \circ g)_{i \in I} = (h_i)_{i \in I} = h$. Entonces ϕ_H es isomorfismo de grupos.

Ej 36. Sea $\{\pi_i: M \to M_i\}_{i=1}^n \subseteq Mod(R)$. Las siguientes condiciones son equivalentes:

- a) $\{\pi_i: M \to M_i\}_{i=1}^n$ es un producto para $\{M_i\}_{i \in I}$;
- b) $\exists \{\mu_i: M_i \to M\}_{i=1}^n \in Mod\{R\} \text{ tal que } \sum_{i=1}^n \mu_i \pi_i = Id_M \text{ y } \pi_i \mu_i = \delta_{ij}^M \ \forall \ i,j \in [1,n].$

Demostración. Sea I = [1, n].

$$\pi_i \mu_j = \delta^M_{ij} \quad \forall \ i \in I.$$

Así pues, consideremos $\{\mu_i\}_{i\in I}$. Notemos que nuevamente por la propiedad universal del producto, $f:M\to M\in Mod\left(R\right)$ es tal que \forall i'I $\pi_i\circ f=\pi_i$

si, y sólo si, $f = Id_M$; y que

$$\pi_i \sum_{j=1}^n (\mu_j \pi_j) = \sum_{j=1}^n ((\pi_i \mu_j) \pi_j) = \sum_{j=1}^n ((\delta_{ij}^M) \pi_j) = \delta_{ii}^M \pi_i = Id_{M_i} \pi_i$$

$$= \pi_i.$$

$$\implies \sum_{j=1}^n (\mu_j \pi_j) = Id_M.$$

 \subseteq Sea $\{\eta: N \to M_i\}_{i \in I} \subseteq Mod(R)$ y

$$f: N \to M$$

$$n \mapsto \left(\sum_{i=1}^{n} \mu_i \eta_i\right)(n)$$

. Así $f: N \to M \in Mod\left(R\right)$ y, si $j \in I$,

$$\pi_j \circ f = \pi_j \left(\sum_{i=1}^n \mu_i \eta_i \right) = \left(\sum_{i=1}^n (\pi_j \mu_i) \eta_i \right) = \sum_{i=1}^n \delta_{ji} \eta_i = \eta_j.$$

$$\implies \pi_j f = \eta_j \ \forall \ j \in I.$$

Finalmente, sea $g: N \to M \in Mod(R)$ tal que $\pi_i g = \eta_i \ \forall \ i \in I$. Así

$$g = Id_M g = \left(\sum_{i=1}^n \mu_i \pi_i\right) g = \left(\sum_{i=1}^n \mu_i (\pi_i g)\right) = \left(\sum_{i=1}^n \mu_i \eta_i\right) = f.$$

$$\implies g = f.$$

Ej 37. Para $M \in f.l.(R)$, pruebe que:

- a) l(M) = 0 si y sólo si M = 0
- b) l(M) = 1 si y sólo si M es simple

Demostración. (a) Observe que si M=0, entonces $0=M_0=M$ es la única serie de composición de M, salvo repeticiones. De esta manera l(M)=0. Inversamente, si l(M)=0, entonces la única serie de composición de M, salvo repeticiones, es $0=M_0=M$. M=0.

(b) Para este inciso suponga que M es un R-módulo simple. En consecuencia, $L(M) = \{0, M\}$. Con lo cual, M tiene una serie de composición $0 = M_0 \le M_1 = M$. De modo que l(M) = 1. Por otro lado, suponga que l(M) = 1, y sea $0 = M_0 \le M_1 = M$ una serie de composición para M. $\therefore M \cong M/0 \cong M_1/M_0$ es simple.

\mathbf{Ej} 38. Para un anillo R pruebe que

- a) Una sucesión de la forma $0 \longrightarrow X \xrightarrow{f} Y \xrightarrow{g} Z \longrightarrow 0$ en Mod(R) es exacta si y sólo si Ker(f) = 0 = CoKer(g) y Im(f) = Ker(g).
- b) Consideremos el siguiente diagrama conmutativo y exacto, (i.e. las filas y las columnas son sucesiones exactas) en Mod(R)

Pruebe que existen morfismos $X'' \xrightarrow{f''} Y'' \xrightarrow{g''} Z''$ en Mod(R) (además son únicos) tales que dicho diagrama se completa al siguiente diagrama conmutativo y exacto en Mod(R)

c) Pruebe que $0 \longrightarrow A \stackrel{\varphi}{\longrightarrow} B \longrightarrow 0$ es exacta si y sólo si φ es un isomorfismo en Mod(R).

Demostración. a) Definimos $CoKer(g):=\frac{Z}{Im(g)}$, así, como la sucesión es exacta, Ker(f)=Im(0)=0, Im(f)=Ker(g) y

$$Im(g) = Ker(0) = Z$$
, es decir, $\mathbb{Z}/Im(g) = 0$ y así $CoKer(g) = 0$.

Ahora, si Ker(f)=0=CoKer(g) y Im(f)=Ker(g), entonces la función $0_f\colon 0\longrightarrow X$ y $0_g\colon Z\longrightarrow 0$ son morfismos tales que $m(0_f)=Ker(f),\ Ker(0_g)=Z$ y, como 0=CoKer(g)=Z/Im(g), y $Ker(0_g)=Im(g)$, se tiene que la sucesión $0\longrightarrow X\stackrel{f}{\longrightarrow} Y\stackrel{g}{\longrightarrow} Z\longrightarrow 0$ es exacta.

b) Para este ejercicio se usará el siguiente lema.

Lema de la serpiente:

Sea R un anillo y considere el siguiente diagrama de R-Módulos donde los renglones son exactos

Entonces existe un morfismo de conexión $\eta \colon Ker(\gamma) \longrightarrow CoKer(\alpha)$, y la sucesión $Ker(\alpha) \xrightarrow{f|_{Ker(\alpha)}} Ker(\beta) \xrightarrow{g|_{Ker(\beta)}} Ker(\gamma) \longrightarrow$

$$\longrightarrow CoKer(\alpha) \xrightarrow{\bar{f}'} CoKer(\beta) \xrightarrow{\bar{g}'} CoKer(\gamma)$$
 es exacta.

Más aun, si f es inyectiva entonces $f|_{Ker(\alpha)}$ también lo es. Dualmente si g' es suprayectiva, entonces \bar{g}' también.

Con este lema en mente es muy sencillo probar el inciso b), pues por el lema de la serpiente los dos primeros renglones inducen la sucesión exacta

$$0 \longrightarrow Ker(\alpha) \longrightarrow Ker(\alpha') \longrightarrow Ker(\alpha'') \longrightarrow$$

$$\longrightarrow \operatorname{CoKer}(\alpha) \stackrel{f^{\prime\prime}}{\longrightarrow} \operatorname{CoKer}(\alpha^\prime) \stackrel{g^{\prime\prime}}{\longrightarrow} \operatorname{CoKer}(\alpha^{\prime\prime}) \longrightarrow 0 \ .$$

Como las columnas del diagrama son sucesiones exactas, entonces α, α' y α'' son monomorfismos, es decir, $Ker(\alpha) = Ker(\alpha') = Ker(\alpha'') = 0$ y, como las columnas son exactas, $CoKer(\alpha') = X'/Ker(\beta) = X''$ pues β es epimorfismo. Análogamente $CoKer(\alpha') = Y''$ y $CoKer(\alpha'') = Z''$, así tenemos que la siguiente sucesión es exacta

$$0 \longrightarrow X'' \stackrel{f''}{\longrightarrow} Y'' \stackrel{g''}{\longrightarrow} Z'' \ .$$

Mas aún, la construcción de f'' y g'' dadas en el lema de la serpiente aseguran que $f''\beta = \beta'f'$ y $g''\beta' = \beta''g'$ lo cual hace conmutar el diagrama del ejercicio.

c)

$$0 \longrightarrow A \xrightarrow{\varphi} B \longrightarrow 0$$
, es exacta

$$\iff Ker(\varphi) = Im(0) = 0$$
 y
$$CoKer(\varphi) = \frac{B}{Im(\varphi)} = \frac{B}{Ker(0)} = \frac{B}{B} = 0$$

 $\iff \varphi$ es monomorfismo y epimorfismo

 $\iff \varphi$ es isomorfismo.

Ej 39. Sea

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$$

una sucesión exacta en $Mod\left(R\right)$ y $F:=\left\{F_{i}\right\}_{i\in I}$ una filración en B. Entonces $f^{-1}\left(F\right):=\left\{f^{-1}\left(F_{i}\right)\right\}_{i\in I}$ y $g\left(F\right):=\left\{g\left(F_{i}\right)\right\}_{i\in I}$ son, respectivamente, filtraciones en A y en C.

Demostraci'on. Se tiene que g es sobre y f es inyectiva, por ser exacta la sucesi\'on.

g, al ser un morfismo de R-módulos, necesariamente es un morfismo de CPO de (B,\leq) en (C,\leq) , además $g\left(\langle 0_B\rangle_R\right)=\langle 0_C\rangle_R$ $g\left(B\right)=\langle C\rangle_R$. Por lo anterior se tiene que $g\left(F\right)$ es una filtración de C.

Por su parte, se tiene que, $\forall M, N \in \mathcal{L}(B), f^{-1}(M) \in \mathcal{L}(A)$ y $f^{-1}(M) \leq f^{-1}(N)$, y además $f^{-1}(\langle 0_B \rangle_R) = Ker(f) = \langle 0_A \rangle_R$ y $f^{-1}(B) = A$. Por lo tanto $f^{-1}(F)$ es una filtración de A.

Ej 40. Para una sucesión exacta $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ en Mod(R), pruebe que: $B \in f.l.(R)$ si y sólo si $A, C \in f.l.(R)$

Demostraci'on. \Longrightarrow) Suponga que $B \in f.l.(R)$. Entonces B tiene una serie de composición \mathfrak{F} . Por el **Lema 2.1.1.a**), tanto $f^{-1}(\mathfrak{F})$ como $g(\mathbb{F})$ son series de composición de A y de C respectivamente. En consecuencia, $A, C \in f.l.(R)$.

 (\Leftarrow) Sean $\mathfrak{A} = \{A_i\}_{i=1}^n$ y $\mathfrak{C} = \{C_j\}_{j=1}^m$ series de composición para A y C, respectivamente. Luego, los $f(A_i)$ y los $g^{-1}(C_j)$ son submódulos de B. Definimos la serie $\mathfrak{B} = \{B_t\}_{t=1}^{m+n}$, donde $B_t = f(A_t)$ si $t \leq n$ y $B_t = g^{-1}(C_{t-n})$ si $n+1 \leq t \leq n+m$.

Ahora, dado que f es un monomorfismo, se tiene que $B_t \cong A_t$, para $t \leq n$. Y por otro lado, el teorema de la correspondencia y el tercer teorema de isomorfismo garantizan que $\frac{B_{t+1}}{B_t} = \frac{g^{-1}(C_{t+1})}{g^{-1}(C_t)} \cong \frac{C_{t-n+1}}{C_{t-n}}$ para cada $n+1 \leq t \leq n+m$. Más aún, tenemos que los cocientes $\frac{B_{t+1}}{B_t}$ son simples, toda vez que los cocientes $\frac{A_{i+1}}{A_i}$ y $\frac{C_{j+1}}{C_j}$ lo son. De esta forma $\mathfrak B$ es una serie de composición para $B_t : B \in f.l.(R)$

- Ej 41. Pruebe que las siguientes condiciones se satisfacen para un anillo R.
 - a) Sean $M \in f.l(R)$ y $N \leq M$. Entonces

$$M = N \iff l(M) = l(N) \iff l(M/N) = 0.$$

b) Sean $M \in f.l(R)$ y $f \in \text{End}(_R M)$. Entonces f es un isomorfismo $\iff f$ es un monomorfismo $\iff f$ es un epimorfismo.

 $\begin{array}{l} Demostraci\'on. \ \, \text{a)} \ \, (M=N\Rightarrow l(M)=l(N)) \ \, \text{es claro.} \\ \text{Supongamos que } l(M)=l(N), \, \text{entonces como } 0\to N\to M\to M/_N\to 0 \\ \text{es exacta, por el ej. } 40\ N\ y\ M/_N \ \, \text{est\'an en } f.l.(R) \ \, \text{y por el corolario } 2.13\text{b}), \\ l(M)=l(N)+l(M/_N), \, \text{y como } l(M)=l(N) \ \, \text{entonces } 0=l(M/_N). \\ \text{Por \'ultimo, por el ej. } 37\ l(M/_N)=0 \ \, \Longleftrightarrow \ \, M/_N=0 \ \, \text{por lo tanto } M=N \\ \text{demostrando as\'i todas las implicaciones en a)}. \end{array}$

b) supongamos fes monomorfismo, entonces la siguiente sucesión es exacta

$$0 \longrightarrow M \xrightarrow{f} f(M) \xrightarrow{g} M/_{f(M)} \longrightarrow 0,$$

donde g es la proyección de f(M) en M.

Como M es f.l. entonces existe una serie de composición $\{F_i\}_{i=0}^n$ de M. Así $\{f(F_i)\}_{i=0}^n$ cumple que $f(F_i)/_{f(F_{i-1})}\cong f(F_i/_{F_{i-1}})$ (por ser f inyectiva) que es simple para toda $i\in\{1,\ldots,n\}$. Por lo tanto $\{f(F_i)\}_{i=0}^n$ es una serie de composición y l(f(M))=n=l(M). Por a) M=f(M) y así la sucesión $0\longrightarrow M\stackrel{f}{\longrightarrow} M\longrightarrow 0$ es exacta, implicando que f sea isomorfismo.

Ahora, si g es supra, la sucesión

Ej 42. Si $M \in Mod(R)$ entonces las siguientes condiciones son equivalentes:

- a) M es noetheriano,
- b) $\mathcal{L}(M) \subseteq mod(R)$,
- c) si $\mathcal{J} \subseteq \mathcal{L}(M)$, $\mathcal{J} \neq \emptyset$, entonces (\mathcal{J}, \leq) posee por lo menos un elemento maximal.

Demostraci'on. $a) \Longrightarrow b)$ Sea $A \le M$. Si A es finito la proposición es inmediata, pues $A = \langle A \rangle_R$. Supongamos que A es infinito y sea $a_1 \in A \setminus \langle 0 \rangle_R$. Si $A = \langle a_1 \rangle_R$ se tiene lo deseado, en caso contrario sea $a_2 \in A \setminus \{0, a_1\}$. Si $A = \langle a_1, a_2 \rangle_R$, se tiene lo deseado, en caso contrario, consideremos $a_3 \in A \setminus \{0, a_1, a_2\}$. Notemos que este proceso se puede efectuar solo una cantidad finita, i.e. $\exists n \in \mathbb{N} \setminus \{0\}$ y $a_1, \ldots, a_n \in A$ tales que $A = \langle a_1, \ldots, a_n \rangle_R$, y por lo tanto $A \in mod(R)$, ya que si no fuera el caso, por el axioma de elección dependiente, existiría una cadena ascendente

$$\langle a_1 \rangle_R \leq \langle a_1, a_2 \rangle_R \leq \langle a_1, a_2, a_3 \rangle_R \leq \dots$$

que no se estabilizaría y por lo tanto M no sería noetheriano.

 $b) \Longrightarrow c)$ Procedamos por el contrapositivo. Supongamos que $\exists \mathcal{J}$ una familia no vacía de submódulos de M tal (\mathcal{J}, \leq) que no posee elementos maximales. Así sea $J_1 \in \mathcal{J}$, luego J_1 no es maximal en (\mathcal{J}, \leq) y por lo tanto $\exists J_2 \in \mathcal{J}$ tal que $J_1 \leq J_2$. Por su parte, J_2 no es maximal en (\mathcal{J}, \leq) y por lo tanto $\exists J_3 \in \mathcal{J}$ tal que $J_2 \leq J_3$. Aplicando el axioma de elección dependiente a este procedimiento se obtiene la cadena ascendente de submódulos $\{J_n\}_{n\in\mathbb{N}}$. $J:=\bigcup_{n\in\mathbb{N}}J_n\in\mathcal{L}(M)$, pues la unión de una cadena ascendente de submódulos se un submódulo. Supongamos que J es finitamente generado, luego $\exists j_1,\ldots,j_k \in J$ tales que $J=\langle j_1,\ldots,j_k \rangle_R$. Notemos que, $\forall i \in [1,k], \exists l_i \in \mathbb{N}$ tal que $j_i \in J_{l_i}$, y así, si $t:=\max\{l_i \mid i \in 1,k\}$ entonces $j_i \in J_t$, $\forall i \in 1,k$. De modo que

$$\langle j_1, \ldots, j_k \rangle_R \leq J_t \leq J = \langle j_1, \ldots, j_k \rangle_R$$

lo cual es absurdo $(J_t$ es un submódulo estricto de J pues $\{J_n\}_{n\in\mathbb{N}}$ es una cadena estrictamente ascendente) y por lo tanto J no es finitamente generado.

 $c) \Longrightarrow a)$ Sea $\{A_n\}_{n\in\mathbb{N}}$ una cadena ascendente de submódulos. Luego $\varnothing \neq \{A_n\}_{n\in\mathbb{N}} \subseteq \mathscr{L}(M)$ y por lo tanto $(\{A_n\}_{n\in\mathbb{N}}, \leq)$ posee al menos un elemento maximal. De modo que $\exists k \in \mathbb{N}$ tal que A_k es maximal en $(\{A_n\}_{n\in\mathbb{N}}, \leq)$. Si $\forall l > k$ $A_l = A_k$ se tiene lo deseado. Supongamos que $\exists l > k$ tal que $A_k \subseteq A_l$, por ser maximal, se tiene que $A_l = M$ y por lo tanto $A_r = M$, $\forall r \geq l$. Así, en cualquier caso, se tiene que la cadena se estabiliza y por lo tanto M es noetheriano.

Ej 43. Para $M \in Mod(R)$, pruebe que las siguientes condiciones son equivalentes.

- a) M es artiniano
- b) Para toda $\mathfrak{F}\subseteq L\left(M\right),$ con $\mathfrak{F}\neq\emptyset,$ existe un elemento mínimo en en (\mathfrak{F},\leq)

Demostración. (a) \Rightarrow (b) Dada $\mathfrak F$ una familia no vacía de submódulos de M, sea $N_1 \in \mathfrak F$. Suponga que N_1 no es un elemento mínimo de $\mathfrak F$, de este modo existe $N_2 \in \mathfrak F$ tal que $N_2 \not \geq N_1$. Repitiendo este argumento, obtenemos una cadena de submódulos $N_1 \geq N_2 \geq \cdots$ en $\mathfrak F$. En virtud de que M es artiniano, existe $k \in \mathbb N$ tal que para cada $t \in \mathbb N$, $N_k = N_{k+t}$. $\therefore N_k$ es un elemento mínimo de $\mathfrak F$.

(b) \Rightarrow (a) Sea $N_1 \ngeq N_2 \trianglerighteq \cdots$ una cadena de submódulos de M. Considere $\mathfrak{F} = \{N_k\}_{k \in \mathbb{N}}$. Entonces, por hipótesis, \mathfrak{F} tiene elementos mínimos. Sea N_k uno de dichos mínimos. Dado que \mathfrak{F} es una cadena, $N_k = N_{k+t}$, para toda $t \in \mathbb{N}$. M es artiniano.

Ej 44. (Modularidad) Para $M \in Mod(R)$ y $H, K, L \in \mathcal{L}(M)$ pruebe que

$$K \le H \iff H \cap (K+L) = K + (H \cap L).$$

Demostración. Sea $x \in H \cap (K+L)$ entonces x = k+l con $k \in K, x \in H$ y $l \in L$, pero $k \in H$ pues $K \leq H$, entonces $l \in H$. Por lo tanto x = k+l con $k \in K$ y $l \in H \cap L$, es decir, $x \in K + (H \cap L)$.

Sea $y \in K + (H \cap L)$, entonces x = k + r para alguna $r \in H \cap L$, por lo que $x \in K + H = H$ pues $K \leq H$, así $x \in H$ y x = k + r con $k \in K$ y $r \in L$, por lo que $x \in H \cap (K + L)$.

Ej 45. Sea

$$0 \longrightarrow K \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} N \longrightarrow 0$$

una sucesión exacta en Mod(R). Entonces M es noetheriano (respect. artiniano) si y sólo si K y N lo son.

Demostración. Verifiquemos primeramente la afirmación para el caso de módulos noetherianos. Empleando el Ej. 42 b) basta con verificar que

$$\mathscr{L}\left(M\right)\subseteq mod\left(R\right)\iff \mathscr{L}\left(K\right)\subseteq mod\left(R\right)\text{ y }\mathscr{L}\left(N\right)\subseteq mod\left(R\right).$$

 \Longrightarrow Sea $A \in \mathcal{L}(K)$, luego $f(A) \in \mathcal{L}(M)$ y, dado que M es noetheriano, $f(A) \in \mathcal{L}(M)$ es finitamente generado, con lo cual $\exists x_1, \ldots, x_l \in f(A)$ tales que $f(A) = \langle x_1, \ldots, x_l \rangle_B$; notemos que $\forall i \in [1, l] \exists k_i \in A$ tal

que $x_i = f(k_i)$. Así si $Y := \{k_i\}_{i=1}^l$ y $a \in A$, entonces $f(a) \in f(K)$ y por lo tanto $\exists r_1 \ldots, r_l \in R$ tales que

$$\begin{split} f\left(a\right) &= \sum_{i=1}^{l} r_{i} x_{i} = \sum_{i=1}^{l} r_{i} f\left(k_{i}\right) = f\left(\sum_{i=1}^{l} r_{i} k_{i}\right) \\ \Longrightarrow a &= \sum_{i=1}^{l} r_{i} k_{i}, \\ \Longrightarrow A &= \langle Y \rangle_{R} \,. \\ \Longrightarrow A \text{ es finitamente generado.} \end{split}$$

Por su parte sea $C \in \mathcal{L}(N)$, luego $g^{-1}(C) \in \mathcal{L}(M)$ y así $\exists m_1, \ldots, m_o \in g^{-1}(C)$ tales que $g^{-1}(C) = \langle m_1, \ldots, m_o \rangle_R$; notemos que $\forall i \in [1, o]$ $g(m_i) \in C$, con lo cual si $Z := \{g(m_i)\}_{i=1}^o$ y $c \in C$ entonces $Z \subseteq C$ y, dado que g es sobre, $\exists m \in M$ tal que g(m) = c. Luego $m \in g^{-1}(C)$, por lo cual $\exists r_i, \ldots, r_o \in R$ tales que $m = \sum_{i=1}^o r_i m_i$ y así

$$c = \sum_{i=1}^{o} r_i f(m_i)$$

$$\implies C = \langle Z \rangle_R.$$

$$\implies C \text{ es finitamente generado.}$$

Por lo tanto $\mathscr{L}(K) \subseteq mod(R)$ y $\mathscr{L}(N) \subseteq mod(R)$.

Sea $S \leq M$, entonces $f^{-1}(S) \leq K$ y $g(S) \leq N$. Como K y N son noetherianos $\exists a_1, \ldots, a_t \in f^{-1}(S)$ y $\exists c_1, \ldots, c_u \in g(S)$ tales que $f^{-1}(S) = \langle a_1, \ldots, a_t \rangle_R$ y $g(S) = \langle c_1, \ldots, c_u \rangle_R$. En particular se tiene que $f(a_1), \ldots, f(a_t) \in S$ y $\exists b_1, \ldots, b_u \in S$ tales que $\forall i \in [1, u]$ $c_i = g(b_i)$, con lo cual $g(S) = \langle g(b_1), \ldots, g(b_u) \rangle_R$ y por lo tanto, si $X := \{f(a_1), \ldots, f(a_t), b_1, \ldots, b_u\}, X \subseteq S$. Sea $s \in S$, luego $g(s) \in g(S)$, por lo cual $\exists r_1, \ldots, r_u \in R$ tales que

$$g(s) = \sum_{i=1}^{u} r_i g(b_i) = g\left(\sum_{i=1}^{u} r_i b_i\right)$$

$$\implies g\left(s - \sum_{i=1}^{u} r_i b_i\right) = 0$$

$$\implies s - \sum_{i=1}^{u} r_i b_i \in Ker(g) = Im(f)$$

$$\implies \exists \ a \in K \text{ tal que } f(a) = s - \sum_{i=1}^{u} r_i b_i.$$

Notemos que $s-\sum_{i=1}^u r_i b_i \in S$ pues S es un submódulo de M, con lo cual $a \in f^{-1}(S)$ y así $\exists r'_1, \ldots, r'_t \in R$ tales que

$$f\left(\sum_{j=1}^{t} r_{t}' a_{j}\right) = s - \sum_{i=1}^{u} r_{i} b_{i}$$

$$\implies s = f\left(\sum_{j=1}^{t} r_{t}' a_{j}\right) + \sum_{i=1}^{u} r_{i} b_{i}$$

$$\implies s \in \langle X \rangle_{R}$$

$$\implies S = \langle X \rangle_{R}.$$

$$\implies S \text{ es finitamente generado.}$$

Por lo tanto $\mathcal{L}(M) \subseteq mod(R)$.

Para el caso de módulos artianos:

 \implies Sea $A_1 \geq A_2 \geq \ldots$ una cadena descendente en $\mathscr{L}(K)$, luego $f(A_1) \geq f(A_2) \geq \ldots$ es una cadena descendente en $\mathscr{L}(M)$ y, como M es artiniano, $\exists L \in \mathbb{N}$ tal que $\forall k \geq L$ $f(A_k) = f(A_L)$. Sea $k \geq L$ y notemos que dado que $A_L \geq A_k$ basta con probar que $A_L \leq A_k$. Sea $a \in A_L$, luego f(a) inf $(A_L) = (A_k)$ y por tanto $\exists b \in A_k$ tal que f(a) = f(b). Como f es inyectiva se sigue que a = b y por lo tanto $a \in A_k$, con lo cual se tiene que $A_L \leq A_k$. Así, K es artiniano.

Por su parte, sea $C_1 \geq C_2 \geq \ldots$ una cadena descendente en $\mathcal{L}(N)$, luego $g^{-1}(C_1) \geq g^{-1}(C_2) \geq \ldots$ es una cadena descendente en $\mathcal{L}(M)$ y, como M es artiniano, $\exists L' \in \mathbb{N}$ tal que $\forall k \geq L' \ g^{-1}(C_k) = g^{-1}(C_{L'})$. Sea $k \geq L'$ y notemos que dado que $C_{L'} \geq C_k$ basta con probar que $C_{L'} \geq C_k$ basta con probar que $C_{L'} \leq C_k$. Sea $c \in C_{L'}$, como g es sobre $\exists b \in M$ tal que g(b) = c, con lo cual $b \in g^{-1}(C_{L'})$, por tanto $b \in g^{-1}(C_k)$ y así $c = g(b) \in C_k$. Por lo anterior se sique que $C_{L'} \leq C_k$ y así se tiene lo deseado.

 \sqsubseteq Sea $B_1 \geq B_2 \geq \ldots$ una cadena descendente en $\mathscr{L}(M)$, luego $f^{-1}(B_1) \geq f^{-1}(B_2) \geq \ldots$ y $g(B_1) \geq g(B_2) \geq \ldots$ son, respectivamente, cadenas descendientes en $\mathscr{L}(K)$ y en $\mathscr{L}(N)$ y por tanto $\exists r, s \in \mathbb{N}$ tales que

$$\forall \ k \ge r \ f^{-1}(B_k) = f^{-1}(B_r) \tag{*}$$

у

$$\forall k \ge s \ g(B_k) = g(B_s). \tag{**}$$

Así, sea $t = \max\{r, s\}, k \ge t$ y $m \in B_t$. Luego $g(m) \in g(B_t)$ $g(B_t) = g(B_k)$, por (**). Así $\exists b \in B_k$ tal que g(m) = g(b), con lo cual $m - b \in Ker(g) = Im(f)$, por lo cual $\exists a \in K$ tal que m - b = f(a). Notemos que, en partícular, $b \in C_t$, así que $m - b \in C_t$ y por lo tanto $a \in f^{-1}(C_t)$.

Luego

$$a \in f^{-1}(C_k), \qquad (*)$$

$$\implies f(a) \in C_k$$

$$\implies m - b \in C_k$$

$$\implies m \in C_k, \qquad b \in C_k.$$

$$\implies C_t \leq C_k.$$

Por lo tanto M es artiniano.

Ej 46. Para $M,N\in f.l.(R)$, pruebe que $M\coprod N\in f.l.(R)$ y que $l(M\coprod N)=l(M)+l(N)$.

Demostración. Primero, del **Ejercicio 40** y de la exactitud de la sucesión $0 \longrightarrow M \stackrel{f}{\longrightarrow} M \coprod N \stackrel{g}{\longrightarrow} N \longrightarrow 0$, se tiene que $M \coprod N \in f.l.(R)$, ya que M,N tienen longitud finita. Más aún, dada una serie de composición \mathfrak{F} para $M \coprod N$, el **Lema 2.1.1.b)** garantiza que

$$l_{\mathfrak{F}}\left(M\coprod N\right) = l_{f^{-1}(\mathfrak{F})}\left(M\right) + l_{g(\mathfrak{F})}\left(N\right)$$
$$\therefore l\left(M\coprod N\right) = l\left(M\right) + l\left(N\right).$$

Ej 47. Sea $M \in Mod(R)$. Pruebe que

- a) Si $M \simeq N$ en Mod(R) con N semisimple, entonces M es semisimple.
- b) M es semisimple si y sólo si $\exists \{S_i\}_{i\in I}$ en $\mathscr{L}(M)$ de módulos simples tal que $M=\bigoplus_{i\in I}S_i$.

Demostración. $\fbox{ a)}$ Sea $\varphi\colon N\,\longrightarrow\, M$ un isomorfismo y $N\,=\,\coprod_{i\in I}S_i$ con

inclusiones naturales $\{\mu_i \colon S_i \longrightarrow N\}$ y $\{S_i\}_{i \in I}$ una familia de modulos simples.

Consideremos la familia $\{\varphi \circ \mu_i \colon S_i \longrightarrow M\}$, entonces, si $\{g_i \colon S_i \longrightarrow M\}$ es una familia de morfismos en Mod(R), tenemos el siguiente diagrama

Por la propiedad universal del coproducto $\exists !\, g\colon N\longrightarrow Z$ tal que $g \circ \varphi^{-1} \circ \varphi \circ \mu_i = g_i \ \forall i \in I$, es decir, $g \circ \mu_i = g_i \ \forall i \in I$. Así $g \circ \varphi^{-1} : M \longrightarrow Z$ es tal que $(g \circ \varphi^{-1})(\varphi \circ \mu_i) = g_i \ \forall i \in I$. Ahora, si $h(\varphi \circ \mu_i) = g_i$ con $h : M \longrightarrow Z$, entonces

$$(h \circ \varphi) \circ \mu_i = h(\varphi \circ \mu_i) = (g \circ \varphi^{-1})(\varphi \circ \mu_i) = g_i$$

pero g es el único con esta propiedad, entonces $h\varphi = g$ y así $h = g \circ \varphi^{-1}$. Por lo tanto M es semisimple, $M = \coprod_{i \in I} S_i$, con la familia $\{\varphi \circ \mu_i \colon S_i \longrightarrow M\}.$

b) Supongamos que M es semisimple, entonces $M = \coprod_{i \in I} S'_i$ con $\{S'_i\}_{i \in I}$

simples y morfismos $\{\mu_i \colon S_i' \longrightarrow M\}$.

Tomaremos la familia $\{S_i\}_{i\in I}$ con $\mu_i(S_i')=S_i$, como μ_i es monomorfismo para toda $i \in I$, entonces $S_i \neq 0 \quad \forall i \in I$, mas aún, como S_i' es simple se tiene que S_i también lo será. Por esto $\mu:\coprod_{i\in I}S_i'\longrightarrow\coprod_{i\in I}S_i$ con $\mu=(\mu_i)_{i\in I} \text{ es isomorfismo y } \{S_i\}_{i\in I}\subseteq\mathscr{L}(M) \text{ es una familia ajena dos a}$

dos. Entonces

$$\bigoplus_{i \in I} S_i = \coprod_{i \in I} S_i \simeq \coprod_{i \in I} S_i' = M.$$

La otra implicación es trivial.