Моделирование процесса перколяции

Мейер Никита Владимирович

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: д. ф.-м. н., профессор Ермаков С. М. Рецензент: к. ф.-м. н., Дмитриев А. В.

2018 г.

Общая постановка задачи теории перколяции

- Перколяционная решетка является математической моделью множества физических процессов(просачивание через пористый материал, электропроводность в полупроводниках и другие);
- Решетка $n \times n$ (для простоты квадратная), n размерность решетки;
- ullet Узлы решетки заполняются независимо с вероятностью p;
- Заполненные узлы принадлежат одному кластеру, если их можно соединить цепочкой соседних заполненных узлов.

Рис.: Пример решетки. Красным отмечены заполненные узлы. Соединены соседние заполненные узлы, принадлежащие одному кластеру.

Постановка задачи

Задача:

 получение значения среднего числа кластеров на решетке с помощью моделирования;

• Применение:

- выведение на орбиту большого количества наноспутников;
- обеспечение безопасности крупных компьютерных сетей;
- Задача может быть решена стандартными алгоритмами теории перколяции;
- Из-за большого вычислительного объема встает вопрос о разработке алгоритма, позволяющего получать результат с необходимой точностью на выборке меньшего объема.

Вероятностное пространство

Рассмотрим заполнение узлов на решетке как случайный эксперимент. Определим вероятностное пространство данного эксперимента:

- $\Omega = \{\omega : \omega = (c_1, \dots, c_{n^2}), c_i = \{0; 1\}\};$
- $|\Omega| = 2^{n^2}$ количество различных элементарных исходов;
- $\mathfrak{A} = \{A_i \subseteq \Omega\};$
- $\mathbb{P}(\{\omega\}) = p^m (1-p)^{n^2-m}$, где m количество c_i , равных 1 (т.е. количество заполненных узлов элементарного исхода);
- Дискретная случайная величина $K(\omega):\Omega \to \mathbb{N}$, численно равная количеству кластеров на решетке.

Метод существенной выборки

- Вместо вероятностного пространства $\{\Omega,\mathfrak{A},\mathbb{P}\}$ рассматривается $\{\Omega,\mathfrak{A},\mathbb{Q}\};$
- ullet Вероятности элементарных исходов меняются с $p_i = \mathbb{P}(\omega_i)$ на $q_i = \mathbb{Q}(\omega_i)$;

Определение

Весом элементарного исхода ω_i при замене меры с $\mathbb P$ на $\mathbb Q$ называется $W_i = \frac{\mathbb P(\omega_i)}{\mathbb Q(\omega_i)} = \frac{p_i}{q_i}$;

- Введем на $\{\Omega, \mathfrak{A}, \mathbb{Q}\}$ дискретную случайную величину $K'(\omega_i): \Omega \to \mathbb{N}$, определяемую как $K'(\omega_i) = K(\omega_i)W_i;$
- ullet Можно показать, что $\mathbb{E}(K')=\mathbb{E}(K).$

O ценка для $\mathbb{E}(K)$

Воспользуемся методом Монте-Карло:

• Введем оценку:

$$\hat{K}' = \frac{1}{N} \sum_{i=1}^{N} K_i',$$

где K_1', \dots, K_N' — независимые случайные величины, распределенные как K'; N — их количество;

- $\mathbb{E}(\hat{K}') = \mathbb{E}(K') = \mathbb{E}(K);$
- ullet Доверительный интервал уровня $1-\gamma$ при больших N:

$$P\left(\hat{K'} - x_{\gamma} \frac{\sigma}{\sqrt{N}} < \mathbb{E}(K') < \hat{K'} + x_{\gamma} \frac{\sigma}{\sqrt{N}}\right) \approx 1 - \gamma,$$

где x_γ — решение уравнения $2\Phi(x)=2-\gamma;\;\Phi(x)$ — функция распределения $\mathrm{N}(0,1);\;\sigma=\sqrt{\mathrm{Var}(K')}.$

Алгоритм Хошена-Копельмана

Для моделирования воспользуемся алгоритмом Хошена-Копельмана (J. Hoshen and R. Kopelman, 1976):

- Входные данные: размерность решетки n; вероятность заполненного узла p.
- Тело алгоритма:
 - Элементы массива, каждый из которых соответствует узлу решетки, заполняются поочередно в заданном порядке (реализация равномерного распределения на [0,1] сравнивается с p).
 - Для каждого заполненного узла определяется его кластерная метка (номер кластера, которому он принадлежит) через кластерные метки соседних узлов.
- Результат работы алгоритма: количество различных кластерных меток на решетке.

Программная реализация алгоритма Хошена-Копельмана

Рис.: Визуализация заполненной перколяционной решетки.

Усовершенствованный алгоритм Хошена-Копельмана

- Входные данные: вероятность заполненного узла p; замещающая вероятность q; размерность решетки n.
- Тело алгоритма:
 - Применяется алгоритм Хошена-Копельмана, входными данными для которого будет q и n. Количество кластерных меток обозначается за d.
 - Рассчитывается вес элементарного исхода

$$W = \frac{p^m (1-p)^{n^2-m}}{q^m (1-q)^{n^2-m}},$$

количество заполненных узлов m определяется по количеству ненулевых элементов массива кластерных меток.

• Результат работы алгоритма: величина b = Wd.

Программная реализация усовершенствованного алгоритма Хошена-Копельмана

Рис.: Реализация оценки и вычисление несмещенной выборочной дисперсии усовершенствованным и стандартным алгоритмом.

Поиск оптимальной замещающей вероятности

- Моделирование решетки ($n=20;\ p=0.1;\ N=100000$) для различных замещающих вероятностей q;
- Задача: поиск оптимальной замещающей вероятности q_0 , для которой достигается минимум несмещенной выборочной дисперсии S^2 .

Замещающая вероятность q

Рис.: Несмещенная выборочная дисперсия S^2 для различных замещающих вероятностей q. Полученные значения приближенно описываются параболой.

Метод приближения параболой

• Входные данные: размерность решетки n; вероятность заполненного узла p; замещающие вероятности $q_1,\ q_2,\ q_3$; объем выборки N.

• Тело алгоритма:

- **1** По каждой из замещающих вероятностей q_1 , q_2 , q_3 с помощью усовершенствованного алгоритма Хошена-Копельмана реализуется выборка объема N. Для каждой выборки вычисляется несмещенная выборочная дисперсия S_1^2 , S_2^2 , S_3^2 .
- **②** Строится квадратичная функция $f(x) = ax^2 + bx + c$, решениями которой являются $\{(q_1, S_1^2); (q_2, S_2^2); (q_3, S_3^2)\}$.
- **3** Вычисляются координаты вершины параболы $(q_0, f(q_0))$.
- По замещающей вероятности q_0 с помощью усовершенствованного алгоритма Хошена-Копельмана реализуется выборка объема N. Для этой выборки вычисляется несмещенная выборочная дисперсия S_0^2 .
- ullet Результат работы алгоритма: q_0 , $f(q_0)$, S_0^2 .

Программная реализация метода приближения параболой

Рис.: Вычисление координат вершины параболы и сравнение значения, полученного с помощью моделирования, с теоретическим.

Сравнение с алгоритмом Хошена-Копельмана

Сравним значения S^2 обычного и усовершенствованного алгоритма с замещающей вероятностью q_0 на решетке ($n=20;\ N=50000$) для различных p.

Рис.: Усовершенствованный алгоритм позволяет получать оценки с существенно меньшей дисперсией.

Алгоритм, расширяющий класс задаваемых мер

Алгоритм Хошена-Копельмана позволяет задавать вероятностные меры вида $\mathbb{P}(\{\omega\})=p^m(1-p)^{n^2-m}$, где m — количество заполненных узлов элементарного исхода.

Сформулируем алгоритм, с помощью которого можно задавать более широкий класс случайных величин K'.

- Входные данные: размерность решетки n; распределение случайной величины R, принимающей целые значения от 0 до n^2 .
- Тело алгоритма:
 - ① По заданному распределению получается реализация m случайной величины R.
 - ② Моделирование решетки, на которой случайным образом заполнено ровно m узлов.
- Результат работы алгоритма: количество кластерных меток.

Моделирование с помощью алгоритма, расширяющего класс мер

• Вероятность элементарного исхода ω :

$$\mathbb{Q}(\omega) = \frac{P(R=m)}{C_{n^2}^m} > 0,$$

где m — число заполненных узлов в элементарном исходе ω ;

• Вес W элементарного исхода ω :

$$W = \frac{p^m (1-p)^{n^2 - m} C_{n^2}^m}{P(R=m)};$$

• Моделируем с помощью метода существенной выборки для различных распределений R.

Дискретный аналог нормального распределения

Возьмем в качестве R следующее распределение с задаваемыми параметрами a и σ :

Рис.: Значения несмещенной выборочной дисперсии S^2 для различных p.

Усеченное распределение Пуассона

Возьмем в качестве R следующее распределение с задаваемым параметром λ :

$$P(R = m) = \frac{\frac{\lambda^m}{m!}}{\sum_{i=0}^{n^2} \frac{\lambda^i}{i!}}$$

Рис.: Значения несмещенной выборочной дисперсии S^2 для различных p.

Результаты

В моей работе:

- программно реализован алгоритм Хошена-Копельмана;
- разработан и реализован усовершенствованный алгоритм моделирования среднего числа кластеров;
- разработан и реализован метод приближения параболой для поиска оптимальной замещающей вероятности;
- найдены оптимальные вероятности, позволяющие реализовывать оценку с меньшей дисперсией;
- разработан и реализован алгоритм, расширяющий класс мер;
- подобраны два распределения, позволяющие реализовывать оценку с меньшей дисперсией, используя алгоритм, расширяющий класс мер;
- разработан подход к уменьшению дисперсии в подобных задачах, который может быть использован в будущем для дальнейшей оптимизации имеющихся алгоритмов.