Departamento de Análisis Matemático y Matemática Aplicada

Análisis de Variable Real - Grupo E - Curso 2018-19 Integración. Hoja 9.

187 Sea la función $f:[0,1]\to\mathbb{R}$ definida por $f(\frac{1}{n})=\frac{1}{n}$ para $n=1,2,\ldots$ y f(x)=0 para $x\in[0,1]$ con $x\neq\frac{1}{n}$ para algún $n\in\mathbb{N}$. Probad que $f\in\mathcal{R}[0,1]$ y calcular su integral.

188 Probar que si $f \in \mathcal{R}[a,b]$ y $|f(x)| \leq M$ para todo $x \in [a,b]$ entonces

$$\left| \int_{a}^{b} f \right| \le M(b-a)$$

189 Sea la función:

$$f(x) = \begin{cases} 0 & x \in \mathbb{Q} \cap [0, 1] \\ \frac{1}{x} & x \in \mathbb{I} \cap [0, 1] \end{cases}$$

probar que $f \notin \mathcal{R}[0,1]$.

190 Supongamos que $f:[a,b] \to \mathbb{R}$ es una función acotada y existen dos sucesiones de particiones (marcadas) $\dot{\mathcal{P}}_n$ y $\dot{\mathcal{Q}}_n$ con $\|\dot{\mathcal{P}}_n\| \to 0$ y $\|\dot{\mathcal{Q}}_n\| \to 0$, con $\lim_{n \to \infty} S(f, \dot{\mathcal{P}}_n) \neq \lim_{n \to \infty} S(f, \dot{\mathcal{Q}}_n)$, entonces $f \notin \mathcal{R}[a, b]$. Aplicar esta caracterización para probar que la función de Dirichlet

$$f(x) = \begin{cases} 0 & x \in \mathbb{I} \cap [0, 1] \\ 1 & x \in \mathbb{Q} \cap [0, 1] \end{cases}$$

no es integrable Riemann.

- **191** a) Supongamos $f \in \mathcal{R}[a,b]$ y sea $\alpha \in \mathbb{R}$. Definimos la función "trasladada" $f_{\alpha} : [a + \alpha, b + \alpha] \to \mathbb{R}$
- definida por $f_{\alpha}(x) = f(x \alpha)$. Usando particiones y la definición de integral, probar que $\int_a^b f = \int_{a+\alpha}^{b+\alpha} f_{\alpha}$. b) Supongamos $f \in \mathcal{R}[a,b]$ y sea $\alpha \in \mathbb{R}$, $\alpha > 0$. Definimos la función $f^{\alpha} : [\alpha a, \alpha b] \to \mathbb{R}$ definida por $f^{\alpha}(x) = f(x/\alpha)$. Usando particiones y la definición de integral, probar que $\int_{a\alpha}^{b\alpha} f_{\alpha} = \alpha \int_a^b f$.
- 192 Probar que si una función $f:[a,b] \to \mathbb{R}$ verifica que para todo $\varepsilon>0$ existe una cantidad finita de puntos $E_{\varepsilon} \subset [a, b]$ tal que $|f(x)| \leq \varepsilon$ para todo $x \in [a, b] \setminus E_{\varepsilon}$, entonces $f \in \mathcal{R}[a, b]$ y $\int_{a}^{b} f = 0$. Aplicar esta caracterización al primer ejercicio de esta hoja.
- 193 Aplicar la caracterización del ejercicio anterior para probar que $f \in \mathcal{R}[0,1]$ donde f es la función:

$$f(x) = \begin{cases} 0 & x \in \mathbb{I} \cap [0, 1] \\ \frac{1}{q} & x = \frac{p}{q} \in \mathbb{Q} \cap [0, 1] \end{cases}$$

donde estamos asumiendo que la fracción $\frac{p}{q}$ es una fracción irreducible.

- **194** Supongamos que $f \in C^0[a,b]$ y que $f(x) \geq 0$ para todo $x \in [a,b]$. Probar que si $\int_a^b f = 0$ (¿por qué existe la integral?) entonces f(x) = 0 para todo $x \in [a, b]$. Probar que la hipótesis de continuidad de f no se puede sustituir por $f \in \mathcal{R}[a,b]$.
- 195 Probar que la función $g(x) = \sin(\frac{1}{x})$ para $x \in (0,1]$ y $g(0) = \alpha$ verifica $g \in \mathcal{R}[0,1]$ independientemente
- 196 Construir una función $f:[a,b]\to\mathbb{R}$ de forma que $f\in\mathcal{R}[c,b]$ para todo $c\in(a,b)$ y sin embargo $f \notin \mathcal{R}[a,b].$

197 Si $f \in C^0[a,b]$, probar que existe $c \in [a,b]$ de forma que se tiene $\int_a^b f = f(c)(b-a)$ (Teorema del Valor Medio para Integrales).

198 Sea $f \in C^0[a,b]$ con $f(x) \ge 0$ para todo $x \in [a,b]$. Sea $M_n = \left(\int_a^b f^n\right)^{1/n}$. Probar que $\lim_{n\to\infty} M_n = \int_a^b f^n f^n$ $\sup\{f(x) : x \in [a, b]\}.$

199 Sea a > 0 y supongamos $f \in \mathcal{R}[-a, a]$. Probar:

- a) Si f es par, entonces $\int_{-a}^{a} f = 2 \int_{0}^{a} f$ b) Si f es impar, entonces $\int_{-a}^{a} f = 0$

200 Sea $f \in \mathcal{R}[a,b]$ y definamos $F(x) = \int_a^x f$ para $x \in [a,b]$. Sea $c \in (a,b)$. Evalúa las funciones

a)
$$G(x) = \int_{a}^{x} f$$
, b) $H(x) = \int_{x}^{b} f$, c) $S(x) = \int_{x}^{\sin(x)} f$

en términos de la función F. Asumiendo que $f \in C^0[a,b]$ calcular las derivadas de las tres funciones.

201 Sea $f: \mathbb{R} \to \mathbb{R}$ una función continua y sea $c \in \mathbb{R}$. Definimos $g: \mathbb{R} \to \mathbb{R}$ por $g(x) = \int_{-\infty}^{x+c} f$. Probar que g es derivable en todo \mathbb{R} y calcular la derivada.

202 Sea $f: \mathbb{R} \to \mathbb{R}$ continua y L-periódica con L > 0 (es decir, f(x+L) = f(x) para todo $x \in \mathbb{R}$). Probar que $\int_{0}^{a+L} f = \int_{0}^{L} f$ para todo $a \in \mathbb{R}$.

203 Probar que si $f \in \mathcal{R}[a,b]$ entonces $|f| \in \mathcal{R}[a,b]$ y se tiene

$$\left| \int_{a}^{b} f \right| \le \int_{a}^{b} |f| \le M(b - a)$$

donde $M = \sup\{|f(x)|; x \in [a, b]\}$

204 (Desigualdad de Cauchy-Schwarz) Probar que si $f, g \in \mathcal{R}[a, b]$ entonces $fg, |fg| \in \mathcal{R}[a, b]$. (Indi**cación:** $fg = \frac{1}{2}(f+g)^2 - \frac{1}{2}f^2 - \frac{1}{2}g^2$).

Probar lo siguiente:

- a) Si $t \in \mathbb{R}$, entonces $\int_{-b}^{b} (tf \pm g)^2 \ge 0$.
- b) Deducir de a) que se tiene $2\left|\int_a^b fg\right| \le t \int_a^b f^2 + \frac{1}{t} \int_a^b g^2$
- c) Minimizando en t el lado derecho de la desigualdad de b) probar que se obtiene

$$\left| \int_a^b fg \right| \le \left(\int_a^b f^2 \right)^{1/2} \left(\int_a^b g^2 \right)^{1/2}$$

205 Probar que si A_n es un conjunto de medida cero para todo $n \in \mathbb{N}$ entonces $\bigcup A_n$ es un conjunto de medida nula. En particular $\mathbb{Q} \subset \mathbb{R}$ es de medida cero.

206 (*) Construir una función $f \in \mathcal{R}[0,1]$ que sea discontinua en todos los puntos $x \in \mathbb{Q} \cap [0,1]$.