Image Analysis by Moments

by Simon Xinmeng Liao

A Thesis Submitted to the Faculty of Graduate Studies in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

The Department of Electrical and Computer Engineering The University of Manitoba Winnipeg, Manitoba, Canada

© Simon Xinmeng Liao 1993

献给"六・四"殉难未能完成学业的学生们。

To the students who were massacred in Beijing, June 4th, 1989, and could not finish their education.

I hereby declare that I am the sole author of this thesis.

I authorize the University of Manitoba to lend this thesis to other institutions or individuals for the purpose of scholarly research.

Simon Xinmeng Liao

I further authorize the University of Manitoba to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

Simon Xinmeng Liao

The University of Manitoba requires the signatures of all persons using or photocopying this thesis. Please sign below, and give address and date.

Abstract

To select a set of appropriate numerical attributes of features from the interested objects for the purpose of classification has been among the fundamental problems in the design of an imagery pattern recognition system. One of the solutions, the utilization of moments for object characterization has received considerable attentions in recent years. In this research, the new techniques derived to increase the accuracy and the efficiency in moment computing are addressed. Based on these developments, the significant improvement on image reconstructions via **Legendre** moments and **Zernike** moments has been achieved. The effect of image noise on image reconstruction, the automatic selection of the optimal order of moments for image reconstruction from noisy image, and the usage of moments as image features for character recognition are analyzed as well.

Acknowledgements

Many people have provided advice, support, and encouragement to the author, during the research which led to this thesis. I would like to express my heartfelt appreciation to:

My supervisor, Prof. Dr. Miroslaw Pawlak, for his generous support and intellectual guidance throughout my years as a graduate student; his insightful advice, clear vision, many suggestions, and endless efforts to be available for many educational discussions, were invaluable;

Prof. Dr. David Erbach, whose friendship and encouragement were invaluable and kept me thinking that there really was a light at the end of the tunnel, and who provided many valuable comments on drafts of this thesis;

my committee members, Prof. Dr. Richard Gordon and Prof. Dr. Waldemar Lehn, for valuable insights and suggestions which have significantly improved this thesis in both structure and contents;

my External Examiner, Prof. Dr. Adam Krzyzak, for his critical comments and constructive suggestions on this thesis;

my wife, Dr. Ming Yang, who shared with the pains and happiness during the course of this work; her endless support, sacrifice, and understanding kept me going through it all:

and finally, my parents, Li Bofan and Liao Cuichuan, who first taught me the importance of education.

Contents

Abstract				V
\mathbf{A}	f Acknowledgements			
Li	st of	Figur	es	xiv
Li	st of	Table	S	xiv
Li	st of	Symb	ols	XV
1	Intr	oducti	on	1
2	The	ory of	Moments	6
	2.1	Introd	luction	6
	2.2	Geom	etric Moments in Image Processing	7
		2.2.1	Preliminaries	7
		2.2.2	Properties of Geometric Moments	8
		2.2.3	Moment Invariants	12
	2.3	Comp	lex Moments	13
	2.4	Ortho	gonal Moments	14
		2.4.1	Legendre Moments	14
		2.4.2	Zernike Moments	18
		2.4.3	Pseudo-Zernike Moments	22

3	Acc	curacy	and Efficiency of Moment Computing	24
	3.1	Introd	luction	24
	3.2	Geom	etric Moments Computing	25
	3.3	Legen	dre Moments Computing	29
		3.3.1	Approximation Error	29
		3.3.2	Efficiency	32
	3.4	Zernil	ke Moments	33
		3.4.1	Introduction	33
		3.4.2	Geometric Error	34
		3.4.3	The Lattice Points of a Circle Problem	36
		3.4.4	Approximation Error	38
		3.4.5	A New Proposed Solution to Reduce Approximation Error	46
	3.5	Concl	usions	49
		3.5.1	Legendre Moment Computing	49
		3.5.2	Zernike Moment Computing	49
4	Ima	ige Re	econstruction from Moments	53
	4.1	Invers	e Moment Problem	53
	4.2	Metho	od of Legendre Moments	55
		4.2.1	Theory of Image Reconstruction from Legendre Moments	55
		4.2.2	Reconstruction Error Analysis	56
		4.2.3	Experimental Results	57
	4.3	Metho	od of Zernike Moments	61
		4.3.1	Theory of Image Reconstruction from Zernike Moments	61
		4.3.2	Reconstruction Error Analysis	63
		4.3.3	Experimental Results	64
	4 4	Concl	usions	72

		4.4.1 Image Reconstruction via Legendre Moments	72
		4.4.2 Image Reconstruction via Zernike Moments	73
5	Rec	onstruction of Noisy Images via Moments	75
	5.1	Introduction	75
	5.2	Legendre Moments	75
	5.3	The Reconstruction Error	76
	5.4	Data-Driven Selection of the Optimal Number	82
6	Cha	racter Recognition via Moments	86
	6.1	Introduction	86
	6.2	Character Recognition via Central Moments	87
	6.3	Character Recognition with Legendre Moments	91
	6.4	Conclusions	97
7	Con	clusions and Recommendations 10	01
	7.1	Conclusions	01
	7.2	Recommendations	02
Bi	bliog	graphy 10	04
Δ		1	12

List of Figures

2.1	Moments projections onto x and y axes
2.2	The plots of some two-dimensional $P_m(x)P_n(y)$ Legendre polynomials.
	(a) $P_2(x)P_2(y)$, (b) $P_4(x)P_4(y)$, (c) $P_6(x)P_6(y)$, and (d) $P_8(x)P_8(y)$. 16
2.3	The plots of some two-dimensional $P_m(x)P_n(y)$ Legendre polynomials.
	(a) $P_2(x)P_4(y)$, (b) $P_2(x)P_6(y)$, (c) $P_4(x)P_8(y)$, and (d) $P_6(x)P_8(y)$. 17
2.4	The plots of the magnitudes of some $V_{nm}(x,y)$ polynomials. (a) $ V_{20}(x,y) $,
	(b) $ V_{40}(x,y) $, (c) $ V_{80}(x,y) $, and (d) $ V_{12,0}(x,y) $
2.5	The plots of the magnitudes of some $V_{nm}(x,y)$ polynomials. (a) $ V_{11}(x,y) $,
	(b) $ V_{22}(x,y) $, (c) $ V_{31}(x,y) $, and (d) $ V_{42}(x,y) $ 20
3.1	Normalized E_{λ} 's obtained by applying five different numerical integ-
	ration rules to a constant image
3.2	Different areas covered by a disk and all pixels whose centres fall
	inside the disk
3.3	5-dimensional formula I
3.4	5-dimensional formula II
3.5	13-dimensional formula
3.6	Normalized approximation errors obtained by applying five different
	types of multi-dimensional cubature formulas on a constant image 45

3.7	Normalized E_A 's obtained by applying five different types of multi-	
	dimensional cubature formulas on a constant image with the new pro-	
	posed technique	47
4.1	Five original Chinese characters used in image reconstruction via Le -	
	gendre moments. From left to right are C_1 , C_2 , C_3 , C_4 , and C_5	58
4.2	Five Chinese characters and their reconstructed patterns via Legendre	
	moments	60
4.3	Normalized reconstruction errors for the five reconstructed Chinese	
	characters	60
4.4	Five original Chinese characters used in image reconstruction via	
	Zernike moments. From left to right are C_1 , C_2 , C_3 , C_4 , and C_5	65
4.5	The Chinese character C_1 and its reconstructed patterns via Zernike	
	moments	66
4.6	The normalized mean square errors from appling five different formu-	
	las to character C_1	67
4.7	The Chinese character C_1 and its reconstructed patterns via the mod-	
	ified Zernike moments	70
4.8	Normalized reconstruction errors from the reconstructed five Chinese	
	characters via the new proposed Zernike moment technique	71
4.9	The five Chinese characters and their reconstructed patterns via the	
	modified Zernike moments with 5-dimensional formula II	72
5.1	Square error $Error(\tilde{g}_{M_{max}}), \sigma^2 = 4.0. \dots \dots \dots \dots$	79
5.2	Noisy version of C_1 , with $\sigma^2 = 4.0$, and its reconstructed versions	81
5.3	Optimal moments numbers.	83
6.1	Five original Chinese characters used for testing	88

6.2	Representations of the five Chinese characters in the central moment	
	feature space	89
6.3	Ninety Chinese characters	90
6.4	Representations of the ninety Chinese characters in the central mo-	
	ment feature space	93
6.5	Representations of the five Chinese characters in the Legendre mo-	
	ment feature space	94
6.6	Representations of the ninety Chinese characters in the Legendre	
	moment feature space.	95

List of Tables

3.1	N is the number of points which are equally spaced apart by constant	
	h inside a single interval	31
3.2	Range of geometric errors for several commonly used image sizes	38
3.3	Values of the normalized approximation errors from appling five dif-	
	ferent types of multi-dimensional cubature formulas on a constant	
	image	45
3.4	Values of the normalized E_A 's from appling five different types of	
	multi-dimensional cubature formulas on a constant image with the	
	new proposed technique	48
4.1	The values of normalized reconstruction errors for the five reconstruc-	
	ted Chinese characters	59
4.2	Values of the normalized mean square errors from appling five differ-	
	ent formulas to character C_1	65
4.3	Values of the normalized reconstruction errors from the reconstruc-	
	ted five Chinese characters with the new proposed Zernike moment	
	technique	69
4.4	Values of the normalized reconstruction errors from the reconstruc-	
	ted five Chinese characters via the new proposed Zernike moment	
	technique	73

5.1	Square reconstruction error $Error(\tilde{g}_{M_{max}})$ with $\sigma^2 = 4.0.$	80
6.1	Values of the five Chinese characters in the central moment feature	
	space	88
6.2	Values of the ninety Chinese characters in the central moment feature	
	space	92
6.3	Values of the five Chinese characters in the Legendre moment feature	
	space	94
6.4	Values of the ninety Chinese characters in the Legendre moment	
	feature space.	96
6.5	Values of the ninety Chinese characters in the Legendre moment	
	three-dimensional feature space	98

List of Symbols

Some of the most frequently occurring abbreviations and symbols used in the text are tabulated here. Other symbols are explained where used.

 A_{nm} = **Zernike** moments of order n with repetition m

 \hat{A}_{nm} = Digital version of A_{nm}

 $C_n f$ = cubature formula

 C_{pq} = complex moments

 E_A $= \sum \sum |\hat{A}_{nm}|^2$ $m = n \neq 0$

 $E_{\lambda} = \sum_{m=0}^{M_{max}} \sum_{n=0}^{m} \hat{\lambda}_{mn}^{2} \qquad m = n \neq 0$

 $\hat{f}(x,y)$ = reconstructed image from f(x,y)

F(u, v) = characteristic function of the image function f(x, y)

g(x,y) = noisy degraded version of f(x,y)

 M_{pq} = geometric moments of order (p+q)

N = the number of points which are spaced apart by a constant step

h inside a single interval

 $P_n(x)$ = **Legendre** polynomials

 R_{nm} = Radial polynomials

 V_{nm} = **Zernike** polynomials

 δ_{mn} = **Kronecker** symbol

 λ_{mn} = **Legendre** moments

 $\hat{\lambda}_{mn}$ = Digital version of λ_{mn}

 $\widetilde{\lambda}_{mn}$ = **Legendre** moments from g(x,y)

 μ_{pq} = central moments

Chapter 1

Introduction

One of the basic problems in the design of an imagery pattern recognition system relates to the selection of a set of appropriate numerical attributes of features to be extracted from the object of interest for the purpose of classification. The recognition of objects from imagery may be achieved with many methods by identifying an unknown object as a member of a set of known objects. Efficient object recognition techniques abstracting characterizations uniquely from objects for representation and comparison are crucially important for a given pattern recognition system.

Research on the utilization of moments for object characterization in both invariant and noninvariant tasks has received considerable attention in recent years. The principal techniques explored include *Moment Invariants*, *Geometric Moments*, *Rotational Moments*, *Orthogonal Moments*, and *Complex Moments*. Various forms of moment descriptors have been extensively employed as pattern features in scene recognition, registration, object matching as well as data compression.

The mathematical concept of moments has been around for many years and has been used in many diverse fields ranging from mechanics and statistics to pattern recognition and image understanding. Describing images with moments instead of other more commonly used image features means that global properties of the image are used rather than local properties.

Historically, $\operatorname{Hu}[36][37]$ published the first significant paper on the utilization of moment invariants for image analysis and object representation in 1961. Hu's approach was based on the work of the nineteenth century mathematicians Boole, Cayley, and Sylvester, on the theory of algebraic forms. Hu's Uniqueness Theorem states that if f(x,y) is piecewise continuous and has nonzero values only in the finite part of the (x,y) plane, then geometric moments of all orders exist. It can then be shown that the moment set $\{m_{pq}\}$ is uniquely determined by f(x,y) and conversely, f(x,y) is uniquely determined by $\{m_{pq}\}$. Since an image segment has finite area and, in the worst case, is piecewise continuous, a moment set can be computed and used to uniquely describe the information contained in the image segment. Using nonlinear combinations of geometric moments, Hu derived a set of invariant moments which has the desirable properties of being invariant under image translation, scaling, and rotation. However, the reconstruction of the image from these moments is deemed to be quite difficult.

The Rotational moment is an alternative to the regular geometric moment. The Rotational moments are based on a polar coordinate representation of the image and can be used to extend the definition of moment invariants to arbitrary order in a manner which ensures that their magnitudes do not diminish significantly with increasing order. Smith and Wright[69] used a simplified Rotational moment technique to derive invariant features from noisy low resolution images of ships. Boyce and Hossack[15] derived the Rotational moments of arbitrary order that are invariant to rotation, radial scaling, and intensity change.

In 1980, Teague[73] presented two inverse moment transform techniques to determine how well an image could be reconstructed from a set of moments. The first method, called *moment matching*, derives a continuous function

$$g(x,y) = g_{00} + g_{10}x + g_{01}y + g_{20}x^2 + g_{11}xy + g_{02}y^2 +$$

$$g_{30}x^3 + g_{21}x^2y + g_{12}xy^2 + g_{03}y^3 + \dots,$$

whose moments exactly match the geometric moments $\{m_{pq}\}$ of f(x,y) through order n. However, this technique is impractical for calculation as it requires one to solve an increasing number of coupled equations when higher order moments are considered. Then, Teague suggested the notion of orthogonal moments to recover the image from moments based on the theory of orthogonal polynomials. Teague introduced the rotationally invariant **Zernike** moment, which employs the complex **Zernike** polynomials as the moment basis set, and the **Legendre** moment, using **Legendre** polynomials as its basis set. Significant efforts have been made in various experimental image reconstruction tasks performed by Teague, then Boyce and Hossack[15], Teh and Chin[75], Taylor and Reeves[72], and more recently, Khotanzad and Hong[45][46] with both **Zernike** and **Legendre** methods. However, no high quality multi-graylevel image has ever been successfully reconstructed from its original version.

Later, the notion of Complex moments was introduced by Abu-Mostafa and Psaltis[1] as a simple and straightforward way to derive a set of invariant moments. Abu-Mostafa and Psaltis used Complex moments to investigate the informational properties of moment invariants. However, comparing Complex moments with the Zernike moments, they concluded that the Complex moment invariants are not good image features. In other work, Abu-Mostafa and Psaltis[2] examined the utilization of moments in a generalized image normalization scheme for invariant pattern recognition. They redefined the classic image normalizations of size, position, rotation, and contrast, in terms of Complex moments. Moment invariants were shown to be derivable from Complex moments of the normalized image as well.

Teh and Chin[75] performed an extensive analysis and comparison of the most common moment definitions. They examined the noise sensitivity and information

redundancy of **Legendre** moments along with five other types of moments. Teh and Chin concluded that higher order moments are more sensitive to noise. Among the explored techniques, *Complex* moments are least sensitive to noise while **Legendre** moments are most severely affected by noise. In terms of information redundancy, **Legendre**, **Zernike**, and pseudo-**Zernike** moments are uncorrelated and have the least redundancy. In terms of overall performance, **Zernike** and pseudo-**Zernike** moments are the best. In general, orthogonal moments are better than other types of moments in terms of information redundancy and image representation.

More recently, Prokop and Reeves[62] reviewed the basic geometric moment theory and its application to object recognition and image analysis. The geometric properties of low-order moments were discussed along with the definition of several moment-space linear geometric transforms. Prokop and Reeves also presented an extensive review summarizing most of research advancements related to the moment-based object representation and recognition techniques over the past 30 years.

The speed of computing image moments is extraordinarily important when higher order moments are involved. Several schemes of hardware architectures have been performed to speed up the computation of image moments. Reeves[64] proposed a parallel, mesh-connected SIMD computer architecture for rapidly manipulating moment sets. The architecture offered a reasonable speeding up over a single processor for high speed image analysis operations and was expected to be implemented in VLSI technology. Andersson[6] developed a VLSI moment-generating chip and presented a real-time system by implementing the processor. Hatamian[33] proposed an algorithm and single chip VLSI implementation to generate raw moments. It is claimed that 16 geometric moments, $m_{pq}(p=0,1,2,3,q=0,1,2,3)$, of a $512 \times 512 \times 8$ bit image can be computed at 30 frames/sec. The moment algorithm is based on using the one-dimensional discrete moment-generating function as a digital filter.

The organization of this thesis is as follows. Chapter 2 will review the general characteristics of various types of moments and their properties. In Chapter 3, the new techniques derived to increase the accuracy and the efficiency in moment computing, will be addressed. Chapter 4 will discuss the reconstruction algorithms of the **Legendre** moments and the **Zernike** moments, and provide significantly improved reconstructed images from these orthogonal moments. Then, the effect of image noise on image reconstruction and the automatic selection of the optimal order of moments for image reconstruction will be analyzed in Chapter 5. Several specific recognition aspects of proposed moment techniques for character recognition are studied in Chapter 6. Finally, Chapter 7 will summarize the important results and conclusions of the entire study.

Chapter 2

Theory of Moments

2.1 Introduction

Numerous problems in mechanics, physics, and engineering lead to the problem of characterization of a function in terms of some functionals. In particular, moment functionals have attracted great attention[78] due to their mathematical simplicity and numerous physical interpretations.

A complete characterization of moment functionals over a class of univariate functions was given by Hausdorff[26] in 1921.

Let $\{\mu_n\}$ be a real sequence of numbers and let us define

$$\Delta^m \mu_n = \sum_{i=0}^m (-1)^i \begin{pmatrix} m \\ i \end{pmatrix} \mu_{n+i}. \tag{2.1}$$

Note that $\Delta^m \mu_n$ can be viewed as the *m*th order derivative of μ_n .

By Hausdorff's theorem, a necessary and sufficient condition that there exists a monotonic function F(x) satisfying the system

$$\mu_n = \int_0^1 x^n dF(x), \qquad n = 0, 1, 2, \dots$$
 (2.2)

is that the system of linear inequalities

$$\Delta^k \mu_n \ge 0 \qquad k = 0, 1, 2, \dots$$
 (2.3)

should be satisfied. I.e., if f(x) is a positive function (which is the case in image processing), then the set of functionals

$$\int_0^1 x^n f(x) dx, \quad n = 0, 1, \dots$$

completely characterizes the function.

A necessary and sufficient condition that there exists a function F(x) of bounded variation satisfying (2.2) is that the sequence

$$\sum_{m=0}^{p} \begin{pmatrix} p \\ m \end{pmatrix} |\Delta^{p-m} \mu_m| \qquad p = 0, 1, 2, \dots$$

should be bounded.

These results were extended to the two-dimensional case by Hildebrandt and Schoenberg[34] in 1933.

Since then, moments and functions of moments have been utilized in a number of applications to achieve both invariant and noninvariant recognitions of two-dimensional and three-dimensional image patterns[62].

In this chapter, the various types of moments are defined and their properties are summarized. It is assumed that an image can be represented by a real valued measurable function f(x, y).

2.2 Geometric Moments in Image Processing

2.2.1 Preliminaries

The two-dimensional geometric moment of order (p+q) of a function f(x,y) is defined as

$$M_{pq} = \int_{a_1}^{a_2} \int_{b_1}^{b_2} x^p y^q f(x, y) dx dy, \qquad (2.4)$$

where $p, q = 0, 1, 2, ..., \infty$. Note that the monomial product $x^p y^q$ is the basis function for this moment definition.

A set of n moments consists of all M_{pq} 's for $p+q \leq n$, i.e., the set contains $\frac{1}{2}(n+1)(n+2)$ elements.

The use of moments for image analysis and pattern recognition was inspired by $\operatorname{Hu}[37]$ and $\operatorname{Alt}[5]$. Hu stated that if f(x,y) is piecewise continuous and has nonzero values only in a finite region of the (x,y) plane, then the moment sequence $\{M_{pq}\}$ is uniquely determined by f(x,y), and conversely, f(x,y) is uniquely determined by $\{M_{pq}\}$. Considering the fact that an image segment has finite area, or in the worst case is piecewise continuous, moments of all orders exist and a complete moment set can be computed and used uniquely to describe the information contained in the image. However, to obtain all of the information contained in an image requires an infinite number of moment values. Therefore, to select a meaningful subset of the moment values that contain sufficient information to characterize the image uniquely for a specific application becomes very important.

2.2.2 Properties of Geometric Moments

The lower order moments represent some well known fundamental geometric properties of the underlying image functions.

Central Moments

The central moments of f(x,y) are defined as

$$\mu_{pq} = \int_{a_1}^{a_2} \int_{b_1}^{b_2} (x - \bar{x})^p (y - \bar{y})^q f(x, y) dx dy, \qquad (2.5)$$

where \bar{x} and \bar{y} are defined in (2.10).

The central moments μ_{pq} defined in Eq. (2.5) are invariant under the translation of coordinates [37]:

$$x' = x + \alpha,$$

$$y' = y + \beta,$$
 (2.6)

where α and β are constants.

Mass and Area

The definition of the zeroth order moment, $\{M_{00}\}\$, of the function f(x,y)

$$M_{00} = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f(x, y) \, dx dy \tag{2.7}$$

represents the total mass of the given function or image f(x, y). When computed for a binary image, the zeroth moment (2.7) represents the total area of the image.

Centre of Mass

The two first order moments,

$$M_{10} = \int_{a_1}^{a_2} \int_{b_1}^{b_2} x f(x, y) dx dy$$
 (2.8)

and

$$M_{01} = \int_{a_1}^{a_2} \int_{b_1}^{b_2} y f(x, y) dx dy$$
 (2.9)

represent the centre of mass of the image f(x,y). The centre of mass is the point where all the mass of the image could be concentrated without changing the first moment of the image about any axis. In the two-dimensional case, in terms of moment values, the coordinates of the centre of mass are

$$\bar{x} = \frac{M_{10}}{M_{00}}, \qquad \bar{y} = \frac{M_{01}}{M_{00}}.$$
 (2.10)

As a usual practice, the centre of mass is chosen to represent the position of an image in the field of view. The equations in (2.10) define a unique location of the image f(x,y) that can be used as a reference point to describe the position of the image.

Orientations

The second order moments, $\{M_{02}, M_{11}, M_{20}\}$, known as the moments of intertia, may be used to determine an important image feature, orientation. In general, the orientation of an image describes how the image lies in the field of view, or the directions of the principal axes.

In terms of moments, the orientations of the principal axes, θ , are given by [35]

$$\theta = \frac{1}{2} tan^{-1} \left(\frac{2\mu_{11}}{\mu_{20} - \mu_{02}} \right). \tag{2.11}$$

In (2.11), θ is the angle of the principal axis nearest to the x axis and is in the range $-\pi/4 \le \theta \le \pi/4$.

Projections

An alternative means of describing image properties represented by moments is to consider the relationship between the moments of an image and those of the projections of that image. The moments in the sets $\{M_{p0}\}$ and $\{M_{0p}\}$ are equivalent to the moments of the image projection onto the x axis and y axis respectively.

Consider the horizontal projection, h(y), of an image f(x, y) onto the y axis given by

$$h(y) = \int_{a_1}^{a_2} f(x, y) dx.$$
 (2.12)

Then, the one-dimensional moments, M_q , of h(y) are obtained by

$$M_q = \int_{b_1}^{b_2} y^q h(y) dy. \tag{2.13}$$

Substituting (2.12) into (2.13) gives

$$M_q = \int_{a_1}^{a_2} \int_{b_1}^{b_2} y^q f(x, y) dx dy = M_{0q}.$$
 (2.14)

Figure 2.1 illustrates the projections of an object onto the x axis and y axis and the moment subsets corresponding to the projections.

Figure 2.1: Moments projections onto x and y axes.

2.2.3 Moment Invariants

The earliest significat work employing moments for image processing and pattern recognition was performed by Hu[37] and Alt[5]. Based on the theory of algebraic invariants, Hu[36][37] derived relative and absolute combinations of moments that are invariant with respect to scale, position, and orientation.

The method of moment invariants is derived from algebraic invariants applied to the moment generating function under a rotation transformation. The set of absolute moment invariants consists of a set of nonlinear combinations of central moments that remain invariant under rotation. Hu defines the following seven functions, computed from central moments through order three, that are invariant with respect to object scale, translation and rotation:

$$\phi_1 = \mu_{20} + \mu_{02} \tag{2.15}$$

$$\phi_2 = (\mu_{20} - \mu_{02})^2 + 4\mu_{11}^2 \tag{2.16}$$

$$\phi_3 = (\mu_{30} - 3\mu_{12})^2 + (3\mu_{21} - \mu_{03})^2 \tag{2.17}$$

$$\phi_4 = (\mu_{30} - \mu_{12})^2 + (\mu_{21} - \mu_{03})^2 \tag{2.18}$$

$$\phi_5 = (\mu_{30} - 3\mu_{12})(\mu_{30} + \mu_{12})[(\mu_{30} + \mu_{12})^2 - 3(\mu_{21} + \mu_{03})^2]$$

$$+ (3\mu_{21} - \mu_{03})(\mu_{21} + \mu_{03})[3(\mu_{30} + \mu_{12})^2 - (\mu_{21} + \mu_{03})^2]$$
(2.19)

$$\phi_6 = (\mu_{20} - \mu_{02})[(\mu_{30} + \mu_{12})^2 - (\mu_{21} + \mu_{03})^2]$$

$$+4\mu_{11}(\mu_{30} + \mu_{12})(\mu_{21} + \mu_{03})$$
(2.20)

$$\phi_7 = (3\mu_{21} - \mu_{03})(\mu_{30} + \mu_{12})[(\mu_{30} + \mu_{12})^2 - 3(\mu_{21} + \mu_{03})^2]$$
$$-(\mu_{30} - 3\mu_{12})(\mu_{21} + \mu_{03})[3(\mu_{30} + \mu_{12})^2 - (\mu_{21} + \mu_{03})^2]. \tag{2.21}$$

The functions ϕ_1 through ϕ_6 are invariant with respect to rotation and reflection while ϕ_7 changes sign under reflection.

Hu's original result has been slightly modified by Reiss [66] in 1991. Reiss revised

the fundamental theorem of moment invariants with four new invariants. The correction presented by Reiss affects neither similitude (scale) nor rotation invariants derived using the original theorem, but it does affect features invariant to general linear transformations.

The definition of the geometric moments (2.4) has the form of the projection of the image function f(x, y) onto the monomial $x^p y^q$. However, with the Weierstrass approximation theorem[17], the basis set $\{x^p y^q\}$, while complete, is not orthogonal.

2.3 Complex Moments

The notion of complex moments was introduced in [1] as a simple and straightforward technique to derive a set of invariant moments. The two-dimensional complex moments of order (p, q) for the image function f(x, y) are defined by:

$$C_{pq} = \int_{a_1}^{a_2} \int_{b_1}^{b_2} (x + jy)^p (x - jy)^q f(x, y) dx dy, \qquad (2.22)$$

where p and q are nonnegative integers and $j = \sqrt{-1}$.

The complex moments of order (p,q) are a linear combination with complex coefficients of all of the geometric moments $\{M_{nm}\}$ satisfying p+q=n+m.

In polar coordinates, the complex moments of order (p+q) can be written as

$$C_{pq} = \int_0^{2\pi} \int_0^{+\infty} \rho^{p+q} e^{j(p-q)\theta} f(\rho \cos\theta, \rho \sin\theta) \rho d\rho d\theta.$$
 (2.23)

If the complex moment of the original image and that of the rotated image in the same polar coordinates are denoted by C_{pq} and C_{pq}^{r} , the relationship between them is

$$C_{pq}^r = C_{pq}e^{-j(p-q)\theta},$$
 (2.24)

where θ is the angle that the original image has been rotated.

The complex moment invariants can be written in the form of

$$C_{rs}C_{tu}^k + C_{sr}C_{ut}^k, (2.25)$$

where

$$(r-s) + k(t-u) = 0. (2.26)$$

This combination of complex moments cancels both the imaginary moment and the rotational phase factor, and thus provides real-valued rotation invariants.

However, these complex moment invariants are not, in general, good features[1]. They suffer from information loss, suppression, and redundancy which limit their discrimination power.

2.4 Orthogonal Moments

2.4.1 Legendre Moments

Legendre Polynomials

The nth - order **Legendre** polynomial is defined by

$$P_n(x) = \sum_{j=0}^n a_{nj} x^j = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n.$$
 (2.27)

The **Legendre** polynomials have the generating function

$$\frac{1}{\sqrt{1 - 2rx + r^2}} = \sum_{s=0}^{\infty} r^s P_s(x), \qquad r < 1.$$
 (2.28)

From the generating function, the recurrent formula of the **Legendre** polynomials can be acquired straightforwardly:

$$\frac{d}{dr}\left(\frac{1}{\sqrt{1-2rx+r^2}}\right) = \frac{d}{dr}\left(\sum_{s=0}^{\infty} r^s P_s(x)\right)
\frac{x-r}{(1-2rx+r^2)^{3/2}} = \sum_{s=0}^{\infty} s r^{s-1} P_s(x)
(x-r)\sum_{s=0}^{\infty} r^s P_s(x) = (1-2rx+r^2)\sum_{s=0}^{\infty} s r^{s-1} P_s(x).$$

Then we have

$$xP_k(x) - P_{k-1}(x) = (k+1)P_{k+1}(x) - 2xkP_k(x) + (k-1)P_{k-1}(x),$$

or, the recurrent formula of the **Legendre** polynomials:

$$P_{n+1}(x) = \frac{2n+1}{n+1} x P_n(x) - \frac{n}{n+1} P_{n-1}(x).$$
 (2.29)

The **Legendre** polynomials $\{P_m(x)\}$ [17] are a complete orthogonal basis set on the interval [-1, 1]:

$$\int_{-1}^{+1} P_m(x) P_n(x) dx = \frac{2}{2m+1} \delta_{mn}, \qquad (2.30)$$

where δ_{mn} is the **Kronecker** symbol.

Figure 2.2 and Figure 2.3 show some of the two-dimensional **Legendre** polynomials in the image space.

Legendre Moments

The (m+n)th order of **Legendre** moment of f(x,y) defined on the square $[-1,1] \times [-1,1]$ is

$$\lambda_{mn} \equiv \frac{(2m+1)(2n+1)}{4} \int_{-1}^{+1} \int_{-1}^{+1} P_m(x) P_n(y) f(x,y) dx dy, \qquad (2.31)$$

where m, n = 0, 1, 2,

Using (2.4), (2.27), and (2.31), we have

$$\lambda_{mn} = \frac{(2m+1)(2n+1)}{4} \int_{-1}^{+1} \int_{-1}^{1} P_m(x) P_n(y) f(x,y) dxdy$$

$$= \frac{(2m+1)(2n+1)}{4} \int_{-1}^{1} \int_{-1}^{1} \sum_{j=0}^{m} a_{mj} x^j \sum_{k=0}^{n} a_{nk} y^k f(x,y) dxdy$$

$$= \frac{(2m+1)(2n+1)}{4} \sum_{j=0}^{m} \sum_{k=0}^{n} a_{mj} a_{nk} \int_{-1}^{1} \int_{-1}^{1} x^j y^k f(x,y) dxdy.$$

Therefore, the **Legendre** moments and geometric moments are related by

$$\lambda_{mn} = \frac{(2m+1)(2n+1)}{4} \sum_{j=0}^{m} \sum_{k=0}^{n} a_{mj} a_{nk} M_{jk}.$$
 (2.32)

The above relationship indicates that a given **Legendre** moment depends only on geometric moments of the same order and lower, and conversely.

Figure 2.2: The plots of some two-dimensional $P_m(x)P_n(y)$ **Legendre** polynomials. (a) $P_2(x)P_2(y)$, (b) $P_4(x)P_4(y)$, (c) $P_6(x)P_6(y)$, and (d) $P_8(x)P_8(y)$.

Figure 2.3: The plots of some two-dimensional $P_m(x)P_n(y)$ **Legendre** polynomials. (a) $P_2(x)P_4(y)$, (b) $P_2(x)P_6(y)$, (c) $P_4(x)P_8(y)$, and (d) $P_6(x)P_8(y)$.

2.4.2 Zernike Moments

The usage of **Zernike** polynomials in optics dates back to the early 20th century, while the applications of orthogonal moments based on **Zernike** polynomials for image processing were pioneered by Teague[73] in 1980.

Zernike Polynomials

A set of orthogonal functions with simple rotation properties which forms a complete orthogonal set over the interior of the unit circle was introduced by **Zernike**[79]. The form of these polynomials is

$$V_{nm}(x,y) = V_{nm}(\rho \sin\theta, \rho \cos\theta) = R_{nm}(\rho) \exp(jm\theta)$$
 (2.33)

where n is either a positive integer or zero, and m takes positive and negative integers subject to constraints n - |m| = even, $|m| \leq n$, ρ is the length of the vector from the origin to the pixel at (x, y), and θ is the angle between vector ρ and the x axis in the counterclockwise direction.

The Radial polynomial $R_{nm}(\rho)$ is defined as

$$R_{nm}(\rho) = \sum_{s=0}^{(n-|m|)/2} (-1)^s \frac{(n-s)!}{s! (\frac{n+|m|}{2}-s)! (\frac{n-|m|}{2}-s)!} \rho^{n-2s}, \qquad (2.34)$$

with $R_{n,-m}(\rho) = R_{n,m}(\rho)$.

Figure 2.4 and Figure 2.5 show some of the $V_{nm}(x,y)$ polynomials.

The **Zernike** polynomials (2.33) are a complete set of complex-valued functions orthogonal on the unit disk $x^2 + y^2 \le 1$:

$$\iint_{x^2+y^2\leq 1} [V_{nm}(x,y)]^* V_{pq}(x,y) dx dy = \frac{\pi}{n+1} \delta_{np} \delta_{mq}, \qquad (2.35)$$

or, in polar coordinates

$$\int_{0}^{2\pi} \int_{0}^{1} [V_{nm}(r,\theta)]^* V_{pq}(r,\theta) r \, dr d\theta = \frac{\pi}{n+1} \, \delta_{np} \, \delta_{mq}, \tag{2.36}$$

Figure 2.4: The plots of the magnitudes of some $V_{nm}(x,y)$ polynomials. (a) $|V_{20}(x,y)|$, (b) $|V_{40}(x,y)|$, (c) $|V_{80}(x,y)|$, and (d) $|V_{12,0}(x,y)|$.

Figure 2.5: The plots of the magnitudes of some $V_{nm}(x,y)$ polynomials. (a) $|V_{11}(x,y)|$, (b) $|V_{22}(x,y)|$, (c) $|V_{31}(x,y)|$, and (d) $|V_{42}(x,y)|$.

where the asterisk denotes the complex conjugate.

As is seen from (2.33) and (2.36), the real-valued radial polynomials $\{R_{nm}(r)\}$ satisfy the relation

$$\int_0^1 R_{nl}(r) R_{ml}(r) r dr = \frac{1}{2(n+1)} \delta_{mn}.$$
 (2.37)

The radial polynomials $R_{nm}(\rho)$ have the generating function

$$\frac{\left[1+t-\sqrt{1-2t(1-2\rho^2)+t^2}\right]^m}{(2t\rho)^m\sqrt{1-2t(1-2\rho^2)+t^2}} = \sum_{s=0}^{\infty} t^s R_{m+2s,m}(\rho).$$
 (2.38)

When m = 0, it is interesting to see that the equation (2.38) reduces to

$$\frac{1}{\sqrt{1 - 2t(1 - 2\rho^2) + t^2}} = \sum_{s=0}^{\infty} t^s P_s (1 - 2\rho^2), \tag{2.39}$$

and becomes the generating function for the **Legendre** polynomials of argument $2\rho^2 - 1$, so that

$$R_{2n,0}(\rho) = P_n(2\rho^2 - 1). \tag{2.40}$$

Zernike Moments

The complex **Zernike** moments of order n with repetition m for an image function f(x,y) are defined as

$$A_{nm} = \frac{n+1}{\pi} \int \int_{x^2+y^2 < 1} f(x,y) V_{nm}^*(\rho,\theta) dx dy, \qquad (2.41)$$

or, in polar coordinates

$$A_{nm} = \frac{n+1}{\pi} \int_0^{2\pi} \int_0^1 f(\rho, \theta) \, R_{nm}(\rho) \exp(-jm\theta) \, \rho \, d\rho d\theta. \tag{2.42}$$

where the real-valued radial polynomial $R_{nm}(\rho)$ is defined in (2.34).

Due to the conditions $n - |m| = \text{even and } |m| \leq n \text{ for the } \mathbf{Zernike} \text{ polynomials}$ (2.33), the set of $\mathbf{Zernike}$ polynomials contains $\frac{1}{2}(n+1)(n+2)$ linearly independent polynomials if the given maximum degree is n.

Since $A_{nm}^* = A_{n,-m}$, then $|A_{nm}| = |A_{n,-m}|$, therefore, one only needs to consider $|A_{nm}|$ with $m \ge 0$.

Rotational Properties of Zernike Moments

Under a rotation transformation, the angle of rotation of the **Zernike** moments is simply a phase factor. Therefore, the **Zernike** moments are invariant under image rotation.

If the original image and the rotated image in the same polar coordinates are denoted by $f(\rho, \theta)$ and $f^r(\rho, \theta)$ respectively, the relationship between them is

$$f^{r}(\rho,\theta) = f(\rho,\theta - \alpha), \tag{2.43}$$

where α is the angle that the original image has been rotated. Using (2.42), the **Zernike** moment of the rotated image is

$$A_{nm}^{r} = \frac{n+1}{\pi} \int_{0}^{2\pi} \int_{0}^{1} f(\rho, \theta - \alpha) R_{nm}(\rho) \exp(-jm\theta) \rho d\rho d\theta$$

$$= \frac{n+1}{\pi} \int_{0}^{2\pi} \int_{0}^{1} f(\rho, \theta - \alpha) R_{nm}(\rho) \exp(-jm(\theta - \alpha + \alpha)) \rho d\rho d\theta$$

$$= \frac{n+1}{\pi} \int_{0}^{2\pi} \int_{0}^{1} f(\rho, \theta - \alpha) R_{nm}(\rho) \exp(-jm(\theta - \alpha)) \exp(-jm\alpha) \rho d\rho d\theta,$$

therefore, the relationship between A_{nm}^r and A_{nm} is

$$A_{nm}^r = A_{nm} \exp(-jm\alpha). \tag{2.44}$$

Equation (2.44) indicates that the **Zernike** moments have simple rotational transformation properties. The magnitudes of the **Zernike** moments of a rotated image function remain identical to the original image function. Thus the magnitude of the **Zernike** moment, $|A_{nm}|$, can be employed as a rotation invariant feature of the fundamental image function.

2.4.3 Pseudo-Zernike Moments

If we eliminate the condition n - |m| = even from the the Zernike polynomials defined in (2.33), $\{V_{nm}\}$ becomes the set of pseudo-Zernike polynomials. The set of

pseudo-**Zernike** polynomials was derived by Bhatia and Wolf[12] and has properties analogous to those of **Zernike** polynomials.

For the pseudo-**Zernike** polynomials, the real-valued radial polynomial $R_{nm}(\rho)$ is defined as

$$R_{nm}(\rho) = \sum_{s=0}^{n-|m|} (-1)^s \frac{(2n+1-s)!}{s! (n-|m|-s)! (n+|m|+1-s)!} \rho^{n-s}, \qquad (2.45)$$

where $n = 0, 1, 2, ..., \infty$ and m takes on positive and negative integers subject to $|m| \le n$ only. Unlike the set of **Zernike** polynomials, this set of pseudo-Zernike polynomials contains $(n + 1)^2$ linearly independent polynomials instead of $\frac{1}{2}(n + 1)(n + 2)$ if the given maximum order is n.

The definition of the pseudo-**Zernike** moments is the same as that of the **Zernike** moments in (2.41) and (2.42) except that the radial polynomials $\{R_{nm}(\rho)\}$ in (2.45) are used.

Since the set of pseudo-**Zernike** orthogonal polynomials is analogous to that of **Zernike** polynomials, most of the previous discussion for the **Zernike** moments can be adapted to the case of pseudo-**Zernike** moments.

Chapter 3

Accuracy and Efficiency of Moment Computing

3.1 Introduction

An essential issue in the field of pattern analysis is the recognition of patterns and characters regardless of their positions, sizes, and orientations. As discussed in the previous chapter, moments and functions of moments can be employed as the invariant global features of an image in pattern recognition, image classification, target identification, and scene analysis.

Generally, these features are invariant under image translation, scale change, and rotation only when they are computed from the original two-dimensional images. In practice, one observes the digitized, quantized, and often noisy version of the image and all these properties are satisfied only approximately. The problem of the discretization error for moment computing has been barely investigated, though some initial studies into this direction for the case of geometric moments were performed by Teh and Chin[74].

In this chapter, the detailed analysis of the discretization error for moment computing is addressed. Several new techniques developed to increase the accuracy in moment computing are provided.

3.2 Geometric Moments Computing

Geometric moments are the most popular type of moments. The definition of geometric moments (2.4) is rewritten here for convenience:

$$M_{pq} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^p y^q f(x, y) dx dy.$$
 (3.1)

If an analog original image function f(x,y) is digitized into its discrete version $f(x_i,y_j)$ with an $M\times N$ array of pixels, the double integration of (3.1) must be approximated by double summations. In fact, in digital image processing, one can observe f(x,y) only at discrete pixels, i.e., instead of $\{f(x,y),(x,y)\in\mathcal{R}\}$, $\{f(x_i,y_j);1\leq i\leq M,1\leq j\leq N\}$ is used. It has been a common prescription to replace M_{pq} in (3.1) with its digital version

$$\widehat{M}_{pq} = \sum_{i=1}^{M} \sum_{j=1}^{N} x_i^p y_j^q f(x_i, y_j) \Delta x \Delta y,$$
(3.2)

where Δx and Δy are sampling intervals in the x and y directions. However, when the moment order increases, (3.2) cannot produce accurate results.

By (3.1), one obtains

$$M_{pq} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^{p} y^{q} f(x, y) dx dy$$

$$= \int \int_{A} x^{p} y^{q} f(x, y) dx dy$$

$$= \int_{a_{1}}^{a_{2}} \int_{b_{1}}^{b_{2}} x^{p} y^{q} f(x, y) dx dy,$$
(3.3)

where

$$A = [a_1, a_2] \times [b_1, b_2]$$

is the area covered by the image.

Then, it is clear that

$$M_{pq} = \sum_{i=1}^{M} \sum_{j=1}^{N} \int_{x_i - \frac{\Delta x}{2}}^{x_i + \frac{\Delta x}{2}} \int_{y_j - \frac{\Delta y}{2}}^{y_j + \frac{\Delta y}{2}} x^p y^q f(x, y) dx dy,$$
 (3.4)

where $\Delta x = x_i - x_{i-1}$ and $\Delta y = y_j - y_{j-1}$ are the sampling intervals in the x and y directions, and

$$x_M + \frac{\Delta x}{2} = a_2; (3.5)$$

$$x_1 - \frac{\Delta x}{2} = a_1; (3.6)$$

$$y_N + \frac{\Delta y}{2} = b_2; (3.7)$$

$$y_1 - \frac{\Delta y}{2} = b_1. \tag{3.8}$$

By the second mean value theorem for integration, if f and g are integrable functions on the set A, and if f is also continuous, then

$$\int_{A} f(z)g(z)dz = f(\alpha)\int_{A} g(z)dz \tag{3.9}$$

for some $\alpha \in A$.

Applying this result to (3.4) yields

$$M_{pq} = \sum_{i=1}^{M} \sum_{j=1}^{N} f(\alpha_i, \beta_j) \int_{x_i - \frac{\Delta x}{2}}^{x_i + \frac{\Delta x}{2}} \int_{y_j - \frac{\Delta y}{2}}^{y_j + \frac{\Delta y}{2}} x^p y^q dx dy,$$
 (3.10)

where (α_i, β_j) belongs to the (i, j) pixel.

Let us assume without loss of generality that each pixel is quantized to one value, it is normal to replace $f(\alpha_i, \beta_j)$ by $f(x_i, y_j)$. This gives the following approximation of M_{pq} :

$$\widehat{M}_{pq} = \sum_{i=1}^{M} \sum_{j=1}^{N} h_{pq}(x_i, y_j) f(x_i, y_j),$$
(3.11)

where

$$h_{pq}(x_i, y_j) = \int_{x_i - \frac{\Delta x}{2}}^{x_i + \frac{\Delta x}{2}} \int_{y_j - \frac{\Delta y}{2}}^{y_j + \frac{\Delta y}{2}} x^p y^q dx dy$$
 (3.12)

represents the double integration of $x^p y^q$ over the pixel $\left[x_i - \frac{\Delta x}{2}, x_i + \frac{\Delta x}{2}\right] \times \left[y_j - \frac{\Delta y}{2}, y_j + \frac{\Delta y}{2}\right]$.

Note that

$$h_{pq}(x_i, y_j) = \frac{\left[(x_i + \frac{\Delta x}{2})^{p+1} - \left[(x_i - \frac{\Delta x}{2})^{p+1} \right] \left[(y_j + \frac{\Delta y}{2})^{q+1} - \left[(y_j - \frac{\Delta y}{2})^{q+1} \right] \right]}{(q+1)}. \quad (3.13)$$

Then the question is how to acquire the double integration (3.12)? The simplest method to carry out the computation of $h_{pq}(x_i, y_j)$ is to use the following formula:

$$h'_{pq}(x_i, y_j) = x_i^p y_j^q \Delta x \Delta y \tag{3.14}$$

to replace (3.12). However, the above approximation will result in a substantial error when the order p + q increases.

Since the double integration in (3.12) can be separated as

$$h_{pq}(x_i, y_j) = \int_{x_i - \frac{\Delta x}{2}}^{x_i + \frac{\Delta x}{2}} x^p \, dx \int_{y_j - \frac{\Delta y}{2}}^{y_j + \frac{\Delta y}{2}} y^q \, dy, \qquad (3.15)$$

for simplicity, we consider the single integration

$$h_p(x_i) = \int_{x_i - \frac{\Delta x}{2}}^{x_i + \frac{\Delta x}{2}} x^p dx, \qquad (3.16)$$

and replace $h_p(x_i)$ with

$$h_p'(x_i) = x_i^p \, \Delta x. \tag{3.17}$$

When p = 1, $h'_p(x_i)$ holds.

When the order p increases to 2, from (3.16), we have

$$h_2(x_i) = \int_{x_i - \frac{\Delta x}{2}}^{x_i + \frac{\Delta x}{2}} x^2 dx$$

$$= \frac{1}{3} [(x_i + \frac{\Delta x}{2})^3 - (x_i - \frac{\Delta x}{2})^3]$$

$$= x_i^2 \Delta x + \frac{(\Delta x)^3}{12}$$

$$h_2(x_i) = h'_2(x_i) + \frac{(\Delta x)^3}{12}.$$

The approximation error for the single integration is $\frac{\Delta x^3}{12}$.

In the case of p = 3,

$$h_3(x_i) = \int_{x_i - \frac{\Delta x}{2}}^{x_i + \frac{\Delta x}{2}} x^3 dx$$
$$= \frac{1}{4} [(x_i + \frac{\Delta x}{2})^4 - (x_i - \frac{\Delta x}{2})^4]$$

$$= x_i^3 \Delta x + \frac{x_i (\Delta x)^3}{4}$$

$$h_3(x_i) = h_3'(x_i) + \frac{x_i (\Delta x)^3}{4}.$$

The error is increased.

The approximation error will quickly get out of control when the order p increases. Obviously, when the higher order moments are involved, the problem of numerical approximation error in the moment computing must be solved before any implementation.

By the well-known techniques of numerical integration [18], the integration of (3.16) can be approximated with various accuracies. For example, applying **Simpson**'s rule in the case of moment order p = 3, we get

$$\int_{x_{i}-\frac{\Delta x}{2}}^{x_{i}+\frac{\Delta x}{2}} x^{3} dx = \frac{\Delta x}{2} \left[\frac{1}{3} \left(x_{i} - \frac{\Delta x}{2} \right)^{3} + \frac{4}{3} x_{i}^{3} + \frac{1}{3} \left(x_{i} + \frac{\Delta x}{2} \right)^{3} \right]$$
$$= x_{i}^{3} \Delta x + \frac{x_{i} (\Delta x)^{3}}{4}.$$

This is the same result as that of the integration.

Evidently, when the order p goes higher, more accurate rules are required to limit the approximate error to a tolerable level.

As the solution, the alternative extended Simpson's rule

$$\int_{x_1}^{x_N} f(x)dx = \frac{h}{48} [17f_1 + 59f_2 + 43f_3 + 49f_4 + f_5 + f_6 + \dots
+ f_{N-4} + 49f_{N-3} + 43f_{N-2} + 59f_{N-1} + 17f_N]
+ O(\frac{1}{N^4})$$
(3.18)

is employed in this research to compute the moments numerically [60]. In (3.18), N is the number of points which are equally spaced apart by constant h inside a single interval.

The above discussion about the approximation errors in geometric moment calculations certainly can be extended to the acquisition of the **Legendre** moments.

3.3 Legendre Moments Computing

3.3.1 Approximation Error

The (m+n)th order **Legendre** moment is defined in (2.31) as

$$\lambda_{mn} = \frac{(2m+1)(2n+1)}{4} \int_{-1}^{+1} \int_{-1}^{+1} P_m(x) P_n(y) f(x,y) dx dy,$$

where the mth order **Legendre** polynomial is

$$P_m(x) = \frac{1}{2^m m!} \frac{d^m}{dx^m} (x^2 - 1)^m.$$

Similar to the case of geometric moments, we can approximate λ_{mn} by

$$\widehat{\lambda}_{mn} = \frac{(2m+1)(2n+1)}{4} \sum_{i=1}^{m} \sum_{j=1}^{n} h_{\lambda_{mn}}(x_i, y_j) f(x_i, y_j), \qquad (3.19)$$

where

$$h_{\lambda_{mn}}(x_i, y_j) = \int_{x_i - \frac{\Delta x}{2}}^{x_i + \frac{\Delta x}{2}} \int_{y_j - \frac{\Delta y}{2}}^{y_j + \frac{\Delta y}{2}} P_m(x) P_n(y) dx dy.$$
 (3.20)

Since the **Legendre** polynomials $P_m(x)$ and $P_n(y)$ are independent, the double integration in (3.20) can be written as

$$\int_{x_{i}-\frac{\Delta x}{2}}^{x_{i}+\frac{\Delta x}{2}} \int_{y_{j}-\frac{\Delta y}{2}}^{y_{j}+\frac{\Delta y}{2}} P_{m}(x) P_{n}(y) dx dy = \int_{x_{i}-\frac{\Delta x}{2}}^{x_{i}+\frac{\Delta x}{2}} P_{m}(x) dx \int_{y_{j}-\frac{\Delta y}{2}}^{y_{j}+\frac{\Delta y}{2}} P_{n}(y) dy.$$
 (3.21)

Therefore, similar to the case of geometric moments, the alternative extended Simpson's rule can be applied in **Legendre** moment calculations to limit the approximate error to a certain level.

By using the *alternative extended Simpson's rule*, the approximation errors are reduced dramatically. It makes further use of the **Legendre** moments possible as well.

To show the improvement of accuracy in **Legendre** moment computing by adopting the *alternative extended Simpson's rule*, an experiment was designed.

If we assume that the image function f(x,y) is a constant image with graylevel a, i.e., f(x,y) = a, it is easily seen that all **Legendre** moments should equal zero

except $\lambda_{00} = a$. We use the sum of all **Legendre** moment squares except for the case of m = n = 0 as the measure to evaluate the approximation error, which has the form of

$$E_{\lambda} = \sum_{m=0}^{M_{max}} \sum_{n=0}^{m} \hat{\lambda}_{mn}^{2} \qquad m = n \neq 0.$$
 (3.22)

Clearly, the smaller the E_{λ} value in (3.22), the better the performance of the approximation. Five different numerical integration rules, N=3, N=8, N=13, N=18, and N=23 are employed and all normalized E_{λ} 's are illustrated in Figure 3.1. The highest **Legendre** moment order used in this experiment is 56.

Figure 3.1: Normalized E_{λ} 's obtained by applying five different numerical integration rules to a constant image.

Only the E_{λ} 's which are less than 1.0 are presented in Figure 3.1. Each E_{λ} increases very sharply after the moment order is over a certain number. As expected, the higher accuracy approximation rules perform better than the lower ones do.

Order	N = 3	N = 8	N = 13	N = 18	N = 23
12	0.00003				
14	0.00039				
16	0.00308				
18	0.01780				
20	0.07873	0.00002			
22	0.27537	0.00009			
24	0.77483	0.00036	0.00001		
26	1.77074	0.00122	0.00002		
28		0.00373	0.00008	0.00001	
30		0.01027	0.00024	0.00002	
32		0.02562	0.00064	0.00005	0.00001
34		0.05822	0.00160	0.00012	0.00002
36		0.12126	0.00372	0.00029	0.00004
38		0.23284	0.00807	0.00068	0.00010
40		0.42134	0.01779	0.00190	0.00043
42		0.73673	0.04279	0.00728	0.00294
44		1.15393	0.07487	0.01208	0.00436
46			0.11278	0.01524	0.00458
48			0.16089	0.01773	0.00459
50			0.22783	0.02100	0.00469
52			0.32621	0.02745	0.00469
54			0.47053	0.04105	0.00499
56			0.67317	0.06711	0.00695

Table 3.1: N is the number of points which are equally spaced apart by constant h inside a single interval.

3.3.2 Efficiency

With the appearance of more powerful computers, it becomes practical to compute and use the higher order moments. However, the computation of moments, specifically, if the higher order moments are involved, is still a time consuming procedure. Since most of computing work in this thesis was achieved with a 25MHz 386 personal micro-computer, reducing the computing time became even more critical.

From the discussion in the previous section, the **Legendre** moments of an image function f(x,y) can be obtained numerically by the formula

$$\hat{\lambda}_{mn} = \frac{(2m+1)(2n+1)}{4} \sum_{i=1}^{m} \sum_{j=1}^{n} h_{\lambda_{mn}}(x_i, y_j) f(x_i, y_j)$$
(3.23)

where

$$h_{\lambda_{mn}}(x_i, y_j) = \int_{x_i - \frac{\Delta x}{2}}^{x_i + \frac{\Delta x}{2}} \int_{y_j - \frac{\Delta y}{2}}^{y_j + \frac{\Delta y}{2}} P_m(x) P_n(y) dx dy.$$
 (3.24)

As we have discussed, when the higher order **Legendre** polynomials $P_m(x)$ and $P_n(y)$ are involved, to keep the approximation error under a certain level, the multiinterval step alternative extended Simpson's rule can be employed. However, if the well accepted recurrent formula (2.29) of the **Legendre** polynomials is applied to compute the **Legendre** polynomials $P_m(x)$ and $P_n(y)$, under the situation that Ntakes a moderate value 10, even when the image consists of a small number of pixels, for example, 24 by 24, the computing time could be too long to be tolerated.

To speed up the computation, the most important measure is to avoid using the recurrent formula (2.29) of the **Legendre** polynomials. The fastest, the most efficient measure, of course, is to use the **Legendre** polynomials themselves. Based on this requirement, the **Legendre** polynomials up to order 55 are worked out.

Some of the higher order **Legendre** polynomials are included in Appendix A.

To speed up the computation of **Legendre** polynomials further, the well known **Horner's Rule** has been applied. For instance, a real polynomial f(x) of degree n

or less is given by

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
(3.25)

with the coefficients a_0 , a_1 , a_2 , ..., a_{n-1} , and a_n representing real numbers. In programming practice, assuming that all coefficients are nonzero, a straightforward naive approach to compute this polynomial will cost $\frac{n(n+1)}{2}$ multiplications and n addition operations. However, with **Horner's Rule**, the polynomial f(x) can be expressed by writing

$$f(x) = ((...((a_n x + a_{n-1})x + a_{n-2})x + ...)x + a_1)x + a_0.$$
(3.26)

With this new formula, it requires only n multiplications and n additions to compute the polynomial. Since the operation of multiplication takes much longer than that of addition, in terms of the computation time, the new formula is about $\frac{n+1}{2}$ times faster than the straightforward naive approach.

Adopting the high order **Legendre** polynomials listed in Appendix A and **Horner's Rule** has dramatically reduced the computing time required in **Legendre** moments computation, and more importantly, made this research possible.

3.4 Zernike Moments

3.4.1 Introduction

As mentioned in the previous chapter, the complex **Zernike** moments of order n with repetition m for a continuous image function f(x,y) are defined as

$$A_{nm} = \frac{n+1}{\pi} \int \int_{x^2+y^2 \le 1} f(x,y) V_{nm}^*(\rho,\theta) dx dy$$
 (3.27)

in the xy image plane, and

$$A_{nm} = \frac{n+1}{\pi} \int_0^{2\pi} \int_0^1 f(\rho, \theta) R_{nm}(\rho) \exp(-jm\theta) \rho d\rho d\theta$$
 (3.28)

in polar coordinates. The real-valued radial polynomial $R_{nm}(\rho)$ is defined as

$$R_{nm}(\rho) = \sum_{s=0}^{\frac{n-|m|}{2}} (-1)^s \frac{(n-s)!}{s! \left(\frac{n+|m|}{2}-s\right)! \left(\frac{n-|m|}{2}-s\right)!} \rho^{n-2s}, \tag{3.29}$$

where $n - |m| = \text{even and } |m| \le n$.

The feature of invariance under image rotation makes the **Zernike** function one of the most important moments. However, the nature of **Zernike** moment computing, using the summation of square pixels to achieve the computation defined on a unit disk, makes it more difficult to solve the accuracy problems.

For a digitized image function f(x,y), as discussed in the previous chapter, the double integration of (2.41) can be approximated by double summation:

$$\hat{A}_{nm} = \frac{n+1}{\pi} \sum_{x_i} \sum_{y_j} h_{A_{nm}}(x_i, y_j) f(x_i, y_j), \qquad x_i^2 + y_j^2 \le 1,$$
 (3.30)

where

$$h_{A_{nm}}(x_i, y_j) = \int_{x_i - \frac{\Delta x}{2}}^{x_i + \frac{\Delta x}{2}} \int_{y_j - \frac{\Delta y}{2}}^{y_j + \frac{\Delta y}{2}} V_{nm}^*(\rho, \theta) dx dy.$$
 (3.31)

From the definitions of \hat{A}_{nm} and $h_{A_{nm}}(x_i, y_j)$, we can find that there are two kinds of major errors in the computation of the **Zernike** moments \hat{A}_{nm} , geometric and approximate.

3.4.2 Geometric Error

When computing the **Zernike** moments, if the centre of a pixel falls inside the border of unit disk $x^2 + y^2 \le 1$, this pixel will be used in the computation; if the centre of the pixel falls outside the unit disk, the pixel will be discarded. Therefore, the area covered by the moment computation is not exactly the area of the unit disk.

Figure 3.2 shows the different areas covered by a unit disk and all pixels whose centres fall inside the unit disk.

Figure 3.2: Different areas covered by a disk and all pixels whose centres fall inside the disk.

In the case of **Zernike** moment, the unit disk is located in a 2 units \times 2 units square which is composed of $n \times n$ pixels. Therefore, the area of the unit disk is π . If A(n) represents the number of pixels whose centres fall inside the unit disk, the summation of the areas of all these pixels is

$$A_{pixels} = A(n) \frac{4}{n^2}. (3.32)$$

Now, the geometric error between the unit disk and the summation of all the pixels used in the **Zernike** moment computation is

$$R(n) = A(n) \frac{4}{n^2} - \pi. (3.33)$$

For the **Zernike** moment computing, it is crucial to know, when n tends to infinity, i.e., if the number of pixels is increasing, how fast the geometric error R(n) converges to zero.

In fact, this issue is closely related to a famous problem in analytic number theory, due originally to **Gauss** and referred as *The Lattice Points of a Circle Problem* [47].

3.4.3 The Lattice Points of a Circle Problem

Let A(x) be the number of lattice points (u, v) inside or on the circle $u^2 + v^2 = x$, so that $A(x) \sim \pi x$ as x tends to infinity. Let

$$R(x) = A(x) - \pi x, \tag{3.34}$$

and let ϑ be the lower bound on the number θ such that

$$R(x) = O(x^{\theta}). \tag{3.35}$$

We list some significant steps in the history of the estimation of R(x) here:

Gauss (1834),
$$\theta = \frac{1}{2} = 0.50000000000;$$

Walfisz (1927),
$$\theta = \frac{163}{494} = 0.329959514...;$$

Titchmarsh[76] (1935), $\theta = \frac{15}{46} = 0.326086957...;$
Hua[38] (1942), $\theta = \frac{13}{40} = 0.325000000;$

and more recently

Iwaniec and Mozzochi[40] (1988), $\theta = \frac{7}{22} = 0.318181818...$

In the other direction, it has long been known that $\vartheta \geq 0$, and this result also has been improved by Hardy[31], Landau[47], and Ingham[39] to:

$$\lim_{x \to \infty} \frac{R(x)}{x^{\frac{1}{4}} (\log x)^{\frac{1}{4}}} = 0, \tag{3.36}$$

and

$$\overline{\lim_{x \to \infty}} \frac{R(x)}{x^{\frac{1}{4}}} = +\infty. \tag{3.37}$$

This result shows that the smallest possible θ cannot reach $\theta = \frac{1}{4}$. This still remains an open problem in the number theory.

Comparing our problem with The Lattice Points of a Circle Problem, we find that the x in (3.34) is equivalent to n^2 in (3.33) when both x and n tend to infinity. On the other hand, the number of lattice points in The Lattice Points of a Circle Problem and the number of pixels within the unit disk in our problem are identical when the area of each lattice is 1, and the area of each pixel is $\frac{4}{n^2}$. Then, it follows that (3.33) can be

$$R(n) = A(n) \frac{4}{n^2} - \pi$$

$$= A(x) \frac{4}{x} - \pi$$

$$= R(x) \frac{4}{x}$$

$$R(n) = O(x^{\theta-1}). \tag{3.38}$$

Therefore, we obtain

$$R(n) = O(n^{2(\theta-1)}). (3.39)$$

With the latest result from Iwaniec and Mozzochi, the geometric error in the **Zernike** moment computing is

$$R(n) = O(n^{-\frac{15}{11}}). (3.40)$$

	n=24	n=48	n=64	n=128
n^{-1}	0.0416666	0.0208333	0.0156250	0.0078125
$n^{-\frac{15}{11}}$	0.0131188	0.0050979	0.0034437	0.0013382
$n^{-\frac{3}{2}}$	0.0085051	0.0030070	0.0019531	0.0006905

Table 3.2: Range of geometric errors for several commonly used image sizes.

Several commonly used image sizes are employed here to show the range of geometric errors in cases of n^{-1} , $n^{-\frac{15}{11}}$, and $n^{-\frac{3}{2}}$, respectively. The results are displayed in Table 3.2.

Like the case in our experiment, when n is 24, with the best result from Iwaniec and Mozzochi[40], the geometric error is at the range of

$$n^{-\frac{15}{11}} = 0.0131188....$$

Obviously, this is not a very encouraging result. Since the higher order **Zernike** moments are the accumulations of the lower order computed **Zernike** moments, if the geometric error is around $O(n^{-\frac{15}{11}})$, when the order of **Zernike** moments goes higher, the accumulated geometric errors would quickly get out of control and the use of higher order **Zernike** moments would be severely handicaped.

3.4.4 Approximation Error

As discussed previously, in the xy image plane with a digitized image function f(x, y), the **Zernike** moments of order n with m repetitions are

$$\hat{A}_{nm} = \frac{n+1}{\pi} \sum_{x_i} \sum_{y_j} h_{A_{nm}}(x_i, y_j) f(x_i, y_j), \qquad x_i^2 + y_j^2 \le 1,$$
 (3.41)

where

$$h_{A_{nm}}(x_i, y_j) = \int_{x_i - \frac{\Delta x}{2}}^{x_i + \frac{\Delta x}{2}} \int_{y_j - \frac{\Delta y}{2}}^{y_j + \frac{\Delta y}{2}} V_{nm}^*(\rho, \theta) dx dy.$$
 (3.42)

The **Zernike** polynomials $V_{nm}^*(\rho,\theta)$ are defined as

$$V_{nm}(\rho,\theta) = R_{nm}(\rho,\theta) \exp(jm\theta), \qquad (3.43)$$

where the Radial polynomial $R_{nm}(\rho)$ is

$$R_{nm}(\rho) = \sum_{s=0}^{(n-|m|)/2} (-1)^s \frac{(n-s)!}{s! \left(\frac{n+|m|}{2} - s\right)! \left(\frac{n-|m|}{2} - s\right)!} \rho^{n-2s}.$$
 (3.44)

Unlike the **Legendre** polynomials $P_m(x)$ and $P_n(y)$, which are independent, the **Zernike** polynomials $V_{nm}(\rho, \theta)$ are two-dimensional functions of ρ and θ . Therefore, to reduce the approximation error in the **Zernike** moment computation is more complex than that of **Legendre** moments.

Under this particular situation, naturally, the way to reduce the approximation error is to compute the double integrations and $h_{A_{nm}}(x_i, y_j)$ by using some well known cubature formulas[23].

Suppose we have a two-dimensional domain Ω and wish to approximate $\int_{\Omega} f(\mathbf{x}) d\Omega$. Let $f \in \Omega$, and $\mathbf{a}^T = (a, b) \in \Omega$. We have the **Taylor** expansion of the integrand function $f(\mathbf{x})$:

$$f(\mathbf{x}) = f(x,y)$$

$$= f(\mathbf{a}) + (x-a)f_x(\mathbf{x}) + (y-b)f_y(\mathbf{a})$$

$$+ \frac{1}{2}[(x-a)^2 f_{xx}(\mathbf{a}) + 2(x-a)(y-b)f_{xy}(\mathbf{a}) + (y-b)^2 f_{yy}(\mathbf{a})]$$

$$+ \dots + \frac{1}{(n-1)!} \left[\sum_{i=0}^{n-1} \binom{n-1}{i} (x-a)^{n-i-1} (y-b)^i \frac{\partial^{n-1} f(\mathbf{a})}{\partial x^{n-i-1} \partial y^i} \right]$$

$$+ error. \tag{3.45}$$

Let

$$I_{\Omega}f = \int_{\Omega} f(\mathbf{x})d\Omega,$$

then it follows [23] that:

$$I_{\Omega}f = |\Omega|f(\mathbf{a}) + f_{x}(\mathbf{a})I_{\Omega}(x-a) + f_{y}(\mathbf{a})I_{\Omega}(y-b) + \dots$$

$$+ \frac{1}{(n-1)!} \sum_{i=0}^{n-1} {n-1 \choose i} \frac{\partial^{n-1}f(\mathbf{a})}{\partial x^{n-i-1}\partial y^{i}} I_{\Omega}[(x-a)^{n-i-1}(y-b)^{i}]$$

$$+error, \qquad (3.46)$$

and

$$C_{n}f = f(\mathbf{a}) \sum_{i=1}^{n} A_{i} + f_{x}(\mathbf{a}) \sum_{i=1}^{n} A_{i}(x_{i} - a) + f_{y}(\mathbf{a}) \sum_{i=1}^{n} A_{i}(y_{i} - b) + \dots$$

$$+ \frac{1}{(n-1)!} \left[\sum_{j=0}^{n-1} \binom{n-1}{j} \frac{\partial^{n-1} f(\mathbf{a})}{\partial x^{n-j-1} \partial y^{j}} \sum_{i=1}^{n} A_{i}(x_{i} - a)^{n-j-1} (y - b)^{j} \right]. (3.47)$$

Taking $\mathbf{a} = 0$, and comparing $I_{\Omega}f$ with C_nf , we obtain the following equations which can determine the weights of a cubature formula:

$$\sum_{i=1}^{n} A_i x_i^{k-j} y_i^j = I_{\Omega} x^{k-j} y_i^j \qquad j = 0, 1, ..., k \le n,$$
(3.48)

where n is the number of nodes inside Ω , and

$$I_{\Omega} = \int_{\Omega} f(x, y) d\Omega. \tag{3.49}$$

This is a linear system of equations for the weights A_i . For example, taking $j \leq 2$, we obtain the equations

$$\sum_{i=1}^{n} A_{i} = |\Omega|
\sum_{i=1}^{n} A_{i}x_{i} = I_{\Omega}x, \quad \sum_{i=1}^{n} A_{i}y_{i} = I_{\Omega}y
\sum_{i=1}^{n} A_{i}x_{i}^{2} = I_{\Omega}x^{2}, \quad \sum_{i=1}^{n} A_{i}x_{i}y_{i} = I_{\Omega}xy, \quad \sum_{i=1}^{n} A_{i}y_{i}^{2} = I_{\Omega}y^{2}.$$

To achieve sufficient accuracy, traditionally, we can increase the number of nodes in each pixel. Solving the linear system equations obtained from the (3.48), we can find the weights for all nodes inside each pixel.

Figure 3.3: 5-dimensional formula I.

One simple formula which can be adopted to increase the approximation accuracy is shown in Figure 3.3. Using the unit height, we can determine the weights of the cubature formula

$$C_5 f = A_1 f(0,0) + A_2 f(0,1) + A_3 f(1,0) + A_4 f(0,-1) + A_5 f(-1,0).$$
 (3.50)

Employing (3.48), we obtain five linear system equations:

$$\begin{cases}
\sum_{i=1}^{5} = |\Omega| \\
\sum_{i=1}^{5} A_{i}x_{i} = I_{\Omega}x \\
\sum_{i=1}^{5} A_{i}y_{i} = I_{\Omega}y \\
\sum_{i=1}^{5} A_{i}x_{i}^{2} = I_{\Omega}x^{2} \\
\sum_{i=1}^{5} A_{i}y_{i}^{2} = I_{\Omega}y^{2}
\end{cases} (3.51)$$

where

$$I_{\Omega} = \int_{\Omega} f(x, y) d\Omega.$$

From (3.51), straightforwardly, we can obtain the 5-dimensional cubature formula by solving the following five linear system equations:

$$\begin{cases}
A_1 + A_2 + A_3 + A_4 + A_5 &= 4 \\
 + A_3 - A_5 &= 0 \\
 + A_2 - A_4 &= 0 \\
 + A_3 + A_5 &= 2/3 \\
 + A_2 + A_4 &= 2/3.
\end{cases} (3.52)$$

The solutions of the above five linear system equations lead to

$$C_5 f = \frac{1}{3} \{ 8f(0,0) + f(0,1) + f(1,0) + f(0,-1) + f(-1,0) \}, \tag{3.53}$$

where $f(x_1, x_2)$ is a two dimensional function.

We can use another type of the 5-dimensional formula, which is shown in Figure 3.4, as well.

Figure 3.4: 5-dimensional formula II.

With the same five equations in (3.51) but different x_i and y_i values, we have a set of five linear system equations

$$\begin{cases}
A_1 + A_2 + A_3 + A_4 + A_5 &= 4 \\
+0.5A_3 -0.5A_5 &= 0 \\
+0.5A_2 -0.5A_4 &= 0 \\
+0.25A_3 +0.25A_5 &= 2/3 \\
+0.25A_2 +0.25A_4 &= 2/3.
\end{cases}$$
(3.54)

which produce the 5-dimensional cubature formula:

$$C_5 f = \frac{4}{3} \{ -f(0,0) + f(0,1) + f(1,0) + f(0,-1) + f(-1,0) \}.$$
 (3.55)

The number of nodes in each pixel can be increased further to achieve higher accuracy. An example is to use the 13-dimensional cubature formula, which is illustrated in Figure 3.5, to reduce the approximation error.

We can determine the weights of the cubature formula

$$C_{13}f = A_{1}f(0,0) + A_{2}f(0.5,0.5) + A_{3}f(0.5,-0.5) + A_{4}f(-0.5,-0.5)$$

$$+A_{5}f(-0.5,0.5) + A_{6}f(0,1) + A_{7}f(1,1) + A_{8}f(1,0) + A_{9}f(1,-1)$$

$$+A_{10}f(0,-1) + A_{11}f(-1,-1) + A_{12}f(-1,0) + A_{13}f(-1,1)$$
 (3.56)

Figure 3.5: 13-dimensional formula

Sare stat is annensie

the same way we did for the 5-dimensional formula by employing (3.48) and solving thirteen linear system equations. The equations are listed in the Appendix of this chapter, and the solutions of these equations lead to

$$C_{13}f = \frac{1}{45} \{120f(0,0) + 16[f(0.5,0.5) + f(0.5,-0.5) + f(-0.5,-0.5) + f(-0.5,0.5)] -9[f(0,1) + f(1,0) + f(0,-1) + f(-1,0)] + 8[f(1,1) + f(1,-1) + f(-1,-1) + f(-1,1)] \}$$
(3.57)

It is possible to impose additions on the weights A_i to reduce the number of linear system equations and make the determination of the A_i easier. For example, we can assume that the thirteen dimensional cubature formula is

$$C_{13}f = A_1(0,0)$$

$$+ A_2[f(0.5,0.5) + f(0.5,-0.5) + f(-0.5,-0.5) + f(-0.5,0.5)]$$

$$+ A_3[f(0,1) + f(1,0) + f(0,-1) + f(-1,0)]$$

$$+ A_4[f(1,1) + f(1,-1) + f(-1,-1) + f(-1,1)],$$
(3.58)

which leads to

$$\begin{cases}
\sum_{i=1}^{13} = |\Omega| \\
\sum_{i=1}^{13} A_i x_i^2 = I_{\Omega} x^2 \\
\sum_{i=1}^{13} A_i x_i^2 y_i^2 = I_{\Omega} x^2 y^2 \\
\sum_{i=1}^{13} A_i x_i^4 = I_{\Omega} x^4,
\end{cases} (3.59)$$

and

$$\begin{cases}
A_1 + 4A_2 + 4A_3 + 4A_4 = 4 \\
+A_2 + 2A_3 + 4A_4 = 2/3 \\
+.25A_2 + 4A_4 = 4/9 \\
+.25A_2 + 2A_3 + 4A_4 = 2/3.
\end{cases} (3.60)$$

Therefore, the 13-dimensional cubature formula (3.58) can be written as:

$$C_{13}f = \frac{1}{45} \{104f(0,0) + 16[f(0.5,0.5) + f(0.5,-0.5) + f(-0.5,-0.5) + f(-0.5,0.5)] - [f(0,1) + f(1,0) + f(0,-1) + f(-1,0)] + 4[f(1,1) + f(1,-1) + f(-1,-1) + f(-1,1)]\}.$$
(3.61)

If we ignore the geometric error and let the image function f(x,y) be a constant image with graylevel a, like the case of **Legendre** moments, all **Zernike** moments should equate to zero except $A_{00} = a$. Therefore, we can use the following measure to evaluate the approximation errors of the **Zernike** moments

$$E_A = \sum \sum |\hat{A}_{nm}|^2 \qquad m = n \neq 0.$$
 (3.62)

The two different types of 5-dimensional cubature formulas, the 13-dimensional formula with different sets of weights, and the simplest 1-dimensional formula are employed to evaluate the approximation errors in the computation of the **Zernike** moment. All normalized E_A 's which are less that 1.0 are illustrated in Figure 3.6, and their values are listed in Table 3.3.

Figure 3.6: Normalized approximation errors obtained by applying five different types of multi-dimensional cubature formulas on a constant image.

Order	1-D	5-D(I)	5-D(II)	13-D(I)	13-D(II)
2	0.0009	0.0007	0.0009	0.0007	0.0007
4	0.0056	0.0040	0.0088	0.0040	0.0040
6	0.0141	0.0080	0.0167	0.0079	0.0079
8	0.0281	0.0122	0.0334	0.0120	0.0121
10	0.0502	0.0191	0.0499	0.0189	0.0188
12	0.1077	0.0603	0.1071	0.0661	0.0615
14	0.1785	0.1401	0.1803	0.1863	0.1531
16	0.2907	0.3693	0.3395	0.6067	0.4388
18	0.4149	0.9837	0.6178	1.9872	1.2722
20	0.6193	2.7800	1.2479		
22	0.7192				
24	0.8879				
26	1.4654				

Table 3.3: Values of the normalized approximation errors from appling five different types of multi-dimensional cubature formulas on a constant image.

Table 3.3 and Figure 3.6 show that the multi-dimensional formulas could not produce better results than the simplest 1-point formula did. In other words, the traditional method to reduce the approximation errors could not improve the accuracy in this particular situation.

The reason that these multi-dimensional cubature formulas do not work is that the **Zernike** moments are defined within the unit disk $x^2 + y^2 \le 1$. Since we use all pixels whose centres fall into the unit disk for the **Zernike** moment computing, the one-dimensional formula will not produce extra errors because all $f(x_i, y_j)$ used in the computing are covered by the definition. However, when multi-dimensional cubature formulas are adopted, on the boundary of the unit disk, some $f(x_i, y_j)$ used to compute the pixels on the boundary will not fit the condition $x^2 + y^2 \le 1$. For example, with the condition $x^2 + y^2 \le 1$, there will be respectively 40, 16, and 140 nodes used in the **Zernike** moment computation which fall outside the unit disk for 5-dimensional formula I, 5-dimensional formula II, and 13-dimensional formulas. This certainly brings extra errors to the **Zernike** moments and makes the approximation errors go up quickly.

3.4.5 A New Proposed Solution to Reduce Approximation Error

We redefine the digitized version **Zernike** moments as

$$\hat{A}_{nm} = \frac{n+1}{\pi} \sum_{x_i} \sum_{y_i} h_{A_{nm}}(x_i, y_j) f(x_i, y_j), \qquad x_i^2 + y_j^2 \le 1 - \gamma,$$
 (3.63)

where

$$h_{A_{nm}}(x_i, y_j) = \int_{x_i - \frac{\Delta x}{2}}^{x_i + \frac{\Delta x}{2}} \int_{y_j - \frac{\Delta y}{2}}^{y_j + \frac{\Delta y}{2}} V_{nm}^*(\rho, \theta) \, dx \, dy, \tag{3.64}$$

and γ is an adjustable factor. For example, in our case, we let

$$\gamma = \frac{\Delta x + \Delta y}{4} + \epsilon, \tag{3.65}$$

where ϵ is an arbitrary small number. Then, with this new condition

$$x_i^2 + y_j^2 \le 1 - \frac{\Delta x + \Delta y}{4} - \epsilon,$$

the number of nodes that fall outside the unit disk will be reduced to 16, 0, and 68 for the 5-dimensional formula I, 5-dimensional formula II, and 13-dimensional formulas, respectively. Obviously, under this condition, the geometric errors will be higher.

Employing 0.0001 as the ϵ value, we re-evaluate all five different formulas discussed above. Table 3.4 and Figure 3.7 show the results.

Figure 3.7: Normalized E_A 's obtained by applying five different types of multidimensional cubature formulas on a constant image with the new proposed technique.

Compared with Figure 3.6, Figure 3.7 shows that the error E_A goes up quickly to the level of 30% for all five different formulas, then the ratios of increase slow

Order	1-D	5-D(I)	5-D(II)	13-D(I)	13-D(II)
2	0.0698	0.0681	0.0683	0.0681	0.0681
4	0.1961	0.1858	0.1886	0.1858	0.1858
6	0.3082	0.2820	0.2852	0.2819	0.2818
8	0.3661	0.3266	0.3307	0.3264	0.3259
10	0.3752	0.3314	0.3385	0.3307	0.3298
12	0.4026	0.3544	0.3621	0.3538	0.3537
14	0.4445	0.3840	0.3928	0.3857	0.3897
16	0.5083	0.4333	0.4418	0.4410	0.4540
18	0.5313	0.4429	0.4560	0.4569	0.4820
20	0.6089	0.4839	0.5008	0.4989	0.5373
22	0.6863	0.5242	0.5434	0.5374	0.5918
24	0.7116	0.5375	0.5750	0.5610	0.6505
26	0.7928	0.5667	0.6177	0.6151	0.7776
28	1.0185	0.6572	0.7004	0.7384	1.0084
30		0.6993	0.7843	0.8240	
32		0.7353	0.8848	0.8721	
34		0.9804	1.0203	1.0620	
36		1.1503			

Table 3.4: Values of the normalized E_A 's from appling five different types of multidimensional cubature formulas on a constant image with the new proposed technique.

down. As expected, all four multi-dimensional formulas produce better results than the simplest one-dimensional formula does.

The results shown in Figure 3.7 and Table 3.4 are better than those of Figure 3.6 and Table 3.3. However, one is reluctant to call the digitized version of **Zernike** moments under the new condition a flawless solution to the approximation error problem of the **Zernike** moment computing. Though it indeed controls the increase ratio of the error to a lower level under certain circumstances, we would like to use it as an alternative rather than call it a complete solution to compute the **Zernike** moments.

3.5 Conclusions

In this chapter, the problems of accuracy and efficiency in moment computing are discussed.

3.5.1 Legendre Moment Computing

It has been shown that most problems concerning accuracy and efficiency in the **Legendre** moment computing have been solved. Therefore, we are able to use the higher order of the **Legendre** moments in further research confidently.

3.5.2 Zernike Moment Computing

Because of the nature of the **Zernike** moment calculations, the two major problems in the **Zernike** moment computing, geometric and approximation errors, are more difficult.

Geometric Error

We adopted the latest results from a classical problem in Number Theory, *The Lattice Points of a Circle*, in our study on the geometric error of **Zernike** moment

computing. It shows that the geometric error is

$$R(n) = O(n^{-\frac{15}{11}}). (3.66)$$

For example, in the case of n = 24, $n^{-\frac{15}{11}} = 0.0131188...$

We have to admit that the errors in the range of $O(n^{-\frac{15}{11}})$ are too large to be ignored. More seriously, since the higher order **Zernike** moments are the accumulations of the lower order computed **Zernike** moments, when the order of **Zernike** moments goes higher, the accumulated geometric errors will be quickly out of control.

Increasing the size of an image, or n, will indeed make the geometric errors R(n) for the individual moments smaller. However, in many cases, to increase n will result in higher order moments being required to provide the needed image features. Therefore, to increase the size of an image in order to reduce the geometric errors is not recommended.

Certainly, the existence of the geometric errors severely handicaps the usage of the **Zernike** moments.

Approximation Error

The approximation error in the **Zernike** moment computing is discussed in this chapter as well. To reduce the approximation error, some well known cubature formulas are applied. However, to implement the multi-dimensional cubature formulas cannot improve the accuracy significantly.

The digitized **Zernike** moments are achieved from the summation of square pixels, whose centres fall inside the unit disk. However, on the unit disk boundary, a pixel whose centre falls inside the boundary does not mean that the entire pixel falls into the unit disk. Therefore, the multi-dimensional cubature formulas, which use a number of nodes inside a pixel to achieve sufficient accuracy, will no longer be valid.

To make the the multi-dimensional cubature formulas valid in the **Zernike** moment computation, we proposed a new condition in the **Zernike** moment computing.

The new condition

$$x_i^2 + y_j^2 \le 1 - \gamma,$$

where

$$\gamma = \frac{\Delta x + \Delta y}{4} + \epsilon$$

in our case, was employed as an alternative solution. The results show that, for all four multi-dimensional formulas, the approximation errors go up quickly in the early stage, then the ratios slow down. From the approximation error point of view, the multi-dimensional formulas under the new condition provide better results than the simplest one-dimensional formula does.

Though it is premature to say that changing the condition is a perfect solution to reduce approximation errors in the **Zernike** moment computing, careful selection of the multi-dimensional formula and modification on the condition on the choice of better points, i.e. $x_i^2 + y_j^2 \leq 1 - \gamma$, will indeed improve the performance of the **Zernike** moment computation significantly.

Appendix

Following is a set of thirteen linear system equations

$$\begin{cases} \sum_{i=1}^{13} = |\Omega| \\ \sum_{i=1}^{13} A_i x_i = I_{\Omega} x \\ \sum_{i=1}^{13} A_i y_i = I_{\Omega} y \\ \sum_{i=1}^{13} A_i x_i^2 = I_{\Omega} x^2 \\ \sum_{i=1}^{13} A_i x_i y_i = I_{\Omega} x y \\ \sum_{i=1}^{13} A_i y_i^2 = I_{\Omega} x^2 \\ \sum_{i=1}^{13} A_i x_i^3 = I_{\Omega} x^3 \\ \sum_{i=1}^{13} A_i x_i^3 = I_{\Omega} x^2 y \\ \sum_{i=1}^{13} A_i x_i^2 y_i = I_{\Omega} x^2 y \\ \sum_{i=1}^{13} A_i x_i y_i^2 = I_{\Omega} x y^2 \\ \sum_{i=1}^{13} A_i x_i^3 = I_{\Omega} x^3 \\ \sum_{i=1}^{13} A_i x_i^3 y = I_{\Omega} x^3 y \\ \sum_{i=1}^{13} A_i x_i^2 y^2 = I_{\Omega} x^2 y^2, \end{cases}$$

which leads to

Solving these equations gives us the formula in (3.57) used in Chapter 3.

Chapter 4

Image Reconstruction from Moments

In Chapter 3, the problems of accuracy and efficiency in moment computing have been studied. In this chapter, we want to verify how much information is contained in moments. This issue can be addressed by analyzing the reconstruction power of the moments.

A problem which is raised here can be stated as follows: if only a finite set of moments of an image are given, how well can we reconstruct the image? We start the investigation by discussing the inverse moment problem.

4.1 Inverse Moment Problem

Consider the characteristic function [55] for the image function f(x, y):

$$F(u,v) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) e^{j(ux+vy)} dx dy.$$
 (4.1)

Provided that f(x,y) is piecewise continuous and the integration limits are finite, F(u,v) is a continuous function and may be expanded as a power series in u and v. Therefore,

$$F(u,v) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \sum_{l=0}^{\infty} \sum_{l=0}^{\infty} \frac{(jux)^{l}}{k!} \frac{(jvy)^{l}}{l!} dxdy$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \sum_{k=0}^{\infty} \frac{(ju)^k}{k!} \sum_{l=0}^{\infty} \frac{(jv)^l}{l!} x^k y^l f(x,y) dxdy$$

$$= \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{j^{k+l}}{k! \, l!} u^k v^l \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) x^k y^l dxdy$$

$$F(u,v) = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{j^{k+l}}{k! \, l!} u^k v^l M_{kl}, \qquad (4.2)$$

where the interchange of order of summation and integration is permissible, and the moment M_{kl} is the geometric moment of order (k+l) of the image function f(x,y)

$$M_{kl} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) x^k y^l dx dy.$$

We see from (4.2) that the moment M_{kl} is the expansion coefficient to the $u^k v^l$ term in the power series expansion of the characteristic function of the image function f(x,y).

Then, we consider the inverse form of the characteristic function F(u, v). From (4.2) and the two-dimensional inversion formula for **Fourier** transforms, it follows that

$$f(x,y) = \frac{1}{4\pi^2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F(u,v) e^{-j(ux+vy)} du dv$$

$$f(x,y) = \frac{1}{4\pi^2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \sum_{l=0}^{\infty} \sum_{k=0}^{\infty} \frac{j^{k+l}}{k! \, l!} u^k v^l M_{kl} e^{-j(ux+vy)} du dv.$$
 (4.3)

However, the order of summation and the integration in (4.3) cannot be interchanged. Thus we conclude that the power series expansion for F(u, v) cannot be integrated term by term. Particularly, if only a finite set of moments is given, we cannot use a truncated series in (4.3) to learn about the original image function f(x,y).

The difficulty encountered in (4.3) could have been solved if the basis set $\{u^k v^l\}$ were orthogonal. Unfortunately, with the **Weierstrass** approximation theorem[17], the basis set $\{u^k v^l\}$, while complete, is not orthogonal.

To solve this problem, we need a set of basis functions which are orthogonal over a finite interval. Based on this requirement, the **Legendre** polynomials would be the appropriate set.

4.2 Method of Legendre Moments

4.2.1 Theory of Image Reconstruction from Legendre Moments

As mentioned in Chapter 2, the **Legendre** polynomials $\{P_m(x)\}[17]$ are a complete orthogonal basis set on the interval [-1, 1]:

$$\int_{-1}^{+1} P_m(x) P_n(x) dx = \frac{2}{2m+1} \delta_{mn}.$$
 (4.4)

By the orthogonality principle, and considering that f(x,y) is piecewise continuous over the image plane, we can write the image function f(x,y) as an infinite series expansion:

$$f(x,y) = \sum_{m=0}^{\infty} \sum_{n=0}^{m} \lambda_{m-n,n} P_{m-n}(x) P_n(y),$$
 (4.5)

where the **Legendre** moment of f(x,y) with order (m+n) is defined by

$$\lambda_{mn} = \frac{(2m+1)(2n+1)}{4} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} P_m(x) P_n(y) f(x,y) dx dy. \tag{4.6}$$

However, in practice, one has to truncate infinite series in (4.5). If only **Legendre** moments of order $\leq M_{max}$ are given, the function f(x, y) can be approximated by a truncated series:

$$f(x,y) \simeq f_{M_{max}}(x,y) = \sum_{m=0}^{M_{max}} \sum_{n=0}^{m} \lambda_{m-n,n} P_{m-n}(x) P_n(y). \tag{4.7}$$

Furthermore, $\lambda_{m-n,n}$'s must be replaced by their approximations given by (3.19), yielding the following reconstruction scheme

$$\hat{f}_{M_{max}}(x,y) = \sum_{m=0}^{M_{max}} \sum_{n=0}^{m} \hat{\lambda}_{m-n,n} P_{m-n}(x) P_n(y). \tag{4.8}$$

This is actually the basic equation used in the image reconstruction via the **Legendre** moments. It is important to note that when the given order M_{max} is increased, the previously determined $\hat{\lambda}_{m-n,n}$'s do not change.

4.2.2 Reconstruction Error Analysis

To measure the error between the original image and its reconstructed version, the following formula is employed

$$Error(\hat{f}_{M_{max}}) = \int_{-1}^{1} \int_{-1}^{1} [\hat{f}_{M_{max}}(x,y) - f(x,y)]^{2} dx dy, \tag{4.9}$$

where M_{max} is the highest moment order involved in reconstruction, and $\hat{f}(x,y)$ represents the reconstructed image from f(x,y).

Since

$$\hat{f}_{M_{max}}(x,y) = \sum_{m=0}^{M_{max}} \sum_{n=0}^{m} P_{m-n,n}(x) P_n(y) \hat{\lambda}_{m-n,n}$$

and

$$f(x,y) = \sum_{m=0}^{\infty} \sum_{n=0}^{m} P_{m-n,n}(x) P_n(y) \lambda_{m-n,n},$$

therefore

$$\hat{f}_{M_{max}}(x,y) - f(x,y) = \sum_{m=0}^{M_{max}} \sum_{n=0}^{m} P_{m-n,n}(x) P_{n}(y) \hat{\lambda}_{m-n,n}
- \sum_{m=0}^{\infty} \sum_{n=0}^{m} P_{m-n,n}(x) P_{n}(y) \lambda_{m-n,n}
= \sum_{m=0}^{M_{max}} \sum_{n=0}^{m} P_{m-n,n}(x) P_{n}(y) [\hat{\lambda}_{m-n,n} - \lambda_{m-n,n}]
- \sum_{m=M_{max}+1}^{\infty} \sum_{n=0}^{m} P_{m-n,n}(x) P_{n}(y) \lambda_{m-n,n}.$$
(4.10)

Then, we have

$$\begin{split} Error(\widehat{f}_{M_{max}}) &= \int_{-1}^{1} \int_{-1}^{1} [\widehat{f}_{M_{max}}(x,y) - f(x,y)]^{2} dx dy \\ &= \int_{-1}^{1} \int_{-1}^{1} [\sum_{m=0}^{M_{max}} \sum_{n=0}^{m} P_{m-n,n}(x) P_{n}(y) (\widehat{\lambda}_{m-n,n} - \lambda_{m-n,n})]^{2} dx dy \end{split}$$

$$-2\int_{-1}^{1} \int_{-1}^{1} \left[\sum_{m=0}^{M_{max}} \sum_{n=0}^{m} P_{m-n,n}(x) P_{n}(y) \left(\widehat{\lambda}_{m-n,n} - \lambda_{m-n,n} \right) \right]$$

$$\left[\sum_{m=M_{max}+1}^{\infty} \sum_{n=0}^{m} P_{m-n,n}(x) P_{n}(y) \lambda_{m-n,n} \right] dxdy$$

$$+ \int_{-1}^{1} \int_{-1}^{1} \left[\sum_{m=M}^{\infty} \sum_{k=1}^{m} \sum_{n=0}^{m} P_{m-n,n}(x) P_{n}(y) \lambda_{m-n,n} \right]^{2} dxdy. \quad (4.11)$$

Since the second term in (4.11) is zero and **Legendre** polynomials $P_m(x)$ and $P_n(y)$ are orthogonal, applying (2.30) to (4.11), we have

$$Error(\hat{f}_{M_{max}}) = 4 \sum_{m=0}^{M_{max}} \sum_{n=0}^{m} \frac{1}{2(m-n)+1} \frac{1}{2n+1} [\hat{\lambda}_{m-n,n} - \lambda_{m-n,n}]^{2} + 4 \sum_{m=M_{max}+1}^{\infty} \sum_{n=0}^{m} \frac{1}{2(m-n)+1} \frac{1}{2n+1} \lambda_{m-n,n}^{2}.$$
(4.12)

As shown in (4.12), the reconstruction error $Error(\hat{f}_{M_{max}})$ consists of two parts. The first part comes from the discrete approximation of the true moment $(\lambda_{m,n})$ while the second part is a result of using a finite number of moments.

With the new techniques introduced in the previous chapter, we can reduce the discrete approximation error to a tolerable low level. Based on these new techniques, the experimental results of image reconstruction via **Legendre** moments, which will be presented in the following section, indicate that when the maximum given order M_{max} reaches a certain value, $\hat{f}_{M_{max}}(x,y)$ can be very close to the original image function f(x,y).

4.2.3 Experimental Results

The proposed approach was implemented in the C language and tested on a 25MHz 386 computer. In the experiments, a set of five Chinese characters, shown in Figure 4.1, is used as the test images. Each image consists of 24×24 pixels and the range of graylevels for each pixel is 32. All characters have the gray level 11 and the background has the value 21.

墓暮幕募慕

Figure 4.1: Five original Chinese characters used in image reconstruction via **Legendre** moments. From left to right are C_1 , C_2 , C_3 , C_4 , and C_5 .

The reason we use these five Chinese characters is that they are very similar to each other. Actually, among more than 50,000 Chinese characters, one cannot find another set of five(or even set of three or four) in which the individual characters are so similar to each other. Therefore, it seems that if these five characters can be recognized successfully, the method can be applied to all the Chinese characters with confidence.

The normalized mean square error between the original image f(x,y) and the reconstructed image $\hat{f}_{M_{max}}(x,y)$ is defined by

$$\overline{e_{M_{max}}^{2}} = \frac{Error(\hat{f}_{M_{max}})}{\int \int [f(x,y)]^{2} dx dy} = \frac{\int \int [\hat{f}_{M_{max}}(x,y) - f(x,y)]^{2} dx dy}{\int \int [f(x,y)]^{2} dx dy}, \quad -1 \le x, y \le 1, \tag{4.13}$$

which is considered as a measure of the image reconstruction ability of the moments and adopted here.

The alternative extended Simpson's rule with order N=23 is applied to compute the **Legendre** moments in this experiment. Table 4.1 and Figure 4.3 show the $\overline{e_{M_{max}}^2}$ values from the reconstructed Chinese characters from order 2 up to order 56. It should be noted that the $\overline{e_{M_{max}}^2}$ decreases monotonically in the cases of all five characters.

Figure 4.2 shows the five original Chinese characters and their reconstructed patterns. The first column illustrates five original characters. The second column to the ninth column display the reconstructed patterns of all characters in the first column with order 28, 32, 36, 40, 44, 48, 52 and 56, respectively.

Order	C_1	C_2	C_3	C_4	C_5
2	0.047615	0.045822	0.046409	0.043936	0.044973
4	0.046324	0.045556	0.045387	0.043429	0.043358
6	0.045428	0.043609	0.044421	0.041650	0.042230
8	0.042815	0.040956	0.043409	0.041143	0.040772
10	0.040362	0.039399	0.041322	0.038537	0.039932
12	0.038164	0.037170	0.037279	0.036748	0.037710
14	0.032964	0.034942	0.034077	0.033165	0.034441
16	0.030828	0.032760	0.030799	0.030356	0.032472
18	0.027089	0.029455	0.028143	0.026889	0.029127
20	0.024840	0.025035	0.025198	0.023493	0.026409
22	0.021336	0.021264	0.022372	0.021577	0.023423
24	0.017141	0.019605	0.019870	0.019955	0.020928
26	0.014513	0.016060	0.017691	0.018034	0.018245
28	0.012146	0.012868	0.014819	0.015282	0.015386
30	0.010568	0.010343	0.012224	0.012753	0.012617
32	0.008775	0.008540	0.009367	0.010563	0.010127
34	0.007346	0.007377	0.007456	0.008500	0.008573
36	0.006547	0.006526	0.006485	0.007162	0.007298
38	0.005348	0.005645	0.005668	0.006265	0.006336
40	0.004564	0.004769	0.004799	0.005378	0.004980
42	0.003996	0.004293	0.004219	0.004653	0.004322
44	0.003504	0.003734	0.003576	0.004111	0.003786
46	0.003217	0.003181	0.003165	0.003584	0.003199
48	0.003048	0.002869	0.002811	0.003041	0.002865
50	0.002607	0.002613	0.002728	0.002691	0.002647
52	0.002408	0.002321	0.002394	0.002605	0.002384
54	0.002408	0.002556	0.002451	0.002332	0.002419
56	0.002377	0.002602	0.002415	0.002271	0.002176

Table 4.1: The values of normalized reconstruction errors for the five reconstructed Chinese characters.

Figure 4.2: Five Chinese characters and their reconstructed patterns via **Legendre** moments.

Figure 4.3: Normalized reconstruction errors for the five reconstructed Chinese characters.

Clearly, the numerical results shown in Table 4.1 and Figure 4.3 are concordant with the visual results presented in Figure 4.2.

4.3 Method of Zernike Moments

4.3.1 Theory of Image Reconstruction from Zernike Moments

As discussed in Chapter 2, the **Zernike** polynomials

$$V_{nm}(x,y) = V_{nm}(\rho \sin\theta, \rho \cos\theta) = R_{nm}(\rho) \exp(jm\theta), \tag{4.14}$$

where the Radial polynomial $R_{nm}(\rho)$ is defined as

$$R_{nm}(\rho) = \sum_{s=0}^{(n-|m|)/2} (-1)^s \frac{(n-s)!}{s! \left(\frac{n+|m|}{2} - s\right)! \left(\frac{n-|m|}{2} - s\right)!} \rho^{n-2s}, \tag{4.15}$$

are a complete set of complex-valued functions orthogonal on the unit disk $x^2 + y^2 \le 1$:

$$\iint_{x^2+y^2\leq 1} [V_{nm}(x,y)]^* V_{pq}(x,y) \, dx dy = \frac{\pi}{n+1} \, \delta_{np} \, \delta_{mq}. \tag{4.16}$$

Subject to the discussion of orthogonal functions for the **Legendre** moments, the image function f(x,y) can be expanded in terms of the **Zernike** polynomials over the unit disk as

$$f(x,y) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{nm} V_{nm}(x,y), \qquad (4.17)$$

where m takes on positive and negative integers subject to the conditions n - |m| = even, and |m| < n.

We rewrite the definition of **Zernike** moments here for convenience:

$$A_{nm} = \frac{n+1}{\pi} \int \int_{x^2+y^2 \le 1} f(x,y) V_{nm}^*(\rho,\theta) dx dy.$$
 (4.18)

If terms only up to the maximum **Zernike** moment N_{max} are taken, then the truncated expansion is the approximation to f(x,y):

$$f(x,y) \simeq \hat{f}_{N_{max}}(x,y) = \sum_{n=0}^{N_{max}} \sum_{m} \hat{A}_{nm} V_{nm}(x,y),$$
 (4.19)

where \widehat{A}_{nm} and $\widehat{f}_{N_{max}}(x,y)$ are the **Zernike** moment numerically computed from f(x,y) and the reconstructed image from f(x,y) with the maximum **Zernike** moment N_{max} ,, while m is subject to the conditions n-|m|= even, and |m|< n.

Note that $V_{nm}^*(\rho,\theta) = V_{n,-m}(\rho,\theta)$, (4.19) can be expanded as

$$\hat{f}_{N_{max}}(x,y) = \sum_{n=0}^{N_{max}} \sum_{m} \hat{A}_{nm} V_{nm}(\rho,\theta)
= \sum_{n=0}^{N_{max}} \sum_{m<0} \hat{A}_{nm} V_{nm}(\rho,\theta) + \sum_{n=0}^{N_{max}} \sum_{m\geq0} \hat{A}_{nm} V_{nm}(\rho,\theta)
= \sum_{n=0}^{N_{max}} \sum_{m>0} \hat{A}_{n,-m} V_{n,-m}(\rho,\theta)
+ \sum_{n=0}^{N_{max}} \sum_{m>0} \hat{A}_{nm} V_{nm}(\rho,\theta) + \hat{A}_{n0} V_{n0}(\rho,\theta)
\hat{f}_{N_{max}}(x,y) = \sum_{n=0}^{N_{max}} \sum_{m>0} [\hat{A}_{nm}^* V_{nm}^*(\rho,\theta) + \hat{A}_{nm} V_{nm}(\rho,\theta)]
+ \hat{A}_{n0} V_{n0}(\rho,\theta),$$
(4.20)

considering that

$$V_{nm}(\rho,\theta) = R_{nm}(\rho) \left(\cos(m\theta) + j \sin(m\theta) \right)$$

and

$$V_{nm}^*(\rho,\theta) = R_{nm}(\rho) \left(\cos(m\theta) - j \sin(m\theta) \right).$$

Then (4.20) becomes

$$\hat{f}_{N_{max}}(x,y) = \sum_{n=0}^{N_{max}} \sum_{m>0} \left\{ (Re[\hat{A}_{nm}] - j Im[\hat{A}_{nm}]) R_{nm}(\rho) \left(\cos(m\theta) - j \sin(m\theta) \right) + (Re[\hat{A}_{nm}] + j Im[\hat{A}_{nm}]) R_{nm}(\rho) \left(\cos(m\theta) + j \sin(m\theta) \right) \right\}
+ (Re[\hat{A}_{n0}] + j Im[\hat{A}_{n0}]) R_{n0}(\rho)
= \sum_{n=0}^{N_{max}} \sum_{m>0} R_{nm}(\rho) \left\{ (Re[\hat{A}_{nm}] - j Im[\hat{A}_{nm}]) \left(\cos(m\theta) - j \sin(m\theta) \right) + (Re[\hat{A}_{nm}] + j Im[\hat{A}_{nm}]) \left(\cos(m\theta) + j \sin(m\theta) \right) \right\}
+ (Re[\hat{A}_{n0}] + j Im[\hat{A}_{n0}]) R_{n0}(\rho)$$

$$\hat{f}_{N_{max}}(x,y) = \sum_{n=0}^{N_{max}} \sum_{m>0} 2 R_{nm}(\rho) \left(Re[\hat{A}_{nm}] \cos(m\theta) - Im[\hat{A}_{nm}] \sin(m\theta) \right) + \left(Re[\hat{A}_{n0}] + j Im[\hat{A}_{n0}] \right) R_{n0}(\rho).$$
(4.21)

The formula (4.21) is the basic equation employed in image reconstruction via the **Zernike** moments.

4.3.2 Reconstruction Error Analysis

In this section, a similar definition as in(4.9) is adopted to measure the error between the original image and its reconstructed version from **Zernike** moments.

$$Error(\hat{f}_{N_{max}}) = \int \int_{x^2 + y^2 \le 1} |\hat{f}_{N_{max}}(x, y) - f(x, y)|^2 dx dy.$$
 (4.22)

Since

$$\widehat{f}_{N_{max}}(x,y) - f(x,y) = \sum_{n=0}^{N_{max}} \sum_{m} \widehat{A}_{nm} V_{nm}(x,y)
- \left[\sum_{n=0}^{N_{max}} \sum_{m} A_{nm} V_{nm}(x,y) + \sum_{n=N_{max+1}}^{\infty} \sum_{m} A_{nm} V_{nm}(x,y) \right]
= \sum_{n=0}^{N_{max}} \sum_{m} V_{nm}(x,y) [\widehat{A}_{nm} - A_{nm}]
- \sum_{n=0}^{\infty} \sum_{m} \sum_{m} A_{nm} V_{nm}(x,y),$$
(4.23)

therefore it follows that

$$Error(\hat{f}_{N_{max}}) = \int \int_{x^2+y^2 \le 1} |\hat{f}_{N_{max}}(x,y) - f(x,y)|^2 dx dy$$

$$= \int \int_{x^2+y^2 \le 1} \sum_{n=0}^{N_{max}} \sum_{m} |V_{nm}(x,y)|^2 |\hat{A}_{nm} - A_{nm}|^2 dx dy$$

$$-2 \int \int_{x^2+y^2 \le 1} \sum_{n=0}^{N_{max}} \sum_{m} V_{nm}(x,y) [\hat{A}_{nm} - A_{nm}] dx dy$$

$$\int \int_{x^2+y^2 \le 1} \sum_{N_{max+1}}^{\infty} \sum_{m} A_{nm} V_{nm}(x,y) dx dy$$

$$+ \int \int_{x^2+y^2 \le 1} \sum_{n=N_{max}}^{\infty} \sum_{m} |V_{nm}^{(}x,y)|^2 |A_{nm}|^2 dx dy. \tag{4.24}$$

It is clear that the second term on the right side of (4.24) is zero. So, the reconstruction error for **Zernike** moments consists of two terms:

$$Error(\hat{f}_{N_{max}}) = \int \int_{x^2+y^2 \le 1} \sum_{n=0}^{N_{max}} \sum_{m} |V_{nm}(x,y)|^2 |\hat{A}_{nm} - A_{nm}|^2 dxdy + \int \int_{x^2+y^2 \le 1} \sum_{n=N_{max}+1}^{\infty} \sum_{m} |V_{nm}(x,y)|^2 |A_{nm}|^2 dxdy.$$
(4.25)

By recalling (4.16), we obtain:

$$Error(\hat{f}_{N_{max}}) = \pi \sum_{n=0}^{N_{max}} \sum_{m} \frac{|\hat{A}_{nm} - A_{nm}|^2}{n+1} + \pi \sum_{n=N_{max}}^{\infty} \sum_{m} \frac{|A_{nm}|^2}{n+1}, \tag{4.26}$$

where the first part is from the approximation error in **Zernike** moment computing and the second term is due to truncating the higher order moments in image reconstruction.

4.3.3 Experimental Results

The same set of five Chinese characters used in the case of **Legendre** moments is employed in this section as the test images as well. Figure 4.4 illustrates the five characters on unit disks.

Traditional Zernike Moment Method

The traditional **Zernike** moment method, which defines the **Zernike** moments

$$A_{nm} = \frac{n+1}{\pi} \int \int f(x,y) V_{nm}^*(\rho,\theta) dx dy$$

on the unit disk

$$x^2 + y^2 \le 1,$$

is implemented in the image reconstruction. The simplest 1-dimensional formula, along with the two different types of 5-dimensional formulas, and the 13-dimensional formula with two different sets of coefficients are employed in the experiment.

Figure 4.4: Five original Chinese characters used in image reconstruction via **Zernike** moments. From left to right are C_1 , C_2 , C_3 , C_4 , and C_5 .

The normalized mean square errors

$$\overline{e^2} = \frac{\int \int |f(x,y) - \hat{f}(x,y)|^2 dx dy}{\int \int [f(x,y)]^2 dx dy}, \qquad x^2 + y^2 \le 1,$$
(4.27)

are adopted here to measure the qualities of the reconstructed images via the **Zernike** moments.

Order	1-D	5-D(I)	5-D(II)	13-D(I)	13-D(II)
2	0.055213	0.054943	0.056078	0.054943	0.054943
4	0.055961	0.055864	0.057879	0.055864	0.055864
6	0.054160	0.054049	0.057373	0.053973	0.053973
8	0.050504	0.049167	0.056113	0.049230	0.049216
10	0.048752	0.046411	0.051591	0.046480	0.046633
12	0.046750	0.045407	0.047394	0.045691	0.045975
14	0.051584	0.047041	0.049077	0.048419	0.051099
16	0.065199	0.052803	0.053426	0.056944	0.064922
18	0.073065	0.060081	0.051446	0.070122	0.096181
20	0.085419	0.103251	0.052595	0.132682	0.224127
22	0.101229	0.268038	0.066272	0.386192	0.780797
24	0.125072	0.773207	0.089699	1.413850	2.847505
26	0.238904	2.473051	0.236481		
28	0.395097		0.416779		
30	0.482546		0.725626		
32	0.584135		0.669215		
34	0.939857		0.813116		
36	1.307849		1.167633		
38	1.436626		0.960680		
40	1.590319		1.497801		

Table 4.2: Values of the normalized mean square errors from appling five different formulas to character C_1 .

The Chinese character C_1 is used as the test image for all five different formulas. Table 4.2 and Figure 4.6 show the $\overline{e^2}$ values for different formulas when the

Figure 4.5: The Chinese character C_1 and its reconstructed patterns via **Zernike** moments.

reconstruction orders go up.

Only the simplest 1-dimensional formula and the 5-dimensional formula II, which is shown in Figure 3.4, provide relatively lower computing errors. The remaining three formulas certainly are not good candidates for image reconstruction because of the excessive computing errors.

Figure 4.5 illustrates the reconstructed images of C_1 . The first row and the second row display the results from using the 1-dimensional formula and the 5-dimensional formula II, respectively. The patterns in the first column are reconstructed from order 14, then from left to right, they are the reconstructed images from order 16, 18, 20, 22, 24, 26, 28, and 30, respectively.

When the order is 26, Table 4.2 indicates that in terms of the normalized mean square error, the reconstructed image from the 5-dimensional formula II has lower error than that of 1-dimensional formula. However, the visual results are contrary. The reason is that the normalized mean square error treats all pixels equally, while the individual key pixels which contain more features affect the visual results more significantly.

Figure 4.6: The normalized mean square errors from appling five different formulas to character C_1 .

Modified Zernike Moment Method

We introduced a modified version of the **Zernike** moments in Chapter 3. We redefined the **Zernike** moments as

$$\hat{A}_{nm} = \frac{n+1}{\pi} \sum_{x_i} \sum_{y_j} h_{A_{nm}}(x_i, y_j) f(x_i, y_j), \qquad x_i^2 + y_j^2 \le 1 - \gamma, \tag{4.28}$$

where

$$h_{A_{nm}}(x_i, y_j) = \int_{x_i - \frac{\Delta x}{2}}^{x_i + \frac{\Delta x}{2}} \int_{y_j - \frac{\Delta y}{2}}^{y_j + \frac{\Delta y}{2}} V_{nm}^*(\rho, \theta) dx dy, \tag{4.29}$$

and γ is an adjustable factor. For example, in this research, we let

$$\gamma = \frac{\Delta x + \Delta y}{4} + \epsilon,\tag{4.30}$$

where ϵ is an arbitrary small number.

The main reason to adopt (4.30) is that when we use the multi-dimensional formulas to increase the approximate accuracy, we want to reduce the number of nodes which fall outside the unit disk. The price of adopting the new version is that the geometrical errors will become larger.

For the sake of convenient comparison, the same Chinese character C_1 is employed as the test image, and the normalized mean square error defined in (4.27) is adjusted to

$$\overline{e^2} = \frac{\int \int |f(x,y) - \hat{f}(x,y)|^2 dx dy}{\int \int [f(x,y)]^2 dx dy}, \qquad x^2 + y^2 \le 1 - \gamma, \tag{4.31}$$

to measure this new method.

Table 4.3 and Figure 4.8 show the $\overline{e^2}$ values of all five different formulas when the orders of the reconstructed images go up.

Table 4.3 and Figure 4.8 indicate that all five different formulas perform better than they did in the cases of traditional **Zernike** moments. Specifically, four multi-dimensional formulas produce lower computing errors than the simplest 1-dimensional does. Among the multi-dimensional formulas, the 5-dimensional formula

Order	1-D	5-D(I)	5-D(II)	13-D(I)	13-D(II)
2	0.084803	0.084788	0.084140	0.084788	0.084788
4	0.086955	0.086269	0.085942	0.086269	0.086269
6	0.066534	0.065864	0.066526	0.065864	0.065871
8	0.056585	0.056943	0.057341	0.056943	0.056803
10	0.054370	0.053879	0.056148	0.054191	0.054339
12	0.050674	0.051415	0.053731	0.051345	0.051626
14	0.047111	0.047376	0.049006	0.047446	0.047712
16	0.038940	0.038674	0.041326	0.039002	0.039314
18	0.032694	0.032203	0.034136	0.032398	0.033232
20	0.030620	0.028749	0.030869	0.028476	0.029583
22	0.030019	0.024936	0.026573	0.024928	0.026721
24	0.024429	0.019283	0.022129	0.020561	0.023906
26	0.030760	0.019953	0.021957	0.020725	0.025505
28	0.039758	0.019696	0.018082	0.021513	0.028803
30	0.039696	0.016881	0.017466	0.018160	0.025365
32	0.058339	0.022152	0.018620	0.020936	0.028304
34	0.106035	0.038370	0.024998	0.032265	0.044382
36	0.123119	0.041910	0.026487	0.033606	0.048897
38	0.169365	0.061747	0.042706	0.047283	0.069645
40	0.329895	0.120624	0.055665	0.092343	0.138519
42	0.433146	0.144304	0.059244	0.160647	0.292140
44	0.633271	0.230363	0.072008	0.245778	0.454737
46	1.097263	0.452476	0.137053	0.486214	0.896195
48	1.398472	0.657138	0.206285	1.231595	1.659259

Table 4.3: Values of the normalized reconstruction errors from the reconstructed five Chinese characters with the new proposed **Zernike** moment technique.

Figure 4.7: The Chinese character C_1 and its reconstructed patterns via the modified **Zernike** moments.

II which is shown in Figure 3.4, is superior to the other three formulas and is the best candidate for the image reconstruction under this specific situation.

The reason that the 5-dimensional formula II provides better result is that with the new condition for the **Zernike** moments, all nodes used in this formula fall inside the unit disk. For the 5-dimensional formula I and the 13-dimensional formulas, however, 16 and 68 nodes used in the computing fall outside the unit disk, respectively.

The reconstructed images from the Chinese character C_1 with five different formulas are shown in Figure 4.7. The first row shows the reconstructed patterns from the 1-dimensional formula, and the second, third, fourth, and fifth show those of 5-dimensional formula I, II, 13-dimensional formula I, and II, respectively. All images in the first column are reconstructed from order 10, then from left to right, are results from order 15, 20, 25, 30, 35, and 40.

Figure 4.8: Normalized reconstruction errors from the reconstructed five Chinese characters via the new proposed **Zernike** moment technique.

Figure 4.9: The five Chinese characters and their reconstructed patterns via the modified **Zernike** moments with 5-dimensional formula II.

By using the 5-dimensional formula II, we reconstructed all five Chinese characters with the **Zernike** moment order 20, 24, 28, 32, 36, 40, 44, and 48, respectively. Figure 4.9 shows the reconstructed images while Table 4.4 and Figure 4.8 list and illustrate the normalized mean square reconstruction errors of these patterns.

4.4 Conclusions

In this chapter, the image reconstructions via the **Legendre** moments and **Zernike** moments have been discussed.

4.4.1 Image Reconstruction via Legendre Moments

Since we have solved most of accuracy and efficiency problems related to the **Legendre** moment computing in Chapter 3, image reconstruction from the higher order **Legendre** moments results in a successful task.

Order	C_1	C_2	C_3	C_4	C_5	
20	0.030869	0.033030	0.032264	0.030916	0.032750	
24	0.022129	0.026868	0.028001	0.028148	0.028903	
28	0.018082	0.019077	0.024242	0.023891	0.020548	
32	0.018620	0.018383	0.019420	0.020195	0.019606	
36	0.026487	0.029725	0.033788	0.032982	0.031015	
40	0.055665	0.058078	0.055500	0.057263	0.054554	
44	0.072008	0.081936	0.079502	0.079267	0.080677	
48	0.206285	0.196951	0.200966	0.214339	0.216396	

Table 4.4: Values of the normalized reconstruction errors from the reconstructed five Chinese characters via the new proposed **Zernike** moment technique.

Five similar Chinese characters are used as the test images in the image reconstruction procedure. Numerical and visual results both show that the reconstructed images from the high order **Legendre** moments are very close to the original ones. When the order goes higher, the difference between the original image and its reconstructed pattern becomes smaller.

4.4.2 Image Reconstruction via Zernike Moments

In this chapter, we discussed the image reconstruction via the traditional **Zernike** moments and a proposed new **Zernike** moment method as well.

Traditional Zernike Moment Method

Five different cubature formulas are applied in the image reconstruction via traditional **Zernike** moment method. However, most of multi-dimensional formulas employed to increase the accuracy of the **Zernike** moment computing cannot provide the expected results in the image reconstruction procedure. The reason for the failure is that the pixels on the unit disk boundary may contain nodes falling out of the unit circle and which bring in excessive computing errors.

In this task, the simplest 1-dimensional formula provides relatively better reconstructed patterns than all the other multi-dimensional formulas do.

New Proposed Zernike Moment Method

The same five formulas used in the traditional **Zernike** moment method are employed in the proposed new **Zernike** moment technique. As expected, all multi-dimensional formulas can reconstruct images with better qualities than the 1-dimensional formula does, and the 5-dimensional formula II obviously is the best approach.

In terms of image reconstruction, however, compared with the **Legendre** moment method, the **Zernike** moment method is severely handicapped. The reason is that the two major problems in the **Zernike** moment computation, geometrical error and approximation error, cannot be solved completely. Though carefully selecting the multi-dimensional cubature formulas can indeed reduce the computing errors and improve the quality of the reconstructed image, it is very unlikely that the performance of the **Zernike** moment method can reach the same level as that of the **Legendre** moment method.

Chapter 5

Reconstruction of Noisy Images via Moments

5.1 Introduction

Image reconstructions based on the orthogonal moments under noise free condition have been discussed in Chapter 4. However, in the presence of noise, the image reconstruction is expected to be more complicated.

It is interesting to consider how close we can recover the original image from a finite set of moments computed from the noisy data. Certainly, the higher order moments suffer greater degradation due to noise. On the other hand, higher moments are able to supply the detail information about the image [1][75]. These two opposite factors working against one another imply that there exists an optimal number of moments yielding the best possible representation of the image.

5.2 Legendre Moments

Two commonly used orthogonal moments for image reconstruction are **Zernike** moments and **Legendre** moments. In this chapter, the **Legendre** moments are employed for discussion. However, the results presented can be extended straightforwardly to other types of orthogonal moments.

As discussed in Chapter 4, if only **Legendre** moments λ_{mn} of order $\leq M_{max}$ are given, the original image function f(x, y) can be approximated by a truncated series:

$$\hat{f}_{M_{max}}(x,y) = \sum_{m=0}^{M_{max}} \sum_{n=0}^{m} \hat{\lambda}_{m-n,n} P_{m-n}(x) P_n(y).$$
 (5.1)

Clearly, the square reconstruction error

$$Error(\widehat{f}_{M_{max}}) = \int \int [\widehat{f}_{M_{max}}(x,y) - f(x,y)]^2 dxdy$$
 (5.2)

goes to zero as $M_{max} - > \infty$, see formula (4.12). That is, by employing higher order moments one can make the reconstruction error arbitrarily small. However, this scheme breaks down if the image is contaminated by noise. The noise affects the higher order moments greater than it does to the lower order moments [75]. Therefore, given the minimal value of the reconstruction error, an optimal number of moments exists. In other words, when noise is involved, the square reconstruction error will initially decrease (not necessarily in a monotonic way) down to a certain number of moments and then increase to infinity as $N->\infty$.

5.3 The Reconstruction Error

Let g(x, y) be the noisy degraded version of f(x, y) and adopt the following simple image observation model

$$g(x,y) = f(x,y) + z(x,y),$$
 (5.3)

where z(x,y) is a Gaussian random process with zero mean and finite variance σ^2 .

From the discussion in Chapter 3, the **Legendre** moments of the noisy version g(x,y) of f(x,y) can be obtained numerically by the formula

$$\tilde{\lambda}_{mn} = \frac{(2m+1)(2n+1)}{4} \sum_{i=1}^{m} \sum_{j=1}^{n} h_{\tilde{\lambda}_{mn}}(x_i, y_j) g(x_i, y_j)$$
(5.4)

where $\tilde{\lambda}_{mn}$ presents the **Legendre** moments obtained from the noisy image g(x,y) and

$$h_{\widetilde{\lambda}_{mn}}(x_i, y_j) = \int_{x_i - \frac{\Delta x}{2}}^{x_i + \frac{\Delta x}{2}} \int_{y_i - \frac{\Delta y}{2}}^{y_j + \frac{\Delta y}{2}} P_m(x) P_n(y) dx dy.$$
 (5.5)

Then, if the order $\leq M_{max}$ is given, the noisy image g(x,y) can be reconstructed by

$$\hat{g}_{M_{max}}(x,y) = \sum_{m=0}^{M_{max}} \sum_{n=0}^{m} \tilde{\lambda}_{m-n,n} P_{m-n}(x) P_n(y).$$
 (5.6)

Since

$$\mathbf{E}g(x_i, y_i) = f(x_i, y_i),\tag{5.7}$$

we have

$$\mathbf{E}\tilde{\lambda}_{mn} = \hat{\lambda}_{mn}.\tag{5.8}$$

If we write $\tilde{\lambda}_{mn}$ as

$$\widetilde{\lambda}_{mn} = \widetilde{\lambda}_{mn} - \mathbf{E}\widetilde{\lambda}_{mn} + \mathbf{E}\widetilde{\lambda}_{mn},$$

then, it follows

$$\tilde{\lambda}_{mn} = [\tilde{\lambda}_{mn} - \mathbf{E}\tilde{\lambda}_{mn}] + \hat{\lambda}_{mn}. \tag{5.9}$$

Similar to the case of non-noise in (4.12), $Error(\hat{g}_{M_{max}})$ can be writen as

$$Error(\hat{g}_{M_{max}}) = \int_{-1}^{1} \int_{-1}^{1} [\hat{g}_{M_{max}}(x,y) - f(x,y)]^{2} dxdy$$

$$= 4 \sum_{m=0}^{M_{max}} \sum_{n=0}^{m} \frac{1}{2(m-n)+1} \frac{1}{2n+1} [\tilde{\lambda}_{m-n,n} - \lambda_{m-n,n}]^{2}$$

$$+4 \sum_{m=0}^{\infty} \sum_{n=0}^{m} \frac{1}{2(m-n)+1} \frac{1}{2n+1} \lambda_{m-n,n}^{2}.$$
 (5.10)

Therefore, $\mathbf{E}(Error(\hat{g}_{M_{max}}))$ has the form of

$$\mathbf{E}(Error(\widehat{g}_{M_{max}})) = 4 \sum_{m=0}^{M_{max}} \sum_{n=0}^{m} \frac{1}{2(m-n)+1} \frac{1}{2n+1} \mathbf{E}[\widetilde{\lambda}_{m-n,n} - \lambda_{m-n,n}]^{2} + 4 \sum_{m=M_{max}+1}^{\infty} \sum_{n=0}^{m} \frac{1}{2(m-n)+1} \frac{1}{2n+1} \mathbf{E}(\lambda_{m-n,n}^{2}). \quad (5.11)$$

Considering (5.9), we have

$$\mathbf{E}[\widetilde{\lambda}_{m-n,n} - \lambda_{m-n,n}]^{2} = \mathbf{E}[(\widetilde{\lambda}_{m-n,n} - \mathbf{E}\widetilde{\lambda}_{m-n,n}) + (\widehat{\lambda}_{m-n,n} - \lambda_{m-n,n})]^{2}$$

$$= \mathbf{E}[(\widetilde{\lambda}_{m-n,n} - \mathbf{E}\widetilde{\lambda}_{m-n,n})^{2} + (\widehat{\lambda}_{m-n,n} - \lambda_{m-n,n})^{2}$$

$$-2\mathbf{E}(\widetilde{\lambda}_{m-n,n} - \mathbf{E}\widetilde{\lambda}_{m-n,n})(\widehat{\lambda}_{m-n,n} - \lambda_{m-n,n}). \quad (5.12)$$

Since

$$\mathbf{E}(\widetilde{\lambda}_{m-n,n} - \mathbf{E}\widetilde{\lambda}_{m-n,n})(\widehat{\lambda}_{m-n,n} - \lambda_{m-n,n}) = 0,$$

it follows

$$\mathbf{E}[\widetilde{\lambda}_{m-n,n} - \lambda_{m-n,n}]^{2} = \mathbf{E}(\widetilde{\lambda}_{m-n,n} - \mathbf{E}\widetilde{\lambda}_{m-n,n})^{2} + \mathbf{E}(\widehat{\lambda}_{m-n,n} - \lambda_{m-n,n})^{2}$$

$$= var(\widetilde{\lambda}_{m-n,n}) + (\widehat{\lambda}_{m-n,n} - \lambda_{m-n,n})^{2}.$$
(5.13)

Then, (5.11) becomes

$$\mathbf{E}(Error(\widehat{g}_{M_{max}})) = 4 \sum_{m=0}^{M_{max}} \sum_{n=0}^{m} \frac{1}{2(m-n)+1} \frac{1}{2n+1} var(\widetilde{\lambda}_{m-n,n})$$

$$+4 \sum_{m=0}^{M_{max}} \sum_{n=0}^{m} \frac{1}{2(m-n)+1} \frac{1}{2n+1} (\widehat{\lambda}_{m-n,n} - \lambda_{m-n,n})^{2}$$

$$+4 \sum_{m=0}^{\infty} \sum_{n=0}^{m} \frac{1}{2(m-n)+1} \frac{1}{2n+1} \lambda_{m-n,n}^{2}.$$
 (5.14)

The first term on the right-hand side of (5.14) depends on the noise added to the original image. When the noise increases, it increases too. The second term on the right side can be viewed as a matching measure between $\hat{\lambda}_{m-n,n}$ and λ_{mn} based on the total $\frac{(N+2)(N+1)}{2}$ moments, while the last term comes from truncating higher order moments in reconstruction.

Comparing (4.12) with (5.14), the main difference between the cases of the absence and presence of noise is focused on the first term on the right side of (5.14). In terms of the sensitivity to noise, the higher order **Legendre** moments are more sensitive.

From (5.14) we can see that when the order of M_{max} increases, the sums of $var(\tilde{\lambda}_{m-n,n})$ and $[\hat{\lambda}_{mn} - \lambda_{mn}]^2$ increase. On the other hand, however, the third

Figure 5.1: Square error $Error(\tilde{g}_{M_{max}}), \, \sigma^2 = 4.0.$

term on the right-hand side of (5.14) decreases when the order of M_{max} increases. These two factors against each other, indicating that the square reconstruction error $Error(\tilde{g})$ will initially decrease down to an optimal number of moments and then increase.

In order to verify such properties, the Chinese character C_1 is employed as the testing pattern in our experiment. Figure 5.1 shows the trend of the squared reconstruction error $Error(\tilde{g}_{M_{max}})$ averaged on 10 runs with $\sigma^2 = 4.0$. As expected, the error decreases first, reaches minimum at N = 35, then increases. Table 5.1 lists the numerical values of $Error(\hat{g}_{M_{max}})$. Figure 5.2 illustrates the noisy image of C_1 and its reconstructed versions from order 4 up to order 56, from left to right, first row to last row, respectively.

Order	I(N)	Order	I(N)	Order	I(N)
3	1.628e+01	21	9.928e+00	39	6.099e+00
4	1.604e+01	22	9.110e+00	40	6.193e+00
5	1.587e + 01	23	9.067e + 00	41	6.217e+00
6	1.586e+01	24	8.097e+00	42	6.323e+00
7	1.544e+01	25	7.924e+00	43	6.377e+00
8	1.518e+01	26	7.556e + 00	44	6.529e+00
9	1.439e+01	27	7.101e+00	45	6.660e+00
10	1.421e+01	28	6.939e + 00	46	6.814e+00
11	1.403e+01	29	6.718e + 00	47	6.898e+00
12	1.369e+01	30	6.610e+00	48	7.046e+00
13	1.256e+01	31	6.349e+00	49	7.223e+00
14	1.219e+01	32	6.359e + 00	50	7.386e+00
15	1.183e+01	33	6.219e+00	51	7.444e+00
16	1.175e+01	34	6.243e+00	52	7.606e+00
17	1.093e+01	35	6.065e+00	53	7.818e+00
18	1.065e+01	36	6.103e+00	54	7.982e+00
19	1.020e+01	37	6.069e+00	55	8.258e+00
20	1.003e+01	38	6.105e+00	56	8.407e+00

Table 5.1: Square reconstruction error $Error(\tilde{g}_{M_{max}})$ with $\sigma^2=4.0$.

Obviously, the second and third terms in (5.14) are not affected by the noise, therefore, when the noise increases or decreases, the sum of $[\hat{\lambda}_{mn} - \lambda_{mn}]^2$ is the

Figure 5.2: Noisy version of C_1 , with $\sigma^2=4.0$, and its reconstructed versions.

only factor deciding the position of the optimal number of moments. Since the noise affects the higher order **Legendre** moments more than it does to the lower ones, the reconstruction error $Error(\hat{g}_{M_{max}})$ will increase faster when the higher level noise is involved. These discussions lead to the conclusion that when the level of noise increases, the optimal number of moments for the least reconstruction error becomes smaller. An experiment was designed to verify this assumption and the result is illustrated in Figure 5.3. The same Chinese character C_1 and the noise model shown in (5.3) are employed. The result is averaged on 10 runs and the noise varies from $\sigma^2 = 4.0$ to $\sigma^2 = 25.0$. Due to the nature of this experiment, the computation involved is very large. It took 260 hours for a 33 MHz 486 computer to complete the task. It is fair to say that the amount of computation involved in this experiment has reached the limitation of a current personal computer.

5.4 Data-Driven Selection of the Optimal Number

It is very interesting to consider how to select a "good" optimal number N directly from the available $g(x_i, y_j)$. Ideally, it is expected to have N_0^* to minimize the square reconstruction error. Notice that N_0^* is a function of the data at hand.

This, in turn, is equivalent to taking the minimizer of the following criteria

$$Error(\hat{g}_{M_{max}}) - \iint f^{2}(x,y) dx dy = 4 \sum_{m=0}^{M_{max}} \sum_{n=0}^{m} \frac{1}{2(m-n)+1} \frac{1}{2n+1} [\tilde{\lambda}_{m-n,n} - \lambda_{m-n,n}]^{2} + 4 \sum_{m=M_{max}+1}^{\infty} \sum_{n=0}^{m} \frac{1}{2(m-n)+1} \frac{1}{2n+1} \lambda_{m-n,n}^{2} - 4 \sum_{m=0}^{\infty} \sum_{n=0}^{m} \frac{1}{2(m-n)+1} \frac{1}{2n+1} \lambda_{m-n,n}^{2}$$

$$Error(\hat{g}_{M_{max}}) - \iint f^{2}(x,y) dx dy = 4 \sum_{m=0}^{M_{max}} \sum_{n=0}^{m} \frac{1}{2(m-n)+1} \frac{1}{2n+1} [\tilde{\lambda}_{m-n,n} - \lambda_{m-n,n}]^{2} - 4 \sum_{m=0}^{M_{max}} \sum_{n=0}^{m} \frac{1}{2(m-n)+1} \frac{1}{2n+1} \lambda_{m-n,n}^{2}. \quad (5.15)$$

However, the solution of equation (5.15) is not feasible since the λ_{mn} 's are unknown.

Figure 5.3: Optimal moments numbers.

If λ_{mn} is replaced by $\tilde{\lambda}_{mn}$, equation (5.15) will yield the unacceptable solution $N = \infty$.

To overcome this difficulty, a resampling technique utilizing the cross-validation methodology has been introduced and the asymptotic optimality of such a selection has been proved [56][57].

Other possible techniques to solve this problem include the utilization of discrete measures with penalty factors. For instance, other than the $Error(\hat{g}_{M_{max}})$ criterion, its discrete approximation

$$ED(M) = \Delta x \Delta y \sum_{i=1}^{n} \sum_{j=1}^{m} [g(x_i, y_j) - \hat{g}_{M_{max}}(x_i, y_j)]^2$$
 (5.16)

can be used [24].

The empirical selectors corresponding to ED(M) are of the form

$$\widehat{ED}(M) = \Delta x \Delta y \sum_{i=1}^{n} \sum_{j=1}^{m} [g(x_i, y_j) - \widehat{g}_{M_{max}}(x_i, y_j)]^2 \Phi(N),$$
 (5.17)

i.e., it is a penalized version of the residual error

$$\Delta x \Delta y \sum_{i=1}^{n} \sum_{j=1}^{m} [g(x_i, y_j) - \hat{f}_{M_{max}}(x_i, y_j)]^2,$$

see [24].

In the case of Gaussian noise, the prescription we proposed for the penalty factor $\Phi(N)$ is

$$\Phi(N) = [1 - F(\sigma^2)L(N)\Delta x \Delta y]^{-p}, \qquad (5.18)$$

where L(N) is the total number of moments used in $\hat{g}_{M_{max}}$, e.g., $L(N) = \frac{(N+1)(N+2)}{2}$ for **Legendre** moments. With carefully selected p and $F(\sigma^2)$, significant simulating results of Figure 5.3 can be expected.

Generally speaking, the automatic selection of the optimal number N_0^* from the data at hand is still an open problem. Though some initial experimental results are quite positive on this task[58][59], due to the extreme amount of computation

involved, we could not provide the full scale research on this issue based on the available equipment. For a related problem in the context of image restoration, we refer to [29].

Chapter 6

Character Recognition via Moments

6.1 Introduction

Character recognition is believed to be typical of many other practical problems that depend on general shapes rather than details of the image. The recognition of characters from imagery may be accomplished by identifying an unknown character as a member of a set of known characters. Various character recognition techniques have been utilized to abstract characterizations for efficient character representations [25][62]. Such characterizations are defined by measurable features extracted from the characters. Therefore, the effectiveness of the technique for a given application is dependent on the ability of a given technique to uniquely represent the character from the available information. Since no one single technique will be effective for all recognition problems, the choice of character characterization is driven by the requirements of a specific recognition task.

Based on the **Uniqueness Theorem**[37], the double moment sequence is uniquely determined by an image function f(x, y). This nature makes the method of moments a proper candidate in character recognition.

6.2 Character Recognition via Central Moments

In consideration of the fact that there is no inverse problem involved in the classification of visual patterns and characters, and the property of invariance under translation, the classical moment is discussed in this chapter for the purpose of pattern recognition.

As mentioned in Chapter 2, the central moments μ_{pq} are defined in (2.5)

$$\mu_{pq} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x - \bar{x})^p (y - \bar{y})^q f(x, y) dx dy,$$

where

$$\bar{x} = \frac{M_{10}}{M_{00}}, \qquad \bar{y} = \frac{M_{01}}{M_{00}},$$

and M_{pq} are the classic moments defined in (2.4)

$$M_{pq} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^p y^q f(x, y) dx dy.$$

Hu demonstrated the utility of moment techniques through a simple pattern recognition experiment [37]. The first two moment invariants were used to represent several known digitized patterns in a two-dimensional feature space. The experiment was performed by using a set of 26 capital letters as input patterns. In the two-dimensional feature space, all the points representing each of the characters were fairly distinct except those of M and W.

Compared with the set of English letters, the Chinese character set is large, and in terms of character recognition, is more difficult to classify. In this section, similar to Hu's experiment, a simulation program of a character recognition model using two moment invariants, has been proposed. The following two moment functions

$$X_1 = \sqrt{\mu_{20} + \mu_{02}} \tag{6.1}$$

and

$$X_2 = \sqrt{(\mu_{30} - 3\mu_{12})^2 + (3\mu_{21} - \mu_{03})^2}$$
(6.2)

are used to compute the representations of all known characters in the feature space. Therefore, each point of (X_1, X_2) represents one Chinese character in the image plane (x, y).

Considering the similarity, first, we employ the set of Chinese characters used before. Figure 6.1 shows these characters.

Figure 6.1: Five original Chinese characters used for testing.

The values of X_1 and X_2 are given in Table 6.1 and the representations of the five Chinese characters are shown in Figure 6.2.

Characters	X_1	X_2
C_1	3.5328	0.0933
C_2	3.5440	0.0818
C_3	3.5433	0.0616
C_4	3.5574	0.0254
C_5	3.5559	0.0794

Table 6.1: Values of the five Chinese characters in the central moment feature space.

Figure 6.2 shows that the representations of the five Chinese characters are quite close to each other in the two dimensional (X_1, X_2) feature space. From the classification point of view, this disadvantage certainly will limit the usage of the central moment method in Chinese character recognition tasks.

Then, randomly, we selected 90 Chinese characters as the testing samples. Figure 6.3 shows these 90 Chinese characters. In Figure 6.3, we call the first sample from the left in the first row S_1 , the second sample from the left on the same row S_2 , and so on. For example, S_{38} will be the second sample from the left on the fifth row; and S_{77} is the fifth character from the left on the ninth row.

Figure 6.2: Representations of the five Chinese characters in the central moment feature space.

Figure 6.3: Ninety Chinese characters.

The values of X_1 and X_2 are listed in Table 6.2 and the representations of these 90 Chinese characters in the central moment feature space are plotted in Figure 6.4.

Obviously, similar to the results shown in Table 6.1 and Figure 6.2, the two central moment functions, X_1 and X_2 , cannot recognize those Chinese characters successfully.

6.3 Character Recognition with Legendre Moments

The **Legendre** moments do not have the property of invariance under translation. However, compared with the classical moments, the same order of the **Legendre** moment contains more terms than that of the central moment does. Therefore, in terms of classification, the **Legendre** moments contain more information than the central moments do.

Similar to the two classification measures defined in (6.1) and (6.2), the following two **Legendre** functions

$$Y_1 = \sqrt{\lambda_{20} + \lambda_{02}} \tag{6.3}$$

and

$$Y_2 = \sqrt{(\lambda_{30} - 3\lambda_{12})^2 + (3\lambda_{21} - \lambda_{03})^2}$$
(6.4)

are employed in our new recognition model, where λ_{mn} 's are the **Legendre** moments defined in (2.31).

First, we use the same set of five Chinese characters shown in Figure 6.1. The values of all five Chinese characters in the two-dimensional **Legendre** moment feature space (Y_1, Y_2) are listed and illustrated in Table 6.3 and Figure 6.5, respectively.

We can see that the five Chinese characters are well separated in the two-dimensional **Legendre** moment feature space (Y_1, Y_2) . In other words, in this particular Chinese character recognition task, the **Legendre** moment technique is superior.

Sample	X_1	X_2	Sample	X_1	X_2	Sample	X_1	X_2
S_1	3.6184	0.2566	S_{31}	3.6512	0.2411	S_{61}	3.5429	0.0565
S_2	3.5487	0.0162	S_{32}	3.5564	0.1498	S_{62}	3.5485	0.1071
S_3	3.5474	0.0029	S_{33}	3.4875	0.0674	S_{62}	3.5618	0.0980
S_4	3.5504	0.0769	S_{34}	3.4743	0.1785	S_{64}	3.5798	0.1332
S_5	3.5551	0.0811	S_{35}	3.5606	0.0598	S_{65}	3.5286	0.1251
S_6	3.5339	0.2560	S_{36}	3.5578	0.1511	S_{66}	3.4988	0.1657
S_7	3.5092	0.1201	S_{37}	3.5509	0.0610	S_{67}	3.5440	0.0818
S_8	3.5725	0.1149	S_{38}	3.5382	0.1388	S_{68}	3.5354	0.0843
S_9	3.6230	0.0114	S_{39}	3.5589	0.0596	S_{69}	3.5327	0.2650
S_{10}	3.5499	0.1434	S_{40}	3.5840	0.0639	S_{70}	3.5091	0.0972
S_{11}	3.5749	0.0771	S_{41}	3.5689	0.0613	S_{71}	3.5424	0.2206
S_{12}	3.5591	0.0477	S_{42}	3.4838	0.1280	S_{72}	3.5314	0.1080
S_{13}	3.5577	0.2699	S_{43}	3.5259	0.0878	S_{73}	3.5216	0.2923
S_{14}	3.4994	0.1735	S_{44}	3.5056	0.1187	S_{74}	3.5340	0.0785
S_{15}	3.5576	0.1663	S_{45}	3.5435	0.1615	S_{75}	3.5996	0.0398
S_{16}	3.4926	0.1638	S_{46}	3.5750	0.0304	S_{76}	3.5075	0.1668
S_{17}	3.5146	0.1091	S_{47}	3.5053	0.3824	S_{77}	3.5067	0.0730
S_{18}	3.5050	0.0607	S_{48}	3.5609	0.1297	S_{78}	3.5466	0.0675
S_{19}	3.5035	0.0953	S_{49}	3.6086	0.1638	S_{79}	3.5668	0.0329
S_{20}	3.5339	0.0733	S_{50}	3.5615	0.0674	S_{80}	3.6527	0.1474
S_{21}	3.5569	0.0480	S_{51}	3.5390	0.1286	S_{81}	3.5889	0.0140
S_{22}	3.5958	0.1324	S_{52}	3.4933	0.1307	S_{82}	3.5776	0.1211
S_{23}	3.5467	0.0199	S_{53}	3.4940	0.1729	S_{83}	3.4619	0.2198
S_{24}	3.5022	0.1514	S_{54}	3.5621	0.0845	S_{84}	3.5986	0.0416
S_{25}	3.5264	0.1419	S_{55}	3.5675	0.0680	S_{85}	3.5646	0.1387
S_{26}	3.5378	0.0837	S_{56}	3.5750	0.1012	S_{86}	3.5460	0.0678
S_{27}	3.5033	0.1533	S_{57}	3.5387	0.2538	S_{87}	3.6025	0.0930
S_{28}	3.5615	0.0590	S_{58}	3.5175	0.2213	S_{88}	3.5371	0.1616
S_{29}	3.5787	0.1090	S_{59}	3.5182	0.1422	S_{89}	3.5542	0.2515
S_{30}	3.5322	0.0200	S_{60}	3.5571	0.2579	S_{90}	3.5860	0.1156

Table 6.2: Values of the ninety Chinese characters in the central moment feature space.

Figure 6.4: Representations of the ninety Chinese characters in the central moment feature space.

Characters	Y_1	Y_2
C_1	2.0204	1.6965
C_2	2.1636	0.2535
C_3	2.1899	1.7548
C_4	2.2032	2.1281
C_5	2.1653	3.2418

Table 6.3: Values of the five Chinese characters in the **Legendre** moment feature space.

Figure 6.5: Representations of the five Chinese characters in the **Legendre** moment feature space.

Then, the ninety randomly selected Chinese characters shown in Figure 6.3 are employed as the testing patterns. Table 6.4 displays the values of these 90 Chinese characters in the **Legendre** moment feature space, and Figure 6.6 plots these representations in the two-dimensional (Y_1, Y_2) plane.

Figure 6.6: Representations of the ninety Chinese characters in the **Legendre** moment feature space.

Figure 6.6 shows that most of Chinese characters are well separated. However,

Sample	Y_1	Y_2	Sample	Y_1	Y_2	Sample	Y_1	Y_2
S_1	1.5346	4.7334	S_{31}	1.5260	5.6012	S_{61}	1.7716	0.8286
S_2	1.9007	2.0506	S_{32}	1.8379	2.9933	S_{62}	1.8951	1.6680
S_3	1.8135	0.6016	S_{33}	1.8906	2.4768	S_{63}	1.9745	2.6982
S_4	1.7271	2.5868	S_{34}	1.8940	3.7551	S_{64}	1.9486	1.4085
S_5	1.9632	1.1077	S_{35}	1.7915	1.8526	S_{65}	1.6608	2.6182
S_6	1.8792	4.8260	S_{36}	2.0227	3.3827	S_{66}	1.6585	3.6280
S_7	1.9411	2.6879	S_{37}	2.1192	1.8604	S_{67}	2.1636	0.2535
S_8	1.9408	2.0360	S_{38}	1.9756	1.8860	S_{68}	1.7241	1.7722
S_9	1.9248	2.2374	S_{39}	1.7896	1.7319	S_{69}	1.7064	5.7469
S_{10}	1.7645	3.9552	S_{40}	1.9206	2.5398	S_{70}	1.7558	0.5146
S_{11}	1.7005	1.2156	S_{41}	1.8540	1.5533	S_{71}	2.0121	4.0992
S_{12}	1.8596	1.1031	S_{42}	1.9207	2.1761	S_{72}	2.0239	2.3041
S_{13}	1.7067	5.0808	S_{43}	1.8654	2.8219	S_{73}	1.8900	6.0365
S_{14}	2.0086	3.8532	S_{44}	1.8708	2.4153	S_{74}	1.8122	1.1317
S_{15}	2.0362	3.8763	S_{45}	1.9319	1.4443	S_{75}	1.9149	1.5990
S_{16}	1.6787	3.5999	S_{46}	1.4783	0.0995	S_{76}	1.8685	0.6289
S_{17}	2.0319	2.7340	S_{47}	1.9144	6.2822	S_{77}	1.7135	1.2120
S_{18}	1.7548	1.2384	S_{48}	1.7970	2.6013	S_{78}	1.7870	1.0894
S_{19}	1.9031	1.9106	S_{49}	1.5632	3.6298	S_{79}	1.7331	0.7432
S_{20}	2.0153	2.7606	S_{50}	2.2657	1.8740	S_{80}	1.5097	1.7610
S_{21}	1.5705	1.3187	S_{51}	1.7894	2.3395	S_{81}	1.7795	0.0637
S_{22}	1.7817	1.9157	S_{52}	1.7126	3.1672	S_{82}	1.4753	1.7641
S_{23}	1.6696	0.9155	S_{53}	1.6793	4.4645	S_{83}	1.5775	2.8834
S_{24}	2.0691	1.5532	S_{54}	2.2200	1.7281	S_{84}	1.6220	3.5224
S_{25}	2.1259	3.5769	S_{55}	1.7195	0.8730	S_{85}	1.8122	1.6799
S_{26}	1.6907	1.2791	S_{56}	2.1327	0.4946	S_{86}	2.0188	2.5025
S_{27}	2.0025	2.3081	S_{57}	1.8733	2.3991	S_{87}	2.0721	1.3334
S_{28}	1.8056	0.5816	S_{58}	2.1976	4.2732	S_{88}	1.8996	2.1385
S_{29}	1.6444	2.3904	S_{59}	1.9050	2.0736	S_{89}	1.6954	6.1273
S_{30}	2.0144	1.8385	S_{60}	1.5251	6.0759	S_{90}	1.9719	3.3317

Table 6.4: Values of the ninety Chinese characters in the $\bf Legendre$ moment feature space.

it is observed that two characters, S_{44} and S_{57} , are very close to each other in the **Legendre** moment feature space. Although the results shown in Figure 6.6 are indeed better than those of Figure 6.4, yet the **Legendre** moment two-dimensional feature space cannot be used as a successful technique to recognize a specific Chinese character from the whole Chinese character set.

One option to improve the **Legendre** moment technique is to add a new feature to the feature space. We use the following equation, which is based on (2.16), as the third feature:

$$Y_3 = \sqrt{(\lambda_{20} - \lambda_{02})^2 + 4\lambda_{11}^2}. (6.5)$$

In this new three-dimensional **Legendre** moment feature space, characters S_{44} and S_{57} have Y_3 values 0.6933 and 1.6876, respectively. Therefore, all Chinese characters shown in Figure 6.3 can be separated successfully. Table 6.5 displays the values of Y_1 , Y_2 , and Y_3 for all ninety Chinese characters.

6.4 Conclusions

In this chapter, we have discussed character recognition via moment methods and compared the well known central moment feature space with the proposed new **Legendre** moment feature spaces for Chinese character recognition.

The two-dimensional central moment feature space was used by Hu[37] to recognize 26 English capital letters. The experiment performed fairly well except that the distance between two points representing letters M and W in the feature space is very close.

Compared with the set of English letters, however, the set of Chinese characters is larger and more difficult to classify. Two sets of Chinese characters, one including five similar Chinese characters and the other containing ninety randomly selected characters, are used as the input patterns to a simulation program based on the

Sample	1	2	3	Sample	1	2	3
1	1.5346	4.7334	2.6002	46	1.4783	0.0995	1.0175
2	1.9007	2.0506	1.8604	47	1.9144	6.2822	1.9013
3	1.8135	0.6016	2.0815	48	1.7970	2.6013	2.5707
4	1.7271	2.5868	3.0566	49	1.5632	3.6298	1.3954
5	1.9632	1.1077	1.5408	50	2.2657	1.8740	2.8191
6	1.8792	4.8260	2.8729	51	1.7894	2.3395	2.3448
7	1.9411	2.6879	2.7054	52	1.7126	3.1672	0.5698
8	1.9408	2.0360	0.9139	53	1.6793	4.4645	2.8409
9	1.9248	2.2374	2.0778	54	2.2200	1.7281	2.2174
10	1.7645	3.9552	3.2093	55	1.7195	0.8730	1.5833
	1.7005	1.2156	2.4936	56	2.1327	0.4964	2.7262
11	1.8596	1.1031	1.4362		1.8733	2.3991	1.6876
12	1.7067	5.0808	2.4617	57	2.1976	4.2732	2.5669
13	2.0086	3.8532	3.1573	58	1.9050	2.0736	1.9350
14	2.0362	3.8763	3.6982	59	1.5251	6.0759	2.4210
15	1.6787	3.5999	2.3467	60	1.7716	0.8286	1.7164
16	$\frac{1.0787}{2.0319}$	2.7304	3.7947	61	1.8951	1.6680	1.1195
17	1.7548	1.2384	0.7203	62	1.9745	2.6982	1.4327
18	1.9031	1.9106	1.6195	63	1.9486	1.4085	2.4803
19	$\frac{1.9031}{2.0153}$	$\frac{1.9100}{2.7606}$	$\frac{1.0195}{2.7951}$	64	1.6608	2.6182	1.8849
20			1.3711	65	1.6585		
21	1.5705	1.3187 1.9157		66		3.6280	1.2719
22	1.7817		1.3440	67	2.1636	0.2535	1.3685
23	1.6696	0.9155	0.7421	68	1.7241	1.7722	2.7329
24	2.0691	1.5532	1.2411	69	1.7064	5.7469	3.1251
25	2.1259	3.5769	3.1406	70	1.7558	0.5146	1.4417
26	1.6907	1.2791	1.5703	71	2.0121	4.0992	3.4287
27	2.0025	2.3081	1.9807	72	2.0239	2.3041	2.6732
28	1.8056	0.5816	0.7381	73	1.8900	6.0365	3.4701
29	1.6444	2.3904	1.2175	74	1.8122	1.1317	1.6745
30	2.0144	1.8385	2.2021	75	1.9149	1.5990	1.5343
31	1.5260	5.6012	3.0475	76	1.8685	0.6289	1.5335
32	1.8379	2.9933	1.8440	77	1.7135	1.2120	1.6727
33	1.8906	2.4768	2.5081	78	1.7870	1.0894	1.4135
34	1.8940	3.7551	1.6790	79	1.7331	0.7432	0.8510
35	1.7915	1.8526	2.0289	80	1.5097	1.7610	2.0634
36	2.0227	3.3827	2.2726	81	1.7795	0.0637	1.2769
37	2.1192	1.8604	1.7906	82	1.4753	1.7641	1.2034
38	1.9756	1.8860	2.2459	83	1.5775	2.8834	1.7849
39	1.7896	1.7319	1.4725	84	1.6220	3.5224	2.3445
40	1.9206	2.5398	2.7447	85	1.8122	1.6799	1.8171
41	1.8540	1.5533	1.5474	86	2.0188	2.5025	2.2536
42	1.9207	2.1761	2.8264	87	2.0721	1.3334	1.8721
43	1.8654	2.8219	2.6819	88	1.8996	2.1385	1.6345
44	1.8708	2.4153	0.6933	89	1.6954	6.1273	3.7291
45	1.9319	1.4443	0.9003	90	1.9719	3.3317	2.5255
		<u> </u>	1			1	1

Table 6.5: Values of the ninety Chinese characters in the **Legendre** moment three-dimensional feature space.

central moment technique. The results show that most of the representations of the Chinese characters in the Central moment feature space are crowded to a small area in the two-dimensional central moment feature plane. Therefore, in both cases, it is impossible to recognize those Chinese characters successfully.

We proposed some new **Legendre** moment feature spaces in this chapter. First, a two-dimensional **Legendre** moment feature space was developed and applied. The same two sets of Chinese characters are employed as the input patterns. For the set of five similar characters, the experiment demonstrated that all five representations in the **Legendre** moment feature space are well separated. The performance of recognizing ninety randomly selected Chinese characters with the **Legendre** moment feature space is much more refined than that of the central moment feature space as well. However, the distance in the two-dimensional **Legendre** moment feature space between two characters, S_{44} and S_{57} , is quite small. This can be a potential problem in a full scale Chinese character recognition application.

To improve the recognizing ability, we added one new feature to the two-dimensional **Legendre** moment feature space. The new three-dimensional feature space is able to separate all ninety randomly selected Chinese characters easily.

It is noted that the highest order **Legendre** polynomials involved in the threedimensional **Legendre** moment feature space is 3. With the development of the better VLSI moment generator chips[6], a hardware device for Chinese character recognition becomes possible.

Because of some technical reasons, we cannot obtain the whole set (more than 50,000) of Chinese characters and test all of them individually. However, with a possible fourth feature being added to the three-dimensional **Legendre** moment feature space, we are very optimistic to say that the **Legendre** moment technique can solve the Chinese character recognition problem.

With the discussions and the experimental results we had in this chapter, we are confident that feature spaces based on **Legendre** moments are the right direction to solve the practical Chinese character recognition problem.

Chapter 7

Conclusions and Recommendations

7.1 Conclusions

We have been concerned here with moment methods in image analysis. We found that a fundamental element of moment methods, accuracy in moment computing, had not attracted the attention it deserved. We have proposed and implemented several procedures to increase the accuracy in **Legendre** and **Zernike** moments computing.

Efforts made to reduce computing errors in **Legendre** moments turned out to be very successful. Primarily, we have solved the problem of computation errors related to the **Legendre** moment computing. Meanwhile, by working out up to order 55 **Legendre** polynomials, we reduced the moment computation time dramatically and made the utilization of higher order **Legendre** moments practically possible.

Based on these improvements, we performed image reconstruction via **Legendre** moments. We found that the reconstructed images were very close to the original image numerically and visually. The quality of reconstructed images is superior to all published results.

The computation errors of **Zernike** moments have been investigated as well. Because of the nature of the **Zernike** moments computing, there are two types of major errors, geometric and approximate, in the computation. Adopting the result from a

classical problem in Number Theory, The Lattice Points of a Circle, we concluded that the geometric error in Zernike moment computing cannot be completely removed. We also proposed several procedures to reduce the approximate errors in Zernike moment computing. Though improvement has been obtained, none of them works flawlessly. We concluded that the lack of efficient measures to reduce both geometric and approximate errors effectively would impede further utilization of the Zernike moments.

Image reconstruction via **Zernike** moments was performed as well. Applying the best formula proposed, we reconstructed some images from their original versions with reasonable quality. The reconstructed images via **Zernike** moments indeed have better qualities than the results published previously, but, they are simply not as good as those images reconstructed via **Legendre** moments.

We have been also concerned here with reconstructing images from a finite set of moments computed from the noisy observed data. We conclude that there exists an optimal number of moments yielding the best possible representation of the original image without noise.

Finally, we discussed the recognition of Chinese characters via moment methods. We concluded that the method of **Legendre** moment works quite well for the Chinese character interpretation. Since the highest order **Legendre** polynomials involved in the Chinese character recognition task is 3, with the developments in the area of VLSI moment generator chips, a hardware device for Chinese character recognition becomes technically possible.

7.2 Recommendations

After reviewing the results from this research, we have a few recommendations for further study. A visible extension of two-dimensional image reconstruction is the reconstruction task in three-dimensional space. Since the prime accuracy and efficiency problems of computing high order of **Legendre** moments have been solved in this thesis, there is no real technical difficulty for reconstructing a three-dimensional image via the **Legendre** moments.

Though we cannot reduce the geometric error in the **Zernike** moment computing effectively, we can, however, reduce the approximation error further by developing new formulas to calculate integrations for all pixels along the boundary of the unit circle. This could be a challenging task, but must be solved before the further full scale utilization of the **Zernike** moments.

Practically, we can build a database including all **Legendre** moment space features covering the whole Chinese character set without real technical difficulty. This will be the first important step to develop a reading machine for the Chinese language, which is one the most difficult languages in terms of artificial intelligence reading.

Bibliography

- [1] Y.S. Abu-Mostafa and D. Psaltis, Recognitive aspects of moment invariants, IEEE Trans. Pattern Anal. Machine Intell., Vol. PAMI-6, pp. 698-706, Nov. 1984.
- [2] Y.S. Abu-Mostafa and D. Psaltis, *Image normalization by complex moments*, IEEE Trans. Pattern Anal. Machine Intell., Vol. PAMI-7, pp. 46-55, Jan. 1985.
- [3] C.R. Adams and J.A. Clarkson, Properties of functions f(x,y) of bounded variation, Trans. of American Math. Soc. Vol. 36, pp. 711-730, 1934.
- [4] B. Alpert and V. Rokhlin, A Fast Algorithm for the Evaluation of Legendre Expansions, Research Report YALEU/DCS/RR-671, January 1989.
- [5] F.L. Alt, Digital pattern recognition by moments, J. Assoc. Computing Machinery, Vol. 9, pp. 240-258, 1962.
- [6] R.L. Andersson, Real-Time Gray-Scale Video Processing Using a Moment-Generating Chip, IEEE Journal of Robotics and Automation, Vol. RA-1, No. 2, June 1985.
- [7] B. Bamiech and R.J.P. De Figueiredo, A general moment-invariants/attributed-graph method for three-dimensional object recognition from a single image, IEEE Journal of Robotics and Automation, Vol. RA-2, pp. 31-41, 1986.

- [8] D.E. Barton and F.N. David, Randomisation bases for multivariate tests: I. The bivariate case, randomness of N points in a plane, Bulletin of the International Statistical Institute, 37(1), pp. 158-159, (2), 455-467, 1962.
- [9] S.O. Belkasim, M. Shridhar and M. Ahmadi, Pattern Recognition With Moment Invariants: A Comparative Study And New Results, Pattern Recognition, Vol. 24, No. 12, pp. 1117-1138, 1991.
- [10] M. Bertero, C. DeMol and E.R. Pike, Linear inverse problems with discrete data, I: general formulation and singular system analysis, Inverse Problems, Vol. 1, pp. 301-330, 1985.
- [11] M. Bertero, T.A. Poggio and V. Torre, Ill-posed problems in early vision, Proc. of the IEEE, Vol. 76, pp. 865-885, 1988.
- [12] A.B. Bhatia and E. Wolf, Proc. Camb. Phil. Soc., Vol. 50, pp. 40-48, 1954.
- [13] M. Born and E. Wolf, Principles of Optics, Pergamon Press, Oxford, 1975.
- [14] G.E.P. Box and D.R. Cox, An analysis of transformations, J.R. Stat. Soc. B26, pp. 211-246, 1964.
- [15] J.F. Boyce and W.J. Hossack, Moment invariants for pattern recognition, Pattern Recognition Lett., Vol. 1, no. 5-6, pp. 451-456, July 1983.
- [16] D. Casasent, Advanced optical processors for multiple degree-of-freedom object recognition, IEEE Trans. Aerospace and Electronic System, Vol. 24, pp. 608-618, 1988.
- [17] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. I. New York: Interscience, 1953.

- [18] P.J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press, New York, 1975.
- [19] Stanley R. Deans, The Radon Transform and Some of its Applications, Wiley, New York, 1983.
- [20] A. Devinatz, Two Parameter Moment Problems, Duke Math. J. vol. 24, 1957, pp. 481-498.
- [21] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis, Wiley, New York, 1973.
- [22] K.J. Dudani, K.J. Breeding, and R.B. McGhee, Aircraft identification by moment invariants, IEEE rans. Comput. Vol. C-26, pp. 39-46, Jan. 1977.
- [23] H. Engels, Numerical quadrature and cubature, London: Academic Press Inc., 1980.
- [24] R.L. Eubank, Spline Smoothing and Nonparametric Regression, Marcel Dekker, New York, 1988.
- [25] V.K. Govindan and A.P. Shivaprasad, Character Recognition A Review, Patt. Recogn., Vol. 23, no. 7, pp. 671-683, 1990.
- [26] F. Hausdorff, Summations methoden und Momentfolgen. I, Mathematische Zeitschrift, vol. 9(1921), pp. 75-109.
- [27] A. Goshtaby, Template matching in rotated images, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. PAMI-7, pp. 338-344, 1985.
- [28] P. Hall, Comparison of two orthogonal series methods of estimating a density and its derivatives on an interval, J. Multivariate Anal., Vol. 12, pp. 432-449, 1982.

- [29] P. Hall and J. Koch, On the Feasibility of Cross-validation in Image Analysis, SIAM J. Appl. Math., Vol. 52, pp. 292-313, 1992.
- [30] W. Härdle, P. Hall, and S. Marron, How far are automatically chosen regression smoothing parameters from their optimum, Journal of American Statistical Association, Vol. 83, pp. 86-101, 1988.
- [31] G. H. Hardy, On the Expression of a Number as the Sum of Two Squares, Quart. J. of Math. Soc. (2), 15 (1916), pp. 192-213.
- [32] G. H. Hardy and E. Landau, The Lattice Points of a Circle, Proc. Royal Soc.(A), 105 (1924), pp. 245-258.
- [33] M. Hatamian, A Real-time Two-dimensional Moment Generating Algorithm And Its Single Chip Implementation, IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 1986, pp. 99-126.
- [34] T.H. Hildebrandt and L.J. Schoenberg, On Linear Functional Operations and the Moment Problem for A Finite Interval in One or Several Dimensions, Annals of Mathematics, ser 2, vol. 34(1933), pp. 317-328.
- [35] B.K.P. Horn, Robot Vision, The MIT Press, 1986.
- [36] M.K. Hu, Pattern recognition by moment invariants, proc. IRE 49, 1961, 1428.
- [37] M.K. Hu, Visual problem recognition by moment invariant, IRE Trans. Inform. Theory, Vol. IT-8, pp. 179-187, Feb. 1962.
- [38] Loo-Keng Hua, The Lattice-points in a Circle, Quart. J. of Math. (Oxford), 13 (1942), pp. 18-29.
- [39] A. E. Ingham, On Two Classical Lattice Point Problems, Proc. Cambridge Phil. Soc. 36 (1940), pp. 131-138.

- [40] H. Iwaniec and C. J. Mozzochi, On the Divisor and Circle Problems, Journal of Number Theory, 29 (1988), pp. 60-93.
- [41] D. Jackson, The Theory of Approximation, Amer. Math. Soc., Colloq. Amer. Math. Soc., Providence, R.I., 1930.
- [42] A.K. Jain, Fundamentals of Digital Image Processing, Englewood Cliffs, New Jersey, Prentice-Hall, 1989.
- [43] X.Y. Jiang and H. Bunke, Simple and Fast Computation of Moments, Pattern Recognition, Vol. 24, No. 8, pp. 801-806, 1991.
- [44] Behrooz Kamgar-Parsi and Behzad Kamgar-Parsi, Evaluation of Quantization Error in Computer Vision, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 11, No.9, pp. 929-940, 1989.
- [45] A. Khotanzad and Y.H. Hong, Rotation Invariant Image Recognition Using Features Selected via a Systematic Method, Pattern Recognition 23, 1990, pp. 1089-1101.
- [46] A. Khotanzad and Y.H. Hong, Invariant Image Recognition by Zernike Moments, IEEE Trans. Pattern Anal. Mach. Intelligence PAMI-12, 1990, pp. 489-498.
- [47] E. Landau, Vorlesungen über Zahlentheorie (Leipzig, 1927), bd. 2, 183-308.
- [48] Ed. Henry J. Landau, Moments in Mathematics, American Mathematical Society, Providence, Rhode Island, 1987.
- [49] Bing-Cheng Li and Jun Shen, Fast Computation of Moment Invariants, Pattern Recognition, Vol. 24, No. 8, pp. 807-813, 1991.

- [50] C.L. Mallows, Some Comments on C_p , Technometrics, Vol. 15, No. 4, pp. 661-675, Nov. 1973.
- [51] K.V. Mardia and T.J. Hainsworth, Statistical aspects of moment invariants in image analysis, Journal of Applied Statistics, Vol. 16, No.3, 1989.
- [52] A. D. Myskis, Advanced Mathematics for Engineers, MIR, Moscow, 1975.
- [53] Sankar K. Pal and Dwijesh K. Dutta Majumder, Fuzzy Mathematical Approach To Pattern Recognition, John Wiley & sons, New Delhi, 1986.
- [54] Rallis C. Papademetriou, Reconstructing with Moments, 11th IAPR International Conference On Pattern Recognition, pp. 476-480, Aug.30 Sept.3, 1992.
- [55] A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York, 1984.
- [56] M. Pawlak, On the reconstruction aspects of moment descriptions, IEEE Symposium on Information Theory, San Diego, January 1990.
- [57] M. Pawlak, On the reconstruction aspects of moment descriptors, IEEE Trans. Information Theory, Vol. 38, No. 6, pp. 1698-1708, November, 1992.
- [58] M. Pawlak and X. Liao, On Image Analysis via Orthogonal Moments, Vision Interface '92, pp. 253-258, May, 1992.
- [59] M. Pawlak and X. Liao, On Image Analysis By Orthogonal Moments, 11th IAPR International Conference On Pattern Recognition, pp. 549-552, Aug.30 -Sept.3, 1992.
- [60] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling, Numerical Recipes in C, Cambridge University Press, 1988.

- [61] Kendall Preston, Jr., The Abingdon Cross Benchmark Survey, Computer, IEEE Computer Society, July, 1989.
- [62] R.J. Prokop and A.P. Reeves, A Survey of Moment-Based Techniques for Unoccluded Object Representation and Recognition, Graphical Models And Image Processing, Vol. 54, No. 5, September, pp. 438-460, 1992.
- [63] S.S. Reddi, Radial and angular moment invariants for image identification, IEEE Trans. Pattern Anal. Machine Intell., Vol. PAMI-3, pp. 240-4, Mar. 1981.
- [64] A.P. Reeves, A Parallel Mesh Moment Computer, Proceedings of the 6th International Conference on Pattern Recognition, October 1982, pp. 465-467.
- [65] A.P. Reeves, R.J. Prokop, S.E. Andrews and F.P. Kuhl, Three-Dimensional Shape Analysis Using Moments and Fourier Descriptors, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 10, No. 6, pp. 937-943, November 1988.
- [66] T.H. Reiss, The Revised Fundamental Theorem of Moment Invariants, IEEE Trans. Pattern Anal. Machine Intell., Vol. PAMI-13, No. 8, August 1991, pp. 830-834.
- [67] F.A. Sadjadi and E.L. Hall, Three-dimensional moment invariants, IEEE Trans.
 Pattern Anal. Machine Intell., Vol. PAMI-2, pp. 127-136, Mar. 1980.
- [68] G. Sansone, Orthogonal Functions, Dover Publications, Inc., New York, 1991.
- [69] F.W. Smith and M.H. Wright, Automatic ship photo interpretation by the method of moments, IEEE Trans. Comput., Vol. C-20, pp. 1089-1094, Sept. 1971.

- [70] G. Szegö, Orthogonal Polynomials, Vol 23, 4th Ed., American Mathematical Society Colloquium Publications, Providence, R.I., 1975.
- [71] G. Talenti, Recovering a function from a finite number of moments, Inverse Problems, Vol. 3, pp. 501-517, 1987.
- [72] R.W. Taylor and A.P. Reeves, Three-dimensional image transforms in moment space, in Proceedings of the IEEE Computer Society Workshop on Computer Vision, 1987, pp. 366-368.
- [73] M.R. Teague, Image analysis via the general theory of moments, J. Optical Soc. Am., Vol. 70, pp. 920-930, August 1980.
- [74] C.H. Teh and R.T. Chin, On digital approximation of moment invariants, Computer Vision, Graphics, and Image Processing, Vol. 33, pp. 318-326, 1986.
- [75] C.H. Teh and R.T. Chin, On image analysis by the methods of moments, IEEE Trans. Pattern Anal. Machine Intell., Vol. PAMI-10, pp. 496-512, July 1988.
- [76] E. C. Titchmarsh, The Lattice-points in a Circle, Proc. London Math. Soc. (2), 38 (1935), pp. 96-115.
- [77] J. R. Wilton, The Lattice Points of a Circle: an Historical Account of the Problem, Messenger of Math. 58 (1929), pp. 67-80.
- [78] Yu. V. Vorobyev, Method of Moments in Applied Mathematics, New York, Gordon and Breach Science Publishers, 1965.
- [79] F. Zernike, *Physica*, Vol. 1, p. 689, 1934.
- [80] X. Zhou, Digital Subtraction Mannography via Geometric Unwarping for Detection of Early Breast Cancer, Ph.D. dissertation, Thesis Z4946, The University of Manitoba, 1991.

Appendix A

Some of the Higher Order Legendre Polynomials:

$$P_{10}(x) = \frac{1}{2^{10}}(-252 + 13,860x^{2} - 120,120x^{4} + 360,360x^{6} -437,580x^{8} + 184,756x^{10})$$
(A.1)

$$P_{11}(x) = \frac{x}{2^{11}}(-5,544 + 120,120x^2 - 720,720x^4 + 1,750,320x^6 -1,847,560x^8 + 705,432x^{10})$$
(A.2)

$$P_{12}(x) = \frac{1}{2^{12}}(924 - 72,072x^2 + 900,900x^4 - 4,084,080x^6 + 8,314,020x^8 - 7,759,752x^{10} + 2,704,156x^{12})$$
(A.3)

$$P_{13}(x) = \frac{x}{2^{13}}(24,024 - 720,720x^{2} + 6,126,120x^{4} -22,170,720x^{6} + 38,798,760x^{8} - 32,449,872x^{10} +10,400,600x^{12})$$
(A.4)

$$P_{14}(x) = \frac{1}{2^{14}}(-3,432 + 360,360x^{2} - 6,126,120x^{4} +38,798,760x^{6} - 116,396,280x^{8} + 178,474,296x^{10} -135,207,800x^{12} + 40,116,600x^{14})$$
(A.5)

$$P_{15}(x) = \frac{x}{2^{15}}(-102,960 + 4,084,080x^{2} - 46,558,512x^{4} +232,792,560x^{6} - 594,914,320x^{8} + 811,246,800x^{10} -561,632,400x^{12} + 155,117,520x^{14})$$
(A.6)

$$P_{16}(x) = \frac{1}{2^{16}} (12,870 - 1,750,320x^{2} + 38,798,760x^{4} - 325,909,584x^{6} + 1,338,557,220x^{8} - 2,974,571,600x^{10} + 3,650,610,600x^{12} - 2,326,762,800x^{14} + 601,080,390x^{16})$$
(A.7)

$$P_{17}(x) = \frac{x}{2^{17}} (437,580 - 22,170,720x^{2} + 325,909,584x^{4} -2,141,691,552x^{6} + 7,436,429,000x^{8} -14,602,442,400x^{10} + 16,287,339,600x^{12} -9,617,286,240x^{14} + 2,333,606,220x^{16}$$
(A.8)

$$P_{18}(x) = \frac{1}{2^{18}}(-48,620 + 8,314,020x^{2} - 232,792,560x^{4} +2,498,640,144x^{6} - 13,385,572,200x^{8} +40,156,716,600x^{10} - 70,578,471,600x^{12} +72,129,646,800x^{14} - 39,671,305,740x^{16} +9,075,135,300x^{18})$$
(A.9)

$$P_{19}(x) = \frac{x}{2^{19}}(-1,847,560 + 116,396,280x^{2} - 2,141,691,552x^{4} +17,847,429,600x^{6} - 80,313,433,200x^{8} +211,735,414,800x^{10} - 336,605,018,400x^{12} +317,370,445,920x^{14} - 163,352,435,400x^{16} +35,345,263,800x^{18})$$
(A.10)

$$P_{20}(x) = \frac{1}{2^{20}}(184,756 - 38,798,760x^{2} + 1,338,557,220x^{4} - 17,847,429,600x^{6} + 120,470,149,800x^{8} - 465,817,912,560x^{10} + 1,093,966,309,800x^{12} - 1,586,852,229,600x^{14} + 1,388,495,700,900x^{16} - 671,560,012,200x^{18} + 137,846,528,820x^{20})$$
(A.11)

$$P_{21}(x) = \frac{x}{2^{21}}(7,759,752 - 594,914,320x^{2} + 13,385,572,200x^{4} - 137,680,171,200x^{6} + 776,363,187,600x^{8} - 2,625,519,143,520x^{10} + 5,553,982,803,600x^{12} - 7,405,310,404,800x^{14} + 6,044,040,109,800x^{16} - 2,756,930,576,400x^{18} + 538,257,874,440x^{20}$$
(A.12)

$$P_{22}(x) = \frac{1}{2^{22}}(-705, 432 + 178, 474, 296x^{2} - 7, 436, 429, 000x^{4} + 120, 470, 149, 800x^{6} - 998, 181, 241, 200x^{8} + 4, 813, 451, 763, 120x^{10} - 14, 440, 355, 289, 360x^{12} + 27, 769, 914, 018, 000x^{14} - 34, 249, 560, 622, 200x^{16} + 26, 190, 840, 475, 800x^{18} - 11, 303, 415, 363, 240x^{20} + 2, 104, 098, 963, 720x^{22})$$
(A.13)

$$P_{23}(x) = \frac{x}{2^{23}}(-32,449,872+2,974,571,600x^2-80,313,433,200x^4 +998,181,241,200x^6-6,876,359,661,600x^8 +28,880,710,578,720x^{10}-77,755,759,250,400x^{12} +136,998,242,488,800x^{14}-157,145,042,854,800x^{16} +113,034,153,632,400x^{18}-46,290,177,201,840x^{20} +8,233,430,727,600x^{22})$$
(A.14)

$$P_{24}(x) = \frac{1}{2^{24}}(2,704,156 - 811,246,800x^{2} + 40,156,716,600x^{4} -776,363,187,600x^{6} + 7,735,904,619,300x^{8} -45,383,973,766,560x^{10} + 168,470,811,709,200x^{12} -410,994,727,466,400x^{14} +667,866,432,132,900x^{16} -715,882,973,005,200x^{18} +486,046,860,619,320x^{20} -189,368,906,734,800x^{22} +32,247,603,683,100x^{24})$$
(A.15)

$$P_{25}(x) = \frac{x}{2^{25}}(135, 207, 800 - 14, 602, 442, 400x^{2} + 465, 817, 912, 560x^{4} -6, 876, 359, 661, 600x^{6} + 56, 729, 967, 208, 200x^{8} -288, 807, 105, 787, 200x^{10} + 958, 987, 697, 208, 200x^{12} -2, 137, 172, 582, 825, 280x^{14} + 3, 221, 473, 378, 523, 400x^{16} -3, 240, 312, 404, 128, 800x^{18} + 2, 083, 057, 974, 082, 800x^{20} -773, 942, 488, 394, 400x^{22} + 126, 410, 606, 437, 752x^{24})$$
(A.16)

$$P_{26}(x) = \frac{1}{2^{26}}(-10,400,600+3,650,610,600x^2-211,735,414,800x^4 +4,813,451,763,120x^6-56,729,967,208,200x^8 +397,109,770,457,400x^{10}-1,780,977,152,354,400x^{12} +5,342,931,457,063,200x^{14}-10,953,009,486,979,560x^{16} +15,391,483,919,611,800x^{18}-14,581,405,818,579,600x^{20} +8,900,338,616,535,600x^{22}-3,160,265,160,943,800x^{24} +495,918,532,948,104x^{26})$$
(A.17)

$$P_{27}(x) = \frac{x}{2^{27}}(-561,632,400+70,578,471,600x^2-2,625,519,143,520x^4 +45,383,973,766,560x^6-441,233,078,286,000x^8 +2,671,465,728,531,600x^{10}-10,685,862,914,126,400x^{12} +29,208,025,298,612,160x^{14}-55,409,342,110,602,480x^{16} +72,907,029,092,898,000x^{18}-65,269,149,854,594,400x^{20} +37,923,181,931,325,600x^{22}-12,893,881,856,650,704x^{24} +1,946,939,425,648,112x^{26})$$
(A.18)

$$P_{28}(x) = \frac{1}{2^{28}}(40, 116, 600 - 16, 287, 339, 600x^{2} + 1, 093, 966, 309, 800x^{4} -28, 880, 710, 578, 720x^{6} + 397, 109, 770, 457, 400x^{8} -3, 265, 124, 779, 316, 400x^{10} + 17, 364, 527, 235, 455, 400x^{12} -62, 588, 625, 639, 883, 200x^{14} + 156, 993, 135, 980, 040, 352x^{16} -277, 046, 710, 553, 012, 416x^{18} + 342, 663, 036, 736, 620, 608x^{20} -290, 744, 394, 806, 829, 568x^{22} + 161, 173, 523, 208, 133, 792x^{24} -52, 567, 364, 492, 499, 024x^{26} +7, 648, 690, 600, 760, 440x^{28})$$
(A.19)

```
P_{29}(x) = \frac{x}{2^{29}}(2,326,762,800 - 336,605,018,400x^2 + 14,440,355,289,360x^4 - 288,807,105,787,200x^6 + 3,265,124,779,316,400x^8 - 23,152,702,980,607,200x^{10} + 109,530,094,869,795,600x^{12} - 358,841,453,668,663,680x^{14} + 831,140,131,659,037,184x^{16} - 1,370,652,146,946,482,430x^{18} + 1,599,094,171,437,562,880x^{20} - 1,289,388,185,665,070,080x^{22} + 683,375,738,402,487,296x^{24} - 214,163,336,821,292,320x^{26} + 30,067,266,499,541,040x^{28}) (A.20)
```

$$P_{30}(x) = \frac{1}{2^{30}}(-155, 117, 520 + 72, 129, 646, 800x^{2} - 5, 553, 982, 803, 600x^{4} + 168, 470, 811, 709, 200x^{6} - 2, 671, 465, 728, 531, 600x^{8} + 25, 467, 973, 278, 667, 920x^{10} - 158, 210, 137, 034, 149, 216x^{12} + 672, 827, 725, 628, 744, 320x^{14} - 2, 018, 483, 176, 886, 233, 340x^{16} + 4, 340, 398, 465, 330, 527, 740x^{18} - 6, 716, 195, 520, 037, 764, 100x^{20} + 7, 413, 982, 067, 574, 155, 260x^{22} - 5, 694, 797, 820, 020, 725, 760x^{24} + 2, 891, 205, 047, 087, 446, 530x^{26} - 871, 950, 728, 486, 690, 176x^{28} + 118, 264, 581, 564, 861, 424x^{30})$$
(A.21)

$$P_{31}(x) = \frac{x}{2^{31}}(-9,617,286,240+1,586,852,229,600x^2-77,755,759,250,400x^4+1,780,977,152,354,400x^6-23,152,702,980,607,200x^8+189,852,164,440,979,040x^{10}-1,046,620,906,533,602,430x^{12}+4,036,966,353,772,466,180x^{14}-11,161,024,625,135,642,600x^{16}+22,387,318,400,125,882,400x^{18}-32,621,521,097,326,284,800x^{20}+34,168,786,920,124,362,800x^{22}-25,057,110,408,091,193,300x^{24}+12,207,310,198,813,663,200x^{26}-3,547,937,446,945,843,200x^{28}+465,428,353,255,261,056x^{30})$$
(A.22)

```
P_{32}(x) = \frac{1}{2^{32}}(601,080,390-317,370,445,920x^2)
             +27,769,914,018,000x^4 - 958,987,697,421,600x^6
             +17.364.527.235.455.400x^{8} - 189.852.164.440.979.040x^{10}
             +1,360,607,178,493,683,200x^{12} \\ -6,728,277,256,287,443,970x^{14}
             +23.717.177.328.413.241.300x^{16} - 60.765.578.514.627.387.400x^{18}
             +114,175,323,840,641,991,000x^{20}-157,176,419,832,572,084,000x^{22}
             +156,606,940,050,569,986,000x^{24}-109,865,791,789,322,928,000x^{26}
             +51.445.092.980.714.725.400x^{28} - 14.428.278.950.913.095.700x^{30}
             +1.832.624.140.942.590.460x^{32}
                                                                                (A.23)
P_{33}(x) = \frac{x}{2^{33}}(39,671,305,740-7,405,310,404,800x^2)
             +410,994,727,466,400x^4-10,685,862,914,126,400x^6
             +158,210,137,034,149,216x^{8}-1,484,298,740,174,926,850x^{10}
             +9,419,588,158,802,421,760x^{12}-42,163,870,806,067,986,400x^{14}
             +136,722,551,657,911,632,000x^{16} -326,215,210,973,262,774,000x^{18}
             +576,313,539,386,097,664,000x^{20}-751,713,312,242,736,038,000x^{22}
             +714, 127, 646, 630, 599, 197, 000x^{24} \\ -480, 154, 201, 153, 337, 229, 000x^{26}
             +216,424,184,263,696,417,000x^{28} - 58,643,972,510,162,903,000x^{30}
             +7,219,428,434,016,265,220x^{32})
                                                                                (A.24)
P_{34}(x) = \frac{1}{2^{34}}(-2,333,606,220+1,388,495,700,900x^2)
             -136.998.242.488.800x^4 + 5.342.931.457.063.200x^6
             -109, 530, 094, 869, 795, 600x^8 + 1, 360, 607, 178, 493, 683, 200x^{10}
             -11, 132, 240, 551, 311, 951, 900x^{12} + 63, 245, 806, 209, 101, 971, 500x^{14}
             -258, 253, 708, 687, 166, 407, 000x^{16} + 774, 761, 126, 061, 499, 220, 000x^{18}
             -1.728.940.618.158.292.860.000x^{20}
             +2,881,567,696,930,488,710,000x^{22}
             -3.570.638.233.152.996.250.000x^{24}
             +3.241.040.857.785.026.740.000x^{26}
             -2,092,100,447,882,397,880,000x^{28}
             +908,981,573,907,525,009,000x^{30}
```

$$\begin{split} +28,453,041,475,240,575,000x^{34}) & (A.25) \\ P_{35}(x) &= \frac{x}{2^{25}}(-163,352,435,400+34,249,560,622,200x^2\\ &-2,137,172,582,825,280x^4\\ &+62,588,625,639,883,200x^6\\ &-1,046,620,906,533,602,430x^8\\ &+11,132,240,551,311,953,900x^{10}\\ &-80,494,662,447,947,956,200x^{12}\\ &+413,205,933,899,466,277,000x^{14}\\ &-1,549,522,252,122,998,440,000x^{16}\\ &+4,322,351,545,395,732,020,000x^{18}\\ &-9,056,355,618,924,391,300,000x^{20}\\ &+14,282,552,932,611,987,100,000x^{22}\\ &-16,853,412,460,482,141,400,000x^{24}\\ &+14,644,703,135,176,788,500,000x^{28}\\ &-9,089,815,739,075,246,690,000x^{28}\\ &+3,811,858,213,160,589,200,000x^{30}\\ &-967,403,410,158,179,713,000x^{32}\\ &+112,186,277,816,662,835,000x^{34}) \end{split} \tag{A.26}$$

$$P_{30}(x) &= \frac{1}{2^{26}}(9,075,135,300-6,044,040,109,800x^2\\ &+667,866,432,132,900x^4\\ &-29,208,025,298,612,160x^6\\ &+672,827,725,628,744,320x^8\\ &-9,419,588,158,802,421,760x^{10}\\ &+87,202,550,985,276,964,900x^{12}\\ &-563,462,637,135,635,743,000x^{14}\\ &+2,634,187,828,609,997,400,000x^{16}\\ &-99,124,964,373,613,211,810,000x^{18}\\ &+23,772,933,499,676,526,600,000x^{20}\\ &-46,928,388,207,153,669,700,000x^{24}\\ &+70,222,551,918,675,599,800,000x^{24}\\ &+70,222,551,918,675,599,800,000x^{24$$

 $-238,241,138,322,536,792,000x^{32}$

```
-79,081,396,929,954,656,000,000x^{26}
             +65,901,164,108,295,541,100,000x^{28}
             -39,389,201,535,992,739,100,000x^{30}
             +15,962,156,267,609,966,800,000x^{32}
             -3,926,519,723,583,200,030,000x^{34}
             +442,512,540,276,836,729,000x^{36})
                                                                              (A.27)
P_{37}(x) = \frac{x}{2^{37}}(671, 560, 012, 200 - 157, 145, 042, 854, 800x^2)
             +10,953,009,486,979,560x^4
             -358,841,453,668,663,680x^6
             +6,728,277,256,287,442,940x^8
             -80,494,662,447,947,972,600x^{10}
             +657,373,076,658,241,667,000x^{12}
             -3,831,545,932,522,323,440,000x^{14}
             +16,424,935,872,503,784,400,000x^{16}
             -52,828,741,110,392,277,700,000x^{18}
             +129,053,067,569,672,562,000,000x^{20}
             -240,763,035,149,744,904,000,000x^{22}
             +342,686,053,363,136,921,000,000x^{24}
             -369,046,519,006,455,017,000,000x^{26}
             +295,419,011,519,945,493,000,000x^{28}
             -170,263,000,187,839,590,000,000x^{30}
             +66,750,835,300,914,406,900,000x^{32}
             -15,930,451,449,966,124,600,000x^{34}
             +1,746,130,564,335,625,830,000x^{36})
                                                                              (A.28)
P_{38}(x) = \frac{1}{2^{38}}(-35,345,263,800+26,190,840,475,800x^2)
             -3.221.473.378.523.400x^4
             +156,993,135,980,040,352x^6
             -4,036,966,353,772,466,180x^8
             +63,245,806,209,101,971,500x^{10}
             -657, 373, 076, 658, 241, 798, 000x^{12}
             +4,789,432,415,652,904,170,000x^{14}
```

```
-25,383,991,802,960,394,800,000x^{16}
             +100.374.608.109.745.339.000.000x^{18}
             -301, 123, 824, 329, 235, 951, 000, 000x^{20}
             +692, 193, 726, 055, 516, 515, 000, 000x^{22}
             -1,223,878,762,011,203,180,000,000x^{24}
             +1,660,709,335,529,048,210,000,000x^{26}
             -1,713,430,266,815,683,870,000,000x^{28}
             +1,319,538,251,455,756,680,000,000x^{30}
             -734,259,188,310,058,342,000,000x^{32}
             +278,782,900,374,407,213,000,000x^{34}
             -64,606,830,880,418,168,800,000x^{36}
             +6,892,620,648,693,259,830,000x^{38}
                                                                               (A.29)
P_{39}(x) = \frac{x}{2^{39}}(-2,756,930,576,400+715,882,973,005,200x^2)
             -55,409,342,110,602,480x^4
             +2,018,483,176,886,233,340x^6
             -42, 163, 870, 806, 067, 978, 200x^8
             +563,462,637,135,635,808,000x^{10}
             -5, 157, 850, 293, 780, 051, 130, 000x^{12}
             +33,845,322,403,947,187,500,000x^{14}
             -164,249,358,725,037,852,000,000x^{16}
             +602,247,648,658,471,969,000,000x^{18}
             -1,692,029,108,135,706,680,000,000x^{20}
             +3,671,636,286,033,609,280,000,000x^{22}
             -6, 168, 348, 960, 536, 463, 640, 000, 000x^{24}
             +7,996,007,911,806,528,290,000,000x^{26}
             -7,917,229,508,734,538,990,000,000x^{28}
             +5,874,073,506,480,465,660,000,000x^{30}
             -3, 159, 539, 537, 576, 614, 990, 000, 000x^{32}
             +1,162,922,955,847,527,090,000,000x^{34}
             -261,919,584,650,343,915,000,000x^{36}
             +27,217,014,869,199,027,200,000x^{38})
                                                                               (A.30)
```

```
P_{40}(x) = \frac{1}{240}(137,846,528,820 - 113,034,153,632,400x^2)
             +15,391,483,919,611,800x^4
             -831, 140, 131, 659, 037, 184x^6
             +23,717,177,328,413,241,300x^8
             -413,205,933,899,466,211,000x^{10}
             +4,789,432,415,652,904,170,000x^{12}
             -39,052,295,081,477,527,300,000x^{14}
             +232,686,591,527,136,918,000,000x^{16}
             -1,040,245,938,591,906,420,000,000x^{18}
             +3,553,261,127,084,984,750,000,000x^{20}
             -9,383,070,508,752,555,690,000,000x^{22}
             +19,276,090,501,676,449,700,000,000x^{24}
             -30,841,744,802,682,320,300,000,000x^{26}
             +38,266,609,292,216,954,400,000,000x^{28}
             -36,419,255,740,178,880,900,000,000x^{30}
             +26,066,201,185,007,068,400,000,000x^{32}
             -13,567,434,484,887,818,900,000,000x^{34}
             +4,845,512,316,031,362,800,000,000x^{36}
             -1,061,463,579,898,762,170,000,000x^{38}
             +107, 507, 208, 733, 336, 168, 000, 000x^{40})
                                                                    (A.31)
P_{41}(x) = \frac{x}{241}(11,303,415,363,240-3,240,312,404,128,800x^2)
             +277,046,710,553,012,384x^4
             -11, 161, 024, 625, 135, 642, 600x^6
             +258, 253, 708, 687, 166, 374, 000x^8
             -3,831,545,932,522,323,440,000x^{10}
             +39,052,295,081,477,527,300,000x^{12}
             -286,383,497,264,168,528,000,000x^{14}
             +1,560,368,907,887,859,500,000,000x^{16}
             -6,460,474,776,518,154,680,000,000x^{18}
             +20,642,755,119,255,622,900,000,000x^{20}
             -51,402,908,004,470,526,800,000,000x^{22}
```

```
+100,235,670,608,717,544,000,000,000x^{24}
             -153,066,437,168,867,818,000,000,000x^{26}
             +182,096,278,700,894,460,000,000,000x^{28}
             -166,823,687,584,045,204,000,000,000x^{30}
             +115,323,193,121,546,422,000,000,000x^{32}
             -58, 146, 147, 792, 376, 366, 500, 000, 000x^{34}
             +20, 167, 808, 018, 076, 481, 700, 000, 000x^{36}
             -4,300,288,349,333,446,860,000,000x^{38}
             +424,784,580,848,791,688,000,000x^{40}
                                                                    (A.32)
P_{42}(x) = \frac{1}{2^{42}}(-538, 257, 874, 440 + 486, 046, 860, 619, 320x^2)
             -72,907,029,092,898,000x^4
             +4,340,398,465,330,527,230x^6
             -136,722,551,657,911,632,000x^8
             +2,634,187,828,609,096,880,000x^{10}
             -33,845,322,403,947,191,700,000x^{12}
             +306,839,461,354,466,311,000,000x^{14}
             -2,040,482,418,007,200,760,000,000x^{16}
             +10,229,085,062,820,412,100,000,000x^{18}
             -39,408,896,136,760,742,900,000,000x^{20}
             +118,226,688,410,282,212,000,000,000x^{22}
             -278,432,418,357,548,692,000,000,000x^{24}
             +516,599,225,444,928,880,000,000,000x^{26}
             -754,398,868,903,705,753,000,000,000x^{28}
             +861,922,385,850,900,465,000,000,000x^{30}
             -761, 133, 074, 602, 206, 235, 000, 000, 000x^{32}
             +508,778,793,183,293,040,000,000,000x^{34}
             -248,736,298,889,610,027,000,000,000x^{36}
             +83.855.622.812.002.211.500.000.000x^{38}
             -17,416,167,814,800,461,300,000,000x^{40}
             +1,678,910,486,211,891,090,000,000x^{42}
                                                                    (A.33)
```

```
P_{43}(x) = \frac{x}{243}(-46,290,177,201,840+14,581,405,818,579,600x^2)
             -1,370,652,146,946,482,180x^4+60,765,578,514,627,387,400x^6
             -1.549.522.252.122.998.180.000x^8
             +25,383,991,802,960,390,700,000x^{10}
             -286,383,497,264,168,528,000,000x^{12}
             +2.331.979.906.293.943.720.000.000x^{14}
             -14, 163, 348, 548, 520, 570, 100, 000, 000x^{16}
             +65,681,493,561,267,904,800,000,000x^{18}
             -236,453,376,820,564,423,000,000,000x^{20}
             +668, 237, 804, 058, 116, 779, 000, 000, 000x^{22}
             -1,492,397,762,396,461,040,000,000,000x^{24}
             +2,640,396,041,162,969,720,000,000,000x^{26}
             -3,693,953,082,218,145,160,000,000,000x^{28}
             +4.059.376.397.878.433.990.000.000.000x^{30}
             -3.459.695.793.646.391.930.000.000.000x^{32}
             +2,238,626,690,006,489,350,000,000,000x^{34}
             -1,062,171,222,285,361,750,000,000,000x^{36}
             +348,323,356,296,009,200,000,000,000x^{38}
             -70,514,240,420,899,425,100,000,000x^{40}
             +6,637,553,085,023,755,350,000,000x^{42}
                                                                          (A.34)
 P_{44}(x) = \frac{1}{244}(2,104,098,963,720-2,083,057,974,082,800x^2)
              +342,663,036,736,620,608x^4 - 22,387,318,400,125,878,300x^6
              +774,761,126,061,499,220,000x^{8}
              -16,424,935,872,503,780,200,000x^{10}
              +232,686,591,527,136,918,000,000x^{12}
              -2,331,979,906,293,943,990,000,000x^{14} \\
              +17, 198, 351, 808, 917, 834, 700, 000, 000x^{16}
              -95,996,029,051,083,864,900,000,000x^{18}
              +413,793,409,435,987,826,000,000,000x^{20}
              -1,397,224,499,394,244,390,000,000,000x^{22}
              +3,730,994,405,991,152,190,000,000,000x^{24}
```

```
-7,921,188,123,488,908,620,000,000,000x^{26}
             +13.390.579.923.040.775.000.000.000.000.000x^{28}
             -17,977,238,333,461,640,300,000,000,000x^{30}
             +19,028,326,865,055,158,600,000,000,000x^{32}
             -15.670.386.830.045.422.700.000.000.000x^{34}
             +9.825.083.806.139.592.110.000.000.000x^{36}
             -4,528,203,631,848,121,180,000,000,000x^{38}
             +1,445,541,928,628,438,290,000,000,000x^{40}
             -285,414,782,656,021,501,000,000,000x^{42}
             +26,248,505,381,684,852,100,000,000x^{44}
                                                                          (A.35)
P_{45}(x) = \frac{x}{245}(189, 368, 906, 734, 800 - 65, 269, 149, 854, 594, 400x^2)
             +6.716.195.520.037.763.070x^4
             -326, 215, 210, 973, 262, 840, 000x^6
             +9,124,964,373,613,211,810,000x^8
             -164,249,358,725,037,819,000,000x^{10}
             +2,040,482,418,007,200,760,000,000x^{12}
             -18,344,908,596,179,025,800,000,000x^{14}
             +123,423,465,922,822,110,000,000,000x^{16}
             -636,605,245,286,135,075,000,000,000x^{18}
             +2.561.578.248.889.448.270.000.000.000x^{20}
             -8, 140, 351, 431, 253, 423, 560, 000, 000, 000x^{22}
             +20,595,089,121,071,162,800,000,000,000x^{24}
             -41.659.581.982.793.521.200.000.000.000x^{26}
             +67.414.643.750.481.143.500.000.000.000.000x^{28}
             -86,986,637,097,395,033,500,000,000,000x^{30}
             +88,798,858,703,590,743,200,000,000,000x^{32}
             -70,740,603,404,205,058,800,000,000,000,000x^{34}
             +43.017.934.502.557.133.300.000.000.000.000x^{36}
             -19,273,892,381,712,515,700,000,000,000,000x^{38}
             +5,993,710,435,776,452,040,000,000,000x^{40}
             -1.154,934,236,794,133,580,000,000,000x^{42}
             +103,827,421,287,553,420,000,000,000x^{44}
                                                                          (A.36)
```

```
P_{46}(x) = \frac{1}{246}(-8, 233, 430, 727, 600 + 8, 900, 338, 616, 535, 600x^2)
             -1,599,094,171,437,562,880x^4
             +114,175,323,840,641,974,000x^6
             -4,322,351,545,395,732,550,000x^8
             +100,374,608,109,745,323,000,000x^{10}
             -1,560,368,907,887,859,230,000,000x^{12}
             +17,198,351,808,917,834,700,000,000x^{14}
             -139,879,928,045,865,060,000,000,000x^{16}
             +863,964,261,459,754,784,000,000,000x^{18}
             -4, 137, 934, 094, 359, 877, 850, 000, 000, 000x^{20}
             +15,602,340,243,235,729,000,000,000,000x^{22}
             -46,807,020,729,707,182,700,000,000,000x^{24}
             +112,480,871,353,542,505,000,000,000,000,000x^{26}
             -217, 224, 963, 195, 994, 770, 000, 000, 000, 000x^{28}
             +337,073,218,752,405,700,000,000,000,000x^{30}
             -418,623,191,031,213,534,000,000,000,000x^{32}
             +412,653,519,857,862,853,000,000,000,000,000x^{34}
             -318, 332, 715, 318, 922, 786, 000, 000, 000, 000x^{36}
             +187,920,450,721,696,958,000,000,000,000x^{38}
             -81,914,042,622,278,177,900,000,000,000x^{40}
             +24,831,086,091,073,870,200,000,000,000x^{42}
             -4,672,233,957,939,903,860,000,000,000x^{44}
             +410,795,449,442,059,171,000,000,000x^{46}
                                                                            (A.37)
P_{47}(x) = \frac{x}{247}(-773,942,488,394,400+290,744,394,806,829,568x^2)
             -32,621,521,097,326,276,600x^4
             +1,728,940,618,158,292,860,000x^6
             -52,828,741,110,392,277,700,000x^8
             +1,040,245,938,591,906,150,000,000x^{10}
             -14, 163, 348, 548, 520, 570, 100, 000, 000x^{12}
             +139,879,928,045,865,060,000,000,000x^{14}
             -1,036,757,113,751,705,800,000,000,000x^{16}
```

```
+5,911,334,420,514,112,160,000,000,000,000x^{18}
             -26,403,960,411,629,698,300,000,000,000x^{20}
             +93,614,041,459,414,383,000,000,000,000x^{22}
             -265,863,877,744,736,799,000,000,000,000x^{24}
             +608,229,896,948,785,413,000,000,000,000x^{26}
             -1.123.577.395.841.352.330.000.000.000.000.000x^{28}
             +1,674,492,764,124,854,140,000,000,000,000,000x^{30}
             -2,004,317,096,452,477,000,000,000,000,000,000x^{32}
             +1,909,996,291,913,536,580,000,000,000,000,000x^{34}
             -1,428,195,425,484,896,970,000,000,000,000x^{36}
             +819, 140, 426, 222, 781, 674, 000, 000, 000, 000x^{38}
             -347,635,205,275,034,254,000,000,000,000x^{40}
             +102,789,147,074,677,887,000,000,000,000x^{42}
             -18,896,590,674,334,723,200,000,000,000x^{44}
             +1,625,701,140,345,170,280,000,000,000x^{46}
                                                                            (A.38)
P_{48}(x) = \frac{1}{2^{48}}(32, 247, 603, 683, 100)
             -37,923,181,931,325,600x^2
             +7,413,982,067,574,155,260x^4
             -576,313,539,386,097,533,000x^6
             +23,772,933,499,676,526,600,000x^8
             -602, 247, 648, 658, 471, 969, 000, 000x^{10}
             +10,229,085,062,820,410,000,000,000x^{12}
             -123,423,465,922,822,110,000,000,000x^{14}
             +1,101,554,433,361,187,300,000,000,000x^{16}
             -7,487,690,265,984,541,190,000,000,000x^{18}
             +39,605,940,617,444,549,700,000,000,000x^{20}
             -165,624,842,582,040,827,000,000,000,000x^{22}
             +553.883.078.634.868.414.000.000.000.000.000x^{24}
             -1,492,927,928,874,291,290,000,000,000,000x^{26}
             +3,258,374,447,939,921,550,000,000,000,000,000x^{28}
             -5.767.697.298.652.275.170.000.000.000.000.000x^{30}
             +8.267.808.022.866.467.540.000.000.000.000.000x^{32}
```

```
-9,549,981,459,567,684,020,000,000,000,000x^{34}
             +8.807,205,123,823,530,400,000,000,000,000,000x^{36}
             -6,389,295,324,537,697,560,000,000,000,000x^{38}
             +3,563,260,854,069,100,240,000,000,000,000x^{40}
             -1.473.311.108.070.383.340.000.000.000.000.000x^{42}
             +425, 173, 290, 172, 531, 288, 000, 000, 000, 000x^{44}
             -76,407,953,596,223,016,400,000,000,000x^{46}
             +6,435,067,013,866,299,580,000,000,000x^{48}
                                                                            (A.39)
P_{49}(x) = \frac{x}{249}(3, 160, 265, 160, 943, 800)
             -1,289,388,185,665,070,340x^2+157,176,419,832,572,051,000x^4
             -9.056.355.618.924.390.250.000x^6
             +301, 123, 824, 329, 235, 985, 000, 000x^8
             -6,460,474,776,518,153,610,000,000x^{10}
             +95,996,029,051,083,847,700,000,000x^{12}
             -1,036,757,113,751,705,660,000,000,000x^{14}
             +8,423,651,549,232,609,380,000,000,000x^{16}
             -52,807,920,823,259,396,700,000,000,000x^{18}
             +260, 267, 609, 771, 778, 458, 000, 000, 000, 000x^{20}
             -1,022,553,375,941,295,480,000,000,000,000x^{22}
             +3,234,677,179,227,631,500,000,000,000,000,000x^{24}
             -8,294,044,049,301,618,400,000,000,000,000,000x^{26}
             +17.303.091.895.956.824.400.000.000.000.000.000x^{28}
             -29.396.650.747.969.658.900.000.000.000.000.000x^{30}
             +40.587.421.203.162.661.300.000.000.000.000.000x^{32}
             -45,294,197,779,663,868,700,000,000,000,000,000x^{34}
             +40,465,537,055,405,410,000,000,000,000,000x^{36}
             -28.506.086.832.552.801.900.000.000.000.000.000x^{38}
             +15,469,766,634,739,020,900,000,000,000,000,000x^{40}
             -6,235,874,922,530,459,080,000,000,000,000x^{42}
             +1,757,382,932,713,129,360,000,000,000,000,000x^{44}
             -308,883,216,665,582,415,000,000,000,000x^{46}
             +25,477,612,258,980,858,000,000,000,000x^{48}
                                                                            (A.40)
```

```
P_{50}(x) = \frac{1}{2^{50}}(-126, 410, 606, 437, 752)
             +161, 173, 523, 208, 133, 792x^{2}
             -34, 168, 786, 920, 124, 366, 800x^4
             +2,881,567,696,930,487,660,000x^6
             -129,053,067,569,672,562,000,000x^8
             +3,553,261,127,084,984,750,000,000x^{10}
             -65,681,493,561,267,896,200,000,000x^{12}
             +863.964.261.459.754.646.000.000.000x^{14}
             -8,423,651,549,232,608,280,000,000,000x^{16} \\
             +62,709,405,977,620,535,200,000,000,000x^{18}
             -364,374,653,680,489,827,000,000,000,000x^{20}
             +1,679,909,117,617,842,600,000,000,000,000x^{22}
             -6,220,533,036,976,214,640,000,000,000,000,000x^{24}
             +18,661,599,110,928,642,800,000,000,000,000,000x^{26}
             -45,617,242,271,158,900,600,000,000,000,000x^{28}
             +91.129.617.318.705.942.900.000.000.000.000.000x^{30}
             -148,820,544,411,596,407,000,000,000,000,000,000x^{32}
             +198, 162, 115, 286, 029, 465, 000, 000, 000, 000, 000x^{34}
             -213,889,267,292,857,156,000,000,000,000,000,000x^{36}
             +185, 289, 564, 411, 593, 194, 000, 000, 000, 000, 000, 000x^{38}
             -126,852,086,404,859,974,000,000,000,000,000x^{40}
             +67,035,655,417,202,428,300,000,000,000,000,000x^{42}
             -26.360.743.990.696.939.000.000.000.000.000.000x^{44}
             +7.258.755.591.641.186.970.000.000.000.000x^{46}
             -1,248,403,000,690,062,290,000,000,000,000x^{48}
             +100,891,344,545,564,202,000,000,000,000x^{50}
                                                                      (A.41)
```

```
P_{51}(x) = \frac{x}{2^{51}}(-12,893,881,856,650,704)
             +5,694,797,820,020,726,780x^2
             -751,713,312,242,735,907,000x^4
             +46,928,388,207,153,653,000,000x^6
             -1,692,029,108,135,706,950,000,000x^8
             +39,408,896,136,760,734,300,000,000x^{10}
             -636,605,245,286,134,938,000,000,000x^{12}
             +7,487,690,265,984,540,090,000,000,000x^{14}
             -66,398,194,564,539,388,600,000,000,000x^{16}
             +455,468,317,100,612,319,000,000,000,000,000x^{18}
             -2,463,866,705,839,502,610,000,000,000,000,000x^{20}
             +10,663,770,920,530,654,000,000,000,000,000x^{22}
             -37,323,198,221,857,285,600,000,000,000,000,000x^{24}
             +106,440,231,966,037,441,000,000,000,000,000,000x^{26}
             -248,535,319,960,107,114,000,000,000,000,000,000x^{28}
             +476,225,742,117,108,501,000,000,000,000,000,000x^{30}
             -748,612,435,525,000,209,000,000,000,000,000x^{32}
             +962,501,702,817,857,329,000,000,000,000,000,000x^{34}
             -1.005.857.635.377.220.210.000.000.000.000.000.000x^{36}
             +845,680,576,032,399,754,000,000,000,000,000x^{38}
             -563,099,505,504,500,383,000,000,000,000,000x^{40}
             +289,968,183,897,666,324,000,000,000,000,000,000x^{42}
             -111.300.919.071.831.519.000.000.000.000.000.000x^{44}
             +29.961.672.016.561.493.800.000.000.000.000x^{46}
             -5,044,567,227,278,211,090,000,000,000,000x^{48}
             +399,608,854,866,744,482,000,000,000,000x^{50}
                                                                     (A.42)
```

```
P_{52}(x) = \frac{1}{2^{52}}(495, 918, 532, 948, 104)
             -683,375,738,402,487,296x^2
             +156,606,940,050,570,019,000x^4
             -14,282,552,932,611,982,900,000x^6
             +692,193,726,055,516,381,000,000x^8
             -20,642,755,119,255,622,900,000,000x^{10}
             +413,793,409,435,987,758,000,000,000x^{12}
             -5.911.334.420.514.109.960.000.000.000x^{14}
             +62,709,405,977,620,526,400,000,000,000x^{16}
             -509,052,824,994,801,971,000,000,000,000x^{18}
             +3.233.825.051.414.347.620.000.000.000.000.000x^{20}
             -16,351,115,411,480,336,300,000,000,000,000,000x^{22}
             +66,648,568,253,316,589,200,000,000,000,000,000x^{24}
             -221,068,174,083,308,531,000,000,000,000,000x^{26}
             +600.627.023.236.925.564.000.000.000.000.000.000x^{28}
             -1.342.090.727.784.578.320.000.000.000.000.000.000x^{30}
             +2,470,421,037,232,500,530,000,000,000,000,000,000x^{32}
             -3,743,062,177,625,001,190,000,000,000,000,000,000x^{34}
             +4.652.091.563.619.643.730.000.000.000.000.000.000x^{36}
             -4.711.648.923.609.084.100.000.000.000.000.000.000x^{38}
             +3,847,846,620,947,418,790,000,000,000,000,000,000x^{40}
             -2,493,726,381,519,930,360,000,000,000,000,000,000x^{42}
             +1,252,135,339,558,104,680,000,000,000,000,000,000x^{44}
             -469,399,528,259,463,348,000,000,000,000,000,000x^{46}
             +123,591,897,068,316,174,000,000,000,000,000,000x^{48}
             -20,380,051,598,203,972,600,000,000,000,000x^{50}
             +1.583.065.848.125.949.460.000.000.000.000x^{52}
                                                                      (A.43)
```

```
P_{53}(x) = \frac{x}{2^{53}}(52, 567, 364, 492, 499, 024)
             -25,057,110,408,091,197,400x^2
             +3.570,638,233,152,995,720,000x^4
             -240,763,035,149,744,837,000,000x^6
             +9,383,070,508,752,556,760,000,000x^8
             -236,453,376,820,564,423,000,000,000x^{10}
             +4,137,934,094,359,877,300,000,000,000x^{12}
             -52,807,920,823,259,387,900,000,000,000x^{14}
             +509,052,824,994,801,971,000,000,000,000x^{16}
             -3,804,500,060,487,467,230,000,000,000,000x^{18}
             +22,482,783,690,785,461,300,000,000,000,000,000x^{20}
             -106,637,709,205,306,535,000,000,000,000,000,000x^{22}
             +410,555,180,440,430,160,000,000,000,000,000,000x^{24}
             -1,293,658,203,894,916,590,000,000,000,000,000,000x^{26}
             +3.355,226,819,461,446,230,000,000,000,000,000,000x^{28}
             -7.186,679,381,040,000,390,000,000,000,000,000x^{30}
             +12,726,411,403,925,003,700,000,000,000,000,000,000x^{32}
             -18,608,366,254,478,577,200,000,000,000,000,000x^{34}
             +22.380.332.387.143.151.200.000.000.000.000.000.000x^{36}
             -21.987.694.976.842.392.400.000.000.000.000.000.000x^{38}
             +17,456,084,670,639,509,600,000,000,000,000,000x^{40}
             -11,018,790,988,111,321,200,000,000,000,000,000,000x^{42}
             +5.398.094.574.983.829.580.000.000.000.000.000.000x^{44}
             -1,977,470,353,093,058,490,000,000,000,000,000x^{46}
             +509,501,289,955,099,342,000,000,000,000,000x^{48}
             -82,319,424,102,549,375,400,000,000,000,000,000x^{50}
             +6.272.525.058.612.252.700.000.000.000.000x^{52}
                                                                      (A.44)
```

```
P_{54}(x) = \frac{1}{2^{54}}(-1,946,939,425,648,112)
             +2,891,205,047,087,446,530x^{2}
             -714, 127, 646, 630, 599, 328, 000x^4
             +70,222,551,918,675,583,000,000x^6
             -3,671,636,286,033,608,750,000,000x^8
             +118,226,688,410,282,212,000,000,000x^{10}
             -2,561,578,248,889,447,720,000,000,000x^{12}
             +39,605,940,617,444,536,500,000,000,000x^{14}
             -455,468,317,100,612,249,000,000,000,000x^{16}
             +4,015,861,174,958,993,530,000,000,000,000x^{18}
             -27,772,850,441,558,511,500,000,000,000,000,000x^{20}
             +153,291,706,982,628,138,000,000,000,000,000,000x^{22}
             -684,258,634,067,383,600,000,000,000,000,000,000x^{24}
             +2,494,912,250,368,767,860,000,000,000,000,000,000x^{26}
             -7.484.736.751.106.303.000.000.000.000.000.000.000x^{28}
             +18.565.588.401.020.000.900.000.000.000.000.000x^{30}
             -38, 179, 234, 211, 775, 004, 200, 000, 000, 000, 000, 000x^{32}
             +65, 129, 281, 890, 675, 021, 500, 000, 000, 000, 000, 000x^{34}
             -92.008,033.147.144.066.000.000.000.000.000.000.000x^{36}
             +107.190.013.012.106.670.000.000.000.000.000.000.000x^{38}
             -102, 242, 781, 642, 317, 127, 000, 000, 000, 000, 000, 000x^{40}
             +78,968,002,081,464,447,400,000,000,000,000,000,000x^{42}
             -48,582,851,174,854,462,800,000,000,000,000,000,000x^{44}
             +23,235,276,648,843,441,100,000,000,000,000,000,000x^{46}
             -8,321,854,402,599,954,200,000,000,000,000,000,000x^{48}
             +2,099,145,314,615,009,150,000,000,000,000,000,000x^{50}
             -332,443,828,106,449,364,000,000,000,000,000x^{52}
             +24,857,784,491,537,444,000,000,000,000,000x^{54}
                                                                        (A.45)
```

```
P_{55}(x) = \frac{x}{2^{55}}(-214, 163, 336, 821, 292, 320)
             +109,865,791,789,322,945,000x^{2}
             -16,853,412,460,482,141,400,000x^4
            +1,223,878,762,011,202,920,000,000x^6
             -51.402.908.004.470.526.800.000.000x^8
            +1,397,224,499,394,244,390,000,000,000x^{10}
            -26,403,960,411,629,693,900,000,000,000x^{12}
             +364,374,653,680,489,757,000,000,000,000x^{14}
             -3,804,500,060,487,467,230,000,000,000,000x^{16}
            +30,858,722,712,842,791,500,000,000,000,000,000x^{18}
             -198,377,503,153,989,361,000,000,000,000,000x^{20}
            +1,026,387,951,101,075,470,000,000,000,000,000x^{22}
            -4,324,514,567,305,864,410,000,000,000,000,000,000x^{24}
            +14,969,473,502,212,608,300,000,000,000,000,000x^{26}
             -42.843.665.540.815.389.900.000.000.000.000.000.000x^{28}
            +101,811,291,231,400,011,000,000,000,000,000,000x^{30}
             -201,308,689,480,268,205,000,000,000,000,000,000x^{32}
             +331,228,919,329,718,674,000,000,000,000,000,000,000x^{34}
             -452.580.054.940.005.983.000.000.000.000.000.000.000x^{36}
            +511,213,908,211,585,635,000,000,000,000,000,000,000x^{38}
             -473,808,012,488,786,740,000,000,000,000,000,000
            +356,274,241,948,932,672,000,000,000,000,000,000x^{42}
             -213.764.545.169.359.655.000.000.000.000.000.000.000x^{44}
             +99.862.252.831.199.468.800.000.000.000.000.000.000x^{46}
             -34,985,755,243,583,482,400,000,000,000,000,000,000x^{48}
            +8,643,539,530,767,684,610,000,000,000,000,000x^{50}
            -1.342.320.362.543.021.990.000.000.000.000.000x^{52}
            +98,527,218,530,093,882,200,000,000,000,000x^{54}
                                                                     (A.46)
```