WHAT IS CLAIMED IS:

1		1.	A method for reducing oxide contamination of a germanium substrate,
2	the method comprising:		
3		positi	oning the germanium substrate in a process chamber;
4		genera	ating a plasma from a treatment gas, the treatment gas comprising a flow
5	of a hydrogen-containing gas; and		
6		provid	ding the plasma to the process chamber to react with GeO ₂ in the
7	germanium su	ıbstrate	
1		2.	The method recited in claim 1 wherein the plasma is generated
2	remotely from the process chamber.		
1		3.	The method recited in claim 1 wherein the plasma is generated in the
2	process chaml	ber.	
1		4.	The method recited in claim 1 further comprising heating the
2	germanium substrate to a temperature less than about 550°C.		
1		5.	The method recited in claim 1 wherein the treatment gas further
2	comprises a fl	ow of a	
1		6.	The method recited in claim 5 wherein the diluent gas comprises an
2	inert gas.		and memora recition in claim 5 wherein the dilucit gas comprises an
1		7.	The method regited in claim 5 whomein the diluent are required N
1		7.	The method recited in claim 5 wherein the diluent gas comprises N ₂ .
1		8.	The method recited in claim 1 wherein the hydrogen-containing gas
2	further contains nitrogen and does not contain silicon.		
1		9.	The method recited in claim 1 wherein the hydrogen-containing gas
2	comprises am	monia.	
1		10.	The method recited in claim 1 wherein the hydrogen-containing gas
2	comprises H ₂ .		
1		11.	The method recited in claim 1 further comprising generating a plasma
2	from a protect	ive-lay	er gas that comprises a flow of a silicon-containing gas to deposit a

3	protective amorphous-silicon layer over the germanium substrate after reducing the oxide		
4	contamination of the germanium substrate.		
1	12. The method recited in claim 11 wherein generating the plasma from		
2	the protective-layer gas comprises terminating the flow of the hydrogen-containing gas and		
3	initiating the flow of the silicon-containing gas without terminating the plasma.		
1	13. The method recited in claim 11 wherein generating the plasma from		
2	the protective-layer gas comprises:		
3	terminating the plasma from the treatment gas; and		
4	thereafter, initiating the plasma from the protective-layer gas with the flow of		
5	the silicon-containing gas.		
1	14. The method recited in claim 11 further comprising depositing an oxide		
2	layer over the protective amorphous-silicon layer.		
1	15. The method recited in claim 14 wherein depositing the oxide layer is		
2	performed with a plasma deposition process.		
1	16. The method recited in claim 14 further comprising depositing a nitride		
2	layer over the protective amorphous-silicon layer.		
1	17. A method for forming an oxide layer over a germanium substrate, the		
2	method comprising:		
3	positioning the germanium substrate in a process chamber;		
4	generating a first plasma from a treatment gas, the treatment gas comprising a		
5	flow of ammonia;		
6	providing the first plasma to the process chamber to react with GeO2 in the		
7	germanium substrate;		
8	thereafter, generating a second plasma from a protective-layer gas that		
9	comprises a flow of silane and providing the second plasma to the process chamber to deposi		
10	a protective amorphous-silicon layer over the germanium substrate; and		
11	thereafter, depositing the oxide layer over the protective amorphous-silicon		
12	layer.		

1 18. The method recited in claim 17 further comprising heating the germanium substrate to a temperature between 350 and 550 °C while providing the first 2 3 plasma to the process chamber. 1 19. The method recited in claim 17 wherein the treatment gas further 2 comprises a diluent flow of an inert gas. 20. 1 The method recited in claim 17 wherein the treatment gas further 2 comprises a diluent flow of N₂. 1 21. The method recited in claim 17 wherein generating the second plasma 2 is performed without terminating the first plasma. 1 22. The method recited in claim 17 further comprising terminating the first 2 plasma prior to generating the second plasma.