北京师范大学 2023-2024 学年第一学期期末考试试卷 (A卷)

课程名称:			任语	果老师姓名:				
卷面总分:	分	考试时长:	120	分钟	考试类别:	闭卷⊠	开卷口	其他口
院(美								
姓名:								

题号	二	四	五	六	总分
得分					

阅卷老师(签字):

(注意:可以承认并使用问题 $1, \dots, k$ 的结果来回答第 k+1 题。)

- 1. 基础题: 陈述中心极限定理 Central Limit Theorem
- 2. Let $\{X_n\}_{n\geq 1}$ be a sequence of i.i.d. random variables taking values in \mathbb{N}^* such that

$$\mathbf{P}(X_1 \ge n) = \frac{1}{n}, \forall n \in \mathbb{N}^*.$$

Let $S_n = X_1 + \cdots + X_n$ for any $n \ge 1$.

- (a) Determine the law of X_1 .
- (b) Prove that $X_1 \notin L^1(\mathbf{P})$. So the Law of large numbers can not be applied to S_n/n .
- (c) We are going to prove that $\frac{S_n}{n \ln n}$ converges in probability to 1.
 - i. For any $n \geq 1$, we define

$$S_n' = \sum_{k=1}^n X_k 1_{X_k \le n \ln n}.$$
Prove that $P(S_n \neq S_n') \to 0$ as $n \to \infty$.
$$\sum_{j=1}^n \frac{1}{j} - \ln n$$

ii. Prove that

converges to some real limit γ as $n \to \infty$.

iii. Prove that

- iv. Deduce that $\frac{S'_n}{n \ln n}$ converges in probability to 1.
- v. Prove that $\frac{S_n}{n \ln n}$ converges in probability to 1.
- (d) Next, we prove that $\frac{S_n}{n \ln n}$ does not converge a.s.
 - i. Prove that

$$\sum_{n\geq 1} \mathbf{P}(X_n \geq cn \ln n) = \infty, \forall c > 0.$$

ii. Deduce that for any c > 0,

$$\mathbf{P}(\limsup_{n\to\infty} \frac{X_n}{n\ln n} \ge c) = 1.$$

iii. Then verify that P-a.s.,

$$\limsup_{n} \frac{S_n}{n \ln n} = \infty.$$

iv. Find out a subsequence m_k such that P-a.s.,

$$\lim_{k \to \infty} \frac{S_{m_k}}{m_k \ln m_k} = 1.$$

- 3. Let X and Y be independent random variables, X having the standard normal distribution, and Y having the $\chi^2(n)$ distribution.
 - (a) Show that

$$T_n = \frac{X}{\sqrt{Y/n}}$$

has density function

$$f(t) = \frac{1}{\sqrt{\pi n}} \frac{\Gamma(\frac{1}{2}(n+1))}{\Gamma(\frac{1}{2}n)} \left(1 + \frac{t^2}{n}\right)^{-\frac{1}{2}(n+1)}.$$

- (b) Prove that T_n converges in law to N(0,1).
- 备注: The density function of $\chi^2(r)$ distribution is

$$f(x) = \frac{(\frac{1}{2})^{\frac{r}{2}}}{\Gamma(\frac{r}{2})} x^{\frac{r}{2}-1} e^{-\frac{x}{2}} 1_{\mathbb{R}_+}(x).$$

北京师范大学 2023-2024 学年第一学期期中考试试卷 (A卷)

课	程名称:	 	既率论		任课老师	果老师姓名:_			
卷	面总分:	分	考试时长	: 120 分	钟 考试	考试类别: 闭卷 🗵 开卷 🗆 🕽			
院	(系):_			专业:		年级:			
姓名:			学号:						
	题号		=	111	四	五	六	总分	
	得分								
阅	卷老师((签字): _							

(注意:可以承认并使用问题 $1, \dots, k$ 的结果来回答第 k+1 题。)

- 1. 基础题: State Fatou's Lemma and prove it.
- 2. We consider a matrix A of size $n \times n$, given by

$$A = (A_{i,j})_{1 \le i,j \le n}$$

where $A_{i,j}$ are real-valued i.i.d random variables.

- (a) If $P(A_{i,j} = 1) = P(A_{i,j} = -1) = \frac{1}{2}$, compute $E[\det(A)]$ and $E[\det(A^2)]$;
- (b)* If $P(A_{i,j} = 1) = 1 P(A_{i,j} = 0) = p \in (0,1)$, compute $E[\det(A)]$ and $E[\det(A^2)]$.

$$X' = X1_{X \le a}$$

Express the law of X' in terms of the law of X.

4. Let $\{X_k\}_{k\geq 1}$ be a sequence of i.i.d. random variables with Exponential distribution of parameter $\lambda > 0$. This means that

$$\mathbf{P}_{X_1}(dx) = \lambda e^{-\lambda x} \mathbf{1}_{x>0} dx$$

- (a) Determine the law of X_1^2 .
- (b) Compute $\mathbf{E}[X_1]$ and $\mathbf{Var}(X_1)$.

(c) Prove that

$$\mathbf{P}(X_1 = X_2) = 0.$$

(d) Deduce that

$$\mathbf{P}(X_1 \ge X_2 \ge X_3 \ge \cdots \ge X_N) = \frac{1}{N!}, \forall N \ge 2.$$

(e) Let

$$M_n = \max_{1 \le k \le n} X_k.$$

Compute the distribution function of M_n .

5. Let X be a random variable which takes values in the interval [-M, M] only. Show that

$$P(|X| \ge a) \ge \frac{E[|X|] - a}{M - a}$$

$$P(|X| \ge a) \ge \frac{E[|X|] - a}{M - a}$$

$$P(|X| \ge a) \ge \frac{E[|X|] - a}{M - a}$$

$$P(|X| \ge a) \ge \frac{E[|X|] - a}{M - a}$$

$$P(|X| \ge a) \ge \frac{E[|X|] - a}{M - a}$$

$$P(|X| \ge a) - E[|X|]$$

6. The real number m is called a median of the random variable X if

$$P(X < m) \le \frac{1}{2} \le P(X \le m).$$
 $\mathbb{P}\left(\alpha \le |X| \le m\right)$

Show that every random variable has a least one median.

$$\mathbb{P}\left((|x|-a) \leq M-a\right)$$

$$\mathbb{P}_{x} = \underbrace{L(x)-a}_{M-a}$$