The spring elastic constant evaluation

1. Purpose

The objective of the experiment is to determine the spring constant of a spiral spring using Hooke's law and the period of oscillatory motion in response to a weight.

Apparatus: A spiral spring, a set of weights, a weight hanger, a stop watch, and a lab scale.

2. Theory

A. Static method

We use a spiral spring with elastic constant k and undeformed length l_o and bodies with different mass.

Fig. 1.

When a spring is stretched, according to Hooke's law, a restoring force F proportional to its elongation, x (or $\Delta l = l - l_o$) appears. Every spring obeys the Hooke's law if the deformation is not too great.

$$\vec{F}_e = -k \overline{\Delta l} \tag{1}$$

For the equilibrium

$$\Rightarrow mg = k\Delta l \tag{2}$$

$$k = \frac{mg}{\Lambda l} \tag{3}$$

B. Dynamic method

When we move the body connected to a spring from its equilibrium position it starts to oscillate around the equilibrium position under the action of restoring (elastic) force. With x the distance from equilibrium position the Newton's second law is:

$$ma = -kx (4)$$

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{k}{m}x = 0 \tag{5}$$

We note $\omega = \sqrt{\frac{k}{m}}$ and we call it the natural angular frequency. The second Newton law for the spring (5) is a differential equation having the solution

$$x(t) = A\sin(\omega t + \varphi) \tag{7}$$

The period for the harmonic oscillation is connected to the natural angular frequency throught:

$$\omega = \frac{2\pi}{T} \tag{8}$$

$$k = m\omega^2 = 4\pi^2 \frac{m}{T^2} \tag{9}$$

3. What to do

Static method

- 1) We measure the undeformed spring length l_o .
- 2) We hang the weight hanger with mass m_1 on the spring and we measure the deformed spring length l_1 . We calculate the spring elongation Δl_1 .
- 3) Successively we hang weights (m_i) and we calculate corresponding spring elongations Δl_i .
- 4) Use the Table 1. for experimental data and calculate elastic constant using relation (3).
- 5) Plot the graph of force (the deformative force) produced by different masses $(F=m \cdot g)$ as a function of the displacement from equilibrium Δl : $\mathbf{F}(\Delta l)$. The data should be linear. Hence, the slope of the line will be equal to the spring constant k according to the relation 2.
- 6) Final result: $k_{true} = \bar{k} \pm \sigma_{\bar{k}}$, where \bar{k} is the arithmetic mean and $\sigma_{\bar{k}}$ is the standard deviation of the mean.

$$\Delta k_i = k_i - \bar{k} \qquad \qquad \overline{\Delta k} = \frac{\Sigma |\Delta k_i|}{n} \qquad \qquad \sigma_{\bar{k}} = \sqrt{\frac{\Sigma_1^n (\Delta k_i)^2}{n(n-1)}}$$

Table 1.

$$l_0 = cm$$

Nr.	m	l	Δl	F	k	\overline{k}	$\Delta oldsymbol{k}$	$\sigma_{ar{k}}$	k _{true} [N/m]
crt	[kg]	[cm]	[m]	[N]	[N/m]	[N/m]	[N/m]	[N/m]	[N/m]
1									
2									
3									
4									
5									
6									
7									
8									
9									
10									

Dynamic method

- 1) Hang the weight hanger with several weights (mass m_1) on the spring and set the equilibrium position of the system.
- 2) Pull the system out of its equilibrium position to make oscillations with 1-2cm amplitude.
- 3) Record the time for n=20 oscilations and find the period: T = t/n.
- 4) Repeat 1), 2) and 3) for different masses.
- 5) Complete the Table 2 using relation (9) for elastic constant.
- 6) Plot the graph of $T^2(s^2)$ as function of m(kg). The data should be linear. Find elastic constant from the slope (i.e. $T^2 = \frac{4\pi^2}{k} m \iff y = \text{slope} \cdot x$).
- 7) Final result: $k_{true} = \bar{k} \pm \sigma_{\bar{k}}$, where \bar{k} is the arithmetic mean and $\sigma_{\bar{k}}$ is the standard deviation of the mean.

$$\Delta k_i = k_i - \bar{k} \qquad \qquad \overline{\Delta k} = \frac{\sum |\Delta k_i|}{n} \qquad \qquad \sigma_{\bar{k}} = \sqrt{\frac{\sum_{1}^{n} (\Delta k_i)^2}{n(n-1)}}$$

Table 2.

Nr. crt.	m [kg]	<i>t</i> [s]	n	<i>T</i> [s]	T^2 (s ²)	k [N/m]	\(\overline{k} \) [N/m]	Δ k [N/m]	$\sigma_{ar{k}}$ [N/m]	k _{true} [N/m]
1										
2										
3										
4										
5										
6										
7										
8										

Compare the results obtained by the 2 methods, respectively by arithmetic and graphic mediation !!