BRESEIVHAM'S LINE ACGORITHM

La It is mid-point Algorithm.

6 Incremental Algorithm.

It determines the point of an n-dimensional vaster that should be selected in order to form a close Approximation to a straight lime between points.

Is It is efficient because (integer, sub, Multiplication)

. Is The operation performed vapidly.

Algorithm: - Mid-Point line drawing Algorithm.

start co-ordinate (x, y,) end co-ordinate (x2, y2) step1:- Calculate DX' and Dy'.

DX = x2-x2;

dy = 1/2 - 82;

Step 2! - Calculate the slope: -

Slope (m) = $\frac{\gamma_2 - \gamma_1}{\chi_2 - \chi_2} = \frac{\lambda \gamma}{\lambda \chi}$

Now, we get two condition: [m71] and [m<1]

Step 3: - Calculate the decision parameter.

if(m L1) Px = 2Ay - 5x

if(m71) PK = 2DX - DY

step 4:- Based on the decision parameter we have to weste the next more:-

Case 9:- if [m<1] and [PK<0]

then, $1_{k+1} = 1_k$ $1_{k+1} = 1_k$

Case 2: - if [m<1] and [Px >,0]

PK+1 = PK+ 2AY

 $\chi_{k+1} = \chi_{k} + 1$ $\chi_{k+1} = \chi_{k} + 1$

9

Case 3:- if [m>1] and [PK<0]then; $\chi_{K+1} = \chi_{K}$

Yet1 = Yet1 Pre1 = Pr + 22x

Case 4:- if [m>1] and $[P_K>0]$ then, $\chi_{K+1} = \chi_K + 1$ $\chi_{K+1} = \chi_K + 1$ $\chi_{K+1} = \chi_K + 1$ $\chi_{K+1} = \chi_K + 1$ $\chi_{K+1} = \chi_K + 1$

Steps: - Repeat the step4 until
the end point is not reached.

PROBLEM:-

Q. From the given point draw the lines segment using mid-point Algo.

(x, y,) = (1,1)

(x2, y2) = (5,3)

 $Sot := stp 1! - dx = x_2 - x_1 = 5 - 1 = 4$ $dy = y_2 - y_1 = 3 - 1 = 2$ strong

step 2! - $slope(m) = \frac{4y}{4x} = \frac{2}{4} = 0.5$

Now, $\{m < 1\}$ Steps!- $P_{K} = 2Ay - AX$ = 3x2 - 4 = 0Hue, $P_{K} > 0$ stp4:- {m < 13 and {PK > 03

 $x_{k+1} = x_k + 1 = 1 + 1 = 2$ $y_{k+1} = y_k + 1 = 1 + 1 = 2$ $p_{k+1} = p_k + 2ay - 2ax$ $p_{k+1} = 0 + 2x2 - 2x4$ $p_{k+1} = 0 + 2x2 - 2x4$

Hue; Px <0

Ituation 2 [MC1] and [PXKO]

1 Kt1 = 241 = 3

YK1 = YK = 2

PKH1 = Px+2Ay = -4+2x2

Here, PK 7,0

Iteration 3: - [m < 1] and [Px 70] $x_{k+1} = x_{k+1} = 3+1 = 4$ $y_{k+1} = y_{k+1} = 2+1 = 3$ $y_{k+1} = y_{k+1} = 2+1 = 3$ $y_{k+1} = y_{k+2} + 2x_{k+1} - 2x_{k+1}$ $y_{k+1} = y_{k+2} + 2x_{k+1} - 2x_{k+1}$ $y_{k+1} = y_{k+2} + 2x_{k+1} - 2x_{k+1}$ $y_{k+1} = y_{k+2} + 2x_{k+1} - 2x_{k+1}$

Hore, $\frac{P_{K}}{\sqrt{50}}$ Thurstion 4:- $\frac{P_{K}}{\sqrt{50}}$ $\frac{P_{K+1}}{\sqrt{50}} = \frac{P_{K}}{\sqrt{50}} = \frac{P_{K}}{\sqrt{50}}$ $\frac{P_{K+1}}{\sqrt{50}} = \frac{P_{K}}{\sqrt{50}} = \frac$

Steps: - Stop the iteration and

Iteration	1 _K	XK	17K	Xx+1	1 4 KAI
0 1 2 3 4	0 -4 0 -4 0	1 2 3 4 5	2 2 3 3	3451	2331

(x1, y1) = (0,0) (x2, y2) = (2,3) So[1- step 1:- AX = X-X = 2

 $So[L] - Step 1: - \Delta X = X_2 - X_1 = 2 - 0 = 2$ $\Delta y = Y_2 - Y_1 = 3 - 0 = 8$

step 2!. $slope(m) = \frac{dy}{dx} = \frac{3}{2} = 1.5$. [M7,1]

Step 3! - Decision Parameter

PK = 2AM - AY

= 2x2-3

= 170

Step4!- if [m>1] and [Px7,0]

Iteration 1:-

 $X_{K+1} = X_{K}+1 = 0+1 = 1$ $J_{K+1} = J_{K}+1 = 0+1 = 1$ $P_{K+1} = P_{K}+2\Delta X - 2\Delta Y$ = 1+A-6 = 5-6

Hue, Py LO

Iteration 2:- If [m>1] and $[P_{K} < 0]$ $X_{K+1} = X_{K} = 1$ $Y_{K+1} = Y_{K} + 1 = 1 + 1 = 2$ $P_{K+1} = P_{K} + 2AK$ = -1 + 2X2= 370

It wation 3! - if
$$[M > 1]$$
 and $[P_K > 70]$
 $|X_{K+1}| = |X_K + 1| = |H| = 2$
 $|Y_{K+1}| = |Y_K + 1| = 2 + 1 = 3$
 $|P_{K+1}| = |P_K + 2\Delta X - 2\Delta Y$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y$
 $|P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_K + 2\Delta X - 2\Delta Y|$
 $|P_K + 1| = |P_$

steps: - stop the iteration

Iteration	1K	XK	17K	XX+1	YKAI
0	1	0	0	1	1
1	-1	1	1	1	2
2	3	1	2	2	3
3	1	2	3	_	-