3.4 Dijkstra's Algorithm

Let G be a weighted graph with vertices $v_1, v_2, v_3, \ldots, v_n$. If G contains any self-loop, discard it. If G has parallel edges between two vertices, discard all except the one with the least weight.

Let w_{ij} represent the weight of the edge $e_{ij} = (v_i, v_j) \ge 0$. We define:

$$w_{ij} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if there is no edge connecting } v_i \text{ and } v_j. \end{cases}$$

Steps of Dijkstra's Algorithm

Input: A connected weighted graph G and a source vertex v_s .

Output: Shortest path from v_s to all other vertices.

Step 1: Initialize Distances: Set the distance of the source vertex v_s to 0 and all other vertices to ∞ (infinity).

Step 2: Select the Vertex with the Smallest Distance: Choose the unvisited vertex with the smallest current distance as the current vertex.

Step 3: Update Neighboring Vertices: For each neighbor v_t of the current vertex, calculate the tentative distance from v_i to v_t as the sum of the current vertex's distance and the edge weight between them. If this tentative distance is less than the current known distance of v_t , update v_t 's distance.

Step 4: Mark as Visited: Mark the current vertex as visited, as it has been processed.

Step 5: Repeat Until All vertices Are Visited: Go back to Step 2 if there are unvisited vertices remaining.

Step 6: End: Once all vertices have been visited, the shortest path from v_s to all vertices is obtained.

3.4.1 Illustrative Examples

Example 3.2 Apply shortest path algorithm to determine a shortest path between a to z in the following graph.

Here, a is the starting vertex and z is the terminating vertex.

The algorithm is displayed in the following table.

a	b	c	d	e	f	z	Permanent vertex
0 🗸	∞	∞	∞	∞	∞	∞	a
0	$ \begin{array}{c} \min(\infty,0+2) \\ = 2 \end{array} $	$ \begin{array}{c c} \min(\infty,0+1) \\ = \boxed{1} \checkmark $	$ \begin{array}{c c} \min(\infty,0+4) \\ = 4 \end{array} $	$ \begin{vmatrix} \min(\infty, 0+\infty) \\ = \infty \end{vmatrix} $	$ \begin{vmatrix} \min(\infty, 0+\infty) \\ = \infty \end{vmatrix} $	$\begin{vmatrix} \min(\infty, 0+\infty) \\ = \infty \end{vmatrix}$	c
0	$ \begin{array}{c} \min(2,1+2) \\ = \boxed{2} \checkmark \end{array} $	1	$ \begin{array}{c} \min(4,1+2) \\ = 3 \end{array} $	$ \begin{array}{c} \min(\infty, 1+5) \\ = 6 \end{array} $	$ \begin{array}{c} \min(\infty, 1+7) \\ = 8 \end{array} $	$ \stackrel{\min(\infty,1+\infty)}{=\infty} $	b
0	2	1	$ \min(3,2+\infty) \\ = \boxed{3} \checkmark $	$ \begin{array}{c} \min(6,2+3) \\ = 5 \end{array} $	$ \begin{array}{c} \min(8,2+\infty) \\ = 8 \end{array} $	$\stackrel{\min(\infty,2+\infty)}{=\infty}$	d
0	2	1	3	$ \begin{array}{c} \min(5,3+\infty) \\ = \boxed{5} \checkmark \end{array} $	$ \begin{array}{c} \min(8,3+4) \\ = 7 \end{array} $	$\stackrel{\min(\infty,3+\infty)}{=\infty}$	e
0	2	1	3	5	$ \begin{array}{c} \min(7,5+\infty) \\ = 7 \end{array} $	$ \begin{array}{c} \min(\infty, 5+1) \\ = \boxed{6} \checkmark \end{array} $	Sz

The permanent label of the destination vertex z is 6, so the shortest distance from a to z is 6.

To find the shortest path, we use backtracking as follows:

Starting from the permanent label of z (i.e., [6]), we trace back along the temporary labels of z until we reach a change.

So we reach the temporary label ∞ (at 5th row,). In that row the newly permanent labeled vertex is e. Again we go back along the previously assigned temporary label of e, until we get a change. We reach the temporary label 6 (at 3rd row). In that row the recent permanent labeled vertex is b. Similarly tracking back we reach the vertex a.

Thus, the shortest path is a - b - e - z.

Example 3.3 By "Dijkstra's procedure," find the shortest path and the length of the shortest path from the vertex v_2 to v_5 in the following graph:

The given graph has one loop (at v_2) and 3 parallel edges connecting v_1 and v_6 , as well as 2 parallel edges connecting v_3 and v_5 . We discard:

- the loop at v_2 ,
- the two parallel edges with weights 5 and 7 between v_1 and v_6 (since the smallest weight among them is 3),
- the edge (v_3, v_4) with weight 12.

The resulting simplified graph becomes:

Here, v_2 is the starting vertex and v_5 is the terminating vertex.

The algorithm is displayed in the following table.

v_1	v_2	v_3	v_4	v_5	v_6	v_7	Permanent vertex
∞	0 🗸	∞	∞	∞	∞	∞	v_2
$ \begin{array}{c c} \min(\infty,0+1) \\ = \boxed{1} \checkmark $	0	$ \begin{vmatrix} \min(\infty, 0+7) \\ = 7 \end{vmatrix} $	$ \begin{vmatrix} \min(\infty, 0+\infty) \\ = \infty \end{vmatrix} $	$\stackrel{\min(\infty,0+\infty)}{=\infty}$	$\stackrel{\min(\infty,0+\infty)}{=\infty}$	$\stackrel{\min(\infty,0+\infty)}{=\infty}$	v_1
1	0	$ \begin{array}{c} \min(\infty, 1+3) \\ = 4 \end{array} $	$ \stackrel{\min(\infty,1+\infty)}{=\infty} $	$ \stackrel{\min(\infty,1+\infty)}{=\infty} $	$ \begin{array}{c} \min(\infty, 1+3) \\ = \boxed{4} \checkmark \end{array} $	$ \begin{array}{c} \min(\infty, 1+4) \\ = 5 \end{array} $	v_6
1	0	$ \begin{array}{c} \min(4,4+\infty) \\ = \boxed{4} \checkmark \end{array} $	$ \begin{array}{c} \min(\infty, 4+10) \\ = 14 \end{array} $	$ \begin{array}{c} \min(\infty, 4+7) \\ = 11 \end{array} $	4	$ \begin{array}{c} \min(5,4+4) \\ = 5 \end{array} $	v_3
1	0	4	$ \min(14,4+8) \\ $	$\stackrel{\min(11,4+\infty)}{=} 11$	4	$ \begin{array}{c} \min(5,4+2) \\ = \boxed{5} \checkmark \end{array} $	v_7
1	0	4	$ \begin{array}{c} \min(12,5+3) \\ = 8 \end{array} $	$ \min(11,5+2) \\ = \boxed{7} \checkmark $	4	5	v_5

The permanent label of the destination vertex v_5 is 7, so the shortest distance from v_2 to u_5 is 7.

To find the shortest path, we use backtracking as follows:

Starting from the permanent label of v_5 (i.e., [7]), we trace back along the temporary labels of u_5 until we reach a change.

So we reach the temporary label 11 (at 5th row,). In that row the newly permanent labeled vertex is v_7 . Again we go back along the previously assigned temporary label of v_7 , until we get a change. We reach the temporary label ∞ (at 2nd row). In that row the recent permanent labeled vertex is v_1 . Similarly tracking back we reach the vertex v_2 .

Thus, the shortest path is $v_2 - v_1 - v_7 - v_5$.

Exercise 3.2 Using Dijkstra's Algorithm find the length of the shortest path of the following graph from the vertex a to e:

Answer: a-c-b-d-e-f, SD=13