TEK5020/9020 Mønstergjenkjenning Høsten 2023

Forelesning 2 - Beslutningsteori (1)

Idar Dyrdal (idar.dyrdal@its.uio.no)

UiO: Institutt for teknologisystemer

16. august 2023

Innhold i kurset

- Introduksjon til mønstergjenkjenning
- Beslutningsteori (desisjonsteori)
- Parametriske metoder
- Ikke-parametriske metoder
- Lineære og generaliserte diskriminantfunksjoner
- Evaluering av klassifikatorer
- Ikke-ledet læring
- Klyngeanalyse.

Oversikt Grunnleggende begreper Des

Desisjonsreg

Disk

Normal

Avslutn

Beslutningsteori – grunnleggende begreper

Objekter skal tilordnes klasser/tilstander:

$$\omega_1, \omega_2, ..., \omega_c$$

der c er antall klasser i problemet. Til hver klasse hører en a priori sannsynlighet:

$$P(\omega_1), P(\omega_2), ..., P(\omega_c)$$

som er sannsynligheten for at hver klasse skal opptre (før målinger er foretatt).

Til hver klasse hører også klassebetingede sannsynlighetstetthetsfunksjoner:

$$p(\mathbf{x}|\omega_i), i = 1,...,c.$$

Her er vektoren:

$$\mathbf{x} = [x_1, x_2, ..., x_d]^t$$

en målt egenskapsvektor for det aktuelle objektet.

Oversikt Grunnleggende begreper

Desisjonsreg

Desisjonsregione

Diskriminantfunksjone

Normalfordelingen

Sannsynlighetstetthetsfunksjon

Eksempel på tetthetsfunksjon. Det grønne arealet tilsvarer sannsynligheten for at et vilkårlig sample skal opptre med egenskapsverdi x i intervallet mellom a og b.

Oversikt **Grunnleggende begreper** Desisionsregler Desisionsregioner Diskriminantfunksioner Normalfordelingen Avslutnin

Bayes regel

Bayes regel for a posteriori sannsynlighet:

$$P(\omega_i|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_i)P(\omega_i)}{\sum_{j=1}^{c} p(\mathbf{x}|\omega_j)P(\omega_j)}, i = 1,...,c$$

knytter sammen a priori sannsynligheter og klassebetingede tetthetsfunksjoner.

 $P(\omega_i|\mathbf{x})$ er sannsynligheten for at klasse ω_i skal opptre, gitt den målte egenskapsvektoren \mathbf{x} , dvs. sannsynligheten for klasse ω_i etter målingen \mathbf{x} .

Summen av a posteriorisannsynlighetene over alle klasser er én, dvs.

$$\sum_{i=1}^{c} P(\omega_i|\mathbf{x}) = 1.$$

ersikt **Grunnleggende begreper** Desisionsregler Desisionsregioner Diskriminantfunksioner Normalfordelingen Avslutnir

Handlinger

Handlinger (actions):

$$\alpha_1, \alpha_2, ..., \alpha_a$$

er noe som utføres på bakgrunn av den målte egenskapsvektoren.

Hvor mange handlinger?

- Vanligvis er a = c, dvs. én-til-én sammenheng mellom klasser og handlinger (handlingen α_i består i å klassifisere til klasse ω_i),
- Generelt er $a \neq c$, f.eks. a = c + 1 der handling α_{c+1} tilsvarer forkasting (ingen klassifisering).

Desisjonsfunksjonen:

$$\alpha(\mathbf{x}) \rightarrow \alpha_1, \alpha_2, ..., \alpha_a$$

er en funksjon av egenskapsvektoren x, som har én av de mulige handlingene som utfall.

Oversikt **Grunnleggende begreper** Desisionsregler Desisionsregioner Diskriminantfunksioner Normalfordelingen Avslutnin

Kostnader knyttet til handlinger

Kostfunksjonen:

$$\lambda(\alpha_i|\omega_i)$$
, der $i=1,\ldots,a$ og $j=1,\ldots,c$,

angir kostnaden (tapet) ved å velge handlingen α_i når ω_i er sann klasse.

Det kan f.eks. være et større tap forbundet ved å klassifisere bjørk som ask enn omvendt, slik at kostnadene for disse tilfellene kan være

$$\lambda(\mathsf{velg}\;\mathsf{bjørk}|\mathsf{ask}) = 1$$

$$\lambda(\mathsf{velg}\;\mathsf{ask}|\mathsf{bj}\mathsf{ørk}) = 10$$

mens kostnadene for riktig valg av handling som oftest vil settes til null, dvs.

$$\lambda(\text{velg bj} \text{grk}|\text{bj} \text{grk}) = \lambda(\text{velg ask}|\text{ask}) = 0.$$

Risiko knyttet til handlinger

Betinget risk (forventet tap) er kostnaden forbundet ved en gitt handling, gitt en måling (dvs. egenskapsvektoren for et ukjent objekt)

$$R(\alpha_i|\mathbf{x}) = \sum_{j=1}^c \lambda(\alpha_i|\omega_j)P(\omega_j|\mathbf{x}), i=1,\ldots,a.$$

Total risk er gitt ved

$$R = \int_{\mathbb{R}^d} R(\alpha(\mathbf{x})|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

for en gitt desisjonsfunksjon $\alpha(x)$ med utfallene $\alpha_1, \alpha_2, \dots, \alpha_a$. Den totale risken skal minimaliseres ved å velge α_i slik at den betingede risken $R(\alpha(x)|x)$ er minimum for enhver x.

Bayes desisjonsregel

Minimalisering av total risk R leder til Bayes desisjonsregel, som kan skrives som

Velg
$$\alpha_m$$
 hvis $R(\alpha_m|\mathbf{x}) \leq R(\alpha_j|\mathbf{x}), j=1,\ldots,a$.

Utfallet av desisjonsfunksjonen er da α_m , dvs.

$$\alpha(\mathbf{x})=\alpha_m.$$

Dette er det valg av handling som gir minimum betinget risk og sikrer minimum total risk, dvs. *minimum-risk klassifisering*.

<u>Oversikt Grunnleggende begrepe</u>r **Desisjonsregler** Desisjonsregioner Diskriminantfunksjoner Normalfordelingen Avslutnin,

Bayes desisjonsregel for to klasser

La klassene være ω_1 og ω_2 og de tilhørende handlingene henholdsvis α_1 og α_2 , slik at handlingene her består i å velge den ene eller den andre klassen, dvs.

$$\alpha_i: \mathbf{x} \to \omega_i$$

der a=c=2 og α_1 og α_2 er de mulige utfallene. La kostfunksjonen være gitt ved

$$\lambda(\alpha_i|\omega_j) = \lambda_{ij} \text{ der } \lambda_{ij} > \lambda_{ii}, i \neq j.$$

Den betingede risken forbundet med hver handling blir da

$$R(\alpha_1|\mathbf{x}) = \lambda_{11}P(\omega_1|\mathbf{x}) + \lambda_{12}P(\omega_2|\mathbf{x})$$

$$R(\alpha_2|\mathbf{x}) = \lambda_{21}P(\omega_1|\mathbf{x}) + \lambda_{22}P(\omega_2|\mathbf{x}).$$

Oversikt Grunnleggende begreper **Desisjonsregler** Desisjonsregioner Diskriminantfunksjoner Normalfordelingen Avslutnin

Bayes desisjonsregel for to klasser (forts.)

Beslutningsregelen blir derfor

Velg
$$\alpha_1$$
 hvis $R(\alpha_1|\mathbf{x}) \leq R(\alpha_2|\mathbf{x})$, ellers α_2 $\downarrow\downarrow$ Velg ω_1 hvis $(\lambda_{11} - \lambda_{21})P(\omega_1|\mathbf{x}) \leq (\lambda_{22} - \lambda_{12})P(\omega_2|\mathbf{x})$, ω_2 ellers $\downarrow\downarrow$ Velg ω_1 hvis $\frac{P(\omega_1|\mathbf{x})}{P(\omega_2|\mathbf{x})} \geq \underbrace{\frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}}}_{>0}$, ω_2 ellers.

Her er ulikhetstegnet snudd fordi $\lambda_{11} - \lambda_{21} < 0$.

Bayes desisjonsregel for to klasser (forts.)

Ved bruk av Bayes regel kan den foregående ulikheten skrives som

$$\frac{p(\boldsymbol{x}|\omega_1)P(\omega_1)}{p(\boldsymbol{x}|\omega_2)P(\omega_2)} \ge \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}}$$

Dette gir beslutningsregelen

Velg
$$\omega_1$$
 hvis $\frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} \geq \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{P(\omega_2)}{P(\omega_1)}$, ω_2 ellers.

Terskelen på høyre side av ulikhetstegnet er uavhengig av egenskapsvektoren x og er forøvrig > 0.

Grunnleggende begreper Desisjonsregler Desisjonsregioner Diskriminantfunksjoner Normalfordelingen Avslutnin

Bayes desisjonsregel for to klasser (forts.)

Anta spesialtilfellet (egentlig et ganske vanlig valg)

$$\lambda_{ii} = 0, \lambda_{ij,i \neq j} > 0,$$

slik at riktig klassifisering er uten kostnad og alle feilklassifiseringer har en endelig kostnad. Desisjonsregelen reduseres derved til

Velg
$$\omega_1$$
 hvis $\frac{P(\omega_1|\mathbf{x})}{P(\omega_2|\mathbf{x})} \geq \frac{\lambda_{12}}{\lambda_{21}}$, ω_2 ellers.

Hvis det er mest kostbart å velge ω_1 hvis ω_2 er sann (dvs. $\lambda_{12} \geq \lambda_{21}$) innebære dette at $P(\omega_1|\mathbf{x})$ må overskride $P(\omega_2|\mathbf{x})$ med faktoren $\lambda_{12}/\lambda_{21} > 1$ før ω_1 kan velges. Omskriving ved hjelp av Bayes regel gir her beslutningsregelen

Velg
$$\omega_1$$
 hvis $\frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} \geq \frac{\lambda_{12}}{\lambda_{21}} \frac{P(\omega_2)}{P(\omega_1)}$, ω_2 ellers.

Terskelen på høyre side er også her > 0 og uavhengig av x.

t Grunnleggende begreper **Desisjonsregler** Desisjonsregioner Diskriminantfunksjoner Normalfordelingen Avslutr

Minimum-feilrate klassifisering

Ved å velge en null-én kostfunksjon (og sette a=c), dvs.

$$\lambda(\alpha_i|\omega_j) = \lambda_{ij} = egin{cases} 0 & i=j & ext{(ingen kost for riktig klassifisering)} \ 1 & i
eq j & ext{(lik kost for alle typer feilklassifiseringer),} \end{cases}$$

forenkles den betingede risken til

$$egin{aligned} R(lpha_i|\mathbf{x}) &= \sum_{j=1}^c \lambda_{ij} P(\omega_j|\mathbf{x}) = \sum_{j=1, j \neq i}^c P(\omega_j|\mathbf{x}) \ &= 1 - P(\omega_i|\mathbf{x}), \; ext{siden} \; \sum_{j=1}^c P(\omega_j|\mathbf{x}) = 1, \end{aligned}$$

som gir minimum feilrate desisjonsregelen

Velg
$$\omega_i$$
 hvis $P(\omega_i|\mathbf{x}) \geq P(\omega_j|\mathbf{x}), j = 1, \dots, c$.

Oversikt Grunnleggende begr

Desisjonsregler

Desisjonsregio

Diskriminantfunksjon

Normalfordelingen

Avslutni

A posteriori sannsynlighet – minimum feilrate klassifisering

Plott av tetthetsfunksjoner (til venstre) og a posteriori sannsynligheter (til høyre) for to klasser. Optimal desisjonsgrense (x_0) der de a posteriori sannsynlighetene for klassene er like $(P(\omega_1|x) = P(\omega_2|x) = 0.5)$.

Grunnleggende begre

Desisjonsregler

Desisjonsregione

Diskriminantfunksjoi

Normalfordelingen

Maksimum-tiltro klassifisering

La oss se på spesialtilfellet med like a priori sannsynligheter, dvs.

$$P(\omega_i) = 1/c$$
.

Da forenkles minimum-feilrate regelen til maksimum tiltro (maximum likelihood) regelen

Velg
$$\omega_i$$
 hvis $p(\mathbf{x}|\omega_i) \ge p(\mathbf{x}|\omega_j), j = 1,...,c$.

I dette tilfellet inngår altså kun tetthetsfunksjonene i beslutningsregelen.

Feilrate og desisjonsregioner

Feilsannsynligheten (feilraten) kan skrives som

$$P(feil) = 1 - P(rett)$$
, der sannsynligheten for riktig valg er

$$P(rett) = \sum_{j=1}^{c} P(\mathbf{x} \in \mathbb{R}_{j}, \omega_{j}) = \sum_{j=1}^{c} P(\mathbf{x} \in \mathbb{R}_{j} | \omega_{j}) P(\omega_{j})$$
$$= \sum_{j=1}^{c} \left\{ \int_{\mathbb{R}_{j}} p(\mathbf{x} | \omega_{j}) d\mathbf{x} \right\} P(\omega_{j}) = \sum_{j=1}^{c} \int_{\mathbb{R}_{j}} p(\mathbf{x} | \omega_{j}) P(\omega_{j}) d\mathbf{x}.$$

P(rett) maksimaliseres (og feilraten P(feil) minimaliseres) ved å velge \mathbb{R}_i , $i=1,\ldots,c$ slik at

$$p(\mathbf{x}|\omega_i)P(\omega_i) \geq p(\mathbf{x}|\omega_i)P(\omega_i), j = 1, ..., c \text{ for alle } \mathbf{x} \in \mathbb{R}_i.$$

De optimale desisjonsgrensene går da gjennom punkter x der

$$p(\mathbf{x}|\omega_i)P(\omega_i) = p(\mathbf{x}|\omega_j)P(\omega_j)$$
 for $i \neq j$

forutsatt at $p(\mathbf{x}|\omega_i)P(\omega_i)$ er maksimum over alle ω_1,\ldots,ω_c .

Grunnleggende begre

Desisjonsregler

Desisjonsregioner

Diskriminantfunksjor

Normalfordelingen

Univariat toklasseproblem – optimale desisjonsregioner

Tetthetsfunksjoner for to klasser, veiet med a priori sannsynlighet. Den stiplede linjen markerer terskelen der de veiede tetthetene er like.

. Oversikt Grunnleggende begreper Desisjonsregler **Desisjonsregioner** Diskriminantfunksjoner Normalfordelingen Avslutnin

Univariat toklasseproblem – minimum feilrate

Tetthetsfunksjoner for to klasser, veiet med a priori sannsynlighet. Det grønne arealet viser feilraten med den optimale desisjonsgrensen (stiplet linje).

Oversikt Grunnleggende begreper Desisjonsregler **Desisjonsregioner** Diskriminantfunksjoner Normalfordelingen Avslutnin

Feilrate med suboptimal desisjonsgrense

Tetthetsfunksjoner for to klasser, veiet med a priori sannsynlighet. Det røde arealet tilsvarer den ekstra feilraten ved et suboptimalt valg av desisjonsgrense.

Grunnleggende begre

Desisjonsreg

Desisjonsregioner

Diskriminantfunksjo

Normalfordelingen

Inndeling i desisjonsregioner – univariat problem med tre klasser

Veiede tetthetsfunksjoner for problem med tre klasser. Desisjonsgrensene deler det éndimensjonale egenskapsrommet inn i tre desisjonsregioner, men er *ikke* optimale.

Optimale desisjonsgrenser – minimum feilrate

Veiede tetthetsfunksjoner for problem med tre klasser. Desisjonsgrensene gir en optimal inndeling av egenskapsrommet i tre desisjonsregioner.

Eksempel - desisjonsgrense mellom to klasser

I et endimensjonalt (univariat) problem med to klasser ω_1 og ω_2 og tilhørende handlinger α_1 og α_2 (antall handlinger lik antall klasser), er fordelingsfunksjonene på formen

$$p(x|\theta) = \theta^2 x e^{-\theta x},$$

 $der \theta > 0 og x \ge 0.$

Parameteren θ bestemmer fordelingen.

La de to klassene ha parametrene θ_1 og θ_2 og apriorisannsynlighetene $P(\omega_1)$ og $P(\omega_2)$.

Eksempel – desisjonsgrense mellom to klasser (forts.)

Anta kostnadene

- $\lambda_{11} = \lambda_{22} = 0$ (null kostnad for feilfri klassifisering),
- $\lambda_{12} > 0$ og $\lambda_{21} > 0$ (kostnad for feilklassifiseringer større enn null).

Terskelen (desisjonsgrensen) x_0 som minimaliserer den totale risken finner vi der den betingede risken for hver av handlingene er like, dvs.

$$R(\alpha_1|x_0)=R(\alpha_2|x_0).$$

Den betingede risken forbundet med handlingene blir, etter innsetting for kostnadene og aposteriorisannsynlighetene, i dette tilfellet

$$R(\alpha_{1}|x) = \lambda_{11}P(\omega_{1}|x) + \lambda_{12}P(\omega_{2}|x) = \lambda_{12}P(\omega_{2}|x) = \lambda_{12}\theta_{2}^{2}xe^{-\theta_{2}x}P(\omega_{2})/p(x),$$

$$R(\alpha_{2}|x) = \lambda_{21}P(\omega_{1}|x) + \lambda_{22}P(\omega_{2}|x) = \lambda_{21}P(\omega_{1}|x) = \lambda_{21}\theta_{1}^{2}xe^{-\theta_{1}x}P(\omega_{1})/p(x).$$

Eksempel – desisjonsgrense mellom to klasser (forts.)

Terskelen kan da bestemmes ved å sette disse størrelsene like:

$$R(\alpha_{1}|x) = R(\alpha_{2}|x)$$

$$\downarrow \downarrow$$

$$\lambda_{12}\theta_{2}^{2}xe^{-\theta_{2}x}P(\omega_{2}) = \lambda_{21}\theta_{1}^{2}xe^{-\theta_{1}x}P(\omega_{1})$$

$$\downarrow \downarrow$$

$$e^{(\theta_{1}-\theta_{2})x} = \frac{\lambda_{21}\theta_{1}^{2}P(\omega_{1})}{\lambda_{12}\theta_{2}^{2}P(\omega_{2})}.$$

Ved å ta logaritmen på begge sider av likhetstegnet kan det løses ut for x, slik at terskelen blir

$$x_0 = \frac{1}{\theta_1 - \theta_2} \ln \left[\frac{\lambda_{21} \theta_1^2 P(\omega_1)}{\lambda_{12} \theta_2^2 P(\omega_2)} \right].$$

Eksempel – desisjonsgrense mellom to klasser (forts.)

Anta nå

- $\theta_1 = 1 \text{ og } \theta_2 = 2$,
- $\lambda_{12} = \lambda_{21}$,
- $P(\omega_1) = P(\omega_2)$.

Innsetting i uttrykket for x_0 gir da resultatet

$$x_0 = -\ln[1/2^2] = \ln(4) \approx 1{,}3863.$$

Figuren t.h. viser fordelingene, terskelen og desisjonsregionene i dette tilfellet.

Oversikt Grunnleggende begreper Desisionsregler Desisionsregioner Diskriminantfunksioner Normalfordelingen Avslutning

Diskriminantfunksjoner

Diskriminantfunksjoner er et sett av funksjoner av egenskapsvektoren x:

$$g_i(\mathbf{x}), i = 1, ..., c$$
 (én funksjon for hver klasse)

slik at beslutningsregeler kan skrives på generell (kanonisk) form:

$$Velg \ \omega_i \ \text{hvis} \ g_i(\mathbf{x}) = \max_j \{g_j(\mathbf{x})\}$$

Desisjonsgrenser går gjennom punkter der to funksjoner er like, og større enn verdien til de øvrige diskriminantfunksjoner, dvs. dersom

$$g_i(\mathbf{x}) = g_i(\mathbf{x})$$
 når \mathbb{R}_i og \mathbb{R}_i er naboer.

Klassifiseringsmaskin.

Diskriminantfunksjoner (forts.)

Eksempler på diskriminantfunksjoner:

$$g_{i}(\mathbf{x}) = P(\omega_{i}|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_{i})P(\omega_{i})}{\sum_{j=1}^{c} p(\mathbf{x}|\omega_{j})P(\omega_{j})}$$

$$g_{i}(\mathbf{x}) = p(\mathbf{x}|\omega_{i})P(\omega_{i})$$

$$g_{i}(\mathbf{x}) = \ln [p(\mathbf{x}|\omega_{i})P(\omega_{i})] = \ln p(\mathbf{x}|\omega_{i}) + \ln P(\omega_{i})$$

$$g_{i}(\mathbf{x}) = -R(\alpha_{i}|\mathbf{x}).$$

Legg merke til at bruk av logaritmen (som i det tredje eksempelet) ofte gir en enklere beslutningsregel, spesielt dersom tetthetsfunksjonene er på eksponensiell form.

Bruk av logaritmen (eller en annen monotont voksende funksjon) på f.eks. forholdet mellom a posteriori sannsynlighetene, forandrer heller ikke rangeringen av diskriminantfunksjonen og derved ikke valg av klasse.

Diskriminantfunksjoner for toklasseproblemet

For to klasser kan man for enkelhets skyld innføre en felles diskriminantfunksjon

$$g(\mathbf{x}) = g_1(\mathbf{x}) - g_2(\mathbf{x})$$

slik at beslutningsregelen for toklasseproblemet kan skrives som

Velg
$$\omega_1$$
 hvis $g(\mathbf{x}) > 0$ og ω_2 ellers.

Mulige diskriminantfunksjoner for to klasser er

$$g(\mathbf{x}) = P(\omega_1|\mathbf{x}) - P(\omega_2|\mathbf{x})$$

$$g(\mathbf{x}) = \ln \frac{P(\omega_1|\mathbf{x})}{P(\omega_2|\mathbf{x})} = \ln \frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} + \ln \frac{P(\omega_1)}{P(\omega_2)}.$$

Grunnleggende begreg

esisionsreg

Desisjonsregione

Diskriminantfunksio

Normalfordelingen

Univariat normalfordeling (Gaussfordelingen):

$$p(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} = N(\mu,\sigma^2)$$

der μ er forventningsverdien og σ^2 variansen.

Multivariat normalfordeling:

$$p(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) \right] = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

der μ er forventningsvektoren og Σ er kovariansmatrisen.

Oversikt Grunnleggende begreper Desisjonsregler Desisjonsregioner Diskriminantfunksjoner **Normalfordelingen** Avslutning

Univariat normalfordeling

Klassebetinget normalfordeling for klasse ω_i , der forventningsverdien er μ_i og standardavviket er σ_i .

Diskriminantfunksjoner for univariate normalfordelinger

Anta c univariat normalfordelte klasser, slik at

$$p(x|\omega_i) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left[-\frac{1}{2}\left(\frac{x-\mu_i}{\sigma_i}\right)^2\right], i = 1,...,c$$

Et mulig valg for diskriminantfunksjonene er da

$$g_i(x) = \ln P(\omega_i | x)$$

$$= \ln p(x | \omega_i) + \ln P(\omega_i) - \ln p(x)$$

$$= -\frac{1}{2} \left(\frac{x - \mu_i}{\sigma_i}\right)^2 - \frac{1}{2} \ln 2\pi - \ln \sigma_i + \ln P(\omega_i) - \ln p(x).$$

Diskriminantfunksjoner for univariate normalfordelinger (forts.)

Etter fjerning av ledd som er like for alle klasser, reduseres dette til

$$g_i'(x) = \underbrace{-\frac{1}{2\sigma_i^2}}_{a_i} x^2 \underbrace{+\frac{\mu_i}{\sigma_i^2}}_{b_i} x \underbrace{-\left(\frac{\mu_i^2}{2\sigma_i^2} + \ln \sigma_i - \ln P(\omega_i)\right)}_{c_i}$$
$$= a_i x^2 + b_i x + c_i, i = 1, \dots, c$$

Dette er kvadratiske diskriminantfunksjoner (kvadratiske med hensyn til egenskapen x).

Oversikt Grunnleggende begreper Desisjonsregler Desisjonsregioner Diskriminantfunksjoner Normalfordelingen Avslutnin

Diskriminantfunksjoner for univariate normalfordelinger (forts.)

For to klasser kan diskriminantfunksjonene slås sammen til én felles funksjon g(x) for begge klassene, slik at

$$g(x) = g_1(x) - g_2(x)$$

$$= \underbrace{\frac{1}{2} \left(\frac{1}{\sigma_2^2} - \frac{1}{\sigma_1^2} \right)}_{a} x^2 + \underbrace{\left(\frac{\mu_1}{\sigma_1^2} - \frac{\mu_2}{\sigma_2^2} \right)}_{b} x + \underbrace{\frac{1}{2} \left(\frac{\mu_2^2}{\sigma_2^2} - \frac{\mu_1^2}{\sigma_1^2} \right) + \ln \frac{\sigma_2 P(\omega_1)}{\sigma_1 P(\omega_2)}}_{c}$$

$$= \underbrace{ax^2 + bx + c}_{b},$$

som også er en kvadratisk diskriminantfunksjon.

Diskriminantfunksjoner for univariate normalfordelinger (forts.)

Koeffisientene a, b og c er her gitt ved

$$a = \frac{1}{2} \left(\frac{1}{\sigma_2^2} - \frac{1}{\sigma_1^2} \right)$$

$$b = \left(\frac{\mu_1}{\sigma_1^2} - \frac{\mu_2}{\sigma_2^2}\right)$$

$$c = \frac{1}{2} \left(\frac{\mu_2^2}{\sigma_2^2} - \frac{\mu_1^2}{\sigma_1^2} \right) + \ln \frac{\sigma_2 P(\omega_1)}{\sigma_1 P(\omega_2)}.$$

Grunnleggende begr

Desisjonsreg

Desisjonsregion

Diskriminantfunks

Normalfordelingen

Diskriminantfunksjoner for univariate normalfordelinger (forts.)

La oss se på spesialtilfellet $\mu_1=\mu_2=0$. Dette gir

$$g(x) = ax^2 + c,$$

og likningen g(x) = 0 for desisjonsgrensene gir løsningen

$$x_0 = \pm \sqrt{-\frac{c}{a}},$$

dvs. to terskler på tallinjen.

Tersklene deler egenskapsrommet opp i to desisjonsregioner. Klassen med minst varians får en enkeltsammenhengende region omkring origo, mens den andre klassen får en todelt region for $x < -|x_0|$ til venstre og $x > |x_0|$ til høyre.

Oversikt Grunnleggende begreper Desisjonsregler Desisjonsregioner Diskriminantfunksjoner **Normalfordelingen** Avslutnin,

Diskriminantfunksjoner for univariate normalfordelinger (forts.)

La oss nå se på spesialtilfellet $\sigma_1 = \sigma_2 = \sigma$.

Diskriminantfunksjonen blir da

$$g(x) = \underbrace{\frac{1}{\sigma^2}(\mu_1 - \mu_2)}_{b} x + \underbrace{\frac{\mu_2^2 - \mu_1^2}{2\sigma^2} + \ln \frac{P(\omega_1)}{P(\omega_2)}}_{c} = \underbrace{bx + c}_{b}.$$

Dette er en lineær diskriminantfunksjon. Desisjonsgrensen finnes ved å løse likningen g(x) = 0, som i dette tilfellet gir:

$$x_0 = -\frac{c}{b} = -\frac{\frac{\mu_2^2 - \mu_1^2}{2\sigma^2} + \ln\frac{P(\omega_1)}{P(\omega_2)}}{\frac{1}{\sigma^2}(\mu_1 - \mu_2)} = -\frac{\mu_2^2 - \mu_1^2 + 2\sigma^2\ln\frac{P(\omega_1)}{P(\omega_2)}}{2(\mu_1 - \mu_2)}.$$

Oversikt Grunnleggende begreper Desisjonsregler Desisjonsregioner Diskriminantfunksjoner **Normalfordelingen** Avslutning

Diskriminantfunksjoner for univariate normalfordelinger (forts.)

To klasser med like varianser og forskjellige forventningsverdier.

Oversikt Grunnleggende begreper Desisjonsregler Desisjonsregioner Diskriminantfunksjoner **Normalfordelingen** Avslutning

Multivariat normalfordeling

Den multivariate normalfordelingen (normalfordeling i et rom av vilkårlig dimensjon) er gitt ved

$$\rho(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{t} \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})} = \mathcal{N}(\boldsymbol{\mu}, \Sigma)$$

Her er μ forventningsvektoren

$$\mu = E\{x\} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_d \end{bmatrix}$$
 (d komponenter)

og ∑ kovariansmatrisen

$$\Sigma = E\{(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^t\} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1d} \\ \vdots & \vdots & & \vdots \\ \sigma_{d1} & \sigma_{d2} & \dots & \sigma_{dd} \end{bmatrix} (d \times d \text{ komponenter}).$$

Multivariat normalfordeling (forts.)

Matrisen Σ er symmetrisk (dvs. $\sigma_{ij} = \sigma_{ji}$) og positiv semidefinitt slik at $|\Sigma| \ge 0$. I eksemplene som følger antar vi at $|\Sigma| > 0$.

Dersom $|\Sigma| = 0$ er fordelingen avgrenset til et underrom i det d-dimensjonale egenskapsrommet, noe som kan forekomme dersom egenskapene inneholder redundant informasjon (funksjonell kobling mellom egenskaper).

Komponenter i Σ :

$$\sigma_{ij,i\neq j} = E\{(x_i - \mu_i)(x_j - \mu_j)\} = \text{ kovarians (ikke-diagonale komponenter)},$$

$$\sigma_{ii} = E\{(x_i - \mu_i)^2\} = \sigma_i^2 = \text{ varians (diagonale komponenter)}.$$

Multivariat normalfordeling (forts.)

Hvis egenskapene $x_i, x_i, i \neq j$ er uavhengige medfører dette at

$$\sigma_{ij} = E\{(x_i - \mu_i)(x_j - \mu_j)\} = E\{x_i - \mu_i\}E\{x_j - \mu_j\} = 0 \cdot 0 = 0,$$

dvs. Σ er diagonal. Dette gir da

$$\rho(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} \prod_{i=1}^{d} \sigma_i} \exp\left\{-\frac{1}{2} \sum_{i=1}^{d} \left(\frac{x_i - \mu_i}{\sigma_i}\right)^2\right\}$$
$$= \prod_{i=1}^{d} \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left\{-\frac{1}{2} \left(\frac{x_i - \mu_i}{\sigma_i}\right)^2\right\}$$
$$= \prod_{i=1}^{d} N(\mu_i, \sigma_i^2).$$

Oversikt Grunnleggende begreper Desisjonsregler Desisjonsregioner Diskriminantfunksjoner **Normalfordelingen** Avslutning

Multivariat normalfordeling (forts.)

Multivariat normalfordeling i to dimensjoner, dvs. bivariat normalfordeling.

Mahalanobis avstand

Det kvadratiske uttrykket som inngår i eksponenten i den multivariate normalfordelingen, gitt ved størrelsen

$$r^2 = (\mathbf{x} - \boldsymbol{\mu})^t \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

kalles gjerne den kvadrerte Mahalanobis avstand, dvs. et mål på avstand mellom forventningsverdien og et punkt x i egenskapsrommet.

Konturer gjennom punkter med konstant sannsynlighetstetthet, og derved konstant r, danner hyperellipsoider omkring forventningsvektoren.

Volumet av disse hyperellipsoidene er et mål på spredningen av fordelingen.

Grunnleggende begr

Desisjonsregler

Desisjonsregione

Diskriminantfunksjon

Normalfordelingen

Avslutnin

Mahalanobis avstand (forts.)

Bivariat normalfordeling representert ved ellipser med konstant tetthet (og konstant Mahalanobisavstand fra forventningsvektoren).

Mahalanobis avstand (forts.)

Volumet for gitt Mahalanobisavstand r er gitt ved

$$V = V_d |\Sigma|^{1/2} r^d$$

der V_d = er volumet av en d-dimensjonal hyperkule med radius=1 (kan vises).

Spredningen av fordelingen er proporsjonal med $|\Sigma|^{1/2}$ for gitt verdi av d.

Stort volum indikerer stor spredning, lite volum indikerer at fordelingen er tett konsentrert omkring forventningsvektoren.

Innhold i kurset

Beslutningsteori

- Introduksjon til mønstergjenkjenning
- Beslutningsteori (fortsetter neste gang)
- Parametriske metoder
- Ikke-parametriske metoder
- Lineære og generaliserte diskriminantfunksjoner
- Evaluering av klassifikatorer
- Ikke-ledet læring
- Klyngeanalyse.