UNIVERSIDAD DEL VALLE DE GUATEMALA

 $\mathrm{MM2033}\text{--}2\ \mathrm{SEMESTRE}$ - 2021

LICENCIATURA EN MATEMÁTICA APLICADA

TEORÍA DE CONJUNTOS

Catedrático: Nancy Zurita

Estudiante: Rudik Roberto Rompich Cotzojay

Carné: 19857

Correo: rom19857@uvg.edu.gt

Índice

1	Sesión 2	1
	1.1 Axiomática	1

1. Sesión 2

1.1. Axiomática

A0: (Axioma de vacío) Existe vacío. Notación: Ø.

A1: (Axioma de extensión) $\forall x(x \in A \iff x \in B) \implies A = B$.

A2: (Esquema axiomático de separación) $\exists B \ \forall x \ni (x \in B \iff [x \in A \land \Phi(x)]).$

Definición 1. (Conjunto) y es conjunto \iff $(\exists x(x \in y)) \lor (y = \varnothing)$.

Definición 2. (No pertenencia) $x \notin y \iff \neg(x \in y)$.

Teorema 1. $\forall x, x \notin \emptyset$.

Teorema 2. $\forall x, x \notin A \iff A = \emptyset$.

Definición 3. (Contención) $A \subseteq B \iff \forall x (x \in A \implies x \in B)$.

Definición 4. (Contención estricta) $A \subset B \iff (A \subseteq B \land A \neq B)$.

Teorema 3. $A \subseteq \emptyset \implies A = \emptyset$.

Teorema 4. $\neg (A \subset A)$.

TEOREMAS

 $1. \forall x, x \notin \emptyset$

den: Sea &(x) la expresión X+x. Por esquema axiomático de separación IB +x 7 (x = + x +x). Supongase JxeB → ×+× (x) > ∀x,x∉B. Por definición de conjunto B= \$ >> 4x,x&p.

A2: ESQUEMA AXIOMÁTICO DE SEPARACIÓN $\exists B \forall \mathbf{x} \ni (x \in B \iff [x \in A \ y \ \Phi(x)])$ conjunto !/

 $2. \forall x, x \notin A \Leftrightarrow A = \emptyset \circ$ Si $\forall x, x \notin A \Rightarrow \text{Der definition}$ de coujunto, $A = \Phi$.

(€) Si A= \$\phi \rightarrow Par teoreura anterior ¥x, xeφ=A ⇒ ¥x, x¢A.

≯ DEFINICIÓN DE CONTENCIÓN $A \subseteq B \iff \forall x (x \in A \implies x \in B)$

AS DEFINICIÓN DE CONTENCIÓN ESTRICTA $A \subset B \Leftrightarrow (A \subseteq B \ y \ A \neq B)$

(P⇒q) = (¬=P)

TEOREMAS

$2.\neg(A \subset A)$

... T (ACA).