

Cache-friendly Run-Length Compressed Burrows-Wheeler Transform

Yansong Li

CSCI 6057 Project Presentation

March 22nd, 2022

Course Instructor: Meng He

Introduction

- Compressing large highly competitive string (e.g. human genome) in bioinformatics is essential
 - Chromosome 19 has almost 59 million bases [1]
- Burrows-Wheeler Transform (BWT)
- Run-length compressed BWT (RLBWT)
- Inverse the BWT: Last-to-First mapping (L-F mapping)
 - High number of cache misses.

Introduction

- Nishimoto's lookup table for L-F mapping
 - L-F Computation only needs constant time
 - Enormous number of cache misses
- Sirén's method
 - Graph BWT
- Apply Sirén's method on Nishimoto's lookup table

Literature Review

- Nishimoto's lookup table for RLBWT [2].
 - Efficiency: do the L-F mapping of RLBWT in O(1) time and O(r) space.
 - Description: use lookup table to replace compressed spare bitvector for in order to compress a random permutation of a string.
 - Improvement requeried: O(r) space is large, so it has to sit on the memory.

Literature Review

- Sirén's Graph BWT implementation[3].
 - Partition BWT in to sub-BWTs according to the most significant character in the lexicographic order.
 - Encode each sub-BWT.
 - Assume a cache-friendly layout.

Objectives and Hypotheses

- Decrease the number of cache misses
- Rearrange the RLBWT table
 - Cut the table into blocks, build a graph using blocks, cluster the graph
- Assume a cache-friendly graph layout
 - Low out-degree of each blocks
 - Low expansion of the graph

Methodology – RLBWT table

• The RLBWT tables are provided by Nate Brown[4]

- Let T[1 ... r] represent a RLBWT table of length r that was built from a BWT with of size n.
 - T_i is a quadruple that consisted of character c, length l, interval k_{LF} , and offset d_{LF} .
- row#4 G 10 7 0

• Cut T into blocks B[1 ... b] with size of 1024 rows

- Use the B as nodes V and the jumps of L-F mapping (index, k_{LF}) as edges E to build a graph G=(V,E)
 - Self-connected edges $e = (v, v), e \in E, v \in V$ are ignored

• $e \in E$ is weighted, and weight $w \in W$ of e is the total length of runs between two nodes $v \in V, u \in V$

• *G* is clustered by METIS with different #clusters [5].

• Clustering Algorithm: Cluster v and u if e = (v, u) has the largest w until all $v \in V$ is clustered.

• Calculate the total weight W_m of inter-clusters edges $e_t \in E_t$.

Methodology – Sequential Clustering and weight ratio

• *G* is clustered sequentially as a comparison.

• Clustering Algorithm: For each $v \in V$, cluster it by its index in T with a certain #clusters

• Calculate the total weight $W_{\mathcal{S}}$ of inter-clusters edges $e_t \in E_t$

• Calculate $\frac{W_S}{W_m}$

Salmonella dataset statistics:

•
$$n: 145,595,456; r = 12,823,516; \frac{n}{r} = 11.3537.$$

•
$$|B| = 12,523; |V| = 62,556; W = 145,589,783.$$

Clustering result

#Clusters	10	50	100	500	1000
W_m	41,393,086	56,002,575	62,137,611	103,647,402	128,998,476
W_s	127,980,098	142,549,115	143,815,338	145,258,185	145,482,565
$\frac{W_s}{W_m}$	3.09	2.55	2.31	1.4	1.13

METIS Clustering vs. Sequential Clustering (chr19_128)

Result – Chromosome 19 (128 copies)

• Chr19_128 dataset statistics:

•
$$n: 7,568,015,632; r = 34,053,959; \frac{n}{r} = 222.236.$$

•
$$|B| = 33,256$$
; $|V| = 166,104$; $W = 7,142,005,530$.

Clustering result

#Clusters	10	50	100	500	1000
W_m	1,601,510,950	2,249,127,139	2,483,372,420	3,132,482,264	3,518,451,513
W_s	6,149,247,602	6,934,085,819	7,010,231,320	7,093,603,030	7,110,940,769
$\frac{W_s}{W_m}$	3.84	3.09	2.82	2.26	2.02

Result – Chromosome 19 (128 copies)

METIS Clustering vs. Sequential Clustering (chr19_256)

Result – Chromosome 19 (256 copies)

- Chr19_256 dataset statistics:
 - n, r, |B|, |V| increases by 4.5%.
 - $\frac{n}{r}$ = 424.934; W = 14,284,840,384, which increases by 2 times.
- Each $w \in W$ increases by 2 times, didn't get better.

Discussions

• The METIS clustering gives meaningfully better results when #cluster < 100.

• Salmonella shows 2 times better, and chromosome 19 show 3 times better with 100 clusters.

 1024 block size and 100 clusters is feasible based on the L1 and L3 cache size of Waverley and Timbelea.

Conclusion and future works

• The results is not significantly better, but still interesting.

- Prove the graph has a cache-friendly layout
 - The number of out edges per node is low
 - The graph is almost linear, a low expansion

Make block size and cache size to parameters.

Implement the cache-friendly feature

Thanks for listening

References

- [1] NCBI. (2022). Genome Reference Consortium Human Build 38 patch release 14 (GRCh38.p14). https://www.ncbi.nlm.nih.gov/assembly/GCA_000001405.29
- [2] Nishimoto, T., & Tabei, Y. (2021). Optimal-Time Queries on BWT-Runs Compressed Indexes. *ICALP*.
- [3] Sirén, J., Garrison, E., Novak, A., Paten, E., & Durbin, R. (2020). Haplotype-aware graph indexes. *Bioinformatics*, Volume 36, Issue 2, pp. 400–407.
- [4] Brown, N.K., Gagie, T., & Rossi, M. (2021). RLBWT Tricks. ArXiv, abs/2112.04271.
- [5] Karypis, G., Kumar, V. (1999). A Fast and Highly Quality Multilevel Scheme for Partitioning Irregular Graphs. *SIAM Journal on Scientific Computing*, Vol. 20, No. 1, pp. 359—392.