Lógica Proposicional

Proposiciones

• Una proposición es una oración a la que se le puede asignar un único valor de verdad : **verdadero o falso.**

Ejemplos:

- El sol está caliente.
- La Tierra está hecha de queso.
- 5 más 5 es igual a 55.
- El dígito decimal número 500 del número PI es 7.
- (Probablemente no sepa si esto último es verdadero o falso, pero seguramente es verdadero o falso).

• Las siguientes no son proposiciones (¿por qué?):

- ¿Estas aburrido?
- ¡Por favor, no te vayas!
- Ella me ama.
- x es un número entero.
- Esta oración es falsa.

Conectores lógicos proposicionales

- En la gramática del lenguaje natural, los conectores proposicionales binarios, más otros como: pero, porque, a menos que, aunque, así que, sin embargo, etc., se denominan "conjunciones" porque "juntan", es decir, conectan oraciones.
- En lógica usamos los conectores proposicionales para conectar proposiciones.

Dada las proposiciones: "Dos más dos son cinco" y "El sol está caliente"

INGLES	ESPAÑOL	REPRESENT
NOT	NO	¬ negación
AND	Υ	Λ conjunción
OR	О	V disyunción
THEN	ENTONCES	=> implicación
IF ONLY IF	SI y SOLO SI	<=> doble implicación o equivalencia

VARIABLES PROPOSICIONALES

p= Michael Jordan es el mejor jugador de baloncesto

q= Fumar es dañino para la salud

r= 100 es mayor que 1

- ✓ Una proposición que es verdadera para cada interpretación se dice que es una tautología o ley lógica.
- ✓ Una proposición que es falsa para cada interpretación se dice que es una contradicción o insatisfactoria.

Conectores Lógicos

Aritmética Proposicional

- La proposición $\neg A$ es verdadera si y sólo si la proposición A es falsa .
- La proposición $A \wedge B$ es verdadera si y sólo si ambos A y B son verdaderos .
- La proposición $A \lor B$ es verdadera si y sólo si cualquiera de A o B (posiblemente ambos) es verdadero .
- La proposición $A \to B$ es verdadera si y sólo si A es falso o B es verdadero, es decir, si la verdad de A implica la verdad de B .
- La proposición $A \leftrightarrow B$ es verdadera si y sólo si $A \lor B$ tienen los mismos valores de verdad.

Conjunción

р	q	p∧q
1	0	0
0	1	0
0	0	0
1	1	1

Disyun	ción
,	

Si entonces

р	q	p∨q
1	0	1
0	1	1
0	0	0
1	1	1

р	¬p
1	0
0	1

Tablas de Equivalencia

р	q	p => q	
1	0	0	
0	1	1	
0	0	1	
1	1	1	

р	q	p <=> q
1	0	0
0	1	0
0	0	1
1	1	1

Si v solo si

"Dos más dos son cinco" y "El sol está caliente"

Se puede formar las proposiciones:

- " No se da el caso de que dos más dos sean cinco . "
- " Dos más dos es igual a cinco y el sol está caliente ".
- " Dos más dos es igual a cinco o el sol está caliente ".
- "Si dos más dos es igual a cinco, entonces el Sol está caliente".
- " Dos más dos es igual a cinco si y solo si el Sol está caliente ."

Tabla de Verdad

p	$\neg p$	p	q	$p \wedge q$	$p\vee q$	$p \to q$	$p \leftrightarrow q$
Т	F	Т	Т	Т	Т	Т	Т
F	Т	Т	F	F	Т	F	F
		F	т	F	т	Т	F
		F	F	F	F	Т	Т

Ejemplos

- "No se da el caso de que dos más dos sean cinco" es cierto;
- "Dos más dos son cinco y el Sol calienta" es falso;
- "Dos más dos es igual a cinco o el Sol está caliente" es cierto;
- "Si dos más dos son cinco, entonces el Sol está caliente" es cierto (aunque no tiene sentido).

• "La lógica no es fácil o si la lógica es divertida entonces es fácil y no aburrida."

• " (La lógica no es fácil) o ((si la lógica es divertida) entonces ((la lógica es fácil) y (la lógica no es aburrida))). "

" La lógica es divertida : A

"La lógica es aburrida": B

"La lógica es fácil": C

$$(\neg C) \ v \ (A \rightarrow (C \land \neg B))$$

Lógica Proposicional,

- La Conjunción en lenguaje natural no necesariamente es conmutativa
 - " El niño tiró la piedra y la ventana se rompió"
 - "La ventana se rompió y el niño tiró la piedra"
- En cambio, la conjunción lógica proposicional sí es conmutativa
- La conjunción también se usa a menudo para conectar oraciones no completas sino solo partes, para evitar repeticiones.
 - Por ejemplo, "La princesita es inteligente y hermosa "lógicamente significa "La princesita es inteligente y la princesita es hermosa".

• Varias otras palabras conjuntivas en el lenguaje natural, como pero, sin embargo, aunque, mientras que, mientras, etc., se traducen en lógica proposicional como conjunción lógica.

• la proposición A en la implicación A -> B se llama antecedente y la proposición B es el consecuente de la implicación.

LOGICA PROPOSICIONAL

Equivalencias Lógicas

valencias Logicas	
Doble negación	~(~p) ≡ p
2. Leyes Conmutativas	$p \lor q \equiv q \lor p$
	$p \wedge q \equiv q \wedge p$
	$p \leftrightarrow q \equiv q \leftrightarrow p$
Leyes Asociativas	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
	$(p \land q) \land r \equiv p \land (q \land r)$
Leyes Distributivas	$p \lor (q \land r)^{\perp} \equiv (p \lor q) \land (p \lor r)$
	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
5. Leyes de Idempotencia	$p \lor p \equiv p$ $p \land p \equiv p$
Leyes de Identidad	$p \lor F \equiv p$ $p \lor V \equiv V$
	$p \wedge F \equiv F$ $p \wedge V \equiv p$
	$p \wedge \neg p \equiv F$ $p \vee \neg p \equiv V$
7. Leyes de De Morgan	$\sim (p \land q) \equiv \sim p \lor \sim q$
	$\sim (p \lor q) \equiv \sim p \land \sim q$
8. Implicación	$p \rightarrow q \equiv \neg p \lor q$ $p \rightarrow q \equiv \neg (p \land \neg q)$
9. Contraposición	$p \rightarrow q \equiv \neg q \rightarrow \neg p$
10. Equivalencia	$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$
11. Reducción al absurdo	$p \leftrightarrow q \equiv ((p \land \neg q) \rightarrow F)$

Lógica Proposicional

- 1. $p \lor p \equiv p$ (idempotent law)
- 2. $p \land p \equiv p$ (idempotent law)
- 3. $[p \lor q] \lor r \equiv p \lor [q \lor r]$ (associative law)
- 4. $[p \land q] \land r \equiv p \land [q \land r]$ (associative law)
- 5. $p \lor q \equiv q \lor p$ (commutative law)

- 6. $p \land q \equiv q \land p$ (commutative law)
- 7. $p \land [q \lor r] \equiv [p \land q] \lor [p \land r]$ (distributive law over ^)
- 8. $p \lor [q \land r] \equiv [p \lor q] \land [p \lor r]$ (distributive law over $\check{}$)
- 9. $p \lor [p \land q] \equiv p$
- 10. $p \land [p \lor q] \equiv p$

- 11. $p \lor 0 \equiv p$
- 12. $p \wedge 1 \equiv p$
- 13. $p \lor 1 \equiv 1$
- 14. $p \wedge 0 \equiv 0$
- 15. $p \lor \neg p \equiv 1$
- 16. $p \land \neg p \equiv 0$ (contradiction)
- 17. $\neg [\neg p] \equiv p$ (double negation)

- 18. ¬1 ≡ 0
- 19. ¬0 ≡ 1
- 20. $\neg [p \lor q] \equiv \neg p \land \neg q$ (De Morgan's law)
- 21. $\neg [p \land q] \equiv \neg p \lor \neg q$ (De Morgan's law)
- 22. $p \Rightarrow q \equiv \neg p \lor q$ (definition \Rightarrow)
- 23. $[p <=> q] \equiv [p => q] \land [q => p]$ (definition <=>)

Lógica Implícita

1.
$$p \approx q \Rightarrow [p \land q]$$

2.
$$[p => q] \land [q => r] \approx p => q$$

3.
$$\neg q \Rightarrow \neg p \approx p \Rightarrow q$$

4.
$$[p \Rightarrow q] \land [\neg p \Rightarrow q] \approx q$$

5.
$$[p => r] \land [q => r] \approx [p \lor q] => r$$

6.
$$\neg p => [q \land \neg q] \approx p$$

7.
$$p \Rightarrow [q \land \neg q] \approx \neg p$$

8.
$$\neg p \Rightarrow p \approx p$$

9.
$$p \Rightarrow \neg p \approx \neg p$$

10.
$$p \Rightarrow [\neg q \Rightarrow [r \land \neg r]] \approx p \Rightarrow q$$

11.
$$[p \land \neg q] \Rightarrow q \approx p \Rightarrow q$$

12.
$$[p \land \neg q] \Rightarrow \neg p \approx p \Rightarrow q$$

13.
$$[p \Rightarrow q] \land [\neg p \Rightarrow r] \approx q \lor r$$

14.
$$\neg p \Rightarrow q \approx p \lor q$$

15.
$$p \Rightarrow q \approx q \vee \neg p$$

16.
$$p \approx p \vee q$$

17.
$$p \wedge q \approx p$$

18.
$$p \approx q \Rightarrow p$$

Demostración Ley de Morgan

р	q	p∨q
1	0	1
0	1	1
0	0	0
1	1	1

$$\neg [p \lor q] \equiv \neg p \land \neg q$$

р	q	¬[p ∨ q]	¬p ∧ ¬q
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

Ejercicios

Aplicar lógica proposicional al siguiente enunciado:

Si un triángulo tiene tres ángulos entonces un cuadrado tiene cuatro ángulos rectos. Un triángulo tiene tres ángulos y su suma vale dos ángulos rectos. Si los rombos tienen 4 ángulos rectos por consiguiente los cuadrados no tienen cuatro ángulos rectos.

Por lo tanto los rombos no tienen cuatro ángulos rectos

Identificar proposiciones :

P: un triángulo tiene 3 ángulos

Q : un cuadrado tiene 4 ángulos rectos

R: su suma vale dos ángulos rectos

S: los rombos tienen 4 ángulos rectos

 $P \rightarrow Q$

P^R

 $s \rightarrow \neg Q$

¬S