

Universidade Federal do Rio Grande do Norte

EGM0001 - SISTEMAS DINÂMICOS E SERVOMECANISMOS

Atividade Computacional 03

Controle de Sistema de 1^a Ordem

Discente: Camila Barbosa Gomes de Araújo $\begin{tabular}{ll} Docente: \\ Wallace Moreira Bessa \end{tabular}$

1 Modelo proposto

O sistema a ser controlado trata-se do subsistema Motor-Roda do Rover Perseverance. O modelo dinâmico proposta para esse subsistema está descrito pela Equação 1. Para esse problema, no entanto, está sendo suposto que os coeficientes de atrito, μ_v e μ_d sejam constantes e bastante próximos, de modo que seja possível assumir que $\mu_v = \mu_d = \mu = cte$. Assim, tem-se:

$$J\dot{\omega} = -\mu(\omega + sgn(\omega)) + Ki \tag{1}$$

Onde:

- J: Inércia
- ω : Velocidade angular
- μ: Coeficiente de Atrito
- K: Constante do Motor
- i: Corrente

Para fins de implementação, serão considerados:

- $J = 2 \times 10^{-4}$
- $K = 4 \times 10^{-2}$

Dadas essas considerações, agora está sendo considerada a lei de controle descrita na Equação 2.

$$i = \frac{\hat{\mu}(\omega + sgn(\omega) + J(\dot{\omega} - \lambda e))}{K}$$
 (2)

Sendo:

- $e = \omega \omega_d \longrightarrow \text{Erro}$
- $\lambda \longrightarrow \text{Lambda}$ (Coeficiente de aprendizado)

O parâmetro $\hat{\mu}$ é calculado a cada instante de atuação do controlador pela lei adaptativa descrita na Equação 3.

$$\hat{\mu}_{n+1} = \hat{\mu}_n - \eta e_n(\omega_n + sgm(\omega_n))\Delta t \tag{3}$$

Nas seções seguintes, serão tratadas a implementação do subsistema em Python, os resultados com gráficos do comportamento do sistema e as devidas conclusões sobre o experimento.

2 Implementação do Sistema

Aproveitando-se da implementação da primeira atividade computacional, o novo sistema proposto foi desenvolvido com algumas alterações:

- 1. Mudança na lei de controle (Equação 2)
- 2. Mudança do valor calculado de $\dot{\omega}$ (Equação 1)

3. Cálculo de $\hat{\mu}$ (Equação 3)

No trecho de código abaixo, a função principal do código é exposta, com as devidas alterações comentadas acima.

```
def generate_values(tf, W, Wd, _lambda, J, K, mi, u_chapeu, N):
w = [W]
_e = []
_i = []
_u_chapeu = [0]
for t in range(tf*1000-1):
    e = W - Wd
    _e.append(e) ### save the error to plot later
    i = (u_chapeu*(W+np.sign(W)) + J*(0-(_lambda*e))) / K ### calculates the current
    _i.append(i)
    u_{chapeu} = u_{chapeu} - (N * e * (W + np.sign(W)) * 0.001)
    _u_chapeu.append(u_chapeu)
    W = rungeKutta(W, 0.001, mi, K, i, J, u_chapeu)
    _w.append(W) ### saves in a list the next value of w
_e.append(W - Wd)
_i.append((u_chapeu*(W+np.sign(W)) + J*(0-(_lambda*e))) / K)
return _w, _e, _i, _u_chapeu
```

O código pode ser encontrado em https://github.com/camilabga/rover-control. A função que implementa essa atividade é plot em main03.py e functions03.py.

3 Resultados e Conclusões

A análise consistiu em variar η e μ e entender os resultados. Foram utilizados dois valores de μ e dois valores de λ com o η variando sempre entre 7 valores.

Figura 1: Plot da velocidade angular com a variação de η com $\mu = 0$ e $\lambda = 0.25$

O primeiro teste consistiu em analisar o comportamento da velocidade angular, da corrente e do valor

estimado do coeficiente de atrito para 7 valores diferentes da taxa de adaptação, quando $\mu=0$ e $\lambda=0.25$. Os gráficos estão nas Figuras 1, 2 e 3.

A princípio, percebemos que ao aumentar o η , também aumentamos a oscilação na velocidade angular. Isso pode ser visto na Figura 1. Com a taxa de adaptação nula, ou quase nula, percebemos uma curva suave e sem (ou com muito pouco) overshoot.

Na Figura 2, o esforço de controle repete o visto na velocidade angular. Quanto maior o valor de η , mais oscilatório o comportamento.

Figura 2: Plot da corrente com a variação de η com $\mu=0$ e $\lambda=0.25$

Já comportamento da estimativa do coeficiente de atrito, por o mesmo ser igual a zero, nesse caso, o valor estimado oscila sobre o zero até estabilizar quanto maior a taxa de adaptação, o que faz sentido. Enquanto para os valores menores, a convergência com o valor real do modelo é mais rápida, o que pode ser visto na Figura 3

Figura 3: Plot da estimativa do coeficiente de atrito com a variação de η com $\mu = 0$ e $\lambda = 0.25$

Ao variar o valor do coeficiente de atrito μ do modelo para 0.0005 e mantendo o tempo de execução em 50 segundos, temos os resultados das Figuras 4 e 5.

Figura 4: Plot da velocidade angular com a variação de η com $\mu = 0.0005$ e $\lambda = 0.25$

Na Figura 4, notamos que apenas a simulação com a maior taxa de adaptação foi capaz de convergir em menos de 50 segundos. Isso acontece porque o coeficiente de atrito do modelo agora é diferente de zero e a estimativa do mesmo, que é o valor considerado na lei de controle, depende diretamente de η para variar.

Figura 5: Plot da estimativa do coeficiente de atrito com a variação de η com $\mu=0.0005$ e $\lambda=0.25$

Na Figura 5 notamos exatamente isso, o valor com maior taxa de adaptação oscilando e os seguintes se aproximando de $\mu=0.0005$.