School of Computer Science and Communication Systems Master in Computer Science

Bandwidth efficient object recognition for drone swarms

Supervised by

Student

Prof. Dario Floreano

Marco Zoveralli

Dr. Giuseppe Cocco

Fabian Schilling

Project Overview

- Motivation
 - Detection Accuracy: prediction by single drone may be unreliable
 - Consensus: autonomous swarms may need to agree on whether a given target is present
 - Bandwidth efficiency: especially relevant in urban environment
- Goal
 - Determine the presence/absence of a target object with high accuracy
- Proposed approach
 - Exploit multiple viewpoints
 - Estimations are done locally by each drone
 - Limited information exchange to save power, bandwidth and for scalability

Related Work

• A. Rahimpour *et al.*, "Distributed Object Recognition in Smart Camera Networks," 2016 IEEE Int. Conf. on Image Processing (ICIP), 2016.

- Feature extraction performed by each camera
- Feature sent to a base station, which performs object detection
- Lack of an autonomous set of devices that triggers other events

- H. Medeiros et al., "Distributed Object Tracking Using a Cluster-Based Kalman Filter in Wireless Camera Networks," IEEE Journal of Selected Topics in Signal Processing, 2008.
 - Distributed Kalman filter
 - Different goal
- A. Giusti et al., "Cooperative sensing and recognition by a swarm of mobile robots," IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.
 - Interesting communication and consensus protocol
 - Human-computer interaction
 - Different setup, different goal
 - Classification task

Hardware Selection and Validation

- Hardware selection
 - Project inputs
 - Single-board computers: Odroid XU4
 - Image Acquisition: M7 camera
 - Our proposal
 - Connectivity: WiFi Module 5
- Hardware validation
 - Connectivity tests
 - Adhoc mode compatibility
 - Network throughput
 - Network stability

Object detection tests

- Setup of a machine learning framework on the ARMv7 architecture
- MSCOCO pre-trained neural network
- Average computational time: 200ms per prediction
- Accurate predictions over a defined set of objects (e.g. bottle, keyboard)

Protocol Design: Intra-host Computations

What? – Related Work – How? – Progress

Protocol Design: Inter-host Communication

What? – Related Work – **How?** – Progress

Protocol Design: Main Challenges

- Give the proper weight to each device's prediction
- Reach a consensus
- Handle packet losses

Progress

THANK YOU FOR **YOUR** ATTENTION! ANY QUESTIONS?

Progress

WEEKS:

1) Setup of communication system

1.1) Connecting two drones

1.2) Preliminar testing of connection stability

1.3) Connecting more drones

1.4) Preliminary experiments, more drones

1.5) Consider alternative hardware (backup plan)

2) Setup of image capture/object recognition system

2.1) Test image capture

2.2) Test object recognition algorithm

2.2.1) On PC

2.2.2) On Odroid

3) Distributed Object Detection

3.1) Discuss the desired setup (number of drones, positions, object detection frequency)

3.2) Setup and test of interprocess communication (intra-host)

3.3) Setup of few odroids to support the protocol development

3.4) Design communication/consensus protocol

3.5) Implement the protocol

3.6) Integrate object detection

3.7) Test multiple object detection algorithms (if necessary)

4) Evaluation of system performance

4.1) Bandwidth efficiency

4.2) Detection accuracy

