Distributed by:

JAMECO

ELECTRONICS

www.Jameco.com + 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

Jameco Part Number 45129PHILIPS

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT6888-bit magnitude comparator

Product specification
File under Integrated Circuits, IC06

December 1990

8-bit magnitude comparator

74HC/HCT688

FEATURES

• Compare two 8-bit words

· Output capability: standard

• I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT688 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT688 are 8-bit magnitude comparators. They perform comparison of two 8-bit binary or BCD words.

The output provides $\overline{P} = \overline{Q}$.

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
	PARAMETER	CONDITIONS	НС	нст	ONII
t _{PHL} / t _{PLH}	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$			
	P_n , Q_n to $\overline{P} = \overline{Q}$		17	17	ns
	E to $\overline{P} = Q$		8	12	ns
C _I	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	30	30	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$

where:

f_i = input frequency in MHz

 f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

C_I = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

8-bit magnitude comparator

74HC/HCT688

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION					
1	Ē	enable input (active LOW)					
2, 4, 6, 8, 11, 13, 15, 17	P ₀ to P ₇	word inputs					
3, 5, 7, 9, 12, 14, 16, 18	Q ₀ to Q ₇	word inputs					
10	GND	ground (0 V)					
19	$\overline{P} = \overline{Q}$	equal to output					
20	V_{CC}	positive supply voltage					

8-bit magnitude comparator

74HC/HCT688

FUNCTION TABLE

INPUTS	OUTPUT			
DATA P _n , Q _n	$\overline{P} = Q$			
P = Q	L	L		
X	Н	Н		
P > Q	L	Н		
P < Q	L	Н		

Notes

1. H = HIGH voltage level

L = LOW voltage level

X = don't care

Philips Semiconductors Product specification

8-bit magnitude comparator

74HC/HCT688

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)							LINIT	TEST CONDITIONS	
SYMBOL		74HC									
		+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(,	
t _{PHL} / t _{PLH}	propagation delay P_n , Q_n to $\overline{P} = \overline{Q}$		55 20 16	170 34 29		215 43 37		255 51 43	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay E to P = Q		28 10 8	120 24 20		150 30 26		180 36 31	ns	2.0 4.5 6.0	Fig.7
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Figs 6 and 7

Philips Semiconductors Product specification

8-bit magnitude comparator

74HC/HCT688

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
P _n	0.35
Q _n	0.35
Ē	0.70

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
		74HCT									
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		()	
t _{PHL} / t _{PLH}	propagation delay P_n , Q_n to $\overline{P} = \overline{Q}$		20	34		43		51	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	$\frac{\text{propagation delay}}{\text{E to } \overline{\text{P}} = \overline{\text{Q}}}$		18	24		30		36	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Figs 6 and 7

Philips Semiconductors Product specification

8-bit magnitude comparator

74HC/HCT688

AC WAVEFORMS

APPLICATION INFORMATION

Two or more "688" 8-bit magnitude comparators may be cascaded to compare binary or BCD numbers of more than 8 bits. An example is shown in Fig.8.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".