$11a_{100} \ (K11a_{100})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^{30} - u^{29} + \dots + 8b + u, \ -u^4 + u^2 + a - 1, \ u^{31} - u^{30} + \dots + 2u - 1 \rangle \\ I_2^u &= \langle 8.05572 \times 10^{18} u^{45} - 1.78051 \times 10^{19} u^{44} + \dots + 3.67198 \times 10^{19} b - 7.81561 \times 10^{18}, \\ &= 9.93809 \times 10^{19} u^{45} - 7.04855 \times 10^{19} u^{44} + \dots + 3.67198 \times 10^{19} a - 2.19276 \times 10^{20}, \ u^{46} - u^{45} + \dots - 4u + 1 \rangle \\ I_3^u &= \langle b^4 + 4b^3 + 4b^2 + 1, \ a + 1, \ u + 1 \rangle \\ I_4^u &= \langle b^3 + 3b^2 + 3b + 1, \ a + 1, \ u - 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 84 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{30} - u^{29} + \dots + 8b + u, -u^4 + u^2 + a - 1, u^{31} - u^{30} + \dots + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -\frac{1}{8}u^{30} + \frac{1}{8}u^{29} + \dots - \frac{3}{4}u^{2} - \frac{1}{8}u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{8}u^{30} + \frac{1}{8}u^{29} + \dots - \frac{1}{8}u + 1 \\ u^{30} - \frac{9}{8}u^{29} + \dots + \frac{3}{2}u - \frac{1}{8} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}u^{30} + \frac{1}{8}u^{29} + \dots + \frac{1}{2}u + \frac{3}{8} \\ \frac{13}{8}u^{30} - \frac{27}{8}u^{29} + \dots + \frac{79}{8}u - 3 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{8}u^{30} + \frac{1}{8}u^{29} + \dots + \frac{79}{8}u - 3 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{8}u^{30} + \frac{1}{8}u^{29} + \dots - \frac{1}{8}u + 1 \\ -\frac{1}{4}u^{30} + \frac{1}{4}u^{29} + \dots - \frac{3}{2}u^{2} - \frac{1}{4}u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -\frac{1}{8}u^{30} + \frac{1}{8}u^{29} + \dots - \frac{3}{4}u^{2} - \frac{1}{8}u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{8}u^{29} - \frac{1}{8}u^{28} + \dots + \frac{3}{4}u + \frac{1}{8} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{8}u^{29} - \frac{1}{8}u^{28} + \dots + \frac{3}{4}u + \frac{1}{8} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{3}{2}u^{30} \frac{17}{4}u^{29} + \dots + \frac{49}{2}u \frac{69}{4}$

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{31} - 3u^{30} + \dots - 6u + 2$
c_2	$u^{31} + 15u^{30} + \dots - 4u - 4$
c_3, c_4, c_8 c_{10}	$u^{31} + u^{30} + \dots + 2u + 1$
c_6	$u^{31} + 3u^{30} + \dots + 34u + 2$
c_7, c_9	$u^{31} + 13u^{30} + \dots + 8u + 1$
c_{11}	$u^{31} - 15u^{30} + \dots - 1566u + 158$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{31} + 15y^{30} + \dots - 4y - 4$
c_2	$y^{31} + 3y^{30} + \dots + 112y - 16$
c_3, c_4, c_8 c_{10}	$y^{31} - 13y^{30} + \dots + 8y - 1$
c_6	$y^{31} - 9y^{30} + \dots + 92y - 4$
c_7, c_9	$y^{31} + 19y^{30} + \dots - 4y - 1$
c_{11}	$y^{31} + 3y^{30} + \dots - 219108y - 24964$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.671875 + 0.755704I		
a = 0.102801 + 1.258530I	4.33630 + 2.18000I	-1.38223 - 2.85674I
b = 1.26875 + 0.87692I		
u = -0.671875 - 0.755704I		
a = 0.102801 - 1.258530I	4.33630 - 2.18000I	-1.38223 + 2.85674I
b = 1.26875 - 0.87692I		
u = -0.529243 + 0.781629I		
a = 0.75581 + 1.37479I	3.92659 - 0.20488I	-1.21175 - 1.93479I
b = 1.228420 + 0.141119I		
u = -0.529243 - 0.781629I		
a = 0.75581 - 1.37479I	3.92659 + 0.20488I	-1.21175 + 1.93479I
b = 1.228420 - 0.141119I		
u = 0.473734 + 0.815861I		
a = 1.03834 - 1.45511I	1.98591 + 5.18766I	-4.29263 - 2.87164I
b = 1.186120 + 0.184502I		
u = 0.473734 - 0.815861I		
a = 1.03834 + 1.45511I	1.98591 - 5.18766I	-4.29263 + 2.87164I
b = 1.186120 - 0.184502I		
u = 0.739148 + 0.756876I		
a = -0.224684 - 1.178240I	2.80358 - 7.15169I	-4.41360 + 8.13736I
b = 1.18263 - 1.25006I		
u = 0.739148 - 0.756876I		
a = -0.224684 + 1.178240I	2.80358 + 7.15169I	-4.41360 - 8.13736I
b = 1.18263 + 1.25006I		
u = -0.998773 + 0.420018I		
a = 0.149196 - 0.538864I	-5.71846 - 1.00535I	-12.20049 - 2.17594I
b = 1.154630 + 0.334617I		
u = -0.998773 - 0.420018I		
a = 0.149196 + 0.538864I	-5.71846 + 1.00535I	-12.20049 + 2.17594I
b = 1.154630 - 0.334617I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.001180 + 0.470735I		
a = -0.059625 + 0.529287I	-2.76836 - 3.54859I	-8.60512 + 5.21629I
b = 0.707502 - 0.184028I		
u = 1.001180 - 0.470735I		
a = -0.059625 - 0.529287I	-2.76836 + 3.54859I	-8.60512 - 5.21629I
b = 0.707502 + 0.184028I		
u = -1.060830 + 0.466616I		
a = -0.063939 - 0.807099I	-6.59629 + 7.25038I	-13.7743 - 8.1656I
b = 0.799755 - 0.463575I		
u = -1.060830 - 0.466616I		
a = -0.063939 + 0.807099I	-6.59629 - 7.25038I	-13.7743 + 8.1656I
b = 0.799755 + 0.463575I		
u = 1.045460 + 0.641230I		
a = -1.014590 + 0.487534I	0.83772 - 3.66094I	-6.42863 + 2.29820I
b = -1.013330 - 0.611771I		
u = 1.045460 - 0.641230I		
a = -1.014590 - 0.487534I	0.83772 + 3.66094I	-6.42863 - 2.29820I
b = -1.013330 + 0.611771I		
u = 0.551309 + 0.517564I		
a = 0.639561 - 0.529508I	-0.67493 - 1.41882I	-8.11819 + 4.23209I
b = 0.464527 - 0.522513I		
u = 0.551309 - 0.517564I		
a = 0.639561 + 0.529508I	-0.67493 + 1.41882I	-8.11819 - 4.23209I
b = 0.464527 + 0.522513I		
u = -1.093950 + 0.638128I		
a = -1.115430 - 0.808402I	1.61779 + 8.62066I	-5.39345 - 7.96064I
b = -1.54639 + 0.11518I		
u = -1.093950 - 0.638128I		
a = -1.115430 + 0.808402I	1.61779 - 8.62066I	-5.39345 + 7.96064I
b = -1.54639 - 0.11518I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.150290 + 0.579146I		
a = -0.78731 + 1.29973I	-4.83518 - 8.17855I	-13.0634 + 5.6311I
b = -1.32274 + 1.36596I		
u = 1.150290 - 0.579146I		
a = -0.78731 - 1.29973I	-4.83518 + 8.17855I	-13.0634 - 5.6311I
b = -1.32274 - 1.36596I		
u = -1.159090 + 0.618451I		
a = -1.09291 - 1.32186I	-0.06269 + 11.03950I	-6.94221 - 7.13356I
b = -2.11523 - 1.06499I		
u = -1.159090 - 0.618451I		
a = -1.09291 + 1.32186I	-0.06269 - 11.03950I	-6.94221 + 7.13356I
b = -2.11523 + 1.06499I		
u = -0.673147 + 0.057260I		
a = 0.746573 + 0.007732I	-4.34804 + 3.91818I	-8.50345 - 5.07903I
b = -1.032490 + 0.376155I		
u = -0.673147 - 0.057260I		
a = 0.746573 - 0.007732I	-4.34804 - 3.91818I	-8.50345 + 5.07903I
b = -1.032490 - 0.376155I		
u = 1.179340 + 0.616871I		
a = -1.10660 + 1.48500I	-2.4315 - 16.1755I	-10.0749 + 10.7687I
b = -2.36523 + 1.45569I		
u = 1.179340 - 0.616871I		
a = -1.10660 - 1.48500I	-2.4315 + 16.1755I	-10.0749 - 10.7687I
b = -2.36523 - 1.45569I		
u = 0.581693		
a = 0.776125	-1.33697	-6.39560
b = -0.645714		
u = 0.255598 + 0.492030I		
a = 1.144740 - 0.340444I	-0.56339 - 1.34523I	-5.39791 + 4.30982I
b = 0.225939 - 0.088212I		

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	0.255598 - 0.492030I		
a =	1.144740 + 0.340444I	-0.56339 + 1.34523I	-5.39791 - 4.30982I
b =	0.225939 + 0.088212I		

 $II. \\ I_2^u = \langle 8.06 \times 10^{18} u^{45} - 1.78 \times 10^{19} u^{44} + \dots + 3.67 \times 10^{19} b - 7.82 \times 10^{18}, \ 9.94 \times 10^{19} u^{45} - 7.05 \times 10^{19} u^{44} + \dots + 3.67 \times 10^{19} a - 2.19 \times 10^{20}, \ u^{46} - u^{45} + \dots - 4u + 1 \rangle$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -2.70647u^{45} + 1.91955u^{44} + \cdots - 10.9263u + 5.97160 \\ -0.219384u^{45} + 0.484891u^{44} + \cdots - 1.60887u + 0.212845 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 3.33142u^{45} - 2.00063u^{44} + \cdots + 10.3559u - 4.02342 \\ 1.22417u^{45} - 1.02774u^{44} + \cdots + 3.03021u - 0.595457 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 4.37249u^{45} - 1.83378u^{44} + \cdots + 15.1410u - 3.15401 \\ 2.88125u^{45} - 1.87484u^{44} + \cdots + 10.2725u - 3.36688 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -3.03496u^{45} + 2.13094u^{44} + \cdots - 9.20367u + 4.91918 \\ -0.547882u^{45} + 0.696284u^{44} + \cdots + 0.113735u - 0.839578 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -2.33885u^{45} + 1.49981u^{44} + \cdots - 8.74130u + 5.70663 \\ 0.536038u^{45} - 0.110109u^{44} + \cdots - 1.01730u - 0.160962 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.160962u^{45} + 0.375077u^{44} + \cdots + 3.35122u - 1.66115 \\ -0.413110u^{45} + 1.85280u^{44} + \cdots - 0.665590u + 1.80281 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.160962u^{45} + 0.375077u^{44} + \cdots + 3.35122u - 1.66115 \\ -0.413110u^{45} + 1.85280u^{44} + \cdots - 0.665590u + 1.80281 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $-\frac{13372946836041823816}{367197864684444867913}u^{45} + \frac{53663175405029739464}{36719786468444867913}u^{44} + \cdots + \frac{374972108042035142776}{36719786468444867913}u - \frac{316536124285645900534}{36719786468444867913}$

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u^{23} + u^{22} + \dots + 2u + 1)^2$
c_2	$(u^{23} + 11u^{22} + \dots - 2u^2 - 1)^2$
c_3, c_4, c_8 c_{10}	$u^{46} + u^{45} + \dots + 4u + 1$
c_6	$(u^{23} - u^{22} + \dots - 8u + 5)^2$
c_7, c_9	$u^{46} + 25u^{45} + \dots + 4u + 1$
c_{11}	$(u^{23} + 5u^{22} + \dots + 32u + 7)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y^{23} + 11y^{22} + \dots - 2y^2 - 1)^2$
c_2	$(y^{23} + 3y^{22} + \dots - 4y - 1)^2$
c_3, c_4, c_8 c_{10}	$y^{46} - 25y^{45} + \dots - 4y + 1$
c_6	$(y^{23} - 5y^{22} + \dots + 264y - 25)^2$
c_7, c_9	$y^{46} - 9y^{45} + \dots - 104y + 1$
c_{11}	$(y^{23} + 7y^{22} + \dots - 404y - 49)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.326451 + 0.907420I		
a = -0.77255 + 1.54332I	0.14155 + 10.59580I	-6.96908 - 7.47788I
b = -1.111200 - 0.111182I		
u = 0.326451 - 0.907420I		
a = -0.77255 - 1.54332I	0.14155 - 10.59580I	-6.96908 + 7.47788I
b = -1.111200 + 0.111182I		
u = 0.539847 + 0.797694I		
a = 0.530178 + 0.740332I	2.35134 - 1.73636I	-4.20687 + 2.46590I
b = -0.897400 + 0.896177I		
u = 0.539847 - 0.797694I		
a = 0.530178 - 0.740332I	2.35134 + 1.73636I	-4.20687 - 2.46590I
b = -0.897400 - 0.896177I		
u = -0.466971 + 0.825572I		
a = 0.159069 - 0.983222I	3.49101 - 3.16234I	-2.33540 + 3.46689I
b = -1.088190 - 0.614230I		
u = -0.466971 - 0.825572I		
a = 0.159069 + 0.983222I	3.49101 + 3.16234I	-2.33540 - 3.46689I
b = -1.088190 + 0.614230I		
u = -0.356156 + 0.878751I		
a = -0.54445 - 1.35389I	2.34965 - 5.52406I	-3.72778 + 3.52157I
b = -1.126660 - 0.091255I		
u = -0.356156 - 0.878751I		
a = -0.54445 + 1.35389I	2.34965 + 5.52406I	-3.72778 - 3.52157I
b = -1.126660 + 0.091255I		
u = -1.036260 + 0.200630I		
a = -0.031632 + 0.423510I	-4.31524 + 3.60580I	-10.88555 - 4.48858I
b = -0.996138 + 0.538101I		
u = -1.036260 - 0.200630I		
a = -0.031632 - 0.423510I	-4.31524 - 3.60580I	-10.88555 + 4.48858I
b = -0.996138 - 0.538101I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.976746 + 0.435286I		
a = -0.94989 - 2.08219I	-3.06946 + 2.29224I	-8.17333 - 3.81893I
b = -1.89184 - 1.72781I		
u = -0.976746 - 0.435286I		
a = -0.94989 + 2.08219I	-3.06946 - 2.29224I	-8.17333 + 3.81893I
b = -1.89184 + 1.72781I		
u = 0.886233 + 0.678199I		
a = 1.217710 - 0.695264I	2.35134 + 1.73636I	-4.20687 - 2.46590I
b = 1.155150 + 0.542637I		
u = 0.886233 - 0.678199I		
a = 1.217710 + 0.695264I	2.35134 - 1.73636I	-4.20687 + 2.46590I
b = 1.155150 - 0.542637I		
u = 1.009630 + 0.482481I		
a = -0.74786 + 2.38510I	-5.29128 - 7.02777I	-11.56401 + 7.34039I
b = -2.07366 + 2.28227I		
u = 1.009630 - 0.482481I		
a = -0.74786 - 2.38510I	-5.29128 + 7.02777I	-11.56401 - 7.34039I
b = -2.07366 - 2.28227I		
u = -0.807547 + 0.331658I		
a = -1.81318 - 1.49133I	-2.27583 + 0.94673I	-5.56367 - 4.33310I
b = -1.88066 - 0.51355I		
u = -0.807547 - 0.331658I		
a = -1.81318 + 1.49133I	-2.27583 - 0.94673I	-5.56367 + 4.33310I
b = -1.88066 + 0.51355I		
u = 0.296950 + 0.801445I		
a = -0.872198 + 0.800219I	-2.33291 + 3.02476I	-10.12213 - 2.21609I
b = -0.792177 + 0.162915I		
u = 0.296950 - 0.801445I		
a = -0.872198 - 0.800219I	-2.33291 - 3.02476I	-10.12213 + 2.21609I
b = -0.792177 - 0.162915I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.079890 + 0.398169I		
a = -0.33037 + 1.80790I	-7.03235 + 0.30335I	-15.4115 + 0.4048I
b = -0.88071 + 2.08789I		
u = 1.079890 - 0.398169I		
a = -0.33037 - 1.80790I	-7.03235 - 0.30335I	-15.4115 - 0.4048I
b = -0.88071 - 2.08789I		
u = -0.952704 + 0.656540I		
a = 1.13459 + 0.99283I	3.49101 + 3.16234I	-2.33540 - 3.46689I
b = 1.52639 + 0.00115I		
u = -0.952704 - 0.656540I		
a = 1.13459 - 0.99283I	3.49101 - 3.16234I	-2.33540 + 3.46689I
b = 1.52639 - 0.00115I		
u = 1.050590 + 0.549581I		
a = 0.568130 - 1.260550I	-2.33291 - 3.02476I	-10.12213 + 2.21609I
b = 1.01651 - 1.37602I		
u = 1.050590 - 0.549581I		
a = 0.568130 + 1.260550I	-2.33291 + 3.02476I	-10.12213 - 2.21609I
b = 1.01651 + 1.37602I		
u = 1.213100 + 0.082369I		
a = -0.285118 + 0.176496I	-2.27583 + 0.94673I	-5.56367 - 4.33310I
b = -0.551742 - 0.474744I		
u = 1.213100 - 0.082369I		
a = -0.285118 - 0.176496I	-2.27583 - 0.94673I	-5.56367 + 4.33310I
b = -0.551742 + 0.474744I		
u = -1.219100 + 0.005734I		
a = -0.379506 + 0.077327I	-3.90982 - 3.26242I	-8.80376 + 2.26815I
b = -1.217710 - 0.486619I		
u = -1.219100 - 0.005734I		
a = -0.379506 - 0.077327I	-3.90982 + 3.26242I	-8.80376 - 2.26815I
b = -1.217710 + 0.486619I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.054910 + 0.629750I		
a = 0.89707 + 1.44259I	2.34965 + 5.52406I	-3.72778 - 3.52157I
b = 1.92867 + 1.14714I		
u = -1.054910 - 0.629750I		
a = 0.89707 - 1.44259I	2.34965 - 5.52406I	-3.72778 + 3.52157I
b = 1.92867 - 1.14714I		
u = -1.223310 + 0.272825I		
a = 0.227490 - 0.807258I	-7.03235 + 0.30335I	-15.4115 + 0.I
b = 0.791557 - 0.749493I		
u = -1.223310 - 0.272825I		
a = 0.227490 + 0.807258I	-7.03235 - 0.30335I	-15.4115 + 0.I
b = 0.791557 + 0.749493I		
u = 1.089410 + 0.631074I		
a = 0.82929 - 1.61402I	0.14155 - 10.59580I	-7.00000 + 7.47788I
b = 2.12255 - 1.58531I		
u = 1.089410 - 0.631074I		
a = 0.82929 + 1.61402I	0.14155 + 10.59580I	-7.00000 - 7.47788I
b = 2.12255 + 1.58531I		
u = 1.260980 + 0.195080I		
a = 0.136063 + 0.360918I	-3.06946 + 2.29224I	-7.00000 - 3.81893I
b = 0.638559 - 0.316478I		
u = 1.260980 - 0.195080I		
a = 0.136063 - 0.360918I	-3.06946 - 2.29224I	-7.00000 + 3.81893I
b = 0.638559 + 0.316478I		
u = -1.294740 + 0.221264I		
a = 0.355915 - 0.330975I	-5.29128 - 7.02777I	-11.56401 + 7.34039I
b = 1.227850 + 0.392277I		
u = -1.294740 - 0.221264I		
a = 0.355915 + 0.330975I	-5.29128 + 7.02777I	-11.56401 - 7.34039I
b = 1.227850 - 0.392277I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.594081 + 0.341794I		
a = -2.68688 + 1.47263I	-3.90982 + 3.26242I	-8.80376 - 2.26815I
b = -1.88722 - 0.13661I		
u = 0.594081 - 0.341794I		
a = -2.68688 - 1.47263I	-3.90982 - 3.26242I	-8.80376 + 2.26815I
b = -1.88722 + 0.13661I		
u = 0.663527		
a = 0.600867	-1.33670	-6.47390
b = -0.631190		
u = 0.486649		
a = 1.02746	-1.33670	-6.47390
b = -0.652402		
u = -0.033796 + 0.382833I		
a = -1.45604 + 2.22878I	-4.31524 - 3.60580I	-10.88555 + 4.48858I
b = -0.870135 - 0.373642I		
u = -0.033796 - 0.382833I		
a = -1.45604 - 2.22878I	-4.31524 + 3.60580I	-10.88555 - 4.48858I
b = -0.870135 + 0.373642I		

III.
$$I_3^u = \langle b^4 + 4b^3 + 4b^2 + 1, \ a+1, \ u+1 \rangle$$

(i) Arc colorings

a) Are colorings
$$a_4 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ b \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -b \\ b^2 + b + 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -b^3 - 2b^2 - b - 1 \\ -b^3 + 3b - 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} b \\ 2b + 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ b - 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ -b \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4b^2 + 8b 16$

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^4 + 2u^2 + 2$
c_2	$(u^2 + 2u + 2)^2$
$c_3, c_7, c_8 \ c_9$	$(u-1)^4$
c_4, c_{10}	$(u+1)^4$
c_6, c_{11}	$u^4 - 2u^2 + 2$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y^2 + 2y + 2)^2$
c_2	$(y^2+4)^2$
c_3, c_4, c_7 c_8, c_9, c_{10}	$(y-1)^4$
c_6, c_{11}	$(y^2 - 2y + 2)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.00000	-5.75727 - 3.66386I	-16.0000 + 4.0000I
b = 0.098684 + 0.455090I		
u = -1.00000		
a = -1.00000	-5.75727 + 3.66386I	-16.0000 - 4.0000I
b = 0.098684 - 0.455090I		
u = -1.00000		
a = -1.00000	-5.75727 + 3.66386I	-16.0000 - 4.0000I
b = -2.09868 + 0.45509I		
u = -1.00000		
a = -1.00000	-5.75727 - 3.66386I	-16.0000 + 4.0000I
b = -2.09868 - 0.45509I		

IV.
$$I_4^u = \langle b^3 + 3b^2 + 3b + 1, \ a + 1, \ u - 1 \rangle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ b \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -b \\ b^2 + b + 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -b^2 - 2b \\ -b^2 - 2b \end{pmatrix}$$

$$a_6 = \begin{pmatrix} b \\ 2b+1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ b - 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ b \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ b \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4b^2 + 8b 8$

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_{11}$	u^3
c_3, c_8	$(u+1)^3$
c_4, c_7, c_9 c_{10}	$(u-1)^3$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6, c_{11}	y^3
c_3, c_4, c_7 c_8, c_9, c_{10}	$(y-1)^3$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	-3.28987	-12.0000
b = -1.00000		
u = 1.00000		
a = -1.00000	-3.28987	-12.0000
b = -1.00000		
u = 1.00000		
a = -1.00000	-3.28987	-12.0000
b = -1.00000		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_5	$u^{3}(u^{4} + 2u^{2} + 2)(u^{23} + u^{22} + \dots + 2u + 1)^{2}(u^{31} - 3u^{30} + \dots - 6u + 2)$
c_2	$u^{3}(u^{2} + 2u + 2)^{2}(u^{23} + 11u^{22} + \dots - 2u^{2} - 1)^{2}$ $\cdot (u^{31} + 15u^{30} + \dots - 4u - 4)$
c_3, c_8	$((u-1)^4)(u+1)^3(u^{31}+u^{30}+\cdots+2u+1)(u^{46}+u^{45}+\cdots+4u+1)$
c_4, c_{10}	$((u-1)^3)(u+1)^4(u^{31}+u^{30}+\cdots+2u+1)(u^{46}+u^{45}+\cdots+4u+1)$
<i>c</i> ₆	$u^{3}(u^{4} - 2u^{2} + 2)(u^{23} - u^{22} + \dots - 8u + 5)^{2}(u^{31} + 3u^{30} + \dots + 34u + 2)$
c_7, c_9	$((u-1)^7)(u^{31}+13u^{30}+\cdots+8u+1)(u^{46}+25u^{45}+\cdots+4u+1)$
c_{11}	$u^{3}(u^{4} - 2u^{2} + 2)(u^{23} + 5u^{22} + \dots + 32u + 7)^{2}$ $\cdot (u^{31} - 15u^{30} + \dots - 1566u + 158)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{3}(y^{2} + 2y + 2)^{2}(y^{23} + 11y^{22} + \dots - 2y^{2} - 1)^{2}$ $\cdot (y^{31} + 15y^{30} + \dots - 4y - 4)$
c_2	$y^{3}(y^{2}+4)^{2}(y^{23}+3y^{22}+\cdots-4y-1)^{2}(y^{31}+3y^{30}+\cdots+112y-16)$
c_3, c_4, c_8 c_{10}	$((y-1)^7)(y^{31}-13y^{30}+\cdots+8y-1)(y^{46}-25y^{45}+\cdots-4y+1)$
c_6	$y^{3}(y^{2} - 2y + 2)^{2}(y^{23} - 5y^{22} + \dots + 264y - 25)^{2}$ $\cdot (y^{31} - 9y^{30} + \dots + 92y - 4)$
c_7, c_9	$((y-1)^7)(y^{31}+19y^{30}+\cdots-4y-1)(y^{46}-9y^{45}+\cdots-104y+1)$
c_{11}	$y^{3}(y^{2} - 2y + 2)^{2}(y^{23} + 7y^{22} + \dots - 404y - 49)^{2}$ $\cdot (y^{31} + 3y^{30} + \dots - 219108y - 24964)$