

Técnicas de Programación Concurrente I Ambientes Distribuidos

Ing. Pablo A. Deymonnaz pdeymon@fi.uba.ar

Facultad de Ingeniería Universidad de Buenos Aires

Índice

- 1. Entidades
 Eventos Externos
- Reglas y Comportamientos
- 3. Costo y Complejidad
- 4. Tiempo y Eventos

Entidades

Definición

Es la unidad de cómputo de ambiente informático distribuido

Puede ser un proceso, un procesador, etc.

Entidades (II)

Capacidades Cada entidad cuenta con las siguientes capacidades:

- Acceso de lectura y escritura a una memoria local (no compartida con otras entidades):
 - Registro de estado: status(x)
 - Registro de valor de entrada: value(x)
- Procesamiento local
- Comunicación: preparación, transmisión y recepción de mensajes
- Setear y resetear un reloj local

Eventos Externos

La entidad solamente responde a eventos externos (es reactiva). Los posibles eventos externos son:

- Llegada de un mensaje
- Activación del reloj
- Un impulso espontáneo

A excepción del impulso espontáneo, los eventos se generan dentro de los límites del sistema.

Índice

- 1. Entidades
- 2. Reglas y Comportamientos
- 3. Costo y Complejidad
- 4. Tiempo y Eventos

Acciones y Reglas

Acción

Secuencia finita e indivisible de operaciones. Es atóßmica porque se ejecuta sin interrupciones.

Regla

Es la relación entre el evento que ocurre y el estado en el que se encuentra la entidad cuando ocurre dicho evento, de modo tal que estado \times evento \to acción

Comportamiento

Es el conjunto B(x) de todas las reglas que obedece una entidad x

- Para cada posible evento y estado debe existir una única regla B(x)
- \triangleright B(x) se llama también protocolo o algoritmo distribuido de xComportamiento colectivo del ambiente distribuido:

$$B(E) = B(x) : \forall x \in E$$

Comportamiento Homogéneo

El comportamiento colectivo es homogéneo si todas las entidades que lo componen tienen el mismo comportamiento, o sea:

$$\forall x, y \in E, B(x) = B(y)$$

Propiedad

Todo comportamiento colectivo se puede transformar en homogéneo.

Comunicación

- Una entidad se comunica con otras entidades mediante mensajes (un mensaje es una secuencia finita de bits)
- Puede ocurrir que una entidad sólo pueda comunicarse con un subconjunto del resto de las entidades:
 - ► $N_{OUT}(x) \subseteq E$: conjunto de entidades a las cuales x puede enviarles un mensaje directamente
 - ► $N_{IN}(x) \subseteq E$: conjunto de entidades de las cuales x puede recibir un mensaje directamente

Axiomas

Delays de comunicación finitos

En ausencia de fallas los delays en la comunicación tienen una duración finita

Orientación local

Una entidad puede distinguir entre sus vecinos N_{OUT} y entre sus vecinos N_{IN}

- Una entidad puede distinguir qué vecino le envía un mensaje
- Una entidad puede enviar un mensaje a un vecino específico

Restricciones de confiabilidad

- Entrega garantizada: cualquier mensaje enviado será recibido con su contenido intacto
- ► Confiabilidad parcial: no ocurrirán fallas
- Confiabilidad total: no han ocurrido ni ocurrirán fallas

Restricciones temporales

- ightharpoonup Delays de comunicación acotados: existe una constante Δ tal que en ausencia de fallas el delay de cualquier mensaje en el enlace es a lo sumo Δ
- Delays de comunicación unitarios: en ausencia de fallas, el delay de cualquier mensaje en un enlace es igual a una unidad de tiempo
- Relojes sincronizados: todos lo relojes locales se incrementan simultáneamente y el intervalo de incremento es constante

Índice

- 1. Entidades
- Reglas y Comportamientos
- 3. Costo y Complejidad
- 4. Tiempo y Eventos

Costo y Complejidad

Son las medidas de comparacio n de los algoritmos distribuidos

- Cantidad de actividades de comunicación
 - Cantidad de transmisiones o costo de mensajes, M
 - Carga de trabajo por entidad y carga de transmisión
- Tiempo
 - Tiempo total de ejecución del protocolo
 - Tiempo ideal de ejecución: tiempo medido bajo ciertas condiciones, como delays de comunicación unitarios y relojes sincronizados

Índice

- 1. Entidades
- 2. Reglas y Comportamientos
- 3. Costo y Complejidad
- 4. Tiempo y Eventos

Tiempo y Eventos

- Impulso espontáneo
- Recepción de un mensaje
- Alarma del reloj activada

Los eventos desencadenan acciones en un tiempo futuro. Los distintos delays resultan en distintas ejecuciones del protocolo con posibles resultados diferentes.

- Los eventos disparan acciones que pueden generar nuevos eventos
- Si suceden, los nuevos eventos ocurrirán en un tiempo futuro: Future(t)
- Una ejecución se describe por la secuencia de eventos que ocurrieron

Estados y Configuraciones

- **E**stado interno de x en el instante t $\sigma(x, t)$: contenido de los registros de x y el valor del reloj c_x en el instante t
- ▶ El estado interno de una entidad cambia con la ocurrencia de eventos

Sea una entidad x que recibe el mismo evento en dos ejecuciones distintas, y $\sigma 1$ y $\sigma 2$ los estados internos.

Si $\sigma 1 = \sigma 2 \Rightarrow$ el nuevo estado interno de x será el mismo en ambas ejecuciones

Conocimiento

Conocimiento local: contenido de la memoria local de x y la información que se deriva En ausencia de fallas, el conocimiento no puede perderse

Conocimiento (II)

Tipos de conocimiento

- Información métrica: información numérica sobre la red. Ej: número de nodos del grafo (n = ||V||), número de arcos del grafo (m = ||E||), diámetro del grafo y demás
- Propiedades topológicas: conocimiento sobre propiedades de la topología. Ej: el grafo es un anillo, el grafo es acíclico y demás
- Mapas topológicos: un mapa de la vecindad de la entidad hasta una distancia d. Ej: matriz de adyacencia del grafo

Bibliografía

▶ Design and Analysis of Distributed Algorithms, Nicola Santoro