CS1231 TUTORIAL 1

- 1. Only c and f are propositions and both are false. The rest do not have a truth value.
- 2. (a) The election is not decided but the votes have been counted.
- (b) If the votes have been counted, then the election is decided.
- (c) The election is decided iff the votes have been counted.
- (d) Either the votes have not been counted, or else the election is not decided and the votes have been counted.
- **3.** T, T, F, T
- **4.** (a) The above is: (get A) \rightarrow (do every ex) \vee (score \geq 80 marks). (Note that $p \rightarrow q$ is true when p is false or p, q are both true.) Thus the proposition is true when you
- (i) do not get A or
- (ii) get A and either do every ex or score ≥ 80 marks.
- (b) No.
- **5.** s = lhs, t = rhs. From the truth tables, the answers are: (a) No (columns under s and t are not identical), (b) Yes.

/							
	p	q	r	$p \lor q$	$p \wedge r$	$\mid s \mid$	$\mid t \mid$
	T	T	T	T	T	T	T
	T	T	F	T	F	T	F
	T	F	T	T	T	T	T
	T	F	F	T	F	T	F
	F	T	T	T	F	T	T
	F	T	F	T	F	T	F
	F	0	T	F	F	F	F
	F	F	F	$\mid F \mid$	F	$\mid F \mid$	F

p q r	$r \lor p$	$p \wedge q$	$\neg r \vee (p \wedge q)$	$r\vee q$	$\mid \mid s \mid \mid$	t
T T T	T	T	T	T	$\mid T \mid$	T
T T F	T	T	T	T	$\mid T \mid$	T
T F T	T	F	F	T	$\mid F \mid$	F
T F F	T	F	T	F	$\mid F \mid$	F
F T T	T	F	F	T	$\mid F \mid$	F
F T F	F	F	T	T	$\mid F \mid$	F
F F T	T	F	F	T	$\mid F \mid$	F
F F F	$\mid F \mid$	F	T	F	$\mid F \mid$	F

Alt:

$$(p \lor q) \lor (p \land r) = ((p \lor q) \lor p) \land ((p \lor q) \lor r)$$
$$= (p \lor q) \land ((p \lor q) \lor r)$$
$$= p \lor q$$

But $p \lor q \not\equiv (p \lor q) \land r$ as they have opposite truth values when p T and r F.

$$\begin{split} (r \lor p) \land (\neg r \lor (p \land q)) \land (r \lor q) &= (r \lor p) \land (r \lor q) \land (\neg r \lor (p \land q)) \\ &= (r \lor (p \land q)) \land (\neg r \lor (p \land q)) \\ &= (r \land \neg r) \lor (p \land q) \\ &= p \land q \end{split}$$

6.

p - q - r	$p \rightarrow q$	$\neg p \to r$	$(p \to q) \land (\neg p \to r)$
T T T	T	T	T
T T F	T	T	T
T F T	F	T	F
F T T	T	T	T
T F F	F	T	F
F T F	T	F	F
F F T	T	T	T
F F F	T	F	F

ANS: F,T,F,T,T

7. (a) The 99th proposition is true and the rest are false. The reason is as follows: Suppose there are exactly k false propositions in the list. Then only one proposition, namely, the $k^{\rm th}$ proposition, is true. Thus k has to 99.

(b) 1 to 50 are true and 51-100 are false.

We first suppose that there are m propositions of which k are true and m-k are false. We see that proposition i is true, iff $m-k \geq i$. From this we conclude that if proposition i is true, then proposition i-1 is also true. By repeating this argument, we see that positions 1 to k are true and the rest are false. Since proposition k is true, we have $m-k \geq k$. Since proposition k+1 is false, we have $m-k \geq k+1$ is false, i.e., $m-k \leq k$. Thus m-k=k or m=2k.

- (c) From the discussion in (b), we conclude that it not possible to assign a truth value of each of the items. Thus they are not propositions.
- **8.** It is false when p is false and q is true. (You can get this by constructing the truth table.)
- **9.** Let each letter stand for the statement that the person who name begins with that letter is chatting. Then (i) $\neg K \to H$, (ii) $R \to \neg V$ and $\neg R \to V$, (iii) $A \to R$, (iv) $V \leftrightarrow K$, (v) $H \to A \land K$.

If A is chatting, then R is chatting (from iii), V is not chatting (from ii), K is not chatting (from iv), H is chatting (from i). This contradicts (v).

If A is not chatting, then H is not chatting (v), K is chatting (i), V is chatting (iv), R is not chatting (ii).

Thus only Kevin and Vijay are chatting. (You should check that this satisfies the given 5 conditions.)

Alt: Consider the bit string KHRVA where the X position is 1 if X is chatting and 0 otherwise. Then (i) KH = 10,01 or 11; (ii) RV = 10,01; (iii) If A = 1, then R = 1; (iv) VK = 00,11, (v) If H = 1, then AK = 11.

- (a) A=1: Then R=1 (iii), V=0 (ii), K=0 (iv), H=1 (i). This contradicts (v).
- (b) A = 0: H = 0 (v), K = 1 (i), V = 1 (iv), R = 0 (ii).

Thus the answer is; Only Kevin and Vijay are chatting.