Spanning Sets and Linear Independence

Michael Brodskiy

Professor: Lynn Knight

March 10, 2021

- Linear Combinations If $\overrightarrow{\mathbf{w}} = a\overrightarrow{\mathbf{u}} + b\overrightarrow{\mathbf{v}}$, then $\overrightarrow{\mathbf{w}}$ is a linear combination of $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$. $\overrightarrow{\mathbf{w}} = a\overrightarrow{\mathbf{u}} + b\overrightarrow{\mathbf{v}}$ is a plane (it spans a plane).
- Definition: Let $\overrightarrow{\mathbf{v}} \in \mathbf{V}$. Then $\overrightarrow{\mathbf{v}}$ is a linear combination of $\overrightarrow{\mathbf{u}}_1, \overrightarrow{\mathbf{u}}_2, \dots, \overrightarrow{\mathbf{u}}_n$ if \exists scalars c_1, c_2, \dots, c_n such that $\overrightarrow{\mathbf{v}} = c_1 \overrightarrow{\mathbf{u}}_1 + c_2 \overrightarrow{\mathbf{u}}_2 + \dots + c_n \overrightarrow{\mathbf{u}}_n$
 - 1. ex. $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is a combination of $a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ (other solutions exist)
- The Span of a set of vectors: Let $S = \{\overrightarrow{\mathbf{v}}_1, \overrightarrow{\mathbf{v}}_2, \dots, \overrightarrow{\mathbf{v}}_n\}$. Then, the span of S is a set of all linear combinations of vectors in S (i.e. $\mathrm{span}(S) = \{c_1 \overrightarrow{\mathbf{v}}_1 + c_2 \overrightarrow{\mathbf{v}}_2 + \dots + \overrightarrow{\mathbf{v}}_n\}$). Note: when $\mathrm{span}(S) = \mathbf{V}$, it means \mathbf{V} is spanned by $\overrightarrow{\mathbf{v}}_1, \overrightarrow{\mathbf{v}}_2, \dots, \overrightarrow{\mathbf{v}}_n$
 - 1. ex. $\mathbb{R}^2 = \operatorname{span}\left\{\hat{i}, \hat{j}\right\}, \mathbb{R}^3 = \operatorname{span}\left\{\hat{i}, \hat{j}, \hat{k}\right\}$
- ullet The span of S is always a subspace of ${f V}$, because closure is automatic.
- Linear Independence A set of vectors $S = \{\overrightarrow{\mathbf{v}}_1, \overrightarrow{\mathbf{v}}_2, \dots, \overrightarrow{\mathbf{v}}_n\}$ in vector space \mathbf{V} is linearly independent if vector equation $c_1 \overrightarrow{\mathbf{v}}_1 + c_2 \overrightarrow{\mathbf{v}}_2 + \dots + c_n \overrightarrow{\mathbf{v}}_n = 0$ has trivial solution only $(c_1 = c_2 = c_n = 0)$. Otherwise, it is linearly dependent.
 - 1. ex. in \mathbb{R}^2 : 2x + 3y = 14x + 6y = 2
 - $2. \ \text{ex. in} \ \mathbb{R}^3 \colon \ \overrightarrow{\mathbf{u}}_1 = \langle 2, 1, 0 \rangle, \ \overrightarrow{\mathbf{u}}_2 = \langle 3, 5, -2 \rangle, \ \overrightarrow{\mathbf{u}}_3 = \langle 5, 6, -2 \rangle, \ \text{then} \ \overrightarrow{\mathbf{u}}_3 = \overrightarrow{\mathbf{u}}_2 + \overrightarrow{\mathbf{u}}_1$
- $S = \{\overrightarrow{\mathbf{v}}_1, \overrightarrow{\mathbf{v}}_2, \dots, \overrightarrow{\mathbf{v}}_k\}, k \geq 2$ is linearly dependent iff $\overrightarrow{\mathbf{v}}_i$ can be written as a linear combination of other vectors in S.
 - 1. $\{\overrightarrow{o}\}$ is linearly dependent
 - 2. $\{\overrightarrow{\mathbf{v}}_1, \overrightarrow{\mathbf{v}}_2\}$ is linearly dependent iff $\overrightarrow{\mathbf{v}}_2 = c\overrightarrow{\mathbf{v}}_1$
 - 3. ex. Will 4 vectors in \mathbb{R}^3 be linearly independent? No, they will always be dependent
 - 4. ex. Can 4 vectors span \mathbb{R}^3 ? Yes, they can span \mathbb{R}^3 .