N вар	распределение данных, объем выборки и выбо-	уровень доверия	гипотеза и альтернатива	вероятность ошибок I рода
	рочные характеристики	γ		α
18	$X \sim N(a,d); n = 200;$	0.95	$H_0: d = d_0 = 50$	0.01
	$S_n^{(2)} = 40$		$H_1: d \neq d_0$	

1)
$$I = \left(\hat{\theta}_n - \frac{t_{\gamma}}{\sqrt{n \cdot I(\hat{\theta}_n)}}, \ \hat{\theta}_n + \frac{t_{\gamma}}{\sqrt{n \cdot I(\hat{\theta}_n)}}\right)$$

$$\hat{\theta}_n = S_n^{(2)} = 40$$

$$\gamma = 0.95 => t_{\gamma} \approx 1.96$$

$$I(\hat{\theta}_n) = \frac{1}{2 \cdot \hat{\theta}_n^2} = \frac{1}{3200}$$

$$\sqrt{n \cdot I(\hat{\theta}_n)} = \sqrt{200 \cdot \frac{1}{3200}} = \frac{1}{4}$$

Значит $I \approx (32.16, 47.84)$

2)
$$\gamma = 1 - \alpha = 0.99$$
; $c_{\gamma} \approx 2.33$

$$I(\theta_0) = \frac{1}{2 \cdot \theta_0^2} = \frac{1}{2 \cdot 50^2} = \frac{1}{5000}$$

$$z_n = \sqrt{n \cdot I(\theta_0)} \cdot (\hat{\theta}_n - \theta_0) = \frac{1}{5000} \cdot (40 - 50) = -2$$