CAAM 336 · DIFFERENTIAL EQUATIONS

Homework 30 · Solutions

Posted Monday 21 October 2013. Due 5pm Wednesday 30 October 2013.

30. [25 points] Let N be a positive integer, let $h = \frac{1}{N+1}$ and let $x_k = kh$ for k = 0, 1, ..., N+1. Let the continuous piecewise linear hat functions $\widehat{\phi}_j \in C[0,1]$ be such that

$$\hat{\phi}_{j}(x) = \begin{cases} \frac{(x - x_{j-1})}{h} & \text{if } x \in [x_{j-1}, x_{j}), \\ \frac{(x_{j+1} - x)}{h} & \text{if } x \in [x_{j}, x_{j+1}), \\ 0 & \text{otherwise,} \end{cases}$$

for $j=1,\ldots,N$. Also, let the continuous piecewise quadratic functions $\phi_j\in C[0,1]$ be such that

$$\phi_j(x) = \begin{cases} \frac{(x - x_{j-1})(2x - x_{j-1} - x_j)}{h^2} & \text{if } x \in [x_{j-1}, x_j), \\ \frac{(x_j + x_{j+1} - 2x)(x_{j+1} - x)}{h^2} & \text{if } x \in [x_j, x_{j+1}), \\ 0 & \text{otherwise,} \end{cases}$$

for $j=1,\dots,N$ and let the continuous piecewise quadratic bubble functions $\psi_j\in C[0,1]$ be such that

$$\psi_j(x) = \begin{cases} \frac{4(x - x_{j-1})(x_j - x)}{h^2} & \text{if } x \in [x_{j-1}, x_j), \\ 0 & \text{otherwise,} \end{cases}$$

for j = 1, ..., N + 1.

(a) What is

i.
$$\phi_j(x_k)$$
 for $j = 1, ..., N$ and $k = 0, ..., N + 1$;
ii. $\phi_j\left(\frac{x_{k-1} + x_k}{2}\right)$ for $j = 1, ..., N$ and $k = 1, ..., N + 1$;
iii. $\psi_j(x_k)$ for $j = 1, ..., N + 1$ and $k = 0, ..., N + 1$;

iv.
$$\psi_j\left(\frac{x_{k-1}+x_k}{2}\right)$$
 for $j,k=1,\ldots,N+1$.

- (b) Show that $\{\phi_1,\ldots,\phi_N,\psi_1,\ldots,\psi_{N+1}\}$ is linearly independent by showing that if $\alpha_j,\beta_j\in\mathbb{R}$ and $\sum_{j=1}^N\alpha_j\phi_j(x)+\sum_{j=1}^{N+1}\beta_j\psi_j(x)=0$ for all $x\in[0,1]$ then $\alpha_k=0$ for $k=1,\ldots,N$ and $\beta_k=0$ for $k=1,\ldots,N+1$.
- (c) Obtain an expression for

$$\phi_j + \frac{1}{2} \left(\psi_j + \psi_{j+1} \right)$$

for j = 1, ..., N.

(d) For j = 1, ..., N, is $\hat{\phi}_j \in \text{span}\{\phi_1, ..., \phi_N, \psi_1, ..., \psi_{N+1}\}$?

(e) Is $\{\phi_1, \dots, \phi_N, \psi_1, \dots, \psi_{N+1}, \widehat{\phi}_1, \dots, \widehat{\phi}_N\}$ linearly independent?

Solution.

(a) [5 points]

i. For $j=1,\ldots,N$ and $k=0,1,\ldots,N+1$, the definition of ϕ_j yields that $\phi_j(x_k)=0$ if $k\neq j$. Moreover, for $j=1,\ldots,N$,

$$\phi_j(x_j) = \frac{(x_j + x_{j+1} - 2x_j)(x_{j+1} - x_j)}{h^2} = \frac{(x_{j+1} - x_j)(x_{j+1} - x_j)}{h^2} = \frac{h^2}{h^2} = 1.$$

Consequently, for $j = 1, \ldots, N$,

$$\phi_j(x_k) = \begin{cases} 1 \text{ if } k = j, \\ 0 \text{ if } k \neq j, \end{cases}$$

for $k = 0, 1, \dots, N + 1$.

ii. For j = 1, ..., N, the definition of ϕ_j yields that $\phi_j\left(\frac{x_{k-1} + x_k}{2}\right) = 0$ for k = 1, ..., N + 1.

iii. For j = 1, ..., N + 1, the definition of ψ_j yields that $\psi_j(x_k) = 0$ for k = 0, 1, ..., N + 1.

iv. For j, k = 1, ..., N + 1, the definition of ψ_j yields that $\psi_j\left(\frac{x_{k-1} + x_k}{2}\right) = 0$ if $k \neq j$. Moreover, for j = 1, ..., N + 1,

$$\psi_j(x) = \frac{4(x - x_{j-1})(x_j - x)}{h^2} = \frac{(2x - 2x_{j-1})(2x_j - 2x)}{h^2}$$

and so

$$\psi_j\left(\frac{x_{j-1}+x_j}{2}\right) = \frac{(x_{j-1}+x_j-2x_{j-1})(2x_j-(x_{j-1}+x_j))}{h^2} = \frac{(x_j-x_{j-1})(x_j-x_{j-1})}{h^2} = \frac{h^2}{h^2} = 1.$$

Consequently, for $j = 1, \ldots, N + 1$,

$$\psi_j\left(\frac{x_{k-1} + x_k}{2}\right) = \begin{cases} 1 \text{ if } k = j, \\ 0 \text{ if } k \neq j, \end{cases}$$

for k = 1, ..., N + 1.

(b) [5 points] If $\alpha_j, \beta_j \in \mathbb{R}$ and $\sum_{j=1}^N \alpha_j \phi_j\left(x\right) + \sum_{j=1}^{N+1} \beta_j \phi_j\left(x\right) = 0$ for all $x \in [0,1]$ then $\sum_{j=1}^N \alpha_j \phi_j\left(x_k\right) + \sum_{j=1}^{N+1} \beta_j \phi_j\left(x_k\right) = 0$ for $k=1,\ldots,N$. The answer to parts (a)i. and (a)iii. then allows us to conclude that $\alpha_k = 0$ for $k=1,\ldots,N$ since $\sum_{j=1}^N \alpha_j \phi_j\left(x_k\right) + \sum_{j=1}^{N+1} \beta_j \phi_j\left(x_k\right) = \alpha_k$. Moreover, if $\alpha_j,\beta_j \in \mathbb{R}$ and $\sum_{j=1}^N \alpha_j \phi_j\left(x\right) + \sum_{j=1}^{N+1} \beta_j \phi_j\left(x\right) = 0$ for all $x \in [0,1]$ then $\sum_{j=1}^N \alpha_j \phi_j\left(\frac{x_{k-1} + x_k}{2}\right) + \sum_{j=1}^{N+1} \beta_j \phi_j\left(\frac{x_{k-1} + x_k}{2}\right) = 0$ for $k=1,\ldots,N+1$. The answer to parts (a)ii. and (a)iv. then allows us to conclude that $\beta_k = 0$ for $k=1,\ldots,N+1$ since $\sum_{j=1}^N \alpha_j \phi_j\left(\frac{x_{k-1} + x_k}{2}\right) + \sum_{j=1}^{N+1} \beta_j \phi_j\left(\frac{x_{k-1} + x_k}{2}\right) = \beta_k$. Therefore, if $\alpha_j,\beta_j \in \mathbb{R}$ and $\alpha_j,\beta_j \in \mathbb{R}$ and

(c) [5 points] Since

$$\phi_j(x) = \begin{cases} \frac{(x - x_{j-1})(2x - x_{j-1} - x_j)}{h^2} & \text{if } x \in [x_{j-1}, x_j), \\ \frac{(x_j + x_{j+1} - 2x)(x_{j+1} - x)}{h^2} & \text{if } x \in [x_j, x_{j+1}), \\ 0 & \text{otherwise,} \end{cases}$$

for $j = 1, \ldots, N$,

$$\psi_j(x) = \begin{cases} \frac{4(x - x_{j-1})(x_j - x)}{h^2} & \text{if } x \in [x_{j-1}, x_j), \\ 0 & \text{otherwise,} \end{cases}$$

for j = 1, ..., N + 1, and

$$\psi_{j+1}(x) = \begin{cases} \frac{4(x - x_j)(x_{j+1} - x)}{h^2} & \text{if } x \in [x_j, x_{j+1}), \\ 0 & \text{otherwise,} \end{cases}$$

for j = 0, ..., N, we have that, for j = 1, ..., N,

$$\phi_{j}(x) + \frac{1}{2} (\psi_{j}(x) + \psi_{j+1}(x))$$

$$= \begin{cases} \frac{(x - x_{j-1})(2x - x_{j-1} - x_{j}) + 2(x - x_{j-1})(x_{j} - x)}{h^{2}} & \text{if } x \in [x_{j-1}, x_{j}), \\ \frac{(x_{j} + x_{j+1} - 2x)(x_{j+1} - x) + 2(x - x_{j})(x_{j+1} - x)}{h^{2}} & \text{if } x \in [x_{j}, x_{j+1}), \\ 0 & \text{otherwise}, \end{cases}$$

$$= \begin{cases} \frac{(x - x_{j-1})((2x - x_{j-1} - x_{j}) + 2(x_{j} - x))}{h^{2}} & \text{if } x \in [x_{j-1}, x_{j}), \\ \frac{(x_{j+1} - x)((x_{j} + x_{j+1} - 2x) + 2(x - x_{j}))}{h^{2}} & \text{if } x \in [x_{j}, x_{j+1}), \\ 0 & \text{otherwise}, \end{cases}$$

$$= \begin{cases} \frac{(x - x_{j-1})(x_{j} - x_{j-1})}{h^{2}} & \text{if } x \in [x_{j-1}, x_{j}), \\ \frac{(x_{j+1} - x)(x_{j+1} - x_{j})}{h^{2}} & \text{if } x \in [x_{j}, x_{j+1}), \\ 0 & \text{otherwise}, \end{cases}$$

$$= \begin{cases} \frac{(x - x_{j-1})}{h} & \text{if } x \in [x_{j-1}, x_{j}), \\ \frac{(x_{j+1} - x)}{h} & \text{if } x \in [x_{j}, x_{j+1}), \\ 0 & \text{otherwise}. \end{cases}$$

Therefore, for $j = 1, \ldots, N$,

$$\phi_j + \frac{1}{2} \left(\psi_j + \psi_{j+1} \right) = \widehat{\phi}_j.$$

(d) [5 points] Yes, since from part (c) we have that

$$\hat{\phi}_j = \phi_j + \frac{1}{2}\psi_j + \frac{1}{2}\psi_{j+1}$$

and so $\hat{\phi}_j \in \text{span}\{\phi_1, \dots, \phi_N, \psi_1, \dots, \psi_{N+1}\}.$

(e) [5 points] No, as for any $j=1,\ldots,N,$

$$\phi_j + \frac{1}{2}\psi_j + \frac{1}{2}\psi_{j+1} - \widehat{\phi}_j = 0.$$