

AD-A101 287

GEO-TECHNICAL SERVICES INC HARRISBURG PA

F/G 13/13

NATIONAL DAM INSPECTION PROGRAM. LOWER TWIN LAKE DAM (NDI ID NU--ETC(U))
MAY 81 G YACHIN

DACW31-81-C-0019

NL

UNCLASSIFIED

1 of 1
401262

END
DATE FILMED
8-88
DTIC

LEVEL II

DELAWARE RIVER BASIN
BRANCH OF KINNEYVILLE CREEK, WAYNE COUNTY

AD A101287

PENNSYLVANIA

LOWER TWIN LAKE DAM

NDI ID NO. PA-00132
DER ID NO. 64-18

CAMP WAYNE FOR BOYS

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

Prepared by
Geo-Technical Services, Inc.
CONSULTING ENGINEERS & GEOLOGISTS
851 S. 19th Street
Harrisburg, Pennsylvania 17104

DTIC
ELECTED
S JUL 13 1981 D
D

For
DEPARTMENT OF THE ARMY
Baltimore District, Corps of Engineers
Baltimore, Maryland 21203

"Original contains color. Re-
printed: all DTIC reproductions
will be in black and
white."

MAY 1981

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited

DTIC FILE COPY

817 10 027

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By <u>Per DTIC Form 50</u>	
Distribution/ <u>on file</u>	
Availability Codes	
Dist	Avail and/or Special
A	

DELAWARE RIVER BASIN
 BRANCH OF KINNEYVILLE CREEK
 WAYNE COUNTY, PENNSYLVANIA

LOWER TWIN LAKE DAM

NDI ID No. PA-00132

DER ID No. 64-18

CAMP WAYNE FOR BOYS

PHASE I INSPECTION REPORT
 NATIONAL DAM INSPECTION PROGRAM

National Dam Inspection Program. Lower Twin Lake Dam (NDI ID Number PA-00132, DER ID Number 64-18) Delaware River Basin, Branch of Kinneyville Creek, Wayne County, Pennsylvania. Phase I Inspection Report.

Prepared By
 GEO-Technical Services, Inc.
 Consulting Engineers & Geologists

851 South 19th Street
 Harrisburg, Pennsylvania 17104

Contract DACW31-81-C-0019

For

DEPARTMENT OF THE ARMY
 BALTIMORE DISTRICT, CORPS OF ENGINEERS
 Baltimore, Maryland 21203

"Original contains color plates: All DTIC reproductions will be in black and white."

May 1981

DISTRIBUTION STATEMENT A

Approved for public release;
 Distribution Unlimited

DTIC
 ELECTE
 JUL 13 1981
 S D

41461

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonable possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

TABLE OF CONTENTS

	<u>PAGE</u>
PREFACE	1
TABLE OF CONTENTS	ii
BRIEF ASSESSMENT OF GENERAL CONDITION AND RECOMMENDED ACTION	iii
OVERVIEW OF LOWER TWIN LAKE DAM	
SECTION 1 - GENERAL INFORMATION	1
SECTION 2 - ENGINEERING DATA	4
SECTION 3 - VISUAL INSPECTION	5
SECTION 4 - OPERATIONAL PROCEDURES	7
SECTION 5 - HYDROLOGY AND HYDRAULICS	8
SECTION 6 - EVALUATION OF STRUCTURAL STABILITY	10
SECTION 7 - ASSESSMENT AND RECOMMENDATIONS FOR REMEDIAL MEASURES	11

APPENDICES

- APPENDIX A - VISUAL INSPECTION - CHECKLIST & EXHIBITS
- APPENDIX B - ENGINEERING DATA - CHECKLIST
- APPENDIX C - PHOTOGRAPHS
- APPENDIX D - HYDROLOGY AND HYDRAULICS
- APPENDIX E - EXHIBITS
- APPENDIX F - GEOLOGY

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM
BRIEF ASSESSMENT OF GENERAL CONDITION
AND
RECOMMENDED ACTION

Name of Dam: Lower Twin Lake Dam
NDI ID No. PA-00132
DER ID No. 64-018

Owner: Camp Wayne for Boys

State Located: Pennsylvania

County Located: Wayne

Stream: Branch of Kinneyville Creek

Date of Inspection: December 2, 1980

Based on visual inspection, field survey, and available records, Lower Twin Lake Dam is judged to be in poor conditions. There is no existing spillway to convey flood flows nor means to lower the reservoir level in emergencies.

Based on calculations and according to criteria established for Phase I Dam Inspection Studies, the dam is judged to be unsafe, non-emergency, because of the absence of a spillway. The selected Spillway Design Flood (SDF) for the facility is $\frac{1}{2}$ PMF (Probable Maximum Flood). It is judged that the dam could not withstand the depth and duration of overtopping that would occur from a flood magnitude of 0.2 PMF, or greater. Failure of the dam would significantly increase the downstream hazard conditions.

The facility is not properly maintained, as evidenced by the growth of brush and trees on the top of the dam and at the toe.

The following measures are recommended to be undertaken by the owner, in the approximate order of priority, immediately:

(1) Perform additional hydrologic and hydraulic analyses to more accurately determine the required spillway capacity for the Lower Twin Lake Dam. Design and construct a spillway that will pass the required SDF without overtopping the dam.

(2) Remove trees and brush from the top of the earth embankment and the toe of the dam under the supervision of a professional engineer.

(3) Periodically measure the rate and clarity of leakage discharging from the remnant stone culvert. Take appropriate action as necessary.

(4) Develop a method of drawing down the lake in case of emergency.

All investigations, studies, designs, and supervision of construction should be performed by a professional engineer experienced in the design and construction of dams.

In addition, it is recommended that the owner institute operational procedures, as follows:

(1) Develop a detailed emergency operation and warning system.

Lower Twin Lake Dam

(2) Provide round-the-clock surveillance of the dam during periods of unusually heavy rains

(3) When warnings of storms of major proportions are given by the National Weather Service, the owner should activate his emergency operation and warning system procedures.

(4) Institute an inspection program such that the dam is inspected frequently. As presently required by the Commonwealth, the program should include a formal annual inspection by a professional engineer experienced in the design and construction of dams. Utilize the results to determine if remedial measures are necessary.

(5) Institute a maintenance program to properly maintain all features of the dam.

Submitted by:

GEO-TECHNICAL SERVICES, INC.

Gideon Yachin
GIDEON YACHIN, P.E.

Date: May 13, 1981

Approved by:

DEPARTMENT OF THE ARMY
BALTIMORE DISTRICT, CORPS OF
ENGINEERS

James W. Peck
JAMES W. PECK
Colonel, Corps of Engineers
Commander and District Engineer

Date: *3 June 1981*

LOWER TWIN LAKE DAM (PA.00132)

{ UPPER TWIN LAKE IN BACKGROUND }

OVERVIEW

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM
LOWER TWIN LAKE DAM
NDI# PA-00132, PENNDR # 64-018

SECTION 1
GENERAL INFORMATION

1.1 General.

a. Authority. The inspection was performed pursuant to the authority granted by the National Dam Inspection Act, Public Law 92-367, to the Secretary of the Army, through the Corps of Engineers, to conduct inspections of dams throughout the United States.

b. Purpose. The purpose of this inspection is to determine if the dam constitutes a hazard to human life or property.

1.2 Description of Project.

a. Dam and Appurtenances: Lower Twin Lake Dam is a composite earth-fill masonry structure. There is an earthen embankment upstream. The crest and downstream portion of the dam is an earth fill between dry stone walls. The upstream wall forms the top of the dam and is 3' to 4' higher than the earthfill section and the downstream wall. The dam is 157 feet in length along the upstream wall and 10.3 feet high at the low point on the crest. The crest is 14 feet wide including the downstream and upstream walls.

At the present time, the dam does not have a constructed spillway. High flows pass through a 15 feet wide breached section of the upstream wall and overtop the earthfill section and the downstream stone wall.

The dam does not have an operable outlet works. The remnant of a rectangular (1.8' x 1.9') stone culvert is located at the downstream toe of the dam. The location of the inlet end of the conduit is unknown and probably buried under several feet of sediment.

b. Location. Lower Twin Lake Dam is located on a branch of Kinneyville Creek in Preston Township, Wayne County, Pennsylvania. The dam is situated 0.5 mile north of Lake Como, Pennsylvania, and is shown on the 1978 photo-revised USGS Quadrangle, Lake Como, Pennsylvania, at Latitude N 41°51'16" and Longitude W 75°20'04". A location map is presented in Exhibit E-1.

c. Size Classification. Small (10.3' high, 316 acre-feet maximum storage).

d. Hazard Classification. High hazard. Downstream conditions indicate that a high hazard classification is warranted for Lower Twin Lake Dam (paragraph 3.1e).

e. Ownership. Camp Wayne for Boys, c/o Michael H. Corpai, 570 Broadway, Lynbrook, New York 11563.

f. Purpose of Dam. Recreation.

g. Design and Construction History. Information related to the design and construction of the dam is not available. Data obtained from the Pennsylvania Department of Environmental Resources (PENNDR) indicate that the dam was in existence prior to the 1914 "Survey of Lakes" in Pennsylvania. Inspection reports and photographs indicate the breach in the upstream stone wall occurred prior to 1965. This information is on file with PENNDR.

h. Normal Operating Procedure. The pool is maintained below the dam crest by leakage through the dry stone masonry. Seepage into the upstream wall is passed through the earthfill and into the dry stone culvert.

Flood flows discharge through the breached section of the upstream wall, over the earthfill section and into the natural downstream channel.

1.2 Pertinent Data.

a. <u>Drainage Area.</u>	1.03 Sq. Miles
b. <u>Discharge at Damsite (cfs).</u>	
Maximum known flood at damsite	Unknown
Outlet works at maximum pool elevation	Not Applicable
Spillway capacity at maximum pool elevation	Not Applicable
c. <u>Elevation (feet above msl).</u>	
Top of Dam	
Design conditions	Unknown
Existing conditions (lowest point at breach)	1496.5
Maximum Pool	
Design conditions	Unknown
Existing conditions	1496.5
Normal Pool	1496.5
Upstream Invert Outlet Works	Not Applicable
Downstream Invert	Remnant Stone Culvert
Streambed at Toe of Dam	1486.2
d. <u>Reservoir Length.</u>	
Normal Pool	2100 feet
Maximum Pool	2100 feet
e. <u>Storage.</u>	
Normal Pool	316 Ac.Ft.
Maximum Pool	316 Ac.Ft.
f. <u>Reservoir Surface.</u>	
Normal Pool	34 Acres
Maximum Pool	34 Acres
g. <u>Dam.</u>	
Type	Dry stone masonry and earthfill
Length (feet)	157
Height (feet)	10.3
Top Width (feet)	14
Side Slopes	Downstream 5V:1H, Upstream 1V:3.3H
Zoning	Unknown
Cut-off	Unknown
Grout Curtain	Unknown

h. <u>Diversion and Regulating Tunnel.</u>	None
i. <u>Spillway.</u>	None
Type	Not Applicable
Length of Weir	Not Applicable
Crest Elevation	Not Applicable
Upstream Channel	Not Applicable
Downstream Channel	Not Applicable
j. <u>Regulating Outlets.</u>	None
Type	Not Applicable
Length	Not Applicable
Closure	Not Applicable
Access	Not Applicable

SECTION 2
ENGINEERING DATA

2.1 Design.

a. Data Available. There is no information available relative to the design of the Lower Twin Lake Dam.

b. Design Features. Inspection reports and accompanying photographs from 1924 and 1930 indicate that the upstream wall was originally lined with wood planking. They also imply that the remnant stone culvert, presently visible at the downstream end, served as the outlet works.

2.2 Construction.

No information concerning construction of the dam is available.

2.3 Operation.

There are no records available to indicate the past operational procedures for the dam. The present normal operation of the facility is described in paragraph 1.2h, Section 1.

2.4 Other Information.

On-site inspections were made in July 1924, June 1930, May 1931, June 1934, and April 1965.

2.5 Evaluation.

a. Availability. The previously cited inspection reports were provided by the Bureau of Dams and Waterway Management, Department of Environmental Resources (PENNDEER), Commonwealth of Pennsylvania. The Owner's representative had no information related to the design, construction or the operation of the dam. Pertinent dam features were obtained by survey on the inspection date (12/02/80). There are no other sources of information available for the evaluation of the facility.

b. Adequacy. The available data is very limited and the dam safety assessment must be primarily based on the visual inspection, performance history and the hydrologic and hydraulic analyses, presented in Section 5. The collected data are considered adequate for Phase I report.

c. Validity. There is no reason to question the validity of the available data.

SECTION 3
VISUAL INSPECTION

3.1 Observations.

a. General. The overall appearance of the dam is poor. Location of observed deficiencies are shown on the General Plan presented in Exhibit A-1, Appendix A. The profile and typical sections of the dam are presented in Exhibits A-2 and A-3 and are based on field survey made on the day of inspection. The survey datum for this inspection is elevation 1495 feet above mean sea level for the normal water surface of the lake (see Exhibit E-1). On the inspection date (12/02/80), the lake level was approximately at elevation 1495, which is 1.5 feet below the low point on the dam crest (see Exhibit A-3). Deficiencies observed during the field inspection are described below, and are further illustrated in Exhibit A-1, Appendix A. Visible features are depicted in photographs presented in Appendix C.

b. Dam. Observations made during the inspection indicate that the earth and dry stone masonry dam is in poor condition. On the upstream side of the dam, a vertical dry stone wall, about 3.5 feet wide and 157 feet long, extends 3 to 4 feet above the top of the earth embankment (see photographs 1 and 2, Appendix C). The top of the wall is not horizontal and rises on both abutments (see Exhibit A-2). Approximately 15 feet of this wall is breached on the left side to a low point on the dam at elevation 1496.5 (see photograph 4, Appendix C). Upstream of this wall, an earth embankment slopes 1 vertical on 3.3 horizontal to a maximum depth of 3 feet below the lake level. Upstream for a distance of about 300 feet, the original stream channel is filled in with earth to about 3 feet below lake level. The downstream side of the dam is a dry stone masonry wall with a batter of 5 vertical to 1 horizontal. The downstream wall is about 73 feet long and 10.3 feet high at its maximum section. A rectangular opening (1.8'W x 1.9'H) in the low point in the stone wall was discharging water at about 250 GPM (see photograph 3, Appendix C). This flow appears to be entirely leakage, since no intake structure or controls were visible. This is supported by the sound of turbulent flow below the right side of the breach in the upstream wall (see Exhibit A-1). No accumulation of fines was observed in the discharge area. The top of the dam is 14 feet wide and contains earth fill between the dry stone walls (see photograph 2, Appendix C). Except for the low area in the vicinity of the breached upstream wall, the top of the earth fill is essentially horizontal. Brush and trees up to 8" in diameter are located on the dam crest and along the toe of the downstream wall.

c. Appurtenant Structures.

(1) Spillway: There is no visible evidence of a constructed spillway. When inflow into the lake exceeds leakage through the dam, excess flow is discharged through the 15 feet wide breached section in the upstream wall.

(2) Outlet Works: The rectangular opening (1.8'W x 1.9'H) at the low point in the downstream wall appears to be a remnant drain outlet (see photograph No. 3). There was no visible evidence of an intake or con-

trol facilities. On the day of the field inspection, the outlet was discharging about 250 GPM. This flow represents the entire inflow into the lake and appears to be controlled seepage and leakage through the dam.

d. Reservoir Area. With the exception of about 7 acres of farmland on the left abutment, the watershed is predominantly undeveloped woodland. The left abutment slopes vary from 15 to 30 percent and contain many large, slabby, sandstone boulders. The right abutment slopes vary from 5 to 15 percent. There is no evidence of unstable slope conditions or features that could affect the safety of the dam. Approximately 800 feet upstream of Lower Twin Lake is Upper Twin Lake. The impact of this lake on Lower Twin Lake is described in Section 5, Hydrology and Hydraulics. Other pertinent watershed features are shown in Exhibit E-1, Appendix E. The geologic conditions in the area are described in Appendix F.

e. Downstream Channel. The channel downstream of the dam is a natural wooded channel with an average slope of about 5 percent (see photograph No. 5, Appendix C). About 300 feet downstream of the dam, the stream flow is diverted into a man-made earth channel (see photograph No. 6, Appendix C). The channel varies from 8 to 10 feet wide and has a 3-foot high embankment with 1 on 2 slopes on the downhill side. This channel is diverted left of the natural stream valley and discharges into an adjacent stream about 500 feet east. Large flows exceeding the capacity of the man-made channel flow down the original stream valley. After crossing the highway 900 feet downstream, the stream valley widens and combines with the flat flood plain of Kinneyville Creek. There are six occupied homes 650 to 1300 feet downstream that would be extensively damaged and more than a few lives could be lost should the dam fail (see photograph Nos. 7 and 8, Appendix C). Consequently, Lower Twin Lake Dam is classified as a high hazard structure.

SECTION 4
OPERATIONAL PROCEDURES

4.1 Normal Operating Procedure.

The reservoir is maintained at normal pool level with the excess inflow discharging as leakage through the dam which flows out of the rectangular opening at the toe of the downstream dry stone wall. Previous inspection reports on the dam revealed that this condition existed prior to 1940.

4.2 Maintenance of Dam.

Maintenance activities by the present owner could not be ascertained during the inspection and appear to be minimal. Visual inspection of the dam indicates that there has been little or no maintenance of the dam. Several trees on the dam have grown to 8-inches in diameter.

4.3 Maintenance of Operating Facilities.

There are no visible operable outlet facilities at the dam. The flow in the remnant stone culvert drain is uncontrolled leakage and seepage through the dam.

4.4 Warning System.

There is no emergency operation and warning system in effect at the present time.

4.5 Evaluation.

There is no formal inspection and maintenance program in effect. Frequent inspections are necessary to detect hazardous conditions at the dam.

An emergency warning system and evacuation plan for the downstream residents is necessary to prevent loss of life should the dam fail.

SECTION 5
HYDROLOGY AND HYDRAULICS

5.1 Design Data.

There is no design information available for Lower Twin Lake Dam.

5.2 Experience Data.

No records of prior flood stages or flows are available for Lower Twin Lake Dam, the upstream Upper Twin Lake Dam, or Kinneyville Creek, downstream of the facility.

5.3 Visual Observations.

Based on the visual inspection reported in Section 3, the observations relevant to hydrology and hydraulics are evaluated below:

a. Dam. In the absence of a spillway, the breached portion of the upstream wall conveys flood water over the dam into the downstream channel. A profile of the upstream stone wall is presented in Exhibit A-2.

Photographs from inspection reports and visual observations indicate that the dam was constructed to increase the level of a natural lake. For a distance of about 300 feet upstream of the dam, the original stream channel has been filled in by lake sediments or by man-placed soils to about elevation 1492. Should the dam fail, only the water impounded above elevation 1492 would contribute to downstream flooding conditions.

b. Upstream Conditions. About 800 feet upstream of Lower Twin Lake is Upper Twin Lake Dam, as shown on Exhibit E-1. The effect of this upstream dam and reservoir on the hydrologic and hydraulic characteristics of Lower Twin Lake Dam is described in Appendix D and summarized in paragraph 5.5b.

c. Downstream Conditions. There are no downstream conditions which would affect the hydraulic analysis of the dam. The diversion channel, described in paragraph 3.1e, has no significant effect on downstream conditions during floods.

5.4 Method of Analysis.

Hydrologic and hydraulic evaluation was made in accordance with the procedures and guidelines established by the U.S. Army Corps of Engineers, Baltimore District, Phase I Safety Inspection of Dams. The analysis has been performed utilizing the HEC-1DB program developed by the U.S. Army Corps of Engineers, Hydrologic Engineering Center, Davis, California. A brief description of program capabilities, as well as the input and output data used specifically for this analysis, is presented in Appendix D.

5.5 Summary of Analysis.

a. Spillway Design Flood (SDF). According to criteria established by the Office of the Chief of Engineers (OCE), the Spillway Design Flood (SDF) for the size (small) and the hazard potential (high) of the Lower Twin Lake Dam is between one-half Probable Maximum Flood ($\frac{1}{2}$ PMF) and the full PMF. Based on the potential hazard survey and the hydrologic and hydraulic analysis, $\frac{1}{2}$ PMF is selected for the SDF for Lower Twin Lake Dam.

b. Results of Analysis. The analysis indicates that the Lower Twin Lake Dam overtops by 1.5 and 3.1 feet during flood magnitudes of 0.2 PMF and 0.5 PMF respectively. In the absence of a spillway, the duration of overtopping, for all flood magnitudes analyzed, is 48 hours.

It was judged that overtopping depth of one foot over the crest of the earth embankment would breach the dam within a period of 15 minutes. Dam break analysis was performed with a breach width equal to the existing 15 feet wide breach in the upstream stone wall. Since the dam was constructed at the outlet of a natural lake, failure of the dam would only release the impounded water above the outlet of the natural lake (see Appendix D, Sheet D-15).

Comparison between the "overtopping" analysis and the "dam breach" analysis indicates that the maximum flood stage resulting from the breaching of the dam would occur considerably sooner and would be higher than that derived for the "overtopping" analysis. For flood magnitudes of 0.2 PMF, the aforementioned comparison indicates that the difference between the attained maximum flood stages is 2.25 hours. The computed maximum flood stage difference at the first group of dwellings, downstream of the dam, is 3.4 feet. This will increase the hazard to loss of life and property damage.

The analysis indicates that Upper Twin Lake Dam would be overtopped at the $\frac{1}{2}$ PMF by a maximum depth of 0.7 feet and that the duration of overtopping would be 5.75 hours. It is judged that the Upper Twin Lake Dam would not fail due to overtopping under these conditions.

A summary of computer analysis is tabulated at the end of Appendix D.

c. Spillway Adequacy. Lower Twin Lake Dam is rated as seriously inadequate because there is no spillway capable of passing floods without overtopping the dam. Failure of the dam would increase downstream flooding conditions above those existing prior to the failure and increase hazard to loss of life.

SECTION 6
EVALUATION OF STRUCTURAL STABILITY

6.1 Visual Observations.

The visual inspection reported in Section 3 resulted in a number of observations relative to the structural stability of the dam as described below.

a. Embankment. The brush and trees growing on the dam crest and along the toe are undesirable. The trees promote structural deterioration of the dry stone walls and create potential piping paths in the embankment.

b. Spillway. The lack of a spillway causes flood flows to be discharged over the dam crest. A fifteen-foot section of the upstream wall has been breached and the downstream wall has had several stones removed by erosion. Subsequent high discharges will increase this structural deterioration to the point of total failure.

c. Outlet Works. All low flow discharges pass through the embankment and dry stone walls of the structure as leakage. While no evidence of piping was observed, the possibility of piping developing in the future cannot be ruled out.

6.2 Past Performance.

The absence of discernible settlement, bulging, and misalignment combined with the lack of any reported distress over a recorded history of 57 years indicates that the structure is stable under conditions other than severe overtopping.

6.3 Seismic Stability.

The dam is located in Seismic Zone 1. Normally, in this zone, it is assumed that if the dam has an adequate safety factor under static conditions, it can be assumed safe for dynamic earthquake loadings. Based on visual inspections, the dam's age, and past performance, the dam is judged to be stable under static conditions.

SECTION 7

ASSESSMENT, RECOMMENDATIONS AND PROPOSED REMEDIAL MEASURES

7.1 Dam Assessment.

a. Safety.

(1) Based on visual inspection, available records, calculations, and past performance, Lower Twin Lake Dam is judged to be in poor condition. Since the dam has no spillway, it is not capable of passing any portion of the PMF without overtopping. In the absence of a spillway, and based on the type of construction and the condition of the dam, it is judged that the dam could not withstand the depth and duration of overtopping that would occur for the selected SDF ($\frac{1}{2}$ PMF). Failure of the dam would cause an increased hazard to loss of life downstream. The facility is rated as seriously inadequate. According to criteria established for these studies, the dam is rated as unsafe, non-emergency, as the facility is seriously inadequate.

(2) There is no functional outlet works for the dam.

(3) A summary of the features and observed deficiencies is listed below:

<u>Feature and Location</u>	<u>Observed Deficiencies</u>
Spillway	Non-existent
Outlet Works	Not Functional
Dry Masonry Structure	Stones missing and displaced; clear seepage at toe.
Embankment	Brush and trees.

(4) The facility is not properly maintained, as evidenced by the growth of brush and trees on top of the dam and at the toe.

b. Adequacy of Information. The information available is such that an assessment of the condition of the dam must be based primarily on the visual inspection and computations performed as part of this study.

c. Urgency. The recommendations in paragraph 7.2 should be implemented immediately.

d. Necessity for Further Investigations. In order to accomplish some of the remedial measures outlined in paragraph 7.2, further investigations by a professional engineer, experienced in the design and construction of dams, will be necessary.

7.2 Recommendations and Remedial Measures.

a. The following measures are recommended to be undertaken by the owner, in approximate order of priority, immediately:

(1) Perform additional hydrologic and hydraulic analyses to more accurately determine the required spillway capacity for the Lower Twin Lake Dam. Design and construct a spillway that will pass the required SDF without overtopping the dam.

(2) Remove trees and brush from the top of the earth embankment and the toe of the dam under the supervision of a professional engineer.

(3) Periodically measure the rate and clarity of the leakage discharging from the remnant stone culvert. Take appropriate action as necessary.

(4) Develop a method of drawing down the lake in case of emergency.

All investigations, studies, designs and supervision of construction should be performed by a professional engineer, experienced in the design and construction of dams.

b. In addition, it is recommended that the owner institute operational procedures as follows:

(1) Develop a detailed emergency operation and warning system.

(2) Provide round-the-clock surveillance of the dam during periods of unusually heavy rains.

(3) When warnings of storms of major proportions are given by the National Weather Service, the owner should activate his emergency operation and warning system procedures.

(4) Institute an inspection program such that the dam is inspected frequently. As presently required by the Commonwealth, the program should include a formal annual inspection by a professional engineer, experienced in the design and construction of dams. Utilize the results to determine if remedial measures are necessary.

(5) Institute a maintenance program to properly maintain all features of the dam.

APPENDIX A

VISUAL INSPECTION - CHECKLIST AND FIELD SKETCHES

LOWER TWIN LAKE DAM
GENERAL PLAN - FIELD INSPECTION NOTES

CONTINUUM

三

SCALE HORIZONTAL 1" = 50' VERTICAL 1" = 4'

LOWER TWIN LAKE DAM TOP OF DAM PROFILE

卷之三

OUTLET SECTION

TYPICAL DAM SECTIONS

SECTION A

CHECK LIST
VISUAL INSPECTION
PHASE 1

NAME OF DAM	Lower Twin Lake	STATE	Pennsylvania	COUNTY	Wayne
NDI # PA	00132	PENNDER #	64-018	HAZARD CATEGORY	High
TYPE OF DAM	Dry Rock Masonry w/Earth Fill	SIZE	Small	TEMPERATURE	50° <i>a</i>
DATE(S) INSPECTION	December 2, 1980	WEATHER	Clear		1:30
POOL ELEVATION AT TIME OF INSPECTION	1495		M.S.L		
TAI WATER AT TIME OF INSPECTION	N/A		M.S.L		

OTHERS
OWNER REPRESENTATIVES

INSPECTION PERSONNEL	OWNER REPRESENTATIVES
Vaden Butler , Engineer	None
James Diaz , Geologist	
Wayne Himes , Surveyor	

RECORDED BY Vaden Butler, P.E.

EMBANKMENT

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS	NDIM PA - 00132
SURFACE CRACKS	None Visible	
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	None	
SLOUGHING OR EROSION OF EMBANKMENT AND ABUTMENT SLOPES	None	
VERTICAL AND HORIZONTAL ALIGNMENT OF THE CREST	Horizontal - Good Vertical - Slight sag in middle	
RIPRAP FAILURES	About 15' of upstream loose stone wall is breached and stones dumped at downstream toe. Sounds of turbulent water below right side of breach.	
JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLWAY AND DAM	Good; No visible seepage or erosion	

EMBANKMENT

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS	NDI# PA . 00132
DAMP AREAS IRREGULAR VEGETATION (LUSH OR DEAD PLANTS)	None	
ANY NOTICEABLE SEEPAGE	Discharge at box drain appears to be leakage.	
STAFF GAGE AND RECORDER	None	
DRAINS	1.8' wide x 1.9' high drain visible only from downstream side. Entire flow in stream (250 GPM) emerging at this drain.	
ROCK OUTCROPS	None visible at dam site. Many large slabs of boulder talus on right slope and in creek bed indicates shallow bedrock depth. 350 feet downstream of dam, near horizontal sandstone, bedrock ledges are exposed on the creek side slopes.	
DAM FOUNDATION TREES, OTHER	Trees and brush on dam crest up to 8" in diameter.	

OUTLET WORKS

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS	NDI# PA-00132
INTAKE STRUCTURE	None	
OUTLET CONDUIT (CRACKING AND SPALLING OF CON- CRETE SURFACES)	Outlet concealed in box (1.8' W. X 1.9' H.) in dry stone wall.	
OUTLET STRUCTURE	None visible	
OUTLET CHANNEL	Natural stream bed about 10' wide.	
GATE(S) AND OPERA- TIONAL EQUIPMENT	None	

EMERGENCY SPILLWAY

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS	NDI# PA - 00132
TYPE AND CONDITION	A11 that might be construed as emergency spillway is a breach in the upstream dry stone wall about 15 feet wide (see Exhibit A-2).	
APPROACH CHANNEL	Filled stream channel 50' to 75' wide, about 300' long and about 2.5' deep.	
SPILLWAY CHANNEL AND SIDEWALLS	None	
STILLING BASIN PLUNGE POOL	None	
DISCHARGE CHANNEL	Natural stream with 10'+ bottom width.	
BRIDGE AND PIERS EMERGENCY GATES	None	

SERVICE SPILLWAY

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS	NDI#PA • 00132
TYPE AND CONDITION	No spillway. In case of very large flood, discharge would be through the breached dry stone wall and over entire length of dam.	
APPROACH CHANNEL	N/A	
OUTLET STRUCTURE	N/A	
DISCHARGE CHANNEL	N/A	

INSTRUMENTATION

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS	NDIM PA - 00132
MONUMENTATION SURVEYS	None	
OBSERVATION WELLS	None	
WEIRS	None	
PIEZOMETERS	None	
OTHERS		
OPERATION AND MAINTENANCE DATA	No maintenance in at least 25 years.	

RESERVOIR AREA AND DOWNSTREAM CHANNEL

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS	NDIM PA - 00132
SLOPES: RESERVOIR	Right abutment slopes 10 to 15 percent and is wooded. Left abutment slopes 5 to 10 percent and is wooded.	
SEDIMENTATION	Sedimentation of man-placed soils has filled original stream channel to within 3.0' of water surface for a distance of about 300 feet upstream of the dam.	
DOWNSTREAM CHANNEL (OBSTRUCTIONS, DEBRIS, ETC.)	Normal channel for mountain stream.	
SLOPES: CHANNEL VALLEY	Natural wooded stream valley	
APPROXIMATE NUMBER OF HOMES AND POPULATION	7 occupied homes - 800-1200' downstream and south of road.	
WATERSHED DESCRIPTION	Wooded mountainous area.	

APPENDIX B

ENGINEERING DATA - CHECKLIST

CHECK LIST
ENGINEERING DATA
PHASE I

NAME OF DAM	Lower Twin Lake	ITEM	REMARKS	NDI# PA-00132
PERSONS INTERVIEWED AND TITLE	Jessie Young, Caretaker	REGIONAL VICINITY MAP	See Exhibit E-1, Appendix E	
CONSTRUCTION HISTORY		AVAILABLE DRAWINGS	None Available	
TYPICAL DAM SECTIONS		OUTLETS:	See Exhibit A-3, Appendix A	
PLAN DETAILS DISCHARGE RATINGS			None available None available None available	PAGE 1 OF 5

CHECK LIST
ENGINEERING DATA
PHASE I
(CONTINUED)

ITEM	REMARKS	NDI# PA - 00132
SPILLWAY PLAN SECTION DETAILS	None	
OPERATING EQUIP. MENT PLANS AND DETAILS	None	
DESIGN REPORTS	None	
GEOLOGY REPORTS	Information on sub-surface conditions at the damsite is not available. Geologic description of the site, extracted from "Groundwater in NE Pennsylvania, Bulletin M-4", Pennsylvania Topographic and Geologic Survey, 1937; and is presented in Appendix F.	
DESIGN COMPUTATIONS: HYDROLOGY AND HYDRAULICS STABILITY ANALYSES SEEPAGE ANALYSES	None	
MATERIAL INVESTIGATIONS: BORING RECORDS LABORATORY TESTING FIELD TESTING	None	PAGE 2 OF 4

CHECK LIST
ENGINEERING DATA
PHASE I
(CONTINUED)

ITEM	REMARKS	NDI# PA - 00132
BORROW SOURCES	Unknown	
POST CONSTRUCTION DAM SURVEYS	None	
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	None	
HIGH POOL RECORDS	None	
MONITORING SYSTEMS	None	
MODIFICATIONS	None	

**CHECK LIST
ENGINEERING DATA
PHASE I
(CONTINUED)**

ITEM	REMARKS	NDWPA • 00132
PRIOR ACCIDENTS OR FAILURES	None reported	
MAINTENANCE RECORDS MANUAL	None	
OPERATION RECORDS MANUAL	None	
OPERATIONAL PROCEDURES	Self-regulating.	
WARNING SYSTEM AND/OR COMMUNICATION FACILITIES	None	
MISCELLANEOUS		

CHECK LIST
HYDROLOGIC AND HYDRAULIC
ENGINEERING DATA

NDI ID # 00132
PENNDEER ID # 064-018

SIZE OF DRAINAGE AREA. 1.03 sq. mi.

ELEVATION TOP NORMAL POOL 1496.5 STORAGE CAPACITY 316 ac. ft.

ELEVATION TOP FLOOD CONTROL POOL NA STORAGE CAPACITY NA

ELEVATION MAXIMUM DESIGN POOL N/A STORAGE CAPACITY NA

ELEVATION TOP DAM: 1496.5 STORAGE CAPACITY: 316 ac. ft.

SPILLWAY DATA NOT APPLICABLE

CREST ELEVATION: _____

TYPE: No existing spillway

CREST LENGTH: _____

CHANNEL LENGTH: _____

SPILLOVER LOCATION: _____

NUMBER AND TYPE OF GATES: _____

OUTLET WORKS NOT APPLICABLE EXCEPT AS NOTED

TYPE: None visible.

LOCATION: _____

ENTRANCE INVERTS: Not visible. Appears to be buried.

EXIT INVERTS: Elev. 1486.2

EMERGENCY DRAWDOWN FACILITIES None

HYDROMETEOROLOGICAL GAGES

TYPE: N/A

LOCATION: _____

RECORDS: _____

MAXIMUM NON-DAMAGING DISCHARGE: Unknown

APPENDIX C

PHOTOGRAPHS

**LOWER TWIN LAKE DAM
PHOTOGRAPHS LOCATION MAP**

**LOWER TWIN LAKE DAM
DOWNSTREAM PHOTOGRAPHS LOCATION MAP**

1. UPSTREAM FACE OF DAM

2. TOP OF DAM FROM RIGHT ABUTMENT SHOWING
UPPER DRY MASONRY WALL

3. DOWNSTREAM FACE OF DRY STONE WALL SHOWING OUTLET OPENING
4. UPPER & LOWER DRY MASONRY WALL SHOWING BREACH AREA

5. DOWNSTREAM VIEW OF STREAM CHANNEL FROM DAM

6. DOWNSTREAM VIEW OF DIVERSION CHANNEL (ARROW TO LEFT)
AND ORIGINAL CHANNEL (ARROW TO TOP)

7. DOWNSTREAM VIEW OF HOMES 1000' BELOW DAM

8. EASTWARD VIEW FROM ROAD OF HOMES 1000' BELOW DAM

APPENDIX D

HYDROLOGY AND HYDRAULICS

SUMMARY DESCRIPTION
OF
FLOOD HYDROGRAPH PACKAGE (HEC-1)
DAM SAFETY INVESTIGATIONS

The hydrologic and hydraulic evaluation for this inspection report has employed computer techniques using the Corps of Engineers computer program identified as the Flood Hydrograph Package (HEC-1) Dam Safety Version.

The program has been designed to enable the user to perform two basic types of hydrologic analyses: (1) the evaluation of the over-topping potential of the dam, and (2) estimate the downstream hydrologic-hydraulic consequences resulting from assumed structural failures of the dam. A brief summary of the computation procedures typically used in the dam over-topping analysis is shown below.

- Development of an inflow hydrograph to the reservoir.
- Routing of the inflow hydrograph(s) through the reservoir to determine if the event(s) analyzed would over-top the dam.
- Routing of the outflow hydrograph(s) of the reservoir to desired downstream locations. The results provide the peak discharge, time of the peak discharge and maximum stage of each routed hydrograph at the outlet of the reach.

The output data provided by this program permits the comparison of downstream conditions just prior to a breach failure with that after a breach failure and the determination as to whether or not there is a significant increase in the hazard to loss of life as a result of such a failure.

The results of the studies conducted for this report are presented in Section 5.

For detailed information regarding this program, refer to the Users Manual for the Flood Hydrograph Package (HEC-1), Dam Safety Investigations prepared by the Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis, California.

GEO-TECHNICAL SERVICES
Consulting Engineers & Geologists

JOB LOWER TWIN LAKE PA-00132
SHEET NO _____ OF _____
CALCULATED BY WEH DATE 2/13/81
CHECKED BY _____ DATE _____
SCALE _____

- 1.) DEVELOP INFLOW HYDROGRAPH TO UPPER TWIN LAKE
- 2.) ROUTE THRU UPPER TWIN RESERVOIR
- 3.) ROUTE TO INLET OF LOWER TWIN RESERVOIR
- 4.) DEVELOP INFLOW HYDROGRAPH TO LOWER TWIN LAKE
OF ADDITIONAL DRAINAGE AREA.
- 5.) COMBINE HYDROGRAPHS
- 6.) ROUTE THRU LOWER TWIN RESERVOIR
- 7.) ROUTE TO DOWNSTREAM SECTIONS

LAKE COMO, PA.—N.Y.
SE 1/4 SE 1/4 S 22-15-5 QUADRANGLE
N4145—R7515/75

1968

EXHIBIT E-1
REGIONAL VICINITY
AND
WATERSHED BOUNDARY MAP

GEO-TECHNICAL SERVICES
Consulting Engineers & Geologists

JOB LOWER TWIN LAKE PA - 00132

SHEET NO.

CALCULATED BY WEH

OF
DATE 2/13/81

CHECKED BY _____

DATE _____

SCALE _____

GENERAL DATA

RIVER BASIN	DELAWARE (SUB-BASIN 1) *
STREAM NAME	BRANCH OF KINNEYVILLE CREEK
DAM NAME	LOWER TWIN LAKE DAM
NDI ID No.	PA - 00132
DER ID No.	DER 64-018
OWNER	CAMP WAYNE
LOCATION	PRESTON TWP., WAYNE Co., PA
	LAT. N 41° 51' 16"
	LONG. W 75° 20' 04"
SIZE CATEGORY	SMALL
HAZARD CATEGORY	HIGH
UPSTREAM DAMS	UPPER TWIN LAKE DAM
DOWNSTREAM DAMS	NONE

* PENN-DER WATER RESOURCES BULLETIN No. 5

GEO-TECHNICAL SERVICES
Consulting Engineers & Geologists

JOB LOWER TWIN LAKE

PA-00132

SHEET NO

OF

CALCULATED BY WEH

DATE 2/13/81

CHECKED BY

DATE

SCALE

UPPER TWIN LAKE

DRAINAGE BASIN & UNIT HYDROGRAPH DATA

DRAINAGE AREA

0.79 Sq. Mi.

SNYDER UNIT HYDROGRAPH COEFFICIENTS

AS SUPPLIED BY BALT. DIST. COE (DELAWARE BASIN, ZONE 1)

$$C_P = 0.45$$

$$C_t = 1.23$$

$$\text{LAG TIME} = T_P = C_t (L \times L_{ca})^{0.3}$$

L = 1.33 mi. RESERVOIR OUTLET TO DRAINAGE DIVIDE

L_{ca} = 0.53 mi. RESERVOIR OUTLET TO CENTROID

$$\therefore T_P = 1.23(1.33 \times 0.53)^{0.3} = 1.11 \text{ HRS.}$$

RAINFALL DATA

PER HYDROMETEOROLOGICAL REPORT No. 33

PMF RAINFALL = 21.5" (24 HR & 200 Sq. Mi.)

RAINFALL DISTRIBUTION

6 HR	111%
12 HR	123%
24 HR	133%
48 HR	142%

GEO-TECHNICAL SERVICES
Consulting Engineers & Geologists

JOB LOWER TWIN LAKE PA-00132

SHEET NO _____ OF _____
CALCULATED BY WEH DATE 2/13/81
CHECKED BY _____ DATE _____
SCALE _____

UPPER TWIN LAKE (CONT.)

DAM DATA

TOP OF DAM ELEV. (LOW POINT)	1560.8
DAM LENGTH (INC. SPILLWAY)	320'
DAM HEIGHT	6.8'
DAM WIDTH	20'±
"C" VALUE - DAM	2.7
LEVEL DAM	

SPILLWAY DATA

THERE IS NO CONVENTIONAL EMERGENCY SPILLWAY

THE SERVICE SPILLWAY CONSISTS OF A 4.8'H. X 2.3'W CONC. BOX W/ 2' OF STOP LOGS TO RAISE THE WATER SURFACE TO 1556.0. THE CONC. BOX TRANSITIONS TO A 24"Ø CMP @ THE OUTLET END. COMPUTE RATING CURVE FOR THE OUTLET & INPUT DIRECTLY.

GEO-TECHNICAL SERVICES
Consulting Engineers & Geologists

JOB LOWER TWIN LAKE PA-00132

SHEET NO _____ OF _____
CALCULATED BY WEH DATE 3/9/81
CHECKED BY _____ DATE _____
SCALE _____

[UPPER TWIN LAKE SPILLWAY]

EL. 1560.8

EL. 1558.5

EL. 1556.0

EL. 1554.0

STOPLOGS

ELEVATION

PROFILE

ASSUME SHARP CRESTED WEIR FLOW UNTIL ENTRANCE IS SUBMERGED

$$Q = CLH^{3/2}$$

$$C = 3.1$$

$$L = 2.3'$$

H = DEPTH OF WATER ABOVE STOPLOGS (W.S. - 1556.0)

AFTER THE ENTRANCE IS SUBMERGED USE ORIFICE FLOW

$$Q = Ca\sqrt{2gh}$$

$$C = 0.7$$

$$a = 5.75 \text{ S.F.}$$

$$g = 32.2 \text{ FT/SEC}^2$$

h = DEPTH OF WATER ABOVE ORIFICE (W.S. - 1557.25)

GEO-TECHNICAL SERVICES
Consulting Engineers & Geologists

JOB LOWER TWIN LAKE PA-00132

SHEET NO. _____ OF _____
CALCULATED BY WEH DATE 3/9/81
CHECKED BY _____ DATE _____
SCALE _____

[UPPER TWIN LAKE SPILLWAY]

W.S. ELEV.	H ₁	H	H ₂	CFS
1556.0	0	—	—	0
1557.0	1.0	—	—	7
1558.5	2.5	—	—	28
1559.0	—	1.75	—	43
1560.0	—	2.75	—	54
1560.8	—	3.55	0	61
1561.0	—	3.75	0.2	63
1562.0	—	4.75	1.2	70
1563.0	—	5.75	2.2	77
1564.0	—	6.75	3.2	84
1565.0	—	7.75	4.2	90
1566.0	—	8.75	5.2	96

NOTE: SPILLWAY RATING CURVE TO BE INPUT DIRECTLY

JOB UPPER TWIN LAKE

GEO-TECHNICAL SERVICES
Consulting Engineers & Geologists

SHIFT NO.

DATE ISSUED BY

DATE 2-13-81

CHECKED BY _____

SCALE _____

LOWER TWIN LAKE PA-00132

GEO-TECHNICAL SERVICES
Consulting Engineers & Geologists

SHEET NO.

CALCULATED BY WEH

16

DATE 2/16/81

CHECKED BY

DATE

SCALE

UPPER TWIN LAKE (CONT.)STORAGE DATA

ELEV (FT.)	AREA (AC)	STORAGE (MG.)	STORAGE (AC.FT.)	DESCRIPTION
1483.7 (1)	0	0	0	RESERVOIR BOT.
1556	55	433 *	1325	NORMAL POOL
1560.8	74	534	1633	TOP OF DAM
1580	95	1062	3251	CONTOUR

(1) ESTABLISH ELEV. @ 0 AREA

USE STORAGE PER BULLETIN 5 = 433 MG. @ ELEV. 1556

$$\Delta E = \frac{38}{A} = \frac{(3)(1325)}{55} = 72.3'$$

$$\text{ELEV. @ 0 AREA} = 1556 - 72.3 = \underline{\underline{1483.7}}$$

* PENN-DER WATER RESOURCES BULLETIN No. 5

GEO-TECHNICAL SERVICES
Consulting Engineers & Geologists

JOB LOWER TWIN LAKE

PA-00132

SHET NO

CALCULATED BY WEH

OF

DATE 2/16/81

CHECKED BY

DATE

SCALE

LOWER TWIN LAKE

DRAINAGE BASIN & UNIT HYDROGRAPH DATA

DRAINAGE AREA

DOWNSTR. OF UPPER TWIN LAKE DAM	0.24 SQ. MI.
UPPER TWIN LAKE	0.79 SQ. MI.
TOTAL =	1.03 SQ. MI.

LENGTH OF RESERVOIR - NORMAL	2100 FT.
- MAX	2200 FT.

SNDYER UNIT HYDROGRAPH COEFFICIENTS

AS SUPPLIED BY BALT. DIST. COE (DELAWARE BASIN ZONE 1)

$$C_P = 0.45$$

$$C_T = 1.23$$

$$\text{LAG TIME} = T_P = C_T \times (L)^{0.6}$$

$L' = 0.20$ MI. FROM RESERVOIR INLET TO
DRAINAGE DIVIDE

$$\therefore T_P = 1.23 \times 0.20^{0.6} = 0.47 \text{ HRS}$$

RAINFALL DATA

PER HYDROMETEOROLOGICAL REPORT No.33

PMF RAINFALL = 21.5" (24 HR & 200 SQ. MI.)

RAINFALL DISTRIBUTION

6HR	111%
12HR	123%
24HR	133%
48 HR	142%

GEO-TECHNICAL SERVICES
Consulting Engineers & Geologists

JOB LOWER TWIN LAKE

PA - 00132

SHET NO

OF

CALCULATED BY WEH

DATE

CHECKED BY

DATE

SCALE

DATE

LOWER TWIN LAKE CONT.

DAM DATA

TOP OF DAM ELEV. (LOW POINT)	1496.5
DAM LENGTH	157'
DAM HEIGHT (TOP EARTH FILL)	10.3'
DAM WIDTH	14'
"C" VALUE - DAM	2.7
NON-LEVEL DAM	

LENGTH OF DAM	BELOW ELEV.
0'	1496.5
11'	1496.9
14'	1498.0
57'	1500.0
164'	1500.8
179'	1502.0
230'	1506.0

SPILLWAY DATA

THERE IS NO SPILLWAY OF ANY KIND. THE TOTAL
OUTFLOW PASSES THRU THE DRY STONE MASONRY
DAM, OR POSSIBLY INTO A HIDDEN DRAIN SOME-
WHERE BELOW RESERVOIR LEVEL.

GEO-TECHNICAL SERVICES
Consulting Engineers & Geologists

JOB LOWER TWIN LAKE PA-00132

SHEET NO.

CALCULATED BY WEH

DATE 2/16/81

CHECKED BY

DATE

SCALE

OUTLET WORKS DATA

THE ORIGINAL OUTLET WORKS IS NOT VISIBLE @ THE UPSTREAM SIDE & TOTALLY INOPERABLE.

STORAGE DATA

ELEV. (FT.)	AREA (Ac)	STORAGE (MG.)	DESCRIPTION
STORAGE (AC.FT.)			
1463.3 (1)	0	0	RESERVOIR BOT.
1495.0	26	90*	275
1496.5	28.4	103	316
1500	34	139	425
1520	53	421	1288

(1) ESTABLISH ELEV. @ 0 AREA

USE STORAGE PER BULLETIN 5 OF 90 MG. @ ELEV. 1495

$$\Delta E = \frac{33}{A} = \frac{(3)(275)}{26} = 31.7'$$

$$\text{ELEV. @ 0 AREA} = 1495 - 31.7 = \underline{\underline{1463.3}}$$

* PENN-DER WATER RESOURCES BULLETIN No. 5

JUN LOWER TWIN LAKE DER 64-18

GEO-TECHNICAL SERVICES

Consulting Engineers & Geologists

870

CHURCHILL R J M

Wait 1-23-81

CHECKED BY

DATE

SCALE HORZ. 1" = 50' VERT. 1" = 4'

GEO-TECHNICAL SERVICES
Consulting Engineers & Geologists

JOB LOWER TWIN LAKE PA-00132

SHEET NO.

CALCULATED BY WEH

OF

DATE 3/23/81

CHECKED BY

DATE

SCALE

DUE TO THE DOWNSTREAM HAZARD CONDITIONS & THE RESULTS OF THE OVERTOPPING ANALYSIS, A BREACH ANALYSIS WILL BE MADE ON LOWER TWIN LAKE DAM. UPPER TWIN LAKE DAM DOES NOT HAVE A POTENTIAL FOR OVERTOPPING FAILURE SERIOUS ENOUGH TO WARRANT FURTHER INVESTIGATION.

THE DAM IS A DRY STONE MASONRY / EARTH FILL STRUCTURE. HOWEVER, FIELD EXAMINATION SHOWS THAT THE DAM HAS BEEN PARTIALLY BREACHED BY A PREVIOUS OVERTOPPING, AND IS IN SUCH A WEAKENED STATE THAT ANOTHER OVERTOPPING OF 1' TO 2' DEPTH WOULD RESULT IN MORE SERIOUS DAMAGE. HOWEVER, THE DAM WAS PLACED AT THE OUTLET OF A NATURAL LAKE, & EVEN IF THE FULL HEIGHT OF DAM WERE TO FAIL, THE RESERVOIR WOULD NOT BE DRAINED BELOW THE ELEV. OF THE NATURAL LAKE OUTLET, SO ASSUME THE BOT. OF THE BREACH TO BE AT THIS ELEV. = 1492.5

ANALYZE THE DAM FOR BREACH WIDTH OF 15', SIDE SLOPES OF 0.5 H on 1 V, BOT. ELEV. = 1492.5, FAILURE TIME OF 15 MIN. & BEGINNING WHEN OVERTOPPING REACHES 1' DEPTH. INVESTIGATE FAILURES OCCURRING DURING 0.2 PMF, THE MIN. FLOOD MEETING THE OVERTOPPING CRITERIA, AND 0.5 PMF, THE SELECTED SPILLWAY DESIGN FLOOD.

GEO-TECHNICAL SERVICES

Consulting Engineers & Geologists

JOB Lower Twin Lake

SHEET NO 1 OF 1
CALCULATED BY SPM DATE 4/81
CHECKED BY _____ DATE _____

X-SECTIONS DOWNSTREAM OF DAM

FLOOD HYDROGRAPH PACKAGE (HEC-1)
DAM SAFETY VERSION JULY 1978
LAST MODIFICATION 01 APR 80

**NATIONAL DAM INSPECTION PROGRAM
LOWER TWIN LAKE--PA00132 (OVERTOPPING ANALYSIS)**

	A3	PRESTON TWP., WAYNE CO., PA.										
4	B	150	0	15	0	0	0	0	0	0	-1	
5	B1	5	0	0	0	0	0	0	0	0	0	
6	J	1	1	1	1	0	0	0	0	0	0	
7	J1	.1	.2	.3	.4	.5	.75	1	0	0	0	
8	K	0	1	0	0	0	0	0	0	0	0	
9	K1	INFLOW TO UPPER TWIN LAKE (SUB-AREA 1)										
10	H	1	1	0.79	0	1.03	0	0	0	0	1	
11	P	0	21.5	111	125	135	142	0	0	0	0	
12	T	0	0	0	0	0	0	0	0	0	0	
13	W	1.011	0.45	0	0	0	0	0	0	0	0	
14	X	-1.05	-0.05	2	0	0	0	0	0	0	0	
15	K	1	2	0	0	0	0	0	0	0	0	
16	K1	ROUTE THRU UPPER TWIN LAKE										
17	Y	0	0	0	1	0	0	0	0	0	0	
18	Y1	1	0	0	0	0	0	0	0	0	0	
19	Y41556.0	0	1557.0	0	1558.5	1559.0	1560.0	1560.6	1561.0	1562.0	1563.0	
20	Y41565.0	0	1566.0	0	0	0	0	0	0	0	0	
21	Y5	0	7	26	45	56	61	65	70	77	84	
22	Y5	90	96	0	0	0	0	0	0	0	0	
23	SA	0	55	74	95	0	0	0	0	0	0	
24	SE1483.7	-	1536	1560.6	-	1580	0	0	0	0	0	
25	SS1556.0	0	0	0	0	0	0	0	0	0	0	
26	SD1560.8	2.7	1.5	3.35	0	0	0	0	0	0	0	
27	SL	0	-335	600	0	0	0	0	0	0	0	
28	SV1560.6	1561.5	1578	0	0	0	0	0	0	0	0	
29	K	1	3	0	0	0	0	0	0	0	0	
30		K1	LOWER TWIN LAKE STA 3									
31	Y	0	0	0	0	0	0	0	0	0	0	
32	V1	1	0	0	0	0	0	0	0	0	0	
33	K	0	3	0	0	0	0	0	0	0	0	
34	K1	LOWER TWIN LAKE (SUB-AREA 2)										
35	H	1	1	0.24	0	1.03	0	0	0	0	0	
36	P	0	21.5	-111	123	133	142	0	0	0	0	
37	T	0	0	0	0	0	0	0	0	0	0	
38	W	0.47	0.45	0	0	0	0	0	0	0	0	
39	X	-1.05	-0.05	2	0	0	0	0	0	0	0	
40	K	2	3	0	0	0	0	0	0	0	0	
41	K1	INFLOW TO LOWER TWIN LAKE										
42	K	1	0	0	0	0	0	0	0	0	0	
43	K1	ROUTE THRU LOWER TWIN LAKE										
44	Y	0	0	0	0	0	0	0	0	0	0	
45	Y1	1	0	0	0	0	0	0	0	0	0	
46	SA	0	26	28.4	34	53	0	0	0	0	0	
47	SE1463.5	1495.5	1496.5	1500	1520	0	0	0	0	0	0	
48	SS1496.5	0	2.7	1.5	0	0	0	0	0	0	0	
49	SD1496.5	2.7	1.5	157	0	0	0	0	0	0	0	
50	SL	0	11	14	57	164	179	193	210	227	244	

D-16

D-17

FLOOD HYDROGRAPH PACKAGE (HEC-1)
DAM SAFETY VERSION JULY 1978
LAST MODIFICATION JU APR 80

RUN DATE → 81/05/05.
TIME → 06.49.52.

NATIONAL DAM INSPECTION PROGRAM
 LOWER TWIN LAKE--PA00132 (COVERTOPPING ANALYSIS)
 PRESTON FWP, WAYNE CO., PA

JOB SPECIFICATION							
NO	NMR	MAIN	1DAY	IMR	IMIN	IPRC	IPRT
150	0	15	0	0	0	0	-4
				0	0	0	0
				JOPER	NUT	LROPT	TRACE
				3	0	0	0

MULTI-PLAN ANALYSES TO BE PERFORMED --

NPLAN= 1 NRATIO= 7 LRATIO= 1
 RTIOS= .10 .20 .30 .40 .50 .75 1.00

SUB-AREA RUNOFF COMPUTATION

INFLOW TO UPPER TWIN LAKE (SUB-AREA 1)

IStage	ICOMP	IECON	ITAPE	JPLT	JPRAT	IAME	IStage	IAUTO
1	0	0	0	0	0	1	0	0

HYDROGRAPH DATA

IMYOG	IUNG	TAREA	SNAP	TRSDA	TRSPC	RATIO	ISNOW	ISAME	LOCAL
1	1	.79	0.00	1.03	0.00	0.000	0	1	0

PRECIP DATA

SPFE	PHS	R6	R12	R24	R48	R72	R96
0.00	21.50	111.00	123.00	135.00	142.00	142.00	142.00

TRSPC COMPUTED BY THE PROGRAM IS .000

LOSS DATA

LROPT	SLTKR	RITOL	ERAIN	SPKRS	RIVOK	STARTL	CNSTL	ALSMX	ATIMP
0	0.00	1.00	0.00	0.00	1.00	1.00	.05	0.00	0.00

UNIT HYDROGRAPH DATA

TP= 1.11 CP= .45 NTA= 0

RECEDITION DATA

STRTOE= -1.50 QRCSE= -.05 RTION= 2.00

UNIT HYDROGRAPH #1 END-OF-PERIOD ORDINATES	LAG=	1.11 HOURS	CP=	.45	VOL= 1.00
19. 69.	134.	187.	162.	141.	123.
23. 80.	80.	61.	46.	35.	30.
23. 20.	20.	17.	13.	11.	9.
					6.

6. 5. 4. 4. 3. 3. 2. 2. 2.

JOURNAL OF CLIMATE

SCOTTIE THAIL LIEPER THIN NAME

ROUTE THRU UPPER TWIN LAKE

	ISTAQ	ICOMP	IECON	ITAPE	JPLT	JPRAT	I NAME	I STAGE	I AUTO
2	1	0	0	0	0	0	0	0	0
ROUTING DATA									
GLOSS	CLOSS	Avg	IRES	ISAME	IOP1	IPHP	LSTR		
0.0	0.000	0.00		1	0	0	0		
NSTPS	NSTOL	LAG	AHSKK	X	TSK	STORA	ISPRAT		
1	0	0	0.000	0.000	0.000	-1556.	-1		
STAGE	1556.00	1557.00	1558.50	1559.00	1560.00	1560.80	1561.00	1562.00	1563.00
	1566.00								
FLOW	0.00	7.00	20.00	43.00	54.00	61.00	63.00	70.00	77.00

SURFACE AREA=	0.	55.	74.	95.
CAPACITY=	0.	1326.	1634.	3252.
STRETCH TENSION=	100.	1061.	1180.	1380.

CREL	SPY10	COQW	EXPY	ELEV	COAL	CAREA	EXPL
11556.0	-0.0	0.0	-0.0	0.0	-0.0	0.0	-0.0

-TOPPEL DATA 1560.6 20.7 C000 EXP0 DAMNIT 1.5 335.

CREST LENGTH	0.	335.	600.
AT OR BELOW			
ELEVATION	1560.6	1561.5	1578.0

PEAK OUTFLOW IS 13. AT TIME 48.00 HOURS

PEAK QUITFLOW IS 34. AT TIME 47.25 HOURS

DEAN OUTLET LANE IS 52° AT TIME 47.25 HOURS

PEAK OFFICE 10 AM 12 PM 1:15 PM 2:30 PM 3:45 PM 4:45 PM 5:45 PM 6:45 PM 7:45 PM 8:45 PM 9:45 PM 10:45 PM 11:45 PM 12:45 AM 1:45 AM 2:45 AM 3:45 AM 4:45 AM 5:45 AM 6:45 AM 7:45 AM 8:45 AM 9:45 AM 10:45 AM 11:45 AM 12:45 PM

PEAK OUTFLOW IS 302. AT TIME 44.25 HOURS

1958: A TIME OUTSIDE OF HOURS

HYDROGRAPH ROUTING

LOWER THIN LAKE STA 3

T-STATE	I-COMP	I-ECON	I-TAPE	J-PLT	JNAME	I-JAVAC	STORA	I-SPRAT
3	1	0	0	0	1	0	0	0
ROUTING DATA								
GLOSS	CLOSS	Avg	IRES	ISAME	IOPF	IPHP	I-SPA	
0.0	0.000	0.00	0	0	0	0	0	
NSTPL3	NSTPL1		L48	AM5KK	X	TSK	STORA	I-SPRAT
				0.000		0.000	0.000	0.0

D-20

SUB-AREA RUNOFF COMPUTATION

LOWER TWIN LAKE (SUB-AREA 2)

ISTAQ	ICOMP	IECON	ITAPE	JPLT	JPRT	I NAME	I STAGE	I AUTO
-3	0	0	0	0	0	0	0	0

HYDROGRAPH DATA
 IUNG TAREA SNAP TRSDA TRSPC RATIO ISNOW ISAME LOCAL
 1 .24 0.00 1.03 0.00 0.000 0 1 0

PRECIP-DATA
 SPFE PMS R6 R12 R24 R48 R72 R96
 0.00 21.50 111.00 123.00 133.00 142.00 0.00 0.00
 TRSPC COMPUTED BY THE PROGRAM IS .800

LOSS DATA
 STRKR OLTMR RTOL ERAIN STRKS RATIOI STRIL CMSTL ALSMK RTIMP
 J 0.00 0.00 1.00 0.00 0.00 1.00 1.00 .05 0.00 0.00 0.00

UNIT HYDROGRAPH DATA
 TP= .47 CP= .45 NTA= 0

RECEDSION DATA
 STRQ= -1.50 QRCSN= -.05 RTIOR= 2.00

UNIT HYDROGRAPH 16 END-OF-PERIOD ORDINATES, LAGE=.47 HOURS, CP=.45 VOL=1.00
 52. 132. 136. 93. 64. 44. 30. 21. 10. 10.

7. 5. 3. 2. 2. 1.

END-OF-PERIOD FLOW
⁰ MO.DA HR.MN PERIOD RAIN EXCS LOSS COMP Q MO.DA HR.MN PERIOD RAIN EXCS LOSS COMP Q

SUM 24.42 22.04 2.39 13655.
 (-620.)(360.)(-61.)(-386.67)

COMBINE-HYDROGRAPHS

INFLOW TO LOWER TWIN LAKE

ISTAQ	ICOMP	IECON	ITAPE	JPLT	JPRT	I NAME	I STAGE	I AUTO
3	2	0	0	0	0	1	0	0

HYDROGRAPH ROUTING

ROUTE THRU LOWER TWIN LAKE

	I STAG	E COMP	I ECON	I TAPE	JPLT	JPAT	I NAME	I STAGE	I AUTO
	4	1	0	0	0	0	1	0	0
				ROUTING DATA					
LOSS	LOSS	Avg	IRES	I NAME	10FF	IPHP			
0.0	0.000	0.00	1	1	0	0			LSTR
									0
	MSTPS	MSTDL	LAG	AMSKK	X	TSK	STORA	ISPRAT	
	1	0	0	0.000	0.000	0.000	0.000	-1497.	0
SURFACE AREA =	0.	26.	28.	34.	53.				
CAPACITY =	0.	275.	316.	425.	1268.				
ELEVATION =	1463.	1495.	1497.	1500.	1520.				
	CREL	SPYID	COEF	EXPY	ELEV	COAL	CAREA	EXPL	
	1496.5	0.0	2.7	1.5	0.0	0.0	0.0	0.0	

DAM DATA

	TOPL	COQD	EXPD	DAMWID
	1496.5	2.7	1.5	157.

CREST LENGTH
AT OR BELOW
ELEVATION

0. 11. 14. 57. 164. 179. 230.
1496.5 1496.9 1498.0 1500.0 1500.8 1502.0 1506.0

PEAK OUTFLOW IS 19. AT TIME 43:50 HOURS

PEAK OUTFLOW IS 57. AT TIME 42:75 HOURS

D-22

PEAK OUTFLOW IS 110. AT TIME 42.75 HOURS

PEAK OUTFLOW IS 173. AT TIME 42.50 HOURS

PEAK OUTFLOW IS 277. AT TIME 45.25 HOURS

PEAK OUTFLOW IS 1138. AT TIME 43.00 HOURS

PEAK OUTFLOW IS 2011. AT TIME 42.25 HOURS

D-23

HYDROGRAPH ROUTING

ROUTE TO STREAM SECTION AT STA 5

ISTAQ	ICOMP	IECON	ITAPE	JFLT	JPRTR	I NAME	I STAGE	I AUTO	LSTR
5	1	0	0	0	0	0	1	0	0
			ROUTING DATA						
GLOSS	CLOSS	Avg	IRES	ISAME	I OPT	IPMP			
0.0	0.000	0.00	1	1	0	0			
NSTPS	NSTDL	LAG	AMSKK	X		TSK	STORA	ISPRAT	
1	0	0	0.000	0.000		0.000	0.	0.	

NORMAL DEPTH CHANNEL ROUTING

QN(1)	QN(2)	QN(3)	ELNVT	ELMAX	RLNTH	SEL
.0600	.0400	.0600	1447.0	1470.0	650.	.06460

CROSS SECTION COORDINATES--STA,ELEV,STA,ELEV--ETC
 0.00 1470.00 100.00 1460.00 220.00 1450.00 221.00 1447.00 225.00 1447.00

STORAGE	0.00	.06	.17	.34	.93	1.98	3.51	5.50	7.96	10.88
	14.28	16.17	23.24	29.76	37.72	47.11	57.18	67.47	77.98	88.71
OUTFLOW	0.00	43.98	129.78	274.51	619.41	1312.65	2477.07	4219.55	6637.27	9820.55
	13854.54	18268.78	23231.99	30442.87	39878.71	52052.30	68851.00	87962.89	109316.08	132859.35
STAGE	1447.00	1448.21	1449.42	1450.63	1451.84	1453.05	1454.26	1455.47	1456.68	1457.89
	1459.11	1460.32	1461.53	1462.74	1463.95	1465.16	1466.37	1467.58	1468.79	1470.00
FLOW	0.00	43.98	129.78	274.51	619.41	1312.65	2477.07	4219.55	6637.27	9820.55
	13854.54	18268.78	23231.99	30442.87	39878.71	52052.30	68851.00	87962.89	109316.08	132859.35
MAXIMUM STAGE IS 1447.5										

MAXIMUM STAGE IS 1448.4

MAXIMUM STAGE IS 1449.1

MAXIMUM STAGE IS 1449.8

MAXIMUM STAGE IS 1450.6

MAXIMUM STAGE IS 1452.7

MAXIMUM STAGE IS 1453.8

HYDROGRAPH ROUTING

ROUTE TO STREAM SECTION AT STA 6

I STAQ	I COMP	I ECON	I TAPE	JPLT	JPRI	I NAME	I STAGE	I AUTO
6	1	0	0	0	0	1	0	0
				ROUTING DATA				
GLOSS	CLOSS	Avg	IRES	ISAME	I OPT	IPHP	LSTR	
0.0	0.000	0.00	1	1	0	0	0	
NSTPS	NSTDL	LAG	AMSKK	X	TSK	STORA	ISPRAT	
1	0	0	0.000	0.000	0.000	0.	0	

NORMAL DEPTH CHANNEL ROUTING

QN(1)	QN(2)	QN(3)	ELNVT	ELMAX	RLNTH	SEL
0.0000	0.0000	0.0000	1437.0	1430.0	130.	06670

CROSS SECTION COORDINATES--STA,ELEV,STA,ELEV--ETC

0.00 1480.00	300.00 1440.00	695.00 1440.00	696.00 1437.00	702.00 1437.00
703.00 1440.00	900.00 1467.00	1250.00 1460.00		

	STORAGE	0.00	.05	2.33	6.21	10.72	15.85	21.59	27.94	34.90	42.46
	OUTFLOW	0.00	59.24	67.99	76.87	85.89	95.03	104.31	113.72	123.27	132.94
	STAGE	1437.00	1439.26	1441.53	1443.79	1446.05	1448.32	1450.58	1452.84	1455.11	1457.37
D-25	1459.63	1461.89	1464.16	1466.42	1468.68	1470.95	1473.21	1475.47	1477.74	1480.00	
	FLOW	0.00	185.72	4613.09	20480.66	46265.25	81943.61	127741.67	184002.13	251162.09	329689.58
	420068.27	530413.66	654306.26	789880.67	936855.60	1095010.02	1264167.77	1444167.35	1634954.61	1636377.97	

MAXIMUM STAGE IS 1437.2

MAXIMUM STAGE IS 1437.7

MAXIMUM STAGE IS 1438.3

MAXIMUM STAGE IS 1439.1

MAXIMUM STAGE IS 1439.3

MAXIMUM STAGE IS 1439.6

MAXIMUM STAGE IS 1440.2

HYDROGRAPH ROUTING

ROUTE TO STREAM SECTION AT STA 7

I STAG	I COMP	I ECON	I TAPE	J PLT	J PRT	I NAME	I STAGE	I AUTO
7	1	0	0	0	0	1	0	0
ROUTING DATA								
GLOSS	CLOSS	Avg	IRES	ISAME	IOP1	IPMP	LSTR	
0.0	0.000	0.00	0	1	0	0	0	
NSTP3	NSTOL	TAG	AMSKK	X	TSK	STORM	ISPART	
1	0	0	0.000	0.000	0.000	0.	0	

NORMAL DEPTH CHANNEL ROUTING

QN(1)	QN(2)	GN(3)	ELNVT	ELMAX	RLNTH	SEL
.0600	.0400	.0800	1412.0	1440.0	400.	.06500

D - 26

CROSS SECTION COORDINATES--STA,ELEV,STA,ELEV--ETC

STORAGE	0.00	.13	.35	.618	13.37	21.72	31.18	41.58	52.88	65.08
	78.19	92.21	107.12	122.69	138.39	154.16	170.07	186.05	202.14	218.33
OUTFLOW	0.00	132.49	523.33	4794.54	14330.47	28624.92	47903.78	72197.54	101476.53	135888.16
	175593.16	220773.72	271617.60	335679.43	407636.52	485306.38	568534.00	657186.68	751149.44	850321.62
STAGE	1412.00	1413.47	1414.95	1416.42	1417.89	1419.37	1420.84	1422.32	1423.79	1425.26
	1426.74	1428.21	1429.68	1431.16	1432.63	1434.11	1435.58	1437.05	1438.53	1440.00
FLOW	0.00	132.49	523.33	4794.54	14330.47	28624.92	47903.78	72197.54	101476.53	135888.16
	175593.16	220773.72	271617.60	335679.43	407636.52	485306.38	568534.00	657186.68	751149.44	850321.62
MAXIMUM STAGE IS 1412.0										
MAXIMUM STAGE IS 1412.6										
MAXIMUM STAGE IS 1413.2										

MAXIMUM STAGE IS 1413.6
MAXIMUM STAGE IS 1414.0
MAXIMUM STAGE IS 1415.2
MAXIMUM STAGE IS 1415.5

D-27

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIC ECONOMIC COMPUTATIONS
 FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)
 AREA IN SQUARE MILES (SQUARE KILOMETERS)

OPERATION	STATION	AREA	PLAN	RATIO	RATIO	RATIO	RATIO	RATIO	RATIO	RATIO		
				1	.10	.20	.30	.40	.50	.75	1.00	
HYDROGRAPH AT												
1	2.051	(.79	1	210.	420.	629.	859.	1049.	1373.	2098.	
					(5.94)	(11.88)	(17.82)	(23.76)	(29.70)	(44.55)	(59.40)
ROUTED TO												
2	2.051	(.79	1	13.	34.	52.	69.	802.	1058.	1696.	
					(.37)	(.96)	(1.48)	(1.96)	(6.56)	(29.97)	(48.01)
ROUTED TO												
3	2.051	(.79	1	13.	34.	52.	69.	802.	1058.	1696.	
					(.37)	(.96)	(1.48)	(1.96)	(6.56)	(29.97)	(48.01)
HYDROGRAPH AT												
4	2.671	(.24	1	99.	198.	297.	396.	495.	742.	989.	
					(2.80)	(5.60)	(8.40)	(11.20)	(14.01)	(21.01)	(28.01)
2-COMBINED												
5	2.671	(1.03	1	103.	206.	312.	416.	524.	1256.	2096.	
					(2.91)	(5.83)	(8.84)	(11.83)	(14.85)	(35.56)	(59.37)
ROUTED TO												
6	2.671	(1.03	1	19.	57.	110.	173.	277.	1136.	2011.	
					(.54)	(1.62)	(3.10)	(4.91)	(7.83)	(32.23)	(56.96)
ROUTED TO												
7	2.671	(1.03	1	19.	57.	110.	173.	277.	1136.	2011.	
					(.54)	(1.62)	(3.10)	(4.91)	(7.83)	(32.23)	(56.96)
ROUTED TO												
8	2.671	(1.03	1	19.	57.	110.	173.	277.	1136.	2011.	
					(.54)	(1.62)	(3.10)	(4.91)	(7.83)	(32.24)	(56.92)
ROUTED TO												
9	2.671	(1.03	1	19.	57.	110.	173.	277.	1136.	2011.	
					(.54)	(1.62)	(3.10)	(4.91)	(7.83)	(32.24)	(56.92)
ROUTED TO												
10	2.671	(1.03	1	19.	57.	110.	173.	277.	1136.	2011.	
					(.54)	(1.62)	(3.10)	(4.91)	(7.83)	(32.24)	(56.92)

SUMMARY OF DAM SAFETY ANALYSIS (UPPER TWIN LAKE)

PLAN	ELEVATION STORAGE OUTFLOW	SPILLWAY CREST	TOP OF DAM	TIME OF FAILURE		
				INITIAL VALUE	MAXIMUM STORAGE AC-FT	DURATION OVER TOP HOURS
1	1556.00 1326. 0.	1556.00 1326. 0.	1560.80 1634. 61.			
RATIO OF RESERVOIR W.S.O.ELEV PMF	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	MAX OUTFLOW CFS	TIME OF FAILURE HOURS
.10	1557.43	0.00	1408.	13.	0.00	48.00
.20	1558.69	0.00	1487.	34.	0.00	97.25
.30	1559.85	0.00	1565.	52.	0.00	47.25
.40	1560.97	.17	1647.	69.	3.50	47.25
.50	1561.51	.71	1687.	302.	5.75	44.25
.75	1562.12	1.32	1732.	1058.	7.25	42.75
1.00	1562.49	1.69	1760.	1696.	7.75	42.00

D-29

SUMMARY OF DAM SAFETY ANALYSIS
(LOWER TWIN LAKE)

PLAN 1

	ELEVATION STORAGE	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
	W.S.ELEV	316.	1496.50	1496.50
	OUTFLOW	0.	316.	316.

RATIO OF RESERVOIR TO PMF	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE	DURATION OVER TOP	TIME OF MAX-OUTFLOW	TIME OF FAILURE
	AC-F1	CFS	HOURS	HOURS	HOURS
.10	1497.37	.87	341.	19.	43.50
.20	1498.04	1.54	361.	57.	42.75
.30	1498.62	2.12	379.	110.	42.75
.40	1499.08	2.58	394.	173.	42.50
.50	1499.60	3.10	411.	277.	45.25
.75	1501.28	4.78	469.	1138.	43.00
1.00	1502.11	5.61	998.	2011.	42.25

PLAN 1 STATION 3

RATIO OF STAGE/F1	MAXIMUM FLOW/CFS	MAXIMUM STAGE/F1	TIME HOURS
.10	19.	1447.5	43.50
.20	57.	1448.4	43.00
.30	110.	1449.1	42.75
.40	175.	1449.8	42.50
.50	277.	1450.6	45.50
.75	1138.	1452.7	43.00
1.00	2010.	1453.6	42.25

D-30

PLAN 1		STATION	6			
RATIO	MAXIMUM FLOW, CFS	MAXIMUM STAGE, FT		TIME HOURS		
		1.0	1.9*	1437.2	43.50	
.20	57.	1437.7	43.00			
.30	110.	1438.3	42.75			
.40	173.	1439.1	42.50			
.50	277.	1439.3	45.50			
.75	1139.	1439.8	43.00			
1.00	2010.	1440.2	42.25			

PLAN 1		STATION	7			
RATIO	MAXIMUM FLOW, CFS	MAXIMUM STAGE, FT		TIME HOURS		
		1.0	1.9*	1412.2	43.10	
.20	57.	1412.6	43.01			
.30	110.	1413.2	42.75			
.40	173.	1413.6	42.50			
.50	277.	1414.0	45.50			
.75	1138.	1415.2	43.00			
1.00	2010.	1415.5	42.25			

D-31

81/05/08. 09:33:58

PROGRAM TWRK **NATIONAL DAM INSPECTION PROGRAM**
A2 **YOUNG TWIN LAKE--PA00112 (BREACH ANALYSIS)**

D-32

K	1	ROUTE TO STREAM SECTION AT STA 5	0	0	0	0	1	0	0
K1	Y1	0	0	0	0	0	0	0	0
T1	Y1	0	0	0	0	0	0	0	0
T6	Y6	.06	.04	.08	.1447	.1470	.650	.0646	0000
T7	Y7	0	1470	100	1460	220	1450	221	1447
T7	Y7	226	1450	320	1460	600	1465	0	225
K1	ROUTE TO STREAM SECTION AT STA 6	0	0	0	0	0	0	0	0
K1	X1	0	0	0	1	0	0	0	0
X1	X1	0	0	0	0	0	0	0	0
X1	Y6	.08	.04	.08	.1437	.1480	.150	.0667	0000
X1	Y7	0	1480	300	1440	695	1440	.696	1437
X1	Y7	703	1440	900	1447	1250	1460	0	702
K1	ROUTE TO STREAM SECTION AT STA 7	0	0	0	0	0	0	0	0
K1	X1	0	0	0	1	0	0	0	0
X1	X1	0	0	0	0	0	0	0	0
X1	Y6	.08	.04	.08	.1412	.1440	.400	.0650	0000
X1	Y7	0	1430	605	1415	990	1415	.992	1412
X1	Y7	1010	1435	1100	1420	1200	1440	0	998
X1	X9	99	1499	0	0	0	0	0	0000

D-33

QJN CAT# C1/05/150
71452 150220150

NATIONAL DAM INSPECTION PROGRAM
LOWER TWIN LAKE--FAC0132 (PREACH ANALYSIS)
PRESTON TWP., WAYNE CO., PA

JOE SPECIFICATION									
NG	NHR	NPIN	IDAY	IMP	IMIN	METRC	JPLT	IPRT	NSTAN
150	0	12	0	0	0	0	0	0	0
				JGPER	NWT	LROPT	TRACE		
				6	0	0	0		

MULTI-PLAN ANALYSES TO EF PERFORMED

$$RTI \text{ LOSS} = -0.20 \quad -0.5$$

D-34

CHIEF AREA BUDGET COMMITTEE

INFECTIVE UPPER TWIN LAKE (SUE-AFFA 1)

```

ISTAC 1COMP IECON ITAPE JPRT INAME IStage IAUTO
      1     0     0     0     0     0     0     0

```

HYDROGRAPHIC DATA						
EG.	LNGC.	TAFEA	SH4P	TRSDA	RATIO	ISNOW ... ISAME ... LOCAL
1	1	79	0.00	1.03	0.00	0 0 0

LOSS DATA				UNIT HYDROGRAPH RATE	
1. FLOOD	2. STREAM	3. DRAIN	4. RIVER	5. STREAM	6. RIVER
0.00	0.00	0.00	1.00	0.00	1.00

APPROXIMATE CLARK COEFFICIENTS FROM GIVEN SNYDER CP AND TP ARE ICE .068 AND R= 7.13 INTERVALS
RECESSION DATA
STRTO= -1.50 CRCSN= -.05 RTIORS= 2.00

UNIT HYDROGRAPH 41 HUG-CF-PERIOD COORDINATES. LAC = 1.11 HOURS. CP = .95 VOL = 1.00
 69. 134. 187. 203. 187. 162. 141. 125. 107.
 70. 70. 61. 53. - 96. 40. 35. 30. 26.

PEAK OUTFLOW IS 302. AT TIME 44.25 HOURS

	PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL VOLUME
CFS	302.	198.	56.	28.	5412.
CMS	9.	6.	2.	1.	153.
INCHES		2.34	2.65	2.66	2.66
MM	59.36	67.19	67.45	67.45	
AC-FT	98.	111.	112.	112.	
THOUS. CU M	121.	137.	138.	138.	

D 36

***** HYDROGRAPH ROUTING *****

LOWER TWIN LAKE STA 3

IFLAG	ICOMP	IECON	ITAPE	JELT	IPRI	INAME	ISIAGE	IAVIO
3	1	0	0	0	0	0	0	0
				KROUTING DATA				
GLOSS	GLOSS	Avg	IRES	ISAME	IPRI	IPMP	LSIR	
0.0	0.000	0.00	0	0	0	0	0	
NSIPS	NSTEL	LAG	AMSKK	X	TSK	SIGRA	ISPRAT	
1	0	0	0.000	0.000	0.	0	0	

LOWE? TALL? LAME? (SUE=API: A 2)

JOURNAL OF CLIMATE

卷之三

ISTAT 1 ICOPF 0 IFCON 0 ITAFF 0 JPLT 0 JPRT 0 INAME 1 ISAGE 0 IAUTO 0
 HYDROGRAPH DATA
 10Hr TAREA SNAP TRSPC RATIO ISNOW ISAME LOCAL
 1 0.24 0.00 1.03 0.00 0.000 0 1 0 0
 PRECIP DATA
 SPFC PWS R12 R24 R48 R96
 0.00 21.50 111.03 123.00 133.03 142.00 0.00 0.00
 UNIT HYDROGRAPH DATA
 LPOFT STAKE ELTPF RTIUL SPAIN STREK CNSTL ALSMX RTIMP
 0 0.00 0.00 1.00 0.00 0.00 1.00 1.00 0.05 0.00 0.00
 UNIT HYDROGRAPH DATA
 TP= .47 CPE=.45 NIAE=0
 RECESSION DATA
 STATE= -1.0°C CPSC= -.05 RTIOR= 2.00
 APPROXIMATE CLARK COEFFICIENTS FROM GIVEN STREAM CP AND TF ARE TC= 1.00 AND RE 2.71 INTERVALS
 UNIT HYDROGRAPH 16 END-OF-PERIOD ORDINATES, LAGE = .47 HOURS, CP = .45 30. VOL = 1.00
 52. 132. 136. 93. 64. 44.
 7. 5. 3. 2. 2. 1.

***** HYDROGRAPH ROUTING *****

ROUTE THRU LOWER TWIN LAKE

	ISTAT	ICIMP	ITCON	ITFE	JELT	JPRT	I NAME	ISTAGE	IAUTO
CLSSS	4	1	0	0	0	0	1	0	0
				ROUTING DATA					
	0.0	0.000	AVS	IRFS	ISAME	IOPT	IPMP	LSTR	
		0.00		1	1	0	0		0
INSTPS	1	INSTL	LFG	ANSPK	X	TSK	STOPA	ISPRAT	
		2	0	0.000	0.000	0.000	-1497.		0
SURFACE AREA =	0.	2.0	28.	74.	51.				

CAPACITI- C. 37.0 316. 425. 1288.

ELEVATION- E. 1463. 1497. 1497. 1500. 1520.

CREL SPWID COAW EXPW EFLV CCGL CAREA EXPL
1996.5 1.0 2.7 1.5 0.0 0.0 0.0 0.0

DAM DATA
ICFEL COGD EXPD DAMHIC
1996.5 2.7 1.5 157.

CREST LENGTH D. 11. 14. 57. 164. 172. 230.

AT OR BELOW ELEVATION 1496.5 1496.9 1498.0 1500.0 1500.8 1502.0 1506.0

DAM BREACH DATA
ERWIC Z ELEM TFAIL WSEL FAILL
15. 50 1492.50 .25 1496.50 1497.50

STATION 4. PLAN 1. RATIO 1

BEGIN DAM FAILURE AT 40.25 HOURS

PEAK OUTFLOW IS 593. AT TIME 40.50 HOURS

	PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL VOLUME
CFS	593.	265.	74.	37.	7110.
CMS	17.	7.	2.	1.	201.
INCHES		2.36	2.68	2.68	2.68
FTM		60.71	67.95	67.95	67.95
AC-FT		131.	147.	147.	147.
THOUS CU M		162.	181.	181.	181.

D-38

JWV

BEGIN DAM FAILURE AT 12:00 HOURS

STATION 4, FLAT 1, PATIO 2

PEAK OUTFLOW IS 2640 AT TIME 48.25 HOURS

	PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL VOLUME
CFS	584.	390.	146.	73.	13993.
CMS	17.	11.	4.	2.	396.
INCHES		3.52	5.27	5.27	5.27
MM		89.46	133.73	133.75	133.75
AC-FT		193.	269.	289.	289.
INCHES CU M		212.	357.	357.	357.

D-39

HYDROGRAPH ROUTING

ROUTE TO STREAM SECTION AT STA 5

ISTAO	ICONF	ITCON	ITAPE	JFLT	JEFT	INAME	ISAGE	IAUTO
5	1	0	0	0	0	1	0	0
			ROUTING DATA					
GLOSS	CLOSS	Avg	IRCS ISAME	IOP1	IPNP	LSTR		
0.000	0.000	0.00	1	1	0	0		
1.0								
ROUTE S	ASTRL	LAG	AMSKK	X	TSK	STORA	ISPRAT	
1	0	0	0.000	0.000	0.000	0	0	

NORMAL DEPTH CHANNEL RUTTING

ON(1)	ON(2)	ON(3)	FLAVT	FLMAX	RLNTH	SEL
00600	00400	00600	19470.1	14760.0	650.	006450

CROSS SECTION COORDINATES--STA.ELEV. STA.ELEV.--ETC

STORAGE	0.00	18.08	18.17	23.24	24.76	31.72	37.72	47.11	57.18	57.51	5.50	7.96	10.88
OUTFLC#	0.00	43.54	14262.74	23231.93	274.51	615.41	1312.65	2477.07	4219.55	6637.27	9820.54	88.71	88.71
STAGE	1447.00	1448.21	1449.42	1450.63	1451.84	1453.05	1454.26	1455.47	1455.47	1456.68	1457.88	1470.00	10316.08
FLG#	0.00	43.54	14262.74	23231.93	30442.87	35875.71	52052.30	68851.03	87962.89	109316.08	132859.35	132859.35	132859.35

卷之三

MAXIMUM STAGE IS 1451.8

STATION 5 • PLAIN 1, PT10 2

卷之三

***** HYDROGRAPH FRACTING *****

ROUTE TO STREAM SECTION AT STA 6

	I STAO	I COMP	I CON	I TAFE	JPLT	J PRT	I NAME	I STAGE	I AUTO
GLOSS	6	1	0	0	0	0	1	0	0
0.0 C	0.000	0.000	0.000	0.000	0.000	0.000	L STR	0	0
N:TPS	N:STOL	N:LAG	N:PSMK	N:PSMK	N:PSMK	N:PSMK	STORA	ISPRAT	0.000
1	0	0	0.000	0.000	0.000	0.000	0	0	0

HYDROGRAPH CUTTING

ESTATE PLANNING

IECON - ITAFE

卷之三

FOUNTING DATA

TREES CANE 1

11

INAME IStage IAuto

四
七

2

46

卷之三

3

NORMAL DEPTH CHANNEL ROUTING

CN(1)	CN(2)	CN(3)	ELVT	ELWT	ELTR	ELTL
0.000	0.000	0.000	1447.00	1447.00	1447.00	1447.00

CROSS SECTION COORDINATES--STA. ELEV. STA. ELEV. FFC 1437.00 702.00 1437.00

STORAGE	6.00	0.05	2.73	6.21	10.72	15.85	21.59	27.94	34.90	42.46
	5.0.63	5.0.64	6.7.93	7.6.67	P. P. 5.	95.03	104.31	113.72	123.27	132.94
OUTFLOW	0.00	1.75.72	4.613.04	20480.66	46265.25	81943.61	127741.67	184002.13	251162.09	329689.58
	4200E.27	530411.66	54306.25	7898E.67	93665.60	1095010.02	1264167.77	1441187.35	1634954.61	1836377.47
STAGE	1437.00	1435.26	1441.53	1443.79	1446.05	1446.32	1450.58	1452.84	1455.11	1457.37
	1455.63	1461.89	1464.16	1466.42	1466.68	1470.95	1473.21	1475.47	1477.74	1480.00
FLOW	0.00	1.75.72	4.613.04	20480.66	46265.25	81943.61	127741.67	184002.13	251162.09	329689.58
	4200E.27	530413.66	54306.25	7898E.67	93665.60	1095010.02	1264167.77	1441187.35	1634954.61	1836377.47

STATION 6. PLAN 1. QTIO 1

MAXIMUM STAGE IS 1439.5

STATION 6. PLAN 1. RTIO 2

MAXIMUM STAGE IS 1439.5

HYDROGRAPH ROUTING

STAN	ICOMP	IFCON	ITATE	JPLT	JPRT	I NAME	I STAGE	I AUTO
7	1	0	0	0	0	0	0	0
		ROUTING DATA				IPMP		LSTR
GLOSS	CLOSS	Avg	IRES	ISAME	IOPF	0	0	0
0.0	0.000	0.00	1	1	0			
NSTPS	NSTL	LAG	AMSKK	X	TSK	STORA	ISPRAT	0.
1	0	0	0.000	0.000	0.			0

NORMAL DEPTH CHANNEL ROUTING

CN(1)	CN(2)	CN(3)	FL:VT	EL:HAY	RL:HAY	SEL
0.00	0.0400	0.0600	1412.0	1440.6	4.00	0.0650

CROSS SECTION COORDINATES--STA. ELEV--STA. ELEV--ETC

0.00	1430.00	605.00	1415.00	650.00	1415.00	592.00	1412.00
1010.00	1415.00	1100.00	1420.00	1200.00	1440.00		

STORAGE	0.00	.13	.15	6.10	11.37	21.72	31.10	41.50	52.88	65.00
GUTLOAD	16.19	92.21	107.12	122.69	135.39	154.18	170.07	186.05	202.14	218.33
	6.00	135.49	521.53	4794.59	14350.47	28624.92	47903.78	72197.54	101478.53	135888.18
	175543.16	226773.72	271617.60	35579.43	407634.52	485306.38	568534.90	657186.68	751149.44	850321.62
STAGE	1412.00	1413.47	1414.95	1416.42	1417.89	1419.37	1420.84	1422.32	1423.79	1425.26
	1926.74	1426.21	1429.69	1931.16	1432.63	1934.11	1435.58	1437.05	1438.53	1440.00
FLOW	0.00	132.44	521.53	4794.59	14350.47	28624.92	47903.78	72197.54	101478.53	135888.18
	175542.16	226773.72	271617.60	35579.43	407634.52	485306.38	568534.90	657186.68	751149.44	850321.62

STATION 7. PLAN 1. ST101

MAXIMUM STAGE IS 1415.0

MAXIMUM STAGE IS 1415.0

STATION 7. PLAN 1. RT10 2

MAXIMUM STAGE IS 1415.0

STATION 7. PLAN 1. RT10 1

D-42

PEAK FLOW AND STORAGE (END OF PLEIN) SUMMARY FOR MULTIPLE FLAME-RATIO ECONOMIC COMPUTATIONS
 FLOWS IN CUBIC FEET PER SECOND (CUMIC METERS PER SECOND)
 AREA IN SQUARE MILES (SQUARE KILOMETERS)

OPERATION	STATION	AREA	PLAN	RATIO 1	RATIO 2	FATIGUE APPLIED TO FLOWS
HYDROGRAPH AT	1	•79	1	•23	104%	
	(2.05)		(11.28)	(25.70)		
ROUTED TO	2	•79	1	•34	302%	
	(2.05)		(9.61)	(8.56)		
ROUTED TO	3	•79	1	•24	302%	
	(2.05)		(8.36)	(8.56)		
HYDROGRAPH AT	3	•24	1	154%	49%	
	(2.02)		(2.60)	(14.01)		
D-2 COMBINED	3	1.03	1	206%	524%	
	(2.67)		(5.63)	(14.85)		
ROUTED TO	4	1.03	1	593%	584%	
	(2.67)		(16.78)	(16.53)		
ROUTED TO	5	1.03	1	597%	591%	
	(2.67)		(16.91)	(16.73)		
ROUTED TO	6	1.03	1	612%	605%	
	(2.67)		(17.33)	(17.14)		
ROUTED TO	7	1.03	1	624%	616%	
	(2.67)		(17.68)	(17.50)		

Upper Town 7

SUMMARY OF DAY SAFETY ANALYSIS

PLAN 1	ELEVATION	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
	STORAGE	1556•00	1556•00	1560•80
	OUTFLOW	1326•	1326•	1634•
		0.	0.	61•
RATIO	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	DURATION OVER TOP GFS	TIME OF MAX OUTFLOW HOURS
OF RESERVOIR PMF	M.S.ALEY			
•20	1558•69	0.00	1487•	34• 0.00
•50	1561•51	.71	1687•	392• 5.75
				\$1.25 \$0.00

Lower Twin

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1

ELEVATION STORAGE OUTFLOW	INITIAL VALUE. 1496.50	SPILLWAY CREST 1496.50	TOP OF DAM 1496.50
316.	316.	316.	316.
0.	0.	0.	0.

RATIO
OF
PESERVOIR
H.S.ELEV

	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	DURATION OVER TOP CFS	TIME OF FAILURE HOURS
.20	1497.60	1.10	348.	41.50
.50	1497.55	1.05	346.	40.75

RATIO
FLOW.CFS

	MAXIMUM STAGE.FT	TIME HOURS
.20	597.	40.75
.50	594.	38.25

PLAN 1 STATION 5

RATIO
FLOW.CFS

	MAXIMUM STAGE.FT	TIME HOURS
.20	1451.8	40.75
.50	1451.7	38.50

PLAN 1 STATION 6

RATIO
FLOW.CFS

	MAXIMUM STAGE.FT	TIME HOURS
.20	612.	40.75
.50	605.	38.50

PLAN 1 STATION 7

RATIO
FLOW.CFS

	MAXIMUM STAGE.FT	TIME HOURS
.20	624.	40.75
.50	618.	38.50

D-44

APPENDIX E

EXHIBITS

LAKE COMO, PA.—N.Y.
SE. 4 STADYUCCA 5 QUADRANGLE
N4145—W7515/75

1968

WATERSHED BOUNDARY

LOWER TWIN LAKE DAM

Upper Twin Lake

LONGEST WATERCOURSE
CENTROID OF DRAINAGE AREA

EXHIBIT E-1

EXHIBIT E-1
REGIONAL VICINITY
AND
WATERSHED BOUNDARY MAP

SCALE 1:400,000

APPENDIX F

GEOLOGY

LOWER TWIN LAKE DAM

APPENDIX F

GEOLOGY

Lower Twin Lake Dam and reservoir area are located within the Glaciated Allegheny Plateau Section of the Appalachian Plateaus Physiographic Province. Deposits of glacial drift of variable thickness cover the entire area. The drift was deposited by the Wisconsin Ice Sheet during the Pleistocene period of geologic time.

The glacial drift is composed primarily of till which is a reddish brown, unsorted compact mixture of clay, silt, sand, gravel, and cobbles with occasional boulder sized pieces. The stone pieces are sub-angular to rounded and consist mainly of sandstone and siltstone derived from the Catskill formation, the dominant rock formation in the area. The clay content and compact nature of the till makes it a relatively impervious soil type.

Some deposits of glacial outwash are also found in the area. The outwash is composed of loose, poorly sorted to stratified deposits of silt, sand, and gravel. The outwash deposits are generally very pervious.

Other loose pervious soils in the area are the recent deposits of alluvial silt, sand, and gravel with some clay. These soils are localized and limited to streambeds and flood plain areas.

The bedrock underlying the entire dam and reservoir area is the Catskill Formation of the Susquehanna Group. This group of formations is of Upper Devonian age. The Catskill Strata generally consists of well-indurated red shale, siltstone, and fine sandstone with some gray, green, and brown shale, siltstone, and sandstone layers. Occasional conglomeratic layers are encountered. The red shales are the dominant lithology and the residual soils derived from this rock are usually high in clay and silt and contain numerous flaky and angular fragments and flat, slabby boulders. The right abutment at the dam is covered with many such flat, slabby boulders and the dry masonry walls of the dam itself are constructed from similar one and two-man sized boulders. About 350 feet downstream of the dam, near-horizontal sandstone ledges outcrop on the right side of the stream channel.

The regional structure of the bedrock in the area indicates that the bedrock underlying the dam and reservoir area is near-horizontal. The regional strike of the strata is northeast-southwest.

Although depth to the bedrock at the dam site is unknown, the steep earth slope on the left abutment indicates at least 14 feet of overburden soil.

Ref.: *Ground Water of Northeastern Pennsylvania, Stanley W. Lohman 1937, Bulletin W-4, Pennsylvania Geologic Survey.*

0 1 2 3 4 5 10 MILES
SCALE: 1 4 MILES

LEGEND

DEVONIAN

UPPER

CENTRAL AND EASTERN PENNSYLVANIA

Owayo Formation

Brownish and greenish gray, fine and medium grained sandstones with some shales and scattered calcareous lenses; includes red shales which become more numerous eastward. Relation to type Owayo not proved.

Catskill Formation

Chiefly red to brownish shales and sandstones, includes gray and greenish sandstone tongue named Elk Mountain, Homedale, Shohola, and Delaware River in the east.

Marine beds

Gray to olive brown shales, graywackes, and sandstones; contains "Chemung" beds and forlorn beds including Bucket, Brallier, Harrell, and Trimmers Rock; Tully Limestone at base.

Susquehanna Group

Barbed line is "Chemung-Catskill" contact of Second Pennsylvania Survey County reports; barbs on "Chemung" side of line.

NOTE:

GEOLOGIC MAP AND LEGEND
OBTAINED FROM GEOLOGIC MAP
OF PENNSYLVANIA BY PA.
TOPOGRAPHIC AND GEOLOGIC
SURVEY, DATED 1980

PHASE 1 INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

LOWER TWIN LAKE DAM GEOLOGIC MAP

GEO - Technical Services, Inc.
HARRISBURG, PA

FEBRUARY 1981

EXHIBIT F

