5CS037: Concepts and Technologies of AI.

Faculty Meet: 01

Siman Giri

Module Overview

- In this module we aim to provide an overview regarding:
 - Basic Mathematics Required to further learn AI/ML.
 - Basic Concepts regarding learning Paradigm (Supervised and unsupervised):
 - Learning algorithms.(Supervised and Unsupervised).
 - Requirements for learning paradigm:
 - Error function, Generalize Error, Over and Underfitting, Train-Test Split etc.
 - How to improve the learning paradigm?
 - Regularization Cross-Validation, Feature Selection etc.
 - Implementation
 - Python Programming Language, Sickit Learn(Scratch), Google Colab(Recommended)

Module Assessment:

S.No	Assessment	Points	Start	Due
1	Data Wrangling, Data Transformation and Exploratory Data Analysis.	[10]	Week-2	Week-3/4
2	Mid-Term Examination	[20]	Week-8	-
3	Term-Paper[Essay-Ethics of AI]	[20]	Week-7	Week-9
4	Weekly Workshop Assessment	[10]	Weekly	
5	Final Portfolio [Regression and Classification]	[40]	Week-10	Week-12

Week-01: Linear Algebra Review.

• Lecture:

• Focuses mostly on vector, Basic Vector Operation (Vector Space, Vector independence, Norm, Angle of Vector) Matrix, Basic Matrix Operations(Matrix Multiplication, Special Matrices, Inverse and Determinant of Matrices).

• Tutorial:

• Problem and Solution related to content from Lecture.

• Workshop:

- Introduction of Google Colab and its feature (Drive Mount)
- Review of Python, Vector and Matrix operation with Numpy.

Week-02: Data and Descriptive Statistics.

• Lecture:

- Introduction to Data and Descriptive Statistics.
- Graphical:
 - Histogram.
 - Frequency, interval data
 - Bar Chart, Pie Chart etc.
 - Box-Plot
- Numerical:
 - Central Tendency
 - Measurement of Dispersion
 - Measurement of Position(Percentile)

• Tutorial:

• Problem and Solution related to content from Lecture.

• Workshop:

- Introduction of Google Colab and its feature (Drive Mount)
- Use of Pandas for Data Manipulation.
- Exploratory Data Analysis with Matplotlib.

Week-03: Introduction to Probability.

• Lecture:

- Introduction to Probability.
- Define Probability.
 - Axioms of Probability.
- Finding the Probability.
 - Counting Techniques.
- Events and Experiments:
 - Mutually Exclusive Events.
 - Independent Events.
 - Conditional Events.
- (Bayes Law).

• Tutorial:

• Problem and Solution related to content from Lecture.

• Workshop:

- Extend the workshop from Week-1 and Week-2.
- (Further Exercises)

Week-04: Probability-II.

- Lecture:
 - Random Variable ad Discrete Distributions.
 - Random Variable:
 - Random Experiment.
 - Discrete Random Variable.
 - Expectation and Variance.
 - Continuous Random Variable
 - Probability Distribution Function.
 - PMF
 - CDF
 - Discrete Distributions
 - Bernoulli/Binomial/ Multinomial
 - Poisson Distribution

• Tutorial:

• Problem and Solution related to content from Lecture.

• Workshop:

- Submission of Assessment-1
- (Further/New Exercises)

Week-05: Review of Calculus.

- Lecture:
 - Calculus (Derivative and Integration).
 - Derivative:
 - Examples for rule of Derivatives
 - Integration:
 - Type and Example of Integration Problems.

- Tutorial:
 - Problem and Solution related to content from Lecture.
- Workshop:
 - Further Exercises on Python and Data Analysis.(Class Test-Python)

Week-06: Probability-III.

- Lecture:
 - Continuous Discrete Distributions.
 - Random Variable:
 - Random Experiment-Review.
 - Continuous Random Variable
 - Expectation and Variance
 - Probability Distribution Function.
 - PDF
 - CDF
 - Continuous Distributions
 - Uniform Distribution
 - Discrete Vs. Continuous Case
 - Normal Distribution:
 - Standard Normal Distribution and Z-score.

- Tutorial:
 - Problem and Solution related to content from Lecture.
- Workshop:
 - Review Exercises (Class Test Math).

Week-07: Introduction to AI.

- Lecture:
- Introduction to AI and Machine Learning.
- History of Al.
- Definition of Al.
- ML Vs. DL Vs. Data Science.
- Learning and Need for Learning Paradigm.
- Elements of Learning.
- Supervised Vs. Unsupervised Learning.
- Ethical and Social Aspects of Al.

• Tutorial:

- Review of Lecture.
- Focus on Term Paper.
- Ask each group to present on AI and there understanding in Workshop.
- (Allow some time to work on the presentation.)
- Workshop:
 - Presentation and Feedback.

Week-09: Regression.

• Lecture:

- Introduction to Regression.
 - Regression Vs. Classification.
- Regression with Linear Regression.
 - Simple/Multiple/Polynomial Regression.
 - Analytical method to solve Regression.
 - OLS.
 - Cost/Loss Function.
 - Evaluation Metrics.
- Optimization with Gradient Descent.
 - Gradient Descent Algorithm.
 - Impact of Learning Rate and Initialization on Gradient Descent.

• Tutorial:

- Review of Lecture.
- Exercise on Gradient Descent.

• Workshop:

- Implementation of Linear Regression from scratch.
- Review of Sickit Learn.

Week-10: Classification.

• Lecture:

- Introduction to Classification.
 - Regression Vs. Classification.
- Classification with Logistic Regression.
 - Logistic Regression (Binary Example).
 - Sigmoid Function.
 - Cost/Loss Function
 - Evaluation Metrics.
- Optimization with Gradient Descent (Review).
- Extending the idea to Multiple Regression.
 - Softmax Regression.

• Tutorial:

- Review of Lecture.
- Generalization Error/ Over and Under Fitting.
- Regularization

• Workshop:

- Implementation of Logistic Regression from scratch.
- Review of Sickit Learn.
- Linear and Logistic (Regularized) with sickit Learn.

Week-11: Unsupervised Learning.

• Lecture:

- Introduction to Unsupervised Learning.
 - Supervised vs. Unsupervised Learning.
- Tasks in Unsupervised Learning.
 - Clustering.
 - Association.
 - Dimensionality Reduction.
- Clustering.
 - K-means Clustering.
 - Distortion (WCSS)
 - Elbow methods.

• Tutorial:

- Review of Lecture.
- Feedback on Portfolio Project.
- Workshop:
 - Implementation of clustering from scratch.

Week-12: Wrap-Up.

- Lecture:
 - Office Hours

- Tutorial:
 - Portfolio Presentation and Viva.
- Workshop:
 - Portfolio Presentation and Viva.

Challenges:

- Number of Students(24-25 Groups)
- Logistic Management:
 - Workshop Tracking.
 - Dedicated Office Hours.
- Regarding Leave.
 - Leave shall be granted only in the case of emergency.

Reference:

- Mathematics for Machine Learning:
- https://mml-book.github.io/book/mml-book.pdf
- Mathematical Statistics by Wackerly et. al
- Exercises:
 - HSEB mathematics Book.
 - Probability for Engineers