Documents Annexes

Table des figures

Fig. A- 1 Système à deux boucles	2
Fig. A- 2 Système à une boucle type A	2
Fig. A- 1 Système à deux boucles Fig. A- 2 Système à une boucle type A Fig. A- 3 Système à une boucle type B	2
Fig. A- 4 Système sans boucle	2
Fig. A- 5 Architecture de base du dérouleur en position « Bobine de diamètre minimum »	3
Fig. A- 6 Architecture de liaison entre le bâti 0 et le bras porte galet 3	
Fig. A- 7 Extrait d'un catalogue constructeur de palier « auto aligneur »	4
Fig. A- 8 Système de repères utilisés pour la modélisation des efforts sur le bras porte galet 3	4
Fig. A- 9 Calcul de roulement sous charge statique	5
Fig. A- 10 Squelette du bras porte-galet 3	5
Fig. A- 11 Norme de l'effort $C2 o 3$ et ses composantes projetées sur les axes $xZ1$ et $yZ1$	6
Fig. A- 12 Effort $B0 o 3$ et ses composantes projetées sur les axes $xZ3$ et $yZ3$	6
Fig. A- 13 Effort $D4 o 3$ et ses composantes projetées sur les axes $xZ4$ et $yZ4$	7
Fig. A- 14 Extrait du catalogue constructeur de vérins « Embout à rotule»	7
Fig. A- 15 Extrait du catalogue constructeur de galet	8
Fig. A- 16 Extrait du catalogue constructeur de freins à poudre	8
Fig. A- 17 Extrait du catalogue constructeur de « silent bloc »	9
Fig. A- 18 Coupe partielle du dérouleur	
Fig. A- 19 Schéma du mandrin	11
Fig. A- 20 Suite des opérations à réaliser pour installer une bobine	
Fig. A- 21 Extraits documentation vis écrous ECMU	12

Les principales architectures d'une ligne de découpage :

Fig. A- 1 Système à deux boucles

Fig. A- 2 Système à une boucle type A

Fig. A- 3 Système à une boucle type B

Fig. A- 4 Système sans boucle

Fig. A- 5 Architecture de base du dérouleur en position « Bobine de diamètre minimum »

Fig. A- 6 Architecture de liaison entre le bâti <u>0</u> et le bras porte galet <u>3</u>

Fig. A- 8 Système de repères utilisés pour la modélisation des efforts sur le bras porte galet 3

Capacité de charge statique C_0 et charge statique équivalente P_0

Pour un roulement chargé à l'arrêt, ou dans le cas de mouvements de faible amplitude et de petites oscillations, C_0 représente la charge statique limite à ne pas dépasser. Au-delà de cette charge, les déformations des éléments roulants deviennent inadmissibles.

La plupart des fabricants admettent une déformation maximale admissible égale à 0,0001 du diamètre moyen de l'élément roulant (conformément à l'ISO 76).

C₀ est une grandeur caractéristique du roulement indiquée dans les catalogues de fabricants en même temps que d, D, B, C...

Comme C, C_0 est une charge radiale pure. Si le roulement est soumis à une charge combinée F_a plus F_r , il est nécessaire de calculer au préalable la charge statique équivalente P_0 (analogie avec P).

$P_0 = X_0.F_r + Y_0.F_a$
avec $P_0.s_0 \le C_0$

Remarque: si le roulement est soumis à une charge radiale pure F_r alors $P_0 = F_r$ avec $P_0 \cdot s_0 \le C_0$

hena e	le roulements		roulement à 1 rangée				
type t	ie rouiement		<i>X</i> ₀	Y ₀			
	à cor rac	100000	0,6	0,5			
	à rot	tules	0,5	0,22,cotan o			
	à contact oblique	α = 15°	0,5	0,46			
roulements		α = 20°	0.5	0.42			
à billes		α = 25°	0.5	0.38			
		cα = 30°	0,5	0,33			
		α = 35°	0.5	0.29			
		α = 40°	0,5	0,26			
		α = 45°	0,5	0,22			

Fig. A- 9 Calcul de roulement sous charge statique

« Extrait du guide des sciences et technologie industrielles » de Jean Louis FANCHON édition NATHAN

Fig. A- 10 Squelette du bras porte-galet 3.

Course du vérin de 0 à 200mm (vérin rentré --> vérin sorti)

Fig. A- 11 Norme de l'effort $\overrightarrow{C_{2 \to 3}}$ et ses composantes projetées sur les axes $\overrightarrow{X_{Z_1}}$ et $\overrightarrow{y_{Z_1}}$.

Fig. A- 12 Effort $\overrightarrow{B_{0 \to 3}}$ et ses composantes projetées sur les axes $\overrightarrow{X_{Z_3}}$ et $\overrightarrow{y_{Z_3}}$.

Fig. A- 13 Effort $\overrightarrow{D_{4 \to 3}}$ et ses composantes projetées sur les axes $\overrightarrow{X_{Z_4}}$ et $\overrightarrow{y_{Z_4}}$

Embout à rotule CAMOZZI

Snodo sferico Mod. GA

ISO 8139.

Materiale: Acciaio zincato

INGOMBRI											
Mod.	Ø	_Ø CN ^(H7)	U	EN	ER	AX	CE	KK	Т	Z	SW
GA-32	32	10	10,5	14	14	20	43	M10X1,25	15	6,5	17
GA-40	40	12	12	16	16	22	50	M12X1,25	17,5	6,5	19
GA-50-63	50-63	16	15	21	21	28	64	M16X1,5	22	7,5	22
GA-80-100	80-100	20	18	25	25	33	77	M20x1,5	27,5	7	30
GA-41-125	125	30	25	37	35	51	110	M27x2	40	7,5	41

Fig. A- 14 Extrait du catalogue constructeur de vérins « Embout à rotule».

Galet Bickle

Roulement

Masse unitaire

Température mini -25°C Température maxi 70°C

Fig. A- 15 Extrait du catalogue constructeur de galet

FREIN à Poudre MEROBEL

Freins EMP TS

La plus large et la plus diffusée des gammes de freins MEROBEL, qui permet d'offir une réponse technique à tous les besoins à partir des 10 tailles et des 5 versions (capacité de dissipation de puissance) disponibles en standard pour chacune de ces tailles. Cette gamme offre une conception tout spécialement machines adaptée aux d'impression, transformation (converting), de déroulement de fil et câbles, et aux équipements d'emballage.

Ces appareils constituent aussi une réponse économique et performante pour la construction de bancs de tests et de simulation (automobile et aéronautique).

Références	FAT 20	FAT 50	FAT	FAT	FAT	FAT	FAT	FAT	FAT	FAT
			120	350	650	1200	120	2002	3500	5001
Couple en N.m	2	5	12	35	65	120	200	350	500	1000
Puissance en W	40	70	65	100	125	275	400	500	1100	4000

Conseils de montage des freins à poudre Exemple de dimensions pour le frein FAT350 Max Deep 17 Profondeur utile maxi 17 Ø55 HB 6 hales M5 at 60 6 frous M5 à 60 s 2 terminals 2 bornes électriques (output) Arbre para

Fig. A- 16 Extrait du catalogue constructeur de freins à poudre

	REF / ART.NR		F / ART.NR DIMENSIONES / DIMENSIONS ABMESSUNGEN					/ COMPRESSION BELASTUNG	CIZALLA / SHEAR CISAILLEMENT / SCHERKRAFT		
		Sh	ØA	В	D	С	CARGA/LOAD CHARGE/LAST	FLECHA/DEFLECTION FLECHE/FEDERWEG	CARGA/LOAD CHARGE/LAST	FLECHA/DERLECTION FLECHE/FEDERWEG	
	HE WALLEST TO SEE			п	ım.		kg.	mm.	kg.	mm.	
	SR 4020M8X20	50	40	20	M-08	20	160	4,0±0,5	20	4,0±0,5	
	SR 4020	50	40	20	M-10	25	160	4,0±0,5	20	4,0±0,5	
	SR 4028M8X30	50	40	28	M-08	30	100	5,5±1,0	16	5,5±1,0	
	SR 4028M8X20	50	40	28	M-08	20	100	5,5±1,0	16	5,5±1,0	
	SR 4028	50	40	28	M-10	25	100	5,5±1,0	16	5,5±1,0	
	SR 4035	50	40	35	M-10	25	100	7,0±1,0	16	7,0±1,0	
	SR 4040M8X20	50	40	40	M-08	20	100	8,0±1,0	16	8,0±1,0	
	SR 4040	50	40	40	M-10	25	100	8,0±1,0	16	8,0±1,0	
	SR 4045	50	40	45	M-10	25	100	9,0±1,0	16	9,0±1,0	
	SR 5020	50	50	20	M-10	25	300	4,0±0,5	25	4,0±0,5	
	SR 5025	50	50	25	M-10	25	175	5,0±1,0	25	5,0±1,0	
	SR 5030	50	50	30	M-10	25	160	6,0±1,0	25	6,0±1,0	
	SR 5035	50	50	35	M-10	25	160	7,0±1,0	25	7,0±1,0	
~	SR 5040	50	50	40	M-10	25	155	8.0±1.0	25	8,0±1,0	
SR	SR 5045	50	50	45	M-10	25	150	9.0±1.0	25	9,0±1,0	
	SR 5060	50	50	60	M-10	25	130	12,0±1,5	25	12,0±1,5	
	SR 6025	50	60	25	M-10	25	400	5.0±1.0	35	5.0±1.0	
	SR 6035	50	60	35	M-10	25	300	7,0±1,0	35	7,0±1,0	
	SR 6045	50	60	45	M-10	25	250	9.0±1.0	35	9.0±1.0	
	SR 6060	50	60	60	M-10	25	225	12,0±1,5	35	12,0±1,5	
	SR 7035M10X25	50	70	35	M-10	25	450	7,0±1,0	55	7,0±1,0	
	SR 7040M10X25	50	70	40	M-10	25	400	8.0±1.0	70	8.0±1.0	
	SR 7050M10X25	50	70	50	M-10	25	300	10,0±1,0	35	10,0±1,0	
	SR 7070M10X25	50	70	70	M-10	25	300	14,0±1,5	35	14,0±1,5	
	SR 7035	50	70	35	M-12	33	450	7,0±1,0	55	7,0±1,0	
	SR 7040	50	70	40	M-12	33	400	8,0±1,0	70	8,0±1,0	
	SR 7050	50	70	50	M-12	33	300	10.0±1.0	35	10,0±1,0	
1	SR 7070	50	70	70	M-12	33	300	14,0±1,5	35	14,0±1,5	
	SR 8030	50	80	30	M-14	35	950	6.0±1.0	100	6,0±1,0	
	SR 8040	50	80	40	M-14	35	600	8,0±1,0	80	8,0±1,0	
	SR 8055	50	80	55	M-14	35	500	11.0±1.5	70	11.0±1.5	
	SR 9525	60	95	25	M-16	42	1800	5.0±1.0	80	5.0±1.0	
	SR 9540	50	95	40	M-16	42	1000	8.0±1.0	140	8,0±1,0	
	SR 15075	50	150	75	M-20	50	1800	15,0±2,0	275	15.0±2.0	

Fig. A- 17 Extrait du catalogue constructeur de « silent bloc »

Fig. A- 19 Schéma du mandrin

Actionner le frein 8 pour immobiliser l'arbre 9 et le mandrin en rotation
Desserer le mandrin en actionnant les leviers 10 afin de pouvoir y inserer une bobine
Rentrer de vérin 1+2 afin de dégager le bras 3
Sortir la jante réglable 7 de l'arbre 9
Insérer une bobine sur le mandrin grâce à un engin de levage
Serrer le mandrin en actionnant les leviers 10
Sortir le vérin 1+2 afin de plaquer le galet 4 sur la bobine
Remonter la jante réglable 7 et la plaquer contre la bobine
Décercler la bobine (libérer le dispositif qui la maintient enroulée pour le stockage)
Relâcher le frein 8 afin de pouvoir dérouler lentement la bobine pour l'engager dans le redresseur

Fig. A- 20 Suite des opérations à réaliser pour installer une bobine

Vis à filet trapézoïdale en Inox Série VTR-I

Matière: AISI 304

Fig. A- 21 Extraits documentation vis écrous ECMU

Référence	Dimensions											
	Ø d (mm)	Pas (mm)	Rectitude mm/mm	Angle d'hélice	rendement	Poids (Kgs/m)	version à gauche					
VTR 12x3	12	3	0.7/1000	5"12"	0.31	0.65						
VTR 12x6	12	6	0.7/1000	10°19'	0.46	0.65						
VTR 14x4	14	4	0.7/1000	6°03'	0.34	0.86						
VTR 16x4	16	4	0.7/1000	5°12'	0.31	1.17						
VTR 16x8	16	8	0.7/1000	10°19'	0.31	1.17						
VTR 18x4	18	4	0.7/1000	4°33"	0.28	1.53						
VTR 20x4	20	4	0.6/2000	4°03°	0.26	1.94						
VTR 20x8	20	8	0.6/2000	8°03'	0.40	1.94						
VTR 24x5	24	5	0.4/2000	4°14'	0.27	2.78						
VTR 26x5	26	5	0.4/2000	3°52*	0.25	3.33						
VTR 28x5	28	5	0,4/2000	3"34"	0.23	3.92						
VTR 30x6	30	6	0.4/3000	4°03'	0.26	4.38						
VTR 30x12	30	12	0.4/3000	8°03'	0.40	4.38						
VTR 36x6	36	6	0.3/3000	3°19°	0.22	6.56						
VTR 40x7	40	7	0.3/3000	3°30'	0.23	8.03						
VTR 40x14	40	14	0.3/3000	6°58'	0,37	8.03						
VTR 44x7	-44	7	0.3/3000	3709"	0.21	9.90						
VTR 50x8	50	8	0.3/3000	3°10'	0.21	12.90						

Dimensionnement des vis trapézoïdale avec écrous en Bronze

F: force axiale (N)

S : surface de contact en fonction du type d'écrou (mm2)

n : vitesse de rotation de la vis (tr/mn) sin α : angle d'hélice du filetage , voir tableau des vis.

Calcul de la pression de contact p (N/mm2)......p=F / S Calcul de la vitesse de glissement Vst (m/mn)..... $Vst = (n x pas) / (1000 x sin \alpha)$ Calcul du produit p.Vst

Condition de glissement pour les écrous en Bronze

Il est nécessaire de lubrifier, si possible avec de l'huile

Dans la limite de p.Vst = 21 (N/mm2 , m/mn): le fonctionnement est dans les meilleures conditions. Une utilisation en continue est possible , la durée de vie de l'écrou est très bonne.

Dans la limite de p.Vst = 80 (N/mm2 . m/mn) : le fonctionnement est dans des conditions sévères. Une lubrification constante est impérative en cas de fonctionnement continu. La durée de vie de l'écrou est limitée.

Dans la limite de p.Vst = 250 (N/mm2 . m/mn) : le fonctionnement est dans des conditions extrêmes. Une utilisation en continue n'est pas possible.

Dimensionnement des vis trapézoīdale avec écrous en Bronze

Coefficient de sécurité pour les forces d'inerties : Fs

-charges constantes , acc/dec controlées : 1 à 0.5 -charges contantes , démarrages et arrêts fréquent : 0.5 à 0.33

-charges et vitesses très variables : 0.33 à 0.25 -charges avec chocs, vibrations...; 0.25 à 0.17

Le coefficient Fs, sert à corriger le produit p.Vst max du graphique. P.Vst admissible = p.Vst max x Fs

Calcul du couple d'entrainement :

-C= couple en N.m

-F = charge en N

-pas de la vis en mm

-n = rendement

-Pt = puissance en Kw

 $C = (F \times pas \times 1.5)/(2 \times \pi \times \eta \times 1000)$

Pt = (C x n) / 9550