

Gradient Boosting Decision Tree Models

What are Gradient Boosting Decision Tree Models?

Let's assume we have input vectors $\vec{x} \in \mathbb{R}^d$. How do we get a prediction $y \in \mathbb{R}$?

Example:

- learning rate lr = 0.3
- We are in leave c_1 for tree 1
- We are in leave c_3 for tree 2

$$y_{pred} = 0.5 + 0.3 \cdot (-1.2) + 0.3 \cdot (-0.3) + \dots$$

Building Trees During Training

Example training data: $\mathcal{D} = \{(\vec{x}_1, y_1), \dots, (\vec{x}_n, y_n)\}, \vec{x}_i \in \mathbb{R}^d, y_i \in \mathbb{R}$ with n = 4, d = 2.

Initial prediction for all data points:

•	Find decision rule $(\vec{x})_i < a$ that
	maximizes similarity of prediction
	errors e_i in two new subgroups

• Calculate similarity score for the two subgroups: $S = \frac{(\sum_{i} e_{i})^{2}}{n}$

$$S_{Root} = \frac{(0.5 - 1.5 - 0.5 + 1.5)^2}{4} = 0$$

Data point	Prediction error e_i
•	0.5
•	-1.5
•	-0.5
	1.5

6.5

Building Trees During Training (2)

Prediction

error *e*_i
0.5

-1.5

-0.5

1.5

Data

point

Similarity score:

$$S = \frac{(\sum_{i} e_{i})^{2}}{n}$$

$$S_{Root} = \frac{(0.5 - 1.5 - 0.5 + 1.5)^{2}}{4} = 0$$

Aim: Find decision rule $(\vec{x})_i < a$ that splits the dataset in a left and a right group that maximizes the gain:

$$Gain = S_{Left} + S_{Right} - S_{Root}$$

We test all possible values for i and a and select the combination with the highest Gain

Building Trees During Training (3)

Data point	Prediction error $e_{\rm i}$
•	0.5
•	-1.5
	-0.5
	1.5

Data point	New prediction	New prediction error
•	$6.5 + 0.5 \cdot 0.5 = 6.75$	0.25
•	$6.5 + 0.5 \cdot (-1) = 6.00$	-1.00
•	$6.5 + 0.5 \cdot (-1) = 6.00$	0.00
	$6.5 + 0.5 \cdot 1.5 = 7.25$	0.75

Most important hyperparameters

- learning_rate
 - Specifies how much weight the prediction of each new tree gets
 - Range: (0,1]
 - Default: 0.3
- reg_lambda and reg_alpha
 - Regularization coefficients that
 - penalize large predictions in the leaves
 - weaken the influence of branches that contain only few data points
 - Range: [0, inf] for both
 - Default: 1 for reg_lambda and 0 for reg_alpha
- max_depth
 - Defines to maximum allowed depth for each tree.
 - Default: 6

Most important hyperparameters (2)

- n estimators
 - Defines the numbers of tree that will be build in the gradient boosting model
 - Range: Any positive integer
- min_child_weight
 - Tells the model when to stop splitting tree nodes when:
 - number of data points in this node is too small (regression task)
 - most data points in this node belong to one class (classification task)
 - Range: Any positive integer
 - Default: 1
- For additional hyperparameters see the XGBoost documentation: https://xgboost.readthedocs.io/en/stable/parameter.html

Gradient Boosting for binary Classification

- Gradient Boosting for binary classification tasks works very similar as for regression tasks
- Model output is a prediction score between 0 and 1:

- With each tree we try to predict the prediction error:
 - Error = True class label Prediction score
- Differences to regression prediction task:
 - Calculation of similarity scores that are required for splitting tree nodes
 - Calculating the prediction values in the leaves

Gradient Boosting for binary Classification (2)

- The model predicts a log(odds) score s
 - $odds = \frac{likelihood\ of\ positive\ class}{likelihood\ of\ negative\ classs} = \frac{p}{1-p}$
 - Converting log(odds) score s to a probability score by applying the logistic function

$$sigmoid(s) = \frac{e^s}{1 + e^s} = p$$

Initial prediction: log(odds) based on the training data positive:

- With each tree we try improve the prediction error:
 - Error = True class label predicted probability
- Computing predictions for all data points in the same leaf:

$$\frac{\sum_{i} Error_{i}}{\sum_{i} predicted \ probability_{i} \times (1 - predicted \ probability_{i})}$$

Implementation with XGBoost in Python


```
import xgboost as xgb
   import numpy as np
   print(xqb. version )
 ✓ 0.7s
                                                                                                                                       Python
2.0.3
   X = np.array([[1,3], [2,4], [3,1], [4,2]])
   Y = np.array([7,5,6,8])
 ✓ 0.0s
                                                                                                                                       Python
   #fit gradient boosting model with lr = 0.3 and depth = 2 and number of trees = 2, set regularization parameters to 0
   model = xgb.XGBRegressor(objective ='reg:squarederror', learning_rate = 0.5, max_depth = 2,
                             n estimators = 2, reg lambda = 0, reg alpha = 0)
 ✓ 0.0s
                                                                                                                                       Python
   model.fit(X, Y)
   model.predict(X)
 ✓ 0.0s
                                                                                                                                      Python
array([6.8125, 5.5 , 6.0625, 7.625], dtype=float32)
```

Plotting XGBoost trees


```
from xgboost import plot_tree
import matplotlib.pyplot as plt
plot_tree(model, num_trees=0)
plot_tree(model, num_trees=1)
plt.show()

V 0.5s

Python
```


