אינפי 2 ⁻ סמסטר א' תשע"ט תרגיל בית 12

להגשה עד יום חמישי, 17 בינואר, בשעה 23:45, דרך תיבת ההגשה במודל

- 1. מצאו את תחום ההתכנסות של הטורים הבאים ובדקו האם ההתכנסות היא במ"ש בתחומים המצוינים:
 - . ממשיים a < b עבור (a,b) , $(-\infty,\infty)$ במ"ש: ממשיים לבדיקת התכנסות ; $\sum_{n=1}^{\infty} \frac{e^n x}{n^n}$ (א)
- . ממשיים: a < b עבור [a,b] , $(-\infty,\infty)$ (ב) במ"ש: $(-\infty,\infty)$ עבור לבדיקת התכנסות במ"ש: $(1+\frac{x^2}{n^2})$ (ב) בדיקת התכנסות ממשיים: $(1+y) \le y$ מתקיים $(1+y) \le y$ מתקיים עובר לבית 11 יכולה להיות שימושית.
 - R טור חזקות בעל רדיוס התכנסות בעל $\sum_{n=0}^{\infty}a_nx^n$.2
 - R גם הוא ההתכנסות של טור החזקות אור ההתכנסות אם הוכיחו שרדיוס ההתכנסות אור הוכיחו אור ההתכנסות אור ההתכנסות אור
 - R גם הוא גם $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ הוכיחו של טור ההתכנסות של ההתכנסות (ב
 - 3. מצאו בכל סעיף את רדיוס ההתכנסות של טור החזקות ב־x ואת את ההתכנסות הנקודתית:

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^{2n+1}$$
 (7)

$$\sum_{n=0}^{\infty} \frac{3^{n^2} + 4^n}{5^n + 6^n} x^n \quad (3)$$

$$\sum_{n=0}^{\infty} \frac{3^n + 4^n}{5^n + 6^n} x^n$$
 (a) $\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$ (x)

$$n=0$$
 (211):

. כש־
$$a \in \mathbb{R}$$
 כש־ , $\sum_{n=0}^{\infty} a^{n^2} x^n$ (ו) $a \in \mathbb{R}$ כש־ , $\sum_{n=0}^{\infty} a^n x^{n^2}$ (ו) $\sum_{n=1}^{\infty} 5^{n \log n} x^n$ (ה)

- . מצאו דוגמא לטור חזקות המתכנס בקטע $\lceil -1,1
 ceil$ ומקיים שבנקודות 1 ו־ 1- יש רק התכנסות בתנאי.
 - . בהתאמה. R_2 בהתאמה וסופיים וחוביים וחוביים טורי חזקות עם רדיוסי טורי התכנסות החיביים וחופיים בהתאמה. $\sum_{n=0}^{\infty}b_nx^n$ בהתאמה. 5

.
$$\sum_{n=0}^{\infty} \left(a_n + b_n\right) x^n$$
 יהי אהתכנסות ההתכנסות אל ההתכנסות רדיוס

- . $R_3 \geqslant \min(R_1, R_2)$ א) הראו כי
- $R_{3} = \min(R_{1}, R_{2})$ אזי $R_{1} \neq R_{2}$ ב)
- (ג) מצאו שני טורים שעבורם מתקיים אי שוויון חזק (כלומר $(R_3 > \min{(R_1, R_2)})$
 - $\liminf_{n \to \infty} (-a_n) = -\limsup_{n \to \infty} (a_n)$ שדרה חסומה. הראו ש $(a_n)_{n=1}^\infty$ מוא תהי (מ
 - . $\lim_{n \to \infty} c_n$ = 0 אס"ם אם $\limsup_{n \to \infty} |c_n|$ = 0 הוכיחו ש , $(c_n)_{n=1}^\infty$ אם (ב)
- . באופן שכיח: אם $a_n < L$ כך שמתקיים: $L \in \mathbb{R}$ אז יש $\liminf_{n \to \infty} a_n < \infty$ סדרה כך ש $(a_n)_{n=1}^\infty$ כך הוכיחו: אם
- : שמתקיים: הוכיחו שמתקיים: , $\lim_{n \to \infty} \alpha_n$ = 1 סדרה המקיימת (מ α_n) סדרה המקיימת (ד) סדרה המקיימת סדרה המקיימת (מ α_n) סדרה המקיימת (ד)

$$\lim\sup_{n\to\infty} (\alpha_n a_n) = \lim\sup_{n\to\infty} a_n$$

- . יהיו חסומות, $(a_n)_{n=1}^{\infty}$, $(a_n)_{n=1}^{\infty}$.7
- . מתכנסות $(b_{n_k})_{k=1}^\infty$, $(a_{n_k})_{k=1}^\infty$, $(a_{n_k})_{k=1}^\infty$ בי \mathbb{N} כך ששתי תתי־הסדרות אינדקסים אינדקסים אינדקסים $(n_k)_{k=1}^\infty$ מתכנסות.
 - . $\liminf_{n \to \infty} (a_n) + \liminf_{n \to \infty} (b_n) \leqslant \liminf_{n \to \infty} (a_n + b_n)$ ב) להראות ש"מ להראות ע"מ להראות (ב)