Multi-Tier Non-Terrestrial Networking for Disaster Communications: A Layered Clustering Approach Afet Haberleşmesi İçin Çok Katmanlı Karasal Olmayan Ağlanma: Katmanlı Kümeleme Yaklaşımı

Metin Ozturk^{1,2}, Berk Çiloğlu^{1,2}, Görkem Berkay Koç^{1,2}, Halim Yanikomeroglu² ¹Electrical and Electronics Engineering, Ankara Yıldırım Beyazıt University, Ankara, Türkiye Non-Terrestrial Networks (NTN) Lab, Systems and Computer Engineering, Carleton University, Ottawa, Canada 1

Abstract—It is crucial to deploy temporary non-terrestrial 2 to as UAV-BSs. UAVs can be regarded as an ideal choice for 7 networks (NTN) in disaster situations where terrestrial networks are no longer operable. Deploying uncrewed aerial vehicle base stations (UAV-BSs) can provide a radio access network (RAN); however, the backhaul link may also be damaged and unserviceable in such disaster conditions. In this regard, high-altitude platform stations (HAPS) spark attention as they can be deployed as super macro base stations (SMBS) and data centers. Therefore, in this study, we investigate a three-layer heterogeneous network with different topologies to prolong the lifespan of the temporary network by using UAV-BSs for RAN services and HAPS-SMBS as a backhaul. Furthermore, a two-layer clustering algorithm is proposed to handle the UAV-BS ad-hoc networking effectively. Index Terms—backhaul, disaster, HAPS, resilience, UAV 3

Ozetçe —Karasal ağların artık çalışmayı durdurduğu afet durumlarında, geçici bir karasal olmayan ağların konuslandırılması önemlidir. İnsansız hava aracı baz istasvonlarının (İHA-Bİ'ler) konuşlandırılması bir radyo erişim ağı (RAN) sağlayabilir ancak ana taşıyıcı bağlantısı da bu tür afet koşullarında hasar görmüş olabilir ve hizmet veremeyebilir. Bu bağlamda, yüksek-irtifa 4 platform istasyonu (HAPS), süper makro baz istasyonu (SMBS) 4 ve veri merkezi olarak konuşlandırılabileceği için dikkatleri 4 üstüne çeker. Bu nedenle, bu çalışmada, RAN hizmetleri için İHA-Bİ ve ana taşıyıcı olarak HAPS-SMBS kullanarak geçici 4 heterojen bir ağı araştırıyoruz. Ayrıca, afet senaryolarında, İHA- 4 Bİ'lerin ad-hoc ağ haberleşmesini etkin bir şekilde ele almak için 4 iki katmanlı bir kümeleme algoritması önerilmistir. 🖊 Anahtar Kelimeler—afet, ana taşıyıcı, esneklik, HAPS, IHA 19

I. Introduction 6

In times of natural disasters and humanitarian crises, ensuring effective communication channels is crucial for coordinating search and rescue (SAR) efforts, disseminating vital information, and providing essential services to people in affected regions. Since traditional communication infrastructures are often vulnerable to damage or complete collapse during such 7 events, the use of uncrewed aerial vehicles (UAVs), as nonterrestrial networks (NTN) element, emerges as a promising solution to meet communication needs [1]. This is achieved by deploying base stations (BSs) on UAVs, which are referred 7

SAR missions, disaster management, and emergency response 7 operations due to their speed, flexibility, and mobility [1], and 7 they can be easily deployed and positioned anywhere, even in 7 hard-to-reach areas, providing communication connectivity. 7

Nonetheless, on the flip side of the coin, UAVs need proper backhauling strategy in the event of aforementioned disasters, 8 as the terrestrial network components may be damaged and/or 8 fully collapsed. At this point, the use of high altitude platform 8 stations (HAPS), another NTN element, can be considered as 8 a viable solution, given that they provide high capacity, ubiq-8 uitous connectivity, and a powerful data center to the network due to the super macro BS (SMBS)¹ it contains [3]. HAPS 8 is located in the stratosphere, at an altitude of approximately 8 20 km above the Earth's surface. This strategic positioning 8 allows HAPS to provide high-quality communication services 8 to a large geographical area without repositioning [4]. 8

Although extensive research has been conducted on the 9 use of terrestrial BSs for backhauling UAVs during disaster scenarios, studies on the use of HAPS-SMBS for backhauling ağın ömrünü uzatmak için farklı topolojilere sahip üç katmanlı 4 purposes in such cases are still in their infancy. The study 9 in [5] analyzed the network coverage based on high-altitude of platforms-assisted backhaul and low-altitude platforms direct of backhaul strategies in post-disaster areas. The authors in [6] o studied on the UAV-BSs through HAPS-assisted backhauling o within a cell-free scheme. A framework for planning and o evaluating aerial platform-based wireless backhaul networks 9 was proposed in [7], wherein a number of variables such as 9 altitude, platform type, deployment strategy, energy manage- 9 ment, and security were considered. The study in [8] focused 9 on collecting internet of things (IoT) data in a disaster scenario using UAVs and HAPS-SMBS. 9

> This current study is one of the leading works to mention 10 that HAPS-SMBS can create a backhaul link for UAVs in the 10 context of disaster scenario. In particular, a three-layer network 10 is proposed, wherein the user equipments (UEs) are on the 10

This research has been sponsored in part by The Scientific and Technological Research Council of Türkiye (TUBITAK). 1

International Telecommunication Union (ITU) makes reference HAPS-SMBS as high-altitude IMT BS (HIBS) [2]. 8

cluster head UAV, referred to as H-UAV, collects data from 1 energy consumption of a UAV-BS as 18 other UAVs in the form of ad-hoc networking and transmit 10 to HAPS-SMBS. In other words, only H-UAV—positioned at 10 a pre-designated location that has a grid power connection as well as uninterrupted power supply—has a backhaul link to prolong the network lifespan, because the energy consumption 10 III. MULTI-TIER NON-TERRESTRIAL NETWORKING FOR 21 of non-head UAVs (referred to as NH-UAVs) for the backhaul connection is eliminated in our proposed topology. 10

As we consider a disaster scenario where providing connectivity is of paramount importance, we do not target to minimize the overall energy consumption of the network; instead, we aim to maximize the network lifespan to provide communication services for a longer time by minimizing the energy consumption of network components that rely solely on battery energy sources. 11

II. SYSTEM MODEL 12

A. Network Model 14

city. The system model is illustrated in Fig. 1. 15

B. Energy Consumption Model 16

We are mainly interested in the energy consumption of the can create a bottleneck in the communication service time. The total energy consumption of a UAV, $E_{\rm T}$, is usually modeled by the accumulation of the energy consumption values due to communication, $E_{\rm C}$, and flight, such as hovering and mobility [9]. In our scenario, we aim to investigate the dynamics of the total energy consumption of the UAV network; since the 17 Using the logic in (1), the energy score of the proposed 24 communication energy consumption is the predominant factor, 1 method can be computed as 24 and the flight energy consumption remains consistent across all 17 comparisons, we solely focus on the communication energy. 7

The variable $E_{\rm C}$ is a function of transmit power and load 18 of a BS, as stated in [9], that is, $E_{\rm C}=f(P_{\rm tx},\lambda)$, where $P_{\rm tx}$

first layer (i.e., ground), UAV-BSs are on the second layer 1 adopted in this work, such that the received power, $P_{\rm rx}$, is 18 (i.e., 100-200 meters above the ground) providing radio access $_{10}$ (fixed to the receiver sensitivity of the UEs and then $P_{\rm tx}$ is $_{18}$ network (RAN) services, and HAPS-SMBS is on the third 1 determined accordingly (i.e., by considering the path loss, L, 18 layer (i.e., around 20 km from the ground) providing backhaul $_{1}$ (and P_{rx}). In other words, P_{tx} is a function of both P_{rx} and $_{18}$ services to the UAV-BSs. In addition, a two-layer clustering $1(L; i.e., P_{tx} = f(P_{rx}, L))$. Moreover, L is a usually a distancealgorithm is proposed, such that UEs, who gather in hot-spots, 1 (dependent variable, such that L = f(d), thereby P_{tx} can also 18 form clusters on the first layer, and the UAV-BSs on the second 1 (said to be distance-dependent, that is, $P_{tx} = f(d)$. Therefore, layer are positioned according to the results of this clustering. 1 at the abstract level of energy consumption calculation, $E_{\rm C}$ is Then, a further clustering operation is also performed on 1 (a function of d and λ , that is, $E_C = f(d, \lambda)$. Thus, we define the UAV-BSs for the backhaul link. More specifically, the 1 metric called energy score, E_s , to represent the abstract level 18

(1) 19

1 where d is the distance between the UAV-BS and a receiver. 20

DISASTER COMMUNICATIONS 21 10

We propose a two-layer clustering algorithm for positioning 22 1 the UAV-BSs and the backhauling between the UAV-BSs and 22 HAPS-SMBS. The first-layer clustering performed for posi-22 tioning the UAV-BSs. For that, UEs are arranged into groups, 22 concentrated in hotspots, followed by employing a k-means 22 algorithm to determine the centroids of these UE groups. In 22 particular, the two-dimensional coordinates of the UEs are 22 fed into the k-means algorithm to find the centroid positions, 22 which are then used as the two-dimensional positioning of 22 UAV-BSs (the altitude of the UAV-BSs is fixed to 150 m).

The second-layer clustering is then applied to find the 23 A three-tier vertical heterogeneous network (VHetNet) in-1/communication topology for backhauling. Unlike the first-23 cluding $n \in \mathbb{N}$ UAV-BSs, with $j = \{1, 2, ..., n\}$ storing the 1 layer clustering, this time the two-dimensional coordinates of 23 indices of UAVs, and a single HAPS-SMBS is considered as a 14the UAV-BSs (obtained in the first-layer clustering) are fed into 23 network model. The environment area is 3 km \times 3 km. There 1 another k-means algorithm to compute the centroid positions. are also $e \in \mathbb{N}$ users/UEs, with $i = \{1, 2, ..., e\}$ storing the After that, the UAV-BS that has the closest proximity to the 23 indices for the users/UEs, distributed around the environment 1/centroid is assigned as H-UAV, and the rest of the UAV-23 by forming clusters. HAPS is located 20 km above the center 1/BSs serve as NH-UAVs. The UAV-BSs then form an ad-hoc 23 of the environment, while the UAVs are distributed around the 1/network in such a way that the NH-UAVs are transferring their 23 environment with an altitude of 150 m. There are also landing 1 data to the H-UAV, which has the capability of connecting to 23 spots, powered by grid and generators, in some parts of the 1/HAPS-SMBS via a backhauling link. As mentioned earlier, 23 some landing spots, with grid and generator power supplies 23 as well as a clear line-of-sight with the majority of the area 23 that they are planned to serve, are deployed around the city. 23 1 Therefore, the H-UAV is positioned at the nearest landing 23 UAVs in the network as they are mostly battery-powered and 1 spot for continuous energy supply to prevent its battery from 23 1 depleting fast as it is responsible to transmit all the data of 23 1 the affected region. The effects of the distance between the 23 1 anding spots and optimal position of UAV-BSs on the energy 23 1 efficiency are deeply investigated in [10], which can be used 23 1 as a complementary source to this present work. 23

$$E_{p} = \sum_{j=1}^{n-1} (\lambda_{j} \overline{d_{j,e}} + \lambda_{k} d_{j,H}), \tag{2}$$

is the transmit power and λ is the load of the BS, while tweeted is the average distance between the UAV-BS j and 26 $f:\mathbb{R}^+ o\mathbb{R}^+$ is a function. A power control strategy is 1 all the UEs, and λ_i is total load of UAV-BS j while $d_{i,\mathrm{H}}$ is 26

Figure 1. A city model is formed during a disaster, infrastructures have collapsed and communication is provided by UAVs, HAPS is backhauling the UAVs, and UEs are clustered in places such as gathering areas. 13

the distance between UAV-BS j and the H-UAV. Since the 26 with δ for each method as λ rises with increasing δ , which in 35 UAVs, the energy score of the H-UAV is excluded in (2). 26

IV. PERFORMANCE EVALUATION 27

A. Benchmarking 28

This benchmark is referred to as single-layer clustering (SLC) 29 approach. In the second benchmark, referred to as circular 29 UAV positioning (CUP), the UAV-BSs are distributed in a 29 circular manner around the environment, and each UAV-BS 29 establishes a backhaul connection with HAPS-SMBS. 29

For both benchmark methods (i.e., E_{SLC} for SLC and E_{CUP} 30 for CUP) the total energy score is obtained as 30

$$E_b = \sum_{j=1}^{n-1} \lambda_j (\overline{d_{j,e}} + d_{j,S}), \tag{3}$$

where $b \in \{SLC, CUP\}$ and $d_{j,S}$ is the distance between UAV-BS j and HAPS-SMBS. The network is evaluated for varying 32 UE densities (users/m² ratios), denoted by δ . 32

B. Results and Discussions 33

Fig. 2 demonstrates the energy scores for all scenarios 35 across various δ values. As expected, the energy score soars 35

H-UAV has a continuous power supply on the landing spot 2 turn boosts the total energy score as given in (2) and (3). While 35 and this study focuses on prolonging the service time of the 26 SLC and CUP show similar behaviors, DLC-AHN is separated 35 from them with a considerably lower energy score. The reason 35 for this is that the NH-UAVs do not have backhauling link 35 to HAPS-SMB and they only transmit their data to H-UAV, 35 which is in a much closer proximity to them compared to 35 In addition to the above-mentioned proposed topology, 2 HAPS-SMBS. For SLC and CUP, on the other hand, all the 35 referred to as double-layer clustering approach with ad-hod 25 UAV-BSs need to transmit their data to HAPS-SMBS, and 35 networking (DLC-AHN) hereafter, two different benchmark considering (3), their energy scores soar significantly. SLC 35 topologies are also considered. The first benchmark is that 2 and CUP appear almost on top of each other in Fig. 2, but 35 UAV-BSs are positioned in the same way as DLC-AHN (i.e., 24there is a difference of 0.41% between them in terms of the 35 with the k-means clustering); however, this time each UAV- 2 (total energy score. In SLC, since UAV-BSs are positioned at 35 BS connects with HAPS-SMBS for backhauling purposes. 2(the centroid point determined as a result of the clustering, the 35

Figure 2. Energy score with respect to the user density. 34

Figure 3. Energy score for varying number of n in the first-layer clustering. 3 Figure 4. Energy score for different k values in the second-layer clustering. 40

distance is minimized and they consume less energy than CUP 3 conditions. The first-layer clustering is utilized for positioning 42 is increasing despite appearing constant due to visualization 3 providing rapid recovery and network resilience. 42 scaling. Considering (2) and (3), this outcome is anticipated 36 because the energy score scales with the number of UAV-BSs. 36 However, DLC-AHN not only results in lower energy scores 36 [1] C. Luo, W. Miao, H. Ullah, S. McClean, G. Parr, and G. Min, "Unbut also keeps the level of rise with the increasing number 36 of UAV-BSs under control compared to SLC and CUP, which 36 [2] demonstrate a dramatic surge in the energy score as a response 36 to the increasing number of UAV-BSs. This is attributed to the 36 distance variable, d, in (2), since when the number of UAV- 38 [3] BSs increases the distance between them decreases, preventing 38 the overall sum in (2) going up sharply as SLC and CUP. 38

Fig. 4 illustrates the energy score metric with respect 39 [4] G. Karabulut Kurt, M. G. Khoshkholgh, S. Alfattani, A. Ibrahim, T. S. J. to k values in the second-layer clustering. To make a fair 39 comparison between the benchmarks, the H-UAVs selected for 39 DLC-AHN are omitted in the energy score calculations for all 39 the methods. SLC-inc and CUP-inc in Fig. 4 represent the case 39 [5] where omitting the H-UAVs in the energy calculations is not 39 practiced. As seen, SLC-inc and CUP-inc results are flat as the 39 second-layer clustering is not applied to them. Considering all 39 [6] three methods, it is clear to see that there are decreases in 39 the energy score. The reason behind this is that the number 39 of H-UAVs increases with k, and since the energy scores 39 [7] of H-UAVs are not included, the overall energy consumption 39 approaches to zero. In other words, when the number of cluster 39 increases, the UAV-BSs without grid and/or generator power 39 [8] supply decreases, thereby the issue of service time disappears. 39

V. CONCLUSION 41

In this study, we analyzed the concept of using HAPS-42 SMBS as a backhaul link for the network of UAV-BSs in 4 [10] disaster circumstances. We proposed a two-layer clustering 42 algorithm aimed at enhancing network survival time and ef- 42 fectively managing communication under unfavorable network 42

3 displays the energy scores with respect to the 3 the UAV-BSs, which are employed for RAN services, while 42 number of UAV-BSs. The generic trend that is common to 3 the second-layer clustering is used for backhauling purposes. all the methods is that the energy score increases with the 36 The results obtained confirm that our three-layer network 42 number of UAV-BSs (or the number of clusters in the first-3 with a two-layer clustering approach has the potential to 42 layer clustering). Note that the energy score of DLC-AHN 3(extend communication service time during disaster scenarios, 42

REFERENCES 43

- manned aerial vehicles for disaster management," Geological disaster monitoring based on sensor networks, pp. 83–107, 2019. 43
 "The ITU-R Framework for IMT-2030," ITU-R Working
- 5D, International Telecommunication Union (ITU), Tech. Rep., July 2023. [Online]. Available: https://www.itu.int/en/ITU-R/study-groups/44rsg5/rwp5d/imt-2030/Pages/default.aspx 44
- M. S. Alam, G. K. Kurt, H. Yanikomeroglu, P. Zhu, and N. D. Dao, "High altitude platform station based super macro base station constellations," IEEE Communications Magazine, vol. 59, no. 1, pp. 45 103–109, 2021. **4**5
- Darwish, M. S. Alam, H. Yanikomeroglu, and A. Yongacoglu, "A vision 46 and framework for the high altitude platform station (HAPS) networks of the future," IEEE Communications Surveys & Tutorials, vol. 23, no. 2,
- pp. 729–779, Secondquarter 2021. 46 Y. Zhao, F. Zhou, L. Feng, W. Li, Y. Sun, and M. A. Imran, "Backhaulconstrained coverage analysis of integrated high and low altitude platforms aerial communication system in post-disaster areas, IEEE Communications Letters, vol. 27, no. 6, pp. 1629–1633, 2023. 47
- O. Abbasi and H. Yanikomeroglu, "A cell-free scheme for UAV stations with HAPS-assisted backhauling in terahertz band," in ICC 2022 IEEE International Conference on Communications, 2022, pp. 249–48 254. 48
- S. Song, M. Choi, Y. Goh, J. Yun, W. Yoo, W. Yang, J. Jung, and J.-M. Chung, "Analysis of wireless backhaul networks based on aerial platform technology for 6G systems." *Computers, Materials & Continua*, vol. 62, no. 2, 2020. 49
 - A. Andreadis, G. Giambene, and R. Zambon, "Role of UAVs and HAPS for IoT-based monitoring in emergency scenarios," in 2023 International Conference on Information and Communication Technologies for Dis-
 - aster Management (ICT-DM), 2023, pp. 1-8, 50 [9] H. Qi, Z. Hu, H. Huang, X. Wen, and Z. Lu, "Energy efficient 3-D UAV control for persistent communication service and fairness: A deep reinforcement learning approach," IEEE Access, vol. 8, pp. 53 172-53 184, 2020. 5
 - A. I. Abubakar, M. S. Mollel, O. Onireti, M. Ozturk, I. Ahmad, S. M. Asad, Y. Sambo, A. Zoha, S. Hussain, and M. A. Imran, "Coverage and throughput analysis of an energy efficient UAV base station positioning scheme," Computer Networks, p. 109854, 2023. 52