These slides are by courtesy of Prof. 李稻葵 and Prof. 郑捷.

Chapter Six

Demand

需求

This Chapter Analyzes Some Comparative Statics

When p_1 , p_2 , or y changes, how will $x_1^*(p_1,p_2,y)$ and $x_2^*(p_1,p_2,y)$ change?

y stands for income, exactly the same thing as m in the last chapter

How does x₁*(p₁,p₂,y) change as p₁ changes, holding p₂ and y constant?

Suppose p₁ increases from p₁' to p₁" and then to p₁".

- The curve containing all the utilitymaximizing bundles traced out as p₁ changes, with p₂ and y constant, is the p₁- price offer curve.
- □ The plot of the x₁-coordinate of the p₁- price offer curve against p₁ is the demand curve for commodity 1.

The Case of Cobb-Douglas Utility Function

Take

$$U(x_1,x_2) = x_1^a x_2^b$$
.

Then the demand functions for commodities 1 and 2 are

$$x_1^*(p_1,p_2,y) = \frac{a}{a+b} \times \frac{y}{p_1}$$
 $x_2^*(p_1,p_2,y) = \frac{b}{a+b} \times \frac{y}{p_2}.$

and

Notice that x_2^* does not vary with p_1 so the p_1 price offer curve is **flat** and the demand curve for commodity 1 is a **hyperbola**.

The Case of Perfect-Complements Utility Function

What does a p₁ price-offer curve look like for a perfect-complements utility function?

$$U(x_1,x_2) = \min\{x_1,x_2\}.$$

Then the demand functions for commodities 1 and 2 are

The Case of Perfect-Complements Utility Function

$$x_1^*(p_1,p_2,y) = x_2^*(p_1,p_2,y) = \frac{y}{p_1 + p_2}.$$

$$x_1^*(p_1,p_2,y) = x_2^*(p_1,p_2,y) = \frac{y}{p_1 + p_2}.$$

With p_2 and y fixed, higher p_1 causes smaller x_1^* and x_2^* .

As
$$p_1 \rightarrow 0$$
, $x_1^* = x_2^* \rightarrow \frac{y}{p_2}$.

As
$$p_1 \rightarrow \infty$$
, $x_1^* = x_2^* \rightarrow 0$.

p_1 Own-Price Changes **Demand curve** Fixed p₂ and y. p₁"" for commodity 1 X_2 is p₁" y/p₂ $p_1 + p_2$ p₁' $p_1 + p_2$

The Case of Perfect-Substitutes Utility Function

$$U(x_1,x_2) = x_1 + x_2.$$

Then the demand functions for commodities 1 and 2 are

$$\begin{aligned} \textbf{x}_1^*(\textbf{p}_1,\textbf{p}_2,\textbf{y}) &= \begin{cases} 0 & \text{, if } \textbf{p}_1 > \textbf{p}_2 \\ \textbf{y}/\textbf{p}_1 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \end{cases} \\ \text{and} \\ \textbf{x}_2^*(\textbf{p}_1,\textbf{p}_2,\textbf{y}) &= \begin{cases} 0 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \\ \textbf{y}/\textbf{p}_2 & \text{, if } \textbf{p}_1 > \textbf{p}_2 . \end{cases} \end{aligned}$$

Own-Price Changes **Demand curve** Fixed p_2 and y. for commodity 1 X_2 $p_2 = p_1"$ p₁ price p₁' offer curve $0 \le \mathbf{x}_1^* \le -$

- Usually we ask "Given the price for commodity 1 what is the quantity demanded of commodity 1?"
- But we could also ask the inverse question "At what price for commodity 1 would a given quantity of commodity 1 be demanded?"

Taking quantity demanded as given and then asking what must be price describes the inverse demand function of a commodity.

Inverse Demand Function

A Cobb-Douglas example:

$$\mathbf{x}_1^* = \frac{\mathbf{ay}}{(\mathbf{a} + \mathbf{b})\mathbf{p}_1}$$

is the demand function and

$$p_1 = \frac{ay}{(a+b)x_1^*}$$

is the inverse demand function.

Income Changes

How does the value of $x_1^*(p_1,p_2,y)$ change as y changes, holding both p_1 and p_2 constant?

Income Changes

The Engel Curve

A plot of quantity demanded against income is called an Engel curve.

Income Changes and Cobb-Douglas Preferences

An example of computing the equations of Engel curves; the Cobb-Douglas case.

$$U(x_1,x_2) = x_1^a x_2^b$$
.

The demand equations are

$$x_1^* = \frac{ay}{(a+b)p_1}; \quad x_2^* = \frac{by}{(a+b)p_2}.$$

Income Changes and Cobb-Douglas Preferences

$$x_1^* = \frac{ay}{(a+b)p_1}; \quad x_2^* = \frac{by}{(a+b)p_2}.$$

Rearranged to isolate y, these are:

$$y = \frac{(a+b)p_1}{a}x_1^*$$
 Engel curve for good 1

$$y = \frac{(a+b)p_2}{b}x_2^*$$
 Engel curve for good 2

Income Changes and Cobb-Douglas Preferences

Income Changes and Perfectly-Complementary Preferences

$$U(x_1,x_2) = \min\{x_1,x_2\}.$$

The demand equations are

$$x_1^* = x_2^* = \frac{y}{p_1 + p_2}.$$

Income Changes and Perfectly-Complementary Preferences

$$x_1^* = x_2^* = \frac{y}{p_1 + p_2}.$$

Rearranged to isolate y, these are:

$$y = (p_1 + p_2)x_1^*$$
 Engel curve for good 1
 $y = (p_1 + p_2)x_2^*$ Engel curve for good 2

Income Changes

Fixed p_1 and p_2 .

$$y = (p_1 + p_2)x_2^*$$

$$y = (p_1 + p_2)x_1^*$$

Another example of computing the equations of Engel curves; the perfectly-substitution case.

$$U(x_1,x_2) = x_1 + x_2.$$

■ The demand equations are

$$\begin{aligned} & \textbf{x}_1^*(\textbf{p}_1,\textbf{p}_2,\textbf{y}) = \begin{cases} 0 & \text{, if } \textbf{p}_1 > \textbf{p}_2 \\ \textbf{y}/\textbf{p}_1 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \end{cases} \\ & \textbf{x}_2^*(\textbf{p}_1,\textbf{p}_2,\textbf{y}) = \begin{cases} 0 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \\ \textbf{y}/\textbf{p}_2 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \end{cases}$$

$$\begin{aligned} \textbf{x}_1^*(\textbf{p}_1, \textbf{p}_2, \textbf{y}) &= \begin{cases} 0 & \text{, if } \textbf{p}_1 > \textbf{p}_2 \\ \textbf{y}/\textbf{p}_1 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \end{cases} \\ \textbf{x}_2^*(\textbf{p}_1, \textbf{p}_2, \textbf{y}) &= \begin{cases} 0 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \\ \textbf{y}/\textbf{p}_2 & \text{, if } \textbf{p}_1 > \textbf{p}_2. \end{cases}$$

Suppose
$$p_1 < p_2$$
. Then $x_1^* = \frac{y}{p_1}$ and $x_2^* = 0$

$$y = p_1 x_1^* \text{ and } x_2^* = 0.$$

Income Changes

- In the three examples above the Engel curves have been straight lines.
- But it is not true in general.

Engel curves are straight lines if the consumer's preferences are homothetic.

Homotheticity

A consumer's preferences are homothetic if and only if

$$(x_1,x_2) \succ (y_1,y_2) \Leftrightarrow (kx_1,kx_2) \succ (ky_1,ky_2)$$

for every $k > 0$.

■ That is, the consumer's MRS is the same anywhere on a straight line drawn from the origin.

Income Effects -- A Nonhomothetic Example

Quasilinear preferences are not homothetic.

$$U(x_1,x_2) = f(x_1) + x_2.$$

■ For example,

$$U(x_1,x_2) = \sqrt{x_1} + x_2.$$

Income Changes; Quasilinear

Income Effects

- A good for which quantity demanded rises with income is called normal.
- Therefore a normal good's Engel curve is positively sloped.

Income Effects

- A good for which quantity demanded falls as income increases is called inferior.
- Therefore an income inferior good's Engel curve is negatively sloped.

Income Changes; Good 2 Is Normal, Good 1 Becomes Income Inferior

Ordinary Goods

A good is called ordinary if the quantity demanded of it always increases as its own price decreases.

Ordinary Goods

Downward-sloping demand curve Good 1 is ordinary

Giffen Goods

If the quantity demanded of a good rises as its own-price increases then the good is called Giffen.

Giffen Goods

Fixed p_2 and y.

Giffen Goods

Fixed p_2 and y.

Cross-Price Effects

- If an increase in p₂
 - -increases demand for commodity 1 then commodity 1 is a gross substitute for commodity 2.
 - reduces demand for commodity 1 then commodity 1 is a gross complement for commodity 2.

Cross-Price Effects

A perfect-complements example:

so
$$x_1^* = \frac{y}{p_1 + p_2}$$
$$\frac{\partial x_1^*}{\partial p_2} = -\frac{y}{(p_1 + p_2)^2} < 0.$$

Therefore commodity 2 is a gross complement for commodity 1.

Cross-Price Effects

A Cobb- Douglas example:

so
$$x_2^* = \frac{by}{(a+b)p_2}$$
$$\frac{\partial x_2^*}{\partial p_1} = 0.$$

Therefore commodity 1 is neither a gross complement nor a gross substitute for commodity 2.

Summary

- 1. Own Price Effect
 - 1. Price Offer curve;
 - 2. Demand curve;
 - 3. Inverse demand function;
 - 4. Ordinary goods vs. Giffen Goods.
- 2. Income Effect
 - 1. Income offer curve;
 - 2. Engle curve;
 - 3. Normal goods vs. income inferior goods;
 - 4. Homothetic preferences.
- 3. Cross Price Effect
 - 1. Gross substitutes;
 - 2. Gross complements.