Proxy Re-Encryption based on the Generalized ElGamal encryption scheme

Demba Sow^1 and Mamadou Makhtar LO^2

 $\label{eq:definition} \begin{aligned} \text{D\'epartement de Math\'ematiques et Informatique, FST, UCAD}^1 \\ & \text{dembal.sow@ucad.edu.sn}^1 \\ \text{Section Math\'ematiques Appliqu\'es, UFR SAT, UGB}^2 \\ & \text{lo.mamdou-makhtar@ugb.edu.sn}^2 \end{aligned}$

January 6, 2021

Contents

1	Introduction Recalls		1	
2			2	
	2.1	Proxy Encryption	2	
	2.2	The "lite" Cramer-Shoup Encryption	2	
	2.3	The Generalized ElGamal Encryption	2	
3	The 'lite' Cramer-Shoup variant		3	
	3.1	First Attempt	3	
	3.2	Second Attempt	4	
	3.3	Third Attempt	4	
4	The Generalized ElGamal variant		5	
	4.1	First Attempt	5	
	4.2	Second Attempt	6	
	4.3	Third Attempt	6	

Abstract

1 Introduction

Contributions: Our main aim is ...

•

•

•

```
Related works: In [GAH05], ...
In [ElG85], ...
In [SS11], ...
In [CS03], ...
```

Outline: This paper is organized as follows:

- In Section 2, ...
- In Section 3, ...
- In Section 4. ...

2 Recalls

2.1 Proxy Encryption

2.2 The "lite" Cramer-Shoup Encryption

2.3 The Generalized ElGamal Encryption

We give a key generation mechanism and a public key encryption algorithm [SS11], which can be view as a slight modification of ElGamal's schemes [ElG85].

Key generation algorithm. To create a public/private key, we do the following:

- Select a cyclic group G with sufficiently large order d such that $G = \langle g \rangle$.
- Select two random integers r and k sufficiently large such that 2 < k < d and r of size half the size of d and compute kd.
- Compute with Euclidean division algorithm, the pair (s,t) such that kd = rs + t where $t = kd \mod s$.
- Compute $\gamma = g^s$ and $\delta = g^t$ in G; Note that $\gamma \neq 1$ and $\delta \neq 1$.

Then public key is $((\gamma, \delta), G)$ and the private key is (r, G).

Encryption algorithm. To encrypt a message with the public key $((\gamma, \delta), d, G)$, we do the following:

- Select a random integer $2 < \alpha < d = \#G$ such that α and #G are co-prime.
- Compute $c_1 = \gamma^{\alpha}$ and $\lambda = \delta^{\alpha}$ in G, hence $c_1 \neq 1$ and $\lambda \neq 1$.
- Transform the message m as an element of G and compute $c_2 = \lambda m$ in G.

The ciphertext is (c_1, c_2) .

Decryption algorithm. To decrypt a ciphertext (c_1, c_2) encrypted with the public key $((\gamma, \delta), d, G)$ and knowing the associate secret key (r, G), we just need to compute $c_1^r c_2$.

3 The "lite" Cramer-Shoup variant

3.1 First Attempt

Key Generation

- Compute n = pq such that p = 2p' + 1 and q = 2q' + 1 are two safe primes. Note that the master secret key is the factorization of n = pq.
- Select a random $a\in\mathbb{Z}_{n^2}^*$ and compute a generator g of order $\lambda(n)=2p'q'$ such that $g=-a^{2n}\mod n^2$.
- Select the "weak" secret key is $x \in [1, n^2/2]$ and compute $h = g^x \mod n^2$.
- The public key is pk = (g, h, n) and the secret key is sk = (x, n).

Encryption To encrypt a message $m \in \mathbb{Z}_n^*$ with pk = (g, h, n).

- Choose a random $r \in [1, n/4]$.
- Compute $T_1 = g^r \mod n^2$ and $T_2 = h^r(1 + mn) \mod n^2$.
- Output the ciphertext (T_1, T_2) .

Decryption To decrypt a ciphertext (T_1, T_2) .

- If x is known, then the message can be recovered as $m = L(T_2/T_1^x \mod n^2)$, where $L(u) = \frac{u-1}{n}$, for all $u \in \{u < n^2 | u = 1 \mod n\}$.
- If (p,q) are known, then m can be recovered from T_2 by noticing that $T_2^{\lambda(n)} = g^{\lambda(n)xr}(1+m\lambda(n)n) = (1+m\lambda(n)n)$. Thus, given that $gcd(\lambda(n),n) = 1$, m can be recovered as: $L(T_2^{\lambda(n)} \mod n^2)[\lambda(n)]^{-1} \mod n$.

3.2 Second Attempt

To minimize a user's secret storage and thus become key optimal, we present the BBS [MBS98], El Gamal based [ElG85] scheme operating over two groups G_1, G_2 of prime order q with a bilinear map $e: G_1^2 \longrightarrow G_2$. The system parameters are random generators $g \in G_1$ and $Z = e(g,g) \in G_2$.

Key Generation (KG). A user \mathcal{A} 's key pair is of the form $pk_a = g^a$, $sk_a = a$.

Re-Encryption Key Generation (RG). A user \mathcal{A} delegates to \mathcal{B} by publishing the re-encryption key $rk_{\mathcal{A}\to\mathcal{B}}=g^{b/a}\in G_1$, computed from \mathcal{B} 's public key.

First-Level Encryption (E_1) . To encrypt a message $m \in G_2$ under pk_a in such a way that it can only be decrypted by the holder of sk_a , output $c = (Z^{ak}, mZ^k)$.

Second-Level Encryption (E_2) . To encrypt a message $m \in G_2$ under pk_a in such a way that it can be decrypted by \mathcal{A} and her delegatees, output $c = (q^{ak}, mZ^k)$.

Re-Encryption (R). Anyone can change a *second-level* ciphertext for \mathcal{A} into a *first-level* ciphertext for \mathcal{B} with $rk_{\mathcal{A}\to\mathcal{B}}=g^{b/a}$. From $c_a=(g^{ak},mZ^k)$, compute $e(g^{ak},g^{b/a})=Z^{bk}$ and publish $c_b=(Z^{bk},mZ^k)$.

Decryption (D_1) . To decrypt a *first-level* ciphertext $c_a = (\alpha, \beta)$ with sk = a, compute $m = \beta/\alpha^{1/a}$.

3.3 Third Attempt

Key Generation (KG).

Re-Encryption Key Generation (RG)

First-Level Encryption (E_1) .

Second-Level Encryption (E_2) .

Re-Encryption (R).

Decryption (D_1, D_2) .

4 The Generalized ElGamal variant

4.1 First Attempt

Key Generation

- Compute n = pq such that p = 2p' + 1 and q = 2q' + 1 are two safe primes. Note that the master secret key is the factorization of n = pq.
- Select a random $\mu \in \mathbb{Z}_{n^2}^*$ and compute a generator g of order $\lambda(n) = 2p'q'$ such that $g = -\mu^{2n} \mod n^2$.
- Select random elements $k \in [1, n^2/2]$ and $x \in [1, n^2/4]$.
- Compute $y=\lfloor \frac{k\lambda(n)}{x} \rfloor$ and $z=k\lambda(n) \mod x$ such that $k\lambda(n)=xy+z$.
- Compute $b = g^y \mod n^2$ and $c = g^z \mod n^2$.
- The public key is pk = (b, c, n) and the secret key is sk = (x, n).

Encryption To encrypt a message $m \in \mathbb{Z}_n^*$ with pk = (b, c, n).

- Choose a random $r \in [1, n/4]$.
- Compute $u_1 = b^r \mod n^2$ and $u_2 = c^r(1 + mn) \mod n^2$.
- Output the ciphertext (u_1, u_2) .

Decryption To decrypt a ciphertext (u_1, u_2) .

- If x is known, then the message can be recovered as $m = L(u_2u_1^x \mod n^2)$, where $L(v) = \frac{v-1}{n}$, for all $v \in \{v < n^2 | v = 1 \mod n\}$.
- If (p,q) are known, then m can be recovered from u_2 by noticing that $u_2^{\lambda(n)}=g^{\lambda(n)zr}(1+m\lambda(n)n)=(1+m\lambda(n)n)$. Thus, given that $gcd(\lambda(n),n)=1$, m can be recovered as: $L(u_2^{\lambda(n)} \mod n^2)[\lambda(n)]^{-1} \mod n$.

Correctness

•
$$L(u_2u_1^x) = \frac{u_2u_1^x - 1}{n} = \frac{c^r(1+mn)b^{rx} - 1}{n} = \frac{g^{zr}(1+mn)g^{xyr} - 1}{n} = \frac{g^{r(xy+z)}(1+mn) - 1}{n} = \frac{g^{rk\lambda(n)}(1+mn) - 1}{n} = \frac{(1+mn)-1}{n} = m.$$

 $L\left(u_2^{\lambda(n)} \mod n^2\right) [\lambda(n)]^{-1} = \left(\frac{u_2^{\lambda(n)} - 1}{n}\right) [\lambda(n)]^{-1}$ $= \left(\frac{g^{\lambda(n)zr}(1 + m\lambda(n)n) - 1}{n}\right) [\lambda(n)]^{-1}$ $= \left(\frac{1 + m\lambda(n)n - 1}{n\lambda(n)}\right)$ = m

4.2 Second Attempt

Let G_1 and G_2 be two groups of prime order d with a bilinear map $e: G_1^2 \longrightarrow G_2$. The system parameters are random generators $g \in G_1$ and $Z = e(g,g) \in G_2$.

Key Generation (KG). A user \mathcal{A} 's key pair is of the form $pk_{\mathcal{A}} = (g^s, g^t)$, $sk_{\mathcal{A}} = q$ where $k \in \mathbb{Z}_p$ and $q \in \mathbb{Z}_p$ are two random elements such that kd = qs + t.

Re-Encryption Key Generation (RG). A user \mathcal{A} delegates to \mathcal{B} by publishing the re-encryption key $rk_{\mathcal{A}\to\mathcal{B}}=g^{t'/t}\in G_1$, computed from \mathcal{B} 's public key.

First-Level Encryption (E_1) . To encrypt a message $m \in G_2$ under $pk_{\mathcal{A}}$ in such a way that it can only be decrypted by the holder of $sk_{\mathcal{A}}$, output $c = (Z^{str}, mZ^{s^2r})$ where $r \in G_1$ is a random element.

Second-Level Encryption (E_2) . To encrypt a message $m \in G_2$ under $pk_{\mathcal{A}}$ in such a way that it can be decrypted by \mathcal{A} and her delegatees, output $c = (g^{tr}, mZ^r)$ where $r \in G_1$ is a random element.

Re-Encryption (R). Anyone can change a *second-level* ciphertext for \mathcal{A} into a *first-level* ciphertext for \mathcal{B} with $rk_{\mathcal{A}\to\mathcal{B}}=g^{t'/t}$. From $c_{\mathcal{A}}=(g^{tr},mZ^r)$, compute $e(g^{tr},g^{t'/t})=Z^{t'r}$ and publish $c_{\mathcal{B}}=(Z^{t'r},mZ^r)$ where $r\in G_1$ is a random element.

Decryption (D_1) . To decrypt a *first-level* ciphertext $c_{\mathcal{A}} = (\alpha, \beta)$ with $sk_{\mathcal{A}} = q$, compute $m = \beta \alpha^{1/q}$.

Correctness

4.3 Third Attempt

Key Generation (KG).

Re-Encryption Key Generation (RG).

First-Level Encryption (E_1) .

Second-Level Encryption (E_2) .

Re-Encryption (R).

Decryption (D_1, D_2) .

Correctness

Conclusion

References

- [CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. *SIAM Journal on Computing*, 33(1):167–226, 2003.
- [ElG85] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In *CRYPTO*, *IT-31(4)*, volume 4, pages 469–472, 1985.
- [GAH05] M. Green G. Ateniese, K. Fu and S. Hohenberger. Improved proxy reencryptionschemes with applications to secure distributed storage. In *In NDSS*, pages 29–43, 2005.
- [MBS98] G. Bleumer Matt Blaze and M. Strauss. Divertible protocols and atomic proxy cryptography. In *In Proceedings of Eurocrypt 1998*, volume 1403, pages 127–144, 1998.
- [SS11] Demba Sow and Djiby Sow. A new variant of el gamal's encryption and signatures schemes. *JP Journal of Algebra, Number Theory and Applications*, 20(1):21–39, 2011.