

Robotic Manipulators

"Industrial Arms", incl. End-Effectors

Luís Paulo Reis

lpreis@fe.up.pt
Director/Researcher LIACC
Associate Professor at FEUP/DEI

Armando Sousa

asousa@fe.up.pt
Researcher INESC-TEC
Assistant Professor at FEUP/DEEC

Manipulação

Context

Polimento / Remoção de Material

Paletização

Carregamento de Máquinas

Soldadura

Montagem

Images adapted from publicity of the brand:

Sala Limpa / Medico-Farmacêutico

Dispensação de colas ou pastas

Pintura

More Context

https://www.youtube.com/watch?v= canCYWZPsc

- Streamlining Automated Processes
- Bin-Picking Operations
- Transportation and Handling
- Storage
- Repetitive and Harsh Operations
- Precision Operations
-
- Manipulators and ROS (external presentation)
- Amazon Picking Challenge by team MIT-Princeton

Mechanical Joints

Mechanical Joints

https://slideplayer.com/slide/14385961/

Mechanical Joints

https://ettron.com/how-to-make-a-robotic-arm-with-arduino/

Configurations of Manipulators

Cartesiano

Cilíndrico

_

Polar

Cilíndrico

SCARA Selection Compliance Assembly Robot Arm

Figure 3.2.5 Spherical- or polar-coordinated robot: (a) A polar- or spherical-coordinated manipulator rotates about its base and shoulder and moves linearly in and out. (b) The work envelope of a polar-coordinated manipulator is the space between the two hemispheres. (c) A ladder on a hook-and-ladder truck has movements similar to those of a polar-coordinated manipulator.

Figure 3.3.2 Six major degrees of freedom of a robotic system

Principle	Kinematic Structure	Workspace
Cartesian Robot		\Diamond
Cylindrical Robot		A

Types of robots -

http://prime.jsc.nasa.gov/ROV/types.html

- Cartesian robot /Gantry robot: Used for pick and place work, application of sealant, assembly operations, handling machine tools and arc welding. It's a robot whose arm has three prismatic joints, whose axes are coincident with a Cartesian coordinator.
- Cylindrical robot: Used for assembly operations, handling at machine tools, spot welding, and handling at diecasting machines. It's a robot whose axes form a cylindrical coordinate system.
- Spherical/Polar robot: Used for handling at machine tools, spot welding, diecasting, fettling machines, gas welding and arc welding. It's a robot whose axes form a polar coordinate system.
- SCARA robot: Used for pick and place work, application of sealant, assembly operations and handling machine tools. It's a robot which has two parallel rotary joints to provide compliance in a plane.
- Articulated robot: Used for assembly operations, diecasting, fettling machines, gas welding, arc welding and spray painting. It's a robot whose arm has at least three rotary joints.
- Parallel robot: One use is a mobile platform handling cockpit flight simulators. It's a robot whose arms have concurrent prismatic or rotary joints.

Types of robots -

http://prime.jsc.nasa.gov/ROV/types.html

- https://www.youtube.com/ watch?v=v9oeOYMRvuQ - Pancake
- https://www.youtube.com/ watch?v=disekkn8YoQ - Macarons

End-Effectors

(For Manipulators)

[Sometimes "grippers"]

"Grippers" are also actuator chain(s)

Does the tool center point move during the grip operation?

"Effector" – arm – complex actuator chain

Fig. 6: One of *Pneuman's* robotic arms.

Figure 2-11: Kinematic representation of Pneuman's arms.

Robotic Hand – not simple...

http://en.wikibooks.org/wiki/File:Shadowhand.jpg

Many actuators per robot

Robot "Kaka"

End Effectors / Grippers

Example Manufacturer: http://robotiq.com/

Other Images: https://www.cs.rpi.edu/twiki/pub/RoboticsWeb/ReadingGroup/Manipulator_End_Effectors.pdf

Force Torque Sensor:

Two, Three, N "Fingers":

ENCOMPASSING GRIP

Parallel Gripping:

Grippers

- VersaBall https://www.youtube.com/watch?v= jDW0RI7gso
- " " https://www.youtube.com/watch?v=ZKOI_IVDPpw
- FlexGripper https://www.youtube.com/watch?v=m7l-87r4oOY
- Octopus Gripper https://youtu.be/rKX3IKg5Qok
- Finn Gripper https://www.youtube.com/watch?v=90cXfaFM408
- " " https://www.youtube.com/watch?v=4MQmlvzE0i8
- " " https://www.youtube.com/watch?v=Q1MBIaNuLa8 (egg crash...)

Robotic Manipulators

"Industrial Arms", incl. End-Effectors

Luís Paulo Reis

lpreis@fe.up.pt
Director/Researcher LIACC
Associate Professor at FEUP/DEI

Armando Sousa

asousa@fe.up.pt
Researcher INESC-TEC
Assistant Professor at FEUP/DEEC

