Математический анализ 1. Лекции 5 — 6. Предел функции (продолжение). Символы Ландау. Непрерывные функции и их свойства

Э.Л. Хабина

ВШЭ, ФЭН, Москва

2025

Напоминание: элементарная техника вычисления пределов

$$\lim_{x \to 3} \frac{\sqrt{2x+3} - \sqrt{x+6}}{x-3} = \lim_{x \to 3} \frac{x-3}{(x-3)(\sqrt{2x+3} + \sqrt{x+6})} = \frac{1}{6}.$$

$$\lim_{x \to 0} \frac{\cos 2x - \cos 4x}{x^2} = \lim_{x \to 0} \frac{2 \sin x \sin 3x}{x^2} = 2 \lim_{x \to 0} \frac{\sin x}{x} \cdot 3 \lim_{x \to 0} \frac{\sin 3x}{3x} = 6 \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{y \to 0} \frac{\sin y}{y} = 6.$$

$$\lim_{x \to 0} (\cos x)^{\frac{1}{x^2}} = \lim_{x \to 0} (1 + (\cos x - 1))^{\frac{1}{x^2}} = e^{\lim_{x \to 0} \frac{\cos x - 1}{x^2}} = e^{-\lim_{x \to 0} \frac{\sin^2 x}{x^2(1 + \cos x)}} = e^{-\lim_{x \to 0} \frac{\sin^2 x}{x^2} \cdot \lim_{x \to 0} \frac{1}{1 + \cos x}} = e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}}.$$

Элементарная техника полагается на удачное преобразование подпредельного выражения. Успех на этом пути зависит от случайной догадки и везения. Мы будем прокладывать путь к более систематическому вычислению пределов.

Эквивалентность функций

Определение

Пусть $c\in\mathbb{R}\cup\{-\infty,+\infty\}$ и функции f и g определены в некоторой проколотой окрестности точки c. Тогда $f\sim g$ при $x\to c$, если существует такая числовая функция φ , что:

- 1) φ определена в некоторой (проколотой) окрестности точки c;
- 2) $f(x)=g(x)\varphi(x)$ для всех x из некоторой (проколотой) окрестности точки c;
- $\lim_{x \to c} \varphi(x) = 1.$

Основные эквивалентности при $x \to 0$ (их надо запомнить!)

- 1. $\sin(x) \sim x$,
- 2. $1 \cos x \sim \frac{x^2}{2}$,
- 3. $a^x 1 \sim x \ln a$,
- 4. $\log_a(1+x) \sim \frac{x}{\ln a}$,
- 5. $(1+x)^a 1 \sim ax$,
- 6. $\arcsin x \sim x$,
- 7. $\operatorname{arctg} x \sim x$.

Основные свойства эквивалентности

Ниже предполагается, что все функции f,g,\ldots определены в некоторой проколотой окрестности точки c.

1. Если $g(x) \neq 0$ для всех x из некоторой проколотой окрестности точки c, то при $x \to c$

$$f \sim g \Leftrightarrow \lim_{x \to c} \frac{f(x)}{g(x)} = 1.$$

- 2. Если $f\sim g$ при $x\to c$ и, при этом, хотя бы один из пределов $\lim_{x\to c}f(x),\ \lim_{x\to c}g(x)$ существует, то существует и второй, и эти пределы равны. В частности, если $f\sim g$ при $x\to c$ и функции непрерывны в точке c, то f(c)=g(c).
- 3. Если существуют, равны и отличны от нуля пределы $\lim_{x\to c} f(x)$ и $\lim_{x\to c} g(x)$, то $f\sim g$ при $x\to c$. В частности, если существует $\lim_{x\to c} f(x)=a\neq 0$, то $f\sim a$ при $x\to c$.
- 4. Для любых функций f,g,h при x o c :
 - **4.1** $f \sim f$ (рефлексивность);
 - **4.2** $f \sim g \Rightarrow g \sim f$ (симметричность);
 - **4.3** $(f \sim g \land g \sim h) \Rightarrow f \sim h$ (транзитивность).

5. Замена переменных. Пусть $f\sim g$ при $x\to c$, а функция h определена в некоторой окрестности точки $d\in\mathbb{R}\cup\{-\infty,+\infty\}$, существует $\lim_{x\to d}h(x)=c$ и $h(x)\neq c$ в некоторой проколотой окрестности точки d.

Тогда

$$f(h(x)) \sim g(h(x))$$

при $x \to d$.

Пример 1. $\sin(x) \sim x$ при $x \to 0$. Значит,

$$\sin\left(\frac{x^2 + 3x - 4}{x + \ln(x^2)}\right) \sim \frac{x^2 + 3x - 4}{x + \ln(x^2)}$$

при $x \to 1$.

Пример 2. При $x \to 0$ имеем:

$$\sin(1-\cos x) \sim 1 - \cos x \sim \frac{x^2}{2}.$$

Далее, по транзитивности,

$$\sin(1-\cos x) \sim \frac{x^2}{2}.$$

6. Если
$$f_1 \sim g_1$$
 и $f_2 \sim g_2$ при $x \to c$, то $f_1 f_2 \sim g_1 g_2$ при $x \to c$.

7. Если
$$f_1\sim g_1$$
 и $f_2\sim g_2$ при $x o c$ и, при этом, $f_2(x)
eq 0$ и $g_2(x)
eq 0$ в

некоторой проколотой окрестности точки c, то $\frac{f_1}{f_2}\sim \frac{g_1}{g_2}$ при x o c.

Пример 1. При
$$x \to 0$$
 имеем:

Пример 1. При
$$x \to 0$$
 имеем:

$$\ln(1-5x)$$

Пример 2. При $x \to 2$ имеем:

пример 2. При
$$x \to z$$
 имеем:

 $\ln\left(\frac{2x+3}{x+5}\right) = \ln\left(1 + \frac{x-2}{x+5}\right) \sim \frac{x-2}{x+5} \sim \frac{x-2}{7}.$

 $\frac{\sin 2x \cdot (1 - \cos 3x)}{\ln(1 - 5x)} \sim \frac{2x \cdot \frac{1}{2}(3x)^2}{-5x} \sim -\frac{9}{5}x^2.$

Замена на эквивалентные в пределах

Пусть при $x \to c$

$$f_1 \sim f_1^*, f_2 \sim f_2^*, \dots, f_n \sim f_n^*,$$

 $g_1 \sim g_1^*, g_2 \sim g_2^*, \dots, g_m \sim g_m^*,$

 $\forall i \in \{1,2,\dots,n\}, \ \forall j \in \{1,2,\dots,m\} \ g_i \neq 0, g_j^* \neq 0$ в некоторой проколотой окрестности точки c.

Тогда

$$\lim_{x \to c} \frac{f_1 f_2 \dots f_n}{g_1 g_2 \dots g_m} = \lim_{x \to c} \frac{f_1^* f_2^* \dots f_n^*}{g_1^* g_2^* \dots g_m^*}.$$

Пример 1.

$$\lim_{x\to 0}\frac{\sin x\cdot\sin 3x\cdot\sin 5x}{\sin 2x\cdot\sin 4x\cdot\sin 6x}=\lim_{x\to 0}\frac{x\cdot3x\cdot5x}{2x\cdot4x\cdot6x}=\frac{5}{16}.$$

Пример 2.

$$\lim_{x \to 0} \frac{(1 - \cos 3x) \ln^2 (1 - \sin x)}{(2^x - 1)(\sqrt{1 + x^3} - 1)} = \lim_{x \to 0} \frac{\frac{(3x)^2}{2} \cdot x^2}{(x \ln 2) \cdot \frac{x^3}{2}} = \frac{9}{\ln 2}.$$

Важные "тонкости"

Пусть функции f,g эквивалентны при $x \to c$, а функция h определена (и, если угодно, непрерывна) при всех $x \in \mathbb{R}$. Верно ли, что

$$h(f(x)) \sim h(g(x))$$

при $x \to c$? Нет.

Пример. Поскольку $\lim_{x \to 0} (1+x) = \lim_{x \to 0} (1+x^2) = 1 \neq 0$, имеем

$$1+x\sim 1+x^2$$
 при $x\to 0$.

Пусть h(x) = x - 1. Тогда

$$h(1+x) = x \not\sim x^2 = h(1+x^2)$$
 при $x \to 0$.

Впрочем, для некоторых функций h этот принцип работает.

lacktriangle Пусть функции $f\sim g$ при x o c, и выражения f^{lpha} и g^{lpha} определены в некоторой проколотой окрестности точки c. Тогда $f^{lpha}\sim g^{lpha}$ при x o c.

Верно ли, что если $f_1\sim g_1$ и $f_2\sim g_2$ при $x\to c$, то $f_1+f_2\sim g_1+g_2$ при $x\to c$? Het.

Пример. При $x \to 0$:

- $ightharpoonup x \sim x$
- $-x + x^2 \sim -x$
- $x^2 = x + (-x + x^2) \nsim x + (-x) = 0.$

Замечание. Ошибочная замена на эквивалентные в суммах и разностях может привести к неверному вычислению предела. Например, следующие вычисления ошибочны:

$$\lim_{x \to 0} \frac{x - \sin x}{r^3} = \lim_{x \to 0} \frac{x - x}{r^3} = 0.$$

Ошибка! На самом деле $\lim_{x\to 0} \frac{x-\sin x}{x^3} = \frac{1}{6}$ (этот предел научимся находить позднее).

Распространить на суммы и разности технику замены эквивалентных помогают *порядки малости*.

Порядки малости

Определение

Пусть $c\in\mathbb{R}\cup\{-\infty,+\infty\}$ и функции f и g определены в некоторой проколотой окрестности точки c. Тогда f=o(g) при $x\to c$, если существует такая числовая функция φ , что:

- 1) φ определена в некоторой (проколотой) окрестности точки c;
- 2) $f(x)=g(x)\varphi(x)$ для всех x из некоторой (проколотой) окрестности точки c:
- $\lim_{x \to c} \varphi(x) = 0.$

Заметим, что если a < b, то:

- $ightharpoonup x^a = o(x^b)$ при $x \to \infty$,
- $ightharpoonup x^b = o(x^a)$ при $x \to 0$.

Например,

- $ightharpoonup x^{2025} = o(x^{2026})$ при $x \to \infty$,
- $ightharpoonup x^{2026} = o(x^{2025})$ при $x \to 0$.

Замечание

Запись f=o(1) при $x \to c$ означает, что функция f бесконечно малая при $x \to c$.

Замечание

Запись f=o(g), вообще говоря, не вполне корректна. Правильнее было бы писать $f\in o(g)$. Тем не менее, соотношение f=o(g) используют как равенство, заменяя в формулах f на o(g). Это удобно, но требует осторожности.

Используя такую подстановку, необходимо помнить, что разные вхождения одного и того же символа o(g) обозначают, вообще говоря, разные функции. Поэтому, в частности, неверно, что o(g)-o(g)=0.

Основные свойства отношения о

1. Если $g(x) \neq 0$ для всех x из некоторой проколотой окрестности точки c, то при $x \to c$

$$f = o(g) \Leftrightarrow \lim_{x \to c} \frac{f(x)}{g(x)} = 0.$$

- **2**. При $x \to c$ для любых $C \in \mathbb{R} \setminus \{0\}$:
 - **2.1** o(Cg) = o(g),
 - 2.2 $o(g) \pm o(g) = o(g)$,
 - **2.3** o(o(g)) = o(g),
 - **2.4** o(g + o(g)) = o(g),
 - **2.5** fo(g) = o(fg),
 - **2.6** o(f)o(g) = o(fg),
 - **2.7** если $f \sim g$ при $x \to c$, то o(f) = o(g).

Внимание: это, вообще говоря, «направленные» равенства.

Теорема

Пусть функции f и g определены в некоторой проколотой окрестности точки c. Тогда при $x \to c$

$$f \sim g \Leftrightarrow f = g + o(g).$$

Доказательство (для случая $g \neq 0$ в некоторой окрестности точки c).

$$f \sim g \Leftrightarrow \lim_{x \to c} \frac{f}{g} = 1 \Leftrightarrow \frac{f}{g} = 1 + o(1) \Leftrightarrow f = g + g \cdot o(1) \Leftrightarrow f = g + o(g).$$

Следствия. При $x \to 0$:

- 1. $\sin x = x + o(x)$,
- 2. $\cos x = 1 \frac{x^2}{2} + o(x^2)$,
- 3. $a^x = 1 + x \ln a + o(x)$,
- 4. $\log_a(1+x) = \frac{x}{\ln x} + o(x)$,
- 5. $(1+x)^a = 1 + ax + o(x)$,
- 6. $\arcsin x = x + o(x)$,
- 7. $\arctan x = x + o(x)$.

Применение к вычислению пределов

- ightharpoonup Найдите предел $\lim_{x\to 0} \frac{\sin 2x \sin x}{\sin 3x \sin x}$.
 - ightharpoonup Поскольку при x
 ightharpoonup 0 выполнено

$$\sin ax \sim ax$$

(замена переменных в основной эквивалентности), имеем:

$$\sin ax = ax + o(ax) = ax + o(x)$$
 при $x \to 0$.

 $\blacksquare \text{ Поэтому } \lim_{x \to 0} \frac{\sin 2x - \sin x}{\sin 3x - \sin x} = \lim_{x \to 0} \frac{2x + o(x) - (x + o(x))}{3x + o(x) - (x + o(x))} = \lim_{x \to 0} \frac{x + o(x)}{2x + o(x)} = \lim_{x \to 0} \frac{x + o(x)}{2x + o(2x)} = \lim_{x \to 0} \frac{x}{2x} = \frac{1}{2}.$

▶ Замечание. Эта стратегия не всегда приводит к успеху.

Пример.

$$\lim_{x \to 0} \frac{x - \sin x}{x^2} = \lim_{x \to 0} \frac{o(x)}{x^2} = ?$$

► Найдите предел
$$\lim_{x\to 2} \frac{\sqrt{3x-2}-\sqrt{x+2}}{x-2}$$
.

lacktriangle Делаем замену переменной y=x-2, чтобы получить предел при y o 0:

$$\lim_{x \to 2} \frac{\sqrt{3x - 2} - \sqrt{x + 2}}{x - 2} = \lim_{y \to 0} \frac{\sqrt{4 + 3y} - \sqrt{4 + y}}{y}.$$

• Преобразуем подпредельное выражение так, чтобы иметь под корнями выражения вида 1+ay:

$$\lim_{y \to 0} \frac{\sqrt{4+3y} - \sqrt{4+y}}{y} = \lim_{y \to 0} \frac{2\left(\sqrt{1 + \frac{3y}{4}} - \sqrt{1 + \frac{y}{4}}\right)}{y}.$$

▶ Используем равенство $\sqrt{1+ay} = 1 + \frac{ay}{2} + o(y)$ при $y \to 0$.

$$\lim_{t \to 0} \frac{2\left(\sqrt{1 + \frac{3y}{4}} - \sqrt{1 + \frac{y}{4}}\right)}{y} = \lim_{y \to 0} \frac{2\left(1 + \frac{3y}{8} + o(y) - \left(1 + \frac{y}{8} + o(y)\right)\right)}{y} = \frac{1}{2}.$$

▶ Найдите предел
$$\lim_{x\to 2} \frac{\sqrt[3]{3x-2} - \sqrt[3]{x+2}}{x-2}$$
.

lacktriangle Делаем замену переменной y=x-2, чтобы получить предел при y o 0:

$$\lim_{x \to 2} \frac{\sqrt[3]{3x-2} - \sqrt[3]{x+2}}{x-2} = \lim_{y \to 0} \frac{\sqrt[3]{4+3y} - \sqrt[3]{4+y}}{y}.$$

▶ Преобразуем подпредельное выражение так, чтобы иметь под корнями выражения вида 1+ay:

$$\lim_{y \to 0} \frac{\sqrt[3]{4+3y} - \sqrt[3]{4+y}}{y} = \lim_{y \to 0} \frac{\sqrt[3]{4} \left(\sqrt[3]{1+\frac{3y}{4}} - \sqrt[3]{1+\frac{y}{4}}\right)}{y}.$$

▶ Используем равенство $\sqrt[3]{1+ay} = 1 + \frac{ay}{2} + o(y)$ при $y \to 0$.

$$\lim_{y \to 0} \frac{\sqrt[3]{4} \left(\sqrt[3]{1 + \frac{3y}{4}} - \sqrt[3]{1 + \frac{y}{4}}\right)}{y} = \lim_{y \to 0} \frac{\sqrt[3]{4} \left(1 + \frac{3y}{12} + o(y) - \left(1 + \frac{y}{12} + o(y)\right)\right)}{y} = \frac{\sqrt[3]{4}}{6}.$$

• "Большие уничтожают маленьких". Найдите предел

$$\lim_{x \to 0} \frac{3x + x^2 \ln x + \sin(x^2)}{x + 1 - \cos x}.$$

Заметим, что

- $lackbox{lim} x \ln x = 0$, поэтому $x^2 \ln x = x \cdot x \ln x = o(x) = o(3x)$ при $x \to 0$,
- $\mathbf{sin}(x^2) \sim x^2$ при $x \to 0$, поэтому $\mathbf{sin}(x^2) = x^2 + o(x^2) = o(x) = o(3x)$ при $x \to 0$,
- ▶ $1-\cos x \sim \frac{x^2}{2}$ при $x \to 0$, поэтому

$$1 - \cos x = \frac{x^2}{2} + o(x^2) = o(x)$$
 при $x \to 0$.

Следовательно, при $x \to 0$

$$3x + x^2 \ln x + \sin(x^2) \sim 3x \text{ in } x + 1 - \cos x \sim x.$$

Значит,

$$\lim_{x \to 0} \frac{3x + x^2 \ln x + \sin(x^2)}{x + 1 - \cos x} = \lim_{x \to 0} \frac{3x}{x} = 3.$$

Внимание. Не перепутайте эквивалентности при $x \to 0$ и при $x \to \infty!$ По тем же соображениям "отсечения бесконечно малых высшего порядка" имеет место равенство:

$$\lim_{x \to \infty} \frac{3x + x^2 \ln x + \sin(x^2)}{x + 1 - \cos x} = \lim_{x \to \infty} \frac{x^2 \ln x}{x} = \infty.$$

▶ Найдите предел последовательности $\lim_{n\to\infty} n\sin\left(2\pi\sqrt{n^2+1}\right)$.

$$ightharpoonup$$
 Преобразуем: $\sin\left(2\pi\sqrt{n^2+1}\right) = \sin\left(2\pi n\sqrt{1+\frac{1}{n^2}}\right)$.

lackbox При x o 0 верно $\sqrt{1+x}-1\sim rac{x}{2}$. Делаем замену: $x=rac{1}{t}$.

При
$$t o \infty$$
 $\sqrt{1 + rac{1}{t^2}} - 1 \sim rac{1}{2t^2}.$

ightharpoonup Следовательно, при $t o \infty$

$$\sqrt{1 + \frac{1}{t^2}} = 1 + \frac{1}{2t^2} + o\left(\frac{1}{t^2}\right).$$

ightharpoonup Значит, при $n o\infty$ (n натуральное!)

$$\sin\left(2\pi n\sqrt{1+\frac{1}{n^2}}\right) = \sin\left(2\pi n\left(1+\frac{1}{2n^2}+o\left(\frac{1}{n^2}\right)\right)\right) = \sin\left(\frac{\pi}{n}+o\left(\frac{\pi}{n}\right)\right) \sim \frac{\pi}{n}+o\left(\frac{\pi}{n}\right) \sim \frac{\pi}{n}.$$

ightharpoonup Следовательно, $\lim_{n \to \infty} n \sin\left(2\pi\sqrt{n^2+1}\right) = \lim_{n \to \infty} n \cdot \frac{\pi}{n} = \pi.$

- lacktriangle Докажите, что предел функции $\lim_{x \to \infty} x \sin\left(2\pi\sqrt{x^2+1}\right)$ не существует.
 - Допустим, что предел существует и равен c. Тогда используя определение предела по Гейне, имеем: для любой последовательности a

$$\lim_{n \to \infty} a_n = \infty \Rightarrow \lim_{n \to \infty} a_n \sin\left(2\pi\sqrt{a_n^2 + 1}\right) = c.$$

Мы уже нашли этот предел при $a_n=n$. Он равен π . Остается найти другую последовательность a_n , стремящуюся к бесконечности, для которой

$$\lim_{n \to \infty} a_n \sin\left(2\pi\sqrt{a_n^2 + 1}\right) \neq \pi$$

(или не существует).

▶ Положим $a_n = \frac{2n+1}{2}$.

Тогда, рассуждая аналогично, при $n \to \infty$ имеем:

$$\sin\left(2\pi\sqrt{a_n^2+1}\right) = \sin\left(2\pi\sqrt{\left(\frac{2n+1}{2}\right)^2+1}\right) =$$

$$\sin\left(2\pi \cdot \frac{2n+1}{2}\sqrt{1+\frac{4}{(2n+1)^2}}\right) =$$

$$\sin\left(\pi(2n+1)\left(1+\frac{2}{(2n+1)^2}+o\left(\frac{2}{(2n+1)^2}\right)\right)\right) =$$

$$\sin\left(2\pi n + \pi + \frac{2\pi}{2n+1} + o\left(\frac{2\pi}{2n+1}\right)\right) = -\sin\left(\frac{2\pi}{2n+1} + o\left(\frac{2\pi}{2n+1}\right)\right) \sim$$

$$-\frac{2\pi}{2n+1} + o\left(\frac{2\pi}{2n+1}\right) \sim -\frac{2\pi}{2n+1}.$$

И, значит,

$$\lim_{n \to \infty} a_n \sin\left(2\pi\sqrt{a_n^2 + 1}\right) = \lim_{n \to \infty} \frac{2n+1}{2} \cdot \left(-\frac{2\pi}{2n+1}\right) = -\pi.$$

Все доказано: предел $\lim_{x \to \infty} x \sin\left(2\pi\sqrt{x^2+1}\right)$ не существует.

Односторонние пределы

Определение

- 1. Пусть b и c есть действительные числа, а f есть числовая функция, которая определена в некоторой окрестности $(b,b+\varepsilon')$, где $\varepsilon'>0$. Тогда $\lim_{x\to b+0}f(x)=c$, если для каждой окрестности $O_{\varepsilon}(c)$ найдется такая окрестность $(b,b+\delta)$, где $\delta>0$, что $f(x)\in O_{\varepsilon}(c)$ для всех $x\in (b,b+\delta)$.
- 2. Пусть b и c есть действительные числа, а f есть числовая функция, которая определена в некоторой окрестности $(b-\varepsilon',b)$, где $\varepsilon'>0$. Тогда $\lim_{x\to b-0}f(x)=c$, если для каждой окрестности $O_{\varepsilon}(c)$ найдется такая окрестность $(b-\delta,b)$, где $\delta>0$, что $f(x)\in O_{\varepsilon}(c)$ для всех $x\in (b-\delta,b)$.
- 3. Если допустить, что c также может принимать значение $+\infty$ и $-\infty$, мы определим смысл выражений $\lim_{x \to b+0} f(x) = +\infty$, $\lim_{x \to b-0} f(x) = +\infty, \ \lim_{x \to b+0} f(x) = -\infty \ \text{и} \ \lim_{x \to b-0} f(x) = -\infty.$ Однако надо помнить, что эти два случая есть частные случаи несуществования предела.

Замечание. Можно дать эквивалентное определение односторонних пределов типа определения предела по Гейне.

Основные свойства и способы вычисления

- 1. Односторонние пределы, в целом, имеют те же свойства, что и обычные пределы.
- 2. Предел $\lim_{x \to b} f(x)$ существует тогда и только тогда, когда существуют и равны между собой $\lim_{x \to b-0} f(x)$ и $\lim_{x \to b+0} f(x)$. В этом случае $\lim_{x \to b} f(x) = \lim_{x \to b-0} f(x) = \lim_{x \to b-0} f(x)$.
- 3. Пусть $f(x) = \begin{cases} g(x), \text{ если } x < b \\ h(x), \text{ если } x > b \end{cases}$ (в точке b функция f определена как угодно или не определена вовсе), причем существуют $\lim_{x \to b} g(x)$ и $\lim_{x \to b} h(x)$. Тогда $\lim_{x \to b-0} f(x) = \lim_{x \to b} g(x)$ и $\lim_{x \to b+0} f(x) = \lim_{x \to b} h(x)$.
- 4. С помощью замены переменной $t=\frac{1}{x-b}$ односторонний предел можно свести к пределу при $t\to\pm\infty$:
 - $4.1 \lim_{x \to b+0} f(x) = \lim_{t \to \infty} f\left(b + \frac{1}{t}\right).$
 - $4.2 \lim_{x \to b-0} f(x) = \lim_{t \to -\infty} f\left(b + \frac{1}{t}\right) = \lim_{t \to \infty} f\left(b \frac{1}{t}\right).$

Примеры

$$x \rightarrow 0 + 0$$
 $e^{x} + 1$ $t \rightarrow +\infty$ $e^{x} + 1$

Замечание

Распространенные обозначения:

- $\blacktriangleright \lim_{x \to x_0 + 1} f(x)$ вместо $\lim_{x \to x_0 + 0} f(x)$,
- $ightharpoonup \lim_{x \to x_0 = 0} f(x)$ вместо $\lim_{x \to x_0 = 0} f(x)$.

Непрерывные функции

Определение

Пусть функция f определена в некоторой проколотой окрестности точки b. Тогда f непрерывна в точке $b \in \mathbb{R}$, если:

- 1) функция f определена в точке b;
- 2) существует $\lim_{x\to b} f(x)$;
- 3) $\lim_{x \to b} f(x) = f(b)$.

Последние два условия равносильны условию

$$f(b+h) = f(b) + o(1)$$

при $h \to 0$.

Определение

Если функция f определена в некоторой проколотой окрестности точки b, но не является непрерывной в этой точке, то b называется **точкой разрыва** функции f. При этом говорят, что функция f **разрывна** в точке b.

Примеры

- 1. Пусть функция f элементарна и определена в некоторой окрестности точки b. Тогда функция f непрерывна в точке b.
- 2. Функция Дирихле

$$d(x) = egin{cases} 1, \ \mathsf{если} \ x \in \mathbb{Q}, \ 0, \ \mathsf{если} \ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

определена при всех $x \in \mathbb{R}$ и разрывна в каждой точке.

Классификация точек разрыва

Пусть b есть точка разрыва функции f. Тогда:

- 1. Если существуют $\lim_{x \to b-0} f(x)$ и $\lim_{x \to b+0} f(x)$, то b называется **точкой** разрыва первого рода.
- 2. При этом, если $\lim_{x \to b-0} f(x) = \lim_{x \to b+0} f(x)$ (что влечет существование $\lim_{x \to b} f(x)$), то точка b называется устранимой точкой разрыва (первого рода).
 - Замечание. Поскольку точка b устранимого разрыва есть все-таки точка разрыва, в точке b функция f не определена или $\lim_{x\to b}f(x)\neq f(b).$
- Все остальные точки разрыва называются точками разрыва второго рода.

Пример

Найдите и исследуйте все точки разрыва функции

$$f(x) = \begin{cases} e^{\frac{3}{x}}, \text{ если } x \in (-\infty, 0), \\ \frac{x}{x-3}, \text{ если } x \in [0, 4), \\ \frac{x}{x-2}, \text{ если } x \in [4, +\infty). \end{cases}$$

Докажите, что функция имеет в точке 3 разрыв второго рода, в точке 4 – разрыв первого рода, в точке 0 разрыва нет.

Применение непрерывных и разрывных функций в экономике

Программа поддержания уровня доходов населения

- Такие программы предлагают тем, кто не работает, определенную фиксированную сумму, которая выплачивается, если получатель не имеет никакого дохода.
- ▶ Пусть ежемесячная выплата составляет 750 у.е., при условии, что получатель совсем не работает. Однако получатель может найти работу, оплачиваемую в размере 15 у.е. в час, причем количество часов, которые он работает, зависит только от него. Тогда получаемый доход может быть записан в виде функции:

$$y = \begin{cases} 750, & \text{если } h = 0, \\ 15h, & \text{если } h > 0, \end{cases}$$

где y — получаемый доход (в у.е.), а h — количество отработанных часов.

Применение непрерывных и разрывных функций в экономике

График данной функции выглядит следующим образом.

Очевидно, что в точке h=0 функция y разрывна (справа).

Если индивидуум предпочитает работать, то восполнить утрату выплат в размере 750 у.е. он может, только отработав 50 часов!

Применение непрерывных и разрывных функций в экономике

Альтернативная схема устроена следующим образом: определенная часть дохода (например, 50%) возвращается в органы социального обеспечения до тех пор, пока сумма возвращенных средств не сравнится с выплачиваемой суммой. С этого момента 750 у.е. не выплачиваются, но и возврата средств не происходит. Функция у в этом случае выглядит так:

$$y = \begin{cases} 750 + 7, 5h, & \text{если } 0 \leqslant h \leqslant 100, \\ 15h, & \text{если } h > 100. \end{cases}$$

Эта функция непрерывна:

Локальные свойства непрерывных функций

- 1. Пусть функция f определена в некоторой окрестности точки b и непрерывна в точке b. Тогда:
 - 1.1 $\lim_{n\to\infty} f(a_n)=f\left(\lim_{n\to\infty} a_n\right)=f(b)$ для любой последовательности a_n , для которой $\lim_{n\to\infty} a_n=b$.
 - $1.2\lim_{x o c}f(g(x))=f\left(\lim_{x o c}g(x)
 ight)=f(b)$ для любой функции g, для которой $\lim_{x o c}g(x)=b$.
 - 1.3 Функция f ограничена в некоторой окрестности точки b.
 - 1.4 Если $f(b) \neq 0$, то для всех x из некоторой окрестности точки b значение f(x) имеет тот же знак, что и f(b).
- 2. Пусть функции f и g определены в некоторой окрестности точки b и непрерывны в точке b. Тогда в точке b непрерывны функции

$$f+g$$
, fg , $\frac{f}{g}$

(в последнем случае если $g(x) \neq 0$ в некоторой окрестности точки b).

3. Пусть функция g непрерывна в точке c, а функция f непрерывна в точке b=g(c). Тогда функция $f\circ g$ непрерывна в точке c.

Глобальные свойства непрерывных функций

Пусть функция f(x) непрерывна в каждой точке отрезка [a,b]. Тогда:

- 1) функция f ограничена на отрезке [a,b], т.е. для некоторого C>0 |f(x)|< C для всех $x\in [a,b]$ (первая теорема Вейерштрасса);
- 2) функция f достигает на отрезке своих максимального и минимального значений, т.е. существуют такие $c,d\in[a,b]$, что $f(c)=\sup\{f(x):x\in[a,b]\},\ f(d)=\inf\{f(x):x\in[a,b]\}$ (вторая теорема Вейерштрасса);
- 3) функция f принимает все промежуточные значения, т.е. для любого числа p

$$\inf\{f(x):x\in[a,b]\}\leqslant p\leqslant \sup\{f(x):x\in[a,b]\}$$

существует число $c \in [a,b]$, для которого f(c) = p (теорема Коши о промежуточных значениях).

Объединяя все три свойства в одно, получаем следующую теорему.

Теорема

Образ отрезка при непрерывном отображении есть отрезок.

Теорема об обращении монотонной непрерывной функции

Теорема

Пусть функция f непрерывна и строго возрастает на отрезке [a,b]. Тогда на отрезке [f(a),f(b)] определена обратная функция f^{-1} , причем она непрерывна и строго возрастает.

Пусть функция f непрерывна и строго убывает на отрезке [a,b]. Тогда на отрезке [f(b),f(a)] определена обратная функция f^{-1} , причем она непрерывна и строго убывает.

Пример. На каждом отрезке [a,b], где 0< a< b, функция $f(x)=x^2$ мнонотонно возрастает и непрерывна. Значит, на любом отрезке $[a^2,b^2]$, а значит, и на множестве $[0,+\infty)$, обратная функция $f^{-1}(x)=\sqrt{x}$ определена, непрерывна и строго возрастает.

Асимптоты

- 1. Неформальное определение: асимптота это прямая, к которой график функции неограниченно приближается.
- 2. Вертикальные асимптоты. Прямая x=a есть вертикальная асимптота функции f тогда и только тогда, когда $\lim_{x\to a+0}f(x)=\pm\infty$ или $\lim_{x\to a+0}f(x)=\pm\infty$.
 - Замечание. Функция может иметь любое (в том числе, бесконечное) количество вертикальных асимптот.
- 3. Наклонные асимптоты. Пусть $b\in \{-\infty, +\infty\}$. Прямая y=kx+l есть наклонная асимптота функции f при $x\to b$, если

$$\lim_{x \to b} (f(x) - kx - l) = 0.$$

Если прямая y=kx+l есть наклонная асимптота функции f, то $k=\lim_{x\to b}\frac{f(x)}{x}$ и $l=\lim_{x\to b}(f(x)-kx).$ Если какой-либо из этих двух пределов не существует, асимптоты при $x\to b$ нет. Функция f может иметь не более двух наклонных асимптот.

Пример

$$f(x) = \frac{3x^3 - 2x - 3}{x^2 + x - 2}.$$

- 1. Вертикальные асимптоты: x=1, x=-2 (проверьте самостоятельно).
- **2**. Ищем наклонную асимптоту при $x \to +\infty$:

$$k = \lim_{x \to +\infty} \frac{3x^3 - 2x - 3}{(x^2 + x - 2)x} = 3.$$

$$l = \lim_{x \to +\infty} \left(\frac{3x^3 - 2x - 3}{x^2 + x - 2} - 3x \right) = \lim_{x \to +\infty} \frac{-3x^2 + 4x - 3}{x^2 + x - 2} = -3.$$

Асимптота: y = 3x - 3.

3. Ищем наклонную асимптоту при $x \to -\infty$:

$$k = \lim_{x \to -\infty} \frac{3x^3 - 2x - 3}{(x^2 + x - 2)x} = \left\langle \begin{array}{c} y = -x, \\ y \to +\infty \end{array} \right\rangle =$$

$$\lim_{y \to +\infty} \frac{-3y^3 + 2y - 3}{(y^2 - y - 2)(-y)} = 3.$$

$$l = \lim_{x \to -\infty} \left(\frac{3x^3 - 2x - 3}{x^2 + x - 2} - 3x \right) = \lim_{x \to -\infty} \frac{-3x^2 + 4x - 3}{x^2 + x - 2} = -3.$$

Асимптота такая же: y = 3x - 3.

СПАСИБО ЗА ВНИМАНИЕ!

