FUTURE VISION BIE

One Stop for All Study Materials
& Lab Programs

Future Vision

By K B Hemanth Raj

Scan the QR Code to Visit the Web Page

Or

Visit: https://hemanthrajhemu.github.io

Gain Access to All Study Materials according to VTU,

CSE – Computer Science Engineering,

ISE – Information Science Engineering,

ECE - Electronics and Communication Engineering

& MORE...

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

(INSemi C)	CBCS SC	CBCS SCILEMED.E ASSOCIATION'S		
USN		DR. P. G. HALAKATTI COLLEGE OF ENGINEERING	15CS72	

Seventh Semester B.E. Degree Examination, June/July 2019 **Advanced Computer Architectures**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Explain the evolution of computer architecture.

(08 Marks)

Explain with diagram the operational model of SIMD super computer.

(08 Marks)

OR

Explain the Bernstein's conditions for parallelism. Detect the parallelism in the following 2 code using Bernstein's conditions. (Assume no pipeline).

 $P_1: C = D \times E$; $P_2: M = G + C$; $P_3: A = B + C$; $P_4: C = L + M$; $P_5: G \div E$. (08 Marks) b. With a diagram, explain the operation of tagged token data flow computer.

(08 Marks)

Module-2

Distinguish between typical RISC and CISC process architectures. 3

(08 Marks)

With a diagrams, explain the models of a basic scalar computer system.

(08 Marks)

OR

With a diagram, explain a typical superscalar RISC processor architecture consisting of an integer unit and a floating point unit. (10 Marks)

With a diagram, explain the hierarchical memory technology. b.

(06 Marks)

Module-3

Explain with diagram, the backplane bus specification. 5 a.

(08 Marks)

With the diagrams, explain the central arbitration and distribution arbitration.

(08 Marks)

For the reservation table of a non-linear pipeline shown below:

	1	2	3	4	5	6
S_1	X					X
S_2		X			X	
S_3			X		-	
S ₄				X		
S_5		X				X

- What are the forbidden latencies? Write initial collision vector i)
- ii) Draw the state transition diagram
- List all simple cycles and greedy cycles 111)

Determine MAL.

(10 Marks)

Explain prefetch buffer and internal data forwarding mechanisms used in instruction pipelining. (06 Marks)

15CS72

Module-4

- 7 a. Explain crossbar networks and cross-point switch design in multiprocessor system.
 - b. With necessary sketches, explain the cache-coherence problems in data sharing and in process migration.

 (08 Marks)

 (08 Marks)

OF

- 8 a. With a diagram, explain the architecture of the connection machine CM-2. (08 Marks)
 - b. Explain the context-switching policies.

(08 Marks)

Module-5

- 9 a. Explain the concurrent OOP and an actor model in object oriented model. (08 Marks)
 - b. Explain the fairness policies and sole-access -protocols in the principles of synchronization.
 (08 Marks)

OR

- 10 a. What are the major hurdles of pipelining? Illustrate the branch hazards in detail. (08 Marks)
 - b. Explain the dynamic scheduling of a pipeline using Tomasulo's algorithm. (08 Marks)

2 of 2