РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ ФАКУЛЬТЕТ ФИЗИКОМАТЕМАТИЧЕСКИХ И ЕСТЕСТВЕННЫХ НАУК

Отчёт по лабораторной работе №2

Приспешкин Андрей Андреевич НКАбд-05-23

Содержание

0 1	Содержание																														4
0.1	Содсржанис	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

Список иллюстраций

1	Рис.1 Созданный аккаунт на Github	5
2	Рис. 2 Настройка git с помошью команды git config	5
3	Рис.3 Настройка вывода сообщений в кодировке utf-8	5
4	Рис.4 Создание начальной ветки	5
5	Рис. 5 Задание параметра autocrlf	6
6	Рис.6 Задание параметра autocrlf со значением warn	6
7	Рис. 7 Генерация ssh ключа с помощью команды ssh-keygen	6
8	Рис. 8 Использование команды xclup для копирования ключа из	
	терминала в буфер обмена	7
9	Рис. 9 Меню SSH and GPG keys в настройках	7
10	Рис.10 Вставленный SSH ключ сгенерированный ранее	8
11	Рис. 11 Создание рабочей директории	8
12	Рис. 12 Шаблон каталога на Github	ç
13	Рис.13 Создание нового репозитория на основе шаблона	ç
14	Рис.14 Окно создания нового репозитория	10
15	Рис.15 Переход в созданный каталог курса	10
16	Рис.16 Клонирование репозитория	10
17	Рис.17 Удаление файла package.json из каталога курса	11
18	Рис.18 Создание нужных каталогов командами echo и make	11
19	Рис.19 Использование команд git add и git commit	11
20	Рис.20 Отправка сделанных изменений на сервер	11
21	Рис.21 Проверка истории изменений на github	12
22	Рис.22 Создание отчёта по лабороторной работе (составлен отчёт	
	будет в текстовом редакторе LibreOffice Writer)	12
23	Рис.23 Копирование отчёта в рабочий репозиторий	12
24	Рис. 24 Добавление отчёта по первой лаборатнорной работе	12
25	Рис.25 Добавление отчёта по второй лабораторной работе	13
26	Рис.26 Использование команды git commit для сохранения	
	изменений по отчёту второй лабораторной работы	13
27	Рис.27 Отправка добавленных нами файлов в центральный	
	репозиторий командой git push	13
28	Рис. 28 Проверка правильности добавления отчётов по лабораторной	
	работе	13

Список таблиц

0.1 Содержание

- 1. Цель работы
- 2. Задание
- 3. Выполнение лабораторной работы
• 4. Выводы
• 5. Список литературы
1) Цель работы
Целью работы является изучить применение средств для контроля версий, а
также приобрести практические навыки по работе с системой контроля версий
git.
2) Задания 1) Настройка GitHub.
2) Базовая настройка git.
3) Создание SHH-ключа.
4) Создание рабочего пространства.
5) Создание репозитория на основе шаблона.
6) Настройка каталога курса.
7) Задания для самостоятельной работы.

3) Выполнение лабораторной работы

1) Создадим учётную запись на GitHub (рис.1).

Рис. 1: Рис.1 Созданный аккаунт на Github

2) Откроем терминал и введём команду git config, указав имя фамилию и электронную почту пользователя (рис.2).

```
aaprispeshkin:[aaprispeshkin]:~$ git config --global user.name "Andrey Prispeshkin"
aaprispeshkin:[aaprispeshkin]:~$ git config --global user.email "prspandrey@gmail.com"
```

Рис. 2: Рис. 2 Настройка git с помошью команды git config

Продолжая использовать команду git config, настраиваем кодировку utf-8 для вывода сообщений (рис.3) и создаём начальную ветку "master" (рис.4).

```
aaprispeshkin:[aaprispeshkin]:~$ git config --global core.quotepath false aaprispeshkin:[aaprispeshkin]:~$
```

Рис. 3: Рис.3 Настройка вывода сообщений в кодировке utf-8

```
aaprispeshkin:|aaprispeshkin|:~$ git config --global init.defaultBranch master
```

Рис. 4: Рис.4 Создание начальной ветки

Зададим параметр autocrlf со значением input (рис.5).

```
aaprispeshkin:[aaprispeshkin]:~$ git config --global core.aitocrlf input
```

Рис. 5: Рис. 5 Задание параметра autocrlf

Чтобы git мог определять преобразование на обратимость, зададим параметр autocrlf со значением warn(puc.6)

```
aaprispeshkin:[aaprispeshkin]:~$ git config --global core.autocrilf warn
```

Рис. 6: Рис.6 Задание параметра autocrlf со значением warn

3) Для последующей работой с git и github, нам потребуется сгенерировать уникальный ssh ключ. Сделать это можно командой ssh-keygen(puc.7).

```
aaprispeshkin:[aaprispeshkin]:~$ ssh-keygen -C "Andrey Prispeshkin prspandrey@gmail.com>
Generating public/private rsa key pair.
Enter file in which to save the key (/home/aaprispeshkin/.ssh/id_rsa):
Created directory '/home/aaprispeshkin/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/aaprispeshkin/.ssh/id_rsa
Your public key has been saved in /home/aaprispeshkin/.ssh/id_rsa.pub
The key fingerprint is:
SHA256:MYFcqWSNurm@FDRDyOBBrqjVYgsfTvybCySCfEfdS2U Andrey Prispeshkin <prspandrey@gmail.com>
The key's randomart image is:
+---[RSA 3072]----+
| o + + B +.o
 o . B ooo
|B.O..= S.
oX.=*
   =0.0
    .00
  ---[SHA256]----+
aaprispeshkin:[aaprispeshkin]:~$
```

Рис. 7: Рис. 7 Генерация ssh ключа с помощью команды ssh-keygen

Скопируем ключ из директории в которой он был сохранён, используя команды cat и xclip(puc.8)

Рис. 8: Рис. 8 Использование команды xclup для копирования ключа из терминала в буфер обмена

Затем, загружаем скопированный ключ в GitHub. В настройках выберем пункт "SSH and GPG keys"(рис.9), там выберем "Add new SSH key" и вставим скопированный ранее ключ(рис.10).

Рис. 9: Рис. 9 Меню SSH and GPG keys в настройках

Рис. 10: Рис.10 Вставленный SSH ключ сгенерированный ранее

4) С помощью утилиты mkdir с ключом -р создадим рабочую директорию(рис.11).

```
aaprispeshkin:[aaprispeshkin]:~$ mkdir -p ~/work/study/2023-2024/"Архитектура Компьютера"
aaprispeshkin:[aaprispeshkin]:~$
```

Рис. 11: Рис. 11 Создание рабочей директории

5) Перейдём на страницу с шаблоном курса ("https://github.com/yamadharma/course-directory-student-template") и скопируем шаблон (рис.12, 13 и 14)

Рис. 12: Рис. 12 Шаблон каталога на Github

Рис. 13: Рис.13 Создание нового репозитория на основе шаблона

Рис. 14: Рис. 14 Окно создания нового репозитория

Пользуясь утилитой сd перейдём в каталог курса(рис.15).

```
aaprispeshkin:[aaprispeshkin]:~$ cd ~/work/study/2023-2024/Архитектура\ Компьютера/
```

Рис. 15: Рис.15 Переход в созданный каталог курса

Командой git clone с ключом –recursive и пользуясь ссылкой на github клонируем созданный репозиторий(рис.16).

```
Aprispeshkin: aprispeshkin: i-fort/study/2023-2024/Aprinctypa (Communication Communication Communica
```

Рис. 16: Рис.16 Клонирование репозитория

6) Утилитой rm удалим лишние файлы из каталога курса(рис.17).

aaprispeshkin:[aaprispeshkin]:~/work/study/2023-2024/Архитектура Компьютера/study_2023-2024_arh--pc\$ rm package.json

Рис. 17: Рис.17 Удаление файла package.json из каталога курса

Командами echo и make создадим необходимые каталоги(рис.18).

```
aaprispeshkin:[aaprispeshkin]:~/work/study/2023-2024/Архитектура Компьютера/study_2023-2024_arh--pc$ echo arch-pc > COURSE
aaprispeshkin:[aaprispeshkin]:~/work/study/2023-2024/Архитектура Компьютера/study_2023-2024_arh--pc$ make
```

Рис. 18: Рис.18 Создание нужных каталогов командами echo и make

Командой git add добавим созданные каталоги на сервер, а командой git commit сохраним сделанные изменения(рис.19).

```
North State of the Company of the Co
```

Рис. 19: Рис.19 Использование команд git add и git commit

Командой git push отправим все сделанные изменения на сервер(рис.20).

Рис. 20: Рис. 20 Отправка сделанных изменений на сервер

Проверим правильность сделанных изменений на github(рис.21).

Рис. 21: Рис.21 Проверка истории изменений на github

7) Перейдём в подкаталог lab02 и с помощью утилиты touch создадим файл отчёта по лабораторной работе(рис.22).

```
aaprispeshkin:[aaprispeshkin]:~/work/study/2023-2024/Архитектура Компьютера/study_2023-2024_arh--pc/labs$ cd lab02
aaprispeshkin:[aaprispeshkin]:~/work/study/2023-2024/Архитектура Компьютера/study_2023-2024_arh--pc/labs/lab02$ touch Лабораторная2_Приспе
шкин
```

Рис. 22: Рис.22 Создание отчёта по лабороторной работе (составлен отчёт будет в текстовом редакторе LibreOffice Writer)

Скопируем отчёт по первой лабораторной работе из каталога Documents в каталог lab01/report и проверим правильность копирования утилитой ls(рис.23).

```
aaprispeshkin: aaprispeshkin: ~/work/study/2023-2024/ApxxTekTypa KomnbюTepa/study_2023-2024_arh--pc/labs/lab03/report$ cd ~/work/study/2023-2024/ApxxTekTypa\ KomnboTepa/study_2023-2024_arh--pc/labs/lab01/report/
aaprispeshkin: aaprispeshkin: ~/work/study/2023-2024/ApxxTekTypa KomnbюTepa/study_2023-2024_arh--pc/labs/lab01/report$ cp ~/Documents/Лабо
parophas1_Приспешкин.pdf ~/work/study/2023-2024/ApxxTekTypa\ KomnboTepa/study_2023-2024_arh--pc/labs/lab01/report
aaprispeshkin: aaprispeshkin: ~/work/study/2023-2024/ApxxTekTypa\ KomnboTepa/study_2023-2024_arh--pc/labs/lab01/report$ ls
bib image Makefile pandoc report.md Лабораторная1_Приспешкин.pdf
aaprispeshkin: aaprispeshkin: ~/work/study/2023-2024/ApxxTekTypa KomnboTepa/study_2023-2024_arh--pc/labs/lab01/report$
```

Рис. 23: Рис. 23 Копирование отчёта в рабочий репозиторий

Командой git add добавим отчёт по первой лабораторной работе на сервер, повторим эти действия с отчётом по второй лабораторной работе(рис.24, 25 и 26)

```
aaprispeshkin: aaprispeshkin: -/work/study/2023-2024/Архитектура Компьютера/study_2023-2024_arh--pc/labs/lab01/report$ git add Лабораторна я1_Приспешкин.pdf
aaprispeshkin: aaprispeshkin: -/work/study/2023-2024/Архитектура Компьютера/study_2023-2024_arh--pc/labs/lab01/report$ git commit -m "Adde d lab report 1"
[master 838af9f] Added lab report 1
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 labs/lab01/report/Лабораторная1_Приспешкин.pdf
```

Рис. 24: Рис. 24 Добавление отчёта по первой лаборатнорной работе

Рис. 25: Рис. 25 Добавление отчёта по второй лабораторной работе

Рис. 26: Рис.26 Использование команды git commit для сохранения изменений по отчёту второй лабораторной работы

Командой git push отправим все созданные файлы в центральный репозиторий(рис.27).

```
aaprispeshkin: aaprispeshkin]:~/work/study/2023-2024/Архитектура Компьютера/study_2023-2024_arh--pc/labs/lab03/report$ git push -f origin master
Enumerating objects: 17, done.
Counting objects: 100% (15/15), done.
Delta compression using up to 12 threads
Compressing objects: 100% (11/11), done.
Writing objects: 100% (11/11), 1.08 MiB | 7.55 MiB/s, done.
Total 11 (delta 5), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (5/5), completed with 2 local objects.
To github.com:aaprispeshkin/study_2023-2024_arh--pc.git
eab3bf8..3ffeec3 master -> master
```

Рис. 27: Рис.27 Отправка добавленных нами файлов в центральный репозиторий командой git push

Проверим правильность введённых нами команд в GitHub(рис.28).

Рис. 28: Рис.28 Проверка правильности добавления отчётов по лабораторной работе

4) Вывод В результате выполнения данной лабораторной работы я научился пользоваться системой контроля версий git в терминале Linux, а также создавать и обновлять репозитории в GitHub.

5) Список литературы

1. Лабораторная работа No2. Система контроля версий

Git