Max Team Size 2

In this practice, we will solve a problem using dynamic programming.

You have to climb a staircase with 'n' stairs. At a time, you can either cross 1, 2 or 3 stairs from your current position. When there are no stairs there is only one possible way. Write a function number_steps(n) that calculates returns the number of ways you can climb the n steps.

Sample input	Sample output	Explanation
number_steps(3)	Total number of ways to	Possible combination of steps
	climb the stairs = 4	1+1+1
		1+2
		2 + 1
		3
number_steps(4)	Total number of ways to	Possible combination of steps
	climb the stairs = 7	1+1+1+1
		1+1+2
		1+2+1
		2+1+1
		2 + 2
		1+3
		3 + 1

- a) First write a function that calculates the number of steps in exponential time. Let's call this function **number_steps_expo(n)**.
- b) Update your function so that it calculates the number of steps in linear time. Let's call this function **number_steps_lin(n)**.

Hint: For the exponential runtime think of a recursive solution and for linear time complexity think of applying dynamic programming approach.