Metrické výpočty v \mathbb{R}^2 a v \mathbb{R}^3

Odpřednesenou látku naleznete v dodatcích B.3 a B.4 skript *Abstraktní a konkrétní lineární algebra*.

Minulé přednášky

1 Víme, co je afinní podprostor dimense d v prostoru \mathbb{R}^n .

Připomenutí: jde o množinu $\mathbf{p} + W = \{\mathbf{p} + \mathbf{x} \mid \mathbf{x} \in W\}$, kde W je lineární podprostor dimense $d \vee \mathbb{R}^n$ a **p** je vektor v \mathbb{R}^n .

- 2 Pro dva afinní podprostory $\pi = \mathbf{p} + W$ a $\pi' = \mathbf{p}' + W'$ v \mathbb{R}^n umíme rozhodnout, zda jsou rovnoběžné, nebo různoběžné, nebo mimoběžné.
- **3** Víme, co je vektorový součin^a $\times (\mathbf{x}_1, \dots, \mathbf{x}_{n-1})$ seznamu vektorů $(\mathbf{x}_1, \dots, \mathbf{x}_{n-1})$ v \mathbb{R}^n , kde n > 2.

Připomenutí: $\langle \times (\mathbf{x}_1, \dots, \mathbf{x}_{n-1}) \mid \mathbf{x} \rangle = \det(\mathbf{x}_1, \dots, \mathbf{x}_{n-1}, \mathbf{x})$ platí pro všechna \mathbf{x} z \mathbb{R}^n .

Dále víme, že platí rovnost

$$\|\times(\mathbf{x}_1,\ldots,\mathbf{x}_{n-1})\|=\sqrt{\operatorname{Gram}(\mathbf{x}_1,\ldots,\mathbf{x}_{n-1})}.$$

^aProstor \mathbb{R}^n je vybaven standardním skalárním součinem $\langle \mathbf{x} \mid \mathbf{y} \rangle = \mathbf{x}^T \cdot \mathbf{y}$.

Dnešní přednáška

Pro dva afinní podprostory π , π' prostoru \mathbb{R}^n se standardním skalárním součinem spočteme jejich vzájemnou vzdálenost.

V dalším budeme značit:

- ② $\|\mathbf{x}\|$ je norma v \mathbb{R}^n , vytvořená standardním skalárním součinem, tj. $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x} \mid \mathbf{x} \rangle} = \sqrt{\mathbf{x}^T \cdot \mathbf{x}}$.

Pro
$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 a $\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ je
$$\|\mathbf{x} - \mathbf{y}\| = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

To jest: $\|\mathbf{x} - \mathbf{y}\|$ je standardní eukleidovská vzdálenost vektorů \mathbf{x} a \mathbf{y} z prostoru \mathbb{R}^n .

Definice

Ať π a π' jsou dva afinní podprostory prostoru \mathbb{R}^n . Reálnému číslu^a

 $\omega(\boldsymbol{\pi},\boldsymbol{\pi}') = \inf \Bigl\{ \lVert \mathbf{x} - \mathbf{x}' \rVert \mid \mathbf{x} \in \boldsymbol{\pi}, \mathbf{x}' \in \boldsymbol{\pi}' \Bigr\}$

říkáme vzájemná vzdálenost π a π' .

Poznámky k definici

- Pro n = 0 nebo n = 1 není definice příliš zajímavá.
 - **1** $\mathbb{R}^0 = \{\mathbf{o}\}$, proto pro jakákoli π a π' platí $\omega(\pi, \pi') = 0$.
 - Prostor \mathbb{R}^1 má jako afinní podprostory buď body nebo celé \mathbb{R}^1 . To znamená $\omega(\mathbf{p}, \mathbf{p}') = \|\mathbf{p} \mathbf{p}'\|$, nebo $\omega(\mathbf{p}, \mathbb{R}) = \omega(\mathbb{R}, \mathbb{R}) = 0$.
- ② V obecném \mathbb{R}^n víme: $\left\{\|\mathbf{x}-\mathbf{x}'\| \mid \mathbf{x} \in \pi, \mathbf{x}' \in \pi'\right\}$ je neprázdná a zdola omezená množina reálných čísel. Tudíž její infimum existuje a reálné číslo $\omega(\pi,\pi')$ je korektně definováno.

Problém: jak spočítat hodnotu $\omega(\pi, \pi')$ v obecném \mathbb{R}^n ?

^aZ definice vzájemné vzdálenosti ihned plyne, že $\omega({m \pi},{m \pi}')=\omega({m \pi}',{m \pi}).$

Věta (výpočet vzáj. vzdálenosti dvou afinních podprostorů)

At $\pi = \mathbf{p} + W$ a $\pi' = \mathbf{p}' + W'$ isou dva afinní podprostory prostoru \mathbb{R}^n . Potom platí:

$$\omega(\boldsymbol{\pi}, \boldsymbol{\pi}') = \|\operatorname{rej}_{W \vee W'}(\mathbf{p} - \mathbf{p}')\|$$

Hlavní myšlenky důkazu (u zkoušky budou požadovány pouze tyto myšlenky)

- 1 Vzdálenost π a π' by měla být délka kolmé příčky prostorů π a π' .
 - Tak je tomu v \mathbb{R}^2 při výpočtu vzdálenosti dvou rovnoběžek. Obecný případ by měl dopadnout analogicky.
- Obecně: kolmá příčka k π , π' by měla mít směr V, kde $V = \{ \mathbf{v} \mid \langle \mathbf{w} \mid \mathbf{v} \rangle = 0 \text{ pro všechna } \mathbf{w} \text{ z } W \vee W' \}$ je množina všech vektorů, které jsou kolmé na podprostor $W \vee W'$.

Je to ale v pořádku? Je V lineární podprostor prostoru \mathbb{R}^n ?

^aProtože $\omega(\boldsymbol{\pi}, \boldsymbol{\pi}') = \omega(\boldsymbol{\pi}', \boldsymbol{\pi})$, je také $\omega(\boldsymbol{\pi}, \boldsymbol{\pi}') = \|\operatorname{rej}_{W \vee W'}(\mathbf{p}' - \mathbf{p})\|$.

Hlavní myšlenky důkazu (pokrač.)

Vše je v pořádku:

$$V = \{\mathbf{v} \mid \langle \mathbf{w} \mid \mathbf{v} \rangle = 0 \text{ pro všechna } \mathbf{w} \in W \vee W'\}$$

$$= \bigcap_{\mathbf{w} \in W \vee W'} \{\mathbf{v} \mid \langle \mathbf{w} \mid \mathbf{v} \rangle = 0\}$$

$$= \bigcap_{\mathbf{w} \in W \vee W'} \ker(\langle \mathbf{w} \mid -\rangle)$$

Proto je V lineární podprostor prostoru \mathbb{R}^n .

Najdeme^a body $\mathbf{x}_0 \vee \boldsymbol{\pi} = \mathbf{x}'_0 \vee \boldsymbol{\pi}'$ tak, že platí rovnost^b $\mathbf{x}_0 - \mathbf{x}'_0 = \mathrm{rej}_{W \vee W'}(\mathbf{p} - \mathbf{p}').$

To znamená, že $\mathbf{x}_0 - \mathbf{x}_0' \in V$, proto $\mathbf{x}_0 + V = \mathbf{x}_0' + V$ je hledaná kolmá příčka π , π' , procházející body \mathbf{x}_0 a \mathbf{x}_0' .

^aTo je mírně technické (nikoli těžké): viz důkaz Věty B.3.3 skript.

^bPodle definice V platí také $\mathbf{x}_0 - \mathbf{x}_0' = \mathrm{proj}_V(\mathbf{p} - \mathbf{p}')$. Toho v dalších výpočtech několikrát využijeme.

Hlavní myšlenky důkazu (pokrač.)

ullet Pro jakékoli **x** v π a jakékoli **x**' v π' platí

$$\mathbf{x}' - \mathbf{x} = \underbrace{(\mathbf{x}'_0 - \mathbf{x}_0)}_{\in V} + \underbrace{(\mathbf{x}' - \mathbf{x}'_0) + (\mathbf{x}_0 - \mathbf{x})}_{\in W \vee W'}$$

Proto podle Pythagorovy věty^a platí

$$\|\mathbf{x}' - \mathbf{x}\|^2 = \|\mathbf{x}_0' - \mathbf{x}_0\|^2 + \|(\mathbf{x}' - \mathbf{x}_0') + (\mathbf{x}_0 - \mathbf{x})\|^2$$

a tedy $\|\mathbf{x}' - \mathbf{x}\|^2 \ge \|\mathbf{x}_0' - \mathbf{x}_0\|^2$, neboli

$$\|\boldsymbol{x}'-\boldsymbol{x}\| \geq \|\boldsymbol{x}_0'-\boldsymbol{x}_0\| = \|\mathrm{rej}_{\mathcal{W}\vee\mathcal{W}'}(\boldsymbol{p}'-\boldsymbol{p})\| = \|\mathrm{rej}_{\mathcal{W}\vee\mathcal{W}'}(\boldsymbol{p}-\boldsymbol{p}')\|$$

To znamená, že platí
$$\omega(\pi, \pi') = \|\operatorname{rej}_{W \vee W'}(\mathbf{p} - \mathbf{p}')\|.$$

^aZ definice V platí $\langle \mathbf{x}'_0 - \mathbf{x}_0 \mid (\mathbf{x}' - \mathbf{x}'_0) + (\mathbf{x}_0 - \mathbf{x}) \rangle = 0$.

^bPodle definice V platí také $\omega(\pi, \pi') = \|\text{proj}_V(\mathbf{p} - \mathbf{p}')\|$.

Poznámky

• Vzorec $\omega(\pi, \pi') = \|\operatorname{rej}_{W \vee W'}(\mathbf{p} - \mathbf{p}')\|$ platí v \mathbb{R}^n s libovolným skalárním součinem $\langle - | - \rangle$, který vytváří normu $\| - \|$.

Důkaz hlavní věty totiž nikde nevyužívá, že skalární součin $\langle - \mid - \rangle$ je standardní.

Jediné, co důkaz vyžaduje, je pojem ortogonální rejekce a platnost Pythagorovy věty.^a

② V dalším se omezíme na standardní skalární součin v prostorech \mathbb{R}^2 a \mathbb{R}^3 .

Tam jsou příslušné vzorce pro vzájemnou vzdálenost dvou afinních podprostorů poměrně snadno pochopitelné.

^aPřipomenutí: ortogonální projekce umíme počítat pro libovolný skalární součin v \mathbb{R}^n , vzorce jsou však poněkud barokní. Takže, pro libovolný skalární součin v \mathbb{R}^n , umíme počítat (barokním způsobem) i ortogonální rejekce. Pythagorova věta platí pro libovolný skalární součin v \mathbb{R}^n .

Důležité upozornění

Ve zbytku přednášky odvodíme celou řadu vzorců pro vzájemnou vzdálenost afinních podprostorů v \mathbb{R}^2 a v \mathbb{R}^3 se standardními skalárními součiny. Tyto vzorce nebudou zkoušeny stylem: *Napište vzorec pro vzdálenost bodu od přímky v* \mathbb{R}^3 , atd.

Bude vyžadováno:

- **1** Znát obecný vzorec $\omega(\pi,\pi') = \|\mathrm{rej}_{W\vee W'}(\mathbf{p}-\mathbf{p}')\|$ pro vzájemnou vzdálenost afinních podprostorů $\pi = \mathbf{p} + W$ a $\pi' = \mathbf{p}' + W'$ v prostoru \mathbb{R}^n a znát hlavní myšlenky jeho odvození z předchozích stran.
- 2 Z přednášky o ortogonálních projekcích a ortogonálních rejekcích znát vzorec $\operatorname{proj}_{\mathsf{span}(\mathbf{v})}(\mathbf{x}) = \frac{\langle \mathbf{v} \mid \mathbf{x} \rangle}{\langle \mathbf{v} \mid \mathbf{v} \rangle} \cdot \mathbf{v}$
 - pro nenulový vektor \mathbf{v} z \mathbb{R}^n . Viz následující stranu.
- Tvůrčí uplatnění výše uvedeného vzorce pro ortogonální projekci k nalezení vzájemných vzdáleností v R² a v R³.

Připomenutí (přednáška o ortogonálních projekcích a ortogonálních rejekcích)

 $V \mathbb{R}^n$ pro nenulový vektor \mathbf{v} platí

$$\|\mathrm{proj}_{\mathsf{span}(\mathbf{v})}(\mathbf{x})\| = \left\|\frac{\langle \mathbf{v} \mid \mathbf{x} \rangle}{\langle \mathbf{v} \mid \mathbf{v} \rangle} \cdot \mathbf{v}\right\| = \left|\frac{\langle \mathbf{v} \mid \mathbf{x} \rangle}{\langle \mathbf{v} \mid \mathbf{v} \rangle}\right| \cdot \|\mathbf{v}\| = \frac{|\langle \mathbf{v} \mid \mathbf{x} \rangle|}{\|\mathbf{v}\|^2} \cdot \|\mathbf{v}\| = \frac{|\langle \mathbf{v} \mid \mathbf{x} \rangle|}{\|\mathbf{v}\|}$$

a tudíž

$$\|\operatorname{rej}_{\mathsf{span}(\mathbf{v})}(\mathbf{x})\| = \|\mathbf{x} - \operatorname{proj}_{\mathsf{span}(\mathbf{v})}(\mathbf{x})\| = \left\|\mathbf{x} - \frac{\langle \mathbf{v} \mid \mathbf{x} \rangle}{\langle \mathbf{v} \mid \mathbf{v} \rangle} \cdot \mathbf{v}\right\|$$

ortogonální projekce na osu v

Vzdálenost bodu od přímky v \mathbb{R}^2

1 Vzdálenost \mathbf{p}' od $\pi = \mathbf{p} + \operatorname{span}(\mathbf{s})$. V tomto případě je^a

Pro
$$\mathbf{p}' = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$
 a $\pi = \underbrace{\begin{pmatrix} 3 \\ 0 \end{pmatrix}}_{=\mathbf{p}} + \mathrm{span}(\underbrace{\begin{pmatrix} 3 \\ 6 \end{pmatrix}}_{=\mathbf{s}})$ je tedy $\omega(\mathbf{p}', \pi)$ rovno

$$\left\| \begin{pmatrix} 1 \\ -4 \end{pmatrix} - \frac{\left\langle \begin{pmatrix} 3 \\ 6 \end{pmatrix} \mid \begin{pmatrix} 1 \\ -4 \end{pmatrix} \right\rangle}{\left\langle \begin{pmatrix} 3 \\ 6 \end{pmatrix} \mid \begin{pmatrix} 3 \\ 6 \end{pmatrix} \right\rangle} \cdot \begin{pmatrix} 3 \\ 6 \end{pmatrix} \right\| = \dots = \frac{6\sqrt{5}}{5}$$

^aTento vzorec není příliš "hezký". Lepší postup: definujte $\mathbf{n} = \times (\mathbf{s})$ a pracujte s přímkou π ve tvaru $\mathbf{n}^{T}(\mathbf{x} - \mathbf{p}) = 0$. Viz další příklad.

Vzdálenost bodu od přímky v \mathbb{R}^2 (pokrač.)

- **3** Vzdálenost \mathbf{p}' od $\boldsymbol{\pi}$ ve tvaru $\mathbf{n}^T(\mathbf{x} \mathbf{p}) = 0$. V tomto případě je
 - $0 V = \operatorname{span}(\mathbf{n}).$
 - 2 Neznáme směr s zadané přímky, ale platí $\omega(\mathbf{p}', \boldsymbol{\pi}) =$

$$\begin{split} &\|\mathrm{rej}_{\mathsf{span}(s)}(p'-p)\| = \|\mathrm{proj}_{\mathsf{span}(n)}(p'-p)\| = \frac{|\langle n \mid p'-p \rangle|}{\|n\|} \\ &= \frac{|n^{\mathsf{T}}(p'-p)|}{\|n\|} = \frac{|n^{\mathsf{T}}p'-n^{\mathsf{T}}p|}{\|n\|} \end{split}$$

Pro
$$\mathbf{p}' = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$
 a přímku π zadanou rovnicí $\mathbf{p} = \underbrace{-6x + 3y}_{=\mathbf{n}^T\mathbf{p}} = \underbrace{-18}_{=\mathbf{n}^T\mathbf{p}}$

je tedy $\omega(\mathbf{p}',\pi)$ rovno

$$\frac{\left|-6\cdot 2 + 3\cdot 4 + 18\right|}{\sqrt{45}} = \frac{18}{\sqrt{45}} = \frac{6\sqrt{5}}{5}$$

13A-2023: Metrické výpočtv v \mathbb{R}^2 a v \mathbb{R}^3

^aJde o stejnou přímku, jako v minulém příkladu.

Vzdálenost dvou přímek v \mathbb{R}^2

Jsou zadány přímky $\pi = \mathbf{p} + \operatorname{span}(\mathbf{s})$ a $\pi' = \mathbf{p}' + \operatorname{span}(\mathbf{s}')$.

- ② Pokud span(\mathbf{s}) \vee span(\mathbf{s}') = span(\mathbf{s}), je

$$\omega(m{\pi},m{\pi}') = \|\mathrm{rej}_{\mathsf{span}(m{s})}(m{p}-m{p}')\| = \omega(m{p}',m{\pi})$$

Vzdálenost bodu od přímky již umíme počítat.

3 Pokud span(s) \vee span(s') = \mathbb{R}^2 , je

$$\omega(\boldsymbol{\pi}, \boldsymbol{\pi}') = \|\mathrm{rej}_{\mathbb{R}^2}(\mathbf{p} - \mathbf{p}')\| = \|\mathbf{o}\| = 0$$

Vzdálenost bodu od přímky v \mathbb{R}^3

Je dán bod \mathbf{p}' a přímka $\mathbf{\pi} = \mathbf{p} + \operatorname{span}(\mathbf{s})$. Potom

$$\begin{split} \omega(\textbf{p}', \pi) &= \|\mathrm{rej}_{\mathsf{span}(\textbf{s})}(\textbf{p} - \textbf{p}')\| = \|(\textbf{p} - \textbf{p}') - \mathrm{proj}_{\mathsf{span}(\textbf{s})}(\textbf{p} - \textbf{p}')\| \\ &= \left\|(\textbf{p} - \textbf{p}') - \frac{\langle \textbf{s} \mid \textbf{p} - \textbf{p}' \rangle}{\langle \textbf{s} \mid \textbf{s} \rangle} \cdot \textbf{s} \right\| \end{split}$$

což je formálně stejný vzorec jako v \mathbb{R}^2 .

Je-li přímka π zadána rovnicově jako $\mathbf{N}^T(\mathbf{x} - \mathbf{p}) = \mathbf{o}$, kde $\mathrm{rank}(\mathbf{N}) = 2$, pak $V = \mathrm{im}(\mathbf{N})$. Proto

$$\omega(\mathbf{p}', \boldsymbol{\pi}) = \|\mathrm{rej}_{\mathsf{span}(\mathbf{s})}(\mathbf{p} - \mathbf{p}')\| = \|\mathrm{proj}_{\mathrm{im}(\mathbf{N})}(\mathbf{p} - \mathbf{p}')\| = \|\mathbf{N}(\mathbf{N}^\mathsf{T}\mathbf{N})^{-1}\mathbf{N}^\mathsf{T}(\mathbf{p} - \mathbf{p}')\|$$

Leckdy je lepší postup je vyřešit soustavu $\mathbf{N}^T \mathbf{x} = \mathbf{N}^T \mathbf{p}$, získat tak π v parametrickém tvaru a použít výše uvedený vzorec.

Vzdálenost bodu od roviny v \mathbb{R}^3

Pro vzdálenost bodu \mathbf{p}' od roviny π ve tvaru $\mathbf{n}^T(\mathbf{x} - \mathbf{p}) = 0$ platí

$$\omega(\mathbf{p}', \boldsymbol{\pi}) = \|\operatorname{proj}_{\mathsf{span}(\mathbf{n})}(\mathbf{p}' - \mathbf{p})\| = \frac{|\mathbf{n}^T(\mathbf{p}' - \mathbf{p})|}{\|\mathbf{n}\|} = \frac{|\mathbf{n}^T\mathbf{p}' - \mathbf{n}^T\mathbf{p}|}{\|\mathbf{n}\|}$$

kde jsme využili toho, že **n** je normála roviny π .

Získáváme tak formálně stejný vzorec jako pro vzdálenost bodu od přímky v \mathbb{R}^2 .

Je-li rovina π zadána jako $\mathbf{p} + \mathrm{span}(\mathbf{s}_1, \mathbf{s}_2)$, je vhodné spočítat^a $\mathbf{n} = \mathbf{s}_1 \times \mathbf{s}_2$ a použít předchozí postup pro rovinu π ve tvaru $\mathbf{n}^T(\mathbf{x} - \mathbf{p}) = 0$.

^aPřipomenutí mnemotechniky:
$$\mathbf{n} = \mathbf{s}_1 \times \mathbf{s}_2 = \begin{vmatrix} s_{11} & s_{12} & \mathbf{e}_1 \\ s_{21} & s_{22} & \mathbf{e}_2 \\ s_{31} & s_{31} & \mathbf{e}_3 \end{vmatrix}$$
.

Vzdálenost přímky od roviny v \mathbb{R}^3

 $\begin{aligned} &\text{A\'t } \pi' = \mathbf{p}' + \text{span}(\mathbf{s}') \text{ je přímka a } \pi = \mathbf{p} + \text{span}(\mathbf{s}_1, \mathbf{s}_2) \text{ je rovina.} \\ &\text{Plat\'i} \\ &\text{span}(\mathbf{s}') \vee \text{span}(\mathbf{s}_1, \mathbf{s}_2) = \left\{ \begin{array}{ccc} \mathbb{R}^3, & \text{pokud } \mathbf{s}', \, \mathbf{s}_1, \, \mathbf{s}_2 \text{ jsou line\'arn\'e} \\ & \text{nez\'avisl\'e,} \\ &\text{tj., pokud } \pi' \text{ a } \pi \text{ jsou různoběžn\'e,} \\ &\text{span}(\mathbf{s}_1, \mathbf{s}_2), & \text{pokud } \pi' \text{ a } \pi \text{ jsou rovnoběžn\'e.} \end{array} \right. \end{aligned}$

- ① Je-li span $(\mathbf{s}') \lor \operatorname{span}(\mathbf{s}_1,\mathbf{s}_2) = \mathbb{R}^3$, je $\omega(\pi',\pi) = \|\operatorname{rej}_{\mathbb{R}^3}(\mathbf{p}'-\mathbf{p})\| = \|\mathbf{o}\| = 0$
- $\begin{aligned} \textbf{2} \quad & \text{Je-li span}(\textbf{s}') \vee \text{span}(\textbf{s}_1,\textbf{s}_2) = \text{span}(\textbf{s}_1,\textbf{s}_2), \text{ je} \\ & \omega(\pi',\pi) = \|\mathrm{rej}_{\text{span}(\textbf{s}_1,\textbf{s}_2)}(\textbf{p}'-\textbf{p})\| = \|\mathrm{proj}_{\text{span}(\textbf{s}_1\times\textbf{s}_2)}(\textbf{p}'-\textbf{p})\| \\ & = \frac{|\langle \textbf{s}_1\times\textbf{s}_2 \mid \textbf{p}'-\textbf{p}\rangle|}{\|\textbf{s}_1\times\textbf{s}_2\|} = \frac{|\det(\textbf{s}_1,\textbf{s}_2,\textbf{p}'-\textbf{p})|}{\sqrt{\mathrm{Gram}(\textbf{s}_1,\textbf{s}_2)}} \end{aligned}$

Příklad

Najdeme vzájemnou vzdálenost
$$\pi' = \begin{pmatrix} 2 \\ -3 \\ -1 \end{pmatrix} + \operatorname{span}\begin{pmatrix} 1 \\ 9 \\ 14 \end{pmatrix}$$
) a $\pi = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} + \operatorname{span}\begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}, \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix}$). Protože $\begin{vmatrix} 1 & 2 & -3 \\ 9 & 4 & 1 \\ 14 & 6 & 2 \end{vmatrix} = 0$, jsou π a π' rovnoběžné.

Platí

$$\omega(\boldsymbol{\pi}, \boldsymbol{\pi}') = \frac{|\det \begin{pmatrix} 2 & -3 & 0 \\ 4 & 1 & -6 \\ 6 & 2 & -1 \end{pmatrix}|}{\sqrt{\operatorname{Gram}(\begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}, \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix})}} = \frac{|\det \begin{pmatrix} 2 & -3 & 0 \\ 4 & 1 & -6 \\ 6 & 2 & -1 \end{pmatrix}|}{\sqrt{\det \begin{pmatrix} 56 & 10 \\ 10 & 14 \end{pmatrix}}} = \frac{142}{\sqrt{684}} \approx 5.43$$

Vzdálenost přímky od přímky v \mathbb{R}^3

Ať $\pi' = \mathbf{p}' + \operatorname{span}(\mathbf{s}')$ a $\pi = \mathbf{p} + \operatorname{span}(\mathbf{s})$ jsou přímky.

Platí $\operatorname{span}(\mathbf{s}') \vee \operatorname{span}(\mathbf{s}) = \left\{ \begin{array}{c} \operatorname{span}(\mathbf{s}), & \operatorname{pokud} \ \mathbf{s}' \ \operatorname{a} \ \mathbf{s}, \ \operatorname{jsou} \ \operatorname{lineárně} \ \operatorname{závisl\'e} \\ \operatorname{tj., \ pokud} \ \pi' \ \operatorname{a} \ \pi \ \operatorname{jsou} \ \operatorname{rovnoběžn\'e}, \\ \operatorname{span}(\mathbf{s}', \mathbf{s}), & \operatorname{pokud} \ \pi' \ \operatorname{a} \ \pi \ \operatorname{nejsou} \ \operatorname{rovnoběžn\'e}. \end{array} \right.$

- ① Je-li span(s') \vee span(s) = span(s), je $\omega(\pi', \pi) = \|\text{rej}_{\text{span(s)}}(\mathbf{p}' \mathbf{p})\| = \omega(\mathbf{p}', \pi)$
 - a vzdálenost bodu od přímky už umíme počítat.
- $\begin{aligned} \textbf{2} \quad & \text{Je-li span}(\mathbf{s}') \vee \text{span}(\mathbf{s}) = \text{span}(\mathbf{s}',\mathbf{s}), \text{ je} \\ & \omega(\pi',\pi) = \|\text{rej}_{\text{span}(\mathbf{s}',\mathbf{s})}(\mathbf{p}'-\mathbf{p})\| = \|\text{proj}_{\text{span}(\mathbf{s}'\times\mathbf{s})}(\mathbf{p}'-\mathbf{p})\| \\ & = \frac{|\langle \mathbf{s}' \times \mathbf{s} \mid \mathbf{p}'-\mathbf{p} \rangle|}{\|\mathbf{s}' \times \mathbf{s}\|} = \frac{|\det(\mathbf{s}',\mathbf{s},\mathbf{p}'-\mathbf{p})|}{\sqrt{\operatorname{Gram}(\mathbf{s}',\mathbf{s})}} \end{aligned}$

Příklad

Najdeme vzájemnou vzdálenost
$$\pi' = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + \operatorname{span}\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$
) a $\pi = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} + \operatorname{span}\begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}$). Přímky π a π' zjevně nejsou rovnoběžné.

Platí

$$\omega(\boldsymbol{\pi}, \boldsymbol{\pi}') = \frac{|\det \begin{pmatrix} 2 & 3 & 0 \\ 1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}|}{\sqrt{\operatorname{Gram}(\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix})}} = \frac{|-1|}{\sqrt{\det \begin{pmatrix} 6 & 6 \\ 6 & 11 \end{pmatrix}}} = \frac{1}{\sqrt{30}} \approx 0.183$$