Matemáticas Actuariales del Seguro de Personas II

Jorge Luis Reyes García

Universidad Nacional Autónoma de México Facultad de Ciencias

jorgeluis.reyes@ciencias.unam.mx

Noviembre 2021

Prólogo

Este trabajo ha sido el resultado de un esfuerzo constante por más 10 años en mi labor como docente impartiendo las materias de Matemáticas Actuariales del Seguro de Personas I y II.

El objetivo de las notas es facilitar la comprensión y entendimiento de las matemáticas actuariales aplicadas los seguros de vida bajo tres enfoques:

- Clásico: a partir de tablas de mortalidad y valores conmutados.
- Probabilístico: Considerando variables aleatorias discretas y continuas.
- Estocástico: a partir de cadenas de Markov en tiempo discreto y tiempo continúo.

En cada capítulo encontrarán explicaciones, demostraciones y aplicaciones.

Contenido

Vidas Múltiples

Estatus de vidas conjuntas

Es la combinación de un conjunto de personas y se define que el estatus se mantiene vigente si y sólo si todos los individuos se encuentran con vida. En el momento que muera la primera persona, en ese instante se rompe el estatus.

Definición: El tiempo futuro de vida del estatus de vidas conjuntas (xy), se define como:

$$T_{xy} = min (T_x, T_y)$$

En general, para un conjunto de m vidas,

$$T_{x_1,x_2,...,x_m} = min(T_{x_1}, T_{x_2},..., T_{x_m})$$

El tiempo de vida del estatus de vidas conjuntas se puede interpretar como el estadístico de orden mínimo.

Supongamos que T_x y T_y tienen una función de densidad conjunta $f_{T \times T_y}(s, t)$, nos interesa conocer la función de densidad, distribución, sobrevivencia y mortalidad del estatus de vidas conjuntas.

Para la función de densidad, tenemos:

$$f_{_{Txy}}(t) = \int_t^\infty f_{_{TxTy}}(t,v) \ dv + \int_t^\infty f_{_{TxTy}}(u,t) \ du$$

Supongamos que T_x y T_y son independientes,

$$f_{T_{xy}}(t) = \int_{t}^{\infty} f_{T_{x}}(t) f_{T_{y}}(v) dv + \int_{t}^{\infty} f_{T_{x}}(u) f_{T_{y}}(t) du$$

$$= f_{T_{x}}(t) \int_{t}^{\infty} f_{T_{y}}(v) dv + f_{T_{y}}(t) \int_{t}^{\infty} f_{T_{x}}(u) du$$

$$= f_{T_{x}}(t) S_{T_{y}}(t) + f_{T_{y}}(t) S_{T_{x}}(t)$$

Por lo tanto,

$$f_{_{Txy}}(t) = f_{_{Tx}}(t)S_{_{Ty}}(t) + f_{_{Ty}}(t)S_{_{Tx}}(t)$$

En notación actuarial,

$$f_{T_{xy}}(t) = {}_{t}p_{x} \mu_{x+t} {}_{t}p_{y} + {}_{t}p_{y} \mu_{y+t} {}_{t}p_{x}$$

Para la función de sobrevivencia, tenemos:

$$\begin{split} S_{\scriptscriptstyle Txy}(t) &= S_{\scriptscriptstyle TxTy}(t,t) \\ &= \mathbb{P}(T_{\scriptscriptstyle x} > t, \ T_{\scriptscriptstyle y} > t) \\ &= \int_t^\infty \int_t^\infty f_{\scriptscriptstyle TxTy}(u,v) \ du \ dv \end{split}$$

Supongamos que T_x y T_y son independientes,

$$S_{T_{xy}}(t) = \int_{t}^{\infty} \int_{t}^{\infty} f_{T_{x}}(u) f_{T_{y}}(v) du dv = \int_{t}^{\infty} f_{T_{y}}(v) \int_{t}^{\infty} f_{T_{x}}(u) du dv$$

$$= \int_{t}^{\infty} f_{T_{y}}(v) S_{T_{x}}(t) dv = S_{T_{x}}(t) \int_{t}^{\infty} f_{T_{y}}(v) dv$$

$$= S_{T_{x}}(t) S_{T_{y}}(t)$$

Por lo tanto,

$$S_{\scriptscriptstyle Txy}(t) = S_{\scriptscriptstyle Tx}(t)S_{\scriptscriptstyle Ty}(t)$$

En notación actuarial.

$$S_{\scriptscriptstyle Txy}(t) = {}_t p_{\scriptscriptstyle Xy} = {}_t p_{\scriptscriptstyle X} \cdot {}_t p_{\scriptscriptstyle Y}$$

Una forma alternativa de encontrar la función de densidad es derivando la función de sobrevivencia.

$$f_{Txy}(t) = -\frac{d}{dt} S_{Txy}(t)$$

$$= -\frac{d}{dt} t p_{xy} = -\frac{d}{dt} t p_x \cdot t p_y$$

$$= -\left[t p_x \frac{d}{dt} t p_y + t p_y \frac{d}{dt} t p_x\right]$$

$$= \left[t p_x \left(-\frac{d}{dt} t p_y\right) + t p_y \left(-\frac{d}{dt} t p_x\right)\right]$$

$$= t p_x t p_y \mu_{y+t} + t p_y t p_x \mu_{x+t}$$

Por lo tanto,

$$egin{aligned} f_{_{Txy}}(t) &= {}_{t}
ho_{x} \;{}_{t}
ho_{y} \;\mu_{y+t} + {}_{t}
ho_{x} \;{}_{t}
ho_{y} \;\mu_{x+t} \ &= {}_{t}
ho_{xy} \;\mu_{y+t} + {}_{t}
ho_{xy} \;\mu_{x+t} \ &= {}_{t}
ho_{xy} \; (\mu_{x+t} + \mu_{y+t}) \end{aligned}$$

Por la función de distribución, tenemos:

$$F_{\scriptscriptstyle Txy}(t) = 1 - S_{\scriptscriptstyle Txy}(t)$$

Supongamos que T_x y T_y son independientes,

$$F_{\scriptscriptstyle Txy}(t) = 1 - S_{\scriptscriptstyle Tx}(t) S_{\scriptscriptstyle Ty}(t)$$

En notación actuarial, tenemos:

$$egin{aligned} F_{_{Txy}}(t) &= {}_tq_{xy} = 1 - {}_tp_{xy} \ &= 1 - {}_tp_x \cdot {}_tp_y \ &= 1 - (1 - {}_tq_x)(1 - {}_tq_y) \ &= 1 - (1 - {}_tq_x - {}_tq_y + {}_tq_x \cdot {}_tq_y) \ &= {}_tq_x + {}_tq_y - {}_tq_x \cdot {}_tq_y \end{aligned}$$

Por lo tanto.

$$_{t}q_{xy}=_{t}q_{x}+_{t}q_{y}-\left(_{t}q_{x}\cdot _{t}q_{y}\right)$$

Finalmente, podemos calcular su función de mortalidad

$$\mu_{\mathsf{x}\mathsf{y}}(t) = \mu_{\mathsf{x}+t:\mathsf{y}+t} = rac{-d}{dt} \mathit{In}({}_t \mathit{p}_{\mathsf{x}\mathsf{y}}) = rac{\mathit{f}_{\mathcal{T}_{\mathsf{x}\mathsf{y}}}(t)}{{}_t \mathit{p}_{\mathsf{x}\mathsf{y}}}$$

Si las vidas T_x y T_y son independientes, entonces:

$$\mu_{x+t:y+t} = \frac{t p_{xy} (\mu_{x+t} + \mu_{y+t})}{t p_{xy}} = \mu_{x+t} + \mu_{y+t}$$

Por lo tanto,

$$\mu_{\mathsf{x}+\mathsf{t}:\mathsf{y}+\mathsf{t}} = \mu_{\mathsf{x}+\mathsf{t}} + \mu_{\mathsf{y}+\mathsf{t}}$$

En conclusión, siempre y cuando T_x y T_y sean independientes:

•
$$f_{T_{xy}}(t) = {}_{t}p_{xy}(\mu_{x+t} + \mu_{y+t})$$

- $\bullet _t p_{xy} = {}_t p_x \cdot {}_t p_y$
- $\bullet _tq_{xy} = _tq_x + _tq_y (_tq_x \cdot _tq_y)$
- $\bullet \ \mu_{x+t:y+t} = \mu_{x+t} + \mu_{y+t}$

Resultados importantes:

- $\bullet _{t+u}p_{xy} = {}_tp_{xy} \cdot {}_up_{x+t:y+t}$
- $\bullet _{t|u}q_{xy} = {}_{t}p_{xy} \cdot {}_{u}q_{x+t:y+t} = {}_{t}p_{xy} {}_{t+u}p_{xy}$

Ahora nos interesa conocer las características de esta variable aleatoria T_{xy} como lo es su esperanza, varianza y desviación estandar.

•
$$\mathrm{E}[T_{xy}] = \mathring{e}_{xy} = \int_0^{\infty = \min(w - x, w - y)} {}_t p_{xy} \cdot dt$$

•
$$E[(T_{xy})^2] = {}^2\mathring{e}_{xy} = \int_0^{\infty = min(w - x, w - y)} (2t) \cdot {}_t p_{xy} \cdot dt$$

•
$$Var[T_{xy}] = E[(T_{xy})^2] - E[T_{xy}]^2 = {}^2\mathring{e}_{xy} - \mathring{e}_{xy}^2$$

$$\bullet \ \sigma_{T_{xy}} = \sqrt{{}^2\mathring{e}_{xy} - \mathring{e}_{xy}{}^2}$$

Para la esperanza temporal n años tenemos:

•
$$\mathrm{E}[\min(T_{xy},n)] = \mathring{e}_{xy:\overline{n}|} = \int_0^n t p_{xy} \cdot dt$$

•
$$E[min(T_{xy}, n)^2] = {}^2\mathring{e}_{xy:\overline{n}} = \int_0^n (2t)_t p_{xy} \cdot dt$$

•
$$Var[min(T_{xy}, n)] = E[min(T_{xy}, n)^2] - E[min(T_{xy}, n)]^2 = {}^2\mathring{e}_{xy:\overline{n}|} - \mathring{e}_{xy:\overline{n}|}^2$$

 $\sigma_{min(T_{xy}, n)} = \sqrt{{}^2\mathring{e}_{xy:\overline{n}|} - \mathring{e}_{xy:\overline{n}|}^2}$

Para la esperanza truncada de vida tenemos:

$$\bullet$$
 $\mathrm{E}[K_{xy}] = e_{xy} = \sum_{k=1}^{\infty} {}_k p_{xy}$

•
$$E[K_{xy}^2] = {}^2e_{xy} = \sum_{k=1}^{\infty} (2k-1)_k p_{xy}$$

•
$$Var(k_{xy}) = E[K_{xy}^2] - E[K_{xy}]^2 = {}^2e_{xy} - e_{xy}^2$$

$$\bullet \ \sigma_{k_{xy}} = \sqrt{{}^2e_{xy} - e_{xy}^2}$$

Para la esperanza truncada de vida temporal tenemos:

•
$$\mathrm{E}[\min(K_{xy},n)] = e_{xy:\overline{n}|} = \sum_{k=1}^{n} {}_k p_{xy}$$

•
$$E[min(K_{xy}, n)^2] = {}^2e_{xy:\overline{n}|} = \sum_{k=1}^n (2k-1)_k p_{xy}$$

•
$$Var[min(k_{xy}, n)] = E[min(K_{xy}, n)^2] - E[min(K_{xy}, n)]^2 = {}^2e_{xy:\overline{n}|} - e_{xy:\overline{n}|}^2$$

 $\sigma_{min(k_{xy}, n)} = \sqrt{{}^2e_{xy:\overline{n}|} - e_{xy:\overline{n}|}^2}$

Contenido

Vidas Múltiples

Bibliografia

- Título: Models for Quantifying Risk. Autor: Stephen Camilli
- Título: Actuarial Mathematics for Life Contingent Risks. Autor: David Dickson
- Título: Actuarial Mathematics. Autor: Newton Bowers
- Título: Basic Life Insurance Mathematics Autor: Ragnar Norberg
- Título: Actuarial Mathematics and Life-Table Statistics Autor: Eric Slud
- Título: Life Contingencies Autor: Chester Wallace Jordan
- Título: Matemáticas Actuariales y Operaciones de Seguros Autor: Sandoya

Matemáticas Actuariales del Seguro de Personas II

Jorge Luis Reyes García

Universidad Nacional Autónoma de México Facultad de Ciencias

jorgeluis.reyes@ciencias.unam.mx

Noviembre 2021