安徽大学 20<u>09</u>—20<u>10</u> 学年第<u>1</u>学期

《 电路分析基础 》考试试卷 (B卷) (闭卷 时间 120 分钟)

题 号	_	二	三	四	总分
得 分					
阅卷人					

一、单项选择题(每小题2分,共20分)

得分

- 1、电路如图所示,电压源()
 - A. 吸收 120W 功率
 - B. 吸收 0W 功率
 - C. 产生 120W 功率
 - D. 无法计算

- 2、1F 电容与 1H 电感串联,电容两端的电压为 $u_c(t) = 2e^t V$,则电感在 t=0 秒时的贮能为(
- A. 0.J

亭

装

超

年级

- B. 2J
- C. 4J
- D. 8J
- 3、图示单口网络的等效电阻等于()

- Β. 4Ω
- C. 6Ω
- D. -2Ω

4、图示电路的开关闭合后,电感电流i(t)等于(

B.
$$5e^{-0.5t}$$
 A

C.
$$5(1-e^{-2t})$$
 A

D.
$$5(1-e^{-0.5t})$$
 A

5、如图所示电路,若 $u_c(t) = 4 - 2e^{-3t}V(t > 0)$,则 t > 0 时,i(t) 等于(

- 4、电压 $u(t) = [\cos(t + \frac{\pi}{2}) + \cos(2t \frac{\pi}{4}) + \cos(3t \frac{\pi}{3})]V$ 的有效值为_____
- 5、理想运算放大器的同相输入端电流与反相输入端电流之间的关系为
- 6、某电路的单位阶跃响应为 $s(t) = R(1 e^{-\frac{1}{RC}t})\varepsilon(t)$, 该电路的单位冲激响应为

$$h(t) =$$

三、计算题(共50分)

得 分

1、求图示电路中的电流 I。(12分)

2. 电路如图所示, R_L 为何值时可获最大功率,并求此 P_{max} 值。(13 分)

学

益名 紫

六

装

型

N 慰 专业

袎

院/系

3. 如图所示电路,开关在 a 处电路已达稳态,在 t=0 时开关由 a 处合向 b 处,试求 $t \geq 0$ 电流 $i_L(t)$ 。 (15分)

4. 某负载由感应电动机和同步电机并联组成,功率因数为 0.9 (电感性)。已知感应电动机输出机械效率为 1500W,效率为 80%;同步电机视在功率为 1KVA,功率因数为 0.95 (电容性)。试求感应电动机的功率因数。(10分)

四、画图题(8分)

得分

电路如图所示, $i_s(t)=14\sqrt{2}\cos(\omega t+\phi)mA$,调节电容,使电压 $U=U\angle\phi$ 。电流表 A1 的读数为 50mA,求电流表 A2 的读数。(10 分)

五、设计题(10分)

得分

如图所示,已知k=0.5,设计电容 C 使得图中电路在 $\omega=1000rad/s$ 时串联谐振。

