Регуляризация в МО

Евгений Бурнаев

Сколтех, Москва, Россия

- Ошибка аппроксимации/моделирования
 - аппроксимация реального поведения моделью
- Ошибка оценивания
 - обучение модели по конечной выборке
- Ошибка оптимизации
 - насколько хорошо решена оптимизационная задача
- Байесовская ошибка
 - реальность не идеальна (существует нижняя граница на ошибку для всех моделей, обычно ненулевая)

- Смещение: разность между реальным поведением и тем поведением, которое мы ожидаем получить
 - Оценивает насколько ожидания расходятся с реальностью
 - Уменьшается с ростом сложности модели
- Дисперсия: разность между тем, что мы ожидаем обучить, и тем, что мы выучиваем на заданной выборке
 - Оценивает насколько чувствителен алгоритм к конкретной выборке
 - Увеличивается с ростом сложности модели

ullet Пример: полиномиальная регрессия $h(x) = \sum_{j=0}^p w_j x^j$

• Значения оптимальных регрессионных коэффициентов

	p=0	p=1	p=3	p=9
w_0^*	0.19	0.82	0.31	0.35
w_1^*		-1.27	7.99	232.37
w_2^*			-25.43	-5321.83
$w_3^{\tilde{*}}$			17.37	48568.31
$egin{array}{c} w_3^{\overline{*}} \ w_4^{*} \end{array}$				-231639.30
w_5^*				640042.26
w_{6}^{*}				-1061800.52
w_7^*				1042400.18
$w_{\mathbf{s}}^{*}$				-557682.99
$egin{array}{c} w_8^* \ w_9^* \end{array}$				125201.43

- Задано множество моделей $F = \{F_1, \dots, F_K\}$. Выбрать модель с наилучшим ожидаемым качеством на тестовых данных
- ullet F может состоять из
 - 1. моделей из одного класса, различающихся только по гиперпараметрам
 - Нелинейная регрессия: полиномы разной степени
 - $-\ k$ ближайших соседей: разные значения k
 - Решающие деревья: различная глубина/количество листьев
 - SVM: различные значения штрафа на неправильную классификацию ${\cal C}$
 - Модели с регуляризацией: различные значения параметра регуляризации
 - Ядерные методы: различные ядра и т.д.
 - 2. Различные обучающие модели (SVM, kNN, решающие деревья и т.д.)
- Замечание: обычно выбор модели возникает в контексте обучения с учителем, но также встречается при обучении без учителя (например, "количество кластеров" при кластеризации)

- Бритва Оккама: среди всех гипотез необходимо выбирать ту, в которой делается меньше предположений
- Слишком много переменных/параметров ⇒ большая дисперсия и маленькое смещение на обучающей выборке и наоборот
- Получаем две взаимосвязанные проблемы
 - **Задача 1**. Оценивание целевой функции, характеризующей обобщающую способность
 - **Задача 2**. Вычислительно эффективно выбрать оптимальную модель с точки зрения критерия точности

- Обучающая ошибка уменьшается с ростом сложности модели
- Тестовая ошибка растет с ростом сложности модели

Валидационная выборка

- ullet Отложить долю (к примеру 10%-20%) обучающей выборки
- Эта часть называется валидационной выборкой

- Запомните: валидационная выборка это НЕ тестовая выборка
- Обучить модель на оставшейся части обучающей выборки
- Оценить ошибку на валидационной выборке
- Выбрать модель с наименьшей ошибкой на валидационной выборке
- Проблемы:
 - Уменьшается обучающая выборка, поэтому обычно используется при больших размерах выборки
 - Валидационная выборка может быть не очень хорошей при неудачном разбиении (используйте случайное разбиение!)

Линейные модели

- ullet Обучающая выборка $S_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$, $\mathbf{x} \in X$, $y \in Y$
- $oldsymbol{\mathbf{X}} = \{\mathbf{x}_i, i=1,\ldots,m\}$ это матрица входных значений
- Рассмотрим линейную модель $f(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \cdot \mathbf{x} + b$, $\mathbf{w} \in \mathbb{R}^d$, $\mathbf{x} \in \mathbb{R}^d$, $y = f(\mathbf{x}) + \varepsilon$ (ε это белый шум)

 Оптимизационная задача: ("Least Absolute Shrinkage and Selection Operator")

$$\min_{\mathbf{w},b} F(\mathbf{w},b) = \lambda \|\mathbf{w}\|_1 + \sum_{i=1}^m (\mathbf{w} \cdot \mathbf{x}_i + b - y_i)^2,$$

где $\lambda \geq 0$ это параметр регуляризации

- Решение: эквивалентно выпуклому квадратичному программированию (QP)
 - общее: стандартные QP солверы
 - специальные алгоритмы: LARS (регрессия на основе наименьших углов), полный путь решения

Комментарии

- Преимущества
 - строгие теоретические гарантии
 - разреженное решение
 - отбор признаков
- Недостатки
 - нет возможности использовать ядра
 - нет решения в явной форме (необязательно, но могло бы быть удобно для теоретического анализа)
- Другие семейства алгоритмов включают в себя
 - нейронные сети, гауссовские процессы
 - решающие правила
 - бустинг решающих деревьев
- Эмпирическое правило для улучшения качества предсказания:
 - Сначала необходимо сделать отбор признаков с помощью LASSO
 - Затем оценить параметры модели заново с помощью гребневой регрессии используя отобранные признаки

Эмпирическая ошибка

- ullet $L(f(\mathbf{x}),y)$ это потери для пары (\mathbf{x},y) и модели f
- $oldsymbol{ar{R}}(f;S_m)=rac{1}{m}\sum_{i=1}^m L(f(\mathbf{x}_i),y_i)$ это потери f на S_m
- Эмпирическая ошибка на обучающей выборке

$$\widehat{R}_{\mathcal{A}}(S_m) = \widehat{R}(f; S_m), \ f(\cdot) = \mathcal{A}(S_m)$$

Эта ошибка это смещенная оценка обобщающего риска

• Эмпирическая ошибка на тестовой выборке оценивается на валидационной выборке S^t

$$\widehat{R}_{\mathcal{A}}(S_m; S^t) = \widehat{R}(f; S^t), \ f(\cdot) = \mathcal{A}(S_m)$$

- нам необходима дополнительная тестовая выборка S^t или
- необходимо разбить S_m на обучающую и валидационную выборки (результаты зависят от этого разбиения)

• Верхняя граница на вероятность переобучения для любой выборки S_m , довольно общего класса гипотез F и обучающего алгоритма \mathcal{A} :

$$\mathbb{P}\left(\widehat{R}(f; S^t) - \widehat{R}(f; S_m) \ge \varepsilon\right) \le \delta(\varepsilon, F), \ f(\cdot) = \mathcal{A}(S_m)$$

ullet Тогда для любой S_m , F, ${\cal A}$ и $\delta\in(0,1)$ с вероятностью больше, чем $(1-\delta)$, получаем

$$\widehat{R}(f; S^t) \le \widehat{R}(f; S_m) + \varepsilon(\delta, F)$$

• Эмпирический риск с поправкой

$$\widehat{R}(f; S_m) + \varepsilon(\delta, F) \to \min_{f, F}$$

ullet Регуляризация штрафует сложность модели F

$$\widehat{R}_{pen}(f; S_m) = \widehat{R}(f; S_m) + pen(F)$$

- Рассмотрим линейные модели $F = \{f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathrm{T}} \cdot \mathbf{x})\}$ (классификация) или $F = \{f(\mathbf{x}) = (\mathbf{w}^{\mathrm{T}} \cdot \mathbf{x})\}$ (регрессия)
- Тогда
 - а) L_2 -регуляризация $pen(F) = \lambda \sum_{j=1}^p w_j^2$
 - b) L_1 -регуляризация $pen(F) = \lambda \sum_{j=1}^p |w_j|$
 - c) L_0 -регуляризация $\mathrm{pen}(F) = \lambda \sum_{j=1}^p 1_{w_j \neq 0}$
- ullet AIC и BIC это частные случаи L_0 -регуляризации

- Рассмотрим линейную регрессию с гауссовским н.о.р. шумом
- ullet Лог-правдоподобие на S_m имеет вид

$$\mathcal{L}(\mathbf{w}) = m \log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{2\sigma^2} \sum_{i=1}^{m} (y_i - \mathbf{w}^{\mathrm{T}} \mathbf{x}_i)^2$$

• Предположим, что

$$\mathbf{w} \sim \mathcal{N}(0, \tau^2 \mathbb{I})$$

• Апостериорное распределение w имеет вид

$$p(\mathbf{w}|S_m) \propto p(S_m|\mathbf{w})p(\mathbf{w})$$

$$= \mathbf{C} \cdot \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^m (y_i - \mathbf{w}^T \mathbf{x}_i)^2\right\} \exp\left\{-\frac{\mathbf{w}^T \mathbf{w}}{2\tau^2}\right\}$$

• Апостериорное лог-правдоподобие

$$\mathcal{L}_{MAP}(\mathbf{w}|S_m) = -\frac{1}{2\sigma^2} \sum_{i=1}^m (y_i - \mathbf{w}^T \mathbf{x}_i)^2 - \frac{1}{2\tau^2} \sum_{k=1}^p w_k^2$$

$$= -\frac{m}{2\sigma^2} \left(\frac{1}{m} \sum_{i=1}^m (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \frac{\sigma^2}{m\tau^2} \sum_{k=1}^p w_k^2 \right)$$

$$= -\frac{m}{2\sigma^2} \left(\widehat{R}(f; S_m) + \lambda ||\mathbf{w}||^2 \right), \ \lambda = \frac{\sigma^2}{m\tau^2}$$

ullet Таким образом, MAP оценка совпадает с L_2 -регуляризацией

