Report of the Annual Meeting

Numerical Results of the Complex Gross-Pitaevskii Equation

王昱潼

mentor: 蔡勇勇

School of Mathematical Science
Computational Mathematics

December 22, 2023

Background

 Bose-Einstein Condensation (BEC) was predicted by Bose and Einstein in 1924-1925. The condensate was obtained experimentally for the first time in 1995 in a system consisting of about half a million alkali atoms cooled down to nanokelvin-level temperatures.

Background

- Bose-Einstein Condensation (BEC) was predicted by Bose and Einstein in 1924-1925. The condensate was obtained experimentally for the first time in 1995 in a system consisting of about half a million alkali atoms cooled down to nanokelvin-level temperatures.
- Achieving Bose-Einstein Condensation (BEC) in atomic systems requires extremely low temperatures. This challenge has prompted exploration into realizing BEC in atomless systems at relatively higher temperatures.

(BNU)

Background

One possible candidate is a system of exciton-polaritons. Various mathematical models have been proposed for this new condensate. One of them, called complex GP equation, is explored there:

$$i\psi_t = -\Delta \psi + V(x)\psi + |\psi|^2 \psi + i \left[\omega(x) - \sigma |\psi|^2\right] \psi, \ t > 0, \ x \in D = \mathbb{R}^2,$$

 $\psi(x,0) = \psi_0(x), x \in D.$

Here, $\psi=\psi(x,t)$ is the wave function of the condensate, V(x) is the trapping potential, $\omega=\omega(x)\geq 0$ is the pumping terms, $\sigma>0$ is the decaying terms.

Stationary radial solutions

We first explore the stationary solutions. Inserting $\psi(x,t) = \exp(-i\mu t)\phi(x)$ into equation (1) leads to the following equation for ϕ :

$$\mu\phi(x) = \left[-\Delta + V(x) + |\phi(x)|^2 + i\left(\omega(x) - \sigma|\phi(x)|^2\right)\right]\phi(x). \tag{2}$$

To make μ to be real, it must be required that:

be real, it must be required that:
$$\int_D \left(\omega(x) - \sigma |\phi(x)|^2\right) |\phi(x)|^2 dx = 0.$$

We assume

$$V(x)=|x|^2$$
, $\omega(x)=\alpha\Theta(R-|x|), \Theta(x)=(1+\tanh(\kappa x))/2$.

Stationary radial solutions

Now we solve the stationary radial solution of equation (2)(i.e. $r = |x| \ge 0$). After some computation,we get the following equation:

$$\phi' = \varphi,
\varphi' = -\frac{1}{r}\varphi - \mu\phi + r^{2}\phi + |\phi|^{2}\phi + i\left(\alpha\Theta_{R} - \sigma|\phi|^{2}\right)\phi,
\xi' = \left(\alpha\Theta_{R} - \sigma|\phi(r)|^{2}\right)|\phi(r)|^{2}r,
\mu' = 0,
\phi(b) = 0, \quad \varphi(0) = 0, \quad \text{Im}(\phi(0)) = 0, \quad \xi(b) = 0.$$
(3)

Stationary radial solutions

We solve system (3) with high accuracy by using a collocation method. The MATLAB function bvp5c is used:

Figure 1: numerical solution of collocation method

Let us rewrite system (3) as

$$F(u,\lambda) = 0, (4)$$

where $u \in \mathbb{B}(\mathbb{B})$ is a real Banach space) is the solution of the system, λ is a real parameter(λ can be α , σ , or R). The idea in this section is to study the dependence of the solution, $u(\lambda)$, on the parameter, λ , i.e., to trace the solution branches $[u(\lambda), \lambda]$ of (4).

Suppose that (u_0,λ_0) is a solution of the discretized problem (4) and that the directional derivative $\dot{u}_0=du_0/d\lambda$ is known. Then the solution u_1 at $\lambda_1=\lambda_0+\triangle\lambda$ can be computed as

$$\begin{cases} F_u(u_1^i \ \lambda_1) \triangle u_1^i = -F(u_1^i, \lambda_1), \\ u_1^{i+1} = u_1^i + \triangle u_1^i, \quad i = 0, 1, 2, \cdots. \end{cases}$$

with

$$u_1^0 = u_0 + \triangle \lambda \dot{u}_0,$$

where $F_u(u,\lambda)$ is the Jacobian matrix. After convergence find \dot{u}_1 from

$$F_u(u_1, \lambda_1)\dot{u}_1 = -F_\lambda(u_1, \lambda_1).$$

To avoid folds, we can introduce a pseudo-arclength continuation method. This leads to the augmented system

$$\begin{cases} F(u(v), \lambda(v)) = 0, \\ N(u(v), \lambda(v), v) = 0. \end{cases}$$

One of the most frequently used definitions of N is:

$$N(u, \lambda, v) \equiv \dot{u}_0^T(u - u_0) + \dot{\lambda}_0(\lambda - \lambda_0) - v.$$

Figure 2: The chemical μ of the system (3) for different values of σ with $\alpha=4.4$ and R=2 fixed

Linear stability analysis

Consider the linear stability of the radially symmetric solutions $\psi(r,t) = \exp(-i\mu t)\phi(r)$ under the small perturbations:

$$\psi(r, \theta, t) = \exp(-i\mu t)[\phi(r) + \varepsilon(u(r))\exp(-i(m\theta + \omega t)) + v^*(r)\exp(i(m\theta + \omega^* t)))],$$

with $\varepsilon << 1, m=1,2,3,\cdots$ The radially symmetric solutions are linearly unstable if $Im(\omega) > 0$.

The results in literature shows that the solutions will be unstable when $R \ge 4.4$ or $R \le 0.6$ (the specific situation is related to m).

We now investigate the dynamics of equation (1) by Strange-splitting Fourier spectral method. The situation of one dimension can be stated as:

$$i\psi_{t} = -\psi_{xx} + V(x)\psi + |\psi|^{2}\psi + i\left(\alpha\Theta_{R} - \sigma|\psi|^{2}\right)\psi,$$

$$\psi(x,0) = \psi_{0}(x), \quad a \le x \le b,$$

$$\psi(a,t) = \psi(b,t), \quad \psi_{x}(a,t) = \psi_{x}(b,t), \quad t > 0.$$
(5)

Consider $h=\Delta x=(b-a)/M>0$ as the mesh size, where M is an even positive integer and $\tau=\Delta t>0$ as the time step. Define Ψ^n_j as the numerical approximation of $\psi(x_j,t_n)$.

We now separate equation (5) into:

$$i\psi_t = V(x)\psi + |\psi|^2\psi + i\left(\alpha\Theta_R - \sigma|\psi|^2\right)\psi,\tag{6}$$

$$i\psi_t = -\psi_{xx}. (7)$$

We combine equation (6) and (7) to approximate the solution of (5) on $[t_n, t_{n+1}]$.

Equation (6) can be solved directly, and the solution of equation (7) can be represented as $\psi(x,t)=e^{it\Delta}\psi_0$.

• Step1: From t_n to $t_n + \tau/2$, solve equation (6):

$$\Psi_j^{(1)} = \begin{cases} \Psi_j^n U_j^{(1)} e^{i\theta_j^{(1)}}, & \Theta_j > 0, \\ \Psi_j^n W_j^{(1)} e^{i\phi_j^{(1)}}, & \Theta_j = 0. \end{cases}$$

• Step1: From t_n to $t_n + \tau/2$, solve equation (6):

$$\Psi_j^{(1)} = \begin{cases} \Psi_j^n U_j^{(1)} e^{i\theta_j^{(1)}}, & \Theta_j > 0, \\ \Psi_j^n W_j^{(1)} e^{i\phi_j^{(1)}}, & \Theta_j = 0. \end{cases}$$

• Step2: From t_n to $t_n + \tau$ solve equation (7), and use $\Psi_i^{(1)}$ as initial condition:

$$\Psi_j^{(2)} = \frac{1}{M} \sum_{l=-M/2}^{M/2-1} e^{-i\omega_l^2 \tau} \widehat{\Psi}_l^{(1)} e^{i\omega_l(x_j-a)}, \quad j=0,1,2,\dots,M-1$$
 where,

where,

$$\widehat{\Psi}_{l}^{(1)} = \sum_{j=0}^{M-1} \Psi_{j}^{(1)} e^{-i\omega_{l}(x_{j}-a)}, \quad \omega_{l} = \frac{2\pi l}{b-a}, \quad l = \frac{M}{2}, \dots, \frac{M}{2}$$

• Step3: From $t_n + \tau/2$ to $t_n + \tau$ solve equation (6), and use $\Psi_j^{(2)}$ as initial condition to get Ψ^{n+1} .

Figure 3: Simulation results for R=8. The plots show the density distribution at different times. The dark blue areas represent regions where the density becomes zero.

Figure 4: Simulation results for R=8. The plots show the density distribution at different times. The dark blue areas represent regions where the density becomes zero.

Figure 5: Simulation results for R=8. The plots show the density distribution at different times. The dark blue areas represent regions where the density becomes zero.

Figure 6: Simulation results for R=8. The plots show the density distribution at different times. The dark blue areas represent regions where the density becomes zero.

