Lecture 9 – Trigonometry Part II

9.1 Motivation

Recall the equation of a circle with radius r,

We would like a more efficient way of determining coordinates P(x, y) around the circle. To do so we employ some trigonometry to therefore introduce a different way to so called *parametrize* the circle. By *parametrize* we mean to define a new metric for measuring coordinates in standard euclidean geometry. You'll see why this ends up being more efficient.

9.2 Introduction

Definition 9.1: Given a circle, the **terminal arm** at a point P is a ray from the origin to the point P.

Example 9.1: Suppose we have a circle $x^2 + y^2 = 4$ and points $\mathbf{P}, \mathbf{R}, \mathbf{Q}$. The following is a diagram of their corresponding terminal arms,

Definition 9.2: Polar coordinates are a metric defined on circles where each coordinate is defined as $P(r, \theta)$. Here, r corresponds to the radius of the circle and θ corresponds to the angle of the terminal arm at P, known as the terminal angle.

Example 9.2: Given a circle $x^2 + y^2 = 9$, plot the following polar coordinates,

(a) $P(3,60^{\circ})$

(b)
$$\mathbf{Q}(3, 120^{\circ})$$

(c) $\mathbf{R}(3, 240^{\circ})$

(d)
$$T(3, 330^{\circ})$$

Negative angles

Remark 9.1: Given a polar coordinate $\mathbf{P}(r,\theta)$, if $\theta > 0^{\circ}$ then this corresponds to a counter-clockwise rotation of our terminal arm to pivot it to its correct position on the circle. However if $\theta < 0^{\circ}$, then we rotate clockwise.

Example 9.3: Given a circle $x^2 + y^2 = 4$, plot the following polar coordinates,

- (a) $P(2,60^{\circ})$
- (b) $\mathbf{Q}(2, -330^{\circ})$

(c)
$$\mathbf{K}(2, -240^{\circ})$$

(d)
$$\mathbf{N}(2, -40^{\circ})$$

Reference angles

Definition 9.3: Given a polar coordinate $\mathbf{P}(r,\theta)$, the **reference angle** α is the <u>acute angle</u> between the terminal arm at \mathbf{P} and the x-axis.

Example 9.4: Given a circle $x^2 + y^2 = 4$, for each of the following polar coordinates determine the corresponding reference angle,

a)
$$\mathbf{P}(2,60^{\circ})$$
 b) $\mathbf{R}(2,150^{\circ})$ c) $\mathbf{Q}(2,180^{\circ})$ d) $\mathbf{T}(2,240^{\circ})$ e) $\mathbf{G}(2,270^{\circ})$ f) $\mathbf{H}(2,340^{\circ})$ (**)

Example 9.5 (Negative Angles): Given a circle $x^2 + y^2 = 4$, for each of the following polar coordinates determine the corresponding reference angle,

a)
$$\mathbf{P}(2, -45^{\circ})$$
 b) $\mathbf{R}(2, -90^{\circ})$ c) $\mathbf{Q}(2, -120^{\circ})$ d) $\mathbf{T}(2, -230^{\circ})$ e) $\mathbf{G}(2, -330^{\circ})$ (**)

Theorem 9.1 (CAST Rule): Given a polar coordinate $P(r, \theta)$,

- If the terminal arm lies in quadrants I or IV, then $\cos \theta$ is positive.
- If the terminal arm lies in quadrants I or II, then $\sin \theta$ is positive.
- If the terminal arm lies in quadrants I or III, then $\tan \theta$ is positive.

This can be summarized into the so called CAST rule,

Theorem 9.2 (Angle Symmetry): Given an angle θ , the following symmetric relationship holds

$$\cos \theta = \pm \cos \alpha$$

$$\sin \theta = \pm \sin \phi$$

$$\sin \theta = \pm \sin \alpha$$
 $\tan \theta = \pm \tan \alpha$.

Where,

- α is the corresponding reference angle.
- The (\pm) sign can be determined by using the CAST rule.

Example 9.6: Determine the exact value of the following trigonometric ratios,

- a) $\sin 60^{\circ}$
- b) $\cos 120^{\circ}$
- c) $\tan 210^{\circ}$
- d) $\sin 270^{\circ}$
- e) $\cos 300^{\circ}$

Converting: $\mathbf{P}(r,\theta) \to \mathbf{P}(x,y)$ 9.3

Theorem 9.3: Given a polar coordinate $P(r, \theta)$, the corresponding standard coordinates are,

$$x = r\cos\theta$$
 $y = r\sin\theta$.

Example 9.7: Convert the following polar coordinates to standard coordinates,

a)
$$P(2,60^{\circ})$$

b)
$$\mathbf{Q}(2, 120^{\circ})$$

d)
$$M(1, 270^{\circ})$$

Example 9.8 (Negative Angles): Convert the following polar coordinates to standard coordinates,

a)
$$\mathbf{P}(2, -45^{\circ})$$
 b) $\mathbf{R}(3, -180^{\circ})$ c) $\mathbf{Q}(4, -150^{\circ})$ d) $\mathbf{G}(8, -300^{\circ})$ (**)

9.4 Solving Trigonometric equations

Suppose we were given one of the following trigonometric ratios where the angle θ is unknown,

$$\cos \theta = \frac{x}{r}$$
 $\sin \theta = \frac{y}{r}$ $\tan \theta = \frac{y}{x}$.

Suppose that we know the quadrant in which the angle θ lies within, then we can use the following procedure to solve for θ ,

Step 1. Draw the terminal arm corresponding to the quadrant in which θ lies within.

Step 2. Compute the reference angle α ,

$$\alpha = \cos^{-1}\left(\left|\frac{x}{r}\right|\right)$$
 $\alpha = \sin^{-1}\left(\left|\frac{y}{r}\right|\right)$ $\alpha = \tan^{-1}\left(\left|\frac{y}{x}\right|\right)$.

Step 3. Use α as well as your diagram to compute θ .

Example 9.9: For each of the following, you are given a trigonometric ratio, solve for θ . Assume that each angle θ lies in the **third** quadrant.

a)
$$\cos \theta_1 = -\frac{1}{2}$$
 b) $\sin \theta_2 = -\frac{\sqrt{3}}{2}$ c) $\tan \theta_3 = 1$ (**)

Example 9.10: For each of the following, you are given a trigonometric ratio, solve for θ . Assume that each angle θ lies in the **second** quadrant.

a)
$$\cos \theta_1 = -\frac{1}{4}$$
 b) $\sin \theta_2 = \frac{1}{\sqrt{2}}$ (**)

9.5 Converting: $P(x,y) \rightarrow P(r,\theta)$

Theorem 9.4: Given standard coordinates P(x, y), the corresponding polar coordinates are,

$$r = \sqrt{x^2 + y^2} \qquad \tan \theta = \frac{y}{x}.$$

Where θ is the solution to the trigonometric equation.

Example 9.11: Convert the following standard coordinates to polar coordinates,

a)
$$\mathbf{P}(2, 2\sqrt{3})$$
 b) $\mathbf{Q}(2, -5)$ c) $\mathbf{T}(-6, -8)$ d) $\mathbf{M}(-3\sqrt{3}, 3)$ (**)