Name - Varun Das Roll - 001811001071 7th Semester Information Technology Machine Learning Lab

Assignment 3

GitHub: View Assignment

PART 1

1) Wine Dataset

1.1) GaussianHMM Without Tuning

1.2) GaussianHMM With Tuning

1.3) GMMHMM Without Tuning

1.4) GMMHMM With Tuning

1.5) MultinomialHMM Without Tuning

1.6) MultinomialHMM Without Tuning

The maximum accuracy was achieved when the Train-Test split ratio was 70:30, which was achieved by using the Gaussian Model. The maximum range of accuracies was achieved by the Gaussian Model, followed by the GMMHMM model, which is followed by the MultinomialHMM model.

2) Ionosphere Dataset

2.1) GaussianHMM Without Tuning

2.2) GaussianHMM With Tuning

2.3) GMMHMM Without Tuning

2.4) GMMHMM With Tuning

2.5) MultinomialHMM Without Tuning

2.6) MultinomialHMM Without Tuning

The maximum accuracy was achieved when the Train-Test split ratio was 70:30, which was achieved by using the Gaussian Model. The maximum range of accuracies was achieved by the Gaussian Model, followed by the GMMHMM model, which is followed by the MultinomialHMM model.

3) Breast Cancer Dataset

3.1) GaussianHMM Without Tuning

3.2) GaussianHMM With Tuning

3.3) GMMHMM Without Tuning

3.4) GMMHMM With Tuning

3.5) MultinomialHMM Without Tuning

3.6) MultinomialHMM Without Tuning

The maximum accuracy was achieved when the Train-Test split ratio was 70:30, which was achieved by using the Gaussian Model. The maximum range of accuracies was achieved by the Gaussian Model, followed by the GMMHMM model, which is followed by the MultinomialHMM model.

PART 2

1) CIFAR-10

Layer (type)	Output	Shape	Param #
conv2d_6 (Conv2D)	(None,	30, 30, 32)	896
max_pooling2d_4 (MaxPooling2	(None,	15, 15, 32)	0
conv2d_7 (Conv2D)	(None,	13, 13, 64)	18496
max_pooling2d_5 (MaxPooling2	(None,	6, 6, 64)	0
conv2d_8 (Conv2D)	(None,	4, 4, 64)	36928
flatten (Flatten)	(None,	1024)	0
dense (Dense)	(None,	64)	65600
dense_1 (Dense)	(None,	10)	650
Total params: 122,570 Trainable params: 122,570 Non-trainable params: 0	=====		=======

```
1563/1563 [================] - 69s 44ms/step - loss: 0.1561 - accuracy: 0.9437 - val_loss: 1.8716 - val_accuracy: 0.6910
Epoch 12/20
      1563/1563 [==
Epoch 13/20
1563/1563 [===========] - 69s 44ms/step - loss: 0.1524 - accuracy: 0.9466 - val_loss: 2.0503 - val_accuracy: 0.6936
Epoch 14/20
1563/1563 [=
        :============= ] - 69s 44ms/step - loss: 0.1490 - accuracy: 0.9477 - val loss: 2.0715 - val accuracy: 0.6861
Epoch 15/20
Epoch 16/20
1563/1563 [=
         :=========] - 69s 44ms/step - loss: 0.1356 - accuracy: 0.9520 - val_loss: 2.2363 - val_accuracy: 0.6877
Epoch 17/20
Epoch 18/20
        1563/1563 [==
Epoch 19/20
Epoch 20/20
```


2) MNIST

Model: "sequential_8"			
Layer (type)	Output	Shape	Param #
conv2d_18 (Conv2D)	(None,	26, 26, 32)	320
max_pooling2d_10 (MaxPooling	(None,	13, 13, 32)	0
conv2d_19 (Conv2D)	(None,	11, 11, 64)	18496
max_pooling2d_11 (MaxPooling	(None,	5, 5, 64)	0
conv2d_20 (Conv2D)	(None,	3, 3, 64)	36928
flatten_3 (Flatten)	(None,	576)	0
dense_6 (Dense)	(None,	64)	36928
dense_7 (Dense)	(None,	10)	650
Total params: 93,322 Trainable params: 93,322 Non-trainable params: 0			

```
Epoch 12/20
Epoch 13/20
1875/1875 [==
    Epoch 14/20
   1875/1875 [==
Epoch 15/20
Epoch 16/20
      1875/1875 [=
Epoch 17/20
1875/1875 [===========] - 57s 31ms/step - loss: 0.0049 - accuracy: 0.9985 - val_loss: 0.0430 - val_accuracy: 0.9916
Epoch 18/20
1875/1875 [===
    Epoch 19/20
      ==========] - 58s 31ms/step - loss: 0.0048 - accuracy: 0.9986 - val_loss: 0.0540 - val_accuracy: 0.9903
1875/1875 [=
Epoch 20/20
```


3) SAVEE

Model: "sequential_3"			
Layer (type)	Output	Shape	Param #
conv2d_9 (Conv2D)	(None,	155, 318, 32)	320
max_pooling2d_6 (MaxPooling2	(None,	77, 159, 32)	0
conv2d_10 (Conv2D)	(None,	75, 157, 64)	18496
max_pooling2d_7 (MaxPooling2	(None,	37, 78, 64)	0
conv2d_11 (Conv2D)	(None,	35, 76, 64)	36928
flatten_3 (Flatten)	(None,	170240)	0
dense_6 (Dense)	(None,	64)	10895424
dense_7 (Dense)	(None,	10)	650
Total params: 10,951,818 Trainable params: 10,951,818 Non-trainable params: 0	== ==	======================================	=== ===

4) EmoDB

Layer (type)	Output	Shape	Param #
conv2d_12 (Conv2D)	(None,	155, 318, 32)	320
max_pooling2d_8 (MaxPooling2	(None,	77, 159, 32)	0
conv2d_13 (Conv2D)	(None,	75, 157, 64)	18496
max_pooling2d_9 (MaxPooling2	(None,	37, 78, 64)	0
conv2d_14 (Conv2D)	(None,	35, 76, 64)	36928
flatten_4 (Flatten)	(None,	170240)	0
dense_8 (Dense)	(None,	64)	10895424
dense_9 (Dense)	(None,	10)	650
Total params: 10,951,818 Trainable params: 10,951,818 Non-trainable params: 0			

```
Epoch 14/20
12/12 [=====
                =============== - 30s 2s/step - loss: 0.0012 - accuracy: 1.0000 - val loss: 3.9037 - val accuracy: 0.5155
Epoch 15/20
Epoch 16/20
12/12 [====
                          =====] - 30s 2s/step - loss: 4.9740e-04 - accuracy: 1.0000 - val loss: 4.1150 - val accuracy: 0.5093
Epoch 17/20
                ==========] - 30s 3s/step - loss: 3.8747e-04 - accuracy: 1.0000 - val_loss: 4.1542 - val_accuracy: 0.5031
12/12 [=====
Epoch 18/20
12/12 [==============] - 30s 2s/step - loss: 3.0542e-04 - accuracy: 1.0000 - val_loss: 4.2023 - val_accuracy: 0.5031
Epoch 19/20
                        ======] - 31s 3s/step - loss: 2.5256e-04 - accuracy: 1.0000 - val loss: 4.2239 - val accuracy: 0.5031
12/12 [=====
Epoch 20/20
12/12 [=====
                     =======] - 30s 2s/step - loss: 2.1154e-04 - accuracy: 1.0000 - val_loss: 4.2753 - val_accuracy: 0.5093
```


It was observed that the more layers we add the higher accuracy we can achieve. At the same time, if we keep on adding more layers, the final accuracy will saturate. Also, the number of convolution and the pooling layers play an important role in training the model.

PART 3 1) VGG-16 1.1) CIFAR-10

1.2) MNIST

1.3) SAVEE

```
8/8 [======================== ] - 6s 708ms/step - loss: nan - accuracy: 0.1208
Epoch 45/50
8/8 [============== - 6s 706ms/step - loss: nan - accuracy: 0.1208
Epoch 46/50
Epoch 47/50
8/8 [========================= - 6s 706ms/step - loss: nan - accuracy: 0.1208
Epoch 48/50
8/8 [========================= - 6s 709ms/step - loss: nan - accuracy: 0.1208
Epoch 49/50
Epoch 50/50
8/8 [============= - 6s 706ms/step - loss: nan - accuracy: 0.1208
model.evaluate(X_test_resized, y_test)
[nan, 0.12916666269302368]
```

1.4) EmoDB

```
9/9 [=
           - 65 /11MS/Step - 1055; Nan - accuracy; 0.224/
Epoch 14/20
Epoch 15/20
Epoch 16/20
Epoch 17/20
Epoch 18/20
Epoch 19/20
9/9 [======================== ] - 6s 712ms/step - loss: nan - accuracy: 0.2247
Epoch 20/20
model.evaluate(X test resized, y test)
[nan, 0.25]
```

The entire model can be broken down into 5 blocks, where each block contains 3 convolution and 1 max-pooling layers.

Looking at the complexity of the model and the limitations of google colab, I have reduced the input size for the model,i.e., i have taken 2000 training data points and 2000 testing data points.

2) ResNet-50

2.1) CIFAR-10

2.2) MNIST

2.3) SAVEE

```
Epoch 5/10
Epoch 6/10
8/8 [=========== - - 5s 669ms/step - loss: 0.2390 - accuracy: 0.9833
Epoch 7/10
8/8 [============ - - 5s 671ms/step - loss: 0.0966 - accuracy: 1.0000
Epoch 8/10
8/8 [============ - - 5s 668ms/step - loss: 0.0691 - accuracy: 1.0000
Epoch 9/10
8/8 [=========== - - 5s 669ms/step - loss: 0.0550 - accuracy: 1.0000
Epoch 10/10
8/8 [============ - - 5s 666ms/step - loss: 0.0281 - accuracy: 1.0000
model.evaluate(X test resized, y test)
[8.759380340576172, 0.0]
```

2.4) EmoDB

```
Epoch 3/10
9/9 [========== ] - 6s 661ms/step - loss: 0.6534 - accuracy: 0.7678
Epoch 5/10
9/9 [=========== ] - 6s 662ms/step - loss: 0.3835 - accuracy: 0.8914
Epoch 6/10
Epoch 7/10
Epoch 8/10
9/9 [=========== ] - 6s 661ms/step - loss: 0.1096 - accuracy: 0.9775
Epoch 9/10
9/9 [========== ] - 6s 664ms/step - loss: 0.1170 - accuracy: 0.9850
Epoch 10/10
9/9 [=========== ] - 6s 659ms/step - loss: 0.2414 - accuracy: 0.9251
model.evaluate(X test resized, y test)
[7.290168285369873, 0.0]
```

Looking at the complexity of the model and the limitations of google colab, I have reduced the input size for the model, i.e., I have taken 2000 training data points and 2000 testing data points.

3) Recurrent Neural Networks (RNN)

3.1) CIFAR-10

```
Epoch 3/10
200/200 [================ ] - 111s 557ms/step - loss: 2.0085 - accuracy: 0.2645
Epoch 4/10
200/200 [=============== ] - 112s 558ms/step - loss: 1.9649 - accuracy: 0.2771
Epoch 5/10
200/200 [=============== ] - 111s 557ms/step - loss: 1.9583 - accuracy: 0.2816
Epoch 6/10
200/200 [================== ] - 111s 557ms/step - loss: 1.9388 - accuracy: 0.2896
Epoch 7/10
200/200 [================ ] - 111s 557ms/step - loss: 1.9371 - accuracy: 0.2899
Epoch 8/10
200/200 [============== ] - 111s 556ms/step - loss: 1.9254 - accuracy: 0.2989
Epoch 9/10
200/200 [================ ] - 111s 557ms/step - loss: 1.9188 - accuracy: 0.2966
Epoch 10/10
200/200 [================ ] - 111s 556ms/step - loss: 1.9341 - accuracy: 0.2930
model.evaluate(test images, test labels)
[1.9600898027420044, 0.29120001196861267]
```

3.2) MNIST

```
print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
Test Accuracy of the model on the 10000 test images: 97.77 %
```

3.3) SAVEE

3.4) EmoDB

Looking at the complexity of the model and the limitations of google colab, I have reduced the input size for the model,i.e., I have taken 2000 training data points and 2000 testing data points.

4) AlexNet

4.1) CIFAR-10

4.2) MNIST

4.3) SAVEE

```
8/8 [============== - - 56s 7s/step - loss: 2.4215 - accuracy: 0.1583
Epoch 5/10
8/8 [============== - - 56s 7s/step - loss: 2.2042 - accuracy: 0.2333
Epoch 6/10
8/8 [=========== - - 57s 7s/step - loss: 2.2080 - accuracy: 0.2042
Epoch 7/10
8/8 [=========== - - 56s 7s/step - loss: 2.1114 - accuracy: 0.2792
Epoch 8/10
8/8 [============== - - 57s 7s/step - loss: 2.1120 - accuracy: 0.2542
Epoch 9/10
8/8 [========== - - 56s 7s/step - loss: 2.0292 - accuracy: 0.2583
Epoch 10/10
8/8 [=========== - - 57s 7s/step - loss: 2.1150 - accuracy: 0.2417
model.evaluate(X_test_resized, y_test)
[2.275780200958252, 0.23749999701976776]
```

4.4) **EmoDB**

Looking at the complexity of the model and the limitations of google colab, I have reduced the input size for the model,i.e., I have taken 2000 training data points and 2000 testing data points.

5) GoogLeNet

5.1) CIFAR-10

```
output_2_loss: 2.0650 - val_output_accuracy: 0.2305 - val_auxilliary_output_1_accuracy: 0.2400 - val_auxilliary_output_2_accuracy: 0.2240

output_2_loss: 2.0244 - val_output_accuracy: 0.2470 - val_auxilliary_output_1_accuracy: 0.2630 - val_auxilliary_output_2_accuracy: 0.2585

output_2_loss: 2.0076 - val_output_accuracy: 0.2355 - val_auxilliary_output_1_accuracy: 0.2735 - val_auxilliary_output_2_accuracy: 0.2660
```

5.2) MNIST

5.3) SAVEE

5.4) **EmoDB**

Looking at the complexity of the model and the limitations of google colab, I have reduced the input size for the model,i.e., I have taken 2000 training data points and 2000 testing data points.