Algebra I

Hui Sun

August 29, 2024

Contents

1 Groups 3

Chapter 1

Groups

We will talk about some facts about groups.

Proposition 1.1. Here are some basic properties of groups.

- 1. If *G* is a group, and $e' \in G$ is an identity element, then e' = e.
- 2. Moreover, if $g \in G$ has inverses h_1, h_2 , then h_1, h_2 .
- 3. Let $g \in G$, and gh = gf, then h = f.

Definition 1.1 (abelian). A group G is commutative or abelian if for all $a, b \in G$, we have ab = ba.

Here are some examples:

- 1. Cyclic groups are commutative. A cyclic group $G = \langle g : g^n = e \rangle$, i.e., it is the group generated subject to this condition and generated by one element. Equivalently, for every $h \in G$, there exists m such that $h = g^m$.
- 2. $M_n(\mathbb{Z})$ under addition is commutative, under multiplication is not commutative.
- 3. $GL_n(\mathbb{Z})$ is a group under multiplication since it's determinant is a unit.

$$Gl_n(\mathbb{Z}) \longrightarrow M_n(\mathbb{Z})$$

$$\uparrow \qquad \qquad \downarrow_{\text{det}}$$

$$\mathbb{Z}^* \longleftarrow \mathbb{Z}$$

- 4. $GL_1(\mathbb{Z}) = \mathbb{Z}^*$ is abelian.
- 5. $GL_2(\mathbb{Z})$ is not abelian, and so is not higher n
- 6. The dihedral group $D_n = \langle r, s : r^n = e, s^2 = e, rs = sr^{-1} \rangle$. Since $r^{-1} \neq r$ for n > 2, we have $rs \neq sr$. Hence D_n is not abelian for n > 2.
- 7. Alternatively, we can describe D_n explicity, i.e., by $rs = sr^{-1}$, then we can always write s in front of an r.

$$D_n = \{e, r, \dots, r^{-1}, s, sr, \dots, sr^{n-1}\}$$

- 8. S_n is also not abelian for n > 2. For example, (123)(12), (23)(123). However, disjoint cycles commute. Remark: orders of elements in groups.
 - 1. $c_n = \langle f; f^n = e \rangle = \{e, f, f^2, \dots, f^{n-1}\} \cong \{0, 1, \dots, n-1\}$ under addition modulo n. Now given $m \in \{0, 1, \dots, n-1\}$, what is |m|?

4 CHAPTER 1. GROUPS

Definition 1.2 (order). The order of m, is the least positive integer l, denoted |m| such that lm=0. Moreover, if there exists integer k such that lm=kn, then l is the least positive integer suc that $\frac{lm}{n} \in \mathbb{Z}$.

Proposition 1.2. Elements m with gcd(m, n) = 1 has order n. Moreover,

$$|m| = \frac{n}{\gcd(m, n)}$$

Proposition 1.3. If gcd(m, n) = 1, then $m \in (\mathbb{Z}/n\mathbb{Z})^*$.

Proof. $m \in (\mathbb{Z}/n\mathbb{Z})^*$ if there exists l such that $lm = 1 \mod n$, which implies that lm = 1+kn, i.e. lm-kn = 1, this implies that m, n are relatively prime. Moreover, this is if and only if |m| = n in the additive group. \square

Example 1.1. $\mathbb{Z}/12\mathbb{Z}: \{0, 1, 2, \dots, 11\}$, and $(\mathbb{Z}/12\mathbb{Z})^* = \{1, 5, 7, 11\}$, for the multiplicative group, |5| = 2, |7| = 2, |11| = 2. This implies

$$(\mathbb{Z}/12\mathbb{Z})^* \cong C_2 \times C_2$$

where $C_2 \times C_2 = \{(a, b) : a, b \in \pm 1\}.$

Definition 1.3 (group homomorphism). A group homomorphism $\varphi : G \to H$ is a function φ such that

$$\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2), \varphi(e_G) = e_H, \varphi(g^{-1}) = \varphi(g)^{-1}$$

Definition 1.4 (isomorphism). An isomorphism φ is a bijective isomorphism. In other words, in there exists $\psi: H \to G$ such that

$$\varphi \circ \psi = id_H, \psi \circ \varphi = id_G$$

In fact, requiring φ as a bijection we can show ψ is indeed a homomorphism.