

User Manual, K100

Document No Revision DOC-000844 04

Rev Author AC

Approver **USN**

Rev Date 2021-01-20 Status

Approved

User manual K100

GD000018 Scandinova K100 Modulator User Manual

CONFIDENTIAL INFORMATION

The information contained in this document is of a proprietary and confidential nature and is intended only for the persons to whom it is directly transmitted by ScandiNova Systems AB. Any reproduction of this document, in whole or part, or the divulgence of any of its contents without the prior written consent of ScandiNova Systems AB is prohibited. This document is subject to change without notice.

1(29)

Document No

DOC-000844

Document name

User Manual, K100

 $\begin{array}{ll} \text{Rev Author} & \text{Approver} \\ \text{AC} & \text{USN} \end{array}$

Rev Date 2021-01-20

Status Approved

Safety Information

Revision

04

The following warnings and precautions are for your safety and prevention of injury. Read them carefully and observe at all times when installing or operating the ScandiNova Solid State Modulator. Hazard warning signs, as defined in ISO 3864 (Safety Signs and Colours), are used on the equipment to highlight any possible hazards.

The K100 Modulator must only be operated by qualified personnel who have read this manual and are familiar with the operation, hazards and application of the K100 Modulator.

The K100 Modulator should only be serviced by factory qualified personnel.

Protective ground

Ensure all the correct required grounding has been connected before applying any AC power. Proper grounding for the Modulator is required to reduce the risk of electric shock and to comply with relevant safety requirements. Grounding requirements are contained within this manual.

Functional ground

Ensure all the correct required grounding has been connected before applying any AC power. Proper grounding for the Modulator is required to reduce the risk of electric shock and to comply with relevant safety requirements. Grounding requirements are contained within this manual.

Dangerous voltage

Equipment must be installed so that personnel cannot come into contact with high voltage terminals.

After disconnecting the single phase and 3-phase it is impossible for the modulator to generate any high voltage on any terminals. All left stored energy is internally and requires disassembly of the unit in order to gain access.

The modulator has internal bleeders removing all high voltage (>60V) inside the units within 2 minutes after removal of single and 3-phase.

A ground hook is not needed since there are no high voltage parts accessible on the outside of the modulator once turned off.

Ensure all covers are in place and securely fastened before applying any AC power.

Power Supplies To The System

External overload protection on the 3-phase supply must be provided by the user. Always replace fuses with the same type and voltage/current rating. Use extreme caution when connecting input AC power, and apply only the input voltages specified on the rating labels.

User Manual, K100

Document No Revision DOC-000844 04

 $\begin{array}{ll} \text{Rev Author} & \text{Approver} \\ \text{AC} & \text{USN} \end{array}$

Rev Date 2021-01-20

Status Approved

Heavy Equipment

The supplied equipment is heavy. The modulator is marked with the unit weight. Observe your local health and safety regulations when lifting.

Toxic Material

The modulator contains hydrocarbon mineral oil (Nynäs Nitro 10X). The user must not loosen or remove any of the unit's fixings or seals as leakage could occur and performance affected. Consult ScandiNova for details regarding the disposal of old or damaged modulators.

Risk of X-Ray Radiation

All high voltage devices can produce X-rays during operation and may require shielding. The X-ray radiation is usually reduced to a safe level by enclosing the equipment within steel or lead panels.

Users and equipment manufacturers must check the radiation level under their maximum operating conditions.

High voltage klystrons emit a significant intensity of X-rays not only from the klystron, but also from the output waveguide. These rays can constitute a health hazard unless adequate shielding for X-ray radiation is provided.

RF Radiation

Personnel must not be exposed to excessive RF radiation. All RF connectors must be correctly fitted before operation so that no leakage of RF energy can occur and the RF output must be coupled efficiently to the load. It is particularly dangerous to look into open waveguide or coaxial feeders while the device is energized.

Electrostatic Sensitive Devices

Damage to components may occur if static handling procedures are not carried out.

Hot surfaces

Some surfaces may get hot during normal use. The oil pump located on the tank unit will during normal use get hot. A total of 10 minutes must be allowed before any work is done on the pump or surrounding components

Disposal of modulator or components

ScandiNova works according to the **WEEE-directives** WEEE 2012/19/EU (Waste from Electrical and Electronic Equipment)

All used components and the modulator itself should when it reaches end of life, be shipped to ScandiNova or to ScandiNova assigned company for disposal and recycling.

User Manual, K100

Document No Revision DOC-000844 04

 $\begin{array}{ccc} \text{Rev Author} & & \text{Approver} \\ \textbf{AC} & & \textbf{USN} \end{array}$

Rev Date 2021-01-20

Status Approved

Contact Information

Sweden ScandiNova Systems AB Ultunaallen 2A 756 51 Uppsala

Telephone: +46 (0)18 480 59 00 Fax: +46 (0)18 480 59 99

www.scandinovasystems.com

Revision

04

Document name

User Manual, K100
Rev Author A
AC U

Approver USN

Rev Date 2021-01-20 Status Approved

Contents

DOC-000844

Document No

1	Li	ist of table	6
2	Li	ist of figures	6
3	In	troduction	7
	3.1	Manual Scope	7
	3.2	Location of Serial Numbers/nameplate	7
	3.3	Abbreviations	8
4	In	tended use	9
5	Sy	ystem Contents	10
	5.1	Packaging/What Is Supplied	10
	5.2	Storage conditions	10
	5.3	Unpacking and Lifting the Modulator	10
6	In	stallation	12
	6.1	Typical installation procedure	12
	6.2	Connection Overview – Block Diagram	14
	6.3	Protective/Functional ground	15
	6.4	Water and Cooling	15
	6.5	Cooling Fans	15
	6.6	Power – Single/3-Phase	16
	6.7	Trig input	17
	6.8	Control Interface	17
7	Sy	ystem Operation	18
8	M	Taintenance	25
	8.1	Safety precautions	25
	8.2	Periodic maintenance	25
	8.3	Basic Troubleshooting	26
٨	nnan	div A Product Compliance (EMC and Safety)	20

User Manual, K100 Rev Author A

 $\begin{array}{ll} \text{Document No} & \text{Revision} \\ \text{DOC-000844} & \text{04} \end{array}$

AC

Approver USN

Rev Date 2021-01-20

Status

Approved

1 List of table

Table 1: Packing/What is supplied	10
Table 2: Environmental services	
Table 3: Electrical services	
Table 4: Cooling water services	
Table 5: External signal services	
Table 6: Protective/Functional ground	
Table 7: Power – Pulse unit Single/3-Phase	
Table 8: Trig Input	17
Table 9: Control Interface	17
Table 10: State description	24
Table 11: Periodic maintenance	26
2 List of figures	_
Figure 1: Modulator, serial number/nameplate	
Figure 2: Shockwatch	
Figure 3: Tiltwatch	
Figure 4: Modulator on Pallet	
Figure 5: Lifting the modulator	
Figure 6: Connection overview	
Figure 7: Protective/Functional ground	
Figure 8: Main breaker	
Figure 9: Touchscreen for the built-in computer.	
Figure 10: Ion pump front panel	
Figure 11: GUI overview	19
Figure 12: Filament settings	19
Figure 13: GUI in Standby state	20
Figure 14: CCPS voltage setting	20
Figure 15: HV button	21
Figure 16: SU pulse width setting	21
Figure 17:PRF setting	21
Figure 18: Trig button	22
Figure 19: Tank mode reading	22
Figure 20: OFF button	
Figure 21: Standby button	
Figure 22: Active interlock a few seconds after it appeared.	
Figure 23: View bits button	
Figure 24: Interlock displayed in 'Eventlog'-tab	28
Figure 25: The modulator indicates active warnings.	

User Manual, K100

Document No Revision DOC-000844 04

 $\begin{array}{ll} \text{Rev Author} & \text{Approver} \\ \text{AC} & \text{USN} \end{array}$

Rev Date 2021-01-20

Status Approved

3 Introduction

Thank you for purchasing a ScandiNova K100 modulator.

Before installing or using the modulator system, or any component, ScandiNova recommend that you familiarize yourself with the unit, its operation and features, by reading this manual.

The K100 modulator series is a range of fully integrated, compact, solid-state modulator systems. It is designed to drive a broad range of klystrons, and utilize Scandinavia's patented solid-state modulator technology.

3.1 Manual Scope

This manual will provide all necessary information to allow you to:

- Unpacking/lifting
- Solenoid/klystron installation
- Make all necessary interconnections.
- Maintenance

3.2 Location of Serial Numbers/nameplate

Figure 1: Modulator, serial number/nameplate

User Manual, K100
Rev Author A
AC U Document No DOC-000844 Revision Approver Rev Date Status Approved 04 USN 2021-01-20

3.3 Abbreviations

CCPS	Capacitor Charging Power Supply
MCU	Main Control Unit
ESD	Electrostatic Discharge
FPS	Filament Power Supply
IPC	Ion Pump Controller
PCB	Printed circuit board
PDU	Power Distribution Unit
PRF	Pulse Repetition Frequency
SPS	Solenoid Power Supply
SU	Switch Unit
TANK	Transformer Tank Assembly

User Manual, K100

Document No Revision Rev Author AC U

 $\begin{array}{ll} \text{Approver} & \text{Rev Date} \\ \text{USN} & 2021\text{-}01\text{-}20 \end{array}$

Status Approved

4 Intended use

The modulator is intended to drive klystron. All other use is not allowed without a written approval from ScandiNova.

If connected and/or used outside of intended use the protective functions within the modulator could be impaired.

Document No

DOC-000844

Document name

User Manual, K100

 $\begin{array}{ll} \text{Rev Author} & \quad \text{Approver} \\ \text{AC} & \quad \text{USN} \end{array}$

Rev Date 2021-01-20

5 System Contents

5.1 Packaging/What Is Supplied

Revision

04

Depending on what has been ordered, the modulator could be delivered in separate containers or cases.

Before starting, check you have been supplied with all the necessary items.

Components	Options	Note
K100 modulator	115/208V	Voltage depending on
	115/480V	configuration, check
	230/400V	name plate for details
Software Kit		
User manual		

Table 1: Packing/What is supplied

5.2 Storage conditions

The modulator and its high voltage power supply must be stored in the horizontal position, in its supplied packing case.

The storage temperature range for all components is -25 °C to +70 °C.

The storage humidity range for all components is 20% to 95% (condensing). Each item must be left at room temperature for at least 24 hours prior to use.

5.3 Unpacking and Lifting the Modulator

Besides the information contained in this document, local safety regulations must also be compiled.

To safely unpack the modulator, follow the instructions below.

1. Check that there are no damages to the shipping crate or that the shock and tilt indicator have not been activated. If damages or activated indicators are found please contact the shipping company and Scandinova AB as soon as possible.

Figure 2: Shockwatch

Figure 3: Tiltwatch

2. Open the top and sides of the box by unscrewing the screws with a Torx T25 screwdriver.

Document name
User Manual, K100

Document No Revision Rev Author

DOC-000844 04 AC

Approver USN

Rev Date 2021-01-20

Status Approved

3. The modulator is bolted to the pallet with four M12 screws. Undo these screws and lift the modulator up.

Figure 4: Modulator on Pallet

Figure 5: Lifting the modulator

While the modulator is lifted mount the 4 machine feet, included in the shipment, on the bottom socket.

WARNING: The klystron modulator weighs up to 1500kg. Weight of your specific configuration is printed on the machine sign. Make sure suitable lifting equipment is used during lifting, positioning and installation of the pulse unit

WARNING: Make sure the klystron modulator is installed on a flat even surface otherwise the unit may fall over during installation/service/maintenance

During all type of movement/adjustment suitable lifting equipment has to be used due to the high weight of the unit.

Document No

DOC-000844

Document name

User Manual, K100

Revision 04

Rev Author AC

Approver USN

Rev Date 2021-01-20

Status Approved

6 Installation

6.1 Typical installation procedure

For more details regarding the different steps, check the corresponding following sections.

WARNING: The modulator/solenoid/klystron is heavy equipment. Make sure suitable lifting equipment is used during lifting, positioning and

installation of these parts

WARNING: Installing klystron and solenoid on the modulator tank will cause risk for crushing. Never work under the solenoid or the klystron.

- 1. Unpack modulator and place on flat horizontal floor.
- 2. Level modulator using the adjustable feet. This is important to do before 14).
- 3. Dismount covers plates around klystron and solenoid opening on modulator.
- 4. Mount solenoid on top of modulator tank lid using instruction provided by the supplier.
- 5. Connect electric connections and cooling hoses to solenoid according to instructions provided by the supplier, or in documentation provided by Scandinova:
 - a. Solenoid current connections
 - b. Water cooling hoses
 - c. Temperature switch
- 6. Mount klystron in solenoid, using instruction provided by the supplier. Do not touch klystron ceramic ring with hands. Keep clean. Carefully check that klystron connection gets connected to modulator socket inside tank when lowering klystron into solenoid. Use inspection windows on tank to check this. If necessary dismount inspection windows for better view.
 - Don't forget to put back inspection windows before filling oil.

Align klystron with waveguide opening in desired direction. If klystron is equipped with clamps, fasten the clamps to solenoid.

- 7. Connect electric connections and cooling water to klystron according to instructions provided by the supplier, or in documentation provided by Scandinova:
 - a. Ion pump HV cable
 - b. RF input cable
 - c. Grounding wire or braid connected to modulator tank lid.
 - d. Cooling water hoses

Document name
User Manual, K100

Document No Revision DOC-000844 04

Rev Author AC

Approver USN

Rev Date 2021-01-20

Status Approved

8. Connect external cooling water to the modulators cooling circuits 1 and 2. Turn on external cooling water. See Mechanical drawings provided by Scandinova. Check all water connections on klystron and solenoid for any leakage.

- 9. Connect three phase mains power to terminal block in modulator PDU (Power Distribution Unit). See Installation Data provided by Scandinova.
- 10. Connect single phase mains power to terminal block in modulator PDU. See Installation Data provided by Scandinova.
- 11. Connect appropriate signals to the hardwired connector. See Installation Data provided by Scandinova.
- 12. Connect external trig (optional). See Installation Data provided by Scandinova.
- 13. Connect external RF trig and LowLevel RF signal (optional). See installation Data provided by Scandinova.
- 14. Connect communication cable RJ45 (optional). See Installation Data provided by Scandinova.
- 15. Add transformer oil to modulator transformer tank by opening tank fill cap on top of tank lid. Fill oil to the marked line on oil level indicator.
- 16. Use transformer oil, type Nynas Nytro, Shell Diala or oil recommended by Scandinova.

User Manual, K100

Document No Revision Rev Author Approver Rev Date Status

DOC-000844 04 AC USN 2021-01-20 Approved

6.2 Connection Overview - Block Diagram

Figure 6: Connection overview

Environmental service

		Note
Ambient temp	+5°C - +40°C	
Altitude	Max: 2000m above sea level	
Humidity	<90 % non-condensing	

Table 2: Environmental services

Electrical services

		Note
Single phase	115V +/-10%	Depending on configuration
	230V +/-10%	Line, neutral and earth on screw terminals
	~50/60Hz	
3-phase	208V +/-10%	Depending on configuration
	400V +/-10%	3 phases and ground on screw terminals
	480V +/-10%	
	~50/60Hz	

Table 3: Electrical services

For details on required voltage/current, check nameplate located on modulator

User Manual, K100

Cooling services

		Note
Klystron	Max 8 bar	
modulator	Water temp: 20-45degC (non condensing)	

Table 4: Cooling water services

External signal services

		Note
External trig	BNC	
Hardwired interface	Socket in MCU	
Modbus TCP	RJ45 connector	

Table 5: External signal services

6.3 Protective/Functional ground

Figure 7: Protective/Functional ground

- A. Protective ground from the power grid is connected to the power terminal inside the PDU (Power Distribution Unit).
- B. Connect a ground braid between the tank lid and klystron body.

Cable type	Cable type	Rating	Standard	Note
A				
В	Cable braid	250V, 80A		

Table 6: Protective/Functional ground

6.4 Water and Cooling

Inside the klystron modulator there are flow switches handling the interlock/monitoring of internal cooling circuits

The flow rates specified on the nameplate is for operation at max power conditions.

There is no need to maintain water cooling when modulator is switched off.

6.5 Cooling Fans

There are internal fans cooling different internal units. On the modulator there are a few ventilation holes. Any installation arrangement close to the unit has to be designed not to interfere nor block the airflow of these ventilation holes.

User Manual, K100

Document No Revision Rev Author Approver Rev Date Status

DOC-000844 04 AC USN 2021-01-20 Approved

6.6 Power - Single/3-Phase

WARNING: All electrical installation should be done by trained personel

WARNING: Always follow local electrical safety regulation for permanently connected equipment

The modulator requires both single and 3-phase to operate.

The single phase is used for control electronics, fans, filament PS and have to be enabled at all time when using the modulator.

The 3-phase is used for the CCPS (Capacitor Charging Power Supply) and oil pump and has to be enabled before changing the modulator state to HV.

Verify the input voltage configuration (115V or 230V single phase, 208V, 400V or 480V 3-phase) on the nameplate before applying any voltage to the system. Applying incorrect voltage will immediately cause major damage and void the waranty.

Cable type	Cable type	Rating	Standard	Note
Single	SOOW alt	115V	UL62	For NA UL-listed
phase	SOW-A/SOW alt	Current depending on		
NA	STOW	configuration, see		
		nameplate		
Single	H07VV-F alt	250V	HAR	<har></har>
phase	H07RN-F alt	Current depending on		
EU	H07BQ-F	configuration, see		
		nameplate		
3-phase	SOOW alt	600V, WV-1	UL62	For NA UL-listed
NA	SOW-A/SOW alt	208V/480V		
	STOW	Current depending on		
		configuration, see		
		nameplate		
3-phase	H07VV-F alt	450/750 Vac, F2	HAR	<har></har>
EU	H07RN-F alt	Current depending on		
	H07BQ-F	configuration, see		
		nameplate		

Table 7: Power – Pulse unit Single/3-Phase

External cables have to be properly secured using a cord ancorage/cord entry/cord bushing making sure no external forces are applied on the connector. If the attachment fails the protective earth conductor should be the last one to take the strain

User Manual, K100

Document No Revision Rev Author Approver Rev Date Status

DOC-000844 04 AC USN 2021-01-20 Approved

6.7 Trig input

TRIG Input	
Input impedance:	50 Ohm.
Input voltage:	5 – 15 Volt.
Pulse width:	1 - 100 us.

Table 8: Trig Input

Note. External trig input via SC fiber will not work if the modulator is configured to use internal trig generation.

Trig through BNC Trig In can be made externally or by looping from internal BNC Trig Out.

6.8 Control Interface

Control Interface	Туре	Description
Connector	Shielded RJ45	
Matting connector/cable	RJ45, CAT 5e/6, FTP or STP	
Protocol	ModBus/TCP	See separate ModBus protocol document for details.

Table 9: Control Interface

User Manual, K100

Document No Revision DOC-000844 04

n Rev Author AC

Approver USN

Rev Date 2021-01-20

Status Approved

7 System Operation

These procedures assume that the modulator is fully installed and able to operate in a normal manner.

Startup procedure

Make sure that the cooling water is circulating in a sufficient high flow. The minimum allowed flow is stated on the nameplate.

Open the PDU door and turn on breaker for 1-phase, located to the right of the Main breaker. Close the door.
Turn on the Main breaker, located on the PDU door.

Figure 8: Main breaker

Wait a few minutes for the built-in computer to start.

Figure 9: Touchscreen for the built-in computer.

Document name
User Manual, K100

Document No DOC-000844 Revision 04

Rev Author AC

Approver USN

Rev Date 2021-01-20

Status Approved

Press and hold the "HV-ON/OFF" button for a few seconds. The power supply will now start up and generate an OK signal to the MCU.

Figure 10: Ion pump front panel

The picture on the touch screen will look similar to the figure on the right.

The modulator may have indicated warnings on external circuits at this point. Make sure that emergency switches, door switches, etc. are giving an ok signal to the modulator.

Figure 11: GUI overview

Set the desired filament current according to klystron manufacturer test protocol

Figure 12: Filament settings

User Manual, K100

Document No Revision DOC-000844 04

 $\begin{array}{ll} \text{Rev Author} & \text{Approver} \\ \text{AC} & \text{USN} \end{array}$

Rev Date 2021-01-20

Status Approved

Press the "STANDBY" button located at the right side of the screen.

If there are warnings, may the system inhibit the modulator from enter a higher state. If this is the case, use the information given in the GUI to locate the problem, solve it and continue.

The modulator will now start a smooth ramp-up of the filament current and the Standby button will start to flash.

The flashing will continue during the filament warm up time, typically 1 hour.

Figure 13: GUI in Standby state

When the filament 'warm up time' has completed, the standby button becomes constant green and the modulator is ready for HV-state.

Set the desired HV voltage.

Figure 14: CCPS voltage setting

Document No DOC-000844

Revision 04

Rev Author AC

Approver USN

Rev Date 2021-01-20 Status Approved

Press HV.

The HV-button will now become green after a few seconds and the SUs will charge up to the given voltage.

Figure 15: HV button

Figure 16: SU pulse width setting

Make sure the trig source is generating the expected pulse repetition frequency.

Set the desired pulse length.

Figure 17:PRF setting

04

DOC-000844

Document name

User Manual, K100

Rev Author AC

Approver USN

Rev Date 2021-01-20 Status Approved

Press trig

The modulator is now generating high voltage pulses to the klystron. The pulse voltage and current can be read out in the GUI.

Figure 19: Tank mode reading

Document name
User Manual, K100

Document No Revision DOC-000844 04

Rev Author AC

Approver USN

Rev Date 2021-01-20

Status Approved

Shutdown to OFF state

The OFF button can be pressed at any time.

When pressing the OFF button, the modulator will turn off each unit in a controlled manner.

Do not cut the main voltage before the OFF button is constant green.

The modulator does not require circulating cooling water in OFF state.

Turn off the main breaker (figure 11) if the modulator is not going to be used in a long time.

Standby

If the modulator is just temporary stopped the "Standby mode" is preferred.

The filament heating power supply is on in Standby mode and no filament heating time is required enter trig state.

Note that this mode requires that the cooling water is circulating.

Figure 20: OFF button

Figure 21: Standby button

User Manual, K100 Rev Author A

Document No Revision DOC-000844 04

 $\begin{array}{ll} \text{Rev Author} & \text{Approver} \\ \text{AC} & \text{USN} \end{array}$

Rev Date 2021-01-20

Status Approved

A brief description of each state is as follow:

State (Code)	Note	
Off (1):	All units except the IPC (Ion Pump Controller) is off	
Standby interlock	As above but some units will indicate interlock	
(2):		
Standby Off Req.	FPS is ramped down, oil pump & fans are stopped.	
(3):		
Standby On Req. (4):	FPS is ramped up, oil pump & fans are started.	
Standby (5):	FPS is at set point, oil pump & fans are running and interlocks	
	circuits are monitored	
HV interlock (6):	As above but some units will indicate interlock	
HV Off Req. (7):	All CCPS and SPS are ramped down and more interlocks circuits	
	are monitored	
HV On Req. (8):	All CCPS and SPS are ramped up and more interlocks circuits are	
	monitored	
HV (9):	All CCPS and SPS are at set point and more interlocks circuits are monitored	
Trig interlock (10):	As above but some units will indicate interlock	
Trig Off Req. (11):	Trigger is blocked, all SU's are disabled and all interlocks circuits are monitored	
Trig On Req. (12):	Trigger is un-blocked, all SU's are enabled and all interlocks	
	circuits are monitored	
Trig (13):	Pulsing & collecting pulse data and all interlocks circuits are	
	monitored	
Table 10: State description		

Table 10: State description

Document No

DOC-000844

Document name

User Manual, K100

 $\begin{array}{ll} \text{Rev Author} & \text{Approver} \\ \text{AC} & \text{USN} \end{array}$

Rev Date 2021-01-20

Status Approved

8 Maintenance

8.1 Safety precautions

Revision

04

Warning – High Voltage: If the 3-phase is disconnected there will still be parts within the unit from the single phase.	
	A total of 2 minutes must be allowed after removing the power, before removing any covers to allow all voltages to discharge.
	Only ScandiNova personnel or by ScandiNova trained personnel may open up the unit for service or maintenance
	All spare parts must be supplied by ScandiNova
	All internal PCB:s should be handled as ESD sensitive components
	Some internal parts may get hot during normal use and in the case of malfunction/interlock

8.2 Periodic maintenance

Cleaning

To clean, disconnect the unit from the AC supply and allow 5min. for discharging internal voltages. The front panel and the metal surfaces should be cleaned using a mild solution of detergent and water. The solution should be applied onto a soft cloth, and not directly to the surface of the unit. Do not use aromatic hydrocarbons or chlorinated solvents for cleaning. Use low pressure compressed air to blow dust from the unit.

Periodic maintenance schedule

Description CCPS	6 months	12 months
Check DC voltage, from GUI, calibrate if >1% devation	χ	Х
Visually inspect DC bus cables for damages on insulation and	Х	Х
connectors		
SU		
Visually inspect Primary Pulse cables for damages on insulation	X	
and connectors		
Check primary pulses at driver board		X
TANK		
Visually inspect primary pulse cables for damages on insulation	X	
and connectors		
Check dehumidifier and replace if necessary		Х
Change oil filter	Х	
Check humidity in oil		Х
COOLING		
Visually inspect water cooling hoses for leakage or degradation	Х	
Visually inspect oil hoses for leakage	Х	

User Manual, K100

Description	6 months	12 months
Check function of oil circulation pumps		X
CONTROL SYSTEM		
Remote check of read value trends	X	X
Verification of klystron current	X	X
Verification of klystron voltage	X	X
Verification of pulse length	X	X
Verification of filament current	X	Х
Verification of bias current	Х	Х
PDU		
Check screw terminal connections and tighten if necessary		X

Table 11: Periodic maintenance

8.3 Basic Troubleshooting

General

This system has a self-diagnostics feature that will indicate potential failures in sub-units. Most parts of this system is active at all-time, but some parts can be activated from the control system as a "built-in self-test".

The all-time activated system is designed as an "interlock system". An interlock inactivates a state (or a set of states) that is not available under the current conditions. Note that an interlock is not the same as an error, an interlock is a protection for the operator, the modulator or its load. Interlocks are designed to prevent faults to occur.

The interlocks can be divided into three groups:

- Warning, will not stop the system but can prevent the system to go to higher state.
- **Non-latched interlock,** will not require a "reset action" from the operator after the condition has changed into a allowed state.
- Latched interlock, will require a "reset action" from the operator when the condition that have caused the interlock has change into a allowed condition.

A recommended troubleshooting approach is to:

- 1. Get information about active interlocks in the control system.
- 2. Find information about how these interlocks work in this manual, in ScandiCAT Control System manual (000364), the F1 Toggle Help, wiring diagrams or by contact with ScandiNova.

User Manual, K100

Document No Revision DOC-000844 04

Rev Author AC

Approver Rev Date USN 2021-01-20

Status Approved

Finding active interlocks

Figure 22: Active interlock a few seconds after it appeared.

An active interlock will appear a few seconds in the top row of the GUI. The information provided is:

Туре	Warning
	Interlock
Timestamp	YYYY-MM-DD HH:mm:SS:hh
_	Where:
	YYYY = Year
	MM = Month
	DD = Day in month
	HH = Hour
	mm = Minute
	SS = Second
	hh = hundreds of second

User Manual, K100

Document No Revision DOC-000844 04

Rev Author AC

Approver USN

Rev Date 2021-01-20 Status Approved

If MultDi (multiple digital inputs) interlocks appear, the trigging bit can be found in View **Bits**

Figure 23: View bits button

Event log will keep track of warnings, interlocks, state changes, parameter changes, etc.

Figure 24: Interlock displayed in 'Eventlog'-tab

Figure 25: The modulator indicates active warnings.

, User Manual, K100

Document No Revision DOC-000844 04

Author Approver PB USN

Date

2014-12-19 (Approved)

Appendix A Product Compliance (EMC and Safety)

The system is designed according to:

LVD

• EN/(IEC) 61010-1:2010 "Safety requirements for electrical equipment for measurement, control, and laboratory use – Part 1: General requirements"

EMC

- EN/(IEC) 61000-6-2:2005 "Electromagnetic compatibility (EMC) Part 6-2: Generic standards Immunity for industrial environments"
- EN/(IEC) 61000-6-4:2007+A1 "Electromagnetic compatibility (EMC) Part 6-4: Generic standards Emission standard for industrial environments"
- EN/(IEC) 61326-1:2006 "Electrical equipment for measurement, control and laboratory use EMC requirements Part 1: General requirements"

CONFIDENTIAL INFORMATION

The information contained in this document is of a proprietary and confidential nature and is intended only for the persons to whom it is directly transmitted by ScandiNova Systems AB. Any reproduction of this document, in whole or part, or the divulgence of any of its contents without the prior written consent of ScandiNova Systems AB is prohibited. This document is subject to change without notice.

File name: Page: DOC-000844-04 29 (29)