TERMODINÁMICA

Nombre	Grupo

Problema – 1 (4 puntos)

Un ciclo combinado cuenta con un ciclo de gas Siemens SGT-8000H en el que el aire (R = 287 J/kg-K) entra al compresor a 15°C y 1 bar y a la turbina a 1430°C, saliendo de la misma a 627°C. El gasto másico de aire es de 935 kg/s. El ciclo de vapor carece de recalentamiento y dispone de un calentador abierto, alimentado por una extracción de la turbina a 25 kPa. El vapor entra en la turbina a 80 bar y 550°C (en ese estado su entropía es de 6,87994 kJ/kg-K). El condensador trabaja a 5 kPa. La exergía destruida en la caldera de recuperación es de 38771 kW. La presión a la salida de la caldera de recuperación es de 1 bar. El agua sale tanto del calentador abierto como del condensador como líquido saturado.

Todas las turbomáquinas son adiabáticas, siendo el rendimiento del compresor del 83% y el de las dos turbinas (gas y vapor) del 91%. El rendimiento de las bombas se considera 100%. El rendimiento de la turbina de vapor se define entre su entrada y su salida al condensador, considerando que la expansión en la misma es una recta en el diagrama de Mollier entre la entrada y la salida al condensador.

Se desprecian las pérdidas de presión en intercambiadores y conductos. Se desprecia el gasto másico del combustible, de modo que se considera que por la turbina de gas circula aire. El aire se considera gas ideal (tablas adjuntas). La entalpía del líquido comprimido se considera dependiente sólo de la temperatura.

Determinar:

- a) Esquema del ciclo combinado
- b) Presión de impulsión del compresor
- c) Rendimiento del ciclo de gas
- d) Potencia producida por el ciclo de gas
- e) Rendimiento del ciclo de vapor
- f) Temperatura de salida del aire de la caldera de recuperación. Se sabe que es inferior a 220°C
- g) Gasto másico de vapor
- h) Rendimiento del ciclo combinado

Tómese el estado muerto a 15°C y 100 kPa

Tablas del agua saturada (líquido - vapor)

Tabias uci agua saturaua (nquiuo – vapor)							
р	Т	Vf	Vg	h _f	hg	Sf	Sg
[bar]	[°C]	[m³/kg]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]
0,02	17	0,00100136	66,99	73,4	2530	0,260577	8,72263
0,05	33	0,00100533	28,19	138	2560	0,476202	8,39379
0,1	46	0,00101028	14,67	192	2580	0,649191	8,14881
0,15	54	0,00101405	10,02	226	2600	0,754859	8,00708
0,2	60	0,00101716	7,648	251	2610	0,832015	7,90723
0,25	65	0,00101985	6,203	272	2620	0,893187	7,83018
0,3	69	0,00102224	5,229	289	2620	0,944067	7,76749
0,5	81	0,00102993	3,240	341	2650	1,09120	7,59304
1	100	0,00104316	1,694	418	2670	1,30276	7,35891
20	210	0,00117672	0,09959	908	2800	2,44670	6,33902
40	250	0,00125241	0,04978	1090	2800	2,79657	6,06961
60	280	0,00131900	0,03245	1210	2780	3,02747	5,89015
80	300	0,00138430	0,02352	1320	2760	3,20769	5,74496
100	310	0,00145219	0,01803	1410	2730	3,36027	5,61587

Nota: los estados del vapor en las entradas/salidas de la turbina se determinarán mediante el diagrama de Mollier, a excepción de la entropía a la entrada de la turbina, cuyo valor se da en el texto.

Nota: Redondear la entalpía a la cincuentena más próxima.

Tablas del aire como gas ideal

Tablas del aire como gas ideal							
Τ	h	s ⁰	p_r	Т	h	s ⁰	p_r
[K]	[kJ/kg]	[kJ/kg-K]	[-]	[K]	[kJ/kg]	[kJ/kg-K]	[-]
270	-3,161	-0,0116412	0,96025	630	365,5	0,852290	19,479
275	1,857	0,00677503	1,0239	635	370,8	0,860659	20,055
280	6,876	0,0248625	1,0905	640	376,1	0,868971	20,644
285	11,90	0,0426330	1,1601	645	381,4	0,877227	21,247
290	16,92 21,94	0,0600980	1,2329	650 655	386,7	0,885430 0,893579	21,863 22,492
295 300	26,96	0,0772680 0,0941533	1,3089 1,3882	655 660	392,0 397,3	0,893579	23,136
305	31,99	0,110794	1,4711	665	402,7	0,909720	23,793
310	37,01	0,127164	1,5574	670	402,7	0,909720	24,465
315	42,04	0,143273	1,6473	675	413,3	0,925657	25,152
320	47,07	0,159130	1,7409	680	418,7	0,933551	25,853
325	52,10	0,174741	1,8382	685	424,0	0,941395	26,570
330	57,13	0,190116	1,9393	690	429,4	0,949192	27,301
335	62,16	0,205261	2,0444	695	434,8	0,956941	28,048
340	67,20	0,220184	2,1535	700	440,1	0,964643	28,811
345	72,24	0,234892	2,2668	705	445,5	0,972299	29,590
350	77,28	0,249391	2,3842	710	450,9	0,979910	30,385
355	82,32	0,263687	2,5060	715	456,3	0,987475	31,196
360	87,36	0,277787	2,6321	720	461,7	0,994997	32,025
365	92,41	0,291696	2,7628	725	467,1	1,00247	32,870
370	97,46	0,305421	2,8981	730	472,5	1,00991	33,732
375	102,5	0,318966	3,0382	735	477,9	1,01730	34,612
380	107,6	0,332337	3,1831	740	483,3	1,02465	35,510
385	112,6	0,345538	3,3329	745	488,7	1,03196	36,426
390	117,7	0,358575	3,4877	750	494,2	1,03923	37,360
395	122,7	0,371452	3,6478	755	499,6	1,04645	38,313
400	127,8	0,384174	3,8131	760	505,1	1,05364	39,284
405	132,9	0,396744	3,9838	765	510,5	1,06079	40,275
410	137,9	0,409167	4,1600	770	516,0	1,06790	41,285
415	143,0	0,421448	4,3418	775	521,4	1,07497	42,314
420 425	148,1 153,2	0,433588 0,445593	4,5294 4,7229	780 785	526,9	1,08200 1,08899	43,364
430	153,2	0,445593	4,7229	790	532,4 537,8	1,08899	44,433 45,524
435	163,4	0,469210	5,1279	795	543,3	1,10287	46,635
440	168,4	0,480828	5,3397	800	548,8	1,10207	47,767
445	173,5	0,492324	5,5579	805	554,3	1,11661	48,920
450	178,6	0,503700	5,7826	810	559,8	1,12342	50,096
455	183,7	0,514960	6,0140	815	565,3	1,13020	51,293
460	188,9	0,526106	6,2521	820	570,8	1,13694	52,512
465	194,0	0,537141	6,4972	825	576,3	1,14366	53,754
470	199,1	0,548068	6,7493	830	581,9	1,15033	55,019
475	204,2	0,558889	7,0086	835	587,4	1,15697	56,308
480	209,3	0,569606	7,2752	840	592,9	1,16358	57,619
485	214,5	0,580222	7,5493	845	598,5	1,17016	58,955
490	219,6	0,590739	7,8311	850	604,0	1,17671	60,315
495	224,7	0,601160	8,1206	855	609,6	1,18322	61,699
500	229,9	0,611486	8,4181	860	615,1	1,18970	63,108
505	235,0	0,621719	8,7236	865	620,7	1,19615	64,542
510	240,2	0,631862	9,0374	870	626,3	1,20257	66,002
515	245,3	0,641916	9,3595	875	631,8 637,4	1,20896	67,487
520 525	250,5 255,7	0,651883 0,661765	9,6903 10,030	880 885	643,0	1,21532 1,22164	68,999 70,537
530	255,7 260,9	0,661765	10,030	890	648,6	1,22794	70,537
535	266,0	0,681282	10,376	895	654,2	1,23421	73,694
540	271,2	0,690919	11,102	900	659,8	1,24045	75,313
545	276,4	0,700478	11,478	905	665,4	1,24666	76,961
550	281,6	0,709960	11,863	910	671,0	1,25284	78,636
555	286,8	0,719367	12,259	915	676,6	1,25900	80,341
560	292,0	0,728699	12,664	920	682,2	1,26512	82,074
565	297,2	0,737959	13,079	925	687,9	1,27122	83,836
570	302,4	0,747148	13,504	930	693,5	1,27729	85,628
575	307,7	0,756266	13,940	935	699,1	1,28334	87,451
580	312,9	0,765316	14,387	940	704,8	1,28936	89,303
585	318,1	0,774299	14,844	945	710,4	1,29535	91,187
590	323,4	0,783215	15,313	950	716,1	1,30131	93,101
595	328,6	0,792066	15,792	955	721,7	1,30725	95,047
600	333,9	0,800853	16,283	960	727,4	1,31316	97,025
605	339,1	0,809577	16,786	965	733,1	1,31905	99,035
610	344,4	0,818239	17,300	970	738,8	1,32491	101,08
615	349,7	0,826841	17,826	975	744,4	1,33074	103,15
620	354,9	0,835383	18,365	980	750,1	1,33655	105,26
625	360,2	0,843865	18,915	985	755,8	1,34234	107,41

Tablas del aire como gas ideal

Tablas del aire como gas ideal							
T	h	S ⁰	p_r	T	h	S ⁰	p _r
[K]	[kJ/kg]	[kJ/kg-K]	[-]	[K]	[kJ/kg]	[kJ/kg-K]	[-]
990 995	761,5 767,2	1,34810 1,35384	109,59 111,80	1350 1355	1182 1188	1,70988 1,71430	386,50 392,49
1000	772,9	1,35955	114,05	1360	1194	1,71869	398,55
1005	778,6	1,36524	116,33	1365	1200	1,72308	404,68
1010	784,3	1,37091	118,65	1370	1206	1,72745	410,89
1015	790,0	1,37655	121,00	1375	1212	1,73181	417,18
1020	795,7	1,38217	123,40	1380	1218	1,73615	423,54
1025	801,5	1,38776	125,82	1385	1224	1,74048	429,98
1030	807,2	1,39334	128,29	1390	1230	1,74480	436,49
1035	812,9	1,39889	130,80	1395	1236	1,74910	443,08
1040 1045	818,7 824,4	1,40442 1,40992	133,34 135,92	1400 1405	1242 1248	1,75339 1,75767	449,76 456,51
1045	830,2	1,41541	138,54	1410	1254	1,76193	463,34
1055	835,9	1,42087	141,21	1415	1260	1,76618	470,25
1060	841,7	1,42631	143,91	1420	1266	1,77042	477,24
1065	847,4	1,43173	146,65	1425	1272	1,77464	484,32
1070	853,2	1,43712	149,43	1430	1278	1,77885	491,48
1075	859,0	1,44250	152,26	1435	1284	1,78305	498,72
1080	864,8	1,44786	155,13	1440	1290	1,78724	506,05
1085	870,5	1,45319	158,04	1445	1296	1,79141	513,46
1090	876,3	1,45850 1,46380	160,99	1450	1302	1,79557	520,96 528,54
1095 1100	882,1 887,9	1,46380 1,46907	163,99 167,03	1455 1460	1308 1314	1,79972 1,80386	528,54
1105	893,7	1,47432	170,11	1465	1320	1,80798	543,97
1110	899,5	1,47956	173,24	1470	1326	1,81209	551,82
1115	905,3	1,48477	176,42	1475	1332	1,81619	559,75
1120	911,1	1,48996	179,64	1480	1339	1,82028	567,78
1125	916,9	1,49513	182,90	1485	1345	1,82435	575,90
1130	922,7	1,50029	186,22	1490	1351	1,82842	584,11
1135	928,5	1,50542	189,58	1495	1357	1,83247	592,41
1140 1145	934,4	1,51054	192,99	1500	1363	1,83651	600,81
1150	940,2 946,0	1,51564 1,52071	196,45 199,95	1505 1510	1369 1375	1,84053 1,84455	609,30 617,88
1155	951,9	1,52577	203,51	1515	1381	1,84855	626,56
1160	957,7	1,53081	207,11	1520	1387	1,85255	635,34
1165	963,6	1,53584	210,77	1525	1393	1,85653	644,22
1170	969,4	1,54084	214,48	1530	1399	1,86050	653,19
1175	975,3	1,54583	218,23	1535	1405	1,86446	662,26
1180	981,1	1,55080	222,04	1540	1411	1,86840	671,43
1185	987,0	1,55575	225,91	1545	1417	1,87234	680,70
1190	992,8	1,56068 1,56559	229,82	1550	1423 1429	1,87627	690,07
1195 1200	998,7 1005	1,56559	233,79 237,82	1555 1560	1436	1,88018 1,88408	699,55 709,12
1205	1010	1,57537	241,89	1565	1442	1,88797	718,80
1210	1016	1,58023	246,03	1570	1448	1,89185	728,59
1215	1022	1,58508	250,22	1575	1454	1,89572	738,48
1220	1028	1,58991	254,46	1580	1460	1,89958	748,47
1225	1034	1,59472	258,76	1585	1466	1,90343	758,58
1230	1040	1,59952	263,12	1590	1472	1,90727	768,79
1235	1046	1,60430	267,54	1595	1478	1,91110	779,11
1240 1245	1052 1058	1,60906 1,61381	272,02 276.55	1600 1605	1484 1490	1,91491 1,91872	789,54 800,08
1245	1058	1,61381 1,61853	276,55 281,15	1610	1490	1,91872	810,73
1255	1069	1,62325	285,80	1615	1503	1,92630	821,49
1260	1075	1,62795	290,52	1620	1509	1,93008	832,36
1265	1081	1,63263	295,30	1625	1515	1,93384	843,35
1270	1087	1,63729	300,13	1630	1521	1,93760	854,46
1275	1093	1,64194	305,04	1635	1527	1,94134	865,68
1280	1099	1,64658	310,00	1640	1533	1,94508	877,01
1285	1105	1,65120	315,03	1645	1539	1,94880	888,47
1290	1111 1117	1,65580	320,12	1650	1545	1,95251	900,04
1295 1300	1117	1,66039 1,66496	325,28 330,51	1655 1660	1552 1558	1,95622 1,95991	911,73 923,54
1305	1129	1,66952	335,80	1665	1564	1,96360	935,47
1310	1135	1,67406	341,16	1670	1570	1,96727	947,53
1315	1141	1,67859	346,58	1675	1576	1,97094	959,70
1320	1147	1,68311	352,07	1680	1582	1,97459	972,00
1325	1152	1,68761	357,64	1685	1588	1,97824	984,43
1330	1158	1,69209	363,27	1690	1595	1,98187	996,98
1335	1164	1,69656	368,97	1695	1601	1,98550	1009,7
1340	1170	1,70102	374,74	1700	1607	1,98912	1022,5
1345	1176	1,70546	380,58	1705	1613	1,99273	1035,4

Cido de ques

$$0.91 = \frac{h_3 - h_4}{h_3 - h_{45}}$$
 $h_3 = 1610, 6 \text{ KJ/Ky}$
 $h_4 = 65-9.8 \text{ KJ/Ky}$
 $h_{11} = 1030, 24$

$$\frac{P_3}{L} = \frac{1030.24}{51.396} \Rightarrow P_3 = 20.045 \text{ bor}$$

Pri = 1,20378; h, = 14,912 KJ/ky

$$\frac{P_{r2s}}{1,20878} = \frac{20,045}{1} = P_{r2s} = 24,12993$$

$$h_{2s} = 405,357 \text{ kJ/ky}$$

$$\frac{\dot{W}_{CG}}{\dot{W}_{CG}} = 935 \left[(1610, 6 - 659, 8) - (485, 328 - 14, 912) \right] = \frac{449159, 36}{1052129, 32} \times W$$

$$\frac{\dot{U}_{CG}}{\dot{U}_{CG}} = 935 \left(1610, 6 - 485, 328 \right) = 1052129, 32 \times W$$

$$\frac{\dot{U}_{CG}}{\dot{U}_{CG}} = \frac{449159, 36}{1052129, 32} = \frac{436976}{1052129, 32}$$

16 = 3500 KJ 1Ky 186 = 2100 KJ 1Ky

$$0.91 = \frac{3500 - h8}{3500 - 2100}$$

$$h8 = 2226 k 1/ky$$

$$h7 = 2400 k 7/ky$$

hq = 138 kJ/ky $Vq = 0.00100533 \text{ m}^3/ky$ $Vno = 138 + 0.00100533 (0.25 - 0.05)100 = 138,024631 \frac{kJ}{ky}$ hni = 272 kJ/ky $Vni = 0.00101985 \text{ m}^3/ky$ Vni = 272 + 0.00101985 (80 - 0.25)100 = 280,1333 kJ/ky hni = 272 + 0.00101985 (80 - 0.25)100 = 280,1333 kJ/ky hni = 272 + 0.00101985 (80 - 0.25)100 = 280,1333 kJ/ky hni = 272 + 0.00101985 (80 - 0.25)100 = 280,1333 kJ/ky hni = 272 + 0.00101985 (80 - 0.25)100 = 280,1333 kJ/ky hni = 272 + 0.00101985 (80 - 0.25)100 = 280,1333 kJ/ky hni = 272 + 0.00101985 (80 - 0.25)100 = 280,1333 kJ/ky hni = 272 + 0.00101985 (80 - 0.25)100 = 280,1333 kJ/ky hni = 272 + 0.00101985 (80 - 0.25)100 = 280,1333 kJ/ky hni = 272 + 0.00101985 (80 - 0.25)100 = 280,1333 kJ/ky hni = 272 + 0.00101985 (80 - 0.25)100 = 280,1333 kJ/ky hni = 272 + 0.00101985 (80 - 0.25)100 = 280,1333 kJ/ky hni = 272 + 0.00101985 (80 - 0.25)100 = 280,1333 kJ/ky hni = 272 + 0.00101985 (80 - 0.25)100 = 280,1333 kJ/ky hni = 272 + 0.00101985 (80 - 0.25)100 = 280,1333 kJ/ky 2400 - 438,024631 = 0.059229

$$W_{CV} = 3500 - 0.05923 \times 2400 - (1-0.05923) 2226 -$$

$$-(1-0.05923)(0.024631) - 8,1333 =$$

$$= 1255,54 \times 31/ky$$

$$= 1255,54 \times 31/ky$$

Coldere de recuperación

Coldera
$$w$$

 $935(659.8 - hr) = wv \cdot 3219,867$
 $wv = 191,5958 - 0.290385 hr (1)$

$$\dot{I}_{CR} = 38771 = 288 \times 935 (N_5^{\circ} - N_4) + 288 \text{ mv} (A_6 - A_{12})$$

$$\frac{38771}{288} = 935 \Lambda_{5}^{\circ} - 1159,8208 + \text{niv} 5'962411$$

$$\frac{38771}{288} = 935 \Lambda_{5}^{\circ} - 217,100482 - 156,8158 \Lambda_{5}^{\circ} (2)$$

combinando (1) con (2):

	.2 10	1 290385 h5
	52,204685 - 126,81287°	+ 0, - 10
+(12)=0=	23,3010.	

) آ	t(12)
Tr	N 5	·	5, 910766
270	97,46	0,305421	-2,62 5386
370 470	199,1	0.503700	-1,62 0675
450	178,6	0,457466	-0,265269
1430	11-8,3	0,445-593	+ 0,115641
425	153,2	. 53	2 [-0,11564
		158.3 - 100	1-0,1110.

$$h_{5} - 153.2 = \frac{158.3 - 153.2}{-0.265269 - 0.115641} \left(-0.115641\right)$$

entrando en (1) o (2): mir = 146,6592 kg/s

$$T_{5} - 425 = \frac{430 - 425}{-0.265269 - 0.115641} (-0.115641)$$

Wcv = 146,65-92 × 1255,54 = 184136,5 KW

$$\int_{CC} = \frac{449159,36 + 184136,5}{1052129,32} = \frac{60.19\%}{1052129,32}$$

TERMODINÁMICA

Nombre______Grupo____

Problema – 2 (3 puntos)

Un motor de encendido provocado Jenbacher JMS 620 de cuatro tiempos tiene 20 cilindros de 190 mm de diámetro y 220 mm de carrera cada uno. La relación de compresión es de 11. En su punto nominal gira a 1500 rpm, produciendo una potencia efectiva de 3029 kW. El combustible es gas natural (PCI = 47880 kJ/kg; Fe = 1/14,5), que se alimenta al motor con un dosado relativo de 0,4495. Los gases de escape salen del motor a 427°C con un gasto másico de 17867 kg/h.

Las condiciones del cilindro al comienzo de la carrera de compresión son de 45°C y 265 kPa. El ciclo de aire equivalente se toma como un ciclo Otto, siendo el rendimiento indicado del motor un 89% del rendimiento de dicho ciclo equivalente. El aire se considera gas perfecto (R = 287 J/kg-K; $\gamma = 1,4$).

Determinar:

- a) Consumo específico efectivo
- b) Presión media indicada del motor
- c) Rendimiento mecánico

Formulario:

$$\alpha = \frac{p_3}{p_2} \quad \beta = \frac{v_{3A}}{v_3}$$

$$q_{23A} = \frac{R \cdot T_1 \cdot r^{\gamma - 1}}{\gamma - 1} \left[\alpha - 1 + \alpha \cdot \gamma \cdot (\beta - 1) \right]$$

$$pmi = p_1 \cdot \left(\frac{r}{r-1}\right) \frac{r^{\gamma-1} \left\{1 - \alpha \cdot \left[1 + \cdot \gamma \cdot \left(\beta - 1\right)\right]\right\} + \alpha \cdot \beta^{\gamma} - 1}{1 - \gamma}$$

$$2 = 20; 4T; MEP$$

$$0 = 1400 \text{ mm}$$

$$L = 220 \text{ mm}$$

$$61N \left[PCT = 47870 \text{ kJ/Mg} \right]$$

$$F = 1/14.\Gamma$$

$$T = 447C; P_1 = 267 \text{ kPa}$$

$$T = 427C$$

$$0 + 10; \beta = 1$$

$$Pmi^{ido} = 2.65 \left(\frac{11}{10}\right) \frac{11^{0.4} \{1-x\} + x-1}{1-1.4} = 28,36 \text{ hor}$$

$$I_{ado} = \frac{2836.0917 \times 0.4 (1-1.4)}{1439.65 \times 1.439.65} = \frac{2836.0917 \times 0.4 (1-1.4)}{265} = \frac{2836.0917 \times 0.4 (1-1.4)}{265} = 0.616 +87$$

$$I_{i}^{M} = 0.89 \times 0.616 +87 = 0.548939$$

$$Vi = 0.548939 \times 0.149227 \times 47800 = 3922.16 \text{ kW} = \frac{3922.16}{200} = \frac{3922.16}{200} \times \frac{3922.16}{200} = \frac{3922.16}{200} \times \frac{3922.16}{200} = \frac{3$$

TERMODINÁMICA

NT 1	
Nombre	Grupo

Problema – 3 (3 puntos)

La figura adjunta representa una bomba de calor que se emplea para climatizar una vivienda en invierno, por lo que sus productos útiles son el calor que se cede a la instalación de calefacción (CAL, considerada un foco a 50°C) y el que se cede a la instalación de agua caliente sanitaria (ACS, considerada un foco a 60°C). El ambiente exterior (AMB) se considera un foco a 5°C, siendo esta temperatura la del estado muerto.

La bomba funciona consumiendo 6,5 kW que se emplean para accionar el compresor adiabático. El estado termodinámico de los puntos 1 a 5 se da en la tabla adjunta. Determinar:

- a) COP
- b) Irreversibilidad interna
- c) Exergía destruida total
- d) Eficiencia exergética
- e) Diagrama de Sankey (exergías) de la instalación, detallando todos los componentes (sin indicación numérica de los flujos)
- f) COP que tendría una bomba totalmente reversible operando entre los mismos focos y produciendo la misma cantidad de calor útil (CAL y ACS)

Propiedades de los puntos

		-	-	
	р	Т	h	S
	[bar]	[°C]	[kJ/kg]	[kJ/kg-K]
1	2,435	-5	247,5	0,9343
2	14,92	69,45	294,7	0,9622
3	14,92	55	277	0,9093
4	14,92	55	131,3	0,4654
5	2,435	-5	131,3	0,5011

$$\dot{W}_{c} = \dot{w} \left(h_{2} - h_{1} \right) \rightarrow \dot{w} = \frac{6.5}{294.7 - 247.5} = 0.1377 \text{ Ky/A}$$

$$\dot{Q}_{col} = 0.1377 \left(277 - 134.3 \right) = 20.065 \text{ KW}$$

$$\dot{Q}_{ACS} = 0.1377 \left(294.7 - 277 \right) = 2.4375 \text{ KW}$$

$$\frac{\cos 4}{\cos 2} = \frac{\cos 4 + \cos 4}{\sin 2} = \frac{20,065 + 2,43}{6.5} = \frac{3,462}{6.5}$$

$$\overline{T}_{51} = \frac{131.3 - 247.5}{0.5011 - 0.9343} = 268.24 K$$

$$\overline{T}_{23} = \frac{294.7 - 277}{0.9622 - 0.9093} = 334,59K$$

$$T_{34} = \frac{277 - 131,3}{0.9093 - 0.4654} = 328,23 K$$

$$Sgen = \frac{2,4377}{334,59} + \frac{20,0642}{328,23} - \frac{16,002}{268,24} = 0,008758 KW$$

Damb + Wc = dAcs + dcal -> damb = 16,0017 KW

$$\frac{dSu}{dz} = \tilde{Sgen} = \frac{-\tilde{Qaub}}{Taub} + \frac{\tilde{QAcs}}{TAcc} + \frac{\tilde{Qcol}}{T\omega l} = \frac{-16.0017}{278} + \frac{2.437\Gamma}{333} + \frac{20.0642}{323} = 0.011878 \frac{kw}{K}$$

$$\tilde{I}_{TOT} = T_0 \tilde{Sgen} = \frac{3.3021}{3.3021} \times \frac{1}{323} \times \frac{1}{323} = 0.011878 \frac{kw}{K}$$

$$\tilde{I}_{TOT} = T_0 \tilde{Sgen} = \frac{3.3021}{6.5} \times \frac{1}{323} \times \frac{1}{323} = 0.011878 \frac{kw}{K}$$

$$\tilde{I}_{TOT} = \frac{1}{100} = \frac{6.5 - 3.3021}{6.5} \times \frac{1}{100} = \frac{1}{100} \times$$

$$\frac{dSu}{d2} = 0 = \frac{\mathring{Q}_{CAL}}{\mathring{T}_{avg}} + \frac{\mathring{Q}_{Avg}}{\mathring{T}_{Avg}} - \frac{\mathring{Q}_{Avg}}{\mathring{T}_{Avg}}$$

$$\mathring{Q}_{Avg}^{*} = 2 + 8 \left[\frac{20,0642}{323} + \frac{2,437}{333} \right] = 19,3038 \text{ kW}$$

$$\dot{W}_{c}^{*} = 20.0642 + 2.437T - 19.8038 = 3.1979 \text{ KW}$$

$$\frac{20.0642 + 2.437T}{3.1979} = \frac{7.0369}{3.1979}$$

se compruelme d'uni:

$$\varphi = 0.492 = \frac{COP}{COPveV} = \frac{3.462}{7,0364} = 0.492 VV$$