

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Adress: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/660,254	09/11/2003	Eric D. Groen	X-1359 US	5349
24309	7590	10/30/2009		
XILINX, INC			EXAMINER	
ATTN: LEGAL DEPARTMENT			VLAHOS, SOPHIA	
2100 LOGIC DR			ART UNIT	PAPER NUMBER
SAN JOSE, CA 95124			2611	
		MAIL DATE	DELIVERY MODE	
		10/30/2009	PAPER	

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No. 10/660,254	Applicant(s) GROEN ET AL.
	Examiner SOPHIA VLAHOS	Art Unit 2611

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
 - If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
 - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 02 September 2009.
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1,3-6,8-14 and 18-23 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1,3-6,8-14 and 18-23 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on 11 September 2003 is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- 1) Notice of References Cited (PTO-892)
 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
 3) Information Disclosure Statement(s) (PTO/SB/08)
 Paper No(s)/Mail Date _____
- 4) Interview Summary (PTO-413)
 Paper No(s)/Mail Date _____
 5) Notice of Informal Patent Application
 6) Other: _____

DETAILED ACTION

Response to Arguments

1. Applicant's arguments filed 9/02/09 have been fully considered but they are not persuasive.

Addressing the rejection of claims 10-11, under 35 U.S.C. 102 as being unpatentable over Mahajan et al. (U.S. 6,618,358) Applicant argues (last paragraph on page 8 of "Remarks" section):

"The Applicant's note that Mahajan does not disclose that the free running oscillator clock signal is a reference clock signal. At best, Mahajan discloses that the free clock signal is provided as an input to a demultiplexor whose output is a reference clock signal. However, at the point at which the demultiplexor makes its selection, no reference clock signal yet exists. Thus, the demultiplexor cannot select from among a plurality of recovered clocks and a reference clocks, as do the clock based functionalities recited in claim 10."

Examiner Response:

Examiner disagrees with Applicant that the free running oscillator of Mahajan is not a reference clock signal. Regarding the nature of the "reference clock" Applicant's specification discloses the following: ¶0054 discloses a transmit reference clock being merely a clock, perhaps a recovered clock, and ¶0064 discloses a crystal oscillator being used to generate a reference signal. Based on the above, Examiner has

interpreted the limitation "reference clock" of claim 10, to refer to merely a clock signal such as the free run OSC of Mahajan. Column 1, lines 59-61 disclose: "DMUX 34 selects one of the primary PRI, secondary SEC or free running oscillator OSC inputs for output as a SELECTED CLK signal under control of a SELECTION CONTROL signal." The PRI and SEC clock signals are recovered clock signals, column 1, lines 51-58.

For at least the above reason, the rejection of claims 10-11 as anticipated by Mahajan et al. is maintained.

Addressing the rejection of claims 1, 4-6, 19-22 under 35 U.S.C. as being unpatentable over Mahajan et al. (U.S. 6,618, 358) in view of Peace (U.S. 6,687,260) and Mindspeed document ("T1/E1 Framer and Line Interface Bt8379") Applicant argues (pages 9-11 section A).

"As discussed above, Mahajan does not disclose or suggest at least "wherein each of the plurality of clock based functionalities performs processing of one of the first serial data and the second serial data in accordance with a clock chosen from among the first recovered clock, the second recovered clock and the reference clock," as recited in claim 1. In addition, for reasons similar to those provided above with respect to claim 1, Applicants submit that independent claims 6, 19, and 22 are patentable over Mahajan. As discussed in greater detail below, Peace and Mindpseed fail to bridge this gap in the teachings of Mahajan."

"...Namely, Peace, like Mahajan, does not teach or suggest processing serial data in accordance with a clock chosen from among a plurality of recovered clocks and the reference clock. In contrast, the I/O processor taught by Peace, which the Examiner appears to equate with the claimed "clock based functionality," merely processes serial data but does not select a clock from among recovered clocks for use in the processing. Peace does not even describe or illustrate a component for selecting a clock."

"Minspeed teaches a framer and line interface for T1/E1 and Integrated Service Digital Network (ISDN) primary rate interfaces. The framer and line interface combines a framer and transmit/receive slip buffers with an on-chip short/long-haul physical line interface.

Minspeed, however, does not teach each and every element of Applicants' independent claims 1, 6, 19, and 22. Namely, Minspeed, like Peace and Mahajan, does not teach or suggest processing serial data in accordance with a clock chosen from among a plurality of recovered clocks and the reference clock. In contrast, Minspeed teaches a clock rate adapter but does not describe the adapter in detail."

Examiner Response:

As explained above, Examiner disagrees with Applicant that the free running oscillator of Mahajan is not a reference clock signal. Therefore Applicant's arguments

arguing Mahajan does not discloses a reference clock signal are not persuasive, for reasons similar to those discussed above.

The secondary reference to Peace, U.S. 6,687,260 was cited in the 35 U.S.C 103(a) rejection of claim 1, as it discloses that T1/E1 signals are serial data streams. The primary reference to Mahajan discloses a system which processes signals transmitted on T1/E1 transmission lines (column 1, lines 14-18, 19-22, 31-40) but does not expressly disclose the data streams transmitted on the T1/E1 lines are serial data (streams).

Examiner has not equated the I/O processor of Peace with a "clock based functionality". It is the primary reference to Mahajan which is seen (as explained above to disclose) a clock based functionality (comprising blocks 252, 254 and the circuit which receives the selected clock which is used for subsequent processing, by a data switch, Mahajan et al., column 1, lines 58-65). Peace discloses that T1/E1 signals are serial data streams, which is not taught by Mahajan et al.

The Mindspeed document is relied upon as it discloses a plurality of clock based functionalities (each of the Bt8370 transceiver chips or data transferring chips, each of them is a clock based functionality).

Considering the teachings of Mahajan et al. see column 1, lines 61-64, i.e. that the selected clock can be used as a data transfer clock, the transceivers of the Mindspeed documents are capable of performing such data transfer. The rationale to

use a plurality of clock based functionalities (for example use for transceiver chips such as the quad configuration shown on page 3), is to safeguard against using a case where one or more transceivers in the network access server of Mahajan, are faulty.

Finally, in response to applicant's arguments against the references individually, one cannot show nonobviousness by attacking references individually where the rejections are based on combinations of references. It is the modified reference (based on Peace and the Mindspeed document) to Mahajan et al. which discloses all of the claimed limitations of claims 1, 4-6, 19-22

See *In re Keller*, 642 F.2d 413, 208 USPQ 871 (CCPA 1981); *In re Merck & Co.*, 800 F.2d 1091, 231 USPQ 375 (Fed. Cir. 1986).

For at least the above reasons, the rejection of claims 1, 4-6 and 19-22 as being unpatentable over Mahajan (U.S. 6,618,358) in view of Peace (U.S. 6,687,260) and the Mindspeed document is maintained.

In Sections B, C, D, E, and F of the Remarks Applicant addresses the various 35 U.S.C. 103(a) rejections of claims 3, 8-9, 12, 13, 14-16. The reference to Mahajan was used as the primary reference in the various 35 U.S.C 103(a) rejections of the aforementioned claims and Applicant has presented arguments similar to those presented for claim 1 (and/or claim 10).

However as explained above Applicant's arguments addressing the rejections of claims 1 (and 10) are not persuasive as a result of which the 35 U.S.C rejections of claims 3, 8-9, 12-13, 14-16 is also maintained.

Claim 23 has been amended to include the limitations "and a reference clock" in line 8 of the claim and the limitation "and the reference clock" in the last line of the claim. Claim 23 is still rejected under 35 U.S.C 103(a) with the Mahajan used as the primary reference. The reference to Mahajan is at least seen to disclose selection of a clock signal from among a plurality of recovered clocks and a reference clock (the free run OSC clock).

Claim Rejections - 35 USC § 102

2. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(a) the invention was known or used by others in this country, or patented or described in a printed publication in this or a foreign country, before the invention thereof by the applicant for a patent.

3. Claims 10-11 are rejected under 35 U.S.C. 102(a) as being anticipated by Mahajan et al. (U.S. 6,618,358).

With respect to claim 10, Mahajan et al. disclose: at least one clock recovery circuitry coupled to receive a high data rate input data stream(Fig. 2 see block s 210, 220 etc receiving high speed data rate inputs T1 , T2 ...Tn and outputting recovered

Art Unit: 2611

clock signals CLK1, CLK2, CLKn see column 4, lines 12-22); wherein the at least one clock recovery circuitry recovers a plurality of recovered clocks based on the high data rate input data stream (column 4, lines 20-21); a programmable fabric portion comprising a plurality of clock based functionalities (Fig. 2, block 250, clock based functionality comprises blocks 252, 254 and the not shown TDM switch for example, see column 1, lines 62-65), wherein each of the clock based functionalities performs processing on the high data rate stream in accordance with a clock chosen from among the plurality of recovered clocks, and a reference clock (column 1, lines 22-24, see the various (at least 2) clock based functionalities (modules) and lines 58-65, the subsequent processing is performed based on the selected clock signal, lines 36-41) and it suggested the chosen clock (if it is one of the data stream) recovered clocks is used to clock the active high data stream).

With respect to claim 11, Mahajan et al. further disclose: wherein the high data rate input data stream is received according to a first protocol and is converted to a second protocol by the programmable logic fabric portion based on one of said plurality of recovered clocks (Fig. 2 received data stream are T1/E1 type data streams, column 1, lines 19-25, 62-65, the access server functions receives/transmits data , functions as a switch, and converts the active data to a TDM data stream).

Claim Rejections - 35 USC § 103

4. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

5. Claims 1, 4-6, 19-22 are rejected under 35 U.S.C. 103(a) as being unpatentable over Mahajan et al. (U.S. 6,618,358) in view of Peace (U.S. 6,687,260) and "T1/E1 Framer and Line Interface Bt8370" Datasheet by Mindspeed, 12/2001.

With respect to claim 1, Mahajan et al. disclose: a first clock data recovery circuitry for receiving first data and recovering a first recovered clock from the first data (Fig. 2, block 210 receiving data T1 and outputting recovered clock signal CLK1, see column 4, lines 12-22); a second clock data recovery circuitry for receiving second data and recovering a second recovered clock from the second data (Fig. 2, block 220 CLK2 is the second recovered clock column 4, lines 12-22); wherein the transceiver (Fig. 2 the network access server 250, that transmits and receives data, functions as a transceiver, see column 1, lines 19-20) provides the first recovered clock, the second recovered clock, the first data and the second data to a clock based functionality of the transceiver (clock based functionality comprises blocks 252, 254 and the circuit which receives the selected clock see column 1, lines 58-65, the selected clock is used for subsequent processing, as a data transfer clock for example, the selected clock is used as a data transfer clock in a switch to transfer).

Mahajan et al. do not expressly teach: serial data; a plurality of clock based functionalities; each of the plurality of clock based functionalities performs processing of one of the first serial data and the second serial data in accordance with a clock chosen from among the first recovered clock, the second recovered clock, and the reference clock.

In the same field of endeavor, Peace discloses: serial data (first and second serial data)(column 4, lines 65-67 through column 5, line 1).

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to modify the system of Mahajan et al. based on the teachings of Peace so that independent serial data (first and second serial data) from the T1/E1 data connections are received the rationale being serial data requires less transmit/reception connections (compared to parallel data)).

In the field of network access products, the Mindspeed Datasheet discloses: a plurality of clock based functionalities (page 3, the QUAD T1/E1 board comprising 4 Bt8370 transceiver chips, each one of which is a clock based functionality(page 3, functional diagram of Bt8370), the clock rate adapter).

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to modify the system of Mahajan et al. and Peace based on the Mindspeed Datasheet so that the Network Access Server of Mahajan et al. uses plurality of transceiver functionalities (which based on the combination of references are clock based functionalities, as each one uses a clock selection processor as taught by Mahajan et al.)). The rationale to perform such a modification is to include redundant

Art Unit: 2611

clock based functionalities (such as the quad Bt8370 transceiver framer chips) to safeguard against one more faulty transceivers in the network access server.

With respect to claim 4, the system of Mahajan et al. modified by Peace and the Mindspeed datasheet further includes: wherein the first serial data is an receive serial bit stream (Fig. 2, T1 is a received serial bit stream).

With respect to claim 5, the system of Mahajan et al. modified by Peace and the Mindspeed datasheet further includes: wherein the plurality of clock based functionalities comprises a portion of a programmable logic fabric (see column 1, lines 19-24, and column 3, lines 44-50 and Fig. 2, where the user configuration commands supplied from the user interface, render the system of Mahajan et al. a programmable logic fabric).

With respect to claim 6, Mahajan et al. disclose: first circuitry for receiving first data and recovering a first recovered clock based on the first data (Fig. 2 see block 210, receiving data T1 and outputting recovered clock signal CLK1, see column 4, lines 12-22); wherein the first circuitry provides the first recovered clock to a logic fabric comprising a first clock based functionality (Fig. 2 see CLK1 is supplied to DMUX 254 of block logic fabric 250, comprising blocks 252, 254 and the data switch (that used the selected clock but is not shown in Fig.2) column 2, lines 58-65) and second circuitry for generating and providing a reference clock to the logic fabric (Fig. 2 see clock signal

Art Unit: 2611

osc, corresponds to the reference clock, source of this clock is a free running oscillator, see column 1, lines 59-60); third circuitry for receiving second data and recovering a second recovered clock based on the second data (Fig. 2, block 220 CLK2 is the recovered clock column 4, lines 12-22); wherein the third circuitry provides the second recovered clock to the logic fabric (see Fig. 2, CLK2 is supplied to block 250); wherein the first clock based functionality performs processing functions by choosing among the first recovered clock, the second recovered clock, and the reference clock (column 1, lines 58-65, the selected clock is used for subsequent processing, as a data transfer clock for example).

Mahajan et al. do not expressly teach: serial data. Furthermore the difference between Mahajan et al. and claim 6 is that Mahajan et al. teaches one clock based functionality compared to the claimed multiple clock based functionalities (three clock based functionalities) each concurrently performs processing functions on one of the first serial data and the second serial data in accordance with a clock chosen from among the first recovered clock, the second recovered clock, and the reference clock.

In the same field of endeavor, Peace discloses: serial data (first and second serial data)(column 4, lines 65-67 through column 5, line 1).

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to modify the system of Mahajan et al. based on the teachings of Peace so that independent serial data (first and second serial data) from the T1/E1 data connections are received the rationale being serial data requires less transmit/reception connections (compared to parallel data)).

In the field of network access products, the Mindspeed Datasheet discloses: a plurality of clock based functionalities (page 3, the QUAD T1/E1 board comprising 4 Bt8370 transceiver chips, each one of which is a clock based functionality(page 3, functional diagram of Bt8370), the clock rate adapter).

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to modify the system of Mahajan et al. and Peace based on the Mindspeed Datasheet so that the Network Access Server of Mahajan et al. uses plurality of transceiver functionalities in parallel (or concurrently)(which based on the combination of references are clock based functionalities, as each one uses a clock selection processor as taught by Mahajan et al.)). The rationale to perform such a modification is to include redundant clock based functionalities (such as the quad Bt8370 transceiver framer chips) to safeguard against one more faulty transceivers in the network access server.

With respect to claim 19, claim 19 is rejected based on a rationale similar to the one used to reject claim 1 above.

With respect to claim 20, the system obtained by modifying Mahajan et al. based on Peace and the Mindspeed Datasheet further disclose: wherein the first serial bit stream is a receive serial bit stream (Fig. 2 T1 is received by block 210 of the access network, i.e. is a receive serial bit stream).

With respect to claim 21, the system obtained by modifying Mahajan et al. based on Peace and Mindspeed Document further disclose: wherein the second serial bit stream is a transmit serial bit stream (Fig. 2 T2 is a transmit serial bit stream for the transmitter when it originated).

Method claim 22 is rejected based on rationale similar to the one used to reject claim 6 above.

6. Claim 3 is rejected under 35 U.S.C. 103(a) as being unpatentable over Mahajan et al. (U.S. 6,618,358) in view of Peace (U.S. 6,687,260) and "T1/E1 Framer and Line Interface Bt8370" Datasheet by Mindspeed, 12/2001as applied to claim 1, and further in view of Tang et al. (U.S. 2002/0075981).

With respect to claim 3, all of the limitations of claim 3 are rejected above in the rejection of claim 1, but neither Mahajan et al. nor Peace or the Mindspeed Datasheet expressly teach: delay locked loop circuitry for receiving second serial data and produces a second recovered clock form the second serial data.

In the same field of endeavor (processing serial data and CDR) Tang et al., disclose: delay locked loop circuitry (see Fig. 7, 703 clock recovery DLL, part of dual loop retimer see paragraphs [0036]-[0041]).

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to modify the system of Mahajan et al. based on the teachings of Tang et al., so that the clock recovery circuit of Mahajan et al. comprises a

Art Unit: 2611

delay-locked loop circuit, (such as the clock recovery system of Tang et. al.) that has minimum jitter generation and maximum jitter suppression (Tang et al., [0013] and [0041]).

7. Claims 8-9 are rejected under 35 U.S.C. 103(a) as being unpatentable over Mahajan et al. (U.S. 6,618,358) in view of Peace (U.S. 6,687,260) and Ohtsuka (U.S. 5,388,100).

With respect to claim 8, Mahajan et al. disclose: circuitry for receiving input data streams (Fig. 2, block 250 and blocks 210, 220, 230, receive T1 streams of data);clock recovery circuitry for recovering a corresponding plurality of recovered clocks based on the plurality of input serial data streams (Fig. 2, blocks 210, 220, 230, recover clocks from respective input data streams, column 4, lines 16-21); circuitry for providing a reference clock (Fig. 2, osc, reference clock signal is output form an oscillator generating circuit, column1, lines 55-57); logic that provides data to an outgoing transmit block by choosing from among the plurality of recovered clocks and said reference clock (see column 1, lines 59-65, where the selected clock is used to clock a data switch (outgoing transmit block) used for routing data, see column 1, lines 19-24).

Mahajan et al. do not expressly teach: serial data streams; logic for selecting from the plurality of input serial streams and for providing at least one outgoing serial data stream to an outgoing transmit block; wherein the logic provides each received input serial data stream of the plurality of input serial data streams to the outgoing

transmit block by choosing from among the plurality of recovered clocks and said reference clock.

In the same field of endeavor, Peace discloses: serial data streams (column 4, lines 65-67 through column 5, line 1).

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to modify the system of Mahajan et al. based on the teachings of Peace so that independent serial data streams from the T1/E1 data connections are received the rationale being serial data requires less transmit/reception connections (compared to parallel data)).

In the field of data selection, Ohtsuka discloses: logic for selecting from a plurality of serial data streams and for providing at least one outgoing serial data stream to an outgoing transmit block (Fig. 2, see plurality of serial data streams D11, D12, D13, D14 and selector 52, see column 3, lines 21-30, see the mentioned the bit serial data) supplied to logic for selecting and for providing at least one outgoing serial streams to an outgoing transmit block (selector 52, and the received data is supplied (transmitted) to a circuit that follows (column 3, lines 54-55); wherein the logic provides each received input serial data stream of the plurality of input serial data streams to the outgoing transmit block (Fig. 3, each of the D11, D12, D13, D14 is selected and provides in a TDM fashion to the circuit that follows).

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to modify the system of Mahajan et al. based on the teachings of Ohtsuka,

Art Unit: 2611

so that the input data streams are processed in a time-division manner for the purpose of efficient use of time (Ohtsuka column 1, lines 18-25).

8 Claim 12 is rejected under 35 U.S.C. 103 (a) as being unpatentable over Mahajan et al. (U.S. 6,618,358) in view of Galuszka et al (U.S. 5,519,693).

With respect to claim 12, Mahajan et al. further disclose: transmitting the converted high data rate input data stream in the second protocol, wherein the programmable fabric portion provides the converted high data rate input data stream in the second protocol based on one of said plurality of recovered clocks (Mahajan et al. column 1, lines 19-31, 51-65.).

In the same field of endeavor, Galuszka et al disclose: transmit circuitry (Fig. 1, line interface unit 31, in the transmit path, column 4, lines 9-14 and Fig. 2 the transmit circuitry side, comprising blocks 61,92, 59, 57, column 4, lines 33-67).

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to modify the system of Mahajan et al. based on Galuszka et al. so that transmit data are framed into bytes and transmitted by an appropriate transmit processor (Galuszka et al, column 4, lines 33-67).

9. Claim 13 is rejected under 35 U.S.C. 103 (a) as being unpatentable over Mahajan et al. (U.S. 6,618,358) in view of Peace (U.S. 6,687,260).

With respect to claim 13, Mahajan et al. further disclose: wherein said at least one clock recovery circuit comprises a second clock recovery circuit for recovering a

second recovered clock based on an I/O data stream (Fig. 2, see block 220 recovering CLK2 for second data stream).

Mahajan et al. do not expressly teach: serial data stream.

In the same field of endeavor, Peace discloses: serial data (first and second serial data)(column 4, lines 65-67 through column 5, line 1).

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to modify the system of Mahajan et al. based on the teachings of Peace so that independent serial data (first and second serial data) from the T1/E1 data connections are received the rationale being serial data requires less transmit/reception connections (compared to parallel data)).

10. Claims 14, 16 are rejected under 35 U.S.C. 103(a) as being unpatentable over Mahajan et al. (U.S. 6,618,358) in view of Mann et al. (U.S. 5,251,210).

Claim 14 is rejected based on a rationale similar to the one used to reject claim 10 above. However, Mahajan et al. do not expressly teach: recovering a second recovered clock based on a transmitter clock.

In the same field of endeavor, Mann et al. disclose: recovering a second recovered clock based on a transmitter clock (Fig. 7, second clock recovered from Channel 2 data, and see Fig. 5, where transmitter uses a transmitter clock (block 110) to generate the Channel 2 data i.e. clock recovery at the receiver is based on a transmitter clock used to transmit the data stream).

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to modify the system of Mahajan et al. based on the teachings of Mann so that the clock recovery at the receiver is based on the received data (i.e. indirectly based on a transmitter clock) so that that an embedded clock is extracted for the received data (i.e. there is no need to transmit a separate clock signal in addition to the data signal).

With respect to claim 16, Mahajan et al. further disclose: wherein the high data rate input data stream is converted to a second protocol based on the first recovered clock (see column 1, lines 19-30, 60-65, where data is clocked in a TDM fashion based on the highest priority clock signal, for example the first recovered clock corresponding to the active T1 line).

11. Claim 23 is are rejected under 35 U.S.C. 103(a) as being unpatentable over Mahajan et al. (U.S. 6,618,358) in view of Hashiguchi (U.S. 5,987,540).

With respect to claim 23, Mahajan et al. disclose: receiving a plurality of input data streams (Fig. 2, see T1 signals received by blocks 210, 220, 230); recovering a corresponding plurality of clocks based on the plurality of input data streams)(Fig. 2, blocks 210, 220, 230 recover clock signals CLK1...CLKn from the plurality of input data streams see column 4, lines 16-21);determining at least one output port for providing outgoing data streams; and providing input streams to the at least one output port in accordance with a clock chosen among the plurality of recovered clocks and the

Art Unit: 2611

reference clock (see column 1, lines 19-26, 52-65, where data is routed (transmitted) using a data switch to various modules and this corresponds to the claimed determining step, that determines output ports for providing outgoing data streams, DMUX selects one clock from among the recovered clocks or the OSC clock)).

Mahajan et al. do not expressly teach: providing each input data stream of the plurality of input data streams to the at least one output port by choosing among the plurality of recovered clocks; wherein the at least one output port comprises a number of output ports that corresponds to a number of input streams, and wherein the method comprises further determining, for each input data stream of the plurality of input data streams, an output port and providing each input data stream of the plurality of input data streams to the determined output ports based upon a chosen one of the plurality of recovered clocks and the reference clock.

In the field of clock selection used for data transmission, Hashiguchi discloses: (Fig. 4, block 16 "output clock selector", and blocks 13-1,13-2, 13-3, 14-1, 14-2, 14-3 these correspond to a plurality of transmitting and receiving ports, and each of 13-1,13-2, 13-3 requests a transmit clock that is supplied to them by the output clock selector, see column 2, lines 56-67 through column 3, lines 1-3, to transmit respective serial data).

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to modify the system of Mahajan et al. based on the teachings of Hashiguchi so that each input data stream (the T1 data streams of Mahajan et al.) are

provided to an output port, by choosing (i.e. based on) the selected clock signal from the plurality of recovered clocks.

The system obtained by modifying Mahajan et al. based on the teachings of Hashiguchi comprises a number of output ports that correspond to a number of data input streams and with respect to the determining step, i.e. the determining for each input data stream of the plurality of input data streams, an output port, see Mahajan et al. (column 1, lines 22-24, see that the data is routed to various modules).

Allowable Subject Matter

12. Claim 18 is objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and any intervening claims.

Conclusion

13. **THIS ACTION IS MADE FINAL.** Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any

Art Unit: 2611

extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Contact Information

Any inquiry concerning this communication or earlier communications from the examiner should be directed to SOPHIA VLAHOS whose telephone number is (571)272-5507. The examiner can normally be reached on MTWRF 8:30-17:00.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Mohammed Ghayour can be reached on 571 272 3021. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Application/Control Number: 10/660,254
Art Unit: 2611

Page 23

/SOPHIA VLAHOS/
Examiner, Art Unit 2611
10/27/2009

/Mohammad H Ghayour/
Supervisory Patent Examiner, Art Unit 2611