第二节 多元线性回归预测

- 多元线性回归模型的基本假设 ▶
- 回归模型的参数估计 ▶
- 回归模型的假设检验 ▶
- 预测、控制和风险分析 ▶
- 可线性化的非线性回归 ▶

一、多元线性回归模型的基本假设

■模型

设因变量 y 与自变量 x_1 , x_2 ,..., x_p 有统计的线性关系:

$$y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_p x_p + \varepsilon$$

对 $(x_1, x_2, \dots, x_p, y)$ 进行 n 次观测,得到观测值

$$(x_{1i}, x_{2i}, \dots, x_{pi}, y_i)$$
 $i = 1, 2, \dots, n.$

求出 b_0 , b_1 ,…, b_p 的估计值 \hat{b}_0 , \hat{b}_1 ,…, \hat{b}_p , 建立预测方程

$$\hat{y} = \hat{b}_0 + \hat{b}_1 x_1 + \hat{b}_2 x_2 + \dots + \hat{b}_p x_p$$

通过预测方程进行预测,并给出预测的置信区间。

矩阵形式:

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \qquad X = \begin{pmatrix} 1 & x_{11} & x_{21} & \cdots & x_{p1} \\ 1 & x_{12} & x_{22} & \cdots & x_{p2} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & x_{1n} & x_{2n} & \cdots & x_{pn} \end{pmatrix}$$

$$B = \begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_n \end{pmatrix} \qquad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix} \qquad Y = XB + \varepsilon$$

预测方程
$$\hat{Y} = X\hat{B}, \quad e = Y - \hat{Y} = \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$$

- 回归模型的基本假定
 - 1. 零期望值假定 $E(\varepsilon_i) = 0$

$$\Rightarrow E(\varepsilon) = E \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix} = \begin{pmatrix} E \varepsilon_1 \\ E \varepsilon_2 \\ \vdots \\ E \varepsilon_n \end{pmatrix} = \mathbf{0}$$

- 2. 同方差假定 $D(\varepsilon_i) = \sigma^2$
- 3. 无自相关假定 $Cov(\varepsilon_i, \varepsilon_j) = E\varepsilon_i\varepsilon_j = 0$
- 4. 随机误差项与解释变量 不相关: $Cov(x_{ij}, \varepsilon_i) = 0$
- 5. $\varepsilon_i \sim N(0,\sigma^2)$

$$E(\varepsilon\varepsilon') = E\left(\begin{pmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \vdots \\ \varepsilon_{n} \end{pmatrix} \left(\varepsilon_{1} \quad \varepsilon_{2} \quad \cdots \quad \varepsilon_{n} \right) \right) = \begin{pmatrix} E(\varepsilon_{1}\varepsilon_{1}) & E(\varepsilon_{1}\varepsilon_{2}) & \cdots & E(\varepsilon_{1}\varepsilon_{n}) \\ E(\varepsilon_{2}\varepsilon_{1}) & E(\varepsilon_{2}\varepsilon_{2}) & \cdots & E(\varepsilon_{2}\varepsilon_{n}) \\ \vdots & \vdots & \cdots & \vdots \\ E(\varepsilon_{n}\varepsilon_{1}) & E(\varepsilon_{n}\varepsilon_{2}) & \cdots & E(\varepsilon_{n}\varepsilon_{n}) \end{pmatrix}$$

$$= \begin{pmatrix} \sigma^{2} \quad \mathbf{0} \quad \cdots \quad \mathbf{0} \\ \mathbf{0} \quad \sigma^{2} \quad \cdots \quad \mathbf{0} \\ \vdots \quad \vdots \quad \cdots \quad \vdots \\ \mathbf{0} \quad \mathbf{0} \quad \cdots \quad \sigma^{2} \end{pmatrix}$$

$$\Rightarrow \varepsilon \sim N(\mathbf{0}, \sigma^{2}I_{n})$$

6. 解释变量之间不存在多重共线性 各解释变量的观测值之间线性无关 $rank(X) = P + 1 \quad rank(X'X) = P + 1$

二、回归模型的参数估计

■ 普通最小二乘法(OLS)

残差平方和:
$$Q = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{b}_0 - \hat{b}_1 x_{1i} - \hat{b}_2 x_{2i} - \dots - \hat{b}_p x_{pi})^2$$
$$= Y'Y - 2\hat{B}'X'Y + \hat{B}'X'X\hat{B}$$

$$\frac{\partial Q}{\partial \widehat{B}} = -2X'Y + 2X'X\widehat{B} = 0$$

$$\widehat{B} = (X'X)^{-1}X'Y$$

■ 最小二乘估计量的性质

1.线性: \hat{B} 分别为Y和 ε 的线性函数或线性组合

$$\widehat{B} = (X'X)^{-1}X'Y$$

$$= (X'X)^{-1}X'(XB + \varepsilon) = (X'X)^{-1}X'XB + (X'X)^{-1}X'\varepsilon$$

$$= B + (X'X)^{-1}X'\varepsilon$$

2.无偏性: $E(\widehat{B}) = B$ $E(\widehat{B}) = E(B + (X'X)^{-1}X'\varepsilon) = B$

3.最小方差性:在所有线性、无偏估计量中 \hat{B} 的方差最小。

证明:设 B^* 是B的任意线性无偏估计,如果协方差矩阵之差

$$E\left[\left(B^*-B\right)\left(B^*-B\right)'\right]-E\left[\left(\widehat{B}-B\right)\left(\widehat{B}-B\right)'\right]$$

为半正定矩阵,则称最小二乘估计量 \hat{B} 是B的最小方差线性无偏估计。

由于 B^* 是B的线性无偏估计,记 $B^* = AY$,由无偏性,应有

$$E(B^*) = E(AY) = E[A(XB + \varepsilon)] = AXB = B$$

从而 AX = I。有

$$B^* - B = AY - B = A(XB + \varepsilon) - B = A\varepsilon$$
.

$$E\left[\left(B^*-B\right)\left(B^*-B\right)'\right]=E\left[A\varepsilon\varepsilon'A'\right]=\sigma^2AA'.$$

然而
$$E\left[\left(\widehat{B}-B\right)\left(\widehat{B}-B\right)'\right]=\sigma^2(X'X)^{-1}$$
,

因此
$$E\left[\left(B^*-B\right)\left(B^*-B\right)'\right]-E\left[\left(\widehat{B}-B\right)\left(\widehat{B}-B\right)'\right]=\sigma^2\left[AA'-\left(X'X\right)^{-1}\right]$$

考虑到
$$[A-(X'X)^{-1}X'][A-(X'X)^{-1}X']'$$

$$= AA' - (X'X)^{-1}X'A' - AX(X'X)^{-1} + (X'X)^{-1}X'X(X'X)^{-1}$$
$$= AA' - (X'X)^{-1}$$

由线性代数可知,对于任意一个非奇异矩阵, CC'为半正定矩阵。得证。

■ 回归参数的区间估计

1.
$$\hat{B}$$
 的分布: $\hat{B} \sim N(B, \sigma^2(X'X)^{-1})$

$$D(\hat{B}) = E((\hat{B} - E\hat{B})(\hat{B} - E\hat{B})') = E((X'X)^{-1}X'\varepsilon\varepsilon'X(X'X)^{-1})$$

$$= (X'X)^{-1}X'\sigma^2X(X'X)^{-1} = \sigma^2(X'X)^{-1}$$

2.随机误差项方差的估计

$$\sigma^2$$
的无偏估计量 $\hat{\sigma}^2 = \frac{\sum_{i=1}^n e_i^2}{n-p-1} = \frac{Y'Y - \hat{B}'X'Y}{n-p-1}$ $E(\hat{\sigma}^2) = \sigma^2$

证明: $e = Y - \hat{Y} = Y - X\hat{B} = Y - X(X'X)^{-1}X'Y = \left[I_n - X(X'X)^{-1}X'\right]Y = PY$ 又 $e = \left[I_n - X(X'X)^{-1}X'\right](XB + \varepsilon) = \left[I_n - X(X'X)^{-1}X'\right]\varepsilon = P\varepsilon$ 其中 $P = I_n - X(X'X)^{-1}X'$ 为幂等矩阵 $D(e) = Eee' = P\sigma^2$ 又由矩阵迹的性质 $tr(ee') = e'e = \sum_{i=1}^{n} e_i^2$

$$\begin{split} E(\sum_{i=1}^{n} e_{i}^{2}) &= E(e'e) = E[tr(ee')] = tr[E(ee')] = tr(P\sigma^{2}) \\ &= \sigma^{2} tr[I_{n} - X(X'X)^{-1}X'] = \sigma^{2}[tr(I_{n}) - tr(X(X'X)^{-1}X')] \\ &= \sigma^{2}[n - tr(I_{p+1})] = (n - p - 1)\sigma^{2} \end{split}$$

三、回归模型的假设检验

1.拟和优度检验: 衡量样本回归直线与观测值之间的拟和程度

多重可决系数
$$r^2 = \frac{U}{S_{\dot{\alpha}}}$$

其中:
$$U = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$
 $S_{\stackrel{.}{\bowtie}} = \sum_{i=1}^{n} (y_i - \bar{y})^2$ $Q = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ 修正的可决系数 $\bar{r}^2 = 1 - \frac{Q/(n-p-1)}{S_{\stackrel{.}{\bowtie}}/(n-1)}$ $\bar{r}^2 \le r^2$

 r^2 可能小于 0,此时作 r^2 =0处理

2. F检验: 检验y与 x_1 , x_2 ,..., x_p 之间是否确有线性关系

$$F = \frac{U/p}{Q/(n-p-1)}$$
,对于给定的显著性水平 α ,查 F 分布表

得 $F_{\alpha}(p, n-p-1)$, 若 $F \geq F_{\alpha}(p, n-p-1)$, 则回归模型可以用来预测。否则不能。

$$F$$
与可决系数之间的关系: $F = \frac{n-p-1}{p} \cdot \frac{r^2}{1-r^2}$

3.t检验: 检验 x_i 对 y 的作用是否显著。若显著,则保留 x_i 在回归方程中,否则去掉。

剩余标准差
$$S_{y} = \sqrt{\frac{Q}{n-p-1}} = \sqrt{\frac{Y'Y - \widehat{B}'X'Y}{n-p-1}} = \widehat{\sigma}$$

$$t_{i} = \frac{\widehat{b}_{i}}{S_{y} \cdot \sqrt{C_{ii}}}$$

其中: C_{ii} 为 $(X'X)^{-1}$ 的第i+1个对角元。

对于给定的显著性水平 α ,查t分布表 得 $t_{\alpha}(n-p-1)$, 若 $|t_{i}| \geq t_{\alpha}(n-p-1)$,则 x_{i} 的作用显著,必须保留 x_{i} 在回归 方程中。

- **4.** *Chow*检验:模型结构稳定性检验,检验在整个样本的各子样本中,模型的系数是否相等。如果模型在不同的子样本中模型的系数不同,则说明该模型中存在着转折点。假设一个样本中有 n_1 个观测值,另一个样本有 n_2 个观测值。
 - (1) 合并两个样本,构成 $n_1 + n_2$ 的样本,进行回归,得到

$$\hat{y}_{i} = \hat{b}_{0} + \hat{b}_{1}x_{1i} + \hat{b}_{2}x_{2i} + \dots + \hat{b}_{p}x_{pi}$$

求得残差平方和 $\sum_{i=1}^{n_1+n_2} e_i^2$,自由度为 $(n_1 + n_2 - p-1)$

(2)对两个小样本分别回归,得到

$$\hat{\mathbf{y}}_{1i} = \hat{\alpha}_0 + \hat{\alpha}_1 \mathbf{x}_{1i} + \hat{\alpha}_2 \mathbf{x}_{2i} + \dots + \hat{\alpha}_p \mathbf{x}_{pi} \qquad \hat{\mathbf{y}}_{2i} = \hat{\beta}_0 + \hat{\beta}_1 \mathbf{x}_{1i} + \hat{\beta}_2 \mathbf{x}_{2i} + \dots + \hat{\beta}_p \mathbf{x}_{pi}$$

求得残差平方和 $\sum_{i=1}^{n_1} e_{1i}^2, \sum_{i=1}^{n_2} e_{2i}^2$,自由度分别为(n_1 -p-1),(n_2 -p-1)。

(3) 计算:
$$F = \frac{\left[\sum_{i=1}^{n_1+n_2} e_i^2 - \sum_{i=1}^{n_1} e_{1i}^2 - \sum_{i=1}^{n_2} e_{2i}^2\right] / (p+1)}{\left[\sum_{i=1}^{n_1} e_{1i}^2 + \sum_{i=1}^{n_2} e_{2i}^2\right] / (n_1 + n_2 - 2p - 2)}$$

对于给定的显著性水平 α ,查F分布表得 $F_{\alpha}(p+1, n_1+n_2-2p-2)$,若 $F \geq F_{\alpha}$,则两个样本反映得两个经济关系显著不同,经济结构发生了变化。否则经济结构关系比较稳定。

例:某企业固定资产 x_1 职工人数 x_2 和创造利润y数据如下,试建立预测模型,并检验。

年份	1978	1979	1980	 1986	1987	Σ
\boldsymbol{y}_i	233	238	261	 304	315	2741
$x_{_{1i}}$	250	257	271	 325	338	2958
x_{2i}	161	163	167	 185	187	1740

解:
$$X = \begin{pmatrix} 1 & 250 & 161 \\ 1 & 257 & 163 \\ \vdots & \vdots & \vdots \\ 1 & 325 & 185 \\ 1 & 338 & 187 \end{pmatrix}$$
 $Y = \begin{pmatrix} 233 \\ 238 \\ \vdots \\ 304 \\ 315 \end{pmatrix}$
$$(X'X)^{-1} = \begin{pmatrix} 185.0231 & 0.5873 & -2.0611 \\ 0.5873 & 0.0014 & -0.0074 \\ -2.0611 & -0.0074 & 0.0245 \end{pmatrix}$$

$$\widehat{B} = (X'X)^{-1}X'Y = \begin{pmatrix} -106.7218 \\ 0.498921 \\ 1.34047 \end{pmatrix}$$

 $\hat{y} = -106.7218 + 0.498921x_1 + 1.34047x_2$

F检验: F=20103, α = 0.05, 查表得 $F_{\alpha}(2,7)$ = 4.74, 回归效果显著。

t检验: 剩余标准差
$$S_y = \sqrt{\frac{Q}{n-p-1}} = \sqrt{\frac{Y'Y - \hat{B}'X'Y}{n-p-1}} = 4.3411$$

$$t_1 = \frac{\widehat{b}_1}{S_y \cdot \sqrt{C_{11}}} = \frac{0.498921}{4.3411 \times \sqrt{0.0014}} = 3.072$$

$$t_2 = \frac{\widehat{b}_2}{S_y \cdot \sqrt{C_{22}}} = \frac{1.34047}{4.3411 \times \sqrt{0.0245}} = 1.973$$

 $\alpha = 0.05$,查表得 $t_{\alpha}(7) = 2.37$ 。

因为 $t_1 > t_\alpha, t_2 < t_\alpha$,所以 x_1 对y有显著影响, x_2 对y的影响不显著。

428		下编 经	济决策技术						
表『	置倍	置信限 t _σ 的数值表(π—自由度;α—信度)							
n a	0- 10	0. 05	0. 02	0.01	0.001				
1	6. 31	12- 71	31. 82	63. 66	636. 62				
2	2. 92	4- 30	6. 97	9. 93	31.60				
3	2- 35	3- 18	4.54	5-84	12.94				
4	2. 13	2. 78	3. 75	4. 60	8. 61				
5	2. 02	2.57	3. 37	4.03	5. 86				
6	1. 94	2. 45	3. 14	3. 71	5. 96				
7	1. 90	2. 37	3.00	3.50	5.41				
8	1. 86	2.31	2.90	3.36	5.04				

四、预测、控制和风险分析

1.预测:
$$\hat{y}^{(0)} = \hat{b}_0 + \hat{b}_1 x_1^{(0)} + \hat{b}_2 x_2^{(0)} + \dots + \hat{b}_p x_p^{(0)}$$

2.风险分析:

$$\begin{split} \widehat{y}^{(0)} - t_{\alpha} (n - p - 1) \cdot \widehat{\sigma} \cdot \sqrt{1 + x^{(0)} (X \cdot X)^{-1} x^{(0)}} \leq y^{(0)} \\ & \leq \widehat{y}^{(0)} + t_{\alpha} (n - p - 1) \cdot \widehat{\sigma} \cdot \sqrt{1 + x^{(0)} (X \cdot X)^{-1} x^{(0)}} \\ \widehat{\text{简化}} : \ P(\widehat{y}^{(0)} - 3S_y < y^{(0)} < \widehat{y}^{(0)} + 3S_y) = 99.7\% \\ P(\widehat{y}^{(0)} - 2S_y < y^{(0)} < \widehat{y}^{(0)} + 2S_y) = 95.4\% \\ P(\widehat{y}^{(0)} - S_y < y^{(0)} < \widehat{y}^{(0)} + S_y) = 68.3\% \\ \widehat{\sigma} = S_y \end{split}$$

证明:
$$E(y^{(0)} - \hat{y}^{(0)})$$

$$= E\left(b_0 + b_1 x_1^{(0)} + b_2 x_2^{(0)} + \dots + b_p x_p^{(0)} + \varepsilon^{(0)} - \left(\hat{b}_0 + \hat{b}_1 x_1^{(0)} + \hat{b}_2 x_2^{(0)} + \dots + \hat{b}_p x_p^{(0)}\right)\right)$$

$$= b_0 + b_1 x_1^{(0)} + b_2 x_2^{(0)} + \dots + b_p x_p^{(0)} + E \varepsilon^{(0)} - E\left(\hat{b}_0 + \hat{b}_1 x_1^{(0)} + \hat{b}_2 x_2^{(0)} + \dots + \hat{b}_p x_p^{(0)}\right)$$

$$\therefore E\hat{b}_i = b_i \qquad \therefore E(y^{(0)} - \hat{y}^{(0)}) = 0$$

$$D[y^{(0)} - \hat{y}^{(0)}] = D[y^{(0)}] + D[\hat{y}^{(0)}]$$

$$\therefore D[y^{(0)}] = D\left[b_0 + b_1 x_1^{(0)} + b_2 x_2^{(0)} + \dots + b_p x_p^{(0)} + \varepsilon^{(0)}\right] = \sigma^2$$

$$\therefore D[y^{(0)} - \hat{y}^{(0)}] = \sigma^2 + D[\hat{y}^{(0)}]$$

$$\mathbb{X} : D[\hat{y}^{(0)}] = E[\hat{y}^{(0)} - E(\hat{y}^{(0)})]^2 = E[x^{(0)}\hat{B} - E(x^{(0)}\hat{B})]^2$$

$$t = \frac{y^{(0)} - \hat{y}^{(0)}}{\hat{\sigma} \cdot \sqrt{1 + x^{(0)} (X'X)^{-1} x^{(0)}}} \sim t(n - p - 1)$$

简化:
$$D[y^{(0)} - \hat{y}^{(0)}] = \sigma^2 \left[1 + x^{(0)} (X'X)^{-1} x^{(0)}' \right] \approx \hat{\sigma}^2$$

 $y^{(0)} - \hat{y}^{(0)} \sim N(0, \hat{\sigma}^2)$

3.控制问题: 给定 α ,要使y以 $1-\alpha$ 的概率落在[y_1, y_2]中,求 x_1, x_2, \dots, x_n 的控制范围。

解法:
$$\begin{cases} \hat{b}_{0} + \hat{b}_{1} x_{1}^{(1)} + \hat{b}_{2} x_{2}^{(1)} + \dots + \hat{b}_{p} x_{p}^{(1)} - S_{y} \ge y_{1} \\ \hat{b}_{0} + \hat{b}_{1} x_{1}^{(2)} + \hat{b}_{2} x_{2}^{(2)} + \dots + \hat{b}_{p} x_{p}^{(2)} + S_{y} \le y_{2} \end{cases}$$
(68.3%)

或者:
$$\begin{cases} \hat{b}_0 + \hat{b}_1 x_1^{(1)} + \hat{b}_2 x_2^{(1)} + \dots + \hat{b}_p x_p^{(1)} - 2S_y \ge y_1 \\ \hat{b}_0 + \hat{b}_1 x_1^{(2)} + \hat{b}_2 x_2^{(2)} + \dots + \hat{b}_p x_p^{(2)} + 2S_y \le y_2 \end{cases}$$
(95.4%)

或者:
$$\begin{cases} \hat{b}_{0} + \hat{b}_{1} x_{1}^{(1)} + \hat{b}_{2} x_{2}^{(1)} + \dots + \hat{b}_{p} x_{p}^{(1)} - 3S_{y} \ge y_{1} \\ \hat{b}_{0} + \hat{b}_{1} x_{1}^{(2)} + \hat{b}_{2} x_{2}^{(2)} + \dots + \hat{b}_{p} x_{p}^{(2)} + 3S_{y} \le y_{2} \end{cases}$$
(99.7%)

例、某家具厂对家具的总成本进行预测,书72页表6.1列出总成本 y 与直接劳动量 x_1 ,耗用木材量 x_2 ,的7组观测值

- (1) 试建立预测方程;
- (2) 若该厂9月份用了4.1百个劳动小时,耗用木材量**2.5**千立方, 试预测该厂**9**月份的总成本为多少? (95%的概率)
- (3) 若欲控制10月份的成本在3千元至3.8千元之间,那么直接劳动量 x_1 和耗用木材量 x_2 ,应满足什么条件?(95%的概率)
- 解: (1) $\hat{y} = -1.3956+0.7461 x_1 + 0.6769 x_2$
 - (2) $\hat{y} = -1.3956+0.7461 \times 4.1 + 0.6769 \times 2.5 = 3.356$ 千元 预测总成本的上、下限(95%): $S_y = 0.173$

$$3.356 - 2 \times 0.173 = 3.010$$

$$3.356 + 2 \times 0.173 = 3.702$$

:. 总成本为 (3. 010, 3. 702)

(3)
$$\begin{cases} -1.3956+0.7461 x_1 + 0.6769 x_2 - 2 \times 0.173 \ge 3 \\ -1.3956+0.7461 x_1 + 0.6769 x_2 + 2 \times 0.173 \le 3.8 \end{cases}$$

$$\Rightarrow$$
 4.7416 \leq 0. 7461 $x_1 + 0.6769$ $x_2 \leq$ 4.8496

五、可线性化的非线性回归

■ 几种可线性化的曲线

非线性式	变换	线性式(估计式)
(1) $y = \alpha x^{\beta}$	两边取对数 $\log y = \log \alpha + \beta \log x$ $Y = \log y X = \log x A = \log \alpha$	$Y = A + \beta X$
$y = \alpha \cdot \beta^x$	两边取对数 $\log y = \log \alpha + x \log \beta$ $Y = \log y A = \log \alpha B = \log \beta$	Y = A + Bx
$y = \alpha + \frac{\beta}{x}$	设 $X = \frac{1}{x}$	$y = \alpha + \beta X$
$y = \frac{1}{\alpha + \beta x}$	设 $Y = \frac{1}{y}$	$Y = \alpha + \beta x$
(5) $y = \alpha + \beta \log x$	设 $X = \log x$	$y = \alpha + \beta X$

非线性式	变换	线性式
(6) 2次函数 $y = \alpha + \beta x + \gamma x^2$	设 $z=x^2$	$y = \alpha + \beta x + \gamma z$
(7) 科布-道格拉斯函数 $z = \alpha \cdot x^{\beta} \cdot y^{\gamma}$	两边取对数 $\log z = \log \alpha + \beta \log x + \gamma \log y$ 设 $Z = \log z$ $A = \log \alpha$ $X = \log x$ $Y = \log y$	$Z = A + \beta X + \gamma Y$
(8) 逻辑函数 I $y = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$	$\frac{1}{y} = \frac{1}{e^{\alpha + \beta x}} + 1 \Rightarrow e^{\alpha + \beta x} = \frac{y}{1 - y}$ $Y = \ln \frac{y}{1 - y}$	$Y = \alpha + \beta x$
$y = \frac{\gamma}{1 + e^{\alpha + \beta x}}$	$1 + e^{\alpha + \beta x} = \frac{\gamma}{y} \Longrightarrow$ $Y = \ln(\frac{\gamma}{y} - 1)$	$Y = \alpha + \beta x$

■ 例1 书86页 第6题

6. 某批发公司 1975~1983 年的销售额如下表所示, 试预测 1999 年的销售额。

年 份	1990	1991	1992	1993	1994	1995	1996	1997	1998
销售额	15 810	17 618	20 824	22 242	25 014	25 721	44 068	62.020	25.269
(万元) y	15 810	1, 010	20 024	71.047	25 014	35 121	900 88	63 920	10 100

(提示:拟合指数曲线 ŷ-αβ*)

解: $\ln y = \ln \alpha + \ln \beta \cdot x$, \diamondsuit $y' = \ln y$ $a' = \ln \alpha$ $b' = \ln \beta \Rightarrow y' = a' + b' x$

x_i	1	2	•••	8	9	Σ
年份	1990	1991	•••	1997	1998	
y_i	15810	17618	•••	63920	75763	
$y_i' = \ln y_i$	9.6684	9.7767	•••	11. 0654	11.2354	93.0081
x_i^2	1	4	•••	64	81	285
y_i^{2}	93.4779	95. 5834	•••	122. 4428	126.2334	

$$\widehat{b}' = \frac{\sum_{i=1}^{n} x_{i} y_{i}' - \overline{x} \sum_{i=1}^{n} y_{i}'}{\sum_{i=1}^{n} x_{i}^{2} - \overline{x} \sum_{i=1}^{n} x_{i}} = \frac{477.1430 - \frac{45}{9} \times 93.0081}{285 - \frac{45}{9} \times 45} = 0.2017$$

$$\widehat{a}' = \frac{93.0081}{9} - \widehat{b} \cdot \frac{45}{9} = 9.3257$$

$$\widehat{\alpha} = e^{9.3257} = 11223$$

$$\widehat{\beta} = e^{0.2017} = 1.2235$$

$$\widehat{y} = 11223 \times 1.2235^{x}$$

1999年为: $\hat{y} = 11223 \times 1.2235^{10} = 84362$

作业: 86页 3