MATH 355: HOMEWORK 5

ALEXANDER LEE

Exercise 1 (2.5.1). (a) TODO

- (b) TODO
- (c) TODO
- (d) TODO

Exercise 2 (2.5.2). (a) TODO

- (b) True. Suppose towards a contradiction that (x_n) converges. Thus, we know that subsequences of (x_n) are convergent, which contradicts the assumption that (x_n) contains a divergent subsequence. Therefore, (x_n) diverges.
- (c) TODO
- (d) TODO

Exercise 3 (2.6.2). (a) Consider the sequence $a_n = (-1)^n \frac{1}{n}$. (a_n) clearly converges to 0, so it is a Cauchy sequence by the Cauchy Criterion. Notice that (a_n) is not monotone as well.

- (b) Impossible. Suppose (a_n) is a Cauchy sequence. Thus, (a_n) is bounded by Lemma 2.6.3. As such, every subsequence of (a_n) must be bounded as well.
- (c) TODO
- (d) Consider the sequence $(a_n) = (0, 1, 0, 2, 0, 3, \ldots)$. Clearly, (a_n) is unbounded. However, $(0, 0, 0, \ldots)$ is a subsequence of (a_n) that is Cauchy.

Exercise 4 (2.6.4). (a) Let $\epsilon > 0$ be arbitrary. Since (a_n) is a Cauchy sequence, there exists an $N_1 \in \mathbb{N}$ such that whenever $m, n \geq N_1$, it follows that $|a_n - a_m| < \epsilon/2$. Similarly, since (b_n) is a Cauchy sequence, there exists an $N_2 \in \mathbb{N}$ such that whenever $m, n \geq N_2$, it follows that $|b_n - b_m| < \epsilon/2$. Let $N = \max\{N_1, N_2\}$ and suppose $m, n \geq N$. Then,

$$\begin{aligned} |c_n - c_m| &= ||a_n - b_n| - |a_m - b_m|| \\ &\leq ||(a_n - b_n) - (a_m - b_m)|| \text{ (by the Triangle Inequality)} \\ &= |(a_n - a_m) + (b_m - b_n)| \\ &\leq |a_n - a_m| + |b_m - b_n| \text{ (by the Triangle Inequality)} \\ &< \epsilon/2 + \epsilon/2 \end{aligned}$$

Therefore, (c_n) is a Cauchy sequence.

- (b) Let $a_n = 1$. (a_n) is a Cauchy sequence, but $c_n = (-1)^n$ is divergent and thus not a Cauchy sequence.
- (c) Let $a_n = (-1)^n \frac{1}{n}$. Then,

$$c_n = \begin{cases} 0 & \text{if } n \text{ is odd} \\ -1 & \text{if } n \text{ is even} \end{cases},$$

which is divergent and thus not a Cauchy sequence.

Exercise 5 (2.7.1). (a) Let $\epsilon > 0$ be arbitrary. Since $(a_n) \to 0$, there exists an $N \in \mathbb{N}$ such that whenever $m \geq N$, it follows that $|a_m| < \epsilon$. Then,

$$|s_n - s_m| = |a_{m+1} - a_{m+2} - \dots \pm a_n|$$

$$\leq |a_{m+1}| \text{ (since } (a_n) \text{ is decreasing)}$$

$$\leq |a_m|$$

$$< \epsilon$$

whenever $n > m \ge N$.

Exercise 6 (2.7.2).

Exercise 7 (2.7.4).

Exercise 8 (2.7.5).

Exercise 9 (2.7.9).

Exercise 10 (3.2.3).