Interval Measurement Software for Measuring Aging Parameters

Student Project (5. Semester)

Supervisor: Sascha Braun

Examiner: Prof. Wolfram Haupt

Student: Don Winter

Table of Contents

<u>Introduction</u>	
Research at Hochschule Coburg	3
Aging	
Aging Parameters	9
Aging Measurement	13
Performance Indicators	16
<u>Observer</u>	
Purpose of the Program	19
Program Overview	26
Exemplary Extension of Sensors	30
Observer Interface Tour	32
<u>Database</u>	
Database overview	34

Aging

Process of adverse physical or chemical changes due to long-term storage of fuel/oil in a system.

Aging Parameters

Additive consumption

Aging Parameters

Additive consumption

Creation of Oligomeres

Aging Parameters

Additive consumption

Creation of Oligomeres

Particle contamination

Dielectric Permittivity
Capacitive Sensor + Keysight E4990A

Dielectric Permittivity
Capacitive Sensor + Keysight E4990A

Dielectric Permittivity
Capacitive Sensor + Keysight E4990A

Impedance Z = (DC) Resistance Z' + (AC) Reactance jZ"
Reactance = Capacitance R_C + Inductance R_L

Dielectric Permittivity
Capacitive Sensor + Keysight E4990A

Impedance Z = (DC) Resistance Z' + (AC) Reactance jZ" Reactance = Capacitance R_C + Inductance R_L

... by measuring the impedance Z at an AC frequency ω we can apply following transformation:

$$\varepsilon' = \frac{-Z}{\omega c_o(Z'^2 + Z''^2)}, \varepsilon'' = \frac{Z'}{\omega c_o(Z'^2 + Z''^2)}$$

Dielectric Permittivity
Capacitive Sensor + Keysight E4990A

Impedance Z = (DC) Resistance Z' + (AC) Reactance jZ" Reactance = Capacitance R_C + Inductance R_L

... by measuring the impedance Z at an AC frequency ω we can apply following transformation:

$$\varepsilon' = \frac{-Z}{\omega c_o(Z'^2 + Z''^2)}, \varepsilon'' = \frac{Z'}{\omega c_o(Z'^2 + Z''^2)}$$

and get the complex permittivity ε^* with its loss factor:

$$\varepsilon^* = \varepsilon' - j\varepsilon''$$
 $\tan \delta = \frac{\varepsilon''}{\varepsilon'}$

Dielectric Permittivity
Capacitive Sensor + Keysight E4990A

Impedance Z = (DC) Resistance Z' + (AC) Reactance jZ" Reactance = Capacitance R_C + Inductance R_L

... by measuring the impedance Z at an AC frequency ω we can apply following transformation:

$$\varepsilon' = \frac{-Z}{\omega c_o(Z'^2 + Z''^2)}, \varepsilon'' = \frac{Z'}{\omega c_o(Z'^2 + Z''^2)}$$

and get the complex permittivity ε^* with its loss factor:

$$\varepsilon^* = \varepsilon' - j\varepsilon''$$
 $\tan \delta = \frac{\varepsilon''}{\varepsilon'}$

... the permittivity is a measure of a combination of chemical and physical effects due to aging (for example length of molecules)

Dielectric Permittivity
Capacitive Sensor + Keysight E4990A

Near Infrared Spectroscopy not implemented yet.

Dielectric Permittivity
Capacitive Sensor + Keysight E4990A

Near Infrared Spectroscopy not implemented yet.

Particle Counter will not be implemented.

Performance Indicators

Damage

Performance Indicators

Maintainance

Performance Indicators

Researching the influence of aging parameters on performance indicators allows development of countermeasures.

Observer

Purpose of the Program

Continuously measure aging parameters.

Store data efficiently for later evaluation and comparison.

Widgets

Buttons, Lists, .. used in GUI

Class

Renders the front end Allows for simple assembly of GUI

Communication Line
Class

Implemented Sensors inherit from base class Sensor

PT100

Keysight E4990A

Communication Line
Class

Communication Line
Class

PostgreSQL Database Interface

---- Error Line

Communication Line

Class

Exemplary extension of NIR Sensors

Exemplary extension of NIR Sensors

Exemplary extension of NIR Sensors

Observer Interface Tour

Database

don@wintr.de

contact me for further information.

Appendix

Connect to local psql Server on port 5432 (localhost:5432)

Tables can be found under Schemas > public > Tables

List the content of a Table

The list view allows for manipulation and export of Table data

The Query Tool allows for Searching inside the database or single tables

Build Query with Graphical Query Builder

Run Query

Extract
Query
Results