- 7.1 Consider the traffic deadlock depicted in Figure 7.10.
 - Show that the four necessary conditions for deadlock hold in this example.
 - b. State a simple rule for avoiding deadlocks in this system.

Figure 7.10 Traffic deadlock for Exercise 7.1

- 7.8 Consider a system consisting of *m* resources of the same type being shared by *n* processes. A process can request or release only one resource at a time. Show that the system is deadlock free if the following two conditions hold:
 - a. The maximum need of each process is between one resource and *m* resources.
 - b. The sum of all maximum needs is less than m + n.

7.13 Consider the following snapshot of a system:

	Allocation	Max	Available
	ABCD	ABCD	ABCD
P_0	2001	4212	3321
P_1	3121	5252	
P_2	2103	2316	
P_3	1312	1424	
P_4	1432	3665	

Answer the following questions using the banker's algorithm:

- a. Illustrate that the system is in a safe state by demonstrating an order in which the processes may complete.
- b. If a request from process P_1 arrives for (1, 1, 0, 0), can the request be granted immediately?
- c. If a request from process P_4 arrives for (0, 0, 2, 0), can the request be granted immediately?