Función Distancia Asociada a Conjuntos Prox-Regulares

Basado en:

Distance Function Associated to a Prox-Regular Set by Florent Nacry and Lionel Thibault

Martes 28 de Diciembre, 2021

Presenta: Manuel Torres V.

Profesores: Emilio Vilches G. - Pedro Péres-Aros.

Fecha: 28 de Diciembre, 2021.

Curso: Introducción al Cálculo Proximal

en Espacios de Hilbert (MA6931).

Contenido

Objetivo de la charla e índice

El objetivo en esta charla es estudiar la *función distancia* asociada a *conjuntos prox-regulares*. Veremos que

- El complemento de un conjunto prox-regular no es más que la unión de bolas cerradas con igual radio.
- De esto se deduce que la prox-regularidad de un conjunto cerrado dado es equivalente a la propiedad de semiconvexidad de su función de distancia.
- Preliminares
- Definiciones
 - Función distancia
 - Semiconvexidad
 - Conjuntos prox-regulares
- Caracterización de la prox-regularidad mediante la función distancia sobre los puntos exteriores
- Semiconvexidad de la función distancia

- Preliminares
- Definiciones
- Caracterización de la prox-regularidad mediante la función distancia sobre los puntos exteriores
- Semiconvexidad de la función distancia

- Denotaremos por \mathcal{H} a un *espacio de Hilbert* real con producto interno $\langle \cdot, \cdot \rangle$ y norma asociada $\| \cdot \|$.
- El interior de un conjunto lo denotamos por $\operatorname{int}_{\mathcal{H}}(A)$, la adherencia o clausura de un conjunto la denotaremos por $\operatorname{cl}_{\mathcal{H}}(A)$. Denotamos por $\operatorname{bdry}_{\mathcal{H}}(A)$ a la frontera de A.
- La bola unitaria la denotaremos B cuando es abierta y S cuando es cerrada. Si la bola no es unitaria la denotaremos de la forma usual.
- La proyección métrica multievaluada la denotaremos por $\operatorname{Proj}_S : \mathcal{H} \Rightarrow \mathcal{H}$ asociada al conjunto S es definida por

$$\text{Proj}_{S}(x) := \{ y \in S : d_{S}(x) = ||x - y|| \}, \forall x \in \mathcal{H}.$$

5 La función de distancia con respecto al conjunto S es

$$d_S(x) \coloneqq d(x,S) \coloneqq \inf_{y \in S} \|x - y\|.$$

En caso que $|Proj_S(x)| = 1$ denotaremos $proy_S(x)$ o $P_S(x)$ a dicha proyección.

Recordemos nuestro objeto favorito:

Definición (Subgradiente Proximal): Un vector $\zeta \in \mathcal{H}$ es un subgradiente proximal de f en $\bar{x} \in U$ con $f(\bar{x})$ finito, si existen $\sigma \ge 0$ y $\eta > 0$ tales que

$$\langle \zeta, y - \overline{x} \rangle \le f(y) - f(\overline{x}) + \sigma \|y - \overline{x}\|^2 \quad \forall y \in B(\overline{x}, \eta).$$

Proposición (Caracterización): $\zeta \in \mathcal{H}$ es un *subgradiente proximal* de f en \bar{x} ssi

$$(\zeta, -1) \in N(\operatorname{epi} f, (\overline{x}, f(\overline{x}))),$$

donde $\mathcal{H} \times \mathbb{R}$ tiene la estructura natural del espacio producto.

Definición (Subdiferencial Proximal): El conjunto $\partial_P f(\bar{x})$ conformado por todos los subgradientes proximales lo conocemos como el subdiferencial proximal de f en \bar{x} .

Por simplicidad denotaremos por $\partial f(\bar{x})$ al subdiferencial proximal de f en \bar{x} .

5/30

- Preliminares
- Definiciones
 - Función distancia
 - Semiconvexidad
 - Conjuntos prox-regulares
- Caracterización de la prox-regularidad mediante la función distancia sobre los puntos exteriores
- Semiconvexidad de la función distancia

La función de distancia con respecto al conjunto S es

$$d_S(x) \coloneqq d(x,S) \coloneqq \inf_{y \in S} \|x - y\|.$$

En caso que $|Proj_S(x)| = 1$ denotaremos $proy_S(x)$ o $P_S(x)$ a dicha proyección.

Proposición: El *subgradiente proximal* de la *función distancia* $d_S(\cdot)$ es tal que

$$\partial_P d_S(x) = N(S, x) \cap \mathbb{B} \quad \forall x \in S.$$

Más aún, si para cualquier $x \in \mathcal{H}$, $\partial_P d_S(x) \neq \emptyset$, resultará que $|\text{Proj}_S(x)| = 1$ y cumple que

$$d_S(x)\partial d_S(x)=x-P_S(x).$$

Definición: Sea $S \subseteq \mathcal{H}$ y d_S la función de distancia asociada a S. Definimos:

Figura 1: Nivel sobre un conjunto S

Definición

Definición (Función Semiconvexa): Sea $f:U\to\mathbb{R}\cup\{+\infty\}$ una función definida sobre un convexo no vacío (no necesariamente abierto) subconjunto de un espacio de Hilbert \mathcal{H} . Diremos que la función f es σ -lineal semiconvexa sobre U para algún $\sigma\geq 0$ si para todo $t\in(0,1)$ y todo par $x,y\in U$ tenemos

$$f(tx+(1-t)y) \le tf(x)+(1-t)f(y)+\frac{\sigma}{2}t(1-t)||x-y||^2.$$

Definición (Función Semicóncava): Si -f es σ -lineal semiconvexa sobre U para $\sigma \geq 0$ diremos que f es σ -lineal semicóncava sobre U.

Semiconvexidad

Caracterización

Teorema: Una función f es σ -lineal semiconvexa sobre U para $\sigma \geq 0$ ssi la función $f + \frac{\sigma}{2} \| \cdot \|^2$ es convexa sobre U.

Conjuntos *r*-prox-regulares

Definición de conjunto r-prox-regular, ampliación r-abierta y tubo r-abierto

Definición (Conjunto Prox-Regular): Sea $S \subseteq \mathcal{H}$ un cerrado no vacío y sea $r \in (0, +\infty]$. Diremos que S es r-prox-regular cuando, para todo $x \in S$, para todo $v \in N(S; x) \cap \mathbb{B}$ y para todo $t \in (0, r]$ se cumple

$$x \in \operatorname{Proj}_{S}(x + tv).$$

Definición (Ampliación y Tubo): Para cualquier real extendido r > 0, la *ampliación r-abierta* y el *tubo r-abierto* en torno a un conjunto $S \subseteq \mathcal{H}$ se definen como

$$U_r(S) := \{x \in \mathcal{H} : d_S(x) < r\}$$

Tube_r(S) := $U_r(S) \setminus S$.

Veamos caracterizaciones para determinar cuando un conjunto $S \subseteq \mathcal{H}$ es *r-prox-regular*.

11/30

Conjuntos *r*-prox-regulares

Definición de conjunto r-prox-regular, ampliación r-abierta y tubo r-abierto

Proposición (Caracterizaciones de Prox-Regularidad): Sea $S \subseteq \mathcal{H}$ un cerrado no vacío. Las siguientes afirmaciones equivalen.

- El conjunto S es r-prox-regular.
- Para todo $x_1, x_2 \in S$, para todo $\xi \in N(S; x_1) \cap \mathbb{B}$, se tiene

$$\langle \xi, x_2 - x_1 \rangle \le \frac{1}{2r} \|x_1 - x_2\|^2.$$
 (1)

La multifunción $\operatorname{Proj}_S(\cdot)$ es uno-evaluada sobre $U_r(S)$ y para todo $x, x' \in U_r(S)$, se tiene

$$\|P_S(x) - P_S(x')\| \leq \left(1 - \frac{d_S(x)}{2r} - \frac{d_S(x')}{2r}\right)^{-1} \|x - x'\|.$$

Para todo $s \in (0, r)$, para todo $x, x' \in U_s(S)$, se tiene

$$\left|P_S(x)-P_S(x')\right|\leq \frac{1}{1-\frac{s}{r}}\|x-x'\|.$$

Proposición (Caracterizaciones de Prox-Regularidad): Sea $S \subseteq \mathcal{H}$ un cerrado no vacío. Las siguientes afirmaciones equivalen.

- El conjunto S es r-prox-regular.
- Para todo $x \in \text{Tube}_r(S)$ tal que $u := P_S(x)$ es bien definido, se tiene

$$(\forall u \in [0,r)), u = P_S\left(u + t\frac{x-u}{d_S(x)}\right).$$

6 La función d_S^2 es $C^{1,1}$ sobre $U_r(S)$ y su gradiente es dado por

$$\nabla d_S^2(x) = 2(x - P_S(x)), \quad \forall x \in U_r(S).$$

- La función d_S es C^1 en Tube_r(S).
- Para todo $x \in U_r(S)$, se tiene que $\partial d_S \neq \emptyset$.

- Preliminares
- Definiciones
- Caracterización de la prox-regularidad mediante la función distancia sobre los puntos exteriores
- Semiconvexidad de la función distancia

Lema: Sea $S \subseteq \mathcal{H}$ un conjunto *r-prox-regular* para algún $r \in (0, +\infty]$. Las siguientes afirmaciones son verdaderas.

■ Para todo $x \in U_r(S)$ y $x' \in S$, se tiene

$$\left(1 - \frac{d_S(x)}{r}\right) \|P_S(x) - x'\|^2 \le \|x - x'\|^2 - d_S^2(x),$$

en particular

$$\sqrt{1 - \frac{d_S(x)}{r}} \| P_S(x) - x' \| \le \| x - x' \|.$$

Para todo $x, x' \in U_r(S)$, se tiene

$$\left(1 - \frac{d_S(x)}{r}\right) \|P_S(x) - P_S(x')\| \le \|x - P_S(x')\|.$$

Para todo $x, x' \in U_r(S)$, se tiene que para $p := P_S(x)$ y $p' := P_S(x')$

$$\left(1 - \frac{d_S(x)}{2r} - \frac{d_S(x')}{2r}\right) \|p - p'\|^2 \leq \frac{1}{2} \left(\|x - p'\|^2 - d_S^2(x) + \|x' - p\|^2 - d_S^2(x') \right).$$

Teorema: Sea $S \subseteq \mathcal{H}$ no vacío y $r \in (0, +\infty]$. Las siguientes afirmaciones son equivalentes.

- El conjunto *S* es *r*-prox-regular.
- Para todo $x' \in U_r(S)$, todo $x \in U_r(S)$ con $P_S(x)$ bien definido y todo $\xi \in \partial d_S(x)$, se tiene

$$\langle \xi, x' - x \rangle \leq \frac{1}{2(r - d_S(x'))} \left(\|x' - P_S(x)\|^2 - d_S^2(x') \right) + d_S(x') - d_S(x).$$

Para todo $x \in S$, para todo $x' \in U_r(S)$ y todo $\xi \in \partial d_S(x)$, es cierto que

$$\langle \xi, x' - x \rangle \le \frac{1}{2(r - d_S(x'))} (\|x' - x\|^2 - d_S^2(x')) + d_S(x').$$

Para todo $x' \in S$, todo $x \in U_r(S)$ con $P_S(x)$ bien definido y todo $\xi \in \partial_S(x)$, es cierto que

$$\langle \xi, x' - x \rangle \leq \frac{1}{2r} ||x' - P_S(x)||^2 - d_S(x).$$

- Preliminares
- Definiciones
- Caracterización de la prox-regularidad mediante la función distancia sobre los puntos exteriores
- Semiconvexidad de la función distancia

Notemos que: Un conjunto $S \subseteq \mathcal{H}$ cerrado no vacío es r-prox-regular para algún real extendido r > 0 si su función distancia asociada d_S^2 es $\frac{2s}{r-s}$ -linealmente semiconvexa, o bien, equivalentemente $d_S^2 + \frac{s}{r-s} \| \cdot \|^2$ es convexa sobre todo abierto $V \subseteq U_s(S)$ para todo 0 < s < r.

Esto se puede ver a través del siguiente cálculo válido para cualquier $x, y \in U_s(S)$ con $\sigma := \frac{s}{r-s}$ y $g := d_s^2 + \sigma \|\cdot\|^2$

$$\begin{split} \langle \nabla g(x) - \nabla g(y), x - y \rangle &= 2(1+\sigma) \|x - y\|^2 - 2\langle P_S(x) - P_S(y), x - y \rangle \\ &\geq 2\left(1+\sigma - \left(1-\frac{s}{r}\right)^{-1}\right) \|x - y\|^2. \end{split}$$

Proposición: Sea $S \subseteq \mathcal{H}$ no vacío. Las siguientes afirmaciones son ciertas.

- La raíz de la función distancia d_S^2 es 2-lineal semicóncava sobre \mathcal{H} .
- Para todo subconjunto convexo no vacío $U \subseteq \mathcal{H}$ y para todo real $\delta > 0$ tal que $U \cap (S + \mathbb{B}(0, \delta)) = \emptyset$, d_S es δ^{-1} -semicóncava sobre U. Más aún, d_S solo es localmente lineal semicóncava sobre $\mathcal{H} \setminus S$.
- Si S es la unión de una colección de bolas cerradas de radio común r > 0, entonces sobre cualquier convexo cerrado $U \subseteq \operatorname{cl}_{\mathcal{H}}(\mathcal{H} \setminus S)$, la función distancia es r^{-1} -semicóncava.

La raíz de la función distancia d_S^2 es 2-lineal semicóncava sobre \mathcal{H} .

Demostración:

Notemos que podemos escribir

$$d_S^2(x) = \inf_{y \in S} \left\{ \left\| x \right\|^2 - 2\langle x, y \rangle + \left\| y \right\|^2 \right\} = \left\| x \right\|^2 + \inf_{y \in S} \left\{ -2\langle x, y \rangle + \left\| y \right\|^2 \right\}.$$

Sea $y \in S$, sea $\varphi_y : \mathcal{H} \to \mathbb{R}$ definida por

$$x \mapsto \varphi_y(x) = -2\langle x, y \rangle = \langle -2x + y, y \rangle + ||y||^2$$

es cóncava.

Luego podemos ver que la función $d_S^2(\cdot) = \inf_{y \in S} \varphi_y(x) + \|\cdot\|^2$ es cóncava. Esto último equivale a que d_S^2 es 2-*lineal semicóncava* sobre \mathcal{H} .

Para todo subconjunto convexo no vacío $U \subseteq \mathcal{H}$ y para todo real $\delta > 0$ tal que $U \cap (S + \mathbb{B}(0, \delta)) = \emptyset$, d_S es δ^{-1} -semicóncava sobre U. Más aún, d_S solo es localmente lineal semicóncava sobre $\mathcal{H} \setminus S$.

Sketch of proof:

Sea $U \subseteq \mathcal{H}$ un convexo no vacío, sea $\delta > 0$ un real tal que

$$U \cap (S + B(0, \delta)) = \emptyset.$$

Luego tenemos que $d^2_S(U)\subseteq [\delta^2,+\infty)$. Luego como la función $f(\cdot):=\sqrt{(\cdot)}$ es creciente, cóncava y $\frac{1}{2\delta}$ -Lipschitz sobre $[\delta,+\infty)$.

Finalmente, la composición $(f \circ d_S^2) = d_S$ es $\frac{1}{\delta}$ -semicóncava.

Si S es la unión de una colección de bolas cerradas de radio común r > 0, entonces sobre cualquier convexo cerrado $U \subseteq \operatorname{cl}_{\mathcal{H}}(\mathcal{H} \setminus S)$, la función distancia es r^{-1} -semicóncava.

Sketch of proof:

S Sea $U \subseteq \operatorname{cl}_{\mathcal{H}}(\mathcal{H} \setminus S)$ un convexo no vacío. Sea $(a_i)_{i \in I} \subseteq \mathcal{H}$ tales que

$$S=\bigcup_{i\in I}B(a_i,r).$$

Fijando $i \in I$. Notemos que $d_{B(a_i,r)}^2(x) \ge r^2$ para todo $x \in U$.

De (2) tenemos que la función $d_{\{a_i\}}(\cdot) = \|\cdot -a_i\|$ es r^{-1} -linealmente semicóncava sobre U. Por la igualdad $d_{B(a_i,r)} = \|\cdot -a_i\| - r$. De la igualdad

$$(\forall x \in U), \quad d_S(x) = \inf_{j \in I} d_{B(a_j,r)}(x)$$

vemos que $-d_S(\cdot)$ es el supremo puntual de una función r^{-1} -linealmente semiconvexa sobre U. Entonces, $d_S(\cdot)$ es r^{-1} -linealmente semicóncava sobre U. Concluyendo así lo deseado.

Teorema: Sea $S \subseteq \mathcal{H}$ un conjunto r-prox-regular con $r \in (0, +\infty)$. Entonces para cualquier $s \in (0, r)$, el conjunto $\mathcal{H} \setminus S$ es la unión de una familia de bolas cerradas de \mathcal{H} de radio s.

Notar que para cualquier $s \in (0, r)$. Si $S = \mathcal{H}$, entonces $\mathcal{H} \setminus S = \emptyset$ y no hay nada que probar.

Demostración: Sea $y \in \mathcal{H} \setminus S$, estudiemos qué ocurre cuando $d_S(y)$ es mayor o menor que r.

- Sea $y \in \mathcal{H} \setminus S$. Si $d_S(y) \ge r$, entonces $B(y,r) \cap S = \emptyset$ y por lo tanto $B[y,s] \subseteq \mathcal{H} \subseteq S$ para 0 < s < r.
- Suponiendo que $0 < d_S(y) < r$ y usando la *r-prox-regularidad* de *S*, luego $|\operatorname{Proj}_S(y)| = 1$, así decimos que $\operatorname{Proj}_S(y) = \{p\}$. Consideremos el vector director $v := \frac{y-p}{\|y-p\|}$, tenemos que

$$p \in \text{Proj}_{S}(p + rv),$$

por eso $B(p + rv, r) \cap S = \emptyset$. Observe también que

$$||y-p-rv|| = \left\|\left(1-\frac{r}{\|y-p\|}\right)(y-p)\right\| = ||y-p|-r| = r - d_S(y) > 0.$$

Si $s \ge r - d_S(y)$, entonces $y \in B[p + rv, s]$ y $B[p + rv, s] \subseteq \mathcal{H} \setminus S$ ya que $B[p + rv, s] \subseteq B[p + rv, r]$. Entonces, asumiendo que $s < r - d_S(y)$, así que en particular $y \ne p + rv$.

El complemento de un r-prox-regular es unión de bolas de igual radio

Demostración (continuación): Sea

$$z = y - s \frac{y - p - rv}{\|y - p - rv\|}.$$

Nosotros tenemos $y \in B[z, s]$. Fijando cualquier $u \in B[z, s]$ tenemos que

$$||u - p - rv|| \le ||u - z|| + ||z - p - rv||$$

$$= ||u - z|| + ||\left(1 - \frac{s}{||y - p - rv||}\right)(y - p - rv)||$$

$$= ||u - z|| + ||y - p - rv|| - s|$$

$$= ||u - z|| + |r - d_S(y) - s|,$$

que combinado con la desigualdad $s < r - d_S(y)$ sigue que

$$||u-p-rv|| \le ||u-z|| + r - d_S(y) - s \le r - d_S(y).$$

Semiconvexidad de la función distancia d_S

El complemento de un r-prox-regular es unión de bolas de igual radio

Demostración (continuación x2): Por lo tanto, es cierta la inclusión

$$B[z,s]\subseteq B(p+rv,r).$$

Por lo tanto, $y \in B[z, s] \subseteq \mathcal{H} \setminus S$. Así

$$\mathcal{H} \setminus S = \bigcup_{y \in \mathcal{H} \setminus S} B_y[z, s].$$

Semiconvexidad de la función distancia d_S

El complemento de un r-prox-regular es unión de bolas de igual radio

Semiconvexidad de la función distancia d_S

Caracterización de prox-regularidad mediante la función distancia

Una consecuencia del teorema anterior:

Teorema: Sea $S \subseteq \mathcal{H}$ un cerrado no vacío y sea $r \in (0, +\infty]$. Las siguientes afirmaciones equivalen.

- \blacksquare El conjunto S es r-prox-regular.
- Para todo real 0 < s < r, la función distancia d_S es $(r s)^{-1}$ -semiconvexa sobre cualquier conjunto convexo incluído en el abierto s-ampliado $U_s(S)$.
- **1** La función distancia d_S es localmente lineal semiconvexa sobre $U_r(S)$.

Referencias

Balashov, M.V., Ivanov, G.E.: Properties of the metric projection on weakly vial-convex sets and parametrization of set-valued mappings with weakly convex images. Math. Notes 80, 461–467 (2006).

Clarke, F.: Functional Analysis, Calculus of Variations and Optimal Control Graduate Texts in Mathematics, vol. 264. Springer, London (2013).

Nacry, F., Thibault, L.: Distance Function Associated to a Prox-regular sets. (2021).

Nacry, F., Thibault, L.: Regularization of sweeping process: old and new. Pure and Applied Functional Analysis, 59-117 (2019).

Colombo, G., Thibault, L.: Prox-regular sets and Applications, Handbook of Nonconvex Analysis and Applications, pp. 99–182. Int. Press, Somerville (2010)

Vial, J.-P.: Strong and weak convexity of sets and functions. Math. Oper. Res. 8, 231–259 (1983).

Manuel Torres V. (MA6931-1)

29/30

© Muchas gracias por su atención ©

