CS234: Reinforcement Learning – Problem Session #3

Winter 2022-2023

Problem 1

For this problem, we will work with a reward function operating on transitions, $\mathcal{R}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}$. We are given an infinite-horizon, discounted MDP $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{T}, \gamma \rangle$ but we will actually solve a MDP \mathcal{M}' with an augmented reward function $\mathcal{M}' = \langle \mathcal{S}, \mathcal{A}, \mathcal{R}', \mathcal{T}, \gamma \rangle$ where $\mathcal{R}'(s, a, s') = \mathcal{R}(s, a, s') + \mathcal{F}(s, a, s')$. To provide some motivation, think of a scenario where \mathcal{R} produces values of 0 for most transitions; a bonus reward function $\mathcal{F}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}$ that produces non-zero values could provide us more immediate feedback and help accelerate the learning speed of our agent. In this problem, we will focus on a particular type of reward bonus $\mathcal{F}(s, a, s') = \gamma \phi(s') - \phi(s)$, for some arbitrary function $\phi: \mathcal{S} \to \mathbb{R}$ and $\forall (s, a, s') \in \mathcal{S} \times \mathcal{A} \times \mathcal{S}$.

1. Let $Q_{\mathcal{M}}^{\star}$, $Q_{\mathcal{M}'}^{\star}$ denote the optimal action-value functions of MDPs \mathcal{M} and \mathcal{M}' , respectively. Using the Bellman equation, prove that $Q_{\mathcal{M}}^{\star}(s,a) - \phi(s) = Q_{\mathcal{M}'}^{\star}(s,a)$ and then use this fact to conclude that $\pi_{\mathcal{M}'}^{\star}(s) = \pi_{\mathcal{M}}^{\star}(s), \forall s \in \mathcal{S}$.

Solution:

$$Q_{\mathcal{M}}^{\star}(s,a) - \phi(s) = \mathbb{E}_{s' \sim \mathcal{T}(\cdot \mid s,a)} \left[\mathcal{R}(s,a,s') + \gamma \max_{a' \in \mathcal{A}} Q_{\mathcal{M}}^{\star}(s',a') \right] - \phi(s)$$

$$= \mathbb{E}_{s' \sim \mathcal{T}(\cdot \mid s,a)} \left[\mathcal{R}(s,a,s') - \phi(s) + \gamma \max_{a' \in \mathcal{A}} Q_{\mathcal{M}}^{\star}s',a') \right]$$

$$= \mathbb{E}_{s' \sim \mathcal{T}(\cdot \mid s,a)} \left[\mathcal{R}(s,a,s') + \gamma \phi(s') - \gamma \phi(s') - \phi(s) + \gamma \max_{a' \in \mathcal{A}} Q_{\mathcal{M}}^{\star}(s',a') \right]$$

$$= \mathbb{E}_{s' \sim \mathcal{T}(\cdot \mid s,a)} \left[\mathcal{R}(s,a,s') + \gamma \phi(s') - \phi(s) + \gamma \max_{a' \in \mathcal{A}} (Q_{\mathcal{M}}^{\star}(s',a') - \phi(s')) \right]$$

$$= \mathbb{E}_{s' \sim \mathcal{T}(\cdot \mid s,a)} \left[\mathcal{R}(s,a,s') + \mathcal{F}(s,a,s') + \gamma \max_{a' \in \mathcal{A}} (Q_{\mathcal{M}}^{\star}(s',a') - \phi(s')) \right]$$

$$= \mathbb{E}_{s' \sim \mathcal{T}(\cdot \mid s,a)} \left[\mathcal{R}'(s,a,s') + \gamma \max_{a' \in \mathcal{A}} (Q_{\mathcal{M}}^{\star}(s',a') - \phi(s')) \right]$$

$$\Rightarrow Q_{\mathcal{M}'}(s,a) = \mathbb{E}_{s' \sim \mathcal{T}(\cdot \mid s,a)} \left[\mathcal{R}'(s,a,s') + \gamma \max_{a' \in \mathcal{A}} Q_{\mathcal{M}'}(s',a') \right]$$

$$\Rightarrow Q_{\mathcal{M}'}(s,a) = \mathbb{E}_{s' \sim \mathcal{T}(\cdot \mid s,a)} \left[\mathcal{R}'(s,a,s') + \gamma \max_{a' \in \mathcal{A}} Q_{\mathcal{M}'}(s',a') \right].$$

Note that in the second-to-last line, we recognize that the equation we have corresponds to *some* action-value function of MDP \mathcal{M}' . In the final line, we acknowledge that this is the Bellman optimality

equation, which only holds for the optimal action-value function of \mathcal{M}' , $Q_{\mathcal{M}'}^{\star}$.

$$\begin{split} \pi^{\star}_{\mathcal{M}'}(s) &= \operatorname*{arg\,max}_{a \in \mathcal{A}} Q^{\star}_{\mathcal{M}'}(s, a) \\ &= \operatorname*{arg\,max}_{a \in \mathcal{A}} Q^{\star}_{\mathcal{M}}(s, a) - \phi(s) \\ &= \operatorname*{arg\,max}_{a \in \mathcal{A}} Q^{\star}_{\mathcal{M}}(s, a) \\ &= \pi^{\star}_{\mathcal{M}}(s) \end{split}$$

The general technique shown here for modifying the reward function is known as reward shaping. When $\mathcal{F}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}$ is defined as described in this problem, this is known as potential-based reward shaping [Ng et al., 1999].

2. Consider running Q-learning in each MDP \mathcal{M} and \mathcal{M}' which requires, for each MDP, initial values $Q_{\mathcal{M}}^0(s,a)$ and $Q_{\mathcal{M}'}^0(s,a)$. Let $q_{\text{init}} \in \mathbb{R}$ be a real value such that

$$Q_{\mathcal{M}}^0(s,a) = q_{\text{init}} + \phi(s), \qquad Q_{\mathcal{M}'}^0(s,a) = q_{\text{init}}.$$

At any moment in time, the current Q-value of any state-action pair is always equal to its initial value plus some Δ value denoting the total change in the Q-value across all updates:

$$Q_{\mathcal{M}}(s,a) = Q_{\mathcal{M}}^{0}(s,a) + \Delta Q_{\mathcal{M}}(s,a), \qquad Q_{\mathcal{M}'}(s,a) = Q_{\mathcal{M}'}^{0}(s,a) + \Delta Q_{\mathcal{M}'}(s,a).$$

Show that if $\Delta Q_{\mathcal{M}}(s, a) = \Delta Q_{\mathcal{M}'}(s, a)$ for all $(s, a) \in \mathcal{S} \times \mathcal{A}$, then show that these two Q-learning agents yield identical updates for any state-action pair.

Solution: We can expand the Q-learning update rule for the agent that does not use reward shaping as

$$\begin{split} \mathcal{R}(s,a,s') + \gamma \max_{a' \in \mathcal{A}} Q_{\mathcal{M}}(s',a') - Q_{\mathcal{M}}(s,a) &= \mathcal{R}(s,a,s') + \gamma \max_{a' \in \mathcal{A}} Q_{\mathcal{M}}(s',a') - Q_{\mathcal{M}}^0(s,a) - \Delta Q_{\mathcal{M}}(s,a) \\ &= \mathcal{R}(s,a,s') + \gamma \max_{a' \in \mathcal{A}} \left(Q_{\mathcal{M}}^0(s',a') + \Delta Q_{\mathcal{M}}(s',a')\right) - Q_{\mathcal{M}}^0(s,a) - \Delta Q_{\mathcal{M}}(s,a) \\ &= \mathcal{R}(s,a,s') + \gamma \max_{a' \in \mathcal{A}} \left(q_{\text{init}} + \phi(s') + \Delta Q_{\mathcal{M}}(s',a')\right) - q_{\text{init}} - \phi(s) - \Delta Q_{\mathcal{M}}(s,a) \\ &= \mathcal{R}(s,a,s') + \gamma \phi(s') - \phi(s) + \gamma \max_{a' \in \mathcal{A}} \left(q_{\text{init}} + \Delta Q_{\mathcal{M}}(s',a')\right) - q_{\text{init}} - \Delta Q_{\mathcal{M}}(s,a) \\ &= \mathcal{R}(s,a,s') + \mathcal{F}(s,a,s') + \gamma \max_{a' \in \mathcal{A}} \left(q_{\text{init}} + \Delta Q_{\mathcal{M}}(s',a')\right) - q_{\text{init}} - \Delta Q_{\mathcal{M}}(s,a) \\ &= \mathcal{R}'(s,a,s') + \gamma \max_{a' \in \mathcal{A}} \left(Q_{\mathcal{M}'}^0(s',a') + \Delta Q_{\mathcal{M}'}(s',a')\right) - Q_{\mathcal{M}'}^0(s,a) - \Delta Q_{\mathcal{M}'}(s,a) \\ &= \mathcal{R}'(s,a,s') + \gamma \max_{a' \in \mathcal{A}} Q_{\mathcal{M}'}(s',a') - Q_{\mathcal{M}'}(s,a), \end{split}$$

where the final equation is the Q-learning update for MDP \mathcal{M}' . This result shows that potential-based reward shaping as described in the previous part is equivalent to a particular Q-value initialization based on the potential function ϕ [Wiewiora, 2003].

References

Andrew Y Ng, Daishi Harada, and Stuart J Russell. Policy invariance under reward transformations: Theory and application to reward shaping. In *Proceedings of the Sixteenth International Conference on Machine Learning*, pages 278–287. Morgan Kaufmann Publishers Inc., 1999.

Eric Wiewiora. Potential-based shaping and Q-value initialization are equivalent. Journal of Artificial Intelligence Research, 19:205–208, 2003.