复杂体系分子模拟导论 课程汇报

221505023 张牧原

case study 1

- Fig.1 (left) Estimate of π vs MC cycles
- Fig.2 (right) Standard deviation of the estimation of π vs MC cycles

case study 2

- Fig.1 (left) Pressure vs density for L-J fluid at T=1.2 and 2.0 ϵ/k_BT
- Fig.2 (right) Pressure vs density at T=2.0 ϵ/k_BT with and without detailed balance

Fig.3 Distribution of the total potential energy per particle at T=2.0 ϵ/k_BT , ρ =0.9 σ ⁻³

case study 3

Fig.1 (top left)Pressure vs density for L-J fluid obtained from MD & MC simulation at T=1.2 and 2.0 ϵ/k_BT

Fig.2 (top right) Distributions of vx, vy, vz for L-J fluid at T=2.0 ϵ/k_BT , ρ =0.9 σ^{-3}

Fig.3 (bottom right) Radical distribution function for L-J fluid at T=2.0 ϵ/k_BT , ρ =0.9 σ ⁻³

Fig.4 (bottom left) Diffusion coefficient D vs density for L-J fluid at T=2.0 ϵ/k_BT , ρ =0.9 σ^{-3} from MSD and auto-correlation function

case study 5

Fig.1 (left) Excess pressure of water vs density obtained from dissipative particle dynamics simulation of pure water system

case study 6

Fig. 1 (right) Tension of DMP bilayers as a function of area per particle

