Nome e cognome:	Classe:	Data:	Griglia
	010000	 	

Risposte (variante 93)

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20

- 1. Nell'effetto Compton, un fotone X interagisce con un elettrone libero (o debolmente legato). Cosa succede al fotone?
 - (a) Viene assorbito completamente dall'elettrone.
 - (b) Viene diffuso con una frequenza maggiore (lunghezza d'onda minore).
 - (c) Viene diffuso (scatterato) con una frequenza minore (lunghezza d'onda maggiore).
 - (d) Passa attraverso l'elettrone senza interagire.
- Un isotopo radioattivo ha un tempo di dimezzamento di $T_{1/2} = 5$ giorni. Se inizialmente abbiamo 16 mg di questo isotopo, quanti milligrammi rimarranno dopo 20 giorni?
 - (a) 4 mg

(b) 2 mg

(c) 1 mg

(d) 8 mg

- La legge del decadimento radioattivo $N(t) = N_0 e^{-\lambda t}$ descrive:
 - (a) Il numero N(t) di nuclei radioattivi non ancora decaduti presenti al tempo t, partendo da N_0 nuclei al tempo t=0.
 - (b) L'attività del campione al tempo t.
 - (c) Il numero di nuclei decaduti al tempo t.
 - (d) Il tempo di dimezzamento del campione.
- Cosa dimostra in modo sorprendente l'esperimento della doppia fenditura con elettroni singoli?
 - (a) Che anche le singole particelle (elettroni) esibiscono un comportamento ondulatorio (interferenza), suggerendo che ogni elettrone "passa attraverso entrambe le fenditure" in senso quantistico.
 - (b) Che il principio di indeterminazione non è valido.
 - (c) Che gli elettroni sono particelle classiche che seguono traiettorie ben definite.
 - (d) Che la luce è composta da particelle (fotoni).
- Una radiazione di frequenza $f=1.0\times 10^{15}\,\mathrm{Hz}$ colpisce un metallo con lavoro di estrazione $W=2.0\,\mathrm{eV}$. Sapendo che $h \approx 6.63 \times 10^{-34} \,\text{J} \cdot \text{s}$ e 1 eV $\approx 1.6 \times 10^{-19} \,\text{J}$, qual è circa l'energia cinetica massima K_{max} degli elettroni emessi? (Suggerimento: calcola prima hf in eV, $hf \approx 4.14 \,\text{eV}$)
 - (a) $K_{max} \approx 4.14 \,\text{eV}$ (b) $K_{max} \approx 6.14 \,\text{eV}$ (c) $K_{max} \approx 2.14 \,\text{eV}$ (d) $K_{max} \approx 2.0 \,\text{eV}$

- Come si calcola l'energia di legame (E_B) di un nucleo, noto il difetto di massa Δm ?
 - (a) $E_B = m_{nucleo}c^2$. (b) $E_B = m_{nucleo}c^2$. (c) $E_B = (\Delta m)/c^2$. (d) $E_B = (\Delta m)c^2$.

- Il nucleo di Deuterio (2_1 H) è formato da 1 protone ($m_p \approx 1.0073\,\mathrm{u}$) e 1 neutrone ($m_n \approx 1.0087\,\mathrm{u}$). La sua massa misurata è $m_D \approx 2.0141 \,\mathrm{u}$. Qual è approssimativamente il difetto di massa Δm ?
 - (a) $\Delta m \approx 1.0073 + 1.0087 + 2.0141 \approx 4.0301 \,\mathrm{u}$
- (c) $\Delta m \approx 2.0141 (1.0073 + 1.0087) = -0.0019 \,\mathrm{u}$

(b) $\Delta m \approx 2.0141 \,\mathrm{u}$

- (d) $\Delta m \approx (1.0073 + 1.0087) 2.0141 = 0.0019 \,\mathrm{u}$
- In un esperimento Compton, un fotone X incide su un elettrone a riposo. La variazione della lunghezza d'onda ($\Delta \lambda = \lambda' \lambda$) del fotone diffuso dipende dall'angolo di diffusione θ . Quando è massima questa variazione?
 - (a) Quando l'angolo di diffusione è $\theta = 90^{\circ}$.

	(c)	La variazione è indiper	ndente dall'angolo θ .								
	(d)	Quando l'angolo di diffusione è $\theta=180^\circ$ (diffusione all'indietro).									
9.	Come sp	iega il modello di Bohr	l'emissione di luce a frec	quenze discrete	(spettro a righ	e) da parte degli atomi?					
	(a)) Gli urti tra atomi eccitati producono lo spettro.									
	(b)	L'elettrone emette un a una a energia inferio		a $(E = hf)$ qua	ando salta da u	n'orbita permessa a energia supe	eriore				
	(c)	L'elettrone emette luce	e continuamente mentre	orbita, ma solo	a certe freque	nze.					
	(d)	l) Il nucleo atomico vibra emettendo fotoni.									
10.	Comple	tare la seguente reazion	e di decadimento beta n	meno (β^-) : ${}_6^{14}$ C	\rightarrow ? + e^- + $\bar{\nu}_e$						
	(a)	$^{13}_{6}\mathrm{C}$	(b) $^{14}_{6}$ C	(c)	$_{5}^{14}\mathrm{B}$	(d) $^{14}_{7}$ N					
11.	Cosa po	ostula il modello di Boh	r riguardo all'emissione	di radiazione da	a parte di un a	tomo?					
	(a)	(a) Un atomo emette radiazione (un fotone) solo quando un elettrone salta da un'orbita permessa a un'altra orbita permessa di energia inferiore.									
	(b)										
	(c)	e) Un atomo emette radiazione solo se si trova in uno stato eccitato stazionario.									
	(d)) Un atomo emette radiazione solo quando viene ionizzato.									
12.	Quale tipo di decadimento radioattivo consiste nell'emissione di un nucleo di Elio $\binom{4}{2}$ He)?										
	(a)	Emissione Gamma (γ)		(c)	Decadimento	Beta meno (β^-)					
	(b)	Decadimento Beta più	(β^+)	(d)	Decadimento	Alfa (α)					
13.	Il princi	l principio di indeterminazione è una conseguenza fondamentale:									
	(a)) Del modello atomico di Bohr.									
	(b)) Degli errori sperimentali inevitabili negli strumenti di misura.									
	(c)) Della teoria della relatività di Einstein.									
	(d)	Della natura ondulator quantistico.	ia della materia (dualism	no onda-corpusc	colo) e dei limit	i intrinseci alla misurazione nel m	ondo				
14.		tare la seguente reazion dere β^+ : ${}_{9}^{18}\text{F} \rightarrow ? + e^+$		più (β^+) o catti	ıra elettronica	(EC), sapendo che il Fluoro-18	$\binom{18}{9}$ F)				
	(a)	$_{9}^{17}\mathrm{F}$	(b) ${}_{9}^{19}F$	(c)	¹⁸ O	(d) $^{18}_{10}{\rm Ne}$					
15.			a radiodiagnostica (es. nte e più rilevante per la	, .	-	one tra fotoni X e tessuti biolog	ici (a				
	(a)	Produzione di coppie ($(e^{+}/e^{-}).$	(c)	Scattering di	Rayleigh (coerente).					
	(b)	Effetto fotoelettrico.		(d)	Effetto Comp	ton.					
16.		l'esperimento mentale di Schrödinger, cosa determina il passaggio del gatto da uno stato di sovrapposizione a uno nito (vivo o morto)?									
	(a)	La volontà del gatto.									
	(b)	(b) Il decadimento dell'atomo radioattivo all'interno della scatola.									
	(c)	Il tempo trascorso dall'inizio dell'esperimento.									
	(d)	L'atto di osservazione	o misurazione (apertura	della scatola).							
17.		radosso del gatto di Schrödinger, cosa rappresenta lo stato del gatto PRIMA che la scatola venga aperta, secondo pretazione strettamente quantistica?									
	(a)	Uno stato indetermina	to che non è né vivo né	morto.							

(b) Quando l'angolo di diffusione è $\theta=0^\circ$ (nessuna diffusione).

- (b) Una sovrapposizione quantistica degli stati "gatto vivo" e "gatto morto".
- (c) Lo stato "gatto morto".
- (d) Lo stato "gatto vivo".
- 18. Secondo la spiegazione di Einstein dell'effetto fotoelettrico, perché esiste una "frequenza di soglia" al di sotto della quale non vengono emessi elettroni, indipendentemente dall'intensità della luce?
 - (a) Perché l'intensità della luce non è sufficiente a "scaldare" abbastanza gli elettroni.
 - (b) Perché l'interazione tra luce e materia richiede un tempo minimo che dipende dalla frequenza.
 - (c) Perché a basse frequenze la luce si comporta solo come un'onda.
 - (d) Perché l'energia del singolo fotone (hf) deve essere almeno pari al lavoro di estrazione (W) per liberare un elettrone.
- 19. Identificare il prodotto mancante nel decadimento alfa dell'Uranio-238: $^{238}_{92}{\rm U} \to X + \alpha$
 - (a) $X = ^{234}_{90}$ Th (Torio- (b) $X = ^{238}_{90}$ Th (Torio- (c) $X = ^{234}_{88}$ Ra (Radio- (d) $X = ^{234}_{92}$ U (Uranio- 234) 234)

- 20. La "catastrofe ultravioletta" è un problema sorto nello studio della radiazione di corpo nero perché la fisica classica prevedeva:
 - (a) Un'intensità energetica nulla per lunghezze d'onda molto piccole.
 - (b) Che l'intensità massima si spostasse verso il rosso (frequenze basse) all'aumentare della temperatura.
 - (c) Che l'energia emessa fosse quantizzata fin dall'inizio.
 - (d) Un'intensità energetica infinita per lunghezze d'onda molto piccole (alte frequenze).