0.1. 高階微分 1

0.1 高階微分

0.1.1 高階微分とその表記

関数 f(x) を微分したもの f'(x) をさらに微分して、その結果をさらに微分して…というように、「導関数の導関数」を繰り返し考えていくことを高階微分という。

まずは、2回微分した場合について定義しよう。

f(x) を 2 回微分したものは、ニュートン記法では f''(x) と表される。

ライプニッツ記法で表現するには、次のように考えるとよい。

$$\frac{d}{dx}\left(\frac{d}{dx}f(x)\right) = \left(\frac{d}{dx}\right)^2 f(x) = \frac{d^2}{dx^2}f(x)$$

	7Hs:公山	h /\	(-	- 17H:	2年日	日半片	. \																			
	百亿	XX	(_	上階	导局	钊致	.)																			
関	数 ƒ	f(x)	を行	微分	し	て得	事ら;	れた	導	関数	$\xi f'$	(x)	をこ	¥ 5	に祝	 数分	する	るこ	と	を =	階	微分	} と	いり	<i>(</i>),	
そ	の糸	果	得多	うれ	たも		数を	ž =	階:	導関	数	とい	ヽう	o												
二	階導	製	数に	ţ.,	次0	りよ	うん	こ表	記	され	る。															
													a	<u>j</u> 2												
									f'	' ()	()	=	\overline{d}	$\frac{1}{x^2}$	f((x)										
													٠,٠													

n階微分も同様に定義される。

n が大きな値になると、プライム記号をつける表記では f''''''(x) のようになってわかりづらいので、 $f^{(n)}(x)$ のようにプライムの数 n を添える記法がよく使われる。

0.1.2 冪関数の高階微分

n次の冪関数 $f(x) = x^n$ を k 回微分すると、次のようになる。

$$f(x) = x^{n}$$

$$f'(x) = nx^{n-1}$$

$$f''(x) = n(n-1)x^{n-2}$$

$$f'''(x) = n(n-1)(n-2)x^{n-3}$$

$$\vdots$$

$$f^{(k)}(x) = n(n-1)(n-2)\cdots(n-(k-1))x^{n-k}$$

$$= n(n-1)(n-2)\cdots(n-k+1)x^{n-k}$$

$$f^{(n)}(x) = n(n-1)(n-2)\cdots(n-n+1)x^{n-n}$$

$$= n(n-1)(n-2)\cdots1 \cdot x^{0}$$

$$= n(n-1)(n-2)\cdots1$$

$$= n!$$

となり、n 階微分した時点で定数 n! になるので、これ以上微分すると 0 になる。

$$f^{(n+1)}(x) = 0$$

0.1. 高階微分

3

0.1.3 指数関数の高階微分

ネイピア数を底とする指数関数 $f(x) = e^x$ は、何度微分しても変わらない関数である。

$$f(x) = e^{x}$$

$$f'(x) = e^{x}$$

$$f''(x) = e^{x}$$

$$f'''(x) = e^{x}$$

$$\vdots$$

$$f^{(n)}(x) = e^{x}$$

指数が k 倍されている場合 $f(x) = e^{kx}$ は、微分するたびに k が前に落ちてきて、n 階微分すると k^n が前につくことになる。

$$f(x) = e^{kx}$$

$$f'(x) = ke^{kx}$$

$$f''(x) = k^{2}e^{kx}$$

$$f'''(x) = k^{3}e^{kx}$$

$$\vdots$$

$$f^{(n)}(x) = k^{n}e^{kx}$$