

Exercise 1.2 Show that $\frac{-1+\sqrt{3}i}{2}$ is a cube root of 1 (meaning that its cube equals 1).

Proof.

$$\left(\frac{-1+\sqrt{3}i}{2}\right)^2 = \frac{-1-\sqrt{3}i}{2},$$

hence

$$\left(\frac{-1+\sqrt{3}i}{2}\right)^3 = \frac{-1-\sqrt{3}i}{2} \cdot \frac{-1+\sqrt{3}i}{2} = 1$$

This means $\frac{-1+\sqrt{3}i}{2}$ is a cube root of 1.

Exercise 1.3 Prove that -(-v) = v for every $v \in V$.

Proof. By definition, we have

$$(-v) + (-(-v)) = 0$$
 and $v + (-v) = 0$.

This implies both v and -(-v) are additive inverses of -v, by the uniqueness of additive inverse, it follows that -(-v) = v.

Exercise 1.4 Prove that if $a \in \mathbf{F}$, $v \in V$, and av = 0, then a = 0 or v = 0.

Proof. If a=0, then we immediately have our result. So suppose $a\neq 0$. Then, because a is some nonzero real or complex number, it has a multiplicative inverse $\frac{1}{a}$. Now suppose that v is some vector such that

$$av = 0$$

Multiply by $\frac{1}{a}$ on both sides of this equation to get

$$\frac{1}{a}(av) = \frac{1}{a}0$$

$$\frac{1}{a}(av) = 0$$

$$\left(\frac{1}{a} \cdot a\right)v = 0 \qquad \text{(associativity)}$$

$$1v = 0 \qquad \text{(definition of } 1/a\text{)}$$

$$v = 0 \qquad \text{(multiplicative identity)}$$

Hence either a = 0 or, if $a \neq 0$, then v = 0.

Exercise 1.6 Give an example of a nonempty subset U of \mathbf{R}^2 such that U is closed under addition and under taking additive inverses (meaning $-u \in U$ whenever $u \in U$), but U is not a subspace of \mathbf{R}^2 .

Proof.

$$U = \mathbb{Z}^2 = \{(x, y) \in \mathbf{R}^2 : x, y \text{ are integers } \}$$

 $U=\mathbb{Z}^2$ satisfies the desired properties. To come up with this, note by assumption, U must be closed under addition and subtraction, so in particular, it must contain 0. We need to find a set which fails scalar multiplication. A discrete set like \mathbb{Z}^2 does this.

Exercise 1.7 Give an example of a nonempty subset U of \mathbb{R}^2 such that U is closed under scalar multiplication, but U is not a subspace of \mathbb{R}^2 .

Proof.

$$U=\left\{(x,y)\in\mathbf{R}^2:|x|=|y|\right\}$$

For $(x,y) \in U$ and $\lambda \in \mathbb{R}$, it follows $\lambda(x,y) = (\lambda x, \lambda y)$, so $|\lambda x| = |\lambda||x| = |\lambda||y| = |\lambda y|$. Therefore, $\lambda(x,y) \in U$.

On the other hand, consider $a=(1,-1), b=(1,1)\in U$. Then, $a+b=(1,-1)+(1,1)=(2,0)\notin U$. So, U is not a subspace of \mathbb{R}^2 .

Exercise 1.8 Prove that the intersection of any collection of subspaces of V is a subspace of V.

Proof. Let V_1, V_2, \ldots, V_n be subspaces of the vector space V over the field F. We must show that their intersection $V_1 \cap V_2 \cap \ldots \cap V_n$ is also a subspace of V.

To begin, we observe that the additive identity 0 of V is in $V_1 \cap V_2 \cap \ldots \cap V_n$. This is because 0 is in each subspace V_i , as they are subspaces and hence contain the additive identity.

Next, we show that the intersection of subspaces is closed under addition. Let u and v be vectors in $V_1 \cap V_2 \cap \ldots \cap V_n$. By definition, u and v belong to each of the subspaces V_i . Since each V_i is a subspace and therefore closed under

addition, it follows that u + v belongs to each V_i . Thus, u + v belongs to the intersection $V_1 \cap V_2 \cap \ldots \cap V_n$.

Finally, we show that the intersection of subspaces is closed under scalar multiplication. Let a be a scalar in F and let v be a vector in $V_1 \cap V_2 \cap \ldots \cap V_n$. Since v belongs to each V_i , we have av belongs to each V_i as well, as V_i are subspaces and hence closed under scalar multiplication. Therefore, av belongs to the intersection $V_1 \cap V_2 \cap \ldots \cap V_n$.

Thus, we have shown that $V_1 \cap V_2 \cap \ldots \cap V_n$ is a subspace of V.

Exercise 1.9 Prove that the union of two subspaces of V is a subspace of V if and only if one of the subspaces is contained in the other.

Proof. To prove this one way, suppose for purposes of contradiction that for U_1 and U_2 , which are subspaces of V, that $U_1 \cup U_2$ is a subspace and neither is completely contained within the other. In other words, $U_1 \nsubseteq U_2$ and $U_2 \nsubseteq U_1$. We will show that you can pick a vector $v \in U_1$ and a vector $u \in U_2$ such that $v + u \notin U_1 \cup U_2$, proving that if $U_1 \cup U_2$ is a subspace, one must be completely contained inside the other.

If $U_1 \nsubseteq U_2$, we can pick a $v \in U_1$ such that $v \notin U_2$. Since v is in the subspace U_1 , then (-v) must also be, by definition. Similarly, if $U_2 \nsubseteq U_1$, then we can pick a $u \in U_2$ such that $u \notin U_1$. Since u is in the subspace U_2 , then (-u) must also be, by definition.

If $v + u \in U_1 \cup U_2$, then v + u must be in U_1 or U_2 . But, $v + u \in U_1 \Rightarrow v + u + (-v) \in U_1 \Rightarrow u \in U_1$ Similarly,

$$v + u \in U_2 \Rightarrow v + u + (-u) \in U_2 \Rightarrow v \in U_2$$

This is clearly a contradiction, as each element was defined to not be in these subspaces. Thus our initial assumption must have been wrong, and $U_1 \subseteq U_2$ or $U_2 \subseteq U_1$ To prove the other way, Let $U_1 \subseteq U_2$ (WLOG). $U_1 \subseteq U_2 \Rightarrow U_1 \cup U_2 = U_2$. Since U_2 is a subspace, $U_1 \cup U_2$ is as well. QED.

Exercise 3.1 Show that every linear map from a one-dimensional vector space to itself is multiplication by some scalar. More precisely, prove that if dim V=1 and $T \in \mathcal{L}(V, V)$, then there exists $a \in \mathbf{F}$ such that Tv = av for all $v \in V$.

Proof. If dim V=1, then in fact, $V=\mathbf{F}$ and it is spanned by $1 \in \mathbf{F}$. Let T be a linear map from V to itself. Let $T(1)=\lambda \in V(=\mathbf{F})$. Step 2 2 of 3 Every $v \in V$ is a scalar. Therefore,

$$T(v) = T(v \cdot 1)$$

= $vT(1) \dots$ (By the linearity of T)
= $v\lambda$

Hence, $Tv = \lambda v$ for every $v \in V$.

Exercise 3.8 Suppose that V is finite dimensional and that $T \in \mathcal{L}(V, W)$. Prove that there exists a subspace U of V such that $U \cap \text{null } T = \{0\}$ and range $T = \{Tu : u \in U\}$.

Proof. The point here is to note that every subspace of a vector space has a complementary subspace. In this example, U will precisely turn out to be the complementary subspace of null T. That is, $V = U \oplus \text{null } T$ How should we characterize U? This can be achieved by extending a basis $B_1 = \{v_1, v_2, \ldots, v_m\}$ of null T to a basis of V. Let $B_2 = \{u_1, u_2, \ldots, u_n\}$ be such that $B = B_1 \cup B_2$ is a basis of V.

Define $U = \text{span}(B_2)$. Now, since B_1 and B_2 are complementary subsets of the basis B of V, their spans will turn out to be complementary subspaces of V. Let's prove that $V = U \oplus \text{null } T$.

Let $v \in V$. Then, v can be expressed as a linear combination of the vectors in B. Let $v = a_1u_1 + \cdots + a_nu_n + c_1v_1 + \cdots + c_mv_m$. However, since $\{u_1, u_2, \ldots, u_n\}$ is a basis of $U, a_1u_1 + \cdots + a_nu_n = u \in U$ and since $\{v_1, v_2, \ldots, v_m\}$ is a basis of null $T, c_1v_1 + \cdots + c_mv_m = w \in \text{null } T$. Hence, $v = u + w \in U + \text{null } T$. This shows that

$$V = U + \text{null } T$$

Now, let $v \in U \cap \text{null } T$. Since $v \in U, u$ can be expressed as a linear combination of basis vectors of U. Let

$$v = a_1 u_1 + \dots + a_n u_n$$

Similarly, since $v \in \text{null } T$, it can also be expressed as a tinear combination of the basis vectors of null T. Let

$$v = c_1 v_1 + \dots + c_m v_m$$

The left hand sides of the above two equations are equal. Therefore, we can equate the right hand sides.

$$a_1u_1 + \dots + a_nu_n = v = c_1v_1 + \dots + c_mv_m$$

 $a_1u_1 + \dots + a_nu_n - c_1v_1 - \dots - c_mv_m = 0$

We have found a linear combination of u_i' 's and v_i 's which is equal to zero. However, they are basis vectors of V. Hence, all the multipliers c_i 's and a_i 's must be zero implying that v=0. Therefore, if $v \in U \cap \text{null } T$, then v=0. this means that

$$U \cap \text{null } T = \{0\}$$

The above shows that U satisfies the first of the required conditions. Now let $w \in \text{range } T$. Then, there exists $v \in V$ such that Tv = w. This allows us to

write v = u + w where $u \in U$ and $w \in \text{null } T$. This implies

$$\begin{split} w &= Tv \\ &= T(u+w) \\ &= Tu+Tw \\ &= Tu+0 \quad \text{(since } w \in \text{null } T) \\ &= Tu \end{split}$$

This shows that if $w \in \text{range } T$ then w = Tu for some $u \in U$. Therefore, range $T \subseteq \{Tu \mid u \in U\}$. Since U is a subspace of V, it follows that $Tu \in \text{range } T$ for all $u \in U$. Thus, $\{Tu \mid u \in U\} \subseteq \text{range } T$. Therefore, range $T = \{Tu \mid u \in U\}$. This shows that U satisfies the second required condition as well.

Exercise 3.10 Prove that there does not exist a linear map from \mathbf{F}^5 to \mathbf{F}^2 whose null space equals $\{(x_1, x_2, x_3, x_4, x_5) \in \mathbf{F}^5 : x_1 = 3x_2 \text{ and } x_3 = x_4 = x_5\}$.

Proof. Suppose that there exists a linear map $T: \mathbf{F}^5 \to \mathbf{F}^2$. By virtue of the above theorem, what would be a possible dimension of its null space? In this context, $V = \mathbf{F}^5$. Thus, dim V = 5. Since range $T \subseteq \mathbf{F}^2$, dim range $T \le 2$. Therefore,

$$\dim \ \mathrm{null} \ T = \dim \mathbf{F}^5 - \dim \ \mathrm{null} \ T$$

$$\geq 5 - 2$$

$$= 3$$

That is, $\dim \operatorname{null} T$ must at least be 3.

Now, let's find out a bit more about the given space.

$$U = \{(x_1, x_2, x_3, x_4, x_5) \mid x_1 = 3x_2, x_3 = x_4 = x_5\}$$

= \{(3x_2, x_2, x_3, x_3, x_3) \| x_2, x_3 \in \mathbf{F}\}
= \{x_2(3, 1, 0, 0, 0) + x_3(0, 0, 1, 1, 1) \| x_2, x_3 \in \mathbf{F}\}

This shows that $U = \text{span}\{(3, 1, 0, 0, 0), (0, 0, 1, 1, 1)\}$. That U is generated by two vectors implies that the dimension of U can be at most 2.

This along with the conclusion of the previous step proves that U can never be the null space of any linear map $T: \mathbf{F}^5 \to \mathbf{F}^2$

Exercise 3.11 Prove that if there exists a linear map on V whose null space and range are both finite dimensional, then V is finite dimensional.

Proof. Suppose V is vector space and T is a linear map defined on V. If the range and the null space of T are both finite dimensional, then the right hand side of the equation quoted above is a finite number. Hence, the left hand side also must be a finite number. In other words, V must be finite dimensional. \square

Exercise 4.4 Suppose $p \in \mathcal{P}(\mathbf{C})$ has degree m. Prove that p has m distinct roots if and only if p and its derivative p' have no roots in common.

Proof. First, let p have m distinct roots. Since p has the degree of m, then this could imply that p can be actually written in the form of $p(z) = c(z - \lambda_1) \dots (z - \lambda_m)$, which you have $\lambda_1, \dots, \lambda_m$ being distinct. To prove that both p and p' have no roots in commons, we must now show that $p'(\lambda_j) \neq 0$ for every j. So, to do so, just fix j. The previous expression for p shows that we can now write p in the form of $p(z) = (z - \lambda_j) q(z)$, which $p(z) = (z - \lambda_j) q(z)$ is a polynomial such that p(z) = 0.

When you differentiate both sides of the previous equation, then you would then have $p'(z) = (z - \lambda_i) q'(z) + q(z)$

Therefore: $= p'(\lambda_i) = q\lambda_i$) Equals: $p'(\lambda_i) \neq 0$

Now, to prove the other direction, we would now prove the contrapositive, which means that we will be proving that if p has actually less than m distinct roots, then both p and p' have at least one root in common.

Now, for some root of λ of p, we can write p is in the form of $p(z) = (z - \lambda)^n q(z)$, which is where both $n \geq 2$ and q is a polynomial. When differentiating both sides of the previous equations, we would then have $p'(z) = (z - \lambda)^n q'(z) + n(z - \lambda)^{n-1}q(z)$. Therefore, $p'(\lambda) = 0$, which would make λ is a common root of both p and p'.

Exercise 5.1 Suppose $T \in \mathcal{L}(V)$. Prove that if U_1, \ldots, U_m are subspaces of V invariant under T, then $U_1 + \cdots + U_m$ is invariant under T.

Proof. First off, assume that U_1, \ldots, U_m are subspaces of V invariant under T. Now, consider a vector $u \in U_1 + \ldots + U_m$. There does exist $u_1 \in U_1, \ldots, u_m \in U_m$ such that $u = u_1 + \ldots + u_m$.

Once you apply T towards both sides of the previous equation, we would then get $Tu = Tu_1 + \ldots + Tu_m$.

Since each U_j is invariant under T, then we would have $Tu_1 \in U_1 + \ldots + Tu_m$. This would then make the equation shows that $Tu \in U_1 + \ldots + Tu_m$, which does imply that $U_1 + \ldots + U_m$ is invariant under T

Exercise 5.4 Suppose that $S, T \in \mathcal{L}(V)$ are such that ST = TS. Prove that $\text{null}(T - \lambda I)$ is invariant under S for every $\lambda \in \mathbf{F}$.

Proof. First off, fix $\lambda \in F$. Secondly, let $v \in \text{null}(T - \lambda I)$. If so, then $(T - \lambda I)(Sv) = TSv - \lambda Sv = STv - \lambda Sv = S(Tv - \lambda v) = 0$. Therefore, $Sv \in \text{null}(T - \lambda I)$ since $null(T - \lambda I)$ is actually invariant under S.

Exercise 5.11 Suppose $S, T \in \mathcal{L}(V)$. Prove that ST and TS have the same eigenvalues.

Proof. To start, let $\lambda \in F$ be an eigenvalue of ST. Now, we would want λ to be an eigenvalue of TS. Since λ , by itself, is an eigenvalue of ST, then there has to be a nonzero vector $v \in V$ such that $(ST)v = \lambda v$. Now, With a

given reference that $(ST)v = \lambda v$, you will then have the following: $(TS)(Tv) = T(STv) = T(\lambda v) = \lambda Tv$ If $Tv \neq 0$, then the listed equation above shows that λ is an eigenvalue of TS. If Tv = 0, then $\lambda = 0$, since $S(Tv) = \lambda Tv$. This also means that T isn't invertible, which would imply that TS isn't invertible, which can also be implied that λ , which equals 0, is an eigenvalue of TS. Step 3 3 of 3 Now, regardless of whether Tv = 0 or not, we would have shown that λ is an eigenvalue of TS. Since λ (was) an arbitrary eigenvalue of ST, we have shown that every single eigenvalue of ST is an eigenvalue of ST. When you do reverse the roles of both S and ST, then we can conclude that that every single eigenvalue of ST is also an eigenvalue of ST. Therefore, both ST and ST have the exact same eigenvalues.

Exercise 5.12 Suppose $T \in \mathcal{L}(V)$ is such that every vector in V is an eigenvector of T. Prove that T is a scalar multiple of the identity operator.

Proof. For every single $v \in V$, there does exist $a_v \in F$ such that $Tv = a_v v$. Since T0 = 0, then we have to make a_0 be the any number in F. However, for every single $v \in V\{0\}$, then the value of a_V is uniquely determined by the previous equation of $Tv = a_v v$.

Now, to show that T is a scalar multiple of the identity, then me must show that a_v is independent of v for $v \in V\{0\}$. We would now want to show that $a_v = a_w$.

First, just make the case of where (v, w) is linearly dependent. Then, there does exist $b \in F$ such that w = bv. Now, you would have the following: $a_W w = Tw = T(bv) = bTv = b(a_v v) = a_v w$. This is showing that $a_v = a_w$. Finally, make the consideration to make (v, w) be linearly independent. Now, we would have the following: $a_{\ell}(v + w)(v + w) = T(v + w) = Tv + Tw = a_v v + a_w w$.

That previous equation implies the following: $(a_{\ell}(v+w)-a_{\nu})v+(a_{\ell}(v+w)-a_{w})w=0$. Since (v,w) is linearly independent, this would imply that both $a_{\ell}(v+w)=a_{\nu}$ and $a_{\ell}(v+w)=a_{\nu}$. Therefore, $a_{\nu}=a_{\nu}$.

Exercise 5.13 Suppose $T \in \mathcal{L}(V)$ is such that every subspace of V with dimension dim V-1 is invariant under T. Prove that T is a scalar multiple of the identity operator.

Proof. First off, let T isn't a scalar multiple of the identity operator. So, there does exists that $v \in V$ such that u isn't an eigenvector of T. Therefore, (u, Tu) is linearly independent.

Next, you should extend (u, Tu) to a basis of $(u, Tu, v_1, \ldots, v_n)$ of V. So, let $U = \operatorname{span}(u, v_1, \ldots, v_n)$. Then, U is a subspace of V and $\dim U = \dim V - 1$. However, U isn't invariant under T since both $u \in U$ and $Tu \in U$. This given contradiction to our hypothesis about T actually shows us that our guess that T is not a scalar multiple of the identity must have been false.

Exercise 5.20 Suppose that $T \in \mathcal{L}(V)$ has dim V distinct eigenvalues and that $S \in \mathcal{L}(V)$ has the same eigenvectors as T (not necessarily with the same eigenvalues). Prove that ST = TS.

Proof. First off, let $n = \dim V$. so, there is a basis of (v_1, \ldots, v_j) of V that consist of eigenvectors of T. Now, let $\lambda_1, \ldots, \lambda_n$ be the corresponding eigenvalues, then we would have $Tv_i = \lambda_1 v_i$ for every single j.

Now, for every v_j is also an eigenvector of S, so $Sv_j = a_jv_j$ for some $a_j \in F$. For each j, we would then have $(ST)v_j = S(Tv_j) = \lambda_j Sv_j = a_j\lambda_j v_j$ and $(TS)v_j = T(Sv_j) = a_jTv_j = a_j\lambda_j v_j$. Since both operators, which are ST and TS, agree on a basis, then both are equal.

Exercise 5.24 Suppose V is a real vector space and $T \in \mathcal{L}(V)$ has no eigenvalues. Prove that every subspace of V invariant under T has even dimension.

Proof. First off, let us assume that U is a subspace of V that is invariant under T. Therefore, $T|_{U} \in \mathcal{L}(U)$. If dim U were odd, then $T|_{U}$ would have an eigenvalue $\lambda \in \mathbb{R}$, so there would exist a nonzero vector $u \in U$ such that

$$T|_{U}u=\lambda u.$$

So, this would imply that $T_u = \lambda u$, which would imply that λ is an eigenvalue of T. But T has no eigenvalues, so dim U must be even.

Exercise 6.2 Suppose $u, v \in V$. Prove that $\langle u, v \rangle = 0$ if and only if $||u|| \le ||u + av||$ for all $a \in \mathbf{F}$.

Proof. First off, let us suppose that (u, v) = 0. Now, let $a \in \mathbb{F}$. Next, u, av are orthogonal. The Pythagorean theorem thus implies that

$$||u + av||^2 = ||u||^2 + ||av||^2$$

> $||u||^2$

So, by taking the square roots, this will now give us $||u|| \le ||u + av||$. Now, to prove the implication in the other direction, we must now let $||u|| \le ||u + av||$ for all $a \in \mathbb{F}$. Squaring this inequality, we get both:

$$||u||^{2} and \leq ||u + av||^{2}$$

$$= (u + av, u + av)$$

$$= (u, u) + (u, av) + (av, u) + (av, av)$$

$$= ||u||^{2} + \bar{a}(u, v) + a\overline{(u, v)} + |a|^{2}||v||^{2}$$

$$||u||^{2} + 2\Re \bar{a}(u, v) + |a|^{2}||v||^{2}$$

for all $a \in \mathbb{F}$. Therefore,

$$-2\Re \bar{a}(u,v) \le |a|^2 ||v||^2$$

for all $a \in \mathbb{F}$. In particular, we can let a equal -t(u, v) for t > 0. Substituting this value for a into the inequality above gives

$$2t|(u,v)|^2 \le t^2|(u,v)|^2||v||^2$$

for all t > 0. Step 4 4 of 4 Divide both sides of the inequality above by t, getting

$$2|(u,v)|^2 \le t |(u,v)^2||v||^2$$

for all t > 0. If v = 0, then (u, v) = 0, as desired. If $v \neq 0$, set t equal to $1/\|v\|^2$ in the inequality above, getting

$$2|(u,v)|^2 \le |(u,v)|^2$$

which implies that (u, v) = 0.

Exercise 6.3 Prove that $\left(\sum_{j=1}^n a_j b_j\right)^2 \leq \left(\sum_{j=1}^n j a_j^2\right) \left(\sum_{j=1}^n \frac{b_j^2}{j}\right)$ for all real numbers a_1, \ldots, a_n and b_1, \ldots, b_n .

Proof. Let $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in R$. We have that

$$\left(\sum_{j=1}^{n} a_j b_j\right)^2$$

is equal to the

$$\left(\sum_{j=1}^{n} a_j b_j \frac{\sqrt{j}}{\sqrt{j}}\right)^2 = \left(\sum_{j=1}^{n} \left(\sqrt{j} a_j\right) \left(b_j \frac{1}{\sqrt{j}}\right)\right)^2$$

This can be observed as an inner product, and using the Cauchy-Schwarz Inequality, we get

$$\left(\sum_{j=1}^{n} a_{j} b_{j}\right)^{2} = \left(\sum_{j=1}^{n} \left(\sqrt{j} a_{j}\right) \left(b_{j} \frac{1}{\sqrt{j}}\right)\right)^{2}$$

$$= \left\langle \left(a, \sqrt{2} a_{2}, \dots, \sqrt{n} a_{n}\right), \left(b_{1}, \frac{b_{2}}{\sqrt{2}}, \dots, \frac{b_{n}}{\sqrt{n}}\right)\right\rangle$$

$$\leq \left\|\left(a, \sqrt{2} a_{2}, \dots, \sqrt{n} a_{n}\right)\right\|^{2} \left\|\left(b_{1}, \frac{b_{2}}{\sqrt{2}}, \dots, \frac{b_{n}}{\sqrt{n}}\right)\right\|^{2}$$

$$= \left(\sum_{j=1}^{n} j a_{j}^{2}\right) \left(\sum_{j=1}^{n} \frac{b_{j}^{2}}{j}\right)$$

$$\text{Hence, } \left(\sum_{j=1}^{n} a_{j} b_{j}\right)^{2} = \left(\sum_{j=1}^{n} j a_{j}^{2}\right) \left(\sum_{j=1}^{n} \frac{b_{j}^{2}}{j}\right).$$

Exercise 6.7 Prove that if V is a complex inner-product space, then $\langle u,v\rangle=\frac{\|u+v\|^2-\|u-v\|^2+\|u+iv\|^2i-\|u-iv\|^2i}{4}$ for all $u,v\in V$.

Proof. Let V be an inner-product space and $u, v \in V$. Then

$$||u + v||^{2} = \langle u + v, v + v \rangle$$

$$= ||u||^{2} + \langle u, v \rangle + \langle v, u \rangle + ||v||^{2}$$

$$-||u - v||^{2} = -\langle u - v, u - v \rangle$$

$$= -||u||^{2} + \langle u, v \rangle + \langle v, u \rangle - ||v||^{2}$$

$$i||u + iv||^{2} = i\langle u + iv, u + iv \rangle$$

$$= i||u||^{2} + \langle u, v \rangle - \langle v, u \rangle + i||v||^{2}$$

$$-i||u - iv||^{2} = -i\langle u - iv, u - iv \rangle$$

$$= -i||u||^{2} + \langle u, v \rangle - \langle v, u \rangle - i||v||^{2}.$$

Thus $(\|u+v\|^2) - \|u-v\|^2 + (i\|u+iv\|^2) - i\|u-iv\|^2 = 4\langle u,v\rangle.$

Exercise 6.13 Suppose (e_1, \ldots, e_m) is an or thonormal list of vectors in V. Let $v \in V$. Prove that $||v||^2 = |\langle v, e_1 \rangle|^2 + \cdots + |\langle v, e_m \rangle|^2$ if and only if $v \in \text{span}(e_1, \ldots, e_m)$.

Proof. If $v \in \text{span}(e_1, \ldots, e_m)$, it means that

$$v = \alpha_1 e_1 + \ldots + \alpha_m e_m.$$

for some scalars α_i . We know that $\alpha_k = \langle v, e_k \rangle, \forall k \in \{1, \dots, m\}$. Therefore,

$$||v||^2 = \langle v, v \rangle$$

$$= \langle \alpha_1 e_1 + \ldots + \alpha_m e_m, \alpha_1 e_1 + \ldots + \alpha_m e_m \rangle$$

$$= |\alpha_1|^2 \langle e_1, e_1 \rangle + \ldots + |\alpha_m|^2 \langle e_m, e_m \rangle$$

$$= |\alpha_1|^2 + \ldots + |\alpha_m|^2$$

$$= |\langle v, e_1 \rangle|^2 + \ldots + |\langle v, e_m \rangle|^2.$$

 \Rightarrow Assume that $v \notin \text{span}(e_1, \ldots, e_m)$. Then, we must have

$$v = v_{m+1} + \frac{\langle v, v_0 \rangle}{\|v_0\|^2} v_0,$$

where $v_0 = \alpha_1 e_1 + \ldots + \alpha_m e_m$, $\alpha_k = \langle v, e_k \rangle$, $\forall k \in \{1, \ldots, m\}$, and $v_{m+1} = v - \frac{\langle v, v_0 \rangle}{\|v_0\|^2} v_0 \neq 0$.

We have $\langle v_0, v_{m+1} \rangle = 0$ (from which we get $\langle v, v_0 \rangle = \langle v_0, v_0 \rangle$ and $\langle v, v_{m+1} \rangle = \langle v_{m+1}, v_{m+1} \rangle$). Now,

$$||v||^{2} = \langle v, v \rangle$$

$$= \left\langle v, v_{m+1} + \frac{\langle v, v_{0} \rangle}{||v_{0}||^{2}} v_{0} \right\rangle$$

$$= \left\langle v, v_{m+1} \right\rangle + \left\langle v, \frac{\langle v, v_{0} \rangle}{||v_{0}||^{2}} v_{0} \right\rangle$$

$$= \left\langle v_{m+1}, v_{m+1} \right\rangle + \frac{\left\langle v_{0}, v_{0} \right\rangle}{||v_{0}||^{2}} \left\langle v_{0}, v_{0} \right\rangle$$

$$= ||v_{m+1}||^{2} + ||v_{0}||^{2}$$

$$> ||v_{0}||^{2}$$

$$= |\alpha_{1}|^{2} + \dots + |\alpha_{m}|^{2}$$

$$= |\langle v, e_{1} \rangle|^{2} + \dots + |\langle v, e_{m} \rangle|^{2}.$$

By contrapositive, if $||v_1||^2 = |\langle v, e_1 \rangle|^2 + \ldots + |\langle v, e_m \rangle|^2$, then $v \in \text{span}(e_1, \ldots, e_m)$.

Exercise 6.16 Suppose U is a subspace of V. Prove that $U^{\perp} = \{0\}$ if and only if U = V

Proof.
$$V = U \bigoplus U^{\perp}$$
, therefore $U^{\perp} = \{0\}$ iff $U = V$.

Exercise 6.20 Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V. Prove that U and U^{\perp} are both invariant under T if and only if $P_{U}T = TP_{U}$.

Proof. First off, let us suppose that U and U^{\perp} are both invariant under T. By the previous exercise, this implies that

$$P_U T P_U = T P_U$$

and

$$P_{U^{\perp}}TP_{U^{\perp}} = TP_{U^{\perp}}.$$

But $P_{U^{\perp}} = I - P_U$, so the last equation becomes

$$(I - P_U) T (I - P_U) = T (I - P_U).$$

Expanding both sides oth the equation above and rearranging terms, we get

$$P_U T P_U = P_U T.$$

Combining this with the first equation, which is listed above, then we get $P_UT = TP_U$.

Now, to prove the implication in the other direction, let us suppose (now) that

$$P_{II}T = TP_{II}$$
.

Then

$$P_{U}TP_{U} = (P_{U}T) P_{U}$$

$$= (TP_{U}) P_{U}$$

$$= TP_{U}^{2}$$

$$= TP_{U}$$

which implies that U is invariant under T. Also,

$$\begin{split} P_{U^{\perp}}TP_{U^{\perp}} &= \left(\left(I - P_{U} \right) T \right) P_{U^{\perp}} \\ &= \left(T - P_{U} T \right) P_{U^{\perp}} \\ &= \left(T - T P_{U} \right) P_{U^{\perp}} \\ &= T \left(1 - P_{U} \right) P_{U^{\perp}} \\ &= T P_{U^{\perp}}^{2} \\ &= T P_{U^{\perp}} \end{split}$$

which implies that U^{\perp} is invariant under T.

Exercise 6.29 Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V. Prove that U is invariant under T if and only if U^{\perp} is invariant under T^* .

Proof. First off, let U be invariant under T. Now, to prove that U^{\perp} is invariant under T^* , just make $v \in U^{\perp}$. Now, we would need to show that $T^*v \in U^{\perp}$.

However, $\langle u, T^*v \rangle = \langle Tu, v \rangle = 0$ for every single $u \in U$ since if you have have $u \in U$, then $Tu \in U$ since Tu is orthogonal to v, which is an element of U^{\perp} . Therefore, $T^*v \in U^{\perp}$ since U^{\perp} is invariant under T^* .

Next, to prove that the same thing, but in the other direction, then assume that U^{\perp} is invariant under T^* . Then, by using the very first direction, we should know that $(U^{\perp})^{\perp}$ is also invariant, but to $(T^*)^*$.

So, since $(U^{\perp})^{\perp} = U$ and that $(T^*)^* = T$, then we can conclude that U is invariant under T, which completes this given proof.

Exercise 7.5 Show that if dim $V \ge 2$, then the set of normal operators on V is not a subspace of $\mathcal{L}(V)$.

Proof. First off, suppose that dim $V \ge 2$. Next let (e_1, \ldots, e_n) be an orthonormal basis of V. Now, define $S, T \in L(V)$ by both $S(a_1e_1 + \ldots + a_ne_n) = a_2e_1 - a_1e_2$ and $T(a_1e_1 + \ldots + a_ne_n) = a_2e_1 + a_1e_2$. So, just by now doing a simple calculation verifies that $S^*(a_1e_1 + \ldots + a_ne_n) = -a_2e_1 + a_1e_2$

Now, based on this formula, another calculation would show that $SS^* = S^*S$. Another simple calculation would that that T is self-adjoint. Therefore, both S and T are normal. However, S+T is given by the formula of (S+T)

T) $(a_1e_1 + \ldots + a_ne_n) = 2a_2e_1$. In this case, a simple calculator verifies that $(S+T)^*$ $(a_1e_1 + \ldots + a_ne_n) = 2a_1e_2$.

Therefore, there is a final simple calculation that shows that $(S+T)(S+T)^* \neq (S+T)^*(S+T)$. So, in other words, S+T isn't normal. Thereofre, the set of normal operators on V isn't closed under addition and hence isn't a subspace of L(V).

Exercise 7.6 Prove that if $T \in \mathcal{L}(V)$ is normal, then range $T = \operatorname{range} T^*$.

Proof. Let $T \in \mathcal{L}(V)$ to be a normal operator. Suppose $u \in \text{null } T$. Then, by 7.20,

$$0 = ||Tu|| = ||T^*u||,$$

which implies that $u \in \text{null } T^*$. Hence

$$\operatorname{null} T = \operatorname{null} T^*$$

because $(T^*)^* = T$ and the same argument can be repeated. Now we have

range
$$T = (\text{ null } T^*)^{\perp}$$

= $(\text{ null } T)^{\perp}$
= $\text{range } T^*,$

where the first and last equality follow from items (d) and (b) of 7.7. Hence, range $T=\mathrm{range}\ T^*$.

Exercise 7.9 Prove that a normal operator on a complex inner-product space is self-adjoint if and only if all its eigenvalues are real.

Proof. First off, suppose V is a complex inner product space and $T \in L(V)$ is normal. If T is self-adjoint, then all its eigenvalues are real. So, conversely, let all of the eigenvalues of T be real. By the complex spectral theorem, there's an orthonormal basis (e_1, \ldots, e_n) of V consisting of eigenvectors of T. Thus, there exists real numbers $\lambda_1, \ldots, \lambda_n$ such that $Te_j = \lambda_j e_j$ for $j = 1, \ldots, n$. The matrix of T with respect to the basis of (e_1, \ldots, e_n) is the diagonal matrix with $\lambda_1, \ldots, \lambda_n$ on the diagonal. So, the matrix equals its conjugate transpose. Therefore, $T = T^*$. In other words, T s self-adjoint.

Exercise 7.10 Suppose V is a complex inner-product space and $T \in \mathcal{L}(V)$ is a normal operator such that $T^9 = T^8$. Prove that T is self-adjoint and $T^2 = T$.

Proof. Based on the complex spectral theorem, there is an orthonormal basis of (e_1, \ldots, e_n) of V consisting of eigenvectors of T. Now, let $\lambda_1, \ldots, \lambda_n$ be the corresponding eigenvalues. Therefore,

$$Te_1 = \lambda_i e_i$$

for $j = 1 \dots n$.

Next, by applying T repeatedly to both sides of the equation above, we get $T^9e_j = (\lambda_j)^9e_j$ and rei =8ej. Thus $T^8e_j = (\lambda_j)^8e_j$, which implies that λ_j equals 0 or 1. In particular, all the eigenvalues of T are real. This would then imply that T is self-adjoint.

Now, by applying T to both sides of the equation above, we get

$$T^{2}e_{j} = (\lambda_{j})^{2} e_{j}$$
$$= \lambda_{j}e_{j}$$
$$= Te_{j}$$

which is where the second equality holds because λ_j equals 0 or 1. Because T^2 and T agree on a basis, they must be equal.

Exercise 7.11 Suppose V is a complex inner-product space. Prove that every normal operator on V has a square root. (An operator $S \in \mathcal{L}(V)$ is called a square root of $T \in \mathcal{L}(V)$ if $S^2 = T$.)

Proof. Let V be a complex inner product space. It is known that an operator $S \in \mathcal{L}(V)$ is called a square root of $T \in \mathcal{L}(V)$ if

$$S^2 = T$$

Now, suppose that T is a normal operator on V. By the Complex Spectral Theorem, there is e_1, \ldots, e_n an orthonormal basis of V consisting of eigenvalues of T and let $\lambda_1, \ldots, \lambda_n$ denote their corresponding eigenvalues. Define S by

$$Se_j = \sqrt{\lambda_j}e_j,$$

for each $j=1,\ldots,n$. Obviously, $S^2e_j=\lambda_je_j=Te_j$. Hence, $S^2=T$ so there exist a square root of T.

Exercise 7.14 Suppose $T \in \mathcal{L}(V)$ is self-adjoint, $\lambda \in \mathbf{F}$, and $\epsilon > 0$. Prove that if there exists $v \in V$ such that ||v|| = 1 and $||Tv - \lambda v|| < \epsilon$, then T has an eigenvalue λ' such that $|\lambda - \lambda'| < \epsilon$.

Proof. Let $T \in \mathcal{L}(V)$ be a self-adjoint, and let $\lambda \in \mathbf{F}$ and $\epsilon > 0$. By the Spectral Theorem, there is e_1, \ldots, e_n an orthonormal basis of V consisting of eigenvectors of T and let $\lambda_1, \ldots, \lambda_n$ denote their corresponding eigenvalues. Choose an eigenvalue λ' of T such that $|\lambda' - \lambda|^2$ is minimized. There are $a_1, \ldots, a_n \in \mathbb{F}$ such that

$$v = a_1 e_1 + \dots + a_n e_n.$$

Thus, we have

$$\epsilon^{2} > ||Tv - \lambda v||^{2}$$

$$= |\langle Tv - \lambda v, e_{1} \rangle|^{2} + \dots + |\langle Tv - \lambda v, e_{n} \rangle|^{2}$$

$$= |\lambda_{1} a_{1} - \lambda a_{1}|^{2} + \dots + |\lambda_{n} a_{n} - \lambda a_{n}|^{2}$$

$$= |a_{1}|^{2} |\lambda_{1} - \lambda|^{2} + \dots + |a_{n}|^{2} |\lambda_{n} - \lambda|^{2}$$

$$\geq |a_{1}|^{2} |\lambda' - \lambda|^{2} + \dots + |a_{n}|^{2} |\lambda' - \lambda|^{2}$$

$$= |\lambda' - \lambda|^{2}$$

where the second and fifth lines follow from 6.30 (the fifth because ||v||=1). Now, we taking the square root. Hence, T has an eigenvalue λ' such that $|\lambda'-\lambda|<\epsilon$