Conventions, Accuracy Metrics, Classification, Regression

Nipun Batra and teaching staff

IIT Gandhinagar

August 8, 2025

Outline

- 1. Introduction and Demos
- 2. Machine Learning Fundamentals
- 3. First ML Example: Tomato Quality Prediction
- 4. Classification vs Regression
- 5. Classification Metrics
- 6. Regression Metrics
- 7. Data Visualization and Baselines
- 8. Summary and Key Takeaways

Demo

Comet browser and automation of tasks

"Field of study that gives computers the ability to learn without being explicitly programmed" - Arthur Samuel [1959]

"Field of study that gives computers the ability to learn without being explicitly programmed" - Arthur Samuel [1959]

Let us work on the digit recognition problem.

How would you program to recognise digits? Start with 4.

How would you program to recognise digits? Start with 4.

How would you program to recognise digits? Start with 4.

- How would you program to recognise digits? Start with 4.
- Maybe 4 can be thought of as: | + + | + another vertically down |

- How would you program to recognise digits? Start with 4.
- Maybe 4 can be thought of as: | + + | + another vertically down |

- How would you program to recognise digits? Start with 4.
- Maybe 4 can be thought of as: | + + | + another vertically down |
- The heights of each of the | need to be similar within tolerance

- How would you program to recognise digits? Start with 4.
- Maybe 4 can be thought of as: | + + | + another vertically down |
- The heights of each of the | need to be similar within tolerance

- How would you program to recognise digits? Start with 4.
- Maybe 4 can be thought of as: | + + | + another vertically down |
- The heights of each of the | need to be similar within tolerance
- Each of the | can be slightly slanted. Similarly the horizontal line can be slanted.

- How would you program to recognise digits? Start with 4.
- Maybe 4 can be thought of as: | + + | + another vertically down |
- The heights of each of the | need to be similar within tolerance
- Each of the | can be slightly slanted. Similarly the horizontal line can be slanted.

- How would you program to recognise digits? Start with 4.
- Maybe 4 can be thought of as: | + + | + another vertically down |
- The heights of each of the | need to be similar within tolerance
- Each of the | can be slightly slanted. Similarly the horizontal line can be slanted.
- There can be some cases of 4 where the first | is at 45 degrees

- How would you program to recognise digits? Start with 4.
- Maybe 4 can be thought of as: | + + | + another vertically down |
- The heights of each of the | need to be similar within tolerance
- Each of the | can be slightly slanted. Similarly the horizontal line can be slanted.
- There can be some cases of 4 where the first | is at 45 degrees

- How would you program to recognise digits? Start with 4.
- Maybe 4 can be thought of as: | + + | + another vertically down |
- The heights of each of the | need to be similar within tolerance
- Each of the | can be slightly slanted. Similarly the horizontal line can be slanted.
- There can be some cases of 4 where the first | is at 45 degrees
- There can be some cases of 4 where the width of each stroke is different

Traditional Programming vs Machine Learning

Traditional Programming

Machine Learning

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E." - Tom Mitchell

First ML Task: Grocery Store Tomato Quality Prediction

Problem statement: You want to predict the quality of a tomato given its visual features.

Imagine you have some past data on quality of tomatoes. What visual features do you think will be useful?

Size

Imagine you have some past data on quality of tomatoes. What visual features do you think will be useful?

Size

- Size
- Colour

- Size
- Colour

- Size
- Colour
- Texture

Sample Dataset

Here is our example dataset with tomato features:

Sample	Colour	Size	Texture	Condition
1	Orange	Small	Smooth	Good
2	Red	Small	Rough	Good
3	Orange	Medium	Smooth	Bad
4	Yellow	Large	Smooth	Bad

Quick Quiz 1

Is the sample number a useful feature for predicting quality of a tomato?

Quick Quiz 1

Is the sample number a useful feature for predicting quality of a tomato?

Answer: Usually no! Sample numbers are typically arbitrary identifiers and not meaningful features. Let us remove it.

Quick Quiz 1

When could sample number be useful?

Quick Quiz 1

When could sample number be useful? In some cases, the sample number might be useful for tracking or auditing purposes. E.g. if some trucks are delayed during delivery, the sample number could help identify which batch of tomatoes was affected.

Useful Features

Useful Features

Let us modify our data table for now.

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

The training set consists of two parts:

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

The training set consists of two parts:

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

The training set consists of two parts:

1. Features (Input Variables)

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

The training set consists of two parts:

1. Features (Input Variables)

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

The training set consists of two parts:

- 1. Features (Input Variables)
- 2. Output or Response Variable

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

Computers work with numbers! We need to encode categorical data numerically (one-hot encoding):

CO	C1	S0	S1	TO	T1	Good?
0	0	1	0	1	0	1
0	1	1	0	0	1	1
0	0	0	1	1	0	0
1	0	0	0	1	0	0

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

Computers work with numbers! We need to encode categorical data numerically (one-hot encoding):

CO	C1	S0	S1	TO	T1	Good?
0	0	1	0	1	0	1
0	1	1	0	0	1	1
0	0	0	1	1	0	0
1	0	0	0	1	0	0

Orange=00, Red=01, Yellow=10; Small=10, Medium=01, Large=00; Smooth=10, Rough=01; Good=1, Bad=0 More details on encoding later!

CO	C1	S0	S1	TO	T1	Good?
0	0	1	0	1	0	1
0	1	1	0	0	1	1
0	0	0	1	1	0	0
1	0	0	0	1	0	0

CO	C1	S0	S1	TO	T1	Good?
0	0	1	0	1	0	1
0	1	1	0	0	1	1
0	0	0	1	1	0	0
1	0	0	0	1	0	0

We call this data matrix X, and the complete dataset \mathcal{D} :

1. Feature matrix $(\mathbf{X} \in \mathbb{R}^{n \times d})$ containing data of n samples each of which is d dimensional.

CO	C1	S0	S1	TO	T1	Good?
0	0	1	0	1	0	1
0	1	1	0	0	1	1
0	0	0	1	1	0	0
1	0	0	0	1	0	0

We call this data matrix X, and the complete dataset \mathcal{D} :

- 1. Feature matrix $(\mathbf{X} \in \mathbb{R}^{n \times d})$ containing data of n samples each of which is d dimensional.
- 2. Output vector $(y \in \mathbb{R}^n)$ containing output variable for n samples.

CO	C1	S0	S1	TO	T1	Good?
0	0	1	0	1	0	1
0	1	1	0	0	1	1
0	0	0	1	1	0	0
1	0	0	0	1	0	0

We call this data matrix X, and the complete dataset \mathcal{D} :

- 1. Feature matrix $(\mathbf{X} \in \mathbb{R}^{n \times d})$ containing data of n samples each of which is d dimensional.
- 2. Output vector ($\mathbf{y} \in \mathbb{R}^n$) containing output variable for n samples.
- 3. Complete dataset: $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n$ (set of sample-label pairs)

CO	C1	S0	S1	TO	T1	Good?
0	0	1	0	1	0	1
0	1	1	0	0	1	1
0	0	0	1	1	0	0
1	0	0	0	1	0	0

We call this data matrix X, and the complete dataset \mathcal{D} :

- 1. Feature matrix $(\mathbf{X} \in \mathbb{R}^{n \times d})$ containing data of n samples each of which is d dimensional.
- 2. Output vector ($\mathbf{y} \in \mathbb{R}^n$) containing output variable for n samples.
- 3. Complete dataset: $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n$ (set of sample-label pairs)

CO	C1	S0	S1	TO	T1	Good?
0	0	1	0	1	0	1
0	1	1	0	0	1	1
0	0	0	1	1	0	0
1	0	0	0	1	0	0

We call this data matrix X, and the complete dataset \mathcal{D} :

- 1. Feature matrix $(\mathbf{X} \in \mathbb{R}^{n \times d})$ containing data of n samples each of which is d dimensional.
- 2. Output vector ($\mathbf{y} \in \mathbb{R}^n$) containing output variable for n samples.
- 3. Complete dataset: $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ (set of sample-label pairs)

For this example: n = 4 (samples), d = 6 (features after one-hot encoding)

Important: Mathematical Notation Convention

Matrices use **bold uppercase** (X), vectors use **bold lowercase** (y), scalars use regular letters (n, d)

Example: Examples from Our Tomato Dataset

• Scalars: n = 4 (samples), d = 6 (features), $y_1 = 1$

Convention: We write $[a, b, c]^{\mathsf{T}}$ instead of $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ to save space

Important: Mathematical Notation Convention

Matrices use **bold uppercase** (X), vectors use **bold lowercase** (y), scalars use regular letters (n, d)

Example: Examples from Our Tomato Dataset

• Scalars: n = 4 (samples), d = 6 (features), $y_1 = 1$

Convention: We write $[a, b, c]^{\mathsf{T}}$ instead of $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ to save space

Important: Mathematical Notation Convention

Matrices use **bold uppercase** (X), vectors use **bold lowercase** (y), scalars use regular letters (n, d)

Example: Examples from Our Tomato Dataset

• Scalars: n = 4 (samples), d = 6 (features), $y_1 = 1$

Convention: We write $[a, b, c]^{\mathsf{T}}$ instead of $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ to save space

Important: Mathematical Notation Convention

Matrices use **bold uppercase** (X), vectors use **bold lowercase** (y), scalars use regular letters (n, d)

Example: Examples from Our Tomato Dataset

- Scalars: n = 4 (samples), d = 6 (features), $y_1 = 1$
- Vectors: $\mathbf{y} = [1, 1, 0, 0]^{\top}, \mathbf{x}_1 = [0, 0, 1, 0, 1, 0]^{\top}$

Convention: We write
$$[a, b, c]^{\mathsf{T}}$$
 instead of $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ to save space

Important: Mathematical Notation Convention

Matrices use **bold uppercase** (X), vectors use **bold lowercase** (y), scalars use regular letters (n, d)

Example: Examples from Our Tomato Dataset

- Scalars: n = 4 (samples), d = 6 (features), $y_1 = 1$
- Vectors: $\mathbf{y} = [1, 1, 0, 0]^{\top}, \mathbf{x}_1 = [0, 0, 1, 0, 1, 0]^{\top}$

Convention: We write
$$[a, b, c]^{\mathsf{T}}$$
 instead of $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ to save space

Important: Mathematical Notation Convention

Matrices use **bold uppercase** (X), vectors use **bold lowercase** (y), scalars use regular letters (n, d)

Example: Examples from Our Tomato Dataset

- Scalars: n = 4 (samples), d = 6 (features), $y_1 = 1$
- Vectors: $\mathbf{y} = [1, 1, 0, 0]^{\top}$, $\mathbf{x}_1 = [0, 0, 1, 0, 1, 0]^{\top}$
- Matrices: $\mathbf{X} \in \mathbb{R}^{4 \times 6}$ (feature matrix)

Important: Mathematical Notation Convention

Matrices use **bold uppercase** (X), vectors use **bold lowercase** (y), scalars use regular letters (n, d)

Example: Examples from Our Tomato Dataset

- Scalars: n = 4 (samples), d = 6 (features), $y_1 = 1$
- Vectors: $\mathbf{y} = [1, 1, 0, 0]^{\top}$, $\mathbf{x}_1 = [0, 0, 1, 0, 1, 0]^{\top}$
- Matrices: $\mathbf{X} \in \mathbb{R}^{4 \times 6}$ (feature matrix)

Convention: We write $[a,b,c]^{\mathsf{T}}$ instead of $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ to save

space

• Feature matrix:
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_n^\top \end{bmatrix}$$
 where $\mathbf{x}_i \in \mathbb{R}^d$

• Feature matrix:
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_n^\top \end{bmatrix}$$
 where $\mathbf{x}_i \in \mathbb{R}^d$

• Feature matrix:
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_n^\top \end{bmatrix}$$
 where $\mathbf{x}_i \in \mathbb{R}^d$

• Feature matrix:
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_n^\top \end{bmatrix}$$
 where $\mathbf{x}_i \in \mathbb{R}^d$

• Example: $\mathbf{x}_1 = \left[0,0,1,0,1,0\right]^{\top}$ (Orange=00, Small=10, Smooth=10)

• Feature matrix:
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_n^\top \end{bmatrix}$$
 where $\mathbf{x}_i \in \mathbb{R}^d$

• Example: $\mathbf{x}_1 = \left[0,0,1,0,1,0\right]^{\top}$ (Orange=00, Small=10, Smooth=10)

• Feature matrix:
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_n^\top \end{bmatrix}$$
 where $\mathbf{x}_i \in \mathbb{R}^d$

- Example: $\mathbf{x}_1 = \left[0,0,1,0,1,0\right]^{\top}$ (Orange=00, Small=10, Smooth=10)
- Complete dataset: $\mathcal{D} = \{(\mathbf{x}_i^\top, y_i)\}_{i=1}^n$

• Feature matrix:
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_n^\top \end{bmatrix}$$
 where $\mathbf{x}_i \in \mathbb{R}^d$

- Example: $\mathbf{x}_1 = [0,0,1,0,1,0]^{\top}$ (Orange=00, Small=10, Smooth=10)
- Complete dataset: $\mathcal{D} = \{(\mathbf{x}_i^\top, y_i)\}_{i=1}^n$

For this example: n = 4, d = 6, so $\mathbf{X} \in \mathbb{R}^{4 \times 6}$ and $\mathbf{y} \in \mathbb{R}^4$

Estimate condition for unseen tomatoes (#5, 6) based on data set.

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad
Red	Large	Rough	?
Orange	Large	Rough	?

Testing Set

Testing set is similar to training set, but, does not contain labels for output variable.

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad
Red	Large	Rough	?
Orange	Large	Rough	?

We hope to:

We hope to:

We hope to:

1. Learn function f: y = f(x) where x represents features

We hope to:

1. Learn function f: y = f(x) where x represents features

We hope to:

- 1. Learn function f: y = f(x) where x represents features
- 2. From training dataset $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n$

Prediction Task

We hope to:

- 1. Learn function f: y = f(x) where x represents features
- 2. From training dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$

Prediction Task

We hope to:

- 1. Learn function f: y = f(x) where x represents features
- 2. From training dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
- 3. Predict condition for new test samples

Prediction Task

We hope to:

- 1. Learn function f: y = f(x) where x represents features
- 2. From training dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
- 3. Predict condition for new test samples

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad
Red	Large	Rough	?
Orange	Large	Rough	?

Training set used to learn f, Test set for predictions

Important: Key Question

Important: Key Question

Is predicting well on our test set enough to say our model generalises?

Answer: Ideally, no!

Important: Key Question

Is predicting well on our test set enough to say our model generalises?

Answer: Ideally, no!

Important: Key Question

Is predicting well on our test set enough to say our model generalises?

Answer: Ideally, no!

Important: Key Question

- Answer: Ideally, no!
- Goal: We want to predict well on all possible future inputs

Important: Key Question

- Answer: Ideally, no!
- Goal: We want to predict well on all possible future inputs

Important: Key Question

- Answer: Ideally, no!
- Goal: We want to predict well on all possible future inputs
- Reality: Test set is only a sample from all possible inputs

Important: Key Question

- Answer: Ideally, no!
- Goal: We want to predict well on all possible future inputs
- Reality: Test set is only a sample from all possible inputs

Important: Key Question

- Answer: Ideally, no!
- Goal: We want to predict well on all possible future inputs
- Reality: Test set is only a sample from all possible inputs
- Assumption: Test set is representative of the true data distribution

Important: Key Question

Is predicting well on our test set enough to say our model generalises?

- Answer: Ideally, no!
- Goal: We want to predict well on all possible future inputs
- Reality: Test set is only a sample from all possible inputs
- Assumption: Test set is representative of the true data distribution

Key Points

Generalisation = Performance on unseen data from

Example: Tomato Farm: 10,000 tomatoes ready for harvest

Population: All 10,000 tomatoes

Example: Tomato Farm: 10,000 tomatoes ready for harvest

Population: All 10,000 tomatoes

Example: Tomato Farm: 10,000 tomatoes ready for harvest

Population: All 10,000 tomatoes

Example: Tomato Farm: 10,000 tomatoes ready for harvest

Population: All 10,000 tomatoes

Sample: You inspect 100 random tomatoes

Example: Tomato Farm: 10,000 tomatoes ready for harvest

Population: All 10,000 tomatoes

Sample: You inspect 100 random tomatoes

Example: Tomato Farm: 10,000 tomatoes ready for harvest

- Population: All 10,000 tomatoes
- Sample: You inspect 100 random tomatoes
- Goal: Make decisions about all 10,000 based on your 100

Example: Tomato Farm: 10,000 tomatoes ready for harvest

- Population: All 10,000 tomatoes
- Sample: You inspect 100 random tomatoes
- Goal: Make decisions about all 10,000 based on your 100

Key Challenge: Will your 100 tomatoes represent all 10,000? What if you only picked from one corner?

Example: Tomato Farm: 10,000 tomatoes ready for harvest

- Population: All 10,000 tomatoes
- Sample: You inspect 100 random tomatoes
- Goal: Make decisions about all 10,000 based on your 100

Image courtesy Google ML crash course

Image courtesy Google ML crash course

The ML Connection:

Population: All possible tomato data (past, present, future)

Image courtesy Google ML crash course

The ML Connection:

Population: All possible tomato data (past, present, future)

Image courtesy Google ML crash course

The ML Connection:

Population: All possible tomato data (past, present, future)

Image courtesy Google ML crash course

The ML Connection:

- Population: All possible tomato data (past, present, future)
- Training set: Our 4 tomato samples (like picking from one area)

Image courtesy Google ML crash course

The ML Connection:

- Population: All possible tomato data (past, present, future)
- Training set: Our 4 tomato samples (like picking from one area)

Image courtesy Google ML crash course

The ML Connection:

- Population: All possible tomato data (past, present, future)
- Training set: Our 4 tomato samples (like picking from one area)
- Test set: 2 new samples (like picking from another area)

Image courtesy Google ML crash course

The ML Connection:

- Population: All possible tomato data (past, present, future)
- Training set: Our 4 tomato samples (like picking from one area)
- Test set: 2 new samples (like picking from another area)

Generalisation goal: Will our model work on *all future tomatoes*, not just our small samples?

Second ML Task: Campus Energy Prediction

Regression Problem: Predicting continuous energy

consumption (kWh)

Key factors: # People, Temperature

# People	Temp (°C)	Energy (kWh)
4000	30	30
4200	30	32
4200	35	40
3000	20	?
1000	45	?

Second ML Task: Campus Energy Prediction

Regression Problem: Predicting continuous energy

consumption (kWh)

Key factors: # People, Temperature

# People	Temp (°C)	Energy (kWh)
4000	30	30
4200	30	32
4200	35	40
3000	20	?
1000	45	?

Difference from tomatoes: Energy is *continuous*, not categories

Classification

Classification

Classification

- Classification
 - Output variable is discrete

- Classification
 - Output variable is discrete

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, \dots, k\}$ where k is number of classes

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, \dots, k\}$ where k is number of classes

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous
 - i.e. $y_i \in \mathbb{R}$

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous
 - i.e. $y_i \in \mathbb{R}$

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous
 - i.e. $y_i \in \mathbb{R}$
 - Examples Predicting:

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous
 - i.e. $y_i \in \mathbb{R}$
 - Examples Predicting:

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous
 - i.e. $y_i \in \mathbb{R}$
 - Examples Predicting:
 - How much energy will campus consume?

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous
 - i.e. $y_i \in \mathbb{R}$
 - Examples Predicting:
 - How much energy will campus consume?

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous
 - i.e. $y_i \in \mathbb{R}$
 - Examples Predicting:
 - How much energy will campus consume?
 - How much rainfall will fall?

Quick Quiz 2

Which of these is a regression problem?

· a) Predicting if an email is spam or not

Quick Quiz 2

Which of these is a regression problem?

- a) Predicting if an email is spam or not
- · b) Classifying images as cat, dog, or bird

Quick Quiz 2

Which of these is a regression problem?

- · a) Predicting if an email is spam or not
- · b) Classifying images as cat, dog, or bird
- c) Predicting house prices

Quick Quiz 2

Which of these is a regression problem?

- · a) Predicting if an email is spam or not
- · b) Classifying images as cat, dog, or bird
- · c) Predicting house prices
- d) Determining if a tumor is malignant or benign

Pop Quiz #2 - Answer

Answer: c) House prices are continuous values - that's regression!

We've learned to predict tomato quality (classification)

- We've learned to predict tomato quality (classification)
- We've learned to predict energy consumption (regression)

- We've learned to predict tomato quality (classification)
- We've learned to predict energy consumption (regression)

- We've learned to predict tomato quality (classification)
- We've learned to predict energy consumption (regression)

- We've learned to predict tomato quality (classification)
- We've learned to predict energy consumption (regression)
- Key question: How do we measure if our predictions are good?

- We've learned to predict tomato quality (classification)
- We've learned to predict energy consumption (regression)
- Key question: How do we measure if our predictions are good?

Example: The Challenge

If our model predicts 5 tomatoes correctly and 3 incorrectly, is that good or bad? We need metrics!

- We've learned to predict tomato quality (classification)
- We've learned to predict energy consumption (regression)
- Key question: How do we measure if our predictions are good?

Example: The Challenge

If our model predicts 5 tomatoes correctly and 3 incorrectly, is that good or bad? We need metrics!

Coming up: Different metrics for classification vs regression problems

Let's say we trained our model and tested it on 5 new tomatoes:

#	Actual	Predicted
1	Good	Good
2	Good	Good
3	Bad	Good
4	Bad	Good
5	Bad	Bad

Let's say we trained our model and tested it on 5 new tomatoes:

#	Actual	Predicted
1	Good	Good
2	Good	Good
3	Bad	Good
4	Bad	Good
5	Bad	Bad

Questions:

How many did we get right? How many wrong?

Let's say we trained our model and tested it on 5 new tomatoes:

#	Actual	Predicted
1	Good	Good
2	Good	Good
3	Bad	Good
4	Bad	Good
5	Bad	Bad

Questions:

- How many did we get right? How many wrong?
- Is 3 out of 5 correct "good enough"?

Let's say we trained our model and tested it on 5 new tomatoes:

#	Actual	Predicted
1	Good	Good
2	Good	Good
3	Bad	Good
4	Bad	Good
5	Bad	Bad

Questions:

- How many did we get right? How many wrong?
- Is 3 out of 5 correct "good enough"?
- What if getting a bad tomato wrong is worse than getting a good tomato wrong?

Organizing Our Results

Let's organize the predictions in a simpler way:

Model Predicted $(\hat{\mathbf{y}})$	Actually Was (y)
/ Good \	/ Good \
Good	Good
Good	Bad
Good	Bad
\ Bad	\ Bad /

Organizing Our Results

Let's organize the predictions in a simpler way:

$$\begin{pmatrix} \mathsf{Good} \\ \mathsf{Good} \\ \mathsf{Good} \\ \mathsf{Good} \\ \mathsf{Good} \\ \mathsf{Good} \\ \mathsf{Bad} \end{pmatrix} \qquad \begin{pmatrix} \mathsf{Good} \\ \mathsf{Good} \\ \mathsf{Bad} \\ \mathsf{Bad} \\ \mathsf{Bad} \end{pmatrix}$$

Each row = one tomato's result

Goal: Create systematic ways to measure performance from these comparisons

Converting to Numbers for Computation

Remember: Computers work with numbers! Let's encode our categories:

Example: Binary Encoding

$$Bad = 0, Good = 1$$

Now our results become:

Ground Truth = The correct answers (what actually happened)

Accuracy: Measuring Overall Performance

How many predictions did we get exactly right?

	Predicted $(\hat{\mathbf{y}})$	Ground Truth (y)
	1	/ 1
✓	1	1
1	1	0
	1	0
~ /	0	\ 0

Accuracy: Measuring Overall Performance

How many predictions did we get exactly right?

Predicted
$$(\hat{\mathbf{y}})$$
 Ground Truth (\mathbf{y})

$$\begin{pmatrix}
1 \\
1 \\
1 \\
0 \\
0
\end{pmatrix}$$

Definition: Accuracy Formula

$$Accuracy = \frac{Number of Correct Predictions}{Total Predictions}$$

Accuracy: Measuring Overall Performance

How many predictions did we get exactly right?

Predicted
$$(\hat{\mathbf{y}})$$
 Ground Truth (\mathbf{y})

$$\begin{pmatrix}
1 \\
1 \\
1 \\
0 \\
0
\end{pmatrix}$$

Definition: Accuracy Formula

$$\mbox{Accuracy} = \frac{\mbox{Number of Correct Predictions}}{\mbox{Total Predictions}}$$

For our example: Accuracy $=\frac{3}{5}=0.6$ or 60%

- Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - Reads as: "Number of indices *i* such that $y_i = \hat{y}_i$ "

- Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - Reads as: "Number of indices *i* such that $y_i = \hat{y}_i$ "
 - Counts how many samples satisfy the condition

- Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - Reads as: "Number of indices *i* such that $y_i = \hat{y}_i$ "
 - Counts how many samples satisfy the condition

- Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - Reads as: "Number of indices *i* such that $y_i = \hat{y}_i$ "
 - Counts how many samples satisfy the condition

- Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - Reads as: "Number of indices *i* such that $y_i = \hat{y}_i$ "
 - Counts how many samples satisfy the condition
- Alternative: Indicator function notation

Accuracy =
$$\frac{\sum_{i=1}^{n} \mathbf{1}[y_i = \hat{y}_i]}{n}$$

$$\text{where } \mathbf{1}[\text{condition}] = \begin{cases} 1 & \text{if condition is true} \\ 0 & \text{if condition is false} \end{cases}$$

- Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - Reads as: "Number of indices *i* such that $y_i = \hat{y}_i$ "
 - Counts how many samples satisfy the condition
- Alternative: Indicator function notation

Accuracy =
$$\frac{\sum_{i=1}^{n} \mathbf{1}[y_i = \hat{y}_i]}{n}$$

$$\text{where } \mathbf{1}[\text{condition}] = \begin{cases} 1 & \text{if condition is true} \\ 0 & \text{if condition is false} \end{cases}$$

- Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - Reads as: "Number of indices *i* such that $y_i = \hat{y}_i$ "
 - Counts how many samples satisfy the condition
- Alternative: Indicator function notation

$$Accuracy = \frac{\sum_{i=1}^{n} \mathbf{1}[y_i = \hat{y}_i]}{n}$$

 $\text{where } \mathbf{1}[\text{condition}] = \begin{cases} 1 & \text{if condition is true} \\ 0 & \text{if condition is false} \end{cases}$

 Both notations are mathematically equivalent and commonly used in ML literature

Two Views: Predictions vs Confusion Matrix

Two Views: Predictions vs Confusion Matrix

Model Predictions

#	Actual	Predicted
1	Good	Good
2	Good	Good
3	Bad	Good
4	Bad	Good
5	Bad	Bad

Two Views: Predictions vs Confusion Matrix

Model Predictions

#	Actual	Predicted
1	Good	Good
2	Good	Good
3	Bad	Good
4	Bad	Good
5	Bad	Bad

Confusion Matrix

		Bad	Good
red	Bad	1	0
Pre	Good	2	2

Confusion Matrix		Ground Truth	
		Positive	Negative
ted	Positive	TP	FP
redicted	Negative	FN	TN
P			

Definition: Four Outcomes

• TP (True Positive): Correctly predicted positive

Confusion Matrix		Ground Truth	
		Positive	Negative
ted	Positive	TP	FP
redicted	Negative	FN	TN
Ā		<u> </u>	

Definition: Four Outcomes

- TP (True Positive): Correctly predicted positive
- TN (True Negative): Correctly predicted negative

Confusion Matrix		Ground Truth	
		Positive	Negative
ted	Positive	TP	FP
redicted	Negative	FN	TN
P			

Definition: Four Outcomes

- TP (True Positive): Correctly predicted positive
- TN (True Negative): Correctly predicted negative
- FP (False Positive): Wrong! Said positive but actually negative

Confusion Matrix		Ground Truth	
		Positive	Negative
dicted	Positive	TP	FP
edic	Negative	FN	TN
<u>P</u>			

Definition: Four Outcomes

- TP (True Positive): Correctly predicted positive
- TN (True Negative): Correctly predicted negative
- FP (False Positive): Wrong! Said positive but actually negative
- FN (False Negative): Wrong! Said negative but actually positive

Confusion Matrix: Precision Focus

Confusion Matrix		Ground Truth		Row Totals
		Positive	Negative	
cted	Positive	TP	FP	TP + FP
Predicted	Negative	FN	TN	FN + TN
۵		TP + FN	FP + TN	Total

Example: Focus: Predicted Positives

$$Precision = \frac{TP}{TP + FP}$$

"Of all predicted positives, how many were actually positive?"

Confusion Matrix: Recall Focus

Confusion Matrix		Ground Truth		Row Totals
		Positive	Negative	
ted	Positive	TP	FP	TP + FP
Predicted	Negative	FN	TN	FN + TN
۵		TP + FN	FP + TN	Total

Example: Focus: Actual Positives

$$\mathsf{Recall} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

"Of all actual positives, how many did I catch?"

Many datasets have unequal class distributions!

Example: Example: Medical Screening

Out of 1000 patients tested:

990 patients are healthy (negative class)

Many datasets have unequal class distributions!

Example: Example: Medical Screening

Out of 1000 patients tested:

- 990 patients are healthy (negative class)
- 10 patients have the disease (positive class)

Many datasets have unequal class distributions!

Example: Example: Medical Screening

Out of 1000 patients tested:

- 990 patients are healthy (negative class)
- 10 patients have the disease (positive class)

Many datasets have unequal class distributions!

Example: Example: Medical Screening

Out of 1000 patients tested:

- 990 patients are healthy (negative class)
- 10 patients have the disease (positive class)

Key Points

Why is this a problem?

 A "lazy" classifier that always predicts "healthy" gets 99% accuracy!

Many datasets have unequal class distributions!

Example: Example: Medical Screening

Out of 1000 patients tested:

- 990 patients are healthy (negative class)
- 10 patients have the disease (positive class)

Key Points

- A "lazy" classifier that always predicts "healthy" gets 99% accuracy!
- But it completely misses all disease cases

Many datasets have unequal class distributions!

Example: Example: Medical Screening

Out of 1000 patients tested:

- 990 patients are healthy (negative class)
- 10 patients have the disease (positive class)

Key Points

- A "lazy" classifier that always predicts "healthy" gets 99% accuracy!
- But it completely misses all disease cases
- · Accuracy alone becomes misleading

Many datasets have unequal class distributions!

Example: Example: Medical Screening

Out of 1000 patients tested:

- 990 patients are healthy (negative class)
- 10 patients have the disease (positive class)

Key Points

- A "lazy" classifier that always predicts "healthy" gets 99% accuracy!
- But it completely misses all disease cases
- · Accuracy alone becomes misleading

Many datasets have unequal class distributions!

Example: Example: Medical Screening

Out of 1000 patients tested:

- 990 patients are healthy (negative class)
- 10 patients have the disease (positive class)

Key Points

- A "lazy" classifier that always predicts "healthy" gets 99% accuracy!
- But it completely misses all disease cases
- · Accuracy alone becomes misleading

Dummy Classifier

Confusion Matrix		Groun	d Truth
		Pos	Neg
5	Pos	0	0
Pred	Neg	10	990

Dummy Classifier

Confusion Matrix		Ground Truth	
		Pos	Neg
Ö	Pos	0	0
Pred	Neg	10	990

· Precision: N/A

Dummy Classifier

Confusion Matrix		Ground Truth	
		Pos	Neg
5	Pos	0	0
Pred	Neg	10	990

Precision: N/A

· Recall: 0%

Dummy Classifier

Confusion Matrix		Ground Truth	
		Pos	Neg
p	Pos	0	0
Pred	Neg	10	990

· Precision: N/A

· Recall: 0%

· Accuracy: 99%

Dummy Classifier

Pos

Neg

Confusion Matrix

Ground Truth Pos Neg 0 0 10 990

Smart Classifier

Confusion Matrix		Ground Truth		
		Pos	Neg	
Ď	Pos	8	40	
Pred	Neg	2	950	

· Precision: N/A

· Recall: 0%

· Accuracy: 99%

Dummy Classifier

Conf	usion Matrix	Ground Pos	d Truth Neg
Ö	Pos	0	0
Pred	Neg	10	990

· Precision: N/A

· Recall: 0%

· Accuracy: 99%

Smart Classifier

Conf	usion Matrix	Ground Tru	
		Pos	Neg
þ	Pos	8	40
Pred	Neg	2	950

• Precision: $\frac{8}{48} \approx 16.7\%$

Dummy Classifier

Conf	usion Matrix	Groun Pos	d Truth Neg
0	Pos	0	0
Pred	Nea	10	990

· Precision: N/A

· Recall: 0%

· Accuracy: 99%

Smart Classifier

Confusion Matrix		Ground Truth		
		Pos	Neg	
þ	Pos	8	40	
Pred	Neg	2	950	

• Precision: $\frac{8}{48} \approx 16.7\%$

• Recall: $\frac{8}{10} = 80\%$

Dummy Classifier

Conf	usion Matrix	Groun Pos	d Truth Neg
red	Pos	0	0
Pr	Nea	10	990

· Precision: N/A

• Recall: 0%

· Accuracy: 99%

Smart Classifier

Confusion Matrix		Ground Truth		
		Pos	Neg	
þ	Pos	8	40	
Pred	Neg	2	950	

• Precision: $\frac{8}{48} \approx 16.7\%$

• Recall: $\frac{8}{10} = 80\%$

• Accuracy: $\frac{8+950}{1000} = 95.8\%$

You often can't have both high precision and high recall — improving one may reduce the other.

You often can't have both high precision and high recall — improving one may reduce the other.

You often can't have both high precision and high recall — improving one may reduce the other.

Definition: High Precision

 Predicts positive only when confident

You often can't have both high precision and high recall — improving one may reduce the other.

- Predicts positive only when confident
- Low false alarms (↓ FP)

You often can't have both high precision and high recall — improving one may reduce the other.

- Predicts positive only when confident
- Low false alarms (↓ FP)
- May miss positives (↑ FN)

You often can't have both high precision and high recall — improving one may reduce the other.

- Predicts positive only when confident
- Low false alarms (↓ FP)
- May miss positives (↑ FN)
- Useful when FP is costly

You often can't have both high precision and high recall — improving one may reduce the other.

- Predicts positive only when confident
- Low false alarms (↓ FP)
- May miss positives (↑ FN)
- Useful when FP is costly

Definition: High Recall					

You often can't have both high precision and high recall — improving one may reduce the other.

Definition: High Precision

- Predicts positive only when confident
- Low false alarms (↓ FP)
- May miss positives (↑ FN)
- Useful when FP is costly

Definition: High Recall

 Captures most positives

You often can't have both high precision and high recall — improving one may reduce the other.

Definition: High Precision

- Predicts positive only when confident
- Low false alarms (↓ FP)
- May miss positives (↑ FN)
- Useful when FP is costly

Definition: High Recall

- Captures most positives
- Few misses (↓ FN)

You often can't have both high precision and high recall — improving one may reduce the other.

Definition: High Precision

- Predicts positive only when confident
- Low false alarms (↓ FP)
- May miss positives (↑ FN)
- Useful when FP is costly

Definition: High Recall

- Captures most positives
- Few misses (↓ FN)
- More false alarms (↑ FP)

You often can't have both high precision and high recall — improving one may reduce the other.

Definition: High Precision

- Predicts positive only when confident
- Low false alarms (↓ FP)
- May miss positives (↑ FN)
- Useful when FP is costly

Definition: High Recall

- Captures most positives
- Few misses (↓ FN)
- More false alarms (↑ FP)
- Useful when FN is costly

Accuracy Metric: F1-Score

Confusion Matrix		Ground Truth		
		Positive	Negative	
redicted	Positive	TP	FP	
	Negative	FN	TN	
P				

Example: F1-Score: Balancing Precision and Recall

$$F1 = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

Accuracy Metric: Matthews Correlation Coefficient (MCC)

Confusion Matrix		Ground Truth		
		Positive	Negative	
ted	Positive	TP	FP	
redicted	Negative	FN	TN	
Ğ				

Example: MCC: Balanced Performance Measure

$$\label{eq:mcc} \text{MCC} = \frac{\textit{TP} \cdot \textit{TN} - \textit{FP} \cdot \textit{FN}}{\sqrt{(\textit{TP} + \textit{FP})(\textit{TP} + \textit{FN})(\textit{TN} + \textit{FP})(\textit{TN} + \textit{FN})}}$$

MCC Comparison: Dummy vs Smart Classifier

MCC Comparison: Dummy vs Smart Classifier

Dummy Classifier

Confusion Matrix		Ground Truth		
		Pos	Neg	
ged	Pos	0	0	
Pre	Neg	10	990	

MCC = 0 (denominator undefined; treat as 0)

MCC Comparison: Dummy vs Smart Classifier

Dummy Classifier

Smart Classifier

Confu	ısion Matrix	Groun	nd Truth	Confu	usion Matrix	Groun	d Truth
		Pos	Nea			Pos	Neg
ō	Pos	0	0	Pred	Pos	8	40
Pred	Neg	10	990	Ā	Neg	2	950

$$\mathrm{MCC}=0 \quad \text{(denominator undefined; treat as 0)} \\ \mathrm{MCC}=\frac{7600}{\sqrt{(48)(10)(990)(952)}} \approx \mathbf{0.26}$$

Confusion Matrix for multi-class classification

