講義が始まる前に・・・・

Templateでないもの、氏名の書かれていないものがありました。 各週の課題の評価点は6点相当になりますので、ご注意ください。

講義スライドをpdfにしたファイルをILIASに上げておきます。開封パスワードは、講義した年月日です(例;20200518)。各ページの左上にマウスカーソルを持って行くと、私が喋ったセリフのテキストが教示されます。Acrobat以外のアプリだと文字が化けるとの報告があります。

著作権の問題がありますので、印刷・コピーの譲渡など一切禁止です。一連の講義資料から副次的作品を作って譲渡・販売することも禁止です。メモ機能については解禁しましたが、「聴取力」を養成するのも講義の役目なので、手書きノートを書く習慣を付けることをお薦めします。

第3講 半導体材料

ここをダブルクリック すると読み上げ原稿が 表示されます。

半導体の特性 (重要)

- 1. 電気抵抗が導体と絶縁体の中間の値を持つ
- 2. 電気抵抗が温度上昇により減少する
- 3. 不純物の影響を大きく受ける
- 4. 外部エネルギーに反応が大きい

半導体の電気抵抗の温度変化 *** p.81~

(a) 典型的な金属の電気抵抗率の 温度依存性

 $(\rho=\rho_i+a$ **T**というマチーセン の法則に従う。ここに、 ρ_i を残留抵抗と呼ぶ

(b) 典型的な半導体の電気抵抗率 (抵抗率の変化範囲が広いので 対数目盛になっていることに注意)

半導体の特性 (重要)

- 1. 電気抵抗が導体と絶縁体の中間の値を持つ
- 2. 電気抵抗が温度上昇により減少する
- 3. 不純物の影響を大きく受ける
- 4. 外部エネルギーに反応が大きい

スライド問題3-1

半導体の重要な性質を4つ挙げよ

07:00

周期律表上の半導体 (重要)

この講義では、化学の時間に学んだ「周期律表」の話が時々出ます。

https://www.ptable.com/?lang=ja

周期律表上の半導体 (重要)

表4・1 半導体に関係のある原子

I族	Ⅱ族	皿族	Ⅳ族	V族	VI族	VII的
3	4	5	6	7	8	9
Li	Be	В	C	N	О	F
11	12	13	14	15	16	17
Na	Mg	Al	Si	P	S	C1
19	30	31	32	33	34	35
K	Zn	Ga	Ge	As	Se	Br
	48	49	50	51	52	
	Cd	In	Sn	Sb	Te	
	80		82			
	Hg		Pb			

(注) 上の数字は原子番号

半導体の特性 (重要)

	エネルキ゛ーキ゛ャッ フ゜	遷移	移動度 [m²/V・s]			
半導体					用途、特徴	
	[eV] 300K	直接: D, 間接: I	m_n	m_p	713/22(13/2)(
Si	1.14	I	0.15	0.05	トランジスタ、ダイオード, IC,光電池	
					パワーMOSFET, IGBT, サイリスタ	
					トランジスタ,太陽電池	
Ge	0.67	I	0.45	0.19	トランジスタ	
GaAs	1.52	D	0.97	0.07	マイクロ波デバイス, FET, ガンダイオード	
					ホール素子,LED, 半導体レーザ	
					太陽電池	
GaN	3.43	D	0.15	0.003	LED	
GaP	2.26	1	0.011	0.0075	LED	
InSb	0.23	D	7.7	0.075	ホール素子	
InAs	0.36	D	3.3	0.046	ホール素子	
InP	1.35	D	0.46	0.065	パワーデバイス	
PbTe	0.3	I	0.16	0.075	熱電冷却	
bFeSi ₂	0.83	I	0.05	0.05	熱電材料	
SiC	2.86	1	0.07	0.006	パワートランジスタ	
ZnO	3.2	D	0.018		センサ,バリスタ、透明電極	

表4・2 各種半導体の特徴

半導体の導電機構

キャリア:

電界によって,電子とホールは結晶内を 動いて電荷を運ぶ

平衡状態:

キャリアの発生する数と消滅する数は,温度が一定であれば、ある数でバランスする。 (どっちかが極端に増えたりしない)

11:00

導電率、キャリア密度、移動度

- 導電率 σ 、キャリア密度 n、移動度 μ の間には $\sigma = ne\mu$ の関係式が成り立つ。
- 抵抗率 ρ と 導電率 σ の関係は $\rho = \sigma^{-1}$ である。
- キャリア移動度とは、単位電界 E[V/cm] の印加によって得られる平均速度 v[cm/s] を表わし

v=μE である。

ある直方体を 密度**n**で キャリアが 充満

スライド問題3-2

厚さ 1μ mのシリコンウェーハの表裏の間に1Vの電圧を印加した。

シリコンのキャリア移動度 μ =1000cm²/V·s, キャリア数を 10^{16} cm⁻³として、 キャリアの平均移動速度と抵抗率を求めなさい。

スライド問題3-2 解答例

厚さ $1 \mu m$ のシリコンウェーハの表裏の間に1 Vの電圧を印加したので、ウェーハ中の電界は、 $E=10^4 V/cm$ [この分野の慣例でcmであることに注意して下さい。]

$$v = \mu E = 10^7 \,\mathrm{cm/s} \, となる$$
。

このときの導電率はキャリア数が1016cm-3なので

$$\sigma = ne\mu = 10^{16} \times 1.6 \times 10^{-19} \times 10^{3} = 1.6 \text{ S/cm}$$
 $\rho = 0.625 \Omega \text{cm}$

電子の電荷量

最重要項目なので 良く練習しておいて 下さい

ボーアの原子モデルでのSi

軌道	電子数
1	2
2	8
3	4

真性半導体

半導体のエネルギーバンド図

不純物を含まない 半導体のこと

教科書 p.86

16

真性半導体の電子とホール

18:30

電子の有効質量

$$m_{\rm e} = \frac{F}{\mathrm{d}v_{\rm e}/dt} \qquad F = \hbar \frac{\partial k}{\partial t}$$

$$\frac{\mathrm{d}v_{\rm e}}{\mathrm{d}t} = \frac{1}{\hbar} \frac{\partial^2 \varepsilon(k)}{\partial k^2} \frac{\mathrm{d}k}{\mathrm{d}t}$$

$$m_{
m e}^* = \left\{ rac{1}{\hbar^2} rac{\partial^2 arepsilon(k)}{\partial k^2}
ight\}^{-1}$$
 \cdots 電子の有効質量

不純物半導体

Doping

=半導体に、母材とは異なる原子を添加すること

目的:キャリア密度の制御

n型半導体

¹⁴**Si** 最外殻電子は4個

最外殻電子は5個

1個置換

電子が1つ余る

温度が低い時は

21:00

電子はP原子の周りを回っている

5番目の電子のエネルギー準位 水素原子モデルを適用

室温付近では

電子は自由に結晶内を運動してる

n型半導体

伝導帯から E_d だけ 下にエネルギー準位 を作る(弱い束縛)

熱エネルギーで 伝導帯に励起 ↓ 自由電子となる ドナー準位 Ed

p型半導体

¹⁴Si 最外殻電子は4個

⁵ **B** 最外殻電子は3個

1個置換

電子が1つ不足

スライド問題3-3

シリコンに以下の物質を添加したら、何型の 半導体になるか答えなさい。

インジウム、砒素、ガリウム、アルミニウム、 アンチモン

|スライド問題3-3 解答例

砒素、アンチモンはリンと同じ V 族なので n 型。 ガリウム、アルミニウム、インジウムは ホウ素と同じⅢ族なので p 型。

25:00

少数キャリア

アクセプタ順位は価電子帯のすぐ上

ホール密度が増加→電子密度は減少

多数キャリア

少数キャリア

pn積

$$pn = n_i^2 = N_c \cdot N_v \exp\left(-\frac{E_g}{k_B T}\right)^{\frac{2}{2}}$$

 $\mathbf{n}_{\mathbf{i}}$ を真性キャリア密度

N_cN_v: 伝導帯・価電子帯の実効状態密度

n型半導体でも成立する

熱平衡状態なら

Doping量に寄ら ずpn積は一定

電子密度が増加→ホール密度は減少

多数キャリア

少数キャリア

半導体の電気伝導

この平均速度をドリフト速度といいます。

※ 電子の電荷量(電荷素量)はeを使いますが、ここではqになっていることに注意。

$$\sigma = nq\mu$$

$$v = \mu E$$

$$J = \sigma E$$

$$\vec{J} = n$$

$$\vec{J} = nq\vec{v} = nq\mu\vec{E} = \sigma\vec{E}$$
[A/m²] (4 · 17)

$$\vec{J} = (nq\mu_n + pq\mu_p)\vec{E}$$

 $(4 \cdot 18)$

移動度の温度依存性

低温:イオン化不純物散乱が支配的

高温:熱振動による格子散乱が支配的

導電率σの温度依存性

低温:イオン化不純物散乱が支配的

高温:熱振動による格子散乱が支配的

 $\log T^{-1} \quad [K^{-1}]$

スライド問題3-4

直前のスライドで「金属的」という言葉が急に出てきたけれど、何の何処が金属的なの?

スライド問題3-4 解答例

「金属」と同じように、 温度の上昇(右から左へ; Tの逆数で表示されてい ることに注意)するに従っ て、導電率が減少してる

 $\log T^{-1} \quad [K^{-1}]$

ショットキー接合

555 **D**

Walter H. Schottkyさんがみつけたので、その名が残る。

p n 接合同様に整流作用を示すが、半導体同士の p n 接合

よりも高速応答であることが知られている(実用的)。

p n 接合が実用化される以前から使われていた。

Walter H. Schottky (1886年7月23日 - 1976年3月4日)

金属と半導体を接触させる場合、接触が整流性を示すか/オーム性を 示すかは、金属と半導体の**仕事関数**によって決まります。

電磁気学(基礎)のおさらい

仕事関数 (Work function)??

電位を求めよ!

電荷Q_o(C)があった。無限に遠いところから、Q(C)の電荷を運んできた時の仕事は?

同符号とする。

電位差・ポテンシャル

固体内にある電子を、固体の外、真空中に取り出すために必要な最小限のエネルギーの大きさのこと

ショットキー接合

n型半導体

ショットキー接合した様子

金属とn形を接合するとキャリア拡散が起 きる

空乏層

ショットキー接合

スライド問題3-5

直前のスライドの「question」には何が入る?

図を良く見て、図中の記号で答えなさい。

スライド問題3-5 解答

 qV_d

41

順方向バイアス

逆方向バイアス

整流作用

オーム性接触

n型半導体

オーム性接触

n型半導体

図4·8(b)

スライド問題3-6

ドーピングしてn型半導体としたシリコンの仕事関数が $\phi_s=4.05~{
m eV}$, 禁制帯幅 $E_c=1.27~{
m eV}$ とします。表の各金属 ϕ_s -4.03 EV, 示明 λ_c ---- の仕事関数から、シリコンと各金属を接触させたときに、 ショットキー性になるのかそれともオーム性になるのか、 空欄を埋めなさい。

元素	仕事関数 ϕ_m	ショットキー性 or オーム性
Au	4.80eV	
Pt	6.30eV	
Cu	4.18eV	
Ni	4.01eV	
W	4.5eV	
Ca	3.2eV	

スライド問題3-6

シリコンの電子親和力 χ_s =4.05 eV,禁制帯幅 E_g =1.12 eVとします。表の各金属の仕事関数から、 \mathbf{n} 型半導体としたシリコンと各金属を接触させたときに、ショットキー性になるのかそれともオーム性になるのか、空欄を埋めなさい。

元素	仕事関数 ϕ_m	ショットキー性 or オーム性
Au	4.80eV	ショットキー
Pt	6.30eV	ショットキー
Cu	4.18eV	ショットキー
Ni	4.01eV	オーム
W	4.5eV	ショットキー
Ca	3.2eV	オーム

48

早

電界効果トランジスター(FET)

金属電極 ドレイン チャンネル SiO₂ p形Si

Field Effect Transistor

バイポーラトランジスタによる回路と異なり、バイアス回路が要らない。

教科書 p.101

~101

アイドリング電流が無い分だけ 低消費電力

MOSFETは水路に似ている

MOSFETの動作は、「水の流れ」に たとえることができる 水路のことをチャネルと いいます。 ソース(水源) ゲート(水門 ドレイン(排水口)

MOSFETの動作(OFF時)

MOSFETの動作(ON時)

〈ゲートにプラスの電圧をかけると〉

図4·18

電界効果トランジスター(FET)

◆ゲートに ⊕の大電圧をかけると

電流が流れる ようになる n n n

ダイオードがなくなり 導通しているのと同じに なる

コンプリメンタリー

MOSFETの利点

- ○バイポーラトランジスタのような複雑なバイアス回路が要らないため、アイドリング電流が流れないために、消費電力が少なく、発熱も少ない。
- ○ハイインピーダンス (ゲートの下に絶縁層がある)
- ○小信号~大電力制御まで様々な用途の型が開発されている
- ○その構造から、集積回路に向いている

スライド問題3-7

ゲート電極(金属)・絶縁層(SiO_2)・p型シリコンで構成されているn チャネル型MOSFETを考える。

プロートに大きな電圧が印加されたとする。絶縁層近傍の p型シリコンにおけるエネルギーバンド図を書きなさい。

スライド問題3-7 解答例

72:00

56

サイリスタ(SCR)

サイリスタ(SCR)

京急電車 1000系の発 車音(16秒~) 「ドレミファ インバータ」 とも呼ばれる。

課題リポート(Homework)

以下のリポートを作成し、ILIASを使って提出してください。

MSWordで作成すること。テンプレートはILIASに置いてあります。提出期限は5月24日(日)13時JST.ファイル名は、必ず学籍番号の数字を含めて「例: 20310185-HW03.docx | のような名前にして提出すること。

課題1 (字数は1000字程度。適宜、図も入れて下さい)

 $(4\cdot19)$ 式[教科書 p.92]を、各自でポアソン方程式(電磁気学で習っていると思います)から出発して導き出して下さい。金属と半導体の界面を x=0 として半導体方向が正となるように軸をとり、空乏層の幅をd、イオン化されたドナーのドーピング密度を N_{d} 、半導体内の電位を V、電界を E、半導体層の誘電率を E とする。

x=0 のとき、V=0; x=d のとき、E=0; x=d のとき、 $V=V_d-V_{bi}$ などと適切に置きなおすと良い。導出例は探せば出ては来るが、丸写しはいけない。何故なら、Webに載っている参考例の過半数は符号が間違っていたり、置き換えた記号の意味が書かれていないので、丸写しは直ぐに分かります。記号の意味を説明しつつ、途中の導出を詳しく書いて下さい(詳しく書けば加点します)。

課題2 (字数は1000字程度)

スライド#31のグラフは、半導体の導電率の温度依存性を表わしていました。

n型半導体のキャリア密度の温度依存性のグラフを書き、説明しなさい。縦軸は対数、横軸は温度の逆数とすること。曲線の特徴を説明するコメントを詳細に書くと加点します(例:出払い領域、とか。何が出払っているかのコメントも)