Homework 3

1. Screenshot of 50 MSE numbers

ON	1N	2N	3N	4N	0c	1c	2c	3c	4c
4.542470667	0.383450312	0.175563	0.141783648	0.160838362	4.543119029	0.384613534	0.177815283	0.144440506	0.160838362
4.542470667	0.641093185	0.715628488	0.908392907	1.115657858	4.549538993	0.648642108	0.750621129	0.941972819	1.115657858
4.542470667	1.290372451	1.967240392	2.650841135	3.653279733	4.557472964	1.323462148	2.119748049	3.02737992	3.653279733
4.542470667	0.799942744	0.828082555	0.984949768	1.194	4.566198667	0.840614157	1.207089797	1.271191967	1.194
4.542470667	1.91776775	3.331722104	4.548257197	5.139266667	4.919928	2.835679428	4.651434503	4.971247272	5.139266667

2. Screenshot of code:

```
def reconstruct(data_in, data_mean, iris_cov, useNoiseless):
   data_mean_repeat = np.tile(data_mean, [samples, 1])
   data_norm = (data_in - data_mean_repeat)
   if(useNoiseless == False):
       data cov = iris cov
   data_eigval, data_eigvec = np.linalg.eig(data_cov)
   data_eigval = data_eigval[index]
   data_eigvec = data_eigvec[:, index]
       data_feature = data_eigvec[:, :dim].reshape(dims, dim)
       data_reduce = np.dot(data_norm, data_feature).reshape(samples, dim)
       data_reconstruction = np.dot(data_reduce, data_feature.T) + data_mean_repeat
       data_reconstructions.append(data_reconstruction)
def MSE(x1, x2):
       square = pow((x1[dim] - x2), 2)
       mean = np.sum(square)/samples
       mse.append(mean)
    iris_in = readInData('./Data/iris.csv')
    iris_mean = getMean(iris_in)
    iris_mean_repeat = np.tile(iris_mean, [samples, 1])
    iris_norm = (iris_in - iris_mean_repeat)
    dataI in = readInData('./Data/dataI.csv')
    dataI_mean = getMean(dataI_in)
    dataI_n_mse = MSE(dataI_n_reconstructions, iris_in)
    mse_I.append(dataI_n_mse)
    dataI_c_reconstructions = reconstruct(dataI_in, dataI_mean, iris_cov, False)
    dataI c mse = MSE(dataI c reconstructions, iris in)
    mse_I.append(dataI_c_mse)
    mse.append(mse I)
```