Image Denoising using Ising Model

Noemi Ippolito, Piero Pettenà, Maria Pronestì

Ising model

- It's a mathematical model describing ferromagnetism
- It consists of discrete random variables, taking values in {-1, +1} arranged in a lattice

Edge potential

Each edge connecting adjacent sites carries a certain energy, given by

$$E(x) = -J \sum_{i \sim j} x_i x_j$$

- *J* is a constant denoting the *strenght* of the correlation between pairs of spins
- $i \sim j$ referes to all pairs of spins such that i and j are neighbours

Prior distribution

Using Boltzman distribution, we can define a probability measure over the configuration of spins, given by

$$P(X) = \frac{1}{Z} \exp\{-E(X)\} = \frac{1}{Z} \exp\left\{J \sum_{i \sim j} x_i x_j\right\}$$

Ising model for Image Denoising

- x_i are the pixels in the *unknown* noisy free image
- y_i are the pixels in the *observed* noisy image

Likelihood

We assume that the pixels in the noise free image are corrupted with an independent zero-Gaussian noise, which means

$$y_i = x_i + \varepsilon_i$$
 $\varepsilon_i \sim N(0, \sigma^2)$ iid

Then the likelihood P(Y|X) is given by

$$P(Y|X) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left\{-\frac{\sum_{i=1}^n (y_i - x_i)^2}{2\sigma^2}\right\}$$

Posterior Distribution

Assuming the prior distribution is given by the Ising model, we can apply Bayes formula and obtain the following posterior distribution

$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$

$$= \frac{1}{ZP(Y)} \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left\{-\frac{\sum_{i=1}^n (y_i - x_i)^2}{2\sigma^2} + J\sum_{i \sim j} x_i x_j\right\}$$

Approximate Inference: Sampling

Since exact inference is intractable, we will use two well-known sampling techniques to obtain an approximation of the posterior distribution

- Metropolis-Hastings sampling
- Gibb's sampling

Metropolis-Hastings Sampling

To reach the noisy-free image *X*

- 1. Choose a random pixel y_i from the noisy image
- 2. Compute an acceptance probability of flipping this pixel
- 3. Flip the pixel with the obtained probability
- 4. Repeat the process until convergence is reached

Acceptance probability

Assume a bit flip for pixel x_i is proposed at iteration t ($x_i' \leftarrow -x_i^{(t)}$). Then the probability of accepting this flip is

$$\alpha = \min \left\{ 1, \frac{P(X'|Y)}{P(X|Y)} \right\}$$

where
$$\frac{P(X'|Y)}{P(X|Y)} = \exp\left\{-\frac{2x_i^{(t)}y_i}{\sigma^2} - 2J\sum_{i \sim j} x_i^{(t)}x_j^{(t)}\right\}$$

Gibb's sampling

To obtain a sample from P(X|Y), we will sample from $P(x_i|N(x_i))$ at each iterations.

To sample from $P(x_i|N(x_i))$

- 1. Pick a number u from $U \sim Unif([0,1])$
- 2. If $u \le P(x_i = 1|N(x_i))$, set $\tilde{x}_i = 1$ else, set $\tilde{x}_i = -1$

Experimental evaluation

We used a 900×900 binary image and artificially corrupted it by adding white noise.

To evaluate the performances of both procedures, we used a simple loss function defined as

$$err = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1} (x_i = y_i)$$

Results using Metropolis-Hastings

Convergence of Metropolis-Hastings

Evolution of Metropolis-Hastings %error w.r.t the number of iterations

After 6×10^6 iterations, the final error is equal to 0.418 %

Results using Gibbs

Convergence of Gibbs

After 6×10^6 iterations, the final error is equal to 0.394 %

Convergence

Evolution of Metropolis-Hastings %error w.r.t the number of iterations

After 6×10^6 iterations, the final error is 0.418 %

After 6×10^6 iterations, the final error is equal to $0.394\,\%$

Comparison

