

Advanced Computer Networks

Application Layer, Video Streaming, and CDN Part 3

Seyed Hamed Rastegar

Fall 1401

Lecture overview

- Principles of network applications
- Web and HTTP
- E-mail, SMTP, IMAP
- The Domain Name System DNS
- video streaming and content distribution networks

Video Streaming and CDNs: context

- stream video traffic: major consumer of Internet bandwidth
 - Netflix, YouTube, Amazon Prime: 80% of residential ISP traffic (2020)
- challenge: scale how to reach ~1B users?
- challenge: heterogeneity
 - different users have different capabilities (e.g., wired versus mobile; bandwidth rich versus bandwidth poor)
- solution: distributed, application-level infrastructure

- video: sequence of images displayed at constant rate
 - e.g., 24 images/sec
- digital image: array of pixels
 - each pixel represented by bits
- coding: use redundancy within and between images to decrease # bits used to encode image
 - spatial (within image)
 - temporal (from one image to next)

spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

frame i

temporal coding example: instead of sending complete frame at i+1, send only differences from frame i

frame i+1

- CBR: (constant bit rate): video encoding rate fixed
- VBR: (variable bit rate): video encoding rate changes as amount of spatial, temporal coding changes
- examples:
 - MPEG 1 (CD-ROM) 1.5 Mbps
 - MPEG2 (DVD) 3-6 Mbps
 - MPEG4 (often used in Internet, 64Kbps – 12 Mbps)

spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

frame i

temporal coding example: instead of sending complete frame at i+1, send only differences from frame i

frame i+1

• The Moving Picture Experts Group (MPEG) is an alliance of working groups established jointly by ISO and IEC* that sets standards for media coding, including compression coding of audio, video, graphics, and genomic data; and transmission and file formats for various applications.

Recall that:

- A multimedia application can be classified as
 - Streaming stored audio/video,
 - ➤ **Related Topics**: client buffering, prefetching, and adapting video quality to available bandwidth
 - Conversational voice/video-over-IP, (Skype, RTP, SIP)
 - > Key features: highly sensitive to end-to-end delay but can tolerate occasional loss of data
 - Streaming live audio/ video.

Recall that:

- A multimedia application can be classified as
 - Streaming stored audio/video,
 - ➤ **Related Topics**: client buffering, prefetching, and adapting video quality to available bandwidth
 - o Conversational voice/video-over-IP, (Skype, RTP, SIP)
 - > Key features: highly sensitive to end-to-end delay but can tolerate occasional loss of data
 - o Streaming live audio/video.
- In this lecture, we consider streaming stored audio/video, and discuss several important related topics.

Streaming stored video

simple scenario:

Main challenges:

- server-to-client bandwidth will vary over time, with changing network congestion levels (in house, access network, network core, video server)
- packet loss, delay due to congestion will delay playout, or result in poor video quality

Streaming stored video

Streaming stored video: challenges

- continuous playout constraint: during client video playout, playout timing must match original timing
 - ... but network delays are variable (jitter), so will need client-side buffer to match continuous playout constraint

- other challenges:
 - client interactivity: pause, fast-forward, rewind, jump through video
 - video packets may be lost, retransmitted

Streaming stored video: challenges

Jitter in packet networks (example of voice packets in the figure)

Jitter occurs when voice packets (labeled VP in the diagram) do not arrive with consistent periodicity.

Streaming stored video: challenges

Jitter in packet networks (In general)

Streaming stored video: playout buffering

 client-side buffering and playout delay: compensate for network-added delay, delay jitter