How to convert your data into QTL viewer Data:

Step 1: Generate the following files in TAB separated format (no headers)

features.txt

	LAYOUT						
	NAME	DATA TYPE	EXAMPLE	NOTE			
1	feature_id	STRING	ENMUSG00000019966				
2	group_id	STRING	ENMUSG00000019966				
3	chrom	CHAR (2 characters)	10				
4	location	FLOAT	100.01563	location is in Mb			
5	name	STRING	Kitl				
6	description	STRING	Kit ligand				

Example:

ENSMUSG00000000001	ENSMUSG00000000001	3	108.126713	Gnai3	guanine nucleotide binding protein
ENSMUSG00000000049	ENSMUSG00000000049	11	108.378875	Apoh	apolipoprotein H
ENSMUSG00000000088	ENSMUSG00000000088	9	57.5268828	Cox5a	cytochrome c oxidase subunit Va

NOTE:

if genes, group_id = feature_id,

if pQTL, the group_id will be gene_id while the feature_id will be protein id

markers.txt

			I	AYOUT	
	NAME	DATA TYPE	EXAMPLE	NOTE	
1	marker_id	STRING	rs6412653		
2	chrom	CHAR (2 characters)	Χ		
3	location	FLOAT	11.232	location is in Mb	

Example:

1_677642	1	0.677642	
rs48774772	9	57.522172	
1_32749486	1	32.7494861	

lod.txt - dataset of LOD scores in FLOATING point, features (rows) x markers (columns)

M is the number of markers F is the number of features

NOTE: ALL values should be of type FLOAT, if there is no value, leave that cell empty

FOR THE COEEFICIENT EFFECT PLOT (not required)

strains.txt

	LAYOUT					
	NAME	DATA TYPE	EXAMPLE	NOTE		
1	strain_id	STRING	Α			
2	name	STRING	A/J			
3	description	STRING				

Example:

A	A/J
В	C57BL/6J
С	129S1/SvlmJ

coef_[strain_id].txt

The easiest way to import the coefficient data is to create one file per strain (N). Rows would be features (F) and columns would be markers (M).

NOTE: ALL values should be of type FLOAT, if there is no value, leave that row empty

F is the number of features **M** is the number of markers **N** in the number of strains

Example: If you have 2 strains with IDs of 'A' and 'B', you would have 2 files called 'coef_A.txt' and 'coef_B.txt'. The reason for this format is for making the importing from the scripts easier.

FOR THE FACTORIAL VIEWER (NOT REQUIRED)

samples.txt

	LAYOUT					
	NAME	DATA TYPE	EXAMPLE	NOTE		
1	sample_id	STRING	Mouse142			
2	name	STRING	Mouse 142			
3	description	STRING				

Example:

Mouse142	Mouse 142	
4sd56	Mouse #1	My favorite mouse
abds	ABDS	Unique mouse in the experiment

factors.txt - factors (examples are sex, diet, tissue, etc)

LAYOUT					
	NAME	DATA TYPE	EXAMPLE	NOTE	
1	factor_id	STRING	tissue		
2	Name	STRING	Tissue		
3	description	STRING	The type of tissue		

Example:

Sex	Sex	M,F are present	
Diet	Diet	Low fat, high fat, chow diets are used	

phenotypes.txt - phenotypes with samples (rows) and factors (columns)

R is the number of factors **S** in the number of samples

Example: 2 factors (sex, diet), 6 samples

F	LowFat
F	HighFat
F	Chow
M	Chow
M	HighFat
M	LowFat

genotypes.txt - genotypes, markers (rows) and samples(columns)

R is the number of factors **S** in the number of samples

Example: 6 samples, many markers (omitted for brevity)

CC	AA	BB	AB	CC	AB	
СВ	AA	CB		СВ	BB	
CC	AA	СВ	AB	CC	BB	
BC	AC	СВ	AB	CC	AB	
CC	AA	СВ	AB	CC	BB	

expression.txt — expression values, features (rows) and samples(columns)

F is the number of features **S** in the number of samples

Example: 6 samples, many features (omitted for brevity)

-0.26623	1.7633	1.23753	0.21211	-0.12122	0.78667
0.876322	1.12122	1.87212		1.32322	1.82162
1.98872	0.29903	-0.672833	0.21642	1.24422	-1.93722
0.23232	-0.233223	0.323232	0.217652	-1.232332	0.828821
1.7832786	1.872563	-1.23222	-0.81221	0.165212	1.34651

NOTE: ALL values should be of type FLOAT, if there is no value, leave that cell empty

Step 2: Run the following Python script:

qtl_viewer/utils/txt_to_hdf5.py

PARAMETER	REQUIRED	DESCRIPTION	NOTE
-0,out	Yes	Output file	
-d,dataset	Yes	Name of the dataset	Example: adipose
-f,features	Yes	Name of features file	
-l,lod	Yes	Name of lod scores file	
-m,markers	Yes	Name of markers file	
dfA	Yes	Degrees of freedom autosomal	
dfX	Yes	Degrees of freedom, X chrom	
-c,csv	No	Use csv file instead of TSV	Not fully tested
datasetname	No	The display name of the dataset	Adipose Tissue instead of adipose
coef	No	Name of the ALL coefficient files	*_[strain_id].txt works nice
strains	No	Name of the strains file	
samples	No	Name of the samples file	
factors	No	Name of the factors file	
phenotypes	No	Name of phenotypes file	
genotypes	No	Name of genotypes file	
expression	No	Name of expression data file	

Example:

```
python qtl viewer/utils/txt to hdf5.py
--out proteomics.h5
--dataset proteomics do192
--datasetname "Proteomics 192"
--dfA 7
--dfX 14
-- features proteomics features.txt
--lod proteomics_lod.txt
--markers proteomics markers.txt
--strain proteomics strains.txt
--coef proteomics_coef_*.txt
-- factors proteomics factors.txt
--phenotypes proteomics_phenotypes.txt
--genotypes proteomics genotypes.txt
--samples proteomics_samples.txt
--expression proteomics expression.txt
```