_	埴	容	颞

- **1.** 若抛物线 $y^2 = 16x$ 上一点到 x 轴的距离等于 12,则点 M 到此抛物线的焦点的距离为
- **2.** 若方程 $\frac{x^2}{a^2} + \frac{y^2}{a^2 4} = 1$ 表示的曲线是双曲线,则实数 a 的取值范围是
- 围是______. **3.** 与双曲线 $x^2 \frac{y^2}{4} = 1$ 有共同渐近线,且过点 M(2,2) 的双曲线方程为
- **4.** 若动圆 M 经过点 A(3,0) 且与直线 l: x = -3 相切,则动圆圆心 M 的轨迹方程为
- 5. 若 F_1 、 F_2 为双曲线 $\frac{x^2}{4} y^2 = 1$ 的两个焦点,点 P 在双曲线上,且 $\angle F_1 P F_2 = 90^\circ$,则 $\triangle F_1 P F_2$ 的面积为_____.
- **6.** 已知双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a, b > 0)的左右焦点为 F_1, F_2 ,过 F_2 作 x 轴的垂线与双曲线 C 相交于 A, B 两点, F_1B 与 y 轴交于点 D,若 $AD \perp F_1B$,则双曲线 C 的离心率为
- 7. 若直线 l 与抛物线 $y^2 = 16x$ 相交所得的弦 AB 被点 P(3,2) 平分,则直线 l 的方程为
- 8. 若双曲线 $3mx^2 my^2 = 3$ 的一个焦点坐标为(0, -2),则 $m = _____$.
- **9.** 已知双曲线 $\frac{y^2}{4} x^2 = 1$ 的两条渐近线分别与抛物线 $y^2 = 2px$ (p > 0)的准线交于 $A \setminus B$ 两点,O 为坐标原点,若 $\triangle AOB$ 的面积为 1,则 p 的值为 _____.
- **10.** 若拋物线 $y^2 = 4x$ 的焦点为 F,点 P(x,y) 为该抛物线上的动点,又点 A(-1,0),则 $\frac{|PF|}{|PA|}$ 的最小值是______.

二、选择题

- 11. 在抛物线的方程 $y^2 = 2px(p>0)$ 中,p 表示 A. 焦点到准线的距离; ()
 - B. 焦点到准线的距离的一半:
 - C. 焦点到准线的距离的 2 倍;
 - D. 焦点到顶点的距离.
- 12. 若一动圆的圆心在抛物线 $y^2 = 8x$ 上,且动圆恒与直线 x + 2 = 0 相切,则此动圆必过定点
 - A. (4,0); B. (2,0);
- C.(0,2);
- D. (0,4)
- 66 —

修正处

- **13.** 若抛物线 $y^2 = 4x$ 过焦点的弦被焦点分成长为 m 和 n 两部分,则 m 与 n 的关系式为 ()
 - A. m + n = 4;

B. mn = 4:

C. m+n=mn;

- D. m + n = 2mn.
- **14.** 已知 $y = ax^2 (a > 0)$ 与直线 y = kx + b 交于两点,它们的横坐标是 x_1, x_2 ,若直线与 x 轴交点的横坐标是 x_3 ,则 ()
 - A. $x_3 = x_1 + x_2$;

B.
$$x_3 = \frac{1}{x_1} + \frac{1}{x_2}$$
;

C. $x_1x_2 = x_2x_3 + x_3x_1$;

D. $x_1x_3 = x_1x_2 + x_2x_3$.

三、解答题

15. 求双曲线 $\frac{x^2}{4} - \frac{y^2}{8} = 1$ 的渐近线,并求出它们的夹角的大小(结果用反三角函数值表示).

16. 已知直线 y = kx + 1 与抛物线 $y^2 = 4x$ 有且只有一个公共点,求 k 的值.

17. 设平面内两向量 \vec{a} 、 \vec{b} 满足: $\vec{a} \perp \vec{b}$, $|\vec{a}| = 2$, $|\vec{b}| = 1$, 点 M(x,y) 的坐标满足: $x\vec{a} + (y^2 - 4)\vec{b}$ 与 $-x\vec{a} + \vec{b}$ 互相垂直. 求证:平面内存在两个定点 A、B,使对满足条件的任意一点 M,均有 $|\overrightarrow{MA}| - |\overrightarrow{MB}|$ 等于定值.

- **18**. 已知抛物线 $y^2 = -x$ 和直线 y = k(x+1)相交于 A 、B 两点,O 为原点.
 - (1)求证:OA LOB;
 - (2)当 $\triangle AOB$ 的面积为 $\sqrt{10}$ 时,求实数 k 的值.

19. 若 M 是抛物线 $y^2 = 2x$ 上一动点,点 $P(3,\frac{10}{3})$,设 d 是点 M 到 准线的距离,要使 d + |MP|最小,求点 M 的坐标.

四、能力拓展题

- **20**. 如图,过抛物线 $C: x^2 = 2py(p > 0)$ 的焦点 F 的直线交抛物线 C 于两点 $M(x_1, y_1), N(x_2, y_2), 且 <math>x_1x_2 = -4$.
 - (1)求抛物线 C 的标准方程;
 - (2)R、Q 是抛物线 C 上的两动点,R、Q 的纵坐标之和为 1,R、Q 的垂直平分线交 y 轴于点 T,求 $\triangle MNT$ 的面积的最小值.

