ZAVRŠNI ISPIT IZ EKSTREMALNE KOMBINATORIKE

01.02.2017.

1. (5 bodova)

Neka je S_1, S_2, \ldots, S_m niz skupova koji ima sustav izrazitih predstavnika. Ako za neki $k, 1 \leq k < m-1$ unija $S_1 \cup S_2 \cup \cdots \cup S_k$, prvih k skupova ima točno k+1 elemenata, onda dokažite da nikoja dva od preostalih skupova $S_{k+1}, S_{k+2}, \ldots, S_m$ ne mogu biti potpuno sadržani u uniji $S_1 \cup S_2 \cup \cdots \cup S_k$.

2. (9 bodova)

- a) Pokažite da je $\{0, 1, 3, 9\}$ diferencijski skup.
- b) Nekad davno trebalo je 13 telefona povezati pomoću sklopki, od kojih se na svaku moglo spojiti najviše 4 telefona. Koristeći projektivnu ravninu reda 4 i diferencijski skup $\{0,1,3,9\}$ pokažite da se telefoni mogu spojiti pomoću 13 sklopki tako da su svaka dva telefona direktno spojena na istu sklopku točno jednom. Zašto za to nije dovoljno 12 sklopki?
- c) Je li ova struktura suncokret? A je li 4-uniformni slabi Δ -sustav? Jesu li svi njeni elementi diferencijski skupovi? Odgovore obrazložite.

3. (8 bodova)

- a) Navedite primjer i Hasseov dijagram jednog (konačnog) parcijalno uređenog skupa.
 - b) Neka su $I_1, I_2, \ldots, I_{mn+1}$ zatvoreni intervali u skupu realnih brojeva \mathbb{R}

$$I_j = [a_j, b_j], \quad j = 1, \dots, mn + 1.$$

Koristeći parcijalni uređaj definiran s

$$I_r \prec I_s \Leftrightarrow b_r < a_s$$

pokažite da je među njima m+1 međusobno disjunktnih intervala ili n+1 intervala s nepraznim presjekom.

4. (9 bodova)

- **a)** Dokažite R(3,3) = 6.
- b) Neka su bridovi klike K_9 obojani u dvije boje: crvenu i plavu. Metodom suprotnog dokažite da tada postoji vrh V s barem 6 crvenih incidentnih bridova ili barem 4 plava incidentna brida.
- c) Koristeći prethodne rezultate dokažite da svako 2-bojanje bridova klike K_9 sadrži ili crvenu podkliku K_4 ili plavu K_3 , tj. da je $R(4,3) \leq 9$.

5. (6 bodova)

Neka su A_1,A_2,\ldots,A_m k-člani podskupovi od Ω . Dokažite da ako je $m<2^{k-1}$ onda postoji bojanje elemenata od Ω u dvije boje tako da ni jedan od k- članih skupova A_1,A_2,\ldots,A_m nije jednobojan.

6. (8 bodova)

Dokažite:

- a) Svaki turnir T = (V, E) ima bar jedan Hamiltonov put.
- b) Postoji turnir T s n vrhova i najmanje $n!/2^{n-1}$ Hamiltonovih putova.

7. (dodatni zadatak)

U nogometnom razigravanju sudjeluje 10 timova. Nakon koliko najviše kola sigurno postoje tri tima među kojima nikoja dva nisu međusobno igrala?

Dozvoljena je upotreba "podsjetnika za ZI" i kalkulatora. Ispit se piše 120 minuta.

RJEŠENJA ZAVRŠNOG ISPITA IZ EKSTREMALNE KOMBINATORIKE

01.02.2017.

- 1. Za neki $k, 1 \leq k < m$ unija $S_1 \cup S_2 \cup \cdots \cup S_k$, prvih k skupova ima točno k+1 elemenata. Ako bi neka dva od preostalih skupova $S_{k+1}, S_{k+2}, \ldots, S_m$, označimo ih sa X i Y, bili potpuno sadržan u uniji $S_1 \cup S_2 \cup \cdots \cup S_k$ onda bi imali $S_1 \cup S_2 \cup \cdots \cup S_k \cup X \cup Y$ uniju od k+2 ovih skupova s točno k+1 elemenata. Ovo je u kontradikciji s uvjetom da S_1, S_2, \ldots, S_m ispunjavaju Hallov uvjet.
- **2. a)** Skup $\{0, 1, 3, 9\}$ je diferencijski skup jer se među $4 \cdot 3 = 12$ mogućih razlika njegovih elemenata pojavljuju svi brojevi od 1 do 12. Pri tome se računa modulo 13.
- **b)** Svakom sklopkom spojimo sledeće četvorke telefona: $\{0,1,3,9\}$, $\{1,2,4,10\}$, $\{2,3,5,11\}$, $\{3,4,6,12\}$, $\{4,5,7,0\}$, $\{5,6,8,1\}$, $\{6,7,9,2\}$, $\{7,8,10,3\}$, $\{8,9,11,4\}$, $\{9,10,12,5\}$, $\{10,11,0,6\}$, $\{11,12,1,7\}$, $\{12,0,2,8\}$.

 12 sklopki nije dovoljeno jer je $12 \cdot \binom{4}{2} < \binom{13}{2}$.
- c) Nije suncokret (nema zajedničkog presjeka). Jest 4-uniformni slabi Δ -sustav (presjeci su jednočlani skupovi). Svi elementi (četveročlani skupovi) su diferencijski skupovi jer se razlika ne mijenja ako umanjeniku i umanjitelju dodamo 1 (ili neki drugi broj).
 - **3.** a) Bilo koji primjer parcijalno uređenog skupa.
- **b)** Ako u ovom parcijalno uređenom skupu postoji lanac duljine barem m+1 onda smo gotovi jer tada imamo m+1 međusobno disjunktnih intervala. U suprotnom ni jedan lanac nije dulji od m. Zato je za particiju u lance potrebno barem $\left\lceil \frac{mn+1}{m} \right\rceil = n+1$ lanaca. Prema Dilworthovom teoremu onda postoji antilanac duljine n+1. Bilo koja dva njegova elementa su intervali koji se sijeku pa se zato svi sijeku i imamo n+1 intervala s nepraznim presjekom
- **4. a)** Najprije dokažimo $R(3,3) \leq 6$. Uzmimo proizvoljan vrh V. Kako je u K_6 stupanj svakog vrha, pa i vrha V jednak 5, prema Dirichletovom načelu najmanje 3 brida iste boje su incidentna vrhu V. Bez smanjenja općenitosti pretpostavimo da je ta boja crvena i da su to bridovi $\{V, X\}$, $\{V, Y\}$ i $\{V, Z\}$. Ako bi neki od bridova $\{X, Y\}$, $\{Y, Z\}$, $\{X, Z\}$ bio crvene boje imali bi crveni trokut. Ako nijedan od bridova $\{X, Y\}$, $\{Y, Z\}$, $\{Y, Z\}$, $\{X, Z\}$

nije crvene boje, onda imamo plavi trokut X,Y,Z. S ovim je dokazano $R\left(3,3\right) \leq 6.$

Kontraprimjerom ćemo pokazati R(3,3) > 5, da rezultat ne vrijedi za graf s 5 vrhova: obojimo crvenom bojom sve stranice peterokuta, a plavom sve dijagonale. Među ovako obojanim bridovima očito nema istobojnog trokuta.

Kako je
$$R(3,3) \le 6$$
 i $R(3,3) > 5$ slijedi $R(3,3) = 6$.

- **b)** U suprotnom svih 9 vrhova bi imalo po točno 5 crvenih incidentnih bridova i 3 plava, pa zbroj stupnjeva svih vrhova u crvenom podgrafu 9.5 = 45 nebi bio paran broj.
- c) U prvom slučaju, označimo sa A skup od 6 vrhova crvenih bridova incidentnih s V i različitih od V. Zbog R(3,3)=6 znamo da A sadrži ili plavi ili crveni trokut, pa uključimo li i vrh V, graf K_9 sadrži ili plavi trokut ili crvenu kliku K_4 .

U drugom slučaju za 4 plava incidentna brida sV, označimo sB skup od njihova 4 vrha različita od V. Ako su svi bridovi od B crveni, onda imamo crvenu kliku K_4 . Ako nisu, postoji plavi brid koji zajedno s vrhom V daje plavi trokut.

5. Pogledajmo slučajno 2-bojanje nakog k-članog podskupa od Ω . Za bilo koji podskup A_j , vjerojatnost da je A_j monokromatski jednaka je

$$p_j = 2 \cdot \left(\frac{1}{2}\right)^k.$$

Zato je vjerojatnost da je barem jedan od podskupova A_1, A_2, \ldots, A_m monokromatski manja od 1 ($m < 2^{k-1}$ pa je $m \cdot 2^{1-k} < 1$). Slijedi da je vjerojatnost suprotnog događaja strogo pozitivna, odnosno postoji bojanje elemenata od Ω u dvije boje tako da ni jedan od k- članih skupova A_1, A_2, \ldots, A_m nije jednobojan.

6. a) Dokažimo da se svaki put kojem nedostaje neki vrh može produžiti uključujući taj vrh u put. Pretpostavimo da imamo put v_1, v_2, \ldots, v_k gdje je k < n i da mu vrh v ne pripada. Ako je $(v, v_1) \in E$ onda vrh v možemo uključiti na "početak" i dobivamo put v, v_1, \ldots, v_k . Ako ne, onda je $(v_1, v) \in E$. U tom slučaju ako je $(v, v_2) \in E$ opet možemo v uključiti kao po redu drugi vrh i dobiti put v_1, v, v_2, \ldots, v_k . Ako ne, onda je $(v_2, v) \in E$. Na ovaj način nastavljamo do kraja: ukoliko su svi

$$(v_1, v), (v_2, v), \dots, (v_n, v) \in E$$

zbog $(v_n, v) \in E$ vrh v možemo uključiti na kraju i dobiti put v_1, \ldots, v_k, v . Na ovaj način induktivno u put uključimo sve vrhove koji mu nedostaju i na kraju dobijemo Hamiltonov put.

b) Izračunajmo očekivanje broja Hamiltonovih putova u slučajno odabranom turniru T=(V,E) (svaki brid ima slučajnu orjentaciju, odabranu nezavisno s vjerojatnošću 1/2). Za danu permutaciju skupa $\{1,2,\ldots,n\}$ pogledajmo niz $(\sigma(1),\sigma(2),\ldots,\sigma(n))$ i označimo s X_{σ} indikatorsku slučajnu varijablu događaja "bridovi u T pojavljuju se s orjentacijom $(\sigma(i),\sigma(i+1))$ za svaki $i=1,\ldots,n-1$. Kako je orjentacija svakog brida odabrana nezavisno imamo

$$\mathbf{E}(X_{\sigma}) = P\left((\sigma(i), \sigma(i+1)) \in E \text{ za } i = 1, \dots, n-1\right) = \frac{1}{2^{n-1}}.$$

Ukupan broj X Hamiltonovih putova u turniru T jednak je zbroju indikatorskih slučajnih varijabli po svim mogućim Hamiltonovim putovima, odnosno po svim permutacijama skupa $\{1, 2, \ldots, n\}$, pa je

$$\mathbf{E}(X) = \sum_{\sigma} \mathbf{E}(X_{\sigma}) = \frac{n!}{2^{n-1}}.$$

Prema Dirichletovom svojstvu za očekivanje slijedi da postoji elementarni događaj za kojeg je $X(\omega) \geq \mathbf{E}(X)$, odnosno postoji turnir s barem $n!/2^{n-1}$ Hamiltonovih putova.

7. Označimo snbroj odigranih kola. U svakom kolu igra se 5 utakmica i nakon n kola neki tim Anije igrao sa 9-n timova. Ako bilo koja od ovih 9-n timova nisu međusobno igrala, zajedno sa Aimamo trojku među kojima nikoja dva nisu međusobno igrala. U jednom kolu ovih 9-n timova može međusobno odigrati najviše $\left\lfloor \frac{9-n}{2} \right\rfloor$ utakmica. Zato tražimo najveći n za kojeg vrijedi

$$n \cdot \left\lfloor \frac{9-n}{2} \right\rfloor > \binom{9-n}{2}.$$

To je n=4.