Roll	No.:	

National Institute of Technology, Delhi

Name of the Examination: B.Tech. / M.Tech. / Ph.D. (Make-Up) : ECE Semester Title of the Course : Electromagnetic Theory Course Code : ECL203

Time: 3 Hours

Maximum Marks: 50

Note: Read the given instructions for each section Assume suitable data, if found missing. Used symbols have their usual meaning.

Branch

Section A: Attempt all questions; each question is of one (01) mark	
Q1. The amplitude of the electric field intensity on the surface of a good conductor is E ₀ . The amplitude	of the field
at a depth equal to the skin depth is -	(1)
Q2. $E_x = E_{x0}\cos(\omega t - \beta z)$ is a solution of the one dimensional wave equation for sinusoidally time varying	ng fields.
The phase velocity of the wave is -	(1)
Q3. Write the continuity equation.	(1)
Q4. The unit of Poynting vector is	(1)
Q5. A potential function is given by $ax^3 + bxy^2$, where a and b are constants. The function will satisfy La	
equation if	(1)
Q6. The radius of a circular conductor is 'a'. It carries a uniformly distributed current of density $J A/m^2$.	. The
magnetic field intensity at a radius $r < a$ is given by	(1)
Q7. The SI unit of electric conductivity is	(1)
Q8. The volume charge density in a region is defined by $re^{-r} \sin^2 \theta$ in spherical coordinates. The diverger	nce of
electric flux density at $r = 0.5$, $\theta = 60^{\circ}$ is	(1)
Q9. Two point charges $+Q$ and $-2Q$ are located at $x = -a$ and $x = a$ respectively. The potential is zero at	
Q10. The angle between two vectors $A = 3u_x + 4u_y$ and $B = pu_x + qu_y$ is 15°. What is the ration of p to a	q?(1)
Saction B. Attempt any four (04) questions. Each question is of 5	
Section B: Attempt any four (04) questions. Each question is of 5 marks	
Q1. Write Maxwell's equations in differential and integral form along with their physical explanation. A	lso write
the name of each Maxwell's equation.	(5)
Q2. (a) A hollow spherical shell carries charge density $\rho = k/r^2$ in the region $a \le r \le b$. Find the e	lectric
field in the three regions: (i) $r < a$, (ii) $a < r < b$ (iii) $r > b$. Plot $ E $ as a function of r.	(3)
(b) Given that $D = z\rho\cos^2\phi a_z C/m^2$, calculate the charge density at (1, pi/4, 3) and the total charge end	closed by
the cylinder of radius $1m$ with $-2 \le z \ge 2m$.	(2)
Q3. (a) Derive the wave equations in terms magnetic vector potential and electric scalar potential.	(4)
(b) Given that $A = 10 \cos(10^8 t - 10x + 60^\circ) a_z$ express A in phasor form.	(1)
Q4. (a)Determine the dot product of the position vectors of the following two points: A(5, 53.13	o, 1) and
$B(2, 90^{\circ}, -5).$	(2)
(b) Explain the term polarization. Derive the expression for the potential in-terms of volume bou	and charge
density and surface bound charge density.	(3)

(5)Q5. Drive the expression of wave propagation in lossy dielectrics. Section C: Attempt any two (02) questions. Each question is of 10 marks Q1.(a) The point charge Q = 18nC has a velocity of 5×10^6 m/s in the direction $a_v = 0.04a_x - 0.05a_y + 0.2a_z$. Calculate the magnitude of the force exerted on the charge by the field: (6)(ii) $E = -3a_x + 4a_y + 6a_z kV/m$ (iii) B and E together (4) (b) Derive the expression for α , β , and η for the wave propagation in lossy dielectrics. (i) $B = -3a_x + 4a_y + 6a_z mT$ Q2.(a) Two spherical cavities, of radii a and b, are hollowed out from the interior of a (neutral) conducting sphere of radius R. At the center of each cavity a point charge is placed – the charges are q_a and q_b . (2)(1) Find the surface charges σ_a , σ_b , and $\sigma_R.$ (ii) What is the field outside the conductor? (1) (iii) What is the force on q_a and q_b . (5)(c) Magnetic Potential (b) Explain following terms: (b) Stokes' Theorem (a) Biot-Savart Law (e) Skin depth (d) Faraday Law of EMI Q3. (a) A uniform plane wave propagating in a medium has $E = 2e^{-az}sin(10^8t - \beta z)a_y$ V/m. If the medium is characterized by $\varepsilon_r = 1$, $\mu_r = 20$, and $\sigma = 3$ S/m, find α , β , and H. (3)(c) The ratio J/J_d (conduction current density to displacement current density) is very important at high frequencies.

Calculate the ration at 1 GHz for – distilled water ($\mu = \mu_o$, $\varepsilon = 81\varepsilon_o$, $\sigma = 2 \times 10^{-3}$ S/m)