Exposé sur le modèle ARCH

AutoRegressive Conditional Heteroskedasticity

Réalisé par:

KABORE T. E. Adeline NIAMPA Abdoul Fataho YAMEOGO Saïdou

Université Joseph KI-ZERBO
Institut Supérieur des Sciences de la Population
Licence Professionnelle en Analyse Statistique – 2^{ième} Année

Enseignant : M. Gaëtan BASSINGA Ingénieur Statisticien Économiste

April 25, 2025

Plan de la Présentation

Introduction

- 1. Contexte
- 2. Description du modèle ARCH
- 3. Propriétés du modèle ARCH
- 4. Estimation par Maximum de Vraisemblance (EMV)
- 5. Prévision avec le modèle ARCH
- 6. Extensions du modèle ARCH
- 7. Cas pratique : application sur des données réelles Conclusion

Introduction

Le modèle **ARCH** (AutoRegressive Conditional Heteroskedasticity), introduit par *Robert Engle en 1982*, permet de **modéliser une variance conditionnelle** qui varie dans le temps. Contrairement aux modèles à variance constante, il tient compte du **clustering de volatilité**, où les périodes de forte instabilité succèdent à des périodes calmes.

Il repose sur l'idée que la variance des erreurs dépend des chocs passés, ce qui rend possible une modélisation dynamique de la volatilité, notamment en finance.

Contexte

Les modèles de séries temporelles classiques comme ceux de *Box et Jenkins (1970)* supposaient une variance constante. Mais ces approches ne capturent pas la dynamique des séries financières.

Le modèle ARCH permet de :

- Représenter la variance conditionnelle évolutive
- Distinguer moments conditionnels et inconditionnels
- Capturer les évolutions de la volatilité à travers le temps

Description du Modèle ARCH

Définition

Un processus (Y_t) suit un modèle **ARCH** si

$$Y_t = \epsilon_t \cdot \sigma_t$$
 où $\epsilon_t \sim \mathcal{N}(0, 1)$

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i Y_{t-i}^2$$

Description du Modèle ARCH

Remarque

•
$$\mathbb{E}[Y_t] = 0$$
, $\mathbb{E}[Y_t | \mathcal{F}_{t-1}] = 0$

•
$$Var[Y_t|\mathcal{F}_{t-i}] = \alpha_0 + \sum_{i=1}^p \alpha_i Y_{t-i}^2$$

•
$$\operatorname{Var}[Y_t] = \frac{\alpha_0}{1 - \sum \alpha_i}$$
, si $\sum \alpha_i < 1$

• $Cov(Y_t, Y_{t+k}|\mathcal{F}_{t-i}) = 0$: sans mémoire conditionnelle

1. Hétéroscédasticité conditionnelle

La variance conditionnelle dépend des chocs passés :

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i Y_{t-i}^2$$

- La variance à la date t dépend des carrés des valeurs passées $(Y_{t-1}^2, Y_{t-2}^2, \dots)$.
- Un choc important à t-1 (Y_{t-1}^2 élevé) augmente σ_t^2 , ce qui signifie une volatilité plus forte à l'instant t.

2. Clustering de volatilité

En finance, on observe que les périodes de forte volatilité tendent à être suivies par d'autres périodes de forte volatilité (et inversement pour les périodes calmes).

Ce phénomène est appelé clustering de volatilité

Un Y_{t-1}^2 élevé implique σ_t^2 élevé o probabilité d'un nouveau choc élevé.

3. Bruit blanc faible

Les résidus Y_t forment un **bruit blanc faible** car

$$\mathbb{E}[Y_t|\mathcal{F}_{t-1}]=0$$

$$\mathsf{Var}(Y_t|\mathcal{F}_{t-1}) = \sigma_t^2$$

$$Cov(Y_t, Y_{t-k}) = 0 \text{ pour } k \neq 0$$

4. Variance inconditionnelle constante

Bien que la variance conditionnelle σ_t^2 varie dans le temps, la variance inconditionnelle est constante si le modèle est stationnaire.

$$\mathsf{Var}(Y_t) = rac{lpha_0}{1 - \sum lpha_i}$$

avec la condition de stationnarité $\sum_{i=1}^{p} \alpha_i < 1$.

Estimation par Maximum de Vraisemblance (EMV)

- **Objectif**: Estimer les paramètres $\theta = (\alpha_0, \alpha_1, ...)$ qui maximisent la vraisemblance.
- Densité conditionnelle :

$$f(Y_t|\mathcal{F}_{t-1}) = \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left(-\frac{Y_t^2}{2\sigma_t^2}\right)$$

Estimation par Maximum de Vraisemblance (EMV)

• La fonction de vraisemblance pour *T* observations est :

$$L(\theta) = \prod_{t=1}^{T} f(Y_t | \mathcal{F}_{t-1})$$
où $\theta = (\alpha_0, \alpha_1, \dots, \alpha_p)$. (1)

Log-vraisemblance :

$$\ell(\theta) = \sum_{t=1}^{T} \left[-\frac{1}{2} \ln(2\pi) - \frac{1}{2} \ln(\sigma_t^2) - \frac{Y_t^2}{2\sigma_t^2} \right]$$

Estimation par Maximum de Vraisemblance (EMV)

Étapes d'estimation :

- Initialiser $\theta^{(0)}$, fixer les premières σ_t^2
- ② Calcul récursif : $\sigma_t^2 = \alpha_0 + \sum \alpha_i Y_{t-i}^2$
- **3** Maximiser $\ell(\theta)$:

$$\hat{\theta} = \operatorname{argmax}_{\theta} \ell(\theta)$$

Les algoritmes les plus utilisés : Newton-Raphson, BFGS, EM

Prévision avec le Modèle ARCH

Prévision dans le modèle ARCH(1)

Pour un modèle ARCH(1), la variance conditionnelle à l'horizon t+1, notée σ^2_{t+1} , s'exprime comme une fonction linéaire du carré des résidus passés :

$$\sigma_{t+1}^2 = \alpha_0 + \alpha_1 \cdot Y_t^2, \tag{2}$$

où:

- $\alpha_0 > 0$ est le terme constant garantissant une variance positive,
- $\alpha_1 \geq 0$ mesure l'impact du choc récent Y_t^2 sur la volatilité future,
- $Y_t = \sigma_t \epsilon_t$ est le résidu à la période t, avec $\epsilon_t \sim \mathcal{N}(0,1)$.

Généralisation au modèle ARCH(p)

$$\sigma_{t+1}^2 = \alpha_0 + \sum_{i=1}^p \alpha_i Y_{t+1-i}^2$$

avec les contraintes $\alpha_0 > 0$ et $\alpha_i \ge 0$ pour $i = 1, \dots, p$.

• Exemple numérique :

Pour un ARCH(2) avec $\alpha_0=0.1$, $\alpha_1=0.4$, $\alpha_2=0.3$ et $Y_t=-0.5$, $Y_{t-1}=0.2$:

$$\sigma_{t+1}^2 = 0.1 + 0.4 \cdot (-0.5)^2 + 0.3 \cdot (0.2)^2 = 0.1 + 0.1 + 0.012 = 0.212.$$

Extensions du Modèle ARCH

Avantages et limites du modèle ARCH

- La modélisation de la volatilité conditionnelle dans les séries financières
- Capter les périodes de forte ou faible instabilité

Quelques limites:

- La nécessité d'un grand nombre de paramètres
- Ne prend pas en compte les effets asymétriques des chocs
- Inéfficace à long terme

1. ARCH(p) avec erreurs : AR(p)-ARCH(p)

$$X_{t} = \phi_{0} + \sum_{i=1}^{p} \phi_{i} X_{t-i} + Y_{t}$$
(3)

avec

•
$$Y_t = \sigma_t \epsilon_t, \quad \epsilon_t \sim BruitBlanc(0,1)$$

$$\bullet \ \sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i Y_{t-i}^2$$

Extensions du Modèle ARCH

2. ARCH-M (ARCH in mean

Un processus (X_t) suit un modèle ARCH-M(p) si :

$$X_t = \alpha_0 + \lambda \sigma_t + \varepsilon_t \sigma_t \tag{4}$$

οù

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i Y_{t-i}^2$$
 (5)

Extensions du Modèle ARCH

Autres Modèles

- EGARCH : effet de levier
- TGARCH : seuils asymétriques
- IGARCH : persistance infinie
- FIGARCH : mémoire longue
- APARCH : flexibilité (puissance, asymétrie)
- Multivariate GARCH : volatilité multi-actifs

Cas pratique

- Langage de programmation : Python
- Logiciel utilisé :JupyterLab
- Source de données : Yahoo Finance

Conclusion

Le modèle ARCH surmonte les limites des modèles classiques en intégrant dynamiquement la volatilité, ce qui en fait un outil central en économétrie financière.

Merci pour votre attention!