ROBIN:

(ROBUSTNESS IN NETWORK)

AN R PACKAGE FOR VALIDATION OF

COMMUNITY ROBUSTNESS

Valeria Policastro

Istituto per le Applicazioni del Calcolo M.Picone CNR- Naples (Italy)

COMMUNITY DETECTION

One of the most relevant features of graphs representing real systems is their community structure

How can we say that is statistically robust?

ROBUSTNESS

Are the detected communities significant or are they a result of chance only due to the positions of edges in the network?

ROBIN: (ROBustness In Network)

An R package that gives a statistical answer to the *validation of the community structure* by looking at the robustness of the network

Carissimo A., Cutillo L., De Feis I., Validation of community robustness Computational Statistics and Data Analysis 2017

ROBUSTNESS AGAINST RANDOM PERTURBATION

❖ If a partition is significant, it will be recovered even if the structure of the graph is modified

ROBIN

* ROBIN gives the possibility to analyze community detection in all different aspects:

- ✓ Community detection algorithms
- ✓ Validation of the community structure
- ✓ Comparison of different community algorithms
- ✓ Graphical interactive representation of 3D networks

PROCEDURE

❖ Given a community detection method and a network of interest ROBIN analyses the stability of the partitions

It implements a perturbation strategy and a null model to build a procedure based on Variation of Information

ROBIN WORKFLOW

- Given a network, find a partition
 with some algorithm
- Perturb the network to create a new network, find the partition C' for the perturbed network, compare C and C' computing the Variation of Information VI
- 3. Repeat this calculation for different perturbation levels **p**

ROBIN WORKFLOW

- Perform 2. and 3. on a random graph (null model)
- 5. Compare the curves obtained plotting the average VI versus p of the original and the null model

The perturbed network has the same number of vertices and edges as the original unperturbed network

p∈[0,1]

p=0 The original unperturbed graphp=1 The maximal perturbation level (random graph)

- *Rewire algorithm: chooses two arbitrary edges in each step (e.g. (a,b) and (c,d))and substitutes them with (a,d) and (c,b) if they do not already exist in the graph
- keeping_degseq: preserving the original graph's degree distribution

rewireComplete(graph, number)

Generates 20 levels of p

For each different level it generates 10 perturbed graph. Then, from each of the obtained graphs, it generates other 10 graphs rewiring 1% of edges each time

Result: 100 graphs for each level !!!

ROBIN NULL MODEL

Configuration Model:

- Able to preserve strongly heterogeneous degree distribution of the real network.
- It randomly assign edges between vertices with a given degree distribution.

graphRandom(graph)

VARIATION OF INFORMATION (VI)

At each level of perturbation *p* ROBIN compares the partition obtained from the original graph with the partition obtained from the perturbed graph computing Variation of Information (*VI*)

compare(comReal, comR, method="vi")

comReal = Community Real ComR = Community Rewire at a specific level

VI AS FUNCTION OF AMOUNT OF PERTURBATION P

plotRobin (graph, model1, model2, legend)

model1= mean vi real data model2= mean vi null model

How can ROBIN test the differences between the two curves?

ROBIN TESTS

The percentage of perturbation as time points of two time series

Gaussian Process(GP)

Functional data analysis

Interval Testing Procedure (ITP)

Compare the area under the curves

AUC

GAUSSIAN PROCESS

❖ Are the two curves from the same process or not?

Gprege package: Gaussian Process Ranking and Estimation of Gene Expression time-series

callGp (ratio)

ratio= log2(viMean/viMeanRandom) for each level

Bayes Factor: score based on the log-ratio of marginal likelihoods

bf=gpregeOutput\$rankingScores[1]

GAUSSIAN PROCESS

Bayes_Factor 383.8757

K	dHart	bits	Strength of evidence
< 10 ⁰	0	_	Negative (supports M ₂)
10 ⁰ to 10 ^{1/2}	0 to 5	0 to 1.6	Barely worth mentioning
10 ^{1/2} to 10 ¹	5 to 10	1.6 to 3.3	Substantial
10 ¹ to 10 ^{3/2}	10 to 15	3.3 to 5.0	Strong
10 ^{3/2} to 10 ²	15 to 20	5.0 to 6.6	Very strong
> 10 ²	> 20	> 6.6	Decisive

Calculate the area under the curve with a spline approach

DescTools package: Tools for Descriptive Statistics

AUC(x=percPerturb, y=mvimeanmodel1, method ="spline")

Area Under the Curve:
Area1 0.2082588
Area2 0.3840378

INTERVAL-WISE FUNCTIONAL TESTING PROCEDURE

Provides an interval-wise non parametric functional testing able to point out specific differences

createITPSplineResult (graph, model1, model2)

The community structure found is statistically significant!!

IGRAPH COMMUNITY DETECTION ALGORITHMS

Modularity

Random walk

> Node

> Edges

Fast greedy

Louvain

Optimal

Leading eigenvector

HOW CAN WE SAY WHICH METHOD IS THE BEST?

❖ A procedure to compare different algorithms

To check which algorithm fits better your network!

comparison(graph,graphRandom,method1,method2)

❖ At each perturbation level the procedure calculates the **VI** for both methods

compare(comr1, comReal1, method="vi") for the first method
compare(comr2, comReal2, method="vi") for the second method

HOW CAN WE SAY WHICH METHOD IS THE BEST?

> Fast greedy

> Louvain

VI CURVES

plotRobinCompare(graph, legend, legend1vs2, title1, title2, title1vs2)

VI CURVES

```
plotRobinCompare(graph,
legend=c("real data", "null model"),
legend1vs2=c("fast greedy",
"louvain"),
title1="Fast Greedy",
title2="Louvain",
title1vs2="Fast Greedy vs Louvain")
```


ITP, GP and AUC

Bayes Factor 120.642

Areal 0.2151066 Area2 0.2442918

robinTest(graph, model1, model2, ratio, legend)

REPRESENTATIONS

Graph communities

plotCommunity(graph,method)

> Fast greedy method

- **❖**3D
- **❖**Interactive

ROBIN (ROBustness In Network)

- ✓ Community detection algorithms
- √ Validation of the community structure
- ✓ Comparison of different community algorithms
- ✓ Graphical interactive representation of 3D networks

FUTURE

❖ To Publish ROBIN

- To use a different clustering stability measure
- To compare the performance of different measures for community structure comparison
- To test if the differences of the different methods are only due to the degree distribution of the network or are influenced by other factors

BIBLIOGRAPHY

- Carissimo A., Cutillo L., De Feis I., Validation of community robustness Computational Statistics and Data Analysis 2017
- Karrer B, Levina E and Newman M E J Robustness of community structure in networks 2008 *Phys. Rev.* E **77** 046119
- Alfredo A. Kalaitzis and Neil D. Lawrence. A simple approach to ranking differentially expressed gene expression time courses through gaussian process regression. BMC Bioinformatics, 12(180), 2011
- Mc Auley, J., Leskovec, J., 2012. Learning to Discover Social Circles in Ego Networks. NIPS. pp. 548–556
- Meilă M.,2007. Comparing clusterings-an information based distance. J. Multivariate Anal.98,873-895
- Bender, E.A., Canfield, E.R., 1978. The asymptotic number of labelled graphs with given degree sequences. J. Combin. Theory A24, 296–307
- Pini A., Vantini S., 2016. The interval testing procedure: A general framework for inference in functional data analysis. Biometrics

ACKNOWLEDGMENT

o Annamaria Carissimo

o Luisa Cutillo

o Dario Righelli

o Italia De Feis

Thanks for the attention!

MODULARITY

A network with strong community structure has high modularity

Q is not sufficient, not all networks with high modularity have strong community structure

SIMULATION

We used a literature model that generates undirected, simple and connected graphs with prescribed degree sequences and a specified level of community structure

We constructed networks with 2000 nodes, 10 communities, an average degree equal to 10 at different value of modularity Q

SIMULATION STUDY

Null models with different modularity

VARIATION OF INFORMATION (VI)

At each level of perturbation **p** we compared the partition obtained from the original with the partition obtained from the perturbed graph computing Variation of Information (**VI**)

$$VI(C,C')=H(C|C')+H(C'|C)$$

- $0 \le VI(C,C') \le 2logK$
- C and C' are two generic partitions
- K is the number of clusters

GAUSSIAN PROCESS

*Are the two curves from the same process or not?

❖ The hypothesis testing problem can be reformulated over the perturbation interval [0,1] as:

$$H_0: \log_2 \frac{VIc(x)}{VIc_{random}(x)} \sim \mathcal{GP}(0, k(x, x'))$$

$$H_1: \log_2 \frac{VIc(x)}{VIc_{random}(x)} \sim \mathcal{GP}(m(x), k(x, x'))$$

Bayes Factor is approximated with a log-ratio of marginal likelihoods of two GPs, each one representing the hypothesis of differential (the profile has a significant underlying signal) and non differential expression (there is no underlying signal in the profile, just random noise).

- 1. **Basis Expansion:** functional data are projected on a functional basis (i.e. Fourier or B-splines expansion);
- 2. **Interval-Wise Testing:** statistical tests are performed on each interval of basis coefficients;
- 3. **Multiple Correction:** for each component of the basis expansion, an adjusted p-value is computed from the p-values of the tests performed in the previous step.