POS tagging using Generative Model

- Make an inference based on a trained model and some observed data
- Answer the question
- What is the choice of states such that the joint probability reaches maximum?

$$X_{0:T}^* = \underset{X_{0:T}}{\operatorname{argmax}} P[X_{0:T} | Y_{0:T}]$$

To find best set of states we use following recursive formula

$$\mu(X_k) = \max_{X_{0:k-1}} P[X_{0:k}, Y_{0:k}] = \max_{X_{k-1}} \mu(X_{k-1}) P[X_k | X_{k-1}] P[Y_k | X_k]$$

♣ Let us substitute k=1,2,3

$$\mu(X_0) = P[Y_0|X_0]P[X_0]$$

$$\mu(X_1) = \max_{X_0} \mu(X_0)P[X_1|X_0]P[Y_1|X_1]$$

$$\mu(X_2) = \max_{X_1} \mu(X_1)P[X_2|X_1]P[Y_2|X_2]$$

$$\mu(X_3) = \max_{X_2} \mu(X_2)P[X_3|X_2]P[Y_3|X_3]$$

- Assume there are 3 possible states at each step
- At each step maximize the probability
- ❖ For X1, state=1, the best possible state at X0, state=2 is chosen

❖ For X1, state=2, the best possible state at X0, state=3 chosen

For X1, state=3 also calculation is done and we get max value 0.15

- *Repeat same steps to get to step 2
- if we end the inference at step 2, then the most likely ending state would be state = 1

- Rest of the previous states could be back-traced through the arrows, which are
- state 2 at time 0,
- state 1 at time 1,
- and state 1 at time 2
- ❖The second likely path is 3–2–3, and the least likely path is 2–1–
 2. It is very unlikely that the path starts with state 1

Example 2

POS Tagging -Viterbi Algorithm

The fans watch the race

The fans watch the race

Emission Probability

	The	Fans	Watc h	Race
DT	0.2	0	0	0
NN	0	0.1	0.3	0.1
VB	0	0.2	0.15	0.3

Transition Probability

	DT	NN	VB
Start	8.0	0.2	0
DT	0	0.9	0.1
NN	0	0.5	0.5
VB	0.5	0.5	0

POS Tagging -Viterbi Algorithm

Emission Probability

	The	Fans	Watc h	Race
DT	0.2	0	0	0
NN	0	0.1	0.3	0.1
VB	0	0.2	0.15	0.3

Transition Probability

	DT	NN	VB
Start	8.0	0.2	0
DT	0	0.9	0.1
NN	0	0.5	0.5
VB	0.5	0.5	0

POS Tagging - Viterbi Algorithm Frobability

	The	Fans	Watc h	Race
DT	0.2	0	0	0
NN	0	0.1	0.3	0.1
VB	0	0.2	0.15	0.3

- ◆ 1-2b =.1*.2*.16 =.0032
- 2a-3a = .5*.3*.0144 = .00126 (Taken)
- ♦ 2b-3a = .5*.3*.0032=.00048
- 2a-3b = .5*.15*.0144=.00108 (Taken)
- \diamond 2b-3b = 0*...=0
- **♦** 3a-4 =0*...=0

The

♦ 3b-4 = .5*.15*.00108=.000081

Transition Probability

	DT	NN	VB
Start	8.0	0.2	0
DT	0	0.9	0.1
NN	0	0.5	0.5
VB	0.5	0.5	0

POS Tagging - Viterbi Algorithm Frobability

	The	Fans	Watc h	Race
DT	0.2	0	0	0
NN	0	0.1	0.3	0.1
VB	0	0.2	0.15	0.3

♦ 3a-4 =0*...=0

The

- \Rightarrow 3b-4 = .5*.2*.00108=.000108(Taken)
- **♦** 4-5a = .9*.1*.000108 = 9.72 * 10^-6
- $4-5b = .1*.3*.000108 = 3.24*10^-6$

	DT	NN	VB
Start	8.0	0.2	0
DT	0	0.9	0.1
NN	0	0.5	0.5
VB	0.5	0.5	0

POS Tagging - Viterbi Algorithm Frobability

	The	Fans	Watc h	Race
DT	0.2	0	0	0
NN	0	0.1	0.3	0.1
VB	0	0.2	0.15	0.3

♦ 3a-4 =0*...=0

The

- \Rightarrow 3b-4 = .5*.2*.00108 = .000108 (Taken)
- **♦** 4-5a = .9*.1*.000108 = 9.72 * 10^-6
- $4-5b = .1*.3*.000108 = 3.24*10^-6$

	DT	NN	VB
Start	8.0	0.2	0
DT	0	0.9	0.1
NN	0	0.5	0.5
VB	0.5	0.5	0

Why Viterbi Algorithm is better?

Imagine sentence of length L and each word can have one

of P POS

- ♦ O(P^L) in Brute force
- ❖In Viterbi
- **♦**O(P^2 * L)
- ❖So Viterbi is better

Example 3

Use Viterbi Algorithm

	Next			
Current		В	End	
Start	0.7	0.3	0	
A	1	0.7	0.1	
В	0.7	0.2	0.1	

	Word				
State	*S*	x	y		
Start	1	0	0		
A	0	0.4	0.6		
В	0	0.3	0.7		

Why Viterbi Algorithm is better?

- Imagine sentence of length L and each word can have one of P POS
- ♦ O(P^L) in Brute force
- ❖In Viterbi
- **❖**O(P^2 * L)
- ❖So Viterbi is better