Compito di Analisi Matematica 2

5 luglio 2019

COGNOME:	NOME:	MATR.:

Esercizio 1. Si consideri la curva planare

$$\gamma(t) = (1 + \cos(t))(\cos(t), \sin(t))$$
 $t \in [0, 2\pi).$

- (1) Dire quali punti del supporto di γ sono regolari. Specificare la natura degli eventuali punti singolari (punti angolosi, cuspidi).
- (2) Calcolare

$$\int_{\gamma} \omega$$
,

dove $\omega(x, y) = (\sin(y) - y)dx + x(\cos(y) + 1)dy$.

Esercizio 2. Sia $f \in L^1(\mathbb{R}; [0, +\infty))$ e per ogni $r \geq 0$ sia $f_r : \mathbb{R} \to [0, +\infty)$ definita da $f_r := \min\{f, r\}$.

- (1) Provare che $f_r \in L^1(\mathbb{R}; [0, r])$ per ogni $r \geq 0$.
- (2) Posto $F(r) := ||f_r||_{L^1}$ per ogni $r \ge 0$, dimostrare che F è una funzione monotona crescente.
- (3) Provare che $\lim_{r \to +\infty} F(r) = ||f||_{L^1}$.

Esercizio 3. Per ogni $N\in\mathbb{N}$ sia $g^N:[-\pi,\pi)\to\mathbb{R}$ definita da

$$g^N(x) := \left\{ \begin{array}{ll} 0 & \text{se } x \in [-\pi, -\frac{\pi}{N}) \cup [\frac{\pi}{N}, \pi) \\ 1 - \frac{N}{\pi} |x| & \text{se } x \in [-\frac{\pi}{N}, \frac{\pi}{N}) \end{array} \right.$$

e sia $f^N:\mathbb{R}\to\mathbb{R}$ l'estensione $2\pi\text{-periodica}$ di $g^N.$

- (1) Determinare la serie di Fourier reale S_{f^N} di f^N per ogni $N \in \mathbb{N}$. (2) Studiare la convergenza puntuale, uniforme e totale di S_{f^N} .
- (3) Dimostrare che

$$N = \frac{1}{2} + 2\sum_{k=1}^{+\infty} \frac{1 - \cos(\frac{k}{N}\pi)}{\left(\frac{k\pi}{N}\right)^2} \quad \text{per ogni } N \in \mathbb{N}.$$

SOLUZIONI

Soluzione esercizio 1.

(1) Per $t \in [0, 2\pi)$, calcoliamo la derivata

$$\gamma'(t) = (-\sin(t) - 2\sin(t)\cos(t), \cos(t) + \cos^2(t) - \sin^2(t)),$$

che si annulla se e solo se $t=\pi$, quindi la curva è regolare per $t\neq\pi$. Per $t=\pi$ la curva passa per l'origine ed ha un punto singolare di tipo cuspide, infatti il vettore tangente alla curva è dato da

$$T(t) = \frac{\gamma'(t)}{|\gamma'(t)|} = \frac{1}{\sqrt{2(1+\cos(t))}} (-\sin(t) - 2\sin(t)\cos(t), \cos(t) + \cos^2(t) - \sin^2(t)),$$
e si ha

$$\lim_{t \to \pi^{-}} T(t) = (1,0), \qquad \lim_{t \to \pi^{+}} T(t) = (-1,0).$$

(2) Notiamo che $\gamma(t)$ è una curva chiusa orientata positivamente (cardioide). Osserviamo inoltre che possiamo scrivere $\omega = \omega_1 + \omega_2$, con $\omega_1 = \sin(y)dx + x\cos(y)dy$ e $\omega_2 = -ydx + xdy$. Dato che $\omega_1 = df$, con $f(x, y) = x\sin(y)$, abbiamo che ω_1 è una forma esatta e quindi il suo integrale lungo γ è nullo. Di conseguenza otteniamo

$$\int_{\gamma} \omega = \int_{\gamma} \omega_2 = \int_0^{2\pi} \langle \omega_2(\gamma(t)), \gamma'(t) \rangle dt = \int_0^{2\pi} (1 + \cos(t))^2 dt = 3\pi.$$

Soluzione esercizio 2.

(1) Poiché $f \geq 0$, anche $f_r \geq 0$ per ogni $r \geq 0$. Pertanto per ogni $r \geq 0$ si ha

$$||f_r||_{L^1} = \int_{\mathbb{R}} f_r(x) \, \mathrm{d}x = \int_{\{f < r\}} f(x) \, \mathrm{d}x + \int_{\{f \ge r\}} r \, \mathrm{d}x \le \int_{\mathbb{R}} f(x) \, \mathrm{d}x = ||f||_{L^1}.$$

(2) Siano ora $0 \le r_1 < r_2$. Allora

$$F(r_2) - F(r_1) = \int_{\{r_1 \le f < r_2\}} f(x) \, \mathrm{d}x + r_2 |\{f \ge r_2\}| - r_1 |\{f \ge r_1\}|$$

$$\ge r_1 (|\{r_1 \le f < r_2\}| - |\{f \ge r_1\}|) + r_2 |\{f \ge r_2\}|$$

$$= (r_2 - r_1) |\{f \ge r_2\}| \ge 0.$$

(3) Osserviamo che f_r è monotona crescente in r e che $f_r \to f$ per $r \to +\infty$. Essendo $f_r \ge 0$ per ogni $r \ge 0$, per il teorema di convergenza monotona, abbiamo che

$$\lim_{r \to +\infty} F(r) = \lim_{r \to +\infty} \int_{\mathbb{R}} f_r(x) \, \mathrm{d}x = \int_{\mathbb{R}} \lim_{r \to +\infty} f_r(x) \, \mathrm{d}x = \int_{\mathbb{R}} f(x) \, \mathrm{d}x = \|f\|_{L^1}.$$

Soluzione esercizio 3.

(1) Sia $N \in \mathbb{N}$. La funzione g^N è pari, pertanto i coefficienti b_k sono tutti nulli per $k \geq 0$. Inoltre, si ha che

$$\begin{aligned} \frac{a_0}{2} &= \frac{1}{2\pi} \frac{2\pi}{N} \frac{1}{2} = \frac{1}{2N} \\ a_k &= \frac{1}{\pi} \int_{-\pi}^{\pi} g^N(x) \cos(kx) \, \mathrm{d}x = \frac{2}{\pi} \int_0^{\frac{\pi}{N}} \left(1 - \frac{N}{\pi} x \right) \cos(kx) \, \mathrm{d}x \\ &= \frac{2}{\pi} \left[\frac{\sin(kx)}{k} \right]_{x=0}^{x=\frac{\pi}{N}} - \frac{2N}{\pi^2} \left[x \frac{\sin(kx)}{k} + \frac{\cos(kx)}{k^2} \right]_{x=0}^{x=\frac{\pi}{N}} = \frac{2N}{k^2 \pi^2} \left(1 - \cos\left(\frac{k\pi}{N}\right) \right) \, . \end{aligned}$$
Quindi

$$S_{f^N}(x) = \frac{1}{2N} + 2\sum_{k=1}^{+\infty} \frac{N}{k^2 \pi^2} \left(1 - \cos\left(\frac{k\pi}{N}\right) \right) \cos(kx).$$
 (*)

- (2) La serie S_{f^N} converge totalmente su \mathbb{R} , quindi converge anche uniformemente. Inoltre, poiché f^N è continua e regolare a tratti, abbiamo che $S_{f^N}(x) = f^N(x)$ per ogni $x \in \mathbb{R}$.
- (3) Da (*) e dal punto (2), si ha che

$$1 = f^{N}(0) = S_{f^{N}}(0) = \frac{1}{2N} + 2\sum_{k=1}^{+\infty} \frac{N}{k^{2}\pi^{2}} \left(1 - \cos\left(\frac{k\pi}{N}\right)\right),$$

da cui, moltiplicando tutto per N, segue la tesi.