Consultație Extreme și integrale

1. Să se determine maximul si minimul functiei:

$$f(x,y) = x^2 + y^2 - 3x - 2y + 1$$

pe mulțimea $K = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}.$

Indicatii

- mulțimea K este compactă (un disc), funcția este continuă, deci este mărginită și își atinge marginile;
- studiind pe interiorul discului ($x^2 + y^2 < 1$), nu avem soluții;
- pe frontieră, avem legătura $g(x,y) = x^2 + y^2 1 = 0$. Folosind metoda multiplicatorilor lui Lagrange, găsim punctele:

$$(x,y) \in \left\{ \left(-\frac{3\sqrt{13}}{13}, -\frac{2\sqrt{13}}{13} \right), \left(\frac{3\sqrt{13}}{13}, \frac{2\sqrt{13}}{13} \right) \right\}$$

- pentru a găsi punctele de extrem, putem calcula f în fiecare din aceste valori.
- 2. Calculati:

(a)
$$\int_0^\infty \frac{\mathrm{d}x}{1+x^3};$$

(b)
$$\int_0^1 \ln^p \left(\frac{1}{x}\right), p > -1.$$

Indicații:

(a) Vom face schimbarea de variabilă $x^3 = y$ și folosim formula pentru funcția beta:

$$B(p,q) = \int_0^\infty \frac{y^{p-1}}{(1+y)^{p+q}} dy.$$

Rezultatul este: $\frac{1}{3}B(\frac{1}{3},\frac{2}{3})$.

(b) Vom face schimbare de variabilă $\ln x = y$ și folosim formula pentru funcția gamma:

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx, \, \alpha > 0.$$

Rezultatul este $\Gamma(p+1)$.

3. Să se calculeze volumul mulțimii Ω mărginită de suprafețele de ecuații:

$$\begin{cases} 2x^{2} + y^{2} + z^{2} &= 1\\ 2x^{2} + y^{2} - z^{2} &= 0\\ z \geqslant 0 \end{cases}$$

Indicații: Eliminînd z din ecuații, găsim elipsa $4x^2 + 2y^2 = 1$, care este curba de intersecție a suprafețelor. De asemenea, avem și $z = \frac{1}{\sqrt{2}}$. Așadar, putem proiecta mulțimea pe planul XOY și găsim:

$$D = \{(x, y) \in \mathbb{R}^2 \mid 4x^2 + 2y^2 \leqslant 1\}.$$

Cu definiția, rezultă:

$$V(\Omega) = \iiint_{\Omega} dx dy dz = \iint_{D} dx dy \int_{\sqrt{2x^2 + y^2}}^{\sqrt{1 - 2x^2 - y^2}} dz.$$

Trecînd la coordonate polare, găsim rezultatul $\frac{\pi}{3}(\sqrt{2}-1)$.

4. Să se calculeze circulația cîmpului de vectori \vec{V} de-a lungul curbei Γ , unde:

$$\vec{V} = -(x^2 + y^2)\vec{i} - (x^2 - y^2)\vec{j},$$

iar curba $\Gamma = \Gamma_1 \cup \Gamma_2$ este:

$$\Gamma_1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2, y < 0\}$$

 $\Gamma_2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 - 2x = 0, y \ge 0\}.$

Indicații: Oricărui cîmp vectorial $\vec{V} = \vec{\text{Pi}} + \vec{\text{Qj}} + \vec{\text{Rk}}$ i se asociază o 1-formă diferențial $\alpha = \text{Pdx} + \text{Qdy} + \text{Rdz}$. Atunci circulația cîmpului \vec{V} de-a lungul curbei Γ devine integrala curbilinie de speța a doua $\int_{\Gamma} \alpha = \int_{\Gamma} \vec{V} \cdot d\vec{r}$.

Avem nevoie să parametrizăm curbele. Vom folosi coordonate polare și găsim:

$$\begin{split} &\Gamma_1: \begin{cases} x(t) &= 2\cos t \\ y(t) &= 2\sin t \end{cases}, t \in [\pi, 2\pi) \\ &\Gamma_2: \begin{cases} x(t) &= 1+\cos t \\ y(t) &= \sin t \end{cases}, t \in [0, \pi]. \end{split}$$

Acum putem aplica formula de calcul pentru integrala curbilinie de speța a doua:

$$\int_{\Gamma} P dx + Q dy + R dz = \int_{a}^{b} (P \circ \Gamma)(t) \cdot x'(t) + (Q \circ \Gamma)(t) \cdot y'(t) + (R \circ \Gamma)(t)z'(t)dt, \quad t \in [a, b].$$

5. Să se calculeze aria paraboloidului $z = x^2 + y^2, z \in [0, h], h \in \mathbb{R}$.

Indicații: Deoarece paraboloidul este dat în forma unei *parametrizări carteziene*, folosim formula corespunzătoare de la integrale de suprafață de speța întîi. Așadar, avem $z = f(x, y) = x^2 + y^2$ și aria se calculează folosind formula:

$$\int_{\Sigma} F(x, y, z) d\sigma = \int_{D} F(x, y, f(x, y)) \cdot \sqrt{1 + p^2 + q^2} dx dy,$$

unde $p = \frac{\partial z}{\partial x}$, iar $q = \frac{\partial z}{\partial y}$, iar F = 1 pentru calculul ariei.

6. Să se calculeze fluxul cîmpului de vectori \vec{V} prin suprafața Σ pentru:

$$\vec{\mathrm{V}} = y\vec{\mathrm{i}} - x\vec{\mathrm{j}} + z^2\vec{\mathrm{k}}, \quad \Sigma : z^2 = x^2 + y^2, z \in [0,1].$$

Indicații: Folosind formula de definiție pentru flux, avem:

$$\label{eq:F_sigma} \mathsf{F}_{\Sigma}(\vec{V}) = \int_{\Sigma} \vec{V} \cdot \vec{n} d\sigma = \iint_{D} (\vec{V} \circ \Sigma) \cdot \Big(\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial \nu} \Big) du d\nu,$$

unde $\Phi = \Phi(\mathfrak{u}, \mathfrak{v}) : D \to \mathbb{R}^3$ este o parametrizare a suprafeței Σ .

Putem folosi parametrizarea carteziană $z = \sqrt{x^2 + y^2}$ sau, echivalent:

$$\begin{cases} x(u,v) &= u \\ y(u,v) &= v \\ z(u,v) &= \sqrt{u^2 + v^2} \end{cases}$$

Putem calcula acum componentele versorului normal, apoi produsul scalar și, în fine, integrala.

7. Să se calculeze integrala curbilinie $\int_{\Gamma} \alpha$, unde:

$$\alpha = y dx + x^2 dy,$$

iar Γ este pătratul cu vîrfurile A(0,0), B(2,0), C(2,2), D(0,2).

Indicație: Se folosește formula Green-Riemann, unde compactul K este interiorul pătratului. Integrala devine:

$$\iint_{K} (1-2y) dx dy = \int_{0}^{2} \int_{0}^{2} (1-2y) dy = -4.$$

8. Fie forma diferențială $\alpha = -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$.

Să se calculeze $\int_{\Gamma} \alpha$, unde Γ este cercul de centru 0 și rază R > 0.

Indicație: În acest caz **NU** se poate aplica formula Green-Riemann, deoarece α nu este definită în (0,0), care se găsește în interiorul compactului delimitat de Γ (mai general, conform teoriei, α trebuie să fie de clasă \mathcal{C}^1 în interior).

Așadar, folosim definiția și parametrizăm cercul, cu coordonate polare, apoi folosim definiția integralei curbilinii de speța a doua.

9. Să se calculeze circulația cîmpului de vectori \vec{V} pe curba Γ pentru:

$$\vec{V} = y^2 \vec{i} + xy \vec{j}, \quad \Gamma = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1, y > 0\}.$$

Indicații: Pe lîngă metoda de la exercițiul 4, putem aplica și formula Green-Riemann. Obținem (cu K, compactul mărginit de Γ):

$$\int_{\Gamma} \vec{V} \cdot d\vec{r} = \iint_{K} -y \, dx \, dy = -\int_{-1}^{1} \int_{x^{2}-1}^{\sqrt{1-x^{2}}} y \, dx \, dy.$$

10. Să se calculeze fluxul cîmpului $\vec{V}=(x+z^2,y+z^2,-2z)$ prin suprafața

$$\Sigma : x^2 + y^2 + z^2 = 1, z \ge 0.$$

Indicații: Suprafața nu este închisă! Așadar, nu se poate aplica formula Gauss-Ostrogradski. Trebuie să o închidem cu cercul $C: x^2+y^2=1, z=0$, formînd suprafața S. Rezultă $\Sigma \cup C=S$, deci $\mathfrak{F}_{\Sigma}(\vec{V})+\mathfrak{F}_{C}(\vec{V})=\mathfrak{F}_{S}(\vec{V})$.

Pe S avem flux nul, deoarece $\nabla \cdot \vec{V} = 0$, iar pe C se poate calcula cu definiția (vezi și exercițiul 6).

11. Să se calculeze, folosind formula lui Stokes, integrala curbilinie $\int_{\Gamma} \alpha$, pentru:

$$\alpha = (y-z)dx + (z-x)dy + (x-y)dz, \quad \Gamma: z = x^2 + y^2, z = 1.$$

Indicații: Definind $\Sigma = \{(x,y,z) \mid z = x^2 + y^2, z \le 1\}$ avem că Γ este bordul lui Σ. Putem aplica formula lui Stokes și găsim succesiv:

$$\int_{\Gamma} \alpha = \int_{\Sigma} -2(dy \wedge dz + dz \wedge dx + dx \wedge dy)$$
$$= -2 \iint_{D} (-2x - 2y + 1) dx dy,$$

unde D este discul unitate. La primul pas am folosit formula lui Stokes, iar la al doilea, formula de calcul pentru integrala de suprafață de speța a doua.

Problema se finalizează trecînd la coordonate polare.