

Fig. 2.6: **Example weak learners.** (a) Axis-aligned hyperplane. (b) General oriented hyperplane. (c) Quadratic (conic in 2D). For ease of visualization here we have $\mathbf{v} = (x_1 \ x_2) \in \mathbb{R}^2$ and $\phi(\mathbf{v}) = (x_1 \ x_2 \ 1)$ in homogeneous coordinates. In general data points \mathbf{v} may have a much higher dimensionality and ϕ still a dimensionality of ≤ 2 .

captures thresholds for the inequalities used in the binary test. The filter function ϕ selects some features of choice out of the entire vector \mathbf{v} . All these parameters will be optimized at each split node. Figure 2.6 illustrates a few possible weak learner models, for example:

Linear data separation. In our model linear weak learners are defined as

$$h(\mathbf{v}, \boldsymbol{\theta}_j) = [\tau_1 > \boldsymbol{\phi}(\mathbf{v}) \cdot \boldsymbol{\psi} > \tau_2], \qquad (2.2)$$

where [.] is the indicator function². For instance, in the 2D example in fig. 2.6b $\phi(\mathbf{v}) = (x_1 \ x_2 \ 1)^{\top}$, and $\psi \in \mathbb{R}^3$ denotes a generic line in homogeneous coordinates. In (2.2) setting $\tau_1 = \infty$ or $\tau_2 = -\infty$ corresponds to using a single-inequality splitting function. Another special case of this weak learner model is one where the line ψ is aligned with one of the axes of the feature space (e.g. $\psi = (1 \ 0 \ \psi_3)$) or $\psi = (0 \ 1 \ \psi_3)$, as in fig. 2.6a). Axis-aligned weak learners are often used in the boosting literature and they are referred to as stumps [98].

²Returns 1 if the argument is true and 0 if it is false.