

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Samia Munmun	
UB Person Number:	 Textbooks, calculators and any other electronic devices are not permitted. You may use one sheet of notes. For full credit solve each problem fully, showing all relevant work.
1 2 3 4 5	6 7 TOTAL GRADE

8	9	2	20	20	3	2		10	70	B-
1	2	3	4	5	6	7	PIAZZA	HILL	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

b) Is the set
$$\{v_1, v_2, v_3\}$$
 linearly independent? Justity your answer.

a) as WE SPON (V_1, V_2, V_3)

$$\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + 0 \begin{pmatrix} -1 \\ 1 \\ -3 \end{pmatrix} + 2 \begin{pmatrix} 3 \\ 2 \\ 6 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 6 \end{pmatrix}$$

b)
$$C_1 \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + C_2 \begin{bmatrix} -\frac{1}{3} \\ -\frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + C_2 \begin{bmatrix} -\frac{1}{3} \\ -\frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + C_2 \begin{bmatrix} -\frac{1}{3} \\ -\frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + C_2 \begin{bmatrix} -\frac{1}{3} \\ -\frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + C_2 \begin{bmatrix} -\frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} + C_2 \begin{bmatrix} -\frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} + C_2 \begin{bmatrix} -\frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} + C_2 \begin{bmatrix} -\frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_2 \begin{bmatrix} -\frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_2 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_2 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$C_1 \begin{bmatrix} \frac{1}{3} \\ \frac{1}$$

②
$$C_2 + 2C_3 = 0$$
 : $C_3 = \frac{3}{2}$: $C_1 = 0$ [: $C_1 = 0$]
③ $2C_1 - 3C_2 = 0$: $C_1 = \frac{3C_2}{2}$: $C_2 = 0$ Use vow reduce

$$\frac{1}{1} \cdot \frac{1}{12} \cdot \frac{1}{12} = \frac{32}{2} \cdot \frac{1}{12} \cdot \frac{32}{2} = \frac{32}{2} \cdot \frac{1}{2} \cdot \frac{32}{2} = \frac{32}{2} \cdot \frac{1}{2} \cdot \frac{32}{2} = \frac{32}{2} \cdot \frac{1}{2} \cdot \frac{32}{2} = \frac{32}{2} = \frac{$$

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

$$A^{-1} = \begin{bmatrix} 1 & -1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$\frac{R_3 \to R_3 - 2R_2}{\Rightarrow} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 2 & -2 & 1 \end{bmatrix} \xrightarrow{R_1 \to R_1 - R_3} = \begin{bmatrix} 1 & 0 & 0 & -2 & 2 & -1 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 2 & -2 & 1 \end{bmatrix}$$

$$R_2 \rightarrow R_2 + R_3 = \begin{bmatrix} 1 & 0 & 0 & -2 & 2 & -1 \\ 0 & 1 & 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & 2 & -2 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -2 & -1 \\ 1 & -1 \\ 2 & -2 \end{bmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A = \begin{cases} 1 & -1 & ? \\ 1 & 0 & 1 \\ 0 & ? & -1 \end{cases}$$

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix} \qquad \therefore A^{T} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} c_1 & c_4 & c_7 \\ c_2 & c_5 & c_8 \\ c_3 & c_6 & c_9 \end{bmatrix} = \begin{bmatrix} 1 & 23 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(u) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.
- a) Standard matrix of T: [-3] V.
- b) as linear transformation Au = T(u)
 - $\begin{bmatrix} 1 & -3 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$
- $\begin{array}{cccc}
 \hline
 0 & u_1 2 u_2 = 1 \\
 \hline
 0 & u_1 + u_2 = 10 \\
 \hline
 0 & u_1 3 u_2 = -2
 \end{array}$

- :. U1=1+242 :. U1=1+2(3)=1+6=7 : 1+242+42=10 [:'W,=1+242]: 342=9: . U2=3
 - :. U, 3 (3) == 2 [: " N2 = 3]
 - :. u, 9 = ? :. u, = 7
- : u = [3] V

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

vectors
$$\mathbf{v}_{1}$$
 and \mathbf{v}_{2} such that $T_{A}(\mathbf{v}_{1}) = T_{A}(\mathbf{v}_{2})$.

a) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$
b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

a) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0$$

$$\begin{bmatrix} \sqrt{3} \\ \sqrt{6} \\ \sqrt{5} \\ \sqrt{4} \end{bmatrix} - \begin{bmatrix} \sqrt{3} \\ \sqrt{5} \\ \sqrt{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

V, and Vz are supposed explicitly different. Since it was not explicitly though.

6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

Follow, because, $W + U = \begin{bmatrix} 3 \\ 4 \end{bmatrix} + \begin{bmatrix} 4 \\ 5 \end{bmatrix} \in \text{Span}(u, v)$.

necessares,
[3] E span (u, v).

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

the set {u,v,w} is linearly independent. be cause; x,u, + x2 va + x3 wa = 0 has only one, trained solution on the other, {u,v,w} is linearly dependent because x, u + x2 v + x3 w = 0

has nonf trained solution

This is the same set!

- 7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

False. - why?

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

True. - why?