

PreOM 2023 - Dzień 5

Zadanie 1. Niech a_1, a_2, \ldots, a_n będą różnymi liczbami całkowitymi dodatnimi. Udowodnij, że:

$$a_1 + \frac{a_2}{4} + \ldots + \frac{a_n}{n^2} \ge 1 + \frac{1}{2} + \ldots + \frac{1}{n}$$

Rozwiązanie:

Niech $b_1, b_2, ..., b_n$ będzie posortowaną permutacją liczb $a_1, a_2, ..., a_n$, to znaczy

$${b_1, ..., b_n} = {a_1, ..., a_n}, b_1 < b_2 < ... < b_n.$$

Z twierdzenia o ciągach jednomonotonicznych dostajemy

$$a_1 \cdot 1 + a_2 \cdot \frac{1}{4} + \dots + a_n \cdot \frac{1}{n^2} \geqslant b_1 \cdot 1 + b_2 \cdot \frac{1}{4} + \dots + b_n \cdot \frac{1}{n^2},$$

co w połączeniu z oczywistym oszacowaniem $b_i \geqslant i$ dla i = 1, 2, ..., n daje tezę.

Zadanie 2. Wewnątrz 2022-kąta foremnego znajduje się k punktów, gdzie $2 \le k \le 1011$. Udowodnij, że możemy wybrać tak 2k punktów z wierzchołków 2022-kąta foremnego, że wewnątrz wielokąta, który tworzą dalej znajdują się wszystkie k punkty.

Rozwiązanie:

Rozważmy otoczkę wypukłą $M = A_1 A_2 \dots A_n$ na k punktach. Niech X będzie dowolnym punktem wewnątrz otoczki i niech półproste OA_i przecinają wielokąt foremny w punktach B_i . Niech M' będzie ich otoczką wypukłą. Oczywiście M' zawiera M (można to jakoś rozpisać, ale nie chce mi się). Żeby wybrać te punkty z zadania to jeśli Y z M' leży na boku C_iC_{i+1} wielokąta foremnego to bierzemy te punkty.

Zadanie 3. Niech L będzie spodkiem dwusiecznej kąta $\triangleleft B$ w ostrokątnym trójkącie ABC. Punkty D i E są środkami krótszych łuków AB i BC odpowiednio w okręgu ω opisanym na trójkącie ABC. Punkty P i Q wybrano na przedłużeniach odcinków BD i BE poza D i E odpowiednio, tak że $\triangleleft APB = \triangleleft CQB = 90^{\circ}$. Udowodnij, że środek BL leży na prostej PQ.

Rozwiązanie:

Niech B_a i B_c będą punktami symetrycznymi do B względem odpowiednio P i Q. Wystarczy pokazać, że B_a , L, B_c są współliniowe. Zauważmy, że $\triangleleft BAB_a = 180^\circ - \triangleleft C$ i $\triangleleft BCB_c = 180^\circ - \triangleleft A$, co daje $AB_a \parallel CB_c$. Dalej, ponieważ wiemy, że

$$\frac{AB_a}{CB_c} = \frac{AB}{BC} = \frac{AL}{LC},$$

to trójkąty LAB_a i LCB_c są podobne, a co za tym idzie $\triangleleft ALB_a = \triangleleft CLB_c$, co kończy dowód.

Zadanie 4. Niech p będzie ustaloną liczbą pierwszą. Wyznacz liczbę par (x,y) takich, że $p \mid x^2 + y^2 - 1$ oraz $0 \le x, y \le p - 1$.

PreOM 2023 - 20.03.2023 Dzień 5

Rozwiązanie:

O elemencie $x \in \mathbb{F}_p$ powiemy, że jest resztą kwadratową modulo p
 gdy $x=y^2$ dla pewnego $y \in \mathbb{F}_p$ i że jest nieresztą kwadratową modulo p
 w przeciwnym przypadku. Wprowadźmy pojęcie Symbolu Legendre'a. Definiujemy:

Lemmat:
$$\left(\frac{a}{p}\right) = a^{\frac{p-1}{2}} \le \mathbb{F}_p$$
 dla $p \neq 2$.

Przypadek a = 0 jest oczywisty. Na mocy MTF prawa strona wynosi ± 1 (\mathbb{F}_p jest ciałem). Więc starczy pokazać, że wynosi ona 1 wtedy i tylko wtedy gdy a jest niezerową resztą kwadratową. Faktycznie z jednej strony mamy $a=x^2\Rightarrow a^{\frac{p-1}{2}}=x^{p-1}=1$ na mocy MTF. Z drugiej niech $a=g^k$, gdzie g jest generatorem. Wtedy $1=a^{\frac{p-1}{2}}=g^{k\frac{p-1}{2}}$, czyli $p-1|k\frac{p-1}{2}$, czyli 2|k=2l, a wiec $a = g^k = g^{2l} = (g^l)^2$.

Chcemy zliczyć liczbę rozwiązań $x^2 + y^2 = 1 \Leftrightarrow x^2 = 1 - y^2$. Widzimy, że przy ustalonym y liczba rozwiązań wynosi 1 + $(\frac{1-y^2}{p}).$ Stąd liczba rozwiązań równania wynosi

$$\sum_{y \in \mathbb{F}_p} 1 + \left(\frac{1 - y^2}{p}\right) = p + \sum_{y \in \mathbb{F}_p} \left(\frac{1 - y^2}{p}\right)$$

Policzmy wartość powyższej sumy modulo $p \neq 2$:

$$\begin{split} \sum_{y \in \mathbb{F}_p} \left(\frac{1 - y^2}{p} \right) &= \sum_{y \in \mathbb{F}_p} (1 - y^2)^{\frac{p-1}{2}} = \sum_{y \in \mathbb{F}_p} \sum_{k=0}^{\frac{p-1}{2}} \binom{\frac{p-1}{2}}{k} (-1)^k y^{2k} = \\ &= \sum_{k=0}^{\frac{p-1}{2}} \sum_{y \in \mathbb{F}_p} \binom{\frac{p-1}{2}}{k} (-1)^k y^{2k} = \sum_{k=0}^{\frac{p-1}{2}} \binom{\frac{p-1}{2}}{k} (-1)^k \sum_{y \in \mathbb{F}_p} y^{2k} \end{split}$$

Lecz

$$\begin{split} \sum_{y \in \mathbb{F}_p} y^{2k} &= p = 0, \mathbf{k} = 0 \sum_{y \in \mathbb{F}_p} y^{2k} = \sum_{i=0}^{p-2} (g^i)^{2k} = \sum_{i=0}^{p-2} (g^{2k})^i = \frac{(g^{2k})^{p-1} - 1}{g^{2k} - 1} = 0, \\ &\text{na mocy MTF o ile } g^{2k} \neq 1 \\ &\sum_{y \in \mathbb{F}_p} y^{2k} = p - 1 = -1, \mathbf{k} \neq 0 \, \wedge \, \text{p-1} - 2\mathbf{k} \end{split}$$

Czyli wszystkie wyrazy sumy poza ostatnim są zerowe. Czyli

$$\sum_{y \in \mathbb{F}_p} \left(\frac{1 - y^2}{p} \right) = \binom{\frac{p-1}{2}}{\frac{p-1}{2}} \left(-1 \right)^{\frac{p-1}{2}} \left(-1 \right) = \left(-1 \right)^{\frac{p+1}{2}}$$

jest liczbą rozwiązań naszego równania modulo p. Jednocześnie widzimy, że (1,0),(0,1) są różnymi rozwiązaniami, czyli liczba rozwiązań > 1. Z drugiej strony przy ustalonym y równanie

PreOM 2023 - 20.03.2023 Dzień 5

ma najwyżej 2 rozwiązania, ale dla $y=\pm 1$ istnieje tylko po jednym rozwiązaniu równania. Stąd dla $p\neq 2$ liczba rozwiązań szacuje się ostro z góry przez 2p-1. Mając te oszacowania stwierdzamy, że liczba rozwiązań wynosi

$$p + (-1)^{\frac{p+1}{2}}, p \neq 2$$

 $p, p = 2$