Into The Complex Domain From Primes To Riemann

Tariq Rashid

September 14, 2021

Previously ...

- The Riemann Zeta function encodes information about the primes.
 - infinite primes
 - primes aren't so sparse, $\sum 1/p$ diverges

$$\zeta(s) = \sum_{n} \frac{1}{n^{s}} = \prod_{p} (1 - \frac{1}{p^{s}})^{-1}$$

- We've considered s as
 - an **integer**, s = 1 harmonic series, s = 2 Basel problem
 - a **real** value, we proved $\zeta(s)$ converges for s>1

Complex s

- Riemann was the first to consider s as a complex number.
- If we think $\zeta(s)$ over the complex domain might reveal new insights into the primes, we need to understand how it behaves.
- Exploring where it converges is a good start.
- Traditional to write complex s as $s = \sigma + it$

$$\sum \frac{1}{n^s} = \sum \frac{1}{n^{\sigma+it}} = \sum \frac{1}{n^{\sigma}} \frac{1}{n^{it}}$$

Convergence For $\sigma > 1$

Let's look at the series with each term replaced by its magnitude.

$$\sum \left| \frac{1}{n^s} \right| = \sum \left| \frac{1}{n^\sigma} \frac{1}{n^{it}} \right|$$

• Rewriting n^{it} as $e^{it \ln(n)}$ makes clear it has a magnitude of 1.

$$\sum \left| \frac{1}{n^s} \right| = \sum \frac{1}{n^{\sigma}}$$

- We know $\sum 1/n^{\sigma}$ converges for real $\sigma > 1 \implies \sum 1/n^{s}$ converges absolutely for for $\sigma > 1$.
- Absolute convergence implies convergence $\implies \sum 1/n^s$ converges for $\sigma > 1$.

Divergence For $\sigma \leq 0$

• Let's look again at the terms in the sum.

$$\left|\frac{1}{n^s}\right| = \left|\frac{1}{n^\sigma} \frac{1}{n^{it}}\right| = \frac{1}{n^\sigma}$$

- If $\sigma < 0$, the magnitude of the terms grows larger than 1.
- If $\sigma = 0$, the magnitude of each term is exactly 1.
- For any series to converge, a necessary requirement is that the terms get smaller towards zero $\implies \sum 1/n^s$ diverges for $\sigma \le 0$.

Divergence For $\sigma < 1$

- $\zeta(s)$ converges for $\sigma > 1$, diverges for $\sigma \le 0$. We're left with a gap $0 < \sigma \le 1$.
- To fill this gap we need to understand more generally when series of the form $\sum a_n/n^s$, called **Dirichlet series**, converge or diverge.
- Dirichlet series converge in half-planes to the right of an abscissa of convergence σ_c . That is, they converge at any $s = \sigma + it$ where $\sigma > \sigma_c$.
- Because $\zeta(s)$ converges for $\sigma > 1$, and we know it diverges at s = 1 + 0i, then $\sigma_c = 1 \implies \zeta(s)$ diverges for $\sigma < 1$.

Visualising The Zeta Function For s > 1

Visualising The Zeta Function For s > 1

- Spike around s = 1 + 0i corresponds to divergent harmonic series $\zeta(1)$.
- Surface seems to smooth out to the right as σ grows larger. To what value?

$$\zeta(s) = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \dots$$

- As $\sigma \to +\infty$ all the terms $1/n^s \to 0$, except the first term which remains 1.
- To be more precise, the magnitude of each term $|n^{-s}| = n^{-\sigma}$ tends to zero as $\sigma \to \infty$ for all $n > 1 \implies |\zeta(s)| \to 1$ as $\sigma \to \infty$.

Hints The Function Extends Into $\sigma \leq 1$

- Aside from s = 1 + 0i, the function doesn't seem to diverge along the line s = 1 + it.
- It looks like the surface has been prematurely cut off, and would continue smoothly into $\sigma \leq 1$ if allowed.

Isolines of $|\zeta(s)|$

Improved Model

 The intuition that a function should continue smoothly without abrupt changes corresponds to a powerful property of many functions we come across.