GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA	Manénica Clásica
	Mecánica Clásica

		77110740
	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
CICLO		85
Primer Semestre	0011	

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Otorgar al alumno el conocimiento para comprender y resolver problemas relacionados con la mecánica clásica, el trabajo, la energía y el movimiento.

TEMAS Y SUBTEMAS

- 1. Dinámica.
- 1.1. Primera Ley de Newton
- 1.2. Segunda Ley de Newton
- 1.3. Tercera Ley de Newton
- 1.4. Aplicaciones a la Segunda Ley de Newton
- 1.5. Fricción
- 2. Trabajo y Energía.
- 2.1. Definición de trabajo y energía
- 2.2. Potencia
- 2.3. Energía cinética
- 2.4. Fuerzas conservativas y energía potencial
- 2.5. Curvas de energía potencial
- 2.6. Teorema de la conservación de la energía
- Sistemas de Partículas.
- 3.1. Sistemas de muchas partículas
- 3.2. Centro de masa
- Colisiones.
- 4.1. Impulso
- 4.2. Conservación de ímpetu en una colisión
- 4.3. Colisiones en una y dos dimensiones
- 5. Cinemática de la rotación.
- 5.1. Movimientos de rotación
- 5.2. Aceleración angular constante
- 5.3. Cantidades de rotación como constantes
- 6. Dinámica de la rotación
- 6.1. Energía cinética de rotación
- 6.2. Inercia de rotación
- 6.3. Inercia de rotación de cuerpos sólidos
- 6.4. Torca sobre una partícula
- 6.5. Sistemas de partículas
- 6.6. Ímpetu angular y velocidad angular
- 6.7. Conservación del ímpetu
- 7. Oscilaciones.
- 7.1. Sistemas oscilatorios
- 7.2. Oscilador armónico simple

Movimiento armónico simple 7.3.

Aplicaciones del movimiento armónico simple 7.4.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor, en donde presente conceptos y resuelva ejercicios.

Revisión bibliográfica del tema en libros y artículos científicos por los alumnos.

Discusión de los diferentes temas en seminarios.

Prácticas de laboratorio.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender los aspectos de teoría y práctica. La evaluación comprenderá, al menos, tres evaluaciones parciales y una evaluación final. Para las evaluaciones parciales deberá considerarse: Examen escrito, prácticas y tareas, participación en clase. Para las prácticas debe tomarse en cuenta su realización exitosa y la documentación de la solución

La evaluación final deberá incluir: Un examen escrito. Todo esto tendrá una equivalencia del 100% en la calificación final.

BIBLIOGRAFÍA

Libros básicos:

Física I, Resnick, R. Halliday, D. CECSA. México.1990.

- Física General, T.I, Mecánica, Dehesa Martínez, Carlos. Escuela técnica superior de ingenieros de telecomunicaciones. España. 1977.
- Física: Principios y Aplicaciones, Giancoli, Douglas C. Prentice-Hall Hispanoamericana. México. 1998.
- Física: Alonso, M. y Fin, E. Fondo Educativo Interamericano. México. 1990.

Libros de consulta:

- Física, Serway, Raymond A./Faughn, Jenny S.. Pearson Educación. México. 2001.
- Física, Cutnell, John D. Jonson, Kennet H.W. Limusa. México. 2001.
- Física 2, Blasco Vilatela Alberto, Jaraiz Cendan Jose, Blasco Laffon Begoya QC23F5 1988.

PERFIL PROFESIONAL DEL DOCENTE

Maestría o Doctorado en Física

