Лекция 2. Преобразования Мёбиуса

Теория функций комплексного переменного

Жак Адамар (1865 – 1963)

• Член Французской академии наук, почётный член попечительского совета Еврейского университета в Иерусалиме. Иностранный членкорреспондент (1922) и иностранный почётный член (1929) Академии наук СССР.

Цитата из Ж. Адамара

Le plus court chemin entre deux vérités dans le domaine réel passe par le domaine complexe.

Jacques Hadamard

Кратчайший путь между двумя истинами в вещественной области проходит через комплексную область.

Жак Адамар

Стереографическая проекция

Стереографическая проекция — центральная проекция из точки на сфере (северного полюса) на плоскость, касающуюся сферы в противоположной точке.

Обобщенные окружности

- Окружности или прямые на плоскости.
- Образы окружностей на сфере при стереографической проекции.
- Обобщенная окружность на $\mathbb{P}^1_{\mathbb{C}} = \overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ является прямой тогда и только тогда, когда она содержит точку ∞ .

Теорема Мёбиуса. Биекция $f: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ переводит обобщенные окружности в обобщенные окружности тогда и только тогда, когда f имеет вид

$$f(z) = \frac{az+b}{cz+d}$$
 или $f(z) = \frac{a\overline{z}+b}{c\overline{z}+d}$.

Август Фердинанд Мёбиус (1790 – 1868)

- Барицентрические координаты
- Однородные координаты
- Проективные преобразования
- «Основная теорема проективной геометрии»
- Односторонние поверхности
- Статика
- Небесная механика

Группа преобразований Мёбиуса

- Параллельный перенос $z \mapsto z + b$.
- Поворот с растяжением $z \mapsto az$.
- Инверсия относительно единичной окружности: $z\mapsto \frac{1}{z}$.
- Группа Möb преобразований Мебиуса порождается перечисленными выше преобразованиями.
- Она также порождается инверсиями относительно любых обобщенных окружностей.
- Дробно линейные преобразования $f(z) = \frac{az+b}{cz+d}$ это те преобразования Мебиуса, которые сохраняют ориентацию.

Группа $\operatorname{PGL}_2(\mathbb{C})$

- Группа дробно-линейных преобразований $\operatorname{PGL}_2(\mathbb{C}) \subset \operatorname{M\"ob}$.
- Отображение $f(z) = \frac{az+b}{cz+d}$ задается матрицей $A_f = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.
- Композиция $f\circ g$ соответствует матрице A_fA_g .
- $f \neq const \iff \det A_f = ad bc \neq 0.$
- Матрицы A и λA ($\lambda \neq 0$) задают одно и то же отображение.
- Три-транзитивность: $\forall z_0 \neq z_1 \neq z_\infty \exists ! f \in \mathrm{PGL}_2(\mathbb{C})$

$$f(0) = z_0, \qquad f(1) = z_1, \qquad f(\infty) = z_{\infty}.$$

Доказательство теоремы Мебиуса 1

- Пусть f переводит обобщенные окружности в обобщенные окружности.
- Можно считать, что $f(0) = 0, f(1) = 1, f(\infty) = \infty$.
- Тогда $f(\mathbb{R}) = \mathbb{R}$, прямые переходят в прямые.
- Сохраняются следующие свойства: параллельность прямых, параллелограмм, вписанный многоугольник, касающиеся окружности, описанный многоугольник, прямоугольник, квадрат, центр окружности, внутренность круга, построения циркулем и линейкой.

Доказательство теоремы Мебиуса 2

- $f(\mathbb{R}) = \mathbb{R}$, f(0) = 0, f(1) = 1.
- Циркулем и линейкой можно построить любое $\frac{p}{q} \in \mathbb{Q}$.
- Если $f: \mathbb{R} \to \mathbb{R}$ монотонно и $f|_{\mathbb{Q}} = id$, то f = id.
- $f(i\mathbb{R}) = i\mathbb{R}$, более того, f(iy) = iy или f(iy) = -iy для всех $y \in \mathbb{R}$.
- Сохраняется вся сетка координат, т.о. f(x,y) = (x,y) или (x,-y).

Преобразования Мебиуса сферы

- Любое вращение сферы преобразование Мебиуса.
- Превращение полуплоскости в диск можно интерпретировать как вращение.
- Вообще, Möb состоит из проективных преобразований пространства, оставляющих сферу на месте.

Симметрия относительно окружности

- $\bullet |OB|^2 = |OA| \cdot |OA^*|.$
- Следовательно, окружность AA^*B ортогональна окружности S с центром в O и радиусом |OB|.
- Точки A, A^* называются симметричными относительно S.
- Инверсия относительно S переводит A в A^* .

Симметрия (инверсия) относительно обобщенной окружности

- Точки A, A_1 симметричны относительно обобщенной окружности S, если все окружности через A, A_1 перпендикулярны S.
- Симметрия относительно окружности инверсия.
- Симметрия относительно прямой отражение.

Построение симметричной точки

Рис. 2. Точка A — образ точки A_1 и наоборот: точка A_1 — образ точки A

Образы прямых при инверсии

Треугольники OAB и OB_1A_1 подобны. Следовательно, ∠ $OB_1A_1 = \frac{\pi}{2}$.

Рис. 3. Прямые, проходящие через центр инверсии, переходят в себя, все другие прямые переходят в окружности

Образы окружностей при инверсии

Рис. 4. Окружности, проходящие через центр инверсии, переходят в прямые, все другие окружности переходят в окружности

Инверсия относительно сферы

В лекции использованы иллюстрации и материалы из следующих источников:

- http://school-collection.edu.ru/
- https://wikipedia.org
- Wolfram Mathematica

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ