Contents of System Module GR8

System Module GR8	8–3
Introduction	8–3
Technical Section	8–3
WARNINGS	8–3
External and Internal Connectors	8–3
Internal Signals Between RF and ASIC	8–7
Internal Signals Between RF and RFI	8–8
Functional Description of Baseband Block	8–9
Technical Specifications	8–9
Names of Functional Blocks	8–9
Clocking Sceme	8–10
Reset and Power Control	8–11
Watchdog System	8–12
CTRLU	8–13
PWRU	8–19
DSPU	8–21
AUDIO	8–24
ASIC	8–26
RFI	8–31
Functional Description of RF block	8–33
RF Frequency Plan	8–33
Regulators	8–33
Power Distribution	8–34
Current Consumption	8–34
Receiver	8–35
Transmitter	8–39
Synthesizer	8–44
Block Diagram of Baseband	8–48
Power Distribution Diagram of Baseband	8–49
Block Diagram of RF	8–50
Power Distribution Diagram of RF	8–51
Connections between System and RF Blocks	8–52
Connections between RF and TX Blocks	8–53
Circuit Diagram of GR8; System Blocks	8–54
Circuit Diagram of GR8; CPU & Memories	8–55
Circuit Diagram of GR8; Power Supply IC & Batt. Charg. unit	8–56
Circuit Diagram of GR8; DSP, Clock Generator & Memories	8–57
Circuit Diagram of GR8; Audio Codec IC	8–58
Circuit Diagram of GR8; ASIC IC	8–59

System Module GR8

Introduction

GR8 is the baseband/RF module NHE–4 cellular tranceiver. The GR8 module carries out all the system and RF functions of the tranceiver. System module GR8 is designed for a handportable phone, that operate in GSM system.

Technical Section

All functional blocks of the system module are mounted on a single multi layer printed circuit board. The chassis of the radio unit has separating walls for baseband and RF. All components of the baseband section are surface mountable. They are soldered using reflow. The connections to accessories are taken through the bottom connector of the radio unit. The connections to the User Interface module (UIF) are fed through a flex connector. There is no physical connector between the RF and baseband sections.

WARNINGS

The maximum battery voltage during the transmission should not exceed 8.0 V. Higher battery voltages may destroy the power amplifier. This will be quaranteed by hardware based limiting which has maximum value 7.6 \pm 0.3 V.

External and Internal Connectors

The system module has two connector, external bottom connector and internal UIF module connector.

D0000323

Bottom Connector X100

System Connector

Pin:	Name:	Description:
1, 9	GND	Digital ground
2	MIC/JCONN	External audio input from accessories or handsfree microphone. Multiplexed with junction box connection control signal. 16.8 k Ω pull down in phone.
3	AGND	Analog ground for accessories. Connected directly to digital ground on the PCB.
4	TDA	Transmitted DBUS data to the accessories.
5	M2BUS	Serial bidirectional data and control between the handportable and accessories.
6	HOOK/RXD2	HOOK indication. The phone has a 100 k Ω pull–up resistor. Data to flash from flash programmer.
7	PHFS/TXD2	Handsfree device power on/off. Data to flash programming device.
8, 16	VCHAR	Battery charging voltage.
10	EAR/HFPWR	External audio output to accessories or handsfree speaker. 100 k Ω pull–down resistor in phone to turn on the junction box.
11	DSYNC	DBUS data bit sync clock.
12	RDA	DBUS received data from the accessories.
13	NC	Not used.
14	VF	Programming voltage for flash.
15	DCLK	DBUS data clock.

980J 8–5
chnical Documentation Copyright © Nokia Mobile Phones

Battery Connector

	Pin:	Name:	Description:
	1	GND	Ground
	2	TBAT	Battery temperature
	3	BTYPE	Battery type
	4	VBATT	Battery voltage
Charging	Connector		
	Pin:	Name:	Description:
	1	VCHAR	Battery charging voltage
	2	GND	Ground
	3	VCHAR	Battery charging voltage
	4	GND	Ground
Antenna (Connector		
	Pin:	Name:	Description:
	1	RF EXT	External antenna signal
	2	GND	Ground

8–6

Copyright © Nokia Mobile Phones

UIF Module Connector X196

Pin:	Name:	Description:
1	VL1	Logic supply voltage 4.65 V
2	GND	Ground
3, 30	VBATT	Battery voltage
4	BACKLIGHT	Backlights on/off
5 – 8	UIF(0;3)	Lines for keyboard read and LCD controller
9	UIF4	Line for keyboard read and LCD controller read/write strobe
10	UIF5	Line for keyboard read and LCD controller data/instruction register selection
11	UIF6	LCD controller enable strobe
12	MIC ENA	Microphone bias enable
13 – 16	COL(0;3)	Lines for keyboard write
17	CALL LED	Call LED enable
18	MICP	Microphone (positive node)
19	MICN	Microphone (negative node)
20	EARP	Earpiece (negative node)
21	EARN	Earpiece (positive node)
22	BUZZER	PWM signal buzzer control
23	XPWRON	Power key (active low)
24	VA1	Analog supply voltage 4.65 V
25	SIMCLK	Clock for SIM data
26	SIMRESET	Reset for SIM
27	VSIM	SIM voltage supply voltage
28	SIMDATA	Serial data for SIM
29	AGND	Analog ground

8–7

Copyright © Nokia Mobile Phones

Internal Signals Between RF and ASIC

Symbol:	Description:	Values:
SCLK	Synthesizer clock • load impedance: • frequency:	10 kΩ 3.25 MHz
SDATA	Synthesizer data load impedance:data rate frequency:	10 kΩ 3.25 MHz
SENA1	Synthesizer enable PLL contr. disabled: PLL activated: current:	4.54.654.8 V 00.20.7 V 50 μΑ
RXPWR	RX supply voltage on/off • RX supply voltage on: • RX supply voltage off: • current:	4.54.654.8 V 00.20.7 V 0.5 mA
SYNTHPWR	Supply voltage on/off • RF regulators on: • RF regulators off: • current:	4.54.654.8 V 00.20.7 V 1.0 mA
TXPWR	TX supply voltage on/off TX supply voltage on: TX supply voltage off: current:	4.54.654.8 V 00.20.7 V 0.5 mA
TXP	TX enable • transmitter power enable: • transmitter power disable:	4.54.654.8 V 00.20.7 V
CLKIN	26 MHz clock to ASIC	

8–8

Internal Signals Between RF and RFI

Symbol:	Description:	Values:
AFC	Automatic frequency control vo voltage min/max: resolution: load impedance (dynamic):	oltage 0.354.35 V 11 bits 10 kΩ
TXC	TX transmit power control voltage range min/max:impedance:	age <i>0.34.2 V</i> <i>10 k</i> Ω
TXQP,TXQN	Differential TX quadrature signdifferential voltage swing:D.C. level:load impedance:	nal 1.151.21.25 V _{PP} 2.302.352.40 V 30 kΩ
TXIP,TXIN	Differential TX inphase signaldifferential voltage swing:D.C. level:load impedance:	1.151.21.25 V _{PP} 2.302.352.40 V 30 kΩ
PDATA0	Front end AGC controlreduced front end gain:normal front end gain:current:	00.20.7 V 4.54.654.8 V 0.1 mA
RXQ	RX quadrature signal output level:source impedance:	25 mV _{PP} 470 Ω
RXI	RX inphase signal output level:source impedance:	<i>25 mV_{PP}</i> 470 Ω

Functional Description of Baseband Block

The purpose of the baseband module is to control the phone and process audio signals to and from RF. The module also controls the user interface.

Technical Specifications

There are three different operation modes:

- active mode
- idle mode
- power off mode

In the active state all circuits are powered and part of the module may be in idle mode.

The module is usually in the idle mode when there is no call and the phone is in SERV. In the idle mode circuits are reset, powered down and clocks are stopped or the frequency reduced. All the clocks except the main clock from VCTCXO can be stopped in that mode. Whether the SIM clock is stopped or not depends on the network.

In power off mode only the circuits needed for power up are powered. This means that only power up block inside the PSL+ is powered. The power key on the flex is pulled up with a pull up resistor inside the PSL+.

Names of Functional Blocks

Name:	Function:
CTRLU	Control unit for phone
PWRU	Power supply
DSPU	Digital signal processing block
AUDIO	Audio coding
ASIC	D2CA GSM/PCN system ASIC; several functions
RFI	RF baseband interface

Clocking Scheme

Most of the clocks are generated from the 26 MHz VCTCXO frequency by the ASIC:

- 26 MHz clock for the MCU. MCU's internal clock frequency is half of that (13 MHz).
- 13 MHz for the RFI. The ASIC also generates 135.4 kHz sleep mode clock for the RFI.
- 3.25 MHz clock for SIM. When there is no data transfer between the SIM card and the HP the clock can be reduced to 1.625 MHz. Some SIM cards also allows the clock to be stopped in that mode.
- 512 kHz main clock for the codec and for the data transfer between the DSP and the codec.
- 8 kHz synchronization clock for data transfer between the DSP and the codec
- 512 kHz clock and 8 kHz sync. clock for the DBUS data transfer.

The DSP has its own crystal oscillator which can be turned off and on by the ASIC. The DSP uses differential sinusoidal clock. The frequency is 60.2 MHz.

The system ASIC generates 8 kHz clock to the codec for the control data transfer.

In the idle mode all the clocks can be stopped except 26 MHz main clock coming from the VCTCXO.

Reset and Power Control

There are three different ways to switch power on:

- Power key pressing grounds the XPWRON line. The PSL+ detects that and switches the power on.
- Charger detection on PSL+ detects that charger is connected and switches power on.
- PSL+ will switch power on when the battery is connected. After that the MCU will detect if power key is pressed or charger connected. If not the power will be switched off.

All devices are powered up at the same time by the PSL+. It supplies the reset to the ASIC at power up. The ASIC starts the clocks to the DSP and the MCU. After 100 ms PSL+ releases the reset to ASIC.

Technical Documentation

Copyright © Nokia Mobile Phones

ASIC releases MCU and RFI reset after 256 13 MHz clock cycles. DSP reset release time from DSP clock activation can be selected from 0 to 255 13MHz clock cycles. In our case it is 255. SIM reset release time is according to GSM SIM specifications.

To turn power off the user presses the PWR key. The MCU detects this. The MCU cuts off any ongoing call, exits all tasks, acts inoperative to the user and leaves the PSL+ watchdog without resets. After power–down delay, the PSL+ cuts off the supply from all circuitry.

If charging is on the phone stays on but it looks to the user like it is powered off (lights are off and the display is blank) except the charging indicator stays on.

Watchdog System

Normal operation:

- 1. MCU tests DSP
- 2. MCU updates ASIC watchdog timer (> 2 Hz)
- 3. MCU pulses the XPWROFF input on the PSL+ (about 2 Hz)

Failed operation:

- 4. ASIC resets MCU and DSP after about 0.5 s failure
- 5. PSL+ switches power off about 1.5 s after the previous XPWROFF pulse

CTRLU

The Control block contains a microcontroller unit (MCU) and three memory circuits (FLASH, SRAM, EEPROM), a 20 bit address bus, an 8 bit data bus and memory circuit control signals.

Main Features of the CTRLU block:

MCU functions:

- system control
- communication control
- user interface
- authentication
- RF monitoring
- power up/down control
- accessory monitoring
- battery monitoring and charging control
- self-test and production testing
- flash loading

Main Components of CTRLU

- Hitachi H8/536

H8/536 is a CMOS microcontroller unit (MCU) comprising a CPU core and on–chip supporting modules with 16–bit architecture. The data bus to outside world has 8 bits.

- 1024k*8bit FLASH memory
 - 150 ns. maximum read access time with 1 wait state
 - contains the main program code for the MCU; part of the DSP program code also located on FLASH
 - ASIC can address two 4 Mbit memories or one 8 Mbit memory.
- 32 k x 8 bit SRAM memory
 - 100 ns. maximum read access time
- 8 k x 8 bit EEPROM memory
 - 250 ns. maximum read access time with 1 wait state
 - contains user defined information.
 - there is a register bit on the ASIC which must be set before the write operation to the EEPROM.

Technical Documentation

Copyright © Nokia Mobile Phones

Input Signals of CTRLU

Name(from): Description:

VL1(PWRU) Power supply voltage for CTRLU block

VREF(PWRU) Reference voltage for MCU A/D converter

VBATDET(PWRU) Battery voltage detection

VC(PWRU) Charger voltage monitoring

ROMAD18(ASIC) ROM address (paging)

EROMSELX(ASIC) Chip select for the EEPROM memory

ROMSELX(ASIC) Chip select for the FLASH memory

ROM2SELX(ASIC) Chip select for the second FLASH memory

RAMSELX(ASIC) Chip select for the SRAM memory

RESETX(ASIC) Reset signal for MCU

NMI(ASIC) Non–maskable interrupt request

MCUCLK(ASIC) Main clock for MCU

IRQX(ASIC) Interrupt request

PCMCDO(AUDIO) Audio codec control data receiving TRF(RF) RF module temperature detection

VF(syst.conn.) Programming voltage for FLASH memory

RXD2_HOOK The use of handsfree monitoring

(syst.conn.) FLASH programming data input on the production line

TBAT(batt.conn.) Battery temperature detection. Vibra cont. for vibrabattery.

BTYPE(batt.conn.) Battery size identification

MIC_JCONN Junction box connection identification

(sys.conn.)

Output Signals of CTRLU

Name(to): Description:

XPWROFF(PWRU) Power off control, PSL+ watchdog reset

PWM(PWRU) Charger on/off control

VOLTLIM(PWRU) Voltage limiting; affects to HW voltage limit level

WSTROBEX(ASIC) MCU write strobe RSTROBEX(ASIC) MCU read strobe

MCUAD(19:0)(ASIC) 20 bit MCU address bus

MBUSDET(ASIC) MBUS activity detection

Technical Documentation

Copyright © Nokia Mobile Phones

BATDET(ASIC) Battery type and SIM card presence detection

PCMCLK(AUDIO) Clock for audio codec control data transfer

PCMCDI(AUDIO) Audio codec control data transmitting

XSELPCMC(AUDIO) Chip select for audio codec

TXD2_PHFS Power on/off control for HF device, verification output (syst.connector) of the programmed data of FLASH during programming

CALL_LED(UIF) 'Incoming' call indicator light control

BACKLIGHT(UIF) LCD and display backlight on/off control

BUZZER(UIF) Buzzer signal

Bidirectional Signals of CTRLU

Name(to/from): Description:

MCUDA(7;0)(ASIC) MCU's 8 bit data bus

M2BUS(sys. conn) Asynchronous serial data bus

Block Description of CTRLU

- MCU - memories

The MCU has a 20 bits wide address bus A(19:0) and an 8 bit data bus with memories. The address bits A(19:16) are used for chip select decoding. The decoding is done in the D2CA ASIC. The ASIC can address two 4 Mbit (or smaller) or one 8 Mbit flash memories. Hitachi HD647536 processor has internal ROM and RAM memories. One wait state is used with external memory access.

On the Hitachi HD647536 internal memory map there is the following:

• 00000 - 001FF Vector tables

• 00200 – 0F67F 62 k bytes internal ROM

• 0F680 – 0FE7F 2 k bytes internal RAM

• 0FE80 – 0FFFF 384 bytes register field

• 10000 – 1FFFF 32 k * 8 bytes RAM

• 20000 – 2FFFF 8 k * 8 bytes EEPROM

• 30000 – 3FFFF 26 * 8 bytes ASIC

• 40000 – 7FFFF 2 Mbit Flash, paged by ASIC page bit to 4 Mbit

• 80000 – FFFFF 4 Mbit Flash

Copyright © Nokia Mobile Phones

Chip select generation:

Chip select:	Page:	A19	: A18:	A17:	A16:
RAM	Χ	0	0	0	1
EEPROM	X	0	0	1	0
ASIC	X	0	0	1	1
FLASH1 (8 Mbit)	X	1	Χ	Χ	Χ

Flash programming

In flash programming a special flash programming box and a PC is needed. Loading is done through the bottom connector of HP; multiplexed with HOOK and PHFS line. First MCU goes to minimum mode (MBUS command from PC or if MBUS is connected to MIC JCONN line in power up). Then the flash software is loaded from PC to flash loading box. When the loading is complete flash loading to HP can be started by MBUS command from PC to the MCU. After that the MCU asks the test box to start flash loading to HP. The box supplies 12 V programming voltage for flash and starts to send 250 bytes data blocks to the MCU via HOOK line. The baud rate is 406 kbit/s. The MCU calculates the check sum, sends acknowledge via PHFS line and sends the data to flash. When all the data is loaded the HP makes reset and tells the flash loading box if the loading was succeeded or not. Only PSL+, ASIC and MCU must be active during the loading.

- CTRLU - PWRU

MCU controls the watchdog timer in PSL+. It sends a positive pulse at approximately 2 Hz to XPWROFF pin of the PSL+ to keep the power on. If MCU fails to deliver this pulse, the PSL+ will remove power from the system. MCU also controls the charger on/off switching in the PWRU block. When power off is requested or MCU leaves PSL+ watchdog without reset. After the watchdog time has elapsed PSL+ cuts off the supply voltages from the phone.

01/98OJ

Technical Documentation

Copyright © Nokia Mobile Phones

- CTRLU - ASIC

MCU and ASIC have a common 8-bit data bus and a 9-bit address bus. Bits A(4:0) are used for normal addressing whereas bits A(19:16) are decoded in ASIC to chip select inputs for CTRLU memories. ASIC controls the main clock, main reset and interrupts to MCU. The internal clock of MCU is half the MCUCLK clock speed. RESETX resets everything in MCU except the contents of the RAM. IRQX is a general purpose interrupt request line from ASIC. After IRQX request the interrupt register of the ASIC is read to find out the reason for interrupt. NMI interrupt is used only to wake up MCU from software standby mode.

- CTRLU - DSPU

MCU and DSP communicate through ASIC. ASIC has an MCU mailbox and a DSP mailbox. MCU writes data to DSP mailbox where DSP can only read the incoming data. In MCU mailbox the data transfer direction is the opposite. When power is switched on the MCU loads data from the flash memory to DSP's external memory through this mailbox.

- CTRLU - AUDIO

When the chip select signal XSELPCMC goes low, MCU writes or reads control data to or from the speech codec registers at the rate defined by PCMCLK. PCMCDI is an output data line from MCU to codec and PCMCDO is an input data line from codec to MCU.

CTRLU – RF/BATTERY monitoring

MCU has internal 8 channel 10 bit AD converter. Following signals are used to monitor battery, charging and RF:

BTYPE battery size

TBAT battery temperature (used also for

vibrabattery control)

VBATDET battery voltageVC charging voltageTRF RF temperature

CTRLU – keyboard and LCD driver interface

MCU and user interface communication is controlled through ASIC.

Copyright © Nokia Mobile Phones

- CTRLU - ACCESSORIES

M2BUS is used to control external accessories. This interface can also be used for factory testing and maintenance purposes.

There are also some control and indication signals for the accessories:

- PHFS is used to turn power on to HF accessories.
- JCONN is used to indicate that junction box is connected. Phone can also enter minimum mode when M2BUS is connected to MIC_JCONN line.
- HOOK is used to indicate accessories hook state.
- TBAT is used to control vibrabattery. (Used also for monitoring battery temperature.)

PWRU

The power block creates the supply voltages for the baseband block and contains the charging electronics.

Main Components of PWRU

- PSL+ ASIC

Generates voltages, contains power on switch, charger and battery voltage detector and watchdog.

- Transistor BCP69-25 and schottky STPS340U

D = = = ::= 1: = := :

The charging current is passed through these components.

- Transistor BCX51 and BCP69-25

VL regulators of PSL+ external output transistors.

Input Signals of PWRU

Name(from):	Description:
XPWRON(UIF)	PWR on switch
XPWROFF(CTRLU)	Power off control
VOLTLIM(CTRLU)	Voltage limiting; affects HW voltage limit level
VBATT(syst.conn.)	Battery voltage
PWM(CTRLU)	Charger on/off control
VCHAR(syst.conn.)	Charging voltage

Output Signals of PWRU

NI - --- - /f -- --- \.

Name(from):	Description:
XRES(ASIC)	Master reset
CHRDET(ASIC)	Battery charger detection
VL1(CTRLU,ASIC, RFI,UIF)	Logic supply voltage, max 150 mA
VL2(DSPU)	Logic supply voltage, max 150 mA
VA1(AUDIO,UIF)	Analog supply voltage, max 40 mA
VA2(RFI)	Analog supply voltage, max 80 mA
VREF(CTRLU,RF)	Reference voltage 4.65 V ±2 %, max 5 mA
VBATDET(CTRLU)	Switched VBATT divided by 2
VC(CTRLU)	Attenuated VCHAR

Copyright © Nokia Mobile Phones

Block Description of PWRU

The PSL+ IC produces the following supply voltages:

Name:	Description:
VL1, VL2	150 mA for logic
VA1	40 mA for audios
VA2	80 mA for RFI
VREF	5 mA reference

In addition, it has internal watchdog, voltage detection and charger detection functions. The watchdog will cut off output voltages if it is not reset once in every 1.5 (± 0.75) second. The voltage detector resets the phone if the battery voltage falls below 4.8 V (± 0.2 V). The charger detection starts the phone if it is in power–off state when the charging voltage is applied.

The charging electronics is controlled by the MCU. When the charging voltage is applied to the phone and the phone is powered up, the MCU detects it and starts controlling charging. If MCU detects too high charging voltage (over 14 volts) or current (over 78 A/D bit difference between VC and VBATDET) it will cut off the charging. The phone will accept charging voltages from 5 to 14 volts.

If the phone is in power–off state, the PSL+ will detect the charging voltage and turn on the phone. If the battery voltage is high enough the reset will be released and the MCU will start controlling charging. If the battery voltage is too low the phone stays in reset state and the charging control circuitry will pass charging current to the battery. When the battery voltage has reached 5.25 V (\pm 0.2 V) the reset will be removed and the MCU starts controlling charging.

MCU controls the charging with pulse width modulation output. Charging voltage is limited by hardware in normal operation to 8.9 V and during a call to 7.6 V.

Battery and charging voltages are calibrated in production; 6V is fed to the battery and charger pin and the MCU's A/D converter values are stored to EE-PROM.

DSPU

Main interfaces of the DSP:

- MCU via ASIC mailbox
- ASIC
- audio codec
- data bus interface (DBUS) for accessories
- digital audio interface (DAI) for type approval measurements

Main features of the DSP block:

- speech processing
 - speech coding/decoding
 - RPE-LTP-LPC (regular pulse excitation long term prediction linear predictive coding)
 - voice activity detection (VAD) for discontinuous transmission (DTX)
 - comfort noise generation during silence
 - acoustic echo cancellation
- channel coding and transmission
 - block coding (with ASIC)
 - convolutional coding
 - interleaving
 - ciphering (with ASIC)
 - burst building and writing it to ASIC
- Reception
 - reading the A/D conversion results from ASIC
 - impulse response calculation
 - matched filtering
 - bit detection (with Viterbi on ASIC)
 - deinterleaving of soft decisions
 - convolutional decoding (with Viterbi)
 - block decoding (with ASIC)
- Adjacent cell monitoring
 - signal strength measurements
 - neighbor timing measurements
 - neighbor parameter reception

- control functions
 - RF controls
 - synthesizer control
 - power ramp programming
 - automatic gain control (AGC)
 - automatic frequency control (AFC)
 - frame structure control
 - control the operations during a TDMA frame (with ASIC)
 - controlling the multiframe structure
 - channel configuration control
- test functions
 - functions for RF measurements
 - debugging functions for product development

Main Components of DSPU

- AT&T DSP 1616-S11
 - Digital signal processor with 12 kword internal ROM
- Two 32 k * 8 70 ns SRAMs for DSP external memory
- 60.2 MHz crystal osc. to generate differential small signal clock for the DSP

Input Signals of DSPU

Name(from):	Description:
VL2(PWRU)	Logic supply voltage, max 150 mA
DSPCLKEN(ASIC)	Clock enable for DSP clock oscillator circuit
DSP1RSTX(ASIC)	Reset for the DSP
PCMDATRCLKX (ASIC)	PCM data input clock DBUS data output clock
CODEC_CLK	PCM data output clock
PCMOUT(AUDIO)	Received audio in PCM format
DBUSCLK	DBUS data output clock
DBUSSYNC	DBUS data bit sync clock
RDA	DBUS received data
INT0, INT1(ASIC)	Interrupts for the DSP
PCMCOSYCLKX (ASIC)	PCM data bit sync clock

Output Signals of DSPU

Name(to): Description:

PCMIN(AUDIO) Transmitted audio in PCM format

IOX(ASIC) I/O enable, indicates access to DSP address space

RWX(ASIC) Read/write X

DSPAD(16;9)(ASIC) Address bus and control signals

DBUSDET(ASIC) DBUS activity detection

Bidirectional Signals of DSPU

Name(from/to): Description:

DSPDA(15;0)(ASIC) 16 bit data bus

Block Description of DSPU

The Control unit communicates with the DSP circuitry through a mailbox in the D2CA ASIC. The software for the external memories are loaded through this mailbox in start up.

The DSP includes two serial busses. One is used for speech data transfer between the DSP and the codec. The other is used as an external data bus and it is connected to the bottom connector. This bus can be used by data accessories and also as a digital audio interface (DAI) in audio type approval measurements. The clocks (512 kHz main clock and 8 kHz sync. clock) are generated by the ASIC.

In transmit mode the DSP codes the speech and routes the resulting transmit slots to the D2CA. The D2CA ASIC controls timing, and at specified intervals sends these bits to the RFI for DA conversion.

In digital receive mode the RFI AD converts the IF signal from the RF unit under the control of the D2CA. The DSP controls the D2CA and receives the converted bits. After channel and speech decoding, bits are converted into an analog signal in the PCM codec, routed and fed to the earpiece.

The DSP controls the RF through the D2CA ASIC, where all necessary timing functions are implemented, and control I/O lines are provided e.g. for synte loading.

The DSP emulator can be connected to DSP pins TCK, TMS, TDO, TDI, GND and VDD.

AUDIO

The AUDIO block consists of an audio codec with some peripheral components. The codec contains microphone and earpiece amplifier and all the necessary switches for routing. The codec is controlled by the MCU. The PCM data comes from and goes to the DSP.

Main Components of AUDIO

- Audio codec ST5080

Includes e.g. PCM codec, audio routing switches, microphone and earpiece amplifiers for 2 connections (internal and external devices) and DTMF generator.

Input Signals of AUDIO

Name(from):	Description:
VA1(PWRU)	Analog supply voltage, max 40 mA
PCMIN(DSPU)	Received audio in PCM format
SYNC(ASIC)	8 kHz frame sync
CODEC_CLK(ASIC)	512 kHz codec main clock
PCMCDI(CTRLU)	Audio codec control data
PCMCLK(CTRLU)	Clock for audio codec control data transfer
XSELPCMC (CTRLU)	Audio codec chip select
MIC_JCONN (syst.conn.)	External microphone
MICN,MICP(UIF)	Differential microphone signal

Output Signals of AUDIO

Nomo(to):

Name(to):	Description:
PCMOUT(DSPU)	Transmitted audio in PCM format
PCMCDO(CTRLU)	Audio codec control data
MIC_ENA(UIF)	Microphone enable
EAR_HFPWR (syst.conn.)	External received audio
EARN,EARP(UIF)	Internal received audio
JCONN(CTRLU)	Junction box connected signal (multiplexed with HFMIC)

Deceription:

Block Description of AUDIO

The codec has two microphone inputs and two earphone outputs. Handportable and external audios can therefore be connected directly to the codec. The codec has internal switches to select which input or output is used. It also has microphone amplifier and earphone attenuator. Input/output selection and amplification/attenuation can be done with codec register settings. The register control is done by the MCU.

Handportable microphone and earphone (located on the flex) are connected directly to the codec's differential input and output. External audios are connected single sided. There is 21 dB attenuation in the external microphone line before the codec to prevent clipping.

Microphone signal is routed to the microphone amplifier. After that it is fed to the bandpass filter and then to the A/D converter. After the conversion the digital speech is sent to the DSP.

Digital downlink signal from the DSP is fed to the D/A converted. After the converter there is low pass filter and attenuator before the earphone output. All these are inside the codec. The ASIC generates the 512 kHz and 8 kHz clocks for the codec and data transmission between the codec and the DSP

The audio codec communicates with the DSP (analog speech) through an SIO (signals: PCMIN, SYNC, CODEC_CLK and PCMOUT). The MCU controls the audio codec function through a separate serial bus (signals: PCMCDO, PCMCDI, PCMCLK and XSELPCMC).

The codec generates DTMF tones (key beeps) to the earphone and in HF mode to the external speaker. In portable mode the MCU generates ringing tones and also some warning tones to the buzzer. In HF mode they are generated by the codec and driven to the external speaker line. Several tones are network originated. Depending on network transceiver is either commanded to generate tone, or network sends the tone itself.

One codec output pin is used to switch on/off the microphone bias circuit on the flex.

External microphone line is used also to detect if junction box is connected to the bottom connector. Microphone signal is therefore routed to the MCU A/D converter.

Also external earphone signal is multiplexed. 100 $k\Omega$ pull down resistor is used to turn power on to the HF accessories.

ASIC

The ASIC takes care of the following functions:

- interface between MCU and UIF
- interface between MCU, DSP and RFI
- hardware accelerator functions to DSP
- clock generation and disable/enable
- RF controls
- UIF interface
- timers
- M2BUS interface
- SIM interface

Main Components of ASIC

- D2CA ASIC
- RFC buffer

Inverter buffer stage is used as a buffer for the VCTCXO clock.

Input Signals of ASIC

Name(from):	Description:	
VL1(PWRU)	Logic supply voltage, max 150 mA	
VL2(PWRU)	Logic supply voltage, max 150 mA	
CHRDET(PWRU)	Battery charger detection	
IOX(DSPU)	I/O enable, indicates access to DSP address space	
RWX(DSPU)	Read/write X	
WSTROBEX (CTRLU)	MCU's write strobe	
RSTROBEX (CTRLU)	MCU's read strobe	
RFC(RF)	Reference clock from VCTCXO	
XRES(PWRU)	RES(PWRU) Master reset	
DSPAD(16;0)(DSPU)Address bus and control signals		
MCUAD(19;16,4;0) (CTRLU)	MCU's address bus	
DAX(RFI)	Data acknowledge	
BATDET(CTRLU)	TDET(CTRLU) Battery type and SIM card presence detection	

8–27

Technical Documentation

Copyright © Nokia Mobile Phones

MBUSDET(CTRLU) MBUS activity detection DBUSDET(DSPU) DBUS activity detection

Output Signals of ASIC

Name(to): Description:

INT0,INT1(DSPU) Interrupts for DSP

NMI(CTRLU) Not maskable interrupt request

IRQX(CTRLU) Interrupt request

RESETX Master (power μp) reset

(CTRLU,RFI)

DSP1RSTX(DSPU) Reset for the DSP

SIMRESET Reset for the SIM

WRX(RFI) Write strobe RDX(RFI) Read strobe

RFIAD(3;0)(RFI) RFI address bus

SCLK(RF) Synthesizer load clock

SDATA(RF) Synthesizer load data

SENA1(RF) UHF and VHF PLL enable

RXPWR(RF) RX circuitry power enable

TXPWR(RF) TX circuitry power enable

SYNTHPWR(RF) Synthesizer circuitry power enable

TXP(RF) Transmitter power control enable

MCUCLK(CTRLU) Main clock for MCU

DSPCLKEN(DSPU) DSP clock circuit enable

RFICLK(RFI) RFI master clock

RFI2CLK(RFI) RFI sleep clock

CODEC_CLK PCM data clock

(DSPU,AUDIO)

DCLK(syst.conn.)

PCMDATRCLKX Inverted PCM data clock, used as input clock for

DBUS data clock

(DSPU) codec and DBUS interface

SYNC(AUDIO) Bit sync clock

PCMCOSYCLKX Bit sync clock, inverted

(DSPU)

(DOI O)

DSYNC(syst.conn.) DBUS bit sync clock

Copyright © Nokia Mobile Phones Technical Documentation

8-28

DBUSCLK(DSPU) DBUS data clock DBUSSYNC(DSPU) DBUS bit sync clock

SIMCLK(UIF) SIM data clock VSIM(UIF) SIM power control

ROMAD18(CTRLU) ROM address (paging)

ROMSELX(CTRLU) Chip select for the FLASH memory

ROM2SELX (CTRLU)

Chip select for the second FLASH memory

EROMSELX (CTRLU)

Chip select for the EEPROM memory

RAMSELX(CTRLU) Chip select for the SRAM memory COL(3;0)(UIF) Lines for keyboard column write

Bidirectional Signals of ASIC

Name(from/to):	Description:
DSPDA(15;0) (DSPU)	16 bit data bus
MCUDA(7;0) (CTRLU)	MCU's 8 bit data bus
RFIDA(11;0)(RFI)	12 bit data bus
UIF(6;0)(UIF)	LCD controller control and keyboard read bus
SIMDATA(UIF)	Serial data to SIM

Block Description of ASIC

PSL+ supplies the reset to the ASIC at power up. The ASIC starts the clocks to the DSP and the MCU. MCU and RFI reset is released after 256 13 MHz clock cycles. DSP reset release time from DSP clock activation can be selected from 0 to 255 13 MHz clock cycles. In our case 255 is selected. SIM reset release time is according to GSM SIM specifications.

The RFC buffer buffers the 26MHz clock from the VCTCXO to the ASIC. In the ASIC the clock is further buffered and divided for the MCU, RFI, SIM. It also generates main and sync clocks for audio codec, DSP's SIOs and DBUS. The clock outputs can be disabled in order to save current when the clock is not needed. Also the DSP oscillator can be stopped by the ASIC.

Interface to the MCU is done with 8 bit data bus ,5 bit lower address bus, 4 bit upper address bus, RSTRBEX, WSTROBEX, IRQX and NMI. ASIC is in the same memory space as MCU memories. The ASIC generates chip selects from the address bits A16–19. There is also M2BUS detector and netfree counter on the ASIC. Netfree interrupt IRQX occurs if no activity is detected in M2BUS in about 3ms. NMI is used to wake up the MCU from sleep mode.

MCU and DSP communicate through ASIC. ASIC has an MCU mailbox and a DSP mailbox. MCU writes data to DSP mailbox where DSP can only read the incoming data. In MCU mailbox the data transfer direction is the opposite. The size of the mailbox is 64 * 8 bit.

MCU and User Interface (keyboard and display) communication is controlled through the ASIC.

COL(0-3) are used as column lines in keyboard. UIF(0-5) are used as row lines They are also multiplexed with display driver control signals.

When a key is pressed the ASIC generates an interrupt from low input of row and starts scanning. One column at the time is written to low and rows are used to read which key it was.

Row lines and UIF6 are used for display driver control. UIF(0–3) are used as 4 bit parallel data bus for the LCD driver. UIF4 is used as read/write strobe, UIF5 to select data or instruction register and UIF6 as enable strobe.

The SIM interface is the electrical interface between the smart card used in the GSM and PCN applications and the MCU via the ASIC. ASIC converts the serial data received from the SIM to parallel data for MCU and converts parallel data from MCU to serial mode for the card. The SIM interface also takes care of the power up and down procedure to the card, frame and parity error checking. The communication between card and ASIC is asynchronous and half duplex. Four signals are used between the ASIC and the SIM card: SIMDATA, SIMCLK, SIMRESET and The clock frequency is 3.25 MHz. When there is no data transfer between the SIM card and the HP the clock can be reduced to 1.625 MHz. Some SIM cards also allows the clock to be stopped in that mode. Supply voltage VSIM can be switched off by the ASIC. The supply voltage is 4.65 V. The carddetect input on the ASIC is connected to BTYPE pin and when the battery is removed the ASIC will drive the SIM down.

Copyright © Nokia Mobile Phones

The interface to the DSP is done using 6 bit address bus, 16 bit data bus, IOX and RWX lines. Data bus is latched using IOX, address bus is not. The ASIC also generates interrupt INT0 when an edge occurs in DBUS line (if the mask bit is off). INT1 is used as RX interrupt and as MFI modulator interrupt to the DSP.

Viterbi is used to perform GSM/PCN convolutional decoding and bit detection according to viterbi algorithm. It can be controlled and accessed thoroughly by the DSP.

Coder is used to perform block encoding, decoding, and ciphering according to GSM algorithm A5 or A5/2. (D2CA supports both algorithms.)

The ASIC takes care of the interface between the DSP and the RFI: TX modulator, RX filter, TX and RX sample buffers and controlling state machine. The interface to RFI is done using 12 bit data bus, 4 bit address bus, RDX and WRX. There is data acknowledge (DAX) from RFI to ASIC. Also in this block are the serial RF synthesizer interface (SCLK, SDAT) and the digital RF control signals (RXPWR, TXPWR, TXP, SYNTHPWR).

RFI

The block consists of RFI ASIC and its reference voltage generator. This block is an interface between RF and baseband. The RFI block has the following functions:

- IF receiving and A/D conversion
- I/Q separation
- I and Q transmit and D/A conversion
- AFC D/A
- TXC
- AGC (in combination with TXC)

Main Components of RFI

- RFI ASIC
- 4.096 V external voltage reference LM4040 for RFI

Input Signals of RFI

Name(from):	Description:	
VL1(PWRU)	Logic supply voltage, max 150 mA	
VA2(PWRU)	Analog supply voltage, max 80 mA	
RESETX(PWRU)	Master (power up) reset	
RFIAD(3;0)(ASIC)	RFI address bus	
RDX(ASIC)	Read strobe	
WRX(ASIC)	Write strobe	
RFICLK(ASIC)	RFI master clock	
RFI2CLK(ASIC)	RFI sleep clock	
RXQ(RF)	RX quadrature signal	
RXI(RF)	RX inphase signal	

Output Signals of RFI

Name(to):	Description:
DAX(ASIC)	Data acknowledge
AFC(RF)	Automatic frequency control voltage
TXC(RF)	TX transmit power control voltage, AGC control
TXQP,TXQN(RF)	Differential TX quadrature signal
TXIP,TXIN(RF)	Differential TX inphase signal
PDATA0(RF)	Front end AGC data

Bidirectional Signals of RFI

Name(to): Description:

RFIDA(11;0)(ASIC) 12 bit data bus

Block Description of RFI

The RFI provides A/D conversion of the in–phase (RXI) and quadrature (RXQ) signals in receive path. It has 12 bit sigma–delta A/D converters and the sample rate is 541.667 kHz.

Analog transmit path includes 8 bit D/A converters to generate the in–phase (TXI) and quadrature (TXQ) signals. RFI has differential outputs for TXI and TXQ. The sample rate is 1.0833 MHz.

There is 11 bit D/A converter for automatic frequency correction. The sample rate is 1.3542 kHz.

Power ramp is done with 10 bit D/A converter. The sample frequency is 1.0833 MHz.

The AGC is voltage controlled in HD841. (In HD740 AGC control was digital.) Front end AGC control is done with PDATA0 output. Main part of AGC is controlled by TXC.

The RFI has 12 bit data bus to the ASIC. The registers in the RFI are accessed using 4 address bits. Control and clock signals are coming from the ASIC.

The RFI has external 4.096 V voltage reference.

Functional Description of RF block

The RF block carries out all the RF functions of the transceiver. The RF block works in GSM system.

RF Frequency Plan

GSM

Regulators

There is one regulator IC in the RF unit. The regulator IC CRFCONT is an RF power supply circuit basically intended for digital handportable phones. It has 8 separate linear regulators. Each regulator can be individually disabled and enabled. It also has a voltage reference output.

See more details on Figure; Power Distribution Diagram of RF

Power Distribution

All currents in the power distribution diagram are peak currents. Activity percentages are in SPEECH-mode 24.6 % for RXPWR, 15.8 % for TXPWR and 100 % for SYNTHPWR. In IDLE-mode activities are 0.4 %, 0.0 % and 1.77 % respectively. The current of each block is controlled independently and for example TXPWR and RXPWR are not on at the same time.

Current Consumption

In the following table the RF current consumption can be seen with different status of the control signals. The VCTCXO is not included in the results.

SYNTHPWR: RXPWR: TXPWR: TXP: Typ. load current: Notes:

L	L	L	L	0.05 mA	Leakage current
Н	L	L	L	41.5 mA	Synthesizer active
Н	Н	L	L	115.5 mA	Reception
Н	L	Н	L	93.5 mA	TX active
Н	L	Н	Н	1393.5 mA	Transmission

Receiver

The receiver is a double conversion receiver.

The received RF signal from the antenna is fed via a duplex filter to the receiver unit. The signal is amplified by a discrete low noise preamplifier. The gain of the amplifier is controlled by the AGC control line (PDATA0). The nominal gain of 16.5 dB in GSM is reduced in the strong field condition about 36 dB. After the preamplifier the signal is filtered by SAW RF filter. The filter rejects spurious signals coming from the antenna and spurious emissions coming from the receiver unit.

In GSM the filtered RF signal is down converted by a passive diode mixer. The frequency of the first IF is 71 MHz. The first local signal is generated by the UHF synthesizer.

The IF signal 71 is amplified and filtered by SAW filter in GSM. The filter rejects adjacent channel signal, intermodulating signals and the last IF image signal. The filtered IF signal is fed to the receiver part of the integrated RF circuit CRFRT.

In CRFRT the filtered IF signal is amplified by an AGC amplifier which has gain control range of 57 dB. The gain is controlled by an analog signal via TXC line. The amplified IF signal is down converted to the last IF in the mixer of CRFRT. The last local signal is generated from VHF VCO by dividing the original signal by 4 in the dividers of CRFRT.

The last IF 13 MHz is filtered by a ceramic filter. The filter rejects signals of the adjacent channels.

The filtered last IF is fed back to CRFRT where it is amplified and fed out via RXIF line. IF signal is split to +45 and -45 signals and then fed to RFI.

Duplex Filter

The duplex filter consists of two functional parts; RX and TX filters. The TX filter rejects the noise power at the RX frequency band and TX harmonic signals. The RX filter rejects blocking and spurious signals coming from the antenna.

Pre-Amplifier

The bipolar pre–amplifier amplifies the received signal coming from the antenna. In the strong field conditions the gain of the amplifier is reduced 36 dB in GSM, typically.

Parameter	Value
Frequency band:	935–960 Mhz
Supply voltage (min/typ/max):	4.274.54.73 V
Current consumption (min/typ/max):	567 mA
Insertion gain (min/typ/max):	1516.517 dB
Gain flatness:	±0.5 dB
Noise figure (typ/max):	2.02.5 dB
Reverse isolation (min):	15 dB
Gain reduction (min/typ/max):	333639 dB
IIP3: (min/typ):	−12−10 dBm
Input VSWR; zo=50 Ω (max):	2.0
Output VSWR; zo=50 Ω (max):	2.0

RX Interstage Filter

The RX interstage filter is a SAW filter in GSM. The filter rejects spurious and blocking signals coming from the antenna. It rejects the local oscillator signal leakage, too.

First Mixer

The first mixer is a single balanced passive diode mixer. The local signal is balanced by a printed circuit transformer. The mixer down converts the received RF signal to IF signal.

Parameter	Value
RX frequency range:	935–960 Mhz
LO frequency range:	1006–1031 Mhz
IF frequency:	71 Mhz
Conversion loss (min/typ/max):	567 dB
IIP3 (min/typ):	25 dBm
LO – RF isolation (min):	15.0 dB
LO power level (min):	3 dBm

First IF Amplifier

The first IF amplifier is a bipolar transistor amplifier.

Parameter	Value
Operation frequency:	71 Mhz
Supply voltage (min/typ/max):	4.274.54.73
Current consumption (typ/max):	1220 mA
Insertion gain (min/typ/max):	182022 dB
Noise figure (typ/max):	3.54.0 dB
IIP3 (min/typ):	−5−3 dBm

First IF filter

The first IF filter is a SAW filter in GSM. The IF filter rejects some spurious and blocking signal coming from the front end of the receiver.

Receiver IF circuit, RX part of CRFRT

The receiver part of CRFRT consists of an AGC amplifier of 57 dB gain, a mixer and a buffer amplifier for the last IF. The mixer of the circuit down converts the received signal to the last IF frequency. After external filtering the signal is amplified and fed to baseband circuitry. The supply current can be switched OFF by an internal switch, when the RX is OFF.

Parameter	Value
Supply voltage (min/typ/max):	4.274.54.73 V
Current consumption (max/max):	3544 mA
Input frequency range (min/max):	45 MHz (–1 db point) 87 MHz (–3 dB point)
Local frequency range of mixer (min/max):	170400 MHz
2nd IF range (min/max):	217 MHz
Voltage gain (max gain) of AGC amplifier (min):	47 dB
Noise figure (max):	15 max gain
AGC gain control slope (min/typ/max):	4084100 dB/V
Mixer output 1 dB compression point (typ):	1.0 V _{PP}
Max output level after last IF buffer (typ):	1.6 V _{PP}

Last IF Filter

The last IF is a ceramic filter, which makes the part of the channel selectivity of the receiver.

Transmitter

The TX intermediate frequency is modulated by an I/Q modulator contained on transmitter section of CRFRT IC. The TX I and Q signals are generated in the RFI interface circuit and they are fed differentially to the modulator.

Modulated intermediate signal is amplified or attenuated in temperature compensated controlled gain amplifier (TCGA). The output of the TCGA is amplified and the output level is typically –10 dBm.

The output signal from CRFRT is band–pass filtered to reduce harmonics and the final TX signal is achieved by mixing the UHF VCO signal and the modulated TX intermediate signal with passive mixer. After mixing the TX signal is amplified and filtered by two amplifier and one filter. This filter is dielectric filter. After these stages the level of the signal is typically 1 mW (0 dBm).

The discrete power amplifier amplifies the TX signal to the desired power level. The maximum output level is typically 1.8...2.0 W.

The power control loop controls the output level of the power amplifier. The power detector consists of a directional coupler and a diode rectifier. Transmitted power is controlled with controlled gain amplifier (TCGA) on TX path of CRFRT. Power is controlled with TXC and TXP signals. The power control signal (TXC), which has a raised cosine form, comes from the RF interface circuit, RFI.

Modulator Circuit, TX part of CRFRT

The modulator is a quadrature modulator contained in TX section of CRFRT IC. The I– and Q– inputs generated by RFI interface are D.C. coupled and fed via buffers to the modulator. The local signal is divided by two to get accurate 90 degrees phase shifted signals to the I/Q mixers. After mixing the signals are combined and amplified with temperature compensated controlled gain amplifier (TCGA). Gain is controlled with power control signal (TXC). The output of the TCGA is amplified and the maximum output level is –10 dBm, typically.

Parameter	Value
Supply voltage (min/typ/max):	4.274.54.73 V
Supply current (typ/max):	3645 mA
Transmit frequency input	Value
LO input frequency (min/max):	170400 MHz
LO input power level (typ):	0.2 V _{PP}
LO input resistance (min/typ/max):	$70100130~\Omega$
LO input capacitance (typ):	4 pF

Modulator Inputs (I/Q):	Value
Input bias current, balanced (max):	100 nA
Input common mode voltage (min/typ/max):	2.02.22.4 V
Input level, balanced (max):	1.1 V _{PP}
Input frequency range (min/max):	0300 kHz
Input resistance, balanced (min):	200 kΩ
Input capacitance, balanced (max):	4 pF
Modulator Output:	Value
Output frequency (min/max):	85200 MHz
Available linear RF power (typ):	–10 dBm, ZiL=50 k Ω
Available saturated RF power (min/typ):	–50 dBm, ZiL=50 k Ω
Total gain control range (min):	45 dB
Gain control slope (typ):	84 dB/V
Suppression of 3rd order prods (min):	35 dB
Carrier suppression (typ):	35 dB
Single sideband suppression:	
Noise floor P _{OUT} -10 (max): -18 (max): -24 (max): -30 (max): -40 (max):	–132 dBm/Hz avg. –137 dBm/Hz avg. –140 dBm/Hz avg. –142 dBm/Hz avg. –144 dBm/Hz avg.
Transmitted I/Q phase balance: drift in whole temperature range:	–55 deg –22 deg
Transmitted I/Q amplitude balance: drift in whole temperature range:	–0.50.5 dB –0.20.2 dB

Upconversion Mixer

The upconversion mixer is a single balanced passive diode mixer. The local signal is balanced by a printed circuit transformer. The mixer upconverts the modulated IF signal coming from quadrature modulator to RF signal.

Parameter:	Value
RX frequency range:	890915 MHz
LO frequency range:	10061031 MHz
IF frequency (nom):	116 MHz
Conversion loss (min/typ/max):	6.07.08.0 dB
IIP3 (min):	0.0 dBm
LO - RF isolation (min):	15 dB
LO power level (min):	3.0 dBm

TX Interstage Filters

The TX filters reject the spurious signals generated in the upconversion mixer. They reject the local, image and IF signal leakage and RX band noise, too.

1st TX buffer

The TX buffer is a bipolar transistor amplifier. It amplifies the TX signal coming from the upconversion mixer.

Parameter:	Value	
Operating frequency range:	890915 MHz	
Supply voltage (min/typ/max):	4.254.52.8 V	
Current consumption (typ/max):	4.55.0 mA	
Insertion gain (min/typ/max):	111213 dB	
Input VSWR, Zo=50 Ω (max):	2.0	
Output VSWR, Zo=50 Ω (max):	2.0	

2nd TX buffer

Copyright © Nokia Mobile Phones

The TX buffer is a bipolar transistor amplifier. It amplifies the TX signal coming from the first interstage filter.

Parameter:	Value
Operation frequency range:	890915 MHz
Supply voltage (min/typ/max):	4.254.54.8 V
Current consumption (typ/max):	9.010.0 mA
Insertion gain (min/typ/max):	111213 dB
Output power, Zo=50 Ω (min/typ):	03 dBm
Input VSWR, Zo=50 Ω (max):	2.0
Output VSWR, Zo=50 Ω (max):	2.0

Power Amplifier

The power amplifier is a three stage discrete amplifier. It amplifies the 0 dBm TX signal to the desired output level. It has been specified for 6 volts operation.

Parameter:	Value
D.C. supply voltage, no RF (max):	10 V
D.C. supply voltage (min/typ/max):	5.36.08.5 V
Operation frequency:	890915 MHz
Operating case temp. range (max):	90 °C
Max output power (min/typ/max):	34.53536 dBm, norm cond.
Max output power (min/typ/max):	33.53435 dBm, extreme cond. V_{CC} =5.4 V, Ta=55°C
Input power (min):	0 dBm
Gain (min/typ/max):	34.53536 dB
Efficiency (typ):	42 %, Po=35 dBm
Input VSWR, Zo=50 Ω (max):	2.0
Output VSWR, Zo=50 Ω (max):	2.0
Harmonics, 2 fo: 3 fo, 4 fo, 5 fo:	−30 dBc, Po=35 dBm −40 dBc, Po=35 dBm
Noise power (max):	-114 dBm at receiver band
Ruggedness (min):	8 V VSWR=7, P _{OUT} =4 W
Stability, load VSWR 6:1 (min):	60 dBc, all spurious

Power Control Circuitry

The power control loop consists of a power detector and a differential control circuit. The power detector is a combination of a directional coupler and a diode rectifier. The differential control circuit compares the detected voltage and the control voltage (TXC) and controls voltage controlled amplifier (in CRFRT) or the power amplifier. The control circuit is a part of CRFRT.

Parameter:	Value
Supply voltage (min/typ/max): using CRFRT:	4.54.74.9 4.274.54.73
Supply current (typ/max):	3.05.0 mA
Power control range (min):	20 dB
Power control inaccuracy (max):	±1.0 dB
Dynamic range (min):	80 dB
Input control voltage range (min/max):	0.12.8 V

Technical Documentation

Copyright © Nokia Mobile Phones

Synthesizer

The stable frequency source for the synthesizers and base band circuits is discrete voltage controlled crystal oscillator, VCXO. The frequency of the oscillators is controlled by an AFC voltage, which is generated by the base band circuits.

The UHF PLL generates the down conversion signal for the receiver and the up conversion signal for the transmitter. The UHF VCO is a discrete oscillator. The PLL circuits is UMA1018.

The VHF PLL signal (divided by 4 in CRFRT) is used as a local for the last mixer. Also the VHF PLL signal (divided by 2 in CRFRT) is used in the I/Q modulator of the transmitter chain.

Reference Oscillator

The reference oscillator is a discrete VCXO and the frequency is 26 MHz.

The oscillator signal is used for a reference frequency of the synthesizers and the clock frequency for the base band circuits.

Parameter:	Value
Centre frequency:	26 MHz
Frequency control range:	67 ppm
Supply voltage (min/typ/max):	4.64.74.8 V
Current consumption (typ/max):	1.51.7 mA
Output voltage (min/typ/max):	1.31.72.0 V _{PP} , sine wave for PLLs
Harmonics (max):	5 dBc
Control voltage range (min/max):	0.254.45 V
Nominal voltage for centre frequency:	2.2 V
Control sensitivity (min/typ/max):	121622 ppm/V
Frequency stability • temperature: • supply voltage: • load: • aging:	10 ppm, -25+75 °C 1 ppm, 4.7 V ±5 % 0.1 ppm, load ±10 % 1 ppm, year
Operating temperature range (min/max):	<i>–2070 °C</i>
Load impedance, resistive part: parallel capacitance:	2 kΩ 20 pF

ule bu

Copyright © Nokia Mobile Phones

VHF PLL

The VHF PLL consists of the VHF VCO, PLL integrated circuit and loop filter. The output signal is used for the 2nd mixer of the receiver and for the I/Q modulator of the transmitter.

Parameter:	Value
Start up setting time (max):	5 ms
Phase error (max):	1 deg., rms
Sidebands (typ/max) • ±200 kHz: • ±400 kHz: • ±1 MHz: • ±2 MHz: • ±3 MHz: • >4 MHz:	-7570 dB -8470 dB <-8570 dB <-8575 dB <-8580 dB <-8580 dB

VHF VCO + buffer

The VHF VCO uses a bipolar transistor as a active element and a combination of a chip coil and varactor diode as a resonance circuit. The buffer is combined into the VCO circuit so, that they use same collector current.

Parameter:	Value	
Supply voltage (min/typ/max):	4.24.54.8 V	
Control voltage (min/max):	0.54.0 V	
Supply current (typ/max):	2.55.0 mA	
Operation frequency (typ):	232 MHz	
Output power level (typ):	168 m $V_{RMS}/1~k\Omega$	
Control voltage sensitivity (typ):	12 MHz/V	
Phase noise (max) • fo ±200 kHz • fo ±1600 kHz • fo ±3000 kHz	–123 dB –133 dB –143 dB	
Harmonics (typ/max):	−32−30 dB	

UHF PLL

The UHF PLL consists of a UHF VCO, PLL circuit and a loop filter. The output signal is used for the 1st mixer of the receiver and the upconversion mixer of the transmitter.

Parameter:	Value
Start up setting time (max):	5 ms
Phase error (max):	4 deg., rms
Settling time ±93 MHz (typ/max):	525800 μs
Sidebands (typ/max) • ±200 kHz: • ±400 kHz: • ±600 kHz: • 1.43.0 MHz:	-8060 dB -8765 dB <-9070 dB <-9080 dB
• >3.0 MHz:	<-80 dB

UHF VCO + buffer

The UHF VCO uses a bipolar transistor as a active element and a combination of a chip coil and a varactor diode as a resonance circuit.

UHF VCO Buffers

The UHF VCO output signal is divided into the 1st mixer of the receiver and the upconversion mixer of the transmitter. The UHF VCO signal is amplified after division. There is one buffer for TX and one for RX.

Parameter:	Value
Supply voltage (min/typ/max):	4.24.54.8 V
Supply current (typ/max):	5.56.5 mA
Input power (typ):	–3 dBm
Harmonics (max):	−10 dBc
Output power (typ):	700 m $V_{RMS}/1~k\Omega$

PLL Circuit

The PLL is PHILIPS UMA1018. The circuit is a dual frequency synthesizer including both the UHF and VHF synthesizers.

Parameter:	Value
Supply voltage (min/max):	2.75.5 V
Supply current (typ):	8.5 mA
Principal input frequency (min/max):	$5001200 \text{ MHz}, V_{DD} = 4.5 \text{ V}$
Auxiliary input frequency (min/max):	$20300 \text{ MHz}, V_{DD} = 4.5 \text{ V}$
Input reference frequency (min/max):	$340 \text{ MHz}, V_{DD} = 4.5 \text{ V}$
Input signal level (min/max):	50500 mV _{RMS}

Block Diagram of Baseband

Power Distribution Diagram of Baseband

Technical Documentation

Copyright © Nokia Mobile Phones

Block Diagram of RF

Power Distribution Diagram of RF

Connections between System and RF Blocks

Version: 5.0 Edit: 111

Connections between RX and TX Blocks

Version: 6.0 Edit: 73

8-54

Copyright © Nokia Mobile Phones

Circuit Diagram of GR8; System Blocks

8-55

Copyright © Nokia Mobile Phones

Circuit Diagram of GR8; CPU & Memories

Circuit Diagram of GR8; Power Supply IC & Batt. Charg. unit

8-57

Copyright © Nokia Mobile Phones

Circuit Diagram of GR8; DSP, Clock Generator & Memories

8-58

Copyright © Nokia Mobile Phones

Circuit Diagram of GR8; Audio Codec IC

8–59

Copyright © Nokia Mobile Phones

Circuit Diagram of GR8; ASIC IC

Circuit Diagram of GR8; RFI IC

8-61

Copyright © Nokia Mobile Phones

Circuit Diagram of GR8; RF Receiver and Regulator

8-62

Copyright © Nokia Mobile Phones

Circuit Diagram of GR8; RF Transmitter

Layout Diagram of GR8 Side 1 Version 09

Layout Diagram of GR8 Side 2 Version 09

Parts List of GR8 (EDMS Issue: 6.8 Code: 0200514)

ITEM	CODE	DESCRIPTION		VALUE TYPE
R070	1430788	Chip resistor	22 k	5 % 0.063 W 0402
R071	1430794	Chip resistor	39 k	5 % 0.063 W 0402
R072		Chip resistor	1.0 k	5 % 0.063 W 0402
R073	1430764	Chip resistor	3.3 k	5 % 0.063 W 0402
R074	1430730	Chip resistor	150	5 % 0.063 W 0402
R075		Chip resistor	100 k	5 % 0.063 W 0402
R076	1430744	Chip resistor	470	5 % 0.063 W 0402
R077	1430796	Chip resistor	47 k	5 % 0.063 W 0402
R078	1430796	Chip resistor	47 k	5 % 0.063 W 0402
R079	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R110	1430842	Chip resistor	680 k	1 % 0.063 W 0402
R111	1430840	Chip resistor	220 k	1 % 0.063 W 0402
R112	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R113	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R114	1430732	Chip resistor	180	5 % 0.063 W 0402
R140	1430792	Chip resistor	33 k	5 % 0.063 W 0402
R141	1430788	Chip resistor	22 k	5 % 0.063 W 0402
R142	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R143	1430764	Chip resistor	3.3 k	5 % 0.063 W 0402
R144	1430764	Chip resistor	3.3 k	5 % 0.063 W 0402
R145	1430732	Chip resistor	180	5 % 0.063 W 0402
R146	1430846	Chip resistor	2.7 k	1 % 0.063 W 0402
R147	1430844	Chip resistor	3.9 k	1 % 0.063 W 0402
R148	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R149	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R150	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R151	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R152	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R160	1430726	Chip resistor	100	5 % 0.063 W 0402
R161	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R162	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R163	1430726	Chip resistor	100	5 % 0.063 W 0402
R164	1430788	Chip resistor	22 k	5 % 0.063 W 0402
R165	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R166	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R169	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R170	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R171	1430788	Chip resistor	22 k	5 % 0.063 W 0402

				,, 5
R172	1430798	Chip resistor	56 k	5 % 0.063 W 0402
R173	1430794	Chip resistor	39 k	5 % 0.063 W 0402
R174	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R175	1430700	Chip resistor	10	5 % 0.063 W 0402
R176	1430726	Chip resistor	100	5 % 0.063 W 0402
R177	1430726	Chip resistor	100	5 % 0.063 W 0402
R178	1430726	Chip resistor	100	5 % 0.063 W 0402
R179	1430726	Chip resistor	100	5 % 0.063 W 0402
R180	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R181	1430726	Chip resistor	100	5 % 0.063 W 0402
R182	1430726	Chip resistor	100	5 % 0.063 W 0402
R183	1430734	Chip resistor	220	5 % 0.063 W 0402
R184	1430726	Chip resistor	100	5 % 0.063 W 0402
R185	1430726	Chip resistor	100	5 % 0.063 W 0402
R186	1430726	Chip resistor	100	5 % 0.063 W 0402
R190	1430726	Chip resistor	100	5 % 0.063 W 0402
R191	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R192	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R193	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R194	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R195	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R196	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R197	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R198	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R199	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R210	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R230	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R231	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R232	1430842	Chip resistor	680 k	1 % 0.063 W 0402
R233	1430788	Chip resistor	22 k	5 % 0.063 W 0402
R234	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R235	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R236	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R237	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R238	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R239	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R240	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R241	1430744	Chip resistor	470	5 % 0.063 W 0402
R243	1430788	Chip resistor	22 k	5 % 0.063 W 0402
R246	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R247	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R248	1430726	Chip resistor	100	5 % 0.063 W 0402

8-67

D240	1420726	Chin register	100	5 % 0.063 W 0402
R249		Chip resistor	100 k	
R250		Chip resistor	100 k	5 % 0.063 W 0402
R251		Chip resistor	33 k	5 % 0.063 W 0402
R252		Chip resistor	100 k	5 % 0.063 W 0402
R253	1430770	•	4.7 k	5 % 0.063 W 0402
R254	1430760	•	1.8 k	5 % 0.063 W 0402
R255		Chip resistor	100	5 % 0.063 W 0402
R256	1430726	Chip resistor	100	5 % 0.063 W 0402
R257		Chip resistor	100	5 % 0.063 W 0402
R260		Chip resistor	100	5 % 0.063 W 0402
R261	1430784	Chip resistor	15 k	5 % 0.063 W 0402
R262	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R263	1430760	Chip resistor	1.8 k	5 % 0.063 W 0402
R264	1430792	Chip resistor	33 k	5 % 0.063 W 0402
R265	1430792	Chip resistor	33 k	5 % 0.063 W 0402
R267	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R270	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R501	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R502	1430732	Chip resistor	180	5 % 0.063 W 0402
R503	1430732	Chip resistor	180	5 % 0.063 W 0402
R504	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R505	1430772	Chip resistor	5.6 k	5 % 0.063 W 0402
R506	1430710	Chip resistor	22	5 % 0.063 W 0402
R507	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R508	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R509	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R511		Chip resistor	4.7 k	5 % 0.063 W 0402
R512		Chip resistor	2.7 k	5 % 0.063 W 0402
R513		Chip resistor	330	5 % 0.063 W 0402
R514		Chip resistor	22	5 % 0.063 W 0402
R541		Chip resistor	22	5 % 0.063 W 0402
R542		Chip resistor	220	5 % 0.063 W 0402
R543		Chip resistor	1.0 k	5 % 0.063 W 0402
R544		Chip resistor	2.2 k	5 % 0.063 W 0402
R545		Chip resistor	1.5 k	5 % 0.063 W 0402
R546		Chip resistor	82	5 % 0.063 W 0402
R547		Chip resistor	470	5 % 0.063 W 0402
R551		Chip resistor	4.7 k	5 % 0.063 W 0402
R552	1430788	•	22 k	5 % 0.063 W 0402
R553		Chip resistor	4.7 k	5 % 0.063 W 0402
R554		Chip resistor	4.7 k	5 % 0.063 W 0402 5 % 0.063 W 0402
R555		Chip resistor	4.7 k 22 k	5 % 0.063 W 0402 5 % 0.063 W 0402
11000	1430700	OHIP TESISTOI	22 N	J /0 U.UUJ VV U4UZ

SYSTEM MODULE GR8

01/98OJ

Technical Documentation

				/ 11/ - /
R556	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R557	1430730	Chip resistor	150	5 % 0.063 W 0402
R558	1430732	Chip resistor	180	5 % 0.063 W 0402
R559	1430740	Chip resistor	330	5 % 0.063 W 0402
R560	1430764	Chip resistor	3.3 k	5 % 0.063 W 0402
R562	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R563	1430728	Chip resistor	120	5 % 0.063 W 0402
R564	1430738	Chip resistor	270	5 % 0.063 W 0402
R565	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R566	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R567	1430728	Chip resistor	120	5 % 0.063 W 0402
R568	1430734	Chip resistor	220	5 % 0.063 W 0402
R569	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R570	1430726	Chip resistor	100	5 % 0.063 W 0402
R571	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R572	1430276	Chip resistor	47 k	2 % 0.063 W 0603
R573	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R574	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R576	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R577	1430792	Chip resistor	33 k	5 % 0.063 W 0402
R578	1430794	Chip resistor	39 k	5 % 0.063 W 0402
R579	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R580	1430790	Chip resistor	27 k	5 % 0.063 W 0402
R583	1430794	Chip resistor	39 k	5 % 0.063 W 0402
R584	1430310	Chip resistor	75 k	2 % 0.063 W 0603
R585	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R586	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R601	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R602	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R603	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R701	1430832	Chip resistor	2.7 k	5 % 0.063 W 0402
R702	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R703	1430710	Chip resistor	22	5 % 0.063 W 0402
R704		Chip resistor	330	5 % 0.063 W 0402
R705	1430724	Chip resistor	82	5 % 0.063 W 0402
R708	1430690	Chip jumper		0402
R711	1430758	Chip resistor	1.5 k	5 % 0.063 W 0402
R712		Chip resistor	2.7 k	5 % 0.063 W 0402
R713		Chip resistor	470	5 % 0.063 W 0402
R714		Chip resistor	10	5 % 0.063 W 0402
R715		Chip resistor	5.6	5 % 0.063 W 0402
R716		Chip resistor	5.6	5 % 0.063 W 0402
		•		

SYSTEM MODULE GR8

01/98OJ

Technical Documentation

D747	4.40070.4	Ohin maniatam	000	E 0/ 0 000 W 0400
R717		Chip resistor	220	5 % 0.063 W 0402
R725	1430792	Chip resistor	33 k	5 % 0.063 W 0402
R726	1430790	Chip resistor	27 k	5 % 0.063 W 0402
R727	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R728	1430730	Chip resistor	150	5 % 0.063 W 0402
R736	1430786	Chip resistor	18 k	5 % 0.063 W 0402
R737	1430786	Chip resistor	18 k	5 % 0.063 W 0402
R738	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R739	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R740	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R741	1430746	Chip resistor	560	5 % 0.063 W 0402
R742	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R743	1430700	Chip resistor	10	5 % 0.063 W 0402
R755	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R756	1412279	Chip resistor	2.2	5 % 0.1 W 0805
R765	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R766	1430748	Chip resistor	680	5 % 0.063 W 0402
R767	1430732	Chip resistor	180	5 % 0.063 W 0402
R768	1430752	Chip resistor	820	5 % 0.063 W 0402
R769	1430693	Chip resistor	5.6	5 % 0.063 W 0402
R774	1430724	Chip resistor	82	5 % 0.063 W 0402
R775	1430722	Chip resistor	68	5 % 0.063 W 0402
R780	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R781	1430740	Chip resistor	330	5 % 0.063 W 0402
R782	1430726	Chip resistor	100	5 % 0.063 W 0402
R783	1430690	Chip jumper		0402
R784	1430726	Chip resistor	100	5 % 0.063 W 0402
R785	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R800	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R801		Chip resistor	47 k	5 % 0.063 W 0402
R802	1430796	Chip resistor	47 k	5 % 0.063 W 0402
R803	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R804	1430788	Chip resistor	22 k	5 % 0.063 W 0402
R805	1430786	Chip resistor	18 k	5 % 0.063 W 0402
R806	1430774	Chip resistor	6.8 k	5 % 0.063 W 0402
R807	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R808	1430734	Chip resistor	220	5 % 0.063 W 0402
R809		NTC resistor	47 k	5 % 0.2 W 0805
R811		Chip resistor	6.8 k	5 % 0.063 W 0402
R820		Chip resistor	2.2 k	5 % 0.063 W 0402
R821		Chip resistor	2.2 k	5 % 0.063 W 0402
R822		Chip resistor	56 k	5 % 0.063 W 0402
		•		

SYSTEM MODULE GR8

01/980J

Technical Documentation

R823	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R824	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R825	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R826	1430780	Chip resistor	12 k	5 % 0.063 W 0402
R827	1430774	Chip resistor	6.8 k	5 % 0.063 W 0402
R828	1430786	Chip resistor	18 k	5 % 0.063 W 0402
R829	1430718	Chip resistor	47	5 % 0.063 W 0402
R830	1430718	Chip resistor	47	5 % 0.063 W 0402
R840	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R841	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R842	1430844	Chip resistor	3.9 k	1 % 0.063 W 0402
R843	1430832	Chip resistor	2.7 k	5 % 0.063 W 0402
R844	1430734	Chip resistor	220	5 % 0.063 W 0402
R845	1430700	Chip resistor	10	5 % 0.063 W 0402
R846	1430726	Chip resistor	100	5 % 0.063 W 0402
R847	1430718	Chip resistor	47	5 % 0.063 W 0402
R860	1430716	Chip resistor	39	5 % 0.063 W 0402
C040	2320544	Ceramic cap.	22 p	5 % 50 V 0402
C041	2320544	Ceramic cap.	22 p	5 % 50 V 0402
C042	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C043	2320598	Ceramic cap.	3.9 n	5 % 50 V 0402
C044	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C045	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C046	2320598	Ceramic cap.	3.9 n	5 % 50 V 0402
C047	2320598	Ceramic cap.	3.9 n	5 % 50 V 0402
C109	2320544	Ceramic cap.	22 p	5 % 50 V 0402
C110	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C111	2312410	Ceramic cap.	1.0 u	10 % 16 V 1206
C112	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C113	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C114	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C115	2604329	Tantalum cap.	4.7 u	20 % 10 V 3.5x2.8x1.9
C116	2604329	Tantalum cap.	4.7 u	20 % 10 V 3.5x2.8x1.9
C117	2604329	Tantalum cap.	4.7 u	20 % 10 V 3.5x2.8x1.9
C118	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C119	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C120	2604329	Tantalum cap.	4.7 u	20 % 10 V 3.5x2.8x1.9
C121	2604329	Tantalum cap.	4.7 u	20 % 10 V 3.5x2.8x1.9
C122	2312410	Ceramic cap.	1.0 u	10 % 16 V 1206
C124	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C125	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C126	2320560	Ceramic cap.	100 p	5 % 50 V 0402

C127	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C140	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C141	2312410	Ceramic cap.	1.0 u	10 % 16 V 1206
C142	2320598	Ceramic cap.	3.9 n	5 % 50 V 0402
C160	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C170	2310791	Ceramic cap.	33 n	20 % 50 V 0805
C171	2310791	Ceramic cap.	33 n	20 % 50 V 0805
C172	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C173	2320544	Ceramic cap.	22 p	5 % 50 V 0402
C175	2310791	Ceramic cap.	33 n	20 % 50 V 0805
C176	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C177	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C178	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C180	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C181	2310791	Ceramic cap.	33 n	20 % 50 V 0805
C182	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C183	2310791	Ceramic cap.	33 n	20 % 50 V 0805
C185	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C186	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C187	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C188		Ceramic cap.	100 p	5 % 50 V 0402
C195		Ceramic cap.	22 p	5 % 50 V 0402
C196		Ceramic cap.	100 p	5 % 50 V 0402
C197	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C198	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C200	2310791	Ceramic cap.	33 n	20 % 50 V 0805
C201	2310791	Ceramic cap.	33 n	20 % 50 V 0805
C202	2310791	Ceramic cap.	33 n	20 % 50 V 0805
C203		Ceramic cap.	33 n	20 % 50 V 0805
C210		Ceramic cap.	33 n	20 % 50 V 0805
C211	2310791	Ceramic cap.	33 n	20 % 50 V 0805
C220	2320544	Ceramic cap.	22 p	5 % 50 V 0402
C221		Ceramic cap.	22 p	5 % 50 V 0402
C230	2310791	•	33 n	20 % 50 V 0805
C231		Ceramic cap.	33 n	20 % 50 V 0805
C232	2310791	Ceramic cap.	33 n	20 % 50 V 0805
C233	2310791	·	33 n	20 % 50 V 0805
C234		Ceramic cap.	3.9 n	5 % 50 V 0402
C235		Ceramic cap.	3.9 n	5 % 50 V 0402
C236		Ceramic cap.	22 p	5 % 50 V 0402
C237		Ceramic cap.	22 p	5 % 50 V 0402
C239		Ceramic cap.	100 p	5 % 50 V 0402
-			F	

Techn	ical	Documentation

C248	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C250	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C251	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C252	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C253	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C255	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C256	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C257	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C258	2320536	Ceramic cap.	10 p	5 % 50 V 0402
C259	2320544	Ceramic cap.	22 p	5 % 50 V 0402
C260	2310791	Ceramic cap.	33 n	20 % 50 V 0805
C261	2320110	Ceramic cap.	10 n	10 % 50 V 0603
C262	2310791	Ceramic cap.	33 n	20 % 50 V 0805
C263	2310791	Ceramic cap.	33 n	20 % 50 V 0805
C264	2310791	Ceramic cap.	33 n	20 % 50 V 0805
C265	2310791	Ceramic cap.	33 n	20 % 50 V 0805
C266	2320598	Ceramic cap.	3.9 n	5 % 50 V 0402
C267	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C268	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C269	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C270	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C271	2310791	Ceramic cap.	33 n	20 % 50 V 0805
C272	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C276	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C277	2310791	Ceramic cap.	33 n	20 % 50 V 0805
C278	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C279	2310791	Ceramic cap.	33 n	20 % 50 V 0805
C282	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C283	2310791	Ceramic cap.	33 n	20 % 50 V 0805
C286	2310791	Ceramic cap.	33 n	20 % 50 V 0805
C287	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C290	2310791	Ceramic cap.	33 n	20 % 50 V 0805
C291	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C296	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C501	2320522	Ceramic cap.	2.7 p	0.25 % 50 V 0402
C502	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C503	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C504	2320544	Ceramic cap.	22 p	5 % 50 V 0402
C505	2320544	Ceramic cap.	22 p	5 % 50 V 0402
C506	2320526	Ceramic cap.	3.9 p	0.25 % 50 V 0402
C511	2320534	Ceramic cap.	8.2 p	0.25 % 50 V 0402
C512	2320550	Ceramic cap.	39 p	5 % 50 V 0402
		•	-	

C513	2320518	Ceramic cap.	1.8 p	0.25 % 50 V 0402
C514	2320520	Ceramic cap.	2.2 p	0.25 % 50 V 0402
C515	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C516	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C517	2320550	Ceramic cap.	39 p	5 % 50 V 0402
C521		Ceramic cap.	56 p	5 % 50 V 0402
C536	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C541	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C542	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C543	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C544		Ceramic cap.	1.0 n	10 % 50 V 0402
C545		Ceramic cap.	220 p	10 % 50 V 0402
C546		Ceramic cap.	220 p	10 % 50 V 0402
C551		Ceramic cap.	10 p	5 % 50 V 0402
C552		Ceramic cap.	100 p	5 % 50 V 0402
C553		Ceramic cap.	100 p	5 % 50 V 0402
C554		Ceramic cap.	150 p	5 % 50 V 0402
C555		Ceramic cap.	150 p	5 % 50 V 0402
C556		Ceramic cap.	2.2 n	10 % 50 V 0402
C557		Ceramic cap.	100 p	5 % 50 V 0402
C558		Ceramic cap.	100 p	5 % 50 V 0402
C559		Ceramic cap.	2.2 n	10 % 50 V 0402
C560		Ceramic cap.	2.2 n	10 % 50 V 0402
C561		Ceramic cap.	100 p	5 % 50 V 0402
C562		Ceramic cap.	470 p	5 % 50 V 0603
C563		Ceramic cap.	560 p	5 % 50 V 0402
C564		Ceramic cap.	100 p	5 % 50 V 0402
C565		Ceramic cap.	270 p	5 % 50 V 0805
C566		Ceramic cap.	82 p	5 % 50 V 0402
C567		Ceramic cap.	270 p	5 % 50 V 0805
C569		Ceramic cap.	3.3 n	10 % 50 V 0402
C570		Ceramic cap.	3.3 n	10 % 50 V 0402
C571		Ceramic cap.	3.3 n	10 % 50 V 0402
C572		Ceramic cap.	33 n	20 % 50 V 0805
C573		Ceramic cap.	100 p	5 % 50 V 0402
C574		Ceramic cap.	100 p	5 % 50 V 0402
C575		Ceramic cap.	5.6 p	0.25 % 50 V 0402
C580		Ceramic cap.	1.0 n	5 % 50 V 0402
C601		Ceramic cap.	100 n	10 % 25 V 0805
C602		Ceramic cap.	1.0 u	10 % 16 V 1206
C603		Ceramic cap.	1.0 u	10 % 16 V 1206
C604		Ceramic cap.	100 n	10 % 25 V 0805
	_0.0.01	2 3. 3 Ook		10,000

C605	2312410	Ceramic cap.	1.0 u	10 % 16 V 1206
C606		Ceramic cap.	10 n	20 % 50 V 0805
C607	2310784	Ceramic cap.	100 n	10 % 25 V 0805
C608	2310784	Ceramic cap.	100 n	10 % 25 V 0805
C609	2310784	Ceramic cap.	100 n	10 % 25 V 0805
C701	2320548	Ceramic cap.	33 p	5 % 50 V 0402
C702	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C703	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C704	2320518	Ceramic cap.	1.8 p	0.25 % 50 V 0402
C705	2320520	Ceramic cap.	2.2 p	0.25 % 50 V 0402
C710	2320534	Ceramic cap.	8.2 p	0.25 % 50 V 0402
C711	2320558	Ceramic cap.	82 p	5 % 50 V 0402
C712	2320530	Ceramic cap.	5.6 p	0.25 % 50 V 0402
C713	2320516	Ceramic cap.	1.5 p	0.25 % 50 V 0402
C716	2320530	Ceramic cap.	5.6 p	0.25 % 50 V 0402
C720	2320552	Ceramic cap.	47 p	5 % 50 V 0402
C721	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C722	2320524	Ceramic cap.	3.3 p	0.25 % 50 V 0402
C723	2320518	Ceramic cap.	1.8 p	0.25 % 50 V 0402
C725	2320552	Ceramic cap.	47 p	5 % 50 V 0402
C726	2320524	Ceramic cap.	3.3 p	0.25 % 50 V 0402
C728	2320526	Ceramic cap.	3.9 p	0.25 % 50 V 0402
C730	2320552	Ceramic cap.	47 p	5 % 50 V 0402
C731	2320522	Ceramic cap.	2.7 p	0.25 % 50 V 0402
C732	2320534	Ceramic cap.	8.2 p	0.25 % 50 V 0402
C735	2320584	Ceramic cap.	1.0 n	5 % 50 V 0402
C736	2320584	Ceramic cap.	1.0 n	5 % 50 V 0402
C737	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C738	2320536	Ceramic cap.	10 p	5 % 50 V 0402
C739	2320538	Ceramic cap.	12 p	5 % 50 V 0402
C740	2320584	Ceramic cap.	1.0 n	5 % 50 V 0402
C741	2320556	Ceramic cap.	68 p	5 % 50 V 0402
C742	2320536	Ceramic cap.	10 p	5 % 50 V 0402
C743	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C744	2320538	Ceramic cap.	12 p	5 % 50 V 0402
C755	2320556	Ceramic cap.	68 p	5 % 50 V 0402
C756	2320578	Ceramic cap.	560 p	5 % 50 V 0402
C757	2320578	Ceramic cap.	560 p	5 % 50 V 0402
C758	2320556	Ceramic cap.	68 p	5 % 50 V 0402
C759	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C760	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C761	2320530	Ceramic cap.	5.6 p	0.25 % 50 V 0402

C762	2320524	Ceramic cap.	3.3 p	0.25 % 50 V 0402
C763	2500708	Electrol. cap.	3300 u	20 % 16 V
C764	2320361	Ceramic cap.	18 p	2 % 25 V 0603
C768	2320584	Ceramic cap.	1.0 n	5 % 50 V 0402
C780	2320536	Ceramic cap.	10 p	5 % 50 V 0402
C781	2320536	Ceramic cap.	10 p	5 % 50 V 0402
C782	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C783	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C784	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C800	2604079	Tantalum cap.	0.22 u	20 % 35 V 3.2x1.6x1.6
C801	2310791	Ceramic cap.	33 n	20 % 50 V 0805
C803	2320564	Ceramic cap.	150 p	5 % 50 V 0402
C804	2320552	Ceramic cap.	47 p	5 % 50 V 0402
C805	2320728	Ceramic cap.	220 p	10 % 50 V 0402
C806	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C807	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C808	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C809	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C810	2320728	Ceramic cap.	220 p	10 % 50 V 0402
C820	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C821	2310167	Ceramic cap.	1.0 n	5 % 50 V 1206
C822	2320053	Ceramic cap.	56 p	5 % 50 V 0603
C823	2310248	Ceramic cap.	4.7 n	5 % 50 V 1206
C824	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C828	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C829	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C830	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C831	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C832	2320756	Ceramic cap.	3.3 n	10 % 50 V 0402
C840	2320548	Ceramic cap.	33 p	5 % 50 V 0402
C841	2610100	Tantalum cap.	1 u	20 % 10 V 2.0x1.3x1.2
C842	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C843	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C844	2320538	Ceramic cap.	12 p	5 % 50 V 0402
C845	2320604	Ceramic cap.	18 p	5 % 50 V 0402
C846	2320534	Ceramic cap.	8.2 p	0.25 % 50 V 0402
C847	2320602	Ceramic cap.	4.7 p	0.25 % 50 V 0402
C848	2320560	Ceramic cap.	100 p	5 % 50 V 0402
C849	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C850	2320604	Ceramic cap.	18 p	5 % 50 V 0402
C851	2320550	Ceramic cap.	39 p	5 % 50 V 0402
C862	2320602	Ceramic cap.	4.7 p	0.25 % 50 V 0402

DCT2GSM

			SYSTEM	MODULE (GR8		NHE-4
			01/98OJ				8–76
			" ———	al Documen	tation	Copyright @	Nokia Mobile Phones
C863	2320522	Ceramic o	cap	27 n	0.25 % 5	0 V 0402	
L004			-	•	30/25 MHz		
L140		Ferrite be					1206
L180	3606946	Ferrite be	ad 0.2r 2	26r/100mhz	z 1206		1206
L270		Ferrite be					1206
L271	3641262	Ferrite be	ad 30r/10	00mhz 2a	1206		1206
L272	3606946	Ferrite be	ad 0.2r 2	6r/100mhz	z 1206		1206
L273	3606946	Ferrite be	ad 0.2r 2	6r/100mhz	z 1206		1206
L511	3641550	Chip coil	120 n	10 % Q=	=35/150 MH	dz 0805	
L532	3641550	Chip coil	120 n	10 % Q=	=35/150 MH	dz 0805	
L541	3641550	Chip coil	120 n	10 % Q=	=35/150 MH	dz 0805	
L542	3608326	Chip coil	330 n	5 % Q=3	33/50 MHz	1206	
L543	3641560	Chip coil	220 n	10 % Q=	=30/100 MH	dz 0805	
L544	3641560	Chip coil	220 n	10 % Q=	=30/100 MH	dz 0805	
L545	3608326	Chip coil	330 n	5 % Q=3	3/50 MHz	1206	
L546	3608326	Chip coil	330 n	5 % Q=3	3/50 MHz	1206	
L551	3641538	Chip coil	39 n	20 % Q=	=40/250 MH	1z 0805	
L700	3606946	Ferrite be	ad 0.2r 2	26r/100mhz	z 1206		1206
L705	3640013	Chip coil	8 n	5 % Q=5	50/250 MHz	z 0805	
L710	3641626	Chip coil	220 n	2 % Q=3	30/100 MHz	z 0805	
L711	3641542	Chip coil	56 n	10 % Q=	=40/200 MF	1z 0805	

L705	3640013	Chip coil	8 n	5 % Q=50/250 MHz 0805
L710	3641626	Chip coil	220 n	2 % Q=30/100 MHz 0805
L711	3641542	Chip coil	56 n	10 % Q=40/200 MHz 0805
L800	3641206	Chip coil		10 % Q=25/7.96 MHz 1008
L801	3641206	Chip coil		10 % Q=25/7.96 MHz 1008
L840	3641574	Chip coil	68 n	5 % Q=40/200 MHz 0805
L841	3641538	Chip coil	39 n	20 % Q=40/250 MHz 0805
B001	4510044	Crvstal	60.2 M	

D001	TO TOOTT CITYSIAI	00.Z IVI
B800	4510071 Crystal	26.000 M
G001	4352933 Vco 100	6–1031mhz4.5v 15ma dct2gsm

Z500	4512046	Dupl 890-915/935-960mhz	37x14.7	37x14.7
Z505	4511016	Saw filter 947.5+-12.5 M	5.4x5.2	
Z541	4511026	Saw filter 71+-0.08 M	14.2x8.4	
Z551	4556998	Cer.filt 13+-0.22mhz 330r 7:	x3rad	7x3rad
Z713	4550101	Cer.filt 902.5+-12.5mhz 9.4	x8.9	9.4x8.9
T070	3640402	Transformer 4:1 balun 800ml	nz smd	SMD
V110	4210020	TransistorBCP69-25	pnp 20 V 1 A SOT2	223
V111	4200877	TransistorBCX51-16	pnp 45 V 1.5 A SO	T89

			•	pp
V141	4113828	Trans. supr.	SMBJ28A	ADO214AA
V142	4210020	TransistorBCP69-2	25	pnp 20 V 1 A SOT223
V143	4200226	Darl. transistor	BCV27	npn 30 V 300 mA SOT23
V144	4200226	Darl. transistor	BCV27	npn 30 V 300 mA SOT23
V145	4200909	TransistorBC858B/I	BCW30	pnp 30 V 100 mA SOT23
V147	4110126	Zener diode	BZX84	5 % 4.3 V 0.3 W SOT23

8-77

		Technical	Document	ation	Copyright © Nokia Mobile Phones
V148	4110074	Schottky diode	STPS340	U	40 V 3 A SOD6
V160	4210100	TransistorBC848W	npn 30 V	SOT323	
V161	4210100	TransistorBC848W	npn 30 V	SOT323	
V210	4110014	Sch. diode x 2	BAS70-0	7	70 V 15 mA SOT143
V214	4210079	Transistor	SOT23		
V215	4210079	Transistor	SOT23		
V216	4210050	Transistor DTA114E	E	pnp RB V	EM3
V219	4210100	TransistorBC848W	npn 30 V	SOT323	
V250	4210100	TransistorBC848W	npn 30 V	SOT323	
V251	4200909	Transistor BC858B/I	BCW30	pnp 30 V	100 mA SOT23
V252	4210102	TransistorBC858W	pnp 30 V	100 mA 20	00MWSOT323
V270	4117998	Precision voltage re	ference 4.	.096	4.096
V501	4210046	TransistorBFP182	npn 20 V	35 mA SC	DT143
V502	4210102	TransistorBC858W	pnp 30 V	100 mA 20	00MWSOT323
V503	4210100	TransistorBC848W	npn 30 V	SOT323	
V511	4115802	Sch. diode x 2	4V	30 mA SC	DT23
V512	4210066	TransistorBFR93AV	V	npn 12 V	35 mA SOT323
V541	4210066	TransistorBFR93AV	V	npn 12 V	35 mA SOT323
V701	4210066	TransistorBFR93AV	V	npn 12 V	35 mA SOT323
V702	4100567	Sch. diode x 2	BAS70-0	4	70V15 mA SERSOT23
V710	4200755	TransistorBFR92A	npn 15 V	25 mA SC)T23
V725	4200755	TransistorBFR92A	npn 15 V	25 mA SC	DT23
V726	4210102	TransistorBC858W	pnp 30 V	100 mA 20	00MWSOT323
V735	4210100	TransistorBC848W	npn 30 V	SOT323	
V736	4217070	Transistor x 2		IMD	
V737	4210102	TransistorBC858W	pnp 30 V	100 mA 20	00MWSOT323
V738	4210090	TransistorBFG540/2	X	npn 15 V	129 mA SOT143
V755	4210102	TransistorBC858W	pnp 30 V	100 mA 20	00MWSOT323
V756	4210133	TransistorBFG10W	/X	npn 10 V	0.25 A SOT343
V765	4210100	TransistorBC848W	npn 30 V	SOT323	
V766	4210100	TransistorBC848W	npn 30 V	SOT323	
V767	4100285	Diode x 2 BAV99	70 V 200	mA SER.S	SOT23
V768	4210135	TransistorBLT82	npn 10 V	SO8S	
V780	4110014	Sch. diode x 2	BAS70-0	7	70 V 15 mA SOT143
V800	4110081	Cap. diode	BB640	28/1 V SC	DD323
V801		TransistorBFR93AV		npn 12 V	35 mA SOT323
V802	4210066	TransistorBFR93AV	V	npn 12 V	35 mA SOT323
V840		TransistorBFR93AV		•	35 mA SOT323
V841		TransistorBFR93AV		-	35 mA SOT323
V842		Cap. diode			
D181		IC, SRAM			
D184	4342282	M28c6	4C150 EE	EPROM 8K	X8 150NSTSO2150NSTSO28
184	4342282	IVI∠ŏCʻO	40 150 Et	EPROW 8K	1901207200190190

8-78

D185	
D210 4346012 IC, SRAM 32kx8 bit 70 ns TSO28	
D211 4346010 IC, SRAM 32kx8 bit 70 ns TSOP28	
D230 4370092 IC, D2CA GSM/PCN ASIC SQFP144	
D231 4375174 IC, MCU SQFP80	
N260 4343132 IC, PCM coded/filterST5080 SO28W	
N270 4370015 IC, ASIC SQFP64	
N271 4375588 IC, PSL+ power supply SO24W	
N551 4370091 Crfrt_st tx.mod+rxif+pwc sqfp44 SQFF	44
N601 4370095 Crfcontf 8xreg4.5v vref2v5 vsop28 VSOF	28
N820 4340069 IC, 2xsynt 3v sso UMA1018M/C1/C3/S1 SSO2	0
X100 5469033 System conn 4DC+JACK+16AF+1RF	
X196 5431718 Flexfoil connect 1x30 0.5mm smd	
X501 9510143 Antenna clip 4D23053 NHK-1XA	
W501 9780074 Coax cable 4D23278 NHK-1XA	
9380233 Sticker brady lat-11-747w-5	
9480204 Damping pad 4D25528 NHE-4	
9854011 PCB GR8 50.0X139.0X1.0 M6 2/PA	