

Machine Learning

(https://leonpalafox.github.io/mlclase/)

Leon F. Palafox PhD

Noticias

Machine learning predicts World Cup winner

Escenario

- Estamos tratando de detectar si alguien es buen conductor o mal conductor.
- Hacemos una encuesta:
 - Medimos distintas variables:
 - Skill (basado en metricas)
 - Diversion (basado en tiempo)
 - Precisión
 - Edad, genero, etc

Hay variables que sobran

- Creamos una nueva variable
 - Esta variable es el "karma" de cada usuario
 - La nueva variable captura la varianza

PCA

Buscar la dirección donde los datos varían mas

Options, options!

Descomposición de Features

- Cuando tenemos muchos features
 - Muchos son redundantes
 - Velocidad en diferentes dimensiones
 - Electrodos en gorros de EEG
 - Edad y Fecha de Nacimiento
- Es muy común utilizer la matriz de correlaciones
 - Esto nos indica que Features estan correlacionados y los podemos eliminar.

ICA (Análisis de Componentes Principales)

Definición del problema

 Dadas s (fuentes), una matriz de transformación A, la señal observada es x

$$x = As$$
,

• El problema consiste en encontrar s y A.

Algunas limitaciones

Es imposible encontrar las escalas correctas.

 Los datos no pueden tener una distribución normal.

Computacionalmente

 ICA es mucho más intensivo que PCA, ya que trata de encontrar s y A

En general debemos utilizar Normalización

Normalización

1. Let
$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$$
.

- 2. Replace each $x^{(i)}$ with $x^{(i)} \mu$.
- 3. Let $\sigma_j^2 = \frac{1}{m} \sum_i (x_j^{(i)})^2$
- 4. Replace each $x_j^{(i)}$ with $x_j^{(i)}/\sigma_j$.

Aprendizaje de Manifold

- Conforme tenemos más dimensiones,
 visualizer los datos se vuelve más dificil
- Aprendizaje de manifold se utiliza para analizar datos
- Es importante para otras areas de ML

T-SNE

t-distributed stochastic neighbor embedding

http://everynoise.com/engenremap.html

http://cs.stanford.edu/people/karpathy/tsnejs/csvdemo.html

T-SNE theory

- Dados dos espacios X y Y donde:
 - Dimensionalidad de X >> Dimensionalidad de Y (2-3)
- T-SNE calcula distribuciones que garanticen que objetos similares van a estar cerca.

$$p_{j|i} = rac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2/2\sigma_i^2)}{\sum_{k
eq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|^2/2\sigma_i^2)}, \qquad q_{ij} = rac{(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}}{\sum_{k
eq i} (1 + \|\mathbf{y}_k - \mathbf{y}_i\|^2)^{-1}} \ p_{ij} = rac{p_{j|i} + p_{i|j}}{2N}$$

Aplicaciones

Cancer Prognosis

Aplicaciones

Lochner, Michelle, et al. "Photometric Supernova Classification with Machine Learning." *arXiv preprint arXiv:1603.00882* (2016).

Aplicaciones

Thompson, David R., et al. "Automating X-ray Fluorescence Analysis for Rapid Astrobiology Surveys." *Astrobiology* 15.11 (2015): 961-976.

Cheat Sheet

Futuro de ML

- ML tiene un future prometedor como industria
- Deep Learning esta comenzando a crear muchas industrias
- Apple esta comenzando a desarrollar muchas cosas con ML
- Muchas personas concuerdan en que ML es el principio de la nueva revolución industrial.

Consecuencias

- Aún mas especialización
 - Mas desempleo
- Quienes no lo tomen en serio, pueden caer en la obsolecencia muy rapido.
 - Liverpool, Palacio de Hierro
- Expertos en ML van a ser muy demandados.

Objetivo de la clase

- Familiarizar a las personas con ML
- Mostrar como diferentes sets de datos tienen diferentes problemas
- Mostrar que ML no es Plug and Lay y si require conocimiento acerca de los algoritmos

Emocionarlos acerca de ML