פרויקט גמר 5 יחידות לימוד התמחות – למידת מכונה Deep Learning

נושא הפרויקט:

זיהוי אקדחים בתמונות וסרטונים Handgun detection

שם התלמיד: עידן משה

מעודת זהות: 325944676

שם המנחה: דינה קראוס

שם החלופה: למידת מכונה

תאריך הגשה: 16.6.2022

תוכן עניינים

	תוכן עניינים
4	מבוא
של הפרויקט	מבנה / ארכיטקטורה
יתוח הנתונים	שלב איסוף הכנה ונ
ַננים	תיאור מבנה הנת
תונים הגולמיים	תיאור וניתוח הנו
9 לאימון Datas	etתהליך הכנת ה
ידלדל	,
מודל עליו בוצע האימון	
בות השונים ברשת	הסבר על סוגי השכו
14	שכבת Conv
14M	שכבת axPooling
14 BatchNorr	malization שכבת
14	שכבת Activation
15	Dense שכבת
15	ncatenate שכבת
ארים את תוצאות שלב האימון	דוחות וגרפים המת
18 Hyper Parameters ה	דוח הכולל ריכוז כנ
Hyper Parameters עשו במודל וב	תיעוד על השינוי שנ
26	תיעוד והסבר של פו
עול ההתכנסות (Optimization)	תיעוד והסבר של ייי
עם הטיה ושונות	תיעוד ההתמודדות
30	שלב היישום
צד היישום משתמש במודל	תיאור והסבר כיז
מחלקות הממשק	תרשים UML של
ט את הנתונים ומכין אותם לחיזוי	תיאור קוד הקול
32	מדריך למפתח
32	project_main.py
32	project_gui.py
33Lc	oadTestWindow.py
35TrainTest	tExportWindow.py
37	TestWindow.py
39Test	
40	
43	

Idan Moshe / Handgun Detection – עידן משה / זיהוי אקדחים בתמונות וסרטונים

45	BasicFunctions.py
48	PrintUtils.py
50	base_pipeline.config
50	התיקייה models
51	מדריך למשתמש
51	מסכים - Screen flow diagram
51	הוראות התקנה
53	הרצת התוכנית ותפקידו של כל מסך
63	רפלקציה
64	ביבליוגרפיה
65	נספחיםנספחים

מבוא

תחום היילמידת מכונהיי (Machine Learning) ככלל וה- יילמידה העמוקהיי (Deep Learning) בפרט נחשב לחוד החנית של חקר מדעי המחשב בעולם כולו, זהו נושא ההתמחות שלנו במהלך לימודי מדעי המחשב בתיכון וכן זהו נושא פרוייקטי הגמר שלנו.

תחום הלמידת מכונה עוסק בלימוד מחשב לפתור בעיות מורכבות בתהליך הדומה ללמידה אנושית – דרך ניסוי וטעיה. המכונה היא בעלת יכולת חישוב וזיכרון גבוהים בהרבה מזו של בני אדם, ולכן לעתים מודל טוב יכול לפתור בעיות שאפילו בני אדם מתקשים לפתור.

בתחום של למידת מכונה אנו מנסים לחקות בתוך המחשב את תהליך הלמידה של בני אדם, ולכן גם צורת החשיבה והניתוח של בני האדם מועתקת בקירוב לתוך המחשב. אצל בני האדם, המוח מורכב מכמות רבה מאוד של נוירונים, שכל אחד מהם מקבל מידע מנוירונים אחרים ומעביר מידע מעובד לנוירונים הבאים. בלמידת מכונה, בדומה למוח האנושי, יש נוירונים המקבלים מידע מצד אחד ומעבירים אותו, לאחר עיבוד פשוט, לנוירונים הבאים.

לנושא הפרויקט שלי אני בחרתי בנושא של זיהוי וסימון אקדחים בתוך תמונות וסרטונים, Object Detection. כלומר המודל מתאמן על תמונות שבהן יש אקדחים מסומנים, ולאחר מכן יכול לזהות ולסמן היכן יש אקדחים בתמונות שלא ראה לפני כן.

בחרתי בנושא זה מכיוון שנשיאת נשק למקומות אסורים וכן שימוש בהם היא בעיה גדולה שפתרונה כרוך בהצלת חיי אדם. לעיתים מאבטחים שצופים במצלמות האבטחה מאבדים ריכוז או נרדמים, דבר שיכול לסכן את בטחון באנשים. לכן הפתרון הוא שימוש בתוכנה, שלא כמו בני אדם, לא מאבדת ריכוז ולא צריכה לישון. כלומר התוכנה הזה יכול לקבל סרטונים ממצלמות אבטחה ולזהות אקדחים. כך יהיה ניתן להפחית את השימוש בכוח האדם, ובו זמנית לשפר את רמת ההבטחה במקום.

בעתיד, פיתוח התוכנה יכול לכלול גם זיהוי סכינים וכלי נשק גדולים יותר, תוך כדי שימוש בקלט ממספר חיישנים שונים כמו מצלמות רגילות, מצלמות Xray, גלאי מתכות וכו'.

בסקירת המצב הקיים בשוק מצאתי מספר חברות (https://zeroeyes.com/) הנותנות שירות של גילוי כלי נשק במצלמות אבטחה, ורובן (https://www.omnilert.com/) מבוססות על A.I. עם זאת, החברות מבקשות תשלום על השירות, ולרוב לא מאפשרות אימון, בחינה ושימוש פרטי במודל.

במהלך כתיבת הפרויקט נתקלתי במספר אתגרים משמעותיים. האתגר המשמעותי ביותר היה שהיה לי ידע מצומצם ביותר בנושא הלמידת מכונה ככלל וObject Detection בפרט, לכן היה עלי להתנסות בהרבה דרכים שבהם אני יכול להשלים את מטרת הפרויקט, כמו גם לקרוא הרבה מאמרים באנגלית שמסבירים על הנושא.

אתגר נוסף שאיתו התמודדתי במהלך הפרויקט הוא מחסור בכמות הנתונים. לנושא המחקר שבחרתי לא היו הרבה מקורות נתונים שפתוחים לשימוש לקהל הרחב, ורוב החברות מעדיפות שבחרתי לא היו הרבה מקורות נתונים שלהן לעצמן. לכן, בחרתי להשתמש בAPI שנקרא שנקרא (Application Programming Interface) API כלומר מענה לבעיות של מתכנתים אחרים דרך קוד.

Tensorflow Object Detection API הסבר קצר על

במהלך תהליך המחקר המקדים לפרויקט הבנתי שאני אצטרך לבצע Object Detection, כלומר זיהוי אובייקטים בתמונות (סרטונים הם רצף של תמונות).

בהמשך המחקר התברר שObject Detection הוא אחד מהנושאים המתקדמים והמסובכים בהמשך המחקר מכונה וComputer Vision, ולרוב כדי לאמן מודל מוצלח צריך כמות נתונים של עשרות אלפי תמונות וידע של שנים בנושא של למידת מכונה, שני דברים שאין לנו כתלמידים במסגרת ההתמחות בתיכון.

כדי לאפשר לאנשים כמוני גם להתנסות בעולם של Object Detection, היוצרים של בדי לאפשר לאנשים כמוני גם להתנסות בעולם של Tensorflow עצמו, בעל קוד פתוח וקריא לכולם ולו הם קראו Tensorflow Object Detection API

בעזרת הכלי הזה ניתן לבנות, לאמן ולהשתמש במודל המבצע Object Detection גם על מבני נתונים קטנים ובלי ידע נרחב בנושא.

התהליך שבו הTensorflow Object Detection API משתמש כדי לגרום גם למצור למחר לתחליך שבו הTine-tuning אחר לגמרי מודל הוא בעזרת שיטה שנקראת fine-tuning. כלומר לקחת מודל שאומן על מספר בעל מספר רב של אובייקטים ותמונות (לפעמים גם אלפי אובייקטים ומיליוני תמונות), וכבר מומחה בלזהות ולהפריד אובייקטים מתמונות, ורק לאמן אותו בצורה מצומצמת כדי שידע לזהות אובייקטים לפי הdataseth החדש.

על דרכי השימוש בכלי והכנת הנתונים באופן המתאים לשימוש בו אפרט בהמשך בחלקים המתאימים.

ארכיטקטורה של הפרויקט/מבנה

שלב איסוף הכנה וניתוח הנתונים

תיאור מבנה הנתונים

ה- שמצאתי מגיע במקור ממחקר שנעשה באוניברסיטת גרנדה dataset

שבו הם ניסו לפתור בעיה דומה לשלי. (https://sci2s.ugr.es/weapons-detection#RP)

את dataseth הורדתי ישירות מהקישורים הנייל:

: images

https://sci2s.ugr.es/sites/default/files/files/TematicWebSites/WeaponsDetection/BasesDeDatos/WeaponS.zip

: labels

https://sci2s.ugr.es/sites/default/files/files/TematicWebSites/WeaponsDetection/Base sDeDatos/WeaponS bbox.zip

מקישורים אלו קיבלתי את הקבצים:

שובץ המכיל את התמונות – WeaponS.zip

שבץ התוויות – WeaponS_bbox.zip

תיאור וניתוח הנתונים הגולמיים

הגולמי מגיע בשני קבצי zip שונים, אחד לתמונות ואחד לתוויות. לכן הייתי צריך לשלב Dataset.zip אותם לקובץ אחד ולו קראתי

: בדי לעשות זאת, קודם כל יצרתי תיקייה ראשית ששמה Dataset ובה שני תיקיות

images – תיקייה לתמונות

annotations – תיקייה לתוויות

WeaponS.zip אל התיקייה images העתקתי את כל התמונות

WeaponS_bbox.zip אל התיקייה annotations העתקתי את כל התמונות

לאחר מכן כיווצתי ל-zip את התיקייה Dataset וזוהי התיקייה שהתוכנה תקבל לאימון המודל.

לכל תמונה יש קובץ תוויות משלה, בפורמט xml.

מבנה תוכן קובץ התוויות:

Pascal VOC תוכן קובץ התוויות רשום בפורמט הנתונים Object Detection הפורמט הזה הוא דרך לכתוב את התוויות של

: (אוויות הלא נחוצות) מווית של קובץ תווית (ללא התוויות הלא

: דוגמא לקובץ תווית

```
<annotation>
 <folder>Definitiva</folder>
 <filename>armas (1)</filename>
 <path>C:\Users\Rob\Desktop\Definitiva\armas (1).jpg</path>
 <source>
    <database>Unknown</database>
 </source>
 <size>
   <width>240</width>
   <height>145</height>
    <depth>3</depth>
 </size>
 <segmented>0</segmented>
 <object>
   <name>pistol</name>
   <pose>Unspecified</pose>
   <truncated>0</truncated>
   <difficult>0</difficult>
    <br/>bndbox>
     <xmin>3</xmin>
     <ymin>1
     <max>128</max>
     <ymax>100
    </bndbox>
 </object>
 <object>
   <name>pistol</name>
   <pose>Unspecified</pose>
    <truncated>0</truncated>
    <difficult>0</difficult>
    <br/>bndbox>
     <xmin>123
     <ymin>47
     <max>238</max>
     <ymax>145
    </bndbox>
 </object>
</annotation>
```

תהליך הכנת הDataset לאימון

לפני הכל, הdataset מאוחסן בקובץ zip, ולכן תחילה עלינו לחלץ אותו לתיקייה ריקה.

לאחר מכן, עלינו לוודא שהdataset תקין, כלומר שניתן לקרוא את קובצי התוויות (xml) ולחלץ מהם את כל המידע הנחוץ. בנוסף, צריך לבדוק שהמידע עצמו תקין: גודל התמונה בתווית תואם את גודל התמונה האמיתית, הגבלות הקופסא לא גדולות מגודל התמונה וכו׳...

evaluation ו-train אחרי שבדקנו שהנתונים תקינים צריך לחלק אותם ל כלומר נתונים שעליהם יתאמן המודל, ונתונים שעליהם המודל ייבדק

לבסוף צריך לקודד את הנתונים לפורמט שנשלח לTensorflow Object Detection API. כמו שהזכרתי בתחילת הספר, כדי להשתמש בTensorflow Object Detection API הנתונים צריכים שהזכרתי בתחילת הספר, כדי להשתמש בTFRecord, ניתן לקרוא עליו קצת בקישור להיות מאורגנים בפורמט מיוחד. פורמט זה נקרא fttps://medium.com/mostly-ai/tensorflow-records-what-they-are-and-how-to-use-)

בקיצור, הפורמט TFRecord הוא פורמט בינארי, כלומר המידע שמור בצורה בינארית, שמייעל זמן ריצה ומקום בדיסק.

כדי שה Tensorflow Object Detection API יוכל לקרוא את הנתונים, הם צריכים להיות TFRecord במבנה מסוים, עבור כל תמונה המידע מקודד כך:

ערד	סוג המידע	פיסת המידע
גובה התמונה	int64	image/height
רוחב התמונה	int64	image/width
שם קובץ התמונה	bytes	image/filename
שם קובץ התמונה	bytes	image/source_id
התמונה עצמה מקודדת	bytes	image/encoded
שם פורמט התמונה	bytes	image/format
רשימת הגבולות השמאליים	float_list	image/object/bbox/xmin
של התוויות		
רשימת הגבולות הימניים של	float_list	image/object/bbox/xmax
התוויות		
רשימת הגבולות התחתונים	float_list	image/object/bbox/ymin
של התוויות		
רשימת הגבולות העליונים	float_list	image/object/bbox/ymax
של התוויות		
רשימת שמות התוויות	bytes_list	image/object/class/text
רשימת הid של התוויות	int64_list	image/object/class/label

Idan Moshe / Handgun Detection – עידן משה / זיהוי אקדחים בתמונות וסרטונים

שיטת נרמול הנתונים נעשית בזמן הריצה על ידי Tensorflow Object Detection API, מכיוון שיטת נרמול הנתונים נעשית בזמן הריצה על שיטת נרמול הנתונים והיא זו:

: תחילה מחסירים מכל ערוץ צבע את הערכים הבאים

```
אדום – 123.68
ירוק – 116.779
כחול – 103.939
```

m VGG זוהי שיטת נרמול שבה משתמשים במודלים הבנויים על לאחר מכן משנים את הגודל של התמונות לגודל של 640 על 640 פיקסלים

שלב בנייה ואימון המודל

תיאור גרפי של המודל עליו בוצע האימון

,יש אפשרות בין מודלים רבים, דensorflow Object Detection API בתוך בתוך האני בחרתי מודלים רבים אני בחרתי במודל הנקרא (RetinaNet50)

בתחילת המודל יש את ה feature extractor כלומר חלק במודל האחראי למפות בקירוב אובייקטים ואת מיקומם בתמונה. זהו החלק השמאלי בתמונות הבאות. חלק זה בנוי במבנה של Bottom Up המבוסס על ה ResNet50, שזהו בסיס נפוץ לחלק ה Bottom Up, ואז יש את חלק הTop Down. שלוקח את התוצאות מחלק הפניקטים הסופית.

לאחר מכן יש את ה box predictor, זהו החלק במודל המקבל את מפות האובייקטים ומהם מבצע את שלב החיזוי הסופי של האובייקטים.

הסבר על סוגי השכבות השונים ברשת

שכבת Conv

שכבה זו היא שכבה שלרוב משומשת כדי לנתח מידע מתמונות.

שכבה זו פועלת בעזרת פילטרים הנקראים kernels. כל פילטר בנוי מריבוע של משקולות שעוברות על התמונה, המשקולות מוכפלות במידע שהריבוע מכסה ומחברת את התוצאות, לאחר מכן הריבוע זז הצידה כמות מסוימת של צעדים וחוזר חלילה.

שכבת MaxPooling

שכבה זו נועדה כדי להקטין את גודל הממדים של התמונה על ידי העברה של ריבוע בגודל מסוים על התמונה, כמו שכבת Conv אבל רק לקחת את הערך הגבוה מבין כל הערכים בריבוע. בדרך זו גודל הממדים משתנים משמעותית עם פגיעה מינימלית באיכות המידע, דבר זה מאפשר אימון וחישוב מהיר יותר של קלטים דרך המודל.

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

שכבת BatchNormalization

שכבה זו מנרמלת את תוצאות הhidden layers לממוצע סביב ה-0 עם פיזור של 1. דבר זה עוזר להגביר את קצב האימון של המודל ולמנוע את הבעיה של overfitting

שכבת Activation

שכבה זו מבצעת את פונקציית ההפעלה – Activation Function על הערכים שהיא מקבלת. דבר זה מכניס חוסר לינאריות ובכך המודל מסוגל לחזות דברים שלא קשורים בצורה קווית.

שכבת Dense

שכבה זו היא שכבה של נוירונים שבה כל הנוירונים מחוברים לכל הקלטים ולכל הפלטים של השכבה, כלומר שכבה זו היא Fully Connected

שכבת Concatenate

שכבה זו מחברת כמה array שהשכבה מקבלת לarray אחד. השכבה מחברת את המערכים לפי ציר חיבור - axis.

דוחות וגרפים המתארים את תוצאות שלב האימון

בכל אימון של מודל חדש נוצרים כמה גרפים ודוחות. הגרפים האלו נשמרים בקבצי events בתוך התיקיות train eval בתוך תיקיית אימון המודל וניתנים לקריאה על ידי כלי הוויזואליזציה שנקרא Tensorboard.

תוך כדי אימון המודל Tensorboard נפתח אוטומטית וניתן לראות את הדוחות דרך הלינק שנשלח בתחילת האימון:

TensorBoard 2.8.0 at http://localhost:56269/ (Press CTRL+C to quit)

לאחר סיום האימון ה Tensorboard נסגר.

כדי לראות מחדש את הדוחות ניתן לפתוח את Tensorboard מחדש דרך שורת הפקודה של אנקונדה על ידי הרצת הפקודה:

c:\Users\@@@>tensorboard --logdir=<path> --host=localhost --port=0) כאשר מחליפים את <path> בנתיב לתיקיית האימון.

ב Tensorboard עצמו ניתן לראות את הגרפים הבאים:

:Scalars תחת הכרטיסייה

ניתן לראות גרפים המתארים את ה mAP, היחס בין כמות החיזויים הנכונים שהמודל ביצע לחלק לסכום הניחושים הכללי של המודל, כלומר גרפים אלו מראים כמה מהחיזויים של המודל היו באמת נכונים.

ניתן לראות גרפים המתארים את ה Recall, היחס בין כמות החיזויים הנכונים חלקי סכום החיזויים הנכונים ועוד חוסר חיזוי במקום שאמור להיות, כלומר גרפים אלו מראים באיזו מידה המודל מצליח למצוא את כל הקופסאות שאמורות להיות.

ניתן לראות גרפים המתארים את הLoss,

ה classification_loss הוא כמה המודל טועה בחישוב הביטחון של המודל בכל חיזוי.

הוא כמה המודל טועה בחישוב גודל ומיקום החיזוי. localization_loss

ה regularization_loss המיועד למנוע התאמה יתרה (overfitting) אל הנתונים עליהם loss המיועד למנוע התאמה מתאמן, בצורה זו המודל יכול להכליל בצורה יותר טובה ולזהות גם תמונות שלא התאמן עליהן.

בנוסף ניתן לראות גרפים של ה learning rate וכמות הsteps בשנייה.

 \mathbf{x} - ציר ה \mathbf{X} בכל אחד מהגרפים מתאר את

:mAP דוגמא לגרפי

: Recall דוגמא לגרפי

דוגמא לגרפי Loss: הכתום, גרף Loss של האימון הכחול, גרף Loss על בדיקת המודל

תחת הכרטיסייה Images

.augmentation ניתן לראות חלק מהתמונות שעליו אומן המודל

.steps 1000 בכל evaluation ניתן לראות חיזוי של המודל על תמונות

בכל אחת מהתמונות ניתן לראות את הtep שעליו נחזה התמונה ובעזרת הסליידר הכתום ניתן לזוז בין הstep. לזוז בין הstep.

החלק הימני של התמונה הוא התמונה עם התוויות האמיתית, החלק השמאלי של התמונה הוא התמונה עם החיזוי של המודל.

דוח הכולל ריכוז כל ה Hyper Parameters

כל ה Hyper Parameters הניתנים לשינוי על ידי הHyper Parameters הניתנים לשינוי על ידי האימון הנוכחית. בקובץ הקונפיגורציה בתיקיית האימון הנוכחית. בקובץ יש מספר רב של Hyper Parameters הניתנים לשינוי.

:חלק ה feature extractor של המודל

```
feature extractor {
  type: "ssd resnet50 v1 fpn keras"
  depth multiplier: 1.0
  min depth: 16
  conv hyperparams {
    regularizer {
      12_regularizer {
                                                           הregularizer של שכבות
        weight: 0.00039999998989515007
                                                                      Convn
    initializer {
      truncated normal initializer {
                                                             הinitializer של שכבות
        mean: 0.0
                                                                      Convn
        stddev: 0.029999999329447746
      }
                                                            הActivation של שכבות
                                                                       Convn
    activation: RELU 6 ←
    batch norm {
      decay: 0.996999979019165
                                                                 שכבות ה Batch
      scale: true
      epsilon: 0.0010000000474974513
                                                                  Normalization
  override base feature extractor hyperparams: true
  fpn {
    min level: 3
    max level: 7
  }
```

וחלק ה box predictor של המודל:

```
box_predictor {
  weight shared convolutional box predictor {
    conv hyperparams {
      regularizer {
         12 regularizer {
                                                         regularizer של שכבות
           weight: 0.00039999998989515007
                                                                    Convn
      initializer {
         random normal initializer {
                                                          הinitializer של שכבות
          mean: 0.0
                                                                    Conv
           stddev: 0.009999999776482582
                                                              הActivation של שכבות
                                                                        Convn
      activation: RELU_6 -
      batch norm {
         decay: 0.996999979019165
                                                                 שכבות ה Batch
         scale: true
                                                                 Normalization
         epsilon: 0.0010000000474974513
      }
    depth: 256
    num_layers_before_predictor: 4
    kernel_size: 3
    class prediction bias init: -4.599999904632568
```

: Lossa פונקציית

```
localization_loss {
    weighted_smooth_l1 {
    }
}
classification_loss {
    weighted_sigmoid_focal {
        gamma: 2.0
        alpha: 0.25
    }

classification_weight: 1.0
    localization_weight: 1.0
}
```

: קונפיגורציית האימון

```
train config {
                                     batch sizen
 batch size: 2 ←
 data_augmentation_options {
    random horizontal flip {
 data augmentation options {
    random crop image {
     min_object_covered: 0.0
                                                                      מל augmentations על
     min_aspect_ratio: 0.75
                                                                       התמונות המאומנות
     max_aspect_ratio: 3.0
     min_area: 0.75
     max area: 1.0
      overlap_thresh: 0.0
  }
 sync_replicas: true
 optimizer {
    momentum_optimizer {
      learning_rate {
        cosine_decay_learning_rate {
          learning_rate_base: 0.04
          total_steps: 25000 ←
         warmup_learning_rate: 0.013333
                                                       optimizern
          warmup_steps: 2000
     momentum_optimizer_value: 0.9
    use_moving_average: false
  fine tune checkpoint: "C:/dev/Project/Pi
                                                                           מספר הsteps
 num steps: 25000
                                                                                לאימון
 startup_delay_steps: 0.0
 replicas_to_aggregate: 8
 max number of boxes: 100
 unpad groundtruth tensors: false
  fine_tune_checkpoint_type: "detection"
 use_bfloat16: true
  fine_tune_checkpoint_version: V2
```

Hyper Parameters תיעוד על השינוי שנעשו במודל וב

בתחילת תהליך הניסויים של המודל ניסיתי כמות שונה של batch_size במשך 25000 של אימונים.

אימנתי את המודל על batch_size של 1, 2, 4

הנה הגרפים של תוצאות האימונים מקודדים בצבעים לפי הטבלה הבאה:

: mAP גרפי ה

: Recall גרפי ה

: Loss n

מתוך הגרפים ניתן לראות שכאשר הbatch_size הוא 2 תוצאות האימונים של המודל טובה יותר בצורה משמעותית.

לאחר מכן ניסיתי שלושה ערכים שונים לכמות הsteps של אימון המודל על batch_size של 2. בהתחלה אימנתי את המודל במשך 25000, 25000 ולבסוף steps 200000. הנה הגרפים של תוצאות האימונים מקודדים בצבעים לפי הטבלה הבאה:

: mAP גרף ה

: Recall גרף ה

: Loss ה

מהתוצאות ניתן לראות שיש שיפור ככל שכמות ה steps עולה, למרות שהשיפור לא גדול הוא עדיין נוכח.

תיעוד והסבר של פונקציית השגיאה

פונקציית השגיאה של המודל מורכבת משלושה חלקים.

החלק הראשון הוא ה localization loss, זוהי שגיאה שנקבעת על פי היכולת של המודל לחזות את גודל ומיקום הקופסא בצורה נכונה.

אניאה זו מחושבת על ידי פונקציית השגיאה weighted_smooth_l1 שגיאה על ידי פונקציית שגיאה וו מחושבת על ידי פונקציית השגיאה. Object Detection המשומשת כדי לבצע

פונקציה זו מחושבת על ידי הנוסחה:

$$L_1 := (a, b, N) \rightarrow \sum_{i=1}^{N} |a[i] - b[i]|$$

$$smooth_{LI} := (x) \rightarrow piecewise (abs(x) < 1, 0.5 \cdot x^2, abs(x) - 0.5)$$

 $x \rightarrow piecewise (|x| < 1, 0.5 \cdot x^2, |x| - 0.5)$ (1)

Where x will be the L1 distance between 2 vectors.

 $\mathit{smooth}_{LI_{plot}} := \mathit{piecewise} \big(\mathsf{abs}(x) < 1, 0.5 \cdot x^2, \mathsf{abs}(x) - 0.5 \big)$

$$\begin{cases} 0.5 x^2 & |x| < 1 \\ |x| - 0.5 & otherwise \end{cases}$$
 (2)

 \rightarrow

$$smooth_{LI}(L_I(p, q, numelems(p)))$$

החלק השני הוא ה classification loss, זוהי שגיאה הנקבעת על פי היכולת של המודל לזהות איזה אובייקט יש בתמונה וכמה בטוח המודל שיש שם אובייקט. שגיאה זו מחושבת על ידי פונקציית השגיאה weighted_sigmoid_focal. פונקציה זו מחושבת על ידי הנוסחה:

$$FL = -\sum_{i=1}^{C=2} (1 - s_i)^{\gamma} t_i log(s_i)$$

החלק השלישי הוא ה regulization loss והיא שגיאה המתווספת לשגיאה הרגילה כדי למנוע התאמה יתרה (overfitting) על הנתונים עליהם המודל מתאמן, בצורה זו המודל יכול להכליל בצורה יותר טובה ולזהות גם תמונות שלא התאמן עליהן. פונקציה זו מחושבת על ידי הנוסחה:

$$\|\mathbf{w}\|_2 = (|w_1|^2 + |w_2|^2 + \dots + |w_N|^2)^{\frac{1}{2}}$$

2-norm (also known as L2 norm or Euclidean norm)

$$Loss = Error(y, \hat{y}) + \lambda \sum_{i=1}^{N} w_i^2$$

Loss function with L2 regularisation

תיעוד והסבר של ייעול ההתכנסות (Optimization)

ה Optimizer של המודל נקרא Gradient Decent שבו המודל משתפר באמצעות חישוב מייעל זה פועל בשיטה הרגילה של Gradient Decent שבו המודל משתפר באמצעות חישוב השיפוע של פונקציית השגיאה, אבל בנוסף משתמש בMomentum. Momentum הוא התנע של חישוב השגיאה. כלומר אם השגיאה מתקדמת בכיוון מסוים וממשיכה להתקדם באותו כיוון למשך פרק זמן, השינוי במשקולות יהיה גדול יותר ויותר כדי לעזור למודל להגיע לנקודת המינימום בפונקציית השגיאה יותר מהר. דבר זה מייעל את תהליך אימון המודל ומקצר את מספר הsteps הדרוש לאימון.

המשתנה learning rate של המודל נקרא cosine_decay_learning_rate של המודל נקרא לקרא learning_rate המשתנה לאורך אימון המודל.

:learning raten הנה גרף המציג את צורת

כמו שניתן לראות בהתחלה הlearning rate עולה לערך מסוים ואז יורד בצורה הדרגתית. דבר זה מקנה למודל שינוי גדול בהתחלה כדי להגיע למצב בו המודל מוצא נקודת מינימום טובה בפונקציית השגיאה.

לאחר מכן הlearning rate יורד בצורה הדרגתית, דבר שמקנה למודל יכולת להתאמן על הדקויות ולהגיע קרוב יותר ויותר לנקודת המינימום בפונקציית השגיאה.

כך נוצר מצב שבו המודל מתאמן מהר יחסית אבל לא מפספס את נקודת המינימום.

תיעוד ההתמודדות עם הטיה ושונות

הגרף הכתום הוא הגרף של שגיאת האימון, ניתן לראות בכל אחד מסוגי השגיאות שלמרות שהגרף קופץ למעלה ולמטה די הרבה, בטווח הרחוק הוא במגמה יורדת.

הגרף הכחול הוא הגרף של שגיאת המבחן, גם בו ניתן לראות שבכל אחד מסוגי השגיאות, השגיאה היא במגמה יורדת.

שלב היישום

תיאור והסבר כיצד היישום משתמש במודל

דרך אחת היא כאשר רוצים לאמן מודל חדש, במקרה זה היישום מבקש מהמשתמש תיקייה שבה יוכל לאחסן את קבצי המודל, מייצר קובץ קונפיגורציה שאותו המשתמש יכול לשנות, ולאחר שהמשתמש סיים לשנות את הקובץ, פונה לTensorflow Object Detection API כדי לאמן מודל חדש עם הפרמטרים שניתנו בקובץ קונפיגורציה.

דרך שנייה היא כאשר אנו רוצים לייצא מודל שאימנו, במקרה זה היישום מבקש מהמשתמש את התיקייה של המודל שאותו המשתמש רוצה לייצא ואת התיקייה שבה יווצרו הקבצים של המודל המיוצא, לאחר מכן היישום פונה לTensorflow Object Detection API כדי לייצא את המודל.

דרך שלישית היא כאשר אנו רוצים לבדוק מודל שכבר ייוצא בשלב השני, במקרה זה המודל מקבל תמונה, או סרטון המחולק לתמונות ועבור התמונות האלה הוא מחזיר את הקופסאות המנוחשות.

תרשים UML של מחלקות הממשק

הטכנולוגיה שעל פיה מומש הממשק היא הספרייה tkinter. הספרייה tkinter היא ספרייה סטנדרטית לייצור של ממשקים בפייתון.

תיאור קוד הקולט את הנתונים ומכין אותם לחיזוי

יש כמה דרכים בהן ניתן לבדוק את המודל המאומן:

דרך אחת היא לחזות על תמונה אחת ולהציג אותה למשתמש.

תחילה הממשק מבקש מהמשתמש לבחור תמונה מסוג jpg שעליה המודל יבצע חיזוי. לאחר מכן התמונה נטענת, מועברת לפורמט RGB ואז לnumpy array. לבסוף המערך מוגדל כדי להתאים לגודל הumpy array של המודל. כלומר (BatchSize, Width, Height, 3) כאשר Batchsize יהיה 1 מכיוון שיש רק תמונה אחת. המערך מוכנס למודל, מהמודל מתקבלות הקופסאות והערכת הניקוד של כל קופסא, כלומר כמה המודל בטוח שיש באותה קופסא אקדח. החיזוי של המודל מוצג על התמונה המקורית וזו מוצגת למשתמש בחלון חדש.

דרך שנייה היא לחזות על סרטון, ולשמור את הסרטון עם החיזוי עליו. תחילה הממשק מבקש מהמשתמש קובץ סרטון מסוג mp4 וקובץ שאליו יישמר הסרטון לאחר החיזוי. הסרטון המקורי מחולק לפריימים, כלומר הוא מחולק לתמונות שמהן בנוי הסרטון, בעבור כל פריים המודל מציג חיזוי של קופסאות והערכות הניקוד, החיזוי של המודל מוצג על התמונה ונרשם כפריים בסרטון החדש.

דרך שלישית היא לחזות בשידור חי על המצלמה המותקנת על המחשב. הממשק פותח את המצלמה ומתחיל לקלוט ממנה פריימים, בעבור כל פריים המודל מחזיר חיזוי של קופסאות והערכות הניקוד, החיזוי של המודל מוצג על התמונה ומוצג למשתמש בחלון החדש.

מדריך למפתח

project_main.py

זהו הקובץ הראשי של הפרויקט. זהו הקובץ הראשון שאותו מריצים בהתחלה והוא קורא לחלונות הממשק.

מיקומו של הקובץ הוא בתיקייה הראשית.

תפקיד	שם המשתנה
שם סביבת הפייתון הנוכחית	env
גרסת הפייתון הנוכחית	python_version
החלון הראשי שנפתח למשתמש	projectgui

project_gui.py

זהו הקובץ המכיל את החלון הראשי שקופץ למשתמש.

קובץ זה מכיל את המחלקה ProjectGui האחראית על ניהול החלון המרכזי. מיקומו של הקובץ הוא בתיקייה הראשית.

תפקיד	שם המשתנה
חלון הtkinter הראשי	root
מנהל הdata, דרך המשתנה הזה מתבצעות כל הפעולות על הdataset	data_handler
מנהל המודל, דרך המשתנה הזה מתבצעות על הפעולות על המודל, תוך כדי שימוש בTensorflow Object Detection API	model_handler
הכפתור של יציאה מהפרויקט	menubar
הכפתור של תחילת השימוש בפרויקט	<u>btn</u>

משתנים	תפקיד	שם הפעולה
img – שומר את תמונת	הפעולה פותחת את חלון	main_window
הפתיחה שמוצגת	ההתחלה של הפרויקט.	
photo – תמונת הפתיחה	הפעולה לא מקבלת ולא	
מוכנה להצגה בחלון	מחזירה כלום.	
אין	משבית את הכפתורים	disable
	שבחלון.	
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	
אין	הפעולה שנקראת כאשר	on_btn
	לוחצים על כפתור ההתחלה.	
	הפעולה משביתה את	
	הכפתורים של החלון ופותחת	
	אר datan את החלון של טעינת	
	טעינת מודל קיים לבדיקה.	
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	

LoadTestWindow.py

זהו הקובץ המכיל את החלון של בחירת טעינת הdata או טעינת מודל מאומן לבדיקה. קובץ זה מכיל את המחלקה LoadTestWindow היורשת מהמחלקה tk.Toplevel המנהלת את החלון.

מיקומו של הקובץ הוא בתיקייה הראשית.

תפקיד	שם המשתנה
חלון הtkinter הראשי	gui
משתנה האומר אם לעצור את הThread שמריץ את הפעולות של הכפתורים	stop_thread
הכפתור של יציאה מהפרויקט	menubar
datan הכפתור של טעינת	data_btn
הכפתור של טעינת מודל קיים ובדיקתו	test_btn

משתנים	תפקיד	שם הפעולה
אין אין	הפעולה פותחת וטוענת את	setup_window
1.5	החלון עצמו.	setupv.mae v
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	
אין	הפעולה מפעילה את	enable
,	הכפתורים שבחלון.	5
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	
אין	הפעולה משביתה את	disable
,	הכפתורים שבחלון.	
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	
שמבצע את Thread שמבצע את	הפעולה שנקראת כאשר	on_load_data
datan טעינת	לוחצים על כפתור ההתחלה.	
	הפעולה משביתה את	
	הכפתורים של החלון ומתחילה	
	.datan את תהליך טעינת	
	לאחר מכן הפעולה פותחת את	
	חלון האימון, בדיקה או ייצוא	
	מודל.	
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	
Hread שמבצע את – t	הפעולה שנקראת כאשר	on_test
טעינת המודל ואז מריץ את	לוחצים על כפתור הבדיקת	
חלון בדיקת המודל.	מודל.	
	הפעולה משביתה את	
	הכפתורים של החלון ומתחילה	
	את תהליך טעינת מודל. לאחר	
	מכן הפעולה פותחת את חלון	
	הבדיקת מודל.	
	אם טעינת המודל כשלה	
	הפעולה מפעילה מחדש את	
	הכפתורים.	
	הפעולה לא מקבלת ולא	
	מחזירה כלום	
אין	הפעולה נקראת כאשר	on_thread_stop
	הThread מסתיים.	
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	

funcs – פונקציות שהפעולה תריץ ברגע שהThread	הפעולה נקראת כאשר הThread מסתיים ומריצה את	wait_thread_finish
מסתיים.	הפעולות שקיבלה. הפעולה מקבלת פונקציות	
	שאותה תריץ – funcs הפעולה לא מחזירה כלום.	

TrainTestExportWindow.py

זהו הקובץ המכיל את החלון של בחירת אימון מודל חדש, בדיקת מודל קיים או ייצוא מודל מאומן.

קובץ זה מכיל את המחלקה TrainTestExportWindow המנהלת את החלון. מיקומו של הקובץ הוא בתיקייה הראשית.

תפקיד	שם המשתנה
חלון הtkinter הראשי	gui
החלון הtkinter הקודם	prev_window
שמריץ Thread משתנה האומר אם לעצור את	stop_thread
את הפעולות של הכפתורים	
הכפתור של יציאה מהפרויקט	menubar
הכפתור של אימון מודל חדש	new_model_btn
הכפתור של טעינת מודל קיים ובדיקתו	test_existing_btn
הכפתור של ייצוא מודל מאומן	export_model_btn

משתנים	תפקיד	שם הפעולה
אין	הפעולה פותחת וטוענת את	setup_window
· ·	החלון עצמו.	-
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	
אין	הפעולה מפעילה את	enable
	הכפתורים שבחלון.	
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	
אין	הפעולה משביתה את	disable
	הכפתורים שבחלון.	
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	
שמבצע את Thread – t	הפעולה שנקראת כאשר	on_new_model
אימון המודל.	לוחצים על כפתור האימון	
,	מודל חדש.	
	הפעולה משביתה את	
	הכפתורים של החלון ומתחילה	
	את תהליך טעינת האימון.	
	לאחר מכן הפעולה מפעילה	
	את הכפתורים.	
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	
שמבצע את Thread – t	הפעולה שנקראת כאשר	on_test_existing
טעינת המודל ואז מריץ את	לוחצים על כפתור הבדיקת	_
חלון בדיקת המודל.	מודל קיים.	
	הפעולה משביתה את	
	הכפתורים של החלון ומתחילה	
	את תהליך טעינת מודל. לאחר	
	מכן הפעולה פותחת את חלון	
	הבדיקת מודל.	
	אם טעינת המודל כשלה	
	הפעולה מפעילה מחדש את	
	הכפתורים.	
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	

שמבצע את ייצוא Thread –	הפעולה שנקראת כאשר	on_export
המודל.	לוחצים על כפתור הייצוא	
	מודל מאומן.	
	הפעולה משביתה את	
	הכפתורים של החלון ומתחילה	
	את תהליך הייצוא. לאחר מכן	
	הפעולה מפעילה מחדש את	
	הכפתורים.	
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	
אין	הפעולה נקראת כאשר	on_thread_stop
	הThread מסתיים.	-
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	
funcs – פונקציות שהפעולה	הפעולה נקראת כאשר	wait_thread_finish
תריץ ברגע שהThread	הThread מסתיים ומריצה את	
מסתיים.	הפעולות שקיבלה.	
	הפעולה מקבלת פונקציות	
	שאותה תריץ – funcs	
	הפעולה לא מחזירה כלום.	

TestWindow.py

זהו הקובץ המכיל את החלון של בדיקת מודל. קובץ זה מכיל את המחלקה TestWindow המנהלת את תהליך בדיקת המודל. מיקומו של הקובץ הוא בתיקייה הראשית.

תפקיד	שם המשתנה
חלון הtkinter הראשי	gui
החלון הtkinter הקודם	prev_window
משתנה האומר אם לעצור את הThread שמריץ	stop_thread
את הפעולות של הכפתורים	
הכפתור של יציאה מהפרויקט	menubar
הכפתור של בדיקת המודל על תמונה	test_image_btn
הכפתור של בדיקת המודל על סרטון	test_video_btn
הכפתור של בדיקת המודל על סרטון חי	test_camera_btn
מהמצלמה	

משתנים	תפקיד	שם הפעולה
אין	הפעולה פותחת וטוענת את	setup_window
·	החלון עצמו.	-
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	
אין	הפעולה מפעילה את	enable
·	הכפתורים שבחלון.	
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	
אין	הפעולה משביתה את	disable
·	הכפתורים שבחלון.	
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	
אין	הפעולה שנקראת כאשר	on_test_image
,	לוחצים על כפתור הבדיקת	
	המודל על תמונה.	
	הפעולה משביתה את	
	הכפתורים של החלון ופותחת	
	את חלון הצגת החיזוי.	
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	
שמבצע את Thread – t	הפעולה שנקראת כאשר	on_test_video
החיזוי על הסרטון.	לוחצים על כפתור הבדיקת	
,	המודל על סרטון.	
	הפעולה משביתה את	
	הכפתורים של החלון ומתחילה	
	את תהליך החיזוי על סרטון.	
	לאחר מכן הפעולה מפעילה	
	מחדש את הכפתורים.	
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	
אין	הפעולה שנקראת כאשר	on_test_live
,	לוחצים על כפתור הבדיקת	_
	המודל על סרטון חי.	
	הפעולה משביתה את	
	הכפתורים של החלון ופותחת	
	את חלון הצגת החיזוי.	
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	

Idan Moshe / Handgun Detection – עידן משה / זיהוי אקדחים בתמונות וסרטונים

אין	הפעולה נקראת כאשר	on_thread_stop
· ·	הThread מסתיים.	-
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	

TestDisplayWindow.py

זהו הקובץ המכיל את החלון של הצגת החיזוי של המודל.

קובץ זה מכיל את המחלקה TestDisplayWindow המנהלת את הצגת החיזוי של המודל. מיקומו של הקובץ הוא בתיקייה הראשית.

תפקיד	שם המשתנה
חלון הtkinter הראשי	gui
החלון הtkinter הקודם	prev_window
הפונקציה שאותה החלון יריץ בעת החיזוי	run_func
התמונה האחרונה שהוצגה על ידי החלון	latest_img
התוויות שדרכה מוצגת התמונה של החיזוי	image_lbl

משתנים	תפקיד	שם הפעולה
menubar – הכפתור של	הפעולה פותחת וטוענת את	setup_window
החזרה לחלון הקודם	החלון עצמו.	
של חיזוי המודל Thread – t	הפעולה לא מקבלת ולא	
	מחזירה כלום.	
אין	הפעולה שמבצעת את תהליך	do_test
	החיזוי ומציגה אותו.	
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	

data_handler.py

זהו הקובץ שאחראי על כל העבודה עם הdata המתרחשת בפרויקט. קובץ זה מכיל את המחלקה DataHandler המנהלת את העבודה עם הdata. מיקומו של הקובץ הוא בתיקייה הראשית.

תפקיד	שם המשתנה
המחלקה של חלון הtkinter הראשי	gui
חלון הtkinter הראשי	root
datasetה נפתח שבה נפתח	extracted_dir
datasetn הנתיב לתיקייה שבה מאוחסן	split_dir
המפוצל לאימון ובדיקה	
הנתיב לתיקייה שבה מאוחסן הdataset לאחר	encoded_dir
שקודד	
הנתיב לקובץ המקודד של הdataset לאימון	train_record_path
הנתיב לקובץ המקודד של הdataset לבדיקה	eval_record_path
הנתיב לקובץ השומר את ההמרה של מספר	label_map_path
אובייקט לשם	
מספר התמונות לאימון המודל	num_train
מספר התמונות לבדיקת המודל	num_eval

משתנים	תפקיד	שם הפעולה
אין	הפעולה האחראית על כל	handle_dataset
	.datasetn השלבים של טעינת	
	החל מטעינת הzip המקורי,	
	לבדיקת תקינות המידע	
	וחילוקו, ולבסוף קידודו.	
	הפעולה לא מקבלת ולא	
	מחזירה כלום.	
data_zip – הקובץ	הפעולה שמבצעת את תהליך	get_data
datasetn	.zipחילוץ ממנasetחילוץ	
	הפעולה קולטת מהמשתמש	
	את קובץ הzip ואת התיקייה	
	הריקה שאליה יחולץ.	
	הפעולה לא מקבלת ולא	
	מחזירה כלום	

		1: 1-4- 1-4-
images_dir – התיקייה של	הפעולה שמבצעת את תהליך	validate_data
התמונות	בדיקת התקינות של dataset.	
anns_dir – התיקייה של	הפעולה מוחקת את הקבצים	
התוויות לתמונות	הלא תקינים.	
cnt – כמות הקבצים התקינים	הפעולה לא מקבלת ולא	
cnt_err – כמות הקבצים הלא	מחזירה כלום	
תקינים		
error_files – רשימת		
הנתיבים לקבצים הלא		
תקינים ,		
פרבץ – האם יש בעיה בקובץ – error		
הנוכחי		
עץ ההיררכיה של – xml_tree		
הקובץ הנוכחי		
יוקובן יונוכויי xml_root – האלמנט הראשי		
של הקובץ הנוכחי הופרים ווים בבנבע נלבם		
filename – שם הקובץ, נלקח		
מקובץ התווית		
img_width – רוחב התמונה,		
נלקח מקובץ התווית		
- xml_objects – האלמנטים		
של הקופסאות		
objects – הקופסאות בקובץ		
הנוכחי		
האם יש בעיה – obj_err		
בקופסא הנוכחית		
שם האובייקט – clazz		
בקופסא הנוכחית, נלקח		
מקובץ התווית		
xmin – הגבול השמאלי		
בקופסא הנוכחית, נלקח		
מקובץ התווית		
ymin – הגבול התחתון		
בקופסא הנוכחית, נלקח		
מקובץ התווית		
ארבול הימני בקופסא – xmax		
הנוכחית, נלקח מקובץ התווית		
אבול העליון – הגבול העליון – ymax		
בקופסא הנוכחית, נלקח		
בקובסא אמנוית		
יוניי וניין (בין img_path – הנתיב לקובץ		
חתמונה לפי הקובץ התמונה לפי הקובץ		
יוונכווכו לבי יוקובן img – התמונה שנטענה		
חווניומו שנטעמו ming הווניומו שנטעמו – org_height		
של התמונה של התמונה		
של דוונמונוז org_width – הרוחב האמיתי		
org_widui – הוו הוב האכליוני של התמונה		
של דוו נבוו נו		

anns_dir – התיקייה של קבצי	הפעולה שמחלקת את	split_data
התוויות	.testו trainל dataset	<u> </u>
train_dir – התיקייה שאליה	הפעולה קולטת מהמשתמש	
יועברו תוויות האימון	את התיקייה שאליה יחולק	
התיקייה שאליה – eval_dir	.data	
יועברו תוויות הבדיקה	הפעולה לא מקבלת ולא	
files – רשימת הנתיבים	מחזירה כלום.	
לתוויות		
train – רשימת הנתיבים		
לתוויות האימון		
eval – רשימת הנתיבים		
לתוויות הבדיקה		
train_dir – התיקייה של קבצי	הפעולה שמקודדת את	encode_data
התוויות לאימון	dataset להכנה לשליחה	
eval_dir – התיקייה של קבצי	Tensorflow Object 5	
התוויות לבדיקה	.Detection API	
DataFramen – train_df	הפעולה לא מקבלת ולא	
המכיל את תוויות האימון	מחזירה כלום.	
classes_train – רשימה		
המכילה את שמות		
האובייקטים הקיימים		
בתיקיית האימון eval_df – הDataFrame		
DataFramen – eval_di המכיל את תוויות הבדיקה		
רומכיל אוניונוויווניובויקוו – classes_eval		
ciasses_eval – ו שימוו המכילה את שמות		
האובייקטים הקיימים		
רואובייקסים דוקיימים בתיקיית הבדיקה		
בוניקאיוניובייקוי classes – רשימת שמות		
datasetn האובייקטים בכל		
pbtxt_content – התוכן של		
קובץ האובייקטים		
label_to_id – תרגום שם		
התוויות למספר אובייקט		
datasetn – gb מחולק לפי		
הקבצים '		
רשימה המכילה את – data		
datasetn המחולק לפי שם		
קובץ ותוויות		
tf_example – התוויות של		
התמונה מקודדת כהכנה		
ל Tensorflow Object		
Detection API		

model_handler.py

זהו הקובץ שאחראי על כל העבודה עם המודל המתרחשת בפרויקט. קובץ זה מכיל את המחלקה ModelHandler המנהלת את העבודה עם המודל. מיקומו של הקובץ הוא בתיקייה הראשית.

תפקיד	שם המשתנה
המחלקה של חלון הtkinter הראשי	gui
חלון הtkinter הראשי	root
מנהל הdata, דרכו מתנהלת על העבודה עם datasetn	data_handler
הנתיב לתיקייה בשה יישמרו קבצי האימון של המודל	training_dir
הממיר של מספר אובייקטים לשמם	category_index
המודל הטעון ומוכן לבדיקה	loaded_model

משתנים	תפקיד	שם הפעולה
התהליך שמריץ את – tb_proc	הפעולה אחראית על אימון	train_model
Tensorboard	מודל חדש.	
start_time – הזמן שבו	הפעולה קולטת מהמשתמש	
התחיל האימון של המודל	את תיקיית האימון.	
end_time – הזמן שבו נגמר	הפעולה לא מקבלת ולא	
האימון של המודל	מחזירה כלום.	
model_dir – הנתיב לתיקייה	הפעולה שמייצאת מודל שכבר	export_model
של המודל המאומן	אומן ומכווצת אותו לקובץ	
export_path – הנתיב	.zip	
לתיקייה של המודל המיוצא	הפעולה קולטת מהמשתמש	
proc – התהליך שמריץ את	את תיקיית המודל המאומן.	
אימון המודל	הפעולה קולטת מהמשתמש	
	את תיקיית הייצוא.	
	הפעולה לא מקבלת ולא	
	מחזירה כלום	
model_zip – קובץ העip – model_zip	הפעולה שטוענת מודל מיוצא	load_model
המודל	כדי לבצע עליו test.	
extract_dir – התיקייה	הפעולה קולטת מהמשתמש	
שאליה יחולץ המודל	את קובץ הzip של המודל.	
PATH_TO_LABEL_MAP	הפעולה קולטת מהמשתמש	
label_map הנתיב לקובץ –	את התִיקייה שאליה ייפתח	
label_map – הקובץ	המודל.	
הטעון label_map	הפעולה מחזירה True אם	
categories – ההמרה של	המודל נטען בהצלחה, אחרת	
קובץ הlabel_map להמרת	.False	
קטגוריות		
image_file – קובץ התמונה	הפעולה שמבצעת את החיזוי	test_on_image
לחיזוי	על תמונה.	
numpy מערך – image_np	הפעולה קולטת מהמשתמש	
שמייצג את התמונה	קובץ תמונה.	
PIL התמונה בפורמט – img	הפעולה מקבלת את תווית	
photo – התמונה בפורמט	tkinter שאליה תציג את	
tkinter	התמונה - label.	
	הפעולה מחזירה את התמונה	
	בפורמט הtkinter.	

' 1 0"1		
video_file – נתיב קובץ	הפַעולה שמבצעת את החיזוי	test_on_video
הסרטון לחיזוי	על סרטון.	
out_video_file – נתיב קובץ	הפעולה קולטת מהמשתמש	
הסרטון לאחר החיזוי	את קובץ הסרטון לחיזוי.	
יidcap קורא הסרטון – vidcap	הפעולה קולטת מהמשתמש	
לחיזוי	את הנתיב לקובץ הסרטון	
מספר הפריימים – length	לאחר החיזוי.	
•		
בסרטון	הפעולה לא מקבלת ולא	
width – רוחב הפריים בסרטון	מחזירה כלום.	
אורך הפריים – height		
בסרטון		
– מספר הפריימים בשנייה – fps		
בסרטון		
אם הפריים נראה – success		
בהצלחה		
numpya המערך – frame		
name – המערן mame המייצג את הפריים		
count – מספר הפריים הנוכחי		
writer – כותב הסרטון לקובץ		
החיזוי		
– קורא את השידור – vidcap	הפעולה שמבצעת חיזוי על	test_on_live
החי מהמצלמה	שידור חי מהמצלמה.	
success – האם קריאת	הפעולה מקבלת את תווית	
הפריים הצליחה	tkinter שאליה תוצג החיזוי	
frame – הפריים הנוכחי	.label —	
numpy – מערך ה– image_np	הפעולה לא מחזירה כלום.	
המייצג את התמונה לאחר		
החיזוי		
PIL התמונה בפורמט – img		
photo – התמונה בפורמט		
tkinter		1 .
<pre>- image_np_expanded</pre>	הפעולה מבצעת חיזוי על	pred_img
מערך הnumpy מוכן לשליחה	תמונה.	
למודל	numpy הפעולה מקבלת מערך	
החיזוי הישיר של – output	– המייצג את התמונה לחיזוי	
המודל	image_np	
של – boxes – חיזוי הקופסאות של	הפעולה מחזירה את מערך	
המודל	התמונה לאחר החיזוי	
- scores – הביטחון של המודל	,,,,,,,	
בכל אחד מהקופסאות		
בכל אוון כוולוופטאוונ classes – האובייקטים שחוזו		
,		
על ידי המודל	1939	nuanana aanta
pipeline – קובץ	הפעולה מכינה קובץ	prepare_config
הקונפיגורציה הבסיסי	קונפיגורציה לאימון ושומרת	
config_text – מחרוזת	אותו בתיקיית האימון	
המתארת את קובץ	הנוכחית.	
הקונפיגורציה המוכן לאימון.	הפעולה לא מקבלת כלום ולא	
	מחזירה כלום.	
	· · · · · · · · · · · · · · · · · · ·	

BasicFunctions.py

קובץ זה מכיל פעולות בסיסיות לשימוש בקבצים אחרים. מיקומו של הקובץ הוא בתיקייה הראשית.

משתנים	תפקיד	שם הפעולה
התמונה בפורמט – image	ינפקיו טוענת תמונה מנתיב למערך	load_image_into_numpy_array
חוונכוונון בפון כוט – Inlage PIL	,	load_image_imo_numpy_array
1 IL	numpy. הפעולה מקבלת נתיב לקובץ	
	יובעולון בוקבלונ נוניב לקובן תמונה – path.	
	רנפונור השתר. הפעולה מחזירה את המערך	
	המכיל את התמונה.	
output_dir – הנתיב	הפעולה מבקשת מהמשתמש	ask_directory
לתיקייה שהמשתמש בחר	לבחור תיקייה.	usii_unioticij
,, , <u> </u>	הפעולה מקבלת האם	
	להכריח את המשתמש	
	לבחור תיקייה – force	
	ועוד משתנים להכניס	
	kwargs – לפעולת הדיאלוג	
	הפעולה מחזירה את נתיב	
	התיקייה שנבחרה.	
dire – הנתיב לתיקייה	הפעולה מבקשת מהמשתמש	ask_empty_directory
שהמשתמש בחר	לבחור תיקייה ריקה.	
	הפעולה מקבלת האם	
	להכריח את המשתמש	
	לבחור תיקייה – force	
	ועוד משתנים להכניס	
	kwargs – לפעולת הדיאלוג	
	הפעולה מחזירה את נתיב	
	התיקייה שנבחרה.	
output – הנתיב לקובץ	הפעולה מבקשת מהמשתמש	ask_for_file
שהמשתמש בחר	לבחור קובץ.	
	הפעולה מקבלת האם	
	לָהכריח את המשתמש	
	לבחור קובץ – force	
	ועוד משתנים להכניס	
	kwargs – לפעולת הדיאלוג	
	הפעולה מחזירה את נתיב	
	הקובץ שנבחר.	agla ga £1-
output – הנתיב לקובץ	הפעולה מבקשת מהמשתמש	ask_save_file
שהמשתמש בחר	לבחור קובץ לשמירה.	
	הפעולה מקבלת האם	
	להכריח את המשתמש	
	לבחור קובץ – force ועוד משתנים להכניס	
	ועוד משוננים להכניט לפעולת הדיאלוג – kwargs	
	לפעולונ ווויאלוג – Kwaigs הפעולה מחזירה את נתיב	
	הפעולה מוחירה אונינוניב הקובץ שנבחר.	
ext – הסיומת של הקובץ	הפעולה פותחת קובץ zip.	extract_zip
ווסיובווניסלווקובן באו	רופעולה פרנו וונ קובן קב. הפעולה מקבלת את נתיב	CAUGOL_ZIP
	יובעולון מקבלוני אווני נוניב הקובץ - path	
	ונתיב לתיקייה שאליה ייוצא	
	output_path – הקובץ	
	הפעולה מחזירה True אם	
	הקובץ נפתח בהצלחה,	
	False אחרת	
	1 0130 11 11 11	

לתיקייה תיב dirs – התיקיות בתיקייה	הפעולה מכווצת תיקיי לקובץ zip.	to_zip
תיב dirs – התיקיות בתיקייה		
, ,		
555555	הפעולה מקבלת את הנ	
המקורית	לתיקייה – path	
files – הקבצים בתיקייה	והנתיב לקובץ הzip	
המקורית	output_file	
	הפעולה לא מחזירה כל	
	הפעולה לוקחת את כל	xml_to_csv
	הxml שמייצגים תוויוו	
classes_names – השמות	והופכת אותם לcsv.	
תיב של האובייקטים הנמצאים.	הפעולה מקבלת את הנ	
	לתיקיית התוויות – th.	
	ופילטר לשמות האוביי	
clas שנמצאות בכל הקבצים	sses_filter – התקניים	
בתיקייה	הפעולה מחזירה	
ת תוכן xml_file – קובץ התוויות	DataFrame המכיל או	
	הקבצים ורשימה בעלת	
עץ ההיררכיה – xml_ tree	שמות האובייקטים	
של הקובץ הנוכחי	שבקבצים	
- xml_root – האלמנט		
הראשי של הקובץ הנוכחי		
אם הקובץ, – filename		
נלקח מקובץ התווית		
וחב – img_width		
התמונה, נלקח מקובץ		
התווית		
– xml_objects – האלמנטים		
של הקופסאות		
objects – הקופסאות		
בקובץ הנוכחי		
אם יש בעיה – obj_err		
בקופסא הנוכחית		
שם האובייקט – clazz		
בקופסא הנוכחית, נלקח		
מקובץ התווית		
xmin – הגבול השמאלי		
בקופסא הנוכחית, נלקח		
מקובץ התווית		
ymin – הגבול התחתון		
בקופסא הנוכחית, נלקח		
מקובץ התווית		
xmax – הגבול הימני		
בקופסא הנוכחית, נלקח		
מקובץ התווית		
הגבול העליון – ymax		
בקופסא הנוכחית, נלקח		
מקובץ התווית		
כו – column_names		
DataFrame הטורים של		
התוויות		
DataFrame – xml_df		
של הקובץ הנוכחי		

	הפעולה יוצרת קובץ pbtxt משמות האובייקטים. הפעולה מקבלת רשימה של	create_pbtxt
	שמות האובייקטים –	
	classes	
	הפעולה מחזירה את תוכן	
	קובץ הbtxt ומילון המרה של שם אובייקט למספר	
– encoded_jpg_io	הפעולה מקודדת קובץ	create_tf_example
התמונה מקודדת לביטים	תוויות לפומט הניתן	
image – התמונה בפורמט	Tensorflow לקריאה על ידי	
PIL	Object Detection API	
width – רוחב התמונה	הפעולה מקבלת את הנתונים	
height – גובה התמונה	group –	
image_format – סיומת	נתיב לתיקיית התמונות –	
התמונה מקודדת לביטים	image_dir	
xmins – הגבולות	מילון המרָה של שם	
השמאליים של התוויות	אובייקט למספר –	
xmaxs – הגבולות הימניים	label_to_id	
של התוויות	הפעולה מחזירה את	
ymins – הגבולות	הנתונים המקודדים	
התחתונים של התוויות		
ymaxs – הגבולות		
העליונים של התוויות		
classes_text – השמות של		
האובייקטים בתמונה ida – classes		
האובייקטים בתמונה tf_example – התמונה		
מקודדות מקודדות מקודדות		
Tensorflow Object ל		
Detection API		
אין	הפעולה מחברת כמה	combine_functions
	רובטו לוד כיו הבר זו בכיוד פונקציות כדי שיוכלו	
	להיקרא ביחד אחר כך.	
	הפעולה מקבלת פונקציות –	
	funcs	
	הפעולה מחזירה פונקציה	
	הקוראת לכל הפונקציות	
	, , , , , , , , , , , , , , , , , , , ,	

PrintUtils.py

קובץ זה מכיל פעולות בסיסיות לתקשורת עם המשתמש דרך שורת הפקודה של אנקונדה. מיקומו של הקובץ הוא בתיקייה הראשית.

תפקיד	שם המשתנה
הפורמט לשליחת הודעה עם זמן השליחה	TIME_FORMAT
הפורמט לשליחת הודעה בלי זמן שליחה	FORMAT
הפורמט להפיכת זמן ממספר למחרוזת	TIMEFORMAT

משתנים	תפקיד	שם הפעולה
אין	הפעולה מדפיסה את ההודעה	printmsg
,	עם התחלית המתאימה.	ps
	הפעולה מקבלת את ההודעה	
	message – לשליחה	
	הפעולה מקבלת את התחילית	
	prefix – לשליחה	
	הפעולה מקבלת האם להדפיס	
	את זמן השליחה –	
	show_time	
	הפעולה לא מחזירה כלום.	
אין	הפעולה מדפיסה את הודעת	getinput
·	הקלט ומקבלת קלט	
	מהמשתמש.	
	הפעולה מקבלת את ההודעה	
	message – לשלוח למשתמש	
inp – הקלט שהמשתמש בחר	הפעולה נותנת למשתמש	chooseinputs
, -	לבחור מבין כמה אפשרויות.	_
	הפעולה מקבלת את ההודעה	
	message – לשלוח למשתמש	
	הפעולה מקבלת את רשימת	
	options – האפשרויות	
	הפעולה מחזירה את האופציה	
	שנבחרה.	
אין	הפעולה מדפיסה הודעה של	inputmsg
	קלט מהמשתמש.	
	הפעולה מקבלת את ההודעה	
	message – לשליחה	
	הפעולה לא מחזירה כלום.	
אין	הפעולה מדפיסה הודעה בסימן	debug
	.debug	
	הפעולה מקבלת את ההודעה	
	message – לשליחה	
	הפעולה מקבלת האם לשלוח	
	את זמן ההודעה –	
	show_time	
	הפעולה לא מחזירה כלום.	
אין	הפעולה מדפיסה הודעה בסימן	info
	info	
	הפעולה מקבלת את ההודעה	
	hessage – לשליחה	
	הפעולה מקבלת האם לשלוח	
	את זמן ההודעה –	
	show_time	
	הפעולה לא מחזירה כלום.	

		•
אין	הפעולה מדפיסה הודעה בסימן	warning
	warning	
	הפעולה מקבלת את ההודעה	
	message – לשליחה	
	הפעולה מקבלת האם לשלוח	
	את זמן ההודעה –	
	show_time	
	הפעולה לא מחזירה כלום.	
אין	הפעולה מדפיסה הודעה בסימן	error
	.error	
	הפעולה מקבלת את ההודעה	
	message – לשליחה	
	הפעולה מקבלת האם לשלוח	
	את זמן ההודעה –	
	show_time	
	הפעולה לא מחזירה כלום.	
אין	הפעולה מדפיסה הודעה בסימן	critical
,	.critical	
	הפעולה מקבלת את ההודעה	
	message – לשליחה	
	הפעולה מקבלת האם לשלוח	
	את זמן ההודעה –	
	show_time	
	הפעולה לא מחזירה כלום.	
	critical. הפעולה מקבלת את ההודעה לשליחה – message הפעולה מקבלת האם לשלוח את זמן ההודעה – show_time	

base_pipeline.config

קובץ זה מכיל את הקונפיגורציה הבסיסית לאימון מודל חדש. קובץ זה ממוקם בתוך התיקייה resources. קובץ זה מועתק כאשר מאמנים מודל חדש, הערכים בקובץ זה מייצגים את את ה hyper parameters של המודל.

models התיקייה

התיקייה המכילה את קבצי Tensorflow Object Detection API. התיקייה נמצאת בתוך התיקייה

מדריך למשתמש

Screen flow diagram - תרשים מסכים

הוראות התקנה

את סביבת העבודה Anaconda יש להתקין במחשב את סביבת העבודה (https://docs.anaconda.com/anaconda/install)

בתוך Anaconda יש ליצור סביבה (Environment) חדשה המבוססת על פייתון 3.7.13 על המשתמש להריץ את הפרויקט דרך סביבת העבודה בדרך שתפורט בהמשך.

כדי ליצור סביבה חדשה המשתמש פותח את שורת הפקודה של אנקונדה (Anaconda Prompt) כדי ליצור סביבה חדשה המשתמש פותח את שורת הפקודה של אנקונדה (Anaconda Prompt) ומקליד: __conda create --name <Name> python=3.7.13_

את המילה <Name> המשתמש מחליף בשם הסביבה כרצונו. ההתקנה תבקש מהמשתמש ללחוץ על כפתור האנטר כדי להתקין את הספריות הבסיסיות.

כעת על המשתמש להפעיל את הסביבה החדשה באמצעות

conda activate <Name>

ולאחר מכן המשתמש יראה את שם הסביבה בסוגריים בתחילת שורת הפקודה.

(test) C:\Users\@@@@>

נעבור להתקנת הספריות הנדרשות, על המשתמש להוריד את הספריות הנדרשות לפי הסדר הנ״ל:

שם ספרייה	פקודת הורדה	לינק למקור
colorama	pip install colorama	https://pypi.org/project/colorama/
Tensorflow	pip install tensorflow==2.8.0	https://pypi.org/project/tensorflow/
pandas	pip install pandas	https://pypi.org/project/pandas/
protobuf	pip install protobuf== 3.14.0	https://pypi.org/project/protobuf/
PIL	pip install pillow	https://pypi.org/project/Pillow/
cv2	pip install opency-python	https://pypi.org/project/opency-
		python/
sklearn	pip install scikit-learn	https://pypi.org/project/scikit-learn/
matplotlib	pip install matplotlib	https://pypi.org/project/matplotlib/
tf_slim	pip install tf_slim	https://pypi.org/project/tf-slim/
pycocotools	pip install pycocotools	https://pypi.org/project/pycocotools/
lvis	pip install lvis	https://pypi.org/project/lvis/
tensorflow-io	pip install tensorflow_io	https://pypi.org/project/tensorflow-
		<u>io/</u>
pyyaml	pip install pyyaml	https://pypi.org/project/PyYAML/
gin	pip install gin-config	https://pypi.org/project/gin-config/
tensorflow-addons	pip install tensorflow_addons	https://pypi.org/project/tensorflow-
		addons/

לאחר התקנת הספריות יש להוריד את הפרויקט...

ראשית, יש להוריד את הפרויקט מחשבון ה GitHub שלי. לאחר מכן יש לפתוח את קובץ הzip, אמורים להתקבל הקבצים הבאים:

זוהי כעת התיקייה הראשית של הפרוייקט.

הרצת התוכנית ותפקידו של כל מסך

לפני הרצת התוכנית יש להכיר את סוגי ההודעות השונות שהמשתמש יכול לקבל דרך שורת הפקודה של אנקונדה :

```
[DEBUG] This is a debug message
[INFO] This is an info message
[WARNING] This is a warning message
[ERROR] This is an error message
[CRITICAL] This is a critical error message
This is an input message
Enter:
```

נעבור להרצת הפרויקט עצמו

תחילה על המשתמש לפתוח את שורת הפקודה של אנקונדה, ה(Anaconda Prompt) ולהפעיל את הסילה על המשתמש לפתוח את שורת הפרויקט באמצעות:

conda activate <Name>

ולאחר מכן המשתמש יראה את שם הסביבה בסוגריים בתחילת שורת הפקודה. את המילה <Name> המשתמש מחליף בשם הסביבה שיצר

לאחר מכן המשתמש יריץ את הפרויקט באמצעות הרצת הקובץ project_main.py לאחר מכן המשתמש יריץ את הפרויקט באמצעות הרצת הקובץ patha את המוח python ,Anaconda Prompt למיקום בו לעשות זאת יש לכתוב בproject_main.py : Python – ניתן לגרור את הקובץ ישירות לשורת הפקודה.

בסוף שלב זה שורת הפקודה אמורה להיראות כך:

(test) C:\Users\@@@@>python C:\dev\Project\ProjectFinal\project_main.py

ישר עם הרצת הפקודה, יודפס למשתמש כמה פרטים על הסביבה הנוכחית

[INFO] Current conda environment: test
[INFO] Current python version: 3.7.13

וייפתח חלון הפתיחה:

תפריט זה מציג מידע כללי על הרצת הפרויקט. כאשר המשתמש רוצה להתחיל את השימוש, ילחץ על הכפתור הירוק. Idan Moshe / Handgun Detection – עידן משה / זיהוי אקדחים בתמונות וסרטונים

: test או load ייפתח חלון

כעת המשתמש יוכל לבחור בין לטעון את הdata הדרוש לאימון המודל או ישירות לtest של מודל שכבר אומן. שכבר אומן.

הסבר test על מודל שכבר אומן יופיע בהמשך המדריך

:dataset כעת נסביר על תהליך טעינת

כאשר המשתמש ילחץ על הכפתור Click here to load the data הוא יקבל הוראות דרך שורת הפקודה של האנקונדה וייפתחו לו מסכים של בחירת קבצים ותיקיות. על המשתמש למלא את ההוראות.

תחילה המשתמש יתבקש לבחור את קובץ הzip המכיל את מהמחשב שלו, ותיקייה שלתוכה יחולץ הdataset עצמו. לאחר הבחירה מtaset יחולץ וייבדק לתקינות של הנתונים, אם יש קובץ נתונים לא תקין הוא יימחק ויירשם בשורת הפקודה.

לאחר מכן המשתמש יתבקש לבחור תיקייה ריקה שבה יחולק לtrain ול-eval לאחר מכן המשתמש יתבקש לבחור תיקייה ריקה שבה יחולק הצוח ו-eval=0.2 ו-eval=0.2.

לבסוף המשתמש יתבקש לבחור תיקייה שבה יאוחסנו הנתונים המקודדים, כלומר הנתונים שמוכנים להכנסה ולאימון המודל.

. נגמר וכעת dataseta מוכן לאימון המודל dataset תהליך טעינת

:export או test ,train כעת ייפתח חלון

בחלון זה המשתמש יוכל לבחור האם לאמן מודל חדש, לבדוק מודל קיים או לייצא מודל שאומן zip לקובץ

:תהליך אימון מודל חדש

כאשר המשתמש ילחץ על הכפתור $\frac{Click here to train a new model}{Click here to train a new model}$ יתבקש המשתמש לבחור תיקייה ריקה שתכיל את קבצי האימון.

קובץ קונפיגורציה של מודל ייווצר אוטומטית בתיקייה והמשתמש יוכל לשנות אותה כרצונו.

בתוך קובץ הקונפיגורציה המשתמש יכול לשנות כמה Hyper Parameters. הערה: שינוי ערכי קונפיגורציה ללא ידע קודם יכול לפגוע בתקינות המודל ולגרום לשגיאה.

הנה כמה ערכים שהמשתמש יכול לשנות:

.step זהו מודל מודל המאומנות הממונות - batch_size הערך

הערך step מייצג אימון של המודל על של מייצג אימון אחד של – $\operatorname{num_steps}$ הערך של batch size המודל על המודל על

```
train_config {
 batch_size: 2 ←
                                   משתנה הbatch_size
 data_augmentation_options {
    random horizontal flip {
 data_augmentation_options {
   random crop image {
     min object covered: 0.0
     min_aspect_ratio: 0.75
     max_aspect_ratio: 3.0
     min_area: 0.75
     max_area: 1.0
     overlap thresh: 0.0
  }
  sync_replicas: true
 optimizer {
   momentum optimizer {
      learning_rate {
        cosine_decay_learning_rate {
         learning_rate_base: 0.04
         total steps: 25000 ←
         warmup_learning_rate: 0.013333
         warmup steps: 2000
     momentum optimizer value: 0.9
                                                  משתנה הnum steps
   use moving average: false
  fine_tune_checkpoint: "C:/dev/Project/Pr
 num_steps: 25000 ←
  startup_delay_steps: 0.0
 replicas_to_aggregate: 8
 max_number_of_boxes: 100
 unpad groundtruth tensors: false
 fine_tune_checkpoint_type: "detection"
 use bfloat16: true
 fine_tune_checkpoint_version: V2
```

לאחר שסיים לשנות את הקובץ, ילחץ אנטר בשורת הפקודה של אנקונדה. למשתמש יודפס כתובת אינטרנט של TensorBoard שאליה הוא יכול להתחבר כדי לראות את התקדמות המודל בזמן אמת:

TensorBoard 2.8.0 at http://localhost:56269/ (Press CTRL+C to quit)

כמו כן יודפסו למשתמש הודעות על אימון המודל והתקדמותו דרך שורת הפקודה של אנקונדה. לא ניתן לעצור את אימון המודל באמצע.

:Tensorboard קצת על

Tensorboard הוא כלי הנותן דרך להראות בצורה ויזואלית גרפים תוך כדי אימון המודל, כך ניתן לראות את התקדמות והשתפרות המודל בצורה יותר נוחה, דרך הדפדפן.

בדף האינטרנט הנפתח על ידי Tensorflow יש כמה סוגים של מידע מוצג:

:Scalars תחת הכרטיסייה

ניתן לראות גרפים המתארים את ה mAP, היחס בין כמות החיזויים הנכונים שהמודל ביצע לחלק לסכום הניחושים הכללי של המודל, כלומר גרפים אלו מראים כמה מהחיזויים של המודל היו באמת נכונים.

ניתן לראות גרפים המתארים את ה Recall, היחס בין כמות החיזויים הנכונים חלקי סכום החיזויים הנכונים ועוד חוסר חיזוי במקום שאמור להיות, כלומר גרפים אלו מראים באיזו מידה המודל מצליח למצוא את כל הקופסאות שאמורות להיות.

,Loss, ניתן לראות גרפים המתארים את

ה classification_loss הוא כמה המודל טועה בחישוב הביטחון של המודל בכל חיזוי.

ה localization_loss הוא כמה המודל טועה בחישוב גודל ומיקום החיזוי.

ה regularization_loss המיועד למנוע התאמה יתרה (overfitting) אל הנתונים עליהם loss המונות שלא התאמן המודל מתאמן, בצורה זו המודל יכול להכליל בצורה יותר טובה ולזהות גם תמונות שלא התאמן עליהו.

בשנייה. steps וכמות וearning_rate בעניסף ניתן לראות גרפים של הXבנוסף ניתן לראות מתאר את בכל אחד מהגרפים מתאר את בכל אחד מהגרפים מתאר את ה-

תחת הכרטיסייה Images

.augmentation ניתן לראות חלק מהתמונות שעליו אומן המודל לאחר steps 1000 בכל evaluation ניתן לראות חיזוי של המודל על תמונות

בכל אחת מהתמונות ניתן לראות את הtep שעליו נחזה התמונה ובעזרת הסליידר הכתום ניתן לזוז בין הstep. לזוז בין הtep.

לאחר סיום אימון המודל תודפס למשתמש הודעה ובה משך אימון המודל:

[INFO] Training finished! Time taken: 5.16 minutes

בתיקיית האימון המשתמש יכול לראות מספר קבצים:

כעת המתשמש יחזור לחלון הקודם להמשך השימוש בתכנית.

תהליך הtest של מודל מוכן:

כאשר המשתמש ילחץ על הכפתור של בדיקת מודל מוכן, יתבקש המשתמש לבחור את תיקיית המודל. export של המודל לאחר בנוסף המשתמש יתבקש לבחור תיקייה ריקה שבה יחולץ המודל. בסיום טעינת המודל ייפתח חלון בחירת test על תמונה, סרטון או לייב מהמצלמה:

כעת למשתמש יש שלוש אפשרויות:

- בדיקת המודל על תמונה
- בדיקת המודל על סרטון
- בדיקת המודל על שידור חי מהמצלמה של המחשב

בדיקת המודל על תמונה:

 ${
m ipg}$ כאשר המשתמש ילחץ על הכפתור בתיור הכפתור והמשתמש יתבקש לבחור תמונה מסוג ${
m Click}$ המשתמש יתבקש לבחור תמונה מסוג שעליה המודל הטעון יבצע חיזוי. תוך כדי בחירת התמונה ייפתח למשתמש חלון הצגת החיזוי שנראה כך:

לאחר שהמשתמש בחר תמונה לחיזוי, כעבור כמה שניות תוצג התמונה עם קופסאות מצוירות המייצגות את תוצאות המודל.

דוגמא לחיזוי של מודל:

בדיקת המודל על סרטון:

עליו mp4 עלחץ על הכפתור המשתמש יתבקש המשתמש הכפתור על הכפתור המשתמש יתבקש לבחור קובץ mp4 עליו המשתמש יתבקש לבחור קובץ mp4 חדש שאליו יישמר הסרטון עם המודל יבצע חיזוי. בנוסף המשתמש יתבקש לבחור קובץ mp4 החיזוי.

במהלך החיזוי יודפס בשורת הפקודה של האנקונדה את התקדמות החיזוי:

```
[INFO] Frame 0 out of 182
[INFO] Frame 100 out of 182
[INFO] Finished predicting on video
```

בדיקת המודל על תצלום לייב מהמצלמה:

אם למחשב מחוברת מצלמה, ניתן לבדוק את המודל על שידור חיי מהמצלמה. כאשר המשתמש ילחץ על הכפתור ^{Cick here to test on live cameral} ייפתח למשתמש חלון הצגת החיזוי:

ולאחר כמה שניות יוצג הלייב מהמצלמה לאחר חיזוי של המודל.

מודל מאומן: export תהליך

כאשר המשתמש לוחץ על הכפתור $\frac{\mathsf{Click}\,\mathsf{here}\,\mathsf{to}\,\mathsf{export}\,\mathsf{a}\,\mathsf{model}}{\mathsf{vnc}\,\mathsf{prod}}$ יתבקש המשתמש לבחור תיקיית אימון שבה אומן מודל.

תיקיית האימון אמורה להיראות כך בקירוב:

בנוסף על המשתמש לבחור תיקייה ריקה שאליה ייוצא המודל המאומן.

לאחר כמה שניות בתוך תיקיית הייצוא יתקבלו הקבצים הבאים:

רפלקציה

העבודה על הפרויקט הייתה מאתגרת. בחרתי לעשות את הפרויקט על נושא שמעניין אותי ויאתגר אותי בו זמנית, דבר שהקל עליי במהלך עשייתו. היה לי ידע מוקדם בנושא של למידת מכונה, אך אותי בו זמנית, דבר שהקל עליי במהלך עשייתו. היה לי ידע מוקדם בנושא של למידת מכונה, אך במהלך הפרויקט למדתי והתמקצעתי בנושא, במיוחד בחלק של Tensorflow Object Detection API לעבוד המון דברים חדשים, ובניהם, למדתי איך לעבוד עם סרטונים, למדתי איך ליצור ממשק למשתמש ותקשורת איתו באמצעות tkinter ולמדתי איך להשתמש בכלים של האינטרנט ולחפש מאמרים על הנושאים שלא ידעתי. כלים אלו יעזרו לי הרבה במהלך הדרך העתידית שלי בעולם המחשבים והתכנות ככלל ובעולם הלמידת מכונה בפרט.

במהלך הפרויקט נתקלתי במספר קשיים. ראשית, התקשיתי בלמצוא מאגר נתונים מספיק כדי לאמן מודל בצורה טובה, התקשיתי בלמצוא סביבת עבודה נכונה ויעילה והתקשיתי בבניית המודל. למרות זאת, המשכתי לנסות ולחקור, כדי שאצליח בפרויקט ובמשימות שהצבתי לעצמי.

המסקנות שלי מהפרויקט הן שתחום הלמידת מכונה הוא תחום קשה, אך עם זאת מעניין וחשוב מאוד. אני מעריך שהתחום רק ילך ויתפתח, וישמש אותנו יותר בעתיד. בנוסף, למדתי על עצמי שלמרות שהיה קשה ומאתגר, לא וויתרתי ובסוף גיליתי שמאוד סופקתי אחרי שמאוד התאמצתי ולבסוף הצלחתי.

לו הייתי יכול להתחיל מחדש את הפרויקט, הייתי בוחר להשקיע יותר כבר מההתחלה, ולא להעמיס על עצמי בעיקר בסוף, הייתי חוקר קצת על הנושא של למידת מכונה לפני תחילת כתיבת הקוד. בנוסף, הייתי נעזר באנשי מקצוע או אנשים שמבינים בנושא, כמו לדוגמה בת דודה שלי, שגם היא למדה את הנושא של למידת מכונה וגם מבינה בנושא.

העבודה על הפרויקט הייתה יעילה יותר אילו המחשבים בבית הספר היו יותר חזקים ובעלי GPU. במהלך השנה מצאתי את עצמי פעמים רבות מעביר קבצים וחומר הלוך ושוב בין המחשב בביתי ובין המחשב בבית הספר כדי שאוכל לאמן ולבדוק את הקוד שכתבתי. נאלצתי לעבוד על הקוד גם בבית ובבית הספר, ולאחר בדיקה של המודל בבית, להעביר הכל שוב לבית הספר כדי שאוכל להיות יעיל גם במהלך השיעורים.

לסיכום, הפרויקט היה מלווה קשיים רבים, אך אני שמח שלא וויתרתי לעצמי, ולמדתי הרבה מאוד על השנה. אני שמח שיצא לי ללמוד על הנושא ולחקור עליו יותר.

ביבליוגרפיה

Tensorflow Object Detection API. Retrieved from:

https://github.com/tensorflow/models/tree/master/research/object_detection

Baskaran, V. (2020) Momentum optimizer !!!. Retrieved from:

https://medium.com/@vinodhb95/momentum-optimizer-6023aa445e18

Correa, S. (2019) Cosine Learning rate decay. Retrieved from:

https://scorrea92.medium.com/cosine-learning-rate-decay-e8b50aa455b

Convolutional neural network, Wikipedia. Retrieved from:

https://en.wikipedia.org/wiki/Convolutional neural network#Convolutional layers

Hui, J. *Understanding Feature Pyramid Networks for object detection (FPN)*. Retrieved from: https://jonathan-hui.medium.com/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c

University of Granada, Weapons detection for security and video surveillance. Dataset.

Retrieved from: https://sci2s.ugr.es/weapons-detection#RP

Tkinter filedialog. Retrieved from:

https://docs.python.org/3/library/dialog.html

נספחים

Tensorflow Object Detection API

במהלך תהליך המחקר המקדים לפרויקט הבנתי שאני אצטרך לבצע Object Detection, כלומר זיהוי אובייקטים בתמונות (סרטונים הם רצף של תמונות).

בהמשך המחקר התברר Mbject Detection הוא אחד מהנושאים המתקדמים והמסובכים ביותר בלמידת מכונה וComputer Vision, ולרוב כדי לאמן מודל מוצלח צריך כמות נתונים של עשרות אלפי תמונות וידע של שנים בנושא של למידת מכונה, שני דברים שאין לנו כתלמידים במסגרת ההתמחות בתיכון.

כדי לאפשר לאנשים כמוני גם להתנסות בעולם של Object Detection, היוצרים של Framework מבני לאפשר לאנשים במוני על Tensorflow עצמו, בעל קוד פתוח וקריא לכולם ולו הם קראו Tensorflow Object Detection API

בעזרת הכלי הזה ניתן לבנות, לאמן ולהשתמש במודל המבצע Object Detection גם על מבני נתונים קטנים ובלי ידע נרחב בנושא.

התהליך שבו Tensorflow Object Detection API. משתמש כדי לגרום גם למצור מחתהליך שבו המהליך שבו למחת מודל שאומן על fine-tuning. כלומר לקחת מודל שאומן על dataset אחר לגמרי מודל הוא בעזרת שיטה שנקראת fine-tuning. כלומר לקחת מודל שאומן על מספר רב של אובייקטים ותמונות (לפעמים גם אלפי אובייקטים ומיליוני תמונות), וכבר מומחה בלזהות ולהפריד אובייקטים מתמונות, ורק לאמן אותו בצורה מצומצמת כדי שידע לזהות אובייקטים לפי הdataseth החדש.