Лабораторная работа № 1

«Поиск минимума унимодальной функции»

Задача

Определить интервал, на котором функция является унимодальной, алгоритм определения унимодальности должен принимать на вход левую и правую точку отрезка и возвращать false — если функция на этом отрезке не унимодальная, в противном случае true.

Реализовать поиск минимума унимодальной функции на полученном интервале методом прямого перебора, дихотомии (деление отрезка пополам), золотого сечения и Фибоначчи с заданной точностью по вариантам. Результат должен быть представлен на графике, точки минимизирующей последовательности должны быть выделены красным цветом, интервалы деления синим.

Точность вычисления точки минимума должна варьироваться.

Порядок приема

Задания принимаются только очно. Исходный код решения, исходный код отчета в формате LaTex и отчет в PDF необходимо заархивировать и отправить на почту <u>posevin@bmstu.ru</u> только после очного приема. Тема письма должна быть строго по формату:

«Методы оптимизации <lab i> <Номер группы> <фамилия имя>»

За работу ставится 2 балла — в случае выполнения и сдачи работы во время лабораторной работы и 1 балл — в случае сдачи на следующем занятии. В случае если работа не была сдана на следующем занятии — выдается новый варинат.

Варианты

$$\pi/H$$
 Функция Исполнитель
$$f(x) = 3\sqrt[3]{x^2} - x^2.$$

$$f(x) = (x-a)^6$$

$$f(x) = x \cdot e^{\frac{x^2}{2}}$$

4
$$f(x) = \frac{x^3 - 15x^2 + 7x + 1}{10}$$

$$f(x) = \frac{x^2 - 3x + 2}{x^2 + 2x + 1}$$

$$6 f(x) = x^4 - 2x^2 + 3$$

$$f(x) = \frac{x^2}{2} + \frac{8}{x^2}$$

$$f(x) = \sqrt[3]{(x^2 - 4)^2}$$

9
$$f(x) = \frac{1}{3}x^3 - \frac{5}{2}x^2 + 6x - 2$$

10
$$f(x) = \frac{x^2}{1+x^2}$$

11
$$f(x) = (x+1)^2 e^{2x}$$

12
$$f(x) = (2x^2 + 2x + 3)e^{-2x}$$

13
$$f(x) = |4x - x^2| - \frac{2}{x-2}$$

14
$$f(x) = 2x^2 + 4ax + 3$$

15
$$f(x) = \frac{1}{3}x^3 - x^2 - 3x$$

16
$$f(x) = \frac{1}{3}x^3 + 2x^2 + 3x$$

17
$$f(x)=(x-1)(x+3)^2$$

$$f(x) = \frac{1}{2}x^4 - x^2 + 2$$

$$f(x) = x^4 - 2x^2 - 8$$