HLM University, Greater Noida Mid Semester Examination, Even Semester-2025

Roll No.	2.4.1	
KOH INO.	2410030068	
	411003000	

Name of the School	School of Basic &	Name of the Department	Department of
	Applied Sciences		Mathematics
Name of the Program	B. Tech.	Course Code- Course	UCS2005/
		Name/ Name of faculty	Mathematics for
			Computing
Session	2024-25	Branch, Year & Semester	CSE/R&AI, 1st, 2nd
Time/Maximum Marks	90 Minutes/50	Set	В

Note: Attempt all questions.

Q No.	QUESTIONS	MARKS	СО
	SECTION-A		
1	Solve $(D^2 + 4D + 4)y = 0$, where $D \equiv \frac{d}{dx}$.	2	1
2	Find Particular Integral of $D^2y + y = sin2x$.	2	1
3	Solve $(D^2 + 1)y = 0$, where $D \equiv \frac{d}{dx}$.	2	1
4	Obtain the Laplace transform of $sin(a + bt)$.	2	2
5	Obtain the Laplace transform of t^3 .	2	2
6	Solve $5 \frac{\partial^2 z}{\partial x \partial y} + 4 \frac{\partial^2 z}{\partial y^2} = 0$.	2	3
7	Solve the partial differential equation $(D-1)(D-D'-2)z=0$.	2	3
	SECTION-B		
8	Solve $(D^2 + 5D + 4)y = x^2 + 7x + 9$.	6	1
9	Solve $(D^2 + 1)y = tanx$ by using the method of variation of parameters.	6	1
10	Obtain the Laplace transform of $te^t sin 4t$.	6	2
11	Obtain the Laplace transform of $\frac{e^{at} - cosbt}{t}$.	6	2
12	Solve $4\frac{\partial^2 z}{\partial x^2} - 4\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = e^{x+2y}$.	6	3
13	Solve $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} = \sin x \cos 2y$.	6	3

Name of the School	School of Basic & Applied Sciences	Name of the Department	Department of Mathematics
Name of the Program	B. Tech.	Course Code- Course Name	UCS 2005/ Mathematics for Computing
Session	2024-25 180 Minutes/100	Branch, Year & Semester Set	CSE, IBM, IOS 1 st , 2 nd
Time/Maximum Marks			

Note: Attempt all questions.

	QUESTIONS	MARKS	CO
Q. No.	SECTION-A		
1 (a)	Solve $ \left(D^2 - 2D + 4\right)y = 0 $	2	1
(1-)	; where $D \equiv \frac{d}{dx}$. Obtain particular integral of	2	1
(b)	$(D^3 - 3D^2 + 4D - 2)y = e^x + \cos x.$	2	1
(c)	Obtain the Laplace transform of $F(t) = 3 \sin t + \frac{1}{2}e^{3t}.$	2	2
(d)	State the Convolution theorem for inverse Laplace transform.	2	2
(e)	Solve the partial differential equation $r - 4s + 4t = 0.$	2	3
(f)	Obtain particular integral of $D\left(D-2D^{'}-3\right)z=e^{x+2y}$ where $D\equiv\frac{\partial}{\partial x}$ and $D^{'}\equiv\frac{\partial}{\partial y}$.	2	3
(-)	Write Dirichlet's conditions for the existence of Fourier Series	2	4
(g)	Write the half-range Fourier Cosine series for a function $f(x)$ over the interval $0 < x < l$.	2	4
(h) (i)	State Rank Nullity theorem.	2	5
(j)	If λ be an eigen value of a non-singular matrix A, then calculate the Eigen value of $5A + 2A^{-1} - 7A^2 - 3I$	2	5
	SECTION-B: Attempt all questions.		
2 (a)	Obtain the solution of $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 1 = e^x \sin x.$	6	1
(b)	Obtain the Laplace transform of $\frac{\cos at - \cos bt}{t}.$	6	2
(c)	Solve $ (D-1)(D-D'+1)z = \sin(x+2y) $ where $D \equiv \frac{\partial}{\partial x}$ and $D' \equiv \frac{\partial}{\partial y}$.	6	3
(d)	$\frac{1}{2}$	6	. 4
,(e)		6	5

	SECTION-C: Attempt all questions. Attempt any one part of each question.		
3 (a)	Solve the following differential equation by applying the method of changing the independent variable: $\frac{d^2y}{dx^2} - \frac{1}{r}\frac{dy}{dx} + 4x^2y = x^4$		
3(b)	$\frac{dx^2 - x dx}{OR}$ 3(b) Solve by applying the method of variation of parameters:		1
	$y'' - 3y' + 2y = \frac{e^x}{1 + e^x}$		
4(a)	Obtain the inverse Laplace transform of the function: $f(s) = \frac{s}{(s^2 + 1)(s^2 + 4)}$		
4(b)	using convolution theorem. OR Solve the differential equation by applying Laplace transform:	10	2
	$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 5x = e^{-t}\sin t$, where $x(0) = 0$ and $x'(0) = 1$		
5(a)	Solve: $(D^2 + 2DD' + {D'}^2)z = 2(y - x) + \sin(x - y)$ where $D \equiv \frac{\partial}{\partial x}$ and $D' \equiv \frac{\partial}{\partial y}$.	10	3
5(b) 6(a)	Obtain the solution of the Lagrange's equation: $yzp - xzq = xy$. Obtain the Fourier series for the function $f(x) = x^2$ in $-\pi \le x \le \pi$. Hence deduce that		
	$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$ OR	10	4
	Obtain Fourier series to represent the function $f(x)$, given by: $f(x) = \begin{cases} -k \ ; \ -\pi < x < 0 \\ k \ ; \ 0 < x < \pi \end{cases}$		
7(a) S	Solve the following system of linear equations by applying matrix method: x + y + z = 3 $x + 2y + 3z = 4$		
7(b)	x + 4y + 9z = 6 OR Find the Eigen values and Eigen vectors of the matrix	10	5
	$A = \begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$		