C S 488/508: Introduction to Data Mining

Huiping Cao

Dept. of Computer Science

New Mexico State University

Instructor information

• Dr. Huiping Cao

- Email: hcao@nmsu.edu
- Webpage: http://www.cs.nmsu.edu/~hcao
- Office: Science Hall 171
- Tel: 575-646-4600 (office)
- Personal Zoom Meeting link: https://nmsu.zoom.us/j/8549600124

Why this course?

According to a McKinsey report¹, McKinsey predicts a great effect of big data in employment, where 140, 000 – 190,000 workers with "deep analytical" experience will be needed in the U.S.; furthermore, 1.5 million managers will need to become data-literate.

^{1.} M. Manyika et al. Big Data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute. May 2011.

8 Most In-Demand Jobs Every Company Will Be Hiring For in 2021

1. Data analysts will be in demand.

According to the report, data analysts will become increasingly more important in all industries by 2020.

Survey respondents said they expect to have a greater demand for data analysts because they will need help making sense of all of the data generated by technological disruptions.

2. In fact, computer and mathematical jobs as a whole will also continue to get a boost.

Jobs that fall under the computer and mathematical occupations will grow.

These occupations include computer programmers, software developers, information security analysts, and more.

Forbes

Jun 11, 2021, 09:44am EDT | 5,237 views

The Data Analytics Profession And Employment Is Exploding—Three Trends That Matter

learning engineers. The U.S. Bureau of Labor Statistics sees strong growth for data science jobs skills in its prediction that the data science field will grow about 28% through 2026. Also, as technology improves, companies have been able to increase the sophistication of their data operations and analysis. Increasingly, that means inserting artificial intelligence (AI) capabilities into the business processes of regular companies (i.e. non-tech giants). And that means demand for data scientists (average salary in USA \$111,100) and related positions (research scientists and machine learning engineer) will also

Ranking

8 of the Most In-Demand Engineering Jobs for 2021

By Dean McClements 01 June 2021

1. Data Science & Machine Learning

Software engineering has seen continuous growth over the past few years, and there are no signs of it stopping. Data science is a branch of software engineering that involves creating

So, without further ado, here are 2021's most in-demand engineering jobs and the salary potential one should expect from each.

- 1. Data Science & Machine Learning. ...
- 2. Automation & Robotics Engineer. ...
- 3. Mechanical Engineer. ...
- 4. Civil Engineer. ...
- 5. Electrical Engineer. ...
- 6. Alternative Energy Engineer. ...
- 7. Mining Engineer. ...
- 8. Project Engineer.

Course description & topic list

Course description

Techniques for exploring large data sets and discovering patterns in them.
 Data mining concepts, metrics to measure its effectiveness. Methods in classification, clustering, frequent pattern analysis. Selected topics from current advances in data mining.

Course topic list

- (a) Data, data pre-processing, proximity
- (b) Regression: linear
- (c) Classification
- (d) Clustering
- (e) Association analysis
- (f) Anomaly detection

Course objectives

- Upon completion of this course, students will:
 - LO1: Explain and recognize different data mining tasks such as data preprocessing, visualization, classification, regression, clustering, association rules, and anomaly detection
 - LO2: **Apply** classical data-mining/machine-learning algorithms for classification, clustering, association rules, and anomaly detection
 - LO3: **Evaluate and compare** the performance of different datamining/machine-learning algorithms
 - LO4: Utilize data mining algorithms to analyze data in real applications using a data mining tool

Syllabus & Canvas

- Go through Syllabus
- Go through Canvas course

Outline

- 1. Motivations
- 2. What is data mining
- 3. Origins of data mining
- 4. Typical data mining tasks
- 5. Challenges

Motivation

- Vast amount
- Human analysts may take weeks to discover useful information
- Much of the data is never analyzed at all
- Data growth¹
 - Worldwide information is more than doubling every two years
 - 1.8 zettabytes or 1.8 trillion gigabytes projected to be created and replicated in 2011

1. Courtesy of Zdnet http://www.zdnetasia.com/data-volume-to-hit-1-8zb-in-2011-62301103.htm

Applications: Business

- Product Promotion
 - https://www.kaggle.com/c/springleaf-marketing-response
 - Offer customers loans using direct mails
 - Focus on the customers who are likely to respond and be good candidates for their services
 - Using a large set of anonymized features, predict which customers will respond to a direct mail offer.
- Coupon Purchase Prediction
 - https://www.kaggle.com/c/coupon-purchase-prediction
 - Using past purchase and browsing behavior, predict which coupons a customer will buy in a
 given period of time. The resulting models will be used to improve a recommendation
 system, so they can make sure their customers don't miss out on their next favorite thing.

Applications - Science

- Data collected and stored at enormous speed
 - remote sensors on a satellite
 - telescopes scanning the skies
 - microarrays generating gene expression data
 - scientific simulations generating terabytes of data
- Data mining may help scientists
 - in classifying and segmenting data
 - in hypothesis formation

What is Data Mining - many definitions

 Non-trivial extraction of implicit, previously unknown and potentially useful information from data

• Exploration & analysis, by automatic or semi-automatic means, of large quantities of data in order to discover meaningful patterns

What is Data Mining (cont.)

Knowledge discovery

What is Data Mining (cont.)

- Discovering useful knowledge from large amount of data is data mining?
 - Not really
- Information retrieval
 - Look up phone number in phone directory
 - Query a Web search engine for information about "Amazon"

Origins of Data Mining

- Traditional Techniques may be unsuitable
 - Enormity of data
 - High dimensionality of data
 - Heterogeneous, distributed nature of data

Typical Data Mining Tasks

- Classification [Predictive]
- Regression [Predictive]
- Cluster Analysis [Descriptive]
- Association Analysis [Descriptive]
- Anomaly Detection [Predictive]

Data Mining Tasks

- Prediction Methods
 - Use some variables to predict unknown or future values of other variables.
 - Target, dependent variable
 - Explanatory, independent variable
- Description Methods
 - Find human-interpretable patterns that describe the data.

Classification

- Given a collection of records (training set)
 - Each record contains a set of attributes, one of the attributes is the class.
- Find a model for class attribute as a function of the values of other attributes.
- Goal: previously unseen records (test data) should be assigned a class as accurately as possible.
 - A test set is used to determine the accuracy of the model.
- Examples
 - Credit card fraud detection
 - Disturbance classification
 - Animal category

Classification Example

categorical categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Refund	Marital Status	Taxable Income	Cheat		
No	Single	75K	?		
Yes	Married	50K	?		
No	Married	150K	?	\	
Yes	Divorced	90K	?		
No	Single	40K	?	1	
No	Married	80K	?		Test
					Set
ining Set	→] (Learn Classifi	er	→	Model

Deviation/Anomaly Detection

- Detect significant deviations from normal behavior
- Applications
 - Credit Card Fraud Detection
 - Network Intrusion Detection

Regression

- Predict a value of a given continuous valued variable based on the values of other variables, assuming a linear or nonlinear model of dependency.
 - Extensively studied in statistics, machine learning areas.
- Applications
 - Predicting sales amounts of new product based on advertising expenditure.
 - Predicting power generation as a function of temperature, humidity, air pressure, etc.
 - Time series prediction of stock market indices.

Regression Example

Predict house price given 76 explanatory variables

https://www.kaggle.com/c/house-prices-advanced-regression-

techniques

Bedroom number	Area	YearBuiltt	Price
3	856	2003	208500
3	1262	1976	181500
4	920	2002	223500
•••			

Bedroom number	Area	YearBuiltt	Price
2	900	2000	???
3	1000	1980	???

Cluster Analysis

- What if I do not have training data?
- But I still want to categorize the data somehow...

Clustering: Application

- **Document clustering**: find **groups of documents** that are similar to each other based on the important terms appearing in them.
- Animal behavior analysis: group the animal movement data to different groups such that each group represents different behabior (e.g., resting ruminating, walking, drinking)

Clustering Definition

- Given a set of data points, each having a set of attributes, and a similarity measure among them, find clusters such that
 - Data points in one cluster are more similar to one another.
 - Data points in separate clusters are less similar to one another.
- Similarity measures
 - Euclidean distance if attributes are continuous.
 - Other problem-specific measures.

Association Rule Discovery: Definition

- Given a set of records each of which contain some number of items from a given collection
 - Produce dependency rules which will predict occurrence of an item based on occurrences of other items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

```
Rules Discovered:
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}
```

Association rule discovery: Application

Frequently Bought Together

- ▼ This item: Introduction to Data Mining by Pang-Ning Tan Hardcover \$118.91
- Data Science for Business: What you need to know about data mining and data-analytic thinking by Foster Provost Paperback \$35.59

Customers Who Bought This Item Also Bought

Data Science for Business: What you need to know about data mining and...

> Foster Provost

★★★★☆ 114

Paperback

\$35.59 **Prime**

Data Mining: Practical Machine Learning Tools and Techniques, Third... Ian H. Witten

全全全公 59

Paperback

\$37.50 **Prime**

Data Mining: Concepts and Techniques, Third Edition (The Morgan Kaufmann... Jiawei Han

Hardcover

\$50.02 **Prime**

SAS Statistics by Example Ron Cody

★★★★☆ 11

Perfect Paperback

\$45.93 **Prime**

Introduction to Linear Regression Analysis

Douglas C. Montgomery

食食食食 17

Hardcover

\$93.08 **Prime**

Foster Provost & Tom Fawcett

>

Types of data

- Relational tables (e.g., customers)
- Time series (e.g., voltage waveforms, speech)
- Images (e.g., CT scan)
- Text (e.g., documents)
- Graphs (e.g., social networks)
- Videos

Challenges of Data Mining

- Scalability
- Dimensionality
- Complex and heterogeneous Data
- Data distribution
- Communication, result consolidation, security
- Privacy preserving

References (1)

- Journals
 - TDKE, DMKD, DKE, KAIS
 - VLDBJ, IS (domain-specific)
- Conferences
 - Data mining: KDD, ICDM, SDM, PAKDD, PKDD
 - Artificial intelligence: IJCAI, AAAI, UAI
 - Databases: SIGMOD, VLDB, ICDE, EDBT
 - Machine learning: NeurIPS, ICML
 - Information retrieval: SIGIR
 - Web related: WWW, WSDM
 - Natural language processing...
- Misc: CIKM

References (2)

- Python: https://www.python.org/
- WEKA: http://www.cs.waikato.ac.nz/ml/weka/
- R: http://www.r-project.org/
- RapidMiner: http://rapidminer.com/products/rapidminer-studio/
- Apache Hahout: a scalable machine learning library https://mahout.apache.org/
- MATLAB: http://www.mathworks.com/
- **SPSS**: http://www-01.ibm.com/software/analytics/spss/
- SAS (Statistical Analysis System): http://www.sas.com/
- STATA (Data Analysis and Statistical Software): http://www.stata.com/
- Database management systems
- Kaggle competition: https://www.kaggle.com/competitions