```
In [1]: import pandas as pd import numpy as np
```

```
In [2]: from sklearn.preprocessing import Imputer
    from sklearn.preprocessing import LabelEncoder
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.linear_model import LinearRegression
    from sklearn.tree import DecisionTreeRegressor
    from sklearn.ensemble import RandomForestRegressor

from sklearn import metrics
```

In [3]: housing = pd.read_csv('housing1.csv')
housing

Out[3]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	housel
0	-122.23	37.88	41	880	129.0	322	
1	-122.22	37.86	21	7099	1106.0	2401	
2	-122.24	37.85	52	1467	190.0	496	
3	-122.25	37.85	52	1274	235.0	558	
4	-122.25	37.85	52	1627	280.0	565	
5	-122.25	37.85	52	919	213.0	413	
6	-122.25	37.84	52	2535	489.0	1094	
7	-122.25	37.84	52	3104	687.0	1157	
8	-122.26	37.84	42	2555	665.0	1206	
9	-122.25	37.84	52	3549	707.0	1551	
10	-122.26	37.85	52	2202	434.0	910	
11	-122.26	37.85	52	3503	752.0	1504	
12	-122.26	37.85	52	2491	474.0	1098	
13	-122.26	37.84	52	696	191.0	345	
14	-122.26	37.85	52	2643	626.0	1212	
15	-122.26	37.85	50	1120	283.0	697	
16	-122.27	37.85	52	1966	347.0	793	
17	-122.27	37.85	52	1228	293.0	648	
18	-122.26	37.84	50	2239	455.0	990	
19	-122.27	37.84	52	1503	298.0	690	
20	-122.27	37.85	40	751	184.0	409	
21	-122.27	37.85	42	1639	367.0	929	
22	-122.27	37.84	52	2436	541.0	1015	
23	-122.27	37.84	52	1688	337.0	853	
24	-122.27	37.84	52	2224	437.0	1006	
25	-122.28	37.85	41	535	123.0	317	
26	-122.28	37.85	49	1130	244.0	607	
27	-122.28	37.85	52	1898	421.0	1102	
28	-122.28	37.84	50	2082	492.0	1131	
29	-122.28	37.84	52	729	160.0	395	
20610	-121.56	39.10	28	2130	484.0	1195	
20611	-121.55	39.10	27	1783	441.0	1163	
20612	-121.56	39.08	26	1377	289.0	761	
20613	-121.55	39.09	31	1728	365.0	1167	

				,			
	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	housel
20614	-121.54	39.08	26	2276	460.0	1455	
20615	-121.54	39.08	23	1076	216.0	724	
20616	-121.53	39.08	15	1810	441.0	1157	
20617	-121.53	39.06	20	561	109.0	308	
20618	-121.55	39.06	25	1332	247.0	726	
20619	-121.56	39.01	22	1891	340.0	1023	
20620	-121.48	39.05	40	198	41.0	151	
20621	-121.47	39.01	37	1244	247.0	484	
20622	-121.44	39.00	20	755	147.0	457	
20623	-121.37	39.03	32	1158	244.0	598	
20624	-121.41	39.04	16	1698	300.0	731	
20625	-121.52	39.12	37	102	17.0	29	
20626	-121.43	39.18	36	1124	184.0	504	
20627	-121.32	39.13	5	358	65.0	169	
20628	-121.48	39.10	19	2043	421.0	1018	
20629	-121.39	39.12	28	10035	1856.0	6912	
20630	-121.32	39.29	11	2640	505.0	1257	
20631	-121.40	39.33	15	2655	493.0	1200	
20632	-121.45	39.26	15	2319	416.0	1047	
20633	-121.53	39.19	27	2080	412.0	1082	
20634	-121.56	39.27	28	2332	395.0	1041	
20635	-121.09	39.48	25	1665	374.0	845	
20636	-121.21	39.49	18	697	150.0	356	
20637	-121.22	39.43	17	2254	485.0	1007	
20638	-121.32	39.43	18	1860	409.0	741	
20639	-121.24	39.37	16	2785	616.0	1387	
20640	rows × 10 c	columne					
20040	10003 ^ 10 (Joiuillio					

```
In [4]: housing.info()
         <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 20640 entries, 0 to 20639
        Data columns (total 10 columns):
         longitude
                                20640 non-null float64
         latitude
                                20640 non-null float64
        housing_median_age
                                20640 non-null int64
        total rooms
                                20640 non-null int64
         total bedrooms
                                20433 non-null float64
         population
                                20640 non-null int64
        households
                                20640 non-null int64
        median income
                                20640 non-null float64
         ocean proximity
                                20640 non-null object
        median house value
                                20640 non-null int64
        dtypes: float64(4), int64(5), object(1)
        memory usage: 1.6+ MB
In [5]: print(housing.head())
            longitude
                       latitude
                                  housing median age
                                                       total rooms
                                                                    total bedrooms
         0
              -122.23
                          37.88
                                                   41
                                                               880
                                                                              129.0
              -122.22
                          37.86
                                                   21
                                                              7099
                                                                             1106.0
        1
                                                   52
         2
              -122.24
                          37.85
                                                              1467
                                                                              190.0
         3
              -122.25
                          37.85
                                                   52
                                                              1274
                                                                              235.0
         4
              -122.25
                          37.85
                                                   52
                                                              1627
                                                                              280.0
            population households median_income ocean_proximity
                                                                     median house value
         0
                                            8.3252
                   322
                                126
                                                           NEAR BAY
                                                                                  452600
        1
                  2401
                               1138
                                            8.3014
                                                           NEAR BAY
                                                                                  358500
         2
                   496
                                177
                                            7.2574
                                                           NEAR BAY
                                                                                  352100
         3
                   558
                                219
                                            5.6431
                                                           NEAR BAY
                                                                                  341300
                                259
         4
                   565
                                            3.8462
                                                           NEAR BAY
                                                                                  342200
        housing.isnull().sum()
In [6]:
Out[6]: longitude
                                  0
         latitude
                                  0
        housing median age
                                  0
         total rooms
                                  0
         total bedrooms
                                207
        population
                                  0
        households
                                  0
        median_income
                                  0
         ocean proximity
                                  0
        median house value
                                  0
         dtype: int64
```

```
print ("Total bedrooms column Mode is "+str(housing["total bedrooms"].mode())
In [7]:
         +"\n")
         print(housing["total_bedrooms"].describe())
        Total_bedrooms column Mode is 0
                                              280.0
        dtype: float64
        count
                  20433.000000
                    537.870553
        mean
        std
                    421.385070
        min
                      1.000000
        25%
                    296.000000
        50%
                    435.000000
        75%
                    647.000000
        max
                   6445.000000
        Name: total bedrooms, dtype: float64
        print(housing.iloc[:,4:5].head())
In [8]:
         imputer = Imputer(np.nan,strategy ="median")
         imputer.fit(housing.iloc[:,4:5])
         housing.iloc[:,4:5] = imputer.transform(housing.iloc[:,4:5])
         housing.isnull().sum()
            total_bedrooms
        0
                     129.0
        1
                    1106.0
        2
                     190.0
        3
                     235.0
        4
                     280.0
        E:\New folder (2)\lib\site-packages\sklearn\utils\deprecation.py:58: Deprecat
        ionWarning: Class Imputer is deprecated; Imputer was deprecated in version 0.
        20 and will be removed in 0.22. Import impute. Simple Imputer from sklearn inst
        ead.
          warnings.warn(msg, category=DeprecationWarning)
Out[8]: longitude
                               0
        latitude
                               0
        housing median age
                               0
        total rooms
                               0
        total_bedrooms
                               0
        population
                               0
        households
                               0
        median income
                               0
        ocean proximity
                               0
        median house value
                               0
        dtype: int64
```

```
In [9]: labelEncoder = LabelEncoder()
    print(housing["ocean_proximity"].value_counts())
    housing["ocean_proximity"] = labelEncoder.fit_transform(housing["ocean_proximity"])
    housing["ocean_proximity"].value_counts()
    housing.describe()
```

<1H OCEAN 9136
INLAND 6551
NEAR OCEAN 2658
NEAR BAY 2290
ISLAND 5

Name: ocean_proximity, dtype: int64

Out[9]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	popul
count	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.00
mean	-119.569704	35.631861	28.639486	2635.763081	536.838857	1425.47
std	2.003532	2.135952	12.585558	2181.615252	419.391878	1132.46
min	-124.350000	32.540000	1.000000	2.000000	1.000000	3.00
25%	-121.800000	33.930000	18.000000	1447.750000	297.000000	787.00
50%	-118.490000	34.260000	29.000000	2127.000000	435.000000	1166.00
75%	-118.010000	37.710000	37.000000	3148.000000	643.250000	1725.00
max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	35682.00
4						•

```
In [11]:
         housing ind = housing.drop("median house value",axis=1)
         print(housing ind.head())
         housing dep = housing["median house value"]
         print("Medain Housing Values")
         print(housing dep.head())
                                                                   total bedrooms \
            longitude latitude
                                 housing median age total rooms
         0
              -122.23
                           37.88
                                                   41
                                                               880
                                                                             129.0
         1
                           37.86
                                                   21
                                                              7099
              -122.22
                                                                            1106.0
         2
              -122.24
                           37.85
                                                   52
                                                              1467
                                                                             190.0
         3
              -122.25
                           37.85
                                                   52
                                                              1274
                                                                             235.0
         4
              -122.25
                           37.85
                                                   52
                                                              1627
                                                                             280.0
            population households median income ocean proximity
         0
                                            8.3252
                    322
                                126
                                                                   3
                                                                   3
         1
                   2401
                               1138
                                            8.3014
                                                                   3
         2
                    496
                                177
                                            7.2574
                                                                   3
         3
                    558
                                219
                                            5.6431
                                                                   3
                    565
                                259
         4
                                            3.8462
         Medain Housing Values
              452600
         1
              358500
         2
              352100
         3
              341300
         4
              342200
         Name: median house value, dtype: int64
         #check for rand state
In [12]:
         X_train,X_test,y_train,y_test = train_test_split(housing_ind,housing_dep,test_
         size=0.2,random_state=42)
         #print(X train.head())
         #print(X test.head())
         #print(y train.head())
         #print(y test.head())
         print("X_train shape {} and size {}".format(X_train.shape,X_train.size))
         print("X_test shape {} and size {}".format(X_test.shape,X_test.size))
         print("y_train shape {} and size {}".format(y_train.shape,y_train.size))
          print("y test shape {} and size {}".format(y test.shape,y test.size))
         X_train shape (16512, 9) and size 148608
         X_test shape (4128, 9) and size 37152
         y train shape (16512,) and size 16512
```

y_test shape (4128,) and size 4128

In [13]: X_train.head()

Out[13]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	housel
14196	-117.03	32.71	33	3126	627.0	2300	
8267	-118.16	33.77	49	3382	787.0	1314	
17445	-120.48	34.66	4	1897	331.0	915	
14265	-117.11	32.69	36	1421	367.0	1418	
2271	-119.80	36.78	43	2382	431.0	874	
4							•

```
In [14]:
        independent scaler = StandardScaler()
         X train = independent scaler.fit transform(X train)
         X test = independent scaler.transform(X test)
         print(X train[0:5,:])
         print("test data")
         print(X_test[0:5,:])
        E:\New folder (2)\lib\site-packages\sklearn\preprocessing\data.py:625: DataCo
        nversionWarning: Data with input dtype int32, int64, float64 were all convert
        ed to float64 by StandardScaler.
          return self.partial_fit(X, y)
        [[ 1.27258656 -1.3728112
                                  0.32290591 -0.326196
                                  2.00593172]
         [ 0.70916212 -0.87669601 1.61811813 0.34029326 0.59309419 -0.09890135
           0.6720272 -0.03584338 2.00593172]
          [-0.44760309 -0.46014647 -1.95271028 -0.34259695 -0.49522582 -0.44981806
          -0.43046109 0.14470145 2.00593172]
          [ 1.23269811 -1.38217186  0.58654547 -0.56148971 -0.40930582 -0.00743434
          -0.38058662 -1.01786438 2.00593172]
         [-0.10855122 0.5320839
                                  1.14200767 -0.11956547 -0.25655915 -0.48587717
          -0.31496232 -0.17148831 -0.1124266 ]]
        test data
                                 -0.28632369 -0.52286157 -0.24701249 -0.03030109
         [[ 0.28534728  0.1951
           -0.37008673 -1.15508475 -0.1124266 ]
         [ 0.06097472 -0.23549054  0.11043502  0.13841528 -0.24701249  0.12185077
           0.220532
                     -0.70865905 -0.1124266 ]
         1.21539643 -0.21040155 1.29981228]
          [ 0.42994293 -0.63799909 -0.92113763  0.18808002 -0.24701249  0.24497944
          -0.01309052 0.97511311 -0.81854604]
          [-1.17058135 0.45719859 0.42784199 -0.13382109 -0.24701249 -0.31965346
          -0.18896365 -0.08179356 2.00593172]]
        E:\New folder (2)\lib\site-packages\sklearn\base.py:462: DataConversionWarnin
        g: Data with input dtype int32, int64, float64 were all converted to float64
        by StandardScaler.
          return self.fit(X, **fit params).transform(X)
        E:\New folder (2)\lib\site-packages\ipykernel launcher.py:3: DataConversionWa
        rning: Data with input dtype int32, int64, float64 were all converted to floa
        t64 by StandardScaler.
```

This is separate from the ipykernel package so we can avoid doing imports until

```
In [15]: #initantiate the linear regression
         linearRegModel = LinearRegression(n jobs=-1)
         #fit the model to the training data (learn the coefficients)
         linearRegModel.fit(X train,y train)
         #print the intercept and coefficients
         print("Intercept is "+str(linearRegModel.intercept_))
         print("coefficients is "+str(linearRegModel.coef ))
         Intercept is 207194.69373788778
         coefficients is [-85854.94724101 -90946.06271148 14924.30655143 -17693.2340
         5277
           48767.60670995 -43884.16852449 17601.31495096 77144.10164179
            -451.52015229]
In [16]: y pred = linearRegModel.predict(X test)
In [17]: | print(np.sqrt(metrics.mean_squared_error(y_test,y_pred)))
         print(np.sqrt(metrics.mean squared error(y train,linearRegModel.predict(X trai
         n))))
         71147.87146118373
         69361.0714290645
In [18]: | dtReg = DecisionTreeRegressor(max_depth=9)
         dtReg.fit(X train,y train)
Out[18]: DecisionTreeRegressor(criterion='mse', max_depth=9, max_features=None,
                    max leaf nodes=None, min impurity decrease=0.0,
                    min impurity split=None, min samples leaf=1,
                    min samples split=2, min weight fraction leaf=0.0,
                    presort=False, random state=None, splitter='best')
In [19]: dtReg y pred = dtReg.predict(X test)
         dtReg_y_pred
Out[19]: array([ 60503.2556391 , 75919.52054795, 478283.56097561, ...,
                                  75919.52054795, 211563.96963563])
                488611.25
         print(np.sqrt(metrics.mean squared error(y test,dtReg y pred)))
In [20]:
         60981.93860192401
In [21]: rfReg = RandomForestRegressor(30)
         rfReg.fit(X_train,y_train)
Out[21]: RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
                    max features='auto', max leaf nodes=None,
                    min_impurity_decrease=0.0, min_impurity_split=None,
                    min_samples_leaf=1, min_samples_split=2,
                    min weight fraction leaf=0.0, n estimators=30, n jobs=None,
                    oob score=False, random state=None, verbose=0, warm start=False)
```

```
In [23]: rfReg_y_pred = rfReg.predict(X_test)
         print(len(rfReg_y_pred))
         print(len(y_test))
         print(rfReg_y_pred[0:5])
         print(y_test[0:5])
         4128
         4128
         [ 48646.66666667 71933.3333333 466903.7
                                                           278603.33333333
          245740.
         20046
                   47700
         3024
                   45800
         15663
                  500001
         20484
                  218600
         9814
                  278000
         Name: median_house_value, dtype: int64
In [24]: print(np.sqrt(metrics.mean_squared_error(y_test,rfReg_y_pred)))
         50631.69730545329
In [ ]:
```