Student Name:	Hanlin Cai
Maynooth	20122161
ID:	

Student Name:	蔡汉霖
Fuzhou University ID:	832002117

Laboratory 5: Analogue Filter Design

Part 1:Experimental equipment and devices

- 1. A signal generator
- 2. Oscilloscope
- 3. Breadboard (bring your own one)
- 4. Resistors and capacitors
- 5. LM741

Part 2:Experimental content

I construct two circuits to implement and analyze two analogue low pass filters.

Part 3:Experimental procedure and results

Task 1

(1) Procedure

<u>I build the circuit and check the Vout and Vin. I increase the frequency to 100 kHz from 0.1 kHz.</u>
Then add up the numbers and form a conclusion.

(2)Results

Task 2:Explain why fc is called 3dB cutoff frequency.

Because the Vpp becomes $(\frac{\sqrt{2}}{2})$ times the original Vpp when I change the frequency to fc. As a result, I refer to the frequency as fc 3dB cutoff frequency.

Task 3:

Input(KHz)	Vin(V)	Vout(V)	Vout/vin	20log10(Vout/Vin)	phase
0.1	10.2	10	0.980432	-0.1720035	-2.29•
1	10.2	8.10	0.792123	-2.023772	-36.3°
10	10.2	1.62	0.156842	-16.089608	-78.20°
100	10.2	0.23	0.023429	-32.56776	-90.0°
1.59	10.2	6.84	0.670582	-3.4708811	-44.73°

Task 4:

<u>As I change the sine signal to square wave, and f=4fc, I get the output which meets our expectation</u>

Task 5:

<u>As I change the sine signal to triangle wave, and f=4fc, I get the output which meets our expectation with just small error.</u>

Comment:

As I increase the frequency of input, the Gain decreases, and 20log10(Vout/Vin) decreases at the same time. The phase difference between output and input voltage shrinks as well.

Part2

(1) Procedure

I construct the circuit, and measure the Vout and Vin. I change the frequency from 0.1Khz to 100Khz. Then calculate the data and draw the conclusion.

(2)Results

Task 6:

Task 7:

input	vin	vout	vout/vin	20log10(vout/vin)	phase
0.1	10.2	10.2	1	0	7.21°
1	10.2	6.88	0.67451	-3.420234671	66.23°
10	10.2	0.6	0.058824	-24.60897843	190°
100	10.2	2.23	0.218627	-13.20590617	280°
1.5915	10.2	4.68	0.458824	-6.767086374	88.3°

As I change the sine signal to square wave, and f=4fc, I get the output which meets our expectation

As I change the sine signal to square wave, and f=4fc, I get the output which meets our expectation with just small error

Comment:

As I increase the frequency of input, the Gain decreases, and 20log10(Vout/Vin) decreases at the same time. The phase difference between output and input voltage shrinks as well. However, if I increase the frequency too much, the output will not satisfy our expectations, and the data would be useless.

Part 4: Summary

In lab 5, To create and analyze two analogue low pass filters, I built two circuits.

I now have a better grasp of low pass filters and am more knowledgeable about their qualities as a result of this lab.

That's all, thank you for your patient examination!

832002117 20122161

Hanlin Cai