Inhaltsverzeichnis

Vo	prwort	5
1	Beispiele normierter Räume	7
2	Funktionale und Operatoren	21
3	Dualräume und ihre Darstellungen	31
4	Kompakte Operatoren	37
5	Der Satz von Hahn-Banach	45
6	Schwache Konvergenz und Reflexivität	57
7	Hauptsätze für Operatoren auf Banachräumen	61
8	Projektionen auf Banachräumen	73
9	Hilberträume	75
10	Operatoren auf Hilberträumen	89

10

Operatoren auf Hilberträumen

Sei stets H (bzw. (H_1, H_2)) ein Hilbertraum.

Definition 10.1

Sei $T \in L(H_1, H_2)$. Die Abbildung $T^* \in L(H_2, H_1)$ heißt adjungiert zu T, falls

$$\langle Tx, y \rangle_{H_2} = \langle x, T1^*y \rangle_{H_1} \forall x \in H_1, y \in H_2$$

{satz10.2}

{def10.1}

Satz 10.2

Zu jedem Operator $T \in L(H_1, H_2)$ existiert ein eindeutig bestimmter adjungierter Operator T^* und es gilt

$$\|T\| = \left\|T^*\right\|$$

Beweis:

Eindeutigkeit: Seien S_1 und S_2 adjungiert zu T.

$$\langle x, (S_1 - S_2)y \rangle_{H_1} = \langle Tx, y \rangle_{H_2} - \langle Tx, y \rangle_{H_2} = 0$$

für alle $x \in H_1$, $y \in H_2$. Alsi gilt $S_1 = S_2$

Existenz: Für $y \in H_2$ ist die Abbildung $x \mapsto \langle Tx, y \rangle_{H_2}$ stetig und linear. Nach dem Darstellungssatz von Fréchet-Riesz existiert ein $y^* \in H_1$ so dass

$$\langle Tx, y \rangle_{H_2} = \langle x, y^* \rangle_{H_1} \forall x \in H_1$$

Die Zuordnung $T^* : y \mapsto y^*$ ist linear und wegen

$$\left\| T^* \right\| = \sup_{\substack{y \in H_2 \\ \|y\| \leq 1}} \left\| y^* \right\| = \sup_{\substack{y \in H_2 \\ \|y\| \leq 1}} \sup_{\substack{x \in H_1 \\ \|y\| \leq 1}} |\langle x, y^* \rangle_{H_1}| = \|T\|$$

auch stetig. Hieraus folgt die Behauptung.

{satz10.3}

Satz 10.3

Seien $S, T \in L(H_1, H_2), R \in L(H_2, H_3), \lambda \in \mathbb{K}$. Dann gilt:

- i) $(S+T)^* = S^* + T^*$.
- ii) $(\lambda S)^* = \bar{\lambda} S^*$.
- iii) $(RS)^* = S^*R^*$.
- iv) $S^{**} = S$.
- v) $||SS^*|| = ||S^*S|| = ||S||^2$.
- vi) $\ker S = (\operatorname{ran} S^*)^{\perp}$ und $\ker S^* = (\operatorname{ran} S)^{\perp}$. Insbesondere ist S genau dann injektiv, wenn $\operatorname{ran} S^*$ dicht liegt.

Beweis: i) bis iv) lassen sich einfach nachrechnen. Wir zeigen v). Es gilt

$$||Sx|| = \langle Sx, Sx \rangle_{H_2} = \langle x, S^*Sx \rangle \le ||x|| ||S^*Sx||$$

$$\left\|S\right\|^2 = \sup_{\left\|x\right\|_{H_1} \le 1} \left\|Sx\right\|_{H_2}^2 \le \sup_{\left\|x\right\|_{H_1} \le 1} \left\|x\right\| \left\|S^*Sx\right\| \le \left\|S^*\right\| \left\|S\right\| = \left\|S\right\|^2$$

Also $||S||^2 = ||S^*S||$ und folglich

$$||S^2|| = ||S^*||^2 = ||S^{**}S^*|| = ||SS^*||$$

Zu vi):

$$\begin{aligned} x \in \ker S &\Leftrightarrow Sx = 0 \\ &\Leftrightarrow \langle Sx, y \rangle_{H_2} = 0 \,\forall \, y \in H_2 \\ &\Leftrightarrow \langle x, S^*y \rangle_{H_1} = 0 \,\forall \, y \in H_2 \\ &\Leftrightarrow x \in (\operatorname{ran} S^*)^{\perp} \end{aligned}$$

und somit auch

$$\ker S^* = (\operatorname{ran} S^{**})^{\perp} = (\operatorname{ran} S)^{\perp}$$

{def10.4}

Definition 10.4

Sei $T \in L(H_1, H_2)$.

- i) T heißt unitär, falls T invertierbar ist mit $TT^* = I_{H_2}$ und $T^*T = I_{H_1}$.
- ii) Sei $H_1 = H_2$. T^* heißt selbstadjungiert (oder hermitesch), falls $T = T^*$.
- iii) Sei $H_1 = H_2$. T heißt normal, falls $TT^* = T^*T$.

Bemerkung

i) T unitär $\Leftrightarrow T$ surjektiv und

$$\langle Tx, Ty \rangle_{H_2} = \langle x, y \rangle_{H_1} \forall x, y \in H_1$$

- ii) T ist selbstadjungiert $\Leftrightarrow \langle Tx, y \rangle_{H_1} = \langle x, Ty \rangle_{H_2}$.
- iii) T ist normal $\Leftrightarrow \langle Tx, Ty \rangle_{H_1} = \langle T^*y, T^*y \rangle_{H_1}$.
- iv) T selbstadjungiert $\Rightarrow T$ normal.
- v) $H_1 = H_2$, T unitär $\Rightarrow T$ normal.

Beispiel

- i) Sei $H = \mathbb{K}^n$. Wird $T \in L(H)$ durch die Matrix $(a_{ij})_{ij}$ dargestellt, so wird T^* durch die Matrix $(\bar{a}_{ji})_{ji}$ dargestellt.
- ii) Sei $T \colon \ell^2 \to \ell^2$ der Shiftoperator $(x_1, x_2, ...) \mapsto (x_2, x_3, ...)$. Dann ist $T^*(y_1, y_2, ...) = (0, y_1, y_2, ...)$. T ist nicht normal, da $TT^* = I_{\ell^2}$ und $T^*T = p_U$, $U = \{(x_n)_n \in \ell^2 \mid x_1 = 0\}$.
- iii) T^*T und TT^* sind stets selbstadjungiert. $/\!\!/$

{lemma10.5}

Lemma 10.5

Für $T \in L(H_1, H_2)$ sind äquivalent:

- i) *T* ist eine Isometrie, d.h. $||Tx|| = ||x|| \forall x \in H$.
- ii) $\langle Tx, Ty \rangle_{H_1} = \langle x, y \rangle_{H_1} \forall x, y \in H_1.$

Beweis:

 $ii) \Rightarrow i$): Setze x = y.

 $i)\Rightarrow$ Sei $\mathbb{K}=\mathbb{R}$. Dann folgt aus

$$\langle x,y\rangle_{H_1} = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2) = \frac{1}{4}(\|Tx+Ty\|^2 - \|Tx-Ty\|^2) = \langle Tx,Ty\rangle$$

die Behauptung. Analog für $\mathbb{K} = \mathbb{C}$.

{satz10.6}

Satz 10.6 Satz von Hellinger-Toeplitz

Erfüllt eine lineare Abbildung $T: H \rightarrow H$ die Symmetriebedingung

$$\langle Tx, y \rangle = \langle x, Ty \rangle \forall x, y \in H$$

so ist T stetig, folglich selbstadjungiert.

Beweis: Nach dem Satz vom abgeschlossenen Graphen ist zu zeigen:

$$x_n \to Tx_n \to y \Rightarrow Tx = y$$

$$||Tx - y||^2 = \langle Tx - y, Tx - y \rangle$$

$$= \left\langle Tx - \lim_{n \to \infty} Tx_n, Tx - y \right\rangle$$

$$= \lim_{n \to \infty} \langle T(x - x_n), Tx - y \rangle$$

$$= \lim_{n \to \infty} \langle x - x_n, T^*(Tx - y) \rangle$$

$$= 0$$

Also ist Tx = y.

{satz10.7}

Satz 10.7

Sei $\mathbb{K} = \mathbb{C}$. Dann sind für $T \in L(H)$ äquivalent:

- i) T ist selbstadjungiert.
- ii) $\langle Tx, x \rangle \in \mathbb{R} \forall x \in H$

Beweis:

 $i)\Rightarrow ii)$: Folgt aus $\langle Tx, x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle} \in \mathbb{R}$.

ii)⇒i): Für $\lambda \in \mathbb{C}$ betrachte die reelle Zahl

$$\langle T(x+\lambda y), x+\lambda y\rangle = \langle Tx, x\rangle + \bar{\lambda}\langle Tx, y\rangle + \lambda\langle Ty, x\rangle + |\lambda|^2\langle Ty, y\rangle$$

Wir nehmen alle konjugiert komplex:

$$\langle T(x+\lambda y), x+\lambda y\rangle = \langle Tx, x\rangle + \lambda \langle y, Tx\rangle + \bar{\lambda} \langle x, Ty\rangle + |\lambda|^2 \langle Ty, y\rangle$$

Also gilt:

$$\bar{\lambda}\langle Tx, y\rangle + \lambda\langle Ty, x\rangle = \lambda\langle x, Tx\rangle + \langle x, \bar{T}y\rangle$$

Wir wählen $\lambda = 1$ und $\lambda = -i$:

$$\langle Tx, y \rangle + \langle Ty, x \rangle = \langle y, Tx \rangle + \langle x, Ty \rangle$$

$$\langle Tx, y \rangle - \langle Ty, x \rangle = -\langle y, Tx \rangle + \langle x, Ty \rangle$$

Also folgt $\langle Tx, y \rangle = \langle x, Ty \rangle$.

{satz10.8}

Satz 10.8

Für selbstadjungierte operatoren $T \in L(H)$ gilt

$$\|T\| = \sup_{\|x\| \le 1} |\langle Tx, x \rangle|$$

Beweis: '≥' ist klar.

Setze

$$M \coloneqq \sup_{\|x\| \le 1} |\langle Tx, x \rangle|$$

Aus $T = T^*$ folgt:

$$\langle T(x+y), x+y \rangle - \langle T(x-y), x-y \rangle = 2\langle Tx, y \rangle + 2\langle Ty, x \rangle = 2\langle Tx, y \rangle + 2\overline{\langle Tx, y \rangle} = 4\operatorname{Re}\langle Tx, y \rangle$$

Also:

$$4\operatorname{Re}\langle Tx, y \rangle \le M(\|x+y\|^2 + \|x-y\|^2) = 2M(\|x\|^2 + \|y\|^2)$$

Weiter gilt:

$$\operatorname{Re}\langle Tx, y \rangle \leq M \forall \|x\|, \|y\| \leq 1$$

Multiplikation mit geeigneten λ , $|\lambda| = 1$ liefert:

$$|\langle Tx, y \rangle| \le M \forall ||x||, ||y|| \le 1$$

Also ist $||T|| \leq M$.

{kor10.9}

Korollar 10.9

Ist $T \in L(H)$ selbstadjungiert und es gilt $\langle Tx, y \rangle = 0$, so ist T = 0.

Bemerkung

Die Aussage gilt nur für selbstadjungierte Operatoren: Sei $H=\mathbb{R}^2$ und $T=\left(\begin{smallmatrix}0&1\\-1&0\end{smallmatrix}\right)$. Dann gilt:

$$\langle Tx,x
angle_{\mathbb{R}^2}=\left\langle \left(egin{array}{c} x_2 \ -x_1 \end{array}
ight), \left(egin{array}{c} x_1 \ x_2 \end{array}
ight)
ight
angle_{\mathbb{R}^2}=x_2x_2-x_1x_2=0$$

{lemma10.10}

Lemma 10.10

Ist $T \in L(H)$ ein normaler Operator, so gilt

$$||Tx|| = ||T^*x||$$

Insbesondere $\ker T = \ker T^*$.

Beweis: Es gilt:

$$0 = \langle (TT^* - T^*T)x.x \rangle = \|T^*x\|^2 - \|Tx\|^2 \, \forall x \in H$$