

Mathématiques

Classe: BAC

Chapitre: Fonctions Exponentielles

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

(5) 50 min

7 pt

Dans le graphique ci-contre, on a représenté les courbes C_1 , C_2 et C_3 dans un repère orthonormé $\left(0,\vec{i},\vec{j}\right)$.

- ▶ La courbe C_1 représente la fonction définie sur $]0,+\infty[$ par : $x\mapsto \frac{1}{x}$.
- \blacktriangleright La courbe C_2 représente la fonction définie sur $]0,+\infty[$ par : $x \mapsto \ln x$.
- $lackbox{ La courbe } C_3$ représente la fonction définie sur $]0,+\infty[$ par : $x \mapsto e^x$.

- **b)** Déterminer graphiquement le signe de $\left(e^x \frac{1}{x}\right)$ sur $\left]0, +\infty\right[$.
- **2°)** a) Calculer en fonction de lpha , l'aire ${\mathcal A}$ de la partie du plan hachurée en rayure horizontale.
 - **b)** Vérifier que $\mathcal{A} = e + \ln \alpha \frac{1}{\alpha}$.
- **3°) a)** Calculer en fonction de $\,eta$, l'aire $\,{\cal A}'\,$ de la partie du plan hachurée en rayure verticale.
 - **b)** Montrer que $\mathcal{A}' = \frac{(\beta 1)^2}{\beta}$.
- **4°)** On considère la fonction f définie sur $]0,+\infty[$ par : $f(x)=e^x-\ln x$ et on note C sa courbe représentative dans le repère $(0,\vec{i},\vec{j})$.
 - a) Calculer $\lim_{x\to 0^+} f(x)$; interpréter graphiquement le résultat.
- **b)** Montrer que $\lim_{x\to +\infty} f(x) = +\infty$ puis calculer $\lim_{x\to +\infty} \frac{f(x)}{x}$; interpréter graphiquement le résultat.
- **5°) a)** Dresser le tableau de variation de f.
 - **b)** Etudier la position de $\,C\,$ et $\,C_{\!_3}\,$.
 - c) Expliquer comment utiliser les courbes $\,C_{\!\!2}\,$ et $\,C_{\!\!3}\,$ pour tracer la tangente horizontale de $\,C_{\!\!.}\,$
 - d) Tracer C dans le même repère $\left(0,\vec{i},\vec{j}\right)$.

6°) Hachurer (en rayure oblique) en justifiant le domaine ${m {\mathcal D}}$ du plan limitée par les courbes ${f C}_1$ et

 \mathbf{C}_3 ; et ; les droites d'équations : $x=\lambda\ et\ x=lpha$ tel que $0<\lambda<lpha$ et l'aire du $m{\mathcal{D}}$ est égale à $m{\mathcal{A}}$.

Exercice 2

(5) 60 min

7 pt

I— Soit f la fonction définie sur IR par : $f(x) = \frac{e^{2x}}{1 + e^{2x}}$ et soit C sa courbe représentative dans le plan rapporté à un repère orthonormé $(0,\vec{i},\vec{j})$ (unité : 2cm).

- **1°) a)** Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to -\infty} f(x)$. Interpréter graphiquement les résultats.
 - **b)** Montrer que pour tout réel x on a : $f'(x) = \frac{2e^{2x}}{\left(1 + e^{2x}\right)^2}$.

Dresser le tableau de variation de f.

- c) Montrer que le point $I\!\left(0,\frac{1}{2}\right)$ est un centre de symétrie de C.
- **d)** Donner une équation cartésienne de la tangente (T) à ${f C}$ au point $\it I$.
- 2°) a) Montrer que pour tout réel t on a : $f'(t) \le \frac{1}{2}$.
 - **b)** En intégrant les deux membres de l'inégalité précédente, montrer que pour $x \ge 0$ on a :

$$f(x) \le \frac{1}{2}(x+1)$$

- c) Déterminer alors la position de $\, C \,$ par rapport à $\, (T) \, .$
- **3°)** Tracer (T) et \mathbb{C} dans le repère $(0,\vec{i},\vec{j})$.
- **4°)** a) Montrer que f est une bijection de IR sur]0,1[.
 - **b)** Soit $y \in]0,1[$. Déterminer le réel x tel que f(x) = y .
- c) En déduire la représentation graphique dans le même repère $\left(0,\vec{i},\vec{j}\right)$ de la fonction g définie sur $\left]0,1\right[$ par : $g\left(x\right)=\frac{1}{2}\ln\left(\frac{x}{1-x}\right)$
- II– On considère la suite (I_n) définie pour tout entier naturel non nul n par : $I_n = \int_{-1}^0 \frac{e^{2nt}}{1+e^{2t}} dt$.
- 1°) a) Montrer que (I_n) est décroissante et positive.

- **b)** En déduire que $\left(I_{\scriptscriptstyle n}\right)$ est convergente.
- **2°)** Montrer que pour tout naturel non nul n, on a : $I_n \le \frac{1}{2n}$.
- 3°) Trouver la limite de $I_{\scriptscriptstyle n}$ quand n tend vers l'infini.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000