WHAT IS CLAIMED IS:

1	A method for forming an optical waveguide on a substrate in a			
2	process chamber, the method comprising:			
3	depositing an undercladding layer over the substrate;			
4	forming at least one core over the undercladding layer; and			
5	depositing an uppercladding layer over the at least one core with a high-			
6	density plasma process.			
1	2. The method recited in claim 1 wherein depositing the			
2	uppercladding layer comprises:			
3	flowing an oxygen-containing gas and a silicon-containing gas into the			
4	process chamber to produce a gaseous mixture;			
5	generating a high-density plasma from the gaseous mixture; and			
6	depositing a silicate glass layer over the at least one core with the high-			
7	density plasma.			
1	3. The method recited in claim 2 wherein a flow rate of the oxygen			
2	containing gas is more than 1.8 times a flow rate of the silicon-containing gas.			
1	4. The method recited in claim 3 wherein the flow rate of the			
2	oxygen-containing gas is greater than 175 sccm and the flow rate of the silicon			
3	containing gas is between 80 and 110 sccm.			
1	5. The method recited in claim 4 wherein the oxygen-containing			
2	gas comprises O ₂ and the silicon-containing gas comprises SiH ₄ .			
1	6. The method recited in claim 2 wherein depositing the			
2	uppercladding layer further comprises flowing an inert gas into the process chamber			
3	with a flow rate between 0 and 200 sccm.			
1	7. The method recited in claim 2 wherein depositing the			
2	uppercladding layer further comprises flowing a fluorine-containing gas into the			
3	process chamber with a flow rate between 10 and 20 sccm.			
1	8. The method recited in claim 7 wherein the fluorine-containing			
2	gas comprises SiF ₄ .			

sccm;

1		9.	The method recited in claim 2 wherein depositing the	
2	uppercladding layer further comprises flowing a phosphorus-containing gas into the			
3	process chamb	er with	a flow rate between 0 and 30 sccm.	
		10	The method recited in claim 9 wherein the phosphorus-	
1		10.		
2	containing gas	compr	ises PH ₃ .	
1		11.	The method recited in claim 2 wherein depositing the	
2	uppercladding	layer f	further comprises flowing a boron-containing gas into the process	
3			rate between 0 and 20 sccm.	
1		12.	The method recited in claim 11 wherein the boron-containing gas	
2	comprises BF	3•		
1		13.	The method recited in claim 2 further comprising applying an RF	
2	source nower		process chamber, the RF source power having a power density	
3	between 6 and			
5	octween o and	150 117		
1		14.	The method recited in claim 2 further comprising applying an RF	
2	bias power to	the sub	strate, the RF bias power having a power density between 0 and	
3	16 W/cm ² .			
		15.	The method recited in claim 2 wherein depositing the silicate	
1	1 1		s depositing the silicate glass layer at a pressure less than 12 mtorr.	
2	glass layer co	mprise	s depositing the sincate glass layer at a pressure less than 12 moore	
1		16.	The method recited in claim 1 wherein depositing the	
2	uppercladding	g layer	comprises:	
3		flowi	ng O_2 into the process chamber with a flow rate greater than 175	
4	sccm;			
5		flowi	ng SiH ₄ into the process chamber with a flow rate between 80 and	
6	110 sccm suc	h that a	ratio of the O ₂ flow rate to the SiH ₄ flow rate is greater than 1.8;	
7			ng SiF ₄ into the process chamber with a flow rate between 10 and	
8	20 sccm;			
9		flowi	ng Ar into the process chamber with a flow rate between 0 and 200	

11		genera	ting a high-density plasma from the gases flowed into the process
12	chamber; and		
13	•	applyii	ng an RF bias power to the substrate, the RF bias power having a
14	power density		on 0 and 16 W/cm ² .
1		17.	The method recited in claim 1 wherein forming at least one core
2			g layer comprises forming a plurality of cores over the
3	undercladding		the method further comprising:
4		etchin	g a portion of the uppercladding layer in gaps between the
5	plurality of co		
6		deposi	iting a second uppercladding layer over the etched undercladding
7	layer.		
1		18.	The method recited in claim 1 wherein the high-density plasma
1			high-density plasma electron-cyclotron-resonance process.
2	process comp	rises a i	ingin-density plasma election cyclotion recession r
1		19.	The method recited in claim 1 further comprising depositing a
2	second upper	claddin	g layer over the uppercladding layer with a plasma-enhanced
3	chemical-vap	or depo	sition process.
			The method recited in claim 1 wherein the uppercladding layer
1		20.	
2	has a refractiv	ve index	x between about 1.4443 and 1.4473 at a wavelength of 1550 nm.
1		21.	An optical waveguide made according to the method recited in
2	claim 20.		-
1		22.	An optical waveguide made according to the method recited in
2	claim 1.		
1		23.	A method for forming an optical waveguide on a substrate in a
1	mrooog cham		e method comprising:
2	process chair		siting an undercladding layer over the substrate;
3		_	ing at least one core over the undercladding layer;
4			siting an uppercladding layer over the at least one core using a
5	1 1 1 1 1		a CVD process; and
6	nign-density	DIASIIIa	(CYD process, and

7	thereafter, completing formation of the optical waveguide without
8	thermally annealing the uppecladding layer.
1	24. The method recited in claim 23 wherein the uppercladding layer
2	comprises a fluorinated silicate glass layer.
۷	•
1	25. A computer-readable storage medium having a computer-
2	readable program embodied therein for directing operation of a substrate processing
3	system including a process chamber; a plasma generation system; a substrate holder;
4	and a gas delivery system configured to introduce gases into the process chamber, the
5	computer-readable program including instructions for operating the substrate
6	processing system to form an optical waveguide on a substrate disposed in the
7	processing chamber in accordance with the following:
8	depositing an undercladding layer over the substrate;
9	forming at least one core over the undercladding layer;
10	flowing an oxygen-containing gas, a silicon-containing gas, and a
11	fluorine-containing gas into the process chamber to produce a gaseous mixture;
12	generating a high-density plasma from the gaseous mixture; and
13	depositing a fluorinated silicate glass uppercladding layer over the at
14	least one core.
	26. The computer-readable storage medium recited in claim 25
1	26. The computer-readable storage medium recited in Claim 25 wherein a flow rate of the oxygen-containing gas is at least 1.8 times as large as a flow
2	
3	rate of the silicon-containing gas.
1	27. A substrate processing system comprising:
2	a housing defining a process chamber;
3	a high-density plasma generating system operatively coupled to the
4	process chamber;
5	a substrate holder configured to hold a substrate during substrate
6	processing;
7	a gas-delivery system configured to introduce gases into the process
8	chamber, including sources for a silicon-containing gas, a fluorine-containing gas, and
9	an oxygen-containing gas;

	10	a pressure-control system for maintaining a selected pressure within the				
	11	process chamber;				
	12	a controller for controlling the high-density plasma generating system,				
	13	the gas-delivery system, and the pressure-control system; and				
	14	a memory coupled to the controller, the memory comprising a computer-				
	15	readable medium having a computer-readable program embodied therein for directing				
	16	operation of the substrate processing system to form an optical waveguide on a				
	17	substrate, the computer-readable program including				
	18	instructions to deposit an undercladding layer over the substrate;				
	19	instructions to form at least one core over the undercladding				
.	20	layer;				
	21	instructions to flow a gaseous mixture containing flows of the				
	22	silicon-containing gas, the fluorine-containing gas, the nitrogen-containing gas, and the				
4	23	oxygen-containing gas;				
	24	instructions to generate a high-density plasma from the gaseous				
	25	mixture and to apply a bias to the substrate; and				
	26	instructions to deposit a fluorinated silicate glass layer onto the				
	27	substrate using the high-density plasma.				
		28. The substrate processing system recited in claim 27 wherein a				
.	1					
	2	flow rate of the oxygen-containing gas is at least 1.8 times as large as a flow rate of t				
	3	silicon-containing gas.				