Frames and OWL A principled analysis

Alan Rector

School of Computer Science / Northwest Institute of Bio-Health Informatics rector@cs.man.ac.uk

with special acknowledgment to the CO-ODE & Protege Teams & Natasha

www.co-ode.org www.clinical-escience.org www.opengalen.org

Protege-OWL

- Original goal
 - A synthesis of frames and OWL
 - Seemed plausible, but has so far produced two parallel approaches
 - Not easy to move between frames and OWL
 - » Why?
 - » Is a synthesis possible?
 - Analysis
 - A modest proposal

Frames & OWL: Look roughly similar

...but, more different than they look

- An ontology in Frames is...
 - A set of "templates
 - A meta-model for the ontology
 - Statements are functions on the information objects the frames
 - » Disguised meta-statements
 - Classes (and meta-classes) are first class entities
 - Everything asserted
- An Ontology in OWL is...
 - A set of definition and constraint ("restriction") axioms
 - A model of the domain
 - Statements about the domain entities the things in the world
 - » Disguised first order axioms
 - All members of this class ...
 - Anything that satisfies these conditions... is a member if this class
 - Classes cannot be referred to directly
 - without going into OWL-full
 - Require a reasoner to interpret their consequences
 - Asserted and inferred models
 - » annotation provides a weak mechanism for meta-data

Consequences...

- Many differences follow
 - Differences in structure
 - Differences in what can be asked and answered
- Consider our simple ontology
 - Frames
 - Animal
 Mammal
 Lion
 African_lion
 African_animal
 African_lion
 - Individuals
 - Elsie the lioness

Permission vs Prohibition

- Frames
 - Everything is forbidden until it is permitted
 - by an entry in a template
- OWL
 - Everything is permitted until it is forbidden
 - by a constraint (restriction) axiom
 - (or the implications of several axioms)

Enumeration vs Composition

Frames

- All classes and individuals must be enumerated manually in advance
 - Must make "African animal", "Indian animal", "Sumatran animal", "North American animal", etc. all explicitly
 - Can lead to combinatorial explosions
 - » The "exploding bicycle"
 - Leads to maintenance issues
 - » Lion hierarchy and geographic region hierarchy must both be maintained in step
 - Duplication of effort
 - Errors poor software engineering

- Definitions allow new classes to be composed from old
 - Create animal with whatever ranges are needed
 - The animal hierarchy will change automatically with the geography hierarchy
 - Supports notion of a "normalised ontology"
 - See http://www.cs.man.ac.uk/~rector/papers/rector-modularisation-kcap-2003-distrib.pdf

Meta-Model vs Annotations

Frames

- Metadata is first class data
 - No difference in principle between classes and individuals
 - Everything is an instance of some class
 - Uniform mechanism for information about classes and members of classes
 - » dc:author can be just an ordinary slot

- Metadata is annotation or ("puns")
 - Annotation properties
 - dc:author must be an annotation property but requires special care
 - » Not recognised by the reasoner
 - Many seemingly arbitrary restrictions
 - Puns
 - a new OWL 1.1 construct
 - » No experience yet Much controversy

Closed vs Open Worlds / Unique name assumption vs differentiating axioms

Frames

- Assume that all that is relevant is represented
 - Failure to find something is taken as negation
 - No explicit negation
 - » "Negation as failure"
- If two entities have different names they are different
 - All individual are distinct
 - Classes are assumed disjoint unless they have a common subclass

- Assume that anything consistent with the axioms may be true
 - Failure to find something just means we don't know
 - Explicit negation
 - » "Negation as impossibility"
- Any two individuals may be the same;
 Any two classes may overlap
 - Unless there are explicit differentFrom() or disjoint() axioms

Explicit individuals vs Under-specification

Frames

- To say that "Elsie has a cub" we must create an individual "Lion cub" and make it Elsie's child
 - (multivalued-slot has_child (value instance_of_lion_1234567))
 - Only what is explicitly represented exists)
 - "Skolem Constants"

- To say that "Elsie has a cub" we say that "There is something that is Elsie's cub"
 - Elsie has_child SOME Lion
 - We don't have to represent the cub explicitly
 - » Can also further describe it "Elsie has a cub that has a cub"
 - Elsie has_child SOME (Lion THAT has_child SOME Lion)

Local vs global inference

Frames

- All inference is local
 - To the class, its superclasses, subclasses, and instances
 - effects easy to predict
 - "Meaning" of the ontology can be read off the class hierarchy without inference.

- All axioms are global
 - A class can be affected by axioms from the whole ontology
 - Large animals with claws are dangerous.
 - Lions are large and animals and have claws.
 - Elsie is a Lion
 - Therefore Elsie is a dangerous animal
 - Meaning of the ontology can only be determined after using a "reasoner"
 - The meaning can (almost) be read off the inferred hierarchy
 - » Can export the inferred hierarchy

Acquisition vs Inference

- Protege
 - Optimised for knowledge acquisition
 - Evolved from knowledge acquisition systems
 - Everything you need to know to avoid errors is transparently visible
 - For individuals, what is needed is usually in a form
- OWL
 - Optimised for inference
 - Evolved from logic representations and theorem provers
 - What you need to know must be is opaqe and must be inferred
 - » Protege-frames-like forms are not currently available
 - (but we are working on it)

What questions can be asked? How can they be or answered?

What are the kinds of Lion? What are lions

a kind of?

- Frames
 - Look up and down the (asserted) hierarchy
 - (there is no inferred hierarchy)
- OWL
 - Look up and down the inferred hierarchy
 - The asserted hierarchy is not enough
 - African lions will be found to be African Animals

What can be said about Lions? a lion? "Sanctioning"

- Frames
 - "Slot attachment" is a formal operation
 - Can ask what can be said
 - What can't be said is implied by what isn't in the template
 - Look at the template including ancestor classes' templates
 - Usually presented as a "form"
- OWL
 - "Slot attachment" is not in the language
 - Can ask what cannot be said but not what can be said
 - Except as the difference
 - » Not built into reasoners
 - "Non-standard reasoning"

What's true of all lions?

- Frames
 - Value of a slot
 - (multi-slot has_mother (allowed-classes Lion))
 - The slot has_mother must be filled by something from the class Lion
- OWL
 - A restriction
 - has_mother SOME Lion
 - All lions have a lion and only a lion as a mother

What is false of all lions? A lion?

- Frames
 - No way to express negation explicitly
 - Only ask what is not stated to be true
 - Or sometimes use max cardinality 0
- OWL
 - What can be proved false of all lions
 - NOT (has_diet SOME Herbivorous)
 - All lions have non-herbivorous diets
 - » ... or it might might have been proved through nonlocal axioms
 - Or prove it
- PROPERTY has_diet FUNCTIONAL
 Diet ←[Herbivorous Carnivorous] allDisjoint
 Lion → has diet SOME Carnivorous

What's false of all lions? Prior constraints vs post hoc restrictions

Frames

- Constraints limit what can be entered
 - Errors flagged at data entry
 - (multi-slot has_mother (allowed-classes Lion))
 - » The slot has_mother must be filled by something from the class Lion

- Restrictions constraint what is consisten
 - Anything can be entered
 - but violations will be flagged as inconsistent when the reasoner is run
 - Lion has_mother ONLY Lion

What is *unknown* about about all lions? a lion? What is *missing*?

- Frames
 - Missing: A mandatory slot without a value
 - Will cause an error
 - On an individual the form will be bordered in red
 - Unknown: ??ill defined
 - An optional slot without a value?
 - No most queries will return "no" or equivalent
 - closed world what is represented is all there is

- Unknown: More than one option is satisfiable
 - Cannot be proved either true or false
- Missing: ??Usually ill defined?
 A "SOME" restriction without a value?
 - No, a value will be inferred to exist
 - Only if a required value could not exist
 - An organism has exactly 2 parents; one mother and one father.
 - » Smith has two female parents. Smith's father is "missing"

What kinds of animals live in Africa?

- Frames
 - Look down the subclass hierarchy from African_animal
 - And perhaps check by running a query defined outside the ontology
- OWL
 - Run the reasoner -
 - then look down the *inferred* subclass hierarchy from African animal
 - Any animal that has_range in Africa will be classified under African_animal
 » Whether or not it is asserted explicitly.

What is typically true of lions? "Lions are typically tawny"

Frames

- Traditionally what frames were about Defaults with overriding
 - "Tweety the ostrich"
- In Protege-frames
 - Can set a default value
 - Can over-ride it for any one individual
 - Cannot easily over-ride it for some subclass and its subclasses

- All statements are universal
- Can only weaken the premise
 - "All birds except members of the ostrich and penguin families fly"
 - Soon becomes difficult to maintain

How do I refer to lions in descriptions like "Books about lions"?

- Frames
 - By using the class Lion as a value
 - e.g. (...skos:subject (value Lion))
- In OWL
 - Can refer to "books about some lion(s)"
 - Cannot refer to "books about Lion" in OWL-DL
 - Nothing can be both a class and an individual in OWL-DL
 - (Although the same name can be used for a class and an individual in OWL 1.1 - a "pun")
- NB usually the librarian's intended meaning of "books about lions" is
 - "Books about lions OR books about some Lion(s)"

Who is the author of the class Lion? Editorial meta-statements about the ontology

- Frames
 - A statement about the frame for the class Lion
 - An "own slot"
 - Not inherited because it is about the frame itself
 - A statement like any other in the ontology
 - Classes are just instances of the class Class
- OWL
 - An annotation on the class for Lion
 - Only loosely linked to the ontology
 - and severely restructed
 - Cannot be a normal statement in the ontology
 - Puns may be a work around in OWL 1.1
 - but very weak

Meta-data and Annotations

- Simple cases
 - Good enough
- Language, provenance, versioning, ...
 - Need richer model than
 OWL allows
 - Not viable for higher order information

Are lions an endangered species? Higher order statements about the domain

- Frames
 - A statement about the frame for the class Lion
 - No way to distinguish from editorial domain knowledge
 - No way to tell if a statement about a class is about the representation or the thing represented
 - » A "use-mention" error

- No real equivalent nasty hack:
 - All lions have the property of being members of an endagered species
 - Higher order reasoning requires OWL-Full
 - » But still does not distinguish between editorial metadata and higher order information

Summary

- Natural in frames rich meta modelling & knowledge acquisition
 - What is it sensible to say "sanctioning"
 - explicit slot attachment
 - Metaclasses, reference to subjects, etc.
 - What's missing, incomplete
- Natural in OWL rich first order inference
 - Composition and definition
 - Global inference
 - Existential quantification & underspecification
- Natural in both
 - Subclass/superclasses, Inheritance (without exceptions)
- Natural in Neither
 - Typical information / "Defaults with exceptions"

Effect on the experience

- Frames
 - Immediate feedback
 - Everything you need to know is transparently visible
 - Analogous to scripting / interpreted environments
- OWL
 - Delayed feedback
 - What you need to know can only be determined by classification
 - Analogous to a compiled language / batch environment

A possible synthesis

Requirements

- Composition and rich first order inference from OWL
- Metamodelling and transparency from frames
 - Clear simple query for "what can I say about ..."
 - Separation of editorial metadata and higher order information

Method

- Multiple layered models
 - Domain Ontology
 - Meta-ontology representation of the ontology artefact
 - Higher order domain ontology the categories represented by the ontology

Possible Synthesis

Meta model of representation:
({rep:Animal} OR is_subclass_of rep SOME {rep:Animal}) →
attached_property VALUE rep:has_mother

rep: Meta Onttology

TBox: {rep Lion}

rep:ALRClass

ABox:

rep:Lion rep:Elsie

Annotation:
rep:Lion →
author VALUE rector

rep:ALRClass

Class AND
author VALUE rector

Generale derived hierarchy

subj: Higher Order Domain Ontology

TBox subj:Species

ABox subj:Lion

subj:Endangered_species ⇔
subj:Species AND
has_CITES_status SOME Endangered

subj:Lion has_CITES_status SOME Endangered

ext:myBook skos:subject VALUE subj:Lion

Summary

- Frames are Templates
 OWL is a set of axioms
- Frames provide rich meta representation
 OWL provides rich first order representation plus composition, inference, and normalisation
- Frames are closed world & Uniquely Named
 OWL is open world and must have differentiating axioms
- Metadata is about representations
 Higher order information is about the domain
 - and probably the right thing to use for "subjects" (SKOS)
- A synthesis ought to be possible
 - Now: messy but relatively quick with current technology
 - Future: significant problems to be solved for fully logically sound solution