- →A nondeterministic algorithm is said to be *nondeterministic* polynomial if the time complexity of its verification stage is polynomial.
- → <u>Tractable Problems:</u> Problems that can be solved in polynomial time are called *tractable*.

<u>Intractable Problems:</u> Problems that cannot be solved in polynomial time are called *intractable*.

- →Some decision problems cannot be solved at all by any algorithm. Such problems are called *undecidable*, as opposed to *decidable* problems that can be solved by an algorithm.
- →A famous *example of an undecidable* problem was given by Alan Turing in 1936. It is called the *halting problem*: given a computer program and an input to it, determine whether the program will halt on that input or continue working indefinitely on it.

#### **REDUCIBILITY:**

- $\rightarrow$  A decision problem  $D_1$  is said to be **polynomially reducible** to a decision problem  $D_2$  (also written as  $D_1 \propto D_2$ ), if there exists a function t that transforms instances of  $D_1$  into instances of  $D_2$  such that:
- **1.** t maps all  $\underline{Yes}$  instances of  $D_1$  to  $\underline{Yes}$  instances of  $D_2$  and all  $\underline{No}$  instances of  $D_1$  to  $\underline{No}$  instances of  $D_2$ .
- **2.** *t* is computable by a polynomial time algorithm.
- $\rightarrow$ The definition for  $\underline{D_1 \propto D_2}$  immediately implies that if  $D_2$  can be solved in *polynomial time*, then  $D_1$  can also be solved in *polynomial time*. In other words, if  $D_2$  has a deterministic polynomial time algorithm, then  $D_1$  can also have a deterministic polynomial time algorithm.

Based on this, we can also say that, if  $D_2$  is easy, then  $D_1$  can also be easy. In other words,  $D_1$  is as easy as  $D_2$ . Easiness of  $D_2$  proves the easiness of  $D_1$ .

→But, here we mostly focus on showing *how hard a problem is* rather than how easy it is, by using the contra positive meaning of the reduction as follows:

 $D_1 \propto D_2$  implies that if  $D_1$  cannot be solved in *polynomial time*, then  $D_2$  also cannot be solved in *polynomial time*. In other words, if  $D_1$  does not have a deterministic polynomial time algorithm, then  $D_2$  also can not have a deterministic polynomial time algorithm.

We can also say that, if  $D_1$  is hard, then  $D_2$  can also be hard. In other words,  $D_2$  is as hard as  $D_1$ .

- $\rightarrow$ To show that problem  $D_1$  (i.e., new problem) is at least as hard as problem  $D_2$  (i.e., known problem), we need to reduce  $D_2$  to  $D_1$  (not  $D_1$  to  $D_2$ ).
- $\rightarrow$ Reducibility ( $\propto$ ) is a transitive relation, that is, if  $D_1 \propto D_2$  and  $D_2 \propto D_3$  then  $D_1 \propto D_3$ .

#### **NP-HARD CLASS:**

→A problem 'L' is said to be NP-Hard iff every problem in NP reduces to 'L'

(or)

→ A problem 'L' is said to be NP-Hard if it is as hard as any problem in NP.

(or)

→A problem 'L' is said to be NP-Hard iff SAT reduces to 'L'.

Since SAT is a known NP-Hard problem, every problem in NP can be reduced to SAT. So, if SAT reduces to L, then every problem in NP can be reduced to 'L'.

**Ex:** SAT and Clique problems.

→ An NP-Hard problem *need not be* NP problem.

**Ex:** *Halting Problem* is NP-Hard **but not** NP.

#### **NP-COMPLETE CLASS:**

 $\rightarrow$  A problem 'L' is said to be NP-Complete if 'L' is NP-Hard and L  $\in$  NP.

→ These are the hardest problems in NP set.

**Ex:** SAT and Clique problems.

## Showing that a decision problem is NP-complete:

It can be done in two steps:

## Step1:

Show that the problem in question is in *NP*; i.e., a randomly generated string can be checked in polynomial time to determine whether or not it represents a solution to the problem. Typically, this step is easy.

## Step2:

Show that the problem in question is NP-Hard also. That means, show that every problem in *NP* is reducible to the problem in question, in polynomial time. Because of the transitivity of polynomial reduction, this step can be done by showing that a known *NP*-complete problem can be transformed into the problem in question, in polynomial time, as depicted in the figure below.



Proving NP-completeness by reduction.

 $\rightarrow$ The definition of *NP*-completeness immediately implies that if there exists a polynomial-time algorithm for just one *NP*-Complete problem, then every problem in *NP* can also have a polynomial time algorithm, and hence P = NP.

### Relationship among P, NP, NP-Hard and NP-Complete Classes:



## **COOK'S THEOREM:**

→ Cook's theorem can be stated as follows.

(1) SAT is NP-Complete.

(2) If SAT is in P then P = NP. That means, if there is a polynomial time algorithm for SAT, then there is a polynomial time algorithm for every other problem in NP.

(or)
(3) 
$$SAT$$
 is in  $P$  iff  $P = NP$ .

# **Application of Cook's Theorem:**

A new problem 'L' can be proved NP-Complete by reducing SAT to 'L' in polynomial time, provided 'L' is NP problem. Since SAT is

NP-Complete, every problem in NP can be reduced to SAT. So, once SAT reduces to 'L', then every problem in NP can be reduced to 'L' proving that 'L' is NP-Hard. Since 'L' is NP also, we can say that 'L' is NP-Complete.

\_\_\_\_\_

**Example Problem:** Prove that Clique problem is NP-Complete.

(OR)

Reduce SAT problem to Clique problem.

**Solution:** See the video at <a href="https://www.youtube.com/watch?v=qZs767KQcvE">https://www.youtube.com/watch?v=qZs767KQcvE</a>

-----