2023 年度 芝浦工業大学 システム理工学部 数理科学科

総合研究論文

多様体の次元を調べる方法

Methods for Investigating the Dimension of Manifolds

> 顔写真 横 3cm × 縦 4cm

BV20052

青見 健志

指導教員: 亀子正樹 教授

目 次

1	はじめに	2
2	準備 2.1 連続写像と C^r 級写像	3 3
3	C^r 級多様体と C^r 級写像	4
4	接ベクトル空間 4.1 接ベクトル空間	6 6
5	多様体の次元を調べる方法 5.1 写像の局所的性質	7 7
	5.2 C ^r 級部分多様体	10 12
6	おわりに	13

1 はじめに

- 2 準備
- 2.1 連続写像と C^r 級写像
- 2.2 位相空間

3 C^r 級多様体と C^r 級写像

定義 3.1. 位相空間 X の開集合 U から m 次元数空間 \mathbb{R}^m のある開集合 U' への同相写像

$$\varphi:U\to U'$$

があるとき, (U,φ) を m 次元座標近傍といい, φ を U 上の局所座標系という.

定義 3.2. (U,φ) を位相空間 X 内の局所座標近傍とする. U 内の任意の点 p に対して $\varphi(p) \in \mathbb{R}^m$ であるから、

$$\varphi(p)=(x_1,\cdots,x_m)$$

と書ける. (x_1, \dots, x_m) を (U, φ) に関するpの局所座標という.

定義 3.3. 位相空間 M が次の条件 (1),(2) を満たすとき, M を m 次元位相多様体という.

- (1) *M* はハウスドルフ空間である.
- (2) M 内の任意の点 p に対して, p を含む m 次元座標近傍 (U,φ) が存在する.

定義 3.4. m 次元位相多様体 M の 2 つの座標近傍 $(U,\varphi), (V,\psi)$ が交わっているとき、同相写像

$$\psi \circ \varphi : \varphi(U \cap V) \to \psi(U \cap V)$$

を (U,φ) から (V,ψ) への座標変換という.

定義 3.5. $r \ge 1$ を自然数または ∞ とする. 位相空間 M が次の条件 (1), (2), (3) を満たすとき, M を m 次元 C^r 級多様体という.

- (1) *M* はハウスドルフ空間である.
- (2) M は m 次元座標近傍により被覆される. すなわち, M の m 次元座標近傍からなる族 $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in A}$ があって,

$$M = \bigcup_{\alpha \in A} U_{\alpha}$$

が成り立つ.

(3) $U_{\alpha} \cap U_{\beta} \neq \phi$ であるような任意の α , β に対して, 座標変換

$$\psi \circ \varphi : \varphi(U \cap V) \to \psi(U \cap V)$$

は C^r 級写像である.

定理 3.6. m 次元球面 $S^m \in \mathbb{R}^{m+1}$ を

$$S^m = \{(x_1, \dots, x_{m+1}) | x_1^2 + \dots + x_{m+1}^2 = 1\}$$

と定義すると, S^m は m 次元 C^∞ 級多様体である.

証明. 定義 3.5 の条件 (1), (2), (3) を確かめる.

- (1) \mathbb{R}^{m+1} はハウスドルフ空間であるから、その部分空間として、 S^m はハウスドルフ空間である.
- (2) S^m の 2(m+1) 個の開集合 U_i^+ , $U_i^ (i=1,\cdots,m+1)$ を次のように定義する.

$$U_i^+ = \{(x_1, \dots, x_i, \dots, x_{m+1}) \in S^m | x_i > 0\}$$

$$U_i^- = \{(x_1, \dots, x_i, \dots, x_{m+1}) \in S^m | x_i < 0\}$$

 S^m はこれら $U_i^+,\,U_i^-~(i=1,\cdots,m+1)$ で被覆される. 写像 $\varphi_i^+:U_i^+\to\mathbb{R}^m,$ $\varphi_i^-:U_i^-\to\mathbb{R}^m$ をそれぞれ次のように定義する.

$$\varphi_i^+(x_1,\dots,x_i,\dots,x_{m+1}) = (x_1,\dots,\hat{x_i},\dots,x_{m+1})$$

$$\varphi_i^-(x_1, \dots, x_i, \dots, x_{m+1}) = (x_1, \dots, \hat{x_i}, \dots, x_{m+1})$$

ここで, \hat{x}_i は x_i を取り去るという意味である. このとき,

$$(\varphi_i^+)^{-1}(x_1,\dots,\hat{x_i},\dots,x_{m+1}) = (x_1,\dots,\sqrt{1-||(x_1,\dots,\hat{x_i},\dots,x_{m+1})||^2},\dots,x_{m+1})$$

$$(\varphi_i^-)^{-1}(x_1,\dots,\hat{x_i},\dots,x_{m+1}) = (x_1,\dots,-\sqrt{1-||(x_1,\dots,\hat{x_i},\dots,x_{m+1})||^2},\dots,x_{m+1})$$

であり、 φ_i^+ 、 φ_i^- はそれぞれ、 U_i^+ 、 U_i^- から \mathring{D}^m への同相写像である. ただし、 \mathring{D}^m は \mathbb{R}^m の原点を中心とする m 次元単位開円板である.よって、 S^m は 2(m+1) 個の座標近傍 (U_1^+,φ_1^+) 、 (U_1^-,φ_1^-) 、 \cdots 、 $(U_{m+1}^+,\varphi_{m+1}^+)$ 、 $(U_{m+1}^-,\varphi_{m+1}^-)$ で被覆される.

- (3) 2(m+1) 個の座標近傍の間の座標変換がすべて C^{∞} 級であることを示す. $1 \le a, b \le 2(m+1)$ を満たす互いに異なる自然数 a, b に対して,
 - (i) $(U_a^+, \varphi_a^+) \succeq (U_b^+, \varphi_b^+)$
 - (ii) $(U_a^-, \varphi_a^-) \succeq (U_b^-, \varphi_b^-)$
 - (iii) $(U_a^+, \varphi_a^+) \succeq (U_b^-, \varphi_b^-)$

の間の座標変換を調べればよい.

(i) の場合,

$$U_a^+ \cap U_b^+ = \{(x_1, \dots, x_a, \dots, x_b, \dots, x_{m+1}) \in S^m | x_a > 0, \ x_b > 0\}$$

$$\varphi_a^+(U_a^+ \cap U_b^+) = \{(x_1, \dots, \hat{x_a}, \dots, x_b, \dots, x_{m+1}) \in \mathring{D}^m | x_b > 0\}$$

$$\varphi_b^+(U_a^+ \cap U_b^+) = \{(x_1, \dots, x_a, \dots, \hat{x_b}, \dots, x_{m+1}) \in \mathring{D}^m | x_a > 0\}$$

$$(\varphi_a^+)^{-1} x_1, \dots, \hat{x_a}, \dots, x_b, \dots x_{m+1})$$

$$= (x_1, \dots, \sqrt{1 - ||(x_1, \dots, \hat{x_a}, \dots, x_b, \dots x_{m+1})||^2}, \dots, x_b, \dots x_{m+1})$$

この式から

$$\varphi_b^+ \circ (\varphi_a^+)^{-1}(x_1, \dots, \hat{x_a}, \dots, x_b, \dots, x_{m+1})$$

$$= (x_1, \dots, \sqrt{1 - ||(x_1, \dots, \hat{x_a}, \dots, x_b, \dots, x_{m+1})||^2}, \dots, \hat{x_b}, \dots, x_{m+1})$$

 \Box

これは $||(x_1, \dots, \hat{x_a}, \dots, x_b, \dots, x_{m+1})||^2 < 1$ の範囲で C^{∞} 級なので, $\varphi_b^+ \circ (\varphi_a^+)^{-1}$ は定義域 $\varphi_a^+(U_a^+ \cap U_b^+) \subset \mathring{D}^m$ で C^{∞} 級である. 同様にして (ii), (iii) の場合についても座標変換が C^{∞} 級であること分かる.

以上より, S^m は m 次元 C^∞ 級多様体であることが分かった.

命題 3.7. M を m 次元 C^r 級多様体, V を M の開集合, V' を \mathbb{R}^m の開集合とする. また, $\varphi:V\to V'$ を同相写像とする. このとき, (V,φ) が M の C^r 級座標近傍になるための必要十分条件は, $\varphi:V\to V'$ が, C^r 級微分同相写像であることである.

4 接ベクトル空間

- 4.1 接ベクトル空間
- 4.2 C^r 級写像の微分

5 多様体の次元を調べる方法

5.1 写像の局所的性質

定理 5.1. $(df)_p: T_p(M) \to T_p(N)$ が線形写像として同型なら, f は p のある開近傍から f(p) のある開近傍への C^r 級微分同相写像である. すなわち, p の開近傍 U と f(p) の開近傍 V が存在して, f(U) = V となり, かつ, $f|U:U \to V$ は C^r 級微分同相写像である.

定理 5.2. $f: M \to N$ を C^r 級写像とする. ある点 $p \in M$ における微分 $(df)_p: T_p(M) \to T_p(N)$ が上への線形写像なら、点 p 付近での f の様子は、射影: $\mathbb{R}^{m-n} \times \mathbb{R}^n \to \mathbb{R}^n, (x_1, \cdots, x_m) \mapsto (x_(m-n+1), \cdots, x_m)$ と同じである. すなわち、p のまわりの局所座標系 (x_1, \cdots, x_m) と f(p) のまわりの局所座標系 (y_1, \cdots, y_n) をうまく選んで、f の局所座標表示 $(y_1, \cdots, y_n) = (c)$ が

$$y_1 = f_1(x_1, \dots, x_m) = x_{m-n+1}$$

$$\vdots$$

$$y_n = f_n(x_1, \dots, x_m) = x_m$$

であるようにできる.

証明. C^r 級写像 $f: M \to N$ が与えられており、ある点 $p \in M$ における微分 $(df)_p: T_p(M) \to T_p(N)$ が上への線形写像であるとする.このとき、 $\operatorname{rank}(df)_p = n$ (ただし、 $m = \dim M \ge n = \dim N$.) 点 p, 点 f(p) のまわりに、それぞれ座標近傍 $(U; x_1, \cdots, x_m), (V; y_1, \cdots, y_n)$ をとり、f を局所座標表示すると

$$(y_1, \dots, y_n) = (f_1(x_1, \dots, x_m), \dots, f_n(x_1, \dots, x_m))$$

ヤコビ行列 $(Jf)_p$ は $(df)_p$ を表す行列で、n 行 m 列である. $\mathrm{rank}(df)_p=n$ であるから、 $(Jf)_p$ から n 本の列ベクトルを選んで、作った正方行列は正則である. 必要なら適当に列を入れ替えて

$$B = \begin{pmatrix} \frac{\partial f_1}{\partial x_{m-n+1}}(p) & \cdots & \frac{\partial f_1}{\partial x_m}(p) \\ & \cdots & \\ \frac{\partial f_n}{\partial x_{m-n+1}}(p) & \cdots & \frac{\partial f_n}{\partial x_m}(p) \end{pmatrix}$$

とおくと, $\det B \neq 0$ であって,

$$(Jf)_p = \left(\begin{array}{ccc} * & \cdots & * \\ & & \\ * & \cdots & * \end{array} \middle| B \right)$$

と仮定してよい. p のまわりの座標近傍 $(U; x_1, \dots, x_m)$ から, \mathbb{R}^m への写像 $\varphi: U \to \mathbb{R}^m$ を

$$\varphi(x_1, \dots, x_m) = (x_1, \dots, x_{m-n}, f_1(x_1, \dots, x_m), \dots, f_n(x_1, \dots, x_m))$$

と定義する. やコビ行列 $(J\varphi)_n$ は

$$(J\varphi)_p = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & * & \cdots & * & \\ & * & \cdots & * & \end{pmatrix}$$

となり、 $\det(J\varphi)_p = \det B \neq 0$ である. したがって、逆関数の定理(定理??)により、点 p を含む U を十分小さくとれば、 $\varphi|U:U\to\varphi(U)$ は C^r 級微分同相写像である. よって、/refprop: cord-nabor condition より、 $(U,\varphi|U)$ は p のまわりの新しい C^r 級座標近傍と思える. $(U,\varphi|U)$ の局所座標系を (z_1,\cdots,z_m) とすると、上の φ の定義式から、

$$(z_1, \dots, z_m) = \varphi(x_1, \dots, x_m) = (x_1, \dots, x_{m-n}, f_1(x_1, \dots, x_m), \dots, f_n(x_1, \dots, x_m))$$

を得る. とくに, $(z_{m-n+1}, \dots, z_m) = (f_1(x_1, \dots, x_m), \dots, f_n(x_1, \dots, x_m))$ であるから,

$$f \circ \varphi(z_1, \dots z_m) = f(x_1, \dots x_m)$$

$$= (f_1(x_1, \dots, x_m), \dots, f_n(x_1, \dots, x_m))$$

$$= (z_{m-n+1}, \dots, z_m)$$

となる. よって, (z_1,\cdots,z_m) と (y_1,\cdots,y_n) に関する $f:M\to N$ の点 p のまわりでの局所座標表示

$$(z_1,\cdots,z_m)\mapsto(z_{m-n+1},\cdots,z_m)=(y_1,\cdots,y_n)$$

である. (z_1, \dots, z_m) を改めて (x_1, \dots, x_m) と書き直せば, 定理 5.2 の主張が得られる.

定理 5.3. $f: M \to N$ を C^r 級写像とする. $(df)_p: T_p(M) \to T_{f(p)}(N)$ が 1 対 1 の 線形写像なら、点 p の付近での f の様子は、包含写像 $\mathbb{R}^m \to \mathbb{R}^n, \ (x_1, \cdots, x_m) \mapsto (x_1, \cdots, x_m, 0, \cdots, 0)$ と同じである. すなわち、p のまわりの局所座標系 (x_1, \cdots, x_m) と f(p) のまわりの局所座標系 (y_1, \cdots, y_n) をうまく選んで、f の局所座標表示 (y_1, \cdots, y_n) か

$$(f_1(x_1, \dots x_m), \dots, f_n(x_1, \dots x_m),) \, \mathcal{D}^{\sharp},$$

$$y_1 = f_1(x_1, \dots x_m) = x_1$$

$$\vdots$$

$$y_m = f_m(x_1, \dots x_m) = x_m$$

$$y_{m+1} = f_{m+1}(x_1, \dots x_m) = 0$$

$$\vdots$$

$$y_n = f_n(x_1, \dots x_m) = 0$$

であるようにできる.

証明. 問題は局所的であるから $M=\mathbb{R}^m, N=\mathbb{R}^n$ と仮定してよい. $(m \leq n)$ また, $p=\mathbf{o}, f(p)=\mathbf{o}$ としてよい. \mathbb{R}^m の自然な座標 (x_1,\cdots,x_m) と, \mathbb{R}^n の自然な座標 に関して, 与えられた C^r 級写像 $f:\mathbb{R}^m \to \mathbb{R}^n$ を局所座標表示したものを

$$u_1 = f_1(x_1, \dots, x_m), \dots, u_n = f_n(x_1, \dots, x_m)$$

とする. $(df)_o: T_o(\mathbb{R}^m) \to T_o(\mathbb{R}^n)$ は 1 対 1 であるから、ヤコビ行列 $(Jf)_o$ から、適当な m 行を選び出して作った m 次正方行列は正則である。必要なら、 (u_1, \cdots, u_m) の並び方を変えて、 $(Jf)_o = \begin{pmatrix} A \\ B \end{pmatrix}$ (A は m 行 m 列の正則行列)と仮定してよい。 (x_1, \cdots, x_m) に新しく、 (x_{m+1}, \cdots, x_n) を付け加えて、 $\mathbb{R}^m \times \mathbb{R}^{n-m}$ を構成し、新しい写像 $F: \mathbb{R}^m \times \mathbb{R}^{n-m} \to \mathbb{R}^n$ を、

$$F(x_1, \dots, x_m, x_{m+1}, \dots x_n)$$

$$= (f_1(x_1, \dots, x_m), \dots, f_m(x_1, \dots, x_m), f_{m+1}(x_1, \dots, x_m) + x_{m+1}, \dots, f_n(x_1, \dots, x_m) + x_n)$$

と定義する.Fのヤコビ行列

$$(Jf)_{o} = \begin{pmatrix} A & O \\ \hline & 1 \\ B & \vdots \\ & & 1 \end{pmatrix}$$

であり、正則である.逆関数の定理 5.1 により、 $\mathbb{R}^m \times \mathbb{R}^{n-m}$ における, \mathbf{o} の近傍 U と、 \mathbb{R}^n における \mathbf{o} の近傍 V が存在して, $F|U:U\to V$ は C^r 級微分同相写像になる. $\psi=(F|U)^{-1}:V\to U$ とおく. (V,ψ) は \mathbf{o} のまわりの \mathbb{R}^n の C^r 級座標近傍と思える.この座標近傍に関する局所座標系を $(y_1,\cdots y_n)$ とし, (x_1,\cdots,x_m) と

 $(y_1, \dots y_n)$ に関して, $f: U \cap (\mathbb{R}^m \times \{o\}) \to \mathbb{R}^n$ を局所座標表示すると,

$$(y_1, \dots, y_n) = \psi(f(x_1, \dots, x_m))$$

$$= \psi(F(x_1, \dots, x_m, 0, \dots 0))$$

$$= (F|U)^{-1}(F(x_1, \dots, x_m, 0, \dots 0))$$

$$= (x_1, \dots, x_m, 0, \dots, 0)$$

となる. したがって, 定理 5.3 の主張する通りの局所座標表示が得られた.

5.2 C^r 級部分多様体

定義 5.4. n 次元 C^r 級多様体 N の部分集合 L が N の l 次元 C^r 級部分多様体であるとは、

- (1) l=n のとき:L が N の開集合であることである.
- (2) $0 \le l < n$ のとき:L の任意の点p に対し,p を含むN の座標近傍 $(U; x_1, \dots, x_n)$ が存在して,

$$L \cap N = \{(x_1, \dots, x_n) \in U | x_{l+1} = \dots = x_n = 0\}$$

が成り立つことである.

命題 5.5. n 次元 C^r 級多様体 N の l 次元 C^r 級部分多様体 L は, それ自身 l 次元 C^r 級多様体である.

- **証明.** (1) l=n のとき, N からの相対位相によって, L は位相空間となり, N の C^r 級座標近傍を $S=\{U_{\alpha},\varphi_{\alpha}\}_{\alpha\in A}$ とすると, S を L に制限した $\{U_{\alpha}\cap L,\varphi_{\alpha}|U_{\alpha}\cap L\}_{\alpha\in A}$ は L の C^r 局所座標系になる. よって, L はそれ自身, l(=n) 次元 C^r 級多様体である.
 - (2) $0 \le l < n$ のとき, L には N からの相対位相を入れる. N がハウスドルフ空間であるから L もそうである.

Lの任意の点pに対し,pを含むNの局所座標系 $(U;x_1,\cdots,x_n)$ で定義 5.4 の条件を満たすものを選び, $(U_p;x_1^p,\cdots,x_n^p)$ とする. $V_p=L\cap U_p$ とおくと, V_p はLの開集合である. V_p 上の U_p の局所座標系 (x_1^p,\cdots,x_n^p) の x_1^p から x_l^p までを制限したもの $(V_p;x_1^p,\cdots,x_n^p)$ を考える.

 $\{(V_p; x_1^p, \cdots, x_l^p)\}_{p \in L}$ が L を被覆することは明らかである.

 V_p と V_q が交わるとする. 対応する $(U_p; x_1^p, \dots, x_n^p)$ と $(U_q; x_1^q, \dots, x_n^q)$ は, N の適当な座標近傍 $(U_\alpha; x_1^\alpha, \dots, x_n^\alpha)$, $(U_\beta; x_1^\beta, \dots, x_n^\beta)$ である. この間の座標変換はある C^r 級関数 f を用いて,

$$(x_1^{\beta},\cdots,x_n^{\beta})=(f_1(x_1^{\alpha},\cdots,x_n^{\alpha}),\cdots,f_n(x_1^{\alpha},\cdots,x_n^{\alpha}))$$

と書ける. $V_p \cap V_q$ 上では, $x_{l+1}^\alpha = x_n^\alpha = 0$, $x_{l+1}^\beta = x_n^\beta = 0$ が成り立つので, $V_p \cap V_q$ 上では

$$x_{1}^{\beta} = f_{1}(x_{1}^{\alpha}, \cdots, x_{l}^{\alpha}, 0, \cdots, 0)$$

$$\vdots$$

$$x_{l}^{\beta} = f_{l}(x_{1}^{\alpha}, \cdots, x_{l}^{\alpha}, 0, \cdots, 0)$$

$$0 = f_{l+1}(x_{1}^{\alpha}, \cdots, x_{l}^{\alpha}, 0, \cdots, 0)$$

$$\vdots$$

$$0 = f_{n}(x_{1}^{\alpha}, \cdots, x_{l}^{\alpha}, 0, \cdots, 0)$$

となっている. 改めて関数 q を

$$g(x_1^{\alpha}, \dots, x_l^{\alpha}) = (g_1(x_1^{\alpha}, \dots, x_l^{\alpha}), \dots, g_l(x_1^{\alpha}, \dots, x_l^{\alpha}))$$

= $(f_1(x_1^{\alpha}, \dots, x_l^{\alpha}, 0, \dots, 0), \dots, f_l(x_1^{\alpha}, \dots, x_l^{\alpha}, 0, \dots, 0))$

と定義すると、この関数は C^r 級である。そして、

$$(x_1^{\beta}, \cdots, x_l^{\beta}) = g(x_1^{\alpha}, \cdots, x_l^{\alpha})$$

が $(V_p; x_1^p, \cdots x_l^p)$ から $(V_q; x_1^q, \cdots x_l^q)$ の座標変換を与えている. ゆえに, $\{(V_p; x_1^p, \cdots, x_l^p)\}_{p \in L}$ は L の C^r 級座標近傍になっている. 以上より, L は l 次元 C^r 級多様体である.

定理 5.6. M, N を m 次元, n 次元の C^r 級多様体, $f: M \to N$ を C^r 級写像とする. N のある点 q について, f(p) = q となる M の各点 p が常に $\operatorname{rank}(Jf)_p = n$ を満たすとき, 逆像 $f^{-1}(q)$ は (m-n) 次元 C^r 級多様体である.

証明. 定義 5.4, 命題 5.5 より, 次のことを証明すればよい.

 $q\in N$ の逆像 $f^{-1}(q)$ に属する任意の点 p に対し, p のまわりの座標近傍 $(U;x_1,\cdots.x_m)$ が存在して,

$$f^{-1}(q) \cap U = \{(x_1, \dots x_m) \in U | x_{m-n+1} = \dots = x_m = 0\}$$

が成り立つ.

今, f(p) = q を満たす $p \in M$ について、常に $\operatorname{rank}(Jf)_p = n$ であるから、 $(df)_p$ は上への写像である。よって、定理 5.2 より、p のまわりの座標近傍 $(U; x_1, \cdots, x_m)$ と q(=f(p)) のまわりの座標近傍 $(V; y_1, \cdots, y_n)$ が存在して、 $f(U: U \to V)$ は

$$(y_1, \dots, y_n) = f(x_1, \dots x_m) = (x_{m-n+1}, \dots, x_m)$$

と座標表示される.

 $(U;x_1,\cdots x_m)$ は任意にとってきた $(V;y_1,\cdots,y_n)$ に応じて選べるから, $(V;y_1,\cdots,y_n)$ は点 q で $y_1=\cdots=y_n=0$ となるようにとっておくと,

$$f^{-1}(q) \cap U = \{ p \in U | f(p) = q \}$$

$$= \{ (x_1, \dots, x_m) \in U | f(x_1, \dots x_m) = (0, \dots, 0) \}$$

$$= \{ (x_1, \dots, x_m) \in U | (x_{m-n+1}, \dots x_m) = (0, \dots, 0) \}$$

$$= \{ (x_1, \dots x_m) \in U | (x_{m-n+1}, \dots x_m) = (0, \dots, 0) \}$$

となり、条件を満たすUが存在することがわかる.これで定理5.6が証明できた. \square

5.3 多様体の次元の具体的な計算

6 おわりに

参考文献

- [1] 松本幸夫, [第 30 版] 多様体の基礎, 東京大学出版会, 2018.
- [2] 【論文の場合】著者名,タイトル,雑誌名,巻・号,出版年度,頁.
- [3] 【Webページの場合】 タイトル, ページ制作者(機関)等, URL: http://www.shibaura-it.ac.jp/, 最終アクセス日時: 2021/12/28 16:33.