

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Centro Tecnológico

Departamento de Engenharia Elétrica

Princípios de Comunicações

Transmissão em Banda Base Semestre Letivo 2020/1

Prof.: Jair A. Lima Silva

DEL - UFES

Índice

I. O Canal de Transmissão

II. Transmissão em Banda Base

III. Codificação de Linha

Canal de transmissão

Parâmetros que caracterizam o canal de transmissão a nível físico:

- Largura de banda **B**, em [Hz];
- Capacidade máxima teórica do canal *C*, em [bit/s]
- Taxa de dados na interface digital **R**, em [bit/s];
- Taxa de símbolos nas interfaces analógicas, **Rs** [baud];
- Taxa de erro de bits **BER**.

Exemplo de influência da largura de banda em relação à distorção do sinal

Capacidade de Canal

Teorema de Shannon

$$C = B \log_2 \left(1 + \frac{S}{N} \right)$$

• Exercício Exemplo: Determinar a capacidade máxima de um canal usado para a transmissão de um sinal de voz. Considere que a relação entre a potência de sinal e a potência do ruído é de 30 dB.

Solução: A unidade dB é definida como [dB] = $10\log_{10}(\mathbf{S/N})$, portanto, $30 \text{ dB} = 10\log_{10}(\mathbf{S/N}) \Rightarrow 30/10 = \log_{10}(\mathbf{S/N}) \Rightarrow \log_{10}(\mathbf{S/N}) = 3 \Rightarrow \mathbf{S/N} = 1000$.

Substituindo na expressão de Shannon C resulta:

$$C = 3100 \cdot \log_2 (1 + 1000) = 3100 \cdot \log_2 (1001)$$

 $C = 31.000 \text{ bit/s}$

II. Transmissão de um Sinal em Banda Base

Um sinal é chamado de banda base quando o seu espectro possui como eixo de simetria a frequência 0.

(a) Espectro banda Base real de um sinal

(b) Espectro complexo do mesmo sinal

Ao contrário da **transmissão em banda-passante**, <u>não</u> <u>utiliza-se um processo de modulação de uma portadora para transmitir os dados.</u>

II. Transmissão de um Sinal em Banda Base

Nesta transmissão executa-se somente <u>um processo de</u> <u>codificação banda-base</u>, também chamado de **codificação de linha.**

Codificador banda base genérico

Podemos caracterizar um código a partir de:

- 1. Sua distribuição espectral, ou seja, quanto de sua energia total está concentrado na largura de banda do meio.
- 2. O código não deve possuir componentes espectrais próximos à freqüência zero (DC) tendo em vista a exigência de acoplamento indutivo entre linha e ECD.
- 3. Simplicidade de implementação, tanto do codificador como do decodificador (custo).
- 4. Simplicidade de recuperação da cadência no receptor a partir do sinal codificado.
- 5. Robustez em relação ao ruído e à interferência entre símbolos.

Códigos banda base podem ser classificados em 3 grandes Classes:

- 1ª. Códigos binários sensíveis ao nível do sinal
- 2ª. Códigos binários sensíveis à fase do sinal
- 3a. Códigos em blocos

Códigos sensíveis à amplitude do

sinal

LA DIE III. Codificação de Linha

Principais características e aplicações dos códigos banda base sensíveis ao nível do sinal

Código	Lei de formação	Sincronismo	Componente de DC	Aplicação
NRZ Polar	Dígitos binários <i>um</i> , +V, dígitos binários <i>zero</i> , – V.	Longas cadeias de zeros ou uns, linha fica sem transições	DC aumenta com longas cadeias de zeros ou uns	Interface RS232 e ITU-T, Rec. V.24/V.28
NRZ-M ou NRZI	Inverte a polaridade se próximo bit é <i>Marca</i> (1), caso contrário mantém.	Longas cadeias de <i>zeros</i> linha fica sem transições	DC aumenta com longas cadeias de <i>zeros</i> .	Uso geral
NRZ-S ou NRZI	Inverte a polaridade se próximo bit é <i>Space</i> (0), caso contrário mantém	Longas cadeias de uns, linha fica sem transições	DC aumenta com longas cadeias de uns.	Uso geral
RZ Bipolar	Digito binário <i>um</i> , pulso positivo, digito binário <i>zero</i> , pulso negativo	Facilidade na recuperação do sincronismo	DC aumenta com longas cadeias de zeros ou uns	Uso geral
AMI, Bipolar ou Pseudo ternário	Digitos binários <i>um</i> codificados como pulsos positivos e negativos alternados. Digito zero sem atividade	Longas cadeias de zeros, linha fica sem transições	DC bem controlado. Somente em intervalo de bit	Entroncamento de Centrais telefônicas

Códigos banda base sensíveis à fase do sinal

A lei de formação dos códigos sensíveis à fase do sinal é baseada em quatro tipos de eventos:

- a) Transição positiva (↑) no início do tempo de bit (Tb)
- b) Transição positiva (↑) no meio do tempo de bit (Tb)
- c) Transição negativa (↓) no início do tempo de bit (Tb)
- d) Transição negativa (↓) no meio do tempo de bit (Tb)

- Entrada

Códigos sensíveis à fase do sinal

Exemplo de circuito lógico de um codificador e de um decodificador Manchester

Análise Espectral de alguns códigos banda base

Códigos banda base em blocos

- Neste tipo de códigos um conjunto de N bits é substituído por um conjunto de símbolos ternários que podem ser + (pulso positivo), -(pulso negativo) ou 0 (tensão nula).
- A combinação é heurística e visa especificamente o controle do nível de DC no sinal e/o conteúdo de sincronismo.
- São códigos que devido à sua complexidade são utilizados em médias a longas distâncias (abrangência metropolitana) em que, devido ao custo desses meios, a eficiência espectral é o parâmetro mais importante nesses sistemas de transmissão.

Exemplo de alguns destes códigos:

- Pair Selected Ternary (PST)
- 4 Binary 3 Ternary (4B3T)
- High Density Bipolar N (HDBN)
- Binary N Zero Sustitution (BNZS)

Power Spectral Density de alguns códigos utilizados em telecomunicações

Observações importantes:

- Potência concentrada no primeiro lóbulo do espectro, B = R (R em bit/s)
- Os três códigos tem DC aproximadamente nulo.