KOMUNIKASI DATA

Transmisi Data

Terminologi (1)

- **#**Transmitter
- **#**Receiver
- ₩ Media Transmisi
 - □Guided media
 - □ Unguided media
 - ⊠Contoh; udara, air, ruang hampa

Terminologi (2)

- #Point-to-point

 - □Hanya 2 alat yang menggunakan jalur hubungan
- **₩**Multi-point
 - △Lebih dari 2 alat yang menggunakan jalur hubungan

Terminologi (3)

- **¥** Simplex
 - Satu arah
- **#**Half duplex
 - □Dua arah, tetapi hanya satu arah pada satu waktu
 - ☑Contoh; Radio polisi
- #Full duplex
 - ■Dua arah pada waktu bersamaan

Frekuensi, Spektrum dan Bandwidth

★ Konsep domain Waktu

- - ⊠Bentuk bervariasi yang mulus dengan berjalannya waktu
- - ■Berada pada tingkat konstan tertentu kemudian berubah pada tingkat konstan yang lain
- - ⊠Bentuk tidak berulang dengan berjalannya waktu

Gelombang Sinus

- #Amplitudo Puncak (A)

 - △volt
- ★Frekuensi (f)

 - □ Hertz (Hz) atau putaran per detik
 - □Perioda = waktu untuk satu pengulangan (T)
 - $\Delta T = 1/f$
- ¥Fase (♦)

Berbagai Gelombang Sinus

Panjang Gelombang

- ★Jarak yang didapat dengan satu putaran
- #Jarak antara dua titik yang bersesuaian dengan fase pada dua putaran yang berkesinambungan
- **Ж**λ
- **¥** Anggap kecepatan sinyal *v*
 - $\triangle \lambda = vT$
 - $\triangle \lambda f = V$
 - $\Box c = 3*10^8 \text{ mdt}^{-1}$ (kecepatan cahaya pada ruang hampa)

Konsep Domain Frekuensi

- **★**Komponennya adalah gelombang sinus
- ★ Dapat dijelaskan (Analisis Fourier) bahwa setiap sinyal dibuat dari komponen gelombang sinus
- ₩ Dapat mencetak (plot) fungsi domain frekuensi

Spektrum & Bandwidth

- **¥** Spektrum
 - □ Jangkauan frekuensi yang dikandung didalam sinyal
- **⊞** Bandwidth absolut
- **#**Bandwidth efektif

 - □Pita sempit dari frekuensi yang mengandung kebanyakan energi
- **∺**Komponen DC

Kecepatan Data dan Bandwidth

- ★ Setiap sistem transmisi mempunyai pita terbatas dari frekuensi

Transmisi Data Analog dan Digital

- **#** Data
- **#**Sinyal
 - □ Representasi listrik atau elektromagnetik dari data
- **#**Transmisi

Data

- **#**Analog
 - Nilai-nilai kontinu didalam beberapa interval
 - □Contoh; suara (sound), gambar (video)
- **₩** Digital
 - Nilai-nilai Diskret

 □ Nilai-nilai Diskret
 - □Contoh; text, integer

Sinyal

- ★ Data yang dijalarkan/ dipropagasikan/ ditransmisikan
- **#** Analog

 - - ⊠kawat, serat optik, udara
 - Speech Bandwidth 100Hz sampai 7kHz
 - ☐Telephone Bandwidth 300Hz sampai 3400Hz
 - ✓ Video Bandwidth 4MHz
- **#** Digital

Data and Sinyal

- #Biasanya menggunakan sinyal digital untuk data digital dan sinyal analog untuk data analog
- ★Bisa menggunakan sinyal analog untuk membawa data digital
 - △Modem
- ★ Bisa menggunakan sinyal digital untuk membawa data analog
 - □ Compact Disc audio

Sinyal Analog membawa Data Analog dan Data Digital

Sinyal Digital membawa Data Analog dan Digital

Transmisi Analog

- **#**Sinyal Analog ditransmisikan tanpa mengetahui isinya
- ★Bisa berupa data analog atau digital
- ★ Terjadi pelemahan (atenuasi) jika melebihi jarak yang ditentukan
- ★ Menggunakan amplifier untuk meningkatkan kuat sinyal

Transmisi Digital

- **¥** Sangat memperhatikan isi
- ★ Integritas sinyal sangat dipengaruhi oleh "noise", atenuasi dll.
- ₩Menggunakan Repeater
- ★Repeater menerima sinyal
- ₩Meng-"Extract" bit pattern
- **₩** Mengirim ulang
- ★ Atenuasi bisa ditanggulangi
- # "Noise" tidak dikuatkan

Kelebihan Transmisi Digital

- **∺**Teknologi Digital
- ★ Integritas Data
 - △ Jarak yang lebih jauh bisa dilewatkan pada jalur dengan kualitas yang lebih rendah
- ★ Penggunaan Kapasitas Jalur
 - □ High bandwidth links economical
 - ☑ High degree of multiplexing easier with digital techniques
- #Pengamanan dan Privasi
 - **△**Enkripsi
- **#** Integrasi

Transmission Impairments

- #Sinyal yang diterima bisa jadi berbeda dari sinyal yang dikirimkan

- ★ Disebabkan oleh
 - △Atenuasi dan distorsi atenuasi
 - □ Delay distortion
 - Noise

Atenuasi

- ★Kuat Sinyal menurun dengan bertambahnya jarak
- ★ Tergantung pada Media transmisinya
- **K**uat sinyal yang diterima:
 - △harus cukup untuk dideteksi
 - □ harus cukup lebih tinggi dibanding "noise" yang akan diterima tanpa kesalahan
- ★ Atenuasi merupakan suatu fungsi kenaikan dari frekuensi

Delay Distortion

- ★Kecepatan penjalaran (Propagasi) bervariasi terhadap frekuensinya

Noise (1)

- **#**Sinyal tambahan yang masuk diantara transmitter dan receiver
- ★Thermal (suhu)
 - △Akibat dari "thermal agitation" dari elektron
- **#** Intermodulation
 - □Sinyal yang merupakan penjumlahan dan pengurangan dari frekuensi aslinya yang menggunakan media bersama

Noise (2)

- **#**Crosstalk
 - Suatu sinyal dari satu jalur yang diambil oleh jalur lain
- - □Pulsa yang tidak beraturan atau spike (lonjakan)
 - □Contoh; Interferensi elektromagnetik eksternal

 - △Amplitudo yang tinggi

Kapasitas Channel

- ★Kecepatan Data (Data rate)
 - □Dalam bit per detik (bit per second : bps)
 - □Rata-rata dimana data dapat dikomunikasikan
- **#** Bandwidth
 - □ Dalam putaran per detik (cycle per second : cps) dari Hertz
 - □ Dibatasi oleh transmitter dan media