Assignment1

November 24, 2021

```
[1]: import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import binom, norm, chi2
```

0.1 Q4(ii)

```
[2]: n = 10
     p = 0.3
     a = 0.2
     sigma = 0.01
     s = 0.05
     m = int(1e6)
     V = np.random.normal(0, s, size=(m,))
     V \leftarrow np.sum((np.random.rand(n, m) < p) * np.random.normal(a, sigma, size=(n, local))
      \rightarrowm)), axis=0)
     fig, ax = plt.subplots()
     ax.hist(V, label="Empirical Distribution", density=True, bins=100)
     P_V = 0
     for K in range(n+1):
         P_V += norm.pdf(np.linspace(-1, 2, 1000), loc=K * a, scale=np.
      \rightarrowsqrt(K*sigma**2 + s**2)) * binom.pmf(K, n, p)
     ax.plot(np.linspace(-1, 2, 1000), P_V, label="Theoretical Distribution")
     ax.legend()
```

[2]: <matplotlib.legend.Legend at 0x7f7250405fa0>

0.2 Q6

```
[3]: n = 30
     mu = 5
     sigma = 1
     m = 1000
     X = np.random.normal(mu, sigma, size=(n, m))
     means = np.mean(X, axis=0)
     variances = np.sum((X - means) ** 2, axis=0) / (n-1)
     fig, ax = plt.subplots()
     ax.hist(means, label="Empirical Mean Distribution", density=True, bins=100)
     # Central Limit Theorem tells us that the mean has distribution N(mu, sigma ^2 /_{\!\!\! \sqcup}
      \hookrightarrow n)
     # Where mu and sigma are the popuplation statistics
     P_means = norm.pdf(np.linspace(4, 6, 1000), loc=mu, scale=np.sqrt(sigma**2 / n))
     ax.plot(np.linspace(4, 6, 1000), P_means, label="Theoretical Mean Distribution")
     ax.legend()
     fig, ax = plt.subplots()
     ax.hist(variances, label="Empirical Variance Distribution", density=True, __
      \rightarrowbins=100)
```

[3]: <matplotlib.legend.Legend at 0x7f7199d1e7c0>

0.3 Q7

Calculated Z statistic: 1.8868698069325487 Calculated P Value (2 Tailed): 0.05917783903576096

Hence, we would reject the null hypothesis at the 10% significance, but we would fail to reject the

null hypothesis at the 5% signficiance level.

For this dataset, there are only around 20 samples. This is a bit less than is suitable for a 2 tailed Z test. A 2 tailed t-test with the student's t distribution (with 19 degrees of freedom) would be more suitable.

0.4 Q8

```
[5]: n = 100
p = 0.7

X = np.random.randn(n)
```

[True True True True False False True True True]

Clearly, the likelihood of getting a single head is p and a single tail is (1-p). Hence the likelihood of getting an exact sequence with $k = \sum_{i=1}^{n} X_i$ heads and n-k tails is $p^k (1-p)^{n-k}$

By Bayes rule, the posterior

$$P(p|X) = \frac{P(X|p)P(p)}{P(X)}$$

For a uniform prior, P(p) = 1. Hence $P(p|X) \propto p^k (1-p)^{n-k}$

For the prior
$$P(p) \propto (1-p^4)$$

 $P(p|X) \propto p^{k+1}(1-p)^{n-k}(1-p^4)$

We can work out the normalising coefficient later with some numerical integration (since these priors are certainly not conjugate as the conjugate prior is a Beta distribution).

```
[6]: k = np.sum(X)

dp = 1/1000
p_space = np.linspace(dp, 1 - dp, 1000)

# We'll do things in log space for numerical stability's sake
log_likelihood = lambda p: k * np.log(p) + (n - k) * np.log(1 - p)

# For a uniform prior, the posterior and the prior have the same distribution
# Since the prior has density 1 everywhere
posterior = np.exp(log_likelihood(p_space))

# numerical integration via trapezium rule
norm_posterior = np.sum(0.5 * dp * (posterior[1:] + posterior[:-1]))

posterior = np.exp(np.log(posterior) - np.log(norm_posterior))

fig, ax = plt.subplots()
ax.plot(p_space, np.ones(p_space.shape), label='Uniform Prior')
ax.plot(p_space, posterior, label='Posterior')
```

```
plt.legend()

# For prior proportional to p (1 - p^4)

# We'll stay in log space again to keep things numerically stable
log_prior = np.log(p_space) + np.log(1 - p_space**4)
posterior = np.exp(log_likelihood(p_space) + log_prior)

# numerical integration via trapezium rule
norm_posterior = np.sum(0.5 * dp * (posterior[1:] + posterior[:-1]))
posterior = np.exp(np.log(posterior) - np.log(norm_posterior))

prior = np.exp(log_prior)
norm_prior = np.sum(0.5 * dp * (prior[1:] + prior[:-1]))
prior = np.exp(log_prior - np.log(norm_prior))

fig, ax = plt.subplots()
ax.plot(p_space, prior, label='p(1 - p^4) Prior')
ax.plot(p_space, posterior, label='Posterior')
plt.legend()
```

[6]: <matplotlib.legend.Legend at 0x7f7199b20940>

The 90% credible interval can be found numerically by starting at the centre of the unimodal distribution, and numerically integrating outwards until 90% is reached. This obtains the 90% central credible interval.

Alternatively, the highest density credible interval can be computed by integrating numerically the probability mass above a given threshold, and then moving the threshold down until 90% of the probability mass is obtained.

The integration can be done in a number of different ways, though my preferred method is the trapezium rule as a fast and accurate way of integrating.

[]: