Answers to the Theory Questions

of the course of Real and Functional Analysis of prof. Fabio Punzo by Jacopo Stringara jstringara@gmail.com

October 1, 2022

The source code for this document can be found at: https://github.com/jstringara/Latex-projects/tree/master/ARF

Contents

Sheet n.1			
Question	1.1	3	
1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6	Sequence of sets Increasing sequence of sets Decreasing sequence of sets Limsup for a sequence of sets Limit for a sequence of sets Limit for a sequence of sets	3 3 3 3 4	
Question	1.2	4	
1.2.1 1.2.2 Question	Cover of a set	4 4	
·			
1.3.1 1.3.2 1.3.3	Equivalence relation	4 4 5	
Question	1.4	5	
1.4.1 1.4.2	Equipotent sets	5 5	
Question	1.5	5	
1.5.1 1.5.2 1.5.3 1.5.4 Question	Finite sets	5 5 6 6	
1.6.1	Algebra	6	
1.6.2 1.6.3 1.6.4	σ — algebra	6	
Question	1.7	6	
1.7.1 Question	Minimal σ – algebra	7 7	
1.8.1 1.8.2 1.8.3	Borel σ – algebra	7 7 8	
Question	1.9	8	
1.9.1 1.9.2	Measure	8	

1.9.3 $1.9.4$ $1.9.5$	σ – finite measure 9 Measure space 9 Probability space 9
Question 1	1.10
1.10.1	Properties of measures
Question 1	1.11
1.11.2	Sets of zero measure
Question 1	
1.12.1	Complete measure space
Sheet n.2	13
Question 2	2.1
2.1.1 2.1.2	Complete measure space
Question 2	2.2
2.2.1 $2.2.2$	Outer measure
Question 2	2.3
2.3.1 $2.3.2$	Caratheodory condition
Question 2	2.4
2.4.1	All zero measure sets are in \mathcal{L}
Question 2	2.5
2.5.1	Generation of a measure from an outer measure
Question 2	2.6 17
2.6.1	Generation of a measure from an outer measure (proof of completeness) 17
Question 2	2.7
2.7.1 2.7.2	Construction of the Lebesgue measure on \mathbb{R}
Question 2	
2.8.1	All countable sets are \mathcal{L} -measurable and $\lambda(E) = 0 \dots 18$
Question 2	
2.9.1 2.9.2 2.9.3	$\mathcal{B}(\mathbb{R}) \subseteq \mathcal{L}(\mathbb{R}) $
Question 2	2.10
2.10.1	The translate of a measurable set is measurable
Question 2	2.11 20
	Excision property
Question 2	2.12
	Vitali's non-measurable sets

Sheet n. 1

Question 1.1

Write the definitions of: sequence of sets $\{E_n\}$; increasing and decreasing sequence of sets $\{E_n\}$; $\limsup_{n\to\infty} E_n$, $\liminf_{n\to\infty} E_n$, $\lim_{n\to\infty} E_n$.

Solution

Let us define the following:

• Sequence of sets

A family (or collection) of sets $\{E_i\}_{i\in I}$ is called a sequence of sets if $I=\mathbb{N}$ (i.e. it is indexed by the set of natural numbers \mathbb{N})

• Increasing sequence of sets

a sequence of sets $\{E_n\}$ is said to be increasing (or ascending) if:

$$E_n \subseteq E_{n+1} \quad \forall n \in \mathbb{N}$$

• Decreasing sequence of sets

A sequence of sets $\{E_n\}$ is said to be decreasing (or descending) if:

$$E_n \supseteq E_{n+1} \quad \forall n \in \mathbb{N}$$

• Limsup for a sequence of sets

for a sequence of sets $\{E_n\}$ we define:

$$\limsup_{n \to \infty} E_n := \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n$$

• Liminf for a sequence of sets

analogously:

$$\limsup_{n \to \infty} E_n := \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_n$$

• Limit for a sequence of sets

as for a sequence of real numbers if the limsup and liminf coincide we may define:

$$\lim_{n \to \infty} E_n := \liminf_{n \to \infty} E_n = \limsup_{n \to \infty} E_n$$

Question 1.2

Write the definitions of: cover (or covering) of a set; subcover.

Solution

Let us define the following:

• Cover of a set

a family of sets $\{E_i\}_{i\in I}$ is called a cover (or covering) of X if:

$$X \subseteq \bigcup_{i \in I} E_i$$

• Subcover

a sub-family of a cover $\{E_i\}_{i\in J}$ $(J\subseteq I)$ which forms a cover is called a subcover.

Question 1.3

Write the definitions of: equivalence relation, equivalence class, quotient set.

Solution

Let us define the following:

• Equivalence relation

a relation R in X (i.e. a subset $R \subseteq X \times X$) is an equivalence relation if:

- i) $(x, x) \in R \ \forall x \in X \ (\mathbf{reflexivity})$
- ii) $(x,y) \in R \implies (y,x) \in R$ (simmetry)
- iii) $(x,y) \in R, (y,z) \in R \implies (x,z) \in R$ (transitivity)

Equivalence class

we define an equivalence class for x w.r.t. R as:

$$E_x := \{ y \in X : yRx \}$$

i.e. the set of all elements equivalent to x for R

• Quotient set

we define the quotient set of X over R as:

$$X/R := \{E_x : x \in X\}$$

i.e. it is the set of all equivalence classes.

Question 1.4

Write the definition of equipotent sets. Write the definition of cardinality of a set.

Solution

Let us define the following:

• Equipotent sets

Two sets X and Y are called equipotent if there exists a bijections, that is, a function:

$$f: X \to Y$$

that is both injective and surjective.

• Cardinality of a set

the cardinality of a set X is the collection of all sets equipotent to X.

Question 1.5

Write the definitions of: infinite set, finite set, countable set, uncountable set. Provide examples.

Solution

Let us define the following:

• Finite sets

a set X is finite if $\exists n \in \mathbb{N}$ such that there is a bijection:

$$f: X \to 1, \ldots, n$$

Example: $\{\frac{1}{1}, \dots, \frac{1}{n}\}$

• Infinite sets

X is infinite if it is not finite. **Example:** \mathbb{N} is clearly infinite

• Countable sets

X is countable if X is equipotent to \mathbb{N} **Example:** \mathbb{Q} can be put in bijection with \mathbb{N}

• Uncountable sets

X is uncountable if it is infinite and not countable.

Example: \mathbb{R} is clearly infinite and not countable since it has the cardinality of continuum.

Question 1.6

Write the definitions of: algebra, σ – algebra, measurable space, measurable set. Show that if \mathcal{A} is a σ – algebra and $\{E_k\} \subset \mathcal{A}$, then $\bigcap_{k=1}^{+\infty} E_k \in \mathcal{A}$.

Solution

Let us define the following:

• Algebra

A family $A \subseteq \mathcal{P}(X)$ is an algebra if:

- i) $\emptyset \in \mathcal{A}$
- ii) $E \in \mathcal{A} \implies E^{\mathsf{c}} \in \mathcal{A}$
- iii) $A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$

σ – algebra

A family $A \subseteq \mathcal{P}(X)$ is a σ – algebra if:

- $\bullet \quad i) \ \emptyset \in \mathcal{A}$
 - ii) $E \in \mathcal{A} \implies E^{\mathsf{c}} \in \mathcal{A}$
 - iii) $\{E_n\}_{n\in\mathbb{N}}\subseteq\mathcal{A}\implies\bigcup_{n=1}^\infty E_n\in\mathcal{A}$

• Measurable space

The couplet (X, A) where A is a σ – algebra is called a measurable space.

• Measurable set

the elements of the σ – algebra of a measurable space are called measurable sets.

Question 1.7

State the theorem concerning the existence of the σ – algebra generated by a given set. Give an idea of the proof.

Solution

Minimal σ – algebra

Let $S \subseteq \mathcal{P}(X)$, then there exists a σ – algebra $\sigma_0(S)$ such that:

- 1. $S \subseteq \sigma_0(S)$
- 2. $\forall \sigma$ algebra $\mathcal{A} \subseteq \mathcal{P}(X)$ such that $S \subseteq \mathcal{A}$ we have $\sigma_0(S) \subseteq \mathcal{A}$

thus $\sigma_0(S)$ is the minimal σ – algebra generated by S.

Sketch of Proof

We construct the set:

$$\mathcal{V} \coloneqq \{ \mathcal{A} \subseteq \mathcal{P}(X) \, \| \mathcal{A} \supseteq S, \, \mathcal{A} \quad \sigma - \text{algebra} \}$$

we may define:

$$\sigma_0(S) := \bigcap \{ \mathcal{A} : \mathcal{A} \in \mathcal{V} \}$$

Question 1.8

Write the definition of the Borel σ – algebra in a metric space. Provide classes of Borel sets. Characterize $\mathcal{B}(\mathbb{R})$, $\mathcal{B}(\overline{\mathbb{R}})$ and $\mathcal{B}(\mathbb{R}^N)$.

Solution

Borel σ – algebra

Let (X,d) be a metric space and let \mathcal{G} be the family of open sets of X, then we define the Borel σ – algebra as:

$$\mathcal{B}(X) \coloneqq \sigma_0(\mathcal{G})$$

The elements of \mathcal{G} are called Borel sets, let us enumerate some classes of them:

Classes of Borel sets

- i) open sets
- ii) closed sets (they are the complementary of open sets and this is a σ algebra)
- iii) countable intersections of open sets, known as the family G_{δ}
- iv) countable union of closed sets, known as the family F_{δ} .

Lastly, let us characterize the Borel σ – algebras $\mathcal{B}(\mathbb{R})$, $\mathcal{B}(\overline{\mathbb{R}})$ and $\mathcal{B}(\mathbb{R}^N)$:

Characterization of $\mathcal{B}\left(\mathbb{R}\right),\mathcal{B}\left(\overline{\mathbb{R}}\right)$ and $\mathcal{B}\left(\mathbb{R}^{N}\right)$

1.
$$\mathcal{B}(\mathbb{R}) = \sigma_0(I) = \sigma_0(I_1) = \sigma_0(I_2) = \sigma_0(I_0) = \sigma_0(\hat{I})$$
 where:

$$\begin{split} I &= \{(a,b): a,b \in \mathbb{R}, a \leq b\} \\ I_1 &= \{[a,b]: a,b \in \mathbb{R}, a \leq b\} \\ I_2 &= \{(a,b]: a,b \in \mathbb{R}, a \leq b\} \\ I_0 &= \{(a,b): -\infty \leq a < b < \infty\} \cup \{(a,\infty): a \in \mathbb{R}\} \\ \hat{I} &= \{(a,\infty): a \in \mathbb{R}\} \end{split}$$

2.
$$\mathcal{B}\left(\overline{\mathbb{R}}\right) = \sigma_0(\tilde{I}) = \sigma_0(\tilde{I}_1)$$

$$\begin{split} \tilde{I} &= \{(a,b): a,b \in \mathbb{R}, a < b\} \cup \{[-\infty,b): b \in \mathbb{R}\} \cup \{(a,+\infty]: a \in \mathbb{R}\} \\ \tilde{I}_1 &= \{(a,+\infty]: a \in \mathbb{R}\} \end{split}$$

3.
$$\mathcal{B}\left(\mathbb{R}^N\right) = \sigma_0(K_1) = \sigma_0(K_2)$$
 where:

$$K_1 = \{\text{n-dimensional closed rectangles}\}\$$

 $K_2 = \{\text{n-dimensional open rectangles}\}\$

Question 1.9

Write the definitions of: measure, finite measure, σ -finite measure, measure space, probability space. Provide some examples of measures.

Solution

Let us define the following:

• Measure

Let X be a set and $\mathcal{C} \subseteq \mathcal{P}(X)$, then a function μ :

$$\mu: \mathcal{C} \to \overline{\mathbb{R}}_+$$

is a measure if:

1.
$$\mu(\emptyset) = 0$$

2.
$$\sigma$$
 – additivity:

 $\forall \{E_n\} \subseteq \mathcal{C} \text{ disjoint } (E_i \cap E_j \quad \forall i \neq j) \text{ such that } \bigcup_{k=1}^{\infty} E_k \in \mathcal{C} \text{ we have that:}$

$$\mu\left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} \mu(E_k)$$

Finite measure

a measure μ defined as above is said to bw finite if:

$$\mu(X) < +\infty$$

• σ – finite measure

a measure μ is said to be σ – finite if there exists a sequence $\{E_n\}$ such that:

$$X = \bigcup_{k=1}^{\infty} E_k, \quad \mu(E_k) < +\infty$$

• Measure space

Let $\mathcal{A} \subseteq \mathcal{P}(X)$ be a σ – algebra and $\mu : \mathcal{A} \to \overline{\mathbb{R}}_+$ a measure, then the triplet (X, \mathcal{A}, μ) is called a measure space.

• Probability space

if $\mu(X) = 1$ then we say that (X, \mathcal{A}, μ) is a probability space.

Question 1.10

State and prove the theorem regarding properties of measures. Why the two continuity properties are called in this way? For what concerns continuity w.r.t. a descending sequence E_k , show that the hypothesis $\mu(E_1) < +\infty$ is essential.

Solution

Properties of measures

Let us state and prove the properties of a measure μ on a set X and σ – algebra A:

i) Additivity:

 $\forall \{E_1, \ldots, E_n\} \subseteq \mathcal{A} \text{ disjoint we have:}$

$$\mu\left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} \mu(E_k)$$

Proof. indeed if we define a sequence such that:

$$\{E_n\} = \begin{cases} B_k = E_k & \forall k \le n \\ B_k = \emptyset & \forall k > n \end{cases}$$

this sequence is also disjoint $(A \cap \emptyset = \emptyset \ \forall A \in X)$, thus we may write:

$$\mu\left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} \mu(E_k) = \sum_{k=1}^{n} \mu(E_k) + \sum_{k=n+1}^{\infty} \underbrace{\mu(E_k)}_{=0}$$

ii) Monotonicity:

 $\forall E, F \in \mathcal{A}$ we have:

$$E \subseteq F \implies \mu(E) \le \mu(F)$$

Proof. We may write F in the following way:

$$F = E \cup (F \setminus E)$$

and since these two sets are obviously disjoint we may use (i) to write:

$$\mu(F) = \mu(E) + \underbrace{\mu(E \setminus F)}_{\geq 0} > \mu(E)$$

iii) σ – subadditivity:

 $\forall \{E_n\} \subseteq \mathcal{A} \text{ (not disjoint) we have:}$

$$\mu\left(\bigcup_{k=1}^{\infty} E_k\right) \le \sum_{k=1}^{\infty} \mu(E_k)$$

Proof. Let us define:

$$\begin{cases} F_1 := E_1 \\ F_n := E_n \setminus \bigcup_{k=1}^{n-1} E_k \quad \forall n > 1 \end{cases}$$

Clearly $\{F_n\} \subseteq \mathcal{A}$ and $\{F_n\}$ is a disjoint sequence and:

$$F_k\subseteq E_k \quad \forall k\in\mathbb{N} \implies \mu(F_k)\leq \mu(E_k)$$
 by (ii) $\bigcup_{k=1}^\infty F_k=\bigcup_{k=1}^\infty E_k$

thus we may write:

$$\mu\left(\bigcup_{k=1}^{\infty} E_k\right) = \mu\left(\bigcup_{k=1}^{\infty} F_k\right) = \sum_{k=1}^{\infty} \mu(F_k) \le \sum_{k=1}^{\infty} \mu(E_k)$$

iv) Continuity from below:

 $\forall \{E_n\} \subseteq \mathcal{A}, E_k \nearrow \text{ we have:}$

$$\mu\left(\lim_{k\to\infty} E_k\right) = \lim_{k\to\infty} \mu(E_k)$$

Proof. Let us define a new sequence $\{F_n\}$ as:

$$\begin{cases} F_k := E_k \setminus E_{k-1} & \forall k \in \mathbb{N} \text{ and } E_0 := \emptyset \\ \Longrightarrow \bigcup_{k=1}^n F_k = E_n, \bigcup_{k=1}^\infty F_k = \bigcup_{k=1}^\infty E_k \end{cases}$$

and since $\{F_n\}$ is a disjoint sequence (we may visually think of it as a set of ever increasing rings) we may use (i) to write:

$$\mu\left(\lim_{n\to\infty} E_n\right) = \mu\left(\bigcup_{k=1}^{\infty} E_k\right) = \mu\left(\bigcup_{k=1}^{\infty} F_k\right)$$

$$= \lim_{n\to\infty} \sum_{k=1}^{n} \mu(F_k) = \lim_{n\to\infty} \mu\left(\bigcup_{k=1}^{\infty} F_k\right)$$

$$= \lim_{n\to\infty} \mu(E_n)$$

v) Continuity from above:

 $\forall \{E_n\} \subseteq \mathcal{A}, E_k \searrow, \mu(E_1) < +\infty$ we have:

$$\mu\left(\lim_{n\to\infty} E_n\right) = \lim_{n\to\infty} \mu(E_n)$$

Proof. Like we did above Let us define: a new sequence $\{F_n\}$

$$F_k := E_1 \setminus E_k \quad \forall k \in \mathbb{N}$$

let us note that $\{F_n\}$ is an increasing sequence thus by (iv) we can write:

$$\mu\left(\bigcup_{k=1}^{\infty} F_k\right) = \lim_{k \to \infty} \mu(F_k) = \mu(E_1) - \lim_{k \to \infty} (E_k)$$

because by (ii)

 $mu(F \setminus E) = \mu(F) - \mu(E)$, moreover:

$$\bigcup_{k=1}^{\infty} F_k = \bigcup_{k=1}^{\infty} (E_1 \cap E_k^{\mathsf{c}}) = E_1 \cap \left(\bigcup_{k=1}^{\infty} E_k^{\mathsf{c}}\right) = E_1 \setminus \left(\bigcap_{k=1}^{\infty} E_k\right)$$

$$\implies \mu\left(\bigcup_{k=1}^{\infty} F_k\right) = \mu(E_1) - \mu\left(\bigcap_{k=1}^{\infty} E_k\right)$$

thus combining these two and canceling the $\mu(E_1)$ on both sides we obtain:

$$\lim_{k \to \infty} \mu(E_k) = \mu\left(\bigcap_{k=1}^{\infty} E_k\right)$$

let us note that for this last, crucial, step $\mu(E_1)$ must be finite, otherwise we would not be able to cancel it out from both sides.

Question 1.11

Write the definitions of: sets of zero measure; negligible sets. What is meant by saying that a property holds a.e.? Provide typical properties that can be true a.e. .

Solution

Let us define the following:

• Sets of zero measure

Given a measure space (X, \mathcal{A}, μ) , we say that a set $E \subseteq X$ has zero measure if $E \in \mathcal{A}$ and $\mu(E) = 0$. We denote the set of all sets of zero measure by \mathcal{N}_{μ}

• Negligible sets

a set $E \subseteq X$ is negligible if:

$$\exists N \in \mathcal{A} \text{ s.t. } E \subseteq N, \ \mu(N) = 0$$

So any subset of a set of zero measure is negligible, we denote the collection of all negligible sets by τ_{μ} . Moreover let us note that E doesn't need to be an element of \mathcal{A} $(E \notin \mathcal{A})$

• Almost Everywhere

a property P on X is said to hold almost everywhere if:

$$\mu(\lbrace x \in X : P(x) \text{ is false } \rbrace) = 0$$

We may also say that $\{x \in X : P(x) \text{ is false }\} \in \mathcal{N}_{\mu}$

Examples

typical properties that can be true a.e. are: equality, continuity, monotonicity, etc. etc.

Question 1.12

Write the definition of complete measure space. Exhibit an example of a measure space which is not complete.

Solution

Complete measure space

A measure space (X, \mathcal{A}, μ) is said to be complete if $\tau_{\mu} \subseteq \mathcal{A}$

Counterexample

Let $X=\{a,b,c\},\,\mathcal{A}=\sigma(\{\emptyset,\{a\},\{b,c\},X\})$ and $\mu\equiv 0$, clearly here we have:

$$\tau_{\mu} \setminus \mathcal{N}_{\mu} = \{\{b\}, \{c\}\}\$$

and clearly $\{b\}, \{c\} \notin \mathcal{A}$. So this measure space is not complete.

Sheet n. 2

Question 2.1

Write the definition of complete measure space. State the theorem concerning the existence of the completion of a measure space. Give just an idea of the proof.

Solution

Complete measure space

A measure space (X, \mathcal{A}, μ) is said to be complete if $\tau_{\mu} \subseteq \mathcal{A}$

Existence of the completion

Let (X, \mathcal{A}, μ) be a measure space. Let us define: $\bar{\mathcal{A}}, \bar{\mu}$

$$\bar{\mathcal{A}} = \{ E \subseteq X : \exists F, G \in \mathcal{A} \text{ s.t. } F \subseteq E \subseteq G \ \mu(G \setminus F) = 0 \}$$

 $\bar{\mu} : \bar{\mathcal{A}} \to \overline{\mathbb{R}}_+, \quad \bar{\mu}(E) \coloneqq \mu(F)$

then:

- 1. $\bar{\mathcal{A}}$ is a σ algebra , $\bar{\mathcal{A}} \supseteq \mathcal{A}$
- 2. $\bar{\mu}$ is a complete measure, $\bar{\mu}|_{\mathcal{A}} = \mu$

and the triplet $(X, \bar{A}, \bar{\mu})$ is a complete measure space and is called the completion of (X, \mathcal{A}, μ) , i.e. it the smallest (w.r. to inclusion) complete measure space that cointains (X, \mathcal{A}, μ)

Sketch of proof

We must prove two things:

- First: that \bar{A} is a σ algebra and that it contains A, the latter is trivial since $\forall A \in A$ $A \subseteq A \subseteq A \implies A \in \bar{A}$ while the former is quite hardous so we shall just assume it to be true
- **Second:** that $\bar{\mu}$ is a complete measure and $\bar{\mu}|_{\mathcal{A}} = \mu$. The latter is trivial (see above). We can also easily prove that it is a measure:
 - i) $\bar{\mu}(\emptyset) = \mu(\emptyset) = 0$ since the only set contained inside \emptyset is \emptyset itself, as the container set we may take any zero set measure inside \mathcal{A} .

ii) that σ – additivity holds is clear since for any disjoint sequence $\{E_n\}\subseteq \bar{\mathcal{A}}$ we may construct two sequences:

$$\left\{\begin{array}{ll} \{F_n\},\; F_k\subseteq E_k \\ \{G_n\},\; G_k\supseteq E_k \end{array}\right.\;\forall k\in\mathbb{N} \text{ s.t. } \mu(G_k\setminus F_k)=0$$

Let us note the following:

- $-\{F_n\}$ is also disjoint because $\{E_n\}$ is disjoint.
- Moreover:

$$\bigcup_{k=1}^{\infty} F_k \subseteq \bigcup_{k=1}^{\infty} E_k \subseteq \bigcup_{k=1}^{\infty} G_k$$

$$\bigcup_{k=1}^{\infty} G_k \setminus \bigcup_{k=1}^{\infty} F_k \subseteq \bigcup_{k=1}^{\infty} (G_k \setminus F_k)$$

$$\mu\left(\bigcup_{k=1}^{\infty} G_k \setminus \bigcup_{k=1}^{\infty} F_k\right) \le \mu\left(\bigcup_{k=1}^{\infty} (G_k \setminus F_k)\right) \le \sum_{k=1}^{\infty} \mu(G_k \setminus F_k) = 0$$

The last inequality is true thanks to the σ – subadditivity and monotonicty of μ .

Thus we can say that:

$$\bar{\mu}\left(\bigcup_{k=1}^{\infty} E_k\right) = \mu\left(\bigcup_{k=1}^{\infty} F_k\right) = \sum_{k=1}^{\infty} \mu(F_k) = \sum_{k=1}^{\infty} \bar{\mu}(E_k)$$

thus $\bar{\mu}$ is a measure.

Let us prove that $\bar{\mu}$ is complete. Let $E_1 \in X$ and $E_2 \in \bar{A}$ such that $\bar{\mu}(E_2) = \mu(F_2) = 0$ and $E_1 \subseteq E_2$, let us note that:

$$\begin{cases} \mu(G_2) = \mu(G_2 \setminus F_2)^0 + \mu(F_2)^0 \\ \mu(G_2 \setminus \emptyset) = \mu(G_2) - 0 \end{cases} \implies E_1 \in \bar{\mathcal{A}}, \ \bar{\mu}(E_1) = \mu(\emptyset) = 0$$

$$\emptyset \subseteq E_1 \subseteq G_2$$

thus any negligible set is also a zero measure set and $\bar{\mu}$ is complete.

Question 2.2

Write the definition of outer measure. State and prove the theorem concerning generation of outer measure on a general set X, starting from a set $K \in \mathcal{P}(X)$, containing \emptyset , and a function $\nu: K \to \overline{\mathbb{R}}_+$, $\nu(\emptyset) = 0$. Intuitively, which is the meaning of (K, ν) ?

Solution

Outer measure

We say that a function: $\mu^* : \mathcal{P}(X) \to \overline{\mathbb{R}}_+$ (where X is any set) is an outer measure if:

i)
$$\mu^*(\emptyset) = 0$$

ii)
$$E_1 \subseteq E_2 \implies \mu^*(E_2) \le \mu^*(E_2)$$

iii)
$$\mu^* \left(\bigcup_{k=1}^{\infty} E_k \right) \le \sum_{k=1}^{\infty} \mu^* (E_k)$$

Generation of an outer measure

Let $K \subseteq \mathcal{P}(X)$, $\emptyset \in K$, $\nu : K \to \overline{\mathbb{R}}_+$, $\nu(\emptyset) = 0$, then we can generate an outer measure μ^* on X defined as:

 $\begin{cases} \mu^*(E) \coloneqq \inf \left\{ \sum_{k=1}^\infty \nu(I_k) : E \subseteq \bigcup_{k=1}^\infty I_k, \ \{I_n\} \subseteq K \right\}, \text{ if } E \text{ can be covered by a countable union of sets } I_n \in K. \\ \mu^*(E) \coloneqq +\infty, \text{ otherwise.} \end{cases}$

Proof. Let us verify that such a μ^* meets the definition of outer measure (2.2.1):

- i) $\emptyset \in K$, $0 \le \mu^*(\emptyset) \le \nu(\emptyset) = 0$ by the definition of μ^* .
- ii) $E_1 \subseteq E_2$, we have two possible cases
 - if there exists a countable covering of E_2 then it is also a covering of E_1 and from the definitio of μ^* it follows that:

$$\mu^*(E_1) \le \mu^*(E_2)$$

• if there is no countable covering of E_2 then:

$$\mu^*(E_1) \le \mu^*(E_2) = +\infty$$

iii) this condition is obviously met if:

$$\sum_{k=1}^{\infty} \mu^*(E_k) = +\infty$$

otherwise if we suppose that:

$$\sum_{k=1}^{\infty} \mu^*(E_k) < +\infty$$

thus $\mu^*(E_k) < +\infty \ \forall k \in \mathbb{N}$, by the definition of μ^* and inf:

$$\forall \varepsilon > 0, \ \forall n \in \mathbb{N} \quad \exists \{I_{n,k}\} \subseteq K$$

such that:

$$E_n \subseteq \bigcup_{k=1}^{\infty} I_{n,k}$$
 and $\mu^*(E_n) + \frac{\varepsilon}{2^n} > \sum_{k=1}^{\infty} \nu(I_{n,k})$

Now, since:

$$\bigcup_{n=1}^{\infty} E_n \subseteq \bigcup_{n,k=1}^{\infty} I_{n,k}, \quad \{I_{n,k}\} \subseteq K$$

it clearly follows that:

$$\mu^*(\bigcup_{n=1}^{\infty} E_n) \le \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \nu(I_{n,k}) < \sum_{n=1}^{\infty} \mu^*(E_n) + \varepsilon \cdot \sum_{k=1}^{\infty} \frac{1}{2^k}$$

because ε is arbitrary, we have the cocnlusion.

The intuitive meaning (K, ν) is that K is a special class of sets in X and ν is a function that assigns a value to each set in K. On the other hand ν can be any real valued positive function, thus it is not necessary to be a measure.

Question 2.3

What is the Caratheodory condition? How can it be stated in an equivalent way? Prove it.

Solution

Caratheodory condition

Let μ^* be an outer measure on a set X, then we say that $E \subset X$ is μ^* -measurable if:

$$\mu^*(Z) = \mu^*(Z \cap E) + \mu^*(Z \setminus E) \quad \forall Z \in X$$

Equivalent statement

Let μ^* be an outer measure on a set X, then we say that $E \subset X$ is μ^* -measurable if:

$$\mu^*(Z) \ge \mu^*(Z \cap E) + \mu^*(Z \setminus E) \quad \forall Z \in X$$

Proof. It is enough to note that $\forall E \subseteq X$ we have:

$$Z = (Z \cap E) \cup (Z \cap E^{c}) \quad \forall Z \in X$$

and thus by the subadditivity of μ^* (iii) we get:

$$\mu^*(Z) \le \mu^*(Z \cap E) + \mu^*(Z \setminus E) \quad \forall Z \in X$$

and we may combine this inequality with the other to yield an equality.

Question 2.4

Can it exist a set of zero outer measure, which does not fulfill the Caratheodory condition? Prove it.

Solution

All zero measure sets are in \mathcal{L}

There cannot exist such a set E because all sets of zero aouter measure meet the Caratheodory Inequality (2.3.2).

Proof. Indeed $\forall Z \subseteq X$ by the monotonicty of μ^* (ii) we have:

$$\mu^*(\underbrace{Z \cap E}_{\subseteq E}) + \mu^*(\underbrace{Z \setminus E}_{\subseteq Z}) \le \operatorname{Id}^*(E)^0 + \mu^*(Z)$$

Question 2.5

State the theorem concerning generation of a measure as a restriction of an outer measure.

Solution

Generation of a measure from an outer measure

Let us define \mathcal{L} as:

$$\mathcal{L} \coloneqq \{ E \subseteq X : E \text{ is } \mu^* - \text{measurable } \}$$

where μ^* is an outer measure on X, then:

- i) the collection \mathcal{L} is a σ algebra
- ii) $\mu^*|_{\mathcal{L}}$ is a complete measure on \mathcal{L}

Question 2.6

Show that the measure induced by an outer measure on the σ – algebra of all sets fulfilling the Caratheodory condition is complete.

Solution

Generation of a measure from an outer measure (proof of completeness)

Let us see that such a measure as the one described in the previous question is complete. Let μ^* be an outer measure on X and \mathcal{L} the σ – algebra of all sets fulfilling the Caratheodory condition. Let μ be the measure induced by μ^* on \mathcal{L} ($\mu = \mu^*|_{\mathcal{L}}$).

Proof. Let $N \in \mathcal{L}$ such that $\mu(N) = \mu^*(N) = 0$ and let $E \subseteq N$. By monotonicty of μ^* (ii):

$$0 < \mu^*(E) < \mu^*(N) = 0 \implies \mu^*(E) = 0$$

thus by the lemma seen in 2.4.1 we get that $E \in \mathcal{L}$ and so \mathcal{L} is complete.

Question 2.7

Describe the construction of the Lebesgue measure in \mathbb{R} and in \mathbb{R}^n .

Solution

Construction of the Lebesgue measure on \mathbb{R}

Let I be a family of open, bounded intervals in \mathbb{R} :

$$I := \{(a, b) : a, b \in \mathbb{R}, a \le b\}$$

Let us note that $\emptyset \in I$.

Now let us consider a function λ_0 :

$$\lambda_0: I \to \mathbb{R}_+$$

$$\lambda_0(\emptyset) = 0$$

$$\lambda_0((a,b)) = b - a$$

Here we take $X = \mathbb{R}$, $(K, \nu) = (I, \lambda_0)$ and construct the outer Lebesgue measure λ^* as seen above (2.2.2):

$$\lambda^*(E) := \left\{ \begin{array}{l} \inf \left\{ \sum_{n=1}^{\infty} \lambda_0(I_n) : E \subseteq \bigcup_{n=1}^{\infty} I_n, \ \{I_n\} \subseteq I \right\}, \quad \forall E \subseteq \mathbb{R} \text{ s.t. } E \text{ has a countable covering } \{I_n\} \subseteq I \right\}, \\ +\infty, \text{ otherwise} \end{array} \right.$$

The corresponding σ -algebra is the Lebesgue σ -algebra $\mathcal{L}(\mathbb{R})$ and now we define the Lebesgue measure λ as the measure generated by the outer Lebesgue measure (as seen in 2.5.1):

$$\lambda \coloneqq \lambda^*|_{\mathcal{L}(\mathbb{R})}$$

Construction of the Lebesgue measure on \mathbb{R}^n

Analogously to what we have seen above we first define an outer measure and then a (complete) measure but we take:

$$I^n = \left\{ \sum_{k=1}^n (a_k, b_k) : a_k, b_k \in \mathbb{R}, \ a_k \le b_k \right\}$$

and accordingly we define:

$$\lambda_0^n : I^n \to \mathbb{R}_+$$

$$\lambda_0^n(\emptyset) = 0$$

$$\lambda_0^n \left(\sum_{k=1}^n (a_k, b_k) \right) = \prod_{k=1}^n (b_k - a_k)$$

and therefore we take $X = \mathbb{R}^n$ and $(K, \nu) = (I^n, \lambda_0^n)$, we define the outer Lebesgue measure $\lambda^{*,n}$ on \mathbb{R}^n and the Lebesgue σ – algebra $\mathcal{L}(\mathbb{R}^n)$ and finally we construct the n-dimensional Lebesgue measure as:

$$\lambda^n \coloneqq \lambda^{*,n}|_{\mathcal{L}(\mathbb{R}^n)}$$

Question 2.8

Prove that any countable subset $E \subset \mathbb{R}$ is Lebesgue measurable and $\lambda(E) = 0$.

Solution

All countable sets are \mathcal{L} -measurable and $\lambda(E) = 0$

Any countable subset $E \subset \mathbb{R}$ is \mathcal{L} -measurable and $\lambda(E) = 0$

Proof. Let $a \in \mathbb{R}$, clearly $\{a\} \subseteq (a - \varepsilon, a] \ \forall \varepsilon > 0$, thus by the definition of λ^* :

$$\lambda^*(\{a\}) \le \lambda^*((a-\varepsilon,a]) = \varepsilon \to 0 \implies \{a\} \in \mathcal{L}$$

Now if E is countable we may write as follows:

$$E = \bigcup_{n=1}^{\infty} \{a_n\} \quad a_n \in \mathbb{R}, \ n \in \mathbb{N}$$

and so by monotonicty (ii):

$$0 \le \lambda^*(E) = \lambda^* \left(\bigcup_{n=1}^{\infty} \{a_n\} \right) \le \sum_{n=1}^{\infty} \lambda^*(a_n) = 0$$

thus $\lambda^*(E) = 0 \implies E \in \mathcal{L}$ by the lemma seen above (2.4.1)

Question 2.9

Show that $\mathcal{B}(\mathbb{R}) \subseteq \mathcal{L}(\mathbb{R})$. Is the inclusion strict? Which is the relation between $(\mathbb{R}, \mathcal{L}(\mathbb{R}), \lambda)$ and $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$?

Solution

$$\mathcal{B}\left(\mathbb{R}\right)\subseteq\mathcal{L}(\mathbb{R})$$

Proof. Since $\mathcal{B}(\mathbb{R}) = \sigma_0((a, +\infty))$ it is enough to show that $(a, +\infty) \in \mathcal{L}(\mathbb{R})$. We already know from above that all bounded intervals belong to $\mathcal{L}(\mathbb{R})$.

Now, let $A \subseteq \mathbb{R}$ be any set. We assume $a \notin A$, otherwise we would replace A with $A \setminus \{a\}$ and this would leave the Lebesgue outer measure unchanged. Furthermore $(a, +\infty) \in \mathcal{L}(\mathbb{R}) \iff (a, +\infty)$ satisfies the Caratheodory Condition (2.3.2):

$$\lambda^*(A_1) + \lambda^*(A_2) < \lambda^*(A)$$

where $A_1 = A \cap (-\infty, a)$ and $A_2 = A \cap (a, +\infty)$.

Since $\lambda^*(A)$ is defined as an inf, to verify the above, it is necessary and sufficient to show that for any countable collection $\{I_n\}$ of open bounded intervals that covers A we have that:

$$\lambda^*(A_1) + \lambda^*(A_2) \le \sum_{k=1}^{\infty} \lambda_0(I_k)$$

For every $k \in \mathbb{N}$ we define:

$$I'_k := I_k \cap (-\infty, a)$$
$$I''_k := I_k \cap (a, +\infty)$$

then:

$$I'_k \cap I''_k = \emptyset(\text{disjoint}) \implies \lambda_o(I_k) = \lambda_0(I'_k) + \lambda_0(I''_k)$$

Let us note that $\{I'_n\}$ is a countable cover for A_1 and $\{I''_n\}$ is a countable cover for A_2 . Hence:

$$\lambda^*(A_1) = \sum_{\substack{k=1\\ \infty}}^{\infty} \lambda_0(I_k')$$

$$\lambda^*(A_2) = \sum_{k=1}^{\infty} \lambda_0(I_k'')$$

therefore:

$$\lambda^*(A_1) + \lambda^*(A_2) \le \sum_{k=1}^{\infty} \lambda_0(I_k') + \sum_{k=1}^{\infty} \lambda_0(I_k'') = \sum_{k=1}^{\infty} \lambda_0(I_k)$$

which equivalento to the condition above.

$$\mathcal{B}\left(\mathbb{R}\right)\subsetneqq\mathcal{L}(\mathbb{R})$$

The inclusion demonstrated above can be shown to be strict. A counterexample can be produced (see here) but it is quite pathological.

Relation between $(\mathbb{R}, \mathcal{L}(\mathbb{R}), \lambda)$ and $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$

 $(\mathbb{R}, \mathcal{L}(\mathbb{R}), \lambda)$ is the completion of $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda|_{\mathcal{B}(\mathbb{R})})$. Indeed as we have shown above $\mathcal{B}(\mathbb{R})$ is not a complete σ – algebra while $\mathcal{L}(\mathbb{R})$ is.

Question 2.10

Is the translate of a measurable set measurable?

Solution

The translate of a measurable set is measurable

The translate of a measurable set is also measurable.

Let us see a simple example: let (a, b) be an interval and (a + h, b + h) its translate.

$$\lambda((a,b)) = b - a \lambda((a+h,b+h)) = (b+h) - (a+h) = b - a$$

Question 2.11

Write the excision property and prove it. Write and prove (partially) the theorem concerning the regularity of the Lebesgue measure on \mathbb{R} .

Solution

Excision property

If $A \in \mathcal{L}(\mathbb{R})$, $\lambda^*(A) \leq +\infty$ and $A \subseteq B$, then:

$$\lambda^*(B \setminus A) = \lambda^*(B) - \lambda^*(A)$$

Proof. Since $A \in \mathcal{L}(\mathbb{R})$ we can use the Caratheodory equality (2.3.1) using Z = B, E = A:

$$\lambda^*(B) = \lambda^*(\underbrace{B \cap A}_{=A \ (A \subseteq B)}) + \lambda^*(B \setminus A)$$

so, since $\lambda^*(A) \leq +\infty$ we may write:

$$\lambda^*(B \setminus A) = \lambda^*(B) - \lambda^*(A)$$

Regularity of the Lebesgue Measure

Let $E \subseteq \mathbb{R}$, the following are equal:

- i) $E \in \mathcal{L}(\mathbb{R})$
- ii) $\forall \varepsilon > 0 \ \exists A \subseteq \mathbb{R}$ open s.t.

$$E \subseteq A \quad \lambda^*(A \setminus E) < \varepsilon$$

iii) $\exists G \subseteq \mathbb{R}$ in the class G_{δ} (countable intersections of open sets) s.t.

$$E \subseteq G \quad \lambda^*(G \setminus E) = 0$$

iv) $\forall \varepsilon > 0 \ \exists C \subseteq \mathbb{R} \ \text{closed s.t.}$

$$C \subseteq E \quad \lambda^*(E \setminus C) < \varepsilon$$

v) $\exists F \subseteq \mathbb{R}$ in the class F_{δ} (countable unions of closed sets) s.t.

$$F \subseteq E \quad \lambda^*(E \setminus F) = 0$$

Proof. Let us give a (partial) proof:

• (i) \Longrightarrow (ii): if $E \in \mathcal{L}(\mathbb{R})$, $\lambda(E) < +\infty$ then by definition of outer measure (2.2.1):

$$\forall \varepsilon > 0 \; \exists \{I_n\} \text{ that covers } E \text{ and } \sum_{k=1}^{\infty} \lambda_0(I_k) < \lambda^*(E) + \varepsilon$$

Let us now define the set O:

$$O \coloneqq \bigcup_{k=1}^{\infty} I_k, \ O \text{ is open}, \ E \subseteq O$$

and so we may write:

$$\lambda^*(O) \stackrel{sub-add\ (iii)}{\leq} \sum_{k=1}^{\infty} \lambda_0(I_k) < \lambda^*(E) + \varepsilon$$

$$\implies \lambda^*(O) - \lambda^*(E) < \varepsilon$$

and by the Excision property (2.11.1) $(E \in \mathcal{L}(\mathbb{R}), \lambda^*(E) < +\infty)$:

$$\lambda^*(O \setminus E) = \lambda^*(O) - \lambda^*(E) < \varepsilon$$

and so we have obtained the second statement (ii).

• $(ii) \implies (iii), \forall k \in \mathbb{N}$ we choose $O_k \supseteq E$ open for which:

$$\lambda^*(O_k \setminus E) < \frac{1}{k}$$

and then define:

$$G = \bigcap_{k=1}^{\infty} O_k \implies G \in G_{\delta}, \ G \supseteq E$$

Moreover $\forall k \in \mathbb{N}$:

$$G \setminus E \subseteq O_k \setminus E$$

so by monotonicty (ii):

$$\lambda^*(G \setminus E) \le \lambda^*(O_k \setminus E) < \frac{1}{k}$$

let us apply a limit $k \to \infty$ to both sides:

$$\lambda^*(G \setminus E) = 0$$

• (iii) \implies (i), let us note that $G \setminus E \in \mathcal{L}(\mathbb{R})$ since $\lambda^*(G \setminus E) = 0$ by lemma 2.4.1 and:

$$G \in \mathcal{L}(\mathbb{R}) \text{ since } G \in G_{\delta} \subseteq \mathcal{B}(\mathbb{R}) \subseteq \mathcal{L}(\mathbb{R})$$
$$\Longrightarrow E = \underset{\in \mathcal{L}}{G} \cap (G \setminus E)^{c} \in \mathcal{L}$$

Question 2.12

Is it true that any subset $E \subseteq \mathbb{R}$ is \mathcal{L} -measurable? Is it possibile to find two disjoint sets $A, B \subset \mathbb{R}$ for which $\lambda^*(A \cup B) < \lambda^*(A) + \lambda^*(B)$? Why?

Solution

Vitali's non-measurable sets

Any measurable set $E \subseteq \mathbb{R}$ with $\lambda(E) > 0$ contains a subset that fails to be measurable. Therefore there exist subsets of \mathbb{R} that are not \mathcal{L} -measurable.

Disjoints sets for which $\lambda^*(A \cup B) < \lambda^*(A) + \lambda^*(B)$

There are disjoint sets $A, B \subseteq \mathbb{R}$ for which:

$$\lambda^*(A \cup B) < \lambda^*(A) + \lambda^*(B)$$

Proof. Assume by contradiction that:

$$\lambda^*(A \cup B) = \lambda^*(A) + \lambda^*(B) \quad \forall A, B \subseteq \mathbb{R}, \ A \cap B = \emptyset$$

Now $\forall E, Z \subseteq \mathbb{R}$ we write:

$$\lambda^*(\underbrace{Z\cap E}_{=A}) + \lambda^*(\underbrace{Z\cap E^{\mathbf{c}}}_{=B}) = \lambda^*(\underbrace{Z}_{=A\cup B})$$

thus any set E would satisfy the Caratheodory condition (2.3.1) and be \mathcal{L} -measurable which is absurd since we know that Vitali's sets exist.