Семинар 1

(Темы: Локализация гомотопической категории и производная категория)

Вспомним определение ?? производной категории. Возникает вопрос о том, являются ли квазиизоморфизмы локализующим семейством. Не очень сложно проверить, что это не так.

Prop 1.1. Qis не явлется в общем случае локализующим семейством в категории $Kom(\mathcal{A})$.

Доказательство. Возьмём $X \in Ob\mathcal{A}$ с инъективной резольвентой длины 1. Тогда естественно возникнет два вложенных в инъективную резольвенту комплекса, соответствующих объектам X и I_1 .

Вложение комплекса X[0] будет квазиизоморфизмом. Тогда второе условие Оре $(\ref{eq:condition})$ гарантирует существование комплекса с квазиизоморфизмом в $I_1[-1]$ и морфизмом в X[0]. Естественно, из вида наших комплексов найденный объект имеет вид $0 \longrightarrow P_0 \longrightarrow P_1 \longrightarrow 0$. Получим коммутативную диаграмму.

Так как $P_{\bullet} \to I_1[-1]$ — квазиизоморфизм, то P_{\bullet} имеет лишь одну нетривиальную когомологию в первом члене. Отсюда $P_0 \to I_0$ — нулевой морфизм. С другой стороны морфизм $P_0 \to X$ в общем случае ненулевой. Также ненулевым является $X \to I_0$ из квазиизоморфности. Противоречие заключается в коммутативности следующей диаграммы.

Несмотря на утверждение выше, описать структуру производной категории $\mathcal{D}(\mathcal{A})$ можно. Для начала нашей целью будет установить следующую теорему. Это надо переписать после того как напишу про конусы в начале

Thr 1.2. Qis — локализующее семейство в $\mathfrak{K}(A)$.

Доказательство. Первое условие Оре очевидно. Проверим второе (??). Рассмотрим тройку $X, Y, Z \in Ob\mathcal{K}(\mathcal{A})$ с морфизмами $f \in \operatorname{Hom}_{\mathcal{A}}(X, Z)$, $s \in \operatorname{Hom}_{\mathcal{A}}(Y, Z)$, где $s \in Qis$ из локализующего семейства. Объектом, который будет удовлетворять условию, станет сдвинутый конус C[hf][-1], где h — естественный морфизм из Z в конус C[s].

$$\begin{array}{ccc}
C[hf][-1] & \xrightarrow{\beta} & Y \\
\downarrow^{\alpha} & \downarrow^{s} \\
X & \xrightarrow{f} & Z \\
& & \downarrow^{h} \\
& & C[s]
\end{array} \tag{1}$$

Рассмотрим откуда берутся морфизмы α , β в (1) и почему $\alpha \in Qis$. Напомним, что вместе с конусом C[s] поставляется короткая точная последовательность комплексов:

$$0\,\longrightarrow\, \mathsf{C}[\mathsf{s}]\,\longrightarrow\, \mathsf{C}[\mathsf{hf}]\,\longrightarrow\, \mathsf{X}[1]\,\longrightarrow\, 0$$

которая вместе со сдвигом на 1 дает морфизм α в (1). Применим к такой сдвинутой последовательности лемму о зигзаге. Так как $s \in Qis$, у C[s] нулевые когомологии. Отсюда получим точные последовательности.

$$0 \longrightarrow H_{i}(C[hf][-1]) \xrightarrow{\alpha^{*}} H_{i}(X) \longrightarrow 0$$
 (2)

Тогда $\alpha \in Qis$. Для поиска β такого, что $s\beta$ гомотопен $f\alpha$, напомним также о длинной точной последовательности, поставляющейся с конусом.

$$\ldots \to \mathsf{Y} \to \mathsf{Z} \to \mathsf{C}[\mathsf{s}] \to \mathsf{Y}[\mathsf{1}] \to \mathsf{Z}[\mathsf{1}] \to \ldots \tag{3}$$

Воспользуемся следующим утверждением для такой последовательности, которое докажем немного позже.

Lem 1.3. Композиция любых двух морфизмов в последовательности (3) гомотопна нулю.

Для такой последовательности нас интересует т. н. выделенный треугольник: точная подпоследовательность (3) из четырёх элементов. Применяя функтор $\operatorname{Hom}_{\mathcal{K}(\mathcal{A})}(C[hf][-1],\cdot)$ получим также точную последовательность множеств морфизмов из конуса.

Применяя утверждение 1.3 к аналогичной (3) последовательности для конуса C[hf] получим, что $hf\alpha \sim 0$. Отсюда из точности этот морфизм поднимается до $\beta \in \operatorname{Hom}_{\mathcal{K}(\mathcal{A})}(C[hf][-1], Y)$. Докажем выполнение третьего условия Оре. Нам пригодится еще одно утверждение.

Lem 1.4. Локализация аддитивной категории по локализующему семейству тоже аддитивна.

В силу аддитивности небоходимо доказать, что sf ~ 0 , где s из локализующего семейства, влечёт существование $t \in Qis$: ft ~ 0 . Конструкция будет следующей: опять возьмём конус C[s], соответствующую точную последовательность и применим функтор $Hom_{\mathcal{K}(\mathcal{A})}(X,\cdot)$.

$$\begin{array}{c} X \longleftarrow C[f'][-1] \\ \cdots \longrightarrow C[s][-1] \stackrel{f'}{\longmapsto} h \longrightarrow Y \stackrel{s}{\longrightarrow} Z \longrightarrow \cdots \\ & \downarrow \operatorname{Hom}_{\mathcal{K}(\mathcal{A})}(X, \cdot) \\ \cdots \longrightarrow \operatorname{Hom}_{\mathcal{K}(\mathcal{A})}(X, C[s][-1]) \longrightarrow \operatorname{Hom}_{\mathcal{K}(\mathcal{A})}(X, Y) \longrightarrow \operatorname{Hom}_{\mathcal{K}(\mathcal{A})}(X, Z) \longrightarrow \cdots \\ & f' \longmapsto f \longmapsto sf \sim 0 \\ \end{array}$$

Из точности sf поднимается до $f' \in \operatorname{Hom}_{\mathcal{K}(\mathcal{A})}(X, C[s][-1])$. Искомым морфизмом тогда будет соответствующий канонический для конуса $t: C[f'][-1] \to X$. Для такого построения остается проверить квазиизоморфность и гомотопность композиции нулю. Аналогично квазиизоморфность следует из ацикличности конуса C[s] и точности следующей последовательности по лемме о зигзаге.

$$\ldots \to C[f'][-1] \xrightarrow{t} X \xrightarrow{f'} C[s][-1] \to C[f'] \to \ldots$$

Гомотопность нулю следует из того, что по построению $\mathsf{ft} \sim \mathsf{hf}'\mathsf{t}$, а $\mathsf{f}'\mathsf{t} \sim 0$ из точности последовательности выше.

Доказательство леммы 1.3. i dont know

Доказательство леммы 1.4. i dont know

Ещё раз вспомним логику всего, что делалось ранее. Нашей целью было отождествить объект со всеми его резольвентами. Оказалось, что все резольвенты квазиизоморфны объекту: поэтому мы захотели изучить локализацию категории комплексов квазиизоморфозмами, ведь в такой категории интересующее нас отношение является изоморфизмом. Но такая локализация простому описанию сразу не поддаётся, в чём мы убедились в предложении 1.1. Поэтому сначала мы научились обращать квазиизоморфизмы в гомотопической категории. Следующая теорема завершает наши рассуждения, утверждая, что получившаяся локализация в гомотопической категории и производная категория — это одно и то же.

Thr 1.5.

$$\mathcal{D}(\mathcal{A}) \cong \mathcal{K}(\mathcal{A})[\mathsf{Qis}^{-1}]$$

Доказательство.

$$\begin{array}{c} \mathsf{Kom}(\mathcal{A}) & \xrightarrow{Q_{\mathcal{D}}} & \mathcal{D}(\mathcal{A}) \\ \downarrow_{Q_{\mathcal{K}}} & \xrightarrow{\pi} & \beta \not \subset \beta \\ \mathcal{K}(\mathcal{A}) & \xrightarrow{Q_{\mathcal{D}}} & \mathcal{K}(\mathcal{A})[\mathsf{Qis}^{-1}] \end{array}$$

Покажем, что существуют единственные два морфизма α , β , делающие диаграмму выше коммутативной. Функтор $Q_{\mathcal{K}}$ обращает гомотопические эквивалентности (отметим, что гомотопическая категория — локализация категории комплексов гомотопическими эквивалентностями) и сохраняет квазиизоморфизмы. $Q_{\mathcal{D}}$ обращает все квазиизоморфизмы. Тогда и $Q_{\mathcal{R}} \cdot Q_{\mathcal{D}}$ обращает все квазиизоморфизмы. Следовательно по универсальному свойству локализации (??) существует единственный β . Отметим, что все гомотопические эквивалентности — это квазиизоморфизмы. Следовательно, $Q_{\mathcal{D}}$ переводит все гомотопические эквивалентности в изоморфизмы и опять по универсальному свойству локализации (??) имеем единственный морфизм π . Из коммутативности π переводит все квазиизоморфизмы в изоморфизмы. Ещё раз по универсальному свойству (??) имеем единственный морфизм α .