CAPSTONE PROJECT 1:- Real Estate Case Study

Submitted by:- Ayub S Bijapur

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

1.Import data

In [2]: df_train = pd.read_csv("train.csv")
 df_train.head()

Out[2]:		UID	BLOCKID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place
	0	267822	NaN	140	53	36	New York	NY	Hamilton	Hamilton
	1	246444	NaN	140	141	18	Indiana	IN	South Bend	Roseland
	2	245683	NaN	140	63	18	Indiana	IN	Danville	Danville
	3	279653	NaN	140	127	72	Puerto Rico	PR	San Juan	Guaynabo
	4	247218	NaN	140	161	20	Kansas	KS	Manhattan	Manhattan City

5 rows × 80 columns

Out[3

In [3]: df_test = pd.read_csv("test.csv")
df_test.head()

pla	city	state_ab	state	STATEID	COUNTYID	SUMLEVEL	BLOCKID	UID	
Dearbc Heigl C	Detroit	MI	Michigan	26	163	140	NaN	255504	0
Aubı C	Auburn	ME	Maine	23	1	140	NaN	252676	1
Millert	Pine City	PA	Pennsylvania	42	15	140	NaN	276314	2
Montice C	Monticello	KY	Kentucky	21	231	140	NaN	248614	3
Edr	Corpus Christi	TX	Texas	48	355	140	NaN	286865	4

5 rows × 80 columns

```
df train.columns
In [4]:
         'lat', 'lng', 'ALand', 'AWater', 'pop', 'male_pop', 'female_pop',
                 'rent_mean', 'rent_median', 'rent_stdev', 'rent_sample_weight',
                 'rent_samples', 'rent_gt_10', 'rent_gt_15', 'rent_gt_20', 'rent_gt_25',
                 'rent_gt_30', 'rent_gt_35', 'rent_gt_40', 'rent_gt_50',
                'universe_samples', 'used_samples', 'hi_mean', 'hi_median', 'hi_stdev', 'hi_sample_weight', 'hi_samples', 'family_mean', 'family_median',
                 'family_stdev', 'family_sample_weight', 'family_samples',
                 'hc_mortgage_mean', 'hc_mortgage_median', 'hc_mortgage_stdev',
                 'hc_mortgage_sample_weight', 'hc_mortgage_samples', 'hc_mean',
                 'hc_median', 'hc_stdev', 'hc_samples', 'hc_sample_weight',
                 'home_equity_second_mortgage', 'second_mortgage', 'home_equity', 'debt',
                 'second_mortgage_cdf', 'home_equity_cdf', 'debt_cdf', 'hs_degree',
                 'hs_degree_male', 'hs_degree_female', 'male_age_mean',
                 'male_age_median', 'male_age_stdev', 'male_age_sample_weight',
                 'male_age_samples', 'female_age_mean', 'female_age_median', 'female_age_stdev', 'female_age_sample_weight', 'female_age_samples',
                 'pct_own', 'married', 'married_snp', 'separated', 'divorced'],
               dtype='object')
In [5]: df_test.columns
         Index(['UID', 'BLOCKID', 'SUMLEVEL', 'COUNTYID', 'STATEID', 'state',
Out[5]:
                 'state_ab', 'city', 'place', 'type', 'primary', 'zip_code', 'area_code',
                 'lat', 'lng', 'ALand', 'AWater', 'pop', 'male_pop', 'female_pop',
                 'rent_mean', 'rent_median', 'rent_stdev', 'rent_sample_weight',
                 'rent_samples', 'rent_gt_10', 'rent_gt_15', 'rent_gt_20', 'rent_gt_25',
                 'rent_gt_30', 'rent_gt_35', 'rent_gt_40', 'rent_gt_50',
                 'universe_samples', 'used_samples', 'hi_mean', 'hi_median', 'hi_stdev',
                 'hi_sample_weight', 'hi_samples', 'family_mean', 'family_median',
                 'family_stdev', 'family_sample_weight', 'family_samples', 'hc_mortgage_mean', 'hc_mortgage_median', 'hc_mortgage_stdev',
                 'hc_mortgage_sample_weight', 'hc_mortgage_samples', 'hc_mean',
                 'hc_median', 'hc_stdev', 'hc_samples', 'hc_sample_weight',
                 'home_equity_second_mortgage', 'second_mortgage', 'home_equity', 'debt',
                 'second_mortgage_cdf', 'home_equity_cdf', 'debt_cdf', 'hs_degree',
                 'hs_degree_male', 'hs_degree_female', 'male_age_mean'
                 'male_age_median', 'male_age_stdev', 'male_age_sample_weight',
                'male_age_samples', 'female_age_mean', 'female_age_median',
'female_age_stdev', 'female_age_sample_weight', 'female_age_samples',
                 'pct_own', 'married', 'married_snp', 'separated', 'divorced'],
               dtype='object')
         len(df_train)
In [6]:
         27321
Out[6]:
         len(df_test)
         11709
Out[7]:
In [8]: df_train.describe()
```

Out[8]:	UID		BLOCKID	SUMLEVEL	COUNTYID	STATEID	zip_code	area_co
	count	27321.000000	0.0	27321.0	27321.000000	27321.000000	27321.000000	27321.0000
	mean	257331.996303	NaN	140.0	85.646426	28.271806	50081.999524	596.5076
	std	21343.859725	NaN	0.0	98.333097	16.392846	29558.115660	232.4974
	min	220342.000000	NaN	140.0	1.000000	1.000000	602.000000	201.0000
	25%	238816.000000	NaN	140.0	29.000000	13.000000	26554.000000	405.0000
	50%	257220.000000	NaN	140.0	63.000000	28.000000	47715.000000	614.0000
	75%	275818.000000	NaN	140.0	109.000000	42.000000	77093.000000	801.0000
	max	294334.000000	NaN	140.0	840.000000	72.000000	99925.000000	989.0000

8 rows × 74 columns

In [9]: df_test.describe()

Out[9]: UID BLOCKID SUMLEVEL COUNTYID STATEID zip_code area_c

count 11709.000000 0.0 11709.000000 11709.000000 11709.000000 11709.000000

	UID	BLOCKID	SUMLEVEL	COUNTYID	STATEID	zip_code	area_co
count	11709.000000	0.0	11709.0	11709.000000	11709.000000	11709.000000	11709.0000
mean	257525.004783	NaN	140.0	85.710650	28.489196	50123.418396	593.5985
std	21466.372658	NaN	0.0	99.304334	16.607262	29775.134038	232.0742
min	220336.000000	NaN	140.0	1.000000	1.000000	601.000000	201.0000
25%	238819.000000	NaN	140.0	29.000000	13.000000	25570.000000	404.0000
50%	257651.000000	NaN	140.0	61.000000	28.000000	47362.000000	612.0000
75%	276300.000000	NaN	140.0	109.000000	42.000000	77406.000000	787.0000
max	294333.000000	NaN	140.0	810.000000	72.000000	99929.000000	989.0000

8 rows × 74 columns

In [10]: df_train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 27321 entries, 0 to 27320
Data columns (total 80 columns):

Data # 	columns (total 80 columns): Column	Non-Null Count	Dtype
0	UID	27321 non-null	int64
1	BLOCKID	0 non-null	float64
2	SUMLEVEL	27321 non-null	int64
3	COUNTYID	27321 non-null	int64
4	STATEID	27321 non-null	
5	state	27321 non-null	object
6	state_ab	27321 non-null	object
7	city	27321 non-null	object
8	place	27321 non-null	object
9	type	27321 non-null	object
10	primary	27321 non-null	object
11	zip_code	27321 non-null	int64
12	area_code	27321 non-null	int64
13	lat	27321 non-null	float64
14	lng	27321 non-null	float64
15	ALand	27321 non-null	float64
16	AWater	27321 non-null	int64
17	pop	27321 non-null	int64
18	male_pop	27321 non-null	int64
19	female_pop	27321 non-null	int64
20	rent_mean	27007 non-null	float64
21	rent_median	27007 non-null	float64
22	rent_stdev	27007 non-null	float64
23	rent_sample_weight	27007 non-null	float64
24	rent_samples	27007 non-null	float64
25	rent_gt_10	27007 non-null	float64
26	rent_gt_15	27007 non-null	float64
27	rent_gt_20	27007 non-null	float64
28	rent_gt_25	27007 non-null	float64
29	rent_gt_30	27007 non-null	
30	rent_gt_35	27007 non-null	
31	rent_gt_40	27007 non-null	
32	rent_gt_50	27007 non-null	
33	<pre>universe_samples used_samples</pre>	27321 non-null 27321 non-null	int64 int64
34 35	hi_mean	27053 non-null	float64
36	hi_median	27053 non-null	float64
37	hi stdev	27053 non-null	float64
38	hi_sample_weight	27053 non-null	float64
39	hi_samples	27053 non-null	float64
40	family_mean	27023 non-null	float64
41	family_median	27023 non-null	float64
42	family_stdev	27023 non-null	float64
43	family_sample_weight	27023 non-null	float64
44	family_samples	27023 non-null	float64
45	hc_mortgage_mean	26748 non-null	float64
46	hc_mortgage_median	26748 non-null	float64
47	hc_mortgage_stdev	26748 non-null	float64
48	hc_mortgage_sample_weight	26748 non-null	float64
49	hc_mortgage_samples	26748 non-null	float64
50	hc_mean	26721 non-null	float64
51	hc_median	26721 non-null	float64
52	hc_stdev	26721 non-null	float64
53	hc_samples	26721 non-null	float64
54	hc_sample_weight	26721 non-null	float64
55	home_equity_second_mortgage	26864 non-null	float64
56	second_mortgage	26864 non-null	float64
57	home_equity	26864 non-null	float64
58	debt	26864 non-null	float64

```
26864 non-null float64
59 second_mortgage_cdf
                                 26864 non-null float64
60 home_equity_cdf
61 debt cdf
                                 26864 non-null float64
62 hs_degree
                                 27131 non-null float64
                                 27121 non-null float64
27098 non-null float64
63 hs_degree_male
64 hs_degree_female
65 male_age_mean
                               27132 non-null float64
66 male age median
                               27132 non-null float64
                               27132 non-null float64
67 male_age_stdev
68 male_age_sample_weight
                               27132 non-null float64
                               27132 non-null float64
27115 non-null float64
69 male_age_samples
70 female_age_mean
                               27115 non-null float64
71 female_age_median
72 female age stdev
                               27115 non-null float64
73 female_age_sample_weight 27115 non-null float64
74 female_age_samples
                                27115 non-null float64
                                 27053 non-null float64
27130 non-null float64
75 pct_own
76 married
                                27130 non-null float64
77 married_snp
78 separated
                                 27130 non-null float64
                                 27130 non-null float64
79 divorced
dtypes: float64(62), int64(12), object(6)
```

memory usage: 16.7+ MB

In [11]: df_test.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11709 entries, 0 to 11708
Data columns (total 80 columns):

#	columns (total 80 columns): Column	Non-Null Count	Dtype
0	UID	11709 non-null	int64
1	BLOCKID	0 non-null	float64
2	SUMLEVEL	11709 non-null	int64
3	COUNTYID	11709 non-null	int64
4	STATEID	11709 non-null	int64
5	state	11709 non-null	object
6	state_ab	11709 non-null	object
7	city	11709 non-null	object
8	place	11709 non-null	object
9	type	11709 non-null	object
10	primary	11709 non-null	object
11	zip_code	11709 non-null	int64
12	area_code	11709 non-null	int64
13	lat	11709 non-null	float64
14	lng	11709 non-null	float64
15 16	ALand AWater	11709 non-null 11709 non-null	int64 int64
17		11709 non-null	int64
18	pop male_pop	11709 non-null	int64
19	female_pop	11709 non-null	int64
20	rent mean	11561 non-null	float64
21	rent median	11561 non-null	float64
22	rent_stdev	11561 non-null	
23	rent_sample_weight	11561 non-null	float64
24	rent_samples	11561 non-null	float64
25	rent_gt_10	11560 non-null	float64
26	rent_gt_15	11560 non-null	float64
27	rent_gt_20	11560 non-null	float64
28	rent_gt_25	11560 non-null	
29	rent_gt_30	11560 non-null	
30	rent_gt_35	11560 non-null	
31 32	rent_gt_40 rent_gt_50	11560 non-null	
33	universe samples	11709 non-null	int64
34	used samples	11709 non-null	int64
35	hi_mean	11587 non-null	float64
36	hi_median	11587 non-null	float64
37	hi stdev	11587 non-null	float64
38	hi_sample_weight	11587 non-null	float64
39	hi_samples	11587 non-null	float64
40	family_mean	11573 non-null	float64
41	family_median	11573 non-null	float64
42	family_stdev	11573 non-null	float64
43	family_sample_weight	11573 non-null	float64
44	family_samples	11573 non-null	float64
45	hc_mortgage_mean	11441 non-null	float64
46 47	hc_mortgage_median hc_mortgage_stdev	11441 non-null 11441 non-null	float64 float64
48	hc_mortgage_stdev hc_mortgage_sample_weight	11441 non-null	float64
49	hc_mortgage_samples	11441 non-null	float64
50	hc mean	11419 non-null	float64
51	hc_median	11419 non-null	float64
52	hc_stdev	11419 non-null	float64
53	hc_samples	11419 non-null	float64
54	 hc_sample_weight	11419 non-null	float64
55	home_equity_second_mortgage	11489 non-null	float64
56	second_mortgage	11489 non-null	float64
57	home_equity	11489 non-null	float64
58	debt	11489 non-null	float64

12/26/22, 12:11 PM Capstone Project

```
59 second_mortgage_cdf
                               11489 non-null float64
                               11489 non-null float64
60 home_equity_cdf
61 debt cdf
                               11489 non-null float64
62 hs_degree
                               11624 non-null float64
                               11620 non-null float64
63
    hs degree male
                               11604 non-null float64
64 hs_degree_female
    male_age_mean
                               11625 non-null float64
66 male age median
                              11625 non-null float64
67 male_age_stdev
                               11625 non-null float64
                               11625 non-null float64
68 male_age_sample_weight
                               11625 non-null float64
69 male_age_samples
70 female_age_mean
                               11613 non-null float64
                               11613 non-null float64
71 female age median
72 female age stdev
                               11613 non-null float64
                               11613 non-null float64
73 female_age_sample_weight
                               11613 non-null float64
74 female_age_samples
                               11587 non-null float64
75
    pct own
76 married
                               11625 non-null float64
77 married_snp
                               11625 non-null float64
78 separated
                               11625 non-null float64
79 divorced
                               11625 non-null float64
dtypes: float64(61), int64(13), object(6)
```

memory usage: 7.1+ MB

2. Figure out the primary key and look for the requirement of indexing

UID is unique userID value in the train and test dataset. So an index can be created from the UID feature

```
#Set the DataFrame index using existing columns.
In [12]:
          df_train.set_index(keys=['UID'],inplace=True)
          df_test.set_index(keys=['UID'],inplace=True)
In [13]:
          df_train.head(2)
                  BLOCKID SUMLEVEL COUNTYID STATEID
Out[13]:
                                                            state state ab
                                                                                city
                                                                                       place type
             UID
                                                             New
          267822
                      NaN
                                  140
                                              53
                                                       36
                                                                       NY Hamilton Hamilton
                                                                                               City
                                                             York
                                                                              South
                                  140
                                             141
                                                       18 Indiana
          246444
                      NaN
                                                                        IN
                                                                                     Roseland
                                                                                               City
                                                                               Bend
         2 rows × 79 columns
          df_test.head(2)
In [14]:
```

Out[14]:		BLOCKID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	type
	UID									
	255504	NaN	140	163	26	Michigan	MI	Detroit	Dearborn Heights City	CDP
	252676	NaN	140	1	23	Maine	ME	Auburn	Auburn City	City
	2 rows ×	79 colum	ns							

3. Gauge the fill rate of the variables and devise plans for missing value treatment. Please explain explicitly the reason for the treatment chosen for each variable.

In [15]: #percantage of missing values in train set
 missing_list_train=df_train.isnull().sum() *100/len(df_train)
 missing_values_df_train=pd.DataFrame(missing_list_train,columns=['Percantage of missing_values_df_train.sort_values(by=['Percantage of missing values'],inplace=Trumissing_values_df_train[missing_values_df_train['Percantage of missing values'] >0
 #BLOCKID can be dropped, since it is 100%missing values

Out[15]:

Percantage of r	missing values
-----------------	----------------

BLOCKID	100.000000
hc_samples	2.196113
hc_mean	2.196113
hc_median	2.196113
hc_stdev	2.196113
hc_sample_weight	2.196113
hc_mortgage_mean	2.097288
hc_mortgage_stdev	2.097288
hc_mortgage_sample_weight	2.097288
hc_mortgage_samples	2.097288

In [16]: #percantage of missing values in test set
 missing_list_test=df_test.isnull().sum() *100/len(df_train)
 missing_values_df_test=pd.DataFrame(missing_list_test,columns=['Percantage of miss:
 missing_values_df_test.sort_values(by=['Percantage of missing values'],inplace=True
 missing_values_df_test[missing_values_df_test['Percantage of missing values'] >0][
 #BLOCKID can be dropped, since it is 43%missing values

Out[16]:

Percantage of missing values

```
BLOCKID
                                              42.857143
                hc_samples
                                               1.061455
                                                1.061455
                  hc mean
                hc_median
                                               1.061455
                  hc stdev
                                               1.061455
                                               1.061455
          hc_sample_weight
        hc_mortgage_mean
                                               0.980930
        hc_mortgage_stdev
                                               0.980930
hc mortgage sample weight
                                               0.980930
      hc_mortgage_samples
                                               0.980930
```

```
In [17]: df_train.drop(columns=['BLOCKID','SUMLEVEL'],axis=1,inplace=True)
#SUMLEVEL doest not have any predictive power and no variance
```

```
In [18]: df_test .drop(columns=['BLOCKID','SUMLEVEL'],axis=1,inplace=True)
#SUMLEVEL doest not have any predictive power
```

```
In [19]: # Imputing missing values with mean
missing_train_cols=[]
for col in df_train.columns:
    if df_train[col].isna().sum() !=0:
        missing_train_cols.append(col)
print(missing_train_cols)
```

['rent_mean', 'rent_median', 'rent_stdev', 'rent_sample_weight', 'rent_samples', 'rent_gt_10', 'rent_gt_15', 'rent_gt_20', 'rent_gt_25', 'rent_gt_30', 'rent_gt_3 5', 'rent_gt_40', 'rent_gt_50', 'hi_mean', 'hi_median', 'hi_stdev', 'hi_sample_weight', 'hi_samples', 'family_mean', 'family_median', 'family_stdev', 'family_sample _weight', 'family_samples', 'hc_mortgage_mean', 'hc_mortgage_median', 'hc_mortgage_stdev', 'hc_mortgage_sample_weight', 'home_equity_second_mortgage', 'second_mortgage', 'home_equity', 'debt', 'second_mortgage_cdf', 'home_equity_cdf', 'debt_cdf', 'hs_degree', 'hs_degree_male', 'hs_degree_female', 'male_age_mean', 'male_age_median', 'male_age_sample_weight', 'male_age_samples', 'female_age_mean', 'female_age_median', 'female_age_stdev', 'female_age_sample_weight', 'female_age_sample_weight', 'separated', 'divorced']

```
In [20]: # Imputing missing values with mean
missing_test_cols=[]
for col in df_test.columns:
    if df_test[col].isna().sum() !=0:
        missing_test_cols.append(col)
print(missing_test_cols)
```

['rent_mean', 'rent_median', 'rent_stdev', 'rent_sample_weight', 'rent_samples', 'rent_gt_10', 'rent_gt_15', 'rent_gt_20', 'rent_gt_25', 'rent_gt_30', 'rent_gt_3
5', 'rent_gt_40', 'rent_gt_50', 'hi_mean', 'hi_median', 'hi_stdev', 'hi_sample_weight', 'hi_samples', 'family_mean', 'family_median', 'family_stdev', 'family_sample_weight', 'family_samples', 'hc_mortgage_mean', 'hc_mortgage_median', 'hc_mortgage_stdev', 'hc_mortgage_sample_weight', 'home_equity_second_mortgage', 'second_mortgage', 'home_equity', 'debt', 'second_mortgage_cdf', 'home_equity_cdf', 'debt_cdf', 'hs_degree', 'hs_degree_male', 'hs_degree_female', 'male_age_mean', 'male_age_mean', 'male_age_stdev', 'male_age_sample_weight', 'male_age_samples', 'female_age_mean', 'female_age_median', 'female_age_stdev', 'female_age_sample_weight', 'female_age_sample, 'female_age_sample, 'female_age_sample, 'female_age_samples', 'pct_own', 'married', 'married_snp', 'separated', 'divorced']

Exploratory Data Analysis (EDA):

4. Perform debt analysis. You may take the following steps:

a) Explore the top 2,500 locations where the percentage of households with a second mortgage is the highest and percent ownership is above 10 percent. Visualize using geo-map. You may keep the upper limit for the percent of households with a second mortgage to 50 percent

```
In [25]: from pandasql import sqldf
   q1 = "select place,pct_own,second_mortgage,lat,lng from df_train where pct_own >0.3
   pysqldf = lambda q: sqldf(q, globals())
   df_train_location_mort_pct=pysqldf(q1)
In [26]: df_train_location_mort_pct.head()
```

lat

Ing

place pct_own second_mortgage

Out[26]:

```
0 Worcester City
                            0.20247
                                             0.43363 42.254262 -71.800347
                Harbor Hills
                            0.15618
                                             0.31818 40.751809 -73.853582
          2
                Glen Burnie
                           0.22380
                                             0.30212 39.127273 -76.635265
          3 Egypt Lake-leto
                           0.11618
                                            0.28972 28.029063 -82.495395
               Lincolnwood
                           0.14228
                                            0.28899 41.967289 -87.652434
          import plotly.express as px
In [27]:
          import plotly.graph_objects as go
          fig = go.Figure(data=go.Scattergeo(
In [28]:
              lat = df_train_location_mort_pct['lat'],
              lon = df_train_location_mort_pct['lng']),
          fig.update_layout(
              geo=dict(
                  scope = 'north america',
                  showland = True,
                  landcolor = "rgb(212, 212, 212)",
                  subunitcolor = "rgb(255, 255, 255)",
                  countrycolor = "rgb(255, 255, 255)",
                  showlakes = True,
                  lakecolor = "rgb(255, 255, 255)",
                  showsubunits = True,
                  showcountries = True,
                  resolution = 50,
                  projection = dict(
                       type = 'conic conformal',
                       rotation lon = -100
                  ),
                  lonaxis = dict(
                       showgrid = True,
                       gridwidth = 0.5,
                       range= [ -140.0, -55.0 ],
                      dtick = 5
                  ),
                  lataxis = dict (
                       showgrid = True,
                       gridwidth = 0.5,
                       range= [ 20.0, 60.0 ],
                      dtick = 5
                  )
              ),
              title='Top 2,500 locations with second mortgage is the highest and percent owner.
          fig.show()
```

b) Use the following bad debt equation: Bad Debt = P (Second Mortgage ∩ Home Equity Loan) Bad Debt = second_mortgage + home_equity - home_equity_second_mortgage c) Create pie charts to show over

```
In [29]: df_train['bad_debt']=df_train['second_mortgage']+df_train['home_equity']-df_train[
In [30]: df_train['bins'] = pd.cut(df_train['bad_debt'],bins=[0,0.10,1], labels=["less than df_train.groupby(['bins']).size().plot(kind='pie',subplots=True,startangle=90, autoplt.axis('equal') plt.show()
```


d) Create Box and whisker plot and analyze the distribution for 2nd mortgage, home equity, good debt, and bad debt for different cities

```
In [31]:
          cols=[]
          df_train.columns
          Index(['COUNTYID', 'STATEID', 'state', 'state_ab', 'city', 'place', 'type',
Out[31]:
                  'primary', 'zip_code', 'area_code', 'lat', 'lng', 'ALand', 'AWater',
                 'pop', 'male_pop', 'female_pop', 'rent_mean', 'rent_median',
                 'rent_stdev', 'rent_sample_weight', 'rent_samples', 'rent_gt_10',
                 'rent_gt_15', 'rent_gt_20', 'rent_gt_25', 'rent_gt_30', 'rent_gt_35',
                 'rent_gt_40', 'rent_gt_50', 'universe_samples', 'used_samples',
                 'hi_mean', 'hi_median', 'hi_stdev', 'hi_sample_weight', 'hi_samples',
                 'family_mean', 'family_median', 'family_stdev', 'family_sample_weight',
                 'family_samples', 'hc_mortgage_mean', 'hc_mortgage_median',
                 'hc_mortgage_stdev', 'hc_mortgage_sample_weight', 'hc_mortgage_samples',
                 'hc_mean', 'hc_median', 'hc_stdev', 'hc_samples', 'hc_sample_weight',
                 'home_equity_second_mortgage', 'second_mortgage', 'home_equity', 'debt',
                 'second_mortgage_cdf', 'home_equity_cdf', 'debt_cdf', 'hs_degree',
                 'hs_degree_male', 'hs_degree_female', 'male_age_mean',
                 'male_age_median', 'male_age_stdev', 'male_age_sample_weight',
                 'male_age_samples', 'female_age_mean', 'female_age_median',
'female_age_stdev', 'female_age_sample_weight', 'female_age_samples',
                 'pct_own', 'married', 'married_snp', 'separated', 'divorced', 'bad_debt', 'bins'],
                dtype='object')
          #Taking Hamilton and Manhattan cities data
          cols=['second_mortgage','home_equity','debt','bad_debt']
          df_box_hamilton=df_train.loc[df_train['city'] == 'Hamilton']
          df_box_manhattan=df_train.loc[df_train['city'] == 'Manhattan']
          df_box_city=pd.concat([df_box_hamilton,df_box_manhattan])
          df box city.head(4)
```

12/26/22, 12:11 PM Capstone_Project

	COUNTYID	STATEID	state	state_ab	city	place	type	primary	zip_code
UID									
267822	53	36	New York	NY	Hamilton	Hamilton	City	tract	13346
263797	21	34	New Jersey	NJ	Hamilton	Yardville	City	tract	8610
270979	17	39	Ohio	ОН	Hamilton	Hamilton City	Village	tract	45015
259028	95	28	Mississippi	MS	Hamilton	Hamilton	CDP	tract	39746

4 rows × 79 columns

Out[32]:

sns.boxplot(data=df_box_city,x='home_equity', y='city',width=0.5,palette="Set3")

plt.show()


```
In [35]: plt.figure(figsize=(10,5))
    sns.boxplot(data=df_box_city,x='debt', y='city',width=0.5,palette="Set3")
    plt.show()
```



```
In [36]: plt.figure(figsize=(10,5))
    sns.boxplot(data=df_box_city,x='bad_debt', y='city',width=0.5,palette="Set3")
    plt.show()
```


Manhattan has higher metrics compared to Hamilton

e) Create a collated income distribution chart for family income, house hold income, and remaining income

```
In [37]: sns.distplot(df_train['hi_mean'])
  plt.title('Household income distribution chart')
  plt.show()

/home/spx072/anaconda3/lib/python3.10/site-packages/seaborn/distributions.py:2619:
FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Pleas e adapt your code to use either `displot` (a figure-level function with similar fl exibility) or `histplot` (an axes-level function for histograms).
```



```
In [38]: sns.distplot(df_train['family_mean'])
  plt.title('Family income distribution chart')
  plt.show()
```

/home/spx072/anaconda3/lib/python3.10/site-packages/seaborn/distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Pleas e adapt your code to use either `displot` (a figure-level function with similar fl exibility) or `histplot` (an axes-level function for histograms).


```
In [39]: sns.distplot(df_train['family_mean']-df_train['hi_mean'])
  plt.title('Remaining income distribution chart')
  plt.show()
```

/home/spx072/anaconda3/lib/python3.10/site-packages/seaborn/distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Pleas e adapt your code to use either `displot` (a figure-level function with similar fl exibility) or `histplot` (an axes-level function for histograms).

Exploratory Data Analysis (EDA):

1. Perform EDA and come out with insights into population density and age. You may have to derive new fields (make sure to weight averages for accurate measurements):

```
In [40]: #plt.figure(figsize=(25,10))
    fig,(ax1,ax2,ax3)=plt.subplots(3,1)
    sns.distplot(df_train['pop'],ax=ax1)
    sns.distplot(df_train['male_pop'],ax=ax2)
    sns.distplot(df_train['female_pop'],ax=ax3)
    plt.subplots_adjust(wspace=0.8,hspace=0.8)
    plt.tight_layout()
    plt.show()
```

/home/spx072/anaconda3/lib/python3.10/site-packages/seaborn/distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Pleas e adapt your code to use either `displot` (a figure-level function with similar fl exibility) or `histplot` (an axes-level function for histograms).

/home/spx072/anaconda3/lib/python3.10/site-packages/seaborn/distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Pleas e adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

/home/spx072/anaconda3/lib/python3.10/site-packages/seaborn/distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Pleas e adapt your code to use either `displot` (a figure-level function with similar fl exibility) or `histplot` (an axes-level function for histograms).


```
In [41]: #plt.figure(figsize=(25,10))
    fig,(ax1,ax2)=plt.subplots(2,1)
    sns.distplot(df_train['male_age_mean'],ax=ax1)
    sns.distplot(df_train['female_age_mean'],ax=ax2)
    plt.subplots_adjust(wspace=0.8,hspace=0.8)
    plt.tight_layout()
    plt.show()
```

/home/spx072/anaconda3/lib/python3.10/site-packages/seaborn/distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Pleas e adapt your code to use either `displot` (a figure-level function with similar fl exibility) or `histplot` (an axes-level function for histograms).

/home/spx072/anaconda3/lib/python3.10/site-packages/seaborn/distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Pleas e adapt your code to use either `displot` (a figure-level function with similar fl exibility) or `histplot` (an axes-level function for histograms).

a) Use pop and ALand variables to create a new field called population density

```
df train['pop density']=df train['pop']/df train['ALand']
In [42]:
In [43]:
         df_test['pop_density']=df_test['pop']/df_test['ALand']
In [44]:
         sns.distplot(df_train['pop_density'])
         plt.title('Population Density')
         plt.show() # Very less density is noticed
         /home/spx072/anaconda3/lib/python3.10/site-packages/seaborn/distributions.py:2619:
```

FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Pleas e adapt your code to use either `displot` (a figure-level function with similar fl exibility) or `histplot` (an axes-level function for histograms).

b) Use male_age_median, female_age_median, male_pop, and female_pop to create a new field called median age c) Visualize the findings using appropriate chart type

```
df_train['age_median']=(df_train['male_age_median']+df_train['female_age_median'])
In [45]:
          df_test['age_median']=(df_test['male_age_median']+df_test['female_age_median'])/2
          df train[['male age median','female age median','male pop','female pop','age median'
In [46]:
Out[46]:
                  male_age_median female_age_median male_pop female_pop age_median
             UID
          267822
                          44.00000
                                            45.33333
                                                         2612
                                                                     2618
                                                                             44.666665
          246444
                          32.00000
                                            37.58333
                                                         1349
                                                                     1284
                                                                             34.791665
          245683
                          40.83333
                                            42.83333
                                                         3643
                                                                     3238
                                                                             41.833330
          279653
                          48.91667
                                            50.58333
                                                          1141
                                                                     1559
                                                                             49.750000
          247218
                          22.41667
                                            21.58333
                                                         2586
                                                                     3051
                                                                             22.000000
          sns.distplot(df_train['age_median'])
In [47]:
          plt.title('Median Age')
          plt.show()
          # Age of population is mostly between 20 and 60
          # Majority are of age around 40
          # Median age distribution has a gaussian distribution
          # Some right skewness is noticed
```

/home/spx072/anaconda3/lib/python3.10/site-packages/seaborn/distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Pleas e adapt your code to use either `displot` (a figure-level function with similar fl exibility) or `histplot` (an axes-level function for histograms).


```
In [48]: sns.boxplot(df_train['age_median'])
  plt.title('Population Density')
  plt.show()
```

/home/spx072/anaconda3/lib/python3.10/site-packages/seaborn/_decorators.py:36: Fut ureWarning:

Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

Population Density

2. Create bins for population into a new variable by selecting appropriate class interval so that the number of categories don't exceed 5 for the ease of analysis.

```
df_train['pop'].describe()
In [49]:
                   27321.000000
Out[49]:
          mean
                    4316.032685
                    2169.226173
          std
          min
                       0.000000
          25%
                    2885.000000
          50%
                    4042.000000
          75%
                    5430.000000
                   53812.000000
          max
         Name: pop, dtype: float64
          df_train['pop_bins']=pd.cut(df_train['pop'],bins=5,labels=['very low','low','medium']
In [50]:
          df_train[['pop','pop_bins']]
In [51]:
```

pop	pop_bins
	pop

UID		
267822	5230	very low
246444	2633	very low
245683	6881	very low
279653	2700	very low
247218	5637	very low
•••		
279212	1847	very low
277856	4155	very low
233000	2829	very low
287425	11542	low
265371	3726	very low

27321 rows × 2 columns

a) Analyze the married, separated, and divorced population for these population brackets

```
In [53]: df_train.groupby(by='pop_bins')[['married','separated','divorced']].count()
Out[53]: married separated divorced
pop_bins
```

very low 27058 27058 27058 246 low 246 246 9 9 9 medium 7 high very high 1 1 1

```
In [54]: df_train.groupby(by='pop_bins')[['married','separated','divorced']].agg(["mean", "read to be a separated t
```

Out[54]:

		married	separated		divorced	
	mean	median	mean	median	mean	median
pop_bins						
very low	0.507548	0.524680	0.019126	0.013650	0.100504	0.096020
low	0.584894	0.593135	0.015833	0.011195	0.075348	0.070045
medium	0.655737	0.618710	0.005003	0.004120	0.065927	0.064890
high	0.503359	0.335660	0.008141	0.002500	0.039030	0.010320
very high	0.734740	0 734740	0.004050	0.004050	0.030360	0.030360

1. Very high population group has more married people and less percantage of separated and divorced couples

2.In very low population groups, there are more divorced people

b) Visualize using appropriate chart type

3. Please detail your observations for rent as a percentage of income at an overall level, and for different states.

```
In [56]: rent_state_mean=df_train.groupby(by='state')['rent_mean'].agg(["mean"])
    rent_state_mean.head()
```

```
Out[56]:
                         mean
              state
           Alabama
                     774.004927
             Alaska
                    1185.763570
                    1097.753511
            Arizona
           Arkansas
                     720.918575
          California 1471.133857
          income_state_mean=df_train.groupby(by='state')['family_mean'].agg(["mean"])
          income state mean.head()
Out[57]:
                          mean
              state
           Alabama 67030.064213
             Alaska 92136.545109
            Arizona 73328.238798
           Arkansas 64765.377850
          California 87655.470820
          rent_perc_of_income=rent_state_mean['mean']/income_state_mean['mean']
In [58]:
          rent_perc_of_income.head(10)
          state
Out[58]:
          Alabama
                                   0.011547
          Alaska
                                   0.012870
          Arizona
                                   0.014970
          Arkansas
                                   0.011131
          California
                                   0.016783
          Colorado
                                   0.013529
          Connecticut
                                   0.012637
                                   0.012929
          Delaware
          District of Columbia
                                   0.013198
          Florida
                                   0.015772
          Name: mean, dtype: float64
          #overall level rent as a percentage of income
In [59]:
          sum(df train['rent mean'])/sum(df train['family mean'])
          0.013358170721473864
Out[59]:
```

4. Perform correlation analysis for all the relevant variables by creating a heatmap. Describe your findings.

```
In [60]: df_train.columns
```

```
Index(['COUNTYID', 'STATEID', 'state', 'state_ab', 'city', 'place', 'type',
Out[60]:
                        'primary', 'zip_code', 'area_code', 'lat', 'lng', 'ALand', 'AWater',
                        'pop', 'male_pop', 'female_pop', 'rent_mean', 'rent_median',
                        'rent_stdev', 'rent_sample_weight', 'rent_samples', 'rent_gt_10',
                        'rent_gt_15', 'rent_gt_20', 'rent_gt_25', 'rent_gt_30', 'rent_gt_35',
'rent_gt_40', 'rent_gt_50', 'universe_samples', 'used_samples',
                        'hi_mean', 'hi_median', 'hi_stdev', 'hi_sample_weight', 'hi_samples',
                        'family_mean', 'family_median', 'family_stdev', 'family_sample_weight',
                        'family_samples', 'hc_mortgage_mean', 'hc_mortgage_median',
                       'hc_mortgage_stdev', 'hc_mortgage_sample_weight', 'hc_mortgage_samples', 'hc_mean', 'hc_median', 'hc_stdev', 'hc_samples', 'hc_sample_weight', 'home_equity_second_mortgage', 'second_mortgage', 'home_equity', 'debt',
                        'second_mortgage_cdf', 'home_equity_cdf', 'debt_cdf', 'hs_degree',
                        'hs_degree_male', 'hs_degree_female', 'male_age_mean',
                        'male_age_median', 'male_age_stdev', 'male_age_sample_weight',
                        'male_age_samples', 'female_age_mean', 'female_age_median',
'female_age_stdev', 'female_age_sample_weight', 'female_age_samples',
                        'pct_own', 'married', 'married_snp', 'separated', 'divorced',
                        'bad debt', 'bins', 'pop_density', 'age_median', 'pop_bins'],
                      dtype='object')
             cor=df_train[['COUNTYID','STATEID','zip_code','type','pop', 'family_mean',
                           'second_mortgage', 'home_equity', 'debt', 'hs_degree',
                              'age_median','pct_own', 'married','separated', 'divorced']].corr()
             plt.figure(figsize=(20,10))
             sns.heatmap(cor,annot=True,cmap='coolwarm')
             plt.show()
                                0.22
                                       0.037
                 COUNTYID
                                             -0.0027
                                                                                             -0.0046
                                                                                                    -0.021
                                                                                                           0.069
                                                                                                                  0.049
                  STATEID
                         0.22
                                                                                0.014
                                                                                      -0.017
                                                                                             0.069
                                                                                                    0.026
                                                                                                           0.03
                                                                                                                 0.019
                                                                                                                                0.8
                         0.037
                                                           0.068
                                                                         0.058
                  zip code
                         -0.0027
                                       0.083
                                                     0.13
                                                           0.08
                                                                  0.099
                                                                         0.23
                                                                                0.049
                                                                                             0.088
                                                                                                    0.17
                                                                                                                                0.6
                                              0.13
                                                           0.075
                                       -0.025
                                                                                       0.3
                                                                                             0.45
                                                                                                    0.48
                family mean
                                                                  0.46
                                                                         0.38
                                                                                0.63
             second_mortgage
                                              0.099
                                                     0.46
                                                           0.51
                                                                         0.53
                                                                                0.35
                                                                                      0.064
                                                                                             0.14
                                                                                                    0.19
                home equity
                                       0.058
                                                           0.35
                                                                  0.53
                                                                                0.28
                                                                                             0.034
                                                                                                    0.11
                    debt
                                              0.23
                                                     0.38
                                                                                                                                0.2
                                                                         0.28
                                                           0.064
                                                                  0.35
                                                                                                                  0.16
                age median
                                -0.017
                                                     0.3
                                                                  0.064
                                                                                0.33
                                                                                             0.55
                                                                                                     0.5
                                                                                                                                0.0
                                                                         0.034
                         -0.0046
                                0.069
                                              0.088
                                                                  0.14
                                                                                0.39
                                       0.03
                                              0.17
                                                     0.48
                                                           -0.0064
                                                                  0.19
                                                                         0.11
                                                                                0.37
                                                                                       0.5
                         -0.021
                                0.026
                                                                                                                  0.13
                 separated -
                         0.069
                                0.03
                                                           -0.011
                                0.019
                                       0.043
                         0.049
                                               dod
                                                                          debt
                                                     family 1
```

- 1. High positive correaltion is noticed between pop, male_pop and female_pop
- 2. High positive correaltion is noticed between rent mean, hi mean, family mean, hc mean

Data Pre-processing:

1. The economic multivariate data has a significant number of measured variables. The goal is to find where the measured variables depend on a number of smaller unobserved common factors or latent variables. 2. Each variable is assumed to be dependent upon a linear combination of the

common factors, and the coefficients are known as loadings. Each measured variable also includes a component due to independent random variability, known as "specific variance" because it is specific to one variable. Obtain the common factors and then plot the loadings. Use factor analysis to find latent variables in our dataset and gain insight into the linear relationships in the data. Following are the list of latent variables:

- Highschool graduation rates
- Median population age
- Second mortgage statistics
- Percent own
- Bad debt expense

```
In [63]: from sklearn.decomposition import FactorAnalysis
    from factor_analyzer import FactorAnalyzer

In [64]: fa=FactorAnalyzer(n_factors=5)
    fa.fit_transform(df_train.select_dtypes(exclude= ('object','category')))
    fa.loadings_
```

```
Out[64]: array([[-1.12589168e-01, 1.95646473e-02, -2.39331081e-02,
                 -6.27632630e-02, 4.23474744e-02],
                [-1.10186764e-01, 1.33506220e-02, 2.79651243e-02,
                 -1.49825864e-01, 1.10838806e-01],
                [-8.28678626e-02, 5.16372371e-02, -1.36451864e-01,
                 -4.98918600e-02, -1.04024838e-01],
                [ 1.80961136e-02, 1.92013749e-02, 5.81329912e-03,
                  2.64842745e-02, -6.12442620e-03],
                [ 9.02324727e-02, -9.72544310e-02, -6.54601334e-02,
                  -1.33145905e-01, -1.48594602e-01],
                [-1.07335697e-02, -4.12376813e-02, 1.45853480e-01,
                  8.80433214e-03, 1.08227564e-01],
                [-4.28796975e-02, -2.09780214e-02, 3.66726857e-02,
                 -9.45597367e-02, 5.91380506e-02],
                [-2.44243043e-03, -1.53245408e-02, -2.68300838e-03,
                 -4.52473026e-02, 2.37240645e-02],
                [ 7.92164309e-02, 9.57453307e-01, -8.71151634e-02,
                 -6.59923727e-03, -3.97273224e-02],
                [ 7.39808182e-02, 9.18750508e-01, -1.08834838e-01,
                 -2.79371563e-02, -3.93153685e-02],
                [ 8.06598878e-02, 9.47839209e-01, -6.08006517e-02,
                  1.53627100e-02, -3.86977301e-02],
                [ 7.70052115e-01, 9.84675280e-03, -3.71249731e-02,
                  1.14949040e-01, -1.23784691e-01],
                [ 7.18615876e-01, 6.24980344e-03, -4.59787391e-02,
                  1.09109690e-01, -1.35301916e-01],
                [ 7.07647251e-01, 2.46625398e-02, -1.00860886e-02,
                  1.04472489e-01, 7.72381273e-02],
                [-1.34545479e-01, 3.36809304e-01, -4.87894982e-01,
                 -4.15446298e-02, 3.17608549e-01],
                [ 2.31079719e-01, 4.37729796e-01, -6.40209229e-01,
                 -2.52311077e-02, 3.47216239e-01],
                [-4.52068105e-02, 3.51263841e-02, 3.07536976e-02,
                  4.44793489e-01, -1.63273400e-01],
                [-2.50717045e-02, 1.70166794e-02, 4.57227166e-02,
                  6.76083874e-01, -1.55256754e-01],
                [-3.90694430e-02, -1.67460870e-02, 8.13962648e-02,
                  8.36389105e-01, -9.18259738e-02],
                [-5.14161938e-02, -3.57207133e-02, 1.10795164e-01,
                  9.25123732e-01, -4.44866412e-02],
                [-6.08589976e-02, -4.41860612e-02, 1.35794020e-01,
                  9.53019912e-01, -2.21548589e-02],
                [-4.57771169e-02, -5.25526111e-02, 1.41019853e-01,
                  9.32702589e-01, -5.77563331e-07],
                [-4.19486035e-02, -5.90387634e-02, 1.28851777e-01,
                  8.87316677e-01, 1.05894354e-02],
                [-2.47894631e-02, -7.29670549e-02, 9.41510411e-02,
                  7.79023667e-01, 2.95352863e-02],
                [ 2.12258453e-01, 4.65992340e-01, -6.14495953e-01,
                 -2.47660051e-02, 3.66644524e-01],
                [ 2.33057257e-01, 4.47057851e-01, -6.28263442e-01,
                 -2.71547799e-02, 3.43419628e-01],
                [ 7.85157099e-01, 4.91249250e-02, 1.44540487e-01,
                 -2.05217630e-01, -1.54523367e-01],
                [ 7.10324868e-01, 4.99730429e-02, 1.32239995e-01,
                  -2.19171855e-01, -2.10505576e-01],
                [ 8.61780950e-01, 4.35044832e-02, 1.65839097e-01,
                 -1.19850814e-01, 3.16733597e-02],
                [-2.23443268e-01, 8.46259548e-01, -4.61177284e-02,
                  6.88599220e-02, 2.27742319e-01],
                [ 1.43837565e-01, 9.53197441e-01, 2.27887416e-02,
                 -4.57890474e-02, 1.00796460e-01],
                [ 8.30286493e-01, 3.42026000e-02, 1.61106002e-01,
                 -2.04570328e-01, -7.48710501e-02],
```

```
[ 7.94476579e-01, 2.83818591e-02, 1.51219549e-01,
 -2.07681494e-01, -9.12497137e-02],
[ 8.11481659e-01, 4.32314894e-02, 1.43645559e-01,
 -1.07778262e-01, 5.79540197e-02],
[-3.37741899e-01, 8.64927608e-01, 3.58933641e-02,
 9.07183932e-02, 4.46327272e-02],
[ 5.03572673e-02, 9.35515325e-01, 1.51475395e-01,
 -2.51501261e-02, -9.34471589e-02],
[ 9.78242233e-01, -3.31490295e-02, -1.05261175e-01,
  4.50364242e-02, 7.37361956e-02],
[ 9.59137174e-01, -3.90023011e-02, -1.20630338e-01,
 4.52591412e-02, 6.64877103e-02],
[ 8.14087183e-01, 2.23057256e-03, 7.66518490e-02,
 2.02747449e-02, 1.27634826e-01],
[-4.15353978e-01, 7.18339580e-01, 3.40068066e-01,
 -7.18402751e-02, -2.77950503e-01],
[ 7.64912569e-02, 7.24900638e-01, 2.74193216e-01,
-4.83952593e-02, -3.52988295e-01],
[ 9.10390848e-01, -5.36541221e-02, -4.68641899e-02,
 -7.64182970e-04, 1.63870449e-01],
[ 8.73011851e-01, -5.30302303e-02, -5.89943146e-02,
 -1.58989810e-03, 1.52417529e-01],
[ 7.55087669e-01, -3.56133794e-03, 5.39542523e-02,
 4.24181518e-03, 2.58043480e-01],
[-1.23469883e-01, 6.07438118e-01, 6.33039205e-01,
 -2.14798827e-02, 2.47973912e-01],
[-3.42866886e-01, 5.59526274e-01, 5.88212998e-01,
 -2.51533511e-02, 2.18419886e-01],
[-1.60867227e-01, -1.53062640e-02, -1.57026582e-01,
 1.09243755e-01, -6.61660846e-01],
[-1.37306742e-01, -2.17250612e-02, -1.58408924e-01,
 1.25156181e-01, -6.71630758e-01],
[ 2.45096185e-01, -2.54584594e-02, -2.66691412e-02,
 9.53148433e-02, -6.42510831e-01],
[ 2.03988660e-01, 7.85172838e-02, -3.01656215e-01,
 2.28379441e-02, -6.29223343e-01],
[ 1.08926076e-01, -6.34332399e-02, -3.36565249e-02,
 -9.49480406e-02, 6.81473821e-01],
[-2.63787628e-01, -6.43281164e-03, -3.58792183e-02,
-9.37962372e-02, 6.47816982e-01], [-2.15717041e-01, -7.36588946e-02, 3.50113231e-01,
-1.95201594e-02, 6.36783774e-01],
[ 3.94306145e-01, 6.09565684e-02, 2.55337859e-01,
 -2.20362094e-01, -1.84248070e-01],
[ 4.07877890e-01, 6.27256523e-02, 2.23926908e-01,
 -2.10028737e-01, -1.71989219e-01],
[ 3.53156877e-01, 5.36715662e-02, 2.69603568e-01,
 -2.16933220e-01, -1.80072063e-01],
[ 2.33537261e-01, -4.91732966e-02, 8.14450766e-01,
 9.36688826e-02, 3.27131932e-01],
[ 2.40298209e-01, -3.38140105e-02, 8.31496963e-01,
 7.52417537e-02, 2.46323612e-01],
[-6.71839466e-02, 6.58504547e-02, 5.86207684e-01,
 8.72955212e-02, 9.12541435e-02],
[ 5.59835523e-02, 8.17918693e-01, -1.78458348e-01,
 -1.55949404e-02, -3.34299788e-02],
[ 7.16426383e-02, 9.23428540e-01, -1.07142695e-01,
 -2.78635352e-02, -4.35991157e-02],
[ 1.92496949e-01, -4.75870395e-02, 8.03173180e-01,
 1.43492705e-01, 3.33862161e-01],
[ 1.87644433e-01, -3.29941019e-02, 8.58024474e-01,
  1.31329947e-01, 2.55679728e-01],
[-1.02263653e-01, 6.03984268e-02, 4.72982253e-01,
 7.36848375e-02, 1.12273916e-01],
```

```
[ 6.14776635e-02, 8.77962755e-01, -1.50410288e-01,
 2.20991060e-02, -4.17158213e-02],
[ 7.83728204e-02, 9.54508785e-01, -5.91095915e-02,
 1.64800945e-02, -4.32591020e-02],
[-3.24381831e-02, 1.11167162e-01, 7.84467387e-01,
-4.37718583e-02, -2.80931215e-01],
[ 1.76682383e-01, 1.90494242e-01, 5.61405509e-01,
 -1.20746162e-01, -1.32570792e-01],
[-6.37386607e-02, -7.03047925e-02, -2.68934071e-01,
 1.28589792e-01, 1.88507859e-01],
[-1.56051269e-01, -7.08033944e-02, -1.45964505e-01,
 1.24253734e-01, 1.46293119e-01],
[-3.56716288e-01, -5.29910735e-02, 1.47771600e-01,
 2.87196156e-02, 1.13159584e-01],
[ 2.42173825e-01, -2.86199134e-02, -3.25958343e-02,
 1.05027814e-01, -6.55406075e-01],
[ 3.50196742e-01, -1.05016412e-02, -3.95274120e-01,
 5.92876774e-02, 2.91651778e-01],
[ 2.25671545e-01, -3.42672758e-02, 8.92876608e-01,
 1.12426805e-01, 2.67065206e-01]])
```

Data Modeling: Linear Regression

1.Build a linear Regression model to predict the total monthly expenditure for home mortgages loan. Please refer 'deplotment_RE.xlsx'. Column hc_mortgage_mean is predicted variable. This is the mean monthly mortgage and owner costs of specified geographical location. Note: Exclude loans from prediction model which have NaN (Not a Number) values for hc_mortgage_mean.

```
In [65]: df_train.columns
          Out[65]:
                  'pop', 'male_pop', 'female_pop', 'rent_mean', 'rent_median',
                  'rent_stdev', 'rent_sample_weight', 'rent_samples', 'rent_gt_10',
                  'rent_gt_15', 'rent_gt_20', 'rent_gt_25', 'rent_gt_30', 'rent_gt_35',
'rent_gt_40', 'rent_gt_50', 'universe_samples', 'used_samples',
                  'hi_mean', 'hi_median', 'hi_stdev', 'hi_sample_weight', 'hi_samples',
                  'family mean', 'family median', 'family stdev', 'family sample weight',
                  'family_samples', 'hc_mortgage_mean', 'hc_mortgage_median',
                  'hc_mortgage_stdev', 'hc_mortgage_sample_weight', 'hc_mortgage_samples', 'hc_mean', 'hc_median', 'hc_stdev', 'hc_samples', 'hc_sample_weight',
                  'home_equity_second_mortgage', 'second_mortgage', 'home_equity', 'debt',
                  'second_mortgage_cdf', 'home_equity_cdf', 'debt_cdf', 'hs_degree',
                  'hs_degree_male', 'hs_degree_female', 'male_age_mean',
                  'male_age_median', 'male_age_stdev', 'male_age_sample_weight',
                  'male_age_samples', 'female_age_mean', 'female_age_median',
'female_age_stdev', 'female_age_sample_weight', 'female_age_samples',
                  'pct_own', 'married', 'married_snp', 'separated', 'divorced',
                  'bad_debt', 'bins', 'pop_density', 'age_median', 'pop_bins'],
                 dtvpe='object')
          df train['type'].unique()
          type_dict={'type':{'City':1,
                                'Urban':2,
                                'Town':3,
                                'CDP':4,
                                'Village':5,
                                'Borough':6}
          df_train.replace(type_dict,inplace=True)
```

```
df_train['type'].unique()
In [67]:
         array([1, 2, 3, 4, 5, 6])
Out[67]:
          df_test.replace(type_dict,inplace=True)
In [68]:
         df_test['type'].unique()
In [69]:
         array([4, 1, 6, 3, 5, 2])
Out[69]:
         feature cols=['COUNTYID','STATEID','zip code','type','pop', 'family mean',
In [70]:
                    'second_mortgage', 'home_equity', 'debt','hs_degree',
                      'age_median','pct_own', 'married','separated', 'divorced']
In [71]:
         x_train=df_train[feature_cols]
          y_train=df_train['hc_mortgage_mean']
In [72]:
          x_test=df_test[feature_cols]
          y_test=df_test['hc_mortgage_mean']
In [73]:
         from sklearn.preprocessing import StandardScaler
          from sklearn.linear_model import LinearRegression
          from sklearn.metrics import r2_score, mean_absolute_error,mean_squared_error,accure
         x_train.head()
In [74]:
Out[74]:
                  COUNTYID STATEID zip_code type pop family_mean second_mortgage home_equity
             UID
                                                                              0.02077
          267822
                         53
                                 36
                                        13346
                                                 1 5230
                                                          67994.14790
                                                                                           0.08919
          246444
                        141
                                  18
                                        46616
                                                   2633
                                                          50670.10337
                                                                              0.02222
                                                                                           0.04274
                                                 1
          245683
                                                    6881
                                                          95262.51431
                                                                              0.00000
                                                                                           0.09517
                         63
                                  18
                                        46122
          279653
                        127
                                 72
                                          927
                                                   2700
                                                          56401.68133
                                                                              0.01086
                                                                                           0.01080
          247218
                        161
                                 20
                                        66502
                                                    5637
                                                          54053.42396
                                                                              0.05426
                                                                                           0.05420
          sc=StandardScaler()
In [75]:
          x train scaled=sc.fit transform(x train)
          x_test_scaled=sc.fit_transform(x_test)
          a) Run a model at a Nation level. If the accuracy levels and R square are
```

not satisfactory proceed to below step.

```
linereg=LinearRegression()
In [76]:
         linereg.fit(x train scaled,y train)
         LinearRegression()
Out[76]:
         y_pred=linereg.predict(x_test_scaled)
In [77]:
         print("Overall R2 score of linear regression model", r2_score(y_test,y_pred))
In [78]:
         print("Overall RMSE of linear regression model", np.sqrt(mean squared error(y test
```

Overall R2 score of linear regression model 0.7348210754610929 Overall RMSE of linear regression model 323.1018894984635

The Accuracy and R2 score are good, but still will investigate the model performance at state level

b) Run another model at State level. There are 52 states in USA.

```
state=df train['STATEID'].unique()
In [79]:
         state[0:5]
         array([36, 18, 72, 20, 1])
Out[79]:
In [80]: for i in [20,1,45]:
             print("State ID-",i)
             x_train_nation=df_train[df_train['COUNTYID']==i][feature_cols]
             y_train_nation=df_train[df_train['COUNTYID']==i]['hc_mortgage_mean']
             x_test_nation=df_test[df_test['COUNTYID']==i][feature cols]
             y test nation=df test[df test['COUNTYID']==i]['hc mortgage mean']
             x_train_scaled_nation=sc.fit_transform(x_train_nation)
             x_test_scaled_nation=sc.fit_transform(x_test_nation)
             linereg.fit(x_train_scaled_nation,y_train_nation)
             y_pred_nation=linereg.predict(x_test_scaled_nation)
             print("Overall R2 score of linear regression model for state,",i,":-" ,r2_score
             print("Overall RMSE of linear regression model for state,",i,":-" ,np.sqrt(mean
             print("\n")
         State ID- 20
         Overall R2 score of linear regression model for state, 20 :- 0.6046603766461809
         Overall RMSE of linear regression model for state, 20 :- 307.9718899931472
         State ID- 1
         Overall R2 score of linear regression model for state, 1 :- 0.8104382475484617
         Overall RMSE of linear regression model for state, 1:- 307.8275861848435
         State ID- 45
         Overall R2 score of linear regression model for state, 45 :- 0.788744649785525
         Overall RMSE of linear regression model for state, 45 :- 225.6961542072414
In [81]:
         residuals=y test-y pred
         residuals
```

```
UID
Out[81]:
          255504
                    281.969088
          252676
                    -69.935775
          276314
                    190.761969
                   -157.290627
          248614
          286865
                     -9.887017
          238088
                   -67.541646
          242811
                    -41.578757
                   -127.427569
          250127
          241096
                   -330.820475
          287763
                    217.760642
         Name: hc_mortgage_mean, Length: 11709, dtype: float64
```

In [82]: plt.hist(residuals)

Out[82]: (array([6.000e+00, 3.000e+00, 2.900e+01, 7.670e+02, 7.823e+03, 2.716e+03, 3.010e+02, 4.900e+01, 1.200e+01, 3.000e+00]), array([-2515.04284233, -1982.92661329, -1450.81038425, -918.69415521, -386.57792617, 145.53830287, 677.65453191, 1209.77076095, 1741.88698999, 2274.00321903, 2806.11944807]),

In [83]: sns.distplot(residuals)

/home/spx072/anaconda3/lib/python3.10/site-packages/seaborn/distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Pleas e adapt your code to use either `displot` (a figure-level function with similar fl exibility) or `histplot` (an axes-level function for histograms).

Out[83]: <AxesSubplot:xlabel='hc_mortgage_mean', ylabel='Density'>

In [84]: plt.scatter(residuals,y_pred)

Out[84]: <matplotlib.collections.PathCollection at 0x7fc848a137f0>

Γn Γ 1·