IETF Hackathon I2NSF Framework Project

IETF 111 July 19-23, 2021 Online

Champions:

Jaehoon (Paul) Jeong and Patrick Lingga Sungkyunkwan University (SKKU) {pauljeong,patricklink}@skku.edu

I2NSF (Interface to Network Security Functions) Framework Project

Champions: Jaehoon (Paul) Jeong and Patrick Lingga (SKKU)

I2NSF Framework

I2NSF Hackathon Project

Jaehoon (Paul) Jeong (SKKU)

Younghan Kim (SSU)

Jinyong Kim (SKKU)

Yunchul Choi (ETRI)

Jung-Soo Park (ETRI)

I2NSF Security Policy Translator

Students:

Professors:

Researchers:

- Patrick Lingga (SKKU)
- Jeonghyeon Kim (SKKU)
- Mose Gu (SKKU)
- Yoseop Ahn (SKKU)
- Xiaohong Yu (SKKU)
- Kyungsik Kim (KNU)

openstack.

Where to get Code and Demo Video Clip

- Github Source Code
 - ✓ https://github.com/iaehoonpaul/i2nsf-framework
- Youtube Demo Video Clip
 - √ https://youtu.be/dAA1WTGhIXE

What to pull down to set up an environment

- OS: Ubuntu 16.04 LTS
- ConfD for NETCONF: 6.6 Version
- Jetconf for RESTCONF
- OpenStack: Queens version
- NSF: Suricata

Manual for Operation Process

 I2NSF-Manual-Hackathon-IETF110-v1.md contain detailed description about operation process. (It can be found in the GitHub)

Contents of Implementation

- Cloud-based Security Service System using I2NSF Framework
 - ✓ Web-based I2NSF User
 - ✓ Console-based Security Controller
 - ✓ Console-based Developer's Management System
 - ✓ I2NSF Framework in OpenStack NFV Environment
 - ✓ I2NSF Capability YANG Data Model
 - ✓ Registration Interface via NETCONF/YANG
 - ✓ Consumer-Facing Interface via RESTCONF/YANG
 - ✓ NSF-Facing Interface via NETCONF/YANG
 - ✓ Monitoring Interface via NETCONF/YANG
 - ✓ Web-based NSF Monitoring
 - ✓ Application Interface as Feedback from I2NSF Analyzer
- Network Security Functions
 - ✓ Firewall and Web-filter using Suricata
- Advanced Function
 - ✓ Security Policy Translation with Automatic Data Model Mapper
 - ✓ Security Policy Provisioning

Hackathon Plan (1/2)

- The Implementation of the Internet Drafts for the I2NSF System for Cloud-based Security Services:
 - draft-ietf-i2nsf-capability-data-model-16
 - draft-ietf-i2nsf-consumer-facing-interface-dm-13
 - draft-ietf-i2nsf-nsf-facing-interface-dm-12
 - draft-ietf-i2nsf-registration-interface-dm-10
 - draft-ietf-i2nsf-nsf-monitoring-data-model-08
 - draft-yang-i2nsf-security-policy-translation-08
 - draft-jeong-i2nsf-security-management-automation-01
- ❖ Automatic Data Model Mapper for the I2NSF Security Policy Translator.
- * Real-time Monitoring Data Visualization via Web-Based Monitoring.

Hackathon Plan (2/2)

What got done

NSF-1

- The overall architecture of our scheme consists of five components:
 - Data Extractor
 - Data Converter
 - NSF Database
 - Policy Generator
 - Data Model Mapper
- Automatic Data Model Mapper
 - Data Model Mapper provides an automatic mapping between the highlevel and low-level data models.

Task 1: Automatic Data Model Mapper

• Key Idea: We use Zhang-Shasha algorithm to calculate the Tree Edit Distance between the high-level YANG tree and the low-level YANG tree.

Input Automatic Data Model Mapper Output Break the tree into tree without Consumerbranches Facing YANG Data Model as a Tree Graph Interface Data Model High-Level YANG Data Model Calculate Minimum Edit Tree Distance with Mapping Model Zhang-Shasha Algorithm Break the tree into tree without branches **NSF-Facing** YANG Data Model as a Interface Tree Graph Data Model Low-Level YANG Data Model

Task 2: Real-time Monitoring Data Visualization

• We visualize the utilization of resources (i.e., disk, memory, and CPU) and the volume of input and output data traffic to detect a security attack (e.g., DoS attack).

What we learn

- The Security Policy Translator can automatically translate a highlevel security policy into the corresponding low-level security policy with the help of an <u>automatic data model mapper</u>.
- The monitoring data visualization can support the monitoring of multiple NSFs in real time in terms of resources and traffic.
- This monitoring data visualization will be useful to <u>perform the</u> <u>analysis of an NSF's behavior</u> (e.g., security attack detection).

Next Step

- Security Policy Translator needs to be improved with <u>Context-Free Grammar Auto-Construction</u> for Policy Generator.
- Improvement of I2NSF Analyzer with Machine Learning to update and create a security policy.
- Migration from VNF-based Virtualization to Container-based Virtualization for the I2NSF Framework

Open Source Project at Github

• URL: https://github.com/jaehoonpaul/i2nsf-framework

Demo Video Clip at YouTube

• URL: https://youtu.be/gHzZKpJ9zak

Wrap Up

Hackathon Team

Champions:

- Jaehoon (Paul) Jeong (SKKU)
- Patrick Lingga (SKKU)

Professor:

Younghan Kim (SSU)

Researchers:

- Jinyong Kim (SKKU)
- Jung-Soo Park (ETRI)
- Yunchul Choi (ETRI)

Students:

- Jeonghyeon Kim (SKKU)
- Mose Gu (SKKU)
- Yoseop Ahn (SKKU)
- Xiaohong Yu (SKKU)
- Kyungsik Kim (KNU)

Our I2NSF Hackathon Team worked with IPWAVE and BMWG Hackathon Teams in the Westin Josun Busan Hotel in Korea this hackathon week.

Sponsors

Institute of Information & Communications Technology Planning & Evaluation

한국정보통신기술협회 Telecommunications Technology Association

IETF Korea Hackathon Teams

