20. Вектор поляризации. Поверхностная и объемная плотности поляризационных зарядов.

Для количественного описания поляризации используют: поляризационный заряд q', его плоскости ρ' и r' и вектор поляризации (поляризованный диэлектрик) \vec{p} - суммарный дипольный момент единицы объема диэлектрика: $\vec{P} = \frac{\sum \vec{p}_i}{V}$ - в случае однородной или $\vec{p} = \frac{d\vec{p}}{dV}$; $[\vec{p}] = \frac{Kn}{M^2}$ - диэлектрик однородно изотропный.

Рассмотрим цилиндр со скошенными торцами

Поляризован однородно
$$\vec{P} = \frac{\sum \vec{p}_i}{V}$$
 Рассмотрим как один большой диполь $V = Sl = S_T \cos \theta l = S_T l \cos(\vec{S}_T; \vec{l}) = \vec{S}_T \vec{l}; \ \vec{P} = \frac{\vec{P}}{V} = \frac{q\vec{l}}{V} = \frac{\sigma' S_T \vec{l}}{V} = \frac{\sigma' S_T \vec{l}}{\vec{S}_T \vec{l}}$ $\vec{P} = \frac{\vec{P}}{V} = \vec{P} = \vec{P}$ $\vec{P} = \vec{P} =$

Нормальная составляющая вектора \vec{P} численно равна заряду, смещённому при поляризации через единичную площадку направлению нормали \vec{n} к ней.

Если граничит не с вакуумом: $ec{P}_{ea\kappa}=0$

Вектор $ec{P}$ терпит разрыв на стыке диэлектриков $P_{1n}-P_{2n}=\sigma'$

Если поляризация неоднородна:

 q_s' - заряд, вышедший на границы поверхности S в результате поляризации.

$$q_s'=\oint dq'=\oint rdS=\oint P_ndS=\oint ec{P}ec{n}dS=\oint ec{P}dec{S}$$
 - поток вектора $ec{P}$ $q_s'=-\oint ec{P}dec{S}$ - интегральная форма

Воспользуемся формулой Гаусса-Остроградского:

$$\oint_s ec{P} dec{S} = \int_{V_s} div ec{P} dV = -\int
ho' dV \Rightarrow div ec{P} = -
ho'$$
 - локальная формула $q' = \int_V
ho' dV$

На самом деле, поле вектора \vec{P} зависит от всех зарядов (не только поляризованных)