RS/Conference2019

San Francisco | March 4-8 | Moscone Center

BEFER

SESSION ID: TECH-T09

Update on Confidential Computing

Olya Ohrimenko

Researcher Microsoft Research Microsoft

Cloud computing

Pay-per-use model:

- storage
- computing
- platform as a service

Additionally:

- physical security
- replication

Customer concerns with data security in the cloud

Malicious privileged admins or insiders

Hackers exploiting bugs in the Hypervisor/OS of cloud fabric

Third parties accessing it without customer consent

Data breach regularly tops list for top cloud threat

Outline: Confidential Computing

- Protect data during computation:
 - with trusted execution environments (TEEs)

- Scenarios:
 - confidential consortium blockchains
 - multi-party machine learning

- Guarantees beyond TEE isolation:
 - integrity and privacy in multi-party machine learning
 - memory side-channel mitigation

Towards Confidential Cloud Computing

Network Encryption

App

Encryption is not enough

• Users want to perform general-purpose computation

Encryption is not enough

Users want to perform general-purpose computation

Encryption is not enough

- Users want to perform general-purpose computation
- Data becomes vulnerable when it is decrypted for computation

App App **Operating System** Hypervisor Hardware

Confidential Computing

Network Encryption

Our goal is to protect data:

- at rest
- in transit
- during computation

Pure Cryptographic Approaches

Encode computation:

- Fully homomorphic encryption
- Multi-party computation

Efficient for some computations but not general-purpose

Hypervisor

Hardware

Security through isolation

- Isolate computation
- Protect data from cloud fabric

Trusted Execution Environment (TEE)

Protected containers:

- 1. Isolation from the rest of the system:
 - Secure portion of processor & memory
 - Only authorized code is loaded & accesses data
 - Data & code always encrypted in RAM
- 2. Attestation: prove identity locally and remotely

Code App App Data **Operating System Hypervisor** Hardware

TEE

Examples: Intel SGX, Virtualization Based Security (VBS)

Protect data in use with confidential computing

Top data breach threats mitigated

Data fully in customer control

Code protected and verified by customer

Data and code opaque to the cloud platform

RS/Conference2019

Confidential Computing Scenarios

Data analytics

Confidential Blockchain

Databases

Multi-Party Machine Learning

Outline: Confidential Computing

- Protect data during computation:
 - with trusted execution environments (TEEs)

- Scenarios:
 - confidential consortium blockchains
 - multi-party machine learning

RS/Conference2019

Confidential Computing Scenarios

Confidential Consortium Blockchain Framework (CCBF)

Blockchain Today

Tamper-proof, highly-available, decentralised ledgers

Cryptographically chained blocks of transactions

Establishes what happened and the order it happened in

Use cases are not limited to just cryptocurrencies

Current challenges with blockchain protocols and networks

Scalability comparable to current enterprise transaction throughput

Confidentiality, yet transparency, of transaction data

Governance without introducing a third party

Confidential Consortium Blockchain Framework (CCBF) Design

Key-Value store inside a Trusted Execution Environment (TEE)

Write an encrypted log of state updates: the ledger

Replicate state across
TEEs for fault tolerance

Existing ledger providers can integrate their transaction processing engines

Secure channels and Raft/Paxos for consensus

CCBF Properties

Open-source framework that enables:

- high-throughput (~50k tx/s)
- fine-grained confidentiality
- consortium governance for permissioned blockchains

Next steps:

- use Practical Byzantine Fault Tolerance to maintain integrity even in the face of a TEE compromise
- shard encrypted data for both horizontal scalability and compliance

RS/Conference2019

Secure Multi-party Machine Learning

Secure Multi-Party Machine Learning

Guarantees

- Users see only the output
- Cloud provider sees only encrypted data

User D

Multi-Party Training

- Users contribute encrypted data sets to train a machine learning model
- Users do not see each other's data sets; cloud provider sees only encrypted data
- All users benefit from accessing the output (machine learning model)

Prediction-as-a-Service

- Hospital A uploads encrypted trained machine learning model
- Other hospitals query the model on patient data and obtain predictions
- Hospital A does not see patient data; hospital B does not see the model

Demo

#RSAC

Outline: Confidential Computing

Protect data during computation:

with trusted execution environments (TEEs)

Scenarios:

- confidential consortium blockchains
- multi-party machine learning

Guarantees beyond TEE isolation:

- integrity and privacy in multi-party machine learning
- memory side-channel mitigation

RS/Conference2019

Beyond TEE Isolation: Multi-Party Machine Learning

Contamination Attacks and Defenses

Contamination Attacks

Contamination Attacks

Contamination Attacks: Example

Task: predict education level based on demographic information

Contamination Attack: Towards Defence

Scenario:

- Contaminated multi-party model improves over local model
- Malicious Attribute-Class correlation
 - out of scope: honest differences in parties' data distributions
- Attacker may control more than one party but not all

Contamination Attack: Towards Defence

Scenario:

- Contaminated multi-party model improves over local model
- Malicious Attribute-Class correlation
 - out of scope: honest differences in parties' data distributions
- Attacker may control more than one party but not all

Simple defences:

- Party cross-validation (expensive)
- Validation accuracy per attribute & class (not generalizable)

Adversarial Learning as a Defence

Adversarial Learning as a Defence

Training Training party-distinguisher model g multi-party model f Inference MAX MIN f does not learn partyspecific correlations

Contamination Defence: Results

RS/Conference2019

Beyond TEE Isolation:
Multi-Party Machine Learning

Differential privacy

Privacy-Preserving Data Analysis

Privacy-Preserving Data Analysis

1. What is leaked?

Differential Privacy

Local Differential Privacy

Global Differential Privacy

Differential Privacy (DP) with TEEs

- 1. Framework for secure DP algorithms in TEEs
- 2. New DP algorithms (e.g., histogram, heavy hitters)

Outline: Confidential Computing

Protect data during computation:

with trusted execution environments (TEEs)

Scenarios:

- confidential consortium blockchains
- multi-party machine learning

Guarantees beyond TEE isolation:

- integrity and privacy in multi-party machine learning
- memory side-channel mitigation

RS/Conference2019

Beyond TEE Isolation: Side-channel Mitigation

Hardening TEE code

- Many side channels may exist
- Leakage through memory accesses

Memory

- Many side channels may exist
- Leakage through memory accesses

- Many side channels may exist
- Leakage through memory accesses

- Many side channels may exist
- Leakage through memory accesses

Many side channels may exist

Leakage through memory accesses

Encrypted content
with
plaintext addresses

Memory Channels: What is leaked

- Memory side-channels are not new for cryptographic code
- Application: use binary tree to classify a record (access secret-dependent path)

Microsoft

Mitigating Memory Side-channel Attacks

- Not an easy problem: Let's make random dummy accesses, shuffle, etc:
 - Hard to estimate what is leaked
 - Leaking even one bit may be dangerous

Mitigating Memory Side-channel Attacks

- Not an easy problem: Let's make random dummy accesses, shuffle, etc:
 - Hard to estimate what is leaked
 - Leaking even one bit may be dangerous
- We assume <u>worst-case scenario</u>:
 - Attacker observes all accesses
 - Game lost if the attacker guesses at least one bit

Mitigating Memory Side-channel Attacks

- Not an easy problem: Let's make random dummy accesses, shuffle, etc:
 - Hard to estimate what is leaked
 - Leaking even one bit may be dangerous
- We assume <u>worst-case scenario</u>:
 - Attacker observes all accesses
 - Game lost if the attacker guesses at least one bit
- Our approach:
 - Model the attacker
 - Security definition (<u>data-oblivious</u> algorithms)
 - Design provably-secure algorithms in this model

Towards Data-obliviousness

- 1. Isolating computation in private memory
 - Registers
 - Transactional memory (TSX)

- 2. General software-based approach
 - Oblivious machine-learning algorithms
 - Oblivious RAM:
 - structured dummy and randomized accesses

Are we data-oblivious?

- Provably-secure algorithms:
 - the trace depends only on public information (e.g., input, output sizes)

- Validation of implementation:
 - collected traces at cache-line (64byte) granularity with Intel Pin Tool

- Video of traces from:
 - original tree traversal
 - data-oblivious tree traversal

Trees: Non-Oblivious Code Traces

Trees: Oblivious Code Traces

RS/Conference2019

Summary

Summary: Confidential Computing

- Protect data during computation:
 - with trusted execution environments (TEEs)
- Scenarios:
 - confidential consortium blockchains
 - multi-party machine learning
- Guarantees beyond TEE isolation:
 - integrity and privacy in multi-party machine learning
 - memory side-channel mitigation

Apply

- TEEs in Azure Confidential Computing
- Open Source SDK for TEEs: Open Enclave
- Always Encrypted with Secure Enclaves
- Design applications with small attack surface

Azure Confidential Computing Links

- Azure confidential computing solution page: https://azure.microsoft.com/en-us/solutions/confidential-compute/
- Confidential Computing VM Deployment: http://aka.ms/ccvm
- Open Enclave SDK page: https://openenclave.io/sdk/
- Open Enclave GitHub repository: https://aka.ms/OESDKGitHubRepo

Thank you!

Please see the papers for all the details

Observing and Preventing Leakage in MapReduce

Olga Ohrimenko, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Markulf Kohlweiss, and Divya Sharma,

ACM Conference on Computer and Communications Security, 2015

VC3: Trustworthy Data Analytics in the Cloud using SGX

Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz, Mark Russinovich *IEEE Symposium on Security and Privacy, 2015*

Oblivious Multi-party Machine Learning on Trusted Processors

Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Metha, Kapil Vaswani, Manuel Costa

Usenix Security Symposium, 2016

Strong and Efficient Cache Side-Channel Protection using Hardware Transactional Memory

Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Istvan Haller, Manuel Costa

Usenix Security Symposium, 2017

EnclaveDB – A Secure Database using SGX

Christian Priebe, Kapil Vaswani, Manuel Costa *IEEE Symposium on Security & Privacy, 2018*

Contamination Attacks and Defences in Multi-Party Machine Learning

Jamie Hayes and Olga Ohrimenko *NeurIPS*, 2018

Graviton: Trusted Execution Environments on GPUs

Stavros Volos, Kapil Vaswani, Rordigo Bruno OSDI, 2018

An Algorithmic Framework For Differentially Private Data Analysis on Trusted Processors

Joshua Allen, Bolin Ding, Janardhan Kulkarni, Harsha Nori, Olga Ohrimenko, Sergey Yekhanin TechReport, 2018

