UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant:

Kao et al.

Docket No:

16405-0311

Serial No:

09/256,265

Group Art Unit

2815

Filing Date:

February 23, 1999

Examiner:

Diaz. J.

Title:

"METHOD AND APPARATUS FOR SPLIT GATE SOURCE SIDE

INJECTION FLASH MEMORY CELL AND ARRAY WITH

DEDICATED ERASE GATES"

Atm: Examiner J. Diaz Fax: 703.746.3891

Assistant Commissioner for Patents

Washington, D.C. 20231

PROPOSED CHANGES TO CLAIMS

In the Claims:

(Twice Amended) A semiconductor device having at least one transistor, the device 1 2 comprising: a substrate having a channel region defined thereon; 3 a first insulating layer disposed over said channel region and over at least a portion of 4 5 said substrate; a floating gate generally disposed over said channel region and separated therefrom by 6 said first insulating layer, said floating gate having at least two side walls and a top surface; 7 a second insulating layer disposed over said side walls and over said top surface of said 8 9 floating gate; a control gate formed over a first one of said side walls and over at least a portion of said 10 top surface of said floating gate and being separated from said floating gate by said second 11 insulation layer, at least a portion of said control gate being disposed over a portion of said 12 substrate and being separated therefrom by said second insulating layer; 13 an erase gate formed over a second one of said side walls and over at least a portion of 14 said top surface of said floating gate and being separated from said second one of said side walls 15 16

by said second insulation layer, and wherein a portion of said control gate is not disposed over said floating gate;

a drain region formed in a portion of said substrate proximate said control gate; and

17

18

19	a source region formed in a portion of said substrate proximate said erase gate.
1	8. (Once Amended) A memory array disposed on a substrate comprising a plurality of memory
2	cells each having a floating gate separated from said substrate by a first insulating layer, an erase
3	gate, a control gate separated from said floating gate by a second insulating layer, a source
4	region, and a drain region, comprising:
5	a plurality of rows and columns of interconnected memory cells wherein the control gates
6	of memory cells in the same row are connected by a common word-line, the erase gates of the
7	memory cells in the same rows are connected by a common erase line, the source regions of the
8	memory cells in the same rows are connected by a common source line, and the drain regions of
9	memory cells in the same columns are commonly connected via a common drain line, wherein at
10	least a portion of each said control gate is disposed over a portion of said substrate and separated
11	and wherein a nortion of said control gate is not
12	disposed over said floating gate; and Lo col. 13, lines 55-61 of millethoeke of 5,216,269
13	control circuit connecting to said word-lines, erase lines, source lines and drain lines for
14	operating one or more memory cells of said memory array.
1	16. (Once Amended) A semiconductor device having at least one transistor, the device
2	comprising:
3	a substrate having a channel region;
4	a first insulating layer disposed over said channel region and over at least a portion of
5	said substrate;
6	a floating gate generally disposed over said channel region and separated therefrom by
7	said first insulating layer, said floating gate having at least two side walls and a top surface;
8	a second insulating layer disposed over said side walls and over said top surface of said
9	floating gate;
10	a control gate formed over a first one of said side walls and over at least a portion of said
11	top surface of said floating gate and being separated from said floating gate by said second
12	insulation layer, at least a portion of said control gate being disposed over a portion of said
13	substrate and being separated therefrom by said second insulating layer, and wherein a portion of

said control gate is not disposed over said floating gate;

14

15	an erase gate formed over a second one of said side walls and over at least a portion of
16	said top surface of said floating gate and being separated from said second one of said side walls
17	by said second insulation layer;
18	a source region [drain region] formed in a portion of said substrute proximate said erase
19	gate; and
20	a drain region [source region] formed in a portion of said substrate proximate said control
21	gate.