# **GEL-19964** Signaux et systèmes discrets

### **Examen final**

Mardi le 15 décembre 1998 Durée: 8h30 à 10h20 Aucune documentation permise

## N'oubliez pas de JUSTIFIER TOUTES VOS RÉPONSES

#### Question 1. (12 pts)

Le contenu d'un signal obtenu d'un senseur, x(t), est partiellement inconnu. On a

$$x(t) = x_1(t) = \cos(2\pi f_1 t)$$
ou
$$x(t) = x_2(t) = \cos(2\pi f_1 t) + \cos(2\pi f_2 t)$$

Les fréquences  $f_1$  et  $f_2$  ne sont pas connues. On sait cependant que  $f_1 < f_2 < 4 \text{kHz}$ , et que  $(f_2 - f_1) \ge 10 \text{Hz}$ . Le signal x(t) est échantillonné à 10 kHz, et  $\mathbf{L}$  échantillons sont recueillis.

- a) On veut déterminer par DFT si x(n) est le signal  $x_1(n)$  ou le signal  $x_2(n)$ . Quel est le nombre minimum de points du signal x(n), i.e., la valeur minimum de L, qui doit être utilisé pour calculer cette DFT ?
- b) On veut aussi pouvoir déterminer avec une précision de 1 Hz la valeur des fréquences  $f_1$  et  $f_2$ . Quel est le nombre minimum de points N sur lequel la DFT doit être calculée ?
- c) Pour cette sous-question, le signal x(t) obtenu du senseur est

$$x(t) = x_1(t) = \cos(2\pi f_1 t)$$
 ou 
$$x(t) = x_2(t) = \cos(2\pi f_1 t) + \mathbf{0.1}\cos(2\pi f_2 t)$$

Expliquez comment vous devez traiter le signal x(n) pour que par DFT vous puissiez identifier lequel des deux signaux est celui obtenu du senseur.

#### **Question 2.** (13 pts)

a) Calculez la DFT sur 4 points de {1, 2, 3, 4, 4, 3, 2, 1}. Donnez 2 autres signaux de 8 points qui ont la même DFT.

b) h(n),  $0 \le n \le 9$ , est la réponse à l'impulsion d'un système linéaire et invariant. L'entrée du système, x(n), est un signal de 64 points. X(k) et H(k) représentent respectivement les DFT sur **64 points** de x(n) et h(n).

Soit

$$Y(k) = X(k)H(k), 0 \le k \le 63$$

Est-ce que la DFT inverse de Y(k), y(n), représente la sortie du système pour l'entrée x(n)? Pourquoi?

Si votre réponse est non, pour quelles valeurs de n est-ce que y(n), la DFT inverse de Y(k), est égale à la sortie du système linéaire ?

Comment pourrait-on calculer la sortie du système en utilisant des DFT de 64 points ?

#### Question 3. (15 pts)

a) À partir du signal analogique périodique suivant



où  $T_0 = 10^{-4}$  sec, on désire générer un signal y(t) qui est une cosinusoide de fréquence  $f_0 = 10$ kHz. On désire procéder de façon purement numérique:



Les conversions A/D et D/A se font à 80 kHz, et vous pouvez faire l'hypothèse que la conversion D/A est faite avec un filtre passe-bas idéal (reconstruction idéale).

Sachant que

$$x(n) = 0.5 + 0.6\cos\left(\frac{\pi}{4}n\right) - 0.1\cos\left(\frac{3\pi}{4}n\right)$$

déterminez la fonction de transfert du filtre H(z) qui doit être utilisée pour que y(t) soit une cosinusoide de 10kHz. **Justifiez bien les choix que vous faites.** Assurez vous d'avoir un système stable et causal.

Pour vérifier votre réponse: à partir de votre fonction de transfert et de x(n), calculez y(n) et assurez vous que ce signal y(n) est bien, après conversion D/A, une cosinusoide de 10kHz.

b) Pour cette sous-question, faites l'hypothèse que  $y(n) = \cos(\pi n/4)$ . y(t) demeure une cosinusoide de 10kHz. La conversion D/A se fait maintenant à une fréquence multiple de 80kHz, i.e.,  $f'_s = Lf_s$ , mais avec reconstruction **non-idéale**.

Le filtre de reconstruction peut être modélisé comme un filtre passe-bas de 2ème ordre (atténuation de 40 dB/décade) avec bande passante de 0 à 10 kHz.

On désire que les images spectrales présentes dans le signal y(t) soient atténuées d'au moins 60 dB. Quel est le facteur d'interpolation L minimum qui doit être utilisé? Suggestion: tracez la transformée de Fourier des signaux intermédiaires dans l'intervalle  $[0 - f_s]$ .



$$X(k) = \sum_{n=0}^{L-1} x(n)e^{-j\frac{2\pi}{N}kn}, \quad 0 \le k \le N-1$$

Pour x(n) = u(n) - u(n-L),



Si  $f_0 < f_1$ , le nombre de décades entre  $f_0$  et  $f_1$  est  $\log_{10}(f_1/f_0)$  .