8 Numerical Integration pt. 3

PVK 2019: MAD

bacdavid@student.ethz.ch

gitlab.ethz.ch/bacdavid

Schedule

- 1. Theory
 - 1. Multivariate integration
 - 2. Monte Carlo integration
- 2. Exercises
- 3. Homework

Theory

Setup

• Area

Multivariate Integration

• The exact integral:

$$I = \int_{\Omega} f(\vec{x}) d\vec{x}$$

• Approximation:

$$I \approx \sum w_i f(\vec{x}_i)$$

Multivariate Integration cont. Example

• Griven:

- 3x3 grid (matrix indexing)
- h = 1 (all directions)

• Task:

• Write down the weights for each $f_{i,j}$ resulting from the multivariate trapezoidal rule

Monte Carlo Quadrature

• Probability of hitting the circle:

$$p = \frac{A_{circle}}{A_{total}} \approx \frac{n_{inside}}{n_{inside} + n_{outside}}$$

• The area of the circle is therefore:

$$A_{circle} \approx \frac{n_{inside}}{n_{inside} + n_{outside}} \cdot A_{total}$$

- In general:
 - 1. Generate sample from known domain size, $x \sim p$
 - 2. Check if the sample is inside or outside
 - 3. Update the counters

Exercises

Exercise 1

Figure 9 shows the surface $z = 0.1x^2 + 0.1y^3 + 4$.

- a) Find the exact volume enclosed between the surface and the xy plane, for $x \in [-3,3]$ and $y \in [-3,3]$. (Hint: you can make your computation easier by exploiting the fact that z is an odd function of y.)
- b) Compute the volume using the midpoint (rectangle) rule, with 3 intervals along each of the x and y axes. What is the absolute error for your numerical approximation with respect to the exact value of the integral?
- c) How is the error expected to change when you increase the number of function evaluations by a factor of 4?

Exercise 2

- a) Write a pseudocode to calculate the overlapping area of the two circles shown below using Monte Carlo Sampling. Assume that you have a function random(), which returns a uniformly distributed random number in the interval [0,1].
- b) What would you have to change in your pseudocode if you wanted to estimate the error of the Monte Carlo sampling? Answer qualitatively, do not write any pseudocode.
- c) How does the error of the method change if you use 10 times more samples?
- d) How does the error of the method change if you use a two times larger sampling space?

Homework

HW₁

- Task:
 - We want to evaluate the integral

$$I = \int_{-1}^{1} x^2 dx$$

- Define $\varphi(x,y)$ st. $I = \int_{\mathbb{R}^2} \varphi(x,y) dx dy$
- Assume x, y are uniformly sampled from $[-1,1] \times [-1,1]$, compute $\mathbb{E}[\varphi(x,y)]$

HW 2

The battery in the circuit shown in Fig. 11 supplies a constant voltage of V=10 volts. The current I in the circuit depends on the voltage, and the resistance R according to relation V=IR. The instantaneous power delivered by the battery is $P=I^2R$. You are told that every time you switch on the circuit, R may randomly take on any positive value between 10Ω and 20Ω , following a given probability distribution p(x). Furthermore, the value of R stays constant until you turn the circuit off.

Figure 11

- a) Write down the expression for P in terms of V and R.
- b) Write down, in terms of V and p(x), the expression for the expected (averaged over multiple switchings) power $\bar{P}=\mathbb{E}\left[P\right]$ delivered by the battery.
- c) Approximate \bar{P} using Monte Carlo method, given that 4 samples drawn from the given distribution p(x) are as follows: $\{12,17,15,16\}$.