习题(12)

12.1 已知随机变量X的分布律为

X	-2	-1	0 1	2	
$p_{\scriptscriptstyle k}$	0.2	0.1	0.1	0.3	0.3

试求随机变量 $Y = X^2 + X$ 的分布律.

12.2 设随机变量 $X \sim N(-3, 5^2)$, 令 Y = -2(X+3), 试指出随机变量 Y 的分布.

12.3 设随机变量
$$X$$
 的密度函数 $f(x) = \begin{cases} e^{-x} , x > 0 \\ 0 , x \le 0 \end{cases}$, 试求 $Y = e^{X}$ 的密度函数 $f_{Y}(y)$.

12. 4 设随机变量 X 的密度函数 $f(x) = \begin{cases} \frac{2x}{\pi^2} &, \ 0 < x < \pi \\ 0 &, \ 其他 \end{cases}$ 函数.

习题(12)参考解答

12.1 解: 由 *X* 的分布律及随机变量 $Y = X^2 + X$, 可列表如下:

X	-2 -1 0 1 2
X 的分布律 $\{p_k\}$	0.2 0.1 0.1 0.3 0.3
$Y = X^2 + X$	2 0 0 2 6

则知随机变量 Y 的可能取值为:0,2,6,且有

$$P{Y = 0} = P{X^2 + X = 0} = P{X = -1} + P{X = 0} = 0.1 + 0.1 = 0.2$$

$$P\{Y=2\} = P\{X^2 + X = 2\} = P\{X = -2\} + P\{X = 1\} = 0.2 + 0.3 = 0.5 \; ,$$

$$P{Y = 6} = P{X^2 + X = 6} = P{X = 2} = 0.3$$
.

得随机变量 Y 的分布律为

H 2 2 2 1 1 1 1 2 2							
\overline{Y}	0	2 6					
$q_{\scriptscriptstyle k}$	0.2	0.5	0.3				

.

12.2 M: $\pm X \sim N(\mu, \sigma^2)$, Y = aX + b, $a \neq 0 \Rightarrow Y \sim N(a\mu + b, a^2\sigma^2)$.

已知 $X \sim N(-3, 5^2)$, Y = -2X - 6,则

$$Y \sim N(-2 \times (-3) + (-6), (-2)^2 \times 5^2)$$
,

即得 $Y \sim N(0, 100)$.

12.3 解: 由于函数 $y = e^x$ 单调可导,反函数 $x = h(y) = \ln y$, 当 y > 1 时.则

$$f_{Y}(y) = f(h(y)) \cdot |h'(y)| = \begin{cases} \frac{1}{y} \times \frac{1}{y}, & y > 1 \\ 0, & y \le 1 \end{cases} = \begin{cases} \frac{1}{y^{2}}, & y > 1 \\ 0, & y \le 1 \end{cases}.$$

12.4 M \oplus $F_Y(y) = P\{Y \le y\} = P\{\sin X \le y\}$, \emptyset

$$F_{Y}(y) = \begin{cases} 0 , & y \le 0 \\ 1 , & y \ge 1 \end{cases}.$$

而当0 < y < 1时,如图,记

$$x_1 = \arcsin y$$
, $x_2 = \pi - x_1$,

则

$$F_{Y}(y) = P\{\sin X \le y\}$$

$$= P\{X \le x_{1}\} + P\{X \ge x_{2}\}$$

$$= \int_{0}^{x_{1}} \frac{2x}{\pi^{2}} dx + \int_{x_{2}}^{\pi} \frac{2x}{\pi^{2}} dx$$

$$= \frac{1}{\pi^{2}} (x_{1}^{2} + \pi^{2} - x_{2}^{2}) = \frac{2}{\pi} \cdot \arcsin y.$$

由 $f_Y(y) = (F_Y(y))'_Y$,则随机变量 Y 的密度函数为

$$f_Y(y) = \begin{cases} \frac{2}{\pi} \cdot \frac{1}{\sqrt{1 - y^2}}, & 0 < y < 1 \\ 0, & 其他 \end{cases}$$

