Name:	
Teachers Name:	

SYDNEY TECHNICAL HIGH SCHOOL

Year 12

Mathematics Extension 1

Assessment Task 2

March 2014

Instructions

- Attempt all questions.
- Answers to be written on the paper provided.
- Start each question on a new page.
- All working must be shown. Full marks may not be awarded for poorly set out work.
- Indicated marks are a guide and may be changed slightly if necessary during the marking process.
- Approved calculators may be used.
- These questions must be handed in on top of your solutions.

SECTION 1: MULTIPLE CHOICE:

Answer on the Multiple Choice Answer Sheet provided.

- 1. For what values of x is the curve $y = 4x^2 x^3$ concave upwards?
 - A. $0 < x < \frac{8}{3}$

B. $x < \frac{4}{3}$

C. $x > \frac{4}{3}$

- D. $x < 0, x > \frac{8}{3}$
- 2. Below is the graph of the function y = f(x).

A possible equation for this function is:

$$A. y = 2\sin(x + \frac{\pi}{4})$$

$$B. y = \sin 2(x - \frac{\pi}{4})$$

C.
$$y = -2\cos(x + \frac{\pi}{4})$$
 D. $y = 2\sin(x - \frac{\pi}{4})$

$$D. y = 2\sin(x - \frac{\pi}{4})$$

$$3. \lim_{x \to 0} \frac{\sin x}{7x} =$$

- A. 7
- B. 0
- C. $\frac{1}{7}$
- D. ∞

4. The shaded area in square units is:

- A. $\frac{4}{3}$

- B. $\frac{10}{3}$ C. $\frac{2}{3}$ D. $\frac{20}{3}$

5. Below is a graph of y = f(x).

Which of the following is true about y = f'(x)?

- a) There is a stationary point at x = -1.
- b) There is an inflexion point at x = 1.
- c) The x intercepts are -1 and 2.
- d) The y intercept is 0

SECTION 2: Write your solutions in the answer booklet provided.

QUESTION 6 (8 marks) MARKS a) Differentiate tan^2x with respect to x. 1 b) Find the exact value of the gradient of the tangent to the curve y = xsinx at the point where $x = \frac{\pi}{3}$. c) Find i) $\int \frac{x^2 + 3x + 2}{x + 1} dx$ 2 ii) $\int_1^2 \frac{1}{2\sqrt{3x-2}} dx$ 3

QUESTION 7 Start a new page (8 marks)

- a) The normal to the curve y = 3tan2x at the point $P(\frac{\pi}{8}, 3)$ cuts the y axis at Q. Find the coordinates of Q in exact form.
- b) A rectangle is cut from a circular disc of radius 3 cm.
 - i) Show that the area of the rectangle is given by $A = l\sqrt{36 l^2}$, where l is the length of the rectangle.
 - ii) Find the area of the largest rectangle that can be produced. 3

QUESTION 8

Start a new page

(8 marks)

MARKS

a) Calculate the area bounded by the curve $y = x^2 - 4$ and the x axis, between x = 1 and x = 3.

3

b) i) Sketch $y = 3\sin 2x$ for $0 \le x \le \pi$.

1

ii) State the period and amplitude of y = 3sin2x.

- 2
- iii) On the same set of axes, sketch y = cosx for $0 \le x \le \pi$.
- 1
- iv) State how many solutions exist for 3sin2x cosx = 0 for $0 \le x \le \pi$.

1

QUESTION 9 Start a new page (8 marks)

a)
$$\int 5\sin(3x+2) dx$$

1

b) Using the substitution u = 2 - x, or otherwise, evaluate $\int_{1}^{2} x \sqrt{2 - x} dx$.

3

c) The curves $y^2 = 8x$ and $y = x^2$ intersect at A.

i) Find the coordinates of A.

1

ii) Calculate the volume of the solid generated when the shaded region is rotated about the *y* axis.

3

QUES	STION 10 Start a new page (8 marks)	MARKS
a)	i) $\int_{-5}^{5} \sqrt{25 - x^2} dx$ represents the area of a semi-circle. Calculate the exact area of this semi-circle.	1
	ii) Use Simpson's Rule with 5 function values to find an	
	approximation to $\int_{-5}^{5} \sqrt{25 - x^2} dx$, correct to 3 decimal places.	2
	iii) By comparing your results from parts i) and ii), find the percentage error in the use of the Simpson's Rule for the approximation of the actual area.	2
b)	The area enclosed between the curve $y = 2sinx$ and the x axis for	3
	$0 \le x \le \pi$ is rotated about the x axis. Find the volume of the solid formed.	

QUESTION 11 Start a new page (8 marks)

a) θ

The diagram shows the section of a circle of radius r metres and angle θ radians.

If the area of the sector is $50m^2$, find an expression for the perimeter of the sector in terms of r only.

b) For the curve y = x⁴ - 2x³,
i) Find the stationary points and determine their nature.
ii) Find any inflexion points.
iii) Sketch its graph, showing all important features.

END OF TEST

SECTION 1

- 1. D
- 2. D
- 3. C
- 4. A
- s. D

SECTION 2

QUESTION 6 8 marks

- a) d tan's = 2 tanx sec^2x (1)
- b) $y = x \sin x$ $\frac{dy}{dx} = \sin x + x \cos x$ $\frac{1}{3}$, $\frac{1}{3} = \sin \frac{\pi}{3} + \frac{\pi}{3} \cos \frac{\pi}{3}$ $\frac{1}{3} = \frac{13}{3} + \frac{\pi}{3} \times \frac{1}{2}$ $\frac{3}{6} = \frac{3}{10} + \frac{\pi}{3}$
- c) i) $\int \frac{3(^{2}+3)(+2)}{3(+1)} ds$ $= \int \frac{(3(+1))(3(+2))}{3(+1)} ds$ $= \frac{1}{2}x^{2}+2x+C \qquad (must have 'c')$

 \vec{n}) $\int_{1}^{2} \frac{1}{2\sqrt{3x-2}} dx$

$$=\frac{1}{2}\int_{1}^{2}(3x-2)^{-\frac{1}{2}}obx$$

$$=\frac{1}{2}\left[\frac{2}{3}(3x-2)^{\frac{1}{2}}\right]_{1}^{2}$$

$$=\frac{1}{3}\left(4^{\frac{1}{2}}-1^{\frac{1}{2}}\right)$$

$$=\frac{1}{3}$$
(1)

OVESTION 7 8 marks

a) $y = 3 \tan 2\pi L$ $\frac{dy}{dx} = 6 \sec^2 2\pi L$ $\frac{dy}{dx} = 6 \sec^2 2\pi L$ $\frac{dy}{dx} = 6 \sec^2 \frac{\pi}{4}$ []

: m of targent = 12

m of normal = $-\frac{1}{12}$ (for perpendicular

y - 3 = $-\frac{1}{12}$ ($x - \frac{11}{8}$)

12y + >1 - 36 - $\frac{11}{8}$ = 0

at >1=0

y = 3 + $\frac{1}{96}$: lo-ords of Q are $(0, 3 + \frac{1}{96})$ 1)

 $(b) = 1^{2} + 15^{2}$ $(b) = 10^{2} + 15^{2}$ $(b) = 10^{2} + 15^{2}$ $(b) = 10^{2}$ $(b) = 10^{2}$ $(b) = 10^{2}$ $(b) = 10^{2}$ $(c) = 10^{2}$ $(d) = 10^{2}$ (d

 $= \sqrt{36 - \ell^2}$ iii) $\frac{dA}{d\ell} = (36 - \ell^2)^{\frac{1}{2}} + \ell \times \frac{1}{2} (36 - \ell^2)^{\frac{1}{2}} \times -2\ell$ $= (36 - \ell^2)^{\frac{1}{2}} (26 - \ell^2) = \ell^2$

 $= \frac{(36 - \lambda^{2})^{2}(36 - \lambda^{2}) - \lambda^{2}}{36 - \lambda^{2}}$ $= \frac{36 - 2\lambda^{2}}{\sqrt{36 - \lambda^{2}}}$ $= \frac{-4\lambda\sqrt{36 - \lambda^{2}} - \frac{1}{2}(36 - \lambda^{2})^{\frac{1}{2}} \times -2\lambda(36 - \lambda^{2})^{\frac{1}{2}}}{36 - \lambda^{2}}$ $= \frac{1(36 - \lambda^{2})^{\frac{1}{2}}(-4(36 - \lambda^{2}) + 36 - 2\lambda^{2})}{36 - \lambda^{2}}$ $= \frac{1(36 - \lambda^{2})^{\frac{1}{2}}(-4(36 - \lambda^{2}) + 36 - 2\lambda^{2})}{36 - \lambda^{2}}$ $= \frac{1(36 - \lambda^{2})^{\frac{1}{2}}(-4(36 - \lambda^{2}) + 36 - 2\lambda^{2})}{36 - \lambda^{2}}$ $= \frac{1}{36 - \lambda^{2}}$

stat pts at $\frac{dA}{d\pi} = 0$ $36 - 2\ell^2 = 0$ $\ell = \pm 3\sqrt{2}$ but ℓ is the ℓ in ℓ is the ℓ is the ℓ is the ℓ in ℓ is the ℓ in ℓ

at 1=352, d2A (0: Maximum 1)

· Maximum area is 18 units2

QUESTION 10 8 marks

(a) i)
$$A = \frac{1}{2} \times TI \times 5$$

$$= \frac{25TI}{2} \text{ wits}^2$$

$$\int_{-5}^{5} \sqrt{25 - x^{2}} dx$$

$$= \frac{2\frac{1}{3}}{3} \left(0 + 0 + 2(5) + 4(5\frac{\pi}{2} + 5\frac{\pi}{2}) \right) \qquad (1)$$

$$= 37.201 \text{ vaits}^{2} \left(3 d_{p} \right) \qquad (1)$$

$$\frac{\vec{n}}{\vec{n}}$$
) $\frac{\vec{n}(-1)}{\vec{n}} \times 100 = 5.269\%$ (3 dp) (2

$$V = \pi \int_{0}^{\pi} 4\sin^{2}x \, dx \qquad (1)$$

$$= 4\pi \int_{0}^{\pi} \frac{1}{2} (1 - \cos 2x) \, dx$$

$$= 2\pi \int_{0}^{\pi} \left[(x - \frac{1}{2} \sin 2x) \right]_{0}^{\pi}$$

$$= 2\pi \left(\pi - \frac{1}{2} \sin 2\pi - 0 \right)$$

$$= 2\pi^{2} \quad \text{voits}^{3}$$

a)
$$A = \frac{1}{2}r^{2}\theta = 50$$
 $l = r \times \frac{100}{r^{2}}$

$$= \frac{100}{r^{2}}$$

$$\rho = 2r + \frac{100}{r}$$

b) i)
$$y = x^4 - 2x^3$$

 $\frac{\partial y}{\partial x} = 4x^3 - 6x^2$
 $\frac{\partial^2 y}{\partial x^2} = 12x^2 - 12x$

stat pts at
$$\frac{dy}{dx^3} = 0$$

 $4x^3 - 6x^2 = 0$
 $2x^2(2x - 3) = 0$
 $x = 0$ $x = \frac{2}{16}$

at
$$x = 0$$
, $\frac{d^{2}y}{dy} = 0$
 $x = \frac{1}{2} = 0$
 $\frac{dy}{dy} = 0$
 $\frac{dy}{dy} = 0$
 $\frac{dy}{dy} = 0$

.. loncasity changes

: Horizontal inflexion pt at (00)

... Minimum turning point at $\left(\frac{3}{2}, -\frac{27}{16}\right)$

iii) For inflexion pts
$$\frac{d^2y}{dn^2} = 0$$
 $(2x^2 - 12x) = 0$
 $(2x(x-1) = 0)$
 $x = 0$
 $y = 0$
 $y = -1$
 $y = 0$
 $y = -1$
 $y = 0$
 $y = -1$

:. Inflexion point at (1,-1)

