Introduction

Rank&Se

Definition

LOUDS

LUUD:

First atten

Second try

Structura

Dynamic u

Principle

Simply typed

Kichiy typed

Experience with

Conclusion

The pape

Proving tree algorithms for succinct data structures

Reynald Affeldt ¹ Jacques Garrigue ² **Xuanrui (Ray) Qi** ³ Kazunari Tanaka ²

¹National Institute of Advanced Industrial Science and Technology, Japan
²Graduate School of Mathematics, Nagoya University, Japan
³Department of Computer Science, Tufts University, United States

April 24, 2019
Department of Computer Science, Boston University

Introduction

Rank&Se

Definition

LOUDS

Implement

First attem

Second try

Structura traversal

traversal

Dynamic de

Principle

Richly typed

Handling deletio

with SSREELEC

Conclusion

The pape

Succinct Data Structures

- Representation optimized for both time and space
- "Compression without need to decompress"
- Much used for Big Data
- Application examples
 - Compression for Data Mining
 - Mozc, the engine behind Google's Japanese IME

Introduction

Rank&Select

D C ::

LOUE

Implementatio
First attempt
Second try

Structural traversal

Dynamic data

Principle

Richly typed
Handling deletior

Experiences with SSREFLECT

Conclusion

The pape

Rank and Select

To allow fast access, two primitive functions are heavily optimized. They can be computed in constant time.

rank(i) = number of 1's up to position i

• select(i) = position of the i^{th} 1: rank(select(i)) = i

h the hotel or	100	1 <mark>0100</mark>	1110	0100	1101	0000	1111	0100	1001	1001	0100	0100	0101	0101	10	
bitstring	100	10100	1110	0100	1101	UUUU	11111	0100			0100	0100		0101		İ
indices	0	4	8	12	16	20	24	28	32	36	40	44	48	52	n-2	= 56
	select	(2) = 4	4	S	elect(17) =	36		sele	ct(26	5) = 5	7				

Proved implementation in [Tanaka A., Affeldt, Garrigue 2016]

Today's story

Introduction

Rank&Se

Plan Definiti

LOUDS

Implementa

First attempt

Structura

Dynamic date

Simply typed

Richly typed

Experiences

Conclusion

The paper

Trees in Succinct Data Structures

Featuring two views

As data Efficient encoding of trees using rank and select

As tool Implementation of dynamic succinct data structures using red-black trees

- Both are proved in CoQ/SSREFLECT
- They can be combined together

Introduction

Plan

Definitions

LOUDS

First attemp

Second try

Structura traversal

Dynamic dat

Principle Simply typed

Richly typed
Handling deletion

Experiences with SSREFLECT

Conclusion

The pap

Basic CoQ definitions

rank is easily defined. select is its (minimal) inverse.

```
Variables (T : eqType) (b : T) (n : nat).
 Definition rank i s := count_mem b (take i s).
  Definition Rank (i : nat) (B : n.-tuple T) :=
    \#[set k : [1,n] | (k \le i) \&\& (tacc B k == b)]|.
 Lemma select_spec (i : nat) (B : n.-tuple T) :
    exists k, ((k \le n) \&\& (Rank b k B == i)) \mid \mid
              (k == n.+1) \&\& (count mem b B < i).
 Definition Select i (B : n.-tuple T) :=
    ex_minn (select_spec i B).
pred s y = last b up to y, succ s y = first b from y on.
 Definition pred s y := select (rank y s) s.
```

Getting the indexing right is a nightmare.

Here indices start from 1, but there is no fixed convention.

Definition succ s y := select (rank y.-1 s).+1 s.

Introduction

RankliSa

Definitions

LOUDS

First attempt

Structura traversal

Dynamic da

Principle

Richly typed

Handling deletion

with SSREELECT

Conclusion

The pape

L.O.U.D.S.

Level-Order Unary Degree Sequence [Navarro 2016, Chapter 8]

- Unary coding of node arities, put in breadth-first order
- Each node is arity 1's followed by a 0
- The structure of a tree uses just 2n + 2 bits
- Useful for dictionaries (Google Japanese IME)

Introduction

Plan

Definitions

Implementation

First attempt

Structural traversal

Principle
Simply typed
Richly typed

Experiences with

Conclusion

The pap

Implementation of primitives

We define an isomorphism between valid paths in the tree, and valid positions in the LOUDS.

The basic operations are

- Position of the root (2 with virtual root, counting from 0)
- Position of the *i*th child of a node
- Position of its parent
- Number of children

```
Variable B : seq bool.
Definition LOUDS_child v i :=
   select false (rank true (v + i) B).+1 B.
Definition LOUDS_parent v :=
   pred false B (select true (rank false v B) B).
Definition LOUDS_children v :=
   succ false B v.+1 - v.+1.
```

Proving tree algorithms for succinct data

Introduction

Plan

Definitions

LUUDS

First attempt

Second try

Structura

Dynamic da

Principle

Richly typed

Experiences with

SSREFLEC

Conclusion

The pape

First attempt

count_smaller t p = number of nodes appearing before the path p in breadth first order.

```
Definition LOUDS position (t : tree) (p : seg nat) :=
  (count_smaller t p + (count_smaller t (rcons p 0)).-1).+2.
(* number of 0's number of 1's virtual root *)
Definition LOUDS_subtree B (p : seg nat) :=
  foldl (LOUDS child B) 2 p.
Theorem LOUDS positionE t (p : seg nat) :
  let B := LOUDS t in valid position t p ->
  LOUDS_position t p = LOUDS_subtree B p.
Theorem LOUDS_parentE t (p : seg nat) x :
  let B := LOUDS t in valid_position t (rcons p x) ->
  LOUDS parent B (LOUDS position t (rcons p x)) = LOUDS position t p.
```

Theorem LOUDS_childrenE t (p : seq nat) :
let B := LOUDS t in valid position t p ->

children t p = LOUDS_children B (LOUDS_position t p).

First attempt

Introduction

Rank&Sel

Definition

LOUDS

First attempt

Second try

Structural traversal

Dynamic data

Dynamic date

Simply typed

Handling deletion

Experiences with

Conclusion

The paper

Various problems

- Breadth first traversal does not follow the tree structure
- Cannot use structural induction
- No natural correspondence to use in proofs
- Oh, the indices!

As a result

- LOUDS related proofs take more than 800 lines
- Many lemmas have proofs longer than 50 lines
- The should be a better approach...

Introduction

meroducero

Definition

LOUDS

Implementat

First attem Second try

Camerature

traversal

Dynamic da

Principle

Simply typed

11 11 11 11 1

Experience with

Canalusias

The paper

Second try

- Introduce traversal up to a path
- For easy induction, work on forests rather than trees
- A generating forest need not be on the same level!

Proving tree algorithms for succinct data

Introduction

Plan

Definitions

LOUDS

Implementat

Second try

Structura

traversai

Dynamic data

Simply typed Richly typed

Handling deletion

Experiences with SSREELECT

Conclusion

The pape

Traversal and remainder

```
Variable (A B : Type) (f : tree A -> B).
(* Traversal of nodes before path p *)
Fixpoint lo_traversal_lt (w : forest A) (p : seq nat) : seq B.
(* Generating forest for nodes following path p *)
Fixpoint lo_traversal_res (w : forest A) (p : seg nat) : forest A.
(* Relation between them *)
Lemma lo traversal lt cat w p1 p2 :
  lo traversal lt w (p1 ++ p2) =
  lo_traversal_lt w p1 ++ lo_traversal_lt (lo_traversal_res w p1) p2.
(* Complete traversals are all equal *)
Theorem lo_traversal_lt_max t p :
 size p >= height t ->
  lo_traversal_lt [:: t] p = lo_traversal_lt [:: t] (nseq (height t) 0).
                      All paths lead to Rome!
```

Introduction

Rank&Select

Definitions

Implementa:

First attemp

Structural

traversal

Dynamic data

Simply typed Richly typed

Experiences with

Conclusion

The

Indices and positions in LOUDS

(* LOUDS lt is a path-indexed traversal *)

```
Definition LOUDS_lt w p := flatten
  (lo traversal lt (node description \o children of node) w p).
(* This corresponds to the standard definition of LOUDS *)
Theorem LOUDS lt ok (t : tree A) p :
  size p >= height t -> LOUDS t = true :: false :: LOUDS_lt [:: t] p.
(* Position of a node in the LOUDS *)
Definition LOUDS_position w p := size (LOUDS_lt w p).
(* Index of a node in level-order *)
Definition LOUDS_index w p := size (lo_traversal_lt id w p).
Lemma LOUDS_position_select w p p' :
 valid position (head dummy w) p ->
 LOUDS position w p =
  select false (LOUDS_index w p) (LOUDS_lt w (p ++ p')).
Lemma LOUDS_index_rank w p p' n :
 valid_position (head dummy w) (rcons p n) ->
 LOUDS index w (rcons p n) =
  size w + rank true (LOUDS_position w p + n) (LOUDS_lt w (p ++ n : p')).
                                                                       12/34
```

Proving tree algorithms for succinct data

Introduction

Rank&Se

Definition

LOUD!

F. . ..

Second try

C+....

traversal

Dynamic (

Principle

Simply typed

Richly typed

Experiences

Conclusion

The paper

Properties proved

```
Theorem LOUDS_childE (t : tree A) (p p' : seg nat) x :
  let B := LOUDS_1t [:: t] (rcons p x ++ p') in
  valid_position t (rcons p x) ->
  LOUDS_child B (LOUDS_position [:: t] p) x =
  LOUDS_position [:: t] (rcons p x).
Theorem LOUDS_parentE (t : tree A) p p' x :
  let B := LOUDS_{1t} [:: t] (rcons p x ++ p') in
  valid_position t (rcons p x) ->
  LOUDS_parent B (LOUDS_position [:: t] (rcons p x)) =
  LOUDS_position [:: t] p.
Theorem LOUDS_childrenE (t : tree A) (p p' : seq nat) :
  let B := LOUDS_lt [:: t] (rcons p 0 ++ p') in
  valid_position t p ->
  children t p = LOUDS_children B (LOUDS_position [:: t] p).
```

Proving tree algorithms for succinct data

Introduction

Rank&Select Plan

Definitions

LOUD

First attempt Second try

Structural traversal

Dynamic data Principle

Richly typed

with SSREELEC

Conclusion

The paper

Bonus: a structural traversal

Breadth-first traversal uses induction on the height:

```
Variable f : tree A -> B.
Fixpoint lo_traversal'' n (1 : forest A) :=
  if n is n'.+1 then
    map f 1 ++ lo_traversal'' f n' (children_of_forest 1)
  else [::].
Definition lo_traversal t := lo_traversal'' (height t) [:: t].
```

We can avoid that by doing the traversal in 2 steps; 1st, build a list of levels, and then catenate them.

```
Fixpoint level_traversal t :=
  let: Node a cl := t in
  [:: f t] :: foldr (fun t1 => merge1 (level_traversal t1)) nil cl.

Fixpoint level_traversal_cat (t : tree A) ss {struct t} :=
  let: (s, ss) :=
   if ss is s :: ss then (s, ss) else (nil, nil) in
  let: Node a cl := t in
   (f t :: s) :: foldr level_traversal_cat ss cl.

Definition lo_traversal_cat t := flatten (level_traversal_cat t nil).
```

level_traversal is structural, but its complexity is bad.

Introduction

Rank&S

Definition

LOUDS

Implementa

First attempt Second try

Structura traversal

Dynamic data

Simply typed Richly typed

Richly typed Handling deletion

Experiences with SSREFLECT

Conclusion

The pape

Dynamic succinct data structures

- The most optimized representation of succinct data structures use arrays, and are not suitable for dynamic operations (insertions, etc.)
- However, we often want to modify our bit vectors.
- To minimize the cost of insertion and deletion, we must make a tradeoff: we no longer can access bits (or calculuate rank or select) in constant time.
- However, representing the vector as a balanced binary tree, we can implement all operations in $O(\log n)$ time.

[Navarro 2016, Chapter 12]

Introduction

Rank&S

.

LOUDS

LOUD:

First attem

Second to

Structura

traversal

Dynamic da

Principle

Simply typed

rticity typeu

riandling deletio

with SSREELEC

Conclusion

The paper

Representing dynamic bit vectors

 $B = 10000010 \ 00000100 \ 00001010 \ 00001011 \ 10000001$

num is the number of bits in the left branch and *ones* is the number of 1's in the left branch

Introduction

Rank&Sele

Definitions

LOUDS

First attemp

Second try

Structural traversal

Dynamic dat

Principle

Simply typed Richly typed

Experiences with

Conclusion

The paper

Our approach

- Red-black tree as our underlying data structure
 - The complexity results do not depend on the specific type of balanced binary tree used
 - Red-black trees are easy to implement purely functionally
 - Already multiple formalizations in CoQ
 - However, due to the different data internals, we had to reimplement them
- We attempted two different approaches, using types in different ways:
 - 1 using ML types, i.e. only ML-style polymorphic ADTs
 - 2 using dependent types, all trees are correct by construction
- Proving the correctness of rank, insert and select

Proving tree algorithms for succinct data

Introduction

Rank&Selec

Definitions

LOUDS

Implementat

First attem

Second try

Structura

traversal

Principle

Simply typed

Richly typed

Experiences

Conclusion

The paper

Implementation using ML types

Using red-black trees for bit vectors

```
Inductive color := Red | Black.
Inductive btree (D A : Type) : Type :=
| Bnode of color & btree D A & D & btree D A
| Bleaf of A.

Definition dtree := btree (nat * nat) (seq bool).

Assigning "meaning" to trees using dflatten

Fixpoint dflatten (B : dtree) :=
match B with
| Bnode _ 1 _ r => dflatten 1 ++ dflatten r
| Bleaf s => s
end.
```

Invariants of the internal data

Introduction

Rank&Sel

Definition

LOUE

. .

First attem

Second try

Structura

traversal

Principle

Simply typed

Kichly typed

Handling deletion

with

Conclusion

The paper

Basic operations, using ML types

```
Fixpoint drank (B : dtree) (i : nat) :=
  match B with
    Bnode 1 (num. ones) r \Rightarrow
    if i < num then drank l i
                else ones + drank r (i - num)
   | Bleaf s =>
    rank true i s
  end.
Lemma dtree ind (P : dtree -> Prop) :
  (forall c l r num ones.
   num = size (dflatten 1) ->
   ones = count mem true (dflatten 1) ->
   wf_dtree 1 /\ wf_dtree r ->
   P 1 \rightarrow P r \rightarrow P (Bnode c 1 (num. ones) r)) \rightarrow
  (forall s, (w^2)./2 \le size s \le (w^2).*2 \rightarrow P (Bleaf_s)) \rightarrow
  forall B, wf_dtree B -> P B.
Lemma drankE (B : dtree) i :
  wf_dtree B -> drank B i = rank true i (dflatten B).
```

All those lemmas were proved in just a few lines.

Proving tree algorithms for succinct data

Introduction

Rank&Sel

Definition

LOUD

. . .

First attemp

Second try

Structural traversal

traversar

Principle

Simply typed

Richly typed

Experiences

SSREFLECT

Conclusion

The paper

Basic operations, using ML types

```
Fixpoint dselect 1 (B : dtree) (i : nat) :=
  match B with
  | Bnode | 1 (num. ones) r \Rightarrow
    if i <= ones then dselect 1 l i
                  else num + dselect_1 r (i - ones)
  | Bleaf s => select true i s
  end.
Fixpoint dselect 0 (B : dtree) (i : nat) :=
  match B with
  \mid Bnode \_ 1 (num, ones) r \Rightarrow
    let zeroes := num - ones in
    if i <= zeroes then dselect 0 l i
                    else num + dselect 0 r (i - zeroes)
  | Bleaf s => select false i s
  end.
Lemma dselect_1E B i :
  wf_dtree B -> dselect_1 B i = select true i (dflatten B).
Lemma dselect 0E B i :
 wf dtree B -> dselect 0 B i = select false i (dflatten B).
```

Simply typed

Insertion, using ML types

```
Fixpoint dins (B : dtree) b i w : dtree :=
  match B with
    Bleaf s =>
    let s' := insert1 s b i in
    if size s + 1 == 2 * (w^2)
    then let n := (size s') \%/ 2 in
         let sl := take n s' in
         let sr := drop n s' in
         Bnode Red (Bleaf _ sl)
               (size sl, rank true (size sl) sl)
               (Bleaf sr)
    else Bleaf s'
    Bnode c 1 (num, ones) r \Rightarrow
    if i < num then balanceL c (dins l b i w) r
               else balanceR c l (dins r b (i - num) w)
  end.
Definition dinsert (B : dtree) b i w : dtree :=
  match dins B b i w with
    Bleaf s => Bleaf _ s
    Bnode l d r => Bnode Black l d r
  end.
```

Simply typed

Maintaining balance

- Much of the difficulties with red-black trees comes from the numerous cases arising in balancing operations.
- In the function balanceL, 11 goals were generated.
- We proved those using as little automation as possible, in idiomatic SSREFLECT style.

```
Ltac decompose_rewrite :=
  let H := fresh "H" in
  case/andP || (move=>H; rewrite ?H ?(eqP H)).
Lemma balanceL wf c (1 r : dtree) :
  wf_dtree 1 -> wf_dtree r -> wf_dtree (balanceL c l r).
Proof.
case: c => /= wfl wfr. by rewrite wfl wfr ?(dsizeE,donesE,eqxx).
case: 1 wfl =>
  [[[[] 111 [lln 1lo] 1lr|1lA] [ln lo] [[] 1rl [lrn 1ro] 1rr|1rA]
   | | 11 [ln lo] lr] | 1A] /=;
  rewrite wfr; repeat decompose_rewrite;
  by rewrite ?(dsizeE, donesE, size_cat, count_cat, eqxx).
Qed.
                                       イロト イポト イラト イラト
```

Proving tree algorithms for succinct data

Introduction

Daniel Calant

Definitions

LOUDS

Implementatio
First attempt

Structural

traversal

Dynamic dat

Principle

Richly typed

Handling deletio

with SSREFLEC

Conclusion

The paper

Definitions, using dependent types

Invariants are guaranteed by the data constructors:

- as dynamic bit vectors
- as red-black trees

```
Definition is_black c := if c is Black then true else false.

Definition color_ok parent child :=

is_black parent || is_black child.
```

```
Inductive tree : nat -> nat -> nat -> color -> Type :=
| Leaf : forall (arr : seq bool),
        (w ^ 2)./ 2 <= size arr < (w ^ 2).*2 ->
        tree (size arr) (count_one arr) 0 Black
| Node : forall {s1 o1 s2 o2 d cl cr c},
        color_ok c cl -> color_ok c cr ->
        tree s1 o1 d cl -> tree s2 o2 d cr ->
        tree (s1 + s2) (o1 + o2) (d + is_black c) c.
```

Introduction

Rank&Selec

Definitions

LOUDS

Implementation

Structural traversal

Dynamic data Principle Simply typed

Richly typed Handling deletion

with

Conclusion

The paper

Operations, using dependent types

- The code and proofs for the basic queries are mostly unchanged
- No more dtree_ind!
- We defined dins using the Program environement

```
Program Fixpoint dinsert' {n m d c} (B : tree n m d c) (b : bool) i 
 {measure (size_of_tree B)} : { B' : near_tree n.+1 (m + b) d c} 
 | dflattenn B' = insert1 (dflatten B) b i } := ...
```

20 obligations were generated, and were proved in 90 lines.

- Implementing balanceL ≥ balanceR
 - At first, we could not seem to be able to define those using Program. Each was defined using 17 lines of tactics.
 - Later, we found out workarounds that enabled us to define them using Program. (Program is flaky.)

```
Definition balanceL {nl ml d cl cr nr mr} (p : color)
    (1 : near_tree nl ml d cl) (r : tree nr mr d cr) :
    color_ok p (fix_color 1) -> color_ok p cr ->
    {tr : near_tree (nl + nr) (ml + mr) (inc_black d p) p
    | dflattenn tr = dflattenn 1 ++ dflatten r}.

destruct r as [s1 o1 s2 o2 s3 o3 d' x y z | s o d' c' cc r'].
+ case: p => //= cpl cpr.
```

Introduction

Rank&Se

Definition

LOUDS

Implementatio

Structura traversal

Dynamic data

Principle

Handling deletion

Experiences with SSREFLECT

Conclusion

The paper

The trouble with deletion

- Deletion from purely-functional red-black trees is known to be a difficult problem [Germane & Might 2014, Kahrs 2001]
- How to handle deletion gracefully while keeping all invariants intact?
- Take 1: directly transcribe [Kahrs 2001] to Coq
- Result: Our red-black tree deviates significantly from the standard version, making this transcription very hard

Introduction

Rank&Sele Plan

Definition

LOUDS

Implementation
First attempt
Second try

Structura traversal

Dynamic data

Principle Simply typed

Handling deletion

Experiences with SSREFLECT

Conclusion

The paper

Dependent types to the rescue

Idea: use dependent types to guide our search for invariants, and transcribe the result to use ML types

- We code out the needed invariants for delete, and use dependent types to guide our search for a version of deletion that is right.
- First version: defined using 626 lines of Ltac (works, but ugly).
- Later rewritten using Program.

Introduction

Rank&Sel

Definition

LOUDS

First attempt

Structura traversal

Dynamic

Principle

Handling deletion

Experiences with SSREFLEC

Conclusion

The paper

Back to deletion

- Insertion can be implemented just by adding a re-balancing operation.
- Deletion, on the other hand, require an intermediate structure.
 - dtree is not enough to represent unbalanced, intermediate states resulting from removing a bit.
 - We need to know whether the black height has decreased!
 - Solution: using a record to trace the extra information

```
Record deleted_dtree: Type := MkD { d_tree :> dtree;
  d_down: bool; d_del: nat * nat }.
Definition balanceL' (c: color) (1: deleted_dtree)
  (d: nat*nat) (r: dtree): deleted_dtree.
Definition balanceR' (c: color) (1: dtree)
  (d: nat*nat) (r: deleted_dtree): deleted_dtree.
```

Also, we handled "bit borrowing".

Introduction

Rank&Se

Definition

LOUD!

Implementa

First attemp Second try

Structura

traversal

Principle Ca

Simply typed

Richly typed Handling deletion

Experiences with SSREFLECT

Conclusion

The paper

Proving programs with SSReflect

- Small-scale reflection is mainly used for mathematical proofs via MathComp
- However, recently becoming more popular for proofs of programs as well [Sergey, Sergey & Nanevski 2015]
- Good built-in library support for doing mathematics, but less so for inductive data

Introduction

Rank&Se

Definition

LOUDS

Implementation

Structural traversal

traversal

Dynamic date

Simply typed

Handling deletic

Experiences with SSREFLECT

Conclusion

The paper

First impressions

- Small-scale reflection uses boolean predicates (instead of inductive propositions) to model program properties
- Our experience with boolean predicates is very positive: simplify reasoning, "built-in" automation

Introduction

Rank&Se

Definition

LOUDS

Implementatio
First attempt
Second try

Structura traversal

Dynamic dat Principle

Richly typed

Handling deletion

Experiences with SSREFLECT

Conclusion

The paper

First impressions

- Small-scale reflection uses boolean predicates (instead of inductive propositions) to model program properties
- Our experience with boolean predicates is very positive: simplify reasoning, "built-in" automation
- One downside: they don't decompose naturally in inductive proofs

First impressions

Introduction

Rank&Sel

Definition

LOUDS

Implementatio First attempt Second try

Structura traversal

Dynamic dat Principle

Simply typed Richly typed

Handling deletion

Experiences with SSREFLECT

Conclusion

The paper

- Small-scale reflection uses boolean predicates (instead of inductive propositions) to model program properties
- Our experience with boolean predicates is very positive: simplify reasoning, "built-in" automation
- One downside: they don't decompose naturally in inductive proofs
- Solution: alternative inductive principle (dtree_ind)

Introduction

Rank&Sele Plan

Definition

LOUDS

Implementati First attempt

Second try

Structural traversal

Dynamic da

Principle

Simply typed

Handling deletic

Experiences with SSREFLECT

Conclusion

The paper

Automation for SSREFLECT

- Basic approach: case analysis, then "crush" (à la [Chlipala 2013]) all goals
- We wrote our own SSREFLECT-style tactic for crushing boolean predicate goals:

Introduction

Rank&Sele Plan

Definitions

LOUDS

First attempt

Structura

traversal

Dynamic da

Simply typed

Handling deletion

Experiences with SSREFLECT

Conclusion

The paper

Automation for SSREFLECT

- Basic approach: case analysis, then "crush" (à la [Chlipala 2013]) all goals
- We wrote our own SSREFLECT-style tactic for crushing boolean predicate goals:

```
Ltac decompose_rewrite :=
  let H := fresh "H" in
  move/andP => [] || (move => H; try rewrite H; try rewrite (eqP H)).
```

Introduction

Rank&Sele Plan

Definitions

LOUDS

Implementation
First attempt
Second try

Structura traversal

Dynamic da

Principle

Richly typed

Experiences with SSREFLECT

Conclusion

The paper

Automation for SSREFLECT

- Basic approach: case analysis, then "crush" (à la [Chlipala 2013]) all goals
- We wrote our own SSReflect-style tactic for crushing boolean predicate goals:

```
Ltac decompose_rewrite :=
  let H := fresh "H" in
  move/andP => [] || (move => H; try rewrite H; try rewrite (eqP H)).
```

- Result: worked very well in general; only one lemma seems to not be handled well by this approach.
- Also, SSREFLECT lacked arithmetic automation, which turned out to be very useful.

Introduction

Rank&Se

Definition

LOUDS

Implementation First attempt

Structura

_ . .

Dynamic dat

Simply typed Richly typed

Handling deletio

Experiences with SSREELECT

Conclusion

The paper

LOUDS formalization

Advantages of the new approach

- All proofs are by induction on paths
- Common lemmas arise naturally
- Down to about 500 lines in total, long proofs about 25

Remaining problems

- There are still long lemmas (lo_traversal_lt_max, ...)
- Paths all over the place

Future work

Can we apply that to other breadth-first traversals

Introduction

Rank&Select

Definition:

LOUDS

Implementat First attemp

Second try

Structura traversal

Dynamic data

Dynamic dati

Simply typed

Richly typed Handling deletion

Experiences with SSREFLECT

Conclusion

The paper

Dynamic bit-vector formalization

Summary

- SSREFLECT helped immensely, and we were able to write proofs in an idiomatic SSREFLECT style.
- Our proof of red-black tree balance was especially clear and concise (compare [Appel 2011] and [Chlipala 2013]).
- However, there were a lot of small lemmas.
- Crushing approach worked very well as always
- Dependent types: good experiment resulting in clean lemma environment, but dirty code

Future work

- Can we improve the dependently typed version?
- Proofs about complexity
 - Time complexity: do we need to amortize? (Amortization can be tricky)
 - Space complexity: no previous work on this; how to define the corrrect predicates?

Introduction

Rank&Sel

Definition

LOUDS

LUUDS

First attem

Second try

Structural traversal

Dynamic da

D: 11

Simply typed

Richly typed Handling deletion

Experiences with SSREELECT

Conclusion

The paper

Dynamic bit-vector formalization

Summary

- SSREFLECT helped immensely, and we were able to write proofs in an idiomatic SSREFLECT style.
- Our proof of red-black tree balance was especially clear and concise (compare [Appel 2011] and [Chlipala 2013]).
- However, there were a lot of small lemmas.
- Crushing approach worked very well as always
- Dependent types: good experiment resulting in clean lemma environment, but dirty code

Future work

- Can we improve the dependently typed version?
- Proofs about complexity
 - Time complexity: do we need to amortize? (Amortization can be tricky)
 - Space complexity: no previous work on this; how to define the corrrect predicates?

Proofs

Our paper

Introduction

Rank&Se

Definition

LOUD

LUUD.

First atten

Second try

Structura traversal

Dynamic dat

Dynamic data

Simply type

Richly typed

Handling deletion

Experience with

Conclusion

The paper

Preprint available on the arXiv (CoRR).

Introduction

Rank&Se

Definition

LOUD!

First attempt

Second try
Structural

traversal

Dynamic data

Principle

Richly typed

Handling deletion

with

Conclusion

The paper

Our paper

Preprint available on the arXiv (CoRR).

Reynald Affeldt, Jacques Garrigue, Xuanrui (Ray) Qi, Kazunari Tanaka. Proving Tree Algorithms for Succinct Data Structures. arXiv:1904.02809 [cs.PL].

https://arxiv.org/abs/1904.02809

Rank&Se

Definition

LOUDS

LOUDS

First attemp

Second try

Structura traversal

Dynamic dat

Principle

Simply typed

Richly typed

Handling deletio

Experiences with

SSREFLEC

Conclusion

The paper

More in the paper

- Details of the algorithms we formalized
- Important lemmas in our proof development
- More discussion on the benefits/drawbacks to using SSReflect