Введение Квантовая механика Квантовые вы числения Алгоритм Гровера Алгоритм Шора Заключение

Классическая криптография <u>Квантовые</u> вычисления

Мурашко И.В.

Введение

- Квантовая механика
- Квантовые вычисления
- Методы симметричного шифрования и алгоритм Гровера
- Методы несимметричного шифрования (RSA, Diffie-Hellman, Elliptic curve) и алгоритм Шора.

Двухуровневый атом

Рис.: Процесс измерения энергии двухуровневого атома находящегося в чистом состоянии $|\psi\rangle=\frac{1}{\sqrt{2}}\,|a\rangle+\frac{1}{\sqrt{2}}\,|b\rangle$. Прибором регистрируется значение энергии E_a или E_b .

Двухуровневый атом. Измерение E_a

Рис.: Процесс измерения энергии двухуровневого атома находящегося в чистом состоянии $|\psi\rangle=\frac{1}{\sqrt{2}}\,|a\rangle+\frac{1}{\sqrt{2}}\,|b\rangle$. Прибором регистрируется значение энергии E_a . При измерении происходит следующая редукция $|\psi\rangle\to|a\rangle$

Двухуровневый атом. Измерение E_b

Рис.: Процесс измерения энергии двухуровневого атома находящегося в чистом состоянии $|\psi\rangle=\frac{1}{\sqrt{2}}\,|a\rangle+\frac{1}{\sqrt{2}}\,|b\rangle$. Прибором регистрируется значение энергии E_b . При измерении происходит следующая редукция $|\psi\rangle\to|b\rangle$

Кот Шредингера

Эксперимент Белла. Классический случай

$$f=rac{1}{2}\left(ab+a'b+ab'-a'b'
ight), a,a',b,b'\in\{-1,+1\}.$$
 следовательно $f\in\{-1,+1\}$ и $|\langle f
angle|\leq 1$

Эксперимент Белла. Квантовый случай

$$|\langle f \rangle| = \sqrt{2} > 1$$

Отрицательные вероятности

$$\langle f \rangle = \sum_{a,a',b,b'} p(a,a',b,b') f(a,a',b,b').$$

следовательно для $|\langle f
angle| > 1$ необходимо

$$\exists a, a', b, b' : p(a, a', b, b') < 0$$

Классические вычисления

Рис.: Классические вычисления. На вход подается число x состоящее из n бит, а на выходе имеем результат $y=f\left(x\right)$ описываемый m битами

Квантовые вычисления

Рис.: Квантовые обратимые вычисления. На вход подается число $|x\rangle$ состоящее из n кубит и затравка из нулевых состояний (m кубит), а на выходе имеем результат $|y\rangle = |f\left(x\right)\rangle$ описываемый m кубитами и исходное состояние $|x\rangle$

Квантовые вычисления

Классический случай

$$x \rightarrow f(x)$$

Квантовый случай

$$\begin{aligned} |0\rangle |0\rangle + |1\rangle |0\rangle + |2\rangle |0\rangle + \cdots + |x\rangle |0\rangle + \cdots \rightarrow \\ \rightarrow |0\rangle |f(0)\rangle + |1\rangle |f(1)\rangle + |2\rangle |f(2)\rangle + \cdots + |x\rangle |f(x)\rangle + \ldots \end{aligned}$$

Задача о поиске иголки в стоге сена

Рис.: Поиск в неструктурированном объеме данных (поиск "иголки в стоге сена"). Классическая сложность O(N)

Алгоритм Гровера. Схема

Рис.: Алгоритм Гровера. Сложность $O(\sqrt{N})$

Алгоритм Гровера. Схема повторяющегося элемента

Рис.: Алгоритм Гровера. Повторяющийся элемент

Алгоритм Гровера. Принцип работы

Рис.: Алгоритм Гровера. Инверсия фазы

Алгоритм Гровера. Принцип работы

Рис.: Алгоритм Гровера. Обращение относительно среднего.

Влияние на рекомендации к использованию

 $O(N) o O(\sqrt{N})$ ведет например к следующей рекомендации $AES_{128} o AES_{256}$

Несимметричное шифрование

- RSA и задача факторизации чисел
- Diffie-Hellman и дискретный логарифм
- Elliptic curve и дискретный логарифм

RSA и задача о нахождении периода функций

$$N = p \cdot q$$

$$f(x, a) = a^{x} \mod N.$$

Период функции T=2r, т.е.

$$a^{x+2r} \mod N = a^x \mod N,$$

 $a^{2r} \equiv 1 \mod N,$
 $(a^r + 1)(a^r - 1) \equiv 0 \mod N$

Алгоритм Шора

Рис.: Определение периода функций с помощью квантового преобразования Фурье

Алгоритм Шора. Нахождение периода функции $f(x,a)=a^x \mod N$

Рис.: Алгоритм Шора. Нахождение периода функции $f(x,a) = a^x \mod N$ при a=2, N=21.

Алгоритм Шора. Нахождение периода функции $f(x,a)=a^x \mod N$

Рис.: Алгоритм Шора. Нахождение периода функции $f(x,a) = a^x \mod N$ при a=2, Значение функции 1 повторяется с периодом r=6.

Алгоритм Шора. Нахождение периода функции $f(x,a)=a^x \mod N$

Рис.: Алгоритм Шора. Нахождение периода функции $f(x,a)=a^x \mod N$ при a=2. Локальные максимумы преобразования Фурье идут с периодом $\frac{M}{r}\approx 10.67~(M=64$ - число отсчетов для преобразования Фурье)

Рекомендованные значения для длины ключа

All key sizes are provided in bits. These are the minimal sizes for security. Click on a value to compare it with other methods.

Year	Symmetric	Factoring Optimistic	(modulus) Conservative	Discrete Key	Logarithm Group	Elliptic Curve	Hash
2015	78	1245	1350	156	1245	156	156
2016	79	1273	1392	158	1273	158	158
2017	80	1300	1435	159	1300	159	159
2018	80	1329	1478	160	1329	160	160
2019	81	1358	1523	162	1358	162	162

To resist until year 2017, you may consider using a minimum of 80-bit key for symmetric systems (e.g. AES-128) and a minimum of 1440-bit key for asymmetric systems (e.g. RSA).

Влияние на рекомендации к использованию

RSA: 4096

• DH: 2048/256

• Elliptic curve: 512/256 (bitcoin)

NSA не рекомендует использование алгоритмов на элиптических кривых для внутреннего использования.

Что дальше?

- Линейная алгебра (Матрицы)
- Дискретная математика (Операции с остатком)

Что дальше?

https://github.com/ivanmurashko/lectures/tree/master/pdfs

Вопросы

