Credit Card Fraud Detection

Andromeda - Pranathi Alluri, Sanjana Kandunoori, Anagha Kadoo, Sinuo Song, Chen Li

Introduction

Ongoing challenges

Real-time detection importance

Safeguarding financial systems

Credit Card Fraud Detection

Using the Machine Learning Classification Algorithms to detect Credit

Card Fraudulent Activities

Dataset Generation & Preparation

- Stimulated Data
 - Less than 1% Fraud
 - Two types of fraud:
 - Phishing
 - Stolen accounts
- BorderLine SMOTE to deal with class imbalance
- Feature Engineering
 - Fraud rates
 - Total transactions
 - 30 day windows
- Normalized using min-max scalar
- 80/20 split

Models

Logistic Regression

Classification	Report: precision	recall	f1-score	support
0	0.83	0.91	0.87	383551
1	0.90	0.81	0.85	384292
accuracy			0.86	767843
macro avg	0.86	0.86	0.86	767843
weighted avg	0.86	0.86	0.86	767843

SVM (using Linear Kernel)

Classificatio	on Report: precision	recall	f1-score	support
0	0.82	0.92	0.87	383551
1	0.91	0.80	0.85	384292
accuracy			0.86	767843
macro avg	0.87	0.86	0.86	767843
weighted avg	0.87	0.86	0.86	767843

Decision Trees

Classification Penart:

accuracy

macro avg weighted avg

Classification	precision	recall	f1-score	support
0 1	0.97 0.97	0.97 0.97	0.97 0.97	383551 384292

0.97

0.97

0.97

0.97

0.97

767843

767843

767843

Precision: 0.9705350138591078 Recall: 0.9658072507364192

0.97

0.97

F1-score: 0.9681653606569349

ROC-AUC: 0.96896281828251

Random Forest

Classification	Report
----------------	--------

		precision	recall	f1-score	support
	0	0.97	0.99	0.98	383551
	1	0.99	0.97	0.98	384292
accura	су			0.98	767843
macro a	vg	0.98	0.98	0.98	767843
weighted a	vg	0.98	0.98	0.98	767843

Precision: 0.9927671762863846 Recall: 0.9668663412196975 F1 Score: 0.9796455907129052

ROC-AUC Score: 0.9980771196410041

K-Means

Classification	n Report : precision	recall	f1-score	support
0	0.99	0.50	0.67	383551
1	0.01	0.63	0.02	384292
accuracy			0.50	767843
macro avg	0.50	0.56	0.34	767843
weighted avg	0.99	0.50	0.66	767843

Accuracy: 0.5002667259390976 F-1 score: 0.01672395847000271 Recall score: 0.6289473684210526

Davies Bouldin Score: 0.5000290444611917

Results - Comparing different models

Model	Accuracy (in percent)	
Logistic Regression	86	
SVM	86	
Decision Tree	97	
Random Forest	98	
K-Means Clustering	50	

- Random Forest performs the best amongst all models
- Decision Tree also has a comparable accuracy to Random Forest
- K-Means Clustering has the least accuracy amongst all models
- Ensemble methods of Decision Tree and Random Forest prove to be the most accurate
- They capture patterns within the dataset most accurately to produce predictions

Conclusion

- Overview of the project
- Random Forest works the best
 - Use multiple decision trees to capture complex relationship
 - Results show high accuracy and ROC scores
- K Means works the worst
 - Clustering data points into different clusters based on minimum distance between each point and the centroid of the cluster
 - Results show low accuracy and ROC scores

Future Work

- Extending the scope beyond the existing radius.
- Incorporate more sophisticated techniques and encompassing a broader spectrum of fraud types.
- Develop and optimize real-time fraud detection systems.

Thank you!