概率论与数理统计综合测试

分位数: $\Phi(1.96) = 0.975$, $\mu_{0.99} = 2.33$, $\mu_{0.995} = 2.58$, $\chi^2_{0.975}(10) = 20.48$ 一、填空题(每空3分,共42分) 1.已知事件A, B, C相互独立, $ABC = \phi$, $P(A) = P(\overline{B}) = P(\overline{C}) > \frac{2}{3}$, 且 $P(A \cup B \cup C) = \frac{13}{16}$, 则P(A) = . 2.向目标独立射击到6次命中为止,每次命中的概率为 $\frac{3}{4}$,则射击次数X的数学期望为_____. 3.在11张卡片分别写上mathematics这11个字母(每张卡片上写一个字母),从中任意连 抽4张, 其排列结果为math的概率为 . 4.一条自动生产线连续生产n件产品不出故障的概率为 $\frac{3^{n}}{n!}e^{-3}$,(n=0,1,2.....),产品为优质 品的概率为 $\frac{1}{3}$.若各产品是否为优质品是相互独立的,则生产线在两次故障间生产k件优 质品的概率为 . 5.两个1和四个2排列在一起,则两个1不相邻的概率为 . 6.总体 $X \sim P(3), X_1, X_2, \dots, X_n$ 是来自X的简单随机样本, $Y = X_1^2 + X_2^2 + \dots + X_n^2$,则D(Y) =_____ 7.在三角形ABC中,BC = 2, $AB \ge 2AC$,则该三角形面积的均值为 . 8.已知 X_1, X_2 相互独立且均服从 $N(1,1), 则E[\max(X_1, X_2)] =$. 9.设 X_1, X_2, X_3, X_4 是来自正态总体 $N(0,3^2)$ 的简单随机样本, $X = m(3X_1 - 2X_2)^2 + n(4X_3 - X_4)^2$, 则 $X \sim \chi^2(2)$ 时, $m = ____, n = ____.$ 10.已知(X,Y) 的概率密度为 $f(x,y) = \frac{1}{12\pi}e^{-\frac{1}{72}(9x^2+4y^2-8y+4)}(-\infty < x, y < +\infty), 则 <math>\frac{9X^2}{4(Y-1)^2}$ 服从_____.

11.已知 $Y \sim N(\mu,1)$, $X = e^Y$,设0.50,0.80,1.25,2.00是来自总体X的简单随机样本值,则 μ 的置信度

12.在正态总体 $X \sim N(\mu,1)$ 中抽取容量为100的样本,计算样本均值为5.32,设 $\alpha = 0.01$,假设

为0.95的置信区间为,根据此结果求EX的置信度为0.95的置信区间为.

 H_0 : $\mu = 5$, H_1 : $\mu = 4.8$, 则在此检验下犯第二类错误的概率为_____.

二、(15分)设随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} a(x+y)e^{-(x+y)}, & x, y, a > 0 \\ 0, 其他 \end{cases}$$

- (1)求常数a;
- (2)判断X与Y的独立性,并说明理由;
- (3)求Z = X + Y的概率密度函数和数学期望.

三、(12分)二维随机变量(X,Y)在区域{(x,y)|0 $\leq y \leq \sqrt{x}$,0 $\leq x \leq 1$ }上服从均匀分布,记 $U = \begin{cases} 0, & X \leq Y \\ 1, & Y \leq X \end{cases}$, $V = \begin{cases} 0, & X \leq 2Y \\ 1, & X \geq 2Y \end{cases}$, 求 $U \cap V$ 的相关系数.

四、(10分)从总体 $X \sim N(u,1)$ 选取一组容量为n的简单随机样本, S^2 为样本方差,证明: $\lim_{n\to\infty} P\{1-\varepsilon < S^2 < 1+\varepsilon\} = 1$.

五、(14分)设总体X的概率分布为 $X \sim \begin{pmatrix} 1 & 2 & 3 \\ 1-\theta\theta-\theta^2\theta^2 \end{pmatrix}$,其中 $0 < \theta < 1$,从总体X中选取容量

为n的简单随机样本, N_i 表示样本中等于i的个数(i=1,2,3).令 $T=\sum_{i=1}^{3}a_iN_i(a_i)$ 未知常数).

- (1)试求 θ 的极大似然估计量(用含N的式子表示);
- (2)若T为 θ 的无偏估计量,求T的方差.

六、(7分)某种导线,要求其电阻的标准差不超过 0.005Ω ,现从一批导线中选取11根,测得 $s=0.007\Omega$,设总体为正态分布,参数均未知问在显著水平为 $\alpha=0.025$ 下能否认为这批导线的标准差显著地增大?