Question Number	Scheme	Marks
8	$y = e^{3x} \sin 2x \qquad \frac{dy}{dx} = 2e^{3x} \cos 2x + 3e^{3x} \sin 2x$	M1A1
	$\frac{d^2 y}{dx^2} = \left(-4e^{3x}\sin 2x + 6e^{3x}\cos 2x\right) + \left(6e^{3x}\cos 2x + 9e^{3x}\sin 2x\right)$	M1A1A1
	$=12e^{3x}\cos 2x + 5e^{3x}\sin 2x$	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 6\frac{\mathrm{d}y}{\mathrm{d}x} + 13y$	
	$= 12e^{3x}\cos 2x + 5e^{3x}\sin 2x - 6\left(2e^{3x}\cos 2x + 3e^{3x}\sin 2x\right) + 13e^{3x}\sin 2x$	dM1
	$= 12e^{3x}\cos 2x + 5e^{3x}\sin 2x - 12e^{3x}\cos 2x - 18e^{3x}\sin 2x + 13e^{3x}\sin 2x$	ddM1
	=0 *	A1cso [8]
ALT	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{e}^{3x}\cos 2x + 3\mathrm{e}^{3x}\sin 2x$	M1A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{e}^{3x}\cos 2x + 3y$	
	$\frac{d^2 y}{dx^2} = \left(-4e^{3x}\sin 2x + 6e^{3x}\cos 2x\right) + 3\frac{dy}{dx}$	M1A1A1
	$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 13y = \left(-4e^{3x}\sin 2x + 6e^{3x}\cos 2x + 3\frac{dy}{dx}\right) - 6\frac{dy}{dx} + 13y$	dM1
	$= -13y + 6e^{3x}\cos 2x + 9e^{3x}\sin 2x - 3\frac{dy}{dx} + 13y$	
	$=-13y+3\frac{\mathrm{d}y}{\mathrm{d}x}-3\frac{\mathrm{d}y}{\mathrm{d}x}+13y=0$	ddM1A1cso [8]
M1	Attempt the product rule. 2 terms of the form $\pm ke^{3x}\cos 2x$ and $\pm le^{3x}\sin 2x$ with $k=1$ or 2, and $l=1$ or 3.	
A1	k = 1 or 2 and $l = 1$ or 3 Fully correct first derivative	
M1	Attempt the second derivative using the product rule <i>correctly</i> on either term. Must have	
A1 A1	at least one of the terms in the first derivative fully correct. A1 for each fully correct bracket	
dM1	Substitute their derivatives and y in $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 13y$ Depends on both previous M marks	
1 13 7 1	This and the following M mark may be awarded together.	
ddM1 A1cso	Remove the brackets Reach "0" from fully correct work.	
ALT M1A1	As above	
M1	Replace sin term with a y term and attempt the second derivative using the product rule	
A1A1	on first term. A1 Correct bracket A1 Correct second term	
dM1	As above	
ddM1 A1cso	Obtain an expression which is either all derivatives plus y terms or all trig terms Reach "0" from fully correct work	