

Capstone Project – 3 Classification "Cardiovascular Risk Prediction"

Presented By:
Mr. Hasnain Mazhar Rizvi

Points of Discussion

- 1. Problem Statement
- 2. Data Description
- 3. Data Preparation and Cleaning
- 4. EDA (Exploratory Data Analysis)
- 5. Hypothesis Testing
- 6. Feature Engineering
- 7. Model Implementation
- 8. Model Interpretation
- 9. Conclusion

1. Problem Statement

- Cardiovascular diseases (CVDs) are the major cause of mortality worldwide.
- The dataset is from an ongoing cardiovascular study on residents of the town of Framingham,

 Massachusetts. The classification goal is to predict whether the patient has a 10-year risk of

 future coronary heart disease (CHD). The dataset provides the patients' information. It includes

 over 4,000 records and 16 attributes. Each attribute is a potential risk factor. There are both

 demographic, behavioral, and medical risk factors.

- There are a total of **16 feature columns where 'TenYearCHD'** is the dependent variable column. The total number of observations(rows) are **3390.**
- There are **no duplicate rows** in the dataset.
- Also there are missing values in the columns education, cigs per day, BP meds, totChol, BMI, heart rate and glucose.
- Sum of all missing Values are 510.

Fields	Description	
Sex	gender	
Age	age	
education	The level of education of the patient	
is_smoking	Whether smoking currently or not	
Cigs_Per_Day	Cigarettes smoked per day	
BP_Meds	Whether taking BP meds or not	
Prevalent Stroke	If the patient has a history of stroke	
Prevalent hyp	If the patient has a history of hypertension	
Diabetes	Patient has diabetes or not	
Tot Chol	Cholesterol measure	
Sys BP	BP measure	
Dia BP	diastolic BP measure	
вмі	Body Mass Index	
Heart Rate	Heart Rate measure	
glucose	glucose level	
TenYearCHD	10-year risk of coronary heart disease CHD	

Demographic:

- Sex: male or female ("M" or "F")
- Age: Age of the patient (Continuous Although the recorded ages have been truncated to whole numbers, the concept of age is continuous)
- Education: The level of education of the patient (categorical values 1,2,3,4)

Behavioral:

- is_smoking: whether or not the patient is a current smoker ("YES" or "NO")
- Cigs Per Day: the number of cigarettes that the person smoked on average in one day.(can be considered continuous as one can have any number of cigarettes, even half a cigarette.)

Medical (history):

- BP Meds: whether or not the patient was on blood pressure medication (Nominal)
- Prevalent Stroke: whether or not the patient had previously had a stroke (Nominal)
- Prevalent Hyp: whether or not the patient was hypertensive (Nominal)
- Diabetes: whether or not the patient had diabetes (Nominal)

Medical (current):

- Tot Chol: total cholesterol level (Continuous)
- Sys BP: systolic blood pressure (Continuous)
- Dia BP: diastolic blood pressure (Continuous)
- BMI: Body Mass Index (Continuous)
- Heart Rate: heart rate (Continuous In medical research, variables such as heart rate though in fact discrete, yet are considered continuous because of large number of possible values.)
- Glucose: glucose level (Continuous)
- Predict variable (desired target):
- TenYearCHD: 10-year risk of coronary heart disease CHD(binary: "1", means "Yes", "0" means "No")

3. Data Preparation and Cleaning

- There are no duplicate rows in the dataset.
- There are missing values in the columns education, cigs per day, BP meds, totChol, BMI,
 heart rate and glucose.
- Changed the names of all the columns for ease of use.
- I have also defined the continuous variables, dependent variable and categorical variables for ease of plotting graphs.

4. EDA (Exploratory Data Analysis)

Ten Year CHD by Age

CHD probability is high for above 65+ aged peoples.

So, older people have a higher risk of having coronary heart disease in next 10 years.

Ten Year CHD by Sex

- The **gender distribution** is not even with high count for **females**. **53.2**% are there for **males** and **46.8**% for **females**.
- Men are generally at a higher risk of having coronary heart disease.

Ten Year CHD by Smoking

- The **negative cases** are **more** for the **non smokers** compared to the positive cases for non smokers.
- Statistically, **10 year risk of CHD** is **not dependent** on **smoking** with a 95% confidence.

Other Notable Observations

Patients who have high blood pressure and have been taking BP medication have comparatively higher risk of CHD.

Other Notable Observations

Patients who have a history of hypertension and had a stroke previously have comparatively higher risk of CHD.

Other Notable Observations

Similarly, patients with high cholesterol and glucose level (with diabetes) have higher risk of having CHD.

Correlation of features

- There is a **significant correlation** between **systolic BP** and **prevalent hypertension**.
- Similarly diastolic BP and systolic BP are highly correlated. Also glucose level and diabetes are correlated.

Hypothesis Testing

Null hypothesis: There is no association between education level and CHD outcome.

Alternate hypothesis: There is an association between education level and CHD outcome.

- I choose the chi-squared test
 of independence to test the
 hypothesis that the
 'education' column does not
 impact the outcome of
 chronic heart disease (CHD).
- In this case, both education level and CHD outcome are categorical variables.

ten_year_chd education	0	1
1.0	1135	256
2.0	872	118
3.0	479	70
4.0	319	54
p-value: 6.03	864674	9234552e-05

The p-value is significantly lower than 0.05 so we reject the null hypothesis.

Feature Engineering

- Al
- We Encounter some Missing Values so we have to handle it first.

 our categorical variables i have used simple imputer that imputes the null values with feature label that is most frequent in the feature column.
- In continuous variables, i have used KNN imputer which uses a unsupervised clustering algorithm to come up with values of the features.

Feature Engineering

Handling Outliers

Used the Interquartile Range (IQR) method to identify and remove outliers in the continuous columns (systolic_bp, diastolic_bp, total cholesterol, glucose etc.) of the dataset.

Distribution plot of glucose

Feature Engineering

- Handling Imbalanced Dataset
- After splitting data into train and test sets with ratio 80:20, i have used SMOTETomek links to handle the imbalanced dataset.
- By combining oversampling of the minority class with undersampling of the majority class, I was able to achieve a balanced dataset, where train set of size 4586 with 2712 samples of each of the class.

Model Implementation

Since we're trying to predict continuous variable, I trained various classification algorithms along with hyperparameter tuning and cross validation to get the best model.

- 1) Logistic Regression
- 2) Decision Tree
- 3) Random Forest
- 4) Support Vector Machine
- 5) Xtreme Gradient Boosting
- 6) Naive Bayes
- 7) Neural Network

1. Logistic Regression

2. Decision Tree

3. Random Forest

4. SVM (Support Vector Machine)

5. Xtreme Gradient Boosting

6. Naive Bayes

7. Neural Network

Selection of Best Model

- Removing the overfitted models which have recall, ROC-AUC, f1 scores for train as 1.
- Selected **recall** as the **primary evaluation metric**.

Model Interpretation

SHAP (SHapley Additive exPlanations)

Conclusion

- The Neural Network model (tuned) was chosen as the final prediction model due to its high recall score compare to the other models.
- Due to the presence of much missing/ null values in dataset, the accuracy is less. But, its ok because it not affects in life risk.

Thank You AlmaBetter!!!