КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

Кафедра Технологии строительных материалов, изделий и конструкций

ФИЗИКО-ХИМИЧЕСКАЯ МОДИФИКАЦИЯ ЭПОКСИДНЫХ ПОЛИМЕРОВ НАНОРАЗМЕРНЫМИ ДОБАВКАМИ

VI Международная научно-практическая конференция ГРАФЕН И РОДСТВЕННЫЕ СТРУКТУРЫ: СИНТЕЗ, ПРОИЗВОДСТВО И ПРИМЕНЕНИЕ 24 – 26 сентября 2025 года

Валиева Диляра Маратовна

Магистр

КГАСУ, г. Казань

Email: valieva.rec@gmail.com

Научный руководитель: профессор, д.т.н.

Абдрахманова Ляйля Абдулловна

Актуальность работы

Цель и задачи работы

Целью работы является модификация эпоксидных полимеров наноразмерными наполнителями различной природы и дисперсности.

Задачи работы:

- 1.Обоснование выбора нанодисперсных наполнителей в эпоксидных полимерах на основе анализа достижений в данной области исследований;
 - 2. Изучение морфологии и дисперсности химической природы нанодисперсных наполнителей;
- 3. Разработка способов совмещения компонентов в модифицированных эпоксидных композициях, выбор оптимальных концентраций;
- 4.Сравнительная оценка технологических и эксплуатационных характеристик разработанных модифицированных композиций;
- 5.Сравнительная оценка закономерностей модификации эпоксидных полимеров нанодисперсными частицами разной химической природы;
- 6. Некоторые практические рекомендации и экономическая целесообразность применения выбранных наполнителей и предлагаемых методов совмещения компонентов.

Объекты исследования

Технические характеристики базовых компонентов:

n		
Эпокси	пная	СМОПЯ
JIIUNCII	днал	CIVIUJIC

ЭД-20

№ п/п	Наименование показателя	Значение
1	Молекулярная масса, г/моль	390-430
2	Массовая доля эпоксидных групп,%	20-22,5
3	Плотность при T=25°C, г/см3	1,13
4	Динамическая вязкость, Па·с при 25°C	12-25
5	Массовая доля гидроксильных групп, %	1,7

$$CH_2 - CH - CH_3 - O - CH_2 - CH_2$$

Отвердитель

ТЭТА

№ п/п	Наименование показателя	Значение
1	Молекулярная масса, г/моль	146
2	Плотность при T=25°C, г/см3	0,98
3	Динамическая вязкость, мПа·с при 25°C	14
4	Температура кипения, °C	277
5	Аминное число мг (КОН/г)	1443

Технические характеристики ультрадисперсных и наноразмерных добавок:

Нанооксид цинка (ООО «Эмпилс-цинк»)

№ п/п	Наименование показателя	Значение
1	Внешний вид	Белый порошок
2	Кристаллическая фаза,%	98
3	Размер частиц, мкм	-
4	Размер частиц, нм	20-40
5	Размер частиц (РЧР, Horiba), мкм	3-5
6	Форма частиц	сферическая

Оксид графена (ООО «РусГрафен»)

№ п/п	Наименование показателя	Значение
1	Внешний вид	Черный порошок
2	Размер частиц (РЧР, Horiba), мкм	10-100
3	Толщина пластин, нм	5-15
4	Содержание монослоя,%	>80
5	Насыпная плотность, гр/см ³	2.0-2.5
6	Форма частиц	пластины

Методы испытаний и исследования

Методы испытаний

№ п/п	ГОСТ	Наименование
1	11262-2017	Пластмассы. Методы испытания на растяжение
2	4651-2014	Пластмассы. Метод испытания на сжатие
3	57834-2017	Композиты полимерные Метод определения прочности при сдвиге клеевого соединения
4	14760-69	Клеи. Методы испытания прочности при отрыве
5	4647-2015	Пластмассы. Метод определения ударной вязкости по Шарпи
6	11012-2017	Пластмассы. Метод испытания на абразивный износ
7	15139-69	Пластмассы. Методы определения плотности (объемной массы)
8	11012-2017	Пластмассы. Метод испытания на абразивный износ
9	4670-2015	Пластмассы. Определение твердости. Метод вдавливания шарика
10	32618-2014	Пластмассы. Термомеханический анализ

Методы исследований

№ п/п	Наименование
1	Определение размеров частиц и их распределение при помощи лазерного анализатора
2	Высокоразрешающая сканирующая электронная микроскопия
3	Определение степени конверсии методом экстрагирования в аппарате Сокслета
4	Определение термомеханических характеристик

Объекты исследования

Дифференциальные и интегральные кривые распределения частиц по размерам, определенные при помощи лазерного анализатора «Partica LA-950V2»

Нанооксид цинка

до УЗ-воздействия

после УЗ-воздействия в течение 1 мин

Микрофотографии частиц нанооксида цинка в масштабе: 1 мкм (а) и 100 нм (б)

Оксид графена

до УЗ-воздействия

после УЗ-воздействия в течение 1 мин

Микрофотографии частиц оксида графена в масштабе: 1 мкм (а) и 100 нм (б)

Алгоритм работы

Состав композиций

Базовые компоненты	Содержание, м.ч.				
ЭД - 20	100				
ТЭТА	12				
Наполнитель	Содержание, %				
Нанооксид цинка	0,1 0,5 0,7 1				
Оксид графена	0,01	0,1	0,5	1	

Режимы отверждения композиций:

- 1. При 17°C и 25 °C в течении 7-ми суток
- 2. При 25 °C в течении 24 ч с последующей термообработкой при 80 °C в течении 6 часов

Принципиальная схема устройства УЗ-ванны "Specos"

Методы введения наполнителей

Суспензия ацетона с частицами нанооксида цинка до (а) и после (б) УЗ обработки

Выбор метода введения наполнителей и режима отверждения модифицированных эпоксидных полимеров

Степень конверсии эпоксидных полимеров

	Степень конверсии, %						
Наполнитель	1 метод		2 метод		3 метод		
	I	II	I	II	I	II	
Без наполнителя	88,78 (I)			95,93 (II)			
Нанооксид цинка - 1%	88,98	97,02	85,94	95,72	87,61	97,20	
Оксид графена - 0,1%	86,61	95,22	87,29	95,64	84,62	95,58	

I – отверждение при температуре 16: 19°C (7 суток)

II – двухстадийное отверждение «24 часа при 17°С + 6 часов при 80°С»

Структура оксида графена [1]

Комплексообразование между Zn^{2+} , эпоксидом и аминогруппами отвердителя в системах, содержащих ZnO [2]

- 1. Губин С. П., Ткачёв С. В. Графен и материалы на его основе // РЭНСИТ. 2010. №1-2.
- 2. Ghaffari M., Ehsani M., Vandalvand M., Avazverdi E., Askari A., Goudarzi A. Studying the effect of microand nano-sized ZnO particles on the curing kinetic of epoxy/polyaminoamide system // Prog. Org. Coat. 2015. V. 89. P. 277–283.

Выбор метода введения наполнителей и режима отверждения модифицированных эпоксидных полимеров

Термомеханические кривые эпоксидных полимеров, отверждаемых при 16:19 °C (7 суток)

Условия эксперимента:

- удельная нагрузка на сжатие : 3 Н
- скорость подъема температуры:
- 3 °С/мин (до 225 °С)
- образцы диаметром 8 ± 0.5 мм и толщиной 3 ± 0.1 мм

(a) без наполнителя, (б) с нанооксидом цинка, (в) с оксидом графена

— ТМА (1 анализ)

— повторный ТМА образцов (2 анализ)

Прочность при сжатии эпоксидных полимеров с нанооксидом цинка (а) и оксидом графена (б)

(I – отверждение при температуре 16 : 19°C (7 суток); II – двухстадийное отверждение «24 часа при 17°C + 6 часов при 80°С»)

- – «1» (введение в смолу);
- – «2» (введение в отвердитель с УЗ);
- – «З» (введение в смесь смолы с отвердителем)

Физико-механические свойства модифицированных эпоксидных полимеров

Показатели прочности при сдвиге (а) и отрыве (б) модифицированных эпоксидных полимеров

■ - без наполнителя
 ■ - с нанооксидом цинка
 ■ - с оксидом графена
 «1» - введение в смолу
 «2» - введение в отвердитель с УЗ

Показатели истирания, твердости и плотности эпоксидных полимеров

Композиция	Показатель истирания, мм ³ /м Метод введен		H	дость, /мм ²	Плотность, г/см ³
	1	д введен 2	1	2	
Без наполнителя	10,45		10,45 482		1,19
Нанооксид цинка -1%	9,78	9,38	508	499	1,21
Оксид графена - 0,1%	9,40	9,89	576	567	1,19

Время гелеобразования эпоксидных композиций

	Время гелеобразования, мин				
Композиция	Метод введения наполнителя				
	В смолу	В отвердитель с УЗ			
Без наполнителя	25				
Нанооксид цинка -1%	28	27			
Оксид графена - 0,1%	20 18				

Особенности структуры и свойств модифицированных эпоксидных полимеров

(а) без наполнителя, (б) с нанооксидом цинка, (в) с оксидом графена $\blacksquare - «1»$ (введение в смолу) $\blacksquare - «2»$ (введение в отвердитель с УЗ)

Данные обработки термомеханических кривых

Композиция	T _{cτ} , °C	ΔT _{cτ} , °C	ε, %	Е, H/см ²	ү _{е*} 10 ⁻⁵ , моль/г	
Без наполнителя	140	45	8,33	93,59	7,63	
(а) Введение наполнителя в смолу						
Нанооксид цинка - 1 %	157	25	6,17	126,48	9,71	
Оксид графена - 0,1 %	160	42	6,43	121,23	9,44	
(б) Введение наполнителя в отвердитель с УЗ обработкой						
Нанооксид цинка - 1 %	145	45	6,07	128,56	10,2	
Оксид графена - 0,1 %	157	36	6,50	119,99	9,43	

Микрофотографии образцов (в масштабе 200 нм) без наполнителя и с наполнителями, введенными по методу «1» и «2»

(а) без наполнителя, (б) с нанооксидом цинка, (в) с оксидом графена

Особенности структуры и свойств модифицированных эпоксидных полимеров

Сводная таблица характеристик модифицированных эпоксидных полимеров

№ п/п	Технические характеристики	Контрольны й	Наполнитель			
			Нанооксид цинка - 1 %		Оксид графена – 0,1%	
			Метод введения наполнителя			
			I	II	I	II
1	Плотность, г/см ³	1,19	1,21	1,21	1,19	1,19
2	Время гелеобразования (при 25°C), мин	25	28	27	20	18
3	Степень конверсии, %	95,93	97,02	95,72	94,22	95,64
4	Прочность при сжатии, МПа	111,45	118,68	119,07	116,73	117,65
5	Твердость , МПа	482	508	499	576	567
6	Прочность при сдвиге, МПа	2,16	2,99	2,57	2,06	2,25
7	Прочность при адгезионном отрыве, МПа	2,22	2,15	2,72	4,42	4,81
8	Показатель истирания, мм ³ /м	10,45	9,78	9,38	9,40	9,89
9	Температура стеклования, °С	140	157	145	160	157
10	Эффективная плотность узлов сетки, үе*10-5, моль/г	7,63	9,71	10,2	9,44	9,43

Микрофотографии эпоксидных полимеров (масштаб 10 мкм)

(а) без наполнителя, (б) с нанооксидом цинка, (в) с оксидом графена

Технологические рекомендации производства модифицированных эпоксидных композиций

Выводы по работе

- 1. Модификация наноразмерными добавками сопровождается неравномерным распределением частиц в связующем, что требует усовершенствования технологии получения эпоксидных композиций. Наилучшим методом интенсификации процессов является ультразвуковая обработка.
- 2. Наиболее эффективные методы распределения наноразмерных частиц: традиционное введение в связующее и распределение в отвердителе с УЗ обработкой. В присутствии оксида графена (0,1%) адгезионная прочность возрастает в 2 раза, твердость увеличивается на 15%, а показатель истирания снижается на 10%.
- 3. Эпоксидные композиты с частицами нанооксида цинка и оксида графена характеризуются меньшей величиной высокоэластической деформации и большим значением модуля высокоэластичности по сравнению с ненаполненной композицией.
- 4. Определены составы эпоксидных полимеров с повышенными эксплуатационными свойствами, предназначенные для различных видов материалов строительной индустрии, разработаны две схемы подготовки связующих для получения изделий.

Спасибо за внимание!

Схема устройства экстрактора Сокслета

Общий вид установки ТМА