32.2 Show that if $\prod X_{\alpha}$ is Hausdorff, or regular, or normal, then so is X_{α} . (Assume that each X_{α} is non-empty).

Solution Define $X := \prod X_{\alpha}$.

Let X be Hausdorff.

Let $x \neq y \in X_{\alpha}$. Then consider the two points x' and y' which are equal everywhere except the α -th coordinate, where $x'_{\alpha} = x$ and $y'_{\alpha} = y$.

Since X is Hausdorff, we can separate x' and y' by U and V open and disjoint. $U_{\alpha} \cap V_{\alpha} = \emptyset$ necessarily, since that is the only coordinate where x' and y' differ. Since $x \in U_{\alpha}$ and $y \in V_{\alpha}$, this shows that X_{α} is also Hausdorff.

Let X be regular.

Let $x \in X_{\alpha}$ and $A \subseteq X_{\alpha}$ be closed with $x \notin A$. Consider $x' \in X$ with $x'_{\alpha} = x$, and $A' = A \times \prod_{\beta \neq \alpha} X_{\beta}$, which is closed by the same argument as below.

Since X is regular, we can separate x' and A' with open disjoint sets U and V. $U_{\alpha} \cap V_{\alpha} = \emptyset$ necessarily, since $V_{\beta} = X_{\beta}$ for all $\beta \neq \alpha$, which means that $U_{\beta} \cap V_{\beta} \neq \emptyset$. Hence, for $U \cap V = \emptyset$, we need $U_{\alpha} \cap V_{\alpha} = \emptyset$. Then $X \in U_{\alpha}$ and $X \subseteq V_{\alpha}$, so X is regular.

Let X be normal.

Let A and B be disjoint closed sets in X_{α} . Then notice that the sets

$$A' = A \times \prod_{\beta \neq \alpha} X_{\beta}$$
 and $B' = B \times \prod_{\beta \neq \alpha} X_{\alpha}$

are disjoint, since A and B are disjoint. Moreover, A' and B' are both closed, since

$${}^{c}A' = {}^{c}A \times \prod_{\beta \neq \alpha} X_{\beta}$$
 and ${}^{c}B' = {}^{c}B \times \prod_{\beta \neq \alpha} X_{\beta}$

are basic open sets in the product topology.

Since X is regular, there exist open sets U and V open and disjoint which separate A' and B'. We necessarily have that $U_{\alpha} \cap V_{\alpha} = \emptyset$ since every other component U_{β} and V_{β} are all of X_{β} . Then $A \subseteq U_{\alpha}$ and $B \subseteq V_{\alpha}$, so X_{α} is regular.

32.3 Show that every locally compact Hausdorff space is regular.

Solution Let X be a locally compact Hausdorff space, and let $x \in X$ and $A \subseteq X$ be a closed set which doesn't contain x.

Since X is locally compact, there exists $C \subseteq X$ compact and $U_1 \subseteq X$ open such that $x \in U_1 \subseteq C$.

Because X is Hausdorff, C is closed, so ${}^{c}C$ is open and contains "most" if not all of A. Also note that $U_1 \subseteq C \implies U_1 \cap {}^{c}C = \emptyset$.

If $A \cap C$ is non-empty, then it is a closed subset of C compact, so it is compact also and doesn't contain x. Since X is Hausdorff, we can separate x and $A \cap C$ by disjoint open sets $U_2 \ni x$ and $W \supseteq A \cap C$.

Thus, if we take $U = U_1 \cap U_2$ and $V = {}^{c}C \cup W$, then these sets separate x and A.

They are both sets since open sets are closed under finite unions and intersections. Moreover,

$$U \cap V = (U_1 \cap U_2) \cap ({}^{c}C \cup W) \subseteq (U_1 \cap {}^{c}C) \cup (U_2 \cap W) = \emptyset,$$

so X is regular.

32.6 A space X is said to be completely normal if every subspace of X is normal. Show that X is completely normal if and only if for every pair A, B of separated sets in X (that is, sets such that $\overline{A} \cap B = \emptyset$ and $A \cap \overline{B} = \emptyset$), there exist disjoint open sets containing them.

[*Hint*: If X is completely normal, consider $X - (\overline{A} \cap \overline{B})$.]

Solution " \Longrightarrow "

Let X be completely normal.

Let A, B be separated sets in X, and consider the subspace $X - (\overline{A} \cap \overline{B}) = X \cap ({}^{c}(\overline{A}) \cup {}^{c}(\overline{B}))$. By definition, this subspace is normal. Notice that

$$\overline{A} \cap X \cap ({}^{c}(\overline{A}) \cup {}^{c}(\overline{B})) = \overline{A} \cap {}^{c}(\overline{B}) = \overline{A} - \overline{B}.$$

Similarly, the intersection of \overline{B} with this subspace is $\overline{B} - \overline{A}$. By definition, these two sets are closed in the subspace. Moreover,

$$(\overline{A} - \overline{B}) \cap (\overline{B} - \overline{A}) = \emptyset,$$

so since the subspace $X - (\overline{A} \cap \overline{B})$ is normal, there exist open sets U' and V' in X such that

$$U' \cap V' \cap (X - (\overline{A} \cap \overline{B})) = (U' \cap V') - (\overline{A} \cap \overline{B}) = \emptyset,$$

 $\overline{A} - \overline{B} \subseteq U'$, and $\overline{B} - \overline{A} \subseteq V'$.

Thus, we can take $U = U' - \overline{B}$ and $V = V' - \overline{A}$, which are open sets in X, since U' and V' are open in X, and because \overline{A} and \overline{B} are closed in X.

Since A and B are separated, $A \subseteq {}^{c}(\overline{B})$, so

$$A \cap U = A \cap U' \cap {}^{c}(\overline{B}) = A \cap {}^{c}(\overline{B}) = A \implies A \subseteq U.$$

Similarly, we have that $B \subseteq V$. Lastly,

$$U \cap V = U' \cap V' \cap {}^{c}(\overline{A}) \cap {}^{c}(\overline{B}) = (U' \cap V') - (\overline{A} \cup \overline{B}) \subseteq (U' \cap V') - (\overline{A} \cap \overline{B}) = \emptyset,$$

so U and V satisfy the conditions of the problem.

" 🚐 "

Let $S \subseteq X$ be a subspace of X, and let A, B be closed, disjoint sets in S. By definition, there exist closed sets $C, D \subseteq X$ such that $A = C \cap S$ and $B = D \cap S$.

We claim that A and B are separated.

Suppose they were not. Assume, without loss of generality, that $\overline{A} \cap B \neq \emptyset$, where \overline{A} is the closure of A is X. We can switch A and B and form the same following argument for $A \cap \overline{B} \neq \emptyset$.

Notice that $\overline{A} \subseteq C$, since C is a closed set containing A. But this implies that $\overline{A} \cap B \subseteq C$, which means

$$A \cap B = S \cap C \cap B \supseteq S \cap \overline{A} \cap B = \overline{A} \cap B \neq \emptyset$$

This is a contradiction, since we assumed A and B to be disjoint. Hence, $\overline{A} \cap B = \emptyset$.

By the same argument, we find that $A \cap \overline{B} = \emptyset$ also, so A and B are separated in X. Hence, by assumption, there exist disjoint open sets U and V in X such that $A \subseteq U$ and $B \subseteq V$.

The corresponding disjoint open sets in S are $S \cap U$ and $S \cap V$, which also satisfy $A \subseteq S \cap U$, $B \subseteq S \cap V$, and $S \cap U \cap V = \emptyset$, so S is normal.

Thus, X is completely normal, since S was arbitrary.

33.4 Recall that A is a " G_{δ} set" in X if A is the intersection of a countable collection of open sets of X.

Theorem. Let X be normal. There exists a continuous function $F: X \to [0,1]$ such that f(x) = 0 for $x \in A$, and f(x) > 0 for $x \notin A$, if and only if A is a closed G_{δ} set in X.

Solution " \Longrightarrow "

Let $F: X \to [0,1]$ be a continuous function such that $f(x) = 0 \iff x \in A$.

Notice that for each $n \in \mathbb{N}$, the set [0, 1/n) is open in [0, 1]. Hence, since F is continuous, $F^{-1}([0, 1/n))$ is open. Then

$$A = F^{-1}(\{0\}) = F^{-1}\left(\bigcap_{n=1}^{\infty} \left[0, \frac{1}{n}\right)\right) = \bigcap_{n=1}^{\infty} F^{-1}\left(\left[0, \frac{1}{n}\right)\right),$$

so A is G_{δ} .

Moreover $\{0\}$ is closed in [0,1], so since F is continuous, we have $F^{-1}(\{0\}) = A$ is closed also.

"←

Let A be a closed G_{δ} set in X. By definition, we can write $A = \bigcap_{n=1}^{\infty} U'_n$, for some open sets $U'_n \subseteq X$. We can define U_n as follows:

Let $U_1 = U_1'$. By normality of X, for each $n \geq 1$, we can find U_n so that

$$A \subseteq U_n = \bigcap_{i=1}^n U_i \subseteq \overline{U_n} \subseteq \bigcap_{i=1}^n U_i'.$$

In other words, at each step, we can find $U_n \subseteq U_{n-1}$ such that U_n and its closure lies between A and $\bigcap_{i=1}^n U_i'$.

Notice that with this construction, we have

$$A \subseteq \bigcap_{n=1}^{\infty} U_n \subseteq \bigcap_{n=1}^{\infty} U'_n = A,$$

so we have a new representation of A as a G_{δ} set.

Take $V_{1/n} = U_n$ for all $n \ge 1$. As in the proof of Urysohn's lemma, for each interval [1/(n+1), 1/n], we can find V_q open such that $\overline{V_q} \subseteq V_r$ whenever $1/(n+1) \le q < r \le 1/n$. Thus, we have a collection $(V_q)_{q \in \mathbb{Q}}$, which satisfies $A \subseteq V_q \ \forall q$ and $A \subseteq \overline{V_q} \subseteq V_r$ whenever q < r.

Define $F: X \to [0,1]$ via $F(x) = \inf \{ q \in \mathbb{Q} \cap (0,1] \mid x \in U_q \}$, which is continuous, using the same argument as in Urysohn's lemma. We claim that F satisfies the statement theorem.

Let $x \in A$. Then $x \in V_q$ for every q. In particular, $x \in V_{1/n}$ for every n, so $0 \le F(x) \le 1/n$ for all n, which implies that F(x) = 0.

If $x \notin A$, then there exists $n \ge 1$ such that $x \notin \overline{V_{1/n}}$, so $F(x) \ge 1/n > 0$.

Thus, F satisfies the conditions of the theorem, as desired.

- **33.8** Let X be completely regular; let A and B be disjoint closed subsets of X. Show that if A is compact, there is a continuous function $f: X \to [0,1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$.
- **Solution** By definition, singleton sets are closed, and for each $x \in X$ and $A \subseteq X$ closed not containing x, there exists a continuous function $f: X \to [0,1]$ such that f(x) = 1 and $f(A) = \{0\}$.

Since X is completely regular, for each $a \in A$, there exists a continuous function $f_a \colon X \to [0,1]$ such that $f_a(a) = 0$ and $f(B) = \{1\}$.

Define $U_a = f_a^{-1}([0, 1/2))$, which are open sets that cover A, since $f_a(a) = 0$ for all $a \in A$. Since A is compact, there exist a_1, \ldots, a_n such that U_{a_1}, \ldots, U_{a_n} cover A.

Consider $g(x) = \min_{1 \le i \le n} f_{a_i}(x)$. By definition of U_a , we have that $0 \le g(x) < 1/2$ for all $a \in A$. Moreover, g is continuous, since the minimum of a finite number of continuous functions is continuous. Indeed, if for some continuous functions f, g, if we have $f(x) < g(x) \iff f(x) - g(x) < 0$, then since a difference of continuous functions is continuous, f < g on an open neighborhood around x. We can apply this inductively to f_{a_1}, \ldots, f_{a_n} to see that g is continuous also.

Finally, take $f(x) = 2 \max\{g(x), 1/2\} - 1$. Notice that on B, g is identically 1, so B, f(x) = 2 - 1 = 1. Moreover, on A, $0 \le g(x) < 1/2$, so f(x) = 1 - 1 = 0. As minimums over finitely many continuous functions are continuous, f is continuous, as desired.

- 1 Consider the set $H = \{(x,y) \in \mathbb{R}^2 \mid y \geq 0\}$, endowed with the unique topology such that the subspace topology on $\{(x,y) \in \mathbb{R}^2 \mid y > 0\}$ has the subspace topology on \mathbb{R}^2 and for which any (x,0) has a basis of open neighborhoods of the form $\{(x,0)\} \cup B((x,\frac{r}{2}),\frac{r}{2})$, where B((x,y),r) is the usual open ball of radius r about (x,y) in \mathbb{R}^2 . Prove or disprove each of the following:
 - a. H is regular,
 - b. H is separable: i.e., it has a countable dense subset,
 - c. H is Lindelöf: i.e., every open cover of H has a countable subcover,
 - d. H is normal,
 - e. H is first-countable,
 - f. H is locally compact.
- **Solution** a. $\overset{\circ}{H}$ is regular since \mathbb{R}^2 is regular, so we only need to prove this for when our point or our closed set belongs to $\mathbb{R} \times \{0\}$.
 - $(a,b) \in \overset{\circ}{H}$ and $A \subseteq \mathbb{R} \times \{0\}$:

Take B((a,b),r) such that the ball lies completely in H. Then for each $(x,0) \in A$, we can find a basic open neighborhood whose ball is tangent to our original ball by shrinking the radius. Taking U = B((a,b),r) and V to be the union of those balls, these give us our separation.

 $(a,b) \in \mathbb{R} \times \{0\} \text{ and } A \subseteq \overset{\circ}{H}$:

In \mathbb{R}^2 , we can separate (a,b) and A with open sets U and V. Projecting these sets onto H, we can then find a basic open neighborhood W of (a,b) contained in U by making the radius of the ball sufficiently small. Then $W \cap V \subseteq V \cap W = \emptyset$, so they give us our separation.

 $(a,b) \in R \times \{0\}$ and $A \subseteq \mathbb{R} \times \{0\}$:

We can use the same argument as the first case.

Hence, H is regular.

- b. Consider $\mathbb{Q}^2 \cap [0, \infty)$, which is countable and dense in H, since \mathbb{Q} is countable and dense in \mathbb{R} .
- c. Consider the open cover $\{\overset{\circ}{H}\}\cup\bigcup_{x\in\mathbb{R}}\{\{(x,0)\}\}\cup\{B((x,1),1)\}$. This has no countable subcover because in order to get the line $\mathbb{R}\times\{0\}$ in any union, we must union over all the real numbers (which are uncountable), since the only open covers of (x,0) contain no other points on the set $\mathbb{R}\times\{0\}$.
- \mathbf{d} . H is not normal.

e. Let $(x,y) \in \overset{\circ}{H}$. Then we can take the balls B((x,y),1/n) for all $n \geq 1$ to get a countable neighborhood basis of x, since open balls form a basis in \mathbb{R}^2 .

Let $(x,0) \in H$. We can take the sets $\{(x,0)\} \cup B((x,1/n),1/n)$ for all $n \geq 1$. This is a countable neighborhood basis since if $r_1 < r_2$, then $B((x,r_1),r_1) \subseteq B((x,r_2),r_2)$, by the triangle inequality.

In particular, given any open neighborhood U of (x,0), there exists r>0 such that $\{(x,0)\}\cup B((x,r),r)\subseteq U$, since these sets form a basis of open neighborhoods for (x,0). By the Archimedean principle, there exists $n\geq 1$ such that 1/n< r, so which means $B((x,1/n),1/n)\subseteq U$, so $\{(x,0)\}\cup B((x,1/n),1/n)$ is a countable neighborhood basis.

Hence, H is first-countable.

f. Consider the point (0,0). Suppose H is locally compact, which means that there exists a compact neighborhood C of (0,0). Then there exists some r>0 such that $\{(0,0)\}\cup B((0,r),r)\subseteq C$. Notice that

$$\partial B((0,r/2),r/2) = \overline{B((0,r/2),r/2)} - B((0,r/2),r/2) \subseteq B((0,r),r),$$

so $\partial B((0,r/2),r/2)$ is a closed subset of C compact, which means that $\partial B((0,r/2),r/2)$ is compact also. Note that the boundary of a ball with a point removed is not compact. Indeed, it is homeomorphic to \mathbb{R} via stereographic projection, which is not compact.

Then consider $\{(0,0)\} \cup B((0,r/4),r/4)$, which only covers the point (0,0) on the boundary. The rest of the circle is not compact, so we can find an open cover which does not admit a finite subcover, which shows that $\partial B((0,r/2),r/2)$ is not compact. This is a contradiction, so H is not locally compact.