Notes for Log-Concave Polynomials II

Xiaoyu Chen

1 背景知识

这篇文章中涉及了大量我以往不太了解的技术,这里集中做一个整理.为了节约时间,我会略过所有我能马上反应过来的推导.并且,为了简化工作,尽量省略了所有的交叉引用,如果发现后面有地方的证明看不过去,可以去翻前面的结论.

1.1 线性代数

1.1.1 Schur Product Theorem

Fact 1.
$$tr(AB^T) = \sum_{i,j=1}^{n} A_{ij} B_{ij}$$

proof.
$$\operatorname{tr}(AB^T) = \sum_{i=1}^{n} (AB^T)_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} B_{ji}^T = \sum_{i,j=1}^{n} A_{ij} B_{ij}$$

Fact 2. $x^*(A \circ B)y = \operatorname{tr}((\operatorname{diag} \overline{x})A(\operatorname{diag} y)B^T)$

proof. 首先可以发现: $[(\operatorname{diag} \overline{x})A]_{ij} = \sum_{k=1}^{n} (\operatorname{diag} \overline{x})_{ik} A_{kj} = \overline{x}_i A_{ij}$. 同理有: $[B(\operatorname{diag} y)]_{ij} = B_{ij} y_j$. 所以:

$$\operatorname{tr}((\operatorname{diag}\,\overline{x})A(\operatorname{diag}\,y)B^T) = \sum_{i,j=1}^n [(\operatorname{diag}\,\overline{x})A]_{ij}[B(\operatorname{diag}\,y)]_{ij}$$

$$= \sum_{i,j=1}^n \overline{x}_i A_{ij} B_{ij} y_j$$

$$= \sum_{i,j=1}^n \overline{x}_i (A \circ B)_{ij} y_j$$

$$= x^* (A \circ B) y$$

Fact 3. 如果矩阵 B 是一个 Hermitian 阵, 则 $B^{1/2}$ 存在.

proof. 因为 B 是一个 Hermitian 阵, 所以存在 P, 使得 $B = P\Lambda P^{-1}(\Lambda$ 是一个对角阵). 这个时候显然, $B^{1/2} = P\Lambda^{1/2}P^{-1}$.

Fact 4. tr(ABC) = tr(BCA)

proof.

$$tr(ABC) = \sum_{i} [ABC]_{ii} = \sum_{i,j,k} A_{ij} B_{jk} C_{ki} = \sum_{i,j,k} C_{kj} A_{ij} B_{jk} = tr(CAB)$$

Theorem 1 (Schur Product Theorem). 如果 $A, B \in \mathbb{R}^{n \times n}$ 都是半正定的,则 $A \circ B$ 也是半正定的.

 \triangle 注: $A \circ B_{ij} = A_{ij}B_{ij}$

 \triangle 注: 当人们在讨论正定或者半正定的矩阵的时候, 一般都默认这些矩阵是 Hermitian 阵 (这个约定可以在 wiki 上关于正定矩阵的定义发现)

proof.

$$x^*(A \circ B)x = \operatorname{tr}((\operatorname{diag} \overline{x})A(\operatorname{diag} x)B^T)$$

 $= \operatorname{tr}((\operatorname{diag} \overline{x})A(\operatorname{diag} x)\overline{B}), \quad B \text{ is hermitian}$
 $= \operatorname{tr}(\overline{B}^{1/2}(\operatorname{diag} \overline{x})A(\operatorname{diag} x)\overline{B}^{1/2})$
 $= \operatorname{tr}(C^*AC), \quad 其中 C = (\operatorname{diag} x)\overline{B}^{1/2}$

因为 A 半正定, 所以令 y=Cx 可得 $y^*Ay\geq 0$. 这也说明 C^*AC 半正定, 所以 $\operatorname{tr}(C^*AC)\geq 0$. 所以 $x^*(A\circ B)x\geq 0$, 所以 $A\circ B$ 半正定.

1.1.2 Positive Matrix

下面来学习一些关于 positive matrix 的结果.

Define 1 (positive matrix). 如果对于一个矩阵 A, 有 $A_{ij} > 0$, $\forall i, j$, 则说 A 是一个 positive matrix. \triangle 注: 如果 A 是正项矩阵, 计作 A > 0. 如果 x 是正项向量, 计作 x > 0.

Define 2 (谱半径). 矩阵 A 的谱半径定义为 $\rho(A) = \max\{|\lambda| : \lambda \in A \text{ 的一个特征值}\}$

Define 3. 令 x 是一个向量,则 |x| 是一个向量,且 $|x|_i = |x_i|$.

△ 注: 这里在复数域 \mathbb{C} 上, 所以对于 $a \in \mathbb{C}$, |a| 指的是 a 的模长.

Fact 5. 对于 $\forall x \in \mathbb{C}^n$, 都 $\exists \theta \in \mathbb{R}$, 使得 $e^{-i\theta}x = |x|$.

证明. 这个结论是复数乘法的几何意义的一个应用. 欧拉公式告诉我们, 两个复数相乘, 结果是模长相乘, 夹角相加. 因为所有的复数都能被写成 $re^{i\theta}$ 的形式, 其中 r 是模长, θ 是夹角. 所以, 如果我们想知道一个复数 x 的模长, 我们可以通过将其旋转到实轴正半轴来实现, 旋转的操作可以有某个单位长度的复数来做到, 具体来说, 如果 $x = re^{i\theta}$, 我们只需要给他乘上一个 $e^{-i\theta}$ 即可.

Fact 6. $x \in \mathbb{C}^n$, $|\sum_i x_i| \le \sum_i |x_i|$. 当 $\exists \theta \in \mathbb{R}$, 使得 $e^{-i\theta}x = |x|$ 时取等.

△注: 这个式子可以看成绝对值不等式在复数域和高维向量空间的推广.

证明. 首先, 不难发现, $\sum_{i} x_i \in \mathbb{C}$. 所以由上面的结论, 就 $\exists \theta$, 使得 $e^{-i\theta}(\sum_{i} x_i) = |\sum_{i} x_i|$. 所以

$$|\sum_{i} x_{i}| = e^{-i\theta} (\sum_{i} x_{i})$$

$$= \operatorname{Re} \left[e^{-i\theta} (\sum_{i} x_{i}) \right]$$

$$= \sum_{j} \operatorname{Re} \left[e^{-i\theta} x_{j} \right]$$

$$\leq \sum_{j} |e^{-i\theta} x_{j}|$$

$$= \sum_{j} |x_{j}|$$

从上面的式子,不难发现,这个式子如果要取到等号,则 $\operatorname{Re}\left[e^{-i\theta}x_{j}\right]=|x_{j}|, \forall j$. 这个时候显然就有 $e^{-i\theta}x_j = |x_j|, \forall j$. 也就是说, 如果要取等号, 则有 $e^{-i\theta}x = |x|$.

Fact 7. $|Ax| \le |A||x|$

证明.

$$|Ax|_{k} = |\sum_{i} A_{ki} x_{i}|$$

$$\leq \sum_{i} |A_{ki} x_{i}|$$

$$= \sum_{i} |A_{ki}| |x_{i}| = [|A| |x|]_{k}$$

Lemma 1. 令 A 是一个 positive matrix. λ, x 是 A 的一个特征值对, 且 $|\lambda| = \rho(A)$. 则有 |x| > 0 且有 $A|x| = \rho(A)|x|$, 且 $\exists \theta$ 使得 $e^{i\theta}x = |x|$.

proof. 因为 A > 0, 所以直接就有 z = A|x| > 0. 所以

$$z = A|x| = |A||x| \ge |Ax| = |\lambda x| = |\lambda||x| = \rho(A)|x|$$

. 即 $z = A|x| \ge \rho(A)|x|$. 这个时候不妨设 $y = z - \rho(A)|x| \ge 0$.

- (1) 如果 y = 0, 则 $\rho(A)|x| = A|x| > 0$, 所以 $\rho(A) > 0$, |x| > 0.

(2) 如果 y > 0, 则 $Ay = Az - \rho(A)z > 0$. 所以 $Az > \rho(A)z$. 这和 $\rho(A)$ 的定义矛盾了. \triangle 注: $\lambda_{\max} = \max_{x \neq 0} \frac{x^*Ax}{x^*x}$, 所以上面 (2) 中的现象会导致 $\frac{z^*Az}{z^*z} > \rho(A)$, 即 $\lambda_{\max} > \rho(A)$.

综合 (1), (2) 两点, 有 $A|x| = \rho(A)|x|$, 且 $\rho(A) > 0$, |x| > 0. 从 $A|x| = \rho(A)|x|$, 可以知道

$$|\sum_{i} A_{ki} x_i| = \sum_{i} |A_{ki} x_i|, \quad \forall k$$

这时对于某个固定的 k, 有 $∃\theta ∈ \mathbb{R}$, 使得

$$e^{-i\theta}A_{kj}x_j = |A_{kj}||x_j|, \quad \forall j$$

因为 A > 0, 所以

$$e^{-i\theta}x_j = |x_j|, \quad \forall j$$

 $, \; \mathbb{P} e^{-i\theta} x = |x|.$

Lemma 2. $A \in \mathbb{R}^{n \times n}, A > 0$,则有,A 关于 $\rho(A)$ 的几何重数是 1.

proof. 设有 $w, z \in \mathbb{C}^n$, 且有 $^{Aw=\rho(A)w}_{Az=\rho(A)z}$. 由前面的结论可知:

- (1) $\exists \theta_1 \in \mathbb{R}$ 使得 $p = e^{-i\theta_1}z > 0$, 且 $Ap = \rho(A)p$.
- (2) $\exists \theta_2 \in \mathbb{R}$ 使得 $q = e^{-i\theta_2}w > 0$, 且 $Aq = \rho(A)q$.

这个时候, 不妨设 $\beta = \min_{1 \le i \le n} \frac{q_i}{p_i}, r = q - \beta p$. 这时 $r \ge 0$ 且 r 至少有一个地方为 0.

如果 $r \neq 0$, 则

$$0 < Ar = A(q - \beta p) = \rho(A)q - \beta \rho(A)p = \rho(A)r$$

所以 $\rho(A) > 0, r > 0$, 这和 r 上有一个地方为 0 有矛盾.

若果 r = 0, 则 $q = \beta p$.

$$e^{-i\theta_2}w = \beta e^{-i\theta_1}z$$
$$w = \beta e^{-i(\theta_1 - \theta_2)}z$$

故 w 和 z 只呈常数倍关系.

将上面两个引理的结论收集起来, 就能得到下面定理.

Theorem 2 (Perron-Frobenius Theorem). 令 $A \in \mathbb{R}^{n \times n}, A > 0$. 则 A 有一个严格为正的特征值 $\lambda = \rho(A)$. 且 λ 对应的特征向量 x > 0. A 关于 λ 的几何重数是 1.

1.1.3 特征值和子空间中的向量

Fact 8. 对于一个矩阵 A, 我们可以将他的特征值从小打到排列:

$$\lambda_{\min} = \lambda_1 < \lambda_2 < \dots < \lambda_{n-1} < \lambda_n = \lambda_{\max}$$

Fact 9. 对于 Hermitian 矩阵来说, 我们有 n 个相互正交的特征向量

Theorem 3 (Rayleigh theorem). 假设有 $1 \leq i_1 \leq \cdots \leq i_k \leq n$. 且有 $x_{i_1}, x_{i_2}, \cdots, x_{i_k} \in \mathbb{C}^n$ 相互正交. 且有 $Ax_{i_p} = \lambda_{i_p} x_{i_p}, p = 1, 2, \cdots, k$. 然后令 $S = \operatorname{Span}\{x_{i_1}, x_{i_2}, \cdots x_{i_k}\}$ 则有:

$$\lambda_{i_1} = \min_{\substack{x \neq 0 \\ x \in S}} \frac{x^* A x}{x^* x} = \min_{\substack{x \in S \\ ||x||_2 = 1}} x^* A x$$
$$\leq \max_{\substack{x \in S \\ ||x||_2 = 1}} x^* A x = \max_{\substack{x \neq 0 \\ x \in S}} \frac{x^* A x}{x^* x} = \lambda_{i_k}$$

证明. 对于 $\forall x \in S, ||x||_2 = 1$, 我们有:

$$x = \alpha_1 x_{i_1} + \alpha_2 x_{i_2} + \dots + \alpha_k x_{i_k}$$

且

$$\begin{split} x^*x &= 1 \\ 1 &= \sum_{j=1}^k (\alpha_j x_{i_j})^* \alpha_j x_{i_j} \\ &= \sum_{j=1}^k \overline{\alpha_j} \alpha_j x_{i_j}^* x_{i_j} \\ &= |\alpha_1|^2 + |\alpha_2|^2 + \dots + |\alpha_k|^2, \quad \text{这里不妨 } x_{i_j} \text{ 都是单位长度向量} \end{split}$$

又有

$$x^*Ax = (\alpha_1 x_{i_1} + \dots + \alpha_k x_{i_k})^* (\alpha_1 \lambda_{i_1} x_{i_1} + \dots + \alpha_k \lambda_{i_k} x_{i_k})$$
$$= |\alpha_1|^2 \lambda_{i_1} + \dots + |\alpha_k|^2 \lambda_{i_k}$$

因为 $|\alpha_1|^2 + \cdots + |\alpha_k|^2 = 1$,所以 x^*Ax 是 $\lambda_{i_1}, \cdots, \lambda_{i_k}$ 的一个凸组合. 所以,当然有 $\lambda_{i_1} \leq x^*Ax \leq \lambda_{i_k}$,并且刚好可以取到端点.

Lemma 3 (空间交). 令 S_1, S_2, \dots, S_k 是 $V = \mathbb{C}^n$ 的子空间. 如 $\delta = \dim S_1 + \dim S_2 + \dots \dim S_k - (k-1)n \ge 1$,则 $S_1 \cap S_2 \cap \dots \cap S_k$ 中有 δ 个相互正交的单位向量. 证明. 先来考虑两个子空间的情形. 对于任意两个子空间 $S_1, S_n \subset V$,有

$$\dim (S_1 \cap S_2) + \dim (S_1 + S_2) = \dim S_1 + \dim S_2$$

所以

$$\dim (S_1 \cap S_2) = \dim S_1 + \dim S_2 - \dim (S_1 + S_2)$$

$$\geq \dim S_1 + \dim S_2 - \dim V$$

$$= \dim S_1 + \dim S_2 - n$$

然后, 在这个基础上, 我们来使用归纳法. 假设对于 k 个子空间, 有:

$$\dim (S_1 \cap \dots \cap S_k) = \sum_{i=1}^k \dim S_i - (k-1)n$$

则对于 k+1 个子空间的情况, 我们有:

$$\dim (S_{k+1} \cap (S_1 \cap \cdots \cap S_k)) + \dim (S_{k+1} + (S_1 \cap \cdots \cap S_k)) = \dim (S_1 \cap \cdots \cap S_k) + \dim S_{k+1}$$

所以

$$\dim (S_1 \cap \dots \cap S_{k+1}) = \sum_{i=1}^k \dim S_i - (k-1)n + \dim S_{k+1} - \dim (S_{k+1} + (S_1 \cap \dots \cap S_k))$$

$$\leq \sum_{i=1}^{k+1} \dim S_i - (k-1)n - \dim V$$

$$= \sum_{i=1}^{k+1} \dim S_i - (k-1)n - n$$

$$= \sum_{i=1}^{k+1} \dim S_i - kn$$

所以这里有 $\dim (S_1 \cap \cdots S_k) \geq \delta$.

Theorem 4 (Courant-Fischer Theorem). A 是 Hermitian 阵,则

$$\lambda_k = \min_{\substack{S \subset V \\ \dim S = k}} \max_{\substack{x \neq 0 \\ x \in S}} \frac{x^* A x}{x^* x}$$

proof. 由题, S 是任意 k 维空间. 令 $S' = \mathrm{Span}\{x_k, \cdots, x_n\}$. 则 $\dim S + \dim S' = k + (n - k + 1) = n + 1$. 所以 $\delta \geq 1$, 故 $\{x \neq 0 \land x \in S \cap S'\}$ 非空. 这时有:

$$\sup_{\substack{x \neq 0 \\ x \in S}} \frac{x^*Ax}{x^*x} \ge \sup_{\substack{x \neq 0 \\ x \in S \cap S'}} \frac{x^*Ax}{x^*x} \ge \inf_{\substack{x \neq 0 \\ x \in S \cap S'}} \frac{x^*Ax}{x^*x}$$
$$\ge \inf_{\substack{x \neq 0 \\ x \in S'}} \frac{x^*Ax}{x^*x} \ge \min_{\substack{x \neq 0 \\ x \in S'}} \frac{x^*Ax}{x^*x} = \lambda_k$$

总结一下就是

$$\sup_{\substack{x \neq 0 \\ x \in S}} \frac{x^* A x}{x^* x} \ge \lambda_k, \quad \forall S \subset \mathbb{C}^n$$

所以自然就有:

$$\inf_{\substack{S \subset \mathbb{C}^n \\ \dim S = k}} \sup_{\substack{x \neq 0 \\ x \in S}} \frac{x^* A x}{x^* x} \ge \lambda_k$$

下面来研究这个等号是否一定能够取到: 令这里的 x_1, x_2, \dots, x_n 分别是 $\lambda_1, \dots, \lambda_n$ 对应的特征向量, 且相互正交. 所以取 $S = \mathrm{Span}\{x_1, \dots, x_k\}$ 即可取到等号, 故

$$\inf_{\substack{S \subset \mathbb{C}^n \\ \dim S = k}} \sup_{\substack{x \neq 0 \\ x \in S}} \frac{x^*Ax}{x^*x} = \lambda_k$$

1.1.4 柯西交错定理

Theorem 5 (Weyl Theorem). 将 *Hermitian* 阵 A, B, A + B 的特征值都从小到大排序, 然后我们有:

$$\lambda_i(A+B) \le \lambda_{i+j}(A) + \lambda_{n-j}(B), \quad \substack{j \in [0,i-1] \\ i \in [1,n]}$$
 (1)

对称的, 我们还有:

$$\lambda_{i-j+1}(A) + \lambda_j(B) \le \lambda_i(A+B), \quad \substack{j \in [1,i] \\ i \in [1,n]} \quad (2)$$

证明. 这个定理看上去十分复杂, 但是思路很好理解. 先来证明 (1), 设

$$S_1 = \{x_i, \dots, x_n\}, \qquad (A+B)x_i = \lambda_i(A+B)x_i.$$

$$S_2 = \{y_1, \dots, y_{i+j}\}, \quad Ay_i = \lambda_i(A)y_i.$$

$$S_3 = \{z_1, \cdots, z_{n-j}\}, \quad Bz_i = \lambda_i(B)z_i.$$

很容易发现 $\delta + 2n = \dim S_1 + \dim S_2 + \dim S_3 = (i+j) + (n-j) + (n-i+1) = 2n+1$. 故 $\delta \geq 1$, 所以 $S_1 \cap S_2 \cap S_3$ 非空, 故对 $x \in S_1 \cap S_2 \cap S_3$, 有:

$$\lambda_i(A+B) \underbrace{\leq}_{S_1} x^*(A+B)x = x^*Ax + x^*Bx$$

$$\leq \underbrace{\lambda_{i+j}(A)}_{S_2} + \underbrace{\lambda_{n-j}(B)}_{S_3}$$

同理即可证明(2).

Corollary 1. 令 A, B 为 Hermitian 阵, 并设 B 有 π 个正特征值, ν 个负特征值. 则显然有 $\lambda_{n-\pi}(B) \leq 0$ 故:

[1]

$$\lambda_{i}(A+B) \leq \lambda_{i+\pi}(A) + \underbrace{\lambda_{n-\pi}(B)}_{\leq 0}$$
$$\leq \lambda_{i+\pi}(A), \quad i \in [1, n-\pi]$$

[2]

$$\lambda_{i-\nu}(A) + \underbrace{\lambda_{1+\nu}(B)}_{\geq 0} \leq \lambda_i(A+B)$$
$$\lambda_{i-\nu}(A) \leq \lambda_i(A+B), \quad i \in [\nu+1, n]$$

Fact 10. $\forall z \in \mathbb{C}^n$, 是非 0 向量, 且 $n \geq 2$, 则有: $\lambda_{n-1}(zz^*) = 0 = \lambda_2(zz^*)$

proof. 考虑两个特征值对, $\lambda_{2\neq 0,y\neq 0}^{\lambda_{1}\neq 0,x\neq 0}$. 因为 $zz^{*}x=\lambda_{1}x$, 所以 $z^{*}x\neq 0$, 同理可得 $z^{*}y\neq 0$. 于是就有:

$$0 \neq (z^*y)^*(z^*x) = y^*zz^*x = \lambda_1 y^*x \neq 0$$
$$0 \neq (z^*x)^*(z^*y) = x^*zz^*y = \lambda_2 x^*y \neq 0$$

显然, $(z^*y)^*(z^*x) = \overline{(z^*x)^*(z^*y)}$, 所以 $\lambda_1 y^*x = \overline{\lambda_2} x^*y$ 所以 $\lambda_1 = \overline{\lambda_2}$. 又因为 zz^* 是 Hermitian 阵, 所以 其特征值都是实数, 所以 $\lambda_1 = \lambda_2$.

Fact 11. $\forall v \in \mathbb{C}^n$, 是非 0 向量, 且 $n \geq 2$, 则有 vv^* 的非 0 特征向量 > 0.

proof. 设 $\lambda \neq 0, x \neq 0$ 为 vv^* 的非 0 特征值对. 则,

$$0 < \sum_{i=1}^{n} |[v^*x]_i|^2 = (v^*x)^*(v^*x) = x^*vv^*x = \lambda x^*x = \lambda \sum_{i=1}^{n} |x_i|^2$$

. 故 λ > 0. □

Theorem 6 (Cauchy's Interlacing Theorem). $n \geq 2$, $A \in Hermitian$ 阵, 那么: 对于 $B = A + vv^*$, 有:

$$\lambda_1(A) \le \lambda_1(B) \le \dots \le \lambda_n(A) \le \lambda_n(B)$$

proof. 因为 vv^* 有最多 1 个正特征值, 且其他的特征值都为 0, 所以:

$$\lambda_i(A + vv^*) \le \lambda_{i+1}(A) + \underbrace{\lambda_{n-1}(vv^*)}_{\le 0}$$
$$\lambda_i(B) \le \lambda_{i+1}(A)$$

$$\lambda_{i-1}(A) + \underbrace{\lambda_{i+1}(vv^*)}_{\geq 0} \leq \lambda_i(A + vv^*)$$
$$\lambda_{i-1}(A) \leq \lambda_i(B)$$

1.1.5 文章中将会用到的一些结论

Define 4 (为正的特征值个数). 文章中说的特征值个数, 是真的个数, 如果一个矩阵 $A \in \mathbb{R}^{n \times n}$, 有两个 特征值, λ_1, λ_2 , 这个时候, 是算两个特征值的.

 \triangle 注: 反正最有要保证 A 有 n 个特征值. i.e. 我们对于不平行的特征向量构成的特征值, 我们都算 作不同的特征值.

Fact 12. 如果 $A \in \mathbb{R}^{n \times n}$ 最多只有一个正特征值, 则存在 $B \in \mathbb{R}^{n \times n}, v \in \mathbb{R}^n$, 使得 $A = B + vv^*$, 且 B 是一个半负定矩阵.

proof. 根据 [Courant-Fischer Theorem] 我们知道, 存在一个 $x \in \mathbb{R}^n$, 使得 $x^*Ax = \lambda_{\max}x^*x$, 且 $x^*x = 1$. 这个时候,我们去找一个 $v\in\mathbb{R}^n$,使得 $v^*x=\lambda_{\max}^{1/2}$. (可以直接取 $v=\lambda_{\max}^{1/2}x$) 显然,这样的 v 存在很 多个, 我们任意取一个.

这个时候, 令 $B = A - vv^*$, 就有:

$$x^*Bx = x^*Ax - x^*vv^*x$$

$$= \lambda_{\max} - (v^*x)^*(v^*x)$$

$$= \lambda_{\max} - \lambda_{\max}^{1/2} \lambda_{\max}^{1/2}$$

$$= 0$$

因为 A 只有一个为正的特征向量, vv^* 的所有特征向量非负. 所以, 对于 $\forall y \in \mathbb{R}^n$ 且 y 与 x 不平行, 都有 $y^*Ay \le 0$ $y^*vv^*y=0$, 所以 $y^*By \le 0$, 所以 B 是半负定矩阵.

Define 5 (半定矩阵记法). 文章中, 通常用 $A \leq 0$ 表示 $A \in \mathcal{A}$ 是负定的. 对称的, 一般用 $A \geq 0$ 表示 $A \in \mathcal{A}$ 正定的.

 \triangle 注: $A \leq B$ 表示 $A - B \leq 0$.

Lemma (2.3). 今 $A \in \mathbb{R}^{n \times n}$ 是一个对称阵. 令 $P \in \mathbb{R}^{m \times n}$. 如果 A 最多有一个正特征值, 则 PAP^T 最 多有一个正特征值.

proof. 由前面的结论知道, 我们可以令 $A = B + vv^*$, 其中 $B \leq 0$. 然后就有:

$$PAP^{T} = PBP^{T} + \underbrace{Pvv^{*}P^{T}}_{w:=Pv}$$
$$x^{*}PAP^{T}x = x^{*}PBP^{T}x + xww^{*}x$$
$$= (P^{T}x)^{*}B(P^{T}x) + xww^{*}x$$

因为 $B \preccurlyeq 0$, 且 ww^* 最多只有一个正特征值, 所以 PAP^T 最多只有一个正特征值.

Fact (2.4). 令 $A \in \mathbb{R}^{n \times k}$, $B \in \mathbb{R}^{k \times n}$. AB 的非 0 特征值等于 BA 的非 0 特征值. 且具有相同的代数重数.

proof.

$$\underbrace{\begin{bmatrix} I_{n\times n} & -A \\ 0 & I_{k\times k} \end{bmatrix}}_{C_1} \underbrace{\begin{bmatrix} AB & 0 \\ B & 0_{k\times k} \end{bmatrix}}_{S_1} \underbrace{\begin{bmatrix} I_{n\times n} & A \\ 0 & I_{k\times k} \end{bmatrix}}_{C_2} = \underbrace{\begin{bmatrix} 0_{n\times n} & 0 \\ B & BA \end{bmatrix}}_{S_2}$$

不难发现, $C_1C_2 = I$, 所以 S_1 和 S_2 相似. 所以 S_1, S_2 有相同的特征值. 考虑 S_1 的特征方程:

$$P(S_1) = 0$$
$$\det(S_1 - \lambda I) = 0$$
$$\det\left(\begin{bmatrix} AB - \lambda I_{n \times n} & 0\\ B & -\lambda I_{k \times k} \end{bmatrix}\right) = 0$$

计算行列式时, 从右下角按列展开, 不难发现, S_1 的特征值等于 AB 的特征值加上 k o 0.

同理可得, S_2 的特征值等于 BA 的特征值加上 $n \uparrow 0$.

又因为 S_1 和 S_2 的特征值相同, 所以不难发现, AB 和 BA 的非 0 特征值相同, 且具有相同的代数重数.

Lemma (2.5). $A \in \mathbb{R}^{n \times n}$ 是一个对称阵, 且最多只有一个正特征值. 那么对任意 $B \in \mathbb{R}^{n \times n}, B \succeq 0$, 都有 BA 最多有一个正特征值.

proof. 因为 B 半正定, 所以 B 实对称. 所以 $\exists P$ 使得 $B = P\Lambda P^T$ (Λ 为对角阵) 所以

$$B = P\Lambda P^{T}$$

$$= P\Lambda^{1/2}\Lambda^{1/2}P^{T}$$

$$= (\Lambda^{1/2}P^{T})^{T}(\Lambda^{1/2}P^{T})$$

所以, B 可以被写成 C^TC 的形式.

故:

$$BA = C^T C A$$
$$= C^T (CA)$$

根据 Fact (2.4) 可以发现, $C^T(CA)$ 和 CAC^T 具有相同的非 0 特征值. 又因为 A 最多又一个正特征值, 所以 CAC^T 最多有一个正特征值, 所以 BA 最多有一个正特征值.

Lemma (2.6). 令 $A \in \mathbb{R}^{n \times n}$ 为一个实对称矩阵. 且 $A \geq 0$, A 最多有一个正特征值. 然后令 $w \in \mathbb{R}^n, w_i = \sum_{i=1}^n A_{ij}$ 且 $w_i > 0, \forall i$. 则

$$A \preccurlyeq \frac{ww^T}{\sum_i w_i}$$

proof. 令 $W=\operatorname{diag} w.$ 根据 Lemma (2.3) $\mathcal{A}=W^{-1/2}AW^{-1/2}$ 最多只有一个正特征值. (这里 \mathcal{A} 成立的原因是 W 中的元素都是正数) 然后令 $\sqrt{w}\in\mathbb{R}^n:\sqrt{w}(i)=\sqrt{w_i}$. 则

$$\mathcal{A}\sqrt{w} = W^{-1/2}AW^{-1/2}\sqrt{w}$$
$$= W^{-1/2}A\mathbf{1}$$
$$= W^{-1/2}w$$
$$= \sqrt{w}$$

所以 \sqrt{w} 取到了 \mathcal{A} 唯一的正特征值, i.e. 1. 又有:

$$\sqrt{w}^{T} \left(\mathcal{A} - \frac{\sqrt{w}\sqrt{w}^{T}}{||\sqrt{||^{2}}|} \right) \sqrt{w} = \sqrt{w}^{T} \mathcal{A} \sqrt{w} - \sqrt{w}^{T} \sqrt{w} = 0$$

所以 $\mathcal{A} \preceq \frac{\sqrt{w}\sqrt{w}^T}{||\sqrt{w}||^2} = \frac{\sqrt{w}\sqrt{w}^T}{\sum_i w_i}$ [这里可以用和 Fact ?? 相同的语句来证明].

更进一步, 因为 $\mathcal{A} \preccurlyeq \frac{\sqrt{w}\sqrt{w}^T}{\sum_i w_i}$, 所以 $\forall x \in \mathbb{R}^n, x^T x = 1$, 都有:

$$x^{T} (\mathcal{A} - \frac{\sqrt{w}\sqrt{w}^{T}}{\sum_{i} w_{i}})x \le 0$$

因为 $W^{1/2}x \in \mathbb{R}^n$, 故

$$(W^{1/2}x)^T (\mathcal{A} - \frac{\sqrt{w}\sqrt{w}^T}{\sum_i w_i})(W^{1/2}x) \leq 0$$

$$x^T W^{1/2} (\mathcal{A} - \frac{\sqrt{w}\sqrt{w}^T}{\sum_i w_i})W^{1/2}x \leq 0$$

$$x^T (W^{1/2}\mathcal{A}W^{1/2} - \frac{W^{1/2}\sqrt{w}\sqrt{w}^TW^{1/2}}{\sum_i w_i})W^{1/2}x \leq 0$$

$$x^T (\mathcal{A} - \frac{ww^T}{\sum_i w_i})W^{1/2}x \leq 0, \quad \forall x \in \mathbb{R}^n$$

所以

$$A \preccurlyeq \frac{ww^T}{\sum_i w_i}$$

1.2 d-homogeneous multiaffine polynomial

 \triangle 注: 这里的 d 不是在说变量的个数, 而是在说次数, 变量的个数一般设为 n.

Define 6 (log-concave polynomial). 一个多项式 p(x) 是 log-concave 的, 如果 $\log p(x)$ 是 concave 的.

d-homogeneous multiaffine polynomial 有一堆性质:

Fact 13. 如果 p(x) 是 d-homogeneous multiaffine polynomial, 则

$$d \cdot p(x) = \sum_{k=1}^{n} x_k \partial_k p(x)$$

 \triangle 注: 不难发现, 这里的 $x_k \partial_k p(x)$ 相当于将多项式中所有包含 x_k 的项相加. 这样将所有变量 x_k 枚举完之后, 不难发现, p(x) 中的每一项被加了 d 次. 上面的式子还可以写得更加简洁

$$d \cdot p = x^T(\nabla p)$$

Fact 14.

$$(d-1) \cdot \nabla p = \sum_{k=1}^{n} x_k \cdot \nabla(\partial_k p) = \nabla^2 p \cdot x$$

Fact 15.

$$(d-2) \cdot \nabla^2 p = \sum_{k=1}^n x_k \cdot \nabla^2 (\partial_k p)$$

 \triangle 注: 要理解上面的等式,只需注意到 d-homogeneous multiaffine polynomial 求偏导之后,仍然是 (d-1)-homogeneous multiaffine polynomial.

Fact 16.

$$\nabla^2 \log p = \frac{p \cdot \nabla^2 p - (\nabla p)(\nabla p)^T}{p^2}$$

proof.

$$\partial_i \partial_j p = \partial_j \left(\frac{\partial_i p}{p} \right)$$

$$= \frac{\partial_i \partial_j p \cdot p - \partial_i p \cdot \partial_j p}{p^2}$$

 \triangle 注: 因为 p 是 log-concave 的, 所以 log p 是 concave 的, 也就是说

$$\nabla^2 \log p \leq 0$$

不妨假设 p 的所有变量都取正数, 就有:

$$\nabla^2 p \preccurlyeq \frac{(\nabla p)(\nabla p)^T}{n}$$

根据我们之前的结论, vv^T , $\forall v \in \mathbb{R}^n$ 最多有一个正特征值, 所以 $\nabla^2 p$ 最多有一个正特征值.

1.3 Matroid

比较熟悉, 略.

1.4 Simplicial Complexes

2 正文