APPLICATION FOR UNITED STATES LETTERS PATENT

FOR

MOLD SPRAYING SYSTEM

Inventor: Todd Jordan, et al.

Assignee: Honda Power Equipment Mfg., Inc.

3721 NC Highway 119 Sweponsville, NC 27359

Attorneys: Standley & Gilcrest LLP

Attn.: Jeffrey S. Standley 495 Metro Place South

Suite 210

Dublin, Ohio 43017-5319 Telephone: (614) 792-5555

Fax: (614) 792-5536

jstandley@standleyandgilcrest.com

MOLD SPRAYING SYSTEM

Inventors:

Todd Jordan

Tamotsu Kageshita

Kazuo Nishio Bob Queen

This application is a divisional application of U.S. Patent Application No. 09/918,606, filed on July 31, 2001, which is incorporated herein by reference.

BACKGROUND AND SUMMARY OF THE INVENTION

[0001] The present invention is directed to a spraying system for spraying one or more materials onto a mold used for producing molded components. More specifically, the present invention comprises a system that can spray one or more materials onto a mold, such as a die-cast mold, while the mold is located in a molding machine running with a short cycle time, and wherein the supply pressure of the materials can be sufficiently maintained despite the high frequency of machine cycles.

[0002] While the spraying system of the present invention may be applicable to a variety of molding processes, for purposes of simplicity and clarity, the spraying system will be described below only with respect to its use in a die-casting process. Die-casting is a well known process whereby metallic components can be quickly and accurately molded from a molten metal. Metals commonly employed in die-casting operations may include, for example, aluminum, zinc, brass and magnesium. Modern die-casting processes are able to create products with good dimensional tolerances and appearance. Die-casting is often used to produce components for, among others, the automotive, industrial, electronics, and building product industries.

Express Mail No. EV309292879US

Inventor: Todd Jordan et al.

Title: Mold Spraying System

Date of Deposit: July 16, 2003 Docket No.: HON1448-021B

[0003] The die-casting process is similar to that of injection molding, with a significant exception being the substitution of a molten metal material for a molten plastic material. Once the design of a desired component has been generated, a die-cast mold is manufactured to produce the component. Die-cast molds are commonly produced from tool steel or one of a multiplicity of metal-alloys. Like plastic injection molds, die-cast molds generally have two halves, consisting of a cavity side and a core side. There may also be moveable cores on such a mold that can be moved into position during molding and then later retracted to

facilitate removal of the molded component from the mold.

[0004] Once a satisfactory die-cast mold is produced, the mold is placed in a die-casting machine. Die-casting machines are typically horizontally oriented injection-type machines having a fixed platen and a moving platen for holding the separate halves of the die-cast mold. The moving platen is typically moveable with respect to the fixed platen along a series of tie bars and guide plates, such that the mold halves may be brought into contact during the molding cycle of the machine and then withdrawn to allow for removal of the molded component. The moving platen is typically caused to move via hydraulic power, although electric power has also been used. An apparatus is provided at the die-casting machine for supplying molten metal for the molding process. With the mold halves in forced contact between the fixed and moving platens of the die-casting machine, a hydraulic plunger forces a predetermined amount of the molten metal to travel through an injection barrel and into the mold. The molten metal is then held within

the mold, under pressure, while the molded component cools or cures. After a predetermined amount of time the moving platen and accompanying mold half are withdrawn, and the molded component is ejected from the mold half or is withdrawn by a secondary device, such as a part removal robot.

[0005] In order to effectuate removal of a molded part from a mold it is generally necessary to treat at least the portions of each mold half contacted by the molten metal material with a release agent. The release agent essentially forms a thin barrier between the surfaces of the mold and the molten metal, thereby helping to prevent the molten metal from bonding to the mold. Because injection of the molten metal into the mold and subsequent removal of the molded component therefrom substantially removes or degrades the release agent, it is typically necessary to apply release agent to the mold prior to each molding cycle.

[0006] During the molding process, molten metal material may creep into small defects in the mold, or may partially invade the parting line that occurs between the flush-mating surfaces of the mold halves. This may result in the formation of what is typically referred to as flash - thin areas of excess material that are often attached to a molded component. Portions of this flash can often become detached from the molded component during separation of the mold halves or during removal of the component from the mold. These detached portions can remain on various portions of either mold half, such as on a core or cavity portion, or on the flat, mating surfaces that form the shut-off between the

Title: Mold Spraying System

mold halves. Flash, or other contaminants that find their way onto the mold can

cause defects in one or more subsequently molded parts, or may, if allowed to

build up, prevent complete mating of the mold halves. To prevent such a situation

from occurring, the mold halves are preferably cleaned off in between each

molding cycle. As it would not be practical to perform a hand-cleaning of die-cast

molds between molding cycles, cleaning is typically accomplished using

high-pressure air. The high-pressure air is directed against each mold half to

dislodge any flash or other contaminants that may be residing thereon.

[0007] Due to the molten state of the metal used to form die-cast components.

die-cast molds typically become extremely hot during the die-casting process. As

a consequence, it is generally necessary to cool a die-cast mold while in use, so

that the mold temperature can be maintained within a desired range and so that

the components molded therein can properly cool in an acceptable period of time.

To this end, die-casting operations usually employ a chilled water system to

supply chilled water to the die-cast mold. The chilled water may be moved

through passageways occurring within the mold halves. Additionally, in order to

assist in the cooling of the mold, it is also desirable to spray, or otherwise apply a

die-lubricant to the molding surfaces of the mold halves between machine cycles.

[8000] In order for die-casting to be cost-effective, it is typically necessary that

a large quantity of die-cast components be produced. In this manner, it is

possible to spread out the cost of what is often a costly die-cast mold over a large

number of components molded therefrom. To facilitate cost-effectiveness, it is

also desirable that the die-casting machine used to produce the components be operated in the most efficient manner. Thus, the fastest molding cycle possible is usually sought out. To obtain a fast molding cycle, it is essential that part removal and any mold preparation, such as that previously discussed, be performed as quickly as possible. The requirement of haste, as well as safety, dictates that hand-cleaning of the mold halves and hand-application of a release agent and/or other substances thereto is not possible. As such, each of these processes is typically administered to by an automated device or devices.

[0009] Automated devices for performing die-cast mold cleaning and/or the application of release agents and other substances thereto, must perform their particular function within a limited amount of time. The faster the die-cast machine cycle, the less time available for these ancillary functions. Earlier, known devices placed spraying mechanisms on retractable cylinders, or masts, that could be lowered into the space between the mold halves once the molded component had been removed. However, these known devices had several undesirable characteristics, such as, for example, the residing thereof directly over the mold halves - which could allow for such a device to fall between the mold halves during certain portions of the molding cycle. Consequently, other systems have been developed that do not require the spraying device to reside substantially over the meeting point of the mold halves, but still allow the spraying mechanism to be lowered into the open mold between machine cycles. While these known systems may recite methods of moving a spraying device into

position between the mold halves, they have not considered other problems inherent with short cycle-time die-cast molding; namely, effecting proper cooling of the die-cast mold, and maintaining sufficient supply pressures so that release agents, air, and other substances may be quickly and acceptably applied to the mold. The present invention addresses these problems.

[0010] The present invention is directed to a system for providing the necessary mold spraying operations - particularly with respect to a short cycle-time molding operation, such as die-cast molding. The present invention recites an automated spraying device that preferably employs a spray head mounted to a manipulator arm. The manipulator arm is preferably mounted on a top of surface of the die-casting machine or, alternatively, to the top of the fixed platen of the machine. The path and range of motion of the manipulator arm are preferably adjustable, thereby allowing the spray head to be lowered between open mold halves at the appropriate time during the molding cycle. The spray head also employs novel supply circuitry that allows a supply of pressurized air, release agent, and/or other materials to be applied to the mold halves at a sufficient and substantially constant pressure, even if there is a decrease in the supply pressure of the materials. In order to effectuate proper cooling of the die-cast mold, a die lubricant is preferably one of the materials applied to the mold halves by the spray head, either independently, or as a mixture with another material. The design of the supply circuitry utilizes a pressure boosting unit that permits the spray head to apply the desired materials at a substantially constant

pressure, even when used on die-casting machines having extremely short cycle-times. Preferably, operation of the spray system is governed by a control-device, such as, for example, a series of relays and contacts, a personal computer or, more preferably, a programmable logic controller (PLC).

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] In addition to the novel features and advantages mentioned above, other objects and advantages of the present invention will be readily apparent from the following descriptions of the drawings and exemplary embodiments, wherein like reference numerals across the several views refer to identical or equivalent features, and wherein:

Figure 1 shows an exemplary embodiment of a die-cast mold spraying device of the present invention mounted to a portion of a typical die-casting machine and in a retracted (non-spraying) position;

Figure 2 illustrates an exemplary embodiment of a spray head portion of the die-cast mold spraying device of Figure 1 in the spraying position between open halves of a die-cast mold; and

Figure 3 is a schematic diagram depicting an exemplary pneumatic and hydraulic supply circuit for supplying numerous materials to the spray head shown in Figures 1-2, and for causing movement of the spraying device.

DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENT(S)

[0012] The present invention consists of a mold spraying system for use in a molding process, wherein the mold spraying system is able to provide an adequate spraying pressure to a spray head thereof despite system pressure losses, and despite a high frequency of spraying cycles. While it should be realized by one skilled in the art that the spraying system of the present invention may be applicable to a variety of molding processes, for purposes of illustration, and not limitation, the spraying system will be described below especially with respect to its use in a die-casting process. The embodiment of the spraying system of the present invention depicted in Figures 1-3 allows for the spraying of one or more materials onto the molding surfaces of a die-cast mold - while halves of the mold are separated during the molding cycle. The spraying system of the present invention further permits the materials to be sprayed onto the mold at an acceptable and substantially constant pressure, even when the cycle-time of the die-casting machine in which the die-cast mold resides is short and the machine produces many cycles.

[0013] A portion of one embodiment of a spraying system 5 of the present invention can be seen by reference to Figures 1-2. In this embodiment, a manipulator arm 10 is shown to be attached to a top surface 15 of a die-casting machine 20. The manipulator arm 10 could also be attached to a side surface, or to a top surface of the fixed platen 25 of the die-casting machine 20, if the platen

is of sufficient size. As will be described infra, in the embodiment of the present

invention depicted in Figures 1-2, the manipulator arm 10 is controlled by a series

of hydraulic cylinders. However, it should be realized by one skilled in the art that

the manipulator arm 10 could also be controlled by pneumatic cylinders, electric

motors or other drive means, or alternatively, may be a robotic arm with

programmable control. In the embodiment shown in Figures 1-2, the manipulator

arm 10 is designed to travel some horizontal distance substantially along the

longitudinal axis of the die-casting machine 20, and is also designed to allow its

distal end 30 to move between various vertical positions - from above the molding

area of the die-casting machine to an area occupied by a die-cast mold 35 within

the working envelope of the machine.

[0014] The distal end 30 of the manipulator arm 10 is attached to an emitter,

such as the spray head 40 shown. Preferably, the spray head 40 is attached to

the manipulator arm 10 by a pivoting joint (not shown), so that the vertical

discharge faces 45, 50 of the spray head remain substantially perpendicular to

the ground and substantially parallel to the molding surfaces 55, 60 of the

die-cast mold 35 when the manipulator arm 10 is moved. The spray head 40 is

configured to provide the pressurized emission of one or more materials onto the

molding surfaces 55, 60 of the die-cast mold 35, when the die-cast mold is

separated into halves 65, 70 between molding cycles of the molding machine.

As can be seen in Figure 3, the spray head 40 may be used to spray, [0015]

for example, an anti-solder material, a die-lubricant, pressurized air, and/or a

number of other materials and combinations thereof. An anti-solder material is typically used to help prevent the molten metal from adhering to the molding cavity, or cavities, in the die-cast mold 35. In order to prevent cracks from occurring in the cavity as a result of exposure to excess heat, a die-lubricant is typically employed to help cool the molding cavity, or cavities. The spray head 40 may have a plurality of nozzles 75 (Figures 1 and 2) for directing the various materials supplied thereto onto the die-cast mold 35. The nozzles 75 may be of various size and shape, and may extend outwardly from one or both of the discharge faces 45, 50 of the spray head 40. To better target particular areas of the die-cast mold 35, such as the molding cavities, the nozzles 75 may incorporate bent tubing, or flexible tubing that may be bent to the proper shape in order to obtain the desired spray path. The nozzles 75 may consist of the tubing itself, or may further utilize nozzle tips that can produce spray patterns of various size and shape.

As discussed above, during the die-casting process flash may be [0016] formed as a result of molten metal entering into the parting line or small imperfections in the mold. Portions of this flash can often become detached from the molded component during separation of the mold halves or during removal of the component from the mold, and may remain on various portions of either mold half, such as on a core or cavity portion, or on the flat, mating surfaces that form the shutoff between the mold halves. It is important that any flash or other contaminants that find their way onto the mold between molding cycles be substantially removed, as such contaminants can cause defects in one or more subsequently molded parts, or may, if allowed to build up, prevent complete mating of the mold halves. In the present invention, high-pressure air is preferably used to accomplish this task. The high-pressure air is directed from one or more nozzles **75** on the spray head **40** against portions of each mold half **65**, **70**.

[00171 Referring again to Figure 3, a schematic diagram representing one embodiment of a hydraulic and pneumatic system of the present invention can be observed. Other embodiments of a hydraulic and pneumatic system employing a somewhat different collection or arrangement of components may also be employed with satisfactory results. Movement of the manipulator arm 10 is shown to be controlled by two separate hydraulic cylinders. A hydraulic traverse cylinder 80 is preferably provided to cause a linear motion of the manipulator arm 10 substantially along the longitudinal axis of the die-casting machine 20. In this manner, the manipulator arm 10 may move between positions that are retracted from, or in proximity to, the edge of the stationary platen of the die-casting machine 20. A supply solenoid valve 85 is provided for controlling a supply of pressurized hydraulic fluid from a manipulator hydraulic source 90 to the hydraulic traverse cylinder 80. A traverse solenoid valve 95 is also provided to control the linear movement of the manipulator arm 10 in response to signals from a programmable logic controller (PLC) (not shown). A speed control device 100, such as the flow control device shown, is also preferably inserted in the hydraulic lines leading from the traverse solenoid valve 95 to the hydraulic traverse cylinder 80, in order to afford control over the speed of linear travel achieved by the manipulator arm 10.

A lifting hydraulic cylinder 105 is coupled to the manipulator arm 10 for [0018] moving the spray head 40 between a retracted (raised) position (see Figures 1 and 3) and a working (lowered) position (see Figure 2) within the platens of the die-casting machine 20 and the open mold halves 65, 70. In this particular embodiment of the present invention, the lifting hydraulic cylinder 105 is coupled to a linkage 110 that is connected to and moves the spray head 40. A pair of solenoid valves in fluid communication, form a lifting solenoid valve 115 that controls the movement of the spray head 40 between its retracted and working positions, in response to the appropriate signals from the PLC. Pressurized hydraulic fluid from the manipulator hydraulic source 90 is routed to the lifting hydraulic cylinder 105 via the supply solenoid valve 85 and lifting solenoid valve 115. Hydraulic fluid preferably passes from the raising side of the lifting solenoid valve 115 through a digital flow control valve 120 and a pilot check valve 125, before traveling to the extension port of the lifting hydraulic cylinder 105. A reducing valve 130 may be provided in the hydraulic line leading from the lowering side of the lifting solenoid valve 115 to the retracting port of the lifting hydraulic cylinder 105. By this combination of solenoid valves 85, 95, 115 and hydraulic cylinders 80, 105, desired movement of the manipulator arm 10 and spray head 40 may be accomplished.

[0019] For purposes of safety, it is also preferable that non-desired movement of the manipulator arm 10 and spray head 40 be prevented. To this end, a lock-out device 135 is preferably provided for prohibiting movement thereof when the lock-out device is activated. In this embodiment, the lock-out device employs a pneumatic cylinder 140, which activates a safety hook that engages a portion of the manipulator arm 10 to prevent the non-desired movement thereof. The lock-out device 135 is controlled by a pneumatic solenoid valve 145 that transports pressurized air to the cylinder 140 from a pressurized air source 150, and shifts in response to electronic signals from the PLC.

[0020] A booster unit 155 is provided in the present invention to increase the pressure of one or more of the materials being transported to, and emitted from, the spray head 40. In this particular embodiment of the present invention, the booster unit **155** is used to increase the pressure of an anti-solder material and a die-lubricant. To accomplish the pressure increase, force-exerting cylinders, such as the hydraulic booster cylinders **160**, **165** shown, are provided to act on the respective material as it travels from a pressurized anti-solder material source 170 and a pressurized die-lubricant source 175 to the spray head 40. As can be seen in Figure 3, a booster unit hydraulic source 180 provides pressurized hydraulic fluid for operating the hydraulic booster cylinders 160, 165. Each hydraulic booster cylinder 160, 165 is controlled by a corresponding booster unit solenoid valve 185, 190 that receives and responds to electronic signals from the PLC. Preferably, a speed control device 195, 200, such as the flow control device

Date of Deposit: July 16, 2003

Docket No.: HON1448-021B

shown, is employed to regulate the speed at which each hydraulic booster

cylinder 160, 165 extends and retracts.

Still referring to Figure 3, the various material supply lines 205 leading [0021]

to the spray head 40 may be observed. As represented in Figure 3, each of the

supply lines 205, which typically consist of some form of rigid conduit, is shown to

terminate at a manifold **210** or a similar device (not shown in Figures 1 and 2).

The manifold **210** may be mounted at various locations but, preferably, is

mounted to the molding machine and in relative proximity to the spray head 40.

Flexible tubing or hoses are then preferably employed to transport the materials

from the manifold 210 to the spray head 40, so that movement of the manipulator

arm 10 and spray head is not restricted. The anti-solder material and die-lubricant

may also be routed through one or more atomizer units 215, preferably mounted

on the spray head 40, in order to better control emission of the anti-solder and die

lubricant materials therefrom.

[0022] Prior to reaching the manifold each of the material lines is directed

through a corresponding pneumatic solenoid valve for controlling the emission of

each material from the spray head 40. As can be seen, an anti-solder material

and a die-lubricant are supplied to the spray head 40 from the anti-solder source

170 and die-lubricant source 175, respectively. Each of the anti-solder material

and die-lubricant are directed to the spray head 40 by a corresponding pneumatic

solenoid valve 220, 225 that is in electronic communication with the PLC.

Pressurized air from the pressurized air source 150 is also routed to the spray

head 40. The pressurized air is directed through an anti-solder pilot air solenoid

valve 230, an anti-solder air solenoid valve 235, a die-lubricant pilot air solenoid

valve 240, a die-lubricant air solenoid valve 245, and a die cleaning solenoid

valve 250. Each of the anti-solder and die-lubricant air solenoid valves 220, 225,

transfers pressurized air to the spray head 40 for the purpose of dispersing each

of the anti-solder and die-lubricant materials, respectively. A pressure switch 255,

260, 265 is preferably also in communication with each of the respective supply

lines leading from the pressurized air source 150, the anti-solder source 170, and

the die-lubricant source 175 to the spray head 40. Each of the pressure switches

255, 260, 265 may be used to announce a low-pressure condition in the

respective supply line to which it is connected, such as by activating an alarm or

other indicator.

[0023] During the mold spraying operation, the manipulator arm 10 is moved

into position so that the spray head may be properly located between the open

halves 65, 70 of the die-cast mold 35. The anti-solder material, die-lubricant, and

air are supplied to the spray head from each of their respective pressurized

sources 150, 170, 175. During the spraying operation, it has been found, for

various reasons, that it is often difficult to adequately maintain the pressure of the

anti-solder and die-lubricant materials that are supplied to the spray head 40. As

these materials are often stored at a considerable distance from the die-casting

machine 20 with which they will be used, a pressure drop may occur as a result

of transporting the materials to the spray head 40. The relatively high specific

gravity of these materials in comparison to air, generally makes them more

difficult to transport over long distances at substantial pressure. In addition to this

problem, it has also been found that when a mold spraying system is employed

on a die-casting machine with a short cycle time, it is often difficult to maintain the

pressure of the materials supplied to the spray head 40 such that the materials

may be emitted at a sufficient pressure therefrom at the frequency dictated by the

machine cycle.

[0024] To overcome the above deficiencies, the present invention routes each

of the anti-solder, die-lubricant, and other similar materials to be applied to the

die-cast mold through the booster unit 155 prior to their arrival at the spray head

40. As is illustrated in Figure 3, each of the anti-solder material and die-lubricant

travel through a chamber 270, 275 attached to the corresponding hydraulic

booster cylinder 160, 165. During the molding cycle of the die-casting machine

20, when the die-cast mold 35 is closed and the spray head 40 is not in use, the

pistons within each booster unit hydraulic cylinder 160, 165 are retracted and the

anti-solder and die-lubricant materials are supplied to the respective chamber

270, 275 attached thereto, as well as to the supply lines leading therefrom to the

manifold 210. Upon the end of the molding cycle, and the corresponding opening

of the mold and ejection of the molded component, the manipulator arm 10 is

activated by the PLC to position the spray head 40 between the open mold

halves 65, 70. The PLC also sends an electronic signal to the booster unit

solenoid valves 185, 190 to cause the extension of the piston within each booster

Date of Deposit: July 16, 2003 Docket No.: HON1448-021B

unit hydraulic cylinder 160, 165. The extension of the piston within each booster

unit hydraulic cylinder 160, 165 causes a reduction in the volume of the

corresponding chamber 270, 275 attached thereto and, consequently, an

increase in the pressure of the anti-solder and die-lubricant materials residing

therein and/or passing therethrough.

[0025] The timing of the electronic signals from the PLC to the manipulator

arm 10 and each of the booster unit solenoid valves 185, 190 is such that, the

anti-solder and die-lubricant materials can be supplied at an increased pressure

from the respective chambers 270, 275 to the spray head 40 as frequently as is

required. Upon completion of the spray cycle, each of the hydraulic booster

cylinder pistons retracts to prepare for the next spray cycle, thereby permitting

additional material to flow into the chambers 270, 275 attached to the hydraulic

booster cylinders 160, 165.

The spraying system of the present invention also allows for various [0026]

sequencing and timing of the individual materials emitted by the spray head 40.

Use of the PLC and the pneumatic solenoid valves allows certain of the materials

to be applied before or after others, and permits each of the materials to be

emitted for a particular time. For example, in one particular embodiment of the

present invention, pressurized air is first emitted by the spray head 40 in order to

remove flash and/or other debris from the mold. The die-lubricant is next applied

to the mold, followed by additional pressurized air, the anti-solder material, and a

Express Mail No. EV309292879US

Inventor: Todd Jordan et al. Title: Mold Spraying System Date of Deposit: July 16, 2003

Docket No.: HON1448-021B

further application of pressurized air. Each of these materials may be emitted for

a like amount of time or, alternatively, various spray times may be utilized.

[0027] From the foregoing description, it can be seen that the spraying system

of the present invention affords the spraying of one or more materials onto a die

at a predetermined and substantially constant pressure - even when the supply

pressure of the one or more materials is less than desired and even when a

relatively high frequency of mold spraying operations must be performed. By

providing a booster unit in-line with the supply of the one or more materials, it can

be ensured that a predetermined spraying pressure of the materials can always

be attained.

[0028] It should be realized by one skilled in the art that, although, for

purposes of clarity, the spraying system of the present invention has been

described in detail above only with respect to its use in a die-casting process, the

spraying system of the present invention may also be utilized in other molding

processes, such as, for example, plastic injection molding. It should also be

realized that while certain components are shown to be included in the hydraulic

and pneumatic system of the present invention, not all of said components are

necessary to practice the present invention, and certain components may be

deleted and/or other components may be substituted therefor without departing

from the spirit and scope of the present invention. As such, while certain

embodiments of the present invention are described in detail above, the scope of

the invention is not to be considered limited by such disclosure, and modifications

Express Mail No. EV309292879US Inventor: Todd Jordan et al.

Title: Mold Spraying System

Date of Deposit: July 16, 2003 Docket No.: HON1448-021B

are possible without departing from the spirit of the invention as evidenced by the following claims: