Student Information

Name : Satılmış Örencik

ID: 2396273

Answer 1

a) $G=(V, \Sigma, R, S)$ with set of variables V=S, where S is start variable; set of terminals $\Sigma = \{a, b\}$; and rules:

S \rightarrow bSbSa| aSbSb | bSaSb | SS | ϵ

b) G=(V, Σ , R, S) with set of variables V=S, where S is start variable; set of terminals $\Sigma = \{a, b\}$; and rules:

 $S \rightarrow aaSb|aSb|\epsilon$

c) The corresponding Pushdown automata $M = (\{q_1, q_2, q_3, q_4\}, \{a, b\}, \{A, B, \$\}, \Delta, q_1, Z, \{q_4\})$ where:

d) Let context-free grammar for L_1 is G_1 , likewise let G_2 to be a context-free grammar for L_2 . Then:

$$G_1 = (V_1, \Sigma_1, R_1, S_1)$$

$$G_2 = (V_2, \Sigma_2, R_2, S_2)$$

Let S be a new symbol and let $G = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, R, S)$ where:

$$R = (R_1 \cup R_2 \cup \{S \to S_1, S \to S_2\})$$
 Then;

we can claim that $L(G) = L(G_1) \cup L(G_2)$

G= ({
$$S_1, S_2, S$$
}, { a, b }, R, S) where;
R= { $S \rightarrow S_1 | S_2, S_1 \rightarrow bSbSa|aSbSb|bSaSb|SS|\epsilon, S_2 \rightarrow aaSb|aSb|\epsilon$ }

Answer 2

a) A context-free grammar G is ambiguous if \exists a string $w \in L(G)$ to have at least two different left parse trees.

Let try string w="0001111" to reach two different parse trees:

The First Parse tree;

- $S \to AS$
- $\rightarrow A1S$
- $\rightarrow 0A11S$
- $\rightarrow 00A111S$
- $\rightarrow 0001111S$
- $\rightarrow 0001111$ and

The Second Parse Tree;

- $S \to AS$
- $\rightarrow 0A1S$
- $\rightarrow 00A11S$
- $\rightarrow 00A111S$
- $\rightarrow 0001111S$
- $\rightarrow 0001111$

Hence;

We find a two different parse trees for a same string "0001111" we can conclude that this grammar is ambiguous.

b) G1 =(V, Σ, R, S), where;

 $\mathbf{V} = \{0,1,S,A,X\},\, \Sigma = \{0,1\}$, and the rules are:

$$R = \{S \to AS | \epsilon, A \to 01 | X, X \to 01 | 0A1\}$$

disambiguate the G_1

- c) Leftmost derivation of string w="00111" is:
- $S \to AS$
- $\rightarrow A1S$
- $\rightarrow X1S$
- $\rightarrow 0A11S$
- $\rightarrow 00111S$
- \rightarrow 00111 and the corresponding parse tree;

