Componenti per l'aritmetica binaria

Engineering Department in Ferrara

Sommario

Codifica binaria di informazioni di tipo numerico e aritmetica binaria

Addizione

Sommatori binari

Sommatore CLA

Applicazioni di n-bit adder

Motivazioni

- I sistemi di calcolo necessitano di componenti che realizzino operazioni di tipo aritmetico (somme, prodotti) su numeri interi e in floating point
- Dal punto di vista teorico, le conoscenze che abbiamo ci consentono di realizzare qualsiasi funzione e quindi anche quelle svolte da moltiplicatori e sommatori
- Nel caso di interesse, questo approccio non da peró risultati soddisfacenti
- Ad esempio la sintesi ottima di reti a due livelli da luogo a funzioni eccessivamente costose e non modulari

Sommario

Codifica binaria di informazioni di tipo numerico e aritmetica binaria

Addizione

Sommatori binari

Sommatore CLA

Applicazioni di n-bit adder

Codifica delle informazioni di tipo numerico

- In un sistema di calcolo la rappresentazione di informazioni numeriche riveste particolare importanza
- I codici utilizzati per rappresentarle determinano in parte la complessitá e le prestazioni delle unitá che elaborano i dati di tipo numerico
- Conviene notare la distinzione fra numeri e loro rappresentazione

Codici numerici posizionali

- Codici posizionali (numeri razionali positivi):
 - $A = (a_1, a_2, ..., a_b)$: insieme ordinato di simboli;
 - $b = |\mathcal{A}|$: base;
- Parola di codice (lunghezza n + k):

$$X = (\overbrace{\alpha_{n-1}\alpha_{n-2}....\alpha_{1}\alpha_{0}}^{parte\ intera}, \overbrace{\alpha_{-1}....\alpha_{-k}}^{parte\ frazionaria})$$

• Valore numerico (informazione):

$$v(X) = \alpha_{n-1}b^{n-1} + \alpha_{n-2}b^{n-2} + \dots + \alpha_1b^1 + \alpha_0b^0 + \alpha_{-1}b^{-1} + \dots + \alpha_{-k}b^{-k}$$

 Questa rappresentazione, a meno del segno, sta alla base della rappresentazione numerica detta in virgola fissa

Esempi di basi

Codice	Base	Alfabeto
binario	2	{0,1}
ottale	8	$\{0,1,2,3,4,5,6,7\}$
decimale	10	$\{0,1,2,3,4,5,6,7,8,9\}$
esadecimale	16	$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}$

Notazione: poiché alcuni simboli sono condivisi, occorre denotare i numeri con riferimento alla base. Esempio, $10_2=2_{10}$, $10_{10}=1010_2$,

Rappresentazione dei numeri naturali

- Ciascuna parola di codice ha n simboli ordinati in senso decrescente di peso
- Non si ha la parte frazionaria $X = (\alpha_{n-1},, \alpha_0)$

$$v(X) = \sum_{i=0}^{n-1} \alpha_i b^i \tag{1}$$

• Si possono rappresentare numeri naturali $X \in [0, b^n - 1] \subset \mathbb{N}$

Conversione di base

- Dato X in base b, si vuole Y in base c in modo che
 v(X) = v(Y)
- Si puó utilizzare l'eq. 1, in cui si convertono i coefficienti di X e b nella nuova base c e si effettuano somme e prodotti nella nuova base
- Esempio: si vuole convertire 10100_2 in base 10, $1_{10} \cdot 2_{10}^4 + 0_{10} \cdot 2_{10}^3 + 1_{10} \cdot 2_{10}^2 + 0_{10} \cdot 2_{10}^1 + 0_{10} \cdot 2_{10}^0 = 20_{10}$
- Per motivi di praticitá, questo algoritmo ha senso quando la nuova base é 10

Conversione di base per divisioni ripetute

- Metodo delle divisioni ripetute per la conversione da base 10 verso altre basi
- Sia X la parola di codice in base b che si vuole convertire in Y in base c
- Se $Y = [\beta_{m-1}, \beta_{m-2},, \beta_1, \beta_0]$ il suo valore é: $v(Y) = \beta_{m-1}c^{m-1} + \beta_{m-2}c^{m-2} + + \beta_1c + \beta_0$
- Dividendo (divisione intera) per c si ha: v(Y) = Qc + R (dove Q é il quoziente e R é il resto):

$$Q = \beta_{m-1}c^{m-2} + \beta_{m-2}c^{m-3} + \dots + \beta_1$$

$$R = \beta_0$$
(2)

 Questo risultato é indipendente dal tipo di base utilizzato per eseguire le operazioni

Conversione di base per divisioni ripetute

- Si noti che essendo R < c, R ha la stessa rappresentazione in base b e c
- Questa operazione puó essere ripetuta in maniera iterattiva fino a calcolare tutti i coefficienti β_i
- Le operazioni possono essere svolte utilizzando l'aritmetica nella base di partenza b rappresentando quindi c in base b
- Questo algoritmo riveste particolare interesse nella conversione da base 10 a base 2

Conversione di base per divisioni ripetute

Conversione di 27₁₀ in base 2 (si divide per 2):

iterazione	Q	$R = \beta_i$	β_i
0	27	1	β_0
1	13	1	β_1
2	6	0	β_2
3	3	1	β_3
4	1	1	β_4
5	0		

Quindi $27_{10} = 11011_2$

Esercizi

- Si calcoli la rappresentazione in base 2 dei numeri decimali da 0 a 15
- 2. Si calcoli la rappresentazione in base 10 dei seguenti numeri naturali in base 2: 1010₂, 110010₂, 100100111₂
- 3. Si calcoli la rappresentazione in base 2 dei seguenti numeri naturali in base 10: 1010_{10} , 87_{10} , 747_{10}
- 4. Si eseguano le seguenti conversioni $102_3 \to Y_{10}$, $643_7 \to Y_{10}$, $67_{10} \to Y_8$, $1419_{10} \to Y_3$
- 5. Si converta $145_6 \rightarrow Y_7$

Conversione base 2 ⇔ base 16

- Caso particolare in cui $c = b^k$
- Conversione diretta da binario a esadecimale:
 - suddividere i bit in gruppi di 4 (da destra) aggiundendo eventuali zeri a sinistra
 - sostituire ogni gruppo di 4 bit con il corrispondente simbolo esadecimale
 - $X_2 = 11100111110 = 0011|1001|1110$ da cui $X_{16} = 39E$
- Nel processo inverso si tratta semplicemente di sostituire i simboli esadecimali con gli equivalenti binari

Conversione base 10 ⇔ base 16

- Si puó sempre passare per la base 2
- Conversione da base 16 a base 10:

$$X_{16} = AB4 \rightarrow X_{10} = 10 \cdot 16^2 + 11 \cdot 16^1 + 4 \cdot 16^0 = 2740$$

Conversione da base 10 a base 16 (divisioni ripetute):

	iterazione	Q	$R = \beta_i$	β_i
	0	1410	2	β_0
• Esempio <i>X</i> ₁₀ = 1410	1	88	8	β_1
	2	5	5	β_2
	3	0	0	

• **Da cui** $X_{16} = 582$

Sommario

Codifica binaria di informazioni di tipo numerico e aritmetica binaria

Addizione

Sommatori binari

Sommatore CLA

Applicazioni di n-bit adder

Addizione in base 2

- Si puó applicare l'algoritmo di somma per colonne utilizzato in base 10
- Siano A e B i due numeri binari da sommare che vanno disposti su due righe
- Per ogni colonna i, partendo da quella di peso 0, é sufficiente usare $s_i = (a_i + b_i + r_i)_{mod2}$ e $r_{i+1} = (a_i + b_i + r_i)/2$ (riporto)

Aritmetica base 16

- Le somme possono essere fatte convertendo gli operandi in base 10 o 2, oppure direttamente in base 16
- Altrimenti, se A e B sono i due numeri da sommare, é sufficiente usare $s_i = (a_i + b_i + r_i)_{mod \ 16}$ e $r_{i+1} = (a_i + b_i + r_i)/16$ (riporto)

Sottrazione

- Se A ≥ B si puó utilizzare un algoritmo di sottrazione per colonne con un prestito invece del riporto
- Siano A e B i due numeri binari da sottrarre che vanno disposti su due righe
- Per ogni colonna i, partendo da quella di peso 0, é sufficiente usare s_i = (a_i + b_i + p_i)_{mod2} e p_{i+1} = ((1 a_i) + b_i + r_i)/2 (riporto)
- Cosa succede se A < B ?

Sommario

Codifica binaria di informazioni di tipo numerico e aritmetica binaria

Addizione

Sommatori binari

Sommatore CLA

Applicazioni di n-bit adder

Esempio di funzione aritmetica: 3-bit adder

- Si vuole realizzare un sommatore a 2 operandi per numeri interi positivi rappresentati su 3 bit.
- Siano $A = \{a_2, a_1, a_0\}$ e $B = \{b_2, b_1, b_0\}$ tali parole
- Il risultato é rappresentabile su 4 bit: $S = \{s_3, s_2, s_1, s_0\}$
- Si supponga di sintetizzare le funzioni s_i come espressioni SP a uscita singola

3-bit adder

s3s2s1s0

3-bit adder

Partiamo dal bit di minore peso:

3-bit adder

Le funzioni hanno un costo che a partire dal bit di minor peso (s_0) aumenta molto rapidamente

s3=a2'b2'a1b1+a2'b2'a1a0b0+a2'b2'a0b1b0+ a2'b2b1'b0'+a2'b2a1'b0'+a2'b2a1'a0'-a2'b2'b1'b0'+a2b2'a1'b1'-a2b2'a1'a0'+a2b2'b1'b0'+a2b2'a1'b1'+a2b2'a1'a0'+a2b2'b0'b1'-a2b2a1a0b0+a2b2b0a1a0

Problemi nella realizzazione di sommatori binari

- Con l'aumentare della dimensione delle parole (n), il costo di sommatori binari realizzati come reti a 2 livelli aumenta molto rapidamente
- L'utilizzo dei metodi di sintesi multilivello da luogo a miglioramenti relativi
- Le soluzioni che si ottengono non risultano modulari
- Come alternativa si vedrá un metodo che é basato sulla realizzazione hardware dell'algoritmo di somma per colonne

Ripple-carry adder

 Algoritmo di somma per colonne di due parole di n bit basato sulla propagazione del riporto (carry)

•
$$s_0 = (a_0 + b_0)_{mod2}$$
, $c_1 = (a_0 + b_0)/2$

•
$$s_i = (a_i + b_i + c_i)_{mod2}$$
, $c_{i+1} = (a_i + b_i + c_i)/2$

- $co = c_n$
- ullet ove + é la somma aritmetica e / é la divisione intera

Ripple-carry adder

La descrizione funzionale si traduce in questo schema:

- I blocchi che gestiscono i bit di indice i > 0 sono detti full-adder (FA)
- Quello che gestisce il caso i=0 é detto half-adder (HA) (vedremo poi il motivo per cui conviene sostuirlo con un FA)

Half-adder

É un componente ampiamente utilizzato nell'aritmetica binaria. Ingressi a e b, uscite s e c_{out}

ab	c _{out} s	
00	00	
01	01	$c_{out} = ab$
10	01	s = ab' + a'b
11	10	

Realizzazione di un HA

$$c_{out} = ab$$
 $s = ab' + a'b = a \oplus b$

Il gate EXOR che realizza la somma modulo 2 é un componente che puó essere realizzato in tecnologia CMOS al livello switch (in maniera píu complessa di NAND e NOR)

Full-adder

Il sommatore completo é anch'esso un componente fondamentale per l'aritmetica binaria. Ingressi $a, b, e c_{in}$, uscite s e c_{out}

abc _{in}	c _{out} s	
000	00	
001	01	
010	01	
011	10	$c_{out} = ab + ac_{in} + bc_{in}$
100	01	$s = a'b'c_{\textit{in}} + a'bc_{\textit{in}} + ab'c'_{\textit{in}} + abc_{\textit{in}}$
101	10	
110	10	
111	11	

Realizzazione di un FA

$$s = a'b'c_{in} + a'bc'_{in} + ab'c'_{in} + abc_{in}$$
 $c_{out} = ab + ac_{in} + bc_{in}$

$$c_{out} = ab + ac_{in} + bc_{in}$$

Realizzazione di un FA

$$c_{out} = ab + ac_{in} + bc_{in}$$

$$= ab + ac_{in}(b' + b) + bc_{in}(a' + a)$$

$$= ab + ab'c_{in} + abc_{in} + a'bc_{in} + abc_{in}$$

$$= ab + abc_{in} + abc_{in} + c_{in}(ab' + a'b)$$

$$= ab + c_{in}(a \oplus b)$$

$$s = a'b'c_{in} + a'bc'_{in} + ab'c'_{in} + abc_{in}$$

$$= c_{in}(a'b' + ab) + c'_{in}(ab' + a'b)$$

$$= c_{in}(ab' + a'b)' + c'_{in}(ab' + a'b)$$

$$= c_{in} \oplus (ab' + a'b)$$

$$= c_{in} \oplus (a \oplus b)$$

Realizzazione di un FA

La realizzazione delle equazioni viste in precedenza consente di riconoscere la presenza di due HA

Struttura di un n-bit adder (n=4)

Struttura al livello gate di un n-bit adder. Si noti che l'half-adder che somma a_0 e b_0 é stato sostituito da un full-adder in modo da poter utilizzare un carry-in di ingresso.

Vantaggi e svantaggi

• Vantaggi: modularitá e ridotto costo

• Svantaggi: ritardo

Sommario

Codifica binaria di informazioni di tipo numerico e aritmetica binaria

Addizione

Sommatori binari

Sommatore CLA

Applicazioni di n-bit adder

Sommatore carry-look ahead (CLA)

- Per superare i problemi dovuti alle prestazioni del sommatore ripple-carry sono stati proposti diversi sommatori
- Uno dei primi ad essere stato proposto é il sommatore carry look ahead (CLA)
- Il sommatore CLA utilizza una rete a 3 livelli che si occupa di calcolare i carry di un n-bit adder senza bisogno di propagare il riporto
- Il suo ritardo risulta quindi inferiore anche se al crescere di n tale vantaggio di riduce e il costo della rete puó diventare eccessivo

Sommatore carry-look ahead

- Nel sommatore ripple-carry, in uscita all'*i*-mo FA si ha riporto $(c_{i+1} = 1)$ se a_i e b_i hanno valori tali da produrre un riporto in uscita indipendentemente da c_i o se il loro valore é tale da garantire la propagazione di $c_i = 1$
- Generazione del riporto per il bit di peso i (carry generate):
 g_i = a_ib_i
- Propagazione del riporto per il bit di peso i (carry propagate): p_i = a_i ⊕ b_i
- $\bullet \ \ c_{i+1} = g_i + p_i c_i$
- L'applicazione iterattiva di questa formula porta alla logica di generazione dei riporti di un CLA
- I bit della somma sono calcolati come: $s_i = a_i \oplus b_i \oplus c_i$

Sommatore carry look ahead (n=4)

$$c_1 = g_0 + p_0 c_{in}$$

 $c_2 = g_1 + p_1 c_1$
 $c_3 = g_2 + p_2 c_2$
 $c_{out} = g_3 + p_3 c_3$

Sostituendo iterattivamente

$$egin{array}{lcl} c_1 &=& g_0 + p_0 c_{in} \ c_2 &=& g_1 + p_1 (g_0 + p_0 c_{in}) \ c_3 &=& g_2 + p_2 (g_1 + p_1 (g_0 + p_0 c_{in})) \ c_{out} &=& g_3 + p_3 (g_2 + p_2 (g_1 + p_1 (g_0 + p_0 c_{in}))) \end{array}$$

Sommatore carry look ahead (n=4)

Applicando la proprietá distributiva

$$c_1 = g_0 + p_0 c_{in}$$

$$c_2 = g_1 + p_1 g_0 + p_1 p_0 c_{in}$$

$$c_3 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_{in}$$

$$c_{out} = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 c_{in}$$

Ciascun bit di carry viene espresso come un espressione SP a due livelli in funzione di dei bit di carry generate e propagate e del carry-in esterno

Struttura di un sommatore CLA per n=4

Confronto fra ripple-carry e carry look ahead adder

- Il sommatore ripple-carry ha n FA in cascata e il suo cammino più lento (cammino critico) attraversa 2n gate
 - supponendo che i gate abbiano ritardo d, il ritardo del cammino critico é pari a 2dn (8d se n = 4)
- Nel sommatore CLA vengono attraversati 1 + 2 + 1 gate
 - Il ritardo é apparentemente 4d
 - In realtá la rete SP ha gate con fan-in elevato il cui ritardo é superiore a quello (d) dei gate a 2 ingressi utilizzati nei FA
 - Il ritardo di tali gate cresce con n
 - Il costo del ripple carry adder é proporzionale a n, quello del CLA aumenta con n²

Sommario

Codifica binaria di informazioni di tipo numerico e aritmetica binaria

Addizione

Sommatori binari

Sommatore CLA

Applicazioni di n-bit adder

n-bit adder: applicazioni

- Si mostrano qui alcune applicazioni di adder a n bit dove i singoli adder possono essere di qualsiasi tipo
- Sommatore a kn-bit soluzione
- Sommatori a piú operandi Psoluzione
- Valutazione di semplici espressioni aritmetiche
- Contatore di uni

Sommatore a kn bit usando k sommatori a n bit return

Sia
$$k = 4$$
 e $n = 4$

1. si prendono i 4 bit di minor peso di xe ye si connettono a un 4 bit adder

Sommatore a *kn* bit usando *k* sommatori a *n* bit → return

Sia
$$k = 4$$
 e $n = 4$

- 1. si prendono i 4 bit di minor peso di x e y e si connettono a un 4 bit adder
- 2. si procede aggiungendo 4 bit adder connessi in modo da avere il cout di uno connesso al cin del successivo

Sommatore a *kn* bit usando *k* sommatori a *n* bit → return

Sia
$$k = 4$$
 e $n = 4$

- 1. si prendono i 4 bit di minor peso di x e y e si connettono a un 4 bit adder
- 2. si procede aggiungendo 4 bit adder connessi in modo da avere il cout di uno connesso al cin del successivo

Sommatore a *kn* bit usando *k* sommatori a *n* bit → return

Sia
$$k = 4 e n = 4$$

- 1. si prendono i 4 bit di minor peso di x e y e si connettono a un 4 bit adder
- 2. si procede aggiungendo 4 bit adder connessi in modo da avere il cout di uno connesso al cin del successivo

Sommatore a 3 operandi da 4 bit ciascuno → return

Si vuole calcolare S = X + Y + W

- in questa soluzione non vengono perse informazioni: S ha un numero di bit sufficiente per contenere il risultato
- 2. $S \leq 45$ e quindi deve avere 6 bit

Si vuole calcolare S = X + Y + W

- in questa soluzione non vengono perse informazioni: S ha un numero di bit sufficiente per contnere il risultato
- 2. $S \leq 45$ e quindi deve avere 6 bit
- 3. per prima cosa si sommano X e Y con un 4 bit adder di cui vanno usate tutte le uscite

Sommatore a 3 operandi da 4 bit ciascuno → return

Si vuole calcolare S = X + Y + W

- in questa soluzione non vengono perse informazioni: S ha un numero di bit sufficiente per contnere il risultato
- 2. $S \leq 45$ e quindi deve avere 6 bit
- per prima cosa si sommano X e Y con un 4 bit adder di cui vanno usate tutte le uscite
- poi bisogna utilizzare un 5 bit adder per sommare W a X + Y e anche in questo caso si utilizzano le 6 uscite

Conclusioni

- I componenti per l'aritmetica binaria giocano un ruolo rilevante nelle prestazioni delle CPU e di altri sistemi digitali
- Siamo partiti dal caso piú semplice della somma di numeri naturali vedendo due possibili soluzioni per l'implementazione degli adder
- Ne esistono diverse altre
- Vedremo in seguito il loro utilizzo nelle CPU