Diseño y Construcción de una Nave Espacial Resistente a Agujeros Negros

1. Objetivos:

- Investigar sobre los agujeros negros y sus características.
- Diseñar de una Nave Espacial capaz de resistir las fuerzas de un agujero negro.
- Seleccionar materiales de construcción y sistemas adecuados para la resistencia y la supervivencia.
- Integrar de sistemas de absorción de energía, escudos magnéticos y propulsores de emergencia.
- Planificar de compartimentos de supervivencia y sistemas de comunicación en tiempo real.
- Implementar de sistemas de navegación y control avanzados.
- Considerar del diseño modular para reparaciones y adaptabilidad.
- Desarrollar de un plan de entrenamiento especializado para la tripulación de la nave.

2. Diseño de la Nave Espacial Resistente a Agujeros Negros:

- **Estructura Reforzada**: La nave debería tener una estructura robusta y reforzada para resistir las fuerzas de marea extremas cerca de un agujero negro.
- **Sistemas de Absorción de Energía**: Incorporar sistemas que absorban y dispersen las energías destructivas generadas cerca del agujero negro.
- **Escudos Magnéticos:** Utilizar escudos magnéticos para desviar partículas cargadas y radiación, protegiendo la nave y su tripulación.
- **Propulsores de Emergencia:** Integrar propulsores de emergencia potentes para escapar de las fuerzas gravitatorias del agujero negro.
- **Sistemas de Navegación Avanzados**: Equipar la nave con sistemas de navegación que calculen trayectorias precisas y eviten la influencia del agujero negro.
- Compartimentos de Supervivencia: Incluir compartimentos seguros y sellados para la tripulación en caso de emergencia.
- Sistemas de Comunicación en Tiempo Real: Establecer sistemas de comunicación que permitan mantener el contacto con bases y otras naves en tiempo real.
- Diseño Modular: Un diseño modular permitiría reemplazar partes dañadas o mejorar sistemas específicos sin comprometer la integridad de la nave.

Estas características, LA DEBÉIS PRESENTAR EN GENIALLY O CANVA, asegurarán que la nave espacial esté preparada para enfrentar las fuerzas gravitacionales extremas cerca de un agujero negro y garantizar la seguridad de la tripulación durante estas misiones peligrosas.

Dall-e CC-BY-NC-ND

3. Construcción de la Maqueta:

Para construir una maqueta de la nave espacial, podrías utilizar materiales como cartón, papel, plastilina y otros elementos reciclados. O bien, puedes hacer un diseño en 3D con Thikercad:

- <u>Proyecto Nave Espacial</u>: Este diseño muestra una Nave Espacial con forma alargada y aerodinámica, con dos alas laterales y una cola. Tiene un color azul metálico y varios detalles, como ventanas, antenas y propulsores.
- Nave Espacial (Diseño Básico): Este diseño muestra una Nave Espacial con forma de disco, con cuatro motores circulares en la parte inferior. Tiene un color gris oscuro y algunos detalles, como luces y paneles solares.
- NAVE ESPACIAL: Este diseño muestra una Nave Espacial con forma de cohete, con una punta afilada y tres aletas en la parte trasera. Tiene un color rojo y blanco y algunos detalles, como escotillas y símbolos.

Si quieres construir, aquí hay una guía básica para la construcción:

- Planificación: Diseña un boceto o plan detallado de la nave, considerando la disposición de los sistemas y características.
- Materiales: Reúne los materiales necesarios, como cartón, papel, pegamento, plastilina, pintura, etc.
- Estructura: Construye la estructura básica de la nave con cartón, asegurándote de que sea sólida y estable.
- Detalles y Sistemas: Agrega los detalles y sistemas en forma de elementos recortados de papel, plastilina modelada y otros objetos pequeños.
- Pintura y Decoración: Pinta y decora la nave según tu diseño y visión.
- Pruebas y Ajustes: Prueba la maqueta para asegurarte de que cumpla con los criterios de diseño y realiza ajustes si es necesario.

4. Forma de Presentación:

Los equipos presentarán su diseño y construcción de la Nave Espacial Resistente a Agujeros Negros utilizando modelos físicos, maquetas digitales o representaciones visuales.

Dall-e CC-BY-NC-ND

5. Instrumento de Evaluación:

Criterios de Evaluación	Excelente (10)	Bueno (7)	Aceptable (5)	Insuficiente (2)	Inaceptable (0)
Diseño de la Nave	El diseño de la nave demuestra originalidad, creatividad y una consideración exhaustiva de los sistemas de resistencia a agujeros negros.	El diseño es sólido y considera la mayoría de los sistemas requeridos, aunque podría haber algunas deficiencias en los detalles.	El diseño cumple con los requisitos mínimos, pero carece de algunos sistemas clave o detalles.	El diseño presenta deficiencias significativas en cuanto a su concepción y consideración de sistemas.	El diseño es inadecuado o inexistente.
Implementación de Sistemas	Los sistemas de absorción de energía, escudos magnéticos, propulsores de emergencia y otros elementos clave se integran de manera coherente y eficaz en el diseño.	Los sistemas están presentes y son reconocibles en el diseño, pero podría haber áreas de mejora en su implementación.	Los sistemas están parcialmente implementados, pero su integración es limitada o confusa.	Los sistemas son implementados de manera inadecuada o carecen de coherencia en su integración.	Los sistemas no están implementados o su presencia es insuficiente.
Plan de Entrenamiento	El plan de entrenamiento demuestra una consideración profunda de las habilidades y conocimientos necesarios para la tripulación de la nave.	El plan de entrenamiento es adecuado, pero podría ser más detallado o abarcar un rango más amplio de habilidades.	El plan de entrenamiento es básico y carece de detalles clave sobre las necesidades de formación.	El plan de entrenamiento es insuficiente o poco relevante para las necesidades de la tripulación.	El plan de entrenamiento es inexistente o inadecuado.

6. Principios del Diseño Universal para el Aprendizaje (DUA):

- Participación y compromiso: Los estudiantes trabajarán en grupos colaborativos para diseñar una nave espacial resistente a agujeros negros, lo que fomentará la participación y el compromiso.
- Representación de la información: Los estudiantes tendrán acceso a diversos recursos y herramientas para diseñar la nave, lo que les permitirá representar la información de manera visual y conceptual.
- Opciones para la expresión: Los estudiantes tendrán la flexibilidad de expresar su diseño de manera creativa, ya sea a través de bocetos, descripciones detalladas, modelos 3D virtuales, etc.
- Comprensión y transferencia: Los estudiantes aplicarán conceptos de ingeniería y diseño para crear una nave resistente a agujeros negros, lo que les ayudará a comprender y transferir conocimientos a situaciones prácticas.

7. Objetivos de Desarrollo Sostenible (ODS) relacionados:

- ODS 9 Industria, Innovación e Infraestructura: Al diseñar una nave espacial con características avanzadas y sistemas de absorción de energía, los estudiantes explorarán la innovación en la industria aeroespacial y la creación de infraestructuras resistentes.
- ODS 4 Educación de Calidad: La actividad promueve la educación de calidad al permitir a los estudiantes aplicar conceptos teóricos en un proyecto práctico y colaborativo.
- ODS 17 Alianzas para lograr los objetivos: Al trabajar en grupos y colaborar en el diseño de la nave, los estudiantes demostrarán la importancia de la colaboración y la cooperación para alcanzar objetivos comunes.