SBA (Small Biz Admin.) Loan Approval Analysis & Prediction

by Jungseok Lee

```
In [1]: from IPython.display import display, HTML
display(HTML("<style>.container { width:80% !important; }</style>"))

import warnings
warnings.filterwarnings('ignore')

import pandas as pd
import shap
import h2o
from h2o.estimators import H2OTargetEncoderEstimator
from h2o.estimators import H2OGradientBoostingEstimator
try:
    h2o.cluster().shutdown()
except:
    pass
```

```
In [2]: h2o.init(max_mem_size=8)

Checking whether there is an H2O instance running at http://localhost:54321.... not found.
Attempting to start a local H2O server...
; Java HotSpot(TM) 64-Bit Server VM (build 21.0.2+13-LTS-58, mixed mode, sharing)
    Starting server from C:\Users\wizdo\ml-spring-2024\Lib\site-packages\h2o\backend\bin\h2o.jar
    Ice root: C:\Users\wizdo\AppData\Local\Temp\tmpjnaynjql
    JVM stdout: C:\Users\wizdo\AppData\Local\Temp\tmpjnaynjql\h2o_wizdo_started_from_python.out
    JVM stderr: C:\Users\wizdo\AppData\Local\Temp\tmpjnaynjql\h2o_wizdo_started_from_python.err
    Server is running at http://127.0.0.1:54321
Connecting to H2O server at http://127.0.0.1:54321 ... successful.
Warning: Your H2O cluster version is (4 months and 8 days) old. There may be a newer version available.
Please download and install the latest version from: https://h2o-release.s3.amazonaws.com/h2o/latest stable.html
```

H2O_cluster_uptime:	02 secs
H2O_cluster_timezone:	America/Chicago
H2O_data_parsing_timezone:	UTC
H2O_cluster_version:	3.44.0.3
H2O_cluster_version_age:	4 months and 8 days
H2O_cluster_name:	H2O_from_python_wizdo_u65zw3
H2O_cluster_total_nodes:	1
H2O_cluster_free_memory:	7.984 Gb
H2O_cluster_total_cores:	0
H2O_cluster_allowed_cores:	0
H2O_cluster_status:	locked, healthy
H2O_connection_url:	http://127.0.0.1:54321
H2O_connection_proxy:	{"http": null, "https": null}
H2O_internal_security:	False
Python_version:	3.10.11 final

Display a preview of the dataset

(check missing values and types of features)

```
In [4]: data.describe()
```

Rows:799356

Cols:20

	index	City	State	Zip	Bank	BankState	NAICS	NoEmp	
type	int	enum	enum	int	enum	enum	int	int	
mins	0.0			0.0			0.0	0.0	
mean	399677.5			53800.14742367606			398464.7250036278	11.394357457753493	1.28043
maxs	799355.0			99999.0			928120.0	9999.0	
sigma	230754.34522669343			31185.719098605336			263323.9798013513	73.98731938246111	0.45180
zeros	1			249			179717	5914	
missing	0	25	12	0	1402	1408	0	0	
0	0.0	FORT LEE	NJ	7024.0	BNB HANA BANK NATL ASSOC	NJ	425120.0	2.0	
1	1.0	WESTWEGO	LA	70094.0	JEDCO DEVELOPMENT CORPORATION	LA	812331.0	62.0	
2	2.0	DENVER	СО	80209.0	WELLS FARGO BANK NATL ASSOC	SD	541611.0	4.0	
3	3.0	WRANGELL	AK	99929.0	FIRST BANK	AK	446110.0	3.0	
4	4.0	MALVERN	AR	72104.0	CITICAPITAL SMALL BUS. FINANCE	TX	0.0	1.0	
5	5.0	HAMILTON SQUARE	NJ	8619.0	SUN NATIONAL BANK	NJ	445110.0	3.0	
6	6.0	PHOENIX	AZ	85040.0	MUTUAL OF OMAHA BANK	AZ	0.0	1.0	
7	7.0	DENVER	СО	80207.0	JPMORGAN CHASE BANK NATL ASSOC	IL	722211.0	11.0	
8	8.0	CLEVELAND	ОН	44109.0	U.S. BANK NATIONAL ASSOCIATION	ОН	445299.0	4.0	
9	9.0	ESCONDIDO	CA	92025.0	COMERICA BANK	TX	621210.0	4.0	

Clean up (Encode replace missing values)

```
In [5]: columns = ["City", "State", "Bank", "BankState",
                    "NewExist", "RevLineCr", "LowDoc"]
        num col = data.columns by type(coltype="numeric")
        enum_col = data.columns_by_type(coltype="categorical")
        all columns = data.columns
        for col in columns:
            if all columns.index(col)*1.0 in num col:
                 print("Fillna for numerical column:...", col)
                 '''Alternative way '''
                 data[data[col].isna(), col] = 0
             elif all columns.index(col)*1.0 in enum col:
                 print("Fillna for categorical column:...", col)
                 data[col] = data[col].ascharacter()
                 data[data[col].isna(), col] = "Missing"
                 data[col] = data[col].asfactor()
       Fillna for categorical column:... City
       Fillna for categorical column:... State
       Fillna for categorical column:... Bank
       Fillna for categorical column:... BankState
       Fillna for numerical column:... NewExist
       Fillna for categorical column:... RevLineCr
       Fillna for categorical column:... LowDoc
     ]: # missing values were filled with 0 or 'Missing'
```

Split dataset to Train/Valid/Test

```
In [6]: train,valid,test = data.split_frame(ratios=[.6, .2], seed=1234)
```

Change to categorical variables for feature engineering

```
encoded_columns = cat_columns
response = "MIS_Status"

train[encoded_columns+[response]] = train[encoded_columns+[response]].asfactor()
valid[encoded_columns+[response]] = valid[encoded_columns+[response]].asfactor()
test[encoded_columns+[response]] = test[encoded_columns+[response]].asfactor()
```

Add engineered features

(Excluded some features that didn't improve the model performance)

```
In [8]: train_0 = train
 In [9]: import numpy as np
         column to bin = col = "BalanceGross"
         col np array = np.array(train 0[column to bin].as data frame(use pandas=True)[column to bin].values, dtype=np.int64) # Convert sin
         counts, breaks = np.histogram(col np array, bins=5)
        converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Pyt
        hon 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).
In [10]: min val = min(col np array)-1
                                                                     # Fstablish min and max values
         \max val = \max(col np array)+1
         new b = [int(min val)]
                                                                      # Redefine breaks such that each bucket has enough support
         for i in range(4):
             if counts[i] > 1000 and counts[i+1] > 1000:
                 new b.append(int(breaks[i+1]))
         new b.append(int(max val))
         names = [col + ' ' + str(x)] for x in range(len(new b)-1) # Generate names for buckets, these will be categorical names
In [11]: train[col+"_cut"] = train[col].cut(breaks=new_b, labels=names)
In [12]: def cut_column(col_np_array, train, valid, test, col):
             counts, breaks = np.histogram(col_np_array, bins=100)
                                                                     # Generate counts and breaks for our histogram
                                                                         # Establish min and max values
             min_val = min(col_np_array)-1
             max_val = max(col_np_array)+1
             new_b = [int(min_val)]
                                                                          # Redefine breaks such that each bucket has enough support
             for i in range(99):
```

```
new b.append(int(breaks[i+1]))
             new_b.append(int(max_val))
             names = [col + ' ' + str(x)] for x in range(len(new b)-1)] # Generate names for buckets, these will be categorical names
             train[col+" cut"] = train[col].cut(breaks=new b, labels=names)
             valid[col+" cut"] = valid[col].cut(breaks=new b, labels=names)
             test[col+" cut"] = test[col].cut(breaks=new b, labels=names)
In [13]: def add_features(train, valid, test):
             Helper function to add binning and interaction features to the dataset
             # Transform numerical columns to categorical via binning
             for column_to_bin in [#"NoEmp",
                                    #"CreateJob",
                                    "RetainedJob",
                                    #"DisbursementGross",
                                    "BalanceGross",
                                    #"GrAppv",
                                    "SBA Appv"]:
                 print("Binning Column: {}".format(column_to_bin))
                 col_np_array = np.array(train[column_to_bin].as_data_frame(use_pandas=True)[column_to_bin].values, dtype=np.int64) # Conve
                 cut column(col_np_array, train, valid, test, column_to_bin)
             #Add interaction columns for a subset of columns
             interaction cols1 = [#"NoEmp cut",
                                   #"City",
                                   "State",
                                   "Bank",
                                   "BankState",
                                   "NAICS",
                                   "NewExist",
                                   #"CreateJob cut",
                                   "RetainedJob cut",
                                   "UrbanRural",
                                   "RevLineCr",
                                   "LowDoc",
                                   "FranchiseCode",
                                   #"DisbursementGross cut",
                                  "BalanceGross_cut",
                                  #"GrAppv_cut",
                                   "SBA Appv cut"]
```

if counts[i] > 1000 and counts[i+1] > 1000:

```
train cols = train.interaction(factors=interaction cols1,
                                                              #Generate pairwise columns
                               pairwise=True,
                               max factors=1000,
                               min occurrence=100,
                               destination frame="itrain")
valid cols = valid.interaction(factors=interaction cols1,
                               pairwise=True,
                               max factors=1000,
                               min occurrence=100,
                               destination frame="ivalid")
test cols = test.interaction(factors=interaction cols1,
                               pairwise=True,
                               max factors=1000,
                               min occurrence=100,
                               destination frame="itest")
train = train.cbind(train cols)
                                                              #Append pairwise columns to H20Frames
valid = valid.cbind(valid cols)
test = test.cbind(test_cols)
print("All columns added via interaction", train cols.columns)
return train, valid, test
```

```
In [14]: train_f, valid_f, test_f = add_features(train, valid, test)
```

Binning Column: RetainedJob

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

Binning Column: BalanceGross

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

Binning Column: SBA_Appv

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

Interactions progress: | | | | (done) 100%

Interactions progress: | | | (done) 100%

Interactions progress: | | (done) 100%

All columns added via interaction ['State_Bank', 'State_BankState', 'State_NAICS', 'State_NewExist', 'State_RetainedJob_cut', 'State_UrbanRural', 'State_RevLineCr', 'State_LowDoc', 'State_FranchiseCode', 'State_BalanceGross_cut', 'State_SBA_Appv_cut', 'Bank_Bank State', 'Bank_NAICS', 'Bank_NewExist', 'Bank_RetainedJob_cut', 'Bank_UrbanRural', 'Bank_RevLineCr', 'Bank_LowDoc', 'Bank_FranchiseCode', 'Bank_BalanceGross_cut', 'Bank_SBA_Appv_cut', 'BankState_NAICS', 'BankState_NewExist', 'BankState_RetainedJob_cut', 'BankState_SBA_Appv_cut', 'NAICS_NewExist', 'BankState_RevLineCr', 'BankState_SBA_Appv_cut', 'NAICS_NewExist', 'NAICS_RetainedJob_cut', 'NAICS_UrbanRural', 'NAICS_RevLineCr', 'NAICS_LowDoc', 'NAICS_FranchiseCode', 'NAICS_BalanceGross_cut', 'NAICS_SBA_Appv_cut', 'NewExist_RetainedJob_cut', 'NewExist_UrbanRural', 'NewExist_RevLineCr', 'NewExist_LowDoc', 'NewExist_FranchiseCode', 'NewExist_SBA_Appv_cut', 'RetainedJob_cut_UrbanRural', 'RetainedJob_cut_RevLineCr', 'RetainedJob_cut_LowDoc', 'RetainedJob_cut_SBA_Appv_cut', 'RetainedJob_cut_LowDoc', 'NewExist_SBA_Appv_cut', 'RevLineCr_SBA_Appv_cut', 'UrbanRural_BalanceGross_cut', 'UrbanRural_SBA_Appv_cut', 'RevLineCr_LowDoc', 'RevLineCr_FranchiseCode', 'RevLineCr_SBA_Appv_cut', 'LowDoc_FranchiseCode', 'LowDoc_BalanceGross_cut', 'LowDoc_SBA_Appv_cut', 'FranchiseCode_SBA_Appv_cut', 'BalanceGross_cut', 'BalanceGross_cut', 'LowDoc_BalanceGross_cut', 'LowDoc_SBA_Appv_cut', 'FranchiseCode_BalanceGross_cut', 'FranchiseCode_SBA_Appv_cut', 'BalanceGross_cut', 'LowDoc_SBA_Appv_cut', 'LowDoc_SBA_Appv_cut', 'LowDoc_SBA_Ap

Re-define cat_columns for target encoding

(Exclude 4 features that are not suitable)

targetencoder Model Build progress:

(done) 100%

```
Out[16]: Model Details
```

=========

H2O Target Encoder Estimator: Target Encoder

Model Key: TargetEncoder_model_python_1714353241713_1

Target Encoder model summary: Summary for target encoder model

encoded_column_names	original_names
City_te	City
State_te	State
Bank_te	Bank
BankState_te	BankState
FranchiseCode_te	FranchiseCode
RevLineCr_te	RevLineCr
LowDoc_te	LowDoc

[tips]

Use `model.explain()` to inspect the model.

--

Use `h2o.display.toggle_user_tips()` to switch on/off this section.

Save target encoder path

```
In [17]: encoder_path = h2o.save_model(model=encoder_te, path="./artifacts", force=True)
In [18]: encoder_path
```

Out[18]: 'C:\\Users\\wizdo\\Downloads\\artifacts\\TargetEncoder_model_python_1714353241713_1'

Add the features created through target encoding.

```
In [19]: train_te = encoder_te.transform(frame=train_f, as_training=True)
  valid_te = encoder_te.transform(frame=valid_f, as_training=False)
```

```
test_te = encoder_te.transform(frame=test_f, as_training=False)
```

Prepare for model training and tuning.

Remove "index" column for training

```
In [22]: predictors.remove("index")
```

Model traing and tuning (GBM(H2O))

```
In [23]: best_auc = 0
         best nfolds = 0
         best ntrees = 0
         best_max_depth = 0
         best_stopping_rounds = 0
         best_stopping_metric = []
         best_model = None
         for nfolds in [3, 4, 5]:
             for ntrees in [30, 50, 80, 100, 130]:
                 for stopping_rounds in [3, 5]:
                     for max_depth in [3, 5]:
                          for stopping_metric in ["MAE"]:
                              model = H2OGradientBoostingEstimator(nfolds = nfolds,
                                                                   ntrees = ntrees,
                                                                   max depth = max depth,
                                                                   stopping_rounds = stopping_rounds,
                                                                   stopping_metric = stopping_metric,
                                                                   seed=1234,
                                                                   keep_cross_validation_predictions = False)
                              model.train(y=response, x=predictors, training_frame=train_te, validation_frame=valid_te)
                              auc = model.model_performance(valid=True).auc()
                              if auc > best_auc:
                                  best_auc = auc
```

```
gbm Model Build progress: ||
                                                                                                                                               (done) 100%
Better Model found. Trained H2OGBM with (auc, nfolds, ntrees, stopping_rounds, stopping_metric):( 0.8101122794405948 3 30 3 3 MAE )
                                               (done) 100%
gbm Model Build progress: |
Better Model found. Trained H2OGBM with (auc, nfolds, ntrees, stopping rounds, stopping metric):( 0.817585119510624 3 30 5 3 MAE )
gbm Model Build progress:
                                                                                                                                               (done) 100%
(done) 100%
gbm Model Build progress: |
                                                                                                                                               (done) 100%
gbm Model Build progress:
                                                                                                                                               (done) 100%
Better Model found. Trained H2OGBM with (auc, nfolds, ntrees, stopping rounds, stopping metric):( 0.8225207586854927 3 50 5 3 MAE )
gbm Model Build progress: | The Company of the Comp
                                                                                                                                               (done) 100%
gbm Model Build progress:
                                                                                                                                               (done) 100%
gbm Model Build progress:
                                                                                                                                               (done) 100%
gbm Model Build progress:
                                                                                                                                               (done) 100%
Better Model found. Trained H2OGBM with (auc, nfolds, ntrees, stopping_rounds, stopping_metric):( 0.825371561631955 3 80 5 3 MAE )
gbm Model Build progress:
                                                                                                                                               (done) 100%
gbm Model Build progress:
                                                                                                                                               (done) 100%
gbm Model Build progress: |
                                                                                                                                               (done) 100%
gbm Model Build progress: |
                                                                                                                                               (done) 100%
Better Model found. Trained H2OGBM with (auc, nfolds, ntrees, stopping rounds, stopping metric):( 0.8260393864349381 3 100 5 3 MAE
gbm Model Build progress:
                                                                                                                                               (done) 100%
gbm Model Build progress:
                                                                                                                                               (done) 100%
gbm Model Build progress: ||
                                                                                                                                               (done) 100%
gbm Model Build progress:
                                                                                                                                               (done) 100%
Better Model found. Trained H2OGBM with (auc, nfolds, ntrees, stopping rounds, stopping metric):( 0.8260729441934694 3 130 5 3 MAE
gbm Model Build progress:
                                                                                                                                               (done) 100%
gbm Model Build progress: |
                                                                                                                                               (done) 100%
gbm Model Build progress: |
                                                                                                                                               (done) 100%
gbm Model Build progress:
                                                                                                                                               (done) 100%
gbm Model Build progress: |
                                                                                                                                               (done) 100%
gbm Model Build progress: |
                                                                                                                                               (done) 100%
gbm Model Build progress:
                                                                                                                                               (done) 100%
gbm Model Build progress: |
                                                                                                                                               (done) 100%
gbm Model Build progress:
                                                                                                                                               (done) 100%
                                                                                                                                               (done) 100%
gbm Model Build progress: |
gbm Model Build progress:
                                                                                                                                               (done) 100%
gbm Model Build progress: |
                                                                                                                                               (done) 100%
gbm Model Build progress:
                                                                                                                                               (done) 100%
gbm Model Build progress: |
                                                                                                                                               (done) 100%
gbm Model Build progress:
                                                                                                                                               (done) 100%
gbm Model Build progress: |
                                                                                                                                               (done) 100%
gbm Model Build progress: |
                                                                                                                                               (done) 100%
gbm Model Build progress:
                                                                                                                                               (done) 100%
                                                                                                                                               (done) 100%
gbm Model Build progress:
```

```
gbm Model Build progress:
                                                                                     (done) 100%
Best model AUC(on valid dataset): 0.8260729441934694
```

Best model AUC(on test dataset): 0.8231652178480686

As a result of 60 combinations, the auc value of the valid data was the highest(0.82607) under the condition (nfolds = 3, ntrees = 130, max_depth = 5, stopping_rounds = 3, stopping_metric = MAE), so this model was set as the best model.

Final metrics using Test dataset

(Threshold calculation and Report final AUC metric and confusion matrix on the Test dataset)

best model.model performance(test data=test te)

Out[24]: ModelMetricsBinomial: gbm ** Reported on test data. **

> MSE: 0.11013973593898531 RMSE: 0.33187307203053595 LogLoss: 0.355642847141753

Mean Per-Class Error: 0.27068745817623496

AUC: 0.8231652178480686 AUCPR: 0.5339127974547134 Gini: 0.6463304356961372

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.23895010495437083

Rate	Error	1	0	
(20312.0/131686.0)	0.1542	20312.0	111374.0	0
(10780.0/27846.0)	0.3871	17066.0	10780.0	1
(31092.0/159532.0)	0.1949	37378.0	122154.0	Total

Maximum Metrics: Maximum metrics at their respective thresholds

	metric	threshold	value	idx
	max f1	0.2389501	0.5233043	231.0
	max f2	0.1091954	0.6340495	307.0
	max f0point5	0.4486483	0.5410389	144.0
	max accuracy	0.4890380	0.8502683	130.0
	max precision	0.9741083	1.0	0.0
	max recall	0.0037266	1.0	399.0
	max specificity	0.9741083	1.0	0.0
	max absolute_mcc	0.3038338	0.4145142	202.0
max min_	per_class_accuracy	0.1543333	0.7422277	278.0
max mean_	per_class_accuracy	0.1453233	0.7436559	283.0

n	netric th	reshold	value	idx
m	ax tns 0.9	741083 13	1686.0	0.0
m	ax fns 0.9	741083 2	7829.0	0.0
m	ax fps 0.0	037266 13	1686.0	399.0
m	ax tps 0.0	037266 2	7846.0	399.0
m	ax tnr 0.9	741083	1.0	0.0
m	ax fnr 0.9	741083 0.99	993895	0.0
m	ax fpr 0.0	037266	1.0	399.0
m	ax tpr 0.0	037266	1.0	399.0

Gains/Lift Table: Avg response rate: 17.45 %, avg score: 16.96 %

group	cumulative_data_fraction	lower_threshold	lift	cumulative_lift	response_rate	score	cumulative_response_rate	cumulative
1	0.0100043	0.8394239	4.8496171	4.8496171	0.8464912	0.8823035	0.8464912	38.0
2	0.0200023	0.7845444	4.3497916	4.5997827	0.7592476	0.8117718	0.8028831	0.84
3	0.0300003	0.7340418	4.0193367	4.4063411	0.7015674	0.7596531	0.7691183	0.81
4	0.0400045	0.6849076	3.7727221	4.2478867	0.6585213	0.7097847	0.7414604	0.79
5	0.0500025	0.6377627	3.6314115	4.1246226	0.6338558	0.6604728	0.7199448	0.76
6	0.1000050	0.4650787	2.9855574	3.5550900	0.5211232	0.5435609	0.6205340	0.65
7	0.1500013	0.3550272	2.2669234	3.1257370	0.3956871	0.4061945	0.5455913	0.57
8	0.2000038	0.2776231	1.8069912	2.7960402	0.3154068	0.3135642	0.4880434	0.50
9	0.3000025	0.1815220	1.3833399	2.3251500	0.2414593	0.2249186	0.4058504	0.41
10	0.4000013	0.1240623	0.9829183	1.9895973	0.1715665	0.1505517	0.3472803	0.34
11	0.5	0.0866626	0.7096261	1.7336063	0.1238639	0.1040273	0.3025976	0.29
12	0.5999987	0.0621321	0.5056445	1.5289481	0.0882593	0.0734980	0.2668749	0.26
13	0.6999975	0.0451910	0.3892888	1.3661411	0.0679496	0.0531865	0.2384573	0.23
14	0.7999962	0.0322940	0.2503084	1.2266631	0.0436908	0.0385311	0.2141117	0.20

group	cumulative_data_fraction	lower_threshold	lift	cumulative_lift	response_rate	score	cumulative_response_rate	cumulative
15	0.8999950	0.0203699	0.1436490	1.1063290	0.0250737	0.0264381	0.1931076	0.18
16	1.0	0.0020049	0.0430920	1.0	0.0075216	0.0111794	0.1745481	0.16

```
In [65]: best_model.model_performance(test_data=test_te).auc()
Out[65]: 0.8231652178480686
In [25]: best_model.model_performance(test_data=test_te).find_threshold_by_max_metric("f1")
Out[25]: 0.23895010495437083
In [26]: best_model.model_performance(test_data=test_te).confusion_matrix()
```

Out[26]: Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.23895010495437083

Rate	Error	1	0	
(20312.0/131686.0)	0.1542	20312.0	111374.0	0
(10780.0/27846.0)	0.3871	17066.0	10780.0	1
(31092.0/159532.0)	0.1949	37378.0	122154.0	Total

The threshold 0.23895 is the boundary for predicting that the predicted value of 'MIS_status' is 0 or 1 when test_te data is entered into best_model. This threshold of 0.23895 is the value that maximizes the f1 value.

Shapley values

In [29]: examine_all_reason_codes(test_te, best_model)

contributions progress: | done | 100%

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

Summary plot with Shapley values

```
In [30]: best_model.explain(test_te,include_explanations =['shap_summary']);
```

SHAP Summary

SHAP summary plot shows the contribution of the features for each instance (row of data). The sum of the feature contributions and the bias term is equal to the raw prediction of the model, i.e., prediction before applying inverse link function.

Permutation feature importance

31]: best_model.permutation_importance_plot(test_te)

Permutation Variable Importance: gbm

Variable	Relative Importance	Scaled Importance	Percentage
Bank_te	0.0284783	1.0	0.1864774
Bank_FranchiseCode	0.0192211	0.6749392	0.1258609
City_te	0.0169819	0.5963100	0.1111984
NAICS_FranchiseCode	0.0166022	0.5829771	0.1087121
Bank_RevLineCr	0.0122859	0.4314117	0.0804486
Bank_BankState	0.0121552	0.4268239	0.0795930
State_Bank	0.0047715	0.1675488	0.0312441
FranchiseCode_te	0.0045317	0.1591295	0.0296741
DisbursementGross	0.0039888	0.1400627	0.0261185
UrbanRural_FranchiseCode	0.0039447	0.1385150	0.0258299
BankState_BalanceGross_cut	0.0	0.0	0.0
BalanceGross_cut_SBA_Appv_cut	0.0	0.0	0.0
NewExist_BalanceGross_cut	0.0	0.0	0.0
BalanceGross_cut	0.0	0.0	0.0
UrbanRural_BalanceGross_cut	0.0	0.0	0.0
RevLineCr_LowDoc	0.0	0.0	0.0
BalanceGross	0.0	0.0	0.0
RetainedJob_cut_SBA_Appv_cut	0.0	0.0	0.0
RetainedJob_cut_LowDoc	0.0	0.0	0.0
NewExist_LowDoc	0.0	0.0	0.0

[87 rows x 4 columns]

What are the most important features, how they impact model predictions.

According to the Summary plot with Shapley values(or Shap summary), City_te, Bank_FranchiseCode, Bank_te are the most important features in that order. According to the Permutation feature importance graph, Bank_te, Bank_FranchiseCode, City_te are the most important features in that order.

Features affect the model prediction of 'MIS_status' by their shap values. For example, According to the Shap summary, the higher the 'City_te', the higher the shap value. In other words, Higher 'City_te' value has an influence in the direction of predicting that 'MIS_status' is 1.

Indivisual observations analysis using Shapley values.

In [39]: test_te["MIS_Status"].head(20)

Out[39]: MIS_Status [20 rows x 1 column]

In [40]: best_model.predict(test_te).head(20) gbm prediction progress: | (done) 100%

predict	p0	р1
0	0.979175	0.0208253
0	0.952072	0.0479278
1	0.581554	0.418446
0	0.896618	0.103382
0	0.912671	0.0873286
0	0.906274	0.0937263
0	0.959727	0.0402734
1	0.66142	0.33858
0	0.96091	0.0390896
0	0.897612	0.102388
0	0.993964	0.00603563
1	0.573491	0.426509
0	0.986225	0.0137746
1	0.527061	0.472939
1	0.234944	0.765056
0	0.971343	0.0286574
0	0.973032	0.0269675
0	0.981235	0.018765
0	0.84971	0.15029
1	0.595205	0.404795

Out[40]:

[20 rows x 3 columns]

Compare the 'MIS_Status' value of the test data and the predicted value obtained by inserting the test data into best_model, and check the correctly predicted observations(row) and incorrectly predicted observations (row) for Individual observations analysis using Shapley values.

```
In [41]: # The function is to calculate Shapley values (contributions) and plot them for single record
def examine_indiv_reason_codes(record, model, use_matplotlib=True):
```

```
shap contribs = model.predict contributions(record)
col mapping = {}
for i in record.col names:
    related cols = [x for x in shap contribs.col names if "{}.".format(i) in x]
    if len(related cols) > 0:
        col mapping[i] = related cols
for k, v in col mapping.items():
    if len(v) > 1:
        shap contribs[k] = shap contribs[v].sum(axis=1,return frame=True)
        shap contribs = shap contribs.drop(v)
shap cols = [i for i in shap contribs.col names if i != "BiasTerm"]
bias term = shap contribs.as data frame()["BiasTerm"].values
X = record.as data frame(use pandas=True)
shap contribs = shap contribs.as data frame(use pandas=True)
return shap.force plot(bias term,
                       shap contribs[shap cols].values,
                       X[shap cols].values,
                       shap cols,
                       link="logit",
                       matplotlib=use matplotlib
```

In [42]: shap.initjs()

Label 0 is correctly identified

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

The p1 value of row0 observation is 0.02. 'State_Bank' has the most impact in the direction of predicting that 'MIS_status' is 1. 'City_te' has the most impact in the direction of predicting that 'MIS status' is 0.

The p1 value of row3 observation is 0.10. 'City_te' has the most impact in the direction of predicting that 'MIS_status' is 1. 'NAICS_FranchiseCode' has the most impact in the direction of predicting that 'MIS_status' is 0.

Label 0 is identified as 1

0.001908 0.00517 0.01393 0.03698 0.09451 0.221

TH AMERICA_NY Bank_te = 0.4247 Bank_RevLineCr = BANCO POPULAR NORTH AMERICA_Y City_te = 0.4501 Bank_FranchiseCode = BANCO POPULAR NORTH

The p1 value of row2 observation is 0.42. 'Bank_FranchiseCode' has the most impact in the direction of predicting that 'MIS_status' is 1. 'NAICS FranchiseCode' has the most impact in the direction of predicting that 'MIS status' is 0.

In [46]: examine_indiv_reason_codes(test_te[7, :], best_model, use_matplotlib=False)

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

Out[46]:

).00517 0.008495 0.01393 0.02276 0.03698 0.05954 0.09451 0.1468 0.2

= SD_Y Bank_UrbanRural = WELLS FARGO BANK NATL ASSOC_1 Bank_BankState = WELLS FARGO BANK NATL ASSOC_SD Bank_RevLineCr = WELLS FARGO

The p1 value of row7 observation is 0.34. 'Bank_RevLineCr' has the most impact in the direction of predicting that 'MIS_status' is 1. 'Bank_FranchiseCode' has the most impact in the direction of predicting that 'MIS_status' is 0.

Label 1 is correctly identified

In [48]: examine_indiv_reason_codes(test_te[14, :], best_model, use_matplotlib=False)

contributions progress: | (done) 100%

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

base value

The p1 value of row14 observation is 0.77. 'Bank_FranchiseCode' has the most impact in the direction of predicting that 'MIS_status' is 1. 'BankState NAICS' has the most impact in the direction of predicting that 'MIS status' is 0.

In [49]: examine_indiv_reason_codes(test_te[19, :], best_model, use_matplotlib=False)

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

Out[49]:

base value
0.00517 0.01393 0.03698 0.09451 0.221

ZENS BANK NATL ASSOC N NAICS NewExist = 238990 1 NAICS SBA Appv cut = 238990 SBA Appv 0 Bank te = 0.2236 Bank FranchiseCode = CITIZENS BA

The p1 value of row19 observation is 0.40. 'Bank_FranchiseCode' has the most impact in the direction of predicting that 'MIS_status' is 1. 'City_te' has the most impact in the direction of predicting that 'MIS_status' is 0.

Label 1 is identified as 0

In [50]: examine_indiv_reason_codes(test_te[1, :], best_model, use_matplotlib=False)

contributions progress: | (done) 100%

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

The p1 value of row1 observation is 0.05. 'City_te' has the most impact in the direction of predicting that 'MIS_status' is 1. 'NAICS_RevLineCr' has the most impact in the direction of predicting that 'MIS status' is 0.

The p1 value of row5 observation is 0.09. 'Bank_te' has the most impact in the direction of predicting that 'MIS_status' is 1. 'City_te' has the most impact in the direction of predicting that 'MIS_status' is 0.

Residuals analysis identify and report common patterns

in the errors made by the model

```
In [52]: predict_MIS = best_model.predict(test_te)["predict"]
    predict_MIS.columns = ["predict_MIS"]
    test_te_p = test_te.cbind(predict_MIS)
    test_te_p[["MIS_Status", "predict_MIS"]] = test_te_p[["MIS_Status", "predict_MIS"]].asnumeric()
```

```
abs_error = abs(test_te_p["MIS_Status"] - test_te_p["predict_MIS"])
         abs error.columns = ["abs error"]
         test_te_p_abs = test_te_p.cbind(abs_error)
        gbm prediction progress:
                                                                                            (done) 100%
        test_te_p_abs.head(1)
In [53]:
Out[53]:
           City te State te Bank te BankState te FranchiseCode te RevLineCr te LowDoc te
                                                                                                 City State Bank BankState FranchiseCode R
                                                                                                             FIRST
                                                                       0.150262
                                                                                                                          ΑK
                                                                                                                                          1
         0.109508 0.111624 0.121426
                                        0.0812697
                                                          0.127763
                                                                                 0.0950888 WRANGELL
                                                                                                             BANK
        [1 row x 98 columns]
        test_te_p_abs_sort = test_te_p_abs.sort(["abs_error"])
         response = "abs_error"
In [55]:
         predictors_gbm = test_te_p_abs_sort.columns
         predictors_gbm.remove(response)
         predictors_gbm.remove("MIS_Status")
         predictors_gbm.remove("predict_MIS")
         predictors_gbm.remove("index")
In [56]: res_model = H2OGradientBoostingEstimator(nfolds=best_nfolds,
                                                   ntrees=best_ntrees,
                                                   max depth = max depth,
                                                   stopping_rounds=best_stopping_rounds,
                                                   stopping_metric='MAE',
                                                   seed=1234,
                                                   keep_cross_validation_predictions = False)
         res model.train(x=predictors_gbm, y=response, training_frame=test_te_p_abs_sort)
        gbm Model Build progress: |
                                                                                            (done) 100%
```

Out[56]: Model Details

=========

H2OGradientBoostingEstimator : Gradient Boosting Machine Model Key: GBM_model_python_1714353241713_12885

Model Summary:

number_of_trees	number_of_internal_trees	model_size_in_bytes	min_depth	max_depth	mean_depth	min_leaves	max_leaves	mean_leave
130.0	130.0	175900.0	5.0	5.0	5.0	22.0	32.0	30.72307

4

ModelMetricsRegression: gbm

** Reported on train data. **

MSE: 0.08730088487242944 RMSE: 0.2954672314698018 MAE: 0.2030319585492246 RMSLE: 0.20606227138792627

Mean Residual Deviance: 0.08730088487242944

ModelMetricsRegression: gbm

** Reported on cross-validation data. **

MSE: 0.1223206358500482 RMSE: 0.3497436716368835 MAE: 0.24192716919818685 RMSLE: 0.24607900200183777

Mean Residual Deviance: 0.1223206358500482

Cross-Validation Metrics Summary:

	mean	sd	cv_1_valid	cv_2_valid	cv_3_valid
mae	0.2419228	0.0007219	0.2425398	0.2411289	0.2420997
mean_residual_deviance	0.1223159	0.0007594	0.1230415	0.1215267	0.1223795
mse	0.1223159	0.0007594	0.1230415	0.1215267	0.1223795

	mean	sd	cv_1_valid	cv_2_valid	cv_3_valid
r2	0.1751850	0.0021526	0.1730136	0.1773184	0.1752231
residual_deviance	0.1223159	0.0007594	0.1230415	0.1215267	0.1223795
rmse	0.3497358	0.0010859	0.3507727	0.3486068	0.3498279
rmsle	0.2460746	0.0006137	0.2467145	0.2454908	0.2460186

Scoring History:

 timestamp	duration	number_of_trees	training_rmse	training_mae	training_deviance
2024-04-28 22:19:37	27.388 sec	0.0	0.3850945	0.2965956	0.1482978
2024-04-28 22:19:37	27.474 sec	1.0	0.3791827	0.2918395	0.1437795
2024-04-28 22:19:37	27.536 sec	2.0	0.3739977	0.2873904	0.1398743
2024-04-28 22:19:37	27.594 sec	3.0	0.3695775	0.2833019	0.1365876
2024-04-28 22:19:37	27.652 sec	4.0	0.3657425	0.2795468	0.1337676
2024-04-28 22:19:37	27.709 sec	5.0	0.3624543	0.2761083	0.1313731
2024-04-28 22:19:37	27.767 sec	6.0	0.3595890	0.2729529	0.1293043
2024-04-28 22:19:37	27.824 sec	7.0	0.3566522	0.2697047	0.1272008
2024-04-28 22:19:37	27.895 sec	8.0	0.3542547	0.2668747	0.1254964
2024-04-28 22:19:37	27.958 sec	9.0	0.3522416	0.2643809	0.1240741
2024-04-28 22:19:40	30.938 sec	58.0	0.3173201	0.2213509	0.1006920
2024-04-28 22:19:40	30.995 sec	59.0	0.3168681	0.2209577	0.1004054
2024-04-28 22:19:40	31.051 sec	60.0	0.3163780	0.2205496	0.1000950
2024-04-28 22:19:40	31.106 sec	61.0	0.3161196	0.2203247	0.0999316
2024-04-28 22:19:40	31.159 sec	62.0	0.3157734	0.2200161	0.0997128
2024-04-28 22:19:40	31.222 sec	63.0	0.3152301	0.2195304	0.0993700
2024-04-28 22:19:40	31.276 sec	64.0	0.3149679	0.2192934	0.0992048

 timestamp	duration	number_of_trees	training_rmse	training_mae	training_deviance
2024-04-28 22:19:40	31.332 sec	65.0	0.3145582	0.2189551	0.0989469
2024-04-28 22:19:41	31.386 sec	66.0	0.3143027	0.2187589	0.0987862
2024-04-28 22:19:44	34.493 sec	130.0	0.2954672	0.2030320	0.0873009

[68 rows x 7 columns]

Variable Importances:

variable	relative_importance	scaled_importance	percentage
Bank_FranchiseCode	6952.7011719	1.0	0.1357536
NAICS_FranchiseCode	3892.1289062	0.5598010	0.0759950
State_Bank	3685.3530273	0.5300606	0.0719577
State_SBA_Appv_cut	3656.4809570	0.5259080	0.0713939
NAICS_UrbanRural	3463.7934570	0.4981939	0.0676316
NAICS_NewExist	2738.8505859	0.3939261	0.0534769
NAICS_RevLineCr	2468.5207520	0.3550449	0.0481986
State_BankState	2378.6149902	0.3421138	0.0464432
Bank_RevLineCr	2177.3486328	0.3131659	0.0425134
Bank_te	2018.9973145	0.2903903	0.0394215
UrbanRural_RevLineCr	0.0	0.0	0.0
UrbanRural_LowDoc	0.0	0.0	0.0
UrbanRural_BalanceGross_cut	0.0	0.0	0.0
RevLineCr_LowDoc	0.0	0.0	0.0
RevLineCr_BalanceGross_cut	0.0	0.0	0.0
LowDoc_FranchiseCode	0.0	0.0	0.0
LowDoc_BalanceGross_cut	0.0	0.0	0.0
LowDoc_SBA_Appv_cut	0.0	0.0	0.0

variable	relative_importance	scaled_importance	percentage
FranchiseCode_BalanceGross_cut	0.0	0.0	0.0
BalanceGross_cut_SBA_Appv_cut	0.0	0.0	0.0

[93 rows x 4 columns]

[tips]

Use 'model.explain()' to inspect the model.

_

Use `h2o.display.toggle_user_tips()` to switch on/off this section.

In [57]: examine_all_reason_codes(test_te_p_abs_sort.tail(10000),res_model)

contributions progress: | (done) 100%

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).

converting H2O frame to pandas dataframe using single-thread. For faster conversion using multi-thread, install datatable (for Python 3.9 or lower), or polars and pyarrow (for Python 3.10 or above).


```
In [58]: res_model.explain(test_te_p_abs_sort.tail(10000),include_explanations =['shap_summary']);
```

SHAP Summary

SHAP summary plot shows the contribution of the features for each instance (row of data). The sum of the feature contributions and the bias term is equal to the raw prediction of the model, i.e., prediction before applying inverse link function.

According to the residuals analysis, abs_error(absolute value of the difference between 'MIS_Status' value and predicted value) made by the model shows patterns like above Shap summary. In other words, Bank_FranchiseCode, City_te, Bank_te have the greatest influence on the occurrence of abs_error in that order.

Save GBM(H2O) model path

Dut[60]: 'C:\\Users\\wizdo\\Downloads\\artifacts\\GBM_model_python_1714353241713_2823'

Summary and Conclusion

In this project, I created and verified a model that predicts MIS_Status values using SBA_loan data. Let me explain in order. First, I loaded the data and checked the characteristics of the data, such as the type of features and missing values. And the missing values were filled with 0 or 'Missing'. Next, the dataset was divided into train, valid, and test in a 6:2:2 ratio. And as a preliminary work of feature engineering, some variables were changed to categorical variables. After that I added engineered features. Additionally, 7 variables were converted through target encoding and this target encoder was saved for the scoring funct value.

Next, I removed the index and did model training and tuning. In this process, the most appropriate parameters were found and the best model was determined. As a result of 60 combinations, the auc value of the valid data was the highest(0.82607) under the condition (nfolds = 3, ntrees = 130, max_depth = 5, stopping_rounds = 3, stopping_metric = MAE), so this model was set as the best model.

By inserting the test dataset into this best model, I obtained the auc value(auc: 0.82316), the threshold value that maximize f1(threshold = 0.23895), and the confusion matrix.

Likewise, I drew a Shap plot, Shap summary, and permutation feature importance graph using this best model and test dataset. Through this, the most important features(City_te, Bank_FranchiseCode, Bank_te) and the direction of their influence were identified. In addition, eight sample graphs were drawn to illustrate how much each feature affected the prediction when the the predicted value of each row matched MIS_Status value or not.

Next, I analyzed the residuals (the absolute value of the difference between MIS_Status and the predicted value) resulting from this model. As a result, I drew a Shap plot and Shap Summary graph and identified the features(Bank_FranchiseCode, City_te, Bank_te) that most affect these errors.

Finally, the best_model was saved for the scoring function and the storage location was checked.

To further develop the results of this project, I would like to suggest two more things. First, the auc value in the train dataset was around 0.92, but in the valid and test datasets, both came out to only around 0.82. If this result is not a characteristic of the dataset but a result of the model overfitting the train dataset, additional work is required. Second, some numerical features of this dataset were positively skewed. But I didn't utilize minmax scaler or log scaler. If this process had been added, model performance would have been better.