Similarity, Dissimilarity, and Proximity

- □ Similarity measure or similarity function ? 210 14 sough) 3 → mount
- A real-valued function that quantifies the similarity between two objects
- Measure how two data objects are alike: The higher value, the more alike
- Often falls in the range [0,1]: 0: no similarity; 1: completely similar
- Dissimilarity (or distance) measure = malaulio / 5:42 2014
- Numerical measure of how different two data objects are
- In some sense, the inverse of similarity: The lower, the more alike
- Minimum dissimilarity is often 0 (i.e., completely similar) \Rightarrow เหมือนทั้ง กโน 🔾
- Range [0, 1] or $[0, \infty)$, depending on the definition
- Proximity usually refers to either similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

Data matrix

ไม่เหมือน

เหมือน

- A data matrix of n data points with / dimensions
- □ Dissimilarity (distance) matrix → ไร์กานก่อน
 - n data points, but registers only the distance d(i, j)(typically metric)
- Usually symmetric, thus a triangular matrix
- Distance functions are usually different for real, boolean. categorical, ordinal, ratio, and vector variables
- Weights can be associated with different variables based on applications and data semantics

- d(2,1)

Standardizing Numeric Data

- Z-score:
- X: raw score to be standardized, μ: mean of the population, σ: standard deviation
- ightharpoonup the distance between the raw score and the population mean in units of the standard deviation
- □ negative when the raw score is below the mean, "+" when above
- An alternative way: Calculate the mean absolute deviation

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$

where

$$m_f = \frac{1}{n} (x_{1f} + x_{2f} + \dots + x_{nf})$$

- Using mean absolute deviation is more robust than using standard deviation

Example: Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
x1	1	2
x2	3	5
х3	2	0
x4	4	5

Dissimilarity Matrix (by Euclidean Distance)

	x1	x2	x3	x4
x1	0			
x2	3.61	0		
x3	2.24	5.1	0	
x4	4.24	1	5.39	0

Example: Minkowski Distance at Special Cases

Manhattan (L.)

iviaiiiiai	viaimattan (±1)						
L	x1	x2	х3	x4			
x1	0						
x2	5	0					
х3	3	6	0				
x4	6	1	7	0			

Euclidean (L₃)

	· Z,			
L2	x1	x2	х3	x4
x1	0			
x2	3.61	0		
х3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum (L.)

54p1c1114111 (2∞)						
L_{∞}	x1	x2	х3	x4		
x1	0					
x2	3	0				
х3	2	5	0			
x4	3	1	5	0		

Special Cases of Minkowski Distance 🖃 3 แบบ

- two binary vectors $d(i,j) = |x_{i1} - x_{i1}| + |x_{i2} - x_{i2}| + \dots + |x_{il} - x_{il}|$
- p = 2: (L₂ norm) Euclidean distance $\rightarrow C^2 = \alpha^2 + \beta^2$

$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{il} - x_{il}|^2}$$

- $d(i,j) = \sqrt{|x_{i1} x_{j1}|^2 + |x_{i2} x_{j2}|^2 + \dots + |x_{il} x_{jl}|^2}$ $p \to \infty: (L_{\text{max}} \text{ norm}, L_{\infty} \text{ norm}) \text{ "supremum" distance } \qquad \text{Given the vectors} \text{ Index norm}$ $\square \text{ The maximum difference between any component (attribute) of the vectors}$

$$d(i,j) = \lim_{p \to \infty} \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p} = \max_{f=1}^l |x_{if} - x_{jf}|$$

Example: Minkowski Distance at Special Cases

point	attribute 1	attribute 2
x1	1	2
x2	3	5
х3	2	0
x4	4	5

Manhattan (L_1)

L	x1	x2	х3	x4
x1	0			
x2	5	0		
x3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

Euchaeun (L ₂)					
L2	x1	x2	x3	x4	
x1	0				
x2	3.61	0			
x3	2.24	5.1	0		
x4	4.24	1	5.39	0	

Supremum (L_∞)

	- 00-			
L_{∞}	x1	x2	х3	x4
x1	0			
x2	3	0		
х3	2	5	0	
x4	3	1	5	0

Example: Minkowski Distance at Special Cases

Manhattan (L₁)

L	x1	x2	х3	x4
x1	0			
x2	5	0		
х3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

	u (-2 <i>1</i>			
L2	x1	x2	х3	x4
x1	0			
x2	3.61	0		
х3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum (L__)

L∞	x1	x2	х3	x4	
x1	0				
x2	3	0			
х3	2	5	0		
x4	3	1	5	0	

distances matrix

61