Brownian Motion

Problem sheet 7 (valid as assignment)

1. Martingales [24]

Let $(B(t): t \ge 0)$ be a Brownian Motion. Show that the following are martingales:

$$(B(t)^2 - t : t \ge 0)$$
, $(B(t)^3 - 3tB(t) : t \ge 0)$ and $(B(t)^4 - 6tB(t)^2 + 3t^2 : t \ge 0)$.

- 2. Laplacian in generalised polar coordinates Let $u: \mathbb{R}^d \to \mathbb{R}$ be a smooth radial function of the form $u(x) = \widetilde{u}(r)$ with r = |x|.
 - (a) Show that for |x| > 0

$$\Delta u(x) = \frac{1}{r^{d-1}} \partial_r \left(r^{d-1} \partial_r \widetilde{u} \right) (|x|) .$$

Hint: use the identity $\partial_{x_i}|x|=\frac{x_i}{|x|}$ and similar formulas.

(b) Use the formula above to prove Stokes' theorem on the disc for radial functions:

$$\int_{B_r(0)} \Delta u(x) \, \mathrm{d}x = \int_{\partial B_r(0)} \partial_{\mathbf{n}} u(z) \, \mathrm{d}\sigma(z) \; .$$

Hint: Use that $\partial_{\mathbf{n}} u(x) = \partial_r \widetilde{u}(|x|)$.

3. Conformal invariance

[26

Let $\mathbf{C}_t = B_t^1 + \iota B_t^2$ be a Brownian motion on the complex plane (here B^1 and B^2 are independent 1D BMs: note that this is equivalent to a 2D Brownian motion).

(a) If $D \subseteq \mathbf{C}$ is a domain and $f: D \to \mathbf{C}$ is analytic, prove that $f(\mathbf{C}_t) = \mathbf{D}_t$ is a martingale.

Hint: Use the Cauchy–Riemann equations

$$\partial_x u = \partial_y v , \qquad \partial_y u = -\partial_x v ,$$

for $u = \mathfrak{Re}(f)$ and $v = \mathfrak{Im}(f)$ the real and imaginary parts of f (together with the parametrisation $z = x + \iota y$ of points in \mathbf{C}).

(b) If $f: \mathbf{C} \to \mathbb{R}$ is harmonic (meaning $(\partial_x^2 + \partial_y^2)f = 0$), then

$$f(z_0) = \int_0^{2\pi} f(z_0 + \varrho e^{i\vartheta}) d\vartheta$$
, $\forall z_0 \in \mathbf{C}; , \varrho > 0$.

Hint: use that the law of Brownian motion started at z_0 and stopped at $\partial B_{\varrho}(z_0)$ is the uniform distribution on the boundary $\partial B_{\varrho}(z_0)$ (this follows from the rotational symmetry of Brownian motion).

4. Ornstein-Uhlenbeck

[26]

Recall the transition density of the Ornstein-Uhlenbeck process $(X(t): t \ge 0)$:

$$q(t,x,y) = \frac{1}{\sqrt{2\pi(1-e^{-2ct})}} \exp\left(\frac{-(y-xe^{-ct})^2}{2(1-e^{-2ct})}\right) \text{ with } c > 0.$$

(a) Consider the limit $\overline{q}(y) = \lim_{t\to\infty} q(t,x,y)$ and show that it does not depend on x. Identify $y\mapsto a(y)$ (*Hint*: it's a polynomial) and D>0 such that

$$0 = -\frac{\partial}{\partial y} \Big(a(y) \overline{q}(y) \Big) + \frac{\partial^2}{\partial y^2} \Big(D \cdot \overline{q}(y) \Big) \; .$$

(b) Derive the generator \mathcal{L} of the Ornstein–Uhlenbeck process, using Dynkin's formula

$$\frac{d}{dt}\mathbb{E}_x\big[f(X(t))\big] = \mathbb{E}_x\big[\mathcal{L}f(X(t))\big] \quad \text{for all } f \in C_0^2(\mathbb{R}, \mathbb{R}) \text{ with compact support }.$$

5. Poisson problem

[10]

Suppose $\overline{D} \subseteq \mathbb{R}^d$ is a bounded open region and $\psi : \overline{D} \to \mathbb{R}$ is continuous. Suppose that $u \in C^2(D) \cap C(\overline{D})$ solves the Poisson problem

$$\Delta u = \psi$$
 on D and $u = 0$ on ∂D .

Show that, for a Brownian motion $(B(t): t \ge 0)$ on \mathbb{R}^d started at x,

$$u(x) = -\frac{1}{2} \mathbb{E}_x \left[\int_0^T \psi(B(s)) ds \right], \text{ where } T = \inf\{t : B_t \in \partial D\}.$$