1. [Mason] Suppose $f \in \mathcal{R}[a, b]$ and $\alpha \in \mathbb{R}$. Show that $\alpha f \in \mathcal{R}[a, b]$ and

$$\int_a^b \alpha f = \alpha \int_a^b f$$

- **2.** [Sakti] Show that the uniform limit of Riemann integrable functions is Riemann integrable. Conclude that $\mathcal{R}[a,b]$ is a closed subset of B[a,b].
- **3.** [Max] Find (with proof) an element of $\mathcal{R}[a,b]$ that is not a uniform limit of step functions.
- **4.** [Jody] Show that integration on $\mathcal{R}[a,b]$ (as a closed subset of B[a,b] is continuous by showing that the map

$$f \mapsto \int_a^b f$$

is a bounded linear map.

- **5.** [Lander] Determine if $\chi_{\Delta} \in \mathcal{R}[0,1]$, where Δ is the Cantor set.
- **6.** [Jody] Suppose $l: \mathcal{P}(\mathbb{R}) \to [0, \infty]$ and that it is either additive or that it is countably additive. Show that either $l(\emptyset) = 0$ or $l(A) = \infty$ for all $A \in \mathcal{P}(\mathbb{R})$. Regardless, show that l is monotone.
- 7. [Mason] Suppose $l : \mathcal{P}(\mathbb{R}) \to [0, \infty]$. Show that l is countably additive if and only if l is finitely additive and countably subadditive.