Suites Réelles Opérations sur les suites MPSI 2

1 Structure d'algèbre des suites

Soit \mathcal{E} l'ensemble des suites réelles. Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles.

Addition

On pose $u + v = (u_n + v_n)_{n \in \mathbb{N}}$

 $(\mathcal{E}, +)$ est un groupe abélien (commutatif):

- Il possède un élément neutre: $(0)_{n\in\mathbb{N}}$
- Il possède un élément symétrique: $-u_n = (-u_n)_{n \in \mathbb{N}}$

Multiplication

On pose $u \times v = (u_n \times v_n)_{n \in \mathbb{N}}$

 \times est associative

 \times est distributive sur +

 \times admet un élément neutre: $(1)_{n\in\mathbb{N}}$

On dit que $(\mathcal{E}, +, \times)$ est un <u>anneau commutatif</u> (car pas complétement symétrique)

Multiplication externe

On pose $\forall \lambda \in \mathbb{R}, \ \lambda \cdot u = (\lambda \times u_n)_{n \in \mathbb{N}}$

On a de plus $\lambda \cdot (u \times v) = (\lambda \cdot u) \times v = u \times (v \cdot \lambda)$

On dit que $(\mathcal{E}, +, \cdot)$ est un espace vectoriel.

On dit que $(\mathcal{E}, +, \times, \cdot)$ est une algébre commutative.

Propriété 1.0.1

On note \mathcal{E}_b l'ensemble des suites bornées.

On note \mathcal{E}_c l'ensemble des suites convergentes.

On a:

- $\mathcal{E}_c \subset \mathcal{E}_b \subset \mathcal{E}$
- $(\mathcal{E}_b, +, \times, \cdot)$ et $(\mathcal{E}_b, +, \times, \cdot)$ sont des algébres commutatives.

Limites Réelles

Propriété 1.0.2

- Si u converge vers l et v converge vers l', alors u + v converge vers l + l'.
- Si u converge vers l et v converge vers l', alors $u \times v$ converge vers $l \times l'$.
- Si u converge vers l et $\lambda \in \mathbb{R}$, alors $\lambda \cdot u$ converge vers λl

- Si u converge vers $l \neq 0$, alors il existe un rang n_0 a partir duquel $\left(\frac{1}{u_n}\right)_{n \geq n_0}$ ait un sens, et $\left(\frac{1}{u_n}\right)_{n\geq n_0}$ converge vers $\frac{1}{l}$ • Si u converge vers l et v converge vers $l'\neq 0$, alors il existe un rang n_0 a partir duquel
- $\left(\frac{u_n}{v_n}\right)_{n\geq n_0}$ ait un sens, et $\left(\frac{u_n}{v_n}\right)_{n\geq n_0}$ converge vers $\frac{l}{l'}$

• Premier point:

Utiliser les définitions des limites avec $\frac{\varepsilon}{2}$, à ε fixé.

Puis, avec l'addition des deux, utiliser l'inégalité triangulaire.

• Deuxiéme point:

Soit u et v tendant vers l et l'.

Montrer que $u \, v \xrightarrow[n \to +\infty]{} l \, l'$

Soit ε un réel strictement positif.

Montrer que $\exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow |_n v_n - l l'| < \varepsilon$

De plus: $|u_n v_n - l l'| = |u_n v_n - u_n l' + u_n l' - l l'|$ u est convergente, donc bornée.

$$= |u_n(v_n - l) + l'(u_n - l)|$$

$$|u_n v_n - l l'| \le |u_n| |v_n - l| + |l'| |u_n - l|$$

Soit M le majorant de |u|.

Donc $|u_n v_n - l l'| \le M |v_n - l| + |l'| |u_n - l|$

On utilise ensuite la convergence de u avec $\frac{\varepsilon}{2(|l'|+1)}$ et de v avec $\frac{\varepsilon}{2(M+1)}$

Donc: $\exists n_1 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_1 \Rightarrow |u_n - l| < \frac{\varepsilon}{2(|l'| + 1)}$ Soit n_1 et n_2 deux tels

$$\exists n_2 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_2 \Rightarrow |v_n - l| < \frac{\varepsilon}{2(M+1)}$$

réels. Posons $n_0 = \max(\{n_1, n_2\})$

Donc $\forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow |n \ v_n - l \ l'| < M \frac{\varepsilon}{2(M+1)} + |l'| \frac{\varepsilon}{2(|l'|+1)} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon$

Ce raisonnement étant vrai pour tout ε , $uv \xrightarrow[n \to +\infty]{} l l'$

• Quatriéme point:

Soit u une suite tendant vers un réel l différent de 0.

- Démontrer l'existence de $\left(\frac{1}{u_n}\right)_{n\geqslant n_0}$ $\exists n_2\in\mathbb{N},\ \forall n\in\mathbb{N},\ n\geqslant n_2\Rightarrow \frac{|l|}{2}< u_n<\frac{3\,|l|}{2}$ Donc il existe un rang n_0 tel que l'inverse de u_n soit défini.

- Montrer que: $\left(\frac{1}{u_n}\right)_{n>n}$ converge vers $\frac{1}{l}$

$$\iff \forall \varepsilon \in \mathbb{R}^{+*}, \ \exists n_1 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_1 \Rightarrow \left| \frac{1}{u_n} - \frac{1}{l} \right|$$

$$\left| \frac{1}{u_n} - \frac{1}{l} \right| = \left| \frac{l - u_n}{l u_n} \right| = \frac{|l - u_n|}{|u_n| |l|}$$

Or $|u_n| > \frac{|l|}{2}$

Donc
$$\forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow \left| \frac{1}{u_n} - \frac{1}{l} \right| < \frac{|u_n - l|}{\frac{|l|}{2} \times |l|} \leqslant \frac{2}{|l|^2} |u_n - l|$$

On applique la convergence de u avec $\frac{|l|^2}{2}\varepsilon$

Donc
$$\exists n_1 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_1 \Rightarrow \left| \frac{1}{u_n} - \frac{1}{l} \right| < \frac{2}{|l|^2} \times \frac{|l|^2}{2} \varepsilon \leqslant \varepsilon$$

Donc il existe un rang n_1 a partir duquel $\left|\frac{1}{u_n} - \frac{1}{l}\right|$ est inférieur à ε

Cela étant vrai pour tout ε , $\frac{1}{u_n} \underset{n \to +\infty}{\longrightarrow} \frac{1}{l}$

Corollaire 1.0.1
$$u_n \underset{n \to +\infty}{\longrightarrow} l \iff u_n - l \underset{n \to +\infty}{\longrightarrow} 0$$

$$\iff \frac{u_n}{l} \underset{n \to +\infty}{\longrightarrow} 1$$

Limites Infinies

Propriété 1.0.3

Somme:

- De même avec $u \xrightarrow[n \to +\infty]{} -\infty$

<u>Produit</u>

- $Si \ u \xrightarrow[n \to +\infty]{} +\infty$
 - $-Siv n'admet pas 0 pour limite, et si <math>v_n$ garde un signe constant a partir d'un certain rang, alors:

$$Si \ v_n < 0, \ u_n \ v_n \xrightarrow[n \to +\infty]{} -\infty$$

$$Si \ v_n > 0, \ u_n \ v_n \xrightarrow[n \to +\infty]{n \to +\infty} +\infty$$

 $-Si \ v_n \xrightarrow[n \to +\infty]{} 0$, on ne peut pas conclure a priori,

 $Sauf \ \widetilde{si} \ \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow v_n = 0 \ Dans \ ce \ cas, \ u_n \ v_n \underset{n \to +\infty}{\longrightarrow} 0$

• De même avec $u \xrightarrow[n \to +\infty]{} -\infty$

Inverse

- Si $|u_n| \underset{n \to +\infty}{\longrightarrow} +\infty$, alors il existe un rang n_0 a partir duquel $\left(\frac{1}{u_n}\right)_{n \geq n_0}$ existe et
- $Si\ u \xrightarrow[n \to +\infty]{} 0$

- Si a partir d'un certain rang n_0 , tous les u_n sont non nuls, alors $\left(\frac{1}{u_n}\right)_{n\geqslant n_0}$ existe.
- Si de plus u_n garde un signe constant a partir d'un rang $n_1 \geqslant n_0$, $\left(\frac{1}{u_n}\right) \underset{n \to +\infty}{\longrightarrow} \pm \infty$ selon le signe de u_n

Inverse

Montrer que si $u_n \xrightarrow[n \to +\infty]{} 0$ et, à partir d'un certain rang, $u_n < 0$, alors $\frac{1}{u_n} \xrightarrow[n \to +\infty]{} -\infty$

Soit u une suite convergeant vers 0 et strictement négative a partir d'un rang n_1 .

Donc: $\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists n_2 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_2 \Rightarrow |u_n| < \varepsilon$

Soit n_2 un tel réel, ε un réel positif, et $n_3 = \max(\{n_1, n_2\})$

Pour tout n supérieur a n_3 , $\frac{1}{u_n}$ existe.

Montrer que $\frac{1}{u_n}$ diverge vers $-\infty$

Soit K un réel.

- Si $K \geqslant 0$: $\forall n \in \mathbb{N}, \ n \geqslant n_3 \Rightarrow \frac{1}{u_n} < 0 \geqslant K$
- Si K < 0

En appliquant la convergence de u avec le réel $\frac{1}{|K|}$:

 $\exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_4 \Rightarrow -\frac{1}{|K|} < u_n < \frac{1}{u_n}$ Soit n_0 un tel réel.

 $\forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow \frac{1}{K} < u_n$ $\Rightarrow \frac{1}{u_n} < K$

Ce raisonnement étant valable pour tout K réel, $\frac{1}{u_n} \underset{n \to +\infty}{\longrightarrow} -\infty$

Propriété 1.0.4

Tout réel est limite d'une suite de rationnels.

Montrer que $\forall x \in \mathbb{R}, \ \exists (q_n)_{n \in \mathbb{N}} \in \mathcal{E}, \ (\forall n \in \mathbb{N}, \ q_n \in \mathbb{Q}) \text{ et } (q_n \underset{n \to +\infty}{\longrightarrow} x)$

Soit x un réel.

• Existence de la suite:

 \mathbb{Q} est dense dans \mathbb{R}

Donc $\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists q \in \mathbb{R}, \ x - \varepsilon < q < x + \varepsilon$

Pour tout n non nul, posons $\varepsilon = \frac{1}{n}$

Soit q_n un rationnel vérifiant $q_n \in \mathbb{Q}, \ x - \frac{1}{n} < q < x + \frac{1}{n}$

Ce raisonnement étant valable pour tout n non nul, on obtient une suite q sur \mathbb{N}^* a valeurs dans \mathbb{Q}

 \bullet Convergence vers x

Soit ε un réel strictement positif.

 $\left(\frac{1}{n}\right)_{n\in\mathbb{N}^*}$ converge vers 0

Donc $\exists n_0 \in \mathbb{N}, \ 0 < \frac{1}{n} < \varepsilon$

Soit n_0 un tel entier.

On a donc $\forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow |q_n - x| < \frac{1}{n} < \varepsilon$

Cela étant valable pour tout ε strictement positif, on conclut que q converge vers x

Relations de comparaison 2

Propriété 2.0.5

Soit u et v deux suites telles que $\exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_1 \Rightarrow u_n \leqslant v_n$

- $Si \ u \xrightarrow[n \to +\infty]{} +\infty, \ alors \ v \xrightarrow[n \to +\infty]{} +\infty$ $Si \ v \xrightarrow[n \to +\infty]{} -\infty, \ alors \ u \xrightarrow[n \to +\infty]{} -\infty$
- Si u et v à termes positifs à partir d'un certain rang, et si $v \xrightarrow[n \to +\infty]{} 0$, alors $u \xrightarrow[n \to +\infty]{} 0$

Propriété 2.0.6

Propriété d'encadrement

Soit u, v et w trois suites telles que $\exists n \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow u_n \leqslant v_n \leqslant w_n$ Si u et w convergent vers une même limite l, alors $v_n \xrightarrow[n \to +\infty]{} l$

Définition 2.0.1

Soit u et v deux suites réelles.

• $u_n = O(v_n)$: " u_n est <u>Grand O</u> de v_n "

$$\exists M \in \mathbb{R}^+, \ \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow |u_n| \leqslant M \ |v_n|$$

• $u_n = o(v_n)$: " u_n est <u>Petit o</u> de v_n "

$$\exists (\varepsilon_n)_{n \in \mathbb{N}}, \ (\varepsilon \underset{n \to +\infty}{\longrightarrow} 0) \ et \ (\exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow |u_n| \leqslant \varepsilon_n \ |v_n|)$$

Propriété 2.0.7

Si
$$u_n = O(v_n)$$
 et $w_n = O(v_n)$
alors $u_n + w_n = O(v_n)$

Si
$$u_n = o(v_n)$$
 et $w_n = o(v_n)$
alors $u_n + w_n = o(v_n)$

Remarque:

- ① $u_n = O(v_n) \iff \text{la suite } \left(\frac{u_n}{v_n}\right)_{n \in \mathbb{N}}$ est bornée. On dit que v domine u.
- ② $u_n = o(v_n) \iff \text{la suite } \left(\frac{u_n}{v_n}\right)_{n \in N} \text{ converge vers } 0.$ On dit que u est négligeable devant v

Définition 2.0.2

Soit u et v deux suites réelles.

• $u_n \underset{n \to +\infty}{\sim} v_n$: "u est équivalente a v.

$$\exists (\alpha_n)_{n \in \mathbb{N}}, \ (\alpha_n \underset{n \to +\infty}{\longrightarrow} 1) \ et \ (\exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow u_n = \alpha_n v_n)$$

Remarque:

- Si v_n tous non nuls a partir d'un certain rang, alors la suite $\left(\frac{u_n}{v_n}\right)_{n\in\mathbb{N}}$ converge vers 1.
- "Etre équivalente à" est une relation d'équivalence sur l'ensemble des suites dont pour tout rang il existe un terme de rang supérieur non nul.

Propriété 2.0.8

Soit u et v deux suites réelles.

- $Si\ u_n \underset{n \to +\infty}{\sim} v_n \ et\ si\ u_n \underset{n \to +\infty}{\longrightarrow} l \ et\ si\ l \in \overline{\mathbb{R}},\ alors\ v_n \underset{n \to +\infty}{\longrightarrow} l$
- $Si \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = l \text{ et } l \in \mathbb{R}^*, \text{ alors } u_n \underset{n \to +\infty}{\sim} v_n$

Remarques

$$u_n \underset{n \to +\infty}{\sim} v_n \iff \exists \alpha \in \mathbb{N}^{\mathbb{R}}, \ (\alpha_n \underset{n \to +\infty}{\longrightarrow} 1) \text{ et } (\exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow u_n = \alpha_n \, v_n$$

$$\iff \exists \varepsilon \in \mathbb{N}^{\mathbb{R}}, \ (\varepsilon_n \underset{n \to +\infty}{\longrightarrow} 0) \text{ et } (\exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow u_n = \varepsilon_n \, v_n$$

$$\iff u_n - v_n \underset{n \to +\infty}{\longrightarrow} o(v_n)$$

Propriété 2.0.9

Soit u, v, x et y quatre suites réelles.

- $Si\ u_n \underset{n \to +\infty}{\sim} v_n \ et\ x_n \underset{n \to +\infty}{\sim} y_n$ $alors\ u_n x_n \underset{n \to +\infty}{\sim} v_n \ y_n$ $Si\ de\ plus\ x_n \ et\ y_n\ tous\ non\ nuls\ a\ partir\ d'un\ certain\ rang,$ $alors\ \frac{u_n}{x_n} \underset{n \to +\infty}{\sim} \frac{v_n}{y_n}$

Remarque: ce n'est généralement pas compatible avec l'addition.