L'Hospital 1

- 1. Regel Bei $\frac{0}{0}$: $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ 2. Regel Bei $\frac{a}{\infty}$: $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ Umformen bei: $0 \cdot \infty, 0^0, \infty, 1^\infty, \infty \infty$

Typ des Ausdrucks	Form des Ausdrucks	Umformung
0-2, 20-20	f(x)-g(x)	$(f(x)-g(x)) \xrightarrow{f(x)+g(x)} (f(x)+g(x))$
O•(±∞)	f(x) • g(x)	-f(x) - 2q(x)
0°,1~,0~,~°	(x)3(x)	F(x)S(x) = e3(x) In(f(x)) Lp e-Fixt sleting: lim F(x)=F(lim x)

2 **Taylor**

Formel:

$$f(x) = \underbrace{f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n}_{}$$

Taylorpolynom n-ter Ordnung (Hauptteil)

$$+\underbrace{\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}}_{R.R.t.d.i.d.ens.L.m.num}$$

Entwicklungspunkt x_0 = beliebig, aber fest aus Intervall Zwischenstelle ξ liegt zwischen x und x_0 , kann also kleiner als x oder auch größer sein.

2.0.1Fehlerabschätzung

worst case: ξ zwischen x_0 und x so wählen, dass $|R_n(x)|$ größtmöglich wird.

$$\Rightarrow |f(x) - P_n(x)| = |R_n(x)| = \left| \frac{1}{(n+1)!} f^{(n+1)}(\xi) (x - x_0)^{n+1} \right|$$

$$= \frac{1}{(n+1)!} \left| (x - x_0 9)^{n+1} \right| \left| f^{(n+1)}(\xi) \right|$$

$$\leq \frac{1}{(n+1)!} \left| (x - x_0 9)^{n+1} \right| M$$

Man sieht:

1. Je größer das n, dest kleiner wird der Faktor $1\frac{1}{(1-n)!}$ auf Deutsch: mit Großerem n wird die approximation besser

2. Je weiter das x von x_0 weg liegt, desto größer wird der Bertrag $x - x_0$, desto mehr Einfluss hat der Term auf die Genauigkeit

3 Reihen

Die Folge s_n nennt man die zur Folge a_k gehörige unendliche Reihe. Das n-te Glied heißt n-te Partialsumme. $s_n = \sum_{k=1}^n a_k$ Falls die Folge s_n der Partialsummen keinen Grenzwert besitzt, nennt man die Reihe **divergent**. Die Reihe heißt **konvergent**, wenn s_n konvergiert.

Dann setzt man
$$s = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=1}^n a_k = \sum_{k=1}^\infty a_k$$

Im Falle der Konvergenz sagt man die Reihe $\sum_{k=1}^{\infty} a_k$ ist **konvergent** und nennt s den Grenzwert die Simme der unendlichen Reihe.

3.1 Geometrische Reihe

$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}, |q| < 1$$

Für |q| > 1 wächst der Term $q_n + 1$ für $n \to \infty$ betragsmäßig unbeschränkt, so dass **Divergenz** der Folge s_n und somit der Reihe vorliegt.

Im Fall q = 1 gilt für die Partialsumme $s_n = n + 1$. Damit liegt **Divergenz** der Reihe vor.

Im Fall |q| < 1 strebt $q_n + 1$ gegen den Grenzwert 0 und die Reihe ist konvergent.

Im Fall q = -1 wechselt s_n fortlaufend zwischen den Werten 1 und 0, d.h. es liegt **Divergenz** vor

harmonische Reihe 3.2

$$a_k = \underbrace{\frac{1}{k}}_{>0} \Rightarrow s_n = a_1 + a_2 + \dots + a_n = \underbrace{1 + \frac{1}{2} + \dots + \frac{1}{n}}_{harmonischeReihe}$$

Die harmonische Reihe ist divergent.

Divergenzkriterium: Falls die Folge a_k **nicht** gegen Null konvergiert, ist die unendliche Reihe

 $\sum_{k=1}^{\infty} a_k$ divergent. Notwendig für die Konvergenz einer Reihe $\sum_{k=1}^{\infty} a_k$ ist die Bedingung, dass die Folge a_k eine <u>Nullfolge</u> ist, also $\lim_{k\to\infty} a_k = 0$

4 Absolute und bedingte Konvergenz von Reihen, Konvergenzkriterien

Summen und Vielfache konvergenter Reihen ergeben wieder eine konvergente Reihe.

bedingte/ absolute Konvergenz

Die Reihe $\sum_{k=1}^{\infty} a_k$ heißt **absolut konvergent**, wenn die Reihe der Beträge konvergent ist $\sum_{k=1}^{\infty} |a_k|$

Eine konvergente Reihe, welche nicht absolut konvergent ist, heißt bedingt konvergent.

Eine absolut konvergente Reihe ist auch (bedingt) konvergent, die Umkehrung ist i.a. falsch.

Majorantenkriterium:

 $\sum_{k=1}^{\infty} c_k$ konvergente Reihe mit nichtnegativen Gliedern und es gelte $|a_k| \leq c_k$ für alle $k \ge m(fest)$

Dann ist die Reihe $\sum_{k=1}^{\infty} a_k$ absolut konvergent. Bsp:

$$\sum_{k=1}^{\infty} \frac{k}{k^3 + k} \Rightarrow k \text{ ausklammern} = \frac{k}{k(k^2 + 1)} = \frac{1}{k^2 + 1}$$

Die Reihe verhält sich wie $\sum_{k=1}^{\infty} \frac{1}{k^2}$, sollte daher konvergieren. Begründung: Aus $k^2 + 1 \ge k^2$ folgt: $\underbrace{\frac{k}{k^3 + k}}_{=1} = \frac{1}{k^2 + 1} \le \underbrace{\frac{1}{k^2}}_{=c_1}$

Aus
$$k^2 + 1 \ge k^2$$
 folgt: $\underbrace{\frac{k}{k^3 + k}}_{=|a|} = \frac{1}{k^2 + 1} \le \underbrace{\frac{1}{k^2 + 1}}_{=c_k}$

Da nun die Reihe $\sum_{k=1}^{\infty} c_k = \sum_{k=1}^{\infty} \frac{1}{k^2}$ konvergiert, konvergiert auch die Reihe

$$\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} \frac{k}{k^3 + k}$$

 $\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} \frac{k}{k^3 + k}$ $\underline{\mathbf{Minorantenkriterium:}}$ $\sum_{k=1}^{\infty} d_k \text{ divergente Reihe mit nichtnegativen Gliedern und es gelte } a_k \geq d_k \text{ für alle } k \geq m(fest)$

Dann ist die Reihe $\sum_{k=1}^{\infty} a_k$ divergent.

$$\sum -k = 1^{\infty} \frac{1}{2k-1}$$
 wächst ähnlich wie $\sum_{k=1}^{\infty} \frac{1}{2k}$

Da nun die harmonische Reihe $\sum_{k=1}^{\infty} \frac{1}{k}$ divergiert, divergiert auch die Reihe

$$\sum_{k=1}^{\infty} \frac{1}{2k} \text{ und damit auch } \sum_{k=1}^{\infty} \frac{1}{2k-1}$$
$$2k-1 \le 2k \leftrightarrow \underbrace{\frac{1}{2k-1}}_{a_k} \ge \underbrace{\frac{1}{2k}}_{=c_k}$$