Autonomous Intelligent Systems Lab 1

Dylan Trollope

January 2022

1 Exercise 1

- a) $(P \lor (Q \leftrightarrow R)) \land \neg (Q \to R)$ $(P \lor (Q \to R) \land (R \to Q)) \land \neg (Q \to R)$ - elimination of equivalence $(P \lor (\neg Q \lor R) \land (\neg R \lor Q)) \land \neg (\neg Q \lor R)$ - elimination of implication $(P \lor (\neg Q \lor R) \land (\neg R \lor Q)) \land (Q \land \neg R)$ - distribution of negative $(P \lor \neg Q \lor R) \land (P \lor \neg R \lor Q) \land (Q \land \neg R)$ - Distribution of \lor $(P \lor \neg Q \lor R) \land (P \lor \neg R \lor Q) \land Q \land \neg R]$ - Removal of unnecessary brackets.
- b) $\neg (P \leftrightarrow Q) \rightarrow (Q \leftrightarrow R)$ $\neg ((P \rightarrow Q) \land (Q \rightarrow P)) \rightarrow (Q \rightarrow R) \land (R \rightarrow Q)$ - elimination of equivalence $\neg ((\neg P \lor Q) \land (\neg Q \lor P)) \rightarrow (\neg Q \lor R) \land (\neg R \lor Q)$ - elim. of implication $((\neg P \lor Q) \land (\neg Q \lor P)) \lor ((\neg Q \lor R) \land (\neg R \lor Q))$ - eilimination of implication

$$\begin{array}{l} ((\neg P \vee Q) \vee (\neg Q \vee R)) \wedge ((\neg P \vee Q) \vee (\neg R \vee Q)) \wedge ((\neg Q \vee P) \vee (\neg Q \vee R)) \wedge \\ ((\neg Q \vee P) \vee (\neg R \vee Q)) \text{ - Distribution over } \wedge \end{array}$$

2 Exercise 2

a)
$$\Delta_{\phi 1} = \{\{\neg Q, R\}, \{P, \neg R\}, \{P, Q\}, \{Q, R\}, \{\neg P, \neg Q, R\}, \{\neg R\}\}$$

b)
$$\Delta_{\phi 2} = \{ \{P, R\}, \{\neg R, Q\}, \{\neg Q, P\}, \{Q, \neg P\}, \{\neg Q, \neg P\} \}$$

c) $\Delta_{\phi 3} = \{\{\neg P, R, S\}, \{\neg R, \neg Q\}, \{P, S, \neg Q\}, \{\neg S, \neg Q\}, \{\neg P, Q\}, \{P, Q\}\}\}$ $\{\{-P,R,S\}, \{-R,-Q\}, \{P,S,-Q\}, \{-S,-Q\}, \{-P,Q\}, \{P,Q\}\}\}$

