Similarity Resonance For Improving Process Model Matching Accuracy

Presented By:

Mukander Kumar M.Sc. Data Science

Research Background

- Process Model Matching:
 - Given 2 process models, creates a mapping between process activities based on a similarity notion.
 - Many applications such as:
 - Querying large process model repositories (e.g. retrieving processes similar to a given one)
 - Refactoring process model repositories (e.g. merging similar processes to reduce redundancy, creating a version management system of process models)

Example - Birth Registration Process

Example - Birth Registration Process

Matching According to Gold Standard

Process Model Matching - 2 Steps

1. Compute pairwise similarity between process activities.

2. Derive an optimal mapping based on the computed similarity.

Example - Birth Registration Process

Matching According to Gold Standard

1) Compute pairwise similarity between process activities.

Process 1	Process 2	Sim
Start	Start	1
Start	Receive notif. Of birth	0.04
Receive notif of birth	Receive notif of birth	1
Return documents 1	Return documents	1
Return documents 2	Return documents	1
Search GBA	Run through data	0.14
Cancel birth notification	Refuse continuation	0.13
Cancel birth notification	Receive notif of birth	0.35

- Computed based on activities labels
 - Syntactic(e.g.Levenshtein
 - distance)
 - Linguistic(Using WordNet)

1) Derive an optimal mapping based on the computed similarity.

Process 1	Process 2	Sim
Start	Start	1
Start	Receive notif. Of birth	0.04
Receive notif of birth	Receive notif of birth	1
Return documents 1	Return documents	1
Return documents 2	Return documents	1
Search GBA	Run through data	0.14
Cancel birth notification	Refuse continuation	0.13
Cancel birth notification	Receive notif of birth	0.35

- Using a matching algorithm with a similarity threshold:
- Graph edit distance, threshold=0.3

- Greedy algorithms:
 - all pairs with a similarity above threshold (1:n, 1:1 mapping)

Example - Birth Registration Process

Research Problem

 If two activities are classified as highly (respectively slightly) similar in the first step, they get a high(respectively low) chance to be mapped in the second step

- Improving the accuracy of activities' similarity, improves the accuracy of process model matching.
- How to compute an accurate similarity between activities?

Observations that motivates our work

Observations that motivates our work

Our Approach: Similarity Resonance

- Similarity between 2 activities is computed based on the similarity between neighboring activities
- Similarity between neighboring activities is computed based on the similarity between their neighbors
- Iterative system in which similarity values are computed and updated until convergence —> Global contextual similarity.

Approach Overview

- 1) Derive k-nearest neighbors
 - Local context, contributes directly to the similarity of 2 activities

- 2) Construct k-resonance graph
 - How similarity propagates between contexts
- 3) Compute similarity resonance
 - How similarity is computed and how it converges

1) k-nearest neighbors of an activity "a"

- a' is k-nearest preset if
 - exists a path from a' to a
 - length of the shortest path from a' to a is less or equal to k
- E.g. 2-nearest neighbours

1) k-nearest neighbors of an activity "a"

1) k-nearest neighbors of an activity "a"

k-nearest neighbors of two activities contribute directly to their similarity

2) k-resonance graph (weighted directed graph)

2) k-resonance graph (weighted directed graph)

- How to define the similarity propagation factor(weight of edges)??
 - Less Likely similar activities will receive less amount of similarity
 - More Likely similar activities will receive more amount of similarity
- How to identify likely similar activities?

 $a \in M_1$, $a' \in M_2$, Sim_L is a label similarity measure

$$P_{1}(a,a') = \frac{Sim_{L}(a,a')}{\sum_{a'_{2} \in P_{2}} Sim_{L}(a,a'_{2})}$$

$$P_{2}(a',a) = \frac{Sim_{L}(a,a')}{\sum_{a'_{1} \in P_{1}} Sim_{L}(a',a'_{1})}$$

$$Likely similar if P(a,a') \ge t_{P}$$

$$t_{P} \text{ user defined threshold}$$

3) Compute Similarity Resonance

3) Compute Similarity Resonance

At iteration i=0 $Sim_0 = Sim_L$

At iteration i=1
$$Sim_1(a,a') = 0.9 \times \left(\frac{5}{55}Sim_0(b,b') + \frac{5}{38}Sim_0(c,c') + ...\right) + 0.1 \times Sim_L(a,a')$$

Application

Our Approach

• Derive k-nearest neighbors for the activity pair

• Construct k-resonance graph and compute similarity resonance

k-nearest neighbors of an activity

2-Nearest Neighbors of Invite for Interview

2-Nearest Neighbors of Invite for Aptitude Test

k-resonance graph and Similarity Resonance

- At Iteration i=0Sim₀ = Sim₁
- At Iteration i=1

 $Sim_1(a,a') = 0.9 \times (5/15 Sim0(b,b') + 5/38 Sim0(c,c') + ...) + 0.1 \times Sim_L(a,a')$

Results

• Similarity Score Sim_L and Sim_R

$id:(n_1,n_2)\in N_1\times N_2$	Sim_L	Sim_R
1: (Receive notif. of birth, Receive notif. of birth)	1.0	0.93
2: (Return documents 1, Return documents)	1.0	0.86
-: (Return documents 2, Return documents)	1.0	0.21
3: (Check identity, Confirm identity)	0.52	0.47
3: (Check identity, Confirm identity without)	0.52	0.47
3: (Check identity, Confirm identity with passport)	0.52	0.45
4: (Check GBA date, Check GBA)	0.82	0.7
5: (Search GBA, Run through data)	0.14	0.29
6: (Cancel birth notification, Refuse continuation)	0.13	0.31
-: (Cancel birth notification, Receive notif. of birth)	0.35	0.07
7: (Conform choice of name, Confirm name)	0.42	0.36
<u> </u>		

Results of Application

• Similarity Score Sim_L and Sim_R

$id:(n_1,n_2) \in N_1 \times N_2$	SimL	Sim _R
1: Receive Online Application, Receive Application Form	0.14	0.4
2: Check Documents, Check if application is complete	0.12	0.47
3: Check Documents, Check if bachelors is sufficient	0.32	0.3
4: Invite for Interview, Invite for aptitide test	0.34	0.24
5: Send decision letter,Inform about decision	0.2	0.31
6: Asses Applicant, Check if bachelor is sufficient	0.1	0.41
7:Asses Applicant, Check if application is complete	0.01	0.45

Evaluation

- 3 freely available process model datasets:
 - birth registration (petri net) 9 process models, 36 process pairs to match
 - university admission (bpmn) 9 process models, 36 process pairs to match
 - asset management (EPC) 36 pairs of process models retrieved from SAP
- 2 experiments:
 - Accuracy of process matching using standard label similarity vs using resonance similarity
 - Comparison with best results from PMMC'16 and OAEI'16 challenges

Evaluation

- Label Similarity:
 - bag-of-words technique combined with maximum between Levenshtein distance and Lin metric as a similarity measure
- Matching algorithms:
 - graph edit distance with default values
 - 2 variants of a greedy algorithm (1:n and 1:1 mapping)

1) Label vs Resonance Similarity

	SAP			Uni			Birth		
Compared approaches	P_R/P (std.)	R_R/R (std.)	F_R/F (std.)	P_R/P (std.)	R_R/R (std.)	F_R/F (std.)	P_R/P (std.)	R_R/R (std.)	F_R/F (std.)
Resonance/Label	.82/.75 (.27/.31)	.90/.78 (.16/.24)	.83/.73 (.22/.26)	.70/.64 (.40/.44)	.70/.56 (.31/.35)	.60/.53 (.36/.39)	.58/.49 (.27/.27)	.57/.53 (.18/.19)	.54/.46 (.19/.18)

2) Comparison with best results from PMMC'15 and OAEI'16

	SAP			Uni			Birth		
Compared approaches	P_R/P (std.)	R_R/R (std.)	F_R/F (std.)	P_R/P (std.)	R_R/R (std.)	F_R/F (std.)	P_R/P (std.)	R_R/R (std.)	F_R/F (std.)
Resonance/OAEI'16	-	-	-	.77/.72 (.28/-)	.78/.69 (.26/-)	.75/.70 (.25/-)	-	-	-
Resonance/PMMC'15	.82/.89 (.27/.31)	.90/.52 (.16/.42)	.83/.49 (.22/.43)	.70/.64 (.40/.34)	.70/.62 (.31/.31)	.60/.60 (.36/.30)	.58/.68 (.27/.18)	.57/.47 (.18/.24)	.54/.54 (.19/.22)

We used the same label similarity technique used by the best algorithm in OAEI'16

Conclusion

 Introduced a new activity similarity based on a global notion of contextual similarity

 Showed that global contextual similarity improves process model matching accuracy

....and outperforms local contextual similarity

FUTURE WORK

• Incorporate resource/data/time and behavioral dimensions into the similarity computation.

- Varying the k from k=2 for better accuracy based on contexts and behavioural aspects.
- Investigate the problem of prediction in process mining
 - This work's idea has been widely applied in social network and web prediction

THANKYOU