Listing of Claims:

1. (Currently amended) A polyimide resin having a basic skeleton represented by the following general formula (1):

[Formula 1]

(in the formula (1), wherein each of Ar¹ and Ar² is an aromatic ring having a carbon number of 6-20, which forms an imide ring of 5 or 6 atoms with an imide group adjoining thereto. In the aromatic ring, provided that a part of carbon atoms in the aromatic ring may be substituted with S, N, O, SO₂ or CO, or a part of hydrogen atoms in the aromatic ring may be substituted with an aliphatic group, a halogen atom or a perfluoro aliphatic group, and Ar¹ and Ar² may be are same or different; R is at least one of linear alkylene group and branched alkylene group having a carbon number of 1-20; Ar³ is an aromatic ring having a carbon number of 6-20 in which at least a part of hydrogen atoms is substituted with at least one of sulfoalkoxy group, carboalkoxy group and phosphoalkoxy group having a carbon number of 1-20, provided that and a part of carbon atoms in these groups may be substituted with S, N, O, SO₂ or CO, or a part of hydrogen atoms may be substituted with an aliphatic group, a halogen atom or a perfluoro aliphatic group; and n and m show a polymerization degree and are an integer of not less than 2.)

2. (Currently amended) A polyimide resin according to claim 1, wherein the basic skeleton is represented by the following general formula (2):

[Formula 2]

$$\begin{array}{c|c}
 & O & O \\
\hline
 & N \\
 & O & O \\
\hline
 & O & O \\
\hline
 & N \\
 & O & O \\
\hline
 & O &$$

(in the formula (2), wherein each of Ar^1 and Ar^2 is an aromatic ring having a carbon number of 6-20, which forms an imide ring of 5 or 6 atoms with an imide group adjoining thereto. In the aromatic ring, provided that a part of carbon atoms in the aromatic ring may be substituted with S, N, O, SO_2 or CO, or a part of hydrogen atoms in the aromatic ring may be substituted with an aliphatic group, a halogen atom or a perfluoro aliphatic

group. , and Ar¹ and Ar² may be are same or different.; x shows the carbon number of an alkylene group and is an integer of 1-20.; Ar³ is an aromatic ring having a carbon number of 6-20 in which at least a part of hydrogen atoms is substituted with at least one of sulfoalkoxy group, carboalkoxy group and phosphoalkoxy group having a carbon number of 1-20 and , provided that a part of carbon atoms in these groups may be substituted with S, N, O, SO₂ or CO, or a part of hydrogen atoms may be substituted with an aliphatic group, a halogen atom or a perfluoro aliphatic group.; and n and m show a polymerization degree and are an integer of not less than 2.)

3. (Currently amended) A polyimide resin according to claim 2, wherein the basic skeleton is represented by the following general formula (3): [Formula 3]

(in the formula (3), wherein each of Ar^1 and Ar^2 is an aromatic ring having a carbon number of 6-20, which forms an imide ring of 5 or 6 atoms with an imide group adjoining thereto. In the aromatic ring, provided that a part of carbon atoms in the aromatic ring may be substituted with S, N, O, SO_2 or CO, or a part of hydrogen atoms in the aromatic ring may be substituted with an aliphatic group, a halogen atom or a perfluoro aliphatic group. and Ar^1 and Ar^2 may be are same or different. x shows the carbon number of an alkylene group and is an integer of 1-20. Also, R^2 is at least one of a sulfonic acid group, a carboxylic acid group and phosphinic acid group, and each of R^2 and R^2 a carbon number of at least one of a sulfoalkoxy group, a carboalkoxy group and a phosphoalkoxy group and is an integer of 1-20-, and R^2 and R^2 may be are the same or different. and R^2 are the same or different.

4. (Original) A polyimide resin according to claim 3, wherein the carbon number of at least one of a sulfoalkoxy group, a carboalkoxy group and a phosphoalkoxy group shown by l_1 and l_2 in the general formula (3) is 3 or 4.

- 5. (Previously presented) A polyimide resin according to any one of claims 1 to 3, wherein n/m in the general formulae (1)-(3) is not more than 95/5 but not less than 30/70.
- 6. (Previously presented) A polyimide resin according to any one of claims 1 to 3, wherein a part of at least one of the linear alkylene group and the branched alkylene group shown by R in the general formulae (1)-(3) includes a crosslinking structure.
- 7. (Currently amended) A polyimide resin according to any one of claims 1 to 3, wherein an a weight average molecular weight is not less than 5000.
 - 8-21. (Canceled)
- 22. (Previously presented) A polyimide resin according to claim 4, wherein n/m in the general formulae (1)-(3) is not more than 95/5 but not less than 30/70.
- 23. (Previously presented) A polyimide resin according to claim 4, wherein a part of at least one of the linear alkylene group and the branched alkylene group shown by R in the general formulae (1)-(3) includes a crosslinking structure.
- 24. (Previously presented) A polyimide resin according to claim 5, wherein a part of at least one of the linear alkylene group and the branched alkylene group shown by R in the general formulae (1)-(3) includes a crosslinking structure.
- 25. (Previously presented) A polyimide resin according to claim 22, wherein a part of at least one of the linear alkylene group and the branched alkylene group shown by R in the general formulae (1)-(3) includes a crosslinking structure.
- 26. (Currently amended) A polyimide resin according to claim 4, wherein an a weight average molecular weight is not less than 5000.
- 27. (Currently amended) A polyimide resin according to claim 5, wherein an a weight average molecular weight is not less than 5000.
- 28. (Currently amended) A polyimide resin according to claim 6, wherein an <u>a</u> weight average molecular weight is not less than 5000.
- 29. (Currently amended) A polyimide resin according to claim 22, wherein an a weight average molecular weight is not less than 5000.
- 30. (Currently amended) A polyimide resin according to claim 23, wherein an <u>a</u> weight average molecular weight is not less than 5000.
- 31. (Currently amended) A polyimide resin according to claim 24, wherein an a weight average molecular weight is not less than 5000.
- 32. (Currently amended) A polyimide resin according to claim 25, wherein an a weight average molecular weight is not less than 5000.