Given an Hermitian matrix A, a random test matrix Ω , a sample matrix Y = 1 $A\Omega$, and an orthonormal matrix Q that verifies (5.1) and $Y = QQ^*Y$, this

Algorithm 5.6: Eigenvalue Decomposition in One Pass

Use a standard least-squares solver to find an Hermitian matrix $B_{
m addrox}$

algorithm computes an approximate eigenvalue decomposition $A \approx U \Lambda U^*$.

that approximately satisfies the equation $B_{\rm approx}(Q^*\Omega) \approx Q^*Y$.

Compute the eigenvalue decomposition $B_{\text{approx}} = V\Lambda V^*$. Form the product U = QV.