Rafael Zambrano

- Utilizada para predecir probabilidades
- Ejemplo: Probabilidad de sufrir hipertensión

Edad	Altura	Peso	Colesterol	Fumador/a	Padece hipertensión
53	170	70	120	1	SÍ
67	156	85	240	0	NO
21	191	56	100	0	NO
34	182	77	500	1	SÍ

• Para un nuevo paciente, el modelo devolverá un valor de probabilidad de padecer hipertensión (entre 0 y 1)

- En la regresión lineal, teníamos $h(x) = \sum w_i x_i = \mathbf{w}^T \mathbf{x} = \mathbf{w}_0 + \mathbf{w}_1 x_1 + \mathbf{w}_2 x_2 + \cdots$
- En regresión logística, tenemos $h(x) = \theta(\sum w_i x_i) = \theta(\mathbf{w}^T \mathbf{x})$
- Función sigmoide

$$\theta(s) = \frac{e^s}{1 + e^s}$$

- A modo de ejemplo, vamos a usar solamente la edad como variable explicativa de padecer hipertensión
- $h(x) = \theta(w_0 + w_1 \cdot edad)$

Edad	Padece hipertensión
53	1
67	0
21	0
34	1

- El hecho de padecer hipertensión se ve afectado por una probabilidad a la cual no tenemos acceso ni podemos medir
- Sólo podemos observar la ocurrencia de un evento e intentar inferir esa probabilidad

•
$$P(y|x) = \begin{cases} \theta(\mathbf{w}^T x) & \text{si } y = +1 \\ 1 - \theta(\mathbf{w}^T x) & \text{si } y = -1 \end{cases} = \begin{cases} \theta(w_0 + w_1 \cdot edad) & \text{si } y = +1 \\ 1 - \theta(w_0 + w_1 \cdot edad) & \text{si } y = -1 \end{cases}$$
 $\begin{cases} w_0 = -3.2 \\ w_1 = 0.07 \end{cases}$

Edad	Padece hipertensión	$\theta(w_0 + w_1 \cdot edad)$	P(y x)
53	1	0.62	0.62
67	-1	0.82	0.18
21	-1	0.15	0.85
34	1	0.31	0.31
•••		•••	

Hay que escoger los pesos w tales que maximicen el producto de las P(y|x)

$$\Rightarrow max \prod P(y|x)$$

$$P(y|x) = 0.62 \times 0.18 \times 0.85 \times 0.31 \times \cdots$$

• Hay que escoger los pesos w tales que maximicen el producto de las P(y|x)

$$P(y|x) = \begin{cases} \theta(\mathbf{w}^T \mathbf{x}) & \text{si } y = +1 \\ 1 - \theta(\mathbf{w}^T \mathbf{x}) & \text{si } y = -1 \end{cases} = \begin{cases} \theta(\mathbf{w}^T \mathbf{x}) & \text{si } y = +1 \\ \theta(-\mathbf{w}^T \mathbf{x}) & \text{si } y = -1 \end{cases}$$

$$P(y|x) = \theta(y \cdot \mathbf{w}^T x)$$

- \Rightarrow maximizar $\prod \theta(y \cdot w^T x)$
- \Rightarrow maximizar $1/N \ln \prod \theta(y \cdot w^T x)$
- \Rightarrow minimizar 1/N ln $\prod \theta(y \cdot w^T x)$
- \Rightarrow minimizar $1/N \sum -\ln \theta(y \cdot w^T x)$
- \Rightarrow minimizar 1/N \sum ln $1/\theta(y \cdot w^T x)$
- \Rightarrow minimizar 1/N $\sum \ln (1 + e^{-y \cdot w^T x})$

$$1 - \theta(s) \\ = \theta(-s)$$

$$\theta(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}}$$

$$\Rightarrow \frac{1}{\theta(s)} = 1 + e^{-s}$$

- Minimizar $E_{in}(\mathbf{w}) = \frac{1}{N} \sum \ln(1 + e^{-y\mathbf{w}^Tx})$
- A diferencia de la regresión lineal, no hay una solución analítica para esta minimización
- La función $E_{in}(w)$ sólo tiene un mínimo
- Para minimizar la función se utiliza el método del **Gradiente Descendente**

- Minimizar $E_{in}(\mathbf{w}) = \frac{1}{N} \sum \ln(1 + e^{-y\mathbf{w}^T x})$
- La mejor dirección para "moverse" es el negativo del gradiente

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \alpha \nabla E_{in}$$

$$\nabla E_{in} = -\frac{1}{N} \sum \frac{y \cdot x}{1 + e^{yw^T x}}$$

Clasificación multiclase

Regularización

Regularización L2:

$$E_{in}(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum \ln(1 + e^{-y\mathbf{w}^Tx})$$

• Regularización L1:

$$E_{in}(\mathbf{w}) = \|\mathbf{w}\|_1 + C \sum \ln(1 + e^{-y\mathbf{w}^Tx})$$

Gracias.