Cours 3: Relations dans un ensemble

1 Relations dans un ensemble

Définition - Rappel - Soit E un ensemble non vide. On appelle relation dans E la donnée d'un sous-ensemble Γ du produit cartésien $E \times E$.

Définitions - Soit (E,Γ) une relation dans un ensemble non vide E. On dit que :

- 1. la relation est réflexive, si $\forall x \in E, x \Re x$.
- 2. la relation est symétrique, si $\forall x \in E, \forall y \in E, x \Re y \Rightarrow y \Re x$.
- 3. la relation est antisymétrique, si $\forall x \in E, \forall y \in E, (x\Re y \text{ et } y\Re x) \Rightarrow x = y.$
- 4. la relation est transitive, si $\forall x \in E, \forall y \in E, \forall z \in E, (x\Re y \text{ et } y\Re z) \Rightarrow x\Re z.$

Remarques:

- 1. La propriété 3 n'est pas la négation de la propriété 2. Une relation peut n'être ni symétrique, ni antisymétrique.
- 2. La relation d'égalité est la seule relation qui soit à la fois réflexive, symétrique, antisymétrique et transitive. Son graphe Γ est la diagonale de $E \times E : \Gamma = \{(x, x), x \in E\}$.
- 3. Une relation est réflexive si et seulement si la diagonale est un sous-ensemble de son graphe.

2 Relation d'ordre

Définitions - Soit (E, \Re) un ensemble non vide muni d'une relation.

- 1. On dit que \Re est une relation d'ordre, si elle est à la fois réflexive, antisymétrique et transitive. On dit alors que E est un ensemble ordonné et on note \leq la relation \Re . Lorsque x et y deux éléments de E sont en relation par une relation d'ordre on dit qu'ils sont comparables.
- 2. Une relation d'ordre dans un ensemble E est dite d'ordre total si :

$$\forall x \in E, \forall y \in E, \ x \leq y \text{ ou } y \leq x.$$

Sinon, on dit que la relation est d'ordre partiel.

Définitions - Soient (E, \preceq) un ensemble ordonné et A une partie non vide de E.

1. Un élément a de E est un majorant (resp. minorant) de A, si :

$$\forall x \in A, \ x \leq a \text{ (resp. } a \leq x).$$

On dit alors que A est majorée (resp. minorée). Si A est une partie majorée et minorée, on dit qu'elle est bornée.

2. Un élément a de A est un plus grand élément (resp.un plus petit élément) de A, si a est un majorant (resp. minorant) de A.

Proposition - Si A admet un plus grand élément (resp. plus petit élément), alors celui-ci est unique. On dit alors que c'est **le** plus grand élément (resp. plus petit élément) de A.

Théorème - Toute partie non vide de \mathbb{N} admet un plus petit élément. (On dit que \mathbb{N} est bien ordonné).

Définitions - Soient (E, \preceq) un ensemble ordonné et A une partie non vide de E.

- 1. Lorsque l'ensemble des majorants de A n'est pas vide et admet un plus petit élément, alors celui-ci est appelé borne supérieure de A. On le note Sup(A).
- 2. Lorsque l'ensemble des minorants de A n'est pas vide et admet un plus grand élément, alors celui-ci est appelé borne inférieure de A. On le note Inf(A).

Théorème - Toute partie non vide et majorée de \mathbb{R} admet une borne supérieure. (Propriété de la borne supérieure.)

3 Relation d'équivalence

Définitions - Soit (E, \Re) un ensemble non vide muni d'une relation. On dit que \Re est une relation d'équivalence, si elle est à la fois réflexive, symétrique et transitive. Soit x un élément de E. On appelle alors classe d'équivalence de x pour \Re l'ensemble $C(x) = \{y \in E, y\Re x\}$. Tout élément y de E appartenant à la classe d'équivalence de x est appelé représentant de la classe de x.

Proposition - Soit E un ensemble non vide muni d'une relation d'équivalence \Re et soient x et y deux éléments de E, alors $(x\Re y\iff C(x)=C(y)\iff C(x)\cap C(y)\neq\emptyset)$.

Théorème - Soit E un ensemble non vide muni d'une relation d'équivalence. Alors l'ensemble des classes d'équivalence forment une partition de E. En particulier :

$$E = \bigcup_{x \in E} C(x)$$

Définitions - Soit (E, \Re) un ensemble muni d'une relation d'équivalence. L'ensemble des classes d'équivalence de E pour \Re est appelé quotient de E par \Re et noté E/\Re . L'application $\pi: E \to E/\Re$ qui à x associe sa classe C(x) est appelée application canonique de E dans E/\Re .

Définition - Soit (E, \Re) un ensemble muni d'une relation d'équivalence. On appelle système de représentants de E/\Re tout sous-ensemble F de E vérifiant :

$$\forall \alpha \in E/\Re, \ \exists ! y \in F, \ \pi(y) = \alpha.$$

Remarque:

On vérifie facilement, qu'un sous-ensemble F de E est un système de représentants de E/\Re , si la restriction de l'application canonique π à F est bijective.

4 Exemple : $(\mathbb{Q}, +, \times)$

Proposition - Soit $E = \mathbb{Z} \times \mathbb{Z}^*$. La relation définie dans E par :

$$\forall (n,m) \in E, \ \forall (n',m') \in E, \ (n,m) \ \Re \ (n',m') \iff n \times m' = m \times n'$$

est une relation d'équivalence dans E.

Définition - On définit l'ensemble \mathbb{Q} comme le quotient de $\mathbb{Z} \times \mathbb{Z}^*$ par la relation \Re :

$$\mathbb{Q}=\mathbb{Z}\times\mathbb{Z}^*/\Re$$

Les éléments de \mathbb{Q} sont appelés nombres rationnels (ou fractions rationnelles) et on note $\frac{n}{m}$ la classe de (n, m), $\forall (n, m) \in \mathbb{Z} \times \mathbb{Z}^*$.

Proposition - L'ensemble $I=\{(n,m)\in\mathbb{N}^*\times\mathbb{Z}^*/\mathrm{p}gcd(n,m)=1\}\cup\{(0,1)\}$ est un système de représentants de \mathbb{Q} . Si $(n,m)\in I$, on dit que $\frac{n}{m}$ est mis sous forme irréductible.

Définition - Soient x et y appartenant à \mathbb{Q} . Soient $(n,m) \in \mathbb{Z} \times \mathbb{Z}^*$ et $(n',m') \in \mathbb{Z} \times \mathbb{Z}^*$ tels que $x = \frac{n}{m}$ et $y = \frac{n'}{m'}$.

1. On définit l'addition dans $\mathbb Q$ par

$$x + y = \frac{n \times m' + m \times n'}{m \times m'}$$

2. On définit la multiplication dans Q par

$$x \times y = \frac{n \times n'}{m \times m'}$$

Proposition - L'application $i: \mathbb{Z} \to \mathbb{Q}$ définie, pour tout $n \in \mathbb{Z}$, par $i(n) = \frac{n}{1}$, est injective et compatible avec l'addition et avec la multiplication. On notera simplement n au lieu de $\frac{n}{1}$.