REAL ANALYSIS

LECTURE NOTES

ABSTRACT. The Notes indicate what we do in the lectures, but are not a complete replacement of the book and lectures. The text is from two books of Real Analysis:

- [1] Xingwei Zhou & Wenchang Sun: Real Variable Analysis, the third edition, Science Press, 2014.
- [2] E. Stein & R. Shakarchi: Real Analysis, Princeton University Press, 2005.

1. Differentiability of functions

We begin with some definitions.

Suppose f(t) is a real-valued function defined on [a,b]. Let P be a partition of this interval, i.e., $P = \{t_i\}_{i=0}^N$, $a = t_0 < t_1 < \cdots < t_N = b$. The variation of F on this partition is defined by

$$\mathcal{V}_f(P) := \sum_{j=1}^N |f(t_j) - f(t_{j-1})|.$$

Let P and P' be partitions of [a, b]. We say P' is a refinement of P if $P \subset P'$. It is not hard to see that

$$(1.1) \mathcal{V}_f(P) \le \mathcal{V}_f(P').$$

Definition 1.1. A function $f:[a,b] \to \mathbb{R}$ is said to be of bounded variation if

$$\sup_{P} \mathcal{V}_f(P) < \infty.$$

We denote by BV([a,b]) the set of all functions of bounded variations on [a,b]. This class has a sub-class of functions, called absolutely continuous functions.

Definition 1.2. A function $f:[a,b] \to \mathbb{R}$ is said to be absolutely continuous if for any $\varepsilon > 0$ there exists $\delta > 0$ so that

$$\sum_{k=1}^{N} |f(b_k) - f(a_k)| < \varepsilon \quad \text{whenever } \sum_{k=1}^{N} (b_k - a_k) < \delta,$$

and the intervals (a_k, b_k) with k = 1, ..., N are disjoint.

We denote by AC([a,b]) the set of all absolutely continuous functions on [a,b].

From the definition, it is clear that absolutely continuous functions are continuous, and in fact uniformly continuous.

Lemma 1.1. $AC([a, b]) \subset BV([a, b])$.

Proof. Let $f \in AC([a,b])$. Take $\delta > 0$ such that

(1.2)
$$\sum_{k=1}^{N} |f(b_k) - f(a_k)| < 1, \text{ whenever } \sum_{k=1}^{N} (b_k - a_k) < \delta.$$

Let $P = \{t_i\}_{i=0}^N$, where $t_0 = a$, $t_i - t_{i-1} = (b-a)/N < \delta$. For each partition $P' = \{s_j\}_{j=0}^{N'}$ of [a, b], we consider the refinement $P'' = P' \cup P$. This partition P'' can be written as a union of partitions P_i of $[t_{i-1}, t_i]$. Write $P_i = \{s_{j,i}\}_{j=0}^{\ell_i}$. Applying (1.2) to disjoint intervals $(s_{j-1,i}, s_{j,i})$, for $j = 1, \ldots, \ell_i$ and with fixed i, then gives

$$\mathcal{V}_f(P') \le \mathcal{V}_f(P'') = \sum_{i=1}^N \sum_{j=1}^{\ell_i} |f(s_{j,i}) - f(s_{j-1,i})| < N.$$

The inclusion in Lemma 1.1 is strict, as Cantor-Lebesgue function (see the end of the notes) is of bounded variation but not absolutely continuous.

Our main task in the following lectures is to prove the following two theorems.

Theorem 1.1. If $f \in BV([a,b])$, then f'(x) exists for a.e. x, and $f' \in L^1([a,b])$.

Theorem 1.2. Suppose $f \in AC([a,b])$. Then f' exists almost everywhere and is integrable. Moreover,

$$f(x) - f(a) = \int_{a}^{x} f'(t)dt$$
, for all $a \le x \le b$.

By selecting x = b we get $f(b) - f(a) = \int_a^b f'(t)dt$.

Conversely, if $f \in L^1([a,b])$, then there exists $F \in AC([a,b])$ such that F'(x) = f(x) almost everywhere, and in fact, we may take $F(x) = \int_a^x f(t)dt$.

1.1. Functions of bounded variation: Proof of Theorem 1.1.

1.1.1. BV functions and their properties.

We give some examples for functions in BV([a, b]).

Example 1.1. If f is real-valued, monotone, and bounded, then f is of bounded variation.

Example 1.2. If f is differentiable at every point, and f' is bounded, then f is of bounded variation.

Example 1.3. The function f below is of bounded variation on [0,1] iff a > b.

$$f(x) = \begin{cases} x^a \sin x^{-b}, & 0 < x \le 1, \\ 0, & x = 0. \end{cases}$$

We next define the total variation of f (real-valued) on [a, x] (where $a \le x \le b$) as a function of x by

$$\mathcal{V}_f(a, x) = \sup \sum_{j=1}^{N} |f(t_j) - f(t_{j-1})|,$$

where the sup is over all partitions of [a, x].

Lemma 1.2. Suppose $f \in BV([a,b])$. Then

- (i) $\mathcal{V}_f(a,x) = \mathcal{V}_f(a,y) + \mathcal{V}_f(y,x)$ for every $y \in [a,x]$.
- (ii) If f is moreover continuous, then $V_f(a,x)$ is continuous in $x \in [a,b]$.

Proof. Part (i). Both "\le " and "\ge " can be checked directly by definition.

Part (ii). The total variation $\mathcal{V}_f(a,x)$ is obviously increasing. We first show that for each $\varepsilon > 0$, there is a $x' \in [a,x)$ such that

$$\mathcal{V}_f(a, x') \ge \mathcal{V}_f(a, x) - \varepsilon.$$

Choose a partition $0 = t_0 < \cdots < t_N = x$ such that

$$\mathcal{V}_f(a, x) \le \sum_{j=1}^N |f(t_j) - f(t_{j-1})| + \varepsilon/2.$$

By the continuity of f, if $t_{N-1} < x' < x$ and |x - x'| is sufficiently small, then $|f(x') - f(x)| \le \varepsilon/2$. Consequently

$$\mathcal{V}_{f}(a,x) \leq \sum_{j=1}^{N-1} |f(t_{j}) - f(t_{j-1})| + |f(t_{N-1}) - f(x')| + |f(x') - f(x)| + \varepsilon/2
\leq \mathcal{V}_{f}(a,x') + \varepsilon.$$

We next show that for each $\varepsilon > 0$, there is a $x' \in (x, b]$ (assuming x < b) such that

(1.3)
$$\mathcal{V}_f(a, x') \le \mathcal{V}_f(a, x) + \varepsilon.$$

Fix a $x_1 \in (x, b]$. Let $x = t_0 < t_1 < \cdots < t_N = x_1$ be a partition of $[x, x_1]$ such that

$$\mathcal{V}_f(x, x_1) - \varepsilon/2 \le \sum_{j=1}^N |f(t_j) - f(t_{j-1})|.$$

If $|x_1 - x|$ is very small (so is $|t_1 - x|$), then $|f(t_1) - f(x)| \le \varepsilon/2$. Therefore

$$\mathcal{V}_f(x, x_1) - \varepsilon/2 \le \varepsilon/2 + \sum_{j=2}^N |f(t_j) - f(t_{j-1})| \le \varepsilon/2 + \mathcal{V}_f(t_1, x_1).$$

This implies by part (i) that

$$\mathcal{V}_f(x,t_1) \leq \varepsilon.$$

Adding $V_f(a, x)$ at both sides then yields, by also using part (i) again,

$$\mathcal{V}_f(a, t_1) \leq \mathcal{V}_f(a, x) + \varepsilon.$$

This is exactly (1.2) with $x' = t_1$.

Theorem 1.3. A real-valued function $f \in BV([a,b])$ if and only if f is the difference of two increasing bounded functions.

Proof. This is a consequence of Lemma 1.2. "If' part is straightforward. "Only if' part is because we have

$$f(x) = [f(x) + \mathcal{V}_f(a, x)] - \mathcal{V}_f(a, x).$$

Total variation $\mathcal{V}_f(a,x)$ is obviously increasing. If $y \in [a,x]$, then

$$f(y) - f(x) \le \mathcal{V}_f(y, x) = \mathcal{V}_f(a, x) - \mathcal{V}_f(a, y),$$

which implies the monotonicity $f(y) + \mathcal{V}_f(a, y) \leq f(x) + \mathcal{V}_f(a, x)$.

1.1.2. Differentiability of continuous BV functions.

We study the differentiability of BV functions. By Theorem 1.3, it suffices to study the differentiability of monotone functions. We shall first assume that f is continuous. This makes the argument simpler. For the general case, it will then be instructive to examine the nature of the possible discontinuities of a BV function, and reduce matters to the case of "jump functions".

We first prove the following result.

Theorem 1.4. If $f \in C([a,b])$ is increasing, then f'(x) exists for a.e. x.

For the proof of the theorem, we define the quantity

$$\delta_h f(x) = \frac{f(x+h) - f(x)}{h}.$$

Consider the four Dini numbers at x given by

$$D^{+}f(x) = \limsup_{h \to 0, h > 0} \delta_{h}f(x),$$

$$D_{+}f(x) = \liminf_{h \to 0, h > 0} \delta_{h}f(x),$$

$$D^{-}f(x) = \limsup_{h \to 0, h < 0} \delta_{h}f(x),$$

$$D_{-}f(x) = \liminf_{h \to 0, h < 0} \delta_{h}f(x).$$

Clearly $D_+f(x) \leq D^+f(x)$ and $D_-f(x) \leq D^-f(x)$ for all x. For the sake of Theorem 1.4, we show

$$(1.4) D^+ f(x) < \infty \text{for a.e. } x,$$

(1.5)
$$D^+ f(x) \le D_- f(x)$$
 for a.e. x .

Once these results hold, then by applying the result to -f(-x) instead of f(x) we obtain $D^-f(x) \leq D_+f(x)$ for a.e. x. Therefore

$$D^+f(x) \le D_-f(x) \le D^-f(x) \le D_+f(x) \le D^+f(x) < \infty$$
 for a.e. x .

This means that f'(x) exists for a.e. x.

We shall use a technical lemma whose proof is postponed until the end of this section.

Lemma 1.3 (Rising sun lemma). Suppose $g \in C(\mathbb{R})$. Let

$$E = \{x \in \mathbb{R} : g(x+h) > g(x) \text{ for some } h = h_x > 0\}.$$

If $E \neq \emptyset$, then it must be open, and hence $E = \bigcup (a_k, b_k)$ for a countable disjoint union of intervals. If (a_k, b_k) is a finite interval in this union, then

$$g(a_k) = g(b_k).$$

A slight modification gives:

Suppose $g \in C([a,b])$. If E is the set of $x \in (a,b)$ so that g(x+h) > g(x) for some h > 0, then g is either empty or open. In the latter case, it is a disjoint union of countably many intervals (a_k, b_k) , and $g(a_k) = g(b_k)$, except possibly when $a = a_k$, in which case we only have

$$g(a_k) \leq g(b_k)$$
.

Figure 1. Rising sun lemma

Proof of Theorem 1.4. For a fixed $\gamma > 0$, let

$$E_{\gamma} = \{x : D^+ f(x) > \gamma\}.$$

It can be checked that E_{γ} is measurable ¹.

Applying Lemma 1.3 to the function

$$g(x) = f(x) - \gamma x,$$

we deduce that $E_{\gamma} \subset \bigcup_{k} (a_{k}, b_{k})$, where

$$f(b_k) - f(a_k) \ge \gamma(b_k - a_k).$$

 $^{^{1}}$ The continuity of f allows one to restrict to countably many h in taking the \limsup

Therefore, we have

$$m(E_{\gamma}) \le \sum_{k} (b_k - a_k) \le \frac{1}{\gamma} \sum_{k} (f(b_k) - f(a_k)) \le \frac{1}{\gamma} (f(b) - f(a)) \to 0,$$

as $\gamma \to \infty$. Since $\{D^+f(x) = \infty\} \subset E_{\gamma}$ for all γ , we obtain (1.4).

Given two real numbers r, R such that R > r, we consider

$$E = E_{r,R} = \{x \in (a,b) : D^+f(x) > R > r > D_-f(x)\}.$$

For the sake of (1.5), we will show that m(E) = 0, since it then suffices to let R and r vary over rationals with R > r.

Suppose on the contrary m(E)>0. Take an open $\mathcal O$ such that $E\subset\mathcal O\subset(a,b)$ and

$$(1.6) m(\mathcal{O}) < \frac{R}{r}m(E).$$

Write $\mathcal{O} = \bigcup I_n$, with I_n being disjoint open intervals. Fix n and apply Lemma 1.3 to

$$g(x) = f(-x) + rx \text{ on } -I_n,$$

and then reflecting through the origin again yields an open set

$$\bigcup_{k} (a_k, b_k) \subset I_n,$$

where the intervals (a_k, b_k) are disjoint, with

$$0 \ge g(-b_k) - g(-a_k) = f(b_k) - f(a_k) - r(b_k - a_k)$$

Next, on each interval (a_k, b_k) we apply Lemma 1.3 this time to

$$g(x) = f(x) - Rx,$$

and so obtain $J_n = \bigcup_{k,j} (a_{k,j}, b_{k,j})$ of disjoint open intervals $(a_{k,j}, b_{k,j})$ with $(a_{k,j}, b_{k,j}) \subset (a_k, b_k)$, for every j, and

$$0 \le f(b_{k,j}) - f(a_{k,j}) - R(b_{k,j} - a_{k,j}).$$

Since f is increasing, we find that

$$m(J_n) = \sum_{k,j} (b_{k,j} - a_{k,j}) \le \frac{1}{R} \sum_{k,j} (f(b_{k,j}) - f(a_{k,j}))$$

$$\le \frac{1}{R} \sum_{k} (f(b_k) - f(a_k)) \le \frac{r}{R} \sum_{k} (b_k - a_k) \le \frac{r}{R} m(I_n).$$

Note that $E \cap I_n \subset J_n^2$; and certainly $J_n \subset I_n$. We then sum in n and find

$$m(E) = \sum_{n} m(E \cap I_n) \le \sum_{n} m(J_n) \le \frac{r}{R} \sum_{n} m(I_n) = \frac{r}{R} m(\mathcal{O}),$$

where the last second relation is (1.7). It then follows by (1.6) that m(E) = 0.

We next prove the rising sun lemma.

Proof of Lemma 1.3. We only prove the first part of the lemma.

Since g is continuous, E is open if it is non-empty and can therefore be written as a disjoint union of countably many open intervals. If (a_k, b_k) is a finite interval in this decomposition, then $a_k \notin E$; so we cannot have $g(b_k) > g(a_k)$.

Suppose $g(b_k) < g(a_k)$. Then there is $c \in (a_k, b_k)$ such that

$$g(c) = \frac{g(a_k) + g(b_k)}{2}$$

and in fact we can choose c farthest to the right in the interval (a_k, b_k) .

Since $c \in E$, there is d > c so that g(d) > g(c). Since $b_k \notin E$, we have $g(x) \leq g(b_k)$ for all $x \geq b_k$; hence $d < b_k$. By continuity, we have $c' \in (d, b_k)$ with property g(c') = g(c), which contradicts with the fact that c was chosen farthest to the right in (a_k, b_k) . Hence $g(a_k) = g(b_k)$.

The following conclusion is a consequence of Theorem 1.4.

Corollary 1.1. Suppose $f \in C(\mathbb{R})$ is increasing. Then f' exists almost everywhere. Moreover f' is measurable, non-negative, and

$$\int_{a}^{b} f'(x)dx \le f(b) - f(a).$$

In particular, if f is bounded on \mathbb{R} , then $f' \in L^1(\mathbb{R})$.

Proof. For $k \geq 1$, we consider the quotient

$$g_k(x) = \frac{f(x+1/k) - f(x)}{1/k}.$$

²Suppose $x \in E \cap I_n$. Since $D_-f(x) < r$ we find that $x \in (a_k, b_k)$ for some k. While, this together with $D^+f(x) > R$ implies that $x \in (a_{k,j}, b_{k,j})$ for some j.

By Theorem 1.4, we have that $g_k(x) \to f'(x)$ for a.e. x, which shows in particular that f' is measurable and non-negative.

We now extend f as a continuous function on all of \mathbb{R} . By Fatou's lemma,

(1.8)
$$\int_{a}^{b} f'(x)dx \le \liminf_{k \to \infty} \int_{a}^{b} g_{k}(x)dx.$$

On the other hand,

$$\int_{a}^{b} g_{k}(x)dx = \frac{1}{1/k} \int_{a}^{b} f(x+1/k)dx - \frac{1}{1/k} \int_{a}^{b} f(x)dx
= \frac{1}{1/k} \int_{a+1/k}^{b+1/k} f(x)dx - \frac{1}{1/k} \int_{a}^{b} f(x)dx
= \frac{1}{1/k} \int_{b}^{b+1/k} f(x)dx - \frac{1}{1/k} \int_{a}^{a+1/k} f(x)dx
\to f(b) - f(a) \text{ as } n \to \infty.$$

The last step is due to the Lebesgue differentiation theorem. This together with (1.8) completes the proof.

1.1.3. Differentiability of jump functions: completion of Theorem 1.1.

We next remove the continuity assumption made earlier in the proof of Theorem 1.4. By the decomposition in Theorem 1.3, we consider function f that is increasing and bounded.

Lemma 1.4. A bounded increasing function f on [a,b] has at most countably many discontinuities.

Proof. If f is discontinuous at x, then $(f(x^-), f(x^+))$ is an interval which can be associated to a rational number.

Let $\{x_n\}_{n\geq 1}$ be the points where f is discontinuous. Let α_n denote the jump of f at x_n , that is

$$\alpha_n = f(x_n^+) - f(x_n^-),$$
 where $f(x_n^+) = \lim_{y > x_n, y \to x_n} f(y)$ and $f(x_n^-) = \lim_{y < x_n, y \to x_n} f(y)$. Set
$$f(x_n) = f(x_n^-) + \theta \alpha_n, \quad \text{for some } \theta_n \in [0, 1].$$

If we take

$$j_n(x) = \begin{cases} 0 & \text{if } x < x_n, \\ \theta_n & \text{if } x = x_n, 1 & \text{if } x > x_n, \end{cases}$$

then we define the jump function associated to f by

$$J_f(x) = \sum_{n>1} \alpha_n j_n(x).$$

Obviously if f is bounded then we must have

$$\sum_{n>1} \alpha_n \le f(b) - f(a) < \infty,$$

and hence the series defining $J_f(x)$ converges absolutely and uniformly.

Lemma 1.5. If f is increasing and bounded on [a, b], then

- (i) $J_f(x)$ is discontinuous at $\{x_n\}$ and has a jump at x_n equal to that of f.
- (ii) The difference $f(x) J_f(x)$ is increasing and continuous.

Proof. Part (i). If $x \neq x_n$ for all n, each j_n is continuous at x, and since the series converges uniformly, J_f is continuous at x. If $x = x_N$ for some N, then we write

$$J_f(x) = \sum_{n=1}^{N} \alpha_n j_n(x) + \sum_{n=N+1}^{\infty} \alpha_n j_n(x).$$

The series on the right-hand side is continuous at x_N . While the finite sum has a jump discontinuity at x_N of size α_N . The conclusion follows by the uniform convergence.

Part (ii). Continuity of $f(x) - J_f(x)$ follows by part (i). For the monotonicity, if y > x, we have

$$J_f(y) - J_f(x) \le \sum_{x \le x_n \le y} \alpha_n \le f(y) - f(x),$$

where the last inequality follows since f is increasing. Hence

$$f(x) - J_f(x) \le f(y) - J_f(y),$$

and the difference $f - J_f$ is increasing, as desired.

For each increasing function f, we now write $f(x) = [f(x) - J_f(x)] + J_f(x)$, which reduces to the sum of an increasing and continuous function and a jump function. By virtue of Theorem 1.4, for the proof of Theorem 1.1, we show the following.

Theorem 1.5. If J is the jump function considered above, then J'(x) exists and vanishes almost everywhere.

Proof. Given $\varepsilon > 0$, we consider the set

(1.9)
$$E = E_{\varepsilon} = \left\{ x : \limsup_{h \to 0} \frac{J(x+h) - J(x)}{h} > \varepsilon \right\}.$$

This is a measurable set ³. Suppose $\delta = m(E)$. We show that $\delta = 0$.

Step 1. For η to be chosen later, we take an N large so that $\sum_{n>N} \alpha_n < \eta$. Consider

$$J_0(x) = \sum_{n>N} \alpha_n j_n(x).$$

Because of our choice of N, we have

$$(1.10) J_0(b) - J_0(a) < \eta.$$

Observe that $J - J_0$ is a finite sum of terms $\alpha_n j_n(x)$; and the set $E_{0,\varepsilon}$, with J replaced by J_0 in (1.9), differs from E by at most a finite set

$$\{x_1, x_2 \cdots, x_N\}.$$

Step 2. There is a compact set K, with $m(K) \geq \delta/2$ so that $K \subset E_{0,\varepsilon}$. Hence, there are intervals (a_x, b_x) containing $x \in K$, so that

$$J_0(b_x) - J_0(a_x) > \varepsilon(b_x - a_x).$$

We first choose a finite collection of these intervals that covers K, and then apply the previous covering Lemma to select intervals $I_1, I_2 \cdots, I_n$ which are disjoint, and satisfy

$$\sum_{j=1}^{n} m(I_j) \ge \frac{1}{3} m(K).$$

Now

$$J_0(b) - J_0(a) \ge \sum_{j=1}^N \left[J_0(b_j) - J_0(a_j) \right] > \varepsilon \sum_{j=1}^\infty (b_j - a_j) \ge \frac{\varepsilon}{3} m(K) \ge \frac{\varepsilon}{6} \delta.$$

This yields a contradiction if $\eta < \varepsilon \delta/6$. Hence we must have $\delta = 0$ and the theorem is proved.

$$F_{k,m}^{N}(x) = \sup_{\frac{1}{k} \le |h| \le \frac{1}{m}} \left| \frac{J_{N}(x+h) - J_{N}(x)}{h} \right|, \quad J_{N}(x) = \sum_{n=1}^{N} \alpha_{n} j_{n}(x).$$

Note that each $F_{k,m}^N(x)$ is a measurable function. Then, successively, let $N \to \infty$, $k \to \infty$, and finally $m \to \infty$.

³Given k > m, let

We can now improve Corollary 1.1 by removing the continuity assumption. The proof is the same as that of Corollary 1.1 with the help of Theorem 1.5.

Theorem 1.6 (Lebesgue). Let f be an increasing function. Then f' exists almost everywhere, is integrable and

$$\int_{a}^{b} f'(x)dx \le f(b) - f(a).$$

Remark 1.1. The integral inequality cannot improve to be equality in general. See Cantor-Lebesque function.

It is now at the position to show Theorem 1.1.

Proof of Theorem 1.1. This is a combination of previous conclusions.

By Theorem 1.3, we write $f = f_1 - f_2$ where f_1 and f_2 are both increasing and bounded.

Denote by J_{f_1} the jump function associated to f. Then $f_1 = (f_1 - J_{f_1}) + J_{f_1}$. Since $f_1 - J_{f_1}$ is increasing and continuous, by Theorem 1.4, $f_1 - J_{f_1}$ is a.e. differentiable; On the other hand, it follows by Theorem 1.5 that J_{f_1} is a.e. differentiable. Hence $f'_1(x)$ exists for a.e. x.

The same argument yields the a.e. differentiability of f_2 . Consequently f' exists almost everywhere.

The integrability of f' follows by Theorem 1.6.

1.1.4. The Cantor-Lebesgue function.

We give the construction of Cantor-Lebesgue function which yields a function f: $[0,1] \rightarrow [0,1]$ that is increasing with f(0) = 0 and f(1) = 1, but f'(x) = 0 almost everywhere. Hence f is bounded variation, but

$$\int_{a}^{b} f'(x)dx \neq f(b) - f(a).$$

Consider the standard triadic Cantor set $\mathcal{C} \subset [0,1]$, and recall that

$$\mathcal{C} = \bigcap_{k=0}^{\infty} C_k,$$

where each C_k is a disjoint union of 2^k closed intervals. Let $F_1(x)$ be the continuous increasing function on [0,1] that satisfies

$$F_1(0) = 0, F_1(x) = 1/2 \text{ if } 1/3 \le x \le 2/3, F_1(1) = 1, \text{ and } F_1 \text{ is linear on } C_1.$$

Similarly, let $F_2(x)$ be continuous and increasing, and such that

$$F_2(x) = \begin{cases} 0 & \text{if } x = 0, \\ 1/4 & \text{if } 1/9 \le x \le 2/9, \\ 1/2 & \text{if } 1/3 \le x \le 2/3, \\ 3/4 & \text{if } 7/9 \le x \le 8/9, \\ 1 & \text{if } 7/9 \le x \le 8/9 \end{cases}$$

This process yields a sequence of continuous increasing functions $\{F_n\}_{n=1}^{\infty}$ such that

$$|F_{n+1}(x) - F_n(x)| \le 2^{-n-1}$$
.

Hence $\{F_n\}_{n=1}^{\infty}$ converges uniformly to a continuous limit F called the Cantor-Lebesgue function. By construction, F is increasing, F(0) = 0, F(1) = 1, and F is constant on each interval of the complement of the Cantor set. Since $m(\mathcal{C}) = 0$, we find that F'(x) = 0 a.e., as desired.

FIGURE 2. Cantor-Lebesgue function