Lab 6b: LC-3 Executor

Write a program to execute LC-3 binary code.

Implementation Details

• You are required to write in **C** or any other high level programming language.

Instructions

The instructions you need to implement is listed in the following table.

	00	01	10	11
00	BR	ADD	LD	ST
01	JSR	AND	LDR	STR
10	RTI	NOT	LDI	STI
11	JMP	1101	LEA	TRAP*

- You can refer to the state machine in Figure C.2 on page 702 and the data path in Figure C.3 on page 704.
- Trap routines, interrupts, exceptions are not required.
 - The instructions RTI, 1101 are not required.
 - Privilege mode is not required. ACV is not detected by your executor.
 - The only TRAP instruction you need to implement is HALT. When HALT is executed, your executor should stop and exit.

Executing

- The default values of all registers and memory locations are x7777.
- After the executor halts, print the value of all registers.
 - When HALT is executed by your program, the value of R0, R1, R6, R7 should remain unchanged.

Input

The LC-3 binary code is input from stdin. It only contains 0, 1, and endline characters.

Sample 1

```
00110000000000
1111000000100101
```

Sample 2

• The first line is the starting address of the program.

Output

Print the results to stdout.

Sample 1

```
R0 = x7777
R1 = x7777
R2 = x7777
R3 = x7777
R4 = x7777
R5 = x7777
R6 = x7777
```

Sample 2

```
R0 = x1234

R1 = x0000

R2 = x0000

R3 = x2468

R4 = x48D0

R5 = x7777

R6 = x7777
```

- Print the result by $R%d = x%04x\n$. That is:
 - There are space characters between =.
 - The hexadecimal number should use capital letters.