Inteligência de Negócios - Trabalho 1

Anne Caroline Silva Marcelo Passamai Mendes

5 de dezembro de $2021\,$

1 Introdução

Este trabalho consiste em elaborar um *Data Mart* para uma locadora de veículos fictícia, construir um banco a partir de um modelo lógico que no contexto servirá de OLTP, construir uma modelagem dimensional em estrela respeitando a ordem apresentada pelo Kimball.

2 Modelagem Relacional

2.1 Base de Dados

De acordo com as especificações dadas no dicionário de dados (que pode ser acessado neste link), foi criado um novo banco de dados com as tabelas, campos e relacionamentos pedidos. Também observa-se a exigência de que tenha no mínimo cinco registros em cada tabela.

2.1.1 Modelo lógico

Figura 1: Modelo relacional

2.1.2 Modelo físico

```
CREATE TABLE EstadoCivil (
    cdEstadoCivil INTEGER PRIMARY KEY UNIQUE,
    DesEstadoCivil VARCHAR(30)
);
CREATE TABLE UF (
    CdUF INTEGER PRIMARY KEY UNIQUE,
    DesUF VARCHAR(45)
);
CREATE TABLE Fabricante (
    CdFabricante INTEGER PRIMARY KEY UNIQUE,
    DesFabricante VARCHAR(45)
);
CREATE TABLE TipoCombustivel (
    CdCombustivel INTEGER PRIMARY KEY UNIQUE,
    DesCombustivel VARCHAR(30)
);
CREATE TABLE TipoVeiculo (
    CdTipoVeiculo INTEGER PRIMARY KEY UNIQUE,
    DesTipoVeiculo VARCHAR(45)
);
CREATE TABLE Veiculo (
    CdVeiculo INTEGER PRIMARY KEY UNIQUE,
    Placa VARCHAR(10),
    Chassi VARCHAR(20),
    AnoFabricacao YEAR(4),
    Frabricante_CdFabricante INTEGER,
    TipoCombustivel_CdCombustivel INTEGER,
    ModeloVeiculo_cdModelo INTEGER,
    TipoVeiculo_CdTipoVeiculo INTEGER,
    SituacaoVeiculo_CdSituacao INTEGER
);
CREATE TABLE Cargo (
    CdCargo INTEGER PRIMARY KEY UNIQUE,
    DesCargo VARCHAR(45)
);
CREATE TABLE Funcionario (
    CodFuncionario INTEGER PRIMARY KEY UNIQUE,
    Matricula VARCHAR(15),
    NmFunc VARCHAR(100),
    Celular VARCHAR(15),
    Cpf VARCHAR(11),
    TelResidencial VARCHAR(15),
    Endereco LONGTEXT NULL,
    RG VARCHAR(10),
    Cargo_CdCargo INTEGER,
    UF_CdUf INTEGER
);
```

```
CREATE TABLE ManutencaoVeiculo (
    CdManutencao INTEGER PRIMARY KEY UNIQUE,
    DtSaida DATE,
    DtRetorno DATE,
    Veiculo_CdVeiculo INTEGER
);
CREATE TABLE ItemOpcional (
    CdOpcional INTEGER PRIMARY KEY,
    DesOpcional VARCHAR(45),
    VlrAtualDiaria DECIMAL(10,2)
);
CREATE TABLE LocacaoItemOpcional (
    Locacao_CdLocacao INTEGER,
    ItemOpcional_CdItemOpcional INTEGER
);
CREATE TABLE Locacao (
    CdLocacao INTEGER PRIMARY KEY UNIQUE,
    DtInicio DATE,
    DtFim DATE,
    VlrDiaria DECIMAL(10,2),
    KmInicial INTEGER,
    KmFinal INTEGER,
    Veiculo_CdVeiculo INTEGER,
    Funcionario_CdFuncionario INTEGER,
    Cliente_CdCliente INTEGER
);
CREATE TABLE ServicoManutencao (
    DtConclusao DATE,
    Observacoes LONGTEXT,
    Manutencao Veiculo_CdManutencao INTEGER,
    ServicoManutencao INTEGER
);
CREATE TABLE Cliente (
    CdCliente INTEGER PRIMARY KEY,
    NmCliente VARCHAR(100),
    Email VARCHAR(50),
    Celular VARCHAR(15),
    Habilitacao VARCHAR(45),
    Cpf VARCHAR(11),
    DtNascimento DATE,
    TelefoneFixo VARCHAR(45),
    Endereco LONGTEXT NULL,
    EstadoCivil_CdEstadoCivil INTEGER,
    UF_CdUf INTEGER
);
CREATE TABLE Servico (
    CdServico INTEGER PRIMARY KEY,
    DesServico VARCHAR(45)
);
```

```
CREATE TABLE ModeloVeiculo (
    CdModelo INTEGER PRIMARY KEY,
    DesModelo VARCHAR(45)
);
CREATE TABLE SituacaoVeiculo (
    CdSituacao INTEGER PRIMARY KEY,
    DesSituacao VARCHAR(20)
);
ALTER TABLE Veiculo ADD CONSTRAINT FK_Veiculo_3
    FOREIGN KEY (Frabricante_CdFabricante)
    REFERENCES Fabricante (CdFabricante);
ALTER TABLE Veiculo ADD CONSTRAINT FK_Veiculo_4
    FOREIGN KEY (TipoCombustivel_CdCombustivel)
    REFERENCES TipoCombustivel (CdCombustivel);
ALTER TABLE Veiculo ADD CONSTRAINT FK_Veiculo_5
    FOREIGN KEY (ModeloVeiculo_cdModelo)
    REFERENCES ModeloVeiculo (CdModelo);
ALTER TABLE Veiculo ADD CONSTRAINT FK_Veiculo_6
    FOREIGN KEY (TipoVeiculo_CdTipoVeiculo)
    REFERENCES TipoVeiculo (CdTipoVeiculo);
ALTER TABLE Veiculo ADD CONSTRAINT FK_Veiculo_7
    FOREIGN KEY (SituacaoVeiculo_CdSituacao)
    REFERENCES SituacaoVeiculo (CdSituacao);
ALTER TABLE Funcionario ADD CONSTRAINT FK_Funcionario_3
    FOREIGN KEY (UF_CdUf)
    REFERENCES UF (CdUF);
ALTER TABLE Funcionario ADD CONSTRAINT FK_Funcionario_4
    FOREIGN KEY (Cargo_CdCargo)
    REFERENCES Cargo (CdCargo);
ALTER TABLE ManutencaoVeiculo ADD CONSTRAINT FK_ManutencaoVeiculo_3
    FOREIGN KEY (Veiculo_CdVeiculo)
    REFERENCES Veiculo (CdVeiculo);
ALTER TABLE LocacaoItemOpcional ADD CONSTRAINT FK_LocacaoItemOpcional_1
    FOREIGN KEY (Locacao_CdLocacao)
    REFERENCES Locacao (CdLocacao);
ALTER TABLE LocacaoItemOpcional ADD CONSTRAINT FK_LocacaoItemOpcional_2
    FOREIGN KEY (ItemOpcional_CdItemOpcional)
    REFERENCES ItemOpcional (CdOpcional);
ALTER TABLE Locacao ADD CONSTRAINT FK_Locacao_3
    FOREIGN KEY (Cliente_CdCliente)
    REFERENCES Cliente (CdCliente);
ALTER TABLE Locacao ADD CONSTRAINT FK_Locacao_4
```

```
FOREIGN KEY (Funcionario_CdFuncionario)
   REFERENCES Funcionario (CodFuncionario);
ALTER TABLE Locacao ADD CONSTRAINT FK_Locacao_5
    FOREIGN KEY (Veiculo_CdVeiculo)
    REFERENCES Veiculo (CdVeiculo);
ALTER TABLE ServicoManutencao ADD CONSTRAINT FK_ServicoManutencao_1
    FOREIGN KEY (ManutencaoVeiculo_CdManutencao)
    REFERENCES ManutencaoVeiculo (CdManutencao);
ALTER TABLE ServicoManutencao ADD CONSTRAINT FK_ServicoManutencao_2
    FOREIGN KEY (ServicoManutencao)
    REFERENCES Servico (CdServico);
ALTER TABLE Cliente ADD CONSTRAINT FK_Cliente_2
   FOREIGN KEY (UF_CdUf)
    REFERENCES UF (CdUF);
ALTER TABLE Cliente ADD CONSTRAINT FK_Cliente_3
    FOREIGN KEY (EstadoCivil_CdEstadoCivil)
    REFERENCES EstadoCivil (cdEstadoCivil);
```

2.1.3 Inserção de dados

Os registros inseridos podem ser consultados neste link.

2.2 Projeto Dimensional

2.2.1 Fast Immersion Canvas

Para iniciar o projeto de *Data Mart* da locadora de veículos, apresentamos de forma resumida e visual as informações que temos para a realização do trabalho.

Figura 2: Fast Immersion Canvas

2.2.2 Fast Modelling Canvas

Nessa etapa foi realizada a definição dos seguintes itens:

- Granularidade;
- Dimensões;
- Fato.

Como o objetivo da locadora é entender melhor o processo de locação, a tabela fato é relacionada à locação de veículos.

Figura 3: Fast Modelling Canvas

3 Modelagem ETL

3.1 Esquema Estrela

Para a construção de *Data Warehouse* podemos utilizar dois modelos o Estrela e Floco de neve, como a especificação foi clara em pedir o modelo estrela, usamos esse modelo.

A partir da modelagem proposta no canvas, foi usada a ferramenta Br
Modelo para desenhar uma estrutura do data mart, para gerar um modelo físico com maior facilidade, além de facilitar o entendimento.

3.1.1 Modelo Lógico

Figura 4: Esquema Estrela

3.1.2 Modelo Físico

```
CREATE TABLE fato (
    pk INTEGER PRIMARY KEY,
    dim_cliente INTEGER,
    dim_funcionario INTEGER,
    dim_veiculo INTEGER,
    dim_item_opl INTEGER,
    KmInicial INTEGER,
    KmFinal INTEGER,
    VlrDiaria DECIMAL(10,2),
    DtInicio INTEGER,
    DtFim INTEGER
);
CREATE TABLE dim_data (
    pk INTEGER PRIMARY KEY,
    data_completa DATE,
    dia_semana INTEGER,
```

```
dia_mes INTEGER,
    dia_semana_escrito VARCHAR(20),
    mes INTEGER,
    mes_escrito VARCHAR(20),
    ano INTEGER
);
CREATE TABLE dim_cliente (
    pk INTEGER PRIMARY KEY,
    NmCliente VARCHAR(50),
    Cpf VARCHAR(11),
    DtNascimento DATE,
    EstadoCivil VARCHAR(20),
    UF VARCHAR (45)
);
CREATE TABLE dim_funcionario (
    pk INTEGER PRIMARY KEY,
    NmFunc VARCHAR(50),
    Matricula VARCHAR(35),
    Cpf VARCHAR(11),
    UF VARCHAR(45),
    Cargo VARCHAR(40)
);
CREATE TABLE dim_veiculo (
    pk INTEGER PRIMARY KEY,
    Modelo VARCHAR(45),
    Fabricante VARCHAR(45),
    Placa VARCHAR(10),
    Situacao VARCHAR(35),
    Combustivel VARCHAR(30),
    AnoFabricacao YEAR(4),
    Chassi VARCHAR(20),
    Tipo VARCHAR(45)
);
CREATE TABLE dim_item_op (
    pk INTEGER PRIMARY KEY,
    Item VARCHAR(45),
    VlrDiaria DECIMAL(10,2)
);
ALTER TABLE fato ADD CONSTRAINT FK_fato_1
    FOREIGN KEY (DtInicio)
    REFERENCES dim_data (pk);
ALTER TABLE fato ADD CONSTRAINT FK_fato_2
    FOREIGN KEY (DtFim)
    REFERENCES dim_data (pk);
ALTER TABLE fato ADD CONSTRAINT FK_fato_3
    FOREIGN KEY (dim_cliente)
    REFERENCES dim_cliente (pk);
ALTER TABLE fato ADD CONSTRAINT FK_fato_4
```

```
FOREIGN KEY (dim_funcionario)
REFERENCES dim_funcionario (pk);

ALTER TABLE fato ADD CONSTRAINT FK_fato_5
FOREIGN KEY (dim_veiculo)
REFERENCES dim_veiculo (pk);

ALTER TABLE fato ADD CONSTRAINT FK_fato_6
FOREIGN KEY (dim_item_opl)
REFERENCES dim_item_op (pk);
```

3.2 Dimensão Data

Para a dimensão data foi utilizado o arquivo Ch3-SampleDateDim.xls, disponibilizado junto com as instruções do trabalho, sendo esse, item obrigatório que pode ser consultado neste link.

Foi observado que o arquivo possui datas entre os anos de 2013 a 2018, e a partir dessa informação os dados inseridos na tabela locacao também foram registrados no mesmo intervalo.

Figura 5: Exemplo da dimensão data

4 Transformações do Pentaho

Para construir nosso data warehouse, utilizamos o Pentaho Data Integration. A etapa de extração foi realizada no banco de dados da locadora de veículos, armazenado no mySQL e com a tabela de dimensão data. As principais transformações foram ordenação, merge de tabelas e seleção de campos.

4.1 Dimensão Cliente

Figura 6: Resultado dimensão cliente

4.2 Dimensão Funcionário

Figura 7: Resultado dimensão funcionário

4.3 Dimensão Veículo

Figura 8: Dimensão Veículo

4.4 Dimensão Data

Figura 9: Resultado da dimensão data

4.5 Dimensão Item Opcional

Figura 10: Resultado da dimensão itemOpcional

4.6 Tabela Fato

Figura 11: Tabela Fato

5 Conclusões

O Data Mart responde as seguintes perguntas de acordo com o que era esperado.

- Qual o dia da semana em que há mais locações?
- Tipo de veículo mais locado por dia da semana.
- Quantidade de locação de cada item opcional para um determinado período de tempo.
- Quais itens opcionais são mais locados por tipo de carro?
- Qual a média de idade do cliente por modelo de carro?
- Quantidade de clientes, por estado civil, que locam carros durante o fim de semana?
- Há um aumento de locações durante o natal?
- Qual a média de gasto em locação por idade?
- Qual a média de gasto com itens opcionais por idade?
- Qual a média de gasto com locação por estado civil?
- Quantidade de clientes por UF (estado onde reside) em um determinado mês.
- Quanto cada funcionário vendeu (considerando aluguel de opcionais e veículo) para um período informado?