PHY 301 Quantum Mechanics

Chongfeng Ling

2021-2022

Contents

1	Introduction		1
	1.1	Franklin's Oil-Drop Experiment	1
	1.2	From Classical Mechanics to Quantum Mechanics	1
2 Wave Function		ve Function	1
	2.1	Definition in 1-D Space	1
	2.2	Mean and Variance of the Position	2

PHY301 Page I

1 Introduction

Quantum: quantities can vary by discrete amounts.

Mechanics: study of motion.

1.1 Franklin's Oil-Drop Experiment

Spilled a spoonful $(2 \ ml)$ of oil on the surface of a lake and extended to about 2000 m^2 , but not more. This experiment shows the **existent** and **size** of atoms.

$$V = Sh$$

$$h = \frac{V}{S} \sim \frac{2 \times 10^{-6}}{2 \times 10^{3}} \text{ m} \sim 10^{-9} \text{ m}$$

Atomic and molecular scales are nanometric

1.2 From Classical Mechanics to Quantum Mechanics

In classical mechanics, position is a function of time. **Deterministic**.

In quantum mechanics, the position of a particle is a random variable. **Probabilistic**.

2 Wave Function

2.1 Definition in 1-D Space

Definition 2.1 (Wave Function). For a small particle living in a **one-dimensional space**, the wave function Ψ is a complex-valued function of space and time:

$$\Psi: \mathbf{R} \times \mathbf{R} \to \mathbb{C}$$

$$(x,t)\mapsto \Psi(x,t)\in \mathbf{C}$$

Remark 2.1. $|\Psi(x,t)|^2$ is the p.d.f. of finding the particle in position x at time t.

Remark 2.2. $\int_a^b |\Psi(x,t)|^2 dx$ is the c.d.f of finding the particle between position [a,b] at time t.

Remark 2.3. Integration is over space, t is a parameter.

PHY301 Page 1

2.2 Mean and Variance of the Position

These two statistics are expressed as integrals over the entire space. They are **deterministic** functions of time. Given wave function Ψ , then we have:

$$\langle x \rangle(t) = \int_{-\infty}^{+\infty} x |\Psi(x,t)|^2 dx$$
$$\langle Var(x) \rangle(t) = \int_{-\infty}^{+\infty} (x - \langle x \rangle(t))^2 |\Psi(x,t)|^2 dx$$

PHY301 Page 2