Order-Adaptive Regularisation for Variational Optical Flow: Global, Local and in Between

Daniel Maurer, Michael Stoll, Andrés Bruhn presented by David Hägele

Seminar on Recent Advances in Computer Vision SS18 - University of Stuttgart

Motivation

Recap - Variational Optic Flow

Image sequence

$$I_0(\boldsymbol{x}), I_1(\boldsymbol{x}) : \Omega \subset \mathbb{R}^2 \to \mathbb{R}$$

Flow (displacement vector field)

$$oldsymbol{u} = egin{pmatrix} u(oldsymbol{x}) \\ v(oldsymbol{x}) \end{pmatrix} : \Omega o \mathbb{R}^2$$

We can find the same pixels in second image when looking in the right place

$$I_1(\boldsymbol{x} + \boldsymbol{u}(\boldsymbol{x})) = I_0(\boldsymbol{x})$$

Minimize energy functional to estimate flow

$$E(\boldsymbol{u}) = D(\boldsymbol{u}) + \alpha \cdot R(\boldsymbol{u})$$

Recap - Data Term and Regularization

Measuring how well I can explain where everything moved (Data Term)

$$\int_{\Omega} p(\boldsymbol{u}) \ dx$$

Do pixels have the same values?

$$p(u) = (I_1(x + u(x)) - I_0(x))^2$$

Are Edges in the same place?

$$p(\boldsymbol{u}) = ||\nabla I_1(\boldsymbol{x} + \boldsymbol{u}(\boldsymbol{x})) - \nabla I_0(\boldsymbol{x})||_2^2$$

To avoid crazy flow functions, reward sanity (Regularization)

Flow should be smooth!

$$p(\mathbf{u}) = ||\nabla u||_2^2 + ||\nabla v||_2^2$$

Approach: Data Term

Data Term with two constancy assumptions

$$D(\boldsymbol{u}) = \int_{\Omega} \Psi_D(p_{brightness}(\boldsymbol{u})) + \gamma \cdot \Psi_D(p_{gradient}(\boldsymbol{u})) dx$$

Brightness constancy assumption

$$p_{brightness}(\boldsymbol{u}) = (I_1(\boldsymbol{x} + \boldsymbol{u}(\boldsymbol{x})) - I_0(\boldsymbol{x}))^2$$

Gradient constancy assumption

$$p_{qradient}(\boldsymbol{u}) = ||\nabla I_1(\boldsymbol{x} + \boldsymbol{u}(\boldsymbol{x})) - \nabla I_0(\boldsymbol{x})||_2^2$$

Robustification function subquadratic Charbonnier penalizer

$$\Psi_D(s^2) = 2\epsilon^2 \sqrt{1 + s^2/\epsilon^2}$$

Approach: Regularization Terms - Regularization Tensor

Generalization of the Structure Tensor to arbitrary constancy assumptions

$$S_w(\mathbf{x}) = \int w(\tau) \begin{pmatrix} I_x(\mathbf{x} - \tau)^2 & I_x(\mathbf{x} - \tau)I_y(\mathbf{x} - \tau) \\ I_x(\mathbf{x} - \tau)I_y(\mathbf{x} - \tau) & I_y(\mathbf{x} - \tau)^2 \end{pmatrix} d\tau$$

Aggregates the distribution of the gradients within the convolution window

Using eigenvector decomposition we get a summary of this distribution

$$S_w = Q\Lambda Q^{ op} = egin{pmatrix} m{r}_1 & m{r}_2 \end{pmatrix} egin{pmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{pmatrix} egin{pmatrix} m{r}_1^{ op} \ m{r}_2^{ op} \end{pmatrix}$$

Approach: Regularization Terms - First Order Term

Anisotropic first order regularizer

$$R_1(\boldsymbol{u}) = \int_{\Omega} S_1(\boldsymbol{u}) \ dx = \int_{\Omega} \sum_{l=1}^{2} \Psi_l \Big((\boldsymbol{r}_l^{\top} \nabla u)^2 + (\boldsymbol{r}_l^{\top} \nabla v)^2 \Big) \ dx$$

Allow flow to change along edges

$$\Psi_1(s^2) = \epsilon^2 \ln(1 + s^2/\epsilon^2)$$

$$\Psi_2(s^2) = 2\epsilon^2 \sqrt{1 + s^2/\epsilon^2}$$

Approach: Regularization Terms - Second Order Term

Anisotropic second order regularizer

$$R_2(\boldsymbol{u}) = \int_{\Omega} \inf_{\boldsymbol{a},\boldsymbol{b}} \left[S_2(\boldsymbol{u},\boldsymbol{a},\boldsymbol{b}) + \beta \cdot S_{\text{aux}}(\boldsymbol{a},\boldsymbol{b}) \right] dx$$

Flow change should be similar to auxiliary functions

$$S_2(\boldsymbol{u}, \boldsymbol{a}, \boldsymbol{b}) = \sum_{l=1}^2 \Psi_l \Big((\boldsymbol{r}_l^\top (\nabla u - \boldsymbol{a}))^2 + (\boldsymbol{r}_l^\top (\nabla v - \boldsymbol{b})) \Big)$$

Auxiliary functions should be smooth ≈ second derivative of flow should vanish

$$S_{\mathrm{aux}}(\boldsymbol{a},\boldsymbol{b}) = \sum_{l=1}^2 \Psi_l \Big(\sum_{k=1}^2 (\boldsymbol{r}_k^\top \mathcal{J} \boldsymbol{a} \ \boldsymbol{r}_l)^2 + (\boldsymbol{r}_k^\top \mathcal{J} \boldsymbol{b} \ \boldsymbol{r}_l)^2 \ \Big)$$

Approach: Order Adaption

Simple Combination

$$R(\boldsymbol{u}) = \int_{\Omega} \inf_{\boldsymbol{a},\boldsymbol{b}} \left[S_1(\boldsymbol{u}) + S_2(\boldsymbol{u},\boldsymbol{a},\boldsymbol{b}) + \beta \cdot S_{\text{aux}}(\boldsymbol{a},\boldsymbol{b}) \right] dx$$

Adaptive Combination (Global Scheme)

$$R(\boldsymbol{u},c) = \int_{\Omega} \inf_{\boldsymbol{a},\boldsymbol{b}} \left[c \cdot S_1(\boldsymbol{u}) + (1-c) \cdot S_2(\boldsymbol{u},\boldsymbol{a},\boldsymbol{b}) + \beta \cdot S_{\text{aux}}(\boldsymbol{a},\boldsymbol{b}) + \phi_{\lambda}(c) \right] dx$$

$$c = \frac{1}{1 + e^{-\Delta/\lambda}}$$
 with $\Delta = T + \frac{1}{|\Omega|} \int_{\Omega} S_2 - S_1 dx$

Approach: Adaption Schemes

Local - different selection for each pixel

$$c_{\mathrm{local}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\Delta/\lambda}} \quad \text{with} \quad \Delta = T + S_2(\boldsymbol{x}) - S_1(\boldsymbol{x})$$

Nonlocal - different selection for each pixel based on its neighborhood

$$c_{\text{nonlocal}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\Delta/\lambda}} \text{ with } \Delta = T + \frac{1}{|\mathcal{N}(\boldsymbol{x})|} \int_{\mathcal{N}(\boldsymbol{x})} S_2 - S_1 d\boldsymbol{y}$$

Region-based - different selection per region

$$z: \Omega \to \mathbb{R}$$
 (a level-set function)
$$c_{\text{region}}(z) = \frac{1}{1 + e^{-z/\lambda}} \quad \text{and selection term } \Phi_{\lambda}(c) \text{ replaced by } |\nabla c_{\text{region}}(z)|$$

Results - Classroom Sequence

		Seq. 1	Seq. 2	Seq. 3	Seq. 4	Avg.	Runtime
First order	0.129	0.358	2.038	0.088	0.653	17 s	
Second order		0.141	0.370	0.669	0.102	0.321	75 s
Adaptive order	Global	0.141	0.365	0.667	0.095	0.317	100 s
Adaptive order	Local	0.111	0.260	1.115	0.088	0.393	$105\mathrm{s}$
Adaptive order	Non-local	0.116	0.275	0.737	0.095	0.307	120 s
Adaptive order	Region	0.125	0.366	0.662	0.098	0.313	180 s

Avg Endpoint Error

Results - Classroom Sequence

Ground Truth

Global Scheme

Local Scheme

Non-Local Scheme

Region-based Scheme

Variational Refinement

Pipeline for large displacement optical flow

Variational refinement step starts with reasonable initialization of flow

Variational Refinement - Results

OA

Bad Pixels Flow field

Variational Refinement - Results

KITTI 2012	Out-Noc	Out-All	Avg-Noc	Avg-All	KITTI 2015	Fl-bg	Fl-fg	Fl-all
ImpPB+SPCI	4.65 %	13.47 %	1.1 px	2.9 px	FlowNet2	10.75 %	8.75 %	10.41 %
FlowNet2	4.82 %	8.80 %	1.0 px	1.8 px	DCFlow	13.10 %	23.70 %	14.86 %
FlowFieldCNN	4.89 %	13.01 %	1.2 px	3.0 px	SOF	14.63 %	22.83 %	15.99 %
RicFlow [4.96 %	13.04 %	1.3 px	3.2 px	DF+OIR	15.11 %	23.45 %	16.50 %
FlowFields+	5.06 %	13.14 %	1.2 px	3.0 px	ImpPB+SPCI	17.25 %	20.44 %	17.78 %
DF+OIR	5.17 %	10.43 %	1.1 px	2.9 px	FlowFieldCNN	18.33 %	20.42 %	18.68 %
PatchBatch [5.29 %	14.17 %	1.3 px	3.3 px	RicFlow [18.73 %	19.09 %	18.79 %
SODA-Flow [22]	5.57 %	10.71 %	1.3 px	2.8 px	FlowFields+	19.51 %	21.26 %	19.80 %
OAR-Flow [11]	5.69 %	10.72 %	1.4 px	2.8 px	PatchBatch [19.98 %	26.50 %	21.07 %
DDF	5.73 %	14.18 %	1.4 px	3.4 px	DDF	20.36 %	25.19 %	21.17 %
PH-Flow	5.76 %	10.57 %	1.3 px	2.9 px	SODA-Flow [🔼]	20.01 %	29.14 %	21.53 %
FlowFields [1]	5.77 %	14.01 %	1.4 px	3.5 px	DiscreteFlow [23]	21.53 %	21.76 %	21.57 %
CPM-Flow [11]	5.79 %	13.70 %	1.3 px	3.2 px	OAR-Flow [21]	20.62 %	27.67 %	21.79 %
NLTGV-SC [176]	5.93 %	11.96 %	1.6 px	3.8 px	CPM-Flow [22.32 %	22.81 %	22.40 %
DDS-DF	6.03 %	13.08 %	1.6 px	4.2 px	FullFlow [8]	23.09 %	24.79 %	23.37 %
TGV2ADCSIFT	6.20 %	15.15 %	1.5 px	4.5 px	SPM-BP	24.06 %	24.97 %	24.21 %
S2F-IF	6.20 %	15.68 %	1.4 px	3.5 px	EpicFlow [22]	25.81 %	28.69 %	26.29 %
DiscreteFlow [23]	6.23 %	16.63 %	1.3 px	3.6 px	DeepFlow [₩]	27.96 %	31.06 %	28.48 %
BTF-ILLUM [6.52 %	11.03 %	1.5 px	2.8 px	HS	39.90 %	51.39 %	41.81 %
EpicFlow [28]	7.88 %	17.08 %	1.5 px	3.8 px	DB-TV-L1	47.52 %	48.27 %	47.64 %

Summary - End of Presentation