```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
```

In [2]: ▶

fish_data = pd.read_csv("fish.csv")

In [3]: ▶

fish_data.head()

Out[3]:

	Species	Weight	Length1	Length2	Length3	Height	Width
0	Bream	242.0	23.2	25.4	30.0	11.5200	4.0200
1	Bream	290.0	24.0	26.3	31.2	12.4800	4.3056
2	Bream	340.0	23.9	26.5	31.1	12.3778	4.6961
3	Bream	363.0	26.3	29.0	33.5	12.7300	4.4555
4	Bream	430.0	26.5	29.0	34.0	12.4440	5.1340

In [4]: ▶

fish_data.tail()

Out[4]:

	Species	Weight	Length1	Length2	Length3	Height	Width
154	Smelt	12.2	11.5	12.2	13.4	2.0904	1.3936
155	Smelt	13.4	11.7	12.4	13.5	2.4300	1.2690
156	Smelt	12.2	12.1	13.0	13.8	2.2770	1.2558
157	Smelt	19.7	13.2	14.3	15.2	2.8728	2.0672
158	Smelt	19.9	13.8	15.0	16.2	2.9322	1.8792

In [5]: ▶

fish_data.shape

Out[5]:

(159, 7)

```
In [6]:
fish_data.columns
```

Out[6]:

In [7]: ▶

```
fish_data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 159 entries, 0 to 158
Data columns (total 7 columns):
    Column
             Non-Null Count Dtype
             -----
                             ----
0
    Species 159 non-null
                             object
1
    Weight
            159 non-null
                             float64
    Length1 159 non-null
2
                             float64
                             float64
    Length2 159 non-null
3
4
    Length3 159 non-null
                             float64
5
             159 non-null
                             float64
    Height
    Width
             159 non-null
                             float64
dtypes: float64(6), object(1)
memory usage: 8.8+ KB
```

In [8]: ▶

```
fish_data.describe()
```

Out[8]:

	Weight	Length1	Length2	Length3	Height	Width
count	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000
mean	398.326415	26.247170	28.415723	31.227044	8.970994	4.417486
std	357.978317	9.996441	10.716328	11.610246	4.286208	1.685804
min	0.000000	7.500000	8.400000	8.800000	1.728400	1.047600
25%	120.000000	19.050000	21.000000	23.150000	5.944800	3.385650
50%	273.000000	25.200000	27.300000	29.400000	7.786000	4.248500
75%	650.000000	32.700000	35.500000	39.650000	12.365900	5.584500
max	1650.000000	59.000000	63.400000	68.000000	18.957000	8.142000

```
H
In [9]:
fish_data.isnull().sum()
Out[9]:
Species
           0
Weight
           0
Length1
           0
Length2
           0
Length3
           0
Height
           0
Width
dtype: int64
In [10]:
                                                                                           H
fish_data.nunique()
Out[10]:
             7
Species
Weight
           101
Length1
           116
Length2
            93
           124
Length3
Height
           154
Width
           152
dtype: int64
In [11]:
                                                                                           H
fish_data['Species'].unique()
Out[11]:
array(['Bream', 'Roach', 'Whitefish', 'Parkki', 'Perch', 'Pike', 'Smelt'],
      dtype=object)
In [12]:
                                                                                           H
fish_data['Species'].value_counts()
Out[12]:
Perch
             56
Bream
             35
Roach
             20
Pike
             17
Smelt
             14
Parkki
             11
Whitefish
               6
Name: Species, dtype: int64
```

In [13]: ▶

```
plt.figure(figsize=(15,6))
sns.countplot('Species', data = fish_data, palette='hls')
plt.xticks(rotation = 90)
plt.show()
```


In [14]: ▶

sns.pairplot(fish_data)

Out[14]:

<seaborn.axisgrid.PairGrid at 0xb9d5c460d0>

In [15]: ▶

fish_data.corr()

Out[15]:

	Weight	Length1	Length2	Length3	Height	Width
Weight	1.000000	0.915712	0.918618	0.923044	0.724345	0.886507
Length1	0.915712	1.000000	0.999517	0.992031	0.625378	0.867050
Length2	0.918618	0.999517	1.000000	0.994103	0.640441	0.873547
Length3	0.923044	0.992031	0.994103	1.000000	0.703409	0.878520
Height	0.724345	0.625378	0.640441	0.703409	1.000000	0.792881
Width	0.886507	0.867050	0.873547	0.878520	0.792881	1.000000

In [17]: ▶

```
plt.figure(figsize=(15,6))
sns.heatmap(fish_data.corr(), annot = True)
plt.show()
```


In [18]: ▶

```
plt.figure(figsize=(15,6))
sns.boxplot(fish_data['Weight'])
plt.xticks(rotation = 90)
plt.show()
```


In [19]:

```
fish_weight = fish_data['Weight']
Q3 = fish_weight.quantile(0.75)
Q1 = fish_weight.quantile(0.25)
IQR = Q3-Q1
lower_limit = Q1 -(1.5*IQR)
upper_limit = Q3 +(1.5*IQR)
```

In [20]:

```
weight_outliers = fish_weight[(fish_weight <lower_limit) | (fish_weight >upper_limit)]
weight_outliers
```

Out[20]:

142 1600.0 143 1550.0 144 1650.0 Name: Weight, dtype: float64

In [21]: ▶

```
plt.figure(figsize=(15,6))
sns.boxplot(fish_data['Length1'])
plt.xticks(rotation = 90)
plt.show()
```



```
In [22]:
```

```
fish_Length1 = fish_data['Length1']
Q3 = fish_Length1.quantile(0.75)
Q1 = fish_Length1.quantile(0.25)
IQR = Q3-Q1
lower_limit = Q1 -(1.5*IQR)
upper_limit = Q3 +(1.5*IQR)
length1_outliers = fish_Length1[(fish_Length1 <lower_limit) | (fish_Length1 >upper_limit)
length1_outliers
```

Out[22]:

```
142 56.0
143 56.0
144 59.0
```

Name: Length1, dtype: float64

In [23]: ▶

```
plt.figure(figsize=(15,6))
sns.boxplot(fish_data['Length2'])
plt.xticks(rotation = 90)
plt.show()
```



```
In [24]:
```

```
fish_Length2 = fish_data['Length2']
Q3 = fish_Length2.quantile(0.75)
Q1 = fish_Length2.quantile(0.25)
IQR = Q3-Q1
lower_limit = Q1 -(1.5*IQR)
upper_limit = Q3 +(1.5*IQR)
length2_outliers = fish_Length2[(fish_Length2 <lower_limit) | (fish_Length2 >upper_limit)
length2_outliers
```

Out[24]:

142 60.0 143 60.0 144 63.4

Name: Length2, dtype: float64

In [25]: ▶

```
plt.figure(figsize=(15,6))
sns.boxplot(fish_data['Length3'])
plt.xticks(rotation = 90)
plt.show()
```



```
In [26]: ▶
```

```
fish_Length3 = fish_data['Length3']
Q3 = fish_Length3.quantile(0.75)
Q1 = fish_Length3.quantile(0.25)
IQR = Q3-Q1
lower_limit = Q1 -(1.5*IQR)
upper_limit = Q3 +(1.5*IQR)
length3_outliers = fish_Length3[(fish_Length3 <lower_limit) | (fish_Length3 >upper_limit)
length3_outliers
```

Out[26]:

144 68.0

Name: Length3, dtype: float64

In [27]:

```
plt.figure(figsize=(15,6))
sns.boxplot(fish_data['Height'])
plt.xticks(rotation = 90)
plt.show()
```



```
In [28]: ▶
```

```
plt.figure(figsize=(15,6))
sns.boxplot(fish_data['Width'])
plt.xticks(rotation = 90)
plt.show()
```


In [29]:

fish_data[142:145]

Out[29]:

	Species	Weight	Length1	Length2	Length3	Height	Width
142	Pike	1600.0	56.0	60.0	64.0	9.600	6.144
143	Pike	1550.0	56.0	60.0	64.0	9.600	6.144
144	Pike	1650.0	59.0	63.4	68.0	10.812	7.480

In [47]: ▶

fish_data_new = fish_data.drop([142,143,144])

In [48]:

fish_data_new.head()

Out[48]:

	Species	Weight	Length1	Length2	Length3	Height	Width
0	Bream	242.0	23.2	25.4	30.0	11.5200	4.0200
1	Bream	290.0	24.0	26.3	31.2	12.4800	4.3056
2	Bream	340.0	23.9	26.5	31.1	12.3778	4.6961
3	Bream	363.0	26.3	29.0	33.5	12.7300	4.4555
4	Bream	430.0	26.5	29.0	34.0	12.4440	5.1340

In [49]:

from sklearn.preprocessing import StandardScaler

In [50]:

scaler = StandardScaler()

```
In [51]:
                                                                                               M
```

```
scaling_columns = ['Weight', 'Length1', 'Length2', 'Length3', 'Height', 'Width']
fish_data_new[scaling_columns] = scaler.fit_transform(fish_data_new[scaling_columns])
fish_data_new.describe()
```

Out[51]:

In [56]:

	Weight	Length1	Length2	Length3	Height	Wid
count	1.560000e+02	1.560000e+02	1.560000e+02	1.560000e+02	1.560000e+02	1.560000e+0
mean	-5.693451e-17	1.281027e-17	-4.896368e-16	-2.049643e-16	1.366428e-16	1.480297e-
std	1.003221e+00	1.003221e+00	1.003221e+00	1.003221e+00	1.003221e+00	1.003221e+(
min	-1.177998e+00	-1.997257e+00	-1.986079e+00	-2.042126e+00	-1.675635e+00	-1.996688e+(
25%	-8.012570e-01	-7.321794e-01	-6.952556e-01	-7.078263e-01	-7.004973e-01	-6.036162e-(
50%	-3.271912e-01	-7.213903e-02	-1.061895e-01	-1.239237e-01	-3.023653e-01	-7.944425e-(
75%	7.449512e-01	7.116589e-01	7.389923e-01	8.304874e-01	7.951438e-01	6.291357e-l
max	2.746388e+00	2.898043e+00	2.890364e+00	2.732275e+00	2.321310e+00	2.259561e+(
4						•

```
In [52]:
                                                                                        M
data_cleaned = fish_data_new.drop("Weight", axis=1)
y = fish_data_new['Weight']
In [53]:
                                                                                        H
from sklearn.model_selection import train_test_split
In [54]:
x_train, x_test, y_train, y_test = train_test_split(data_cleaned,y,
                                                     test size=0.2,
                                                     random state=42)
In [55]:
                                                                                        M
from sklearn.preprocessing import LabelEncoder
```

```
In [57]:
x_train['Species'] = label_encoder.fit_transform(x_train['Species'].values)
x_test['Species'] = label_encoder.transform(x_test['Species'].values)
```

label_encoder = LabelEncoder()

M

pip install hyperopt

In [59]: ▶

```
Collecting hyperopt
  Downloading hyperopt-0.2.7-py2.py3-none-any.whl (1.6 MB)
     ------ 1.6/1.6 MB 1.3 MB/s eta 0:0
0:00
Requirement already satisfied: tqdm in c:\python\lib\site-packages (from h
yperopt) (4.51.0)
Requirement already satisfied: six in c:\python\lib\site-packages (from hy
peropt) (1.12.0)
Collecting cloudpickle
 Downloading cloudpickle-2.1.0-py3-none-any.whl (25 kB)
Requirement already satisfied: numpy in c:\python\lib\site-packages (from
hyperopt) (1.22.3)
Requirement already satisfied: future in c:\python\lib\site-packages (from
hyperopt) (0.18.2)
Collecting py4j
  Downloading py4j-0.10.9.5-py2.py3-none-any.whl (199 kB)
     ----- 199.7/199.7 KB 1.7 MB/s eta 0:
00:00
Requirement already satisfied: networkx>=2.2 in c:\python\lib\site-package
s (from hyperopt) (2.5)
Requirement already satisfied: scipy in c:\python\lib\site-packages (from
hyperopt) (1.5.4)
Requirement already satisfied: decorator>=4.3.0 in c:\python\lib\site-pack
ages (from networkx>=2.2->hyperopt) (4.4.2)
Installing collected packages: py4j, cloudpickle, hyperopt
Successfully installed cloudpickle-2.1.0 hyperopt-0.2.7 py4j-0.10.9.5
Note: you may need to restart the kernel to use updated packages.
WARNING: Ignoring invalid distribution -illow (c:\python\lib\site-package
s)
WARNING: Ignoring invalid distribution -atplotlib (c:\python\lib\site-pack
WARNING: Ignoring invalid distribution -illow (c:\python\lib\site-package
WARNING: Ignoring invalid distribution -atplotlib (c:\python\lib\site-pack
ages)
WARNING: Ignoring invalid distribution -illow (c:\python\lib\site-package
s)
WARNING: Ignoring invalid distribution -atplotlib (c:\python\lib\site-pack
ages)
WARNING: Ignoring invalid distribution -illow (c:\python\lib\site-package
s)
WARNING: Ignoring invalid distribution -atplotlib (c:\python\lib\site-pack
ages)
WARNING: Ignoring invalid distribution -illow (c:\python\lib\site-package
s)
WARNING: Ignoring invalid distribution -atplotlib (c:\python\lib\site-pack
ages)
WARNING: Ignoring invalid distribution -illow (c:\python\lib\site-package
WARNING: Ignoring invalid distribution -atplotlib (c:\python\lib\site-pack
ages)
WARNING: Ignoring invalid distribution -illow (c:\python\lib\site-package
WARNING: Ignoring invalid distribution -atplotlib (c:\python\lib\site-pack
```

```
ages)
WARNING: Ignoring invalid distribution -illow (c:\python\lib\site-package
s)
WARNING: Ignoring invalid distribution -atplotlib (c:\python\lib\site-pack
ages)
WARNING: Ignoring invalid distribution -illow (c:\python\lib\site-package
s)
WARNING: Ignoring invalid distribution -atplotlib (c:\python\lib\site-pack
ages)
WARNING: You are using pip version 22.0.4; however, version 22.1.1 is available.
You should consider upgrading via the 'c:\python\python.exe -m pip install
--upgrade pip' command.
```

```
In [60]: ▶
```

```
from itertools import combinations
from hyperopt import hp
from hyperopt import fmin, tpe, STATUS_OK, STATUS_FAIL, Trials
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
import xgboost as xgb
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
```

```
In [63]:
```

```
def evauation_model(pred, y_val):
    score_MSE = round(mean_squared_error(pred, y_val),2)
    score_MAE = round(mean_absolute_error(pred, y_val),2)
    score_r2score = round(r2_score(pred, y_val),2)
    return score_MSE, score_MAE, score_r2score
```

```
In [61]: ▶
```

```
def models_score(model_name, train_data, y_train, val_data, y_val):
    model_list = ["Decision_Tree", "Random_Forest", "XGboost_Regressor"]
    # model 1
    if model_name == "Decision_Tree":
        reg = DecisionTreeRegressor(random state=42)
    # model 2
    elif model name == "Random Forest":
        reg = RandomForestRegressor(random_state=42)
    # model 3
    elif model name == "XGboost Regressor":
        reg = xgb.XGBRegressor(objective="reg:squarederror", random state=42, )
        print("please enter correct regressor name")
    if model name in model list:
        reg.fit(train data, y train)
        pred = reg.predict(val data)
        score_MSE, score_MAE, score_r2score = evauation_model(pred, y_val)
        return round(score_MSE, 2), round(score_MAE, 2), round(score_r2score, 2)
```

```
In [64]:
```

```
model_list = ["Decision_Tree","Random_Forest","XGboost_Regressor"]
result_scores = []
for model in model_list:
    score = models_score(model, x_train, y_train, x_test, y_test)
    result_scores.append((model, score[0], score[1], score[2]))
    print(model, score)
```

```
Decision_Tree (0.05, 0.16, 0.94)
Random_Forest (0.03, 0.11, 0.97)
XGboost_Regressor (0.04, 0.14, 0.96)
```

```
In [65]:
```

```
df_result_scores = pd.DataFrame(result_scores,columns=["model","mse","mae","r2score"])
df_result_scores
```

Out[65]:

model mse mae r2score 0 Decision_Tree 0.05 0.16 0.94 1 Random_Forest 0.03 0.11 0.97 2 XGboost_Regressor 0.04 0.14 0.96

```
In [66]: ▶
```

```
num_estimator = [100, 150, 200, 250]
```

```
In [67]:
```

```
In [68]:
```

In [69]:

```
100%| 200/200 [02:00<00:00, 1.66trial/s, best loss: 0.658911115941 0673] {'colsample_bytree': 0.810503648295446, 'gamma': 1.0010030640720304, 'max_depth': 16.0, 'min_child_weight': 5.0, 'n_estimators': 2, 'reg_alpha': 30.0, 'reg_lambda': 0.2825700829452797}
```

```
In [70]: ▶
```

```
best['max_depth'] = int(best['max_depth']) # convert to int
best["n_estimators"] = num_estimator[best["n_estimators"]] # assing n_estimator because
best_xgboost_model = xgb.XGBRegressor(**best)
best_xgboost_model.fit(x_train,y_train)
pred = best_xgboost_model.predict(x_test)
score_MSE, score_MAE, score_r2score = evauation_model(pred,y_test)
to_append = ["XGboost_hyper_tuned",score_MSE, score_MAE, score_r2score]
df_result_scores.loc[len(df_result_scores)] = to_append
```

```
In [71]: ▶
```

```
best_xgboost_model.save_model("best_model.json")
```