WGCNA_TP

November 14, 2018

1 TP WGCNA

1.1 M2BI Biologie de Systemes

1.1.1 Costas Bouyioukos 2018

1.2 Part 0

Settingup the environment

* Package WGCNA 1.66 loaded.

*

Important note: It appears that your system supports multi-threading,

* but it is not enabled within WGCNA in R.

To allow multi-threading within WGCNA with all available cores, use

.

allowWGCNAThreads()

*

* within R. Use disableWGCNAThreads() to disable threading if necessary.

Alternatively, set the following environment variable on your system:

```
* ALLOW_WGCNA_THREADS=<number_of_processors>

* for example

* ALLOW_WGCNA_THREADS=8

* To set the environment variable in linux bash shell, type

* export ALLOW_WGCNA_THREADS=8

* before running R. Other operating systems or shells will

* have a similar command to achieve the same aim.

*
```

Attaching package: WGCNA

The following object is masked from package:stats:

cor

1.3 Part 1

Loading of Gene Expression data.

The files contain simulated gene expression data, are provided in the zip file and have the proper filenames.

We can take a quick look, they should look like the following.

In [5]: head(datGeneExpr)

GeneName	Sample1	Sample2	Sample3	Sample4	Sample5	Sample6	Sample7	Sa
Gene1	-0.76903180	0.2010896	-0.8929247	0.28616899	-0.6224324	1.569568	1.4352953	1.1
Gene2	-0.25281902	0.4293141	-1.1007358	0.05983439	-0.6152275	1.669728	1.2668673	0.6
Gene3	0.33073345	-0.2741976	0.7029428	0.02233195	0.8093945	-1.673001	-0.6530627	-1.
Gene4	0.01335525	0.1155758	-0.4554590	0.04184443	-0.4602345	2.132252	1.1245297	1.1
Gene5	0.30580959	0.1004434	-0.6086998	-0.32522219	-1.0474164	2.914156	0.5821223	0.9
Gene6	0.84871917	-0.8866578	0.4384386	-0.02703332	0.4270420	-2.057772	-0.4740660	-1.

Then we reformat the data and set some appropriate gene names etc.

In [13]: head(datExpr)

	Gene1	Gene2	Gene3	Gene4	Gene5	Gene6	Gene7 (
Sample1	-0.7690318	-0.25281902	0.33073345	0.01335525	0.3058096	0.84871917	-0.05517512 -
Sample2	0.2010896	0.42931409	-0.27419755	0.11557575	0.1004434	-0.88665785	-0.71263979 (
Sample3	-0.8929247	-1.10073581	0.70294278	-0.45545899	-0.6086998	0.43843862	-0.89374789 -
Sample4	0.2861690	0.05983439	0.02233195	0.04184443	-0.3252222	-0.02703332	-0.17070069
Sample5	-0.6224324	-0.61522751	0.80939447	-0.46023446	-1.0474164	0.42704199	0.88542282 -
Sample6	1.5695682	1.66972847	-1.67300053	2.13225233	2.9141561	-2.05777234	2.42458573 2

In [18]: # First, make sure that the array names in the file datTraits line up with those in t table(dimnames(datExpr)[[1]]==datTraits\$ArrayName)

TRUE 50

```
In [28]: # Then, keep the microarray sample trait
    y = datTraits$Trait.y
```

1.4 Part 2

Sample1

1.4.1 Basic data pre-processing, cleaning etc.

0 Sample2

We start by defining the mean expression per sample and the number of missing values.

0 Sample4

0 Sample5

0

0 Sample6

0 Sample3

Mean expression across samples

1.4.2 Simple way to detect outliers.

3000

In [29]: plotClusterTreeSamples(datExpr=datExpr, y=y)

No obvious outlier, but this is an important pre-processing step

(together with PCA) for EVERY Gene Expression analysis that you perform.

1.5 Part 3

Construction of a weighted gene expression network and network modules.

1.5.1 Network modules.

First we construct a co-expression network by soft threshold the correlation matrix with a beta = 6

```
In []: # here we define the adjacency matrix using soft thresholding with beta=6
    ADJ1=abs(cor(datExpr, use="p"))^6
    # When you have relatively few genes (<5000) use the following code
    k=as.vector(apply(ADJ1, 2, sum, na.rm=T))
    # When you have a lot of genes use the following code
    #k=softConnectivity(datE=datExpr,power=6) # We have 3000.
    # Plot a histogram of k and a scale free topology plot
    hist(k)
    scaleFreePlot(k, main="Check scale free topology")</pre>
In []: # We restrict our analysis to only the top 3600 connected geens.
    datExpr=datExpr[, rank(-k,ties.method="first")<=3600]</pre>
```

1.5.2 Comparing various module detection methods

Clustering dissimilarity from the adjacency matrix directly.

Using topological overlap to define dissimilarity.

```
In [ ]: dissTOM=TOMdist(ADJ1)
```

1.5.3 Average linkage hierarchical clustering with adjacency-based dissimilarity

```
In []: hierADJ=hclust(as.dist(dissADJ), method="average")
    # Plot the resulting clustering tree together with the true color assignment
    plotDendroAndColors(hierADJ, colors = data.frame(truemodule), dendroLabels = FALSE, has
    main = "Gene hierarchical clustering dendrogram and simulated module colors")
```

1.5.4 Module definition via fixed height cut-off

```
In []: colorStaticADJ=as.character(cutreeStaticColor(hierADJ, cutHeight=.99, minSize=20))
    # Plot the dendrogram with module colors
    plotDendroAndColors(hierADJ, colors = data.frame(truemodule, colorStaticADJ),
    dendroLabels = FALSE, abHeight = 0.99,
    main = "Gene dendrogram and module colors")
```

1.5.5 Module definition via dynamic branch cutting methods

One method is the "true" method that uses only the dendrogram the second a hybrid method that uses both the dendrogramas well as the dissimilarity matrix.

```
In []: branch.number=cutreeDynamic(hierADJ,method="tree")
    # This function transforms the branch numbers into colors
    colorDynamicADJ=labels2colors(branch.number )
    colorDynamicHybridADJ=labels2colors(cutreeDynamic(hierADJ,distM= dissADJ,
    cutHeight = 0.998, deepSplit=2, pamRespectsDendro = FALSE))
```

```
# Plot results of all module detection methods together:
plotDendroAndColors(dendro = hierADJ,
colors=data.frame(truemodule, colorStaticADJ,
colorDynamicADJ, colorDynamicHybridADJ),
dendroLabels = FALSE, marAll = c(0.2, 8, 2.7, 0.2),
main = "Gene dendrogram and module colours")
```

1.5.6 Module definition using the topological overlap based dissimilarity

We do the same steps as above but by using the dissimilarity from the TOP method.

```
In []: # Calculate the dendrogram
    hierTOM = hclust(as.dist(dissTOM),method="average");
    # The reader should vary the height cut-off parameter h1
    # (related to the y-axis of dendrogram) in the following
    colorStaticTOM = as.character(cutreeStaticColor(hierTOM, cutHeight=.99, minSize=20))
    colorDynamicTOM = labels2colors (cutreeDynamic(hierTOM,method="tree"))
    colorDynamicHybridTOM = labels2colors(cutreeDynamic(hierTOM, distM= dissTOM, cutHeighter deepSplit=2, pamRespectsDendro = FALSE))
    # Now we plot the results
    plotDendroAndColors(hierTOM,
    colors=data.frame(truemodule, colorStaticTOM,
    colorDynamicTOM, colorDynamicHybridTOM),
    dendroLabels = FALSE, marAll = c(1, 8, 3, 1),
    main = "Gene dendrogram and module colors, TOM dissimilarity")
```

1.5.7 Evaluate the dissimilarity measure and branching methods used.

For each different combination we can use the Rand index as an evaluation score.

1.6 Part 5

Network visualization.

```
In [ ]: library(cluster)
```

1.6.1 We begin with some multi-dimensional scaling plots

```
In [ ]: cmd1=cmdscale(as.dist(dissTOM),2)
       plot(cmd1, col=as.character(colorh1), main="MDS plot",
       xlab="Scaling Dimension 1", ylab="Scaling Dimension 2")
```

1.6.2 Topological overlap matrix plot for visualizing the network

```
In [ ]: power=6
        color1=colorDynamicTOM
        restGenes= (color1 != "grey")
        diss1=1-TOMsimilarityFromExpr( datExpr[, restGenes], power = 6 )
        hier1=hclust(as.dist(diss1), method="average" )
        diag(diss1) = NA;
        TOMplot(diss1^4, hier1, as.character(color1[restGenes]),
        main = "TOM heatmap plot, module genes" )
In []:
```