CONCOURS BLANC

Les documents, la calculatrice et tout matériel électronique sont interdits. Vous pouvez traiter le sujet dans l'ordre que vous souhaitez tant que le correcteur peut clairement identifier la question à laquelle vous répondez.

Il est possible d'admettre le résultat d'une question précédente pour répondre à une question tant que cela est spécifié clairement.

Toutes vos réponses doivent être justifiées, de manière claire et précise.

Ce sujet, comportant 4 pages, est constitué de 5 problèmes. Bon courage!

Exercice n° 1

Lors d'une épidémie chez les bovins, un test de dépistage est mis au point. Les essais sur un échantillon d'animaux dont 1% est porteur de la maladie ont permis d'établir les probabilités suivantes sur la population entière :

- Si un animal est porteur de la maladie, la probabilité que le test soit positif est 0,85;
- Si un animal est sain, la probabilité que le test soit négatif est 0,95

On note les événements :

M: « l'animal est porteur de la maladie » et T: « le test est positif ».

- 1. Un animal est choisi au hasard
 - a) Construire un arbre de probabilité.
 - b) Quel est la probabilité qu'il soit porteur de la maladie et que son test soit positif ?
 - c) Montrer que la probabilité que le test soit positif est de 0,058.
 - **d**) Sachant que l'animal a un test positif, quelle est la probabilité pour qu'il soit effectivement porteur de la maladie ?
- Le coût des soins à prodiguer à un animal testé positif est de 100€ et le coût de l'abattage d'un animal malade non dépisté est de 1000€.

On suppose que le test est gratuit. C est la variable aléatoire qui, à un animal testé associe le coût à engager.

- a) Donner la loi de C.
- b) Calculer l'espérance de C.
- c) Un éleveur possède un troupeau de 200 bêtes. Si tout le troupeau est soumis au test, quelle somme l'éleveur doit-il prévoir d'engager ?
- 1. Un animal est choisi au hasard
 - a) On a l'arbre de probabilité suivant :

- **b)** $P(M \cap T) = P(M) \times P_M(T) = 0.01 \times 0.85 = 0.0085$: la probabilité qu'il soit porteur de la maladie et que son test soit positif est de 0.0085.
- c) La formule des probabilités totales associée au système complet d'événements (M, \overline{M}) s'écrit

$$P(T) = P(M \cap T) + P(\overline{M} \cap T) = P(M)P_{M}(T) + P(\overline{M})P_{\overline{M}}(T) = \frac{1}{100} \times \frac{85}{100} + \frac{99}{100} \times \frac{5}{100} = \frac{85}{10000} + \frac{495}{10000} = \frac{580}{10000} = 0,058$$
La probabilité que le test soit positif est de 0,058.

d)
$$P_T(M) = \frac{P(M \cap T)}{P(T)} = \frac{0,0085}{0,058} = \frac{85}{580} = \frac{17}{116}$$
: sachant que l'animal a un test positif, la probabilité pour qu'il

soit effectivement porteur de la maladie est $\frac{17}{116}$

2. C est la variable aléatoire qui, à un animal testé associe le coût à engager.

a) C peut prendre les valeurs 0,100 et 1000 : $C(\Omega) = \{0,100,1000\}$.

C = 0 correspond à un animal non malade et non testé positif : $P(C = 0) = P(\overline{M}) \times P_{\overline{M}}(\overline{T}) = \frac{99}{100} \times \frac{95}{100} = \frac{9405}{10000}$

C = 100 correspond à un animal testé positif : $P(C = 100) = P(T) = 0,058 = \frac{58}{1000}$

C = 1000 correspond à un animal malade et non testé positif : $P(C = 1000) = P(M) \times P_M(T) = \frac{1}{100} \times \frac{15}{100} = \frac{15}{10000}$

$C = x_i$	0	100	1000
$P(C=x_i)$	$\frac{9405}{10000}$	$\frac{58}{1000}$	$\frac{15}{10000}$

b)
$$E(C) = 0 \times \frac{9405}{10000} + 100 \times \frac{58}{1000} + 1000 \times \frac{15}{10000} = \frac{58}{10} + \frac{15}{10} = \frac{73}{10} = 7,3$$
: l'espérance de C est de 7,3.

c) En moyenne, l'éleveur dépense 7,3 euros par animal et s'il possède un troupeau de 200 bêtes, il dépensera donc 7,3×200=1460 euros.

Exercice n° 2

Les deux parties sont indépendantes

PARTIE I.

- 1) Soit le polynôme $P(x) = 3x^3 7x^2 7x + 3$
- a) Montrer que le polynôme P peut se factoriser sous la forme P(x) = (x+1)Q(x) où Q est un polynôme de degré 2 que l'on déterminera.
 - **b)** Déterminer alors les solutions de l'équation $3x^3 7x^2 7x + 3 = 0$.
- 2) On considère la fraction rationnelle : $f(x) = \frac{3x^3 7x^2 7x + 3}{3x^2 12x + 12}$.
 - a) Déterminer l'ensemble de définition de f.
 - **b)** Résoudre l'inéquation $f(x) \ge 0$.

PARTIE II.

On considère les fonctions f et g définies sur \mathbb{R} par :

$$f(x) = x^3 + 6x^2 - 5x - 5$$
 et $g(x) = 2x^2 + 2x + 5$

On note C_f la courbe représentative de f et C_g la courbe représentative de g.

- 1) Donner l'ensemble de définition des fonctions f et g ainsi que leurs limites en $+\infty$ et en $-\infty$.
- 2) Montrer que le point A de coordonnées (2; 17) est un point de C_f et de C_g .
- 3) En déduire qu'il existe un polynôme R de degré 2 tel que f(x) g(x) = (x-2)R(x).
- 4) Étudier alors le signe de f(x) g(x) et en déduire les positions relatives des courbes C_f et C_g .

PARTIE I.

- 1) Soit le polynôme $P(x) = 3x^3 7x^2 7x + 3$
 - a) $P(-1) = 3(-1)^3 7(-1)^2 7(-1) + 3 = 3 \times (-1) 7 \times 1 + 7 + 3 = -3 7 + 10 = 0$

Donc, il existe Q tel que P(x) = (x+1)Q(x). On détermine ce polynôme Q en effectuant la division euclidienne de P par x+1:

2

b) Calculons le discriminant de $3x^2 - 10x + 3$: $\Delta = (-10)^2 - 4 \times 3 \times 3 = 100 - 36 = 64$

Il y a donc deux racines qui sont : $x_1 = \frac{10 - \sqrt{64}}{2 \times 3} = \frac{10 - 8}{6} = \frac{1}{3}$ et $x_2 = \frac{10 + \sqrt{64}}{2 \times 3} = \frac{10 + 8}{6} = 3$

Donc $S = \left\{-1; \frac{1}{3}; 3\right\}$

- 2) On considère la fraction rationnelle : $f(x) = \frac{3x^3 7x^2 7x + 3}{3x^2 12x + 12}$.
 - a) Déterminons les valeurs interdites : ce sont les solutions de l'équation $3x^2 12x + 12 = 0$.

Le discriminant vaut : $\Delta = (-12)^2 - 4 \times 3 \times 12 = 144 - 144 = 0$. Il y a donc une racine qui est : $x_1 = \frac{12}{2 \times 3} = 2$

Donc $D_f = \mathbb{R} \setminus \{2\}$

b) On a le tableau suivant :

x	-∞		-1		$\frac{1}{3}$		1		2		+∞
Signe $(x+1)$		_	0	+		+		+		+	
Signe $(3x^2 - 10x + 3)$		+		+	0	_	0	+		+	
Signe $(3x^2 - 12x + 12)$		+		+		+		+	0	+	
Signe $f(x)$		_	0	+	0	_	0	+	0	+	

On a donc
$$S = \left[-1; \frac{1}{3}\right] \cup \left[1; 2\left[\,\cup\,\right]2; +\infty\right[$$

PARTIE II.

1) Les fonctions f et g sont des polynômes, donc $D_f = D_g = \mathbb{R}$.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 = -\infty \qquad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 = +\infty$$

$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} 2x^2 = +\infty$$

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} 2x^2 = +\infty$$

- 2) $f(2) = 2^3 + 6 \times 2^2 5 \times 2 5 = 8 + 24 10 5 = 17$ et $g(2) = 2 \times 2^2 + 2 \times 2 + 5 = 8 + 4 + 5 = 17$. Donc le point A de coordonnées (2; 17) est un point de C_f et de C_g .
- 3) f(2) g(2) = 17 17 = 0, donc 2 est racine de f(x) g(x) et il existe Q tel que f(x) g(x) = (x 2)R(x). On détermine ce polynôme Q en effectuant la division euclidienne de f g par x 2

On a
$$f(x) - g(x) = x^3 + 4x^2 - 7x - 10$$

$$x^3 + 4x^2 - 7x - 10$$

$$x^3 - 2x^2$$

$$6x^2 - 7x - 10$$

$$6x^2 - 12x$$

$$5x - 10$$

$$5x - 10$$

$$5x - 10$$

$$6x - 12x$$

$$6x - 12x$$

$$5x - 10$$

Calculons le discriminant de $x^2 + 6x + 5$: $\Delta = 6^2 - 4 \times 1 \times 5 = 3 - 20 = 16$ Il y a donc deux racines qui sont : $x_1 = \frac{-6 - \sqrt{16}}{2} = \frac{-6 - 4}{2} = -5$ et $x_2 = \frac{-6 + \sqrt{16}}{2} = \frac{-6 + 4}{2} = -1$

On en déduit le tableau suivant :

X	∞		-5		-1		2	4	⊦ ∞
Signe $(x-2)$		-		_	0	_		+	
Signe (x^2+6x+5)		+	0	_		+	0	+	
Signe $f(x) - g(x)$		_	0	+	0	_	0	+	

 $\text{Ainsi, } C_f \text{ est en dessous de } C_g \text{ sur }] - \infty; -5] \cup \left[-1; 2 \right] \text{ et } C_f \text{ est au-dessus de } C_g \text{ sur } \left[-5; -1 \right] \cup \left[2; + \infty \right[.5; -1]) = 0$

Exercice n° 3

Précisions importantes à lire attentivement :

- On appelle dérivée seconde de f, notée f", la dérivée de f'.
- Une fonction f est convexe sur un intervalle I si et seulement si pour tout x de I, on a $f''(x) \ge 0$
- Une fonction f est concave sur un intervalle I si et seulement si pour tout x de I, on a $f''(x) \le 0$
- Le point (a, f(a)) est un point d'inflexion de la courbe de f si et seulement si f " s'annule en changeant de signe en

Soit la fonction $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto \frac{2x}{x^2 + 1}$.

- 1) Comparer f(-x) avec f(x); comment se traduira graphiquement ce résultat pour la courbe de f.
- Montrer que, pour tout x de \mathbb{R} , $f'(x) = \frac{2(1-x^2)}{(x^2+1)^2}$.
- 3) Etudier le signe de f'(x) selon les valeurs de x. Vérifier le résultat en le confrontant aux valeurs de f'(-2), f'(0) et f'(2).
- 4) Dresser le tableau de variation de f; on n'oubliera pas de le compléter par les limites de f en $+\infty$ et en $-\infty$, après avoir calculé celles-ci de façon claire.
- Montrer que la dérivée seconde vaut $f''(x) = \frac{4(x^3 3x)}{(x^2 + 1)^3}$.
- Dresser un tableau de signes permettant de déterminer le signe de $\varphi(x) = x(x-\sqrt{3})(x+\sqrt{3})$.
- Déduire des questions 5 et 6 un tableau indiquant dans quel domaine la fonction f est convexe et dans quel domaine elle est concave.

Déterminer les trois points d'inflexion de la courbe de f.

1)
$$f(-x) = \frac{2(-x)}{(-x)^2 + 1} = \frac{-2x}{x^2 + 1} = -f(x)$$
; l'origine du repère est un centre de symétrie pour la courbe de f .

$$u(x) = 2x \qquad u'(x) = 2$$

$$u(x) = 2x u'(x) = 2$$

$$v(x) = x^{2} + 1 v'(x) = 2x$$

$$f'(x) = \frac{2(x^{2} + 1) - 2x \times 2x}{(x^{2} + 1)^{2}} = \frac{2x^{2} + 2 - 4x^{2}}{(x^{2} + 1)^{2}} = \frac{2(1 - x^{2})}{(x^{2} + 1)^{2}}$$
Pour tout $x \text{ de } \mathbb{R}$, $f'(x) = \frac{2(1 - x^{2})}{(x^{2} + 1)^{2}}$.

3) Puisque pour tout x de \mathbb{R} , $\frac{2}{\left(x^2+1\right)^2} > 0$, le signe de f'(x) est le même que celui de $1-x^2$. On en déduit le tableau de

signe de f'(x):

x	$-\infty$	-1		1	-	+∞
Signe $(1-x^2)$	_	0	+	0	_	
Signe $f'(x)$	_	0	+	0	_	

$$f'(-2) = \frac{2(1-(-2)^2)}{\left((-2)^2+1\right)^2} = \frac{2(1-4)}{\left(4+1\right)^2} = -\frac{6}{25} \qquad f'(0) = \frac{2(1-0^2)}{\left(0^2+1\right)^2} = 2 \qquad f'(2) = \frac{2(1-2^2)}{\left(2^2+1\right)^2} = \frac{2(1-4)}{\left(4+1\right)^2} = -\frac{6}{25} .$$

Les valeurs trouvées sont cohérentes avec le tableau de signe.

4)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{2x}{x^2} = \lim_{x \to -\infty} \frac{2}{x} = 0$$
 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x}{x^2} = \lim_{x \to +\infty} \frac{2}{x} = 0$

$$f(-1) = \frac{2 \times (-1)}{(-1)^2 + 1} = \frac{-2}{2} = -1$$
 $f(1) = \frac{2 \times 1}{1^2 + 1} = \frac{2}{2} = 1$

On en déduit le tableau de variation de f:

$$u(x) = 2 - 2x^2$$
 $u'(x) = -4x$

$$v(x) = (x^2 + 1)^2 \quad v'(x) = 2 \times 2x \times (x^2 + 1)$$

$$f'(x) = \frac{-4x(x^2+1)^2 - 4x(x^2+1) \times (2-2x^2)}{(x^2+1)^4} = \frac{(x^2+1)\left(-4x(x^2+1) - 4x(2-2x^2)\right)}{(x^2+1)^4} = \frac{-4x^3 - 4x - 8x + 8x^3}{(x^2+1)^3} = \frac{4x^3 - 12x}{(x^2+1)^3}$$

On a donc pour tout x de \mathbb{R} , $f''(x) = \frac{4(x^3 - 3x)}{(x^2 + 1)^3}$.

6) On dresse le tableau de signes de $\varphi(x) = x(x - \sqrt{3})(x + \sqrt{3})$

x	-8		$-\sqrt{3}$		0		√3		+∞
Signe <i>x</i>		_		_	0	+		+	
Signe $(x-\sqrt{3})$		_		_		-	0	+	
Signe $(x+\sqrt{3})$		_	0	+		+		+	
Signe $\varphi(x)$		_	0	+	0	_	0	+	•

7) On remarque que
$$x^3 - 3x = x(x^2 - 3) = x(x - \sqrt{3})(x + \sqrt{3}) = \varphi(x)$$
 et puisque pour tout x de \mathbb{R} , $\frac{4}{(x^2 + 1)^3} > 0$, le signe

de f''(x) est le même que celui de $\varphi(x)$. On en déduit le tableau de signe de f''(x):

х	-∞		$-\sqrt{3}$		0		$\sqrt{3}$		+∞
Signe f "(x)		_	0	+	0	_	0	+	

On en déduit que :

La fonction f est convexe sur $\left[-\sqrt{3};0\right]$ et sur $\left[\sqrt{3};+\infty\right]$

La fonction f est concave sur $]-\infty; -\sqrt{3}]$ et sur $[0; \sqrt{3}]$

f "s'annule en changeant de signe en $-\sqrt{3}$, 0, $\sqrt{3}$ et les trois points d'inflexion de la courbe de f ont pour coordonnés

5

$$\left(-\sqrt{3}, -\frac{\sqrt{3}}{2}\right)$$
, $(0,0)$ et $\left(\sqrt{3}, \frac{\sqrt{3}}{2}\right)$

Exercice n° 4

PARTIE I.

On considère les matrices :

$$\Delta = \begin{pmatrix} 3 & 1 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ N = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}, \ P = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & -2 \\ 0 & 1 & 0 \end{pmatrix}, \ Q = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix} \text{et on pose} : \ A = \Delta + N \ .$$

- 1) Calculer N^2 puis en déduire N^k où k désigne un entier naturel supérieur ou égal à 2.
- 2) a) Calculer PQ et QP.
 - **b)** Vérifier que : $Q\Delta P = D$ avec $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
 - c) Exprimer Δ en fonction de P, D et Q.
 - **d)** Montrer par récurrence que : $\forall n \in \mathbb{N}$, $\Delta^n = PD^nQ$.
 - e) Exprimer Δ^n sous la forme d'un tableau de nombres.
- 3) a) Vérifier que : $\Delta N = N\Delta$.
 - b) En utilisant la formule du binôme de Newton pour les matrices, exprimer A^n en fonction de Δ, N et n.
 - c) En déduire l'expression de A^n sous la forme d'un tableau de nombres.

PARTIE II.

Nous allons maintenant étudier les trois suites $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ définies par :

$$x_0 = 1, \ y_0 = 1, \ z_0 = 1 \text{ et}, \ \forall n \in \mathbb{N}, \begin{cases} x_{n+1} = 3x_n + y_n - z_n \\ y_{n+1} = -2x_n + 2z_n \\ z_{n+1} = z_n \end{cases}$$

- 1) a) En utilisant la définition de la suite $(z_n)_{n\in\mathbb{N}}$, déterminer directement la valeur de z_n .
 - **b)** Ecrire alors x_{n+1} et y_{n+1} en fonction de x_n et de y_n .
- 2) On introduit la suite $(r_n)_{n\in\mathbb{N}}$ définie par $r_n=x_n+y_n$ pour tout entier naturel n.

- a) Etablir que la suite $(r_n)_{n\in\mathbb{N}}$ est arithmétique et préciser sa raison.
- **b**) En déduire l'expression de $x_n + y_n$ en fonction de n.
- 3) On introduit la suite $(s_n)_{n\in\mathbb{N}}$ définie par $s_n=2x_n+y_n$ pour tout entier naturel n.
 - a) Etablir que la suite $(s_n)_{n\in\mathbb{N}}$ est géométrique et préciser sa raison.
 - **b**) En déduire l'expression de $2x_n + y_n$ en fonction de n.
- 4) En utilisant les questions 2 et 3, déterminer x_n et y_n en fonction de n.

PARTIE III.

On souhaite faire le lien entre les deux parties précédentes. Pour cela, on pose $X_n = \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}$.

En remarquant que pour tout entier naturel n $X_{n+1} = AX_n$, et en utilisant les résultats de la partie I, retrouver les expressions en fonction de n de x_n , y_n et z_n .

PARTIE I.

$$1) \quad N^2 = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Pour tout k désigne un entier naturel supérieur ou égal à 2, $N^k = N^2 \times N^{k-2} = 0 \times N^{k-2} = 0$

2) **a**) On calcule PQ et QP:

$$PQ = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & -2 \\ 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 2 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad QP = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & -2 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{b)} \ \ Q\Delta P = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix} \times \begin{pmatrix} 3 & 1 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & -2 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 2 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & -2 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = D \ .$$

c) On exprime Δ en fonction de P, D et Q.

On utilise la question précédente $(D = Q\Delta P)$: $PDQ = PQ\Delta PQ$

Or
$$PQ = QP = I_3$$
 et $I_3\Delta = \Delta I_3 = \Delta$, donc $PDQ = PQ\Delta PQ = I_3\Delta I_3 = \Delta$

d) Notons P(n) la propriété : $\Delta^n = PD^nQ$ avec $n \in \mathbb{N}$.

- $PD^{0}Q = PI_{3}Q = PQ = I_{3} = \Delta^{0}$: P(0) est vraie
- Supposons P(n) vraie pour un certain entier naturel.

$$\Delta^{n+1} = \Delta^n \times \Delta = P\Delta^n Q \times P\Delta Q = P\Delta^n I_3 \Delta Q = P\Delta^n \times \Delta Q = P\Delta^{n+1} Q$$

P(n+1) est donc vraie.

• En conclusion, on a montré par récurrence que pour tout $n \in \mathbb{N}$, $\Delta^n = PD^nQ$

e) On a, pour tout
$$n \in \mathbb{N}$$
, $D^n = \begin{pmatrix} 2^n & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

$$\Delta^{n} = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & -2 \\ 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 2^{n} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 2 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 2^{n} & 0 & 1 \\ -2^{n} & 0 & -2 \\ 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 2 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 2^{n+1} - 1 & 2^{n} - 1 & 0 \\ -2^{n+1} + 2 & -2^{n} + 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

7

$$\Delta^{n} = \begin{pmatrix} 2^{n+1} - 1 & 2^{n} - 1 & 0 \\ -2^{n+1} + 2 & -2^{n} + 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{3)} \quad \mathbf{a)} \quad \Delta N = \begin{pmatrix} 3 & 1 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \quad N\Delta = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 3 & 1 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \quad \Delta N = N\Delta \, .$$

b) Puisque $\Delta N = N\Delta$, on peut utiliser la formule du binôme de Newton pour les matrices

$$A^{n} = \left(\Delta + N\right)^{n} = \sum_{k=0}^{n} \binom{n}{k} \Delta^{n-k} N^{k} = \binom{n}{0} \Delta^{n} N^{0} + \binom{n}{1} \Delta^{n-1} N = \Delta^{n} + n \Delta^{n-1} N$$

$$\underline{A^{n} = \Delta^{n} + n \Delta^{n-1} N}$$

$$\Delta^{n-1}N = \begin{pmatrix} 2^{n} - 1 & 2^{n-1} - 1 & 0 \\ -2^{n} + 2 & -2^{n-1} + 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -2^{n} + 1 + 2 \times (2^{n-1} - 1) \\ 0 & 0 & 2^{n} - 2 + 2 \times (-2^{n-1} + 2) \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$A^{n} = \Delta^{n} + n\Delta^{n-1}N = \begin{pmatrix} 2^{n+1} - 1 & 2^{n} - 1 & 0 \\ -2^{n+1} + 2 & -2^{n} + 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} + n\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 2^{n+1} - 1 & 2^{n} - 1 & -n \\ -2^{n+1} + 2 & -2^{n} + 2 & 2n \\ 0 & 0 & 1 \end{pmatrix}$$

$$A^{n} = \begin{pmatrix} 2^{n+1} - 1 & 2^{n} - 1 & -n \\ -2^{n+1} + 2 & -2^{n} + 2 & 2n \\ 0 & 0 & 1 \end{pmatrix}$$

PARTIE II.

- 1) a) Puisque, pour tout $n \in \mathbb{N}$, $z_{n+1} = z_n$, la suite $(z_n)_{n \in \mathbb{N}}$ est une suite constante et pour tout $n \in \mathbb{N}$, $z_n = z_0 = 1$.
 - **b)** En reportant dans le système, on obtient $\begin{cases} x_{n+1} = 3x_n + y_n 1 \\ y_{n+1} = -2x_n + 2 \end{cases}$
- 2) On introduit la suite $(r_n)_{n\in\mathbb{N}}$ définie par $r_n=x_n+y_n$ pour tout entier naturel n.
 - a) Pour tout $n \in \mathbb{N}$, $r_{n+1} = x_{n+1} + y_{n+1} = 3x_n + y_n 1 2x_n + 2 = x_n + y_n + 1 = r_n + 1$ La suite $(r_n)_{n\in\mathbb{N}}$ est arithmétique de raison 1.
 - **b**) En remarquant que $r_0 = x_0 + y_0 = 2$, r_n s'écrit donc $r_n = r_0 + 1 \times n = 2 + n$. On a donc $x_n + y_n = n + 2$.
- 3) On introduit la suite $(s_n)_{n\in\mathbb{N}}$ définie par $s_n=2x_n+y_n$ pour tout entier naturel n.
 - **a)** Pour tout $n \in \mathbb{N}$, $s_{n+1} = 2x_{n+1} + y_{n+1} = 2(3x_n + y_n 1) 2x_n + 2 = 6x_n + 2y_n 2 2x_n + 2 = 4x_n + 2y_n = 2s_n + 2x_n + 2$ La suite $(s_n)_{n\in\mathbb{N}}$ est géométrique de raison 2.
 - **b)** En remarquant que $s_0 = 2x_0 + y_0 = 3$, s_n s'écrit donc $s_n = s_0 \times 2^n = 3 \times 2^n$. On a donc $2x_n + y_n = 3 \times 2^n$

4) On a donc
$$\begin{cases} x_n + y_n = n + 2 \\ 2x_n + y_n = 3 \times 2^n \end{cases}$$

$$\begin{cases} x_n + y_n = n + 2 \\ 2x_n + y_n = 3 \times 2^n \end{cases} L_2 \leftarrow L_2 - L_1 \Leftrightarrow \begin{cases} y_n = n + 2 - x_n \\ x_n = 3 \times 2^n - n - 2 \end{cases} \Leftrightarrow \begin{cases} y_n = 2n + 4 - 3 \times 2^n \\ x_n = 3 \times 2^n - n - 2 \end{cases}$$

$$\underbrace{x_n = 3 \times 2^n - n - 2}_{x_n = 3 \times 2^n - n - 2} \qquad \underbrace{y_n = 2n + 4 - 3 \times 2^n}_{x_n = 3 \times 2^n - n - 2}$$

PARTIE III.

• On a, pour tout entier naturel
$$n$$
, $X_{n+1} = \begin{pmatrix} x_{n+1} \\ y_{n+1} \\ z_{n+1} \end{pmatrix} = \begin{pmatrix} 3x_n + y_n - z_n \\ -2x_n + 2z_n \\ z_n \end{pmatrix} = \begin{pmatrix} 3 & 1 & -1 \\ -2 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix} = AX_n$

• On montre par récurrence que, pour tout entier naturel n, $X_n = A^n X_0$:

Notons P(n) la propriété : $X_n = A^n X_0$ avec $n \in \mathbb{N}$.

o
$$A^0 X_0 = I_3 X_0 = X_0$$
: $P(0)$ est vraie

 \circ Supposons P(n) vraie pour un certain entier naturel non nul.

$$X_{n+1} = AX_n = A \times A^n X_0 = A^{n+1} X_0$$
 $P(n+1)$ est donc vraie.

 \circ En conclusion, on a montré par récurrence que pour tout $n \in \mathbb{N}$, $X_n = A^n X_0$

$$X_{n} = \begin{pmatrix} x_{n} \\ y_{n} \\ z_{n} \end{pmatrix} = A^{n} X_{0} = \begin{pmatrix} 2^{n+1} - 1 & 2^{n} - 1 & -n \\ -2^{n+1} + 2 & -2^{n} + 2 & 2n \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2^{n+1} - 1 + 2^{n} - 1 - n \\ -2^{n+1} + 2 - 2^{n} + 2 + 2n \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \times 2^{n} + 2^{n} - 2 - n \\ -2 \times 2^{n} - 2^{n} + 4 + 2n \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \times 2^{n} - n - 2 \\ 2n + 4 - 3 \times 2^{n} \\ 1 \end{pmatrix}$$
On retrouve:
$$\underline{x_{n} = 3 \times 2^{n} - n - 2} \qquad \underline{y_{n} = 2n + 4 - 3 \times 2^{n}} \qquad \underline{z_{n} = 1}$$

Exercice n° 5

On considère les matrices : $A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & 0 \end{pmatrix}$, $P = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}$ et $D = \begin{pmatrix} 1 & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}$

1) On cherche à déterminer une matrice $Q = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ telle que $PQ = QP = I_2$.

a) Montrer que, déterminer la matrice Q telle que $PQ = I_2$ revient à résoudre les systèmes (S_1) : $\begin{cases} a+b=1 \\ a-2b=0 \end{cases}$ et

$$\left(S_2\right): \begin{cases} c+d=0\\ c-2d=1 \end{cases}.$$

b) Résoudre les systèmes (S_1) et (S_2) .

c) Vérifier que la matrice Q trouvée vérifie $PQ = QP = I_2$.

2) On admet que pour tout entier naturel n on a $A^n = PD^nQ$.

Montrer que pour tout entier $n \in \mathbb{N}$, on a : $A^n = \frac{1}{3} \begin{pmatrix} 2 + \left(-\frac{1}{2}\right)^n & 1 - \left(-\frac{1}{2}\right)^n \\ 2 + \left(-\frac{1}{2}\right)^{n-1} & 1 - \left(-\frac{1}{2}\right)^{n-1} \end{pmatrix}$.

Une mouche se déplace aléatoirement dans un appartement constitué de 3 pièces contiguës A, B et C. A l'instant initial 0, la mouche se trouve dans la pièce B. On suppose que les déplacements qui suivent se font suivant le protocole suivant :

• Si à un instant *n* donné la mouche est dans la pièce *A* ou dans la pièce *C* alors elle revient dans la pièce *B* à l'instant *n*+1;

• Si à un instant n donné la mouche est dans la pièce B alors elle y reste à l'instant n+1 avec la probabilité $\frac{1}{2}$, sinon elle va de façon équiprobable dans A ou dans C.

Pour tout entier naturel n, on définit l'événement A_n : « la mouche est dans la pièce A à l'instant n ». On définit de même les événements B_n et C_n . Enfin, on note a_n, b_n et c_n les probabilités respectives de ces événements.

9

3) Montrer en utilisant la formule des probabilités totales que pour tout entier naturel n:

$$a_{n+1} = \frac{1}{4}b_n$$
; $b_{n+1} = a_n + \frac{1}{2}b_n + c_n$ et $c_{n+1} = \frac{1}{4}b_n$

4) Montrer que pour tout entier naturel, on a $b_{n+2} = \frac{1}{2}b_{n+1} + \frac{1}{2}b_n$.

On considère, pour tout $n \in \mathbb{N}$, la matrice colonne $U_n = \begin{pmatrix} b_{n+1} \\ b_n \end{pmatrix}$.

- 5) a) Justifier que $U_0 = \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}$. Montrer que $U_{n+1} = AU_n$ pour tout entier naturel n.
 - **b)** Montrer par récurrence que pour tout entier naturel n on a $U_n = A^n U_0$
 - c) Déduire de la question 2) que pour tout entier naturel n on a $b_n = \frac{1}{3} \left(2 + \left(-\frac{1}{2} \right)^n \right)$.
 - **d**) En déduire, pour tout $n \in \mathbb{N}$, des expressions de a_n et c_n en fonction de n.
- 1) On cherche à déterminer une matrice $Q = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ telle que $PQ = QP = I_2$.

$$PQ = I_2 \quad \Rightarrow \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix} \times \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} a+b & c+d \\ a-2b & c-2d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

On doit donc résoudre les deux systèmes (S_1) : $\begin{cases} a+b=1 \\ a-2b=0 \end{cases}$ et (S_2) : $\begin{cases} c+d=0 \\ c-2d=1 \end{cases}$.

$$(S_1) \Leftrightarrow \begin{cases} a+b=1 \\ a-2b=0 \end{cases} \quad L_2 \leftarrow L_2 - L_1$$

$$\Leftrightarrow \begin{cases} c+d=0 \\ c-2d=1 \end{cases} \quad L_2 \leftarrow L_2 - L_1$$

$$\Leftrightarrow \begin{cases} a+b=1 \\ -3b=-1 \end{cases} \quad \Leftrightarrow \begin{cases} c+d=0 \\ -3d=1 \end{cases}$$

b)
$$\Leftrightarrow \begin{cases} a + \frac{1}{3} = 1 \\ b = \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} c - \frac{1}{3} = 0 \\ d = -\frac{1}{3} \end{cases}$$
$$\Leftrightarrow \begin{cases} a = \frac{2}{3} \\ b = \frac{1}{3} \end{cases} \Leftrightarrow \begin{cases} c = \frac{1}{3} \\ d = -\frac{1}{3} \end{cases}$$

c)
$$\begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix} \times \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 et $\begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \times \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, donc la matrice Q trouvée convient.

2) On remarque qu'on peut également écrire
$$Q = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}$$

$$A^{n} = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 0 & \left(-\frac{1}{2}\right)^{n} \end{pmatrix} \times \frac{1}{3} \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 & \left(-\frac{1}{2}\right)^{n} \\ 1 & -2 \times \left(-\frac{1}{2}\right)^{n} \end{pmatrix} \times \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 + \left(-\frac{1}{2}\right)^{n} & 1 - \left(-\frac{1}{2}\right)^{n} \\ 2 - 2 \times \left(-\frac{1}{2}\right)^{n} & 1 + 2 \times \left(-\frac{1}{2}\right)^{n} \end{pmatrix}$$

Or
$$2 \times \left(-\frac{1}{2}\right)^n = 2 \times \left(-\frac{1}{2}\right) \left(-\frac{1}{2}\right)^{n-1} = -\left(-\frac{1}{2}\right)^{n-1}$$
 et donc pour tout entier $n \in \mathbb{N}$: $A^n = \frac{1}{3} \begin{pmatrix} 2 + \left(-\frac{1}{2}\right)^n & 1 - \left(-\frac{1}{2}\right)^n \\ 2 + \left(-\frac{1}{2}\right)^{n-1} & 1 - \left(-\frac{1}{2}\right)^{n-1} \end{pmatrix}$.

3) La formule des probabilités totales associée au système complet d'événements (A_n, B_n, C_n) s'écrit :

$$P(A_{n+1}) = P(B_n) \times P_{B_n}(A_{n+1}) = b_n \times \frac{1}{4}$$

$$P(B_{n+1}) = P(A_n) \times P_{A_n}(B_{n+1}) + P(B_n) \times P_{B_n}(B_{n+1}) + P(C_n) \times P_{C_n}(B_{n+1}) = a_n \times 1 + b_n \times \frac{1}{2} + c_n \times 1$$

$$P(C_{n+1}) = P(B_n) \times P_{B_n}(C_{n+1}) = b_n \times \frac{1}{4}$$

On a donc pour tout entier nature $a_{n+1} = \frac{1}{4}b_n$; $b_{n+1} = a_n + \frac{1}{2}b_n + c_n$ et $c_{n+1} = \frac{1}{4}b_n$

- **4)** Pour tout entier naturel, on a $b_{n+2} = a_{n+1} + \frac{1}{2}b_{n+1} + c_{n+1} = \frac{1}{4}b_n + \frac{1}{2}b_{n+1} + \frac{1}{4}b_n = \frac{1}{2}b_{n+1} + \frac{1}{2}b_n$.
- 5) a) A l'instant initial 0, la mouche se trouve dans la pièce $B: b_0 = 1$

Si elle dans la pièce B, elle y reste avec une probabilité de $\frac{1}{2}$, et donc $b_1 = \frac{1}{2}$. On a donc $U_0 = \begin{pmatrix} b_1 \\ b_0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}$.

On a, pour tout entier naturel n, $U_{n+1} = \begin{pmatrix} b_{n+2} \\ b_{n+1} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} b_{n+1} + \frac{1}{2} b_n \\ b_{n+1} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} b_{n+1} \\ b_n \end{pmatrix} = AU_n$

b) On montre par récurrence que, pour tout entier naturel n, $U_n = A^n U_0$

Notons P(n) la propriété : $U_n = A^n U_0$ avec $n \in \mathbb{N}$.

- $A^0U_0 = I_3U_0 = U_0$: P(0) est vraie
- Supposons P(n) vraie pour un certain entier naturel non nul.

 $U_{n+1} = AU_n = A \times A^n U_0 = A^{n+1} U_0$ P(n+1) est donc vraie.

• En conclusion, on a montré par récurrence que pour tout $n \in \mathbb{N}$, $U_n = A^n U_0$

$$\mathbf{e)} \ \ U_n = A^n U_0 = \frac{1}{3} \begin{pmatrix} 2 + \left(-\frac{1}{2}\right)^n & 1 - \left(-\frac{1}{2}\right)^n \\ 2 + \left(-\frac{1}{2}\right)^{n-1} & 1 - \left(-\frac{1}{2}\right)^{n-1} \end{pmatrix} \times \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 + \frac{1}{2} \times \left(-\frac{1}{2}\right)^n + 1 - \left(-\frac{1}{2}\right)^n \\ 1 + \frac{1}{2} \times \left(-\frac{1}{2}\right)^{n-1} + 1 - \left(-\frac{1}{2}\right)^{n-1} \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 - \frac{1}{2} \times \left(-\frac{1}{2}\right)^n \\ 2 - \frac{1}{2} \times \left(-\frac{1}{2}\right)^{n-1} \end{pmatrix}$$

Or $2 - \frac{1}{2} \times \left(-\frac{1}{2} \right)^{n-1} = 2 + \left(-\frac{1}{2} \right) \left(-\frac{1}{2} \right)^{n-1} = 2 + \left(-\frac{1}{2} \right)^n$ et donc pour tout entier $n \in \mathbb{N}$, $b_n = \frac{1}{3} \left(2 + \left(-\frac{1}{2} \right)^n \right)$.

d) Pour tout $n \in \mathbb{N}$, on a

$$a_{n+1} = \frac{1}{4}b_n = \frac{1}{4} \times \frac{1}{3} \left(2 + \left(-\frac{1}{2} \right)^n \right) = \frac{1}{12} \left(2 + \left(-\frac{1}{2} \right)^n \right)$$

$$c_{n+1} = \frac{1}{4}b_n = \frac{1}{4} \times \frac{1}{3} \left(2 + \left(-\frac{1}{2} \right)^n \right) = \frac{1}{12} \left(2 + \left(-\frac{1}{2} \right)^n \right)$$

11

On en déduit que pour tout $\underline{n \in \mathbb{N}^*}$, $a_n = \frac{1}{12} \left(2 + \left(-\frac{1}{2} \right)^{n-1} \right)$ et $c_n = \frac{1}{12} \left(2 + \left(-\frac{1}{2} \right)^{n-1} \right)$

Pour n = 0, on a $\frac{1}{12} \left(2 + \left(-\frac{1}{2} \right)^{-1} \right) = \frac{1}{12} \left(2 - 2 \right) = 0 = a_0 = c_0$:

On en déduit que pour tout $n \in \mathbb{N}$, $a_n = \frac{1}{12} \left(2 + \left(-\frac{1}{2} \right)^{n-1} \right)$ et $c_n = \frac{1}{12} \left(2 + \left(-\frac{1}{2} \right)^{n-1} \right)$