Пекция 9: Свойства непреровных функций

9.1) Локальные свойства непрерывных функций

Теорема g1: Пусть $f: \widetilde{U}(x_0) \to \mathbb{R}$ — функция, непрерывная в тогие $x_0 \in \mathbb{R}$. Тогда впломняются свыйства:

1°. Cywyectbyem $U(x_0)$, m.z. qyprxyux f orpanuzena b $U(x_0)$, m.e. $|f(x)| \le C$ g.x. $b \cos x \in U(x_0)$, $c \in C$ — nenoropoe noloxuzenshoe zww.

2°. Écui f(a) > 0, mo aguyeconbyem $\mathcal{U}(x_0)$, m.t. f(x) > 0 gir $x \in \mathcal{U}(x_0)$. Écui f(a) < 0, mo aguyeconbyem $\mathcal{U}(x_0)$, m.t. f(x) < 0 gir $x \in \mathcal{U}(x_0)$. Useniu coobaeu, respenshas pyrkujus cooparsem chai zrak b kevomopoi orpecmuosti morku herpepsihoomu

3°. Echi populações $g: \tilde{v}(T_0) \rightarrow \mathbb{R}$ herpepulace b m. T_0 , the populações (f+g)(x):=f(x)+g(x), (fg)(x):=f(x)g(x), (f/g)(x):=f(x)g(x) (hyure you but $g(x) \neq 0$) experient b $\tilde{v}(x_0)$ is herpepulace b more x_0

Ασκασατελος του: 1°. Εςμι φυρκημε f μεπρερπόνια b ποτιμ x_0 , πο b im f(x)=f(x) Τοταα εγυρεαίνε με οπρερενών είναι στιματικά. 2°. Σια οπρερενών είναι στιματικά, από $f(x_0) > 0$. b ευμυ μεπρερενών f b $f(x_0) = (x_0) + 0$. b ευμυ μεπρερενών f b $f(x_0) = (x_0) + 0$. b ενέντατα μεπρερενών f είναι $f(x_0) = f(x_0) + f(x_0) = f(x_0) + f(x_0) = f(x_0) + f(x_0) = f(x_0) + f(x_0) + f(x_0) = f(x_0) + f(x_0) + f(x_0) = f(x_0) + f($

3°. Вытокает из арифических свойств пределя функции (теорена 1 менция 5)

Пример 9.1: 1) Всякий многочен $P(x) = a_0 + a_1 x + ... + a_n x^n$ являетая непрерывной на R функцией.

2) Payuo nausnae gryunyun $R(z) = \frac{P(z)}{Q(z)} \left(P, Q - \text{unotorient} \right)$ nenpepnbia bevogy ha R, zge $Q(z) \neq Q$, m.e. na oboei odiacmu onpegavunu.

Теорена 9.2: Если функция $g: Y \to \mathbb{R}$ непрерывна в т. $y_0 \in Y$ функция $f: X \to Y$ непрерывна в т. x_0 т.г. $f(x_0) = y_0$, то композиция $g \circ f$ определена на X и непрерывна e т. x_0 .

Ілоказательство: В сму непреровности другкум f в могке $x_0 \in X$ для вляной окрестности $V(f(x_0))$ могки $f(x_0) = y_0$ най дется такая окрестность $U(x_0)$ гмо $f(U(x_0)) \subset V(y_0)$. Гоотому мог можем воспащоваться теоремой о пределе композиции другкуми (теоремя в лекуми в):

 $\lim_{x \to x_0} (g \circ f)(x) = \lim_{z \to x_0} g(f(z)) = \lim_{y \to y_0} g(y) = g(y_0) = g(f(x_0)) = (g \circ f)(z_0).$

Таним образом, композиция доб мещерывна в тогке хо

Теорема 9,3: (больцаю - Коши о промежутогном знагении):

Пусть $f \in C[a;b]$ и f(a)f(b) < 0 (это однагает, это на концае отредка орушкума принимеет знагения разклх знаков). Тогда $\exists c \in [a;b]$, такая гто f(c) = 0.

Доказательство: Рассмотрим середину $C_1 = \frac{a+b}{2}$ отрозка [a;b]. Если $f(C_1) \neq 0$, то мобо на концах отрезка $[a;c_1]$ мобо на концах отрезка $[c_i;b]$ думущ тринимов т значения разменях значью. Обозначим помовину отрозка [a;b] с указанили свойством сарез $[a_1;b_1]$ а его середину сарез C_2 . Будом продамуать променую продамуать променую построчных отрозков $[a_n;b_n]$ и их саредин C_{m_1} .

Тогда имо для каного-то $n \in \mathbb{N}$ значения $f(C_n) = \mathbb{Q}$, много ма получин польдо вательного влотеннях отрезмов $\{[a_n;b_n]\}_{n=1}^n$, длина которых стремей-ся к мулю, и на концах которых $f(a_n)f(b_n)<0$. То мешь о влотеннях отрезкох (мешь 1 межуля 2) сущейвует единственная C, межащая во всех выпользенная C, межащая C, межащая во всех выпользенная C, межащая C

Ободнании герод \mathfrak{X}_n' , \mathfrak{X}_n''' границог $[a_n;b_n]$ Таше, что $f(\mathfrak{X}_n'')<0$, $f(\mathfrak{X}_n'')>0$, соот ветственно. Осовидно, что $\lim_{n\to\infty}\mathfrak{X}_n'=C$, $\lim_{n\to\infty}\mathfrak{X}_n''=C$. В ещу непреров-мости функции f и свози пределяного нерехода с нераванствани (смед отвие 1 теоремог 4 лекция 3) помугаем, сто

 $\lim_{n\to\infty} f(x_n') = f(t) \le 0, \lim_{n\to\infty} f(x_n'') = f(t) \ge 0.$

Omryga borneraem f(c) = 0

Спедствие 1: Пусть функция φ непрерывна на интервале $(d; \beta)_{\gamma}$ для не-которых $a, b \in (d, \beta)$ значения $\varphi(a) = A$, $\varphi(b) = B$. Гогда для всех гиси. С метру A и B найдётся тогна C метру a и b таная, a того $\varphi(c) = C$.

LORAGRIENSCIBO: Pyers I - ompegor a rongenu a n b, Paccuompicu quarreguo $f(x) = \psi(x) - l$, nempepalayon na I. Jaccemuu, npoujlegenul f(a) f(b) = (A-C)(B-C) < O.

Πορπονή πο τουν κο επιο βουσγανιμού πεορευε μανίζετες τουνα c∈I ταμας, τουν $f(c) = 0 \Leftrightarrow V(c) = 0$

Яля удобства обозначим герез B[a,b] мноте етво всех думкумий ограничениях на отрезле [a;b]. То есть $f \in B[a,b]$ означает, это умужемуют такие m, $M \in IR$, это для всех $x \in [a,b]$ вогномняе так двойное неравенетво $m \leqslant f(x) \leqslant M$.

Теорема 9.4: (Вейеритрасса о максимальном значения)

Пусть $f \in C[a;b]$. Тогда $f \in B[a;b]$. Богее того, существуют такие тоги x_m , $x_\mu \in [a,b]$, $x_\mu \in [a,b]$, $x_\mu \in [a,b]$ $x_\mu \in [a,b]$.

Доказательство: Го условию друшкума f непрерпыла на E = [a;b]. Тогда по пушкту 1^o теоремо 9.1 для важой тоги $x \in E$ найдется $\mathcal{U}_E[x] := \mathcal{U}(x)_n[a;b]$ такая, гто f ограничена на $\mathcal{U}_E(x)$, то есть найдутая m_x , $M_x \in R$: $m_x \in f(t) \leq M_x$, ест $b \in \mathcal{U}_E(x)$.

Yeaza nurse oxpermocmu U(x) oxporbason ompezou [a,b]. To recue bopere-levera (renua ℓ recycus ℓ) apagu nux mangy mae unmapbasa $U(x_i)$, ..., $U(x_h)$, noxpobasouque ompezou [a;b]: $[a;b] \subset U(x_i) \cup U(x_h)$.

Ha rangen $U_E(x_n)$ gynnyne orpanizona: $m_{X_n} \leq f(x) \leq Mx_n$ gw $x \in U_E(x_n)$. Sie smony, no nomb $m := m \sin \{m_{X_1}, ..., m_{X_n}\}$, $M := \max \{Mx_1, ..., Mx_n\}$, no ny un $m \leq f(x) \leq M$

qua been x \(\int [a; b], m.e. \(\int \int B[a; b]. \)

Докатем вторую гасть теоремя. Густь $M=\sup_{\{a,b\}}f(x)$. Гредпологаем, это он не фоспическо, т.е. для всея $x\in [a,b]$ зисчения f(x)< M. Гогда мых мо тем рассмотреть фуммум $\frac{1}{M-f(x)}$, которая непрерывна на [a,b], а значит, как мы только это доказам, ограничена на [a,b].

E другой сторона, по определению гупрешуна для всякого E > 0 существует точна $\mathcal{L}_{E} \in [a, b]$, $m. \tau$. $M - f(X_{E}) < E$. А это означает, это другиния $\frac{1}{M-f(x)}$, мотей принимай окак угодно больши значение, т.е. не эвлячае ограниченной

Голученное противорение донадовает, гто $\exists \mathcal{X}_M \in [a;b]: f(\mathcal{X}_M) = M.$ Ниалочигно донадовается и то, гто тогная нитоная грань значений

функции в на отредко [а, в] достигаета

Πρυμερ 9.2: 1) Ργικμαν $f(x) = x \in C(0,1)$, inf f(x) = 0, sup f(x) = 1, m.e. φγικμαν οτρακιτέκα κα (0,1), πο κα τοτπάν καντίαν τράκο, και τοτκάν δορχαίδα τράκο κε φοιτιταίωπαν φγικημέν κα εμπερβάνε.

2) Pyungus $f(x) = \frac{1}{2}x \in C(0,1)$, in f(x) = 1, sup $f(x) = +\infty$, m.e. pyungus game ne shusemas expanurennoù na unseplane (0,1)