PRIMITIVE RECURSION AND THE CHAIN ANTICHAIN PRINCIPLE

ALEXANDER P. KREUZER

ABSTRACT. Let the chain antichain principle (CAC) be the statement that each partial order on $\mathbb N$ possesses an infinite chain or an infinite antichain. Chong, Slaman and Yang recently proved using forcing over non-standard models of arithmetic that CAC is Π^1_1 -conservative over RCA₀ + Π^1_0 -CP and so in particular that CAC does not imply Σ^0_2 -induction. We provide here a different purely syntactical and constructive proof of the statement that CAC (even together with WKL) does not imply Σ^0_2 -induction. In detail we show that WKL $^\omega_0$ +CAC is Π^0_2 -conservative over PRA and that one can extract primitive recursive realizer for such statements. Moreover, our proof is finitary in the sense of Hilbert's program.

CAC implies that every sequence of real numbers has a monotone subsequence. This Bolzano-Weierstraß like principle is commonly used in proofs. Our result makes it possible to extract primitive recursive terms from such proofs.

Our proof is based on the techniques we develop in [21]. In the course of the proof we refine Howard's ordinal analysis of bar recursion. We show that applications of the bar recursor of type 0 ($B_{0,1}$) to type 2 terms in the Grzegorgczyk hierarchy does not yield more than primitive recursive growth. This result is of interest in its own in the context of proof-mining and Gödel's functional interpretation.

We also discuss the Erdős Moser principle, which —taken together with CAC— is equivalent to RT_3^2 .

Let the chain antichain principle (CAC) be the statement that every partial order on \mathbb{N} contains either an infinite chain or an infinite antichain. This principle is a consequence of Ramsey's theorem for pairs (RT₂²). It has been studied in the reverse mathematics of partial orders. Lately CAC received much attention in the context of the classification of RT₂² and in particular in the context of determining the strength of the first order consequences of RT₂². It is known that RT₂² implies Π_1^0 -CP and that its first order consequences are implied by Σ_2^0 -IA but it is not known where between these principles the first order consequences of RT₂² lie, see [4, 11]. Chong, Slaman, Yang in [5] recently proved that CAC is Π_1^1 -conservative over RCA₀ + Π_1^0 -CP which implies that CAC does not yield Σ_2^0 -induction. This result is remarkable since forcing over ω -models —which is usually used to obtain such conservativity results— is not applicable to obtain conservativity over Π_1^0 -CP, see [11, §6]. Chong, Slaman, Yang use instead a forcing over non-standard models

Date: January 18, 2011.

²⁰¹⁰ Mathematics Subject Classification. 03F35, 03B30, 03F10.

 $Key\ words\ and\ phrases.$ proof mining, chain antichain principle, conservation, bar recursion.

The author is supported by the German Science Foundation (DFG Project KO 1737/5-1).

I am grateful to Ulrich Kohlenbach for useful discussions and suggestions for improving the presentation of the material in this article.

of arithmetic. This result raises the question whether one can extend it to obtain a conservativity of RT_2^2 or a least gain insights in the properties of principles that do imply Π_1^0 -CP but not Σ_2^0 -IA like CAC.

We provide here a different, purely syntactical and constructive proof of the fact that CAC does not imply Σ_2^0 -induction. We show that CAC even together with WKL is Π_2^0 -conservative over PRA. Furthermore, we provide a method for the extraction of primitive recursive realizing functionals for sentences of the form $\forall f \exists y \ A_{qf}(f,y)$ that are provable using CAC + WKL. (This means that we extract a primitive recursive functional φ with $\forall f \ A_{qf}(f,\varphi f)$.) Our proof is based on the techniques from [21], where we developed a method to extract terms of Ackermann type from proofs using RT₂ and primitive recursive terms from proofs using the cohesive principle and the atomic model theorem.

We start by refining Howard's ordinal analysis of the bar recursor $B_{0,1}$, see [14]. The bar recursor $B_{0,1}$ solves the functional interpretation of Π_1^0 -CA (and hence by iteration Π_{∞}^0 -CA). More precisely, an instance of Π_1^0 -CA has at most the effect on the growth of functions as an application of $B_{0,1}$ has. Howard's ordinal analysis shows for instance that an application of $B_{0,1}$ to primitive recursive terms (in the sense of Kleene) yields only functions in T_1 (i.e. of Ackermann type). This corresponds to the fact that with Σ_1^0 -IA and an instance of Π_1^0 -CA one can prove each instance of Σ_2^0 -IA and hence the totality of Ackermann function but not the totality of any function on a higher level of the fast growing hierarchy (e.g. functions provably total with Σ_3^0 -IA but not with Σ_2^0 -IA).

We show that applications of $B_{0,1}$ to terms in $\mathrm{RCA}_0^{\omega^*}$ (actually even in $\mathrm{G}_\infty \mathrm{A}^\omega$) yield only primitive recursive functions. The system $\mathrm{RCA}_0^{\omega^*}$ is the finite type extension of RCA_0^* which is RCA_0 but with Σ_1^0 -IA replaced by quantifier-free induction and the exponential function, see [24, X.4]. Crucial for this analysis is the structure of higher order functionals of $\mathrm{RCA}_0^{\omega^*}$. Most important is that this system does not contain a function iterator constant (which in this system is equivalent to Σ_1^0 -IA). Our refined ordinal analysis mentioned above corresponds to the fact that QF-IA plus an instance of Π_1^0 -CA implies each instance of Σ_1^0 -IA and hence to totality of all primitive recursive functions but not of the Ackermann function.

In [21] we introduced the notion *proofwise low*. Roughly speaking, this notion covers the computational contend of low_2 -ness but also keeps track of the induction used in the proof. A Π_2^1 -principle P of the form

$$\forall X \exists Y P'(X,Y)$$

is proofwise low over a system, say WKL $_0^\omega$ (i.e. RCA $_0^\omega$ + WKL), if for each term φ a term ξ exists such that

$$\mathrm{WKL}_0^{\omega} \vdash \forall X \ \left(\Pi_1^0\text{-}\mathrm{CA}(\xi X) \to \exists Y \ \left(P'(X,Y) \land \Pi_1^0\text{-}\mathrm{CA}(\varphi XY)\right)\right).$$

Here Π^0_1 -CA $(t) :\equiv \exists f \, \forall n \, (f(n) = 0 \leftrightarrow \forall x \, t(n,x) = 0)$. (If one takes for φ the characteristic term of universal Turing predicate $\Phi^{X,Y}_n(n) \uparrow$ and notes that on can take for ξ also the Turing predicate $\Phi^X_n(n) \uparrow$, one has that in a degree $d \gg X'$ — this takes account of WKL — one can compute Y and Y'. From this follows that P has low_2 solutions.) In [21] we showed that principles P where P' is Π^0_3 and that are proofwise low over WKL $_0^\omega$ the system WKL $_0^\omega + \Sigma^0_2$ -IA + P is Π^0_3 -conservative over RCA $_0^\omega + \Sigma^0_2$ -IA and that one can extract realizing terms from Π^0_2 -sentences. We, moreover, showed that RT^2_2 is proofwise low over a refinement of WKL $_0^\omega$ for which

this result still holds. This provides a different purely proof-theoretic proof of the well known results from Cholak, Jockusch, Slaman in [4].

We also showed that for principles P which are proofwise low over $WKL_0^{\omega^*}$ (under additional uniformity assumption) the system $WKL_0^{\omega} + \Pi_1^0$ -CP+P is Π_3^0 -conservative over RCA₀. (In [21] this is called proofwise low in sequence.) This is sufficient for the cohesive principle (COH). However for most principles this uniformity assumptions do not hold. In particular, RT₂ and CAC do not satisfy it, see Proposition 2 and Remark 3 in [21].

We close here this gap using our refinement of Howard's ordinal analysis of $B_{0,1}$ and show that for each principle P which is proofwise low over WKL $_0^{\omega*}$ the system WKL $_0^{\omega} + \Pi_1^0$ -CP + P is Π_3^0 -conservative over RCA $_0^{\omega}$ and that one can extract primitive recursive realizing terms. We apply this results to CAC, which lies strictly in between RT $_2^2$ and COH + Π_1^0 -CP, and show that this principle is Π_3^0 -conservative over RCA $_0^{\omega}$ and does not lead to more than primitive recursive growth. The proof of the lowness of CAC is based on ideas from Chong, Slaman and Yang. However, we will interpret Π_1^0 -CP using Π_1^0 -CA and hence are able to eliminate it at the end. Therefore, we do not need any non-standard techniques. More importantly and in contrast to the proof of Chong, Slaman and Yang our proof is finitary in the sense of Hilbert's program.

Compared to their result ours is on the one hand weaker in the sense that we only obtain Π_3^0 -conservativity not full Π_1^1 -conservativity (strictly speaking we also obtain conservativity for sentences of the form $\forall f \exists y \ A(f,y)$, where $f \in \mathbb{N}^{\mathbb{N}}$ and $y \in \mathbb{N}$ and A quantifier free). On the other hand our result is stronger since it, additionally, allows term extraction and the simultaneous treatment of WKL. Conservativity for Π_3^0 sentences is optimal for our approach since we eliminate Π_1^0 -CP and there are Σ_3^0 consequences of Π_1^0 -CP which are not provable in RCA₀, see [1]. Moreover, our conservativity is obtained over a system containing all primitive recursive functionals (in the sense of Kleene) and hence many more statement than in RCA₀ are quantifier free.

The paper is organized as follows. First we give a brief introduction into the logical systems we use. In section 1 we refine Howard's ordinal analysis of bar recursion. In section 2 we use this result to refine our techniques from [21] and in section 3 we show that CAC is proofwise low over a suitable system not containing Σ_1^0 -induction and conclude that CAC is Π_3^0 -conservative over RCA₀. In the appendix we discus the Erdős Moser principle. This principle is the counterpart to CAC in the sense that RT₂ splits into those two principles.

Logical systems. We will work in fragment of Heyting and Peano arithmetic in all finite types **T**. The set of all finite types is defined to be the smallest set that satisfies

$$0 \in \mathbf{T}, \qquad \rho, \tau \in \mathbf{T} \Rightarrow \tau(\rho) \in \mathbf{T}.$$

The type 0 denotes the type of natural numbers and the type $\tau(\rho)$ denotes the type of functions from ρ to τ . The type 0(0) is abbreviated by 1 the type 0(0(0)) by 2. The degree of a type is defined by

$$deg(0) := 0$$
 $deg(\tau(\rho)) := \max(deg(\tau), deg(\rho) + 1).$

The type of a variable will sometimes be written as superscript.

The systems RCA_0^{ω} , $RCA_0^{\omega^*}$ are the extensions of RCA_0 resp. RCA_0^* to all finite types. For a detailed definition see [18].

The Grzegorczyk arithmetic in all finite types $G_{\infty}A^{\omega}$ is defined to be the system that includes λ -abstraction, each branch of the Ackermann function (but not the Ackermann function), bounded search, bounded recursion and quantifier-free induction. Since this system contains each branch of the Ackermann function it contains every primitive recursive function but it does not contain unbounded primitive recursion itself nor unbounded recursors (and hence no function iterator). The closed terms of $G_{\infty}A^{\omega}$ will be called $G_{\infty}R^{\omega}$.

The system WE-PA $^{\omega}$ \upharpoonright is equivalent to $G_{\infty}A^{\omega}$ plus Σ_1^0 -IA and primitive recursion (of type 0), for a detailed definition see for instance [19, Section 3]. The systems WE-HA $^{\omega}$ \upharpoonright , $G_{\infty}A_i^{\omega}$ are the intuitionistic counterparts.

Note that $\widetilde{\mathrm{WE-PA}}^\omega \upharpoonright$ and $\mathrm{G}_\infty \mathrm{A}^\omega$ do not satisfy full extensionality. The different variants of extensionality are important in [21] and in the extension of the results from there in Section 2 of this paper. We do not discuss them here and refer the reader to [21, Section 2]. These systems do not satisfy the deduction theorem (this is a consequence of the restricted form for extensionality used). To indicate that a axioms is an implicative assumption we use \oplus , e.g. $\mathrm{G}_\infty \mathrm{A}^\omega \oplus \mathrm{WKL} \vdash A$ means $\mathrm{G}_\infty \mathrm{A}^\omega \vdash \mathrm{WKL} \to A$.

Let QF-AC be the schema

$$\forall x \exists y \ A_{qf}(x,y) \rightarrow \exists f \ \forall x \ A_{qf}(x,f(x)).$$

 RCA_0^ω can be embedded into $\widehat{WE-PA}^\omega \upharpoonright + QF-AC$ and $RCA_0^{\omega*}$ can be embedded into $G_\infty A^\omega + QF-AC$. The systems with weak König's lemma WKL_0^ω and $WKL_0^{\omega*}$ can be embedded into $\widehat{WE-PA}^\omega \upharpoonright + QF-AC \oplus WKL$ resp. $G_\infty A^\omega + QF-AC \oplus WKL$.

A functional φ is provably continuous if there exists a function α_{φ} such that

$$\begin{split} \forall f \, \exists n \, \alpha_\varphi(\bar{f}n) \neq 0, \\ \forall f \, \forall n \, \left(\alpha_\varphi(\bar{f}n) \neq 0 \rightarrow \varphi(g) = \alpha_\varphi(\bar{g}n) \dot{-} 1\right). \end{split}$$

The function α_{φ} is called *associate*. All closed terms in the system used in this paper are provably continuous, see for instance [19, Proposition 3.57].

1. Ordinal analysis of bar recursion of terms in $G_{\infty}R^{\omega}$

The goal of this section is to show that a single application of the bar recursor $B_{0,1}$ to terms in $G_{\infty}R^{\omega}$ does only lead to primitive recursive terms (in the sense of Kleene), i.e. terms with computational size $<\omega^{\omega}$. We use here the definition of computational size from Howard [13, 14]. Roughly speaking the computational size of a term t of type 0 is an upper bound on the number of term reductions one has to apply to obtain a numeral. The computational size of a higher type term t is defined to be the computational size of $t(H_0, \ldots, H_n)$ where H_i are fresh variables such that the term is of type 0. Like Howard we assume that a term t has $deg(t) \leq 2$ and is semi-closed (i.e. contains only variables of degree 1 free) whenever we speak about the computational size of a term t.

Recall that the bar recursor $B_{0,1}$ is defined to be

$$B_{0,1}AFGc :=_1 \begin{cases} Gc & \text{if } A[c] < \text{lth } c, \\ Fc(\lambda u^0.B_{0,1}(AFG(c * \langle u \rangle))) & \text{otherwise,} \end{cases}$$

where $[c] := \lambda i.(c)_i$.

Howard uses for technical reasons an extension of the term system. This extension is conservative and hence does not lead to any problems. Since we are only going to modify his analysis we will follow this approach:

Add the terms $\{\alpha, c, t\}$ to the system. They have the same type as $B_{0,1}A$. The type of α is 1 and the types of c, t are 0. The subterms of $\{\alpha, c, t\}$ consist only of the subterms of t. The purpose of this extension is to bind all occurrences of α in t. The term $B_{0,1}AFGc$ is equal to $\{\alpha, c, A\alpha\}FGc$ and can also be contracted to this term. The term $\{\alpha, c, t\}$ satisfies following contractions:

where

(1)
$$M := \begin{cases} Gc & \text{if } t[\lambda i.(c)_i/\alpha] < \text{lth}(c), \\ Fc(\lambda u.\{\alpha, c, t\}FG(c * \langle u \rangle)) & \text{otherwise.} \end{cases}$$

For details we refer the reader to [14]. Note that $\{\alpha, c, t\}$ is there defined for bar recursors of arbitrary types and not only for $B_{0,1}$.

We now state a modified version of Theorem 2.3 of [14]. The proof of the following theorem differs from Howard's proof only in using other ordinal estimates. The result of it is more suitable for terms which have finite computational size because it shows in this case that the resulting term has computational size $<\omega^{\omega}$, whereas in Howard's theorem the computational size is always $\geq \omega^{\omega}$. For parameters which have computational size of an infinite ordinal Howard's theorem yields better results.

Theorem 1. Let F, G and t have computational sizes f, g and size(t). Then the term $\{\alpha, c, t\}FGc$ has computational size 2^{g+f4h} , where $h = \omega + \omega \text{size}(t) + \omega$.

Proof. We assume that $f, g \geq 1$.

Like Howard, we say for a term $\{\alpha,d,s\}$ that the sequence d is m-critical in s if the term to be contracted in s is of the form αm and $m \geq \mathrm{lth}(d)$. We define $\mathrm{ord}(\alpha,d,s)$ to be $\omega + \omega \mathrm{size}(s) + 1$ if d is not critical in s and s is not a numeral. If d is m-critical we let $\mathrm{ord}(\alpha,d,s) = \omega + \omega \mathrm{size}(s) + m - \mathrm{lth}(d) + 3$. If s is a numeral n, we let $\mathrm{ord}(\alpha,d,s) = \omega + (n-\mathrm{lth}(d)) + 2$.

Like in [14, Theorem 2.3] we prove by transfinite induction on $b = ord(\alpha, c, t)$ that $\{\alpha, c, t\}FGc$ has computational size 2^{g+f4b} .

We consider the following cases:

- If t is not a numeral and c is not critical then executing a computation step reduces t to t' such that $\operatorname{size}(t') < \operatorname{size}(t)$ and hence $\operatorname{ord}(\alpha, c, t') < \operatorname{ord}(\alpha, c, t)$ and so $2^{g+f4\operatorname{ord}(\alpha, c, t')} < 2^{g+f4b}$.
- If t is a numeral that is < lth(c) then $\{\alpha, c, t\}FGc$ reduces to Gc which has computation size $g \le 2^g < 2^{g+f4b}$.
- The cases where c is critical or t is a numeral $\geq lth(s)$ remain. We treat here at first the former case, the later will follow from a slight modification of this.

We can reduce $\{\alpha, c, t\}FGc$ to M from (1) in one step. For the case distinction in M we have to compute $t[\lambda i.(c)_i/\alpha]$. By Theorem 2.1 from

[14] we can compute it in $\omega size(t)$ steps. By finitely many steps j we then arrive at either

$$Gc$$
 or $\underbrace{Fc(\lambda u.\{\alpha,c,t\}FG(c*\langle u\rangle))}_{M_2}$.

In the case of Gc additionally g more computation steps are needed. In total this yields

(2)
$$g + \underbrace{j + \omega \text{size}(t) + 1}_{\leq b} < 2^{g + f4b}.$$

In the case of M_2 we reduce

$$\lambda u.\{\alpha, c, t\}FG(c * \langle u \rangle)x$$
 to $\{\alpha, c * \langle n \rangle, t\}FG(c * \langle n \rangle)$

in 3 steps. Let $a = ord(\alpha, c * \langle n \rangle, t)$. By definition of ord we have a < b. By induction hypothesis $\{\alpha, c * \langle n \rangle, t\} FG(c * \langle n \rangle)$ has computational size 2^{g+f4a} . The term c has computational size $\omega \leq 2^{g+f4a}$. Together with Theorem 2.1 from [14] this show that M_2 has computation size

$$(2^{g+f4a} + 3)f \le (2^{g+f4a} + 2^{g+f4a})f \qquad (a \ge \omega)$$

$$\le 2^{g+f4a+1} \cdot f$$

$$< 2^{g+f4a+1} \cdot 2^{f+1} \qquad (f < 2^{f+1})$$

$$= 2^{g+f4a+1+f+1}$$

$$< 2^{g+f4a+f3} \qquad (f > 1)$$

Together with the steps for the cases distinction we obtain the following computational size

$$(2^{g+f4a}+3)f + \underbrace{j + \omega size(t) + 1}_{=:z} < 2^{g+f4a+f3} + 2^{z+1}$$

$$\leq 2^{\max(g+f4a+f3,z+1)} \cdot 2$$

$$< 2^{g+f4b}$$

The last \leq holds since $\max(g + f4a + f3, z + 1) < g + f4b$ and therefore $\max(g + f4a + f4, z + 1) + 1 \leq g + f4b$.

The case where t is a numeral $\geq \mathrm{lth}(c)$ can be treated similarly. Here $t[\lambda i.(c)_i/\alpha]$ does not need to be computed. Hence, the equation (2) becomes

$$g + j + 1 < 2^{g + f4b}$$
.

Since $j+1 < \omega < b$ this is still valid. The rest of the argument remains the same because also a < b holds.

This proves the theorem.

Remark 2. Define Bezem's bar recursor $B_{0,1}^B$ to be

$$B_{0,1}^B AFGc :=_1 \begin{cases} Gc & \text{if } A[c]^B < \text{lth } c, \\ Fc(\lambda u^0.B_{0,1}^B(AFG(c*\langle u\rangle))) & \text{otherwise,} \end{cases}$$

where
$$[c]^B := \begin{cases} (c)_i & \text{if } i < \text{lth}(c) \\ (c)_{\text{lth}(c) \doteq 1} & \text{otherwise.} \end{cases}$$

This bar recursor differs from Howard's bar recursor only in the definition of $[\cdot]$. Hence, Theorem 1 also holds for $B_{0,1}^B$.

We will use this bar recursor in Theorem 5 below to define a majorant for $B_{0,1}$.

In the following we will treat $B_{0,1}^{(B)}$ as a constant satisfying the defining equations of the bar recursor, but which is *not* provably total.

Theorem 3. The system WE-PA $^{\omega}$ | proves that for all semi-closed terms A, F, G, c with provably finite computational size $B_{0,1}AFGc$ is total, i.e. there exists a term that provably satisfies the defining equations. Same holds for $B_{0,1}^BAFGc$.

Proof. Let f, g, a be the computational sizes of F, G, A.

The proof of Theorem 1 for $\{\alpha, c, A\alpha\}FGc$ can be formalized in a intuitionistic system containing transfinite Σ^0_1 -induction up to $2^{g+f4(\omega+\omega a+\omega)}$. Since

$$2^{g+f4(\omega+\omega a+\omega)} = 2^{\omega(a+2)} = \omega^{a+2} < \omega^{\omega}$$

this transfinite induction is equivalent to Σ_1^0 -induction (over \mathbb{N}), see [10, II.3.18] and also Theorem 57 in [21]. Hence the system WE-PA $^{\omega}$ \[\text{\text{suffices}}.

The conservativity of Howard's extended term system can also be formalized in $\widehat{\text{WE-PA}}^{\omega}$. Therefore this systems also proves the totality of $B_{0,1}AFGc$.

For the analysis of terms in $G_{\infty}R^{\omega}$ we use the following property:

Proposition 4 ([16, Proposition 2.2.22], [19, Corollary 3.42]). Let $\rho = 0\rho_k \dots \rho_1$ with $deg(\rho_i) \leq 1$. For each term $t^{\rho} \in G_{\infty}R^{\omega}$ there exists a term $t^*[x_1^{\rho_1}, \dots, x_k^{\rho_k}]$ such that

- $t^*[x_1, \ldots, x_k]$ contains at most x_1, \ldots, x_k as free variables,
- $t^*[x_1,\ldots,x_k]$ is build up only from $x_1,\ldots,x_k,0^0,A_0,A_1,\ldots$, where A_i is the *i*-th branch of the Ackermann function,
- $G_{\infty}A_i^{\omega} \vdash \lambda x_1, \dots, x_k.t^*[x_1, \dots, x_k] \text{ maj } t.$

In particular, every term $t \in G_{\infty}R^{\omega}$ of degree ≤ 2 is provably majorized by a term that has provably finite computational size.

Theorem 5. Let $A[x^1]$, F[x], G[x], c[x] be terms of appropriated type such that $B_{0,1}AFGc$ is well-formed and such that $\lambda x^1.A[x]$, F[x], G[x], $c[x] \in G_{\infty}R^{\omega}$. Then $\widehat{WE-PA}^{\omega} \upharpoonright proves$ that $f := \lambda x^1.\lambda y^0.B_{0,1}AFGcy$ is total. Moreover this system proves that there exists a majorant to f.

Proof. First observe that the totality of the bar recursor in f can be proven using Π_2^0 -bar induction of type 0 (Π_2^0 -BI₀). (Use the bar induction to prove the statement $\forall u \,\exists v \, B_{0,1} AFGcu = v$. For a definition of BI₀ see for instance [21, Definition 53].) To make use of the properties described in Proposition 4 we will first show that a majorant to f exists. With this we can bound the \exists -quantifier in the bar induction and obtain that Π_1^0 -bar induction (Π_1^0 -BI₀) suffices. By Lemma 54 in [21] this is included in $\widehat{WE-PA}^{\omega} \upharpoonright + QF-AC$.

We now show that there exists majorant to f and that it is total. Let

(3)
$$B_{0,1}^{\times} := \lambda A, F, G, c. B_{0,1}^{B} A F_{G} G c,$$
$$B_{0,1}^{*} := \lambda A, F, G, c. (B_{0,1}^{\times} A F G c)^{M},$$

where

$$F_G t f := \max(Gt, Ft f_{(\operatorname{lth}(t) - 1)}), \qquad f_i(x) := f(\max(i, x))$$
 and
$$(f)^M x := \max_{y \le x} f(x).$$

We have $B_{0,1}^*$ maj $B_{0,1}$ provably in WE-PA $^{\omega}$ \begin{align*} + QF-AC, see Proposition 55 in [21] and also [2]. In [21, Proposition 55] we use a different majorant but mutatis mutandis the proof also shows that $B_{0,1}^*$ as defined in (3) majorizes $B_{0,1}$.

Applying Proposition 4 we obtain majorizing semi-closed terms A^*, F^*, G^*, c^* for A, F_G, G, c with finite computational size.

Since $B_{0,1}^*$ is a specific application of $B_{0,1}^B$, we can apply Theorem 3 to $B_{0,1}^*A^*F^*G^*c^*$ to obtain its totality. With this the totality of f and the existence of a majorant is proven in the system $\widehat{\text{WE-PA}}^{\omega} \upharpoonright + \text{QF-AC}$.

Since this statement is $\forall \exists$, the functional translates this prove into a proof in \widehat{WE} - \widehat{HA}^{ω} . This provides the theorem.

Corollary 6. The term $B_{0,1}AFGc$ where A, F, G, c are semi-closed terms of $G_{\infty}A^{\omega}$ is provably equal to a term in T_0 (i.e. the fragment of Gödel's T where the recursor is restricted to recursion of type 0).

Proof. Apply the functional interpretation (combined with a negative translation) to the result of Theorem 5, see [19, Proposition 10.53]. The term extract using this satisfies the corollary. \Box

This result can be used to reprove the following result from Parsons [23, Lemma 4].

Corollary 7. Let R_1 be the recursor for type 1 objects, i.e. $R_10fGx = fx$ and $R_1(n+1)fGx = G(R_1nfG)nx$, where x, n, fx are of type 0. (Note that R_1 cannot be reduced to primitive recursion, since G takes an element of $\mathbb{N}^{\mathbb{N}}$ as first parameter.) Then the term R_1nfG where G is a semi-closed term of $G_{\infty}A^{\omega}$ is provably equal to a term in T_0 .

Proof. Corollary 6 and the fact that R_1 is elementarily definable from $B_{0,1}$.

2. Proofwise low relative to $G_{\infty}A^{\omega}$

In [21] we showed that for principles P of the form

(4)
$$(P): \forall c^1 \exists g^1 \underbrace{\forall u^1 P_{qf}(c, g, u)}_{\equiv: P(c, g)},$$

where P_{qf} is quantifier free, which are proofwise low relative to $\widehat{\text{WE-PA}}^\omega \upharpoonright + \text{QF-AC} \oplus$ WKL are conservative over $\widehat{\text{WE-PA}}^\omega \upharpoonright + \Sigma_2^0$ -IA for sentences of the form $\forall x^1 \exists y^0 \ A_{qf}(x,y)$. We now show that for principles P which are proofwise low relative to $G_\infty A^\omega + \text{QF-AC} \oplus \text{WKL}$ the system $\widehat{\text{WE-PA}}^\omega \upharpoonright + \text{QF-AC} \oplus \text{WKL} \oplus \text{P}$ is conservative over $\widehat{\text{WE-HA}}^\omega \upharpoonright$ for sentences of the form $\forall x^1 \exists y^0 \ A_{qf}(x,y)$. (Actually we only treated the case of $\widehat{\text{RT}}_2^0$ but mutatis mutandis this works for each principle of this form.)

 $^{^{1}}$ We do not use here the majorant of $B_{0,1}$ as defined in [19] or [21] which would build internally paths through the tree A which are not monotone. Before applying the majorant A^{*} to such paths they have to be made monotone such that they are majorants. But this cannot be done using only terms with finite computational size.

For notation and a discussion of the techniques involved in this proof we refer the reader to [21].

Let now P be a principle that is proofwise low over $G_{\infty}A^{\omega} + QF-AC \oplus WKL$ (a fortiori it is sufficient that P is proofwise low over $WKL_0^{\omega^*}$ since this system can be embedded into the other). This means we have for each provably continuous term φ a provably continuous term ξ such that

$$G_{\infty}A^{\omega} + QF-AC \oplus WKL \vdash \forall c \left(\Pi_{1}^{0}-CA(\xi c) \rightarrow \exists g \left(P(c,g) \land \Pi_{1}^{0}-CA(\varphi cg) \right) \right).$$

A functional interpretation of this statement yields

(5) $G_{\infty}A_{i}^{\omega} \oplus WKL \vdash$

$$\forall c \,\forall U \,\forall f_{\xi} \,\forall X_{\varphi}, Y_{\varphi} \,\exists x_{\xi}, y_{\xi} \,\exists g \,\exists f_{\varphi} \,\Big(\big(\Pi_{1}^{0} - \widehat{\mathrm{CA}}(\xi f)\big)_{qf} (f_{\xi}, x_{\xi}, y_{\xi}) \\ \qquad \qquad \to \big(P(c, g, Ugf_{\varphi}) \,\wedge\, \Pi_{1}^{0} - \widehat{\mathrm{CA}}(\varphi fg) \big)_{qf} (f_{\varphi}, X_{\varphi}gf_{\varphi}, Y_{\varphi}gf_{\varphi})) \Big),$$

and that there exist terms in $G_{\infty}R^{\omega}$ realizing $x_{\xi}, y_{\xi}, g, f_{\varphi}$, cf. to Theorem 52 in [21]. Using (5) in the proof of Proposition 62 from [21] instead of Theorem 52 of [21] we obtain a variant of Proposition 62 where WE-HA $^{\omega}$ | is replaced by $G_{\infty}A_{i}^{\omega}$, RT $_{2}^{2}$ is replaced by P and $T_{0}[\mathcal{R}]$ is replaced by $G_{\infty}R^{\omega}[\mathcal{R}]$ (here \mathcal{R} is now a solution functional for P^{ND}). In the same way we obtained Corollary 63 from Proposition 62 in [21] we can extend the previous statement to terms in $G_{\infty}R^{\omega}[\mathcal{R}, R_{0}, \Phi'_{0}]$ (which is equal to $T_{0}[\mathcal{R}, \Phi'_{0}]$) but of course *not* to terms containing R_{1} . As consequence we obtain the following modification of Proposition 64 from [21]:

Proposition 8. Let A_{qf} be a quantifier-free formula that contains only the shown variables free and let P be a principle of the form (4) which is proofwise low over $G_{\infty}A^{\omega} + QF-AC \oplus WKL$. If

(6)
$$\widehat{\text{N-PA}}^{\omega} \upharpoonright + \text{QF-AC} + \text{WKL} + \text{P} \vdash \forall x^1 \exists y^0 A_{qf}(x, y)$$

then one can find terms $t_u, t_u, t_v, \xi \in G_{\infty}R^{\omega}$ such that

$$\mathbf{G}_{\infty}\mathbf{A}_{\mathbf{i}}^{\omega} \oplus \mathbf{WKL} \vdash \forall x^{1} \, \forall f \, \left(\left(\Pi_{1}^{0} \cdot \widehat{\mathbf{CA}}(\xi x) \right)_{OF} (f, t_{u} f x, t_{v} f x) \rightarrow A_{qf}(x, t_{y} f x) \right).$$

Similarly to the discussion preceding Theorem 66 in [21], we interpret $\Pi_1^0 - \widehat{CA}(\xi x)$ with a single application of $B_{0,1}$ (or in other words using a single application of the rules of bar recursion). With this we obtain

$$G_{\infty}A_{i}^{\omega} \oplus WKL + R-(B_{0,1}) \vdash \forall x^{1} A_{qf}(x, tx),$$

where $t \in G_{\infty}R^{\omega}[B_{0,1}]$ and t contains only a single application of $B_{0,1}$ to semiclosed terms A[x], F[x], G[x], c[x] and R- $(B_{0,1})$ is the rule of $B_{0,1}$ which states that applications of $B_{0,1}$ to semi-closed term of $G_{\infty}R^{\omega}$ exists.

We now build a majorant t^* of t. The application of $B_{0,1}$ will be majorized like in the proof of Theorem 5. Note that we do not know whether $G_{\infty}A^{\omega}$ proves that $B_{0,1}^*$ applied to majorants of A, F, G, c majorizes $B_{0,1}AFGc$ therefore we strengthen the verifying theory to $\widehat{WE-HA}^{\omega}$. This theory suffices, see Proposition 55 in [21] and note that the theory used there has a functional interpretation in $\widehat{WE-HA}^{\omega}$. Hence we obtain

$$\widehat{\text{WE-HA}}^{\omega} \upharpoonright \oplus \text{WKL} + \text{R-}(B_{0,1}) \vdash \forall x^1 \exists y \leq t^* x \ A_{qf}(x,y),$$

where $t^* \in G_{\infty}R^{\omega}[B_{0,1}]$ and t^* contains only a single application of $B_{0,1}$ to semi-closed terms with finite computational size.

Applying bounded search we obtain a new realizer t' for y:

$$t'x := \begin{cases} \text{minimal } y \leq t^*x \text{ with } A_{qf}(x,y), & \text{if such a } y \text{ exists,} \\ 0 & \text{otherwise.} \end{cases}$$

Now using the ordinal analysis of $B_{0,1}$ we obtain a term t'' that is provably equal to t' and that is definable using transfinite primitive recursion up to $<\omega^{\omega}$ and hence in WE-HA $^{\omega}$, see [10, II.3.18] and also [21, Theorem 57]. So that

$$\widehat{\text{WE-HA}}^{\omega} \upharpoonright \oplus \text{WKL} \vdash \forall x^1 A_{af}(x, t''x).$$

The principle WKL may be eliminate from the system with a monotone functional interpretation like in [21], see [15], [19, section 10.3]. We obtain

$$\widehat{\text{WE-HA}}^{\omega} \upharpoonright \vdash \forall x^1 A_{qf}(x, t''x).$$

Combining this discussion with Proposition 8 we obtain the following theorem:

Theorem 9. Let $A_{qf}(x^1, y^0)$ be a quantifier-free sentence and P a principle of the form (4) which is proofwise low over $G_{\infty}A^{\omega} + QF-AC \oplus WKL$. If

$$\widehat{\text{N-PA}}^{\omega} \upharpoonright + \text{QF-AC} + \text{WKL} + \text{P} \vdash \forall x^1 \exists y^0 A_{qf}(x, y)$$

then one can extract a term $t \in T_0$ such that

$$\widehat{\text{WE-HA}}^{\omega} \upharpoonright \vdash \forall x^1 A_{qf}(x, tx).$$

Together with elimination of extensionality (see [22], [19, section 10.4] and also [21, Proposition 7]) we obtain:

Corollary 10. If

$$\widehat{\mathbf{E}\text{-PA}}^{\omega} \! \upharpoonright + \mathbf{QF}\text{-}\mathbf{A}\mathbf{C}^{0,1} + \mathbf{QF}\text{-}\mathbf{A}\mathbf{C}^{1,0} + \mathbf{WKL} + \mathbf{P} \vdash \forall x^1 \, \exists y^0 \, A_{qf}\!(x,y)$$

then one can extract a term $t \in T_0$ such that

$$\widehat{\text{WE-HA}}^{\omega} \upharpoonright \vdash \forall x^1 A_{qf}(x, tx).$$

Corollary 11. Let P be a principle of the form (4) that is proofwise low over $WKL_0^{\omega^*}$. Then the system $WKL_0^{\omega} + P$ is conservative over RCA_0^{ω} for sentences of the form $\forall x^1 \exists y^0 A_{qf}(x,y)$. Moreover, one can extract from a proof of this statement a term $t \in T_0$ realizing y (that is a primitive recursive functional in the sense of Kleene).

In particular, WKL₀^{ω} + P is Π_3^0 -conservative over RCA₀^{ω} and Π_2^0 -conservative over PRA.

Proof. The first part of this corollary is just a reformulation of the previous corollary. The second part follows from the observation that over RCA_0^{ω} each Π_3^0 -sentence is equivalent to a sentence of the form $\forall x^1 \exists y^0 A_{qf}(x,y)$. The last statement follows from the fact that RCA_0^{ω} is Π_2^0 -conservative over PRA.

Remark 12. With the techniques from [21, Section 7] one may also allow principles P where P(c, g) is Π_3^0 . However we will not need this here.

3. Chain antichain principle

Let the chain antichain principle (CAC) be the principle that states that every partial order on \mathbb{N} has an infinite chain or antichain. For notational ease we assume here that each (anti)chain is also order by the ordering of \mathbb{N} . We formalize CAC in the following way:

(CAC):
$$\forall \chi_P \exists H \left(\forall u, v \in H \left(u < v \to u \leq_P v \right) \right)$$

 $\lor \forall u, v \in H \left(u < v \to u \geq_P v \right)$
 $\lor \forall u, v \in H \left(u < v \to u \mid_P v \right)$

where the set H is a given as strictly increasing enumeration, i.e. H is a function such that Hn is the n-th element of H.² The partial order P is given by its characteristic function χ_P . The relations \leq_P , $|_P$ are defined to be

$$u \leq_P v :\equiv \begin{cases} \chi_P(x,y) = 0 & \text{The relation } ([0,\langle u,v\rangle],\preceq) \text{ with} \\ \chi_P(x,y) = 0 & \text{x} \preceq y :\equiv [\langle x,y\rangle \leq \langle u,v\rangle \land \chi_P(x,y) = 0] \\ \text{defines a partial order,} \\ \text{otherwise,} \end{cases}$$

$$u \mid_P v :\equiv \neg (u \leq_P v) \land \neg (v \leq_P u).$$

(We assume here that the paring $\langle x, y \rangle$ is monotone in both components.) With this any function χ_P describes a partial order.

Remark 13. In [20] we showed that COH + Π_1^0 -CP is equivalent to the variant of the Bolzano-Weierstraß principle that states that every bounded sequence of \mathbb{R} has a —possibly slowly— converging subsequence.

The principle ADS, which is CAC restricted to linear orders, is equivalent to the statement that every sequence in \mathbb{R} has a monotone subsequence. If the sequence is bounded then the monotone subsequence is a fortiori converging (possible slowly). Hence ADS and CAC can be seen as generalizations of this variant of the Bolzano-Weierstraß principle.

To see that ADS implies that the sequence $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ has an monotone subsequence one has take some care since equality on \mathbb{R} and hence also $\leq_{\mathbb{R}}$ is not decidable. To prove the statement one has to make the following case distinction. Either (x_n) has a constant subsequence or there exists a subsequence of pairwise different elements. The solution to the former case is trivial and the latter case can be solved by applying ADS since $\leq_{\mathbb{R}}$ coincides with $<_{\mathbb{R}}$ on this sequence and is therefore decidable.

For the other direction it suffices to show that each countable linear ordering can be embedded into a subset of \mathbb{Q} . This follows from the construction described in the proof of [8, Theorem 2.1] and by noting that it can be carried out in RCA₀.

Here it is also interesting to mention that de Smet and Weiermann did a fine grain analysis of a density variant of this principle restricted to natural numbers in [7, 6].

$$\tilde{H}(n) := \begin{cases} H(n) & \text{if } n = 0 \text{ or } H(n) > \tilde{H}(n - 1), \\ \tilde{H}(n - 1) + 1 & \text{otherwise.} \end{cases}$$

²Strictly speaking we cannot quantify over strictly monotone functions. Officially, we quantify over all functions from $\mathbb{N} \to \mathbb{N}$ and replace every occurrence of H(n) by

We will show in this section that CAC is proofwise low over $G_{\infty}A^{\omega} + QF-AC \oplus WKL$ and hence that Theorem 9 and the Corollaries 10 and 11 apply to it.

Our proof is based on [5]. The non-standard construction is replaced by the following argument.

3.1. Building infinite sets without Σ_1^0 -induction. Call a set X

• infinite or unbounded if

$$\forall k \, \exists n > k \, n \in X$$

and

• strictly increasingly enumerable if there

exists a strictly monotone function f such that rng(f) = X.

It is clear that a strictly increasingly enumerable set is also unbounded. However, to construct a strictly increasing enumeration for an unbounded set in general requires Σ_1^0 -IA (e.g. RCA₀ or WE-HA^{ω}| + QF-AC).

We will now discuss a way to build unbounded sets in a system that does not contain Σ^0_1 -IA. Let f be a function that maps (codes of) finite subsets of $\mathbb N$ into (codes of) finite subsets of $\mathbb N$ and that is monotone in the sense of

(7)
$$x \subseteq f(x), \quad f(x) \setminus x \subseteq [\max(x) + 1, \infty[$$
.

Define now $X \subseteq \mathbb{N}$ by

$$X := \bigcup_{n \in \mathbb{N}} f^n(\emptyset),$$

where f^n is the *n*-th iteration of f.

The properties of f ensure that

$$n \in X \quad \longleftrightarrow \quad n \in f^{n+1}(\emptyset).$$

Hence, the function $g(n) := [n\text{-th element of } f^{n+1}(\emptyset)]$ defines a strictly increasing enumeration of X that is definable for instance in RCA₀ or $\widehat{\text{WE-HA}^{\omega}} \upharpoonright + \text{QF-AC}$ (if f is).

In a system without Σ_1^0 -IA (e.g. RCA₀* or $G_{\infty}A^{\omega} + QF$ -AC) it is a priori not clear whether X is well defined since one cannot build the n-th iterate of the unbounded function f.

To define a set that is provably equal to X let

$$\tilde{f}_k(x) := \begin{cases} f(x) & \text{if } f(x) \subseteq [0, k[, \\ x & \text{otherwise.} \end{cases}$$

The function \tilde{f}_k is bounded and therefore can be iterated using bounded recursion. For \tilde{f}_k we have the following equivalence

$$n \in X \quad \longleftrightarrow \quad n \in f^{n+1}(\emptyset) \quad \longleftrightarrow \quad n \in f\left((\tilde{f}_n)^n(\emptyset)\right).$$

To see that the last equivalence holds let m' be the least $m \leq n+1$ with $f^m(\emptyset) \cap [n, \infty[\neq \emptyset. \text{ By (7)} \text{ we have } f^{(m' \dot{-} 1)}(\emptyset) \subseteq [0, n[\text{ and hence } (\tilde{f}_n)^n(\emptyset) = f^{(m' \dot{-} 1)}(\emptyset) \text{ and } f(\tilde{f}_n)^n(\emptyset) = f^{m'}(\emptyset).$

Therefore, we can define that characteristic function χ_X by

$$\chi_X(n) := \begin{cases} 0 & \text{if } n \in f\left((\tilde{f}_n)^n(\emptyset)\right), \\ 1 & \text{otherwise.} \end{cases}$$

To show now that X is unbounded assume for a contradiction that X is bounded by b. By the definition of X we then have that $(\tilde{f}_{b+1})^n(\emptyset) = f^n(\emptyset)$. Hence f is also bounded (at least along the iteration). Therefore bounded recursion suffices to iterate the function and the strictly increasing enumeration g of the set X can be defined. But this contradicts the boundedness of X. Hence X is unbounded.

3.2. **Proofwise low.** We will use the ideas of the preceding section to show that CAC is proofwise low over $G_{\infty}A^{\omega} + QF-AC \oplus WKL$. To apply these ideas let uCAC be the CAC with the except that it only require an unbounded (anti)chain, i.e.

$$(\text{uCAC}) \colon \forall \chi_P \,\exists H = \chi_H, f_H \, \Big(\forall n \, \max(f_H(n), n) \in H$$

$$\land \, \Big(\quad \forall u, v \in H \, \big(u < v \to u \leq_P v \big) \Big)$$

$$\lor \, \forall u, v \in H \, \big(u < v \to u \geq_P v \big)$$

$$\lor \, \forall u, v \in H \, \big(u < v \to u \mid_P v \big) \Big) \Big).$$

Here H is given as a characteristic function χ_H plus a witness for the unboundedness f_H (i.e. $f_H(n) \ge n$ and its range is included in H).

Call a partial order \leq_P stable if one of the following holds:

- (i) For all x either $x \leq_P y$ for all but finitely many y or $x \mid_P y$ for all but finitely many y.
- (ii) For all x either $x \geq_P y$ for all but finitely many y or $x \mid_P y$ for all but finitely many y.

Let SCAC and uSCAC be the restriction of CAC and uCAC to stable partial orderings.

For a partial order \leq_P define

$$A_{\square} := \{x \mid x \square y \text{ for all but finitely many } y\},$$

where $\Box \in \{\leq_P, \geq_P, |_P\}$. If \leq_P is stable then these sets are disjunct and either $A_{\leq_P} \cup A_{|_P} = \mathbb{N}$ or $A_{\geq_P} \cup A_{|_P} = \mathbb{N}$. Hence these sets are Δ_2^0 . One can easily establish that each infinite chain, antichain is a subset of A_{\leq_P} resp. A_{\geq_P} , $A_{|_P}$.

We will write in the following $y \subseteq^{fin} X$ for y is a code for a finite subset of X and $y \subseteq X$ for y is an initial segment of the strictly increasing enumeration of the set X.

Proposition 14. For every closed term φ there exists a closed term ξ such that

$$G_{\infty}A^{\omega} + QF-AC$$

$$\vdash \forall \chi_P \left(\Pi_1^0 \text{-CA}(\xi \chi_P) \to \exists H, f_H \left(\text{uSCAC}(\chi_P, H) \land \Pi_1^0 \text{-CA}(\varphi \chi_P H f_H) \right) \right).$$

Here $uSCAC(\chi_P, H, f_H)$ expresses that H, f_H is a solution to uSCAC and the partial order described by χ_P .

In other words uSCAC is proofwise low over $G_{\infty}A^{\omega} + QF-AC$.

Proof. Let χ_P be the characteristic function of a stable partial ordering. Without loss of generality we assume that (i) from the definition of stability holds, the case (ii) can be handle analogously.

We will start with the following claim:

Claim: Let Y be an infinite Σ_1^0 -set whose characteristic function is given by a term t which contains only χ_P and type 0 variables free. This means $n \in Y$ iff

 $\exists x \, tnx = 0$. Then Y either has an element in A_{\leq_P} or one can define an infinite antichain that solves the lemma.

Proof of the claim: Suppose that Y does not contain an element of A_{\leq_P} i.e. $Y \subseteq A_{|_P}$. By an instance of Π^0_1 -CP (which follows from the instance of Π^0_1 -CA) one can proof that

$$\forall y\subseteq^{fin}Y\ (y\text{ is an antichain}\to\exists z\in Y\ y\cup\{z\}\text{ is an antichain})\,.$$

By definition this is equivalent to

$$\forall y \, \forall x \, (t(y)_i(x)_i = 0 \land y \text{ is an antichain})$$

$$\rightarrow \exists z, x' \ (tzx' = 0 \land y \cup \{z\} \text{ is an antichain}).$$

Now let f be the choice function that chooses the minimal z (and x') extending y (and x). Iterating f using an instance of Σ^0_1 -IA (which also follows from the instance of Π^0_1 -CA) yields an infinite antichain H. The instance of comprehension Π^0_1 -CA($\varphi\chi_P H$) can be reduced to the imposed instance of comprehension using the following equivalence

$$\forall n \ (\forall k \ \varphi \chi_P H n k \leftrightarrow \forall k \ \forall x \ \forall h \sqsubseteq H \ \alpha_{\varphi \chi_P}(h, n, k) \le 1)$$

and the fact that $h \sqsubseteq H$ can be using a quantifier-free formula depending only on t, x, h. (This formula just expresses that h, x are the result of the iteration of f.) The function $\alpha_{\varphi\chi_P}(h, n, k)$ here is an associate to the function $\lambda H.\varphi\chi_P Hnk$. For notational ease we assume here that H is given as strictly increasing enumeration. Since on can define from this a characteristic function for H and f_H by a term in $G_{\infty}A^{\omega}$ this does not lead to any problems. This proves the claim.

We assume from now on that there is no Σ^0_1 -set $Y\subseteq A_{|_P}$ given by such a term t. Otherwise we would be done. This assumptions implies that A_{\leq_P} has infinitely many elements. (If not the set $Y:=[\max(A_{\leq_P})+1,\infty[$ would be an infinite subset of $A_{|_P}$ which could be easily described by a term.) We will show that we can construct an unbounded \leq_P -chain $H\subseteq A_{\leq_P}$ for which we can prove the instance of Π^0_1 -CA.

First we define a function $g_1(n,h)$ that for a given n extends a given \leq_P -chain $h \subseteq^{fin} A_{\leq_P}$ to a finite \leq_P -chain $h' \subseteq^{fin} A_{\leq_P}$ such that for all \leq_P -chains X with $h' \sqsubseteq X$ and $X \subseteq A_{\leq_P}$ the following holds

(8)
$$\forall n' < n \ (\forall k \ \varphi \chi_P X n' k = 0 \leftrightarrow \forall k \ \alpha_{\varphi \chi_P}(h', n', k) \le 1).$$

In other words we extend h to h' such that the instance of comprehension Π_1^0 -CA $(\varphi \chi_P H)$ is decided up to the index n.

Define for each $D \subseteq [0, n]$ the set

$$S_{D,h} := \{ h' \mid h' \text{ is } \leq_P \text{-chain } \land h \sqsubseteq h' \land |h'| < \infty \land \forall n' \in D \exists k \alpha_{\varphi\chi_P}(h',n',k) > 1 \}.$$

The elements of this set are those extensions of h which make the comprehension Π_1^0 -CA($\varphi\chi_P H$) for the indexes in D false. This set is Σ_1^0 and can be defined by a fixed term containing only the parameters χ_P, D, h .

The statement that there is no extension of h in $S_{D,h}$ whose elements are in A_{\leq_P} is

(9)
$$\forall y \ (y \notin S_{D,h} \cap \mathcal{P}^{fin}(A_{\leq_P})).$$

This formula is Π_2^0 . We will show that there exists a Σ_2^0 formula that is equivalent and hence that the statement is Δ_2^0 .

Consider the set $M_{D,h} := \{ \max_P(y) \mid y \in S_{D,h} \}$. This set is also Σ_1^0 also does only depend on χ_P and the type 0 objects D, h. (Recall that we assume that a \leq_P -chain is also ordered by < on \mathbb{N} .)

We will distinguish the following cases:

- The set $M_{D,h}$ is infinite. In this case there exists by the assumption and the claim an element of $M_{D,h}$ that is also in A_{\leq_P} . This means that there exits a \leq_P -chain y in $S_{D,h}$ whose \max_P is in A_{\leq_P} and hence the whole \leq_P -chain is in A_{\leq_P} . Therefore (9) fails.
- The set $M_{D,h}$ is finite. Each chain in $S_{D,h}$ contains only elements which are $\leq_P x$ for some $x \in M_{D,h}$. By stability for each $x \in M_{D,h}$ there are only finitely many elements y with $x \geq_P y$. Applying Π^0_1 -CP to this yields that there are only finitely elements y with $\exists x \in M_{D,h} \ y \leq_P x$ and hence that $S_{D,h}$ is finite.

In total (9) is equivalent to

$$\exists x \left(\forall y \left(y \text{ is } \leq_{P}\text{-chain } \wedge \max_{P}(y) > x \to y \notin S_{D,h} \right) \right.$$
$$\wedge \forall y \left(y \text{ is } \leq_{P}\text{-chain } \wedge \max_{P}(y) \leq x \to y \notin S_{D,h} \cap \mathcal{P}^{fin}(A_{\leq_{P}}) \right) \right)$$

where the second quantification over y can be bounded and hence (9) is Δ_2^0 .

Therefore an instance of Δ_2^0 -IA (which is provable from an instance of Π_1^0 -CA, see [21, Lemma 12.(iii)]) is sufficient to prove that there exists a maximal $D' \subseteq [0, n]$ for which $S_{D,h} \cap \mathcal{P}^{fin}(A_{\leq_P})$ is not empty, i.e.

$$\exists D' \subseteq [0, n] \,\exists h' \, \left(h' \in S_{D', h} \cap \mathcal{P}^{fin}(A_{\leq_P}) \right. \\ \wedge \forall E \, \left(D' \subseteq E \subseteq [0, n] \rightarrow \forall h' \, \left(h' \notin S_{E, h} \cap \mathcal{P}^{fin}(A_{\leq_P}) \right) \right) \right).$$

Since D' is maximal each $h' \in S_{D',h} \cap \mathcal{P}^{fin}(A_{\leq_P})$ satisfies (8).

Hence taking for $g_1(n,h)$ the function that chooses for h and n an $h' \in S_{D',h} \cap \mathcal{P}^{fin}(A_{\leq_P})$ for this maximal D' has the desired properties. This choice function exists by an instance of Σ_2^0 -AC which is also provable from an instance of Π_1^0 -CA.

Now define g_2 to be a function which extends each chain $h \subseteq^{fin} A_{\leq_P}$ by one element in A_{\leq_P} , for instance

$$g_2(h) := h \cup \big\{ \min\{x \in A_{\leq_P} \mid \max(h) < x \land \max_P (h \cap A_{\leq_P}) \leq_P x \big\} \big\}.$$

This function exists also by an instance of Σ_2^0 -AC.

The function $f(h) := g_2(g_1(\max(h), h))$ now satisfies the properties in (7) on page 12. By the discussion in the previous section the set $H := \bigcup_n f^n(\emptyset)$ is definable in this system and provably unbounded. The values of f are finite \leq_P -chains that are included in A_{\leq_P} . Hence H defines an unbounded \leq_P -chain.

Furthermore, one can prove Π_1^0 -CA($\varphi \chi_P H$): To decide whether

$$(10) \forall k \, \varphi \chi_P H n k = 0$$

holds for an n take an element $x \in H$ with $x \geq n$. By the unboundedness this exists. In particular there exists a smallest m such that $x \in f^m(\emptyset)$. For this we have $f^m(\emptyset) = f\left((\tilde{f}_x)^x(\emptyset)\right)$. By the definition g_1 and (8) we have that (10) is true iff

$$\forall k \, \alpha_{\omega Y_{\mathcal{P}}}(g_1(|f^m(\emptyset)|, f^m(\emptyset)), n, k) \leq 1.$$

(We assume here again that H is given as strictly increasing enumeration.) This is again by the definition of g_1 true iff

$$\forall k \, \alpha_{\varphi \chi_P}(f^{m+1}(\emptyset), n, k) \le 1.$$

Which is the same as

$$\forall k \, \alpha_{\varphi \chi_P} (ff((\tilde{f}_x)^x(\emptyset)), n, k) \leq 1$$

and thus can be computed using the imposed instance of comprehension.

The different instances of Π_1^0 -CA can be coded together into a term ξ , see [21, Remark 11] and for a reference [17]. This solves the proposition.

Corollary 15. CAC is proofwise low over $G_{\infty}A^{\omega} + QF-AC \oplus WKL$.

Proof. Lemma 13 from [21] for n=0 shows that one can iterate f_H in the results of Proposition 14 while retaining the instance of comprehension. With this one can define an strictly increasing enumeration of H and hence shows that SCAC is proofwise low over $G_{\infty}A^{\omega} + QF-AC$.

The results follows from the fact that COH is proofwise low of $G_{\infty}A^{\omega} + QF-AC \oplus WKL$ ([21, Corollary 18]) and from noting that the proof

$$SCAC + COH \rightarrow CAC$$

in [11, Proposition 3.7] can be carried out in $G_{\infty}A^{\omega}$ while retaining the proofwise low property.

Theorem 16. The system

$$\widehat{\mathrm{WE-PA}}^{\omega}\!\upharpoonright + \mathrm{QF-AC} \oplus \mathrm{WKL} \oplus \mathrm{CAC}$$

is conservative over WE-HA $^{\omega}$ for sentences of the form $\forall x^1 \exists y^0 A_{qf}(x,y)$. Moreover one can extract a primitive recursive realizing term t[x] for y.

In particular,

$$WKL_0^{\omega} + CAC$$

is conservative for sentences of the from $\forall x^1 \exists y^0 A_{qf}(x,y)$ and a fortiori Π_3^0 -conservative over RCA₀^{ω}.

Proof. Corollary 15 and Corollaries 10, 11.

This result raises the question whether one can extend it and show that RT_2^2 is proof wise low over a system like $WKL_0^{\omega^*}$ or any other system without Σ_1^0 -induction and thus can show that RT_2^2 does not imply Σ_2^0 -induction.

Let the Erdős-Moser principle (EM) be the principle that states that every tournament on \mathbb{N} contains an infinite transitive subgraph. A tournament is a directed graph $\langle \mathbb{N}, \to \rangle$ such that for each pairs of nodes x,y either $x \to y$ or $x \leftarrow y$. The principle RT_2^2 is equivalent to $\mathrm{CAC} + \mathrm{EM}$ (in fact even to $\mathrm{ADS} + \mathrm{EM}$), see appendix A. Corollary 15 shows that is sufficient to show the EM is proofwise low over a system without Σ_1^0 -induction in order to show that RT_2^2 does not imply Σ_2^0 -induction.

APPENDIX A. THE ERDŐS MOSER PRINCIPLE

A tournament is a directed graph $\langle E, \to \rangle$ such that for each pairs of nodes x, y with $x \neq y$ either $x \to y$ or $x \leftarrow y$ but not both. The Erdős-Moser principle (EM) states that each tournament on $\mathbb N$ contains an infinite transitive subtournament. It is easy to see that EM follows from RT_2^2 if one identifies the tournament with the following 2-coloring of pairs of $\mathbb N$: For x < y let

(11)
$$c(\lbrace x,y\rbrace) = 0 \quad \text{iff} \quad x \to y, \\ c(\lbrace x,y\rbrace) = 1 \quad \text{iff} \quad x \leftarrow y.$$

On any homogeneous set of c the relation \to is transitive. Hence RT_2^2 yields an infinite transitive subtournament.

In the other direction EM and ADS (the principle CAC restricted to linear orderings) imply RT_2^2 . To see this let for some coloring c the relation \to be defined by (11). Using EM one finds an infinite subset on which \to is a linear ordering. The principle ADS yields an infinite \to -chain. By definition c is constant on this chain.

The principle EM was introduced by Bovykin and Weiermann in [3]. They also proved the above stated equivalence.

We now give some lower bounds on the strength of EM:

Proposition 17.

$$RCA_0 \vdash EM \rightarrow \Pi_1^0$$
-CP

Proof. We show that EM proves the infinite pigeonhole principle. The result follows from this by [12].

Let $f: \mathbb{N} \to n$ be coloring of \mathbb{N} with n colors. We consider the following infinite tournament. For x < y let

$$x \to y$$
 iff $f(x) = f(y)$,
 $x \leftarrow y$ iff $f(x) \neq f(y)$.

Applying EM yields and an infinite set X on which \rightarrow is transitive. We claim that f restricted to X eventually becomes constant. Suppose not, then

$$\forall k \in X \,\exists x \in X \, (k < x \land f(k) \neq f(x))$$

which is by definition of \leftarrow

$$\forall k \in X \, \exists x \in X \, (k < x \land k \leftarrow x)$$

Now applying Σ_1^0 -induction we obtain n+1 elements $x_1,\ldots,x_{n+1}\in X$ with

$$x_1 < x_2 < \dots < x_{n+1}$$
 and $x_1 \leftarrow x_2 \leftarrow \dots \leftarrow x_{n+1}$.

By transitivity and definition of \rightarrow we obtain that $f(x_i)$ are pairwise different. But this contradicts the fact that f is bounded by n.

The infinite pigeonhole principle for f and hence the proposition follows from this.

Proposition 18. There exists a computable tournament $\langle \mathbb{N}, \rightarrow \rangle$ that has no low infinite transitive subtournament, i.e. no set X such that \rightarrow is transitive on X and $X' \leq_T 0'$.

Proof. By [9] there exists a computable stable 2-coloring of pairs c, such that there is no low homogeneous set. Let \rightarrow be the corresponding tournament as described by (11).

Suppose now that there is a low set X on which \rightarrow is transitive and hence a linear ordering. Since c is stable this ordering is also stable. By Theorem 2.11 of [11] there exists an infinite chain Y that is low relative to X and hence low. Since on this chain the coloring c is homogeneous, this contradict the choice of c.

References

- 1. Jeremy Avigad, Notes on Π^1_1 -conservativity, ω -submodels, and collection schema, Tech. report, Carnegie Mellon Department of Philosophy, 2002.
- Marc Bezem, Strongly majorizable functionals of finite type: a model for bar recursion containing discontinuous functionals, J. Symbolic Logic 50 (1985), no. 3, 652–660. MR 805674
- 3. Andrey Bovykin and Andreas Weiermann, The strength of infinitary ramseyan principles can be accessed by their densities, accepted for publication in Ann. Pure Appl. Logic, http://logic.pdmi.ras.ru/~andrey/research.html, 2005.
- Peter A. Cholak, Carl G. Jockusch, Jr., and Theodore A. Slaman, On the strength of Ramsey's theorem for pairs, J. Symbolic Logic 66 (2001), no. 1, 1–55. MR 1825173
- Chitat Chong, Theodore Slaman, and Yue Yang, Π⁰₁-conservation of combinatorial principles weaker than Ramsey's theorem for pairs, preprint, available at http://www.math.nus.edu. sg/~chongct/COH_10.pdf.
- Michiel de Smet and Andreas Weiermann, Sharp Thresholds for a Phase Transition Related to Weakly Increasing Sequences, Journal of Logic and Computation, published online February 9, 2010, available at http://logcom.oxfordjournals.org/content/early/2010/02/09/logcom.exq004.abstract.
- 7. ______, Phase transitions for weakly increasing sequences, Logic and theory of algorithms, Lecture Notes in Comput. Sci., vol. 5028, Springer, Berlin, 2008, pp. 168–174. MR 2507015
- Rod Downey, Computability theory and linear orderings, Handbook of recursive mathematics, Vol. 2, Stud. Logic Found. Math., vol. 139, North-Holland, Amsterdam, 1998, pp. 823–976. MR 1673590
- 9. Rod Downey, Denis R. Hirschfeldt, Steffen Lempp, and Reed Solomon, A Δ_2^0 set with no infinite low subset in either it or its complement, J. Symbolic Logic **66** (2001), no. 3, 1371–1381. MR 1856748
- Petr Hájek and Pavel Pudlák, Metamathematics of first-order arithmetic, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1998, Second printing. MR 1748522
- 11. Denis R. Hirschfeldt and Richard A. Shore, Combinatorial principles weaker than Ramsey's theorem for pairs, J. Symbolic Logic 72 (2007), no. 1, 171–206. MR 2298478
- 12. Jeffry L. Hirst, Combinatorics in subsystems of second order arithmetic, Ph.D. thesis, Pennsylvania State University, 1987.
- William A. Howard, Ordinal analysis of terms of finite type, J. Symbolic Logic 45 (1980), no. 3, 493–504. MR 583368
- Ordinal analysis of simple cases of bar recursion, J. Symbolic Logic 46 (1981), no. 1, 17–30. MR 604874
- Ulrich Kohlenbach, Effective bounds from ineffective proofs in analysis: an application of functional interpretation and majorization, J. Symbolic Logic 57 (1992), no. 4, 1239–1273. MR 1195271
- 16. ______, Mathematically strong subsystems of analysis with low rate of growth of provably recursive functionals, Arch. Math. Logic 36 (1996), no. 1, 31–71. MR 1462200
- 17. ______, Elimination of Skolem functions for monotone formulas in analysis, Arch. Math. Logic 37 (1998), 363–390. MR 1634279
- 18. ______, Higher order reverse mathematics, Reverse mathematics 2001, Lect. Notes Log., vol. 21, Assoc. Symbol. Logic, La Jolla, CA, 2005, pp. 281–295. MR 2185441
- Applied proof theory: Proof interpretations and their use in mathematics, Springer Monographs in Mathematics, Springer Verlag, 2008. MR 2445721
- 20. Alexander P. Kreuzer, The Bolzano-Weierstraß principle and the cohesive principle, accepted for publication in Math. Logic Quart.

- 21. Alexander P. Kreuzer and Ulrich Kohlenbach, Term extraction and Ramsey's theorem for pairs, submitted, preprint available at http://www.mathematik.tu-darmstadt.de/~akreuzer/files/TermExtractionAndRT22.rev.pdf.
- Horst Luckhardt, Extensional Gödel functional interpretation. A consistency proof of classical analysis, Lecture Notes in Mathematics, Vol. 306, Springer-Verlag, Berlin, 1973. MR 0337512
- Charles Parsons, On a number theoretic choice schema and its relation to induction, Intuitionism and Proof Theory (Proc. Conf., Buffalo, N.Y., 1968), North-Holland, Amsterdam, 1970, pp. 459–473. MR 0280330
- 24. Stephen G. Simpson, Subsystems of second order arithmetic, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1999. MR 1723993

Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany

 $E ext{-}mail\ address:$ akreuzer@mathematik.tu-darmstadt.de