Modèles de Taux Calibration du modèle LMM au prix des Caps et des Floors

Grégoire GALLOT Quentin TACHE

Université Paris VII Diderot

13 Mars 2019

Calibration du modèle LMM aux prix des Caps et des Floors

Sommaire

- Modèle LMM
 - Notations
 - Mesure Forward
 - Propriétés du modèle
- Calibration du modèle
 - Rappels sur les Caps
 - Prix d'un cap
 - Implications sur la structure de volatilité
 - Caps côtés

LIBOR Market Model (LMM)

- LIBOR (London Interbank Offered Rate)
- Introduit par Brace, Gatarek et Musiela (modèle BGM) en 1997
- Plusieurs noms donnés : BGM, LIBOR Market Model (LMM), Lognormal Model Market

On introduit:

- soit $t \ge 0$
- soit $\varepsilon = \{T_0, ..., T_M\}$, où les T_i sont différentes maturités
- soit $\{\tau_0, ..., \tau_M\}$ avec $\tau_i = T_i T_{i-1}$ et $T_{-1} = 0$
- soit \mathbb{Q}^k , la mesure de probabilité associée au numéraire $P(., T_k)$, le prix du coupon qui coïncide avec la maturité du taux forward

On rappelle également l'écriture du taux Forward F_k :

$$F_k(t) = F(t, T_{k-1}, T_k) = \frac{1}{T_k - T_{k-1}} \left(\frac{P(t, T_{k-1})}{P(t, T_k)} - 1 \right)$$

Calculons:

$$F_k(t)P(t,T_k) = \frac{1}{T_k - T_{k-1}} \left(\frac{P(t,T_{k-1})}{P(t,T_k)} - 1 \right) P(t,T_k)$$
 (1)

$$=\frac{1}{T_k-T_{k-1}}\left(P(t,T_{k-1})-P(t,T_k)\right)$$
 (2)

$$= \frac{1}{\tau_k} (P(t, T_{k-1}) - P(t, T_k))$$
 (3)

Ainsi, $F_k(t)P(t, T_k)$ est le prix d'un actif (la différence des deux coupons) de nominal $\frac{1}{\tau}$.

Le prix actualisé doit donc être une martingale sous \mathbb{Q}^k , donc $F_k(t)$ est une \mathbb{Q}^k -martingale. Il n'y a donc pas de drift dans la dynamique de F_k .

On admet que la dynamique de $F_k(t)$ est la suivante :

$$\mathrm{d}F_k(t) = \underline{\sigma}_k(t)F_k(t)\mathrm{d}Z^k(t)$$

On peut également réécrire sous forme scalaire :

$$dF_k(t) = \sigma_k(t)F_k(t)dZ_k^k(t)$$

Par la formule d'Itô,

$$d \ln(F_k(t)) = \frac{1}{F_k(t)} dF_k(t) - \frac{1}{2} \frac{1}{F_k(t)^2} \sigma_k^2(t) F_k(t)^2 dt$$
(4)

$$= \frac{1}{F_k(t)} \sigma_k(t) F_k(t) dZ_k^k(t) - \frac{1}{2} \frac{1}{F_k(t)^2} \sigma_k^2(t) F_k(t)^2 dt \qquad (5)$$

$$= \sigma_k(t) dZ_k^k(t) - \frac{1}{2} \sigma_k^2(t) dt$$
 (6)

D'où

$$\ln F_k(T) = \ln F_k(0) - \int_0^T \frac{\sigma_k(t)^2}{2} dt + \int_0^T \sigma_k(t) dZ_k(t)$$

 \rightarrow In $F_k(T)$ est donc log-normal

◆□▶ ◆御▶ ◆差▶ ◆差▶ ○差 ○夕@

Dynamiques sous la mesure forward pour le modèle LMM

Sous \mathbb{Q}^i , on a :

• Si i < k, $t \le T_i$

$$dF_k(t) = \sigma_k(t)F_k(t)\sum_{j=i+1}^k \frac{\rho_{k,j}\tau_j\sigma_j(t)F_j(t)}{1+\tau_jF_j(t)}dt + \sigma_k(t)F_k(t)dZ_k(t)$$

• Si $i = k, t \le T_{k-1}$

$$dF_k(t) = \sigma_k(t)F_k(t)dZ_k(t)$$

• Si i > k, $t \le T_{k-1}$

$$dF_k(t) = -\sigma_k(t)F_k(t)\sum_{j=k+1}^i \frac{\rho_{k,j}\tau_j\sigma_j(t)F_j(t)}{1+\tau_jF_j(t)}dt$$

Lien entre les différents Zⁱ

Le lien entre deux mouvements browniens sous deux mesures forward ajdacentes est :

$$dZ^{k+1} = dZ^k + \frac{\tau_{k+1}F_{k+1}(t)}{1 + \tau_{k+1}F_{k+1}(t)}\rho\sigma_{k+1}(t)e'_{k+1}dt$$

où e' est un vecteur où la seule composante non nulle est 1 en j.

Calibration du modèle

• Un cap donne à son acheteur les flux $N(T_i - T_{i-1})(F(T_{i-1}, T_{i-1}, T_i) - K)^+$ à la date T_i pour $i = \alpha + 1, \ldots, \beta$.

Si nous prenons N=1, une période d'investissement $[\alpha,\beta]$ et $D(0,T_i)=\frac{B_0}{B_T}$ Le payoff actualisé est donc

$$\sum_{i=\alpha+1}^{\beta} \tau_i D(0,T_i) (F(T_{i-1},T_{i-1},T_i)-K)^+$$

2 possibilités pour des caps dont la volatilité implicite est cotée sur le marché:

Soit

- $T_0 = 3$ mois
- $\alpha = 0$
- Chaque intervalle $[T_{i-1}, T_i]$ est de 3 mois

Soit

- $T_0 = 6$ mois
- $\alpha = 0$
- Chaque intervalle $[T_{i-1}, T_i]$ est de 6 mois

Le prix d'un cap est

$$P^{cap}(0) = \mathbb{E}\left[\sum_{i=\alpha+1}^{\beta} \tau_i D(0, T_i) (F(T_{i-1}) - K)^+\right]$$
 (7)

$$= \sum_{i=\alpha+1}^{\beta} \tau_i P(0, T_i) \mathbb{E}^i \left[F(T_{i-1}) - K \right)^+ \right]$$
 (8)

Sous \mathbb{Q}^i , cela revient à calculer une somme de caplet de payoff

$$P(0,T_i)\mathbb{E}^i\left[(F(T_{i-1})-K)^+\right]$$

Évaluation des caps

Si on a $\frac{dS_t}{S_t} = \mu dt + \sigma dW_t$, alors le prix d'un call de strike K et de maturité T est par Black :

$$S_0N(d_1) - KN(d_2)e^{-rt}$$

En prenant $S_t = F_i$, r = 0, on a que

$$BI(K, F_i(0), v_i) = \mathbb{E}^i \left[(F(T_{i-1}) - K)^+ \right]$$
 (9)

$$= F_i(0)N(d_1(K,F_i(0),v_i)) - KN(d_2(K,F_i(0),v_i)) \quad (10)$$

$$= r_1(0) \mathcal{N}(a_1(r_1, r_1(0), v_1)) - r_1 \mathcal{N}(a_2(r_1, r_1(0), v_1)) - (10)$$

$$(11)$$

$$d_1(K, F, v) = \frac{\ln(F/K) + v^2/2}{v}$$
 (12)

$$d_2(K, F, v) = \frac{\ln(F/K) - v^2/2}{v} \tag{13}$$

οù $v_i^2 = T_{i-1}V^2$ et la volatilité du T_{i-1} -caplet est $v_{T_{i-1}-caplet} = V_i^2 = \frac{1}{T_{i-1}} \int_0^{T_{i-1}} \sigma_i(t)^2 dt$

Structure de la volatilité instantanée

On s'intéresse à comment écrire la volatilité afin de pouvoir calibrer les caps au prix du marché

- Une volatilité constante pour chaque $F_k(t)$ et pour chaque temps $t \in (T_{i-1}, T_i]$
- ② $\sigma_k(t) = \sigma_{k,\beta(t)} = \eta_{k-(\beta(t)-1)} \Rightarrow$ on veut réduire le nombre de paramètres , la volatilité dépend seulement du time to maturity $T_k T_{\beta(t)-1}$ Alors, $v_i^2 = \sum_{j=1}^i \tau_{j-2,j-1} \eta_{i-j+1}^2$

On peut réduire le nombre de paramètres à calibrer pour les formes 4 et 5 en lisant le carré de la volatilité du marché des caplets (volatilité implicite):

Pour la forme 4:

$$\phi_i^2 = \frac{(v_i^{MKT})^2}{\sum_{j=1}^i \tau_{j-2,j-1} \psi_j^2}$$

Pour la forme 5:

$$\phi_i^2 = \frac{(v_i^{MKT})^2}{\sum_{j=1}^i \tau_{j-2,j-1} \psi_{i-j+1}^2}$$

Sous ces formes, nous pouvons effectivement bien calibrer les caps et floors

Structures de volatilités paramétriques

$$v_i^2 = \int_0^{T_{i-1}} \left(\left[a(T_{i-1} - t) + d \right] e^{-b(T_{i-1} - t)} + c \right)^2 dt = I^2(T_{i-1}; a, b, c, d)$$

- $\phi_{i}\psi(T_{i-1}-t;a,b,c,d) = \phi_{i}\left(\left[a(T_{i-1}-t)+d\right]e^{b(T_{i-1}-t)}+c\right)$ On a ainsi : $v_{i}^{2} = \phi_{i}^{2}\int_{0}^{T_{i-1}}\left(\left[a(T_{i-1}-t)+d\right]e^{-b(T_{i-1}-t)}+c\right)^{2}dt = \phi_{i}^{2}I^{2}(T_{i-1};a,b,c,d)$
- ightarrow ces formes permettent de modéliser une bosse dans le graphique de la volatilité instantanée

On peut poser $\phi_i^2 = \frac{(v_i^{MKT})^2}{I^2(T_{i-1};a,b,c,d)}$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - り Q ()

Exemple graphique d'une forme paramétrique

FIGURE Courbe des volatilités deterministe de Rebonato pour $a=0.05,\,b=0.06,\,c=0.3,\,d=0.1$

Nous retrouvons bien la "bosse" grâce à ces paramétrisations.

Caps côtés

 \rightarrow $T_0 = 6$ mois et on note $\mathcal{T}_j = [T_0, \dots, T_j]$ Posons l'équation,

$$Cap^{MKT}(0, \mathcal{T}_{j}, K) = \sum_{i=1}^{j} \tau_{j} P(0, T_{i}) BI(K, F_{i}(0), \sqrt{T_{i-1}} v_{\mathcal{T}_{j}-cap})$$

où $v_{\mathcal{T}_j-cap}$ est une volatilité moyenne mise dans chaque caplet jusqu'à j (forward volatilities)

Par convention du marché, on côte une unique volatilité implicite v_{T_j-cap} constante pour les caps même si chaque cap a une volatilité implicite différente.

Pour retrouver les prix des caps avec la dynamique de notre taux forward, on doit avoir l'égalité avec

$$\sum_{i=1}^{j} \tau_{j} P(0, T_{i}) BI(K, F_{i}(0), \sqrt{T_{i-1}} v_{i})$$

4□▶ 4□▶ 4 Ē▶ 4 Ē▶ Ē 90