92586 Computational Linguistics

Lesson 2. Tokens

Alberto Barrón-Cedeño

Alma Mater Studiorum-Università di Bologna a.barron@unibo.it @_albarron_

04/10/2022

Words

Table of Contents

Words

Normalisation

Representations

Words

What is a word?

Speech The smallest sequence of phonemes that can be uttered in isolation with objective or practical meaning

Text Sequences of graphemes ("letters") [...] delimited by spaces [...] or by other graphical conventions

https://en.wikipedia.org/wiki/Word

Simplistic definition

A word is a sequence of characters surrounded by spaces

Arguable, as multiple scholars claim; in particular across languages (Bender, 2013; Haspelmath, 2011)

Words

Lexicon

The set of all tokens (words!) in document d (or a corpus C)¹

Words

Tokenisers

Building a better regular expression³

```
tokens = re.split(r'([-\s.,;!?])+', txt)
```

What if we have the following text?

txt = "Monticello wasn't designated as UNESCO World Heritage Site until 1987"

</> Let us see it working

Words

Tokenisers

We have a tokeniser, kindly provided by Church (1994)

```
tokens = re.findall('[A-Za-z]+', txt)
```

Python provides a "similar" tool

```
tokens = txt.split()
```

What if txt is the following?²

```
txt = """Thomas Jefferson started building Monticello
at the age of 26."""
```

</> Let us see it working

Words

NITK

- ► One of the leading platforms to work with human language data in python⁴
- ► Easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet
- ► Suite of text processing libraries for classification, tokenisation, stemming, tagging, parsing [...]

http://www.nltk.org

⁴See also stanza and huggingface

¹Typically we will use lowercase symbols for single instances and uppercase for collections

³Borrowed from Lane et al. (2019, p. 43)

²Example borrowed from Lane et al. (2019, p. 34)

Words

Spacy

- ► "Industrial-strength Natural Language Processing" ⁵
- ► Support for 66+ languages
- ► Pre-trained word vectors and modules for **tokenisation**, lemmatisation, tagging, parsing [...]

https://spacy.io

⁵See also stanza and huggingface

Words

Using (one of the) spacy tokenisers

```
# loading the library
import spacy

# downloading the model
import spacy.cli
spacy.cli.download("en_core_web_sm")
```

```
nlp = spacy.load("en_core_web_sm")
doc = nlp(txt)
print([token.text for token in doc])
```

</> Let us see it work

Words

Installing NLTK and spacy

```
$ pip install --user -U nltk
$ pip install --user -U numpy
$ python
>>> import nltk
```

```
$ pip install --user -U spacy
>>> import python
```

Words

Using (one of) the NLTK tokenisers

Normalisation

Normalisation

Stemming

"Eliminate the small meaning differences of pluralisation or possessive endings of words or [...] verb form" (Lane et al., 2019, p. 57)

</> Let us see it working

Normalisation

Case folding

Ignoring differences in the spelling of a word which involves only capitalisation (Lane et al., 2019, p. 54)

```
# We know how to deal with this, don't we?
```

PROS Tea==tea; the vocabulary is smaller
CONS The Joker is not a character any longer

</> Let us see it working

Normalisation

Stemming: Porter and Snowball

Once again, people have developed (and released) more sophisticated stemming algorithms

https://tartarus.org/martin/PorterStemmer/http://snowball.tartarus.org/

```
from nltk.stem.porter import PorterStemmer
stemmer = PorterStemmer()
' '.join([stemmer.stem(w).strip("'") for w in
"dish washer's washed dishes".split()])
```

</> Let us see it working

Normalisation

Lemmatisation

Associating several words down to their semantic common root (adapted from (Lane et al., 2019, p. 59))

PROS Stemming might alter the meaning of a word
CONS It is more expensive; it requires a knowledge base of
synonyms and endings, and part-of-speech tags

Representations

Normalisation

Lemmatisation: re-use, re-use!

The NLTK way

```
import nltk
nltk.download('wordnet')

from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()

lemmatizer.lemmatize("better")
lemmatizer.lemmatize("better", pos="a")
```

The spacy way

```
doc = nlp("better")
print([token.lemma_ for token in doc])
```

</> Let us see them working

Representations

Vector

An (Euclidean) vector is an entity endowed with a magnitude (the length of the line segment (a, b)) and a direction (the direction from a to b).

https://en.wikipedia.org/wiki/Vector_(mathematics_and_physics) https://en.wikipedia.org/wiki/Vector_space

Representations

Bag of Words (BoW)

Turning words into numbers⁶

```
sentence = """Thomas Jefferson began building
Monticello at the age of 26."""

sentence_bow = {}
for token in sentence.split():
    sentence_bow[token] = 1
sorted(sentence_bow.items())
```

</> Let us see it working

Representations

Bag of Words (BoW) 1/2

Using **pandas** (data structures for data analysis, time series, statistics)⁸

</> Let us see it working

Representations

Bag of Words (BoW) 1/2

Using **pandas** (data structures for data analysis, time series, statistics)⁷

Representations

One-Hot Vectors

Turning words into numbers⁹

⁹From (Lane et al., 2019, p. 35)

⁶From (Lane et al., 2019, p. 35)

⁸From (Lane et al., 2019, p. 41)

⁷From (Lane et al., 2019, p. 41)

Representations One-Hot Vectors Turning words into numbers¹⁰ import pandas as pd pd.DataFrame(onehot_vectors, columns=vocab) ¹⁰From (Lane et al., 2019, p. 35)

References

Bender, E. M.

2013. Linguistic Fundamentals for Natural Language Processing: 100 Essentials from Morphology and Syntax. Morgan & Claypool Publishers.

Church, K.

1994. UNIX for poets.

Haspelmath, M.

2011. The indeterminacy of word segmentation and the nature of morphology and syntax. *Folia Linguistica*, 45.

Lane, H., C. Howard, and H. Hapkem

2019. *Natural Language Processing in Action*. Shelter Island, NY: Manning Publication Co.