МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

ОПРЕДЕЛЕНИЕ ТЕПЛОЕМКОСТИ ТВЕРДЫХ ТЕЛ

Выполнил:

Деревянченко Михаил

Группа:

Б03-106

Оглавление

1. Аннотация	
2. Теоретические сведения	
3. Методика измерений	
4. Результаты измерений и обработка данных	
5. Обсуждение результатов	
6. Вывод	

1. Аннотация

Целью данной работы являются:

- 1. Измерение количества подведенного тепла и вызванного им нагрева твердого тела;
- 2. Определение теплоемкости по экстраполяции отношения $\Delta Q/\Delta T$ к нулевым потерям тела.

В данной работе используется специальная конструкция для уменьшения погрешности утечки тепла.

2. Теоретические сведения

Теплоёмкость тела в некотором процессе определяется как их отношение:

$$C = \frac{\delta Q}{dT}$$
 (1)

Температура исследуемого тела надежно измеряется термометром сопротивления, а определение количества тепла, поглощенного телом, обычно вызывает затруднение. В реальных условиях не вся энергия Р Δt , выделенная нагревателем, идет на нагревание исследуемого тела и калориметра, часть ее уходит из калориметра благодаря теплопроводности его стенок. Оставшееся в калориметре количество тепла ΔQ равно

$$\delta Q = W \Delta t - \lambda (T - T\kappa) \Delta t$$
 (2)

где W — мощность нагревателя, λ — коэффициент теплоотдачи стенок, T — температура тела, T комнатная температура, Δt — время, в течение которого идет нагревание.

Формула

$$C = \frac{W - \lambda * (T - T_K)}{\Delta T / \Delta t}$$
 (3)

является основной расчетной формулой работы. Она определяет теплоемкость тела вместе с калориметром

С увеличением температуры исследуемого тела растет утечка энергии, связанная с теплопроводностью стенок калориметра. Из формулы (2) видно, что при постоянной мощности нагревателя по мере роста температуры количество тепла, передаваемое телу, уменьшается, и, следовательно, понижается скорость изменения его температуры.

Погрешности, связанные с утечкой тепла, оказываются небольшими, если не давать телу заметных перегревов проводить все измерения при температурах, мало отличающихся от комнатной. Однако при небольших перегревах возникает большая ошибка при измерении $\Delta T = T - T \kappa$, и точность определения теплоемкости не возрастает. Чтобы избежать этой работе следующая используется трудности, В методика измерений. Зависимость скорости нагревания тела $\Delta T/\Delta t$ от В измеряется широком интервале температуры изменения температур. По полученным данным строится график

$$\frac{\Delta T}{\Delta t} = f(T)$$

Этот график экстраполируется к температуре T = Tк, и таким образом определяется скорость нагревания при комнатной температуре ($\Delta T/\Delta t$)Тк. Подставляя полученное выражение в формулу (3) и замечая, что при T = Tк член $\lambda(T - T$ к) обращается в ноль, получаем

$$C = \frac{W}{\Lambda T / \Lambda t}$$
 (4)

Температура измеряется термометром сопротивления, который представляет собой медную проволоку, намотанную на теплопроводящий каркас внутренней стенки калориметра (рис. 1). Сопротивление проводника изменяется с температурой по закону

$$R_T = R_0 (1 + \alpha \Delta T)$$
 (5)

где R_T — сопротивление термометра при T °C, R_0 — его сопротивление при 0°C, α — температурный коэффициент сопротивления. Дифференцируя (5) по времени получим

$$\frac{dR}{dt} = R_0 \alpha \frac{dT}{dt} \tag{6}$$

Выразим R_0 через R_K :

$$R_0 = \frac{R_K}{1 + \alpha \Delta T_K} \tag{7}$$

Тогда итоговое значение для С получается

$$C = \frac{W R_k \alpha}{\left(\frac{dR}{dt}\right) \left(1 + \alpha \Delta T\right)}$$
 (8)

Входящий в формулу температурный коэффициент сопротивления меди равен $\alpha = 4,28\cdot 10-3$ °C^(-1).

3. Методика измерений

• Экспериментальная установка:

Рис. 1. Схема устройства калориметра

Рис. 2. Схема включения нагревателя

Установка состоит из калориметра с пенопластовой изоляцией, помещенного в ящик из многослойной клееной фанеры. Внутренние стенки калориметра выполненным из

материала с высокой теплопроводностью. Надежность теплового контакта между телом и стенками обеспечивается их формой: они имеют вид усеченных конусов и плотно прилегают друг к другу. В калориметра вмонтированы электронагреватель Схема термометр сопротивления. включения нагревателя изображения на рис.2. Система реостатов позволяет установить нужную силу тока в цепи нагревателя. По амперметру и вольтметру определяется мощность, выделяемая в нагревателе. Величина сопротивления термометра измеряется **MOCTOM** постоянного тока.

• Методика измерений:

- 1. Настройка и изучение аппаратуры(калориметр, мост постоянного тока, нагреватель).
- 2. При неизменной мощности нагревателя определить зависимость сопротивления термометра от времени для пустого калориметра $R_T = R(t)$.
- 3. Строим график dR/dt = f(R) и вычисляем теплоемкость пустого калориметра C_K .
- 4. Повторить пункты 1-3 для помещенного в калориметр тела и измерить его теплоемкость.

Используемое оборудование:

калориметр с нагревателем и термометром сопротивления; амперметр; вольтметр; мост постоянного тока; источник питания 36 В.

4. Результаты измерений и обработка данных

P = 765,8 Topp

 $W = 10.8 B_T$

 $R_K = 18,025 \text{ Om}$

 $T_K = 21$ °C

	Пустой калориметр	Латунь	Железо	Алюминий	
	т, г				
	-	875,5±0,1	815,1±0,1	294,1±0,1	
R, Om	T, c				
18,025	0	0	0	0	
18,075	20,72	42,22	45,45	37,35	
18,125	43,32	92,85	99,04	85,51	
18,175	75,83	151,12	158,39	140,48	
18,225	114,22	214,33	223,33	199,82	
18,275	147,99	284,02	292,76	264,44	
18,325	185,67	356,42	366,68	330,39	
18,375	225,68	431,28	443,85	399,40	
18,425	262,63	509,19	521,73	472,04	
18,475	301,44	588,79	605,04	546,02	
18,525	350,52	671,71	689,00	621,25	

18,575	405,00	757,45	776,03	698,55
10,575	105,00	101910	1 1 0 9 0 5	0,00,00

Строим графики зависимости сопротивления термометра от времени:

Зависимость сопротивления термометра от времени

По полученным данным также строим графики зависимости $\frac{dR}{dt}(R) = f(R)$ по приближенной формуле:

$$\frac{dP}{dt}(R) \approx \frac{R(t_2) - R(t_1)}{t_2 - t_1}$$

где t_1 и t_2 — соседние значения времени, а $R(t_2)$ и $R(t_1)$ — значения сопротивлений, соответствующие им.

Зависимость производной сопротивления по времени от сопротивления для латуни

Зависимость производной сопротивления по времени от сопротивления пустого калориметра

Зависимость производной сопротивления по времени от сопротивления для железа

Зависимость производной сопротивления по времени от сопротивления для алюминия

Аппроксимируем полученные графики полиномом второй степени, после чего экстраполируем полученные функции в точке $R=R_{\rm K}.$

	Уравнение аппроксимации	$\left(\frac{dR}{dt}\right)_{R_{\kappa}}$, MOM/c
Калориметр	$y = 0.0059x^2 - 0.219x + 2.0627$	2,28
Латунь	$y = 0.003x^2 - 0.113x + 1.0468$	1,13
Железо	$y = 0.0024x^2 - 0.091x + 0.8429$	1,06
Алюминий	$y = 0.0038x^2 - 0.140x + 1.2916$	1,24

Подставляя полученные значения производной в точке R_K , находим значения теплоемкостей для пустого калориметра и для калориметром. Теплоемкость исследуемых тел вместе \mathbf{c} исследуемого тела $C_T = C - C_K$, где C — полученное значение тела с калориметром, Ск — теплоемкость теплоемкости Молярная теплоемкость калориметра. высчитывается как $c_{\mu} = c * \mu$. Латунь считаем как смесь 50% меди и 50% цинка.

	С, Дж/К	с, Дж/кг*К	Молярная масса, г/моль	с _{µ,} Дж/моль*К
Калориметр	334.8	-	-	-
Латунь	677.6	391,5	64	25,1
Железо	722,6	475,8	56	26,6
Алюминий	616,6	958,2	27	25,8

Погрешности измерения сопротивления и времени много малы по сравнению с погрешностью аппроксимации графиков изза достаточно точного оборудования и большого количества измерений. Таким образом, пренебрежем ими и будем учитывать лишь относительную погрешность аппроксимации, которая вычисляется как среднеквадратичная погрешность:

$$\varepsilon = \sqrt{\frac{\sum_{i=1}^{n} \left(\frac{\left(f\left(R_{i}\right) - y_{i}\right)^{2}}{f\left(R_{i}\right)} \right)}{n+1}}$$

где $f(R_i)$ – значение аппроксимирующей функции в точке R_i , y_i – значение, полученное экспериментально в точке R_i . Погрешность разности теплоемкостей вычисляется таким образом:

$$\sigma_{C_T} = \sqrt{\sigma_C^2 + \sigma_{C_K}^2}$$

	Ст, Дж/К	3	σς, Дж/К	σ _с , Дж/К*кг	σ _μ , Дж/К*моль
Калориметр	334.8	0,118	39,5	-	-
Латунь	342,8	0,056	44,1	50,4	3,3
Железо	387,8	0,045	46,3	56,8	3,1
Алюминий	281,8	0,049	42,3	130,3	3,5

5. Обсуждение результатов

В ходе работы были получены значения удельных и молярных теплоемкостей латуни, железа и алюминия. Сравним их с табличными значениями.

• Латунь

Экспериментальные значения:

$$c = 391,5\pm50,4$$
 Дж/К*кг

$$c_{\mu} = 25,1 \pm 3,3 \; \text{Дж/K*моль}$$

Табличные значения:

$$c = 400 \, \text{Дж/K*кг}$$

$$c_{\mu} = 24,52 \; Дж/К*моль$$

• Железо

Экспериментальные значения:

$$c = 475,8 \pm 56,8$$
 Дж/К $*$ кг

$$c_{\mu} = 26,6\pm3,1$$
 Дж/К*моль

Табличные значения:

$$c = 460 \text{ Дж/K*кг}$$

$$c_{\mu} = 25,02-26,74$$
 Дж/К*моль

• Алюминий

Экспериментальные значения:

 $c = 958,2\pm130,3$ Дж/К*кг

 $c_{\mu} = 25,8\pm3,5$ Дж/К*моль

Табличные значения:

 $c = 920 \ Дж/К*кг$

 $c_{\mu} = 24,35 \; Дж/К*моль$

теплоемкостей полученные Сравнивая значения табличными, уверенностью ОНЖОМ C сказать, ЧТО Bce теоретические значения попадают В диапазон экспериментальных. С одной стороны, это связано с тем, что измерения проводились с большой точностью (использовался мост Уинстона и проводилось множество измерений), с другой стороны, мы получили достаточно большую погрешность, обуславливается погрешностью аппроксимации экстраполяции.

6. Вывод

В данной работе были успешно вычислены удельные и молярные теплоемкости латуни, железа и алюминия. Был применен метод, с помощью которого удалось минимизировать погрешности, связанные с утечкой тепла, за счет чего были

получены точные значения теплоемкостей, которые сошлись с теоретическими данными.