Table 1: Justification of "cut and shift" in simulated fluorescence traces, and comparison of different models for prediction followed by "cut and shift" correction

type of processing	simulated $\tau_D[\text{ms}]$ ($\sim D[\frac{\mu \text{m}^2}{\text{s}}]$) log 10% tol.	163.3 (~ 0.069) 98.1 to 271.9	140.9 (~ 0.08) 85.9 to 231.1	112.7 (~ 0.1) 70.3 to 180.8	56.36 (~ 0.2) 37.66 to 84.34	28.18 (~ 0.4) $20.18 \text{ to } 39.35$	18.79 (~ 0.6) 14.01 to 25.19	11.27 (~ 1) 8.85 to 14.36	3.76 (~3) 3.29 to 4.29
control:	1	58.92	142.83	80.93	145.00	27.55	54.11	110.39	287.87
	2	$15.85^f (58\%)$ $229.90^s (42\%)$	$70.02^f(61\%)$ $445.84^s(39\%)$	$12.82^f(28\%)$ $138.39^s(72\%)$	$53.66^f(54\%)$ $446.38^s(46\%)$	$13.17^f(79\%)$ $383.01^s(21\%)$	$16.68^{f}(67\%)$ $424.67^{s}(33\%)$	$47.23^f (55\%)$ $284.90^s (45\%)$	$16.59^f(32\%)$ $643.73^s(68\%)$
new method: cut and shift	1	161.43	130.03	100.67	53.11	26.25	17.43	11.52	3.62
	2	$120.86^{f}(76\%)$ $429.73^{s}(24\%)$	$4.33^{f}(1\%)$ $131.89^{s}(99\%)$	$100.67^f(25\%)$ $100.68^s(75\%)$	$0.00^f(6\%)$ $53.11^s(94\%)$	$0.01^f(26\%)$ $26.34^s(74\%)$	17.43(100%)	11.52(100%)	$3.62^f(80\%)$ $3.62^s(20\%)$
old method: weight=0	1	383.41	253.55	293.12	301.92	287.00	143.32	142.88	362.80
	2	$28.66^{f}(29\%)$ $819.05^{s}(71\%)$	$45.97^{f}(45\%)$ $1158.57^{s}(55\%)$	$36.14^f(34\%)$ $723.50^s(66\%)$	$44.09^{f}(43\%)$ $1733.81^{s}(57\%)$	$19.30^f(35\%)$ $747.77^s(65\%)$	$10.94^f(23\%)$ $211.09^s(77\%)$	$34.31^f (52\%)$ $1041.96^s (48\%)$	$20.37^{f}(29\%)$ $775.82^{s}(71\%)$
prediction model: ff67b (14 MB)	1	156.34	135.95	94.43	54.65	26.58	18.00	17.49	8.10
	2	156.34(100%)	$32.68^f (16\%)$ $168.07^s (84\%)$	$5.14^f(5\%)$ $100.84^s(95\%)$	$40.17^f(84\%)$ $309.14^s(16\%)$	$0.14^{f}(8\%)$ $26.85^{s}(92\%)$	18.00(100%)	$9.67^f(81\%)$ $117.21^s(19\%)$	$4.20^f(81\%)$ $2340.75^s(19\%)$
prediction model: 34766 (73 MB)	1	181.31	212.60	129.42	66.74	48.20	36.40	41.45	170.29
	2	181.31(100%)	$124.87^{f}(71\%)$ $1381.10^{s}(29\%)$	$63.30^f(38\%)$ $197.86^s(62\%)$	$44.95^{f}(68\%)$ $147.20^{s}(32\%)$	$25.55^f(77\%)$ $512.85^s(23\%)$	$18.68^{f}(79\%)$ $557.81^{s}(21\%)$	$11.92^f(70\%)$ $624.95^s(30\%)$	$3.71^f(55\%)$ $636.66^s(45\%)$
prediction model: 714af (234 MB)	1	153.90	141.27	93.37	52.06	25.64	17.60	14.14	4.44
	2	$15.88^f (14\%)$ $189.82^s (86\%)$	141.27(100%)	94.35(100%)	$37.92^f(84\%)$ $278.93^s(16\%)$	$2.90^f(2\%)$ $25.98^s(98\%)$	17.60(100%)	$10.84^f (91\%)$ $156.28^s (9\%)$	$4.01^f(97\%)$ $990.62^s(3\%)$
prediction model: 34a6d (7 MB)	1	161.69	136.14	111.05	65.55	37.54	31.64	28.53	67.19

Continued on next page

Table 1: Justification of "cut and shift" in simulated fluorescence traces, and comparison of different models for prediction followed by "cut and shift" correction

type of processing	simulated $\tau_D[\text{ms}]$ $(\sim D[\frac{\mu\text{m}^2}{\text{s}}])$ $\log 10\%$ tol. fit*	163.3 (~ 0.069) 98.1 to 271.9	140.9 (~ 0.08) 85.9 to 231.1	112.7 (~ 0.1) 70.3 to 180.8	56.36 (~ 0.2) 37.66 to 84.34	28.18 (~ 0.4) $20.18 \text{ to } 39.35$	18.79 (~ 0.6) 14.01 to 25.19	11.27 (\sim 1) 8.85 to 14.36	3.76 (~ 3) $3.29 \text{ to } 4.29$
	2	149.58(100%)	$121.78^{f}(93\%)$ $1192.60^{s}(7\%)$	109.68(100%)	$50.31^f(85\%)$ $297.08^s(15\%)$	$23.34^{f}(79\%)$ $194.73^{s}(21\%)$	$16.50^{f}(77\%)$ $210.10^{s}(23\%)$	$14.23^f(79\%)$ $759.71^s(21\%)$	$4.92^{f}(62\%)$ $462.22^{s}(38\%)$
prediction model: 484af (275 MB)	1	151.08	111.76	91.14	49.36	27.78	20.82	14.02	5.76
	2	$80.46^f(50\%)$ $282.73^s(50\%)$	$1.19^f(6\%)$ $118.42^s(94\%)$	$16.73^{f}(4\%)$ $95.90^{s}(96\%)$	$39.27^f(84\%)$ $154.44^s(16\%)$	$0.01^f(34\%)$ $27.96^s(66\%)$	$3.99^f(7\%)$ $22.09^s(93\%)$	$7.12^f(31\%)$ $17.68^s(69\%)$	$3.39^f(88\%)$ $45.14^s(12\%)$
prediction model: 0cd20 (200 MB)	1	149.58	140.81	95.96	0.01	26.23	18.83	13.34	7.50
	2	149.58(100%)	140.81(100%)	96.19(100%)	$0.01^f(33\%)$ $56.46^s(67\%)$	$17.49^f(50\%)$ $37.06^s(50\%)$	$16.68^f (88\%)$ $40.02^s (12\%)$	$10.81^f (86\%)$ $37.87^s (14\%)$	$3.80^f(87\%)$ $319.55^s(13\%)$
prediction model: fe81d (186 MB)	1	160.28	120.45	100.05	54.84	27.03	18.95	12.82	4.28
	2	$74.11^f(37\%)$ $246.07^s(63\%)$	$3.65^f(3\%)$ $123.31^s(97\%)$	$0.83^f(3\%)$ $101.35^s(97\%)$	$40.48^{f}(74\%)$ $120.52^{s}(26\%)$	$20.63^f(43\%)$ $32.47^s(57\%)$	$18.29^f (96\%)$ $43.78^s (4\%)$	$10.56^f(89\%)$ $41.99^s(11\%)$	$4.14^f(99\%)$ $3021.55^s(1\%)$
prediction model: 19e3e (172 MB)	1	155.33	141.61	103.37	63.42	39.25	34.79	29.00	54.94
	2	$119.77^{f}(75\%)$ $343.36^{s}(25\%)$	141.61(100%)	102.14(100%)	$54.75^f(93\%)$ $763.89^s(7\%)$	$25.10^{f}(82\%)$ $275.49^{s}(18\%)$	$16.41^{f}(73\%)$ $182.79^{s}(27\%)$	$16.04^{f}(81\%)$ $808.30^{s}(19\%)$	$4.66^f(62\%)$ $300.03^s(38\%)$
prediction model: c1204 (312 MB)	1	209.28	239.19	127.84	65.01	41.27	31.23	39.92	242.43
	2	$101.90^f(52\%)$ $467.37^s(48\%)$	239.19(100%)	$84.13^f(75\%)$ $650.56^s(25\%)$	$45.24^{f}(80\%)$ $288.65^{s}(20\%)$	$24.72^{f}(81\%)$ $997.08^{s}(19\%)$	$19.49^{f}(83\%)$ $914.58^{s}(17\%)$	$12.34^{f}(70\%)$ $1158.53^{s}(30\%)$	$3.00^f (53\%)$ $684.20^s (47\%)$