# **EE 5351 : CONTROL SYSTEMS DESIGN**

LABORATORY 01

NAME : BALASOORIYA JM

REG No : EG/2021/4424

GROUP No : CE 07

DATE : 03/04/2025

Table 1: Summative Laboratory Form

| Semester               | 05                    |  |
|------------------------|-----------------------|--|
| Module Code            | EE 5351               |  |
| Module Name            | Control System Design |  |
| Lab Number             | 01                    |  |
| Lab Name               | Laboratory Session-1  |  |
| Lab Conduction date    | 05/11/2024            |  |
| Report Submission date | 04/03/2024            |  |

# **List of Figures**

| Figure 1: QUBEServo3 DC motor and load                                    | 6  |
|---------------------------------------------------------------------------|----|
| Figure 2: Time Domain Response of $\omega(t)$ (MATLAB)                    | 8  |
| Figure 3: Time Domain Response of $\omega(t)$ (Simulink)                  | 8  |
| Figure 4: Simulink Q1(v)                                                  | 9  |
| Figure 5: Simulink Q1(VIII)                                               | 11 |
| Figure 6: Time domain speed response when input voltage 3V                | 12 |
| Figure 7 : Graph of Comparison negligible rotor inductance and applied 3V | 12 |
| Figure 8 : Graph of steady state error(Kp=1)                              | 13 |
| Figure 9 : Graph of steady state error(Kp=1.25)                           | 13 |
| Figure 10 : Graph of steady state error(Kp=1.5)                           | 14 |
| Figure 11 : Graph of steady state error(Kp=1.75)                          | 15 |
| Figure 12 : Graph of steady state error(Kp=2)                             | 16 |

### **List of Tables**

| Table 1: Summative Laboratory Form | 2  |
|------------------------------------|----|
| Table 2 : QUBEServo3 parameter     | 6  |
| Table 3 : Result Comparison        | 12 |

### CONTENT

| 01. | Observation | 6  |
|-----|-------------|----|
| 02. | Calculation | 7  |
| 03. | Reference   | 17 |

# 01.Observation



Figure 1: QUBEServo3 DC motor and load

Table 2 : QUBEServo3 parameter

| Terminal Resistance (R <sub>m</sub> )      | $8.4\Omega$                         |
|--------------------------------------------|-------------------------------------|
| Rotor inductance(L <sub>m</sub> )          | 1.16 mH                             |
| Equivalent rotor inertia(J <sub>eq</sub> ) | $2.09 \times 10^{-5} \text{ kgm}^2$ |
| Torque constant(k <sub>t</sub> )           | 0.042Nm/A                           |
| Voltage constant (k <sub>m</sub> )         | 0.042 Nm/A                          |

#### 02. Calculation

Q1)

i) Dynamic Equation for DC motor and load

$$V_m$$
 =  $i_m R_m + L_m \frac{dim}{dt} + e_b$   
 $e_b$  =  $k_m \omega_m$   
 $T_m$  =  $J_{eq} \frac{d\omega_m}{dt}$   
 $T_m$  =  $k_t i_m$ 

#### ii) Transfer function

$$\frac{\omega(s)}{Vm(s)} = \frac{kt}{\{JeqS[Rm + LmS] + kmkt\}}$$

$$\frac{\omega(s)}{Vm(s)} = \frac{0.042}{\{2.09 \times 10^{-5}S[8.4 + 1.16 \times 10^{-3}S] + 0.042 \times 0.042\}}$$

$$\frac{\omega(s)}{Vm(s)} = \frac{0.042}{2.424 \times 10^{-8} \times S^2 + 17.556 \times 10^{-3}S + 1.764 \times 10^{-3}}$$

$$\frac{\theta m(s)}{Vm(s)} = \frac{kt}{S\{JeqS[Rm + LmS] + kmkt\}}$$

$$\frac{\theta m(s)}{Vm(s)} = \frac{0.042}{2.424 \times 10^{-8}S^3 + 1.7556 \times 10^{-4}S^2 + 1.764 \times 10^{-3}S}$$

#### iii) Obtain the domain speed response

#### MATLAB code

```
% Parameters
Rm = 8.4; % Terminal resistance (Ohms)
Lm = 1.16e-3; % Rotor inductance (H)
Jeq = 2.09e-5; % Equivalent inertia (kg*m^2)
kt = 0.042; % Torque constant (Nm/A)
km = 0.042; % Voltage constant (V/rad/s)
% Transfer function for speed control
num = kt;
den = [Jeq*Lm, Jeq*Rm, kt*km];
sys = tf(num, den);
% Simulate step response for 3V input
input voltage = 3; % Applied voltage
t = 0:0.001:1; % Time vector
[u, t] = step(input_voltage * sys, t);
figure;
plot(t, u, 'LineWidth', 1.5, 'Color', 'b'); % Improved aesthetics
title('Time domain speed response', 'FontWeight', 'bold');
xlabel('Time (s)', 'FontSize', 12);
ylabel('Speed (rad/s)', 'FontSize', 12);
grid on;
xlim([0, 1]); % Ensure the time axis is within range
ylim([0, max(u) * 1.1]); % Adjust y-axis for better visualization
legend('time domain speed response');
```



Figure 2: Time Domain Response of  $\omega(t)$  (MATLAB)



Figure 3: Time Domain Response of  $\omega(t)$  (Simulink)

iv) Transfer function (negligible rotor inductance)

$$\begin{array}{ll} \frac{\omega(s)}{Vm(s)} & = \frac{k_t}{\{J_{eq}R_mS + k_mk_t\}} \\ \frac{\omega(s)}{Vm(s)} & = \frac{0.042}{2.09 \times 10^{-5} \times 8.4S + 0.042 \times 0.042} \\ \frac{\Theta m(s)}{Vm(s)} & = \frac{k_t}{S\{J_{eq}R_mS + k_mk_t\}} \\ \frac{\Theta m(s)}{Vm(s)} & = \frac{0.042}{1.7556 \times 10^{-4}S^2 + 1.764 \times 10^{-3}S} \end{array}$$

#### v) Simulink



Figure 4: Simulink Q1(v)

vi) State Space Model (armature current and rotor speed)

$$\begin{array}{lll}
I\dot{m} & = & -\left(\frac{R_{m}}{L_{m}}\right)i_{m} - \left(\frac{k_{m}}{L_{m}}\right)\omega_{m} + \frac{V_{m}}{L_{m}} \\
\omega_{m} & = & \left(\frac{k_{t}}{J_{eq}}\right)i_{m} + 0 \times \omega_{m} + 0 \times V_{m} \\
\begin{bmatrix} i_{m} \\ \dot{\omega}_{m} \end{bmatrix} & = & \begin{bmatrix} \frac{-R_{m}}{L_{m}} & \frac{-k_{m}}{L_{m}} \\ \frac{k_{t}}{J_{eq}} & 0 \end{bmatrix} \begin{bmatrix} i_{m} \\ \omega_{m} \end{bmatrix} + \begin{bmatrix} \frac{1}{L_{m}} \\ 0 \end{bmatrix} Vm \\
\begin{bmatrix} i_{m} \\ \dot{\omega}_{m} \end{bmatrix} & = & \begin{bmatrix} -7241.38 & -36.21 \\ 2009.57 & 0 \end{bmatrix} \begin{bmatrix} i_{m} \\ \omega_{m} \end{bmatrix} + \begin{bmatrix} 862.07 \\ 0 \end{bmatrix} Vm \\
[\omega_{m}] & = & \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} i_{m} \\ \omega_{m} \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} Vm
\end{array}$$

vii) State Space Model (rotor position and rotor speed)

$$\begin{array}{ll} \Theta & = & 0 \times \dot{\theta_m} + \omega_m + 0 \times V_m \\ \omega & = & 0 \times \theta_m - (\frac{k_t k_m}{R_m J_{eq}}) + (\frac{k_t}{J_{eq} R_m}) \\ \begin{bmatrix} \dot{\theta}_m \\ \dot{\omega}_m \end{bmatrix} & = & \begin{bmatrix} 0 & 1 \\ 0 & \frac{-k_t k_m}{R_m J_{eq}} \end{bmatrix} \begin{bmatrix} \dot{\theta}_m \\ \dot{\omega}_m \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{k_t}{J_{eq} R_m} \end{bmatrix} V_m \\ \begin{bmatrix} \dot{\theta}_m \\ \dot{\omega}_m \end{bmatrix} & = & \begin{bmatrix} 0 & 1 \\ 0 & -10.05 \end{bmatrix} \begin{bmatrix} i_m \\ \omega_m \end{bmatrix} + \begin{bmatrix} 0 \\ 293.23 \end{bmatrix} V_m \\ [\omega_m] & = & [1 & 0] \begin{bmatrix} i_m \\ \omega_m \end{bmatrix} + [0] V_m \end{array}$$

### viii) Plot the time domain speed responses



Figure 5: Simulink Q1(VIII)

#### i) Obtain time response



Figure 6: Time domain speed response when input voltage 3V

# ii) Compare Results



Figure 7: Graph of Comparison negligible rotor inductance and applied 3V

Table 3 : Result Comparison

| Steady state speed | Based on simplified transfer function                           | Match with real behavior for 3v input.                                                           |
|--------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Rise time          | Determine simplified dynamics(Jeq, Rm, kt)to be optimistic.     | Reflect actual damping and delay present In QUBEServo3.                                          |
| Settling time      | Simplified model response faster without external disturbances. | Simulink model for actual motor inertia and damping. It potentially showing longer settling time |

i) Kp=1



Figure 8 : Graph of steady state error(Kp=1)

ii) According to the Figure 8,

Overshoot  $= \frac{\frac{(\max value - stead \ state)}{steady \ state \ value}}{1} \times 100$   $= \frac{\frac{1.335 - 1}{1}}{1} \times 100 = 33.5\%$ Steady state error = 1 - 0.938 = 0.062

iii) Kp=1.25



Figure 9 : Graph of steady state error(Kp=1.25)

### According to the Figure 9

Steady state error 
$$= 1 - 1.012$$

$$= 0.012$$

Overshoot = 
$$\frac{1.374-1}{1} \times 100\%$$

### Kp=1.5,



Figure 10 : Graph of steady state error(Kp=1.5)

#### According to the Figure 10

Overshoot = 
$$\frac{1.405-1}{1} \times 100$$

Steady state error 
$$= 1 - 1.009$$

### Kp=1.75



Figure 11 : Graph of steady state error(Kp=1.75)

According to the Figure 12

Steady state error = 1 - 0.9603

= 0.0397

Overshoot  $= \frac{1.442 - 1}{1} \times 100$ 

=44.2%

# Kp=2



Figure 12 : Graph of steady state error(Kp=2)

# According to the figure

Steady state error = 1-0.9633

= 0.0367

Overshoot =  $\frac{1.466-1}{1} \times 100$ 

= 46.6%

### 03.Reference

- [1] MATLAB. [Online]. Available: https://www.mathworks.com/matlabcentral/answers/2000762-how-to-convert-state-space-to-transfer-function.
- [2] "Science Direct," [Online]. Available: https://www.sciencedirect.com/topics/engineering/steady-state-error.
- [3] "Quanser," [Online]. Available: https://docs.quanser.com/quarc/documentation/qube\_servo3\_usb.html.