Linear function invertibility, revisited

Kernel-Image Theorem:

For any linear function $f: \mathcal{V} \to W$,

$$\dim \operatorname{Ker} f + \dim \operatorname{Im} f = \dim \mathcal{V}$$

Linear-Function Invertibility Theorem: Let $f: \mathcal{V} \longrightarrow \mathcal{W}$ be a linear function. Then f is invertible iff dim Ker f = 0 and dim $\mathcal{V} = \dim \mathcal{W}$.

Proof: We saw before that *f*

- ightharpoonup is one-to-one iff dim Ker f=0
- ▶ is onto if dim Im $f = \dim \mathcal{W}$

Therefore f is invertible if dim Ker f = 0 and dim Im $f = \dim \mathcal{W}$.

Kernel-Image Theorem states $\dim \operatorname{\mathsf{Ker}} f + \dim \operatorname{\mathsf{Im}} f = \dim \mathcal{V}$

Therefore

$$\dim \operatorname{Ker} f = 0 \text{ and } \dim \operatorname{Im} f = \dim \mathcal{W}$$

$$\operatorname{iff}$$

$$\dim \operatorname{Ker} f = 0 \text{ and } \dim \mathcal{V} = \dim \mathcal{W}$$

Rank-Nullity Theorem

Kernel-Image Theorem:

For any linear function $f: \mathcal{V} \to W$,

$$\dim \operatorname{Ker} f + \dim \operatorname{Im} f = \dim \mathcal{V}$$

Apply Kernel-Image Theorem to the function $f(\mathbf{x}) = A\mathbf{x}$:

- \blacktriangleright Ker f = Null A
- ightharpoonup dim Im $f = \dim \operatorname{Col} A = \operatorname{rank} A$

Definition: The *nullity* of matrix A is dim Null A

Rank-Nullity Theorem: For any *n*-column matrix *A*,

nullity
$$A + \text{rank } A = n$$

Checksum problem revisited

Checksum function maps *n*-vectors over GF(2) to 64-vectors over GF(2):

$$\mathbf{x} \mapsto [\mathbf{a}_1 \cdot \mathbf{x}, \dots, \mathbf{a}_{64} \cdot \mathbf{x}]$$

Original "file" \mathbf{p} , transmission error \mathbf{e} so corrupted file is $\mathbf{p} + \mathbf{e}$.

If error is chosen according to uniform distribution, Probability ($\mathbf{p} + \mathbf{e}$ has same checksum as \mathbf{p}) $= \frac{2^{\dim \mathcal{V}}}{2^n}$

where ${\cal V}$ is the null space of the matrix

$$A = \begin{vmatrix} \mathbf{a_1} \\ \vdots \\ \mathbf{a_{64}} \end{vmatrix}$$

Fact: Can easily choose $\mathbf{a}_1, \dots, \mathbf{a}_{64}$ so that rank A = 64

(Randomly chosen vectors will probably work.)

Rank-Nullity Theorem \Rightarrow rank A + nullity A = n64 + dim \mathcal{V} = ndim \mathcal{V} = n - 64

Therefore Probability = $\frac{2^{n-64}}{2^n} = \frac{1}{2^{64}}$

very tiny chance that the change
is undetected

Matrix invertibility

Rank-Nullity Theorem: For any *n*-column matrix *A*,

nullity
$$A + \text{rank } A = n$$

Corollary: Let A be an $R \times C$ matrix. Then A is invertible if and only if |R| = |C| and the columns of A are linearly independent.

Proof: Let \mathbb{F} be the field. Define $f: \mathbb{F}^C \longrightarrow \mathbb{F}^R$ by $f(\mathbf{x}) = A\mathbf{x}$.

Then A is an invertible matrix if and only if f is an invertible function.

The function f is invertible iff dim Ker f=0 and dim $\mathbb{F}^{\mathcal{C}}=\dim \mathbb{F}^{R}$ iff nullity A=0 and $|\mathcal{C}|=|R|$.

nullity A=0 iff dim Null A=0 iff Null $A=\{\mathbf{0}\}$ iff the only vector \mathbf{x} such that $A\mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$ iff the columns of A are linearly independent. QED

Matrix invertibility examples

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 is not square so cannot be invertible.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 is square and its columns are linearly independent so it is invertible.

```
 \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \end{bmatrix}  is square but its columns are not linearly independent so it is not invertible
```

Transpose of invertible matrix is invertible

Theorem: The transpose of an invertible matrix is invertible.

$$A = \left[\begin{array}{c|c} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{array} \right] = \left[\begin{array}{c} \mathbf{a}_1 \\ \hline \vdots \\ \hline \mathbf{a}_n \end{array} \right]$$

$$A^T = \left[\begin{array}{c|c} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{array} \right]$$

Proof: Suppose A is an invertible matrix. Then A is square and its columns are linearly independent. Let n be the number of columns. Then rank A = n.

Because A is square, it has n rows. By the Rank Theorem, its rows are linearly independent.

The columns of the transpose A^T are the rows of A, so the columns of A^T are linearly independent.

Since A^T is square and its columns are linearly independent, we conclude that A^T is invertible. QED

More matrix invertibility

Earlier we proved: If A has an inverse A^{-1} then AA^{-1} is identity matrix

Converse: If BA is identity matrix then A and B are inverses? **Not always true.**

Theorem: Suppose A and B are square matrices such that BA is an identity matrix 1.

Then A and B are inverses of each other.

Proof: To show that A is invertible, need to show its columns are linearly independent.

Let **u** be any vector such that A**u** = **0**. Then B(A**u**) = B**0** = **0**.

On the other hand, $(BA)\mathbf{u} = \mathbb{1}\mathbf{u} = \mathbf{u}$, so $\mathbf{u} = \mathbf{0}$.

This shows A has an inverse A^{-1} . Now must show $B = A^{-1}$.

We know AA^{-1} is an identity matrix.

$$BA=1$$

$$(BA)A^{-1}=1$$
 by multiplying on the right by B^{-1}
$$(BA)A^{-1}=A^{-1}$$
 by associativity of matrix-matrix mult
$$B1=A^{-1}$$

$$B=A^{-1}$$

$$QED$$