Ankara University Department of Computer Engineering COM332 2017

LAB 1 Part 1

SECTION 1

PC Network TCP/IP Configuration Objective

Objective:

- Identify tools used to discover a computer network configuration
- Gather information including connection, host name, Layer 2 MAC address and Layer 3 TCP/IP network address information.
- Compare network information to other PCs on the network
- **Step 1:** Connect into the Internet
- Step 2: Gather TCP/IP configuration information

 Use the Start menu to open the Command Prompt, an MS-DOS-like window. Press Start > Programs > Accessories > Command

 Prompt or Start > Programs > Command Prompt
- **Step 3:** Record the following TCP/IP information for this computer (use **ipconfig** command)
 - IP address:
 - Subnet Mask:
 - Default Gateway:
- **Step 4:** Compare the TCP/IP configuration of this computer to others on the LAN

If this computer is on a LAN, compare the information of several machines.

- Are there any similarities?
- What is similar about the IP addresses?
- What is similar about the default gateways?
- **Step 5:** Check additional TCP/IP configuration information

To see detailed information, type **ipconfig /all** and press **Enter**.

Step 6: Close the screen.

SECTION 2

Using ping and tracert from a Workstation

Objective:

- Learn to use the TCP/IP Packet Internet Groper (**ping**) command from a workstation.
- Learn to use the trace route (**tracert**) command from a workstation.
- Observe name resolution occurrences using WINS and/or DNS servers
- **Step 1:** Establish and verify connectivity to the Internet
- **Step 2:** Access the command prompt

Use the Start menu to open the Command Prompt window. Pres

Start > Programs > Accessories > Command Prompt or Start > Programs > Command Prompt or Start > All Programs > Command Prompt

- **Step 3:** ping the IP address of another computer
- **Step 4:** ping the IP address of the default gateway
- **Step 5:** ping the IP address of a DHCP or DNS servers
- **Step 6:** ping the Loopback IP address of this computer

Type the following command: ping 127.0.0.1

The 127.0.0.0 network is reserved for loopback testing. If the ping is successful, then TCP/IP is properly installed and functioning on this computer

Step 7: ping the hostname of another computer

Try to ping the hostname of the computer that was recorded in the previous lab. The figure shows the successful result of the ping the hostname.

- **Step 8:** ping the Cisco web site
- **Step 9:** Trace the route to the Cisco web site

Type tracert www.cisco.com and press Enter

SECTION 3

Decimal to Binary Conversion

Objective:

- Learn to convert decimal values to binary values.
- Practice converting decimal values to binary values.

Step 1: Convert the following decimal values to binary values:

- a. 123
- b. 202
- c. 67
- d. 116.127.71.3
- e. 255.255.255.0
- f. 12.101.9.16

SECTION 4

Binary to Decimal Conversion

Objective:

- Learn the process of converting binary values to decimal values.
- Practice converting binary values to decimal values.

Step 1: Convert the following binary values to decimals:

- a. 11111111
- b. 11010011
- c. 11101001.00011011.10000000.10100100
- d. 10101010.00110100.11100110.00010111

SECTION 5

Hexadecimal Conversions

Objective:

• Learn the process to convert hexadecimal values to decimal and binary values.

- Learn the process to convert decimal and binary values to hexadecimal values.
- Practice converting between decimal, binary and hexadecimal values.

Step 1: Convert the following values to the other two forms:

	Decimal	Hex	Binary
1		a9	
2		FF	
3		E7-63-1C	
4	53		
5	115		
6	212.65.119.45		
7			10101010
8			110

SECTION 6

Establishing a Console Connection to a Router or Switch

Objective:

- Create a console connection from a PC to a router and switch using the proper cable
- Configure the HyperTerminal on PC
- Observe the router and switch user interface

This lab will focus on the ability to connect a PC to a router or a switch in order to establish a console session and observe the user interface. A console session allows the user to check or change the configuration of the switch or router and is the simplest method of connecting to one of these devices.

This lab should be performed twice, once with a router and once with a switch to see the differences between the user interfaces. Start this lab with the equipment turned off and with cabling disconnected.

Step 1: Identify the Router/Switch console connectors

Examine the router or switch and locate the RJ-45 connector labeled "Console"

- **Step 2:** Identify the computer serial interface, which is COM 1 or 2
- **Step 3:** Locate the RJ-45 to DB-9 adapter
- **Step 4:** Locate or build a rollover cable
- **Step 5:** Connect the cabling components
- **Step 6:** Start the PC HyperTerminal program

Turn on the computer

From the Windows taskbar, locate the HyperTerminal program:

Start > Programs > Accessories > Communications >

HyperTerminal

- **Step 7:** Name the HyperTerminal Session
- **Step 8:** Specify the computer connecting interface
- **Step 9:** Observe the router or switch user interface
- **Step 10:** Close the session
- **Step 11:** Shut down the router or the switch and store the cables

SECTION 7

Establishing a Console Session with HyperTerminal

Objective:

- Connect a router and workstation using a console cable
- Configure HyperTerminal to establish a console session with the router

HyperTerminal is a simple Windows-based terminal emulation program that can be used to connect to the console port on the router. A PC with HyperTerminal provides a keyboard and monitor for the router. Connecting to the console port with a rollover cable and using HyperTerminal is the most basic way to access a router for checking or changing its configuration.

Set up a network similar to the one in the diagram. Any router that meets the interface requirements may be used. Possible routers include 800, 1600, 1700, 2500, 2600 routers, or a combination. The following resources will be required:

- Workstation with a serial interface and HyperTerminal
- Cisco Router
- Console (rollover) cable for connecting the workstation to the router

Step 1: Basic router configuration

Step 2: Start HyperTerminal program

Step 3: Name the HyperTerminal session

Step 4: Specify the computers connecting interfaces

Step 5: Specify the interface connection properties

Bits per second: 9600

Data bits: 8

Parity: None

Stop Bits: 1

Flow Control: None

Step 6: Closing the session

Step 7: Reopen the HyperTerminal connection, as shown in Step 2

Step 8: Terminating the HyperTerminal session

SECTION 8

Command Line Fundamentals

Objective:

- Log into a router and go to the user and privileged modes
- Use several basic router commands to determine how the router is configured
- Use the router HELP facility
- Use command history and editing features
- Logout of the router

Step 1: Start HyperTerminal

Step 2: Log into the router

If prompted to enter the initial setup mode, answer no.

Step 3: Use the HELP feature

Router>?

Step 4: Enter privileged EXEC mode

Router>enable

Step 5: Use the HELP feature

Router#?

Step 6: List the show commands

Router#show?

Step 7: Examine the running configuration

Router#show running-config

Step 8: Examine the configuration in more detail

Step 9: Use the command history feature

Router#show history

Step 10: Logoff and turn the router off

SECTION 9

Command Modes and Router Identification

Objective:

- Identify basic router modes of user EXEC and privileged EXEC
- Use commands to enter specific modes
- Become familiar with the router prompt for each mode
- Assign a name to the router

Step 1: Login to the router in user EXEC mode

Step 2: Login to the router in privileged EXEC mode

Router>enable

Step 3: Enter global configuration mode

Router#configure terminal

Step 4: Enter router configuration mode

Router(config)#router rip

Step 5: Exit from router mode and go into interface configuration mode

Router(config-router)#exit

Router(config)#interface Serial 0

Step 6: Assign a name to the router

Router(config)#hostname GAD

Step 7: Exit the router

GAD(config)#exit