

For Reference

NOT TO BE TAKEN FROM THIS ROOM

THESIS

"LEUKOPENIA IN RATS"

And

"THE ABSORPTION AND STORAGE OF

CAROTENE IN THE RAT"

by K.Woods Dep't. of Biochemistry April/46. U. of Alberta

Ex libris universitatis albertatasis

Digitized by the Internet Archive in 2018 with funding from University of Alberta Libraries

UNIVERSITY OF ALBERTA

FACULTY OF ARTS AND SCIENCES

This is to certify that the undersigned have read and recommend to the Committee on Graduate Studies for acceptance, a thesis submitted by Kenneth Woods, B. Sc., entitled:

- 1. "Leukopenia in Rats."
- 2. "Absorption and Storage of Carotene in the Rat."

PROFESSOR

PROFESSOR

PROFESSOR

The second second

LEUKOPENIA IN RATS

and

· ABSORPTION AND STORAGE OF CAROTENE IN THE RAT.

A THESIS

submitted in conformity with the requirements for the degree of Master of Science by the University of Alberta.

By

Kenneth Woods.

Department of Biochemistry
University of Alberta
April, 1946.

1946

ACKNOWLEDGEMENT

I wish to thank Professor G. Hunter for his interest and advice, and Dr. M. M. Cantor for his supervision and assistance in carrying out this investigation.

My thanks go to Dr. L. E. Tyner, of the Dominion

Laboratory of Plant Pathology, for providing cultures of

stachybotus alternans used in some of these experiments,

and to Mr. Robert Clelland, who cared for the experimental
animals.

. The transfer of the second s

INDEX

CECUTON A.	Page
SECTION A:	
INTRODUCTION	1
SCOPE OF INVESTIGATION:	
PART I	4
PART II	19
PART III	39
. BIBLIOGRAPHY	47
APPENDIX	50
SECTION B:	
INTRODUCTION	54
SCOPE OF INVESTIGATION:	
PART I	58
PART II	65
BIBLIOGRAPHY	73
APPENDIX	76

		*
	0 1 1 2 2 2 4 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9	
12		
	4	u i je
	4 > 0 & 0 & 1 & 1 & 1 & 1 & 2 & 4 & 4 & 9 & 9 & 9 & 4 & 4 & 4 & 4 & 4	
		*
	*******************	1
	4 P 4 X X P W 2 P P X X Y 2 C P T 7 X Y 2 C	4.
		4
	:	1
	**************************************	1

-		
-		
-		

SECTION A

LEUKOPENIA IN RATS.

err in is the till the till and the till and

INTRODUCTION

.

Des designation of the Co

LEUKOPENIA IN RATS

INTRODUCTION

The usefulness of some valuable therapeutic agents is restricted in some cases by the development of leukopenia (diminution in the number of leukocytes), and less frequently by granulocytopenia or agranulocytosis (decrease in number or disappearance of the granular series of leukocytes). Many agents have been implicated in these phenomena, among these aminopyrine, the sulfonamides and thiouracil are the common offenders.

The mechanism by which leukopoietic depression is produced is not clear and it has been suggested that the leukopenia is due to direct depression of bone marrow activity (1), interference in enzyme systems (2, 3) and lowered bacterial synthesis in the intestine, of a substance, which stimulates bone marrow activity (4).

Experimental leukopenia produced in albino rats fed sulfonamides in a purified diet present the following characteristics:
depletion of mature granulocytes in bone marrow (5, 6), lesions
of blood vessels, voluntary muscles, the heart and liver (less,
often) and haemorrhages into various organs and subcutaneous
tissues (2, 3, 7, 8). Death occurred in the majority of cases.
Calloman and his associates (20) showed deceleration and
cessation of growth. The reviewer in (21) observed that terminal
shock manifested itself as apathy, diminution in body temperature,
flaccididy of skin and muscle. A United States Public Health
report (22) shows a failure of cut veins to bleed and increased
viscosity of the blood.

t do . . se Mandele e . pe t

Angles to a content of the same of the content of t

.

and the second property of the second propert

Various therapies have been effective in correcting experimental leukopenia and granulocytopenia. Axelrod et al. (9) and Spicer et al. (11) treated this condition successfully using liver and liver extracts. Daft and his associates (10), using sulfaguanidine and sulfasuxidine, showed the effectiveness of feeding crystalline folic acid. Goldsmith et al. (12) successfully treated neutrophilic granulocytopenia induced by thiouracil (fed to rats) with solubilized liver. Waisman and Elvehjem (13) suggested that folic acid was the active agent in this liver fraction. Daft and Sebrell (10) provide experimental evidence for this view. In a critical review (4) it is pointed out that the effect of folic acid may be indirect. in that folic acid is required by the coliform bacteria in the intestine for the production of some accessory substance which in turn produces the granulocytic response. The effectiveness of pyridoxine in elevating the leukocyte count in the anaemia of pellagra (29) prompted Cantor and Scott (14) to use this agent clinically. Their results led them to conclude that pyridoxine acts by direct stimulation of the myelocytic elements of the bone marrow.

It was to test the validity of this conclusion that the following investigations were planned.

Deficiency symptoms of pyridoxine common to rats, dogs, pigs and chicks are lack of growth, anaemia and convulsions (15). Not all investigators have noted convulsions. Acrodynia has been observed only in rats. None noted that pyridoxine affected male rats more than females. Neither Hegsted and his

```
with the property of the last the party of t
with the control of t
                                                -Ale to the ability of most year, and is deal - to
the light of the refunction of the second of the second of the
the service and house, and have been experienced to be a service and any
                                                        mode something thinks the forest out, from the s
I residence the entire or make the fifth of the contract of th
----- description of the second second second second
  I the matter the dates of the case of application for the
and a design of the control of the state of 
and the second of the compact of the
and the state of t
                                  man or broaders. Contract of the test to a miles of the
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    AND THE REST OF THE
                                                                                                                                                                                                                                                                                                                                                                                     Appendix of the second section of the section of 
(E). Oak il Smith work was now broken broken in an account
    print the same of the printer of the same of the same
```

associates (15) nor Kornberg et al. (16) observed leukopenia in pyridoxine deficient rats. Bethall et al. (1) and Fouts et al. doubt the importance of pyridoxine in erythropoiesis in the rat. They report that only moderate anaemia and leukopenia were produced by pyridoxine deficiency in albino rats. Chick, MacRae and Martin (18) found only a slight reduction in haemoglobin in pyridoxine deficient rats.

section (if, nor origin, a in it is a referred to the control of t

PART I

"The effect of thiouracil and sulfaguanidine on the white cell count in pyridoxine deficient rats."

C BEAL

The engine engine of I. Sound is completed.

PLAN OF EXPERIMENT

To show the effect of thiouracil and sulfaguanidine on the white cell count in piebald rats.

Animals

Three groups of piebald rats from 6 to 8 weeks of age were used in each experiment. Each group of 6, consisting of an equal number of males and females, was placed in a separate cage and fed a B-complex free diet to which thiouracil, etc. was added. They were allowed water and the diet ad lib.

682

The purified diet consisted of:

Sucrose

CaHP OA

Ferric citrate Calcium lactate

				casein	n	18%
			e oil	liver	017	2%
				mixtu		4%
U.	s.	P.	salt	mixtu	ire (No. 2)
Nal	504 H2P	04		Þ	5.4	73 gm. 45 "
KH	PO.	4				54 11

The animals were weighed once every three days.

During the entire experimental period a protocol was kept and remarks made on evidence of nutritional deficiency, date of death and any gross changes in urine and faeces.

When the animals showed the first outward signs of dietary defects, they were fed the daily supplement of pyridoxine free B-complex factors. Graying and loss of hair were usually the first indications of pyridoxine deficiency.

Counting

A total and a differential white cell count were performed on each animal every two weeks using the common clinical apparatus and procedure.

(a) Total white cell count

Procedure:

The tip of each tail was nicked with scissors and the tail milked to stimulate the free flow of blood. The sample was taken after the first two drops had been discarded. This was diluted with acetic acid, the pipette shaken vertically for 30 seconds and horizontally for 10 seconds, and then allowed to stand for one half hour. The first two drops from the pipette were discarded and the counting chamber carefully filled under the cover slip.

Using the low power (8X) of the microscope with the diaphragm almost closed and the condenser up, the total number of leukocytes in the four corner squares was counted in the usual manner. This total multiplied by 50 gives the total number of leukocytes in one cubic millimetre of blood (1).

(b) Differential white cell count

The differential count was performed on a thin smear stained with Leichman stain.

Blood smears were made from drops of freely flowing blood. Care was taken to obtain thin, evenly spread smears. The dried smear was flooded with Leichman's stain for three minutes, then buffer added, mixed by blowing, and allowed to stand five minutes. It was then washed with distilled water

Alle C. L. C. St. C. F. Fedg. (3

*65010001

The big of sec is a fine misser, in since the continue of each of an eller of calling in a minute of calling in a minute of calling in a minute of calling in an although the discount of the called and a minute of call a

iposia nove dimaerna med the dominion of abluments.

illed motor the dotter with.

Industry the long pare (81) of the misturace of an ablument pare in the above the common the

Since files water f to be collinated

*apier and old for the field of the field of

Tigot mane taken non-taken non-taken of footh finding

Alace. Note one taken to obtain the object of open of the core.

The count ments one thought taken on the core of the core.

The country of the core of the core of the core of the core of the core.

until the excess stain was removed. The end of each dried slide was labelled with a strip of gummed paper which recorded the animal, its group and the date.

Using the oil immersion objective and a drop of cedar oil, a differential count was made on 100 stained leukocytes. The count was differentiated as follows:

- (1) per cent Polymorphs
 Neutrophils
 Eosinophils
 Basophils
- (2) per cent Lymphocytes
- (3) per cent Monocytes.

Where a field could not be brought clearly into focus or doubt remained in differentiation, another count was made.

RESULTS

Shown in the tables and graphs. B-complex free diet plus a drug, supplemented by B-complex factors less pyridoxine.

- (1) Tables and Graphs I and II.

 Control group.
- (2) Tables and Graphs III and IV.

 One per cent thiouracil in diet.
- (3) Tables and Graphs V and VI.

 One per cent sulfaguanidine in diet.

Pyridoxine Deficient Diet.

Table I. Total leukocyte count per cubic millimetre blood

0	Н	63	n	4	2	9	7	ထ	6	11	13
9700	0006	16450	13500	11800	6050	7450	6650	4850	4800	7100	1
7200	1350	14900	13200	10500	9750	8860 2500 2000	800 800 800 800 800 800 800 800 800 800	6500	2000 2000 2000	24 67 0 0 0 0 0	6000
00001	2600	12650	15900	14800	6350	4750	3250	3200	2800	6350	000/
8000	12100	15900	16900	13400	6200	4850	5200	11000	0099	TP200	ATOO

m = male f = female

O = no marked ear
R = right ear marked
L = left ear marked

Table II. Differential count per cubic millimetre blood

0 1 2 3 4	F 1455 1980 1974 3510 4130 1 I 8148 7020 14476 9890 7670 3 M 97 0	F 680 1543 12957 3300 4725 2 L 6052 5733 12963 9900 5775 7 M	F 792 1025 1700 3510 5600 1 L 6408 9225 15300 8190 10400 7 M	F 690 1691 1518 5565 4884 7	0,000 0,000 0000 0000
9 5	1996 156 3993 5889	2093 206	1852 1615 7800 6800 97 85	3431 170 3869 532	2413 908
7	4 1662 5 4921 0 66	4 1250 6 4581 0 119	5 3960 6 4840 5 0	4 1364 5 4836 1 0	2 4455
80	1697	1008 4536 56	1755 4745 0	1836 3510 54	800
6	1440 2312 48	6780 4915 56	1562 4687	4212 3888 0	1508
11	3124 3976	2458 4991 0	1422 7607 0	2904 3696 0	1651
13		1573 4477 60	159	343	1 1

- 9 -

R = right ear marked
L = left ear marked

f = female

L = Lymphocytes
M = Monocytes

Graph I. Effect of a pyridoxine deficient diet on the total leukocyte count.

Graph II. Effect of a pyridoxine deficient diet on the granu-locytic (polymorph) count.

Pyridoxine Deficient Diet + 1% Thiouracil.

Table III. Total leukocyte count per cubic millimetre blood

3	-			Me	weeks at ter experiment began	er evbe	TIMETT	008a11			
	0	Н	2	2	4	5	9	7	∞	6	11
a l	7500	6250	6800	0089	0089	8800	5800	6400	6350	8950	1
10	6050	8800	6850	6350	6800	8450	0006	0006	6250	7800	0009
R-m	6250	11700	6800	7400	8000	11000	0096	6150	0069	10600	10200
R-f	5100	13700	8650	7650	0006	11800	0099	6400	5500	7800	7200
Lu	5800	9950	14050	12800	9800	10050	13000	5050	6550	9400	1
L -1	6250	8100	0009	0009	0009	6250	6200	6400	3500	4500	3400

m = male f = female

	1 - 3 C 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
	(T STATE OF S	002.
	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		Civio
		C	C Pr
_			
			Will broth about the property of
	· · · · · · · · · · · · · · · · · · ·		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-		1 1	
			9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
			,
		-	i r v b

Pyridoxine Deficient Diet + 1% Thiourseil.

blood
me tre
millim
cubic
per
count
Differential
IV.
Table

Rat					Weeks	after	experiment	t began				
		0	٦	2	3	4	5	9	7	80	6	11
8	五五五	1500 5850 150	1240 4898 62	1020 5780 0	1360 5440 0	2516 4284 0	2816 5984 0	754 5046 0	960 5376 64	1587	1521 7428 89	111
9	RHA	1500 4500 0	1408 7392 888	1370 5372 68	7620 5544 0	2040 4692 688	882 845 858 858 84	1800 7200 0	1800 7110 90	11836	1872 5850 78	3780 2220 0
R-m	RIP	1860 4278 62	1872 9711 117	884 5916 0	1480 5772 148	2080 5840 80	3410 7480 110	2400 7200 0	1230 6919 61	3283 3417 0	3604	2856 7344 0
- E	瓦工工	1871 4029	2329 10960 411	1470 7179 0	851 6808 0	2520 6390 90	3422 8378 0	2112 4488 0	2048 4352 0	1100 4400	1404 5616	1440 7088 72
7	AHA	1566 4176 58	1584 8316 0	2660 11340 0	2560 10240 0	2548 7252 0	2000 8000 0	4420 8580 0	1464 3535 50	1375	1598 7802 0	111
L.Rf	見る	1488 4464 248	1377 6723 0	1140 4860 0	1200 4800 0	1680 4320 0	1062 5188 0	2542 3658 0	1600 4800 0	700 800 0	1575 2925	1632
OKHH	E I I I	marked tht ear it ear	eer marked marked rs marked			a 4	male remale			i i i	Polymorphs Lymphocytes Monocytes	hs s s

Graph III. The effect of a pyridoxine deficient diet + 1% thiouracil on the total leukocyte count.

Graph IV. The effect of a pyridoxine deficient diet + 1% thiouracil on the granulocytic count.

Pyridoxine Deficient Diet + 1% Sulfaguanidine.

Table V. Total leukoeyte count per cubic millimetre blood

m 6200 10500 9350 12000 6350 4900 4450 5800 3350 5700 f 6600 17500 9600 10900 5550 5400 5700 4200 3250 5600 f 6700 9850 9400 10550 5100 4400 5900 3950 6000 f 12500 20500 13050 17000 12500 12400 12450 10700 4650 6150 4900 f 6600 12000 12400 13150 11400 6050 6400 6450 3200 5650 6500	יומים				2	CHARLES CONTRACTOR	1		0		-	-	
6200 10500 9350 12000 6350 4900 4450 5800 3350 5700 6600 17500 9600 10550 5100 5100 4400 5900 3250 5600 6700 9850 9400 10550 5100 5100 4400 5900 3950 6000 12500 20500 13050 17000 12500 12400 12400 12400 12400 12500 5600 6800 5850 3200 4400 5400 6450 16400 13150 11400 6050 6400 6400 6450 3200 5650		0	1	2	x	4	5	9	7	8	6	11	12
10500 9550 12000 6550 4900 4450 5800 3550 5700 17500 9600 10900 5550 5400 5700 4200 3250 5600 9850 9400 10550 5100 5100 4400 5900 3950 6000 20500 13050 17000 12500 12400 12450 10700 4650 6150 12600 13150 11400 6050 6400 6400 6450 3200 5650													
6600 17500 9600 10900 5550 5400 5700 4200 3250 5600 6700 9850 9400 10550 5100 5100 4400 5900 3950 6000 12500 20500 13050 17000 12500 12400 12450 10700 4650 6150 6600 12000 12400 13600 5500 5600 6800 5850 3200 4400 5400 16400 13150 11400 6050 6400 6400 6450 3200 5650	E	6200	10500	9350	12000	6350	4900	4450	5800	3350	5700	1	1
6700 9850 9400 10550 5100 5100 4400 5900 3950 6000 12500 20500 13050 17000 12500 12400 12450 10700 4650 6150 6600 12000 12400 13500 5500 5600 6800 5850 3200 4400 5400 16400 13150 11400 6050 6400 6400 6450 3200 5650	9-1	0099	17500	0096	10900	5550	5400	5700	4200	3250	2600	1	1
12500 20500 13050 17000 12500 12400 12450 10700 4650 6150 6600 12000 12400 13600 5500 5600 6800 5850 3200 4400 5400 16400 13150 11400 6050 6400 6400 6450 3200 5650	E E	0019	9850	9400	10550	5100	5100	4400	5900	3950	0009	9	1
6600 12000 12400 13600 5500 5600 6800 5850 3200 4400 5400 16400 13150 11400 6050 6400 6400 6450 3200 5650	9-1	12500	20500	13050	17000	12500	12400	12450	10700	4650	6150	4900	2800
5400 16400 13150 11400 6050 6400 6400 6450 3200 5650	M.	0099	12000	12400	13600	5500	2600	6800	5850	3200	4400	6550	1
	4	5400	16400	13150	11400	6050	6400	6400	6450	3200	5650	6500	6400

m = male f = female

R = right ear marked
L = left ear marked

Pyridoxine Deficient Diet + 1% Sulfaguanidine.

Differential Count

Table VI.

per cubic millimetre blood

Rat		0	1	ય	2	Weeks at	fter ex	after experiment	began.	∞	6	11	12
m-0	러니지	1240 4744 186	1680 8820 0	1122 8134.	1200 10800 0	2476 3873 0	2476	1421 3479 0	222 4227 0	1392 4408 0	1653 3990 57		
4	AHN	1122 5412 66	3150 14350 0	1824	1308 9592 0	11.70 4440 0	1100 4400 0	1296 4050 54	1710 3990 0	5133	1792 3808 0		
R-m	АНЯ	1742 4824 134	1764 8036 0	1222 8176 0	2730	1836 3213	1071 3213	1071 4029	352 4048 0	767	1980 4020 0		
R-f	АНЗ	2500 9875 125	2255 18245 0	3640 9360 130	6800 10200 0	9500 3000 0	9500 3000 0	2356 10044 0	655 855 800 000	3103 7490 107	1537 4514 61	686 4214 0	448 2352 0
H	RHA	1650 4752 198	2280 9600 120	1488 10912 0	3672 9928 0	2664 9928 0	2664 2886 0	1176 4424 0	1360 5440 0	1111 4738 0	3828 4488 4488	4810 1690 0	
4	ВНЫ	1080 4326	2296 14104 0	1834 11266 0	1824 9576 0	1824 9576 0	2843 3206 0	1280 5120 0	1152 5248 0	903 5547 0	1582 4068 0	2600	5888
	0HH	n n n n n n n n n n n n n n n n n n n	marked ear ht ear mark t ear marke	r rked ked		m t	ma le female			E H B		Polymorphs Lymphocytes Monocytes	

Granh V. The effect of a pyridoxine delicient diet dus 1 ? sulfaguanidine on the total leukocyte count.

Graph VI. The effect of a pyridoxine deficient diet plus 1 > sulfaguanidine on the granulocytic count.

DISCUSSION

When the diet was deficient in pyridoxine the leukocytes in nearly all animals followed the same trend (Table I. Graph I). There was an initial rise in the total leukocytes, followed by a steady decline to leukopenia in two animals. After feeding the pyridoxine free B-factors there was no evidence of leukopoiesis. This may be attributed to pyridoxine deficiency. Agranulocytosis was not produced (Table II and Graph II). Almost all animals died before a low enough count could be obtained. Animals approaching death showed symptoms typical of pyridoxine deficiency (loss of weight, stiffness, body tremors). Tables III and IV illustrate the results of feeding 2 per cent thiouracil in the pyridoxine deficiency diet. The initial rise in leukocyte count is not as great as in the case of simple pyridoxine deficiency. Thiouracil evidently tended to depress the white cell count more quickly than was the case in the Bfree diet. A less even trend of counts may be attributed to the different sensitivity of individual animals to the drug. Leukopenia was not produced to any severe degree and agranulocytosis not at all. The thiouracil in the pyridoxine deficient ration did not lower the cell count below that of the first experiment. Animals approaching death showed symptoms similar to those described in the first experiment.

A severe degree of leukopenia was produced using one per cent sulfaguanidine in the diet (Table V and Graph V). Nearly all animals showed a low total white cell count. Agranulocytosis developed in two animals. There is evidence of greater

leukocyte depression in this group than in either of the previous experiments. The very low counts might be attributed to unusual sensitivity toward sulfaguanidine.

SUMMARY

- (1) A moderate degree of leukopenia was produced in rats on a pyridoxine deficient diet.
- (2) A similar degree of leukopenia was produced using 2 / per cent thiouracil in the diet.
- (3) A greater degree of leukopenia was produced in rats on a pyridoxine deficient diet plus one per cent sulfaguanidine.
- (4) Animals only on the sulfaguanidine diet showed agranulocytosis.
- (5) Nearly all animals showed the characteristic symptoms typical of those on a pyridoxine deficient diet (15, 17, 26).

PART II

"The effect of a pyridoxine supplement on the leukocyte count in rats fed a pyridoxine free diet plus gardan, pyramidon and sulfaguanidine."

PLAN OF EXPERIMENT

Animals

Animals were prepared in the manner already described. The pyridoxine supplement was administered by subcutaneous injection when leukopenia became evident. Periodicity of injection and the results obtained are indicated in tables and graphs following.

Counting

As in Part I.

RESULTS

Indicated in the tables and graphs. B-complex free diet plus a drug, supplemented by B-complex factors less pyridoxine, and separately supplemented by pyridoxine subcutaneously.

- (1) Tables and Graphs VII and VIII.
 - .25 per cent gardan in the diet. (Piebald rats).
- (2) Tables and Graphs IX and X.
 - .25 per cent gardan in the diet. (Albino rats).
- (3) Tables and Graphs XI and XII.
 - .25 per cent pyramidon in the diet. (Piebald rats).
- (4) Tables and Graphs XIII and XIV.
 - .25 per cent pyramidon in the diet. (Albino rats).
- (5) Tables and Graphs XV and XVI.
 - 2.0 per cent sulfaguanidine in the diet. (Albino rats).

Ą A 7

Pyridoxine + .25% Gardan.

Table VII. Total leukooyte count per cubic millimetre blood

	3	+		,	77	77	7			
10240 10240 14850 10350	28850 17000 12550	14900	8400 7100 6200	8300 12300 10100	5900	10550 7000 9050 9050	25500 11200 15450	15150	14550	8400

m = male f = female

Pyridoxine + .25% Gardan.

Differential count per cubic millimetre blood Table VIII.

200		0	2	4	7	9 11 13	11	13	15	17	19	21
9	PH H	7826	3 0	1 1	1 1	1 1	1 1	1 1	11	1 1	11	11
	Z	0		***	1	***		1		1 7	1	-
#	AHE	1428 8670	25920	2384	3444 4956	2407 5893	1003	2215 8295 0	8 8 8	1 1 1		111
8	АНВ	124	6460 10540	2323 7777	2769 4331 0	7626 4674 0	4095 5655 0	2240 4760 0	3360 7728 112	6211 8938 151	1700 6800 0	1 1 1
9-1	АНЯ	2970 11731 148	1 1	0 0 0) 1 1 1 1 1	1 1 1	111	1 1 1	1 1 1	1 1 1	111	111
I. m	ВНН	1751 8343 0	5750 6750	8904 6996 0	2480 3720 0	6565 3535 0	1462 4387 0	1176 7873	2163	7844 2756 0	1 1 1	111
4	ВНР	10332	3888 10512 0	2145 12155 0	3605	6256 7344 0	2288 7661 0	1747	7140 6860 0	25.15 25.46 80 0	2581 6319 0	2100 6300

m = male f = female

P = Polymorphs
L = Lymphocytes
M = Monocytes

Graph VII. The effect of pyridoxine on leukopenia induced by .25% gardan in a B-complex free diet (Piebald rats,

Graph VIII. The effect of pyridoxine on a low polymorph count induced by .25% gardan.

AND A TO SEE THE

Pyridoxine + .25% Gardan.

Table IX. Total leukocyte count per cubic millimetre blood

	2	23	2	7	6	11	13	15	17	19	20
E I	8100	13800	15300	10500	9050	15550	12300	23200	21200	;	;
1 100	9000	17250	15400	23400	88 87 80 80 80 80 80 80 80 80 80 80 80 80 80	15800	8050	19500	16700	12500	500
4	8200	21500	17300	17500	8450	13250	7400	19200	8600	15300	1
414	7200	14400	14550	12000	5700	11100	12450	22750	8100	16000	1 1

m = male f = female

o mo marked ear
R * right ear marked
L * left ear marked
L.R * both ears marked

Pyridoxine + .25% Gardan.

Differential count per cubic millimetre blood Table X.

Kat		0	2	5	7	ks at ter	11	13	15	17	19	20
8	러니크	1377	1932 11868 0	3360 11934 0	1890 8610 0	3420 5580 0	5270 10230	3444 8856 0	5800 17400	6360 14840	1 1 1	1 1 1
9-	АНЫ	1350	3268 13760 172	3388 12012 0	6786 16380 234	3400 5100 0	6329 9480 0	1630 6320	4095 15405 0	15030	5250 7250	111
R	RHA	1432 7518 0	2394 10206 0	4748 000 000 000 000	5616 6084 0	5610 2890 0	0069	2928 9272 0	4944 15656 0	3680 14720 0	5180 9324 148	1050
R-f	AHE	1275 7225 0	1720 19780 0	4671 12629 0	4650 12950 0	4200 4200 0	1716 11484 0	1110 6290 0	2496 16704 0	1806 6794 0	5202 10098 0	111
L.R1	AHE	1440 5760 0	2880 11,520 0	2900 11600 0	6120 5880 0	2280 3420 0	1332 9768	2976 9300 0	3405 19295	1620 6480 0	1 0 0	1 1 1
4	AHE	200 200 200 200 200 200 200	2057 16456 0	24 24 24 20 20	2408 14792 0	22.88 651.28	3806 13494 0	468 7332 0	2002 12298 0	7600	6760	111

o = no marked ear
R = right ear marked
L = left ear marked
L.R = both ears marked

m = male f = female

P = Polymorphs
L = Lymphocytes
M = Monocytes

Graph IX. The effect of pyridoxine on leukopenia induced by .25% gardan in a B-complex free diet (Albino rats, 7 weeks age).

Graph X. The effect of pyridoxine on a low polymorph count induced by .25% gardan.

one will not specially an experience for,

Pyridoxine + .25% Pyramidon.

Table XI. Total leukocyte count per cubic millimetre blood

	0	0	V	-	o	L	PC	14	15 16	16	∞ ⊢	19
		3	+		,							
1	12350	6150		10050	12900	7500	4100	1	1	1	1	1
4	10000	72050		7850	72950	9820	3	1	2 2	1	9	20.00
i E	17950	0016		8600	8700	8950	8050	11200	10630	16450	14400	40000
4	14100			1	1	1		1	9	1	1	1
4 5	00001	1		1	2	-	1	1	1	1	1	1
444	10750	0019	13600	7350	9500	8050	7500	0006	8	1 1	1	1

m = male f = female

- 28 -

Pyridoxine + .25% Pyramidon.

Differential count per cubic millimetre blood Table XII.

Rat					Weeks	after e	experiment began	nt begs	u			
	0	2	4	7	6	11	13	14	15	16	18	19
hed		1722	2940	5500	9159	1425	328	1	1	1	1	1
D-10	L 10701	4428	0989	4500	3741	6075	3772	1	1	1	2	1
	123	0	0	0	0	0	0	1	-	9 8	1	
panel.	127	2600	2919	1872	3465	1666	\$	3	1	1	1	1
4	L 11303	10270	10981	5928	10425	8134	1	1	1	1	1	1
parties.	72	130	0	0	0	0	12.00		***			1
		2275	20	2236	2610	1611	2240	5040	2650	3608	1440	19200
R-m I	L 10740	6825	10868	6364	0609	7339	5760	0919	7950	12792	12960	28320
jed-)		8		8	1	8	2 0	9	E 1	8	8 9	1
4	L 9588	ET2- 680	1 9	9	1	9		9 9	9	1	1	1
		00.40	600 000		9		OF 60	*		8 8	20 10	1
Smell		the day	clar eta	9	8	3	1	3	1 8	99 98	8	1
L-m-I	L 8800	65x - 650	diss eye	9	1	8	1	1	9	100	8	
parting .	Constitution of the last	the div	8 8		000 etc.		1 0		1	1	* 1	0 9
had		9	3672	2205	57.00	2817	3075	4230	ese est	1	1	9
9-1	L 8881	4636	9928	5110	3800	5200	4425	4770	8	8	8	3
Section 1		0	0	0	0	0	0	0	8	9	1	
				ensiste hip-useren of rendered heither top	Appropriate of the special designation were appropriate the special designation of the special designa	military frames of the constitution of the con						
0 K F	right ear	l ear marked			E 4	= male = female				L L	Polymorphs Lymphocytes Monocytes	2 0 2
į	422	IOT POU								1	accy voca	

Graph XI. The effect of pyridoxine on leukopenia induced by .25% pyramidon in a B-complex free diet (Piebald rats,

Graph XII. The effect of pyridoxine on a low polymorph count induced by .25% pyramidon.

the comment of the second section of the comments of the comme

Pyridoxine + .25% Pyramidon.

Total leukocyte count per cubic millimetre blood Table XIII.

	0	S	20	7	6	11	13	15	13	19	20
\$	03001	15400	10950	12200	15600	9500	17800	11150	8200	22000	12100
9 9	16100	2000	14000	14100	11350	24300	16900	16200	16400	14500	22100
- m-	12100	16200	16400	11000	10000	19950	14800	2950	3000		1
-F	10600	12950	17200	14050	11900	17100	13250	9400	12400	00/07	0440
3	12050	18750	21800	11050	8550	19700	12600	4400	200	0000	42200
4-5	10900	13450	15100	12400	T0000	11800	T./400	1202U	00+00	2000	

m = male f = female

O = no marked ear
R = right ear marked
L = left ear marked

- 31 -

Pyridoxine + .25% Pyramidon.

Differential count per cubic millimetre blood Table XIV.

1				55	Weeks arter		experiment be	began			
	0	2	5	7	6	11	13	15	18	19	20
E L P	1836 8364 0	3080 12320 0	2180 8720 0	5453 7843	4368 11232 156	2755 6745	4628 13172 178	4884 6216 0	2132 6068 0	6600	3630 8470 0
A I M	1932 4168 0	1332 20868 0	1960 12040 0	2397	1921 9266 113	11178	2535 14366 0	10082 6318	3668 12792 0	2900 11600 0	5746 16133 221
R-m P	3267 8833 0	4212 11988 0	3936 12464 0	3740 7260 0	3180 7420 0	6965 12935	3108 11692 0	3293 5607 0	1872 7040 88	2024 6776 88	111
R-f	2226 8374 0	2580 10320 0	3268 13932 0	4620 9380 0	1666 10234 0	4617 12483 0	3696 9504 0	3196 6204 0	2728 8672 0	2675 8025 0	111
L-m L 1	960 1040 0	16830	2180 19620 0	1650	1190	5910 13790	2016 10584 0	616 3784 0	2376 7524 0	1428	7050 16215 470
L. T.	2071 8720 109	1608	1812 13288	3348 9052 0	1802 8798 0	2714 9086 0	2958 14442 0	3128 10472 0	1280	5616 15984 216	111
o = no man R = right L = left	ked ear	lear marked marked			m ma	male female			# # H	Polymorphs Lymphocytes Monocytes	phs ytes

Graph XIII. The effect of pyridoxine on leukopenia induced by .25% pyramidon in a B-complex free diet (Albino rats, 7 weeks age).

Graph XIV. The effect of pyridoxine on a low polymorph count induced by .25% pyramidon in a B-complex free diet.

THE STATE OF THE S

THE RESIDENCE OF A STREET OF STREET, SAN ASSESSMENT OF STREET, SAN ASS

Pyridoxine + 2% Sulfaguanidine.

Total leukocyte count per cubic millimetre blood Table XV.

	16	111111
	15	5400
411	14	3800
Meeks al ref. evher imelia negar	11	30650
T CADOT I	6	7350
eks at te	9	14800
DE	4	10600 9750 9700 13500
	2	13000 14500 20350 20100
	0	9800 10600 8500 8250 8400
Rat		998877

m = male f = female

o = no marked ear
R = right ear marked
L = left ear marked

Pyridoxine + 2% Sulfaguanidine.

Table XVI. Differential count per cubic millimetre blood

Rat				Wee	Weeks after experiment began	exper	iment be	gan			
		0	2	4	9	6	11	14	15	16	
	Н	1274	1820	1378	1628	2774	2222	380	810	1	
9	Н	8526	11180	9222	13172	4526	7878	3420	4590	1	
		0	0	0	0	0	0	0	0	-	
	P	1484	i	8	1	1	i	.0	;	1	
9	H	9010	1	8	•	1	1	1	1	1	
	M	106	1	1	1		0 20	8	-	-	1
	A	1275	2900	1940	1	ł	1	1	1	1	
R-m	Ы	7225	11,600	7663	9	3	1	1	1	0	
	M	0	0	97	200 000	1		-	****		CONTRACTOR OF THE PERSONS IN CONTRACTOR OF THE PERSON IN CONTRACTO
	Рч	738	8	8	9	San Alla	1	8	8	1	
R-f	H	6642	i	8	1	ì	1	8	1	1	
	=	0	-	**	7-7-	-	1	****			1
	ρι	832	2842	1358	8	1	ì	1	1	1	
Lm	H	5568	17458	8342	1	!	1	1	1	1	
	H	0	0	0	8 9	E10 CE					
	щ	924	6834	1755	4284	4800	15300	.	;	1	
1-1	H	7476	13266	11745	11016	5200	14688	8	8	1	
	Ħ	0	0	0	0	0	612	1	9	1	
	O 따 +	right	no marked ear right ear marke	ear	84	male female		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Polymorphs Lymphocytes	tes tes	
			ear mar	Kea				1	moliocy can	Ω	

11: 11: 11: 1:: 1:: 1:: 13: 41((()); ***

Graph XV. The effect of pyridoxine on leukopenia induced by 2% sulfaguanidine in a B-complex free diet (Albino rats, 6 weeks age).

Graph XVI. The effect of pyridoxine on a low polymorph count induced by 2% sulfaguanidine in a B-complex free diet.

DISCUSSION

From Table and Graph VII there is evidence of a significant rise in total leukocytes after the injection of pyridoxine.

Since pyridoxine was the only deficiency the uniform rise in leukocytes following the injection could be attributed to pyridoxine. Agranulocytosis was not produced (Graph VIII).

After giving pyridoxine, the polymorph trend was not significantly different from previous results to justify the conclusion that pyridoxine was responsible. At the same time, a slight rise did occur.

(Tables and Graphs IX and X). Neither leukopenia nor agranulocytosis occurred in these animals. After pyridoxine injection the leukocyte counts rose to a higher level. Although the rise in response to pyridoxine was irregular, the effect in all animals on the absolute count was a significant increase.

Too few animals survived in Group 7 (Tables and Graphs XI and XII) to permit any general conclusions. It seems apparent that pyramidon in the concentrations fed produced earlier fatality than did gardan.

The value of the experiment in relation to pyridoxine effect is diminished by the number of survivors. Of significance is the response of one animal to repeated injections of pyridoxine. Both the total leukocyte and polymorph counts rose in close correlation to each other after each injection. It is reasonable to conclude that pyridoxine was responsible for the rise in counts in this animal.

In Tables and Graphs XIII and XIV, the total leukocyte counts responded with a uniform rise after injection then fell. Since the counts were relatively low and later a rise in the majority of cases occurred, the pyridoxine must have been responsible. Following the injection of two females, their total leukocyte and polymorph counts rose in correlation. This showed significant evidence in suggesting that pyridoxine was the responsible factor. The polymorph count of most animals was at its peak after pyridoxine injection. The response in general was a rise in count but this was not significant enough from which to draw conclusions. Agranulocytosis was not produced. The pyramidon did not interfere with leukopoiesis sufficiently enough to produce this condition.

The number of survivors shown by Tables and Graphs XV and XVI seriously limits the value of the experiment with respect to the response to pyridoxine. The lone survivor showed a favorable response to pyridoxine: a close correlation occurred between the rise in leukocytes and the rise in polymorphs. The unusual response of one animal (female) leads one to suspect unusual sensitivity to sulfaguanidine.

Animals showed symptoms similar to those occurring in Part I (coarse hair, loss of hair, loss of weight, and toward death a cramped condition with faint body tremors). Rats fed 2 per cent gardan and pyramidon rapidly began passing blood in both faeces and urine. NaHCO3 was given and the quantity of both drugs reduced to .25 per cent.

SUMMARY

The response of rats with low leukocyte and polymorph counts (induced by feeding .25 per cent gardan, .25 per cent pyramidon and 2 per cent sulfaguanidine) to pyridoxine, injected subcutaneously, was:

- (1) In general a significant rise in both total leukocyte and polymorph counts;
- (2) In nearly all instances of leukopenia and agranulocytosis rises in counts occurred to correct these conditions;
- (3) In several isolated cases after repeated injections of pyridoxine, a close correlation occurred between the rise in total leukocytes and polymorphs.

PART III

"The effect of the toxin of stachybotrys alternans (a saprophytic mold) on Piebald rats."

INTRO DUCTION

A review by V. G. Drobotko (28) brought to our attention the presence of two new diseases, stachybotrytoxicosis of horses and stachybotrytoxicosis of humans. Both were discovered in the Soviet Ukraine and up to now there have been no reports elsewhere of their occurrence. Leukopenia and agranulocytosis are characteristic of the late stages of these diseases.

The source of the causative agent in each case was traced to a saprophytic mold, stachybotrans alternans, found in moist hay.

In horses the disease manifested itself in three clinical stages:

- (1) An irritation of lips, mouth, throat and nose.
- (2) Leukopenia gradually appeared in addition to signs in (1).
- (3) A rise in temperature maintained until death. Leukopenia persists, necrotic ulcers developed and agranulocytosis developed. The majority of cases recovered after the first or second stage.

Humans who came into contact with the infected hay contracted a moist dermatitis, anginal pharyngitis with a bloody exudate and cough. Pains in the throat, a burning in the nose and chest congestion were common symptoms. Only in a few cases did a decrease in the leukocyte count occur, but never was it below 2000 cells per cubic millimetre of blood.

The mold was grown on agar plates. Ether extracts of the mold injected into horses proved the presence of an etiologic agent ("Toxin") capable of causing the disease. All observations indicated a definite chemical substance which poisons the organism; a bacteriologic factor may play some part.

It is logical to assume that the severe degree of leukopenia in horses and mild leukopenia in humans may be attributed to the different methods of acquiring the toxin. Horses obtained large amounts of toxin orally (eating hay) with the resultant relatively rapid absorption and high concentration in the blood stream. With humans, only through the respiratory tract or skin (slow methods of absorption) did the toxin gain admission to the blood.

PLAN OF EXPERIMENT

To show the effect of the toxin on Piebald rats.

Animals

Six Piebald rats (Departmental Colony) were divided into two groups consisting of three females and three males. Each group was placed in a separate cage. Water and a complete stock diet were allowed ad lib.

Blood counts were taken immediately and on successive days as indicated in the graphs following.

The males were subcutaneously injected with .1 cubic centimetre of toxin. Females were orally fed by pipette a like amount.

Counting

Total and differential white cell counts were made as in Part I.

Preparation of Toxin

Nine cultures of stachybotrys alternans were made in petri dishes (Agar medium) and 24 liquid cultures. The 33 molds were ether extracted four times, filtered and the ether evaporated. The oil and solid material resulting (1.5 grams) was made up to 9 cubic centimetres with sesame oil. This solution, containing the toxin, was used in the experiment.

RESULTS

- (1) Shown by the total cell count in Table XVII and Graph XVII. and the polymorph count in Table XVIII and Graph XVIII.
- (2) Symptoms shown by the animals are given in the discussion.

DISCUSSION

The sudden rise in total leukocyte count above normal values can be attributed to the toxin. Individual animals showed a greater resistance to the toxin than others (death of two). Although a small number of animals was used, it seems logical to assume that oral administration caused death more rapidly than subcutaneous administration.

The oral fed rats showed similar symptoms to those of horses which had been feeding on hay infected with the toxin.

P manufactured by the second second second second second Swollen, purplish tongues, blood and mucus excretion through the nostrils, respiration trouble and body tremors were characteristic symptoms shown by the orally fed rats. Injected rats showed a bunched intoxicated condition as the experiment continued. Body lesions at the site of injection became badly inflamed, failed to heal and caused such discomfort to the animals that further injections were halted. These animals regained normal health later.

Agranulocytosis did not appear in the experiment. Time might be a factor, since leukopenia and agranulocytosis in horses (28) did not appear until six weeks to a month after the initial absorption of the toxin. This sudden rise in leukocyte count with the rats runs parallel to the picture with horses.

If continued over a long period, the animals may have shown the second stages characterized by leukopenia. In rats this remains to be seen.

SUMMARY

The toxin of stachybotrys alternans was administered to Piebald rats:

- (1) Death occurred in some cases.
- (2) Rats fed orally showed the first symptoms typical of stachybotrytoxicosis of horses.
 - (3) Leukopenia or agranulocytosis was not produced.

. . 1 .

Toxin of S. A.

Table XVII. Total leukocyte count per cubic millimetre blood

	0	5	7	11	1
=	9400	0089	22000	22000	
19-	24.50	6200	16400	1	
4 5	0000	20400	19500	21500	
R-f	8220	23000	17000	17200	
H	8250	1	1 2	1	
44	6400	1	3 0	1	

m = male f = female

o = no marked ear
R = right ear marked
L = left ear marked

Toxin of S. A.

Table XVIII. Differential count per cubic millimetre blood

C-m L 5726 1020 6160 1	Rat			Experimental p	period (days	3)
O-m L 6392 5712 15840 M 6392 5712 15840 O-f L 6132 4132 11316 R-m L 6003 16932 11895 R-m L 7058 18860 10370 I-m L 5968 I-f L 5440 In p 768			0	5	7	11
o-f L 6392 5712 15840 o-f L 6132 4132 1316 M 6003 16932 1895 R-m L 6003 16932 11895 L-m L 5968 L-m L 5968 L-f L 5440 no marked ear m = male remale r = rompho		ρι	2726	1020	0919	3300
P. 2268 866 4920 D. I. 6132 4132 11316 R. I. 6003 16932 11895 R. I. 6003 16932 11895 R. I. 6003 16932 11895 R. I. 7058 18860 10370 I. I. 5968 I. I. 5440 I. I. I. 5440	9	Н	6392	5712	15840	18700
Definition of the following states of the following st		H	94	68	0	0
O-f L 6132 4132 11316 R-m L 6003 16932 11895 R-f L 7058 18860 10370 L-m L 5968 L-f L 5440 Io marked ear merked f = female L = Lympho		ρ	2268	998	4920	1
R-n L 6003 16932 11895 R-r L 6003 16932 11895 R-f L 7058 18860 10370 I-m L 5968 L-f L 5440 In marked ear marked f = female L Lympho	9	ы	6132	4132	11316	1
R-m L 6003 16932 12895 R-f L 7058 18860 10370 L-m L 5968 L-f L 5440 mo marked ear merked f = female L = Lympho		B	0	0	164	-
R-n L 6003 16932 11895 R-f L 7058 18860 10370 L-m L 5968 L-f L 5440 no marked ear m = male remale returns hope		μ	2349	3264	7605	3010
R-f L 7058 18860 10370 1-m L 5968 L-f L 5440 In marked ear marked f = female L = Lympho	R-m	HZ	6009	16932	11895	18275
R-f L 7058 18860 10370 L-m L 5968					-/-/	
L-f L 5968	1	D4 1	1162	4140	6460	4472
L-m L 5968	H	12	00 M	Toop	170	12250
L-m L 5968 5968						
Lef L 5440 In marked ear marked f = female L = femal		μ	1886	1 1	10 10	1
L-f L 5440 no marked ear m = male P = right ear marked f = female L =	1	H	5968	8	**	8
I-f L 5440 N 5440 no marked ear m = male P = right ear marked f = female L =		Z	0			1
Lef L 5440 no marked ear m = male P = right ear marked f = female L =		A	768	de es	1	1 1
no marked ear m = male P = right ear marked f = female L =	4-5	Н	5440	1 1	dies and	*
no marked ear m = male P = right ear marked f = female L =		H	0	1	8	1
no marked ear m = male P = right ear marked f = female L =						
right ear marked	no			u	и	Polymorphs
		021	marked	M	10 1	Lymp hocytes
The property was a		3	HAVE SON US			2

Graph XVII. The effect of the toxin of S. A. on the total leukocyte count.

The state of the state of the state of

BIBLIOGRAPHY

BIBLIOGRAPHY

- 1. BETHEL, F. H., STURGIS, C. C., MALLERY, O. T., and RUNDLES, R. W. Arch. Internal Medicine 74, 131. 1944.
- 2. SPICER, S. S., DAFT, F. S., SEBRELL, W. H., and ASHBURN, L. L. U. S. Public Health Report 57, 1559-1566. 1942.
- 3. ASHBURN, L. L., DAFT, F. S., ENDICOTT, K. M., and SEBRELL, W. H. U. S. Public Health Report 57, 1883-1891. 1943.
- 4. EDITORIAL REVIEW. Nutrition Reviews 2, 103. 1944.
- 5. LEHR, D., ANTOPOL, W., CHUNG, J., and SPRINZ, H. Proc. Soc. Exp. Biol. and Medicine 45, 15. 1940.
- 6. GROSS, P., AXELROD, A. E., and BOSSE, M. D. Amer. J. of Med. Sciences 208, 642. 1944.
- 7. DAFT, F. S., ASHBURN, L. L., and SEBRELL, W. H. Science 96.
- 8. ENDICOTT, K. M., KORNBERG, A., and DAFT, F. S. U. S. Public Health Report 59, 49-54. 1944.
- 9. AXELROD, A. E., GROSS, P., BOSSE, M. D., and SWINGLE, K. E. J. Biol. Chem. 148, 721. 1943.
- 10. DAFT, F. S. and SEBRELL, W. H. U. S. Public Health Report 58, 1542-1545. 1943.
- 11. SPICER, S. S., DAFT, F. S., SEBRELL, W. H., and ASHBURN, L. L. U. S. Public Health Report 57, 1559-1566. 1942.
- 12. GOLDSMITH, E. D., GORDON, A. S., FINKELSTIEN, G., and CHAREPPER, H. A. J. Amer. Med. Assoc. 125, 1944.
- 13. WAISMAN, H. A. and ELVEHJEM, C. A. J. Nutrition 26, 361.
- 14. CANTOR, M. M. and SCOTT, J. W. Reprint from Science 100, 545-546. 1944.
- 15. HEGSTED, D. M. and RAO, M. N. J. Nutrition 30. 1945.
- 16. KORNBERG, A., TABOR, H., and SEBRELL, W. W. Amer. J. Physiology 143, 434. 1945.

- 17. FOUTS, P. J., HELMER, O. M., and LEPKOVSKY, S. Amer. J. Med. Science 199, 163. 1940.
- 18. CHICK, H., MacRAE, T. F., and MARTIN, A. J. P. Biochem. Jour. 22, 844. 1938.
- 19. FOUTS, P. J. and LEPKOVSKY, S. Proc. Soc. Exp. Biol. and Med. 50, 221-222. 1942.
- 20. CALLOMAN, F. T. and LINTON, L. G. J. Lab. and Clin. Med. 29, 574. 1944.
- 21. MACKENZIE, J. B. and MACKENZIE, C. G. John Hopkins Hosp. Bul. 74, 85-97. 1944.
- 22. KORNBERG, A., ENDICOTT, K. M., DAFT, F. S., and SEBRELL, W. H. U. S. Public Health Report 60, 661. 1945.
- 23. MUSSER, J. H. and WINTROBE, M. M. Diseases of the Blood.
- 24. DOWNEY, H. Handbook of Hematology.
- 25. LILLY RESEARCH LABORATORIES, Anaemias.
- 26. HARROW, B. Text Book of Biochemistry.
- 27. ROSENBERG, H. R. Chemistry and Physiology of the Vitamins.
- 28. DROBOTKO, V. G. Amer. Rev. Soviet Med. 2, 238. 1945.
- 29. VILTER, R. W., SCHIRO, H. S., and SPIES, T. D. Nature 145, 388. 1940.

APPENDIX

APPENDIX

PREPARATIONS AND METHODS OF FEEDING

1. The pyridoxine free, B-complex supplement was prepared as follows:

Stock solutions

Thiamin solution

Riboflavin susp.

Ca Pantothenate solution

Niacin solution

Choline HCl solution

Inositol solution

Para. Am. Benz. Acid solution

- 1 gm. in 20 c.c. water

- 1 gm. in 40 c.c. water

- 20 gm. in 40 c.c. water

- 1 gm. in 20 c.c. water

- 1 gm. in 20 c.c. EtoH (95%)

Supplement prepared from stock solutions:

Thiamin 1 c.c.
Riboflavin in 20 c.c. Biotin cone
Ca Panto. 2 c.c.
Niacin 10 c.c.
Choline 10 c.c.
Inositol 5 c.c.
Para. A. B. Acid 2 c.c.

- 2. Oral feeding was accomplished by placing the end of the pipette into the rat's mouth.
 - 3. Pyridoxine HCl solution:
 - 50 gms. of pyridoxine HCl dissolved in 100 c.c of water.
 - .5 c.c. of solution = 50 mgms. pyridoxine HCl.
- 4. Each subcutaneous injection was (.5 c.c. of solution) given in the region of the lower thigh.
- 5. Drugs used were received gratis from the following manufacturers:

Sulfaguanidine - John Wyeth and Bros. Limited
Gardan - Winthrop Chemical Co. Ltd.
Pyramidon - Winthrop Chemical Co. Ltd.

Thiouracil - John Wyeth and Bros. Limited Nicotinic Acid - John Wyeth and Bros. Limited P. Amino B. Acid - John Wyeth and Bros. Limited Riboflavin - John Wyeth and Bros. Limited Biotin - John Wyeth and Bros. Limited Pyridoxine HCl - John Wyeth and Bros. Limited.

6. Double distilled water (glass still). All solutions were preserved at refrigeration temperature in tightly stoppered brown glass bottles.

SECTION B

ABSORPTION AND STORAGE OF CAROTENE (PROVITAMIN A)

IN THE RAT.

INTRODUCTION

ABSORPTION AND STORAGE OF CAROTENE (PROVITAMIN A) IN THE RAT.

INTRODUCTION

Vitamin A occurs only in the animal organism. The compounds found in plants with vitamin A activity for animals belong to the class of carotenoids containing 40 carbon atoms. They are converted in the animal body into other substances having vitamin A activity. Rats are usually used for provitamin studies and it is assumed that compounds of provitamin activity for rats also exhibit this activity for man (1).

The efficiency with which provitamin A is converted to vitamin A varies in different animals, rats being most efficient.

Cats are not capable of this conversion (3, 7).

B-carotene administered orally to the Albino rat is absorbed from the gastro-intestinal tract, converted to vitamin A and stored chiefly in the liver. Small amounts are stored in the corpus luteum, adrenal cortex, in the retina as visual purple, renal cortex and tissue fat. Traces occur in the lungs and the pars intermedia of the pituitary (6). Carotene is found in the liver, dentin of teeth and the testes.

The absorption of B-carotene and its conversion depend upon a mechanism yet unknown. Most evidence points to the fact that conversion of B-carotene to vitamin A takes place in the Kupffer cells of the liver, that an enzymatic process is involved.

 There is also evidence that cells of the intestinal villi may take part in the conversion (1, 16, 21).

A critical review of the literature reveals a wide diversity of experimental conditions among the various investigators: differences in animals (sex, age, stage of liver, depletion of vitamin A), in diets (purity, nature), in carotene dosages used, and in the duration of experimental periods. The previous dietary history has a marked effect on the rate of absorption and degree of vitamin A storage. Adequately fed animals store vitamin A more efficiently than vitamin A deficient animals (7, 14, 21). Sereda (39) observed that the rate of absorption of vitamin A was increased by preliminary priming doses of vitamin A. When animals were fed a vitamin A free diet for more than one week and subsequently provided with carotene, irregularity in vitamin A storage is attributed to irregular intestinal absorption (17).

It is generally agreed that vitamin A is utilized more efficiently than B-carotene. Clayton and Baumann (9) attributed this to the fact that vitamin A is an alcohol and B-carotene a hydrocarbon. Russell (10), Popper (16) and Kemmerer et al (20) observed that the absorption of vitamin A and B-carotene is proportional to the dose fed. With vitamin A this is true up to a maximum of 300,000 I. U. Using daily doses of 5,000 I. U. in vitamin A depleted animals, Sereda has shown that complete "liver saturation" could be affected in about 20 days (100,000 I. U.), following which further increase could not be produced.

Experimental studies have revealed a correlation between

· 1, 211. the rate of carotene and lipid absorption. Thorbjarnarson and Drummond (15), Wilson et al. (19), Shaw et al. (21) and Irvin et al. (18) found that significant quantities of carotene are absorbed when fed with gall bladde bile and pancreatic lipase. This could not be confirmed by Dzialoszynski et al. (13) and Goss and Guilbert (26).

The utilization of carotene by rats is influenced by the nature of the oil used as diluent (19, 22). Wesson oil (20) and cod liver oil (29) provided more efficient utilization of B-carotene than cottonseed oil. Slanetz and Scharf (24) observed that mineral oil interferes with full utilization.

A report by Guggenheim and Koch (12) suggests a protective action of vitamin E in the small intestine enhancing vitamin A absorption and storage. Russell (10) postulates a similar action of phosphatides.

Frazer, Schulmann and Stewart (8) showed that the rate of fat absorption was increased when emulsifying agents were used.

Evidence put forward by this paper caused a similar emulsifying system to be used in the following experiments.

PART I

"Comparison of the efficiency of propylene glycol and cottonseed oil as B-carotene solvents on the storage of B-carotene and vitamin A in the liver of Albino rats."

PLAN OF EXPERIMENT

B-carotene in cottonseed oil and in propylene glycol was fed to albino rats. The storage of B-carotene as vitamin A in the liver was measured.

Animals

Adult female albino rats (Departmental Colony) were fed a vitamin A free diet when their young were born. Young females at weaning (3 weeks) were fed the same diet and allowed water ad lib.).

Two groups of animals (7 weeks of age) were used in each experiment. Each group of 20 was placed in a separate cage and fed the vitamin A free diet. They were allowed water ad lib. One group was fed a daily supplement of 1,000 I. U. of B-carotene in cottonseed oil; the other group received 1,000 I. U. of B-carotene in propylene glycol.

One animal out of each group was killed with ether every four to five days. The drained livers were weighed and a chemical analysis performed to determine vitamin A and B-carotene content.

Analysis

The Carr Price procedure (1) was followed and modified (2) for this purpose.

Flow Sheet

- 1. Minced organs + 40 c.c. NaOH (5%) heated at 60°C. for one hour shaken occasionally.
 - 2. Solution cooled (room temperature) and measured in

* a The second secon graduate cylinder.

- 3. Duplicate 10 c.c. aliquots + 4 c.c. KOH (60%) in H₂O + 10 c.c. EtOH (95%), refluxed 5 minutes at temperature of boiling H₂O.
 - 4. Flasks cooled room temperature.
- 5. Extraction. Three times 10 c.c. of petroleum ether (B. P. under 40° C.).
 - 6. Washing. Once with 15 c.c. of double distilled H20.
 - 7. Drying. Over anhydrous Na2SO4 for at least 4 hours.
- 8. Solution filtered and Na₂SO₄ washed thoroughly with petroleum ether (B. P. under 40° C.).
 - 9. Filtrate volume measured in graduate cylinder.
- 10. Ten c.c. sample placed in cuvette tube: comparator tube 10 c.c of petroleum ether (B. P. under 40° C.).
- (i) Coleman Bell Double Spectrophotometer used with selective filter at 440 mu. Transmission read directly and the quantity of carotene obtained by reference to curve obtained by treating a solution of known B-carotene content in a manner similar to the procedure outlined.
- (ii) Sample replaced in original cylinder, petroleum ether evaporated under nitrogen stream at 30° to 40° C. and the residue dissolved in 10 c.c. of chloroform. Vitamin A determined by method of Carr and Price using the color reaction with antimony trichloride and selective filter at 620 mm. Results were calculated using the equation:
 - (log. 100 log. reading) x .0525 x 58500 s c.c's. solution

This for 10 c.c. aliquot of solution. Ten c.c. chloroform used. Results expressed in I. U.

. • . . P 6 • at the second of and the second

Standard B-carotene Curve used as reference.

Table I. Storage of vitamin A and B-carotene in liver tissues.

Time in	G. S. Q.		P. G.	
days	Vitamin A	B-carotone	Vitenin A	B-carotene
0 11 22 23 35 44 55 55 67 77 77 88 88 99 77	37.70 42.40 64.20 93.40 78.70 128.70 110.30 147.40 137.10 144.80 121.00 156.10 195.10 195.10 195.10 275.60 303.10 280.90 277.70 298.70	0.80 6.97 6.01 12.20 15.10 15.49 15.49 8.92 5.25 10.30 7.96 16.40 7.97 10.30	1.20 46.20 55.20 85.30 104.60 87.70 122.40 178.50 148.10 156.60 142.40 127.20 175.20 175.20 186.20 263.30 244.30 265.60 272.80 275.60	0 9.70 7.00 9.60 9.10 9.10 13.99 14.20 14.20 14.20 17.70 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.

C. S. O. = Cottonseed Oil. P. G. = Propylene Glycol.

Vitamin A and B-carotene as International Units per gram of liver tissue.

Graph I. Comparison of Vitamin A storage in the liver, using cottonseed oil and propylene glycol as B-carotene diluents.

The state of the second of the

RECULTS

1. Table I and Graph I summarize the results obtained per gram of liver tissue.

DISCUSSION

Table I and Graph I illustrate that there is no significant difference in the rate and extent of vitamin A storage using either cottonseed oil or propylene glycol. The two curves parallel each other closely throughout the experiment. Since the animals were chosen of about equal weight at the time of liver analysis, any minor degree of storage rates could be attributed to individual animal differences in storage efficiency rather than to the difference in the two solutions used.

The extent of B-carotene storage tended to remain static after the initial storage. This suggests that the liver has only a limited capacity for storing B-carotene and amounts in excess of this are either converted to vitamin A or excreted.

SULMARY

1. No difference was observed in the efficiency of liver storage of vitamin A by the albino rate, when B-carotene was fed in cottonseed oil or propylene glycol.

PART II

"The effect of lipids on beta carotene absorption and storage of vitamin A in the albino rat."

FLAN OF EXPERIMENT

The absorption of B-carotene and its conversion to vitamin A depends on factors the nature and mechanism of which are as yet uncertain. Experimental studies suggest a correlation between the rate of B-carotene and lipid absorption (5, 6, 7). These studies were carried out on animals in various stages of depletion and it was thought that greater uniformity in results might be obtained in completely depleted animals.

Animala

Animals were prepared and handled in the manner already described (part I).

Three groups of animals seven weeks of age were used. Each group of 24 was placed in a separate cage and fed a vitamin A free diet. They were allowed water ad lib. Two animals from each group were fed the test dose of carotene. At varying time intervals both animals were killed with other and their digestive tracts assayed for B-carotene content. Vitamin A assays were performed only on the livers.

RESULTS

The results are presented in Tables II, III, IV and V.

- (1) Table II. After feeding 2100 I. U. of B-carotene in cottonseed oil (conc.).
- (2) Table III. After feeding 1400 I. U. of B-carotene (conc.) with sodium taurocholate.

Table II. B-carotene in cottonseed oil expressed as per cent of the dose

Time in hours	Stom.	S.I.	L.I.+ Cts. Gaecum Gts.	Liv Vit.A	or B-C.	Total
012345673	0 52.50 57.20 20.90 22.30 18.20 15.30 17.60 14.30 2.48 1.35	0 5.4 24.5 28.4 9.2 11.8 10.5 6.8 4.2	0 0.3 0.9 2.6 2.9 5.3 18.4 27.6 40.8 38.4	1.14 1.39 1.17 1.20 1.40 2.30 2.70 2.70 2.90 3.30 3.82 4.10	0.22 0.56 1.20 1.20 1.70 1.60 2.70 1.60 2.70	60.1 84.9 54.3 32.0 39.3 45.8 60.2 67.9 50.5 19.4

Stom. - Stomach

S.I. - Small Intestine L.I. - Large Intestine Cts. - Contents B-C - Beta Carotene

Table III. Absorption of B-carotene plus bile salts. B-carotene expressed as per cent of the dose.

Time in	Stom.	S.I.	L.I.	Live	or	
hours	Cts.	Cts.	Cts.	Vit.A	B-C.	Total
012345673	0 48.4 51.4 25.1 21.1 14.3 15.2 8.2 5.5 2.8	0 13.20 24.10 32.40 11.20 4.80 12.80 9.50 6.51 1.31	0 0.60 1.73 3.20 3.55 5.90 21.00 21.30 47.80 46.60 9.30	.89 .87 .91 1.68 1.68 2.55 2.55 2.56 4.6.31	1.35 1.35 1.85 1.84 2.87 2.56 3.38 4.18 3.35	64.4 80.1 63.7 40.4 29.7 50.7 52.4 62.4 22.2

Stom. = Stomach

S.I. = Small Intestine L.I. = Large Intestine

Cts. = Contents

B-C. = Beta carotone

Table IV. Absorption of B-carotene plus an emulsifier. B-carotene expressed as per cent of the dose.

Time in	Stom.	S.I. Cts.	L.I.	Liver		
hours				Vit.A	B-C.	Total
0 1 2 3 4 5 6 7 8 12 24	0 40.80 47.30 29.30 20.50 7.40 6.50 5.70 6.80 2.49	0 24.10 24.70 33.30 45.80 12.50 7.80 7.20 2.50 1.32	0 •95 1.50 2.10 4.60 25.60 24.70 46.00 38.40 13.20 2.20	1.27 1.50 1.57 1.90 2.24 2.38 3.50 5.70	38 1.40 1.46 1.50 1.61 1.74 1.83 2.11 2.73 3.34	68.7 76.5 68.1 74.7 49.5 41.1 64.5 57.9 23.6

Stom. - Stomach

S.I. = Small Intestine L.I. = Large Intestine Cts. = Contents

B-C. = Beta Carotene

Table V. B-carotene remaining in gastro-intestinal tract expressed as per cent of the dose.

Time	C. S. O.			B. S.		Emuls.	
in	in G.I.	Assume Absorp.	in G.I.	Assumo Absorp.	in G.I.	Assume Absorp.	
0 1 2 3 4 5 6 7 8 8 12 24	58.2 82.6 51.9 34.4 35.3 41.5 55.7 61.9 45.1	17.4 48.1 65.6 64.7 58.5 44.3 38.1 54.9	54.2 77.2 60.7 35.8 25.0 46.0 62.5 53.4 13.1	22.8 39.3 64.2 75.0 53.8 54.0 37.5 46.6 36.9	65.8 73.5 64.7 70.8 36.9 59.5 52.4 18.2	26.5 35.3 29.1 52.2 63.1 40.5 47.6 81.8 95.5	

C.S.O. - B-Carotene in cottonseed oil

B.S. = B-Carotene in bile salts
Emuls. = B-Carotene in emulsifier
G.I. = Gastro-intestinal tract

(3) Table IV. After feeding 1300 I. U. of B-carotene (conc.) with an emulsifier.

Details of the preparations are described in the appendix.

DISCUSS ION

From Tables II, III and IV it can be seen that there is no great difference between the rate of B-carotene absorption using bile salts and the emulsifying agent.

Absorption of B-carotene takes place solely in the small intestine. By totalling the first three columns in each of the Tables II, III and IV, the percentage of the dose of B-carotene remaining in the gastro-intestinal tract is obtained (Table V). If it is assumed that there is no destruction of carotene, the remainder of the dose represents carotene absorbed into the blood. Any large differences in the percentage of the dose found in the liver must represent destruction in the gastro-intestinal tract.

In general, the rates of absorption of B-carotene in cottonseed oil and B-carotene with bile salts parallel each other. The rate and extent of absorption with the emulsifying agent was less than in the other two groups. Greatest absorption took place in the five hour group using bile salts.

The rate of storage of vitamin A in the liver was approximately equal in all groups. The extent of storage after the 24 hour interval was significantly greater in the bile salt group. The emulsifying group and cottonseed oil group show little difference in this respect.

SUMMARY

After feeding albino rats dosages of 2100 I. U. of B-carotene, 1400 I. U. of B-carotene with a bile salt, and 1300 L. U. of B-carotene with an emulsifying agent, it was concluded that:

- (1) Bile salts slightly improved the rate of absorption of B-carotene from the gastro-intestinal tract. Increased liver storage is possibly due to the increased amount of carotene absorbed.
- (2) No improvement of B-carotene absorption and vitamin A storage occurred with the emulsifying agent.

BIBLIOGRAPHY

•

BIBLIOGRAPHY

- 1. ROSENBERG, H. R. Chemistry and Physiology of the Vitamins. 1942.
- 2. OLCOTT, H. S. and McCAMMI, D. C. Jour. Biol. Chem. 94, 185.
- 3. BRAUDE, R., FOOTE, A. S., HENRY, K. M., KON, S. K., THOMPSON, S. Y., and MEAD, T. H. Biochem. Jour. 35, 693. 1941.
- 4. REA, J. L. and DRUMOND, J. C. Z. Vitaminforsch 1, 177.
- 5. AJMAD, B. Biochem. Jour. 25, 1195. 1931.
- 6. MOORE, T. Biochem. Jour. 26, 1. 1932.
- 7. BAUMANN, C. A., RIISING, B. M., and STRENBOCK, H. Jour. Biol. Chem. 107, 205. 1934.
- 8. FRAZER, A. C., SCHULMAHN, J. H., and STEWART, H. C. Jour. Physiol. 103 (3). 1944.
- 9. CLAYTON, C. C. and BAUMANN, G. A. Jour. Nutrition 27, 155.
- 10. RUSSELL, W. C. Annual Review of Biochem. 13, 411. 1944.
- 11. QUACKENBUSH, F. S., COX, R. P., and STEENBOCK, H. Jour. Biol. Chem. 145, 169. 1942.
- 12. GUIGENHEIM, K. and HOCH, W. Biochem. Jour. 38, (3), 256.
- 13. DEBALOSEYNCKI, L. M., MYSTKONSKI, E. M., and STEWART, G. P. Biochem. Jour. 35, (1). 1941.
- 15. THORBJARNARSON, T. and DRUMMOND, J. C. Blochem. Jour. 32, (1). 1938.
- 16. POPPER, H. Physiol. Reviews 24, (2), 205. 1944.
- 17. BCULOW, O. W. and EOCHER, H. Amer. Jour. hysiol. 137, 213.
- 18. IRVIN, J. L., KAPOLA, T., and JOHNSON, C. G. Amer. Jour. Physiol. 132, 202. 1941.
- 19. WILSON, H. E. C., DAS GUPTA, S. M., and AJEMAD, B. Indiana Jour. Jed. Research 24, 807. 1937.
- 20. KENGERER, A. R. and FRAPS, G. S. Jour. Mutrition 16, 309. 1938.

- 21. SHAW, R. J. and DEVEL, H. J. Jour. Nutrition 27, 395. 1944.
- 22. OSER, B. L. and MELNECK, D. Jour. Nutrition 30, 385. 1945.
- 23. MATTILL, H. A. Annual Review of Biochem. 10, 395. 1941.
- 24. SLANETZ, C. A. and SCHARF, A. Jour. Nutrition 30, 239. 1945.
- 25. DEUEL Jr., H. J., HULLMANN, L., and LEONARD, A. Jour. Nut. 20. 1940.
- 26. GOSS, H. and GUILDERT, H. R. Jour. Nutrition 18, 169. 1939.
- 27. LEAGE, E. J., LEAGE, J. G., STERNBOCK, H., and BAUMANN, G. A. Jour. Nutrition 17, 91. 1939.
- 28. KENMERER, A. R. and FRAPS, G. S. Jour. Nutrition 16, 309.
- 29. KERGERER, A. R., TRUCHLER, R., and FRAPS, G. S. Jour. Mut. 24, 57. 1942.
- 30. LEASE, J. G., STEINBOCK, H., and BAUMANN, C. A. Nutrition Abstracts and Reviews 12, 36. 1942-43.
- 31. LEFAGE, G. A. and PETT, L. B. Jour. Biol. Chem. 141, 747.
- 32. GHRSNEY, J. and McCOORD, A. B. Proc. Soc. Exptl. Biol. and Med. 31, 887. 1934.
- 33. DAVIES, A. W. and MOORE, T. Biochem. J. 28, 288. 1934.
- 34. GARR, F. H. and PRICE, E. H. Blochem. Jour. 20, 498. 1926.
- 35. PRTT, L. B. and LE PAGE, G. A. Jour. Biol. Chem. 132, 585.
- 36. DANN, J. M. and EVELYN, R. A. Biochem. Jour. 32, 1008. 1938.
- 37. KINBLE, M. S. Jour. Lab. Clin. Med. 24, 1055. 1939.
- 38. FRAZER, A. C. Physiol. Reviews 26, (1), 103. 1946.
- 39. CANTOR, M. M. and SEREDA, S. Sereda, M. Se., Thesis, Dept. Biochem., U. of A. 1943.

APPRINDIX

CONTRACTOR CONTRACTOR

APPENDIX

PREPARATIONS AND METHODS OF FEEDING

Part I

- 1. Stock B-carotene in cottonseed oil.
 - (1) Cottonseed oil was added so that

 .l c.c. solution = 1000 I. U. of B-carotene.
 - (2) Propylene glycol added so that

 .l c.c. solution = 1000 I. U. of B-carotane.

Solutions were kept in refrigerator in brown glass bottles.

- 2. Oral feeding was accomplished by placing the end of a graduated pipette into the rat's mouth.
 - 3. Reagents:
 - (1) 95% ethanol (C. P.).
- (2) Low B. P. petroleum ether, C. P. Petroleum ether B. P. below 60° C., was redistilled using a fractionating column and the fraction boiling under 40° C. used.
 - (3) 60% KOH in water.
- (4) Chloroform (C. P.). Exposure to air (H2O vapor) kept at a minimum by opening small quantities for use at any one time.
 - (5) Anhydrous sodium sulfate (C. P.).
 - (6) Antimony Trichloride in chloroform (25% W/V).
 - (7) Double distilled water (glass still).

Part II

- 1. Stock D-carotene in cottonseed oil.
 - (1) .15 c.c. solution = 2100 I. U. of B-carotene.
- (2) Sodium taurocholate was measued as 25 mgms. per .15 c.c. of stock solution.
- .15 c.c. of solution = 1400 I. U. of B-carotene + Na taurocholate.
- (3) The emulsifier was measured as 25 mgms. per .15 c.c. of stock solution.
- .15 c.c. of solution = 1300 I. U. of B-carotene + emulsifier.

Baulsifier:

3% Na Taurocholate 36% Lecithin 61% Oleic acid.

Estimations of B-carotene were performed on .15 c.c. of each solution, measured from the feeding pipette.

- 2. Oral feeding was accomplished by placing the end of the pipette into the rat's mouth.
 - 3. Compounds:
 - (1) B-carotene "Smace."
 - (2) Sodium Taurocholate "Eimer and Amend."
 - (3) Propylene Glycol "Eastman Kodak Co."
 - (4) Cleic Acid (C. P. free from linoleic acid) "Eimer and Amend."
 - (5) Cottonseed Oil "Fisher Scientific Co."
 - (6) Legithin "Pfonstiel."

