

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07K 14/705

(11) International Publication Number:

WO 99/21890

A1

(43) International Publication Date:

6 May 1999 (06.05.99)

(21) International Application Number:

PCT/SE98/01947

(22) International Filing Date:

27 October 1998 (27.10.98)

(30) Priority Data:

9703914-3 27 October 1997 (27.10.97) SE 9800864-2 16 March 1998 (16.03.98) SE 9802575-2 17 July 1998 (17.07.98) SE

(71) Applicant (for all designated States except US): ASTRA AKTIEBOLAG [SE/SE]; S-151 85 Södertälje (SE).

(72) Inventor; and

(75) Inventor/Applicant (for US only): EKSTRAND, Jonas [SE/SE]; Astra Hässle AB, Tvistevägen 48, S-907 36 Umeå (SE).

(74) Agent: ASTRA AKTIEBOLAG; Patent Dept., S-151 85 Södertälje (SE).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: NEW NUCLEOTIDE SEQUENCES

(57) Abstract

The present invention relates to a nucleic acid molecule encoding a GABA_B receptor, or a functionally equivalent modified form thereof, said receptor being selected from the group consisting of human and canine GABA_B receptors.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA.	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KР	Democratic People's	NZ	New Zealand		υ
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal	_	
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

NEW NUCLEOTIDE SEQUENCES

TECHNICAL FIELD

The present invention relates in particular to nucleic acid molecules encoding GABA_B receptors, and to methods for screening for compounds which are inhibitors of transient lower esophageal sphincter relaxations (TLESR), said methods comprising the use of a nucleic acid molecule encoding a GABA_B receptor.

10

BACKGROUND ART

GABA_B receptors

- 15 GABA (4-aminobutanoic acid) is an endogenous neurotransmitter in the central and peripheral nervous systems. Receptors for GABA have traditionally been divided into GABA_A and GABA_B receptor subtypes. GABA_B receptors (for a review see Kerr, D.I.B. and Ong, J. (1995) Pharmac. Ther. vol. 67, pp.187-246) belong to the superfamily of G-protein coupled receptors. GABA_B receptor agonists are described as being of use in the treatment of CNS disorders, such as muscle relaxation in spinal spasticity, cardiovascular disorders, asthma, gut motility disorders such as irritable bowel syndrome and as prokinetic and anti-tussive agents. GABA_B receptor agonists have also been disclosed as useful in the treatment of emesis (WO 96/11680).
- The cloning of the rat GABA_B receptors GABA_BR1a (SEQ ID NOS: 44 and 45) and GABA_BR1b (SEQ ID NOS: 46 and 47) is disclosed by Kaupmann et al. (1997) Nature, vol. 386, 239-246. The mature rat GABA_BR1b differed from GABA_BR1a in that the N-terminal 147 residues were replaced by 18 different residues. It was presumed that the rat GABA_BR1a and -b receptor variants are derived from the same gene by alternative splicing.

The cloning of the human GABA_B receptor GABA_BR1b is disclosed in WO 97/46675.

Reflux

- In some humans, the lower esophageal sphincter (LES) is prone to relaxing more frequently than in other humans. As a consequence, fluid from the stomach can pass into the esophagus since the mechanical barrier is temporarily lost at such times, an event hereinafter referred to as "reflux".
- Gastro-esophageal reflux disease (GERD) is the most prevalent upper gastrointestinal tract disease. Current therapy has aimed at reducing gastric acid secretion, or by reducing esophageal acid exposure by enhancing esophageal clearance, lower esophageal sphincter tone and gastric emptying. The major mechanism behind reflux has been considered to depend on a hypotonic lower esophageal sphincter. However, recent research (e.g.
- Holloway & Dent (1990) Gastroenterol. Clin. N. Amer. 19, 517-535) has shown that most reflux episodes occur during transient lower esophageal sphincter relaxations (TLESR), i.e. relaxations not triggered by swallows. It has also been shown that gastric acid secretion usually is normal in patients with GERD. Consequently, there is a need for compounds which reduce the incidence of TLESR and thereby prevent reflux.

20

30

DISCLOSURE OF THE INVENTION

In the applicants' earlier patent application WO 98/11885, filed on 15 September 1997, it is disclosed that GABA_B receptor agonists can be used to reduce the incidence of transient lower esophageal sphincter relaxations (TLESR).

The present invention provides nucleic acid molecules encoding human and canine GABA_B receptors. These nucleic acid molecules will make possible the screening for compounds which are agonists or antagonists of GABA_B receptors, e.g. compounds which are inhibitors of transient lower esophageal sphincter relaxations (TLESR).

Consequently, in a first aspect, the present invention provides a nucleic acid molecule encoding a GABA_B receptor, or a functionally equivalent modified form thereof, said receptor being selected from the group consisting of human and canine GABA_B receptors.

- In preferred forms of the invention, the said nucleic acid molecule encodes the human GABA_B receptor 1a (SEQ ID NOS: 48 and 49), 1b (SEQ ID NOS: 50 and 51), 1c (SEQ ID NOS: 54 and 55) or 1d (SEQ ID NOS: 56 and 57); or the canine GABA_B receptor 1a (SEQ ID NOS: 52 and 53) or 1c (SEQ ID NOS: 58 and 59). Accordingly, the invention furthermore provides a nucleic acid molecule selected from:
- 10 (a) nucleic acid molecules comprising a nucleotide sequence set forth as SEQ ID NO: 48, 50, 52, 54, 56 or 58;
 - (b) nucleic acid molecules comprising a nucleotide sequence capable of hybridizing, under stringent hybridization conditions, to a nucleotide sequence complementary to the polypeptide coding region of a DNA molecule as defined in (a); and
- 15 (c) nucleic acid molecules comprising a nucleotide sequence which is degenerate as a result of the genetic code to a nucleotide sequence as defined in (a) or (b).

Furthermore, the invention provides nucleic acid molecules of genomic origin encoding human GABA_B receptors (SEQ ID NOS: 60 and 61) as well as nucleic acid molecules (set forth as SEQ ID NO: 70, 72, 74, 76, 78, 80, 82, 84) encoding additional isoforms of the human GABA_B receptor which isoforms can be shown to be generated by alternative splicing.

20

25

30

It should thus be understood that the nucleic acid molecule according to the invention is not to be limited strictly to molecules comprising the sequences set forth as SEQ ID: 48, 50, 52, 54, 56 or 58. Rather the invention encompasses nucleic acid molecules carrying modifications like substitutions, small deletions, insertions or inversions, which nevertheless encode proteins having substantially the biochemical activity of the GABAB receptors according to the invention. Included in the invention are consequently nucleic acid molecules, the nucleotide sequence of which is at least 95% homologous, preferably at least 96%, 97%, 98% or 99% homologous, with the nucleotide sequence shown as SEQ ID NO: 48, 50, 52, 54, 56 or 58 in the Sequence Listing.

The term "stringent hybridization conditions" is known in the art from standard protocols (e.g. Current Protocols in Molecular Biology, editors F. Ausubel et al., John Wiley and Sons, Inc. 1994) and could be understood as as stringent or more stringent than those defined by e.g. hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at +65°C, and washing in 0.1xSSC / 0.1% SDS at +68°C.

5

10

15

20

25

30

Included in the invention is also a nucleic acid molecule which nucleotide sequence is degenerate, because of the genetic code, to a nucleic acid of the present invention and more particularly to one of the nucleotide sequences set forth as SEQ ID NOs: 48, 50, 52, 54, 56 and 58. A sequential grouping of three nucleotides, a "codon", codes for one amino acid. Since there are 64 possible codons, but only 20 natural amino acids, most amino acids are coded for by more than one codon. This natural "degeneracy", or "redundancy", of the genetic code is well known in the art. It will thus be appreciated that the nucleic acid sequences shown in the Sequence Listing is only an example within a large but definite group of nucleic acid sequences which will encode the polypeptide as described above.

In a further aspect, the invention provides a recombinant polypeptide encoded by a nucleotide sequence of the present invention, encoding a GABA_B receptor. In preferred forms of the inventions, the said polypeptide comprises an amino acid sequence set forth as SEQ ID NO: 49, 51, 53, 55, 57, 59, 71, 73, 75, 77, 79, 81, 83 or 85 in the Sequence Listing. However, polypeptides of the present invention are not to limited to those having an amino acid sequence identical with one of SEQ ID NOs: 49, 51, 53, 55, 59, 71, 73, 75, 77, 79, 81, 83 or 85 in the Sequence Listing. Rather the invention encompasses polypeptides carrying modifications such as substitutions, small deletions, insertions or inversions, which polypeptides nevertheless have substantially the biological activities of the GABA_B receptor. Included in the invention are consequently polypeptides, the amino acid sequence of which is at least 95% homologous, preferably at least 96%, 97%, 98% or 99% homologous, with one of the amino acid sequences described by SEQ ID NOs: 49, 51, 53, 55, 57 59, 71, 73, 75, 77, 79, 81, 83 and 85 in the Sequence Listing.

Included in the invention are polypeptides of the present invention which have been post-translationally modified, e.g. by cleavage of an N-terminal signal sequence which can be e.g. 1 to 25 amino acids long.

- In yet another aspect, the invention provides a vector transformed with a nucleic acid molecule of the present invention. The said vector can e.g. be a replicable expression vector which carries and is capable of mediating the expression of a nucleic acid molecule according to the invention. In the present context the term "replicable" means that the vector is able to replicate in a given type of host cell into which is has been introduced.

 Examples of vectors are viruses such as bacteriophages, cosmids, plasmids and other recombination vectors. Nucleic acid molecules are inserted into vector genomes by methods well known in the art.
- Included in the invention is also a cultured host cell harbouring a vector according to the
 invention. Such a host cell can be a prokaryotic cell, a unicellular eukaryotic cell or a cell
 derived from a multicellular organism. The host cell can thus e.g. be a bacterial cell such as
 an E. coli cell; a cell from a yeast such as Saccharomyces cervisiae or Pichia pastoris, or a
 mammalian cell. The methods employed to effect introduction of the vector into the host
 cell are standard methods well-known to a person familiar with recombinant DNA
 methods.

A further aspect of the invention is a process for production of a GABA_B receptor polypeptide according to the invention, said process comprising culturing a host cell as defined above under conditions whereby the said polypeptide is produced, and recovering the said polypeptide.

25

30

A further important aspect of the invention is a method for the screening of compounds which are inhibitors of transient lower esophageal sphincter relaxations (TLESR), said method comprising the use of a nucleic acid molecule encoding a GABA_B receptor. The said nucleic acid molecule encoding a GABA_B receptor can e.g. be one of the nucleic acid molecules according to the invention encoding human or canine GABA_B receptors. However, it should be understood that this aspect of the invention is not limited to the use

of the said human and canine GABA_B receptors, but rather encompasses the use of any GABA_B receptor for screening for compounds which are inhibitors of transient lower esophageal sphincter relaxations.

In yet another important aspect, the invention provides a method for the screening of compounds which are agonists or antagonists to a GABA_B receptor, said method comprising the use of a nucleic acid molecule, according to the invention, encoding human or canine GABA_B receptors.

10 Brief Description of the Drawings

Figure 1: Map of the human GABA_B receptor gene.

The exon/intron organisation is shown. Exons are indicated as solid boxes numbered 1-23. The part of intron 5 that is retained together with exon 6 giving rise to GABA_B receptor 1b is indicated as an open box.

Figure 2: Expression of human GABA_B receptor 1b isoform in transfected C127 cells.

Western blot analysis of transfected C127 cells using a polyclonal anti-human GABA_B receptor antibody. Lane 1: Untransfected C127 whole cell lysate. Lanes 2-7: Whole cell lysates of six independent clones transfected with human GABA_B receptor 1b isoform encoding cDNA. The clones analysed in lanes 4 to 7 express a GABA_B receptor of expected molecular weight (arrow).

- Figure 3: Expression of human GABA_B receptor 1d isoform in transfected C127 cells.
- Western blot analysis of transfected C127 cells using a polyclonal anti-human GABA_B receptor antibody. Lanes 1-3: Concentrated culture media from three independent C127 clones transfected with a cDNA expression construct encoding the human GABA_B receptor

15

20

25

1d isoform. Lanes 4-6: Whole cell lysates corresponding to the clones analysed in lanes 1-3. The experiment revealed that the human GABA_B receptor 1d cDNA encodes a secreted isoform. The arrow indicates the bands corresponding to the 1d isoform.

Figure 4: Expression of human GABA_B receptor 1d isoform in E. coli.

5

10

15

20

25

30

Western blot analysis of transformed *E. coli* cells using a polyclonal anti-human GABA_B receptor antibody. Lane 1: Lysate from an uninduced *E. coli* culture transformed with an pET-based expression construct encoding the human GABA_B receptor 1d cDNA. Lane 2: Lysate from an IPTG-induced *E. coli* culture transformed with an expression construct encoding the human GABA_B receptor 1d cDNA. Lane 3: Lysate from an IPTG-induced *E. coli* culture transformed with an expression construct encoding an unrelated protein. Lane 4: The BSA-conjugated peptide previously used for immunization was loaded on the gel as a positive antibody control.

The screening methods according to the invention can e.g. comprise the steps (a) transforming a cultured cell with a nucleic acid molecule encoding a GABA_B receptor, so that a GABA_B receptor is expressed on the surface of the cell; (b) contacting a test compound with the said cell; and (c) determining whether the test compound binds to, and/or activates, the GABA_B receptor.

In particular GABA_B receptor expressing cells, transgenic animals or cells and tissues derived thereof, nay be used to screen substance libraries for antagonist or agonist activities. For this purpose, GABA_B receptor expression may be directed to cells and tissues containing, either naturally or artificially, the necessary components allowing correct receptor transport and processing as well as coupling to second messenger pathways. Screening may be performed as ligand binding assays or functional assays. For screening, cells and tissues my be prepared in various ways, each uniquely suited to its purpose. Ligand binding assays are performed *in vivo* or *in vitro* using e.g. radiolabelled GABA. Functional assays examplified by, but not limited to, Ca⁺⁺-responses, cAMP-

responses and effects on K⁺ channels, may be performed in living cells, broken cells, isolated cell membranes, as well as in tissues and in living animals. To facilitate measurement of physiological GABA_B receptor mediated responses, GABA_B receptors may be co-expressed with promiscous G-proteins like e.g. Gα16 or Gqi5 increasing G-protein coupling. Another possible way to increase G-protein coupling is to fuse the GABA_B receptor with appropriate G-proteins using standard molecular techniques. In order to further improve readouts in Ca⁺⁺-response assays, GABA_B receptors may be co-expressed with aequorin, a photoprotein cloned from the luminescent jellyfish Aequorea victoria.

10

25

In yet another aspect, the invention provides a pharmaceutical compositions comprising a soluble GABA_B receptor further comprising one or more pharmaceutical acceptable carriers and/or diluents.

In yet another aspect, the invention provides a method for the diagnosis or treatment of conditions related to GABA-dysfunction, e.g. epilepsy, psychiatric disorders such as depression and anxiety, cognitive dysfunction, gastroesophageal reflux disease, emesis, irritable bowel syndrome, dyspepsia, spasticity, arthritis, allergies, autoimmune diseases, neoplastic diseases, pain, and infectious diseases, comprising the use or administration of soluble forms of the GABA_B receptor, such as the human GABA_B receptor 1c or 1d or functionally equivalent modified forms thereof; preferably being a polypeptidfe of the present invention..

The soluble forms of the GABA_B receptor can e.g. be produced by culturing a host cell harbouring a vector comprising a nucleic acid encoding the soluble GABA_B receptor under conditions where whereby the said polypeptide is produced, the polypeptide recovered and administered to a patient in need thereof.

Furthermore, the level of soluble GABA_B receptors in certain body fluids, e.g. serum and CSF, can be measured and used in diagnostics related to conditions with altered levels of soluble GABA_B receptors in said body fluids.

Throughout this description the terms "standard protocols" and "standard procedures", when used in the context of molecular cloning techniques, are to be understood as protocols and procedures found in an ordinary laboratory manual such as: Current Protocols in Molecular Biology, editors F. Ausubel et al., John Wiley and Sons, Inc. 1994, or Sambrook, J., Fritsch, E.F. and Maniatis, T., Molecular Cloning: A laboratory manual, 2nd Ed., Cold

Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1989.

EXAMPLES

10

15

5

EXAMPLE 1A: Cloning and sequencing of cDNA encoding human GABA_B receptor 1a and 1b

Messenger RNA from human hippocampus was obtained from Clontech (Palo Alto, CA, USA) (catalog #6578-1). First-strand cDNA synthesis reactions were performed using the First-strand cDNA Synthesis kit from Amersham Pharmacia Biotech (Uppsala, Sweden). The pd(N)₆ primer was used to prime the first-strand synthesis. The generated cDNA molecules were used as template in the PCR reactions described below.

Specific PCR primers were designed (Table 1) based on the sequences of the rat GABA_B receptor 1a and 1b cDNA (Kaupmann et al. 1997, EMBL accession numbers Y10369 (SEQ ID NO: 44) and Y10370 (SEQ ID NO: 46)).

20

TABLE 1
Primers used for RT-PCR on mRNA from human hippocampus

Nr.	Species	Sequence 5'- 3'	SEQ ID NO
794	Rat	GTTTCTTCTCGGATCCAGCTGTGCCTG	1
795	Rat	CAGGCACAGCTGGATCCGAGAAGAAACT	2
796	Rat	CGGTCGACTCACTTGTAAAGCAAATGTACTCGACTCCC	3
797	Rat	ATGCGCGCCGGCAGCCAACATGCTGCTGCTGCTGCTGCTGCTGC	4
831	Rat	CGGTCGACTCACTTGTAAAGCAAATGTACTCGACTCCCATCACAGC	5
838	Rat	ATGCGCGCCGGCAGCCAACATGCTGCTGCTGCTGCTGCTGCTCTCTTCC	6
842	Rat	CAGGCACAGCTGGATCCGAGAAGAACTCTGTCGGAAAGT	7
863	Rat	GGTCATCCAGCGTTGAGGTGAAGAC	8
864	Rat	GAAGGTTGCCAGATTATACATCCGC	9
865	Rat	CCACGATGATTCGAGCATCTTGACG	10
866	Rat	GCCTCTCACTCCCCTCATCTCC	11
932	Human	GAGTGAAGGAGCTGGAATTG	12

5 cDNA fragments encoding parts of the human GABA_B receptors were amplified directly by PCR using the designed primers with the generated cDNA molecules as templates. All PCR experiments were carried out using the Perkin Elmer Taq DNA polymerase with Gene Amp (Roche Molecular Systems Inc., NJ, USA) with the following PCR program: +95°C for 1 minute, +50°C for 30 seconds, +72°C for 3 minutes, repeated 44 times and finally +72°C for 7 minutes. The following primer combinations gave PCR products with expected sizes: 838 and 842, 838 and 795, 797 and 865, 864 and 865, 864 and 863 which corresponds to the 5′-end of the GABA_B receptor 1a. Primer pair 932 and 831, 932 and 796, 794 and 831 gave PCR products which correspond to the 3′-end of both GABA_B receptor 1a and 1b. The primer combination 839 and 918 gave a PCR product corresponding to the 5′-end of the GABA_B receptor 1b.

The PCR products were subcloned into the pGEM-T vector from Promega (Madison, USA). The inserts were subjected to nucleotide sequence analysis, the complete nucleotide sequence for all subclones were determined using a Thermo Sequenase dye terminator cycle sequencing pre-mix kit (Amersham Pharmacia Biotech, Uppsala, Sweden). As primers for sequencing reactions specific oligonucleotides complementary to the vector pGEM-T or primers complementary to the cDNA encoding the GABAB receptor were used.

Additional PCR primers were designed based on the obtained sequences encoding fragments of the human GABA_B receptor and additional DNA fragments encoding parts of the human GABA_B receptors were amplified by PCR, the PCR products subcloned and sequenced as described above.

7)

EXAMPLE 1B: Cloning and sequencing of the 3'-ends of the cDNA encoding human GABA_B receptors 1a and 1b

10

5

Messenger RNA from human hippocampus was obtained from Clontech (Palo Alto, CA, USA) (catalogue #6578-1). First strand cDNA synthesis reactions were performed using the First-strand cDNA Synthesis kit from Amersham Pharmacia Biotech (Uppsala, Sweden). The Not I-d(T)₁₈ primer was used to prime the first-strand synthesis. The generated cDNA molecules were used as template in the PCR reactions described below.

Specific PCR primers were designed (Table 2) based on the sequences of the human GABA_B receptor 1a and 1b cDNA obtained in Example 1A and the EST sequence EMBL accession number Y11044.

20

25

30

15

By homology searches in the EMBL database using the GABA_B receptor cDNA sequences obtained in Example 1A as query the EST sequence EMBL accession number Y11044 have been found to be homologous to the 3'-end of the GABA_B receptor cDNA.

TABLE 2 Primers used in PCR to amplify 3'ends of human GABA_B receptor cDNA

Nr	Species	Sequence 5'-3'	SEQ ID NO
938	Human	GACGCTTATCGAGCAGCTTC	13
972	Human	AGCCCAGAACTCACAGGGGGACAT	14
973	Human	GCTTCAAGCCAGGTACGAACTAA	15

cDNA fragments encoding parts of the human GABA_B receptors were amplified directly by PCR using the designed primers with the generated cDNA molecules as templates. All

PCR experiments were carried out using the Perkin Elmer Taq DNA polymerase with Gene Amp (Roche Molecular Systems Inc., NJ, USA) with the following PCR program: +95°C for 1 minute, +50°C for 30 seconds,+72°C for 3 minutes, repeated 44 times and finally +72°C for 7 minutes. The following primer combinations gave PCR products with expected sizes: 938 and 972, 938 and 973 corresponding to the 3'end of both GABAB receptor 1a and 1b cDNA.

The PCR products were subcloned into the pGEM-T vector from Promega (Madison, USA). The inserts were subjected to nucleotide sequence analysis, the complete nucleotide sequence for all subclones were determined using a Thermo Sequenase dye terminator cycle sequencing pre-mix kit (Amersham Pharmacia Biotech, Uppsala, Sweden). As primers for sequencing reactions specific oligonucleotides complementary to the vector pGEM-T or primers complementary to the cDNA encoding the GABA_B receptor were used.

15

10

5

EXAMPLE 1C: Cloning and sequencing of the 5'-end of the cDNA encoding human GABA_B receptor 1b

20 Messenger RNA from human hippocampus was obtained from Clontech (Palo Alto, CA, USA) (catalogue #6578-1). Marathon cDNA amplification Kit (Clontech) was used for performing 5'/3'- RACE (Rapid Amplification of cDNA Ends). Adaptor-ligated double stranded cDNA molecules were amplified according to the manufacturers description. The pd(N)₆ primer from the First-strand cDNA Synthesis kit from Amersham Pharmacia
25 Biotech (Uppsala, Sweden) was used to produce the adaptor-ligated cDNA.

A specific PCR primer was designed (Table 3) based on the sequences of the human GABA_B receptor 1b cDNA obtained in Example 1A.

15

20

25

30

TÄBLE 3
Primers used in PCR to amplify the 5'-ends of human GABA_B receptor cDNA

Nr.	Species	Sequence 5'-3'	SEQ ID NO
958	Human	TGGCCTCCACCGCCTCAGTCATCTCA	16
API	Marathon kit	CCATCCTAATACGACTCACTATAGGGC	17

5 cDNA fragments encoding part of the human GABA_B receptors were amplified directly by PCR using the designed primers with the generated adaptor-ligated cDNA molecules as template. The PCR experiment was carried out using the Expand Long Template PCR System (Boehringer Mannheim GmbH, Germany) with the following PCR program: + 94°C for 1minute, + 94°C for 30 seconds, +60°C for 30 seconds, +68°C for 4 minutes, repeated 24 times. The primer combination AP1 and 958 gave a PCR product which corresponded to the 5′-end of the GABA_B receptor 1b cDNA, including 190 base pairs upstream the initiation codon.

The PCR products were subcloned into the pGEM-T vector from Promega (Madison, USA). The inserts were subjected to nucleotide sequence analysis, the complete nucleotide sequence for all subclones were determined using a Thermo Sequenase dye terminator cycle sequencing pre-mix kit (Amersham Pharmacia Biotech, Uppsala, Sweden). As primers for sequencing reactions specific oligonucleotides complementary to the vector pGEM-T or primers complementary to the cDNA encoding the GABA_B receptor were used.

EXAMPLE 1D: Cloning and sequencing of the 5'-end of the cDNA encoding human GABA_B receptor 1a

Messenger RNA from human hippocampus was obtained from Clontech (Palo Alto, USA) (catalogue #6578-1). Marathon cDNA amplification Kit (Clontech) was used to obtain adaptor-ligated double stranded cDNA molecules according to the manufacturer's description. The pd(N)6 primer from the First-strand cDNA Synthesis kit from Amersham Pharmacia Biotech (Uppsala, Sweden) was used to obtain the adaptor-ligated cDNA.

Specific PCR primers were designed (Table 4) based on the sequences of the human GABA_B receptor 1a cDNA obtained in Example 1 and the rat GABA_B receptor 1a cDNA disclosed in WO 97/46675.

5

30

TABLE 4
Primers used to amplify 5'-ends of the human GABAB receptor 1a cDNA

Nr.	Species	Sequence 5'-3'	SEQ ID NO
1033	Human	CTCAATCTCATAGTCCACTGG	18
1087	Rat	CCTTGAGGCCCGGGGAGAG	19

cDNA fragments encoding part of the human GABAB 1a receptor were amplified directly by PCR using the designed primers with the generated adaptor-ligated cDNA molecules as template. The PCR was performed using the Perkin Elmer Taq DNA polymerase with Gene Amp (Roche Molecular Systems Inc., NJ, USA) with the following PCR program: +94°C for 1 minute, +50°C for 30 seconds,+72°C for 3 minutes; +94°C for 1 minute, +60°C
 for 30 seconds,+72°C for 4 minutes, repeated 34 times and finally +72°C for 7 minutes.

The primer combination 1087 and 1033 gave a PCR product corresponding to the 5'-end of the GABA_B receptor 1a cDNA, including 26 base pairs upstream the initiation codon.

The PCR products were subcloned into the pGEM-T vector from Promega (Madison, USA). The inserts were subjected to nucleotide sequence analysis, the complete nucleotide sequence for all subclones were determined using a Thermo Sequenase dye terminator cycle sequencing pre-mix kit (Amersham Pharmacia Biotech, Uppsala, Sweden). As primers for sequencing reactions specific oligonucleotides complementary to the vector pGEM-T were used.

A complete cDNA sequence encoding the human GABA_B receptors 1a (SEQ ID NO: 48) and the human GABA_B receptor 1b (SEQ ID NO: 50) were obtained by aligning the sequences of the different fragments cloned and sequenced in Examples 1A, 1B, 1C and 1D.

EXAMPLE 2A: Cloning and sequencing of cDNA encoding canine GABAB receptor 1a

QuickPrep Micro mRNA Purification kit (Amersham Pharmacia Biotech, Uppsala, Sweden) was used to isolate mRNA from canine neural tissues according to the manufactûrers description. First-strand cDNA synthesis reactions were performed using the First-strand cDNA Synthesis kit from Amersham Pharmacia Biotech (Uppsala, Sweden). The Not-I-d(T)₁₈ bifunctional or pd(N)₆ primer was used to prime the first-strand synthesis.
The generated cDNA molecules were used as template in the PCR reactions described below.

Specific PCR primers (Table 5) were designed based on the sequences of the rat GABA_B receptor 1a and 1b cDNA (Kaupmann et al. 1997, EMBL accession numbers Y10369 (SEQ ID NO: 44 and Y10370 (SEQ ID NO: 46)).

TABLE 5
Primers used for RT-PCR on mRNA from canine cortex

Nr.	Species	Sequence 5'-3'	SEQ ID NO
795	Rat	CAGGCACAGCTGGATCCGAGAAGAAACT	20
831	Rat	CGGTCGACTCACTTGTAAAGCAAATGTACTCGACTCCCATCACAGC	21
838	Rat	ATGCGCGCCGGCAGCCAACATGCTGCTGCTGCTGCTGGTGCCTCTTCC	22
840	Rat	CGTCAAGATGCTCGAATCATCG	23
841	Rat	CAGGGGGCTCAGAGGGTCCC	24
842	Rat	CAGGCACAGCTGGATCCGAGAAGAACTCTGTCGGAAAGT	25
844	Rat	CGGTCGACTCACTTGTAAAGCAAATGTACTCGACTCCCATCACAGCTAAG	26
848	Rat	ACTTTCCGACAGAGTTTCTTCTCGGATCCAGCTGTGCCTG	27
865	Rat	CCACGATGATTCGAGCATCTTGACG	28

20

15

cDNA fragments encoding parts of the canine GABA_B receptor were amplified directly by PCR using the designed primers with the generated cDNA molecules as templates. All PCR experiments were carried out using the Perkin Elmer Taq DNA polymerase with Gene Amp (Roche Molecular Systems Inc., NJ, USA) with the following PCR program: +95°C for 1 minute, +50°C for 30 seconds, +72°C for 3 minutes, repeated 44 times and finally

25

+72°C for 7 minutes. The following primer combinations gave PCR products with expected sizes: 842 and 838, 838 and 795, 838 and 865 which corresponds to the 5'-part of the canine GABA_B receptor cDNA. Primer pair 848 and 844, 848 and 831, 848 and 841, 840 and 841 gave PCR products which correspond to the 3'-part of the canine GABAR receptor cDNA.

The PCR products were subcloned into the pGEM-T vector from Promega (Madison, USA). The inserts were subjected to nucleotide sequence analysis, the complete nucleotide sequence for all subclones were determined using a Thermo Sequenase dye terminator cycle sequencing pre-mix kit (Amersham Pharmacia Biotech, Uppsala, Sweden). As primers for sequencing reactions specific oligonucleotides complementary to the vector pGEM-T or primers complementary to the cDNA encoding the GABA_R receptor were used.

15

10

5

EXAMPLE 2B: Cloning and sequencing of the 3'- and 5'-ends of the cDNA encoding canine GABA_B receptor 1a

QuickPrep Micro mRNA Purification kit (Amersham Pharmacia Biotech, Uppsala, 20 Sweden) was used to isolate mRNA from canine nerve tissues according to the manufactures description. Marathon cDNA amplification Kit (Clontech, Palo Alto, CA, USA) were used for performing both 5'-and 3'-RACE. Two adaptor-ligated double stranded cDNA libraries were amplified according to the manufacturers description. A random primer (pd(N)6) was used when amplifying the adaptor-ligated cDNA for the 5'-RACE and the Marathon cDNA Synthesis primer (52-mer) was used when amplifying the

adaptor ligated cDNA for the 3'-RACE.

Specific PCR primers were designed (Table 6) based on the sequence of canine GABA_B receptor 1a cDNA obtained in Example 2A.

30

25

TABLE 6
Primers used in PCR to amplify the 5'- and 3'-ends of canine GABA_B receptor 1a cDNA

Nr.	Species	Sequence 5'-3'	SEQ ID NO
936	canine	CTACCGCGCAATGAACTCCTCGTC	29
1076	canine	CGAGGTGGCGTTGGGGGTCTGTGC	30
AP1	Marathon kit	CCATCCTAATACGACTCACTATAGGGC	31
AP2	Marathon kit	ACTCACTATAGGGCTCGAGCGGC	32

5 cDNA fragments encoding parts of the canine GABA_B receptor were amplified by PCR from the adaptor-ligated cDNA using the designed primers. A number of different PCR programs were tested to find conditions where PCR products corresponding to GABA_B receptor DNA were obtained. The 5'- PCR experiments were carried out using the Expand Long Template PCR System (Boehringer Mannheim GmbH, Germany) with the following PCR program: +94°C for 30 seconds, +72°C for 3 minutes, repeated 4 times; +94°C for 30 seconds, +70°C for 3 minutes, repeated 4 times; and +94°C for 30 seconds, +68°C for 3 minutes, repeated 24 times. The primer combination AP2 and 1076 gave a PCR product which corresponded to the 5'-end of the GABA_B receptor cDNA, including 114 base pairs upstream the initiation codon.

15

20

25

The 3'- PCR experiments were carried out using the Expand Long Template PCR System (Boehringer Mannheim GmbH, Germany) with the following PCR program: +94°C for 1 minute; and +94°C for 30 seconds, +60°C for 30 seconds, +68 °C for 4 minutes, repeated 29 times. The primer combination AP1 and 936 gave a PCR fragment which corresponded to the 3'-end of the GABA_B receptor cDNA, including the poly(A) tail.

The PCR products were subcloned into the pGEM-T vector from Promega (Madison, USA). The inserts were subjected to nucleotide sequence analysis, the complete nucleotide sequence for all subclones were determined using a Thermo Sequenase dye terminator cycle sequencing pre-mix kit(Amersham Pharmacia Biotech, Uppsala, Sweden). As primers for sequencing reactions specific oligonucleotides complementary to the vector pGEM-T or primers complementary to GABAB receptor DNA were used.

Complete cDNA sequence encoding the canine GABA_B receptor 1a (SEQ ID NO: 52) was obtained by aligning the sequences of the different fragments obtained in Example 2A and Example 2B.

5

25

EXAMPLE 3A: Cloning of cDNA encoding human GABA_B receptor 1c and 1d from Jurkat cells

A guanidinisothiocyanate/CsCl method was used to isolate total RNA from Jurkat cells.

The first-strand cDNA synthesis was performed using the First-strand cDNA Synthesis kit from Amersham Pharmacia Biotech (Uppsala, Sweden). The pd(N)₆ primer was used to prime the first strand synthesis. The generated cDNA molecules were used as templates in the PCR reaction described below.

Specific PCR primers (Table 7) were designed based on the sequence of human GABA_B receptor 1a and 1b cDNA (Example 1), rat GABA_B receptor (Kaupmann et al. 1997) and the EST sequence EMBL accession number Y11044.

TABLE 7Primers used in RT-PCR on mRNA from Jurkat cells

Nr	Species	Sequence 5'-3'	SEQ ID NO
938	human	GACGCTTATCGAGCAGCTTC	33
972	human	AGCCCAGAACTCACAGGGGGACAT	34
973	human	GCTTCAAGCCAGGTACGAACTAA	35
893	rat	GGAGCACCCCAAGCCCCACTG	36
937	human	CTGGTTCCTCCCAATGTG	37
1005	rat	CCTCTCACTCCCCTCATCTC	38
1030	human	AAGCCAACCTTCCCTGCTTCTC	39

cDNA fragments encoding parts of the GABA_B receptor were amplified directly by PCR using human and rat specific primers. All PCR experiments were carried out using the Perkin Elmer Taq DNA polymerase with Gene Amp (Roche Molecular Systems Inc., NJ,

USA) with the following PCR program: +95°C for 1 minute; +54°C for 1 minutes, +72°C for 3 minutes, repeated 44 times; and finally +72°C for 7 minutes.

The PCR products were subcloned into the pGEM-T vector from Promega (Madison, USA). The inserts were subjected to nucleotide sequence analysis, the complete nucleotide sequence for all subclones were determined using a Thermo Sequenase dye terminator cycle sequencing pre-mix kit (Amersham Pharmacia Biotech, Uppsala, Sweden). As primers for sequencing reactions specific oligonucleotides complementary to the vector pGEM-T or primers complementary to GABA_B receptor DNA were used.

10

15

5

The following primer combination gave PCR products corresponding to the 3'-end of the GABA_B receptor cDNA: primer pairs 938 and 972; 938 and 973. Unexpectedly both these fragments lacked 149 base pairs, resulting in a frame shift and the insertion of a new termination codon. The following primer combination gave a PCR product corresponding to the 5'-part of the GABA_B receptor 1a cDNA: 893 and 937. The primer pairs 1005 and 937, 1030 and 937 gave PCR products corresponding to the 5'-part of the GABA_B receptor 1b cDNA. Also these PCR fragments lacked the same 149 base pairs which resulted in a frame shift and the insertion of a new termination codon.

These results show that Jurkat cells contain mRNA encoding two new forms of the human GABA_B receptor. These are designated GABA_B receptor 1c (SEQ ID NO: 54 and 55) (comprising the same 5'-part as the GABA_B receptor 1a) and GABA_B receptor 1d (SEQ ID NO: 56 and 57) (comprising the same 5'-part as the GABA_B receptor 1b). These two forms of the GABA_B receptor do not contain any of the transmembrane regions and are therefore expected to be soluble forms of the receptor.

EXAMPLE 3B: Analysis of cDNA encoding human GABA_B receptors from hippocampus

Messenger RNA from human hippocampus was obtained from Clontech (Palo Alto, USA) (catalogue #6578-1). First strand cDNA synthesis reactions were performed using the First-strand cDNA Synthesis kit from Amersham Pharmacia Biotech (Uppsala, Sweden). The

pd(N)₆ primer was used to prime the first-strand synthesis. The generated cDNA molecules were used as template in the PCR reactions described below.

Specific PCR primer was designed (Table 8) based on the sequences of the cDNAs encoding human GABA_B receptors 1a and 1b.

TABLE 8

Primers used for RT-PCR on mRNA from human hippocampus

Nr	Species	Sequence 5' - 3'	SEQ ID NO
937	Human	CTGGTTCCTCCCAATGTG	40
938	Human	GACGCTTATCGAGCAGCTTC	41

10

15

30

5

cDNA fragments encoding parts of the human GABA_B receptors were amplified directly by PCR using the designed primers with the generated cDNA molecules as templates. All PCR experiments were carried out using the Perkin Elmer Taq DNA polymerase with Gene Amp (Roche Molecular Systems Inc., NJ, USA) with the following PCR program: +94°C for 1 minute, +50°C for 30 seconds,+72°C for 3 minutes; +94°C for 1 minute, +54°C for 30 seconds, +72°C for 3 minutes repeated 44 times; and finally +72°C for 7 minutes. The primer combination 938 and 937 gave a PCR product which corresponded to the expected size of the GABA_B receptor 1a and 1b cDNA but also a fragment a smaller size.

The PCR products were subcloned into the pGEM-T vector from Promega (Madison, USA). The inserts were subjected to nucleotide sequence analysis, the complete nucleotide sequence for all subclones were determined using a Thermo Sequenase dye terminator cycle sequencing pre-mix kit (Amersham Pharmacia Biotech, Uppsala, Sweden). As primers for sequencing reactions specific oligonucleotides complementary to the vector pGEM-T or primers complementary to the cDNA encoding the GABAB receptor were used.

The larger PCR fragment was found to correspond to the 3'-part of the GABA_B receptor 1a and 1b cDNA and the smaller fragment which lacked 149 base pairs was found to correspond to the 3'-part of the GABA_B receptors 1c and 1d cDNA identified in Example 3A.

EXAMPLE 4: Cloning and sequencing of cDNA encoding canine GABA_B receptor 1b

cDNA encoding the canine GABA_B receptor 1b is isolated in a similar manner as 5 described in Example 2 for receptor 1a. PCR primers specifically designed to be complementary to the 5'-end of the cDNA encoding the rat and human GABAB receptor 1b, together with PCR primers complementary to the 3'-end of the cDNA encoding the canine GABA_B receptor 1a, and mRNA prepared from a suitable canine tissue, are used.

10

EXAMPLE 5: Cloning of cDNA encoding canine GABA_B receptor 1c

Total RNA from canine liver was prepared using the RNeasy Total RNA Purification Protocols (Quiagen GmbH, Germany). The first-strand cDNA synthesis was performed 15 using the First-strand cDNA Synthesis kit from (Amersham Pharmacia Biotech, Uppsala, Sweden). The pd(N)₆ primer was used to prime the first -strand synthesis. The generated cDNA molecules were used as templates in the PCR reaction described below.

Specific PCR primers (Table 9) were designed based on the sequence of canine GABA_B 20 receptor 1a cDNA.

TABLE 9 Primers used in RT-PCR

25

Nr	Species	Sequence 5'-3'	SEQ'ID NO
936	canine	CTACCGCGCAATGAACTCCTCGTC	42
954	canine	CCTTCTTCTCCTCCTTCTTAGTGA	43

cDNA fragments encoding parts of the canine GABA_B receptor were amplified directly by PCR using canine specific primers. All PCR experiments were carried out using the Perkin Elmer Taq DNA polymerase with Gene Amp (Roche Molecular Systems Inc., NJ, USA) with the following PCR program: +95°C for 1 minute, +54°C for 30 seconds, +72°C for 3

30

minutes, repeated 44 times and finally +72°C for 7 minutes. The primer combination gave a PCR product with a size corresponding to the GABA_B receptor 1a but also a fragment of smaller size indicating the presence of a GABA_B receptor 1c.

The PCR products were subcloned into the pGEM-T vector from Promega (Madison, USA). The inserts were subjected to nucleotide sequence analysis, the complete nucleotide sequence for all subclones were determined using a Thermo Sequenase dye terminator cycle sequencing pre-mix kit (Amersham Pharmacia Biotech, Uppsala, Sweden). As primers for sequencing reactions specific oligonucleotides complementary to the vector pGEM-T were used.

The smaller fragment was shown to lack 149 base pairs. This deletion caused a frame shift and an insertion of a new termination codon, verifying the existence of a canine GABA_B receptor 1c.

15

Complete cDNA sequence encoding the canine GABA_B receptor 1c (SEQ ID NO: 58) was obtained by aligning the sequences of the fragments obtained in Example 2A, Example 2B and Example 5.

20

EXAMPLE 6. Cloning, sequencing and organization of human GABA_B receptor genomic fragments

To determine the structural organization and sequence of the human GABA_B receptor gene,

human genomic DNA libraries and human genomic DNA were screened and analyzed.

Human genomic libraries were obtained from Clontech (Palo Alto, CA, USA). The
libraries were constructed from female leukocyte DNA (catalog # HL1111J), cloned into
λEMBL-3 vector. The average size of inserts are 16 kb and the number of independent
clones are 1.7x10⁶. Human genomic DNA was obtained from Clontech (catalog # 6550-1).

In order to isolate recombinant phages containing exon and intron sequences of the human
GABA_B receptor gene, 48 individual bacterial plates with a diameter of 150 mm and
approximately 4 x 10⁴ individual plaques per plate, were screened. The methods and

solutions used were as described in the Library Protocol Handbook: General Procedures for the Hybridization of Lambda Phage Libraries w/DNA Probes (Clontech) with some modifications as will be apparent from the following.

5 The experiment was carried out essentially as follows. The numbers are given per plate basis. A sample of the phage library diluted in 0.1 ml sterile lambda diluent was prepared in order to obtain an estimated titer of 40,000 pfu (plaque forming units). A 0.6 ml LB-medium culture of the *E. coli* host strain K802 (obtained from Clontech) was infected with 40000 pfu recombinant phages for 15 minutes at +37°C. The culture was then mixed with 7 ml top agarose (6.5 g of agarose added per liter LB) and poured onto LB plates. The plates were incubated at +37°C for approximately 7 hours. The plates were then chilled at +4°C.

Plaque hybridization experiments were as follows. Membrane filters, Colony/Plaque Screen (DuPont, Wilmington, DE, USA), were placed onto the top of the plates for 3 minutes. For denaturation of DNA the filters were removed and floated in 0.5 M NaOH on a plastic wrap for 2 minutes, with the plaque side up. This step was repeated once to ensure efficient denaturation. Following neutralization the membrane filters were placed in 1M Tris-HCl pH 7.5, two times 2 minutes and allowed to dry.

20

25

30

15

To obtain probes for DNA hybridization screening of the membrane filters, a GABA_B receptor cDNA clone was digested with SacII and a 479 bp fragment (base pairs 573-1051 in the cDNA encoding human GABA_B receptor 1a, SEQ ID NO: 48) was separated by agarose electrophoresis, excised and transferred to a polypropylene microcentrifuge tube. Additional probes were obtained by PCR amplification of various regions of the GABA_B receptor cDNA (base pairs 68-486 and 2368-2863 in the cDNA encoding human GABA_B receptor 1a, SEQ ID NO: 48). The isolated cDNA fragment was ³²P-labeled using Megaprime DNA labeling system (Amersham Pharmacia Biotech, Uppsala, Sweden) by the following procedure. Water was added at a ratio of 3 ml per gram of gel, and placed in a boiling water bath for 7 minutes to melt the gel and denature the DNA. A volume of DNA/agarose solution containing 25 ng of DNA was added to the labeling reaction, according to the supplier's instructions. Labeled nucleotides were removed from DNA

labeling reactions using MicroSpinTM G-50 Columns (Amersham Pharmacia Biotech, Uppsala. Sweden).

The DNA hybridization reaction was performed under stringent conditions according to the method described below. The filter membranes were prehybridized at +65°C for at least 1 hour in a solution composed of 1% SDS, 1M NaCl, and 10% dextran sulfate using a hybridization oven (Hybaid Ltd, Ashford, UK). Following prehybridization a solution containing denatured herring sperm DNA of a final concentration of 100 µg/ml and the 32P-labeled DNA probe at a concentration <10 ng/ml (for optimal signal to background ratio) was added to the prehybridization solution and the membrane filters were incubated at +65°C for 10-20 hours. Following the removal of the hybridization solution the membrane filters were first washed in a 2xSSC (0.3M NaCl, 0.03M Na-citrate), 1% SDS solution two times for 5 minutes at room temperature. In the next step, the membrane filters were incubated +60°C two times for 30 minutes each in the same solution. In a third step, the filters were washed two times at room temperature in 0.1xSSC. Finally, the membrane filters were placed on a sheet of filter paper with the DNA face up, and allowed to dry. The dried membrane filters were then exposed to X-ray films and autoradiographed.

Of the approximately 2x10⁶ individual plaques analyzed, four hybridizing plaques were detected and isolated. These three isolates were designated #GR1, #GR12, #GR13 and #GR41, respectively. After several rescreening experiments, the recombinant phage DNA was purified using Qiagen Lambda Midi Kit (Qiagen GmbH, Germany). The purified DNA was digested with SalI and the fragments representing the inserts were isolated by agarose electrophoresis.

25

30

5

10

15

20

The sizes of the inserts were approximately isolate #GR1, 12 kb, isolate #GR12, 12 kb; isolate #GR13, 16kb; and isolate #GR41, 19 kb. These fragments were cloned into SalI digested linearized pUC19, resulting in the plasmids pAM362 (isolate #GR1), pAM363 (isolate #GR12), pAM364 (isolate #GR13)and pAM365 (isolate #GR41). The inserts from the four plaques which hybridizes to the GABA_B receptor cDNA probes were analyzed by PCR, restriction mapping and hybridization to ³²P-labeled DNA fragments representing various regions of the GABA_B receptor gene.

The cloned fragments in the plasmids pAM362, pAM363, pAM364 and pAM365 were characterized by restriction enzyme mapping, using EcoRI, HindIII, PstI, and BamHI. The approximate positions of the exons and the approximate size of the introns were analyzed and determined by PCR-based exon-exon linking and agarose gel electrophoresis.

In order to facilitate nucleotide sequence analysis, 7 restriction sub-fragments derived from pAM364, 2 restriction fragments derived from pAM362, and 1 restriction sub-fragment derived from pAM365 were isolated and cloned into pUC19, resulting in the plasmids pAM366-pAM375. The following strategy was employed; by combining PCR primers located within the pUC19 sequence either upstream or downstream of the cloning site, with a PCR primer with defined orientation and specific for the GABA_B receptor derived subcloned fragment allowed the determination.

The inserts in the 10 plasmids pAM366-pAM375 were subjected to nucleotide sequence analysis. The nucleotide sequences for all subclones were determined using a Thermo Sequenase dye terminator cycle sequencing pre-mix kit (Amersham Pharmacia Biotech, Uppsala, Sweden). As primers for sequencing reactions specific oligonucleotides complementary to pUC19 or primers complementary to the GABA_B receptor cDNA were used.

20

25

30

15

5

10

The genomic fragments cloned in the plasmids pAM362-pAM365 where shown to contain the complete transcribed part of the human GABA_B receptor gene and extends > 3kb upstream of the first exon and > 2kb downstream of the last exon. The fragments cloned in the plasmid pAM362 were shown to contain exons 7-11, pAM363 exons 12-22, pAM364 exons 1-11, and pAM365 exons 12-23 of the GABA_B receptor gene (Figure 1). The sequence of exons 1-11 and introns 1-10 is listed in SEQ ID NO: 60 and the sequence of exons 12-23 and introns 12-22 is listed in SEQ ID NO: 61.

The human GABA_B receptor gene consists of 23 exons and 22 introns (Figure 1). The size of the exons range between 21 bp and 1486 bp. As can be noted from Table 10 exon/intron boundaries are in accordance with the AG/GT rule and conform well to the consensus sequence suggested by Mount et al. 1982.

TABLE 10

Exon-Intron boundaries of the GABA_B receptor gene, sequences at exon-intron junctions.

		5'splice donor	3'splice acceptor	· · · · · · · · · · · · · · · · · · ·
Exon 1-Exon 2	CGAG	GTAAGAG	CCGCCTCTCACTTAG	ATGT
Exon 2-Exon 3	GAAG	GTGCATC	CGACTCACCCCTTAG	GTTG
Exon 3-Exon 4	TGTG	<u>GT</u> GAGTA	CCWATCTCTCCACAG	TCCG
Exon 4-Exon 5	CAGG	GTGAGGG	CTTTCCTGCTGCCAG	TGAA
Exon 5-Exon 6	TCAG	GTGAGAT	CGCACCCCTCCTCAG	AACG
Exon 6-Exon 7	CAAG	GTAGCCC	CCTCTTGTCTTTCAG	TGTG
Exon 7-Exon 8	TGTG	GTAAGCA	CTCCCTGCCCACAG	CTTT
Exon 8-Exon 9	TTCG	<u>GT</u> GAGGA	TTATTCCCACCCAAG	ACTC
Exon 9-Exon10	GAAG	GTCAGAT	CTTTCTCTGTKGTAG	CGCC
Exon10-Exon11	TGAG	GTGGART	CTCCTCTGTATTCAG	GTGT
Exon11-Exon12	CATG	GTGAGAG	TTTTTTCCTCCAAG	ACAT
Exon12-Exon13	CTCT	GTGAGTT	TGTTCCTTCCCTCAG	GGCC
Exon13-Exon14	CAGG	GTTAGTA	TTGTCGTCTGCCCAG	GTGG
Exon14-Exon15	ATTG	GTGAGTG	CCCTGTGCCATGCAG	GAGG
Exon15-Exon16	TCCG	GTXAGTT	CCACCTCTGCCCTAG	TTAT
Exon16-Exon17	CCAG	GTGAGGA	TCTCTTCCTTTCTAG	GCCC
Exon17-Exon18	GAAG	GTGAGCT	CACATATTTATCCAG	ACTC
Exon18-Exon19	TGAG	GTACCAC	TYGTTTCTGCCCTAG	ACAT
Exon19-Exon20	CTTG	<u>GT</u> GTGTG	CTCCTGCCATCCTAG	GCAT
Exon20-Exon21	GGCA	GTGAGCA	TGTCTTTCCCTCTAG	GTCC
Exon21-Exon22	CAAG	GTAAGGA	AACATTTGCCCCCAG	ATGC
Exon22-Exon23	TGAG	GTGCGGG	TGCTTCTTCCTCCAG	AAAG

5

10

15

A comparison of the sequences of the different forms of the human GABA_B receptor cDNA (SEQ ID NO: 48, 50, 54, and 56) and the sequence of the human GABA_B gene (SEQ ID NO: 60 and 61) reveals that different mRNA encoding human GABA_B receptors are formed by alternative splicing. The translational start of the GABA_B receptor 1a is localized in exon 2 and the translational stop is localized in exon 23. The mRNA encoding GABA_B receptor 1b is formed by alternative splicing where part of intron 5 is retained together with exon 6 where the translational start of the GABA_B receptor 1b is derived from the intron sequence. The mRNA encoding GABA_B receptor 1c is formed by alternative splicing where exon 15 are removed together with introns 14 and 15 and a frame shift and a translational stop are generated in the sequence corresponding to exon 16.

The mRNA encoding GABA_B receptor 1d is formed when the translational start of the GABA_B receptor 1b is generated together with the translational stop of the GABA_B receptor 1c.

The 1a isoform is formed by splicing exon 5 to a cryptic splice site in the middle of exon 6.

Transcription of 1b isoform mRNA is most likely initiated from regulatory elements in intron 5. The ATG initiating translation of 1b mRNA is located in the 5'-end of exon 6.

Additional variants of the mRNA encoding variants of the human GABA_B receptor can be derived by alternative splicing where one ore more of the exons or part of exons are excised in the processing of the pre-mRNA. The subsequent transcription of these mRNA will give rise to variants of the human GABA_B receptor with potentially different biological and/or pharmacological activities.

15

20

10

EXAMPLE 7. Analysis of cDNA encoding human GABA_B receptors from human brain

Messenger RNA from human fetal brain (catalog #6525-1) and adult human brain (catalog #6516-1) were obtained from Clontech (Palo Alto, CA, USA). First strand cDNA synthesis reactions were performed using the first strand cDNA Synthesis kit from Amersham Pharmacia Biotech (Uppsala, Sweden). The pd(N)₆ primer was used to prime the first-strand synthesis. The generated cDNA molecules were used as templates in the PCR reactions described below.

25 Specific PCR primers was designed (Table 11) based on the sequences of the rat GABA_B receptor 1a and 1b cDNA and human GABA_B receptor 1a and 1b cDNA

TABLE 11
Primers used for RT-PCR on mRNA from human fetal brain

Nr	Species	Sequence 5'-3'	SEQ ID NO
838	Rat	ATGCGCGCCGGCAGCCAACATGCTGCTGCTGCTGCTGCTCCTCTCCC	62
863	Rat	GGTCATCCAGCGTTGAGGTGAAGAC	63
864	Rat	GAAGGTTGCCAGATTATACATCCGC	64
865	Rat	CCACGATGATTCGAGCATCTTGACG	65
937	Human	CTGGTTCCTCCCAATGTG	66
1015	Human	CCAGTGGACTATGAGATTGAG	67

cDNA fragments encoding parts of the human GABA_B receptors were amplified directly by PCR using the designed primers with the generated cDNA molecules as templates. PCR experiments with primers 838, 863,864 and 865 were carried out using the Perkin Elmer Taq DNA polymerase with Gene Amp (Roche Molecular System Inc., NJ, USA) with the following PCR program: +95°C for 1 minute, +50°C for 30 seconds,+72°C for 3 minutes,
 repeated 44 times and finally +72°C for 7 minutes. PCR experiments with primers 937 and 1015 were carried out using the Expand Long Template PCR System (Boehringer Mannheim GmbH, Germany) with the following PCR program: +94°C for 2 minutes; +94°C for 10 seconds, +55°C for 30 seconds, +68°C for 3 minutes repeated 35 times; and finally +68°C for 7 minutes. The primer combinations 838 and 863, 864 and 863, 864 and
 865, 937 and 1015 gave PCR products.

The PCR products were subcloned into the pGEM-T vector from Promega (Madison, WI, USA). The inserts were subjected to nucleotide sequence analysis. The complete nucleotide sequence for all subclones were determined using a ThermoSequenase dye terminator cycle sequencing pre-mix kit (Amersham Pharmacia Biotech, Uppsala, Sweden). As for primers for sequencing reactions specific oligonucleotides complementary to the vector pGEM-T or primers complementary to the cDNA encoding the GABA_B receptor were used.

20

25

A number of analyzed clones isolated from fetal brain were found to lack 186 base pairs, corresponding to exon 4. This alternative splicing resulted in a cDNA (SEQ ID NO: 70)

encoding a protein (SEQ ID NO: 71) comprising of 899 amino acids and designated GABA_B receptor 1e.

Other clones from fetal brain lacked 368 base pairs, corresponding to exons 4, 5 and 6, resulting in a cDNA (SEQ ID NO: 72) where a frame shift and a translational stop codon are generated in the sequence corresponding to exon 7, encoding a protein (SEQ ID NO: 73) comprising only 97 amino acids designated GABA_B receptor 1f.

5

15

20

25

One clone lacked 207 base pairs, corresponding to exons 4 and 5, resulting in a cDNA (SEQ ID NO: 74) encoding a protein (SEQ ID NO: 75) comprising 892 amino acids designated GABA_B receptor 1g.

Another clone had two deletions, the first comprising 186 base pairs corresponding to exon 4, the second comprising 39 base pairs corresponding to part of exon 6, resulting in a cDNA (SEQ ID NO: 76) encoding a protein (SEQ ID NO: 77) comprising 886 amino acids designated GABA_B receptor 1h.

Yet another clone from adult human brain was found to have a long deletion comprising 1194 base pairs corresponding to base pairs 319 - 1512 of the cDNA encoding human GABA_B receptor 1a. This deletion corresponds to part of exon 4, exons 5-11, and part of exon 12. This cDNA (SEQ ID NO: 78) encodes a protein (SEQ ID NO: 79) comprising 563 amino acids designated GABA_B receptor 1i.

One clone isolated from fetal brain lacked 284 base pairs corresponding to part of exon 3 and the whole exon 4, generating a frame shift and a translational stop codon in the sequence corresponding to exon 5. This cDNA (SEQ ID NO: 80) encodes a protein (SEQ ID NO: 81) comprising only 105 amino acids designated GABA_B receptor 1j.

30 EXAMPLE 8. Analysis of cDNA encoding human GABA_B receptors from Jurkat cells

A guanidinisothiocyanate/CsCl method was used to isolate total RNA from Jurkat cells. First strand cDNA synthesis reactions were performed using the first strand cDNA

Synthesis kit from Amersham Pharmacia Biotech (Uppsala, Sweden). The pd(N)₆ primer was used to prime the first-strand synthesis. The generated cDNA molecules were used as templates in the PCR reactions described below.

5 Specific PCR primers was designed (Table 12) based on the sequences of the human GABA_B receptor 1a and 1b cDNA

TABLE 12
Primers used for RT-PCR on mRNA from Jurkat cells

10

30

Nr	Species	Sequence 5'-3'	SEQ ID NO
937	Human	CTGGTTCCTCCCAATGTG	68
1015	Human	CCAGTGGACTATGAGATTGAG	69

cDNA fragments encoding parts of the human GABA_B receptors were amplified directly by PCR using the designed primers with the generated cDNA molecules as templates. The PCR experiment was carried out using the Expand Long Template PCR System

(Boehringer Mannheim GmbH, Germany) with the following PCR program: +94°C for 2 minutes; +94°C for 10 seconds, +55°C for 30 seconds, +68°C for 3 minutes repeated 35 times; and finally +68°C for 7 minutes. The primer combination 937 and 1015 gave a PCR product.

The PCR products were subcloned into the pGEM-T vector from Promega (Madison, WI, USA). The inserts were subjected to nucleotide sequence analysis. The complete nucleotide sequence for all subclones were determined using a ThermoSequenase dye terminator cycle sequencing pre-mix kit (Amersham Pharmacia Biotech, Uppsala, Sweden). As for primers for sequencing reactions specific oligonucleotides complementary to the vector pGEM-T or primers complementary to the cDNA encoding the GABA_B receptor were used.

Two clones had two deletions, the first comprising 368 base pairs corresponding to exons 4, 5 and 6, the second comprising 151 base pairs corresponding to exon 15 where a frame shift and a translational stop codon are generated in the sequence corresponding to exon 7. This cDNA (SEQ ID NO: 82) encodes a protein (SEQ ID NO: 83) comprising only 98

amino acids designated GABA_B receptor 1k which is identical to the GABA_B receptor 1f described above.

Another two clones also had two deletions, the first comprising 246 base pairs corresponding to part of exon 4, exon 5 and exon 6, the second comprising 149 base pairs corresponding to exon 15, generating a frame shift and a translational stop codon in the sequence corresponding to exon 16. This cDNA (SEQ ID NO: 84) encodes a protein (SEQ ID NO: 5) comprising 496 amino acids designated GABA_B receptor 11.

Additional variants of cDNA encoding the human GABA_B receptors can be identified in a similar manner using PCR primers based on the sequence of the cDNA and genomic fragments encoding the human GABA_B receptors disclosed in the present application.

The biological activity of these variants of the human GABA_B receptor can be evaluated by transfection of suitable host cells with expression vectors comprising the corresponding cDNA sequences and subsequent measurement of binding of labeled ligands or activation of the receptor or modulation of receptor function.

20 EXAMPLE 9: Generation of antibodies

5

15

25

30

Antibodies were raised in rabbits against four different BSA-conjugated 20 amino acids long synthetic peptides corresponding to selected regions of the human and canine GABAB receptor extracellular domain. Two were directed against a sequence common for GABAB receptor 1a and b (ab1 and ab2), one against a GABAB receptor 1a-specific region (a1) and one against a GABAB receptor 1b-specific sequence (b1). To allow BSA-conjugation, a cystein residue was added to the N-terminus in all peptides but a1, which contains an endogenous cystein.

Peptide a1: (SEQ ID NO: 49 amino acids 18-37)

Gly Gly Ala Gln Thr Pro Asn Ala Thr Ser Glu Gly Cys Gln Ile Ile His Pro Pro Trp

. 32

Peptide ab1: (SEQ ID NO: 49 amino acids 197-216 with N-terminally added Cys)

Cys - Glu Asp Val Asn Ser Arg Arg Asp Ile Leu Pro Asp Tyr Glu Leu Lys Leu Ile

His His

5 Peptide ab2: (SEQ ID NO: 49 amino acids 271-290 with N-terminally added Cys)

Cys - Ser Pro Ala Leu Ser Asn Arg Gln Arg Phe Pro Thr Phe Phe Arg Thr His Pro

Ser Ala

Peptide b1: (SEQ ID NO: 57 amino acids 30-47 with N-terminally added Cys)

Cys - Ser His Ser Pro His Leu Pro Arg Pro His Ser Arg Val Pro Pro His Pro Ser

The antibodies were purified from rabbit serum by affinity chromatography using the corresponding immobilized peptide and subsequently used to detect expression of recombinant GABA_B receptor isoforms on Western blots.

15

20

25

10

EXAMPLE 10: Heterologous expression of GABA_B receptor isoforms in mammalian cells

A HindIII / SalI cDNA fragment encoding the human GABA_B receptor 1b isoform was cloned into a BPV (bovine papilloma virus)-based expression vector containing the mMT-1 (murine metallothioneine) promoter. Using the calcium phosphate method, murine C127 cells were co-transfected with the GABA_B receptor expression construct and an expression plasmid containing a G418 resistance marker gene using the calcium phosphate method. G418 resistant clones were evaluated by Western blot analysis for expression of the approximately 100 kDa GABA_B receptor 1b isoform(Figure 2). Similarly, but using Lipofectamine (Life Technologies Inc, Rockville, MD, USA) for transfection, the human GABA_B receptor 1b isoform was expressed in human HEK-293 cells using the pCI-neo expression vector. The identity of the heterologously expressed receptor was verified in HEK-293 cells by Western blot analysis and radiologand binding experiments.

30

A cDNA fragment encoding the human GABA_B receptor 1d isoform was cloned into a BPV-based expression vector containing the mMT-1 promotor. Using the calcium phosphate method, murine C127 cells were co-transfected with the GABA_B receptor

expression construct and an expression plasmid containing a G418 resistance marker gene. G418 resistant clones, and concentrated medium from the same clones, were evaluated for GABA_B receptor 1d isoform expression by Western blot analysis (Figure 3). The experiment revealed the human GABA_B receptor 1d to be a secreted isoform.

5

EXAMPLE 11: Heterologous expression of GABA_B receptor isoforms in E. coli

A cDNA fragment encoding the human GABA_B receptor 1d isoform was cloned into a modified pET (Pharmacia Amersham, Uppsala, Sweden) vector downstream of a STII (heat stable enterotoxin II of *E. coli*) signal peptide and followed by a thrombin clevage site and a hexahistidine tag. The expression construct was subsequently used to transform the BL21 (DE3) *E. coli* strain. Western blot analysis of IPTG-induced bacteria revealed expression of a human GABA_B receptor 1d isoform of expected size(Figure 4).

15

10

In addition, the human GABA_B receptor 1d isoform was successfully expressed without fusion to a bacterial signal peptide in *E. coli* strain AD494 (DE3).

20

25

EXAMPLE 12: Method for the screening of substances which are GABA_B receptor antagonists or agonists

GABA_B receptor expressing cells, transgenic animals or cells and tissues derived thereof, are used to screen substance libraries for antagonist or agonist activities. Screening is performed as ligand binding assays or functional assays. For screening, cells and tissues are prepared in various ways, each uniquely suited to its purpose. Ligand binding assays are performed *in vivo* or *in vitro*. Functional assays exemplified by, but not limited to, Ca⁺⁺-responses, cAMP-responses and effects on Cl⁻ and K⁺ channels, are performed in living cells, broken cells, isolated cell membranes, as well as in tissues and in living animals.

CLAIMS

 A nucleic acid molecule encoding a human or canine GABAB receptor, or a functionally equivalent modified form thereof.

5

10

- 2. A nucleic acid molecule according to claim 1 encoding a human GABAB receptor, or a functionally equivalent modified form thereof.
- A nucleic acid molecule according to claim 2 encoding the human GABAB receptor
 1a, or a functionally equivalent modified form thereof.
 - 4. A nucleic acid molecule according to claim 3 selected from:
 (a) a nucleic acid molecule comprising a nucleotide sequence set forth as SEQ ID
 NO: 48;
- (b) a nucleic acid molecule comprising a nucleotide sequence capable of hybridizing, under stringent hybridization conditions, to a nucleotide sequence complementary to the polypeptide coding region of a DNA molecule as defined in (a); and (c) a nucleic acid molecule comprising a nucleotide sequence which is degenerate as a result of the genetic code to a nucleotide sequence as defined in (a) or (b).

20

- A nucleic acid molecule according to claim 2 encoding the human GABAB receptor
 1b, or a functionally equivalent modified form thereof..
- 6. A nucleic acid molecule according to claim 5 selected from:
- 25 (a) nucleic acid molecules comprising a nucleotide sequence set forth as SEQ ID NO: 50;
 - (b) nucleic acid molecules comprising a nucleotide sequence capable of hybridizing, under stringent hybridization conditions, to a nucleotide sequence complementary the polypeptide coding region of a DNA molecule as defined in (a); and
- 30 (c) nucleic acid molecules comprising a nucleotide sequence which is degenerate as a result of the genetic code to a nucleotide sequence as defined in (a) or (b).

- 7. A nucleic acid molecule according to claim 2 encoding the human GABAB receptor 1c, or a functionally equivalent modified form thereof.
- 8. A nucleic acid molecule according to claim 7 selected from:
- 5 (a) nucleic acid molecules comprising a nucleotide sequence set forth as SEQ ID NO: 54:
 - (b) nucleic acid molecules comprising a nucleotide sequence capable of hybridizing, under stringent hybridization conditions, to a nucleotide sequence complementary the polypeptide coding region of a DNA molecule as defined in (a); and
- 10 (c) nucleic acid molecules comprising a nucleotide sequence which is degenerate as a result of the genetic code to a nucleotide sequence as defined in (a) or (b).
 - 9. A nucleic acid molecule according to claim 2 encoding the human GABAB receptor 1d, or a functionally equivalent modified form thereof..
- 10. A nucleic acid molecule according to claim 9 selected from:
 - (a) nucleic acid molecules comprising a nucleotide sequence set forth as SEQ ID NO: 56;
- (b) nucleic acid molecules comprising a nucleotide sequence capable of hybridizing,
 under stringent hybridization conditions, to a nucleotide sequence complementary the
 polypeptide coding region of a DNA molecule as defined in (a); and
 (c) nucleic acid molecules comprising a nucleotide sequence which is degenerate as a
 result of the genetic code to a nucleotide sequence as defined in (a) or (b).
- 25 11. A nucleic acid molecule according to claim 1 encoding a canine GABAB receptor, or a functionally equivalent modified form thereof.
 - 12. A nucleic acid molecule according to claim 11 encoding the canine GABAB receptor1a, or a functionally equivalent modified form thereof.
 - 13. A nucleic acid molecule according to claim 12 selected from

- (a) nucleic acid molecules comprising a nucleotide sequence set forth as SEQ ID NO: 52;
- (b) nucleic acid molecules comprising a nucleotide sequence capable of hybridizing, under stringent hybridization conditions, to a nucleotide sequence complementary the polypeptide coding region of a DNA molecule as defined in (a); and
- (c) nucleic acid molecules comprising a nucleotide sequence which is degenerate as a result of the genetic code to a nucleic acid sequence as defined in (a) or (b).
- 14 A nucleic acid molecule according to claim 11 encoding the canine GABAB receptor 10 1c, or a functionally equivalent modified form thereof.
 - 15. A nucleic acid molecule according to claim 14 selected from(a) nucleic acid molecules comprising a nucleotide sequence set forth as SEQ ID NO:
- (b) nucleic acid molecules comprising a nucleotide sequence capable of hybridizing, under stringent hybridization conditions, to a nucleotide sequence complementary the polypeptide coding region of a DNA molecule as defined in (a); and (c) nucleic acid molecules comprising a nucleotide sequence which is degenerate as a result of the genetic code to a nucleic acid sequence as defined in (a) or (b).

58:

5

- 16. A recombinant polypeptide encoded by a nucleotide sequence according to any one of claims 1 to 15.
- 17. The polypeptide according to claim 16 comprising an amino acid sequence set forth as SEQ ID NO: 49, 51, 53, 55, 57 or 59 in the Sequence Listing.
 - 18. A polypeptide according to claim 16 which has been posttranslationally modified.
- 19. A vector transformed with a nucleic acid molecule according to any one of claims 130 to 15.
 - 20. A cultured host cell harboring a vector according to claim 19.

SUBSTITUTE SHEET (RULE 26)

- 21. A process for the production of a GABAB receptor, said process comprising culturing a host cell according to claim 20 under conditions whereby the said polypeptide is produced, and recovering the said polypeptide.
- 5

- 22. A method for the screening of compounds which are inhibitors of transient lower esophageal sphincter relaxations, said method comprising the use of a nucleic acid molecule encoding a GABAB receptor.
- 10 23. A method according to claim 22 wherein the said nucleic acid molecule encoding a GABAB receptor is the nucleic acid molecule according to any one of claims 1 to 15.
 - 24. A method for the screening of compounds which are agonists or antagonists to a GABAB receptor, said method comprising the use of a nucleic acid molecule according to any one of claims 1 to 15.
 - 25. A method according to any one of claims 22 to 24 comprising the steps (a) transforming a cultured cell with a nucleic acid molecule encoding a GABAB receptor, so that a GABAB receptor is expressed on the surface of the cell; (b) contacting a test compound with the said cell; and (c) determining whether the test compound binds to, and/or activate, the GABAB receptor.
 - 26. A pharmaceutical compositions comprising a soluble GABA_B receptor further comprising one or more pharamceutical acceptable carriers and/or diluents.

1/2

SUBSTITUTE SHEET (RULE 26)

2/2

Fig.2

Fig.3

Fig.4

SUBSTITUTE SHEET (RULE 26)

SEQUENCE LISTING

5

10

15

(1) GENERAL INFORMATION:

(i) APPLICANT:

(A) NAME: ASTRA AB

(B) STREET: Västra Mälarehamnen 9

(C) CITY: Södertälje

(E) COUNTRY: Sweden

(F) POSTAL CODE (ZIP): S-151 85

(G) TELEPHONE: +46-8-553 260 00

(H) TELEFAX: +46-8-553 288 20

(I) TELEX: 19237 astra s

(ii) TITLE OF INVENTION: New nucleotide sequences

20 (iii) NUMBER OF SEQUENCES: 85

(iv) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk

(B) COMPUTER: IBM PC compatible

(C) OPERATING SYSTEM: PC-DOS/MS-DOS

(D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)

(2) INFORMATION FOR SEQ ID NO: 1:

30

35

25

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 27 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

40

GTTTCTTCTC GGATCCAGCT GTGCCTG

27

H1865-1 WO SEQ

```
(2) INFORMATION FOR SEQ ID NO: 2:
         (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 28 base pairs
              (B) TYPE: nucleic acid
              (C) STRANDEDNESS: single
              (D) TOPOLOGY: linear
10
        (ii) MOLECULE TYPE: DNA
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
                                                                              28
    CAGGCACAGC TGGATCCGAG AAGAAACT
     (2) INFORMATION FOR SEQ ID NO: 3:
         (i) SEQUENCE CHARACTERISTICS:
20
               (A) LENGTH: 38 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
25
         (ii) MOLECULE TYPE: DNA
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
                                                                              38
     CGGTCGACTC ACTTGTAAAG CAAATGTACT CGACTCCC
30
     (2) INFORMATION FOR SEQ ID NO: 4:
          (i) SEQUENCE CHARACTERISTICS:
35
               (A) LENGTH: 41 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
 40
         (ii) MOLECULE TYPE: DNA
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:
```

SUBSTITUTE SHEET (RULE 26)

2

	ATGCGCGCCG GCAGCCAACA TGCTGCTGCT GCTGCTGGTG C	. 41
5	(2) INFORMATION FOR SEQ ID NO: 5:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 46 base pairs	
	(B) TYPE: nucleic acid	
10	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
	CGGTCGACTC ACTTGTAAAG CAAATGTACT CGACTCCCAT CACAGC	46
20	(2) INFORMATION FOR SEQ ID NO: 6:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 50 base pairs	
	(B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	·
	ATGCGCGCCG GCAGCCAACA TGCTGCTGCT GCTGCTGGTG CCTCTCTTCC	50
35	(2) INFORMATION FOR SEQ ID NO: 7:	_
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 40 base pairs	
	(B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:
                                                                              40
    CAGGCACAGC TGGATCCGAG AAGAAACTCT GTCGGAAAGT
5
    (2) INFORMATION FOR SEQ ID NO: 8:
         (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 25 base pairs
10
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: DNA
15
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:
                                                                              25
    GGTCATCCAG CGTTGAGGTG AAGAC
. 20
     (2) INFORMATION FOR SEQ ID NO: 9:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 25 base pairs
25
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
 30
        (ii) MOLECULE TYPE: DNA
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:
                                                                               25
     GAAGGTTGCC AGATTATACA TCCGC
 35
     (2) INFORMATION FOR SEQ ID NO: 10:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 25 base pairs
 40
                (B) TYPE: nucleic acid
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
```

(2) INFORMATION FOR SEQ ID NO: 11: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single
CCACGATGAT TCGAGCATCT TGACG (2) INFORMATION FOR SEQ ID NO: 11: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
(2) INFORMATION FOR SEQ ID NO: 11: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
(A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
(D) TOPOLOGY: linear
·
(ii) MOLECULE TYPE: DNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:
GCCTCTCACT CCCCTCATCT CC
(2) INFORMATION FOR SEQ ID NO: 12:
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:
GAGTGAAGGA GGCTGGAATT G
(2) INFORMATION FOR SEQ ID NO: 13:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
H1865-1 WO SEQ 5

	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	•
5	(ii) MOLECULE TYPE: DNA	
3		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
		20
10	GACGCTTATC GAGCAGCTTC	20
10		
	(2) INFORMATION FOR SEQ ID NO: 14:	
	(i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 24 base pairs	
13	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
	AGCCCAGAAC TCACAGGGGG ACAT	24
25		
	(a) THEODYAMION FOR SEC ID NO. 15.	
	(2) INFORMATION FOR SEQ ID NO: 15:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 23 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: DNA	**
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
	GCTTCAAGCC AGGTACGAAC TAA	23
40		u
	(2) INFORMATION FOR SEQ ID NO: 16:	
	H1865-1 WO SEQ 6	

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 27 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
5	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
10		
	TGGCCCTCCA CCGCCTCAGT CATCTCA	2
	(2) INFORMATION FOR SEQ ID NO: 17:	
15		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 27 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
20	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
25	COLUMN NO. LOCAL CITICAL CITIC	
	CCATCCTAAT ACGACTCACT ATAGGGC	27
	(2) INFORMATION FOR SEQ ID NO: 18:	
30		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 21 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
35	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
40		
	CTCAATCTCA TAGTCCACTG G	21

	COGICUACIC ACTIGIAAAG CAAATGIACT COMOTOCOAT CACAGG	
	CGGTCGACTC ACTTGTAAAG CAAATGTACT CGACTCCCAT CACAGC	. 40
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
	(ii) MOLECULE TYPE: DNA	
	(D) TOPOLOGY: linear	
	(C) STRANDEDNESS: single	
35	(B) TYPE: nucleic acid	
	(A) LENGTH: 46 base pairs	
	(i) SEQUENCE CHARACTERISTICS:	
30	(2) INFORMATION FOR SEQ ID NO: 21:	
	CAGGCACAGC TGGATCCGAG AAGAAACT	. 28
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
	(ii) MOLECULE TYPE: DNA	
	(D) TOPOLOGY: linear	
	(C) STRANDEDNESS: single	
20	(B) TYPE: nucleic acid	
	(A) LENGTH: 28 base pairs .	
	(i) SEQUENCE CHARACTERISTICS:	
15	(2) INFORMATION FOR SEQ ID NO: 20:	
	CCTTGAGGCC CGGGGAGAG	19
0	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
	(注i) MOLECULE TYPE: DNA	
	(D) TOPOLOGY: linear	
	(C) STRANDEDNESS: single	
5	(B) TYPE: nucleic acid	
	(A) LENGTH: 19 base pairs	
	(i) SEQUENCE CHARACTERISTICS:	
	(2) INFORMATION FOR SEQ ID NO: 19:	

(2) INFORMATION FOR SEQ ID NO: 22:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 50 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
ΓA	PGCGCGCCG GCAGCCAACA TGCTGCTGCT GCTGCTGGTG CCTCTCTTCC	50
		-
(2	2) INFORMATION FOR SEQ ID NO: 23:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 22 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:	
CC	GTCAAGATG CTCGAATCAT CG	22
(2	2) INFORMATION FOR SEQ ID NO: 24:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20 base pairs	•
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	:
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:	•

CAGGGGGCTC AGAGGGTCCC

20

- 5 (2) INFORMATION FOR SEQ ID NO: 25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 base pairs
 - (B) TYPE: nucleic acid
- 10 (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
- 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

CAGGCACAGC TGGATCCGAG AAGAAACTCT GTCGGAAAGT

40

- 20 (2) INFORMATION FOR SEQ ID NO: 26:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 50 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

CGGTCGACTC ACTTGTAAAG CAAATGTACT CGACTCCCAT CACAGCTAAG

- 35 (2) INFORMATION FOR SEQ ID NO: 27:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA

	·	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
	ACTTTCCGAC AGAGTTTCTT CTCGGATCCA GCTGTGCCTG	40
5		
	(2) INFORMATION FOR SEQ ID NO: 28:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	•
	CCACGATGAT TCGAGCATCT TGACG .	25
20		
	(2) INFORMATION FOR SEQ ID NO: 29:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 24 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
	CTACCGCGCA ATGAACTCCT CGTC	24
35	et .	
	(2) INFORMATION FOR SEQ ID NO: 30:	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 24 base pairs	છ
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	

	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:	
5	CGAGGTGGCG TTGGGGGTCT GTGC	24
10	(2) INFORMATION FOR SEQ ID NO: 31:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 27 base pairs(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:	
	CCATCCTAAT ACGACTCACT ATAGGGC	27
	(2) INFORMATION FOR SEQ ID NO: 32:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 23 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
30	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:	
35	ACTCACTATA GGGCTCGAGC GGC	23
	(2) INFORMATION FOR SEQ ID NO: 33:	
40	· · · · · · · · · · · · · · · · · · ·	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20 base pairs (B) TYPE: nucleic acid	
	H1865-1 WO SEQ 12	-

(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33: 20 GACGCTTATC GAGCAGCTTC 10 (2) INFORMATION FOR SEQ ID NO: 34: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid 15 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34: 24 AGCCCAGAAC TCACAGGGGG ACAT 25 (2) INFORMATION FOR SEQ ID NO: 35: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid 30 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35: 23 GCTTCAAGCC AGGTACGAAC TAA 40 (2) INFORMATION FOR SEQ ID NO: 36: (i) SEQUENCE CHARACTERISTICS:

gas.	(A) LENGTH: 22 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single(D) TOPOLOGY: linear	·
5	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
10	GGAGCACCCC CAAGCCCCAC TG	22
	(2) INFORMATION FOR SEQ ID NO: 37:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 18 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:	
25	CTGGTTCCTC CCAATGTG	18
	(2) INFORMATION FOR SEQ ID NO: 38:	
30	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	
40	CCTCTCACTC CCCTCATCTC	20
	(2) INFORMATION FOR SEQ ID NO: 39:	
	H1865-1 WO SEQ 14	

5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:	
	AAGCCAACCT TCCCTGCTTC TC	22
15	(2) INFORMATION FOR SEQ ID NO: 40:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:	
	CTGGTTCCTC CCAATGTG	18
30	(2) INFORMATION FOR SEQ ID NO: 41:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:	
	GACGCTTATC GAGCAGCTTC	20

```
(2) INFORMATION FOR SEQ ID NO: 42:
         (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 24 base pairs
5
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: DNA
10
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:
                                                                              24
    CTACCGCGCA ATGAACTCCT CGTC
15
    (2) INFORMATION FOR SEQ ID NO: 43:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 24 base pairs
20
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: DNA
25
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:
                                                                               24
    CCTTCTTCTC CTCCTTCTTA GTGA
30
     (2) INFORMATION FOR SEQ ID NO: 44:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 2883 base pairs
35
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: cDNA to mRNA
 40
         (iii) HYPOTHETICAL: NO
```

SUBSTITUTE SHEET (RULE 26)

(iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Rattus norwegicus 5 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION:1..2883 10 (x) PUBLICATION INFORMATION: (A) AUTHORS: Kaupmann, K Huggel, K Heid, J Flor, P Bischoff, S 15 Mickel, S McMaster, G Angst, C Bittiger, H 20 Froestl, W (B) TITLE: Expression cloning of GABA-B receptors uncovers similarity to metabotropic glutamate receptors (C) JOURNAL: Nature 25 (D) VOLUME: 386 (F) PAGES: 239-246 (G) DATE: 20 march-1997 · (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44: 30 ATG CTG CTG CTG CTG GTG CCT CTC CTC CGC CCC CTG GGC GCT 48 Met Leu Leu Leu Leu Val Pro Leu Phe Leu Arg Pro Leu Gly Ala 1 5 15 10 GGC GGG GCG CAG ACC CCC AAC GCC ACC TCG GAA GGT TGC CAG ATT ATA, 96 Gly Gly Ala Gln Thr Pro Asn Ala Thr Ser Glu Gly Cys Gln Ile Ile 20 30 25 CAT CCG CCC TGG GAA GGT GGC ATC AGG TAC CGT GGC TTG ACT CGC GAC 144 His Pro Pro Trp Glu Gly Gly Ile Arg Tyr Arg Gly Leu Thr Arg Asp 40 35 40 45 CAG GTG AAG GCC ATC AAC TTC CTG CCT GTG GAC TAT GAG ATC GAA TAT 192 H1865-1 WO SEQ 17

•**	Gln	Val	Lvs	Ala	Ile	Asn	Phe	Leu	Pro	Val	Asp	Tyŕ	Glu	Ilė	Glu	Tyr		
		50	_				55					60					•	
	GTG	TGC	CGA	GGG	GAG	CGC	GAG	GTG	GTG	GGG	ccc	AAG	GTG	CGC	AAA	TGC		240
5							Glu								•			
	65	-	_	_		70					75					80		
	CTG	GCC	AAC	GGC	TCC	TGG	ACG	GAT	ATG	GAC	ACA	CCC	AGC	CGC	TGT	GTC		288
	Leu	Ala	Asn	Gly	Ser	Trp	Thr	qzA	Met	Asp	Thr	Pro	Ser	Arg	Cys	Val		
10					85					90					95			
							тат											336
	Arg	Ile	Cys	Ser	Lуs	Ser	Tyr	Leu	Thr	Leu	Glu	Asn	Gly	Lys	Val	Phe		
				100					105					110				
15						ama	001	CCM	cmc	ሮአጥ	CCA	ccc	ccc	GTG.	GAG	ጥጥር		384
							CCA Pro										•	301
	Leu	Thr	115		ASP	Leu	PIO	120	neu	ASP	GIJ	ALG	125	• • • • • • • • • • • • • • • • • • • •	024		•	
						mmc	CAT	CITIC.	CITIC	ccc	N.C.C	ייייר יי	CGG	ልሮሮ	GTC	ጥርጥ		432
20							His											
	Arg	130		PIO	ASP	FILE	135	Deu	Vul	OL,	501	140						
	AGT	CAG	GGC	CAG	TGG	AGC	ACC	CCC	AAG	CCC	CAC	TGC	CAG	GTG	AAT	CGA		480
25	Ser	Gln	Gly	Gln	Trp	Ser	Thr	Pro	Lys	Pro	His	Суз	Gln	Val	Asn	Arg		
	145	;				150					155	•				160		
					~	000	CCM	CCA	CULY	መአር	አጥር	r rece	: GCG	. cmc	. ւնսնա	ccc		528
																Pro		
30	THI	PIC	nis	s ser	165		nrg	ALO	· vui	170		, 01,			175			
30					100													
	ATC	a AGO	GGG	GGC	TGG	CCG	GGG	GGC	CAG	GCC	TGC	CAC	CCC	GCG	GTG	GAG		576
	Met	. Sei	Gly	/ Gly	Trp	Pro	Gly	G17	Glr	a Ala	Суя	Glr	n Pro	Ala	a Val	Glu		
				180)				185	5				190)			
35																		624
																TAC		624
	Me	t Ala			ı Asr	Va.	l Asr			g Arg	, As	o II			o Ası	Tyr		
			195	5				200	,				20	•				
40	GA	G CT	C AAG	G CT	T ATO	CAC	C CAC	GA	C AG	CAAC	TG'	T GA	c cci	A GG	G CA	A GCC		ر 672
••																n Ala		
		21					21					22			•			

								•	•									
	ACC	AAG	TAC	TTG	TAC	GAA	СТА	CTC	TAC	AAT	GAC	CCC	ATC	AAG	ATĆ	ATT		7 2 0
	Thr	Lys	Tyr	Leu	Tyr	Glu	Leu	Leu	Tyr	Asn	Asp	Pro	Ile	Lys	Ile	Ile	•	
	225					230					235					240		
5	CTC	ATG	CCT	GGC	TGT	AGT	TCT	GTC	TCC	ACA	CTT	GTA	GCT	GAG	GCT	GCC		768
	Leu	Met	Pro	Gly	Cys	Ser	Ser	Val	Ser	Thr	Leu	Val	Ala	Glu	Ala	Ala		
					245					250					255			
	CGG	ATG	TGG	AAC	CTT	ATT	GTG	CTC	TCA	тат	GGC	TCC	AGT	TCA	CCA	GCC		816
10	Arg	Met	Trp	Asn	Leu	Ile	Val	Leu	Ser	Tyr	Gly	Ser	Ser	Ser	Pro	Ala		
				260					265		_			270				
	TTG	TCA	AAC	CGA	CAG	CGG	TTT	CCC	ACG	TTC	TTC	CGG	ACG	CAT	CCA	TCC		864
	Leu	Ser	Asn	Arg	Gln	Arg	Phe	Pro	Thr	Phe	Phe	Arg	Thr	His	Pro	Ser		
15			275			_		280				_	285					
	GCC	ACA	CTC	CAC	ААТ	CCC	ACC	CGG	GTG	AAA	CTC	TTC	GAA	AAG	TGG	GGC		912
	Ala	Thr	Leu	His	Asn	Pro	Thr	Arg	Val	Lys	Leu	Phe	Glu	Lys	Trp	Gly		
		290					295	_		_		300		_	-	-		
20					•													
	TGG	AAG	AAG	ATC	GCT	ACC	ATC	CAA	CAG	ACC	ACC	GAG	GTC	TTC	ACC	TCA		960
	Trp	Lys	Lys	Ile	Ala	Thr	Ile	Gln	Gln	Thr	Thr	Glu	Val	Phe	Thr	Ser		
	305					310					315					320		
25	ACG	CTG	GAT	GAC	CTG	GAG	GAG	CGA	GTG	AAA	GAG	GCT	GGG	ATC	GAG	ATC		1008
	Thr	Leu	Asp	Asp	Leu	Glu	Glu	Arg	Val	Lys	Glu	Ala	Gly	Ile	Glu	Ile		
					325			_		330			_		335			
	ACT	TTC	CGA	CAG	AGT	TTC	TTC	TCG	GAT	CCA	GCT	GTG	CCT	GTT	AAA	AAC		1056
30	Thr	Phe	Arg	Gln	Ser	Phe	Phe	Ser	Asp	Pro	Ala	Val	Pro	Val	Lys	Asn		
				340					345					350				
	CTG	AAG	CGT	CAA	GAT	GCT	CGA	ATC	ATC	GTG	GGA	CTT	TTC	TAT	GAG	ACG		1104
	Leu	Lys	Arg	Gln	Asp	Ala	Arg	Ile	Ile	Val	Gly	Leu	Phe	Tyr	Glu	Thr		
35		_	355					360			_		365					
	GAA	GCC	CGG	AAA	GTT	TTT	TGT	GAG	GTC	TAT	AAG	GAA	AGG	CTC	TTT	GGG		1152
	Glu	Ala	Arg	Lys	Val	Phe	Cys	Glu	Val	Tyr	Lys	Glu	Arg	Leu	Phe	Gly		
		370	_	-			375			_	-	380	-			-		
40																		
	AAG	AAG	TAC	GTC	TGG	TTC	CTC	ATC	GGG	TGG	TAT	GCT	GAC	AAC	TGG	TTC		1200
				Val											_			
	385				- -	390				•	395		_		4 -'	400	•	

Description :

	AAG	ACC	TAT	GAC	CCG	TCA	ATC	AAT	TGT	ACA	GTG	GAA	GÀA	ATG	ACĊ	GÄG	1248	
				Asp														
					405					410					415			
5									a. a	» mm	ama.	3 mc	OMC.	220	CCM	CCC	1296	
				GGC Gly													1290	
	Ala	vaı	GIU	420	nıs	116	1111	1111	425	116	Vai	mec	пеа	430	110	7124		
				420														
10	AAC	AĈC	CGA	AGC	ATT	TCC	AAC	ATG	ACG	TCA	CAG	GAA	TTT	GTG	GAG	AAA	1344	ŀ
	Asn	Thr	Arg	Ser	Ile	Ser	Asn	Met	Thr	Ser	Gln	Glu	Phe	Val	Glu	Lys		
			435					440					445					
								a. a	000	ara.	C D C	7 CM	CCA	ccc	mmc	CNC	1392	,
1.5				CGG Arg													1332	•
15	reu	450	гур	AIG	nea	בעם	455	1113	110	014	014	460	013	017				
	GAG	GCA	CCA	CTG	GCC	TAT	GAT	GCT	ATC	TGG	GCC	TTG	GCT	TTG	GCC	TTG	1440)
	Glu	Ala	Pro	Leu	Ala	Tyr	Asp	Ala	Ile	Trp	Ala	Leu	Ala	Leu	Ala	Leu		
20	465					470					475			•		480		
			3.00	TCT	CCA	CCA	CCT	CCT	CCT	TCC	GGC	GTG.	CGC	ርሞር	GAG	GAC	1488	3
				Ser														-
	ASII	пуз	1111	Ser	485	017	0.1	0-1	9	490	,		5		495	-		
25																		
	TTT	AAC	TAC	AAC	AAC	CAG	ACC	ATT	ACA	GAC	CAG	ATC	TAC	CGG	GCC	ATG	153	5
	Phe	Asn	Tyr	Asn	Asn	Gln	Thr	Ile	Thr	Asp	Gln	Ile	Tyr	Arg	Ala	Met		
				500					505					510				
20	770	mcc	mcc	TCC	Մարա	GAG	GGC	שיים	ጥርጥ	GGC	СУТ	GTG	GTC	արդուր	GAT	GCC	158	4
30				Ser														
			515				-	520					525					
																GGC	163	2
35	Ser			Arg	Met	Ala			Leu	Ile	Glu			Gln	Gly	Gly		
		530					535					540						
	AGC	ጥልር	' AAC	: AAG	ATC	GGC	TAC	TAC	GAC	AGC	ACC	AAG	GAT	' GAT	CTT	TCC	168	0
																Ser		
40	545	_	•	-		550					555					560		
																		b -
															-	CAG	172	8
	Trp	Sei	: Lys	Thr	: Asp	Lys	Trp) Ile	e Gly	Gly	Ser	Pro	Pro) Ala	ASP	Gln	•	
	77.	065	1 117	CEC					20									
	Hl	865-	ıwc	SEC	Į				20									

								-	-								
					565					570		-	-	•	575		_
	ACC	TTG	GTC	ATC	AAG	ACA	TTC	CGT	TTC	CTG	TCT	CAG	AAA	CTC	TTT	ATC	1776
	Thr	Leu	Val	Ile	Lys	Thr	Phe	Arg	Phe	Leu	Ser	Gln	Lys	Leu	Phe	Ile	
5				580	_			_	585				•	590			
	TCC	GTC	TCA	GTT	CTC	TCC	AGC	CTG	GGC	ATT	GTT	CTT	GCT	GTT	GTC	TGT	1824
	Ser	Val	Ser	Val	Leu	Ser	Ser	Leu	Gly	Ile	Val	Leu	Ala	Val	Val	Cys	
			595					600					605				
10																	
	CTG	TCC	TTT	AAC	ATC	TAC	AAC	TCC	CAC	GTT	CGT	TAT	ATC	CAG	AAC	TCC	1872
	Leu	Ser	Phe	Asn	Ile	Tyr	Asn	Ser	His	Val	Arg	Tyr	Ile	Gln	Asn	Ser	
		610					615					620					
15	CAG	CCC	AAC	CTG	AAC	ААТ	CTG	ACT	GCT	GTG	GGC	TGC	TCA	CTG	GCA	CTG	1920
	Gln	Pro	Asn	Leu	Asn	Asn	Leu	Thr	Ala	Val	Gly	Cys	Ser	Leu	Ala	Leu	•
	625					630					635					640	
	GCT	GCT	GTC	TTC	CCT	CTC	GGG	CTG	GAT	GGT	TAC	CAC	АТА	GGG	AGA	AGC	1968
20	Ala	Ala	Val	Phe	Pro	Leu	Gly	Leu	Asp	Gly	Tyr	His	Ile	Gly	Arg	Ser	
					645					650					655		
	CAG	TTC	CCG	TTT	GTC	TGC	CAG	GCC	CGC	CTT	TGG	CTC	TTG	GGC	TTG	GGC	2016
	Gln	Phe	Pro	Phe	Val	Cys	Gln	Ala	Arg	Leu	Trp	Leu	Leu	Gly	Leu	Gly	
25				660					665					670			
	TTT	AGT	CTG	GGC	TAT	GGC	TCT	ATG	TTC	ACC	AAG	ATC	TGG	TGG	GTC	CAC	2064
	Phe	Ser	Leu	Gly	Tyr	Gly	Ser	Met	Phe	Thr	Lys	Ile	Trp	Trp	Val	His	
			675					680					685				
30																	
	ACA	GTC	TTC	ACG	AAG	AAG	GAG	GAG	AAG	AAG	GAG	TGG	AGG	AAG	ACC	CTA	2112
	Thr	Val	Phe	Thr	Lys	Lys	Glu	Glu	Lys	Lys	Glu	Trp	Arg	Lys	Thr	Leu	
		690					695					700					
35	GAG	CCC	TGG	AAA	CTC	TAT	GCC	ACT	GTG	GGC	CTG	CTG	GTG	GGC	ATG	GAT-	2160
	Glu	Pro	Trp	Lys	Leu	Tyr	Ala	Thr	Val	Gly	Leu	Leu	Val	Gly	Met	Asp	
	705					710					715					720	
	-																
	GTC	CTG	ACT	CTT	GCC	ATC	TGG	CAG	ATT	GTG	GAC	CCC	TTG	CAC	CGA	ACC	2208
40	Val	Leu	Thr	Leu	Ala	Ile	Trp	Gln	Ile	Val	Asp	Pro	Leu	His	Arg	Thr	ຍ
					725					730					735		
														•	-		
	ATT	GAG	АСТ	ттт	GCC	AAG	GAG	GAA	CCA	AAG	GAA	GAC	ATC	GAT	GTC	TCC .	2256
	H18	65-1	WO	SEQ					21								
		•						_									

								-	•				•				
	· Ile	Glu	Thr	Phe	Ala	Lys	Glu	Glu	Pro	Lys	Glu	Asp	Ile	Asp	Val	Ser	
				740					745					750			
	3 mm	CMC	ccc	CAG	ששים	GAG	CAC	ጥርር	ACC	ጥሮር	AAG	AAG	ATG	ААТ	ACG	TGG	2304
												Lys					
5	TIE	Deu	755	0111	200	0.1 u		760	-	-	-,-		765			_	
	CTT	GGC	АТТ	TTC	TAT	GGT	TAC	AAG	GGG	CTG	CTG	CTG	CTG	CTG	GGA	ATC	2352
	Leu	Gly	Ile	Phe	Tyr	Gly	Tyr	Lys	Gly	Leu	Leu	Leu	Leu	Leu	Gly	Ile	
10		770				•	775					780					
														3.00	3 3 M	CAC	2400
												GAA					2400
			Ala	Tyr	GIu	790	гÀ2	ser	vaı	ser	795	Glu	гуѕ	116	na	800	
15	785					750					.,,,						
13	CAC	AGG	GCC	GTG	GGC	ATG	GCT	ATC	TAC	AAT	GTC	GCG	GTC	CTG	TGT	CTC	2448
												Ala					•
					805					810					815		
																	_*
20												CAG					2496
	Ile	Thr	Ala			Thr	Met	Ile		Ser	Ser	Gln	Gln		Ala	Ala	
				820					825					830			
	thint.	, ccc		GCC	יייטיי	CTG	GCC	АТС	GTG	ттс	тст	TCC	TAC	ATC	ACT	CTG	2544
25																Leu	
			835					840					845				
																GAA	2592
	Val	. Val	. Leu	Phe	Val	Pro	Lys	Met	Arg	Arg	Leu			Arg	Gly	Glu	
30		850)				855					860	ı				
			, mor		3.00			2 200	አጥር	. אא	<u>አ</u> ርአ	CCA	സ്മ	י יירר	י אכר	AAC	2640
																Asn	
	865		, ser	GIC		870					875					880	
35	00.																•
	AA	C AAG	GAG	GAA	A GAG	AAC	TCC	CGA	CTG	TTG	GAG	AAG	GA/	AAC	CGA	GAA	2688
	Ası	n Ası	n Glu	ı Glu	ı Glu	Lys	s Ser	Arg	, Lev	Lev	Gli	ı Lys	s Glu	ı Asr	a Arç	, Glu	
					885	5				890)				895	S	
														n	\ Cmr		2736
40																G CGC	2730 p
	Le	u Gl	u Ly:	s Ile 90		e Ala	a GII	ı r. Xa	90:		ı Ar	y val	. se	910	_	ı Arg	
				501	U				, ,	•					-		

CAT CAG CTC CAG TCT CGG CAG CAA CTC CGC TCA CGG CGC CAC CCC CCA 2784 His Gln Leu Gln Ser Arg Gln Gln Leu Arg Ser Arg Arg His Pro Pro 915 ACA CCC CCA GAT CCC TCT GGG GGC CTT CCC AGG GGA CCC TCT GAG CCC 2832 Thr Pro Pro Asp Pro Ser Gly Gly Leu Pro Arg Gly Pro Ser Glu Pro 930 935 940 CCT GAC CGG CTT AGC TGT GAT GGG AGT CGA GTA CAT TTG CTT TAC AAG 2880 Pro Asp Arg Leu Ser Cys Asp Gly Ser Arg Val His Leu Leu Tyr Lys 945 950 955 960 TGA 2883 15 (2) INFORMATION FOR SEQ ID NO: 45: (i) SEQUENCE CHARACTERISTICS: 20 (A) LENGTH: 960 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45: Met Leu Leu Leu Leu Val Pro Leu Phe Leu Arg Pro Leu Gly Ala 10 30 Gly Gly Ala Gln Thr Pro Asn Ala Thr Ser Glu Gly Cys Gln Ile Ile 20 25 30 His Pro Pro Trp Glu Gly Gly Ile Arg Tyr Arg Gly Leu Thr Arg Asp 40 35 45 35 Gln Val Lys Ala Ile Asn Phe Leu Pro Val Asp Tyr Glu Ile Glu Tyr 50 55 Val Cys Arg Gly Glu Arg Glu Val Val Gly Pro Lys Val Arg Lys Cys 65 70

H1865-1 WO SEQ

Leu Ala Asn Gly Ser Trp Thr Asp Met Asp Thr Pro Ser Arg Cys Val

85 90 95

Arg Ile Cys Ser Lys Ser Tyr Leu Thr Leu Glu Asn Gly Lys Val Phe 100 105 110

Leu Thr Gly Gly Asp Leu Pro Ala Leu Asp Gly Ala Arg Val Glu Phe 115 120 125

Arg Cys Asp Pro Asp Phe His Leu Val Gly Ser Ser Arg Ser Val Cys
10 130 135 140

Ser Gln Gly Gln Trp Ser Thr Pro Lys Pro His Cys Gln Val Asn Arg 145 150 155 160

Thr Pro His Ser Glu Arg Arg Ala Val Tyr Ile Gly Ala Leu Phe Pro 165 170 175

Met Ser Gly Gly Trp Pro Gly Gly Gln Ala Cys Gln Pro Ala Val Glu 180 . 185 190

Met Ala Leu Glu Asp Val Asn Ser Arg Arg Asp Ile Leu Pro Asp Tyr
195 200 205

Glu Leu Lys Leu Ile His His Asp Ser Lys Cys Asp Pro Gly Gln Ala 25 210 215 220

Thr Lys Tyr Leu Tyr Glu Leu Leu Tyr Asn Asp Pro Ile Lys Ile Ile 225 230 235 240

30 Leu Met Pro Gly Cys Ser Ser Val Ser Thr Leu Val Ala Glu Ala Ala 245 250 255

Arg Met Trp Asn Leu Ile Val Leu Ser Tyr Gly Ser Ser Ser Pro Ala 260 265 270

Leu Ser Asn Arg Gln Arg Phe Pro Thr Phe Phe Arg Thr His Pro Ser 275 280 285

Ala Thr Leu His Asn Pro Thr Arg Val Lys Leu Phe Glu Lys Trp Gly
40 290 295 300

Trp Lys Lys Ile Ala Thr Ile Gln Gln Thr Thr Glu Val Phe Thr Ser 305 310 315 320

dd3.60U6.1 >

20

35

	Thr	Leu	Asp	Asp	Leu 325	Glu	Glu	Arg	Val	Lys 330	Glu	Ala	Gly	Ile	Glu 335	Ile
5	Thr	Phe	Arg	Gln 340	Ser	Phe	Phe	Ser	Asp 345	Pro	Ala	Val	Pro	Val 350	Lys	Asn
0	Leu	Lys	Arg 355	Gln	Asp	Ala	Arg	Ile 360	Ile	Val	Gly	Leu	Phe 365	Туг	Glu	Thr
	Glu	Ala 370	Arg	Lys	Val	Phe	Cys 375	Glu	Val	Tyr	Lys	Glu 380	Arg	Leu	Phe	Gly
5	Lys 385	Lys	Tyr	Val	Trp	Phe 390	Leu	Ile	Gly	Trp	Tyr 395	Ala	Asp	Asn	Trp	Phe 400
	Lys	Thr	Tyr	Asp	Pro 405	Ser	Ile	Asn	Cys	Thr 410	Val	Glu	Glu	Met	Thr 415	Glu
20	Ala	Val	Glu	Gly 420	His	Ile	Thr	Thr	Glu 425	Ile	Val	Met	Leu	Asn 430	Pro	Ala
25	Asn	Thr	Arg 435	Ser	Ile	Ser	Asn	Met 440	Thr	Ser	Gln	Glu	Phe 445	Val	Glu	Lys
	Leu	Thr 450	Lys	Arg	Leu	Lys	Arg 455	His	Pro	Glu	Glu	Thr 460	Gly	Gly	Phe	Gln
30	Glu 465	Ala	Pro	Leu	Ala	Tyr 470	Asp	Ala	Ile	Trp	Ala 475	Leu	Ala	Leu	Ala	Leu 480
	Asn	Lys	Thr	Ser	Gly 485	Gly	Gly	Gly	Arg	Ser 490	Gly	Val	Arg	Leu	Glu 495	Asp
35	Phe	Asn	Туr	Asn 500	Asn	Gln	Thr	Ile	Thr 505	Asp	Gln	Ile	Tyr	Arg 510	Ala	Met-
10	Asn	Ser	Ser 515	Ser	Phe	Glu	Gly	Val 520	Ser	Gly	His	Val	Val 525	Phe	Asp	Ala
	Ser	Gly 530	Ser	Arg	Met	Ala	Trp 535	Thr	Leu	Ile	Glu	Gln 540	Leu	Gln	Gly	Gly

Ser Tyr Lys Lys Ile Gly Tyr Tyr Asp Ser Thr Lys Asp Asp Leu Ser Trp Ser Lys Thr Asp Lys Trp Ile Gly Gly Ser Pro Pro Ala Asp Gln Thr Leu Val Ile Lys Thr Phe Arg Phe Leu Ser Gln Lys Leu Phe Ile Ser Val Ser Val Leu Ser Ser Leu Gly Ile Val Leu Ala Val Val Cys Leu Ser Phe Asn Ile Tyr Asn Ser His Val Arg Tyr Ile Gln Asn Ser Gln Pro Asn Leu Asn Asn Leu Thr Ala Val Gly Cys Ser Leu Ala Leu Ala Ala Val Phe Pro Leu Gly Leu Asp Gly Tyr His Ile Gly Arg Ser Gln Phe Pro Phe Val Cys Gln Ala Arg Leu Trp Leu Leu Gly Leu Gly Phe Ser Leu Gly Tyr Gly Ser Met Phe Thr Lys Ile Trp Trp Val His Thr Val Phe Thr Lys Lys Glu Glu Lys Lys Glu Trp Arg Lys Thr Leu Glu Pro Trp Lys Leu Tyr Ala Thr Val Gly Leu Leu Val Gly Met Asp Val Leu Thr Leu Ala Ile Trp Gln Ile Val Asp Pro Leu His Arg Thr 735 ~ Ile Glu Thr Phe Ala Lys Glu Glu Pro Lys Glu Asp Ile Asp Val Ser Ile Leu Pro Gln Leu Glu His Cys Ser Ser Lys Lys Met Asn Thr Trp Leu Gly Ile Phe Tyr Gly Tyr Lys Gly Leu Leu Leu Leu Gly Ile

770 775 780

5

20

35

40

Phe Leu Ala Tyr Glu Thr Lys Ser Val Ser Thr Glu Lys Ile Asn Asp 785 790 795 800

His Arg Ala Val Gly Met Ala Ile Tyr Asn Val Ala Val Leu Cys Leu 805 810 815

Ile Thr Ala Pro Val Thr Met Ile Leu Ser Ser Gln Gln Asp Ala Ala 10 820 825 830

Phe Ala Phe Ala Ser Leu Ala Ile Val Phe Ser Ser Tyr Ile Thr Leu 835 840 845

Val Val Leu Phe Val Pro Lys Met Arg Arg Leu Ile Thr Arg Gly Glu 850 855 860

Trp Gln Ser Glu Thr Gln Asp Thr Met Lys Thr Gly Ser Ser Thr Asn 865 870 875 880

Asn Asn Glu Glu Lys Ser Arg Leu Leu Glu Lys Glu Asn Arg Glu 885 890 895

Leu Glu Lys Ile Ile Ala Glu Lys Glu Glu Arg Val Ser Glu Leu Arg
25 900 905 910

His Gln Leu Gln Ser Arg Gln Gln Leu Arg Ser Arg Arg His Pro Pro 915 920 925

30 Thr Pro Pro Asp Pro Ser Gly Gly Leu Pro Arg Gly Pro Ser Glu Pro 930 935 940

Pro Asp Arg Leu Ser Cys Asp Gly Ser Arg Val His Leu Leu Tyr Lys 945 950 955 960

(2) INFORMATION FOR SEQ ID NO: 46:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2538 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

```
(ii) MOLECULE TYPE: cDNA to mRNA
       (iii) HYPOTHETICAL: NO
5
        (iv) ANTI-SENSE: NO
        (vi) ORIGINAL SOURCE:
              (A) ORGANISM: Rattus norwegicus
10
        (ix) FEATURE:
              (A) NAME/KEY: CDS
               (B) LOCATION:1..2532
         (x) PUBLICATION INFORMATION:
15
               (A) AUTHORS: Kaupmann, K
                            Huggel, K
                            Heid, J
                            Flor, P
                            Bischoff, M
20
                            Mickel, S
                            McMaster, G
                            Angst, C
                            Bittiger, H
                            Froestl, W
25
               (B) TITLE: Expression cloning of GABA-B receptors
                      uncovers similarity to metabotropic glutamate
                      receptors
               (C) JOURNAL: Nature
               (D) VOLUME: 386
30
               (F) PAGES: 239-246
               (G) DATE: 20 March-1997
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:
35
     ATG GGC CCG GGG GGA CCC TGT ACC CCA GTG GGG TGG CCG CTG CCT CTT
                                                                              48
     Met Gly Pro Gly Gly Pro Cys Thr Pro Val Gly Trp Pro Leu Pro Leu
                                           10
                                                                15
       1
                        5
     CTG CTG GTG ATG GCG GCT GGG GTG GCT CCG GTG TGG GCC TCT CAC TCC
                                                                               96.,
     Leu Leu Val Met Ala Ala Gly Val Ala Pro Val Trp Ala Ser His Ser
                                                            30
                                       25
                   20
```

								-	•				•					
															TCC		1	144
P	ro	His		Pro	Arg	Pro	His	Pro	Arg	Val	Pro	Pro	His	Pro	Ser	Ser		
			35					40					45				•	
															GGG		1	192
G	lu		Arg	Ala	Val	Tyr		Gly	Ala	Leu	Phe	Pro	Met	Ser	Gly	Gly		
		50					55					60						
															CTG		2	240
		Pro	Gly	Gly	Gln		Cys	Gln	Pro	Ala		Glu	Met	Ala	Leu	Glu		
	65					70					75					80		
															AAG		2	288
Α	qz	Val	Asn	Ser		Arg	Asp	Ile	Leu		Asp	Tyr	Glu	Leu	Lys	Leu		
					85					90					95			
															TAC		3	36
Ι	le	His	His		Ser	Lys	Cys	Asp		Gly	Gln	Ala	Thr	Lys	Tyr	Leu		
				100	•				105					110				
T.	AC	GAA	СТА	CTC	TAC	AAT	GAC	ccc	ATC	AAG	ATC	ATT	CTC	ATG	ССТ	GGC	3	84
															Pro		_	
			115					120					125					
T	GT	AGT	TCT	GTC	TCC	ACA	CTT	GTA	GCT	GAG	GCT	GCC	CGG	ATG	TGG	AAC	4	32
C;	ys	Ser	Ser	Val	Ser	Thr	Leu	Val	Ala	Glu	Ala	Ala	Arg	Met	Trp	Asn		
		130					135					140						
C'	TT	ATT	GTG	CTC	TCA	TAT	GGC	TCC	AGT	TCA	CCA	GCC	TTG	TCA	AAC	CGA	4	80
L	eu	Ile	Val	Leu	Ser	Tyr	Gly	Ser	Ser	Ser	Pro	Ala	Leu	Ser	Asn	Arg	•	
1	45					150					155					160		
C	AG	CGG	ттт	CCC	ACG	TTC	TTC	CGG	ACG	САТ	CCA	TCC	GCC	ACA	CTC	CAC	5	28
G	ln	Arg	Phe	Pro	Thr	Phe	Phe	Arg	Thr	His	Pro	Ser	Ala	Thr	Leu	His		
					165					170					175	-et		
A	АT	CCC	ACC	CGG	GTG	AAA	CTC	TTC	GAA	AAG	TGG	GGC	TGG	AAG	AAG	ATC	5	76
À	sn	Pro	Thr	Arg	Val	Lys	Leu	Phe	Glu	Lys	Trp	Gly	Trp	Ŀys	Lys	Ile		
				180					185					190				
G	CT	ACC	ATC	CAA	CAG	ACC	ACC	GAG	GTC	TTC	ACC	TCA	ACG	CTG	GAT	GAC	6	ں 24
														_	Asp			
			195					200					205		_			
		55-1																

		CAC	CAC	CCA	CTC	מממ	GAG	CCT	GGG	ልጥሮ	GAG	ልጥሮ	ACT	ттс	CGA	CAG	672
							Glu										
	Leu		GIU	Arg	vai	БУЗ	215	AIG	GLY		014	220			5		
_		210					213					220					
5			mm.c	maa	G 3 M	CC 3	GCT	CMC	CCT	COURT	א א א א	አአር	CTC	ΔAG	ССТ	-CAA	720
		Pne	Pne	ser	Asp		Ala	vai	PIO	vai	235	ASII	Deu	цуз	nr 9	240	
	225					230					233					240	
			223		.	ama.	GGA	CERT	mmc	mam	CAC	N.C.C.	CAA	GCC	ccc	ΔΔ Δ	768
10																	, •••
	Asp	Ala	Arg	TTE		vaı	Gly	Leu	Pne		GIU	TIIL	GIU	nia	255	цуз	
					245					250					233		
•								~		amo.		000	7 7 C	N N C	ma c	CTC	816
							AAG										010
15	Val	Phe	Cys		Val	луr	Lys	GIU		rea	Pne	Сту	nys	270	TAT	vai	
				260					265					270			•
								aam	63.6		mcc	mmc	`	N.C.C	መአመ	GAC	864
							TAT										301,
	Trp	Phe		lle	GIĀ	Trp	туг		Asp	ASII	пр	PHE	285	1111	TYL	Asp	
20			275					280					203				
							ama	~~~	CN 3	» mc	700	CAC	ccc	CTC	GAG	GGC	912
																GGC	
	Pro			Asn	Суѕ	Thr		GIU	Giu	Mec	1111	300	AIG	Val	GIU	Gly	
		290					295					300					
25			100	3.00	C 2 C	s mm	CMC	אתוכי	CTC	አልሮ	CCT	GCC	ממ	ACC	CGA	AGC	960
																Ser	
			Thr	Thr	GIU			Mec	Den	VSII	315		AGII	1111	**** 9	320	
	305					310					313					320	
	>	. maa		N MC		י דערי א	CAC	CAA	ጥጥጥ	GTG	GAG	. מממ	СТА	ACC	AAG	CGG	1008
30																Arg	
	TTe	ser	ASD	Met			GIII	. Giu	File	330	GIU	. Llys	neu	****	335		
					325	,				550					303		
	ama			03.0				אכייי	CCA	GGC	ጥጥር	י ראם	GAG	GCA	CCA	CTG	1056
																Leu	
35	rec	LLYS	Arg			, Git	GIU	. 1111	345		1110	. 011.	. 010	350			
				340	,				343					550			
	000				n እሙር	י הככ		mmo	CCT	י יייים	GCC	י ייייים	. אאר	· AAC	ACG	TCT	1104
																Ser	
	Alč	а туг			7 TT6	: ITF) HIC			. Dec	nic	. 1100	365				
40			355	•				360	,				50.	•			υ
	~~				ח ככי	n m~		י כישי	· ccc	י כייים	: GAG	: CA(ւ փանու	י אאר	TAC	. AAC	1152
	G1	A GT	A GTZ	/ GT	y Ar	y se:	r GT7	y val	Arg	שטים,	. Gil	. no	, E116	, ASI	y:	Asn	·

									-				•					
		370					375					380	•	-	•	• •		
	AAC	CAG	ACC	ATT	ACA	GAC	CAG	ATC	TAC	CGG	GCC	ATG	AAC	TCC	TCC	TCC		1200
							Gln											
5	385					390			-4-	٥	395					400		
,	303																	
	TTT	GAG	GGC	GTT	TCT	GGC	CAT	GTG	GTC	TTT	GAT	GCC	AGC	GGC	TCC	CGG		1248
	Phe	Glu	Gly	Val	Ser	Gly	His	Val	Val	Phe	Asp	Ala	Ser	Gly	Ser	Arg		
					405					410					415			٠
10																		
							GAG											1296
	Met	Ala	Trp	Thr	Leu	Ile	Glu	Gln		Gln	Gly	Gly	Ser		Lys	Lys		
				420					425					430				
15	ATC	GGC	TAC	TAC	GAC	AGC	ACC	AAG	GAT	GAT	CTT	TCC	TGG	TCC	AAA	ACG		1344
							Thr											
			435	- 4	•			440	_				445					
	GAC	AAG	TGG	АТТ	GGA	GGG	TCT	CCC	CCA	GCT	GAC	CAG	ACC	TTG	GTC	ATC		1392
20	Asp	Lys	Trp	Ile	Gly	Gly	Ser	Pro	Pro	Ala	Asp	Gln	Thr	Leu	Val	Ile		
		450					455					460						
	AAG	ACA	TTC	CGT	TTC	CTG	TCT	CAG	AAA	CTC	TTT	ATC	TCC	GTC	TCA	GTT		1440
	Lys	Thr	Phe	Arg	Phe	Leu	Ser	Gln	Lys	Leu	Phe	Ile	Ser	Val	Ser	Val		
25	465					470					475					480		
	CTC	TCC	AGC	CTG	GGC	ATT	GTT	CTT	GCT	GTT	GTC	TGT	CTG	TCC	TTT	AAC		1488
	Leu	Ser	Ser	Leu	Gly	Ile	Val	Leu	Ala	Val	Val	Cys	Leu	Ser	Phe	Asn		
					485					490					495			
30																	÷	
	ATC	TAC	AAC	TCC	CAC	GTT	CGT	TAT	ATC	CAG	AAC	TCC	CAG	CCC	AAC	CTG		1536
	Ile	Tyr	Asn	Ser	His	Val	Arg	Tyr	Ile	Gln	Asn	Ser	Gln	Pro	Asn	Leu		
				500					505					510				
_						ama	000	mc o	ma s	CMC	CCA	cmc	CCM	CCM	CTC	നനുന		1584
35							GGC											1304
	Asn	Asn			Ala	vaı	Gly			Leu	Ala	Leu			vai	rne 1		
			515					520					525					
	ССТ	CTC	GGG	CTG	GAT	GGT	TAC	CAC	ATA	GGG	AGA	AGC	CAG	TTC	CCG	TTT		1632
40																Phe		Đ
		530			- 4-	-	535			_	_	540						
														•				
	GTC	TGC	CAG	GCC	CGC	CTI	TGG	CTC	TTG	GGC	TTG	GGC	רידי	AGT	CTG	GGC		1680
					_													

	Val 545	Cys	Gln	Ala	Arg	Leu 550	Trp	Leu	Leu	Gly	Leu 555	Gly	Phe	Ser	Leu	G1y 560		
5								ATC Ile									٠	1728
				Glu				TGG Trp										1776
10								CTG Leu	g t g					CTG				1824
15								600 CCC										1872
20		610					615	Pro				620				CAG		1920
20	Ala 625	Lys	Glu	Glu	Pro	Lys 630	Glu	Asp	Ile	Asp	Val 635	Ser	Ile	Leu	Pro	Gln 640		
25						Ser					Thr					TTC Phe		1968
20					Gly					Leu					Ala	TAC Tyr		2016
30				ago	GTG				AAG	ATC						C GTG	·	2064
35				r ATC					GTC					ac ac		CCT		2112
		69	0				695	5				700)			Pro		2160
40		l Th					r Sei					a Al				e Ala 720		υ

									-				•				
	TCT	CTG	GCC	ATC	GTG	TTC	TCT	TCC	TAC	ATC	ACT	CTG	GTT	GTG	CTC	TTT	22 0 8
	Ser	Leu	Ala	Ile	Val	Phe	Ser	Ser	Tyr	Ile	Thr	Leu	Val	Val	Leu	Phe	
					725					730					735		
5															TCT		2256
	Val	Pro	Lys		Arg	Arg	Leu	Ile		Arg	Gly	Glu	Trp		Ser	Glu	
				740					745					750			
	ACG	CAG	GAC	ACC	ATG	AAA	ACA	GGA	TCA	TCC	ACC	AAC	AAC	AAC	GAG	GAA	2304
10															Glu		
			755			-		760				-	765				
•																	
	GAG	AAG	TCC	CGA	CTG	TTG	GAG	AAG	GAA	AAC	CGA	GAA	CTG	GAA	AAG	ATC	2352
	Glu	Lys	Ser	Arg	Leu	Leu	Glu	Lys	Glu	Asn	Arg	Glu	Leu	Glu	Lys	Ile	
15		770					775					780					
															CTC		2400
		Ala	Glu	Lys	Glu		Arg	Val	Ser	Glu		Arg	His	Gln	Leu		
•	785				•	790					795					800	
20	ጥርጥ	CGG	CAG	$C\Delta\Delta$	СТС	CGC	ጥሮል	ccc	ccc	CAC	ccc	CCA	አሮአ	ccc	CCA	CAT	2448
															Pro		2440
	501		0.1.1	U	805	9	501	9	**** 9	810		110	1111	110	815	1150	
															,		
25	CCC	TCT	GGG	GGC	CTT	ccc	AGG	GGA	CCC	TCT	GAG	CCC	CCT	GAC	CGG	CTT	2496
	Pro	Ser	Gly	Gly	Leu	Pro	Arg	Gly	Pro	Ser	Glu	Pro	Pro	Asp	Arg	Leu	
				820					825					830			
			GAT								-		TGA				2535
30	Ser	Cys	Asp	Gly	Ser	Arg	Val		Leu	Leu	Tyr	Lys	*			•	
			835					840									

(2) INFORMATION FOR SEQ ID NO: 47:

35

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 844 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

	Met 1	Gly	Pro	Gly	Gly 5	Pro	Cys	Thr	Pro	Val 10	Gly	Trp	Pro	Leu	Pro 15	Leu
5	Leu	Leu	Val	Met 20	Ala	Ala	Gly	Val	Ala 25	Pro	Val	Trp	Ala	Ser 30	His	Ser
0	Pro	His	Leu 35	Pro	Arg	Pro	His	Pro 40	Arg	Val	Pro	Pro	His 45	Pro	Ser	Ser
	Glu	Arg 50	Arg	Ala	Val	Tyr	Ile 55	Gly	Ala	Leu	Phe	Pro 60	Met	Seŗ	Gly	Gly
15	Trp 65	Pro	Gly	Gly	Gln	Ala 70	Суѕ	Gln	Pro	Ala	Val 75	Glu	Met	Ala	Leu	Glu 80
	Asp	Val	Asn	Ser	Arg 85	Arg	Asp	Ile	Leu	Pro 90	Asp	Tyr	Glu	Leu	Lys 95	Leu
20	Ile	His	His	Asp 100	Ser	Lys	Cys	Asp	Pro 105	Gly	Gln	Ala	Thr	Lys 110	Tyr	Leu
25	Tyr	Glu	Leu 115		Tyr	Asn	Asp	Pro 120	Ile	Lys	Ile	Ile	Leu 125	Met	Pro	Gly
	Cys	Ser 130	Ser	Val	Ser	Thr	Leu 135	Val	Ala	Glu	Ala	Ala 140	Arg	Met	Trp	Asn
30	Leu 145		Val	Leu	Ser	Туr 150	Gly	Ser	Ser	Ser	Pro 155	Ala	Leu	Ser	Asn	Arg 160
	Gln	Arg	Phe	Pro	Thr 165		Phe	Arg	Thr	His 170	Pro	Ser	Ala	Thr	Leu 175	
35	Asn	Pro	Thr	180		Lys	Leu	Phe	Glu 185		Trp	Gly	Trp	Lys 190		Ile
40	Ala	. Thr	11e		Gln	Thr	Thr	Glu 200		. Phe	Thr	Ser	Thr 205		Asp	Asp
	Lev	ı Glu		ı Arg	y Val	. Lys	: Glu 215		Gly	/ Ile	e Glu	. Ile		Phe	Arg	Gln

Ser Phe Phe Ser Asp Pro Ala Val Pro Val Lys Asn Leu Lys Arg Gln Asp Ala Arg Ile Ile Val Gly Leu Phe Tyr Glu Thr Glu Ala Arg Lys Val Phe Cys Glu Val Tyr Lys Glu Arg Leu Phe Gly Lys Lys Tyr Val Trp Phe Leu Ile Gly Trp Tyr Ala Asp Asn Trp Phe Lys Thr Tyr Asp Pro Ser Ile Asn Cys Thr Val Glu Glu Met Thr Glu Ala Val Glu Gly His Ile Thr Thr Glu Ile Val Met Leu Asn Pro Ala Asn Thr Arg Ser Ile Ser Asn Met Thr Ser Gln Glu Phe Val Glu Lys Leu Thr Lys Arg Leu Lys Arg His Pro Glu Glu Thr Gly Gly Phe Gln Glu Ala Pro Leu Ala Tyr Asp Ala Ile Trp Ala Leu Ala Leu Ala Leu Asn Lys Thr Ser Gly Gly Gly Arg Ser Gly Val Arg Leu Glu Asp Phe Asn Tyr Asn Asn Gln Thr Ile Thr Asp Gln Ile Tyr Arg Ala Met Asn Ser Ser Ser Phe Glu Gly Val Ser Gly His Val Val Phe Asp Ala Ser Gly Ser Arg 415 -Met Ala Trp Thr Leu Ile Glu Gln Leu Gln Gly Gly Ser Tyr Lys Lys Ile Gly Tyr Tyr Asp Ser Thr Lys Asp Asp Leu Ser Trp Ser Lys Thr Asp Lys Trp Ile Gly Gly Ser Pro Pro Ala Asp Gln Thr Leu Val Ile PCT/SE98/01947

WO 99/21890 Lys Thr Phe Arg Phe Leu Ser Gln Lys Leu Phe Ile Ser Val Ser Val Leu Ser Ser Leu Gly Ile Val Leu Ala Val Val Cys Leu Ser Phe Asn Ile Tyr Asn Ser His Val Arg Tyr Ile Gln Asn Ser Gln Pro Asn Leu Asn Asn Leu Thr Ala Val Gly Cys Ser Leu Ala Leu Ala Ala Val Phe Pro Leu Gly Leu Asp Gly Tyr His Ile Gly Arg Ser Gln Phe Pro Phe Val Cys Gln Ala Arg Leu Trp Leu Leu Gly Leu Gly Phe Ser Leu Gly Tyr Gly Ser Met Phe Thr Lys Ile Trp Trp Val His Thr Val Phe Thr Lys Lys Glu Glu Lys Lys Glu Trp Arg Lys Thr Leu Glu Pro Trp Lys Leu Tyr Ala Thr Val Gly Leu Leu Val Gly Met Asp Val Leu Thr Leu Ala Ile Trp Gln Ile Val Asp Pro Leu His Arg Thr Ile Glu Thr Phe Ala Lys Glu Glu Pro Lys Glu Asp Ile Asp Val Ser Ile Leu Pro Gln Leu Glu His Cys Ser Ser Lys Lys Met Asn Thr Trp Leu Gly Ile Phe Tyr Gly Tyr Lys Gly Leu Leu Leu Leu Gly Ile Phe Leu Ala Tyr

CCOTECTAL .

Glu Thr Lys Ser Val Ser Thr Glu Lys Ile Asn Asp His Arg Ala Val

Gly Met Ala Ile Tyr Asn Val Ala Val Leu Cys Leu Ile Thr Ala Pro 690 695 700 Val Thr Met Ile Leu Ser Ser Gln Gln Asp Ala Ala Phe Ala Phe Ala 705 710 715 Ser Leu Ala Ile Val Phe Ser Ser Tyr Ile Thr Leu Val Val Leu Phe 725 730 10 Val Pro Lys Met Arg Arg Leu Ile Thr Arg Gly Glu Trp Gln Ser Glu 745 Thr Gln Asp Thr Met Lys Thr Gly Ser Ser Thr Asn Asn Asn Glu Glu 15 760 765 Glu Lys Ser Arg Leu Leu Glu Lys Glu Asn Arg Glu Leu Glu Lys Ile 770 775 780 Ile Ala Glu Lys Glu Glu Arg Val Ser Glu Leu Arg His Gln Leu Gln 785 790 795 800 Ser Arg Gln Gln Leu Arg Ser Arg Arg His Pro Pro Thr Pro Pro Asp 805 810 815 25 Pro Ser Gly Gly Leu Pro Arg Gly Pro Ser Glu Pro Pro Asp Arg Leu 820 825 830

- (2) INFORMATION FOR SEQ ID NO: 48:
- (i) SEQUENCE CHARACTERISTICS:

835

(A) LENGTH: 2886 base pairs

Ser Cys Asp Gly Ser Arg Val His Leu Leu Tyr Lys

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA to mRNA
- (iii) HYPOTHETICAL: NO

H1865-1 WO SEQ

30

40

DNEODOID: -WO

		(iv)	ANT	'I-SE	NSE:	NO												
5		(vi)		GINA () OR				sap	iens									
		(ix)	(A	TURE NA LO	ME/K			86										
10		(xi)	SEÇ	QUENC	E DE	ESCRI	PTIC)N: S	EQ I	D NC	: 48	:						
				CTG														48
		Leu	Leu	Leu		Leu	Leu	Ala	Pro		Phe	Leu	Arg	Pro	Pro 15	Gly		
15	1				5					10					13			
	GCG	GGC	GGĠ	GCG	CAG	ACC	CCC	AAC	GCC	ACC	TCA	GAA	GGT	TGC	CAG	ATC	·	96
	Ala	Gly	Gly	Ala	Gln	Thr	Pro	Asn	Ala	Thr	Ser	Glu	Gly	Cys	Gln	Ile		
				20					25					30				
20			000	CCC	mac	C N N	ccc	CCC	አምሮ	AGG	ጥልሮ	ccc	GGC	ርጥር	ACT	CGG		144
				Pro														
	110		35					40		_	_		45					
25				AAG														192
	qaA	Gln 50		Lys	Ala	Ile	Asn 55	Phe	Leu	Pro	vaı	Asp 60	туг	GIU	116	Giu		
		50					33											
	TAT	GTG	TGC	CGG	GGG	GAG	CGC	GAG	GTG	GTG	GGG	CCC	AAG	GTC	CGC	AAG		240
30	Tyr	Val	Cys	Arg	Gly	Glu	Arg	Glu	Val	Val	Gly	Pro	Lys	Val	Arg			
	65					70					75					80		
	תככ	СТС	פרר	AAC	GGC	יירכר	тсс	ACA	GAT	ATG	GAC	ACA	ccc	AGC	CGC	TGT		288
				Asn														
35					85					90					95			
																- CMM		336
				TGC Cys														330
	vaı	Arg	l TTE	100		пĀS	Ser	ığı	105		Deu	010		110				
40																		
																GAT		384
	Phe	Le	ı Thi	c Gly	, Gl	/ Asp	Lev			Leu	Asp	Gly			y Val	Asp		
			115	5				120)				125)				
	TT1	065	1 3376	\ CE/					38									
	HI	- CO	IWC) SE(2				٥٥									

	TTC	CGG	TGT	GAC	CCC	GAC	TTC	CAT	CTG	GTG	GGC	AGC	TCC	CGG	AGC	ATC	432
	Phe	Arg	Cys	Asp	Pro	Asp	Phe	His	Leu	Val	Gly	Ser	Ser	Arg	Ser	Ile	
		130					135					140					
5																	
	TGT	AGT	CAG	GGC	CAG	TGG	AGC	ACC	CCC	AAG	CCC	CAC	TGC	CAG	GTG	AAT	480
	Cys	Ser	Gln	Gly	Gln	Trp	Ser	Thr	Pro	Lys	Pro	His	Cys	Gln	Val	Asn	
	145					150					155					160	
10	CGA	ACG	CCA	CAC	TCA	GAA	CGG	CGC	GCA	GTG	TAC	ATC	GGG	GCA	CTG	TTT	528
	Arg	Thr	Pro	His	Ser	Glu	Arg	Arg	Ala	Val	Tyr	Ile	Gly	Ala	Leu	Phe	
					165					170					175		
	CCC	ATG	AGC	GGG	GGC	TGG	CCA	GGG	GGC	CAG	GCC	TGC	CAG	CCC	GCG	GTG	576
15	Pro	Met	Ser	Gly	Gly	Trp	Pro	Gly	Gly	Gln	Ala	Cys	Gln	Pro	Ala	Val	
				180					185					190			
	GAG	ATG	GCG	CTG	GAG	GAC	GTG	AAT	AGC	CGC	AGG	GAC	ATC	CTG	CCG	GAC	624
	Glu	Met	Ala	Leu	Glu	Asp	Val	Asn	Ser	Arg	Arg	Asp	İle	Leu	Pro	Asp	
20		-	195					200					205				
	TAT	GAG	CTC	AAG	CTC	ATC	CAC	CAC	GAC	AGC	AAG	TGT	GAT	CCA	GGC	CAA	672
	Tyr	Glu	Leu	Lys	Leu	Ile	His	His	Asp	Ser	Lys	Cys	Asp	Pro	Gly	Gln	
		210					215					220					
25																	
	GCC	ACC	AAG	TAC	CTA	TAT	GAG	CTG	CTC	TAC	AAC	GAC	CCT	ATC	AAG	ATC	720
	Ala	Thr	Lys	Tyr	Leu	Tyr	Glu	Leu	Leu	Tyr	Asn	Asp	Pro	Ile	Lys	Ile	
	225					230					235					240	
30	ATC	CTT	ATG	CCT	GGC	TGC	AGC	TCT	GTC	TCC	ACG	CTG	GTG	GCT	GAG	GCT	768
	Ile	Leu	Met	Pro	Gly	Cys	Ser	Ser	Val	Ser	Thr	Leu	Val	Ala	Glu	Ala	
					245					250					255		
	GCT	AGG	ATG	TGG	AAC	CTC	ATT	GTG	СТТ	TCC	TAT	GGC	TCC	AGC	TCA	CCA	816
35	Ala	Arg	Met	Trp	Asn	Leu	Ile	Val	Leu	Ser	Tyr	Gly	Ser	Ser	Ser	Pro	
				260					265					270			
	GCC	CTG	TCA	AAC	CGG	CAG	CGT	TTC	CCC	ACT	TTC	TTC	CGA	ACG	CAC	CCA	864
	Ala	Leu	Ser	Asn	Arg	Gln	Arg	Phe	Pro	Thr	Phe	Phe	Arg	Thr	His	Pro	
40			275					280					285				t)
																	••
	TCA	GCC	ACA	CTC	CAC	AAC	ССТ	ACC	CGC	GTG	AAA	CTC	TTT	GAÂ	AAG	TGG	912
															Lys		
											-				•		

	HI	865-	ı wo	SEC	Q				40								
	CAC	G GAG	GC2	A CCC	G CT	G GCC	TAT	GA!	r GCC	TA C	TGC	G GCC	TTC	GC	A CT	GCC	1440
40	րչ	450		. Dys	, are	, 400	455		,			460				-	
40																TTC Phe	1392
			435					440					445				
	Ala	Asn			g Ser	Ile	Ser			Thr	Ser	Gln	_		e Val	Glu	
35																GAG	1344
				420) ·				425					430)		
	Glu	Ala	Val			His	Ile	Thr			Ile	Val	Met			Pro	
																CCT	1296
30																	
	Phe	ьys	тте	TYT	405 405		ser	тте	ASII	410	1117	val	чэр	010	415		
																ACT Thr	1248
							_									n a com	1240
25	385	_	-	-		390					395					400	
																Trp	
	GGG	AAG	AAG	TAC	GTC	TGG	TTC	CTC	ATT	GGG	TGG	TAT	GCT	GAC	AAT	TGG	1200
		370					375					380					
20	Thr	Glu	Ala	Arg	Lys	Val		Cys	Glu	Val	Tyr		Glu	Arg	Leu	Phe	
				CGG													1152
			ددد														
	Asn	Leu	Lys 355	Arg	GIn	ASP	АТА	Arg 360	TTE	тте	vaı	GTĀ	365	FIIG	тĀт	Giu	
15				CGC													1104
																a. a	1104
		-		340					345					350			
	-			Arg													
10	שוש ע	ያ ር-ሙ	ጥጥር	CGC	CZG	ልርጥ	ጥጥር	שיייט	тса	GAT	CCA	GCT	GTG	CCC	GTC	AAA	1056
		3			325					330					335		
	Ser		Leu	Asp	Asp	Leu	Glu	Glu	Arg		Lys	Glu	Ala	Gly		Glu	
				GAC													1008
ر	202																
5	Gly 305	Trp	ьys	гÀг	тте	310	TUL	тте	ure	GIII	315	TIIT	Jiu	vaı		320	
	GGC			AAG Lys													960
													~.~	oma.	mma	3.CM	960
		290					295					300	•		•	• • •	
								-	•				•				

	C1-	G1	31-	5	.		-	•		-1	_						
		GIU	Ala	Pro	ren		туг	Asp	Ala	TIE		Ala	Leu	Ala	Leu		
	465					470					475					480	•
								GGC									1488
5	Leu	Asn	Lys	Thr		Gly	Gly	Gly	Gly		Ser	Gly	Val	Arg	Leu	Glu	
					485					490					495		
								ACC									1536
	Asp	Phe	Asn		Asn	Asn	Gln	Thr		Thr	Asp	Gln	Ile	Tyr	Arg	Ala	
10				500			•		505					510			
								GGT									1584
	Met	Asn		Ser	Ser	Phe	Glu	Gly	Val	Ser	Gly	His	Val	Val	Phe	Asp	
			515					520					525				
15																	
								TGG									1632
	Ala		Gly	Ser	Arg	Met		Trp	Thr	Leu	Ile	Glu	Gln	Leu	Gln	Gly	
		530					535					540					
					-												
20								TAC									1680
		Ser	Tyr	Lys	Lys	Ile	Gly	Tyr	Tyr	Asp	Ser	Thr	Lys	Asp	Asp	Leu	
	545					550					555					560	
								TGG									1728
25	Ser	Trp	Ser	Lys	Thr	Asp	Lys	Trp	Ile	Gly	Gly	Ser	Pro	Pro	Ala	Asp	
					565					570					575		
	CAG	ACC	CTG	GTC	ATC	AAG	ACA	TTC	CGC	TTC	CTG	TCA	CAG	AAA	CTC	TTT	1776
	Gln	Thr	Leu	Val	Ile	Lys	Thr	Phe	Arg	Phe	Leu	Ser	Gln	Lys	Leu	Phe	
30				580					585					590			
			•														
	ATC	TCC	GTC	TCA	GTT	CTC	TCC	AGC	CTG	GGC	ATT	GTC	CTA	GCT	GTT	GTC	1824
	Ile	Ser	Val	Ser	Val	Leu	Ser	Ser	Leu	Gly	Ile	Val	Leu	Ala	Val	Val	
			595					600					605				
35																•	
	TGT	CTG	TCC	$\mathbf{T}\mathbf{T}\mathbf{T}$	AAC	ATC	TAC	AAC	TCA	CAT	GTC	CGT	TAT	ATC	CAG	AAC	1872
	Cys	Leu	Ser	Phe	Asn	Ile	Tyr	Asn	Ser	His	Val	Arg	Tyr	Ile	Gln	Asn	
	-	610					615					620		-			
40	TCA	CAG	CCC	AAC	CTG	AAC	AAC	CTG	ACT	GCT	GTG	GGC	TGC	TCA	CTG	GCT	1920թ
	Ser	Gln	Pro	Asn	Leu	Asn	Asn	Leu	Thr	Ala	Val	Gly	Cys	Ser	Leu	Ala	
	625					630					635				•	640	

	****	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						-	•								
	тта	GCT	GCT	GTC	TTC	CCC	CTG	GGG	CTC	GAT	GGT	TAC	CÁC	ATT	GGG	AGG	1968
				Val													
	Беа	n.u	****		645			2		650	-	-			655		
					043					000							
						cmc		63.6	000	000	ama	mcc	CMC	CTC	ccc	CTG	2016
5				CCT													2010
	Asn	Gln	Phe	Pro	Phe	Val	Cys	GIn		Arg	Leu	urp	ьеп		GTA	Leu	
				660					665					670			
	GGC	TTT	AGT	CTG	GGC	TAC	GGT	TCC	ATG	TTC	ACC	AAG	ATT	TGG	TGG	GTC	2064
10	Gly	Phe	Ser	Leu	Gly	Tyr	Gly	Ser	Met	Phe	Thr	Lys	Ile	Trp	Trp	Val	
			675					680					685				
	CAC	ACG	GTC	TTC	ACA	AAG	AAG	GAA	GAA	AAG	AAG	GAG	TGG	AGG	AAG	ACT	2112
				Phe													
15		690				•	695			_	-	700					
15		050															
	ame.	C	ccc	TGG	A A C	CTG	ጥልጥ	GCC	ACA	GTG	GGC	СТС	CTG	GTG	GGC	ATG	2160
				Trp													
		GIu	Pro	Trp	ьys		TAT	AIA	IIII	Vai	715		Бец	V41	0+1	720	
	705				٠	710					113					, 20	
20												~~~	com	ama	G2 G	CCC	2208
				ACT													2200
	Asp	Val	Leu	Thr	Leu	Ala	Ile	Trp	Gln	Ile	Val	Asp	Pro	Leu		Arg	
					725					730					735		
25				ACA													2256
	Thr	Ile	Glu	Thr	Phe	Ala	Lys	Glu	Glu	Pro	Lys	Glu	Asp	Ile	Asp	Val	
				740					745					750			
	TCT	TTA	CTG	CCC	CAG	CTG	GAG	CAI	TGC	AGC	TCC	AGG	AAG	ATG	AAT	ACA	2304
30	Ser	Ile	e Leu	Pro	Gln	Leu	Glu	His	Cys	Ser	Ser	Arg	Lys	Met	Asn	Thr	
			755					760					765				
	тсс	י רייויים	י הפנ	י איי	י יייר	TAT	GGI	TAC	: AAG	GGG	CTG	CTG	CTO	CTG	CTG	GGA	2352
																Gly	
	TIL			, TIE	FILE	. ıyı	775			, 01,		780				_	
35		770	J				,,,	,				, 00	•				
									י אכיי	o CTC	י שכר	י אכייו	י כאר	ממב	2 ልጥር	TAA	2400
			e Lei	ı Ala	туг			r Lys	s Sei	· vai			GII	тъХа	. TTE	Asn	
	785	5				790)				795)				800	
40																	1.
															_	TGC	2448
	Ası	p Hi	s Ar	g Ala	a Val	Gl ₃	y Me	t Ala	a Ile	э Туг	: Ası	n Val	l Ala	a Vai	l Le	ı Cys	
					809	5				810)				81	5	

H1865-1 WO SEQ

													•	•			
	CTC	ATC	ACT	GCT	CCT	GTC	ACC	ATG	ATT	CTG	TCC	AGC	CAG	CAG	GAT	GCA	2496
	Leu	Ile	Thr	Ala	Pro	Val	Thr	Met	Ile	Leu	Ser	Ser	Gln	Gln	Asp	Ala	
				820					825					830			
5																	
	GCC	TTT	GCC	TTT	GCC	TCT	CTT	GCC	ATA	GTT	TTC	TCC	TCC	TAT	ATC	ACT	2544
	Ala	Phe	Ala	Phe	Ala	Ser	Leu	Ala	Ile	Val	Phe	Ser	Ser	Tyr	Ile	Thr	
			835					840					845				
10								AAG									2592
	Leu	Val	Val	Leu	Phe	Val	Pro	Lys	Met	Arg	Arg	Leu	Ile	Thr	Arg	Gly	
		850					855					860					
								GAC									2640
15		Trp	Gln	Ser	Glu		Gln	Asp	Thr	Met	Lys	Thr	Gly	Ser	Ser	Thr	
	865					870					875					880	
				a. a													
								TCC									2688
20	ASII	ASN	ASI	GIU		GIU	гуѕ	Ser	Arg		Leu	Glu	Lys	Glu		Arg	
20					885					890					895		
	GAA	ርጥር	GAA	AAG	ልጥሮ	≱մոսի	GCT	GAG	מממ	GAG	CAC	CCM	CMC	mcm	C2.2	C/D/C	2726
								Glu									2736
				900				014	905	Olu	GIU	Arg	Vai	910	GIU	nea	
25									505					710			
	CGC	CAT	CAA	CTC	CAG	TCT	CGG	CAG	CAG	СТС	CGC	TCC	CGG	CGC	CAC	CCA	2784
								Gln									
			915					920			_		925	•			
											٠						
30	CCG	ACA	CCC	CCA	GAA	CCC	TCT	GGG	GGC	CTG	CCC	AGG	GGA	CCC	ССТ	GAG	2832
	Pro	Thr	Pro	Pro	Glu	Pro	Ser	Gly	Gly	Leu	Pro	Arg	Gly	Pro	Pro	Glu	
		930					935					940					
	CCC	CCC	GAC	CGG	CTT	AGC	TGT	GAT	GGG	AGT	CGA	GTG	CAT	TTG	CTT	TAT	2880
35	Pro	Pro	Asp	Arg	Leu	Ser	Cys	Asp	Gly	Ser	Arg	Val	His	Leu	Leu	Tyr-	
	945					950					955					960	
	AAG	TGA															2886
	Lys	*														•	
40																	

(2) INFORMATION FOR SEQ ID NO: 49:

5

10

25

131	SECTIENCE	CHARACTERISTICS:
111	SECUENCE	CITATOR TOTAL

- (A) LENGTH: 961 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:

Met Leu Leu Leu Leu Leu Ala Pro Leu Phe Leu Arg Pro Pro Gly
1 5 10 15

Ala Gly Gly Ala Gln Thr Pro Asn Ala Thr Ser Glu Gly Cys Gln Ile
20 25 30

Ile His Pro Pro Trp Glu Gly Gly Ile Arg Tyr Arg Gly Leu Thr Arg
35 40 45

20 Asp Gln Val Lys Ala Ile Asn Phe Leu Pro Val Asp Tyr Glu Ile Glu 50 55 60

Tyr Val Cys Arg Gly Glu Arg Glu Val Val Gly Pro Lys Val Arg Lys
65 70 75 80

Cys Leu Ala Asn Gly Ser Trp Thr Asp Met Asp Thr Pro Ser Arg Cys
85 90 95

Val Arg Ile Cys Ser Lys Ser Tyr Leu Thr Leu Glu Asn Gly Lys Val
30 100 105 110

Phe Leu Thr Gly Gly Asp Leu Pro Ala Leu Asp Gly Ala Arg Val Asp 115 120 125

Phe Arg Cys Asp Pro Asp Phe His Leu Val Gly Ser Ser Arg Ser Ile
130 135 140

Cys Ser Gln Gly Gln Trp Ser Thr Pro Lys Pro His Cys Gln Val Asn
145 150 155 160

Arg Thr Pro His Ser Glu Arg Arg Ala Val Tyr Ile Gly Ala Leu Phe 165 170 175

H1865-1 WO SEQ

Pro Met Ser Gly Gly Trp Pro Gly Gln Ala Cys Gln Pro Ala Val Glu Met Ala Leu Glu Asp Val Asn Ser Arg Arg Asp Ile Leu Pro Asp Tyr Glu Leu Lys Leu Ile His His Asp Ser Lys Cys Asp Pro Gly Gln Ala Thr Lys Tyr Leu Tyr Glu Leu Leu Tyr Asn Asp Pro Ile Lys Ile Ile Leu Met Pro Gly Cys Ser Ser Val Ser Thr Leu Val Ala Glu Ala Ala Arg Met Trp Asn Leu Ile Val Leu Ser Tyr Gly Ser Ser Ser Pro Ala Leu Ser Asn Arg Gln Arg Phe Pro Thr Phe Phe Arg Thr His Pro Ser Ala Thr Leu His Asn Pro Thr Arg Val Lys Leu Phe Glu Lys Trp Gly Trp Lys Lys Ile Ala Thr Ile Gln Gln Thr Thr Glu Val Phe Thr Ser Thr Leu Asp Asp Leu Glu Glu Arg Val Lys Glu Ala Gly Ile Glu Ile Thr Phe Arg Gln Ser Phe Phe Ser Asp Pro Ala Val Pro Val Lys Asn Leu Lys Arg Gln Asp Ala Arg Ile Ile Val Gly Leu Phe Tyr Glu Thr Glu Ala Arg Lys Val Phe Cys Glu Val Tyr Lys Glu Arg Leu Phe Gly Lys Lys Tyr Val Trp Phe Leu Ile Gly Trp Tyr Ala Asp Asn Trp Phe Lys Ile Tyr Asp Pro Ser Ile Asn Cys Thr Val Asp Glu Met Thr

H1865-1 WO SEQ

PCT/SE98/01947

WO 99/21890 Glu Ala Val Glu Gly His Ile Thr Thr Glu Ile Val Met Leu Asn Pro Ala Asn Thr Arg Ser Ile Ser Asn Met Thr Ser Gln Glu Phe Val Glu Lys Leu Thr Lys Arg Leu Lys Arg His Pro Glu Glu Thr Gly Gly Phe Gln Glu Ala Pro Leu Ala Tyr Asp Ala Ile Trp Ala Leu Ala Leu Ala Leu Asn Lys Thr Ser Gly Gly Gly Gly Arg Ser Gly Val Arg Leu Glu Asp Phe Asn Tyr Asn Asn Gln Thr Ile Thr Asp Gln Ile Tyr Arg Ala Met Asn Ser Ser Ser Phe Glu Gly Val Ser Gly His Val Val Phe Asp Ala Ser Gly Ser Arg Met Ala Trp Thr Leu Ile Glu Gln Leu Gln Gly Gly Ser Tyr Lys Lys Ile Gly Tyr Tyr Asp Ser Thr Lys Asp Asp Leu Ser Trp Ser Lys Thr Asp Lys Trp Ile Gly Gly Ser Pro Pro Ala Asp Gln Thr Leu Val Ile Lys Thr Phe Arg Phe Leu Ser Gln Lys Leu Phe Ile Ser Val Ser Val Leu Ser Ser Leu Gly Ile Val Leu Ala Val Val Cys Leu Ser Phe Asn Ile Tyr Asn Ser His Val Arg Tyr Ile Gln Asn

H1865-1 WO SEQ

Ser Gln Pro Asn Leu Asn Asn Leu Thr Ala Val Gly Cys Ser Leu Ala

Leu Ala Ala Val Phe Pro Leu Gly Leu Asp Gly Tyr His Ile Gly Arg Asn Gln Phe Pro Phe Val Cys Gln Ala Arg Leu Trp Leu Leu Gly Leu Gly Phe Ser Leu Gly Tyr Gly Ser Met Phe Thr Lys Ile Trp Trp Val His Thr Val Phe Thr Lys Lys Glu Glu Lys Lys Glu Trp Arg Lys Thr Leu Glu Pro Trp Lys Leu Tyr Ala Thr Val Gly Leu Leu Val Gly Met Asp Val Leu Thr Leu Ala Ile Trp Gln Ile Val Asp Pro Leu His Arg Thr Ile Glu Thr Phe Ala Lys Glu Glu Pro Lys Glu Asp Ile Asp Val Ser Ile Leu Pro Gln Leu Glu His Cys Ser Ser Arg Lys Met Asn Thr Trp Leu Gly Ile Phe Tyr Gly Tyr Lys Gly Leu Leu Leu Leu Gly Ile Phe Leu Ala Tyr Glu Thr Lys Ser Val Ser Thr Glu Lys Ile Asn Asp His Arg Ala Val Gly Met Ala Ile Tyr Asn Val Ala Val Leu Cys Leu Ile Thr Ala Pro Val Thr Met Ile Leu Ser Ser Gln Gln Asp Ala Ala Phe Ala Phe Ala Ser Leu Ala Ile Val Phe Ser Ser Tyr Ile Thr Leu Val Val Leu Phe Val Pro Lys Met Arg Arg Leu Ile Thr Arg Gly

Glu Trp Gln Ser Glu Ala Gln Asp Thr Met Lys Thr Gly Ser Ser Thr 865 870 875 885

- Asn Asn Asn Glu Glu Glu Lys Ser Arg Leu Leu Glu Lys Glu Asn Arg 885 890 895
 - Glu Leu Glu Lys Ile Ile Ala Glu Lys Glu Glu Arg Val Ser Glu Leu 900 905 910
- 10 Arg His Gln Leu Gln Ser Arg Gln Gln Leu Arg Ser Arg Arg His Pro 915 920 925
 - Pro Thr Pro Pro Glu Pro Ser Gly Gly Leu Pro Arg Gly Pro Pro Glu 930 935 940
- Pro Pro Asp Arg Leu Ser Cys Asp Gly Ser Arg Val His Leu Leu Tyr 945 950 955 960

Lys

-3

20

- (2) INFORMATION FOR SEQ ID NO: 50:
- 25 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2535 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

30

- (ii) MOLECULE TYPE: cDNA to rRNA
- (iii) HYPOTHETICAL: NO
- 35 (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- 40 (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1...2535

202120181 '

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:

	ATG	GGG	ccc	GGG	GCC	CCT	ттт	GCC	CGG	GTG	GGG	TGG	CCA	CTG	CCG	CTT		48
	Met	Gly	Pro	Gly	Ala	Pro	Phe	Ala	Arg	Val	Gly	Trp	Pro	Leu	Pro	Leu		
5	1				5					10					15			
	CITIC	C TTM	CMC	» mc	ccc	CCA	ccc	CMC	CCM	000	CMC.	maa	600	maa	63.6	maa		06
											GTG Val							96
				20			02,	742	25				*****	30		DCI		
10							•											
	CCC	CAT	CTC	CCG	CGG	CCT	CAC	TCG	CGG	GTC	CCC	CCG	CAC	ccc	TCC	TCA		144
	Pro	His		Pro	Arg	Pro	His		Arg	Val	Pro	Pro		Pro	Ser	Ser	•	
			35					40					45					
15	GAA	CGG	CGC	GCA	GTG	TAC	ATC	GGG	GCA	CTG	TTT	CCC	ATG	AGC	GGG	GGC		192
	Glu	Arg	Arg	Ala	Val	Tyr	Ile	Gly	Ala	Leu	Phe	Pro	Met	Ser	Gly	Gly		
		50					55					60						
20											GTG Val							240
20	65	PIO	GIY	GIA	GIII	70	cys	GIII	Pro	Ald	75	GIU	Met	Ala	Leu	80		
	GAC	GTG	AAT	AGC	CGC	AGG	GAC	ATC	CTG	CCG	GAC	TAT	GAG	CTC	AAG	CTC		288
	Asp	Val	Asn	Ser	Arg	Arg	Asp	Ile	Leu	Pro	Asp	Tyr	Glu	Leu	Lys	Leu		
25					85					90					95			
	ATC	CAC	CAC	GAC	AGC	AAG	ጥርጥ	GAT	CCA	GGC	CAA	GCC	ACC	AAG	ጥልሮ	СТА		336
		_	_								Gln							330
		-		100					105					110				
30																		
											ATC							384
	TYT	GIU	115	ren	ıyr	Asn	Asp	120	TTE	гуs	Ile	TTE	Leu 125	Met	Pro	GIY		
								120					123					
35	TGC	AGC	TCT	GTC	TCC	ACG	CTG	GTG	GCT	GAG	GCT	GCT	AGG	ATG	TGG	AAC		432
	Cys	Ser	Ser	Val	Ser	Thr	Leu	Val	Ala	Glu	Ala	Ala	Arg	Met	Trp	Asn		
	-	130					135					140						
	CTC	y anan	CITIC	C/M/M	mcc.	mam	ccc	maa	3.00	mc x	CCA	ccc	CITIC	mc »	220	000		400
40											Pro						•	480 5
	145					150	1				155					160		٥
															•			
	CAG	CGT	TTC	CCC	ACT	TTC	TTC	CGA	ACG	CAC	CCA	TCA	GCC	ACA	CTC	CAC		528
	H18	865-1	wo	SEQ	<u>!</u>			4	49									

									-									
	Gln	Arg	Phe	Pro	Thr	Phe	Phe	Arg	Thr	His	Pro	Ser	Ala	Thr	Leu	His		
					165					170					175			٠
													maa			> mm		576
										AAG								576
5	Asn	Pro	Thr		vai	ьys	Leu	Pne	185	Lys	тър	GIY	IIĐ	190	пуъ	TTE		
				180					100					190				
	GCT	ACC	ATC	CAG	CAG	ACC	ACT	GAG	GTC	TTC	ACT	TCG	ACT	CTG	GAC	GAC		624
	Ala	îhr	Ile	Gln	Gln	Thr	Thr	Glu	Val	Phe	Thr	Ser	Thr	Leu	Asp	Asp		
10			195					200					205					
										ATT								672
	Leu	Glu	Glu	Arg	Val	Lys	Glu	Ala	Gly	Ile	Glu	Ile	Thr	Phe	Arg	Gln		
		210					215					220						
15																010		720
										GTC								720
		Phe	Pne	Ser	Asp	230	Ala	vaı	Pro	Val	ьуs 235	ASI	rea	пуs	Arg	240		
	225					230					233					240		
20	ርልጥ	GCC	CGA	ATC	ATC	GTG	GGA	СТТ	TTC	ТАТ	GAG	ACT	GAA	GCC	CGG	AAA	•	768
20										Tyr								
			3		245		_			250					255			
	GTT	TTT	TGT	GAG	GTG	TAC	AAG	GAG	CGT	CTC	TTT	GGG	AAG	AAG	TAC	GTC		816
25	Val	Phe	Cys	Glu	Val	Tyr	Lys	Glu	Arg	Leu	Phe	Gly	Lys	Lys	Tyr	Val		
				260					265					270				
																GAC		864
	Trp	Phe		Ile	Gly	Trp	Tyr		Asp	Asn	Trp	Phe			Tyr	Asp		
30			275					280					285					
	c c m	mam	3.00	220	mcc.	202	CITIC	CAM	CAC	አሞር	እርጥ	CAG	CCC	CTC	GAG	GGC		912
																Gly		,
	PIO	290		NSII	. cys	1111	295		Olu	1100		300						
35		250														·es)		
<i></i>	CAC	ATC	: ACA	ACT	GAG	ATT	GTC	ATG	CTG	AAT	ССТ	GCC	AAT	ACC	CGC	AGC		960
																Ser		
	305	,				310)				315					320		
40	ATT	TCC	AAC	ATG	ACA	TCC	CAG	GAA	TTT	GTG	GAG	AAA	CTA	ACC	AAG	CGA		1008 _p
	Il€	Ser	Asn	Met	Thr	Ser	Gln	Glu	Phe	Val	Glu	Lys	Leu	Thr	_	Arg		
					325	1				330					335	•		

	H18	65-1	wo	SEO					51								
				700					202					510			
	тте	Tyr	ASII	500	пlS	val	Arg	TYT	505	Gln	ASN	ser	GID		Asn	ren	
										CAG							1536
40	አ ሙርግ	m» c	220	mc x	C 3 TT	CTC.	CCM	m z m	N MOO	~~~	220	mc :		000			1535
40					485					490					495		
	Leu	Ser	Ser	Leu		Ile	Val	Leu	Ala	Val	Val	Cys	Leu	Ser		Asn	
										GTT							1488
35	465					470					475					480	
	Lys	Thr	Phe	Arg	Phe	Leu	Ser	Gln	Lys	Leu	Phe	Ile	Ser	Val	Ser	Val	
	AAG	ACA	TTC	CGC	TTC	CTG	TCA	CAG	AAA	CTC	TTT	ATC	TCC	GTC	TCA	GTT	1440
												-00					
50	rap	450	111	116	CIY	GIY	455	FIU	FIO	vra	wsb	460	THE	ren	val	тте	
30										GCT Ala							1392
	CAT	גגע	TICC.	<u>አ</u> ጥጥ	CC N	CCC	TICC	ccc	CCA	CCE	~~~	020	100	a ==	050	.	1200
			435					440					445				
	Ile	Gly		Tyr	Asp	Ser	Thr		Asp	Asp	Leu	Ser	Trp	Ser	Lys	Thr	
25										GAT							1344
				420					425		-	-		430	- <u>-</u>		
										Gln							2270
	ATG	GCA	TGG	ACG	CTT	ATC	GAG	CAG	CTT	CAG	GGT	GGC	AGC	TAC	AAG	AAG	1296
20					±0,5					#T0					415		
	rne	GIU	GIĀ	val	Ser 405	стХ	nıs	vaı	val	Phe 410	Asp	Ala	Ser	Gly		Arg	
										TTT							1248
		~															
15	385					390					395					400	
	Asn	Gln	Thr	Ile	Thr	Asp	Gln	Ile	Tyr	Arg	Ala	Met	Asn	Ser	Ser	Ser	
										CGG							1200
	_	370	-	_			375					380			-1-	- 3	
10										Leu							****
	GGA	GGA	GGC	GGC	CGT	TCT	GGT	GTG	CGC	CTG	GAG	GAC	TTC	AAC	TAC	AAC	1152
			225					360					365				
	АТА	ıyr	355	AIA	тте	пър	Ala		Ala	Leu	Ala	Leu		Lys	Thr	Ser	
5										CTG							1104
				340					345					350			
										Gly							
	CTG	AAA	AGA	CAC	CCT	GAG	GAG	ACA	GGA	GGC	TTC	CAG	GÁG	GCÀ	CCG	CTG	10 5 6
									_				•				

												•	•	•		• •	
	220	7 7 C	CTC	ልርጥ	CCT	CTG	GGC	TGC	TCA	CTG	GCT	TTA	GCT	GCT	GTC	TTC	1584
												Leu					
	ASII	ASII	515					520					525				
5																	
3	CCC	CTG	GGG	CTC	GAT	GGT	TAC	CAC	ATT	GGG	AGG	AAC	CAG	TTT	CCT	TTC	1632
												Asn					
		530					535					540					
10												GGC					1680
	Val	Cys	Gln	Ala	Arg	Leu	Trp	Leu	Leu	Gly		Gly	Phe	Ser	Leu		
	545					550					555					560	
											c.m.c.	a. a	3.00	CMC	mmc	7 C 7	1728
												CAC					1,20
15	Tyr	Gly	Ser	Met		Thr	гÀг	116	Trp	570	vai	His	TIIL	Vai	575	1111	
					565					370					• • •		
	220	7 7 C	CNN	GAA	λAG	AAG	GAG	TGG	AGG	AAG	ACT	CTG	GAA	ccc	TGG	AAG	1776
												Leu					
20	БУЗ	<u> </u>	010	580				-	585					590			
20																	
	CTG	TAT	GCC	ACA	GTG	GGC	CTG	CTG	GTG	GGC	ATG	GAT	GTC	CTC	ACT	CTC	1824
	Leu	Туг	Ala	Thr	Val	Gly	Leu	Leu	Val	Gly	Met	Asp	Val	Leu	Thr	Leu	
			5 95	5				600					605	i			
25																	1070
																TTT	1872
	Ala	Ile	Tr	Glr	ılle	Val			Leu	His	Arg			e GIu	ını	Phe	
		610)				615	i				620	,				
								. C N T	י אתית	י האר	י כיייר	י יייטייי	יידע יו	ר כידפ	CCC	CAG	1920
30	GCC	AAC	G GAC	GAA	A CCI	AAC	GAA	A GMI	Tle	Asr	Val	l Sei	r Ile	Lev	Pro	Gln	
			S GIV	ı Git	1 PIC	630 630		. not	, 110		635					640	
	625	•				050	•										
	ריזי(GA(G CA'	r TG	C AGO	TC	AGO	AAC	TA E	raa e	AC	A TG	G CT	r GG	AT!	r TTC	1968
35																e Phe	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				-	64					650					65		
																TAT T	
	Ту	r Gl	у Ту	r Ly	s Gl	y Le	u Le	u Le	u Le	ı Le	ı Gl	y Il	e Ph			a Tyr	
40				66	0				66	5				67	0		:
										•					a *aa	m cmc	2064
	GA	G AC	C AA	G AG	T GT	G TC	C AC	T GA	G AA	G AT	C AA	T GA	T CA	C CG	G GC	T GTG	
	G1	u Th	ir Ly	s Se	r Va	l Se	r Th	r Gl	u Ly	s Il	e As	n As	р ні	s Ar	g Al	a Val	
						<u> </u>			52								
				~ ~ ~	_				- 1								

								•	•								
			675					680					685			٠	_
	GGC	ATG	GCT	ATC	TAC	AAT	GTG	GCA	GTC	CTG	TGC	CTC	ATC	ACT	GCT	CCT	2112
	Gly	Met	Ala	Ile	Tyr	Asn	Val	Ala	Val	Leu	Cys	Leu	Ile	Thr	Ala	Pro	
5		690					695				-	700					
	GTC	ACC	ATG	ATT	CTG	TCC	AGC	CAG	CAG	GAT	GCA	GCC	TTT	GCC	TTT	GCC	2160
	Val	Thr	Met	Ile	Leu	Ser	Ser	Gln	Gln	Asp	Ala	Ala	Phe	Ala	Phe	Ala	
	705					710					715					720	÷
10																	
	TCT	CTT	GCC	ATA	GTT	TTC	TCC	TCC	TAT	ATC	ACT	CTT	GTT	GTG	CTC	TTT	2208
	Ser	Leu	Ala	Ile	Val	Phe	Ser	Ser	Tyr	Ile	Thr	Leu	Val	Val	Leu	Phe	
					725					730					735		
15	GTG	CCC	AAG	ATG	CGC	AGG	CTG	ATC	ACC	CGA	GGG	GAA	TGG	CAG	TCG	GAG	2256
	Val	Pro	Lys	Met	Arg	Arg	Leu	Ile	Thr	Arg	Gly	Glu	Trp	Gln	Ser	Glu	
				740					745					750			
	GCG	CAG	GAC	ACC	ATG.	AAG	ACA	GGG	TCA	TCG	ACC	AAC	AAC	AAC	GAG	GAG	2304
20	Ala	Gln	Asp	Thr	Met	Lys	Thr	Gly	Ser	Ser	Thr	Asn	Asn	Asn	Glu	Glu	
			755					760					765				
	GAG	AAG	TCC	CGG	CTG	TTG	GAG	AAG	GAG	AAC	CGT	GAA	CTG	GAA	AAG	ATC	2352
	Glu	Lys	Ser	Arg	Leu	Leu	Glu	Lys	Glu	Asn	Arg	Glu	Leu	Glu	Lys	Ile	
25		770					775					780			_		
	ATT	GCT	GAG	AAA	GAG	GAG	CGT	GTC	TCT	GAA	CTG	CGC	CAT	CAA	CTC	CAG	2400
	Ile	Ala	Glu	Lys	G1u	Glu	Arg	Val	Ser	Glu	Leu	Arg	His	Gln	Leu	Gln	
	785					790					795	_				800	
30								•									
	TCT	CGG	CAG	CAG	CTC	CGC	TCC	CGG	CGC	CAC	CCA	CCG	ACA	CCC	CCA	GAA	2448
				Gln													
					805	_		_		810					815		
35	CCC	TCT	GGG	GGC	CTG	CCC	AGG	GGA	ccc	CCT	GAG	ccc	CCC	GAC	CGG	CTT-	2496
				Gly													
			_	820			_	-	825					830	5		
	AGC	TGT	GAT	GGG	AGT	CGA	GTG	CAT	TTG	СТТ	ТАТ	AAG	TGA				2535
40				Gly									*				2333
		- 4 -	835	1		3		840			- 3 -	~y 3		•			:
								040									

(2) INFORMATION FOR SEQ ID NO: 51:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 844 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

3

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:

Met Gly Pro Gly Ala Pro Phe Ala Arg Val Gly Trp Pro Leu Pro Leu

1 5 10 15

15 Leu Val Val Met Ala Ala Gly Val Ala Pro Val Trp Ala Ser His Ser
20 25 30

Pro His Leu Pro Arg Pro His Ser Arg Val Pro Pro His Pro Ser Ser 35 40 45

20

5

10

Glu Arg Arg Ala Val Tyr Ile Gly Ala Leu Phe Pro Met Ser Gly Gly
50 55 60

Trp Pro Gly Gly Gln Ala Cys Gln Pro Ala Val Glu Met Ala Leu Glu 25 65 70 75 80

Asp Val Asn Ser Arg Arg Asp Ile Leu Pro Asp Tyr Glu Leu Lys Leu 85 90 95

Ile His His Asp Ser Lys Cys Asp Pro Gly Gln Ala Thr Lys Tyr Leu 100 105 110

Tyr Glu Leu Leu Tyr Asn Asp Pro Ile Lys Ile Ile Leu Met Pro Gly
115 120 125

35

Cys Ser Ser Val Ser Thr Leu Val Ala Glu Ala Ala Arg Met Trp Asn 130 135 140

Leu Ile Val Leu Ser Tyr Gly Ser Ser Ser Pro Ala Leu Ser Asn Arg

40 145 150 155 160

Gln Arg Phe Pro Thr Phe Phe Arg Thr His Pro Ser Ala Thr Leu His 165 170 175

H1865-1 WO SEQ

2971200A1 I -

Asn Pro Thr Arg Val Lys Leu Phe Glu Lys Trp Gly Trp Lys Lys Ile Ala Thr Ile Gln Gln Thr Thr Glu Val Phe Thr Ser Thr Leu Asp Asp Leu Glu Glu Arg Val Lys Glu Ala Gly Ile Glu Ile Thr Phe Arg Gln Ser Phe Phe Ser Asp Pro Ala Val Pro Val Lys Asn Leu Lys Arg Gln Asp Ala Arg Ile Ile Val Gly Leu Phe Tyr Glu Thr Glu Ala Arg Lys Val Phe Cys Glu Val Tyr Lys Glu Arg Leu Phe Gly Lys Lys Tyr Val Trp Phe Leu Ile Gly Trp Tyr Ala Asp Asn Trp Phe Lys Ile Tyr Asp Pro Ser Ile Asn Cys Thr Val Asp Glu Met Thr Glu Ala Val Glu Gly His Ile Thr Thr Glu Ile Val Met Leu Asn Pro Ala Asn Thr Arg Ser Ile Ser Asn Met Thr Ser Gln Glu Phe Val Glu Lys Leu Thr Lys Arg Leu Lys Arg His Pro Glu Glu Thr Gly Gly Phe Gln Glu Ala Pro Leu Ala Tyr Asp Ala Ile Trp Ala Leu Ala Leu Ala Leu Asn Lys Thr Ser Gly Gly Gly Arg Ser Gly Val Arg Leu Glu Asp Phe Asn Tyr Asn Asn Gln Thr Ile Thr Asp Gln Ile Tyr Arg Ala Met Asn Ser Ser Ser

Phe Glu Gly Val Ser Gly His Val Val Phe Asp Ala Ser Gly Ser Arg Met Ala Trp Thr Leu Ile Glu Gln Leu Gln Gly Gly Ser Tyr Lys Lys Ile Gly Tyr Tyr Asp Ser Thr Lys Asp Asp Leu Ser Trp Ser Lys Thr Asp Lys Trp Ile Gly Gly Ser Pro Pro Ala Asp Gln Thr Leu Val Ile Lys Thr Phe Arg Phe Leu Ser Gln Lys Leu Phe Ile Ser Val Ser Val Leu Ser Ser Leu Gly Ile Val Leu Ala Val Val Cys Leu Ser Phe Asn Ile Tyr Asn Ser His Val Arg Tyr Ile Gln Asn Ser Gln Pro Asn Leu Asn Asn Leu Thr Ala Val Gly Cys Ser Leu Ala Leu Ala Ala Val Phe Pro Leu Gly Leu Asp Gly Tyr His Ile Gly Arg Asn Gln Phe Pro Phe Val Cys Gln Ala Arg Leu Trp Leu Leu Gly Leu Gly Phe Ser Leu Gly Tyr Gly Ser Met Phe Thr Lys Ile Trp Trp Val His Thr Val Phe Thr Lys Lys Glu Glu Lys Lys Glu Trp Arg Lys Thr Leu Glu Pro Trp Lys Leu Tyr Ala Thr Val Gly Leu Leu Val Gly Met Asp Val Leu Thr Leu Ala Ile Trp Gln Ile Val Asp Pro Leu His Arg Thr Ile Glu Thr Phe Ala Lys Glu Glu Pro Lys Glu Asp Ile Asp Val Ser Ile Leu Pro Gln

Leu Glu His Cys Ser Ser Arg Lys Met Asn Thr Trp Leu Gly Ile Phe Tyr Gly Tyr Lys Gly Leu Leu Leu Leu Gly Ile Phe Leu Ala Tyr Glu Thr Lys Ser Val Ser Thr Glu Lys Ile Asn Asp His Arg Ala Val Gly Met Ala Ile Tyr Asn Val Ala Val Leu Cys Leu Ile Thr Ala Pro Val Thr Met Ile Leu Ser Ser Gln Gln Asp Ala Ala Phe Ala Phe Ala Ser Leu Ala Ile Val Phe Ser Ser Tyr Ile Thr Leu Val Val Leu Phe Val Pro Lys Met Arg Arg Leu Ile Thr Arg Gly Glu Trp Gln Ser Glu Ala Gln Asp Thr Met Lys Thr Gly Ser Ser Thr Asn Asn Asn Glu Glu Glu Lys Ser Arg Leu Leu Glu Lys Glu Asn Arg Glu Leu Glu Lys Ile Ile Ala Glu Lys Glu Glu Arg Val Ser Glu Leu Arg His Gln Leu Gln Ser Arg Gln Gln Leu Arg Ser Arg Arg His Pro Pro Thr Pro Pro Glu Pro Ser Gly Gly Leu Pro Arg Gly Pro Pro Glu Pro Pro Asp Arg Leu

Ser Cys Asp Gly Ser Arg Val His Leu Leu Tyr Lys 835 840

(2) INFORMATION FOR SEQ ID NO: 52:

		/÷ \	SEO	TENC:	e Ch	ARAC'	ד ק ביי	ማ ተር	s.								
		(1)				: 28				s							
			•	-		nucl				-							
5			•	-		EDNE											
3			-	•		GY:											
			(1)	, 10	1020	.											
		(ii)	MOL	ECUL	E TY	PE:	cDNA	to	mRNA								
10	(iii)	НУР	отне	TICA	L: N	0										
		(iv)	ANT	I-SE	NSE:	NO											
		(vi)	ORI	GINA	L SC	URCE	:										
15			(A) OR	GANI	SM:	Cani	s fa	mili	aris	:						
	•																
		(ix)	FEA				CDC										
			•	-		EY: ON:1		05									
20			(=	s) LC	CATI	.ON:1	20	193						•			
20		(xi)	SEÇ	UENC	E DE	ESCRI	PTIC	N: S	SEQ I	D NC): 52	: :					
											GCG						48
	Met	Leu	Leu	Leu	Leu	Leu	Pro	Leu	Ala	Leu	Ala	Pro	Leu	Phe		Arg	
25	1				5					10					15		
																	0.0
											AAC						96
	Pro	Pro	Gly		Gly	Gly	Ala	Gln		Pro	Asn	Ala	Thr		GIU	GIY	
				20					25					30			
30		~~~			a.a	000	CCM	mcc.	C22	ccc	GGT	አ ጥር	NGG	ሞልሮ	AGG	GGC	144
											Gly						111
	Cys	GIN		iie	HIS	PIO	PIO	40	Giu	GIY	Gry	116	45	171	n. g	CLY	
			35					40					43				
26	cmc	እ ር-ጥ	CCT	GAC	CAG	GTG	ΔAG	GCጥ	ልጥሮ	AAC	ጥጥሮ	СТС	CCG	GTG	GAC	TAT	192
35											Phe						
	Leu	50	Arg	пэр	9111	VUL	55					60				•	
		70					-										
	GAG	ATT	GAG	TAT	GTG	TGC	CGG	GGA	GAG	CGA	GAG	GTG	GTG	GGG	CCC	AAG	240
40											Glu						
	65					70	J	-		_	75					80	
	33														-		
	GTC	CGA	AAG	TGC	CTG	GCC	AAT	GGC	TCC	TGG	ACA	GAT	ATG	GAC	ACA	ccc	288

	Val	Arg	Lys	Cys	Leu 85	Ala	Asn	Gly	Ser	Trp 90	Thr	Asp	Met	Asp	Thr 95	Pro	
5						ATC Ile											336
10						ACG Thr											384
						TGT Cys											432
15						CAG Gln 150											480
20						CCG Pro											528
25						AGC Ser											576
30						GCG Ala											624
						CTC Leu											672
35						AAG Lys 230											720
40						ATG Met								Thr			768.,

	***							-	•				٠				
	GCT	GAG	GCT	GCC	AGG	ATG	TGG	AAC	CTC	ATT	GTG	CTC	TĆC	TAT	GGT	TCC	816
														Tyr			
				260					265					270			
5	AGC	TCA	CCA	GCT	CTG	TCC	AAC	CGG	CAG	CGC	TTT	CCT	ACC	TTC	TTC	CGA	864
	Ser	Ser	Pro	Ala	Leu	Ser	Asn	Arg	Gln	Arg	Phe	Pro	Thr	Phe	Phe	Arg	
			275					280					285				
														AAG			912
10	Thr	His	Pro	Ser	Ala	Thr	Leu	His	Asn	Pro	Thr	Arg	Val	Lys	Leu	Phe	
		290					295					300					
																	252
														ACC			960
	Glu	Lys	Trp	Gly	Trp		Lys	Ile	Ala	Thr		Gln	Gln	Thr	Thr		
15	305					310					315					320	
								~		222	G2.2	CCA	CITIC	220	CNC	CCT	1008
														AAG			1000
	Val	Phe	Thr	Ser			Asp	Asp	rea	330	GIU	AIG	vai	Lys	335	n.u	
					325	•				330					333		
20	000	» mm	- CAC	י איניים	אריי	ሙጥር	CGC	CAG	AGC	ጥጥር	ጥጥር	TCA	GAT	CCT	GCC	GTG	1056
														Pro			
	GTĀ	116	GIU	340		1110	**** 9	0.2.1.	345					350			
				340													
25	C C ጥ	GTC	AAG	AAC	CTC	AAG	CGC	CAG	GAT	GCC	CGA	ATC	ATC	GTG	GGA	CTT	1104
23																Leu	
			355			-	_	360					365				
	TTC	TAT	GAG	ACT	GAA	GCC	CGG	AAA	GTG	TTC	TGT	GAG	GTA	TAC	AAG	GAG	1152
30	Phe	туг	Gli	ı Thr	Glu	Ala	Arg	Lys	: Val	Phe	Cys	Glu	Val	Tyr	Lys	Glu	
		370)				375	;				380					
																GCT	1200
	Arg	, Lev	ı Phe	e Gly	/ Lys	Lys	туг	· Val	Trp	Phe	Lev	ı Ile	Gly	Trp	Туг	Ala	
35	385	5				390)				395	5				400 -	er .
																	1040
																GAT	1248
	Ası) Ası	n Tr	p Phe	e Lys	s Thi	с Туз	. Ası	Pro			e Asr	ı Cys	s Thr		Asp	
					405	5				410)				415	•	
40													n (134	~ ame	n cm	י איייע י	1296
																ATG	1270
	Gl	u Me	t Th			a Va	I GI	u GI			z TNI	r Tui	. GI	1 116 430		l Met	
				42	υ				42	5				431	•		

H1865-1 WO SEQ

													•	•			
	CTG	AAC	CCA	GCC	AAC	ACC	CGC	AGC	ATC	TCC	AAC	ATG	ACA	TCC	CAG	GAG	1344
															Gln		
			435					440					445				
5																	
	TTT	GTG	GAG	AAA	CTG	ACC	AAG	AGA	CTC	AAG	AGA	CAC	ርርጥ	GAG	GAG	ACA	1392
															Glu		1372
		450		-			455	3		-3-	9	460	110	014	014	****	
												400					٠-,
10	GGC	GGC	ጥጥር	CAG	GAG	GCA	CCG	СТС	GCC	יחעים	CAT	ccc	אשכ	mcc.	GCC	mmc.	
															Ala		1440
	465	01,		0111	014	470	110	пеа	AIG	ŦŸĬ		Ala	TIE	пр	Ala		
	403					470					475					480	
	CCA	unuc.	GCC	CIRC	אאר	N N C	אריא	mæm	CCA	000	3.00		~~~		GGG		
16																	1488
15	міа	neu	міа	Leu		Lys	Inr	ser	GIY		ser	СīУ	Arg	Ser	Gly	Val	
					485					490					495		
	000	ama	~ • • • • • • • • • • • • • • • • • • •	~1~													
															CAA		1536
	Arg	Leu	GIU		Pué	Asn	ıyr	Asn		Gin	Thr	Ile	Thr		Gln	Ile	
20				500					505					510			
															CAC		1584
	Tyr	Arg		Met	Asn	Ser	Ser	Ser	Phe	Glu	Gly	Val	Ser	Gly	His	Val	
			515					520					525				
25																	
															GAG		1632
	Val	Phe	Asp	Ala	Ser	Gly	Ser	Arg	Met	Ala	Trp	Thr	Leu	Ile	Glu	Gln	
		530					535					540					
30	CTG	CAG	GGT	GGC	AGC	TAC	AAG	AAG	ATC	GGC	TAC	TAT	GAC	AGC	ACC	AAG	1680
	Leu	Gln	Gly	Gly	Ser	Tyr	Lys	Lys	Ile	Gly	Tyr	Tyr	Asp	Ser	Thr	Lys	
	545					550					555					560	
	GAT	GAC	CTT	TCC	TGG	TCT	AAA	ACG	GAC	AAA	TGG	ATT	GGA	GGG	GCC	CCC	1728
35	Asp	Asp	Leu	Ser	Trp	Ser	Lys	Thr	Asp	Lys	Trp	Ile	Gly	Gly	Ala	Pro	
					565					570					575		
												-					
	CCG	GCC	GAC	CAG	ACC	CTG	GTC	ATC	AAG	ACA	TTT	CGC	TTC	ATG	TCA	CAG	1776
															Ser		
40				580					585			_		590			•
																	່ວ
	AAG	CTC	TTC	АТТ	TCA	GTC	тст	GTC	CTC	TCC	AGC	CTG	GGC	ATT.	GTC	CTG	1824
															Val		
	-												1				
	U10	65-1	WO	SEO					1								
	1110	1-50	** U	SEQ				o	51								

			595					600					605				_
	CCT	GTG	ር ጥር	ጥርጥ	CTG	TCC	ттт	AAC	ATC	TAC	AAC	тст	CAT	GTC	CGT	TAC	1872
											Asn						
5		610					615					620					
											CTG						1920
	Ile	Gln	Asn	Ser	Gln		Asn	Leu	Asn	Asn	Leu	Thr	Ala	Val	Gly		
	625	-4				630	**				635					640	
10	ጥርር	ርጥር	GCA	TTG	GCT	GCC	GTC	TTC	CCC	CTG	GGG	CTA	GAT	GGG	TAC	CAC	1968
											Gly						
					645					650					655		
15											CAG						2016
	Ile	Gly	Arg	Ser	Gln	Phe	Pro	Phe		Суѕ	Gln	Ala	Arg		Trp	Leu	
	-			660					665					670			
	ርጥና	GGT	CTG	GGC	TTC	AGT	CTG	GGC	TAT	GGC	TCC	ATG	TTC	ACG	AAG	ATC	2064
20											Ser						
			675					680					685				
											GAG						2112
	Trp	Trp	Val	His	Thr	Val			Lys	Lys	Glu			Lys	Glu	Trp	
25		690)				695					700					
	AGG	AAG	ACC	CTG	GAG	CCC	TGG	AAG	CTG	TAC	ACC	ACA	GTG	GGC	TTG	CTA	2160
	Arg	Lys	Thr	Leu	Glu	Pro	Trp	Lys	Leu	Tyr	Thr	Thr	Val	Gly	Leu	Leu	
	705	5				710)				715					720	
30						omc			000	n mm	TGG	CAC	י איזיכי	ርጥል	GAC	CCC	2208
																Pro	
	Val	, GI	, Met	. voř	725			200		730					735		
																CAM	2256
35																GAT. Asp	2230
	Lei	ı Hı:	s Arg	74(. G1(1 1111	. Pile	745		. 610	. 010		750			
				, -,	•												
	AT"	T GA	T GT	G TC	C ATC	CTO	G CCC	CAG	CTG	GAC	CAC	TGO	AGC	TCC	AAC	AAA :	2304
40	11	e As	p Va	1 Se	r Ile	e Le	u Pro	o Glr	Lev	ı Glu	ı His	су:			r Lys	Lys	
			75	5				760)				765	5			
	AT	G AA	C AC	C TG	G CT	r GG	C AT	r tr	TAT	r GG	r TAC	C AAG	G GG(G CT	G CTO	G CTG	235
	Н	1865	-1 W	O SE	Q				62								

	Met	Asn 770	Thr	Trp	Leu	Gly	Ile 775	Phe	Tyr	Gly	Tyr	Lys 780	Gly	Leu	Leu	Lėū	
	CTG	CTA	GGC	ATC	TTT	CTT	GCT	TAT	GAG	ACC	AAG	AGC	GTG	TCT	ACT	GAG	2400
5	Leu	Leu	Gly	Ile	Phe	Leu	Ala	Tyr	Glu	Thr	Lys	Ser	Val	Ser	Thr	Glu	
	785					790					795					800	
				GAC													2448
	Lys	Ile	Asn	Asp	His	Arg	Ala	Val	Gly	Met	Ala	Met	Tyr	Asn	Val	Ala	
10					805	·				810					815		
	GTC	CTG	TGC	CTC	ATC	ACT	GCC	CCG	GTC	ACC	ATG	ATC	CTG	TCC	AGC	CAG	2496
	Val	Leu	Cys	Leu	Ile	Thr	Ala	Pro	Val	Thr	Met	Ile	Leu	Ser	Ser	Gln	
				820					825					830			
15	CAC	CAM	CCA	com	mmc	000	mmm	GG3	com	amm.	~~~		~=~				
				GCT Ala													2544
	0111		835	1114	1110	7114	1116	840	AIG	Deu	AIG	116	845	File	ser	ser	
								0.10					013				
20	TAC	ATC	ACT	CTG	GTC	GTT	CTG	TTC	GTG	CCG	AAG	ATG	CGC	AGG	TTG	ATC	2592
	Tyr	Ile	Thr	Leu	Val	Val	Leu	Phe	Val	Pro	Lys	Met	Arg	Arg	Leu	Ile	
		850					855					860					
																	-
				GAG													2640
25		Arg	GLY	Glu	Trp		Ser	Glu	Ala	Gln		Thr	Met	Lys	Thr	_	
	865					870					875					880	
				AAC													2688
	Ser	Ser	Thr	Asn		Asn	Glu	Glu	Glu		Ser	Arg	Leu	Leu	Glu	Lys	
30					885					890					895		
	GAG	AAC	CGG	GAG	CTG	GAG	AAG	ATC	ATT	GCT	GAG	AAA	GAG	GAG	CGA	GTG	2736
				Glu													2,50
				900					905			-		910			
35																er	
	TCC	GAG	CTG	CGC	CAT	CAG	CTT	CGT	TCT	CGG	CAG	CAG	CTG	CGC	CCT	CGG	2784
	Ser	Glu	Leu	Arg	His	Gln	Leu	Arg	Ser	Arg	Gln	Gln	Leu	Arg	Pro	Arg	
		-	915					920					925				
										_							
40				CCG													2832 ₅
	Arg		Pro	Pro	Thr	Pro		Asp	Pro	Ser	GIA	-	Ĺeu	Pro	Arg	Gly	
		930					935					940					

CCC CAT GAG CCC CCT GAC CGG CTC AGC TGT GAC GGG AGC CGG GTT CAC

Pro His Glu Pro Pro Asp Arg Leu Ser Cys Asp Gly Ser Arg Val His

945

950

960

TTG CTG TAC AAG TGA Leu Leu Tyr Lys *

15

20

2895

10 (2) INFORMATION FOR SEQ ID NO: 53:

965

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 964 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:

Met Leu Leu Leu Leu Pro Leu Ala Leu Ala Pro Leu Phe Leu Arg

1 5 10 15

Pro Pro Gly Ala Gly Gly Ala Gln Thr Pro Asn Ala Thr Ser Glu Gly
25 20 25 30

Cys Gln Ile Ile His Pro Pro Trp Glu Gly Gly Ile Arg Tyr Arg Gly
35 40 45

30 Leu Thr Arg Asp Gln Val Lys Ala Ile Asn Phe Leu Pro Val Asp Tyr 50 55 60

Glu Ile Glu Tyr Val Cys Arg Gly Glu Arg Glu Val Val Gly Pro Lys
65 70 75 80

Val Arg Lys Cys Leu Ala Asn Gly Ser Trp Thr Asp Met Asp Thr Pro
85 90 95

Ser Arg Cys Val Arg Ile Cys Ser Lys Ser Tyr Leu Ala Leu Glu Asn 40 100 105 110

Gly Lys Val Phe Leu Thr Gly Gly Asp Leu Pro Ala Leu Asp Gly Ala 115 120 125

H1865-1 WO SEQ

	Arg	Val 130	Asp	Phe	Arg	Cys	Asp 135	Pro	Asp	Phe	His	Leu 140	Val	Gly	Ser	Ser
5	Arg 145	Ser	Ile	Cys	Ser	Gln 150	Gly	Gln	Trp	Ser	Thr 155	Pro	Lys	Pro	His	Cys 160
10	Gln	Val	Ser	Arg	Thr 165	Pro	His	Ser	Glu	Arg 170	Arg	Ala	Val	Tyr	Ile 175	Gly
	Ala	Leu	Phe	Pro 180	Met	Ser	Gly	Gly	Trp 185	Pro	Gly	Gly	Gln	Ala 190	Суѕ	Gln
15	Pro	Ala	Val 195	Glu	Met	Ala	Leu	Glu 200	Asp	Val	Asn	Ser	Arg 205	Arg	Asp	Ile
	Leu	Pro 210	Asp	Tyr	Glu	Leu	Lys 215	Leu	Ile	His	His	Asp 220	Ser	Lys	Cys	Asp
20	Pro 225	Gly	Gln	Ala	Thr	Lys 230	Tyr	Leu	Tyr	Glu	Leu 235	Leu	Tyr	Asn	Asp	Pro 240
25	Ile	Lys	Ile	Ile	Leu 245	Met	Pro	Gly	Cys	Ser 250	Ser	Val	Ser	Thr	Leu 255	Val
	Ala	Glu	Ala	Ala 260	Arg	Met	Trp	Asn	Leu 265	Ile	Val	Leu	Ser	Tyr 270	Gly	Ser
30			275			Ser		280					285			
	Thr	His 290	Pro	Ser	Ala	Thr	Leu 295	His	Asn	Pro	Thr	Arg 300	Val	Lys	Leu	Phe
35	Glu 305	Lys	Trp	Gly	Trp	Arg 310	Lys	Ile	Ala	Thr	Ile 315	Gln	Gln	Thr	Thr	Glu 320
40	Val	Phe	Thr	Ser	Thr 325	Leu	Asp	Asp	Leu	Glu 330	Glu	Arg	Val	Lys	Glu 335	Ala
	Gly	Ile	Glu	Ile 340	Thr	Phe	Arg	Gln	Ser 345	Phe	Phe	Ser	Asp	Pro 350	Ala	Val

Pro Val Lys Asn Leu Lys Arg Gln Asp Ala Arg Ile Ile Val Gly Leu Phe Tyr Glu Thr Glu Ala Arg Lys Val Phe Cys Glu Val Tyr Lys Glu Arg Leu Phe Gly Lys Lys Tyr Val Trp Phe Leu Ile Gly Trp Tyr Ala Asp Asn Trp Phe Lys Thr Tyr Asp Pro Ser Ile Asn Cys Thr Val Asp Glu Met Thr Glu Ala Val Glu Gly His Ile Thr Thr Glu Ile Val Met Leu Asn Pro Ala Asn Thr Arg Ser Ile Ser Asn Met Thr Ser Gln Glu Phe Val Glu Lys Leu Thr Lys Arg Leu Lys Arg His Pro Glu Glu Thr Gly Gly Phe Gln Glu Ala Pro Leu Ala Tyr Asp Ala Ile Trp Ala Leu Ala Leu Ala Leu Asn Lys Thr Ser Gly Gly Ser Gly Arg Ser Gly Val Arg Leu Glu Asp Phe Asn Tyr Asn Asn Gln Thr Ile Thr Asp Gln Ile Tyr Arg Ala Met Asn Ser Ser Ser Phe Glu Gly Val Ser Gly His Val Val Phe Asp Ala Ser Gly Ser Arg Met Ala Trp Thr Leu Ile Glu Gln Leu Gln Gly Gly Ser Tyr Lys Lys Ile Gly Tyr Tyr Asp Ser Thr Lys Asp Asp Leu Ser Trp Ser Lys Thr Asp Lys Trp Ile Gly Gly Ala Pro Pro Ala Asp Gln Thr Leu Val Ile Lys Thr Phe Arg Phe Met Ser Gln

580 585 590

Lys Leu Phe Ile Ser Val Ser Val Leu Ser Ser Leu Gly Ile Val Leu 595 600 605

Ala Val Val Cys Leu Ser Phe Asn Ile Tyr Asn Ser His Val Arg Tyr 610 615 620

Ile Gln Asn Ser Gln Pro Asn Leu Asn Asn Leu Thr Ala Val Gly Cys
625 630 635 640

Ser Leu Ala Leu Ala Ala Val Phe Pro Leu Gly Leu Asp Gly Tyr His 645 650 655

Ile Gly Arg Ser Gln Phe Pro Phe Val Cys Gln Ala Arg Leu Trp Leu 660 665 670

Leu Gly Leu Gly Phe Ser Leu Gly Tyr Gly Ser Met Phe Thr Lys Ile 675 680 685

Trp Trp Val His Thr Val Phe Thr Lys Lys Glu Glu Lys Lys Glu Trp
690 695 700

Arg Lys Thr Leu Glu Pro Trp Lys Leu Tyr Thr Thr Val Gly Leu Leu 25 705 710 715 720

Val Gly Met Asp Val Leu Thr Leu Ala Ile Trp Gln Met Val Asp Pro
725 730 735

30 Leu His Arg Thr Ile Glu Thr Phe Ala Lys Glu Glu Pro Lys Glu Asp 740 745 750

Ile Asp Val Ser Ile Leu Pro Gln Leu Glu His Cys Ser Ser Lys Lys
755 760 765

Met Asn Thr Trp Leu Gly Ile Phe Tyr Gly Tyr Lys Gly Leu Leu Leu 770 775 780

Leu Leu Gly Ile Phe Leu Ala Tyr Glu Thr Lys Ser Val Ser Thr Glu 40 785 790 795 800

Lys Ile Asn Asp His Arg Ala Val Gly Met Ala Met Tyr Asn Val Ala 805 810 815

10

20

Val Leu Cys Leu Ile Thr Ala Pro Val Thr Met Ile Leu Ser Ser Gln 825 830 820 Gln Asp Ala Ala Phe Ala Phe Ala Ala Leu Ala Ile Val Phe Ser Ser 840 845 835 Tyr Ile Thr Leu Val Val Leu Phe Val Pro Lys Met Arg Arg Leu Ile 855 10 Thr Arg Gly Glu Trp Gln Ser Glu Ala Gln Asp Thr Met Lys Thr Gly 875 870 Ser Ser Thr Asn Asn Asn Glu Glu Glu Lys Ser Arg Leu Leu Glu Lys 890 885 15 Glu Asn Arg Glu Leu Glu Lys Ile Ile Ala Glu Lys Glu Glu Arg Val 905 900 Ser Glu Leu Arg His Gln Leu Arg Ser Arg Gln Gln Leu Arg Pro Arg 20 920 915 Arg His Pro Pro Thr Pro Pro Asp Pro Ser Gly Gly Leu Pro Arg Gly 940 935 930 25 Pro His Glu Pro Pro Asp Arg Leu Ser Cys Asp Gly Ser Arg Val His 960 955 950 945 Leu Leu Tyr Lys 30 (2) INFORMATION FOR SEQ ID NO: 54: (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1737 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- 40 (ii) MOLECULE TYPE: cDNA to mRNA
 - (iii) HYPOTHETICAL: NO

H1865-1 WO SEQ

		(iv) AN	TI-S	ENSE	: NO						•	•				_
		(vi	•	IGIN													
5			(.	A) O	RGAN	ISM:	Hom	o sa	pien	s							
J		(ix) FE	ATUR	E:												
		,	•	A) N.		KEY:	CDS										
			(B) L	OCAT	ION:	11	737									
																	G
10		(xi) SE	QUEN	CE D	ESCR:	IPTI(ON:	SEQ	ID N	0: 5	4:					
	ATG	TTG	CTG	CTG	CTG	CTA	CTG	GCG	CCA	CTC	TTC	CTC	CGC	CCC	CCG	GGC	48
-	Met	Leu	Leu	Leu	Leu	Leu	Leu	Ala	Pro	Leu	Phe	Leu	Arg	Pro	Pro	Gly	
	1				5					10					15		
15	000	-	000														
															CAG		96
	AIG	GIY	GIY	20	GIII	1111	PIO	ASII	25	THE	ser	GIU	GIA	Cys 30	Gln	lle	
									23					30			
20	ATA	CAC	CCG	CCC	TGG	GAA	GGG	GGC	ATC	AGG	TAC	CGG	GGC	CTG	ACT	CGG	144
															Thr		
			35					40					45				
25															ATT		192
25	Asp	50	vaı	ьуs	Ala	TTE	Asn 55	Phe	Leu	Pro	Val		Tyr	Glu	Ile	Glu	
		50					23					60					
	тат	GTG	TGC	CGG	GGG	GAG	CGC	GAG	GTG	GTG	GGG	ccc	AAG	GTC	CGC	AAG	240
															Arg		
30	65					70					75					80	
															CGC		288
	Cys	Leu	Ala	Asn		Ser	Trp	Thr	Asp		Asp	Thr	Pro	Ser	Arg	Cys	
25					85					90					95		
35	GTC	CGA	ልጥር	TGC	TCC	AAC	ጥረጥ	ጥአጥ	TITIC .	200	CITIC	C 3 3	3300	000	AAG		226
															Lys		336
		3		100		-1-		-1-	105		Dea	Giu	no.	110	цуз	Vai	
40	TTC	CTG	ACG	GGT	GGG	GAC	CTC	CCA	GCT	CTG	GAC	GGA	GCC	CGG	GTG	GAT	384
	Phe	Leu	Thr	Gly	Gly	Asp	Leu	Pro	Ala	Leu	Asp	Gly	Ala	Arg	Val	Asp	
			115					120					125	•	•		

								•	•				•				
	TTC	CGG	TGT	GAC	CCC	GAC	TTC	CAT	CTG	GTG	GGC	AGC	TĊC	CGG	AGC	ATC	432
	Phe	Arg	Cys	Asp	Pro	Asp	Phe	His	Leu	Val	Gly	Ser	Ser	Arg	Ser	Ile	
		130					135					140					
5	TGT	AGT	CAG	GGC	CAG	TGG	AGC	ACC	CCC	AAG	CCC	CAC	TGC	CAG	GTG	AAT	480
	Cvs	Ser	Gln	Gly	Gln	Trp	Ser	Thr	Pro	Lys	Pro	His	Cys	Gln	Val	Asn	
	145			_		150					155					160	
	CGA	ÂCG	CCA	CAC	TCA	GAA	CGG	CGC	GCA	GTG	TAC	ATC	GGG	GCA	CTG	TTT	528
10	Arg	Thr	Pro	His	Ser	Glu	Arg	Arg	Ala	Val	Tyr	Ile	Gly	Ala	Leu	Phe	
					165					170					175		
										ř							•
	CCC	ATG	AGC	GGG	GGC	TGG	CCA	GGG	GGC	CAG	GCC	TGC	CAG	ccc	GCG	GTG	576
	Pro	Met	Ser	Gly	Gly	Trp	Pro	Gly	Gly	Gln	Ala	Cys	Gln	Pro	Ala	Val	
15				180					185					190			
	GAG	ATG	GCG	CTG	GAG	GAC	GTG	AAT	AGC	CGC	AGG	GAC	ATC	CTG	CCG	GAC	624
	Glu	Met	Ala	Leu	Glu	Asp	Val	Asn	Ser	Arg	Arg	Asp	Ile	Leu	Pro	Asp	
			195					200					205	•			
20																	
	тат	GAG	CTC	AAG	CTC	ATC	CAC	CAC	GAC	AGC	AAG	TGT	GAT	CCA	GGC	CAA	672
	Tyr	Glu	Leu	Lys	Leu	Ile	His	His	Asp	Ser	Lys	Суз	Asp	Pro	Gly	Gln	
		210					215					220					
25	GCC	ACC	AAG	TAC	СТА	TAT	GAG	CTG	CTC	TAC	AAC	GAC	CCT	ATC	AAG	ATC	720
	Ala	Thr	Lys	Tyr	Leu	Tyr	Glu	Leu	Leu	Tyr	Asn	Asp	Pro	Ile	Lys	Ile	
	225					230					235					240	
				CCT													768
30	Ile	Leu	Met	Pro	Gly	Cys	Ser	Ser	Val	Ser	Thr	Leu	Val	Ala	Glu	Ala	
					245					250					255		
	GCT	AGG	ATG	TGG	AAC	CTC	ATT	GTG	CTT	TCC	TAT	GGC	TCC	AGC	TCA	CCA	816
	Ala	Arg	Met	Trp	Asn	Leu	Ile	Val	Leu	Ser	Tyr	Gly	Ser	Ser	Ser	Pro	
35				260					265					270		•	
																CCA	864
	Ala	Lev	. Ser	Asn	Arg	Glr	Arg	Phe	Pro	Thr	Phe	Phe	Arg	Thr	His	Pro	
			275	.				- 280					285				
40																	1
																TGG	912
	Ser	Ala	a Thi	Lev	ı His	. Asr	Pro	Thr	Arc	y Val	Lys	Leu	Phe	Glu	Lys	Trp	
		290	כ				295	;				300)				

	H18	65-1	wo.	SEQ				7	1								
	Gln	Glu	Ala	Pro	Leu	Ala	Tyr	Asp	Ala	Ile	Trp	Ala	Leu	Ala	Leu	Ala	
						GCC											1440
40		450					455					460					þ
	Lys		Thr	Lys	Arg	Leu	Lys	Arg	His	Pro	Glu	Glu	Thr	Gly	Gly	Phe	
-	AAA	CTA	ACC	AAG	CGA	CTG	AAA	AGA	CAC	CCT	GAG	GAG	ACA	GGA	GGC	TTC	1392
			435					440					445				
35						Ile											
	GCC	ААТ	ACC	CGC	AGC	ATT	TCC	AAC	ATG	ACA	TCC	CAG	GAA	TTT	GTG	GAG	1344
				420	-				425					430		0	
30						CAC His											1296
30	GAG	ccc	CTC	CAC	ccc	CAC	N M C	202	3.0m	~~~	3 m m						
	1110	273	116	TYT	405	Pro	ser	TIE	ASII	410	THE	vaı	Asp	GIU	Met 415	Thr	
						CCT											1248
25																	
	385					390				_	395	_		•		400	
						Trp											1200
	GGG	AAG	AAG	ጥልሮ	ርጥሮ	TGG	ጥጥር	ריתיר	עיטיין ע	GGG	سرتات	መልመ	ccm	CAC	አ አ ጥ	mo c	1000
20		370					375					380					
						Val											
	ACT	GAA	GCC	CGG	AAA	GTT	TTT	TGT	GAG	GTG	TAC	AAG	GAG	CGT	CTC	ттт	1152
			355					360					365				
15	Asn	Leu		Arg	Gln	Asp	Ala	Arg	Ile	Ile	Val	Gly	Leu	Phe	Tyr	Glu	
	AAC	CTG	AAG	CGC	CAG	GAT	GCC	CGA	ATC	ATC	GTG	GGA	CTT	TTC	ТАТ	GAG	1104
				340					345					350			•
	Ile	Thr	Phe			Ser	Phe	Phe		Asp	Pro	Ala	Val		Val	Lys	
10																AAA	1056
					325					330					335		
	Ser	Thr	Leu	Asp			Glu	Glu	Arg	Val	Lys	Glu	Ala	Gly	Ile	Glu	
	TCG	ACT	CTG	GAC	GAC	CTG	GAG	GAA	CGA	GTG	AAG	GAG	GCT	GGA	ATT	GAG	1008
5	303					310					315					320	
	Gly 305		Lys	Lys	Ile	Ala 310	Thr	Ile	Gln	Gln			Glu	Val	Phe	Thr	
																ACT	960
																• •	

	•	PCT/SE98/01947
WA 00/21900		FC 1/3E 36/0174/

	465					470					475	•				480	
	CTG	AAC	AAG	ACA	тст	GGA	GGA	GGC	GGC	CGT	TCT	GGT	GTG	CGC	CTG	GAG	1488
	Leu	Asn	Lys	Thr	Ser	Gly	Gly	Gly	Gly	Arg	Ser	Gly	Val	Arg	Leu	Glu	
5					485					490					495		
								ACC									1536
	Asp	Phe	Asn	Tyr	Asn	Asn	Gln	Thr	Ile	Thr	Asp	Gln	Ile	Tyr	Arg	Ala	
				500					505					510			
10																	7.504
								GGT									1584
	Met	Asn		Ser	Ser	Phe	Glu	Gly	Val	Ser	Gly	His		Val	Pne	Asp	·
			515					520				•	525				
					~~~	3 MC	CC.	TGG	7 CC	CUU	አመሮ	GNG	CAG	CTT	CAG	CCT	1632
15								Trp									
	Ala		GIY	Ser	Arg	Mec	535	пр	1111	Бец	110	540	01	202		1	
		530					333										
	GGC	AGC	TAC	AAG	AAG	ATT	GGC	TAC	TAT	GAC	AGC	ACC	AAG	GAT	GAT	CTT	1680
20								Tyr									
20	545	-	-1-			550		_	_		555					560	
	TCC	TGG	TCC	AAA	ACA	GAT	AAA	TGG	ATT	GTT	ATA	TCC	AGA	ACT	CAC	AGC	1728
	Ser	Trp	Ser	Lys	Thr	Asp	Lys	Trp	Ile	Val	Ile	Ser	Arg	Thr	His	Ser	
25					565	,				5 <b>7</b> 0	•				<b>57</b> 5		
	CCA	ACC	TGA														1737
	Pro	Thr	*				*										

30

35

- (2) INFORMATION FOR SEQ ID NO: 55:
  - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 578 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:

Met Leu Leu Leu Leu Leu Ala Pro Leu Phe Leu Arg Pro Pro Gly

	1				5					10					15		
5	Ala	Gly	Gly	Ala 20	Gln	Thr	Pro	Asn	Ala 25	Thr	Ser	Glu	Gly	Cys 30	Gln	Ile	
3	Ile	His	Pro 35	Pro	Trp	Glu	Gly	Gly 40	Ile	Arg	Tyr	Arg	Gly 45	Leu	Thr	Arg	
10	Asp	Gln 50	Val	Lys	Ala	Ile	Asn 55	Phe	Leu	Pro	Val	Asp 60	Tyr	Glu	Ile	Glu	3
	<b>Tyr</b> 65	Val	Cys	Arg	Gly	Glu 70		Glu	Val	Val	Gly 75	Pro	Lys	Val	Arg	Lys 80	
15	Cys	Leu	Ala	Asn	Gly 85	Ser	Trp	Thr	Asp	Met 90	Asp	Thr	Pro	Ser	Arg 95	Cys	
20	Val	Arg	Ile	Cys 100	Ser	Lys	Ser	Tyr	Leu 105	Thr	Leu	Glu	Asn	Gly 110	Lys	Val	
20	Phe	Leu	Thr 115	Gly	Gly	Asp	Leu	Pro 120	Ala	Leu	Asp	Gly	Ala 125	Arg	Val	Asp	
25	Phe	Arg 130	Cys	Asp	Pro	Asp	Phe 135	His	Leu	Val	Gly	Ser 140	Ser	Arg	Ser	Ile	
	Cys 145	Ser	Gln	Gly	Gln	Trp 150	Ser	Thr	Pro	Lys	Pro 155	His	Cys	Gln	Val	Asn 160	
30	Arg	Thr	Pro	His	Ser 165	Glu	Arg	Arg	Ala	Val 170	Tyr	Ile	Gly	Ala	Leu 175	Phe	
35	Pro	Met	Ser	Gly 180	Gly	Trp	Pro	Gly	Gly 185	Gln	Ala	Cys	Gln	Pro 190	Ala	Val	
33	Glu	Met	Ala 195	Leu	Glu	Asp	Val	Asn 200	Ser	Arg	Arg	Asp	Ile 205	Leu	Pro	Asp	
40	Tyr	Glu 210	Leu	Lys	Leu	Ile	His 215	His	Asp	Ser	Lys	Cys 220	Asp	Pro	Gly	Gln	
	Ala 225	Thr	Lys	Tyr	Leu	Туг 230	Glu	Leu	Leu	Tyr	Asn 235	Asp	Pro	Ile	Lys	Ile 240	

73

H1865-1 WO SEQ

PCT/SE98/01947 WO 99/21890

	Ile	Leu	Met	Pro	Gly 245	Cys	Ser	Ser	Val	Ser 250	Thr	Leu	Val		Glu 255	Ala
5	Ala	Arg	Met	Trp 260	Asn	Leu	Ile	Val	Leu 265	Ser	Tyr	Gly	Ser	Ser 270	Ser	Pro
		Leu ≎	Ser 275	Asn	Arg	Gln	Arg	Phe 280	Pro	Thr	Phe	Phe	Arg 285	Thr	His	Pro
0	Ser	Ala 290	Thr	Leu	His	Asn	Pro 295	Thr	Arg	Val	Lys	Leu 300	Phe	Glu	Lys	Trp
15	Gly 305	Trp	Lys	Lys	Ile	Ala 310	Thr	Ile	Gln	Gln	Thr 315	Thr	Glu	Val	Phe	Thr 320
	Ser	Thr	Leu	Asp	Asp 325	Leu	Glu	Glu	Arg	Val 330	Lys	Glu	Ala	Gly	11e 335	Glu
20	Ile	Thr	Phe	Arg 340		Ser	Phe	Phe	Ser 345	Asp	Pro	Ala	Val	Pro 350	Val	Lys
25	Asn	Leu	Lys 355		Gln	Asp	Ala	Arg 360	Ile	Ile	Val	Gly	Leu 365	Phe	Tyr	Glu
25	Thr	Glu 370		Arg	Lys	Val	Phe 375	Cys	Glu	Val	Туr	Lys 380	Glu	Arg	Leu	Phe
30	Gly 385		: Lys	Tyr	Val	Trp 390	Phe	Leu	Ile	Gly	Trp		Ala	Asp	Asn	Trp
	Phe	Lys	: Ile	: Туг	405	Pro	Ser	Ile	Asn	Cys 410		Val	Asp	Glu	Met 415	
35	Glu	ı Ala	a Val	. Glu 420		/ His	Ile	Thr	Thr 425		ı Ile	e Val	Met	Leu 430		Pre
40	Ala	a Ası	n Thi		g Sei	: Ile	. Ser	440		: Thi	c Ser	Glr	445		Val	. Glu
70	Ly	s Le		r Ly:	s Ar	g Lev	Lys 455		, His	s Pro	o Glu	1 Glu 460		Gly	Gl	7 Phe

H1865-1 WO SEQ

Gln Glu Ala Pro Leu Ala Tyr Asp Ala Ile Trp Ala Leu Ala Leu Ala 465 470 475 Leu Asn Lys Thr Ser Gly Gly Gly Gly Arg Ser Gly Val Arg Leu Glu 5 485 490 495 Asp Phe Asn Tyr Asn Asn Gln Thr Ile Thr Asp Gln Ile Tyr Arg Ala 500 505 510 10 Met Asn Ser Ser Phe Glu Gly Val Ser Gly His Val Val Phe Asp 515 520 525 Ala Ser Gly Ser Arg Met Ala Trp Thr Leu Ile Glu Gln Leu Gln Gly 530 535 15 Gly Ser Tyr Lys Lys Ile Gly Tyr Tyr Asp Ser Thr Lys Asp Asp Leu 545 550 555 560 Ser Trp Ser Lys Thr Asp Lys Trp Ile Val Ile Ser Arg Thr His Ser 565 20 570 575 Pro Thr 25 (2) INFORMATION FOR SEQ ID NO: 56: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1386 base pairs (B) TYPE: nucleic acid 30 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA to mRNA (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens

(ix) FEATURE:

PCT/SE98/01947 WO 99/21890

(A) NAME/KEY: CDS

(B) LOCATION:1..1386

	HI	865-	1 W(	SEC	<del></del>				76									
٠	Le	u Il	e Va	l Le	ı Se:	r Ty:	r Gly	y Se:	r Se	r Se	r Pr	o Ala	a Le	u se	r Asi	n Arg		
																c cgg		480
40		130	ט				135	•				T 48 (	,					υ
	Суз			r Val	. Ser	r Thi			L Ala	a Gil	ı Ala	a Alá 140		y me	LII	) Asn	•	
																AAC		432
			115					120										422
35	Туг	Glu			Туг	Asn	Asp	_		e Lys	: Ile	e Ile	Lev 125		Pro	Gl <b>y</b>		
	TAT	' GAG	CTG	CTC	TAC	: AAC	GAC	CCI	' ATC	: AAG	ATC	ATC	CTI	, ATC	CCI	GGC	3	384
	Ile	His	His	Asp 100		гуs	cys	Asp	105		GII	. WIG	. 1111	110		Leu		
30																CTA	3	336
													_				•	26
	чэр	* (4.1			85					90	-	_			95			
				Ser														
25		~~~		AGC	000	700	מאכ	<u>አ</u> ጥር	Cutc	ררפ	GAC	ጥልጥ	GAG	ርፓር	AAG	CTC	2	88
	65					70					75					80		
				Gly												Glu		
	TGG	CCA	GGG	GGC	CAG	GCC	TGC	CAG	CCC	GCG	GTG	GAG	ATG	GCG	CTG	GAG	2	40
20		50					55					00						
	Glu		Arg	Ala	Val	Tyr		Gly	Ala	Leu	Phe	Pro 60	Met	ser	GIA	GTĀ		
				GCA													1	92
15	rro	н1S	ьеu 35	FIO	wr A	FIO		40	••• 9		0		45					
				CCG Pro													1.	4-4
										oma.	000		C2 C	ccc	TICC.	ጥርን	1.	44
				20					25					30				
10	Leu	Val	Val	Met	Ala	Ala	Gly	Val	Ala	Pro	Val	Trp	Ala	Ser	His	Ser		
10	CTG	GTT	GTG	ATG	GCG	GCA	GGG	GTG	GCT	CCG	GTG	TGG	GCC	TCC	CAC	TCC	9	96
	1				5					10					15			
	Met	Gly	Pro	Gly	Ala	Pro	Phe	Ala	Arg		Gly	Trp	Pro	Leu		Leu		
				GGG													4	48
5		( , , , ,	220	O DIVO					-									
		(xi)	SEO	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 56	:						

WO 99/21890	•	PCT/SE98/01947

	H18	65-1	wo	SEQ				7	77								
	ATT	TCC	AAC	ATG	ACA	TCC	CAG	GAA	TTT	GTG	GAG	AAA	CTA	ACC	AAG	CGA	1008
	305					310					315					320	
40	His	Ile	Thr	Thr	Glu	Ile	Val	Met	Leu	Asn	Pro	Ala	Asn	Thr	Arg	Ser	
	CAC	ATC	ACA	ACT	GAG	ATT	GTC	ATG	CTG	ААТ	ССТ	GCC	ААТ	ACC	CGC	AGC	960
		290					295					300					
	Pro		Ile	Asn	Cys	Thr	Val	Asp	Glu	Met	Thr	Glu	Ala	Val	Glu	Gly	
35																GGC ~	912
	-		275		_	F		280					285		• y =	<i>y</i>	
							Tyr										864
50	TGG	TTC	CTC	ATT	GGG	TGG	TAT	GCT.	GAC	ልልጥ	ተርር	الماليات الماليات	ΔΔΩ	Δጥ⊂	ጥልጥ	GAC	051
30				260					265					270			
	Val	Phe	Cys		Val	Tyr	Lys	Glu		Leu	Phe	Gly	Lys		Tyr	Val	
							AAG										816
25					245					250					255	<u>.</u>	
							Gly										, 00
	GAT	GCC	CGA	ATC	ATC	GTG	GGA	CTT	TTC	ТАТ	GAG	ACT	GAA	GCC	CGG	AAA	768
	لىقى					230					235					240	
20	225	rne	rue	ser	ASP	230	Ala	val	Pro	val		Asn	Leu	Lys	Arg		
20							GCT										720
		m= -	mm -	me-													
		210					215					220					
							Glu										
15	CTG	GAG	GAA	CGA	GTG	AAG	GAG	GCT	GGA	АТТ	GAG	ATT	ACT	TTC	CGC	CAG	672
													200				
			195	J#11	3111	- *TT	TILL	200	AGT	L116	TILL	ser	205	ьeu	ASP	Asp	
																GAC	624
10			3 mc				<b>.</b>										
				180					185					190			•
	Asn	Pro	Thr	Arg	Val	Lys	Leu	Phe	Glu	Lys	Trp	Gly	Trp	Lys	Lys	Ile	
	AAC	CCT	ACC	CGC	GTG	AAA	CTC	TTT	GAA	AAG	TGG	GGC	TGG	AAG	AAG	ATT	576
															1,5		
5	02	9			165		1116	мy	1111	170	PIO	ser	Ald	THE	175		
																CAC	528
	CAG	CCT	ጥጥር	ccc	አረጥ	TUTO C	mmc	001	1.00	010							
	145					150					155	•	•	•		160	
													·				

	T1.	C	7.00	Met	ጥኮፖ	Ser	Gln	Glu	Phe	Val	Glu	Lvs	Leu	Thr	Lvs	Arg		
	TIE	ser	ASII	Mec	325	501	<b></b>	O1u		330					335	_		
					323													
	CTG	AAA	AGA	CAC	CCT	GAG	GAG	ACA	GGA	GGC	TTC	CAG	GAG	GCA	CCG	CTG		1056
5				His														
				340					345					350				
	GCC	TAT	GAT	GCC	ATC	TGG	GCC	TTG	GCA	CTG	GCC	CTG	AAC	AAG	ACA	TCT		1104
	Ala	Îyr	Asp	Ala	Ile	Trp	Ala	Leu	Ala	Leu	Ala	Leu	Asn	Lys	Thr	Ser		
10			355					360					365					
																		1150
				GGC														1152
	Gly		Gly	Gly	Arg	Ser		Val	Arg	Leu	GIu		Phe	Asn	Tyr	Asn		
		370					375					380						
15		~~~		ATT	7.00	CAC	C 2 2	አጥር	mac.	ccc	GCA	ልጥር	ልልሮ	ጥርጥ	ጥርር	ጥሮር		1200
				Ile														
	385	GIII	1111	116	1111	390	GIII	116	131	**** 9	395					400		
	363					330												
20	ттт	GAG	GGT	GTC	тст	GGC	CAT	GTG	GTG	TTT	GAT	GCC	AGC	GGC	TCT	CGG		1248
																Arg		
					405					410					415			
	ATG	GCA	TGG	ACG	CTT	ATC	GAG	CAG	CTT	CAG	GGT	GGC	AGC	TAC	AAG	AAG		1296
25	Met	Ala	Trp	Thr	Leu	Ile	Glu	Gln	Leu	Gln	Gly	Gly	Ser	Tyr	Lys	Lys		
				420					425					430				
																ACA		1344
	Ile	Gly			Asp	Ser	Thr			Asp	Leu	Ser			Lys	Thr		
30			435	•				440					445					
			<b></b>				maa		л Оп	י מאר	N.C.C		. ארר	י קרבי				1386
				ATT											•			1550
	Asp	ьуя 450		, TIG	· val	. TTE	455		TIII	1115	JEI	460						
25		450	,				400	•				200	•				<b></b>	
35																		

(2) INFORMATION FOR SEQ ID NO: 57:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 461 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

**ኮፀ**ጠ1 የቁጥ\$ 1 . . .

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:

Met Gly Pro Gly Ala Pro Phe Ala Arg Val Gly Trp Pro Leu Pro Leu 5 1 5 10 15

Leu Val Val Met Ala Ala Gly Val Ala Pro Val Trp Ala Ser His Ser 20 25 30

Pro His Leu Pro Arg Pro His Ser Arg Val Pro Pro His Pro Ser Ser 35 40 45

Glu Arg Arg Ala Val Tyr Ile Gly Ala Leu Phe Pro Met Ser Gly Gly
50 55 60

Trp Pro Gly Gly Gln Ala Cys Gln Pro Ala Val Glu Met Ala Leu Glu
65 70 75 80

Asp Val Asn Ser Arg Arg Asp Ile Leu Pro Asp Tyr Glu Leu Lys Leu 20 85 90 95

Ile His His Asp Ser Lys Cys Asp Pro Gly Gln Ala Thr Lys Tyr Leu 100 105 110

25 Tyr Glu Leu Leu Tyr Asn Asp Pro Ile Lys Ile Ile Leu Met Pro Gly 115 120 125

Cys Ser Ser Val Ser Thr Leu Val Ala Glu Ala Ala Arg Met Trp Asn 130 135 140

Gln Arg Phe Pro Thr Phe Phe Arg Thr His Pro Ser Ala Thr Leu His

165 170 175 -

Asn Pro Thr Arg Val Lys Leu Phe Glu Lys Trp Gly Trp Lys Lys Ile 180 185 190

40 Ala Thr Ile Gln Gln Thr Thr Glu Val Phe Thr Ser Thr Leu Asp Asp 195 200 205

Leu Glu Glu Arg Val Lys Glu Ala Gly Ile Glu Ile Thr Phe Arg Gln

15

30

PCT/SE98/01947

Ser Phe Phe Ser Asp Pro Ala Val Pro Val Lys Asn Leu Lys Arg Gln Asp Ala Arg Ile Ile Val Gly Leu Phe Tyr Glu Thr Glu Ala Arg Lys Val Phe Cys Glu Val Tyr Lys Glu Arg Leu Phe Gly Lys Lys Tyr Val Trp Phe Leu Ile Gly Trp Tyr Ala Asp Asn Trp Phe Lys Ile Tyr Asp Pro Ser Ile Asn Cys Thr Val Asp Glu Met Thr Glu Ala Val Glu Gly His Ile Thr Thr Glu Ile Val Met Leu Asn Pro Ala Asn Thr Arg Ser Ile Ser Asn Met Thr Ser Gln Glu Phe Val Glu Lys Leu Thr Lys Arg Leu Lys Arg His Pro Glu Glu Thr Gly Gly Phe Gln Glu Ala Pro Leu Ala Tyr Asp Ala Ile Trp Ala Leu Ala Leu Ala Leu Asn Lys Thr Ser Gly Gly Gly Arg Ser Gly Val Arg Leu Glu Asp Phe Asn Tyr Asn Asn Gln Thr Ile Thr Asp Gln Ile Tyr Arg Ala Met Asn Ser Ser Ser Phe Glu Gly Val Ser Gly His Val Val Phe Asp Ala Ser Gly Ser Arg Met Ala Trp Thr Leu Ile Glu Gln Leu Gln Gly Gly Ser Tyr Lys Lys Ile Gly Tyr Tyr Asp Ser Thr Lys Asp Asp Leu Ser Trp Ser Lys Thr

Asp Lys Trp Ile Val Ile Ser Arg Thr His Ser Pro Thr 450 455 460 5 (2) INFORMATION FOR SEQ ID NO: 58: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1746 base pairs 10 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA to mRNA 15 (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO 20 (vi) ORIGINAL SOURCE: (A) ORGANISM: Canis familiaris (ix) FEATURE: (A) NAME/KEY: CDS 25 (B) LOCATION: 1..1746 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58: 48 Met Leu Leu Leu Leu Pro Leu Ala Leu Ala Pro Leu Phe Leu Arg 5 10 15 CCC CCG GGC GCG GGC GCA CAG ACC CCC AAC GCC ACC TCG GAA GGT 96 Pro Pro Gly Ala Gly Gly Ala Gln Thr Pro Asn Ala Thr Ser Glu Gly 20 25 30 TGC CAG ATC ATA CAC CCG CCT TGG GAA GGG GGT ATC AGG TAC AGG GGC 144 Cys Gln Ile Ile His Pro Pro Trp Glu Gly Gly Ile Arg Tyr Arg Gly 35 40 CTG ACT CGT GAC CAG GTG AAG GCT ATC AAC TTC CTG CCG GTG GAC TAT 192 Leu Thr Arg Asp Gln Val Lys Ala Ile Asn Phe Leu Pro Val Asp Tyr 50 55

35

40

H1865-1 WO SEQ

														•				
	GAG	АТТ	GAG	TAT	GTG	TGC	CGG	GGA	GAG	CGA	GAG	GTG	GTG	GGG	ccc	AAG	2	240
							Arg											
	65					70					<b>7</b> 5					80		
5																		
	GTC	CGA	AAG	TGC	CTG	GCC	AAT	GGC	TCC	TGG	ACA	GAT	ATG	GAC	ACA	CCC	:	288
	Val	Arg	Lys	Cys	Leu	Ala	Asn	Gly	Ser	Trp	Thr	Asp	Met	Asp	Thr	Pro		
					85					90					95			
		3															_	
10							TGT										•	336
	Ser	Arg	Cys		Arg	Ile	Суѕ	Ser		Ser	Tyr	Leu	Ala		Glu	Asn		
				100					105					110			·	
	~~~		cmc.	mmc	CMC	200	GGT	ccc	CAC	CTTC	ccc	CCT	CTC	CAT	GGA	GCC	,	384
16							Gly										·	
15	GIA	гуs	115	riie	пеп	1111	Gry	120	nsp	Deu	110	7114	125		013			
			113															
	CGG	GTG	GAT	TTC	CGG	TGT	GAC	CCT	GAC	TTC	CAT	CTT	GTG	GGC	AGC	TCC		432
							Asp											
20	_	130					135					140						
	CGG	AGT	ATC	TGT	AGT	CAG	GGC	CAG	TGG	AGC	ACT	CCC	AAG	CCC	CAC	TGC		480
	Arg	Ser	Ile	Cys	Ser	Gln	Gly	Gln	Trp	Ser	Thr	Pro	Lys	Pro	His	Cys		
	145					150					155					160		
25																		
																GGG		528
	Gln	Val	Ser	Arg		Pro	His	Ser	Glu		Arg	Ala	Vai	Tyr		Gly		
					165					170					175			
70	000	CMC	സന്ന	ccc	אתיכ	A C C	ccc	GGC	тсс	CCG	GGG	GGC	CAG	GCC	ጥርር	CAG		576
30																Gln		
	AIG	neu		180		501	011	013	185		1	2		190				
		-																
	ccc	GCG	GTG	GAG	ATG	GCG	CTG	GAG	GAC	GTG	AAT	AGC	CGC	AGG	GAC	ATC		624
35	Pro	Ala	Val	Glu	Met	Ala	Leu	Glu	Asp	Val	Asn	Ser	Arg	Arg	Asp	Ile		
			195					200	+				205					
	CTG	CCG	GAC	TAC	GAG	CTC	AAG	CTC	ATC	CAC	CAC	GAC	AGC	AAG	TGT	GAC		672
	Leu	Pro) Asp	туг	Glu	Leu	Lys	Leu	Ile	His	His	Asp	Ser	Lys	Суз	Asp		
40		210)				215	i				220						:
																		720
																CCC		720
	Pro	Gly	/ Glr	ı Ala	1 Thr	Lys	туг	Let	і Тут	Glu	Lev	ı Lev	туу	ASI	ı ASÇ	Pro		
												. —·						

WO 99/21890	-	PCT/SE98/01947
	• •	

		<u> </u>															
	GAC	ААТ	TGG	TTC	AAG	ACC	TAC	GAC	CCC	TCC	ATC	AAC	TGC	ACA	GTG	GAT	1248
	385					390					395					400	
40	Arg	Leu	Phe	Gly	Lys	Lys	Tyr	Val	Trp	Phe	Leu	Ile	Gly	Trp	Tyr	Ala	;
	CGG	CTC	ттт	GGG	AAG	AAG	тат	GTG	TGG	TTC	CTC	ATT	GGG	TGG	ТАТ	GCT	1200
	-	370					375					380					
	Phe		Glu	Thr	Glu	Ala	Arg	Lys	Val	Phe	Cys	Glu	Val	Tyr	Lys	Glu	
35	TTC	TAT	GAG	ACT	GAA	GCC	CGG	AAA	GTG	TTC	TGT	GAG	GTA	TAC	AAG	GAG ~	1152
			355					360					365				
	Pro	Val		Asn	Leu	Lys	Arg		Asp	Ala	Arg	Ile		Val	Gly	Leu	
	CCT	GTC	AAG	AAC	CTC	AAG	CGC	CAG	GAT	GCC	CGA	ATC	ATC	GTG	GGA	CTT	1104
30									-								
	GIY	116	Jiu	340	1111	FIIG	ary	GIII	345	FIIE	LHE	aer.	usp	350	nia	vai	
				ATT Ile													1056
	~~~		<b></b>			mer ==	~~~										
25					325					330					335		
				Ser													
	GTG	TTC	ACA	TCG	ACT	CTG	GAC	GAC	CTA	GAG	GAA	CGA	GTG	AAG	GAG	GCT	1008
	305					310					315					320	
20		Lys	Trp	Gly	Trp	_	Lys	Ile	Ala	Thr		Gln	Gln	Thr	Thr		
	GAG	AAG	TGG	GGC	TGG	AGG	AAG	ATT	GCC	ACC	ATC	CAG	CAG	ACC	ACC	GAG	960
	1441	290		JUL	23.Z.C	****	295	1143	นจน	110	TIIL	300	AGT	цys	neu	FIIG	
15				TCG Ser											_		912
			275					280					285				
				Ala													
	AGC	TCA	CCA	GCT	CTG	TCC	AAC	CGG	CAG	CGC	TTT	CCT	ACC	TTC	TTC	CGA	864
10				260			~		265					270			
	Ala	Glu	Ala	Ala	Arg	Met	Trp	Asn		Ile	Val	Leu	Ser		Gly	Ser	
				GCC													816
,										230					233		
5	TIE	гÀ2	шe	Ile	ьеи 245	Met	Pro	GIĀ	Cys	250	Ser	Val	Ser	Thr	Leu 255	Val	
				ATC													768
	225					230					235	•	•	•		240 [°]	
								=	-								

								-	•				-					
	Asp	Asn	Trp	Phe	Lys	Thr	Tyr	Asp	Pro	Ser	Ile	Asn	Cys	Thr	Val	Asp		
					405					410					415			
							GAA										;	1296
5	Glu	Met	Thr	Glu	Ala	Val	Glu	Gly	His	Ile	Thr	Thr	Glu	Ile	Val	Met		
				420					425					430				
							CGC											1344
	Leu	Asn	Pro	Ala	Asn	Thr	Arg	Ser	Ile	Ser	Asn	Met	Thr	Ser	Gln	Glu		
10			435					440					445					
															~~~			1200
							AAG											1392
	Phe		Glu	Lys	Leu	Thr	Lys	Arg	Leu	rys	Arg		Pro	GIU	GIU	THE		
		450					455					460						
15		~~~	mmo	a. c	010	CCA	CCG	CITIC	ccc	መአመ	CAM	ccc	אתיכי	mcc.	GCC	מעועב		1440
							Pro											1410
	_	_	Pne	GIII	GIU	470	PIO	ьеи	AIG	IYL	475	AIG	116	11.0	niu	480		
	465					470					4,5					100		
20	GCA	ጥጥር	GCC	CTG	AAC	AAG	ACA	тст	GGA	GGG	AGC	GGC	CGT	TCG	GGG	GTG		1488
20							Thr											
					485	-1-				490		-			495			
	CGC	CTG	GAA	GAC	TTC	AAC	TAC	AAC	AAC	CAG	ACG	ATC	ACA	GAC	CAA	ATC		1536
25							Tyr											
				500					505					510				
	TAC	CGC	GCA	ATG	AAC	TCC	TCG	TCC	TTT	GAG	GGT	GTC	TCT	GGC	CAC	GTG		1584
	Tyr	Arg	Ala	Met	Asn	Ser	Ser	Ser	Phe	Glu	Gly	Val	Ser	Gly	His	Val		
30			515					520					525					
																CAG		1632
	Val	Phe	Asp	Ala	Ser	Gly	Ser	Arg	Met	Ala	Trp	Thr	Leu	Ile	Glu	Gln		
		530	•				535					540	,					
35																	•	1600
																AAG		1680
			ı Gly	Gly	Ser			Lys	Ile	GIY			Asp	ser	Thr	Lys		
	545	5				550)				555	•				560		
											ma a	, y.m.,	. ~m	קרים ה	THE CO	י אַרַיא	•	1728 ,
40																AGA		1,20 5
	Asp) Ası	Lev	ı Ser			г гуз	ını	AST) TTE	: val	THI	575 575	Arg		
					565	•				570	•				J / L	•		

ACT CCC AGC CCA ACT TGA
Thr Pro Ser Pro Thr *
580

1746

5

- (2) INFORMATION FOR SEQ ID NO: 59:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 581 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein

15

10

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:
- Met Leu Leu Leu Leu Pro Leu Ala Leu Ala Pro Leu Phe Leu Arg

 1 5 10 15

20

- Pro Pro Gly Ala Gly Gly Ala Gln Thr Pro Asn Ala Thr Ser Glu Gly
 20 25 30
- Cys Gln Ile Ile His Pro Pro Trp Glu Gly Gly Ile Arg Tyr Arg Gly
 25 40 45
 - Leu Thr Arg Asp Gln Val Lys Ala Ile Asn Phe Leu Pro Val Asp Tyr 50 55 60
- 30 Glu Ile Glu Tyr Val Cys Arg Gly Glu Arg Glu Val Val Gly Pro Lys 65 70 75 80
 - Val Arg Lys Cys Leu Ala Asn Gly Ser Trp Thr Asp Met Asp Thr Pro 85 90 95

- Ser Arg Cys Val Arg Ile Cys Ser Lys Ser Tyr Leu Ala Leu Glu Asn 100 105 110
- Gly Lys Val Phe Leu Thr Gly Gly Asp Leu Pro Ala Leu Asp Gly Ala 40 115 120 125
 - Arg Val Asp Phe Arg Cys Asp Pro Asp Phe His Leu Val Gly Ser Ser 130 135 140

	Arg 145	Ser	Ile	Cys	Ser	Gln 150	Gly	Gln	Trp	Ser	Thr 155	Pro	Lys	Pro	His	Cys 160
5	Gln	Val	Ser	Arg	Thr 165	Pro	His	Ser	Glu	Arg 170	Arg	Ala	Val	Tyr	Ile 175	Gly
	Ala	Leu ា	Phe	Pro 180	Met	Ser	Gly	Gly	Trp 185	Pro	Gly	Gly	Gln	Ala 190	Cys	Gln
0	Pro	Ala	Val 195	Glu	Met	Ala	Leu	Glu 200	Asp	Val	Asn	Ser	Arg 205	Arg	Asp	Ile
5	Leu	Pro 210	Asp	Tyr	Glu	Leu	Lys 215	Leu	Ile	His	His	Asp 220	Ser	Lys	Cys	Asp
	Pro 225	Gly	Gln	Ala	Thr	Lys 230	Tyr	Leu	Tyr	Glu	Leu 235	Leu	Туг	Asn	Asp	Pro 240
20	Ile	Lys	Ile	Ile	Leu 245	Met	Pro	Gly	Cys	Ser 250	Ser	Val	Ser	Thr	Leu 255	Val
25	Ala	Glu	Ala	Ala 260	Arg	Met	Trp	Asn	Leu 265	Ile	Val	Leu	Ser	Туг 270	Gly	Ser
23	Ser	Ser	Pro 275		Leu	Ser	Asn	Arg 280		Arg	Phe	Pro	Thr 285		Phe	Arg
30	Thr	His		Ser	Ala	Thr	Leu 295		Asn	Pro	Thr	Arg 300	Val	Lys	Leu	Phe
	Glu 305		Trp	Gly	Trp	Arg 310		Ile	Ala	Thr	11e 315		Gln	Thr	Thr	Glu 320
35	Val	. Phe	e Thr	: Ser	325		Asp	Asp	Leu	330		Arg	Val	. Lys	Glu 335	Ala-
40	Gly	/ Ile	e Glu	1 Ile 340		r Ph∈	e Arg	g Glr	345		Phe	Ser	: Asp	350		. Val
₩	Pro	o Vai	1 Ly:		ı Let	ı PA:	s Arg	g Glr 360		à Ala	a Arç	Ile	365		. Gly	/ Leu

Phe Tyr Glu Thr Glu Ala Arg Lys Val Phe Cys Glu Val Tyr Lys Glu Arg Leu Phe Gly Lys Lys Tyr Val Trp Phe Leu Ile Gly Trp Tyr Ala Asp Asn Trp Phe Lys Thr Tyr Asp Pro Ser Ile Asn Cys Thr Val Asp Glu Met Thr Glu Ala Val Glu Gly His Ile Thr Thr Glu Ile Val Met Leu Asn Pro Ala Asn Thr Arg Ser Ile Ser Asn Met Thr Ser Gln Glu Phe Val Glu Lys Leu Thr Lys Arg Leu Lys Arg His Pro Glu Glu Thr Gly Gly Phe Gln Glu Ala Pro Leu Ala Tyr Asp Ala Ile Trp Ala Leu Ala Leu Ala Leu Asn Lys Thr Ser Gly Gly Ser Gly Arg Ser Gly Val Arg Leu Glu Asp Phe Asn Tyr Asn Asn Gln Thr Ile Thr Asp Gln Ile Tyr Arg Ala Met Asn Ser Ser Ser Phe Glu Gly Val Ser Gly His Val Val Phe Asp Ala Ser Gly Ser Arg Met Ala Trp Thr Leu Ile Glu Gln Leu Gln Gly Gly Ser Tyr Lys Lys Ile Gly Tyr Tyr Asp Ser Thr Lys 560* Asp Asp Leu Ser Trp Ser Lys Thr Asp Lys Trp Ile Val Thr Ser Arg Thr Pro Ser Pro Thr

((2) INFORMATION FOR SEQ ID NO: 60:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 16862 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

10

5

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

15 (vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 3415..3440

(ix) FEATURE:

(A) NAME/KEY: intron

(B) LOCATION: 3441..3903

25

35

20

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 3904..3988

30 (ix) FEATURE:

(A) NAME/KEY: intron

(B) LOCATION: 3989..4689

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 4690..4893

(ix) FEATURE:

(A) NAME/KEY: intron

40 (B) LOCATION: 4894..5645

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 5646..5831

(ix) FEATURE:

(A) NAME/KEY: intron

(B) LOCATION: 5832..7181

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 7182..7202

10

20

25

5

(ix) FEATURE:

(A) NAME/KEY: intron

(B) LOCATION: 7203..8307

15 (ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION:8308..8803

(ix) FEATURE:

(A) NAME/KEY: intron

(B) LOCATION: 8804..12266

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 12267..12401

(ix) FEATURE:

(A) NAME/KEY: intron

(B) LOCATION: 12402..12815

30

40

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 12816..12986

35 (ix) FEATURE:

(A) NAME/KEY: intron

(B) LOCATION: 12987..14085

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 14086..14187

(ix) FEATURE:

H1865-1 WO SEQ

00000 TO 011 1 1 5

PCT/SE98/01947 WO 99/21890

(A) NAME/KEY: intron

(B) LOCATION:14188..14473

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION:14474..14539

(ix) FEATURE:

(A) NAME/KEY: intron

(B) LOCATION:14540..14998

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 14999..15190

15

10

(ix) FEATURE:

(A) NAME/KEY: intron

(B) LOCATION:15191..16862

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:

	GATCATATTA	ATTTGAAGGT	GGCGGGGCAG	GATGGTTCTG	TGGTGCAGTT	TAAGATTAAG	60
25	AGGCATACAC	CACTTAGTAA	ACTAATGAAA	GCCTATTGTG	AACGACAGGG	ATTGTCAATG	120
	AGGCAGATCA	GATTCCGATT	CGACGGGCAA	CCAATGAAAC	AGACACACCT	GCACAGTTGG	180
	AAATGGAGGA	TGAAGATACA	ATTGATGTGT	TCCAACAGCA	GACGGGAGGT	GTCTACTGAA	240
30	AAGGGAACCT	GCTTCTTTAC	TCCAGAACTC	TGTTCTTTAA	AGACCAAGAT	TACATTCTCA	300
	ATTAGAAAAC	TGCAATTTGC	TTCCACCACA	TCCTGACTAC	TACCGTATAG	TTTTCTCTAT	360
35	TCTTTCATTT	CCCCTTCCC	CATTCCTTTA	CTGTACATAA	AGTAACTGGT	ATATGTGCAC	420
	AAGCATATTA	CTTTTTTTT	ТТААААСТАА	ACAGCCAATG	GTATGTTTTG	ATTGACATCA	480
	AGTGGAGACG	GGGGGGAAAA	TACTGATȚCT	GTGAAAATAC	CCCCTTTCTC	CATTAGTGGC	540
40	ATGCTCATTC	: AGCTCTTATC	TTTATATTCC	AGTAAGTTAT	TTTGCTCTCA	CTGTTTTAAC	600
	AACAACAACA	AAAAAACAAC	AACATAAAA	TCCTTGCATA	CCTTGTTCAA	TTGGAGAATT	660

	TTAATGTTTT	TCATTTATCA	TTGTAAAACC	AAGGACAATT	ттатаасттт	TTTGTACTTA	720
_	GCTGTTACAT	GCAGAGCAAT	CTGTCTTTAA	GTAGGGATAA	ATTACTCTAA	AACAAAAAAG	780
5	AATCCTAGAT	AGTTTTCCCT	TCAAGTCAAG	CGTCTTGTTG	ТТТАААТААА	CTTCTTGTTT	840
	ААААААААА	AAAGTAAAAA	AGAAAAGTTA	TGCAACAATT	AATGGCCCAG	AGGCAATCCT	900
10	TGTTAACATT	TTGATGCATC	TTTTAGCTGT	TTTTTTTT	TTTTTTTT	TTGACTGAGT	960
	TTGACTCTTG	TCACCCAGGC	TGAAGTGCAA	TGGCATGGCA	TGATCTTGGC	TCACTGCAAC	1020
15	CTCCGCCTCC	CGGGTTCAAG	TGATTCTCCT	GCCTCAGCCT	CCTGAGTAGC	TAGGATTACG	1080
13	GGCATGCACC	ACCATGCCTG	GCTAATTTTG	TATTTTTAGT	AGAGTTGGGG	CTTCTCCACA	1140
	CTGGTCAGGC	TGGTCTCGAA	CTCCCAACCT	CAGGTGATAA	GGGAAGGGC	ACTATTGACA	1200
20	TTTATGGTTG	GGGCAGAGGT	GTAAGATATT	CTTCAAAGCA	CTACCTACAT	GTTGAAGAAT	1260
	TGTTCCTCAC	CCAGATTCTC	AAAAGTCCCC	CAGGACATTC	ACGTAGTGAA	AACCTGTGTT	1320
25	TAATTATCTG	AGCCTATAAC	TTAATACAGT	TTTAAAATTT	TTTTTTAAAT	ATACAGTGAA	1380
	CTTTCTAGGA	ATGCAATTAT	AGTTGTGTGT	AAAATTAGGG	AAAATTAACT	TTGCTACCAA	1440
	GAGTTGTTCA	ACATTTTGTT	AAATCACTTC	ATTGATGGCA	ACATGCTGGA	GGTAGTTGAG	1500
30	TCACCAACTC	AGCACCTGGA	TCAGCCTGTG	TTGGTAGCAG	TTTCATCCCC	GTGGTTCTGT	1560
	GAATAGGTGG	AAGCATCTGC	TTACTCCATC	AGGACTTCTA	GGGTAGTCGG	GCCTTGGCAC	1620
35	тсасасатта	AAATACTGTT	TATGTTATTT	TATTGCAAGT	TACTTTTCTT	TCATTTCCCC	1680
	TTTACGTTAC	AGAAAGGGAA	GCATTTTGCT	TTCTGTTTAA	AGTTGTGTAT	GTAGGTAGGT	1740
	ТАТАТСАТСТ	' AWGACTTTCT	CTCCCTCCTT	CCCTTTCTTT	TTGTTTGAGA	TGGAGTCTTG	1800
40	CTCTGTCACC	CAGGCTGGAG	TGCAGTGGTG	CGATCTTGGC	TCACTGCAAC	CTCTGCCTCC	1860:
	CGGGTTCAAG	GGATTCTGGT	GTCTCAGCTG	GGATTACAGG	CGCAÇACCAT	CACACCACGC	1920

	TAATTTTTCT ATTTTTAGTA GAGATGGGGT TTCGCCATGC TGGCCAGGCC AGGCTGGTCT	1980
	CAAACTCCTG AGCTCAAGTG ATCAGTCCGC CTCGGCCTCC CAAAGTTCTG GGATTTCAGG	2040
5	CGTGAGCCTC ATCTATGAAT CTCAATTTAG GACAGTAAAA GTGTCATTAC AAAAATATTT	2100
	ATTGTAAAAA AGGGTTGGAG GTTGAGAATC TCAATTCTAG TCAGTCTCTC AGTGTTTGGT	2160
	TTCTTCCTAC CATTTTCCC CCTAGGACCA GCCAGAAAGC AGCTTTTTT TTGTCCCCCC	2220
10	CAACAAGGAG CCCACTGTTT CCTCTCCCAG CCCAAACTCA GGCCTACGAA CAACAACAGC	2280
	ACTACACAC CACACACAC CACACACACA CACCACACA CACCCCTCCA CTTCAAGGTA	2340
15	TAGCCAAGAG CTTCTGGAGC CGTCAAAAAG GTCTGTACCT GCTGTCTTTA GAGCTTCCAG	2400
	TTTGCCCTTG GTCAAGAAAT ACTGTTTGCT AGGCTCTGCT GGAGTACATC AGGTAATACT	2460
	GGCTTCTAAA CCACCCTGAG GTTCTTTTCT CTTGTCCTTT TACTCCCTTC GTACTTCAAT	2520
20	TTCTCTCCTT GATGTCCCCC TCCCTGTTTT GTTTTTTGCC TCCAATCCGT TCTGCGCGTT	2580
	CCCTGCAGAG CAGGCGAGTA GCAATGCTGC TGGACCATGG AGCTGCTCTA GTCTCCCAGA	2640
25	AATCTCTTCT ACACCCAACC CTTCTTGCGC TTAGGTGGTC CTCAGTCCCC CTCCCCCACC	2700
	TCCTTCTGAC CCAGGCTTCT TTCTCGCCCT CCGGTCGCAG TTCTCCTGGG CATCTGCCTC	2760
	TGCCTCTCTC CTCTCACCCG GATCTAGGGC TGCCTTCTCT TTGTGCAGCC GTCTTTCTCC	2820
30	ACCTTCATCC CAGACTCCCT GTCTCAGCGC CAGCTCCTCT GCCTTTGGCT CGGGTTCCCT	2880
	CTCCCCCACC CCAGCTTCCA GTTGTTTGGC CCGCAGGTCC CTCGGCAGTG ACCGGCGCCC	2940
35	CCCGACGAGT GCGTGTGCAC CAGGGCACCT CCCTCTCCCC CACCTCTCAG CCCCGCGCGT	3000
	CTCCACCGCC CGCCCCACCG CGCTGTGGGC GGTCCAGGGC GGGGCTGGGA TCCGGGGCGG	3060
	CTCCCGGGC TCGGGTTGTG GGAGGCGCCC TCTCCCCGGT CTTCCCCTCT CTTCCCCCCG	. 3120
40	CCCTGCCTTC CCTTGCACCC TCCTTCTTCC CTCCGCCCGG GAGCTCTCCC TGGTCCCCGG	3180
	CGCCGCCTCC TTCCCTCCCG GCTCCCCGCT CCCCGCTCCC GTGGCTGCCG CCGCCCCGGG	3240
	·	

୰୰୰୵ଌ୴୷ୡ୵ '-

	GAAGAAGAGA	CAGGGGTGGG	GTTTGGGGGA	AGCGAGAGAG	GAGGGGAGAG	ACCCTGGCCA	3300
5	GGCTGGAGCC	TGGATTCGAG	GGGAGGAGGG	ACGGGAGGAG	GAGAAAGGTG	GAGGAGAAGG	3360
•	GAGGGGGGAG	CGGGGAGGAG	CGGCCGGGCC	TGGGGCCTTG	AGGCCCGGGG	AGAGCCGGGG	3420
	AGCCGGGCCC	GCGCGCCGAG	GTAAGAGCCA	GGGCCCCGGG	TTAGCAGGGC	TCGGAGAGGG	3480
10	GGCGCGCGC	GTGGTGGGG	AGGGGGCAGT	GGGCGCAGGG	CCCAGCTGGG	GGAAGCGGGG	3540
	CTGGGGGAGA	GGAGGAACCG	CGGGGATGGA	ATCGGGGAGC	GCTGAGGCGG	CCGATGCCGG	3600
15	GAGCGTGGGT	AAGCCAGGCT	TCTGCGAGCC	GCGGGGGCCG	GGGGAGAGGA	GGTGGTGAGA	3660
.5	GGTGGAGTCC	GGGAGGGTTG	GGGGCCGAGG	GAGGCAGGAG	GAGGGTGGGG	ACAGGCTTTC	3720
	TCTCCTCCTC	TCCCCCACC	ccgcgcggg	CTCCGCCCCC	GCCTCCTCCG	CGGGGCGCTC	3780
20	TCTTGGTCCC	CAGGCTGAGC	CCGGTCGGAG	CCTGCGAGGC	AACCGGCAAG	AGGTCGAGTA	3840
	GTCTCCGGGT	GCGGGCCGCG	CCGGCGGGGC	TCGGTCCAGT	CCTCATGGCC	GCCTCTCACT	3900
25	TAGATGTTGC	TGCTGCTGCT	ACTGGCGCCA	CTCTTCCTCC	GCCCCCGGG	CGCGGGCGGG	3960
	GCGCAGACCC	CCAACGCCAC	CTCAGAAGGT	GCATCCTTCT	TCGACGACCT	CCGGCCCTCC	4020
	TTCGCTCCAC	TTCCCTTTCC	CTGCATCTCC	TCATTTCTGG	TCCTCATCAC	TATCCCATCA	4080
30	GTCCCACATA	TCATCCCGGT	CTGGCAACCC	CTTCTGCTCG	GCCCGACTTT	ACTACTGCTG	4140
	ACCTCCTTCT	GTCACCCCAC	GTTACTATCC	AGCACCTCTT	TTCTCTGCCC	ACATTGCTAC	4200
35	ACTATACCAC	CTTCCTGTGC	ATTTTCTCCG	CCTCAATCCC	CTTTCCCAGC	CCCACATTAC	4260
33	TACCTCAATT	ACTCCCTTTT	CTTGGTCCCA	CTTTGCTGTC	CAGATGATCT	TATTAGCCTC	4320
	CCTTTATCCT	ССТАТССТАА	TTCAACTGGA	АТАТССТСАТ	TTAGCCTTTT	TTTTTAAAGA	4380
40	AAAGCTCCAC	CCACATATCA	TACCCTTCAT	GATTTCTTAA	TTACTTTTCT	TTCTTACCTC	4440 :
	CACCCAGCAC	CCTTCCCTCC	CCACTTGTGG	GTTCTCTCAT	CAGCTTTAAC	CCTGGCCCTT	4500

	TACTCTCTGT	CCTTTAGCCA	GGGGATCTGT	ACCTGTCCCC	ACTCCCACCC	TCTAGTGCCC	45.60
	CATCCCTCTT	CCTCTGTCCC	CAGCCTGCCC	ACAGACCACG	CCCTACTCTC	CCCTTCCTCC	4620
5	CACTGGGGAG	CCTGCCTTTT	CCTCTTTCCC	ACCATTCCTC	TCTGTATGCC	TCCCCGACTC	4680
	ACCCCTTAGG	TTGCCAGATC	ATACACCCGC	CCTGGGAAGG	GGGCATCAGG	TACCGGGGCC	4740
	TGACTCGGGA	CCAGGTGAAG	GCTATCAACT	TCCTGCCAGT	GGACTATGAG	ATTGAGTATG	4800
10	TGTGCCGGGG	GGAGCGCGAG	GTGGTGGGC	CCAAGGTCCG	CAAGTGCCTG	GCCAACGGCT	4860
	CCTGGACAGA	TATGGACACA	CCCAGCCGCT	GTGGTGAGTA	GCCTCGGAAG	CCCCTCCCCT	4920
15	CTTCAAGACT	ATTCCTTTTC	CTGCCGCAAA	CTTAGCATTA	CTGCTTGCAA	GTCAGCACTT	4980
	TAAATCCAGT	АТАССААААТ	TCACAAATAC	ATTTATTGAA	TGACTACTAC	ATAAGAGCAA	5040
20	TTTTGCTCTG	TGCGGTTGGA	GGTAGTAGAG	CTAGCAGCCT	GCACAGTTCA	. TTTCATCCTC	5100
20	CCTTCATTAG	GCCACTGATC	ATTGGCCTAT	AACATTGATA	ATTCATCTTG	TCAGTTATTC	5160
	TCTTTGAGGA	TCATTAGTGG	CAGATGATGA	САААААААТТ	CTAAAATGAT	TTCATCACAT	5220
25	TTTTGAATAC	CTCTGTCACC	AACCCAGAGA	CCATATGCCC	AAGAAACAAA	AGCCAGTTTA	5280
	ATATTAATAG	AAGCCAACTA	TAATAAGAAA	AGCAAATCTG	ATTGTGCATC	CAAAGTTATA	5340
30	TACATCTACA	TATTTCAAAG	CCAGAGAACC	GCCCACTGTA	GCTGACTTTG	AAGAGATCCC	5400
30	ATTTTGTGTG	CTTATAGCCC	CATCTTGGGT	TCCTAAAATG	GTAATTTTT	TTTTCTTTG	5460
	GGAATGTGTG	GATGCTTGCA	CAGGTAAGGG	AGGATTGGAA	GATAGGTAGG	CAAATCCTTT	5520
35	TCACATGTGA	. TTTTCTTTAG	G AGCAGGATGC	TTGTGGACCC	: AAACCTGCAC	CTGAGTCCC€	5580
	TGCTCTTTAA	AGGGAAAGAG	G CCTTCTTCAP	CTCGCCTCTC	C TTCTTATTT	CCTATCTCTC	5640
40	CACAGTCCGA	A ATCTGCTCC	A AGTCTTATT	GACCCTGGAA	AATGGGAAGG	TTTTCCTGAC	5700
40	GGGTGGGGA	CTCCCAGCT	TGGACGGAG	CCGGGTGGA	r ttccggtgt(ACCCCGACTT	5760
	CCATCTGGT	GGCAGCTCC	C GGAGCATCT	TAGTCAGGG	CAGTGGAGCA	A CCCCCAAGCC	5820

H1865-1 WO SEQ

	CCACTGCCAG	GGTGAGGGGA	ACAGCTGCCT	GCATGCAGCT	' GATGAGGACG	CTTGTGTGAG	5880
5	GATGGGAGTG	GGGTGGGAAT	GGATAATGGG	AAAGAATGGA	GAGCTATAAA	AATGTGGGGG	5940
2	AGGACACTGG	AAAGGGGAGA	TGAAAGTCCC	TTTTTCCTCC	ATCACCTGCC	TCAAACTTCC	6000
	TCTTGCAGTC	CCCGGTATCC	TCTGTAGGTT	GGGGGCTTCC	TTCCTTTACC	ТТТТАААААА	6060
10	ATCTTCCTGC	TCCCGATTCT	TAGACCTCAC	GTTTTCTCTT	TTCCTTTATG	AATCTCACCT	6120
	CTCTCACCTT	CTTCAGGTTT	AAATACTCCA	ATTTTCCCTT	TCTCTAAACT	TAGAAATTTC	6180
15	CATGCATCAC	CCTCTTCTAG	AATTCATCCC	TCACCATTCC	TTATATAATT	GATTTATTGT	6240
15	AAAGACTCAG	AAATAAATCA	AACATTCTAC	TAAGAAAAT	TGAGAAGGGG	AGCTCTGGGG	6300
	GTGGAAACAT	ATTAGGGTAA	AAGACTTAAA	ATTGGAGGCA	GCATTATCAG	AAGATGAAGA	6360
20	ACAACTCAGG	GATGGGGTGG	GAAGAAGACA	GGTCCTTTTC	TGKACTTCCT	AGACAACCTC	6420
	CATTATTCCC	TAAGGGAATC	AGTGTTGTGT	CTGTCTACYT	TTTTTTTTT	TTTTTTGCCA	6480
25	CGTAATTTTA	CAAACTCTCC	CTTTTCTAGG	CACCCGAACT	CTCTGCCATC	TTCTCTCCTG	6540
2	GGATGCAGTC	ATCCCATTTG	TATGCCTCAT	ACTTCCTCTA	CCCTGGTAGA	TTCTTTCAAG	6600
	ATCCTTGGGC	TTTACTTTCC	TCACATAACT	CAGTTATTCT	GCTTCTAGTT	TACCATTTTA	6660
30	TTCTGGAAAT	TGAGAGTCCC	ATCCAGGGGT	GGACTTATGA	CACTACTGAA	ACTTAGACTT	6720
	CAAGGTTCCT	CACCTACAGG	GCCCTCTTCC	TGTGCTCTAA	TAATATAGAG	GGCTCGATGG	6780
35	ATATGTGTTC	ATATGGTAAC	AGGCTTTTGT	AAAAATTGCA	GAAATAAGAT	TTTAACAGCA	6840
33	ATTGCTTAAA	GCCAATTGTA	TGTGTAATTT	TTTTTCTTAA	AGACTCCCAA	ТТТТСТААТА	6900
	TTCAGGCACC	ACAGAACCAA	GATCTGCCCC	AAACTTAGCT	ATTGGCATTC	CCGTCTCAAA	6960
40	TTCTGTTGTC	CTATGAAAAA	TCGAAGAAGA	AAATAAGTCC	TGACCCCCTT	ACCCCCAGAC	7020 v
	CCACCTTGTT	CTTATCCCCA	GGCACCCTCC	CCTCAGAAAC	GCAGGCTTCT	GCTCTCCCCG	7080

	GTCTTCAGCA	TGGACAGGTG	TGGGAGGGG	CTGGGGATCA	GGCCAGGGAA	GCTGGGCGCC	7140
	AGTGGTAACT	CTTCTCTGAT	CCCCGTCTTT	CCTGCTGCCA	GTGAATCGAA	CGCCACACTC	7200
5	AGGTGAGATG	AGAAACCCTT	ACCGCGCGCA	CTGCAATGCC	CTCCCCTTCA	CTCTGCACCC	7260
	TCCACCCCC	TGAAATTCTG	CCCTTAGGCT	ACGGGGCGTC	GTCCTTTCGC	ACCTTCCCCA	7320
	ACCCACCCCA	GTTTGCGGCC	ACCCCCTTCC	CTCCCTACCT	GTTTCCTGCC	TCCAGTCCCG	7380
10	GTTTTCCACG	AGGCTGCGGT	CTCTCCTTGT	CCCTGCTTGG	CTACACTTCC	CTGGGCTCCA	7440
	CCTCCTCCCA	GACTGAGCCT	CGCCGGTGTC	AGGCAGAGCC	CAGCAGARGG	CGGCAGGGTG	7500
15	CTGGGAGACC	CTGAGCTCCC	ACCACGTTTT	CCCCTGTGGG	GTTCCTTGCG	ACCTTCGCTG	7560
	GAACCTTTTC	CAGCCTGCTG	CCTCCTAGGA	TTTCACCTAA	TGGACTTTCT	CAGCCTGTCC	7620
••	CACCCATCCC	AACCCTGGCC	AGGCCTCTCG	CGCTCTTCCC	CACATCTTTT	CCTTCCGTGT	7680
20	ACCCCTTCCC	TCGTCTTTTC	TCAATTCCAT	GTCCTGTCTC	CCTTTCTTAG	GCTTCTGTCT	7740
	ACCCAGCCCC	AGGCTCCCTT	CCACGACCCC	ACCACTCCCT	CAAACCAGCC	TCCCTTCCGT	7800
25	ACCCAACTCG	TTCCCTCCAA	AACCGTTTCC	TCTCCCCCAC	ATCCTCAGTG	CTTCACTGTA	7860
	TCGACTCATA	CTCCCACTTC	AGACCTCAGG	CGCCAGCCCC	GTTTCTCTCC	CGTCCCACTC	7920
20	GCATCCTTCC	CTTCCTACCC	TGGTTCCTCC	GTGCTTCAGC	CTCCCGCGGC	TCCCTCCGCC	7980
30	CACCCCGCCC	TCCTGGCACG	CCCCGTCCCC	ATTTCTCCTC	CCCTCGGGTC	CCCTTAAGTG	8040
	AGATCCCTCC	CTTCCTCTT	CGTTCCTTTC	CTCCTCGAGG	TTGCATCCCC	: CCTCCCCTCC	8100
35	CCGCCCCTCC	GACTGTCGCT	CCCACCTCGG	CGCTCGCTTC	CCTCCCCGCC	CCCTTCCTGC	8160
	CTCCCCAGCT	cccccccc	CCCCACCC	CCGCTGCCGC	GCGCCGCCC	G TGACGTCAGA	8220
4.5	GCCCCTCCC	AGCCCACAT	CTCCCTCCTC	CTCCTCCTCC	TCCCCTCCG1	r CGGTCAGTCA	8280
40	GTCCGCGAGG	G AGAGTCCGCC	GTGGCGGCG	A CGGTGGCGA	G AGCCGCGGG	GCCGTAGGAA	8340
	GCCAACCTT	C CCTGCTTCT	CGGGGCCCT	GCCCCCTCC	r ccccacaaa	A TCAGGGATGG	8400

	AGGCGCCTCC	CCGGCACCCT	CTTAGCAGCC	CTCCCCGGGA	AAAGTGTCCC	CCCTGAGCTC	8460
5	CTAACGCTCC	CCAACAGCTA	CCCCTGCCCC	CCACGCCATG	GGGCCCGGG	CCCCTTTTGC	8520
,	CCGGGTGGGG	TGGCCACTGC	CGCTTCTGGT	TGTGATGGCG	GCAGGGGTGG	CTCCGGTGTG	8580
	GGCCTCCCAC	TCCCCCATC	TCCCGCGGCC	TCACTCGCGG	GTCCCCCGC	ACCCCTCCTC	8640
10	AGAACGGCGC	GCAGTGTACA	TCGGGGCACT	GTTTCCCATG	AGCGGGGGCT	GGCCAGGGG	* 8700
	CCAGGCCTGC	CAGCCCGCGG	TGGAGATGGC	GCTGGAGGAC	GTGAATAGCC	GCAGGGACAT	8760
15	CCTGCCGGAC	TATGAGCTCA	AGCTCATCCA	CCACGACAGC	AAGGTAGCCC	TGGACATGGG	8820
13	GGTGGGTGGG	AGGTGGGGC	TTGCGGGSCA	GGGGGCCAAG	CAAGCCTGCA	CGCGCCCCA	8880
	TCTGTCTGAG	TCGTCTCTGG	GATTGCGAGG	CAGACCCCTC	CCTTGTGTGA	CTGGCAGGAG	8940
20	ATGGGCTGGG	GGTGCAGGAG	CTTGGGAAGA	GTCGCAGGGG	CTGGAGGTCC	AAGATGAGGG	9000
	TCTAGGGGCT	CAAGATGGTT	AAGCATGCTG	CAAGGCAGAC	CCTTCTGCCC	CGCTGCGGGA	9060
25	GTCTCGCAGA	AGTGTCGGGG	TTTGGAGAAA	CTGGTGGTGG	ATTTAAGGTA	TTAGGAGACA	9120
	CTGATCCTCT	GAGGGAGTAA	ACTAACCCTG	GAATGGGTTG	GGGGTGGAGG	GAATGTCAGA	9180
	GGTGGGGAGC	TGGATTGGGG	GGTTACATTT	ACCATGGTAA	CAAGGTAAAA	TCTTGGCGTA	9240
30	GGTTGGAGCT	GGAAGGAATA	GGGACAGAAT	GAGGAAAATT	TTGAGAGACT	TGAGAGCTCT	9300
	AGTTTATTTA	TCTTAACAAA	ACAGCAAGGT	AGTGGTGAGC	CCTACCTGAC	TCCTTCTCAT	9360
35	CCTTCTATTC	CCAACCCTGT	TGAGCATTCC	CAGACTGTGG	GATAGATGGC	ATATGGTGAT	9420
33	TGGGGAAGGC	TAATGATCAA	GAGGTGGGCA	GAGGCACTGG	GAAAATGAAT	TGGATTGGGG	9480
	ATCCACATGG	GAACCCCCAC	AATAGCATGG	GGATGAAGAA	GAGTCAACAT	ACAAGGAGAA	9540
40	GAGAACAGAA	AAGAATGGCA	GTGGGGGAGA	GGGGCAAGGA	GGTAGCGTGG	GGATAATGAG	9600 ₉
	AGATCTTGGG	GCACCTTATG	GAACTTGGGT	CCTGACCTTC	CCTTCCCTTA	ÍAGCATTGTG	9660

	GCCTCTAGGA	TGTGAGAAGG	GAAATGGGAT	GTAGGGATTA	GGGAGGTGAG	TTGAGGGAGA	97 2 0
	GAGAGAAGGT	AAGCAAATTT	GGGTCCAGGG	GTATTAGGGG	ATAGCTTATA	ATGAGGTTTT	9780
5	TTTTCCCACC	CCTCTCCCCT	ACATGAATAA	TTGGGGGTGC	AGGGAAGGAT	GTGACACAGG	9840
	GAAGGAGATT	TAAGATCTCA	AATTTATCTT	CACTGACATG	TGGCCCCAGA	GACTTAAGGA	9900
	ATTGGGTTAG	GGTGAAATAG	AGTACACAAG	GTGAGAATTT	GGTGATCTTA	CCAAATATCA	9960
10	ACCTTGGGGT	GATCCAAGGA	TTTATATTCA	TTTTTAGAAC	ATCACTATAC	ACCTAGAAAT	10020
	AGGTGTGTGT	CTGGGATAGG	TGTGTGAGGG	GACAGAAGTG	AGGTTGAAGG	TAGGGTGCTT	10080
15	GAAGAGAAGA	GAGCACAAGG	ATTATCAGGA	GCTTGGCAAG	AGAACTTAAA	ATCCTTTTTG	10140
	ACTGTTACTT	TCTCGTGGTT	CTCAGCCTTC	AGTGTACATA	AGAATCACCA	GAGGAGTTTG	10200
	TTAAAAATAC	AGATTCTAGC	TCCTTGGTCA	GGGATGAATC	CCAAGTATTT	ATCTGTATTT	10260
20	TTACTAATAG	ACATCCTATC	TTGGTGGATT	CCTGAGCTGT	AAGCTAACCC	CAGAATGCCT	10320
	ATGGGAAGAG	CAGCAGGGTA	CAGGAAAATA	ATTAGGTATT	AGGGTACGGG	AGGCAGGAAG	10380
25	AGAAGTAGAG	GATCAGATCT	GGTAGAGGGT	CAGACTTGGG	ACAGTCAGAG	AGATCATTGG	10440
	TTTTGGGGAG	TGGAGTGTGA	AGAAAATGAC	AGGGAGAGA	GGGTGCAGGC	TTTATGATAG	10500
	GGGATCACAG	GAGATAGGGG	AGGCCTGGCT	GTGAGCTCA	A ACTCATCCAC	CATGACAGGT	10560
30	GATTCCCTGC	AGGTGGCGGG	GAGCAGACG	GGGACCTGGC	G AGAAGGGAAG	TGGAGAACAT	10620
	CAGAGGCATO	C AAGCGGGGTG	GGATGGGAA	GCAGAAGAA	C CAGAATGTGT	CAATTGGAAT	10680
35	GAGTCGGTT	r CCTGCCTGC	A AATCCAGAT	CTTGCAAGA	G CAAAGAGAG	G GAGGAGAACT	10740
	AAGGAAATC'	T ATTGGGGAG	G GGGAGAGAA	r cacgtggtg	G AGAGAATCT	G CAGTGATGAA	10800
	TAGTGTGTG	G .AAGAGGGAA.	A CGGTTGCAA	G AAAAGGTAG	A TAAGAAATC.	A GGAAACAAAA	່ 10860 ບ
40	TGGGGGCA	T GCCTTGCCC	T GTTGATATG	T ATCTTATAT	G TTCTTGAAT	G TCCTCATTGK	
	TCCTATTAA	C CCTGTCTTT	A GAGAAGTGG	A GGGGCACTG	A GGGGCTGTG	G GAGAAGCTGG	10980

H1865-1 WO SEQ

	GAGCAGGATC	TGGAGTAATA	GATGTGGGGA	GAGTGCAGGA	AGGTGGGTCC	TGAGAATGGT	11040
5	AAAGATTTAC	AAAGTTGCCC	TAGTGGGAGG	CATAAAGAGA	AAACCTTCCA	ATGTTGTTGA	11100
J	GCACTGCCCT	TGGCCAGAGT	GAGGGTAGGG	TGGGCAACAG	AGAATTCTCA	GTGACTGCTG	11160
	GTTCTTCAGA	TTCCAACAGC	TTCCCCTGGC	TCCCCCTTCT	CCAACTTCCC	ACCGTGTCCC	11220
10	AAATGTCAGG	CCTCAGTGGG	AGGTAAGCAG	GCTCCAGAGT	GCTTTCTTTA	TTTCCTTTCT	11280
	ACTTATCCTC	CCCTCCTGGC	AACATTTCAC	CCTCCTTAGT	CCCCTGAGCC	CCCTGTCTGT	11340
15	GTCCCCTCTG	CCCTGGCTCC	CCACTGGCTG	CCATTTCGTC	TTCACATGCA	TTGGGGTTCC	11400
	AGCAGCTTCT	GAAATGTCAT	ATATCAGTGG	GAGGGGAACA	GGCAGTGGGA	GACCCAAGGC	11460
	TGGCTCTTCC	TCCCCCATTT	CCCCTCCTCC	CAAGCTTCCT	TTCTTCTCCA	GCTTTCTGCT	11520
20	TGTTTACTTT	CCCTAGCTCC	AAGCCTCTCT	TTAAGGCACC	TCTCAAATTG	KCTGGTTTCT	11580
	TGAGAGTTCC	ATTCTATTCA	TTCTCTCTGT	TCTTTCCTCA	TCCTACATTC	TTCCCTACTT	11640
25	CCACCCCCA	GTGTCTTTTT	TTCTAATGGA	CCTGTCAAAT	GTCAGCGCCC	AGCAGGAGGG	11700
	ATGGATCACT	GAGCGGGACC	CCCTACTGGT	CTTGTTCCTG	TTCTCTCTTT	ACTTATCACT	11760
	AGCTCTGAAA	AGAGAAGAGG	GAGGAAACAA	ATGGAAGGTG	GGGAGAAGGG	GTTTGCAGAG	11820
30	GTGAGGAAGG	AATTTTCATA	ATATGGCTTT	GAGCAAGCTA	TCTGGGGATG	TGGAAAGAGT	11880
	TTACCGTATT	CCTACTGACT	TCTTCCACCC	ACTGGTGTTT	GAAGCATAGA	AACATGGGGT	11940
35	AAAGGGCTTG	GTGACAGAGG	GAAGGGGGAT	GTCTGAGGGT	GAGCTGAAAG	GAGGTAAGGT	12000
	GGTATGTTCA	TTAATACCAA	AGGAGGGGTG	TGCAGGAGAG	GTGATGGGTA	AGGCTCCAGA	12060
	TGGAAGACAG	AGAAGGAAGT	TTAATGAAAG	AGGAGAAAA	AGGCACTTGA	CAGGAAGAGA	12120
40	TGCCAGAAAG	GAGAAGAAAA	CGGTAATTAA	TGATGAAAGT	GAGTAATTGA	GAAAGGAACT	12180
	AATTTGTTCG	AGAAAGATAA	GAGCAGGAAT	TGCAGACAGG	GGAGGGCCC	CAGGAGAGCT	12240

	TGCCCTCATC	TCCTCTTGTC	TTTCAGTGTG	ATCCAGGCCA	AGCCACCAAG	TACCTÁTATG	12300
	AGCTGCTCTA	CAACGACCCT	ATCAAGATCA	TCCTTATGCC	TGGCTGCAGC	TCTGTCTCCA	12360
5	CGCTGGTGGC	TGAGGCTGCT	AGGATGTGGA	ACCTCATTGT	GGTAAGCAGG	GCTATGGGGG	12420
	TCAGAAGATG	GGGTCATTCC	CTTTTGAGCT	CTACTGAAGG	GACGATGGCG	ATTGTGGGTT	12480
10	TGTATTGAAA	AGGAGTGTGG	AGGACCTGCT	ACTAAGATTC	AGAGTCCTCT	GCAGACCTGA	12540
10	GCTAGGCAGC	CTCCTAGCAA	CAGTGGCCTG	ACAGTGCTGC	AGCTGACCTC	CTTCTTCAGA	12600
	AGGAATTGAA	ATTAGATCAG	TGAAAGAGCA	TCCCGGTTGT	GAGGGGTGTG	TGGGCCTTTG	12660
15	AGAATCTCTT	TTCCTTAGGC	AGACCAGAGG	TGGGGAGGTT	TGGAGAGAGT	AAGGAAGAGA	12720
	AACCCAAAGG	CAGGAAGAGG	GTTAAAGGAA	CTCTTGGCCA	CTCTTGGTGT	CCTCAGTGAA	12780
20	CAGACCCTGT	TGCACTCACT	CTCCCTGCCC	CACAGCTTTC	CTATGGCTCC	AGCTCACCAG	12840
20	CCCTGTCAAA	CCGGCAGCGT	TTCCCCACTT	TCTTCCGAAC	GCACCCATCA	GCCACACTCC	12900
	ACAACCCTAC	CCGCGTGAAA	CTCTTTGAAA	AGTGGGGCTG	GAAGAAGATT	GCTACCATCC	12960
25	AGCAGACCAC	TGAGGTCTTC	ACTTCGGTGA	GGAGGGGTTG	GGCAAGGGGT	AAAGGGACAT	13020
	AAGCTCAAAT	TCCAGCACCA	GGAGATGTGA	CGTGAGAGTC	ACTTTTAGGG	GCAAGAACTT	13080
30	GATTCTTCAT	TGAAAGAGAA	CGCATTCCAT	GTGGATTAAG	TGCAGTTCTT	TCTGTAGCCA	13140
50	GGGGAAAGAA	TGAGTTGAGT	TTTTGGGATC	CTCTCTGTCT	TTATGATTT	ATGATTTTTT	13200
	TCCCCTGTTT	GATGCCCTGT	TCCCCAGACA	TATAGACCCA	GAATGACTCA	GTTCTGTTAA	13260
35	AGTAGGTTCA	ATCCAAAGTG	GGGGCAAGAG	ATGGGAGCGA	AGATGAGATA	GGAATCCAGG	13320
	AAGGCAGCAG	ATTCCAGAGG	CTTTCAAGGG	GGGTGGTGGG	G TGGGTGTGAA	TGGGAACAGA	13380
40	GGGGATGGAG	CCAGTGGATT	ACAGAGGAGA	A GAGGGAGAGG	AAAGAGAGAG	G AGAGAGAGGA	13440
40	ATGAGGGAGA	A GGAGAGAGA	GGGCAGAAAC	GCAGCTGCA	GGATCTGGT	GTTGGTACTA	13500
	AGAGAGAGA.	A GCCGACAGAC	AAGGAGAGG	TGAGGGGGA	A GAGGGAGAT	T TGGGGAGGTA	13560

H1865-1 WO SEQ

	GAGAGGAAAT	ACAGGCTCTA	CATCTGAAGA	AGGCAGTCTG	СТСССТСССТ	TTTATTCTAT	13620
5	TCTTTGGGTC	TTCTATCCAC	TGTGTTCAGT	GGCCCTTTAA	TCCTCCCCA	CTTTCACTCT	13680
J	GATTCAGACC	ATTCTTCTCT	GATCCTTTGT	CTGTCTGCCC	ATTTGCCTCT	TGAGGTTGAC	13740
	ATCATGCTGT	CTGTCCCAGT	CCTTGCCTTG	TCTTTTCCTG	GTTCCTTTAT	GTTTCTTTAC	13800
10	CCCATCTTTG	CCTTCAGTGG	TAGGAGTGGG	TGAATGGAGT	GGCTTCCCCC	ACACAGAGCC	13860
	TCAGCAGGGG	CTCACCATTC	ACCTTCCCAC	TTGGAATCCA	CATCCTAAGA	CCAGATGCCT	13920
15	TCCCGAACTC	CTCACTTCAG	GGACAGAAGC	TGTTGAAGGA	AGGTTCAGAA	TGGCTGCTTC	13980
	TTTGCTCTAT	CTGAGTATTG	CTCTGAAATC	CCCAGTTAAC	CTCTCTGGTC	TTTATTCCCT	14040
	CATGCACCCC	GTGTTTTTCC	AACTTGTTTT	TTATTCCCAC	CCAAGACTCT	GGACGACCTG	14100
20	GAGGAACGAG	TGAAGGAGGC	TGGAATTGAG	ATTACTTTCC	GCCAGAGTTT	CTTCTCAGAT	14160
	CCAGCTGTGC	CCGTCAAAAA	CCTGAAGGTC	AGATGGCTGG	GAGTGGTGGG	CTCTGTTTAC	14220
25	GGAGGGACCA	AGCTGGGGGA	CAGTGACTGG	TTGGAGAGGA	AAGCCAGGCG	GGGGCAGGTT	14280
	TTGATTCTCT	GAGGCAATAG	CATCTCCTGG	GGAAGTTTAG	CTCCATCTTC	CAGTTGACGT	14340
	TTATTCACTA	TACGTTGAGC	GTTACCCTGC	ACTAAGCACT	TTGGGATGGG	AAATCAAAGC	14400
30	TGTGAAGACA	TCTGGCTTAG	CCCCTCAGGC	ATTCCCGGGC	ATCCCTCAGG	AGCTGTTTCT	14460
	TTCTCTGTTG	TAGCGCCAGG	ATGCCCGAAT	CATCGTGGGA	CTTTTCTATG	AGACTGAAGC	14520
35	CCGGAAAGTT	TTTTGTGAGG	TGGAGTTGGA	TCTGAAGAGG	GAGGGCACT	GGGTGGGAGT	14580
	TTCCCTTGGT	TTTCTTGTGG	GGCCTCCTCT	TGGCATCTGT	GCCTGAGTTG	ATAGCATATG	14640
	ATCTGAGGTG	ACGATTCATA	GGATGTCTCT	GTCTGTTGGC	TCTGACTGCA	TCCCTTGTCT	14700
40	GCACACACAT	GATACTTTCT	TCAGATCTCA	TTTTTCTACT	GCTTTGTGTT	TCCTGAGAAG	14760 ₀
	CCCATGAATT	CCATCTGTCC	TGACTGGCTG	GAAAAGGCCA	CTCAGAAATA	CAGGGGCTGG	14820

	GGAGAAACTT	AGAAGGAAGA	ATTGTCAGCC	TTTCCTACTA	TCCCCAAGAC	TTGTAGATTT	14880
	CTCTTTTTAG	TTCTACTGCT	CTTCCCTGAT	TCCCAAGAGG	CTAAATAGTA	TCAAGTGAGA	14940
5	TAAGACAAAA	ACAAACAAAT	GAGCAAACAA	AAACTCAGCC	ATTCTCCTCT	GTATTCAGGT	15000
	GTACAAGGAG	CGTCTCTTTG	GGAAGAAGTA	CGTCTGGTTC	CTCATTGGGT	GGTATGCTGA	15060
	CAATTGGTTC	AAGATCTACG	ACCCTTCTAT	CAACTGCACA	GTGGATGAGA	TGACTGAGGC	15120
10	GGTGGAGGGC	CACATCACAA	CTGAGATTGT	CATGCTGAAT	CCTGCCAATA	CCCGCAGCAT	15180
	TTCCAACATG	GTGAGAGTGT	GGGGACTTGC	AGTCTGGCAC	CTGGGAGGGT	GGAGAGGACT	15240
15	GAGGGGGCCT	TGCAGGGGAA	AGGGTGGCAG	GGAGAGGGTG	CGGAATTTGG	ATATAAAGGA	15300
	GAAGAGGGGG	CTGTGCCCAC	CCTGAACTTG	TCTGCATTAT	GTTTCCTGTG	GATCCTACCT	15360
	TTGCTCTGAC	TTCCTTGGGT	AGAGAGAGAA	AAAAAAAA	ACGATGGAGT	TGTATGTTCA	15420
20	GTAGGTTCCT	GATGAGTGGA	AGGGCTGTTA	CCATGGAGAC	GAGGAGCAGT	TGGTGAGAAG	15480
	TCAGGAGGAA	CCGGCATTAA	TGATAATATG	GATGCTTGTA	TACTCAAGCA	CACCTTTACA	15540
25	GGAGCACTGT	GTCTGGGCAG	AATTGCATTT	CATTTTCTTC	GTGATTTATO	TTAGTGTTTT	15600
	AGAGTTGCTT	T AATATTCACT	CATGATTGAT	ATGCAATTAC	CTTGGATCC1	GTTGCTTTTT	15660
	TTAATGATTO	TTTTTTTAGA	ATTTTATGTO	GAGAAGGGG	TTTTGAAATC	ATTTAGCCCC	15720
30	AGACAGCTGG	G TTAATGACAG	ACTTGGAGCO	G AGGAGGCGC	A TTCTCTGAT	TGAGAGGCT	15780
	GGGCAGCC	C TGCAGCTGAG	GGGCAGAAG1	GAGTGTGGG	r GTGGGCACAC	GGGAAGAGGC	15840
35	TTCTTTGTT	G CTCAGCACT	A CATTGTAAA	G AGTACAGGA	A TTTTGGGTA	A GCTCGATACG	15900
	GCCACCTAT	G TGTCTGCTT	A TTACACCAA	G TGTGTACCT	G CTTTGGAGA	G CATGTTAGGG	15960
	GTGAGTTAA	T GGTTGTAAA	G CCCCAAAAT.	A GCTTGATTT	A AAAAGTTTT	A CTAACAGTGG	. 16020
40	CATTTGTGT	G GTACTTAGA	T TCATGATTT	C AGGGATTCT	A ACAGCAAAA	C TCTGATGTGG	16080
	АСТТАТСТА	C ATTTTGTAG	A CCAGGAAAA	T GAGACTCAG	A GTGGTTTAA	T GACTTGTCTC	16140

	AGGTCATGCA	GCTACTCAGC	AGTCCAGCTG	GAATTGAATC	CTAGTTAAAT	CTGGCTCCAA	16200
5	ACTGCTCTGC	TCATCACTTC	CCATGGAAAA	CCATGAAGCC	TGACTAAAAA	GTTTGTACTT	16260
J	TTATCTGCTA	ACACTGTTTA	GCTACTGGCA	ATTGCTGAGC	AAAGGAGAAA	TAAGATTTAG	16320
	GAAGTTGACT	CTGGTGGTGT	GTTGTGATGA	AAGATCTGCT	GCCACATGGA	CTCTGATGAT	16380
10	ACACACTGTT	TTGGGACATT	CTAAATGGAC	TCTATGTTTT	AAGGTATGTT	AGTTGAAAAA	16440
	TACAATGAAA	AAATTTTGGA	AGATCACTTT	CCTGTAGAGT	ACCCAAGAGG	TGAGTCATCC	16500
15	ATAAAACCTG	GGAAAGTATT	GGAACTGGCT	ACCAAAGCCA	GAAAGACTTG	TTGGTGCCCT	16560
15	GAGCCCAGGA	CTTGCCAATC	GTTGCTTCTG	TCTTATAGCA	GGGAGCTAGA	GGAGGCTGAC	16620
	AGAAAACAGG	GATTTGGCTG	GATCTAGTGG	CTCACACCTG	TAGTCCCCAG	CACCTTGGGA	16680
20	GGCCAAGGCA	GAGGATCACT	GGAGCCCAGG	AGTTCAAGAC	CAGCCTGGGC	AATATAGTGA	16740
	GACCCCCAGC	TCTAAACAAA	AAGAGAGAGA	GAGAGAACAG	AGAGATGGTT	AGGGACATAG	16800
25	AGGGACACCT	GAGCATTGGG	GTGGGAAGAC	TTGGAAGGTC	CCTTTCTGAC	TTTGTGTCTA	16860
25	GA						16862

30

(2) INFORMATION FOR SEQ ID NO: 61:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 16707 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

40

35

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (ix) FEATURE:
 - (A) NAME/KEY: intron
 - (B) LOCATION:1..2742
- (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 2743..2985
- (ix) FEATURE:
 - (A) NAME/KEY: intron
 - (B) LOCATION: 2986..3613
- (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 3614..3677
- (ix) FEATURE:

0

ŋ

5

- (A) NAME/KEY: intron
- (B) LOCATION: 3678..5226
- (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 5227..5304
- (ix) FEATURE:
 - (A) NAME/KEY: intron
 - (B) LOCATION:5305..6848
- (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 6849..6999
- (ix) FEATURE:
 - (A) NAME/KEY: intron
 - (B) LOCATION: 7000..7494
- (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 7495..7627

(B) LOCATION: 11370..11591

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION:11592..11735

(ix) FEATURE:

(A) NAME/KEY: intron

(B) LOCATION: 11736..12512

10

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION:12513..13999

15

25

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:

AGCTAATTTT GGAATTTTTT TTTTTGAGAC AGAGTTTCAT TCTTATTGCC CAGGCTTGAG TGCAATGGCG CGATCTTGGC TCACAGCAAC CTCCGCCTCC CAGGTTCAAG CCATTCTCCT GCCTCAGCCT CCGGAGTAGC TGGGATTACA GGCATGCGCC ACCACACCCG GCTAATTTTG 180 TATTTTTAGT AGAGACAGGG TTTCTCCATG TTGCTCAGGC TGGTCTCGAA CTCCGGACCT 240 CAGGTGATCC ACCCGCCTCA GCCTCCCAAA GTGCTGGGAT TACAGGCGTG AGCCACCGTG 300 CCCAGCTAAT TTTTGTATTT TTCATAGAGA CAGGGTTTCA CCATGTTGGC CAGGCTGGTC 360 TTGAACTCCT GACCTCATGA TCTGCCCGCC TTGACCTCCC AAAGTCCTGA GATTACAGAT 420 GTGAGCCTCC GTGCCCAGGC CAAGTCTGGC TAATTTTTAA AAAAATTTTG TAGAGTTGGG TCCTCTCTGT TTTGCCCAGT CTTGTCTCAA ACTCCTGGGC TCAAGGAATC CTCCTGCGTT 540 GGCCTCTGAA AATGAAAATG TTGGGATTAC AGGCGTGAGC CCCCTGTGCC TGGCTGCCTT 600 TTTTTTTT TTTTTTAAA GGCAGAGTCT CACTCCATCG CCCAGGCTGA AGTGCAGTGG 660 CGTGATCTCT GCTCACTGCA ACCTCTGCCT CTTGAGTTCA AGCGATTCTT CTACCTCAGC 720, TTCCCAAGTA GCTGGGATTA CGGGAGCCCA CCAACACACC CAGCTAATTT TTGTATTTTT 780

60

H1865-1 WO SEO

~~~12008 1 1 N

|    |                          |            | •          | •           | •           | •          |        |
|----|--------------------------|------------|------------|-------------|-------------|------------|--------|
|    | AGTAGAGACG               | GGTTTCACCA | GGTTGGCCAG | GCTGTCTGGA  | ATTCCTGACC  | TCAGGTGATC | 840    |
|    | CACCCTCCTT               | GGCCTCCCAA | AGAGCTGGGA | TTACAAGTGT  | GAGCCACTGT  | GCCCAGCCTG | 900    |
| 5  | ACTTGTTTTT               | TATAATGCCT | TTTTTTTTT  | TTTTTGAGAC  | GGAGTCTTGC  | TCTGTCGCCC | 960    |
|    | AGGCTGGAGT               | GTAGTGGCGT | CATCTCAGCT | CACTGTAACC  | TCCACCTCCT  | GGGTTGAAGT | 1020   |
|    | GATTTTCTCA               | CCTCAGCCCT | CAGCCTCCTG | AGTAGTTGGG  | ACTGCAAGTG  | CACACCACCA | 1080   |
| 10 | TGCCCAGCTA               | ATTTTTTGTA | TTTTAGTAGA | GATGGGGTTT  | CACCATGTTG  | CCCAGCTGGT | 1140   |
|    | CTTTAACTCC               | TGAGCTCAGG | CAGTCTGCTT | ACCTTGGCCT  | CCCAAAGTGC  | TAGGATTAAA | 1200   |
| 15 | GGTGTGAGCC               | ACTGTGCCTG | GCCTTTTTT  | TTTTTTTT    | TTTTTTGAGC  | AGTTTTAGTT | 1260   |
|    | TCCCAGCAGA               | ATTGAGATGA | AGGTACAGAA | ACTTCCCATA  | TGCTTCCCAC  | ATGCATAGCC | 1320   |
|    | TTCTACATTA               | TCGACATCCT | CCGCCAGAGT | GGTACATTTG  | TTACAACTGA  | TGAACCTACA | 1380   |
| 20 | TTGATACATC               | ATAATCACCC | AAAGTCCATA | GTTTACATTA  | GAGTTCACCC  | TTGGTGTTAT | 1440   |
|    | ATATTCTATG               | GGTTTGGACA | AATGTATAAT | GAGACGTATC  | ТАСТАТТААА  | TACTTTACAG | 1500   |
| 25 | AGTATTTCA                | CTGGCCTAAT | CCAATGGACA | TTTATTGTTA  | CTTCATTATG  | GTTGGGCACA | 1560   |
|    | GTGCTAGATG               | CTGATGATTA | AGAGAGGCA  | TGGGATTTGG  | TCTTGTCCTC  | AAGGGTAGAA | 1620   |
|    | CCTAGGCCCA               | TTGCATCTTC | AAAGCCCAGG | СТССТТСААА  | GCCCAGTGTA  | GTAGCAACTG | 1680   |
| 30 | CTGTACCTTG               | CCTGTGCCCT | TTGCGTATCT | CACTCCTCTA  | TCTCTCTAGA  | AAGTTGGAGA | 1740   |
|    | gaa <sup>,</sup> aagtgag | CAAGGCATGA | GGAACAAAGT | TATTTATTTA  | TTCTTCATTC  | ATCTATTTAT | 1800   |
| 35 | TCTTTCATTA               | CCGTTTGTGT | TAAAACATTO | CAAACCCAAA  | CAATTATTTG  | TATGGTCCC  | 1860   |
|    | TGTGTATTAC               | TTGTGGTTTC | CCAAGAAGTA | GTTGCTAAGC  | TTTTCCTTG1  | ATGGTTTCTG | 1920   |
|    | TGAGGTAAGG               | AAGGAATGAT | GTGATTTTCI | CCAGTATGTA  | GAATGCAGTT  | CCAAGAGGTT | . 1980 |
| 40 | AAGTAATTTA               | CTTACAGTTA | TTTAGCCAA# | CAAGGTTACT  | GCAAGGTATA  | TGAAGTCAGG | 2040   |
|    | TCTCTTGACC               | CAGTTCATGA | GAGAGTTAA  | A GGAACTATC | A TTCTTTTAC | CTTTCATGGA | 2100   |
|    |                          |            |            |             |             |            |        |

|    | AAAAGAAGGT | TGAGTGTTGG | GAGGGGTGTG | GGTAGGATTG | ATAATGGACT | TCAAAAATGT | 2160 |
|----|------------|------------|------------|------------|------------|------------|------|
| 5  | GAAGGGTATT | TCTGTAGTTT | TCATTCTTCT | GAAAGCCTTC | TAAGAGGCAG | TGAACCAAAA | 2220 |
| 3  | GCACACAAGA | ATGGCAAGAA | GTTAGCATGC | TGAAGAAATA | TCCTCCTGGC | TGGCAAGCAG | 2280 |
|    | AGTGAGAAGA | CTGCTATCAC | CTTTTCTAGA | ATCTTTTGGA | ATTGTAGGAG | CTGTTAGATC | 2340 |
| 10 | CTGGGTTAAC | TCTATGAAGA | AAGTCAGAAG | GATCAGAGAA | CATCAGTGTC | ACAGCTCTTC | 2400 |
|    | ATTGGAATAT | CCATGTCTCC | TCCTTTACTC | TGCTCTACCT | TCCATCCTTT | GCCACTAATT | 2460 |
| 15 | ATCCAGAGTG | TTTGTCAAAA | TTCTCTGTTT | GCAGTTCTGA | GCTAGCAACT | GTACACACTA | 2520 |
| ., | ACACCATCAG | ACACAGCTAA | TACCTACTCT | AGTCTAGTAG | CTTCCGATCT | AAGGCAGACA | 2580 |
|    | CATGGGTATA | GTTAAAGATT | TTGAATGTAC | ATGTGTCCAA | TCTGACAACA | GTAACACAAA | 2640 |
| 20 | CCATCCATTC | AAGTAGAAGT | GATTGAGTCA | GAATTGGATT | GCACCCCTTC | CCCCACACCC | 2700 |
|    | ACACACATTT | CAGTTCTTTC | CTCATGATTT | TTTCCTCCCA | AGACATCCCA | GGAATTTGTG | 2760 |
| 25 | GAGAAACTAA | CCAAGCGACT | GAAAAGACAC | CCTGAGGAGA | CAGGAGGCTT | CCAGGAGGCA | 2820 |
|    | CCGCTGGCCT | ATGATGCCAT | CTGGGCCTTG | GCACTGGCCC | TGAACAAGAC | ATCTGGAGGA | 2880 |
|    | GGCGGCCGTT | CTGGTGTGCG | CCTGGAGGAC | TTCAACTACA | ACAACCAGAC | CATTACCGAC | 2940 |
| 30 | CAAATCTACC | GGGCAATGAA | CTCTTCGTCC | TTTGAGGGTG | TCTCTGTGAG | TTAAAACTTC | 3000 |
|    | CTTCATACTC | CCCTGTCTTC | CCAATCTTGA | GAGAGACTCC | CAAGAGGCAC | CTTCTACAAA | 3060 |
| 35 | CATGCATTCT | CTGTTTTTCT | CAGTTACTTC | TTTGCAGAAT | CAGTCTCCGA | CCAGAGAAGT | 3120 |
|    | AGGGACCTTC | AAATTAGAAG | AACCCATCAA | AGACTAGAGG | AAAAAAAATG | ATGTATTCCA | 3180 |
|    | TTTTTTTAAA | CCCCTCCCCT | CATTTCTTTT | CAAACTAGAC | CAAGTATTCA | TGAGTCAGAT | 3240 |
| 40 | GAGAACTATA | GGATTTTGAA | AGACAAAACA | GTCTGAAAGG | TCATCTTCTT | ATTCCTTTTA | 3300 |
|    | AAATGAAAAG | ATTAGTTTCC | AGAGAGATTT | GCTGACTTGC | TTAGGCCACA | CAACCAGAAG | 3360 |

|    | CCTGCTGGTG | TTCTGTCTGG   | GGATTTTTTC | CCATTCAAAT | CTCATÄAGTG | AAGCTCCTTC | 3.420        |
|----|------------|--------------|------------|------------|------------|------------|--------------|
|    | TCCAAAGAAT | AATGTTTCTA   | AAATCTAGGG | TATGGGCATC | TGGGGTATGT | CCTATATGCA | 3480         |
| 5  | GGCAAATGCC | ATAAATAGCA   | TTCATTCAGA | GGCTCAATTA | CATCAAAAAC | AGAAGGATTT | 3540         |
|    | AAAGAGTCCC | TGATGTTCTC   | TTTCACTCTT | GCTTTTGTCT | CCTTTGCCTT | GCTCCACATG | 3600         |
| 10 | TTCCTTCCCT | CAGGGCCATG   | TGGTGTTTGA | TGCCAGCGGC | TCTCGGATGG | CATGGACGCT | 3660         |
| 10 | TATCGAGCAG | CTTCAGGGTT   | AGTACAGGGG | CAGGAGGGGA | CCGGACATGG | GGGCTAGGCT | 3720         |
|    | GGGGCTGGGC | TGGGATGCCC   | CCTGGGGAAG | AATGCCAGAG | ACATCACAAG | ATTGCCCTGG | 3780         |
| 15 | CACCTCCCAA | CTTCTGCCCT   | TCTCTTTTAA | CTCTGTTCAT | CAAGCTTGTA | ААТААТААТА | 3840         |
|    | ATAATAAGCT | TAACTACAAG   | AAGATTGATG | TCTTTGAGTT | GCACTGGTTT | TGCTCTTGAA | 3900         |
| 20 | AAGAGGTGTG | CAGGCTGGGT   | GTGGTGGCTC | ACCCCTGTAA | TCCCAGCACT | TTTGGGAGGC | 3960         |
|    | CAAGGCAGGC | AGATCATGAT   | CATGGTCAGG | AGTTTGAGAC | CAGCCAGACC | AACATGGTGA | 4020         |
|    | AACCTGTCTC | TACCAAAAAT   | ACAAAAAAA  | ААААААААТ  | TAGCTGGGTG | TGGTGGCAGG | 4080         |
| 25 | TGCCTGTAGT | CCCAGCTACT   | TGGGAGGCTG | AGGCAGGAGA | ATCACTTGAA | CCCAGGAGGC | 4140         |
|    | AGAGGTTGCA | GTGAGCTGAG   | ATCACGCCAC | TGCACTCCAG | CCTGGGTGAT | AGAGTAAGAC | 4200         |
| 30 | TCTGTCTCAA | AGAAAAAAGA   | AAAGAAAAGA | GACATGCAAA | TTAAAAACAG | CTACTCTCTT | 4260         |
|    | TCCCAGTGGC | TTCCATTAAT   | TTCAGGAATT | TCCCCTTGAG | TGGCTTGGGT | TGAGAGGTTG | 4320         |
|    | ATGACCTGTC | AGTTAGACTC   | AAGAAAGCTG | AATCTAGGAG | AACCGCTATT | TTTTTTTAA  | 4380         |
| 35 | GGGAATCTGC | CAAATTTCCT   | TGCTGTGTAA | AGCTTCAATG | TGTATAGCTT | GGCTTTTGTA | 4440         |
|    | GATTGTATTT | TCTTGAAACT   | TAGCACACAG | GTATTTGCAG | AACTTCTAGG | AGTTAATTTT | 4500         |
| 40 | TCTGCTCCAC | TCGGCTCTCA   | GTCTTTTACG | GCATGGCCAA | GAGAGCTATT | TCTTGGCCTC | <b>4</b> 560 |
|    | CTGTGAAAAG | TTTCTTTCTI   | CCTTTCTCCC | CACCTCCACA | TCCTTTCAGC | TCCTCTTTGT | 4620         |
|    | ATCCAGGACA | A AGAGGAAATG | GACTTCAGCO | ATGGTGAAAG | GAGTGTGAGT | TGGCTTTTGA | 4680         |
|    |            |              |            |            |            |            |              |

0004800A4 I ~

|    | AGGAAAAGTT | ATGGTAACGG | AAACAGTTCT | AGAACAGAAA | TCTTAGAAAT | GACCAAATTT | 4740 |
|----|------------|------------|------------|------------|------------|------------|------|
| 5  | TACTCAATGG | CGCTTTAAGA | GGCAGATATA | ACTTATCCAA | GGAATTAAAA | CCCAAGCCAA | 4800 |
| J  | CAGAAGAGAA | TGTTCTAAAA | TTAAAATGAA | AGCCACTGGG | AAAATAGAGC | CTGCCCATCA | 4860 |
|    | TGAGAGGAAG | AATAAGCAGA | AATATGTGTA | AAGCTTTAGA | AGCCAAAATC | AAAGTGAGAG | 4920 |
| 10 | ACATCTCGCC | GAGAGAGGTG | TGAGGAATGG | AATAGGTGGC | AGACATGTTG | TGGAGCCTCC | 4980 |
|    | TCACTGAAGA | СТТТТАААСА | TAGATATTCT | TATTTATTTG | AGTTGTCTTG | GGAACCACCT | 5040 |
| 15 | TATATTGCTT | TTAAGTCATG | TTGCTGATTC | AAGAGTCTCG | TAGGTCCTTC | CAAGCATCCT | 5100 |
|    | TAGGGCCTCA | GGTGAAAATA | AAATCAGATA | CAACCATGCA | AAGCTCTAGG | GAAGTGGGAA | 5160 |
|    | GTTGAAAATG | CCTAGGATCA | GCTCTTTGGC | TACCTGTGGT | CACTCCTTTT | ATTGTCGTCT | 5220 |
| 20 | GCCCAGGTGG | CAGCTACAAG | AAGATTGGCT | ACTATGACAG | CACCAAGGAT | GATCTTTCCT | 5280 |
|    | GGTCCAAAAC | AGATAAATGG | ATTGGTGAGT | GGATCTTGTT | TGTATTTTCC | TTCAGCCCCT | 5340 |
| 25 | CTCGACAGTC | AAGGGAAAAA | GTCATGCCTT | TGAGTGAGGA | TGGAATGGTA | GAGACTGTTA | 5400 |
|    | GGTTGGAATG | TGGCTGGCAG | CTGGGCCAGG | AGAAAGGGTT | AAGTGAGAGT | GAATACAACC | 5460 |
|    | CCTAAGGCGT | GGGTAGGGGA | GACTGGTGTA | TTTGGAGAGG | GAATAGGCGG | TGGTTAGTAC | 5520 |
| 30 | ТАТТТТТААТ | GGTGCATTGC | TGGGGTAACT | GGGGATTAGA | GGCAGGGGGT | GGGCAGAGGG | 5580 |
|    | CGGGAAATGG | AAACTCCATT | TGGGTTTCCC | AGATGTCCTG | GTGTCTTGAT | ATATTTGAAC | 5640 |
| 35 | CAGCTACTTC | AAGCCCAGAG | CTGTCTCTTT | GTCTGTCTCT | GTCAGGAAAA | CGGTTGCTTA | 5700 |
| 33 | AACTATGGAG | GAGGAGGGAA | AACCTCATGT | AATTGTCATC | TGCCAAAATG | TGCTTTTTAT | 5760 |
|    | TTTTATATGT | ATTTTTAAAA | ATTTTCCTAT | TTTTATGTAA | TTTAGAGGTA | GACGTGCAGT | 5820 |
| 40 | TGTGTTACAT | GAATATATTG | CATAGTGGTG | AAGTCCGGGC | GTTTAGTGTG | CCTGTCACCC | 5880 |
|    | GAACAGTGCA | CCTTGTACCT | AATAGGTAGT | ATTACATCCC | тсаааатата | CŤTTTTAAAG | 5940 |

|    | AGAGAAAGCA | AGCAGTTATT   | CTTTGTGTAC | TTGGTCTAAA | TGATAGGACA   | TAGGAGAGAA   | 6000 |
|----|------------|--------------|------------|------------|--------------|--------------|------|
|    | ACTGAAGGTG | GACAAAAGGA   | AGGACCTACT | GATAAAAGAA | AGCCTCCTTG   | AGAATGAAGG   | 6060 |
| 5  | GGAGGCTCAA | CCATTGAAGA   | TGGCTGCCGT | CTGCCCTGCC | CAGCAGATAT   | CCAGTCATTC   | 6120 |
|    | CCAGCACTGC | TGGAGTTTTG   | CCCTTTTTTT | TTTTTTTTA  | CAATTCGAAT   | TTAGGACAAT   | 6180 |
|    | GTTCTGGATT | GCTATAAATG   | CTGCATGGCC | ТАААТТАТТС | TTTAAAAAAA   | AAACTAAGCA   | 6240 |
| 10 | AATTGAAATT | AGTTTTTTT    | GGTGAACTCT | GACAAATTTG | AACTTCCCCC   | таатаатаас . | 6300 |
|    | TGGAAAACAT | ATTTGGGAAT   | ATTACCCTGC | CAGGATTAAA | ATTTCAGATT   | AGCTTTCCTT   | 6360 |
| 15 | CTTTTTTTGT | TTGTCTTAAG   | AATAGGTGTC | CACACTAGAT | ACTTCAAGGC   | CTTTTTAGCT   | 6420 |
|    | TTATGATTCC | ATAATTGTCA   | TTTAAAACTT | TGATTTGGGT | TATAAGAAAC   | CTTATAACAT   | 6480 |
| 20 | TTTTTAATGA | TCCCCTTCTT   | TCTCCTCCCA | TTTTCCTTTG | CTGTAAGAAA   | GACAGAAAAA   | 6540 |
| 20 | CTTAAAGAAC | AAACAAAAAC   | AAAGACTACA | ACTTTGGGGA | CATGCCTCAG   | CATTTCCCAA   | 6600 |
|    | CCTATGGATA | GACCATTCAC   | TCCATCTTCT | CATCTCATTT | CTGGTTGCTT   | CCTAACGGCC   | 6660 |
| 25 | CCAGTGGCAC | TGAGCATTCT   | GCCTGCAGTA | ACCTCTGTCC | AGTGCAGTTA   | GGGCCTCATG   | 6720 |
|    | TCCCCAGCCA | ATGACTGAAT   | GTCCATCAGC | AATCTAGTTC | TTTGCCCTTT   | TCTCCTATCC   | 6780 |
| 30 | CGTCTTCATT | CCTTTGTCCT   | CCTTCCCTTC | TCTTTTCCCT | TCCCCTCTTC   | CTCCCCTGTG   | 6840 |
| 50 | CCATGCAGGA | GGGTCCCCC    | CAGCTGACCA | GACCCTGGTC | ATCAAGACAT   | TCCGCTTCCT   | 6900 |
|    | GTCACAGAAA | CTCTTTATCT   | CCGTCTCAGT | TCTCTCCAGO | : CTGGGCATTG | TCCTAGCTGT   | 6960 |
| 35 | TGTCTGTCTG | TCCTTTAACA   | TCTACAACTC | ACATGTCCGG | TAAGTTTCTC   | TTCTGACGTT   | 7020 |
|    | TTCCTTGTCT | GCCTCTCTGA   | GATACTGATC | ATGTTCCTGG | G ACAGGATGAG | ; ААТААААССТ | 7080 |
| 40 | GTGTAACTCC | CATGGCCATG   | TATCATGGAG | TTTTTCATTC | TGACTTGTTG   | GAGAATGAAAA  | 7140 |
| 40 | CAGGGAAACO | CAGATATAACC  | CCCACTCCT  | CTCCAAAGTA | A GCTAACGGGA | GGAAAAAAGA   | 7200 |
|    | AAAGAAGAGA | A AAAAAACAAC | CTTTGGGGCC | AGGTCTCAC  | A GTCTTGGACT | г СТАСАТАААТ | 7260 |

|    | AGCCTGTATT | CTAGTGGGGG | CCTGTGCTTG | GGAAGCCCTC | TGCAACTCCA | TCTTCAGCCC        | 7320                      |
|----|------------|------------|------------|------------|------------|-------------------|---------------------------|
|    | CATGACTGCA | TTGCTCTGCC | TCTCAAGGCT | CCACTGTCTT | CTCCAATCCT | GTCTTCCTTT        | 7380                      |
| 5  | AGCCCCTGGC | CCTGAAATTA | GGGTCATGCC | ATTGCGTGGT | ATTTGGAGAG | CTCAGCCTCC        | 7440                      |
|    | CTGGAGAAGA | GGGGTAATTC | TCTCTCCCTC | TCACCCTCTC | CACCTCTGCC | CTAGTTATAT        | 7500                      |
| 10 | CCAGAACTCA | CAGCCCAACC | TGAACAACCT | GACTGCTGTG | GGCTGCTCAC | TGGCTTTAGC        | 7560                      |
|    | TGCTGTCTTC | CCCCTGGGGC | TCGATGGTTA | CCACATTGGG | AGGAACCAGT | TTCCTTTCGT        | 7620                      |
| 15 | CTGCCAGGTG | AGGAGGTGGT | GGGCAAATTC | CTTACAGGAT | GTGACTCTCC | CACCCGTCTC        | 7680                      |
|    | AGGAGCACCT | TCCATGATTT | ATGATTCTCT | GCCCTTCCTC | CTCAGCTTTC | CCTGACTCTT        | 7740                      |
|    | GTCCCTGTTC | TTTCCTTCTA | GCATCACCCC | TCTGTTCTCT | GTTTGGCTCT | GTCCCTTCTT        | 7800                      |
| 20 | TCTGTGTCTG | CAGGCCATTT | TCATTCTGTA | GTTTACTTGT | CAGTTCCAAG | GTTGCCATGG        | 7860                      |
|    | CAGSCCTYGC | AGAGAAGAGG | AGGGAGCCAT | TGAAGGCAAA | GGAAGGGGAT | CTGCTCAAAG        | 7920                      |
| 25 | GTCTCCTGAA | CAATGGTGGC | TTGTCTGTGG | TATGGGGGCT | GAGAATCAGA | ACTGTGGACT        | 7980                      |
|    | TTTTTTGGGA | GCCTTTGTTG | GGTTTGGAAG | GATAGAAGCA | GAGATGGAAA | CACAGCAGAG        | 8040                      |
|    | AGTTGGGGGG | AAGGGACCAC | TGCCACACAG | GGGAGGAGGG | GCTCTGGGAC | TGTTGGTACA        | 8100                      |
| 30 | TGGAAGGTTC | TAGTGCTGTG | GGGAGAGGCC | AGCTTCAACA | GTGATAGTTG | AGTGGTTCTC        | 8160                      |
|    | TTTTCCACTG | GTGGAAACAC | CCACTCTTTC | TCCTGATCTG | CCTGCCTGTC | CTTGCTCTCT        | 8220                      |
| 35 | CTTTTTCCTC | TGCTCTGTGC | TGTCCTGATC | ATACATCTGT | GCACATGGCA | TTTCCATGCA        | 8280                      |
|    | CATGCACATG | CAGTTCATCA | GGAATCCTCT | GTTCCCAGTG | AGGCCAGAGT | GCAGCTGGAG        | 8340                      |
|    | AAGCAGACAA | TTAGCTGTAG | TGCAATAGGA | GAGGTTCCAG | AGTAGGGATC | TGCACAAAGT        | 8400                      |
| 40 | GCTTTGGGGG | CAAAGAAGGG | AACACAGTTC | ACTGCTGGCG | TGATTGGGTG | GACCTCACTG        | <b>84</b> 60 <sub>5</sub> |
|    | AAGAGGTGGC | ATTTGAATAC | TGAAGGACAA | ATAGGATTTT | ATCAGCTAGA | <b>GAAATAGAGG</b> | 8520                      |

|    | AAGGCTACTT | CAGGGGCATA | GGGAGCATCG | TGTGGCTAGA  | AAATACATGA   | AAGAGAGTAG   | 8580               |
|----|------------|------------|------------|-------------|--------------|--------------|--------------------|
|    | ATGAAGAGAA | AGTGAGTAGT | TCAGCATGGC | TGGAGCGTGG  | GGTAGGTGTG   | GGGCTGGGAG   | 8640               |
| 5  | ATGAGCCTAG | CTGGACAGGT | GGATGGGAGC | ATGTTGTGAA  | GGGTCTGTGT   | CATATCCAGA   | 8700               |
|    | AGTGTTCAGG | СТАТААСТТА | TAGATATTGG | GGAGTGGTTG  | GAGGTTTTTG   | GCCACTAAAG   | 8760               |
|    | CCAGGAGGTT | TTAGCAAGAT | CACCCTGGTG | GTGTGGAAGT  | AGAGGGTGGA   | TGGGAGGAAT   | 8820               |
| 10 | TGTTCAAGGT | GGGGAGACTG | CTCTCCTCCT | GCCGCTCCCC  | GTCCTGCTCA   | CATTTTCGCA   | 8880               |
|    | TCCTCCCTGT | GCCACCATGA | GCTCCCTGCC | CGTGCTCCCT  | GCCCACTCTC   | CCTTAGGGTT   | 8940               |
| 15 | CTGCCCATCC | TTACTGCAGT | CCCGGCTACT | ACTCTACCCT  | GTTCTGCCTG   | TGCCCTCTCT   | 9000               |
|    | TCCTTTCTAG | GCCCGCCTCT | GGCTCCTGGG | CCTGGGCTTT  | AGTCTGGGCT   | ACGGTTCCAT   | 9060               |
| 20 | GTTCACCAAG | ATTTGGTGGG | TCCACACGGT | CTTCACAAAG  | AAGGAAGAAA   | AGAAGGAGTG   | 9120               |
| 20 | GAGGAAGGTG | AGCTGCTGCC | CAATCCTCAG | CCCCCARATC  | CTTGGCTCCT   | GGGGCACAGA   | 9180               |
|    | GCATTTTCCC | CTGACGTGCC | TGTTCTCCCC | ACATATTTAT  | CCAGACTCTG   | GAACCCTGGA   | 9240               |
| 25 | AGCTGTATGC | CACAGTGGGC | CTGCTGGTGG | GCATGGATGT  | CCTCACTCTC   | GCCATCTGGC   | 9300               |
|    | AGATCGTGGA | CCCTCTGCAC | CGGACCATTG | AGGTACCACT  | ' GGAGAGGAGG | TGCTATGGTC   | 9360               |
| 30 | AGGAGAATGA | GCAGGGCTCA | GTGGCCATCA | GGGCCCTGGG  | GCTGTGTGTG   | TCTTGAGGGA   | 9420               |
| 30 | TGAAGCTACT | TGGAGAGAGT | GCCTTCCTCG | TATTGGAAGO  | TCTTCCTTTC   | CTTCCTAGAA   | 9480               |
|    | GGAGCCCCTC | ATAGGCCTCC | AGATTCAGCT | GAAGAAAGGA  | A AGGGGTGGGA | ATCTGGGAAG   | 9540               |
| 35 | GGTGTGTAGA | ACTTCCAGGC | ATCAGGGAAA | GTGGGGAACA  | A AGCACCTCCA | AGGGTTCAGG   | 9600               |
|    | AAAACATTCT | TAGGCCTAGA | ATGAGATTTC | GCATCAGCAT  | TGAGGGTCTC   | ATAGGAAAAC   | 9660               |
| 40 | AGTTGGAAGO | CAGAGACTGA | GAAGCGTTGA | A GGAGAGGAG | G GGAGGCTGG( | C AACCATCTTT | 9 <b>720</b><br>ىر |
| 40 | CTTGTGACCT | TGTTTCTGCC | CTAGACATT  | r gccaaggag | G AACCTAAGGA | A AGATATTGAC | 9780               |
|    | GTCTCTATTC | TGCCCCAGCT | GGAGCATTG  | C AGCTCCAGG | A AGATGAATA  | C ATGGCTTGGT | 9840               |
|    |            |            |            |             |              |              |                    |

H1865-1 WO SEQ

003180081 | 5

|    |            |            |            |            |            | • •             |              |
|----|------------|------------|------------|------------|------------|-----------------|--------------|
|    | GTGTGGGATG | TGGGCAAAGG | AGGGCAGGGA | TGCACAAAGG | CAGGAGGGAA | GGCAGGGGTA      | 9900         |
| 5  | GAGGGCTTGG | AGGGAGAGGG | GTCTTTGGAA | GAGGAGGTAG | AGAGCTTGTC | AACCCAGTTT      | 9960         |
| -  | GAACACCCTA | CTCTTTGTTA | TTGCACTAAT | CTTTTCTGAG | AATAGGGGAG | AGTTGCTCTT      | 10020        |
|    | TTGCTATGAG | GAGCTTAGGG | CCCAAAGCAC | AGAAAGCACA | GATGAAGAAC | TTGTGTTCAG      | 10080        |
| 10 | CAGAGGAACA | AGTGGGGGTA | ACCCCACCTC | CAGACTTGAC | ATTATCTTTT | AGATCCCCCT      | 10140        |
|    | TGGCCTTATT | AGCATTGTTC | GATTCATGGT | CACAAATTGC | AAACCTACCC | TCTGCCTGGA      | 10200        |
| 15 | AAGCCACCTT | CCCACCTGTA | GGGTAAGGGT | GAGGCATGTG | TGGCCCAGAC | TGGCCTATTT      | 10260        |
| 13 | CTAGATATTC | AACAAGCCCT | TGCCTGACTG | ACAGCAGCTT | GCCACCATTG | CTTTCCTGTG      | 10320        |
|    | TGAATCCCAG | GAAAAAGTGA | TGTGGTCTGG | GCAAGTTGGG | TGGACATAAG | GGATAGGGGA      | 10380        |
| 20 | CACAGGGTGA | GGTTTGCTAG | GTCAGAGGGG | TTGGATTGGA | GAGGAGGCC  | CCCTTTCCAT      | 10440        |
|    | TTCAGAGTAG | GTGAAGGGCA | GAGAGGGGAT | GGGGATTGAG | TGAGGAGCAT | TGTGGTCCTT      | 10500        |
| 25 | GTTGCTCAAG | TGACTCTCTC | CTGCCATCCT | AGGCATTTTC | TATGGTTAAC | AAGGGGCTGC      | 10560        |
| 2  | TGCTGCTGCT | GGGAATCTTC | CTTGCTTATG | AGACCAAGAG | TGTGTCCACT | GAGAAGATCA      | 10620        |
|    | ATGATCACCG | GGCTGTGGGC | ATGGCTATCT | ACAATGTGGC | AGTGAGCACT | GACCCCATGG      | 10680        |
| 30 | CATTGACCCT | GTAGGCTGAC | CACAGCAGCC | CAGATATAGA | GGACTAGGAA | GAATCAATGC      | 10740        |
|    | TAGATCTGGG | ATCGGTTGCT | TAGAAGTCTT | AAAAAGTTTG | ТТААТТСТТС | AGGTCTATAA      | 10800        |
| 35 | AGCACTTTAC | AGTTTACAAA | GCTCACTACA | GACATTGTAT | САТТААТСТТ | GCAACTACCC      | 10860        |
| 33 | AGTGAAGTAG | ATATTAGTAT | CCCCACTTTA | TAGGTGAGGA | AACAGAAACA | CAGAGACGTT      | 10920        |
|    | AAATTGCTTG | TCTGTGGTTA | ATGGGCTGGA | CTCTATTGAC | ATTTCCTGCC | AGGGACCGAC      | 10980        |
| 40 | TCTGGAGGAC | CCGGAATCTG | TGCATAGAGA | TCCTGGGAGT | TCCTGCCTTG | AGGGGAGGG       | <b>11040</b> |
|    | TTAACCAAGA | GTGAAAACTG | GTTTGGGACA | GTTTGAGATT | TTTCTCAATC | ,<br>TATATTGAGG | 11100        |
|    |            |            |            |            |            |                 |              |

|    | ATGATCCTGA | ATTTGGATCC   | TTTTCAAAGG | GAAAGTTCAC | CAGGAAACTG   | TCTGCATAGA   | 111 <del>6</del> 0 |
|----|------------|--------------|------------|------------|--------------|--------------|--------------------|
|    | CTCCCTCCCA | TGGGAAGTAA   | ACTCTGGATC | TTGTCTGAGC | CTGCAGACCT   | GAGACTCCCT   | 11220              |
| 5  | CAATGTGTCT | TTCCCTCTAG   | GTCCTGTGCC | TCATCACTGC | TCCTGTCACC   | ATGATTCTGT   | 11280              |
|    | CCAGCCAGCA | GGATGCAGCC   | TTTGCCTTTG | CCTCTCTTGC | CATAGTTTTC   | TCCTCCTATA   | 11340              |
|    | TCAĈTCTTGT | TGTGCTCTTT   | GTGCCCAAGG | TAAGGATCTG | GCTTTTCTCC   | CACCCTCTTT   | 11400              |
| 10 | GTTCCCATGT | TCCCTCCATC   | CCTCCTTCCT | ATATTACTGA | GTTCCTCTGC   | CCTTCCGTTC   | 11460              |
|    | ACCCTCCTCT | CACTCCTCCC   | CTTGTTTTGG | GCCCAACTCT | TATCAGCATT   | CCTTCCACCT   | 11520              |
| 15 | CCAACCTTCC | ATCAGCCAGT   | CACTAGTACA | GTCCTTGCTG | GGCCACCCCA   | CGCCCAAACA   | 11580              |
|    | TTTGCCCCCA | GATGCGCAGG   | CTGATCACCC | GAGGGGAATG | GCAGTCGGAG   | GCGCAGGACA   | 11640              |
|    | CCATGAAGAC | AGGGTCAŢCG   | ACCAACAACA | ACGAGGAGGA | GAAGTCCCGG   | CTGTTGGAGA   | 11700              |
|    | AGGAGAACCG | TGAACTGGAA   | AAGATCATTG | CTGAGGTGCG | GGGGTGGGTG   | TCAGGGTAGG   | 11760              |
|    | GTGTTGGAGT | GGTCCAGGAG   | GCTTGCGTCT | TAGCTTGGGT | TGTCTGAAGC   | CAAGCCTGAG   | 11820              |
| 25 | ATACAGGGTC | AGATGTTCTT   | GGCTCATGGA | GGGAGGGTCC | TAGGAGACAA   | CCTGTAAGGA   | 11880              |
|    | GTGAATGGAG | CAGCATAGGG   | GAGGGGAAAG | GGCTGAGCAA | GATTCTATCT   | CAGGCAAAAT   | 11940              |
| 20 | CCAGTGTTGG | CCTGGCAGGT   | GGAAGGGCTC | TGGAGTGGGA | GCTATGTGGT   | TGACTCAGCC   | 12000              |
| 30 | TCCTTAAGGC | AAGAGGATGG   | CTGTTGGCTG | TAGGTGACAA | CTGGAGAGAG   | GCAGCTGTGA   | 12060              |
|    | GCCTCTAGTA | GTCAACACTC   | ACAGCAGCTG | GGTGTAGCAT | GCAGCCCCAG   | CATAAAGGAC   | 12120              |
| 35 | CTGGGCAGGC | : GTTCACTGTG | CCCCAGGCTG | TCATTAGGGG | CTGGTGCAAT   | GCCAAAGAGA   | 12180              |
|    | GGGATGTTCC | AACTGGGTTG   | ACACATCTCT | CTGATTTATT | GGAAGCTCTG   | TGCACTGACT   | 12240              |
| 40 | TTTCTCTCCI | TCCCCACTT    | TTCCTTTTG1 | TTTTAAATTC | : TCTCTTATTI | CCCTGATCGC   | 12300              |
| 40 | ATTTTTTCT  | A TCGGTATCCI | TATGTTCTC  | GGCTTTTCT  | r GTTCTGTTT  | GATTTCTCCT   | 12360              |
|    | TTTAATTA   | TCTGTCCACT   | TACCCTACG  | CCTCCCCT!  | A CATTTTTCTC | G TGCCCTTCCT | 12420              |

|    |            |              |            |            |            | • •        |                    |
|----|------------|--------------|------------|------------|------------|------------|--------------------|
|    | CTCTTTCCCT | ' GTGCCCTTCC | TCTCTTTCCC | TCCTCCCCAC | TCCTTCATCA | CCTCCTCTTC | 12480              |
| 5  | TCCTACTATC | CCAATTGTGC   | TTCTTCCTCC | AGAAAGAGGA | GCGTGTCTCT | GAACTGCGCC | 12540              |
|    | ATCAACTCCA | GTCTCGGCAG   | CAGCTCCGCT | CCCGGCGCCA | CCCACCGACA | CCCCCAGAAC | 12600              |
|    | CCTCTGGGGG | CCTGCCCAGG   | GGACCCCCTG | AGCCCCCGA  | CCGGCTTAGC | TGTGATGGGA | 12660              |
| 10 | GTCGAGTGCA | TTTGCTTTAT   | AAGTGAGGGT | AGGGTGAGGG | AGGACAGGCC | AGTAGGGGGA | 12720              |
|    | GGGAAAGGGA | GAGGGGAAGG   | GCAGGGGACT | CAGGAAGCAG | GGGGTCCCCA | TCCCCAGCTG | 12780              |
| 15 | GGAAGAACAT | GCTATCCAAT   | CTCATCTCTT | GTAAATACAT | GTCCCCTGT  | GAGTTCTGGG | 12840              |
|    | CTGATTTGGG | TCTCTCATAC   | CTCTGGGAAA | CAGACCTTTT | TCTCTCTTAC | TGCTTCATGT | 12900              |
|    | AATTTTGTAT | CACCTCTTCA   | CAATTTAGTT | CGTACCTGGC | TTGAAGCTGC | TCACTGCTCA | 12960              |
| 20 | CACGCTGCCT | CCTCAGCAGC   | CTCACTGCAT | CTTTCTCTTC | CCATGCAACA | СССТСТТСТА | 13020              |
|    | GTTACCACGG | CAACCCCTGC   | AGCTCCTCTG | CCTTTGTGCT | CTGTTCCTGT | CCAGCAGGG  | 13080              |
| 25 | TCTCCCAACA | AGTGCTCTTT   | CCACCCCAAA | GGGGCCTCTC | CTTTTCTCCA | CTGTCATAAT | 13140              |
| _  | CTCTTTCCAT | CTTACTTGCC   | CTTCTATACT | TTCTCACATG | TGGCTCCCCC | TGAATTTTGC | 13200              |
|    | TTCCTTTGGG | AGCTCATTCT   | TTTCGCCAAG | GCTCACATGC | TCCTTGCCTC | TGCTCTGTGC | 13260              |
| 30 | ACTCACGCTC | AGCACACATG   | CATCCTCCCC | TCTCCTGCGT | GTGCCCACTG | AACATGCTCA | 13320              |
|    | TGTGTACACA | CGCTTTTCCC   | GTATGCTTTC | TTCATGTTCA | GTCACATGTG | CTCTCGGGTG | 13380              |
| 35 | CCCTGCATTC | ACAGCTACGT   | GTGCCCCTCT | CATGGTCATG | GGTCTGCCCT | TGAGCGTGTT | 13440              |
|    | TGGGTAGGCA | TGTGCAATTT   | GTCTAGCATG | CTGAGTCATG | TCTTTCCTAT | TTGCACACGT | 13500              |
|    | CCATGTTTAT | CCATGTACTT   | TCCCTGTGTA | CCCTCCATGT | ACCTTGTGTA | CTTTCTTCCC | 13560              |
| 40 | TTAAATCATG | GTATTCTTCT   | GACAGAGCCA | TATGTACCCT | ACCCTGCACA | TTGTTATGCA | 13620 <sub>0</sub> |
|    | CTTTTCCCCA | ATTCATGTTT   | GGTGGGGCCA | TCCACACCCT | CTCCTTGTCA | CAGAATCTCC | 13680              |
|    |            |              |            |            |            |            |                    |

|    | ATTTCTGCTC | AGATTCCCCC | CATCTCCATT   | GCATTCATGT | ACTACCCTCA | GTCTACACTC | 13740 |
|----|------------|------------|--------------|------------|------------|------------|-------|
|    | ACAATCATCT | TCTCCCAAGA | CTGCTCCCTT   | TTGTTTTGTG | TTTTTTTGAG | GGGAATTAAG | 13800 |
| 5  | GAAAAATAAG | TGGGGGCAGG | TTTGGAGAGC   | TGCTTCCAGT | GGATAGTTGA | TGAGAATCCT | 13860 |
|    | GACCAAAGGA | AGGCACCCTT | GACTGTTGGG   | ATAGACAGAT | GGACCTATGG | GGTGGGAGGT | 13920 |
| 10 | GGTGTCCCTT | TCACACTGTG | GTGTCTCTTG   | GGGAAGGATC | TCCCCGAATC | TCAATAAACC | 13980 |
| 10 | AGTGAACAGT | GTGACTCGGC | ACCTTGCAGT   | CTTCCTGTGA | ACAGAATGGG | CTTCAATCCA | 14040 |
|    | AGAAGGGAGG | CTCAGAGGAC | TCCAAGTTCA   | TGAAAAGGCA | TTAAAGCGGA | GGGTGAAAAG | 14100 |
| 15 | AGGTGTTTTA | TTGATCCATT | GAGGGCTTAG   | CAGAATGAAG | CAGGACATGA | TTAAGTCTGA | 14160 |
|    | GATTAGTGAG | TGAGGACACT | ACTGGTTAAA   | AGTGTGGGCT | CTGGAGTCAG | ACTGCCAGGG | 14220 |
| 20 | TATCAGATCC | AACCACATGC | AAACATTTTC   | TTAGTCTCTA | TTCCCCATGT | CCTCATTTAT | 14280 |
|    | GAAAATGAGA | ATAACAGTAA | TACATTCCTC   | CATAGGTTGG | GTACAAAGAC | ТАТТАТАААТ | 14340 |
|    | TGTGCATTCA | GGTGCCTAGG | TTGGCCCTTG   | GGCCATGGTA | TATGTTGCGT | GAATGTTAGC | 14400 |
| 25 | CTCTGTCCCT | GCTGTTTAAT | GAGTTCCTTG   | ACAGTAGTGG | GCATGTATTG | GGAGCCTGGA | 14460 |
|    | GCAAGTGCCT | AAGCATCCCC | TCTAGGGACG   | CTCCTTCCCA | GGAACTAAGA | AGAGTAAAAG | 14520 |
| 30 | AATGATGACT | GCTAGAAGGT | AATGGATGAG   | ATGGCTGCTG | AGTGCTTCCA | ACCTTAAACA | 14580 |
|    | TCTTTGTTTA | GGAACTCTGA | GCATCTTGGA   | AATAATTTGC | TATCAAACTG | АААААААТС  | 14640 |
|    | TTGAATGGAC | AAGGGCAAAA | ACATTTGCCT   | GAGACTTTAA | ACATTTTTG  | TGTCATCTTG | 14700 |
| 35 | GAGAGTGCTT | TTTTGAAGCT | CAAATTTTCT   | TTTATTTTGG | CACTGATTTT | TAAAGTGÄTT | 14760 |
|    | CTCAGATTTT | TGTAAGACAG | CTGCAAGGGT   | TGGATGGGCC | CTGTCATTCA | CTGACCTGTT | 14820 |
| 40 | AAGAGCCAAT | TTCTGAACTT | CCACTAAAGC   | ATGGGCTGGT | TGAATCTTAG | ACCAGTACTT | 14880 |
| -  | GAAAAACTTI | CCACTGTGAT | TATCCACCTI   | GGACCAGTTG | GACTTAATTI | GAGTCTCTCT | 14940 |
|    | TCTTCCCACA | GTGAAATATC | : CGCTAGGAAA | AGAGAAGAAG | TCTATGGAGT | AGATAAGCCT | 15000 |

|    | GCAGTTTGGA | AAATGAATAG | TTGGCATCAG | AACAGCAGCA | GGAGGCTGGG | TGTGGTGGCT | 15060  |
|----|------------|------------|------------|------------|------------|------------|--------|
| 5  | CACGCCTGTA | ATCCCAGCAC | TTTGGGAGGC | TGAGGTGGGT | GGATCACGAG | GTCAGGAGTT | 15120  |
| ,  | CAAGACCAGC | CTGGCCAAGA | TGGCGAAACC | CTGTCTCTAC | ТАААААТАСА | AAAATTAGCT | 15180  |
|    | GGGCGTGATG | GTGGGTGCCT | GTAATCTCAG | CTACTCGGGA | GGCTGAGGCA | GATAATTGCT | 15240  |
| 10 | TGAACCCAGG | AGATGAAGGT | TGCAGTGAGT | TTGTGCCACT | GCACTCCAGC | CTGGGCGACA | 15300  |
|    | GAGTGAGACT | GTCTCAAAAA | АААААААА   | GAAAAAAAA  | AAAGAAACAA | CAGTAGCAGG | 15360  |
| 15 | AGCTATAGAA | CAGCCCTGGG | TAGAACCTAA | AAGACCCAAA | TTATCATCTC | AAACTTGCAT | 15420  |
| 13 | TGCACTTAAG | TGGGCTGTAA | АТТАТАААСА | AAGGGTGAAA | AGTTCTACTG | TGGCCAAAGG | 15480  |
|    | TAAGCCAGAC | ACTCTGCTAG | CAGGAGTGCA | GGAGTCGAGA | GCCAAACGGT | GCGGCTAGCA | 15540  |
| 20 | GAGTGCCCAG | TGCAAAGGGG | TGGGAAGGAG | TGAGATTGAG | AATATTAAAA | AGGTACTTAG | 15600  |
|    | AAGAGAACTT | GTAAGATTTT | TACTGGCCAA | АТТТААААСА | TGACTGAGCA | СТАТТТТСА  | 15660  |
| 25 | TACAGGCCTC | СТАСТААТАА | GAAAACAATT | TTGAGATAAC | TACTTATTTG | AGTTCACAGT | 15720  |
| ۵  | TAATGTTCCT | GATGATTAAG | ATCAGTTGCA | AATGTTCATC | TGTCAATGCT | TATCTACAAT | 15780  |
|    | GAGACTTCAT | GTATTCATTT | CTGAAAGTGT | CTTTTCAGGG | TGAATGGTGC | TATTGATTAG | 15840  |
| 30 | CACTAATACT | AATTATTAGT | ACATTATATA | TAATTACAAT | GAGATATACA | CACACATACA | 15900  |
|    | CACACACATA | TATACATATA | CACACACACA | ATGATATATA | ATTAATATAT | AATTGTACCC | 15960  |
| 35 | CAAGGGTGC  | AAAGGAGATG | TGTTGCCAGG | TGGAGAGGCT | ACCGCTTGGC | AGTTCTGGGA | 16020  |
| 33 | GGACTTGCTC | CCTGTGCACT | GTGAGGCAGG | CTTTGCCTTT | CAGACCTGCC | TTTGGGTAGG | 16080  |
|    | GTTCAGATCA | CTTTCTAACT | CTGGAATGTC | CTAGAATGTA | GACTGCCTGC | AGGCTTCCAT | 16140  |
| 40 | GTCCCCTGCT | TTTCCCTGAC | TTAGCCTGTT | GCCTCCCTGC | CCTCCTGTTG | GTTGTCTACC | 16200, |
|    | AGTAGAGAGC | ACTTTGTGTG | CACTTGGCTG | CTACATTAGT | TAGGTGATCT | TCAACAAGTG | 16260  |

TTGATGGTGA GTTGCTGTGG CAGGTGCTTT TTTTGGCACT GAGGCAAAAT GGTGAGTAAG 16320 ATGGCTTTCA AGCGTTGTAC CTTCTCGACG TGGGAAGATG ACCAGTAAGC AGAAAAACAA 16380 ACGAGATCAC TTAAGAGAGC AACCAGGAGT GTTGGGCATC TCACAGCCAT TAGCTCTGGT 16440 GTGAAGGACA AATCTAAAAG CAAGGGGACT GTGTGTTCAT TTTCTGGGGT CACAAAACTA 16500 AGGAGCAAAG CCAGTATTCA AACTGCATAT ATTATTATCT ATTGCCACAA AACCTGTTAC 16560 10 CCTAAATGGC TTCAGACAAC AATAATCATT TATTATCCAT CATGGTTTTT GTGGGCTAGA 16620 AATTCAGATA GGGTACAGTG GGGAGGGTTC ACCCTGCTCC ACAGCATCTG GAAGATCTGA 16680 16707 AGTCTGAGGG TTGTTGTCCA AAAGATC

20 (2) INFORMATION FOR SEQ ID NO: 62:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 50 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:

ATGCGCGCCG GCAGCCAACA TGCTGCTGCT GCTGCTGGTG CCTCTCTTCC

50

(2) INFORMATION FOR SEQ ID NO: 63:

35

25

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 25 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63: GGTCATCCAG CGTTGAGGTG AAGAC 25 5 (2) INFORMATION FOR SEQ ID NO: 64: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 15 (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64: GAAGGTTGCC AGATTATACA TCCGC 25 20 (2) INFORMATION FOR SEQ ID NO: 65: (i) SEQUENCE CHARACTERISTICS: 25 (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 30 (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65: CCACGATGAT TCGAGCATCT TGACG 25 35 (2) INFORMATION FOR SEQ ID NO: 66: (i) SEQUENCE CHARACTERISTICS: 40 (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear H1865-1 WO SEQ 120

|    | (ii) MOLECULE TYPE: DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| 5  | CTGGTTCCTC CCAATGTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 |
|    | (2) INFORMATION FOR SEQ ID NO: 67:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|    | (i) SEQUENCE CHARACTERISTICS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|    | (A) LENGTH: 21 base pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|    | (B) TYPE: nucleic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|    | (C) STRANDEDNESS: single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| 15 | (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|    | (ii) MOLECULE TYPE: DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|    | CCAGTGGACT ATGAGATTGA G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|    | (2) INFORMATION FOR SEQ ID NO: 68:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 25 | (i) SEQUENCE CHARACTERISTICS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|    | (A) LENGTH: 18 base pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|    | (B) TYPE: nucleic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|    | (C) STRANDEDNESS: single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| 30 | (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|    | (ii) MOLECULE TYPE: DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·  |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| 35 | (AL) DEGULATE ELECTRICATION OF A STATE OF A |    |
|    | CTGGTTCCTC CCAATGTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 |
|    | (2) INFORMATION FOR SEQ ID NO: 69:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 40 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|    | (i) SEQUENCE CHARACTERISTICS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|    | (A) LENGTH: 21 base pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|    | (B) TYPE: nucleic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|    | H1865-1 WO SEQ 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |

SUBSTITUTE SHEET (RULE 26)

(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69: CCAGTGGACT ATGAGATTGA G 21 10 (2) INFORMATION FOR SEQ ID NO: 70: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2700 base pairs 15 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA to mRNA 20 (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (ix) FEATURE: (A) NAME/KEY: CDS 30 (B) LOCATION:1..2700 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70: ATG TTG CTG CTG CTA CTG GCG CCA CTC TTC CTC CGC CCC CCG GGC 48 Met Leu Leu Leu Leu Leu Ala Pro Leu Phe Leu Arg Pro Pro Gly -1 GCG GGC GGG GCG CAG ACC CCC AAC GCC ACC TCA GAA GGT TGC CAG ATC 96 Ala Gly Gly Ala Gln Thr Pro Asn Ala Thr Ser Glu Gly Cys Gln Ile 40 20 30 ATA CAC CCG CCC TGG GAA GGG GGC ATC AGG TAC CGG GGC CTG ACT CGG 144 Ile His Pro Pro Trp Glu Gly Gly Ile Arg Tyr Arg Gly Leu Thr Arg

122

PCT/SE98/01947

WO 99/21890 45 35 40 GAC CAG GTG AAG GCT ATC AAC TTC CTG CCA GTG GAC TAT GAG ATT GAG 192 Asp Gln Val Lys Ala Ile Asn Phe Leu Pro Val Asp Tyr Glu Ile Glu 55 TAT GTG TGC CGG GGG GAG CGC GAG GTG GTG GGG CCC AAG GTC CGC AAG 240 Tyr Val Cys Arg Gly Glu Arg Glu Val Val Gly Pro Lys Val Arg Lys 65<sup>-1</sup> 10 TGC CTG GCC AAC GGC TCC TGG ACA GAT ATG GAC ACA CCC AGC CGC TGT 288 Cys Leu Ala Asn Gly Ser Trp Thr Asp Met Asp Thr Pro Ser Arg Cys 85 GTG AAT CGA ACG CCA CAC TCA GAA CGG CGC GCA GTG TAC ATC GGG GCA 336 Val Asn Arg Thr Pro His Ser Glu Arg Arg Ala Val Tyr Ile Gly Ala 105 110 100 CTG TTT CCC ATG AGC GGG GGC TGG CCA GGG GGC CAG GCC TGC CAG CCC 384 Leu Phe Pro Met Ser Gly Gly Trp Pro Gly Gly Gln Ala Cys Gln Pro 20 120 125 115 GCG GTG GAG ATG GCG CTG GAG GAC GTG AAT AGC CGC AGG GAC ATC CTG 432 Ala Val Glu Met Ala Leu Glu Asp Val Asn Ser Arg Arg Asp Ile Leu 130 135 140 25 CCG GAC TAT GAG CTC AAG CTC ATC CAC CAC GAC AGC AAG TGT GAT CCA 480 Pro Asp Tyr Glu Leu Lys Leu Ile His His Asp Ser Lys Cys Asp Pro 160 150 155 30 GGC CAA GCC ACC AAG TAC CTA TAT GAG CTG CTC TAC AAC GAC CCT ATC 528 Gly Gln Ala Thr Lys Tyr Leu Tyr Glu Leu Leu Tyr Asn Asp Pro Ile 175 170 165 AAG ATC ATC CTT ATG CCT GGC TGC AGC TCT GTC TCC ACG CTG GTG GCT-576 Lys Ile Ile Leu Met Pro Gly Cys Ser Ser Val Ser Thr Leu Val Ala 190 185 180 GAG GCT GCT AGG ATG TGG AAC CTC ATT GTG CTT TCC TAT GGC TCC AGC 624 Glu Ala Ala Arg Met Trp Asn Leu Ile Val Leu Ser Tyr Gly Ser Ser 205 200 195 672 TCA CCA GCC CTG TCA AAC CGG CAG CGT TTC CCC ACT TTC TTC CGA ACG

123

H1865-1 WO SEQ

2188741 1 >

----

|    | Ser | Pro<br>210 | Ala  | Leu | Ser   | Asn | Arg<br>215 | Gln  | Arg  | Phe | Pro  | Thir<br>220 | Phe   | Phe | Arg | Thr | _                 |
|----|-----|------------|------|-----|-------|-----|------------|------|------|-----|------|-------------|-------|-----|-----|-----|-------------------|
|    |     |            |      |     |       |     |            |      |      |     |      |             |       |     |     | GAA | 720               |
| 5  |     | Pro        | Ser  | Ala | Thr   | Leu | His        | Asn  | Pro  | Thr | Arg  | Val         | Lys   | Leu | Phe | Glu |                   |
|    | 225 |            |      |     |       | 230 |            |      |      |     | 235  |             |       |     |     | 240 |                   |
|    | AAG | TGG        | GGC  | TGG | AAG   | AAG | ATT        | GCT  | ACC  | ATC | CAG  | CAG         | ACC   | ACT | GAG | GTC | 768               |
|    |     |            |      |     |       |     |            |      |      |     |      | Gln         |       |     |     |     |                   |
| 10 |     |            |      |     | 245   | •   |            |      |      | 250 |      |             |       |     | 255 |     |                   |
|    |     |            |      |     |       |     |            |      |      |     |      |             |       |     |     |     |                   |
|    |     |            |      |     |       |     |            |      |      |     |      |             |       |     |     | GGA | 816               |
|    | Pne | 1111       | sei  | 260 | Leu   | Asp | Asp        | Leu  | 265  | Glu | Arg  | Val         | Lys   |     | Ala | Gly |                   |
| 15 |     |            |      | 200 |       |     |            |      | 203  |     |      |             |       | 270 |     |     |                   |
|    | ATT | GAG        | АТТ  | ACT | TTC   | CGC | CAG        | AGT  | TTC  | TTC | TCA  | GAT         | CCA   | GCT | GTG | ccc | 864               |
|    |     |            |      |     |       |     |            |      |      |     |      | Asp         |       |     |     |     |                   |
|    |     |            | 275  |     |       |     |            | 280  |      |     |      |             | 285   |     |     |     |                   |
| •• | ama |            |      |     |       |     |            |      |      |     |      |             |       | •   |     |     |                   |
| 20 |     |            |      |     |       |     |            |      |      |     |      | ATC         |       |     |     |     | 912               |
|    | Vai | 290        | ASII | beu | гÃ2   | AIG | 295        | ASP  | АТА  | Arg | TIE  | Ile<br>300  | Vai   | GIY | Leu | Phe |                   |
|    |     |            |      |     |       |     |            |      |      |     |      | 300         |       |     |     |     |                   |
|    | TAT | GAG        | ACT  | GAA | GCC   | CGG | AAA        | GTT  | ттт  | TGT | GAG  | GTG         | TAC   | AAG | GAG | CGT | 960               |
| 25 | Tyr | Glu        | Thr  | Glu | Ala   | Arg | Lys        | Val  | Phe  | Cys | Glu  | Val         | Tyr   | Lys | Glu | Arg |                   |
|    | 305 |            |      |     |       | 310 |            |      |      |     | 315  |             |       |     |     | 320 |                   |
|    | CTC | ւիսիսի     | ccc  | AAC | ስ ስ C | መእር | CTC        | mcc. | mmc. | CMC | » mm | GGG         | maa   |     |     |     | 4000              |
|    |     |            |      |     |       |     |            |      |      |     |      | Gly         |       |     |     |     | 1008              |
| 30 |     |            | •    |     | 325   | -3- |            |      |      | 330 |      | Gry         | пр    | TYL | 335 | лар |                   |
|    |     |            |      |     |       |     |            |      |      |     |      |             |       |     |     |     |                   |
|    | AAT | TGG        | TTC  | AAG | ATC   | TAC | GAC        | CCT  | TCT  | ATC | AAC  | TGC         | ACA   | GTG | GAT | GAG | 1056              |
|    | Asn | Trp        | Phe  | Lys | Ile   | Tyr | Asp        | Pro  | Ser  | Ile | Asn  | Cys         | Thr   | Val | Asp | Glu |                   |
| 25 |     |            |      | 340 |       |     |            |      | 345  |     |      |             |       | 350 |     |     |                   |
| 35 | ልጥር | ልርጥ        | CAC  | GCG | CTC   | CAC | ccc        | CAC  | a mc | 202 | 3.0m | GAG         | 3 000 | ama |     |     | 1104              |
|    |     |            |      |     |       |     |            |      |      |     |      | GAG         |       |     |     |     | 1104              |
| ÷  |     |            | 355  |     |       |     | 3          | 360  |      |     |      | GIU         | 365   | Val | Mec | neu |                   |
|    |     |            |      |     |       |     |            |      |      |     |      |             |       |     |     |     |                   |
| 40 | ААТ | CCT        | GCC  | AAT | ACC   | CGC | AGC        | TTA  | TCC  | AAC | ATG  | ACA         | TCC   | CAG | GAA | TTT | 1152 <sub>0</sub> |
|    | Asn |            | Ala  | Asn | Thr   | Arg | Ser        | Ile  | Ser  | Asn | Met  | Thr         | Ser   | Gln | Glu | Phe |                   |
|    |     | 370        |      |     |       |     | 375        |      |      |     |      | 380         |       | •   | -   |     |                   |
|    |     |            |      |     |       |     |            |      |      |     |      |             |       |     |     |     |                   |

PCT/SE98/01947 WO 99/21890

|    | 545      |         | . <b>.</b> |             |     | 550     |            |          | , *        |            | 555 |            |      |       |     | 560        | ·      |
|----|----------|---------|------------|-------------|-----|---------|------------|----------|------------|------------|-----|------------|------|-------|-----|------------|--------|
|    |          |         |            |             |     |         |            |          |            |            |     |            |      |       | -   | ATC        | 1680   |
| 40 |          |         |            |             |     |         |            |          |            |            |     |            |      |       |     |            |        |
|    | Leu      | Phe     |            | Ser         | Val | Ser     | Val<br>535 |          | Ser        | Ser        | Leu | Gly<br>540 |      | · Val | Leu | Ala        |        |
|    |          |         |            |             |     |         |            |          |            |            |     |            |      |       |     | GCT        | 1632   |
| 35 |          |         | 515        |             |     |         |            | 520      |            |            |     |            | 525  |       |     |            |        |
|    | Ala      | Asp     |            |             | Leu | Val     | Ile        |          |            | Phe        | Arg | Phe        |      |       | Gln | Lys        | e·     |
|    |          |         |            |             |     |         |            |          |            |            |     |            |      |       |     | AAA        | 1584   |
| 50 |          | <b></b> |            | 500         |     | <u></u> | <b></b>    | <b>-</b> | 505        | - <b>F</b> |     | <b>-</b>   | ~3   | 510   |     |            |        |
| 30 |          |         |            |             |     |         |            |          | AAA<br>Lys |            |     |            |      |       |     | CCA<br>Pro | 1536   |
|    |          |         |            |             | 485 |         |            |          |            | 490        |     |            |      |       | 495 |            |        |
|    | Gln      | Gly     | Gly        | Ser         | · · | Lys     | Lys        | Ile      | Gly        |            | Tyr | Asp        | Ser  | Thr   |     | Asp        |        |
| 25 |          |         |            |             |     |         |            |          |            |            |     |            |      |       |     | GAT        | 1488   |
|    | 465      | -       |            |             | _   | 470     |            |          |            |            | 475 |            |      |       |     | 480        |        |
|    |          |         |            |             |     |         |            |          | Ala        |            |     |            |      |       |     |            | ± 35 € |
| 20 | thithith | ር አጥ    | GCC        | <b>A</b> GC | GGC | ጥርጥ     | CGG        | ልጥር      | GCA        | тсс        | ACG | ርጥጥ        | Aጥር  | GAG   | CAG | ርምጥ        | 1440   |
|    |          | 450     |            |             |     |         | 455        |          |            |            |     | 460        |      |       |     |            |        |
|    |          |         |            |             |     |         |            |          | Glu        |            |     |            |      |       |     |            |        |
|    | CGG      | GCA     | ATG        | AAC         | TCT | TCG     | TCC        | TTT      | GAG        | GGT        | GTC | TCT        | GGC  | CAT   | GTG | GTG        | 1392   |
| 15 |          |         | 435        |             |     |         |            | 440      |            |            |     |            | 445  |       |     |            |        |
|    |          |         |            |             |     |         |            |          | Gln        |            |     |            |      |       |     |            |        |
|    | ርጥር      | GZG     | GAC        | ጥጥር         | AAC | TAC     | AAC        | AAC      | CAG        | ACC        | ATT | ACC        | GAC  | CAA   | ATC | TAC        | 1344   |
| 10 | ьеи      | WIG     | ₽€#        | 420         | סמת | 1111    | PET        | GIY      | 425        | OLY        | CTA | 9          | ⊃€I. | 430   | TUI | · y        |        |
| •• |          |         |            |             |     |         |            |          | GGA<br>Gly |            |     |            |      |       |     |            | 1296   |
|    | 4        |         |            |             | 405 |         |            |          | _          | 410        |     |            | _    |       | 415 |            |        |
| 5  |          |         |            |             |     |         |            |          | TAT<br>Tyr |            |     |            |      |       |     |            | 1248   |
|    | 385      |         |            |             |     | 390     |            |          |            |            | 395 |            |      |       |     | 400        |        |
|    | Val      | Glu     | Lys        | Leu         | Thr |         | Arg        | Leu      | Lys        | Arg        |     | Pro        | Glu  | Glu   | Thr |            | •      |
|    | GTG      | GAG     | AAA        | СТА         | ACC | AAG     | CGA        | CTG      | AAA        | AGA        | CAC | CCŤ        | GAG  | GAĠ   | ACA | GGA        | 1200   |

|          | CTG                         | GCT                                           | тта                                           | GCT                 | GCT                             | GTC                           | TTC                             | ccc                                    | CTG                                    | GGG                             | CTC                             | GAT                             | GGT                                    | TAC                                    | CAC                      | <b>ል</b> ጥጥ          | 173        | 76       |
|----------|-----------------------------|-----------------------------------------------|-----------------------------------------------|---------------------|---------------------------------|-------------------------------|---------------------------------|----------------------------------------|----------------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------------|----------------------------------------|--------------------------|----------------------|------------|----------|
|          |                             |                                               |                                               |                     |                                 |                               |                                 |                                        |                                        |                                 |                                 | Asp                             |                                        |                                        |                          |                      |            |          |
|          |                             |                                               |                                               | 580                 |                                 |                               |                                 |                                        | 585                                    |                                 |                                 |                                 |                                        | 590                                    |                          |                      |            |          |
| 10       |                             |                                               |                                               |                     |                                 |                               |                                 |                                        |                                        |                                 |                                 | CGC                             |                                        |                                        |                          |                      | 182        | 24       |
|          | Gly                         | Arg                                           |                                               | Gln                 | Phe                             | Pro                           | Phe                             | Val                                    | Cys                                    | Gln                             | Ala                             | Arg                             | Leu                                    | Trp                                    | Leu                      | Leu                  |            |          |
|          |                             |                                               | 595                                           |                     |                                 |                               |                                 | 600                                    |                                        |                                 |                                 |                                 | 605                                    |                                        |                          |                      |            |          |
|          |                             |                                               |                                               |                     |                                 |                               |                                 |                                        |                                        |                                 |                                 | TTC                             |                                        |                                        |                          |                      | 187        | 72       |
| 15       | СТА                         |                                               | GIA                                           | Phe                 | Ser                             | Leu                           |                                 | Tyr                                    | Gly                                    | Ser                             | Met                             | Phe                             | Thr                                    | Lys                                    | Ile                      | Trp                  |            |          |
|          |                             | 610                                           |                                               |                     |                                 |                               | 615                             |                                        |                                        |                                 |                                 | 620                             |                                        |                                        |                          |                      | ·          |          |
|          |                             |                                               |                                               |                     |                                 |                               |                                 |                                        |                                        |                                 |                                 | AAG                             |                                        |                                        |                          |                      | 192        | 20       |
|          |                             | Val                                           | His                                           | Thr                 | Val                             |                               | Thr                             | Lys                                    | Lys                                    | Glu                             | Glu                             | Lys                             | Lys                                    | Glu                                    | Trp                      | Arg                  |            |          |
| 20       | 625                         |                                               |                                               |                     |                                 | 630                           |                                 |                                        |                                        |                                 | 635                             |                                 |                                        |                                        |                          | 640                  |            |          |
|          | AAG                         | ACT                                           | CTG                                           | GAA                 | CCC                             | TGG                           | AAG                             | CTG                                    | TAT                                    | GCC                             | ACA                             | GTG                             | GGC                                    | CTG                                    | CTG                      | GTG                  | 196        | 8        |
|          | Lys                         | Thr                                           | Leu                                           | Glu                 | Pro                             | Trp                           | Lys                             | Leu                                    | Tyr                                    | Ala                             | Thr                             | Val                             | Gly                                    | Leu                                    | Leu                      | Val                  |            |          |
|          |                             |                                               |                                               |                     | 645                             |                               |                                 |                                        |                                        | 650                             |                                 |                                 |                                        |                                        | 655                      |                      |            |          |
| 25       | 000                         | N M C                                         | C 3 C                                         | ome                 | omo.                            |                               |                                 |                                        |                                        |                                 |                                 |                                 |                                        |                                        |                          |                      |            |          |
|          | GGC                         |                                               |                                               |                     |                                 |                               |                                 |                                        |                                        |                                 |                                 | ATC                             |                                        |                                        |                          |                      | 201        | L6       |
|          |                             | Mot                                           |                                               | vaı                 | reu                             | THE                           | reu                             | Ата                                    |                                        | Trp                             | Gin                             | TTE                             | Val                                    |                                        | Pro                      | Leu                  |            |          |
|          | Gly                         | Met                                           | ASD                                           |                     |                                 |                               |                                 |                                        | 665                                    |                                 |                                 |                                 |                                        |                                        |                          |                      |            |          |
|          |                             | Met                                           | ASP                                           | 660                 |                                 |                               |                                 |                                        | 665                                    |                                 |                                 |                                 |                                        | 670                                    |                          |                      |            |          |
| 30       | Gly                         |                                               |                                               | 660                 | GAG                             | ACA                           | ттт                             | GCC                                    |                                        | GAG                             | GAA                             | ССТ                             | AAG                                    |                                        | GAT                      | АТТ                  | . 206      | 54       |
| 30       | Gly<br>CAC                  | CGG                                           | ACC                                           | 660<br>ATT          |                                 |                               |                                 |                                        | AAG                                    |                                 |                                 | CCT<br>Pro                      |                                        | GAA                                    |                          |                      | 206        | 54       |
| 30       | Gly<br>CAC                  | CGG                                           | ACC                                           | 660<br>ATT          |                                 |                               |                                 |                                        | AAG                                    |                                 |                                 |                                 |                                        | GAA                                    |                          |                      | 206        | 54       |
| 30       | Gly<br>CAC<br>His           | CGG<br>Arg                                    | ACC<br>Thr<br>675                             | ATT                 | Glu                             | Thr                           | Phe                             | Ala<br>680                             | AAG<br>Lys                             | Glu                             | Glu                             | Pro                             | Lys<br>685                             | GAA<br>Glu                             | Asp                      | Ile                  | 206<br>211 |          |
| 30<br>35 | Gly<br>CAC<br>His           | CGG<br>Arg<br>GTC                             | ACC<br>Thr<br>675<br>TCT                      | ATT Ile             | Glu<br>CTG                      | Thr                           | Phe<br>CAG                      | Ala<br>680<br>CTG                      | AAG<br>Lys<br>GAG                      | Glu<br>CAT                      | Glu<br>TGC                      |                                 | Lys<br>685<br>TCC                      | GAA<br>Glu<br>AGG                      | Asp<br>AAG               | Ile<br>ATG           |            |          |
|          | Gly<br>CAC<br>His           | CGG<br>Arg<br>GTC                             | ACC<br>Thr<br>675<br>TCT                      | ATT Ile             | Glu<br>CTG                      | Thr                           | Phe<br>CAG                      | Ala<br>680<br>CTG                      | AAG<br>Lys<br>GAG                      | Glu<br>CAT                      | Glu<br>TGC                      | Pro<br>AGC                      | Lys<br>685<br>TCC                      | GAA<br>Glu<br>AGG                      | Asp<br>AAG               | Ile<br>ATG           |            |          |
|          | CAC<br>His<br>GAC<br>Asp    | CGG<br>Arg<br>GTC<br>Val<br>690               | ACC<br>Thr<br>675<br>TCT<br>Ser               | ATT Ile ATT         | Glu<br>CTG<br>Leu               | Thr<br>CCC<br>Pro             | Phe<br>CAG<br>Gln<br>695        | Ala<br>680<br>CTG<br>Leu               | AAG<br>Lys<br>GAG<br>Glu               | Glu<br>CAT<br>His               | Glu<br>TGC<br>Cys               | Pro<br>AGC<br>Ser               | Lys<br>685<br>TCC<br>Ser               | GAA<br>Glu<br>AGG<br>Arg               | Asp<br>AAG<br>Lys        | Ile<br>ATG<br>Met    |            | .2       |
|          | CAC<br>His<br>GAC<br>Asp    | CGG<br>Arg<br>GTC<br>Val<br>690<br>ACA        | ACC<br>Thr<br>675<br>TCT<br>Ser               | ATT Ile ATT Ile CTT | Glu<br>CTG<br>Leu<br>GGC        | Thr<br>CCC<br>Pro             | CAG<br>Gln<br>695               | Ala<br>680<br>CTG<br>Leu               | AAG<br>Lys<br>GAG<br>Glu<br>GGT        | Glu<br>CAT<br>His               | Glu<br>TGC<br>Cys<br>AAG        | Pro AGC Ser 700                 | Lys<br>685<br>TCC<br>Ser               | GAA<br>Glu<br>AGG<br>Arg               | Asp<br>AAG<br>Lys<br>CTG | Ile ATG Met          | 211        | .2       |
|          | CAC<br>His<br>GAC<br>Asp    | CGG<br>Arg<br>GTC<br>Val<br>690<br>ACA        | ACC<br>Thr<br>675<br>TCT<br>Ser               | ATT Ile ATT Ile CTT | Glu<br>CTG<br>Leu<br>GGC        | Thr<br>CCC<br>Pro             | CAG<br>Gln<br>695               | Ala<br>680<br>CTG<br>Leu               | AAG<br>Lys<br>GAG<br>Glu<br>GGT        | Glu<br>CAT<br>His               | Glu<br>TGC<br>Cys<br>AAG        | Pro AGC Ser 700                 | Lys<br>685<br>TCC<br>Ser               | GAA<br>Glu<br>AGG<br>Arg               | Asp<br>AAG<br>Lys<br>CTG | Ile ATG Met          | 211        | .2       |
| 35       | CAC His GAC Asp AAT Asn 705 | CGG<br>Arg<br>GTC<br>Val<br>690<br>ACA<br>Thr | ACC<br>Thr<br>675<br>TCT<br>Ser<br>TGG<br>Trp | ATT Ile ATT Leu TTC | Glu<br>CTG<br>Leu<br>GGC<br>Gly | Thr  CCC Pro  ATT Ile 710 GCT | CAG<br>Gln<br>695<br>TTC<br>Phe | Ala<br>680<br>CTG<br>Leu<br>TAT<br>Tyr | AAG<br>Lys<br>GAG<br>Glu<br>GGT<br>Gly | Glu<br>CAT<br>His<br>TAC<br>Tyr | TGC<br>Cys<br>AAG<br>Lys<br>715 | AGC<br>Ser<br>700<br>GGG<br>Gly | Lys<br>685<br>TCC<br>Ser<br>CTG<br>Leu | GAA<br>Glu<br>AGG<br>Arg<br>CTG<br>Leu | AAG<br>Lys<br>CTG<br>Leu | ATG Met- CTG Leu 720 | 211        | .2<br>60 |
| 35       | CAC His GAC Asp AAT Asn 705 | CGG<br>Arg<br>GTC<br>Val<br>690<br>ACA<br>Thr | ACC<br>Thr<br>675<br>TCT<br>Ser<br>TGG<br>Trp | ATT Ile ATT Leu TTC | Glu<br>CTG<br>Leu<br>GGC<br>Gly | Thr  CCC Pro  ATT Ile 710 GCT | CAG<br>Gln<br>695<br>TTC<br>Phe | Ala<br>680<br>CTG<br>Leu<br>TAT<br>Tyr | AAG<br>Lys<br>GAG<br>Glu<br>GGT<br>Gly | Glu<br>CAT<br>His<br>TAC<br>Tyr | TGC<br>Cys<br>AAG<br>Lys<br>715 | AGC<br>Ser<br>700<br>GGG<br>Gly | Lys<br>685<br>TCC<br>Ser<br>CTG<br>Leu | GAA<br>Glu<br>AGG<br>Arg<br>CTG<br>Leu | AAG<br>Lys<br>CTG<br>Leu | ATG Met- CTG Leu 720 | 211<br>216 | .2<br>60 |

|    | WU   | 99/41     | 070   |       |       |       |       |       |       |       |     |       |             |       |       |       |                                         |
|----|------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-----|-------|-------------|-------|-------|-------|-----------------------------------------|
|    |      |           |       |       | 725   |       |       |       |       | 730   |     |       |             |       | 735   |       | *************************************** |
|    | ATC  | ААТ       | GAT   | CAC   | CGG   | GCT   | GTG   | GGC   | ATG   | GCT   | ATC | TAC   | AAT         | GTG   | GCA   | GTC   | 2256                                    |
|    |      |           |       | His   |       |       |       |       |       |       |     |       |             |       |       |       |                                         |
| 5  |      |           |       | 740   | -     |       |       | _     | 745   |       |     |       |             | 750   |       |       |                                         |
|    | CTG  | TGC       | СТС   | ATC   | ACT   | GCT   | CCT   | GTC   | ACC   | ATG   | ATT | CTG   | TCC         | AGC   | CAG   | CAG   | 2304                                    |
|    |      |           |       | Ile   |       |       |       |       |       |       |     |       |             |       |       |       |                                         |
|    |      | -2        | 755   |       |       |       |       | 760   |       |       |     |       | 765         |       |       |       |                                         |
| 10 |      |           |       |       |       |       |       |       |       |       |     |       |             |       |       |       |                                         |
|    |      |           |       | TTT   |       |       |       |       |       |       |     |       |             |       |       |       | 2352                                    |
|    | Asp  | Ala       | Ala   | Phe   | Ala   | Phe   | Ala   | Ser   | Leu   | Ala   | Ile | Val   | Phe         | Ser   | Ser   | Tyr   |                                         |
|    |      | 770       |       |       |       |       | 775   |       |       |       |     | 780   |             |       |       |       |                                         |
| 15 | ATC  | ACT       | CTT   | GTT   | GTG   | CTC   | TTT   | GTG   | ccc   | AAG   | ATG | CGC   | AGG         | CTG   | ATC   | ACC   | 2400                                    |
|    | Ile  | Thr       | Leu   | Val   | Val   | Leu   | Phe   | Val   | Pro   | Lys   | Met | Arg   | Arg         | Leu   | Ile   | Thr   | •                                       |
|    | 785  |           |       |       |       | 790   |       |       |       |       | 795 |       |             |       |       | 800   |                                         |
|    | CCA  | GGG       | GAA   | TGG   | CAG   | TCG   | GAG   | GCG   | CAG   | GAC   | ACC | ATG   | AAG         | ACA   | GGG   | TCA   | 2448                                    |
| 20 |      |           |       | Trp   |       |       |       |       |       |       |     |       |             |       |       |       |                                         |
| 20 | 9    |           |       |       | 805   |       |       |       |       | 810   |     |       |             |       | 815   |       |                                         |
|    | mac  | 200       |       | AAC   | አአሮ   | GAG   | GAG   | GAG   | ΔAG   | ጥሮር   | CGG | CTG   | <b>ጥፐ</b> G | GAG   | AAG   | GAG   | 2496                                    |
|    |      |           |       | Asn   |       |       |       |       |       |       |     |       |             |       |       |       |                                         |
| 25 | ser  | 1111      | NSI.  | 820   |       | 014   | 014   | 022   | 825   |       | 5   |       |             | 830   |       |       |                                         |
|    |      |           |       |       |       |       |       |       |       |       |     |       |             |       |       |       |                                         |
|    |      |           |       |       |       |       |       |       |       |       |     |       |             |       |       | TCT   | 2544                                    |
|    | Asn  | Arg       |       | Leu   | Glu   | Lys   | Ile   |       |       | Glu   | Lys | Glu   |             |       | Val   | Ser   |                                         |
|    |      |           | 835   | •     |       |       |       | 840   |       |       |     |       | 845         | •     |       |       |                                         |
| 30 | CAA  | . כידינ   | e cec | י רמת | מבר י | CTC   | CAG   | тст   | CGG   | CAG   | CAG | CTC   | CGC         | TCC   | CGG   | CGC   | 2592                                    |
|    |      |           |       |       |       |       |       |       |       |       |     |       |             |       |       | Arg   |                                         |
|    | 910  | . <b></b> |       | ,     | , , , |       | 855   |       |       |       |     | 860   |             |       |       |       |                                         |
|    |      |           |       |       |       |       |       |       |       |       |     |       |             |       |       |       |                                         |
| 35 |      |           |       |       |       |       |       |       |       |       |     |       |             |       |       | CCC ~ | 2640                                    |
|    | His  | Pro       | o Pro | Thr   | Pro   | Pro   | Glu   | Pro   | Ser   | Gly   | Gly | Lev   | Pro         | Arç   | g Gly | Pro   |                                         |
|    | 865  | 5         |       |       |       | 870   | )     |       |       |       | 875 | i     |             |       |       | 880   |                                         |
|    | CC   | r GA      | G CC  | c cc  | C GAC | c CGC | CTI   | ' AGC | TG?   | r GAI | GGG | AG    | CG2         | A GTO | G CA  | TTG   | 2688                                    |
| 40 | Pro  | o G1      | u Pro | o Pro | a Asp | Arg   | , Leu | seı   | с Суз | s Asp | Gly | , Sei | Arg         | g Val | l His | s Leu |                                         |
|    |      |           |       |       | 885   |       |       |       |       | 890   |     |       |             |       | 899   |       |                                         |
|    | Cuta | ጥ ጥል      | т да  | G TG  | A     |       |       |       |       |       |     |       |             |       |       |       | . 2700                                  |
|    |      | - 111     |       |       |       |       |       |       |       |       |     |       |             |       |       |       |                                         |
|    | HI   | 865-      | 1 W(  | O SE  | Q     |       |       |       | 127   |       |     |       |             |       |       |       |                                         |
|    |      |           |       |       | -     |       |       |       |       |       |     |       |             |       |       |       |                                         |

Leu Tyr Lys \*

5 (2) INFORMATION FOR SEQ ID NO: 71:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 899 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:

15

10

Met Leu Leu Leu Leu Leu Ala Pro Leu Phe Leu Arg Pro Pro Gly
1 5 10 15

Ala Gly Gly Ala Gln Thr Pro Asn Ala Thr Ser Glu Gly Cys Gln Ile 20 25 30

Ile His Pro Pro Trp Glu Gly Gly Ile Arg Tyr Arg Gly Leu Thr Arg 35 40 45

25 Asp Gln Val Lys Ala Ile Asn Phe Leu Pro Val Asp Tyr Glu Ile Glu 50 55 60

Tyr Val Cys Arg Gly Glu Arg Glu Val Val Gly Pro Lys Val Arg Lys
65 70 75 80

30

Cys Leu Ala Asn Gly Ser Trp Thr Asp Met Asp Thr Pro Ser Arg Cys
85 90 95

Val Asn Arg Thr Pro His Ser Glu Arg Arg Ala Val Tyr Ile Gly Ala 35 100 105 110

Leu Phe Pro Met Ser Gly Gly Trp Pro Gly Gly Gln Ala Cys Gln Pro 115 120 125

40 Ala Val Glu Met Ala Leu Glu Asp Val Asn Ser Arg Arg Asp Ile Leu 130 135 140

Pro Asp Tyr Glu Leu Lys Leu Ile His His Asp Ser Lys Cys Asp Pro

Gly Gln Ala Thr Lys Tyr Leu Tyr Glu Leu Leu Tyr Asn Asp Pro Ile Lys Ile Ile Leu Met Pro Gly Cys Ser Ser Val Ser Thr Leu Val Ala Glu Ala Ala Arg Met Trp Asn Leu Ile Val Leu Ser Tyr Gly Ser Ser Ser Pro Ala Leu Ser Asn Arg Gln Arg Phe Pro Thr Phe Phe Arg Thr His Pro Ser Ala Thr Leu His Asn Pro Thr Arg Val Lys Leu Phe Glu Lys Trp Gly Trp Lys Lys Ile Ala Thr Ile Gln Gln Thr Thr Glu Val Phe Thr Ser Thr Leu Asp Asp Leu Glu Glu Arg Val Lys Glu Ala Gly Ile Glu Ile Thr Phe Arg Gln Ser Phe Phe Ser Asp Pro Ala Val Pro Val Lys Asn Leu Lys Arg Gln Asp Ala Arg Ile Ile Val Gly Leu Phe Tyr Glu Thr Glu Ala Arg Lys Val Phe Cys Glu Val Tyr Lys Glu Arg Leu Phe Gly Lys Lys Tyr Val Trp Phe Leu Ile Gly Trp Tyr Ala Asp Asn Trp Phe Lys Ile Tyr Asp Pro Ser Ile Asn Cys Thr Val Asp Glu Met Thr Glu Ala Val Glu Gly His Ile Thr Thr Glu Ile Val Met Leu Asn Pro Ala Asn Thr Arg Ser Ile Ser Asn Met Thr Ser Gln Glu Phe

H1865-1 WO SEQ

|    | Val<br>385 | Glu        | Lys        | Leu        | Thr        | Lys<br>390 | Arg        | Leu        | Lys        | Arg        | His<br>395 | Pro        | Glu        | Glu        | Thr        | Gly<br>400 |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 5  | Gly        | Phe        | Gln        | Glu        | Ala<br>405 | Pro        | Leu        | Ala        | Tyr        | Asp<br>410 | Ala        | Ile        | Trp        | Ala        | Leu<br>415 | Ala        |
| 10 | Leu        | Ala        | Leu        | Asn<br>420 | Lys        | Thr        | Ser        | Gly        | Gly<br>425 | Gly        | Gly        | Arg        | Ser        | Gly<br>430 | Val        | Arg        |
|    | Leu        | Glu        | Asp<br>435 | Phe        | Asn        | Tyr        | Asn        | Asn<br>440 | Gln        | Thr        | Ile        | Thr        | Asp<br>445 | Gln        | Ile        | Tyr        |
| 15 | Arg        | Ala<br>450 | Met        | Asn        | Ser        | Ser        | Ser<br>455 | Phe        | Glu        | Gly        | Val        | Ser<br>460 | Gly        | His        | Val        | Val        |
|    | Phe<br>465 | Asp        | Ala        | Ser        | Gly        | Ser<br>470 | Arg        | Met        | Ala        | Trp        | Thr<br>475 | Leu        | Ile        | Glu        | Gln        | Leu<br>480 |
| 20 | Gln        | Gly        | Gly        | Ser        | Tyr<br>485 | Lys        | Lys        | Ile        | Gly        | Tyr<br>490 | Tyr        | Asp        | Ser        | Thr        | Lys<br>495 | Asp        |
| 25 | Asp        | Leu        | Ser        | Trp<br>500 | Ser        | Lys        | Thr        | Asp        | Lys<br>505 | Trp        | Ile        | Gly        | Gly        | Ser<br>510 | Pro        | Pro        |
|    | Ala        | Asp        | Gln<br>515 | Thr        | Leu        | Val        | Ile        | Lys<br>520 | Thr        | Phe        | Arg        | Phe        | Leu<br>525 | Ser        | Gln        | Lys        |
| 30 | Leu        | Phe<br>530 | Ile        | Ser        | Val        | Ser        | Val<br>535 | Leu        | Ser        | Ser        | Leu        | Gly<br>540 | Ile        | Val        | Leu        | Ala        |
|    | Val<br>545 | Val        | Cys        | Leu        | Ser        | Phe<br>550 | Asn        | Ile        | Tyr        | Asn        | Ser<br>555 | His        | Val        | Arg        | Tyr        | Ile<br>560 |
| 35 | Gln        | Asn        | Ser        | Gln        | Pro<br>565 | Asn        | Leu        | Asn        | Asn        | Leu<br>570 | Thr        | Ala        | Val        | Gly        | Cys<br>575 | Ser∽       |
| 10 | Leu        | Ala        | Leu        | Ala<br>580 | Ala        | Val        | Phe        | Pro        | Leu<br>585 | Gly        | Leu        | Asp        | Gly        | Tyr<br>590 | His        | Ile        |
|    | Gly        | Arg        | Asn<br>595 | Gln        | Phe        | Pro        | Phe        | Val<br>600 | Cys        | Gln        | Ala        | Arg        | Leu<br>605 | Trp        | Leu        | Leu        |

Gly Leu Gly Phe Ser Leu Gly Tyr Gly Ser Met Phe Thr Lys Ile Trp Trp Val His Thr Val Phe Thr Lys Lys Glu Glu Lys Lys Glu Trp Arg Lys Thr Leu Glu Pro Trp Lys Leu Tyr Ala Thr Val Gly Leu Leu Val Gly Met Asp Val Leu Thr Leu Ala Ile Trp Gln Ile Val Asp Pro Leu His Arg Thr Ile Glu Thr Phe Ala Lys Glu Glu Pro Lys Glu Asp Ile Asp Val Ser Ile Leu Pro Gln Leu Glu His Cys Ser Ser Arg Lys Met Asn Thr Trp Leu Gly Ile Phe Tyr Gly Tyr Lys Gly Leu Leu Leu Leu Gly Ile Phe Leu Ala Tyr Glu Thr Lys Ser Val Ser Thr Glu Lys Ile Asn Asp His Arg Ala Val Gly Met Ala Ile Tyr Asn Val Ala Val Leu Cys Leu Ile Thr Ala Pro Val Thr Met Ile Leu Ser Ser Gln Gln Asp Ala Ala Phe Ala Phe Ala Ser Leu Ala Ile Val Phe Ser Ser Tyr Ile Thr Leu Val Val Leu Phe Val Pro Lys Met Arg Arg Leu Ile Thr Arg Gly Glu Trp Gln Ser Glu Ala Gln Asp Thr Met Lys Thr Gly Ser Ser Thr Asn Asn Asn Glu Glu Glu Lys Ser Arg Leu Leu Glu Lys Glu Asn Arg Glu Leu Glu Lys Ile Ile Ala Glu Lys Glu Glu Arg Val Ser H1865-1 WO SEQ 

835

840

845

Glu Leu Arg His Gln Leu Gln Ser Arg Gln Gln Leu Arg Ser Arg Arg 850 855 860

5

His Pro Pro Thr Pro Pro Glu Pro Ser Gly Gly Leu Pro Arg Gly Pro 865 870 875

Pro Glu Pro Pro Asp Arg Leu Ser Cys Asp Gly Ser Arg Val His Leu
10 885 890 895

Leu Tyr Lys

15

- (2) INFORMATION FOR SEQ ID NO: 72:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 2518 base pairs

20 (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA to mRNA

25

- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Homo sapiens

30

- (ix) FEATURE:
  - (A) NAME/KEY: CDS
  - (B) LOCATION:1..294

35

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:

ATG TTG CTG CTG CTA CTG GCG CCA CTC TTC CTC CGC CCC CCG GGC

Met Leu Leu Leu Leu Leu Ala Pro Leu Phe Leu Arg Pro Pro Gly

1 5 10 15

GCG GGC GGG GCG CAG ACC CCC AAC GCC ACC TCA GAA GGT TGC CAG ATC Ala Gly Gly Ala Gln Thr Pro Asn Ala Thr Ser Glu Gly Cys Gln Ile

96

48

|    |             | 20             | 25               | 3.0                                      |                  |
|----|-------------|----------------|------------------|------------------------------------------|------------------|
|    |             |                |                  | TAC CGG GGC CTG                          |                  |
| 5  |             | 55             | 40               | 45                                       |                  |
|    |             |                |                  | GTG GAC TAT GAG<br>Val Asp Tyr Glu       |                  |
| 0  | 50          |                | 55               | 60                                       |                  |
|    |             |                |                  | GGG CCC AAG GTC<br>Gly Pro Lys Val<br>75 |                  |
| 5  |             |                |                  | GAC ACA CCC AGC<br>Asp Thr Pro Ser       |                  |
| 20 | GTG TGA TCC | CAGGCCAA GCCAC | CAAGT ACCTATATGA | A GCTGCTCTAC AAC                         | GACCCTA 344      |
|    | TCAAGATCAT  | CCTTATGCCT GG  | CTGCAGCT CTGTCT  | CCAC GCTGGTGGCT                          | GAGGCTGCTA 404   |
| 25 | GGATGTGGAA  | CCTCATTGTG CT  | TTCCTATG GCTCCA  | GCTC ACCAGCCCTG                          | TCAAACCGGC 464   |
|    | AGCGTTTCCC  | CACTTTCTTC CG  | AACGCACC CATCAG  | CCAC ACTCCACAAC                          | CCTACCCGCG 52    |
| 30 | TGAAACTCTT  | TGAAAAGTGG GG  | CTGGAAGA AGATTG  | CTAC CATCCAGCAG                          | ACCACTGAGG 58    |
|    | TCTTCACTTC  | GACTCTGGAC GA  | CCTGGAGG AACGAG  | rgaa ggaggctgga                          | ATTGAGATTA 64    |
|    | CTTTCCGCCA  | GAGTTTCTTC TC  | AGATCCAG CTGTGC  | CCGT CAAAAACCTG                          |                  |
| 35 | ATGCCCGAAT  | CATCGTGGGA CT  | TTTCTATG AGACTG  | AAGC CCGGAAAGTT                          |                  |
|    |             |                |                  | GGTT CCTCATTGGG                          |                  |
| 40 |             |                |                  | GCAC AGTGGATGAG                          |                  |
|    |             |                |                  | TGAA TCCTGCCAAT                          | •                |
|    | TTTCCAACAT  | GACATCCCAG GA  | AATTTGTGG AGAAAC | TAAC CAAGCGACTG                          | AAAAGACACC . 100 |

|    | CTGAGGAGAC | AGGAGGCTTC | CAGGAGGCAC | CGCTGGCCTA | TGATGCCATC | TGGGCCTTGG   | 1064 |
|----|------------|------------|------------|------------|------------|--------------|------|
| 5  | CACTGGCCCT | GAACAAGACA | TCTGGAGGAG | GCGGCCGTTC | TGGTGTGCGC | CTGGAGGACT   | 1124 |
|    | TCAACTACAA | CAACCAGACC | ATTACCGACC | AAATCTACCG | GGCAATGAAC | TCTTCGTCCT   | 1184 |
|    | TTGAGGGTGT | CTCTGGCCAT | GTGGTGTTTG | ATGCCAGCGG | CTCTCGGATG | GCATGGACGC   | 1244 |
| 10 | TTATCGAGCA | GCTTCAGGGT | GGCAGCTACA | AGAAGATTGG | CTACTATGAC | AGCACCAAGG   | 1304 |
|    | ATGATCTTTC | CTGGTCCAAA | ACAGATAAAT | GGATTGGAGG | GTCCCCCCA  | GCTGACCAGA   | 1364 |
| 15 | CCCTGGTCAT | CAAGACATTC | CGCTTCCTGT | CACAGAAACT | СТТТАТСТСС | GTCTCAGTTC   | 1424 |
|    | TCTCCAGCCT | GGGCATTGTC | CTAGCTGTTG | TCTGTCTGTC | CTTTAACATC | TACAACTCAC   | 1484 |
|    | ATGTCCGTTA | TATCCAGAAC | TCACAGCCCA | ACCTGAACAA | CCTGACTGCT | GTGGGCTGCT   | 1544 |
| 20 | CACTGGCTTT | AGCTGCTGTC | TTCCCCCTGG | GGCTCGATGG | TTACCACATT | GGGAGGAACC   | 1604 |
|    | AGTTTCCTTT | CGTCTGCCAG | GCCCGCCTCT | GGCTCCTGGG | CCTGGGCTTT | AGTCTGGGCT   | 1664 |
| 25 | ACGGTTCCAT | GTTCACCAAG | ATTTGGTGGG | TCCACACGGT | CTTCACAAAG | AAGGAAGAAA   | 1724 |
|    | AGAAGGAGTG | GAGGAAGACT | CTGGAACCCT | GGAAGCTGTA | TGCCACAGTG | GGCCTGCTGG   | 1784 |
|    | TGGGCATGGA | TGTCCTCACT | CTCGCCATCT | GGCAGATCGT | GGACCCTCTG | CACCGGACCA   | 1844 |
| 30 | TTGAGACATT | TGCCAAGGAG | GAACCTAAGG | AAGATATTGA | CGTCTCTATT | CTGCCCCAGC . | 1904 |
|    | TGGAGCATTG | CAGCTCCAGG | AAGATGAATA | CATGGCTTGG | CATTTTCTAT | GGTTACAAGG   | 1964 |
| 35 | GGCTGCTGCT | GCTGCTGGGA | ATCTTCCTTG | CTTATGAGAC | CAAGAGTGTG | TCCACTGAGA   | 2024 |
| ,, | AGATCAATGA | TCACCGGGCT | GTGGGCATGG | СТАТСТАСАА | TGTGGCAGTC | CTGTGCCTCA   | 2084 |
|    | TCACTGCTCC | TGTCACCATG | ATTCTGTCCA | GCCAGCAGGA | TGCAGCCTTT | GCCTTTGCCT   | 2144 |
| 40 | CTCTTGCCAT | AGTTTTCTCC | тсстататса | CTCTTGTTGT | GCTCTTTGTG | CCCAAGATGC   | 2204 |
|    | GCAGGCTGAT | CACCCGAGGG | GAATGGCAGT | CGGAGGCGCA | GGACACCATG | ÁAGACAGGGT   | 2264 |

|   | CATCGACCAA | CAACAACGAG | GAGGAGAAGT | CCCGGCTGTT | GGAGAAGGAG | AACCGTGAAC | 2324 |
|---|------------|------------|------------|------------|------------|------------|------|
|   | TGGAAAAGAT | CATTGCTGAG | AAAGAGGAGC | GTGTCTCTGA | ACTGCGCCAT | CAACTCCAGT | 2384 |
| 5 | CTCGGCAGCA | GCTCCGCTCC | CGGCGCCACC | CACCGACACC | CCCAGAACCC | TCTGGGGGCC | 2444 |
|   | TGCCCAGGGG | ACCCCTGAG  | CCCCCGACC  | GGCTTAGCTG | TGATGGGAGT | CGAGTGCATT | 2504 |
|   | TGCTTTATAA | GTGA       |            |            |            |            | 2518 |

10

15

- (2) INFORMATION FOR SEQ ID NO: 73:
  - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 97 amino acids

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:

Met Leu Leu Leu Leu Leu Ala Pro Leu Phe Leu Arg Pro Pro Gly
1 5 10 15

25

Ala Gly Gly Ala Gln Thr Pro Asn Ala Thr Ser Glu Gly Cys Gln Ile 20 25 30

Ile His Pro Pro Trp Glu Gly Gly Ile Arg Tyr Arg Gly Leu Thr Arg 30 35 40 45

Asp Gln Val Lys Ala Ile Asn Phe Leu Pro Val Asp Tyr Glu Ile Glu 50 55 60

Tyr Val Cys Arg Gly Glu Arg Glu Val Val Gly Pro Lys Val Arg Lys 65 70 75 80

Cys Leu Ala Asn Gly Ser Trp Thr Asp Met Asp Thr Pro Ser Arg Cys
85 90 95

40

Val

H1865-1 WO SEQ

135

(2) INFORMATION FOR SEQ ID NO: 74: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2679 base pairs 5 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 10 (ii) MOLECULE TYPE: cDNA to mRNA (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO 15 (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (ix) FEATURE: 20 (A) NAME/KEY: CDS (B) LOCATION:1..2679 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74: ATG TTG CTG CTG CTA CTG GCG CCA CTC TTC CTC CGC CCC CCG GGC 48 Met Leu Leu Leu Leu Leu Ala Pro Leu Phe Leu Arg Pro Pro Gly 1 10 15 GCG GGC GGG GCG CAG ACC CCC AAC GCC ACC TCA GAA GGT TGC CAG ATC 96 Ala Gly Gly Ala Gln Thr Pro Asn Ala Thr Ser Glu Gly Cys Gln Ile 20 25 ATA CAC CCG CCC TGG GAA GGG GGC ATC AGG TAC CGG GGC CTG ACT CGG 144 Ile His Pro Pro Trp Glu Gly Gly Ile Arg Tyr Arg Gly Leu Thr Arg 35 35 40 GAC CAG GTG AAG GCT ATC AAC TTC CTG CCA GTG GAC TAT GAG ATT GAG 192 Asp Gln Val Lys Ala Ile Asn Phe Leu Pro Val Asp Tyr Glu Ile Glu 50 55 60 40 TAT GTG TGC CGG GGG GAG CGC GAG GTG GTG GGG CCC AAG GTC CGC AAG 240 Tyr Val Cys Arg Gly Glu Arg Glu Val Val Gly Pro Lys Val Arg Lys 65 70 H1865-1 WO SEO 136

PCT/SE98/01947 WO 99/21890

|    |     |        |       |       |        |       |     |       |      |      |       |      | •     |       |     | • •        |     |
|----|-----|--------|-------|-------|--------|-------|-----|-------|------|------|-------|------|-------|-------|-----|------------|-----|
|    | ጥርር | CTG    | GCC   | AAC   | GGC    | TCC   | TGG | ACA   | GAT  | ATG  | GAC   | ACA  | ccc   | AGC   | CGC | TGT        | 288 |
|    |     |        |       | Asn   |        |       |     |       |      |      |       |      |       |       |     |            |     |
|    | CJU |        |       |       | 85     |       |     |       | _    | 90   | _     |      |       |       | 95  |            |     |
| 5  |     |        |       |       |        |       |     |       |      |      |       |      |       |       |     |            |     |
| _  | GAA | CGG    | CGC   | GCA   | GTG    | TAC   | ATC | GGG   | GCA  | CTG  | ттт   | CCC  | ATG   | AGC   | GGG | GGC        | 336 |
|    | Glu | Arg    | Arg   | Ala   | Val    | Tyr   | Ile | Gly   | Ala  | Leu  | Phe   | Pro  | Met   | Ser   | Gly | Gly        |     |
|    |     |        |       | 100   |        |       |     |       | 105  |      |       |      |       | 110   |     |            |     |
|    |     |        |       |       |        |       |     |       |      |      |       |      |       |       |     |            |     |
| 10 | TGG | CCA    | GGG   | GGC   | CAG    | GCG   | TGC | CAG   | CCC  | GCG  | GTG   | GAG  | ATG   | GCG   | CTG | GAG        | 384 |
|    | Trp | Pro    | Gly   | Gly   | Gln    | Ala   | Cys | Gln   | Pro  | Ala  | Val   | Glu  | Met   | Ala   | Leu | Glu        |     |
|    |     |        | 115   |       |        |       |     | 120   |      |      |       |      | 125   |       |     |            |     |
|    |     |        |       |       |        |       |     |       |      |      |       |      |       |       |     |            |     |
|    |     |        |       | AGC   |        |       |     |       |      |      |       |      |       |       |     |            | 432 |
| 15 | Asp |        | Asn   | Ser   | Arg    | Arg   |     | Ile   | Leu  | Pro  | Asp   |      | Glu   | Leu   | Lys | Leu        |     |
|    |     | 130    |       |       |        |       | 135 |       |      |      |       | 140  |       |       |     |            |     |
|    |     | ~~~    | a. a  | GAC   | 200    | 7 7 C | mcm | C 3 M | CCA  | ccc  | C A A | CCC  | 7 C C | AAG   | ጥልር | СФА        | 480 |
|    |     |        |       | Asp   |        |       |     |       |      |      |       |      |       |       |     |            |     |
| 20 | 11e |        | птѕ   | ASP   | Ser    | 150   | Cys | rsp   | FIO  | Gry  | 155   | ALU  | 1112  | 775   | -1- | 160        |     |
| 20 | 143 |        |       |       |        | 130   |     |       |      |      |       |      |       |       |     |            |     |
|    | тат | GAG    | CTG   | CTC   | TAC    | AAC   | GAC | CCT   | ATC  | AAG  | ATC   | ATC  | CTT   | ATG   | CCT | GGC        | 528 |
|    |     |        |       |       |        |       |     |       |      |      |       |      |       |       |     | Gly        |     |
|    | -1- |        |       |       | 165    |       | _   |       |      | 170  |       |      |       |       | 175 |            |     |
| 25 |     |        |       |       |        |       |     |       |      |      |       |      |       |       |     |            |     |
|    | TGC | AGC    | тст   | GTC   | TCC    | ACG   | CTG | GTG   | GCT  | GAG  | GCT   | GCT  | AGG   | ATG   | TGG | AAC        | 576 |
|    | Суѕ | Ser    | Ser   | Val   | Ser    | Thr   | Leu | Val   | Ala  | Glu  | Ala   | Ala  | Arg   | Met   | Trp | Asn        |     |
|    |     |        |       | 180   |        |       |     | •     | 185  |      |       |      |       | 190   |     |            |     |
|    |     |        |       |       |        |       |     |       |      |      |       |      |       |       |     |            |     |
| 30 |     |        |       |       |        |       |     |       |      |      |       |      |       |       |     | CGG        | 624 |
|    | Leu | Ile    |       |       | Ser    | Туг   | Gly |       |      | Ser  | Pro   | Ala  |       |       | Asn | Arg        |     |
|    |     |        | 195   | i     |        |       |     | 200   |      |      |       |      | 205   |       |     |            |     |
|    |     |        |       |       |        |       |     |       | 1.00 | 63.6 | CC1   | mc a | ccc   | י ארא | CMC | CAC        | 672 |
|    |     |        |       |       |        |       |     |       |      |      |       |      |       |       |     | CAC<br>His | 0,2 |
| 35 | GIF | 210    |       | Pro   | THI    | PHE   | 215 |       | 1111 | 1112 | 210   | 220  |       |       |     |            |     |
|    |     | 210    | ,     |       |        |       | 213 |       |      |      |       |      |       |       |     |            |     |
|    | אמ  | י רכיי | ר אכנ | י רפר | С.Т.С. | : AAZ | CTC | TTT   | 'GAA | AAG  | TGG   | GGC  | TGG   | AAG   | AAG | ATT        | 720 |
|    |     |        |       |       |        |       |     |       |      |      |       |      |       |       |     | : Ile      |     |
| 40 | 225 |        |       |       |        | 230   |     |       |      | _    | 235   |      |       |       |     | 240        | ย   |
|    |     |        |       |       |        |       |     |       |      |      |       |      |       |       |     |            |     |
|    | GC! | r ac   | CATO  | CAC   | G CAC  | ACC   | ACT | GAC   | GTO  | TTC  | AC:   | r TC | ACT   | CTC   | GAC | GAC        | 768 |
|    |     |        |       |       |        |       |     |       |      |      |       |      |       |       |     | ) Asp      |     |
|    |     |        |       |       |        |       |     |       |      |      |       |      |       |       |     | ·          |     |
|    | HI  | 865-   | 1 WC  | SEC   | 2      |       |     |       | 137  |      |       |      |       |       |     |            |     |
|    |     |        |       |       | -      |       |     |       |      |      |       |      |       |       |     |            |     |

## SUBSTITUTE SHEET (RULE 26)

|    | H18          | 65-1     | wo         | SEQ         |      |         |      | 1    | 38   |      |            |                  |      |             |             |     |      |
|----|--------------|----------|------------|-------------|------|---------|------|------|------|------|------------|------------------|------|-------------|-------------|-----|------|
|    | GGA          | GGA      | GGC        | GGC         | CGT  | TCT     | GGT  | GTG  | CGC  | CTG  | GAG        | GAC              | TTC  | AAC         | TAC         | AAC | 1296 |
|    |              |          |            |             | 405  |         |      |      |      | 410  |            |                  |      |             | 415         |     |      |
| 40 | Ala          | Tyr      | Asp        | Ala         | Ile  | Trp     | Ala  | Leu  | Ala  | Leu. | Ala        | Leu              | Asn  | Lys         | Thr         | Ser |      |
|    | GCC          | TAT      | GAT        | GCC         | ATC  | TGG     | GCC  | TTG  | GCA  | CTG  | GCC        | CTG              | AAC  | AAG         | ACA         | TCT | 1248 |
|    | 385          |          |            |             |      | 390     |      |      |      |      | 395        |                  |      |             |             | 400 |      |
|    |              | rys      | Arg        | HIS         | Pro  |         | Glu  | Thr  | GIA  | Gly  | Phe        | Gln              | Glu  | Ala         | Pro         |     |      |
| 35 |              |          |            |             |      |         |      |      |      |      | TTC        |                  |      |             |             |     | 1200 |
|    |              |          |            |             |      |         |      |      |      |      |            |                  |      |             |             |     |      |
|    |              | 370      |            |             |      |         | 375  |      |      |      |            | 380              |      |             |             |     |      |
|    |              |          |            |             |      |         |      |      |      |      | Glu        |                  |      |             |             |     |      |
|    | ATT          | TCC      | AAC        | ATG         | ACA  | TCC     | CAG  | GAA  | TTT  | GTG  | GAG        | AAA              | CTA  | ACC         | AAG         | CGA | 1152 |
| 30 |              |          |            |             |      |         |      | 200  |      |      |            |                  | 202  |             |             |     |      |
|    | 1112         | T16      | 355        | TIIL        | GIU  | 116     | val  | 360  | пеп  | ASN  | PIO        | ита              | 365  | ınr         | arg         | ser |      |
|    |              |          |            |             |      |         |      |      |      |      | CCT<br>Pro |                  |      |             |             |     | 1104 |
|    | CAC          | አመር      | 7 C 7      | y car       | C3.C | א מונים | CMC. | N m∽ | ama. |      | 00-        | 00-              |      |             |             |     |      |
| 25 |              |          |            | 340         |      |         |      |      | 345  |      |            |                  |      | 350         |             |     |      |
|    | Pro          | Ser      | Ile        | Asn         | Суѕ  | Thr     | Val  | Asp  | Glu  | Met  | Thr        | Glu              | Ala  | Val         | Glu         | Gly |      |
|    | CCT          | TCT      | ATC        | AAC         | TGC  | ACA     | GTG  | GAT  | GAG  | ATG  | ACT        | GAG              | GCG  | GTG         | GAG         | GGC | 1056 |
|    |              |          |            |             |      |         |      |      |      |      |            |                  |      |             |             |     |      |
|    | - <b>- E</b> |          |            |             | 325  |         | -1-  |      |      | 330  | 2          | - 110            | ~y 3 | -14         | 335         | nsp |      |
| 20 |              |          |            |             |      |         |      |      |      |      | Trp        |                  |      |             |             |     | 1008 |
|    | ፐርር          | ጥጥር      | ርሞሮ        | <b>ል</b> ጥጥ | GGC  | ጥርር     | ጥልጥ  | ርርጥ  | GAC  | ልልጥ  | TGG        | ጥጥር              | ልልሮ  | አጥ <b>ሶ</b> | ሞአረ         | GNC | 1000 |
|    | 305          |          |            |             |      | 310     |      |      |      |      | 315        |                  |      |             |             | 320 |      |
|    |              | Phe      | Cys        | Glu         | Val  |         | Lys  | Glu  | Arg  | Leu  | Phe        | Gly              | Lys  | Lys         | Tyr         |     |      |
| 15 |              |          |            |             |      |         |      |      |      |      | TTT        |                  |      |             |             |     | 960  |
|    |              |          |            |             |      |         |      |      |      |      |            |                  |      |             |             |     |      |
|    |              | 290      |            |             |      |         | 295  |      |      |      |            | 300              |      |             | J           | -   |      |
|    |              |          |            |             |      |         |      |      |      |      | Glu        |                  |      |             |             |     | 712  |
|    | GAT          | GCC      | CGA        | ATC         | ATC  | GTG     | GGA  | СТТ  | TTC  | ТАТ  | GAG        | ୍<br><b>∆</b> ርጥ | GAA  | פרר         | CGG         | AAA | 912  |
| 10 |              |          | 2/5        |             |      |         |      | 280  |      |      |            |                  | 285  |             |             |     |      |
|    | Ser          | Phe<br>ਹ | Phe<br>275 | Ser         | Asp  | Pro     | Ala  |      | Pro  | Val  | Lys        | Asn              |      | Lys         | Arg         | Gln |      |
|    |              |          |            |             |      |         |      |      |      |      | AAA        |                  |      |             |             |     | 864  |
|    |              |          |            |             |      |         |      |      |      |      |            |                  |      |             |             |     |      |
| 5  |              |          |            | 260         |      |         |      |      | 265  |      |            |                  |      | 270         | Ī           |     |      |
|    |              |          |            |             |      |         |      |      |      |      |            |                  |      |             |             | Gln |      |
|    | CTG          | GAG      | GAA        | CGA         | GTG  | AAG     | GAG  | GCT  | GGA  | АТТ  | GAG        | ATT              | ACT  | TTC         | CGC         | CAG | 816  |
|    |              |          |            |             |      |         |      |      |      | 250  |            |                  |      |             | 233         |     |      |
|    |              |          |            |             | 245  |         |      |      | •    | 250  |            |                  |      |             | 25 <b>5</b> |     |      |
|    |              |          |            |             |      |         |      | -    | -    |      |            |                  | -    |             |             |     |      |

PCT/SE98/01947 WO 99/21890

|    | Glv        | Glv | Glv   | Glv  | Ara   | Ser      | Gly        | Val     | Arg  | Leu  | Glu    | Asp   | Phe   | Asn | Tyr        | Asn   |      |          |
|----|------------|-----|-------|------|-------|----------|------------|---------|------|------|--------|-------|-------|-----|------------|-------|------|----------|
|    | 07         | ,   | 1     | 420  |       |          | -          |         | 425  |      |        | _     |       | 430 | _          |       |      |          |
|    |            |     |       |      |       |          |            |         |      |      |        |       |       |     |            |       |      |          |
|    | AAC        | CAG | ACC   | ATT  | ACC   | GAC      | CAA        | ATC     | TAC  | CGG  | GCA    | ATG   | AAC   | TCT | TCG        | TCC   | 134  | 4        |
| 5  | Asn        | Gln | Thr   | Ile  | Thr   | Asp      | Gln        | Ile     | Tyr  | Arg  | Ala    | Met   | Asn   | Ser | Ser        | Ser   |      |          |
|    |            |     | 435   |      |       |          |            | 440     |      |      |        |       | 445   |     |            |       |      |          |
|    |            |     |       |      |       |          |            |         |      |      |        |       |       |     |            |       |      |          |
|    |            |     |       |      |       |          | CAT        |         |      |      |        |       |       |     |            |       | 139  | 2        |
|    | Phe        |     | Gly   | Val  | Ser   | Gly      | His        | Val     | Val  | Phe  | Asp    |       | Ser   | Gly | Ser        | Arg   |      |          |
| 10 |            | 450 |       |      |       |          | 455        |         |      |      |        | 460   |       |     |            |       |      |          |
|    |            |     | maa   |      | omm.  | N ID C   | CAC        | CAC     | COO  | CAC  | CCT    | CCC   | NCC.  | መእር | AAG        | A A C | 144  | ın       |
|    |            |     |       |      |       |          | GAG<br>Glu |         |      |      |        |       |       |     |            |       | 144  | . 0      |
|    | Met<br>465 | Ald | пр    | 1111 | nea   | 470      | GIU        | Gili    | пеα  | GIII | 475    | GLY   | 561   | 111 | <b>-</b> 3 | 480   |      |          |
| 15 | 400        |     |       |      |       | 4,0      |            |         |      |      | 4,5    |       |       |     |            | 100   |      |          |
| 13 | ΔሞͲ        | GGC | TAC   | тат  | GAC   | AGC      | ACC        | AAG     | GAT  | GAT  | СТТ    | TCC   | TGG   | TCC | AAA        | ACA   | 148  | 88       |
|    |            |     |       |      |       |          | Thr        |         |      |      |        |       |       |     |            |       |      |          |
|    |            |     | -     | -    | 485   |          |            | _       | _    | 490  |        |       |       |     | 495        |       |      |          |
|    |            |     |       |      |       |          |            |         |      |      |        |       |       |     |            |       |      |          |
| 20 | GAT        | AAA | TGG   | ATT  | GGA   | GGG      | TCC        | CCC     | CCA  | GCT  | GAC    | CAG   | ACC   | CTG | GTC        | ATC   | 153  | 36       |
|    | Asp        | Lys | Trp   | Ile  | Gly   | Gly      | Ser        | Pro     | Pro  | Ala  | Asp    | Gln   | Thr   | Leu | Val        | Ile   |      |          |
|    |            |     |       | 500  |       |          |            |         | 505  |      |        |       |       | 510 |            |       |      |          |
|    |            |     |       |      |       |          |            |         |      |      |        |       |       |     |            |       |      |          |
|    |            |     |       |      |       |          |            |         |      |      |        |       |       |     |            | GTT   | 158  | 84       |
| 25 | Lys        | Thr | Phe   | Arg  | Phe   | Leu      | Ser        | Gln     | Lys  | Leu  | Phe    | Ile   |       | Val | Ser        | Val   |      |          |
|    |            |     | 515   |      |       |          |            | 520     |      |      |        |       | 525   |     |            |       |      |          |
|    |            |     |       |      |       |          |            | <b></b> | 0.00 | amm  | c.m.c. | mam   | - CMC | maa | നതന        | 220   | 163  | 3.2      |
|    |            |     |       |      |       |          |            |         |      |      |        |       |       |     |            | AAC   | 10.  | <i>3</i> |
| •• | Leu        |     |       | Leu  | GIY   | 11e      | 535        | Leu     | Ala  | vai  | vai    | 540   |       | Ser | rne        | Asn   |      |          |
| 30 |            | 530 |       |      |       |          | 222        |         |      |      |        | 340   |       |     |            |       |      |          |
|    | אתכ        | ሞልሮ | AAC   | тса  | САТ   | GTC      | CGT        | TAT     | ATC  | CAG  | AAC    | TCA   | CAG   | CCC | AAC        | CTG   | 168  | 80       |
|    |            |     |       |      |       |          |            |         |      |      |        |       |       |     |            | Leu   |      |          |
|    | 545        | _   |       |      |       | 550      |            | -       |      |      | 555    |       |       |     |            | 560   |      |          |
| 35 |            |     |       |      |       |          |            |         |      |      |        |       |       |     |            |       | ⊶ar' |          |
|    | AAC        | AAC | CTG   | ACT  | GCT   | GTG      | GGC        | TGC     | TCA  | CTG  | GCI    | TTA   | GCT   | GCT | GTC        | TTC   | 17   | 28       |
|    | Asn        | Asn | Leu   | Thr  | Ala   | Val      | Gly        | Cys     | Ser  | Leu  | Ala    | Leu   | Ala   | Ala | Val        | Phe   |      |          |
|    |            |     |       |      | 565   | <b>,</b> |            |         |      | 570  |        |       |       |     | 575        |       |      |          |
|    |            |     |       |      |       |          |            |         |      |      |        |       |       |     |            |       |      |          |
| 40 | CCC        | CTC | GGG   | CTC  | GAT   | GGT      | TAC        | CAC     | TTA  | GGG  | AGG    | AAC   | CAG   | TTT | CCI        | TTC   | 17   | 76       |
|    | Pro        | Leu | ı Gly | , Le | ı Asp | Gl3      | туг        | His     | Il∈  | Gly  | Arg    | J Asr | Gln   | Phe | Pro        | Phe   |      |          |
|    |            |     |       | 580  | )     |          |            |         | 585  | 5    |        |       |       | 590 | )          |       |      |          |
|    |            |     |       |      |       |          |            |         |      |      |        |       |       |     |            |       |      |          |

|    |     |     |     |     |     |     |     | -   | •   |     |     |     | -   |     |     |                |      |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------|------|
|    | GTC | TGC | CAG | GCC | CGC | CTC | TGG | CTC | CTG | GGC | CTG | GGC | TŤT | AGT | CTG | GGĊ            | 1824 |
|    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | Gly            |      |
|    |     |     | 595 |     |     |     |     | 600 |     |     |     |     | 605 |     |     |                |      |
| 5  |     |     |     |     |     |     |     |     |     |     |     | CAC |     |     |     |                | 1872 |
|    | Tyr |     | Ser | Met | Phe | Thr | Lys | Ile | Trp | Trp | Val | His | Thr | Val | Phe | Thr            |      |
|    |     | 610 |     |     |     |     | 615 |     |     |     |     | 620 |     |     |     |                |      |
|    |     |     |     |     |     |     |     |     |     |     |     | CTG |     |     |     |                | 1920 |
| 10 |     | ьуs | Glu | Glu | Lys |     | Glu | Trp | Arg | Lys |     | Leu | Glu | Pro | Trp | Lys            |      |
|    | 625 |     |     |     |     | 630 |     |     |     |     | 635 |     |     |     |     | 640            |      |
|    | CTG | TAT | GCC | ACA | GTG | GGC | CTG | CTG | GTG | GGC | ATG | GAT | GTC | CTC | ACT | CTC            | 1968 |
|    | Leu | Tyr | Ala | Thr | Val | Gly | Leu | Leu | Val | Gly | Met | Asp | Val | Leu | Thr | Leu            |      |
| 15 |     |     |     |     | 645 |     |     |     |     | 650 |     |     |     |     | 655 |                |      |
|    | GCC | ATC | TGG | CAG | ATC | GTG | GAC | ССТ | CTG | CAC | CGG | ACC | ATT | GAG | ACA | ттт            | 2016 |
|    | Ala | Ile | Trp | Gln | Ile | Val | Asp | Pro | Leu | His | Arg | Thr | Ile | Glu | Thr | Phe            |      |
| 20 |     |     |     | 660 |     |     |     |     | 665 |     |     |     |     | 670 |     |                |      |
|    | GCC | AAG | GAG | GAA | CCT | AAG | GAA | GAT | ATT | GAC | GTC | тст | ATT | CTG | CCC | CAG            | 2064 |
|    |     |     |     |     |     |     |     |     |     |     |     | Ser |     |     |     |                | 2001 |
|    |     |     | 675 |     |     |     |     | 680 |     |     |     |     | 685 |     |     |                |      |
| 25 | CTG | GAG | CAT | TGC | AGC | TCC | AGG | AAG | ATG | AAT | ACA | TGG | СТТ | GGC | АТТ | TTC            | 2112 |
|    | Leu | Glu | His | Суѕ | Ser | Ser | Arg | Lys | Met | Asn | Thr | Trp | Leu | Gly | Ile | Phe            |      |
|    |     | 690 |     |     |     |     | 695 |     |     |     |     | 700 |     |     |     |                |      |
|    | TAT | GGT | TAC | AAG | GGG | CTG | CTG | CTG | CTG | CTG | GGA | ATC | TTC | CTT | GCT | TAT            | 2160 |
| 30 |     | Gly | Tyr | Lys | Gly | Leu | Leu | Leu | Leu | Leu | Gly | Ile | Phe | Leu | Ala | Tyr            |      |
|    | 705 |     |     |     |     | 710 |     |     |     |     | 715 |     |     |     |     | 720            |      |
|    |     |     |     |     |     |     |     |     |     |     |     | GAT |     |     |     |                | 2208 |
|    | Glu | Thr | Lys | Ser | Val | Ser | Thr | Glu | Lys | Ile | Asn | Asp | His | Arg | Ala | Val            |      |
| 35 |     |     |     |     | 725 |     |     |     |     | 730 |     |     |     |     | 735 | <del>-at</del> |      |
|    |     |     |     |     |     |     |     |     |     |     |     | CTC |     |     |     |                | 2256 |
|    | Gly | Met | Ala | Ile | Tyr | Asn | Val | Ala | Val | Leu | Cys | Leu | Ile | Thr | Ala | Pro            |      |
| 40 |     |     |     | 740 |     |     |     |     | 745 |     |     |     |     | 750 |     |                |      |
| 40 | GTC | ACC | ATG | АТТ | CTG | TCC | AGC | CAG | CAG | GAT | GCA | GCC | ттт | GCC | TTT | GCC            | 2304 |
|    |     |     |     |     |     |     |     |     |     |     |     | Ala |     |     |     |                | 2503 |
|    |     |     | 755 |     |     |     |     | 760 |     | -   |     |     | 765 |     |     |                |      |
|    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                |      |

|    |     |     |     |     |      |     |     |       |     |       |     |       |     |     |     | • •         |      |
|----|-----|-----|-----|-----|------|-----|-----|-------|-----|-------|-----|-------|-----|-----|-----|-------------|------|
|    | TCT | СТТ | GCC | ATA | GTT  | TTC | TCC | TCC   | TAT | ATC   | ACT | СТТ   | GTT | GTG | CTC | TTT         | 2352 |
|    | Ser | Leu | Ala | Ile | Val  | Phe | Ser | Ser   | Tyr | Ile   | Thr | Leu   | Val | Val | Leu | Phe         |      |
|    |     | 770 |     |     |      |     | 775 |       |     |       |     | 780   |     |     |     |             |      |
| 5  |     |     |     |     |      |     |     |       |     |       |     |       |     |     |     |             |      |
|    |     |     |     | ATG |      |     |     |       |     |       |     |       |     |     |     |             | 2400 |
|    | Val | Pro | Lys | Met | Arg  | Arg | Leu | Ile   | Thr | Arg   | Gly | Glu   | Trp | Gln | Ser |             |      |
|    | 785 |     |     |     |      | 790 |     |       |     |       | 795 |       |     |     |     | 800         |      |
|    |     | -3  |     |     |      |     |     |       |     |       |     |       |     |     |     |             | 0440 |
| 10 |     |     |     | ACC |      |     |     |       |     |       |     |       |     |     |     |             | 2448 |
|    | Ala | Gln | Asp | Thr |      | Lys | Thr | GГĀ   | Ser |       | Thr | Asn   | Asn | Asn |     | GIU         |      |
|    |     |     |     |     | 805  |     |     |       |     | 810   |     |       |     |     | 815 |             |      |
|    |     |     |     |     | omo. | mmc | CAC | 7 7 C | CAC | 7 7 C | CCM | C A A | CTC | GAA | AAC | አጥ <b>ር</b> | 2496 |
|    |     |     |     | CGG |      |     |     |       |     |       |     |       |     |     |     |             | 2400 |
| 15 | Glu | Lys | Ser | Arg | Leu  | Leu | GIU | цуѕ   | 825 | ASII  | ALG | GIU   | Leu | 830 | шуз | 116         |      |
|    |     |     |     | 820 |      |     |     |       | 023 |       |     |       |     | 050 |     |             |      |
|    | АТТ | GCT | GAG | AAA | GAG  | GAG | CGT | GTC   | TCT | GAA   | CTG | CGC   | САТ | CAA | CTC | CAG         | 2544 |
|    |     |     |     | Lys |      |     |     |       |     |       |     |       |     |     |     |             |      |
| 20 |     |     | 835 | -   |      |     |     | 840   |     |       |     |       | 845 |     |     |             |      |
|    |     |     |     |     |      |     |     |       |     |       |     |       |     |     |     |             |      |
|    | TCT | CGG | CAG | CAG | CTC  | CGC | TCC | CGG   | CGC | CAC   | CCA | CCG   | ACA | CCC | CCA | GAA         | 2592 |
|    | Ser | Arg | Gln | Gln | Leu  | Arg | Ser | Arg   | Arg | His   | Pro | Pro   | Thr | Pro | Pro | Glu         |      |
|    |     | 850 |     |     |      |     | 855 |       |     |       |     | 860   |     |     |     |             |      |
| 25 |     |     |     |     |      |     |     |       |     |       |     |       |     |     |     |             |      |
|    |     |     |     | GGC |      |     |     |       |     |       |     |       |     |     |     |             | 2640 |
|    | Pro | Ser | Gly | Gly | Leu  | Pro | Arg | Gly   | Pro | Pro   | Glu | Pro   | Pro | Asp | Arg |             |      |
|    | 865 |     |     |     |      | 870 |     |       |     |       | 875 |       |     |     |     | 880         |      |
|    |     |     |     |     |      |     |     |       |     |       |     |       |     |     |     |             | 2670 |
| 30 |     |     |     | GGG |      |     |     |       |     |       |     |       |     |     |     |             | 2679 |
|    | Ser | Суѕ | Asp | Gly |      |     | Val | His   | Leu |       |     | Lys   | *   |     |     |             |      |
|    |     | ,   |     |     | 885  |     |     |       |     | 890   |     |       |     |     |     |             |      |

- (2) INFORMATION FOR SEQ ID NO: 75:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 892 amino acids
    - (B) TYPE: amino acid
- 40 (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein

H1865-1 WO SEQ

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:

Met Leu Leu Leu Leu Leu Ala Pro Leu Phe Leu Arg Pro Pro Gly

1 5 10 15

Ala Gly Gly Ala Gln Thr Pro Asn Ala Thr Ser Glu Gly Cys Gln Ile
20 25 30

Ile His Pro Pro Trp Glu Gly Gly Ile Arg Tyr Arg Gly Leu Thr Arg
10 35 40 45

Asp Glm Val Lys Ala Ile Asn Phe Leu Pro Val Asp Tyr Glu Ile Glu 50 55 60

Tyr Val Cys Arg Gly Glu Arg Glu Val Val Gly Pro Lys Val Arg Lys
65 70 75 80

Cys Leu Ala Asn Gly Ser Trp Thr Asp Met Asp Thr Pro Ser Arg Cys
85 90 95

Glu Arg Arg Ala Val Tyr Ile Gly Ala Leu Phe Pro Met Ser Gly Gly
100 105 110

Trp Pro Gly Gln Ala Cys Gln Pro Ala Val Glu Met Ala Leu Glu
25 115 120 125

Asp Val Asn Ser Arg Arg Asp Ile Leu Pro Asp Tyr Glu Leu Lys Leu 130 135 140

30 Ile His His Asp Ser Lys Cys Asp Pro Gly Gln Ala Thr Lys Tyr Leu 145 150 155 160

Tyr Glu Leu Leu Tyr Asn Asp Pro Ile Lys Ile Ile Leu Met Pro Gly 165 170 175

Cys Ser Ser Val Ser Thr Leu Val Ala Glu Ala Ala Arg Met Trp Asn 180 185 190

Leu Ile Val Leu Ser Tyr Gly Ser Ser Ser Pro Ala Leu Ser Asn Arg
40 195 200 205

Gln Arg Phe Pro Thr Phe Phe Arg Thr His Pro Ser Ala Thr Leu His 210 215 220

H1865-1 WO SEQ

142

35

5

Asn Pro Thr Arg Val Lys Leu Phe Glu Lys Trp Gly Trp Lys Lys Ile Ala Thr Ile Gln Gln Thr Thr Glu Val Phe Thr Ser Thr Leu Asp Asp Leu Glu Glu Arg Val Lys Glu Ala Gly Ile Glu Ile Thr Phe Arg Gln Ser Phe Phe Ser Asp Pro Ala Val Pro Val Lys Asn Leu Lys Arg Gln Asp Ala Arg Ile Ile Val Gly Leu Phe Tyr Glu Thr Glu Ala Arg Lys Val Phe Cys Glu Val Tyr Lys Glu Arg Leu Phe Gly Lys Lys Tyr Val Trp Phe Leu Ile Gly Trp Tyr Ala Asp Asn Trp Phe Lys Ile Tyr Asp Pro Ser Ile Asn Cys Thr Val Asp Glu Met Thr Glu Ala Val Glu Gly His Ile Thr Thr Glu Ile Val Met Leu Asn Pro Ala Asn Thr Arg Ser Ile Ser Asn Met Thr Ser Gln Glu Phe Val Glu Lys Leu Thr Lys Arg Leu Lys Arg His Pro Glu Glu Thr Gly Gly Phe Gln Glu Ala Pro Leu Ala Tyr Asp Ala Ile Trp Ala Leu Ala Leu Ala Leu Asn Lys Thr Ser-Gly Gly Gly Arg Ser Gly Val Arg Leu Glu Asp Phe Asn Tyr Asn Asn Gln Thr Ile Thr Asp Gln Ile Tyr Arg Ala Met Asn Ser Ser Ser 

Phe Glu Gly Val Ser Gly His Val Val Phe Asp Ala Ser Gly Ser Arg Met Ala Trp Thr Leu Ile Glu Gln Leu Gln Gly Gly Ser Tyr Lys Lys Ile Gly Tyr Tyr Asp Ser Thr Lys Asp Asp Leu Ser Trp Ser Lys Thr Asp Lys Trp Ile Gly Gly Ser Pro Pro Ala Asp Gln Thr Leu Val Ile Lys Thr Phe Arg Phe Leu Ser Gln Lys Leu Phe Ile Ser Val Ser Val Leu Ser Ser Leu Gly Ile Val Leu Ala Val Val Cys Leu Ser Phe Asn Ile Tyr Asn Ser His Val Arg Tyr Ile Gln Asn Ser Gln Pro Asn Leu Asn Asn Leu Thr Ala Val Gly Cys Ser Leu Ala Leu Ala Ala Val Phe Pro Leu Gly Leu Asp Gly Tyr His Ile Gly Arg Asn Gln Phe Pro Phe Val Cys Gln Ala Arg Leu Trp Leu Leu Gly Leu Gly Phe Ser Leu Gly Tyr Gly Ser Met Phe Thr Lys Ile Trp Trp Val His Thr Val Phe Thr Lys Lys Glu Glu Lys Lys Glu Trp Arg Lys Thr Leu Glu Pro Trp Lys 640-Leu Tyr Ala Thr Val Gly Leu Leu Val Gly Met Asp Val Leu Thr Leu Ala Ile Trp Gln Ile Val Asp Pro Leu His Arg Thr Ile Glu Thr Phe Ala Lys Glu Glu Pro Lys Glu Asp Ile Asp Val Ser Ile Leu Pro Gln

SUBSTITUTE SHEET (RULE 26)

PCT/SE98/01947

WO 99/21890

Leu Glu His Cys Ser Ser Arg Lys Met Asn Thr Trp Leu Gly Ile Phe 

Tyr Gly Tyr Lys Gly Leu Leu Leu Leu Leu Gly Ile Phe Leu Ala Tyr 

Glu Thr Lys Ser Val Ser Thr Glu Lys Ile Asn Asp His Arg Ala Val 

Gly Met Ala Ile Tyr Asn Val Ala Val Leu Cys Leu Ile Thr Ala Pro 

Val Thr Met Ile Leu Ser Ser Gln Gln Asp Ala Ala Phe Ala Phe Ala 

Ser Leu Ala Ile Val Phe Ser Ser Tyr Ile Thr Leu Val Val Leu Phe 

Val Pro Lys Met Arg Arg Leu Ile Thr Arg Gly Glu Trp Gln Ser Glu 

Ala Gln Asp Thr Met Lys Thr Gly Ser Ser Thr Asn Asn Asn Glu Glu 

Glu Lys Ser Arg Leu Leu Glu Lys Glu Asn Arg Glu Leu Glu Lys Ile 

Ile Ala Glu Lys Glu Glu Arg Val Ser Glu Leu Arg His Gln Leu Gln 

Ser Arg Gln Gln Leu Arg Ser Arg Arg His Pro Pro Thr Pro Pro Glu 

Pro Ser Gly Gly Leu Pro Arg Gly Pro Pro Glu Pro Pro Asp Arg Leu 

Ser Cys Asp Gly Ser Arg Val His Leu Leu Tyr Lys 

(2) INFORMATION FOR SEQ ID NO: 76:

H1865-1 WO SEQ

| GAT ATG  | ATG G   | AC ACA        | CCC   | AGC | CGC  | TGT  | 28  |
|----------|---------|---------------|-------|-----|------|------|-----|
|          |         | 75            |       |     |      | 80   |     |
| Val Val  |         |               |       |     |      |      |     |
| GTG GTG  | GTG GO  | GG CCC        | AAG   | GTC | CGC  | AAG  | 24  |
|          |         | 60            |       |     |      |      |     |
| Leu Pro  |         |               |       |     |      |      |     |
| CTG CCA  | CCA G   | TG GAC        | TAT   | GAG | ATT  | GAG- | 19: |
| 9        | g   ^ j | , 11 <u>.</u> | 45    | Jeu | 7117 | ar 9 |     |
| Ile Arg  |         |               |       |     |      |      | 14  |
| ATC AGG  | אככ שי  | AC 000        |       | OMO | 3.00 | 000  | 4.4 |
| 25       |         |               |       | 30  |      |      |     |
| Ala Thr  | Thr S   | er Glu        | Gly   | Cys | Gln  | Ile  |     |
| GCC ACC  | ACC TO  | CA GAZ        | GGT   | TGC | CAG  | ATC  | 9   |
| 10       | 10      |               |       |     | 15   |      |     |
| Pro Leu  | •       | he Lei        | ı Arg | Pro | Pro  | Gly  |     |
| CCA CTC  |         |               |       |     |      |      | 4   |
| SEQ ID N | D NO:   | 76:           |       |     |      |      |     |
|          |         |               |       |     |      |      |     |
|          |         |               |       |     |      |      |     |
|          |         |               |       |     |      |      |     |
|          |         |               |       |     |      |      |     |
| piens    |         |               |       |     |      |      |     |
|          |         |               |       |     |      |      |     |
|          |         |               |       |     |      |      |     |
|          |         |               |       |     |      |      |     |
| mRNA     |         |               |       |     |      |      |     |
|          |         |               |       |     |      |      |     |
| ngle     |         |               |       |     |      |      |     |
| .đ       |         |               |       |     |      |      |     |
| pairs    | s       |               |       |     |      |      |     |
|          |         |               | CS:   |     |      |      |     |

|    |      |       |       |         |        |           |        |        | •     |            |     |       |     |       |               |     |   |      |
|----|------|-------|-------|---------|--------|-----------|--------|--------|-------|------------|-----|-------|-----|-------|---------------|-----|---|------|
|    | Cys  | Leu   | Ala   | Asn     | Gly    | Ser       | Trp    | Thr    | Asp   | Met        | Asp | Thr   | Pro | Ser   | Arg           | Cys |   |      |
|    | _    |       |       |         | 85     |           |        |        |       | 90         |     |       |     |       | 95            |     |   |      |
|    |      |       |       |         |        |           |        |        |       |            |     |       |     |       |               |     |   |      |
|    | GTG  | AAT   | CGA   | ACG     | CCA    | CAC       | TCA    | GAA    | CGG   | CGC        | GCA | GTG   | TAC | ATC   | GGG           | GCA |   | 336  |
| 5  |      |       |       |         |        |           | Ser    |        |       |            |     |       |     |       |               |     |   |      |
|    |      |       |       | 100     |        |           |        |        | 105   |            |     |       |     | 110   |               |     |   |      |
|    |      |       |       |         |        |           |        |        |       |            |     |       |     |       |               |     |   |      |
|    | CTG  | ттт   | ccc   | GCG     | GTG    | GAG       | ATG    | GCG    | CTG   | GAG        | GAC | GTG   | AAT | AGC   | CGC           | AGG |   | 384  |
|    |      |       |       |         |        |           | Met    |        |       |            |     |       |     |       |               |     |   |      |
| 10 |      |       | 115   |         |        |           |        | 120    |       |            |     |       | 125 |       |               |     |   |      |
|    |      |       |       |         |        |           |        |        |       |            |     |       |     |       |               |     |   |      |
|    | GAC  | ATC   | CTG   | CCG     | GAC    | TAT       | GAG    | CTC    | AAG   | СТС        | ATC | CAC   | CAC | GAC   | AGC           | AAG |   | 432  |
|    |      |       |       |         |        |           | Glu    |        |       |            |     |       |     |       |               |     |   |      |
|    |      | 130   |       |         | •      | -         | 135    |        | _     |            |     | 140   |     |       |               |     |   |      |
| 15 |      |       |       |         |        |           |        |        |       |            |     |       |     |       |               |     |   |      |
| 13 | ጥርጥ  | GAT   | CCA   | GGC     | CAA    | GCC       | ACC    | AAG    | TAC   | CTA        | TAT | GAG   | CTG | CTC   | TAC           | AAC |   | 480  |
|    |      |       |       |         |        |           | Thr    |        |       |            |     |       |     |       |               |     |   |      |
|    | 145  | 1105  |       | 2       |        | 150       |        | -      | _     |            | 155 |       |     |       |               | 160 |   |      |
|    | 143  |       |       |         |        |           |        |        |       |            |     |       |     |       |               |     |   |      |
| 20 | GAC  | ርርጥ   | ልጥር   | AAG     | ATC    | ATC       | CTT    | ATG    | ССТ   | GGC        | TGC | AGC   | тст | GTC   | TCC           | ACG |   | 528  |
| 20 |      |       |       |         |        |           | Leu    |        |       |            |     |       |     |       |               |     |   |      |
|    | дея  | 110   |       | 2,0     | 165    |           |        |        |       | 170        | _   |       |     |       | 175           |     |   |      |
|    |      |       |       |         | 103    |           |        |        |       |            |     |       |     |       |               |     |   |      |
|    | CTG  | GTG   | ССТ   | GAG     | GCT    | GCT       | AGG    | ATG    | TGG   | AAC        | CTC | ATT   | GTG | CTT   | TCC           | TAT |   | 576  |
| 25 |      |       |       |         |        |           | Arg    |        |       |            |     |       |     |       |               |     |   |      |
| 23 | Deu  | vaı   | niu   | 180     |        |           |        |        | 185   |            |     |       |     | 190   |               |     |   |      |
|    |      |       |       | 100     |        |           |        |        |       |            |     |       |     |       |               |     |   |      |
|    | ccc  | ሞሮር   | · AGC | י יירא  | CCA    | GCC       | CTG    | TCA    | AAC   | CGG        | CAG | CGT   | TTC | CCC   | ACT           | TTC |   | 624  |
|    |      |       |       |         |        |           |        |        |       |            |     |       |     |       |               | Phe |   |      |
| 20 | GIY  | Jei   | 195   |         | 110    |           |        | 200    |       |            |     | _     | 205 |       |               |     |   |      |
| 30 |      |       | 100   | ,       |        |           |        |        |       |            |     |       |     |       |               |     |   |      |
|    | mmc  | CG    | A C C | : CAC   | CCA    | TCA       | GCC    | ACA    | CTC   | CAC        | AAC | CCI   | ACC | CGC   | GTG           | AAA |   | 672  |
|    |      |       |       |         |        |           |        |        |       |            |     |       |     |       |               | Lys |   |      |
|    | Pile | 210   |       | . 1113  |        | DCI       | 215    |        |       |            |     | 220   |     |       |               |     | • |      |
| 25 |      | 210   | ,     |         |        |           |        |        |       |            |     |       |     |       |               | *** |   |      |
| 35 | CMC  | n mmr | ኮ ርአ፣ | 1 A A C | TCC    | : GGC     | י ጥርር  | . AAC  | . AAG | ATT        | GCT | r ACC | ATC | CAG   | CAG           | ACC |   | 720  |
|    |      |       |       |         |        |           |        |        |       |            |     |       |     |       |               | Thr |   |      |
|    |      |       | S GI  | т груз  | , ith  | 230       |        | ,, .   | ,,_   |            | 23  | _     |     |       |               | 240 |   |      |
|    | 225  | )     |       |         |        | ۱ د ع     | -      |        |       |            |     | -     |     |       |               |     |   |      |
|    |      | n ~*  | - Cm  | ~ mm/   | י ארים | י ייייריי | ב ארים | י כיתי | GAC   | GAC        | CTY | G GAC | GA/ | A CGA | A GTO         | AAG |   | 768, |
| 40 |      |       |       |         |        |           |        |        |       |            |     |       |     |       |               | Lys |   | P    |
|    | Thi  | r GI  | u va  | r hue   |        |           | L Lill | . nei  | - voř | 250<br>250 |     |       | ~   |       | <sup>25</sup> |     |   |      |
|    |      |       |       |         | 245    | ,         |        |        |       | 236        | •   |       | ٠   |       |               |     |   | •    |
|    |      |       |       |         |        |           |        |        |       |            |     |       |     |       |               |     |   |      |

|    |      |          |                |        |      |             |     | -     | -   |     |      |            | -    |             |       |             |        |
|----|------|----------|----------------|--------|------|-------------|-----|-------|-----|-----|------|------------|------|-------------|-------|-------------|--------|
|    | GAG  | GCT      | GGA            | ATT    | GAG  | ATT         | ACT | TTC   | CGC | CAG | AGT  | TTC        | TTC  | TCA         | GAT   | CCA         | 816    |
|    | Glu  | Ala      | Gly            | Ile    | Glu  | Ile         | Thr | Phe   | Arg | Gln | Ser  | Phe        | Phe  | Ser         | Asp   | Pro         |        |
|    |      |          |                | 260    |      |             |     |       | 265 |     |      |            |      | 2,70        |       |             |        |
|    |      |          |                |        |      |             |     |       |     |     |      |            |      |             |       |             |        |
| 5  |      |          | CCC            |        |      |             |     |       |     |     |      |            |      |             |       |             | 864    |
|    | Ala  | Val      | Pro            | Val    | Lys  | Asn         | Leu |       | Arg | Gln | Asp  | Ala        | Arg  | Ile         | Ile   | Val         |        |
|    |      |          | 275            |        |      |             |     | 280   |     |     |      |            | 285  |             |       |             |        |
|    | GGA  | CTT      | TTC            | тат    | GAG  | aርጥ         | GAA | GCC   | CGG | ΔΔΔ | Cum  | աստ        | ጥርጥ  | GAG         | CTC   | መልሮ         | 912    |
| 10 |      |          | Phe            |        |      |             |     |       |     |     |      |            |      |             |       |             | 312    |
|    | -    | 290      |                |        |      |             | 295 |       | 9   | -2- |      | 300        | 0,0  |             | vai   | -7-         |        |
|    |      |          |                |        |      |             |     |       |     |     |      |            |      |             |       |             |        |
| •  | AAG  | GAG      | CGT            | CTC    | TTT  | <b>G</b> GG | AAG | AAG   | TAC | GTC | TGG  | TTC        | CTC  | АТТ         | GGG   | TGG         | 960    |
|    | Lys  | Glu      | Arg            | Leu    | Phe  | Gly         | Lys | Lys   | Tyr | Val | Trp  | Phe        | Leu  | Ile         | Gly   | Trp         |        |
| 15 | 305  |          |                |        |      | 310         |     |       |     |     | 315  |            |      |             |       | 320         |        |
|    | •    |          |                |        |      |             |     |       |     |     |      |            |      |             |       |             |        |
|    |      |          | GAC            |        |      |             |     |       |     |     |      |            |      |             |       |             | 1008   |
|    | Tyr  | Ala      | Asp            | Asn    |      | Phe         | Lys | Ile   | Tyr |     | Pro  | Ser        | Ile  | Asn         |       | Thr         |        |
| 20 |      |          |                |        | 325. |             |     |       |     | 330 |      |            |      | •           | 335   |             |        |
| 20 | GTG  | GAT      | GAG            | ATG    | ACT  | GAG         | GCG | GTG   | GAG | GGC | CAC  | АТС        | ACA  | ልርጥ         | GAG   | <b>ል</b> ጥጥ | 1056   |
|    |      |          | Glu            |        |      |             |     |       |     |     |      |            |      |             |       |             | 1030   |
|    |      |          |                | 340    |      |             |     |       | 345 | _   |      |            |      | 350         |       |             |        |
|    |      |          |                |        |      |             | -   |       |     |     |      |            |      |             |       |             |        |
| 25 | GTC  | ATG      | CTG            | AAT    | CCT  | GCC         | ААТ | ACC   | CGC | AGC | АТТ  | TCC        | AAC  | ATG         | ACA   | TCC         | 1104   |
|    | Val  | Met      | Leu            | Asn    | Pro  | Ala         | Asn | Thr   | Arg | Ser | Ile  | Ser        | Asn  | Met         | Thr   | Ser         |        |
|    |      |          | 355            |        |      |             |     | 360   |     |     |      |            | 365  |             |       |             |        |
|    | anc. | C2 2 2 . | mmm            | C.M.C. | ~~~  |             | Gm3 |       |     |     |      |            |      |             |       |             |        |
| 30 |      |          | TTT<br>Phe     |        |      |             |     |       |     |     |      |            |      |             |       |             | 1152   |
| 30 | 0111 | 370      | 1116           | Vai    | GIU  | цуз         | 375 | 1111  | БУS | AIG | ьец  | 380<br>Tys | Arg  | HIS         | PIO   | GIU         |        |
|    |      |          |                |        |      |             |     |       |     |     |      | 300        |      |             |       |             |        |
|    | GAG  | ACA      | GGA            | GGC    | TTC  | CAG         | GAG | GCA   | CCG | CTG | GCC  | TAT        | GAT  | GCC         | ATC   | TGG         | 1200   |
|    | Glu  | Thr      | Gly            | Gly    | Phe  | Gln         | Glu | Ala   | Pro | Leu | Ala  | Tyr        | Asp  | Ala         | Ile   | Trp         |        |
| 35 | 385  |          |                |        |      | 390         |     |       |     |     | 39,5 |            |      |             |       | 400-        |        |
|    |      |          |                |        |      |             |     |       |     |     |      |            |      |             |       |             |        |
|    |      |          | GCA            |        |      |             |     |       |     |     |      |            |      |             |       |             | 1248   |
|    | Ala  | Leu      | Ala            | Leu    |      | Leu         | Asn | Lys   | Thr |     | Gly  | Gly        | Gly  | Gly         |       | Ser         |        |
| 10 |      |          |                |        | 405  |             |     |       |     | 410 |      |            |      |             | 415   |             |        |
| 40 | ርርጥ  | CTC      | CGC            | ርጥር    | GAG  | GA C        | ጥኮር | ם מ מ | ጥልሮ | חממ | ממ   | CAC        | እሮሮ  | <b>አ</b> ጥጥ | እሮሮ   | CAC         | 1296   |
|    |      |          | Arg            |        |      |             |     |       |     |     |      |            |      |             |       |             | . 1230 |
|    | 1    |          | <del>-</del> - | 420    |      |             |     |       | 425 |     |      |            | -+1- | 430         | T 11T | wop         |        |
|    |      |          |                |        |      |             |     |       |     |     |      |            |      |             |       |             |        |
|    |      |          |                |        |      |             |     |       |     |     |      |            |      |             |       |             |        |

|    |      |             |       |       |     |       |       |     |       |     |      |       |         |       |          |       | •   |      |
|----|------|-------------|-------|-------|-----|-------|-------|-----|-------|-----|------|-------|---------|-------|----------|-------|-----|------|
|    | C2 2 | אשכ         | ma C  | ccc   | CCA | ΔТС   | AAC   | ጥርጥ | ጥርር   | ጥርር | புரு | GAG   | GGT     | GTC   | ጥርጥ      | GGC   |     | 1344 |
|    |      |             |       |       |     |       | Asn   |     |       |     |      |       |         |       |          |       |     |      |
|    | GIII | 116         | 435   | nr g  | ALU |       |       | 440 | 502   |     |      |       | 445     |       |          |       |     |      |
| •  |      |             | 477   |       |     |       |       | 110 |       |     |      |       |         |       |          |       |     |      |
| 5  | СУШ  | CTC         | GTG.  | ጥጥጥ   | СУТ | GCC   | AGC   | GGC | ጥርጥ   | CGG | ATG  | GCA   | TGG     | ACG   | CTT      | ATC   |     | 1392 |
|    |      |             |       |       |     |       | Ser   |     |       |     |      |       |         |       |          |       |     |      |
|    | nis  | 450         | Vai   | 1116  | пор |       | 455   | 01, | 551   | 9   |      | 460   |         |       |          |       |     |      |
|    |      | -3<br>-3-20 |       |       |     |       |       |     |       |     |      |       |         |       |          |       |     |      |
| 10 |      |             | СФФ   | CAG   | GGT | GGC   | AGC   | TAC | AAG   | AAG | АТТ  | GGC   | TAC     | тат   | GAC      | AGC   |     | 1440 |
|    |      |             |       |       |     |       | Ser   |     |       |     |      |       |         |       |          |       |     |      |
|    | 465  | GIII        | БСи   | 0111  | CII | 470   |       | -1- | -,, - | -,- | 475  | 1     |         | -2-   |          | 480   |     |      |
|    | 403  |             |       |       |     | 2.0   |       |     |       |     |      |       |         |       |          |       |     |      |
|    | ACC  | AAG         | GAT   | GAT   | CTT | TCC   | TGG   | TCC | AAA   | ACA | GAT  | AAA   | TGG     | ATT   | GGA      | GGG   |     | 1488 |
| 15 |      |             |       |       |     |       |       |     |       |     |      |       |         |       |          | Gly   |     |      |
| .5 |      | 2,7         | 1105  |       | 485 |       | _     |     | _     | 490 | -    | -     | -       |       | 495      | _     |     |      |
|    |      |             |       |       |     |       |       |     |       |     |      |       |         |       |          |       |     |      |
|    | TCC  | CCC         | CCA   | GCT   | GAC | CAG   | ACC   | CTG | GTC   | ATC | AAG  | ACA   | TTC     | CGC   | TTC      | CTG   |     | 1536 |
|    |      |             |       |       |     |       |       |     |       |     |      |       |         |       |          | Leu   |     |      |
| 20 |      |             |       | 500   |     | •     |       |     | 505   |     |      |       |         | 510   |          |       |     |      |
|    |      |             |       |       |     |       |       |     |       |     |      |       |         |       |          |       |     |      |
|    | TCA  | CAG         | AAA   | CTC   | TTT | ATC   | TCC   | GTC | TCA   | GTT | CTC  | TCC   | AGC     | CTG   | GGC      | ATT   |     | 1584 |
|    | Ser  | Gln         | Lys   | Leu   | Phe | Ile   | Ser   | Val | Ser   | Val | Leu  | Ser   | Ser     | Leu   | Gly      | Ile   |     |      |
|    |      |             | 515   |       |     |       |       | 520 |       |     |      |       | 525     |       |          |       |     |      |
| 25 |      |             |       |       |     |       |       |     |       |     |      |       |         |       |          |       |     |      |
|    | GTC  | CTA         | GCT   | GTT   | GTC | TGT   | CTG   | TCC | TTT   | AAC | ATC  | TAC   | AAC     | TCA   | CAT      | GTC   |     | 1632 |
|    | Val  | Leu         | Ala   | Val   | Val | Cys   | Leu   | Ser | Phe   | Asn | Ile  | Tyr   | Asn     | Ser   | His      | Val   |     |      |
|    |      | 530         |       |       |     |       | 535   |     |       |     |      | 540   |         |       |          |       |     |      |
|    |      |             |       |       |     |       |       |     |       |     |      |       |         |       |          |       |     |      |
| 30 | CGT  | TAT         | ATC   | CAG   | AAC | TCA   | CAG   | CCC | AAC   | CTG | AAC  | AAC   | CTG     | ACT   | GCT      | GTG   |     | 1680 |
|    | Arg  | Tyr         | Ile   | Gln   | Asn | Ser   | Gln   | Pro | Asn   | Leu | Asn  | Asn   | Leu     | Thr   | Ala      | Val   |     |      |
|    | 545  |             |       |       |     | 550   |       |     |       |     | 555  |       |         |       |          | 560   |     |      |
|    |      | •           |       |       |     |       |       |     |       |     |      |       |         |       |          |       |     |      |
|    |      |             |       |       |     |       |       |     |       |     |      |       |         |       |          | GGT   |     | 1728 |
| 35 | Gly  | Cys         | Ser   | Leu   | Ala | Leu   | Ala   | Ala | Val   | Phe | Pro  | Leu   | Gly     | Leu   | Asp      | Gly.  | et. |      |
|    |      |             |       |       | 565 |       |       |     |       | 570 |      |       |         |       | 575      | •     |     |      |
|    |      |             |       |       |     |       |       |     |       |     |      |       |         |       |          |       |     |      |
|    |      |             |       |       |     |       |       |     |       |     |      |       |         |       |          | CTC   |     | 1776 |
|    | Туг  | His         | Il€   | Gly   | Arg | Asn   | Gln   | Phe | Pro   | Phe | Val  | . Суз | Glr     |       |          | , Leu |     |      |
| 40 |      |             |       | 580   | )   |       |       |     | 585   |     |      |       |         | 590   | )        |       |     | L    |
|    |      |             |       |       |     |       |       |     |       |     |      |       |         |       | <b>.</b> |       |     | 4007 |
|    |      |             |       |       |     |       |       |     |       |     |      |       |         |       |          | ACC   |     | 1824 |
|    | Tr   | ) Lev       | ı Lev | ı Gly | Lei | ı Gly | r Ph∈ | Ser | Leu   | Gly | туз  | Gly   | ser Ser | . Met | : Phe    | • Thr |     |      |
|    |      |             |       |       |     |       |       |     |       | _   |      |       |         |       |          |       |     |      |

|    | •   |       | 595   |          |     |     |     | 600 |      |     |     |        | 605 |     |     | :   |      |    |
|----|-----|-------|-------|----------|-----|-----|-----|-----|------|-----|-----|--------|-----|-----|-----|-----|------|----|
|    | AAG | ATT   | TGG   | TGG      | GTC | CAC | ACG | GTC | TTC  | ACA | AAG | AAG    | GAA | GAA | AAG | AAG | 1872 | 2  |
|    | Lys | Ile   | Trp   | Trp      | Val | His | Thr | Val | Phe  | Thr | Lys | Lys    | Glu | Glu | Lys | Lys |      |    |
| 5  |     | 610   |       |          |     |     | 615 |     |      |     |     | 620    |     |     |     |     |      |    |
|    | GAG | TGG   | AGG   | AAG      | ACT | CTG | GAA | ccc | TGG  | AAG | CTG | тат    | GCC | ACA | GTG | GGC | 1920 | 0  |
|    |     | Trp   | Arg   | Lys      | Thr |     | Glu | Pro | Trp  | Lys |     | Tyr    | Ala | Thr | Val | -   |      |    |
| 10 | 625 |       |       |          |     | 630 |     |     |      |     | 635 |        |     |     |     | 640 |      |    |
|    | CTG | CTG   | GTG   | GGC      | ATG | GAT | GTC | CTC | ACT  | CTC | GCC | ATC    | TGG | CAG | ATC | GTG | 1968 | 8  |
|    | Leu | Leu   | Val   | Gly      | Met | Asp | Val | Leu | Thr  | Leu | Ala | Ile    | Trp | Gln | Ile | Val |      |    |
|    |     |       |       |          | 645 |     |     |     |      | 650 |     |        |     |     | 655 |     |      |    |
| 15 | GAC | CCT   | CTG   | CAC      | CGG | ACC | ATT | GAG | ACA  | TTT | GCC | AAG    | GAG | GAA | CCT | AAG | 201  | 6  |
|    | Asp | Pro   | Leu   | His      | Arg | Thr | Ile | Glu |      | Phe | Ala | Lys    | Glu |     | Pro | Lys |      |    |
|    |     |       |       | 660      |     |     |     |     | 665  |     |     |        |     | 670 |     |     |      |    |
|    | GAA | GAT   | ATT   | GAC      | GTC | TCT | ATT | CTG | CCC  | CAG | CTG | GAG    | CAT | TGC | AGC | TCC | 206  | 4  |
| 20 | Glu | Asp   | Ile   | Asp      | Val | Ser | Ile | Leu | Pro  | Gln | Leu | Glu    | His | Cys | Ser | Ser |      |    |
|    |     |       | 675   |          |     |     |     | 680 |      |     |     |        | 685 |     |     |     |      |    |
|    | AGG | AAG   | ATG   | AAT      | ACA | TGG | CTT | GGC | АТТ  | TTC | TAT | GGT    | TAC | AAG | GGG | CTG | 211: | 2  |
|    | Arg | Lys   | Met   | Asn      | Thr | Trp | Leu | Gly | Ile  | Phe | Tyr | Gly    | Tyr | Lys | Gly | Leu |      |    |
| 25 |     | 690   |       |          |     |     | 695 |     |      |     |     | 700    |     |     |     |     |      |    |
|    | CTG | CTG   | CTG   | CTG      | GGA | ATC | TTC | CTT | GCT  | TAT | GAG | ACC    | AAG | AGT | GTG | TCC | 216  | 0  |
|    | Leu | Leu   | Leu   | Leu      | Gly | Ile | Phe | Leu | Ala  | Tyr | Glu | Thr    | Lys | Ser | Val | Ser |      |    |
|    | 705 |       |       |          |     | 710 |     |     |      |     | 715 |        |     |     |     | 720 |      |    |
| 30 | እረመ | CAC   | 3 A C | ATC      | አአጥ | CAT | CAC | ccc | CCT  | CTC | ccc | א תעכי | CCT | አጥር | መልሮ | አአጥ | 220  | 0  |
|    |     |       |       | Ile      |     |     |     |     |      |     |     |        |     |     |     |     | 220  | 9  |
|    |     |       | -,-   |          | 725 |     |     |     |      | 730 |     |        |     |     | 735 |     |      |    |
|    |     |       |       |          |     |     |     |     |      |     |     |        |     |     |     |     |      |    |
| 35 |     |       |       | CTG      |     |     |     |     |      |     |     |        |     |     |     |     | 225  | 6  |
|    | Val | Ala   | Val   | Leu      | Cys | Leu | Ile | Thr |      | Pro | Val | Thr    | Met |     | Leu | Ser |      |    |
| -  |     |       |       | 740      |     |     |     |     | 745  |     |     |        |     | 750 |     |     |      |    |
|    | AGC | CAG   | CAG   | GAT      | GCA | GCC | TTT | GCC | TTT  | GCC | TCT | CTT    | GCC | ATA | GTT | TTC | 230  | 4  |
| 40 | Ser | Gln   | Gln   | Asp      | Ala | Ala | Phe | Ala | Phe  | Ala | Ser | Leu    | Ala | Ile | Val | Phe |      | į, |
|    |     |       | 755   |          |     |     |     | 760 |      |     |     |        | 765 | •   |     |     |      |    |
|    | TCC | TCC   | TAT   | ATC      | ACT | CTT | GTT | GTG | CTC  | TTT | GTG | CCC    | AAG | ATG | CGC | AGG | 235  | 2  |
|    |     |       | ****  | <u> </u> |     |     |     |     | 1.50 |     |     |        |     |     |     |     |      | _  |
|    | H18 | 365-1 | wo    | SEQ      | ?   |     |     |     | 150  |     |     |        |     |     |     |     |      |    |

|    | Ser | Ser<br>770 | Tyr | Ile | Thr | Leu | Val<br>775 | Val | Leu | Phe | Val | Pro<br>780 | Lys | Met | Arg | Arg | _    |
|----|-----|------------|-----|-----|-----|-----|------------|-----|-----|-----|-----|------------|-----|-----|-----|-----|------|
|    | CTG | ATC        | ACC | CGA | GGG | GAA | TGG        | CAG | TCG | GAG | GCG | CAG        | GAC | ACC | ATG | AAG | 2400 |
| 5  | Leu | Ile        | Thr | Arg | Gly | Glu | Trp        | Gln | Ser | Glu | Ala | Gln        | Asp | Thr | Met | Lys |      |
|    | 785 |            |     |     |     | 790 |            |     |     |     | 795 |            |     |     |     | 800 |      |
|    |     |            |     |     |     |     |            |     |     |     |     |            |     |     |     |     |      |
|    | ACA | GGG        | TCA | TCG | ACC | AAC | AAC        | AAC | GAG | GAG | GAG | AAG        | TCC | CGG | CTG | TTG | 2448 |
|    | Thr | Gly        | Ser | Ser | Thr | Asn | Asn        | Asn | Glu | Glu | Glu | Lys        | Ser | Arg | Leu | Leu |      |
| 10 |     |            |     |     | 805 |     |            |     |     | 810 |     |            |     |     | 815 |     |      |
|    |     |            |     |     |     |     |            |     |     |     |     |            |     |     |     |     |      |
|    | -   |            |     |     |     |     |            |     |     |     |     |            |     |     | GAG |     | 2496 |
|    | Glu | Lys        | Glu | Asn | Arg | Glu | Leu        | Glu | Lys | Ile | Ile | Ala        | Glu | Lys | Glu | Glu |      |
|    |     |            |     | 820 |     |     |            |     | 825 |     |     |            |     | 830 |     |     |      |
| 15 |     |            |     |     |     |     |            |     |     |     |     |            |     |     |     |     |      |
|    |     |            |     |     |     |     |            |     |     |     |     |            |     |     | CTC |     | 2544 |
|    | Arg | Val        | Ser | Glu | Leu | Arg | His        | Gln | Leu | Gln | Ser | Arg        | Gln | Gln | Leu | Arg |      |
|    |     |            | 835 |     |     |     |            | 840 |     |     |     |            | 845 |     |     |     |      |
|    |     |            |     |     |     |     |            |     |     |     |     |            |     |     |     |     |      |
| 20 |     |            |     |     |     |     |            |     |     |     |     |            |     |     | CTG |     | 2592 |
|    | Ser | Arg        | Arg | His | Pro | Pro | Thr        | Pro | Pro | Glu | Pro |            | Gly | Gly | Leu | Pro |      |
|    |     | 850        |     |     |     |     | 855        |     |     |     |     | 860        |     |     |     |     |      |
|    |     |            |     |     |     |     |            |     |     |     |     |            |     |     |     |     | 2640 |
|    |     |            |     |     |     |     |            |     |     |     |     |            |     |     |     | CGA | 2640 |
| 25 | Arg | Gly        | Pro | Pro | Glu |     |            | Asp | Arg | Leu |     |            | Asp | GIY | Ser | Arg |      |
|    | 865 |            |     |     |     | 870 |            |     |     |     | 875 |            |     |     |     | 880 |      |
|    |     |            |     |     |     |     |            |     |     |     |     |            |     |     |     |     | 2661 |
|    |     |            |     |     |     | AAG |            |     |     |     |     |            |     |     |     |     | 2001 |
|    | Val | His        | Leu | Leu |     | Lys | *          |     |     |     |     |            |     |     |     |     |      |
| 30 |     |            |     |     | 885 |     |            |     |     |     |     |            |     |     |     |     |      |

- (2) INFORMATION FOR SEQ ID NO: 77:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 886 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:

Met Leu Leu Leu Leu Leu Ala Pro Leu Phe Leu Arg Pro Pro Gly Ala Gly Gly Ala Gln Thr Pro Asn Ala Thr Ser Glu Gly Cys Gln Ile Ile His Pro Pro Trp Glu Gly Gly Ile Arg Tyr Arg Gly Leu Thr Arg Asp Gln Val Lys Ala Ile Asn Phe Leu Pro Val Asp Tyr Glu Ile Glu Tyr Val Cys Arg Gly Glu Arg Glu Val Val Gly Pro Lys Val Arg Lys Cys Leu Ala Asn Gly Ser Trp Thr Asp Met Asp Thr Pro Ser Arg Cys Val Asn Arg Thr Pro His Ser Glu Arg Arg Ala Val Tyr Ile Gly Ala Leu Phe Pro Ala Val Glu Met Ala Leu Glu Asp Val Asn Ser Arg Arg Asp Ile Leu Pro Asp Tyr Glu Leu Lys Leu Ile His His Asp Ser Lys Cys Asp Pro Gly Gln Ala Thr Lys Tyr Leu Tyr Glu Leu Leu Tyr Asn Asp Pro Ile Lys Ile Ile Leu Met Pro Gly Cys Ser Ser Val Ser Thr Leu Val Ala Glu Ala Ala Arg Met Trp Asn Leu Ile Val Leu Ser Tyr Gly Ser Ser Ser Pro Ala Leu Ser Asn Arg Gln Arg Phe Pro Thr Phe Phe Arg Thr His Pro Ser Ala Thr Leu His Asn Pro Thr Arg Val Lys Leu Phe Glu Lys Trp Gly Trp Lys Lys Ile Ala Thr Ile Gln Gln Thr

PCT/SE98/01947

WO 99/21890 Thr Glu Val Phe Thr Ser Thr Leu Asp Asp Leu Glu Glu Arg Val Lys Glu Ala Gly Ile Glu Ile Thr Phe Arg Gln Ser Phe Phe Ser Asp Pro Ala Val Pro Val Lys Asn Leu Lys Arg Gln Asp Ala Arg Ile Ile Val Gly Leu Phe Tyr Glu Thr Glu Ala Arg Lys Val Phe Cys Glu Val Tyr Lys Glu Arg Leu Phe Gly Lys Lys Tyr Val Trp Phe Leu Ile Gly Trp Tyr Ala Asp Asn Trp Phe Lys Ile Tyr Asp Pro Ser Ile Asn Cys Thr Val Asp Glu Met Thr Glu Ala Val Glu Gly His Ile Thr Thr Glu Ile Val Met Leu Asn Pro Ala Asn Thr Arg Ser Ile Ser Asn Met Thr Ser Gln Glu Phe Val Glu Lys Leu Thr Lys Arg Leu Lys Arg His Pro Glu Glu Thr Gly Gly Phe Gln Glu Ala Pro Leu Ala Tyr Asp Ala Ile Trp Ala Leu Ala Leu Ala Leu Asn Lys Thr Ser Gly Gly Gly Arg Ser Gly Val Arg Leu Glu Asp Phe Asn Tyr Asn Asn Gln Thr Ile Thr Asp Gln Ile Tyr Arg Ala Met Asn Ser Ser Ser Phe Glu Gly Val Ser Gly

His Val Val Phe Asp Ala Ser Gly Ser Arg Met Ala Trp Thr Leu Ile 450 455 460

H1865-1 WO SEQ

|    | Glu<br>465 | Gln | Leu | Gln | Gly | Gly<br>470 | Ser | Tyr | Lys | Lys |     | Gly | Tyr | Tyr | Asp |      |
|----|------------|-----|-----|-----|-----|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
|    | 403        |     |     |     |     | 4/0        |     |     |     |     | 475 |     |     |     |     | 480  |
| 5  | Thr        | Lys | Asp | Asp |     | Ser        | Trp | Ser | Lys |     | Asp | Lys | Trp | Ile | _   | Gly  |
|    |            |     |     |     | 485 |            |     |     |     | 490 |     |     |     |     | 495 |      |
|    | Ser        | Pro | Pro |     | Asp | Gln        | Thr | Leu | Val | Ile | Lys | Thr | Phe | Arg | Phe | Leu  |
| 10 |            |     |     | 500 |     |            |     |     | 505 |     |     |     |     | 510 |     |      |
|    | Ser        | Gln | Lys | Leu | Phe | Ile        | Ser | Val | Ser | Val | Leu | Ser | Ser | Leu | Gly | Ile  |
|    |            |     | 515 |     |     |            |     | 520 |     |     |     |     | 525 |     |     |      |
|    | Val        | Leu | Ala | Val | Val | Cys        | Leu | Ser | Phe | Asn | Ile | Tyr | Asn | Ser | His | Val  |
| 15 |            | 530 |     |     |     |            | 535 |     |     |     |     | 540 |     |     |     |      |
|    | Arg        | Tyr | Ile | Gln | Asn | Ser        | Gln | Pro | Asn | Leu | Asn | Asn | Leu | Thr | Ala | Val  |
|    | 545        |     |     |     |     | 550        |     |     |     |     | 555 |     |     |     |     | 560  |
| 20 | Gly        | Cys | Ser | Leu | Ala | Leu        | Ala | Ala | Val | Phe | Pro | Leu | Gly | Leu | Asp | Gly  |
|    |            |     |     |     | 565 |            |     |     |     | 570 |     |     |     |     | 575 |      |
|    | Tyr        | His | Ile | Gly | Arg | Asn        | Gln | Phe | Pro | Phe | Val | Cys | Gln | Ala | Arg | Leu  |
| 25 |            |     |     | 580 |     |            |     |     | 585 |     |     |     |     | 590 |     |      |
|    | Trp        | Leu |     | Gly | Leu | Gly        | Phe | Ser | Leu | Gly | Tyr | Gly | Ser | Met | Phe | Thr  |
|    |            |     | 595 |     |     |            |     | 600 |     |     |     |     | 605 |     |     |      |
|    | Lys        | Ile | Trp | Trp | Val | His        | Thr | Val | Phe | Thr | Lys | Lys | Glu | Glu | Lys | Lys  |
| 30 |            | 610 |     |     |     |            | 615 |     |     |     |     | 620 |     |     |     |      |
|    | Glu        | Trp | Arg | Lys | Thr | Leu        | Glu | Pro | Trp | Lys | Leu | Tyr | Ala | Thr | Val | Gly  |
|    | 625        |     |     |     |     | 630        |     |     |     |     | 635 |     |     |     |     | 640  |
| 35 | Leu        | Leu | Val | Gly | Met | Asp        | Val | Leu | Thr | Leu | Ala | Ile | Trp | Gln | Ile | Val- |
|    |            |     |     |     | 645 |            |     |     |     | 650 |     |     |     |     | 655 |      |
|    | Asp        | Pro | Leu | His | Arg | Thr        | Ile | Glu | Thr | Phe | Ala | Lys | Glu | Glu | Pro | Lys  |
| 40 | -          |     |     | 660 |     |            |     |     | 665 |     |     |     |     | 670 |     |      |
|    | Glu        | Asp | Ile | Asp | Val | Ser        | Ile | Leu | Pro | Gln | Leu | Glu | His | Cys | Ser | Ser  |
|    |            |     | 675 |     |     |            |     | 680 |     |     |     |     | 685 | •   |     |      |

PCT/SE98/01947 WO 99/21890

Arg Lys Met Asn Thr Trp Leu Gly Ile Phe Tyr Gly Tyr Lys Gly Leu Leu Leu Leu Gly Ile Phe Leu Ala Tyr Glu Thr Lys Ser Val Ser Thr Glu Lys Ile Asn Asp His Arg Ala Val Gly Met Ala Ile Tyr Asn Val Ala Val Leu Cys Leu Ile Thr Ala Pro Val Thr Met Ile Leu Ser Ser Gln Gln Asp Ala Ala Phe Ala Phe Ala Ser Leu Ala Ile Val Phe Ser Ser Tyr Ile Thr Leu Val Val Leu Phe Val Pro Lys Met Arg Arg Leu Ile Thr Arg Gly Glu Trp Gln Ser Glu Ala Gln Asp Thr Met Lys Thr Gly Ser Ser Thr Asn Asn Asn Glu Glu Glu Lys Ser Arg Leu Leu Glu Lys Glu Asn Arg Glu Leu Glu Lys Ile Ile Ala Glu Lys Glu Glu

Arg Val Ser Glu Leu Arg His Gln Leu Gln Ser Arg Gln Gln Leu Arg 

Ser Arg Arg His Pro Pro Thr Pro Pro Glu Pro Ser Gly Gly Leu Pro 

Arg Gly Pro Pro Glu Pro Pro Asp Arg Leu Ser Cys Asp Gly Ser Arg 880-. 875 

Val His Leu Leu Tyr Lys 

- (2) INFORMATION FOR SEQ ID NO: 78:
  - (i) SEQUENCE CHARACTERISTICS:

H1865-1 WO SEQ

DOS1800V1 1 -

|    |     |      | (     | (A) L        | ENGI  | H: 1    | 692  | base | pai    | rs    |         |     | -   |     | ·· . | ·    |      |
|----|-----|------|-------|--------------|-------|---------|------|------|--------|-------|---------|-----|-----|-----|------|------|------|
|    |     |      | (     | В) Т         | YPE:  | nuc     | leic | aci  | ld     |       |         |     |     |     |      |      |      |
|    |     |      | (     | C) s         | TRAN  | DEDN    | ESS: | sir  | ngle   |       |         |     |     |     |      |      |      |
|    |     |      | (     | D) T         | OPOL  | OGY:    | lin  | ear  |        |       |         |     |     |     |      |      |      |
| 5  |     |      |       |              |       |         |      |      |        |       |         |     |     |     |      |      |      |
|    |     | (ii  | .) MO | LECU         | LE T  | YPE:    | cDN  | A to | mRN    | AI    |         |     |     |     |      |      |      |
|    |     | (iii | .) НҮ | РОТН         | ETIC  | AL:     | NO   |      |        |       |         |     |     |     |      |      |      |
| 10 |     | /:   | \     | TOTN         | c     | orma    |      |      |        |       |         |     |     |     |      |      | ÷    |
| 10 |     | ( 1  |       | IGIN<br>A) O |       |         |      |      |        |       |         |     |     |     |      |      |      |
|    |     |      | `     | A) O         | NOALV | I Dri . | non  | 0 50 | ibreii | S     |         |     |     |     |      |      |      |
|    |     | (ix  | ) FE  | ATUR         | E:    |         |      |      |        |       |         |     |     |     |      |      |      |
|    |     |      | (     | A) N         | AME/  | KEY:    | CDS  |      |        |       |         |     |     |     |      |      |      |
| 15 |     |      | (     | B) L         | OCAT  | ION:    | 11   | 692  |        |       |         |     |     |     |      |      |      |
|    |     |      |       |              |       |         |      |      |        |       |         |     |     |     |      |      |      |
|    |     | (xi  | ) SE  | QUEN         | CE D  | ESCR    | IPTI | ON:  | SEQ    | ID N  | 0: 7    | 8:  |     |     |      |      |      |
|    | ATG | TTG  | CTG   | CTG          | CTG   | СТА     | CTG  | GCG  | CCA    | כיזיכ | الململة | ርጥር | CGC | CCC | CCC  | GGC  | 40   |
| 20 |     |      |       | Leu          |       |         |      |      |        |       |         |     |     |     |      |      | 48   |
|    | 1   |      |       |              | 5     |         |      |      |        | 10    |         |     | 9   |     | 15   | GLY  |      |
|    |     |      |       |              |       |         |      |      |        |       |         |     |     |     |      |      |      |
|    | GCG | GGC  | GGG   | GCG          | CAG   | ACC     | CCC  | AAC  | GCC    | ACC   | TCA     | GAA | GGT | TGC | CAG  | ATC  | 96   |
|    | Ala | Gly  | Gly   | Ala          | Gln   | Thr     | Pro  | Asn  | Ala    | Thr   | Ser     | Glu | Gly | Cys | Gln  | Ile  |      |
| 25 |     |      |       | 20           |       |         |      |      | 25     |       |         |     |     | 30  |      |      |      |
|    | ΑΤΆ | CAC  | CCG   | CCC          | TCC   | GAA     | GGG  | ccc  | አመሮ    | አርር   | ma c    | 000 | 000 | ama |      | ~~~  |      |
|    |     |      |       | Pro          |       |         |      |      |        |       |         |     |     |     |      |      | 144  |
|    |     |      | 35    |              |       |         | 011  | 40   |        | my    | 171     | ALG | 45  | пеп | 1111 | Arg  |      |
| 30 |     |      |       |              |       |         |      |      |        |       |         |     | 13  |     |      |      |      |
|    | GAC | CAG  | GTG   | AAG          | GCT   | ATC     | AAC  | TTC  | CTG    | CCA   | GTG     | GAC | TAT | GAG | ATT  | GAG  | 192  |
|    | Asp | Gln  | Val   | Lys          | Ala   | Ile     | Asn  | Phe  | Leu    | Pro   | Val     | Asp | Tyr | Glu | Ile  | Glu  |      |
|    |     | 50   |       |              |       |         | 55   |      |        |       |         | 60  |     |     |      |      |      |
| _  |     |      |       |              |       |         |      |      |        |       |         |     |     |     |      |      |      |
| 35 |     |      |       |              |       |         |      |      |        |       |         |     |     |     |      | AAG- | 240  |
|    | 65  | vai  | cys   | Arg          | GTA   |         | Arg  | GIu  | Val    | Val   |         | Pro | Lys | Val | Arg  | _    |      |
|    | 05  |      |       |              |       | 70      |      |      |        |       | 75      |     |     |     |      | 80   |      |
|    | TGC | CTG  | GCC   | AAC          | GGC   | TCC     | TGG  | ACA  | GAT    | ATG   | GAC     | ACA | CCC | AGC | CGC  | TGT  | 288  |
| 10 | Cys | Leu  | Ala   | Asn          | Gly   | Ser     | Trp  | Thr  | Asp    | Met   | Asp     | Thr | Pro | Ser | Arg  | Cys  |      |
|    |     |      |       |              | 85    |         |      |      |        | 90    |         |     |     |     | 95   |      |      |
|    | GTC | CGA  | ATC   | TGC          | TCC   | AAG     | TCT  | TAT  | TTG    | ACC   | АТТ     | ACC | GAC | CAA | ATC  | TAC  | 336  |
|    |     |      |       |              |       |         | -    |      |        |       |         |     |     |     |      |      | -    |
|    | H18 | 65-1 | wo    | SEQ          | ·     |         |      | 1    | 56     |       |         |     |     |     |      |      | <br> |

|    |           |       |          |            |       |      |       | -     | •     |         |      |             |       |       |              |               |                         |
|----|-----------|-------|----------|------------|-------|------|-------|-------|-------|---------|------|-------------|-------|-------|--------------|---------------|-------------------------|
|    | Ϋа l      | Ara   | Ile      | Cvs        | Ser   | Lys  | Ser   | Tyr   | Leu   | Thr     | Ile  | Thr         | Asp   | Gln   | Ile          | Tyr           |                         |
|    |           | 5     |          | 100        |       | _    |       |       | 105   |         |      |             |       | 110   |              |               |                         |
|    |           |       |          |            | •     |      |       |       |       |         |      |             |       |       |              |               |                         |
|    | ccc       | CCA   | ልጥር      | <b>AAC</b> | ጥርጥ   | TCG  | TCC   | ттт   | GAG   | GGT     | GTC  | тст         | GGC   | CAT   | GTG          | GTG           | 384                     |
| _  |           |       |          |            |       |      |       |       |       |         |      | Ser         |       |       |              |               |                         |
| 5  | Arg       | Ala   |          | ASII       | 361   | 561  | Jer   | 120   | 0.20  | 011     |      |             | 125   |       |              |               |                         |
|    |           |       | 115      |            |       |      |       | 120   |       |         |      |             |       |       |              |               |                         |
|    |           |       |          |            | 000   | mcm. | 666   | 7 MC  | CCA   | mcc     | NCC. | СТТ         | Δጥሮ   | GAG   | CAG          | СТТ           | 432                     |
|    |           |       |          |            |       |      |       |       |       |         |      |             |       |       |              |               |                         |
|    | Phe       | _     | Ala      | Ser        | GIĀ   | ser  |       | Met   | Ala   | пр      | TIIT | Leu         | 110   | 014   | 0111         |               |                         |
| 10 |           | 130   |          |            |       |      | 135   |       |       |         |      | 140         |       |       |              |               |                         |
|    |           |       |          |            |       |      |       |       |       |         | ~> ~ | <b>~</b> 10 | 100   | 3.CC  | 220          | CAT           | 480                     |
|    |           |       |          |            |       |      |       |       |       |         |      | GAC         |       |       |              |               | 400                     |
|    | Gln       | Gly   | Gly      | Ser        | Tyr   | Lys  | Lys   | Ile   | Glу   | Tyr     |      | Asp         | Ser   | Thr   | гуs          |               |                         |
|    | 145       |       |          |            |       | 150  |       |       |       |         | 155  |             |       |       |              | 160           |                         |
| 15 |           |       |          |            |       |      |       |       |       |         |      |             |       |       |              |               | 520                     |
|    |           |       |          |            |       |      |       |       |       |         |      | GGA         |       |       |              |               | 528                     |
|    | Asp       | Leu   | Ser      | Trp        | Ser   | Lys  | Thr   | Asp   | Lys   | Trp     | Ile  | Gly         | Gly   | Ser   |              | Pro           | •                       |
|    |           |       |          |            | 165   |      |       |       |       | 170     |      |             |       |       | 175          |               |                         |
|    |           |       |          |            | ,     |      |       |       |       |         |      |             |       | •     |              |               |                         |
| 20 | GCT       | GAC   | CAG      | ACC        | CTG   | GTC  | ATC   | AAG   | ACA   | TTC     | CGC  | TTC         | CTG   | TCA   | CAG          | AAA           | 576                     |
|    | Ala       | Asp   | Gln      | Thr        | Leu   | Val  | Ile   | Lys   | Thr   | Phe     | Arg  | Phe         | Leu   | Ser   | Gln          | Lys           |                         |
|    |           |       |          | 180        |       |      |       |       | 185   |         |      |             |       | 190   |              |               |                         |
|    |           |       |          |            |       |      |       |       |       |         |      |             |       |       |              |               |                         |
|    | СТС       | TTT   | ' ATC    | TCC        | GTC   | TCA  | GTT   | CTC   | TCC   | AGC     | CTG  | GGC         | ATT   | GTC   | CTA          | GCT           | 624                     |
| 25 |           |       |          |            |       |      |       |       |       |         |      | Gly         |       |       |              |               |                         |
|    |           |       | 195      |            |       |      |       | 200   |       |         |      |             | 205   |       |              |               |                         |
|    |           |       |          |            |       |      |       |       |       |         |      |             |       |       |              |               |                         |
|    | المالت    | r ርጥ( | י יייניי | י כיזיכי   | тсс   | TT   | AAC   | ATC   | TAC   | AAC     | TCA  | CAI         | GTC   | CGT   | TAT          | ATC           | 672                     |
|    |           |       |          |            |       |      |       |       |       |         |      |             |       |       |              | Ile           |                         |
| 20 | va.       | 210   | _        | . 160      |       |      | 215   |       | -4-   |         |      | 220         |       |       |              |               |                         |
| 30 |           | 211   | ,        |            |       |      |       |       |       |         |      |             |       |       |              |               |                         |
|    | <b>61</b> | ~ ~~  | - mc:    | N (7)      |       | אמי  | - Сто | . אאר | י אאר | י רייני | AC1  | ר ככיו      | r GT6 | GGC   | TGC          | TCA           | 720                     |
|    |           |       |          |            |       |      |       |       |       |         |      |             |       |       |              | Ser           |                         |
|    |           |       | n Se     | r Gli      | n Pro |      |       | ASI   | ı ASı | ı nec   | 235  |             | ı va. | . 01, | <b>-</b> 21. | 240           |                         |
|    | 22        | 5     |          |            |       | 23   | J     |       |       |         | 23.  | ,           |       |       |              |               |                         |
| 35 |           |       |          |            |       |      |       |       |       |         |      |             | n     | n mac | - CN(        | ጉ <u>አ</u> ጥጥ | 768                     |
|    |           |       |          |            |       |      |       |       |       |         |      |             |       |       |              | ATT           |                         |
|    | Le        | u Al  | a Le     | u Al       | a Ala | a Va | l Phe | Pro   | ) Le  |         |      | u Ası       | o GI  | у тур |              | s Ile         |                         |
|    |           |       |          |            | 24    | 5    |       |       |       | 250     | )    |             |       |       | 25           | )             |                         |
|    |           |       |          |            |       |      |       |       |       |         |      |             |       |       |              |               | 016                     |
| 40 |           |       |          |            |       |      |       |       |       |         |      |             |       |       |              | C CTG         | <b>816</b> <sub>Ն</sub> |
|    | Gl        | y Ar  | g As     | n Gl       | n Ph  | e Pr | o Phe | e Va  | l Cy  | s Gl    | n Al | a Ar        | g Le  |       |              | u Leu         |                         |
|    |           |       |          | 26         | 0     |      |       |       | 26    | 5       |      |             |       | 27    | 0            |               |                         |
|    |           |       |          |            |       |      |       |       |       |         |      |             |       |       |              |               |                         |

|    |             |     |     |     |     |             |     | -   | •   |         |     |     | •   |     |     |      |           |
|----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|---------|-----|-----|-----|-----|-----|------|-----------|
|    | GGC         | CTG | GGC | TTT | AGT | CTG         | GGC | TAC | GGT | TCC     | ATG | TTC | ACC | AAG | ATT | TGG  | 864       |
|    | Gly         | Leu | Gly | Phe | Ser | Leu         | Gly | Tyr | Gly | Ser     | Met | Phe | Thr | Lys | Ile | Trp  |           |
|    |             |     | 275 |     |     |             |     | 280 |     |         |     |     | 285 |     |     |      |           |
|    |             |     |     |     |     |             |     |     |     |         |     |     |     |     |     |      |           |
| 5  |             |     |     |     |     |             |     |     |     |         | GAA |     |     |     |     |      | 912       |
|    | Trp         |     | His | Thr | Val | Phe         |     | Lys | Lys | Glu     | Glu | Lys | Lys | Glu | Trp | Arg  |           |
|    |             | 290 |     |     |     |             | 295 |     |     |         |     | 300 |     |     |     |      |           |
|    |             |     | ~~~ |     |     |             |     |     |     |         |     |     |     |     |     |      |           |
|    |             |     |     |     |     |             |     |     |     |         | ACA |     |     |     |     |      | 960       |
| 10 |             | THE | ьeu | GIU | Pro |             | гÃг | nen | TYL | AIA     | Thr | vaı | GIA | Leu | Leu |      |           |
|    | 305         |     |     |     | •   | 310         |     |     |     |         | 315 |     |     |     |     | 320  |           |
|    | GGC         | ATG | GAT | GTC | СТС | АСТ         | СТС | GCC | АТС | TGG     | CAG | ልጥሮ | стс | GAC | CCT | CTG  | 1008      |
|    |             |     |     |     |     |             |     |     |     |         | Gln |     |     |     |     |      | 1000      |
| 15 | -           |     | •   |     | 325 |             |     |     |     | 330     |     |     |     |     | 335 |      |           |
|    |             |     |     |     |     |             |     |     |     |         |     |     |     |     |     |      |           |
|    | CAC         | CGG | ACC | ATT | GAG | ACA         | TTT | GCC | AAG | GAG     | GAA | CCT | AAG | GAA | GAT | ATT  | 1056      |
|    | His         | Arg | Thr | Ile | Glu | Thr         | Phe | Ala | Lys | Glu     | Glu | Pro | Lys | Glu | Asp | Ile  |           |
|    |             |     |     | 340 |     |             |     |     | 345 |         |     |     |     | 350 |     |      |           |
| 20 |             |     |     |     |     |             |     |     |     |         |     |     |     |     |     |      |           |
|    |             |     |     |     |     |             |     |     |     |         | TGC |     |     |     |     |      | 1104      |
|    | Asp         | Val |     | Ile | Leu | Pro         | Gln | Leu | Glu | His     | Cys | Ser | Ser | Arg | Lys | Met  |           |
|    |             |     | 355 |     |     |             |     | 360 |     |         |     |     | 365 |     |     |      |           |
| 25 |             |     | maa |     |     | <b>3</b> mm | mmo |     | 000 | <b></b> |     |     |     |     |     |      |           |
| 25 |             |     |     |     |     |             |     |     |     |         | AAG |     |     |     |     |      | 1152      |
|    | ASII        | 370 | пр  | Leu | GIA | TIE         | 375 | TYL | GIĀ | TYL     | Lys | 380 | ren | Leu | Leu | Leu  |           |
|    |             | 3.0 |     |     |     |             | 3,3 |     |     |         |     |     |     |     |     |      |           |
|    | CTG         | GGA | ATC | TTC | CTT | GCT         | ТАТ | GAG | ACC | AAG     | AGT | GTG | TCC | ACT | GAG | AAG  | 1200      |
| 30 | Leu         | Gly | Ile | Phe | Leu | Ala         | Tyr | Glu | Thr | Lys     | Ser | Val | Ser | Thr | Glu | Lys  |           |
|    | 385         |     |     |     |     | 390         |     |     |     |         | 395 |     |     |     |     | 400  |           |
|    |             |     |     |     |     |             |     |     |     |         |     |     |     |     |     |      |           |
|    | ATC         | AAT | GAT | CAC | CGG | GCT         | GTG | GGC | ATG | GCT     | ATC | TAC | AAT | GTG | GCA | GTC  | 1248      |
|    | Ile         | Asn | Asp | His | Arg | Ala         | Val | Gly | Met | Ala     | Ile | Tyr | Asn | Val | Ala | Val  |           |
| 35 |             |     |     |     | 405 |             |     |     |     | 410     |     |     |     |     | 415 | -ser | •         |
|    |             |     |     |     |     |             |     |     |     |         |     |     |     |     |     |      |           |
|    | CTG         | TGC | CTC | ATC | ACT | GCT         | CCT | GTC | ACC | ATG     | ATT | CTG | TCC | AGC | CAG | CAG  | 1296      |
|    | Leu         | Cys | Leu | Ile | Thr | Ala         | Pro | Val | Thr | Met     | Ile | Leu | Ser | Ser | Gln | Gln  |           |
|    |             |     |     | 420 |     |             |     |     | 425 |         |     |     |     | 430 |     |      |           |
| 40 | <b>~</b> >~ | 005 |     | m=- |     | m           | 000 | ma  |     | 000     |     |     | m   |     |     |      | 5<br>2244 |
|    |             |     |     |     |     |             |     |     |     |         | ATA |     |     |     |     |      | 1344      |
|    | ASD         | WIG |     | rne | нтя | rne         | wrg |     | ьeu | WIG     | Ile | vaI | •   | ser | ser | туr  |           |
|    |             | -   | 435 |     |     |             |     | 440 |     |         |     |     | 445 |     |     |      |           |
|    |             |     |     |     |     |             |     |     |     |         |     |     |     |     |     |      |           |

|    |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     | •   |      |
|----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
|    | ATC | ACT | СТТ | GTT  | GTG | CTC | TTT | GTG | CCC | AAG | ATG | CGC | AGG | CTG | ATC | ACC | 1392 |
|    | Ile | Thr | Leu | Val  | Val | Leu | Phe | Val | Pro | Lys | Met | Arg | Arg | Leu | Ile | Thr |      |
|    |     | 450 |     |      |     |     | 455 |     |     |     |     | 460 |     |     |     |     |      |
| 5  |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |      |
|    | CGA | GGG | GAA | TGG  | CAG | TCG | GAG | GCG | CAG | GAC | ACC | ATG | AAG | ACA | GGG | TCA | 1440 |
|    | Arg | Gly | Glu | Trp  | Gln | Ser | Glu | Ala | Gln | Asp | Thr | Met | Lys | Thr | Gly | Ser |      |
|    | 465 |     |     |      |     | 470 |     |     |     |     | 475 |     |     |     |     | 480 |      |
|    |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |      |
| 10 |     |     |     | AAC  |     |     |     |     |     |     |     |     |     |     |     |     | 1488 |
|    | Ser | Thr | Asn | Asn  | Asn | Glu | Glu | Glu | Lys | Ser | Arg | Leu | Leu | Glu | Lys | Glu |      |
|    |     |     |     |      | 485 |     |     |     |     | 490 |     |     |     |     | 495 |     |      |
|    |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |      |
|    |     |     |     | CTG  |     |     |     |     |     |     |     |     |     |     |     |     | 1536 |
| 15 | Asn | Arg | Glu | Leu  | Glu | Lys | Ile | Ile | Ala | Glu | Lys | Glu | Glu | Arg | Val | Ser |      |
|    |     |     |     | 500  |     |     |     |     | 505 |     |     |     |     | 510 |     |     |      |
|    |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |      |
|    |     |     |     | CAT  |     |     |     |     |     |     |     |     |     |     |     |     | 1584 |
|    | Glu | Leu | Arg | His  | Gļn | Leu | Gln | Ser | Arg | Gln | Gln | Leu |     |     | Arg | Arg |      |
| 20 |     |     | 515 |      |     |     |     | 520 |     |     |     |     | 525 |     |     |     |      |
|    |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     | 1633 |
|    |     |     |     | ACA  |     |     |     |     |     |     |     |     |     |     |     |     | 1632 |
|    | His | Pro | Pro | ~Thr | Pro | Pro |     |     | Ser | Gly | Gly |     | Pro | Arg | GIY | Pro |      |
|    |     | 530 |     |      |     |     | 535 |     |     |     |     | 540 |     |     |     |     |      |
| 25 |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     | mmo | 1680 |
|    |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     | TTG | 1090 |
|    | Pro | Glu | Pro | Pro  | Asp |     |     | Ser | Cys | Asp |     |     | Arg | vaı | HIS | Leu |      |
|    | 545 |     |     |      |     | 550 |     |     |     |     | 555 | •   |     |     |     | 560 |      |
|    |     |     |     | _    |     |     |     |     |     |     |     |     |     |     |     |     | 1692 |
| 30 |     |     |     | TGA  | 7   |     |     |     |     |     |     |     |     |     |     |     | 1072 |
|    | Leu | туг | Lys | *    |     |     |     |     |     |     |     |     |     |     |     |     |      |
|    |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |      |

## 35 (2) INFORMATION FOR SEQ ID NO: 79:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 563 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:

Met Leu Leu Leu Leu Leu Ala Pro Leu Phe Leu Arg Pro Pro Gly

1 5 10 15

5

Ala Gly Gly Ala Gln Thr Pro Asn Ala Thr Ser Glu Gly Cys Gln Ile 20 25 30

Ile His Pro Pro Trp Glu Gly Gly Ile Arg Tyr Arg Gly Leu Thr Arg
10 35 40 45

Asp Gln Val Lys Ala Ile Asn Phe Leu Pro Val Asp Tyr Glu Ile Glu 50 55 60

Tyr Val Cys Arg Gly Glu Arg Glu Val Val Gly Pro Lys Val Arg Lys
65 70 75 80

Cys Leu Ala Asn Gly Ser Trp Thr Asp Met Asp Thr Pro Ser Arg Cys
85 90 . 95

20

35

Val Arg Ile Cys Ser Lys Ser Tyr Leu Thr Ile Thr Asp Gln Ile Tyr 100 105 110

Arg Ala Met Asn Ser Ser Ser Phe Glu Gly Val Ser Gly His Val Val
25 115 120 125

Phe Asp Ala Ser Gly Ser Arg Met Ala Trp Thr Leu Ile Glu Gln Leu 130 135 140

30 Gln Gly Gly Ser Tyr Lys Lys Ile Gly Tyr Tyr Asp Ser Thr Lys Asp 145 150 155 160

Asp Leu Ser Trp Ser Lys Thr Asp Lys Trp Ile Gly Gly Ser Pro Pro 165 170 175

Ala Asp Gln Thr Leu Val Ile Lys Thr Phe Arg Phe Leu Ser Gln Lys

Leu Phe Ile Ser Val Ser Val Leu Ser Ser Leu Gly Ile Val Leu Ala 40 195 200 205

Val Val Cys Leu Ser Phe Asn Ile Tyr Asn Ser His Val Arg Tyr Ile 210 215 220

|    | Gln<br>225 | Asn        | Ser         | Gln          | Pro        | Asn<br>230 | Leu        | Asn          | Asn          | Leu        | Thr<br>235 | Ala                    | Val        | Gly          | Cys          | Ser<br>240 |
|----|------------|------------|-------------|--------------|------------|------------|------------|--------------|--------------|------------|------------|------------------------|------------|--------------|--------------|------------|
| 5  | Leu        | Ala        | Leu         |              | Ala<br>245 | Val        | Phe        | Pro          | Leu          | Gly<br>250 | Leu        | Asp                    | Gly        | Tyr          | His<br>255   | Ile        |
| •  | Gly        | Arg        | Asn         | Gln<br>260   | Phe        | Pro        | Phe        | Val          | Cys<br>265   | Gln        | Ala        | Arg                    | Leu        | Trp<br>270   | Leu          | Leu        |
| 0  | Gly        | Leu        | Gly<br>275  | Phe          | Ser        | Leu        | Gly        | Tyr<br>280   | Gly          | Ser        | Met        | Phe                    | Thr<br>285 | Lys          | Ile          | Trp        |
| 5  | Trp        | Val<br>290 | His         | Thr          | Val        | Phe        | Thr<br>295 | Lys          | Lys          | Glu        | Glu        | Lys<br>300             | Lys        | Glu          | Trp          | Arg        |
|    | Lys<br>305 |            | Leu         | Glu          | Pro        | Trp<br>310 | Lys        | Leu          | Туг          | Ala        | Thr<br>315 | Val                    | Gly        | Leu          | Leu          | Val<br>320 |
| 20 | Gly        | Met        | Asp         | Val          | Leu<br>325 | Thr        | Leu        | Ala          | Ile          | Trp        |            | Ile                    | Val        | Asp          | Pro<br>335   | Leu        |
| •- | His        | Arg        | Thr         | Ile<br>340   | Glu        | Thr        | Phe        | Ala          | Lys<br>345   | Glu        | Glu        | Pro                    | Lys        | Glu<br>350   | Asp          | Ile        |
| 25 | Asp        | Val        | Ser<br>355  |              | Leu        | Pro        | Gln        | Leu<br>360   |              | His        | Cys        | Ser                    | Ser<br>365 |              | Lys          | Met        |
| 30 | Asr        | 370        |             | Leu          | Gly        | · Ile      | Phe        |              | Gly          | Tyr        | Lys        | Gl <sub>y</sub><br>380 |            | ı Leu        | Leu          | Leu        |
|    | Let<br>385 |            | / Ile       | Phe          | . Leu      | 390        |            | : Glu        | Thr          | Lys        | 395        |                        | Ser        | Thr          | Glu          | Lys<br>400 |
| 35 | 110        | e Ası      | n Asp       | His          | 405        |            | a Val      | l Gly        | Met          | Ala<br>410 |            | • Туі                  | c Ası      | n Val        | . Ala<br>415 | Val.       |
|    | Le         | u Cy:      | s Lei       | 1 Ile<br>420 |            | r Ala      | a Pro      | o Val        | 1 Thr<br>425 |            | t Ile      | e Le                   | u Se:      | r Sei<br>430 |              | . Gln      |
| 40 | As         | p Al       | a Ala<br>43 |              | e Ala      | a Ph       | e Ala      | a Sei<br>440 |              | ı Ala      | a Ile      | e Va                   | 1 Ph       |              | . Ser        | Tyr        |

Ile Thr Leu Val Val Leu Phe Val Pro Lys Met Arg Arg Leu Ile Thr
450 455 460

Arg Gly Glu Trp Gln Ser Glu Ala Gln Asp Thr Met Lys Thr Gly Ser 465 470 475 480

Ser Thr Asn Asn Asn Glu Glu Glu Lys Ser Arg Leu Leu Glu Lys Glu
485 490 495

10 Asn Arg Glu Leu Glu Lys Ile Ile Ala Glu Lys Glu Glu Arg Val Ser 500 505 510

Glu Leu Arg His Gln Leu Gln Ser Arg Gln Gln Leu Arg Ser Arg Arg 515 520 525

His Pro Pro Thr Pro Pro Glu Pro Ser Gly Gly Leu Pro Arg Gly Pro
530 540

Pro Glu Pro Pro Asp Arg Leu Ser Cys Asp Gly Ser Arg Val His Leu 545 550 555 560

Leu Tyr Lys

15

25

30

40

(2) INFORMATION FOR SEQ ID NO: 80:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2602 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA to mRNA

(iii) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION:1..318

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:

|    |            | (xi) | SEÇ       | UENC  | E DE       | SCRI | PTIO  | )N: S     | EQ 1  | D NC  | ): 80         | ):    |             |      |           |         |     | ·          |
|----|------------|------|-----------|-------|------------|------|-------|-----------|-------|-------|---------------|-------|-------------|------|-----------|---------|-----|------------|
| 5  | ATG<br>Met |      |           |       |            |      |       |           |       |       |               |       |             |      |           |         | 4   | 8          |
| •  | 1          |      |           |       | 5          |      |       |           |       | 10    |               |       |             |      | 15        |         |     |            |
|    |            |      |           |       | CAG<br>Gln |      |       |           |       |       |               |       |             |      |           |         | 2   | 96         |
| 10 | Ala        | GIĀ  | GIĀ       | 20    | GIII       | THE  | PLO   | ASII      | 25    | 1111  | JCI           | 014   | <b>02</b> , | 30   |           |         |     |            |
|    |            |      |           |       | TGG        |      |       |           |       |       |               |       |             |      |           |         | 1   | 44         |
|    | Ile        | His  | Pro<br>35 | Pro   | Trp        | Glu  | Gly   | Gly<br>40 | Ile   | Arg   | Tyr           | Arg   | Gly<br>45   | Leu  | Thr       | Arg     |     |            |
| 15 | GAC        | CAG  | GTG       | AAG   | GCT        | ATC  | AAC   | TTC       | CTG   | CCA   | GTG           | GAC   | TAT         | GAG  | ATT       | GAT     | 1   | 92         |
|    |            |      |           |       | Ala        |      |       |           |       |       |               |       |             |      |           |         |     |            |
|    |            | 50   |           |       |            |      | 55    |           |       |       |               | 60    |             |      |           |         |     |            |
| 20 | GAA        | TCG  | AAC       | GCC   | ACA        | CTC  | AGA   | ACG       | GCG   | CGC   | AGT           | GTA   | CAT         | CGG  | GGC       | ACT     | 2   | 40         |
|    |            |      |           |       |            |      |       |           |       |       |               |       |             |      |           | Thr     |     |            |
|    | 65         |      |           |       |            | 70   |       |           |       |       | 75            |       |             |      |           | 80      |     |            |
|    | GTT        | TCC  | CAT       | GAG   | CGG        | GGG  | CTG   | GCC       | AGG   | GGG   | CCA           | GGC   | CTG         | CCA  | GCC       | CGC     | 2   | 88         |
| 25 | Val        | Ser  | His       | Glu   |            |      | Leu   | Ala       | Arg   |       |               | Gly   | Let         | Pro  | Ala<br>95 | Arg     |     |            |
|    |            |      |           |       | 85         |      |       |           |       | 90    | !             |       |             |      | 3         |         |     |            |
|    | GGT        | GG   | A GAI     | g GGC | GCT        | GGA  | GGA   | CGI       | ' GAA | TAG   | CCG           | CAGG  | GAC         | ATC  | TGCC      | :GG     | 3   | 38         |
|    | Gly        | Gl3  | / Asp     |       | , Ala      | Gly  | , Gly | Arg       |       |       |               |       |             |      |           |         |     |            |
| 30 |            |      |           | 100   | )          |      |       |           | 109   | )     |               |       |             |      |           |         |     |            |
|    | ACT        | TATG | AGCT      | CAA   | GCTCA      | TC ( | CACCA | ACGAC     | CA GO | CAAGT | rgtg <i>i</i> | A TCC | CAGG        | CCAA | GCC       | ACCAAGT | . 3 | 398        |
| 35 |            |      |           |       |            |      |       |           |       |       |               |       |             |      |           | rgcagc1 | •   | 458        |
|    |            |      |           |       |            |      |       |           |       |       |               |       |             |      |           | rcctato |     | 518        |
|    |            |      |           |       |            |      |       |           |       |       |               |       |             |      |           | ACGCAC( | -   | 578<br>638 |
| 40 |            |      |           |       |            |      |       |           |       |       |               |       |             |      |           | TGGAAG  |     |            |
|    | AG         | ATTG | CTAC      | CAT   | CCAG       | CAG  | ACCA  | CTGA      | GG T  | CTTC. | ACTT          | C GA  | CTCT        | GGAC | ĞAC       | CTGGAG  | G   | 698        |

|    |             |            | •            | •            | •            |                     |      |
|----|-------------|------------|--------------|--------------|--------------|---------------------|------|
|    | AACGAGTGAA  | GGAGGCTGGA | ATTGAGATTA   | CTTTCCGCC    | A GAGTTTCTTC | TCAGATCCAG          | 758  |
|    | CTGTGCCCGT  | CAAAAACCTG | AAGCGCCAGG   | ATGCCCGAAT   | CATCGTGGGA   | CTTTTCTATG          | 818  |
| 5  | AGACTGAAGC  | CCGGAAAGTT | ' TTTTGTGAGG | TGTACAAGG    | GCGTCTCTT    | GGGAAGAAGT          | 878  |
|    | ACGTCTGGTT  | CCTCATTGGG | TGGTATGCTG   | ACAATTGGTT   | CAAGATCTAC   | GACCCTTCTA          | 938  |
| 10 | TCAACTGCAC  | AGTGGATGAG | ATGACTGAGG   | CGGTGGAGGG   | CCACATCACA   | ACTGAGATTG          | 998  |
|    | TCATGCTGAA  | TCCTGCCAAT | ACCCGCAGCA   | TTTCCAACAT   | GACATCCCAG   | GAATTTGTGG          | 1058 |
| ,  | AGAAACTAAC  | CAAGCGACTG | AAAAGACACC   | CTGAGGAGAC   | AGGAGGCTTC   | CAGGAGGCAC          | 1118 |
| 15 | CGCTGGCCTA  | TGATGCCATC | TGGGCCTTGG   | CACTGGCCCT   | GAACAAGACA   | TCTGGAGGAG          | 1178 |
|    | GCGGCCGTTC  | TGGTGTGCGC | CTGGAGGACT   | TCAACTACAA   | CAACCAGACC   | ATTACCGACC          | 1238 |
| 20 | AAATCTACCG  | GGCAATGAAC | TCTTCGTCCT   | TTGAGGGTGT   | CTCTGGCCAT   | GTGGTGTTTG          | 1298 |
| 20 | ATGCCAGCGG  | CTCTCGGATG | GCATGGACGC   | TTATCGAGCA   | GCTTCAGGGT   | GGCAGCTACA          | 1358 |
|    | AGAAGATTGG  | CTACTATGAC | AGCACCAAGG   | ATGATCTTTC   | CTGGTCCAAA   | ACAGATAAAT          | 1418 |
| 25 | GGATTGGAGG  | GTCCCCCCA  | GCTGACCAGA   | CCCTGGTCAT   | CAAGACATTC   | CGCTTCCTGT          | 1478 |
|    | CACAGAAACT  | CTTTATCTCC | GTCTCAGTTC   | TCTCCAGCCT   | GGGCATTGTC   | CTAGCTGTTG          | 1538 |
| 30 | TCTGTCTGTC  | CTTTAACATC | TACAACTCAC   | ATGTCCGTTA   | TATCCAGAAC   | TCACAGCCCA          | 1598 |
|    | ACCTGAACAA  | CCTGACTGCT | GTGGGCTGCT   | CACTGGCTTT   | AGCTGCTGTC   | TTCCCCCTGG          | 1658 |
|    | GGCTCGATGG  | TTACCACATT | GGGAGGAACC   | AGTTTCCTTT   | CGTCTGCCAG   | GCCCGCCTCT          | 1718 |
| 35 | GGCTCCTGGG  | CCTGGGCTTT | AGTCTGGGCT   | ACGGTTCCAT   | GTTCACCAAG   | ATTTGGT <b>GG</b> G | 1778 |
|    | TCCACACGGT  | CTTCACAAAG | AAGGAAGAAA   | AGAAGGAGTG   | GAGGAAGACT   | CTGGAACCCT          | 1838 |
| 40 | GGAAGCTGTA  | TGCCACAGTG | GGCCTGCTGG   | TGGGCATGGA   | TGTCCTCACT   | CTCGCCATCT          | 1898 |
| 70 | GGCAGATCGT  | GGACCCTCTG | CACCGGACCA   | TTGAGACATT   | TGCCAAGGAG   | GAACCTAAGG          | 1958 |
|    | AAGATATTGA  | CGTCTCTATT | CTGCCCCAGC   | TGGAGCATTG   | CAGCTCCAGG   | AAGATGAATA          | 2018 |
|    | II1965 1 WG |            |              | <del> </del> |              |                     |      |

|    | CATGGCTTGG | CATTTTCTAT | GGTTACAAGG | GGCTGCTGCT | GCTGCTGGGA | ATCTTCCTTG | 2078 |
|----|------------|------------|------------|------------|------------|------------|------|
|    | CTTATGAGAC | CAAGAGTGTG | TCCACTGAGA | AGATCAATGA | TCACCGGGCT | GTGGGCATGG | 2138 |
| 5  | СТАТСТАСАА | TGTGGCAGTC | CTGTGCCTCA | TCACTGCTCC | TGTCACCATG | ATTCTGTCCA | 2198 |
|    |            | TGCAGCCTTT | GCCTTTGCCT | CTCTTGCCAT | AGTTTTCTCC | TCCTATATCA | 2258 |
| 0  | CTCTTGTTGT | GCTCTTTGTG | CCCAAGATGC | GCAGGCTGAT | CACCCGAGGG | GAATGGCAGT | 2318 |
|    | CGGAGGCGCA | GGACACCATG | AAGACAGGGT | CATCGACCAA | CAACAACGAG | GAGGAGAAGT | 2378 |
|    | CCCGGCTGTT | GGAGAAGGAG | AACCGTGAAC | TGGAAAAGAT | CATTGCTGAG | AAAGAGGAGC | 2438 |
| 5  | GTGTCTCTGA | ACTGCGCCAT | CAACTCCAGT | CTCGGCAGCA | GCTCCGCTCC | CGGCGCCACC | 2498 |
|    | CACCGACACC | CCCAGAACCC | TCTGGGGGCC | TGCCCAGGGG | ACCCCCTGAG | CCCCCGACC  | 2558 |
| 20 | GGCTTAGCTG | TGATGGGAGT | CGAGTGCATT | TGCTTTATAA | GTGA       |            | 2602 |

#### (2) INFORMATION FOR SEQ ID NO: 81:

5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 105 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

- 30 (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:

Met Leu Leu Leu Leu Leu Ala Pro Leu Phe Leu Arg Pro Pro Gly

1 5 10 15 -

Ala Gly Gly Ala Gln Thr Pro Asn Ala Thr Ser Glu Gly Cys Gln Ile 20 25 30

40 Ile His Pro Pro Trp Glu Gly Gly Ile Arg Tyr Arg Gly Leu Thr Arg
35 40 45

Asp Gln Val Lys Ala Ile Asn Phe Leu Pro Val Asp Tyr Glu Ile Asp

50

55

60

Glu Ser Asn Ala Thr Leu Arg Thr Ala Arg Ser Val His Arg Gly Thr
65 70 75 80

5

Val Ser His Glu Arg Gly Leu Ala Arg Gly Pro Gly Leu Pro Ala Arg 85 90 95

Gly Gly Asp Gly Ala Gly Gly Arg Glu
10 100 105

(2) INFORMATION FOR SEQ ID NO: 82:

15 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2367 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

20

40

- (ii) MOLECULE TYPE: cDNA to mRNA
- (iii) HYPOTHETICAL: NO
- 25 (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Homo sapiens
  - (ix) FEATURE:
    - (A) NAME/KEY: CDS
- 30 (B) LOCATION:1..294
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:

ATG TTG CTG CTG CTG CTG GCG CCA CTC TTC CTC CGC CCC CCG GGC 48

Met Leu Leu Leu Leu Leu Ala Pro Leu Phe Leu Arg Pro Pro Gly.

1 5 10 15

GCG GGC GGG GCG CAG ACC CCC AAC GCC ACC TCA GAA GGT TGC CAG ATC
Ala Gly Gly Ala Gln Thr Pro Asn Ala Thr Ser Glu Gly Cys Gln Ile
20 25 30

ATA CAC CCG CCC TGG GAA GGG GGC ATC AGG TAC CGG GGC CTG ACT CGG

144

Ile His Pro Pro Trp Glu Gly Gly Ile Arg Tyr Arg Gly Leu Thr Arg

96

| 40 |
|----|
|----|

|    | 35          |             | 40         |                                  | 45           |            |            |
|----|-------------|-------------|------------|----------------------------------|--------------|------------|------------|
| 5  |             |             |            | CTG CCA GTG<br>Leu Pro Val       |              |            | 192        |
|    |             | Arg Gly G   |            | GTG GTG GGG<br>Val Val Gly<br>75 |              |            | 240        |
| 10 |             |             |            | GAT ATG GAC<br>Asp Met Asp       |              |            | 288        |
| 15 | GTG TGA TCC | PAGGCCAA GC | CACCAAGT A | CCTATATGA GC'                    | TGCTCTAC AAC | GACCCTA    | 344        |
| 20 |             | •           |            | T CTGTCTCCAC                     |              |            | 404<br>464 |
|    | AGCGTTTCCC  | CACTTTCTTC  | CGAACGCAC  | C CATCAGCCAC                     | ACTCCACAAC   | CCTACCCGCG | 524        |
| 25 |             |             |            | A AGATTGCTAC                     |              |            | 584<br>644 |
| 30 |             |             |            | G CTGTGCCCGT                     |              |            | 704<br>764 |
| 35 |             |             |            | TA TCAACTGCAC                    |              |            | 824<br>884 |
| 33 |             |             |            | rg tcatgctga?                    |              |            | 944        |
| 40 |             |             |            | GG AGAAACTAAC                    |              |            | 1004       |
|    | CACTGGCCCT  | GAACAAGAC   | A TCTGGAGG | AG GCGGCCGTT(                    | C TGGTGTGCGC | CTGGAGGACT | 1124       |

|         | TCAACTACAA | CAACCAGACC | ATTACCGACC | AAATCTACCG | GGCAATGAAC | TCTTCGTCCT | 1184 |
|---------|------------|------------|------------|------------|------------|------------|------|
| 5       | TTGAGGGTGT | CTCTGGCCAT | GTGGTGTTTG | ATGCCAGCGG | CTCTCGGATG | GCATGGACGC | 1244 |
| J       | TTATCGAGCA | GCTTCAGGGT | GGCAGCTACA | AGAAGATTGG | CTACTATGAC | AGCACCAAGG | 1304 |
|         | ATGATCTTTC | CTGGTCCAAA | ACAGATAAAT | GGATTGTTAT | ATCCAGAACT | CACAGCCCAA | 1364 |
| 10      | CCTGAACAAC | CTGACTGCTG | TGGGCTGCTC | ACTGGCTTTA | GCTGCTGTCT | TCCCCTGGG  | 1424 |
|         | GCTCGATGGT | TACCACATTG | GGAGGAACCA | GTTTCCTTTC | GTCTGCCAGG | CCCGCCTCTG | 1484 |
| 15      | GCTCCTGGGC | CTGGGCTTTA | GTCTGGGCTA | CGGTTCCATG | TTCACCAAGA | TTTGGTGGGT | 1544 |
| .,      | CCACACGGTC | TTCACAAAGA | AGGAAGAAAA | GAAGGAGTGG | AGGAAGACTC | TGGAACCCTG | 1604 |
|         | GAAGCTGTAT | GCCACAGTGG | GCCTGCTGGT | GGGCATGGAT | GTCCTCACTC | TCGCCATCTG | 1664 |
| 20      | GCAGATCGTG | GACCCTCTGC | ACCGGACCAT | TGAGACATTT | GCCAAGGAGG | AACCTAAGGA | 1724 |
|         | AGATATTGAC | GTCTCTATTC | TGCCCCAGCT | GGAGCATTGC | AGCTCCAGGA | AGATGAATAC | 1784 |
| 25      | ATGGCTTGGC | ATTTTCTATG | GTTACAAGGG | GCTGCTGCTG | CTGCTGGGAA | TCTTCCTTGC | 1844 |
| <i></i> | TTATGAGACC | AAGAGTGTGT | CCACTGAGAA | GATCAATGAT | CACCGGGCTG | TGGGCATGGC | 1904 |
|         | TATCTACAAT | GTGGCAGTCC | TGTGCCTCAT | CACTGCTCCT | GTCACCATGA | TTCTGTCCAG | 1964 |
| 30      | CCAGCAGGAT | GCAGCCTTTG | CCTTTGCCTC | TCTTGCCATA | GTTTTCTCCT | CCTATATCAC | 2024 |
|         | TCTTGTTGTG | CTCTTTGTGC | CCAAGATGCG | CAGGCTGATC | ACCCGAGGGG | AATGGCAGTC | 2084 |
| 35      | GGAGGCGCAG | GACACCATGA | AGACAGGGTC | ATCGACCAAC | AACAACGAGG | AGGAGAAGTC | 2144 |
| دد      | CCGGCTGTTG | GAGAAGGAGA | ACCGTGAACT | GGAAAAGATC | ATTGCTGAGA | AAGAGGAGCG | 2204 |
|         | TGTCTCTGAA | CTGCGCCATC | AACTCCAGTC | TCGGCAGCAG | CTCCGCTCCC | GGCGCCACCC | 2264 |
| 40      | ACCGACACCC | CCAGAACCCT | CTGGGGGCCT | GCCCAGGGGA | CCCCTGAGC  | CCCCGACCG  | 2324 |
|         | GCTTAGCTGT | GATGGGAGTC | GAGTGCATTT | GCTTTATAAG | TGA        | •          | 2367 |

(2) INFORMATION FOR SEQ ID NO: 83:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 97 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

10

15

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:

Met Leu Leu Leu Leu Leu Ala Pro Leu Phe Leu Arg Pro Pro Gly
1 5 10 15

Ala Gly Gly Ala Gln Thr Pro Asn Ala Thr Ser Glu Gly Cys Gln Ile
20 25 30

Ile His Pro Pro Trp Glu Gly Gly Ile Arg Tyr Arg Gly Leu Thr Arg

20 35 40 45

Asp Gln Val Lys Ala Ile Asn Phe Leu Pro Val Asp Tyr Glu Ile Glu 50 55 60

Tyr Val Cys Arg Gly Glu Arg Glu Val Val Gly Pro Lys Val Arg Lys

70

75

80

Cys Leu Ala Asn Gly Ser Trp Thr Asp Met Asp Thr Pro Ser Arg Cys
85 90 95

30

40

Val

- 35 (2) INFORMATION FOR SEQ ID NO: 84:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 2489 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA to mRNA

H1865-1 WO SEQ

(iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO 5 (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (ix) FEATURE: 10 (A) NAME/KEY: CDS (B) LOCATION:1..1491 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84: ATG TTG CTG CTG CTA CTG GCG CCA CTC TTC CTC CGC CCC CCG GGC 48 Met Leu Leu Leu Leu Leu Ala Pro Leu Phe Leu Arg Pro Pro Gly 1 10 15 GCG GGC GGG GCG CAG ACC CCC AAC GCC ACC TCA GAA GGT TGC CAG ATC 96 Ala Gly Gly Ala Gln Thr Pro Asn Ala Thr Ser Glu Gly Cys Gln Ile 20 25 30 ATA CAC CCG CCC TGG GAA GGG GGC ATC AGG TAC CGG GGC CTG ACT CGG 144 Ile His Pro Pro Trp Glu Gly Gly Ile Arg Tyr Arg Gly Leu Thr Arg 25 35 40 45 GAC CAG GTG AAG GCT ATC AAC TTC CTG CCA GTG GAC TAT GAG ATT GAG 192 Asp Gln Val Lys Ala Ile Asn Phe Leu Pro Val Asp Tyr Glu Ile Glu 50 55 60 30 TAT GTG TGC CGG GGG GAG CGC GAG GTG GTG GGG CCC AAG GTC CGC AAG 240 Tyr Val Cys Arg Gly Glu Arg Glu Val Val Gly Pro Lys Val Arg Lys 65 TGC CTG GCC AAC GGC TCC TGG ACA GAT ATG GAC ACA CCC AGC CGC TGT -288 Cys Leu Ala Asn Gly Ser Trp Thr Asp Met Asp Thr Pro Ser Arg Cys 85 95 GTC CGA ATC TGC TCC AAG TCT TAT TTG ACC CTG GAA AAT GGG AAG GTT 336 Val Arg Ile Cys Ser Lys Ser Tyr Leu Thr Leu Glu Asn Gly Lys Val 100 105 110 TTC CTG ACG GGT GGG GAC CTC CCA GCT CTG GAC GGA GCC CGG GTG GAT 384 H1865-1 WO SEQ 170

|    |       |           |       |                     |       |     |      |      |     |     |     |      | _   |       |      |       |   |              |
|----|-------|-----------|-------|---------------------|-------|-----|------|------|-----|-----|-----|------|-----|-------|------|-------|---|--------------|
|    | Phe   | Leu       | Thr   | Gly                 | Gly   | Asp | Leu  | Pro  | Ala | Leu | Asp | Gly  | Ala | Arg   | Val  | Asp   |   |              |
|    |       |           | 115   |                     |       |     |      | 120  |     |     |     |      | 125 |       |      |       |   |              |
|    |       |           |       |                     |       |     |      |      |     |     |     |      |     |       |      |       |   |              |
|    | TTC   | CGG       | TGT   | GAC                 | CCC   | GAC | TTC  | CAT  | CTG | TGT | GAT | CCA  | GGC | CAA   | GCC  | ACC   |   | 432          |
| 5  | Phe   | Arg       | Cys   | qzA                 | Pro   | Asp | Phe  | His  | Leu | Cys | Asp | Pro  | Gly | Gln   | Ala  | Thr   |   |              |
|    |       | 130       |       |                     |       |     | 135  |      |     |     |     | 140  |     |       |      |       |   |              |
|    |       |           |       |                     |       |     |      |      |     |     |     |      |     |       |      |       |   |              |
|    | AAG   | TAC       | CTA   | TAT                 | GAG   | CTG | CTC  | TAC  | AAC | GAC | ССТ | ATC  | AAG | ATC   | ATC  | CTT   |   | 480          |
|    |       |           |       |                     |       |     |      |      |     |     |     |      | Lys |       |      |       |   |              |
| 10 | 145   | - 4 -     |       | •                   |       | 150 |      | _    |     |     | 155 |      |     |       |      | 160   |   |              |
|    |       |           |       |                     |       |     |      |      |     |     |     |      |     |       |      |       |   |              |
|    | ΔΨC   | ርር<br>ጥ   | GGC   | ጥርር                 | AGC   | тст | GTC  | TCC  | ACG | CTG | GTG | GCT  | GAG | GCT   | GCT  | AGG   |   | 528          |
|    |       |           |       |                     |       |     |      |      |     |     |     |      | Glu |       |      |       |   |              |
|    | Mec   | 110       | Cry   | <b>C</b> , <b>D</b> | 165   |     |      |      |     | 170 |     | •    |     |       | 175  |       |   |              |
|    |       |           |       |                     | #03   |     |      |      |     | _,, |     |      |     |       |      |       |   |              |
| 15 | 3 m/c | mcc       | 7 7 C | CTC                 | አ ጥጥ  | CTC | ىئىش | ጥርር  | ጥልጥ | GGC | TCC | AGC  | TCA | CCA   | GCC  | CTG   |   | 576          |
|    |       |           |       |                     |       |     |      |      |     |     |     |      | Ser |       |      |       |   |              |
|    | Met   | Trp       | ASII  |                     | TIE   | vai | nea  | 261  | 185 | Gry | Der | 001  | DC  | 190   |      | 200   |   |              |
|    |       |           |       | 180                 |       |     |      |      | 103 |     |     |      |     | 170   |      |       |   |              |
|    |       |           |       |                     |       |     | 000  | 3 OM | mmc | mmc | CCA | אככ  | CAC | CCA   | ጥር አ | GCC   |   | 624          |
| 20 |       |           |       |                     |       |     |      |      |     |     |     |      |     |       |      |       |   | <b>0</b> 2.2 |
|    | Ser   | Asn       |       |                     | Arg   | Pne | Pro  |      | Pne | Pne | Arg | 1111 | His | FIO   | SEL  | VIG   | - |              |
|    |       |           | 195   |                     |       |     |      | 200  |     |     |     |      | 205 |       |      |       |   |              |
|    |       |           |       |                     |       |     |      |      |     | ~=~ |     |      |     | maa   | 000  | maa   |   | 672          |
|    |       |           |       |                     |       |     |      |      |     |     |     |      | AAG |       |      |       |   | 072          |
| 25 | Thr   | Leu       | His   | Asn                 | Pro   | Thr |      | Val  | Lys | Leu | Phe |      | Lys | urp   | GIY  | Trp   |   |              |
|    |       | 210       |       |                     |       |     | 215  |      |     |     |     | 220  |     |       |      |       |   |              |
|    |       |           |       |                     |       |     |      |      |     |     |     |      |     |       |      |       |   | 700          |
|    |       |           |       |                     |       |     |      |      |     |     |     |      |     |       |      | ACT   |   | 720          |
|    | Lys   | Lys       | Ile   | Ala                 | Thr   | Ile | Gln  | Gln  | Thr | Thr | Glu | Val  | Phe | Thr   | Ser  |       |   |              |
| 30 | 225   |           |       |                     |       | 230 |      |      |     |     | 235 |      |     |       |      | 240   |   |              |
|    |       |           |       |                     |       |     |      |      |     |     |     |      |     |       |      |       |   |              |
|    |       |           |       |                     |       |     |      |      |     |     |     |      |     |       |      | ACT   |   | 768          |
|    | Leu   | Asp       | Asp   | Leu                 | Glu   | Glu | Arg  | Val  | Lys | Glu | Ala | Gly  | Ile | Glu   | Ile  | Thr   |   |              |
|    |       |           |       |                     | 245   | ,   |      |      |     | 250 |     |      |     |       | 255  |       |   |              |
| 35 |       |           |       |                     |       |     |      |      |     |     |     |      |     |       |      | -man- |   |              |
|    | TTC   | CGC       | CAG   | AGT                 | TTC   | TTC | TCA  | GAT  | CCA | GCI | GTG | CCC  | GTC | AAA   | AAC  | CTG   |   | 816          |
|    | Phe   | Arg       | g Glr | Ser                 | Phe   | Phe | Ser  | Asp  | Pro | Ala | Val | Pro  | val | . Lys | Asn  | Leu   |   |              |
|    |       |           |       | 260                 | )     |     |      |      | 265 | ,   |     |      |     | 270   | ı    |       |   |              |
|    |       |           |       |                     |       |     |      |      |     |     |     |      |     |       |      |       |   |              |
| 40 | AAC   | G CG      | CAC   | GA?                 | r GCC | CGA | ATC  | ATO  | GTO | GGA | CTI | TTC  | TAT | GAG   | ACI  | GAA   |   | 864 v        |
|    |       |           |       |                     |       |     |      |      |     |     |     |      |     |       |      | Glu   |   |              |
|    | -,,   | <b></b> ; | 275   |                     |       |     |      | 280  |     | _   |     |      | 285 |       | •    |       |   |              |
|    |       |           |       | -                   |       |     |      |      |     |     |     |      |     |       |      |       |   |              |

|    |       | 450          |     |     |            |               | 455 |     |     |            | ·    | 460   |     |                  |            |     |                  |
|----|-------|--------------|-----|-----|------------|---------------|-----|-----|-----|------------|------|-------|-----|------------------|------------|-----|------------------|
|    |       | Ser          |     |     |            |               | Thr |     |     |            |      |       |     | _                | Gly        |     | 1332             |
| 40 | GGC   | ጥርጥ          | CGG | ልጥር | GCA        | ጥርር           | ACG | Сфф | ልጥሮ | GAG        | CAG  | لملمك | CAG | <del>ල</del> ල ආ | GGC        | AGC | ນ<br>1392        |
|    |       |              | 435 |     |            | -             |     | 440 | -   |            |      |       | 445 | •                |            |     |                  |
|    |       |              |     |     |            |               |     |     |     |            |      |       |     |                  | Ala        |     | 1344             |
|    | ஸ்சுர | ጥርር          | ጥርር | ጥጥጥ | GAG        | ርርጥ           | ርጥር | ጥርጥ | GGC | СУП        | Curc | משכ   | фтт | CAT              | GCC        | ACC | 1211             |
| 35 |       |              |     | 420 | - <b></b>  | - <del></del> |     |     | 425 |            |      |       | 9   | 430              |            |     |                  |
|    |       |              |     |     |            |               |     |     |     |            |      |       |     |                  | ATG<br>Met |     | 1296             |
|    |       |              |     |     |            |               |     |     |     |            |      |       |     |                  |            |     |                  |
| 30 | гуѕ   | Thr          | ser | GŢĀ | Gly<br>405 | Gly           | GLY | Arg | Ser | Gly<br>410 | Val  | Arg   | Leu | Glu              | Asp<br>415 | Phe |                  |
|    |       |              |     |     |            |               |     |     |     |            |      |       |     |                  | GAC        |     | 1248             |
|    | 385   |              |     |     |            | 390           |     |     |     |            | 395  |       |     |                  |            | 400 |                  |
|    |       | Pro          | Leu | Ala | Tyr        | _             | Ala | Ile | Trp | Ala        |      | Ala   | Leu | Ala              | Leu        |     |                  |
| 25 | GCA   | CCG          | CTG | GCC | тат        | GAT           | GCC | ATC | TGG | GCC        | TTG  | GCA   | CTG | GCC              | CTG        | AAC | 1200             |
|    |       | 370          |     |     |            |               | 375 |     |     |            |      | 380   |     |                  |            |     |                  |
|    | Thr   |              | Arg | Leu | Lys        | Arg           |     | Pro | Glu | Glu        | Thr  | Gly   | Gly | Phe              | Gln        | Glu | •                |
|    | ACC   | AAG          | CGA | CTG | AAA        | AGA           | CAC | CCT | GAG | GAG        | ACA  | GGA   | GGC | TTC              | CAG        | GAG | 1152             |
| 20 |       |              | 355 |     | •          |               |     | 360 |     |            |      |       | 365 | •                |            |     |                  |
|    | Thr   | Arg          |     | Ile | Ser        | Asn           | Met |     | Ser | Gln        | Glu  | Phe   | Val | Glu              | Lys        | Leu |                  |
|    | ACC   | CGC          | AGC | ATT | TCC        | AAC           | ATG | ACA | TCC | CAG        | GAA  | ттт   | GTG | GAG              | AAA        | CTA | 1104             |
| 15 |       |              |     | 340 |            |               |     |     | 345 |            |      |       |     | 350              |            |     |                  |
|    | Val   | Glu          | Gly | His | Ile        | Thr           | Thr | Glu | Ile | Val        | Met  | Leu   | Asn | Pro              | Ala        | Asn |                  |
|    | GTG   | GAG          | GGC | CAC | ATC        | ACA           | ACT | GAG | АТТ | GTC        | ATG  | CTG   | ААТ | CCT              | GCC        | ААТ | 1056             |
|    |       | _            | •   |     | 325        |               |     | -   |     | 330        | •    |       |     |                  | 335        |     |                  |
| 10 |       |              |     |     |            |               |     |     |     |            |      |       |     |                  | GAG<br>Glu |     | 1008             |
|    |       | <b>m</b> . c | ~~~ |     |            | 3.000         |     |     |     |            |      |       |     |                  |            |     |                  |
|    | 305   | ıyı          | vai | пр  | rne        | 310           | 116 | GIY | пр  | TYL        | 315  | Asp   | ASN | ттр              | Pne        | 120 |                  |
| 5  |       |              |     |     |            |               |     |     |     |            |      |       |     |                  | TTC<br>Phe |     | 960              |
|    |       | 290          |     |     |            |               | 295 |     |     |            |      | 300   |     |                  |            |     |                  |
|    | Ala   |              | Lys | Val | Phe        | Cys           |     | Val | Tyr | Lys        | Glu  |       | Leu | Phe              | Gly        | Lys |                  |
|    | GCC   | CGG          | AAA | GTT | TTT        | TGT           | GAG | GTG | TAC | AAG        | GAG  | CGT   | CŤC | TTT              | GGG        | AAG | <del>-91</del> 2 |

|    | TAC AAG AAG ATT GGC TAC TAT GAC AGC ACC AAG GAT GAT CTT TCC TGG    | 1440  |
|----|--------------------------------------------------------------------|-------|
|    | Tyr Lys Lys Ile Gly Tyr Tyr Asp Ser Thr Lys Asp Asp Leu Ser Trp    |       |
|    | 465 470 475 480                                                    |       |
|    | 403                                                                |       |
| 5  |                                                                    | 1488  |
|    | TCC AAA ACA GAT AAA TGG ATT GTT ATA TCC AGA ACT CAC AGC CCA ACC    | 1400  |
|    | Ser Lys Thr Asp Lys Trp Ile Val Ile Ser Arg Thr His Ser Pro Thr    |       |
|    | <b>48</b> 5 <b>49</b> 0 <b>49</b> 5                                |       |
|    | 3                                                                  |       |
| 10 | TGA ACAACCTGAC TGCTGTGGGC TGCTCACTGG CTTTAGCTGC TGTCTTCCCC         | 1541  |
|    | *                                                                  |       |
|    |                                                                    |       |
|    |                                                                    |       |
|    |                                                                    | 1.601 |
|    | CTGGGGCTCG ATGGTTACCA CATTGGGAGG AACCAGTTTC CTTTCGTCTG CCAGGCCCGC  | 1601  |
| 15 |                                                                    |       |
|    | CTCTGGCTCC TGGGCCTGGG CTTTAGTCTG GGCTACGGTT CCATGTTCAC CAAGATTTGG  | 1661  |
|    |                                                                    |       |
|    | TGGGTCCACA CGGTCTTCAC AAAGAAGGAA GAAAAGAAGG AGTGGAGGAA GACTCTGGAA  | 1721  |
|    |                                                                    |       |
| 20 | CCCTGGAAGC TGTATGCCAC AGTGGGCCTG CTGGTGGGCA TGGATGTCCT CACTCTCGCC  | 1781  |
| 20 | CCCIGGRAGE IGIAIGCCAE ACIGGCCIG CIGGICGCCII ICANICIECI GIOLOGCCIG  |       |
|    |                                                                    | 1841  |
|    | ATCTGGCAGA TCGTGGACCC TCTGCACCGG ACCATTGAGA CATTTGCCAA GGAGGAACCT  | 1041  |
|    |                                                                    |       |
|    | AAGGAAGATA TTGACGTCTC TATTCTGCCC CAGCTGGAGC ATTGCAGCTC CAGGAAGATG  | 1901  |
| 25 |                                                                    |       |
|    | AATACATGGC TTGGCATTTT CTATGGTTAC AAGGGGCTGC TGCTGCTGCT GGGAATCTTC  | 1961  |
|    |                                                                    |       |
|    | CTTGCTTATG AGACCAAGAG TGTGTCCACT GAGAAGATCA ATGATCACCG GGCTGTGGGC  | 2021  |
|    |                                                                    |       |
|    | ATGGCTATCT ACAATGTGGC AGTCCTGTGC CTCATCACTG CTCCTGTCAC CATGATTCTG  | 2081  |
| 30 | ATGCCTATCT ACASTGTGGC AGTCCTGTGGC CTCATCACTG CTCCTGTCAC CATGATTCTG | 2001  |
|    |                                                                    | 01.41 |
|    | TCCAGCCAGC AGGATGCAGC CTTTGCCTTT GCCTCTTTG CCATAGTTTT CTCCTCCTAT   | 2141  |
|    |                                                                    |       |
|    | ATCACTCTTG TTGTGCTCTT TGTGCCCAAG ATGCGCAGGC TGATCACCCG AGGGGAATGG  | 2201  |
| 35 | war .                                                              |       |
|    | CAGTCGGAGG CGCAGGACAC CATGAAGACA GGGTCATCGA CCAACAACAA CGAGGAGGAG  | 2261  |
|    |                                                                    |       |
|    | AAGTCCCGGC TGTTGGAGAA GGAGAACCGT GAACTGGAAA AGATCATTGC TGAGAAAGAG  | 2321  |
|    | WARTERFACE INTIMONOUN CONOUNCED OWNERSHIP WONTON INC. INVANTABLES  |       |
|    |                                                                    | 2381  |
| 40 | GAGCGTGTCT CTGAACTGCG CCATCAACTC CAGTCTCGGC AGCAGCTCCG CTCCCGGCGC  | 2301  |
|    |                                                                    |       |
|    | CACCCACCGA CACCCCCAGA ACCCTCTGGG GGCCTGCCCA GGGGACCCCC TGAGCCCCCC  | 2441  |
|    |                                                                    |       |

2489

(2) INFORMATION FOR SEQ ID NO: 85:

5

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 496 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear

10

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:
- Met Leu Leu Leu Leu Leu Leu Ala Pro Leu Phe Leu Arg Pro Pro Gly
  1 5 10 15
  - Ala Gly Gly Ala Gln Thr Pro Asn Ala Thr Ser Glu Gly Cys Gln Ile
    20 25 30

20

- Ile His Pro Pro Trp Glu Gly Gly Ile Arg Tyr Arg Gly Leu Thr Arg 35 40 45
- Asp Gln Val Lys Ala Ile Asn Phe Leu Pro Val Asp Tyr Glu Ile Glu
  25 50 55 60
  - Tyr Val Cys Arg Gly Glu Arg Glu Val Val Gly Pro Lys Val Arg Lys
    65 70 75 80
- 30 Cys Leu Ala Asn Gly Ser Trp Thr Asp Met Asp Thr Pro Ser Arg Cys 85 90 95
  - Val Arg Ile Cys Ser Lys Ser Tyr Leu Thr Leu Glu Asn Gly Lys Val
    100 105 110

35

- Phe Leu Thr Gly Gly Asp Leu Pro Ala Leu Asp Gly Ala Arg Val Asp 115 120 125
- Phe Arg Cys Asp Pro Asp Phe His Leu Cys Asp Pro Gly Gln Ala Thr
  40 130 135 140

|    | Met        | Pro        | Gly        | Cys        | Ser<br>165 | Ser        | Val        | Ser        | Thr        | Leu<br>170 | Val        | Ala                 | Glu        | Ala        | Ala<br>175 | Arg        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|---------------------|------------|------------|------------|------------|
| 5  | Met        | Trp        | Asn        | Leu<br>180 | Ile        | Val        | Leu        | Ser        | Туг<br>185 | Gly        | Ser        | Ser                 | Ser        | Pro<br>190 | Ala        | Leu        |
| 10 | Ser        | Asn        | Arg<br>195 | Gln        | Arg        | Phe        | Pro        | Thr<br>200 | Phe        | Phe        | Arg        | Thr                 | His<br>205 | Pro        | Ser        | Ala        |
| 10 | Thr        | Leu<br>210 | His        | Asn        | Pro        | Thr        | Arg<br>215 | Val        | Lys        | Leu        | Phe        | Glu<br>220          | Lys        | Trp        | Gly        | Trp        |
| 15 | Lys<br>225 | Lys        | Ile        | Ala        | Thr        | Ile<br>230 | Gln        | Gln        | Thr        | Thr        | Glu<br>235 | Val                 | Phe        | Thr        | Ser        | Thr<br>240 |
|    | Leu        | Asp        | Asp        | Leu        | Glu<br>245 | Glu        | Arg        | Val        | Lys        | Glu<br>250 | Ala        | Gly                 | Ile        | Glu        | Ile<br>255 | Thr        |
| 20 | Phe        | Arg        | Gln        | Ser<br>260 | Phe        | Phe        | Ser        | Asp        | Pro<br>265 | Ala        | Val        | Pro                 | Val        | Lys<br>270 | Asn        | Leu        |
| 25 | Lys        | Arg        | Gln<br>275 | Asp        | Ala        | Arg        | Ile        | Ile<br>280 | Val        | Gly        | Leu        | Phe                 | Tyr<br>285 |            | Thr        | Glu        |
|    | Ala        | Arg<br>290 |            | Val        | Phe        | Суз        | Glu<br>295 | Val        | Tyr        | Lys        | Glu        | Arg<br>3 <b>0</b> 0 |            | Phe        | Gly        | Lys        |
| 30 | Lys<br>305 |            | Val        | Trp        | Phe        | Leu<br>310 | Ile        | Gly        | Trp        | Tyr        | Ala<br>315 |                     | Asn        | Trp        | Phe        | Lys<br>320 |
|    | Ile        | Tyr        | Asp        | Pro        | Ser<br>325 |            | Asn        | Cys        | Thr        | Val<br>330 |            | Glu                 | Met        | Thr        | Glu<br>335 |            |
| 35 | Val        | Glu        | Gly        | His<br>340 |            | Thr        | Thr        | Glu        | Ile<br>345 |            | Met        | Leu                 | . Asn      | 350        |            | Asn        |
| 40 | Thr        | Arg        | 355        | : Ile      | e Ser      | Asn        | Met        | Thr<br>360 |            | Gln        | Glu        | Phe                 | val<br>365 |            | Lys        | Leu        |
| •  | Thr        | Lys        |            | g Lev      | Lys        | Arg        | His        |            | Glu        | ı Glu      | Thr        | Gly<br>380          |            | ⁄ Ph∈      | Gln        | Glu        |

Ala Pro Leu Ala Tyr Asp Ala Ile Trp Ala Leu Ala Leu Ala Leu Asn Lys Thr Ser Gly Gly Gly Arg Ser Gly Val Arg Leu Glu Asp Phe Asn Tyr Asn Asn Gln Thr Ile Thr Asp Gln Ile Tyr Arg Ala Met Asn Ser Ser Ser Phe Glu Gly Val Ser Gly His Val Val Phe Asp Ala Ser Gly Ser Arg Met Ala Trp Thr Leu Ile Glu Gln Leu Gln Gly Gly Ser Tyr Lys Lys Ile Gly Tyr Tyr Asp Ser Thr Lys Asp Asp Leu Ser Trp Ser Lys Thr Asp Lys Trp Ile Val Ile Ser Arg Thr His Ser Pro Thr 

WO 99/21890

H1865-1 WO SEQ

International application No.

PCT/SE 98/01947

|                                     |                                                                                                                                                                                        | PC1/SE 98/                                                                                                                                                                                            | 01947                                                             |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| A. CLASS                            | SIFICATION OF SUBJECT MATTER                                                                                                                                                           |                                                                                                                                                                                                       |                                                                   |
| According to                        | CO7K 14/705 o International Patent Classification (IPC) or to both r                                                                                                                   | national classification and IPC                                                                                                                                                                       |                                                                   |
|                                     | OS SEARCHED                                                                                                                                                                            |                                                                                                                                                                                                       |                                                                   |
| Minimum d                           | ocumentation searched (classification system followed t                                                                                                                                | by classification symbols)                                                                                                                                                                            |                                                                   |
| IPC6: 0                             |                                                                                                                                                                                        |                                                                                                                                                                                                       |                                                                   |
|                                     | tion searched other than minimum documentation to the                                                                                                                                  | e extent that such documents are included                                                                                                                                                             | in the fields searched                                            |
| SE,DK,F                             | FI,NO classes as above                                                                                                                                                                 |                                                                                                                                                                                                       |                                                                   |
| Electronic d                        | ata base consulted during the international search (nam                                                                                                                                | e of data base and, where practicable, sear                                                                                                                                                           | ch terms used)                                                    |
| c. Docu                             | MENTS CONSIDERED TO BE RELEVANT                                                                                                                                                        |                                                                                                                                                                                                       |                                                                   |
| Category*                           | Citation of document, with indication, where ap                                                                                                                                        | propriate, of the relevant passages                                                                                                                                                                   | Relevant to claim No.                                             |
| X                                   | EMBL Databas Genbank/DDBJ, acce<br>Y11044, Grifa A. et al: "GAl<br>acid)neurotransmission: ide<br>mapping of human GABA-B rec<br>Biochem. Biophys. Res. Comm                           | BA (gamma-amino-butyric ntification and fine eptor gene":                                                                                                                                             | 1-6,11-13,<br>16-26                                               |
| x                                   | Nature, Volume 386, March 1997                                                                                                                                                         |                                                                                                                                                                                                       | 1-6,11-13,                                                        |
|                                     | Klemens Kaupmann et al, "Ex<br>GABAB receptors uncovers si<br>metabotropic glutamate rece<br>page 239 - page 246                                                                       | milarity to                                                                                                                                                                                           | 16-26                                                             |
| X                                   | WO 9746675 A1 (NOVARTIS AG), 11 (11.12.97), page 50 - page 9                                                                                                                           | December 1997<br>56, claim 4                                                                                                                                                                          | 1-6,11-13,<br>16-26                                               |
| X Furthe                            | er documents are listed in the continuation of Bo                                                                                                                                      | See patent family anne                                                                                                                                                                                | x.                                                                |
| "A" docume                          | categories of cited documents:<br>nt defining the general state of the art which is not considered<br>particular relevance                                                             | "T" later document published after the ini-<br>date and not in conflict with the appli-<br>the principle or theory underlying the                                                                     | cation but cited to understand                                    |
| "L" document                        | neument but published on or after the international filing date in which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other | "X" document of particular relevance: the considered novel or cannot be considered when the document is taken along                                                                                   | ered to involve an inventive                                      |
| "O" documer<br>means<br>"P" documer | reason (as specified)  In referring to an oral disclosure, use, exhibition or other  In published prior to the international filing date but later than  Inty date claimed             | "Y" document of particular relevance: the considered to involve an inventive ste combined with one or more other such being obvious to a person skilled in the "&" document member of the same patent | p when the document is<br>h documents, such combination<br>le art |
| Date of the                         | actual completion of the international search                                                                                                                                          | Date of mailing of the international                                                                                                                                                                  |                                                                   |
| 23 Marc                             | h 1999                                                                                                                                                                                 | 26 -03-                                                                                                                                                                                               | 1999                                                              |
|                                     | mailing address of the ISA                                                                                                                                                             | Authorized officer                                                                                                                                                                                    |                                                                   |
| Box 5055,                           | Patent Office<br>S-102 42 STOCKHOLM<br>So. + 46 8 666 02 86                                                                                                                            | Patrick Andersson<br>Telephone No. + 46 8 782 25 00                                                                                                                                                   | _                                                                 |
|                                     | A 210 (second sheet) (July 1992)                                                                                                                                                       | 1 elephone .30. 740 8 /62 23 00                                                                                                                                                                       |                                                                   |

Form PCT ISA 210 (second sheet) (July 1992)

International application No.
PCT/SE 98/01947

|            | 101/32 33/0                                                                                                                                                                                                                                                                                   |                       |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| C (Continu | ation). DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                   |                       |
| Category*  | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                            | Relevant to claim No. |
| P,X        | Dialog Information Services, File 34, SciSearch, Dialog accession no. 07157158, Goei VL et al: "Human gamma-aminobutyric acid B receptor gene: Complementary DNA cloning, expression, chromosomal location, and genomic organization", Biological Psychiatry, 1998, V44, N8(OCT 15), p659-666 | 1-6,11-13,<br>16-26   |
| A          | Brain Research Bulletin, Volume 38, No 6, 1995,<br>Robert J. Washabau et al, "GABA Receptros in the<br>Dorsal Motor Nucleus of the Vagus Influence Feline<br>Lower Esophageal Sphincter and Gastric Function"<br>page 587 - page 594                                                          | 1-6,11-13,<br>16-26   |
|            | <br>                                                                                                                                                                                                                                                                                          |                       |
|            |                                                                                                                                                                                                                                                                                               |                       |
| ,          |                                                                                                                                                                                                                                                                                               |                       |
|            |                                                                                                                                                                                                                                                                                               |                       |
|            |                                                                                                                                                                                                                                                                                               |                       |
|            |                                                                                                                                                                                                                                                                                               |                       |
|            |                                                                                                                                                                                                                                                                                               |                       |
|            |                                                                                                                                                                                                                                                                                               |                       |
|            |                                                                                                                                                                                                                                                                                               |                       |
|            |                                                                                                                                                                                                                                                                                               |                       |
|            |                                                                                                                                                                                                                                                                                               |                       |
|            |                                                                                                                                                                                                                                                                                               |                       |
|            |                                                                                                                                                                                                                                                                                               |                       |
|            |                                                                                                                                                                                                                                                                                               | -                     |
|            |                                                                                                                                                                                                                                                                                               |                       |
|            |                                                                                                                                                                                                                                                                                               |                       |
|            |                                                                                                                                                                                                                                                                                               |                       |
|            |                                                                                                                                                                                                                                                                                               | υ                     |
|            |                                                                                                                                                                                                                                                                                               |                       |
|            |                                                                                                                                                                                                                                                                                               |                       |
|            |                                                                                                                                                                                                                                                                                               |                       |
|            |                                                                                                                                                                                                                                                                                               |                       |
|            |                                                                                                                                                                                                                                                                                               |                       |

Form PCT/ISA 210 (continuation of second sheet) (July 1992)

International application No.
PCT/SE 98/01947

| Box I                                                                                                                                    | Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)                                                                                                                          |  |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: |                                                                                                                                                                                                                            |  |
| 1.                                                                                                                                       | Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:                                                                                                                  |  |
| 2.                                                                                                                                       | Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: |  |
| 3.                                                                                                                                       | Claims Nos.:                                                                                                                                                                                                               |  |
|                                                                                                                                          | because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).                                                                                                    |  |
| Box II                                                                                                                                   | Observations where unity of invention is lacking (Continuation of item 2 of first sheet)                                                                                                                                   |  |
| This Inte                                                                                                                                | ernational Searching Authority found multiple inventions in this international application, as follows:                                                                                                                    |  |
|                                                                                                                                          |                                                                                                                                                                                                                            |  |
|                                                                                                                                          | See next page                                                                                                                                                                                                              |  |
|                                                                                                                                          |                                                                                                                                                                                                                            |  |
|                                                                                                                                          |                                                                                                                                                                                                                            |  |
| 1.                                                                                                                                       | As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.                                                                                   |  |
| 2.                                                                                                                                       | As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.                                                                       |  |
| 3.                                                                                                                                       | As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:                       |  |
| -                                                                                                                                        | !<br>!                                                                                                                                                                                                                     |  |
|                                                                                                                                          |                                                                                                                                                                                                                            |  |
| 4. X                                                                                                                                     | No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:           |  |
| Remark                                                                                                                                   | on Protest The additional search fees were accompanied by the applicant's protest.                                                                                                                                         |  |
|                                                                                                                                          | No protest accompanied the payment of additional search fees.                                                                                                                                                              |  |

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

1...ernational application No.

PCT/SE 98/01947

According to PCT rule 13.2, an international application shall relate to one invention only or a group of inventions linked by one or more of the same or corresponding "special technical features", i.e. features that define a contribution which each of the inventions makes over the prior art.

The claimed invention relates to a nucleic acid sequence encoding a GABAB-receptor from either human or canine origin. A possible special technical features could have been nucleotide sequence encoding a GABAB-receptor. However a nucleotide sequence encoding a human GABAB-receptor is known from Grifa A. et. al., see the search report. Thus, the present application is considered to contain the following independent inventions:

Invention 1, claims 3-4, and the parts of claims 1-2 and 16-26 relating to claims 3-4:A human GABAB-receptor 1a, and related items,

Invention 2, claims 5-6, and the parts of claims 1-2 and 16-26 relating to claims 5-6:A human GABAB-receptor 1b, and related items,

Invention 3, claims 7-8, and the parts of claims 1-2 and 16-26 relating to claims 7-8:A human GABAB-receptor 1c, and related items,

Invention 4, claims 9-10, and the parts of claims 1-2 and 16-26 relating to claims 9-10:A human GABAB-receptor 1d, and related items,

Invention 5, claims 12-13, and the parts of claims 1, 11 and 16-26 relating to claims 12-13: A canine GABAB-receptor 1a, and related items.

Invention 6, claims 14-15, and the parts of claims 1, 11 and 16-26 relating to claims 14-15:A canine GABAB-receptor 1c, and related items.

The search has been limited to inventions 1, 2 and 5.

Form PCT/ISA/210 (extra sheet) (July 1992)

Information on patent family members

International application No. 02/03/99

PCT/SE 98/01947

Patent document cited in search report Publication Patent family member(s) Publication date date WO 9746675 A1 11/12/97 ΑU 2028497 A 05/01/98

Form PCT ISA 210 (patent family annex) (July 1992)

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: \_

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)