1 Sobolev Embeddings

1.1 On \mathbb{T}

Let $k > \frac{1}{2}$. Then

$$||f||_{C(\mathbb{T})} \le C||f||_{H^k(\mathbb{T})}$$

That is, if f has at least half of a derivative on a 1-dimensional compact subset of \mathbb{R} , then it is continuous.

1.2 On compact subsets of \mathbb{R}^2

Let $\Omega \subseteq \mathbb{R}^2$ and kp > 2. Then

$$||f||_{L^{\infty}(\Omega)} \le C||f||_{W^{k,p}(\Omega)}$$

That is, functions on compact intervals with enough derivatives, and/or are p-integrable enough, are bounded.

1.3 On \mathbb{R}^n , with k=1

Let p > n. Then

$$\|f\|_{C^0(\mathbb{R}^n)} \leq \underbrace{\|f\|_{C^{0,1-\frac{n}{p}}(\mathbb{R}^n)}}_{\text{H\"older-norm}} \leq C\|f\|_{W^{1,p}(\mathbb{R}^n)}$$

That is, in higher dimensions, it takes higher regularity to ensure continuity.

1.4 On \mathbb{R}^n , in general

Let kp > n. Then

$$\|f\|_{C^{k-\left\lfloor\frac{n}{p}\right\rfloor-1}(\mathbb{R}^n)} \leq \underbrace{\|f\|_{C^{k-\left\lfloor\frac{n}{p}\right\rfloor-1,\gamma}(\mathbb{R}^n)}}_{\text{H\"older-norm}} \leq C\|f\|_{W^{k,p}(\mathbb{R}^n)}$$

2 Gagliardo-Nirenburg-Sobolev Inequalities

2.1 On \mathbb{R}^n , with k=1

Let $1 \leq p < n$, and define $p^* \coloneqq \frac{np}{n-p}$. Then $\forall f \in W^{1,p}(\mathbb{R}^n)$,

$$||f||_{L^{p^*}(\mathbb{R}^n)} \le C||Df||_{L^p(\mathbb{R}^n)}$$

2.2 On \mathbb{R}^n , in general

Let $1 \leq kp < n$, and define $p^* := \frac{np}{n - kp}$. Then $\forall f \in W^{k,p}(\mathbb{R}^n)$,

$$||f||_{L^{p^*}(\mathbb{R}^n)} \le C ||D^k f||_{L^p(\mathbb{R}^n)}$$

Furthermore, if Ω is open, bounded, and has C^1 boundary, then

$$||f||_{L^{p^*}(\Omega)} \le C||f||_{W^{k,p}(\Omega)}$$

3 Young's Inequality

Let
$$1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}$$
. Then

$$\|f*g\|_r \leq \|f\|_p \|g\|_q$$

1

4 Hölder's Inequality

Let
$$\frac{1}{p} + \frac{1}{q} = 1$$
. Then

$$||fg||_1 \le ||f||_p ||g||_q$$

5 Interpolation in Lebesgue Space

Let
$$\frac{1}{p} = \frac{a}{q} + \frac{1-a}{r}$$
. Then

$$||f||_p \le ||f||_q^a + ||f||_r^{1-a}$$

That is, functions in L^q and L^r are in L^p for any $p \in (q, r)$.

6 Tips and Tricks to Remember

- Bounding a convolution? Use Young's.
- Proving continuity or countinuous differentiability? Use Sobolev Embeddings.
- Proving regularity? Use Gagliardo-Nirenburg-Sobolev Inequalities.
- \bullet Can you prove a function in L^1 is bounded? Use Interpolation.
- Bounding an integral? Use Hölder's.

7 Spectrum of Bounded Linear Operators on Hilbert Spaces

7.1 In General

Let $A \in \mathcal{B}(\mathcal{H})$. Then

- $\sigma(A) \subset B_{\|A\|}(0)$.
- $\sigma(A)$ is closed.
- $\sigma(A) \neq \emptyset$
- $r(A) = \lim_{n \to \infty} ||A^n||^{\frac{1}{n}}$.
- $\lambda \in \text{resi}(A) \implies \overline{\lambda}$ is an eigenvalue of A^* .

7.2 For Self-Adjoint Operators

Let $A \in \mathcal{B}(\mathcal{H})$ such that $A = A^*$. Then

- $\sigma(A) \subset \mathbb{R}$.
- $resi(A) = \emptyset$.
- r(A) = ||A||.
- Eigenvectors correspoding to distinct eigenvalues are orthogonal.

7.3 For Compact, Self-Adjoint Operators

Let $A \in \mathcal{B}(\mathcal{H})$ such that $A = A^*$ and A is compact. Then

- $\sigma(A)$ consists entirely of eigenvalues, except possibly 0, which may be in the continuous spectrum.
- Every nonzero eigenvalue has finite multiplicity, that is, the dimension of the eigenspace is finite, i.e. dim $\ker[A-\lambda I]<\infty$.
- If $\sigma(A)$ has an accumulation point, it must be 0. There are no other accumulation points.
- A can be represented as a convergent (in operator norm) series of prejections onto eigenspaces. That is,

$$A = \sum_{\lambda \in \sigma(A)} \lambda P_{\ker[A - \lambda I]}$$