MATHF411-Analyse Fonctionnelle

Assistant : Robson Nascimento Titulaire : Paul Godin

Compacité et Théorie Spectrale

Exercice 1 Soit E un espace vectoriel normé.

- a) Pour tout sous-espace linéaire fermé $F \subsetneq E$, montrez qu'il existe un vecteur de norme 1 distance plus grande que 1/2 de F.
- b) Si E est de dimension finie, toutes les normes sur E sont équivalentes.
- c) La dimension de E est finie si et seulement si sa boule unité fermée est compacte.
- d) Si la dimension de E est infinie, alors l'application identité Id : $E \to E$ n'est pas compacte.

Exercice 2 Soit H un espace de Hilbert et $\varphi: H \to \mathbb{R}$ une fonction faiblement semicontinue inférieurement. Si φ est coercive, alors φ atteint son infimum dans H.

Exercice 3 Montrez que:

- a) Si $C \subset H$ est un convexe, fermé, borné, alors il est compact pour la convergence faible.
- b) La sphère unité est fermée, bornée, mais n'est pas compacte pour la topologie faible dès que la dimension est infinie.

Exercice 4 Soient E et F deux espaces de Banach. Prouvez que l'ensemble des opérateurs linéaires compacts de E dans F, noté $\mathcal{K}(E,F)$, est fermé dans $\mathcal{L}(E,F)$ pour la norme opérateur

$$||T|| = \sup_{\|x\|_E \le 1} ||Tx||_F.$$

En déduire que l'opérateur $T: l^2 \to l^2$ défini par

$$Tx = \left(x_1, \frac{x_2}{2}, \frac{x_3}{3}, \cdots, \frac{x_n}{n}, \cdots\right)$$

est compact.

Exercice 5 Prouvez que l'ensemble défini par

$$M:=\{u\in C^1([a,b]): \int_a^b (|u(x)|^2+|u'(x)|^2)\,dx\leq k\},$$

où k > 0 est une constante, est rélativement compact.

Indice: Utiliser le Théorème d'Arzelà-Ascoli.

Exercice 6 Montrez que l'opérateur

$$T: C([a,b]) \longrightarrow C([a,b])$$

$$u(x) \longmapsto (Tu)(x) = \int_a^b K(x,s)u(s)ds$$

avec $K: C([a,b]^2) \to \mathbb{R}$, est compact.

Exercice 7 Soient H un espace de Hilbert et $S,T:H\to H$ linéaires. Démontrez les affirmations suivantes.

- a) Si S est continu et T est compact, alors $S \circ T$ et $T \circ S$ sont compacts.
- b) Si T est compact, alors son adjoint T^* est compact.
- c) Si T est auto-adjoint et si $\sigma(T) = \{0\}$, alors $T \equiv 0$.

Exercice 8 Soient X et Y deux espaces normés et $T: X \to Y$ un opérateur linéaire et compact. Supposons que $(x_n)_n \subset X$ soit une suite qui converge faiblement vers x, écrivons $x_n \to x$. Alors $(Tx_n)_n$ converge fortement dans Y et il possède la limite y = Tx.

Exercice 9 Soient $S_q, S_d: l^2 \to l^2$ des opérateurs définis par

$$S_g(x_1, x_2, \dots) = (x_2, x_3, \dots)$$
 et $S_d(x_1, x_2, \dots) = (0, x_1, x_2, \dots)$.

Trouvez le spectre ponctuel de S_d et S_g .

Exercice 10 Soient X et Y deux espaces normés et $T: X \to Y$ une application linéaire de rang fini. Alors T est compact.

Exercice 11 Soient H un espace de Hilbert et $T: H \to H$ un opérateur linéaire sur H. Alors $\sigma(T) \subset [-\|T\|, \|T\|]$.

Remarque : Notons que si T est symétrique, alors $||T|| = \sup_{||u||=1} |\langle T(u), u \rangle|$.

Exercice 12 Soient H un espace de Hilbert et $T: H \to H$ un opérateur linéaire et symétrique sur H. Alors -||T|| ou ||T|| est une valeur propre de T.

Exercice 13 Si T est un opérateur linéaire borné bijectif sur un espace de Hilbert, son inverse est borné.