PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-027517

(43)Date of publication of application: 29.01.1999

(51)Int.CI.

HO4N 1/387 3/40 **GD6T** G06T 5/20 HO4N 1/40 HO4N 1/409

(21)Application number: 09-172556

(71)Applicant:

SHARP CORP

(22)Date of filing:

27.06.1997

(72)Inventor:

TOKUYAMA MITSURU

NAKAMURA SHOJI TANIMURA MIHOKO OTSUKI MASAAKI

(54) IMAGE-PROCESSING APPARATUS

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an image-processing apparatus with which areas of image data processed by pixel number conversion are divided with high accuracy and the image quality of an image obtained by the image processing, after the pixel number conversion processing has been made. SOLUTION: This image processing apparatus 1 is provided with a pixel number conversion section 4 that applies pixel number conversion processing by pixel interpolation or interleaving to input image data having plural areas including a large number of pixels, an area identification extract section 6 that extracts an area identification value of an area, including a noted pixel based on a characteristic amount represented a characteristic of a block consisting of the noted pixel that is taken from each pixel of an image data and plural pixel in the vicinity, an area division filter processing section 5 that divides the image data into plural areas based on the area identification value of each pixel and applies filter processing to each area, and an area identification value conversion section 7 that obtains an area identification value of each pixel after the pixel number conversion processing, by applying interpolation or interleaving to the area identification value extracted from the input image data.

LEGAL STATUS

[Date of request for examination]

28.07.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-27517

(43)公開日 平成11年(1999)1月29日

(51) Int.CL ⁶		識別記号	FΙ	
H04N	1/387	101	H 0 4 N 1/387	101
G06T	3/40		G 0 6 F 15/66	355P
	5/20		15/68	400A
H 0 4 N	1/40		H 0 4 N 1/40	F
	1/409			101D
			審査請求 未請	求 請求項の数5 OL (全 15 頁)
(21) 出願番号		特膜平9-172556	(71)出題人 00000	5049
			シャー	ープ株式会社
(22)出顧日		平成9年(1997)6月27日	大阪	存大阪市阿倍野区長池町22番22号
			(72)発明者 徳山	灣
			1	存大阪市阿倍野区長池町22番22号 シ プ株式会社内
			(72)発明者 中村	昌次
			大阪府	存大阪市阿倍野区長池町22番22号 シ
			*~~	プ株式会社内
			(72)発明者 谷村	美保子
			大阪府	好大阪市阿倍野区長池町22番22号 シ
			+	才株式会社内
•			(74)代理人 弁理=	上原 计第三
				最終頁に続く

(54) 【発明の名称】 画像処理装置

(57)【要約】

【課題】 画素数変換処理された画像データを高い精度 で領域分割でき、画素数変換処理後の画像処理によって 得られる画像の画質を向上できる画像処理装置を提供す る。

【解決手段】 画像処理装置1は、多数の画素を含む領域を複数有する入力画像データに対し、画素の補間または間引きによる画素数変換処理を行う画素数変換部4と、画像データの各画素を注目画素として、注目画素とその近傍の複数画素とからなるブロックの特性を表す特徴量に基づいて、注目画素が含まれる領域の領域職別値を抽出する領域職別値は出部6と、画像データをその各画素の領域職別値に基づいて複数の領域に分割し、上記各領域に応じたフィルタ処理を行う領域分割フィルタ処理部5と、入力画像データから抽出された領域職別値に対して領域職別値の補間または間引きを行うことにより、画素数変換処理後の各画素の領域職別値を求める領域職別値変換部7とを備えている。

画代人で卡斉遊野を헱頭む合き集画の遊を【『更本鮨】 【囲跡の永龍襦袢】

は基づいて、注目画素が含まれる領域の領域職別値を抽 **量燉許で表を封許ので、ロてるなられる楽画竣敷の爵**政 の子と素画目並、ブノと集画目並を素画各のモーラ動画 、 人 母 手 野 奴 教 変 換 表 画 で 行 ふ 野 奴 教 変

61 凍菌で行き更処衡画さい本に応じた画像処理を行う領域 10 の凌黙ブバで基づ面収縮減崩の衆画各の子をモーモ動画 、と母手出断動限羅斌酸るで出

減酸アノ核ご動収縮減酸される出析されを一て敷画れ入 , 3. 與手壓処數画階份

。<u>聞装野政</u>動画る卡幺衛特含とこるバブえ蘭含と母手 | 数変動収縮減弱る6次次を動収縮減弱の案画各の数野収娩 変楼秦画 , 0 よごろこで行ふきに聞おさま間醂の動収縮

の遺瑞!更永龍さする資料をよこるもで妈手更吸をハト て情代凍閑で計る野域セパトており次引刺腎各語土 、J **喀代ゴ東南の凌野ブバを基ゴか旧彌凍衛の衆画各の子多** 《一天動画、私妈手野员像处理高级公、 【S更水精】

コるちを現手略開る下略開コミよるれな行引多野吸小大 散漆素画は亜処セハトてるよご母手亜処セハトて階代剤 第 、おご合患であび野処小大曽凌寨画な野処麹変凌寨画 **ルトてるよコ妈手野処セハトて階代疎開 , おコ合能さる** ▽野吸小心減燥素面な野吸熱変換素面は【 € 更水精】 面缘処理装置。

敷寺をくこら行丁によい出間醂水いわれま出間醂水一多 間解の動限織速度、おご合品る名で動すけ表を率断るす みから神出された領域識別値が注目画素が各領域に存在 一气敷画代人 、"你妈手教変動似貓菠哥蛋土【4)更水龍】 装野以敷画の舞唱

な更水龍

さする着許

含くころいて

え前

近最多間解の動限縮速弱、おご合根るもで動る下室許多 東南るれま合は素画目並は動限織速南される出曲される 埋装置。 **処動画の粛鳴コ頁IがれずいのとしいなI更永龍を卡と**

のとしいか1頁水龍るもろ着許るとこで行ファよご出類

、1ずれか1項に記載の画像処理装置。

[[000]

【関係な解禁の関発】

.ራሐፓ 0 *è* &

太网)刺剤機動む含含素画の機能される解プノ査患る ・関連部員、アバルはコ等リミングイイでおいるる、数字数小 をジモ、七ヶキス、幻門発本【理代帝弘る卞風の門祭】

ヤ関コ置装野収象画で行る野吸象画さいふコ家寛各、J **喀代アンに縮き速商各席土 、コきょょくごを更必数変 楼索画るよごきに間おうま間龢の秦画、ごめふる卡代出** フノ姆変恵激預却式ま剖変を敷画群原 , J 校コセーテ劇 画る卡市ふ (減弱点解びよは、減弱真写、減弱字文、別

変換案画で行き野処熱変換案画るよい考に間おさま間補 の衆画、J校コセーデ劇画代人る卡育竣剪を헱弱む含多 茶画の茂を、これよる下光鞘を腹無垢土、灯道装野処象 画の門祭の嫌鳴「更水龍【母手のあ式る下光鞘を取購】

できる画像処理装置を提供することにある。

土向る賀画の敷画でれる科ファよご野処敷画の釣野必数

変換素画、きつ嗜代斌爵う捜帯い高さセーマ製画される

野政教変機案画、北尚目の子、であずのようれるかぶる

いっちゃかぞび質画の動画経過の必要必要画 , いなり却

itカ南の小面2今亜吸をハトての影鱗変更動解むゴま影

野政剖変、果耕のこ。いなもでなくこで行び夷群い高さ

し動きる率数変更動解や率剖変、多階代凍弱のセーデ劇

画の影鱗変類繋や影野政部変 、他式のこ 。いないプリ

する路回で行る

熱変

東製鋼や

野処

部型

の

や

一

下出

出

が

が

が

か

、もてしょらよし用体ご野処園画の影鱗変類影解や影野

。るバイプでなる気料バなきが代しる

以剖変 、玄閻装更処動画の舞公瑞士 、六ま【8000】

こぐ行を野処敷画の宝一〉な祝関コ率熱変更敷縛や率部

変 、お置装更処勢画の辞公路上、ひまつ いないてれる

動きる向ブバルの3数変数離や野吸音変 、もブバルは31段

年る大更変きた基づ果諸出曲量衛科を母手の小動2、よ

アバはご妈手を下出断を量燉料 、むで置装野処敷画の蜂

公瑞工 、己ななしべし 【題舞るすらさよし 光鞘が開発】

フえ麹で使ひせセンドモハマされるけ郷コ母前の子、多

母手る卡小面2をセーマ出計量資料、ごらよるパブパち

示い図 「 策 , おう 園装野処敷画の蜂公瑞土 , ごらち 。 る

ハフパち示開は置装野処勢画される魚幣でよる糸銭で

位を考而のと母手小動なと母手を小トて間空ブッと基づ

電域における画像の特徴量を抽出し、抽出された特徴量

段手が動2で越をが動2てJ校コ代出の規手をバトC間

空、3段手をバトて間空で計る野処をバトて間空ブン校

コ製画化人オンゴ型はと対路衡画が熱と対路側画線、お

「日の03」例えば、特開平1-13737878公韓に

14る成は園装更処象画で行る更処象画るな異プリ校ごろ

領域と中間調領域とを識別し、線画像領域と中間調領域

目並るなる象状更妙、37級でで更処象画を象画さし呑風

たる汝爵騾間中る汝爵數画線、0 1来が【帝鼓の来が】

、ブリム素画目並る素画各のを一气動画 、 と母手野政勢

許のセペロてるなられる素画検索の脅立のそろ素画目立

ーテ教画 、 3 段手出曲前限織凍剤る卡出曲を前限織凍剤 02 の対剤されま合い来画目五、ブバル・基コ量剤がも表を針

30

07

[0000]

°9112

[0000]

[2000]

。さいてし 育金題問で

タをその各画素の領域識別値に基づいて複数の領域に分 割し、上記各領域に応じた画像処理を行う領域分割画像 処理手段と、入力画像データから抽出された領域識別値 に対して領域識別値の補間または間引きを行うことによ り、画素数変換処理後の各画素の領域識別値を求める領 域識別値変換手段とを備えていることを特徴としてい

【0008】上記構成によれば、領域識別値変換手段 が、領域識別値抽出手段によって入力画像データから抽 出された領域識別値に対して、領域識別値の補間または 10 間引きを行うことにより、入力画像データが画素数変換 処理された後の画像データの各画素の領域識別値を求め るようになっている。これにより、領域分割画像処理手 段が、画素数変換処理された画像データを高い精度で領 域分割することが可能となるので、各領域に対して最適 な画像処理(例えば、フィルター処理、γ変換、疑似中 間調処理、画像編集、多値復元等)を施すことができ る。従って、画素数変換処理後の画像処理によって得ら れる画像の画質を向上することができる。

【0009】請求項2記載の発明の画像処理装置は、上 20 記課題を解決するために、請求項1記載の画像処理装置 において、上記領域分割画像処理手段が、画像データを その各画素の領域識別値に基づいて複数の領域に分割 し、上記各領域に応じたフィルタ処理を行う領域分割フ ィルタ処理手段であることを特徴としている。

【0010】上記構成によれば、画素数変換処理された 後の画像データの各画素の領域識別値をフィルタ処理に 利用することで、画像データの各領域に対して最適な特 性および効果を有するフィルタ処理を施すことができる ので、画素数変換処理後のフィルタ処理によって得られ 30 る画像の画質を向上することができる。特に、画素数増 大化処理後の画像データの文字領域に強調化フィルター 処理を施すことによって、画素数変換処理による画質の 劣化を確実に補うことができ、従来では達成できなかっ た髙画質の画案数変換処理を達成できる。

【0011】請求項3記載の発明の画像処理装置は、上 記課題を解決するために、請求項2記載の画像処理装置 において、上記画素数変換処理が画素数減少化処理であ る場合には、領域分割フィルタ処理手段によるフィルタ 処理が画素数減少化処理前に行われるように制御し、画 40 素数変換処理が画素数増大化処理である場合には、領域 分割フィルタ処理手段によるフィルタ処理が画素数増大 化処理後に行われるように制御する制御手段をさらに備 えていることを特徴としている。

【0012】上記構成によれば、画像の縮小等のために 画像データの画素数減少化処理を行うときには画素数減 少化処理前にフィルタ処理を施し、画像の拡大等のため に画像データの画素数増大化処理を行うときには画素数 増大化処理後にフィルタ処理を施す。

には、一般に、画像データの網点領域において画素数の 減少化率と網点の周期性との関係によってモアレが発生 するが、上記構成によれば、画像データの画案数減少化 処理前に、網点領域の周期性をフィルタ処理で制御する ことにより、網点領域にモアレの発生を防止することが できる。

【0014】また、画像データの画素数増大化処理を行 う場合には、文字ぼけが画質劣化の要因となるが、上記 構成によれば、画素数増大化処理後の画像データに強調 化のフィルタ処理を行うことにより、この問題を防止で きる。このように、上記構成では、画案数を増大化させ る場合と画素数を減少化させる場合とで画素数変換処理 とフィルタ処理との順序を切り替えることによって、モ アレの発生と文字ぼけによる画質の劣化との両方の問題 を解決することが可能となる。

【0015】請求項4記載の発明の画像処理装置は、上 記課題を解決するために、請求項1ないし3のいずれか 1項に記載の画像処理装置において、上記領域識別値変 換手段が、入力画像データから抽出された領域職別値が 注目画素が各領域に存在する確率を表わす値である場合 には、領域識別値の補間を一次補間法またはN次補間法 によって行うことを特徴としている。

【0016】上記構成によれば、画素数変換処理後の画 像データの濃度勾配に応じた滑らかな勾配を有する領域 識別値に変換することができるので、画素数変換処理後 の画像処理によって得られる画像の画質をさらに向上す ることができる。

【0017】請求項5記載の発明の画像処理装置は、上 記課題を解決するために、請求項1ないし3のいずれか 1項に記載の画像処理装置において、上記領域識別値変 換手段が、入力画像データから抽出された領域識別値が 注目画素が含まれる領域を特定する値である場合には、 領域識別値の補間を最近隣法によって行うことを特徴と している。

【0018】上記構成によれば、変換後の領域識別値も 注目画素が含まれる領域を特定する値となるので、画素 数変換処理後の画像処理によって得られる画像の画質を さらに向上することができる。

【0019】尚、本発明の画像処理装置は、分割可能な 複数の領域を有する画像、例えば、文字領域、写真領 域、および網点領域が混在した原稿画像、エッジ領域と 非エッジ領域とを有する原稿画像(即ち、文字または線 画を含む原稿画像)等を読み取ることにより得られた入 力画像データに対して適用される。

[0020]

【発明の実施の形態】本発明の実施の一形態について図 1ないし図22に基づいて説明すれば、以下の通りであ

【0021】本実施の形態では、図1に示すように、文 【0013】画像データの画素数減少化処理を行う場合 50 字領域、写真領域、および網点領域が混在した原稿画像

を、画像入力装置13にて解像度(RIN)400dp i、256階調(グレースケール)で読み取ることによ り得られた画像データに対して画素数変換処理を行い、 処理後の画像データを解像度(Rout)600dpiの 画像出力装置14に送出する画像処理装置1について説 明する。また、本実施の形態では、画像処理装置1が、 画像出力装置14にて印刷される画像の原稿画像に対す る割合である変倍率(Z)を、50~200%(O.5 ~2. 0) の範囲内で調整可能な場合について説明す る。

【0022】画像入力装置13は、画像を読み取って、 多数の画素の濃度値からなる画像データとして出力する ことができる装置であればよい。本実施の形態では、画 像入力装置13として、CCD(Charge Coupled Devic e: 電荷結合素子) を利用し、原稿画像の反射光を光学 レンズでCCDに結像し、CCDのアナログ出力をデジ タル出力に変換するように構成されたスキャナを用いて

【0023】また、画像入力装置13は、標準白板を撮 像したときの各画素の出力が一定となるように画像デー 20 タを補正するシェーディング補正と呼ばれる機能を有し ており、シェーディング補正された画像データS1を画 像処理装置1の濃度変換部2 (後述する) へ送出するよ うになっている。

【0024】本実施の形態にかかる画像処理装置1は、 図1のブロック図に示すように、濃度変換部2、画像デ ータ選択部3、画素数変換部(画素数変換処理手段) 4、フィルタ処理部(領域分割画像処理手段、領域分割 フィルタ処理手段) 5、領域識別値抽出部 (領域識別値 抽出手段) 6、領域識別値変換部 (領域識別値変換手 段) 7、y変換部(領域分割画像処理手段) 8、疑似中 間調処理部(領域分割画像処理手段) 9、画像編集部 (領域分割画像処理手段) 10、多值復元部(領域分割 画像処理手段) 11、および制御部(制御手段) 12を 備えている。

【0025】まず、画像処理装置1の各部の構成を、画 像データおよび領域識別データ等の信号の流れに沿って 簡単に説明する。 濃度変換部2は、画像入力装置13よ り入力された画像データS1に対して、濃度変換を行 い、得られた画像データS2を画像データ選択部3に送 40

【0026】画像データ選択部3は、制御部12から入 力された選択信号S14に基づいて、画像データS2を 画像データS3としてそのまま画案数変換部4に送出す るか、あるいは、画像データS2を画像データS3とし てそのままフィルタ処理部5に送出するものである。ま た、画像データ選択部3は、領域識別値抽出部6へも画 像データS3を送出する。

【0027】画像データ選択部3からッ変換部8への画 像データの流れは、2つある。1つは、画素数増大化処 50 し、変換後領域職別データS13を利用して高画質の多

理を行う場合の画像データの流れであり、画像データ選 択部3から送出された画像データS3が、画素数変換部 4にて画素数増大化処理されて画像データS4に変換さ れた後、フィルタ処理部5を通ってy変換部8へ送出さ れる画像データの流れである。また、もう1つは、画案 数減少化処理を行う場合の画像データの流れであり、画 像データ選択部3からフィルタ処理部5を通って画案数 変換部4へ送出された画像データS5が、画素数変換部 4にて画素数減少化処理されて画像データS7に変換さ 10 れた後、y変換部8へ送出される画像データの流れであ

【0028】領域職別値抽出部6は、画像データS3か ら抽出された各画素の領域識別値で構成される領域識別 データS12を、制御部12から入力された選択信号S 14に基づいてフィルタ処理部5または領域識別値変換 部7に送出する。

【0029】領域識別値変換部7は、領域識別データS 12の各画素の領域識別値の変換を行い、変換後の各画 素の領域識別値を変換後領域識別データS13として、 フィルタ処理部5、γ変換部8、疑似中間調処理部9、 画像編集部10、および多値復元部11にそれぞれ送出 する。ここで、変換後の領域識別値は、画素数変換後の 画像データ (S4またはS7) の各画素の領域識別値と 一致している。

【0030】画素数変換およびフィルタ処理された画像 データ(S6またはS7)は、画像データ選択部3によ り選択された結果に基づいて、画素数変換部4またはフ イルタ処理部5からγ変換部8へと送出される。

【0031】γ変換部8は、変換後領域識別データS1 3を用いてy変換を行い、y変換後の画像データS8 を、制御部12からの制御信号(図示せず)に基づいて 画像出力装置14または疑似中間調処理部9へ送出す

【0032】疑似中間調処理部9は、y変換部8から送 出された画像データS8に対して変換後領域職別データ S13を用いて疑似中間調処理を行い、疑似中間調処理 後の画像データS9を、制御部12からの制御信号 (図 示せず) に基づいて画像出力装置14または画像編集部 10へ送出する。

【0033】画像編集部10は、疑似中間調処理部9か ら送出された画像データS9に対し、変換後領域識別デ ータS13を利用すれば画像編集後の画像が高画質とな る場合には、変換後領域識別データ S 1 3 を用いて画像 編集を行う。さらに、画像編集部10は、処理後の画像 データを、制御部12からの制御信号(図示せず)に基 づいて画像出力装置14または多値復元部11へ送出す

【0034】多値復元部11は、疑似中間調処理部9で 2値化および階調圧縮された2値画像データS10に対 値画像データS11に復元する。さらに、多値復元部1 1は、多値復元後の画像データS11を画像出力装置1 4へ送出する。

【0035】次に、画像処理装置の各部について、さら に詳細に説明する。濃度変換部2は、原稿画像の光学濃 度に対してリニアな濃度特性が得られるように、あらか じめ画像入力装置13の特性を考慮して設定された濃度 変換テーブルに基づいて画像データ S 1 の濃度変換を行 う。これにより、濃度変換部2は、画像入力装置13の 特性に関係なく原稿画像の光学濃度に対してリニアな濃 10 度特性(一定の特性)を有する画像データS2を画像デ ータ選択部3に送出できるようになっている。

【0036】制御部12は、画素数変換部4における処 理が画素数増大化処理であるか画素数減少化処理である かによって、上記のような画像データの流れと、領域識 別値の変換を行うか否かを制御する選択信号「0」また は「1」を、画像データ選択部3および領域識別値抽出 部6に送出するものである。

【0037】画像データ選択部3は、制御部12からの 選択信号S14により画像データの流れを変更するもの 20 である。画像データ選択部3は、制御部12からの選択 信号が画素増大化処理を示す信号「0」であるときに は、画像データS3を画素数変換部4に送出し、画素数 変換部4からフィルタ処理部5を通りγ変換部8へと画 像データが流れるようにする。一方、画像データ選択部 3は、制御部12からの選択信号が画素減少化処理を示 す信号「1」であるときには、画像データS3をフィル タ処理部5に送出し、フィルタ処理部5から画素数変換 部4を通りγ変換部8へと画像データが流れるようにす る。また、画像データ選択部3は、画像データS3を領 30 域職別値抽出部6に送出する。

【0038】このように、画像処理装置1は、画像デー タを画素増大化処理する場合には、画素数変換部4にお いて画素数変換処理を行った後に、フィルタ処理部5に おいてフィルタ処理を行うようになっている。さらに、 画素数増大化処理後のフィルタ処理は、後述するよう に、領域識別値抽出部6にて画素数増大化処理された変 換後領域識別データS13を用いて行われる。これによ り、領域分割を最大限にいかしたフィルタ処理が可能と なる。

【0039】一方、画像処理装置1は、画像データを画 素減少化処理する場合には、画素数変換部4において画 素数変換処理を行う前に、フィルタ処理部5においてフ* *ィルタ処理を行うようになっている。これにより、モア レ問題を解決することができる。

【0040】領域識別値抽出部6は、画像データS3の 各画素について、注目画素と注目画素の近傍画素とを含 むブロック(マトリックス)内の最大濃度差および繁雑 度を特徴量として算出し、次いで、これら2つの特徴量 を入力とする領域分離テーブルに基づいて、注目画素が 文字領域、写真領域、あるいは網点領域のいずれの領域 に属しているかを識別し、注目画素の領域識別値を得 る。そして、得られた各画素の領域識別値を領域識別デ

ータS12として出力する。

【0041】次に、領域識別値抽出部6についてさらに 詳細に説明する。領域識別値抽出部6は、まず、画像デ ータS3の各画素について、図2に示す注目画素Pとそ の近傍の24個の画素(図2中の斜線を付した画素)と からなる5×5のブロック(マトリックス)内の最大濃 度Dmax と最小濃度Dmin とを求め、次いで、最大濃度 Dmax と最小濃度Dmin との差 (= Dmax - Dmin) を、第1の特徴量である最大濃度差として算出する。

【0042】また、画像データS3の各画素について、 上記プロック内における互いに45° ずつ異なる4つの 方向、即ち、図3に矢印Eで示すE方向、図4に矢印S で示すS方向、図5に矢印SEで示すSE方向、およ び、図6に矢印SWで示すSW方向のそれぞれの繁雑度 を求め、4方向の繁雑度のうちの最小値を、第2の特徴 量である繁雑度として算出する。尚、図3~6には、図 2と同様のブロックを示しているが、これらは全て同じ 25個の画素を参照している。

【0043】次に、繁雑度の算出方法について、さらに 詳細に説明する。まず、E方向の繁雑度は、図3の矢印 Eで示すように、注目画素Pとその近傍の24個の画素 とからなる5×5のブロック(以下、単に5×5ブロッ クと称する)内におけるE方向(横方向)に互いに隣接 する2つの画案の組み合わせの全てについて、画案間の 濃度の差分値(絶対値)を算出し、それら差分値の総和 を算出することにより求められる。従って、上記ブロッ ク内の25個の画素の濃度値を、各画素の i 軸座標を表 すi-2~i+2の整数mと、各画素のj軸座標を表す $j-2\sim j+2$ の整数 n とによって、p (m, n) と表 40 すとすれば、E方向の繁雑度CE は、次式(1)で表さ れる。

[0044]

【数1】

$$C_{E} = \sum_{m=i-1}^{i+2} \sum_{n=i-2}^{j+2} |p(m,n) - p(m-1,n)| \cdot \cdot \cdot (1)$$

【0045】また、S方向の繁雑度は、図4の矢印Sで 示すように、5×5ブロック内におけるS方向(縦方

ついて、画素間の濃度の差分値(絶対値)を算出し、そ れら差分値の総和を算出することにより求められる。従 向) に互いに隣接する2つの画素の組み合わせの全てに 50 って、S方向の繁雑度Cs は、次式(2)で表される。

9

[0046]

 $C_{S} = \sum_{m=i-2}^{i+2} \sum_{n=j-1}^{j+2} \left| p(m, n) - p(m, n-1) \right| \cdots (2)$

【0047】さらに、SE方向の繁雑度は、図5の矢印 SEで示すように、5×5ブロック内におけるSE方向 (斜め方向)に互いに隣接する2つの画素の組み合わせ の全てについて、画素間の濃度の差分値(絶対値)を算 出し、それら差分値の総和を算出することにより求めら*10

*れる。従って、SE方向の繁雑度CsEは、次式(3)で表される。

10

[0048]

【数3】

$$C_{SB} = \sum_{m=i-1}^{i+2} \sum_{n=j-1}^{j+2} \left| p(m, n) - p(m-1, n-1) \right| \times \alpha \cdot \cdot \cdot (3)$$

【0049】また、SW方向の繁雑度は、図6の矢印SWで示すように、5×5プロック内におけるSW方向(斜め方向)に互いに隣接する2つの画素の組み合わせの全てについて、画素間の濃度の差分値(絶対値)を算出し、それら差分値の総和を算出することにより求めら※

※れる。従って、SW方向の繁雑度Cswは、次式(4)で表される。

[0050]

【数4】

$$C_{SW} = \sum_{m=i-2}^{i+1} \sum_{n=i-1}^{j+2} \left| p(m, n) - p(m+1, n-1) \right| \times \alpha \cdot \cdot \cdot (4)$$

【0051】尚、上記式(3) および式(4) 中の α は、E方向およびS方向の差分値の総数(20個;図3中の矢印Eあるいは図4中の矢印Sの数に等しい)と、SE方向およびSW方向の差分値の総数(16個;図5中の矢印SEあるいは図6中の矢印SWの数に等しい)とを正規化するための係数であり、この場合には、 $\alpha=5/4$ である。

【0052】そして、このようにして算出した上記プロック内の4方向の繁雑度のうちの最も小さい値を、注目画素Pの繁雑度と決定する。即ち、注目画素Pの繁雑度をCとすると、

CP = min (CE, Cs, CsE, Csw)

となる。このようにして、各画素の2種の特徴量、最大 濃度差および繁雑度が算出される。

【0053】次いで、各画素の最大濃度差および繁雑度から、図7に示すような最大濃度差を横軸、繁雑度を縦軸とする2次元平面で表される2次元ルックアップテー 40ブルを参照することにより、注目画素が文字領域、写真領域、あるいは網点領域のいずれの領域に属しているかを職別する。

【0054】上記の2次元ルックアップテーブルは、あ らかじめ以下のような各特徴量と各領域との関係性を考 慮して、各領域の境界線が設定されている。即ち、最大 濃度差が大きいということは、連続階調をもつ写真領域 や網点領域である可能性が低く、文字領域である可能性 が高いことを示す。また、繁雑度が大きいということ は、写真領域である可能性が低く、網点領域である可能 50 n=2×Rout /RIM

性が高いことを示している。

【0055】そして、画像データS3の各画案について、写真領域に属していれば「0」、文字領域に属していれば「2」といれば「1」、および網点領域に属していれば「2」というように、注目画素が含まれる領域を特定する領域識別値を算出し、各画案の領域職別値で構成される領域職30別データS12を送出する。

【0056】また、領域職別値抽出部6は、制御部12からの選択信号S14に基づいて、領域職別値抽出部6の出力に対して領域職別値変換部7による変換を行うか否かを制御するようになっている。即ち、領域職別値抽出部6は、選択信号S14が画素増大化処理を示す信号「0」であるときには、領域職別データS12を領域職別値変換部7に送出し、領域職別値変換部7による変換が施された変換後領域職別データS13がフィルタ処理部5へ送出されるようにする。一方、領域職別値抽出部6は、選択信号S14が画素減少化処理を示す信号

「1」であるときには、領域職別データS12を、領域 職別値変換部7による変換を行うことなく、直接的にフィルタ処理部5へ送出する。

【0057】画素数変換部4は、入力された画像データS3またはS5に対し、画像データ上で画像をn倍に変倍処理した後、各画素の間隔が元の間隔と等しくなるように画素の補間または間引きを行い、画素数をn倍する。画素数変換率nは、変倍率をZ、出力画像の解像度をRout、入力画像の解像度をRinとすると、次式n=2×Rout /Rin

-6-

10

によって算出される。また、画素数変換部4は、画素数 変換後の各画素の位置を算出し、画素数変換後の各画素 のうち、元の画像データ (S3またはS5) では画素の 存在しない位置にある補間画素の濃度を、元の画像デー タ(S3またはS5)の画素の濃度から求める。

【0058】尚、画素数変換部4は、上記の式から分か るように、変倍処理と解像度変換処理とを共通のアルゴ リズムで行っているが、変倍処理と解像度変換処理とで は、画像データと画像出力装置14の制御クロックとの 関係が異なっている。即ち、画像出力装置14の制御ク ロックは、出力画像の解像度Rout に応じて変更される が、変倍率乙には依存しない。

【0059】補間画素の濃度の算出方法としては、元の 画像データ上における補間画素に最も近い画素の濃度を 補間画素の濃度とする最近隣法; 元の画像データ上にお ける補間画素に近い複数画素の濃度値を補間画素からの 距離に基づいて重み付けした加重平均を補間画素の濃度 とする1次補間法(線形補間法)およびN次補間法:等 があるが、ここでは、1次補間法について詳細に説明す

【0060】図8に示すように、補間画素をR、補間画 素Rの近傍で互いに隣接する画像データ(S3またはS 5)上の4つの標本画素 (原稿参照点)をP1 (濃度P 1)、P2(濃度P2)、P3(濃度P3)、P4(濃 度P4)、P1とP2とを結ぶ直線に対する補間画素R の投影点をQ1、P3とP4とを結ぶ直線に対する補間 画素Rの投影点をQ2、補間画素RからP1とP3とを 結ぶ直線までの距離をa、補間画素RからP2とP4と を結ぶ直線までの距離をb、補間画素Rから投影点Q1 までの距離をc、補間画素Rから投影点Q2までの距離 30 を d とする。 1 次補間法では、まず、投影点Q 1 の濃度 Q1および投影点Q2の濃度Q2を、以下の式

 $Q1 = (P1 \times b + P2 \times a) / (a+b)$

 $Q2 = (P3 \times b + P4 \times a) / (a+b)$

によって算出する。次に、濃度Q1、Q2から、以下の

 $R = (Q1 \times d + Q2 \times c) / (c + d)$

によって補間画素Rの濃度Rを算出する。

【0061】画素数変換部4は、画素数変換することに よって得られた画像データ (S4またはS7) を、フィ ルタ処理部5またはγ変換部8に送出する。即ち、画像 データ選択部3から画像データS3が直接入力された場 合には、画素数変換(画素数増大化)後の画像データS 4をフィルタ処理部5に送出する。一方、フィルタ処理 部5からフィルタ処理後の画像データS5が入力された 場合には、画素数変換(画素数減少化)後の画像データ S7をγ変換部8に送出する。

【0062】フィルタ処理部5は、領域識別データ(S 12またはS13)の各画素の領域識別値に基づいて、

12

分割し、各領域毎にフィルタの重みを変えて最適なフィ ルタを選択して、処理が必要な場合には平滑化処理ある いは強調処理を行う。

【0063】フィルタ処理部5におけるフィルタ処理 は、画像データの注目画素および近傍画素の濃度値から なるマトリックスと、加重係数のマトリックスであるフ イルタとの畳み込み演算の結果を、注目画素の濃度値と する処理である。

【0064】例えば、図9 (a) に示す3×3のフィル タF1を用いる強調化フィルタ処理では、図9 (b) に 示す画像データの注目画素の濃度値 p 5 および近傍画素 の濃度値p1~p4·p6~p9からなる3×3マトリ ックスとフィルタF1との畳み込み演算の結果を、注目 画素の濃度値とする。従って、フィルタ処理後の注目画 素の濃度値をq5とすると、q5は、次式

 $q 5 = \{ (p 1+p 3+p 7+p 9) \times 0 + (p 2+p) \}$ $4+p6+p8) \times (-1/6) + p5 \times (10/$ 6) }

で表される。

【0065】フィルタ処理部5は、図10に示すよう 20 に、領域識別データ (S12またはS13) の各画素の 領域識別値によって用いるフィルタを変更するととも に、画素数変換後の画像データS4が入力された場合、 即ち、画素数増大化処理の場合と、画像データS3が入 力された場合、即ち、画素数減少化処理の場合とで、用 いるフィルタを変更するようになっている。

【0066】画素数増大化処理の場合には、変換後領域 識別データS13に基づいて、注目画素が写真領域に存 在することを示す領域識別値「0」である場合には入力 値をそのまま出力するフィルタF2を用い、注目画素が 文字領域に存在することを示す領域識別値「1」である 場合には文字ぼけを防止するためにエッジを強調化する フィルタF1を用い、注目画素が網点領域に存在するこ とを示す領域識別値「2」である場合には入力値をその まま出力するフィルタF2を用いる。

【0067】また、画素数減少化処理の場合には、領域 識別データS12に基づいて、注目画素が写真領域に存 在することを示す領域識別値「0」である場合には入力 値をそのまま出力するフィルタF2を用い、注目画素が 文字領域に存在することを示す領域識別値「1」である 場合には文字のエッジを強調化するフィルタF3を用 い、注目画素が網点領域に存在することを示す領域識別 値「2」である場合には平滑化処理を行うフィルタF4 を用いる。上記の平滑化処理とは、注目画素に対して近 傍画素との重み平均をとって濃度変化を低減するもので あり、これにより、画素数減少化処理された画像の網点 領域にモアレが発生することを防止することができる。

【0068】領域識別値変換部7は、領域識別データS 12の各画素の領域識別値に対して領域識別値の補間ま 入力された画像データ (S3またはS4)を複数領域に 50 たは間引きによる変換を行い、画素数変換後の画像デー

タ (S4またはS7) の各画素の領域識別値を算出する。領域識別値の補間または間引きによる変換の方法は、領域識別データS12の種類に応じて選択される。

【0069】即ち、領域職別データS12の各画素の領域職別値が注目画素が各領域に存在する確率を表わす値である場合には、領域職別値の補間を一次補間法またはN次補間法によって行い、領域職別データS12の各画素の領域職別値が注目画素が含まれる領域を特定する値である場合には、領域職別値の補間を最近隣法によって行う。

【0070】本実施の形態では、領域職別データS12の各画素の領域職別値が、注目画素が含まれる領域を特定する値「0」、「1」、または「2」であるので、最近隣法を用いて領域職別値の変換を行う。図8に基づいて説明すると、最近隣法では、補間画素Rの近傍に位置する原稿画像の画素P1~P4のうちの最も補間画素Rに近い位置にある画素の領域職別値を、補間画素Rの領域職別値とする。従って、図8に示す例では、P2の領域職別値が補間画素Rの領域職別値となる。尚、一次補間法およびN次補間法によって領域職別値の補間を行う 20方法については、後述する。

【0071】γ変換部8は、入力された画像データ(S6またはS7)を変換後領域識別データS13に基づいて複数領域に分割し、各領域毎に最適なγ変換を行う。γ変換とは、出力機器の特性およびその後の画像処理を考慮して、ある一定の階調特性の出力画像が得られるように階調補正を行うものであり、例えば、図11に示されるようなルックアップテーブルを用いた濃度変換によって達成される。ルックアップテーブルを用いた濃度変換では、入力画像データの濃度値(入力値)が、ルックアップテーブルにおけるその濃度値に等しいアドレス(位置)の設定値(出力値)に変換される。図11のルックアップテーブルを、アドレス(入力値)を横軸、そのアドレスの設定値(出力値)を縦軸として表した2次元のグラフを、図12に示す。

【0072】γ変換部8は、変換後領域職別データS13の各画素の領域職別値に基づき、1画素毎にγ変換に用いるルックアップテーブルを切り替えることで、各領域毎に最適なγ変換を施す。γ変換部8における各領域のγ変換に用いるルックアップテーブルを表すグラフを、図13に示す。図13のグラフから、各領域のγ変換のγ特性が分かる。

【0073】図13のグラフから分かるように、γ変換部8は、写真領域の画案(領域識別値が「0」の画素)に対しては、直線のγ特性(γ=1)を有するルックアップテーブルを用いてγ変換を行い、文字領域の画素(領域識別値が「1」の画案)に対しては、γが大きいルックアップテーブルを用いてγ変換を行い、網点領域の画素(領域識別値が「2」の画案)に対しては、写真領域に用いるルックアップテーブルのγ特性と文字領域

14

に用いるルックアップテーブルの y 特性との中間の y 特性を有するルックアップテーブルを用いて y 変換を行う。これにより、文字領域はコントラストが変化せず、網点領域はコントラストがいくらか高められ、写真領域は網点領域よりさらにコントラストが高められる。

【0074】疑似中間調処理部9は、γ変換部8から送出された画像データS8に対して変換後領域識別データS13を用いて疑似中間調処理を行う。疑似中間調処理部9における疑似中間調処理の方法は、2値誤差拡散法10 やディザ法等、いかなる方法であってもよいが、ここでは、2値誤差拡散法を例に挙げて説明する。また、本実施の形態では、256階調の画像データに対して疑似中間調処理を行っているが、疑似中間調処理によって処理される画像データの階調数は特に制限されるものではない。

【0075】2値誤差拡散法では、まず、多値の濃度値 Bを、しきい値THによるしきい値処理により、しきい 値THより大きい量子化値LEV0(=1)と、しきい 値THより小さい量子化値LEV1(=0)との2値に 振り分ける。即ち、まず、注目画素Bの濃度値Bをしき い値THと比較し、B>THならば注目画素Bの濃度B をLEV0にし、B<THならば注目画素Bの濃度Bを LEV1にする。

【0076】次いで、注目画素Bの濃度BをLEV0またはLEV1にすることによって発生する誤差を算出する。即ち、注目画素Bの濃度BをLEV0にすることによって発生する誤差をER1とすると、

ER1=B-LEV0

となる。また、注目画素Bの濃度BをLEV1にすることによって発生する誤差をER2とすると、

ER2=B-LEV1

【0077】そして、誤差ER1または誤差ER2を注目画素Bの近傍の画素に拡散させる。即ち、図14に示すように、誤差ER1または誤差ER2を、図14に矢印で示すような互いに45°の角度を有する4つの方向に拡散させる。さらに、この誤差を拡散させる4つの方向それぞれについて、拡散係数が設定される。ここでは、誤差ER1または誤差ER2を4つの方向に均等に拡散させるために、全ての方向の拡散係数を1/4としている。

【0078】注目画素Bから4つの近傍画素C~Fに拡 散される誤差量を、それぞれERC、ERD、ERE、 ERFとすると、

ERC= $1/4 \times$ ER1 \pm td1 $/4 \times$ ER2 ERD= $1/4 \times$ ER1 \pm td1 $/4 \times$ ER2 ERE= $1/4 \times$ ER1 \pm td1 $/4 \times$ ER2 ERF= $1/4 \times$ ER1 \pm td1 $/4 \times$ ER2

の画素(領域職別値が「2」の画素)に対しては、写真 そして、各画素 $C \sim F$ の濃度に対し、各画素 $C \sim F$ に拡 領域に用いるルックアップテーブルの γ 特性と文字領域 50 散される誤差量 $ERC \sim ERF$ を加算する。この処理 を、1画素毎に行うことにより、画像データの全ての画素の濃度が、LEVOまたはLEV1の2値で表される。

【0079】2値誤差拡散におけるしきい値THは、写真領域は階調性優先の設定値TH=90とし、文字領域は線画再現性重視の設定値TH=128とし、網点領域はその中間の設定値TH=110とする。この設定にすることにより、最適な画像が得られる。このようにして、1画素毎にその領域識別値に基づき、2値誤差拡散のしきい値を変更することで、疑似中間調処理において 10も高画質を得ることが可能となる。

【0080】画像編集部10は、疑似中間調処理部9から送出された2値画像データS9を変換後領域識別データS13に基づいて複数領域に分割し、各領域毎に最適な画像編集を行う。画像編集部10における画像編集は、特に制限されるものではないが、ここでは、網掛け処理を例に挙げて説明する。

【0081】画像編集部10における網掛け処理では、 2値画像データS9に対して、変換後領域識別データS 13に基づいて、文字領域(領域識別値が「1」の領域)のみを網掛け処理し、写真領域(領域識別値が

「0」の領域)および網点領域(領域識別値が「2」の 領域)については何の処理も加えない。

【0082】2値画像データS9を網掛け処理するには、網目模様の画像データである網掛け処理パターンの各画素の濃度値(2値)と画像データの各画素の濃度値(2値)とをOR処理すればよい。即ち、これら2つの濃度値の少なくとも一方が1である画素の濃度値を1とし、両方の濃度値が0である画素の濃度値を0とすればよい。例えば、図17(a)に示す網掛け処理パターン 30と、図17(b)に示す2値画像データとをOR処理すれば、図18に示すように、網掛け処理された画像データが得られる。尚、画像編集部10は、領域酸別値に応じて網掛け処理パターンを可変する構成とすることもできる。

【0083】多値復元部11は、変換後領域識別データ S13に基づいて2値画像データS10を複数領域に分 割し、各領域毎に最適な多値復元処理を行う。ここで は、疑似中間処理部9で2値誤差拡散された2値画像デ ータS10を多値(ここでは、256値)へ復元する方 40 法を例に挙げて説明するが、本発明は、復元方法がいか なる場合でも効果を発揮することが可能である。

【0084】多値復元処理では、まず、2値画像データ中の濃度値「0」および「1」を、濃度値「0」および「255」に変換する。次いで、このように変換した後の画像データに対し、図15に示す復元フィルタを用いて、前述したフィルタ処理部5におけるフィルタ処理と同様のフィルタ処理を行う。注目画素の濃度の算出方法は、フィルタ処理部5におけるフィルタ処理と同じである。

16

【0085】図16に、各領域の復元フィルタを示す。 多値復元部11は、変換後領域識別データS13に基づき、領域識別値が「0」の画素、即ち、写真領域に存在する画素に対しては、中間調の濃度値が得られるよう平滑化フィルタF5を用いて多値復元し、領域識別値が

「1」の画案、即ち、文字領域に存在する画案に対しては、文字ぼけが生じないように変化させないフィルタF2を施し、領域識別値が「1」の画案、即ち、網点領域に存在する画案に対しては、写真領域よりも平滑化度合いの小さい平滑化フィルタF4を用いて多値復元している。これにより、高画質な多値復元処理が可能となっている。

【0086】以上のようにして、γ変換部8、疑似中間 調処理部9、画像編集部10、および多値復元部11で は、変換後領域識別データS13に基づいて画像処理を 行い、画像処理後の画像データ(S8~11のいずれ か)を画像出力装置14に送出する。

【0087】尚、ここでは、画像入力装置13にて読み取られる画像が、文字領域、写真領域、および網点領域20 が混在した原稿画像であり、領域職別値抽出部6が、最大濃度差および繁雑度を入力とする領域分離テーブルに基づいて、注目画素が文字領域、写真領域、あるいは網点領域のいずれの領域に属しているかを表す領域職別値を抽出する場合について説明したが、領域職別値抽出部6における領域職別値の抽出方法は、特に限定されるものではない。

【0088】例えば、領域識別値抽出部6が、注目画素が文字領域に存在する確率(文字度)、注目画素が写真 領域に存在する確率(写真度)、および、注目画素が網 点領域に存在する確率(網点度)を抽出する構成であっ てもよい。

【0089】また、画像入力装置13にて読み取られる画像が、エッジ領域と非エッジ領域とを有する画像、即ち、文字または線画を含む原稿画像である場合には、領域識別値抽出部6が、エッジ領域を検出する構成であってもよい。

【0090】この場合の領域識別方法は、ゾーベル (sobel) フィルタを使用したエッジ検出方法である。即ち、画像データの注目画素および近傍画素の濃度値からなるマトリックスと、ゾーベルフィルタ (エッジ検出マスク) との畳み込み演算の結果であるゾーベル出力に基づいて、エッジ領域を検出する。

【0091】具体的には、例えば、図19(a)に示す ゾーベルフィルタと、図19(b)に示す画像データの 注目画素の濃度値p5および近傍画素の濃度値p1~4 ・p6~9からなる3×3マトリックスとの畳み込み演 算によって、ゾーベル出力が求められる。従って、ゾー ベル出力をsとすると、ゾーベル出力sは、次式

s = | p 1 + p 3 - p 4 + p 6 - p 7 + p 9 |

50 で算出される。尚、注目画素は、図19 (b) に示す3

17

×3マトリックスの中心の画素である。

【0092】ゾーベル出力sは、大きければ大きいほど、エッジの度合い(勾配)が強い、即ち、エッジ領域である可能性(確率)が高いことを示し、小さければ小さいほど、エッジの度合いが弱い領域、即ち、エッジ領域である可能性(確率)が低いことを示す値である。従って、ゾーベル出力sは、そのままエッジ領域である確率を表す領域識別値として使用できる。また、ゾーベル出力sを数段階のしきい値でしきい値処理すれば、領域を特定する領域識別値となる。尚、図19(a)に示すゾーベルフィルタによって求められたゾーベル出力sは、注目画案から濃度値p6の画案に向かう方向(図19(b)における右方向)のエッジの勾配を示している。

【0093】領域識別値抽出部6が、入力画像データから、注目画素が各領域に存在する確率を表わす領域識別値を抽出する場合、即ち、注目画素がエッジ領域に存在する確率を表す領域識別値を抽出する場合や、注目画素が文字領域に存在する確率(文字度)、注目画素が写真領域に存在する確率(写真度)、および、注目画素が網 20点領域に存在する確率(網点度)を抽出する場合には、領域識別値変換部7が、領域識別値の補間を一次補間法またはN次補間法によって行うことが望ましい。

【0094】まず、一次補間法は、濃度値を領域識別値 に置き換える以外は、画素数変換部4で用いられている 一次補間法とまったく同じである。

【0095】N次補間法とは、2~4個の画素間の線形補間ではなく、4個を超える数の画素間で2次以上の曲線を用いた補間を行う整数次補間方法である。ここでは、三次補間法(標本化関数補間法)を例に挙げて、図 3020に基づいて説明する。

【0096】補間画素Rの領域識別値をRdとすると、 三次補間法による補間画素Rの領域識別値Rdは、補間 画素の近傍の16個の標本画素の領域識別値から、以下 の式によって求められる。

[0097]

【数5】

$$R d = \sum_{m=i-1}^{i+2} \sum_{n=j-1}^{j+2} \left\{ f(m,n) \times c(m+1) \times c(n+3) \right\}$$

【0098】上記式中において、f(m,n)は、直線 mと直線 nとの交点に位置する標本画素 p の領域識別値 を示す。また、s は直線 j と補間画素 R との距離を示す。また、関数 c

(X) は、次式

 $c(X) = (1/\pi X) \times s i n \pi X$

で表される標本化定理による標本値関数であるが、通常は、関数c(X)の代わりに、関数c(X)を三次近似して簡略化した次式

18

 $0 \le |X| < 1$ のとき、 $c(X) = 1 - 2|X|^2 + |X|^3$

 $1 \le |X| < 2$ のとき、c $(X) = 4 - 8 |X| + 5 |X|^2 - |X|^3$

 $2 \le |X| \mathcal{O} \ge \delta$, c(X) = 0

で表される関数を用いる。以上のような簡略式をもちいることにより、三次補間法(標本化関数)が可能となる。

【0099】三次補間法による領域識別値の補間は、ア 70 ナログ関数的な滑らかな近似を行うことができるので、 入力画像データから抽出された領域識別値が、注目画案 が各領域に存在する確率を表わす値であるときに採用することが好ましい。

【0100】さらに、領域職別値変換部7は、領域職別値の補間方法として、画素数変換部4における画像データ(濃度値)の補間方法と同じ方法を用いることがより望ましい。これにより、画像データの濃度勾配に対応した領域職別値の勾配を実現でき、更なる画質の向上を達成することができる。

0 【0101】領域職別値抽出部6が、ゾーベル出力(ソーベル出力結果出力値)sを注目画素がエッジ領域に存在する確率を領域職別値として抽出する場合には、ゾーベルフィルタを用いて算出された結果を用いて、以下のようにして各領域毎に最適な画像処理を行う。

【0102】ゾーベル出力 s をゾーベル出力領域分割用の5種類のしきい値Th1, Th2, Th3, Th4, Th5でしきい値処理する場合を例に挙げて説明する。 但し、これらのしきい値の大小関係は、図21に示すように、

30 Th 1>Th 2>Th 3>Th 4>Th 5
である。

【0103】そして、ゾーベル出力sを5種類のしきい値Th1, Th2, Th3, Th4, Th5でしきい値処理することにより、画像を6領域に分割する。即ち、Th1<sであれば、領域0(領域職別値0)、Th2
 $< s \le Th1$ であれば、領域1(領域職別値1)、Th3< $< s \le Th2$ であれば、領域2(領域職別値2)、Th4< $< s \le Th3$ であれば、領域3(領域職別値3)、Th5< $< s \le Th4$ であれば、領域4(領域職別値

40 4)、s≤Th5であれば、領域5(領域職別値5)、 とする。

【0104】フィルタ処理部5は、上記のようにしてしきい値との比較により分割された領域に基づいて、図22に示すように、領域0であれば図22(a)に示すフィルタ係数、領域1であれば図22(b)に示すフィルタ係数、領域2であれば図22(c)に示すフィルタ係数、領域3であれば図22(d)に示すフィルタ係数、領域4であれば図22(e)に示すフィルタ係数、領域5であれば図22(f)に示すフィルタ係数、というよ50うにフィルタ係数を変更し、各領域毎に最適な面像処理

を行う。以上のようなフィルタ処理を行うことによって 各領域毎に最適な画像処理を行うことができる。

【0105】フィルタ処理後の画像処理は、最大濃度差 および繁雑度より領域分離した結果に基づいて画像処理 を行う場合と同様である。最大濃度差および繁雑度より 領域分離した結果とゾーベル出力との結果に対し相関を とるとすれば、領域0.1が文字領域、領域2.3,4 が網点領域、領域5が写真領域となる。

【0106】尚、本実施の形態の画像処理装置1は、出 力画像データ(S8、S9、S10、またはS11)を 画像出力装置14に送出する構成であったが、本発明の 画像処理装置は、出力画像データをメモリーに送出して メモリーに記憶させる構成であってもよい。その場合に は、画像を出力する時に、メモリーから読み出した画像 データを画像出力装置14に送出するようにすればよ い。

【0107】また、本実施の形態の画像処理装置1は、 画像入力装置13および画像出力装置14と独立して設 けられていたが、本発明の画像処理装置は、画像入力装 置13や画像出力装置14を内蔵していてもよい。即 ち、本発明の画像処理装置は、画像処理装置1と同様の 構成の画像処理部と画像入力装置13とを備えるファク シミリ装置、画像処理装置1と同様の構成の画像処理部 と画像入力装置13と画像出力装置14とを備えるデジ タル複写機等であってもよい。

[0108]

【発明の効果】本発明の請求項1に記載の画像処理装置 は、以上のように、多数の画素を含む領域を複数有する 入力画像データに対し、画素の補間または間引きによる 画素数変換処理を行う画素数変換処理手段と、画像デー 夕の各画素を注目画素として、注目画素とその近傍の複 数画素とからなるブロックの特性を表す特徴量に基づい て、注目画素が含まれる領域の領域識別値を抽出する領 域職別値抽出手段と、画像データをその各画素の領域職 別値に基づいて複数の領域に分割し、上記各領域に応じ た画像処理を行う領域分割画像処理手段と、入力画像デ ータから抽出された領域職別値に対して領域識別値の補 間または間引きを行うことにより、画素数変換処理後の 各画素の領域識別値を求める領域識別値変換手段とを備 えている構成である。

【0109】これにより、画素数変換処理された画像デ 一タを髙い精度で領域分割でき、画素数変換処理後の画 像処理によって得られる画像の画質を向上することがで きるという効果を奏する。

【0110】本発明の請求項2記載の画像処理装置は、 以上のように、上記領域分割画像処理手段が、画像デー タをその各画素の領域識別値に基づいて複数の領域に分 割し、上記各領域に応じたフィルタ処理を行う領域分割 フィルタ処理手段である構成である。これにより、画素 数変換処理後のフィルタ処理によって得られる画像の画 50 れるフィルタを示す説明図である。

20

質を向上することができるという効果を奏する。

【0111】本発明の請求項3記載の画像処理装置は、 以上のように、上記画素数変換処理が画素数減少化処理 である場合には、領域分割フィルタ処理手段によるフィ ルタ処理が画素数減少化処理前に行われるように制御 し、画素数変換処理が画素数増大化処理である場合に は、領域分割フィルタ処理手段によるフィルタ処理が画 素数増大化処理後に行われるように制御する制御手段を さらに備えている構成である。これにより、モアレの発 生と文字ぼけによる画質の劣化との両方の問題を解決す ることができるという効果を奏する。

【0112】本発明の請求項4記載の画像処理装置は、 以上のように、上記領域識別値変換手段が、入力画像デ 一夕から抽出された領域識別値が注目画素が各領域に存 在する確率を表わす値である場合には、領域識別値の補 間を一次補間法またはN次補間法によって行う構成であ る。これにより、画素数変換処理後の画像処理によって 得られる画像の画質をさらに向上することができるとい う効果を奏する。

20 【0113】本発明の請求項5記載の画像処理装置は、 以上のように、上記領域識別値変換手段が、入力画像デ ータから抽出された領域識別値が注目画素が含まれる領 域を特定する値である場合には、領域識別値の補間を最 近隣法によって行う構成である。これにより、画素数変 換処理後の画像処理によって得られる画像の画質をさら に向上することができるという効果を奏する。

【図面の簡単な説明】

【図1】本発明の実施の形態にかかる画像処理装置の構 成を示すブロック図である。

【図2】上記画像処理装置の領域識別値抽出部における 領域識別値の抽出に用いる5×5のブロックを示す説明

【図3】上記領域識別値抽出部におけるE方向の繁雑度 の算出方法を説明するための説明図である。

【図4】上記領域職別値抽出部におけるS方向の繁雑度 の算出方法を説明するための説明図である。

【図5】上記領域職別値抽出部におけるSE方向の繁雑 度の算出方法を説明するための説明図である。

【図6】上記領域職別値抽出部におけるSW方向の繁雑 度の算出方法を説明するための説明図である。

【図7】上記領域識別値抽出部において領域識別値を算 出するために用いる2次元ルックアップテーブルを表す グラフである。

【図8】上記画像処理装置の画素数変換部で用いられる 一次補間法を説明するための説明図である。

【図9】上記画像処理装置のフィルタ処理部におけるフ ィルタ処理を説明するための説明図であり、(a)はフ ィルタ、(b)は画像データを示す。

【図10】上記フィルタ処理部において各領域に用いら

【図11】上記画像処理装置のγ変換部で用いられるルックアップテーブルの一例を示す説明図である。

【図12】図11のルックアップテーブルを表すグラフである。

【図13】上記画像処理装置のγ変換部において各領域 に用いられるルックアップテーブルを表すグラフであ る。

【図14】上記画像処理装置の疑似中間調処理部における誤差分散の方法を説明するための説明図である。

【図15】上記画像処理装置の多値復元部で用いられる 10 復元フィルタの一例を示す説明図である。

【図16】上記画像処理装置の多値復元部において各領域に用いられる復元フィルタを示す説明図である。

【図17】上記画像処理装置の多値復元部における網かけ処理を説明するための説明図であり、(a) は網掛け処理パターンと、(b) は画像データである。

【図18】上記多値復元部において網かけ処理された画像データを示す説明図である。

【図19】上記画像処理装置の領域職別値抽出部におけるエッジ検出方法を説明するための説明図であり、

【図1】

(a) はエッジ検出のためのゾーベルフィルタ、(b) は画像データを示す。 22 【図20】上記画像処理装置の領域識別値抽出部で用い られる三次補間法を説明するための説明図である。

【図21】ゾーベル出力領域分割用の5種類のしきい値の大小関係を示す説明図である。

【図22】ゾーベル出力に基づくフィルタ処理のフィルタ係数を示す説明図である。

【符号の説明】

- 1 画像処理装置
- 2 濃度変換部
- 0 3 画像データ選択部
 - 4 画素数変換部 (画素数変換処理手段)
 - 5 フィルタ処理部(領域分割画像処理手段、領域分割フィルタ処理手段)
 - 6 領域識別値抽出部 (領域識別値抽出手段)
 - 7 領域識別値変換部(領域識別値変換手段)
 - 8 y変換部(領域分割画像処理手段)
 - 9 疑似中間調処理部 (領域分割画像処理手段)

【図2】

- 10 画像編集部 (領域分割画像処理手段)
- 11 多值復元部(領域分割画像処理手段)
- 20 12 制御部 (制御手段)
 - 13 画像入力装置
 - 14 画像出力装置

西像出力装置 S 1 1 疑似中間 関係理能 西伊姆集 多值復元 S 4 S 5 LSIS [図3] Zī [図21] 【図9】 【図15】 (b) 1/11 1/11 1/11 ---ТЬ 1 -1/6 0 p l p 2 р Э ...Th 2 1/11 3/11 1/11 -1/6 10/8 -1/8 -Th 3 р6 p 4 p 5 1/11 1/11 1/11 -1/6

【図11】

【図14】

【図13】

25 25 25 25 25 25 25 25 25

【図16】

【図17】

【図19】

(a)		
-1	۰	1
- 1	0	1
-1	0	1

(ъ)		
рì	p 2	рЗ
р4	p 5	р6
p 7	р 8	р9

【図20】

【図22】

(a)		
0	-1/6	0
-1/8	19/6	-1/8
0	-1/6	0

(15)		
0	-1/10	0
-1/10	14/10	-1/10
0	-1/10	0

(c)		
0	-1/15	0
-1/18	20/18	-1/16
0	-1/16	0

(d)		
0	-1/26	0
-1/26	30/26	-1/26
0	-1/26	0

(£)		
D	0	0
8	ı	0
0	0	0

フロントページの続き

(72)発明者 大槻 正明

大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内