Notes on complex geometry

Índice

1	Basic complex geometry	1
2	Volume form	1
3	Adjunction formula	1
4	Fubini-Study	1
5	Hypercomplex manifolds	2

1 Basic complex geometry

Definition of ∂ and $\bar{\partial}$...

2 Volume form

dani: It's

$$constant \prod \partial z_i \wedge \bar{\partial} z_i = const. \sum dx_i \wedge dy_i$$

voi:It's

$$\frac{\omega^n}{n!} = \prod dz_i \wedge d\bar{z}_i$$

where $dz_i = dx_i + \sqrt{-1}dy_i$. It is the volume form of the hermitian manifold, i.e. the unique nowhere-vanishing section of the determinant bundle that gives 1 to the volume of the real unit cube $e_1 \wedge Ie_1 \wedge \ldots \wedge e_n \wedge Ie_n$ obtained from an h-orthonormal complex basis $\{e_i\}$.

3 Adjunction formula

4 Fubini-Study

It's a metric, it's a symplectic form. *Fubini-Study (symplectic) form* is a closed 2-form defined on $\mathbb{C}P^n$ as the exterior differential of the logarithm of the length functions $\ell = \sum |z_i|^2$, i.e. $\omega = dd^c \log \ell$.

This also has a local expression in coordinates (z_1, \ldots, z_n) that might be interesting.

The *Fubini-Study metric* is $g(\cdot, \cdot) = \omega(\cdot, I \cdot)$.

5 Hypercomplex manifolds

Definição A manifold M is *hypercomplex* if it has three integrable almost complex structures I, J, K satisfying the quaternionic relations $I^2 = J^2 = K^2 = -Id$ and IJ = -JI = K.

Observação (Obata Connection, GPT) Given a hypercomplex manifold (M, I, J, K), there exists a unique torsion-free connection ∇^{ob} such that

$$\nabla^{ob}I = \nabla^{ob}J = \nabla^{ob}K = 0.$$

This is called the *Obata connection*. Unlike the Levi-Civita connection, it is not necessarily compatible with a metric. Instead, it preserves the entire hypercomplex structure and serves as the natural connection in hypercomplex geometry.