

4-BIT D-TYPE REGISTER WITH 3-STATE OUTPUTS

The SN54/74LS173A is a high-speed 4-Bit Register featuring 3-state outputs for use in bus-organized systems. The clock is fully edge-triggered allowing either a load from the D inputs or a hold (retain register contents) depending on the state of the Input Enable Lines (IE1, IE2). A HIGH on either Output Enable line (OE1, OE2) brings the output to a high impedance state without affecting the actual register contents. A HIGH on the Master Reset (MR) input resets the Register regardless of the state of the Clock (CP), the Output Enable (OE1, OE2) or the Input Enable (IE1, IE2) lines.

- Fully Edge-Triggered
- 3-State Outputs
- · Gated Input and Output Enables
- Input Clamp Diodes Limit High-Speed Termination Effects

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

PIN NAMES

LOADING (Note a)

		пібп	LOW
$D_0 - D_3$	Data Inputs	0.5 U.L.	0.25 U.L.
IE_1-IE_2	Input Enable (Active LOW)	0.5 U.L.	0.25 U.L.
OE_1-OE_2	Output Enable (Active LOW) Inputs	0.5 U.L.	0.25 U.L.
СР	Clock Pulse (Active HIGH Going Edge) Input	0.5 U.L.	0.25 U.L.
MR	Master Reset Input (Active HIGH)	0.5 U.L.	0.25 U.L.
Q_0-Q_3	Outputs (Note b)	65 (25) U.L.	15 (7.5) U.L.

NOTES:

- a. 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.
- b. The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

SN54/74LS173A

4-BIT D-TYPE REGISTER WITH 3-STATE OUTPUTS

LOW POWER SCHOTTKY

J SUFFIX CERAMIC CASE 620-09

N SUFFIX PLASTIC CASE 648-08

D SUFFIX SOIC CASE 751B-03

ORDERING INFORMATION

SN54LSXXXJ Ceramic SN74LSXXXN Plastic SN74LSXXXD SOIC

SN54/74LS173A

LOGIC DIAGRAM

V_{CC} = PIN 16 GND = PIN 8

= PIN NUMBERS

TRUTH TABLE

MR	СР	IE ₁	IE ₂	D _n	Qn
Н	х	х	Х	х	L
L	L	Х	х	Х	Qn
L		Н	Х	х	Q _n
L		Х	Н	Х	Qn
L	_	L	L	L	L
L	۲	L	L	Н	Н

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

When either OE_1 , or OE_2 are HIGH, the output is in the off state (High Impedance); however this does not affect the contents or sequential operation of the register.

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
loн	Output Current — High	54 74			-1.0 -2.6	mA
lOL	Output Current — Low	54 74			12 24	mA

SN54/74LS173A

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Tes	t Conditions
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input All Inputs	t HIGH Voltage for
\/	Input I OW Voltage	54			0.7	V	Guaranteed Input	t LOW Voltage for
V _{IL}	Input LOW Voltage	74			0.8]	All Inputs	
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN} =	: −18 mA
V	Output HICH Make	54	2.4	3.4		V	V _{CC} = MIN, I _{OH}	= MAX, V _{IN} = V _{IH}
VOH	Output HIGH Voltage	74	2.4	3.1		V	or V _{IL} per Truth T	able
Voi	Output LOW Voltage	54, 74		0.25	0.4	V	I _{OL} = 12 mA	V _{CC} = V _{CC} MIN, V _{IN} = V _{IL} or V _{IH}
VOL	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 24 mA	per Truth Table
lozh	Output Off Current HIGH				20	μΑ	V _{CC} = MAX, V _O	= 2.7 V
lozL	Output Off Current LOW				-20	μΑ	$V_{CC} = MAX, V_O$	= 0.4 V
1	Innut HCH Current				20	μΑ	V _{CC} = MAX, V _{IN} = 2.7 V	
ΊΗ	Input HIGH Current				0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
I _Ι Γ	Input LOW Current				-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V	
los	Short Circuit Current (Note 1)		-30		-130	mA	V _{CC} = MAX	
ICC	Power Supply Current				30	mA	V _{CC} = MAX	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $(T_A = 25^{\circ}C)$

		Limits		Limits		
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
fMAX	Maximum Input Clock Frequency	30	50		MHz	
^t PLH ^t PHL	Propagation Delay, Clock to Output		17 22	25 30	ns	V _{CC} = 5.0 V C _L = 45 pF,
^t PHL	Propagation Delay, MR to Output		26	35	ns	$R_L = 667 \Omega$
^t PZH ^t PZL	Output Enable Time		15 18	23 27	ns	
^t PLZ ^t PHZ	Output Disable Time		11 11	17 17	ns	$C_L = 5.0 \text{ pF},$ $R_L = 667 \Omega$

AC SETUP REQUIREMENTS $(T_A = 25^{\circ}C)$

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
tw	Clock or MR Pulse Width	20			ns	
t _S	Data Enable Setup Time	35			ns	
t _S	Data Setup Time	17			ns	$V_{CC} = 5.0 V$
th	Hold Time, Any Input	0			ns	
t _{rec}	Recovery Time	10			ns	

SN54/74LS173A

AC WAVEFORMS

Figure 2

Figure 3

Figure 4

AC LOAD CIRCUIT

 SYMBOL
 SW1
 SW2

 tPZH
 Open
 Closed

 tPZL
 Closed
 Open

 tPLZ
 Closed
 Closed

 tPHZ
 Closed
 Closed

SWITCH POSITIONS

Figure 5

Case 648-08 N Suffix 16-Pin Plastic

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE.
 751B-01 IS OBSOLETE, NEW STANDARD 751B-03.

	MILLIM	ETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
P	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- TO THE STATE OF LEADS WHEN FORMED PARALLEL.
- DIMENSION "B" DOES NOT INCLUDE MOLD
- ROUNDED CORNERS OPTIONAL. 648-01 THRU -07 OBSOLETE, NEW STANDARD 648-08.

	MILLIM	ETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	18.80	19.55	0.740	0.770	
В	6.35	6.85	0.250	0.270	
С	3.69	4.44	0.145	0.175	
D	0.39	0.53	0.015	0.021	
F	1.02	1.77	0.040	0.070	
G	2.54	BSC	0.100 BSC		
Н	1.27	BSC	0.050 BSC		
J	0.21	0.38	0.008	0.015	
K	2.80	3.30	0.110	0.130	
L	7.50	7.74	0.295	0.305	
M	0°	10°	0°	10°	
S	0.51	1.01	0.020	0.040	

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L'TO CENTER OF LEAD WHEN FORMED PARALLEL.
 4. DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.
 5. 620-01 THRU-08 OBSOLETE, NEW STANDARD 620-09.

	MILLIM	ETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	19.05	19.55	0.750	0.770	
В	6.10	7.36	0.240	0.290	
С	_	4.19	_	0.165	
D	0.39	0.53	0.015	0.021	
E	1.27	BSC	0.050 BSC		
F	1.40	1.77	0.055	0.070	
G	2.54	BSC	0.100 BSC		
J	0.23	0.27	0.009	0.011	
K	_	5.08	_	0.200	
L	7.62	BSC	0.300	BSC	
M	0°	15°	0°	15°	
N	0.39	0.88	0.015	0.035	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.