

Kommunikationsnetze

Allgemeines

1. Signale

1.1. Arten von Signalen

deterministisch: durch Funktionen beschreibbar, enthalten kein Nach-

stochastisch: zufälliger Verlauf, überträgt Information

1.2. Abtasttheorem

Signal muss bandbegrenzt sein

Abtasttheorem nach Shannon $f_a \geq 2f_{S_{max}}$

2. Nachrichtenaustausch

3. Verkehrstheorie

3.1. Zufallsverkehr

Poisson Prozess: $p_k(t) = \frac{t^k \lambda^k}{k!} \exp(-\lambda t)$

3.2. Wartesystem $M/M/N/\infty$

Wartewahrscheinlichkeit Ω durchn. Warteschlangenlänge T_W durchschnittl. Wartezeit durchsch. Durchlaufzeit T_D

 ${\it Druchlaufzeit:}\ T_D\,=\,T_W\,+\,h$

Zustandswahrscheinlichkeit: $P_x = P_0 \prod_{i=1}^x \frac{\lambda_{i-1}}{\mu_i}$

Angebot: $A = \frac{\lambda}{\epsilon} = \lambda \cdot h$

 $\text{Sterberate } \mu_x = \begin{cases} x\epsilon & \text{für } x = 1, 2, \dots, N \\ N\epsilon & x = N, N+1, \dots \infty \end{cases}$

 $p_x = \begin{cases} p_0 \frac{A^x}{x_1} & \text{für } x = 0, 1, \dots, N \\ p_0 \frac{A^N}{N!} \left(\frac{A}{N}\right)^{x-N} & \text{für } x = N, N+1, \dots, \infty \end{cases}$

Wartewahrscheinlichkeit:

 $P_{W} = \sum_{i=0}^{\infty} P_{n} \left(\frac{A}{N}\right)^{i} = P_{N} \frac{N}{N-A} = \frac{\frac{A^{i}}{N-1} \frac{N}{N-A}}{\sum\limits_{i=0}^{N-1} \frac{A^{i}}{i!} + \frac{A^{N}}{N!} \frac{N}{N-A}}$

 $\Omega = \sum_{x=N}^{\infty} (x-N)P_x = P_N \cdot \rho \frac{1}{(1-\rho)^2} = P_N \frac{\frac{A}{N}}{(1-\frac{A}{N})^2}$

mittlere Wartezeit (Gesetz von Little) : $T_W = \frac{\Omega}{\lambda}$

3.2.1 Sonderfall M/M/1/ ∞

Wartewahrscheinlichkeit $P_W|_{N=1}=A$ Warteschlangenlänge: $\Omega|_{N=1}=\frac{\rho}{1-\rho}$ Wartezeit: $T_W=\frac{\rho}{\lambda(1-\rho)}$

3.3. Verlustsystem M/M/N/-

Zustandsverteilung: $p_x = \frac{\frac{A^x}{x!}}{\sum\limits_{k=0}^{N}\frac{A^k}{k!}}$ mit $x=0,1,2,\ldots N$

Verlustwahrscheinlichkeit (Blockierung): $B=pN=\frac{\frac{A^N}{N!}}{\frac{N}{k!}}$