```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [93]: s=pd.read_csv(r"C:\Users\user\Downloads\20_states - 20_states.csv")
s

Out[93]:

	id	name	country_id	country_code	country_name	state_code	type	latitude
0	3901	Badakhshan	1	AF	Afghanistan	BDS	NaN	36.734772
1	3871	Badghis	1	AF	Afghanistan	BDG	NaN	35.167134
2	3875	Baghlan	1	AF	Afghanistan	BGL	NaN	36.178903
3	3884	Balkh	1	AF	Afghanistan	BAL	NaN	36.755060
4	3872	Bamyan	1	AF	Afghanistan	BAM	NaN	34.810007
5072	1953	Mashonaland West Province	247	ZW	Zimbabwe	MW	NaN	-17.485103
5073	1960	Masvingo Province	247	ZW	Zimbabwe	MV	NaN	-20.624151
5074	1954	Matabeleland North Province	247	ZW	Zimbabwe	MN	NaN	-18.533157
5075	1952	Matabeleland South Province	247	ZW	Zimbabwe	MS	NaN	-21.052337
5076	1957	Midlands Province	247	ZW	Zimbabwe	MI	NaN	-19.055201
5077 rows × 9 columns								

In [94]: s=s.head(20)

Out[94]:

	id	name	country_id	country_code	country_name	state_code	type	latitude	lo
0	3901	Badakhshan	1	AF	Afghanistan	BDS	NaN	36.734772	70
1	3871	Badghis	1	AF	Afghanistan	BDG	NaN	35.167134	63
2	3875	Baghlan	1	AF	Afghanistan	BGL	NaN	36.178903	68
3	3884	Balkh	1	AF	Afghanistan	BAL	NaN	36.755060	66
4	3872	Bamyan	1	AF	Afghanistan	BAM	NaN	34.810007	67
5	3892	Daykundi	1	AF	Afghanistan	DAY	NaN	33.669495	66
6	3899	Farah	1	AF	Afghanistan	FRA	NaN	32.495328	62
7	3889	Faryab	1	AF	Afghanistan	FYB	NaN	36.079561	64
8	3870	Ghazni	1	AF	Afghanistan	GHA	NaN	33.545059	68
9	3888	Ghōr	1	AF	Afghanistan	GHO	NaN	34.099578	64
10	3873	Helmand	1	AF	Afghanistan	HEL	NaN	39.298936	- 76
11	3887	Herat	1	AF	Afghanistan	HER	NaN	34.352865	62
12	3886	Jowzjan	1	AF	Afghanistan	JOW	NaN	36.896969	65
13	3902	Kabul	1	AF	Afghanistan	KAB	NaN	34.555349	69
14	3890	Kandahar	1	AF	Afghanistan	KAN	NaN	31.628871	65
15	3879	Kapisa	1	AF	Afghanistan	KAP	NaN	34.981057	69
16	3878	Khost	1	AF	Afghanistan	KHO	NaN	33.333847	69
17	3876	Kunar	1	AF	Afghanistan	KNR	NaN	34.846589	71
18	3900	Kunduz Province	1	AF	Afghanistan	KDZ	NaN	36.728551	68
19	3891	Laghman	1	AF	Afghanistan	LAG	NaN	34.689769	70

```
Untitled33 - Jupyter Notebook
In [95]: s.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 20 entries, 0 to 19
          Data columns (total 9 columns):
                               Non-Null Count Dtype
               Column
           0
                id
                               20 non-null
                                                 int64
           1
               name
                               20 non-null
                                                 object
           2
               country_id
                               20 non-null
                                                 int64
           3
               country_code 20 non-null
                                                 object
           4
               country_name 20 non-null
                                                 object
           5
                state_code
                               20 non-null
                                                 object
           6
               type
                               0 non-null
                                                 object
           7
                latitude
                               20 non-null
                                                 float64
           8
                               20 non-null
                                                 float64
                longitude
          dtypes: float64(2), int64(2), object(5)
          memory usage: 1.5+ KB
In [96]:
          s.describe()
Out[96]:
                          id country_id
                                          latitude
                                                  Iongitude
           count
                   20.000000
                                   20.0 20.000000
                                                  20.000000
           mean 3885.150000
                                    1.0 35.042385
                                                  60.022591
                   10.529532
                                   0.0
                                        1.770946
                                                  32.274834
             std
            min 3870.000000
                                    1.0 31.628871
                                                 -76.616047
            25% 3875.750000
                                    1.0 33.992057
                                                  64.905955
                 3886.500000
            50%
                                       34.828298
                                                  67.359374
            75%
                 3891.250000
                                        36.316315
                                                  69.310979
            max 3902.000000
                                    1.0 39.298936
                                                  71.097317
```

```
In [97]: s.columns
```

In [98]: sns.pairplot(s)

Out[98]: <seaborn.axisgrid.PairGrid at 0x23cf6b95f40>

In [99]: |sns.distplot(s['id'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[99]: <AxesSubplot:xlabel='id', ylabel='Density'>

Out[101]:

	id	country_id	latitude	longitude
0	3901	1	36.734772	70.811995
1	3871	1	35.167134	63.769538
2	3875	1	36.178903	68.745306
3	3884	1	36.755060	66.897537
4	3872	1	34.810007	67.821210
5	3892	1	33.669495	66.046353
6	3899	1	32.495328	62.262663
7	3889	1	36.079561	64.905955
8	3870	1	33.545059	68.417397
9	3888	1	34.099578	64.905955
10	3873	1	39.298936	-76.616047
11	3887	1	34.352865	62.204029
12	3886	1	36.896969	65.665857
13	3902	1	34.555349	69.207486
14	3890	1	31.628871	65.737175
15	3879	1	34.981057	69.621456
16	3878	1	33.333847	69.937167
17	3876	1	34.846589	71.097317
18	3900	1	36.728551	68.867898
19	3891	1	34.689769	70.145580

In [102]: sns.heatmap(s1.corr())

Out[102]: <AxesSubplot:>


```
In [104]:
          x=s1[['id','country_id','latitude', 'longitude']]
           y=s1['id']
In [105]: | from sklearn.model_selection import train_test_split
           x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
In [106]: | from sklearn.linear_model import LinearRegression
           lr=LinearRegression()
           lr.fit(x_train,y_train)
Out[106]: LinearRegression()
In [107]: lr.intercept_
Out[107]: 9.094947017729282e-13
           coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [108]:
           coeff
Out[108]:
                        Co-efficient
                   id 1.000000e+00
            country_id -1.429810e-30
              latitude -1.927181e-16
             longitude
                      9.356667e-17
In [109]:
           prediction=lr.predict(x_test)
           plt.scatter(y_test,prediction)
Out[109]: <matplotlib.collections.PathCollection at 0x23cf7d46c10>
            3900
            3895
            3890
            3885
            3880
            3875
            3870
                 3870
                       3875
                              3880
                                     3885
                                           3890
                                                  3895
                                                        3900
           print(lr.score(x_test,y_test))
In [110]:
           1.0
```

```
In [111]: | from sklearn.linear_model import Ridge,Lasso
          from sklearn.linear_model import Ridge,Lasso
In [112]: | rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
          rr.score(x_test,y_test)
Out[112]: 0.9999034353761045
In [113]: |la=Lasso(alpha=10)
          la.fit(x_train,y_train)
          la.score(x_test,y_test)
Out[113]: 0.9860986170714517
In [114]: from sklearn.linear_model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[114]: ElasticNet()
In [115]: |print(en.coef_)
           [ 9.88930404e-01 0.00000000e+00 -0.00000000e+00 4.80275586e-04]
In [116]: | print(en.intercept_)
          42.96291569625009
In [117]:
          print(en.predict(x_test))
          [3886.9652702 3899.82456595 3888.94442868 3884.00073317 3901.80258985
           3870.15643747]
In [118]:
          print(en.score(x_test,y_test))
          0.9998549822023621
In [119]: | from sklearn import metrics
          print("Mean Absolute Error", metrics.mean_absolute_error(y_test, prediction))
In [120]:
          Mean Absolute Error 0.0
In [121]:
          print("Mean squared Error", metrics.mean_squared_error(y_test, prediction))
          Mean squared Error 0.0
```

```
In [122]: import pickle
In [123]: filename="prediction"
    pickle.dump(lr,open(filename,'wb'))
In [124]: import pandas as pd
    import pickle
In [125]: filename='prediction'
    model=pickle.load(open(filename,'rb'))
In [126]: real=[[10,20,30,40],[40,55,66,88]]
    result=model.predict(real)
In [127]: result
Out[127]: array([10., 40.])
In []:
```