Sprawozdanie 2

Rozważamy testy na poziomie istotności $\alpha = 0.05$ do testowania

- H_0 : rozkład normalny, przeciwko
- H_1 : rozkład inny niż normalny.

Będziemy wykonywać sprawdzenie tej hipotezy, stosując wprost trzy testy:

- 1. testu Shapiro-Wilka
- 2. testu Kołmogorowa-Lillieforsa,
- 3. testu Jarque-Bera.

Rzeczywisty rozkład pochodzi z rodziny rozkładów powstałej przez zastosowanie transformaty Sinh-arcsinh do rozkładu normalnego (patrz M. C. Jones, Arthur Pewsey, "Sinh-arcsinh distributions", Biometrika, Volume 96, Issue 4, 1 December 2009, Pages 761–780 lub wykład oraz https://rdrr.io/cran/gamlss.dist/man/SHASH.html).

Zadanie 1

Rozważmy próbę (X_1,\ldots,X_{100}) z rozkładu normalnego $\mathcal{N}(-1,3)$ przekształconego przez transformatę Sinh-arcsinh z $\nu=0$. Korzystając z symulacji Monte Carlo wykonaj wykres funkcji mocy w zależności od τ na przedziale (0.5,2) dla wszystkich trzech testów. Czy istnieje test jednostajnie najmocniejszy spośród nich?

Zadanie 2

Mamy próbę (X_1, \ldots, X_{100}) z rozkładu normalnego $\mathcal{N}(-1,3)$ przekształconego przez transformatę Sinh-arcsinh z $\tau=1$. Korzystając z symulacji Monte Carlo wykonaj wykres funkcji mocy w zależności od ν na przedziale (-2,2) dla wszystkich trzech testów. Czy istnieje test jednostajnie najmocniejszy spośród nich?

Zadanie 3

Mamy próbę (X_1, \ldots, X_{100}) taką, że zmienne losowe $Y_i = \frac{X_i - 1}{3}$ są z rozkładu t-Studenta $\mathcal{T}(\nu)$. Korzystając z symulacji Monte Carlo wykonaj wykres funkcji mocy w zależności od ν na przedziale (0.05, 20) dla wszystkich trzech testów. Czy istnieje test jednostajnie najmocniejszy spośród nich?