Table 1: Description of parameters for prior distributions at the highest level (hyperparameters).

Parameter	Description	Distribution		
VIABILITY TRIALS				
μ_0^g	Population mean germination, age 1	normal(0, 1000)		
μ_0^v	Population mean viability, age 1	normal(0, 1000)		
$\mu_0^{g_2}$	Population mean germination, age 2	normal(0, 1000)		
$\mu_0^{v_2}$	Population mean viability, age 2	normal(0, 1000)		
$\sigma_0^{\hat{g}}$	Population S.D. of germination, age 1	half-normal(0, 31/3)		
σ_0^v	Population S.D. of viability, age 1	half-normal(0, 31/3)		
$\sigma_0^{g_2}$	Population S.D. of germination, age 2	half-normal(0, 31/3)		
$\mu^v_0 \ \mu^{g_2}_0 \ \mu^{g_2}_0 \ \sigma^g_0 \ \sigma^{g_2}_0 \ \sigma^{g_2}_0 \ \sigma^{v_2}_0$	Population S.D. of viability, age 2	half-normal(0, 31/3)		
σ^g	Population and year S.D. of germination, age 1	half-normal(0, 31/3)		
σ^v	Population and year S.D. of viability, age 1	half-normal(0, 31/3)		
σ^{g_2}	Population and year S.D. of germination, age 2	half-normal(0, 31/3)		
σ^{v_2}	Population and year S.D. of viability, age 2	half-normal(0, 31/3)		
SEED BAG BURIAL EXPERIMENTS				
μ_0^1 μ_0^2 μ_0^3 μ_0^4 σ_0^1 σ_0^2 σ_0^3 σ_0^4 σ_0^1 σ_0^2 σ_0^4 σ_0^1 σ_0^2	Population mean intact to January 1	normal(0, 1000)		
μ_0^2	Population mean germination in January 1	normal(0, 1000)		
μ_0^3	Population mean intact to October 1	normal(0, 1000)		
μ_0^4	Population mean intact to January 2	normal(0, 1000)		
σ_0^1	Population S.D. of intact to January 1	$half-normal(0, 3^{1}/3)$		
σ_0^2	Population S.D. of germination in January 1	$half-normal(0, 3^{1}/3)$		
σ_0^3	Population S.D. of intact to October 1	half-normal(0, 31/3)		
σ_0^4	Population S.D. of intact to January 2	half-normal(0, 31/3)		
σ^1	Population and year S.D. of intact to January 1	half-normal(0, 31/3)		
σ^2	Population and year S.D. of germination in January 1	half-normal(0, 31/3)		
σ^3	Population and year S.D. of intact to October 1	half-normal(0, 31/3)		
σ^4	Population and year S.D. of intact to January 2	half-normal(0, 31/3)		
SEEDLING SURVIVAL TO FRUITING				
$\mu_0^{ m survival}$	Population mean seedling survival	normal(0, 1000)		
$\sigma_0^{\rm survival}$	Population S.D. of seedling survival	uniform(0, 1.5)		
$\sigma^{ m survival}$	Population and year S.D. of seedling survival	uniform(0, 1.5)		
FRUITS PER PLANT				
$\mu_0^{ ext{fruits}}$	Population mean fruits per plant	normal(0, 1000)		
$\sigma_0^{ m fruits}$	Population S.D. of fruits per plant	uniform(0, 1.5)		
$\kappa^{ m fruits}$	Population and year dispersion of fruits per plant	gamma(0.001, 0.001)		
	Seeds per fruit			
$\mu_0^{ m seeds}$	Population mean fruits per plant	normal(0, 1000)		
$\sigma_0^{ m seeds}$	Population S.D. of fruits per plant	uniform(0, 1.5)		
$\kappa^{ m seeds}$	Population and year dispersion of fruits per plant	gamma(0.001, 0.001)		

Table 2: Description of parameters (obtained by marginalizing over hyperparameters).

<u>ters).</u>		
Parameter	Description	
VIABILITY TRIALS		
ν_1^g	Probability that an intact seed germinates in germination tests in	
	October of year $t + 1$, for seeds produced in year t	
$ u_1^v$	Probability that an intact seed that did not germinate in tests is	
	viable in October of year $t+1$, for seeds produced in year t	
ν_2^g	Probability that an intact seed germinates in germination tests in	
	October of year $t + 2$, for seeds produced in year t	
$ u_2^v$	Probability that an intact seed that did not germinate in tests is	
	viable in October of year $t+2$, for seeds produced in year t	
SEED BAG BURIAL EXPERIMENTS		
$ heta_1$	Probability that a seed buried in October of year t is intact in January	
	of $t+1$, for seeds produced in year t	
$ heta_2$	Probability of emergence of seeds in January in year $t+1$ conditional	
	on being intact in January in year $t+1$, for seeds produced in year t	
$ heta_3$	Probability that a seed buried in October of year t is intact in October	
	of $t+1$ conditional on being intact in January of $t+1$, for seeds	
	produced in year t	
$ heta_4$	Probability that a seed buried in October of year t is intact in January	
	of $t+2$ conditional on being intact in October of $t+1$, for seeds	
	produced in year t	
SEEDLING	SURVIVAL TO FRUITING	
σ	Probability that a seedling survives to become a fruiting plant	
FRUITS PE	FRUITS PER PLANT	
F	Number of total fruit equivalents per plant	
Seeds per fruit		
ϕ	Number of seeds per undamaged fruit	

Table 3: Description of derived quantities (obtained as functions of marginal posterior distributions).

Derived quantity	Description
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Probability that a seed buried in October of year t is viable
	in October of year $t+1$ conditional on being intact, for seeds produced in year t
$ u_2$	Probability that a seed buried in October of year t is viable
	in October of year $t+2$ conditional on being intact, for seeds produced in year t
s_1	Probability that a seed buried in October of year t is intact and viable in January of $t+1$, for seeds produced in year t
g_1	Probability that a seed germinates in January in year $t+1$ conditional on being intact and viable in January in year $t+1$, for seeds produced in year t
s_2	Probability that a seed buried in October of year t is intact and viable in October of $t+1$ conditional on being intact and viable in January of $t+1$, for seeds produced in year t
s_3	Probability that a seed buried in October of year t is intact and viable in January of $t+2$ conditional on being intact and viable in October of $t+1$, for seeds produced in year t

Note to self: I need to make sure that I am using the correct language in writing about these parameters. I am highly certain that my description of Table 1 is correct (parameters for prior distributions at the highest level). I am least certain that my description of Table 2 is correct (parameters, obtained by marginalizing over hyperparameters). Specifically, I'm not sure whether or not the second clause is right. I am reasonably certain that my description of Table 3 is correct (functions of marginal posterior distributions). The last one could also be functions of parameters.