EDA for zomato dataset

```
In [3]: # import all the libraries
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline

In [7]: # Read the zomato dataset
df = pd.read_csv('/Users/madhu/Desktop/Data Science/iNeuron/EDA/zomato.csv', encoding='latin-1')
df.head()

Out[7]: Restaurant Restaurant Country
ID Name Code City Address Locality Locality
Verbose Longitude Latitude Cuisines ... Currency Table Booking delivery
```

Resta	ırant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Longitude	Latitude	Cuisines	 Currency	Has Table booking	Online delivery	delive
0 631	7637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City	Century City Mall, Poblacion, Makati City, Mak	121.027535	14.565443	French, Japanese, Desserts	 Botswana Pula(P)	Yes	No	
1 630	4287	Izakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City	Little Tokyo, Legaspi Village, Makati City, Ma	121.014101	14.553708	Japanese	 Botswana Pula(P)	Yes	No	
2 630	0002	Heat - Edsa Shangri-La	162	Mandaluyong City	Edsa Shangri- La, 1 Garden Way, Ortigas, Mandal	Edsa Shangri-La, Ortigas, Mandaluyong City	Edsa Shangri-La, Ortigas, Mandaluyong City, Ma	121.056831	14.581404	Seafood, Asian, Filipino, Indian	 Botswana Pula(P)	Yes	No	
3 631	8506	Ooma	162	Mandaluyong City	Third Floor, Mega Fashion Hall, SM Megamall, O	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.056475	14.585318	Japanese, Sushi	 Botswana Pula(P)	No	No	

```
SM
                                                        Floor,
                                                                     SM
                                                                            Megamall,
                                                        Mega
                                                                Megamall,
                          Sambo
                                         Mandaluyong
                                                                              Ortigas,
                                                                                                         Japanese.
                                                                                                                     Botswana
              6314302
                                                                                     121.057508 14.584450
                                                       Atrium,
                                                                  Ortigas,
                                                                                                                                  Yes
                                                                                                                                           No
                            Kojin
                                                                          Mandaluyong
                                                                                                            Korean
                                                                                                                       Pula(P)
                                                          SM Mandaluyong
                                                                                City,
                                                     Megamall,
                                                                     City
                                                                             Mandal...
                                                      Ortigas...
         5 rows × 21 columns
          # Get the columns of df
In [8]:
          df.columns
          Index(['Restaurant ID', 'Restaurant Name', 'Country Code', 'City', 'Address',
Out[8]:
                 'Locality', 'Locality Verbose', 'Longitude', 'Latitude', 'Cuisines',
                 'Average Cost for two', 'Currency', 'Has Table booking',
                 'Has Online delivery', 'Is delivering now', 'Switch to order menu',
                 'Price range', 'Aggregate rating', 'Rating color', 'Rating text',
                  'Votes'],
                dtype='object')
In [10]:
          # gives the basic info about data
          df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 9551 entries, 0 to 9550
          Data columns (total 21 columns):
                                       Non-Null Count Dtype
               Column
           0
               Restaurant ID
                                       9551 non-null
                                                        int64
           1
               Restaurant Name
                                       9551 non-null
                                                        object
           2
               Country Code
                                       9551 non-null
                                                        int64
                                       9551 non-null
               City
                                                        object
           4
               Address
                                       9551 non-null
                                                        object
               Locality
                                       9551 non-null
                                                        object
               Locality Verbose
                                       9551 non-null
                                                        object
           7
               Longitude
                                       9551 non-null
                                                        float64
           8
               Latitude
                                       9551 non-null
                                                        float64
           9
               Cuisines
                                       9542 non-null
                                                        object
               Average Cost for two
                                      9551 non-null
                                                        int64
               Currency
                                       9551 non-null
                                                        object
           11
               Has Table booking
                                       9551 non-null
                                                        object
               Has Online delivery
                                       9551 non-null
                                                        object
               Is delivering now
                                       9551 non-null
                                                        object
               Switch to order menu
           15
                                      9551 non-null
                                                        object
           16
               Price range
                                       9551 non-null
                                                        int64
           17
               Aggregate rating
                                       9551 non-null
                                                        float64
               Rating color
                                       9551 non-null
                                                        object
                                       9551 non-null
               Rating text
                                                        object
```

Third

20 Votes 9551 non-null int64

dtypes: float64(3), int64(5), object(13)

memory usage: 1.5+ MB

Out[11]:

	Restaurant ID	Country Code	Longitude	Latitude	Average Cost for two	Price range	Aggregate rating	Votes
count	9.551000e+03	9551.000000	9551.000000	9551.000000	9551.000000	9551.000000	9551.000000	9551.000000
mean	9.051128e+06	18.365616	64.126574	25.854381	1199.210763	1.804837	2.666370	156.909748
std	8.791521e+06	56.750546	41.467058	11.007935	16121.183073	0.905609	1.516378	430.169145
min	5.300000e+01	1.000000	-157.948486	-41.330428	0.000000	1.000000	0.000000	0.000000
25%	3.019625e+05	1.000000	77.081343	28.478713	250.000000	1.000000	2.500000	5.000000
50%	6.004089e+06	1.000000	77.191964	28.570469	400.000000	2.000000	3.200000	31.000000
75%	1.835229e+07	1.000000	77.282006	28.642758	700.000000	2.000000	3.700000	131.000000
max	1.850065e+07	216.000000	174.832089	55.976980	800000.000000	4.000000	4.900000	10934.000000

In Data Analysis What All Things We Do

1. Missing Values

Locality

Longitude Latitude Cuisines

Currency

Locality Verbose

Average Cost for two

- 2. Explore About the Numerical Variables
- 3. Explore About categorical Variables
- 4. Finding Relationship between features

```
Has Table booking
                                  0
         Has Online delivery
         Is delivering now
         Switch to order menu
                                  0
         Price range
         Aggregate rating
         Rating color
         Rating text
         Votes
         dtvpe: int64
         # Find only that particular column/feature which is having null value using list comprehension.
In [19]:
         [features for features in df.columns if df[features].isnull().sum()>0]
         ['Cuisines']
Out[19]:
         df.columns
In [16]:
         Index(['Restaurant ID', 'Restaurant Name', 'Country Code', 'City', 'Address',
Out[16]:
                 'Locality', 'Locality Verbose', 'Longitude', 'Latitude', 'Cuisines',
                 'Average Cost for two', 'Currency', 'Has Table booking',
                 'Has Online delivery', 'Is delivering now', 'Switch to order menu',
                'Price range', 'Aggregate rating', 'Rating color', 'Rating text',
                 'Votes'],
               dtype='object')
```

Heatmap for zomato dataset

```
In [84]: # 9551 rows are there so it didn't come properly.
    plt.rcParams['figure.figsize'] = (12, 6)
    sns.heatmap(df.isnull(),yticklabels=False,cbar=False,cmap='viridis')
Out[84]: <AxesSubplot:>
```



```
In [24]: df.shape
```

Out[24]: (9551, 21)

```
In [26]: # Read Country-code dataset
    df_country = pd.read_excel('/Users/madhu/Desktop/Data Science/iNeuron/EDA/country-code.xlsx')
    df_country.head()
```

Out[26]:		Country Code	Country
	0	1	India
	1	14	Australia
	2	30	Brazil
	3	37	Canada
	4	94	Indonesia

Merge both the dataset

```
In [35]: final_df = pd.merge(df, df_country, on = 'Country Code', how = 'left' )
final_df.head(2)
```

Out[35]:	ı	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Longitude	Latitude	Cuisines	 I	Has Table booking	Has Online delivery	ls delivering now	Switch to order menu	Price range	Α
	0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City	Century City Mall, Poblacion, Makati City, Mak	121.027535	14.565443	French, Japanese, Desserts		Yes	No	No	No	3	
	1	6304287	Izakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City	Little Tokyo, Legaspi Village, Makati City, Ma	121.014101	14.553708	Japanese		Yes	No	No	No	3	

2 rows × 22 columns

```
Latitude
                                  float64
         Cuisines
                                   object
         Average Cost for two
                                    int64
                                   object
         Currency
         Has Table booking
                                   object
         Has Online delivery
                                   object
         Is delivering now
                                   object
         Switch to order menu
                                   object
         Price range
                                    int64
         Aggregate rating
                                  float64
         Rating color
                                   object
         Rating text
                                   object
         Votes
                                    int64
         Country
                                   object
         dtype: object
         final_df.columns
In [38]:
         Index(['Restaurant ID', 'Restaurant Name', 'Country Code', 'City', 'Address',
Out[38]:
                 'Locality', 'Locality Verbose', 'Longitude', 'Latitude', 'Cuisines',
                 'Average Cost for two', 'Currency', 'Has Table booking',
                 'Has Online delivery', 'Is delivering now', 'Switch to order menu',
                 'Price range', 'Aggregate rating', 'Rating color', 'Rating text',
                 'Votes', 'Country'],
               dtype='object')
```

Locality Verbose

Longitude

object

float64

Find out how many countries are there and w.r.t country how many records are there?

```
# Observation: - Zomato is mainly in India
In [43]:
          final_df.Country.value_counts()
         India
                             8652
Out[43]:
          United States
                              434
          United Kingdom
                               80
          Brazil
                               60
          UAF
                               60
          South Africa
                               60
          New Zealand
                               40
         Turkey
                               34
         Australia
                               24
          Phillipines
                               22
                               21
          Indonesia
          Singapore
                               20
```

Qatar 20 Sri Lanka 20 Canada 4 Name: Country, dtype: int64

Get all the clountry name seperately

Get all the values seperately

```
country_val = final_df.Country.value_counts().values
In [52]:
          country_val
          array([8652,
                         434,
                                 80,
                                       60,
                                              60,
                                                     60,
                                                           40,
                                                                  34,
                                                                        24,
                                                                               22,
                                                                                     21,
Out[52]:
                          20,
                                 20,
                                        4])
                    20,
```

pie chart between Top 3 country_name and country_value

Observation:Zomato maximum records or transaction are from India After that USA and then United Kingdoms

```
final_df.columns
In [58]:
         Index(['Restaurant ID', 'Restaurant Name', 'Country Code', 'City', 'Address',
Out[58]:
                 'Locality', 'Locality Verbose', 'Longitude', 'Latitude', 'Cuisines',
                 'Average Cost for two', 'Currency', 'Has Table booking',
                 'Has Online delivery', 'Is delivering now', 'Switch to order menu',
                'Price range', 'Aggregate rating', 'Rating color', 'Rating text',
                'Votes', 'Country'],
               dtype='object')
In [69]: # perform group by operation on the Aggregate Rating, Rating color, Rating text
         # reset_index() resets the index and converts it into a data frame.
         ratings = final_df.groupby(['Aggregate rating', 'Rating color', 'Rating text']).size().reset_index().rename(columns = {0:'Rating
         ratings
In [70]:
Out [70
```

70]:		Aggregate rating	Rating color	Rating text	Rating Count
	0	0.0	White	Not rated	2148
	1	1.8	Red	Poor	1
	2	1.9	Red	Poor	2
	3	2.0	Red	Poor	7
	4	2.1	Red	Poor	15
	5	2.2	Red	Poor	27
	6	2.3	Red	Poor	47

7	2.4	Red	Poor	87
8	2.5	Orange	Average	110
9	2.6	Orange	Average	191
10	2.7	Orange	Average	250
11	2.8	Orange	Average	315
12	2.9	Orange	Average	381
13	3.0	Orange	Average	468
14	3.1	Orange	Average	519
15	3.2	Orange	Average	522
16	3.3	Orange	Average	483
17	3.4	Orange	Average	498
18	3.5	Yellow	Good	480
19	3.6	Yellow	Good	458
20	3.7	Yellow	Good	427
21	3.8	Yellow	Good	400
22	3.9	Yellow	Good	335
23	4.0	Green	Very Good	266
24	4.1	Green	Very Good	274
25	4.2	Green	Very Good	221
26	4.3	Green	Very Good	174
27	4.4	Green	Very Good	144
28	4.5	Dark Green	Excellent	95
29	4.6	Dark Green	Excellent	78
30	4.7	Dark Green	Excellent	42
31	4.8	Dark Green	Excellent	25
32	4.9	Dark Green	Excellent	61

Observation

- 1. When Rating is between 4.5 to 4.9---> Excellent
- 2. When Rating are between 4.0 to 4.4--->very good

- 3. when Rating is between 3.5 to 3.9---> good
- 4. when Rating is between 2.5 to 3.4----> average
- 5. when Rating is between 1.8 to 2.4---> Poor
- 6. When Reating is 0 ----> not rated

```
In [75]: ratings.head()
```

Out[75]:		Aggregate rating	Rating color	Rating text	Rating Count
	0	0.0	White	Not rated	2148
	1	1.8	Red	Poor	1
	2	1.9	Red	Poor	2
	3	2.0	Red	Poor	7
	4	2.1	Red	Poor	15

Bar plot

```
plt.rcParams['figure.figsize'] = (12, 6)
sns.barplot(x = 'Aggregate rating', y = 'Rating Count', data = ratings)
```

Out[83]: <AxesSubplot:xlabel='Aggregate rating', ylabel='Rating Count'>


```
In [85]: # hue = 'Rating color' It will catogrise it into different colors
         plt.rcParams['figure.figsize'] = (12, 6)
         sns.barplot(x = 'Aggregate rating', y = 'Rating Count', hue = 'Rating color', data = ratings)
         <AxesSubplot:xlabel='Aggregate rating', ylabel='Rating Count'>
```

Out[85]:

Observation:

- 1. Not Rated count is very high
- 2. Maximum number of rating are between 2.5 to 3.4

Count Plot

```
In [105... # Basically we use it for plotting catogrical variables.
# On y axis we have frequency. white-1, red- 7, yellow-5 , orange-10 and so on..
sns.countplot(x = 'Rating color', data = ratings, palette =['blue', 'Red', 'Orange', 'Yellow', 'Green', 'Green'] )
Out[105]: 

Out[105]:
```


In [107... ratings

(Jl	ΙT	L	1	0	/				Α	g	
---	----	----	---	---	---	---	--	--	--	---	---	--

	Aggregate rating	Rating color	Rating text	Rating Count
0	0.0	White	Not rated	2148
1	1.8	Red	Poor	1
2	1.9	Red	Poor	2
3	2.0	Red	Poor	7
4	2.1	Red	Poor	15
5	2.2	Red	Poor	27
6	2.3	Red	Poor	47
7	2.4	Red	Poor	87
8	2.5	Orange	Average	110
9	2.6	Orange	Average	191
10	2.7	Orange	Average	250
11	2.8	Orange	Average	315
12	2.9	Orange	Average	381

13	3.0	Orange	Average	468
14	3.1	Orange	Average	519
15	3.2	Orange	Average	522
16	3.3	Orange	Average	483
17	3.4	Orange	Average	498
18	3.5	Yellow	Good	480
19	3.6	Yellow	Good	458
20	3.7	Yellow	Good	427
21	3.8	Yellow	Good	400
22	3.9	Yellow	Good	335
23	4.0	Green	Very Good	266
24	4.1	Green	Very Good	274
25	4.2	Green	Very Good	221
26	4.3	Green	Very Good	174
27	4.4	Green	Very Good	144
28	4.5	Dark Green	Excellent	95
29	4.6	Dark Green	Excellent	78
30	4.7	Dark Green	Excellent	42
31	4.8	Dark Green	Excellent	25
32	4.9	Dark Green	Excellent	61

Find the countries name that has given 0 rating

```
0
                        Brazil
            1
                        India 2139
            2 United Kingdom
                                 1
                 United States
                                 3
           final_df.groupby(['Aggregate rating','Country']).size().reset_index().head(5)
In [139...
                                                 0
Out[139]:
               Aggregate rating
                                      Country
                                                  5
            0
                           0.0
                                        Brazil
                           0.0
            1
                                         India 2139
            2
                           0.0 United Kingdom
            3
                           0.0
                                  United States
            4
                           1.8
                                         India
                                                 1
```

Observations Maximum number of 0 ratings are from Indian customers

Dollar(\$)

Indian Rupees(Rs.) 8652

4

Out[143]:

2

3

Canada

India

Country

find out which currency is used by which country?

```
final_df.columns
In [146...
           Index(['Restaurant ID', 'Restaurant Name', 'Country Code', 'City', 'Address',
Out[146]:
                  'Locality', 'Locality Verbose', 'Longitude', 'Latitude', 'Cuisines',
                  'Average Cost for two', 'Currency', 'Has Table booking',
                  'Has Online delivery', 'Is delivering now', 'Switch to order menu',
                  'Price range', 'Aggregate rating', 'Rating color', 'Rating text',
                  'Votes', 'Country'],
                 dtype='object')
          final_df.groupby(['Country', 'Currency']).size().reset_index()
In [150...
                                                  0
Out[150]:
                    Country
                                      Currency
            0
                    Australia
                                       Dollar($)
                                                 24
            1
                                Brazilian Real(R$)
                      Brazil
                                                 60
```

```
Indonesia Indonesian Rupiah(IDR)
                                              21
      New Zealand
                            NewZealand($)
                                              40
 6
         Phillipines
                          Botswana Pula(P)
                                              22
 7
             Oatar
                            Oatari Rial(OR)
                                              20
 8
         Singapore
                                  Dollar($)
                                              20
 9
        South Africa
                                  Rand(R)
                                              60
          Sri Lanka Sri Lankan Rupee(LKR)
10
                                              20
11
            Turkey
                            Turkish Lira(TL)
                                              34
12
              UAE
                        Emirati Diram(AED)
                                              60
13 United Kingdom
                                Pounds(0£)
                                              80
      United States
                                  Dollar($)
                                             434
14
```

No

Which Countries do have online deliveries option??

India 6229

```
final_df.columns
In [170...
          Index(['Restaurant ID', 'Restaurant Name', 'Country Code', 'City', 'Address',
Out[170]:
                  'Locality', 'Locality Verbose', 'Longitude', 'Latitude', 'Cuisines',
                  'Average Cost for two', 'Currency', 'Has Table booking',
                  'Has Online delivery', 'Is delivering now', 'Switch to order menu',
                  'Price range', 'Aggregate rating', 'Rating color', 'Rating text',
                  'Votes', 'Country'],
                 dtype='object')
          final_df[final_df['Has Online delivery'] =="Yes"].Country.value_counts()
In [176...
          India
                    2423
Out[176]:
          UAF
                      28
          Name: Country, dtype: int64
          final_df.groupby(['Has Online delivery', 'Country']).size().reset_index()
In [182...
Out[182]:
              Has Online delivery
                                    Country
                                              0
            0
                           No
                                    Australia
                                              24
                                              60
            1
                           No
                                      Brazil
            2
                           No
                                     Canada
                                               4
```

4	No	Indonesia	21
5	No	New Zealand	40
6	No	Phillipines	22
7	No	Qatar	20
8	No	Singapore	20
9	No	South Africa	60
10	No	Sri Lanka	20
11	No	Turkey	34
12	No	UAE	32
13	No	United Kingdom	80
14	No	United States	434
15	Yes	India	2423
16	Yes	UAE	28

Observations:

Online Deliveries are available in India and UAE

Create a pie chart for top 5 cities distribution

```
final_df.columns
In [183...
          Index(['Restaurant ID', 'Restaurant Name', 'Country Code', 'City', 'Address',
Out[183]:
                 'Locality', 'Locality Verbose', 'Longitude', 'Latitude', 'Cuisines',
                 'Average Cost for two', 'Currency', 'Has Table booking',
                 'Has Online delivery', 'Is delivering now', 'Switch to order menu',
                 'Price range', 'Aggregate rating', 'Rating color', 'Rating text',
                 'Votes', 'Country'],
                dtype='object')
         city_labels = final_df['City'].value_counts().index
          city_labels
          Index(['New Delhi', 'Gurgaon', 'Noida', 'Faridabad', 'Ghaziabad',
Out[193]:
                 'Bhubaneshwar', 'Amritsar', 'Ahmedabad', 'Lucknow', 'Guwahati',
                 'Ojo Caliente', 'Montville', 'Monroe', 'Miller', 'Middleton Beach',
```

```
'Panchkula', 'Mc Millan', 'Mayfield', 'Macedon', 'Vineland Station'],
                 dtype='object', length=141)
          city_values = final_df['City'].value_counts().values
In [206...
          plt.pie(city_values[:5], labels = city_labels[:5], autopct='%1.2f%%')
In [210...
          ([<matplotlib.patches.Wedge at 0x7fbac29b8be0>,
Out[210]:
            <matplotlib.patches.Wedge at 0x7fbac29b8400>,
            <matplotlib.patches.Wedge at 0x7fbac1f34370>,
            <matplotlib.patches.Wedge at 0x7fbac1f34be0>,
            <matplotlib.patches.Wedge at 0x7fbac29bbdc0>],
            [Text(-0.6145352824185932, 0.9123301960708633, 'New Delhi'),
            Text(0.0623675251198054, -1.0982305276263407, 'Gurgaon'),
            Text(0.8789045225625368, -0.6614581167535246, 'Noida'),
            Text(1.0922218418223437, -0.13058119407559224, 'Faridabad'),
            Text(1.099946280005612, -0.010871113182029922, 'Ghaziabad')],
            [Text(-0.3352010631374145, 0.497634652402289, '68.87%'),
            Text(0.0340186500653484, -0.5990348332507311, '14.07%'),
            Text(0.47940246685229276, -0.36079533641101336, '13.59%'),
            Text(0.5957573682667329, -0.07122610585941394, '3.16%'),
            Text(0.5999706981848791, -0.005929698099289048, '0.31%')])
              New Delhi
                       68.87%
                                                  Ghaziabad
                                                  Faridabad
                                     13.59%
                             14.07%
```

Noida

Find the top 10 cuisines

Gurgaon

```
final df.columns
In [212...
          Index(['Restaurant ID', 'Restaurant Name', 'Country Code', 'City', 'Address',
Out[212]:
                 'Locality', 'Locality Verbose', 'Longitude', 'Latitude', 'Cuisines',
                 'Average Cost for two', 'Currency', 'Has Table booking',
                 'Has Online delivery', 'Is delivering now', 'Switch to order menu',
                 'Price range', 'Aggregate rating', 'Rating color', 'Rating text',
                 'Votes', 'Country'],
                dtype='object')
         final df['Cuisines'].value counts()[:10]
          North Indian
                                             936
Out[217]:
          North Indian, Chinese
                                             511
          Chinese
                                             354
                                             354
          Fast Food
          North Indian, Mughlai
                                             334
          Cafe
                                             299
          Bakery
                                             218
          North Indian, Mughlai, Chinese
                                             197
          Bakery, Desserts
                                             170
          Street Food
                                             149
          Name: Cuisines, dtype: int64
 In [ ]:
```