

Integrated Circuits

SERIES ULS-2800H AND ULS-2800R HIGH-VOLTAGE, HIGH-CURRENT DARLINGTON ARRAYS MIL-STD-883 Compliant

FEATURES

- TTL, DTL, PMOS, or CMOS Compatible Inputs
- Peak Output Current to 600 mA
- Transient-Protected Outputs
- Side-Brazed Hermetic Package
- Cer-DIP Hermetic Package
- High-Reliability Screening to MIL-STD-883, Class B
- − 55°C to + 125°C Temperature Range

DESIGNED TO SERVE as interface between low-level logic circuitry and high-power loads, Series ULS-2800H and ULS-2800R arrays consist of eight silicon NPN Darlington power drivers on a common monolithic substrate. They are ideally suited to driving relays, solenoids, lamps, and other devices in high-reliability military or aerospace applications with up to 3 A output current per package.

These devices are screened to MIL-STD-883, Class B and are supplied in either the popular glass/metal side-brazed 18-pin hermetic package (suffix 'H') or ceramic/glass cer-DIP hermetic package (suffix 'R'). Both package styles conform to the dimensional requirements of MIL-M-38510 and are rated for operation over the full military temperature range of -55°C to +125°C. Reverse hias burn-in and 100% high-reliability screening are standard.

The 30 integrated circuits described in this buffetin permit the circuit designer to select the optimal device for any application. In addition to the two package styles, there are five input characteristics, two output-voltage ratings and two output-current ratings. The appropriate part for specific applications can be determined from the Device Part Number Designation chart. All units have open-collector outputs and on chip diodes for inductive-load transient suppression.

Device Part Number Designation

V _{CE(MAX)}	\$0 V	50 V	95 V
I _{course}	▶ 500 mA	600 mA	500 mA
togie		Part Number	
General Purpose PMOS, CMOS	ULS-2801*	ULS-2811*	ULS-2821*
14-25 V PMOS	ULS-2802*	ULS-2812*	ULS-2822*
5 V TTL, CMOS	ULS-2803*	ULS-2813*	ULS-2823*
6-15 V CMOS, PMOS	ULS-2804*	ULS-2814*	ULS-2824*
High-Output TTL	ULS-2805*	ULS-2815*	ULS-2825*

*Complete part number includes a final letter to indicate package (H = glass/metal side-brazed, R = ceramic/glass cer-DIP)

INTEGRATED CIRCUITS DIVISION SPRAGUE ELECTRIC COMPANY

ABSOLUTE MAXIMUM RATINGS

Output Voltage, V _{CF}
(ULS-280X*, ULS-281X*)
(ULS-282X*)
Input Voltage, V _{IN}
(ULS-28X2, X3, X4*)
(ULS-28X5*)
Peak Output Current, I _{OUT}
(ULS-280X*, ULS-282X*) 500 mA
(ULS-281X*) 600 mA
Ground Terminal Current, I _{GND}
Continuous Input Current, I _{IN}
Power Dissipation, P _D
(one Darlington pair)
(total package) See Graph
•
Operating Temperature Range, $T_A cdots - 55^{\circ}C$ to $+ 125^{\circ}C$
Storage Temperature Range, $T_s \dots -65^{\circ}C$ to $+150^{\circ}C$

ALLOWABLE PACKAGE POWER DISSIPATION

PARTIAL SCHEMATICS

*Complete part number includes a final letter to indicate package (H = glass/ metal side-brazed, R = ceramic/glass cer-DIP).

X = digit to identify specific device. Specification or limit shown applies to family of devices with remaining digits as shown.

Copyright © 1979 and 1986, Sprague Electric Company.

SERIES ULS-2800H AND ULS-2800R

ELECTRICAL CHARACTERISTICS over operating temperature range (unless otherwise noted)

		Applicable	Test Conditions			Limits			
Characteristic	Symbol	Devices	Temp.	Voltage/Current	Fig.	Min.	Тур.	Max.	Units
Output Leakage Current	I _{CEX}	All		$V_{CE} = 50 \text{ V}$	1A	_		100	μΑ
		ULS-2802*		$V_{CE} = 50 \text{ V}, V_{IN} = 6 \text{ V}$	1B	_		500	μΑ
		ULS-2804*		$V_{CE} = 50 \text{ V}, V_{IN} = 1 \text{ V}$	1B	_	_	500	μΑ
Collector-Emitter	V _{CE(SAT)}	All	− 55°C	$I_{c} = 350 \text{ mA}, I_{B} = 850 \mu\text{A}$	2	_	1.6	1.8	V
Saturation Voltage				$I_{c} = 200 \text{ mA}, I_{B} = 550 \mu\text{A}$	2		1.3	1.5	٧
				$I_{c} = 100$ mA, $I_{B} = 350 \mu\text{A}$	2		1.1	1.3	V
				$I_{C} = 350 \text{ mA}, I_{B} = 500 \mu\text{A}$	2		1.25	1.6	٧
			+ 25°C	$I_{c} = 200 \text{ mA}, I_{B} = 350 \mu\text{A}$	2		1.1	1.3	٧
				$I_{c} = 100 \text{ mA}, I_{B} = 250 \mu\text{A}$	2		0.9	1.1	٧
			+ 125°C	$I_{c} = 350 \text{ mA} + I_{B} = 500 \mu\text{A}$	2		1.6	1.8	٧
				$I_{c} = 200 \text{ mA}, I_{B} = 350 \mu\text{A}$	2	<u> </u>	1.3	1.5	V
				$I_{c} = 100 \text{ mA}, I_{B} = 250 \mu\text{A}$	2		1.1	1.3	٧
Input Current	I _{IN(ON)}	ULS-2802*		$V_{IN} = 17 V$	3	480	850	1300	μA
		ULS-2803*		$V_{IN} = 3.85 V$	3	650	930	1350	μΑ
		ULS-2804*		$V_{IN} = 5.0 V$	3	240	350	500	μA
		1		$V_{IN} = 12 V$	3	650	1000	1450	μΑ
		ULS-2805*		$V_{IN} = 3.0 V$	3		1500	2400	μΑ
	I _{IN(OFF)}	Ali	+ 125°C	$I_c = 500 \mu\text{A}$	4	25	50		μΑ
Input Voltage	V _{IN(ON)}	ULS-2802*	_ 55°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 300 \text{ mA}$	5			18	V
			+ 125°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 300 \text{ mA}$	5	_		13	V
		ULS-2803*	− 55°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 200 \text{ mA}$	5			3.3	V
				$V_{CE} = 2.0 \text{ V}, I_{C} = 250 \text{ mA}$	5			3.6	V
				$V_{ce} = 2.0 \text{ V}, I_c = 300 \text{ mA}$	5			3.9	٧
			+ 125°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 200 \text{ mA}^{\dagger}$	5			2.4	٧
				$V_{CE} = 2.0 \text{ V}, I_{C} = 250 \text{ mA}^{\dagger}$	5			2.7	٧
				$V_{CE} = 2.0 \text{ V}, I_{C} = 300 \text{ mA}^{\dagger}$	5			3.0	٧
		ULS-2804*	_ 55°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 125 \text{ mA}$	5	<u> </u>		6.0	V
				$V_{CE} = 2.0 V, I_{C} = 200 \text{mA}$	5			8.0	V
				$V_{CE} = 2.0 \text{ V}, I_{C} = 275 \text{ mA}$	5			10	V
				$V_{CE} = 2.0 V, I_{C} = 350 mA$	5			12	V
			+ 125°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 125 \text{ mA}$	5			5.0	٧
				$V_{CE} = 2.0 \text{ V}, I_{C} = 200 \text{ mA}^{\dagger}$	5			6.0	V
				$V_{CE} = 2.0 V, I_{C} = 275 mA^{\dagger}$	5			7.0	V
				$V_{CE} = 2.0 V, I_{C} = 350 mA†$	5			8.0	V
		ULS-2805*	_ 55°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 350 \text{ mA}$	5			3.0	V
			+ 125°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 350 \text{ mA}^{\dagger}$	5			2.4	٧
D-C Forward Current	h _{FE}	ULS2801*	_ 55°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 350 \text{ mA}$	2	500			
Transfer Ratio	1		+ 25°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 350 \text{ mA}$	2	1000			<u> </u>
Turn-On Delay	t _{PLH}	All	+ 25°C		8		250	1000	ns
Turn-Off Delay	t _{PHL}	All	+ 25°C		8		250	1000	ns
Clamp Diode Leakage Current	I _R	All		$V_R = 50 \text{ V}$	6			50	μΑ
Clamp Diode Forward Voltage	V _f	Ali		$I_F = 350 \text{ mA}\dagger$	7		1.7	2.0	٧

^{*}Complete part number includes a final letter to indicate package (H = glass/metal side-brazed, R = ceramic/glass cer-DIP). Note 1: All limits stated apply to the complete Darlington series except as specified for a single device type. Note 2: The $I_{IN(OFF)}$ current limit guarantees against partial turn-on of the output. Note 3: The $V_{IN(ON)}$ voltage limit guarantees a minimum output sink current per the specified test conditions. †Pulse Test, $t_p \le 1~\mu$ s, see graph.

SERIES ULS-2810H AND ULS-2810R

ELECTRICAL CHARACTERISTICS over operating temperature range (unless otherwise noted)

	-T	·		Test Conditions			Lin	nits	
Characteristic	Sumbol	Applicable	Temp.	Voltage/Current	Eia	Min.	Тур.	Max.	Units
Output Leakage Current	Symbol	Devices All	remp.	$V_{CE} = 50 \text{ V}$	Fig.	IVIIII.	īyμ.	100	μA
Output Leakage Gurient	I _{CEX}	ULS-2812*		$V_{CE} = 50 \text{ V}$ $V_{CE} = 50 \text{ V}, V_{IN} = 6 \text{ V}$	1B			500	μA
		ULS-2814*		$V_{CE} = 50 \text{ V}, V_{IN} = 6 \text{ V}$ $V_{CE} = 50 \text{ V}, V_{IN} = 1 \text{ V}$	1B			500	μA
Collector-Emitter	V	All	55°C		2		1.8	2.1	V
Saturation Voltage	V _{CE(SAT)}	All	− 55°C	$I_{c} = 500 \text{ mA}, I_{B} = 1100 \mu\text{A}$	2		1.6	1.8	V
Saturation voltage				$I_{c} = 350 \text{ mA}, I_{B} = 850 \mu\text{A}$	2		1.3	1.5	V
				$I_{c} = 200 \text{ mA}, I_{B} = 550 \mu\text{A}$	2				V
			1 2500	$I_{c} = 500 \text{ mA}, I_{B} = 600 \mu\text{A}$	2		1.7	1.9 1.6	V
			+ 25°C	$I_{c} = 350 \text{ mA}, I_{B} = 500 \mu\text{A}$	2		1.25	1.3	V
			. 10500	$I_{c} = 200 \text{ mA}, I_{B} = 350 \mu\text{A}$			1.1		V
			+ 125°C	$I_{c} = 500 \text{ mA}^{\dagger}, I_{B} = 600 \mu\text{A}$	2		1.8	2.1	V
				$I_{c} = 350 \text{ mA}^{\dagger}, I_{B} = 500 \mu\text{A}$	2		1.6	1.8	V
1 10	+.	111.0.001.04		$I_{\rm c} = 200 \text{mA}, I_{\rm B} = 350 \mu \text{A}$	2	400	1.3	1.5	
Input Current	IN(ON)	ULS-2812*		$V_{IN} = 17 \text{ V}$	3	480	850	1300	μΑ
		ULS-2813*		$V_{IN} = 3.85 \text{ V}$	3	650	930	1350	μΑ
		ULS-2814*		$V_{\rm IN} = 5.0 \text{ V}$	3	240	350	500	μΑ
		0015#		$V_{IN} = 12 \text{ V}$	3	650	1000	1450	μΑ
		ULS-2815*	10500	$V_{IN} = 3.0 \text{ V}$	3		1500	2400	μΑ
	I _{IN(OFF)}	All	+ 125°C	$I_c = 500 \mu\text{A}$	4	25	50	-	μA
Input Voltage	V _{IN(ON)}	ULS-2812*	_ 55°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 500 \text{ mA}$	5			23.5	٧
			+ 125°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 500 \text{ mA}$	5			17	٧
		ULS-2013*	− 55°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 250 \text{ mA}$	5			3.6	٧
				$V_{CE} = 2.0 \text{ V}, I_{C} = 300 \text{ mA}$	5			3.9	٧
				$V_{CE} = 2.0 \text{ V}, I_{C} = 500 \text{ mA}$	5			6.0	٧
			+ 125°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 250 \text{ mA}^{\dagger}$	5			2.7	٧
				$V_{CE} = 2.0 \text{ V}, I_{C} = 300 \text{ mA}^{\dagger}$	5			3.0	٧
				$V_{CE} = 2.0 \text{ V}, I_{C} = 500 \text{ mA}^{\dagger}$	5			3.5	V
		ULS-2814*	− 55°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 275 \text{ mA}$	5			10	٧
				$V_{CE} = 2.0 \text{ V}, I_{C} = 350 \text{ mA}$	5			12	٧
				$V_{CE} = 2.0 \text{ V}, I_{C} = 500 \text{ mA}$	5			17	٧
			+ 125°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 275 \text{ mA}^{\dagger}$	5			7.0	٧
				$V_{CE} = 2.0 \text{ V}, I_{C} = 350 \text{ mA}^{\dagger}$	5			8.0	٧
				$V_{CE}=2.0\mathrm{V},\mathrm{I_C}=500\mathrm{mA}\dagger$	5			9.5	٧
		ULS-2815*	_ 55°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 350 \text{ mA}$	5			3.0	V
				$V_{CE} = 2.0 \text{ V}, I_{C} = 500 \text{ mA}$	5			3.5	٧
			+ 125°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 350 \text{ mA}^{\dagger}$	5			2.4	٧
				$V_{CE} = 2.0 \text{ V}, I_{C} = 500 \text{ mA}^{\dagger}$	5			2.6	٧
D-C Forward Current	h _{FE}	ULS-2811*	_ 55°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 500 \text{ mA}$	2	450			_
Transfer Ratio			+ 25°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 500 \text{ mA}$	2	900			
Turn-On Delay	t _{PLH}	All	+ 25°C		8	<u> </u>	250	1000	ns
Turn-Off Delay	t _{PHL}	All	+ 25°C		8		250	1000	ns
Clamp Diode Leakage Current	I _R	All		$V_R = 50 \text{ V}$	6	_		50	μΑ
Clamp Diode Forward	V _f	All		$I_{\scriptscriptstyle F}=350~{\rm mA}\dagger$	7		1.7	2.0	٧
Voltage				$I_F = 500 \text{ mA}^{\dagger}$	7			2.5	٧

^{*}Complete part number includes a final letter to indicate package (H = glass/metal side-brazed, R = ceramic/glass cer-DIP).

Note 1: All limits stated apply to the complete Darlington series except as specified for a single device type.

Note 2: The $I_{\text{IN(OFF)}}$ current limit guarantees against partial turn-on of the output.

Note 3: The $V_{|N(ON)}$ voltage limit guarantees a minimum output sink current per the specified test conditions. †Pulse Test, $t_p \leq 1~\mu s$, see graph.

SERIES ULS-2820H AND ULS-2820R **ELECTRICAL CHARACTERISTICS** over operating temperature range (unless otherwise noted)

		Applicable	Test Conditions			Limits			
Characteristic	Symbol	Devices	Temp.	Voltage/Current	Fig.	Min.	Тур.	Max.	Units
Output Leakage Current	I _{CEX}	All		$V_{CE} = 95 V$	1A		_	100	μA
		ULS-2822*		$V_{CE}=95V$, $V_{IN}=6V$	1B			500	μA
		ULS-2824*	25°C	$V_{CE} = 95 V$, $V_{IN} = 1 V$	1B	_	_	500	μA
			+ 125°C	$V_{CE} = 95 V, V_{IN} = 0.5 V$	1B		_	500	μA
Collector-Emitter	V _{CE(SAT)}	All	− 55°C	$I_{c}=350$ mA, $I_{\scriptscriptstyle B}=850~\mu A$	2		1.6	1.8	٧
Saturation Voltage				$I_{c}=200$ mA, $I_{B}=550~\mu A$	2		1.3	1.5	٧
				$I_{c} = 100 \text{ mA}, I_{B} = 350 \mu A$	2	_	1.1	1.3	٧
				$I_{c} = 350 \text{ mA}, I_{B} = 500 \mu A$	2	_	1.25	1.6	٧
			+ 25°C	$I_c=200$ mA, $I_B=350~\mu A$	2		1.1	1.3	V
				$I_{c} = 100 \text{ mA}, I_{B} = 250 \mu A$	2	_	0.9	1.1	٧
			+ 125°C	$I_{c}=350$ mA†, $I_{B}=500$ μ A	2	_	1.6	1.8	٧
				$I_{\rm C} = 200 {\rm mA}, I_{\rm B} = 350 {\rm \mu A}$	2	_	1.3	1.5	٧
				$I_{\rm c} = 100$ mA, $I_{\rm B} = 250$ μ A	2	_	1.1	1.3	٧
Input Current	I _{IN(ON)}	ULS-2822*		$V_{IN} = 17 \text{ V}$	3	480	850	1300	μΑ
	,	ULS-2823*		$V_{IN} = 3.85 V$	3	650	930	1350	μΑ
		ULS-2824*		$V_{IN} = 5.0 \text{ V}$	3	240	350	500	μΑ
				$V_{IN} = 12 \text{ V}$	3	650	1000	1450	μA
		ULS-2825*		$V_{IN} = 3.0 \text{ V}$	3		1500	2400	μA
	I _{IN(OFF)}	All	+ 125°C	$I_c = 500 \mu\text{A}$	4	20	50		μΑ
Input Voltage	V _{IN(ON)}	ULS-2822*	− 55°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 300 \text{ mA}$	5			18	·ν
•	III(OII)		+ 125°C	$V_{ce} = 2.0 \text{ V}, I_{c} = 300 \text{ mA}$	5			13	٧
		ULS-2823*	− 55°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 200 \text{ mA}$	5	_		3.3	٧
				$V_{CE} = 2.0 \text{ V}, I_{C} = 250 \text{ mA}$	5			3.6	٧
		:		$V_{CE} = 2.0 \text{ V}, I_{C} = 300 \text{ mA}$	5	_		3.9	٧
			+ 125°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 200 \text{ mA}^{\dagger}$	5			2.4	٧
				$V_{CE} = 2.0 \text{ V}, I_{C} = 250 \text{ mA}^{\dagger}$	5			2.7	V
			1	$V_{CE} = 2.0 \text{ V}, I_{C} = 300 \text{ mA}^{\dagger}$	5			3.0	٧
		ULS-2824*	− 55°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 125 \text{ mA}$	5			6.0	V
				$V_{CE} = 2.0 \text{ V}, I_{C} = 200 \text{ mA}$	5			8.0	٧
		!		$V_{CE} = 2.0 \text{ V}, I_{C} = 275 \text{ mA}$	5	_		10	V
				$V_{CE} = 2.0 \text{ V}, I_{C} = 350 \text{ mA}$	5			12	v
			+ 125°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 125 \text{ mA}$	5			5.0	V
				$V_{CE} = 2.0 \text{ V}, I_{C} = 200 \text{ mA}^{\dagger}$	5			6.0	V
				$V_{CE} = 2.0 \text{ V}, I_{C} = 275 \text{ mA}^{\dagger}$	5			7.0	V
				$V_{CE} = 2.0 \text{ V}, I_{C} = 350 \text{ mA}^{\dagger}$	5			8.0	V
		ULS-2825*	− 55°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 350 \text{ mA}$	5			3.0	V
		020 2020	+ 125°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 350 \text{ mA}^{\dagger}$	5			2.4	V
D-C Forward Current	h _{FE}	ULS2821*	- 55°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 350 \text{ mA}$	2	500			<u> </u>
Transfer Ratio	"FE	OLOLOLI	+ 25°C	$V_{CE} = 2.0 \text{ V}, I_{C} = 350 \text{ mA}$	2	1000			
Turn-On Delay	t _{PLH}	All	+ 25°C	*(E 2.0 *, 10 — 000 min	8		250	1000	ns
Turn-Off Delay	t _{PHL}	All	+ 25°C		8		250	1000	ns
Clamp Diode Leakage	I _R	All	1 23 0	$V_R = 95 \text{ V}$	6			50	μA
Current	ן יא	7.11		· K 00 1		-		00	
Clamp Diode Forward Voltage	V _f	All		$I_{\scriptscriptstyle F}=350~\text{mA}^{\dagger}$	7	_	1.7	2.0	٧

^{*}Complete part number includes a final letter to indicate package (H = glass/metal side-brazed, R = ceramic/glass cer-DIP).

Note 1: All limits stated apply to the complete Darlington series except as specified for a single device type.

Note 2: The $I_{IN(OFF)}$ current limit guarantees against partial turn-on of the output. Note 3: The $V_{IN(OF)}$ voltage limit guarantees a minimum output sink current per the specified test conditions. †Pulse Test, $t_p \leq 1~\mu s$, see graph.

TEST FIGURES

FIGURE 1A

FIGURE 1B

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

	V _{in}
ULS-28X1*	3.5 V
ULS-28X2*	13 V
ULS-28X3*	3.5 V
ULS-28X4*	12 V
ULS-28X5*	3.5 V

Dwg. No. A-13,272

Dwg. No. A-13,273

- * Complete part number includes a final letter to indicate package.
- X = Digit to identify specific device. Specification shown applies to family of devices with remaining digits as shown.

FIGURE 8

COLLECTOR CURRENT AS A FUNCTION OF SATURATION VOLTAGE

COLLECTOR CURRENT AS A FUNCTION OF INPUT CURRENT

Dwg. No. A-9754C

Dwg. No. A-10,872B

SERIES ULS-2800H

PEAK COLLECTOR CURRENT AS A FUNCTION OF DUTY CYCLE AT +50°C

PEAK COLLECTOR CURRENT AS A FUNCTION OF DUTY CYCLE AT +75°C

PEAK COLLECTOR CURRENT AS A FUNCTION OF DUTY CYCLE AT + 100°C

PEAK COLLECTOR CURRENT AS A FUNCTION OF DUTY CYCLE AT + 125°C

X = digit to identify specific device. Specification or limit shown applies to family of devices with remaining digits as shown.

SERIES ULS-2800R

PEAK COLLECTOR CURRENT AS A FUNCTION OF DUTY CYCLE AT +50°C

PEAK COLLECTOR CURRENT AS A FUNCTION OF DUTY CYCLE AT +75°C

PEAK COLLECTOR CURRENT AS A FUNCTION OF DUTY CYCLE AT +100°C

PEAK COLLECTOR CURRENT AS A FUNCTION OF DUTY CYCLE AT + 125°C

X = digit to identify specific device. Specification or limit shown applies to family of devices with remaining digits as shown.

INPUT CURRENT AS A FUNCTION OF INPUT VOLTAGE

X = digit to identify specific device. Specification or limit shown applies to family of devices with remaining digits as shown.

HERMETIC GLASS/METAL 'H' PACKAGE

DIMENSIONS IN INCHES

DIMENSIONS IN MILLIMETERS

Based on 1'' = 25.4 mm

This package conforms to military specification MIL-M-38510, case outline D-6, configuration 3. Devices using this package are marked to indicate compliance to the latest issue of MIL-STD-883. For example: ULS2801H-883.

HERMETIC CERAMIC/GLASS 'R' PACKAGE

DIMENSIONS IN INCHES

DIMENSIONS IN MILLIMETERS

This package conforms to military specification MIL-M-38510, case outline D-6, configuration 1. Devices using this package are marked to indicate compliance to the latest issue of MIL-STD-883. For example: ULS2803R-883.

NOTES:

- 1. Lead spacing tolerance is non-cumulative.
- 2. Exact body and lead configuration at vendor's option within limits shown.
- 3. Lead gauge plane is 0.030 in. (0.76 mm) max. below seating plane.

Tel. 617/853-5000

SALES OFFICES

UNITED STATES

ALABAMA

EPI Inc. Suite 13 - 9694 Hwy. 20 W Madison 35758 Tel. 205/461-7000

Electramark Inc. Suite 21

3322 South Memorial Parkway Huntsville 35801 Tel. 205/883-9948

ARIZONA

Sprague Electric Company Suite 209 — 1819 S. Dobson Rd. Mesa 85202 — 5690 Tel. 602/244-0154 Tel. 602/831-6762

Sprague Electric Company

Suite 601 1150 E. Pennsylvania Street Tucson 85714 — 1640 Tel. 602/746-0955

CALIFORNIA (Metro. L.A.)

Sprague Electric Company Suite 150 — 3100 S. Harbor Blvd. Santa Ana 92704 Tel. 714/549-9913

Sprague Electric Company

Suite 459 15350 Sherman Way Van Nuys 91406 Tel. 818/994-6500

Sprague Electric Company

4300 Stevens Creek Boulevard San Jose 95129 — 1249 Tel. 408/241-7111

(Northern) William J. Purdy Company 770 Airport Blvd. Burlingame 94010 — 1927 Tel. 415/347-7701

(San Diego) Miner Associates, Inc.

Suite 117 — 10721 Treena Street San Diego 92131 — 1009 Tel. 619/566-9891

COLORADO

William J. Purdy Company 5570 E. Yale Ave. Denver 80222 — 6907 Tel. 303/753-6800

Todd & Fry Associates

P.O. Box 1689 Longmont 80502 — 1689 Tel. 303/776-7331

CONNECTICUT

Sprague Electric Company 88 Main Street South Southbury 06488 Tel. 203/264-9595

Sprague Electric Company 120 Hartford Turnpike South P.O. Box 578

Wallingford 06492 — 0578 Tel. 203/284-8300

Data Mark Inc.

47 Clapboard Hill Road Guilford 06437 — 2261 Tel. 203/453-0575

DIST. OF COLUMBIA

Sprague Electric Company Suite 311 14333 Laurel-Bowie Road Laurel, MD 20708 -- 1130 Tel. 301/953-1717

DIST. OF COLUMBIA (continued)

Trinkle Sales Inc. P.O. Box 5320 Cherry Hill, NJ 08034 - 0460 Tel. 609/795-4200

FLORIDA

Sprague Electric Company P.O. Box 1410 Altamonte Springs 32715 — 1410 Tel. 305/831-3636

Sprague Electric Company

Suite 419 — 1500 N.W. 62nd Street Ft. Lauderdale 33309 — 1802 Tel. 305/491-7411

Sprague Electric Company Suite T, Building 501 8001 North Dale Mabry Tampa 33614 — 3265

Tel. 813/935-8203

GEORGIA

Electramark Inc. 6030 — I Unity Drive Norcross 30071 — 3583 Tel. 404/446-7915

Electronic Marketing Associates Suite 101

6695 Peachtree Industrial Blvd. Atlanta 30360 - 2116 Tel. 404/448-1215

ILLINOIS (Northern)

Sprague Electric Company Suite 410 — 1480 Renaissance Dr. Park Ridge 60068 — 1386 Tel. 312/296-6620

(Southern) EPI Inc.

Suite 201 — 103 W. Lockwood St. Louis, MO 63119 - 2915 Tel. 314/962-1411

INDIANA

Sprague Electric Company Suite 290 — 8200 Haverstick Road Indianapolis 46240
Tel. 317/253-4247

IOWA

J. R. Sales Engineering, Inc. 1930 St. Andrews, N. E Cedar Rapids 52402 Tel. 319/393-2232

KANSAS

EPI Inc. Suite 201 — 103 W. Lockwood St. Louis, MO 63119 — 2915 Tel. 314/962-1411

KENTUCKY

Sprague Electric Company 821 Corporate Drive Unit #16, Suite 200 Lexington 40503 Tel. 606/224-4230

MARYLAND

Sprague Electric Company 14333 Laurel-Bowie Road Laurel 20708 — 1130

Tel. 301/792-4890 Trinkle Sales Inc.

Cherry Hill, NJ 08034 — 0460 Tel. 609/795-4200

MASSACHUSETTS

Sprague Electric Company 10 Burr St. Framingham 01701 — 4617 Tel. 617/875-3200

Ray Perron & Co., Inc. P.O. Box 389 Needham 02192 - 0009 Tel 617/449-6162

MICHIGAN

Sprague Electric Company Suite 301 — 2155 Jackson Road Ann Arbor 48103 — 3917 Tel. 313/761-2014

MINNESOTA

HMR, Inc. 9065 Lyndale Ave. South Minneapolis 55420 - 3520 Tel. 612/888-2122

MISSISSIPPI

EPI Inc. Suite 13 - 9694 Hwy. 20 W Madison, AL 35758 Tel. 205/461-7000

MISSOURI

EPI Inc. Suite 201 — 103 W. Lockwood St. Louis 63119 — 2915 Tel. 314/962-1411

NEBRASKA

J. R. Sales Engineering, Inc. 1930 St. Andrews, N. E. Cedar Rapids, Iowa 52402 Tel. 319/393-2232

NEW HAMPSHIRE

Ray Perron & Co., Inc. Elm St. Dover 03820 — 3910 Tel. 603/742-2321

NEW JERSEY (Northern)

Sprague Electric Company O. Box 1612 Wayne 07470 — 0701 Tel. 201/696-8200

(Southern)

Trinkle Sales Inc. P.O. Box 5320 Cherry Hill 08034 - 0460 Tel. 609/795-4200

NEW MEXICO

William J. Purdy Company 120 LaVeta Drive NE Albuquerque 87108 — 1613 Tel. 505/266-7959

NEW YORK (Downstate)

Sprague Electric Company 2001 Palmer Ave. Larchmont 10538 - 2420 Tel. 914/834-4439

(Long Island)

Sprague Electric Company P.O. Box 541 Central Islip 11722 — 0541 Tel. 516/234-8700

(Upstate)

Sprague Electric Company 2002 Teall Ave. Syracuse 13206 — 1542 Tél. 315/437-7311

Paston-Hunter Co., Inc. 2002 Teall Ave.

Syracuse 13206 — 1596 Tel. 315/437-2843

NORTH CAROLINA

Sprague Electric Company 9741-M Southern Pine Blvd. Charlotte 28210 — 5560 Tel. 704/527-1306

Electronic Marketing Associates 9225 Honeycutt Creek Rd. Raleigh 27609 — 1523 Tel. 919/847-8800

Sprague Electric Company Suite 330 — 555 Metro Place North Dublin 43017 — 1375 Tel. 614/761-1881

OREGON

Sprague Electric Company 16111 S.E. McGillivray Boulevard Vancouver, WA 98664 - 9025 Tel. 503/225-0493 Tel. 206/892-0361

OREGON (continued)

William J. Purdy Company 7799 Southwest Cirrus Drive Beaverton 97005 — 5945 Tel. 503/641-9373

PENNSYLVANIA

Trinkle Sales Inc. P.O. Box 5320 Cherry Hill, NJ 08034 — 0460 Tel. Phila. 215/922-2080

SOUTH CAROLINA

Electronic Marketing Associates 210 W. Stone Ave. Greenville 29609 — 5499 Tel. 803/233-4637

TENNESSEE (Eastern)

Electronic Marketing Associates 9225 Honeycutt Creek Road Raleigh, NC 27609 - 1523 Tel. 919/847-8800

(Western)

ÈPI Inc. Suite 13 — 9694 Hwy. 20 W Madison, AL 35758 Tel. 205/461-7000

TEXAS

Sprague Electric Company Suite 220 9319 LBJ Freeway Dallas 75243 — 3403 Tel. 214/235-1256

Sprague Electric Company Suite 350W — 1106 Clayton Lane Austin 78723 — 1033 Tel. 512/458-2514

William J. Purdy Company 5570 E. Yale Avenue Denver, CO 80222 — 6907 Tel. 303/753-6800

VIRGINIA

Sprague Electric Company 1 East Preston St. Lexington 24450 — 2324 Tel. 703/463-9161

Sprague Electric Company Suite 311

14333 Laurel-Bowie Road Laurel, MD 20708 — 1130 Tel. 301/953-1717

Trinkle Sales Inc. P.O. Box 5320 Cherry Hill, NJ 08034 — 0460 Tel. 609/795-4200

WASHINGTON

Sprague Electric Company 3826 Woodland Park, North Seattle 98103 — 7996 Tel. 206/632-7761

Sprague Electric Company Suite H

16111 S.E. McGillivray Blvd. Vancouver 98664 Tel. 206/892-0361 Tel. 503/225-0493

William J. Purdy Company 4082-148th Ave. N.E. Redmond 98052 — 5165 Tel. 206/882-3144

WISCONSIN D. Dolin Sales 131 West Layton Ave. Milwaukee 53207 — 5991 Tel. 414/482-1111

CANADA

Sprague Electric of Canada, Ltd. Suite 220 2375 Steeles Avenue, W. Downsview, Ontario M3J 3A8 Tel. 416/665-6066

CANADA (continued)

Sprague Electric of Canada, Ltd. Suite 1610 — 85 Albert St. Ottawa, Ont. K1P 6A4

Lenbrook Electronics Suite No. 2 13696 104th Ave. Surrey, B.C. V3T1W4 Tel. 604/585-9599

EUROPE

Sprague World Trade Corp. 18 Avenue Louis Casai 1209-Geneva Switzerland Tel. 98-4021 TLX 845-23469

Sprague Benelux Excelsiorlaan 21 Bus 3 1930 Zaventem Belgium Tel. 02/721.48.60 TLX 62897

Sprague Electric (U.K.) Ltd. Airtech No. 2

Fleming Way
Crawley West Sussex RH 102 YQ
England
Tel. 011-44-293-51-78-78 TLX 877813

Sprague France S.A.R.L. 3 Rue Camille Desmoulins 9430 Cachan France

Tel. (1) 547-6600

TLX 250697 Sprague Elektronik GmbH Postfach 700 848 D-6 Frankfurt/M West Germany Tel. 069-60551 TLX 414008

Sprague Italiana S.p.A. Via G. DeCastro 4 20144 Milano

Italy Tel. 02-498-7891 TLX 332321 Sprague Scandinavia AB

Box 54 S-182 71 Stocksund Sweden Tel. (04.) 08-8502 20 TLX 854 15239

FAR EAST

Sprague World Trade Corp. Eastern Branch G.P.O. Box 4289 Hong Kong Tel. 0-283188 TLX 43395

Sprague Japan K.K. Shinjuku KB Bldg. 11-3, Nishi-Shinjuku 6-Chome Shinjuku-ku, Tokyo 160 Japan Tel. (03) 348-5221

Tecnomil Ltd. Sprague Korea Branch 4th Fl., Daiyoung Bldg., 44-1, Voido-Dong 44-1, Yoido-Dong Youngdungpo-Ku, Seoul, Korea Tel. (2) 783-9784 TLX 78726186

Sprague World Trade Corp.

Singapore Office 11th Floor, 450/452 Inchcape House Alexandra Road Singapore 0511 Tel. 475-1826 TLX RS 26384

Sprague Taiwan Branch/ Tecnomil, Ltd. 8/F, 142, Sec. 4 Chung Hsiao East Road Taipei, Taiwan, R.O.C. Tel. 771-9582 TLX 21422

In the construction of the components described, the full intent of the specification will be met. The Sprague Electric Company, however, reserves the right to make, from time to time, such departures from the detail specifications as may be from the detail specifications as may be required to permit improvements in the design of its products. Components made under military approvals will be in accordance with the approval requirements.

The information included herein is

The information included herein is believed to be accurate and reliable. However, the Sprague Electric Company assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use. from its use.

> 8217 8439