Bornes pour la taille de codes identifiants dans les graphes de degré maximum Δ

Florent Foucaud

travail réalisé avec Ralf Klasing, Adrian Kosowski, André Raspaud

Université Bordeaux 1

Novembre 2009

graphe simple non orienté : modélise un bâtiment

détecteurs : détectent la présence d'un feu dans leur voisinage fermé

but : localiser UN feu éventuel

	Ь	с	
a	•		
Ь	•	•	
С	•	•	
d		•	
е	•		
f	•	•	

détecteurs : détectent la présence d'un feu dans leur voisinage fermé

but : localiser UN feu éventuel

feu dans la pièce f

détecteurs : détectent la présence d'un feu dans leur voisinage fermé

but : localiser UN feu éventuel

feu dans la pièce f

les ensembles identifiants de tous les sommets doivent être distincts

	а	Ь	С	d
а	•	•		
Ь	•	•	•	
с		•	•	•
d			•	•
е		•		
f		•	•	

Code identifiant - définition

Définition : code identifiant d'un graphe G=(V,E) (Karpovsky et al. 1998 [10])

sous-ensemble C de V tel que :

- C est un ensemble dominant dans $G: \forall u \in V, \ N[u] \cap C \neq \emptyset$
- pour tous sommets distincts u, v de V, u et v ont des *ensembles* identifiants distincts : $N[u] \cap C \neq N[v] \cap C$

Code identifiant - définition

Définition : code identifiant d'un graphe G=(V,E) (Karpovsky et al. 1998 [10])

sous-ensemble C de V tel que :

- C est un ensemble dominant dans $G: \forall u \in V, \ N[u] \cap C \neq \emptyset$
- pour tous sommets distincts u, v de V, u et v ont des *ensembles identifiants* distincts : $N[u] \cap C \neq N[v] \cap C$

Remarque

Certains graphes n'admettent pas de code identifiant. Ceux qui en admettent sont dits *identifiables* (ou *sans jumeaux*).

Code identifiant - définition

Définition : code identifiant d'un graphe G=(V,E) (Karpovsky et al. 1998 [10])

sous-ensemble C de V tel que :

- C est un ensemble dominant dans $G: \forall u \in V, \ N[u] \cap C \neq \emptyset$
- pour tous sommets distincts u, v de V, u et v ont des *ensembles identifiants* distincts : $N[u] \cap C \neq N[v] \cap C$

Remarque

Certains graphes n'admettent pas de code identifiant. Ceux qui en admettent sont dits *identifiables* (ou *sans jumeaux*).

Notation

 $\gamma_{id}(G)$: cardinalité minimum d'un code identifiant d'un graphe G

Borne inférieure et degré max

Thm (Karpovsky et al. 98 [10])

Soit G un graphe identifiable à n sommets. Alors $\gamma_{id}(G) \geq \lceil \log_2(n+1) \rceil$.

Borne inférieure et degré max

Thm (Karpovsky et al. 98 [10])

Soit G un graphe identifiable à n sommets. Alors $\gamma_{id}(G) \geq \lceil \log_2(n+1) \rceil$.

Caractérisation

Les graphes atteignant cette borne ont été caractérisés (Moncel 06 [13])

Borne inférieure et degré max

Thm (Karpovsky et al. 98 [10])

Soit G un graphe identifiable à n sommets. Alors $\gamma_{id}(G) \geq \lceil \log_2(n+1) \rceil$.

Caractérisation

Les graphes atteignant cette borne ont été caractérisés (Moncel 06 [13])

Thm (Karpovsky et al. 98 [10])

Soit G un graphe identifiable à n sommets et degré maximum Δ . Alors $\gamma_{id}(G) \geq \frac{2n}{\Delta+2}$.

Graphes atteignant la borne inférieure

Caractérisation

- n sommets
- ensemble indépendant C de taille $\frac{2n}{\Delta+2}$ (code id.)
- ullet chaque sommet de C a exactement Δ voisins
- $\frac{\Delta n}{\Delta + 2}$ connectés à 2 sommets de C chacun

Graphes atteignant la borne inférieure - exemple

Graphes atteignant la borne inférieure - exemple

Graphes atteignant la borne inférieure - exemple

Borne supérieure générale

Thm (Gravier, Moncel 07 [9])

Soit G un graphe identifiable connexe à $n \ge 3$ sommets.

Alors $\gamma_{id}(G) \leq n-1$.

Borne supérieure générale

Thm (Gravier, Moncel 07 [9])

Soit G un graphe identifiable connexe à $n \ge 3$ sommets.

Alors $\gamma_{id}(G) \leq n-1$.

Thm (Gravier, Moncel 07 [9])

Pour tout $n \ge 3$, il existe des graphes identifiables à n sommets tels que $\gamma_{id}(G) = n - 1$.

Borne supérieure - exemple

Borne supérieure - exemple

Borne supérieure et degré maximum

Remarque

Tout ces graphes ont un degré maximum $\Delta(G)$ élevé : n-1 or n-2.

Résultat - cas général

Thm

Soit G un graphe connexe identifiable de degré maximum Δ .

Alors
$$\gamma_{id}(G) \leq n - \frac{n}{\Theta(\Delta^4)}$$
.

Si G est régulier, $\gamma_{id}(G) \leq n - \frac{n}{\Theta(\Delta^2)}$.

Résultat - cas général

Thm

Soit G un graphe connexe identifiable de degré maximum Δ .

Alors
$$\gamma_{id}(G) \leq n - \frac{n}{\Theta(\Delta^4)}$$
.

Si G est régulier, $\gamma_{id}(G) \leq n - \frac{n}{\Theta(\Delta^2)}$.

Idée de la preuve

- Construire un ensemble 4-indépendant (resp. 2-indépendent) S de taille $\frac{n}{\Theta(\Delta^4)}$ (resp. $\frac{n}{\Theta(\Delta^2)}$) : la distance entre 2 sommets de S est au moins 5 (resp. 3)
- prendre $C = V \setminus S$ comme code
- C doit être modifié localement

- ullet Prendre un graphe Δ -régulier H à m sommets
- ullet Remplacer chaque sommet de H par une clique de taille Δ

- Prendre un graphe Δ -régulier H à m sommets
- ullet Remplacer chaque sommet de H par une clique de taille Δ

Exemple: $H = K_4$

- ullet Prendre un graphe Δ -régulier H à m sommets
- ullet Remplacer chaque sommet de H par une clique de taille Δ

Exemple : $H = K_4$

- ullet Prendre un graphe Δ -régulier H à m sommets
- ullet Remplacer chaque sommet de H par une clique de taille Δ

Exemple: $H = K_4$

Pour chaque clique, au moins $\Delta-1$ sommets doivent être dans le code $\Rightarrow \gamma_{id}(G) \geq m \cdot (\Delta-1) = n - \frac{n}{\Delta}$

Grands codes identifiants dans des graphes sans triangles

Proposition

Soit $K_{m,m}$ le graphe biparti complet à n=2m sommets.

$$id(K_{m,m})=2m-2=n-\frac{n}{\Delta}.$$

Grands codes identifiants dans des graphes sans triangles

Proposition

Soit $K_{m,m}$ le graphe biparti complet à n=2m sommets. $id(K_{m,m})=2m-2=n-\frac{n}{\Delta}$.

Thm (Bertrand et al. 05)

Soit T_k^h l'arbre k-aire à h niveaux et n sommets.

$$id(T_k^h) = \left\lceil \frac{k^2 n}{k^2 + k + 1} \right\rceil = n - \frac{n}{\Delta - 1 + \frac{1}{\Delta}}.$$

Graphes sans triangles - un majorant

Thm

Soit G un graphe sans triangles identifiable et connexe, G, à n sommets et de degré maximum Δ .

Alors
$$\gamma_{id}(G) \leq n - \frac{n}{3\Delta + 3}$$
.

Si
$$G$$
 est régulier, $\gamma_{id}(G) \leq n - \frac{n}{2\Delta + 2}$.

Graphes sans triangles - un majorant

Thm

Soit G un graphe sans triangles identifiable et connexe, G, à n sommets et de degré maximum Δ .

Alors $\gamma_{id}(G) \leq n - \frac{n}{3\Delta + 3}$. Si G est régulier, $\gamma_{id}(G) \leq n - \frac{n}{2\Delta + 2}$.

Idée de la preuve

- ullet Construire un ensemble indépendant spécial $S: |S| \geq rac{n}{\Delta+1}$
- Prendre $C = V \setminus S$ comme code
- certains sommets peuvent ne pas être identifiés
- ullet modifier C localement : on peut borner le nombre de sommets à ajouter à C

Borne supérieure : conjecture

Conjecture

Soit G un graphe identifiable connexe de degré maximum Δ .

Alors $\gamma_{id}(G) \leq n - \frac{n}{\Delta}$.

Graphes de maille au moins 5

Thm

Soit G un graphe identifiable à n sommets, de degré minimum $\delta \geq 2$ de de maille $g \geq 5$.

Alors
$$\gamma_{id}(G) \leq \frac{7n}{8} + 1$$
.

Graphes de maille au moins 5

Thm

Soit G un graphe identifiable à n sommets, de degré minimum $\delta \geq 2$ de de maille $g \geq 5$.

Alors $\gamma_{id}(G) \leq \frac{7n}{8} + 1$.

Idée de la preuve

- ullet Construire un arbre couvrant en profondeur, \mathcal{T} , de \mathcal{G}
- Partitionner les sommets en 4 classes V_0, V_1, V_2, V_3 selon leur niveau dans T
- Prendre $C = V \setminus V_i$ comme code, $|V_i| \ge \frac{n}{4}$: $|V_i| \le \frac{3n}{4}$
- ullet C doit être modifié localement ; il faut ajouter $rac{n}{8}+1$ sommets dans le pire des cas

Résumé

	graphes arbitraires	graphes Δ-réguliers	
graphes arbitraires	$\left\langle n-\frac{n}{\Delta},\ n-\frac{n}{\Theta(\Delta^4)}\right\rangle$	$\left\langle n-\frac{n}{\Delta},\ n-\frac{n-1}{\Delta^2}\right\rangle$	
graphes sans triangles	$\left\langle n-\frac{n}{\Delta},\ n-\frac{n}{3\Delta+3}\right\rangle$	$\left\langle n-\frac{n}{\Delta},\ n-\frac{n}{2\Delta+2}\right\rangle$	

	degré minimum $\delta \geq 2$
graphes de maille au moins 5	$\left\langle \frac{3n}{5}, \frac{7n}{8} + 1 \right\rangle$

Bibliography I

Nathalie Bertrand, Irène Charon, Olivier Hudry, and Antoine Lobstein.

Identifying and locating-dominating codes on chains and cycles.

European Journal of Combinatorics, 25(7):969–987, 2004.

Nathalie Bertrand, Irène Charon, Olivier Hudry, and Antoine Lobstein.

1-identifying codes on trees.

Australasian Journal of Combinatorics, 31:21-35, 2005.

Irène Charon, Olivier Hudry, and Antoine Lobstein.

Minimizing the size of an identifying or locating-dominating code in a graph is NP-hard.

Theoretical Computer Science, 290(3):2109-2120, 2003.

Irène Charon, Olivier Hudry, and Antoine Lobstein.

Extremal cardinalities for identifying and locating-dominating codes in graphs.

Discrete Mathematics, 307(3-5):356-366, 2007.

Bibliography II

G. Cohen, I. Honkala, A. Lobstein, and G. Zémor.

On identifying codes.

volume 56 of *Proceedings of DIMACS Workshop on Codes and Association Schemes* '99, pages 97–109, 2001.

C. J. Colbourn, P. J. Slater, and L. K. Stewart.

Locating-dominating sets in series-parallel networks.

Congressus Numerantium, 56:135-162, 1987.

Florent Foucaud, Ralf Klasing, Adrian Kosowski, and André Raspaud.

Identifying codes and the maximum degree in triangle-free graphs. 2009

to be submitted.

Sylvain Gravier, Ralf Klasing, and Julien Moncel.

Hardness results and approximation algorithms for identifying codes and locating-dominating codes in graphs.

Algorithmic Operations Research, 3(1):43-50, 2008.

Bibliography III

Sylvain Gravier and Julien Moncel.

On graphs having a $V \setminus \{x\}$ set as an identifying code.

Discrete Mathematics, 307(3-5):432 - 434, 2007.

Algebraic and Topological Methods in Graph Theory.

Mark G. Karpovsky, Krishnendu Chakrabarty, and Lev B. Levitin.

On a new class of codes for identifying vertices in graphs.

IEEE Transactions on Information Theory, 44:599–611, 1998.

Julien Moncel.

Codes Identifiants dans les Graphes.

PhD thesis, Université Joseph Fourier – Grenoble I, 2005.

Julien Moncel.

Optimal graphs for identification of vertices in networks.

Les cahiers Leibniz, 138, 2005.

Bibliography IV

Julien Moncel.

On graphs on n vertices having an identifying code of cardinality $log_2(n+1)$. Discrete Applied Mathematics, 154(14):2032-2039, 2006.

P. J. Slater.

Domination and location in acyclic graphs.

Networks, 17(1):55-64, 1987.

P. J. Slater and D. F. Rall.

On location-domination numbers for certain classes of graphs.

Congressus Numerantium, 45:97-106, 1984.

Krishnaiyan Thulasiraman, Min Xu, Ying Xiao, and Xiao-Dong Hu.

Vertex identifying codes for fault isolation in communication networks.

Proceedings of the International Conference on Discrete Mathematics and Applications (ICDM 2006), Bangalore, 2006.