Ejercicio 2

Para un anillo R pruebe que:

- a) C(R) es un subanillo conmutativo de R.
- b) C(R) = C(R[op]).
- c) $R = R^{op}$ como anillos $\Leftrightarrow C(R) = R \Leftrightarrow R$ es conmutativo.

Demostración.

a) Sean $a, b \in C(R)$, por definición ax = xa y bx = xb $\forall x \in R$, entonces

$$(a - b)x = ax - (bx) = xa - (xb) = x(a - b).$$

Por lo tanto $a-c \in C(R)$. Ahora, abx=axb=xab, por lo que $a,b \in C(R)$ y en consecuencia $C(R) \leq R$.

b) Sea $*: R^{op} \times R^{op} \to R^{op}$ la operación de anillo en R^{op} . Así se tiene que

$$\begin{aligned} a \in C(R^{op}) &\Leftrightarrow & \forall x \in R \quad a*x = x*a \\ &\Leftrightarrow & \forall x \in R \quad xa = ax \\ &\Leftrightarrow & \forall x \in R \quad a \in C(R). \end{aligned}$$

- **c)** ·) \Rightarrow ··) Supongamos $R = R^{op}$ como anillos, entonces sus operaciones coincides, es decir, $\forall a \in R$ se tiene que $\forall x \in R$ ax = a * x = xa, entonces $R \subset C(R) \subset R$ por lo que R = C(R).
- $(\cdot) \Rightarrow (\cdot)$ Si R = C(R), entonces $\forall x, y \in R$ xy = yx, por lo que R es conmutativo.
- $(\cdot, \cdot) \Rightarrow (\cdot)$ Si R es conmutativo, entonces $\forall x, a \in R$ xa = ax = x * a, y como R y R^{op} coinciden como grupos abelianos, entonces $R = R^{op}$ como anillos.

Ejercicio 5

Para un anillo conmutativo K, pruebe que se tiene una biyección $\alpha: K-Alg \longrightarrow K_{AC}-Rings$, $(R,K,\varphi) \longmapsto \alpha_{\varphi}$, donde $\alpha_{\varphi}: K \times R \to R$ está dada por $\alpha_{\varphi}(k,r) := \varphi(k)r$; cuya inversa está dada por $\varphi_{\alpha} := \alpha(k,1_R)$.

Demostración.

Para evitar abusos de notación en la prueba se redefinirán las funciones de la siguiente forma. Sean $D=\{\varphi: (R,K,\varphi)\in K-Alg\}$ y

$$f: D \longrightarrow K_{AC} - Rings, \quad f(\varphi) = f_{\varphi}$$

donde $f_{\varphi}: K \times R \to R$ está dada por $f_{\varphi}(k,r) := \varphi(k)r$. Y definimos $f^{-1}: K_{AC} - Rings \longrightarrow D$ como $f^{-1}(\alpha) := f_{\alpha}^{-1}$, donde $\alpha: K \times R \to R$ y

$$f_{\alpha}^{-1}(k) := \alpha(k, 1_R) = K \cdot 1_R.$$

Entonces

$$((ff^{-1})(\alpha))(k,r) = (f(f_{\alpha}^{-1}))(k,r) = f_{\alpha}^{-1}(k)r = \alpha(k,1_R)r = \alpha(k,r)$$

у

$$\left((f^{-1}f)(\varphi)\right)(k) = \left(f^{-1}f_{\varphi}\right)(k) = f_{\varphi}(k, 1_R) = \varphi(k)1_R = \varphi(k).$$

Por lo que f es biyectiva con f^{-1} su inversa.

Ejercicio 8

Sea R un anillo, (M,+) un grupo abeliano y $\varphi: R \times M \to M$ una función. La acción opuesta $\varphi^{op}: M \times R^{op} \to M$, se define como sigue:

$$\varphi^{op}(m, r^{op}) := \varphi(r, m) \quad \forall r \in R, \ \forall m \in M.$$

Pruebe que

$$(_{R}M,\varphi) \in {_{R}Mod} \Leftrightarrow (M_{R^{op}},\varphi^{op}) \in Mod_{R^{op}}.$$

Demostración.

Recordando que $r_2^{op} r_1^{op} = (r_2 r_1)^{op}$, se tiene que:

$$(M_{R^{op}}, \varphi^{op}) \in Mod_{R^{op}}$$

 \Leftrightarrow

$$i) \varphi^{op}[(m_1 + m_2), r^{op}] = \varphi^{op}(m_1, r^{op}) + \varphi^{op}(m_2, r^{op})$$

$$ii) \varphi^{op}[m, (r_1^{op} + r_2^{op})] = \varphi^{op}(m, r_1^{op}) + \varphi^{op}(m, r_2^{op})$$

$$iii) \varphi^{op}(m, 1_R^{op}) = m$$

$$iv) \varphi^{op}(m, r_1^{op} r_2^{op}) = \varphi^{op}(\varphi^{op}(m, r_1^{op}), r_2^{op}).$$

 \Leftrightarrow

i)
$$\varphi[r, (m_1 + m_2)] = \varphi(r, m_1) + \varphi(r, m_2)$$

ii) $\varphi[(r_1 + r_2), m] = \varphi(r_1, m) + \varphi(r_2, m)$
iii) $\varphi(1_R, m) = m$
iv) $\varphi(r_2r_1, m) = \varphi(r_2, \varphi(r_1, m))$.

 \Leftrightarrow

$$(_{R}M,\varphi)\in {_{R}Mod}.$$

Ejercicio 11

Dado un morfismo de anillos $\varphi:R\to S$, construya la correspondencia análoga (a la de módulos) $F_\varphi:{}_SRep\longrightarrow{}_RRep$.

Demostración.

Sean $\varphi:R\to S$ un morfismo de anillos y $(\lambda,M)\in {}_SRep$ una representación a izquierda del anillo S. Se define la correspondencia **Cambio de anillos** $F_\varphi:{}_SRep\longrightarrow {}_RRep$. Como grupos abelianos, $F_\lambda(M):=M$ y la representación $R\to End^l_\mathbb{Z}(M),\quad (r)\longmapsto \lambda'(r),$ se define por $\lambda'(r):=\lambda(\varphi(r)).$ Cabe observar que, como λ y φ son morfismos de anillos entonces λ' es morfismo de anillos.