Want to incorporate knowledge that G & [0.25, 0.5, 0.75] with prior distribution

	P(0 = 0.25)	P(0 = 0.5)	P(0 = 0.75)	
Conductor:	٩	lop	P	Informative prim
friend	P	P	P	Non informative print

Used Bayes Rule to attain the posterior

$$R(\Theta|X) = \frac{P(X|\Theta)R(\Theta)}{P(X)}$$

$$R(X)$$

$$R(X)$$

$$R(X)$$

Under the noninformative prior

$$\mathbb{P}(\theta=.5|X) = \frac{\mathbb{P}(X|\theta=.5) \mathbb{P}(\Theta=.5)}{\mathbb{Z}_{+}^{2} \mathbb{P}(X|\Theta=+1)} \simeq 0.05$$

$$\mathbb{P}(\Theta=.5|X) = \frac{1}{100} \simeq 0.95$$

Under the informative prior year get much different results.

What is we know observe an extra coin flip? Say Y=1.

How would we update our beliefs?

$$P(\theta \mid x,y) = \frac{P(x,y \mid \theta) P(\theta)}{P(x,y)} = \frac{P(y \mid \theta,x) \cdot P(x \mid \theta) P(\theta)}{P(y \mid x) \cdot P(x \mid \theta)}$$

$$= \frac{P(y \mid \theta,x) P(\theta \mid x)}{P(y \mid x)}$$

$$\approx P(y \mid \theta) P(\theta \mid x)$$

Thorofore the posterior now playe the role of the prior distribution.

This is known as the sequential update.

$$\frac{\mathsf{E}_{\mathsf{X}:}}{\mathsf{P}(\mathsf{G}=\mathsf{.}\mathsf{F}|\mathsf{X},\mathsf{Y})} = \frac{\mathsf{P}(\mathsf{Y}=\mathsf{I}|\mathsf{G}=\mathsf{.}\mathsf{S})\;\mathsf{P}(\mathsf{G}=\mathsf{.}\mathsf{F}|\mathsf{X})}{\mathsf{P}(\mathsf{Y}=\mathsf{I}|\mathsf{G}=\mathsf{t})\;\mathsf{P}(\mathsf{G}=\mathsf{t}|\mathsf{X})} = \frac{(\mathsf{G}.\mathsf{S})(\mathsf{0}.\mathsf{0}\mathsf{S})}{\mathsf{Z}\;\mathsf{t}\;\mathsf{P}(\mathsf{G}=\mathsf{t}|\mathsf{X})}$$

Calculating the odds ratio

$$\frac{\mathbb{P}(\Theta=.75|X,V)}{\mathbb{P}(\Theta=.5|X,V)} = \frac{.15\mathbb{P}(\Theta=.75|X)}{.5\mathbb{P}(\Theta=.5|X)} \approx \frac{3}{2} \cdot (.96) \approx 1.44$$

Using this posterior for predictive inference of a new coinflip ?.

$$P(\bar{x}|X) = Z P(\bar{x}, \Theta|X) = Z P(\bar{x}|\Theta X) P(\Theta|X) = Z P(\bar{x}|\Theta) P(\Theta|X)$$

Posterior predictive distribution (probability)

$$\underline{\mathsf{E}_{\mathsf{X}}}: \underline{\mathsf{Z}} \ \mathsf{P}(\bar{\mathsf{x}}|\mathsf{G}=\mathsf{t}) \mathsf{P}(\mathsf{G}=\mathsf{t}|\mathsf{x}) = \underline{\mathsf{Z}} \ \mathsf{t} \ \mathsf{P}(\mathsf{G}=\mathsf{t}|\mathsf{x}) = \underline{\mathsf{E}}_{\mathsf{o}|\mathsf{x}} [\Theta]$$

Ex: Suppose $X_i, X_i = iid$ with $P(X_i = \theta - 1) = P(X_i = \theta + 1) = \frac{1}{2}$ We observe the sample $X = (X_i, X_i)$ and chooke the estimator

$$\hat{\Theta}(x) = \begin{cases} \frac{1}{2}(x,+x_2) & x_1 \neq x_2 \\ x_1 - 1 & x_2 = x_2 \end{cases}$$

7,	スト	Prob	_
0-1	6-1	VA	×
0-1	6+1	1/4	
0 +1	6-1	1/4	/
0+1	6+1	1/4	/

$$P(6(x)=6)=\frac{3}{4}$$

So by definition $\hat{G}(X)$ is a 75% confidence interval for Θ But if we know the data is different, then we should be 100% confident.

and similarly if they are thesame, in shall be 50% confident.

Rosk: Those estimators are conditional on the data.

Ex: X & { 1, 2,3 }

	١	2	3	
P(x16=0)	.605	. 005	. 99	_
R(x16=1)	.005	. 185	10.	

Test $H_0: G = 0$ $H_0: G = 1$ take $R = \{1, 2\}$ $= P(x \in R) = 0.01$

Suppose you observe X=1. Then we are confident that to is false

The LR $\frac{R(x=1|\theta=0)}{P(x=1|\theta=1)} = 1$ which hints there is no support for Ho.

Shald probably be a tiss-up.

The <u>Likelihood principle</u>: Making informices about parameters after observing data all relevent experimental information is found in the lithlihood function.

Ex: Under the cointessing example consider Ho: 6=1/2 Ha: 0>1/2

Suppose N= 12 and 9 are correct.

Cold hove observe X - Bm (= 12, 6), observe X=9

Also could have come from a negative binomial X - Neg Bin (r=3,0) (++)

 β^{x} (XIE) = $\binom{x}{b}$ Θ_{x} (I-E), = $\binom{1}{b-x}$ = $\binom{1}{a}$ Θ_{a} (I-E),

 $R_{xx}(x|\theta) = {r+x-1 \choose x} \theta^{x} (1-\theta)^{x} = {1 \choose 1} \theta^{9} (1-\theta)^{5}$

The nominal rejector region is R= {x79}

 $|P_{Vol}| = |P_{Vol}(x > 9|0 = 1/2) \approx 0.073$ $|P_{Vol}| = |P_{Vol}(x > 9|0 = 1/2) \approx 0.033$ $|P_{Vol}| = |P_{Vol}(x > 9|0 = 1/2) \approx 0.033$ $|P_{Vol}| = |P_{Vol}(x > 9|0 = 1/2) \approx 0.033$ $|P_{Vol}| = |P_{Vol}(x > 9|0 = 1/2) \approx 0.033$ $|P_{Vol}| = |P_{Vol}(x > 9|0 = 1/2) \approx 0.033$

Rmb: As P(OIX) ~ P(XIO) P(O) experimental info - still follows the litelihood principle