

INTELLIGENT SMOKE DETECTION SYSTEM WITH AI SENSOR FUSION

Group 10

Prepared By

S15089 - SANJANI WICKRAMASINGHE

S14982 - POORNIMA DISSANAYAKE

S14953 - BUDDHIMA SENARATHNA

S15006 - PASINDU SACHINTHA

Table of Content

List of figures	01
List of tables	01
1.0 Logistic Regression	02
2.0 Regularization Techniques	03
2.1 Logistic Regression with Ridge	03
2.2 Logistic Regression with Lasso	03
2.3 Logistic Regression with Elastic Net	03
3.0 Random Forest Classification	O۷
3.1 Feature Selection	
3.2 Model Interpretation	05
4.0 Best model Selection	06
Appendix	07

List of Figures

- Figure 1: Summary of the initial logistic regression model
- Figure 2: Summary of the logistic regression model after dropping insignificant variables
- Figure 3: Confusion Matrix of the logistic regression model
- Figure 4: Confusion Matrix of the Ridge model
- Figure 5: Confusion Matrix of the Lasso model
- Figure 6: Confusion Matrix of the Elastic Net model
- Figure 7: Variable Importance of the Random Forest model
- Figure 8: Confusion Matrix of the Random Forest model
- Figure 9: Summary plot of SHAP values
- Figure 10: Waterfall Plot of first test observation

List of tables

- Table 1:Evaluvation of Random Forest model
- Table 2:Evaluvation of Random Forest model after removing some features
- Table 3: Evaluvation of all models

1.0 LOGISTIC REGRESSION

Logistic Regression operates by modeling the probability of a binary outcome, providing a straightforward and comprehensible prediction. It showcases its versatility by effectively handling structured data and offering transparent insights into the significance of each feature.

-0.0091 -0.0085

0.6815 21.8232

0.0982

-5.9665

0.0922

5.4470 0.0085 0.9932 -10.6294 10.7224

1.2066 -6.9048 0.0000 -10.6963

44.6279 10.4021 4.2903 0.0000 24.2401 65.0157 -76.5978 14.0428 -5.4546 0.0000 -104.1213 -49.0744

Summary of the initial logistic regression model is as follows.

Optimization terminated successfully.

Current function value: 0.269558

Iterations 11

Results: Logit

0.0952

11.2523

0.0465

-8.3314

Raw Ethanol

PM1.0

PM2.5

NCO.5

NC1.0

Pressure[hPa]

Results: Logic								
Model:		Logit		Method:		MLE		
Dependent Varia	ble:	Fire Alarm		Pseudo R-squared:		0.549		
Date:		2023-09-16 11:44		AIC:		27035.8892		
No. Observation	s:	50104		BIC:		27141.7514		
Df Model:		11		Log-Likelihood:		-13506.		
Df Residuals:		50092		LL-Null:		-29942.		
Converged:		1.0000		LLR p-value:		0.0000		
No. Iterations:		11.0000		Scale:		1.0000		
	coef.	Std.Err.	Z	P> Z	[0.025	0.975]		
Temperature[C]	-0.047	5 0.0015	-32.12	201 0.00	00 -0.050	0.0446		
Humidity[%]	-0.021	8 0.0024	-9.06	0.00	00 -0.026	55 -0.0171		
TVOC[ppb]	-0.001	4 0.0000	-38.55	551 0.00	00.001	15 -0.0013		
eCO2[ppm]	0.002	0.0001	29.22	232 0.00	0.001	19 0.0021		
Raw H2	0.006	7 0.0002	36.12	211 0.00	0.006	0.0071		

Figure 1: Summary of the initial logistic regression model

-0.0088 0.0001 -59.9153 0.0000

0.0015 61.7024 0.0000

5.3934 2.0863 0.0369

The R2 value of the new model is the same as the previous model. It suggests that those variables were indeed not contributing significantly to the model's predictive power. But the accuracy of the test set is 0.89. The performance of logistic regression, in terms of accuracy, depends on the degree of linear separability in the dataset. In the previous analysis, we discovered that our dataset may not be linearly separated.

An R-squared (R2) value of 0.549 which is relatively good indicates that approximately 55% of the variance in the dependent variable has been explained by the logistic model. But there are some insignificant variables (at 5% level) present in the model and a new logistic model will be fitted by dropping these variables.

Optimization terminated successfully.

Current function value: 0.269558

Iterations 11

Results: Logit

Model:	Logit	Method:	MLE
Dependent Variable:	Fire Alarm	Pseudo R-squared:	0.549
Date:	2023-09-16 11:44	AIC:	27033.8892
No. Observations:	50104	BIC:	27130.9296
Df Model:	10	Log-Likelihood:	-13506.
Df Residuals:	50093	LL-Null:	-29942.
Converged:	1.0000	LLR p-value:	0.0000
No. Iterations:	11.0000	Scale:	1.0000

Temperature[C] -0.0475		Coef.	Std.Err.	Z	P> Z	[0.025	0.975]
Humidity[%] -0.0218 0.0024 -9.0007 0.0000 -0.0265 -0.0171 TVOC[ppb] -0.0014 0.0000 -38.5551 0.0000 -0.0015 -0.0013 eCCO2[ppm] 0.0020 0.0001 29.2238 0.0000 0.0019 0.0021 Raw H2 0.0067 0.0002 36.1218 0.0000 0.0064 0.0071 Raw Ethanol -0.0088 0.0001 -59.9154 0.0000 -0.0091 -0.0085 Pressure[hPa] 0.0952 0.0015 61.7034 0.0000 0.0922 0.0982 PM1.0 11.2538 5.3902 2.0878 0.0368 0.6892 21.8185 NC0.5 -8.3310 1.2054 -6.9115 0.0000 -10.6935 -5.9685 NC1.0 44.6692 9.2040 4.8532 0.0000 26.6297 62.7087							
TVOC[ppb] -0.0014 0.0000 -38.5551 0.0000 -0.0015 -0.0013 eCO2[ppm] 0.0020 0.0001 29.2238 0.0000 0.0019 0.0021 Raw H2 0.0067 0.0002 36.1218 0.0000 -0.0064 0.0071 Raw Ethanol -0.0088 0.0001 -59.9154 0.0000 -0.0091 -0.0085 Pressure[hPa] 0.0952 0.0015 61.7034 0.0000 0.0922 0.0982 PM1.0 11.2538 5.3902 2.0878 0.0368 0.6892 21.8185 NC0.5 -8.3310 1.2054 -6.9115 0.0000 -10.6935 -5.9685 NC1.0 44.6692 9.2040 4.8532 0.0000 26.6297 62.7087			0.0015	-32.1202	0.0000		
eCO2[ppm] 0.0020 0.0001 29.2238 0.0000 0.0019 0.0021 Raw H2 0.0067 0.0002 36.1218 0.0000 0.0064 0.0071 Raw Ethanol -0.0088 0.0001 -59.9154 0.0000 -0.0091 -0.0085 Pressure[hPa] 0.0952 0.0015 61.7034 0.0000 0.0922 0.0982 PM1.0 11.2538 5.3902 2.0878 0.0368 0.6892 21.8185 NC0.5 -8.3310 1.2054 -6.9115 0.0000 -10.6935 -5.9685 NC1.0 44.6692 9.2040 4.8532 0.0000 26.6297 62.7087		-0.0218	0.0024	-9.0007	0.0000	-0.0265	-0.0171
Raw H2 0.0067 0.0002 36.1218 0.0000 0.0064 0.0071 Raw Ethanol -0.0088 0.0001 -59.9154 0.0000 -0.0091 -0.0085 Pressure[hPa] 0.0952 0.0015 61.7034 0.0000 0.0922 0.0982 PM1.0 11.2538 5.3902 2.0878 0.0368 0.6892 21.8185 NC0.5 -8.3310 1.2054 -6.9115 0.0000 -10.6935 -5.9685 NC1.0 44.6692 9.2040 4.8532 0.0000 26.6297 62.7087	TVOC[ppb]	-0.0014	0.0000	-38.5551	0.0000	-0.0015	-0.0013
Raw Ethanol -0.0088 0.0001 -59.9154 0.0000 -0.0091 -0.0085 Pressure[hPa] 0.0952 0.0015 61.7034 0.0000 0.0922 0.0982 PM1.0 11.2538 5.3902 2.0878 0.0368 0.6892 21.8185 NC0.5 -8.3310 1.2054 -6.9115 0.0000 -10.6935 -5.9685 NC1.0 44.6692 9.2040 4.8532 0.0000 26.6297 62.7087	eCO2[ppm]	0.0020	0.0001	29.2238	0.0000	0.0019	0.0021
Pressure[hPa] 0.0952 0.0015 61.7034 0.0000 0.0922 0.0982 PM1.0 11.2538 5.3902 2.0878 0.0368 0.6892 21.8185 NC0.5 -8.3310 1.2054 -6.9115 0.0000 -10.6935 -5.9685 NC1.0 44.6692 9.2040 4.8532 0.0000 26.6297 62.7087	Raw H2	0.0067	0.0002	36.1218	0.0000	0.0064	0.0071
PM1.0 11.2538 5.3902 2.0878 0.0368 0.6892 21.8185 NC0.5 -8.3310 1.2054 -6.9115 0.0000 -10.6935 -5.9685 NC1.0 44.6692 9.2040 4.8532 0.0000 26.6297 62.7087		-0.0088	0.0001	-59.9154	0.0000	-0.0091	-0.0085
NC0.5 -8.3310 1.2054 -6.9115 0.0000 -10.6935 -5.9685 NC1.0 44.6692 9.2040 4.8532 0.0000 26.6297 62.7087	Pressure[hPa]	0.0952	0.0015	61.7034	0.0000	0.0922	0.0982
NC1.0 44.6692 9.2040 4.8532 0.0000 26.6297 62.7087	PM1.0	11.2538	5.3902	2.0878	0.0368	0.6892	21.8185
	NC0.5	-8.3310	1.2054	-6.9115	0.0000	-10.6935	-5.9685
NC2.5 -76.5999 14.0348 -5.4579 0.0000 -104.1076 -49.0923	NC1.0	44.6692	9.2040	4.8532	0.0000	26.6297	62.7087
	NC2.5	-76.5999	14.0348	-5.4579	0.0000	-104.1076	-49.0923

Figure 2: Summary of the logistic regression model after dropping insignificant variables

- 8000 - 7000 - 6000 - 5000 - 4000 - 3000 - 2000 - 1000 - 1000

As the accuracy of the model is not quite high, further improved models will be fitted.

Figure 3: Confusion Matrix of the logistic regression model

2.0 LOGISTIC REGRESSION WITH REGULARIZATION TECHNIQUES

Logistic Regression with Regularization techniques (Ridge, Lasso, Elastic Net) was applied to the dataset to enhance the predictive performance and manage the influence of features. These techniques add penalties to the logistic regression model to prevent overfitting and improve generalization.

2.1 Logistic Regression with Ridge:

Ridge Regression introduces L2 regularization to the logistic regression model. Some of the feature coefficients of the Ridge Regression model for this dataset were reduced to exactly zero. (PM values and NC Values).

The model achieved an accuracy of 0.88 on the test dataset. The Confusion matrix for the Ridge is attached here. It helps to understand how well our model is distinguishing between the classes it's trying to predict

2.2 Logistic Regression with Lasso:

In Lasso Regression also some of the feature coefficients were reduced to exactly zero, effectively performing feature selection. The non-zero coefficients were as follows:

TVOC[ppb]: -0.0014eCO2[ppm]: 0.0020Raw H2: 0.0069

• Raw Ethanol: -0.0088

Other coefficients for the remaining features were reduced to exactly zero. The Lasso Regression model also achieved an accuracy of 0.88 on the test dataset. Similar to Ridge, it provided precision, recall, and F1-score metrics for different classes. Lasso also showed variations in precision and recall

2.3 Logistic Regression with ElasticNet :

Elastic Net Regression combines the strengths of both Ridge and Lasso by adding both L1 and L2 penalties to the loss function. In this model, some coefficients were reduced to zero, similar to Lasso.

The Elastic Net Regression model achieved an accuracy of 0.88 on the test dataset, the same as Ridge and Lasso. To understand how well our model is distinguishing between the classes it's trying to predict, here shows the confusion matrix for the Elastic Net model as well.

Confusion Matrix - Ridge Logistic Regression

Figure 4: Confusion Matrix of the Ridge model

Confusion Matrix - Lasso Logistic Regression

Figure 5: Confusion Matrix of the Lasso model

Confusion Matrix - Elastic Net Logistic Regression

Figure 6: Confusion Matrix of the Elastic Net model

3.0 RANDOM FOREST

Random Forest is an ensemble learning technique that combines the predictive power of multiple decision trees. It excelled in achieving high accuracy while effectively mitigating overfitting, making it a robust choice for our task. The Random Forest model demonstrated its versatility, effectively handling structured data and providing insights into feature importance. Furthermore, its ability to capture complex relationships within the data proved invaluable for our predictive objectives.

First, a random forest classifier was implemented for the whole training dataset and the results are as follows. (Red values represents the test data)

Class	Precision	Recall	F1-score	
0	1.0	1.0	1.0	
	1.0	1.0	1.0	
1	1.0	1.0	1.0	
	1.0	1.0	1.0	

As we can observe, all the observations in both the training and testing datasets were correctly classified. This model has used all twelve predictor variables.

Table 1:Evaluvation of Random Forest model

3.1 Feature Selection

Figure 7: Variable Importance of the Random Forest model

When considering the feature importance graph of the random forest classifier model, it suggests that the TVOC, pressure, raw ethanol and humidity are the top four features that are contributing the most to the model's predictions. This suggests that these features have the highest importance or influence in determining whether a certain outcome or class is predicted by the model.

Therefore, a new random forest model will be fitted using these four features and the results of the new model are as follows

Class	Precision	Recall	F1-score	
0	1.0 1.0	1.0 0.9994	1.0 0.9997	
1	1.0	1.0 1.0	1.0 0.9999	

Table 2:Evaluvation of Random Forest model after removing some features

Figure 8: Confusion Matrix of the Random Forest model

The accuracy of the test dataset of the new model is 0.99984 which is quite a high accuracy. As the new model is simpler and provides similar or slightly lower accuracy compared to a more complex model, it may be a better choice due to its interpretability. Therefore, this parsimonious model will be used for further analysis.

Page 04

3.2 Model Interpretation

The SHAP (SHapley Additive exPlanations) summary plot with a violin plot type is a visualization that helps to interpret the contributions of different features to individual predictions made by the model. It provides insights into how each feature influences model predictions across the dataset.

When considering the pressure variable, Instances with low pressure values are associated with an increased probability of being classified as 1. In other words, when pressure levels are low, the model is more likely to predict the presence of a fire alarm. Additionally, higher humidity levels also have increased probability of being classified as 1.

This figure plot provides a visual representation of how different features contribute to the predicted value or output for the first instance in the test dataset. It's true class is 1.

Now E[f(x)] = 0.715 gives the average predicted log odds across all observations in the test data. That is the log odds of a positive (1) prediction.

Figure 10: Waterfall Plot of first test observation

For this specific observation, the model predicted a probability of 1 that it belongs to class 1. The SHAP values give the difference between the predicted log odds and the average predicted log odds. Positive SHAP values increase the log odds. For example, raw ethanol level of 20128 increased the log odds by 0.21. In other words, this feature has increased the probability that the model will predict class 1. Similarly, negative values decrease the log odds.

4.0 BEST MODEL SELECTION

In our pursuit of finding the most effective model for our classification task, we will conduct a thorough assessment using various metrics and ROC curves of the test dataset. These metrics include accuracy, precision, recall, F1-score, and the confusion matrix, each offering a unique perspective on the model's performance. Additionally, the ROC curves will provide visual representations of how well the models differentiate between positive and negative cases at different classification thresholds. Our model selection process will consider a combination of these factors to ensure that the chosen model not only excels in accuracy but also aligns with the specific requirements of our application, ensuring its reliability and effectiveness.

Model	Model Accuracy		Precision 0 1		Recall 0 1		F1-score	
		0		Ů.	1	0	<u> </u>	
Logistic Regression	0.89	0.94	0.87	0.65	0.98	0.77	0.93	
Logistic Regression with Ridge	0.87	0.93	0.86	0.58	0.98	0.72	0.91	
Logistic Regression with Lasso	0.86	0.93	0.84	0.54	0.98	0.68	0.91	
Logistic Regression with ElasticNet	0.86	0.93	0.84	0.54	0.98	0.68	0.91	
Random Forest	0.9998	1.0	0.99	0.99	1.0	0.99	0.99	

Table 3: Evaluvation of all models

Figure 11: ROC Curve of Logistic Regression

Figure 12: ROC Curve of Logistic Regression with Ridge

Figure 13: ROC Curve of Logistic Regression with Lasso

Figure 14: ROC Curve of Logistic Regression with Elastic Net

Figure 15: ROC Curve of Random Forest

We will select the Random Forest model as our final classification model due to its outstanding performance across various critical metrics. This choice is substantiated by its highest accuracy rate compared to other models, alongside excellent precision, recall, and F1-score values. The ROC curve, a pivotal indicator of model effectiveness, also illustrates the model's proficiency in distinguishing between positive and negative cases. This strong overall performance, especially in the ROC curve, solidified our decision to employ the Random Forest model as the cornerstone of our predictive solution, ensuring we meet and exceed our project objectives. Hence, a random forest model with the same parameters will be fitted to the whole dataset obtained by combining the training and testing dataset and will be used as the final model. This final model will be used for further predictions.

Appendix: Python Codes for Advanced analysis on Smoke Detection