LR-анализаторы и LR-алгоритм разбора. Алексей Сорокин

1 Алгоритм перенос-свёртка

Простейшим восходящим алгоритмом синтаксического анализа является алгоритм "перенос-свёртка". Он осуществляется с помощью МП-автомата и может быть применён к произвольной контекстно-свободной грамматике $G = \langle \Sigma, N, P, S \rangle$. В этом случае требуемый автомат имеет вид $M = \langle \{q_0, q_1\}, \Sigma, N \cup \Sigma, \Delta, q_0, \{q_1\} \rangle$, где множество переходов задаётся равенством $\Delta = \{\langle q_0, S, \varepsilon \rangle \to \langle q_1, \varepsilon \rangle\} \cup \{\langle q_0, a, \varepsilon \rangle \to \langle q_0, a \rangle \mid a \in \Sigma\} \cup \{\langle q_0, \varepsilon, \alpha \rangle \to \langle q_0, A \rangle \mid (A \to \alpha) \in P\}$. Тогда нетрудно проверить равносильность $\langle q_0, u, \varepsilon \rangle \vdash \langle q_0, \varepsilon, \alpha \rangle \Leftrightarrow \alpha \vdash_G u$, откуда вытекает корректность разбора, осуществляемого построенным МП-автоматом. Однако недостатком данного автомата является его недетерминированность, так что для реализации детерминированного алгоритма разбора необходимо хранить все ветки вычислений, что приводит к экспоненциальным временным и пространственным затратам. Возможным способом устранения неоднозначности является сохранение вспомогательной информации с помощью состояний анализатора и предпросмотр следующего входного символа, что и реализовано в LR-алгоритме.

2 Множества LR-ситуаций и операции над ними

Мы будем придерживаться следующих обозначений: буквы алфавита обозначаются малыми латинскими буквами a,b,c, нетерминалы обозначаются большими буквами A,B,C,\ldots , слова над алфавитом Σ обозначаются буквами u,v,w,\ldots , а слова из терминалов и нетерминалов — греческими буквами $\alpha,\beta,\gamma,\ldots$, возможно, с нижними индексами.

Определение 1. $\alpha = \alpha_1 \beta_1 \in (\Sigma \cup N)^*$ называется активным префиксом для грамматики G, если выполняется условие $S \vdash_{G,r} \alpha_1 Bu \vdash_G^1 \alpha_1 \beta_1 \beta_2 u$.

Можно заметить, что при успешном разборе по методу "перенос-свёртка" в стеке в любой момент времени содержится некоторый активный префикс. Также нетрудно доказать, что всякое начало активного префикса также является активным префиксом.

Пусть $\$ \notin \Sigma$, обозначим $\Sigma_\$ = \Sigma \cup \{\$\}$, \$ будет служить обозначением завершения слова.

Определение 2. Пусть $\alpha \in (\Sigma \cup N)^*$, обозначим

$$E_{\alpha} = \begin{cases} \{\$\}, & \alpha \vdash \varepsilon; \\ \varnothing, & uhave. \end{cases}$$

Введём функцию First(·): $(\Sigma \cup N)^* \to \mathcal{B}(\Sigma_\$)$, положив First $(\alpha) = E_\alpha \cup \{a \mid \exists \beta \in (\Sigma \cup N)^*(\alpha \vdash_G a\beta).$

Определение 3. Назовём LR-ситуацией объект вида $\langle A \to \alpha_1 \cdot \alpha_2, a \rangle$, где $(A \to \alpha_1 \alpha_2) \in P, \forall (N \cup \Sigma), a \in \Sigma_{\$}$.

Определение 4. Пусть I — произвольное множество LR-ситуацией, его замыканием будем называть наименьшее множество J, такое что:

- 1. $I \subset J$,
- 2. Если $(B \to \gamma) \in P$ и $\langle A \to \alpha_1 \cdot B\alpha_2, a \rangle \in J$, то $\langle B \to \gamma, c \rangle \in J$ для всех $c \in \operatorname{First}(\alpha_2 a)$.

Замыкание множества I обозначается через CLOSURE(I). Если $B \in N$, то через GOTO(I,B) будем обозначать множество CLOSURE $(\{\langle A \to \alpha_1 B \cdot \alpha_2, a \rangle \mid \langle A \to \alpha_1 \cdot B \alpha_2, u \rangle \in I\})$

В дальнейшем будем считать, что грамматика G содержит дополнительное правило $S' \to S$, причём нетерминал S' является стартовым и не входит в другие правила грамматики. Также в дальнейшем везде рассматриваются только правосторонние выводы в грамматике G, так что мы будем опускать нижние индексы при обозначении выводимости.

Определение 5. LR-ситуацию $\langle A \to \beta_1 \cdot \beta_2, a \rangle$ будем называть допустимой для активного префикса $\alpha\beta_1$, если выполняется условие $S' \vdash \alpha Au \vdash^1 \alpha\beta_1\beta_2 u$, $a \in \text{First}(u)$. Это множество будем обозначать через $Adm(\alpha\beta_1)$.

Лемма 1. Если $I \subseteq Adm(\alpha)$, то также и CLOSURE $(I) \subseteq Adm(\alpha)$.

Доказательство. По определению операции замыкания и допустимой ситуации. \Box

Теорема 1. Пусть $X_1 ... X_k - a \kappa m u$ вный префикс, k > 0, тогда выполняется условие $Adm(X_1 ... X_k) = \text{GOTO}(Adm(X_1 ... X_{k-1}), X_k)$.

Доказательство. \supseteq В силу леммы 1 достаточно доказать, что если $\langle A \to \alpha_1 \cdot X_k \alpha_2, a \rangle$ — допустимая ситуация для $X_1 \dots X_{k-1}$, то $\langle A \to \alpha_1 X_k \cdot \alpha_2, a \rangle$ будет допустимой ситуацией для $X_1 \dots X_{k-1} X_k$. Но это очевидным образом следует из определения.

 \subseteq Пусть $\langle A \to \beta_1 \cdot \beta_2, a \rangle \in Adm(X_1 \dots X_k)$, докажем что $\langle A \to \beta_1 \cdot \beta_2, a \rangle \in$ GOTO $(Adm(X_1 \dots X_{k-1}), X_k)$. Условие означает, что существует вывод $S' \vdash X_1 \dots X_j A \gamma \vdash^1 X_1 \dots X_j (X_{j+1} \dots X_k) \beta_2 \gamma$, причём $\beta_1 = X_{j+1} \dots X_k$ и $a \in \mathrm{First}(\gamma)$. Обозначим через d длину соответствующего вывода, также будем до конца доказательства обозначать $X_{m,n} = X_m \dots X_n$.

Пусть вначале j < k, тогда по определению получаем, что $\langle B \to X_{j+1,k-1} \cdot X_k \beta_2, a \rangle \in Adm(X_1 \dots X_{k-1})$, что влечёт $\langle B \to X_{j+1,k} \cdot \beta_2, a \rangle \in GOTO(Adm(X_{1,k-1}), X_k)$, что и требовалось. Теперь пусть j = k, в этом случае применим индукцию по d. Вывод представим в виде: $S' \vdash X_1, iB\gamma_2 \vdash^1 X_1, iX_{i+1,k}A\beta_1'\gamma_2 \vdash X_1, iX_{i+1,k}A\gamma_1\gamma_2$, причём $a \in First(\gamma_1\gamma_2)$. Заметим, что для всякого $a \in First(\gamma_1\gamma_2) \subseteq First(\beta_1\gamma_2)$ найдётся $b \in First(\gamma_2)$, такой что $a \in First(\beta_1b)$. Зафиксируем данный символ b.

По определению имеем, что $\langle B \to X_{i+1,k} \cdot A\beta_1', b \rangle \in Adm(X_{1,k})$, по предположению индукции получаем, что $\langle B \to X_{i+1,k} \cdot A\beta_1', b \rangle \in \text{GOTO}(Adm(X_{1,k-1}), X_k)$. По определению операции замыкания получаем $\langle A \to \beta_2, a \rangle \in \text{CLOSURE}(\{\langle B \to X_{i+1,k} \cdot A\beta_1', b \rangle\})$, что в силу замкнутости результата операции GOTO даёт требуемое утверждение. Лемма доказана.

3 Алгоритм анализа по LR-таблице

LR-алгоритм представляет собой модификацию наивного алгоритма "перенос-свёртка", позволяющую учитывать информацию об уже прочитанном префиксе и следующей букве во входном потоке для принятия решения. Как и ранее, в стеке хранится некоторый активный префикс, из которого выводится прочитанное начало слова, однако теперь входящие в префикс буквы чередуются с состояниями, в которых находился анализатор после прочтения данного префикса. В общем виде стек имеет вид $q_0A_0q_1A_1\ldots q_r$, причём q_0 — стартовое состояние, в самом начале помещаемое в стек и всегда находящееся на его дне. На каждом шаге алгоритма в зависимости от текущего состояния на вершине стека и следующего символа входного потока принимается решение о переносе, свёртке, а также принятии слова или отказе, означающем, что никакой непрочитанный суффикс не приведёт к слову, принимаемому анализатором.

Решение принимается на основе LR-таблицы, состоящей из 2 частей — Action и Goto. Строки LR-таблицы помечены состояниями анализатора, столбцы подтаблицы Action помечены элементами множества $\Sigma_{\$}$, а подтаблицы Goto — элементами множества N.

В каждой ячейке Action(k,l) таблицы содержится ровно один из следующих элементов:

- $shift_j$, где j номер состояния.
- $reduce_i$, где i номер правила.
- accept, при этом соответствующий столбец помечен символом \$.
- reject.

В каждой ячейке Goto(k,l) таблицы содержится ровно один из следующих элементов:

- $shift_j$, где j номер состояния.
- reject.

Пусть функции Left(i) и Right(i) возвращают левую и правую части правила с номером i, тогда LR-алгоритм можно описать следующим псевдокодом:

Алгоритм 1 LR-алгоритм синтаксического разбора.

Вход: LR-таблица T, соответствующая контекстно-свободной грамматике G, слово $w\$,\ w\in\Sigma^*.$

Выход: True, если $w \in L(G)$, False, иначе.

- 1: ⊳ Инициализация:
- 2: LRStack \leftarrow Stack()

⊳ Создаём пустой стек.

- 3: LRStack.push(q_0)
- 4: $pos \leftarrow 0$

```
5: ⊳ Шаг алгоритма
6: while pos < |w| + 1 do
       a \leftarrow w[pos] \triangleright предпросмотр следующего символа без сдвига текущей позиции
7:
8:
       q \leftarrow \text{LRStack.top}()
9:
       switch Action(q, a) do
           case shift_i
10:
               LRStack.push(a)
11:
               pos + = 1
12:
                                             ⊳ мы отождествляем состояния и их номера
               LRStack.push(j)
13:
14:
           case reduce_i
               for i = 0, \ldots, 2|Right(i)| - 1 do удаляем 2|Right(i)| верхних символов
15:
                   LRStack.pop()
16:
               end for
17:
               q_{new} \leftarrow \text{LRStack.top}()
18:
               A \leftarrow Left(i)
19:
20:
               if Goto(q_{new}, A) == shift_i then
21:
                   LRStack.push(A)
22:
                   LRStack.push(j)
               else
23:
                   returnFalse
24:
25:
               end if
           case accept
26:
27:
               return True
28:
           case reject
29:
               return False
30: end while
```

4 Построение LR-таблицы

В этом разделе мы построим определённую в предыдущем разделе LR-таблицу для достаточно широкого класса грамматик (для которых такое построение осуществимо). Состояниями LR-анализатора будут замкнутые множества LR-ситуаций. Заметим, что таких множеств конечное число (хотя уже для небольших грамматик оно может быть довольно велико).

Обозначим через q_0 стартовую ситуацию, равную CLOSURE($\langle S' \to \cdot S, \$ \rangle$). Через Clos(G) обозначим множество всех замкнутых множеств ситуаций, достижимых из стартовой с помощью некоторого количества применений операции GOTO.

LR-таблица строится по следующему алгоритму (через Q обозначены состояния LR-анализатора, будем считать, что в ячейках таблицы хранятся множества возможных операций, при этом при корректном завершении алгоритма каждое множество будем одноэлементным):

```
Алгоритм 2 Алгоритм построения LR-таблицы. Вход: контекстно-свободная грамматика G = \langle \Sigma, N, P, S' \rangle. Выход: LR-таблица, соответствующая грамматике G, если
```

```
Выход: LR-таблица, соответствующая грамматике G, если её построение возможно,
    False иначе.
    ⊳ Инициализация:
    Q \leftarrow Clos(G)
    for q \in Q do
        for A \in N do
            Goto(q, A) = \emptyset
        end for
        for a \in \Sigma_{\$} do
            Action(q, a) = \emptyset
        end for
    end forЗаполнение таблицы:
    for q \in Q do
        for a \in \Sigma do
            if \langle A \to \beta_1 \cdot a\beta_2, b \rangle \in q then
                if GOTO(q, a) = q_i then
                    Action(q, a).add(shift_i)
                end if
            end if
            if \langle A \to \beta \cdot, a \rangle \in q then
                if (A \to \beta) - i-ое правило грамматики then
                    Action(q, a).add(reduce_i)
                end if
            end if
            if \langle S' \to S \cdot, \$ \rangle \in q then
                Action(q, a).add(accept)
            end if
            if |Action(q, a)| == 0 then
                                                                  ⊳ ничего не смогли добавить
                Action(q, a).add(reject)
            end if
        end for
        for A \in N do
            if GOTO(q, A) == q_i then
                Goto(q, A) = j
            else
                                                                  \triangleright \text{GOTO}(q, A) не определено
                Goto(q, A) = reject
            end if
        end for
    end for
    ⊳ Проверка корректности
    for q \in Q do
        for a \in \Sigma_{\$} do
            if |Action(q, a)| > 1 then
                return False;
            end if
                                                 5
        end for
    end for
```

Определение 6. LR-грамматикой будет называть такую контекстно-свободную грамматику, для которой алгоритм 2 успешно завершает работу.

Напомним, что q_0 обозначает стартовое состояние LR-анализатора. Разрешим второму аргументу функции GOTO быть последовательностью символов, в этом случае необходимо последовательно брать в качестве второго аргумента очередной символ последовательности, а в качестве первого — результат предыдущего шага (в самом начале он равен первому аргументу функции).

Лемма 2. $q_0 = Adm(\varepsilon)$.

Доказательство. Включение слева направо следует из леммы 1, докажем обратное включение. Пусть $\langle A \to \cdot \alpha, a \rangle \in Adm(\varepsilon)$, это означает, что $S' \vdash A\gamma \vdash^1 \alpha\gamma$, причём $a \in \operatorname{First}(\alpha)$. Проведём доказательство индукцией по длине этого вывода. База индукции: вывод имеет длину 1, то есть A = S', $\gamma = \varepsilon$, $\alpha = S$, a = \$, тогда по определению требуемая ситуация $\langle S' \to \cdot S, \$ \rangle$ принадлежит q_0 . Докажем шаг индукции, для чего выделим в выводе шаг, на котором появилась $A: S' \vdash B\gamma_2 \vdash^1 A\beta_2\gamma_2 \vdash A\gamma_1\gamma_2 \vdash \alpha\gamma_1\gamma_2$. По предположению индукции имеем $\langle B \to \cdot A\beta_2, b \rangle \in q_0$ для всех $b \in \operatorname{First}(\gamma_2)$. Но тогда $\langle A \to \cdot \alpha, a \rangle \in \operatorname{First}(\beta_2\gamma_2)$, то есть и для $a \in \operatorname{First}(\gamma_1\gamma_2)$, что и требовалось. Лемма доказана.

Лемма 3. Если во время работы LR-анализатора, построенного по алгоритму 2 в стеке находится некоторая последовательность $q_0X_1q_1...X_kq_k$, то для всех $i \leq k$ верно, что $q_i = Adm(X_1...X_i)$.

Доказательство. Докажем индукцией по числу шагов LR-анализатора. В самом начале k=0 и по лемме 2 имеем $q_0=Adm(\varepsilon)$. Шаг индукции следует из задания алгоритмов 2 и 1.

Лемма 4. Если после прочтения слова и в стеке находится последовательность $q_0 X_1 q_1 \dots X_k q_k$, то $X_1 \dots X_k \vdash u$.

Доказательство. Индукция по числу шагов алгоритма 1, база тривиальна. Докажем шаг индукции, рассмотрим последний шаг алгоритма. Если это был перенос алфавитного символа a, то получаем $X_k = a, u = va$, причём по предположению индукции $X_1 \dots X_{k-1} \vdash v$. Но тогда $X_1 \dots X_k \vdash vX_k = u$, что и требовалось. Пусть последним шагом была свёртка последовательности $Y_1 \dots Y_r$ в X_k , тогда по предположению индукции получаем $X_1 \dots X_{k-1}Y_1 \dots Y_r \vdash u$. Поскольку соответствующая свёртка возможна, то $X_k \to Y_1 \dots Y_r$ — правило грамматики, тогда $X_1 \dots X_k \vdash X_1 \dots X_{k-1}Y_1 \dots Y_r \vdash u$. Лемма доказана.

По сути мы доказали, что LR-алгоритм не выполняет никаких шагов, кроме допустимых операций алгоритма "перенос-свёртка". То есть мы доказали, что всякое слово, принимаемое данным алгоритмом, принадлежит L(G). При этом мы не пользовались спецификой LR-грамматик, на неё мы будем опираться при доказательстве обратного утверждения.

Лемма 5. Если $S' \vdash X_1 \dots X_k v \vdash uv$, причём $X_1 \dots X_k - a$ ктивный префикс, то после прочтения слова и в стеке в какой-то момент будет находиться последовательность $q_0 X_1 q_1 \dots X_k q_k$.

Доказательство. Индукция по длине вывода u из $X_1 \dots X_k$. Базу индукции составляет случай $u=\varepsilon, k=0$, который тривиальным образом верен. Разберём шаг индукции, возможны 2 случая: $X_k=a\in\Sigma$ и $X_k\in N$. В первом случае обозначим u=u'a, тогда получим, что $X_1\dots X_{k-1}\vdash u'$, по предположению индукции имеем, что после прочтения слова v' в стеке находится последовательность $q_0X_1q_1\dots X_{k-1}q_{k-1}$. Поскольку $X_1\dots X_{k-1}a$ является активным префиксом, множество q_{k-1} обязано содержать некоторую ситуацию вида $\langle A\to\beta_1\cdot a\beta_2,b\rangle$. Но отсюда следует, что в состоянии q_{k-1} применима инструкция $shift_j$ для некоторого номера j, после применения которой в стек будет дополнительно перенесена буква a, чего нам и хотелось. Первый случай разобран.

Во втором случае вывод имел вид $X_1 \dots X_k \vdash X_1 \dots X_{k-1}Y_1 \dots Y_r \vdash u$. По предположению индукции после прочтения слова u в стеке однажды появится последовательность $q_0X_1q_1\dots X_{k-1}q_{k-1}Y_1q_1'\dots Y_rq_r'$. При этом из наличия правостороннего вывода $S'\vdash X_1\dots X_kv\vdash^1 X_1\dots X_{k-1}Y_1\dots Y_rv$ следует, что ситуация $\langle X_k\to Y_1\dots Y_r\cdot,b\rangle$ будет допустимой для данного активного префикса. Здесь b — первый символ слова v. Но это означает, что данная ситуация будет принадлежать q_r' и следовательно, в данном состоянии допустима свёртка по правилу $X_k\to Y_1\dots Y_r$, если b является первым непрочитанным символом. Таким образом, со стека будут удалены 2r верхних символов и помещён символ X_k , что и требовалось. Лемма доказана.

Из лемм 4 и 5 следует следующая теорема.

Теорема 2. LR-анализатор, построенный по грамматике G, принимает в точности слова из языка L(G).

Теорема 3. Всякая грамматика, допускающая построение LR-анализатора, является однозначной.

Доказательство. Упражнение.	
Теорема 4. Алгоритм 1 имеет линейную сложность разбора.	
Доказательство. Упражнение.	