Multi-Agent Reinforcement Learning: Centralized VS Decentralized

Shusen Wang

Architectures

- Fully decentralized: Every agent uses its own observations and rewards to learn its policy. Agents do not communicate.
- Fully centralized: The agents send everything to the central controller. The controller makes decisions for all the agents.
- Centralized training with decentralized execution: A central controller is used during training. The controller is disabled after training.

Partial Observations

- An agent may or may not have full knowledge of the state, s.
- Let o^i be the *i*-th agent's observation.
- Partial observation: $o^i \neq s$.
- Full observation: $o^1 = \cdots = o^n = s$.

Fully Decentralized

Fully Decentralized Training

Fully Decentralized Execution

Fully Decentralized Actor-Critic Method

- The *i*-th agent has a policy network (actor): $\pi(a^i|o^i; \theta^i)$.
- The *i*-th agent has a value network (critic): $q(o^i, a^i; w^i)$.
- Agents do not share observations and actions.
- Train the policy and value networks in the same way as the single-agent setting.
- This does not work well.

Fully Centralized

Centralized Execution

$$\pi(\mathbf{a}^i | o^1, \cdots, o^n; \mathbf{\theta}^i)$$
 for all $i = 1, 2, \cdots, n$.

Centralized Execution

$$\pi(a^i|o^1,\cdots,o^n; \theta^i)$$
, for all $i=1,2,\cdots,n$.

Centralized Actor-Critic Method

- Let $\mathbf{a} = [a^1, a^2, \dots, a^n]$ contain all the agents' actions.
- Let $\mathbf{o} = [o^1, o^2, \dots, o^n]$ contain all the agents' observations.
- The central controller knows a, o, and all the rewards.
- The controller has n policy networks and n value networks:
 - Policy network (actor) for the *i*-th agent: $\pi(a^i|o;\theta^i)$.
 - Value network (critic) for the *i*-th agent: $q(\mathbf{o}, \mathbf{a}; \mathbf{w}^i)$.

Centralized Actor-Critic Method

- Centralized Training: Training is performed by the controller.
 - The controller knows all the observations, actions, and rewards.
 - Train $\pi(a^i|\mathbf{o}; \mathbf{\theta}^i)$ using policy gradient.
 - Train $q(\mathbf{o}, \mathbf{a}; \mathbf{w}^i)$ using TD algorithm.
- Centralized Execution: Decisions are made by the controller.
 - For all i, the i-th agent sends its observation, o^i , to the controller.
 - The controller knows $\mathbf{o} = [o^1, o^2, \dots, o^n]$.
 - For all i, the controller samples action by $a^i \sim \pi(\cdot | \mathbf{o}; \mathbf{\theta}^i)$ and sends a^i to the i-th agent.

Shortcoming: Slow during Execution

- All the agents send their observations to the central controller.
- The central controller makes decisions, $\mathbf{a} = [a^1, a^2, \cdots, a^n]$, and sends a^i to the i-th agent.
- Communication and synchronization cost time.
- Real-time decision is impossible.

Centralized Training with Decentralized Execution

- Each agent has its own policy network (actor): $\pi(a^i|o^i;\theta^i)$.
- The central controller has n value networks (critics): $q(\mathbf{o}, \mathbf{a}; \mathbf{w}^i)$.
- Centralized Training: During training, the central controller knows all the agents' observations, actions, and rewards.
- **Decentralized Execution:** During execution, the central controller and its value networks are not used.

Reference:

- 1. Lowe et al. Multi-agent actor-critic for mixed cooperative-competitive environments. In NIPS, 2017.
- 2. Foerster et al. Counterfactual multi-agent policy gradients. In AAAI, 2018.

Critic 1

Central Controller
$$\{a^i, o^i, r^i\}_{i=1}^n$$

Critic n

Critic 1

Central Controller $\{a^i, o^i, r^i\}_{i=1}^n$

Critic n

- The central controller trains the critics, $q(\mathbf{o}, \mathbf{a}; \mathbf{w}^i)$, for all i.
- To update \mathbf{w}^i , TD algorithm takes as inputs:
 - All the actions: $\mathbf{a} = [a^1, a^2, \dots, a^n]$.
 - All the observations: $\mathbf{o} = [o^1, o^2, \dots, o^n]$.
 - The i-th reward: r^i .

- Each agent locally trains the actor, $\pi(a^i|o^i; \theta^i)$, using policy gradient.
- To update θ^i , the policy gradient algorithm takes as input (a^i, o^i, q^i) .

Decentralized Execution

Parameter Sharing

Parameter Sharing?

- Policy networks: $\pi(a^i|o^i; \theta^i)$, for $i=1,2,\cdots,n$.
- Value networks: $q(\mathbf{o}, \mathbf{a}; \mathbf{w}^i)$, for $i = 1, 2, \dots, n$.
- Trainable parameters: $\left\{\mathbf{\theta}^i, \mathbf{w}^i\right\}_{i=1}^n$
- Parameter sharing: $\mathbf{\theta}^i = \mathbf{\theta}^j$ and $\mathbf{w}^i = \mathbf{w}^j$, for some i and j.

Question: Shall the networks share parameters?

Parameter Sharing?

Do not share parameters if the agents are non-exchangeable.

Parameter Sharing?

Share parameters if the agents are exchangeable.

Summary

Fully Decentralized

- The agents are independent.
- One agent is unaware of the other agents' observations and actions.
- Train every agent in the same way as single-agent RL.
- This does not work well.

Fully Centralized

- All the policy and value networks are in the central controller.
- Agents send everything to the controller.
- The controller makes decisions based on all the agents' observations. Agents do not make decisions.
- The controller tells every agent what to do.

Centralized Training, Decentralized Execution

- Each agent has its own policy network.
- The central controller has all the value networks.
- The central controller helps with the training; it is disabled during execution.

Policy (Actor) Value (Critic)

$$\pi(\mathbf{a}^i|o^i;\mathbf{\theta}^i)$$

$$q(o^i, \mathbf{a}^i; \mathbf{w}^i)$$

Policy (Actor) Value (Critic)

$$\pi(\mathbf{a}^i|o^i;\mathbf{\theta}^i)$$

$$q(o^i, \mathbf{a^i}; \mathbf{w}^i)$$

$$\pi(\mathbf{a}^i|\mathbf{o};\mathbf{\theta}^i)$$

$$q(\mathbf{o}, \mathbf{a}; \mathbf{w}^i)$$

Policy (Actor) Value (Critic)

$$\pi(\mathbf{a}^i|o^i;\mathbf{\theta}^i)$$

$$q(o^i, \mathbf{a}^i; \mathbf{w}^i)$$

$$\pi(\mathbf{a}^i|\mathbf{o};\mathbf{\theta}^i)$$

$$q(\mathbf{o}, \mathbf{a}; \mathbf{w}^i)$$

$$\pi(\mathbf{a}^i|o^i;\mathbf{\theta}^i)$$

$$q(\mathbf{o}, \mathbf{a}; \mathbf{w}^i)$$

Thank you!

Recommended Survey Papers

- 1. Zhang, Yang, & Başar. Multi-agent reinforcement learning: a selective overview of theories and algorithms. *arXiv*, 2019.
- 2. François-Lavet et al. An Introduction to Deep Reinforcement Learning. Foundations and Trends in Machine Learning, 2018.
- 3. Hernandez-Leal et al. A survey of learning in multiagent environments: dealing with non-stationarity. *arXiv*, 2017.
- 4. Nguyen, Nguyen, & Nahavandi. Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications. *IEEE Transactions on Cybernetics*, 2020.
- 5. Li. Deep reinforcement learning. arXiv, 2018.