Calculix Tutorials

January 30, 2022 By: KAM

finiteelementanalysis.org

CalculiX Simulation

For

Static Displacement of a non-linear spring

Version 1.0

Published: January 30, 2022

Calculix Tutorials

January 30, 2022 By: KAM

finiteelementanalysis.org

Table of Contents

1. Project Description	. 3
2. Material Data	
3. Results	
4. Conclusion	
5. Appendix - Input file	

Revision history

Version Number	Comments
1.0	Original Publication

finiteelementanalysis.org

1. Project Description

The project deals with the static displacement of a non-linear spring. The non-linear behavior of the spring is expressed using a force and corresponding displacement values in the input file. The simulation was performed for three different concentrated forces that were applied to node #2 and the resulting displacements were computed. The force vs displacement plot shows the comparison.

2. Material Data

Force (N)	Displacement (m)
0	0
1	1
2	4
3	9
4	16
5	25
6	36
7	49
8	64
9	81
10	100
11	121

January 30, 2022 By: KAM

finiteelementanalysis.org

3. Results

The following plot shows the resulting displacement which falls in the provided forcedisplacement curve which is expected.

4. Conclusion

A non-linear spring can be modeled using this technique. The inputs have to be a force and corresponding displacement.

January 30, 2022 By: KAM

finiteelementanalysis.org

5. Appendix - Input file

```
** Node Definitions
 *NODE, NSET=NALL
 1,0.,0.,0.
 2,1.,0.,0.
 ** Element Definitions
 ** ______
 *ELEMENT, TYPE=SPRINGA, ELSET=EALL
*SPRING,ELSET=EALL,NONLINEAR
**Force, Displacement
0.0,0.0
1.0,1.0
2.0,4.0
3.0,9.0
            Defining spring
4.0,16.0
            behavior
5.0,25.0
6.0,36.0
7.0,49.0
8.0,64.0
9.0,81.0
10.0,100.0
11.0,121.0
 ** Boundary Conditions
 ** -----
 *BOUNDARY
 1,1,3
 2,2,3
 ** Step - Apply load
 ** -----
 *STEP, NLGEOM
 *STATIC
 ** Apply load
 ** -----
 *CLOAD
 **2,1,2.50
 **2,1,6.35
 2,1,10.7
 ** Output request
 *NODE PRINT, NSET=NALL
 *END STEP
```