

Lecture 16

Estimation

Announcements

Terminology

Statistic

A number associated with the sample

Parameter

A number associated with the population

A statistic can be used as an **estimate** of a parameter

How many enemy planes?

Estimating enemy planes

- Population: planes with serial numbers 1, 2, 3, ..., N.
- Parameter: N, which we don't know
- Sample: planes spotted by our troops
- Statistic: ???

Assumption: The serial numbers of the planes that are spotted are a uniform random sample drawn with replacement from 1, 2, 3, ..., N.

Discussion question

If you saw these serial numbers, what would be your estimate of N?

One idea: 291. Just go with the maximum.

(Demo)

Is max a good estimator?

Is it likely to be close to N?

- How likely?
- How close?

Option 1. Calculate the probabilities and draw a probability histogram.

Option 2. Simulate and draw an empirical histogram.

(Demo)

Verdict on max

- The largest serial number observed is likely to be close to N.
- But it is also likely to underestimate N.

New idea

- Maybe the average of the sample resembles the average of the population
- Average of population is about N/2

New statistic: 2 * average(samples)

(Demo)

Bias

 Biased estimate: On average across all possible samples, the estimate is either too high or too low

Bias creates a systematic error in one direction

Good estimators have low bias

Variance

Value of an estimate varies from one sample to another

High variability makes it hard to estimate accurately

Good estimators have low variance

Bias vs Variance

Bias-Variance Tradeoff

max has low variability, but is biased

2*average has little bias, but is highly variable

Life is tough!