

Predicates and Quantified statements Discrete Mathematic

Anders Kalhauge

Fall 2017

Predicates and Quantified Statements

Outline

Set notations

Predicates

Quantifiers

Programming in logic

Set notations

Predicates

Quantifiers

Programming in logic

Predefined sets

The sets of . . .

- \square $\mathbb R$ all real numbers
- \square \mathbb{R}^+ all positive (not 0) real numbers
- \square \mathbb{R}^- all negative (not 0) real numbers
- \square \mathbb{R}^{nonneg} all nonnegative (positive or 0) real numbers
- \square \mathbb{Z} all integers
- \square N or \mathbb{Z}^+ all positive integers (natural numbers)
- \square \mathbb{N}_0 or \mathbb{Z}^{nonneg} all nonnegative integers
- □ ℚ all rational numbers (quotients)

Set notation

Set-roster notation

$$A = \{1, 2, 3\}$$

$$= \{3, 1, 2\}$$

$$= \{1, 2, 2, 3, 3, 3\}$$

$$B = \{10, 11, 12, \dots, 119\}$$

Set notation

Set-builder notation

$$M = \{x \in S | P(x)\}$$

$$A = \{x \in \mathbb{Z} | -2 < x < 7\}$$

$$B = \{x \in \mathbb{N} | x^2 < 10\}$$

$$C = \{x \in \mathbb{R}^+ | log(x) < 10\}$$

Exercise 1 - Set notation

What are the members of:

$$\{x \in \mathbb{N} | x^2 < 10\}$$

Set notations

Predicates

Quantifiers

Programming in logic

Predicates

- ☐ A **statement** is a sentence that is either true or false, not both
- A predicate is a sentence that contains a finite number of variables and becomes a statement when specific values are substituted for all variables.
- ☐ The **domain** of a predicate variable is the set of all values that may be substituted in place of the variable

Let P(x) be the predicate " $x^2 > x$ ". The domain of x is the real numbers: $x \in \mathbb{R}$

$$\begin{split} P(2):2^2>2 & \equiv 4>2 \equiv \mathsf{true} \\ P\left(\frac{1}{2}\right):\left(\frac{1}{2}\right)^2>\frac{1}{2} & \equiv \frac{1}{4}>\frac{1}{2} \equiv \mathsf{false} \\ P\left(-\frac{1}{2}\right):\left(-\frac{1}{2}\right)^2>-\frac{1}{2} & \equiv \frac{1}{4}>-\frac{1}{2} \equiv \mathsf{true} \end{split}$$

Predicate truth set

- \square If P(x) is a predicate
- \square And the domain of x is D
- \square Then the truth set of P(x) is the set of all elements $e \in D$ where P(e) is true.

$$\{x \in D | P(x)\}$$

Let Q(n) be the predicate "n is a factor of 8". What is the truth set of Q(n) when:

- 1. the domain of n is \mathbb{N}
- 2. the domain of n is \mathbb{Z}

- 1.
- 2.

Let Q(n) be the predicate "n is a factor of 8". What is the truth set of Q(n) when:

- 1. the domain of n is \mathbb{N} (all natural numbers, positive integers)
- 2. the domain of n is \mathbb{Z} (all integers)

- 1.
- 2.

Let Q(n) be the predicate "n is a factor of 8". What is the truth set of Q(n) when:

- 1. the domain of n is \mathbb{N} (all natural numbers, positive integers)
- 2. the domain of n is \mathbb{Z} (all integers)

- **1**. {1, 2, 4, 8}
- 2.

Let Q(n) be the predicate "n is a factor of 8". What is the truth set of Q(n) when:

- 1. the domain of n is \mathbb{N} (all natural numbers, positive integers)
- 2. the domain of n is \mathbb{Z} (all integers)

- **1**. {1, 2, 4, 8}
- **2**. $\{-8, -4, -2, -1, 1, 2, 4, 8\}$

Exercise 2 - Truth sets

Let
$$P(x)$$
 be the predicate " $x^2 > x$ ", $x \in \mathbb{R}$

What is the truth set of P(x)?

Let P(x) be the predicate " $x^2 > x$ ", $x \in \mathbb{R}$

What is the truth set of P(x)?

Let P(x) be the predicate " $x^2 > x$ ", $x \in \mathbb{R}$

What is the truth set of P(x)?

Set notations

Predicates

Quantifiers

Programming in logic

Universal quantifier

All men are mortal. Socrates is a man.
∴ Socrates i mortal

 $\forall \ \mathsf{human} \ \mathsf{beings} \ x, x \ \mathsf{is} \ \mathsf{mortal}$

 $\forall x \in H, x \text{ is mortal}$

When Universal statements are true

With domains $D = \{1, 2, 3, 4, 5\}$ and \mathbb{R} is all real numbers.

- \square " $\forall x \in D, x^2 \ge x$ " is true
- \square " $\forall x \in \mathbb{R}, \ x^2 \ge x$ " is false

Solution:

 \square predicate must be proven **true for all** (and every) element of x

$$1 \ge 1, \ 4 \ge 2, \ 9 \ge 3, \ 16 \ge 4, \ 25 \ge 5$$

 \square predicate only has to be proven false for a single element of x

$$x = \frac{1}{3} : \left(\frac{1}{3}\right)^2 = \frac{1}{9} \ngeq \frac{1}{3}$$

Existential quantifier

There is a student in Discrete Math

 \exists a person p such that p is a Discrete Math student

 $\exists p \in P$, such that p is a Discrete Math student

When Existential statements are true

With domains $E = \{5, 6, 7, 8\}$ and \mathbb{N} is all positive integers.

- \square " $\exists m \in \mathbb{N}, m^2 = m$ " is true
- \square " $\exists m \in E, m^2 = m$ " is false

Solution:

 $lue{}$ predicate must be proven **true for a single** element of m

$$1^2 = 1$$

 \square predicate only has to be proven **false all** elements of x

$$25 \neq 5, 36 \neq 6, 49 \neq 7, 64 \neq 8$$

Universal conditional statement

$$\forall x$$
, if $P(x)$ then $Q(x)$

$$\forall x, \ P(x) \to Q(x)$$

$$P(x) \implies Q(x)$$

Exercise 5 - Mapping quantifiers

Given the predicates P(x) and Q(x) and the domains $D=\{1,2,4,25\}$ and $E=\{10,20,30,35\}$ rewrite the following statements only using the operators "¬", " \wedge ", and " \vee "

- $\square \ \forall x \in D, \ P(x)$
- $\Box \exists x \in E, \ Q(x)$

Exercise 5 - Mapping quantifiers

Given the predicates P(x) and Q(x) and the domains $D=\{1,2,4,25\}$ and $E=\{10,20,30,35\}$ rewrite the following statements only using the operators "¬", " \wedge ", and " \vee "

- $\square \forall x \in D, \ P(x): \ P(1) \land P(2) \land P(4) \land P(25)$
- $\Box \exists x \in E, \ Q(x)$

Given the predicates P(x) and Q(x) and the domains $D=\{1,2,4,25\}$ and $E=\{10,20,30,35\}$ rewrite the following statements only using the operators "¬", " \wedge ", and " \vee "

$$\square \exists x \in E, \ Q(x): \ Q(10) \lor Q(20) \lor Q(30) \lor Q(35)$$

De Morgan for multiple operands

$$\neg (a \lor b \lor c)$$

$$\neg (a \lor b) \land \neg c$$

$$(\neg a \land \neg b) \land \neg c$$

$$\neg a \land \neg b \land \neg c$$

$$\neg(\forall x \in D, \ P(x))$$
$$\exists x \in D, \ \neg P(x)$$

Multi-quantified statements

$$\exists x \in D, \forall y \in E, P(x, y)$$

- ☐ There is a smallest positive integer!
- \square \exists a positive integer m such that \forall positive integers $n, m \leq n$
- $\square \exists m \in \mathbb{N}, \forall n \in \mathbb{N}, m \leq n$

$$\forall x \in D, \exists y \in E, P(x, y)$$

- There is no smallest positive real number!
- $\ \square\ \ \forall$ positive real numbers x, \exists a positive real number y, such that y < x
- $\square \ \forall x \in \mathbb{R}^+, \exists y \in \mathbb{R}^+, y < x$

Negations of multi-qualified statements

Remember "De Morgan" for qualified statements:

$$\neg(\forall x \in D, P(x)) \equiv \exists x \in D, \neg P(x)$$

$$\neg(\exists x \in D, P(x)) \equiv \forall x \in D, \neg P(x)$$

Use them in

$$\neg(\forall x \in D, \exists y \in E, P(x, y))$$

$$\exists x \in D, \neg(\exists y \in E, P(x, y))$$

$$\exists x \in D, \forall y \in E, \neg P(x, y)$$

Arguments with quantified statements

Universal Modus Ponens

$$\forall x, P(x) \to Q(x)$$
$$P(a)$$
$$\therefore Q(a)$$

Universal Modus Tollens

$$\forall x, P(x) \to Q(x)$$
$$\neg Q(a)$$
$$\therefore \neg P(a)$$

Errors with quantified statements

Quantified converse error

$$\forall x, P(x) \rightarrow Q(x)$$
 $Q(a)$ $\therefore P(a) \leftarrow \text{is not a valid conclusion}$

Quantified inverse error

$$\forall x, P(x) \to Q(x)$$
 $\neg P(a)$
 $\therefore \neg Q(a) \leftarrow \text{is not a valid conclusion}$

Set notations

Predicates

Quantifiers

Programming in logic

Prolog - PROgramming in LOgic

http://www.swi-prolog.org

On Mac: brew install swi-prolog

Prolog building blocks (clauses)


```
Fact (only left side) is a statement
Rule (both sides) is a predicate
Question (right side)
Atom numbers and lowercase
Variables Upper case names
```