

Lecture 4: Multiple Linear Regression

Pilsung Kang
School of Industrial Management Engineering
Korea University

AGENDA

01 Multiple Linear Regression
02 Evaluating Regression Models
03 R Exercise

• Regression Example: Predict the selling price of Toyota Corolla

Dependent variable (target)

Independent variables (attributes, features)

Variable	Description		
Price	Offer Price in EUROs		
Age_08_04	Age in months as in August 2004		
KM	Accumulated Kilometers on odometer		
Fuel_Type	Fuel Type (Petrol, Diesel, CNG)		
HP	Horse Power		
Met_Color	Metallic Color? (Yes=1, No=0)		
Automatic	Automatic ((Yes=1, No=0)		
CC	Cylinder Volume in cubic centimeters		
Doors	Number of doors		
Quarterly_Tax	Quarterly road tax in EUROs		
Weight	Weight in Kilograms		

Goal

✓ Fit a linear relationship between a quantitative dependent variable Y and a set of predictors $X_1, X_2, ..., X_p$.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \cdots + \beta_d x_d + \epsilon$$
 unexplained

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 \cdots + \hat{\beta_d} x_d$$

coefficients

• Explanatory vs. Predictive

Explanatory Regression

- Explain relationship between predictors (explanatory variables) and target.
- Familiar use of regression in data analysis.
- Model Goal: Fit the data well and understand the contribution of explanatory variables to the model.
- "goodness-of-fit": R², residual analysis, p-values.

$$Y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon$$

Predictive Regression

- Predict target values in other data where we have predictor values, but not target values.
- Classic data mining context
- Model Goal: Optimize predictive accuracy
- Train model on training data
- Assess performance on validation (hold-out) data
- Explaining role of predictors is not primary purpose (but useful)

$$Y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon$$

• Type of Regression

• Linear Regression

✓ Assume that the relationship between the input variable and the target variable is always linear.

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 + \dots + \hat{\beta_d} x_d$$

• Which line is optimal?

- Estimating the coefficients
 - ✓ Ordinary least square (OLS): Minimize the squared difference between the actual target value and the estimated value by the regression model

- Estimating the coefficients
 - ✓ Ordinary least square (OLS)
 - Actual target: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \cdots + \beta_d x_d + \epsilon$
 - ullet Predicted target: $\hat{y}=\hat{eta_0}+\hat{eta_1}x_1+\hat{eta_2}x_2\cdots+\hat{eta_d}x_d$
 - Goal: minimize the difference between the actual and predicted target.

$$\min \frac{1}{2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$= \frac{1}{2}(y_i - \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} \cdots + \hat{\beta}_d x_{id})^2$$

- Estimating the coefficients
 - √ Ordinary least square (OLS)

• Ordinary least square: Matrix solution

$$\mathbf{X}: n \times (d+1) \ matrix, \ \mathbf{y}: n \times 1 \ vector$$

$$\hat{\boldsymbol{\beta}}: (d+1) \times 1 \ vector$$

For intercept

Ordinary least square: Matrix solution

$$\begin{split} \mathbf{X}: & \ n \times (d+1) \ matrix, \ \mathbf{y}: \ n \times 1 \ vector \\ & \ \hat{\boldsymbol{\beta}}: (d+1) \times 1 \ vector \\ & \ \min E(\mathbf{X}) = \frac{1}{2} \Big(\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}} \Big)^T \Big(\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}} \Big) \\ & \ \Rightarrow \frac{\partial E(\mathbf{X})}{\partial \hat{\boldsymbol{\beta}}} = -\mathbf{X}^T \Big(\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}} \Big) = 0 \\ & \ \Rightarrow \mathbf{X}^T \mathbf{y} + \mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} = 0 \\ & \ \hat{\boldsymbol{\beta}} = \Big(\mathbf{X}^T \mathbf{X} \Big)^{-1} \mathbf{X}^T \mathbf{y} \longrightarrow \text{Unique and explicit solution exists!} \end{split}$$

Ordinary least square: Matrix solution

Closed form solution for the regression coefficient

- Ordinary least square
 - \checkmark Finds the best estimates β when the following conditions are satisfied:
 - The noise ε follows a normal distribution.
 - The linear relationship is correct.
 - The cases are independent of each other.
 - The variability in Y values for a given set of predictors is the same regardless of the values of the predictors (homoskedasticity).

- Goodness of fit
 - √ Sum-of-Squares Decomposition

$$\sum_{\substack{j=1\\ \text{(total sum of squares)}\\ \text{about mean}}}^{n} \left(y_{j} - \overline{y} \right)^{2} = \sum_{\substack{j=1\\ \text{(regression}\\ \text{sum of squares)}}}^{n} \left(\hat{y}_{j} - \overline{y} \right)^{2} + \sum_{\substack{j=1\\ \text{(residual (error)}\\ \text{sum of squares)}}}^{n} \hat{\mathcal{E}}_{j}^{2} \right).$$
SST

SSR

SSE

16/58

• Goodness-of-fit: (Adjusted) R²

$$R^{2} = 1 - \frac{\sum_{j=1}^{n} \hat{\varepsilon}_{j}^{2}}{\sum_{j=1}^{n} (y_{j} - \bar{y})^{2}} = \frac{\sum_{j=1}^{n} (\hat{y}_{j} - \bar{y})^{2}}{\sum_{j=1}^{n} (y_{j} - \bar{y})^{2}} \qquad R^{2} = 1 - \frac{SSE}{SST} = \frac{SSR}{SST}$$

- \checkmark Gives the proportion of the total variation in the y_i 's explained by the predictor variables
- $\checkmark 0 \le R^2 \le I$
- \checkmark R² = I \rightarrow The fitted equation passes through all the data points
- \checkmark R² = 0 → There is <u>no linear relationship</u> between the predictor variables and the target variable

- Goodness-of-fit: (Adjusted) R²
 - √ Graphical interpretation

Computationally:

R-squared =
$$1 - \frac{SS_{error}}{SS_{total}}$$

Conceptually:

Force x and y to be independent, calculate the squared error.

Allow for a relationship between x and y, does this reduce your **error?**

- Goodness-of-fit: (Adjusted) R²
 - ✓ The proportionate reduction of total variation associated with the use of the predictor variable Z.

- R² of your model is very high
 - I did a good job! (No!)
 - This dataset has a strong linear relationship between the X and y
 - Because everyone can have the same solution

- Goodness-of-fit: (Adjusted) R²
 - √ Adjusted R²

$$R_{adj}^{2} = 1 - \left[\frac{n-1}{n-(p+1)}\right] \frac{SSE}{SST} \le 1 - \frac{SSE}{SST} = R^{2}$$

- \checkmark R² increases monotonically when a (possibly not significant) new variable is added
- √ Adjusted R² fix this problem
- \checkmark If an insignificant variable is added, the adjusted R² does not increase
- Model verification
 - ✓ Check whether the model satisfies the following assumptions
 - Residuals are independent
 - Residuals have zero mean and a constant variance

• Residual plots

Model checking

$$y = 2x + \varepsilon$$
, $\varepsilon \sim Gamma(2,1)$

Regression model

• Example: predict the selling price of Toyota corolla

Υ					_					
Price	Age_08_04	KM	Fuel_Type	HP	Met_Color	Automatic	СС	Doors	Quarterly_Tax	Weight
13500	23	46986	Diesel	90	1	0	2000	3	210	1165
13750	23	72937	Diesel	90	1	0	2000	3	210	1165
13950	24	41711	Diesel	90	1	0	2000	3	210	1165
14950	26	48000	Diesel	90	0	0	2000	3	210	1165
13750	30	38500	Diesel	90	0	0	2000	3	210	1170
12950	32	61000	Diesel	90	0	0	2000	3	210	1170
16900	27	94612	Diesel	90	1	0	2000	3	210	1245
18600	30	75889	Diesel	90	1	0	2000	3	210	1245
21500	27	19700	Petrol	192	0	0	1800	3	100	1185
12950	23	71138	Diesel	69	0	0	1900	3	185	1105
20950	25	31461	Petrol	192	0	0	1800	3	100	1185
19950	22	43610	Petrol	192	0	0	1800	3	100	1185
19600	25	32189	Petrol	192	0	0	1800	3	100	1185
21500	31	23000	Petrol	192	1	0	1800	3	100	1185
22500	32	34131	Petrol	192	1	0	1800	3	100	1185
22000	28	18739	Petrol	192	0	0	1800	3	100	1185
22750	30	34000	Petrol	192	1	0	1800	3	100	1185
17950	24	21716	Petrol	110	1	0	1600	3	85	1105
16750	24	25563	Petrol	110	0	0	1600	3	19	1065

Data preprocessing

✓ Create dummy variables for fuel types

	Fuel_type = Disel	Fuel_type = Petrol	Fuel_type = CNG
Diesel	1	0	0
Petrol	0	1	0
CNG	0	0	1

Data partitioning

√ 60% training data / 40% validation data

ld	Model	Price	Age_08_04	Mfg_Month	Mfg_Year	KM		Fuel_Type_Pe
							esel	trol
1	RRA 2/3-Doors	13500	23	10	2002	46986	1	0
4	RRA 2/3-Doors	14950	26	7	2002	48000	1	0
5	SOL 2/3-Doors	13750	30	3	2002	38500	1	0
6	SOL 2/3-Doors	12950	32	1	2002	61000	1	0
9	/VT I 2/3-Doors	21500	27	6	2002	19700	0	1
10	RRA 2/3-Doors	12950	23	10	2002	71138	1	0
12	BNS 2/3-Doors	19950	22	11	2002	43610	0	1
17	ORT 2/3-Doors	22750	30	3	2002	34000	0	1

Fitted linear regression model

•		,		<u> </u>	
Input variables	Coefficient	Std. Error	p-value	SS	
Constant term	-3608.418457	1458.620728	0.0137	97276410000	
Age_08_04	-123.8319168	3.367589	0	8033339000	
KM	-0.017482	0.00175105	0	251574500	
Fuel_Type_Diesel	210.9862518	474.997833	0.6571036	6212673	
Fuel_Type_Petrol	2522.066895	463.6594238	0.00000008	4594.9375	
HP	20.71352959	4.67398977	0.00001152	330138600	
Met_Color	-50.48505402	97.85591125	0.60614568	596053.75	
Automatic	178.1519013	212.052856	0.40124047	19223190	
cc	0.01385481	0.09319961	0.88188446	1272449	
Doors	20.02487946	51.089908	0.69526076	39265060	
Quarterly_Tax	16.7742424	2.09381151	0	160667200	
Weight	15.41666317	1.4044657 <mark>9</mark>	0	214696000	

β

Significance Probability

- Interpret the result
 - √ Regression coefficient
 - Beta value for the corresponding predictor variable
 - The amount of change when the predictor variable increases by I
 - If it is positive/negative, then the predictor variable and the target variable are positively/negatively correlated

Input variables	Coefficient	Std. Error	p-value	SS
Constant term	-3608.418457	1458.620728	0.0137	97276410000
Age_08_04	-123.8319168	3.367589	0	8033339000
KM	-0.017482	0.00175105	0	251574500
Fuel_Type_Diesel	210.9862518	474.9978333	0.6571036	6212673
Fuel_Type_Petrol	2522.066895	463.6594238	0.00000008	4594.9375
HP	20.71352959	4.67398977	0.00001152	330138600
Met_Color	-50.48505402	97.85591125	0.60614568	596053.75
Automatic	178.1519013	212.0528565	0.40124047	19223190
СС	0.01385481	0.09319961	0.88188446	1272449
Doors	20.02487946	51.0899086	0.69526076	39265060
Quarterly_Tax	16.7742424	2.09381151	0	160667200
Weight	15.41666317	1.40446579	0	214696000

Interpret the result

- √ p-value
 - Indicate whether the regression coefficient is statistically significant or not
 - A predictor variable is important for modeling when its p-value is close to 0
 - Can be used to select significant variables (e.g., use the variables with p-value less than 0.05)

Input variables	Coefficient	Std. Error	p-value	SS
Constant term	-3608.418457	1458.620728	0.0137	97276410000
Age_08_04	-123.8319168	3.367589	0	8033339000
KM	-0.017482	0.00175105	0	251574500
Fuel_Type_Diesel	210.9862518	474.9978333	0.6571036	6212673
Fuel_Type_Petrol	2522.066895	463.6594238	0.00000008	4594.9375
HP	20.71352959	4.67398977	0.00001152	330138600
Met_Color	-50.48505402	97.85591125	0.60614568	596053.75
Automatic	178.1519013	212.0528565	0.40124047	19223190
СС	0.01385481	0.09319961	0.88188446	1272449
Doors	20.02487946	51.0899086	0.69526076	39265060
Quarterly_Tax	16.7742424	2.09381151	0	160667200
Weight	15.41666317	1.40446579	0	214696000

AGENDA

01	Multiple Linear Regression
02	Evaluating Regression Models
03	R Exercise

• Example: predict a yield based on process sensors

How accurate is this model?

- Performance measure I: Average Error
 - √ Compare the average difference between the actual and predicted y
 - ✓ Mislead to an inappropriate conclusion based on the sign effect

Average Error =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - y_i')$$

Y	Y'	Y-Y'
95	90	5
90	93	-3
92	95	-3
88	85	3
75	80	-5
97	94	3
91	88	3
84	87	-3
83	86	-3
79	75	4
Averag	e Error	0.1

- Performance measure 2: Mean Absolute Error (MAE)
 - ✓ Compute the average of absolute value of differences between the predicted and actual y

MAE =
$$\frac{1}{n} \sum_{i=1}^{n} |y_i - y'_i|$$

Y	Y'	Y-Y'
95	90	5
90	93	3
92	95	3
88	85	3
75	80	5
97	94	3
91	88	3
84	87	3
83	86	3
79	75	4
M	AE	3.5

- Performance measure 3: Mean Absolute Percentage Error (MAPE)
 - ✓ MAE can only provide the degree of absolute difference between the predicted and actual y but cannot provide the relative difference between them
 - \checkmark Ex) The MAEs of the two models below are the same (MAE = 1)

Υ	Y'	Y-Y'
l	0	1
l	2	1
I	0	1
I	2	1
I	0	1
l	2	1
l	0	1
I	2	1
I	0	1
I	2	1
M	AE	Ī

Y	Y'	Y-Y'	
100	99	1	
100	101	1	
100	99	1	
100	101	1	
100	99	1	
100	101	1	
100	99	1	
100	101	1	
100	99	1	
100	101	1	
M	MAE		

- Performance measure 3: Mean Absolute Percentage Error (MAPE)
 - ✓ Provide the relative absolute difference in terms of %
 - ✓ Commonly adopted by domains in which relative differences are more important than the absolute difference (ex: quality control in manufacturing process)

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - y_i'}{y_i} \right|$$

Y	Y'	Y-Y'	Y-Y' / Y
95	90	5	5.26%
90	93	3	3.33%
92	95	3	3.26%
88	85	3	3.41%
75	80	5	6.67%
97	94	3	3.09%
91	88	3	3.30%
84	87	3	3.57%
83	86	3	3.61%
79	75	4	5.06%
MAE		3.5	4.06%

- Performance measure 4 & 5: (Root) Mean Squared Error ((R)MSE)
 - ✓ Use the square instead of absolute value to resolve the effect of sign.

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - y_i')^2$$
, RMSE = $\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - y_i')^2}$

Y	Y'	(Y-Y') ²
95	90	25
90	93	9
92	95	9
88	85	9
75	80	25
97	94	9
91	88	9
84	87	9
83	86	9
79	75	16
MSE		12.9

$$RMSE = \sqrt{12.9} = 3.59$$

AGENDA

01 Multiple Linear Regression
02 Evaluating Regression Models
03 R Exercise

R Exercise I

• Data Set: Toyota Corolla Selling Price

Variable	Description	Variable	Description
		Guarantee_Period	Guarantee period in months
		ABS	Anti-Lock Brake System (Yes=1, No=0)
Price	Offer Price in EUROs	Airbag_1	Driver_Airbag (Yes=1, No=0)
Age_08_04	Age in months as in August 2004	Airbag_2	Passenger Airbag (Yes=1, No=0)
Mfg_Month	Manufacturing month (1-12)	Airco	Airconditioning (Yes=1, No=0)
Mfg_Year	Manufacturing Year	Automatic_airco	Automatic Airconditioning (Yes=1, No=0)
KM	Accumulated Kilometers on odometer	Boardcomputer	Boardcomputer (Yes=1, No=0)
Fuel_Type	Fuel Type (Petrol, Diesel, CNG)	CD_Player	CD Player (Yes=1, No=0)
HP	Horse Power	Central_Lock	Central Lock (Yes=1, No=0)
Met_Color	Metallic Color? (Yes=1, No=0)	Powered_Windows	Powered Windows (Yes=1, No=0)
Automatic	Automatic ((Yes=1, No=0)	Power_Steering	Power Steering (Yes=1, No=0)
CC	Cylinder Volume in cubic centimeters	Radio	Radio (Yes=1, No=0)
Doors	Number of doors	Mistlamps	Mistlamps (Yes=1, No=0)
Cylinders	Number of cylinders	Sport_Model	Sport Model (Yes=1, No=0)
Gears	Number of gear positions	Backseat_Divider	Backseat Divider (Yes=1, No=0)
Quarterly_Tax	Quarterly road tax in EUROs	Metallic_Rim	Metallic Rim (Yes=1, No=0)
Weight	Weight in Kilograms	Radio_cassette	Radio Cassette (Yes=1, No=0)
Mfr_Guarantee	Within Manufacturer's Guarantee period (Yes=1, No=0)	Parking_Assistant	Parking assistance system (Yes=1, No=0)
BOVAG_Guarantee	BOVAG (Dutch dealer network) Guarantee (Yes=1, No=0)	Tow_Bar	Tow Bar (Yes=1, No=0)

• Define the performance evaluation function

```
# Performance evaluation function for regression
perf_eval_reg <- function(tgt_y, pre_y){</pre>
    # RMSE
    rmse <- sqrt(mean((tgt_y - pre_y)^2))</pre>
    # MAF
    mae <- mean(abs(tgt y - pre y))</pre>
    # MAPE
    mape <- 100*mean(abs((tgt_y - pre_y)/tgt_y))</pre>
    return(c(rmse, mae, mape))
}
# Initialize a performance summary table
perf mat <- matrix(0, nrow = 2, ncol = 3)</pre>
rownames(perf mat) <- c("Toyota Corolla", "Boston Housing")</pre>
colnames(perf mat) <- c("RMSE", "MAE", "MAPE")</pre>
perf mat
```

- ✓ perf_eval_reg() function
 - Arguments: target values & predicted values
 - Outputs: RMSE, MAE, MAPE

• Load the data

```
# Dataset 1: Toyota Corolla
corolla <- read.csv("ToyotaCorolla.csv")

# Indices for the activated input variables
nCar <- nrow(corolla)
nVar <- ncol(corolla)

id_idx <- c(1,2)
category_idx <- 8</pre>
```

- √ read.csv(): a function that can read a csv file
- √ nrow() & ncol(): return the number of rows/columns in the dataframe
- √ id_idx: id-related variables, irrelevant variable for analysis, will be removed.
- √ category_idx: catorical variable, will be transformed by I-of-C coding.

• Data preprocessing: I-of-C coding

Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type	HP	Met_Color	Automatic	cc
13500	23	10	2002	46986	Diesel	90	1	0	2000
13750	23	10	2002	72937	Diesel	90	1	0	2000
13950	24	9	2002	41711	Diesel	90	1	0	2000
14950	26	7	2002	48000	Diesel	90	0	0	2000
13750	30	3	2002	38500	Diesel	90	0	0	2000
12950	32	1	2002	61000	Diesel	90	0	0	2000
16900	27	6	2002	94612	Diesel	90	1	0	2000
18600	30	3	2002	75889	Diesel	90	1	0	2000
21500	27	6	2002	19700	Petrol	192	0	0	1800
12950	23	10	2002	71138	Diesel	69	0	0	1900
20950	25	8	2002	31461	Petrol	192	0	0	1800
19950	22	11	2002	43610	Petrol	192	0	0	1800
19600	25	8	2002	32189	Petrol	192	0	0	1800
21500	31	2	2002	23000	Petrol	192	1	0	1800
22500	32	1	2002	34131	Petrol	192	1	0	1800

KM	HP	Met_Color
46986	90	1
72937	90	1
41711	90	1
48000	90	0
38500	90	0
61000	90	0
94612	90	1
75889	90	1
19700	192	0
71138	69	0
31461	192	0
43610	192	0
32189	192	0
23000	192	1

- √ Transform one categorical variable to C binary variables
 - C is the number of categories

I-of-C Coding process

```
# Transform a categorical variable into a set of binary variables
dummy_p <- rep(0,nCar)
dummy_d <- rep(0,nCar)
dummy_c <- rep(0,nCar)

p_idx <- which(corolla$Fuel_Type == "Petrol")
d_idx <- which(corolla$Fuel_Type == "Diesel")
c_idx <- which(corolla$Fuel_Type == "CNG")

dummy_p[p_idx] <- 1
dummy_d[d_idx] <- 1
dummy_c[c_idx] <- 1</pre>
```

- ✓ dummy_p(c/d): initialize a zero vector with length nCar
- ✓ p_idx: Store the row index with Fuel_Type == "Petrol" (do the same job for d_idx and c_idx)
- ✓ dummy_p[p_idx] <- I: replace 0 by I for the rows in the p_idx

Combine the dataset and split the data

```
Fuel <- data.frame(dummy_p, dummy_d, dummy_c)
names(Fuel) <- c("Petrol", "Diesel", "CNG")

# Prepare the data for MLR
corolla_mlr_data <- cbind(corolla[,-c(id_idx, category_idx)], Fuel)

# Split the data into the training/validation sets
set.seed(12345)
corolla_trn_idx <- sample(1:nCar, round(0.7*nCar))
corolla_trn_data <- corolla_mlr_data[corolla_trn_idx,]
corolla_val_data <- corolla_mlr_data[-corolla_trn_idx,]</pre>
```

- ✓ Create a new data frame "Fuel" by combining three dummy variables
- ✓ Combine the dataset with the original corolla dataset and Fuel dataset (use cbind()
 function)
- ✓ Split the data: 70% for training and 30% for validation

Training the model

```
# Train the MLR
mlr_corolla <- lm(Price ~ ., data = corolla_trn_data)
mlr_corolla
summary(mlr_corolla)
plot(mlr_corolla)</pre>
```

- √ Im(): linear regression
 - Price ~ : Formula
 - The left side of ~ is the target variable
 - The right side of ~ are the predictor variables (. means all variables except the target variable)
 - data = corolla_trn_data: data used to estimate the regression coefficients
- √ Summary(): print the result of the regression model
- √ plot(): draw four plots for the regression model

- Interpret the results
 - ✓ Estimate: estimated regression coefficients
 - ✓ Std.Error: standard error of the estimated coefficients
 - √ t value: t-statistic for the hypothesis test
 - √ Pr(>|t|): p-value for the regression coefficient, the smaller the p-value, the more significant the variable
 - √ Adjusted R-squared
 - ✓ NA: variable is removed because of multicollinearity problem

```
> summary(full model)
Call:
lm(formula = Price ~ ., data = trn data)
Residuals:
    Min
             1Q Median
                                    Max
-8569.6 -637.3
                  -42.9
                          650.5 5720.8
Coefficients: (3 not defined because of singularities)
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 -752.65641 1775.96778 -0.424 0.671805
Age 08 04
                 -118.43999
                               4.29358 -27.585 < 2e-16
Mfg Month
                  -95.78658
                              11.11831 -8.615
Mfg Year
                                    NA
                                            NA
                               0.00136 -12.702 < 2e-16
KΜ
                   -0.01727
HP
                   20.46048
                               3.59449
                                         5.692 1.66e-08 ***
Met Color
                  -64.93066
                              81.74804 -0.794 0.427228
Automatic
                  338.02084 156.47529
                                         2.160 0.031000 *
                               0.07958
CC
                   -0.10770
                                        -1.353 0.176246
                   10.46213
                              43.60079
                                         0.240 0.810418
Doors
Cylinders
                         NA
                                    NΑ
                                            NA
                                                     NΑ
Gears
                  183.36459 196.28703
                                         0.934 0.350451
Tow Bar
                 -217.67837
                              85.11397 -2.557 0.010694 *
Petrol
                 2280.57458 387.15749
                                         5.891 5.30e-09
Diesel
                 1004.02078 377.75296
                                         2.658 0.007993 **
CNG
                                                     NA
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1128 on 971 degrees of freedom
                                Adjusted R-squared: 0.9014
Multiple R-squared: 0.9046,
F-statistic: 279.1 on 33 and 971 DF, p-value: < 2.2e-16
```

- Interpret the result
 - √ Figure 1: used to check the following assumption
 - The variability in Y values for a given set of predictors is the same regardless of the values of the predictors (homoskedasticity)

- Interpret the result
 - ✓ Figure 2: used to check the following assumption
 - The noise ε follows a normal distribution

Interpret the result

```
# Plot the result
plot(corolla_trn_data$Price, fitted(mlr_corolla), xlim = c(4000,35000),
    ylim = c(4000,35000))
abline(0,1,lty=3)
```

✓ Plot the relationship between the actual target values (x-axis) and the predicted

values (y-axis)

Normality check for the residuals

- √ hist(): draw a histogram
- √ curve(): draw a curve for a certain probability density function
- ✓ skewness: 0 if the dataset follows a normal distribution
- ✓ kurtosis: 3 if the dataset follows a normal distribution

```
> skewness(corolla_resid)
[1] -0.1355675
> kurtosis(corolla_resid)
[1] 8.630819
```

• Histogram & Normal Density Curve

• Prediction performance of the regression model

```
# Performance Measure
mlr_corolla_haty <- predict(mlr_corolla, newdata = corolla_val_data)
perf_mat[1,] <- perf_eval_reg(corolla_val_data$Price, mlr_corolla_haty)
perf_mat</pre>
```

```
> perf_mat

RMSE MAE MAPE
Toyota Corolla 1085.124 814.0598 8.007297
Boston Housing 0.000 0.0000 0.000000
```


• Boston Housing Price

✓ Predict the median price of houses in a unit district

Variable	Description			
CRIM	per capita crime rate by town.			
ZN	proportion of residential land zoned for lots over 25,000 sq.ft.			
INDUS	proportion of non-retail business acres per town.			
NOX	nitrogen oxides concentration (parts per 10 million).			
RM	average number of rooms per dwelling.			
AGE	proportion of owner-occupied units built prior to 1940.			
DIS	weighted mean of distances to five Boston employment centres.			
TAX	full-value property-tax rate per \\$10,000.			
PTRATIO	pupil-teacher ratio by town.			
Black	Black 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town.			
LSTAT	lower status of the population (percent).			
MEDV	median value of owner-occupied homes in \\$1000s.			

Load the dataset and preprocess the data

```
# Dataset 2: Boston Housing
boston_housing <- read.csv("BostonHousing.csv")
nHome <- nrow(boston_housing)
nVar <- ncol(boston_housing)

# Split the data into the training/validation sets
boston_trn_idx <- sample(1:nHome, round(0.7*nHome))
boston_trn_data <- boston_housing[boston_trn_idx,]
boston_val_data <- boston_housing[-boston_trn_idx,]</pre>
```

- ✓ Unlike "corolla" dataset, all variables are numerical variables
- ✓ No special data preprocessing is requred

Training the model and plot the results

```
# Train the MLR
mlr_boston <- lm(MEDV ~ ., data = boston_trn_data)
mlr_boston

summary(mlr_boston)
plot(mlr_boston)

# Plot the result
plot(boston_trn_data$MEDV, fitted(mlr_boston), xlim = c(-5,50), ylim = c(-5,50))
abline(0,1,lty=3)</pre>
```

- Fitted model
 - √ Adjusted R²: 0.7347 (smaller than that of corolla model)

> summary(mlr_boston)

✓ All variables except INDUS, AGE, and TAX are statistically significant (alpha = 0.05)

```
Call:
lm(formula = MEDV ~ ., data = boston_trn_data)
Residuals:
     Min
                   Median
              10
                                3Q
                                        Max
-13.7098 -2.6401 -0.5686
                            1.3348
                                   27.3746
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.779e+01 5.744e+00
                                   4.839 1.98e-06 ***
            -7.268e-02 3.435e-02
                                  -2.115
CRIM
                                           0.0351 *
                                  2.038
ΖN
            3.485e-02 1.710e-02
                                           0.0423 *
           -8.059e-03 6.755e-02
                                  -0.119
                                           0.9051
INDUS
           -1.218e+01 4.643e+00 -2.623
                                           0.0091 **
NOX
            4.287e+00 4.920e-01
                                   8.714
RM
                                          < 2e-16 ***
           -2.460e-02 1.492e-02
                                  -1.649
                                           0.1000
AGE
           -1.573e+00 2.456e-01
                                  -6.404 5.00e-10 ***
DIS
            7.515e-04 2.755e-03
                                  0.273
                                           0.7852
TAX
           -8.879e-01 1.495e-01
                                  -5.941 6.98e-09 ***
PTRATIO
            1.237e-02 3.067e-03
                                  4.034 6.78e-05 ***
            -4.910e-01 6.139e-02
                                  -7.999 1.97e-14 ***
LSTAT
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.658 on 342 degrees of freedom
                              Adjusted R-squared: 0.7347
Multiple R-squared: 0.743,
F-statistic: 89.89 on 11 and 342 DF, p-value: < 2.2e-16
```

• Residual plot and normal QQ plot

✓ Residuals might not follow a normal distribution

Normality check for the residuals

```
> skewness(boston_resid)
[1] 1.656679
> kurtosis(boston_resid)
[1] 8.669806
```

• Normality check for the residuals

Prediction performance of the regression model

```
# Performance Measure
mlr_boston_haty <- predict(mlr_boston, newdata = boston_val_data)
perf_mat[2,] <- perf_eval_reg(boston_val_data$MEDV, mlr_boston_haty)
perf_mat</pre>
```

