Data Science in Bioinformatics

Palle Villesen & Thomas Bataillon

Week 08

Midterm assignment (by FRIDAY)
Palle says *** ZIP your html! ***

TODAY: ANOVA
THURSDAY: recaps + exp design &
ANOVA again

Exam 14-15 January 2019

Requires your mid term and final projects are approved

20 mins with no preparations

Pre set of questions given in advance + extra Qs

ANOVA fundamental Qs

- Are differences among a priori groups real?
- How much does one factor explain of the variation of one "response" variable
- Fixed or Random effects?
 - Are groups pre-determined, of direct interest ?
 - Are groups a random sample among many possible groups (for instance families in a larger population)?

Shift in circadian rhythm (3 groups: 2 treatments + 1 control)

ANOVA fundamental intuition: partition the **variation**


```
1 obs Y_{ij} – GrandMean = (Mean<sub>i</sub> – GrandMean) + (Y_{ij} – Mean<sub>i</sub>) all data SS_{total} = SS_{groups} + Ss_{error}
```

NB: Variation is measured in squares of deviation

ANOVA fundamental intuition: partition the **variation**

$$SS_{total} = SS_{groups} + SS_{error}$$

ANOVA fundamental intuition: R² is the portion of **variation explained**

$$R^2 = SS_{groups} / SS_{total}$$
 (here 0.43)
 $SS_{total} = SS_{groups}$ + SS_{error}

How do we do a statistical test on the data?

Re-use the comparing means (planned comparisons)

```
Do a "global" test for an effect of group use R<sup>2</sup>?

use something else ... (The F-ratio)
```

The group and error mean squares

MS_{group} represents the amount of variation explained by groups

MS_{error} represents the amount of variation within groups

IF HO is true:

observations in groups are actually samples from the same single population

Partition of sum of squares and F test

$$MS_{groups} = SS_{groups} / df_{groups}$$

$$MS_{error} = SS_{error} / df_{errors}$$

$$F_{obs} = MS_{groups} / MS_{error}$$

 H_0 is false: we expect F > 1

What is the distribution of F under HO?

Probability / MATH

Yij is a random variable Yij $\sim N(\mu_i, \sigma_i)$

SS_{group} is also a r.v.

The F ratio is also a r.v. ...

Simulation of H0 in R

Generate data from **one** population Assign them randomly to **3 groups** Calculate the F test

Null distribution for the F statistic

the F distribution in R

Random number generation for the F distribution

```
myDeviates <- rf(n=10^4,df1= 2, df2=19)
```

Getting the tail (aka p-value) for an F distribution

```
1 - \mathbf{pf}(q = 7.29, df1 = 2, df2 = 19)
```

- n number of random observations to generate
- q the observed value
- df1 number of degrees of freedom in numerator
- df2 number of degrees of freedom in denominator

Internal "check": what proportion of myDeviates exceed 7.29?

ANOVA Assumptions & model check

Observations are randomly drawn from several groups
Obs in each group are normally distributed
Each group has same variance

Model check (often visual)

trend in residuals

normality of residuals

presence of point with "influence"

ALTERNATIVES to parametric ANOVA

Transform (see week 07)

Non parametric ANOVAs

Build your own F-test by resampling (see next weeks).

The mammals dataset

We could also use an ANOVA setting to ask how much "species" explains the variation in dn/ds or gene expression

Is "species" a fixed or a random effect?

How much variation is found between vs among species?

Basic to do list with ANOVA in R ... (see also the R code)

```
Identify the design
    Fixed Factor
    Random Factor
Fit the model accordingly: y ~ x
    lm()
    lme
Test hypothesis
    F-tests and their dfs
    OR permutations (see in coming weeks)
Check the model
    trend in residuals
    normality of residuals
```