Problem B. Collinear Arrangements

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 mebibytes

Given a convex polygon of n points P_1, P_2, \ldots, P_n on a two-dimensional plane, answer q queries, where each query has one of the following types:

- 1. Given one point (x, y), find the number of pairs (P_i, P_j) such that $1 \le i < j \le n$ and the three points (x, y), P_i , and P_j are collinear.
- 2. Given two points (x_1, y_1) and (x_2, y_2) , find the number of points P_i such that $1 \le i \le n$ and the three points (x_1, y_1) , (x_2, y_2) , and P_i are collinear.

Input

The first line contains two integers n and q ($3 \le n \le 10^5$, $1 \le q \le 10^5$) denoting the number of vertices in the given polygon and the number of queries, respectively.

Each of the following n lines contains two integers, x and y, denoting a vertex of the polygon.

Each of the following q lines contains one query, which is in one of the following formats:

- 1. "1 x y", asking to calculate the number of pairs (P_i, P_j) such that $1 \le i < j \le n$ and the three points (x, y), P_i , and P_j are collinear.
- 2. "2 x_1 y_1 x_2 y_2 ", asking to calculate the number of points P_i such that $1 \le i \le n$ and the three points (x_1, y_1) , (x_2, y_2) , and P_i are collinear.

It is guaranteed that:

- $|x|, |y| \le 10^9$ for all points and queries;
- the polygon vertices are given in counter-clockwise order;
- the polygon is convex (in particular, no three vertices are collinear);
- for each query, the given points and the polygon vertices do not coincide;
- the number of queries in the first format does not exceed 100.

Output

For each query, output a line containing a single integer: the answer to the query.

Example

standard input	$standard\ output$
5 3	1
0 0	1
2 0	2
2 1	
1 2	
0 2	
1 1 1	
2 1 1 2 2	
1 2 2	

Problem B Page 2 of 20

Note

- For the first query, the only pair is (P_2, P_5) since (1, 1), $P_2 = (2, 0)$ and $P_5 = (0, 2)$ are collinear.
- For the second query, the only point is P_1 since (1,1), (2,2), and $P_1=(0,0)$ are collinear.
- For the third query, the two pairs are (P_2, P_3) and (P_4, P_5) .

Problem B Page 3 of 20