COLLABORATION IN AIRCRAFT DESIGN

2nd CPACS / RCE SYMPOSIUM

Integrated Design Lab | HAMBURG

Design Challenge

Summary

- These slides elaborate on the design challenge for a new medium range civil transport aircraft
- The design challenge is part of the Collaboration in Aircraft Design series of CPACS/RCE Symposia organized by the German Aerospace Center (DLR)
- Results will be presented at the 3rd CPACS/RCE Symposium on 19th/20th September 2013 in Linköping, Sweden
- The design challenge is open for anyone interested in aircraft design and multi-disciplinary optimization

3rd CPACS/RCE Symposium

- 19th/20th of September 2013 in Linköping, Sweden
- The symposium is held in cooperation with CEAS 2013 Air & Space Conference
- It is possible (but not necessary) to hand in papers for the CEAS 2013 Air & Space Conference. The abstract deadline is the 15th of Feb 2013. Please refer to your design team for possible contents.

TLAR

- The top-level aircraft requirements describe the overall design task for aircraft to be designed
- The overall goal is to reduce cash operating cost
- A method for estimation of cash operating cost for EIS 2025 will be made available by 02/13
- All requirements may be violated for good reason! Try to achieve as much reduction of cash operating cost as possible. This will not be possible without changing the rules of the game.

PAX	190 all economy @ 30" pitch 100 kg/pax payload capacity for high density layout @ 28" pitch
Range	2000 NM (90% of flights within Europe and USA < 500 NM range). Technical means to enable up to 2900 NM range
TOFL	2000 m, SL, MTOW, ISA +15° C
LDGFL	1500 m, SL, MLW, ISA +15° C
Mach	0,79
Initial Climb/ Max. Altitude	FL 350 FL 410
Span	Max. 36m or technical means to achieve ICAO class C
Noise	-5 dB cum. vs. Chapter 4
Fuelburn	-25% versus A320 (CFM) 2009
Emissions	Near zero emissions at gate and during taxi
CoC	-35% versus A320 (CFM) 2009

Design Teams

- Four different configurations have been discussed at the 2nd CPACS/RCE Symposium in Dec 2012.
- For each configuration preliminary information and points of contact are given. Feel free to get into contact with us for any given configuration
- The design challenge is open for additional technologies, configurations or means to reduce cash operating cost
- A preliminary work schedule will be created by end of Jan 2012.

Box Wing

Box Wing

- Ground handling issues
- Amount of storable fuel
- Maintenance issues
- Safety (ground fire)

- Reduced induced drag
- Lesser fuel burn
- Less thrust, less noise
- Fits requirements

Design Team Partners: TU Delft, RWTH Aachen, University Linköping, DLR

Point of Contact: K. Risse, RWTH Aachen, F. Dorbath, DLR

Strut Braced Wing

Picture, NASA Subsonic Ultra Green Aircraft Research

Strut Braced Aircraft

- Amount of storable fuel
- Flutter analysis
- Strut attachment
- Interference drag
- Landing gear integration

- Reduced induced drag
- Reduced wing mass
- Combination with foldable wings

Design Team Partners: KTH Stockholm, HAW Hamburg, CFSE Lausanne, DLR

Point of Contact: D. Scholz, HAW Hamburg, E. Moerland, DLR

ULD Less Aircraft

ULD Less Aircraft

- Turnaround advantage
- Reduction in ground fees
- Possible additional revenues
- Unused fuselage volume

- Towards alternate payload accommodation
 - Seating concepts
 - Service level
 - Cargo and baggage stowage
- Integration with other concepts

Design Team Partners: RWTH Aachen, DLR, NASA (over wing nacelles)

Point of Contact: <u>J. Fuchte</u>, DLR

Blended Wing Body

Blended Wing Body

- Not a medium range competitor
 Lesser fuel burn
- Passenger accommodation
- Safety (ditching)
- Boarding procedure
- Weight estimation of pressurized cabin

- Less thrust, better shielding less noise
- Adjustment of stability margin

Design Team Partners: TU Delft, TU Braunscheig, DLR

Point of Contact: P. Ciampa, DLR, M. Voskuijl, TU Delft

We like to thank all attendees of the 2nd CPACS/RCE Symposium for their contribution. We are very happy about the broad interest in Collaboration in Aircraft Design!

We are looking forward to the 3rd Symposium and the results of the Design Challenge. This an ongoing process, feel free to ask any questions and get into contact with us.

Björn Nagel and Daniel Böhnke

