## Отчет по работе «Определение предела прочности в анизотропной пластинке»

## Экспериментальные данные

| h | = | 2 | М   | М   |
|---|---|---|-----|-----|
|   | _ | _ | IVI | IVI |

| φ, ° | h, MM | F, H |
|------|-------|------|
| 0    | 22,7  | 169  |
| 15   | 23,4  | 175  |
| 30   | 22,9  | 159  |
| 45   | 21,5  | 126  |
| 60   | 23,2  | 125  |
| 75   | 26    | 139  |
| 90   | 23    | 126  |

## Теоретические сведения

В случае плоского напряженного состояния ортотропных сред обобщенная интенсивность представила в виде:

$$S = A\sigma_x^2 + B\sigma_y^2 + C\sigma_x\sigma_y + D\tau_{xy}^2,$$

где  $\sigma_{\!\scriptscriptstyle X},\sigma_{\!\scriptscriptstyle Y}, au_{\!\scriptscriptstyle XY}$  — компоненты тенора напряжений в осях анизотропии.

Разрушение происходит, когда S достигает критического значения  $S_m$ . В момент разрушения:  $\sigma=\sigma_b(\phi)$ , где  $\sigma_b$  — предел прочности пластинки.

Подставив  $\sigma_{\!\scriptscriptstyle X} = \sigma(\phi)cos^2\phi$ ,  $\sigma_{\!\scriptscriptstyle Y} = \sigma(\phi)sin^2\phi$ ,  $\tau_{\!\scriptscriptstyle XY} = \sigma(\phi)cos\phi sin\phi$ , получим:

$$\sigma_b(\phi) = \frac{S_m}{\sqrt{Acos^4\phi + Bsin^4\phi + (C+D)sin^2\phi cos^2\phi}}.$$

В безразмерном виде:

$$\frac{\sigma_b(\phi)}{\sigma_b(0)} = \frac{\chi}{\sqrt{\chi^2 cos^4 \phi + sin^4 \phi + bsin^2 \phi cos^2 \phi}} = f(\phi, \chi, b).$$

Пусть при 
$$\phi=\phi_1$$
:  $f(\phi_1,\chi,b)=f_1=rac{\sigma(\phi_1)}{\sigma(0)}$ , при  $\phi=\phi_2$  :

$$f(\phi_2,\chi,b) = f_2 = \frac{\sigma(\phi_2)}{\sigma(0)}$$
. Тогда получим систему:

$$\chi^{2}cos^{4}\phi_{1} + sin^{4}\phi_{1} + bsin^{2}\phi_{1}cos^{2}\phi_{1} = \frac{\chi^{2}}{f_{1}^{2}}$$

$$\chi^{2}cos^{4}\phi_{2} + sin^{4}\phi_{2} + bsin^{2}\phi_{2}cos^{2}\phi_{2} = \frac{\chi^{2}}{f_{2}^{2}}.$$
(\*)

## Обработка экспериментальных данных

Решая систему ( \* ), можно найти  $\chi$  и b. Для  $\phi_1=15$  ° и  $\phi_2=90$  ° определяем  $\chi=0.54,\,b=0.96$  . Отсюда определяем  $\sigma_{theor}$ .

$$\left[\frac{\sigma(\phi)}{\sigma(0)}\right]_{theor} = \frac{0.54}{\sqrt{0.29cos^4\phi + sin^4\phi + 0.96sin^2\phi cos^2\phi}}$$

| $\cos(\phi)$ | $\sigma_{exp}$ , H / MM^2 | $\sigma_{theor}$ , H / MM^2 |
|--------------|---------------------------|-----------------------------|
| 1,00         | 3,72                      | 3,72                        |
| 0,97         | 3,74                      | 3,56                        |
| 0,87         | 3,47                      | 3,15                        |
| 0,71         | 2,93                      | 2,68                        |
| 0,50         | 2,69                      | 2,30                        |
| 0,26         | 2,67                      | 2,08                        |
| 0,00         | 2,74                      | 2,01                        |

Максимальное отклонение экспериментального значения от теоретического составило 36%.

