Two-Lane Traffic Simulation

Tommy Poek

47192085

Intro - Visualization

Intro - Visualization

Intro - Scaling

Scale up #lanes

Scale up #cars

Fair benchmarking ←

Equal chances of lane change (

Constant traffic density

Scale both #cars and #lanes

Intro - Scaling

Scale up #lanes

Scale up #cars

Fair benchmarking ←

Equal chances of lane change

Constant traffic density

Scale #cars and lane_length

Simplified for GPU optimization

6

Intro - How the model works

for each simulation step:

tryLaneChange

// tryLaneChange

- /*start the clock*/
- determineTargetPosition()
- tryLaneChange()
- /*time the clock*/

// driveForward

- /*start the clock*/
- resolveCollisionsPerLane()
- updateActualPosition()
- /*time the clock*/

Intro - How the model works

non-parallelizable for each simulation step:

- // tryLaneChange
 - /*start the clock*/
 - determineTargetPosition()
 - tryLaneChange()
 - /*time the clock*/
 - // driveForward
 - /*start the clock*/
 - resolveCollisionsPerLane()
 - updateActualPosition()
 - /*time the clock*/

parallelize cars

- ► CPU
 - serial codes, same logic
- ▶ GPU -> CUDA thrust + manual malloc (hybrid) -> let's call it "GPU thrust"

```
thrust::for_each(..., DetermineTargetPosition());
```

- tryLaneChangeCUDA<<<1, 1>>>(...);
- resolveCollisionsPerLaneCUDA<<<1, 2>>>(...);
- thrust::for_each(..., ..., UpdateActualPosition());
- ► GPU -> CUDA manual malloc (purely manual) -> let's call it "GPU manual"
 - determineTargetPositionCUDA<<<1, #threads>>>(...);
 - tryLaneChangeCUDA<<<1, 1>>>(...);
 - resolveCollisionsPerLaneCUDA<<<1, 2>>>(...);
 - updateActualPositionCUDA<<<1, #threads>>>(...);

- ► CPU
 - serial codes, same logic
- ▶ GPU -> CUDA thrust + manual malloc (hybrid) -> let's call it "GPU thrust"

```
thrust::for_each(..., DetermineTargetPosition());
```

- tryLaneChangeCUDA<<<1, 1>>>(...);
- resolveCollisionsPerLaneCUDA<<<1, 2>>>(...);
- thrust::for_each(..., ..., UpdateActualPosition());
- ► GPU -> CUDA manual malloc (purely manual) -> let's call it "GPU manual"
 - determineTargetPositionCUDA<<<1, /#threads>>>(...);
 - tryLaneChangeCUDA<<<1, 1>>>(../);
 - ▶ resolveCollisionsPerLaneCUDA
 <<1, 2>>>(...);
 - updateActualPositionCUDA<<<1, #threads>>(...);

default #threads = 4

fixed #threads for lanes = 2

- ► CPU
 - serial codes, same logic
- ► GPU -> CUDA thrust + manual malloc (hybrid) -> let's call it "GPU thrust"
 - thrust::for_each(..., DetermineTargetPosition());
 - tryLaneChangeCUDA<<<1, 1>>>(...);
 - resolveCollisionsPerLaneCUDA<<<1, 2>>>(...);
 - thrust::for_each(..., ..., UpdateActualPosition());
- GPU -> CUDA manual malloc (purely manual) -> let's call it "GPU manual"
 - determineTargetPositionCUDA<<<<1, /#threads>>>(...);
 CLIDA Nsight Compute profiling #ca
 - ▶ tryLaneChangeCUDA<<<1, 1>>>(.../);
 - ▶ resolveCollisionsPerLaneCUDA
 <<1, 2>>>(...);
 - updateActualPositionCUDA<</pre>updateActualPositionCUDAv1, #threadsv

CUDA Nsight Compute profiling, #cars=500

Function Name	De	Duration (1.10943e+09)	Ru (1.	Compute Throughput	Memory Throughput	# Registers	Grid Size	Block Size
determineTargetPositionCUDA		0.06		0.05	0.13	24	1	4
tryLaneChangeCUDA		11.74		0.91	0.91	48	1	1
resolveCollisionsPerLaneCUDA		0.18		0.08	0.08	40	1	2
updateActualPositionCUDA		0.05		0.04	0.12	30	1	4

default #threads = 4

fixed #threads for lanes = 2

Implementation	Task	500 Cars		
CPU	tryLaneChange	309,860		
	driveForward	1,060		
GPU thrust	tryLaneChange	2,083		
	driveForward	1,388,718		

GPU thrust vs CPU:

- tryLaneChange significantly optimized!!
- driveForward runs terribly longer!

Implementation	Task	500 Cars		
CPU	tryLaneChange	309,860		
	driveForward	1,060		
GPU manual	tryLaneChange	1,849		
	driveForward	614		

GPU thrust vs CPU:

- tryLaneChange significantly optimized!!
- driveForward runs terribly longer!

GPU manual vs CPU:

both tryLaneChange and driveForward are optimized!!

Implementation	Task	500 Cars	1000 Cars	2000 Cars	4000 Cars
CPU	tryLaneChange	309,860	1,267,526	5,507,635	23,597,986
		1,060			
GPU thrust					
GPU manual					

CPU tryLaneChange:

Traffic size increases → Runtime explodes!

	# lane changes	3,555	4,260	6,135	16,229
Implementation	Task	500 Cars	1000 Cars	2000 Cars	4000 Cars
CPU	tryLaneChange	309,860	1,267,526	5,507,635	23,597,986
		1,060			
GPU thrust					
GPU manual					

CPU tryLaneChange:

- Traffic size increases → Runtime explodes!
- Successful lane changes adds #instructions

Implementation	Task	500 Cars	1000 Cars	2000 Cars	4000 Cars
CPU					
	driveForward	1,060	2,061	4,480	9,199
GPU thrust					
GPU manual					

CPU driveForward:

• Traffic size increases → Runtime increases linearly!

Implementation	Task	500 Cars	1000 Cars	2000 Cars	4000 Cars
CPU					
		1,060			
GPU thrust	tryLaneChange	2,083	2,263	2,182	2,333
GPU manual	tryLaneChange	1,849	2,066	1,587	2,137
	driveForward	614	596	697	695

GPU (thrust and manual) tryLaneChange: and GPU manual driveForward:

• Traffic size increases → Runtime remains stable!

Implementation	Task	500 Cars	1000 Cars	2000 Cars	4000 Cars
CPU					
		1,060			
GPU thrust					
	driveForward	1,388,718	4,347,869	24,827,547	99,747,402
GPU manual					

GPU thrust driveForward:

• Traffic size increases → Runtime explodes!

- CPU with increasing traffic size:
 - ▶ tryLaneChange runtime explodes! ← more successful lane changes, more instructions
 - ▶ driveForward runs linearly slower ← #instructions proportional to problem size

- CPU with increasing traffic size
 - ▶ tryLaneChange runtime explodes! ← more successful lane changes, more instructions
 - ▶ driveForward runs linearly slower ← #instructions proportional to problem size
- from CPU to GPU with increasing traffic size:
 - ► tryLaneChange (both thrust and manual versions) get optimized and remain stable ← parallelization
 - ▶ driveForward (manual version) get optimized and remain stable ← parallelization
 - determineTargetPositionCUDA<<<1, #threads>>>(...);
 - ▶ tryLaneChangeCUDA<<<1, 1>>>(...);
 - ▶ resolveCollisionsPerLaneCUDA<<<1, 2>>>(...);
 - ▶ updateActualPositionCUDA<<<1, #threads>>>(...);

- CPU with increasing traffic size:
 - ▶ tryLaneChange runtime explodes! ← more successful lane changes, more instructions
 - ▶ driveForward runs linearly slower ← #instructions proportional to problem size
- from CPU to GPU with increasing traffic size:
 - ▶ tryLaneChange (both thrust and manual versions) get optimized and remain stable ← parallelization
 - ▶ driveForward (manual version) get optimized and remain stable ← parallelization
 - determineTargetPositionCUDA<<<1, #threads>>>(...);
 - ▶ tryLaneChangeCUDA<<<1, 1>>>(...)
 - ▶ resolveCollisionsPerLaneCUDA<<<1, 2>>>(...);
 - ▶ updateActualPositionCUDA<<<1, #threads>>>(...);
 - ▶ driveForward (thrust version) runs much slower! ... too much abstraction in thrust
 - thrust::for_each(carsDevice.begin(), carsDevice.end(), UpdateActualPosition());

Benchmarking - GPU manual malloc - different #threads all runtime measured in us

Tasks (fixed #cars=2000)	#threads=4	#threads=8	#threads=16	#threads=32	#threads=64	#threads=128
<pre>determineTargetPosition<<<1, #threads>>></pre>	1,715	1,967	1,866	1,222	1,137	1,753
updateActualPosition<<<1, #threads>>>	309	311	280	246	246	282

determineTargetPosition: best #threads = 64
updateActualPosition: Not affected by #threads

- With fixed #cars=2000, as #threads increases →
 - ▶ determineTargetPosition optimized! (till #threads=64) ←
 - Arithmetic instruction: car.TargetPosition = car.Position + car.TargetSpeed;
 - ▶ No effects on updateActualPosition ←
 - ► Too simple instruction: car.Position = car.TargetPosition;

Thank you!

Tommy Poek 47192085