Log Barrier Method

The inequality-constrained optimization problem is stated as

$$\min_{x} f(x)$$

subject to $c(x) \ge 0$,

where both f(x) and c(x) are assumed to be continuous.

Log barrier method is to find an unconstrained minimizer of a composite function that reflects the original objective function as well as the presence of constraints. The logarithmic barrier function is defined as

$$B(x, \mu) = f(x) - \mu \sum_{i=1}^{m} \ln c_i(x),$$

where μ is a positive scalar, the barrier parameter. $B(x,\mu)$ retains the smoothness properties of f(x) and c(x) as long as c(x) > 0. For very small $\mu > 0$, $B(x,\mu)$ acts like f(x) except close to points where any constraint is zero. Intuition suggests that minimizing $B(x,\mu)$ for a sequence of positive μ values converging to zero will cause the unconstrained minimizers of $B(x,\mu)$ to converge to a local constrained minimizer of the original problem. The gradient of the barrier function, denoted by $\nabla B(x,\mu)$, is

$$\nabla B(x,\mu) = \nabla f(x) - \sum_{i=1}^{m} \frac{\mu}{c_i(x)} \nabla c_i(x).$$

An unconstrained minimizer will be denoted by x_{μ} , and it will be proven later that $c(x_{\mu}) > 0$. By the optimality conditions for unconstrained optimization (P591 Lemma A7), it must hold that $\nabla B(x_{\mu}, \mu) = 0$ when $\nabla B(x, \mu)$ is twice-continuously differentiable. This leads to that

$$\nabla f(x_{\mu}) = \sum_{i=1}^{m} \frac{\mu}{c_i(x)} \nabla c_i(x).$$

This implies that the objective gradient at x_{μ} is a positive linear combination of the constraint gradients. The coefficients in the linear combination are called the barrier multiplier (analogy with Lagrange multipliers), denoted by λ_{μ} . Formally, λ_{μ} is defined as

$$\lambda_{\mu} \triangleq \mu \cdot / c(x),$$

with $\lambda_{\mu} > 0$. Thus, we have

$$c(x_{\mu}) \cdot \lambda_{\mu} = \mu.$$

This relationship between the barrier multipliers, constraint values, and the barrier parameter, called perturbed complementarity, is analogous as $\mu \to 0$ to the complementarity condition $c(x) \cdot \lambda = 0$ that holds at a KKT point.

THEOREM: Local convergence for barrier methods

Consider the problem of minimizing f(x) subject to $c(x) \geq 0$, where f(x) and c(x) are continuous. Let \mathcal{F} denote the feasible region, let \mathcal{N} denote the set of minimizers with objective function value $f^* = \min f(x)$, and assume that \mathcal{N} is non-empty. Let $\{\mu_{\kappa}\}$ be a strictly decreasing sequence of positive barrier parameters such that $\lim_{k\to\infty} \mu_k = 0$. Assume that

- (a) there exists a non-empty compact set \mathcal{N}^* of local minimizers that is an isolated subset of \mathcal{N} ;
- (b) at least one point in \mathcal{N}^* is in the closure of strict(\mathcal{F}), i.e., there is at lease one point in \mathcal{N}^* that is strictly feasible or the limiting point of \mathcal{F} .

Then the following results hold:

- (i) there exists a compact set S such that $\mathcal{N}^* \subset \operatorname{int}(S)$ and such that , for any feasible point \bar{x} in S but not in \mathcal{N}^* , $f(\bar{x}) > f^*$;
- (ii) for all sufficiently small μ_k , there is an unconstrained minimizer y_k of the barrier function $B(x, \mu_k)$ in $\operatorname{strict}(\mathcal{F}) \cap \operatorname{int}(S)$, with

$$B(y_k, \mu_k) = \min\{B(x, \mu_k) : x \in strict(\mathcal{F}) \cap S)\}.$$

Thus $B(y_{\kappa}, \mu_{\kappa})$ is the smallest value of $B(x, \mu_{\kappa})$ for any $x \in \text{strict}(\mathcal{F}) \cap S$.

- (iii) any sequence of these unconstrained minimizers $\{y_k\}$ of $B(x, \mu_{\kappa})$ has at least one convergent subsequence;
- (iv) the limit point x_{∞} of any convergent subsequence $\{x_k\}$ of the unconstrained minimizers $\{y_k\}$ defined in (ii) lies in \mathcal{N}^* .
- (v) for the convergent subsequences $\{x_k\}$ of part (iv)

$$\lim_{k \to \infty} f(x_{\kappa}) = f^* = \lim_{k \to \infty} B(x_{\kappa}, \mu_{\kappa}).$$

THEOREM: Properties of the central path/barrier trajectory

Consider the problem of minimizing f(x) subject to $c(x) \ge 0$. Let \mathcal{F} denote the feasible region, and assume that the set $\operatorname{strict}(\mathcal{F})$ of strictly feasible points is non-empty. Let x^* be a local constrained minimizer, with g^* denoting $g(x^*)$, J^* denoting $J(x^*)$, and so on, and let \mathcal{A} denote $\mathcal{A}(x^*)$. Assume that the following sufficient optimality conditions hold at x^* :

(a) x^* is a KKT point, i.e., there exists a nonempty set \mathcal{M}_{λ} of Lagrange multipliers λ satisfying

$$\mathcal{M}_{\lambda} = \{\lambda : g^* = J^{*T}\lambda, \lambda \geq 0, \text{ and } c(x^*) \cdot \lambda = 0\}$$

- (b) the MFCQ (a condition on the constraints) holds at x^* , i.e., there exists p such that $J_{\mathcal{A}}^*p > 0$, where $J_{\mathcal{A}}^*$ denotes the Jacobian of the active constraints at x^* ; and
- (c) there exists $\omega > 0$, such that $p^T H(x^*, \lambda) p \geq w \|p\|^2$ for all $\lambda \in \mathcal{M}_{\lambda}$ and all nonzero p satisfying $g^{*T} p = 0$ and $J_{\mathcal{A}}^* p \geq 0$, where $H(x^*, \lambda)$ is the Hessian of the Lagrangian (2.11). $H(x, \lambda) \triangleq \nabla_{xx}^2 L(x, \lambda) = \nabla^2 f(x) \sum_{i=1}^m \lambda_i \nabla^2 c_i(x)$

Assume that a logrithmic barrier method is applied in which μ_k converges monotonically to zero as $k \to \infty$. Then,

- (i) there is at least one subsequence of unconstrained minimizers of the barrier function $B(x, \mu_k)$ converging to x^* ;
- (ii) let $\{x^k\}$ denote such a convergent subsequence, with the obvious notation that c_i^k denotes $c_i(x^k)$, and so on. Then the sequence of barrier multipliers $\{\lambda^k\}$, whose i-th component is μ_k/c_i^k , is bounded;
- (iii) $\lim_{k\to\infty}\lambda^k=\bar{\lambda}\in\mathcal{M}_\lambda$

If, in addition, strict complementarity holds at x^* , i.e, there is a vector $\lambda \in \mathcal{M}_{\lambda}$ such that $\lambda_i > 0$ for all $i \in \mathcal{A}$, then

- (iv) $\bar{\lambda}_{\mathcal{A}} > 0$;
- (v) for sufficiently large k, the Hessian matrix $\nabla^2 B(x^k, \mu_k)$ is positive defnite;
- (vi) a unique, continuously differentiable vector function $x(\mu)$ of unconstrained minimizers of $B(x,\mu)$ exisits for positive μ in a neighborhood of $\mu=0$; and
- (vii) $\lim_{\mu \to 0_{+}} x(\mu) = x^{*}$

Problem

$$\min_{\tau} \iint -\operatorname{sgn}(v) \, u \, f_Y\left(u,v;\tau\right) \, du \, dv$$
 subject to $\kappa - \iint \operatorname{sgn}(v) \, w \, f_Z\left(w,v;\tau\right) \, dw \, dv \ge 0$

Log-barrier formation

$$B(\tau,\mu) = \iint -\operatorname{sgn}(v)uf_Y(u,v;\tau) du dv - \mu \ln \left[\kappa - \iint \operatorname{sgn}(v)wf_Z(w,v;\tau) dw dv\right],$$

and

$$\nabla B(\tau,\mu) = \iint -\operatorname{sgn}(v)u\nabla f_Y(u,v;\tau)\,du\,dv + \mu \frac{\iint \operatorname{sgn}(v)w\nabla f_Z(w,v;\tau)\,dw\,dv}{\kappa - \iint \operatorname{sgn}(v)wf_Z(w,v;\tau)\,dw\,dv},$$

where μ is a sequence of decreasing positive constants converging to zero. Note that ∇ is the first order derivative with respect to τ .

We denote an unconstrained minimizer of $B(\tau,\mu)$ as $\tau(\mu)$ or τ_{μ} . $\tau(\mu)$ is used when we need to emphasize it as a function of the barrier parameter μ , and $\tau(\mu)$ is used for short notation embedded in equations. It can be proven that the constraint is strictly satisfied, i.e., $\kappa - \iint \operatorname{sgn}(v) w f_Z(w, v; \tau_{\mu}) dw dv > 0$. Assume that $\nabla B(\tau, \mu)$ is twice-continuously differentiable, it must hold that $\nabla B(\tau_{\mu}, \mu) = 0$, which means that

$$\iint \operatorname{sgn}(v) u \nabla f_Y(u, v; \tau_{\mu}) du dv = \mu \frac{\iint \operatorname{sgn}(v) w \nabla f_Z(w, v; \tau) dw dv}{\kappa - \iint \operatorname{sgn}(v) w f_Z(w, v; \tau_{\mu}) dw dv}$$

The barrier multiplier, the coefficient in that linear relationship, is denoted by λ_{μ} and is defined as

$$\lambda_{\mu} \triangleq \frac{\mu}{\kappa - \iint \operatorname{sgn}(v) w f_Z(w, v; \tau_{\mu}) dw dv}$$

This relationship can be written as

$$\lambda_{\mu} \left[\kappa - \iint \operatorname{sgn}(v) w f_Z(w, v; \tau_{\mu}) \, dw \, dv \right] = \mu.$$

This relationship between the barrier multiplier, constraint value, and the barrier parameter, called perturbed complementarity, is analogous as $\mu \to 0$ to the complementarity condition $c(x^*)\lambda^* = 0$ that holds at a KKT point.

Optimality conditions for the central path/barrier trajectory

We display the optimality conditions for the central path/barrier trajectory. Consider the problem stated above. Let \mathcal{F} denote the feasible region, and assume that the set strict(\mathcal{F}) of strictly feasible points is non-empty.Let τ^* be a local constrained minimizer, with g^* denoting $g(\tau^*) = \nabla f(\tau^*)$, J^* denoting $J(\tau^*) = \nabla c(\tau^*)$, and so on, and let \mathcal{A} denote $\mathcal{A}(\tau^*)$. Assume theat the following sufficient optimality conditions hold at τ^* :

(a) τ^* is a KKT point, i.e., there exists a nonempty set \mathcal{M}_{λ} of Lagrange multipliers λ satisfying

$$\mathcal{M}_{\lambda} = \{\lambda : g^* = J^{*T}\lambda, \lambda \ge 0, \text{ and } c(\tau^*) \cdot \lambda = 0\}$$

- (b) the MFCQ (a condition on the constraints) holds at τ^* , i.e., there exists p such that $J_{\mathcal{A}}^*p > 0$, where $J_{\mathcal{A}}^*$ denotes the Jacobian of the active constraints at τ^* ; and
- (c) there exists $\omega > 0$, such that $p^T H(\tau^*, \lambda) p \geq w \|p\|^2$ for all $\lambda \in \mathcal{M}_{\lambda}$ and all nonzero p satisfying $g^{*T} p = 0$ and $J_{\mathcal{A}}^* p \geq 0$, where $H(x^*, \lambda)$ is the Hessian of the Lagrangian (2.11). $H(\tau, \lambda) \triangleq \nabla_{\tau\tau}^2 L(\tau, \lambda) = \nabla^2 f(\tau) \sum_{i=1}^m \lambda_i \nabla^2 c_i(\tau)$

Assume that a logrithmic barrier method is applied in which μ_k converges monotonically to zero as $k \to \infty$. Then,

- (i) there is at least one subsequence of unconstrained minimizers of the barrier function $B(\tau, \mu_k)$ converging to τ^* ;
- (ii) let $\{\tau^k\}$ denote such a convergent subsequence, with the obvious notation that c_i^k denotes $c_i(\tau^k)$, and so on. Then the sequence of barrier multipliers $\{\lambda^k\}$, whose i-th component is μ_k/c_i^k , is bounded;
- (iii) $\lim_{k\to\infty}\lambda^k=\bar{\lambda}\in\mathcal{M}_\lambda$

If, in addition, strict complementarity holds at τ^* , i.e, there is a vector $\lambda \in \mathcal{M}_{\lambda}$ such that $\lambda_i > 0$ for all $i \in \mathcal{A}$, then

- (iv) $\bar{\lambda}_{\mathcal{A}} > 0$;
- (v) for sufficiently large k, the Hessian matrix $\nabla^2 B(\tau^k, \mu_k)$ is positive defnite;
- (vi) a unique, continuously differentiable vector function $\tau(\mu)$ of unconstrained minimizers of $B(\tau,\mu)$ exisits for positive μ in a neighborhood of $\mu=0$; and
- (vii) $\lim_{\mu \to 0_+} \tau(\mu) = \tau^*$