Tablica 3. Estymacja przedziałowa parametrów w dwóch populacjach

L.p.	Parametr	Założenia	Końce przedziału ufności	Oznaczenia
1	$m_1 - m_2$	$X_i \sim \mathcal{N}(m_k, \sigma_k), k = 1, 2$ $\sigma_k = ?$ ale $\sigma_1 = \sigma_2$ n_k dowolne	$(\overline{X}_{1} - \overline{X}_{2})$ $\mp t_{1 - \frac{\alpha}{2}, n_{1} + n_{2} - 2} \sqrt{\frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2} - 2}} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)$	X_1, X_2 – zm. l-owe będące modelami badanej cechy w dwóch populacjach, $X_k = (X_{k1}, X_{k2},, X_{kn_k}) - n_k$ -elementowe niezależne proste próby losowe, $k = 1,2$; $1 - \alpha$ – poziom ufności przedziału,
2	$m_1 - m_2$	$X_k \sim \mathcal{N}(m_k, \sigma_k), k = 1, 2$ $\sigma_k = ? \text{ ale } \sigma_1 \neq \sigma_2$ $n_k \text{ dowolne}$	$(\overline{X}_1 - \overline{X}_2) \mp t_{1 - \frac{\alpha}{2}, \nu} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$	$k=1,2$ – numer populacji lub próby, n_k – liczebność k -tej próby, m_k – wartość oczekiwana k -tej populacji, \overline{X}_k – średnia arytmetyczna k -tej próby, $\overline{X}_1 - \overline{X}_2$ – średnia arytmetyczna z różnic dla prób związanych w pary, σ_k – odch. std. dla k -tej populacji, S_k – odch. std. dla k -tej próby losowej (statystyka nieobciążona), $S_{\overline{X}_1 - \overline{X}_2}$ – odch. std. dla różnic z prób powiązanych,
3	$m_1 - m_2$	$X_k \sim ?$ lub dowolny, $k = 1, 2$ $\sigma_k = ?,$ $n_k > 30$	$(\overline{X}_1 - \overline{X}_2) \mp z_{1 - \frac{\alpha}{2}} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$	
4	$m_1 - m_2$	populacja par, $(X_1 - X_2) \sim \mathcal{N}(m, \sigma),$ $\sigma =?, n_1 = n_2 = n$	$\overline{X_1 - X_2} \mp t_{1 - \frac{\alpha}{2}, n - 1} \frac{S_{\overline{X_1 - X_2}}}{\sqrt{n}}$	
5	$\frac{\sigma_1^2}{\sigma_2^2}$	$X_k \sim \mathcal{N}(m_k, \sigma_k), k = 1, 2$ n_k dowolne	$\frac{S_1^2}{S_2^2} F_{\underline{\alpha};n_1-1,n_2-1}; \ \frac{S_1^2}{S_2^2} F_{1-\frac{\alpha}{2};n_1-1,n_2-1}$	p_k – wskaźnik struktury dla k -tej populacji, K_k – liczba elementów wyróżnionych w k -
6	$p_{1} - p_{2}$	$X_k \sim B(p_k), k = 1, 2$ $\bar{P}_k = \frac{1}{n_k} \sum_{i=1}^{n_k} X_{ki}$ $\bar{p}_k \mp 3 \cdot \sqrt{\frac{\bar{p}_k (1 - \bar{p}_k)}{n_k}}$ $\subset (0, 1)$	$(\bar{P}_1 - \bar{P}_2) \mp z_{1-\frac{\alpha}{2}} \sqrt{\frac{\bar{P}_1(1-\bar{P}_1)}{n_1} + \frac{\bar{P}_2(1-\bar{P}_2)}{n_2}}$	tej próbie, $\bar{P}_k = \frac{K_k}{n_k} - \text{frakcja wyróżnionych elementów}$ w k -tej próbie, $z_{\alpha} - \text{kwantyl rzędu } \alpha \text{ rozkładu } \mathcal{N}(0; 1),$ $t_{\alpha;\nu} - \text{kwantyl rzędu } \alpha \text{ rozkładu } t\text{-Studenta z}$ $\nu \text{ stopniami swobody,}$ $\chi^2_{\alpha;\nu} - \text{kwantyl rzędu } \alpha \text{ rozkładu chi-}$ kwadrat z $\nu \text{ stopniami swobody.}$ $F_{\alpha;n_1-1,n_2-1} - \text{kwantyl rzędu } \alpha \text{ rozkładu } F \text{ z}$
				$n_1 - 1$ i $n_2 - 1$ stopniami swobody