Ordenação: Heapsort

Estruturas de Dados e Algoritmos – Ciência da Computação

Prof. Daniel Saad Nogueira Nunes

IFB – Instituto Federal de Brasília, Campus Taguatinga Heapsort Análi

Sumário

Heap

A chave do heapsort é uma estrutura denominada heap. Uma heap binária é uma estrutura de natureza recursiva e tem as seguinte propriedades:

- lacktriangle O elemento pai é \geq do que os seus filhos.
- O filho da esquerda é uma heap.
- O filho da direita também é uma heap.

Heapsort Anális

Heapify

Para construir uma Heap, devemos aplicar o procedimento de **heapify** nos nós que não apresentam a propriedade de Heap.

Heapsort Anál

Heapsort

Heap

Note que os nós folha, já são heaps (por vacuidade). Logo, o **heapify** só necessita ser aplicado aos nós acima dos nós folhas.

Heapsort Análise

Heapsort

- Uma vez que a Heap está contruída, sabemos que o elemento raiz (primeiro elemento) é o maior de todos, logo podemos retirá-lo e colocá-lo no fim da sequência.
- Escolhemos o último nó folha para ser a raiz (primeiro elemento da sequência) e aplicamos heapify para manter a estrutura da heap.
- O procedimento é repetido até que tenhamos a sequência ordenada.

Exemplo

Function Heapsort

Input: V

Output: $V, V[i] < V[i+1], 0 \le i < n-1$

- 1 MakeHeap(V)
- 2 for($i \leftarrow V.SIZE() 1; i > 0; i -)$
- 3 SWAP(V[0], V[i])
- 4 Heapify(V, 0, i)

Function MakeHeap

 $\overline{\text{Input: }V}$

Output: V, com propriedade de Heap

- 1 for $(i \leftarrow V.SIZE()/2; i \geq 0; i--)$
- 2 \vdash Heapify(V, i, V.size())

Function Heapify

Input: V, i, heapSize

```
1 l \leftarrow 2 \cdot i + 1
 r \leftarrow 2 \cdot i + 2
 3 largest \leftarrow i
 4 if (l < heapSize \land V[l] > V[i])
   largest \leftarrow l
 6 if (r < heapSize \land V[r] > V[largest])
       largest \leftarrow r
 8 if (largest \neq i)
        SWAP(V[i], V[largest])
        HEAPIFY(V, largest, heapSize)
10
```

leapsort A**náli**:

Sumário

2 Análise

Análise

- Para construir a Heap, leva-se tempo $O(n \lg n)$, uma vez que é necessário manter a propriedade de Heap para todos os nós, e cada nó tem altura $O(\lg n)$.
- Apesar de ser um limite superior, uma análise mais detalhada mostra que a construção da Heap é feita em tempo $\Theta(n)$.
- Uma vez que a Heap é construída, a retira do nó raiz e a manutenção da propriedade da Heap levam tempo $\Theta(\lg n)$.
- Como esse procedimento é repetido para todos os nós, temos que o Heapsort leva tempo $\Theta(n \lg n)$.

eapsort Anális

In-place	Estável
✓	X