Diskretne strukture

Gašper Fijavž

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

13. november 2015

Kaj je relacija

Množica R je (dvomestna) relacija, če je vsak njen element urejen par.

$$R$$
 je relacija. $\iff \forall x \in R \exists u, v : x = (u, v)$

Množica R je (dvomestna) relacija v množici A, če je $R \subseteq A \times A$.

Zgledi

1.
$$A = \{e, f, g, h\}$$
 $R = \{(e, f), (f, g), (g, h)\}$

2.
$$A = \mathbb{N}$$
 $R = \{(x, y) ; x, y \in \mathbb{N} \land x \leq y\}$

3.
$$\emptyset \subseteq A \times A$$

4.
$$A \times A \subseteq A \times A$$

5.
$$id_A = \{(x, x) ; x \in A\}$$

Namesto $(x, y) \in R$ pišemo xRy.

Domena in zaloga vrednosti

Naj bo R relacija v A.

 $\mathcal{D}_R = \{x ; \exists y : xRy\}$ domena ali definicijsko območje relacije R.

 $\mathcal{Z}_R = \{y ; \exists x : xRy\}$ zaloga vrednosti relacije R.

Lastnosti relacij

Naj bo R relacija v A. Pravimo, da je

- 1. R refleksivna $\iff \forall x \in A : xRx$
- 2. R simetrična $\iff \forall x, y \in A : xRy \Rightarrow yRx$
- 3. R antisimetrična $\iff \forall x, y \in A : xRy \land yRx \Rightarrow x = y$
- 4. R tranzitivna $\iff \forall x, y, z \in A : xRy \land yRz \Rightarrow xRz$
- 5. R sovisna $\iff \forall x, y \in A : x \neq y \Rightarrow xRy \lor yRx$
- 6. R enolična $\iff \forall x, y, z \in A : xRy \land xRz \Rightarrow y = z$

Zgledi

- 1. Relacija id_A v A
- 2. Relacija $\leq v \mathbb{N}$
- 3. Relacija $< v \mathbb{N}$
- 4. Relacija $\subseteq v \mathcal{P}A$
- 5. Relacija *"oče"* v množici ljudi (x oče y preberemo kot x je oče y-ona.)

Grafična predstavitev relacije

R naj bo relacija v končni množici A.

Elemente množice A narišemo kot točke v ravnini. Če velja aRb, narišemo usmerjeno puščico od a do b.

elementi A ... točke v ravnini aRb ... usmerjena puščica od a do b.

Zgled: $A = \{e, f, g, h\}$ $R = \{(e, f), (f, g), (g, h)\}$

Operacije z relacijami

Relacije so posebne vrste množic. Vemo, kako so definirane operacije \cup, \cap in \setminus .

Ponavadi se pogovarjamo o družini relacij na isti množici A. V takem primeru je komplement smiselno definirati kot

$$R^c := (A \times A) \setminus R = U_A \setminus R$$

Operacije z relacijami

Poleg navedenih operacij definiramo tudi:

▶ inverzno relacijo relacije R, označimo jo z R^{-1} :

$$R^{-1} := \{(y, x) ; (x, y) \in R\}$$

▶ produkt relacij R in S, označimo ga z R * S:

$$R * S := \{(x, z) ; \exists y (xRy \land ySz)\}$$

Operacije z relacijami

Zgled: sorodstvene relacije med ljudmi

Relacija *oče* v množici ljudi je definirana kot

$$x$$
 oče $y \Leftrightarrow x$ je oče y -ona.

Naloga: Izrazi relacije roditelj, zet, snaha, ded, vnuk, tašča, svak z "bolj elementarnimi" sorodstvenimi relacijami oče, mati, sin, hči, mož, žena, . . .

Operacije z relacijami, znova

Poleg klasičnih $(\cup, \cap, {}^c, \setminus)$ operacij definiramo tudi:

▶ *inverzno relacijo* relacije R, označimo jo z R^{-1} :

$$R^{-1} := \{(y, x) ; (x, y) \in R\}$$

▶ produkt relacij R in S, označimo ga z R * S:

$$R * S := \{(x, z) ; \exists y (xRy \land ySz)\}$$

Lastnosti operacij z relacijami

Naj bodo R, S, T relacije na A.

1.
$$(R^{-1})^{-1} = R$$

2.
$$(R * S)^{-1} = S^{-1} * R^{-1}$$

3.
$$(R * S) * T = R * (S * T) =: R * S * T$$

4.
$$R * (S \cup T) = R * S \cup R * T$$

5.
$$(R \cup S) * T = R * T \cup S * T$$

6.
$$R * \mathrm{id}_A = \mathrm{id}_A * R = R$$

7.
$$R \subseteq S \implies R * T \subseteq S * T$$
 in $T * R \subseteq T * S$

Potence relacij

Zaradi asociativnosti množenja relacij lahko definiramo potence relacij. Naj bo $R \subseteq A \times A$.

Velja $R^1 = R$, $R^2 = R * R$, ter za $m, n \ge 0$ tudi $R^m * R^n = R^{m+n}$.

Potence relacij

Definiramo lahko tudi potence z negativnimi eksponenti, če je n>0, potem

$$R^{-n} := (R^{-1})^n$$

Toda če sta m in n celi števili različnih predznakov, potem $R^n * R^m$ ni nujno enako R^{m+n} .

Potence relacij

Zgled: sorodstvene relacije med ljudmi

Naloga: Definiraj relacije prednik, potomec, sorodnik.

Potence relacij

Naj bo R relacija v A.

Relacijo R^+ imenujemo *tranzitivna ovojnica* relacije R in jo definiramo s predpisom

$$R^+ = \bigcup_{k=1}^{\infty} R^k$$

Relacijo R^* imenujemo tranzitivno-refleksivna ovojnica relacije R in jo definiramo s predpisom

$$R^* = \bigcup_{k=0}^{\infty} R^k$$

Vprašanje: Kako s pomočjo grafa relacije R opišemo grafa relacije R^+ in R^* ?

Algebraična karakterizacija lastnosti relacij

Naj bo R relacija v A. Relacija R je

- 1. $refleksivna \iff id_A \subseteq R$
- 2. $simetrična \iff R^{-1} = R$
- 3. antisimetrična $\iff R^{-1} \cap R \subseteq id_A$
- 4. $tranzitivna \iff R^2 \subseteq R$
- 5. sovisna \iff id_A \cup $R \cup R^{-1} = U_A$
- 6. enolična $\iff R^{-1} * R \subseteq id_A$

Preslikave

Relacija $f \subseteq A \times B$ je *preslikava iz A v B*, če velja:

- ▶ f je enolična
- $\triangleright \mathcal{D}_f = A$
- $(\mathcal{Z}_f \subseteq B)$

Pišemo tudi $f: A \rightarrow B$.

Preslikave

```
Namesto x f y pišemo y = f(x),
in pravimo, da f (pre)slika x v y,
x je argument, y pa vrednost preslikave f pri x.
Tudi: y je slika x-a.
```

Preslikave

Naj bo f preslikava iz $A \lor B$.

- $lacktriangleq A = \mathcal{D}_f \quad \dots \quad$ domena ali definicijsko območje f
- $ightharpoonup \mathcal{Z}_f$... zaloga vrednosti f
- ▶ B ... kodomena f

Preslikave

Zgled: Naj bo X množica nepraznih bitnih besed $\{0,1,00,01,10,11,000,001,\ldots\}$ in Y množica naravnih števil $\{0,1,2,3,\ldots\}$.

Definirajmo relacije $f_1, f_2, f_3 \subseteq X \times Y$, $f_4 \subseteq X \times X$ in $f_5 \subseteq Y \times X$ z naslednjimi opisi:

- \triangleright x f_1 y natanko tedaj, ko je y število enic v x-u.
- \triangleright $x f_2 y$ natanko tedaj, ko je y prvi bit niza x.
- \triangleright $x f_3 y$ natanko tedaj, ko je y mesto najbolj leve ničle v x-u.
- $ightharpoonup x_1 f_4 x_2$ natanko tedaj, ko x_2 dobimo tako, da nizu x_1 dodamo na koncu 0 ali 1.
- \triangleright y $f_5 x$ natanko tedaj, ko je x niz y zaporednih enic.

Katere izmed relacij f_1 , f_2 , f_3 , f_4 , f_5 so preslikave?

Lastnosti preslikav

Naj bo $f: A \rightarrow B$. Pravimo, da je

- ▶ f injektivna, če $\forall x, y \in A : (f(x) = f(y) \Rightarrow x = y)$
- f surjektivna, če $\mathcal{Z}_f = B$ (pravimo tudi, da je f preslikava iz A na B)
- ▶ f bijektivna, če je injektivna in surjektivna.

Zgledi preslikav

- 1. $id_A : A \to A$, identiteta na A $id_A(x) = x$, je bijektivna
- 2. $p_i: A_1 \times \cdots \times A_n \to A_i$, projekcija na i-to komponento $p_i((a_1, \ldots, a_n)) = a_i$, je surjektivna
- 3. $A_1 \subseteq A$, $i = \mathrm{id}_A|_{A_1}$ $i : A_1 \hookrightarrow A$, i(x) = x je injektivna, vložitev $A_1 \lor A$
- 4. $A \subseteq B$, $\chi_A : B \to \{0, 1\}$ $\chi_A(x) = \begin{cases} 1, x \in A \\ 0, x \notin A \end{cases}$

karakteristična funkcija množice A (v B)

Inverzna preslikava

Vprašanje: Kdaj je f^{-1} tudi preslikava?

Trditev

 $f:A\to B$

- 1. f^{-1} je enolična natanko tedaj, ko je f injektivna,
- 2. $f^{-1}: B \rightarrow A$ natanko tedaj, ko je f bijektivna.

Kompozitum preslikav

Naj bosta $f:A\to B$ in $g:B\to C$. Potem je $g\circ f$ preslikava iz A v C določena s predpisom

$$g \circ f = f * g$$
.

Velja $(g \circ f)(a) = g(f(a))$ za vse $a \in A$.

Trditev

Kompozitum preslikav je asociativna operacija, velja namreč:

$$(f \circ g) \circ h = f \circ (g \circ h).$$

Lastnosti kompozituma

Trditev

Naj bo $f: A \rightarrow B$. Potem je

$$f \circ \mathrm{id}_A = \mathrm{id}_B \circ f = f$$

Trditev

 $f: B \to C, g: A \to B$

- 1. f,g injektivni $\Longrightarrow f \circ g$ injektivna
- 2. f,g surjektivni $\Longrightarrow f \circ g$ surjektivna
- 3. $f \circ g$ injektivna $\Longrightarrow g$ injektivna
- 4. $f \circ g$ surjektivna $\Longrightarrow f$ surjektivna

Lastnosti kompozituma

Trditev

Naj bo $f: B \to A$, $g: A \to B$. Če je $f \circ g = \mathrm{id}_A$ in $g \circ f = \mathrm{id}_B$, potem sta f in g bijekciji in je $g = f^{-1}$.

Dirichletov princip

Izrek

Naj bo A končna množica in $f: A \rightarrow A$. Potem so naslednje trditve enakovredne:

- ▶ f je injektivna.
- ▶ f je surjektivna.
- ▶ f je bijektivna.

Ekvivalenčna relacija

 $R \subseteq A \times A$ je *ekvivalenčna*, če je

- refleksivna,
- simetrična in
- tranzitivna.

Ekvivalenčna relacija

Zgledi:

- 1. Relacija | vzporednosti v množici vseh premic v ravnini.
- 2. $A = \{Ijudje\}, xRy \iff x \text{ ima enako barvo oči kot } y.$
- 3. $f: A \rightarrow B$, $x, y \in A: xR_f y \Leftrightarrow f(x) = f(y)$ x in y imata isto funkcijsko vrednost.
- 4. Naj bo $m \in \mathbb{N}$, $m \geq 2$. Definirajmo relacijo R v množici \mathbb{Z} :

$$xRy \iff m \text{ deli } |x-y|$$

Ekvivalenčni razredi

Naj bo $R \subseteq A \times A$ ekvivalenčna in $x \in A$.

 $R[x] = \{y \in A ; yRx\}$ je *ekvivalenčni razred* elementa x.

 $A/R = \{R[x] ; x \in A\}$ (množica vseh ekvivalenčnih razredov) je faktorska (kvocientna) množica množice A po relaciji R.

Ekvivalenčni razredi, razbitje

Trditev

Naj bo R ekvivalenčna relacija na A. Potem za poljubna $x,y\in A$ velja

$$R[x] = R[y] \iff xRy$$

Izrek

Naj bo R ekvivalenčna relacija na A. Potem je A/R razbitje množice A.

Zgledi faktorskih množic

"premice v ravnini" / "vzporedne premice" = $\{\{\text{navpične pr.}\}, \{\text{vodoravne pr.}\}, \{\text{pr. pod kotom } 45^\circ\}, \ldots\} \cong$ "množica vseh *smeri* v ravnini" $\cong [-\pi/2, \pi/2)$