Project: TMDB movie Data Analysis

Table of Contents

- Introduction
- Data Wrangling
- Exploratory Data Analysis
- Conclusions

Introduction

Dataset Description

In this project, we need to examine the TMDB movie dataset and share what we discover. We will use Python tools such as NumPy, pandas, and Matplotlib to simplify our analysis of the TMDB movie data. This dataset has details on 10,000 movies from the Movie Database (TMDb), covering aspects like user ratings and revenue. It includes information on various fields such as 'cast', 'genres', and 'characters'.

- id: Unique movie identifier.
- imdb_id: IMDB code specific to the movie.
- popularity: Metric indicating the movie's popularity.
- · budget: Amount spent to produce the movie.
- revenue: Earnings from the movie.
- · original_title: The movie's original name.
- cast: Leading actors involved in the movie.
- · homepage: Official website of the movie.
- director: The movie's director.
- tagline: A catchy phrase representing the movie.
- keywords: Terms associated with the movie.
- · overview: A brief summary of the movie.
- runtime: Total duration of the movie in minutes.
- genres: Categories describing the movie's style and content.
- production_companies: Firms that produced the movie.
- release_date: When the movie was first released.
- vote_count: Total votes received by the movie.
- · vote_average: Average rating given to the movie.
- release_year: Year the movie was released.
- · budget_adj: Movie's budget adjusted for inflation.
- revenue_adj: Movie's revenue adjusted for inflation.

Question(s) for Analysis

- Q1. What are the most common movie genres?
- ${\tt Q2.}$ Who are the most cast actors?
- Q3. What production company produces the most movies?
- Q4. What are the top movies in terms of profit?
- Q5. What are the top movies based on popularity?
- Q6. What are the top movies based on viewer rating?
- 07. What are the most common keywords?
- Q8. Is the budget related to a higher average vote?
- Q9. what's the correlation between runtime and vote average, budget and popularity?
- Q10. Who are the most successful directors?
- Q11. How did the runtime of movies change over the years? What Movie has the longest runtime? what movie has the shortest runtime? what's the aver

4

```
#Importing Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

Data Wrangling

- · Loading the Data
- Exploring the Data
- Data Cleaning
 - · Check if the data is clean, remove columns that are not needed, look for missing values (NAN values) and correct them, etc.

!pip install seaborn

```
Requirement already satisfied: seaborn in /usr/local/lib/python3.10/dist-packages (0.13.2)

Requirement already satisfied: numpy!=1.24.0,>=1.20 in /usr/local/lib/python3.10/dist-packages (from seaborn) (1.26.4)

Requirement already satisfied: pandas>=1.2 in /usr/local/lib/python3.10/dist-packages (from seaborn) (2.2.2)

Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.3.

Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (0.12.1)

Requirement already satisfied: stwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (4.5

Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (2.4.1)

Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (24.1)

Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (24.1)

Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (3.2.

Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (3.2.

Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (3.2.

Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.2->seaborn) (2024.2)

Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.4->
```

Loading the Data

```
# Load the dataset
# Importing the movie dataset
dataset_location = 'tmdb-movies.csv'
data = pd.read_csv(dataset_location)
Ð₹
    FileNotFoundError
                                               Traceback (most recent call last)
    <ipython-input-3-1cbcf29327e7> in <cell line: 4>()
          2 # Importing the movie dataset
          3 dataset location = 'tmdb-movies.csv'
     ----> 4 data = pd.read_csv(dataset_location)
                                        4 frames
     /usr/local/lib/python3.10/dist-packages/pandas/io/common.py in get_handle(path_or_buf, mode, encoding, compression, memory_map,
    is_text, errors, storage_options)
         871
                     if ioargs.encoding and "b" not in ioargs.mode:
         872
                         # Encoding
     --> 873
                         handle = open(
         874
                             handle,
                             ioargs.mode,
    FileNotFoundError: [Errno 2] No such file or directory: 'tmdb-movies.csv'
 Next steps:
             Explain error
```

Exploring the Data

```
# Show initial and final rows of the movie data
data.head() # Display the first few entries
```

₹		id	imdb_id	popularity	budget	revenue	original_title	cast	homepage	direc
	0	135397	tt0369610	32.985763	150000000	1513528810	Jurassic World	Chris Pratt Bryce Dallas Howard Irrfan Khan Vi	http://www.jurassicworld.com/	C ₁ Trevori
	1	76341	tt1392190	28.419936	150000000	378436354	Mad Max: Fury Road	Tom Hardy Charlize Theron Hugh Keays- Byrne Nic	http://www.madmaxmovie.com/	Geo Mi
	2	262500	tt2908446	13.112507	110000000	295238201	Insurgent	Shailene Woodley Theo James Kate Winslet Ansel	http://www.thedivergentseries.movie/#insurgent	Rot Schwen
	3	140607	tt2488496	11.173104	200000000	2068178225	Star Wars: The Force Awakens	Harrison Ford Mark Hamill Carrie Fisher Adam D	http://www.starwars.com/films/star-wars- episod	, Abra
	4	168259	tt2820852	9.335014	190000000	1506249360	Furious 7	Vin Diesel Paul Walker Jason Statham Michelle 	http://www.furious7.com/	Jan V
	5 ro	ws × 21 c	olumns							

 $\mbox{\tt\#}$ Display the last few entries of the dataset data.tail()

∓

id	imdb_id	popularity	budget	revenue	original_title	cast	homepage	director	tagline	• • •	overvi
21	tt0060371	0.080598	0	0	The Endless Summer	Michael Hynson Robert August Lord 'Tally Ho' B	NaN	Bruce Brown	NaN		T Endle Summ by Bru Brown, one of
20379	tt0060472	0.065543	0	0	Grand Prix	James Garner Eva Marie Saint Yves Montand Tosh	NaN	John Frankenheimer	Cinerama sweeps YOU into a drama of speed and 		Grand Pr driver Pe Aron fired by h
39768	tt0060161	0.065141	0	0	Beregis Avtomobilya	Innokentiy Smoktunovskiy Oleg Efremov Georgi Z	NaN	Eldar Ryazanov	NaN		insurand agent wh moonligh as carthie
21449	tt0061177	0.064317	0	0	What's Up, Tiger Lily?	Tatsuya Mihashi Akiko Wakabayashi Mie Hama Joh	NaN	Woody Allen	WOODY ALLEN STRIKES BACK!		In com Wood Allen's fil debut, h took the
22293	tt0060666	0.035919	19000	0	Manos: The Hands of Fate	Harold P. Warren Tom Neyman John Reynolds Dian	NaN	Harold P. Warren	It's Shocking! It's Beyond Your Imagination!		A fami gets lo on th road ar stumble up
	21 20379 39768 21449	21 tt0060371 20379 tt0060472 39768 tt0060161 21449 tt0061177	21 tt0060371 0.080598 20379 tt0060472 0.065543 39768 tt0060161 0.065141 21449 tt0061177 0.064317	21 tt0060371 0.080598 0 20379 tt0060472 0.065543 0 39768 tt0060161 0.065141 0	21 tt0060371 0.080598 0 0 20379 tt0060472 0.065543 0 0 39768 tt0060161 0.065141 0 0 21449 tt0061177 0.064317 0 0	21 tt0060371 0.080598 0 0 The Endless Summer 20379 tt0060472 0.065543 0 0 Grand Prix 39768 tt0060161 0.065141 0 0 Beregis Avtomobilya 21449 tt0061177 0.064317 0 0 What's Up, Tiger Lily?	21 tt0060371 0.080598 0 0 The Endless Summer Hynson Robert August Lord 'Tally Ho' B 20379 tt0060472 0.065543 0 0 Grand Prix Marie Saint Yves Montand Tosh 39768 tt0060161 0.065141 0 0 Beregis Avtomobilya Smoktunovskiy Oleg Efremov Georgi Z 21449 tt0061177 0.064317 0 0 What's Up, Tiger Lily? Tatsuya Mihashi Akiko Wakabayashi Mie Hama Joh 222293 tt0060666 0.035919 19000 0 Manos: The Hands of Fate Warren Tom Neyman John	21	21 tt0060371 0.080598 0 0 The Endless Summer August Lord Tally Ho'B 20379 tt0060472 0.065543 0 0 Grand Prix Marie Saint Yves Montand Tosh 39768 tt0060161 0.065141 0 0 Beregis Smoktunovskiy Oleg Efremov Georgi Z 21449 tt0061177 0.064317 0 0 What's Up, Tiger Lily? Missahi Akiko Wakabayashi Mie Hama Joh Tatsuya Mihashi Akiko Wakabayashi Mie Hama Joh Harold P. Warren Tom NaN Harold P. Warren John NaN Harold P. Warren John NaN Worden	21	21 tt0060371

₹

Output the total count of rows and columns in the dataset
print(f"There are {data.shape[0]:,} rows and {data.shape[1]:,} columns in the dataset.")

There are 10,866 rows and 21 columns in the dataset.

Generate statistical summary for the dataset's numerical columns data.describe()

,	id	popularity	budget	revenue	runtime	vote_count	vote_average	release_year	budget_adj	revei
count	10866.000000	10866.000000	1.086600e+04	1.086600e+04	10866.000000	10866.000000	10866.000000	10866.000000	1.086600e+04	1.0866
mean	66064.177434	0.646441	1.462570e+07	3.982332e+07	102.070863	217.389748	5.974922	2001.322658	1.755104e+07	5.1364
std	92130.136561	1.000185	3.091321e+07	1.170035e+08	31.381405	575.619058	0.935142	12.812941	3.430616e+07	1.4460
min	5.000000	0.000065	0.000000e+00	0.000000e+00	0.000000	10.000000	1.500000	1960.000000	0.000000e+00	0.0000
25%	10596.250000	0.207583	0.000000e+00	0.000000e+00	90.000000	17.000000	5.400000	1995.000000	0.000000e+00	0.0000
50%	20669.000000	0.383856	0.000000e+00	0.000000e+00	99.000000	38.000000	6.000000	2006.000000	0.000000e+00	0.0000
75%	75610.000000	0.713817	1.500000e+07	2.400000e+07	111.000000	145.750000	6.600000	2011.000000	2.085325e+07	3.3697
max	417859 በበበበበበ	32 985763	4 250000e+08	2 781506e+09	900 000000	9767 በበበበበበ	9 200000	2015 000000	4 250000e+08	2 827

1. Popularity:

Popularity scores in the dataset range widely from nearly 0 to 32.99. However, most movies have low popularity, with an average score of about 0.65.

2. Revenue:

Revenues range from 0 dollars many movies made no money to about 2.78 billion dollars. This shows that while some movies earn huge amounts, many do not make any revenue.

3. Vote Count:

Votes per movie vary greatly from 10 to 9,767, indicating that some movies are much more popular with viewers than others.

Count the unique values in each column
unique_values_count = data.nunique()
unique_values_count

Calculate the total count of missing values per column
missing_values_count = data.isnull().sum()
missing_values_count

id 0 imdb_id 10 popularity 0 budget 0 revenue 0 original_title cast 76

7930
44
2824
1493
4
0
23
1030
0
0
0
0
0
0

<<class 'pandas.core.frame.DataFrame'>

Columns with many unique values compared to the number of rows are high-cardinality categorical features. Columns with few unique values are likely categorical.

Display the data types and check for missing values in each column
data.info()

```
RangeIndex: 10866 entries, 0 to 10865
Data columns (total 21 columns):
   Column
                        Non-Null Count Dtype
    id
                        10866 non-null
                                        int64
    imdb id
                        10856 non-null object
1
2
    popularity
                        10866 non-null float64
                         10866 non-null
    budget
                                        int64
    revenue
                        10866 non-null int64
    original_title
                        10866 non-null object
                         10790 non-null object
    cast
    homepage
                        2936 non-null
                                        obiect
                        10822 non-null object
8
    director
    tagline
                         8042 non-null
                                        object
10 keywords
                        9373 non-null
                                        object
                        10862 non-null object
11 overview
12 runtime
                        10866 non-null int64
13 genres
                        10843 non-null object
14 production_companies 9836 non-null
                                        object
15 release_date
                        10866 non-null object
16 vote_count
                         10866 non-null int64
17 vote_average
                         10866 non-null
                                        float64
                        10866 non-null int64
18 release_year
```

Some columns have missing values: cast, homepage, director, tagline, keywords, overview, genres, and production_companies. All data types are correct except for release_date and release_year. I will keep the datatype of release_year as it is. The release_date will be dropped later in the analysis because it is not important for this study.

dtypes: float64(4), int64(6), object(11)

→ Data Cleaning

19 budget_adj

20 revenue_adj

memory usage: 1.7+ MB

· Based on my observations from the first 5 rows, and from previous datasets we need to do the following:

10866 non-null float64

10866 non-null

- 1. The columns id, imdb_id, homepage, budget_adj, revenue adj are useless, hence, we need to delete them
- 2. remove dublicates
- 3. check for NAN values
- 4. replace null values with NAN

Dropping Unimportant Columns, duplicates, and null values.

```
I will drop the following columns because they are not important or needed for this analysis: 'id', 'imdb_id', 'homepage', 'tagline', 'overview',
'vote_count', 'budget_adj', and 'revenue_adj'.
# Remove columns that are not significant for our analysis
columns_to_drop = ['id', 'imdb_id', 'homepage', 'tagline', 'overview', 'vote_count', 'budget_adj', 'revenue_adj', 'release_date']
data.drop(columns=columns_to_drop, axis=1, inplace=True)
# Display the first few rows after dropping columns
data.head()
# Calculate the number of duplicate rows in the dataset
duplicate_entries_count = data.duplicated().sum()
duplicate_entries_count
# Remove duplicate rows from the dataset
data.drop_duplicates(inplace=True)
# Verify that all duplicate rows have been removed
remaining_duplicates = data.duplicated().sum()
remaining_duplicates
# Drop rows with missing values in critical columns
data = data.dropna(subset=['genres','director', 'cast'])
data.info()
# Convert specified object type columns to string type
cols_to_convert = ['production_companies', 'genres', 'keywords', 'director', 'original_title', 'cast']
data[cols_to_convert] = data[cols_to_convert].astype(str)
data.info()
```

Changing columns to string makes sure all entries, even numbers and NaN values, are treated as strings in those columns.

The keywords and production_companies columns have null values, but since I might not need these columns, I'll leave them as they are (impute them).

```
# Save the data before removing 'production_companies' and 'keywords' columns
# These columns will be used only in two specific research questions
# Create a copy of the data for company-related analysis
company_data = data.copy()
# Drop the 'keywords' column from the company data
company_data.drop('keywords', axis=1, inplace=True)
# Remove rows with missing values in the 'production_companies' column
company_data.dropna(subset=['production_companies'], inplace=True)
# Remove NaN values from company_data
company_data = company_data[company_data != 'nan']
# Create a copy of the data
keywords_data = data.copy()
# Drop the 'production_companies' column from the keywords_data
keywords_data.drop('production_companies', axis=1, inplace=True)
# Remove rows with missing values in the 'keywords' column
keywords_data.dropna(subset=['keywords'], inplace=True)
# Remove NaN values from keywords_data
keywords_data = keywords_data[keywords_data != 'nan']
# Verify the changes by checking for missing values in the modified datasets
print("Missing values in company_data:")
print(company_data.isnull().sum())
print("\nMissing values in keywords_data:")
print(keywords_data.isnull().sum())
```

We save the data before removing the 'production_companies' and 'keywords' columns. These columns will be used only for two research questions. They are removed because they have many missing values. Dropping these rows would affect other columns, so we will handle the questions with the missing rows imputed.

```
data.drop(['production_companies','keywords'], axis = 1, inplace=True)
#Number of missing values in each column.
data.isnull().sum()
# Remove NaN values
data = data[data != 'nan']
Review dataset
# Display the first 10 rows of the dataset to get an overview
data.head(10)
# Get the dimensions of the dataset (number of rows and columns)
dataset_dimensions = data.shape
# Display the dimensions
dataset_dimensions
# Plot the distribution of the numerical features in the dataset
data.hist(figsize=(15,10));
```

The popularity column's distribution, seen in the summary statistics, is skewed to the right. This is also true for the budget, revenue, vote_count, vote_average, and runtime columns. The release_year column is skewed to the left, showing that more movies were made or released from the 2000s to 2015 compared to earlier years.

Exploratory Data Analysis

- Relationship Between Independent Features
- · Total Number of Movies Produced by Year
- Total Number of Movies Produced by Genre

Now that we've cleaned the data, we can start exploring it. In this section, we'll calculate statistics and make visualizations to answer the research questions from the Introduction.

General Questions

Q1. What is the relationship Between Independent Features

```
# Plots the relationship between two variables as a scatter plot.

# Args:
# data: DataFrame containing the data.
# x_axis: Column name for the x-axis.
# y_axis: Column name for the y-axis (default is 'revenue').
# plot_kind: Type of plot (default is 'scatter').
# title_prefix: Prefix for the title (default is 'Relationship between').

def plot_relationship(data, x_axis, y_axis='revenue', plot_kind='scatter', title_prefix='Relationship between'):
    data.plot(x=x_axis, y=y_axis, kind=plot_kind)
    plt.title(f'{title_prefix} {x_axis.capitalize()} and {y_axis.capitalize()}')
    plt.show()

# #Relationship between popularity and revenue.
```

- 1. There is some positive correlation between popularity and revenue as this plot shows that the correlation is not that strong. This will be investigated further later in the analysis.
- 2. X-Axis (Popularity): Represents the independent variable, popularity. This axis measures how popular the instances (e.g., movies) are, with values ranging from 0 to above 30.
- 3. Y-Axis (Revenue): Represents the dependent variable, revenue. This axis measures the revenue generated by the instances, with values up to around 2.5 billion.

#Relationship between vote_average and revenue.
plot_relationship(data, 'vote_average')

- 1. There is some positive correlation between vote_average and revenue. This will be investigated further later in the analysis.
- 2. X-Axis (Vote Average): Represents the independent variable, vote average. This axis measures the average rating given to the instances (e.g., movies), with values ranging from 2 to 9.
- 3. Y-Axis (Revenue): Represents the dependent variable, revenue. This axis measures the revenue generated by the instances, with values up to around 2.5 billion.

#Relationship between runtime and revenue.

plot_relationship(data, 'runtime')

- 1. There is no correlation between runtime and revenue. This will be investigated further later in the analysis.
- 2. X-Axis (Runtime): Represents the independent variable, runtime. This axis measures the duration of the instances (e.g., movies) in minutes, with values ranging from 0 to over 800 minutes.
- 3. Y-Axis (Revenue): Represents the dependent variable, revenue. This axis measures the revenue generated by the instances, with values up to around 2.5 billion.

Q2. What is the total Number of Movies Produced by Year?

```
#Value counts of movies for each year.
data.release_year.value_counts().plot(kind = 'bar', figsize = (20, 10));
plt.xlabel('Release Year');
plt.ylabel('Movie Count')
plt.title('Total Count of Movies Produced by Year');
```


The total amount of movies produced by year has been increasing steadily over the years. The year 2014 recorded the most number of movies released/produced.

- Research Questions
- > Research Question 1: What are the most common movie genres?
- ▶ 6 cells hidden
- > Research Question 2: Who are the most cast actors?
- [] L, 14 cells hidden
- > Research Question 3: What production company produces the most movies?
- [] L, 3 cells hidden
- > Research Question 4: What are the top movies in terms of profit?
- [] L, 9 cells hidden

> Research Question 5: What are the top movies based on popularity? [] L, 11 cells hidden
> Research Question 6: What are the top movies based on viewer rating?
[] I, 13 cells hidden
> Research Question 7: What are the most common keywords?
[] I, 6 cells hidden
> Research question 8: Is the budget related to a higher average vote?
[] I, 2 cells hidden
> Research Question 9: what's the correlation between runtime and each of popularity, rating, popularity?
[] I, 4 cells hidden
> Research Question 10: Who are the most successful directors?
Most successful director is the one who generated the most revenue
[] L, 3 cells hidden
Research Question 11: How did the runtime of movies change over the years? What Movie has the longest runtime? what movie has the shortest runtime? what's the average movie runtime?
[] L, 13 cells hidden

Conclusions

- 1. Key columns like 'cast' and 'director' have missing values. 'Release_date' will be dropped as it's irrelevant to the analysis.
- 2. Popularity, budget, and revenue distributions are skewed right, indicating more entries from 2000 to 2015.
- 3. Weak positive correlations exist between popularity and revenue, and between vote_average and revenue.
- 4. The most movies were produced in 2014.
- 5. Drama, comedy, and thriller are the most frequent genres.
- 6. Robert De Niro, Samuel L. Jackson, and Bruce Willis are the most featured actors.
- 7. Universal Pictures, Warner Bros., and Paramount Pictures are the top movie producers.
- 8. 'Avatar', 'Star Wars', and 'Titanic' are the most profitable films, showing that high budgets don't always lead to high profits.
- 9. The longest movie recorded is 'The Story of Film: An Odyssey' at 900 minutes, and the average movie runtime is 102 minutes, which has been decr

Data limitations:

- 1. **Viewer Bias**: Viewer counts vary significantly across movies. Consequently, movies with fewer viewers may show disproportionately high ratings, which could skew perceived quality assessments.
- 2 Duration Variability: The dataset includes movies shorter than 40 minutes classified as short films. Their inclusion could distort analyses