НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА» Кафедра загальної фізики

3BIT

про виконання лабораторної роботи № 5 Назва роботи «вивчення основного рівняння динаміки обертального руху твердого тіла»

Виконав: Марущак А.С. **студент групи ПЗ-15**

інституту ІКНІ

Лектор: доцент Рибак О.В

Керівник лабораторних занять:

Ільчук Г.А.

Мета роботи: Експериментально перевірити основне рівняння динаміки обертального руху твердого тіла.

Прилади та матеріали: Маятник Обербека, секундомір, різноважки (тіла різної маси), штанґенциркуль, міліметрова лінійка.

Короткі теоретичні відомості:

На відміну від поступального руху, де мірою інертності тіла ϵ тільки його маса, у випадку обертального руху інертність тіла визначається як масою тіла так і розподілом маси відносно осі обертання. Тому для кількісної характеристики інертності тіл при їх обертальному русі вводиться фізична величина — момент інерції.

Моментом інерції тіла відносно деякої нерухомої осі ОZ ϵ величина, що визначається рівністю.

$$J = \sum_{i=1}^{N} m_i r_i^2,$$

де m_i — маса і-ї частинки тіла, яке умовно "розбивається" на N частинок, настільки малих, що для кожної з них можна однозначно вказати і r — відстань частинки від осі OZ

Важливим поняттям динаміки обертального руху є фізична величина, що називається моментом сили. Моментом сили відносно нерухомого центра О називається векторна величина , що дорівнює векторному добутку радіуса - вектора \vec{r} , проведеного з точки О до точки прикладання сили, на вектор сили \vec{F} .

$$M = [\vec{r}\vec{F}]$$

Вектор \vec{M} напрямлений перпендикулярно до площини, у якій лежать вектори \vec{r} і \vec{F} , таким чином, що з його кінця найкоротший поворот від вектора \vec{r} до вектора \vec{F} видно проти напряму руху годинникової стрілки.

Модуль моменту сили можна подати у вигляді:

$$M = rFsin\alpha = Fl$$
,

де $l=rsin\alpha$ - плече сили відносно точки О (довжина перпендикуляра, опущеного з точки О на лінію дії сили).

Момент сили відносно осі обертання дорівнює добутку моменту інерції тіла відносно цієї осі на набуте тілом кутове прискорення:

$$J_z \varepsilon = M_z$$

Останнє рівняння нам і необхідно перевірити.

Контрольні запитання:

1. Що називається моментом інерції тіла?

Момент інерції тіла — фізична величина, що характеризує інертність тіла при обретальному русі і чисельно дорівнює сумі добутків елементарних мас, на які можна розбити тіло, на квадрат відстані до них від осі обертання.

2. Записати і пояснити основне рівняння динаміки обертального руху твердого тіла.

Основне рівняння динаміки обертального руху: $M = J\varepsilon$ (Момент сили, що викликає обертання, чисельно дорівнює добутку моменту інерції на кутове прискорення).

- 3. **Що називається моментом сили відносно осі обертання?** Моментом сили відносно нерухомого центра О називається векторна величина, що дорівнює векторному добутку радіуса вектора \vec{r} , проведеного з точки О до точки прикладання сили, на вектор сили $\vec{F}: M = [\vec{r}\vec{F}]$.
- 4. Що називається плечем сили?

 $l = r sin \alpha$ - плече сили відносно точки О (довжина перпендикуляра, опущеного з точки О на лінію дії сили).

5. У чому полягає суть перевірки основного рівняння динаміки в даній лабараторній роботі?

Перевірка рівняння полягає у підтверджені прямої пропорційності кутового прискорення від моменту сили та оберненої пропорційності від моменту інерції.

6. Як визначається момент інерції у даній роботі?

У даній роботі момент інерції визначається як величина, обернена до кутового коефіцієнту прямої-графіка функції $\varepsilon = f(M)$: $J = \frac{dM}{d\varepsilon}$

7. Вивести формулу, що описує обертальний момент, діючий на маятник Обербека.

За 2м законом Ньютона:
$$ma = mg - F \to F = mg - ma$$

Оскільки $M = F * R = m(g - a)R$, а $a = \varepsilon R$, то маємо $M = m(g - \varepsilon R)R$

Задані величини:

$$m_1 = 0.220$$
кг

$$m_2 = 0.303$$
кг $m_3 = 0.386$ кг

Робочі формули:

$$\varepsilon = \frac{2h}{t^2 R}$$

$$M = FR = m \left(g - \frac{2h}{t^2} \right) R \approx mgR$$

$$\Delta \varepsilon = \left(\frac{\Delta h}{h} + \frac{\Delta R}{R} + \frac{2\Delta t}{t} \right) \varepsilon$$

$$J = \frac{dM}{d\varepsilon} = \frac{M_2 - M_1}{\varepsilon (M_2) - \varepsilon (M_1)}$$

Хід роботи

Завдання 1. Експериментальна перевірка залежності кутового прискорення є маятника Обербека від моменту зовнішніх сил.

- 1. Тричі виміряємо висоту опускання тіла h, і результати записуємо у табл. 1.
- 2. Три рази виміряємо діаметр шківа d, результати записуємо у табл. 1

Табл 1

Номер	h, мм	Δh, мм	d, мм	Δ d, mm	R, мм	ΔR, мм
1	915		38.2			
2	915		38.2			
3	915		38.2			
Середнє	915	0.05	38.2	0.025	19.1	0.025

- 3. Закріпляємо циліндри на мінімальній відстані від осі обертання.
- 4. Три рази виміряти час опускання основного вантажу; результати записати у табл. 2.
- 5. Дії, вказані в п. 4, повторюємо ще двічі для більших мас т. Для цього на основний вантаж, прикріплений до нитки, треба накласти спочатку одну, а потім дві різноважки.
- 6. Перевівши результати вимірювань всіх величин в одиниці СІ, за формулами розраховуємо величини М і є (для трьох значень мас m) Записуємо одержані значення в табл. 3.
- 7. Будуємо графіки залежності є від М.

- 8. Обчислюємо похибки вимірювання кутового прискорення за формулою.
- 9. Відкладаємо в масштабі, вибраному для ϵ , відрізки $\pm \Delta$ ϵ навколо відповідних експериментальних точок ґрафіку
- 10. Проводимо через експериментальні точки графіку найбільш оптимальним способом пряму та знаходимо числове значення моменту сил тертя $M_{\rm T}$ як точку перетину прямої з віссю моментів сил. Записати це значення в табл. 3.
- 11. Переміщаємо циліндри на середину кожного з чотирьох стрижнів, фіксуємо їх і виконуємо дії, вказані в пп. 3–10.
- 12. Зафіксовуємо циліндри в крайніх положеннях і ще раз повторюємо дії, вказані в пп. 3–10.

Табл 2(1)

Номер	m=0.220кг		m=0.303кг		m=0.386кг	
	t, c	Δt, c	t, c	Δt, c	t, c	Δt, c
1	5.8	0.05	5.0	0.07	4.48	0.03
2	5.85	0	5.25	0.18	4.53	0.08
3	5.9	0.05	4.95	0.12	4.35	0.1
Середнє	5.85	0.03	5.07	0.12	4.45	0.07

Табл 3(1)

т,кг	ε , c ⁻²	М, Н*м	$\Delta \varepsilon$, c ⁻²	<i>М</i> _т , Н*м
0.220	2.8	0.041	0.031	≈ 0
0.303	3.73	0.056	0.18	≈ 0
0.386	4.84	0.072	0.156	≈ 0

Табл 2(2)

Номер	m=0.220кг		m=0.303кг		m=0.386кг	
	t, c	Δt, c	t, c	Δt, c	t, c	Δt, c

1	8.19	0.12	7.06	0.08	6.11	0.11
2	7.93	0.14	6.88	0.10	5.83	0.17
3	8.09	0.02	7.01	0.03	6.06	0.06
Середнє	8.07	0.09	6.98	0.07	6	0.11

т,кг	ε , c ⁻²	<i>М</i> , Н*м	$\Delta \varepsilon$, c ⁻²	<i>М</i> _т , Н*м
0.220	1.47	0.041	0.035	0.004
0.303	1.97	0.057	0.042	0.004
0.386	2.66	0.072	0.128	0.004

Номер	m=0.220кг		m=0.3031	m=0.303кг		m=0.386кг	
	t, c	Δt, c	t, c	Δt, c	t, c	Δt, c	
1	13.16	0.03	11.30	0.32	9.28	0.14	
2	12.68	0.45	11.82	0.20	9.77	0.35	
3	13.56	0.43	11.73	0.11	9.22	0.20	
Середнє	13.13	0.303	11.62	0.21	9.42	0.23	

Табл 3(3)

т,кг	ε , c^{-2}	<i>М</i> , Н*м	$\Delta \varepsilon$, c ⁻²	<i>М</i> _т , Н*м
0.220	0.56	0.041	0.027	0.01
0.303	0.71	0.057	0.027	0.01
0.386	1.08	0.072	0.054	0.01

Графіки:

Синій колір – циліндри знаходяться на максимальній відстані від центру.

Жовтий – циліндри на середній відстані.

Червоний – циліндри найближче до центру.

Завдання 2. Експериментальна перевірка залежності кутового прискорення є від моменту інерції Ј маятника Обербека при постійному моменті сил

- 1. Обчислити моменти інерції маятника Обербека при різних положеннях циліндрів на стрижнях як відношення приростів DM до Dє графіків $\varepsilon = f(M)$, побудованих у завданні 1.
- 2. Для фіксованого значення моменту сили M1 виписати значення кутового прискорення є з трьох попередніх таблиць. Хоча теоретично момент сили залежить від кутового прискорення, однак в наших експериментах величина є дуже мала і момент сили практично дорівнює: M = mgR.

3. Побудувати графік залежності кутового прискорення є від величини, оберненої до його моменту інерції. Виконати аналогічні побудови для двох інших моментів сил M2 і M3.

Табл 4(1): m = 0.220кг, M = 0.041 H*M

Розміщення циліндрів	<i>J</i> , кг ∗ м²	ε , c ⁻²	$\frac{1}{J}$, Kr * M ⁻²
-	0.015	2.8	65.8
- } -	0.026	1.47	38.31
+	0.06	0.56	16.69

Табл 4(2): m = 0.303кг, M = 0.057 Н*м

Розміщення циліндрів	<i>J</i> , кг ∗ м²	ε, c ⁻²	$\frac{1}{J}$, Kr * M ⁻²
	0.015	3.73	65.8
	0.026	1.97	38.31
+	0.06	0.71	16.69

Табл 4(3): m = 0.386кг, M = 0.072 Н*м

Розміщення циліндрів	<i>J</i> , кг ∗ м²	ε, c ⁻²	$\frac{1}{J}$, Kr * M ⁻²
-	0.015	4.84	65.8

	0.026	2.66	38.31
-	0.06	1.08	16.69

Графіки:

Зелений колір – 0.220кг

Жовтий колір — 0.303кг

Червоний колір – 0.386кг

Обчислення

Табл 3.1:

$$\begin{split} \varepsilon_1 &= \frac{2*915*10^{-3}}{19,1*10^{-3}*5,85^2} = 2,8\ (c^{-2}) \\ \varepsilon_2 &= \frac{2*915*10^{-3}}{19,1*10^{-3}*5,07^2} = 3,73\ (c^{-2}) \\ \varepsilon_3 &= \frac{2*915*10^{-3}}{19,1*10^{-3}*4.45^2} = 4,84\ (c^{-2}) \\ M_1 &= 0,220(9,8-2,8*19,1*10^{-3})*19,1*10^{-3} = 0.041\ (\mathrm{H}*\mathrm{M}) \end{split}$$

$$\begin{split} &M_2 = 0,303(9,8-3,73*19,1*10^{-3})*19,1*10^{-3} = 0.056~(\mathrm{H}*\mathrm{M})\\ &M_3 = 0,386(9,8-4,84*19,1*10^{-3})*19,1*10^{-3} = 0.072~(\mathrm{H}*\mathrm{M})\\ &\Delta \varepsilon_1 = \left(\frac{0,05*10^{-3}}{915*10^{-3}} + \frac{0,025*10^{-3}}{19,1*10^{-3}} + 2\frac{0,03}{5,85}\right)*2,8 = 0,031(c^{-2})\\ &\Delta \varepsilon_2 = \left(\frac{0,05*10^{-3}}{915*10^{-3}} + \frac{0,025*10^{-3}}{19,1*10^{-3}} + 2\frac{0,12}{5,07}\right)*3,73 = 0,18(c^{-2})\\ &\Delta \varepsilon_3 = \left(\frac{0,05*10^{-3}}{915*10^{-3}} + \frac{0,025*10^{-3}}{19,1*10^{-3}} + 2\frac{0,07}{4,45}\right)*4,84 = 0,156(c^{-2}) \end{split}$$

Табл 3.2:

$$\begin{split} \varepsilon_1 &= \frac{2*915*10^{-3}}{19,1*10^{-3}*8,07^2} = 1,47\;(c^{-2}) \\ \varepsilon_2 &= \frac{2*915*10^{-3}}{19,1*10^{-3}*6,98^2} = 1,97\;(c^{-2}) \\ \varepsilon_3 &= \frac{2*915*10^{-3}}{19,1*10^{-3}*6^2} = 2,66\;(c^{-2}) \\ M_1 &= 0,220(9,8-1,47*19,1*10^{-3})*19,1*10^{-3} = 0.041\;(\mathrm{H*M}) \\ M_2 &= 0,303(9,8-1,97*19,1*10^{-3})*19,1*10^{-3} = 0.057\;(\mathrm{H*M}) \\ M_3 &= 0,386(9,8-2,66*19,1*10^{-3})*19,1*10^{-3} = 0.072\;(\mathrm{H*M}) \\ \Delta\varepsilon_1 &= \left(\frac{0,05*10^{-3}}{915*10^{-3}} + \frac{0,025*10^{-3}}{19,1*10^{-3}} + 2\frac{0,09}{8,07}\right)*1,47 = 0,035(c^{-2}) \\ \Delta\varepsilon_2 &= \left(\frac{0,05*10^{-3}}{915*10^{-3}} + \frac{0,025*10^{-3}}{19,1*10^{-3}} + 2\frac{0,07}{6,98}\right)*1,97 = 0,042(c^{-2}) \\ \Delta\varepsilon_3 &= \left(\frac{0,05*10^{-3}}{915*10^{-3}} + \frac{0,025*10^{-3}}{19,1*10^{-3}} + 2\frac{0,07}{6,98}\right)*2,66 = 0,128(c^{-2}) \end{split}$$

Табл 3.3:

$$arepsilon_1 = rac{2*915*10^{-3}}{19,1*10^{-3}*13,13^2} = 0,56\ (c^{-2})$$

$$arepsilon_2 = rac{2*915*10^{-3}}{19.1*10^{-3}*11.62^2} = 0,71\ (c^{-2})$$

$$\begin{split} \varepsilon_3 &= \frac{2*915*10^{-3}}{19,1*10^{-3}*9,42^2} = 1,08 \ (c^{-2}) \\ M_1 &= 0,220 (9,8-0,56*19,1*10^{-3})*19,1*10^{-3} = 0.041 \ (\text{H}*\text{M}) \\ M_2 &= 0,303 (9,8-0,71*19,1*10^{-3})*19,1*10^{-3} = 0.057 \ (\text{H}*\text{M}) \\ M_3 &= 0,386 (9,8-1,08*19,1*10^{-3})*19,1*10^{-3} = 0.072 \ (\text{H}*\text{M}) \\ \Delta \varepsilon_1 &= \left(\frac{0,05*10^{-3}}{915*10^{-3}} + \frac{0,025*10^{-3}}{19,1*10^{-3}} + 2\frac{0,303}{13,13}\right)*0,56 = 0,027 \ (c^{-2}) \\ \Delta \varepsilon_2 &= \left(\frac{0,05*10^{-3}}{915*10^{-3}} + \frac{0,025*10^{-3}}{19,1*10^{-3}} + 2\frac{0,21}{11,62}\right)*0,71 = 0,027 \ (c^{-2}) \\ \Delta \varepsilon_3 &= \left(\frac{0,05*10^{-3}}{915*10^{-3}} + \frac{0,025*10^{-3}}{19,1*10^{-3}} + 2\frac{0,23}{9,42}\right)*1,08 = 0,054 \ (c^{-2}) \end{split}$$

Табл 4:

Найближча позиція циліндрів:
$$J=\frac{0.04-0.02}{f_1(0.04)-f_1(0.02)}=0$$
, 0.015 (кг * м²)
Середня позиція циліндрів: $J=\frac{0.04-0.03}{f_2(0.04)-f_2(0.03)}=0$, 0.026 (кг * м²)

Найвіддаленіша позиція циліндрів:
$$J = \frac{0.04-0.01}{f_3(0.04)-f_3(0.01)} = 0$$
, 06 (кг * м 2)

Аналіз результатів:

Як можемо бачити з графіків, величина кутового прискорення лінійно залежить від моменту прикладеної сили. Якщо ми врахуємо момент сили тертя, то ця залежність перетвориться на пряму пропорційність. З наступних графіків видно, що величина кутового прискорення також лінійно збільшується з ростом величини 1/J і при більш точних розрахунках мова могла б йти навіть про пряму пропорційність. Отже, величина кутового прискорення обернено пропорційна до J. Звідси висновок, що формула $\varepsilon = \frac{M}{J}$, яку можна переписати у вигляді $M = J\varepsilon$, вірна, що і необхідно було перевірити.

Висновок:

Виконавши цю лабаратону роботу ми на практиці навчились використовувати знання про момент сили та інерції, закріпили знання

кінематики обертального руху. З їх допомогою, ми експериментально перевірили основне рівняння динаміки обертального руху і довели, що воно вірне.