Department of Computer Science Chair of Computer Networks and Telematics Prof. Dr. Christian Schindelhauer Exam: "Mock Exam 12: Introduction to Cryptography" Date and time: 2020/09/04 10:57 Duration: 90 minutes Room: your room Permitted exam aids: none (well, not this time, but in the real exam) Prof. Dr. Christian Schindelhauer Examiner: Family name: First name: Matriculation number: Subject:

☐ Master

☐ Lehramt

□ others

NOTES

Program:

Signature:

· Please fill out this form.

Signature of the examiner:

- Please write your matriculation number on each paper sheet.
- Please fill in your answer in the designated areas.

☐ Bachelor

	Max	Reached	Comments
Basics	10		
DES & AES	6		
Fields and Modular Arithmetics	32		
Hash Functions, Digital Signature and Cryptographic Protocols	18		
Public Key Cryptography	18		
Quantum Cryptography	6		
Sum	90		
Grade: .			
Date of the review of the exam: .			

equality is crucial for the correct behavior of a symmetric cipher?(1-6)

(a) [4 Points] Given $E: \text{key} \times \text{message} \rightarrow \text{code}$ and $D: \text{code} \times \text{message} \rightarrow \text{key}$. Which

(b) [6 Points] What is the implication of $\mathcal{P} = \mathcal{NP}$ to cryptographic security? Give two examples with different outcome.

0	uestion	2:	DES	&	AES

[6 Points]

(Duestion	3.	Fields	and	Modular	A ri	thm	etics
L	Jucsuvii	J.	ricius	anu	Muulai	AH	um	しいしろ

[32 Points]

equations.	Name	Iour	properties	necessary	Ior	a	mathematical	group	and	give	the

[6 Points] Comp nomial $x^4 + x +$	ute in multiplicati 1.	ve inverse of 101	1 in $GF[2^4]$ usin	g the irreduci	ble polyn

8 Points] Co			

Question 4: Crypto Hash Functions, Digital Signature and Crypto Protocols [18 Points]

Name two problems with the RSA-based digital signature scheme.					
	o problems with	o problems with the KSA-based	o problems with the KSA-based digital signatu	o problems with the KSA-based digital signature scheme.	

N	nestion	5:	Public	Kev	Cryptography	V
V	ucsuon	J.	I UDIIC	IXCy	Ci y piogi apiij	7

[18 Points]

8 Points	Give a ma	Give a mathematical definition of the Star-operator $P \star P$ for $P = (x_p, y_p)$.						

Question 6: Quantum Cryptography

[6 Points]

(a) [6 Points] Check whether the matrix

$$M = \frac{1}{\sqrt{2}} \begin{pmatrix} i & 1 \\ -1 & 1 \end{pmatrix}$$

is a unitary matrix.