## sGRIGLIA VALUTAZIONE-AUTOVALUTAZIONE STATO AVANZAMENTO PROGETTI PCTO 4IC – a.s 2020/2021

TITOLO PROGETTO: Short-Streets

PIANO OPERATIVO:

| FUNZIONALITA' PRINCIPALI    | dettaglio funzionalità                                                                                                          | costo in ore (*) |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------|
| F1: inserimento dati        | F1.D1: indicare il numero di pacchi da consegnare e alcune loro caratteristiche come il peso e il volume.                       | 20               |
| F2: calcolo percorso minimo | F2.D1: calcolare il percorso minimo che il rider deve effettuare in modo da velocizzare e facilitare la consegna.               | 22               |
|                             | F2.D2: implementazione di un algoritmo peso-volume che rappresenta un vincolo in più nel calcolo del percorso minimo.           | 18               |
| F3: parte grafica           | F3.D1: utilizzare una mappa di un piccolo quartiere sulla quale indicare i punti in cui il corriere deve andare.                | 10               |
|                             | F3.D2: dopo aver individuato il percorso più' agevole, evidenziare il percorso che il corriere deve seguire sulla mappa stessa. | 15               |

(\*) con riferimento ai tempi previsti per l'implementazione

| STUDENTE         | SINTESI COMPITI PERSONALI                                                                                                                                                                                                                                                                                  | LIV. COMPITO (1-2-3) (*) |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Bissola Mattia   | Testing del software                                                                                                                                                                                                                                                                                       | 3                        |
| Giuggioli Daniel | Interfaccia grafica, classi per la gestione dei pacchi, utilizzo di una mappa su cui visualizzare i punti presso cui si devono effettuare le consegne e il percorso più breve calcolato dagli algoritmi                                                                                                    | 3                        |
| Majid Zaccaria   | Testing del software                                                                                                                                                                                                                                                                                       | 3                        |
| Salvi Alessandro | Sviluppo dell'algoritmo che consente al rider di trasportare contemporaneamente determinati pacchi secondo determinate caratteristiche, quali il peso e il volume e unione dell'algoritmo peso-volume con quello del percorso minimo                                                                       | 3                        |
| Sonzogni Nicolò  | Sviluppo dell'algoritmo per il calcolo del percorso minimo che il rider dovrà compiere e unione dell'algoritmo peso-volume con quello del percorso minimo. Utilizzo di una mappa su cui visualizzare i punti presso cui si devono effettuare le consegne e il percorso più breve calcolato dagli algoritmi | 3                        |

(\*) 3: complesso .. 1:semplice

| SITUAZIONE | AL GIORN | O: | PRO              | OGETTO CO | MPLE | TATO AL          | <mark>%</mark> |     | ( TEST covera   | ge | <mark>%</mark> ) |
|------------|----------|----|------------------|-----------|------|------------------|----------------|-----|-----------------|----|------------------|
|            |          |    |                  |           |      |                  |                |     | _               |    |                  |
| ORE SVOLTE | (        | %) | di cui progetto: | (         | %)   | implementazione: |                | (%) | documentazione: | (  | %)               |

(\*) percentuali riferite alle rispettive ore del PIANO OPERATIVO

#### **SITUAZIONE PROGETTO**

| FUNZIONALITA' PRINCIPALI    | dettaglio funzionalità                                                                                                                                  |     | bilancio ore |        |          |               |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|--------|----------|---------------|
|                             |                                                                                                                                                         |     | previste     | svolte | restanti | +/- %         |
| F1: inserimento dati        | F1.D1: indicare il numero di pacchi da consegnare e alcune loro caratteristiche come il peso, il volume e la destinazione a cui il pacco deve giungere. | 65  | 20           | 15     | 5        | -<br>15<br>%  |
| F2: calcolo percorso minimo | F2.D1: calcolare il percorso minimo che il rider deve effettuare in modo da velocizzare e facilitare la consegna.                                       | 100 | 22           | 18     | 4        | -<br>18<br>%  |
|                             | F2.D2: implementazione di un algoritmo peso-volume che rappresenta un vincolo in più nel calcolo del percorso minimo.                                   | 100 | 18           | 15     | 3        | -<br>17<br>%  |
| F3: parte grafica           | F3.D1: utilizzare una mappa di un piccolo quartiere sulla quale indicare i punti in cui il corriere deve andare.                                        | 0   | 10           | 0      | 10       | -<br>100<br>% |
|                             | F3.D2: dopo aver individuato il percorso più' agevole, evidenziare il percorso che il corriere deve seguire sulla mappa stessa.                         | 0   | 15           | 0      | 15       | -<br>100<br>% |

(\*) con riferimento ai tempi previsti per l'implementazione

| STUDENTE         | SINTESI ATTIVITA' SVOLTA                                                                                                                                           |    | RISULTATI  |          |             |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------|----------|-------------|--|
|                  |                                                                                                                                                                    |    | Liv. comp. | % compl. | VALUTAZIONE |  |
| Bissola Mattia   | Testing del software.                                                                                                                                              | 12 | 3          | 20%      |             |  |
| Giuggioli Daniel | Interfaccia grafica, classi per la gestione dei pacchi.                                                                                                            | 15 | 3          | 50%      |             |  |
| Majid Zaccaria   | Testing del software.                                                                                                                                              | 12 | 3          | 20%      |             |  |
| Salvi Alessandro | Sviluppo dell'algoritmo che consente al rider di trasportare contemporaneamente determinati pacchi secondo determinate caratteristiche, quali il peso e il volume. | 15 | 3          | 75%      |             |  |
| Sonzogni Nicolò  | Sviluppo dell'algoritmo per il calcolo del percorso minimo che il rider dovrà compiere.                                                                            | 18 | 3          | 75%      |             |  |

#### Legenda risultati autovalutazione STATO AVANZAMENTO PROGETTO

| VALUTAZIONE | RISULTATO PROGETTO | LIVELLO ATTIVITA' | % COMPITI PERSONALI COMPLETATI     |
|-------------|--------------------|-------------------|------------------------------------|
| POSITIVO    | >= 75%             | 3 (alto)          | >= 50%                             |
| POSITIVO    | >= 75%             | 2 (medio)         | >= 75%                             |
| POSITIVO    | >= 75%             | 1 (base)          | > 90%                              |
| BASE        | >=75%              | 1,2,3             | MINORE DEL PREVISTO PER IL LIVELLO |
| BASE        | MINORE DEL 75%     | 1,2,3             | MAGGIORI O UGUALI AL PREVISTO      |
| NEGATIVO    | MINORE DEL 75%     | 1,2,3             | MINORE DEL PREVISTO PER IL LIVELLO |

### **Use Case Diagram**

#### TITOLO PROGETTO

Short-Streets



### **SCREENSHOTS**

## TITOLO PROGETTO

Short-Streets

# F1: ALFA

F1.D1: alfa beta gamma



F1.D2: alfa beta gamma



F1.D3: alfa beta gamma

