Матанализ 1 семестр ПИ, Лекция, 10/13/21

Собрано 13 октября 2021 г. в 19:06

Содержание

1.	Функции	1
	1.1. Свойства пределов функций	1
	1.2. Непрерывные функции	_

1.1. Свойства пределов функций

Теорема 1.1.1 (Единственность предела функции). Пусть $D \subset \mathbb{R}, a$ – предельная точка $D, f: D \to R$. Если A и $B \in \overline{\mathbb{R}}$ и $f(x) \xrightarrow[x \to a]{} A, f(x) \xrightarrow[x \to a]{} B \Rightarrow A = B$

Доказательство. Возьмем $\{x_n\}: x_n \in D, x_n \neq a, x_n \to a$. По Гейне $f(x_n) \to A \land f(x_n) \to B$. Но $\{x_n\}$ имеет единственный предел $\Rightarrow A = B$.

Замечание 1.1.2. Беззнаковая бесконечность: $A=+\infty, B=-\infty \Rightarrow f(x) \xrightarrow[x \to a]{} \infty$

Теорема 1.1.3 (Локальная ограниченность функции, имеющей предел). $D \subset \mathbb{R}, a$ – предельная точка $D, f: D \to \mathbb{R}, A \in \mathbb{R}, f(x) \xrightarrow[x \to a]{} A$. Тогда $\exists V(a): f(x)$ ограничена в $D \cap V(a)$

Доказательство. Пусть $\varepsilon=1$. $\exists \dot{V}(a):|f(x)-A|<1\;\forall x\in\dot{V}(a)\cap D.$ Тогда |f(x)|<|A|+1. Если $a\in D$, то $|f(x)|<\max\{|A|+1,f(a)\}$

Теорема 1.1.4 (Стабилизация знака функции, имеющей предел). $D \subset \mathbb{R}, a$ – предельная точ-ка $D, f: D \to \mathbb{R}$. Пусть $\lim_{x \to a} f(x) = B \in \overline{\mathbb{R}} \setminus \{0\}$. Тогда $\exists V(a)$ такая, что знаки f(x) и B совпадают на $\dot{V}(a) \cap D$

Доказательство. Пусть B > 0. Докажем от противного, т.е.

$$\forall n \ \exists x_n \in \dot{V}_{\frac{1}{2}}(a) \cap D \wedge f(x_n) \leq 0$$

Тогда $x_n \to a, x_n \neq a \Rightarrow f(x_n) \to B$, но $f(x_n) \leqslant 0 \Rightarrow B \leqslant 0$.

Теорема 1.1.5 (Арифметические действия над функциями, имеющими предел). $D \subset \mathbb{R}$, \overline{a} – предельная точка $D, f, g: D \to \mathbb{R}, f \xrightarrow[x \to a]{} A, g \xrightarrow[x \to a]{} B$. Тогда

- 1. $f(x) + g(x) \rightarrow A + B$
- 2. $f(x) \cdot g(x) \to A \cdot B$
- 3. $f(x) g(x) \rightarrow A B$
- $4. |f(x)| \to |A|$
- 5. Если $B \neq 0$, то $\frac{f(x)}{g(x)} \rightarrow \frac{A}{B}$

Доказательство. Рассмотрим $\{x_n\}: x_n \to a, x_n \neq a, x_n \in D$. Тогда $f(x_n) \to A, g(x_n) \to B$. Достаточно применить теорему об арифметических действиях с пределами последовательностей.

Замечание 1.1.6. Пункт 5) т.к. $B \neq 0$, то $\exists V(a) : \text{sign}(g(x)) = \text{sign } B$ в V(a). Поэтому излишне требовать $g(x) \neq 0$

Теорема 1.1.7 (Предел композиции функций). $f:D\to\mathbb{R}, g:E\to\mathbb{R}, f(D)\subset E$

1.
$$f(x) \xrightarrow[x \to a]{} A \in \overline{\mathbb{R}}$$

2. A – предельная точка множества E и $g(x) \xrightarrow[x \to A]{} B \in \overline{R}$

3.
$$\exists V(a) : f(x) \neq A \ \forall x \in \dot{V}(a) \cap D$$

Тогда
$$(g \circ f)(x) \xrightarrow[x \to a]{} B$$

Доказательство. Возьмем $\{x_n\}: x_n \in D, x_n \to a, x_n \neq a.$

Обозначим $y_n = f(x_n) \Rightarrow y_n \in E, y_n \to A$. По 3) начиная с некоторого номера $x_n \in V(a)$, а значит $y_n \neq A$. Тогда $g(y_n) \to B$, т.е. $g(f(x_n)) \xrightarrow[n \to \infty]{} B$. Значит $(g \circ f)(x) \xrightarrow[x \to a]{} B$

Теорема 1.1.8 (Предельный переход в неравенстве). $D \subset \mathbb{R}, a$ — предельная точка D. $f, g:D \to \mathbb{R}$.

$$f(x) \xrightarrow[x \to a]{} A \in \overline{\mathbb{R}}, g(x) \xrightarrow[x \to a]{} B \in \overline{\mathbb{R}}, f(x) \leqslant g(x) \ \forall x \in D \setminus \{a\}$$

Тогда $A \leqslant B$

Доказательство.

$$\{x_n\}: x_n \in D, x_n \to a, x_n \neq a \Rightarrow f(x_n) \to A, g(x_n) \to B = A \leqslant B$$

Теорема 1.1.9 (о сжатой функции). $D \subset \mathbb{R}, a$ – предельная точка $D, f, h, g : D \to \mathbb{R}$ и

$$f(x) \leqslant g(x) \leqslant h(x), \forall x \in D \setminus \{a\} \ f(x) \xrightarrow[x \to a]{} A, h(x) \xrightarrow[x \to a]{} A, A \in \mathbb{R}$$

Тогда $g(x) \xrightarrow[x \to a]{} A$

Доказательство. $\{x_n\}: x_n \in D, x_n \to a, x_n \neq a \Rightarrow f(x_n) \to A, h(x_n) \to A$

$$f(x_n) \leqslant g(x_n) \leqslant h(x_n) \Rightarrow A \leqslant \lim_{n \to \infty} g(x_n) \leqslant A \Rightarrow \exists \lim_{n \to \infty} g(x_n) = A \Rightarrow g(x) \to A$$

Замечание 1.1.10. $f(x) \leqslant g(x) \ \forall x \in D \setminus \{a\}, f(x) \xrightarrow[x \to a]{} +\infty \Rightarrow g(x) \xrightarrow[x \to a]{} +\infty$

Def. 1.1.11. $f: D \to \mathbb{R}, a$ – предельная точка $D_1 \subset D$. Тогда $\lim_{x\to a} f|_{D_1}(x)$ – предел f в точке a по множеству D_1 .

Def. 1.1.12. $f: D \to \mathbb{R}, D_1 = D \cap (-\infty, a), a$ – предельная точка D_1 . Предел f в точке a по множеству D_1 называется левосторонним пределом в точке a. Обозначение:

$$\lim_{x \to a-} f(x), \lim_{x \to a-0} f(x)$$

Def. 1.1.13. $f: D \to \mathbb{R}, D_1 = D \cap (a, +\infty), a$ – предельная точка D_1 . Правосторонний предел – предел f в точке a по множеству D_1 Обозначение:

$$\lim_{x \to a+} f(x), \lim_{x \to a+0} f(x)$$

Def. 1.1.14. Левосторонний предел на разных "языках".

- $\forall \varepsilon \ \exists \delta > 0 : \forall x \in D, 0 < a x < \delta \rightarrow |f(x) A| < \varepsilon$
- $\forall V(A) \ \exists \delta > 0 : \forall x \in D, 0 < a x < \delta \rightarrow f(x) \in V(A)$
- $\forall \{x_n\} : x_n \in D, x_n \to a, x_n < a \ f(x_n) \to A$

Замечание 1.1.15. $f: D \to \mathbb{R}, a \in \mathbb{R}$ – предельная точка для $D_1 = D \cap (-\infty, a), D_2 = D \cap (a, +\infty)$ Тогда

$$\exists \lim_{x \to a} f(x) \Leftrightarrow \exists \lim_{x \to a^{-}} f(x), \exists \lim_{x \to a^{+}} f(x) \land \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$$

Доказательство. "⇒". Очевидно.

" \Leftarrow ". Возьмем δ_1 из определения левостороннего предела, δ_2 из определения правостороннего предела. $\delta = \min\{\delta_1, \delta_2\}$. Тогда

$$\forall \varepsilon > 0 \ \exists \delta : \forall x \in D : |x - a| < \delta \rightarrow |f(x) - A| < \varepsilon$$

Теорема 1.1.16 (Предел монотонной функции). $D \in \mathbb{R}, f : D \to \mathbb{R}, a \in (-\infty, +\infty]$ $D_1 = D \cap (-\infty, a), a$ — предельная точка D.

- 1. Если f возрастает и ограничена сверху на D_1 , то $\exists \lim_{x\to a^-} f(x) \in \mathbb{R}$
- 2. Если f убывает и ограничена снизу на D_1 , то $\exists \lim_{x \to a^-} f(x) \in \mathbb{R}$

Доказательство. 1. Пусть $A=\sup_{x\in D_1}f(x)$. Тогда $A\in\mathbb{R}$, т.к. f ограничена сверху. Докажем, что $\lim_{x\to a-}f(x)=A$

$$\forall \varepsilon > 0 \ \exists x_0 \in D_1 : f(x_0) > A - \varepsilon$$

Тогда $\forall x \in D_1 : x > x_0$

$$A - \varepsilon < f(x_0) \leqslant f(x) \leqslant A < A + \varepsilon$$

Пусть $\delta = a - x_0$. Тогда $|f(x) - A| < \varepsilon \ \forall x : 0 < a - x < \delta$ Если $a = +\infty \Rightarrow \Delta = \max\{x_0, 1\}$

3амечание 1.1.17. f возрастает и не ограничена сверху $\Rightarrow \lim_{x\to a-} f(x) = +\infty$

<u>Теорема</u> 1.1.18 (Критерий Больцано-Коши для функций). $D \subset \mathbb{R}$. Тогда существование конечного $\lim_{x\to a} f(x)$ равносильно утверждению:

$$\forall \varepsilon > 0 \ \exists V(a) : \forall x_1, x_2 \in \dot{V}(a) \cap D \to |f(x_1) - f(x_2)| < \varepsilon$$

Доказательство. " \Rightarrow ". $\exists \lim_{x\to a} f(x) = A \in \mathbb{R}$. Возьмем $\varepsilon > 0$ Тогда $\exists V(a) : |f(x) - A| < \frac{\varepsilon}{2}$. Если $x_1, x_2 \in D \cap \dot{V}(a)$, то

$$|f(x_1) - A| + |f(x_2) - A| < \varepsilon$$

С другой стороный $|f(x_1) - f(x_2)| < |f(x_1) - A| + |f(x_2) - A| < \varepsilon$ " \Leftarrow ". $\{x_n\}: x_n \in D, x_n \neq a, x_n \to a$ и докажем, что $\exists \lim f(x_n) \in \mathbb{R}$. Пусть $\varepsilon > 0$.

$$\exists N : \forall n \geqslant N \to x_n \in \dot{V}(a)$$

$$\forall n,l\geqslant N \rightarrow |f(x_n)=f(x_l)| – фундаментальна$$

Значит $\{f(x_n)\}$ сходится.

1.2. Непрерывные функции

Def. 1.2.1. $D \subset \mathbb{R}, a \in D$. Функция f называется непрерывной в точке a, если выполнено одно из следующих условий:

- 1. Предел f в точке а существует и равен f(a) (только если a предельная точка).
- 2. $\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in D : |x a| < \delta \rightarrow |f(x) f(a)| < \varepsilon$
- 3. $\forall V(f(a)) \; \exists V(a) : f(V(a) \cap D) \subset V(f(a))$
- 4. $\forall \{x_n\} : x_n \to a, x_n \in D \ f(x_n) \to f(a)$
- 5. Бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции (если а предельная точка)

$$\Delta x = x - a, \Delta f = f(x) - f(a) \Rightarrow \Delta f \xrightarrow{\Delta x \to 0} 0$$

Замечание 1.2.2. Если a – изолированная точка D, то

$$f(V(a)\cap D)=\{f(a)\}\subset V(f(a))$$

T.e. любая f непрерывна в точке a

Def. 1.2.3. $D \subset \mathbb{R}, a \in D, f : D \to \mathbb{R}$.

а называется точкой разрыва f, если f не непрерывна в точке a

Def. 1.2.4. $D_1 = D \cap (-\infty, a], D_2 = D \cap [a, +\infty).$

Если сужение $f|_{D_1}$ непрерывно в точке a, то f непрерывна в точке a **слева**. Если сужение $f|_{D_2}$ непрерывно в точке a, то f непрерывна в точке a **справа**

Def. 1.2.5. Если $\exists \lim_{x\to a+} f(x), \lim_{x\to a-} f(x), f(a)$ – конечные, но не все равны, то a – точка разрыва I рода.

Def. 1.2.6. Если хотя бы один предел не существует или бесконечен – II рода.

Def. 1.2.7. Если в точке а разрыв, но мы можем доопределить или переопределить f в точке a до непрерывности, то a – точка устранимого разрыва.