## Convolution and its gradients

Conv2D operation and/or layer in machine learning can be expressed as many small convolution kernels, followed by adding biases.

Let's first define a convolution kernel in its simplied form. Given X, y, and W, where X and y are the input matrix with shape  $\langle m, n \rangle$  and scalar output respectively and W is the filter with shape  $\langle a, b \rangle$ , we define the convolution kernel

$$y = X \odot W = \sum_{x=0}^{a-1} \sum_{y=0}^{b-1} X_{x,y} W_{x,y}$$

as a two-dimension dot product over all non-zero elements where the top-left corners of X and W are aligned. In addition, if a > m or b > n, the X is padded with zeros.

With this, gradients are straightforward:

$$\frac{\mathrm{d}y}{\mathrm{d}W_{x,y}} = X_{x,y}$$
$$\frac{\mathrm{d}y}{\mathrm{d}X_{x,y}} = W_{x,y}$$

Secondly, let's define a shifted version for convolution kernel:

$$y_{\triangleright \alpha,\beta} = (X \odot W)_{\triangleright \alpha,\beta} = X \odot W_{\triangleright \alpha,\beta} = \sum_{x=0}^{a-1} \sum_{y=0}^{b-1} X_{x+\alpha,y+\beta} W_{x,y}$$

where  $\triangleright \alpha, \beta$  means shifting to right and down with  $(\alpha, \beta)$  offsets. Any missing values due to out of boundaries are padded with zeros. Accordingly, gradients are as follows:

$$\begin{split} \frac{\mathrm{d} y_{\rhd \; \alpha,\beta}}{\mathrm{d} W_{x,y}} &= X_{x+\alpha,y+\beta} \\ \frac{\mathrm{d} y_{\rhd \; \alpha,\beta}}{\mathrm{d} X_{x,y}} &= W_{x-\alpha,y-\beta} \end{split}$$

## Conv2D and its Gradients

Forward Pass Conv2D is quite simple. Given X, W, and Y, where X and Y are the input and output respectively and W is a typically quite small filter, we denote the formula as

$$Y = X \otimes W$$
.

There is a hidden controlling argument for the Conv2D, which is the padding. Assuming the padding is same, which means the shape of the output Y is same as the shape of input X, denocated as < m, n > and, W has odd number of rows and columns, denoted as < a, b >, then we have

$$\begin{split} Y_{i,j} &= y_{\triangleright i,j} \\ &= (X \odot W)_{\triangleright i - \frac{a-1}{2}, j - \frac{b-1}{2}} \\ &= \sum_{x=0}^{a-1} \sum_{y=0}^{b-1} X_{i+x - \frac{a-1}{2}, j+y - \frac{b-1}{2}} W_{x,y}. \end{split}$$

where  $0 \le i \le m-1$  and  $0 \le j \le n-1$ . Here, there is a hidden padding in the input X, i.e., for any coordinates out of the boundaries, the input value is zero.

**Grad of** X If we examine the Jacobian matrix, each column, i.e., for a fixed input x, has ab non-zero elements, due to the filter shape < a, b >. And due to the symmetricity, it is trivial to prove:

$$dX = dY \otimes W'.$$

where the padding is still same and W' is a matrix with same shape < a, b > as W, but all elements reversed, i.e.,

$$W' = \begin{bmatrix} W_{a-1,b-1} & W_{a-1,b-2} & \dots & W_{a-1,0} \\ W_{a-2,b-1} & W_{a-2,b-2} & \dots & W_{a-2,0} \\ \vdots & \vdots & \ddots & \vdots \\ W_{0,b-1} & W_{0,b-2} & \dots & W_{0,0} \end{bmatrix}$$

**Grad of** W For the central point of W, the gradient is

$$dW_{\frac{a-1}{2},\frac{b-1}{2}} = dY \odot X$$

where  $\odot$  is a 2-D point-wise dot product. With that, we can summerize the gradients for each point of W as

$$dW_{x+\frac{a-1}{2},y+\frac{b-1}{2}} = dY_{\triangleright(x,y)} \odot X$$

where  $-\frac{a-1}{2} \le x \le \frac{a-1}{2}, -\frac{b-1}{2} \le y \le \frac{b-1}{2}$  and  $\triangleright(x,y)$  means shifting the matrix to right with (x,y) offsets.