

YEAR 12 MATHEMATICS SPECIALIST SEMESTER TWO 2017

QUESTIONS OF REVIEW 7: Differential Equations

By daring & by doing

Name:		

Mark

/28

Thursday 31st August

Calculators assumed.

1. [10 marks - 3, 3, 2 and 2] - based on 2016 WACE paper

Time: 35 minutes

This slope field represents the family of polynomials y = f(x) + c with f'(2) = 0 and $f'(0) = \frac{1}{2}$

a) Explain why f'(x) takes the form

 $f'(x) = a(x+b)^2$ and evaluate a and b

٥	C Edit Zoom Analysis										
K	٧	Y	···	+‡-	L	₩-	М	2			Ŀ
1	t	Ţ	Ţ	7	7	_	-	۰.,	7	7	Ţ
1	t	ţ	ţ	1	>		-		>	7	ţ
1	t	ţ	ţ	1	5 .	_	-		>	7	ţ
1	ţ	Ţ	Ţ	7	ž		-		1	7	Ţ
1	t	ţ	Ţ	7	1		-		1	7	Ť
1	t	ţ	t	7	1		-		>	7	Ť
1	t	5†	Ţ	7	1		-		Ź	7	Ť
1	t	Ť	t	1	/		-	خسر	/	7	ţ
1	t	ţ	ţ	1	1	_	\rightarrow		>	7	Ţ
1	ţ	Ţ	Ţ	1	-5		-		1	7	Ţ
1	t	Ţ	Ţ	7	1				1	7	Ţ
1	t	Ť	Ť	7	1	_	-		1	7	ţ
										1	(111

b) Use Euler's method, with an increment of $\partial x = 0.2$ to estimate f(0.6), starting from f(0) = 3

X	y = f(x)	∂x	∂y
0	3		
0.2			
0.4			
0.6		-	-

c) Determine f(x) given f(0) = 3

d) Compare the actual value of f(0.6) with your estimate in (b) and explain the difference.

2. [18 marks – 2, 4, 2, 1, 1, 1, 1, 3, 1, 1 and 1] – based on 2016 SA Specialist paper A country's population growth depends on the internal growth rate r and the number of immigrants I, so that $\frac{dP}{dt} = rP + I$

$$\int \frac{1}{P + \frac{I}{r}} dP = \int r \, dt$$

(a) Use separation of variables to show that

(b) Hence solve the differential equation $\frac{dP}{dt} = rP + I$ and show that $P(t) = P_0 e^{rt} + \frac{I}{r} (e^{rt} - 1)$ where $P(0) = P_0$

A country in 2017 has P_0 =24.5 million, I =0.21 million and r =0.0062

- (c) Estimate the population in 5 years time (the year 2022)
- (d) Estimate the population in 50 years time
- (e) Identify one assumption in these estimates

(f) How reliable is the model in the longer term?

A logistic equation for this country's population is derived from
$$\frac{dP}{dt}$$
 =0.016 $P\left(\frac{45-P}{45}\right)$ with a 2017 population of P_0 =24.5 million and an increased r value to include immigration.

- (g) What is the maximum population?
- (h) Estimate the population in 5 years time (2022) and after 50 years

(i) What is the major difference between these logistic results and the earlier model?

$$\frac{dP}{dt} = 0.0062P \left(\frac{45 - P}{45}\right) + 0.21$$
 A combined equation has

- (j) Draw the solution curve with $P_0 = 24.5$ million on this slope field.
- (k) How do the results from this model compare with the logistic model?

