

AN 102:81476 CA FULL-text
OREF 102:12763a,12766a

TI Treatment of clay drilling fluid and cement mortar
IN Lukmanov, R. R.; Polyakov, V. N.; Tyurin, B. K.; Stepanenko, N. I.;
Rayanov, K. S.; Evdokimova, A. V.; Antonov, K. V.

PA USSR

SO U.S.S.R.

From: Otkrytiya, Izobret. 1984, (43), 71.

CODEN: URXXAF

DT Patent

LA Russian

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI SU 1125226	A1	19841123	SU 1982-3528462	19821015 <--
PRAI SU 1982-3528462		19821015		

AB The rheol. properties of drilling fluid and cement mortar are improved by adding 0.1-0.5% viscosity-decreasing reagent consisting of still residues from the production of synthetic glycerol containing 60-07 polyglycerols, 8-13 weight% NaCl, and balance H₂O (based on the weight of drilling fluid and cement mortar). The polyglycerols contain glycerol 8.0-15.0, diglycerol 80.0-85.0, triglycerol 3.0-4.0, tetraglycerol 1.5-2.0, and pentaglycerol 0.5-1.0 weight%.

AN 1985-144939 [198524] WPIDS Full-text
DNC C1985-063308 [199321]
DNN N1985-109140 [199321]
TI Diluent reducing viscosity of drilling muds and cement solns. - containing mixture of polyglycerol(s), sodium chloride and water
DC E17; H01; Q49
IN LUKMANOV R R; POLYAKOV V N; TYURIN B K
PA (LUKM-I) LUKMANOV R R
CYC 1
PI SU 1125226 A 19841123 (198524)* RU 4[0] <--
ADT SU 1125226 A SU 1982-3528462 19821015
PRAI SU 1982-3528462 19821015
IPCR C09K0008-50 [I,A]; C09K0008-50 [I,C]
EPC C09K0008-50
AB SU 1125226 A UPAB: 20050423
Reagent-diluent for reducing viscosity of clayey drilling muds and cement solns. consists of vat residues of synthetic glycerol production (I) containing (in weight%): polyglycerols (II) 60-67, NaCl 8-13 and balance water, and (II) contains (in weight%): glycerol 8-15, diglycerol 80-85, triglycerol 3-4, tetraglycerol 1.5-2.0 and pentaglycerol 0.5-1.0.
ADVANTAGE - Increased efficiency of treatment, utilisation of industrial waste.
Bul.43/23.11.84
FS CPI; GMPI
MC CPI: E10-E04H; E10-E04J; E33-B; H01-B06; H01-C02

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (11) 1125226 A

3(51) С 09 К 7/02; Е 21 В 33/138

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР
ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 3528462/23-03

(22) 15.10.82

(46) 23.11.84. Бюл. № 43

(72) Р.Р.Лукманов, В.Н.Поляков,
Б.К.Тюрин, Н.И.Степаненко, К.С.Рая-

нов, А.В.Евдокимова и К.В.Антонов
(53) 622.243.144.2:622.245.44 (088.8)

(56) 1. Рязанов Я.А.Справочник по
буровым растворам. М., "Недра",
1979, с. 86-94.

2. Там же, с. 176 (прототип).

(54)(57) 1. СПОСОБ ОБРАБОТКИ ГЛИНИС-
ТЫХ БУРОВЫХ И ЦЕМЕНТНЫХ РАСТВОРОВ
путем введения реагента-понизителя
вязкости, отличающийся
тем, что, с целью повышения эффек-
тивности обработки за счет повыше-
ния разжижающих свойств растворов,

в качестве реагента-понизителя вяз-
кости растворы содержат кубовые ос-
татки производства синтетического
глицерина, содержащие, мас.%:

Полиглицирины 60-67
Хлористый натрий 8-13
Вода Остальное
в количестве 0,1 - 0,5 % к массе
раствора.

2. Способ по п. 1, отличаю-
щийся тем, что полиглицирины
содержат следующие компоненты,
мас.%:

Глицерин	8,0-15,0
Диглицерин	80,0-85,0
Триглицерин	3,0-4,0
Тетраглицерин	1,5-2,0
Пентаглицерин	0,5-1,0

(19) SU (11) 1125226 A

Изобретение относится к нефтяной промышленности, точнее к способам ре гулирования свойств тампонажных и буровых растворов.

Известны способы обработки глинистых буровых и цементных растворов путем введения реагентов-понизителей вязкости (сульфитспиртовая барда, конденсированная сульфитспиртовая барда, нитролигнин и другие) [1].

Однако в указанном способе обработки сульфитспиртовая барда и конденсированная сульфитспиртовая барда, недостаточно эффективно снижают вязкость растворов. Замедляющее действие этих реагентов на цементные растворы неоднозначно, т.е. они могут как замедлять, так и ускорять сроки схватывания растворов.

Известен способ обработки глинистых буровых и цементных растворов путем введения реагентов-понизителей вязкости [2].

Однако добавка ПФЛХ недостаточно эффективно повышает растекаемость, замедляет сроки схватывания цементных и снижает вязкость глинистых растворов. При приготовлении растворов с этой добавкой образуется обильная пена, поэтому в раствор необходимо вводить дополнительно пеногасители. Для приготовления раствора ПФЛХ необходимо длительное перемешивание (1,0-1,5 ч) в глиномерах или цементировочных агрегатах. Реагент имеет высокую стоимость.

Целью изобретения является повышение эффективности обработки за счет повышения разжижающих свойств растворов.

Поставленная цель достигается тем, что согласно способу обработки глинистых буровых и цементных растворов путем введения реагента-понизителя вязкости, в качестве последнего растворы содержат кубовые остатки производства синтетического глицерина, содержащие, мас.%:

Полиглицерины	60-67
Хлористый натрий	8-13
Вода	Остальное в количестве 0,1 - 0,5 % к массе раствора.

Причем полиглицерины содержат следующие компоненты, мас.%:

Глицерин	8,0-15,0
Диглицерин	80,0-85,0
Триглицерин	3,0-4,0
Тетраглицерин	1,5-2,0
Пентаглицерин	0,5-1,0

Основным активным компонентом полиглицеринов является диглицерин, что подтверждается результатами сравнительной оценки влияния различных глицеринов на свойства растворов. В табл. 1 представлены свойства глинистого раствора, содержащего

40% глины и 60% воды, плотностью 1,32 г/см³ без добавок (исходный раствор) и с добавками глицерина, диглицерина и полиглицерина.

Как видно из табл. 1, снижение относительной вязкости исходных глинистых растворов происходит в основном за счет добавки диглицерина. Добавки остальных компонентов в тех же концентрациях оказывают незначительное влияние на снижение вязкости бурового раствора.

В табл. 2 представлены свойства цементных растворов с В/Ц = 0,5 без добавок и с добавками глицерина, диглицерина и полиглицерина.

Из данных табл. 2 следует, что основное влияние на снижение растворимости цементного раствора оказывает диглицерин.

Отход - это густая жидкость темно-коричневого цвета, хорошо растворяющаяся в воде. В зависимости от способа выделения растворов полиглицеринов имеет pH от 10 до 4.

Для сравнительной оценки эффективности известной и предлагаемой добавок приготовлены цементные растворы, отличающиеся друг от друга содержанием добавок в каждом растворе (табл. 3).

Испытания проведены в одинаковых условиях по ГОСТу 1581-78. Растворы испытывали для условий холодных ($T = 22^{\circ}\text{C}$) и горячих ($T = 75^{\circ}\text{C}$) скважин. Результаты испытаний цементных растворов представлены в табл. 4. Результаты обработки глинистого раствора высокой вязкости ОПГ и ПФЛХ - в табл. 5.

Как видно из данных табл. 4 и 5, отходы производства синтетического глицерина более эффективно повышают растекаемость, замедляют сроки загустевания и схватывания цементных и снижают вязкость глинистых растворов, чем полифенолы. Цементный камень, содержащий полиглицерин, имеет более высокую прочность. При добавках предлагаемого реагента образуется мало пены, о чем можно судить по плотности растворов. Так

при добавках ОПГ плотность растворов снизилась по сравнению с исходными на 0,02-0,04 г/см³, а плотность растворов с добавками полифенолов - на 0,02-0,10 г/см³. Реагент хорошо растворяется в воде и стоит значительно дешевле полифенолов. При цементировании холодных скважин не рекомендуется вводить предлагаемую добавку в количестве более 0,1 мас.%, так как сроки схватывания цемента резко замедляются.

Таблица 1

Содержание компонентов, %	Плотность, г/см ³	Вязкость	
		условная, с	относитель- ная, %
Глинистый раствор 100 без добавок	1,32	90	100
Глинистый раствор 100 + глице- рин 0,5	1,30	82	91
Глинистый раствор 100 + диглице- рин 0,5	1,30	46	51
Глинистый раствор 100 + полиглице- рин 0,5	1,30	37	41

Таблица 2

Содержание компонентов, %	Растекаемость раствора, см
Цементный раствор 100 без добавок	19,0
Цементный раствор 100 + глицерин 0,20	20,0
Цементный раствор 100 + диглицерин 0,20	22,0
Цементный раствор 100 + полиглицерин 0,20	22,0

Таблица 3

Номер состава	Состав	Содержание компонентов, мас.%			
		Портланд- цемент	ОПГ*	Полифенол	Вода
1	Исходный	66,7	-	-	Осталь- ное
2	Предлагаемый	66,6	0,1	-	-"-
3	-"-	66,0	0,2	-	-"-
4	-"-	65,4	0,3	-	-"-
5	Известный	66,6	-	0,1	-"-
6	-"-	66,0	-	0,2	-"-
7	-"-	65,4	-	0,3	-"-

* ОПГ - отход производства глицерина.

Таблица 4

Состав	Растекаемость, см	Плотность, г/см ³	Температура испытания, °C	Время застывания, ч-мин	Сроки схватывания		Прочность камня на изгиб, МПа
					Начало	Конец	
1	19,0	1,82	22	6-30	8-20	10-00	3,16
2	22,0	1,80	22	9-10	10-25	12-30	2,58
3	23,0	1,78	22	-	48-00	60-00	*3,05
4	24,0	1,78	75	3-30	4-45	5-10	8,47
5	21,0	1,78	22	5-30	6-10	8-00	2,35
6	21,5	1,76	22	-	18-00	24-00	*2,82
7	21,0	1,75	75	1-40	2-45	3-25	7,69

* через 4 сут.

Таблица 5

Состав	Свойства бурового раствора							
	Добавка	Вид	Количество мас. %	Плотность, г/см ³	Вязкость, с	Водоотдача по ВМ-6 см ³ /30 мин	Корка мм	
1	-	-	-	1,32	90	7	2	242/256
2	ОПГ	0,1	1,32	43	8	2	115/126	
3	ОЛГ	0,3	1,31	40	12	2	108/119	
4	ОПГ	0,5	1,30	37	15	2	84/95	
5	ПФЛХ	0,1	1,30	50	9	2	52/63	
6	ПФЛХ	0,3	1,26	45	13	2	28/38	
7	ПФЛХ	0,5	1,22	42	12	2	26/35	

Редактор Н.Джуган

Составитель Г.Сапронова
Техред С. Легеза

Корректор Н.Король

Заказ 8431/17

Тираж 633

Подписьное

ВНИИПИ Государственного комитета СССР

по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4