Université Paris 7 – Licence d'informatique IF2 – 10 avril 2009

Durée 30 minutes, tous les documents sont interdits

IF 2 QCM 3, Version: A

Nom:	
Carte d'étudiant:	

Remplissez la table avec les lettres correspondant à vos réponses.

Questions	1	2	3	4	5	6	7	8	9	10	11	12	13
Réponse(s)													

Bonne réponse=1pt; mauvaise réponse ou réponse incomplète =-0,5pt; pas de réponse=0pt. On rappelle qu'un arbre binaire parfait est un arbre dont tous les noeuds qui ne sont pas des feuilles ont exactement deux fils et toutes les branches (chemin de la racine à une feuille) ont la même longueur.

1. On considère le programme suivant:

static void $f(int n)\{if(n==0) \text{ return}; \text{ System.out.print(n)}; f(n-1); f(n-1)\}$ L'appel f(4) affiche:

- (a) 121312141213121
- (b) 112112311211234
- (c) 432112113211211
- 2. On considère le programme suivant:

static void $f(int n)\{if(n \le 0) \text{ return}; f(n-2);f(n-2);\}$

Le nombre d'appels de f pour f(n) est un (on suppose n > 0):

- (a) $\Theta(n)$ dans le pire cas
- (b) $\Theta(\log(n))$ dans le pire cas
- (c) $\Theta(2^n)$ dans le pire cas
- (d) infini: le programme ne termine pas toujours
- 3. Pour un arbre binaire parfait de hauteur n, le nombre de noeuds est:
 - (a) 2^{r}
 - (b) égal au nombre de feuilles d'un arbre parfait de hauteur n+1 moins 1
 - (c) $n * \log(n)$
- 4. Le tri fusion trie un tableau de n éléments en:
 - (a) $\Theta(n^2)$ comparaisons dans le meilleur cas
 - (b) $\Theta(nlog(n))$ comparaisons dans le meilleur cas
 - (c) $\Theta(n)$ comparaisons dans le meilleur cas
- 5. Le tri par insertion trie un tableau de n éléments en:
 - (a) $\Theta(n^2)$ comparaisons dans le pire cas
 - (b) $\Theta(nlog(n))$ comparaisons dans le pire cas
 - (c) $\Theta(n)$ comparaisons dans le pire cas
- 6. On considère le programme suivant:

static void $f(int n)\{if(n \le 0) \text{ return}; if ((n\%2) = 0) f(n-1); \text{ else } f(n+1); \}$ Le nombre d'appels de f pour f(n) est un (on suppose n > 0):

- (a) $\Theta(n)$ dans le pire cas
- (b) $\Theta(\log(n))$ dans le pire cas
- (c) $\Theta(2^n)$ dans le pire cas
- (d) infini: le programme ne termine pas toujours
- 7. Le tri rapide (quick-sort) trie un tableau de n éléments en:
 - (a) $\Theta(n^2)$ comparaisons dans le pire cas
 - (b) $\Theta(nlog(n))$ comparaisons dans pire cas
 - (c) $\Theta(n)$ comparaisons dans le pire cas

8. On considère le programme suivant:

static void f(int n){if(n==0) return; f(n-1); System.out.print(n); f(n-1); } L'appel f(4) affiche:

- (a) 121312141213121
- (b) 112112311211234
- (c) 432112113211211
- 9. On considère le programme suivant:

static void $f(int n)\{if(n \le 1) \text{ return; } f(n/2) \}$

Le nombre d'appels de f pour f(n) est un (on suppose n>0):

- (a) $\Theta(n)$ dans le pire cas
- (b) $\Theta(\log(n))$ dans le pire cas
- (c) $\Theta(2^n)$ dans le pire cas
- 10. On considère le programme suivant:

```
static void f(int n)\{if(n \le 1) \text{ return}; f(n/2); f(n/2); \}
Le nombre d'appels de f pour f(n) est un (on suppose n > 0):
```

- (a) $\Theta(n)$ dans le pire cas
- (b) $\Theta(n \log(n))$ dans le pire cas
- (c) $\Theta(2^n)$ dans le pire cas
- 11. Pour un arbre binaire parfait de hauteur n, le nombre de feuilles est:
 - (a) 2^n
 - (b) n
 - (c) $\log(n)$
- 12. On considère le programme suivant:

static void f(int n){if(n==0) return; f(n-1); f(n-1); System.out.print(n); } L'appel f(4) affiche:

- (a) 121312141213121
- (b) 112112311211234
- (c) 432112113211211
- 13. Le tri par insertion trie un tableau de n éléments en:
 - (a) $\Theta(n^2)$ comparaisons dans le meilleur cas
 - (b) $\Theta(nlog(n))$ comparaisons dans le meilleur cas
 - (c) $\Theta(n)$ comparaisons dans le meilleur cas

Answer Key for Exam A

Bonne réponse=1pt; mauvaise réponse ou réponse incomplète =-0,5pt; pas de réponse=0pt. On rappelle qu'un arbre binaire parfait est un arbre dont tous les noeuds qui ne sont pas des feuilles ont exactement deux fils et toutes les branches (chemin de la racine à une feuille) ont la même longueur.

 On considère le programme suivant: static void f(int n){if(n==0) return; System.out.print(n); f(n-1); f(n-1)}

L'appel f(4) affiche:

- (a) 121312141213121
- (b) 112112311211234
- (c) 432112113211211
- 2. On considère le programme suivant:

static void $f(int n)\{if(n \le 0) \text{ return}; f(n-2);f(n-2);\}$

Le nombre d'appels de f pour f(n) est un (on suppose n > 0):

- (a) $\Theta(n)$ dans le pire cas
- (b) $\Theta(\log(n))$ dans le pire cas
- (c) $\Theta(2^n)$ dans le pire cas
- (d) infini: le programme ne termine pas toujours
- 3. Pour un arbre binaire parfait de hauteur n, le nombre de noeuds est:
 - (a) 2^r
 - (b) égal au nombre de feuilles d'un arbre parfait de hauteur n+1 moins 1
 - (c) n * log(n)
- 4. Le tri fusion trie un tableau de n éléments en:
 - (a) $\Theta(n^2)$ comparaisons dans le meilleur cas
 - (b) $\Theta(nlog(n))$ comparaisons dans le meilleur cas
 - (c) $\Theta(n)$ comparaisons dans le meilleur cas
- 5. Le tri par insertion trie un tableau de n éléments en:
 - (a) $\Theta(n^2)$ comparaisons dans le pire cas
 - (b) $\Theta(nlog(n))$ comparaisons dans le pire cas
 - (c) $\Theta(n)$ comparaisons dans le pire cas
- 6. On considère le programme suivant:

static void f(int n){if(n<=0) return; if ((n%2)==0) f(n-1); else f(n+1); } Le nombre d'appels de f pour f(n) est un (on suppose n > 0):

- (a) $\Theta(n)$ dans le pire cas
- (b) $\Theta(\log(n))$ dans le pire cas
- (c) $\Theta(2^n)$ dans le pire cas
- (d) infini: le programme ne termine pas toujours
- 7. Le tri rapide (quick-sort) trie un tableau de n éléments en:
 - (a) $\Theta(n^2)$ comparaisons dans le pire cas
 - (b) $\Theta(nlog(n))$ comparaisons dans pire cas
 - (c) $\Theta(n)$ comparaisons dans le pire cas
- 8. On considère le programme suivant:

static void $f(int n)\{if(n==0) \text{ return}; f(n-1); \text{ System.out.print}(n); f(n-1); \}$ L'appel f(4) affiche:

- (a) 121312141213121
- (b) 112112311211234
- (c) 432112113211211

- 9. On considère le programme suivant:
 static void f(int n){if(n<=1) return; f(n/2) }
 Le nombre d'appels de f pour f(n) est un (on suppose n > 0):
 - (a) $\Theta(n)$ dans le pire cas
 - (b) $\Theta(\log(n))$ dans le pire cas
 - (c) $\Theta(2^n)$ dans le pire cas
- 10. On considère le programme suivant:

static void $f(int n)\{if(n \le 1) \text{ return}; f(n/2); f(n/2); \}$

Le nombre d'appels de f pour f(n) est un (on suppose n > 0):

- (a) $\Theta(n)$ dans le pire cas
- (b) $\Theta(n \log(n))$ dans le pire cas
- (c) $\Theta(2^n)$ dans le pire cas
- 11. Pour un arbre binaire parfait de hauteur n, le nombre de feuilles est:
 - (a) 2^n
 - $(b)^{-}$ n
 - (c) $\log(n)$
- 12. On considère le programme suivant:

static void f(int n){if(n==0) return; f(n-1); f(n-1); System.out.print(n); } L'appel f(4) affiche:

- (a) 121312141213121
- (b) 112112311211234
- (c) 432112113211211
- 13. Le tri par insertion trie un tableau de n éléments en:
 - (a) $\Theta(n^2)$ comparaisons dans le meilleur cas
 - (b) $\Theta(nlog(n))$ comparaisons dans le meilleur cas
 - (c) $\Theta(n)$ comparaisons dans le meilleur cas