SES 2024 届高一下数学测验(11)2022. 5. 18

班级 学号 姓名

一、填空题: (本大题共12小题, 每题5分, 共60分)

1. 已知三点
$$A(2,-3)$$
, $B(4,3)$, $C(5,\frac{m}{2})$ 在同一直线上,则 m 的值为______.

- 2. 设 $\overrightarrow{e_1}$ 与 $\overrightarrow{e_2}$ 是两个不共线的向量,已知 \overrightarrow{AB} = $2\overrightarrow{e_1}$ + $k\overrightarrow{e_2}$, \overrightarrow{CB} = $\overrightarrow{e_1}$ + $3\overrightarrow{e_2}$, \overrightarrow{CD} = $2\overrightarrow{e_1}$ $\overrightarrow{e_2}$,则当 A、B、D 三点共线时,k = ______.
- 3. 已知 z 是纯虚数, $\frac{z+2}{1-i}$ 是实数, 那么 z 等于______.

4. 计算:
$$\left\{ \left[i^{100} - \left(\frac{1-i}{1+i} \right)^5 \right] + \left(\frac{1+i}{\sqrt{2}} \right)^2 \right\} (1+2i) = \underline{\qquad}$$
.

- 5. 在复数范围内分解因式 $x^6 + 2x^4 x^2 2 =$ ______.
- 6. 已知关于 x 的方程 $x^2 (2i-1)x + m i = 0$ 有实根,则实数 $m = ____.$
- 7. z_1 、 z_2 是复数, x是实数, 有下列四个关系式:
 - ① $|z_1| \le 1 \Leftrightarrow -1 \le z_1 \le 1$;
- $|x| \le 1 \Leftrightarrow -1 \le x \le 1$;

上述能够成立的关系式有 .

- 8. 设复数 z 满足 $\frac{1-z}{1+z} = i$,则 |1+z| =______.
- 9. 如图,在 ΔABC 中, $\angle BAC = 90^{\circ}$,AB = 6,D在斜边BC上,且CD = 2DB,则 $\overrightarrow{AB} \cdot \overrightarrow{CD}$ 的值为______.

10. 如图所示: ΔABC 中,点O是BC中点。过点O的直线分别 交直线AB、AC于不同两点M、N。

若 $\overrightarrow{AB} = m \overrightarrow{AM}$, $\overrightarrow{AC} = n \overrightarrow{AN}$, 则 m + n 的值为 .

11. 设 \vec{a} , \vec{b} , \vec{c} 是平面内互不平行的三个向量, $x \in R$,有下列命题:

(第10题图)

- ①方程 $\vec{a}x^2 + \vec{b}x + \vec{c} = \vec{0}(\vec{a} \neq \vec{0})$ 不可能有两个不同的实数解;
- ②方程 $\vec{a}x^2 + \vec{b}x + \vec{c} = \vec{0}(\vec{a} \neq \vec{0})$ 有实数解的充要条件是 $\vec{b}^2 4\vec{a} \cdot \vec{c} \ge 0$;
- ③方程 $\vec{a}^2 x^2 + 2\vec{a} \cdot \vec{b}x + \vec{b}^2 = 0$ 有唯一的实数解 $x = -\frac{\vec{b}}{\vec{a}}$;
- ④方程 $\vec{a}^2 x^2 + 2\vec{a} \cdot \vec{b}x + \vec{b}^2 = 0$ 没有实数解.

其中真命题有_____. (写出所有真命题的序号)

12. 如图 1, OM //AB, 点 P 在由射线 OM , 线段 OB 及 AB 的延长线围成的区域内 (不含边界) 运动,且 $\overrightarrow{OP} = x\overrightarrow{OA} + y\overrightarrow{OB}$,则 x 的取值范围是______; 当 $x = -\frac{1}{2}$ 时,y 的取值范围是______.

- 二、解答题: (12+14+14=40)
- 13. 已知复数 z_1 满足 $(z_1-2)(1+i)=1-i$ (i 为虚数单位),复数 z_2 的虚部为 2,且 $z_1\cdot z_2$ 是实数,求 z_2 .
- 14. 已知 $|\vec{a}| = \sqrt{2}$, $|\vec{b}| = 2$, \vec{a} 和 \vec{b} 的夹角为 45°,求使向量 \vec{a} + λ \vec{b} 与 λ \vec{a} + \vec{b} 的夹角 是锐角时 λ 的取值范围.
- 15. 已知 \vec{a} 、 \vec{b} 是两个不共线的非零向量.
- (1) 设 $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = t\overrightarrow{b}$ ($t \in \mathbb{R}$), $\overrightarrow{OC} = \frac{1}{3}(\overrightarrow{a} + \overrightarrow{b})$, 当 $A \setminus B \setminus C$ 三点共线时,求t的值.
- (2) 如图,若 $\vec{a} = \overrightarrow{OD}$, $\vec{b} = \overrightarrow{OE}$, $\vec{a} = \vec{b}$ 夹角为120°, $|\vec{a}| = \vec{b} = 1$,点P是以O为圆心的圆弧 \widehat{DE} 上一动点,设 $\overrightarrow{OP} = x\overrightarrow{OD} + y\overrightarrow{OE}$ ($x, y \in \mathbb{R}$),求x + y的最大值.

三、附加题

16. 已知 $\vec{a} = (3,0), \vec{b} = (-2,0), |\vec{c}| = 1$, 求 $\vec{a} - \vec{c} = \vec{b} - \vec{c}$ 夹角的最小值.