

11 PHYSICS ATAR TEST 6: NUCLEAR PHYSICS

NAME:	MARK:	
		33

1. Copy and complete these reaction equations.

(a)
$$^{141}_{57}La \longrightarrow ^{141}_{58}Ce + ____$$

(b)
$$^{226}_{88}Ra \longrightarrow ^{222}_{86}Rn +$$

(c)
$${}_{0}^{1}n + {}_{94}^{239}Pu \longrightarrow + {}_{40}^{106}Zr + 4{}_{0}^{1}n$$
 (3)

- 2. Consider three beams of α , β and γ radiations of **equal energy**. When passing through matter, they have differing **ionising power** and **penetrating ability**.
 - (a) Arrange them in decreasing order (i.e. highest mentioned first) of:
 - (i) ionising power.
 - (ii) penetrating ability.

(2)

(b) Look at the α particle rankings in part (a) above. Explain why you have rated this radiation as you have.

3. A sample of Ra-233 is delivered to a research laboratory and found to give an α particle count rate of 92 per second. However, over the next month, the count rate diminishes as follows.

TIME (days)	0	5	10	15	20	25	30
COUNT RATE (s ⁻¹)	92	67	51	38	27	20	15

Plot the data on the graph paper below and determine the half-life.

Half-life: ______ (5)

4.	If the	e-131, used in destroying malignant tumours of the thyroid, has a half-life of 8.07 days. initial activity (count rate) is 3.20×10^6 Bq at the time of injection, what would be the ty after 3.50 days?
		(4)
5.	(a)	Determine the binding energy per nucleon of a $^{218}_{84}$ Po atom. Show all of your working clearly. (Po-218 = 218.10215u)
	(b)	(4) Which element has the highest binding energy per nucleon?
		(1)

(c) On the diagram below, indicate which elements along the curve undergo *fission*, and explain why they do.

(3)

7. (a) When irradiating a food sample, a scientist uses an absorbed dose of 11.0 kGy of gamma radiation. How much energy would a 245 g sample absorb?

` '	What dose equivalent would this be if alpha particles were used instead of gamma rays?
-----	--

(2)

- 8. Two deuterium nuclei $\binom{2}{1}H$) fuse to make helium $\binom{3}{2}He$) and a neutron.
 - (a) Write a nuclear equation for this fusion reaction.

(1)

(b) Determine the amount of energy liberated by one such fusion reaction. (Mass ${}_{1}^{2}H$ = 3.34354 x 10⁻²⁷ kg, mass ${}_{2}^{3}He$ = 5.00742 x 10⁻²⁷ kg)

(4)