Отчёт по лабораторной работе №7

Дискретное логарифмирование

Игорь Солодовников

Содержание

1	Цель работы	4									
2	Теоретические сведения 2.1 р-алгоритм Поллрада	5 5									
3	Выполнение работы 3.1 Реализация алгоритма на языке Python	7 7 10									
4	4 Выводы										
Сп	исок литературы	12									

List of Figures

3.1	Работа алгоритма														1	0

1 Цель работы

Изучение задачи дискретного логарифмирования.

2 Теоретические сведения

Пусть в некоторой конечной мультипликативной абелевой группе G задано уравнение

$$q^x = a$$

Решение задачи дискретного логарифмирования состоит в нахождении некоторого целого неотрицательного числа x, удовлетворяющего уравнению. Если оно разрешимо, у него должно быть хотя бы одно натуральное решение, не превышающее порядок группы. Это сразу даёт грубую оценку сложности алгоритма поиска решений сверху — алгоритм полного перебора нашёл бы решение за число шагов не выше порядка данной группы.

Чаще всего рассматривается случай, когда группа является циклической, порождённой элементом g. В этом случае уравнение всегда имеет решение. В случае же произвольной группы вопрос о разрешимости задачи дискретного логарифмирования, то есть вопрос о существовании решений уравнения, требует отдельного рассмотрения.

2.1 р-алгоритм Поллрада

• Вход. Простое число p, число a порядка r по модулю p, целое число bб 1 < b < p; отображение f, обладающее сжимающими свойствами и сохраняющее вычислимость логарифма.

- Выход. показатель x, для которого $a^x = b(modp)$, если такой показатель существует.
- 1. Выбрать произвольные целые числа u,v и положить $c=a^ub^v(modp),d=c$
- 2. Выполнять \$c=f(c)(mod p), d=f(f(d))(mod p), вычисляя при этом логарифмы для c и d как линейные функции от x по модулю r, до получения равенства c=d(modp)
- 3. Приняв логарифмы для c и d, вычислить логарифм x решением сравнения по модулю r. Результат x или РЕШЕНИЯ НЕТ.

3 Выполнение работы

3.1 Реализация алгоритма на языке Python

```
def ext_euclid(a, b):
    if b==0:
        return a, 1, 0
    else:
        d, xx, yy = ext_euclid(b, a%b)
        x = yy
        y = xx - (a//b)*yy
        return d, x, y
def inverse(a, n):
    return ext_euclid(a, n)[1]
def xab(x, a, b, xxx):
    (G, H, P, Q) = xxx
    sub = x\%3
    if sub == 0:
```

$$x = x*xxx[0] % xxx[2]$$

$$a = (a+1)\%Q$$

if sub == 1:

$$x = x*xxx[1] % xxx[2]$$

$$b = (b+1) \% xxx[2]$$

if sub == 2:

$$x = x*x % xxx[2]$$

$$a = a*2 \% xxx[3]$$

$$b = b*2 \% xxx[3]$$

return x, a, b

def pollrad(G, H, P):

$$Q = int((P-1)//2)$$

$$x = G*H$$

a = 1

b = 1

X = x

A = a

B = b

for i in range(1, P):

$$x, a, b = xab(x, a, b, (G, H, P, Q))$$

$$X, A, B = xab(X, A, B, (G, H, P, Q))$$

```
X, A, B = xab(X, A, B, (G, H, P, Q))
        if x == X:
            break
    nom = a-A
    denom = B-b
    res = (inverse(denom, Q)*nom)%Q
    if verify(G, H, P, res):
        return res
    return res + Q
def verify(g, h, p, x):
    return pow(g, x, p) == h
args = [(10, 64, 107)]
for arg in args:
    res = pollrad(*arg)
    print(arg, ' : ', res)
    print("Validates: ", verify(arg[0], arg[1], arg[2], res))
```

3.2 Контрольный пример

Figure 3.1: Работа алгоритма

4 Выводы

Изучили задачу дискретного логарифмирования.

Список литературы

- 1. Дискретное логарифмирование)
- 2. Доступно о криптографии на эллиптических кривых