

INTRINSIC IMAGES IN THE WILD

- THE FAST AND THE CURIOUS

- SAUMYA SHAH (20171193)
- ANIKET MOHANTY (20171150)
- SOUMYASIS GUN (20171002)
- MENTOR TA: KARANDEEP SINGH JUNEJA
- REPO: https://github.com/defus3r/intrinsicimage-decomposition

AIM

- Intrinsic images are a decomposition defined by image reflectance and shading.
- Answering questions like :
 - What effect is the lighting having, irrespective of surface materials?
 - What is the surface reflectance, irrespective of lighting?

MOTIVATION

- Intrinsic images along with cast shadows information, can be used for image relighting.
- It can also be used for texture composition that preserves the lighting information.

(a) Input image

(c) Reflectance

(b) Relighting +30 minutes

(d) Shading

Texture composition

(a) Original image

(b) Naive copy & paste

Image Relighting

(c) Our method

INTRINSIC IMAGE DECOMPOSITION

- Intrinsic image decomposition gives output as reflectance (R) and shading (S).
- Very under-constrained problem.
- Infinitely many possible reflectance and shading layers that multiply to explain an input image.
- Need to find reflectance layer R^* and shading layer S^* that is most likely under the probability distribution p.

$$R^*, S^* = argmin \ p(R, S \mid I)$$
 R, S

such that $I_i^c = R_i^c \cdot S_i^c$ for every image pixel *i* per channel c.

MOTIVATION FOR CONSTRAINTS FROM PRIOR WORKS

Pixels that are nearby, and that have similar chromaticity or intensity, also have similar reflectance.

Reflectances are piecewise-constant

[Land and McCann 1971; Liao et al. 2013; Barron and Malik 2013b].

Reflectances are sampled from a sparse set

[Omer and Werman 2004; Gehler et al. 2011; Shen and Yeo 2011].

Certain shading values are a priori more likely than others

[Barron and Malik 2013b].

Neighboring pixels have similar shading

[Garces et al. 2012].

Shading is grayscale, or the same color as the light source.

ALGORITHM OVERVIEW

INITIALIZATION

Convert RGB image to IRG space (intensity, red chromaticity, green chromaticity)

Run k-means on this for 20 clusters and store the centers as recflectances in *R*

Project image back to RGB space

ALGORITHM OVERVIEW

SOLVER STAGES

STAGE 1: FRAMING OBJECTIVE FUNCTION

Optimal reflectance and shading are estimated using a minimization problem.

$$E(x) = \underbrace{w_p E_p(x)}_{\text{pairwise } \psi_{ij}} + \underbrace{w_s E_s(x) + w_l E_l(x)}_{\text{unary } \psi_i}$$

- Where x is input pixel and w_p , w_s , w_l are weights for the energy functions.
- Energy function consists of two types of costs:
 - Unary costs ψ_i for each pixel, where shading should be smooth and must avoid extreme values.
 - Pairwise costs $\psi_{i,j}$ where reflectance should be piecewise constant for all pairs of similar pixels.

HOW IS THE OPTIMIZATION DONE?

- Fully connected conditional random fields are used to optimally give the pixels the labels of the reflectances that we stored in the set R after running k-means on the IRG image.
- This is a discrete labelling problem of maximizing p(x | I).
- Or minimizing the log-likelihood.
- Krahenbuhl and Koltun proposed an algorithm for approximately minimizing a global objective function with a quadratic number of terms in linear time. This algorithm is popularly called DenseCRF.

$$p(x \mid \mathbf{I}) = \frac{1}{Z(\mathbf{I})} \exp \left\{ -\sum_{i} \psi_i(x_i) - \sum_{i < j} \psi_{ij}(x_i, x_j) \right\}$$

$$\psi_{ij}(x_i, x_j) = \sum_{m} \mu^{(m)}(x_i, x_j) k^{(m)}(\mathbf{f}_i - \mathbf{f}_j)$$

 $p(x \mid \mathbf{I})$ probability of labels x given image \mathbf{I} $Z(\mathbf{I})$ partition function (normalizes the distribution) i,j pixel indices x_i discrete label for pixel ifeature vector for pixel i $\psi_i(\cdot)$ unary cost function for pixel i $\psi_{ij}(\cdot,\cdot)$ pairwise cost function for pixels i,j $t^{(m)}(\cdot,\cdot)$ m^{th} (negative-semidefinite) label compatibility function $k^{(m)}(\cdot)$ m^{th} (positive-definite) kernel function

REFLECTANCE ENERGY E_P

- $E_P = \sum_{i < j} \mu(x_i, x_j) \exp\left(\frac{-1}{2} \|f_i f_j\|_2^2\right)$
- Where $\mu(x_i, x_j) = \|\log R(x_i) \log R(x_j)\|_1$ is the label compatibility function.
- And f_i is the feature vector for pixel i:

$$\mathbf{f}_i = \left[\frac{p_i^x}{\theta_p d}, \frac{p_i^y}{\theta_p d}, \frac{\frac{1}{3} \sum_c I_i^c}{\theta_l}, \frac{I_i^r}{\theta_c \sum_c I_i^c}, \frac{I_i^g}{\theta_c \sum_c I_i^c} \right]$$

For every pair of pixels in the image, if the two pixels are assigned a different reflectance, a cost proportional to the L^1 difference in this reflectance is paid and is Gaussian-weighted according to the distance between the pixels in our feature space.

SHADING SMOOTHNESS E_S

$$E_S(x^{(t)}) = \sum_i \left(\log S_i^{(t)} - \log \tilde{S}_j^{(t)} \right)^2$$

$$\tilde{S}_{i}^{(t-1)} = \frac{1}{A_{i}} \sum_{j} S_{j}^{(t-1)} \exp\left(\frac{-1}{2} \left\| \frac{p_{i} - p_{j}}{\sigma_{S}^{(t)}} \right\|_{2}^{2}\right)$$

where A_i is a normalizing term.

• S_j is approximated by solving the model iteratively using the shading channel from the previous iteration; thus giving the functional form of an unary term as shown above.

REGULARIZATION TERM E_l

$$\bullet E_l(x) = \sum_i |S_i - \bar{S}|$$

- In addition to encouraging smoothness of shading, we need to ensure that the optimizer does not choose extreme values of shading for too many pixels, so a penalty is added that pulls shading intensity S towards a constant.
- $\bar{S} = 0.5$ works best as suggested in the paper.

STAGE 2: SHADING OPTIMIZATION

- In Stage 1, we obtained a hypothesis decomposition (R,S), as well as an indication of which pairs of points have the same reflectance (i and j have the same reflectance iff $x_i = x_j$). In Stage 2, we hold the label assignments x fixed and continuously optimize the set of reflectances R in order to improve shading intensity S.
- Inside an image region that is assigned a single reflectance label, shading is already constrained (since setting a value for either R or S fixes the other layer). Thus, if we hold the labels x fixed, we can only minimize shading discontinuities across reflectance boundaries, where $x_i \neq x_j$.
- We can update the set of reflectances by multiplying R by a vector of scalars r, which allows us to regularize the relative change r:

$$R^{(t)}(i) = r^{(t)}(i) \cdot R^{(t-1)}(i)$$

We solve for r by minimizing shading discontinuities:

$$r^{(t)} = \underset{r}{argmin} \sum_{(i,j) \in B} \left| \log S_i - \log S_j \right|$$

$$\log S_i = \log \left(\sum_{c} I_i^c \right) - \log \left(\sum_{c} R^{(t-1),c} \left(x_i \right) \right) - \log r(x_i)$$

NOVELTY

1. Priors with colour information:

- The priors for shading suggested by the paper uses only grayscale information for shading.
- If the lighting isn't of white colour(or close to white) then the expected reflectance is not achieved.

Original Image

Shading Image

Achieved Reflectance

 We tried to incorporate RGB information of source by taking correlation of each channel with every other channel and finding independent probabilities; but failed at implementing it.

2. Tried to implement speed-up using numba:

This was done by viewing the memory stack of each file via snakeviz visualization.

- This novelty couldn't be completed due to problems with jit class of numba and driver issues with CUDA.
- An additional way this speed up could be targeted is using multi-core CPU threading using LLVM. However due to time constraints we
 have put it as a future objective.

RESULTS

Original Image

Reflectance Image

Shading Image

Original Image

Reflectance Image

Shading Image

WORK DIVISION

Saumya:

Dataset Management

Histogram of probability density class.

Update parameters.

Obtain judgement parameters for opensource dataset.

Aniket:

L1 and L2 optimisation for minimizing shading discontinuities.

Created wrapper for DenseCRF [from Krahenbuhl].

Integrated cpp files.

Soumyasis:

Documentation.

Created function for image interface.

Algorithm initialization.

Repaired the energy function.

Combined work:

Saumya and Soumyasis:

Built solver class

Aniket and Soumyasis:

Energy function optimizer for stage 1

All together: Debugging

THANK YOU