STAT 3011 Discussion 015

Week 9

Talha Hamza

University of Minnesota College of Science and Engineering

Spring 2025

Confidence Intervals: Overview

- A confidence interval provides a range of plausible values for a population parameter such as the population mean μ .
- It is calculated as:

$$ar{x} \pm t_{lpha/2} \cdot rac{s}{\sqrt{n}}$$

- Where:
 - $\bar{x} = \mathsf{Sample} \; \mathsf{mean}$
 - s = Sample standard deviation
 - n = Sample size
 - $t_{\alpha/2} = \text{t-multiplier from t-distribution}$

Why We Need the Student's t-Distribution

- **Problem with Normal Distribution**: When population standard deviation (σ) is unknown (common in real-world scenarios), using sample standard deviation (s) introduces extra uncertainty.
- **Solution**: The t-distribution:
 - Has heavier tails than the normal distribution
 - Accounts for additional uncertainty when estimating σ with s
 - Shape depends on degrees of freedom (df = n 1)
- Key Properties:
 - Symmetric and bell-shaped (like normal)
 - Approaches N(0,1) as $df o \infty$
 - For small *n*, gives wider Cls than normal distribution

What is α in $t_{\alpha/2}$?

- α (alpha) represents the total error probability for the confidence interval
 - For a 95% CI: $\alpha = 0.05$
 - For a 99% CI: $\alpha = 0.01$
- Why α /2? The error is split equally between both tails:

• **Example**: For 95% CI ($\alpha = 0.05$), we use $t_{0.025}$ because 0.05/2 = 0.025

Calculating the t-Multiplier

Formula: $t_{\alpha/2,df}$ where:

- df = n 1 (degrees of freedom)
- $\alpha/2$ = right-tailed probability

R Commands:

```
# For 95% CI with n=10 (df=9):
qt(0.025, df=9, lower.tail=FALSE) # Returns 2.262
# Equivalent alternatives:
qt(0.975, df=9) # Also returns 2.262
```

Assumptions for Confidence Intervals

- Random Sample: Data should be randomly selected.
- Normality:
 - If $n \ge 30$, the Central Limit Theorem ensures normality.
 - If n < 30, check normality using a Q-Q plot:

```
qqnorm(x)
qqline(x)
```

Standard Error and Margin of Error

• Standard error (SE) estimates how much the sample mean varies:

$$SE = \frac{s}{\sqrt{n}}$$

• Margin of error (MOE):

$$MOE = t_{\alpha/2,n-1} \times SE$$

Using t.test() to Construct Confidence Intervals

• In R, use t.test() to compute a confidence interval:

```
t.test(x, conf.level=0.96, alternative="two.sided")
```

- Output includes:
 - Confidence interval
 - Sample mean estimate

Interpreting 95% Confidence Intervals

Three Valid Interpretations

1. Long-run frequency:

"If we repeated this procedure many times, 95% of calculated CIs would contain the true parameter."

2. Single sample probability:

"There's a 95% probability that this procedure produces an interval containing the true parameter."

3. Statistical significance:

"Values within the 95% CI are not significantly different from our estimate at $\alpha{=}0.05$."

Note: The probability statement is about the method, not any particular interval.

What Confidence Intervals Don't Mean

Frequent Misconceptions

- **Not**: "There's a 95% chance the true value is in this interval" (The interval either contains it or doesn't no probability after calculation)
- Not: "95% of our data points are in this interval" (It's about the parameter estimate, not individual observations)
- Not: "If we repeat the study, there's 95% chance new estimate will be in this interval" (New intervals will center on new estimates)

Weather Forecast Analogy

- "95% accurate forecasts" doesn't mean today's forecast has 95% chance of being correct
- Different forecast types (rain/sun) have different accuracy rates
- Similarly, Cls describe the method's reliability, not a specific interval's certainty

Questions? Let's Discuss!