Angewandte Mathematik / Statistik

Dozent: Holger Gerhards

Kurs: TINF22IT1

Zeit: Oktober – Dezember 2023

Organisatorisches

... bzw. Blick in die Zukunft

- Auslandssemester?
 - Infoveranstaltung vom International Office?
- Klausureinsicht → Wann?
- Exkursion?

Herausforderung 2tes Studienjahr

- Praxisbericht 3te und 4te Praxisphase
 - Benotung
 - Stärkerer Fokus auf das techn.-wissenschaftliche Arbeiten
- T2000-Prüfung
 - 10min Vortrag über obigen Praxisbericht
 - Fragen zum Vortrag
 - Fragen zum Stoff aus den ersten 4 Semestern
 - Lax "Tauglichkeitsprüfung zum Informatiker"

Termine Angewandte Mathematik

```
04.10.23
                 09:00-12:00
• Mi
     05.10.23
                 13:00-16:00
• Do
• Di
     10.10.23
                 09:00-11:00
• Mi
     11.10.23
                 09:00-12:00
• Di
     17.10.23
                 09:00-11:00
     18.10.23
                 09:00-12:00
• Mi
                 13:00-16:00
• Do
     19.10.23
• Di
     24.10.23
                 09:00-11:00
• Mi
     25.10.23
                 09:00-12:00
• Do
     26.10.23
                 13:00-16:00
                 09:00-11:00
• Di
     31.10.23
                 09:00-11:00 (Wiederholung)
     07.11.23
• Di
     08.11.23
                 zwischen 09:00-12:00 (Klausur) – (alternativ 15.11.)
• Mi
```

Termine Statistik

```
• Do
        09.11.23
                   13:00-16:00
• Di
        14.11.23
                  09:00-11:00
• Mi
        15.11.23
                  09:00-12:00
        16.11.23
                   13:00-16:00

    Do

                  09:00-11:00
• Di
        21.11.23
                  09:00-12:00
• Mi
        22.11.23
        28.11.23
                  09:00-11:00
• Di
• Mi
        29.11.23
                  09:00-12:00
        05.12.23
                  09:00-11:00
• Di
• Mi
        06.12.23
                  09:00-12:00
• Di
        12.12.23
                  09:00-11:00
                  09:00-12:00 (Wiederholung)
• Mi
        13.12.23
```

Vor Weihnachten Klausur

Überblick über Inhalte der Vorlesung

- Funktionen
 - Synthetisierung
 - Implizite Funktionen
- Operator (grobe Begriffseinführung)
- Ableitungen
 - Partielles Ableiten
 - Implizites Ableiten
- Differentialgleichungen
 - Kategorisierung
 - Lösung durch Trennung der Variablen
 - Lösung durch Separation der Konstanten
- Differentialoperatoren
 - Gradient
 - Divergenz, Rotation, Laplace-Operator
- Polynome
 - Horner-Schema
 - Taylor-Entwicklung

- Extremwerte eines Skalarfeldes
 - Hesse-Matrix
- Gaußsche-Fehlerfortpflanzung
- Integration
 - Mehrfachintegrale
 - Pfadintegrale
- Spezielle Koordinatensysteme
 - Polar-, Zylinder-, Kugelkoordinaten
- Exkurs Numerik
 - Numerische Integration, Newton-Verfahren
- Fourier-Analysis
 - Fourier-Zerlegung, Diskrete und Kontinuierliche Fourier-Transformation
- Optimierungsproblem
 - Summe der quadratischen Abweichungen
 - Gradienten-Verfahren

Motivation

Grundannahme:

 Mathematik zur Beschreibung von Problemen / Sachverhalten aus der Natur- oder Sozialwissenschaften

Ziele der Vorlesung

- Vorstellung eines mathematischem "Werkzeugkasten"
- "Angst" vor "komplizierter" Mathematik nehmen
- Ggf. Flexibilität im Umgang mit Notationen
- Zentrale Fragen:
 - Was bedeutet das?
 - Wozu bräuchte man das?

Inhalte heute

- Wiederholung
- Funktionen
- Operatoren
- Ableitungen
- Differentialgleichungen (Einstieg)

Wiederholung

- Welche Elementarfunktionen kennen Sie?
- Welche Ableitungsregeln kennen Sie?
- Welche Integrationsregeln kennen Sie?
- Sind alle bekannten (durch elementare Funktionen darstellbare)
 Funktionen differentierbar?
- Sind alle bekannten (durch elementare Funktionen darstellbare)
 Funktionen integrierbar?
- (komplexe Zahlen, Summen, Taylor-Reihe, ...)

Inhalte heute

- Wiederholung
- Funktionen
- Operatoren
- Ableitungen
- Differentialgleichungen (Einstieg)

Funktionen

- Annahme von Messpunkten (Beispiel Konzentration mit der Zeit)
 - Wie gehen Sie mit den Messpunkten um?
 - Verbindet man die Messpunkte miteinander?
 - Warum würde man die Messpunkte verbinden?
 - Wie verbindet man die Messpunkte richtig?

– ...

Synthetisierung

- Wie lautet eine explizite Darstellung einer Funktion y=f(x)
 - die mit einer konstanten Frequenz oszilliert während der Nulldurchgang linear ansteigt?
 - die exponentiell ansteigt und ab einer Stelle x₁ konstant bleibt (und durchweg stetig ist)?
 - die linear zwischen (x_1,y_1) und (x_2,y_2) verläuft?
 - welche ein Rechtecksignal beschreibt?
 - welche einen Kreis beschreibt?

Implizite Funktionen

- ... Betrachtung im \mathbb{R}^2 ...
- Allgemein implizite Funktion: F(x,y) = 0
- Implizite Definition von y = f(x)
- Aber Angabe der Funktion y = f(x) nur unter bestimmten Bedingungen in einer Umgebung eine vorgegebenen x_0
- Nutzung: Darstellung von Kurven im R²
 - z.B. Kreis, Ellipse, ...
 - Oder Elliptische Funktionen

Inhalte heute

- Wiederholung
- Funktionen
- Operatoren
- Ableitungen
- Differentialgleichungen (Einstieg)

Operatoren

- Erinnerung: Funktionen
 - Abbildung aus einem Zahlenraum in einen anderen Zahlenraum
 - Beispiel: $f: \mathbb{R} \to \mathbb{R}$

Operatoren

- Abbildung aus einem Funktionenraum in einen anderen Funktionenraum (bzw. aus einem Vektorraum in einen anderen Vektorraum)
- "Funktion geht rein, Funktion kommt raus"
- Kennen Sie bereits Operatoren?

Lineare Operatoren

Definition:

• Es seien X und Y reelle oder komplexe Vektorräume (oder Funktionenräume). Eine Abbildung T von X nach Y heißt linearer Operator, wenn für alle $x,y \in X$ und $\lambda \in \mathbb{R}$ (bzw. \mathbb{C}) die folgenden Bedingungen gelten:

- *T* ist homogen: $T(\lambda x) = \lambda T(x)$
- T ist additity: T(x+y) = T(x) + T(y)

Lineare Operatoren

Aufgaben:

- Wie würden Sie den Integrationsoperator darstellen?
- Zeigen Sie, dass die Ableitung d/dx ein linearer Operator ist!

Inhalte heute

- Wiederholung
- Funktionen
- Operatoren
- Ableitungen
- Differentialgleichungen (Einstieg)

Partielles Ableiten

- Problemstellung:
 - Abbildung $f: \mathbb{R}^2 \to \mathbb{R}$
 - Beispiel: $f(x,y) = z = x^2 + y^2 + 20$
 - Gesucht: Ableitung nur nach x oder nur nach y

- Einführung der partiellen Ableitung (in Kurzform)
 - (an der Tafel mit Beispielen etc.)

Implizites Ableiten

- Problemstellung
 - Gegeben sei eine implizite Funktion (z.B. ein Kreis) $F(x,y) = x^2 + y^2 - 16 = 0$
 - Was groß die Ableitung dy/dx an einer gegebenen Stelle (x_1,y_1) ?

Implizites Ableiten

- Problemstellung
 - Gegeben sei eine implizite Funktion (z.B. ein Kreis) $F(x,y) = x^2 + y^2 - 16 = 0$
 - Was groß die Ableitung dy/dx an einer gegebenen Stelle (x_1,y_1) ?

- Lösungsansätze:
 - Kettenregel oder siehe Internet "implizites Ableiten"

Inhalte heute

- Wiederholung
- Funktionen
- Operatoren
- Ableitungen
- Differentialgleichungen (Einstieg)

Differentialgleichungen

- Beispiele bekannter Gleichungsarten
 - Finden Sie die Lösung $\vec{x} = (x, y)^T$ mit

$$\begin{pmatrix} 2 & 4 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 10 \\ 2 \end{pmatrix} \tag{1}$$

Finden alle $x \in \mathbb{R}$, so dass die folgende Gleichung erfüllt ist:

$$x^2 - 5x + 6 = 0 (2)$$

- Beispiel für eine Differentialgleichung
 - gegeben ist $v(t) = v_0$ (konstant)
 - gesucht ist s(t) mit $s(0) = s_0$ (Startwert)
 - Gleichung:

$$\frac{ds}{dt} = v_0 \qquad \Longrightarrow \qquad s(t) = v_0 t + s_0 \tag{3}$$

Gewöhnliche Differentialgleichungen

▶ Gesucht ist eine Abbildung $y : \mathbb{R} \to \mathbb{R}$ mit $y(x_0) = y_0$ als Anfangswert und

$$f(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0$$
 und $x \in \mathbb{R}$ (4)

Unterscheidungen

- Ordnung einer gewöhnlichen Differentialgleichung
 - Die höchste vorkommende Ableitung gibt die Ordnung an.
 - Beispiele

a)
$$y' = ax + y$$
 \rightarrow DGL 1. Ordnung

b)
$$y^{(3)} = \frac{y'}{x} - y''$$
 \rightarrow DGL 3. Ordnung

Gewöhnliche Differentialgleichungen

- Unterscheidungen Teil 2
 - Lineare vs. nichtlineare DGLs
 - ▶ Bei einer linearen DGL kommt die Funktion y(x) und all ihre Ableitungen mit dem Exponenten 1 vor.
 - Beispiele:

a)
$$x + ay + by'' = 0$$
 \rightarrow Lineare DGL

a)
$$x + ay + by'' = 0$$
 \rightarrow Lineare DGL
b) $xy + y' + \frac{2}{y} = 0$ \rightarrow Nichtlineare DGL

- Homogene vs. inhomogene lineare DGLs
 - Definition:

a)
$$\sum_{k=0}^{n} a_k(x) y^{(k)}(x) = 0$$
 \rightarrow Homogene lineare DGL

b)
$$\sum_{k=0}^{n} a_k(x) y^{(k)}(x) = g(x) \rightarrow \text{Inhomogene lineare DGL}$$

 \blacktriangleright Hinweis: g(x) wird Inhomogenität genannt (und entspricht in der Physik Quelltermen).

Übung zur Unterscheidung von DGLs

Welchem Typ entsprechen die folgenden Differentialgleichungen?

a)
$$\sin(x) y + y'' = 0$$
 (5)

b)
$$x^2 (y^{(3)} + y) = x + y'$$
 (6)

c)
$$\frac{d^3y}{dx^3} + y^2 = x^2 - 3\frac{dy}{dx}$$
 (7)

Gewöhnliche DGLs 1. Ordnung

Betrachtung des Typs

$$\frac{dy}{dx} = f(x, y)$$
 mit $y(x_0) = y_0$ (Anfangswert) (8)

ightharpoonup Weitere Annahme: f(x, y) sei separierbar

$$\implies f(x,y) = g(x) h(y) \tag{9}$$

Lösungsverfahren: Trennung der Variablen

Achtung: Die folgende Vorgehensart ist mathematisch recht unsauber. ('Pragmatische Physikermethode')

$$\frac{dy}{dx} = g(x) h(y) \qquad \Longrightarrow \qquad \frac{1}{h(y)} \frac{dy}{dx} = g(x)$$

$$\Longrightarrow \qquad \frac{1}{h(y)} dy = g(x) dx \qquad \Longrightarrow \qquad \int_{y_0}^{y} \frac{dy}{h(y)} = \int_{x_0}^{x} g(x) dx$$

$$\Longrightarrow \qquad \tilde{H}(y) + C_1 = G(x) + C_2 \qquad \Longrightarrow \qquad \tilde{H}(y) = G(x) + C$$

Beispiel für Trennung der Variablen

► Integrieren Sie / Lösen Sie die folgenden DGLs

a)
$$y' = -\frac{x}{y}$$
 (10)
b) $y' = x^2 e^y$ (11)

b)
$$y' = x^2 e^y$$
 (11)