

What Do We Learn in This Lecture?

- What is permeability?
- What rock properties affect absolute permeability?
- Darcy's Law
- · Permeability evaluation in tensor form
- · Darcy's law for anisotropic porous media
- Non-Darcy flow
- · Averaging permeability data
- How to quantify permeability?
 - Analytical models for permeability assessment
 - Permeability assessment in the laboratory?
 - Permeability assessment in-situ condition using pressure transient test
 - Permeability assessment in-situ condition using well logs

Zoya Heidari, Ph.D.

Advanced Petrophysics

What is Permeability?

Porous medium's ability to transmit fluids!

Darcy's Law:

$$q = -\frac{kA}{\mu} \frac{\Delta P}{\Delta x}$$

Assumptions

Steady-state, linear flow of a single phase liquid, in a horizontal medium

Zoya Heidari, Ph.D.

Advanced Petrophysics

Horizontal vs. Vertical permeability

Permeability is a tensor!

$$\overline{\overline{k}} = \begin{pmatrix} k_{xx} & k_{xy} & k_{xz} \\ k_{yx} & k_{yy} & k_{yz} \\ k_{zx} & k_{zy} & k_{zz} \end{pmatrix}$$

Zoya Heidari, Ph.D.

dvanced Petrophysic

Heterogeneity and Anisotropy

Zoya Heidari, Ph.D.

Parameters Affecting Permeability

Which rock has a higher permeability?

Source: He, W., et al., 2011, SPE 143497.

......

Zoya Heidari, Ph.D. Advanced Petrophysics

Parameters Affecting Permeability

Which rock has a higher permeability?

Source: He, W., et al., 2011, SPE 143497.

Source: Rahman et al., 2011, IPTC 14583.

Zoya Heidari, Ph.D.

Parameters Affecting Permeability

· Which rock has a higher permeability?

Zoya Heidari, Ph.D.

Advanced Petrophysics

Parameters Affecting Permeability

- How do the following parameters affect permeability?
 - Compaction
 - Pore size
 - Throat size
 - Sorting
 - Cementation
 - Layering
 - Clay swelling
 - Stress
 - Fractures

Zoya Heidari, Ph.D.

How to Quantify Permeability?

Darcy's Law:

Assumptions:

Steady-state, linear flow of a single phase liquid, in a horizontal medium

$$q = -\frac{kA}{\mu} \frac{\Delta P}{\Delta x}$$

Absolute Permeability: permeability of the medium when it is saturated 100% by a single phase, non-reactive liquid.

$$k = \frac{q\mu L}{A\Delta P}$$

How can we quantify it?

Question: What happens if there is a reaction between rock and liquid?

Zoya Heidari, Ph.D.

Advanced Petrophysics

1

Example

Results of a laboratory experiment in a sandpack (Peters, 1979) are given as follows. Estimate permeability of this core plug.

q (cm³/s)	ΔP (atm)	
0	0	
0.0014	0.0476	
0.0556	1.9284	
0.0889	3.0573	
0.1333	4.5439	
0.2222	7.5303	
0.3111	10.465	

Viscosity = 105.363 cp Length of the core plug = 115.6 cm Diameter of the core plug = 4.961 cm Porosity of the core plug = 37.80%

Solution:

This is an example of a steady-state laboratory measurement technique.

Zoya Heidari, Ph.D.

Advanced Petrophysics

More on Darcy's Law

Darcy's Law in SI units:

$$q = \frac{kA}{\mu} \frac{\Delta P}{L}$$

$$q = \frac{2\pi kh\left(P_{w} - P_{e}\right)}{\mu \ln\left(r_{e}/r_{w}\right)}$$
 Let's derive it together!

Darcy's Law in oilfield units:

$$q = \frac{0.001127kA}{\mu B} \frac{\Delta P}{L} = \frac{1}{887.2} \frac{kA}{\mu B} \frac{\Delta P}{L}$$

$$q = \frac{2\pi k h(P_{w} - P_{e})}{\mu B \ln(r_{e}/r_{w})} = \frac{1}{141.2} \frac{k h(P_{w} - P_{e})}{\mu B \ln(r_{e}/r_{w})}$$

B = reservoir volume/stock tank volume or reservoir barrels/stock tank barrels

Zoya Heidari, Ph.D.

Advanced Petrophysics

Comparison of SI, Darcy, and Oilfield Units

Quantity	SI Unit	Darcy Unit	Oilfield Unit
Time	S	S	day
Length/Thickness/Radius	m	cm	ft
Pressure	Pa	atm	psia
Flow rate	m³/s	cm ³ /s	STB/day
Viscosity	Pa.s	ср	ср
Porosity	fraction	fraction	fraction
Permeability	m ²	Darcy	Millidarcy
Compressibility	Pa ⁻¹	atm ⁻¹	psi ⁻¹

1 Darcy = the permeability of a medium that permits a flow rate of 1 cm³/s of a fluid of viscosity 1 cp under a pressure gradient of 1 atm/cm acting on an area of 1 cm².

$$1 darcy = 9.869 \times 10^{-9} cm^2 = 9.869 \times 10^{-13} m^2 = 1.062 \times 10^{-11} ft^2$$

Zoya Heidari, Ph.D.

Advanced Petrophysics

Darcy's Law for Inclined Flow

$$q = -\frac{kA}{\mu} \frac{d\Phi}{ds}$$

Velocity potential

In Darcy units

$$\Phi = P \pm \frac{\rho gz}{1.0133 \times 10^6}$$

In field units

$$\Phi = P \pm 0.433 \gamma z$$

Zoya Heidari, Ph.D.

Advanced Petrophysics

Equivalent Formulation

More common formulation in hydrology

$$q = -KA \frac{\Delta h}{\Delta L}$$

K: hydraulic conductivity (length/time)

$$K = \frac{k\rho g}{1.0133x10^6 \,\mu}$$

h: hydraulic head or piezometric head (length)

$$h = \frac{P}{\rho g} \pm z$$

Zoya Heidari, Ph.D.

Advanced Petrophysics

Darcy's Law for Anisotropic Porous Media

$$\vec{v} = -\frac{\overline{k}}{\mu}.\nabla\Phi$$

$$\begin{bmatrix} v_{x} \\ v_{y} \\ v_{z} \end{bmatrix} = -\frac{1}{\mu} \begin{bmatrix} k_{xx} & k_{xy} & k_{xz} \\ k_{yx} & k_{yy} & k_{yz} \\ k_{zx} & k_{zy} & k_{zz} \end{bmatrix} \begin{bmatrix} \frac{\partial \mathbf{T}}{\partial x} \\ \frac{\partial \mathbf{\Phi}}{\partial y} \\ \frac{\partial \mathbf{\Phi}}{\partial z} \end{bmatrix}$$

in the coordinates of the principal axes

$$\begin{bmatrix} v_u \\ v_v \\ v_w \end{bmatrix} = -\frac{1}{\mu} \begin{bmatrix} k_u \frac{\partial \Phi}{\partial u} \\ k_v \frac{\partial \Phi}{\partial v} \\ k_w \frac{\partial \Phi}{\partial w} \end{bmatrix} \quad \begin{array}{l} \text{How to calculate these?} \\ \text{Please review vector analysis and coordinate transformation topics in Mathematics.} \\ \text{Reading Assignment: Peters Textbook, Chapte} \end{array}$$

Reading Assignment: Peters Textbook, Chapter 3.14

Zoya Heidari, Ph.D.

Advanced Petrophysics

Non-Darcy Flow

Please take notes!

Zoya Heidari, Ph.D.

Advanced Petrophysics

Permeability in Parallel Beds

$$k_{avg} = \frac{\sum k_i h_i}{\sum h_i}$$

Derivation:

Zoya Heidari, Ph.D.

Advanced Petrophysics

Permeability in Serial Beds

$$k_{avg} = \frac{\sum h_i}{\sum h_i / k_i}$$

Derivation:

Zoya Heidari, Ph.D.

Advanced Petrophysics

How to Estimate Permeability

Permeability is not measured!

Permeability is estimated!

- How to Estimate Permeability?
 - Simplified analytical models
 - Laboratory-based permeability assessment
 - Routine core analysis
 - In-situ permeability assessment
 - Pressure Transient Test
 - Well logs

Zoya Heidari, Ph.D.

Advanced Petrophysics

What Do We Learn in This Lecture?

- What is permeability?
- What rock properties affect absolute permeability?
- Darcy's Law
- Permeability evaluation in tensor form
- Darcy's law for anisotropic porous media
- Non-Darcy flow
- Averaging permeability data
- How to quantify permeability?
 - Analytical models for permeability assessment
 - Permeability assessment in the laboratory?
 - Permeability assessment in-situ condition using pressure transient test
 - Permeability assessment in-situ condition using well logs

Zoya Heidari, Ph.D. **Advanced Petrophysics**

Pore-Geometry-Based Analytical Models for Permeability Assessment

Hagen-Poiseuille's law for steady flow through a single tortuous, circular capillary tube of radius r

bundle-of-capillary-tubes

$$q_i = \frac{\pi r^4}{8\mu} \frac{(p_1 - p_2)}{L} = \frac{\pi r^4}{8\mu} \frac{\Delta p}{L}$$

$$q_{i} = \frac{\pi r^{4}}{8\mu} \frac{\left(p_{1} - p_{2}\right)}{L_{e}} = \frac{\pi r^{4}}{8\mu} \frac{\Delta p}{L_{e}}$$
 For n tubes
$$q_{T} = \frac{n\pi r^{4}}{8\mu} \frac{\left(p_{1} - p_{2}\right)}{L_{e}} = \frac{n\pi r^{4}}{8\mu} \frac{\Delta p}{L_{e}}$$

Carman-Kozeny Equation

$$k = \frac{\phi r}{8\pi}$$

Zoya Heidari, Ph.D.

$$\tau = \left(\frac{L_e}{L}\right)^2$$

OR

$$k = \frac{\phi}{2\tau S_p^2} = \frac{\phi}{k_o \tau S_p^2} = \frac{\phi^3}{k_o \tau S_z^2} = \frac{\phi^3}{k_o \tau S_z^2 (1 - \phi)^2}$$

S_n: the wetted surface area of the pores per unit pore volume of the porous medium

S_s: the wetted surface area per unit grain volume of the porous medium

S: the wetted surface area per unit bulk volume of the porous medium

Advanced Petrophysics

Other Forms of Carman-Kozeny Equation

$$r_H = \frac{\text{Volume of Pore}}{\text{Wetted Surface Area of Pore}} = \frac{1}{S_p}$$

$$r_{H} = \frac{n\pi r^{2}L_{e}}{2\pi nrL_{e}} = \frac{r}{2} \qquad \qquad k = \frac{\phi r_{H}^{2}}{2\tau}$$

$$S_s = \frac{4\pi \left(D_p / 2\right)^2}{\frac{4}{3}\pi \left(D_p / 2\right)^3} = \frac{6}{D_p}$$

$$k = \frac{D_p^2 \phi^3}{36k_o \tau \left(1 - \phi\right)^2}$$

$$D_p: \text{ diameter of grains}$$

$$k = \frac{D_p^2 \phi^3}{36k_o \tau \left(1 - \phi\right)^2}$$

Zoya Heidari, Ph.D.

Advanced Petrophysics

Carman-Kozeny Equation

- Based on Carman-Kozeny equation answer the following questions:
 - How does specific surface area of the grains affect permeability?
 - Which one has a higher permeability? A medium composed of small grains or one composed of large grains?
 - How does tortuosity affect permeability of porous media?

Zoya Heidari, Ph.D.

Impact of Pore-Size Distribution on Permeability

Probability distribution function for pore-diameter distribution

$$k = \frac{\phi}{32\tau} \frac{\int_0^\infty f(\delta) \delta^4 d\delta}{\int_0^\infty f(\delta) \delta^2 d\delta}$$

What are the assumptions? Please derive this equation!

Zoya Heidari, Ph.D.

Advanced Petrophysics

31

WHAT STARTS HERE CHANGES THE WORLD

Advanced Petrophysics: Permeability, Part 3 of 5

Instructor: Zoya Heidari, Ph.D.

Associate Professor
The University of Texas at Austin

Zoya Heidari, Ph.D

What Do We Learn in This Lecture?

- What is permeability?
- What rock properties affect absolute permeability?
- Darcy's Law
- Permeability evaluation in tensor form
- · Darcy's law for anisotropic porous media
- Non-Darcy flow
- Averaging permeability data
- How to quantify permeability?
 - Analytical models for permeability assessment
 - Permeability assessment in the laboratory?
 - Permeability assessment in-situ condition using pressure transient test
 - Permeability assessment in-situ condition using well logs

Zoya Heidari, Ph.D. Advanced Petrophysics 33

Laboratory-Based Permeability Assessment Steady-state Transient-state measurements measurements **Pulse decay** Pressure decay Plugs under external stress **Crushed samples** Plugs under Plugs under external stress external stress No external stress Zoya Heidari, Ph.D. **Advanced Petrophysics**

Steady-State Measurement Liquid Permeability Measurement Liquid input Pelerin, F. M., 2007, A Geoscientist's Guide to Petrophysics. What are the disadvantages of using liquids for permeability measurement? Zoya Heidari, Ph.D. Advanced Petrophysics

Steady-State Measurements

Let's write Darcy's equation:

Zoya Heidari, Ph.D.

Advanced Petrophysics

27

Klinkenberg Effect (1941)

• Pressures applied in the laboratory are lower that those at in-situ condition. How does it impact interaction of gas molecules and rock surface in porous media?

The mean free path of gas molecules:

Boltzmann's constant $\lambda = \frac{k_B T}{\sqrt{2\pi} d^2 P}$ absolute temperature pressure gas molecular diameter

- Put numbers in this equation and calculate mean free path of gas molecules in the laboratory condition.
- Compare this number against pore size
- How does it affect the estimates of absolute permeability in the laboratory?
- How do we take into account this impact on the estimates of permeability?

Example

Zoya Heidari, Ph.D.

Advanced Petrophysics

Permeability Assessment in Tight Formation OPTIONAL

- Typical techniques applied to tight formations
 - GRI Crushed pressure decay
 - Pressure pulse decay
 - Transient pulse decay
 - Steady-state (?)

Zoya Heidari, Ph.D.

Advanced Petrophysics

GRI method: Limitations

OPTIONAL

- Absence of overburden stress
- Does not take into account natural fractures
- · Darcy's law may not be valid
- Gas slip or Klinkenberg correction is ignored
- Is the original GRI crushed particle size of 20/35 mesh (0.67±0.17 mm) appropriate for all the samples?
- Time scale required for the measurements

Pressure-Decay vs. Pulse-Decay Measuremen OPTIONAL

Pulse Decay

- It uses both upstream and downstream reservoirs.
- The sample is filled with gas to a fairly high pressure, 1,000 to 2,000 psig, which reduces gas slippage and compressibility.
- After pressure equilibrium is achieved throughout the system, pressure in the upstream reservoir is increased, typically by 2%-3% of the initial pressure, causing a pressure pulse to flow through the sample.
- Good for low permeability samples, 0.1 md to about 0.01 μd.
- Small differential pressures and low permeabilities virtually eliminate inertial flow resistance.
- "Early time" transients provide information regarding heterogeneity in samples.

Please see API Recommended Practice 40

Zoya Heidari, Ph.D.

Advanced Petrophysics

Pulse-Decay Measurements

OPTIONAL

Pulse-Decay Gas Permeameter

Range of permeability: 0.1 md to 0.01 µd

Please see API Recommended Practice 40

Zoya Heidari, Ph.D.

Advanced Petrophysics

Advantages and Limitations: Pulse-Decay Gas Permear OPTIONAL

Reading Assignment: Please see API Recommended Practice 40

Zoya Heidari, Ph.D.

Advanced Petrophysics

Pressure-Decay vs. Pulse-Decay Measuremen OPTIONAL

Pressure Decay

- It uses only upstream reservoir(s). The downstream end of the sample is vented to atmospheric pressure.
- The maximum upstream pressure used is fairly low, 10 to 250 psig (varying inversely with the permeability to be measured).
- Good for permeability range of 0.001 to 30,000 md (through the use of multiple upstream gas reservoirs and pressure transducers) -> Complements the pulse-decay method.

Please see API Recommended Practice 40

Zoya Heidari, Ph.D.

Reading Assignment: Please see API Recommended Practice 40

Advantages and Limitations: Pulse-Decay Liquid Permeameter

Reading Assignment: Please see API Recommended Practice 40

OPTIONAL

What Do We Learn in This Lecture?

- What is permeability?
- What rock properties affect absolute permeability?
- Darcy's Law
- Permeability evaluation in tensor form
- · Darcy's law for anisotropic porous media
- Non-Darcy flow
- Averaging permeability data
- How to quantify permeability?
 - Analytical models for permeability assessment
 - Permeability assessment in the laboratory?
 - Permeability assessment in-situ condition using pressure transient test
 - Permeability assessment in-situ condition using well logs

How to Translate the Collected Pressure Data to Permeability?

Mass conservation equation (continuity equation)

$$\nabla \cdot (\rho \vec{v}) + \frac{\partial (\phi \rho)}{\partial t} = 0$$

Darcy's law

$$\vec{v} = -\frac{k}{u} \nabla P$$

The equation of state for a slightly compressible liquid such as oil or water

$$=-\frac{k}{U}\nabla P$$

Diffusivity Equation for Slightly Compressible Liquid (diffusion equation or the heat conduction equation)

$$\nabla^2 P = \frac{\phi \mu c_t}{k} \frac{\partial P}{\partial t} = \frac{1}{\alpha} \frac{\partial P}{\partial t}$$

 $\vec{v} = -\frac{k}{\mu} \nabla P$ $\rho = \rho_o e^{c(P-P_o)}$ $\nabla^2 P = \frac{\phi \mu c_t}{k} \frac{\partial P}{\partial t} = \frac{1}{\alpha} \frac{\partial P}{\partial t}$ $\alpha = \frac{k}{\phi \mu c_t} = \frac{\left(\frac{kh}{\mu}\right)}{\phi h c_t} = \frac{T}{S}$

storativity (storage capacity)

Zoya Heidari, Ph.D. **Advanced Petrophysics**

How to Translate the Collected Pressure Data to Permeability?

For one-dimensional radial flow:

$$\frac{\partial^2 P}{\partial r^2} + \frac{1}{r} \frac{\partial P}{\partial r} = \frac{\phi \mu c_t}{k} \frac{\partial P}{\partial t}$$

$$P(r,0) = P_i$$

Assumption: wellbore radius is infinitesimally small.

$$q_{sf} = \frac{k}{\mu} 2\pi r h \frac{\partial P}{\partial r} \rightarrow \lim_{r \to 0} \left(r \frac{\partial P}{\partial r} \right) = \frac{q_{sf} \mu}{2\pi k h}$$

$$\lim_{r \to \infty} P(r,t) = P_i$$

$$t_D = \frac{kt}{\phi \mu c_t r_w^2}$$

$$r_D = \frac{r}{r_w}$$

$$P_{D} = \frac{P_{i} - P(r, t)}{\left(\frac{q_{sf} \mu}{2\pi kh}\right)}$$

$$\frac{\partial^2 P_D}{\partial r_D^2} + \frac{1}{r_D} \frac{\partial P_D}{\partial r_D} = \frac{\partial P_D}{\partial t_D}$$

$$P_D = \frac{P_i - P(r,t)}{\left(\frac{q_{sf}\mu}{2\pi kh}\right)}$$

$$P_D(r_D,0)=0$$

$$\lim_{r_D \to 0} \left(r_D \frac{\partial P_D}{\partial r_D} \right) = -1$$

Why?

$$\lim_{r_D \to \infty} P_D\left(r_D, t_D\right) = 0$$

Zoya Heidari, Ph.D.

Advanced Petrophysics

How to Solve this Equation?

$$P_D(r_D, t_D) = -\frac{1}{2} \operatorname{Ei} \left(-\frac{r_D^2}{4t_D} \right)$$

$$\operatorname{Ei}(x) = -\int_{-x}^{\infty} \frac{e^{-y}}{y} dy$$

Exponential integral function

P_D and t_D in field units

$$P_D = \frac{P_i - P(r, t)}{141.2 \left(\frac{q\mu B}{kh}\right)}$$

$$t_D = \frac{0.0002637kt}{\phi \mu c \ r^2}$$

$$P_{wf}(t) = P(r_w, t) = P_i - \frac{141.2q \mu B}{kh} \left[-\frac{1}{2} Ei \left(-\frac{948\phi \mu c_t r_w^2}{kt} \right) \right]$$

Zoya Heidari, Ph.D.

Advanced Petrophysics

Can we Simplify any Further?

The Taylor series expansion of Ei:

$$\operatorname{Ei}(x) = \gamma + \ln|x| + \sum_{k=1}^{\infty} \frac{x^{k}}{k(k!)} \qquad \operatorname{Ei}(x) = \gamma + \ln|x|$$

$$\mathrm{Ei}(x) = \gamma + \ln|x|$$

Euler-Mascheroni constant (~ 0.5772)

At Wellbore
$$(\mathbf{r}_{D} = \mathbf{1})$$
: $P_{D}(1, t_{D}) = \frac{1}{2} (\ln t_{D} + \ln 4 - \gamma) = \frac{1}{2} (\ln t_{D} + 0.80907) = 1.1513 \left[\log t + \log \left(\frac{k}{\phi \mu c_{r} r_{w}^{2}} \right) - 3.23 \right]$ if $t_{D} \ge 25$

The flowing bottomhole pressure:

$$P_{wf}(t) = P(r_w, t) = P_i - \frac{162.6q \mu B}{kh} \left(\log t + \log \left(\frac{k}{\phi \mu c_t r_w^2} \right) - 3.23 \right) \text{ if } t \ge \frac{94805 \phi \mu c_t r_w^2}{k}$$

Zoya Heidari, Ph.D.

Advanced Petrophysics

Can we use Drawdown Test to Estimate Permeability?

$$P_{wf}(t) = P(r_{w}, t) = P_{i} - \frac{162.6q\mu B}{kh} \left(\log t + \log \left(\frac{k}{\phi \mu c_{i} r_{w}^{2}} \right) - 3.23 \right)$$

Slope
$$m = -\frac{162.6q\mu B}{kh}$$

$$k = -\frac{162.6q\mu B}{mh}$$

at logt = 0
$$P_{\text{int}} = P_i + m \left[\log \left(\frac{k}{\phi \mu c_t r_w^2} \right) - 3.23 \right]$$

pressure intercept

initial pressure

Zoya Heidari, Ph.D. **Advanced Petrophysics**

Pressure Buildup Equation

$$\frac{1}{2} \left(\ln \left(t_p + \Delta t \right)_D + 0.80907 \right) - \frac{1}{2} \left(\ln \Delta t_D + 0.80907 \right) = \frac{1}{2} \ln \left(\frac{t_p + \Delta t}{\Delta t} \right)$$

The Horner pressure buildup equation for an infinite acting reservoir: $P_{\text{\tiny WS}}\left(\Delta t\right) = P_i - \frac{162.6q\,\mu B}{kh}\log\left(\frac{t_p + \Delta t}{\Delta t}\right)$

Zoya Heidari, Ph.D. **Advanced Petrophysics** 64

Horner time

Can we use Buildup Test to Estimate Permeability?

Slope
$$m = -\frac{162.6q\mu B}{kh}$$

$$k = -\frac{162.6q\mu B}{mh}$$

$$at \log\left(\frac{t_p + \Delta t}{\Delta t}\right) = 0$$

$$pressure intercept initial pressure$$

Skin Factor

- What are the reasons behind damage or stimulation of the near-wellbore region?
- How do they affect permeability of the near-wellbore region?

$$P_{wf} = P_i - \frac{162.6q \mu B}{kh} \left(\log_{10} t + \log_{10} \left(\frac{k}{\phi \mu c_i r_w^2} \right) - 3.23 + 0.87S \right)$$

Skin factor from drawdown test

$$S = 1.1513 \left[\frac{P_{wf}(1hr) - P_{t}}{-\left(\frac{162.6q \mu B}{kh}\right)} - \log\left(\frac{k}{\phi \mu c_{t} r_{w}^{2}}\right) + 3.23 \right]$$

Skin factor from buildup test

$$S = 1.1513 \left[\frac{P_{wf}(t_p) - P_{wz}(1hr)}{-\left(\frac{162.6q \, \mu B}{kh}\right)} - \log\left(\frac{k}{\phi \mu c_r r_w^2}\right) + 3.23 \right]$$

Zoya Heidari, Ph.D.

Advanced Petrophysics

Radius of Investigation of a Welltest

Approximate radius investigated by a welltest:

$$r_{\mathrm{inv}} = 0.03248 \sqrt{\frac{kt}{\phi\mu c_t}}$$
 In oil-field units

Example: Let's put numbers in this equations!

Zoya Heidari, Ph.D.

Advanced Petrophysics

Examples

- Example 1: Please download the digital data provided to you in Excel format on the Canvas website
- Example 2: Please read and solve the field example of a well test analysis from the textbook

What Do We Learn in This Lecture?

- What is permeability?
- What rock properties affect absolute permeability?
- Darcy's Law
- Permeability evaluation in tensor form
- Darcy's law for anisotropic porous media
- Non-Darcy flow
- Averaging permeability data
- How to quantify permeability?
 - Analytical models for permeability assessment
 - Permeability assessment in the laboratory?
 - Permeability assessment in-situ condition using pressure transient test
 - Permeability assessment in-situ condition using well logs

Zoya Heidari, Ph.D. Advanced Petrophysics 7

Other Methods for in-situ Assessment of Permeability

- Porosity-permeability correlations
 - Combined with rock classification
- NMR measurements
- Resistivity measurements
- Integrated analysis of resistivity and NMR measurements

•

Permeability Assessment using Well Logs

- Permeability can be described as a function of porosity and irreducible water saturation in some reservoirs
- Wyllie and Rose (1950):

$$k = a \frac{\phi^b}{S_{wi}^c}$$

- How to calibrate this model?
- · How to use it to estimate permeability in any depth of interest in the formations?

Zoya Heidari, Ph.D. Advanced Petrophysics

Permeability Assessment using Well Logs

• Empirical formulae for permeability assessment using well logs:

- Tixier

Permeability, (D)
$$\longleftarrow k = 62.5 \frac{\phi^6}{S_{wirr}^2} \xrightarrow{\text{Porosity, ()}}$$

Irreducible Water Saturation, ()

$$-$$
 Timur $k=8.58rac{\phi^{4.4}}{S_{wirr}^2}$

- Coates
$$k = 4.90 \frac{\phi^4 \left(1 - S_{wirr}\right)^2}{S_{wirr}^4}$$

Other Methods/Models

OPTIONAL

Can we use resistivity measurements to estimate permeability?

What other measurements can we possibly use?

Can we combine any of these measurements?

Please take notes!

Zoya Heidari, Ph.D.

Advanced Petrophysics

87

Complementary References

- Peters, E. J., 2012, Advanced Petrophysics. Live Oak Book Company. Chapter 3
- Zinszner, B. and Pellerin, F. M., 2007, A Geoscientist's Guide to Petrophysics. Editions Technip.

Zoya Heidari, Ph.D.

Advanced Petrophysics