Brain storming problems.

P. vedayshman 2200030722 section 135

centrorm Distribution!

Problem 1:

Conside a parting lot with 100 spaces, arrive at random times and part in a random avoidable space model the number of employ spaces in the parting lot ous a uniform distribution. Discuss the implications of this model and Calculate the Probability of having fewer than 20 empty spaces

Given

total no of spaces in the parting lot 2 100 Probability density function for a uniform distribution is +(m) = b-a

$$Q = 0$$
 $b = 100$
 $f(N) = \frac{1}{100}$
 $f(N) = \frac{1}{$

Problemal

Soll Civen that the age, of respondents botween 20 & 50 years are uniformly distributed

meanage =
$$\frac{20+50}{2} = \frac{20+50}{2} = 35$$

median = $\frac{20+50}{2} = 35$
 \Rightarrow zo years
Range = $50-20 = 30$.

exponential Distributioni

Prollem-3'

goli the probability density function (pdf) of the exponential distribution is

$$B = \frac{1}{100} = 0.00$$

$$P(N < 50) = \int_{0}^{50} Be^{-Bx} dx$$

$$\Rightarrow -e^{-0.01.50} + e^{0.}$$

$$\Rightarrow -e^{-0.5} + 1$$

2 1-06065 -> 0.3935.

the average Completion fine (11) & 15 minutes

$$B = /u$$

$$13 = \frac{1}{15} = 0.0667$$

Probability that a Customer takes mate the Domain

$$P(n > 20) = \int_{20}^{\infty} Be^{Br} dn$$

$$P(n > 20) = \int_{20}^{\infty} 0.066 + e^{-0.0667r} dn$$

$$P(n > 20) = \int_{20}^{\infty} 0.066 + e^{-0.0667r} dn$$

$$\Rightarrow 1 - P(20)$$

$$P(20) = 1 - e^{-1.334}$$

$$P(n > 20) = 1 - 0.9369 = 0.2633$$

(1) Normal Distribution

Pehlems:

soli Circo that is some one normally distributed

standad devalue = 15.

by normal distribution

30.6826 .. approximately 68.26.1. of population has on 12

Problem 6:

Standerd deviation (-) = 20.

Using distribution table P (2<1) = 0.8413. P(x>140) = 1-0.8013

¥ 0.128± . The probability that a vandomy releated bird weight not mor than the grams is 0.1587

u) Compactive Analysis!

Problem -

* coniform distributions

- Assume all waiting times with a given range are equally likely.

exponential pintipulion:

> Describe waiting time blu event in a vandom Process.

* scenarios

-> use uniform distribution when buses arrive predictably like on a fixed schedule silveyour as equally likely

Problem 8 -

normal distribution

Advantages L Represents how heights typically vary in a population.

a bell-shaped Cure.

Comparison

normal distributions Batter modelling student heights on 'H restects real-world variation.

Interactive exploration:

CLT: It states that an you take larger and larger samples from any population

Impact of samplesize-

of the mean may not took perfectly normal.

Practical implication'

the normal distribution to make notisfical interences, even when the population distribution is not normal

Citial thinking Iscenario

Pablom 10L

and lifespoons are equally likely with in varge.

formal distributions not ideal, as it , not typical used for modelling finite process like light bulb life spans.

exponential diptribution: Best choice, It represents the Constant and random tailure rate of light bulbs overtime

Preclayahnani 3200030792 sect 35