LOAN DOCUMENT INVENTORY LEVEL EGG-WTD-10887 DOCUMENT IDENTIFICATION JAN 1992 H **DISTRIBUTION STATEMENT A** Approved for Public Release Distribution Unlimited DISTRIBUTION STATEMENT NTIS TRAC UNANNOUNCED JUSTIFICATION DISTRIBUTION/ AVAILABILITY CODES DISTRIBUTION AVAILABILITY AND/OR SPECIAL DATE ACCESSIONED DISTRIBUTION STAMP DATE RETURNED 19990712 090 DATE RECEIVED IN DTIC REGISTERED OR CERTIFIED NUMBER

DTIC POPM 70A

DOCUMENT PROCESSING SHEET

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC

PREVIOUS EDITIONS MAY BE USED UNTIL STOCK IS EXHAUSTED.

LOAN DOCUMENT

Idaho National Engineering Laboratory

Managed by the U.S. Department of Energy

SUPPLEMENTAL DATA IN SUPPORT OF BICARBONATE OF **SODA STRIPPING**

PHASE I (Vol 2)

M. D. Argyle J. E. Findley K. L. Gering T. L. Harris L. A. Polson K. J. Poor M. N. Tsang

Work performed under DOE Contract No. DE-AC07-76ID01570

SUPPLEMENTAL DATA IN SUPPORT OF BICARBONATE OF SODA STRIPPING PHASE I

FRESH SODIUM BICARBONATE PAINT-STRIPPING MEDIA
. TITRATION GRAPHS AND DATA

The data in this supplemental document is to support the Bicarbonate of Soda Stripping - Phase I report. This data was used to calculate the titration endpoints for the fresh and spent sodium bicarbonate paint-stripping media. This information was used to determine 1) how much acid would be needed to neutralize the spent media and 2) the amount of carbonate and bicarbonate in the fresh and spent media samples.

	TITLE Of NaOH With 0.3753 M KHP						<u>P</u>	AGE
Standardization	Of NaOH With 0.3753 M KHP	•		•	•	•		1
TABLE 1	Titration Data			•				1
FIGURE 1	Titration Curve							
FIGURE 2	First Derivative Of The Titration Curve							3
FIGURE 3								
	,							
Standardization	Of The First Batch Of HC1 With 0.969 M NaOH .							5
First Batch								Ę
TABLE 2	Titration Data							Ę
FIGURE 4	Titration Curve							
FIGURE 5								
FIGURE 6	Second Derivative Of The Titration Curve							
TABLE 3	Titration Data							
FIGURE 7	Titration Curve							
FIGURE 8	First Derivative Of The Titration Curve							
FIGURE 9	Second Derivative Of The Titration Curve							
TABLE 4	Titration Data	•		•	·	•	• •	11
	Titration Curve	•		•	٠	•		12
FIGURE 11	First Derivative Of The Titration Curve	•		•	•			12
FIGURE 12	Second Derivative Of The Titration Curve	•	• •	•	•			13
				_				
	tal Fresh Sodium Bicarbonate Media With 0.981							
	<u>.</u>	•		•	•	•		14
TABLE 5	Titration Data							
FIGURE 13	Titration Curve	•		•	•		• •	16
FIGURE 14				•	•	• 1		16
FIGURE 15	Second Derivative Of The Titration Curve			•				17
Second Titration	n					•		18
TABLE 6	Titration Data			•				18
FIGURE 16	Titration Curve							19
FIGURE 17	First Derivative Of The Titration Curve							19
FIGURE 18	Second Derivative Of The Titration Curve							
				•				
TABLE 7								
IADIT /								
	Titration Data	•		•		•		
FIGURE 19	Titration Data	• •	 	•	•	• •		22
FIGURE 19 FIGURE 20	Titration Data	• •	• •	•	•	• •		22 22
FIGURE 19 FIGURE 20 FIGURE 21	Titration Data	• •	• •	•	•	• •	 	22 22 23
FIGURE 19 FIGURE 20 FIGURE 21 Fourth Titration	Titration Data	• •		•	•	• •	• •	22 22 23 24
FIGURE 19 FIGURE 20 FIGURE 21 Fourth Titration TABLE 8	Titration Data		• •	•	•	• • •		22 22 23 24 24
FIGURE 19 FIGURE 20 FIGURE 21 Fourth Titration TABLE 8 FIGURE 22	Titration Data			•	•	•	• •	22 22 23 24 24 25
FIGURE 19 FIGURE 20 FIGURE 21 Fourth Titration TABLE 8 FIGURE 22 FIGURE 23	Titration Data			•	•			22 22 23 24 24 25 25
FIGURE 19 FIGURE 20 FIGURE 21 Fourth Titration TABLE 8 FIGURE 22	Titration Data			•	•			22 22 23 24 24 25 25
FIGURE 19 FIGURE 20 FIGURE 21 Fourth Titration TABLE 8 FIGURE 22 FIGURE 23 FIGURE 24	Titration Data			•	•			22 23 24 24 25 25 26
FIGURE 19 FIGURE 20 FIGURE 21 Fourth Titration TABLE 8 FIGURE 22 FIGURE 23 FIGURE 24 Titration Of Free	Titration Data		981	M				22 23 24 24 25 25 26
FIGURE 19 FIGURE 20 FIGURE 21 Fourth Titration TABLE 8 FIGURE 22 FIGURE 23 FIGURE 24 Titration Of Free TABLE 9	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Second Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data		981		:			22 22 23 24 24 25 25 26 27
FIGURE 19 FIGURE 20 FIGURE 21 Fourth Titration TABLE 8 FIGURE 22 FIGURE 23 FIGURE 24 Titration Of Free TABLE 9 FIGURE 25	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve Esh 600 Micron Sodium Bicarbonate Media With Curve Titration Data Titration Curve		981			1		22 22 23 24 25 25 26 27 27 28
FIGURE 19 FIGURE 20 FIGURE 21 Fourth Titration TABLE 8 FIGURE 22 FIGURE 23 FIGURE 24 Titration Of Free TABLE 9 FIGURE 25 FIGURE 26	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Second Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data		981	M		1		22 23 24 24 25 25 26 27 27 28 28

Titration Of From	esh 425 Micron	Sodium	Bicarbonate	Media With	0.981	M HC1	3
First Titration							30
TABLE 10	Titration Data	a				• • •	30
FIGURE 28	Titration Curv	/e					3
	First Derivat	ive Of 1	The Titration	n Curve			3
FIGURE 30	Second Derivat	ive Of	The Titration	on Curve .	• .• •		3
Second Titration	n						3
TABLE 11	Titration Data	i					3
FIGURE 31	Titration Curv	/e					34
FIGURE 32	First Derivati	ive Of T	The Titration	n Curve			34
FIGURE 33	Second Derivat	ive Of	The Titration	on Curve .			3
Third Titration							30
TABLE 12	Titration Data	a					30
FIGURE 34	Titration Curv	/e				· • •	37
FIGURE 35	First Derivati	ive Of T	The Titration	n Curve			37
FIGURE 36		ive Of	The Titration	on Curve .			38
Titration Of Fre	esh 250 Micron	Sodium	Bicarbonate	Media With	0.961	M HC1	39
First Titration							39
TABLE 13	Titration Data	ì					39
	Titration Curv						
	First Derivati						
	Second Derivat						
Second Titration	n						42
TABLE 14	Titration Data	١,					42
FIGURE 40	Titration Curv	/e					43
FIGURE 41	First Derivati						
FIGURE 42	Second Derivat						
Third Titration							4!
TABLE 15	Titration Data	١					45
	Titration Curv						
FIGURE 44	First Derivati						
FIGURE 45	Second Derivat						
Fourth Titration	1						48
TABLE 16	Titunting Date						AC
FIGURE 46	Titration Curv First Derivati	e					49
FIGURE 47	First Derivati	ve Of T	he Titration	Curve			49
FIGURE 48	Second Derivat	ive Of	The Titratio	on Curve .			50
•							
Titration Of Fre							
First Titration							5]
TABLE 17	Titration Data						
FIGURE 49	Titration Curv	e					52
FIGURE 50	First Derivati	ve Of T	he Titratior	n Curve			52
FIGURE 51	Second Derivat						
Second Titration							54
TABLE 18	Titration Data						54
FIGURE 52	Titration Curv	e					55
FIGURE 53	First Derivati	ve Of T	he Titration	Curve			55
FIGURE 54	Second Derivat						
Third Titration							57
TABLE 19	Titration Data						57

FIGURE 55 FIGURE 56	Titration Cu First Deriva	tive Of	The	Titrat	ion (Curve		•				•	. 58
FIGURE 57 Fourth Titration	Second Deriv	ative O	f The	Titra	tion	Curv	е.	•	• •	• 1	•	•	. 59
TABLE 20	Titration Da	+-	• •	• • •	• •	• • •	• •	•	• •	• '	•	•	. 60
FIGURE 58	Titration Co	ua	• •	• • •	• •		• •	•	• •	•	•	•	. 61
	Titration Cu	+: 05	Tho.	 Tituat	· ·	· · ·	• •	•	• •	•	• •	•	. 01
	First Deriva												
FIGURE 60	Second Deriv	ative o	rine	litra	CIOII	Curv	е.	•	• •	•	•	•	. 02
Titration Of Fre	esh 106 Micro	n Sodiu	m Bic	arbona	te M	edia	With	0.	961	M I	IC1	•	. 63
First Titration													. 63
TABLE 21	Titration Da	ta											. 63
FIGURE 61	Titration Cu	rve						•					. 64
	First Deriva												
FIGURE 63													
Second Titration													
TABLE 22	Titration Da	ta											. 66
	Titration Cu												
FIGURE 65	First Deriva	tive Of	The	Titrat	ion (Curve						•	. 67
FIGURE 66	Second Deriv												
Third Titration													
TABLE 23	Titration Da	ta			· ·			•		•		•	. 69
FIGURE 67	Titration Cu												
FIGURE 68	First Deriva	tive Of	The	 Titrat	ion (Curve	• •	•	• •	•	• •	•	70
FIGURE 69	Second Deriv	ative O	f Tho	Titra	tion	Curv	_ · ·	•	• •	•	• •	•	71
Fourth Titration	secona per i	acive o	i inc	IIII	CIOII	Cuiv	•	•		•	• •	٠	72
												•	
	Titration Da	ta	• •	• • •	•	• • •	•	•	• •	•	-		72
TABLE 24	Titration Da	ta						•					. 72
TABLE 24 FIGURE 70	Titration Da Titration Co	ita irve						•		•	•	•	. 72 . 73
TABLE 24 FIGURE 70 FIGURE 71	Titration Da Titration Cu First Deriva	ta rve tive Of	 The	 Titrat	ion (Curve	• •	•	• •	•	• •	•	. 72 . 73 . 73
TABLE 24 FIGURE 70	Titration Da Titration Co	ta rve tive Of	 The	 Titrat	ion (Curve	• •	•	• •	•	• •	•	. 72 . 73 . 73
TABLE 24 FIGURE 70 FIGURE 71 FIGURE 72 Titration Of Fro	Titration Da Titration Cu First Deriva Second Deriv	ta rve tive Of ative O	The The Bica	 Titrat Titra rbonat	ion (tion	Curve Curv Curv	 e . ith	0.9	 61 M	i Ho	31	•	. 72 . 73 . 73 . 74
TABLE 24 FIGURE 70 FIGURE 71 FIGURE 72 Titration Of Fre	Titration Da Titration Co First Deriva Second Deriv	ta rve tive Of ative O	The The Bica	 Titrat Titra rbonat	ion (tion e Me	Curve Curv Curv dia W	e .	0.9	61 M	i Ho	31	•	. 72 . 73 . 73 . 74
TABLE 24 FIGURE 70 FIGURE 71 FIGURE 72 Titration Of Fre First Titration TABLE 25	Titration Da Titration Co First Deriva Second Deriva esh 75 Micror Titration Da	ta	The The Bica	 Titrat Titra rbonat	ion (tion e Med	Curve Curv dia W	e . ith	0.9	61 M	i Ho	:	•	. 72 . 73 . 74 . 75 . 75
TABLE 24 FIGURE 70 FIGURE 71 FIGURE 72 Titration Of Fre First Titration TABLE 25	Titration Da Titration Co First Deriva Second Deriva esh 75 Micror Titration Da Titration Co	ta	The The Bicar	 Titrat Titra rbonat 	ion (tion)	Curve Curv dia W	e .	0.9	61 M	i Ho	31		. 72 . 73 . 74 . 75 . 75
TABLE 24 FIGURE 70 FIGURE 71 FIGURE 72 Titration Of Fre First Titration TABLE 25	Titration Da Titration Cu First Deriva Second Deriva esh 75 Micror Titration Da Titration Cu First Deriva	ta	The The Bica	Titrat Titra Titra rbonat	ion (tion) e Med	Curve Curv dia W	e .	0.9	61 M	i Ho	31		. 72 . 73 . 74 . 75 . 75 . 76
TABLE 24 FIGURE 70 FIGURE 71 FIGURE 72 Titration Of Free First Titration TABLE 25 FIGURE 73	Titration Da Titration Co First Deriva Second Deriva esh 75 Micror Titration Da Titration Co	ta	The The Bica	Titrat Titra Titra rbonat	ion (tion) e Med	Curve Curv dia W	e .	0.9	61 M	i Ho	31		. 72 . 73 . 74 . 75 . 75 . 76
TABLE 24 FIGURE 70 FIGURE 71 FIGURE 72 Titration Of Fre First Titration TABLE 25 FIGURE 73 FIGURE 74	Titration Da Titration Cu First Deriva Second Deriva Second Deriva Titration Cu First Deriva Second Deriva	ta	The f The Bica	Titrat Titra rbonat Titrat	ion (tion e Me ion (tion)	Curve Curv dia W	e . ith	0.9	61 M	I HO	31		. 72 . 73 . 74 . 75 . 75 . 76 . 76
TABLE 24 FIGURE 70 FIGURE 71 FIGURE 72 Titration Of From Table 25 FIGURE 73 FIGURE 74 FIGURE 75	Titration Da Titration Cu First Deriva Second Deriva esh 75 Micror Titration Da Titration Cu First Deriva Second Deriva	ta rve tive Of ative O Sodium ta rve tive Of ative O	The f The Bica The The f The	Titrat Titra rbonat Titrat Titrat Titra	ion (tion e Me ion (tion)	Curve Curv dia W Curve Curve	e .	0.9	61 M	i Ho	31		. 72 . 73 . 74 . 75 . 75 . 76 . 76 . 77
TABLE 24 FIGURE 70 FIGURE 71 FIGURE 72 Titration Of From Table 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration	Titration Date Titration Confirmation Confirmation Confirmation Date Titration Confirmation Conf	ta	The f The Bica The f The	Titrat Titra rbonat Titrat Titrat Titrat	ion (tion) e Mec ion (tion)	Curve Curv dia W	e ith	0.9	61 M	I HO			. 72 . 73 . 74 . 75 . 75 . 76 . 76 . 77 . 78
TABLE 24 FIGURE 70 FIGURE 71 FIGURE 72 Titration Of Fre First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26	Titration Date Titration Confirmation Confirmation Confirmation Date Titration Date Second Derivation Date Titration Date Date Titration Date Date Date Date Date Date Date Date	ta tive Of ative O Sodium ta tive Of ative O ative O tive O tive O ative O	The f The Bica The f The	Titrat Titra rbonat Titrat Titrat	ion (tion) e Mec ion (tion)	Curve Curv dia W	e ith	0.9	61 M	I HO			. 72 . 73 . 74 . 75 . 75 . 76 . 76 . 78 . 78
TABLE 24 FIGURE 70 FIGURE 71 FIGURE 72 Titration Of Fre First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26 FIGURE 76	Titration Date Titration Control Derivation Control Derivation Date Titration Date Second Derivation Date Titration Date Titration Date Titration Control Derivation	ta tive Of ative O Sodium ta tive Of ative O ta tive Of ative O ta ta	The f The Bica The The The The	Titrat Titra rbonat Titrat Titra Titra Titra	ion (tion e Me ion (tion)	Curve Curv dia W Curve Curve	e .	0.9	61 M	HO	21		. 72 . 73 . 74 . 75 . 75 . 76 . 76 . 78 . 79 . 79
TABLE 24 FIGURE 70 FIGURE 71 FIGURE 72 Titration Of Fre First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26 FIGURE 76 FIGURE 77 FIGURE 78	Titration Date Titration Curst Derivation Curst Derivatio	ta tive Of ative O Sodium ta tive Of ative O ta tive Of ative Of	The f The Bica	Titrat Titra rbonat Titrat Titra Titra Titra Titrat Titrat Titrat	ion (tion e Me ion (tion) tion (tion)	Curve Curve Curve Curve Curve Curve	e	0.9	61 M	HO	21		. 72 . 73 . 74 . 75 . 75 . 76 . 76 . 77 . 79 . 79
TABLE 24 FIGURE 70 FIGURE 71 FIGURE 72 Titration Of Fre First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26 FIGURE 76 FIGURE 77	Titration Date Titration Cure First Derivation Cure Second Derivation Cure First Derivation Cure Titration Date Titration Cure Titration Cure Titration Cure Titration Cure First Derivation Cure First Derivation Cure Second Derivation Cure Second Derivation Cure Titration Cure	ta tive Of ative O Sodium ta tive Of ative O tative O tative O tative O ative O tative O	The f The Bica The The The The f The	Titrat Titra rbonat Titrat Titra Titra Titrat Titrat	ion (tion e Me ion (tion) tion (tion)	Curve Curve Curve Curve Curve Curve	e	0.9	61 M	I HO			. 72 . 73 . 74 . 75 . 76 . 76 . 77 . 78 . 79 . 80 . 81
TABLE 24 FIGURE 70 FIGURE 71 FIGURE 72 Titration Of From Table 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26 FIGURE 76 FIGURE 77 FIGURE 78 Third Titration TABLE 27	Titration Date Titration Confirms to Derive Second Derive Titration Confirms to Derive Second Derive Titration Confirms to Derive Second Derive Titration Definition Definition Derive Second Derive S	ta tive Of ative O Sodium ta tive Of ative O ta tive Of ative O ta tive Of	The f The Bica The f The The f The	Titrat Titrat Titrat Titrat Titrat Titrat Titrat Titrat	ion (tion e Me ion (tion) tion (tion)	Curve Curve Curve Curve Curve	e	0.9	61 M	HO			. 72 . 73 . 74 . 75 . 75 . 76 . 77 . 78 . 79 . 80 . 81
TABLE 24 FIGURE 70 FIGURE 71 FIGURE 72 Titration Of Fre First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26 FIGURE 76 FIGURE 77 FIGURE 78 Third Titration TABLE 27 FIGURE 79	Titration Date Titration Confirms to Derive Second Derive Titration Date Titration Date Titration Date Titration Date Titration Confirms to Derive Second Derive Second Derive Second Derive Titration Date Titration Date Titration Date Titration Date Titration Confirmation Confir	ta tive Of ative O Sodium ta tive Of ative O ta tive Of ative O tive Of	The f The Bica The f The f The f The	Titrat Titrat Titrat Titrat Titrat Titrat Titrat Titra	ion (tion e Me ion (tion) tion (tion)	Curve Curve Curve Curve Curve	e :	0.9	61 M	HO			. 72 . 73 . 74 . 75 . 75 . 76 . 77 . 78 . 79 . 81 . 81
TABLE 24 FIGURE 70 FIGURE 71 FIGURE 72 Titration Of Fre First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26 FIGURE 76 FIGURE 77 FIGURE 78 Third Titration TABLE 27 FIGURE 79 FIGURE 80	Titration Date Titration Control Derivation Control Derivation Date Titration Control Derivation Control Derivatio	ta tive Of ative O Sodium ta tive Of ative O ta tive Of ative O ta tive Of ative O ta tive Of	The f The Control The f The f The f The The f The	ritrat Titra rbonat Titrat Titra Titra Titra Titra Titrat Titra Titra	ion (tion e Me ion (tion tion tion tion tion	Curve Curve Curve Curve Curve Curve	e .	0.9	61 M	I HO			. 72 . 73 . 74 . 75 . 75 . 76 . 76 . 77 . 78 . 79 . 81 . 81 . 82 . 82
TABLE 24 FIGURE 70 FIGURE 71 FIGURE 72 Titration Of Fre First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26 FIGURE 76 FIGURE 77 FIGURE 78 Third Titration TABLE 27 FIGURE 79 FIGURE 80 FIGURE 81	Titration Da Titration Co First Deriva Second Deriv sh 75 Micror Titration Da Titration Co First Deriva Second Deriva Titration Co First Deriva Second Deriva Titration Co First Deriva Second Deriva Second Deriva Titration Co First Deriva Second Deriva Second Deriva	ta tive Of ative O Sodium ta tive Of ative O ta tive Of ative O ta tive Of	The f The Control The f The The f The f The f The f The f The	Titrat Titra rbonat Titrat Titra Titrat Titra Titrat Titra Titrat Titrat	ion (tion e Me ion (tion) tion (tion) tion (tion)	Curve Curve Curve Curve Curve Curve Curve Curve	e	0.9	61 M	I HO			. 72 . 73 . 74 . 75 . 75 . 76 . 76 . 77 . 78 . 79 . 81 . 81 . 82 . 83
TABLE 24 FIGURE 70 FIGURE 71 FIGURE 72 Titration Of Fre First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26 FIGURE 76 FIGURE 77 FIGURE 78 Third Titration TABLE 27 FIGURE 79 FIGURE 80 FIGURE 81 Fourth Titration	Titration Da Titration Co First Deriva Second Deriv Sh 75 Micror Titration Co First Deriva Second Deriva Titration Co First Deriva Second Deriva Second Deriva Titration Co First Deriva Second Deriva Second Deriva Titration Co First Deriva Second Deriva Titration Co First Deriva Second Deriva	ta tive Of ative O Sodium ta tive Of ative O tative O	The f The Control The f The The f The The f The	Titrat Titra rbonat Titrat Titra Titrat Titra Titrat Titra Titrat Titrat	ion (tion e Me ion (tion tion (tion ion (tion	Curve Curve Curve Curve Curve Curve Curve	e	0.9	61 M	1 HO			. 72 . 73 . 74 . 75 . 75 . 76 . 77 . 78 . 79 . 81 . 82 . 83 . 84
TABLE 24 FIGURE 70 FIGURE 71 FIGURE 72 Titration Of Free First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26 FIGURE 76 FIGURE 77 FIGURE 78 Third Titration TABLE 27 FIGURE 79 FIGURE 80 FIGURE 81 Fourth Titration TABLE 28	Titration Da Titration Co First Deriva Second Deriv Sh 75 Micror Titration Da Titration Co First Deriva Second Deriva Titration Co First Deriva Second Deriva Titration Da Titration Da Titration Co First Deriva Second Deriva Titration Da Titration Co First Deriva Second Deriva Titration Da Titration Da Titration Da Titration Da Titration Da	ta tive Of ative O Sodium ta tive Of ative O tive Of ative O tive Of ative O tive Of ative O ta tive Of	The f The Control The f The Control The f	Titrat Titra rbonat Titrat Titra Titrat Titra Titrat Titra Titrat Titrat Titra	ion (tion e Me ion (tion tion (tion tion (Curve Curve Curve Curve Curve Curve Curve	e	0.9	61 M	HO			. 72 . 73 . 74 . 75 . 75 . 76 . 77 . 78 . 79 . 81 . 82 . 83 . 84 . 84
TABLE 24 FIGURE 70 FIGURE 71 FIGURE 72 Titration Of Free First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26 FIGURE 76 FIGURE 77 FIGURE 78 Third Titration TABLE 27 FIGURE 79 FIGURE 80 FIGURE 81 Fourth Titration TABLE 28	Titration Da Titration Co First Deriva Second Deriv Sh 75 Micror Titration Co First Deriva Second Deriva Titration Co First Deriva Second Deriva Second Deriva Titration Co First Deriva Second Deriva Second Deriva Titration Co First Deriva Second Deriva Titration Co First Deriva Second Deriva	ta tive Of ative O Sodium ta tive Of ative O ta tive Of ative O ta tive Of ative O tive Of	The f The Control The f	Titrat Titra rbonat Titrat Titra Titrat Titra Titrat Titra Titrat Titra	ion (tion e Me ion (tion tion (tion) tion (tion)	Curve Curve Curve Curve Curve Curve Curve	e	0.9	61 M	HO			. 72 . 73 . 74 . 75 . 75 . 76 . 77 . 78 . 79 . 81 . 82 . 83 . 84 . 85

Titration Of Fre						
TABLE 29	Titratio			• • • •	• • • • •	87
FIGURE 85			· · · · · · · ·			
FIGURE 86	First De	rivative Of	The Titration	on Curve .		88
FIGURE 87			of The Titrat			
Second Titration						
TABLE 30	Titratio	n Data				90
FIGURE 88						
FIGURE 89			The Titration			
FIGURE 90			of The Titrat			
Third Titration						93
TABLE 31						
FIGURE 91						
FIGURE 92			The Titration			
FIGURE 93			of The Titrat			
Fourth Titration	n			• • • •		96
TABLE 32	Titratio	n Data				96
FIGURE 94	Titratio	n Curve				97
FIGURE 95			The Titration			
FIGURE 96	Second D	erivative O	of The Titrat	ion Curve		98
					. o oci M	1107 00
Titration Of Fre						
First Titration						
TABLE 33						
			The Titration			
FIGURE 98 FIGURE 99			of The Titration			
Second Titration	secona p	erivative o	i the illiac	ion curve		101
TABLE 34						
FIGURE 100						
FIGURE 101			The Titration			
FIGURE 101			of The Titrat			
Third Titration						
TABLE 35						
FIGURE 104			The Titration			
			f The Titrati			
Fourth Titration						
			• • • • • •			
			The Titration			
			f The Titrati			
		_				
Titration Of Soc						
			The Titration			
FIGURE 111	Second D	erivative O	f The Titrati	on Curve		113
Titration Of Soc	iium Carh	onate From	Aldrich Chemi	cal Co Wit	th 0.961 M	HC7 114

FIGURE 113	Titration Curve	. 115
Titration Of To	tal Spent Sodium Bicarbonate Media With 0.984 M HCl	. 117
TABLE 39	Titration Data	. 117
FIGURE 115	Titration Curve	. 119
FIGURE 116	First Derivative Of The Titration Curve	. 119
FIGURE 117	Second Derivative Of The Titration Curve	. 120
Second Titration		
TABLE 40	Titration Data	
	Titration Curve	. 123
FIGURE 110	First Derivative Of The Titration Curve	
FIGURE 120	Second Derivative Of The Titration Curve	. 124
Third Titration		
TABLE 41	Titration Data	. 125
	Titration Curvo	. 123
FIGURE 121	Titration Curve	
FIGURE 123	Second Derivative Of The Titration Curve	
Fourth Titration		. 129
TABLE 42	Titration Data	
FIGURE 124	Titration Curve	. 131
FIGURE 125		
FIGURE 126	Second Derivative Of The Titration Curve	. 132
	· · · · · · · · · · · · · · · · · · ·	
	ent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl	
First Titration		. 133
First Titration TABLE 43	Titration Data	. 133 . 133
First Titration TABLE 43 FIGURE 127	Titration Data	. 133 . 133 . 135
First Titration TABLE 43 FIGURE 127 FIGURE 128	Titration Data	. 133 . 133 . 135 . 135
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129	Titration Data	. 133 . 133 . 135 . 135
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration	Titration Data	. 133 . 133 . 135 . 135 . 136
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44	Titration Data	. 133 . 133 . 135 . 135 . 136 . 137
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve	. 133 . 133 . 135 . 135 . 136 . 137 . 137
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131	Titration Data Titration Curve Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve	. 133 . 135 . 135 . 136 . 137 . 137 . 139
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve	. 133 . 135 . 135 . 136 . 137 . 139 . 139
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve	. 133 . 135 . 135 . 136 . 137 . 139 . 139 . 140
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve Titration Data	. 133 . 135 . 135 . 136 . 137 . 139 . 139 . 140 . 141
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve Titration Data Titration Data Titration Curve	. 133 . 135 . 135 . 136 . 137 . 137 . 139 . 140 . 141 . 141
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133 FIGURE 133 FIGURE 134	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve First Derivative Of The Titration Curve Titration Data Titration Data Titration Curve First Derivative Of The Titration Curve	. 133 . 135 . 135 . 136 . 137 . 137 . 139 . 140 . 141 . 143 . 143
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133 FIGURE 133 FIGURE 134 FIGURE 135	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve	. 133 . 135 . 135 . 136 . 137 . 139 . 139 . 140 . 141 . 143 . 143
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133 FIGURE 134 FIGURE 135 FOURTH TITRATION	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve Second Derivative Of The Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve	. 133 . 135 . 135 . 136 . 137 . 139 . 140 . 141 . 143 . 143 . 144
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133 FIGURE 133 FIGURE 134 FIGURE 135 FOURTH TITRATION TABLE 46	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve First Derivative Of The Titration Curve Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve Titration Data Titration Data	. 133 . 135 . 135 . 136 . 137 . 139 . 139 . 140 . 141 . 143 . 143 . 144 . 145
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133 FIGURE 133 FIGURE 134 FIGURE 135 Fourth Titration TABLE 46 FIGURE 136	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Data	. 133 . 135 . 135 . 136 . 137 . 139 . 139 . 140 . 141 . 143 . 143 . 144 . 145 . 145
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133 FIGURE 133 FIGURE 134 FIGURE 135 Fourth Titration TABLE 46 FIGURE 136 FIGURE 137	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve	. 133 . 135 . 135 . 136 . 137 . 139 . 139 . 140 . 141 . 143 . 144 . 145 . 145 . 147
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133 FIGURE 133 FIGURE 134 FIGURE 135 Fourth Titration TABLE 46 FIGURE 136	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve	. 133 . 135 . 135 . 136 . 137 . 139 . 139 . 140 . 141 . 143 . 143 . 144 . 145 . 145
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133 FIGURE 134 FIGURE 135 FOURTH Titration TABLE 46 FIGURE 136 FIGURE 137 FIGURE 138 Titration Of Specific Processing Processi	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve Titration Data Titration Curve Second Derivative Of The Titration Curve Second Derivative Of The Titration Curve Second Derivative Of The Titration Curve	. 133 . 135 . 135 . 136 . 137 . 139 . 139 . 140 . 141 . 143 . 143 . 144 . 145 . 147 . 147
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133 FIGURE 133 FIGURE 134 FIGURE 135 FOURTH Titration TABLE 46 FIGURE 136 FIGURE 137 FIGURE 137 FIGURE 138 Titration Of Specificat Titration	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Data Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Second Derivative Of The Titration Curve	. 133 . 135 . 135 . 136 . 137 . 139 . 140 . 141 . 143 . 143 . 144 . 145 . 147 . 147
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133 FIGURE 134 FIGURE 135 FOURTH TITRATION TABLE 46 FIGURE 136 FIGURE 137 FIGURE 137 FIGURE 138 Titration Of Specificat Titration TABLE 47	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve First Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve	. 133 . 135 . 135 . 136 . 137 . 139 . 139 . 140 . 141 . 143 . 143 . 144 . 145 . 145 . 147 . 147

FIGURE 140	First Derivative Of The Titration Curve Second Derivative Of The Titration Curve .	•		•		•	151 152
	n						
TABLE 48	Titration Data						
FIGURE 142	Titration Curve						155
FIGURE 142	First Derivative Of The Titration Curve	•	• •	•	• •	•	155
FIGURE 143							156
							157
Third Titration							157
TABLE 49	Titration Data						
FIGURE 145	Titration Curve	٠	• •	٠	.• •	•	159
	First Derivative Of The Titration Curve						159
	Second Derivative Of The Titration Curve .	•	•-	•	. •	•	160
Fourth Titration		•		•		•	161
TABLE 50	Titration Data						161
FIGURE 148	Titration Curve						163
	First Derivative Of The Titration Curve						163
FIGURE 150							164
TIGORE 150	Second Berryative of the fittation outve	•	• •	•	• •	•	10
Titration Of Spe	ent 450 Micron Sodium Bicarbonate Media With	0.	984	M	HC1		165
							165
	Titration Data						165
	Titration Curve						167
ETCHDE 152	First Derivative Of The Titration Curve	•	• •	•	• •	•	167
	Second Derivative Of The Titration Curve						168
							169
	l						
TABLE 52	Titration Data						169
FIGURE 154	Titration Curve	•	• •	•	• •	•	171
	First Derivative Of The Titration Curve						171
FIGURE 156	Second Derivative Of The Titration Curve .						172
Third Titration		•					173
TABLE 53	Titration Data						173
FIGURE 157	Titration Curve						174
FIGURE 158	First Derivative Of The Titration Curve			_			174
	Second Derivative Of The Titration Curve .						175
							176
TADIE EA	Titration Data	•	• •	•	• •	•	176
FICURE 160	Tituation Curvo	•	• •	•	• •	•	177
FIGURE 100	Titration Curve	•	• •	•	• •	•	
	First Derivative Of The Titration Curve					•	177
FIGURE 162	Second Derivative Of The Titration Curve .	•	• •	•	• •	•	178
Titration Of Sne	ent 250 Micron Sodium Bicarbonate Media With	Λ (024	м	нст		179
							179
TABLE 55	Titration Data	•	• •	•		•	179
	Titration Curve						
FIGURE 103	First Desiration Of The Titustics Course	•	• •	•	• •	•	180
	First Derivative Of The Titration Curve						180
FIGURE 165							181
Second Titration							182
	Titration Data						182
FIGURE 166	Titration Curve					•	183
FIGURE 167	First Derivative Of The Titration Curve						183
FIGURE 168	Second Derivative Of The Titration Curve .						184
Third Titration							185

TABLE 57		. 185
FIGURE 169	Titration Curve	. 186
FIGURE 170	First Derivative Of The Titration Curve	. 186
FIGURE 171	Second Derivative Of The Titration Curve	. 187
Fourth Titration	on	. 188
TABLE 58	Titration Data	. 188
FIGURE 172	Titration Curve	. 189
FIGURE 173	First Derivative Of The Titration Curve	. 189
FIGURE 174	Second Derivative Of The Titration Curve	. 190
Titration Of Sp	ent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl	. 191
	1	
TABLE 59	Titration Data	
FIGURE 175	Titration Curve	. 192
FIGURE 176	First Derivative Of The Titration Curve	
	Second Derivative Of The Titration Curve	
Second Titration		
TABLE 60	Titration Data	
	Titration Curve	. 195
FIGURE 170	First Derivative Of The Titration Curve	. 193
FIGURE 179 FIGURE 180		
	Second Derivative Of The Titration Curve	
TABLE 61	Titration Data	. 197
FIGURE 181	Titration Curve	. 198
FIGURE 182	First Derivative Of The Titration Curve	. 198
FIGURE 183	Second Derivative Of The Titration Curve	. 199
	on	. 200
TABLE 62	Titration Data	. 200
FIGURE 184	Titration Curve	. 201
	First Derivative Of The Titration Curve	. 201
FIGURE 186	Second Derivative Of The Titration Curve	. 202
Titration Of Spo	ent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl .	. 203
First Titration	1	. 203
TARLE 63	Titration Data	202
FIGURE 187	Titration Curve	. 204
FIGURE 188	Titration Curve	. 204
FIGURE 189	Second Derivative Of The Titration Curve	. 205
Second Titration		. 206
TABLE 64	Titration Data	. 206
FIGURE 190	Titration Curve	. 207
FIGURE 191	First Derivative Of The Titration Curve	. 207
FIGURE 192	Second Derivative Of The Titration Curve	208
Third Titration		209
TABLE 65	Titration Data	209
FIGURE 193	Titration Curve	
FIGURE 194	First Derivative Of The Titration Curve	. 210
FIGURE 195	Second Derivative Of The Titration Curve	
Fourth Titration		
TABLE 66		
FIGURE 196	Titration Data	. 212
	Titration Curve	
LIGUKE 13/	FIRST DEFIVATIVE OF THE ITTRACTOR CURVE	. 213

FIGURE 190	Second Derivative Of The Titration Curve	21
	ent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl .	21
First Titration		21
		21
		216
FIGURE 200		216
FIGURE 201		217
Second Titratio	n	218
TABLE 68	Titration Data	218
FIGURE 202	Titration Curve	219
		219
FIGURE 204	·	220
		22
TABLE 69		221
		222
		222
FIGURE 207		223
Fourth Titratio		224
		224
FIGURE 208		225
		225
FIGURE 210	Second Derivative Of The Titration Curve	226
	4 4 M M	^^-
		227
First litration	The street Date	227
		227
FIGURE 211	Titration Curve	228
		228
FIGURE 213	Second Derivative Of The Titration Curve	229
FIGURE 213 Second Titration	Second Derivative Of The Titration Curve	229 230
FIGURE 213 Second Titration TABLE 72	Second Derivative Of The Titration Curve	229 230 230
FIGURE 213 Second Titration TABLE 72 FIGURE 214	Second Derivative Of The Titration Curve	229 230 230 231
FIGURE 213 Second Titration TABLE 72 FIGURE 214	Second Derivative Of The Titration Curve	229 230 230 231 231
FIGURE 213 Second Titration TABLE 72 FIGURE 214	Second Derivative Of The Titration Curve	229 230 230 231 231
FIGURE 213 Second Titration TABLE 72 FIGURE 214 FIGURE 215 FIGURE 216	Second Derivative Of The Titration Curve	229 230 230 231 231
FIGURE 213 Second Titration TABLE 72 FIGURE 214 FIGURE 215 FIGURE 216 Third Titration	Second Derivative Of The Titration Curve	229 230 230 231 231 232
FIGURE 213 Second Titration TABLE 72 FIGURE 214 FIGURE 215 FIGURE 216 Third Titration TABLE 73	Second Derivative Of The Titration Curve	229 230 230 231 231 232 233
FIGURE 213 Second Titration TABLE 72 FIGURE 214 FIGURE 215 FIGURE 216 Third Titration TABLE 73 FIGURE 217	Second Derivative Of The Titration Curve	229 230 231 231 232 233 234
FIGURE 213 Second Titration TABLE 72 FIGURE 214 FIGURE 215 FIGURE 216 Third Titration TABLE 73 FIGURE 217 FIGURE 218	Second Derivative Of The Titration Curve n Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve	229 230 230 231 232 233 234 234
FIGURE 213 Second Titration TABLE 72 FIGURE 214 FIGURE 215 FIGURE 216 Third Titration TABLE 73 FIGURE 217 FIGURE 218 FIGURE 219	Second Derivative Of The Titration Curve n Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve First Derivative Of The Titration Curve	229 230 230 231 232 233 234 235
FIGURE 213 Second Titration TABLE 72 FIGURE 214 FIGURE 215 FIGURE 216 Third Titration TABLE 73 FIGURE 217 FIGURE 218 FIGURE 219 Fourth Titration	Second Derivative Of The Titration Curve n Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Second Derivative Of The Titration Curve	229 230 231 231 232 233 234 234 235 236
FIGURE 213 Second Titration TABLE 72 FIGURE 214 FIGURE 215 FIGURE 216 Third Titration TABLE 73 FIGURE 217 FIGURE 218 FIGURE 219 Fourth Titration TABLE 74	Second Derivative Of The Titration Curve n Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve Titration Data	229 230 231 231 232 233 234 235 236 236
FIGURE 213 Second Titration TABLE 72 FIGURE 214 FIGURE 215 FIGURE 216 Third Titration TABLE 73 FIGURE 217 FIGURE 218 FIGURE 219 Fourth Titration TABLE 74 FIGURE 220	Second Derivative Of The Titration Curve n Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve Titration Data Titration Curve Titration Data	229 230 231 231 2231 2234 2234 2236 2236 2236
FIGURE 213 Second Titration TABLE 72 FIGURE 214 FIGURE 215 FIGURE 216 Third Titration TABLE 73 FIGURE 217 FIGURE 218 FIGURE 219 Fourth Titration TABLE 74 FIGURE 220 FIGURE 221	Second Derivative Of The Titration Curve n	229 230 230 231 231 232 233 233 233 235 237 2237
FIGURE 213 Second Titration TABLE 72 FIGURE 214 FIGURE 215 FIGURE 216 Third Titration TABLE 73 FIGURE 217 FIGURE 218 FIGURE 219 Fourth Titration TABLE 74 FIGURE 220 FIGURE 221	Second Derivative Of The Titration Curve n	229 230 231 231 2231 2234 2234 2236 2236 2236
FIGURE 213 Second Titration TABLE 72 FIGURE 214 FIGURE 215 FIGURE 216 Third Titration TABLE 73 FIGURE 217 FIGURE 218 FIGURE 219 Fourth Titration TABLE 74 FIGURE 220 FIGURE 221 FIGURE 222	Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve	229 230 230 231 231 232 233 233 233 233 233 233 233
FIGURE 213 Second Titration TABLE 72 FIGURE 214 FIGURE 215 FIGURE 216 Third Titration TABLE 73 FIGURE 217 FIGURE 218 FIGURE 219 Fourth Titration TABLE 74 FIGURE 220 FIGURE 221 FIGURE 222 Titration Of Spe	Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve First Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve First Derivative Of The Titration Curve	229 230 231 231 232 233 233 233 233 233 233 233
FIGURE 213 Second Titration TABLE 72 FIGURE 214 FIGURE 215 FIGURE 216 Third Titration TABLE 73 FIGURE 217 FIGURE 218 FIGURE 219 Fourth Titration TABLE 74 FIGURE 220 FIGURE 221 FIGURE 222 Titration Of Specification	Second Derivative Of The Titration Curve n	229 230 231 231 232 233 233 233 233 233 233 233
FIGURE 213 Second Titration TABLE 72 FIGURE 214 FIGURE 215 FIGURE 216 Third Titration TABLE 73 FIGURE 217 FIGURE 218 FIGURE 219 Fourth Titration TABLE 74 FIGURE 220 FIGURE 221 FIGURE 222 Titration Of Specificat Titration TABLE 75	Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Second Derivative Of The Titration Curve Second Derivative Of The Titration Curve	229 230 231 231 232 233 233 234 235 237 2237 239 239
FIGURE 213 Second Titration TABLE 72 FIGURE 214 FIGURE 215 FIGURE 216 Third Titration TABLE 73 FIGURE 217 FIGURE 218 FIGURE 219 Fourth Titration TABLE 74 FIGURE 220 FIGURE 221 FIGURE 222 Titration Of Specificat Titration TABLE 75 FIGURE 223	Second Derivative Of The Titration Curve n	229 230 231 231 232 233 233 233 233 233 233 233

Second Titratio	on	242
TABLE 76	Titration Data	242
FIGURE 226	Titration Curve	243
FIGURE 227	First Derivative Of The Titration Curve	243
FIGURE 228	Second Derivative Of The Titration Curve	244
Third Titration	1	245
TABLE 77	Titration Data	245
FIGURE 229	Titration Curve	246
FIGURE 230	First Derivative Of The Titration Curve	246
FIGURE 231	Second Derivative Of The Titration Curve	247
Fourth Titration	m	248
TABLE 78	Titration Data	248
FIGURE 232	Titration Curve	249
FIGURE 233	First Derivative Of The Titration Curve	249
FIGURE 234	Second Derivative Of The Titration Curve	250

TABLE 1. STANDARDIZATION OF NaOH WITH KHP.

	·····				
ml 0.3753M KHP	рН	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.00	$\frac{577}{13.704}$	0.50	0.08	0.25	0.15
1.00	13.780	1.50	0.02	1.00	-0.05
2.00	13.780	2.50	-0.00	2.00	
					-0.03
3.00	13.799	3.60	-0.01	3.05	-0.01
4.20	13.787	4.60	-0.01	4.10	0.00
5.00	13.780	5.50	-0.01	5.05	-0.00
6.00	13.767	6.50	-0.01	6.00	-0.00
7.00	13.754	7.50	-0.01	7.00	-0.00
8.00	13.740	8.50	-0.02	8.00	-0.01
9.00	13.719	9.50	-0.02	9.00	0.00
10.00	13.703	10.50	-0.02	10.00	-0.01
11.00	13.679	11.50	-0.03	11.00	-0.00
12.00	13.652	12.50	-0.03	12.00	-0.01
13.00	13.617	13.50	-0.03	13.00	0.01
14.00	13.588	14.50	-0.05	14.00	-0.02
15.00	13.535	15.50	-0.04	15.00	0.02
16.00	13.498	16.50	-0.04	16.00	-0.00
17.00	13.458	17.50	-0.06	17.00	-0.02
18.00	13.403	18.50	-0.05	18.00	0.00
19.00	13.350	19.50	-0.07	19.00	-0.02
20.00	13.278	20.50	-0.09	20.00	-0.02
21.00	13.186	21.25	-0.08	20.88	0.01
21.50	13.145	21.75	-0.13	21.50	-0.09
22.00	13.143	22.25	-0.15	22.00	-0.07
22.50	13.000	22.75	-0.11	22.50	0.10
23.00	12.945	23.25	-0.11	23.00	-0.22
23.50					
	12.836	23.65	-0.25	23.45	-0.09
23.80	12.760	23.90	-0.22	23.78	0.11
24.00	12.715	24.10	-0.30	24.00	-0.38
24.20	12.655	24.28	-0.35	24.19	-0.27
24.35	12.603	24.38	-0.94	24.33	-5.93
24.40	12.556	24.45	-0.43	24.41	6.80
24.50	12.513	24.55	-0.45	24.50	-0.20
24.60	12.468	24.65	-0.59	24.60	-1.40
24.70	12.409	24.75	-0.30	24.70	2.90
24.80	12.379	24.85	-0.43	24.80	-1.30
24.90	12.336	24.95	-0.43	24.90	0.00
25.00	12.293	25.05	-0.60	25.00	-1.70
25.10	12.233	25.15	-1.05	25.10	-4.50
25.20	12.128	25.25	-0.70	25.20	3.50
25.30	12.058	25.35	-0.94	25.30	-2.40
25.40	11.964	25.45	-1.70	25.40	-7.60
25.50	11.794	25.55	-2.15	25.50	-4.50
25.60	11.579	25.65	-3.73	25.60	-15.80
25.70	11.206	25.75	-6.86	25.70	-31.30
25.80	10.520	25.83	-28.52	25.79	-288.80
25.85	9.094	25.88	-14.66	25.85	277.20
	- · · · ·	· 	_ · · · • •		

TABLE 1. STANDARDIZATION OF NAOH WITH KHP (continued).

ml 0.3753M KHP 25.90 25.95 26.00 26.10 26.20 26.30 26.40 26.60 26.80 27.00 27.20 27.40 27.60	pH 8.361 7.975 7.730 7.474 7.270 7.122 7.031 6.854 6.720 6.580 6.485 6.411 6.339	Vol (ml) 25.93 25.98 26.05 26.15 26.25 26.35 26.70 26.70 27.10 27.30 27.70	d(pH)/d(ml) -7.72 -4.90 -2.56 -2.04 -1.48 -0.91 -0.88 -0.67 -0.70 -0.47 -0.37 -0.36 -0.33	Vol (ml) 25.90 25.95 26.01 26.10 26.20 26.30 26.43 26.60 26.80 27.00 27.20 27.40 27.60	d2(pH)/d(m1) ² 138.80 56.40 31.20 5.20 5.60 5.70 0.17 1.07 -0.15 1.12 0.52 0.05 0.17
27.80	6.274	27.90	-0.33	27.80	-0.02
28.00	6.208	28.25	-0.24	28.08	0.25
28.50	6.087	28.75	-0.20	28.50	0.09
29.00	5.989	29.25	-0.24	29.00	-0.09
29.50	5.868	29.75	-0.10	29.50	0.28
30.00	5.816	30.50	-0.08	30.13	0.03
31.00	5.732	31.50	-0.08	31.00	0.00
32.00	5.651	32.50	-0.06	32.00	0.02
33.00	5.592	33.50	-0.06	33.00	-0.00
34.00	5.529	34.50	-0.05	34.00	0.01
35.00	5.475	17.50	0.16	26.00	-0.01

Figure C-1. Titration Curve For Standardization Of NaOH With 0.3753 M KHP.

Figure C-2. First Derivative Of The Titration Curve For Standardization Of NaOH With 0.3753 M KHP.

Figure C-3. Second Derivative Of The Titration Curve For Standardization Of NaOH With 0.3753 M KHP.

TABLE 2. STANDARDIZATION OF HCL WITH NAOH - FIRST BATCH.

20.90 11.916 20.95 0.96 20.88 3.17 21.00 12.012 21.25 0.46 21.10 -1.65 21.50 12.244 21.75 0.26 21.50 -0.40 22.00 12.376 22.25 0.19 22.00 -0.14 22.50 12.473 22.75 0.13 22.50 -0.12 23.00 12.539 23.50 0.09 23.13 -0.05 24.00 12.630 12.00 0.53 17.75 -0.04	21.50	12.244	21.75	0.26	21.50	-0.40
	22.00	12.376	22.25	0.19	22.00	-0.14
	22.50	12.473	22.75	0.13	22.50	-0.12
	23.00	12.539	23.50	0.09	23.13	-0.05

Figure C-4. Titration Curve For The Standardization Of The First Batch Of HC1 With 0.969 M NaOH.

Figure C-5. First Derivative Of The Titration Curve For The Standardization Of The First Batch Of HC1 With 0.969 M NaOH.

Figure C-6. Second Derivative Of The Titration Curve For The Standardization Of The First Batch Of HC1 With 0.969 M NaOH.

TABLE 3. STANDARDIZATION OF HCL WITH NAOH - SECOND BATCH.

					
ml 0.969M NaOH	<u>pH</u>	<u>Vol (ml)</u>	d(pH)/d(ml)	<u>Vol (ml)</u>	$d2(pH)/d(m1)^2$
0.0	0.681	0.50	-0.10	0.25	-0.19
1.0	0.584	1.50	-0.01	1.00	0.09
2.0	0.577	2.50	-0.01	2.00	-0.00
3.0	0.565	3.50	-0.00	3.00	0.01
4.0	0.562	4.50	0.01	4.00	0.02
5.0	0.575	5.50	0.03	5.00	0.01
6.0	0.602	6.50	0.01	6.00	-0.02
7.0	0.611	7.50	0.03	7.00	0.03
8.0	0.645	8.50	0.01	8.00	-0.03
9.0	0.653	9.50	0.03	9.00	0.02
10.0	0.682	10.50	0.01	10.00	-0.02
11.0	0.694	11.50	0.05	11.00	0.04
12.0	0.745	13.00	0.04	12.25	-0.01
14.0	0.820	15.00	0.07	14.00	0.02
16.0	0.969	16.50	0.14	15.75	0.05
17.0	1.111	17.50	0.17	17.00	0.03
18.0	1.284	18.25	0.39	17.88	0.29
18.5	1.478	18.75	0.27	18.50	-0.24
19.0	1.612	19.25	0.45	19.00	0.36
19.5	1.835	19.75	1.03	19.50	1.16
20.0	2.348	20.05	2.56	19.90	5.11
20.1	2.604	20.15	5.28	20.10	27.20
20.2	3.132	20.25	74.19	20.20	689.10
`20.3	10.551	20.35	7.75	20.30	-664.40
20.4	11.326	20.45	2.58	20.40	-51.70
20.5	11.584	20.75	1.17	20.60	-4.70
21.0	12.169	21.50	0.32	21.13	-1.13
22.0	12.493	22.50	0.18	22.00	-0.15
23.0	12.668	23.50	0.09	23.00	-0.09
24.0	12.754	24.50	0.07	24.00	-0.02
25.0	12.822	12.50	0.51	18.50	-0.04
		•			

Figure C-7. Titration Curve For The Standardization Of The Second Batch Of HC1 With 0.969 M NaOH.

Figure C-8. First Derivative Of The Titration Curve For The Standardization Of The Second Batch Of HC1 With 0.969 M NaOH.

Figure C-9. Second Derivative Of The Titration Curve For The Standardization Of The Second Batch Of HC1 With 0.969 M NaOH.

TABLE 4. STANDARDIZATION OF HCL WITH NAOH - THIRD BATCH.

					
ml 0.969M NaOH	Нq	Vol (ml)	([m)b/(Hq)b	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	0.825	0.50	-0.15	0.25	-0.31
1.0	0.671	1.50	-0.01	1.00	0.15
2.0	0.663	2.50	0.01	2.00	0.01
3.0	0.669	3.50	0.01	3.00	0.00
4.0	0.679	4.50	0.00	4.00	-0.01
5.0	0.681	5.50	0.02	5.00	0.01
6.0	0.697	6.50	0.02	6.00	0.00
7.0	0.716	7.50	0.02	7.00	0.00
8.0	0.736	8.50	0.02	8.00	0.00
9.0	0.758	9.50	0.03	9.00	0.00
10.0	0.785	10.50	0.03	10.00	0.01
11.0	0.819	11.50	0.03	11.00	0.00
12.0	0.854	12.50	0.05	12.00	0.01
13.0	0.901	13.50	0.06	13.00	0.01
14.0	0.958	14.50	0.06	14.00	0.00
15.0	1.020	15.50	0.08	15.00	0.02
16.0	1.101	16.50	0.11	16.00	0.03
17.0	1.212	17.50	0.16	17.00	0.05
18.0	1.376	18.50	0.27	18.00	0.11
19.0	1.648	19.50	7.32	19.00	7.04
20.0	8.964	20.10	9.12	19.80	3.01
20.2	10.788	20.25	3.83	20.17	-35.27
20.3	11.171	20.35	1.95	20.30	-18.80
20.4	11.366	20.45	2.70	20.40	7.50
20.5	11.636	20.75	0.60	20.60	-7.01
21.0	11.934	21.50	0.26	21.13	-0.45
22.0	12.193	22.50	0.14	22.00	-0.12
23.0	12.331	23.50	0.09	23.00	-0.05
24.0	12.423	24.50	0.06	24.00	-0.03
25.0	12.487	12.50	0.50	18.50	-0.04

Figure C-10. Titration Curve For The Standardization Of The Third Batch Of HCl With 0.969 M NaOH.

Figure C-11. First Derivative Of The Titration Curve For The Standardization Of The Third Batch Of HCl With 0.969 M NaOH.

Figure C-12. Second Derivative Of The Titration Curve For The Standardization Of The Third Batch Of HCl With 0.969 M NaOH.

TABLE 5. TOTAL FRESH SODIUM BICARBONATE MEDIA - TITRATION 1.

ml 0.981M HCl	На	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	9.801	0.05	-0.04	1.00	-0.07
1.0	9.764	1.50	-0.11	2.00	-0.02
2.0	9.659	2.50	-0.12	3.00	0.04
		3.50	-0.08	4.00	-0.09
3.0	9.537				
4.0	9.454	4.50	-0.17	5.00	0.00
5.0	9.286	5.50	-0.17	6.00	-0.14
6.0	9.120	6.50	-0.31	6.88	-0.01
7.0	8.813	7.25	-0.31	7.50	-0.84
7.5	8.657	7.75	-0.73	8.00	-0.18
8.0	8.291	8.25	-0.82	8.50	0.43
8.5	7.879	8.75	-0.61	9.00	0.55
9.0	7.574	9.25	-0.34	9.50	0.10
9.5	7.406	9.75	-0.28	10.13	0.09
10.0	7.264	10.50	-0.21	11.00	0.05
					0.04
11.0	7.051	11.50	-0.16	12.00	
12.0	6.888	12.50	-0.12	13.00	0.01
13.0	6.768	13.50	-0.11	14.00	0.03
14.0	6.658	14.50	-0.08	15.00	0.02
15.0	6.580	15.50	-0.06	16.00	-0.01
16.0	6.521	16.50	-0.06	17.00	-0.02
17.0	6.457	17.50	-0.08	18.00	0.01
18.0	6.377	18.50	-0.07	19.00	0.03
19.0	6.311	19.50	-0.03	20.00	-0.06
20.0	6.279	20.50	-0.09	21.00	0.12
21.0	6.190	21.50	0.03	22.00	-0.12
22.0	6.216	22.50	-0.10	23.00	-0.01
23.0	6.119	23.50	-0.11	24.00	-0.04
24.0	6.009	24.50	-0.15	24.88	0.14
25.0	5.859	25.25	-0.05	25.50	-0.28
25.5	5.835	25.75	-0.19	26.00	-0.02
26.0	5.742	26.25	-0.20	26.50	0.05
26.5	5.644	26.75	-0.17	27.00	-0.07
27.0	5.559	27.25	-0.20	27.45	-0.70
27.5	5.457	27.65	-0.48	27.78	-0.03
27.8	5.312	27.90	-0.49	28.03	-1.17
28.0	5.214	28.15	-0.78	28.28	-4.03
28.3	4.979	28.40	-1.79	28.50	-13.35
28.5	4.621	28.60	-4.46	28.68	-12.20
28.7	3.729	28.75	-6.29	28.80	35.20
28.8	3.100	28.85	-2.77	28.90	20.20
28.9	2.823	28.95	-0.75	29.10	1.44
29.0	2.748	29.25	-0.73	29.50	-0.62
29.5	2.589	29.75	-0.63	30.00	0.50
30.0	2.276	30.25	-0.38	30.50	-0.08
30.5	2.276	30.75	-0.42	31.13	0.38
31.0	1.880	31.50	-0.13	32.00	0.06
32.0	1.748	32.50	-0.13	33.00	0.01
	1.740	32.50	-0.08	34.00	0.01
33.0	1.0/2	JJ. DU	-0.0/	34.00	0.01

TABLE 5. TOTAL FRESH SODIUM BICARBONATE MEDIA - TITRATION 1 (continued).

ml 0.981M HCl	pH	Vol (ml)	<u>d(pH)/d(ml)</u>	Vol (ml)	d2(pH)/d(m1) ²
34.0	1.602	34.50	-0.06	26.00	-0.01
35.0	1.539	17.50	0.04	8.75	0.00

Figure C-13. Curve For The First Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-14. First Derivative Of The First Titration Curve For Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-15. Second Derivative Of The First Titration Curve For Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 6. TOTAL FRESH SODIUM BICARBONATE MEDIA - TITRATION 2.

ml 0.981M HCl	_ Нд	<u>Vol (ml)</u>	d(pH)/d(ml)	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{}$
0.0	10.049	1.00	-0.15	2.00	0.01
2.0	9.752	3.00	-0.14	4.00	-0.01
4.0	9.480	5.00	-0.15	5.75	-0.01
6.0	9.187	6.50	-0.16	7.00	-0.12
7.0	9.028	7.50	-0.28	7.88	-0.81
8.0	8.750	8.25	-0.88	8.50	0.72
8.5	8.309	8.75	-0.52	9.00	-0.32
9.0	8.049	9.25	-0.68	9.50	0.54
9.5	7.709	9.75	-0.41	10.00	0.80
10.0	7.503	10.25	-0.01	10.50	-0.97
10.5	7.496	10.75	-0.50	11.13	0.40
11.0	7.247	11.50	-0.20	12.25	0.04
12.0	7.048	13.00	-0.14	14.00	0.02
14.0	6.760	15.00	-0.10	16.00	0.01
16.0	6.558	17.00	-0.08	18.00	-0.01
18.0	6.403	19.00	-0.09	20.00	0.00
20.0	6.228	21.00	-0.08	22.00	0.05
22.0	6.067	23.00	0.02	24.00	-0.11
24.0	6.106	25.00	-0.20	25.75	-0.07
26.0	5.713	26.50	-0.31	27.00	-1.89
27.0	5.408	27.50	-2.20	27.88	0.96
28.0	3.210	28.25	-1.48	28.50	1.75
28.5	2.472	28.75	-0.60	29.13	0.47
29.0	2.171	29.50	-0.25	30.25	0.09
30.0	1.920	31.00	-0.11	32.00	0.02
32.0	1.695	33.00	-0.07	33.75	0.01
34.0	1.557	34.50	-0.05	26.00	-0.01
35.0	1.505	17.50	0.04	8.75	0.00

Figure C-16. Curve For The Second Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-17. First Derivative Of The Second Titration Curve For Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-18. Second Derivative Of The Second Titration Curve For Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 7. TOTAL FRESH SODIUM BICARBONATE MEDIA - TITRATION 3.

ml 0.981M HCl	На	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	10.059	1.00	-0.13	2.00	-0.02
2.0	9.795	3.00	-0.17	4.00	-0.01
4.0	9.458	5.00	-0.18	5.75	-0.07
6.0	9.095	6.50	-0.29	6.88	-0.23
7.0	8.802	7.25	-0.46	7.50	0.18
7.5	8.570	7.75	-0.37	8.00	-0.95
8.0	8.384	8.25	-0.85	8.50	0.59
8.5	7.960	8.75	-0.55	9.00	0.28
9.0	7.684	9.25	-0.41	9.50	0.41
9.5	7.477	9.75	-0.21	10.38	0.00
10.0	7.372	11.00	-0.21	12.00	0.05
12.0	6.953	13.00	-0.11	14.00	0.02
14.0	6.736	15.00	-0.07	16.00	-0.00
16.0	6.598	17.00	-0.07	18.00	-0.00
18.0	6.449	19.00	-0.08	20.00	-0.00
20.0	6.296	21.00	-0.08	22.00	-0.02
22.0	6.135	23.00	-0.11	23.75	-0.00
24.0	5.912	24.50	-0.11	25.00	-0.09
25.0	5.798	25.50	-0.21	26.00	-0.23
26.0	5.590	26.50	-0.43	26.83	-0.08
27.0	5.155	27.15	-0.49	27.28	-3.58
27.3	5.008	27.40	-1.38	27.50	-22.25
27.5	4.731	27.60	-5.83	27.70	10.02
27.7	3.564	27.80	-3.83	27.88	14.47
27.9	2.798	27.95	-1.66	28.05	3.95
28.0	2.632	28.15	-0.87	28.30	1.41
28.3	2.371	28.45	-0.45	28.63	0.23
28.6	2.237	28.80	-0.37	29.15	0.23
29.0	2.090	29.50	-0.21	30.25	0.07
30.0	1.881	31.00	-0.11	32.00	0.02
32.0	1.663	33.00	-0.06	33.75	0.01
34.0	1.541	34.50	-0.05	26.00	-0.01
35.0	1.493	17.50	0.04	8.75	0.00

Figure C-19. Curve For The Third Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-20. First Derivative Of The Third Titration Curve For Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-21. Second Derivative Of The Third Titration Curve For Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 8. TOTAL FRESH SODIUM BICARBONATE MEDIA - TITRATION 4.

					
ml 0.981M HCl 0.0 2.0 4.0 6.0 7.5 8.0 8.5 9.0 9.5 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 25.0 26.0 27.0 27.2 27.4 27.6 27.8	pH 10.079 9.820 9.525 9.109 8.843 8.593 8.177 7.854 7.397 7.265 6.946 6.726 6.580 6.457 6.323 6.238 6.006 5.855 5.350 5.350 5.283 5.165 4.979	Vol (m1) 1.00 3.00 5.00 6.50 7.25 7.75 8.25 8.75 9.25 9.75 11.00 13.00 15.00 17.00 19.00 21.00 23.00 24.50 25.50 26.50 27.10 27.30 27.50 27.70 27.90	d(pH)/d(m1) -0.13 -0.15 -0.21 -0.27 -0.50 -0.83 -0.65 -0.61 -0.31 -0.26 -0.16 -0.11 -0.07 -0.06 -0.07 -0.04 -0.12 -0.15 -0.17 -0.29 -0.22 -0.34 -0.59 -0.93 -1.76	Vol (ml) 2.00 4.00 5.75 6.88 7.50 8.00 8.50 9.00 9.50 10.38 12.00 14.00 16.00 18.00 20.00 22.00 23.75 25.00 26.80 27.20 27.40 27.60 27.80 27.97	d2(pH)/d(m1) ² -0.01 -0.03 -0.04 -0.31 -0.66 0.37 0.08 0.08 0.08 0.02 0.02 0.01 -0.00 0.01 -0.04 -0.02 -0.02 -0.12 0.11 -0.55 -1.27 -1.70 -4.17 -21.10
					-0.04
22.0	6.238		-0.12	23.75	-0.02
24.0	6.006	24.50	-0.15	25.00	-0.02
25.0	5.855		-0.17	26.00	
	5.684	26.50	-0.29	26.80	0.11
27.0			-0.22	27.20	-0.55
27.2					-1.27
27.4	5.283	27.50	-0.59	27.60	-1.70
27.6	5.165		-0.93	27.80	-4.17
27.8	4.979		-1.76	27.97	-21.10
28.0	4.626	28.05	-4.93	28.10	-33.70
28.1	4.133	28.15	-8.30	28.23	38.47
28.2	3.303	28.30	-2.53	28.40	6.00
28.4	2.797	28.50	-1.33	28.60	4.05
28.6	2.531	28.70	-0.52	28.80	-0.72
28.8	2.427	28.90	-0.66	29.20	0.59
29.0	2.294	29.50	-0.31	30.00	0.16
30.0	1.982	30.50	-0.16	31.25	0.04
31.0	1.825	32.00	-0.09	33.00	0.03
33.0	1.638	34.00	-0.04	25.75	-0.01
35.0	1.553	17.50	0.04	8.75	0.00
	- ,				

Figure C-22. Curve For The Fourth Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-23. First Derivative Of The Forth Titration Curve For Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-24. Second Derivative Of The Fourth Titration Curve For Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 9. FRESH 600 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

ml 0.981M HCl	pH	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	$\frac{10.787}{10.787}$	1.00	-0.30	2.00	0.06
2.0	10.189	3.00	-0.18	4.00	-0.07
4.0	9.834	5.00	-0.32	6.00	-0.33
6.0	9.194	7.00	-0.98	7.63	0.32
8.0	7.232	8.25	-0.58	8.50	0.60
8.5	6.943	8.75	-0.28	9.13	0.03
9.0	6.803	9.50	-0.26	10.00	0.03
10.0	6.543	10.50	-0.23	11.00	0.04
11.0	6.309	11.50	-0.20	12.00	-0.02
12.0	6.110	12.50	-0.22	12.88	0.02
13.0	5.891	13.25	-0.21	13.50	-0.06
13.5	5.788	13.75	-0.24	14.00	0.32
14.0	5.669	14.25	-0.08	14.50	-0.93
14.5	5.629	14.75	-0.54	14.93	-0.57
15.0	5.357	15.10	-0.75	15.20	-0.77
15.2	5.208	15.30	-0.90	15.40	-1.22
15.4	5.028	15.50	-1.14	15.58	-72.90
15.6	4.799	15.65	-12.08	15.70	59.40
15.7	3.591	15.75	-6.14	15.80	38.90
15.8	2.977	15.85	-2.25	15.90	2.40
15.9	2.752	15.95	-2.01	16.10	4.34
16.0	2.551	16.25	-0.71	16.50	0.78
16.5	2.197	16.75	-0.32	17.13	0.16
17.0	2.038	17.50	-0.20	18.00	0.09
18.0	1.841	18.50	-0.11	19.00	0.03
19.0	1.736	19.50	-0.08	14.75	-0.02
20.0	1.657	10.00	0.08	5.00	0.01

Note: Only one test was run with the 600 micron size fraction because there was not enough media to run additional tests.

Figure C-25. Curve For The Titration Of Fresh 600 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-26. First Derivative Of The Titration Curve For Titration Of Fresh 600 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-27. Second Derivative Of The Titration Curve For Titration Of Fresh 600 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 10. FRESH 425 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

					
ml 0.981M HCl	pH_	<u>Vol (ml)</u>	d(pH)/d(m1)	<u>Vol (ml)</u>	$d2(pH)/d(m1)^2$
0.0	9.989	1.00	-0.07	2.00	-0.04
2.0	9.856	3.00	-0.15	4.00	0.02
4.0	9.563	5.00	-0.12	6.00	-0.00
6.0	9.330	7.00	-0.13	7.75	-0.02
8.0	9.080	8.50	-0.16	9.00	-0.08
9.0	8.922	9.50	-0.24	9.88	0.06
10.0	8.681	10.25	-0.20	10.50	-0.54
10.5	8.582	10.75	-0.47	11.00	0.01
11.0	8.349	11.25	-0.46	11.50	-0.72
11.5	8.119	11.75	-0.82	12.00	0.58
12.0	7.708	12.25	-0.53	12.50	0.39
12.5	7.443	12.75	-0.33	13.13	0.10
13.0	7.276	13.50	-0.26	14.25	0.07
14.0	7.015	15.00	-0.16	16.00	0.02
16.0	6.704	17.00	-0.11	18.00	0.02
18.0	6.493	19.00	-0.08	20.00	0.00
20.0	6.342	21.00	-0.07	22.00	-0.01
22.0	6.202	23.00	-0.09	24.00	-0.00
24.0	6.018	25.00	-0.10	25.75	-0.01
26.0	5.814	26.50	-0.12	26.88	0.15
27.0	5.691	27.25	-0.01	27.50	-0.37
27.5	5.685	27.75	-0.20	28.00	-0.06
28.0	5.587	28.25	-0.22	28.50	-0.19
28.5	5.475	28.75	-0.32	28.93	-0.81
29.0	5.315	29.10	-0.60	29.20	1.47
29.2	5.194	29.30	-0.31	29.40	-2.55
29.4	5.132	29.50	-0.82	29.60	-3.58
29.6	4.968	29.70	-1.54	29.80	3.25
29.8	4.661	29.90	-0.88	30.00	-27.77
30.0	4.484	30.10	-6.44	30.23	17.92
30.2	3.196	30.35	-1.96	30.55	3.31
30.5	2.608	30.75	-0.64	31.13	0.47
31.0	2.290	31.50	-0.29	32.00	0.14
32.0	2.004	32.50	-0.14	33.00	0.05
33.0	1.861	33.50	-0.10	34.00	0.02
34.0	1.763	34.50	-0.08	26.00	-0.01
35.0	1.688	17.50	0.05	8.75	0.00
	-				

Figure C-28. Curve For The First Titration Of Fresh 425 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-29. First Derivative Of The First Titration Curve For Titration Of Fresh 425 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-30. Second Derivative Of The First Titration Curve For Titration Of Fresh 425 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 11. FRESH 425 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

ml 0.981M HCl	pH_	<u>Vol (ml)</u>	d(pH)/d(m1)	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{}$
0.0	10.012	1.00	-0.11	2.00	0.01
2.0	9.791	3.00	-0.10	4.00	0.00
4.0	9.596	5.00	-0.09	6.00	-0.01
6.0	9.410	7.00	-0.11	8.00	-0.03
8.0	9.188	9.00	-0.16	9.75	-0.05
10.0	8.864	10.50	-0.24	11.00	-0.19
11.0	8.620	11.50	-0.43	11.88	-0.68
12.0	8.188	12.25	-0.94	12.50	0.86
12.5	7.718	12.75	-0.51	13.00	0.17
13.0	7.464	13.25	-0.42	13.50	0.32
13.5	7.252	13.75	-0.26	14.38	0.05
14.0	7.121	15.00	-0.20	16.00	0.03
16.0	6.729	17.00	-0.13	18.00	0.02
18.0	6.465	19.00	-0.09	20.00	-0.00
20.0	6.277	21.00	-0.10	22.00	-0.01
22.0	6.081	23.00	-0.12	24.00	-0.02
24.0	5.849	25.00	-0.16	26.00	-0.11
26.0	5.537	27.00	-0.39	27.55	-1.40
28.0	4.766	28.10	-1.93	28.20	-20.50
28.2	4.380	28.30	-6.03	28.40	18.55
28.4	3.174	28.50	-2.32	28.60	7.42
28.6	2.710	28.70	-0.84	28.80	0.25
28.8	2.543	28.90	-0.78	29.08	1.03
29.0	2.386	29.25	-0.43	29.50	0.35
29.5	2.173	29.75	-0.25	30.13	0.13
30.0	2.048	30.50	-0.15	31.00	0.03
31.0	1.899	31.50	-0.11	32.00	0.05
32.0	1.785	32.50	-0.07	33.00	0.01
33.0	1.717	33.50	-0.06	34.00	0.01
34.0	1.656	34.50	-0.05	26.00	-0.01
35.0	1.604	17.50	0.05	8.75	0.00

Figure C-31. Curve For The Second Titration Of Fresh 425 Micron Sodium Bicarbonate Media With 0.981 M HC1.

Figure C-32. First Derivative Of The Second Titration Curve For Titration Of Fresh 425 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-33. Second Derivative Of The Second Titration Curve For Titration Of Fresh 425 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 12. FRESH 425 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

ml 0.981M HCl	<u>Hq</u>	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{}$
0.0	10.192	1.00	-0.15	2.00	0.01
2.0	9.899	3.00	-0.13	4.00	0.00
4.0	9.642	5.00	-0.12	6.00	-0.03
6.0	9.393	7.00	-0.19	8.00	-0.09
8.0	9.014	9.00	-0.36	9.63	-0.38
10.0	8.289	10.25	-0.84	10.50	0.10
10.5	7.868	10.75	-0.79	11.00	0.89
11.0	7.472	11.25	-0.35	11.50	-0.12
11.5	7.299	11.75	-0.40	12.38	0.17
12.0	7.097	13.00	-0.19	14.00	0.04
14.0	6.720	15.00	-0.10	16.00	0.01
16.0	6.512	17.00	-0.08	18.00	0.00
18.0	6.344	19.00	-0.08	20.00	-0.01
20.0	6.185	21.00	-0.10	22.00	-0.01
22.0	5.989	23.00	-0.11	23.75	-0.03
24.0	5.763	24.50	-0.16	24.88	-0.02
25.0	5.607	25.25	-0.17	25.50	-0.37
25.5	5.523	25.75	-0.35	25.95	-0.15
26.0	5.347	26.15	-0.41	26.28	0.74
26.3	5.224	26.40	-0.22	26.53	-2.82
26.5	5.179	26.65	-0.93	26.78	-3.30
26.8	4.900	26.90	-1.75	27.03	-12.66
27.0	4.549	27.15	-4.92	27.28	11.86
27.3	3.073	27.40	-1.95	27.58	3.47
27.5	2.682	27.75	-0.74	28.00	0.83
28.0	2.312	28.25	-0.33	28.50	0.30
28.5	2.149	28.75	-0.18	29.13	0.04
29.0	2.060	29.50	-0.15	30.00	0.05
30.0	1.910	30.50	-0.10	31.25	0.02
31.0	1.810	32.00	-0.07	33.00	-0.00
33.0	1.669	34.00	-0.08	25.75	-0.01
35.0	1.509	17.50	0.04	8.75	0.00

Figure C-34. Curve For The Third Titration Of Fresh 425 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-35. First Derivative Of The Third Titration Curve For Titration Of Fresh 425 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-36. Second Derivative Of The Third Titration Curve For Titration Of Fresh 425 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 13. FRESH 250 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

					
ml 0.961M HCl	На	Vol (ml)	d(Hq)/d(ml)	Vol (ml)	d2(pH)/d(m1) ²
0.0	9.636	1.00	-0.22	1.75	0.03
2.0	9.200	2.50	-0.17	3.00	-0.06
3.0	9.030	3.50	-0.23	3.88	-0.17
4.0	8.796	4.25	-0.36	4.50	-0.10
4.5	8.617	4.75	-0.41	5.00	-0.42
5.0	8.413	5.25	-0.62	5.50	-0.40
5.5	8.104	5.75	-0.82	6.00	0.55
6.0	7.695	6.25	-0.54	6.50	0.22
6.5	7.423	6.75	-0.43	7.38	0.18
7.0	7.207	8.00	-0.20	9.00	0.04
9.0	6.804	10.00	-0.11	11.00	0.02
11.0	6.579	12.00	-0.07	13.00	-0.00
13.0	6.437	14.00	-0.07	15.00	0.00
15.0	6.290	16.00	-0.07	17.00	-0.00
17.0	6.145	18.00	-0.08	18.75	-0.01
19.0	5.990	19.50	-0.10	20.00	0.01
20.0	5.892	20.50	-0.08	21.00	-0.09
21.0	5.809	21.50	-0.17	21.88	-0.02
22.0	5.639	22.25	-0.19	22.50	-0.16
22.5	5.546	22.75	-0.27	23.00	-0.24
23.0	5.412	23.25	-0.39	23.50	-1.36
23.5	5.217	23.75	-1.07	23.93	-5.27
24.0	4.682	24.10	-2.91	24.20	-11.33
24.2	4.099	24.30	-5.18	24.40	17.15
24.4	3.063	24.50	-1.75	24.60	5.22
24.6	2.713	24.70	-0.71	24.80	-2.35
24.8	2.521	24.90	-1.17	25.08	2.54
25.0	2.337	25.25	-0.29	25.50	0.08
25.5	2.194	25.75	-0.25	26.13	0.12
26.0	2.070	26.50	-0.15	27.00	0.06
27.0	1.915	27.50	-0.10	28.00	0.02
28.0	1.816	28.50	-0.08	29.00	0.01
29.0	1.739	29.50	-0.06	22.25	-0.01
30.0	1.675	15.00	0.06	7.50	0.00

Figure C-37. Curve For The First Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-38. First Derivative Of The First Titration Curve For Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-39. Second Derivative Of The First Titration Curve For Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 14. FRESH 250 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

	<u></u>				
ml 0.961M HCl	Hq	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	9.559	1.00	-0.20	1.75	-0.03
2.0	9.163	2.50	-0.24	3.00	-0.09
3.0	8.922	3.50	-0.33	3.88	-0.30
4.0	8.592	4.25	-0.56	4.50	-0.34
4.5	8.314	4.75	-0.73	5.00	-0.11
5.0	7.950	5.25	-0.78	5.50	0.67
5.5	7.559	5.75	-0.45	6.00	0.26
6.0	7.336	6.25	-0.31	6.50	0.15
6.5	7.179	6.75	-0.24	7.38	0.05
7.0	7.059	8.00	-0.17	9.00	0.04
9.0	6.715	10.00	-0.10	11.00	0.01
11.0	6.521	12.00	-0.09	13.00	0.02
13.0	6.348	14.00	-0.05	15.00	0.00
15.0	6.243	16.00	-0.04	17.00	-0.03
17.0	6.158	18.00	-0.10	18.75	0.01
19.0	5.960	19.50	-0.08	20.00	-0.06
20.0	5.877	20.50	-0.14	21.00	-0.04
21.0	5.735	21.50	-0.18	21.88	0.03
22.0	5.550	22.25	-0.16	22.50	-0.41
22.5	5.469	22.75	-0.37	22.95	-1.13
23.0	5.285	23.15	-0.82	23.28	-0.36
23.3	5.039	23.40	-0.91	23.50	-3.95
23.5	4.857	23.60	-1.70	23.73	-12.79
23.7	4.517	23.85	-4.90	24.05	9.08
24.0	3.048	24.25	-1.26	24.50	1.68
24.5	2.416	24.75	-0.42	25.13	0.27
25.0	2.204	25.50	-0.22	26.00	0.11
26.0	1.980	26.50	-0.11	27.00	0.02
27.0	1.871	27.50	-0.09	28.00	0.02
28.0	1.784	28.50	-0.07	29.00	0.01
29.0	1.714	29.50	-0.06	22.25	-0.01
30.0	1.655	15.00	0.06	7.50	0.00

Figure C-40. Curve For The Second Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-41. First Derivative Of The Second Titration Curve For Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-42. Second Derivative Of The Second Titration Curve For Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 15. FRESH 250 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

ml 0.961M HCl pH Vol (ml) d(pH)/d(ml) Vol (ml) d2(pH)/d(ml) 2.0 9.698 1.00 -0.12 2.00 0.00 2.0 9.467 3.00 -0.10 3.75 -0.00 4.0 9.270 4.50 -0.13 5.00 0.00 5.0 9.144 5.50 -0.09 6.00 -0.1 6.0 9.058 6.50 -0.20 7.00 0.1 7.0 8.857 7.50 -0.06 8.00 -0.1 8.0 8.794 8.50 -0.24 8.88 -0.7 9.0 8.556 9.25 -0.79 9.50 -1.3 9.5 8.161 9.75 -1.44 10.00 2.0 10.0 7.439 10.25 -0.40 10.50 0.2 10.5 7.238 10.75 -0.28 11.38 0.0 13.0 6.695 14.00 -0.11 15.00 0.0	
2.0 9.467 3.00 -0.10 3.75 -0.0 4.0 9.270 4.50 -0.13 5.00 0.0 5.0 9.144 5.50 -0.09 6.00 -0.1 6.0 9.058 6.50 -0.20 7.00 0.1 7.0 8.857 7.50 -0.06 8.00 -0.1 8.0 8.794 8.50 -0.24 8.88 -0.7 9.0 8.556 9.25 -0.79 9.50 -1.3 9.5 8.161 9.75 -1.44 10.00 2.0 10.0 7.439 10.25 -0.40 10.50 0.2 10.5 7.238 10.75 -0.28 11.38 0.0 11.0 7.096 12.00 -0.20 13.00 0.0 13.0 6.695 14.00 -0.11 15.00 -0.0 17.0 6.276 18.00 -0.10 18.75 0.0	
4.0 9.270 4.50 -0.13 5.00 0.0 5.0 9.144 5.50 -0.09 6.00 -0.1 6.0 9.058 6.50 -0.20 7.00 0.1 7.0 8.857 7.50 -0.06 8.00 -0.1 8.0 8.794 8.50 -0.24 8.88 -0.7 9.0 8.556 9.25 -0.79 9.50 -1.3 9.5 8.161 9.75 -1.44 10.00 2.0 10.0 7.439 10.25 -0.40 10.50 0.2 10.5 7.238 10.75 -0.28 11.38 0.0 11.0 7.096 12.00 -0.20 13.00 0.0 13.0 6.695 14.00 -0.11 15.00 0.0 15.0 6.478 16.00 -0.10 17.00 -0.0 17.0 6.276 18.00 -0.10 18.75 0.0	
5.0 9.144 5.50 -0.09 6.00 -0.1 6.0 9.058 6.50 -0.20 7.00 0.1 7.0 8.857 7.50 -0.06 8.00 -0.1 8.0 8.794 8.50 -0.24 8.88 -0.7 9.0 8.556 9.25 -0.79 9.50 -1.3 9.5 8.161 9.75 -1.44 10.00 2.0 10.0 7.439 10.25 -0.40 10.50 0.2 10.5 7.238 10.75 -0.28 11.38 0.0 11.0 7.096 12.00 -0.20 13.00 0.0 13.0 6.695 14.00 -0.11 15.00 0.0 15.0 6.478 16.00 -0.10 17.00 -0.0 17.0 6.276 18.00 -0.10 18.75 0.0	
6.0 9.058 6.50 -0.20 7.00 0.1 7.0 8.857 7.50 -0.06 8.00 -0.1 8.0 8.794 8.50 -0.24 8.88 -0.7 9.0 8.556 9.25 -0.79 9.50 -1.3 9.5 8.161 9.75 -1.44 10.00 2.0 10.0 7.439 10.25 -0.40 10.50 0.2 10.5 7.238 10.75 -0.28 11.38 0.0 11.0 7.096 12.00 -0.20 13.00 0.0 13.0 6.695 14.00 -0.11 15.00 0.0 15.0 6.478 16.00 -0.10 17.00 -0.0 17.0 6.276 18.00 -0.10 18.75 0.0	
7.0 8.857 7.50 -0.06 8.00 -0.1 8.0 8.794 8.50 -0.24 8.88 -0.7 9.0 8.556 9.25 -0.79 9.50 -1.3 9.5 8.161 9.75 -1.44 10.00 2.0 10.0 7.439 10.25 -0.40 10.50 0.2 10.5 7.238 10.75 -0.28 11.38 0.0 11.0 7.096 12.00 -0.20 13.00 0.0 13.0 6.695 14.00 -0.11 15.00 0.0 15.0 6.478 16.00 -0.10 17.00 -0.0 17.0 6.276 18.00 -0.10 18.75 0.0	
7.0 8.857 7.50 -0.06 8.00 -0.1 8.0 8.794 8.50 -0.24 8.88 -0.7 9.0 8.556 9.25 -0.79 9.50 -1.3 9.5 8.161 9.75 -1.44 10.00 2.0 10.0 7.439 10.25 -0.40 10.50 0.2 10.5 7.238 10.75 -0.28 11.38 0.0 11.0 7.096 12.00 -0.20 13.00 0.0 13.0 6.695 14.00 -0.11 15.00 0.0 15.0 6.478 16.00 -0.10 17.00 -0.0 17.0 6.276 18.00 -0.10 18.75 0.0	4
8.0 8.794 8.50 -0.24 8.88 -0.7 9.0 8.556 9.25 -0.79 9.50 -1.3 9.5 8.161 9.75 -1.44 10.00 2.0 10.0 7.439 10.25 -0.40 10.50 0.2 10.5 7.238 10.75 -0.28 11.38 0.0 11.0 7.096 12.00 -0.20 13.00 0.0 13.0 6.695 14.00 -0.11 15.00 0.0 15.0 6.478 16.00 -0.10 17.00 -0.0 17.0 6.276 18.00 -0.10 18.75 0.0	8
9.0 8.556 9.25 -0.79 9.50 -1.3 9.5 8.161 9.75 -1.44 10.00 2.0 10.0 7.439 10.25 -0.40 10.50 0.2 10.5 7.238 10.75 -0.28 11.38 0.0 11.0 7.096 12.00 -0.20 13.00 0.0 13.0 6.695 14.00 -0.11 15.00 0.0 15.0 6.478 16.00 -0.10 17.00 -0.0 17.0 6.276 18.00 -0.10 18.75 0.0	4
9.5 8.161 9.75 -1.44 10.00 2.0 10.0 7.439 10.25 -0.40 10.50 0.2 10.5 7.238 10.75 -0.28 11.38 0.0 11.0 7.096 12.00 -0.20 13.00 0.0 13.0 6.695 14.00 -0.11 15.00 0.0 15.0 6.478 16.00 -0.10 17.00 -0.0 17.0 6.276 18.00 -0.10 18.75 0.0	1
10.0 7.439 10.25 -0.40 10.50 0.2 10.5 7.238 10.75 -0.28 11.38 0.0 11.0 7.096 12.00 -0.20 13.00 0.0 13.0 6.695 14.00 -0.11 15.00 0.0 15.0 6.478 16.00 -0.10 17.00 -0.0 17.0 6.276 18.00 -0.10 18.75 0.0	8
10.5 7.238 10.75 -0.28 11.38 0.0 11.0 7.096 12.00 -0.20 13.00 0.0 13.0 6.695 14.00 -0.11 15.00 0.0 15.0 6.478 16.00 -0.10 17.00 -0.0 17.0 6.276 18.00 -0.10 18.75 0.0	
11.0 7.096 12.00 -0.20 13.00 0.0 13.0 6.695 14.00 -0.11 15.00 0.0 15.0 6.478 16.00 -0.10 17.00 -0.0 17.0 6.276 18.00 -0.10 18.75 0.0	
13.0 6.695 14.00 -0.11 15.00 0.0 15.0 6.478 16.00 -0.10 17.00 -0.0 17.0 6.276 18.00 -0.10 18.75 0.0	
15.0 6.478 16.00 -0.10 17.00 -0.0 17.0 6.276 18.00 -0.10 18.75 0.0	
17.0 6.276 18.00 -0.10 18.75 0.0	
19.0 6.072 19.50 -0.10 20.00 -0.0	
20.0 5.971 20.50 -0.13 21.00 -0.0	
21.0 5.845 21.50 -0.17 21.88 -0.0	
22.0 5.671 22.25 -0.24 22.50 -0.0	
22.5 5.551 22.75 -0.27 23.00 -0.5	
23.0 5.415 23.25 -0.52 23.43 -1.5	
23.5 5.155 23.60 -1.06 23.70 -4.8	
23.7 4.942 23.80 -2.03 23.88 -18.8	
23.9 4.536 23.95 -4.85 24.05 4.1	
24.0 4.051 24.15 -4.01 24.28 10.6	
24.3 2.847 24.40 -1.34 24.58 1.9	
24.5 2.578 24.75 -0.65 25.13 0.5	
25.0 2.253 25.50 -0.24 26.00 0.0	
26.0 2.016 26.50 -0.15 27.00 0.0	
27.0 1.867 27.50 -0.10 28.00 0.0	
28.0 1.771 28.50 -0.07 29.00 0.0	
29.0 1.703 29.50 -0.06 22.25 -0.0	
30.0 1.641 15.00 0.05 7.50 0.0	
30.0 1.041 10.00 0.00 7.00 0.0	•

Figure C-43. Curve For The Third Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-44. First Derivative Of The Third Titration Curve For Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-45. Second Derivative Of The Third Titration Curve For Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 16. FRESH 250 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

ml 0.961M HCl	pH	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{d(m1)^2}$
0.0	9.673	1.00	-0.11	2.00	-0.04
2.0	9.449	3.00	-0.19	3.75	-0.09
4.0	9.074	4.50	-0.32	5.00	-0.26
5.0	8.755	5.50	-0.58	5.88	-0.36
6.0	8.176	6.25	-0.85	6.50	0.57
6.5	7.750	6.75	-0.57	7.00	0.46
7.0	7.466	7.25	-0.34	7.50	0.06
7.5	7.296	7.75	-0.31	8.38	0.09
8.0	7.141	9.00	-0.20	10.00	0.03
10.0	6.734	11.00	-0.14	12.00	0.05
12.0	6.445	13.00	-0.04	14.00	-0.03
14.0	6.371	15.00	-0.09	16.00	0.00
16.0	6.184	17.00	-0.09	18.00	-0.01
18.0	6.007	19.00	-0.11	19.75	-0.05
20.0	5.781	20.50	-0.18	20.88	0.21
21.0	5.598	21.25	-0.02	21.50	-0.44
21.5	5.586	21.75	-0.24	21.93	0.01
22.0	5.464	22.10	-0.24	22.20	-0.03
22.2	5.416	22.30	-0.25	22.40	-1.12
22.4	5.367	22.50	-0.47	22.60	-2.78
22.6	5.273	22.70	-1.03	22.80	3.03
22.8	5.068	22.90	-0.42	23.00	-8.17
23.0	4.984	23.10	-2.05	23.20	-22.45
23.2	4.573	23.30	-6. <u>5</u> 5	23.40	18.33
23.4	3.264	23.50	-2.88	23.60	8.77
23.6	2.688	23.70	-1.13	23.80	2.50
23.8	2.463	23.90	-0.62	24.08	0.58
24.0	2.338	24.25	-0.42	24.50	0.37
24.5	2.127	24.75	-0.24	25.13	0.07
25.0	2.009	25.50	-0.19	26.00	0.08
26.0	1.822	26.50	-0.11	27.00	0.04
27.0	1.717	27.50	-0.06	28.25	-0.00
28.0	1.655	29.00	-0.07	22.00	-0.01
30.0	1.523	15.00	0.05	7.50	0.00

Figure C-46. Curve For The Fourth Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-47. First Derivative Of The Fourth Titration Curve For Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-48. Second Derivative Of The Fourth Titration Curve For Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 17. FRESH 150 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

		·			
ml 0.961M HCl	рН	Vol (ml)	d(pH)/d(ml)	Vol (ml)	d2(pH)/d(m1) ²
0.0	$\overline{10.176}$	1.00	-0.06	2.00	0.02
2.0	10.058	3.00	-0.02	4.00	-0.07
4.0	10.023	5.00	-0.16	6.00	0.02
6.0	9.694	7.00	-0.13	8.00	-0.14
8.0	9.434	9.00	-0.41	9.63	0.20
10.0	8.621	10.25	-0.16	10.50	-3.34
10.5	8.541	10.75	-1.83	11.00	3.13
11.0	7.627	11.25	-0.26	11.50	-0.09
11.5	7.496	11.75	-0.31	12.13	-0.04
12.0	7.342	12.50	-0.34	13.25	0.11
13.0	7.006	14.00	-0.17	15.00	0.02
15.0	6.661	16.00	-0.13	17.00	0.01
17.0	6.400	18.00	-0.11	19.00	-0.00
19.0	6.186	20.00	-0.11	20.75	0.00
21.0	5.964	21.50	-0.11	22.00	-0.03
22.0	5.856	22.50	-0.14	23.00	-0.07
23.0	5.713	23.50	-0.21	23.88	0.05
24.0	5.504	24.25	-0.17	24.50	-0.73
24.5	5.418	24.75	-0.54	24.93	-1.28
25.0	5.150	25.10	-0.98	25.20	-2.78
25.2	4.953	25.30	-1.54	25.40	-19.37
25.4	4.645	25.50	-5.41	25.60	9.10
25.6	3.562	25.70	-3.60	25.80	12.98
25.8	2.843	25.90	-1.00	26.08	0.59
26.0	2.643	26.25	-0.79	26.50	1.02
26.5	2.246	26.75	-0.28	27.13	0.11
27.0	2.104	27.50	-0.20	28.00	0.07
28.0	1.903	28.50	-0.13	29.00	0.04
29.0	1.777	29.50	-0.08	22.25	-0.01
30.0	1.695	15.00	0.06	7.50	0.00

Figure C-49. Curve For The First Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-50. First Derivative Of The First Titration Curve For Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-51. Second Derivative Of The First Titration Curve For Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 18. FRESH 150 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

3 0 00111 1103	11	1(n1 (m1)	-1 (-11): /-1 (1)	Val (ml)	d2(nU)/d(m1) ²
ml 0.961M HCl 0.0	<u>pH</u> 10.351	<u>Vol (ml)</u> 1.00	<u>d(pH)/d(ml)</u> -0.16	<u>Vol (ml)</u> 2.00	$\frac{d2(pH)/d(m1)^2}{0.01}$
2.0	10.331	3.00	-0.14	4.00	-0.00
4.0	9.758	5.00	-0.14	6.00	-0.03
6.0	9.471	7.00	-0.20	8.00	-0.14
8.0	9.062	9.00	-0.49	9.63	-0.21
10.0	8.089	10.25	-0.75	10.50	0.43
10.5	7.715	10.75	-0.53	11.00	0.34
11.0	7.448	11.25	-0.36	11.50	0.19
11.5	7.267	11.75	-0.27	12.13	0.11
12.0	7.134	12.50	-0.18	13.25	0.02
13.0	6.950	14.00	-0.15	15.00	0.02
15.0	6.655	16.00	-0.11	17.00	0.01
17.0	6.434	18.00	-0.10	19.00	-0.01
19.0	6.234	20.00	-0.13	20.75	-0.01
21.0	5.981	21.50	-0.14	22.00	-0.06
22.0	5.838	22.50	-0.20	23.00	-0.24
23.0	5.633	23.50	-0.44	23.83	-0.74
24.0	5.190	24.15	-0.92	24.28	-2.57
24.3	4.913	24.40	-1.56	24.50	-23.37
24.5	4.600	24.60	-6.24	24.73	16.95
24.7	3.352	24.85	-2.00	25.00	3.42
25.0	2.751	25.15	-0.98	25.30	1.12
25.3	2.458	25.45	-0.64	25.63	0.64
25.6	2.266	25.80	-0.42	26.03	0.44
26.0	2.100	26.25	-0.22	26.50	0.03
26.5	1.991	26.75	-0.20	27.13	0.10
27.0	1.889	27.50	-0.13	28.00	0.05
28.0	1.759	28.50	-0.08	29.00	0.01
29.0	1.680	29.50	-0.07	22.25	-0.01
30.0	1.609	15.00	0.05	7.50	0.00

Figure C-52. Curve For The Second Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-53. First Derivative Of The Second Titration Curve For Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-54. Second Derivative Of The Second Titration Curve For Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 19. FRESH 150 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

-					
ml 0.961M HCl	pH	Vol (ml)	d(pH)/d(m1)	<u>Vol (ml)</u>	$d2(pH)/d(m1)^2$
0.0	10.459	1.00	-0.17	2.00	0.01
2.0	10.118	3.00	-0.15	4.00	-0.00
4.0	9.818	5.00	-0.15	6.00	-0.03
6.0	9.510	7.00	-0.20	7.75	-0.13
8.0	9.100	8.50	-0.40	8.88	-0.14
9.0	8.700	9.25	-0.50	9.50	-0.97
9.5	8.449	9.75	-0.99	10.00	0.40
10.0	7.956	10.25	-0.79	10.50	0.68
10:5	7.562	10.75	-0.45	11.00	0.27
11.0	7.339	11.25	-0.31	11.50	0.01
11.5	7.184	11.75	-0.30	12.13	0.18
12.0	7.032	12.50	-0.17	13.25	0.02
13.0	6.863	14.00	-0.14	15.00	0.02
15.0	6.578	16.00	-0.10	17.00	0.01
17.0	6.369	18.00	-0.08	19.00	-0.00
19.0	6.210	20.00	-0.08	20.75	-0.01
21.0	6.042	21.50	-0.09	22.00	-0.04
22.0	5.948	22.50	-0.13	22.88	-0.10
23.0	5.816	23.25	-0.21	23.50	0.23
23.5	5.713	23.75	-0.09	23.93	-0.36
24.0	5.668	24.10	-0.21	24.23	-0.06
24.2	5.625	24.35	-0.23	24.50	-0.58
24.5	5.556	24.65	-0.40	24.78	-1.01
24.8	5.435	24.90	-0.65	25.00	0.80
25.0	5.304	25.10	-0.49	25.20	-3.83
25.2	5.205	25.30	-1.26	25.40	-6.45
25.4	4.953	25.50	-2.55	25.60	-21.25
25.6	4.443	25.70	-6.80	25.80	24.78
25.8	3.083	25.90	-1.84	26.08	2.76
26.0	2.714	26.25	-0.88	26.50	1.06
26.5	2.274	26.75	-0.35	27.13	0.21
27.0	2.100	27.50	-0.19	28.00	0.06
28.0	1.910	28.50	-0.13	29.00	0.03
29.0	1.785	29.50	-0.09	22.25	-0.01
30.0	1.694	15.00	0.06	7.50	0.00
05		,			

Figure C-55. Curve For The Third Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-56. First Derivative Of The Third Titration Curve For Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-57. Second Derivative Of The Third Titration Curve For Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 20. FRESH 150 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

					
ml 0.961M HCl	рН	Vol (ml)	<u>d(pH)/d(ml)</u>	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{2}$
0.0	10.384	1.00	-0.14	2.00	-0.00
2.0	10.095	3.00	-0.15	4.00	0.00
4.0	9.801	5.00	-0.14	6.00	-0.03
6.0	9.511	7.00	-0.20	7.75	-0.13
8.0	9.106	8.50	-0.40	8.88	-0.49
9.0	8.703	9.25	-0.77	9.50	-0.34
9.5	8.319	9.75	-0.94	10.00	0.62
10.0	7.849	10.25	-0.63	10.50	0.34
10.5	7.534	10.75	-0.46	11.00	0.35
11.0	7.304	11.25	-0.29	11.50	0.10
11.5	7.161	11.75	-0.24	12.13	0.07
12.0	7.042	12.50	-0.18	13.25	0.03
13.0	6.860	14.00	-0.14	15.00	0.02
15.0	6.572	16.00	-0.10	17.00	0.00
17.0	6.376	18.00	-0.10	19.00	-0.00
19.0	6.186	20.00	-0.10	20.75	-0.01
21.0	5.992	21.50	-0.11	21.88	-0.01
22.0	5.884	22.25	-0.11	22.50	-0.11
22.5	5.827	22.75	-0.17	23.00	-0.07
23.0	5.742	23.25	-0.21	23.50	-0.13
23.5	5.639	23.75	-0.27	23.93	-0.32
24.0	5.503	24.10	-0.38	24.20	1.00
24.2	5.426	24.30	-0.19	24.40	-0.65
24.4	5.389	24.50	-0.31	24.60	-1.00
24.6	5.326	24.70	-0.52	24.80	-3.90
24.8	5.223	24.90	-1.29	25.00	-6.75
25.0	4.964	25.10	-2.64	25.20	-19.03
25.2	4.435	25.30	-6.45	25.40	20.75
25.4	3.145	25.50	-2.30	25.60	8.70
25.6	2.685	25.70	-0.56	25.80	-2.17
25.8	2.573	25.90	-0.99	26.08	1.68
26.0	2.374	26.25	-0.41	26.50	0.25
26.5	2.170	26.75	-0.28	27.13	0.14
27.0	2.028	27.50	-0.18	28.00	0.07
28.0	1.852	28.50	-0.10	29.00	0.02
29.0	1.749	29.50	-0.08	22.25	-0.01
30.0	1.669	15.00	0.06	7.50	0.00
					

Figure C-58. Curve For The Fourth Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-59. First Derivative Of The Fourth Titration Curve For Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-60. Second Derivative Of The Fourth Titration Curve For Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 21. FRESH 106 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

0 061M UCI	m.! I	Vol (ml)	d(Hq)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
ml 0.961M HCl	<u>pH</u> 10.704	1.00	-0.17	2.00	0.03
0.0	10.704	3.00	-0.17	4.00	-0.01
2.0		5.00	-0.12	6.00	0.00
4.0	10.114 9.840	7.00	-0.14	8.00	-0.02
6.0	9.584	9.00	-0.13	9.75	-0.02
8.0	9.364	10.50			
10.0 11.0	9.200	11.25	-0.23 -0.28	10.88 11.50	-0.07
		11.75			-0.22
11.5 12.0	8.895 8.699	12.25	-0.39 -0.60	12.00 12.50	-0.41 -0.22
12.5		12.25	-0.80	13.38	
	8.400 8.046	14.00	-0.71	15.00	0.19 0.15
13.0 15.0	7.098	16.00		17.00	
17.0	6.732	18.00	-0.18 -0.11	19.00	0.03 0.00
17.0	6.505	20.00	-0.11 -0.11	21.00	0.00
	6.285	22.00		22.75	
21.0 23.0	6.205	23.50	-0.10	24.00	0.01
	5.981	24.50	-0.10		-0.02
24.0 25.0	5.870	25.25	-0.11 -0.10	24.88 25.50	0.02 -0.13
25.5	5.822	25.25 25.75	-0.16	26.00	-0.13 -0.05
26.0	5.741	26.25	-0.16	26.50	0.01
26.5	5.647	26.75	-0.19	26.95	-0.13
27.0	5.556	27.15	-0.23	27.28	-0.13
27.3	5.486	27.13	-0.23	27.53	-0.59
27.5	5.410	27.65	-0.51	27.78	-0.89
27.8	5.258	27.90	-0.73	28.00	-1.07
28.0	5.112	28.10	-0.94	28.20	-8.78
28.2	4.923	28.30	-2.70	28.40	-12.42
28.4	4.383	28.50	-5.18	28.60	11.92
28.6	3.346	28.70	-2.80	28.80	7.73
28.8	2.786	28.90	-1.25	29.08	1.74
29.0	2.535	29.25	-0.65	29.50	0.76
29.5	2.212	29.75	-0.27	30.13	0.10
30.0	2.079	30.50	-0.19	31.00	0.07
31.0	1.887	31.50	-0.12	32.25	0.03
32.0	1.767	33.00	-0.07	33.75	0.00
34.0	1.624	34.50	-0.06	26.00	-0.01
35.0	1.560	17.50	0.04	8.75	0.00

Figure C-61. Curve For The First Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-62. First Derivative Of The First Titration Curve For Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-63. Second Derivative Of The First Titration Curve For Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 22. FRESH 106 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

ml 0.961M HCl	pH	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	10.719	1.00	-0.20	2.00	0.02
2.0	10.321	3.00	-0.16	4.00	0.03
4.0	10.003	5.00	-0.10	6.00	-0.01
6.0	9.810	7.00	-0.12	8.00	-0.00
8.0	9.570	9.00	-0.13	9.75	-0.03
10.0	9.312	10.50	-0.17	10.88	-0.10
11.0	9.143	11.25	-0.24	11.50	0.09
11.5	9.021	11.75	-0.20	12.00	-0.35
12.0	8.922	12.25	-0.37	12.50	-0.17
12.5	8.736	12.75	-0.46	13.00	-0.29
13.0	8.508	13.25	-0.60	13.50	-0.47
13.5	8.208	13.75	-0.83	14.00	0.52
14.0	7.791	14.25	-0.58	14.50	0.46
14.5	7.503	14.75	-0.34	15.00	0.07
15.0	7.331	15.25	-0.31	15.50	0.16
15.5	7.176	15.75	-0.23	16.38	0.04
16.0	7.062	17.00	-0.18	18.00	0.03
18.0	6.704	19.00	-0.12	20.00	0.01
20.0	6.474	21.00	-0.10	22.00	-0.00
22.0	6.273	23.00	-0.10	23.75	-0.00
24.0	6.071	24.50	-0.11	25.00	-0.03
25.0	5.964	25.50	-0.13	25.88	0.02
26.0	5.832	26.25	-0.12	26.50	-0.07
26.5	5.772	26.75	-0.16	27.00	0.13
27.0	5.694	27.25	-0.09	27.50	-0.35
27.5	5.648	27.75	-0.27	28.00	-0.28
28.0	5.514	28.25	-0.41	28.43	-0.60
28.5	5.309	28.60	-0.62	28.73	-3.13
28.7	5.185	28.85	-1.40	29.00	-12.39
29.0	4.764	29.15	-5.12	29.28	12.30
29.3	3.228	29.40	-2.04	29.50	4.07
29.5	2.819	29.60	-1.23	29.73	1.89
29.7	2.573	29.85	-0.76	30.05	0.88
30.0	2.346	30.25	-0.40	30.50	0.27
30.5	2.144	30.75	-0.27	31.13	0.15
31.0	2.010	31.50	-0.16	32.00	0.05
32.0	1.853	32.50	-0.10	33.00	0.03
33.0	1.749	33.50	-0.08	34.00	0.01
34.0	1.671	34.50	-0.07	26.00	-0.01
35.0	1.600	17.50	0.05	8.75	0.00
					
					

Figure C-64. Curve For The Second Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-65. First Derivative Of The Second Titration Curve For Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-66. Second Derivative Of The Second Titration Curve For Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 23. FRESH 106 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

					
ml 0.961M HCl	рН	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{}$
0.0	10.739	1.00	-0.17	2.00	0.03
2.0	10.390	3.00	-0.12	4.00	-0.01
4.0	10.149	5.00	-0.13	6.00	0.01
6.0	9.881	7.00	-0.12	8.00	-0.01
8.0	9.637	9.00	-0.14	10.00	-0.05
10.0	9.360	11.00	-0.24	11.75	-0.18
12.0	8.889	12.50	-0.50	12.88	-0.54
13.0	8.390	13.25	-0.90	13.50	0.72
13.5	7.939	13.75	-0.54	14.00	0.21
14.0	7.667	14.25	-0.44	14.50	0.21
14.5	7.448	14.75	-0.33	15.13	0.21
15.0	7.281	15.50	-0.18	16.25	-0.01
16.0	7.103	17.00	-0.19	18.00	0.04
18.0	6.724	19.00	-0.11	20.00	0.01
20.0	6.502	21.00	-0.10	22.00	-0.00
22.0	6.309	23.00	-0.10	24.00	-0.01
24.0	6.103	25.00	-0.12	25.75	-0.03
26.0	5.865	26.50	-0.16	26.88	-0.02
27.0	5.700	27.25	-0.18	27.50	-0.12
27.5	5.611	27.75	-0.24	27.95	-0.29
28.0	5.491	28.15	-0.36	28.33	-0.88
28.3	5.384	28.50	-0.66	28.68	-1.66
28.7	5.118	28.85	-1.25	28.98	-16.51
29.0	4.744	29.10	-5.37	29.20	7.42
29.2	3.669	29.30	-3.89	29.40	12.73
29.4	2.891	29.50	-1.34	29.60	2.70
29.6	2.622	29.70	-0.81	29.80	0.68
29.8	2.461	29.90	-0.67	30.08	0.85
30.0	2.327	30.25	-0.37	30.50	0.18
30.5	2.141	30.75	-0.28	31.13	0.18
31.0	2.000	31.50	-0.15	32.00	0.04
32.0	1.851	32.50	-0.11	33.00	0.03
33.0	1.745	33.50	-0.08	34.00	0.01
34.0	1.667	34.50	-0.07	26.00	-0.01
35.0	1.597	17.50	0.05	8.75	0.00

Figure C-67. Curve For The Third Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-68. First Derivative Of The Third Titration Curve For Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-69. Second Derivative Of The Third Titration Curve For Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 24. FRESH 106 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

ml 0.961M HCl	<u>pH</u>	<u>Vol (ml)</u>	d(pH)/d(m1)	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{}$
0.0	10.487	1.00	-0.11	2.00	0.01
2.0	10.257	3.00	-0.10	4.00	0.00
4.0	10.050	5.00	-0.10	6.00	-0.00
6.0	9.859	7.00	-0.10	8.00	-0.00
8.0	9.661	9.00	-0.10	10.00	-0.02
10.0	9.455	11.00	-0.15	11.75	-0.03
12.0	9.155	12.50	-0.20	13.00	0.02
13.0	8.955	13.50	-0.18	13.88	-0.30
14.0	8.770	14.25	-0.41	14.50	-0.32
14.5	8.565	14.75	-0.57	15.00	-0.21
15.0	8.280	15.25	-0.68	15.50	-0.44
15.5	7.942	15.75	-0.89	16.00	1.08
16.0	7.495	16.25	-0.36	16.50	0.32
16.5	7.317	16.75	-0.19	17.13	-0.02
17.0	7.220	17.50	-0.21	18.25	0.01
18.0	7.009	19.00	-0.19	20.00	0.03
20.0	6.624	21.00	-0.13	22.00	0.02
22.0	6.369	23.00	-0.10	24.00	-0.01
24.0	6.179	25.00	-0.11	25.75	0.02
26.0	5.957	26.50	-0.09	27.00	-0.11
27.0	5.870	27.50	-0.19	28.00	0.05
28.0	5.676	28.50	-0.15	28.88	-0.00
29.0	5.528	29.25	-0.15	29.50	-0.40
29.5	5.454	29.75	-0.35	29.93	-0.33
30.0	5.280	30.10	-0.46	30.20	-0.83
30.2	5.187	30.30	-0.63	30.40	-3.60
30.4	5.061	30.50	-1.35	30.60	-6.38
30.6	4.791	30.70	-2.63	30.80	-16.72
30.8	4.266	30.90	-5.97	31.00	21.27
31.0	3.072	31.10	-1.71	31.23	2.43
31.2	2.729	31.35	-1.11	31.55	1.46
31.5	2.397	31.75	-0.52	32.13	0.38
32.0	2.135	32.50	-0.24	33.00	0.11
33.0	1.894	33.50	-0.13	34.00	0.02
34.0	1.766	34.50	-0.11	26.00	-0.01
35.0	1.657	17.50	0.05	8.75	0.00

Figure C-70. Curve For The Fourth Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-71. First Derivative Of The Fourth Titration Curve For Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-72. Second Derivative Of The Fourth Titration Curve For Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 25. FRESH 75 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

ml 0.961M HCl 0.0	<u>рН</u> 10.135	Vol (ml) 1.00	<u>d(pH)/d(ml)</u> -0.09	Vol (ml) 2.00	$\frac{d2(pH)/d(m1)^2}{-0.01}$
2.0	9.951	3.00	-0.10	4.00	-0.01
4.0	9.745	5.00	-0.12	6.00	-0.01
6.0	9.512	7.00	-0.12	8.00	-0.01
		9.00		9.63	
8.0	9.256		-0.25		-0.27
10.0	8.756	10.25	-0.59	10.50	0.04
10.5	8.460	10.75	-0.57	11.00	-0.48
11.0	8.174	11.25	-0.81	11.50	0.47
11.5	7.769	11.75	-0.58	12.00	0.41
12.0	7.481	12.25	-0.37	12.50	0.39
12.5	7.296	12.75	-0.17	13.13	-0.07
13.0	7.209	13.50	-0.23	14.25	0.06
14.0	6.980	15.00	-0.14	16.00	0.03
16.0	6.706	17.00	-0.09	18.00	-0.00
18.0	6.536	19.00	-0.09	20.00	-0.00
20.0	6.364	21.00	-0.09	22.00	-0.00
22.0	6.182	23.00	-0.09	23.75	0.02
24.0	5.993	24.50	-0.06	25.00	-0.01
25.0	5.932	25.50	-0.07	26.00	-0.04
26.0	5.861	26.50	-0.11	26.88	-0.17
27.0	5.755	27.25	-0.23	27.50	-0.09
27.5	5.638	27.75	-0.28	27.95	0.57
28.0	5.498	28.15	-0.05	28.33	-0.42
28.3	5.482	28.50	-0.20	28.68	-0.01
28.7	5.402	28.85	-0.20	28.98	-0.81
29.0	5.341	29.10	-0.40	29.20	-1.50
29.2	5.260	29.30	-0.71	29.40	-0.95
29.4	5.119	29.50	-0.89	29.60	-3.75
29.6	4.940	29.70	-1.65	29.80	-2.15
29.8	4.611	29.90	-2.07	29.97	-40.10
30.0	4.196	30.05	-8.09	30.10	39.30
30.1	3.387	30.15	-4.16	30.25	13.92
30.2	2.971	30.35	-1.38	30.55	1.82
30.5	2.558	30.75	-0.65	31.13	0.53
31.0	2.234	31.50	-0.25	32.00	0.09
32.0	1.982	32.50	-0.16	33.25	0.05
33.0	1.822	34.00	-0.09	25.75	-0.01
35.0	1.649	17.50	0.05	8.75	0.00
33.0	1.073	17.30	0.03	0.75	0.00

Figure C-73. Curve For The First Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-74. First Derivative Of The First Titration Curve For Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-75. Second Derivative Of The First Titration Curve For Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 26. FRESH 75 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

ml 0.961M HCl	pH	<u>Vol (ml)</u>	d(pH)/d(ml)	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{}$
0.0	10.337	1.00	-0.06	2.00	0.01
2.0	10.223	3.00	-0.04	4.00	-0.01
4.0	10.139	5.00	-0.06	6.00	0.01
6.0	10.023	7.00	-0.03	8.00	0.00
8.0	9.955	9.00	-0.03	9.75	-0.11
10.0	9.893	10.50	-0.19	11.00	0.15
11.0	9.701	11.50	-0.04	12.00	-0.03
12.0	9.657	12.50	-0.07	13.00	0.01
13.0	9.587	13.50	-0.06	14.25	-0.50
14.0	9.532	15.00	-0.81	15.63	0.19
16.0	7.917	16.25	-0.57	16.50	0.37
16.5	7.630	16.75	-0.39	17.00	0.22
17.0	7.435	17.25	-0.28	17.50	-0.14
17.5	7.295	17.75	-0.35	18.38	0.13
18.0	7.121	19.00	-0.19	20.00	0.03
20.0	6.745	21.00	-0.13	22.00	0.01
22.0	6.492	23.00	-0.11	24.00	0.00
24.0	6.269	25.00	-0.11	26.00	-0.01
26.0	6.051	27.00	-0.13	27.63	-0.05
28.0	5.782	28.25	-0.20	28.50	-0.18
28.5	5.684	28.75	-0.29	28.95	-0.16
29.0	5.541	29.15	-0.35	29.33	-0.39
29.3	5.436	29.50	-0.49	29.68	-1.28
29.7	5.241	29.85	-0.94	29.95	-2.27
30.0	4.960	30.05	-1.39	30.10	-6.60
30.1	4.821	30.15	-2.05	30.23	0.37
30.2	4.616	30.30	-2.00	30.40	-20.45
30.4	4.217	30.50	-6.08	30.60	21.57
30.6	3.000	30.70	-1.77	30.80	4.25
30.8	2.646	30.90	-0.92	31.08	1.07
31.0	2.462	31.25	-0.55	31.50	0.51
31.5	2.189	31.75	-0.29	32.13	0.15
32.0	2.044	32.50	-0.18	33.00	0.07
33.0	1.869	33.50	-0.11	34.00	0.03
34.0	1.763	34.50	-0.08	26.00	-0.01
35.0	1.686	17.50	0.05	8.75	0.00

Figure C-76. Curve For The Second Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-77. First Derivative Of The Second Titration Curve For Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-78. Second Derivative Of The Second Titration Curve For Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 27. FRESH 75 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

	· · · · · · · · · · · · · · · · · · ·				
ml 0.961M HCl	<u>pH</u>	<u>Vol (ml)</u>	d(pH)/d(m1)	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{}$
0.0	10.195	1.00	-0.08	2.00	-0.01
2.0	10.035	3.00	-0.11	4.00	-0.01
4.0	9.819	5.00	-0.12	6.00	0.00
6.0	9.572	7.00	-0.12	8.00	-0.05
8.0	9.337	9.00	-0.23	9.75	-0.11
10.0	8.883	10.50	-0.40	10.88	-0.63
11.0	8.486	11.25	-0.87	11.50	0.33
11.5	8.051	11.75	-0.70	12.00	0.50
12.0	7.699	12.25	-0.46	12.50	0.18
12.5	7.471	12.75	-0.37	13.13	0.16
13.0	7.288	13.50	-0.24	14.25	0.07
14.0	7.044	15.00	-0.15	16.00	0.02
16.0	6.753	17.00	-0.10	18.00	0.01
18.0	6.555	19.00	-0.07	20.00	0.00
20.0	6.416	21.00	-0.07	22.00	-0.01
22.0	6.278	23.00	-0.08	24.00	-0.01
24.0	6.117	25.00	-0.11	25.75	-0.00
26.0	5.897	26.50	-0.11	27.00	-0.08
27.0	5.787	27.50	-0.19	27.88	0.05
28.0	5.601	28.25	-0.15	28.50	-0.12
28.5	5.528	28.75	-0.21	29.00	-0.58
29.0	5.425	29.25	-0.50	29.43	-1.13
29.5	5.176	29.60	-0.89	29.73	-4.98
29.7	4.997	29.85	-2.14	29.95	-25.30
30.0	4.355	30.05	-7.20	30.10	20.70
30.1	3.635	30.15	-5.13	30.20	27.60
30.2	3.122	30.25	-2.37	30.30	7.20
30.3	2.885	30.35	-1.65	30.45	3.43
30.4	2.720	30.55	-0.96	30.70	1.59
30.7	2.431	30.85	-0.49	31.05	0.32
31.0	2.285	31.25	-0.36	31.50	0.28
31.5	2.105	31.75	-0.22	32.13	0.09
32.0	1.996	32.50	-0.15	33.00	0.05
33.0	1.846	33.50	-0.10	34.00	0.02
34.0	1.751	34.50	-0.07	26.00	-0.01
35.0	1.679	17.50	0.05	8.75	0.00

Figure C-79. Curve For The Third Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-80. First Derivative Of The Third Titration Curve For Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-81. Second Derivative Of The Third Titration Curve For Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 28. FRESH 75 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

ml 0.961M HCl	На	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{}$
0.0	10.345	1.00	-0.12	2.00	-0.00
2.0	10.097	3.00	-0.13	4.00	0.02
4.0	9.845	5.00	-0.08	6.00	-0.03
6.0	9.686	7.00	-0.14	8.00	-0.06
8.0	9.416	9.00	-0.26	9.75	0.17
10.0	8.889	10.50	-0.01	10.88	-2.18
11.0	8.882	11.25	-1.64	11.50	2.01
11.5	8.060	11.75	-0.64	12.00	0.32
12.0	7.741	12.25	-0.48	12.50	0.25
12.5	7.503	12.75	-0.35	13.13	0.12
13.0	7.327	13.50	-0.26	14.25	0.08
14.0	7.066	15.00	-0.14	16.00	0.02
16.0	6.794	17.00	-0.10	18.00	0.01
18.0	6.599	19.00	-0.08	20.00	0.01
20.0	6.441	21.00	-0.06	22.00	-0.01
22.0	6.328	23.00	-0.07	24.00	0.01
24.0	6.185	25.00	-0.06	25.75	-0.04
26.0	6.065	26.50	-0.12	27.00	-0.03
27.0	5.945	27.50	-0.15	28.00	-0.09
28.0	5.799	28.50	-0.23	28.88	0.06
29.0	5.568	29.25	-0.18	29.50	-0.61
29.5	5.476	29.75	-0.49	29.95	-0.91
30.0	5.232	30.15	-0.85	30.30	-4.69
30.3	4.976	30.45	-2.26	30.58	-11.80
30.6	4.298	30.70	-5.21	30.80	11.33
30.8	3.256	30.90	-2.94	31.08	6.51
31.0	2.667	31.25	-0.67	31.50	0.79
31.5	2.333	31.75	-0.27	32.13	0.02
32.0	2.196	32.50	-0.26	33.00	0.14
33.0	1.940	33.50	-0.11	34.00	0.03
34.0	1.828	34.50	-0.09	26.00	-0.01
35.0	1.741	17.50	0.05	8.75	0.00

Figure C-82. Curve For The Fourth Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-83. First Derivative Of The Fourth Titration Curve For Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-84. Second Derivative Of The Fourth Titration Curve For Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 29. FRESH 45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

ml 0.961M HC1 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 15.0 16.5 17.0 17.5 18.0 18.5 19.0 20.0 22.0 24.0 26.0 28.0	pH 10.870 10.578 10.361 10.217 10.111 9.708 9.483 9.188 9.007 8.727 8.441 8.164 7.792 7.544 7.413 7.272 7.121 6.726 6.489 6.274 6.071	Vol (ml) 1.00 3.00 5.00 7.00 9.00 11.00 13.00 14.50 15.50 16.25 16.75 17.25 17.75 18.25 17.75 18.25 19.50 21.00 23.00 25.00 27.00 29.00	d(pH)/d(m1) -0.15 -0.11 -0.07 -0.05 -0.20 -0.11 -0.15 -0.18 -0.28 -0.57 -0.55 -0.74 -0.50 -0.26 -0.28 -0.15 -0.20 -0.12 -0.11 -0.10 -0.12	Vol (ml) 2.00 4.00 6.00 8.00 10.00 12.00 13.75 15.00 15.88 16.50 17.00 17.50 18.00 18.50 19.13 20.25 22.00 24.00 26.00 28.00 29.75	d2(pH)/d(m1) ² 0.02 0.02 0.01 -0.07 0.04 -0.02 -0.10 -0.39 0.04 -0.38 0.50 0.47 -0.04 0.17 -0.03 0.04 0.01 0.00 -0.01
28.0 30.0 31.0 32.0	5.831 5.672 5.469	29.00 30.50 31.50 32.25	-0.12 -0.16 -0.20 -0.28	29.75 31.00 31.88 32.50	-0.03 -0.04 -0.11 -0.64
32.5 33.0 33.2 33.4 33.6	5.327 5.024 4.823 4.355 3.261	32.75 33.10 33.30 33.50 33.70	-0.61 -1.00 -2.34 -5.47 -1.52	32.93 33.20 33.40 33.60 33.80	-1.14 -6.67 -15.65 19.73 -0.75
33.8 34.0 34.5 35.0 36.0 38.0 40.0	2.956 2.621 2.281 2.127 1.926 1.722 1.604	33.90 34.25 34.75 35.50 37.00 39.00 20.00	-1.67 -0.68 -0.31 -0.20 -0.10 -0.06 0.04	34.08 34.50 35.13 36.25 38.00 29.50	2.84 0.74 0.14 0.07 0.02 -0.01

Figure C-85. Curve For The First Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HC1.

Figure C-86. First Derivative Of The First Titration Curve For Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-87. Second Derivative Of The First Titration Curve For Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 30. FRESH 45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

ml 0.961M HCl	<u>pH</u>	<u>Vol (ml)</u>	d(pH)/d(m1)	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{2}$
0.0	10.893	1.00	-0.19	2.00	0.05
2.0	10.512	3.00	-0.08	4.00	-0.00
4.0	10.351	5.00	-0.09	6.00	0.01
6.0	10.177	7.00	-0.08	8.00	-0.04
8.0	10.027	9.00	-0.16	10.00	0.02
10.0	9.715	11.00	-0.12	12.00	0.01
12.0	9.474	13.00	-0.10	13.75	-0.04
14.0	9.271	14.50	-0.17	15.00	-0.08
15.0	9.105	15.50	-0.24	16.00	-0.49
16.0	8.862	16.50	-0.73	16.88	-0.12
17.0	8.132	17.25	-0.82	17.50	0.67
17.5	7.723	17.75	-0.48	18.00	0.22
18.0	7.481	18.25	-0.38	18.50	0.20
18.5	7.293	18.75	-0.28	19.13	0.12
19.0	7.155	19.50	-0.19	20.25	0.02
20.0	6.969	21.00	-0.15	22.00	0.02
22.0	6.664	23.00	-0.11	24.00	0.01
24.0	6.437	25.00	-0.10	26.00	-0.01
26.0	6.241	27.00	-0.11	28.00	0.00
28.0	6.024	29.00	-0.10	29.75	-0.09
30.0	5.822	30.50	-0.23	31.00	-0.16
31.0	5.593	31.50	-0.39	31.88	-0.70
32.0	5.205	32.25	-0.91	32.43	-5.04
32.5	4.750	32.60	-2.67	32.70	-13.57
32.7	4.215	32.80	-5.39	32.88	25.47
32.9	3.137	32.95	-1.57	33.05	0.83
33.0	2.980	33.15	-1.40	33.30	2.22
33.3	2.559	33.45	-0.74	33.63	1.16
33.6	2.338	33.80	-0.33	34.03	0.08
34.0	2.206	34.25	-0.29	34.50	0.25
34.5	2.060	34.75	-0.17	35.13	0.05
35.0	1.976	35.50	-0.13	36.25	0.03
36.0	1.845	37.00	-0.08	38.00	0.02
38.0	1.680	39.00	-0.05	29.50	-0.00
40.0	1.576	20.00	0.04	10.00	0.00
TU. U	1.070	20.00			

Figure C-88. Curve For The Second Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-89. First Derivative Of The Second Titration Curve For Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-90. Second Derivative Of The Second Titration Curve For Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 31. FRESH 45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

, 	 			 	
ml 0.961M HCl	pH_	<u>Vol (ml)</u>	<u>d(pH)/d(m1)</u>	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{2}$
0.0	10.711	1.00	-0.17	2.00	0.03
2.0	10.428	3.00	-0.12	4.00	0.01
4.0	10.188	5.00	-0.11	6.00	0.00
6.0	9.971	7.00	-0.10	8.00	-0.00
8.0	9.774	9.00	-0.11	10.00	-0.01
10.0	9.564	11.00	-0.13	12.00	-0.03
12.0	9.298	13.00	-0.19	13.75	-0.09
14.0	8.911	14.50	-0.33	14.88	-0.29
15.0	8.583	15.25	-0.54	15.50	-0.70
15.5	8.312	15.75	-0.89	16.00	0.40
16.0	7.865	16.25	-0.70	16.50	0.63
16.5	7.517	16.75	-0.38	17.00	0.08
17.0	7.326	17.25	-0.34	17.50	0.23
17.5	7.155	17.75	-0.23	18.38	0.05
18.0	7.041	19.00	-0.16	20.00	0.03
20.0	6.715	21.00	-0.11	22.00	0.02
22.0	6.490	23.00	-0.08	24.00	0.01
24.0	6.326	25.00	-0.06	26.00	-0.00
26.0	6.199	27.00	-0.06	28.00	-0.02
28.0	6.071	29.00	-0.10	29.75	0.02
30.0	5.871	30.50	-0.07	30.88	-0.10
31.0	5.798	31.25	-0.15	31.50	0.09
31.5	5.724	31.75	-0.10	32.00	-0.10
32.0	5.672	32.25	-0.15	32.50	-0.16
32.5	5.596	32.25	-0.15		
33.0	5.429	32.75		33.00	-0.10
33.5			-0.38	33.43	0.02
33.5 33.7	5.238 5.163	33.60	-0.38	33.72	-2.77
		33.85	-1.07	33.97	0.53
34.0	4.843	34.10	-0.93	34.20	-19.07
34.2	4.656	34.30	-4.75	34.38	-6.53
34.4	3.706	34.45	-5.73	34.53	24.03
34.5	3.133	34.60	-2.12	34.72	4.49
34.7	2.708	34.85	-1.00	35.05	1.29
35.0	2.407	35.25	-0.49	35.50	0.38
35.5	2.163	35.75	-0.30	36.13	0.16
36.0	2.014	36.50	-0.18	37.00	0.04
37.0	1.838	37.50	-0.14	38.25	0.05
38.0	1.701	39.00	-0.06	29.50	-0.01
40.0	1.572	20.00	0.04	10.00	0.00
			•		

Figure C-91. Curve For The Third Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-92. First Derivative Of The Third Titration Curve For Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-93. Second Derivative Of The Third Titration Curve For Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 32. FRESH 45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

ml 0.961M HCl	pH	<u>Vol (ml)</u>	d(pH)/d(m1)	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{}$
0.0	11.044	1.00	-0.20	2.00	0.03
2.0	10.640	3.00	-0.13	4.00	0.00
4.0	10.371	5.00	-0.13	6.00	0.01
6.0	10.113	7.00	-0.11	8.00	-0.01
8.0	9.888°	9.00	-0.12	10.00	-0.01
10.0	9.641	11.00	-0.14	12.00	-0.03
12.0	9.357	13.00	-0.21	13.75	-0.11
14.0	8.940	14.50	-0.38	14.88	-0.24
15.0	8.559	15.25	-0.56	15.50	-0.79
15.5	8.280	15.75	-0.95	16.00	0.74
16.0	7.803	16.25	-0.58	16.50	0.26
16.5	7.511	16.75	-0.45	17.13	0.25
17.0	7.284	17.50	-0.26	18.25	0.07
18.0	7.021	19.00	-0.16	20.00	0.03
20.0	6.694	21.00	-0.10	22.00	0.01
22.0	6.487	23.00	-0.09	24.13	0.01
24.0	6.302	25.25	-0.07	26.25	-0.00
26.5	6.122	27.25	-0.08	28.13	-0.04
28.0	6.008	29.00	-0.14	29.75	0.03
30.0	5.720	30.50	-0.10	30.88	-0.05
31.0	5.618	31.25	-0.14	31.50	-0.14
31.5	5.547	31.75	-0.21	32.00	-0.29
32.0	5.442	32.25	-0.35	32.50	-0.63
32.5	5.265	32.75	-0.67	32.93	-3.25
33.0	4.931	33.10	-1.80	33.20	-18.72
33.2	4.570	33.30	-5.55	33.40	10.57
33.4	3.460	33.50	-3.44	33.60	10.95
33.6	2.773	33.70	-1.24	33.80	3.57
33.8	2.524	33.90	-0.53	34.08	0.18
34.0	2.418	34.25	-0.47	34.50	0.26
34.5	2.185	34.75	-0.34	35.13	0.21
35.0	2.016	35.50	-0.18	36.25	0.05
36.0	1.833	37.00	-0.10	38.00	0.02
38.0	1.627	39.00	-0.06	29.50	-0.01
40.0	1.509	20.00	0.04	10.00	0.00

Figure C-94. Curve For The Fourth Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-95. First Derivative Of The Fourth Titration Curve For Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-96. Second Derivative Of The Fourth Titration Curve For Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 33. FRESH <45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

					124 2
ml 0.961M HCl	<u>pH</u>	<u>Vol (ml)</u>	d(pH)/d(m1)	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{2}$
0.0	11.337	1.00	-0.30	2.00	0.06
2.0	10.736	3.00	-0.17	4.00	0.03
4.0	10.386	5.00	-0.12	6.00	0.01
6.0	10.139	7.00	-0.11	8.00	-0.00
8.0	9.914	9.00	-0.12	10.00	-0.00
10.0	9.678	11.00	-0.12	11.75	-0.03
12.0	9.438	12.50	-0.17	13.00	-0.00
13.0	9.268	13.50	-0.17	14.00	-0.08
14.0	9.097	14.50	-0.25	15.00	-0.23
15.0	8.846	15.50	-0.48	15.88	-0.72
16.0	8.365	16.25	-1.02	16.50	0.61
16.5	7.854	16.75	-0.72	17.00	0.68
17.0	7.495	17.25	-0.38	17.50	0.10
17.5	7.305	17.75	-0.33	18.38	0.10
18.0	7.140	19.00	-0.20	20.00	0.03
20.0	6.738	21.00	-0.13	22.00	0.02
22.0	6.474	23.00	-0.09	24.00	0.01
24.0	6.295	25.00	-0.08	26.00	-0.01
26.0	6.142	27.00	-0.11	28.00	-0.01
28.0	5.931	29.00	-0.12	29.75	-0.03
30.0	5.691	30.50	-0.17	30.88	-0.12
31.0	5.525	31.25	-0.25	31.50	-0.16
31.5	5.398	31.75	-0.34	32.00	-0.25
32.0	5.230	32.25	-0.46	32.45	-1.75
32.5	5.000	32.65	-1.16	32.78	-3.16
32.8	4.652	32.90	-1.95	33.00	-19.43
33.0	4.262	33.10	-5.83	33.20	18.77
33.2	3.095	33.30	-2.08	33.40	5.50
33.4	2.679	33.50	-0.98	33.60	2.53
33.6	2.483	33.70	-0.47	33.80	-0.47
33.8	2.388	33.90	-0.57	34.08	0.65
34.0	2.274	34.25	-0.34	34.50	0.16
34.5	2.103	34.75	-0.26	35.13	0.18
35.0	1.972	35.50	-0.13	36.25	0.03
36.0	1.842	37.00	-0.09	38.00	0.02
38.0	1.663	39.00	-0.06	29.50	-0.01
40.0	1.548	20.00	0.04	10.00	0.00

Figure C-97. Curve For The First Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-98. First Derivative Of The First Titration Curve For Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-99. Second Derivative Of The First Titration Curve For Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 34. FRESH <45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

			·		
ml 0.961M HCl	На	<u>Vol (ml)</u>	d(pH)/d(m1)	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{}$
0.0	11.623	1.00	-0.36	2.00	0.07
2.0	10.909	3.00	-0.23	4.00	0.05
4.0	10.455	5.00	-0.13	6.00	0.01
6.0	10.205	7.00	-0.11	8.00	0.00
8.0	9.977	9.00	-0.11	10.00	-0.01
10.0	9.757	11.00	-0.13	12.00	-0.01
12.0	9.503	13.00	-0.15	13.75	-0.07
14.0	9.206	14.50	-0.25	15.00	-0.15
15.0	8.956	15.50	-0.40	15.88	-0.34
16.0	8.555	16.25	-0.66	16.50	-0.53
16.5	8.227	16.75	-0.92	17.00	0.63
17.0	7.767	17.25	-0.60	17.50	0.47
17.5	7.465	17.75	-0.37	18.13	0.12
18.0	7.281	18.50	-0.28	19.00	0.12
19.0	7.006	19.50	-0.16	20.25	0.02
20.0	6.847	21.00	-0.14	22.00	0.02
22.0	6.575	23.00	-0.09	24.00	-0.00
24.0	6.400	25.00	-0.10	26.00	-0.00
26.0	6.209	27.00	-0.10	28.00	-0.00
28.0	6.006	29.00	-0.10	29.75	-0.03
30.0	5.802	30.50	-0.15	30.88	-0.01
31.0	5.654	31.25	-0.15	31.50	-0.04
31.5	5.578	31.75	-0.17	32.00	-0.28
32.0	5.493	32.25	-0.31	32.50	-0.40
32.5	5.339	32.75	-0.51	32.93	-1.18
33.0	5.085	33.10	-0.92	33.20	-5.57
33.2	4.901	33.30	-2.03	33.40	-18.45
33.4	4.494	33.50	-5.73	33.60	14.90
33.6	3.349	33.70	-2.74	33.80	7.12
33.8	2.800	33.90	-1.32	34.08	2.21
34.0	2.536	34.25	-0.55	34.50	0.47
34.5	2.262	34.75	-0.31	35.13	0.18
35.0	2.106	35.50	-0.18	36.25	0.05
36.0	1.926	37.00	-0.10	38.00	0.02
38.0	1.719	39.00	-0.06	29.50	-0.01
40.0	1.599	20.00	0.04	10.00	0.00

Figure C-100. Curve For The Second Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-101. First Derivative Of The Second Titration Curve For Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-102. Second Derivative Of The Second Titration Curve For Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 35. FRESH <45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

					
ml 0.961M HCl	pH	<u>Vol (ml)</u>	d(pH)/d(m1)	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{}$
0.0	11.609	1.00	-0.37	2.00	0.10
2.0	10.865	3.00	-0.18	4.00	0.02
4.0	10.507	5.00	-0.13	6.00	0.01
6.0	10.238	7.00	-0.12	8.00	0.00
8.0	10.003	9.00	-0.11	10.00	-0.01
10.0	9.780	11.00	-0.13	12.00	-0.02
12.0	9.520	13.00	-0.17	14.00	-0.08
14.0	9.178	15.00	-0.33	15.63	-0.32
16.0	8.526	16.25	-0.73	16.50	-0.25
16.5	8.162	16.75	-0.85	17.00	0.68
17.0	7.736	17.25	-0.51	17.50	0.31
17.5	7.479	17.75	-0.36	18.13	0.16
18.0	7.299	18.50	-0.24	19.25	0.06
19.0	7.057	20.00	-0.16	21.00	0.02
21.0	6.744	22.00	-0.11	23.00	0.02
23.0	6.516	24.00	-0.07	25.00	-0.00
25.0	6.385	26.00	-0.07	27.00	-0.00
27.0	6.242	28.00	-0.08	28.75	-0.03
29.0	6.089	29.50	-0.13	30.00	0.00
30.0	5.964	30.50	-0.12	31.00	-0.14
31.0	5.841	31.50	-0.27	31.88	-0.01
32.0	5.576	32.25	-0.27	32.45	-0.53
32.5	5.441	32.65	-0.48	32.78	-1.93
32.8	5.296	32.90	-0.96	33.00	-1.03
33.0	5.103	33.10	-1.17	33.20	-9.25
33.2	4.869	33.30	-3.02	33.40	-6.38
33.4	4.265	33.50	-4.30	33.60	6.65
33.6	3.406	33.70	-2.96	33.80	8.95
33.8	2.813	33.90	-1.17	34.08	1.82
34.0	2.578	34.25	-0.54	34.50	0.43
34.5	2.309	34.75	-0.32	35.13	0.17
35.0	2.148	35.50	-0.19	36.25	0.06
36.0	1.954	37.00	-0.11	38.00	0.02
38.0	1.741	39.00	-0.06	29.50	-0.01
40.0	1.623	20.00	0.04	10.00	0.00
-			- • •		

Figure C-103. Curve For The Third Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-104. First Derivative Of The Third Titration Curve For Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-105. Second Derivative Of The Third Titration Curve For Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 36. FRESH <45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

ml 0.961M HCl	pH	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	11.643	1.00	-0.36	2.00	0.10
2.0	10.915	3.00	-0.17	4.00	0.02
4.0	10.575	5.00	-0.14	6.00	0.01
6.0	10.301	7.00	-0.12	8.00	0.00
8.0	10.055	9.00	-0.12	10.00	0.00
10.0	9.811	11.00	-0.12	12.00	-0.01
12.0	9.568	13.00	-0.15	14.00	-0.06
14.0	9.275	15.00	-0.26	15.63	-0.24
16.0	8.759	16.25	-0.55	16.50	-0.23
16.5	8.483	16.75	-0.67	17.00	-0.71
17.0	8.149	17.25	-1.02	17.50	1.31
17.5	7.638	17.75	-0.37	18.13	0.04
18.0	7.454	18.50	-0.34	19.25	0.12
19.0	7.113	20.00	-0.17	21.00	0.03
21.0	6.779	22.00	-0.11	23.00	0.02
23.0	6.564	24.00	-0.07	25.00	-0.01
25.0	6.428	26.00	-0.09	27.00	-0.01
27.0	6.246	28.00	-0.10	29.00	-0.02
29.0	6.038	30.00	-0.14	30.75	0.06
31.0	5.762	31.50	-0.05	31.88	-0.11
32.0	5.714	32.25	-0.13	32.50	-0.44
32.5	5.647	32.75	-0.36	33.00	-0.12
33.0	5.469	33.25	-0.42	33.50	-0.54
33.5	5.261	33.75	-0.69	33.93	-3.38
34.0	4.917	34.10	-1.87	34.20	-14.52
34.2	4.543	34.30	-4.77	34.40	6.35
34.4	3.588	34.50	-3.51	34.60	12.13
34.6	2.887	34.70	-1.08	34.80	1.02
34.8	2.671	34.90	-0.87	35.08	1.13
35.0	2.496	35.25	-0.48	35.50	0.39
35.5	2.257	35.75	-0.28	36.38	0.11
36.0	2.115	37.00	-0.15	38.00	0.04
38.0	1.818	39.00	-0.08	29.50	-0.01
40.0	1.666	20.00	0.04	10.00	0.00

Figure C-106. Curve For The Fourth Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-107. First Derivative Of The Fourth Titration Curve For Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-108. Second Derivative Of The Fourth Titration Curve For Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 37. TITRATION OF SODIUM BICARBONATE FROM J. T. BAKER CHEMICAL CO.

ml 0.961M HCl	<u>pH</u>	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	11.367	1.00	-0.40	2.00	0.10
2.0	10.575	3.00	-0.20	4.00	0.04
4.0	10.170	5.00	-0.12	6.00	-0.00
6.0	9.939	7.00	-0.13	7.75	0.03
8.0	9.688	8.50	-0.08	9.00	-0.23
9.0	9.608	9.50	-0.31	10.00	0.06
10.0	9.295	10.50	-0.25	11.00	-0.13
11.0	9.043	11.50	-0.38	11.88	-1.15
12.0	8.664	12.25	-1.24	12.50	0.36
12.5	8.042	12.75	-1.06	13.00	1.04
13.0	7.511	13.25	-0.54	13.50	0.23
13.5	7.240	13.75	-0.43	14.13	0.17
14.0	7.027	14.50	-0.30	15.00	0.09
15.0	6.732	15.50	-0.21	16.25	0.02
16.0	6.524	17.00	-0.18	18.00	0.01
18.0	6.167	19.00	-0.16	19.75	-0.04
20.0	5.854	20.50	-0.22	20.88	0.05
21.0	5.636	21.25	-0.18	21.50	-0.23
21.5	5.547	21.75	-0.29	21.95	-0.15
22.0	5.401	22.15	-0.35	22.33	-0.56
22.3	5.295	22.50	-0.55	22.68	-2.32
22.7	5.075	22.85	-1.36	22.98	-10.93
23.0	4.666	23.10	-4.09	23.20	-4.50
23.2	3.847	23.30	-5.00	23.40	17.88
23.4	2.848	23.50	-1.42	23.60	3.87
23.6	2.564	23.70	-0.65	23.80	0.03
23.8	2.435	23.90	-0.64	24.08	0.82
24.0	2.307	24.25	-0.35	24.50	0.28
24.5	2.131	24.75	-0.21	25.13	0.08
25.0	2.025	25.50	-0.15	26.25	0.04
26.0	1.875	27.00	-0.08	28.00	0.04
28.0	1.705	29.00	-0.00	22.00	-0.00
30.0	1.695	15.00	0.06	7.50	0.00

Figure C-109. Curve For The Titration Of Sodium Bicarbonate From Baker Chemical Co. With 0.961 M HCl.

Figure C-110. First Derivative Of The Titration Curve For Titration Of Sodium Bicarbonate From Baker Chemical Co. With 0.961 M HCl.

Figure C-111. Second Derivative Of The Titration Curve For Titration Of Sodium Bicarbonate From Baker Chemical Co. With 0.961 M HCl.

TABLE 38. TITRATION OF SODIUM CARBONATE FROM ALDRICH CHEMICAL CO..

ml 0.961M HCl	На	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	11.686	1.00	-0.38	2.00	0.10
2.0	10.918	3.00	-0.19	4.00	0.02
	10.518	5.00	-0.15	6.00	0.03
4.0		7.00	-0.13	8.00	-0.01
6.0	10.224				
8.0	10.032	9.00	-0.11	10.00	0.00
10.0	9.813	11.00	-0.10	12.00	-0.00
12.0	9.613	13.00	-0.11	13.75	-0.02
14.0	9.399	14.50	-0.13	15.00	-0.01
15.0	9.267	15.50	-0.15	16.00	-0.07
16.0	9.122	16.50	-0.21	17.00	-0.05
17.0	8.908	17.50	-0.26	17.88	-0.33
18.0	8.646	18.25	-0.51	18.50	-0.37
18.5	8.393	18.75	-0.69	19.00	-1.12
19.0	8.047	19.25	-1.25	19.50	2.49
19.5	7.420	19.75	-0.01	20.00	-0.27
20.0	7.416	20.25	-0.14	20.50	-0.11
20.5	7.344	20.75	-0.20	21.00	0.32
21.0	7.245	21.25	-0.04	21.50	-0.54
21.5	7.225	21.75	-0.31	22.38	0.02
22.0	7.070	- 23.00	-0.29	24.00	0.09
24.0	6.489	25.00	-0.11	26.00	0.02
26.0	6.262	27.00	-0.08	28.00	-0.02
28.0	6.110	29.00	-0.11	29.75	0.02
30.0	5.888	30.50	-0.07	31.00	0.01
31.0	5.814	31.50	-0.07	32.00	-0.05
32.0	5.746	32.50	-0.12	33.00	-0.10
33.0	5.630	33.50	-0.21	33.88	0.10
34.0	5.419	34.25	-0.14	34.50	-0.16
34.5	5.351	34.75	-0.21	35.00	-0.16
35.0	5.244	35.25	-0.29	35.50	-0.40
35.5	5.098	35.75	-0.49	35.93	-0.83
36.0	4.853	36.10	-0.78	36.20	-4.77
36.2	4.653	36.30	-1.73	36.40	-16.93
36.4	4.350	36.50	-5.12	36.65	11.10
		36.80		37.03	
36.6 37.0	3.326		-1.79 -0.81	37.03 37.50	2.17 0.86
37.0	2.610	37.25 37.75	-0.81 -0.38	38.13	0.24
37.5	2.204				0.10
38.0	2.013	38.50	-0.21 -0.11	39.00	-0.01
39.0	1.808	39.50		29.75	
40.0	1.699	20.00	0.04	10.00	0.00

Figure C-112. Curve For The Titration Of Sodium Carbonate From Aldrich Chemical Co. With 0.961 M HCl.

Figure C-113. First Derivative Of The Titration Curve For Titration Of Sodium Carbonate From Aldrich Chemical Co. With 0.961 M HCl.

Figure C-114. Second Derivative Of The Titration Curve For Titration Of Sodium Carbonate From Aldrich Chemical Co. With 0.961 M HCl.

TABLE 39. TOTAL SPENT SODIUM BICARBONATE MEDIA - TITRATION 1.

	`				2
<u>ml 0.984M HCl</u>	PH	<u>Vol (ml)</u>	d(pH)/d(m1)	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{}$
0.0	11.497	0.50	-0.51	1.00	0.28
1.0	10.984	1.50	-0.24	2.05	0.04
2.0	10.746	2.60	-0.19	3.10	0.02
3.2	10.512	3.60	-0.17	4.05	0.04
4.0	10.375	4.50	-0.14	5.00	0.01
5.0	10.240	5.50	-0.12	6.00	0.02
6.0	10.118	6.50	-0.11	7.00	0.00
7.0	10.011	7.50	-0.11	8.00	0.01
8.0	9.905	8.50	-0.10	9.00	0.09
9.0	9.804	9.50	-0.01	10.00	-0.19
10.0	9.798	10.50	-0.19	11.00	0.06
11.0	9.606	11.50	-0.13	12.00	0.03
12.0	9.478	12.50	-0.10	13.00	-0.03
13.0	9.376	13.50	-0.13	14.00	-0.04
14.0	9.242	14.50	-0.18	15.00	-0.00
15.0	9.065	15.50	-0.18	15.88	-0.26
16.0	8.885	16.25	-0.37	16.50	0.08
16.5	8.699	16.75	-0.33	17.00	-0.35
17.0	8.534	17.25	-0.51	17.50	-0.80
17.5	8.281	17.75	-0.91	18.00	0.52
18.0	7.827	18.25	-0.65	18.50	0.33
18.5	7.504	18.75	-0.48	19.00	0.38
19.0	7.264	19.25	-0.29	19.50	0.16
19.5	7.119	19.75	-0.21	20.13	0.03
20.0	7.014	20.50	-0.19	21.00	0.03
21.0	6.824	21.50	-0.16	22.00	0.04
22.0	6.666	22.50	-0.12	23.00	0.01
23.0	6.544	23.50	-0.11	24.00	0.02
24.0	6.436	24.50	-0.09	25.00	0.02
25.0	6.349	25.50	-0.07	26.00	-0.00
26.0	6.282	26.50	-0.07	27.00	0.01
27.0	6.214	27.50	-0.06	28.00	-0.02
28.0	6.154	28.50	-0.08	29.00	0.02
29.0	6.074	29.50	-0.06	30.00	-0.02
30.0	6.015	30.50	-0.08	31.00	-0.01
31.0	5.932	31.50	-0.09	31.88	-0.34
32.0	5.842	32.25	-0.35	32.50	0.02
32.5	5.668	32.75	-0.34	33.13	0.53
33.0	5.499	33.50	0.06	33.88	-0.51
34.0	5.555	34.25	-0.33	34.50	-0.66
34.5	5.391	34.75	-0.66	35.00	-2.10
35.0	5.063	35.25	-1.70	35.43	-11.03
35.5	4.211	35.60	-5.56	35.68	19.30
35.7	3.098	35.75	-2.67	35.80	8.10
35.8	2.831	35.85	-1.86	35.90	2.60
35.9	2.645	35.95	-1.60	36.03	6.13
36.0	2.485	36.10	-0.68	36.20	0.67
	200				0101

TABLE 39. TOTAL SPENT SODIUM BICARBONATE MEDIA - TITRATION 1 (continued).

ml 0.984M HCl 36.2	pH 2.349	<u>Vol (ml)</u> 36.30	<u>d(pH)/d(ml)</u> -0.54	Vol (ml) 36.43	d2(pH)/d(m1) ² 0.45
36.4	2.240	36.55	-0.43	36.70	0.38
36.7	2.110	36.85	-0.32	37.05	0.18
37.0	2.014	37.25	-0.25	37.50	0.15
37.5	1.891	37.75	-0.17	38.13	0.07
38.0	1.806	38.50	-0.12	39.00	0.02
39.0	1.690	39.50	-0.10	40.00	0.04
40.0	1.594	40.50	-0.06	41.00	0.00
41.0	1.534	41.50	-0.06	42.00	0.01
42.0	1.476	42.50	-0.05	32.00	-0.00
43.0	1.431	21.50	0.03	10.75	0.00

NOTE: This sample was taken from the first batch of spent media which was dried in the oven before being broken into size fractions. The spent media dried into a hard cake causing extensive work to break down into particle sizes.

Figure C-115. Curve For The First Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-116. First Derivative Of The First Titration Curve For Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-117. Second Derivative Of The First Titration Curve For Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 40. TOTAL SPENT SODIUM BICARBONATE MEDIA - TITRATION 2.

No. No.						
0.0			Vol. (ml)	al/m11\/al/m1\	Vol (ml)	d2/mU1/d/m112
1.0 11.086 1.50 -0.32 2.00 0.13 2.0 10.771 2.50 -0.19 3.00 0.01 3.0 10.585 3.50 -0.18 4.00 0.06 4.0 10.405 4.50 -0.13 5.00 -0.01 5.0 10.280 5.50 -0.13 6.00 0.01 6.0 10.149 6.50 -0.12 7.00 0.02 7.0 10.029 7.50 -0.10 8.00 -0.01 8.0 9.930 8.50 -0.11 9.00 0.02 9.0 9.822 9.50 -0.09 10.00 -0.03 10.0 9.733 10.50 -0.12 11.00 0.02 11.0 9.612 11.50 -0.10 12.00 -0.03 12.0 9.512 12.50 -0.13 13.00 -0.01 13.0 9.381 13.50 -0.14 14.00 -0.02 14.0 9.244 14.50 -0.16 15.00 -0.07 15.0 9.084 15.50 -0.23 15.88 -0.01 16.0 8.853 16.25 -0.24 16.50 -0.30 16.5 8.735 16.75 -0.39 17.00 0.76 17.0 8.542 17.25 -0.01 17.50 -3.16 17.5 8.538 17.75 -1.59 18.00 1.97 18.0 7.743 18.25 -0.61 18.50 0.48 18.5 7.440 18.75 -0.36 19.00 0.06 19.0 7.258 19.25 -0.22 20.13 0.04 20.0 6.981 20.50 -0.19 21.00 0.03 21.0 6.787 21.50 -0.19 21.00 0.03 22.0 6.621 22.50 -0.19 21.00 0.06 22.0 6.621 22.50 -0.19 21.00 0.03 21.0 6.787 21.50 -0.19 21.00 0.03 21.0 6.787 21.50 -0.19 21.00 0.03 22.0 6.621 22.50 -0.09 23.00 -0.01 23.0 6.533 23.50 -0.10 24.00 0.00 24.0 6.435 24.50 -0.10 25.00 0.03 31.0 5.895 31.25 -0.08 31.50 0.00 31.0 5.895 31.25 -0.09 30.88 0.00 31.0 5.895 31.25 -0.09 30.88 0.00 31.0 5.895 31.25 -0.09 30.88 0.00 31.0 5.895 31.25 -0.00 34.50 -1.67 33.5. 8 3.428 35.90 -3.41 36.03 9.22						
2.0 10.771 2.50 -0.18 4.00 0.06 4.0 10.405 4.50 -0.13 5.00 -0.01 5.0 10.280 5.50 -0.13 5.00 -0.01 6.0 10.149 6.50 -0.12 7.00 0.02 7.0 10.029 7.50 -0.10 8.00 -0.01 8.0 9.930 8.50 -0.11 9.00 0.02 9.0 9.822 9.50 -0.09 10.00 -0.03 10.0 9.733 10.50 -0.12 11.00 -0.03 12.0 9.512 11.50 -0.10 12.00 -0.03 12.0 9.512 12.50 -0.13 13.00 -0.01 13.0 9.381 13.50 -0.14 14.00 -0.02 14.0 9.244 14.50 -0.16 15.00 -0.07 15.0 9.084 15.50 -0.23 15.88 -0.01 16.5 8.735 16.75 -0.39 17.00 -0.76 17.0 <		11.652				
3.0	1.0	11.086	1.50	-0.32	2.00	0.13
3.0	2.0	10.771	2.50	-0.19	3.00	0.01
4.0 10.405 4.50 -0.13 5.00 -0.01 5.0 10.280 5.50 -0.13 6.00 0.01 6.0 10.149 6.50 -0.12 7.00 0.02 7.0 10.029 7.50 -0.10 8.00 -0.01 8.0 9.930 8.50 -0.11 9.00 0.02 9.0 9.822 9.50 -0.09 10.00 -0.03 10.0 9.733 10.50 -0.12 11.00 0.02 11.0 9.612 11.50 -0.10 12.00 -0.03 12.0 9.512 12.50 -0.13 13.00 -0.01 13.0 9.381 13.50 -0.14 14.00 -0.02 14.0 9.244 14.50 -0.16 15.00 -0.07 15.0 9.084 15.50 -0.23 15.88 -0.01 16.5 8.735 16.75 -0.23 15.88 -0.01 17.0 8.542 17.25 -0.01 17.50 -3.16 17.5						
5.0 10.280 5.50 -0.12 7.00 0.02 7.0 10.029 7.50 -0.10 8.00 -0.01 8.0 9.930 8.50 -0.11 9.00 0.02 9.0 9.822 9.50 -0.09 10.00 -0.03 10.0 9.733 10.50 -0.12 11.00 0.02 11.0 9.612 11.50 -0.10 12.00 -0.03 12.0 9.512 12.50 -0.13 13.00 -0.01 13.0 9.381 13.50 -0.14 14.00 -0.02 14.0 9.244 14.50 -0.16 15.00 -0.07 15.0 9.084 15.50 -0.23 15.88 -0.01 16.0 8.853 16.75 -0.39 17.00 0.76 17.0 8.542 17.25 -0.01 17.50 -3.16 17.5 8.538 17.75 -1.59 18.00 1.97 18.0						
6.0						
7.0 10.029 7.50 -0.10 8.00 -0.01 8.0 9.930 8.50 -0.11 9.00 0.02 9.0 9.822 9.50 -0.09 10.00 -0.03 10.0 9.733 10.50 -0.12 11.00 0.02 11.0 9.612 11.50 -0.10 12.00 -0.03 12.0 9.512 12.50 -0.13 13.00 -0.01 13.0 9.381 13.50 -0.14 14.00 -0.02 14.0 9.244 14.50 -0.16 15.00 -0.07 15.0 9.084 15.50 -0.23 15.88 -0.01 16.0 8.853 16.25 -0.24 16.50 -0.30 16.5 8.735 16.75 -0.39 17.00 0.76 17.0 8.542 17.25 -0.01 17.50 -3.16 17.5 8.538 17.75 -1.59 18.00 1.97 18.0 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
8.0 9.930 8.50 -0.11 9.00 0.02 9.0 9.822 9.50 -0.09 10.00 -0.03 10.0 9.733 10.50 -0.12 11.00 0.02 11.0 9.612 11.50 -0.10 12.00 -0.03 12.0 9.512 12.50 -0.13 13.00 -0.01 13.0 9.381 13.50 -0.14 14.00 -0.02 14.0 9.244 14.50 -0.16 15.00 -0.07 15.0 9.084 15.50 -0.23 15.88 -0.01 16.0 8.853 16.25 -0.24 16.50 -0.30 16.5 8.735 16.75 -0.39 17.00 0.76 17.0 8.542 17.25 -0.01 17.50 -3.16 17.5 8.538 17.75 -1.59 18.00 1.97 18.0 7.743 18.25 -0.61 18.50 0.48 18.5 7.440 18.75 -0.36 19.00 0.06 19.5						
9.0 9.822 9.50 -0.09 10.00 -0.03 10.0 9.733 10.50 -0.12 11.00 0.02 11.0 9.612 11.50 -0.10 12.00 -0.03 12.0 9.512 12.50 -0.13 13.00 -0.01 13.0 9.381 13.50 -0.14 14.00 -0.02 14.0 9.244 14.50 -0.16 15.00 -0.07 15.0 9.084 15.50 -0.23 15.88 -0.01 16.0 8.853 16.25 -0.24 16.50 -0.30 16.5 8.735 16.75 -0.39 17.00 0.76 17.0 8.542 17.25 -0.01 17.50 -3.16 17.5 8.538 17.75 -1.59 18.00 1.97 18.0 7.743 18.25 -0.61 18.50 0.48 18.5 7.440 18.75 -0.36 19.00 0.06 19.0 7.258 19.25 -0.33 19.50 0.22 19.5 7.092 19.75 -0.22 20.13 0.04 20.0 6.981 20.50 -0.19 21.00 0.03 21.0 6.787 21.50 -0.17 22.00 0.08 22.0 6.621 22.50 -0.09 23.00 -0.01 23.0 6.333 23.50 -0.10 24.00 0.00 24.0 6.435 24.50 -0.10 25.00 0.00 24.0 6.435 24.50 -0.09 23.00 -0.01 28.0 6.124 28.50 -0.09 23.00 -0.01 28.0 6.256 26.50 -0.09 23.00 0.00 30.0 5.981 30.50 -0.09 30.88 0.00 31.0 5.895 31.25 -0.08 31.50 0.01 28.0 6.124 28.50 -0.09 30.80 0.00 31.0 5.895 31.25 -0.06 32.00 -0.00 32.0 5.824 32.25 -0.06 32.50 0.00 32.0 5.824 32.25 -0.06 32.50 -0.00 32.5 5.823 33.50 -0.09 30.88 0.00 31.0 5.895 31.25 -0.08 31.50 0.01 28.0 6.124 28.50 -0.09 30.88 0.00 31.0 5.895 31.25 -0.08 31.50 0.05 31.5 5.853 31.75 -0.06 32.00 -0.04 32.0 5.824 32.25 -0.06 32.50 0.24 32.5 5.794 32.75 0.06 32.50 0.24 32.5 5.794 32.75 0.06 33.13 -0.44 33.0 5.823 33.50 -0.27 33.88 0.36 34.0 5.551 34.25 -0.08 31.50 -0.27 33.88 0.36 34.0 5.551 34.25 -0.08 31.50 -0.09 35.8 35.5 5.4724 35.65 -4.32 35.78 3.62 35.8 3.428 35.90 -3.41 36.03 9.22	7.0	10.029				
9.0 9.822 9.50 -0.09 10.00 -0.03 10.0 9.733 10.50 -0.12 11.00 0.02 11.0 9.612 11.50 -0.10 12.00 -0.03 12.0 9.512 12.50 -0.13 13.00 -0.01 13.0 9.381 13.50 -0.14 14.00 -0.02 14.0 9.244 14.50 -0.16 15.00 -0.07 15.0 9.084 15.50 -0.23 15.88 -0.01 16.0 8.853 16.25 -0.24 16.50 -0.30 16.5 8.735 16.75 -0.39 17.00 0.76 17.0 8.542 17.25 -0.01 17.50 -3.16 17.5 8.538 17.75 -1.59 18.00 1.97 18.0 7.743 18.25 -0.61 18.50 0.48 18.5 7.440 18.75 -0.36 19.00 0.06 19.0 7.258 19.25 -0.33 19.50 0.22 19.5 7.092 19.75 -0.22 20.13 0.04 20.0 6.981 20.50 -0.19 21.00 0.03 21.0 6.787 21.50 -0.17 22.00 0.08 22.0 6.621 22.50 -0.09 23.00 -0.01 23.0 6.333 23.50 -0.10 24.00 0.00 24.0 6.435 24.50 -0.10 25.00 0.00 24.0 6.435 24.50 -0.09 23.00 -0.01 28.0 6.124 28.50 -0.09 23.00 -0.01 28.0 6.256 26.50 -0.09 23.00 0.00 30.0 5.981 30.50 -0.09 30.88 0.00 31.0 5.895 31.25 -0.08 31.50 0.01 28.0 6.124 28.50 -0.09 30.80 0.00 31.0 5.895 31.25 -0.06 32.00 -0.00 32.0 5.824 32.25 -0.06 32.50 0.00 32.0 5.824 32.25 -0.06 32.50 -0.00 32.5 5.823 33.50 -0.09 30.88 0.00 31.0 5.895 31.25 -0.08 31.50 0.01 28.0 6.124 28.50 -0.09 30.88 0.00 31.0 5.895 31.25 -0.08 31.50 0.05 31.5 5.853 31.75 -0.06 32.00 -0.04 32.0 5.824 32.25 -0.06 32.50 0.24 32.5 5.794 32.75 0.06 32.50 0.24 32.5 5.794 32.75 0.06 33.13 -0.44 33.0 5.823 33.50 -0.27 33.88 0.36 34.0 5.551 34.25 -0.08 31.50 -0.27 33.88 0.36 34.0 5.551 34.25 -0.08 31.50 -0.09 35.8 35.5 5.4724 35.65 -4.32 35.78 3.62 35.8 3.428 35.90 -3.41 36.03 9.22	8.0	9.930	8.50	-0.11	9.00	0.02
10.0 9,733 10.50 -0.12 11.00 0.02 11.0 9,612 11.50 -0.10 12.00 -0.03 12.0 9,512 12.50 -0.13 13.00 -0.01 13.0 9,381 13.50 -0.14 14.00 -0.02 14.0 9,244 14.50 -0.16 15.00 -0.07 15.0 9,084 15.50 -0.23 15.88 -0.01 16.0 8,853 16.25 -0.24 16.50 -0.30 16.5 8,735 16.75 -0.39 17.00 0.76 17.0 8,542 17.25 -0.01 17.50 -3.16 17.5 8,538 17.75 -1.59 18.00 1.97 18.0 7,743 18.25 -0.61 18.50 0.48 18.5 7,440 18.75 -0.36 19.00 0.06 19.0 7,258 19.25 -0.33 19.50 0.22 19.5 7,092 19.75 -0.22 20.13 0.04 20.0 </th <th></th> <td></td> <td>9.50</td> <td>-0.09</td> <td>10.00</td> <td>-0.03</td>			9.50	-0.09	10.00	-0.03
11.0 9.612 11.50 -0.10 12.00 -0.03 12.0 9.512 12.50 -0.13 13.00 -0.01 13.0 9.381 13.50 -0.14 14.00 -0.02 14.0 9.244 14.50 -0.16 15.00 -0.07 15.0 9.084 15.50 -0.23 15.88 -0.01 16.0 8.853 16.25 -0.24 16.50 -0.30 16.5 8.735 16.75 -0.39 17.00 0.76 17.0 8.542 17.25 -0.01 17.50 -3.16 17.5 8.538 17.75 -1.59 18.00 1.97 18.0 7.743 18.25 -0.61 18.50 0.48 18.5 7.440 18.75 -0.36 19.00 0.06 19.0 7.258 19.25 -0.33 19.50 0.22 19.5 7.092 19.75 -0.22 20.13 0.04 20.0 6.981 20.50 -0.17 22.00 0.08 22.0 </th <th></th> <td></td> <td></td> <td></td> <td></td> <td></td>						
12.0 9.512 12.50 -0.13 13.00 -0.01 13.0 9.381 13.50 -0.14 14.00 -0.02 14.0 9.244 14.50 -0.16 15.00 -0.07 15.0 9.084 15.50 -0.23 15.88 -0.01 16.0 8.853 16.25 -0.24 16.50 -0.30 16.5 8.735 16.75 -0.39 17.00 0.76 17.0 8.542 17.25 -0.01 17.50 -3.16 17.5 8.538 17.75 -1.59 18.00 1.97 18.0 7.743 18.25 -0.61 18.50 0.48 18.5 7.440 18.75 -0.36 19.00 0.06 19.0 7.258 19.25 -0.33 19.50 0.22 19.5 7.092 19.75 -0.22 20.13 0.04 20.0 6.981 20.50 -0.19 21.00 0.03 21.0 6.787 21.50 -0.17 22.00 0.08 22.0 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td>						
13.0 9.381 13.50 -0.14 14.00 -0.02 14.0 9.244 14.50 -0.16 15.00 -0.07 15.0 9.084 15.50 -0.23 15.88 -0.01 16.0 8.853 16.25 -0.24 16.50 -0.30 16.5 8.735 16.75 -0.39 17.00 0.76 17.0 8.542 17.25 -0.01 17.50 -3.16 17.5 8.538 17.75 -1.59 18.00 1.97 18.0 7.743 18.25 -0.61 18.50 0.48 18.5 7.440 18.75 -0.36 19.00 0.06 19.0 7.258 19.25 -0.33 19.50 0.22 19.5 7.092 19.75 -0.22 20.13 0.04 20.0 6.981 20.50 -0.19 21.00 0.03 21.0 6.787 21.50 -0.17 22.00 0.08 22.0 6.621 22.50 -0.09 23.00 -0.01 23.0 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td>						
14.0 9.244 14.50 -0.16 15.00 -0.07 15.0 9.084 15.50 -0.23 15.88 -0.01 16.0 8.853 16.25 -0.24 16.50 -0.30 16.5 8.735 16.75 -0.39 17.00 0.76 17.0 8.542 17.25 -0.01 17.50 -3.16 17.5 8.538 17.75 -1.59 18.00 1.97 18.0 7.743 18.25 -0.61 18.50 0.48 18.5 7.440 18.75 -0.36 19.00 0.06 19.0 7.258 19.25 -0.33 19.50 0.22 19.5 7.092 19.75 -0.22 20.13 0.04 20.0 6.981 20.50 -0.19 21.00 0.03 21.0 6.787 21.50 -0.17 22.00 0.08 22.0 6.621 22.50 -0.09 23.00 -0.01 23.0 6.533 23.50 -0.10 25.00 0.02 24.0 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td>						
15.0 9.084 15.50 -0.23 15.88 -0.01 16.0 8.853 16.25 -0.24 16.50 -0.30 16.5 8.735 16.75 -0.39 17.00 0.76 17.0 8.542 17.25 -0.01 17.50 -3.16 17.5 8.538 17.75 -1.59 18.00 1.97 18.0 7.743 18.25 -0.61 18.50 0.48 18.5 7.440 18.75 -0.36 19.00 0.06 19.0 7.258 19.25 -0.33 19.50 0.22 19.5 7.092 19.75 -0.22 20.13 0.04 20.0 6.981 20.50 -0.19 21.00 0.03 21.0 6.787 21.50 -0.17 22.00 0.08 22.0 6.621 22.50 -0.09 23.00 -0.01 23.0 6.533 23.50 -0.10 24.00 0.00 24.0 6.435 24.50 -0.10 24.00 0.00 25.0						
16.0 8.853 16.25 -0.24 16.50 -0.30 16.5 8.735 16.75 -0.39 17.00 0.76 17.0 8.542 17.25 -0.01 17.50 -3.16 17.5 8.538 17.75 -1.59 18.00 1.97 18.0 7.743 18.25 -0.61 18.50 0.48 18.5 7.440 18.75 -0.36 19.00 0.06 19.0 7.258 19.25 -0.33 19.50 0.22 19.5 7.092 19.75 -0.22 20.13 0.04 20.0 6.981 20.50 -0.19 21.00 0.03 21.0 6.787 21.50 -0.17 22.00 0.08 22.0 6.621 22.50 -0.09 23.00 -0.01 23.0 6.533 23.50 -0.10 24.00 0.00 24.0 6.435 24.50 -0.10 24.00 0.00 25.0 6.337 25.50 -0.08 26.00 0.01 26.0						
16.5 8.735 16.75 -0.39 17.00 0.76 17.0 8.542 17.25 -0.01 17.50 -3.16 17.5 8.538 17.75 -1.59 18.00 1.97 18.0 7.743 18.25 -0.61 18.50 0.48 18.5 7.440 18.75 -0.36 19.00 0.06 19.0 7.258 19.25 -0.33 19.50 0.22 19.5 7.092 19.75 -0.22 20.13 0.04 20.0 6.981 20.50 -0.19 21.00 0.03 21.0 6.787 21.50 -0.17 22.00 0.08 22.0 6.621 22.50 -0.09 23.00 -0.01 23.0 6.533 23.50 -0.10 24.00 0.00 24.0 6.435 24.50 -0.10 25.00 0.02 25.0 6.337 25.50 -0.08 26.00 0.01 26.0 6.256 26.50 -0.07 27.00 0.00 27.0	15.0	9.084	15.50	-0.23	15.88	-0.01
16.5 8.735 16.75 -0.39 17.00 0.76 17.0 8.542 17.25 -0.01 17.50 -3.16 17.5 8.538 17.75 -1.59 18.00 1.97 18.0 7.743 18.25 -0.61 18.50 0.48 18.5 7.440 18.75 -0.36 19.00 0.06 19.0 7.258 19.25 -0.33 19.50 0.22 19.5 7.092 19.75 -0.22 20.13 0.04 20.0 6.981 20.50 -0.19 21.00 0.03 21.0 6.787 21.50 -0.17 22.00 0.08 22.0 6.621 22.50 -0.09 23.00 -0.01 23.0 6.533 23.50 -0.10 24.00 0.00 24.0 6.435 24.50 -0.10 25.00 0.02 25.0 6.337 25.50 -0.08 26.00 0.01 26.0 6.256 26.50 -0.07 27.00 0.00 27.0	16.0	8.853	16.25	-0.24	16.50	-0.30
17.0 8.542 17.25 -0.01 17.50 -3.16 17.5 8.538 17.75 -1.59 18.00 1.97 18.0 7.743 18.25 -0.61 18.50 0.48 18.5 7.440 18.75 -0.36 19.00 0.06 19.0 7.258 19.25 -0.33 19.50 0.22 19.5 7.092 19.75 -0.22 20.13 0.04 20.0 6.981 20.50 -0.19 21.00 0.03 21.0 6.787 21.50 -0.17 22.00 0.08 22.0 6.621 22.50 -0.09 23.00 -0.01 23.0 6.533 23.50 -0.10 24.00 0.00 24.0 6.435 24.50 -0.10 24.00 0.00 25.0 6.337 25.50 -0.08 26.00 0.01 26.0 6.256 26.50 -0.07 27.00 0.00 27.0 6.190 27.50 -0.07 28.00 0.01 28.0						
17.5 8.538 17.75 -1.59 18.00 1.97 18.0 7.743 18.25 -0.61 18.50 0.48 18.5 7.440 18.75 -0.36 19.00 0.06 19.0 7.258 19.25 -0.33 19.50 0.22 19.5 7.092 19.75 -0.22 20.13 0.04 20.0 6.981 20.50 -0.19 21.00 0.03 21.0 6.787 21.50 -0.17 22.00 0.08 22.0 6.621 22.50 -0.09 23.00 -0.01 23.0 6.533 23.50 -0.10 24.00 0.00 24.0 6.435 24.50 -0.10 24.00 0.00 24.0 6.435 24.50 -0.10 25.00 0.02 25.0 6.337 25.50 -0.08 26.00 0.01 26.0 6.256 26.50 -0.07 27.00 0.00 27.0 6.190 27.50 -0.07 28.00 0.01 28.0						
18.0 7.743 18.25 -0.61 18.50 0.48 18.5 7.440 18.75 -0.36 19.00 0.06 19.0 7.258 19.25 -0.33 19.50 0.22 19.5 7.092 19.75 -0.22 20.13 0.04 20.0 6.981 20.50 -0.19 21.00 0.03 21.0 6.787 21.50 -0.17 22.00 0.08 22.0 6.621 22.50 -0.09 23.00 -0.01 23.0 6.533 23.50 -0.10 24.00 0.00 24.0 6.435 24.50 -0.10 25.00 0.02 25.0 6.337 25.50 -0.08 26.00 0.01 26.0 6.256 26.50 -0.07 27.00 0.00 27.0 6.190 27.50 -0.07 27.00 0.04 29.0 6.070 29.50 -0.05 29.00 -0.04 29.0 6.070 29.50 -0.09 30.88 0.00 31.0						
18.5 7.440 18.75 -0.36 19.00 0.06 19.0 7.258 19.25 -0.33 19.50 0.22 19.5 7.092 19.75 -0.22 20.13 0.04 20.0 6.981 20.50 -0.19 21.00 0.03 21.0 6.787 21.50 -0.17 22.00 0.08 22.0 6.621 22.50 -0.09 23.00 -0.01 23.0 6.533 23.50 -0.10 24.00 0.00 24.0 6.435 24.50 -0.10 25.00 0.02 25.0 6.337 25.50 -0.08 26.00 0.01 26.0 6.256 26.50 -0.07 27.00 0.00 27.0 6.190 27.50 -0.07 27.00 0.01 28.0 6.124 28.50 -0.05 29.00 -0.04 29.0 6.070 29.50 -0.09 30.88 0.00 31.0 5.895 31.25 -0.08 31.50 0.05 31.5						
19.0 7.258 19.25 -0.33 19.50 0.22 19.5 7.092 19.75 -0.22 20.13 0.04 20.0 6.981 20.50 -0.19 21.00 0.03 21.0 6.787 21.50 -0.17 22.00 0.08 22.0 6.621 22.50 -0.09 23.00 -0.01 23.0 6.533 23.50 -0.10 24.00 0.00 24.0 6.435 24.50 -0.10 25.00 0.02 25.0 6.337 25.50 -0.08 26.00 0.01 26.0 6.256 26.50 -0.07 27.00 0.00 27.0 6.190 27.50 -0.07 28.00 0.01 28.0 6.124 28.50 -0.05 29.00 -0.04 29.0 6.070 29.50 -0.09 30.08 0.00 31.0 5.895 31.25 -0.09 30.88 0.00 31.5 5.853 31.75 -0.06 32.00 -0.00 32.0						
19.5 7.092 19.75 -0.22 20.13 0.04 20.0 6.981 20.50 -0.19 21.00 0.03 21.0 6.787 21.50 -0.17 22.00 0.08 22.0 6.621 22.50 -0.09 23.00 -0.01 23.0 6.533 23.50 -0.10 24.00 0.00 24.0 6.435 24.50 -0.10 25.00 0.02 25.0 6.337 25.50 -0.08 26.00 0.01 26.0 6.256 26.50 -0.07 27.00 0.00 27.0 6.190 27.50 -0.07 28.00 0.01 28.0 6.124 28.50 -0.05 29.00 -0.04 29.0 6.070 29.50 -0.09 30.00 0.00 31.0 5.895 31.25 -0.08 31.50 0.05 31.5 5.853 31.75 -0.06 32.00 -0.05 32.0 5.824 32.25 -0.06 32.50 0.24 32.5						
20.0 6.981 20.50 -0.19 21.00 0.03 21.0 6.787 21.50 -0.17 22.00 0.08 22.0 6.621 22.50 -0.09 23.00 -0.01 23.0 6.533 23.50 -0.10 24.00 0.00 24.0 6.435 24.50 -0.10 25.00 0.02 25.0 6.337 25.50 -0.08 26.00 0.01 26.0 6.256 26.50 -0.07 27.00 0.00 27.0 6.190 27.50 -0.07 28.00 0.01 28.0 6.124 28.50 -0.07 29.00 -0.04 29.0 6.070 29.50 -0.09 30.00 0.00 31.0 5.895 31.25 -0.08 31.50 0.05 31.5 5.853 31.75 -0.06 32.00 -0.00 32.0 5.824 32.25 -0.06 32.50 0.24 32.5 5.794 32.75 0.06 33.13 -0.44 33.0						
21.0 6.787 21.50 -0.17 22.00 0.08 22.0 6.621 22.50 -0.09 23.00 -0.01 23.0 6.533 23.50 -0.10 24.00 0.00 24.0 6.435 24.50 -0.10 25.00 0.02 25.0 6.337 25.50 -0.08 26.00 0.01 26.0 6.256 26.50 -0.07 27.00 0.00 27.0 6.190 27.50 -0.07 28.00 0.01 28.0 6.124 28.50 -0.05 29.00 -0.04 29.0 6.070 29.50 -0.09 30.00 0.00 31.0 5.891 30.50 -0.09 30.88 0.00 31.0 5.895 31.25 -0.08 31.50 0.05 31.5 5.853 31.75 -0.06 32.00 -0.00 32.0 5.824 32.25 -0.06 32.50 0.24 32.5 5.794 32.75 0.06 33.13 -0.44 33.0						
22.0 6.621 22.50 -0.09 23.00 -0.01 23.0 6.533 23.50 -0.10 24.00 0.00 24.0 6.435 24.50 -0.10 25.00 0.02 25.0 6.337 25.50 -0.08 26.00 0.01 26.0 6.256 26.50 -0.07 27.00 0.00 27.0 6.190 27.50 -0.07 28.00 0.01 28.0 6.124 28.50 -0.05 29.00 -0.04 29.0 6.070 29.50 -0.09 30.00 0.00 30.0 5.981 30.50 -0.09 30.88 0.00 31.0 5.895 31.25 -0.08 31.50 0.05 31.5 5.853 31.75 -0.06 32.50 -0.00 32.0 5.824 32.25 -0.06 32.50 0.24 32.5 5.794 32.75 0.06 33.13 -0.44 33.0 5.823 33.50 -0.27 33.88 0.36 34.0	20.0	6.981	20.50	-0.19	21.00	0.03
22.0 6.621 22.50 -0.09 23.00 -0.01 23.0 6.533 23.50 -0.10 24.00 0.00 24.0 6.435 24.50 -0.10 25.00 0.02 25.0 6.337 25.50 -0.08 26.00 0.01 26.0 6.256 26.50 -0.07 27.00 0.00 27.0 6.190 27.50 -0.07 28.00 0.01 28.0 6.124 28.50 -0.05 29.00 -0.04 29.0 6.070 29.50 -0.09 30.00 0.00 30.0 5.981 30.50 -0.09 30.88 0.00 31.0 5.895 31.25 -0.08 31.50 0.05 31.5 5.853 31.75 -0.06 32.50 -0.00 32.0 5.824 32.25 -0.06 32.50 0.24 32.5 5.794 32.75 0.06 33.13 -0.44 33.0 5.823 33.50 -0.27 33.88 0.36 34.0	21.0	6.787	21.50	-0.17	22.00	0.08
23.0 6.533 23.50 -0.10 24.00 0.00 24.0 6.435 24.50 -0.10 25.00 0.02 25.0 6.337 25.50 -0.08 26.00 0.01 26.0 6.256 26.50 -0.07 27.00 0.00 27.0 6.190 27.50 -0.07 28.00 0.01 28.0 6.124 28.50 -0.05 29.00 -0.04 29.0 6.070 29.50 -0.09 30.00 0.00 30.0 5.981 30.50 -0.09 30.88 0.00 31.0 5.895 31.25 -0.08 31.50 0.05 31.5 5.853 31.75 -0.06 32.00 -0.00 32.0 5.824 32.25 -0.06 32.50 0.24 32.5 5.794 32.75 0.06 33.13 -0.44 33.0 5.823 33.50 -0.27 33.88 0.36 34.0 5.551 34.25 -0.00 34.50 -1.67 34.5				-0.09		
24.0 6.435 24.50 -0.10 25.00 0.02 25.0 6.337 25.50 -0.08 26.00 0.01 26.0 6.256 26.50 -0.07 27.00 0.00 27.0 6.190 27.50 -0.07 28.00 0.01 28.0 6.124 28.50 -0.05 29.00 -0.04 29.0 6.070 29.50 -0.09 30.00 0.00 30.0 5.981 30.50 -0.09 30.88 0.00 31.0 5.895 31.25 -0.08 31.50 0.05 31.5 5.853 31.75 -0.06 32.00 -0.00 32.0 5.824 32.25 -0.06 32.50 0.24 32.5 5.794 32.75 0.06 33.13 -0.44 33.0 5.823 33.50 -0.27 33.88 0.36 34.0 5.551 34.25 -0.00 34.50 -1.67 34.5 5.549 34.75 -0.84 34.93 1.44 35.0						0.00
25.0 6.337 25.50 -0.08 26.00 0.01 26.0 6.256 26.50 -0.07 27.00 0.00 27.0 6.190 27.50 -0.07 28.00 0.01 28.0 6.124 28.50 -0.05 29.00 -0.04 29.0 6.070 29.50 -0.09 30.00 0.00 30.0 5.981 30.50 -0.09 30.88 0.00 31.0 5.895 31.25 -0.08 31.50 0.05 31.5 5.853 31.75 -0.06 32.00 -0.00 32.0 5.824 32.25 -0.06 32.50 0.24 32.5 5.794 32.75 0.06 33.13 -0.44 33.0 5.823 33.50 -0.27 33.88 0.36 34.0 5.551 34.25 -0.00 34.50 -1.67 34.5 5.549 34.75 -0.84 34.93 1.44 35.0 5.130 35.10 -0.33 35.22 -3.18 35.5						
26.0 6.256 26.50 -0.07 27.00 0.00 27.0 6.190 27.50 -0.07 28.00 0.01 28.0 6.124 28.50 -0.05 29.00 -0.04 29.0 6.070 29.50 -0.09 30.00 0.00 30.0 5.981 30.50 -0.09 30.88 0.00 31.0 5.895 31.25 -0.08 31.50 0.05 31.5 5.853 31.75 -0.06 32.00 -0.00 32.0 5.824 32.25 -0.06 32.50 0.24 32.5 5.794 32.75 0.06 33.13 -0.44 33.0 5.823 33.50 -0.27 33.88 0.36 34.0 5.551 34.25 -0.00 34.50 -1.67 34.5 5.549 34.75 -0.84 34.93 1.44 35.0 5.130 35.10 -0.33 35.22 -3.18 35.2 5.063 35.35 -1.13 35.50 -10.63 35.8 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td>						
27.0 6.190 27.50 -0.07 28.00 0.01 28.0 6.124 28.50 -0.05 29.00 -0.04 29.0 6.070 29.50 -0.09 30.00 0.00 30.0 5.981 30.50 -0.09 30.88 0.00 31.0 5.895 31.25 -0.08 31.50 0.05 31.5 5.853 31.75 -0.06 32.00 -0.00 32.0 5.824 32.25 -0.06 32.50 0.24 32.5 5.794 32.75 0.06 33.13 -0.44 33.0 5.823 33.50 -0.27 33.88 0.36 34.0 5.551 34.25 -0.00 34.50 -1.67 34.5 5.549 34.75 -0.84 34.93 1.44 35.0 5.130 35.10 -0.33 35.22 -3.18 35.2 5.063 35.35 -1.13 35.50 -10.63 35.8 3.428 35.90 -3.41 36.03 9.22						
28.0 6.124 28.50 -0.05 29.00 -0.04 29.0 6.070 29.50 -0.09 30.00 0.00 30.0 5.981 30.50 -0.09 30.88 0.00 31.0 5.895 31.25 -0.08 31.50 0.05 31.5 5.853 31.75 -0.06 32.00 -0.00 32.0 5.824 32.25 -0.06 32.50 0.24 32.5 5.794 32.75 0.06 33.13 -0.44 33.0 5.823 33.50 -0.27 33.88 0.36 34.0 5.551 34.25 -0.00 34.50 -1.67 34.5 5.549 34.75 -0.84 34.93 1.44 35.0 5.130 35.10 -0.33 35.22 -3.18 35.2 5.063 35.35 -1.13 35.50 -10.63 35.5 4.724 35.65 -4.32 35.78 3.62 35.8 3.428 35.90 -3.41 36.03 9.22						
29.0 6.070 29.50 -0.09 30.00 0.00 30.0 5.981 30.50 -0.09 30.88 0.00 31.0 5.895 31.25 -0.08 31.50 0.05 31.5 5.853 31.75 -0.06 32.00 -0.00 32.0 5.824 32.25 -0.06 32.50 0.24 32.5 5.794 32.75 0.06 33.13 -0.44 33.0 5.823 33.50 -0.27 33.88 0.36 34.0 5.551 34.25 -0.00 34.50 -1.67 34.5 5.549 34.75 -0.84 34.93 1.44 35.0 5.130 35.10 -0.33 35.22 -3.18 35.2 5.063 35.35 -1.13 35.50 -10.63 35.5 4.724 35.65 -4.32 35.78 3.62 35.8 3.428 35.90 -3.41 36.03 9.22						
30.0 5.981 30.50 -0.09 30.88 0.00 31.0 5.895 31.25 -0.08 31.50 0.05 31.5 5.853 31.75 -0.06 32.00 -0.00 32.0 5.824 32.25 -0.06 32.50 0.24 32.5 5.794 32.75 0.06 33.13 -0.44 33.0 5.823 33.50 -0.27 33.88 0.36 34.0 5.551 34.25 -0.00 34.50 -1.67 34.5 5.549 34.75 -0.84 34.93 1.44 35.0 5.130 35.10 -0.33 35.22 -3.18 35.2 5.063 35.35 -1.13 35.50 -10.63 35.5 4.724 35.65 -4.32 35.78 3.62 35.8 3.428 35.90 -3.41 36.03 9.22						
31.0 5.895 31.25 -0.08 31.50 0.05 31.5 5.853 31.75 -0.06 32.00 -0.00 32.0 5.824 32.25 -0.06 32.50 0.24 32.5 5.794 32.75 0.06 33.13 -0.44 33.0 5.823 33.50 -0.27 33.88 0.36 34.0 5.551 34.25 -0.00 34.50 -1.67 34.5 5.549 34.75 -0.84 34.93 1.44 35.0 5.130 35.10 -0.33 35.22 -3.18 35.2 5.063 35.35 -1.13 35.50 -10.63 35.5 4.724 35.65 -4.32 35.78 3.62 35.8 3.428 35.90 -3.41 36.03 9.22						
31.0 5.895 31.25 -0.08 31.50 0.05 31.5 5.853 31.75 -0.06 32.00 -0.00 32.0 5.824 32.25 -0.06 32.50 0.24 32.5 5.794 32.75 0.06 33.13 -0.44 33.0 5.823 33.50 -0.27 33.88 0.36 34.0 5.551 34.25 -0.00 34.50 -1.67 34.5 5.549 34.75 -0.84 34.93 1.44 35.0 5.130 35.10 -0.33 35.22 -3.18 35.2 5.063 35.35 -1.13 35.50 -10.63 35.5 4.724 35.65 -4.32 35.78 3.62 35.8 3.428 35.90 -3.41 36.03 9.22	30.0	5.981	30.50	-0.09	30.88	0.00
31.5 5.853 31.75 -0.06 32.00 -0.00 32.0 5.824 32.25 -0.06 32.50 0.24 32.5 5.794 32.75 0.06 33.13 -0.44 33.0 5.823 33.50 -0.27 33.88 0.36 34.0 5.551 34.25 -0.00 34.50 -1.67 34.5 5.549 34.75 -0.84 34.93 1.44 35.0 5.130 35.10 -0.33 35.22 -3.18 35.2 5.063 35.35 -1.13 35.50 -10.63 35.5 4.724 35.65 -4.32 35.78 3.62 35.8 3.428 35.90 -3.41 36.03 9.22			31.25	-0.08		
32.0 5.824 32.25 -0.06 32.50 0.24 32.5 5.794 32.75 0.06 33.13 -0.44 33.0 5.823 33.50 -0.27 33.88 0.36 34.0 5.551 34.25 -0.00 34.50 -1.67 34.5 5.549 34.75 -0.84 34.93 1.44 35.0 5.130 35.10 -0.33 35.22 -3.18 35.2 5.063 35.35 -1.13 35.50 -10.63 35.5 4.724 35.65 -4.32 35.78 3.62 35.8 3.428 35.90 -3.41 36.03 9.22						
32.5 5.794 32.75 0.06 33.13 -0.44 33.0 5.823 33.50 -0.27 33.88 0.36 34.0 5.551 34.25 -0.00 34.50 -1.67 34.5 5.549 34.75 -0.84 34.93 1.44 35.0 5.130 35.10 -0.33 35.22 -3.18 35.2 5.063 35.35 -1.13 35.50 -10.63 35.5 4.724 35.65 -4.32 35.78 3.62 35.8 3.428 35.90 -3.41 36.03 9.22						
33.0 5.823 33.50 -0.27 33.88 0.36 34.0 5.551 34.25 -0.00 34.50 -1.67 34.5 5.549 34.75 -0.84 34.93 1.44 35.0 5.130 35.10 -0.33 35.22 -3.18 35.2 5.063 35.35 -1.13 35.50 -10.63 35.5 4.724 35.65 -4.32 35.78 3.62 35.8 3.428 35.90 -3.41 36.03 9.22			22.23			
34.0 5.551 34.25 -0.00 34.50 -1.67 34.5 5.549 34.75 -0.84 34.93 1.44 35.0 5.130 35.10 -0.33 35.22 -3.18 35.2 5.063 35.35 -1.13 35.50 -10.63 35.5 4.724 35.65 -4.32 35.78 3.62 35.8 3.428 35.90 -3.41 36.03 9.22						
34.5 5.549 34.75 -0.84 34.93 1.44 35.0 5.130 35.10 -0.33 35.22 -3.18 35.2 5.063 35.35 -1.13 35.50 -10.63 35.5 4.724 35.65 -4.32 35.78 3.62 35.8 3.428 35.90 -3.41 36.03 9.22						
35.0 5.130 35.10 -0.33 35.22 -3.18 35.2 5.063 35.35 -1.13 35.50 -10.63 35.5 4.724 35.65 -4.32 35.78 3.62 35.8 3.428 35.90 -3.41 36.03 9.22						
35.2 5.063 35.35 -1.13 35.50 -10.63 35.5 4.724 35.65 -4.32 35.78 3.62 35.8 3.428 35.90 -3.41 36.03 9.22						
35.5 4.724 35.65 -4.32 35.78 3.62 35.8 3.428 35.90 -3.41 36.03 9.22						
35.5 4.724 35.65 -4.32 35.78 3.62 35.8 3.428 35.90 -3.41 36.03 9.22	35.2	5.063	35.35	-1.13	35.50	-10.63
35.8 3.428 35.90 -3.41 36.03 9.22						
1.70						
	,	,	-			2.70

TABLE 40. TOTAL SPENT SODIUM BICARBONATE MEDIA - TITRATION 2 (continued).

ml 0.984M HCl 36.3	<u>pH</u> 2.412	<u>Vol (ml)</u> 36.40	<u>d(pH)/d(m1)</u> -0.66	Vol (ml) 36.53	d2(pH)/d(m1) ² 0.85
36.5	2.279	36.65	-0.45	36.78	-0.25
36.8	2.143	36.90	-0.51	37.20	0.49
37.0	2.040	37.50	-0.22	38.00	0.10
38.0	1.818	38.50	-0.12	39.00	0.02
39.0	1.699	39.50	-0.10	40.00	0.02
40.0	1.604	40.50	-0.08	41.00	0.02
41.0	1.526	41.50	-0.06	42.00	-0.00
42.0	1.468	42.50	-0.06	32.00	-0.00
43.0	1.409	21.50	0.03	10.75	0.00

NOTE: This sample was taken from the first batch of spent media which was dried in the oven before being broken into size fractions. The spent media dried into a hard cake causing extensive work to break down into particle sizes.

Figure C-118. Curve For The Second Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-119. First Derivative Of The Second Titration Curve For Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-120. Second Derivative Of The Second Titration Curve For Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 41. TOTAL SPENT SODIUM BICARBONATE MEDIA - TITRATION 3.

ml 0.984M HCl	<u>P</u> H	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{d(m1)^2}$
0.0	9.732	0.50	-0.09	1.00	-0.04
1.0	9.637	1.50	-0.14	2.00	0.07
2.0	9.499	2.50	-0.07	3.00	-0.07
3.0	9.426	3.50	-0.14	4.00	-0.10
4.0	9.285	4.50	-0.24	5.00	-0.42
5.0	9.045	5.50	-0.66	5.88	0.47
6.0	8.385	6.25	-0.31	6.50	-0.23
6.5	8.232	6.75	-0.42	7.00	-0.15
7.0	8.022	7.25	-0.49	7.50	6.47
7.5	7.775	7.75	2.74	8.13	-3.82
8.0	9.146	8.50	-0.12	9.00	-0.30
9.0	9.025	9.50	-0.42	9.88	-1.61
10.0	8.604	10.25	-1.63	10.50	2.19
10.5	7.788	10.75	-0.54	11.00	-0.01
11.0	7.520	11.25	-0.54	11.50	0.77
11.5	7.249	11.75	-0.16	12.00	-0.14
12.0	7.171	12.25	-0.23	12.50	0.42
12.5	7.057	12.75	-0.02	13.00	-0.64
13.0	7.047	13.25	-0.34	13.50	0.51
13.5	6.878	13.75	-0.08	14.13	-0.07
14.0	6.837	14.50	-0.14	15.00	0.01
15.0	6.702	15.50			
			-0.12	16.00	0.01
16.0	6.578	16.50	-0.11	17.00	0.03
17.0	6.468	17.50	-0.08	18.00	-0.02
18.0	6.392	18.50	-0.10	19.00	0.03
19.0	6.294	19.50	-0.07	20.00	-0.01
20.0	6.223	20.50	-0.08	21.00	0.00
21.0	6.140	21.50	-0.08	22.00	-0.02
22.0	6.060	22.50	-0.10	23.00	-0.02
23.0	5.964	23.50	-0.11	23.83	0.05
24.0	5.853	24.15	-0.08	24.28	0.21
24.3	5.830	24.40	-0.03	24.53	-0.25
24.5	5.825	24.65	-0.09	24.78	-1.39
24.8	5.799	24.90	-0.43	25.05	
					1.39
25.0	5.712	25.20	-0.02	25.40	-0.44
25.4	5.705	25.60	-0.19	25.80	-0.11
25.8	5.627	26.00	-0.24	26.20	-0.19
26.2	5.531	26.40	-0.32	26.60	-0.01
26.6	5.405	26.80	-0.32	27.03	-0.64
27.0	5.278	27.25	-0.61	27.50	-6.81
27.5	4.975	27.75	-4.01	27.95	5.72
28.0	2.970	28.15	-1.72	28.28	5.28
28.3	2.454	28.40	-0.40	28.50	-0.97
28.5	2.374	28.60	-0.59	28.73	
28.7	2.255	28.85			0.81
			-0.39	29.00	0.14
29.0	2.137	29.15	-0.35	29.28	0.22
29.3	2.032	29.40	-0.29	29.50	0.77

TABLE 41. TOTAL SPENT SODIUM BICARBONATE MEDIA - TITRATION 3 (continued).

ml 0.984M HCl	pH_	Vol (ml)	$\frac{d(pH)/d(m1)}{d(m1)}$	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{2}$
29.5	1.973	29.60	-0.14	29.73	-0.45
29.7	1.945	29.85	-0.25	30.18	0.16
30.0	1.869	30.50	-0.15	31.00	0.05
31.0	1.718	31.50	-0.10	32.00	0.01
32.0	1.621	32.50	-0.09	33.00	0.02
33.0	1.534	33.50	-0.06	34.00	0.00
34.0	1.470	34.50	-0.06	26.00	-0.01
35.0	1.407	17.50	0.04	8.75	0.00

NOTE: This sample was taken from the second batch of spent media which was broken into size fractions as it dried. This approach greatly reduced the time required to break down the media into particle sizes.

Figure C-121. Curve For The Third Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-122. First Derivative Of The Third Titration Curve For Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-123. Second Derivative Of The Third Titration Curve For Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 42. TOTAL SPENT SODIUM BICARBONATE MEDIA - TITRATION 4.

					
ml 0.984M HCl	<u>pH</u>	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	9.987	0.50	-0.03	1.00	-0.07
1.0	9.959	1.50	-0.10	2.00	-0.03
2.0	9.857	2.50	-0.13	3.00	0.03
3.0	9.723	3.50	-0.11	4.00	-0.02
4.0	9.618	4.50	-0.12	5.00	-0.01
5.0	9.497	5.50	-0.13	6.00	-0.02
6.0	9.368	6.50	-0.15	7.00	-0.07
7.0	9.219	7.50	-0.22	8.00	-0.13
8.0 ⁻	9.004	8.50	-0.34	8.88	-0.33
9.0	8.663	9.25	-0.59	9.50	-0.67
9.5	8.368	9.75	-0.93	10.00	0.72
10.0	7.905	10.25	-0.57	10.50	0.05
10.5	7.622	10.75	-0.54	11.00	0.40
11.0	7.351	11.25	-0.34		0.28
				11.50	
11.5	7.180	11.75	-0.20	12.00	-0.08
12.0	7.079	12.25	-0.24	12.63	0.11
12.5	6.957	13.00	-0.16	13.50	0.06
13.5	6.792	14.00	-0.10	14.50	0.00
14.5	6.691	15.00	-0.10	15.50	0.03
15.5	6.594	16.00	-0.07	16.50	-0.01
16.5	6.528	17.00	-0.08	17.50	-0.03
17.5	6.452	18.00	-0.10	18.50	0.05
18.5	6.350	19.00	-0.05	19.50	-0.05
19.5	6.297	20.00	-0.10	20.50	
	6.199				0.02
20.5		21.00	-0.08	21.50	-0.01
21.5	6.118 -	22.00	-0.09	22.50	-0.01
22.5	6.031	23.00	-0.09	23.50	-0.02
23.5	5.938	24.00	-0.11	24.33	0.02
24.5	5.828	24.65	-0.10	24.78	0.80
24.8	5.798	24.90	0.10	25.08	-0.83
25.0	5.818	25.25	-0.19	25.50	0.42
25.5	5.723	25.75	0.02	26.00	-0.94
26.0	5.733	26.25	-0.45	26.43	
					0.54
26.5	5.509	26.60	-0.26	26.73	1.20
26.7	5.457	26.85	0.04	27.00	-2.86
27.0	5.469	27.15	-0.82	27.28	1.01
27.3	5.224	27.40	-0.56	27.50	2.97
27.5	5.111	27.60	0.03	27.73	-6.39
27.7	5.117	27.85	-1.57	27.98	-10.35
28.0	4.647	28.10	-4.15	28.20	-0.98
28.2	3.816	28.30	-4.35	28.40	12.85
28.4	2.946	28.50	-1.78	28.60	4.25
28.6	2.590	28.70	-0.93	28.80	
					1.55
28.8	2.404	28.90	-0.62	29.08	0.62
29.0	2.280	29.25	-0.40	29.50	0.37
29.5	2.078	29.75	-0.22	30.00	0.08

TABLE 42. TOTAL SPENT SODIUM BICARBONATE MEDIA - TITRATION 4 (continued).

ml 0.984M HCl	рН	Vol. (ml)	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
30.0	1.969	30.25	-0.18	30.50	0.10
30.5	1.879	30.75	-0.13	31.13	0.05
31.0	1.814	31.50	-0.10	32.00	0.02
32.0	1.719	32.50	-0.07	33.00	0.00
33.0	1.647	33.50	-0.07	34.00	0.02
34.0	1.579	34.50	-0.05	26.00	-0.01
35.0	1.527	17.50	0.04	8.75	0.00

NOTE: This sample was taken from the second batch of spent media which was broken into size fractions as it dried. This approach greatly reduced the time required to break down the media into particle sizes.

Figure C-124. Curve For The Fourth Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-125. First Derivative Of The Forth Titration Curve For Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-126. Second Derivative Of The Fourth Titration Curve For Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 43. SPENT 1000 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

					
ml 0.984M HCl	pH_	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{}$
0.0	$\overline{11.512}$	0.50	0.00	1.00	-0.73
1.0	11.512	1.50	-0.73	2.00	0.49
2.0	10.783	2.50	-0.24	3.00	0.07
3.0	10.765	3.50	-0.16	4.00	0.05
		4.50			
4.0	10.381		-0.11	5.00	-0.02
5.0	10.267	5.50	-0.14	6.00	0.05
6.0	10.130	6.50	-0.09	7.00	-0.03
7.0	10.040	7.50	-0.12	8.00	0.01
8.0	9.923	8.50	-0.11	9.00	-0.01
9.0	9.811	9.50	-0.12	10.00	0.01
10.0	9.691	10.50	-0.11	11.00	-0.06
11.0	9.585	11.50	-0.16	12.00	0.02
12.0	9.424	12.50	-0.14	13.00	-0.02
13.0	9.285	13.50	-0.16	14.00	-0.11
14.0	9.123	14.50	-0.28	14.88	0.17
15.0	8.846	15.25	-0.15	15.50	-0.57
15.5	8.770	15.75	-0.44	16.00	-0.76
16.0	8.551	16.25	-0.82	16.50	-0.76
	8.141		-0.95		
16.5		16.75		17.00	0.72
17.0	7.666	17.25	-0.59	17.50	0.43
17.5	7.371	17.75	-0.38	18.13	0.19
18.0	7.183	18.50	-0.24	19.00	0.05
19.0	6.947	19.50	-0.18	20.00	0.04
20.0	6.764	20.50	-0.14	21.00	0.02
21.0	6.624	21.50	-0.12	22.00	0.01
22.0	6.504	22.50	-0.11	23.00	0.01
23.0	6.397	23.50	-0.10	24.00	0.01
24.0	6.299	24.50	-0.08	25.00	-0.01
25.0	6.215	25.50	-0.10	26.00	0.01
26.0	6.119	26.50	-0.09	27.00	-0.01
27.0	6.032	27.50	-0.10	27.78	0.34
28.0	5.935	28.05	0.09	28.10	0.50
28.1	5.944	28.15	0.14	28.20	-0.60
28.2	5.958	28.25	0.08	28.30	-0.10
28.3	5.966	28.35	0.07	28.40	-0.50
28.4	5.973	28.45	0.02	28.50	-0.10
28.5	5.975	28.55	0.01	28.60	0.00
28.6	5.976	28.65	0.01	28.75	
28.7					-0.43
	5.977	28.85	-0.08	28.98	0.09
29.0	5.954	29.10	-0.05	29.23	-0.37
29.2	5.943	29.35	-0.15	29.50	0.22
29.5	5.899	29.65	-0.08	29.78	-0.10
29.8	5.875	29.90	-0.10	30.08	-0.25
30.0	5.854	30.25	-0.19	30.50	-0.05
30.5	5.758	30.75	-0.22	31.00	-0.22
31.0	5.650	31.25	-0.33	31.45	0.36
31.5	5.487	31.65	-0.18	31.78	0.31

TABLE 43. SPENT 1000 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1 (continued).

7 0 004% UCT	11	V-1 (m1)		Val (ml)	$d2(pH)/d(m1)^2$
ml 0.984M HCl	<u>pH</u>	<u>Vol (ml)</u>	$\frac{d(pH)/d(m1)}{2}$	<u>Vol (ml)</u>	
31.8	5.432	31.90	-0.10	32.08 32.45	-1.38 -0.51
32.0	5.411	32.25	-0.59		
32.5	5.117	32.65	-0.79	32.78	-6.72
32.8	4.880	32.90	-2.47	32.97	-23.60
33.0	4.386	33.05	-6.01	33.10	-1.60
33.1	3.785	33.15	-6.17	33.20	30.70
33.2	3.168	33.25	-3.10	33.30	14.60
33.3	2.858	33.35	-1.64	33.40	3.90
33.4	2.694	33.45	-1.25	33.50	4.80
33.5	2.569	33.55	-0.77	33.60	3.40
33.6	2.492	33.65	-0.43	33.70	-2.20
33.7	2.449	33.75	-0.65	33.80	0.80
33.8	2.384	33.85	-0.57	33.90	0.40
33.9	2.327	33.95	-0.53	34.05	0.72
34.0	2.274	34.15	-0.39	34.28	0.67
34.3	2.158	34.40	-0.22	34.58	-0.13
34.5	2.114	34.75	-0.26	35.00	0.12
35.0	1.982	35.25	-0.20	35.50	0.17
35.5	1.880	35.75	-0.12	36.13	0.01
36.0	1.820	36.50	-0.11	37.00	0.01
37.0	1.711	37.50	-0.09	38.00	0.03
38.0	1.616	38.50	-0.06	39.00	0.00
39.0	1.554	39.50	-0.06	40.00	0.01
40.0	1.493	40.50	-0.05	41.00	0.01
41.0	1.444	41.50	-0.04	31.25	-0.00
42.0	1.404	21.00	0.03	10.50	0.00

NOTE: This sample was taken from the first batch of spent media which was dried in the oven before being broken into size fractions. The spent media dried into a hard cake causing extensive work to break down into particle sizes.

Figure C-127. Curve For The First Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-128. First Derivative Of The First Titration Curve For Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-129. Second Derivative Of The First Titration Curve For Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 44. SPENT 1000 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

					
ml 0.984M HCl	рН	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	9.466	0.50	-0.31	1.00	0.06
1.0	9.157	1.50	-0.25	2.00	0.01
2.0	8.911	2.50	-0.24	2.88	-0.24
3.0	8.671	3.25	-0.42	3.50	-0.14
3.5	8.460	3.75	-0.49	4.00	-0.62
4.0	8.214	4.25	-0.80	4.50	0.44
4.5	7.813	4.75	-0.58	5.00	0.67
5.0	7.523	5.25	-0.24	5.50	-0.04
5.5	7.401	5.75	-0.26	6.00	0.05
6.0	7.269	6.25	-0.24	6.50	0.28
	7.149	6.75	-0.10	7.00	-0.14
6.5					
7.0	7.099	7.25	-0.17	7.63	0.02
7.5	7.015	8.00	-0.15	8.50	0.04
8.5	6.863	9.00	-0.11	9.50	0.03
9.5	6.750	10.00	-0.09	10.50	0.01
10.5	6.663	11.00	-0.08	11.50	0.01
11.5	6.585	12.00	-0.07	12.50	-0.00
12.5	6.514	13.00	-0.07	13.50	0.01
13.5	6.440	14.00	-0.06	14.50	0.00
14.5	6.379	15.00	-0.06	15.50	0.00
15.5	6.318	16.00	-0.06	16.50	0.01
16.5	6.258	17.00	-0.05	17.50	-0.06
17.5	6.207	18.00	-0.11	18.50	0.04
				19.50	
18.5	6.097	19.00	-0.07		-0.00
19.5	6.025	20.00	-0.07	20.38	0.05
20.5	5.953	20.75	-0.03	21.00	-0.19
21.0	5.936	21.25	-0.13	21.43	0.09
21.5	5.871	21.60	-0.10	21.73	0.40
21.7	5.851	21.85	0.00	22.05	-0.36
22.0	5.851	22.25	-0.15	22.50	-0.10
22.5	5.778	22.75	,-0.20	23.00	-0.17
23.0	5.680	23.25	-0.28	23.50	-0.17
23.5	5.540	23.75	-0.36	24.00	-0.31
24.0	5.358	24.25	-0.52	24.43	-2.45
24.5	5.099	24.60	-1.37	24.73	-4.34
24.7	4.824	24.85	-2.46	24.95	-27.25
25.0	4.086	25.05	-7.91	25.10	41.50
25.1	3.295	25.15	-3.76	25.20	17.70
25.2		25.25	-1.99	25.30	10.30
	2.919				
25.3	2.720	25.35	-0.96	25.40	-0.60
25.4	2.624	25.45	-1.02	25.50	1.70
25.5	2.522	25.55	-0.85	25.60	2.30
25.6	2.437	25.65	-0.62	25.70	1.60
25.7	2.375	25.75	-0.46	25.83	2.03
25.8	2.329	25.90	-0.15	26.08	-0.68
26.0	2.298	26.25	-0.39	26.50	0.39
26.5	2.101	26.75	-0.20	27.00	0.02

TABLE 44. SPENT 1000 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2 (continued).

m1 0.984M HC1	pH	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
mi 0.984M HCl 27.0	2.002	27.25	-0.19	27.50	0.05
27.5	1.907	27.75	-0.16	28.13	0.08
28.0	1.825	28.50	-0.10	29.00	0.00
29.0	1.723	29.50	-0.10	30.00	0.04
30.0	1.622	30.50	-0.06	31.00	0.01
31.0	1.559	31.50	-0.06	32.00	0.01
32.0	1.504	32.50	-0.05	33.00	0.00
33.0	1.457	33.50	-0.05	34.00	0.00
34.0	1.410	34.50	-0.04	26.00	-0.00
35.0	1.367	17.50	0.04	8.75	0.00

NOTE: This sample was taken from the second batch of spent media which was broken into size fractions as it dried. This approach greatly reduced the time required to break down the media into particle sizes.

Figure C-130. Curve For The Second Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-131. First Derivative Of The Second Titration Curve For Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-132. Second Derivative Of The Second Titration Curve For Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 45. SPENT 1000 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

ml 0.984M HCl	рН	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	9.432	0.50	$\frac{a(pi)/a(mi)}{-0.19}$	1.00	-0.04
1.0	9.243	1.50	-0.23	2.00	-0.07
2.0	9.015	2.50	-0.30	2.88	-0.29
3.0	8.720	3.25	-0.52	3.50	-0.10
3.5	8.462	3.75	-0.56	4.00	0.01
4.0	8.180	4.25	-0.56	4.50	-0.26
4.5	7.901	4.75	-0.69	5.00	0.86
5.0	7.556	5.25	-0.26	5.50	-0.22
5.5	7.427	5.75	-0.37	6.00	0.34
6.0	7.242	6.25	-0.20	6.50	0.06
6.5	7.142	6.75	-0.17	7.00	0.21
7.0	7.056	7.25	-0.07	7.50	-0.18
7.5	7.022	7.75	-0.16	8.13	0.06
8.0	6.942	8.50	-0.11	9.00	0.00
		0.50	-0.11	10.00	0.00
9.0	6.829	9.50			
10.0	6.716	10.50	-0.09	11.00	0.00
11.0	6.629	11.50	-0.09	12.00	0.02
12.0	6.544	12.50	-0.06	13.00	-0.00
13.0	6.480	13.50	-0.07	14.00	0.01
14.0	6.413	14.50	-0.06	15.00	0.01
15.0	6.353	15.50	-0.05	16.00	-0.04
16.0	6.306	16.50	-0.08	17.00	0.01
17.0	6.223	17.50	-0.07	18.00	0.00
18.0	6.152	18.50	-0.07	19.00	-0.02
19.0	6.084	19.50	-0.09	20.00	0.00
20.0	5.994	20.50	-0.09	20.80	0.16
21.0	5.905	21.10	0.01	21.23	-0.11
21.2	5.907	21.35	-0.02	21.50	-0.30
21.5	5.902	21.65	-0.11	21.78	0.05
21.8	5.870	21.90	-0.09	22.08	-0.31
22.0	5.851	22.25	-0.20	22.43	0.56
22.5	5.750	22.60	-0.01	22.73	-0.70
22.7	5.749	22.85	-0.18	23.05	-0.21
23.0	5.695	23.25	-0.18	23.50	-0.05
23.5	5.563	23.75	-0.29	24.00	
					-0.84
24.0	5.419	24.25	-0.71	24.50	-1.34
24.5	5.066	24.75	-1.38	24.93	-13.88
25.0	4.377	25.10	-6.23	25.18	22.17
25.2	3.130	25.25	-2.91	25.30	12.20
25.3	2.839	25.35	-1.69	25.40	4.10
25.4	2.670	25.45	-1.28	25.55	2.75
25.5	2.542	25.65	-0.73	25.78	1.18
25.8	2.323	25.90	-0.43	26.08	0.26
26.0	2.236	26.25	-0.34	26.50	0.24
26.5	2.064	26.75	-0.23	27.00	0.17
27.0	1.951	27.25	-0.14	27.50	-0.02
27.5	1.881	27.75	-0.15	28.13	0.07
			•		

TABLE 45. SPENT 1000 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3 (continued).

O OOM UCI	»U	Vol (ml)	d(pH)/d(m1)	Vol (ml)	d2(nH)/d(m1) ²
ml 0.984M HCl	<u>pH</u>	<u>Vol (ml)</u>			<u>uz(pn//u(mr/</u>
28.0	1.807	28.50	-0.09	29.00	0.01
29.0	1.714	29.50	-0.08	30.00	0.02
30.0	1.632	30.50	-0.06	31.00	0.00
31.0	1.572	31.50	-0.06	32.00	0.01
32.0	1.515	32.50	-0.05	33.00	0.00
33.0	1.465	33.50	-0.05	34.00	-0.00
34.0	1.420	34.50	-0.05	26.00	-0.01
35.0	1.373	17.50	0.04	8.75	0.00

NOTE: This sample was taken from the second batch of spent media which was broken into size fractions as it dried. This approach greatly reduced the time required to break down the media into particle sizes.

Figure C-133. Curve For The Third Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-134. First Derivative Of The Third Titration Curve For Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-135. Second Derivative Of The Third Titration Curve For Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 46. SPENT 1000 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

					_ · · · · · .
ml 0.984M HCl 0.0 1.0 2.0 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0	pH 9.529 9.293 9.103 8.852 8.739 8.540 8.281 7.968 7.720 7.529 7.417 7.105 6.961 6.841 6.759 6.667 6.587 6.587 6.525 6.466 6.437 6.361 6.311 6.215 6.134 6.057 5.936	Vol (ml) 0.50 1.50 2.50 3.25 3.75 4.25 4.75 5.25 5.75 6.25 6.75 7.75 8.50 9.50 10.50 11.50 12.50 13.50 14.50 15.50 16.50 17.50 18.50 20.50 21.50 22.50	d(pH)/d(ml) -0.24 -0.19 -0.25 -0.23 -0.40 -0.52 -0.63 -0.50 -0.38 -0.22 -0.29 -0.18 -0.16 -0.14 -0.12 -0.08 -0.08 -0.06 -0.06 -0.06 -0.08 -0.08 -0.08 -0.08 -0.08 -0.08 -0.08 -0.08 -0.12 -0.16	Vol (ml) 1.00 2.00 2.88 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.13 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 22.88	d2(pH)/d(m1) ² 0.05 -0.06 0.03 -0.34 -0.24 -0.22 0.26 0.32 -0.13 0.22 0.05 0.02 0.02 0.04 -0.01 0.01 0.01 0.02 0.00 0.03 -0.05 0.03 -0.05 0.03 -0.05 0.03 -0.05 0.03 -0.05
8.0 9.0 10.0 11.0 12.0	7.105 6.961 6.841 6.759 6.667	9.50 10.50 11.50 12.50	-0.12 -0.08 -0.09 -0.08	10.00 11.00 12.00 13.00	0.04 -0.01 0.01 0.02
14.0 15.0 16.0 17.0 18.0	6.525 6.466 6.437 6.361 6.311	14.50 15.50 16.50 17.50 18.50	-0.06 -0.03 -0.08 -0.05 -0.10	15.00 16.00 17.00 18.00 19.00	0.03 -0.05 0.03 -0.05 0.01
20.0	6.134 6.057	20.50 21.50	-0.08 -0.12	21.00 22.00	-0.04
24.2 24.4 24.6 24.8 25.0 25.3 25.5	5.509 5.436 5.422 5.299 5.208 4.873 4.360	24.30 24.50 24.70 24.90 25.15 25.40 25.60	-0.37 -0.07 -0.62 -0.45 -1.12 -2.56 -5.68	24.40 24.60 24.80 25.03 25.28 25.50 25.68	1.48 -2.73 0.80 -2.65 -5.79 -15.60
25.7 25.8 25.9 26.0 26.1 26.3 26.5	3.223 2.890 2.790 2.580 2.521 2.370 2.263	25.75 25.85 25.95 26.05 26.20 26.40 26.75 27.25	-3.33 -1.00 -2.10 -0.59 -0.76 -0.53 -0.37	25.80 25.90 26.00 26.13 26.30 26.58 27.00	23.30 -11.00 15.10 -1.10 1.10 0.48 0.26
27.0 27.5	2.079 1.960	27.75	-0.16	27.50 28.13	0.16

TABLE 46. SPENT 1000 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4 (continued).

ml 0.984M HCl	На	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
28.0	1.880	28.50	-0.13	29.00	0.04
29.0	1.752	29.50	-0.09	30.00	0.02
30.0	1.662	30.50	-0.07	31.00	0.01
31.0	1.588	31.50	-0.06	32.00	0.01
32.0	1.526	32.50	-0.05	33.00	0.00
33.0	1.479	33.50	-0.04	34.00	0.00
34.0	1.435	34.50	-0.04	26.00	-0.00
35.0	1.391	17.50	0.04	8.75	0.00

NOTE: This sample was taken from the second batch of spent media which was broken into size fractions as it dried. This approach greatly reduced the time required to break down the media into particle sizes.

Figure C-136. Curve For The Fourth Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-137. First Derivative Of The Fourth Titration Curve For Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-138. Second Derivative Of The Fourth Titration Curve For Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 47. SPENT 600 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

ml_0.984M_HCl	На	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	11.353	0.50	-0.32	1.00	0.06
1.0	11.038	1.50	-0.26	2.00	0.04
2.0	10.782	2.50	-0.22	3.00	0.09
3.0	10,565	3.50	-0.13	4.00	-0.03
4.0	10.435	4.50	-0.16	5.00	0.05
5.0		5.50	-0.11	6.00	-0.00
	10.276				
6.0	10.164	6.50	-0.11	7.00	0.01
7.0	10.051	7.50	-0.11	8.00	0.00
8.0	9.945	8.50	-0.11	9.00	0.01
9.0	9.839	9.50	-0.10	10.00	-0.00
10.0	9.742	10.50	-0.10	11.00	-0.07
	9.642	11.50	-0.17	12.00	0.07
11.0					
12.0	9.468	12.50	-0.10	13.00	-0.07
13.0	9.369	13.50	-0.17	14.00	-0.02
14.0	9.196	14.50	-0.20	15.00	-0.03
15.0	8.998	15.50	-0.23	15.88	-0.46
16.0	8.767	16.25	-0.57	16.50	0.62
16.5	8.480	16.75	-0.26	17.13	-0.78
17.0	8.348	17.50	-0.85	17.88	0.55
18.0	7.502	18.25	-0.44	18.50	-0.15
18.5	7.284	18.75	-0.51	19.13	0.57
19.0	7.029	19.50	-0.08	20.00	-0.10
20.0	6.945	20.50	-0.18	21.00	0.04
21.0	6.765	21.50	-0.14	22.00	0.03
22.0	6.627	22.50	-0.11	23.00	-0.00
23.0	6.518	23.50	-0.11	24.00	0.03
24.0	6.406	24.50	-0.08	25.00	-0.01
25.0	6.324	25.50	-0.09	26.00	0.03
26.0	6.229	26.50	-0.07	27.00	-0.02
27.0	6.161	27.50	-0.09	28.00	0.01
28.0	6.072	28.50	-0.08	28.83	0.16
29.0	5.996	29.15	0.03	29.30	0.17
29.3	6.004	29.45	0.08	29.63	-0.51
29.6	6.027	29.80	-0.10	29.97	0.16
30.0	5.986	30.15	-0.05	30.30	-0.17
30.3	5.972	30.45	-0.10	30.63	-0.02
30.6	5.943	30.80	-0.10	30.97	0.16
31.0	5.902	31.15	-0.05	31.30	-0.23
31.3	5.888	31.45	-0.12	31.63	-0.11
31.6	5.853	31.80	-0.16	32.03	-0.03
32.0	5.791	32.25	-0.17	32.50	-0.03
32.5	5.706	32.75	-0.19	32.95	-0.05
33.0	5.613	33.15	-0.21	33.30	-0.29
33.3	5.551	33.45	-0.29	33.63	-0.26
33.6	5.463	33.80	-0.38	33.97	0.20
34.0	5.309	34.15	-0.32	34.30	-1.54
34.3	5.214	34.45	-0.78	34.57	-1.92

TABLE 47. SPENT 600 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1 (continued).

ml 0.984M HCl 34.6	<u>pH</u> 4.980	Vol (ml) 34.70	<u>d(pH)/d(ml)</u> -1.26	Vol (ml) 34.80	$\frac{d2(pH)/d(m1)^2}{-7.62}$
34.8	4.728	34.90	-2.78	35.00	-16.33
35.0	4.171	35.10	-6.05	35.20	21.65
35.2	2.961	35.30	-1.72	35.40	3.70
35.4	2.617	35.50	-0.98	35.60	0.80
35.6	2.421 2.257	35.70 35.90	-0.82 -0.23	35.80 36.20	2.95 -0.08
35.8 36.0	2.237	36.50	-0.23	37.00	0.14
37.0	1.931	37.50	-0.14	38.00	0.04
38.0	1.788	38.50	-0.10	39.00	0.02
39.0	1.686	39.50	-0.08	29.75	-0.01
40.0	1.608	20.00	0.04	10.00	0.00
•					

Figure C-139. Curve For The First Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-140. First Derivative Of The First Titration Curve For Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-141. Second Derivative Of The First Titration Curve For Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 48. SPENT 600 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

					
ml o coam uci	pH	Vol (ml)	d(pH)/d(ml)	Vol (ml)	d2(pH)/d(m1) ²
<u>ml 0.984M HCl</u>					
0.0	11.337	0.50	-0.28	1.00	0.01
1.0	11.054	1.50	-0.27	2.00	0.11
2.0	10.784	2.50	-0.16	3.00	0.03
3.0	10.620	3.50	-0.14	4.00	0.01
4.0	10.485	4.50	-0.12	5.00	-0.02
5.0	10.362	5.50	-0.14	6.00	0.04
6.0	10.221	6.50	-0.10	7.00	-0.00
7.0	10.122	7.50	-0.10	8.00	-0.01
8.0	10.020	8.50	-0.11	9.00	-0.01
9.0	9.910	9.50	-0.12	10.00	0.02
10.0	9.792	10.50	-0.10	11.00	-0.03
11.0	9.694	11.50	-0.13	12.00	0.01
12.0	9.564	12.50	-0.12	13.00	-0.05
13.0	9.441	13.50	-0.17	14.00	-0.00
14.0	9.268	14.50	-0.17	15.00	-0.14
15.0	9.094	15.50	-0.31	15.88	-0.09
16.0	8.782	16.25	-0.38	16.50	-0.50
16.5	8.592	16.75	-0.63	17.00	-0.54
17.0	8.277	17.25	-0.90	17.50	0.58
17.5	7.826	17.75	-0.61	18.00	0.36
18.0	7.521	18.25	-0.43	18.50	0.28
18.5	7.305	18.75	-0.29	19.00	0.12
19.0	7.159	19.25	-0.23	19.63	0.06
19.5	7.042	20.00	-0.19	20.50	0.04
20.5	6.851	21.00	-0.15	21.50	0.03
21.5	6.699	22.00	-0.12	22.50	0.01
22.5	6.580	23.00	-0.11	23.50	0.03
23.5	6.473	24.00	-0.08	24.50	0.00
24.5	6.397	25.00	-0.07	25.50	-0.02
	6.324				
25.5		26.00	-0.09	26.50	0.15
26.5	6.235	27.00	0.06	27.50	-0.16
27.5	6.295	28.00	-0.11	28.50	-0.01
28.5	6.190	29.00	-0.12	29.38	0.01
29.5	6.073	29.75	-0.11	30.13	-0.01
30.0	6.019	30.50	-0.12	31.00	-0.04
31.0	5.903	31.50	-0.16	31.88	0.07
32.0	5.743	32.25	-0.11	32.50	-0.15
32.5	5.690	32.75	-0.18	33.00	-0.04
33.0	5.599	33.25	-0.20	33.50	-0.18
33.5	5.497	33.75	-0.29	34.00	-0.50
34.0	5.350	34.25	-0.55	34.50	-3.27
34.5	5.077	34.75	-2.18	34.95	-5.48
35.0	3.986	35.15	-4.37	35.28	13.15
35.3	2.674	35.40	-1.08	35.53	2.18
35.5	2.457	35.65	-0.54	35.78	0.30
35.8	2.295	35.90	-0.46	36.20	0.28
36.0	2.202	36.50	-0.29	37.00	0.14
		00.00	·	37.00	V + 1 T

TABLE 48. SPENT 600 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2 (continued).

ml 0.984M HCl	рН	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
37.0	1.908	37.50	-0.15	38.00	0.03
38.0	1.755	38.50	-0.12	39.00	0.06
39.0	1.634	39.50	-0.06	29.75	-0.01
40.0	1.574	20.00	0.04	10.00	0.00

Figure C-142. Curve For The Second Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-143. First Derivative Of The Second Titration Curve For Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-144. Second Derivative Of The Second Titration Curve For Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 49. SPENT 600 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

ml 0.984M HCl 0.0 1.0 2.0 3.0 4.0 5.0	pH 11.607 11.049 10.778 10.628 10.486 10.342	Vol (ml) 0.50 1.50 2.50 3.50 4.50 5.50	d(pH)/d(ml) -0.56 -0.27 -0.15 -0.14 -0.14	Vol (ml) 1.00 2.00 3.00 4.00 5.00 6.00	d2(pH)/d(m1) ² 0.29 0.12 0.01 -0.00 0.03 0.00
6.0	10.228	6.50	-0.11	7.00	-0.00
7.0	10.115	7.50	-0.12	8.00	0.02
8.0	9.998	8.50	-0.09	9.00	-0.01
9.0	9.906	9.50	-0.11	10.00	-0.01
10.0	9.799	10.50	-0.11	11.00	-0.00
11.0	9.686	11.50	-0.12	12.00	-0.02
12.0	9.570	12.50	-0.13	13.00	-0.02
13.0	9.435	13.50	-0.15	14.00	-0.03
14.0	9.285	14.50	-0.18	15.00	-0.09
15.0	9.109	15.50	-0.26	15.88	-0.16
16.0	8.845	16.25	-0.38	16.50	-0.44
16.5	8.653	16.75	-0.60	17.00	-0.44
17.0	8.352	17.25	-0.82	17.50	0.08
17.5	7.940	17.75	-0.79	18.00	0.80
18.0	7.547	18.25	-0.39	18.50	0.10
18.5	7.354	18.75	-0.34	19.00	0.20
19.0	7.185	19.25	-0.24	19.63	0.05
19.5 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5	7.066 6.866 6.712 6.576 6.484 6.404 6.314 6.218 6.159	20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00	-0.20 -0.15 -0.14 -0.09 -0.08 -0.09 -0.10	20.50 21.50 22.50 23.50 24.50 25.50 26.50 27.50	0.05 0.02 0.04 0.01 -0.01 -0.01 0.04 -0.03
28.5 29.5 30.5 31.5 32.0 32.5 33.0 33.5	6.071 5.965 5.911 5.798 5.746 5.696 5.603 5.526	29.00 30.00 31.00 31.75 32.25 32.75 33.25 33.75	-0.09 -0.11 -0.05 -0.11 -0.10 -0.19 -0.15 -0.34	28.50 29.50 30.50 31.38 32.00 32.50 33.00 33.50 33.97	-0.02 0.05 -0.06 0.01 0.01 -0.17 0.06 -0.37 -0.01
34.0	5.356	34.20	-0.34	34.35	-0.78
34.4	5.218	34.50	-0.58	34.60	-2.05
34.6	5.102	34.70	-0.99	34.80	-1.50
34.8	4.904	34.90	-1.29	35.00	-14.70
35.0	4.646	35.10	-4.23	35.20	-3.25
35.2	3.800	35.30	-4.88	35.45	12.20
35.4	2.824	35.60	-1.22	35.75	2.40

TABLE 49. SPENT 600 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3 (continued).

ml 0.984M HCl	pH	Vol (ml)	d(pH)/d(ml)	Vol (ml)	d2(pH)/d(m1) ²
35.8	2.336	35.90	-0.50	36.20	0.33
36.0	2.236	36.50	-0.30	37.00	0.12
37.0	1.935	37.50	-0.18	38.00	0.08
38.0	1.756	38.50	-0.10	39.00	0.02
39.0	1.660	39.50	-0.08	29.75	-0.01
40.0	1.580	20.00	0.04	10.00	0.00

Figure C-145. Curve For The Third Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-146. First Derivative Of The Third Titration Curve For Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-147. Second Derivative Of The Third Titration Curve For Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 50. SPENT 600 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

***************************************	· · · · · · · · · · · · · · · · · · ·		to the transfer of the transfe	· · · · · · · · · · · · · · · · · · ·	
ml 0.984M HCl	Hq	<u>Vol (ml)</u>	d(pH)/d(m1)	<u>Vol (ml)</u>	$d2(pH)/d(m1)^2$
0.0	11.625	0.05	-0.46	1.00	0.23
1.0	11.164	1.50	-0.23	2.00	-0.02
2.0	10.936	2.50	-0.24	3.00	0.07
3.0	10.693	3.50	-0.17	4.00	0.03
4.0	10.518	4.50	-0.14	5.00	0.02
5.0	10.376	5.50	-0.13	6.00	0.02
6.0	10.250	6.50	-0.11	7.00	0.00
7.0	10.140	7.50	-0.11	8.00	-0.01
8.0	10.034	8.50	-0.12	9.00	0.03
9.0	9.913	9.50	-0.09	10.00	-0.03
10.0	9.820	10.50	-0.12	11.00	0.02
11.0	9.699	11.50	-0.10	12.00	-0.03
12.0	9.596	12.50	-0.14	13.00	-0.02
13.0	9.460	13.50	-0.15	14.00	-0.02
14.0	9.308	14.50	-0.18	15.00	-0.12
15.0	9.132	15.50	-0.29	15.88	-0.07
16.0	8.838	16.25	-0.35	16.50	-0.34
16.5	8.663	16.75	-0.52	17.00	-0.54
17.0	8.403	17.25	-0.79	17.50	-0.18
17.5	8.009	17.75	-0.88	18.00	0.98
18.0	7.571	18.25	-0.39	18.50	0.34
18.5 19.0	7.377 7.268	18.75 19.25	-0.22	19.00	-0.15
19.5	7.208	19.25	-0.29	19.50	0.18
20.0	7.121	20.50	-0.20 -0.16	20.13	0.06
21.0	6.862	21.50	-0.14	21.00 22.00	0.01 0.05
22.0	6.718	22.50	-0.10	23.00	0.00
23.0	6.620	23.50	-0.10	24.00	0.02
24.0	6.524	24.50	-0.07	25.00	0.00
25.0	6.450	25.50	-0.07	26.00	-0.02
26.0	6.380	26.50	-0.09	27.00	0.03
27.0	6.287	27.50	-0.06	28.00	-0.04
28.0	6.228	28.50	-0.10	29.00	-0.01
29.0	6.129	29.50	-0.11	30.00	0.12
30.0	6.022	30.50	0.01	31.00	-0.18
31.0	6.033	31.50	-0.17	32.00	-0.03
32.0	5.861	32.50	-0.21	32.83	0.10
33.0	5.655	33.15	-0.14	33.33	0.12
33.3	5.612	33.50	-0.10	33.68	-0.42
33.7	5.571	33.85	-0.25	34.00	-0.46
34.0	5.496	34.15	-0.39	34.30	-0.29
34.3	5.380	34.45	-0.47	34.63	-1.75
34.6	5.238	34.80	-1.08	34.95	-8.78
35.0	4.804	35.10	-3.72	35.18	-27.33
35.2	4.060	35.25	-7.82	35.33	33.47
35.3	3.278	35.40	-2.80	35.50	9.15
35.5	2.718	35.60	-0.97	35.72	1.05

TABLE 50. SPENT 600 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4 (continued).

1 0 004M UC1	m11	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
ml 0.984M HCl	<u>pH</u>		-0.71	36.18	0.53
35.7	2.524	35.85			
36.0	2.312	36.50	-0.36	37.00	0.21
37.0	1.949	37.50	-0.16	38.00	0.05
38.0	1.792	38.50	-0.11	39.00	0.02
39.0	1.687	39.50	-0.09	29.75	-0.01
40.0	1.601	20.00	0.04	10.00	0.00
40.0	1.001	20.00	0.04	10.00	0.00

Figure C-148. Curve For The Fourth Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-149. First Derivative Of The Fourth Titration Curve For Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-150. Second Derivative Of The Fourth Titration Curve For Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 51. SPENT 425 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

ml 0.984M HCl	<u>pH</u>	<u>Vol (ml)</u>	<u>d(pH)/d(m1)</u>	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{2}$
0.0	10.735	0.50	-0.15	1.00	-0.02
1.0	10.589	1.50	-0.16	2.00	0.02
2.0	10.428	2.50	-0.14	3.00	-0.02
3.0	10.287	3.50	-0.16	4.00	0.05
4.0	10.129	4.50	-0.11	5.00	0.00
5.0	10.023	5.50	-0.10	6.00	-0.01
6.0	9.920	6.50	-0.11	7.00	0.01
7.0	9.811	7.50	-0.10	8.00	0.01
8.0	9.714	8.50	-0.09	9.00	-0.07
9.0	9.624	9.50	-0.16	10.00	0.02
10.0	9.466	10.50	-0.14	11.00	-0.07
11.0	9.330	11.50	-0.20	12.00	-0.02
12.0	9.126	12.50	-0.22	13.00	-0.22
13.0	8.904	13.50	-0.44	14.00	-0.30
14.0	8.464	14.50	-0.74	15.00	0.29
15.0	7.724	15.50	-0.45	15.88	0.28
16.0	7.276	16.25	-0.24	16.50	0.04
16.5	7.158	16.75	-0.22	17.13	0.02
17.0	7.050	17.50	-0.20	18.00	0.06
18.0	6.846	18.50	-0.14	19.00	0.04
19.0	6.706	19.50	-0.10	20.00	0.01
20.0	6.606	20.50	-0.09	21.00	0.00
21.0	6.514	21.50	-0.09	22.00	0.01
22.0	6.425	22.50	-0.08	23.00	0.00
23.0	6.346	23.50	-0.07	24.00	0.01
24.0	6.271	24.50	-0.06	25.00	-0.04
25.0	6.211	25.50	-0.10	26.00	0.03
26.0	6.115	26.50	-0.07	27.00	-0.01
27.0	6.044	27.50	-0.08	28.00	-0.03
28.0	5.963	28.50	-0.12	29.00	-0.02
29.0	5.848	29.50	-0.13	29.83	0.24
30.0	5.717	30.15	0.03	30.28	-0.49
30.3	5.725	30.40	-0.09	30.50	0.18
30.5	5.706	30.60	-0.06	30.73	-1.00
30.7	5.694	30.85	-0.31	31.05	0.06
31.0	5.601	31.25	-0.29	31.45	-0.08
31.5	5.457	31.65	-0.32	31.78	-1.40
31.8	5.361	31.90	-0.67	32.03	1.59
32.0	5.227	32.15	-0.27	32.30	-2.74
32.3	5.145	32.45	-1.10	32.57	-10.61
32.6	4.816	32.70	-3.75	32.80	-9.07
32.8	4.066	32.90	-5.56	33.08	12.17
33.0	2.953	33.25	-1.30	33.50	1.67
33.5	2.301	33.75	-0.47	34.13	0.36
34.0	2.066	34.50	-0.20	35.00	0.06
35.0	1.864	35.50	-0.14	36.00	0.05
36.0	1.720	36.50	-0.09	37.00	0.02

TABLE 51. SPENT 425 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1 (continued).

ml 0.984M HCl	pH 1.630	<u>Vol (ml)</u> 37.50	<u>d(pH)/d(ml)</u> -0.07	<u>Vol (ml)</u> 38.00	d2(pH)/d(m1) ² 0.02
37.0 38.0 39.0	1.557 1.504	38.50 38.50 39.50	-0.07 -0.05 -0.05	39.00 29.75	0.02 0.00 -0.00
40.0	1.455	20.00	0.04	10.00	0.00

Figure C-151. Curve For The First Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-152. First Derivative Of The First Titration Curve For Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-253. Second Derivative Of The First Titration Curve For Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 52. SPENT 425 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

			* · · · ·		
1 0 004M UC1	-11	Vol (ml)	d/mII)/d/m1)	Val (ml)	40/2017/4/2012
<u>ml 0.984M HCl</u>	<u>pH</u>	<u>Vol (ml)</u>	$\frac{d(pH)/d(m1)}{d(m1)}$	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{}$
0.0	10.358	0.05	-0.01	1.00	-0.17
1.0	10.344	1.50	-0.18	2.00	0.21
2.0	10.162	2.50	0.03	3.00	-0.17
3.0	10.189	3.50	-0.14	4.00	-0.00
4.0	10.048	4.50	-0.14	5.00	0.07
5.0	9.904	5.50	-0.14	6.00	-0.01
6.0	9.829	6.50	-0.08	7.00	-0.07
7.0	9.748	7.50	-0.15	8.00	0.06
8.0	9.595	8.50	-0.09	9.00	-0.12
9.0	9.505	9.50	-0.21	10.00	0.03
10.0	9.293	10.50	-0.18	11.00	-0.03
11.0	9.116	11.50	-0.21	12.00	-0.53
12.0	8.904	12.50	-0.74	12.88	0.21
13.0	8.159	13.25	-0.59	13.50	-0.19
13.5	7.864	13.75	-0.68	14.00	0.64
14.0	7.522	14.25	-0.36	14.50	0.25
			-0.24		
14.5	7.341	14.75		15.00	-0.09
15.0	7.222	15.25	-0.28	15.50	0.52
15.5	7.081	15.75	-0.02	16.13	-0.28
16.0	7.070	16.50	-0.23	17.00	0.10
17.0	6.836	17.50	-0.13	18.00	0.15
18.0	6.704	18.50	0.02	19.00	-0.14
19.0	6.722	19.50	-0.12	20.00	0.01
20.0	6.604	20.50	-0.11	21.00	0.09
21.0	6.497	21.50	-0.01	22.00	-0.09
22.0	6.483	22.50	-0.10	23.00	-0.06
23.0	6.383	23.50	-0.16	24.00	0.07
24.0	6.219	24.50	-0.10	25.00	0.02
25.0	6.121	25.50			
25.0			-0.08	26.00	-0.01
26.0	6.039	26.50	-0.09	27.00	0.00
27.0	5.945	27.50	-0.09	28.00	-0.05
28.0	5.852	28.50	-0.15	29.00	-0.04
29.0	5.704	29.50	-0.19	29.88	0.01
30.0	5.516	30.25	-0.18	30.50	-0.25
30.5	5.426	30.75	-0.30	30.95	-0.71
31.0	5.274	31.15	-0.59	31.25	4.73
31.3	5.098	31.35	0.36	31.45	-3.05
31.4	5.134	31.55	-0.25	31.70	-8.02
31.7	5.059	31.85	-2.66	31.97	-14.25
32.0	4.262	32.10	-6.22	32.22	19.29
32.2	3.018	32.35	-1.40	32.47	1.77
32.5	2.599	32.55			
			-0.95	32.72	2.41
32.7	2.408	32.85	-0.35	33.18	0.02
33.0	2.302	33.50	-0.34	34.00	0.18
34.0	1.961	34.50	-0.16	35.00	0.06
35.0	1.804	35.50	-0.10	36.00	0.03
36.0	1.706	36.50	-0.07	37.00	0.01

TABLE 52. SPENT 425 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2 (continued).

ml 0.984M HCl 37.0 38.0 39.0	pH 1.636 1.581 1.530	Vol (ml) 37.50 38.50 39.50 20.00	d(pH)/d(ml) -0.06 -0.05 -0.04 0.04	Vol (ml) 38.00 39.00 29.75 10.00	d2(pH)/d(m1) ² 0.00 0.01 -0.00 0.00
40.0	1.486	20.00	0.04	10.00	0.00

Figure C-154. Curve For The Second Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-155. First Derivative Of The Second Titration Curve For Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-156. Second Derivative Of The Second Titration Curve For Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 53. SPENT 425 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

			······		
ml 0.984M HCl	Hq	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	10.564	0.50	-0.15	1.00	0.01
1.0	10.409	1.50	-0.15	2.00	0.02
2.0	10.259	2.50	-0.13	3.00	0.01
3.0	10.129	3.50	-0.12	4.00	0.02
4.0	10.008	4.50	-0.10	5.00	-0.05
5.0	9.910	5.50	-0.15	6.00	0.06
6.0	9.760	6.50	-0.09	7.00	-0.04
7.0	9.667	7.50	-0.14	8.00	-0.00
8.0	9.530	8.50	-0.14	9.00	-0.03
9.0	9.391	9.50	-0.17	10.00	-0.06
10.0	9.223	10.50	-0.23	11.00	-0.07
11.0	8.993	11.50	-0.30	11.88	-0.40
12.0	8.691	12.25	-0.60	12.50	-0.46
12.5	8.391	12.75	-0.83	13.00	0.21
13.0	7.975	13.25	-0.73	13.50	0.67
13.5	7.612	13.75	-0.39	14.00	0.12
			-0.33		0.12
14.0	7.416	14.25		14.50	
14.5	7.249	14.75	-0.27	15.13	0.12
15.0	7.113	15.50	-0.18	16.00	0.03
16.0	6.929	16.50	-0.16	17.00	0.04
17.0	6.771	17.50	-0.12	18.00	0.01
18.0	6.655	18.50	-0.10	19.00	0.02
19.0	6.551	19.50	-0.08	20.00	0.01
20.0	6.472	20.50	-0.07	21.00	-0.04
21.0	6.399	21.50	-0.11	22.00	0.06
22.0	6.290	22.50	-0.05	23.00	-0.04
	6.237	23.50		24.00	0.03
23.0			-0.09		
24.0	6.143	24.50	-0.06	25.00	-0.03
25.0	6.083	25.50	-0.09	26.00	-0.00
26.0	5.993	26.50	-0.09	27.00	-0.05
27.0	5.898	27.50	-0.15	28.00	0.03
28.0	5.751	28.50	-0.12	29.00	-0.13
29.0	5.630	29.50	-0.25	29.88	0.13
30.0	5.377	30.25	-0.16	30.50	-0.90
30.5	5.298	30.75	-0.61	31.00	-4.66
31.0	4.994	31.25	-2.94	31.50	
					1.63
31.5	3.524	31.75	-2.13	32.00	3.42
32.0	2.461	32.25	-0.42	32.50	0.05
32.5	2.252	32.75	-0.39	33.13	0.24
33.0	2.055	33.50	-0.21	34.00	0.11
34.0	1.841	34.50	-0.10	35.00	0.02
35.0	1.738	35.50	-0.09	36.00	0.02
36.0	1.650	36.50	-0.06	37.00	0.03
37.0	1.585	37.50	-0.04	38.00	-0.01
38.0	1.549	38.50	-0.05	39.00	0.00
		39.50			
39.0	1.501		-0.04	29.75	-0.00
40.0	1.457	20.00	0.04	10.00	0.00
		•			

Figure C-157. Curve For The Third Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-158. First Derivative Of The Third Titration Curve For Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-159. Second Derivative Of The Third Titration Curve For Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 54. SPENT 425 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

3 0 004M UC3	11	Val (ml)	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
<u>ml 0.984M HCl</u>	<u>pH</u>	<u>Vol (ml)</u>			
0.0	10.353	0.50	-0.07	1.00	-0.07
1.0	10.282	1.50	-0.14	2.00	0.05
2.0	10.140	2.50	-0.09	3.00	-0.02
3.0	10.049	3.50	-0.11	4.00	0.00
4.0	9.934	4.50	-0.11	5.00	0.03
5.0	9.820	5.50	-0.09	6.00	-0.03
6.0	9.732	6.50	-0.12	7.00	0.01
7.0	9.614	7.50	-0.11	8.00	-0.02
8.0	9.504	8.50	-0.13	9.00	-0.04
	9.372	9.50	-0.17	10.00	-0.02
9.0		10.50	-0.19	11.00	-0.11
10.0	9.199				-0.53
11.0	9.006	11.50	-0.30	11.88	
12.0	8.706	12.25	-0.70	12.50	0.02
12.5	8.357	12.75	-0.69	13.00	-0.05
13.0	8.012	13.25	-0.72	13.50	0.49
13.5	7.654	13.75	-0.47	14.00	0.20
14.0	7.418	14.25	-0.37	14.50	0.33
14.5	7.232	14.75	-0.21	15.13	-0.01
15.0	7.128	15.50	-0.22	16.00	0.08
16.0	6.913	16.50	-0.13	17.00	0.02
		17.50	-0.13	18.00	0.01
17.0	6.778		-0.12	19.00	0.02
18.0	6.663	18.50		20.00	0.02
19.0	6.560	19.50	-0.09		0.01
20.0	6.474	20.50	-0.08	21.00	
21.0	6.394	21.50	-0.04	22.00	-0.06
22.0	6.355	22.50	-0.10	23.00	0.02
23.0	6.252	23.50	-0.08	24.00	0.01
24.0	6.168	24.50	-0.07	25.00	-0.02
25.0	6.097	25.50	-0.09	26.00	0.15
26.0	6.007	26.50	0.06	27.00	-0.21
27.0	6.070	27.50	-0.14	28.00	-0.06
28.0	5.926	28.50	-0.20	28.88	0.02
29.0	5.723	29.25	-0.19	29.50	-0.28
29.5	5.629	29.75	-0.33	30.00	-0.73
30.0	5.465	30.25	-0.69	30.50	0.24
	5.118	30.75	-0.57	30.95	-5.65
30.5		31.15	-2.83	31.30	-5.01
31.0	4.832		-4.34	31.63	10.41
31.3	3.982	31.45		32.15	0.49
31.6	2.681	31.80	-0.69		
32.0	2.404	32.50	-0.35	33.00	0.16
33.0	2.052	33.50	-0.19	34.00	0.07
34.0	1.865	34.50	-0.12	35.00	0.05
35.0	1.747	35.50	-0.07	36.00	0.01
36.0	1.678	36.50	-0.06	37.00	0.01
37.0	1.617	37.50	-0.05	38.00	0.02
38.0	1.566	38.50	-0.03	39.00	-0.01
39.0	1.532	39.50	-0.04	29.75	-0.00
40.0	1.489	20.00	0.04	10.00	0.00
		,	- • • ·		

Figure C-160. Curve For The Fourth Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-161. First Derivative Of The Fourth Titration Curve For Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-162. Second Derivative Of The Fourth Titration Curve For Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 55. SPENT 250 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

					
ml 0.984M HCl 0.0	<u>pH</u> 10.501	Vol (ml) 0.50	<u>d(pH)/d(ml)</u> -0.07	Vol (ml) 1.00	$\frac{d2(pH)/d(m1)^2}{-0.07}$
1.0	10.431	1.50	-0.14	2.00	0.07
2.0	10.294	2.50	-0.06	3.00	0.01
3.0	10.232	3.50	-0.05	4.00	-0.02
4.0	10.182	4.50	-0.07	5.00	0.04
5.0	10.102	5.50	-0.03	6.00	-0.03
6.0	10.108	6.50	-0.06	7.00	-0.04
7.0	10.077	7.50	-0.10	8.00	-0.33
				9.00	
8.0	9.917	8.50	-0.43		0.28
9.0	9.483	9.50	-0.15	10.00	0.03
10.0	9.333	10.50	-0.12	11.00	-0.10
11.0	9.210	11.50	-0.22	12.00	-0.06
12.0	8.990	12.50	-0.28	12.88	-0.21
13.0	8.711	13.25	-0.43	13.50	-0.04
13.5	8.494	13.75	-0.45	14.00	-0.45
14.0	8.267	14.25	-0.68	14.50	0.08
14.5	7.928	14.75	-0.64	15.00	0.60
15.0	7.610	15.25	-0.34	15.50	-0.00
15.5	7.441	15.75	-0.34	16.13	0.14
16.0	7.271	16.50	-0.24	17.00	0.09
17.0	7.033	17.50	-0.15	18.00	0.02
18.0	6.881	18.50	-0.13	19.00	0.00
19.0	6.748	19.50	-0.13	20.00	0.03
20.0	6.618	20.50	-0.10	21.00	0.02
21.0	6.519	21.50	-0.08	22.00	-0.01
22.0	6.439	22.50	-0.09	23.00	0.02
23.0	6.347	23.50	-0.07	24.00	-0.01
24.0	6.272	24.50	-0.09	25.00	0.00
25.0	6.183	25.50	-0.09	26.00	-0.01
26.0	6.097	26.50	-0.09	27.00	-0.02
27.0	6.005	27.50	-0.11	28.00	-0.02
28.0	5.891	28.50	-0.14	29.00	-0.06
29.0	5.755	29.50	-0.19	29.88	
					-0.17
30.0	5.563	30.25	-0.32	30.50	0.01
30.5	5.404	30.75	-0.31	30.95	-0.81
31.0	5.248	31.15	-0.64	31.30	-2.21
31.3	5.057	31.45	-1.30	31.63	-7.61
31.6	4.667	31.80	-3.96	32.03	5.74
32.0	3.082	32.25	-1.38	32.50	1.94
32.5	2.393	32.75	-0.41	33.13	0.24
33.0	2.190	33.50	-0.22	34.00	0.07
34.0	1.966	34.50	-0.15	26.00	-0.01
35.0	1.816	17.50	0.05	8.75	0.00

Figure C-163. Curve For The First Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HC1.

Figure C-164. First Derivative Of The First Titration Curve For Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-165. Second Derivative Of The First Titration Curve For Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 56. SPENT 250 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

1 0 004H H01	11	V-1 (-1)	4(-11) /4(-1)	V-1 /m1\	40/112/112
ml 0.984M HCl	<u>pH</u>	<u>Vol (ml)</u>	d(pH)/d(m1)	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{2}$
0.0	10.495	0.50	-0.10	1.00	-0.03
1.0	10.400	1.50	-0.12	2.00	0.03
2.0	10.279	'2.50	-0.09	3.00	-0.06
3.0	10.185	3.50	-0.15	4.00	0.06
4.0	10.033	4.50	-0.09	5.00	0.01
5.0	9.941	5.50	-0.08	6.00	-0.04
6.0	9.860	6.50	-0.13	7.00	0.04
7.0	9.735	7.50	-0.08	8.00	-0.01
8.0	9.652	8.50	-0.09	9.00	-0.02
9.0	9.563	9.50	-0.11	10.00	0.00
10.0	9.452	10.50	-0.11	11.00	-0.06
11.0	9.345	11.50	-0.17	12.00	-0.05
12.0	9.179	12.50	-0.21	13.00	-0.04
13.0	8.965	13.50	-0.26	13.88	-0.44
14.0	8.709	14.25	-0.59	14.50	-0.20
14.5	8.415	14.75	-0.69	15.00	0.25
		15.25	-0.56	15.50	0.25
15.0	8.071				
15.5	7.789	15.75	-0.44	16.00	0.21
16.0	7.569	16.25	-0.33	16.50	0.31
16.5	7.402	16.75	-0.18	17.13	-0.02
17.0	7.312	17.50	-0.19	18.00	0.06
18.0	7.120	18.50	-0.14	19.00	0.00
19.0	6.983	19.50	-0.13	20.00	0.00
20.0	6.849	20.50	-0.13	21.00	0.00
	6.716	21.50	-0.13	22.00	0.04
21.0					
22.0	6.586	22.50	-0.09	23.00	0.01
23.0	6.493	23.50	-0.08	24.00	-0.01
24.0	6.414	24.50	-0.09	25.00	-0.01
25.0	6.322	25.50	-0.10	26.00	-0.01
26.0	6.224	26.50	-0.11	27.00	0.02
27.0	6.113	27.50	-0.09	28.00	-0.05
28.0	6.020	28.50	-0.14	29.00	-0.02
29.0	5.880	29.50	-0.16	30.00	-0.04
30.0	5.723	30.50	-0.19	30.88	0.23
31.0	5.528	31.25	-0.02	31.50	-0.48
31.5	5.517	31.75	-0.26	31.95	-0.56
32.0	5.385	32.15	-0.49	32.28	-0.87
32.3	5.239	32.40	-0.70	32.50	-1.45
32.5	5.098	32.60	-0.99	32.72	-2.57
32.7	4.899	32.85	-1.64	32.97	-17.63
33.0	4.408	33.10	-6.04	33.20	19.30
33.2	3.199	33.30	-2.18	33.43	5.02
33.4	2.762	33.55	-0.93	33.70	1.18
33.7	2.483	33.85	-0.58	34.05	0.47
34.0	2.310	34.25	-0.39	34.50	0.34
34.5	2.116	34.75	-0.22	26.13	-0.02
35.0	2.008	17.50	0.06	8.75	0.00
33.0	2.000	17.50	3.00	3.73	3.00

Figure C-166. Curve For The Second Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-167. First Derivative Of The Second Titration Curve For Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-168. Second Derivative Of The Second Titration Curve For Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 57. SPENT 250 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

ml 0.984M HCl	<u>pH</u>	Vol (ml)	<u>d(pH)/d(ml)</u>	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{2}$
0.0	10.570	0.50	-0.20	1.00	0.11
1.0	10.373	1.50	-0.08	2.00	-0.04
2.0	10.289	2.50	-0.12	3.00	0.03
3.0	10.166	3.50	-0.09	4.00	0.03
4.0	10.075	4.50	-0.06	5.00	-0.03
5.0	10.017	5.50	-0.09	6.00	0.04
` 6.0	9.928	6.50	-0.05	7.00	-0.06
7.0	9.876	7.50	-0.11	8.00	0.02
8.0	9.764	8.50	-0.09	9.00	0.04
9.0	9.677	9.50	-0.04	10.00	-0.18
10.0	9.633	10.50	-0.23	11.00	0.14
11.0	9.407	11.50	-0.08	12.00	-0.02
12.0	9.324	12.50	-0.11	13.00	0.03
13.0	9.216	13.50	-0.08	14.00	-0.11
14.0	9.137	14.50	-0.19	15.00	-0.03
15.0	8.948	15.50	-0.22	15.88	-0.14
16.0	8.733	16.25	-0.32	16.50	-1.90
16.5	8.572	16.75	-1.27	17.00	1.76
17.0	7.936	17.25	-0.39	17.50	-0.18
17.5	7.741	17.75	-0.48	18.00	0.42
18.0	7.501	18.25	-0.27	18.50	0.06
18.5	7.366	18.75	-0.24	19.13	-0.21
19.0	7.246	19.50	-0.40	20.00	0.24
20.0	6.851	20.50	-0.15	21.00	0.02
21.0	6.699	21.50	-0.13	22.00	0.02
22.0	6.564	22.50	-0.11	23.00	0.02
23.0	6.451	23.50	-0.09	24.00	-0.03
24.0	6.362	24.50	-0.12	25.00	0.03
25.0	6.247	25.50	-0.08	26.00	-0.03
26.0	6.163	26.50	-0.12	27.00	-0.01
27.0	6.045	27.50	-0.12	28.00	-0.01
28.0	5.921	28.50	-0.14	28.88	-0.06
29.0	5.786	29.25	-0.18	29.50	0.19
29.5	5.697	29.75	-0.08	30.00	-0.57
30.0	5.655	30.25	-0.37	30.50	0.19
30.5	5.470	30.75	-0.27	31.13	-2.75
31.0	5.333	31.50	-2.34	31.88	1.54
32.0	2.995	32.25	-1.19	32.50	1.56
32.5	2.402	32.75	-0.41	33.13	0.23
33.0	2.198	33.50	-0.24	34.00	0.11
34.0	1.961	34.50	-0.13	26.00	-0.01
35.0	1.831	17.50	0.05	8.75	0.00

Figure C-169. Curve For The Third Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-170. First Derivative Of The Third Titration Curve For Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-171. Second Derivative Of The Third Titration Curve For Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 58. SPENT 250 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

ml 0.984M HCl 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.5 12.0 12.5 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 28.3 28.5 28.8 29.0 29.3 29.5 29.7	pH 9.961 9.9792 9.647 9.479 9.534 9.317 9.157 8.903 8.680 8.178 7.800 7.405 7.277 7.067 6.684 6.610 6.54	Vol (ml) 0.50 1.50 2.50 3.50 4.50 5.50 6.50 7.50 8.50 9.50 10.25 11.75 12.25 12.75 13.50 14.50 15.50 16.50 17.50 18.50 20.50 21.50 22.50 23.50 24.50 25.50 27.50 28.65 29.15 29.40 29.85	d(pH)/d(m1) -0.05 -0.12 -0.15 -0.17 0.05 -0.14 -0.07 -0.16 -0.25 -0.22 -0.50 -0.72 -0.03 -0.79 -0.26 -0.21 -0.17 -0.18 -0.03 -0.07 -0.09 -0.09 -0.09 -0.10 -0.08 -0.09 -0.10 -0.08 -0.09 -0.10 -0.08 -0.09 -1.17 -0.18 -0.07 -0.07 -0.09 -0.10 -0.08 -0.09 -0.10	Vol (m1) 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.88 11.50 12.00 12.50 13.13 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 27.83 28.28 28.53 28.78 29.03 29.28 29.50 29.73 30.05	d2(pH)/d(m1) ² -0.07 -0.02 -0.02 -0.22 -0.20 -0.09 -0.09 -0.03 -0.28 -0.30 1.38 -1.52 1.07 0.06 0.04 -0.00 0.14 -0.04 -0.00 -0.02 0.00 -0.02 0.00 -0.02 0.00 -0.02 1.14 -3.35 0.27 -1.81 0.05 -3.07 -6.40 -7.89 8.60
28.5	5.710	28.65	-0.26	28.78	-1.81
28.8	5.631	28.90	-0.71	29.03	0.05
29.0	5.488	29.15	-0.70	29.28	-3.07
29.3	5.277	29.40	-1.47	29.50	-6.40
33.0	1.780	33.50	-0.09	34.00	0.02
34.0	1.688	34.50	-0.07	26.00	-0.01
35.0	1.617	17.50	0.05	8.75	0.00

Figure C-172. Curve For The Fourth Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-173. First Derivative Of The Fourth Titration Curve For Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-174. Second Derivative Of The Fourth Titration Curve For Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 59. SPENT 150 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

ml 0.984M HCl	рН	Vol (ml)	<u>d(pH)/d(ml)</u>	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	9.192	0.50	-0.14	1.00	-0.09
1.0	9.048	1.50	-0.24	2.00	-0.22
2.0	8.810	2.50	-0.46	2.88	-0.29
3.0	8.349	3.25	-0.68	3.50	0.22
3.5	8.009	3.75	-0.57	4.00	0.19
4.0	7.725	4.25	-0.47	4.50	0.26
4.5	7.489	4.75	-0.34	5.00	0.15
5.0	7.317	5.25	-0.27	5.50	0.14
5.5	7.182	5.75	-0.20	6.13	0.04
6.0	7.182	6.50	-0.17	7.00	0.04
7.0	6.916	7.50	-0.12	8.00	0.06
8.0	6.793	8.50	-0.12	9.00	-0.02
9.0	6.727	9.50	-0.09	10.00	0.02
10.0	6.638	10.50	-0.07	11.00	0.07
11.0	6.566	11.50	-0.00	12.00	-0.07
12.0	6.563	12.50	-0.07	13.00	-0.01
13.0	6.494	13.50	-0.08	14.00	0.02
14.0	6.411	14.50	-0.06	15.00	-0.01
15.0	6.348	15.50	-0.08	16.00	0.00
16.0	6.270	16.50	-0.07	17.00	-0.02
17.0	6.195	17.50	-0.09	18.00	-0.01
18.0	6.105	18.50	-0.10	19.00	0.09
19.0	6.004	19.50	-0.01	20.00	-0.13
20.0	5.998	20.50	-0.13	21.00	-0.08
21.0	5.865	21.50	-0.22	21.88	-0.07
22.0	5.647	22.25	-0.27	22.43	-0.01
22.5	5.513	22.60	-0.27	22.73	-0.80
22.7	5.459	22.85	-0.47	23.00	-0.49
23.0	5.318	23.15	-0.62	23.28	-1.55
23.3	5.133	23.40	-1.00	23.53	-12.82
23.5	4.932	23.65	-4.21	23.78	-2.72
23.8	3.669	23.90	-4.89	24.20	7.17
24.0	2.691	24.50	-0.59	25.00	0.38
25.0	2.102	25.50	-0.21	26.00	0.09
26.0	1.889	26.50	-0.12	27.00	0.04
27.0	1.768	27.50	-0.08	28.00	0.01
28.0	1.687	28.50	-0.07	29.00	0.01
29.0	1.620	29.50	-0.06	22.25	-0.01
30.0	1.564	15.00	0.05	7.50	0.00

Figure C-175. Curve For The First Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-176. First Derivative Of The First Titration Curve For Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-177. Second Derivative Of The First Titration Curve For Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 59. SPENT 150 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

ml 0.984M HCl	рН	<u>Vol (ml)</u>	<u>d(pH)/d(ml)</u>	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{d(m1)^2}$
0.0	9.536	0.50	-0.32	1.00	0.02
1.0	9.217	1.50	-0.30	2.00	-0.02
2.0	8.916	2.50	-0.33	3.00	-0.27
3.0	8.590	3.50	-0.59	4.00	0.18
4.0	7.996	4.50	-0.42	4.88	0.15
5.0	7.577	5.25	-0.30	5.50	0.04
5.5	7.425	5.75	-0.28	6.13	0.12
6:0	7.284	6.50	-0.19	7.00	0.05
7.0	7.095	7.50	-0.13	8.00	0.04
8.0	6.960	8.50	-0.10	9.00	-0.01
9.0	6.864	9.50	-0.11	10.00	0.01
10.0	6.759	10.50	-0.10	11.00	0.07
11.0	6.663	11.50	-0.03	12.25	-0.04
12.0	6.637	13.00	-0.08	13.75	0.01
14.0	6.468	14.50	-0.07	15.00	-0.00
15.0	6.394	15.50	-0.07	16.00	0.02
16.0	6.319	16.50	-0.05	17.00	-0.01
17.0	6.267	17.50	-0.07	18.00	-0.03
18.0	6.200	18.50	-0.10	19.00	0.09
19.0	6.102	19.50	-0.01	20.00	-0.11
20.0	6.096	20.50	-0.12	21.00	-0.04
21.0	5.976	21.50	-0.16	22.00	-0.02
22.0	5.813	22.50	-0.18	23.00	-0.24
23.0	5.630	23.50	-0.42	23.83	-0.72
24.0	5.211	24.15	-0.89	24.28	-4.07
24.3	4.945	24.40	-1.90	24.50	-27.50
24.5	4.564	24.60	-7.40	24.73	24.50
24.7	3.083	24.85	-1.28	25.18	1.04
25.0	2.699	25.50	-0.60	26.00	0.40
26.0	2.098	26.50	-0.20	27.00	0.08
27.0	1.899	27.50	-0.12	28.00	0.04
28.0	1.779	28.50	-0.08	29.00	0.02
29.0	1.695	29.50	-0.06	22.25	-0.01
30.0	1.631	15.00	0.05	7.50	0.00

Figure C-178. Curve For The Second Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-179. First Derivative Of The Second Titration Curve For Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-180. Second Derivative Of The Second Titration Curve For Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 60. SPENT 150 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

ml 0.984M HCl	На	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{}$
0.0	9.586	0.50	-0.04	1.00	0.00
1.0	9.549	1.50	-0.04	2.00	-0.07
2.0	9.513	2.50	-0.11	3.00	0.07
3.0	9.408	3.50	-0.04	4.00	-0.14
4.0	9.371	4.50	-0.17	5.00	0.06
5.0	9.197	5.50	-0.11	6.00	-0.02
6.0	9.086	6.50	-0.13	7.00	-1.66
7.0	8.954	7.50 •	-1.79	8.00	1.63
8.0	7.165	8.50	-0.16	9.00	0.03
9.0	7.009	9.50	-0.13	10.00	0.01
10.0	6.879	10.50	-0.12	11.00	0.01
11.0	6.764	11.50	-0.11	12.25	0.02
12.0	6.656	13.00	-0.08	14.00	0.00
14.0	6.488	15.00	-0.08	16.00	-0.01
16.0	6.324	17.00	-0.10	18.00	-0.00
18.0	6.132	19.00	-0.10	19.75	0.06
20.0	5.934	20.50	-0.01	21.00	-0.16
21.0	5.920	21.50	-0.17	21.88	0.08
22.0	5.749	22.25	-0.11	22.45	-0.22
22.5	5.694	22.65	-0.20	22.78	0.33
22.8	5.635	22.90	-0.11	23.08	-0.40
23.0	5.612	23.25	-0.26	23.50	-0.39
23.5	5.484	23.75	-0.45	23.93	-0.31
24.0	5.259	24.10	-0.56	24.20	-0.85
24.2	5.147	24.30	-0.73	24.40	-6.25
24.4	5.001	24.50	-1.98	24.60	-3.43
24.6	4.605	24.70	-2.67	24.80	-11.37
24.8	4.072	24.90	-4.94	25.08	10.32
25.0	3.084	25.25	-1.33	25.50	1.78
25.5	2.420	25.75	-0.44	26.13	0.25
26.0	2.200	26.50	-0.25	27.00	0.13
27.0	1.951	27.50	-0.12	28.00	0.02
28.0	1.834	28.50	-0.10	29.00	0.03
29.0	1.738	29.50	-0.07	22.25	-0.01
30.0	1.671	15.00	0.06	7.50	0.00

Figure C-181. Curve For The Third Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HC1.

Figure C-182. First Derivative Of The Third Titration Curve For Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-183. Second Derivative Of The Third Titration Curve For Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 61. SPENT 150 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

ml 0.984M HCl 0.0 1.0	pH 9.575 9.449	Vol (ml) 0.50 1.50	d(pH)/d(ml) -0.13 -0.16	Vol (ml) 1.00 2.00	d2(pH)/d(m1) ² -0.04 0.03
2.0	9.285	2.50	-0.14	3.00	-0.22
3.0	9.147	3.50	-0.36	3.88	0.26
4.0	8.791	4.25	-0.16	4.50	-0.23
4.5	8.711	4.75	-0.27	5.00	-0.48
5.0	8.574	5.25	-0.51	5.50	0.08
5.5	8.317	5.75	-0.47	6.00	0.32
6.0	8.081	6.25	-0.31	6.50	-0.78 0.91
6.5	7.925	6.75	-0.70 -0.25	7.00 7.50	-0.27
7.0	7.574 7.451	7.25 7.75	-0.25 -0.38	8.13	0.26
7.5	7.451 7.260	7.75 8.50	-0.19	9.00	0.03
8.0 9.0	7.200	9.50	-0.16	10.25	0.03
10.0	6.916	11.00	-0.13	12.00	0.02
12.0	6.679	13.00	-0.08	14.00	-0.00
14.0	6.511	15.00	-0.08	16.00	0.00
16.0	6.342	17.00	-0.08	18.00	0.01
18.0	6.183	19.00	-0.06	20.00	-0.03
20.0	6.064	21.00	-0.13	19.25	-0.04
22.0	5.806	17.50	0.02	17.88	-0.03
23.0	5.651	18.25	-0.01	21.00	-0.04
23.5	5.592	23.75	-0.24	24.00	-0.20
24.0	5.472	24.25	-0.34	24.50	-0.42
24.5	5.303	24.75	-0.55	24.93	-1.16
25.0	5.028	25.10	-0.95	25.20	-9.40
25.2	4.837	25.30	-2.84	25.40	-19.07 28.42
25.4	4.270	25.50 25.70	-6.65 -0.97	25.60 25.80	-3.35
25.6 25.8	2.940 2.747	25.70 25.90	-1.63	26.20	2.09
26.0	2.747	26.50	-0.38	27.00	0.21
27.0	2.420	27.50	-0.18	28.00	0.07
28.0	1.860	28.50	-0.10	29.00	0.01
29.0	1.756	29.50	-0.09	22.25	-0.01
30.0	1.664	15.00	0.06	7.50	0.00

Figure C-184. Curve For The Fourth Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-185. First Derivative Of The Fourth Titration Curve For Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-186. Second Derivative Of The Fourth Titration Curve For Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 62. SPENT 106 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

			- , ,		
ml 0.981M HCl	Hq	<u>Vol (ml)</u>	d(pH)/d(m1)	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{}$
0.0	9.646	0.50	-0.09	1.00	-0.09
1.0	9.553	1.50	-0.18	2.00	-0.00
2.0	9.370	2.50	-0.19	3.00	-0.02
3.0	9.184	3.50	-0.21	3.88	-0.10
4.0	8.974	4.25	-0.28	4.50	-0.10
4.5	8.833	4.75	-0.33	5.00	0.21
5.0	8.668	5.25	-0.23	5.50	-0.92
5.5	8.555	5.75	-0.69	6.00	-0.58
6.0	8.212	6.25	-0.97	6.50	1.24
6.5	7.725	6.75	-0.35	7.00	0.06
7.0	7.548	7.25	-0.33	7.50	-0.02
7.5	7.385	7.75	-0.33	8.13	0.17
8.0	7.218	8.50	-0.21	9.25	0.06
9.0	7.009	10.00	-0.12	11.00	0.01
11.0	6.763	12.00	-0.10	13.00	0.01
13.0	6.565	14.00	-0.09	15.00	0.01
15.0	6.393	16.00	-0.06	17.00	-0.02
17.0	6.272	18.00	-0.09	19.00	0.01
19.0	6.088	20.00	-0.08	20.75	-0.00
21.0	5.932	21.50	-0.08	22.00	-0.01
- 22.0	5.852	22.50	-0.09	22.88	-0.01
23.0	5.767	23.25	-0.09	23.50	-0.08
23.5	5.720	23.75	-0.13	24.00	-0.02
24.0	5.654	24.25	-0.14	24.50	-0.27
24.5	5.584	24.75	-0.27	25.00	-0.16
25.0	5.447	25.25	-0.35	25.43	-0.04
25.5	5.271	25.60	-0.36	25.73	-0.43
25.7	5.198	25.85	-0.47	25.98	-2.85
26.0	5.056	26.10	-1.18	26.20	-2.50
26.2	4.819	26.30	-1.69	26.40	-21.70
26.4	4.482	26.50	-6.02	26.60	18.20
26.6	3.277	26.70	-2.39	26.80	5.68
26.8	2.800	26.90	-1.25	27.08	1.90
27.0	2.550	27.25	-0.59	27.50	0.48
27.5	2.257	27.75	-0.34	28.13	0.21
28.0	2.085	28.50	-0.19	29.00	0.07
29.0	1.899	29.50	-0.12	22.25	-0.01
30.0	1.779	15.00	0.06	7.50	0.00

Figure C-187. Curve For The First Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HC1.

Figure C-188. First Derivative Of The First Titration Curve For Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-189. Second Derivative Of The First Titration Curve For Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 63. SPENT 106 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

ml 0.981M HCl	pH	<u>Vol (ml)</u>	d(pH)/d(ml)	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{}$
0.0	9.695	0.50	-0.09	1.00	-0.04
1.0	9.607	1.50	-0.13	2.00	-0.00
2.0	9.474	2.50	-0.13	3.00	-0.04
3.0	9.340	3.50	-0.17	4.00	-0.01
4.0	9.166	4.50	-0.19	5.00	-0.13
5.0	8.978	5.50	-0.32	5.88	-0.17
6.0	8.661	6.25	-0.45	6.50	-0.96
6.5	8.437	6.75	-0.93	7.00	0.74
7.0	7.973	7.25	-0.56	7.50	0.30
7.5	7.693	7.75	-0.41	8.13	0.11
8.0	7.487	8.50	-0.33	9.00	0.14
9.0	7.160	9.50	-0.19	10.25	0.04
10.0	6.974	11.00	-0.13	12.00	0.02
12.0	6.707	13.00	-0.09	14.00	0.01
14.0	6.533	15.00	-0.08	16.00	-0.00
16.0	6.382	17.00	-0.08	18.00	0.00
18.0	6.230	19.00	-0.07	20.00	0.02
20.0	6.086	21.00	-0.03	21.75	-0.05
22.0	6.032	22.50	-0.11	23.00	-0.01
23.0	5.925	23.50	-0.12	24.00	-0.06
24.0	5.806	24.50	-0.18	25.00	-0.02
25.0	5.625	25.50	-0.20	26.00	-0.40
26.0	5.429	26.50	-0.59	26.88	-3.73
27.0	4.837	27.25	-3.39	27.43	2.88
27.5	3.141	27.60	-2.38	27.73	4.06
27.7	2.664	27.85	-1.37	28.05	2.63
28.0	2.253	28.25	-0.32	28.50	-0.03
28.5	2.094	28.75	-0.33	29.00	0.30
29.0	1.927	29.25	-0.19	29.50	-0.06
29.5	1.834	29.75	-0.22	22.38	-0.02
30.0	1.726	15.00	0.06	7.50	0.00
• • • •					

Figure C-190. Curve For The Second Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-191. First Derivative Of The Second Titration Curve For Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-192. Second Derivative Of The Second Titration Curve For Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 64. SPENT 106 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

7 0 00111 1107	1.5	W 1 / 1)	17 112 717 72	W 7 (7)	10/ 11/ 11/ 7/2
ml 0.981M HCl 0.0	<u>pH</u> 9.755	<u>Vol (ml)</u> 0.50	<u>d(pH)/d(m1)</u> 0.03	<u>Vol (ml)</u> 1.00	$\frac{d2(pH)/d(m1)^2}{-0.24}$
1.0	9.783	1.50	-0.21	2.00	0.04
2.0	9.572	2.50	-0.17	3.00	0.01
3.0	9.402	3.50	-0.16	4.00	-0.07
4.0	9.241	4.50	-0.23	5.00	-0.19
5.0	9.008	5.50	-0.43	5.88	-0.53
6.0	8.581	6.25	-0.82	6.50	-0.30
6.5	8.170	6.75	-0.97	7.00	0.94
7.0	7.685	7.25	-0.50	7.50	0.19
7.5	7.435	7.75	-0.41	8.38	0.16
8.0	7.232	9.00	-0.21	10.00	0.04
10.0	6.810	11.00	-0.14	12.00	0.02
12.0	6.532	13.00	-0.10	14.00	0.00
14.0	6.329	15.00	-0.10	16.00	-0.00
16.0	6.139 5.938	17.00	-0.10	18.00 19.75	-0.02
18.0 20.0	5.930 5.661	19.00 20.50	-0.14 -0.16	20.88	-0.02 -0.06
21.0	5.497	21.25	-0.10	21.50	-0.41
21.5	5.393	21.75	-0.41	21.93	-0.11
22.0	5.187	22.10	-0.45	22.20	-2.08
22.2	5.092	22.30	-0.87	22.40	-4.55
22.4	4.924	22.50	-1.77	22.58	-4.90
22.6	4.569	22.65	-2.51	22.70	10.50
22.7	4.318	22.75	-1.46	22.80	-45.40
22.8	4.172	22.85	-6.00	22.90	11.70
22.9	3.572	22.95	-4.83	23.10	10.98
23.0	3.089	23.25	-1.54	23.50	2.22
23.5	2.321	23.75	-0.42	24.13	0.25
24.0	2.109	24.50	-0.23	25.00	0.11
25.0	1.876	25.50	-0.12	26.25	0.03
26.0	1.755	27.00	-0.08	28.00	0.02
28.0	1.593	29.00	-0.04	22.00	-0.01
30.0	1.504	15.00	0.05	7.50	0.00

Figure C-193. Curve For The Third Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HC1.

Figure C-194. First Derivative Of The Third Titration Curve For Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-195. Second Derivative Of The Third Titration Curve For Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 65. SPENT 106 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

ml 0.981M HCl	<u>pH</u>	<u>Vol (ml)</u>	<u>d(pH)/d(ml)</u>	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{2}$
0.0	10.033	0.50	-0.14	1.00	0.01
1.0	9.896	1.50	-0.13	2.00	0.02
2.0	9.765	2.50	-0.11	3.00	-0.02
3.0	9.653	3.50	-0.13	4.00	-0.01
4.0	9.520	4.50	-0.15	5.00	-0.02
5.0	9.375	5.50	-0.17	6.00	-0.05
6.0	9.209	6.50	-0.21	7.00	-0.09
7.0	8.996	7.50	-0.30	7.88	-0.42
8.0	8.698	8.25	-0.61	8.50	-0.28
8.5	8.392	8.75	-0.75	9.00	0.20
9.0	8.016	9.25	-0.65	9.50	0.32
9.5	7.689	9.75	-0.49	10.13	0.35
10.0	7.443	10.50	-0.23	11.25	0.03
11.0	7.211	12.00	-0.18	13.00	0.03
13.0	6.844	14.00	-0.12	15.00	0.03
15.0	6.607	16.00	-0.06	17.00	-0.02
17.0	6.488	18.00	-0.09	19.00	0.00
19.0	6.304	20.00	-0.09	20.75	0.05
21.0	6.121	21.50	-0.01	22.00	-0.07
22.0	6.108	22.50	-0.09	23.00	0.01
23.0	6.022	23.50	-0.07	24.00	-0.08
24.0	5.948	24.50	-0.15	24.88	0.10
25.0	5.796	25.25	-0.08	25.50	-0.18
25.5	5.756	25.75	-0.17	26.00	-0.13
26.0	5.672	26.25	-0.23	26.50	-0.37
26.5	5.556	26.75	-0.42	27.00	0.30
27.0	5.347	27.25	-0.27	27.45	-3.50
27.5	5.214	27.65	-1.67	27.78	-25.43
27.8	4.714	27.90	-8.02	28.08	19.33
28.0	3.109	28.25	-1.26	28.50	1.33
28.5	2.479	28.75	-0.60	29.00	0.59
29.0	2.181	29.25	-0.30	29.50	0.21
29.5	2.030	29.75	-0.20	22.38	-0.02
30.0	1.932	15.00	0.06	7.50	0.00

Figure C-196. Curve For The Fourth Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-197. First Derivative Of The Fourth Titration Curve For Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-198. Second Derivative Of The Fourth Titration Curve For Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 66. SPENT 75 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

					
ml 0.981M HCl	Hq	Vol (ml)	d(pH)/d(m1)	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{}$
0.0	10.411	0.50	-0.14	1.00	-0.01
1.0	10.271	1.50	-0.15	2.00	0.06
2.0	10.120	2.50	-0.09	3.25	-0.01
3.0	10.027	4.00	-0.11	5.00	0.00
5.0	9.799	6.00	-0.11	7.00	0.00
7.0	9.578	8.00	-0.11	9.00	-0.03
9.0	9.357	10.00	-0.17	11.00	-0.13
11.0	9.017	12.00	-0.42	12.63	-0.30
13.0	8.169	13.25	-0.80	13.50	0.63
13.5	7.770	13.75	-0.48	14.00	0.16
14.0	7.529	14.25	-0.40	14.50	0.41
14.5	7.327	14.75	-0.20	15.38	-0.00
15.0	7.227	16.00	-0.20	17.00	0.03
17.0	6.818	18.00	-0.13	18.75	0.03
19.0	6.548	19.50	-0.09	20.00	-0.02
20.0	6.460	20.50	-0.11	21.00	0.03
21.0	6.354	21.50	-0.08	22.00	-0.00
22.0	6.273	22.50	-0.09	23.00	-0.01
23.0	6.188	23.50	-0.10	24.00	0.00
24.0	6.088	24.50	-0.10	25.00	-0.00
25.0	5.991	25.50	-0.10	25.88	0.03
26.0	5.892	26.25	-0.08	26.50	-0.17
26.5	5.854	26.75	-0.16	27.00	0.01
27.0	5.773	27.25	-0.16	27.50	-0.08
27.5	5.694	27.75	-0.20	28.00	-0.04
28.0	5.595	28.25	-0.22	28.45	-0.47
28.5	5.486	28.65	-0.41	28.78	0.45
28.8	5.364	28.90	-0.30	29.03	-1.55
29.0	5.305	29.15	-0.68	29.28	-1.69
29.3	5.100	29.40	-1.10	29.50	-7.32
29.5	4.879	29.60	-2.57	29.73	-10.64
29.7	4.365	29.85	-5.23	30.05	10.81
30.0	2.796	30.25	-0.91	30.50	0.84
30.5	2.342	30.75	-0.49	31.38	0.25
31.0	2.097	32.00	-0.17	33.00	0.05
33.0	1.752	34.00	-0.08	25.75	-0.01
35.0	1.588	17.50	0.05	8.75	0.00

Figure C-199. Curve For The First Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-200. First Derivative Of The First Titration Curve For Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-201. Second Derivative Of The First Titration Curve For Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 67. SPENT 75 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

ml 0.981M HCl	<u>pH</u>	<u>Vol (ml)</u>	d(pH)/d(m1)	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{2}$
0.0	10.554	1.00	-0.14	2.00	0.01
2.0	10.282	3.00	-0.11	4.00	0.00
4.0	10.059	5.00	-0.11	6.00	0.01
6.0	9.841	7.00	-0.09	8.00	-0.00
8.0	9.660	9.00	-0.09	10.00	-0.02
10.0	9.471	11.00	-0.13	12.00	-0.07
12.0	9.215	13.00	-0.27	13.63	-0.43
14.0	8.683	14.25	-0.80	14.50	0.13
14.5	8.281	14.75	-0.74	15.00	0.23
15.0	7.912	15.25	-0.62	15.50	0.49
15.5	7.601	15.75	-0.38	16.13	0.15
16.0	7.413	16.50	-0.26	17.00	0.06
17.0	7.148	17.50	0.20	18.25	0.04
18.0	6.944	19.00	-0.15	20.00	0.01
20.0	6.652	21.00	-0.12	22.00	0.02
22.0	6.409	23.00	-0.09	24.00	-0.01
24.0	6.238	25.00	-0.10	26.00	-0.01
26.0	6.045	27.00	-0.11	27.75	-0.03
28.0	5.819	28.50	-0.15	29.00	-0.08
29.0	5.668	29.50	-0.24	29.88	-0.19
30.0	5.433	30.25	-0.38	30.50	-1.31
30.5	5.244	30.75	-1.03	30.95	-10.34
31.0	4.727	31.15	-5.17	31.30	10.87
31.3	3.176	31.45	-1.91	31.63	3.26
31.6	2.603	31.80	-0.77	32.15	0.63
32.0	2.296	32.50	-0.32	33.00	0.14
33.0	1.973	33.50	-0.18	34.00	0.09
34.0	1.794	34.50	-0.09	26.00	-0.01
35.0	1.702	17.50	0.05	8.75	0.00

Figure C-202. Curve For The Second Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-203. First Derivative Of The Second Titration Curve For Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-204. Second Derivative Of The Second Titration Curve For Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 68. SPENT 75 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

		***		• .	
ml 0.981M HCl	рН	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	10.698	1.00	-0.16	2.00	0.01
2.0	10.385	3.00	-0.14	4.00	0.01
4.0	10.104	5.00	-0.11	6.00	-0.01
6.0	9.880	7.00	-0.12	8.00	-0.00
8.0	9.634	9.00	-0.13	10.00	-0.05
10.0	9.375	11.00	-0.22	12.00	-0.14
12.0	8.927	13.00	-0.51	13.63	-0.20
14.0	7.911	14.25	-0.75	14.50	0.76
14.5	7.535	14.75	-0.37	15.00	0.13
15.0	7.349	15.25	-0.31	15.50	0.14
15.5	7.196	15.75	-0.24	16.38	0.06
16.0	7.078	17.00	-0.17	18.00	0.03
18.0	6.745	19.00	-0.11	20.00	0.01
20.0	6.517	21.00	-0.09	22.00	0.00
22.0	6.329	23.00	-0.09	24.00	0.01
24.0	6.159	25.00	-0.07	26.00	-0.01
26.0	6.011	27.00	-0.09	27.75	-0.03
28.0	5.827	28.50	-0.13	29.00	0.00
29.0	5.695	29.50	-0.13	29.88	-0.23
30.0	5.568	30.25	-0.30	30.50	-0.30
30.5	5.419	30.75	-0.45	31.00	-0.78
31.0	5.195	31.25	-0.84	31.43	-6.61
31.5	4.777	31.60	-3.15	31.68	-28.47
31.7	4.147	31.75	-7.42	31.83	27.30
31.8	3.405	31.90	-3.32	32.08	7.15
32.0	2.740	32.25	-0.82	32.50	0.77
32.5	2.328	32.75	-0.44	33.13	0.30
33.0	2.109	33.50	-0.21	34.00	0.08
34.0	1.896	34.50	-0.13	26.00	-0.01
35.0	1.767	17.50	0.05	8.75	0.00
	1.707		0.00	0.70	0.00

Figure C-205. Curve For The Third Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-206. First Derivative Of The Third Titration Curve For Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-207. Second Derivative Of The Third Titration Curve For Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 69. SPENT 75 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

				· · · · · · · · · · · · · · · · · · ·	
ml 0.981M HCl	рН	<u>Vol (ml)</u>	<u>d(pH)/d(ml)</u>	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{d}$
0.0	10.666	1.00	-0.16	2.00	0.02
2.0	10.338	3.00	-0.13	4.00	0.03
4.0	10.074	5.00	-0.08	6.00	-0.01
6.0	9.912	7.00	-0.09	8.00	-0.03
8.0	9.728	9.00	-0.16	10.00	0.02
10.0	9.407	11.00	-0.12	12.00	-0.18
12.0	9.174	13.00	-0.48	13.63	-0.31
14.0	8.223	14.25	-0.86	14.50	0.48
14.5	7.793	14.75	-0.62	15.00	0.51
15.0	7.483	15.25	-0.36	15.50	0.14
15.5	7.301	15.75	-0.29	16.38	0.08
16.0	7.155	17.00	-0.19	18.00	0.02
18.0	6.782	19.00	-0.14	20.00	0.02
20.0	6.501	21.00	-0.09	22.00	0.00
22.0	6.316	23.00	-0.09	24.00	-0.01
24.0	6.139	25.00	-0.10	26.00	0.01
26.0	5.940	27.00	-0.07	27.75	-0.08
28.0	5.796	28.50	-0.19	29.00	-0.12
29.0	5.609	29.50	-0.31	29.88	-0.53
30.0	5.300	30.25	-0.71	30.50	-5.91
30.5	4.945	30.75	-3.67	30.95	4.68
31.0	3.112	31.15	-1.79	31.28	3.89
31.3	2.574	31.40	-0.82	31.53	1.44
31.5	2.410	31.65	-0.46	31.78	-0.18
31.8	2.272	31.90	-0.50	32.20	0.45
32.0	2.171	32.50	-0.24	33.00	0.09
33.0	1.936	33.50	-0.14	34.00	0.05
34.0	1.791	34.50	-0.09	26.00	-0.01
35.0	1.698	17.50	0.05	8.75	0.00
33.0	1.030	17.00	0.00		0.00
					· · · · · · · · · · · · · · · · · · ·

Figure C-208. Curve For The Fourth Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HC1.

Figure C-209. First Derivative Of The Fourth Titration Curve For Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-210. Second Derivative Of The Fourth Titration Curve For Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 70. SPENT 45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

ml 0.981M HCl	Нq	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	11.153	1.00	-0.22	2.00	0.04
2.0	10.705	3.00	-0.15	4.00	0.02
4.0	10.398	5.00	-0.11	6.00	0.00
6.0	10.183	7.00	-0.10	8.00	0.01
8.0	9.984	9.00	-0.09	10.00	-0.02
10.0	9.809	11.00	-0.12	12.00	-0.00
12.0	9.564	13.00	-0.13	14.00	-0.04
14.0	9.306	15.00	-0.22	15.75	-0.15
. 16.0	8.871	16.50	-0.45	16.88	-0.38
17.0	8.423	17.25	-0.73	17.50	-0.32
17.5	8.058	17.75	-0.89	18.00	0.94
18.0	7.614	18.25	-0.42	18.50	0.28
18.5	7.404	18.75	-0.28	19.38	0.05
19.0	7.264	20.00	-0.22	21.00	0.04
21.0	6.832	22.00	-0.13	23.00	0.01
23.0	6.562	24.00	-0.11	25.00	0.01
25.0	6.336	26.00	-0.08	27.00	0.01
27.0	6.167	28.00	-0.07	29.00	-0.03
29.0	6.026	30.00	-0.13	30.75	-0.03
31.0	5.759	31.50	-0.18	31.85	0.33
32.0	5.581	32.20	0.05	32.45	-0.64
32.4	5.602	32.70	-0.27	32.97	-1.09
33.0	5.443	33.25	-0.86	33.50	-5.68
33.5	5.011	33.75	-3.70	33.93	4.01
34.0	3.160	34.10	-2.30	34.22	5.48
34.2	2.700	34.35	-0.93	34.47	1.88
34.5	2.421	34.60	-0.46	34.72	0.03
34.7	2.329	34.85	-0.45	35.18	0.34
35.0	2.193	35.50	-0.23	36.00	0.08
36.0	1.960	36.50	-0.15	37.13	0.05
37.0	1.809	37.75	-0.09	38.50	0.02
38.5	1.668	39.25	-0.06	29.63	-0.01
40.0	1.575	20.00	0.04	10.00	0.00

Figure C-211. Curve For The First Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-212. First Derivative Of The First Titration Curve For Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-213. Second Derivative Of The First Titration Curve For Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 71. SPENT 45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

ml 0.981M HCl	pH	Vol (ml)	<u>d(pH)/d(m1)</u>	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{2}$
0.0	11.164	1.00	-0.23	2.00	0.05
2.0	10.704	3.00	-0.14	4.00	0.01
4.0	10.427	5.00	-0.13	6.00	0.01
6.0	10.175	7.00	-0.11	8.00	-0.01
8.0	9.954	9.00	-0.12	10.00	-0.01
10.0	9.708	11.00	-0.13	12.00	-0.02
12.0	9.440	13.00	-0.18	13.75	-0.08
14.0	9.076	14.50	-0.31	15.00	-0.39
15.0	8.768	15.50	-0.70	15.88	-0.12
16.0	8.071	16.25	-0.79	16.50	0.78
16.5	7.676	16.75	-0.40	17.00	-0.06
17.0	7.475	17.25	-0.43	17.50	0.46
17.5	7.258	17.75	-0.20	18.38	0.02
18.0	7.157	19.00	-0.18	20.00	0.03
20.0	6.797	21.00	-0.12	22.00	0.01
22.0	6.559	23.00	-0.10	24.00	0.01
24.0	6.354	25.00	-0.08	26.00	-0.00
26.0	6.194	27.00	-0′.08	28.00	0.01
28.0	6.027	29.00	-0.07	29.75	0.01
30.0	5.882	30.50	-0.06	31.00	-0.21
31.0	5.820	31.50	-0.27	32.00	-0.06
32.0	5.549	32.50	-0.33	32.80	-0.53
33.0	5.218	33.10	-0.65	33.22	-3.87
33.2	5.088	33.35	-1.62	33.47	-9.85
33.5	4.603	33.60	-4.08	33.72	3.04
33.7	3.787	33.85	-3.32	34.05	6.10
34.0	2.791	34.25	-0.88	34.50	0.79
34.5	2.352	34.75	-0.48	35.13	0.38
35.0	2.111	35.50	-0.19	36.00	0.05
36.0	1.916	36.50	-0.14	37.00	-0.07
37.0	1.772	37.50	-0.21	38.25	0.13
38.0	1.562	39.00	-0.01	29.50	-0.00
40.0	1.544	20.00	0.04	10.00	0.00

Figure C-214. Curve For The Second Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-215. First Derivative Of The Second Titration Curve For Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-216. Second Derivative Of The Second Titration Curve For Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 72. SPENT 45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

ml 0.981M HCl	рН	<u>Vol (ml)</u>	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	11.493	1.00	-0.33	2.00	0.08
2.0	10.832	3.00	-0.18	4.00	0.02
4.0	10.472	5.00	-0.13	6.00	0.01
6.0	10.205	7.00	-0.10	8.00	-0.00
			-0.11		
8.0	9.996	9.00		10.00	-0.01
10.0	9.781	11.00	-0.12	12.00	-0.01
12.0	9.538	13.00	-0.14	13.75	-0.00
14.0	9.260	14.50	-0.14	15.00	-0.16
15.0	9.116	15.50	-0.31	15.88	-0.13
16.0	8.807	16.25	-0.40	16.50	-0.57
16.5		16.75	-0.69	17.00	-0.24
	8.605				
17.0	8.261	17.25	-0.81	17.50	0.60
17.5	7.856	17.75	-0.51	18.00	-0.02
18.0	7.601	18.25	-0.52	18.50	0.18
18.5	7.342	18.75	-0.43	19.13	0.34
19.0	7.127	19.50	-0.18	20.25	0.02
20.0	6.949	21.00	-0.15	22.00	0.02
22.0	6.651	23.00	-0.11	24.00	0.01
24.0	6.427	25.00	-0.10	26.00	0.00
26.0	6.233	27.00	-0.09	27.75	0.01
28.0	6.047	28.50	-0.08	29.00	0.05
29.0	5.965	29.50	-0.03	30.00	-0.10
30.0	5.937	30.50	-0.13	31.00	-0.03
31.0	5.811	31.50	-0.15	31.88	0.02
32.0	5.659	32.25	-0.14	32.50	-0.18
32.5	5.589	32.75	-0.23	32.93	-0.09
33.0	5.475	33.10	-0.26	33.20	0.22
33.2	5.423	33.30	-0.21	33.40	-1.53
33.4	5.380	33.50	-0.52	33.60	-0.60
33.6	5.276	33.70	-0.64	33.80	0.35
33.8	5.148	33.90	-0.57	34.00	-3.98
34.0	5.034	34.10	-1.36	34.18	-7.90
34.2	4.761	34.25	-2.55	34.33	0.07
34.3	4.506	34.40	-2.54	34.50	-13.88
34.5	3.998	34.60	-5.31	34.68	21.63
34.7	2.935	34.75	-2.07	34.83	5.87
34.8	2.728	34.90	-1.19	35.20	1.23
35.0	2.490	35.50	-0.45	36.00	0.28
36.0	2.040	36.50	-0.17	37.13	0.05
37.0	1.870	37.75	-0.10	38.50	0.02
38.5	1.717	39.25	-0.07	29.63	-0.01
40.0	1.606	20.00	0.04	10.00	0.00
-					,

Figure C-217. Curve For The Third Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-218. First Derivative Of The Third Titration Curve For Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-219. Second Derivative Of The Third Titration Curve For Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 73. SPENT 45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

	· · · · · · · · · · · · · · · · · · ·				
ml 0.981M HCl 0.0	<u>рН</u> 11.680	Vol (ml) 1.00	<u>d(pH)/d(ml)</u> -0.41	Vol (ml) 2.00	$\frac{d2(pH)/d(m1)^2}{0.12}$
2.0	10.855	3.00	-0.17	4.00	0.01
	10.535	5.00	-0.14	6.00	0.02
4.0	10.313	7.00	-0.14	8.00	-0.02
6.0			-0.13	10.00	0.01
8.0	10.050	9.00	-0.13	12.00	-0.02
10.0	9.800	11.00			-0.02
12.0	9.592	13.00	-0.14	14.00	
14.0	9.312	15.00	-0.24	15.63	-0.04
16.0	8.840	16.25	-0.29	16.50	-0.90
16.5	8.696	16.75	-0.74	17.00	-1.40
17.0	8.327	17.25	-1.44	17.50	2.61
17.5	7.609	17.75	-0.13	18.00	-0.05
18.0	7.543	18.25	-0.16	18.50	-0.20
18.5	7.464	18.75	-0.26	19.13	-0.25
19.0	7.334	19.50	-0.45	20.25	0.21
20.0	6.884	21.00	-0.14	22.00	-0.01
22.0	6.602	23.00	-0.16	24.00	0.03
24.0	6.287	25.00	-0.11	26.00	0.01
26.0	6.077	27.00	-0.09	27.75	0.01
28.0	5.888	28.50	-0.09	29.00	-0.03
29.0	5.802	29.50	-0.11	30.00	-0.01
30.0	5.689	30.50	-0.12	30.88	-0.07
31.0	5.569	31.25	-0.17	31.45	0.07
31.5	5.483	31.65	-0.14	31.78	-0.39
31.8	5.440	31.90	-0.24	32.00	0.20
32.0	5.392	32.10	-0.20	32.20	-0.22
32.2	5.352	32.30	-0.24	32.40	0.20
32.4	5.303	32.50	-0.21	32.60	-0.87
32.6	5.262	32.70	-0.38	32.80	0.57
32.8	5.186	32.90	-0.26	33.00	-1.65
33.0	5.133	33.10	-0.59	33.20	-1.27
33.2	5.014	33.30	-0.85	33.40	-1.80
33.4	4.844	33.50	-1.21	33.60	-12.03
33.6	4.602	33.70	-3.6 <u>1</u>	33.80	-3.17
33.8	3.879	33.90	-4.25	34.00	9.88
34.0	3.029	34.10	-2.27	34.22	5.50
34.2	2.574	34.35	-0.90	34.55	1.07
34.5	2.304	34.75	-0.47	35.13	0.28
35.0	2.068	35.50	-0.26	36.25	0.10
36.0	1.803	37.00	-0.11	38.00	0.03
38.0	1.587	39.00	-0.05	29.50	-0.00
40.0	1.478	20.00	0.04	10.00	0.00

Figure C-220. Curve For The Fourth Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-221. First Derivative Of The Fourth Titration Curve For Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-222. Second Derivative Of The Fourth Titration Curve For Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 74. SPENT <45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

					
ml 0.981M HCl	Hq	<u>Vol (ml)</u>	d(pH)/d(m1)	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{}$
0.0	11.534	1.00	-0.13	2.00	-0.03
2.0	11.279	3.00	-0.20	4.00	0.04
4.0	10.885	5.00	-0.11	6.00	0.02
6.0	10.670	7.00	-0.07	8.00	0.00
8.0	10.527	9.00	-0.07	10.00	-0.00
10.0	10.397	11.00	-0.07	12.00	0.02
12.0	10.249	13.00	-0.04	14.00	-0.00
14.0	10.178	15.00	-0.04	16.00	0.01
16.0	10.098	17.00	-0.03	18.00	-0.22
18.0	10.042	19.00	-0.46	20.00	0.10
20.0	9.121	21.00	-0.26	21.63	-1.59
22.0	8.602	22.25	-2.24	22.50	2.88
22.5	7.481	22.75	-0.80	23.38	0.43
23.0	7.080	24.00	-0.27	25.00	0.06
25.0	6.543	26.00	-0.14	27.00	0.01
27.0	6.256	28.00	-0.12	29.00	0.02
29.0	6.008	30.00	-0.08	30.75	-0.04
31.0	5.853	31.50	-0.13	32.00	0.01
32.0	5.723	32.50	-0.12	32.88	-0.02
33.0	5.606	33.25	-0.13	33.50	-0.02
33.5	5.540	33.75	-0.14	33.95	-0.34
34.0	5.470	34.15	-0.28	34.28	0.43
34.3	5.387	34.40	-0.17	34.53	-1.31
34.5	5.353	34.65	-0.50	34.78	-0.03
34.8	5.204	34.90	-0.50	35.00	-1.18
35.0	5.103	35.10	-0.74	35.20	-1.65
35.2	4.955	35.30	-1.07	35.40	-6.15
35.4	4.741	35.50	-2.30	35.60	-4.62
35.6	4.281	35.70	-3.22	35.80	-6.20
35.8	3.636	35.90	-4.46	36.08	9.91
36.0	2.743	36.25	-1.00	36.50	1.16
36.5	2.245	36.75	-0.42	37.13	0.25
37.0	2.036	37.50	-0.23	38.00	0.10
38.0	1.803	38.50	-0.13	39.00	0.04
39.0	1.672	39.50	-0.09	29.75	-0.01
40.0	1.578	20.00	0.04	10.00	0.00

Figure C-223. Curve For The First Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-224. First Derivative Of The First Titration Curve For Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-225. Second Derivative Of The First Titration Curve For Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 75. SPENT <45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

					,
ml 0.981M HCl	рH	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	$\frac{11.499}{11.499}$	1.00	-0.40	2.00	0.10
2.0	10.702	3.00	-0.20	4.00	0.03
	10.702	5.00	-0.14	6.00	0.01
4.0					0.00
6.0	10.030	7.00	-0.12	8.00	
8.0	9.793	9.00	-0.11	10.00	0.00
10.0	9.565	11.00	-0.11	12.00	0.01
12.0	9.345	13.00	-0.09	14.00	-0.07
14.0	9.162	15.00	-0.23	15.63	-0.04
16.0	8.696	16.25	-0.28	16.50	-0.34
16.5	8.557	16.75	-0.45	17.00	-0.43
17.0	8.333	17.25	-0.66	17.50	-0.55
17.5	8.002	17.75	-0.94	18.00	0.68
18.0	7.534	18.25	-0.60	18.50	0.63
18.5	7.236	18.75	-0.28	19.38	0.05
19.0	7.095	20.00	-0.22	21.00	0.04
21.0	6.661	22.00	-0.14	23.00	0.02
23.0	6.379	24.00	-0.10	25.00	0.01
25.0	6.182	26.00	-0.08	27.00	-0.00
27.0	6.023	28.00	-0.08	29.00	-0.01
29.0	5.861	30.00	-0.10	30.75	-0.00
31.0	5.666	31.50	-0.10	31.88	0.04
32.0	5.561	32.25	-0.11	32.50	-0.18
32.5	5.524	32.75	-0.17	33.00	0.37
33.0	5.441	33.25	0.02	33.50	-0.73
33.5	5.450	33.75	-0.35	33.93	-0.75
34.0	5.276	34.10	-0.43	34.20	-0.25
34.2	5.189	34.30	-0.50	34.40	-0.83
		34.50	-0.67	34.60	-3.12
34.4	5.088			34.80	-2.15
34.6	4.954	34.70	-1.29		
34.8	4.695	34.90	-1.72	35.00	-23.88
35.0	4.350	35.10	-6.50	35.20	22.22
35.2	3.050	35.30	-2.05	35.45	3.94
35.4	2.639	35.60	-0.87	35.75	1.19
35.8	2.290	35.90	-0.51	36.20	0.31
36.0	2.187	36.50	-0.33	37.00	0.17
37.0	1.861	37.50	-0.16	38.00	0.06
38.0	1.704	38.50	-0.09	39.00	0.00
39.0	1.612	39.50	-0.09	29.75	-0.01
40.0	1.523	20.00	0.04	10.00	0.00

Figure C-226. Curve For The Second Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-227. First Derivative Of The Second Titration Curve For Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-228. Second Derivative Of The Second Titration Curve For Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 76. SPENT <45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

ml 0.981M HCl	рН	Vol (ml)	d(pH)/d(m1)	<u>Vol (ml)</u>	$d2(pH)/d(m1)^2$
0.0	11.492	1.00	-0.41	2.00	0.11
2.0	10.676	3.00	-0.19	4.00	0.03
4.0	10.292	5.00	-0.14	6.00	0.01
6.0	10.019	7.00	-0.11	8.00	0.00
8.0	9.795	9.00	-0.11	10.00	0.00
10.0	9.580	11.00	-0.11	12.00	-0.01
12.0	9.367	13.00	-0.13	14.00	-0.05
14.0	9.098	15.00	-0.23	15.63	0.01
	8.646	16.25	-0.23	16.50	-0.59
16.0	8.540	16.75	-0.51	17.00	-0.62
16.5			-0.82	17.50	0.09
17.0	8.287	17.25 17.75	-0.82	18.00	0.67
17.5	7.879			18.50	0.02
18.0	7.493	18.25	-0.44		
18.5	7.275	18.75	-0.43	19.38	0.18
19.0	7.062	20.00	-0.21	21.00	0.04
21.0	6.650	22.00	-0.12	23.00	0.01
23.0	6.404	24.00	-0.10	25.00	0.01
25.0	6.197	26.00	-0.09	27.00	0.00
27.0	6.024	28.00	-0.08	28.75	0.00
29.0	5.865	29.50	-0.07	30.00	-0.02
30.0	5.792	30.50	-0.09	31.00	-0.04
31.0	5.699	31.50	-0.13	31.90	-0.01
32.0	5.568	32.30	-0.14	32.55	-0.00
32.6	5.484	32.80	-0.14	33.00	0.17
33.0	5.427	33.20	-0.08	33.40	-0.56
33.4	5.397	33.60	-0.30	33.75	-0.68
33.8	5.277	33.90	-0.50	34.05	0.37
34.0	5.176	34.20	-0.39	34.40	-1.04
34.4	5.019	34.60	-0.81	34.75	-5.74
34.8	4.696	34.90	-2.53	35.03	-10.04
35.0	4.190	35.15	-5.04	35.33	10.61
35.3	2.678	35.50	-1.32	35.68	2.94
35.7	2.148	35.85	-0.30	36.18	0.09
36.0	2.059	36.50	-0.24	37.00	0.10
37.0	1.822	37.50	-0.14	38.00	0.05
38.0	1.686	38.50	-0.09	39.00	0.01
39.0	1.600	39.50	-0.08	29.75	-0.01
40.0	1.523	20.00	0.04	10.00	0.00

Figure C-229. Curve For The Third Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-230. First Derivative Of The Third Titration Curve For Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-231. Second Derivative Of The Third Titration Curve For Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 77. SPENT <45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

ml 0.981M HCl	pH	<u>Vol (ml)</u>	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	11.497	1.00	-0.39	2.00	0.10
2.0	10.726	3.00	-0.18	4.00	0.02
4.0	10.367	5.00	-0.15	6.00	0.02
6.0	10.073	7.00	-0.11	8.00	0.00
8.0	9.855	9.00	-0.11	10.00	-0.00
10.0	9.640	11.00	-0.11	12.00	-0.01
12.0	9.413	13.00	-0.13	14.00	-0.02
14.0	9.143	15.00	-0.18	15.75	-0.07
16.0	8.774	16.50	-0.30	16.88	-0.50
17.0	8.478	17.25	-0.67	17.50	-0.24
17.5	8.141	17.75	-0.79	18.00	0.22
18.0	7.745	18.25	-0.68	18.50	0.48
18.5	7.403	18.75	-0.45	19.38	0.17
19.0	7.180	20.00	-0.23	21.00	0.05
21.0	6.715	22.00	-0.13	23.00	0.02
23.0	6.451	24.00	-0.09	25.00	0.00
25.0	6.268	26.00	-0.08	27.00	-0.00
27.0	6.104	28.00	-0.09	29.00	-0.00
29.0	5.930	30.00	-0.09	30.75	0.00
31.0	5.741	31.50	-0.09	32.00	-0.06
32.0	5.651	32.50	-0.15	32.88	0.07
33.0	5.503	33.25	-0.09	33.50	-0.20
33.5	5.457	33.75	-0.19	33.95	0.23
34.0	5.360	34.15	-0.10	34.30	-0.62
34.3	5.329	34.45	-0.29	34.63	-0.66
34.6	5.242	34.80	-0.52	34.95	-0.57
35.0	5.034	35.10	-0.69	35.20	-1.17
35.2	4.896	35.30	-0.92	35.40	-8.43
35.4	4.711	35.50	-2.61	35.60	-16.35
35.6	4.189	35.70	-5.88	35.80	18.17
35.8	3.013	35.90	-2.24	36.20	2.70
36.0	2.564	36.50	-0.62	37.00	0.48
37.0	1.940	37.50	-0.15	38.00	0.03
38.0	1.794	38.50	-0.12	39.00	0.02
39.0	1.675	39.50	-0.10	29.75	-0.01
40.0	1.575	20.00	0.04	10.00	0.00

Figure C-232. Curve For The Fourth Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-233. First Derivative Of The Fourth Titration Curve For Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-234. Second Derivative Of The Fourth Titration Curve For Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.