QUAN HỆ CHIA HẾT TRÊN TẬP SỐ NGUYÊN

TRẦN HÀ SƠN

ĐAI HOC KHOA HOC TƯ NHIÊN-ĐHQG TPHCM

Ngày 4 tháng 10 năm 2024

Overview

- 1 Biểu diễn số nguyên và các tính chất số học của số nguyên
- 2 Ước chung lớn nhất và bội chung nhỏ nhất
- Thuật toán Euclide
- 4 Thuật toán J.Stein
- 5 Thuật toán Euclide mở rộng

Hệ cơ số

Định lý

Giả sử b là một số nguyên lớn hơn 1, Khi đó mọi số nguyên n có thể được viết duy nhất dưới dạng

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0$$

trong đó a_j là số nguyên thỏa $0 \le a_j \le b-1$, $j=0,1,\cdots,k$ và hệ số đầu tiên $a_k \ne 0$.

Ví du

$$(1994)_{10} = (11111001010)_2 = (16246)_8$$

Quan hệ chia hết trên tập số nguyên

Định nghĩa

Số nguyên a được gọi là chia hết cho một số nguyên b, hay b chia hết a nếu tồn tại một số nguyên c sao cho a = bc. Khi a chia hết cho b, ta kí hiệu là a : b hoặc b | a và b được gọi là ước của a còn a được gọi là bội của b.

Lưu ý

a chia hết cho 0 khi và chỉ khi a bằng 0 nên bội của 0 là 0 còn tập các ước của 0 là tập số nguyên \mathbb{Z} .

Quan hệ chia hết trên tập số nguyên

Tính chất

Số nguyên có các tính chất cơ bản như sau:

- **1** |a| với mọi $a \in \mathbb{Z}$, a|a| với mọi $a \in \mathbb{Z}$.
- Nếu a|b và b|c thì a|c.
- **1** Nếu $a|b_i$ thì $a|\sum_{i=1}^n b_i x_i$ với mọi $x_i \in \mathbb{Z}$.
- **5** Nếu a|b và b|a thì a=b hoặc a=-b.
- Quan hệ chia hết trong $\mathbb Z$ có tính phản xạ, bắc cầu nhưng không có tính đối xứng.
- **Q** Quan hệ chia hết trong \mathbb{Z} có tính phản đối xứng.

Lưu ý

a chia hết cho 0 khi và chỉ khi a bằng 0 nên bội của 0 là 0 còn tập các ước của 0 là tập số nguyên \mathbb{Z} .

NHẬP MÔN MÃ HÓA MẬT MÃ

Phép chia với dư

Định lý

Với mỗi cặp số nguyên a và $b \neq 0$, luôn luôn tồn tại duy nhất cặp số nguyên q,r với $0 \leq r < |b|$ sao cho

$$a = bq + r$$
.

Lưu ý

a chia hết cho 0 khi và chỉ khi a bằng 0 nên bội của 0 là 0 còn tập các ước của 0 là tập số nguyên \mathbb{Z} .

Khái niệm ước chung

Định nghĩa

Cho các số a_1, a_2, \ldots, a_n . Số nguyên d được gọi là một ước chung của các a_i nếu $d|a_i$ với mọi $i=1,2,\ldots,n$.

Lưu ý

- Nếu a_1, a_2, \ldots, a_n không đồng thời bằng 0 thì ước chung của chúng là một tập hữu hạn khác rỗng.
- Nếu $a_1 = a_2 = \ldots = a_n = 0$ thì tập các ước chung của chúng là \mathbb{Z} .

Khái niệm ước chung lớn nhất

Định nghĩa

Cho các số a_1, a_2, \ldots, a_n . Số nguyên d được gọi là một **ước chung lớn nhất** của các a_i nếu $d|a_i$ với mọi $i=1,2,\ldots,n$ và d chia hết cho mọi ước chung của chúng, kí hiệu là $d=\gcd(a_1,a_2,\ldots,a_n)$ hoặc $d=(a_1,a_2,\ldots,a_n)$. Nếu d=1 thì các số a_1,a_2,\ldots,a_n được gọi là nguyên tố cùng nhau.

Lưu ý

- Nếu a_1, a_2, \ldots, a_n không đồng thời bằng 0 thì ước chung lớn nhất d của chúng là một số khác 0 và -d cũng là ước chung lớn nhất của a_1, a_2, \ldots, a_n .
- Nếu $a_1 = a_2 = \ldots = a_n = 0$ thì $(a_1, a_2, \ldots, a_n) = 0$.

Định lý

Giả sử c và d là các số nguyên, đồng thời <math>c = dq + r, trong đó q, r là các số nguyên. Khi đó

$$(c,d)=(d,r).$$

Định lý (Thuật toán Euclide)

Giả sử $r_0=a, r_1=b$ là các số nguyên không âm, $b\neq 0$. Ta áp dụng liên tiếp thuật toán chia:

$$r_j = r_{j+1}q_{j+1} + r_{j+1}$$

thỏa $0 < r_{j+2} < r_{j+1}, j = 0, 1, \dots, n-2, r_n = 0$. Khi đó $(a, b) = r_{n-1}$ $(r_n$ là phần dư khác 0 cuối cùng của phép chia).

Ví dụ (Thuật toán Euclide)

Tính d = (24, 63).

Định lý (Thuật toán Euclide)

Số phép chia cần thiết để thực hiện tìm ước chung lớn nhất của hai số nguyên a, b bằng thuật toán Euclide không vượt qua năm lần số chữ số thập phân của số bé trong hai số đã cho, nghĩa là

$$\log_{10} b \ge (n-1)\log_{10}(\frac{1+\sqrt{5}}{2}) > \frac{n-1}{5}.$$

Hệ quả (Thuật toán Euclide)

Giả sử a < b, khi đó số phép tính bit cần thiết để thực hiện thuật toán Euclide là $O((\log_2 a)^3)$.

Thuật toán J.Stein

Lưu ý

Thuật toán dựa trên nhận xét đơn giản như sau:

- Nếu a và b cùng chẵn thì $(a, b) = 2(\frac{a}{2}, \frac{b}{2})$.
- Nếu a chẵn, b lẻ thì $(a,b)=(\frac{a}{2},b)$.
- Nếu a, b đều lẻ thỉ a b chẵn và (a, b) = (a b, b).

Thuật toán Euclide mở rộng

Định lý

Ước chung lớn nhất của các số nguyên a và b là số nguyên dương d được biểu diễn dưới dạng tổ hợp tuyến tính của a và b. Nghĩa là tồn tại các số nguyên m, n sao cho

$$d = ma + nb$$
.

Nhân xét

Dựa vào thuật toán Euclide, ta suy ra thiết kế sau:

- Bước 1: Gán $(x_0, y_0, r_0) = (1, 0, a)$ và $(x_1, y_1, r_1) = (0, 1, b)$.
- Bước k: Gán

$$(x_k, y_k, r_k) = (x_{k-2} - x_{k-1} * q_{k-1}, y_{k-2} - y_{k-1} * q_{k-1}, r_{k-2} - r_{k-1} * q_{k-1})$$

trong đó $q_{k-1} = \begin{bmatrix} r_{k-2} \\ r_{k-1} \end{bmatrix}$.