Sequence Modeling: Recurrent and Recursive Networks

Markus Dumke

27th January 2016

Contents

Introduction

Recurrent Neural Network

Optimization and Vanishing Gradient Problem

LSTM

Different RNN architectures

Why RNN's?

- sequential data
- outputs depend on all previous inputs (no independence)
- long-term dependencies
- memory

Applications

Natural Language Processing

- machine translation
- character- or word-level language model
- text summary or labels
- sentiment analysis
- image captioning
- handwriting recognition and generation
- speech recognition and generation
- time series
- ..

for
$$t = 1$$
 to τ :

$$a^{(t)} = b + Wh^{(t-1)} + Ux^{(t)}$$

 $h^{(t)} = f(a^{(t)})$
 $o^{(t)} = c + Vh^{(t)}$
 $\hat{y}^{(t)} = softmax(o^{(t)})$

Which activation function?

$$f(x) = tanh(x) = \frac{sinh(x)}{cosh(x)} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

 $http://www.20sim.com/webhelp/language_reference_functions_tanh.php$

Optimization

- Forward Propagation, compute loss
- Backward Propagation through time (BPTT), compute gradients
- Stochastic Gradient Descent (Minibatch)

Vanishing (and Exploding) Gradient Problem

How to deal with vanishing gradients?

- Gradient Clipping
- Regularization
- Leaky Units
- different time scales
- LSTM, GRU and variants

Sampling from an RNN

- · sample from conditional distribution at each time step
- how to generate sequence length?
- · special end symbol
- Bernoulli random variable
- ullet integer value au

Language Modeling

Output: Probability distribution over words given previous words

$$P(y_1,...,y_T) = \prod_{i=1}^T P(y_i|y_1,...,y_{i-1})$$

- scoring candidates
- word-level or character-level possible
- Input: word/character encoded as one-hot vector

RNN with output recurrence

Teacher Forcing

One-output RNN

Deep RNNs

Res-Net

Bidirectional RNN

Recursive Neural Network

Encoder-Decoder Architecture

Attention

Attention

Google's Neural Machine Translation System

.

Language Embeddings

?

Bibliography