PHY 5410: Homework Week 3

- **5.1** (a) Show that for the eigenstates of L_z the expectation values of L_+ , L_- , L_x , and L_y vanish.
- (b) Determine the average square deviation $(\Delta L_i)^2$ for the components of the angular momentum operator in the states Y_{ll} and check the uncertainty relation.
- (c) Show that for the eigenstates of L^2 and L_z the expression $(\Delta L_x)^2 + (\Delta L_y)^2$ is minimal if $m = \pm l$.
- **5.6** (a) Find the eigenfunction ψ of L^2 and L_x with eigenvalues $2\hbar^2$ and \hbar , respectively. (Hint: Represent the eigenfunctions of L^2 and L_z of interest in terms of Cartesian coordinates, and determine ψ by a rotation through $\pi/2$.)
- (b) Express ψ as a linear combination of eigenfunctions of L^2 and L_z .
- **6.2** Show that for the associated Laguerre polynomials

$$L_r^s(x) = (d/dx)^s L_r(x) ,$$

$$L_r(x) = e^x (d/dx)^r e^{-x} x^r ,$$

the following relations hold:

(a)
$$L_r^s(x) = \sum_{k=0}^{r-s} (-1)^{k+s} \frac{[r!]^2 x^k}{k! (k+s)! (r-k-s)!}$$
,

(b)
$$\frac{(-1)^m e^{-xt/(1-t)}}{(1-t)^{m+1}} = \sum_{n=0}^{\infty} \frac{t^r}{(r+m)!} L_{r+m}^m(x) .$$