

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Кафедра информатики, математического и компьютерного моделирования

ОТЧЕТ

к лабораторной работе №4 по дисциплине «Математическое моделирование»

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Выполнил студент гр. Б9120-01.03.02 $\frac{\text{Агличеев A.O.}}{(\Phi \text{ИO})} \frac{}{} \frac{}{} \frac{}{} (\text{подпись})}$

« 19 » января 2022 г.

Содержание

1	Вве	едение	3
2	Соз	вдание математической модели	4
3	Реализация модели		7
	3.1	Сравнение линейных и нелинейных незатухающих колебаний	7
		Затухающие колебания	
	3.3	Вынужденные колебания	14
	3.4	Резонанс	15
4	Вы	вод	15

1 Введение

Маятник — система, подвешенная в поле тяжести и совершающая механические колебания. Маятники используются в различных приборах, например, в часах и сейсмографах. Они облегчают изучение колебаний, так как наглядно демонстрируют их свойства. Одним из простейших маятников является шарик, подвешенный на нити. Если считать нить нерастяжимой и пренебречь размерами груза по сравнению с длиной нити, а массой нити по сравнению с массой груза, то шарик на нити можно рассматривать как материальную точку, находящуюся на неизменном расстоянии от точки подвеса. Такой маятник называется математичским.

В данной работе будет реализована модель маятника в нескольких вариантах:

- 1. Без учёта трения
- 2. С учётом трения
- 3. С учётом трения и вынужденных колебаний

2 Создание математической модели

Рис. 1: Математический маятник

Момент инерции математического маятника равен:

$$M_{\text{\tiny MH}} = J \frac{d^2 \theta}{dt^2} \tag{1}$$

, где θ - угол наклона маятника в текущий момент, J - момент инерции, относительно оси

Момент инерции вычисляется по формуле:

$$J = mL^2 (2)$$

, где *m* - масса маятника, L - длина нити

Если тело не находится в положении равновесия, то на него действует возвращающий момент:

$$M_{\rm b} = FL = -mgL\sin\theta$$

, где $g \approx 9.8$ - ускорение свободного падения Подставим (2) в (1) и приравняем моменты:

$$mL^2 \frac{d^2\theta}{dt^2} = -mgL\sin\theta$$

Сделаем элементарные преобразования, примем $\omega_0 = \frac{g}{L}$ и получим нелинейное дифференциальное уравнение второго порядка, описывающее маятник:

$$\ddot{\theta} + \omega_0^2 \cdot \sin \theta = 0$$

Для решения понизим порядом и сведем к системе дифференциальных уравнений первого порядка:

$$\begin{cases} \dot{\theta} = \upsilon, \\ \dot{\upsilon} + \omega_0^2 \sin \theta = 0 \end{cases}$$

При малых углах $\sin\theta \approx \theta$ и уравнение превращается в

$$\ddot{\theta} + \omega_0^2 \cdot \theta = 0,$$

с соответсвующей ей системой:

$$\begin{cases} \dot{\theta} = \upsilon, \\ \dot{\upsilon} + \omega_0^2 \theta = 0 \end{cases}$$

При наличии затуханий уравнение примет вид:

$$\ddot{\theta} + k\dot{\theta} + \omega_0^2 \sin \theta = 0,$$

где k - коэффициент затухания с соответсвующей ей системой:

$$\begin{cases} \dot{\theta} = \upsilon, \\ \dot{\upsilon} + k\upsilon + \omega_0^2 \sin \theta = 0 \end{cases}$$

Добавим внешнюю периодическую силу, действующую на маятник, и колебания станут вынужденными:

$$\ddot{\theta} + k\dot{\theta} + \omega_0^2 \sin \theta = a \cdot \sin (\omega t),$$

с соответсвующей ей системой:

$$\begin{cases} \dot{\theta} = \upsilon, \\ \dot{\upsilon} + k\upsilon + \omega_0^2 \sin \theta = a \sin (\omega t) \end{cases}$$

3 Реализация модели

Модель была реализована в MathCad. Система дифференциальных уравнений решалась с помощью функции rkfixed. Она решает систему ОДУ методом Рунге-Кутта четвертого порядка и принамает в качестве параметров вектор начальных условий, границы интервала, на котором ищется решение, число точек внутри интервала и вектор содержащий производные.

3.1 Сравнение линейных и нелинейных незатухающих колебаний

Рис. 2: График сравнения линейных и нелинейных колебаний при $\theta=10^\circ$

Рис. 3: График сравнения линейных и нелинейных колебаний при $\theta=20^\circ$

Рис. 4: График сравнения линейных и нелинейных колебаний при $\theta=40^\circ$

Рис. 5: График сравнения линейных и нелинейных колебаний при $\theta=60^\circ$

Рис. 6: Фазовый портрет колебаний при разных углах

3.2 Затухающие колебания

Рис. 7: График колебаний при $\theta=20^\circ~k=0.25$ и k=0.75

Рис. 8: Фазовый портрет при $\theta=20^\circ~k=0.25$ и k=0.75

Рис. 9: График колебаний при $\theta=40^\circ~k=0.25$ и k=0.75

Рис. 10: Фазовый портрет при $\theta=40^\circ~k=0.25$ и k=0.75

3.3 Вынужденные колебания

Рис. 11: График вынужденных колебаний

3.4 Резонанс

При $\omega_0 = \omega$ возникает резонанс.

4 Вывод

Таким образом, были составлены математические модели линейных и нелинейных незатухающих, затухающих и вынужденных колебаний.