Introduction to Electrical Circuits

Final Term Lecture - 04

Reference Book:

Introductory Circuit Analysis

Robert L. Boylestad, 11th Edition

Series Parallel Network Analysis

- In general, when working with series-parallel ac networks, consider the following approach:
 - Redraw the network, using block impedances to combine obvious series and parallel elements, which will reduce the network to one that clearly reveals the fundamental structure of the system.
 - Study the problem and make a brief mental sketch of the overall approach you plan to use. Doing this may result in time- and energy-saving shortcuts.
 - After the overall approach has been determined, it is usually best to consider each branch involved in your method independently before tying them together in series-parallel combinations.
 - When you have arrived at a solution, check to see that it is reasonable by considering the magnitudes of the energy source and the elements in the circuit.

Example: For the network in following Fig. 16.1:

- a. Calculate \mathbf{Z}_T .
- b. Determine I_s .
- c. Calculate V_R and V_C .
- d. Find I_C .
- e. Compute the power delivered.
- f. Find F_p of the network.

Solutions:

The total impedance is defined by

$$\mathbf{Z}_T = \mathbf{Z_1} + \mathbf{Z_2}$$

$$\mathbf{Z}_1 = R \angle 0^\circ = 1 \Omega \angle 0^\circ$$

$$\mathbf{Z}_{2} = \mathbf{Z}_{C} \| \mathbf{Z}_{L} = \frac{(X_{C} \angle -90^{\circ})(X_{L} \angle 90^{\circ})}{-j X_{C} + j X_{L}} = \frac{(2 \Omega \angle -90^{\circ})(3 \Omega \angle 90^{\circ})}{-j 2 \Omega + j 3 \Omega}$$

$$= \frac{6 \Omega \angle 0^{\circ}}{j 1} = \frac{6 \Omega \angle 0^{\circ}}{1 \angle 90^{\circ}} = 6 \Omega \angle -90^{\circ}$$
b.
$$\mathbf{I}_{s} = \frac{\mathbf{E}}{\mathbf{Z}_{T}} = \frac{120 \text{ V} \angle 0^{\circ}}{6.08 \Omega \angle -80.54^{\circ}} = \mathbf{19.74 \text{ A}} \angle \mathbf{80.54^{\circ}}$$

and

$$\mathbf{Z}_T = \mathbf{Z}_1 + \mathbf{Z}_2 = 1 \ \Omega - j \ 6 \ \Omega = 6.08 \ \Omega \ \angle \ -80.54^{\circ}$$

FIG. 16.2 Network in Fig. 16.1 after assigning the block impedances.

c. Referring to Fig. 16.2, we find that V_R and V_C can be found by a direct application of Ohm's law:

$$\mathbf{V}_R = \mathbf{I}_s \mathbf{Z}_1 = (19.74 \text{ A } \angle 80.54^\circ)(1 \Omega \angle 0^\circ) = \mathbf{19.74 \text{ V}} \angle \mathbf{80.54}^\circ$$
 $\mathbf{V}_C = \mathbf{I}_s \mathbf{Z}_2 = (19.74 \text{ A } \angle 80.54^\circ)(6 \Omega \angle -90^\circ)$
 $= \mathbf{118.44 \text{ V}} \angle -\mathbf{9.46}^\circ$

d. Now that V_C is known, the current I_C can also be found using Ohm's law.

$$I_C = \frac{V_C}{Z_C} = \frac{118.44 \text{ V } \angle -9.46^{\circ}}{2 \Omega \angle -90^{\circ}} = 59.22 \text{ A } \angle 80.54^{\circ}$$

e.
$$P_{\text{del}} = I_s^2 R = (19.74 \text{ A})^2 (1 \Omega) = 389.67 \text{ W}$$

f.
$$F_p = \cos \theta = \cos 80.54^{\circ} = 0.164$$
 leading

Faculty of Engineering

Example: For the network in following Fig. 16.5:

- a. Calculate the voltage \mathbf{V}_C using the voltage divider rule.
- b. Calculate the current I_s .

Solutions:

a. The network is redrawn as shown in Fig. 16.6, with

$$\mathbf{Z}_1 = 5 \ \Omega = 5 \ \Omega \angle 0^{\circ}$$

 $\mathbf{Z}_2 = -j \ 12 \ \Omega = 12 \ \Omega \angle -90^{\circ}$
 $\mathbf{Z}_3 = +j \ 8 \ \Omega = 8 \ \Omega \angle 90^{\circ}$

$$\mathbf{V}_C = \frac{\mathbf{Z}_2 \mathbf{E}}{\mathbf{Z}_1 + \mathbf{Z}_2} = \frac{(12 \ \Omega \ \angle -90^\circ)(20 \ \mathbf{V} \ \angle 20^\circ)}{5 \ \Omega - j \ 12 \ \Omega} = \frac{240 \ \mathbf{V} \ \angle -70^\circ}{13 \ \angle -67.38^\circ}$$
$$= \mathbf{18.46 \ \mathbf{V} \ \angle -2.62^\circ}$$

b.
$$\mathbf{I}_1 = \frac{\mathbf{E}}{\mathbf{Z}_3} = \frac{20 \text{ V} \angle 20^{\circ}}{8 \Omega \angle 90^{\circ}} = 2.5 \text{ A} \angle -70^{\circ}$$

$$\mathbf{I}_2 = \frac{\mathbf{E}}{\mathbf{Z}_1 + \mathbf{Z}_2} = \frac{20 \text{ V} \angle 20^{\circ}}{13 \Omega \angle -67.38^{\circ}} = 1.54 \text{ A} \angle 87.38^{\circ}$$

and

$$\mathbf{I}_{s} = \mathbf{I}_{1} + \mathbf{I}_{2}
= 2.5 \text{ A } \angle -70^{\circ} + 1.54 \text{ A } \angle 87.38^{\circ}
= (0.86 - j 2.35) + (0.07 + j 1.54)
\mathbf{I}_{s} = 0.93 - j 0.81 = \mathbf{1.23 A} \angle -\mathbf{41.05}^{\circ}$$

FIG. 16.5 Example 16.3.

FIG. 16.6

Network in Fig. 16.5 after assigning the block impedances.

Example: For the network in following Figure:

- a. Compute I.
- b. Find I_1 , I_2 , and I_3 .
- c. Verify Kirchhoff's current law by showing that

$$\mathbf{I} = \mathbf{I}_1 + \mathbf{I}_2 + \mathbf{I}_3$$

d. Find the total impedance of the circuit.

Solutions:

a. Redrawing the circuit as in Fig. 17.15 reveals a strictly parallel network where

$$\mathbf{Z}_1 = R_1 = 10 \ \Omega \angle 0^{\circ}$$

$$\mathbf{Z}_{2} = R_{2} + jX_{L_{1}} = 3 \Omega + j 4 \Omega$$

$$\mathbf{Z}_3 = R_3 + jX_{L_2} - jX_C = 8 \Omega + j 3 \Omega - j 9 \Omega = 8 \Omega - j 6 \Omega$$

The total admittance is

$$\mathbf{Y}_{T} = \mathbf{Y}_{1} + \mathbf{Y}_{2} + \mathbf{Y}_{3}$$

$$= \frac{1}{\mathbf{Z}_{1}} + \frac{1}{\mathbf{Z}_{2}} + \frac{1}{\mathbf{Z}_{3}} = \frac{1}{10 \Omega} + \frac{1}{3 \Omega + j 4 \Omega} + \frac{1}{8 \Omega - j 6 \Omega}$$

$$= 0.1 \, \mathbf{S} + \frac{1}{5 \Omega \angle 53.13^{\circ}} + \frac{1}{10 \Omega \angle -36.87^{\circ}}$$

$$= 0.1 \, \mathbf{S} + 0.2 \, \mathbf{S} \angle -53.13^{\circ} + 0.1 \, \mathbf{S} \angle 36.87^{\circ}$$

$$= 0.1 \, \mathbf{S} + 0.12 \, \mathbf{S} - j \, 0.16 \, \mathbf{S} + 0.08 \, \mathbf{S} + j \, 0.06 \, \mathbf{S}$$

$$= 0.3 \, \mathbf{S} - j \, 0.1 \, \mathbf{S} = 0.316 \, \mathbf{S} \angle -18.435^{\circ}$$

The current **I** is given by

$$I = EY_T = (200 \text{ V} \angle 0^\circ)(0.326 \text{ S} \angle -18.435^\circ)$$

= 63.2 A \angle -18.44°

Faculty of Engineering

b. Since the voltage is the same across parallel branches,

$$I_{1} = \frac{\mathbf{E}}{\mathbf{Z}_{1}} = \frac{200 \text{ V} \angle 0^{\circ}}{10 \Omega \angle 0^{\circ}} = 20 \text{ A} \angle 0^{\circ}$$

$$I_{2} = \frac{\mathbf{E}}{\mathbf{Z}_{2}} = \frac{200 \text{ V} \angle 0^{\circ}}{5 \Omega \angle 53.13^{\circ}} = 40 \text{ A} \angle -53.13^{\circ}$$

$$I_{3} = \frac{\mathbf{E}}{\mathbf{Z}_{2}} = \frac{200 \text{ V} \angle 0^{\circ}}{10 \Omega \angle -36.87^{\circ}} = 20 \text{ A} \angle +36.87^{\circ}$$

c.
$$\mathbf{I} = \mathbf{I}_1 + \mathbf{I}_2 + \mathbf{I}_3$$

$$60 - j \, 20 = 20 \, \angle 0^\circ + 40 \, \angle -53.13^\circ + 20 \, \angle +36.87^\circ$$

$$= (20 + j \, 0) + (24 - j \, 32) + (16 + j \, 12)$$

$$60 - j \, 20 = 60 - j \, 20 \quad \text{(checks)}$$

d.
$$\mathbf{Z}_T = \frac{1}{\mathbf{Y}_T} = \frac{1}{0.316 \,\mathrm{S} \,\angle -18.435^{\circ}}$$

= 3.17 $\Omega \,\angle 18.44^{\circ}$

Thank You