Università di Pisa - Corso di Laurea in Informatica

Analisi Matematica

Pisa, 15 giugno 2022

Esercizio 1 Studiare la funzione

$$f(x) = (\log |e^{3x} - 4|) + 5x$$

determinandone insiemi di definizione, continuità e derivabilità, eventuali asintoti (compresi quelli obliqui), punti di massimo e minimo locali, estremi superiore e inferiore o massimo e minimo, intervalli di convessità e concavità e punti di flesso. Tracciare un grafico approssimativo della funzione.

Soluzione

Data la presenza del valore assoluto, l'argomento del logaritmo è sempre non-negativo quindi la funzione è definita su tutto \mathbb{R} tranne il punto $x_0 = \frac{\log 4}{3}$ in cui l'argomento si annullerebbe. Si ha $D = (-\infty, \frac{\log 4}{3}) \cap (\frac{\log 4}{3}, +\infty)$. La funzione è continua perché composizione e somma di funzioni continue nel loro dominio di definizione. Agli estremi del dominio abbiamo

$$\lim_{x \to -\infty} f(x) = -\infty$$

$$\lim_{x \to +\infty} f(x) = +\infty$$

$$\lim_{x \to \frac{\log 4}{2}} f(x) = -\infty.$$

Dall'ultimo limite segue che la retta $x = \frac{\log 4}{3}$ è un asintoto verticale per f. Osserviamo inoltre che, per $x \to +\infty$

$$f(x) = (\log|e^{3x} - 4|) + 5x = (\log(e^{3x} - 4)) + 5x = \log(e^{3x}(1 - 4e^{-3x})) + 5x = 3x + \log(1 - 4e^{-3x}) + 5x = 8x + o(1).$$

Mentre, per $x \to -\infty$ si ha

$$f(x) = \log(4 - e^{3x}) + 5x = \log\left[4\left(1 - \frac{1}{4}e^{3x}\right)\right] + 5x = 5x + \log 4 + o(1).$$

Quindi la retta y=8x è un asintoto obliquo per f per x che tende a $+\infty$, mentre la retta $y=5x+\log 4$ è un asintoto obliquo per f quando x tende a $-\infty$. La funzione è derivabile nel suo dominio in quanto composizione di funzioni derivabili. Calcoliamo la derivata prima. Risulta

$$f'(x) = \frac{3e^{3x}}{e^{3x} - 4} + 5 = \frac{4(2e^{3x} - 5)}{e^{3x} - 4}$$

che esiste in tutti i punti del dominio. Studiando il segno della derivata prima ricaviamo che f'>0 per $x>\frac{\log 4}{3}$ e per $x<\frac{\log(5/2)}{3}$. La funzione è quindi strettamente crescente per $x>\frac{\log 4}{3}$ e per $x<\frac{\log(5/2)}{3}$, mentre è strettamente decrescente per $\frac{\log(5/2)}{3}< x<\frac{\log 4}{3}$. L'unico punto appartenente al dominio in cui la derivata prima si annulla è il punto $x=\frac{\log(5/2)}{3}$ che è punto di massimo locale. Osserviamo che $f(0)=\log 3$. Per determinare la convessità della funzione calcoliamo la derivata seconda

$$f''(x) = \frac{24e^{3x}(e^{3x} - 4) - 12e^{3x}(2e^{3x} - 5)}{(e^{3x} - 4)^2} = -\frac{36e^{3x}}{(e^{3x} - 4)^2}.$$

La derivata seconda risulta sempre negativa e di conseguenza la funzione è concava sulla semiretta $\left(-\infty, \frac{\log 4}{3}\right)$ e sulla semiretta $\left(\frac{\log 4}{3}, +\infty\right)$.

Esercizio 2 Discutere, al variare del parametro reale $\alpha > 0$, la convergenza dell'integrale improprio

$$\int_{0}^{+\infty} \frac{\arctan(x^{\alpha})}{x^{7}} dx.$$

Soluzione

Notiamo che l'integrale presenta potenzialmente un problema in 0, e sicuramente un problema a $+\infty$. Inoltre, indipendentemente da α , l'integranda $f(x) = \frac{\arctan(x^{\alpha})}{x^{7}}$ è positiva in $(0, +\infty)$.

Studiamo separatamente i due integrali "monoproblema"

$$\int_{0}^{1} \frac{\arctan(x^{\alpha})}{x^{7}} dx, \qquad \int_{1}^{+\infty} \frac{\arctan(x^{\alpha})}{x^{7}} dx.$$

Partiamo dal secondo, il cui comportamento non dipende da α : poiché $\arctan(t) \leq \frac{\pi}{2}$ per ogni $t \in \mathbb{R}$ e $\int_{1}^{+\infty} \frac{1}{x^{7}} dx$ converge, per il criterio del confronto possiamo concludere che $\int_{1}^{+\infty} \frac{\arctan(x^{\alpha})}{x^{7}} dx$ converge qualsiasi sia $\alpha \in \mathbb{R}$.

Passiamo al primo integrale. Dato che $\alpha > 0$, allora per $x \to 0$ abbiamo che anche $x^{\alpha} \to 0$, e lo sviluppo di Taylor di arctan in 0 ci dà arctan $(x^{\alpha}) = x^{\alpha} + o(x^{\alpha})$ per $x \to 0$. Abbiamo dunque

$$f(x) = \frac{\arctan(x^{\alpha})}{x^7} = \frac{x^{\alpha} + o(x^{\alpha})}{x^7} = \frac{1 + o(1)}{x^{7-\alpha}}$$

per $x \to 0$. Applicando il criterio del confronto asintotico con $g(x) = \frac{1}{x^{7-\alpha}}$ e notando che $\int\limits_0^1 \frac{1}{x^{7-\alpha}} \, dx$ converge se e solo se $7-\alpha < 1$, cioè $\alpha > 6$, concludiamo che $\int\limits_0^1 \frac{\arctan(x^\alpha)}{x^7} \, dx$ (e dunque anche $\int\limits_0^+ \frac{\arctan(x^\alpha)}{x^7} \, dx$) converge se e solo se $\alpha > 6$, e diverge positivamente altrimenti.

Esercizio 3 Determinare se la successione

$$a_n = \left(n^{\frac{3}{2}} + 1\right) \sin\left(\frac{1}{n+1}\right) \left(e^{n/(n^2+1)} - 1\right), \ n \ge 0$$

ammette massimo e/o minimo.

Soluzione

Calcoliamo innanzitutto il limite $\lim_{n\to+\infty} a_n$. Notiamo che per $n\to+\infty$ abbiamo $\frac{1}{n+1}\to 0$ e $\frac{n}{n^2+1}\to 0$, e possiamo applicare i limiti notevoli

$$\lim_{n \to +\infty} \frac{\sin\left(\frac{1}{n+1}\right)}{\frac{1}{n+1}} = 1 \qquad \qquad \lim_{n \to +\infty} \frac{\left(e^{n/(n^2+1)} - 1\right)}{n/(n^2+1)} = 1.$$

Otteniamo

$$\lim_{n \to +\infty} \left(n^{\frac{3}{2}} + 1 \right) \sin \left(\frac{1}{n+1} \right) \left(e^{n/(n^2+1)} - 1 \right) =$$

$$\lim_{n \to +\infty} \left(n^{\frac{3}{2}} + 1 \right) \cdot \frac{1}{n+1} \frac{\sin \left(\frac{1}{n+1} \right)}{\frac{1}{n+1}} \cdot \frac{n}{n^2 + 1} \frac{\left(e^{n/(n^2+1)} - 1 \right)}{n/(n^2 + 1)} =$$

$$\lim_{n \to +\infty} \frac{n \left(n^{\frac{3}{2}} + 1 \right)}{(n^2 + 1)(n+1)} \frac{\sin \left(\frac{1}{n+1} \right)}{\frac{1}{n+1}} \frac{\left(e^{n/(n^2+1)} - 1 \right)}{n/(n^2 + 1)} = 0$$

dato che $\lim_{n \to +\infty} \frac{n\left(n^{\frac{3}{2}}+1\right)}{(n^2+1)(n+1)} = 0$, in quanto l'esponente massimo di n a denominatore è maggiore di quello a numeratore.

Notiamo inoltre che se n > 0, visto che $0 < \frac{1}{n+1} < 1$, abbiamo $\sin\left(\frac{1}{n+1}\right) > 0$, e da $n/(n^2+1) > 0$ segue che $e^{n/(n^2+1)} - 1 > 0$. Ovviamente vale anche $n^{\frac{3}{2}} + 1 > 0$ per ogni $n \ge 0$.

In conclusione abbiamo che $a_n > 0$ per ogni n > 0, mentre per n = 0 si ha $a_0 = 0$. Da questo e dal calcolo del limite (usando l'analogo del "teorema di Weierstrass generalizzato" per successioni) segue che a_n ammette sia massimo che minimo.