Université Félix Houphouët Boigny

UFR-MI

Licence 1 : Miage-GI

Année académique 2020 - 2021

Corrigé du Devoir de Strutures algébriques : (1h30)

Exercice 1:(10-points).

Soit l'ensemble $E=\{1,2,3,4,5\}$. Pour chacun des cas suivants, construire sur E

1. une l.c.i(loi de composition interne) commutative, admettant 4 comme élément neutre. On a :

*	1	2	3	4	5
1	1	2	2	1	3
2	2	3	5	2	5
3	2	5	5	3	4
4	1	2	3	4	5
5	3	5	4	5	3

2. une l.c.i non commutative, admettant 2 comme élément neutre.

*	1	2	3	4	5
1	1	1	2	1	4
2	1	2	3	4	5
3	2	3	5	3	4
4	1	4	3	4	5
5	3	5	4	5	3

3. une l.c.i commutative, non associative, admettant 3 comme élément neutre.

*	1	2	3	4	5
1	1	2	1	1	3
2	2	3	2	2	5
3	1	2	3	4	5
4	1	2	4	4	5
5	3	5	5	5	3

On a (5*1)*4=3*4=4, alors que 5*(1*4)=5*1=3. La loi * n'est donc pas associative.

4. Une l.c.i commutative, associative, admettant 1 comme élément neutre, et telle que chaque élément admette un symétrique.

*	1	2	3	4	5
1	1	2	3	4	5
2	2	3	4	5	1
3	3	4	5	1	2
4	4	5	1	2	3
5	5	1	2	3	4

Exercice 2:(10-points).

On considère l'anneau quotient $A=\frac{\mathbb{Z}}{5\mathbb{Z}}$ et A[X], l'anneau des polynômes à coefficients dans A.

1. Ecrire les tables de l'addition et de la multiplication de l'anneau quotient ${\cal A}.$

+	Ö	İ	$\dot{2}$	3	$\dot{4}$
Ò	Ò	İ	$\dot{2}$	3	$\dot{4}$
İ	İ	$\dot{2}$	3	$\dot{4}$	Ó
<u>2</u>	2	3	$\dot{4}$	Ò	İ
3	3	$\dot{4}$	Ò	İ	$\dot{2}$
$\dot{4}$	4	Ò	i	$\dot{2}$	3

	×	Ò	i	$\dot{2}$	3	$\dot{4}$
	Ò	Ò	Ò	Ò	Ò	Ò
	i	Ò	i	$\dot{2}$	3	4
,	$\dot{2}$	Ò	$\dot{2}$	$\dot{4}$	Ó	i
	3	Ò	3	Ò	i	$\dot{2}$
	$\dot{4}$	Ò	$\dot{4}$	3	<u>2</u>	i

2. Effectuer dans A[X], la division euclidienne de

$$P(X) = X^5 + \dot{2}X^4 + \dot{3}X^3 + \dot{4}X + \dot{1}$$
 par $Q(X) = \dot{4}X^3 + X^2 + X + \dot{4}$. On a

$$P(X) = (\dot{4}X^2 + \dot{2}X + \dot{3})Q(X) + \dot{4}X^2 + \dot{3}X + \dot{4}$$

3. Effectuer dans A[X], si possible, la division suivant les puissances croissantes, à l'ordre 3, de

$$P(X) = X^5 + \dot{2}X^4 + \dot{3}X^3 + \dot{4}X + \dot{1}$$
 par $Q(X) = \dot{4}X^3 + X^2 + X + \dot{4}.$ On a :

$$P(X) = (\dot{4} + \dot{4}X^2)Q(X) + X^3(\dot{3} + \dot{3}X)$$