Attorney Docket No. L&L-I0061 Application No. 10/637,194

CERTIFICATION

I, the below named translator, hereby declare that: my name and post office address are as stated below; that I am knowledgeable in the English and German languages, and that I believe that the attached text is a true and complete translation of

German patent application DE 101 05 733, filed with the German Patent Office on February 8, 2001.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Hollywood, Florida

Birgit Bartell

January 5, 2007 Lerner Greenberg Stemer LLP

P.O. Box 2480

Hollywood, FL 33022-2480

Tel.: (954) 925-1100 Fax.: (954) 925-1101

Description

Method for determining the interference power in a CDMA radio receiver, and a CDMA radio receiver

5

The invention relates to a method for determining the interference power in a CDMA radio receiver, and to a CDMA radio receiver having a means for determining the interference power.

10

15

25

30

Third-generation mobile radio networks, UMTS (Universal Mobile Telecommunications System), are based on the W-CDMA (Wideband-Code Division Multiple Access) modulation method. In W-CDMA, all the channels or subscriber signals to be transmitted can use the entire available frequency range. Code-division multiplexing is used to separate the various channels, as required for multiple access. In this case, each channel (to be more precise: each symbol in a channel) has a channel-specific orthogonal code sequence modulated onto it, with the aid of which the receiver can separate the desired channel (or each individual symbol in this channel) from the totality of all the transmitted channels. In figurative terms, the code sequence represents a fingerprint, which is applied to each symbol and makes it possible to distinguish this symbol from symbols in other channels.

The individual channels interfere with one another, since the characteristics of the spread codes that are used are not ideal. Furthermore, each channel is subject to multipath propagation, which means that, for one transmitted signal, two or more received signal versions arrive at the receiver with different power levels and with different time delays. For a CDMA system to operate at all and to allow the available frequency range to be used optimally, it is therefore of major

importance for the interference power on each individual channel to ideally have the same magnitude in the receiver. Otherwise, it is possible for a channel with a comparatively high interference power to conceal the other channels, and to make their detection impossible. For this reason, every CDMA system uses power control.

The power control for a CDMA system is based on measuring the ratio of the useful power to the interference power (SINR: Signal to Interference plus Noise Ratio) for all the detected channels in the receiver. The receiver then transmits this measured value in the form of a transmission power control command (TCP) back to the transmitter on the back channel. The transmitter then individually adapts the transmission power for each channel, in order to achieve a standard SINR for all 15 the channels in the receiver. One advantageous side effect in this case is that this power control can compensate within certain limits for fluctuations in the physical mobile radio channel (slow fading), thus allowing the transmission capacity to be increased. It is clear that power control in a CDMA 20 system plays a major role, with a critical influence on the overall performance of the system.

Power control per se is specified by the respective Standard. The controlled variable is the SINR, the ratio of the useful power to the interference power in a detected channel. The measurement of the useful power is relatively simple. However, it is considerably more difficult to measure the interference power, although this has a significant influence on the measurement accuracy of the SINR, since this factor is located in the denominator of the useful power to interference power ratio.

The UMTS Standard states that the interference power should be determined from the pilot symbols, which are known a-priori to the receiver, after the despreading of the received signal. The difficulty that occurs in this case is that insufficient pilot symbols for accurate measurement of the interference power are often available in the dedicated channels. For example, in the case of UMTS, there may be only two pilot symbols in each time slot available for interference power measurement, depending on the time slot structure that is chosen. Since the interference power measurement also includes 10 the channel estimation, which is likewise subject to a measurement error, the estimation error in the evaluation of only a small number of pilot symbols is evident in a significant reduction in the performance of the overall CDMA system. 15

The accuracy of the interference power determination may be improved by using as many known symbols as possible for the measurement. Furthermore, averaging methods can be used to reduce the measurement error. However, both measures have the disadvantage that they increase the control response time constant, and can thus adversely affect the capability of the system to compensate for power fluctuations during signal transmission.

25

30

20

The invention is based on the object of specifying a highprecision method for determining the interference power in a
CDMA radio receiver. A further aim of the invention is to
specify a CDMA radio receiver which is designed to measure the
interference power of a despread received signal with high
accuracy.

The object on which the invention is based is achieved by the features of the independent claims.

The method according to the invention accordingly provides for symbols which are not known a-priori in the receiver in the received signal to be used to determine the interference power, in addition to the symbols which are known a-priori in the receiver. The detected symbols are then decided downstream from the receiver, and are fed back for the interference power measurement. Although it should be assumed that a certain proportion of the detected data symbols will be decided incorrectly, a considerable improvement in the accuracy of the determination of the interference power can be achieved nevertheless, owing to the considerable increase in the number of symbols which are used for calculating the interference power.

10

15

20

25

30

A further advantageous measure of the method according to the invention is characterized in that the interference power is determined in the signal path downstream from the receiver. Any desired receivers may be used for this procedure. An alternative procedure, which is predicated on a RAKE receiver, is for the interference power to be determined by measuring the individual path interference powers for each RAKE finger upstream of the combiner for the RAKE receiver, and for the interference power to be determined from the individual measured path interference powers. While the first procedure (determination of the interference power downstream from the receiver) is less complex to implement, the second procedure (determination of the individual path-related interference powers) offers somewhat better accuracy.

A further improvement in the accuracy of determining the interference power can be achieved by determining the power of the symbols which are known a-priori and the power of the data symbols which are not known a-priori, and by calculating the interference power taking into account these two determined powers. In this case, power differences between the symbols which are known a-priori (pilot symbols) and the data symbols which are not known a-priori can be taken into account in the determination of the interference power. Power differences such as these, which may possibly occur in particular with multiple code procedures, are not known in the receiver and must therefore be determined by measurement.

In the situation where the symbols which are known a-priori and the symbols which are not known a-priori are the pilot symbols and the payload data symbols for a single channel, in particular the dedicated DPCH channel in accordance with the UMTS Standard, a further advantageous measure of the method according to the invention is characterized in that, in addition to these symbols, further symbols from one or more further channels are used for determining the interference power. By way of example, the further channel may be the common pilot channel for the downlink path.

25 Further advantageous aspects of the invention are specified in the dependent claims.

The invention will be described in the following text using two exemplary embodiments and with reference to the drawing, in which:

Fig. 1 shows a schematic illustration of the UMTS channel structure for the downlink path; and

Fig. 2 shows a block diagram of a baseband section of a CDMA radio receiver according to the invention.

Fig. 1 shows a schematic illustration of the common pilot channel and of the multiplexed dedicated channel DPCH (Dedicated Physical Channel) on the downlink path. The horizontal extent corresponds to the time axis.

The dedicated channel DPCH is formed from two multiplexed

dedicated channels DPDCH (Dedicated Physical Data Channel) and

DPCCH (Dedicated Physical Control Channel). The DPCCH channel

comprises sections of pilot symbols Pilot and of control

information TPC and TFCI. The DPDCH channel contains payload

data, which are contained in the sections Data1 and Data2. The

data structure which is shown for a time slot i is repeated in

each of the preceding and subsequent time slots i-1 and i+1.

On the downlink path, UMTS uses three common physical channels, one of which (the first CCPCH (Common Control Physical Channel)) comprises a common pilot channel. This common pilot channel is illustrated in Fig. 1, and is available for all mobile stations.

Pilot symbols have the characteristic feature that they are
known a-priori in the receiver. To be more precise, the pilot
symbols which are transmitted in the common pilot channel are
known in each mobile station in the radio area of the
transmitting base station, while the pilot symbols which are
transmitted in the dedicated channel are known in that
receiver for which they are intended in accordance with CDMA
coding.

The signal-to-noise ratio SINR, which is also often referred to in the literature as the SIR, is defined by the equation

$$SINR = \frac{P_{RSCP}}{P_{ISCP}}$$
 (1).

5

PRSCP (RSCP: Received Signal Code Power) in this case denotes the useful power and P_{ISCP} (ISCP: Interference Signal Code Power) denotes the interference power of the detected channel with respect to a chip.

10

25

30

According to a first exemplary embodiment of the invention, the interference power, related to a chip, of the detected channel P_{ISCP} is determined using the following equation:

15
$$P_{ISCP} = R \cdot \left(\sum_{k=1}^{N_{Data^2}} \left| d \cdot r_k - P_a \cdot P_{Data2,k} \right|^2 + \sum_{k=N_{Data^2}+1}^{N_{Data_2}+N_{Pilot}} \left| r_k - P_a \cdot P_{Pilot,k} \right|^2 \right)$$
where $R = \frac{1}{N_{Data^2} + N_{Pilot} - 1}$ (2)

In this case, N_{Pilot} denotes the number of pilot symbols $p_{\text{Pilot},\,k}$ available in a time slot in the Pilot section, and N_{Data2} denotes the number of fed-back decided data symbols pData2,k. 20 These may include all the data symbols contained in the Data2 section, or else only some of the data symbols contained in the Data2 section. r_k denotes the received symbols at the receiver output, and Pa denotes the power of the channel impulse response determined by the channel estimation.

The variable d denotes a factor which takes account of any possible difference between the transmission power of the pilot symbols and the data symbols. Since power differences such as these are not known a-priori in the receiver, the

invention provides for the variable d to be estimated using the following relationship:

d = 1	$\frac{P_{RSCP,Pilot}}{P_{RSCP,Data2}}$	(3)

- In this case, $P_{RSCP,Pilot}$ denotes the signal power of the pilot symbols in the dedicated channel DPCH, and $P_{RSCP,Data2}$ denotes the signal power of the data symbols from the Data2 section of the dedicated channel.
- It should be noted that the accuracy of the estimate of P_{ISCP} is dependent on the one hand on the quality of the channel estimate and on the other hand is influenced by the number $N_{Data2}+N_{Pilot}$. The greater this number of symbols which are taken into account overall for determining the interference power, the better the estimation accuracy for the determination of P_{ISCP} .

A second exemplary embodiment of the method according to the invention relates to the determination of the interference power specifically for a RAKE receiver. As already mentioned, radio signals in mobile radio are subject to multipath propagation, that is to say two or more received signal versions occur at the receiver due to reflection, scatter and diffraction of the transmitted radio signal on various obstructions in the propagation path, and these are shifted in time with respect to one another, and are attenuated to different extents. The principle of operation of the RAKE receiver is based on the idea of first of all evaluating two or more of these received signal versions separately, and of then superimposing them with the correct timing in order to

achieve a detection gain that is as high as possible. The designation RAKE in this case provides a figurative description of the structure of a receiver such as this, with the times of the RAKE representing the RAKE fingers, and the handle of the RAKE representing the superimposed received signal produced on the output side.

The interference power P_{ISCP,j} in the j-th RAKE finger (related to a chip) is, according to the second exemplary embodiment of the invention, determined using the following relationship:

$$P_{ISCP,j} = R \cdot \left(\sum_{k=1}^{N_{Data2}} \left| d \cdot x_{k,j} - a_j \cdot P_{Data2,k} \right|^2 + \sum_{k=N_{Data2}+1}^{N_{Data2}+N_{Pilot}} \left| x_k - a_j \cdot P_{Pilot,k} \right|^2 \right)$$

$$R = \frac{1}{N_{Data2} + N_{Pilot} - 1} \tag{4}$$

In this case, N_{Pilot} once again denotes the number of pilot symbols P_{Pilot,k} available in a time slot, and N_{Data2} denotes the number of fed-back, decided data symbols P_{Data2,k}. x_{k,j} denotes the respectively received symbols at the output of the RAKE finger j (that is to say after the synchronization and despreading and before the received signal versions are joined together in the combiner) and d, if necessary, is once again calculated using the equation (3). a_j denotes the complex path weightings, as determined by the channel estimation, for each of the reception paths under consideration. In this case:

$$P_{a} = \sum_{j=1}^{N_{Finger}} \left| a_{j} \right|^{2}$$

25

The path-specific interference powers $P_{\text{ISCP},j}$ measured in the signal path downstream from the individual RAKE finger j are

then combined in accordance with the fundamental combiner rule to form the (total) interference power P_{ISCP} for the channel under consideration:

$$P_{ISCP} = \sum_{j=1}^{N_{Finger}} \left(\left| a_j \right|^2 \cdot P_{ISCP,j} \right) \tag{5}$$

 N_{Finger} denotes the number of active fingers in the RAKE receiver. The channel-related interference power P_{ISCP} is thus obtained from the path-related interference powers $P_{ISCP,j}$ by weighting the latter by means of the squares of the magnitudes of the complex path weightings determined during the channel estimation, and subsequent summation over all the active RAKE fingers (that is to say paths).

A further improvement in the interference power determination can be achieved by taking into account interference power measurements in one or more further channels for the calculation of $P_{\rm ISCP}$. This is due to the fact that $P_{\rm ISCP}$ is dependent only on the power $P_{\rm RSSI}$ that arrives at the receiver in all the channels, but is not dependent on the transmission power of the channel under consideration.

 P_{RSSI} is highly dependent on the time slot structure and on the power in each transmitted physical channel. When a large number of physical channels are superimposed on one another, the variance of P_{RSSI} becomes smaller, and the mean value of the total signal strength during one time slot represents a good estimation of P_{RSSI} . The lack of any relationship between P_{ISCP} and P_{RSCP} means that it is possible to combine the estimated interference powers $P_{ISCP}(n)$ for different physical channels n:

25

5

$P_{ISCP} = \sum_{n}^{channels} (w_n \cdot P_{ISCP}(n))$	(6)

The variable w_n in this case denotes a weighting factor, which takes account of the estimation quality in the different channels, that is to say it depends for example on the number of symbols which are used in the individual channels for estimation of $P_{\rm ISCP}(n)$.

Fig. 2 shows a block diagram of a baseband section of a RAKE receiver according to the invention.

An analog in-phase (I) signal component and an analog quadrature (Q) signal component of the received data signal are provided at the input of the baseband section.

10

25

30

The analog I and Q signal components each pass through an analog low-pass filter aTP, and are then digitized in analog/digital converters ADC. They are normally digitized with oversampling with respect to the chip rate. The digitized I and Q data signal components are available at the output of the analog/digital converters ADC.

The I and Q digital signals which are emitted from the analog/digital converters ADC are supplied to digital low-pass filters dTP. Frequency correction units AFC may be arranged in each of the signal paths downstream from the digital low-pass filters dTP, and carry out automatic frequency correction of the received digital signals. The frequency correction makes it possible, for example, to compensate for temperature-dependent frequency drift of the (not illustrated) local oscillator in the reception circuit.

The signal paths downstream from the frequency correction units AFC may include signal rate reduction stages DC, which reduce the signal rate in the I path and Q path.

- 5 The I and Q digital signals at the reduced signal rate are supplied to a RAKE receiver section RAKE in the CDMA radio receiver. The RAKE receiver section RAKE is bounded by a dashed line in Fig. 2.
- The RAKE receiver section RAKE has $N_{\rm Finger}$ parallel RAKE fingers R1,R2,..,R $N_{\rm Finger}$. Each RAKE finger R1,R2,..,R $N_{\rm Finger}$ in the illustrated example is designed for two channels (for the I and Q paths), as is indicated by double arrows in the signal paths.
- On the input side, each RAKE finger R1,R2,..,RN $_{\text{Finger}}$ has a time variant interpolator TVI and, on the output side, it has a correlator C.

- The outputs of the RAKE fingers R1,R2,..,RN_{Finger} are supplied to a maximum rational combining unit MRC, which combines the I/Q outputs to form an overall data signal. An overall RAKE received signal is produced at the output of the MRC unit MRC, and is demodulated in a demodulator DMOD. If interleaving has been carried out at the transmission end, the demodulated overall RAKE received signal is deinterleaved using a deinterleaver DIL. Channel decoding is then carried out in a channel decoder KDCOD.
- 30 The CDMA radio receiver also has a CDMA code memory CDMA-C-S and a scrambling code memory VC-S. The CDMA code memory CDMA-C-S can store a number of CDMA codes, and the scrambling code memory VC-S can store a number of scrambling codes. Each

scrambling code is an identifier for one specific base station.

A control unit ST can select one specific CDMA code from the CDMA code memory CDMA-C-S and one specific scrambling code from the scrambling code memory VC-S, and can load these into the RAKE receiver section RAKE. The two codes are used in the correlators C for despreading and dechannelization of the signals in the respective RAKE fingers R1, R2, ..., RN_{Finger}. The signals in the RAKE fingers R1, R2, ..., RN_{Finger} are first of all synchronized to one another, with chip accuracy, by means of the time variant interpolators TVI.

In order to determine the interference power P_{ISCP} in accordance with the invention, the receiver has an SINR estimator SINR-EST. The SINR estimator SINR-EST is supplied on the one hand with the complex path weightings a;, which have been determined by a channel estimator KE for each path or finger R1, R2, ... RN Finger of the RAKE receiver section RAKE. On the other hand, one input of the SINR estimator SINR-EST is connected to one output of a threshold value decision maker DEC. The input of the threshold value decision maker DEC is connected to the output of the MRC unit. The threshold value decision maker DEC carries out a hard decision process to determine a data symbol $P_{Data2,k}$ in the value range, for example, [± 1 $\pm j$] from each data value that is emitted by the receiver. These detected data symbols, on which hard decisions have been made, are fed back for the interference power measurement, that is to say they are used to calculate the interference power P_{ISCP} in accordance with equation (2) or equation (4). The determination of the interference power $P_{\mbox{\scriptsize ISCP}}$ is in this case based on the comparison of the received symbol (either r_k or $x_{k,j}$) with the transmitted

symbol (pilot symbol or decided data symbol) expected on the basis of the estimated channel.

- The signal-to-noise ratio SINR is then calculated using
 equation 1 in the SINR estimator SINR-EST. The SINR value is
 used to produce a power control command TCP, which is
 transmitted to the base station where it is used to control
 the transmission power.
- It should be mentioned that the method according to the invention can be used universally, that is to say both for the downlink path and for the uplink path.

Patent Claims

- 1. A method for determining the interference power in a CDMA radio receiver, with the following step being carried out after the despreading of a received signal:
- determination of the interference power (P_{ISCP}) of the despread signal from a comparison of received symbols ($x_{k,j}$; r_k) with symbols ($p_{Pilot, k}$) which are known a-priori to the receiver and with received and decided data symbols ($p_{Data2,k}$) which are not known a-priori to the receiver.
- The method as claimed in claim 1, characterized
- in that the interference power is determined in the signal path downstream from the receiver (RAKE, MRC), in particular a RAKE receiver.
- The method as claimed in claim 1, characterized
- in that the receiver is a RAKE receiver (RAKE, MRC) with two or more RAKE fingers (R1,..,RN $_{\rm Finger}$) and a combiner (MRC) downstream from the RAKE fingers, and
- in that the interference power is determined by measuring the individual path interference powers $(P_{ISCP,j})$ of each RAKE finger $(R1,..,RN_{Finger})$ before the combiner (MRC) and by calculating the interference power (P_{ISCP}) from the measured path interference powers.
- 4. The method as claimed in one of the preceding claims, characterized
- in that the power of the received symbols which are known a-priori and the power of the received decided data symbols which are not known a-priori are determined, and

- in that the interference power is calculated taking into account these two determined powers.
- 5. The method as claimed in one of the preceding claims, characterized
- in that the symbols which are known a-priori are the pilot symbols and the symbols which are not known a-priori are the payload data symbols for an individual physical channel, in particular the dedicated DPCH channel in accordance with the UMTS Standard.
- 6. The method as claimed in claim 5, characterized
- in that in addition to the symbols which are known a-priori and the symbols which are not known a-priori of the individual physical channel symbols which are known a-priori and/or symbols which are not known a-priori for one or more further physical channels, in particular a common pilot channel, are used for determining the interference power.
- 7. The method as claimed in one of the preceding claims, characterized
- in that the determined interference power is used for channel-specific control of the signal-to-noise ratio on the downlink path.
- 8. A CDMA radio receiver for receiving a signal of spread-coded symbols which are transmitted via a transmission channel, having
- a unit (C) for despreading the received signal,
- a channel estimator (KE) for determining the channel parameters for the transmission channel,
- a receiver (RAKE, MRC),

- a data symbol decision maker (DEC) which is connected to one output of the receiver (RAKE, MRC), and
- a means (SINR-EST) for determining the interference power of the received, despread signal, to which channel parameters which are determined by the channel estimator (KE) and data symbols which are decided by the data symbol decision maker (DEC) are supplied,

and in which

- the means (SINR-EST) for determining the interference power is designed to determine the interference power of the despread signal from a comparison of received data symbols with symbols which are known a-priori in the receiver and data symbols which are not known a-priori in the receiver and are decided by the data symbol decision maker (DEC).
- 9. The CDMA radio receiver as claimed in claim 8, characterized
- in that the means (SINR-EST) for determining the interference power by the receiver (RAKE, MRC) receives detected symbols.
- 10. The CDMA radio receiver as claimed in claim 8, characterized
- in that the receiver is a RAKE receiver (RAKE, MRC) with two or more RAKE fingers (R1,..,RN $_{\rm Finger}$) and a combiner (MRC), with the outputs of the RAKE fingers being connected to inputs of the combiner, and
- in that the means (SINR-EST) for determining the interference power receives received symbols which are produced at the outputs of the RAKE fingers.

Application No. 10/637,194 Cert. Transl. of DE 101 05 733.4

Abstract

.

Method for determining the interference power in a CDMA radio receiver, and a CDMA radio receiver

In a method for determining the interference power in a CDMA radio receiver, once a received signal has been despread, the interference power of the despread signal is determined from a comparison of received symbols with symbols (Pilot) which are known a-priori to the receiver and with received and decided data symbols (Data2) which are not known a-priori to the receiver.

/bb