MA1014 11/10/21

Elementary Frunctions

Basic functions $f: \mathbb{R} \to \mathbb{R}$

$$f(\infty) = tan(\infty)$$

Except $\alpha = \pi/2$

$$\alpha$$
 in radians $360^{\circ} = 2\pi$

$$x = \frac{2n+1}{2} \pi$$

Domain
$$(f) = \{x \mid x \text{ is defined }\}$$

Range
$$(f) = \{ y \mid y = f(\infty) \text{ for some } \infty \}$$

Examples
$$f(\alpha) = \frac{7\alpha - 27}{\alpha - 4}$$

Range
$$(f) = R - \{7\}$$

 $f(\alpha) = \frac{7\alpha - 2\delta}{\alpha - 4} + \frac{1}{3\alpha - 4}$
 $= \frac{7(\alpha - 4)}{3\alpha - 4} + \frac{1}{\alpha - 4}$
 $= \frac{7}{3\alpha - 4} + \frac{1}{\alpha - 4}$

Definition A function
$$f: x \to y$$

$$\bigcirc \xrightarrow{\mathcal{F}} \bigcirc$$
 is

one-to-one
$$(1-1)$$
 (=) if $f(x) = f(x')$ injective mono then $x = x'$

Example
$$f: x \to x$$
 $f: R \to R$

$$f(x = x)$$

$$\frac{3-73}{4} + \frac{3}{4} \to 7$$

Remark we often talk about inverse functions $f: X \Rightarrow Y$ inverse $f': Y \Rightarrow X$ $f^{-1}(f(x)) = x$ $f^{-1} \cdot f = id_{X}$ $f \cdot f^{-1} = id_{Y}$

Important points & inversible

X Y f'x

Examples sin: R -> R

sin' is the inverse of a sin: $(-\pi, \pi] \rightarrow [-1, 1]$ which is 1-1 and onto

-TI TI

Domain [-T,T] Ronge [-1, 1]