

# Relatório da segunda lista de exercícios

#### HERBERTH AMARAL

Departamento de Ciência da Computação Universidade Estadual de Montes Claros herberthamaral@gmail.com 15 de outubro de 2015

## 1 Introdução

Este trabalho contempla as análises feitas na segunda lista de exercícios da disciplina de Computação Evolutiva. Foram implementados e analisados três algoritmos evolutivos: recozimento simulado (simulated annealing - SA), evolução diferencial (differential evolution - DE) e estratégia evolutiva (evolution strategy - ES) do tipo  $\mu + \lambda$ . Os testes foram executados com critérios de parada baseado em número de iterações e em tempo e utilizaram a função rastrigin (com e sem restrições e com 3, 5 e 10 dimensões) como benchmark. Os resultados mostram que o algoritmo de evolução diferencial apresentou melhor performance que os demais.

#### 2 Desenvolvimento

Os algoritmos foram implementados utilizando a linguagem de programação *Python* e utilizando os parâmetros mostrados à seguir.

#### 2.1 Todos os algoritmos:

- 1. Critério de parada: 10.000 iterações e 20 segundos de execução;
- 2. **Problema**: Rastrigin  $(\underset{x}{argmin}(f(x)) = 10n + \sum_{i=1}^{n} [x_i^2 10cos(2\pi x_i)]| 5.12 \le x \le 5.12)$ com 3, 5 e 10 dimensões, com e sem restrições;
- 3. **Restrições**:  $g_i(x) = sen(2\pi x_i) + 0.5 \le 0, \forall i \in \{1, 2, ..., ng\} \ e \ h_j(x) = sen(2\pi x_j) + 0.5 = 0, \forall j \in \{1, 2, ..., nh\}$
- 4. Valores de n (dimensões): 3, 5 e 10



#### 2.2 Recozimento simulado:

1. Temperaturas inicial e final:  $T_0 = 1e5$ ,  $T_f = 1e - 10$ 

2. Taxa de aprendizado:  $\alpha = 0.995$ 

#### 2.3 Evolução diferencial:

1. População: 20

2. Recombinação: 0.995

### 2.4 Estratégia evolutiva:

1. *μ*: 20

2. *λ*: 5

3.  $\sigma_i$ : 20

4. Operador de recombinação:[1]

$$\forall l = 1, ..., \lambda : \mathbf{a}_l \leftarrow \begin{cases} \sigma_l \leftarrow \langle \sigma \rangle e^{\tau \mathbf{N}_l(0,1)}, \\ \mathbf{y}_l \leftarrow \langle \mathbf{y} \rangle + \sigma_l \mathbf{N}_l(\mathbf{0}, \mathbf{1}), \\ F_l \leftarrow F(\mathbf{y}_l), \end{cases}$$
(1)

#### 3 Resultados

#### 3.1 Recozimento simulado

Foi possível observar que, diferentemente dos outros algoritmos, o recozimento simulado não apresenta uma "tendência de queda": inicia-se com um certo *fitness* e logo após algumas iterações esse mesmo fitness piora para só depois voltar ao nível normal e finalmente ir abaixo dele. Isso pode ser explicado pelo fato que o algoritmo de recozimento simulado aceita e explora soluções piores quando a temperatura ainda está alta e passa a ter menos tolerância a resultados piores a medida que a temperatura decai. Tal evolução pode ser vista nas imagens abaixo:



**Figura 1:** Evolução do fitness do algoritmo de recozimento simulado com n=3 com critério de parada por iterações



Figura 2: Mais um exemplo de evolução do fitness do algoritmo de recozimento simulado



Figura 3: Mais um exemplo de evolução do fitness do algoritmo de recozimento simulado



## 3.2 Evolução diferencial

Pelos gráficos foi possível observar que o algoritmo de evolução diferencial também explora bem seu espaço de busca, porém de forma diferente do recozimento simulado. Ao invés de ter uma tendência de alta para só depois baixar, o algoritmo apresenta uma tendência de baixa o tempo inteiro, mas com um alto desvio padrão por janela de tempo no início que diminui no final.



**Figura 4:** Exemplo de evolução do fitness do algoritmo de evolução diferencial com critério de iterações para parada



**Figura 5:** Exemplo de evolução do fitness do algoritmo de evolução diferencial com critério de tempo para parada



**Figura 6:** Exemplo de evolução do fitness do algoritmo de evolução diferencial com critério de tempo para parada em 10 dimensões.



#### 3.3 Estratégia evolutiva

Os algoritmos de estratégia evolutiva são os que menos exploraram o espaço de busca e tiveram uma convergência rápida (não necessariamente prematura). A convergência rápida pode ser explicada por causa das taxas de mutação baseadas no desvio padrão que decaem relativamente rápido. O algoritmo de estratégia evolutiva foi o único em que o critério de tempo não fez sentido por causa da convergência rápida.

Tentou-se inserir pertubações quando o desvio padrão das dez últimas iterações fosse zero. O espaço de busca foi melhor explorado, mas os resultados pioraram.



**Figura 7:** Exemplo de evolução do fitness do algoritmo de estratégia evolutiva  $\mu + \lambda$ 

Para melhor visualização, as figuras abaixo contemplam a evolução do *fitness* somente das 100 primeiras iterações.



**Figura 8:** Mais um exemplo de evolução do fitness do algoritmo de estratégia evolutiva  $\mu + \lambda$ 



Figura 9: Neste caso, o algoritmo ficou preso num mínimo local



## 3.4 Comparativo dos três algoritmos em vista do critério de tempo

Os resultados mostram a maior eficiência do algoritmo de evolução diferencial. Vale ressaltar que a convergência se dá muito antes do tempo completar, não sendo necessário um tempo de execução tão alto para seu caso (20 segundos).

| Algoritmo            | Valor médio (DP)    | Valor mínimo |
|----------------------|---------------------|--------------|
| Recozimento simulado | 0.97 (1.21)         | 0.012        |
| Estratégia evolutiva | 1.91 (1.094)        | 0.060        |
| Evolução diferencial | 1.62e-09 (1.76e-09) | 3.17e-10     |

## Referências

- [1] BEYER, Hans-Georg (2007), Evolution strategies. Disponível em http://www.scholarpedia.org/article/Evolution\_strategies. Acessado em 14/10/2015.
- [2] GUIMARÃES, Frederico Gadelha, Algoritmos de evoluçao diferencial para otimização e aprendizado de máquina. Anais do IX Congresso Brasileiro de Redes Neurais/Inteligência Computacional (IX CBRN) 2009.