Subiectul I.1 PROGRESII

ARITMETICE	GEOMETRICE	
Not	tații	
$\div (a_n)_{n\geq 1} \Leftrightarrow \div a_1, a_2, \dots, a_n, \dots$	$\div (b_n)_{n\geq 1} \Leftrightarrow \div b_1, b_2, \dots, b_n, \dots$	
$a_n = egin{cases} ext{termenul general al progresiei} \ ext{sau} \ ext{termenul de rang n} \end{cases}$	$b_n = egin{cases} ext{termenul general al progresiei} \ ext{sau} \ ext{termenul de rang n} \end{cases}$	
Exer	nplu	
	$\div 2, 6, 18, 54, \dots \Rightarrow \begin{cases} b_1 = 2 \\ q = 3 \end{cases}$	
\updownarrow \div 2 ⁺³ ,5 ⁺³ ,8 ⁺³ ,11 ⁺³ ,	ψ ÷ $2^{\cdot 3}$, $6^{\cdot 3}$, $18^{\cdot 3}$, $54^{\cdot 3}$,	

Definiție (Formula de recurență)		
$a_{n+1} = a_n + r, \forall n \in \mathbb{N}^* $ $b_{n+1} = b_n \cdot q, \forall n \in \mathbb{N}^*$		
Rația unei progresii		
$r = a_{n+1} - a_n, \forall n \in \mathbb{N}^*$	$q = \frac{b_{n+1}}{b_n} \ (b_n \neq 0) \ \forall \ n \in \mathbb{N}^*$	

CELE MAI UTILIZATE FORMULE

Formula termenului general		
$a_n = a_1 + (n-1)r, \forall n \in \mathbb{N}^*$ $b_n = b_1 \cdot q^{n-1}, \forall n \in \mathbb{N}^*$		
Suma primilor n termeni ai progresiei		
$S_n = a_1 + a_2 + \dots + a_n$	$S_n = b_1 + b_2 + \dots + b_n$	
$S_n = \frac{(a_1 + a_n) \cdot n}{2}$	$S_n = egin{cases} rac{b_1(q^n-1)}{q-1}, dacă\ q eq 1 \ n \cdot b_1, dacă\ q = 1 \end{cases}$	
Condiția ca trei numere să fie termeni consecutivi ai unei progresii		
$\div A, B, C \Leftrightarrow 2B = A + C \qquad \qquad \div A, B, C \Leftrightarrow B^2 = A \cdot C$		

LOGARITMI

Definitie $a^x = N \Rightarrow x = \log_a N$, unde a > 0, $a \neq 1$, N > 0Condițiile de existență ale logaritmului a > 0 (baza > 0) $a \neq 1 (baza \neq 1)$ N > 0 (cantitatea > 0) $\log_a N$: Logaritmul zecimal Logaritmul natural $\lg x = \log_{10} x$ $\ln x = \log_e x$, unde $e \simeq 2,71$ (numărul lui Euler) Proprietăți ale logaritmilor 2. 1. $\log_a 1 = 0$ $\log_a a = 1$ $\log_a x^n = n \cdot \log_a x$ $a^{\log_a x} = x$ **3.** 4. $\log_a x - \log_a y = \log_a \left(\frac{x}{y}\right)$

7.	$a^{\log_b c} = c^{\log_b a}$		
Formule de schimbare a bazei logaritmului			
8.	$\log_{a^n} x = \frac{1}{n} \cdot \log_a x$	9.	$\log_a b = \frac{\log_c b}{\log_c a}$
10. $\log_a b = \frac{1}{\log_b a}$ 11. $\log_a b = \log_c b \cdot \log_a c$			
Monotonia funcției logaritmice			

6.

 $\log_a x + \log_a y = \log_a (x \cdot y)$

5.

$$f:(0,\infty)\to\mathbb{R}, f(x)=\log_a x, a>0, a\neq 1$$

- **I.** Dacă $a \in (0, 1) \Rightarrow f$ este strict descrescătoare $x_1 < x_2 \Leftrightarrow \log_a(x_1) > \log_a(x_2)$
- **II.** Dacă $a \in (1, \infty) \Rightarrow f$ este strict crescătoare $x_1 < x_2 \Leftrightarrow \log_a(x_1) < \log_a(x_2)$

Monotonia funcției exponențiale

$$f: \mathbb{R} \to (0, \infty), f(x) = a^x, a > 0, a \neq 1$$

- **I.** Dacă $a \in (0,1) \Rightarrow f$ este strict descrescătoare $x_1 < x_2 \Leftrightarrow a^{x_1} > a^{x_2}$
- II. Dacă $a \in (1, \infty) \Rightarrow f$ este strict crescătoare $x_1 < x_2 \Leftrightarrow a^{x_1} < a^{x_2}$

PUTERI ȘI RADICALI

	PUTERI		
	Definiți	e pute	ere
	$oldsymbol{a}^n = \underbrace{oldsymbol{a} \cdot oldsymbol{a} \cdot \dots \cdot oldsymbol{a}}_{oldsymbol{de} oldsymbol{n} oldsymbol{ori}}, a \in \mathbb{R}, n \in \mathbb{N}^*$		
	$oldsymbol{a^n} = egin{cases} oldsymbol{a} = oldsymbol{baza} & oldsymbol{a} = oldsymbol{baza} & oldsymbol{puterii} \ oldsymbol{n} = oldsymbol{exponentul} & oldsymbol{puterii} \end{cases}$		
Proprietăți puteri			
1.	$a^{0} = 1$	2.	$1^n = 1$
3.	$a^n \cdot a^m = a^{n+m}$	4.	$\frac{a^n}{a^m} = a^{n-m}$
5.	$a^n \cdot b^n = (a \cdot b)^n$	6.	$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$
7. $(a^n)^m = (a^m)^n = a^{n \cdot m}$ 8. $a^{-1} = \frac{1}{a}$			
9.	$a^{-n} = \frac{1}{a^n}$	10.	$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$

	RADICALI		
Radicalul de ordin 2 Radicalul de ordin 3			
Cor	ndiții de existență ale radicalului de ordin 2 (de ordin par)	Condiții de existență ale radicalului de ordin 3 (de ordin impar)	
(e	$\sqrt{f(x)} \Rightarrow f(x) \ge 0$ xpresia de sub semnul radical ≥ 0)	Nu există	
Proprietăți ale radicalilor			
1.	$\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}$	$\sqrt[3]{a} \cdot \sqrt[3]{b} = \sqrt[3]{a \cdot b}$	
2.	$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$	$\frac{\sqrt[3]{a}}{\sqrt[3]{b}} = \sqrt[3]{\frac{a}{b}}$	
3.	$\left(\sqrt{a}\right)^2 = a$	$\left(\sqrt[3]{a}\right)^3 = a$	
4.	$\sqrt{x} = x^{\frac{1}{2}}$	$\sqrt[3]{x} = x^{\frac{1}{3}}$	
5.	$\sqrt[n]{x^q} = x^{\frac{q}{n}}$		

NUMERE COMPLEXE ($\mathbb C$)— forma algebrică

	TOTAL CONTINUE (C) To the algebra				
			niție		
	$z = a + bi, a, b \in \mathbb{R}$				
			tații		
а	-	realul lui z		partea imaginară b = Im (z) – in	a numărului complex z naginarul lui z
		•	-1		
		i = unitate			
		Propi	rietăți		0 '1 () 0)
	$z \in \mathbb{R} \iff Im(z)$	$)=0 \Leftrightarrow b=0$	2	$z = 0 \Leftrightarrow \frac{(Re(z))}{(a)}$	0 = 0 și $1m(z) = 0)0 $ și $b = 0)$
		Egalitatea a două	nume	re complexe	
		$a_1 + b_1 i = a_2 + b_2 i \ \ $	$\Rightarrow \overline{a_1}$	$= \overline{a_2 \mathrm{s}i b_1} = b_2$	
	Conjuga	atul lui z		Mo	dulul lui z
	$\bar{z} = \overline{a+b}$	$\overline{i} = a - bi$		z = a + bi	$ = \sqrt{a^2 + b^2}$
		Proprietăți (cel	le mai	utilizate)	
1.	Z	$ z = \bar{z} $	4.	$ z_1 \cdot z_2 $	$ = z_1 \cdot z_2 $
2.	2. $ z^n = z ^n$ 5. $\left \frac{z_1}{z_2}\right = \frac{ z_1 }{ z_2 }, z_2 \neq 0$		$\frac{ z_1 }{ z_2 }, z_2 \neq 0$		
3.	$z \in \mathbb{R}$	$z \Leftrightarrow z = \bar{z}$	6.	$ z ^2 = z \cdot \bar{z}$	
		Raportul a două	nume	re complexe	
	= se calculeaz	ză prin amplificarea lui	(rapor	tului) cu conjugati	ul numitorului
	z_1 _	$\frac{a+bi}{c+di} = \frac{(a+bi)\cdot(c-b)}{(c+di)\cdot(c-b)}$	- di)	ac + bd bc -	- ad ;
	${z_2} =$	$\frac{c+di}{c+di} = \frac{(c+di)\cdot (c-di)\cdot (c-di)\cdot (c-di)\cdot (c-di)}{(c+di)\cdot (c-di)\cdot (c$	<u>- di)</u>	$= \overline{\underline{c^2 + d^2}} + \overline{\underline{c^2 + d^2}}$	$\frac{1}{1-d^2}$
				$Re\left(\frac{Z_1}{Z_2}\right)$ $Im\left(\frac{Z_1}{Z_2}\right)$	$\left(\frac{Z_1}{Z_2}\right)$
		Puteri	le lui	i	
	$i^1 = i$	$i^{4n+1} = i$		$i^2 = -1$	$i^{4n+2} = -1$
	$i^3 = -i$	$i^{4n+3} = -i$		$i^4 = 1$	$i^{4n} = 1$
	Rezolvarea în C a ecuației de grad II cu coeficienți reali				
$ax^2 + bx + c = 0, a, b, c \in \mathbb{R}$					
$\Delta = b^2 - 4ac, \Delta < 0 \implies \begin{cases} x_1 = \frac{-b - i\sqrt{-\Delta}}{2a} \\ x_1 = \frac{-b + i\sqrt{-\Delta}}{2a} \end{cases}$ $x^2 = a, a < 0 \implies x = \pm i\sqrt{-a}$					
	$x^2 = a, a < 0 \Rightarrow x = \pm i\sqrt{-a}$				

FORMULE DE CALCUL PRESCURTAT

$$a^{2} - b^{2} = (a - b) \cdot (a + b)$$

$$(a + b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a - b)^{2} = a^{2} - 2ab + b^{2}$$

$$a^{3} - b^{3} = (a - b) \cdot (a^{2} + ab + b^{2})$$

$$a^{3} + b^{3} = (a + b) \cdot (a^{2} - ab + b^{2})$$

$$(a + b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a - b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

PARTEA ÎNTREAGĂ și PARTEA FRACTIONARĂ

A UNUI NUMĂR REAL

	Partea întreagă a unui număr real x			
	Notație Definiție			
Y = nartea intreada a lill Y		= cel mai mare întreg mai mic decât x $[x] = n, n \in \mathbb{Z} \iff n \le x < n + 1$		
Partea fracționară a numărului real x				
	Notație Definiție			
	$\{x\} = partea\ fracționară\ a\ lui\ x \qquad \qquad \{x\} = x - [x]$		$\{x\} = x - [x]$	
	Proprietăți			
1.	$x - 1 < [x] \le x$	3.	$\{x\} \in [0,1)$	
2.	$[x+n] = [x] + n, n \in \mathbb{Z}$	$4. \qquad \{x+n\} = \{x\}, n \in \mathbb{Z}$		
5.	$x = [x] + \{x\}$			

MODULUL UNUI NUMĂR REAL

Definiție	$ x = \begin{cases} -x, & x < 0 \\ x, & x \ge 0 \end{cases}$
B	$ x \leq A \Leftrightarrow -A \leq x \leq A, A \in \mathbb{R}_+$
Proprietăți	$ x \ge A \Leftrightarrow x \le -A \text{ sau } x \ge A, A \in \mathbb{R}_+$

Subjectul I.2

FUNCȚII – definiții și proprietăți

No	otații
$f: A \to B, x \to f(x)$	A = domeniul funcției $B = codomeniul funcției$ $f(x) = legea de corespondență a funcției$

$$A(x,y) \in Gf \iff f(x) = y$$

 $f(prima\ coordonată) = a\ doua\ coordonată$

x (prima coordonată) = abscisa punctului y (a doua coordonată) = ordonata punctului

Intersecția cu axele de coordonate ale Gf

Intersecţia cu axa absciselor (cu Ox) $Gf \cap O_x \Rightarrow y = 0 \Rightarrow f(x) = 0$ Intersecţia cu axa ordonatelor (cu Oy) $Gf \cap O_y \Rightarrow x = 0 \Rightarrow y = f(0)$

Determinarea coordonatelor punctelor de intersecție a două grafice (Gf și Gg)

1. Se rezolvă ecuația f(x) = g(x) pentru determinarea **abscisei** 2. Se determină **ordonata** punctului

Compunerea funcțiilor

$$(f \circ g)(x) = f(g(x))$$

FUNCȚII – definiții și proprietăți

$f: A \to \mathbb{R}, A - multime simetricà (-x \in A, \forall x \in A)$ $f - parà \Leftrightarrow f(-x) = f(x), \forall x \in A \qquad f - imparà \Leftrightarrow f(-x) = -f(x), \forall x \in A$ Funcții periodice $f: D \to \mathbb{R} \text{ este periodică cu perioada } T dacăf(x+T) = f(x), \forall x \in D \text{ si } x+T \in D$ Cea mai mică perioadă nenulă pozitivă (dacă există) s.n. perioadă principală Imaginea unei funcții (multimea de valori a funcției) $f: A \to B$ $limf = \{y \in B \exists x \in A \text{ a.} 1. f(x) = y\} \text{ sau } limf = f(A) = \{f(x) x \in A\}$ Funcții injective - definiții $f: A \to B \text{ este funcție injectivă dacă:}$ 1. $f(x_1) = f(x_2) \Rightarrow x_1 = x_2 [x_1, x_2 \in A \text{ fixați}]$ 2. $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2) [x_1, x_2 \in A \text{ fixați}]$ 3. $feste strict monotonă (Analiză matematică)$ Obs. $f: A \to B \text{ nu este funcție injectivă dacă:} \exists x_1, x_2 \in A, x_1 \neq x_2 \text{ si } f(x_1) = f(x_2)$ Funcții surjective - definiții $f: A \to B \text{ este funcție surjectivă dacă:}$ 1. $[\forall y \in B\exists x \in A \text{ a.} 1. f(x) = y] \Leftrightarrow [pentru \forall y \in B \text{ ecuația } f(x) = y \text{ are cel puțin o soluție în } A]$ $limf = B$ Funcții bijective - definiții $f: A \to B \text{ este funcție bijectivă dacă:}$ 1. $[\forall y \in B\exists x \in A \text{ a.} 1. f(x) = y] \Leftrightarrow [pentru \forall y \in B \text{ ecuația } f(x) = y \text{ are soluție unică în } A]$ Funcții inversabile $f: A \to B \text{ este funcție inversabilă dacă:}$ $feste injectivă are inversa:$ $feste bijectivă are inversa:$ $f = \text{ sete bijectivă are inversa:}$ $f = \text{ sete bijectivă are inversa:}$ $f = \text{ sete monoton crescătoare dacă } \forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \leq f(x_2)$ $f: D \to \mathbb{R} \text{ este monoton descrescătoare dacă } \forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \leq f(x_2)$		Eunstii nava Eunstii imnava		
$f - pară \Leftrightarrow f(-x) = f(x), \forall x \in A$ Funcții periodice $f: D \rightarrow \mathbb{R} \ \ $		Funcții pare. Funcții impare $f: A \to \mathbb{R}, A - mulțime simetrică (-x \in A, \forall x \in A)$		
$f: D \rightarrow \mathbb{R} \ \ $	f -			
Cea mai mică perioadă nenulă pozitivă (dacă există) s.n. perioadă principală Imaginea unei funcții (mulțimea de valori a funcției) $f: A \to B$ $Imf = \{y \in B \exists x \in A a. \hat{1}. f(x) = y\} \text{ sau } Imf = f(A) = \{f(x) x \in A\}$ Funcții injective - definiții $f: A \to B$ este funcție injectivă dacă: 1. $f(x_1) = f(x_2) \Rightarrow x_1 = x_2 [x_1, x_2 \in A \text{ fixați}]$ 2. $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2) [x_1, x_2 \in A \text{ fixați}]$ 3. $f \text{ este strict monotonă (Analiză matematică)}$ Obs. $f: A \to B \text{ nu este funcție injectivă dacă: } \exists x_1, x_2 \in A, x_1 \neq x_2 \text{ și } f(x_1) = f(x_2)$ Funcții surjective - definiții $f: A \to B \text{ este funcție surjectivă dacă:}$ 1. $[\forall y \in B \exists x \in A \text{ a. î. } f(x) = y] \Leftrightarrow [pentru \forall y \in B \text{ ecuația } f(x) = y \text{ are cel puțin o soluție în } A]$ 2. $Imf = B$ Funcții bijective - definiții $f: A \to B \text{ este funcție bijectivă dacă:}$ 1. $f \text{ este injectivă și surjectivă dacă:}$ 2. $[\forall y \in B \exists ! x \in A \text{ a. î. } f(x) = y] \Leftrightarrow [pentru \forall y \in B \text{ ecuația } f(x) = y \text{ are soluție unică în } A]$ Funcții inversabilă dacă: $f \text{ este bijectivă}$ $f \text{ este bijectivă are inversa:}$ $f \text{ este bijectivă are inversa:}$ $f^{-1}: B \to A \text{ cu proprietatea } f(x) = y \Leftrightarrow x = f^{-1}(y), x \in A, y \in B$ $f(f^{-1}(x)) = x, x \in B \text{ și } f^{-1}(f(x)) = x, x \in A$ Funcții monotone $f: D \to \mathbb{R} \text{ este monoton crescătoare dacă} \forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \leq f(x_2)$		Funcții periodice		
Imaginea unei funcții (mulțimea de valori a funcției) $f: A \to B$ $Imf = \{y \in B \exists x \in A \ a. \hat{1}. f(x) = y\} \ sau \ Imf = f(A) = \{f(x) x \in A\}$ Funcții injective – definiții $f: A \to B$ este funcție injectivă dacă: $f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \ [x_1, x_2 \in A \ fixați]$ 2. $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2) \ [x_1, x_2 \in A \ fixați]$ 3. $feste strict monotonă (Analiză matematică)$ Obs. $f: A \to B \ nu \ este funcție injectivă dacă: \exists x_1, x_2 \in A, x_1 \neq x_2 \ si \ f(x_1) = f(x_2)$ Funcții surjective – definiții $f: A \to B \ este funcție surjectivă dacă:$ 1. $[\forall y \in B \exists x \in A \ a. \hat{1}. f(x) = y] \Leftrightarrow [pentru \ \forall y \in B \ ecuația \ f(x) = y \ are \ cel \ puțin \ o \ soluție \ nn \ A]$ 2. $Imf = B$ Funcții bijective – definiții $f: A \to B \ este funcție \ bijectivă dacă:$ 1. $Imf = B$ Funcții bijective – definiții $f: A \to B \ este funcție \ bijectivă \ dacă:$ 1. $Imf = B$ Funcții injective – definiții $f: A \to B \ este funcție \ bijectivă \ dacă:$ 1. $Imf = B$ Funcții injective – definiții $f: A \to B \ este funcție \ bijectivă \ dacă:$ 1. $Imf = B$ Funcții injective – definiții $f: A \to B \ este funcție \ bijectivă \ dacă:$ 1. $Imf = B$ Funcții injective – definiții $f: A \to B \ este funcție \ bijectivă \ dacă:$ 1. $Imf = B$ Funcții injective – definiții $f: A \to B \ este funcție \ bijectivă \ dacă:$ 1. $Imf = B$ Funcții bijective dacă: 1. $Imf = B$ Funcții injective – definiții $f: A \to B \ este funcție \ bijectivă \ dacă:$ 1. $Imf = B$ Funcții injective – definiții $f: A \to B \ este funcție \ bijectivă \ dacă:$ 1. $Imf = B$ Funcții injective – definiții $f: A \to B \ este funcție \ bijectivă \ dacă:$ 1. $Imf = B$ Funcții injective – definiții $f: A \to B \ este funcție \ bijectivă \ dacă:$ 1. $Imf = B$ Funcții injective – definiții $f: A \to B \ este funcție \ bijectivă \ dacă:$ 1. $Imf = B$ Funcții bijective dacă: 1. $Imf = B$ Funcții bijective – definiții $f: A \to B \ este funcție \ bijectivă \ dacă:$ 1. $Imf = B \ este funcție bijectivă \ dacă:$ 1. $Imf = B \ este \ bijectivă \ dacă:$ 1. $Imf = B \ este \ bijectivă \ dacă:$ 1. Im				
$f: A \rightarrow B$ $Imf = \{y \in B \exists x \in A \text{ a. â. } f(x) = y\} \text{ sau } Imf = f(A) = \{f(x) x \in A\}$ $Funcții injective - definiții$ $f: A \rightarrow B \text{ este } funcție injectivă dacă:}$ 1. $f(x_1) = f(x_2) \Rightarrow x_1 = x_2 [x_1, x_2 \in A \text{ fixați}]$ 2. $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2) [x_1, x_2 \in A \text{ fixați}]$ 3. $f \text{ este } strict \text{ monotonă } (Analiză \text{ matematică})$ Obs. $f: A \rightarrow B \text{ nu } \text{ este } funcție \text{ injectivă } dacă:} \exists x_1, x_2 \in A, x_1 \neq x_2 \text{ și } f(x_1) = f(x_2)$ $Funcții \text{ surjective } - \text{ definiții}}$ $f: A \rightarrow B \text{ este } funcție \text{ surjectivă } \text{ dacă:}$ 1. $[\forall y \in B \exists x \in A \text{ a. â. } f(x) = y] \Leftrightarrow [pentru \forall y \in B \text{ ecuația } f(x) = y \text{ are cel } puțin \text{ o soluție } \text{ în } A]$ 2. $Imf = B$ $Funcții \text{ bijective } - \text{ definiții}}$ $f: A \rightarrow B \text{ este } funcție \text{ bijectivă } \text{ dacă:}$ 1. $Imf = B$ $Funcții \text{ bijective } - \text{ definiții}}$ $f: A \rightarrow B \text{ este } funcție \text{ bijectivă } \text{ dacă:}$ 1. $Imf = B$ $Funcții \text{ bijective } - \text{ definiții}}$ $f: A \rightarrow B \text{ este } funcție \text{ bijectivă dacă:}$ 1. $Imf = B$ $Funcții \text{ bijective } - \text{ definiții}}$ $f: A \rightarrow B \text{ este } funcție \text{ bijectivă dacă:}$ 1. $Imf = B$ $Funcții \text{ bijective } - \text{ definiții}}$ $f: A \rightarrow B \text{ este } funcție \text{ bijectivă dacă:}$ 1. $Imf = B$ $Funcții \text{ bijective } - \text{ definiții}}$ $f: A \rightarrow B \text{ este } funcție \text{ bijectivă dacă:}$ 1. $Imf = B$ $Funcții \text{ bijective } - \text{ definiții}}$ $f: A \rightarrow B \text{ este } funcție \text{ bijectivă dacă:}$ $Imf = B$ $Funcții \text{ bijective } - \text{ definiții}}$ $f: A \rightarrow B \text{ este } funcție \text{ bijectivă dacă:}$ $Imf = B$ $Funcții \text{ bijective } - \text{ definiții}$ $f: A \rightarrow B \text{ este } funcție \text{ bijectivă dacă:}$ $Imf = B$ $Imf = B$ $Funcții \text{ bijective } - \text{ definiții}}$ $f: A \rightarrow B \text{ este } funcție \text{ bijectivă dacă:}$ $Imf = B$ I				
Funcții injective – definiții $f: A \rightarrow B$ este funcție injectivă dacă: 1.				
$f: A \rightarrow B \text{ este } funcție \text{ injectiv} ă dacă:$ $1. \qquad f(x_1) = f(x_2) \Rightarrow x_1 = x_2 [x_1, x_2 \in A \text{ fixați}]$ $2. \qquad x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2) [x_1, x_2 \in A \text{ fixați}]$ $3. \qquad feste strict monotonă (Analiză matematică)$ $Obs. \qquad f: A \rightarrow B \text{ nu } \text{ este } funcție \text{ injectiv} ă dacă: } \exists x_1, x_2 \in A, x_1 \neq x_2 \text{ și } f(x_1) = f(x_2)$ $\qquad \qquad Funcții \text{ surjective } - \text{ definiții}$ $f: A \rightarrow B \text{ este } funcție \text{ surjectivă } dacă:$ $1. \qquad [\forall y \in B \exists x \in A \text{ a. î. } f(x) = y] \Leftrightarrow [pentru \forall y \in B \text{ ecuația } f(x) = y \text{ are cel puțin o soluție în } A]$ $2. \qquad Imf = B$ $\qquad \qquad Funcții \text{ bijective } - \text{ definiții}$ $f: A \rightarrow B \text{ este } funcție \text{ bijectivă } dacă:$ $1. \qquad feste \text{ injectivă } \text{ și surjectivă}$ $2. \qquad [\forall y \in B \exists ! x \in A \text{ a. î. } f(x) = y] \Leftrightarrow [pentru \forall y \in B \text{ ecuația } f(x) = y \text{ are soluție unică în } A]$ $\qquad \qquad Funcții \text{ inversabile } f: A \rightarrow B \text{ este } funcție \text{ inversabilă } dacă:$ $\qquad f \text{ este bijectivă } $ $\qquad \qquad \text{Inversa unei funcții}$ $\qquad f: A \rightarrow B \text{ funcție bijectivă, are inversa:}$ $\qquad f^{-1}: B \rightarrow A \text{ cu proprietatea } f(x) = y \Leftrightarrow x = f^{-1}(y), x \in A, y \in B$ $\qquad f(f^{-1}(x)) = x, x \in B \text{ și } f^{-1}(f(x)) = x, x \in A$ $\qquad \qquad Funcții \text{ monotone}$ $\qquad f: D \rightarrow \mathbb{R} \text{ este monoton crescătoare } dacă \forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \leq f(x_2)$ $\qquad f: D \rightarrow \mathbb{R} \text{ este monoton descrescătoare } dacă \forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \geq f(x_2)$		$Im f = \{ y \in B \exists x \in A \text{ a. î. } f(x) = y \} \text{ sau } Im f = f(A) = \{ f(x) x \in A \}$		
1. $f(x_1) = f(x_2) \Rightarrow x_1 = x_2 [x_1, x_2 \in A \text{ fixați}]$ 2. $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2) [x_1, x_2 \in A \text{ fixați}]$ 3. $f\text{ este strict monotonă (Analiză matematică)}$ Obs. $f: A \rightarrow B \text{ nu este funcție injectivă dacă: } \exists x_1, x_2 \in A, x_1 \neq x_2 \text{ și } f(x_1) = f(x_2)$ Funcții surjective – definiții $f: A \rightarrow B \text{ este funcție surjectivă dacă:}$ 1. $[\forall y \in B \exists x \in A \text{ a.î.} f(x) = y] \Leftrightarrow [pentru \forall y \in B \text{ ecuația } f(x) = y \text{ are cel puțin o soluție în } A]$ 2. $Imf = B$ Funcții bijective – definiții $f: A \rightarrow B \text{ este funcție bijectivă dacă:}$ 1. $Imf = B$ Funcții bijective a dacă: $f \text{ este injectivă și surjectivă}}$ 2. $[\forall y \in B \exists ! x \in A \text{ a.î.} f(x) = y] \Leftrightarrow [pentru \forall y \in B \text{ ecuația } f(x) = y \text{ are soluție unică în } A]$ Funcții inversabile $f: A \rightarrow B \text{ este funcție inversabilă dacă:}$ $f \text{ este bijectivă}}$ $Inversa \text{ unei funcții}}$ $f: A \rightarrow B \text{ funcție bijectivă, are inversa:}$ $f^{-1}: B \rightarrow A \text{ cu proprietatea } f(x) = y \Leftrightarrow x = f^{-1}(y), x \in A, y \in B$ $f(f^{-1}(x)) = x, x \in B \text{ și } f^{-1}(f(x)) = x, x \in A$ Funcții monotone $f: D \rightarrow \mathbb{R} \text{ este monoton crescătoare dacă } \forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \leq f(x_2)$ $f: D \rightarrow \mathbb{R} \text{ este monoton descrescătoare dacă } \forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \geq f(x_2)$, ,		
3.	1.			
Obs. $f: A \rightarrow B$ nu este funcție injectivă dacă: $\exists x_1, x_2 \in A, x_1 \neq x_2$ și $f(x_1) = f(x_2)$ Funcții surjective - definiții $f: A \rightarrow B$ este funcție surjectivă dacă: 1. $[\forall y \in B \exists x \in A \text{ a. î. } f(x) = y] \Leftrightarrow [pentru \forall y \in B \text{ ecuația } f(x) = y \text{ are cel puțin o soluție în } A]$ 2. $Imf = B$ Funcții bijective - definiții $f: A \rightarrow B$ este funcție bijectivă dacă: 1. $f \text{ este injectivă și surjectivă}}$ 2. $[\forall y \in B \exists ! x \in A \text{ a. î. } f(x) = y] \Leftrightarrow [pentru \forall y \in B \text{ ecuația } f(x) = y \text{ are soluție unică în } A]$ Funcții inversabile $f: A \rightarrow B$ este funcție inversabilă dacă: $f \text{ este bijectivă}}$ Inversa unei funcții $f: A \rightarrow B$, funcție bijectivă, are inversa: $f^{-1}: B \rightarrow A \text{ cu proprietatea } f(x) = y \Leftrightarrow x = f^{-1}(y), x \in A, y \in B$ $f(f^{-1}(x)) = x, x \in B \text{ și } f^{-1}(f(x)) = x, x \in A$ Funcții monotone $f: D \rightarrow \mathbb{R}$ este monoton crescătoare dacă $\forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \geq f(x_2)$ $f: D \rightarrow \mathbb{R}$ este monoton descrescătoare dacă $\forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \geq f(x_2)$	2.	$x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2) \ [x_1, x_2 \in A \ fixați]$		
Funcții surjective – definiții $f: A \rightarrow B \text{ este } funcție \text{ surjectivă } dacă:$ 1. $[\forall y \in B \exists x \in A \text{ a. î. } f(x) = y] \Leftrightarrow [pentru \ \forall y \in B \text{ ecuația } f(x) = y \text{ are } cel \text{ puțin o soluție } în A]$ 2. $Imf = B$ Funcții bijective – definiții $f: A \rightarrow B \text{ este } funcție \text{ bijectivă } dacă:$ 1. $feste \text{ injectivă } si \text{ surjectivă}$ 2. $[\forall y \in B \exists ! x \in A \text{ a. î. } f(x) = y] \Leftrightarrow [pentru \ \forall y \in B \text{ ecuația } f(x) = y \text{ are soluție } unică în A]$ Funcții inversabile $f: A \rightarrow B \text{ este } funcție \text{ inversabilă } dacă:$ $feste \text{ bijectivă}$ Inversa unei funcții $f: A \rightarrow B \text{ , funcție } bijectivă, are \text{ inversa}:$ $f^{-1}: B \rightarrow A \text{ cu proprietatea } f(x) = y \Leftrightarrow x = f^{-1}(y), x \in A, y \in B$ $f(f^{-1}(x)) = x, x \in B \text{ și } f^{-1}(f(x)) = x, x \in A$ Funcții monotone $f: D \rightarrow \mathbb{R} \text{ este monoton crescătoare } dacă \ \forall x_1, x_2 \in D, \ x_1 < x_2 \Leftrightarrow f(x_1) \leq f(x_2)$ $f: D \rightarrow \mathbb{R} \text{ este monoton descrescătoare } dacă \ \forall x_1, x_2 \in D, \ x_1 < x_2 \Leftrightarrow f(x_1) \geq f(x_2)$	3.	f este strict monotonă (Analiză matematică)		
$f: A \rightarrow B \text{ este } funcție \textit{surjectiv} ă dacă:$ $1. [\forall y \in B \exists x \in A \text{ a. î. } f(x) = y] \iff [pentru \ \forall y \in B \text{ ecuația } f(x) = y \text{ are cel } puțin \text{ o soluție } în A]$ $2. \qquad Imf = B$ $Funcții bijective - definiții$ $f: A \rightarrow B \text{ este } funcție bijectivă dacă:}$ $1. \qquad feste injectivă și surjectivă$ $2. \qquad [\forall y \in B \exists! x \in A \text{ a. î. } f(x) = y] \iff [pentru \ \forall y \in B \text{ ecuația } f(x) = y \text{ are soluție } unică în A]$ $Funcții inversabile$ $f: A \rightarrow B \text{ este } funcție inversabilă dacă:}$ $feste bijectivă$ $Inversa unei funcții$ $f: A \rightarrow B \text{ , funcție } bijectivă, are inversa:}$ $f^{-1}: B \rightarrow A \text{ cu proprietatea } f(x) = y \iff x = f^{-1}(y), x \in A, y \in B$ $f(f^{-1}(x)) = x, x \in B \text{ și } f^{-1}(f(x)) = x, x \in A$ $Funcții monotone$ $f: D \rightarrow \mathbb{R} \text{ este } monoton \text{ crescătoare } dacă \ \forall x_1, x_2 \in D, \ x_1 < x_2 \iff f(x_1) \le f(x_2)$ $f: D \rightarrow \mathbb{R} \text{ este } monoton \text{ descrescătoare } dacă \ \forall x_1, x_2 \in D, \ x_1 < x_2 \iff f(x_1) \ge f(x_2)$	Obs.			
1. $[\forall y \in B \exists x \in A \ a. \hat{1}. f(x) = y] \Leftrightarrow [pentru \ \forall y \in B \ ecuația \ f(x) = y \ are \ cel \ puțin o \ soluție \ în \ A]$ 2. $Imf = B$ Funcții bijective – definiții $f: A \to B \ este \ funcție \ bijectivă \ dacă:$ 1. $feste \ injectivă \ \vec{s} \ is \ urjectivă$ 2. $[\forall y \in B \ \exists! \ x \in A \ a. \hat{1}. f(x) = y] \Leftrightarrow [pentru \ \forall y \in B \ ecuația \ f(x) = y \ are \ soluție \ unică \ în \ A]$ Funcții inversabile $f: A \to B \ este \ funcție \ inversabilă \ dacă:$ $feste \ bijectivă$ Inversa unei funcții $f: A \to B \ , funcție \ bijectivă, are \ inversa:$ $f^{-1}: B \to A \ cu \ proprietatea \ f(x) = y \Leftrightarrow x = f^{-1}(y), x \in A, y \in B$ $f(f^{-1}(x)) = x, x \in B \ si \ f^{-1}(f(x)) = x, x \in A$ Funcții monotone $f: D \to \mathbb{R} \ este \ monoton \ crescătoare \ dacă \ \forall \ x_1, x_2 \in D, \ x_1 < x_2 \Leftrightarrow f(x_1) \ge f(x_2)$ $f: D \to \mathbb{R} \ este \ monoton \ descrescătoare \ dacă \ \forall \ x_1, x_2 \in D, \ x_1 < x_2 \Leftrightarrow f(x_1) \ge f(x_2)$, ,		
2. $Imf = B$ Funcții bijective – definiții $f: A \to B \text{ este funcție bijectivă dacă:}$ 1. $f \text{ este injectivă și surjectivă}$ 2. $[\forall y \in B \exists! x \in A \text{ a.î.} f(x) = y] \Leftrightarrow [pentru \forall y \in B \text{ ecuația } f(x) = y \text{ are soluție unică în } A]$ Funcții inversabile $f: A \to B \text{ este funcție inversabilă dacă:}$ $f \text{ este bijectivă}$ Inversa unei funcții $f: A \to B \text{ , funcție bijectivă, are inversa:}$ $f^{-1}: B \to A \text{ cu proprietatea } f(x) = y \Leftrightarrow x = f^{-1}(y), x \in A, y \in B$ $f(f^{-1}(x)) = x, x \in B \text{ și } f^{-1}(f(x)) = x, x \in A$ Funcții monotone $f: D \to \mathbb{R} \text{ este monoton crescătoare dacă } \forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \leq f(x_2)$ $f: D \to \mathbb{R} \text{ este monoton descrescătoare dacă } \forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \geq f(x_2)$	4 5			
Funcții bijective – definiții $f: A \to B \text{ este } funcție \text{ bijectiv} \check{a} \text{ dac} \check{a}:$ 1. $feste injectiv \check{a} \text{ și surjectiv} \check{a}$ 2. $[\forall y \in B \exists ! x \in A \text{ a. } \hat{1}. f(x) = y] \Leftrightarrow [pentru \ \forall y \in B \text{ ecuația } f(x) = y \text{ are soluție } unic \check{a} \text{ în } A]$ Funcții inversabile $f: A \to B \text{ este } funcție \text{ inversabil} \check{a} \text{ dac} \check{a}:$ $feste bijectiv \check{a}$ Inversa unei funcții $f: A \to B \text{ , funcție bijectiv} \check{a}, \text{ are } \text{ inversa}:$ $f^{-1}: B \to A \text{ cu proprietatea } f(x) = y \Leftrightarrow x = f^{-1}(y), x \in A, y \in B$ $f(f^{-1}(x)) = x, x \in B \text{ și } f^{-1}(f(x)) = x, x \in A$ Funcții monotone $f: D \to \mathbb{R} \text{ este } \text{monoton } \text{ crescătoare } \text{ dac} \check{a} \ \forall x_1, x_2 \in D, \ x_1 < x_2 \Leftrightarrow f(x_1) \leq f(x_2)$ $f: D \to \mathbb{R} \text{ este } \text{monoton } \text{ descrescătoare } \text{ dac} \check{a} \ \forall x_1, x_2 \in D, \ x_1 < x_2 \Leftrightarrow f(x_1) \geq f(x_2)$				
$f: A \rightarrow B \text{ este } funcție \textit{bijectiv} ă dacă:$ $f \text{ este } injectiv ă \text{ și surjectiv} ă$ $[\forall y \in B \exists ! x \in A \text{ a. } \hat{1}. f(x) = y] \Leftrightarrow [pentru \forall y \in B \text{ ecuația } f(x) = y \text{ are soluție unică } \hat{1}n A]$ $Funcții \text{ inversabile}$ $f: A \rightarrow B \text{ este } funcție \text{ inversabil} ă dacă:$ $f \text{ este } bijectiv ă$ $Inversa \text{ unei funcții}$ $f: A \rightarrow B \text{ , funcție } bijectiv ă, \text{ are } \text{ inversa}:$ $f^{-1}: B \rightarrow A \text{ cu proprietatea } f(x) = y \Leftrightarrow x = f^{-1}(y), x \in A, y \in B$ $f(f^{-1}(x)) = x, x \in B \text{ și } f^{-1}(f(x)) = x, x \in A$ $Funcții \text{ monotone}$ $f: D \rightarrow \mathbb{R} \text{ este monoton crescătoare } dacă \forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \leq f(x_2)$ $f: D \rightarrow \mathbb{R} \text{ este monoton descrescătoare } dacă \forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \geq f(x_2)$	<i>Z.</i>	,		
2. $[\forall y \in B \exists ! x \in A \text{ a. î. } f(x) = y] \Leftrightarrow [pentru \forall y \in B \text{ ecuația } f(x) = y \text{ are soluție unică în } A]$ Funcții inversabile $f: A \to B \text{ este funcție inversabilă dacă:}$ $f \text{ este bijectivă}$ Inversa unei funcții $f: A \to B$, funcție bijectivă, are inversa: $f^{-1}: B \to A \text{ cu proprietatea } f(x) = y \Leftrightarrow x = f^{-1}(y), x \in A, y \in B$ $f(f^{-1}(x)) = x, x \in B \text{ și } f^{-1}(f(x)) = x, x \in A$ Funcții monotone $f: D \to \mathbb{R} \text{ este monoton crescătoare dacă } \forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \leq f(x_2)$ $f: D \to \mathbb{R} \text{ este monoton descrescătoare dacă } \forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \geq f(x_2)$		· · · · · · · · · · · · · · · · · · ·		
Funcții inversabile $f: A \to B$ este funcție inversabilă dacă: f este bijectivă Inversa unei funcții $f: A \to B$, funcție bijectivă, are inversa: $f^{-1}: B \to A$ cu proprietatea $f(x) = y \Leftrightarrow x = f^{-1}(y), x \in A, y \in B$ $f(f^{-1}(x)) = x, x \in B$ și $f^{-1}(f(x)) = x, x \in A$ Funcții monotone $f: D \to \mathbb{R}$ este monoton crescătoare dacă $\forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \geq f(x_2)$ $f: D \to \mathbb{R}$ este monoton descrescătoare dacă $\forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \geq f(x_2)$	1.	f este injectivă și surjectivă		
$f: A \rightarrow B \ este \ funcție \ inversabil ă \ dacă:$ $f \ este \ bijectivă$ $Inversa \ unei \ funcții$ $f: A \rightarrow B \ , funcție \ bijectivă, are \ inversa:$ $f^{-1}: B \rightarrow A \ cu \ proprietatea \ f(x) = y \Leftrightarrow x = f^{-1}(y), x \in A, y \in B$ $f(f^{-1}(x)) = x, x \in B \ si \ f^{-1}(f(x)) = x, x \in A$ $Funcții \ monotone$ $f: D \rightarrow \mathbb{R} \ este \ monoton \ crescătoare \ dacă \ \forall \ x_1, x_2 \in D, \ x_1 < x_2 \Leftrightarrow f(x_1) \leq f(x_2)$ $f: D \rightarrow \mathbb{R} \ este \ monoton \ descrescătoare \ dacă \ \forall \ x_1, x_2 \in D, \ x_1 < x_2 \Leftrightarrow f(x_1) \geq f(x_2)$	2.	$[\forall y \in B \exists ! x \in A \text{ a. î. } f(x) = y] \iff [pentru \forall y \in B \text{ ecuația } f(x) = y \text{ are soluție unică în } A]$		
Inversa unei funcții $f: A \to B \text{ , funcție bijectivă, are inversa:}$ $f^{-1}: B \to A \text{ cu proprietatea } f(x) = y \Leftrightarrow x = f^{-1}(y), x \in A, y \in B$ $f(f^{-1}(x)) = x, x \in B \text{ și } f^{-1}(f(x)) = x, x \in A$ Funcții monotone $f: D \to \mathbb{R} \text{ este monoton crescătoare dacă } \forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \leq f(x_2)$ $f: D \to \mathbb{R} \text{ este monoton descrescătoare dacă } \forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \geq f(x_2)$,		
Inversa unei funcții $f: A \to B$, funcție bijectivă, are inversa: $f^{-1}: B \to A \ cu \ proprietatea \ f(x) = y \Leftrightarrow x = f^{-1}(y), x \in A, y \in B$ $f(f^{-1}(x)) = x, x \in B \ \text{și} \ f^{-1}(f(x)) = x, x \in A$ Funcții monotone $f: D \to \mathbb{R} \ este \ monoton \ crescătoare \ dacă \ \forall \ x_1, x_2 \in D, \ x_1 < x_2 \Leftrightarrow f(x_1) \leq f(x_2)$ $f: D \to \mathbb{R} \ este \ monoton \ descrescătoare \ dacă \ \forall \ x_1, x_2 \in D, \ x_1 < x_2 \Leftrightarrow f(x_1) \geq f(x_2)$				
$f: A \to B$, funcție bijectivă, are inversa : $f^{-1}: B \to A \ cu \ proprietatea \ f(x) = y \Leftrightarrow x = f^{-1}(y), x \in A, y \in B$ $f(f^{-1}(x)) = x, x \in B \ \text{și} \ f^{-1}(f(x)) = x, x \in A$ Funcții monotone $f: D \to \mathbb{R} \ este \ monoton \ crescătoare \ dacă \ \forall \ x_1, x_2 \in D, \ x_1 < x_2 \Leftrightarrow f(x_1) \leq f(x_2)$ $f: D \to \mathbb{R} \ este \ monoton \ descrescătoare \ dacă \ \forall \ x_1, x_2 \in D, \ x_1 < x_2 \Leftrightarrow f(x_1) \geq f(x_2)$		f este bijectivă		
f^{-1} : $B \to A$ cu proprietatea $f(x) = y \Leftrightarrow x = f^{-1}(y), x \in A, y \in B$ $f(f^{-1}(x)) = x, x \in B \text{ si } f^{-1}(f(x)) = x, x \in A$ Funcții monotone $f: D \to \mathbb{R} \text{ este monoton crescătoare } dacă \ \forall \ x_1, x_2 \in D, \ x_1 < x_2 \Leftrightarrow f(x_1) \leq f(x_2)$ $f: D \to \mathbb{R} \text{ este monoton descrescătoare } dacă \ \forall \ x_1, x_2 \in D, \ x_1 < x_2 \Leftrightarrow f(x_1) \geq f(x_2)$,		
Funcții monotone $f: D \to \mathbb{R} \ este \ \textit{monoton crescătoare dacă} \ \forall \ x_1, x_2 \in D, \ x_1 < x_2 \Leftrightarrow f(x_1) \leq f(x_2)$ $f: D \to \mathbb{R} \ este \ \textit{monoton descrescătoare dacă} \ \forall \ x_1, x_2 \in D, \ x_1 < x_2 \Leftrightarrow f(x_1) \geq f(x_2)$				
$f: D \to \mathbb{R}$ este monoton crescătoare dacă $\forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \leq f(x_2)$ $f: D \to \mathbb{R}$ este monoton descrescătoare dacă $\forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \geq f(x_2)$	$f(f^{-1}(x)) = x, x \in B \text{ si } f^{-1}(f(x)) = x, x \in A$			
$f: D \to \mathbb{R}$ este monoton descrescătoare dacă $\forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \ge f(x_2)$		Funcții monotone		
		$f: D \to \mathbb{R}$ este monoton crescătoare dacă $\forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \leq f(x_2)$		
		$f: D \to \mathbb{R}$ este monoton descrescătoare dacă $\forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) \ge f(x_2)$		
$f: D \to \mathbb{R}$ este strict crescătoare dacă $\forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) < f(x_2)$				
$f: D \to \mathbb{R}$ este strict descrescătoare dacă $\forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) > f(x_2)$		$f: D \to \mathbb{R}$ este strict descrescătoare dacă $\forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) > f(x_2)$		
$f: D \to \mathbb{R}$ este strict descrescătoare dacă $\forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) > f(x_2)$		$f: D \to \mathbb{R}$ este strict descrescătoare dacă $\forall x_1, x_2 \in D, x_1 < x_2 \Leftrightarrow f(x_1) > f(x_2)$		

FUNCȚIA DE GRADUL I

	Forma generală a funcției		
	$f: \mathbb{R} \to \mathbb{R}, f(x) = ax + b, a, b \in \mathbb{R}, a \neq 0$		
	Monotonia funcției		
1.	Dacă $a < 0$ atunci f este strict descrescătoare		
2.	2. Dacă $a > 0$ atunci f este strict crescătoare		
Semnul funcției			
	Se rezolvă ecuația $f(x) = 0 \implies x = -\frac{b}{a}$		
	$\begin{array}{c cccc} x & -\infty & -\frac{b}{a} & +\infty \\ \hline f(x) & semn \ contrar \ a & 0 & semn \ a \end{array}$		

FUNCȚIA DE GRADUL al II - lea

Forma generală a funcției

$$f: \mathbb{R} \to \mathbb{R}, f(x) = ax^2 + bx + c, a, b, c \in \mathbb{R}, a \neq 0$$

Semnul funcției de gradul al doilea			
Dacă $\Delta > 0 \Rightarrow$ ecuația are două soluții reale distincte $(\exists x_1, x_2 \in \mathbb{R}, pp \ x_1)$			
Cazul	$x \mid -\infty \qquad x_1 \qquad x_2 \qquad +\infty$		
I			
	Dacă $\Delta = 0 \Rightarrow$ ecuația are două soluții reale egale $(\exists x_1, x_2 \in \mathbb{R}, x_1 = x_2)$		
Cazul	, , , , , , , , , , , , , , , , , , , ,		
II	$\begin{array}{c cccc} x & -\infty & x_1 & +\infty \\ \hline \end{array}$		
	f(x) semn a 0 semn a		
	Dacă $\Delta < 0 \Rightarrow ecuația nu are soluții reale (\nexists x_1, x_2 \in \mathbb{R})$		
Cazul III	<u>x</u> -∞ +∞		
	f(x) semn a		

Relațiile lui Viete
$$ax^{2} + bx + c = 0, , a, b, c \in \mathbb{R}, a \neq 0, x_{1}, x_{2} rădăcinile ecuației$$

$$S = x_{1} + x_{2} = -\frac{b}{a} (suma rădăcinilor) \qquad P = x_{1} \cdot x_{2} = \frac{c}{a} (produsul rădăcinilor)$$

$$Suma pătratelor rădăcinilor x_{1}^{2} + x_{2}^{2} = S^{2} - 2P$$

Formarea ecuației de gradul al doilea cu rădăcinile x_1, x_2

Se calculează $S=x_1+x_2$ și $P=x_1\cdot x_2$. Ecuația cu rădăcinile x_1,x_2 este: $x^2-Sx+P=0$

Graficul funcției de gradul al doilea			
Se numește	Se numește parabolă . Parabola are un punct de extrem, numit vârf și notat cu V .		
Coordonatele vârfului : $V\left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right)$			
	funcția admite maxim (V este punct de maxim)		
Dacă $a < 0 \Rightarrow$	valoarea maximă a funcției sau maximul funcției este $f_{max} = -$	$-\frac{\Delta}{4a}$	
	funcția admite minim (V este punct de minim)		
Dacă $a > 0 \Rightarrow$	valoarea minimă a funcției sau minimul funcției este $f_{min} = -$	$\frac{\Delta}{4a}$	
<i>Ecuația axei de simetrie</i> a parabolei este: $x = -\frac{b}{2a}$			
Poziția parabolei (graficului funcției de grad II) față de axa Ox			
Parabola intersectează axa $0x$ în două puncte distincte ($0x$ este secantă parabolei) $\iff \Delta > 0$			
Parabola este tangentă axei $0x$ $\Leftrightarrow \Delta = 0$			
Parabola nu intersectează axa Ox (parabola este situată deasupra axei Ox ($a > 0$) sau este situată sub axa Ox ($a > 0$)) $\Leftrightarrow \Delta < 0$			

Monotonia și imaginea funcției de gradul al doilea		
$f: \mathbb{R} \to \mathbb{R}, f(x) = ax^2 + bx + c, a, b, c \in \mathbb{R}, a \neq 0$		
Se calculează coordonat	ele vârfului $V\left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right)$	
Dacă $a < 0 \implies V$ este punct de maxir	n	
<i>x</i> −∞	$-\frac{b}{2a}$ $+\infty$	
	$-\frac{\Delta}{4a}$ \searrow	
$\frac{x - \infty - \frac{b}{2a} + \infty}{f(x) - \frac{\Delta}{4a} - \frac{\Delta}{4a}}$ $Imf = \left(-\infty, -\frac{\Delta}{4a}\right]$ $f \text{ este strict crescătoare pe}\left(-\infty, -\frac{b}{2a}\right]$ $f \text{ este strict descrescătoare pe}\left[-\frac{b}{2a}, +\infty\right)$		
f este strict crescătoare pe $\left(-\infty, -\frac{b}{2a}\right]$ f este strict descrescătoare pe $\left[-\frac{b}{2a}, +\infty\right)$		
Dacă $a > 0 \implies V$ este punct de minin	n	
$x -\infty$	$-\frac{b}{2a}$ $+\infty$	
f(x)	$-\frac{\Delta}{4a}$	
$Imf = \left[-\frac{\Delta}{4a}, +\infty \right)$		
$\frac{x}{f(x)} = \frac{-\infty}{-\frac{b}{2a}} + \infty$ $\frac{-\frac{b}{2a}}{-\frac{\Delta}{4a}} = \frac{-\frac{\Delta}{4a}}{-\frac{\Delta}{4a}} = -\frac{\Delta$		

Subiectul I.3 ECUAȚII

Ecuații iraționale $\sqrt{f(x)} = g(x)$ $\sqrt[3]{f(x)} = g(x)$

1. Se pun condiții de existență

$$C.E. \quad \begin{cases} f(x) \ge 0 \\ g(x) \ge 0 \end{cases}$$

Nu există C.E.

Eliminarea radicalului (prin ridicarea la putere) și rezolvarea ecuației obținute

$$\left(\sqrt{f(x)}\right)^2 = \left(g(x)\right)^2 \Rightarrow f(x) = \left(g(x)\right)^2$$

$$\left(\sqrt[3]{f(x)}\right)^3 = \left(g(x)\right)^3 \Rightarrow f(x) = \left(g(x)\right)^3$$

Verificarea soluției

Ecuații exponențiale			
1.	$a^{f(x)} = a^{g(x)} \Rightarrow f(x) = g(x)$	2.	$a^{f(x)} = b \Rightarrow f(x) = \log_a b$
3.	3. Cu ajutorul notațiilor și a proprietăților puterilor		

Ecuații logaritmice		
1.	$\log_a f(x) = \log_a g(x) \Rightarrow f(x) = g(x)$ $C.E.\begin{cases} f(x) > 0 \\ g(x) > 0 \\ a > 0 \\ a \neq 1 \end{cases}$	
2.	$\log_a f(x) = N \Rightarrow f(x) = a^N$ $C.E.\begin{cases} f(x) > 0 \\ a > 0 \\ a \neq 1 \end{cases}$	
3.	Cu ajutorul notațiilor	

Ecuații trigonometrice

Ecuații trigonometrice fundamentale

$$\sin x = a, a \in [-1,1] \implies x = (-1)^k \cdot \arcsin a + k\pi, k \in \mathbb{Z}$$

$$\cos x = a, a \in [-1,1] \implies x = \pm \arccos a + 2k\pi, k \in \mathbb{Z}$$

$$\operatorname{tg} x = a, a \in \mathbb{R} \implies x = \operatorname{arctg} a + k\pi, k \in \mathbb{Z}$$

$$\operatorname{ctg} x = a, a \in \mathbb{R} \implies x = \operatorname{arcctg} a + k\pi, k \in \mathbb{Z}$$

Ecuații trigonometrice de forma $\sin f(x) = \sin g(x)$, $\cos f(x) = \cos g(x)$ ș $i \operatorname{tg} f(x) = \operatorname{tg} g(x)$

$$\sin f(x) = \sin g(x) \Rightarrow f(x) = (-1)^k \cdot g(x) + k\pi, k \in \mathbb{Z}$$

$$\cos f(x) = \cos g(x) \Rightarrow f(x) = \pm g(x) + 2k\pi, k \in \mathbb{Z}$$

$$\operatorname{tg} f(x) = \operatorname{tg} g(x) \Longrightarrow f(x) = g(x) + k\pi, k \in \mathbb{Z}, \cos f(x) \neq 0, \cos g(x) \neq 0$$

Ecuații trigonometrice care se rezolvă cu ajutorul unor ecuații din algebră (notații)

Cele mai utilizate formule trigonometrice sunt:

$$\sin^2 x + \cos^2 x = 1$$
, $\forall x \in \mathbb{R}$ şi $\cos 2x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$, $\forall x \in \mathbb{R}$

Ecuații de forma $a \cos x + b \sin x + c = 0$, $a, b \neq 0$

(*O metodă*) Prin utilizarea substituției $tg_{\frac{x}{2}} = t$ și a formulelor trigonometrice

$$\cos x = \frac{1 - t^2}{1 + t^2} \, \text{si} \sin x = \frac{2t}{1 + t^2}$$

Observație!

Funcția trigonometrică tg nu este definită pe întreaga mulțime a numerelor reale (\mathbb{R}) ducând astfel la pierderea unor eventuale soluții de forma $(2k+1)\pi, k \in \mathbb{Z}$.

Prin urmare este necesară verificarea valorilor de forma $x = (2k + 1)\pi, k \in \mathbb{Z}$

Subiectul I.4

METODE DE NUMĂRARE

 $n! = 1 \cdot 2 \cdot \dots \cdot n, n \in \mathbb{N}$

n! se citește "n factorial"

0! = 1

Permutări = numără câte mulțimi ordonate se pot forma cu n elemente distincte

 $\overline{P_n} = n!$

Aranjamente = numără câte submulțimi ordonate de k elemente se pot forma cu n elemente distincte

$$A_n^k = \frac{n!}{(n-k)!}, 0 \le k \le n, k, n \in \mathbb{N}$$

Combinări = numără câte submulțimi de k elemente se pot forma cu n elemente distincte

$$C_n^k = \frac{n!}{k! \cdot (n-k)!}, 0 \le k \le n, k, n \in \mathbb{N}$$

Binomul lui Newton

$$(a+b)^{n} = C_{n}^{0} \cdot a^{n} + C_{n}^{1} \cdot a^{n-1} \cdot b + C_{n}^{2} \cdot a^{n-2} \cdot b^{2} + \dots + C_{n}^{n-1} \cdot a \cdot b^{n-1} + C_{n}^{n} \cdot b^{n}$$

$$C_{n}^{0}, C_{n}^{1}, C_{n}^{2}, \dots, C_{n}^{n} = coeficienți binomiali$$

Formula termenului general

$$T_{k+1} = C_n^k \cdot a^{n-k} \cdot b^k, 0 \le k \le n, k, n \in \mathbb{N}$$

Suma coeficienților binomiali

$$C_n^0 + C_n^1 + C_n^2 + \dots + C_n^n = 2^n$$

Suma coeficienților binomiali de rang par	Suma coeficienților binomiali de rang impar
$C_n^0 + C_n^2 + C_n^4 + \dots = 2^{n-1}$	$C_n^1 + C_n^3 + C_n^5 + \dots = 2^{n-1}$

Formule de numărare

Numărul submulțimilor unei mulțimi cu n elemente este 2^n

Numărul funcțiilor $f: A \rightarrow B$ este card $B^{card A}$

Numărul funcțiilor bijective $f: A \rightarrow A$ este (card A)!

Ne amintim! Card A = numărul de elemente al mulțimii A

PROBABILITĂȚI

$$P = \frac{nr. cazurilor favorabile}{nr. cazurilor posibile}$$

MATEMATICI FINANCIARE

Procente		
$p\% din x = \frac{p}{100} \cdot x$		
Scumpirea prețului unui produs Reducerea prețului unui produs		
Datele problemei	$x =$ prețul inițial al produsului $p =$ procentul cu care se scumpește $p_{final} =$ prețul după scumpire	x = prețul inițial al produsului p = procentul cu care se reduce $p_{final} =$ prețul după reducere
Formulă	$x + \frac{p}{100} \cdot x = p_{final}$	$x - \frac{p}{100} \cdot x = p_{final}$

T.V.A. = taxa pe valoarea adăugată		
Datele	x = prețul inițial (de producție) al produsului	
problemei	p = procentul T.V.A.	
	p_v = prețul de vânzare al produsului	
Formule	$x + \frac{p}{100} \cdot x = p_v$	
	$T. V. A. = p_v - x$	

Dobânda simplă		
	D = dobânda obținută la finalul perioadei de timp (în lei)	
Datele	S = suma depusă inițial la bancă (in lei)	
	r = rata dobânzii (%)	
problemei	n = perioada de timp (în ani)	
	$S_{finală}$ = suma obținută după perioada de timp (în lei)	
Formule	$D = S \cdot \frac{r}{100} \cdot n$	
	$S_{final\check{a}} = S + D$	

Dobânda compusă		
	D = dobânda obținută la finalul perioadei de timp (în lei)	
Datele	S = suma depusă inițial la bancă (in lei)	
	r = rata dobânzii (%)	
problemei	n = perioada de timp (în ani)	
	$S_{finală}$ = suma obținută după perioada de timp (în lei)	
Formule	$D = S \cdot \left[\left(1 + \frac{r}{100} \right)^n - 1 \right]$	
Tommuc	$S_{final\check{a}} = S + D = S \cdot \left(1 + \frac{r}{100}\right)^n$	

Subiectul I.5 GEOMETRIE ANALITICĂ

I. Distanța dintre două puncte (Lungimea unui segment)		
Datele problemei	Formulă	
$A(x_A, y_A)$ $B(x_B, y_B)$	$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$	
II. Coordonatele mijlocului unui segment		
Datele problemei	Formulă	
$A(x_A, y_A)$ $B(x_B, y_B)$	$M(x_M, y_M)$ mijlocul segmentului AB, unde $x_M = \frac{x_A + x_B}{2}$ și $y_M = \frac{y_A + y_B}{2}$	

III. Panta unei drepte (m)		
Datele problemei	Formulă	
$\alpha = \blacktriangleleft$ format de dreapta d cu axa $0x$	$m_d = \operatorname{tg} \alpha \ (coeficient \ unghiular)$	
Ecuația generală a dreptei:	a a	
$d: ax + by + c = 0, b \neq 0$	$m_d = -\frac{1}{b}$	
Ecuația explicită a dreptei	$m_d = m$ (coeficientul lui x)	
d: y = mx + n	$m_d = m$ (coe) when the x	
$A(x_A, y_A)$	$m_{AB} = \frac{y_B - y_A}{x_B - x_A}, x_B \neq x_A$	
$B(x_B, y_B)$	$x_B - x_A$, $x_B + x_A$	

IV. Determinarea ecuației unei drepte		
Datele problemei	Formulă	
$A(x_A, y_A)$ $B(x_B, y_B)$	$AB: \begin{vmatrix} x & y & 1 \\ x_A & y_A & 1 \\ x_B & y_B & 1 \end{vmatrix} = 0$ $AB: \frac{x - x_A}{x_B - x_A} = \frac{y - y_A}{y_B - y_A}, x_B \neq x_A, y_B \neq y_A$ $AB: x = x_A, dacă x_B = x_A$ $AB: y = y_A, dacă y_B = y_A$	
$A(x_A, y_A)$ și panta dreptei d m_d	$d: y - y_A = m_d(x - x_A)$	

<u>Să ne amintim!</u>	Mediatoarea unui segment este perpendiculara dusă prin mijlocul segmentului
	Înălțimea este perpendiculara dusă dintr-un vârf al triunghiului pe latura opusă
	Mediana este segmentul care unește un vârf al
	triunghiului cu mijlocul laturii opuse

V. Pozițiile relative a două drepte		
$d_1 \parallel d_2 \Leftrightarrow m_{d_1} = m_{d_2}$	$d_1 \perp d_2 \Leftrightarrow m_{d_1} \cdot m_{d_2} = -1$	
SA	A U	
$d_1: a_1 x + b_1 y + c_1 = 0$	$d_2: a_2 x + b_2 y + c_2 = 0$	
d_1 , d_2 drepte concurente $\Leftrightarrow \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$		
Observație! Coordonatele punctului de intersecție a două drepte reprezintă soluția sistemul		
format din ecuațiile celor două drepte.		
$d_1 \parallel d_2 \Longleftrightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2}$	$d_1 = d_2 (d_1, d_2 coincid) \Leftrightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	

VI. Aria unui triunghi		
Datele problemei	Formulă	
$A(x_A, y_A)$ $B(x_B, y_B)$ $C(x_C, y_C)$	$A_{\Delta ABC} = \frac{1}{2} \cdot \Delta , unde$ $\Delta = \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix}$	
VII. Coliniaritatea	a trei puncte distincte în plan	
Datele problemei	Formulă	
$A(x_A, y_A)$ $B(x_B, y_B)$ $C(x_C, y_C)$	$A,B,C\ coliniare \iff \Delta=0,unde$ $\Delta=\begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix}$	

VIII. Distanța de la un punct la o dreaptă		
Datele problemei	Formulă	
Coordonatele punctului $A(x_A, y_A)$ Ecuația generală a dreptei $d: ax + by + c = 0$	$d(A,d) = \frac{ ax_A + by_A + c }{\sqrt{a^2 + b^2}}$	
Aplicație!	Determinarea <i>lungimii unei înălțimi</i>	
<u>Apacație:</u>	$A(x_A, y_A) \in d \Leftrightarrow ax_A + by_A + c = 0$	
IX. Coordonatele cent	trului de greutate al unui triunghi	
Datele problemei	Formulă	
$A(x_A, y_A)$	$G(x_G, y_G)$ centrul de greutate al $\triangle ABC$, unde	
$B(x_B, y_B)$	$x_G = \frac{x_A + x_B + x_C}{3}$ și $y_G = \frac{y_A + y_B + y_C}{3}$	
$C(x_C, y_C)$	$x_G - {3}$ $x_G - {3}$	
<u>Să ne amintim!</u>	Centrul de greutate al unui Δ (<i>G</i>) reprezintă punctul de intersecție al medianelor unui Δ .	

VECTORI

Definiții și notații

Vector = mărime fizică, caracterizată prin directie, sens, lungime

 \overrightarrow{AB}

 $A = originea \ vectorului;$

 $B = extremitatea\ vectorului;$

dreapta AB = dreapta suport a vectorului

 $|\overline{AB}| = AB$ (lungimea vectorului \overline{AB})

Doi vectori au aceeași direcție dacă dreptele lor suport sunt paralele sau coincid.

Doi vectori *au același sens* dacă extremitățile lor sunt de aceeași parte a dreptei determinată de originile vectorilor.

Doi vectori sunt egali dacă au aceeași direcție, lungime și același sens.

Doi *vectori* sunt *opuși* dacă au aceeași direcție, lungime și sensuri opuse. Notăm: $\vec{v} = -\vec{u}$.

$$\overrightarrow{AB} = -\overrightarrow{BA}$$

Vectorul nul este vectorul cu lungime 0. Notăm: $\vec{0} = vectorul nul$.

$$|\overrightarrow{AA}| = |\overrightarrow{\mathbf{0}}| = \mathbf{0}$$

Doi vectori sunt coliniari dacă au aceeasi directie.

$$\vec{u}, \vec{v} \ coliniari \iff \exists \alpha \in \mathbb{R}^* \ a. \ \hat{i}. \ \vec{u} = \alpha \cdot \vec{v}, \vec{v} \neq \vec{0}$$

Adunarea vectorilor necoliniari

Regula triunghiului	R_0
$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$	$\overrightarrow{AB} + \overrightarrow{AD} =$

Legula paralelogramului $|\overrightarrow{AB} + \overrightarrow{AD}| = \overrightarrow{AC}$, unde ABCD paralelogram

Vectorul de poziției al mijlocului unui segment

M mijlocul lui
$$AB \implies \overrightarrow{OM} = \frac{\overrightarrow{OA} + \overrightarrow{OB}}{2}$$
, pentru orice punct O din plan

Vectori în reper cartezian

$$\vec{v} = x\vec{\imath} + y\vec{\jmath} \iff \vec{v}(x,y)$$

$$|\vec{v}| = \sqrt{x^2 + y^2}$$

$$\overrightarrow{AB} = (x_B - x_A)\overrightarrow{i} + (y_B - y_A)\overline{j}$$

$$\overrightarrow{v_1} = x_1 \vec{\imath} + y_1 \vec{\jmath}$$

$$\overrightarrow{v_2} = x_2 \vec{\imath} + y_2 \vec{\jmath}$$

$$\overrightarrow{AB} = (x_B - x_A)\overrightarrow{i} + (y_B - y_A)\overrightarrow{j}$$

$$\overrightarrow{v_1} = x_1\overrightarrow{i} + y_1\overrightarrow{j} \qquad \overrightarrow{v_2} = x_2\overrightarrow{i} + y_2\overrightarrow{j}$$

$$\overrightarrow{v_1}, \overrightarrow{v_2} coliniari \iff \frac{x_1}{x_2} = \frac{y_1}{y_2}$$

Produsul scalar

$$\overrightarrow{v_1} \cdot \overrightarrow{v_2} = x_1 \cdot x_2 + y_1 \cdot y_2$$

$$\overrightarrow{v_1} \cdot \overrightarrow{v_2} = x_1 \cdot x_2 + y_1 \cdot y_2 \qquad \qquad \overrightarrow{v_1} \cdot \overrightarrow{v_2} = |\overrightarrow{v_1}| \cdot |\overrightarrow{v_2}| \cdot \cos(\sphericalangle(\overrightarrow{v_1}, \overrightarrow{v_2}))$$

$$\overrightarrow{v_1} \perp \overrightarrow{v_2} \Longleftrightarrow \overrightarrow{v_1} \cdot \overrightarrow{v_2} = 0$$

Subiectul I.6

ELEMENTE DE TRIGONOMETRIE

		0	$\frac{\pi}{2} = 90^{\circ}$	$\pi = 180^{\circ}$	$\frac{3\pi}{2} = 270^{\circ}$	$2\pi = 360^{\circ}$
-	sin	0	1	0	-1	0
	cos	1	0	-1	0	1

	$\frac{\pi}{6} = 30^{\circ}$	$\frac{\pi}{4} = 45^{\circ}$	$\frac{\pi}{3} = 60^{\circ}$
sin	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tg	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$
ctg	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$

Semnul funcțiilor trigonometrice			
$x \in \left(0, \frac{\pi}{2}\right)$ $[x \lessdot ascuţit]$ $Cadran I$	$ \sin x > 0 \\ \cos x > 0 $	$x \in \left(\pi, \frac{3\pi}{2}\right)$ $Cadran III$	$ \sin x < 0 \\ \cos x < 0 $
$x \in \left(\frac{\pi}{2}, \pi\right)$ $[x \lessdot obtuz]$ $Cadran II$	$ \sin x > 0 \\ \cos x < 0 $	$x \in \left(\frac{3\pi}{2}, 2\pi\right)$ $Cadran\ IV$	$ sin x < 0 \\ cos x > 0 $

Proprietăți ale funcțiilor trigonometrice		
Mărginirea		
$-1 \le \sin x \le 1, \forall x \in \mathbb{R}$	$-1 \le \cos x \le 1, \forall x \in \mathbb{R}$	
Pari	tatea	
$\sin(-x) = -\sin x \qquad tg(-x) = -tg x$		
$\cos(-x) = \cos x$	$ctg\left(-x\right) = -ctg\ x$	
Observație! cos este funcției pară, sin, tg, ctg funcții impare		
Periodicitatea		
$\sin(x+2k\pi) = \sin x$, $\forall x \in \mathbb{R}$, $k \in \mathbb{Z}$ $\operatorname{tg}(x+k\pi) = \operatorname{tg} x$, $\forall x \in \mathbb{R} \setminus \left(\frac{\pi}{2} + \mathbb{Z}\pi\right)$, $k \in \mathbb{R}$		
$\cos(x+2k\pi) = \cos x, \forall x \in \mathbb{R}, k \in \mathbb{Z} \qquad \cot(x+k\pi) = \cot x, \forall x \in \mathbb{R} \setminus (\mathbb{Z}\pi), k \in \mathbb{R}$		

Formule trigonometrice		
Formula fundamentală a trigonometriei		
$\sin^2 x + \cos^2 x$	$x = 1, \forall x \in \mathbb{R}$	
$\sin(90^{\circ} - x) = \cos x$	$\sin(180^{\circ} - x) = \sin x$	
$\cos(90^{\circ} - x) = \sin x$	$\cos(180^\circ - x) = -\cos x$	
$\sin(a+b) = \sin a \cos b + \cos a \sin b$	$\sin(a-b) = \sin a \cos b - \cos a \sin b$	
$\cos(a+b) = \cos a \cos b - \sin a \sin b$	$\cos(a-b) = \cos a \cos b + \sin a \sin b$	
$\sin 2x = 2\sin x \cos x$	$\cos 2x = \cos^2 x - \sin^2 x$	
$\cos 2x = 2\cos^2 x - 1$	$\cos 2x = 1 - 2\sin^2 x$	
$tg \ x = \frac{\sin x}{\cos x}$	$ctg \ x = \frac{\cos x}{\sin x}$	

$tg(a+b) = \frac{tg \ a + tg \ b}{1 - tga \ tgb}$	$tg(a-b) = \frac{tg a - tg b}{1 + tga tgb}$
$tg \ 2x = \frac{2tgx}{1 - tg^2x}$	$tg \ \frac{x}{2} = \frac{\sin x}{1 + \cos x}$
$\sin x = \frac{2tg\frac{x}{2}}{1 + tg^2\frac{x}{2}}$	$\cos x = \frac{1 - tg^2 \frac{x}{2}}{1 + tg^2 \frac{x}{2}}$
Transformarea un	or sume în produs
$\sin a + \sin b = 2\sin\frac{a+b}{2} \cdot \cos\frac{a-b}{2}$	$\cos a + \cos b = 2\cos\frac{a+b}{2} \cdot \cos\frac{a-b}{2}$
$\sin a - \sin b = 2\sin\frac{a-b}{2} \cdot \cos\frac{a+b}{2}$	$\cos a - \cos b = -2\sin\frac{a+b}{2} \cdot \sin\frac{a-b}{2}$

Funcții trigonometrice inverse

$$\operatorname{arcsin} x : [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \qquad \operatorname{arctg} x : \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$$

$$\operatorname{arcsin}(\sin x) = x, \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \qquad \operatorname{arctg}(\operatorname{tg} x) = x, \forall x \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$$

$$\sin(\operatorname{arcsin} x) = x, \forall x \in [-1,1] \qquad \operatorname{tg}(\operatorname{arctg} x) = x, \forall x \in [-1,1]$$

$$\operatorname{arcsin}(-x) = -\operatorname{arcsin} x, \forall x \in [-1,1] \qquad \operatorname{arctg}(-x) = -\operatorname{arctg} x, \forall x \in \mathbb{R}$$

$$\operatorname{arccos} x : [-1,1] \to [0,\pi] \qquad \operatorname{arcctg} x : \mathbb{R} \to (0,\pi)$$

$$\operatorname{arccos}(\cos x) = x, \forall x \in [0,\pi] \qquad \operatorname{arcctg}(\operatorname{ctg} x) = x, \forall x \in (0,\pi)$$

$$\operatorname{cos}(\operatorname{arccos} x) = x, \forall x \in [-1,1] \qquad \operatorname{ctg}(\operatorname{arcctg} x) = x, \forall x \in [-1,1]$$

$$\operatorname{arcctg}(-x) = \pi - \operatorname{arcctg} x, \forall x \in \mathbb{R}$$

APLICAȚII ALE TRIGONOMETRIEI ÎN GEOMETRIE

Teorema cosinusului			
ΔABC oarecare			
$\cos A = \frac{AB^2 + AC^2 - BC^2}{2 \cdot AB \cdot AC}$			
$\cos B = \frac{AB^2}{2}$	$\frac{+BC^2 - AC^2}{2 \cdot AB \cdot BC}$		
$\cos C = \frac{AC^2}{2}$	$\frac{+BC^2 - AB^2}{2 \cdot AC \cdot BC}$		
Teorema s	inusurilor		
ΔΑΒС οι	arecare		
BC AC AB			
$\frac{BC}{\sin A} = \frac{AC}{\sin B} = \frac{AB}{\sin C} = 2R$			
$R=raza\ cercului$	$R=r$ aza cercului circumscris ΔABC		
Observație! Aplic teor	rema cosinusului dacă		
Ipoteză	Concluzie		
Toate laturile triunghiului	∢ sau cos ∢		
2 laturi și ∢ dintre ele	a 3 –a latură		
altfel aplic <i>teore</i>	ma sinusurilor.		
Aria unui triunghi oarecare			
$A_{\Delta} = \frac{l_1 \cdot l_2 \cdot \sin(\sphericalangle \alpha)}{2}, \sphericalangle \alpha = \sphericalangle format \ de \ l_1 $ şi l_2			
$A_{\Delta} = \frac{b \cdot h}{2}$	$A_{\Delta} = \sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}$ $p = \frac{a+b+c}{2}$, a,b,c laturile Δ		

Raza cercului circumscris Δ

Raza cercului înscris în Δ

Triunghiul dreptunghic			
catetă (c2)	Teorema lui Pitagora $ip^2=c_1^2+c_2^2$		
Aria triunghiului	Înălțimea corespunzătoare ipotenuzei		
$A_{\Delta} = \frac{c_1 \cdot c_2}{2}$	$h = \frac{c_1 \cdot c_2}{ip}$		
Mediana corespunzătoare ipotenuzei	Raza cercului circumscris 🛆		
$mediana = \frac{ip}{2}$	$R = \frac{ip}{2}$		
Funcții trig	Funcții trigonometrice		
$\sin \alpha = \frac{cateta \ opus \alpha}{ip}$	$\operatorname{tg}\alpha = \frac{\operatorname{cateta\ opus\"{a}} \sphericalangle \alpha}{\operatorname{cateta\ al\~{a}turat\~{a}}} \blacktriangleleft \alpha$		
$\cos \alpha = \frac{cateta \ alăturată \not < \alpha}{ip}$	$\operatorname{ctg} \alpha = \frac{\operatorname{cateta} \operatorname{al aturat a}}{\operatorname{cateta} \operatorname{opus a}} $		

Triunghiul echilateral		
are toate laturile egale; are toate ∢ de 60°		
$P = 3 \cdot l \qquad \qquad h =$		$h = \frac{l\sqrt{3}}{2}$

Subiectul II.1 ELEMENTE DE CALCUL MATRICEAL ȘI SISTEME DE ECUAȚII LINIARE

PERMUTĂRI

Permutare de grad n - definiție	$\sigma = \begin{pmatrix} 1 & 2 & \cdots & k & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(k) & \dots & \sigma(n) \end{pmatrix}$
Permutarea identică de gradul n	$e = \begin{pmatrix} 1 & 2 & \cdots k & \cdots & n \\ 1 & 2 & \cdots k & \cdots & n \end{pmatrix}$
Transpoziție	$\delta_{ij} = \begin{pmatrix} 1 & 2 & \cdots & i-1 & \mathbf{i} & i+1 \cdots & k & \cdots & j-1 & \mathbf{j} & j+1 \cdots & n \\ 1 & 2 & \cdots & i-1 & \mathbf{j} & i+1 \cdots & k & \cdots & j-1 & \mathbf{i} & i+1 \cdots & n \end{pmatrix}$
Inversa unei permutări	$\sigma^{-1} = \begin{pmatrix} \sigma(1) & \sigma(2) & \cdots & \sigma(k) & \cdots & \sigma(n) \\ 1 & 2 & \cdots & k & \cdots & n \end{pmatrix}$ apoi se ordonează prima linie
Compunerea permutărilor	$\sigma\delta = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(\delta(1)) & \sigma(\delta(2)) & \cdots & \sigma(\delta(n)) \end{pmatrix}$
Inversiune a unei permutări	Perechea (i,j) cu $i < j$ se numește inversiune a permutării σ dacă $\sigma(i) > \sigma(j)$ $m(\sigma) = \mathbf{numărul\ inversiunilor\ } \mathbf{permutării}\ \sigma$
Semnul (signatura) unei permutări – <i>definiție</i>	$\varepsilon(\sigma) = (-1)^{m(\sigma)}$
Semnul (signatura) unei permutări – proprietăți	$\varepsilon(\sigma\delta) = \varepsilon(\sigma)\varepsilon(\delta)$ și $\varepsilon(\sigma^n) = (\varepsilon(\sigma))^n$
Permutare pară	σ este permutare pară dacă $\varepsilon(\sigma)=1$
Permutare impară	σ este permutare impară dacă $\varepsilon(\sigma) = -1$

MATRICE. DETERMINANȚI

Matrice pătratică de ordin n	Matrice cu <i>n</i> linii și <i>n</i> coloane	
Matricea unitate de ordin n - <i>definiție</i>	$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	
Matricea unitate de ordin n – <i>proprietate</i>	$A \cdot I_n = I_n \cdot A = A, \forall A \in \mathcal{M}_n(\mathbb{C})$	
Matricea nulă de tipul (m, n)	$O_{m,n} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$	
Urma unei matrice pătratice	$m{tr}(m{A})$ = suma elementelor de pe diagonala principală	
Transpusa unei matrice – definiție	$A^t=$ se obține din matricea A prin transformarea liniilor în coloane și a coloanelor în linii	
Transpusa unei matrice – proprietate	$(AB)^t = B^t A^t$	
Relația lui Hamilton - Cayley	$X^2 - tr(X) \cdot X + \det(X) \cdot I_2 = O_2$	
Determinantul de ordin 2	$\det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$	
	Un determinant cu elementele unei linii/coloane nule are valoarea 0.	
	Un determinant cu două linii/coloane identice are valoarea 0.	
	$\det(A^t) = \det(A)$	
Proprietăți ale	$\det(A \cdot B) = \det A \cdot \det B$	
determinanților	$\det(A^n) = (\det A)^n$	
	Dacă la elementele unui linii/coloane se adună elementele altei linii/coloane înmulțite eventual cu același număr, atunci valoarea determinantului nu se modifică.	

	A este inversabilă \Leftrightarrow det $A \neq 0$
Matrice inversabile	$A \cdot A^{-1} = A^{-1} \cdot A = I_n$
	Inversa unei matrice
	Pas 1. Se calculează det $A \neq 0$
	Pas 2. Se determină matricea <i>transpusă A^t</i>
	Pas 3. Se determină matricea <i>adjunctă</i> $A^* = \left(\delta_{ij}\right)_{i,j=\overline{1,n}}$
	$\delta_{ij} = (-1)^{i+j} \cdot ext{determinantul obținut din } A^t$
	prin eliminarea linie $m{i}$ și coloanei $m{j}$
	Pas 4. Se calculează <i>inversa</i> matricei $A^{-1} = \frac{1}{\det A} \cdot A^*$
	$A \cdot X = B \iff X = A^{-1} \cdot B, \det A \neq 0$
Ecuații matriceale	$X \cdot A = B \iff X = B \cdot A^{-1}, \det A \neq 0$
	$A \cdot X \cdot C = B \iff X = A^{-1} \cdot B \cdot C^{-1}, \det A \neq 0, \det C \neq 0$

SISTEME DE ECUAȚII LINIARE

Rangul unei matrice

 $rang\ A = r \Leftrightarrow \exists$ un minor de ordin r al lui A nenul $(\neq 0)$ și toți minorii de ordin r + 1 sunt nuli (0)

Stabilirea compatibilității unui sistem liniar și rezolvarea lui

A – matricea sistemului		
A – matrice pătratică		
Stabilirea compatibilității		
Se calculează det A		
	$\det A = 0$	
	1. Se determină $rang(A) \Rightarrow m_p$ (minorul	
$\det A \neq 0 \Longrightarrow$	principal)	
sistem compatibil determinat/	2. Se calculează minorii caracteristici $m{m}_c$	
sistem cu soluție unică/	Numărul m_c = numărul ecuațiilor secundare	
sistem de tip Cramer	3. Dacă $\exists m_c \neq 0 \Rightarrow sistem incompatibil$	
	Dacă toți $m_c=0$ \Longrightarrow $sistem\ compatibil$	
	nedeterminat (o infinitate de soluții)	
Rezolva	rea sistemului	
	Se stabilesc ecuațiile principale și secundare	
	Se stabilesc necunoscutele principale și secundare	
	Necunoscute secundare = α , β	
Δ_x Δ_y Δ_z	Un sistem cu o necunoscută secundară = sistem	
$x = \frac{\Delta_x}{\det A}$ $y = \frac{\Delta_y}{\det A}$ $z = \frac{\Delta_z}{\det A}$	compatibil simplu nedeterminat	
	Un sistem cu două necunoscute secundare = sistem	
	compatibil dublu nedeterminat	
	Se rezolvă sistemul format din ecuațiile principale	

A – nu este matrice pătratică

\bar{A} – matricea extinsă a sistemului

Stabilirea compatibilității		
1. Se determină $rang(A) \Rightarrow m_p$ (minorul principal)		
2. Se calculează minorii caracteristici $m{m}_c$		
Numărul m_c = numărul ecuațiilor secundare		
3. Dacă $\exists m_c \neq 0 \Rightarrow sistem incompatibil$		
Dacă toți $m_c=0 \Rightarrow sistem\ compatibil$		
Dacă $\not\equiv m_c \Longrightarrow rang \ A = rang \ \bar{A} \stackrel{K.C.}{\Longrightarrow} \mathbf{sistem \ compatibil}$		
Rezolvarea sistemului		
Se stabilesc ecuațiile principale și secundare		
Se stabilesc necunoscutele principale și secundare		
Necunoscute secundare = α , β		
Dacă ∃ necunoscute secundare ⇒ sistem compatibil nedeterminat		
Dacă ∄ necunoscute secundare ⇒ sistem compatibil determinat		
Un sistem cu o necunoscută secundară = sistem compatibil simplu nedeterminat		
Un sistem cu două necunoscute secundare = sistem compatibil dublu nedeterminat		
Se rezolvă sistemul format din ecuațiile principale		

Subiectul II.2 LEGI DE COMPOZIȚIE PE O MULȚIME

Proprietățile legilor de compoziție $(M \neq \emptyset)$		
Parte stabilă	$x \circ y \in M, \forall x, y \in M$	
Asociativitate	$(x \circ y) \circ z = x \circ (y \circ z), \forall x, y, z \in M$	
Comutativitate	$x \circ y = y \circ x, \forall x, y \in M$	
Element neutru	$\exists e \in M \ a. \ \hat{i}. \ x \circ e = e \circ x = x, \forall x \in M$	
Elemente simetrizabile	$x \in M$ element simetrizabil dacă	
	$\exists x' \in Ma. \hat{1}. \mathbf{x} \circ \mathbf{x'} = \mathbf{x'} \circ \mathbf{x} = \mathbf{e}$	
	x' = simetricul elementului x	
	$\mathcal{U}(M)=$ mulțimea elementelor simetrizabile din M în raport cu legea " \circ "	

Structuri algebrice		
	(M,∘) monoid <i>comutativ (abelian)</i> dacă	
	1. <i>M</i> este parte stabilă în raport cu legea "∘"	
Monoid	2. "。" este asociativă	
	3. "。" admite element neutru	
	4. "°" este comutativă	
	(G,∘) grup comutativ (abelian) dacă	
	1. G este parte stabilă în raport cu legea " \circ "	
Grup	2. "。" este asociativă	
a. up	3. "。" admite element neutru	
	4. $\mathcal{U}(G) = G$	
	5. "°" este comutativă	
	(A,∘,∗) inel <i>comutativ</i> dacă	
	1. (A, \circ) este grup comutativ	
Inel	2. (<i>A</i> ,*) este monoid <i>comutativ</i>	
	3. Distributivitatea operației " * " față de " o "	
	$D_S: x * (y \circ z) = (x * y) \circ (x * z), \forall x, y, z \in M$	
	$D_d: (x \circ y) * z = (x * z) \circ (y * z), \forall x, y, z \in M$	
	(A,∘,∗) corp <i>comutativ</i> dacă	
Corp	1. (A, \circ) este grup comutativ $(e_{\circ} = \text{element neutru})$	
	2. $(A - \{e_{\circ}\},*)$ este grup <i>comutativ</i>	
	3. Distributivitatea operației " * " față de " o "	
	$D_s: x * (y \circ z) = (x * y) \circ (x * z), \forall x, y, z \in M$	
	$D_d: (x \circ y) * z = (x * z) \circ (y * z), \forall x, y, z \in M$	

Morfisme de grupuri			
	$f:G_1 \to G_2$ este <i>izomorfism</i> de grupuri dacă		
Fie (G₁,∘) și (G₂,∗) două	1. f este morfism de grupuri dacă $f(x \circ y) = f(x) * f(y), \forall x, y \in G_1$		
grupuri	2. <i>f</i> bijecivă		
	Proprietate: $f(e_1) = e_2$		
Morfisme de inele			
	$f: G_1 \to G_2$ este <i>izomorfism</i> de inele dacă		
	1. f este morfism de inele dacă		
Fie (G ₁ ,∗,∘) și (G ₂ ,⊥,⊺) două inele	$\mathbf{a.} \ \ f(x*y) = f(x) \perp f(y), \forall x, y \in G_1$		
	b. $f(x \circ y) = f(x) T f(y), \forall x, y \in G_1$		
	$\mathbf{c.} f(e_{\circ}) = e_{T}$		
	2. <i>f</i> bijecivă		
	Proprietate: $f(e_*) = e_\perp$		
	Subgrupuri		
	(H,∘) este subgrup al lui G dacă		
Fie (G,∘) și H ⊂ G	$\forall x, y \in H \Longrightarrow x \circ y' \in H$		
	sau		
	1. $\forall x, y \in H \Longrightarrow x \circ y \in H$		
	$2. \forall x \in H \Longrightarrow x' \in H$		

Subiectul III.1

ELEMENETE DE ANALIZĂ MATEMATICĂ CLASA a XI – a

Derivatele funcțiilor elementare

Nr. Crt.	Derivate simple	Derivate compuse
1	c' = 0	
2	x' = 1	
3	$(x^n)' = nx^{n-1}$	$(u(x)^n)' = n \cdot u(x)^{n-1} \cdot (u(x))'$
4	$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$	$\left(\sqrt{u(x)}\right)' = \frac{1}{2\sqrt{u(x)}} \cdot \left(u(x)\right)'$
5	$\left(\sqrt[3]{x}\right)' = \frac{1}{3\sqrt[3]{x^2}}$	$\left(\sqrt[3]{u(x)}\right)' = \frac{1}{3\sqrt[3]{\left(u(x)\right)^2}} \cdot \left(u(x)\right)'$
6	$(\sqrt[n]{x})' = \frac{1}{n\sqrt[n]{x^{n-1}}}$	$\left(\sqrt[n]{u(x)}\right)' = \frac{1}{n\sqrt[n]{\left(u(x)\right)^{n-1}}} \cdot \left(u(x)\right)'$
7	$(a^x)' = a^x \ln a$	$(a^{u(x)})' = a^{u(x)} \ln a \cdot (u(x))'$
8	$(e^x)'=e^x$	$(e^{u(x)})' = e^{u(x)} \cdot (u(x))'$
9	$(\ln x)' = \frac{1}{x}$	$(\ln u(x))' = \frac{1}{u(x)} \cdot (u(x))'$
10	$(\log_a x)' = \frac{1}{x \ln a}$	$(\log_a u(x))' = \frac{1}{u(x)\ln a} \cdot (u(x))'$
11	$(\sin x)' = \cos x$	$(\sin u(x))' = \cos u(x) \cdot (u(x))'$
12	$(\cos x)' = -\sin x$	$(\cos u(x))' = -\sin u(x) \cdot (u(x))'$
13	$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$	$(\operatorname{tg} u(x))' = \frac{1}{\cos^2 u(x)} \cdot (u(x))'$
14	$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$	$(c \operatorname{tg} u(x))' = -\frac{1}{\sin^2 u(x)} \cdot (u(x))'$
15	$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$	$(\arcsin u(x))' = \frac{1}{\sqrt{1 - u(x)^2}} \cdot (u(x))'$
16	$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$	$(\arccos u(x))' = -\frac{1}{\sqrt{1 - u(x)^2}} \cdot (u(x))'$
17	$(\operatorname{arctg} x)' = \frac{1}{1 + x^2}$	$(\operatorname{arctg} u(x))' = \frac{1}{1 + u(x)^2} \cdot (u(x))'$
18	$(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$	$(\operatorname{arcctg} u(x))' = -\frac{1}{1 + u(x)^2} \cdot (u(x))'$

Reguli de derivare
$(f \pm g)' = f' \pm g'$
$(c \cdot f)' = c \cdot f'$
$(f \cdot g)' = f' \cdot g + f \cdot g'$
$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$
$\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$
$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}, y_0 = f(x_0)$

Şiruri

y		
Mărginire și monotonie		
Mărginire	$(a_n)_{n\geq 1}$ <u>mărginit inferior</u> dacă \exists m \in \mathbb{R} a.î. $a_n\geq$ m, $\forall n\geq 1$	
	$(a_n)_{n\geq 1}$ mărginit superior dacă $\exists M\in \mathbb{R}$ a.î. $a_n\leq M, \forall n\geq 1$	
	$(a_n)_{n\geq 1}$ mărginit dacă șirul este mărginit inferior și superior	
	$(a_n)_{n\geq 1}$ monoton crescător dacă $a_{n+1}-a_n\geq 0, \forall n\geq 1$	
	SAU	
	$(a_n)_{n\geq 1}$ cu $a_n>0$, $\forall n\geq 1$ este <u>monoton crescător</u> dacă	
	$\frac{a_{n+1}}{a_n} \ge 1, \forall n \ge 1$	
	$(a_n)_{n\geq 1}$ monoton descrescător dacă $a_{n+1}-a_n\leq 0, \forall n\geq 1$	
	SAU	
	$(a_n)_{n\geq 1}$ cu $a_n>0$, $\forall n\geq 1$ este <u>monoton descrescător</u> dacă	
	$\frac{a_{n+1}}{a_n} \le 1, \forall n \ge 1$	
Monotonie	$(a_n)_{n\geq 1}$ strict crescător dacă $a_{n+1}-a_n>0, \forall n\geq 1$	
	SAU	
	$(a_n)_{n\geq 1}$ cu $a_n>0$, $\forall n\geq 1$ este <u>strict crescător</u> dacă	
	$\frac{a_{n+1}}{a_n} > 1, \forall n \ge 1$	
	$(a_n)_{n\geq 1}$ strict descrescător dacă $a_{n+1}-a_n<0, \forall n\geq 1$	
	SAU	
	$(a_n)_{n\geq 1}$ cu $a_n>0$, $\forall n\geq 1$ este <u>strict descrescător</u> dacă	
	$\frac{a_{n+1}}{a_n} < 1, \forall n \ge 1$	

	77 . , , 1 . , , , , , , , , , , , , , , ,		
Convergența	Un șir este <i>convergent</i> dacă acesta are limita finită.		
	Un şir este <i>divergent</i> dacă are limita $\pm \infty$ sau nu au limită (\nexists lim).		
	Un şir este convergent dacă este monoton și mărginit.		
	(Proprietatea lui Weierstrass)		
Limite de șiruri - cazuri de nedeterminare (idei de rezolvare)			
	Factor comun forțat		
	$\lim_{n\to\infty}q^n=\begin{cases} \nexists,\;dac\check{a}\;q\leq -1\\ 0,\;dac\check{a}\;q\in (-1,1)\\ 1,\;\;\;dac\check{a}\;q=1\\ \infty,\;\;\;dac\check{a}\;q>1 \end{cases}$		
	Lema lui Stolz - Cesaro		
Cazul $\frac{\infty}{\infty}$	$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n},$		
	unde $(b_n)_{n\geq 1}$ șir strict crescător, nemărginit și cu termeni pozitivi		
	Criteriul raportului		
	$(a_n)_{n\geq 1}$ cu termeni strict pozitivi. Dacă		
	$\exists \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l \in \overline{\mathbb{R}} \text{ atunci:}$		
	1) $l \in [0,1)$ atunci $\lim_{n \to \infty} a_n = 0$		
	2) $l \in (1, \infty)$ atunci $\lim_{n \to \infty} a_n = \infty$		
	3) $l=1$ atunci nu putem afirma nimic despre limita șirului		
	Regula lui l'Hospital		
	$\lim_{n\to\infty} a_n \mathrm{si} f(n) = a_n$		
	Se calculează $\lim_{x\to\infty} f(x) = l$ cu regula lui l'Hospital.		
	$\xrightarrow{T \ Heine} \text{Pentru } x_n = n, \lim_{n \to \infty} x_n = \infty \text{ avem}$		
	$\lim_{n\to\infty} f(n) = l, \det\lim_{n\to\infty} a_n = l$		
	Factor comun forțat		
	SAU		
	Amplificarea cu expresia conjugată (la limitele cu radicali)		
Cazul ∞ $-\infty$	SAU		
	Proprietățile logaritmilor (la limitele cu ln)		
	$\ln a_n - \ln b_n = \ln \frac{a_n}{b_n}$		

Cazul $\frac{0}{0}$	Limite remarcabile	
Cazul ∞ · 0	$\lim_{n \to \infty} \frac{\sin a_n}{a_n} = 1 \text{ sau } \lim_{n \to \infty} \frac{\operatorname{tg} a_n}{a_n} = 1 \text{ sau } \lim_{n \to \infty} \frac{\arcsin a_n}{a_n} = 1 \text{ sau } \lim_{n \to \infty} \frac{\arctan a_n}{a_n} = 1$ $\lim_{n \to \infty} \frac{\ln(1 + a_n)}{a_n} = 1$ $\lim_{n \to \infty} \frac{b^{a_n} - 1}{a_n} = \ln b$	
	unde $a_n \to 0$	
Cazul 1 $^{\infty}$	$\lim_{n \to \infty} (1 + a_n)^{\frac{1}{a_n}} = e, \text{ unde } a_n \to 0$	
	$\lim_{n\to\infty} a_n^{b_n} = \lim_{n\to\infty} e^{\ln a_n^{b_n}} = \lim_{n\to\infty} e^{b_n \ln a_n}$	
0 100 0	Criteriul radicalului	
Cazul 0 ⁰ sau ∞ ⁰	$\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \frac{a_{n+1}}{a_n},$	
	$(a_n)_{n\geq 1}$ cu termeni strict pozitivi	

Funcții

Limite de funcții		
	$l_s(x_0) = f(x_0 - 0) = \lim_{\substack{x \to x_0 \\ x < x_0}} f(x)$	
Limite laterale	$l_d(x_0) = f(x_0 + 0) = \lim_{\substack{x \to x_0 \\ x > x_0}} f(x)$	
	$\exists \lim_{x \to x_0} f(x) \iff l_s(x_0) = l_d(x_0)$	
Cazuri de nedeterminare (idei de rezolvare)		
Cazul $\frac{\infty}{\infty}$	Factor comun forțat	
	Regula lui l'Hospital	
	$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{(f(x))'}{(g(x))'}$	
	Factor comun forțat	
	SAU	
	Amplificarea cu expresia conjugată (la limitele cu radicali)	
Cazul ∞ – ∞	SAU	
	Proprietățile logaritmilor (la limitele cu ln)	
	$\ln f(x) - \ln g(x) = \ln \frac{f(x)}{g(x)}$	

	Limite remarcabile			
	$\lim_{x \to x_0} \frac{\sin u(x)}{u(x)} = 1 \text{ sau } \lim_{x \to x_0} \frac{\operatorname{tg} u(x)}{u(x)} = 1 \text{ sau}$			
	$\lim_{x \to x_0} \frac{\arcsin u(x)}{u(x)} = 1 = 1 \text{ sau } \lim_{x \to x_0} \frac{\arctan u(x)}{u(x)} = 1$			
Cazul $\frac{0}{0}$	$\lim_{x \to x_0} \frac{\ln(1 + u(x))}{u(x)} = 1$			
	$\lim_{x \to x_0} \frac{a^{u(x)} - 1}{u(x)} = \ln a$			
	unde $u(x) \to 0$			
	Regula lui l'Hospital			
	Limite remarcabile			
	Regula lui l'Hospital			
Cazul ∞ · 0	$\lim_{x \to x_0} f(x) \cdot g(x) = \lim_{x \to x_0} \frac{\left(f(x)\right)'}{\left(\frac{1}{g(x)}\right)'} \text{ sau } = \lim_{x \to x_0} \frac{\left(g(x)\right)'}{\left(\frac{1}{f(x)}\right)'}$			
Cazul 1 [∞]	$\lim_{x \to x_0} \left(1 + u(x) \right)^{\frac{1}{u(x)}} = e, \text{ unde } u(x) \to 0$			
Cazul 0º sau ∞º	$\lim_{x \to x_0} f(x)^{g(x)} = \lim_{x \to x_0} e^{\ln f(x)^{g(x)}} = \lim_{x \to x_0} e^{g(x) \ln f(x)}$			
	Asimptote			
Asimptote orizontale	y = m, m finit			
la ±∞	$m = \lim_{x \to \pm \infty} f(x)$			
	y = mx + n, m finit și nenul și n finit			
Asimptote oblice	$m = \lim_{x \to \pm \infty} \frac{f(x)}{x}$			
la ±∞				
	$n = \lim_{x \to \pm \infty} [f(x) - mx]$			
Asimptote verticale	$x = x_0$ este asimptotă verticală			
	dacă cel puțin o limită laterală a funcției f în punctul x_0 este infinită			
	$\frac{1}{0_{+}} = +\infty \qquad \frac{1}{0_{-}} = -\infty \qquad \frac{nr}{\pm \infty} = 0$			
Câteva rezultate utile în				
calcularea limitelor!	$e^{-\infty} = 0 \qquad e^{\infty} = \infty$			
	$\arctan \cos \infty = \frac{\pi}{2} \qquad \operatorname{arctg}(-\infty) = -\frac{\pi}{2}$			

Funcții continue			
f continuă în $x_0 \iff l_s(x_0) = l_d(x_0) = f(x_0)$			
Proprietate lui	$f: I \to R$ o funcție continuă pe I și $a, b \in I, a < b$ \Rightarrow ecuația		
Cauchy - Bolzano			
Compul unoi functii	f(x) = 0 are cel puţin o soluţie în intervalul (a, b)		
Semnul unei funcții	O funcție continuă are același semn pe un intervalul în care nu are		
continue	zerouri.		
	Funcții derivabile		
	$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$		
Ecuația tangentei la	$y - f(x_0) = f'(x_0)(x - x_0)$		
graficul funcției f în	$m_{tq} = f'(x_0)$ – panta tangentei		
punctul de abscisă $x = x_0$	Ü		
f derivabilă în $x_0 \iff f'_s(x_0) = f'_d(x_0)$ finite			
f are derivată în $x_0 \iff f'_s(x_0) = f'_d(x_0)$			
Puncte de întoarcere	x_0 este <i>punct de întoarcere</i> al funcției f dacă f este continuă în x_0 și		
	$f'_s(x_0) \neq f'_d(x_0)$ infinite		
Puncte unghiulare	x_0 este $punct unghiular$ al funcției f dacă f este continuă în x_0 și		
	$f'_s(x_0) \neq f'_d(x_0)$ și cel puțin o derivată laterală este finită		
Teorema lui Fermat $f:[a,b] \to R, x_0 \in (a,b)$ un punct de extrem al funcție			
	derivabilă în punctul x_0 atunci $f'(x_0) = 0$		
Teorema lui Lagrange	f continuă pe $[a,b]$ $\Rightarrow \exists c \in (a,b) \text{ a. î.} \frac{f(b)-f(a)}{b-a} = f'(c)$		
Teorema lui Rolle	f continuă pe $[a,b]$ f derivabilă pe (a,b) $\Rightarrow \exists c \in (a,b)$ a. î. $f'(c) = 0$		
Teorema fur Rone	f(a) = f(b)		
	Se aplică pentru determinarea numărului de soluții reale ale		
	ecuației $f(x) = 0$		
	Etape:		
Circul losi Dalla	1) Se determină $f'(x)$		
Şirul lui Rolle	2) Se rezolvă $f'(x) = 0$		
	3) x		
	f'(x)		
	$\frac{f(x)}{\$.R.}$		

	$f'(x) \ge 0, \forall x \in I \implies f$ este (monoton) crescătoare pe I		
	$f'(x) \le 0, \forall x \in I \Rightarrow f$ este (monoton) descrescătoare pe I		
	Determinarea intervalelor de monotonie și a punctelor de extrem		
	Etape:		
	Se determină $f'(x)$		
	Se rezolvă $f'(x) = 0$		
	x		
	f'(x)		
	f(x) Enunțuri care se rezolvă cu derivata I		
Rolul derivatei I	✓ Să se determinarea intervalelor de monotonie		
	✓ Să se determinarea punctelor de extrem		
	✓ Să se demonstreze că f este (strict) crescătoare/descrescătoare		
	✓ Să se demonstreze inegalități cu ajutorul punctelor de extrem		
	✓ Să se determine imaginea(mulțimea de valori) unei funcții		
	✓ Să se demonstreze că o funcție este mărginită		
	✓ Să se demonstreze bijectivitatea unei funcții		
	o f injectivă $\Leftrightarrow f$ strict monotonă pe domeniu		
	o f surjectivă \Leftrightarrow Im f = codomeniu		
	$f''(x) \ge 0, \forall x \in I \implies f \text{ este convexă pe } I$		
	$f''(x) \le 0, \forall x \in I \implies f \text{ este concavă pe } I$		
	$x = x_0$ punct de inflexiune dacă		
	✓ f continuă în x_0		
	✓ f are derivată în x_0		
	✓ f este concavă de o parte a lui x_0 și convexă de cealaltă		
D	parte a lui x_0 .		
Rolul derivatei a II -a	Determinarea intervalelor de concavitate/convexitate și a punctelor		
	de inflexiune		
	Etape:		
	Se determină $f''(x)$		
	Se rezolvă $f''(x) = 0$		
	<u>x</u>		
	$\frac{f''(x)}{f(x)}$		
) (x)		

Subiectul III.2

ELEMENETE DE ANALIZĂ MATEMATICĂ CLASA a XII – a

Primitive

$\int f'(x) \cdot g(x) dx = f(x) \cdot g(x) - \int f(x) \cdot g'(x) dx$		
Metoda integrării prin părți		
Pentru a demonstra că o funcție admite primitive pe D se arată că funcția este continuă pe D.		
Pentru a demonstra/a arăta enunțuri care implică primitive se folosește definiția primitivei.		
Pentru a determina/a calcula primitiva unei funcții se folosește $F(x) = \int f(x)dx$.		
	$2. F'(x) = f(x), \forall x \in D$	
Definiție	1. F derivabilă pe D	
F este primitivă a funcției f dacă		

Integrale definite

Formula lui Leibniz - Newton	$\int_a^b f(x) dx = F(x) _a^b = F(b) - F(a)$	
	$\int_{-a}^{a} f(x) dx = 0, \text{dacă } f \text{ impară și } a > 0$	
Proprietăți	$\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx, \text{ dacă } f \text{ pară și } a > 0$	
	$\int_{a}^{a} f(x)dx = 0, a \in \mathbb{R}$	
	$f: [a,b] \to R$ este o funcție continuă $\Longrightarrow \exists \xi \in [a,b]$ a.î.	
Teorema de medie	$\int_{a}^{b} f(x) dx = (b - a)f(\xi)$	
Proprietatea de	$\int_{-b}^{b} f(x)dx \ge 0 \iff f(x) \ge 0, \forall x \in [a, b]$	
pozitivitate	$\int_{a}^{b} f(x)ax \ge 0 \Leftrightarrow f(x) \ge 0, \forall x \in [a, b]$	
Proprietatea de	$f(x) \le g(x), \forall x \in [a, b] \iff \int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx$	
monotonie	$\int_{a}^{b} (x) \leq g(x), \forall x \in [a,b] \iff \int_{a}^{b} f(x) dx \leq \int_{a}^{b} g(x) dx$	
Proprietatea de	$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx, c \in [a, b]$ $\int_{a}^{b} f'(x) \cdot g(x)dx = f(x) \cdot g(x) _{a}^{b} - \int_{a}^{b} f(x) \cdot g'(x)dx$	
aditivitate la interval		
Metoda integrării prin părți		

Integrale nedefinite

1	$\int 1 \ dx = \int dx = x + \mathcal{C}$	
2	$\int x^n dx = \frac{x^{n+1}}{n+1} + \mathcal{C}$	$\int u^{n}(x) \cdot u'(x) dx = \frac{u^{n+1}(x)}{n+1} + C$
3	$\int e^x dx = e^x + \mathcal{C}$	$\int e^{u(x)} \cdot u'(x) dx = e^{u(x)} + \mathcal{C}$
4	$\int a^x dx = \frac{a^x}{\ln a} + \mathcal{C}$	$\int a^{u(x)} \cdot u'(x) dx = \frac{a^{u(x)}}{\ln a} + C$
5	$\int \frac{1}{x} dx = \ln x + \mathcal{C}$	$\int \frac{1}{u(x)} \cdot u'(x) dx = \ln u(x) + \mathcal{C}$
6	$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + C$	$\int \frac{1}{u^2(x) - a^2} \cdot u'(x) dx = \frac{1}{2a} \ln \left \frac{u(x) - a}{u(x) + a} \right + C$
7	$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + \mathcal{C}$	$\int \frac{1}{u^2(x) + a^2} \cdot u'(x) dx = \frac{1}{a} \operatorname{arctg} \frac{u(x)}{a} + C$
8	$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left x + \sqrt{x^2 - a^2}\right + \mathcal{C}$	$\int \frac{1}{\sqrt{u^2(x) - a^2}} \cdot u'(x) dx = \ln\left u(x) + \sqrt{u^2(x) - a^2}\right + C$
9	$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right) + \mathcal{C}$	$\int \frac{1}{\sqrt{u^2(x) + a^2}} \cdot u'(x) dx = \ln\left(u(x) + \sqrt{u^2(x) + a^2}\right) + \mathcal{C}$
10	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C$	$\int \frac{1}{\sqrt{a^2 - u^2(x)}} \cdot u'(x) dx = \arcsin \frac{u(x)}{a} + C$
11	$\int \sin x dx = -\cos x + \mathcal{C}$	$\int \sin u(x) \cdot u'(x) dx = -\cos u(x) + \mathcal{C}$
12	$\int \cos x \ dx = \sin x + \mathcal{C}$	$\int \cos u(x) \cdot u'(x) dx = \sin u(x) + C$
13	$\int \operatorname{tg} x dx = -\ln \cos x + \mathcal{C}$	$\int \operatorname{tg} u(x) \cdot u'(x) dx = -\ln \cos u(x) + \mathcal{C}$
14	$\int \operatorname{ctg} x dx = \ln \sin x + \mathcal{C}$	$\int \operatorname{ctg} u(x) \cdot u'(x) dx = \ln \sin u(x) + \mathcal{C}$
15	$\int \frac{1}{\sin^2 x} dx = -\operatorname{ctg} x + \mathcal{C}$	$\int \frac{1}{\sin^2 u(x)} \cdot u'(x) dx = -\operatorname{ctg} u(x) + C$
16	$\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + \mathcal{C}$	$\int \frac{1}{\cos^2 u(x)} \cdot u'(x) dx = \operatorname{tg} u(x) + \mathcal{C}$