

1.	An organization awarded 48 medals in event $'A'$, 25 in event $'B'$ and 18 in the three events, then, how many received medals in exactly two of three events.	event C' . If these medals went to total 60 men and only five men got medals in all vents?	
	(1) 15 mathongo /// mathongo /// mathongo	(2) 21 (4) 9 mathongo /// mathongo /// mathongo ///	
2.	Out of all the patients in a hospital 89% are found to be suffering from heart ailment and 98% are suffering from lungs infection. If K% of them are suffering		
	from both ailments, then K can not belong to the set: (1) $\{79, 81, 83, 85\}$	/// mathongo /// mathongo /// mathongo /// mathongo ///	
	(3) {80,83,86,89}	(4) {84, 86, 88, 90}	
3.		n speaks at least one of the two languages. If the number of persons who speak only	
3.	English is α and the number of persons who speaks only Hindi is β , then the		
	$\frac{12}{3}$ $\frac{3\sqrt{15}}{3\sqrt{15}}$ go /// mathongo /// mathongo /// mathongo	(2) $\frac{\sqrt{117}}{12}$ (4) $\frac{\sqrt{129}}{12}$ longo /// mathongo /// mathongo ///	
4.	The sum of all the elements of the set $\{\alpha \in \{1,2,\ldots,100\}: HCF(\alpha,24)=\}$	= 1} is	
5.	Let $A=\{1,2,3,4,5,6,7\}$. Then the relation $R=\{(x,y)\in A imes A: x+y\}$	v=.7} isathongo ///. mathongo ///. mathongo ///. mathongo ///.	
	(1) an equivalence relation	(2) symmetric but neither reflexive nor transitive	
	(3) transitive but neither symmetric nor reflexive	(4) reflexive but neither symmetric nor transitive	
6.	The relation $R = \{(a,b) \colon gcd(a,b) = 1, \ 2a \neq b, \ a, \ b \in \mathbb{Z}\}$ is:		
	(1) transitive but not reflexive	(2) symmetric but not transitive	
	(3) reflexive but not symmetric	(4) neither symmetric nor transitive	
7.	Let $R_1 = \{(a,b) \in N imes N : a-b \leq 13\}$ and $R_2 = \{(a,b) \in N imes N : a-b \in N $	\neq 13} Then on N : mathongo // mathongo // mathongo //	
	(1) Both R_1 and R_2 are equivalence relations	(2) Neither R_1 nor R_2 is an equivalence relation	
	(3) R_1 is an equivalence relation but R_2 is not	(4) R_2 is an equivalence relation but R_1 is not	
8.	, and the second		
	$S = \left\{ (a,b) : a,b \in R - \{0\}, 2 + \frac{a}{b} > 0 \right\}$ and $T = \left\{ (a,b) : a,b \in R, a^2 - b^2 \right\}$	$\in Zig\},$	
	(1) S is transitive but T is not M mathongo M mathongo	(2) both S and T are symmetric // mathongo // mathongo //	
	(3) neither S not T is transitive	(4) T is symmetric but S is not	
9.	Let R be a relation on \mathbb{R} , given by $R = \left\{ (a,b) : 3a - 3b + \sqrt{7} \text{ is an irrational number} \right\}$. Then R is		
	(1) Reflexive but neither symmetric nor transitive	(2) Reflexive and transitive but not symmetric	
	(3) Reflexive and symmetric but not transitive	(4) An equivalence relation	
10.	Let $A = \{1, 2, 3, 4, 5, 6, 7\}$ and $B = \{3, 6, 7, 9\}$. Then the number of elemen	ts in the set $\{C \subseteq A : C \cap B \neq \phi\}$ is mathongo mathongo	
11.	$\text{Let } A = \{2,3,4\} \text{ and } B = \{8,9,12\}. \text{ Then the number of elements in the relation } R = \{((a_1,b_1),(a_2,b_2)) \in (A \times B,A \times B): a_1 \text{ divides } b_2 \text{ and } a_2 \text{ divides } b_1\} \text{ is } A = \{(a_1,b_1),(a_2,b_2)\} \in (A \times B,A \times B): a_1 \text{ divides } b_2 \text{ and } a_2 \text{ divides } b_1\} \text{ is } A = \{(a_1,b_1),(a_2,b_2)\} \in (A \times B,A \times B): a_1 \text{ divides } b_2 \text{ and } a_2 \text{ divides } b_1\} \text{ is } A = \{(a_1,b_1),(a_2,b_2)\} \in (A \times B,A \times B): a_1 \text{ divides } b_2 \text{ and } a_2 \text{ divides } b_1\} \text{ is } A = \{(a_1,b_1),(a_2,b_2)\} \in (A \times B,A \times B): a_1 \text{ divides } b_2 \text{ and } a_2 \text{ divides } b_3\} \text{ is } A = \{(a_1,b_1),(a_2,b_2)\} \in (A \times B,A \times B): a_1 \text{ divides } b_2 \text{ and } a_3 \text{ divides } b_3\} \text{ is } A = \{(a_1,b_1),(a_2,b_2)\} \in (A \times B,A \times B): a_1 \text{ divides } b_2 \text{ and } a_3 \text{ divides } b_3\} \text{ is } A = \{(a_1,b_1),(a_2,b_2)\} \in (A \times B,A \times B): a_1 \text{ divides } b_3 divides$		
	(1) 36 (2) 18 ongo ///. mathongo ///. mathongo ///. mathongo	(2) 24 (4) 19 thongo /// mathongo /// mathongo ///	
	(3) 18	(4) 12	
12.	Let R be a relation on $N \times N$ defined by $(a,b)R(c,d)$ if and only if $ad(b+c)$, , ,	
	(1) symmetric but neither reflexive nor transitive	(2) transitive but neither reflexive nor symmetric	
	(3) reflexive and symmetric but not transitive	(4) symmetric and transitive but not reflexive	
13.	For $\alpha \in N$, consider a relation R on N given by $R = \{(x, y) : 3x + \alpha y \text{ is a } (x, y) : 3x + \alpha y is a $		
	(1) $\alpha = 14$ mathong mathong mathong (3) 4 is the remainder when α is divided by 10	(2) α is a multiple of 4 mathong with mathong with mathong with mathong (4) 4 is the remainder when α is divided by 7	
14	Define a relation R over a class of $n \times n$ real matrices A and B as " ARB iff there exists a non-singular matrix P such that $PAP^{-1} = B$ ". Then which of the		
///.	following is true?		
	(1) R is symmetric, transitive but not reflexive	(2) R is reflexive, symmetric but not transitive	
	(3) R is an equivalence relation	(4) R is reflexive, transitive but not symmetric	
15.	The minimum number of elements that must be added to relation $R = \{(a, b)\}$	$\{a,b,c,d\}$, so that it is an equivalence relation is	
	The number of relations, on the set $\{1, 2, 3\}$ containing $(1, 2)$ and $(2, 3)$		
17.	Let $A=\{-4,-3,-2,0,1,3,4\}$ and $R=\{(a,b)\in A\times A:b= a \text{ or }b^2=a+1\}$ be a relation on A . Then the minimum number of elements, that must be		
	added to the relation R so that it becomes reflexive and symmetric, is		
18.	The number of elements in the set $\{n \in \mathbb{N} : 10 \le n \le 100 \text{ and } 3^n - 3 \text{ is a multiple of } 7\}$ is		
19.	Let $A = \{1, a_1, a_2, \dots, a_{18}, 77\}$ be a set of integers with $1 < a_1 < a_2 < \dots, a_{18} < 77$. Let the set $A + A = \{x + y : x, y \in A\}$ contain exactly 39 elements.		
	Then, the value of $a_1 + a_2 + \ldots + a_{18}$ is equal to		
20. Let R_1 and R_2 be relations on the set $\{1, 2, \dots, 50\}$ such that $R_1 = \{(p, p^n): p \text{ is a prime and } n \geq 0 \text{ is an integer}\}$ and $R_2 = \{(p, p^n): p \text{ is a prime and } n \geq 0 \text{ is an integer}\}$			n
	$\}$. Then, the number of elements in $R_1 - R_2$ is		