11 класс

Задача 1. Колонна из песка

Рис. 1

Как-то теоретик Баг, гуляя по берегу моря, увидел как отдыхающий строил замок из песка (рис. 1). Он решил узнать, какой максимальной высоты колонну можно построить из влажного песка. В одной из работ Леонарда Эйлера он обнаружил, что максимальная высота цилиндрической колонны изготовленной из однородного и изотропно-

го материала, может быть рассчитана по формуле

$$H = 1.25 \cdot E^{\alpha} R^{\beta} \rho^{\gamma} g^{\lambda}, \tag{1}$$

где α , β , γ и λ — некоторые числовые коэффициенты, R — радиус колонны, ρ — плотность материала, из которого она изготовлена, g — ускорение свободного падения, E — модуль Юнга. Баг рассчитал, что если колонну сделать из влажного песка, то при её радиусе $R_1=5\,\mathrm{cm}$, высота колонны окажется 1,0 м. Друг Бага, экспериментатор Глюк, решил собрать более «солидную» колонну. Он сделал радиус её основания $R_2=15\,\mathrm{cm}$. Колонна какой высоты получилась у Глюка?

Справочные данные: плотность влажного песка $\rho = 1.5 \times 10^3 \,\mathrm{kr/m^3}$, его модуль Юнга $E = 3.0 \times 10^6 \,\mathrm{Ha}$, ускорение свободного падения $g = 9.8 \,\mathrm{m/c^2}$.

Примечание. Модуль Юнга — это коэффициент пропорциональности между давлением (или растяжением), действующим на плоскую поверхность исследуемого образца и его относительным сжатием (удлинением).

Задача 2. Ползущая пружина

Вблизи края гладкой горизонтальной полуплоскости лежат два одинаковых груза, соединенные лёгкой нерастянутой пружиной, длина которой l_0 , а жёсткость — k. К грузу, ближайшему к краю плоскости, с помощью нерастяжимой нити, перекинутой через лёгкий блок, прикреплён ещё один такой же груз массой m (рис. 2). Его удерживают так, что участок нити, идущий от блока к этому грузу, вертикален. Нижний груз отпускают.

Рис. 2

Через какое минимальное время au удлинение Δl пружины станет максимальным?

Найдите это удлинение.

Рис. 3

Задача 3. Градирня

На промышленных предприятиях для охлаждения больших объемов воды используют градирни (рис. 3). Рассмотрим идеализированную градирню, представляющую собой широкий цилиндр диаметром $D=15\,\mathrm{m}$, в котором на некоторой высоте H от основания через специальные форсунки (1) распыляется горячая вода, температура которой $t_1=50\,\mathrm{^oC}$. По мере падения она остывает до температуры $t_2=28\,\mathrm{^oC}$. Посредством вентилятора навстречу падающим каплям снизу со скоростью $u=2,0\,\mathrm{m/c}$ поднимается воз-

дух при температуре $t_0=29^{\circ}$ С. Считайте, что его температура на протяжении всего пути остается неизменной, а влажность меняется от $\varphi=40\%$ на входе, до $\varphi_1=100\%$ на выходе из градирни. Какова производительность q градирни, то есть, сколько тонн воды охлаждается в ней за один час?

Справочные данные для воды: удельная теплоемкость $c=4,2\times 10^3\,\mathrm{Дж/(kr\cdot ^\circ C)};$ удельная теплота парообразования $L=2,3\times 10^6\,\mathrm{Дж/kr},$ температурная зависимость давления насыщенных паров приведена на графике (рис. 4).

Рис. 4

Задача 4. Конденсаторы

Параметры электрической цепи указаны на схеме (рис. 5). Вначале ключ K разомкнут.

- 1. Определите напряжение на конденсаторе емкостью C.
- 2. Определите силу тока, который потечёт через резистор сопротивлением 3R, сразу после замыкания ключа K.
- 3. Какое напряжение установится на конденсаторе емкостью ${\cal C}$

после того, как переходные процессы в цепи завершатся?

Задача 5. Много катушек

единили в электрическую цепь так, что катушки образовали ребра тетраэдра (рис. 6). К вершинам A и В подсоединили последовательно соединенные резистор сопротивлением R=100 Ом, батарейку с ЭДС $\mathscr{E}=4,6$ В, миллиамперметр и ключ. Индуктивность катушки L=1 мГн. Взаимной индуктивностью катушек пренебречь.

Шесть идеальных катушек индуктивности со-

- 1. Вычислите силу тока I_{60} , протекающего через миллиамперметр спустя 1 минуту после замыкания ключа.
- 2. Вычислите силу тока, протекающего через каждую из катушек в тот момент, когда сила тока, протекающего через миллиамперметр, равна $I_{\rm A}==23~{\rm mA}.$

Бесплатный разбор теоретического тура и консультация к экспериментальному туру состоятся 19 января (воскресенье) в 10:00 по московскому времени на сайте

online.mipt.ru

Для участия в разборе необходимо зарегистрироваться не менее чем за полчаса до начала разбора!