

UNIVERSIDADE ESTADUAL DE SANTA CRUZ-UESC

PRÓ-REITORIA DE GRADUAÇÃO – PROGRAD DEPARTAMENTO DE CIÊNCIAS DE EXATAS-DCET COLEGIADO DE CIÊNCIA DA COMPUTAÇÃO-COLCIC

PROGRAMA DE DISCIPLINA

CÓDIGO	DISCIPLINA	PRÉ-REQUISITOS
CET077	Estrutura de Dados	CET 641 – Linguagem de Programação II

C/HORÁRIA		CRÉDITOS	PROFESSOR (A)
T	30	2	Hamilton José Brumatto
P	30	1	Hamilton Jose Brumatto
TOTAL	60	3	

EMENTA

Representação de dados. Estruturas lineares: vetor, lista, pilha e fila. Recursão. Árvores binárias. Árvores de busca. Árvores balanceadas. Algoritmos para manipulação de estruturas: inserção, remoção, busca e percurso. Ordenação de dados. Heaps. Filas com prioridades. Noções de complexidade dos algoritmos utilizados.

OBJETIVOS

Capacitar o aluno a manipular estruturas de dados e ter noção da complexidade de algoritmos.

METODOLOGIA

Aulas expositivas e práticas (programação).

AVALIAÇÃO

Avaliações: Serão três avaliações teóricas no período da disciplina.

MS = A1*30% + A2*35% + A3*35%

Será aplicada a avaliação final nos casos em que for devido

CONTEÚDO PROGRAMÁTICO

- Tipos abstratos de dados. Revisão de Recursão.
- Para cada estrutura de dados: apresentar a definição e algoritmos para inserção, remoção e busca de dados e algoritmos de percurso. Apresentar algoritmos recursivos e iterativos. Para cada algoritmo, apresentar uma noção de sua complexidade.
 - o Vetores.
 - o Pilhas.
 - o Filas.
 - o Listas encadeadas.
 - o Listas duplamente encadeadas.
 - o Árvores binárias (de busca).
 - o Árvores balanceadas.
- Utilização de pilha para simulação da recursão.
- Ordenação de dados: apresentar algoritmos com complexidade: linear, n log n, n².
- "Heaps": definição e implementação em vetores. Filas com prioridades: definição e implementação com heaps.

REFERÊNCIA BIBLIOGRÁFICA

LEISERSON, Charles E.; STEIN, Clifford; RIVEST, Ronald L.; CORMEN, Thomas H. **Algoritmos - Trad. 2^a Ed. Americana**, Editora Campus, 2002.

PREISS, Bruno. Estruturas de Dados e Algoritmos Editora Campus, 2001.

DROZDEK, Adam. **Estruturas de Dados e Algoritmos em C++**. Thomson Pioneira, 2001.

SKIENA, Steven S. **The Algorithm Design Manual** Springer-Verlag, 1997. Online: http://www2.toki.or.id/book/AlgDesignManual/

SKIENA, Steven S.; REVILLA, Miguel A. Programming Challenges Springer, 2003

LAFORE, Robert. **Aprenda em 24 Horas Estruturas de Dados e Algoritmos**. Editora Cmpus, 1999.

CRONOGRAMA PROPOSTO

·		
1	4/4	Introdução: Apresentação da disciplina, critérios e bibliografia
2	6/4	Tipos abstratos de dados. Revisão de Recursão.
3	11/4	Vetores: implementação e manipulação.
4	13/4	Busca em vetores, percurso em vetores.
5	18/4	Inserção e remoção de dados em vetores.
6	20/4	Listas encadeadas: implementação e manipulação
~	25/4	Exercícios de fixação (aula não presencial)
7	27/4	ERBASE 2016 (aula não presencial)
8	2/5	Percurso em Listas encadeadas, busca, inserção e remoção.
9	4/5	Listas duplamente encadeadas.
10	9/5	Exercícios de fixação e dúvidas
11	11/5	Avaliação Individual
12	16/5	Pilhas: implementação (Vetores e Listas encadeadas)
13	18/5	Inserção e Remoção de elementos em pilhas.
14	23/5	Filas: implementação (Vetores e Listas encadeadas)
15	25/9	Inserção e Remoção de elementos. Exemplos de aplicação
16	30/5	Árvores binárias (de Busca).
17	1/6	Implementação de Árvores Binárias
18	6/6	Percursos em árvores binárias, inserção e remoção.
19	8/6	Exercícios de Fixação e de Dúvidas
20	13/6	Avaliação 2
21	15/6	Algoritmos de ordenação: movimentação de dados.
22	20/6	Algoritmos de ordenação com complexidade linear.
23	22/6	Exercícios de Fixação e de Dúvidas
	27/6	Exercícios (aula não presencial)
24	29/6	Algoritmos de ordenação: Bolha, Inserção e mistura.
25	4/7	Algoritmos de ordenação: Quick Sort.
26	6/7	Heaps: definição e implementação
	11/7	CSBC 2016 (aula não presencial)
	13/7	CSBC 2016 (aula não presencial)
27	18/7	Busca, inserção e remoção em heaps.
28	20/7	Algoritmos de ordenação: Heap Sort.
29	25/7	Filas com prioridades: Implementação
30	27/7	Busca, inserção e remoção em Filas com prioridades
	1/8	Exercícios de Fixação e de Dúvidas
	3/8	Avaliação 3
	8/8	Avaliação Final
	10/8	