Final Exam

Math 112

Winter 2021

You have 2 hours to complete this exam, scan it, and upload it to Canvas. You may use a scientific calculator, but no other resources. When you're finished, first check your work if there is time remaining, then scan the exam and upload it to Canvas. If you have a question, don't hesitate to ask — I just may not be able to answer it. There are 192 points possible on the exam, and 3 points will be deducted for each minute late.

Formulas

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$

$$\tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)}$$

$$\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos(\theta)}{2}}$$

$$\cos\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1+\cos(\theta)}{2}}$$

$$\tan\left(\frac{\theta}{2}\right) = \frac{\sin(\theta)}{1 + \cos(\theta)}$$

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

$$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)$$

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$

$$\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}$$

$$\tan(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}$$

- 1. (64 points) Multiple choice. You don't need to show your work.
- a) (8 points) Suppose θ is an angle in quadrant II. Which of the following is true?
 - A) $\arcsin(\sin(\theta)) = \theta$.
 - B) $\arccos(\cos(\theta)) = \theta$.
 - C) $\arctan(\tan(\theta)) = \theta$.
 - D) All of the above.
- b) (8 points) In which scenario could we apply the Law of Sines?
 - A) We know two sides and an angle and want to find a third side.
 - B) We know a side and two angles and want to find a second side.
 - C) We know all three angles and want to find a side.
 - D) We know all three sides and want to find an angle.
- c) (8 points) Let \vec{v} be a 2-dimensional vector. Which of the following can \vec{v} not have?
 - A) Negative magnitude.
 - B) Negative angle.
 - C) Negative \vec{i} component.
 - D) Negative \vec{j} component.
- d) (8 points) The definition of the tangent function is

A)
$$\tan(\theta) = \frac{1}{\sin(\theta)}$$
.

B)
$$tan(\theta) = cos(\pi - \theta)$$
.

C)
$$\tan(\theta) = \sin(\theta)^2 + \cos(\theta)^2$$

D)
$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$$
.

e) (8 points) The measu	are of $\frac{13\pi}{12}$ in degree	es is
-------------------------	-------------------------------------	-------

- A) 3.403°.
- B) 195°.
- C) 62°.
- D) .0594°.

f) (8 points) If the dot product of two vectors is zero and both vectors have nonzero magnitude, then the angle θ between the two vectors satisfies

- A) $\theta = 0^{\circ}$.
- B) $0^{\circ} < \theta < 90^{\circ}$.
- C) $\theta = 90^{\circ}$.
- D) $90^{\circ} < \theta < 180^{\circ}$.

g) (8 points) Which of the following is equal to $\sin(\theta)$ for any angle θ ?

- A) $2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)$.
- B) $tan(cos(\theta))$.
- C) $\sin(\sqrt{1-\theta^2})$.
- D) $\arcsin(\sin(\theta))$.

h) (8 points) The function $y = 3(x+1)^5$ is a transformation of $y = x^5$ by

- A) A vertical stretch and horizontal stretch.
- B) A vertical stretch and horizontal shift.
- C) A vertical shift and horizontal stretch.
- D) A vertical shift and horizontal shift.

2. (32 points) Consider a circle of radius 2 centered at the origin.
a) (8 points) What are the coordinates of a point on this circle with angle θ counter-clockwise from the positive x -axis?
b) (8 points) Find the coordinates of a point with angle 150° counter-clockwise from the positive x -axis. Simplify your answer and leave it in exact form, and show your work — specifically, any reference angles you use.
c) (8 points) If the circle were centered at (1, -1), what would the coordinates of this point be?
d) (8 points) This point and the point on the circle with angle 0° are the endpoints of an arc of the circle. Sketch this arc and find its length. (Hint: the center of the circle no longer matters.)

3. A 2-dimensional vector \vec{v} has magnitude 2 and angle $\frac{7\pi}{6}$ counter-clockwise from the positive x-axis.
a) (8 points) Find the unit vector decomposition for \vec{v} , showing all your work.
b) (8 points) Vector \vec{w} has unit vector decomposition $\vec{w} = 2\vec{i} - 3\vec{j}$. Find $ \vec{w} $ and the angle \vec{w} makes with the positive x -axis.
c) Find $\vec{v} \bullet \vec{w}$.
d) (8 points) What is the angle between \vec{v} and \vec{w} ?

4.	(32)	ooints)	Let	f(x)	be a	sinusoidal	function	with	amplitude 2	midline 1.	and '	period 3	
т.	104		LCU	1 (2)	DC a	billubbluai	- I uni cuton	WILLIAM	amphuade 2	, minumino 1.	and	period o	٠

a) (12 points) Assuming there is no horizontal shift, find a formula for f.

b) (12 points) If f(1) = 0 and f is increasing there, find a formula for f.

c) (8 points) Sketch a graph of f, labeling at least three points.

5.	(32)	points)	Let	f((x)	=	x^2

a) (8 points) Sketch a graph of f, labeling at least three points.

b) (8 points) Let $g(x) = 2x^2 + 1$. g is a transformation of f — list the transformation(s) you'd need to apply to f to get g, and then sketch a graph of g, labeling the points that correspond to the ones from part a).

c) (8 points) Let $h(x) = 2(4(x+3))^2 + 1$. h is a transformation of g — again, list the transformation(s) applied to g to get h, then sketch a graph of h, labeling the points that correspond to the ones from part a).

d) (8 points) If we want to apply a vertical stretch to h to make a new function k such that k(1) = 1, what must k(x) be?