## Operations on Sets

The *union* of two sets A and B, denoted by  $A \cup B$ , is the set containing elements from A or B. The *intersection* of two sets A and B, denoted by  $A \cap B$ , is the set of elements which are in A and B.

Example 2.0.12.

$$A = \{1, 2, 4, 6\}$$
  $B = \{1, 3, 5, 6\}$ 

$$A \cap B = \{1, 6\}$$
  $A \cup B = \{1, 2, 3, 4, 5, 6\}$ 

**Problem 2.0.13.** *Let*  $A = \{a, b, c\}$  *and*  $B = \{A, b, 3\}$ . *Find*  $A \cup B$  *and*  $A \cap B$ .

The union of multiple sets can be generalized in the following way.

## Notation

Union of n Sets

Intersection of n Sets

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \cdots \cup A_n \quad \bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \cdots \cap A_n$$

The *complement* of a set A with respect to the superset U, denoted by  $A^c$ , is the set containing all elements of U which are not in A.

## Venn Diagram

A Venn diagram is a diagram which shows the relationship between an element x in a set A with another set B.





14 CHAPTER 2. SETS

**Example 2.0.14.** Consider the following set define in Example 2.0.12. The following Venn diagram show lists all elements from all set.



**Problem 2.0.15.** Make a Venn diagram for the sets  $A = \{1, 2, 3\}$ ,  $B = \{1, 4, 5\}$ , and  $C = \{2, 5, 7\}$ .

The Cartesian product of the set A and B, denoted by  $A \times B$ , is the set

$$\{(a,b) \mid a \in A \text{ and } b \in B\}.$$

Note that the Cartesian product of two sets is a set of order pairs. Hence  $(a, b) \in A \times B$  does not imply that  $(b, a) \in A \times B$ . Also,

$$A^{n} = \underbrace{A \times A \times \cdots \times A}_{n \text{ times}} = \{(a_{1}, a_{2}, \dots, a_{n}) \mid a_{i} \in A, i \in \{1, 2, \dots, n\}\}.$$

**Example 2.0.16.** Consider the sets  $A = \{1, 2\}$  and  $B = \{x, y, z\}$ . Then the Cartesian product  $A \times B$  is

$$\{(1,x),(1,y),(1,z),(2,x),(2,y)(2,z)\}$$

and

$$A^{3} = \{(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)\}.$$

**Problem 2.0.17.** Let A and B be the sets defined in Example 2.0.16. Find  $B \times A$  and  $B^2$ .