Joint Semi-Supervised Similarity Learning for Linear Classification

Maria-Irina Nicolae^{1,2} Éric Gaussier² Amaury Habrard¹ Marc Sebban¹

¹Université Jean Monnet, Laboratoire Hubert Curien, France

²Université Grenoble Alpes, CNRS-LIG/AMA, France

Metric Learning

- Aims at optimizing parameterized distances/similarities.
- Leads to transformations of the input space before learning the classifier.
- Takes constraints from data.

Mahalanobis Distance

Finds $\mathbf{A} \in \mathbb{R}^{d \times d}$ positive semi definite (PSD) parameterizing d_A , s.t. it best satisfies the constraints.

$$d_{\mathbf{A}}(\mathbf{x},\mathbf{x}') = \sqrt{(\mathbf{x}-\mathbf{x}')^{\mathsf{T}}\mathbf{A}(\mathbf{x}-\mathbf{x}')}$$

Limitations

 Satisfying A PSD is computationally expensive.

• d_l : # of training examples

• d_{μ} : # of unlabeled landmarks

 No generalization guarantees are provided.

(ϵ, γ, τ) -Good Similarity Functions [1]

Definition 1. $K_A: \mathcal{X} \times \mathcal{X} \to [-1, 1]$ is a (ϵ, γ, τ) -good similarity function in hinge loss for a learning problem P over $\mathcal{X} \times \{+1, -1\}$ if there exists a random indicator function $R(\mathbf{x})$ defining a probabilistic set of "landmarks" such that the following conditions hold:

- $\mathbb{E}_{(\mathbf{x},y)\sim P}\left[\left[1-yg(\mathbf{x})/\gamma\right]_{+}\right] \leq \epsilon, \text{ where } g(\mathbf{x}) = \mathbb{E}_{(\mathbf{x}',y'),R(\mathbf{x}')}\left[y'K_{\mathbf{A}}(\mathbf{x},\mathbf{x}')|R(\mathbf{x}')\right].$
- $\mathbf{Pr}_{\mathbf{x}'}(R(\mathbf{x}')) \geq \tau.$

Formulation

$$\min_{m{lpha}} rac{1}{d_l} \sum_{i=1}^{d_l} \left[1 - \sum_{j=1}^{d_u} lpha_j y_i K_{\mathbf{A}}(\mathbf{x}_i, \mathbf{x}_j)
ight]_+ ext{ s.t. } \sum_{j=1}^{d_u} |lpha_j| \leq 1/\gamma$$

Prediction rule

$$y = \operatorname{sgn} \sum_{j=1}^{d_u} \alpha_j K_{\mathbf{A}}(\mathbf{x}, \mathbf{x}_j)$$

Joint Similarity and Classifier Learning

Goal Jointly optimize the empirical goodness of α and K_A from sample \mathcal{S} .

- A is not constrained to be PSD.
- Semi-supervised setting, averaged constraints.
- Solved by alternating optimization steps over lpha and $oldsymbol{\mathsf{A}}$.

Formulation of JSL

$$\min_{\alpha, \mathbf{A}} \sum_{i=1}^{d_l} \left[1 - \sum_{j=1}^{d_u} \alpha_j y_i K_{\mathbf{A}}(\mathbf{x}_i, \mathbf{x}_j) \right]_+ + \lambda ||\mathbf{A} - \mathbf{R}||$$

s.t.
$$\sum_{j=1}^{d_u} |\alpha_j| \leq 1/\gamma$$
 and **A** diagonal, $|A_{kk}| \leq 1$, $1 \leq k \leq d$

Regularizer ||A - R||

• L_1 or L_2 norm

Theorem 2. Using similarity scores to landmarks as features, there

exists a linear separator α that has error ϵ at margin γ .

- Value of $\mathbf{R} \in \mathbb{R}^{d \times d}$
- Identity matrix
- Empirical estimate of Kullback-Leibler divergence

(β, c) -Admissibility

Definition 3. K_A is (β, c) -admissible if, for any matrix norm $||\cdot||$, there exist $\beta, c \in \mathbb{R} \text{ s.t. } \forall x, x', |K_{A}(x, x')| \leq \beta + c \cdot ||x'x^{T}|| \cdot ||A||.$

- $K^1_{\Delta}(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{A} \mathbf{x}'$ is (0, 1)-admissible;
- $K^2_{\mathbf{A}}(\mathbf{x}, \mathbf{x}') = 1 (\mathbf{x} \mathbf{x}')^T \mathbf{A}(\mathbf{x} \mathbf{x}')$ is (1, 4)-admissible.

Rademacher Complexity

Definition 4.
$$\mathcal{R}_n(\mathcal{F}) := \mathbb{E}_{\mathcal{S}} \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \sigma_i f(z_i) \right]$$
, $\forall n$

- ullet ${\mathcal F}$ class of uniformly bounded functions
- $\{\sigma_i: i \in \{1, ..., n\}\}$ independent Rademacher random variables, $\Pr(\sigma_i = 1) = \Pr(\sigma_i = -1) = \frac{1}{2}$

Learning Guarantees for JSL

Theorem 5. Let (A_S, α_S) be the solution to JSL and K_{A_S} a (β, c) -admissible similarity function. Then, for any $0<\delta<1$, with probability at least $1-\delta$, the following holds:

true risk

 (β, c) -admissibility of $K_{\mathbf{A}}$ $X_* = \sup_{\mathbf{x}, \mathbf{x}' \in \mathcal{X}} ||\mathbf{x}'\mathbf{x}^T||_*$

 $\mathcal{E}(\mathbf{A}_{\mathcal{S}}, \alpha_{\mathcal{S}}) - \mathcal{E}_{\mathcal{S}}(\mathbf{A}_{\mathcal{S}}, \alpha_{\mathcal{S}}) \leq 4\mathcal{R}_{d_{I}}\left(\frac{cd}{\gamma}\right) + \left(\frac{\beta + cX_{*}d}{\gamma}\right)\sqrt{\frac{2\ln\frac{1}{\delta}}{d_{I}}}.$

Rademacher complexity empirical risk

Experiments

Average accuracy over all datasets

Method	5 pts./cl.	10 pts./cl.	20 pts./cl.
3NN	64.6±4.6	68.5±5.4	70.4 ± 5.0
LMNN-diag	65.1 ± 5.5	68.2 ± 5.6	71.5 ± 5.2
LMNN	69.4±5.9	70.9 ± 5.3	73.2 ± 5.2
ITML	75.8±4.2	76.5 ± 4.5	76.3 ± 4.8
LRML	74.7 ± 6.2	75.3 ± 5.9	75.8 ± 5.2
SVM	76.4 ± 4.9	76.2 ± 7.0	77.7 ± 6.4
BBS	77.2±7.3	77.0 ± 6.2	77.3 ± 6.3
SLLC	70.5 ± 7.2	75.9 ± 4.5	75.8 ± 4.8
JSL-15	78.9 ±6.7	77.6 ±5.5	77.7 ± 6.4
JSL-all	78.2±7.3	76.6 ± 5.8	78.4 ±6.7

Average accuracy with 5 labeled points per class, 15 unlabeled landmarks

Average accuracy, 15 unlabeled landmarks

Acknowledgments Funding for this project was provided by a grant from Région Rhône-Alpes.

References

[1] M.-F. Balcan, A. Blum, and N. Srebro. Improved guarantees for learning via similarity functions. In COLT, pages 287–298. Omnipress, 2008.

