Introduction to Artificial Intelligence - Homework 5

NE6114011 人工智慧所碩一 楊雲翔

1 程式執行環境及說明

- Python 版本:3.8.15
- 相依套件與版本
 - 1. numpy== 1.23.5
 - 2. matplotlib== 3.6.2
 - scikit-learn ==1.1.3

2 GMM

本次作業的目標是要實現高斯混合模型(Gaussian Mixture Model, GMM),並利用 GMM 進行資料的分群。我採用了 sklearn(scikit-learn)套件所提供的 GaussianMixture 進行實作,並根據作業檔案提供的 input.json 來進行實驗,在該檔案中,共有三組不同的資料集,分別為(x1, y1)、(x2, y2)、(x3. y3),其中 x 均為二維資料 $x=(x_1, x_2)$ 。

實驗

GMM 中有著許多的不同參數可以調整,我藉由計算不同參數組合下分群的準確度,來探討參數對於 結果的好壞

Covariance type and Init params

- ➤ Covariance type 代表 GMM 中共變異數的種類,共有四種選項:
 - 1. full: 每個群都有一個一般的共變異數矩陣
 - 2. tied:各個群共享一個共變異數矩陣
 - 3. diag:每個群都有一個對稱共變異數矩陣
 - 4. spherical: 每個群只有一個共變異數
- Init params 表初始化 weight、mean 與 precision 的方法,共有四種選項:
 - 1. Kmeans: 採用 kmeans
 - 2. Kmeans++: 採用 kmeans++
 - 3. Random: 隨機初始化
 - 4. Random from data: 隨機從資料中選出

Covariance Type	Init Params	(x1,y1)	(x2,y2)	(x3,y3)	Average
		Accuracy(%)	Accuracy(%)	Accuracy(%)	Accuracy(%)
full	kmeans	100	99.6	99.6	99.7
	k-means++	100	99.6	99.6	99.7
	random	100	12.5	12.5	41.7
	random_from_data	54.5	71.2	87.5	71.1
tied	kmeans	100	99.7	99.7	99.8
	k-means++	25.0	12.5	12.5	16.7
	random	25.0	25.0	12.5	20.8
	random_from_data	25.0	12.5	12.5	16.7
diag	kmeans	100	99.7	99.3	99.7
	k-means++	100	99.7	99.3	99.7
	random	25.0	12.5	12.5	16.7
	random_from_data	73.0	79.1	62	71.4
spherical	kmeans	100	82.2	99.2	93.8
	k-means++	100	99.7	99.2	99.6
	random	25.0	25.0	12.5	20.8
	random_from_data	51.2	62.9	55.4	56.5

根據上述實驗結果,當 covariance type 為 tied 且 init params 為 kmeans 時,在三個資料集都有著最高的準確度

• covariance type = 'tied', init params='kmeans'分群結果:

covariance_type='tied', init_params='kmeans' for (x1,y1)

covariance_type='tied', init_params='kmeans' for (x2,y2)

covariance_type='tied', init_params='kmeans' for (x3,y3)

透過觀察(x2, y2)與(x3, y3)的分群分類錯誤的結果可以發現,GMM 分類錯誤的樣本可分為兩類:

- 1. 樣本點位於兩群交界處的樣本點,舉例來說,在(x2, y2)左下方及(x3, y3)右下方的分類錯誤樣本
- 2. 樣本點屬於離群值或異常值·舉例來說·在(x3, y3)左上方·觀察原始分布·可以發現距離紅色 群非常相近的兩點被歸類為橘色群·