Application des règles d'association sur le dataset movielens en utilisant python et les bibliothèque pandas et mixtend

Sanaa CHAOU, MBISD2, ENSAT

preprocesseing de la dataset movielens

Lien du dataset sur kaggle : https://www.kaggle.com/grouplens/movielens-20m-dataset (https://www.kaggle.com/grouplens/movielens-20m-dataset)

Installation du module 'mlxtend' qui permet de calculer les règles d'association*

Entrée [28]:

```
!pip install mlxtend
ap8333956/ecap656638c62tu5aapu64cp33cuae49244/m1xtena-u.18.u-py2.py3-none
-any.whl) (1.3MB)
Requirement already satisfied: joblib>=0.13.2 in c:\programdata\anaconda3
\lib\site-packages (from mlxtend) (0.14.1)
Requirement already satisfied: numpy>=1.16.2 in c:\programdata\anaconda3
\lib\site-packages (from mlxtend) (1.17.4)
Requirement already satisfied: setuptools in c:\programdata\anaconda3\lib
\site-packages (from mlxtend) (41.6.0.post20191030)
Requirement already satisfied: matplotlib>=3.0.0 in c:\programdata\anacon
da3\lib\site-packages (from mlxtend) (3.1.2)
Requirement already satisfied: scikit-learn>=0.20.3 in c:\programdata\ana
conda3\lib\site-packages (from mlxtend) (0.22.2.post1)
Requirement already satisfied: pandas>=0.24.2 in c:\programdata\anaconda3
\lib\site-packages (from mlxtend) (0.25.3)
Requirement already satisfied: scipy>=1.2.1 in c:\programdata\anaconda3\l
ib\site-packages (from mlxtend) (1.4.1)
Requirement already satisfied: python-dateutil>=2.1 in c:\programdata\ana
conda3\lib\site-packages (from matplotlib>=3.0.0->mlxtend) (2.8.1)
Requirement already satisfied: cycler>=0.10 in c:\programdata\anaconda3\l
ib\site-packages (from matplotlib>=3.0.0->mlxtend) (0.10.0)
```

Importation des bibliothèques nécessaires

Entrée [30]:

```
import pandas as pd
from random import sample
from mlxtend.frequent_patterns import apriori, association_rules
import matplotlib.pyplot as plt
```

Chargement des données contenues dans les deux fichiers movie.csv et rating.csv

Entrée [*]:

```
movies = pd.read_csv("../movielens/movie.csv")
rating = pd.read_csv("../movielens/rating.csv")
```

Exploration des données

Entrée [5]:

```
movies.head(10)
```

Out[5]:

	movield	title	genres
0	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy
1	2	Jumanji (1995)	Adventure Children Fantasy
2	3	Grumpier Old Men (1995)	Comedy Romance
3	4	Waiting to Exhale (1995)	Comedy Drama Romance
4	5	Father of the Bride Part II (1995)	Comedy
5	6	Heat (1995)	Action Crime Thriller
6	7	Sabrina (1995)	Comedy Romance
7	8	Tom and Huck (1995)	Adventure Children
8	9	Sudden Death (1995)	Action
9	10	GoldenEye (1995)	Action Adventure Thriller

Le fichiers movies.csv contient les données sur les filmes : id, titre et genres

Entrée [4]:

```
rating.head(10)
```

Out[4]:

	userld	movield	rating	timestamp
0	1	2	3.5	2005-04-02 23:53:47
1	1	29	3.5	2005-04-02 23:31:16
2	1	32	3.5	2005-04-02 23:33:39
3	1	47	3.5	2005-04-02 23:32:07
4	1	50	3.5	2005-04-02 23:29:40
5	1	112	3.5	2004-09-10 03:09:00
6	1	151	4.0	2004-09-10 03:08:54
7	1	223	4.0	2005-04-02 23:46:13
8	1	253	4.0	2005-04-02 23:35:40
9	1	260	4.0	2005-04-02 23:33:46
Ту	pesetting n	nath: 0%		

Le fichier rating csv contient les données sur l'évaluation de chaque utilisateurs sur les différents films

Entrée [79]:

```
# Afficher le nombres de films
movies.movieId.count()
```

Out[79]:

27278

• Remarque : le nombre de films est très grand donc on va se contenter à étudier les règles d'association pour 100 films les plus vus

Afficher le nombres de vues (utilisateurs) pour chaque film afin de réduire nos données cibles et réstreindre l'étude sur les 100 films les plus fréquents (j'ai eu un problème de mémoire en essayant de faire l'étude sur tous les films)

Entrée [44]:

```
most_viewed_movies = rating.groupby('movieId')[['userId']].count().sort_values('userId', as
most_viewed_movies
```

userid

movield							
296	67310						
356	66172						
318	63366						
593	63299						
480	59715						
185	24618						
1961	24591						
1923	24582						
2396	24521						
111	24481						

Convertir la colonne contenant les Ids des films en une list afin de pouvoir l'utiliser dans les conditions de filtre de pandas

Entrée [48]:

```
selected_movies = list(most_viewed_movies.index)
selected_movies
```

```
Out[48]:
```

```
[296]
 356,
 318,
 593,
 480,
 260,
 110,
 589,
 2571,
 527,
 1,
 457,
 150,
 780,
 50,
 1210,
 592,
 1196,
 2858,
 32,
 590,
 1198,
 608,
 47,
 380,
 588,
 377,
 1270,
 858,
 2959,
 2762,
 364,
 344,
 4993,
 648,
 2028,
 1580,
 595,
 500,
 367,
 5952,
 165,
 597,
 1240,
 1136,
 3578,
 153,
 1097,
 1197,
 736,
 34,
 1721,
 7/20-etting math: 0%
 1265,
```

Obtenir une dataFrame contenant juste les lds des utilisateurs qui ont regarder les premiers 100 films précédemment séléctionnés

Typesetting math: 0%

1036, 1193, 2628, 349, 587, 2716, 10, 539, 586, 1073, 1704, 208, 357, 1527, 1089, 253, 1221, 1200, 2997, 3793, 1617, 1213, 329, 39, 292, 293, 454, 6539, 924, 3996, 434, 1206, 2683, 185, 1961, 1923, 2396, 111]

Entrée [49]:

```
selected_rating = rating[rating.movieId.isin(selected_movies)][["userId","movieId"]]
selected_rating
```

Out[49]:

	userld	movield
2	1	32
3	1	47
4	1	50
8	1	253
9	1	260
20000092	138493	4306
20000108	138493	4993
20000130	138493	5952
20000142	138493	6539
20000159	138493	7153

3576663 rows × 2 columns

Convertir les données du films en binaire avec la fonction get_dummies de pandas (One Hot Encoding

Entrée [50]:

```
rated_movies_df = pd.get_dummies(selected_rating.movieId)
rated_movies_df
```

Out[50]:

	1	10	32	34	39	47	50	110	111	150	 2997	3578	3793	3996	4226	4306
2	0	0	1	0	0	0	0	0	0	0	 0	0	0	0	0	0
3	0	0	0	0	0	1	0	0	0	0	 0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	 0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0
20000092	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	1
20000108	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0
20000130	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0
20000142	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0
20000159	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0

3576663 rows × 100 columns

Afin que notre dataset soit utilisable par l'algorithme apriori de python on doit applique l'encodage oneHotEncoding l'encodage oneHotEncoding est applique sur une seule colonne(movield) ce qui fait que le résultat obtenus ne contiendera pas la valeur de userld, donc on doit après l'encodage reconcaténer avec cette colonne à partir du dataFrame source.

Ajout de la colonne userld

Entrée [52]:

oneHotEncoded_df = pd.concat([selected_rating[['userId']], rated_movies_df], axis=1, join=' oneHotEncoded_df

Out[52]:

	userld	1	10	32	34	39	47	50	110	111	 2997	3578	3793	3996	4226	43
2	1	0	0	1	0	0	0	0	0	0	 0	0	0	0	0	
3	1	0	0	0	0	0	1	0	0	0	 0	0	0	0	0	
4	1	0	0	0	0	0	0	1	0	0	 0	0	0	0	0	
8	1	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	
9	1	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	
20000092	138493	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	
20000108	138493	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	
20000130	138493	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	
20000142	138493	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	
20000159	138493	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	

3576663 rows × 101 columns

Faire un groupby par userld pour grouper les films vu par un même utilisateur dans la même ligne

Entrée [53]:

```
data_df = oneHotEncoded_df.groupby(['userId']).sum()
data_df
```

Out[53]:

	1	10	32	34	39	47	50	110	111	150	 2997	3578	3793	3996	4226	4306	4993	5952	6
userld																			
1	0	0	1	0	0	1	1	0	0	0	 0	0	0	1	1	1	1	1	
2	0	0	0	0	0	0	0	1	0	0	 0	0	0	0	0	0	0	0	
3	1	0	1	0	0	0	1	0	0	0	 0	0	0	0	0	0	0	0	
4	0	1	1	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	1	0	1	 0	0	0	0	0	0	0	0	
138489	0	0	0	0	0	0	1	0	0	0	 0	0	0	0	0	0	0	0	
138490	0	0	1	1	0	0	0	1	1	1	 0	0	0	0	0	0	0	0	

Appliquer la règle Apriori

Le module apriori de la bibliothèque mlxtend permet une implémentation rapide et efficace d'apriori.

Entrée [61]:

```
freq_items = apriori(data_df, min_support=0.25, use_colnames=True, verbose=1)
freq_items.head(7)
```

Processing 24 combinations | Sampling itemset size 432

Out[61]:

	support	itemsets
0	0.369677	(1)
1	0.334603	(32)
2	0.321726	(47)
3	0.349674	(50)
4	0.399984	(110)
5	0.355410	(150)
6	0.252477	(165)

Calcule des règles d'association

Entrée [64]:

```
rules = association_rules(freq_items, metric="confidence", min_threshold=0.6)
rules.tail(20)
```

Out[64]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	levera
66	(296, 356)	(318)	0.346252	0.471375	0.256293	0.740192	1.570284	0.0930
67	(296, 318)	(356)	0.340480	0.492249	0.256293	0.752742	1.529191	0.0886
68	(356, 318)	(296)	0.314875	0.500714	0.256293	0.813953	1.625584	0.0986
69	(296, 593)	(318)	0.354933	0.471375	0.264893	0.746317	1.583276	0.0975
70	(296, 318)	(593)	0.340480	0.470877	0.264893	0.777999	1.652235	0.1045
71	(593, 318)	(296)	0.320000	0.500714	0.264893	0.827789	1.653217	0.1046
72	(480, 296)	(356)	0.309452	0.492249	0.268382	0.867280	1.761875	0.1160
73	(480, 356)	(296)	0.347056	0.500714	0.268382	0.773310	1.544414	0.0946
74	(296, 356)	(480)	0.346252	0.444215	0.268382	0.775104	1.744883	0.1145
75	(480)	(296, 356)	0.444215	0.346252	0.268382	0.604170	1.744883	0.1145
76	(296, 593)	(356)	0.354933	0.492249	0.270293	0.761532	1.547048	0.0955
77	(296, 356)	(593)	0.346252	0.470877	0.270293	0.780626	1.657814	0.1072
78	(593, 356)	(296)	0.330021	0.500714	0.270293	0.819020	1.635704	0.1050
79	(480, 356)	(589)	0.347056	0.388639	0.251949	0.725961	1.867957	0.1170
80	(480, 589)	(356)	0.307272	0.492249	0.251949	0.819954	1.665730	0.1006
81	(356, 589)	(480)	0.291189	0.444215	0.251949	0.865241	1.947796	0.1225
82	(589)	(480, 356)	0.388639	0.347056	0.251949	0.648285	1.867957	0.1170
83	(480, 593)	(356)	0.301790	0.492249	0.259388	0.859499	1.746066	0.1108
84	(480, 356)	(593)	0.347056	0.470877	0.259388	0.747396	1.587243	0.0959
85	(593, 356)	(480)	0.330021	0.444215	0.259388	0.785975	1.769355	0.1127

On trouve dans les résultats ci-dessus les règles d'association déduite à partir des données.

Les règles sont composées de deux à trois films sous la forme antécédants => conséquents

- La confiance d'une règle d'association est une valeur de pourcentage qui indique la fréquence à laquelle le groupe conséquent de règle se produit parmi tous les groupes contenant le groupe antécédant de la règle. La valeur de confiance indique la fiabilité de cette règle. Plus la valeur est élevée, plus les éléments du groupe conséquent sont susceptibles d'apparaître dans un groupe si l'on sait que tous les éléments du le groupe antécédant sont contenus dans ce groupe.
- Ainsi, la confiance d'une règle est le pourcentage équivalent de m / n, où les valeurs sont:

m : Le nombre de groupes contenant les conséquants de règle et le co

Typesetting Path de règle joints

n : Le nombre de groupes contenant les antécédants de la règle

localhost:8888/notebooks/Documents/master BISD1/s3 master bioinfo/data mining/tp association arbre decision/preprocessing and associ... 10/12

· La valeur d'élévation d'une règle est définie comme suit:

```
lift = confiance / confiance_attendue
                 = confiance / (s (antécédants) * s (conséquants) / s (antécéda
nts))
                 = confiance / s (concéquants)
```

Entrée [76]:

```
rules[(rules.antecedents.str.len() == 2) & (rules.consequents.str.len() == 2)]
```

Out[76]:

antecedent consequent antecedents consequents support confidence lift leverage convi support support

il n'y a pas de règle d'association avec 2 antécédants, 2 conséquents ((a1, a2) => (c1, c2))

Visualisation des résultats

Support vs Confidence

Entrée [77]:

```
plt.scatter(rules['support'], rules['confidence'], alpha=0.5)
plt.xlabel('support')
plt.ylabel('confidence')
plt.title('Support vs Confidence')
plt.show()
```

