Homework 8

Kevin Guillen

MATH 200 — Algebra I — Fall 2021

May I have my proof for 11.3 graded please, thank you.

Problem 11.1 Prove the statements in Remark 11.2.

Proof. (a) $\alpha \mid \alpha$ and $\alpha \mid 0$.

Proof. Given $a \in R$. We can consider the multiplicative identity $1 \in R$, we know that it satisfies a1 = a. Which by definition means $a \mid a$

Now consider $0 \in R$, by definition it satisfies for $a \in R$, that a0 = 0. Meaning $a \mid 0$.

(b) $0 \mid a$ if and only if a = 0.

Proof. If $0 \mid a$ that means there exists $c \in R$ such that 0c = a, but by definition a must be 0. If a = 0 then from (a) we know $0 \mid 0$.

(c) u | a.

Proof. Because u is a unit of R that means there exists $u^{-1} \in R$. We also know R is closed under multiplication therefore $u^{-1}a \in R$. Now consider the following,

$$\mathfrak{u}(\mathfrak{u}^{-1}\mathfrak{a}) = (\mathfrak{u}\mathfrak{u}^{-1})\mathfrak{a} = 1\mathfrak{a} = \mathfrak{a}$$

therefore $\mathfrak{u} \mid \mathfrak{a}$.

(d) $a \mid u$ if and only if $a \in R^{\times}$.

Proof. Given $a \mid u$, it means there exists $b \in R$ such that ab = u. Since u is a unit there exists $u^{-1} \in R$ such that $uu^{-1} = 1$. Now consider the following,

$$uu^{-1} = 1$$

$$(ab)(ab)^{-1} = 1$$

$$(ab)(b^{-1}a^{-1}f = 1$$

$$aa^{-1} = 1$$

$$1 = 1$$

Therefore if $a \mid u$ then $a \in R^{\times}$.

Given $a \in R^{\times}$, then it follows from (c) that $a \mid u$.

(e) If $a \mid b$ and $b \mid c$ then $a \mid c$.

Proof. Given that $a \mid b$ that means there exists $a' \in R$ such that aa' = b. Now given $b \mid c$ that means there exists $b' \in R$ such that bb' = c. Now consider the following,

$$bb' = c$$

$$aa'b' = c$$

$$a(a'b') = c$$

$$a'b' \in R$$

therefore $a \mid c$.

(f) If $a \mid b_1, \ldots, a \mid b_n$ then $a \mid r_1b_1 + \cdots + r_nb_n$.

Proof. Given that $a \mid b_1, ..., a \mid b_n$, then we know there exists $c_i \in R$ for $i \in \{1, ..., n\}$ such that $ac_i = b_i$. Therfore,

$$r_1b_1 + \cdots + r_nb_n = r_1(ac_1) + \cdots + r_n(ac_n)$$

and by definition of being in a ring we have distribution so therefore,

$$r_1b_1+\cdots+r_nb_n=a(r_1c_1+\cdots+r_nc_n).$$

Because $(r_1c_1 + \cdots + r_nc_n) \in \mathbb{R}$, that means $a \mid r_1b_1 + \cdots + r_nb_n$

(g) $a \mid b$ if and only if $bR \subseteq aR$.

Proof. Given that $a \mid b$, that means there exists $c \in R$ such that ac = b. Therefore for all $r \in R$ we have,

$$\mathbf{br} = (\mathbf{ac})\mathbf{r} = \mathbf{a(cr)}$$
 $\mathbf{cr} = \mathbf{r'} \in \mathbf{R}$ $= \mathbf{ar'} \in \mathbf{aR}$

Therefore $bR \subseteq aR$.

Given that $bR \subseteq aR$, it means that for any $r \in R$ then there exists some $r' \in R$ such that br = ar'. Now consider the case where r = 1, then b = ar' which means $a \mid b$.

(h) \sim is an equivalence relation on R.

Proof. First we see if $a \sim a$ that means $a \mid a$ and $a \mid a$ which follows from (a).

Next we see if $a \sim b$ and $b \sim c$ that means $a \mid b$ and $b \mid c$. From (e) we know then that $a \mid c$. Next we know it means that $b \mid a$ and $c \mid b$, but it also follows from (e) that $c \mid a$. Meaning $a \sim c$.

Finally the symmetric follows trivially since $a \sim b$ implies $a \mid b$ AND $b \mid a$ which means $b \sim a$.

Problem 11.3 Show that the ideal (X) of $\mathbb{Z}[X]$ is a prime ideal but not a maximal ideal.

Proof. Every $f(x) \in \mathbb{Z}[X]$ is of the form $\sum_{k=0}^{n} a_k x^k$ where a_0 is the constant term which is an integer. Now consider the following map,

$$\pi: \mathbb{Z}[X] \to \mathbb{Z}$$
$$f(X) \mapsto f(0) = a_0$$

This simply takes a polynomial and evaluates it at 0 which we know then is a ring homomorphism. This just leaves the constant term, a_0 . Now we want to show that this map is surjective so let $b \in \mathbb{Z}$ be an arbitrary integer. We want to show that there exists a polynomial $f \in \mathbb{Z}[X]$ such that $\pi(f) = f(0) = b$. We know this f exists simply consider f(X) = X + b,

$$f(0) = 0 + b = b.$$

This shows that π is surective meaning $im(\pi) = \mathbb{Z}$. Now if we consider the kernel of π it is simply

$$\ker(\pi) = \{ f \mid f \in \mathbb{Z}[X], f(0) = 0 \}$$

If $f \in \ker(\pi)$ that means then $f \in (X)$. As a matter of fact $\ker(\pi) = (X)$. This is because (X) is all polynomials with integer coefficients where every polynomial's constant term is 0. Therefore by the fundamental theorem of ring homomorphisms $\mathbb{Z}[X]/\ker(\pi) = \mathbb{Z}[X]/(X) \cong \operatorname{im}(\pi) = \mathbb{Z}$. Note though that \mathbb{Z} is an integeral domain, and therefore so is $\mathbb{Z}[X]/(X)$ meaning (X) is a prime ideal. The reason it is not maximal is because \mathbb{Z} is not a field, meaning $\mathbb{Z}[X]/(X)$ is not a field, so (X) cannot be maximal as we've proved in class.

Problem 12.6 Let $R = \mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$. Computer the greatest common divisor of $\alpha = 10$ and $\beta = 1 - 5i$.

Solution. Let's consider the following,

$$10 = (2i)(1-5i)-2i$$
 $N(-2i) = 4 < N(1-5i) = 26$ $1-5i = 2(-2i)+1-i$ $N(1-i) = 2 < N(-2i) = 4$ $-2i = (1-i)(1-i)+0$

Thus 1 - i and its associates are the GCD of α and β

Problem 12.9 Show that the ring $R = \mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b\mathbb{Z}\}$ is a Euclidean domain.

Proof. We already know that this ring forms an integral domain. Now let us consider the map given to us by,

$$N: R \to \mathbb{N}_0$$

$$a + b\sqrt{2} \mapsto |a^2 - 2b^2|$$

First we see that for $0 \in \mathbb{R}$, $N(0) = 0^2 - 2 \cdot 0^2 = 0$. Now we want to show that this norm has a divison algorithm. Let α , $\beta \in \mathbb{Z}[\sqrt{2}]$, where $\beta \neq 0$. Then they are of the form $\alpha = x + y\sqrt{2}$, $\beta = w + z\sqrt{2}$. Consider the following,

$$\frac{\alpha}{\beta} = \frac{x + y\sqrt{2}}{w + z\sqrt{2}} = \frac{xw - 2yz + (yw - xz)\sqrt{2}}{w^2 - 2z^2}.$$

Now let j, $k \in \mathbb{Q}$, where $j = \frac{xw - 2yz}{w^2 - 2z^2}$ and $k = \frac{(yw - xz)}{w^2 - 2z^2}$. Now let $n, m \in \mathbb{Z}$ be the smallest integers such that,

$$|j-n| \leqslant \frac{1}{2}$$
$$|k-m| \leqslant \frac{1}{2}$$

Now let γ be defined as the following,

$$\gamma = (j - n) + (k - m)\sqrt{2} = j + k\sqrt{2} - n - m\sqrt{2} = \frac{\alpha}{\beta} - (n + m\sqrt{2})$$

We then get the following,

$$\gamma = \frac{\alpha}{\beta} - (n + m\sqrt{2})$$

$$\beta \gamma = \alpha - \beta(n + m\sqrt{2})$$

$$\beta \gamma + \beta(n + m\sqrt{2}) = \alpha$$

where $(n + m\sqrt{2})$ and $\beta \gamma \in \mathbb{Z}[\sqrt{2}]$.

Now consider the norm of γ , which will be $|(j-n)^2-2(k-m)^2|$, using the triangle inequality and how we chose n and m we get the following,

$$\left| (j-n)^2 - 2(k-m)^2 \right| \le |j-n|^2 + 2|k-m|^2 \le \frac{1}{4} + 2\frac{1}{4} = \frac{3}{4}$$

This is useuful to us because by definition we need $N(\beta\gamma) < N(\beta)$, where $\beta\gamma$ is the remainder when dividing α by β . We see this is true because consider the following,

$$N(\beta\gamma) = N(\beta)N(\gamma) \leqslant N(\beta)\frac{3}{4}$$

which is obviously less than $N(\beta)$. This means then that $\mathbb{Z}\sqrt{2}$ is indeed a Euclidean Domain since all together we have $\alpha = \beta(n+m\sqrt{2}) + \beta\gamma$ where $N(\beta\gamma) < N(\beta)$, and $(n+m\sqrt{2})$, $\beta\gamma \in \mathbb{Z}[\sqrt{2}]$