Vectors 5

	Constant
	1032 Product
	$\frac{d}{ds} \left[\underline{Q(s)} \times \underline{b(s)} \right] = \frac{d}{ds} \left[\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{s} \right]$
	= d [1(aybz-byaz) + J(azbor-bzasr) + L (axby-boray)
	Consider 2 composent:
	ds (axb) = 1 day bz + ay dbz - dby az - by daz) =1 (day bz - daz by + dbz ay - dby az)
1(without showing full working (reed to inc. J+12)
	we get the formula:
	$\mathcal{L}\left[\underline{a(s)} \times \underline{b(s)}\right] = \left(\frac{da}{ds} \times \underline{b}\right) + \left(\underline{a} \times \frac{db}{ds}\right)$
	Circular Motion
	For circular motion with no torque, show that the radius is perpendieur to the velocity, a= v2/r and
	IVI is constart.
del	airculer so Irl is const.
(6)	no torque so ILI =0.
187	if In = exconstant.
	dt dt - of at - L=mrxv
	1 = 20 dr = 200 = 0 cov-0 (one)
actel	eranon 7
	this is see because
	r? is cont to dr? =0.

dL = d (mrxv) = Brdt [cxx] = (drxv)+(cxdv) 3 $= (V \times V) + (\Gamma \times \alpha) = 0.$.° rxa=0 ° r paralel to a. $\frac{dt}{dt}\left[t,\frac{dt}{dt}\right] = \left(\frac{dt}{dt},\frac{dt}{dt}\right) + \left(t,\frac{dt}{dt}\right) = \lambda_1 + ta = 0$ (LTA) $f \circ \alpha = -V^2 = D \quad \alpha = -\frac{V^2}{\Gamma}$ dv2 = d(vov) = vdv + dvv = 2v.a all vir .º. via . . V = a = 0 V2 = constant IVI = constant . -Keplers Laws I) Planets orbit the sun in ellipses with the Our at one focus II) The area traved out by a planet is a given time is constat. III) The period of revolution of a planet is proportional to the demi-musor axis to the power 3/2. 2nd Law Proof 1x = 0

Of = \frac{1}{2}(\(\text{C}\times\text{Off}\)

A = \frac{1}{2}(\(\text{C}\times\text{Off}\)

A = \frac{1}{2}(\(\text{C}\times\text{A}\times\text{A}\times\text{C}\times\text{A}\ .. A = const. = D area mygood art in equal time

togo on be of me Vector Fields (Intro) V = (3, 34, 32) = 32 2 + 345 + 324 This is know as 'nabla' or 'del'. It we have a function b=b(or,y, z) goin grad(b) = 7b = 0b 2+ 0b3+ 0b 12 If we have a vector a = axi + Bayi + axi $div(\alpha) = \nabla \cdot \alpha = \frac{\partial \alpha_x}{\partial x} + \frac{\partial \alpha_y}{\partial y} + \frac{\partial \alpha_z}{\partial z}$ CUCI (a) = 7x9 = 2 3 12 = $= \left(\frac{\partial \alpha_z}{\partial y} - \frac{\partial \alpha_y}{\partial z}\right) + \left(\frac{\partial \alpha_x}{\partial z} - \frac{\partial \alpha_z}{\partial x}\right) + \left(\frac{\partial \alpha_y}{\partial x} - \frac{\partial \alpha_z}{\partial y}\right) + \left(\frac{\partial \alpha_y}{\partial y} - \frac{\partial \alpha_z}{\partial y}\right) + \left(\frac{\partial \alpha_z}{\partial y} - \frac{\partial \alpha_z}$ William William of Libertin