Prova sem consulta. Duração: 2h.

Prova de Reavaliação Global

- * Não são consideradas as folhas sem identificação. Justifique convenientemente todos os cálculos que efetuar;
- *A desistência só é possível após 1 hora do início da prova;
- * Não é permitida a utilização de máquinas de calcular gráficas nem de microcomputadores.
- **1.** [3,2] Considere a função de campo escalar $f(x, y, z) = e^{x+y} + z\cos(z)$. Calcule a derivada direcional da função no ponto P = (1, -1, 0), segundo a direção definida pelo vetor tangente à curva $\mathbf{r}(t) = (\cos t, -1 + 2\sin t, 0)$, $t \ge 0$, nesse ponto P.
- **2.** [4,0] Seja a superfície definida pela equação $x^2y + xy^2 + z = 1$. Obtenha:
 - a) Um vetor normal à superfície no ponto Q = (1,0,1).
 - b) A equação cartesiana do plano tangente à superfície em Q.
- 3. [3,2] Determine $\oint_C 2ydx + x^2dy$, em que C é a fronteira da região limitada por y = 3x e $y = x^2$.
- **4.** [3,6] Resolva, recorrendo ao método da variação das constantes, a equação diferencial $y'' + y' 2y = 3x + 3e^x$.
- **5. [4,0]** Calcule:
 - a) A função inversa da transformada de Laplace $F(s) = \frac{s+1}{s^2 + 2s + 5} + \frac{e^{-s}}{s^2 + 4}$.
 - b) A solução da equação diferencial y'' 2y' 3y = u(t 2), em que y(0) = 0 e y'(0) = 1, usando transformadas de Laplace.
- **6.** [2,0] Seja S uma superfície em \mathbb{R}^3 definida pela equação cartesiana x = f(y,z). Mostre que a área de S é dada por $\iint_T \sqrt{1 + \left(\frac{\partial f}{\partial y}\right)^2 + \left(\frac{\partial f}{\partial z}\right)^2} \, dy dz$, em que T é a região do plano coordenado yOz onde se projeta S.

(continua no verso)

Prova sem consulta. Duração: 2h.

Prova de Reavaliação Global

f(t)	F(s)
1	$\frac{1}{s}$
e ^{at}	$\frac{1}{s-a}$
t ⁿ	$\frac{n!}{s^{n+1}}$
sen at	$\frac{a}{s^2 + a^2}$
cos at	$\frac{s}{s^2 + a^2}$
$e^{at}f(t)$	F(s-a)
u(t-a)	$\frac{e^{-as}}{s}$
f(t-a)u(t-a)	$e^{-as}F(s)$
f*g	F(s)G(s)

in "Problemas de equações diferenciais ordinárias e transformadas de Laplace", Luísa Madureira, FEUPedições