High level documentation

Full System Design Document: Demand Forecasting & Monitoring System

1. System Overview

This document describes a **Demand Forecasting & Monitoring System** consisting of:

- Backend: FastAPI-based forecasting service with drift detection
- Frontend: Streamlit-based visualization dashboard
- Monitoring: Prometheus metrics + MLflow tracking

The system provides:

V

Real-time demand forecasting

- ✓ Automated drift detection
- ✓ Interactive visualization
- √ Model performance tracking

2. High-Level Architecture

```
graph TD
A[Frontend - Streamlit] \rightarrow |HTTP| B[Backend - FastAPI]
B \rightarrow C[(Model Storage)]
B \rightarrow D[MLflow Tracking]
B \rightarrow E[Prometheus Metrics]
F[User] \rightarrow A
```

2.1 Component Responsibilities

Component	Responsibilities	
Streamlit Frontend	Visualization, simulation control, model initialization	
FastAPI Backend	Forecasting, drift detection, model management	
MLflow	Model versioning, experiment tracking	
Prometheus System/API metrics collection		

3. Backend (FastAPI) Design

3.1 Core Components

1. Model Management

- ForecastingModel Class: Wrapper for Prophet model
 - Handles serialization/deserialization
 - Standardizes prediction interface
- Model Storage: Local files (model.pkl , metadata.json)

2. Drift Detection

- DriftDetector Class:
 - Window-based error monitoring
 - Configurable threshold triggering
 - Stateful error tracking

3. API Endpoints

Endpoint	Method	Description
/model_init	POST	Initialize model with training data
/last_trained_date	GET	Get model metadata
/predict_for_date	GET	Get prediction + trigger drift check

4. Observability

• Prometheus Metrics:

- Endpoint latency/counters
- System resource usage

• MLflow Integration:

- Model versioning
- Drift event logging

3.2 Key Design Decisions

Decision Rationale		Trade-offs	
Global state management	Simple implementation	Not horizontally scalable	
Error-based drift detection	Direct business impact	Less sophisticated than statistical tests	
Immediate retraining	Minimizes prediction degradation	Computationally expensive	

3.3 Data Flow

sequenceDiagram

Frontend→>Backend: POST /model_init (CSV + params)

Backend→>Backend: Train initial model Backend→>MLflow: Log training run

Frontend→>Backend: GET /predict_for_date?date=X

Backend→>DriftDetector: Check for drift

alt Drift detected

Backend→>Backend: Retrain model Backend→>MLflow: Log drift event

end

Backend→>Frontend: Return prediction

4. Frontend (Streamlit) Design

4.1 Core Features

1. Model Initialization

- CSV upload
- Parameter configuration (window size, threshold)

2. Simulation Control

- Start/Pause/Reset
- Scrolling time window

3. Visualization

- · Predicted vs actual values
- · Drift event markers

4. Monitoring

- Drift event counter
- · Current date tracking

4.2 Key Design Patterns

Pattern	Implementation	Purpose	
Session State	st.session_state	Maintain simulation state	
Scrolling Window	Plotly range slider	r Handle long time series	
Reactive Updates	st.rerun()	Live simulation updates	

4.3 UI Components Layout

```
graph LR
A[Sidebar] \rightarrow B[Model Configuration]
C[Main Area] \rightarrow D[Forecast Visualization]
C \rightarrow E[Simulation Controls]
C \rightarrow F[Raw Data Toggle]
```

5. Integration Design

5.1 API Contracts

/model_init (POST)

Request:

- multipart/form-data:
 - file: CSV
 - window_size: int
 - threshold: float

Response:

- {"message": "Model initialized successfully"}

/predict_for_date (GET)

Request:

- Query params:
- current_date: "YYYY-MM-DD"

Response:

```
- {
    "date": "YYYY-MM-DD",
    "predicted": float,
    "actual": float,
    "error": float,
    "drift_detected": bool
```

5.2 Error Handling

Scenario	Frontend Behavior	Backend Response
Model not initialized	Show warning	500 + error message
Invalid date format	Input validation	400 Bad Request
Drift detection	Highlight in red	Include in response

6. Operational View

6.1 Deployment Architecture

```
graph TD
A[Streamlit] \rightarrow B[FastAPI:8000]
B \rightarrow C[Prometheus:8001]
B \rightarrow D[MLflow:5001]
```

6.2 Monitoring Dashboard

Prometheus Metrics to Alert On:

- 1. predict_for_date_request_latency_seconds > 1s
- 2. system_memory_usage_percent > 90%
- 3. api_requests_per_ip_total (abnormal spikes)

6.3 Scaling Considerations

Aspect	Current Limitation	Mitigation Strategy
State management	In-memory globals	Redis-backed storage
Horizontal scaling	Not supported	Stateless redesign
Large datasets	Memory-bound	Chunked processing

7. Future Enhancements

7.1 Short-Term (Next Release)

7.2 Lona-Term			
	Alerting integration (Slack/Email)		
	Prediction confidence intervals		
	Model version comparison		

☐ Batch prediction API

☐ Mul	Itiple model support		
☐ Kub	pernetes deployment		

8. Conclusion

This design provides:

End-to-end forecasting pipeline

- Proactive model monitoring
- ✓ Interactive analysis capabilities

The trade-offs prioritize:

- Rapid iteration (Streamlit + FastAPI)
- Operational simplicity (single-node deployment)
- **Immediate observability** (built-in metrics)

Recommended next steps:

- 1. Implement Prometheus alerting rules
- 2. Add model version rollback capability
- 3. Stress test with large datasets

Design Choices and Rationales for Demand Forecasting System

1. Backend Architecture (FastAPI)

1.1 Framework Selection: FastAPI

Choice:

Built the backend using FastAPI instead of Flask/Django.

Rationale:

- Performance: Native async support (ASGI) handles concurrent prediction requests efficiently
- Type Safety: Automatic request validation via Pydantic models reduces bugs
- API Documentation: Built-in OpenAPI/Swagger UI simplifies integration
- Modern Features: Dependency injection, background tasks ideal for ML services

Trade-offs:

- Less mature ecosystem than Django for admin UIs
- Requires explicit middleware for advanced features

1.2 State Management

Choice:

Used global variables (model , df_global) instead of database/Redis.

Rationale:

- Simplicity: No external dependencies for single-node deployment
- Latency: In-memory access faster than network calls
- **Prototyping**: Faster iteration during development

Trade-offs:

- Not horizontally scalable
- State lost on server restart

Mitigation:

Added model persistence to disk (model.pkl) for recovery.

1.3 Drift Detection Implementation

Choice:

Window-based error thresholding instead of statistical tests (KS, Chi-square).

Rationale:

- Interpretability: Business teams understand "prediction error > X"
- Computational Efficiency: O(1) complexity per update vs O(n) for statistical tests
- **Direct Impact**: Tied directly to model performance degradation

Trade-offs:

- Less sensitive to distribution changes not affecting error
- Requires manual threshold tuning

1.4 Observability Stack

Choices:

- 1. Prometheus for Metrics
 - Endpoint latency
 - System resources
 - Custom business metrics (drift events)

2. MLflow for Model Tracking

- Model versions
- Training parameters
- Drift metadata

Rationale:

- Separation of Concerns: Metrics vs model tracking
- Standard Tools: Widely supported in ML ecosystems
- **Temporal Analysis**: Prometheus excels at time-series data

Alternative Considered:

ELK stack was rejected due to higher operational overhead.

2. Frontend Architecture (Streamlit)

2.1 Framework Selection

Choice:

Streamlit over Dash/Plotly Flask.

Rationale:

- Rapid Prototyping: Build UI with pure Python
- Built-in Components: Sliders, file uploaders, metrics out-of-the-box
- State Management: st.session_state sufficient for this use case
- Visualization: Tight Plotly integration

Trade-offs:

- Less customizable than Dash
- Not ideal for complex SPAs

2.2 Visualization Approach

Choice:

Interactive Plotly chart with:

- Scrolling time window
- Drift event markers
- Unified hover tooltips

Rationale:

- User Experience: Analysts can inspect specific dates
- **Performance**: Partial rendering avoids overloading browser
- Interpretability: Color-coded actual vs predicted

Key Implementation:

```
fig.update_layout(
    xaxis=dict(
    range=[min_date, max_date], # Dynamic window
    rangeslider=dict(visible=True) # Scrollbar
```

```
)
```

2.3 Simulation Control

Choice:

Imperative loop with st.rerun() instead of async callbacks.

Rationale:

- Simplicity: Avoids complex event handling
- Predictable State: Full refresh prevents stale UI
- Progress Visibility: Clear "running" state

Trade-off:

Brief UI flicker during updates.

3. Integration Design

3.1 API Contracts

Choice:

Simple JSON endpoints with minimal nesting.

Example:

```
@app.get("/predict_for_date")
async def predict(current_date: str):
    return {
        "date": "2023-01-01",
        "predicted": 42.1,
        "actual": 40.2,
        "drift_detected": False
}
```

Rationale:

- Frontend Simplicity: Easy to consume in Streamlit
- **Debugging**: Human-readable responses
- Extensibility: Add fields without breaking changes

3.2 Error Handling

Choice:

HTTP status codes + JSON error details.

Implementation:

```
try:
    predict()
except Exception as e:
    return JSONResponse(
        status_code=500,
        content={"error": str(e), "type": type(e).__name__}}
)
```

Rationale:

- Standard Practice: Follows REST conventions
- Frontend Handling: Streamlit can show toast notifications
- Monitoring: Prometheus alerts on 5xx codes

4. Operational Choices

4.1 Deployment Architecture

Choice:

Single-node design with co-located services.

Rationale:

- **Development Speed**: No Kubernetes overhead
- Resource Efficiency: Shared memory for model/data

• **Debugging**: All logs in one place

Future-Proofing:

Code structured to allow:

- Containerization (Docker)
- Separate metric server

4.2 Monitoring Strategy

Choices:

- 1. Process-Level Metrics (CPU/Memory)
- 2. Endpoint-Specific Latency
- 3. Business Metrics (Drift Events)

Rationale:

• Triage Efficiency: Distinguish system vs model issues

• Capacity Planning: Identify resource bottlenecks

• SLA Compliance: Track prediction latency

5. Key Trade-offs Summary

Area	Choice	Rationale	Trade-off
State	In-memory globals	Simplicity	No horizontal scaling
Drift Detection	Error thresholding	Interpretability	Less statistically rigorous
Frontend	Streamlit	Rapid development	Less customizable
Metrics	Prometheus + MLflow	Standard tools	Operational overhead

6. Evolution Path

1. Immediate: Add model version rollback

2. Mid-term: Redis for shared state

3. Long-term: Kubernetes deployment

This architecture prioritizes **developer velocity** and **operational simplicity** while providing clear upgrade paths for production scaling.