K-M Life Table

Huanyu Chen

2023-12-08

```
dat <- read csv("./data/heart failure.csv") %>%
 arrange(TIME) %>% janitor::clean_names()
## Rows: 299 Columns: 13
## -- Column specification -----
## Delimiter: ","
## dbl (13): TIME, Event, Gender, Smoking, Diabetes, BP, Anaemia, Age, Ejection...
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
dat
## # A tibble: 299 x 13
##
      time event gender smoking diabetes
                                       bp anaemia
                                                   age ejection fraction
##
     <dbl> <dbl> <dbl>
                       <dbl>
                               <dbl> <dbl>
                                            <dbl> <dbl>
                                                                 <dbl>
##
                         0
                                 0
                                                                    20
## 2
        6
                   1
                         0
                                  0
                                               0
            1
                                        0
                                                                    38
       7
## 4
       7
            1
                   1
                          0
                                 0
                                       0
                                               1 50
                                                                    20
       8 1 0
8 1 1
                                1 0
## 5
## 6
                         1
                                       1
                                              1 90
                                                                    40
## 7 10 1
                                                                    15
            1 1 1 1 1 1 1 1 1 1 0
                         1
                                  1
                                              1 60
## 8
                                       0
                                                                    60
       10
       10
                                                                    65
## 10
       10
## # i 289 more rows
## # i 4 more variables: sodium <dbl>, creatinine <dbl>, pletelets <dbl>,
```

Fleming-Harrington Survival Estimate

$$\hat{S}_{F}(t) = \begin{cases} \prod_{t_{i} \leq t} exp\left(-\frac{d_{i}}{n_{i}}\right) & \text{if } t > t_{1} \\ 1 & \text{otherwise} \end{cases}$$

cpk <dbl>

```
surv_object <- Surv(time = dat$time, event = dat$event)
# Calculate Fleming-Harrington table</pre>
```

Fleming-Harrington Survival Curve

Kaplan-Meier Survival Estimate

$$\hat{S}_K(t) = \begin{cases} \prod_{t_i \leq t} \left(1 - \frac{d_i}{n_i}\right) & \text{if } t > t_1 \\ 1 & \text{otherwise} \end{cases}$$

$$\text{surv_object } \text{<- Surv(time = dat\$time, event = dat\$event)}$$

$$\text{km_fit <- survfit(surv_object ~ 1)}$$

$$\text{summary(km_fit)}$$

## ##	Call:	survfit	t(formula	a = surv_c	object ~	1)			
##	time	n.risk	n.event	survival	std.err	lower	95% CI	upper	95% CI
##	4	299	1		0.00334		0.990	11	1.000
##	6	298	1	0.993	0.00471		0.984		1.000
##	7	297	2	0.987	0.00664		0.974		1.000
##	8	295	2	0.980	0.00811		0.964		0.996
##	10	293	6	0.960	0.01135		0.938		0.982
##	11	287	2	0.953	0.01222		0.930		0.977
##	13	284	1	0.950	0.01263		0.925		0.975
##	14	283	2		0.01340		0.917		0.970
##	15	281	2	0.936	0.01412		0.909		0.964
##	20	278	2		0.01480		0.901		0.959
##	23	275	2		0.01545		0.893		0.954
##	24	273	1		0.01575		0.889		0.951
##	26	272	3		0.01663		0.877		0.943
##	27	269	1		0.01691		0.873		0.940
##	28	268	2		0.01745		0.866		0.934
##	29	266	1		0.01771		0.862		0.931
##	30	264	4		0.01869		0.846		0.920
##	31	259	1		0.01893		0.843		0.917
##	32	258	1		0.01916		0.839		0.914
##	33	257	2		0.01961		0.831		0.908
##	35	254	1		0.01983		0.827		0.905
##	38 40	253	1 1		0.02004		0.823		0.902
## ##	41	252 251	1		0.02025 0.02046		0.820 0.816		0.899 0.896
##	42	251	1		0.02046		0.812		0.893
##	43	249	3		0.02000		0.812		0.884
##	44	246	1		0.02124		0.797		0.881
##	45	245	1		0.02161		0.793		0.878
##	50	244	1		0.02179		0.789		0.875
##	55	241	1		0.02197		0.786		0.872
##	59	240	1	0.824	0.02215		0.782		0.869
##	60	239	2	0.817	0.02250		0.774		0.863
##	61	236	1	0.814	0.02267		0.771		0.859
##	64	234	1	0.810	0.02283		0.767		0.856
##	65	233	2	0.803	0.02316		0.759		0.850
##	66	231	1	0.800	0.02332		0.755		0.847
##	67	230	1	0.796	0.02348		0.752		0.844
##	72	227	1	0.793	0.02364		0.748		0.841
##	73	225	2		0.02394		0.740		0.834
##	77	217	1		0.02411		0.736		0.831
##	78	216	1		0.02427		0.732		0.828
##	82	207	1		0.02444		0.728		0.824
##	88	194	1		0.02464		0.724		0.821
##	90	189	2		0.02504		0.715		0.813
##	95	180	1		0.02526		0.711		0.810
##	96	175	1		0.02548		0.706		0.806
##	100	173	1		0.02571		0.701		0.802
##	109	159	1		0.02597		0.696		0.798
##	111	155	1	0.740	0.02625		0.691		0.794

```
0.735 0.02652
                                                   0.685
                                                                 0.789
##
     113
            152
##
     115
            150
                       1
                             0.730 0.02679
                                                   0.680
                                                                 0.785
     126
            136
##
                             0.725 0.02713
                                                   0.674
                                                                 0.780
##
     129
            135
                             0.720 0.02746
                                                                 0.776
                       1
                                                   0.668
##
     130
            134
                       1
                             0.714 0.02777
                                                   0.662
                                                                 0.771
##
     135
            132
                       1
                             0.709 0.02808
                                                   0.656
                                                                 0.766
##
     150
            118
                       1
                             0.703 0.02848
                                                   0.649
                                                                 0.761
##
     154
            117
                             0.697 0.02886
                                                   0.643
                                                                 0.756
                       1
##
     162
            116
                       1
                             0.691 0.02923
                                                   0.636
                                                                 0.751
##
     170
            115
                             0.685 0.02959
                                                   0.629
                       1
                                                                 0.745
##
     171
            114
                       1
                             0.679 0.02993
                                                   0.623
                                                                 0.740
##
     172
                       2
                             0.667 0.03059
            113
                                                   0.610
                                                                 0.730
##
     180
            106
                       2
                             0.654 0.03128
                                                   0.596
                                                                 0.719
##
     193
             86
                             0.647 0.03183
                                                   0.587
                                                                 0.712
                       1
##
     196
             83
                       1
                             0.639 0.03238
                                                   0.578
                                                                 0.706
##
     198
             79
                       1
                             0.631 0.03297
                                                   0.569
                                                                 0.699
##
     207
             71
                       1
                             0.622 0.03368
                                                   0.559
                                                                 0.692
                             0.610 0.03503
##
     214
             53
                       1
                                                   0.545
                                                                 0.683
##
     235
             37
                       1
                             0.594 0.03776
                                                   0.524
                                                                 0.673
                             0.576 0.04068
##
     241
             33
                       1
                                                   0.501
                                                                 0.661
```

Life Table

```
surv_object <- Surv(time = dat$time, event = dat$event)</pre>
life_table <- survfit(surv_object ~ 1)</pre>
summary(life table, times = c(1:10)*30) # Monthly intervals
## Call: survfit(formula = surv object ~ 1)
##
##
   time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
      30
            264
                     35
                            0.882 0.0187
                                                  0.846
                                                               0.920
##
      60
            239
                     19
                            0.817 0.0225
                                                  0.774
                                                               0.863
            189
                            0.763 0.0250
                                                  0.715
##
      90
                      15
                                                               0.813
##
     120
            145
                      7
                            0.730 0.0268
                                                  0.680
                                                               0.785
##
     150
            118
                      5
                            0.703 0.0285
                                                  0.649
                                                               0.761
            106
##
     180
                      8
                            0.654 0.0313
                                                  0.596
                                                               0.719
##
     210
             62
                      4
                            0.622 0.0337
                                                  0.559
                                                               0.692
                      2
##
     240
             34
                            0.594 0.0378
                                                  0.524
                                                               0.673
##
     270
                      1
                            0.576 0.0407
                                                  0.501
                                                               0.661
ggsurvplot(km_fit, data = dat, title = "Kaplan-Meier Survival Curve",
           xlab = "Time (months)", ylab = "Survival Probability",
           risk.table = TRUE, risk.table.y.text = FALSE,
           ggtheme = theme_minimal())
```

Kaplan-Meier Survival Curve

Life Table Stratified by Gender

Plot

Kaplan-Meier Survival Curve by Gender

Log Rank Test

We would like to test if there is difference in survival between genders.

```
logrank_test <- survdiff(surv_object ~ gender, data = dat)</pre>
print(logrank_test)
## Call:
## survdiff(formula = surv_object ~ gender, data = dat)
##
              N Observed Expected (0-E)^2/E (0-E)^2/V
## gender=0 105
                       34
                              34.3
                                      0.00254
                                                0.00397
  gender=1 194
                       62
##
                              61.7
                                      0.00141
                                                0.00397
##
    Chisq= 0 on 1 degrees of freedom, p= 0.9
```

With a p-value of 0.9, there is no sufficient evidence to reject the null hypothesis. In this case, there is no difference in survival between the two genders based on this dataset.

Life Table Stratified by Smoking Status

Plot

Kaplan-Meier Survival Curve by Smoking Status

Log Rank Test

We would like to test if there is difference in survival between smoking status.

```
logrank_test <- survdiff(surv_object ~ smoking, data = dat)
print(logrank_test)

## Call:
## survdiff(formula = surv_object ~ smoking, data = dat)
##
## N Observed Expected (O-E)^2/E (O-E)^2/V</pre>
```

```
## smoking=0 203 66 65.8 0.00064 0.00204
## smoking=1 96 30 30.2 0.00139 0.00204
##
## Chisq= 0 on 1 degrees of freedom, p= 1
```

With a p-value of 1, there is no sufficient evidence to reject the null hypothesis. In this case, there is no difference in survival between smokers and non-smokers based on this dataset.