Examen de Teoría de Percepción - Recuperación Segundo Parcial ETSINF, Universitat Politécnica de Valéncia, Junio de 2019

Apellidos:	Nombre:	
Profesor: □Jorge Civera □Carlos Martínez		
Cuestiones (2 puntos, 30 minutos, sin apuntes)		
D Al aplicar funciones kernel:		
A) Se proyecta explícitamente a un espacio alternativo donde las r	nuestras serán lin	ealmente separables

- B) Se proyecta explícitamente a un espacio alternativo, aunque no se garantiza siempre si las muestras serán linealmente separables
- C) No se proyecta explícitamente a un espacio alternativo, aunque sí se garantiza la separabilidad lineal de las muestras en cualquier caso
- D) No se proyecta explícitamente a un espacio alternativo ni se garantiza la separabilidad lineal en todos los casos

C Dada la función kernel $K(\mathbf{x}, \mathbf{y})$, con $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{D \times 1}$, indicar cuál de las siguientes funciones derivadas sería un kernel

- A) $1 + K(\mathbf{x}, \mathbf{y})^{-1}$
- B) $K(\mathbf{x}, \mathbf{y})^2 K(\mathbf{x}, \mathbf{y})$
- C) $2\mathbf{x}^t K(\mathbf{x}, \mathbf{y})\mathbf{y}$
- D) $-K(\mathbf{x}, \mathbf{y})$

B En la estimación de un clasificador probabilístico, habitualmente se asume una distribución de probabilidad en uno de sus factores y se estiman sus parámetros. ¿Sobre qué término se suele hacer?:

- A) Sobre la probabilidad a posteriori P(c|x)
- B) Sobre la probabilidad condicionada p(x|c)
- C) Sobre la probabilidad a priori P(c)
- D) Sobre la probabilidad incondicional p(x)

B $\dot{\iota}$ Cuál de las siguientes es una forma correcta del clasificador de Bernoulli de parámetros $\Theta = \{P(1), \dots, P(C), p_1, \dots, p_C\}$?

- A) $c^*(x) = \arg\max_{c=1,...,C} \prod_{d=1}^D p_{cd}^{x_d} (1 p_{cd})^{(1-x_d)}$
- B) $c^*(x) = \arg\max_{c=1,\dots,C} P(c) \prod_{d=1}^{D} p_{cd}^{x_d} (1 p_{cd})^{(1-x_d)}$
- C) $c^*(x) = \arg\max_{c=1,\dots,C} \log P(c) + \sum_{d=1}^{D} \log p_{cd}^{x_d} + \log(1 p_{cd})^{x_d}$
- D) $c^*(x) = \arg\max_{c=1,\dots,C} \sum_{d=1}^{D} p_{cd}^{x_d} (1 p_{cd})^{(1-x_d)}$

- A Sea una distribución multinomial de parámetro $\mathbf{p} = \left(\frac{1}{4}, \frac{1}{2}, 0, \frac{1}{8}, \frac{1}{8}\right)$. Al aplicar descuento absoluto de valor $\epsilon = \frac{1}{16}$ y distribuir por *back-off*, ¿cuál es el prototipo multinomial resultante?

 - A) $\left(\frac{3}{16}, \frac{7}{16}, \frac{4}{16}, \frac{1}{16}, \frac{1}{16}\right)$ B) $\left(\frac{19}{80}, \frac{39}{80}, \frac{4}{80}, \frac{9}{80}, \frac{9}{80}\right)$ C) $\left(\frac{5}{21}, \frac{9}{21}, \frac{1}{21}, \frac{3}{21}, \frac{3}{21}\right)$
 - D) $\left(\frac{4}{16}, \frac{8}{16}, \frac{1}{16}, \frac{2}{16}, \frac{2}{16}\right)$
- Con un clasificador gaussiano general se obtienen fronteras de decisión de tipo:
 - A) Lineal
 - B) Lineal a trozos
 - C) Cuadráticas
 - D) De otro tipo
- \mid D \mid A diferencia del clasificador de Bayes, un clasificador k-NN:
 - A) Nunca puede ser óptimo
 - B) No puede verse con un equivalente probabilístico
 - C) Se puede aplicar también a datos no vectoriales
 - D) Realiza estimaciones directas de P(c|x)
- A | Si se aplica condensado sobre un conjunto no editado:
 - A) Se pueden mantener prototipos fuera de norma (outliers)
 - B) No se reducirá en ningún caso el conjunto de prototipos
 - C) Se mantiene el coste computacional con respecto al que tendría con un conjunto editado
 - D) No se mantienen los prototipos cercanos a las fronteras de decisión

Examen de Teoría de Percepción - Recuperación Segundo Parcial ETSINF, Universitat Politécnica de Valéncia, Junio de 2019

Apellidos:	Nombre:	

Profesor:

| Jorge Civera | Carlos Martínez

Problemas (4 puntos, 90 minutos, con apuntes)

1. (0.5 puntos) Sea la función $K(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x}^t \cdot \mathbf{y}}{\|\mathbf{x}\| \cdot \|\mathbf{y}\|}$, también conocida como distancia coseno entre dos vectores, y el conjunto de muestras

$$X = \left\{ \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 1 \\ 1 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \end{array} \right), \left(\begin{array}{c} -1 \\ 1 \end{array} \right), \left(\begin{array}{c} -1 \\ 0 \end{array} \right) \right\}$$

- a) Calcula la matriz Gramm \mathbf{K} asociada a las muestras de X con la función $K(\mathbf{x},\mathbf{y})$ (0.3 puntos)
- b) Indica si la función $K(\mathbf{x}, \mathbf{y})$ es un Kernel, justificando la respuesta (0.2 puntos)

Solución:

a)

$$\mathbf{K} = \begin{pmatrix} 1 & \frac{\sqrt{(2)}}{2} & 0 & -\frac{\sqrt{(2)}}{2} & -1\\ \frac{\sqrt{(2)}}{2} & 1 & \frac{\sqrt{(2)}}{2} & 0 & -\frac{\sqrt{(2)}}{2} \\ 0 & \frac{\sqrt{(2)}}{2} & 1 & \frac{\sqrt{(2)}}{2} & 0\\ -\frac{\sqrt{(2)}}{2} & 0 & \frac{\sqrt{(2)}}{2} & 1 & \frac{\sqrt{(2)}}{2} \\ -1 & -\frac{\sqrt{(2)}}{2} & 0 & \frac{\sqrt{(2)}}{2} & 1 \end{pmatrix}$$

- b) Sí es un Kernel, pues es un Kernel polinomial (c = 0, d = 1) multiplicado, en este caso, por una constante c > 0 que el producto de los modulos.
- 2. (1.5 puntos) Se tiene el siguiente conjunto de muestras bidimensionales de dos clases A y B:

Se pide:

- a) Estima los parámetros multinomiales para las clases A y B tomando como entrenamiento el conjunto de muestras presentado ($\mathbf{0.3}$ puntos)
- b) Estima los parámetros de las distribuciones gaussianas para las clases A y B (media μ_c y matriz de covarianzas Σ_c) tomando como entrenamiento el conjunto de muestras presentado, suponiendo que las matrices de covarianzas son distintas para cada clase (0.6 puntos)
- c) Clasifica el dato $\mathbf{x} = (4,3)^t$ con los clasificadores multinomial y gaussiano asociados a los parámetros inferidos en los apartados anteriores (**0.6 puntos**)

Nota: recuerda que la matriz de covarianzas se calcula como $\Sigma_c = \frac{1}{N_c} \sum_{n=1}^{N_c} (\mathbf{x}_n - \mu_c)(\mathbf{x}_n - \mu_c)^t$

Solución:

a)
$$\mathbf{p}_A = (\frac{4}{7}, \frac{3}{7}), \, \mathbf{p}_B = (\frac{1}{3}, \frac{2}{3})$$

b)
$$\mu_A = (4,3)^t$$
, $\mu_B = (\frac{3}{2},3)^t$, $\Sigma_A = I$, $\Sigma_B = \begin{pmatrix} \frac{9}{4} & 0\\ 0 & 5 \end{pmatrix}$

c) Como P(A) = P(B) se puede ignorar en todos los clasificadores. Por tanto, para el clasificador multinomial:

$$g_A(\mathbf{x}) = \left(\frac{4}{7}\right)^4 \left(\frac{3}{7}\right)^3 = \frac{6912}{823543} \approx 0.00839$$
 $g_B(\mathbf{x}) = \left(\frac{1}{3}\right)^4 \left(\frac{2}{3}\right)^3 = \frac{8}{2187} \approx 0.00366$

Con lo que se clasifica en la clase A.

Respecto al clasificador gaussiano, teniendo en cuenta que $\Sigma_A^{-1} = I$ y que $\Sigma_B^{-1} = \begin{pmatrix} \frac{4}{9} & 0 \\ 0 & \frac{1}{5} \end{pmatrix}$:

$$g_{A}(\mathbf{x}) = |\Sigma_{A}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu_{A})^{t} \Sigma_{A}^{-1}(\mathbf{x} - \mu_{A})\right) = \exp\left(-\frac{1}{2}\begin{pmatrix}0 & 0\end{pmatrix}\begin{pmatrix}1 & 0\\ 0 & 1\end{pmatrix}\begin{pmatrix}0\\ 0\end{pmatrix}\right) = \exp(0) = 1$$

$$g_{B}(\mathbf{x}) = |\Sigma_{B}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu_{B})^{t} \Sigma_{B}^{-1}(\mathbf{x} - \mu_{B})\right) = \frac{2}{3\sqrt{5}} \exp\left(-\frac{1}{2}\begin{pmatrix}\frac{5}{2} & 0\end{pmatrix}\begin{pmatrix}\frac{4}{9} & 0\\ 0 & \frac{1}{5}\end{pmatrix}\begin{pmatrix}\frac{5}{2}\\ 0\end{pmatrix}\right) = \frac{2}{3\sqrt{5}} \exp\left(-\frac{1}{2}\begin{pmatrix}\frac{10}{9} & 0\end{pmatrix}\begin{pmatrix}\frac{5}{2}\\ 0\end{pmatrix}\right) = \frac{2}{3\sqrt{5}} \exp\left(-\frac{25}{18}\right) \approx 0.074$$

Con lo que se clasifica en la clase A.

3. (1 punto) Tenemos el siguiente conjunto de prototipos bidimensionales de dos clases A y B:

\mathbf{x}_1	(-1,2)	A	\mathbf{x}_2	(-1,-2)	A
\mathbf{x}_3	(1,1)	В	\mathbf{x}_4	(1,-1)	В
\mathbf{x}_5	(3,1)	В	\mathbf{x}_6	(3,-1)	В
\mathbf{x}_7	(-2,0)	A	\mathbf{x}_8	(1,0)	A

Se pide:

- a) Clasificar la muestra $\mathbf{y} = (0,0)$ empleando distancia euclídea al cuadrado mediante vecino más cercano (NN) y 3 vecinos más cercanos (3-NN) (**0.3 puntos**)
- b) Aplicar una iteración del algoritmo de edición de Wilson en orden ascendente con la misma métrica y NN (0.3 puntos)
- c) Aplicar una iteración del algoritmo de edición de Wilson en orden ascendente con la misma métrica y 3-NN (0.4 puntos)

Nota: en caso de empates de distancias, suponed que la ganadora es la clase correcta.

Solución:

a) Las distancias entre y y los diversos prototipos son:

Por tanto, por NN se clasifica en la clase A (\mathbf{x}_8) mientras que por 3-NN se clasifica en la clase B $(\mathbf{x}_8, \mathbf{x}_3, \mathbf{x}_4)$

b) La matriz de distancias entre los prototipos es la siguiente:

\mathbf{x}_1	\mathbf{x}_1						
\mathbf{x}_2	16	\mathbf{x}_2					
\mathbf{x}_3	5	13	\mathbf{x}_3				
\mathbf{x}_4	13	5	4	\mathbf{x}_4			
\mathbf{x}_5	17	25	4	8	\mathbf{x}_5		
\mathbf{x}_6	25	17	8	4	4	\mathbf{x}_6	
\mathbf{x}_7	5	5	10	10	26	26	\mathbf{x}_7
\mathbf{x}_8	8	8	1	1	5	5	9

Iterando en orden ascendente por NN:

- $\mathbf{x}_1 \to \mathbf{x}_3, \mathbf{x}_7 \to \text{Empate}$, a correcta (A), permanece $(X = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8\})$
- $\mathbf{x}_2 \to \mathbf{x}_4, \mathbf{x}_7 \to \text{Empate}$, a correcta (A), permanece $(X = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8\})$
- $\mathbf{x}_3 \to \mathbf{x}_8 \to \text{incorrecta (A)}$, se elimina $(X = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8\})$
- $\mathbf{x}_4 \to \mathbf{x}_8 \to \text{incorrecta (A)}$, se elimina $(X = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8\})$
- $\mathbf{x}_5 \to \mathbf{x}_6 \to \text{correcta (B)}$, permanece $(X = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8\})$
- $\mathbf{x}_6 \to \mathbf{x}_5 \to \text{correcta (B)}$, permanece $(X = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8\})$
- $\mathbf{x}_7 \to \mathbf{x}_1, \mathbf{x}_2 \to \text{correcta (A)}$, permanece $(X = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8\})$
- $\mathbf{x}_8 \to \mathbf{x}_5, \mathbf{x}_6 \to \text{incorrecta (B)}, \text{ se elimina } (X = {\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7})$

Por tanto, el conjunto final tras la primera iteración sería $X = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7\}$

- c) Iterando en orden ascendente por 3-NN:
 - $\mathbf{x}_1 \to \mathbf{x}_3, \mathbf{x}_7, \mathbf{x}_8 \to \text{correcta (A)}, \text{ permanece } (X = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8\})$
 - $\mathbf{x}_2 \to \mathbf{x}_4, \mathbf{x}_7, \mathbf{x}_8 \to \text{correcta (A), permanece } (X = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8\})$
 - $\mathbf{x}_3 \to \mathbf{x}_8, \mathbf{x}_4, \mathbf{x}_5 \to \text{correcta (B)}, \text{ permanece } (X = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8\})$

•
$$\mathbf{x}_4 \to \mathbf{x}_8, \mathbf{x}_4, \mathbf{x}_6 \to \text{correcta (B)}, \text{ permanece } (X = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8\})$$

•
$$\mathbf{x}_5 \to \mathbf{x}_3, \mathbf{x}_6, \mathbf{x}_8 \to \text{correcta (B)}, \text{ permanece } (X = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8\})$$

•
$$\mathbf{x}_6 \to \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_8 \to \text{correcta (B)}, \text{ permanece } (X = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8\})$$

•
$$\mathbf{x}_7 \to \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_8 \to \text{correcta (A)}, \text{ permanece } (X = {\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8})$$

•
$$\mathbf{x}_8 \to \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5/\mathbf{x}_6 \to \text{incorrecta (B)}, \text{ se elimina } (X = {\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7})$$

Por tanto, el conjunto final tras la primera iteración sería $X = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7\}$

4. (1 punto) Sean las siguientes muestras y clasificadores:

$$\mathbf{x}_1 = (-2, -1) \in +1$$
 $\mathbf{x}_2 = (-1, -2) \in -1$ $\mathbf{x}_3 = (1, -2) \in +1$ $\mathbf{x}_4 = (2, -1) \in -1$

$$g_1(\mathbf{z}) = \begin{cases} -1 & z_1 > 0 \\ +1 & z_1 \le 0 \end{cases} \qquad g_2(\mathbf{z}) = \begin{cases} -1 & z_2 > 0 \\ +1 & z_2 \le 0 \end{cases} \qquad g_3(\mathbf{z}) = \begin{cases} -1 & z_1 - z_2 > 0 \\ +1 & z_1 - z_2 \le 0 \end{cases} \qquad g_4(\mathbf{z}) = \begin{cases} -1 & z_1 + z_2 \le 0 \\ +1 & z_1 + z_2 \ge 0 \end{cases}$$

Aplica una iteración de AdaBoost para ese conjunto de datos y clasificadores indicando:

- a) Clasificador escogido C_1 .
- b) Valor de ϵ_1 .
- c) Valor de α_1 .
- d) Actualización de los pesos para la siguiente iteración $(w^{(2)})$.

Solución:

Tabla de acierto/fallo:

	g_1	g_2	g_3	g_4
\mathbf{x}_1	√	√	√	X
\mathbf{x}_2	X	X	√	√
\mathbf{x}_3	X	√	X	X
\mathbf{x}_4	√	X	√	X

Pesos iniciales:
$$w^{(1)} = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$$
 $C_1 = g_3$

Sumatorio de los $w^{(1)}$ de las muestras incorrectas:

g_1	g_2	g_3	g_4
$\frac{2}{4}$	$\frac{2}{4}$	$\frac{1}{4}$	$\frac{3}{4}$

		-		
α_1	=	$\frac{1}{2}$	ln	3

	$w^{(1)}\exp(-y_i\alpha_1C_1(x_i))$
\mathbf{x}_1	$\frac{1}{4} e^{-\frac{1}{2} \ln 3}$
\mathbf{x}_2	$\frac{1}{4}e^{-\frac{1}{2}\ln 3}$
\mathbf{x}_3	$\frac{1}{4}e^{-\frac{1}{2}\ln 3}$
\mathbf{x}_4	$\frac{1}{4}e^{-\frac{1}{2}\ln 3}$
Suma total	$\frac{\sqrt{3}}{2}$

$$w^{(2)} = (\frac{1}{6}, \frac{1}{6}, \frac{1}{2}, \frac{1}{6})$$