

Introduction

- A Decision Tree is a supervised learning algorithm used for classification and regression.
- Works like a flowchart: root node (best feature to split)→ Internal Node→ Leaf nodes (final output class)

Example of a Decision Tree

The Photo by Photo Author is licensed under CCYYSA.

How It Works

 A decision tree operates as a flowchart-like structure for making predictions or classifications based on a series of decisions inferred from data.

Workflow:

- 1. Start with all data at the root.
- 2. Split using the best attribute.
- 3. Repeat recursively.
- 4. Stop when node is pure(all the values falls under same category) or stopping condition met(as specified in parameters).

Decision Tree in Python

Decision tree in Python is most commonly done using the scikit-learn library

Work-flow:

Import necessary libraries

Load and prepare the data

Train the model

Make predictions and evaluate

Parameters

- Gini Impurity: Probability of misclassification.
- Entropy: Measure of disorder/impurity.
- Log-loss: Reduction in entropy after a split.
- Code: class sklearn.tree.DecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None, ccp_alpha=0.0, monotonic_cst=None)

Gini Impurity Example

- A measure of how often a randomly chosen sample would be incorrectly classified if randomly labeled.
- p_i is the probability of randomly picking an item of class i
- **Formula:** Gini = $1 \Sigma(p_i^2)$.
- Example: 80% Yes, 20% No \rightarrow Gini = 0.32.

Entropy Example

- A measure of uncertainty/disorder in a dataset.
- Formula: Entropy = $\Sigma(p_i \log 2(p_i))$.
- Example: 80% Yes, 20% No \rightarrow Entropy = 0.72.
- 50/50 split \rightarrow Entropy = 1 (max disorder).
- $90/10 \text{ or } 80/20 \rightarrow \text{Entropy} = 0.47 \text{ (min disorder)}$
- 100/0 or $0/100 \rightarrow Entropy = 0$ (Pure node)

Log Loss (Cross-Entropy Loss)

- Log Loss measures the performance of a classification model that outputs probabilities.
- Used in probabilistic classifiers.
- Penalizes wrong predictions with high confidence.
- Example: True = 1, Predicted = 0.1 → High penalty.

Advantages

- Easy to interpret & visualize.
- Works with numerical and categorical data.
- Requires little preprocessing.
- "gini" → faster, works well in practice.
- "entropy" / "log_loss" → use when you want information-gain-based splitting.

Limitations

- Overfitting with deep trees.
- Sensitive to small data changes.
- Biased towards features with many categories.

Conclusion

- Decision trees are simple yet powerful.
- Foundation for ensemble models.
- Balance between interpretability and performance.

Links to refer:

- Python web page
- Web page 2
- <u>Parameters</u>
- <u>Link 4</u>
- YouTube Links

Thank you !!!