

Tema 1 - Trabajando con R

Juan Gabriel Gomila & María Santos

Conociendo R

¿Qué es R?

- · Entorno de programación para el análisis estadístico y gráfico de datos
- Software libre
- · Sintaxis sencilla e intuitiva
- Enorme comunidad de usuarios (Comprehensive R Archive Network, CRAN)
- · ¿Aún tenéis dudas de por qué usarlo? Haz click aquí

¿Qué es RStudio?

En este curso usaremos RStudio como interfaz gráfica de usuario de R para todos los sistemas operativos

Es un entorno integrado para utilizar y programar con R

Cómo instalar R

Si sois de Windows o Mac

- 1. Id a CRAN
- 2. Pulsad sobre el enlace correspondiente a vuestro sistema operativo
- 3. Seguid las instrucciones de instalación correspondientes

Si trabajáis con Ubuntu o Debian

- 1. Abrid la terminal, estando conectados a internet
- 2. Introducid lo siguiente: sudo aptitude install r-base

Cómo instalar RStudio

- 1. Obtener RStudio
- 2. Solo si utilizáis Linux, ejecutad en una terminal la siguiente instrucción para completar la instalación: sudo dpkg -i rstudio-<version>-i386.deb, donde version refiere a la versión concreta que se haya descargado

Trabajando con RStudio

Cómo pedir ayuda

- help(): obtener ayuda por consola
- · ??...: obtener ayuda por consola
- · Pestaña Help de Rstudio
- Cheat Sheet de RStudio
- Buscar en San Google (stackoverflow, R project...)
- Foro del curso

Paquetes: cómo instalarlos y cargarlos

Paquete. Librería con funciones y datos que no necesariamente vienen instaladas de serie

- install.packages("nombre_paquete", dep = TRUE): instala o actualiza un paquete de R
- · library(nombre_del_paquete): carga un paquete ya instalado.

Utilizando R como calculadora

Calculadora básica - Operaciones

Código	Operación
+	Suma
-	Resta
*	Multiplicación
/	División
^	Potencia
%/%	Cociente entero
%%	Resto de división entera

Calculadora básica - Operaciones

Código	Significado
pi	$\underline{\pi}$
Inf	$\underline{\infty}$
NaN	Indeterminación (Not a Number)
NA	Valor desconocido (Not Available)

Calculadora básica - Operaciones

2+2

[1] 4

77%/%5

[1] 15

77%%5

[1] 2

Calculadora básica - Funciones

Código	Función
sqrt(x)	\sqrt{x}
exp(x)	e^x
log(x)	$\ln(x)$
log10(x)	$\log_{10}(x)$
log(x,a)	$\log_a(x)$
abs(x)	$\mid x \mid$

Calculadora básica - Funciones

```
sqrt(9)
[1] 3
log(exp(1))
[1] 1
log(1000,10)
[1] 3
log10(1000)
[1] 3
```

Código	Operación
factorial(x)	$\underline{x!}$
choose(n,m)	$\binom{n}{m}$

- · Número factorial. Se define como número factorial de un número entero positivo n como $n!=n\cdot (n-1)\cdots 2\cdot 1$
- · Coeficiente binomial. Se define el coeficiente binomial de n sobre m como

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$

Triángulo de Pascal.

que se corresponde con ...

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 3 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 3 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 3 \\ 2 \end{pmatrix} \qquad \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 4 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 4 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 4 \\ 2 \end{pmatrix} \qquad \begin{pmatrix} 4 \\ 3 \end{pmatrix} \qquad \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$

```
factorial(5)
[1] 120
choose(4,2)
[1] 6
factorial(6)
[1] 720
factorial(5)*6
[1] 720
```

Trigonometría en radianes

Código	Función
sin(x)	$\sin(x)$
cos(x)	$\cos(x)$
tan(x)	$\tan(x)$
asin(x)	$\arcsin(x)$
acos(x)	$\arccos(x)$
atan(x)	$\arctan(x)$

Trigonometría en radianes

```
sin(pi/2)

[1] 1

cos(pi)

[1] -1

tan(0)

[1] 0
```

Trigonometría en radianes

Circunferencia Goniométrica

Un pequeño adelanto

Números en coma flotante

Código	Función
print(x,n)	Muestra las \boldsymbol{n} cifras significativa del número \boldsymbol{x}
round(x,n)	Redondea a \boldsymbol{n} cifras significativas un resultado o vector numérico \boldsymbol{x}
floor(x)	$\lfloor x floor$, parte entera por defecto de x
<pre>ceiling(x)</pre>	$\lceil x ceil$, parte entera por exceso de x
trunc(x)	Parte entera de x , eliminando la parte decimal

Números en coma flotante

```
print(pi,5)
[1] 3.1416
round(pi,5)
[1] 3.14159
floor(pi)
[1] 3
ceiling(pi)
[1] 4
```

Variables y funciones

- nombre_variable = valor: define una variable con dicho valor
- nombre_función = function(variable){función}: define una función

```
miVariable = 4
doble = function(x){2*x}
doble(miVariable)

[1] 8

cuadrado = function(x){x^2}
cuadrado(miVariable)

[1] 16
```

Código	Función
a+bi	Número complejo
<pre>complex(real=,imaginary=)</pre>	Número complejo en forma binómica
<pre>complex(modulus=,argument=)</pre>	Número complejo en forma polar

Código	Función
<pre>sqrt(as.complex(-x))</pre>	$\sqrt{-x}$
Re(x)	Parte real de \boldsymbol{x}
Im(x)	Parte imaginaria de \boldsymbol{x}
Mod(x)	Módulo de x
Arg(x)	Argumento de x
Conj(x)	Conjugado de \boldsymbol{x}

```
z = 2+3i
z2 = complex(real = 2, imaginary = -3)
Re(z)
[1] 2
Im(z)
[1] 3
Conj(z2)
[1] 2+3i
```

