Symulacja techniki wielodostępu CDMA

Katarzyna Adrabińska

I. WPROWADZENIE

CELEM projektu jest opracowanie demonstratora technik wielodostępu CDMA (code division multiple access). W efekcie miała powstać aplikacja z graficznym interfejsem użytkownika, która pozwoli na obejrzenie kluczowych sygnałów w modulatorze/demodulatorze, symulację transmisji od dowolnej liczby użytkowników przez kanał AWGN oraz demonstrację sposobu odzyskiwania transmisji wybranego użytkownika.

II. INSTRUKCJA KONFIGURACJI

Aby uruchomić aplikację, należy otworzyć plik cdmagui.m za pomocą Matlaba, a następnie nacisnąć przycisk "Run".

III. INSTRUKCJA UŻYTKOWANIA

Okno aplikacji składa się z trzech paneli. Pierwszy z nich, znajdujący się w lewym górnym rogu, służy do wprowadzania sygnału, który ma być transmitowany. Robi się to za pomocą przycisków "0" i "1", dane pojawiają się w polu powyżej.

W pole pod spodem należy wpisać wartość SNR.

W panelu poniżej znajdują się przyciski umożliwiające wyświetlenie odpowiednich przebiegów dla nadajnika, kanału AWGN i odbiornika:

- Przebieg sygnału wyświetla na wykresie dane wprowadzone przez użytkownika
- Sekwencja rozpraszająca pseudolosowa sekwencja służąca do rozpraszania sygnału
- Dodaj sekwencję do danych sekwencja rozpraszająca zostanie dodana do sygnału
- Modulator BPSK przycisk wyświetla zmodulowany sygnał
- Dodaj AWGN do zmodulowanego sygnału zostanie dodany szum AWGN (additive white Gaussian noise)

- Demodulator BPSK wyświetla zdemodulowany sygnał
- Sekwencja rozpraszająca pseudolosowa sekwencja, taka sama jak po stronie nadajnika
- Sygnał sygnał po usunięciu sekwencji rozpraszającej. Jeśli transmisja była poprawna, powinien być taki sam, jak na pierwszym wykresie.
- BER przycisk znajdujący się po lewej stronie od ostatniego wykresu, służy do wyświetlania statystyki BER.

IV. PODSUMOWANIE

Pierwszą funkcjonalnością, którą udało się zrealizować, jest modulator BPSK używający techniki DSSS. Na początku generowana jest ciąg pseudolosowy (ciąg o maksymalnej długości, w którym liczba jedynek jest o 1 większa od liczby zer). W tym przypadku długość rejestru wynosi 5, zbiór połączeń sprzężenia zwrotnego to [5, 2], a stan początkowy to 11111.

Po połączeniu danych z sekwencją całość modulowana jest za pomocą techniki BPSK. Poniżej przedstawiony jest fragment przebiegu przykładowego sygnału w modulatorze:

Kolejną funkcjonalnością jest symulacja transmisji w kanale AWGN. Do zmodulowanego sygnału dodawany jest szum AWGN (additive white Gaussian noise).

W odbiorniku sygnał mnożony jest przez nośną. Następnie w układzie decyzyjnym sygnał zamieniany jest na zera i jedynki.

W kolejnym kroku ponownie generowana jest sekwencja pseudolosowa. Musi być taka sama, jak w odbiorniku, więc długość rejestru, stan początkowy i zbiór połączeń sprzężenia zwrotnego są dokładnie takie, jak w generatorze sekwencji pseudolosowych w nadajniku. Ostatnim krokiem jest usunięcie sekwencji z sygnału, czyli powtórne pomnożenie przez sekwencję. Jeśli wszystko zadziałało poprawnie, otrzymane dane nie będą różniły się od tych nadawanych.

Ostatnią funkcjonalnością jest zliczanie statystyk BER dla losowo wygenerowanej sekwencji danych o długości 10000 i porównanie teoretycznej krzywej błędu z krzywą błędu dla symulacji.

