# DIGS: Deployed Independent Greenhouse Systems

Space Apps Challenge 2013 Jessica King, Michael King, Pat Starace, Jamie Szafran

#### 



# **Lagrange Points**



#### **Basics**

- Modular
- DIGS is center module of rocket
- Circular solar panels expand like Orion
- Thrusters for station keeping propulsion module
- Docking connectors/airlocks





#### **Basics Cont'd**

- Pods launch ready-to-go
- In stasis using chemical agent
- Re-activate on deployment

#### **DIGS** Dimensions

- Total DIGS length: 16m
- Total DIGS diameter: 5m
- Storage module length: 2m
- Processing module length: 2m
- Growing module length: 8m
- Propulsion module length: 4m









# Possible Launch Vehicle Dimensions

- Delta IV Heavy fairing: 19.8m x 5m
- Falcon Heavy fairing: 6.6m x 5.2m (can be requested/ordered longer)
- SLS Heavy-Lift fairing\*: 10m x 7m

#### **Pod Interior**

- Aeroponics on conveyer system
  - multiple layers of conveyors
  - multiple stationary robots
  - enclosed sprayer with water/nutrients

# **Illumination and Energy**



# Radioisotope Thermoelectric Generator (RTG)



# **Normal Operations**

- Optical/Infrared sensors for ripeness
- Freeze-dry edibles
- Override for storage of fresh produce orders

### **Example Industrial Freeze-Dryer**

#### **Heto PowerDry LL1500 Freeze Dryer Specifications**

| Technical Specifications               | Heto PowerDry LL1500 Freeze Dryer           |  |
|----------------------------------------|---------------------------------------------|--|
| Cat. no. 230V/115V                     | 88001500/88001550                           |  |
| Required power supply                  | 230V/50 Hz or 115V/60 Hz                    |  |
| Condenser capacity/ 24 hours           | 1.5 kg                                      |  |
| Total ice capacity                     | 2.6 kg                                      |  |
| Condenser volume                       | 3.8 L                                       |  |
| Condenser diameter x height            | Ø 160 x 190 mm (6.3 x 7.5")                 |  |
| Lowest condenser temperature           | < -110°C                                    |  |
| Refrigerants                           | R507/R1150                                  |  |
| Status indicator (Alarm / Wait / Okay) | Yes                                         |  |
| RS232-C interface                      | Yes (when used with HSC500 PLUS controller) |  |
| Digital temperature display            | Ambient to <-120°C (-184°F)                 |  |
| Ambient temperature                    | +5 to +32°C (+41 to +89.6°F)                |  |
| Noise level                            | <51 dBA                                     |  |
| Ice condenser material                 | AISI 316 Stainless Steel                    |  |
| External dimensions DxWxH              | 480 x 800 x 335 mm (18.9 x 31.5 x 13.2")    |  |
| Weight                                 | 53 kg (116.8 lbs)                           |  |

#### Non-Edible Waste

- Non-edible plant materials have nutrients extracted through enzymatic process
- Remaining material is converted to Biochar
  - Biochar is stored for filtration on module and passing vehicles
  - Biofuels created as by-product of Biochar process

#### **Biochar**



# **Proposed Crops**

- Aloe Vera
- Basil
- Berries
- Broccoli
- Carrots
- Grapes
- Mint
- Onions
- Oregano

- Peas
- Peppers
- Radishes
- Rosemary
- Soy & Legumes
- Stevia
- Sugar Beets
- Tomatoes
- Tubers

# Aeroponics





# **Contingency Plans**

- Redundancy in multiple robots and conveyors
- Failure Level 1
  - Pause crops using chemical similar to existing tech for tissue samples, but on large scale
- Failure Level 2
  - Freeze-dry whole pod

# **Pre-Launch Test Sites**





#### **Future Locations**

- Moon
- Mars
- International Space Station
  - Pods are removable- can be picked up and tugged to another location

#### **Future Pods**

- Larger Crops
  - Bamboo
  - Rubber
  - Rice
  - Wheat
  - Algae
- Animals
  - Tilapia
  - Chickens
  - Ducks



#### **Future Work**

- Chemical to "pause" plants on larger scale
- Chemical to reactivate "paused" plants
- Robotic harvesters
- Satellite communication to L2
- Advances in solar panel technology
- Advances in LED technology

# **Bibliography**

Chappell, Francis A. Cucinotta; Myung-Hee Y. Kim; Lori J.. Evaluating Shielding Approaches to Reduce Space Radiation Cancer Risks. In NASA Center for AeroSpace Information (CASI). 2012.

Santhanam, Parthiban and Gray, Dodd Joseph and Ram, Rajeev J.. Thermoelectrically Pumped Light-Emitting Diodes Operating Above Unity Efficiency. In Phys. Rev. Lett., (108) 9: 097403, American Physical Society. 2012.

Giacomelli, Phil Sadler; Randy Patterson; Giorgio Boscheri; Murat Kacira; Roberto Furfaro; Cesare Lobascio; Matteo Lamantea; Marzia Pirolli; Silvio Rossignoli; L. Grizzaffi; Stephania DePascale; Gene. Bio-regenerative Life Support Systems for Space Surface Applications. In 41st International Conference on Environmental Systems. 2011.

Kruger, Garcia-Perez M.; T. Lewis; C. E.. Methods for Producing Biochar and Advanced Biofuels in Washington State Part 1: Literature Review of Pyrolysis Reactors. In University of Washington Dept. of Ecology. 2011.

Mitchell, Gioia D. Massa; Hyeon-Hye Kim; Raymond M. Wheeler; Cary A.. Plant Productivity in Response to LED Lighting. In Plant Productivity in Response to LED Lighting, (43) 7: 2008.

Thermo Electron Corporation. http://www.thermo.com.cn/Resources/200802/productPDF\_27025.pdf. 2005.

# **Bibliography**

Stutte, G. V. Subbarao; Neil C. Yorio; Raymond M. Wheeler; Gary W.. Plant Growth and Human Life Support for Space Travel. In Handbook of Plant and Crop Physiology. 2001.

J. Clawson; A. Hoehn; L. Stodieck; P. Todd; et al. Re-examining Aeroponics for Spaceflight Plant Growth . In SAE Technical Paper 2000-01-2507. 2000.

Garland, J L and Alazraki, M P and Atkinson, C F and Finger, B W. Evaluating the feasibility of biological waste processing for long term space missions. In Acta Hortic, (469) 71-78. 1998.

McKeehen, J.D. and Mitchell, C.A. and Wheeler, R.M. and Bugbee, B. and Nielsen, S.S.. Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato. In Advances in Space Research, (18) 4-5: 73-83. 1996.

Townsend, L W and Nealy, J E and Wilson, J W and Atwell, W. Large solar flare radiation shielding requirements for manned interplanetary missions. In J Spacecr Rockets, (26) 2: 126-128. 1989.

Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil. Biochar Internaional. http://www.Biochar-international.org/sites/default/files/IBI\_Biochar\_Standards\_V1.1.pdf. 2013

# Bibliography - Websites

The Boeing Company. Defense, Space, and Security: Delta IV Heavy. http://www.boeing.com/boeing/defense-space/space/delta/delta4/delta4.page. 2013.

Chris Bergin,. "NASA interested in payload fairing options for multi-mission SLS capability." NASA spaceflight Now. http://www.nasaspaceflight.com/2012/11/nasa-payload-fairings-options-multi-mission-sls-capability/. 2012.

Space Exploration Technologies Corporation. Falcon Heavy Overview. http://www.spacex.com/falcon\_heavy.php 2013.