Exploiting Human-Generated Text for Trend Mining

Vasileios Lampos

July, 2013

Outline

- ⊥ Motivation, Aims [Facts, Questions]
- ⊥ Data
- **⊢** Nowcasting Events
- **⊢** Extracting Mood Patterns
- **⊢** Inferring Voting Intention
- **⊨** Conclusions

Facts

We started to work on those ideas back in 2008, when...

- Web contained 1 trillion unique pages (Google)
- Social Networks were rising, e.g.
 - \circ Facebook: 100m (2008) \rightarrow >1.11 billion active users (March, 2013)
 - o *Twitter*: 6m (2008) \rightarrow **554m** active users (July, 2013)
- New technologies to handle Big Data (e.g., Map-Reduce)
- User behaviour was changing
 - Socialising via the Web
 - Giving up privacy (Debatin et al., 2009)

General questions/aims

- Does human-generated text posted on web platforms (or elsewhere) contain useful information?
- How can we extract this information...
 - ... **automatically**? Therefore, not we, but a **machine**.
- Practical / real-life applications?
- Can those large samples of human input assist studies in other scientific fields?
 - Social Sciences, Psychology, Epidemiology

The Data (1/3) – Why Twitter?

Twitter...

- has a lot of content that is publicly accessible
- provides a well-documented API for several forms of data collection
- contains opinions and personal statements on various domains
- is 'connected' with current affairs (usually in real-time)
- includes **geo-located** content
- offers the option for personalised, per-user modelling

The Data (2/3)

What does a @tweet look like?

Figure 1: Some biased and anonymised examples of tweets (limit of 140 characters/tweet, # denotes a topic)

Why do I feel so happy today hihi.

Bedtimeeee, good night. Yey thank You Lord for everything. Answered prayer ♥

- ♣ Reply 🔁 Retweet ★ Favorite
 - (a) (user will remain anonymous)

another demo covered by citizens today in Thessaloniki int'l fair. Citizen journalism on a speed rise in #Greece. check #deth and #rbnews

- Reply 13 Retweet * Favorite
 - (c) citizen journalism

RT if you love Justin Bieber. Delete ur account if you don't.

(b) they live around us

i think i have the flu but i still look fabulous

- Reply 🔁 Retweet 🛊 Favorite
 - (d) flu attitude

The Data (3/3)

Data Collection & Preprocessing

- The easiest part of the process...
 - \circ **not true!** \to Storage space, crawler implementation, parallel data processing, adapt to new technologies
- Data collected via Twitter's Search API:
 - collective sampling
 - tweets geo-located in 54 urban centres in the UK
 - periodical crawling (every 3 or 5 minutes per urban centre)
- Data collected via Twitter's REST API:
 - user-centric sampling
 - preprocessing to approximate user's location (city & country)
 - o ... or manual user selection from domain experts
 - get their latest tweets (3,000 or more)
- Several forms of ground truth (flu/rainfall rates, polls)

Nowcasting Events from the Social Web

'Nowcasting'?

We do not predict the future, but ${\it infer\ the\ present}-\delta$ ${\it i.e.}\ \ {\it the\ very\ recent\ past}$

Figure 2: Nowcasting the magnitude of an event (ε) emerging in the real world from Web information

Our case studies: nowcasting (a) flu rates & (b) rainfall rates (?!)

What do we get in the end?

This is a **regression** problem

i.e. \forall time interval i we aim to infer $y_i \in \mathbb{R}$ using text input $\mathbf{x}_i \in \mathbb{R}^n$

Figure 3: Inferred rainfall rates for Bristol, UK (October, 2009)

Methodology (1/5) — Text in Vector Space

Candidate features (*n*-grams): $C = \{c_i\}$

Set of **Twitter posts** for a time interval u: $\mathcal{P}^{(u)} = \{p_j\}$

Frequency of c_i in p_i :

$$g(c_i, p_j) = \begin{cases} \varphi & \text{if } c_i \in p_j, \\ 0 & \text{otherwise.} \end{cases}$$

– g Boolean, maximum value for φ is 1 –

Score of c_i in $\mathcal{P}^{(u)}$:

$$s\left(c_{i},\mathcal{P}^{(u)}\right) = \frac{\sum\limits_{j=1}^{|\mathcal{P}^{(u)}|} g(c_{i},p_{j})}{|\mathcal{P}^{(u)}|}$$

Methodology (2/5)

Set of **time intervals**: $U = \{u_k\} \sim 1$ hour, 1 day, ...

Time series of candidate features scores:

$$\textbf{\textit{X}}^{(\mathcal{U})} = \left[\textbf{\textit{x}}^{(u_1)} \ ... \ \textbf{\textit{x}}^{(u_{|\mathcal{U}|})} \right]^\mathsf{T},$$

where

$$oldsymbol{x}^{(u_i)} = \left[s\left(c_1, \mathcal{P}^{(u_i)}
ight) \; ... \; s\left(c_{|\mathcal{C}|}, \mathcal{P}^{(u_i)}
ight)
ight]^\mathsf{T}$$

Target variable (event):

$$oldsymbol{y}^{(\mathcal{U})} = egin{bmatrix} y_1 & \dots & y_{|\mathcal{U}|} \end{bmatrix}^\mathsf{T}$$

Methodology (3/5) — Feature selection

Solve the following **optimisation problem**:

• Least Absolute Shrinkage and Selection Operator (LASSO)

$$\underset{\mathbf{w}}{\operatorname{argmin}} \| X^{(\mathcal{U})} \mathbf{w} - \mathbf{y}^{(\mathcal{U})} \|_{\ell_2}^2 + \lambda \| \mathbf{w} \|_{\ell_1}$$

(Tibshirani, 1996)

- Expect a **sparse w** (feature selection)
- Least Angle Regression (LARS) computes entire regularisation path (\mathbf{w} 's for different values of λ) (Efron et al., 2004)

Methodology (4/5)

LASSO is model-inconsistent:

- inferred sparsity pattern may deviate from the true model, e.g., when predictors are highly correlated (Zhao and Yu, 2006)
- bootstrap [?] LASSO (Bolasso) performs a more robust feature selection (Bach, 2008)
 ?
 - o in each bootstrap, input space is sampled with replacement
 - apply LASSO (LARS) to select features
 - select features with nonzero weights in all bootstraps
- better alternative soft-Bolasso:
 - o a less strict feature selection
 - \circ select features with nonzero weights in p% of bootstraps
 - (learn p using a separate validation set)
- weights of selected features determined via OLS regression

Methodology (5/5) — Simplified summary

Observations: $X \in \mathbb{R}^{m \times n}$ (m time intervals, n features)

Response variable: $y \in \mathbb{R}^m$

For i=1 to number of bootstraps Form $X_i\subset X$ by sampling X with replacement Solve LASSO for X_i and ${\bf y}$, i.e. learn ${\bf w}_i\in \mathbb{R}^n$ Get the $k\leq n$ features with nonzero weights End For

Select the $v \leq n$ features with nonzero weight in p% of the bootstraps Learn their weights with OLS regression on $X^{(v)} \in \mathbb{R}^{m \times v}$ and \mathbf{y}

How do we form candidate features?

- Commonly formed by indexing the entire corpus (Manning, Raghavan and Schütze, 2008)
- We extract them from Wikipedia, Google Search results, Public Authority websites (e.g., NHS)

Why?

o reduce dimensionality to bound the error of LASSO

$$\mathcal{L}(\mathbf{w}) \leq \mathcal{L}(\hat{\mathbf{w}}) + \mathcal{Q}$$
, with $\mathcal{Q} \sim \min\left\{\frac{W_1^2}{N} + \frac{p}{N}, \frac{W_1^2}{N} + \frac{W_1}{\sqrt{N}}\right\}$

p candidate features, N samples, empirical loss $\mathcal{L}(\hat{\boldsymbol{w}})$ and

$$\|\hat{m{w}}\|_{\ell_1} \leq W_1$$
 (Bartlett, Mendelson and Neeman, 2011)

Harry Potter Effect!

The 'Harry Potter' effect (1/2)

Figure 4: Events co-occurring (correlated) with the inference target may affect feature selection, especially when the sample size is small.

(Lampos, 2012a)

The 'Harry Potter' effect (2/2)

Table 1: Top 1-grams correlated with flu rates in England/Wales (06–12/2009)

1-gram	Event	Corr. Coef.	
latitud	Latitude Festival	0.9367	
flu	Flu epidemic	0.9344	
swine	A	0.9212	
harri	Harry Potter Movie	0.9112	
slytherin	A	0.9094	
potter	A	0.8972	
benicassim	Benicàssim Festival	0.8966	
graduat	Graduation (?)	0.8965	
dumbledor	Harry Potter Movie	0.8870	
hogwart	A	0.8852	
quarantin	Flu epidemic	0.8822	
gryffindor	Harry Potter Movie	0.8813	
ravenclaw	A	0.8738	
princ	A	0.8635	
swineflu	Flu epidemic	0.8633	
ginni	Harry Potter Movie	0.8620	
weaslei	A	0.8581	
hermion	A	0.8540	
draco	A	0.8533	

Solution: ground truth with some degree of variability

(Lampos, 2012a)

About n-grams

1-grams

- decent (dense) representation in the Twitter corpus
- unclear semantic interpretation
 Example: "I am not sick. But I don't feel great either!"

2-grams

- very sparse representation in tweets
- sometimes clearer semantic interpretation

Experimental process indicated that...

a hybrid combination* of 1-grams and 2-grams delivers the best inference performance

^{*} refer to (Lampos, 2012a)

Flu rates – Example of selected features

Figure 5: Font size is proportional to the weight of each feature; flipped n-grams are negatively weighted. All words are stemmed (Porter, 1980).

(Lampos and Cristianini, 2012)

Rainfall rates – Example of selected features

Figure 6: Font size is proportional to the weight of each feature; flipped n-grams are negatively weighted. All words are stemmed (Porter, 1980).

(Lampos and Cristianini, 2012)

Examples of inferences

Figure 7: Examples of flu and rainfall rates **inferences** from Twitter content (Lampos and Cristianini, 2012)

Performance figures

Table 2: RMSE for flu rates inference (5-fold cross validation), 50m tweets, 21/06/2009-19/04/2010

Method	1-grams	2-grams	Hybrid	
Baseline*	12.44±2.37	13.81±3.29	11.62±1.58	
Bolasso	11.14±2.35	12.64±2.57	$10.57{\pm}2.2$	
CART ensemble**	9.63 ±5.21	13.13±4.72	9.4 ±4.21	

Table 3: RMSE (in mm) for rainfall rates inference (6-fold cross validation), 8.5m tweets, 01/07/2009-30/06/2010

Method	1-grams	2-grams	Hybrid	
Baseline*	2.91±0.6	3.1±0.57	4.39±2.99	
Bolasso	2.73±0.65	2.95±0.55	2.60 ±0.68	
CART ensemble**	2.71 ±0.69	2.72±0.72	2.64±0.63	

^{*} As implemented in (Ginsberg et al., 2009)

^{**} Classification and Regression Tree (Breiman et al., 1984) & (Sutton, 2005)

Flu Detector

URL: http://geopatterns.enm.bris.ac.uk/epidemics

Figure 8: Flu Detector uses the content of Twitter to nowcast flu rates in several UK regions

(Lampos, De Bie and Cristianini, 2010)

Extracting Mood Patterns from Human-Generated Content

Computing a mood score

Table 4: Mood terms from WordNet Affect

Fear	Sadness	Joy	Anger
afraid	depressed	admire	angry
fearful	discouraged	cheerful	despise
frighten	disheartened	enjoy	enviously
horrible	dysphoria	enthousiastic	harassed
panic	gloomy	exciting	irritate
	(115)		
(92 terms)	(115 terms)	(224 terms)	(146 terms)

Mood score computation for a time interval d using n mood terms

$$\mathsf{ms}_d = \frac{1}{n} \sum_{i=1}^n \frac{c_i^{(t_d)}}{N(t_d)}$$

 $c_i^{(t_d)}$: count of term i in the Twitter corpus of day d $N(t_d)$: number of tweets for day d

Using the sample of d days, compute a standardised mood score:

$$ext{ms}_d^{ ext{std}} = rac{ ext{ms}_d - \mu_{ ext{ms}}}{\sigma_{ ext{ms}}}$$

The mood of the nation (1/5)

Figure 9: Daily time series (actual & their 14-point moving average) for the mood of Joy based on Twitter content geo-located in the UK

(Lansdall-Welfare, Lampos and Cristianini, 2012a&b)

The mood of the nation (2/5)

Figure 10: Daily time series (actual & their 14-point moving average) for the mood of $\bf Anger$ based on Twitter content geo-located in the $\bf UK$

(Lansdall-Welfare, Lampos and Cristianini, 2012a&b)

The mood of the nation (3/5)

Window of 100 days: 50 before & after the point of interest

$$\mathsf{ms}^{\mathsf{std}}_i = \mu\left(\mathsf{ms}^{\mathsf{std}}_{i+1 o i+50}
ight) - \mu\left(\mathsf{ms}^{\mathsf{std}}_{i-50 o i-1}
ight)$$

Figure 11: Change point detection using a 100-day moving window

(Lansdall-Welfare, Lampos and Cristianini, 2012a)

The mood of the nation (4/5)

Figure 12: Projections of 4-dimensional mood score signals (joy, sadness, anger and fear) on their top-2 principal components (PCA) – Twitter content from 2011

Cluster I New Year (1), Valentine's (45), Christmas Eve (358), New Year's Eve (365)

Cluster II

O.B. Laden's death (122), Winehouse's death + Breivik (204), UK riots (221)

(Lampos, 2012a)

The mood of the nation (5/5)

URL: http://geopatterns.enm.bris.ac.uk/mood

Figure 13: Mood of the Nation uses the content of Twitter to nowcast mood rates in several UK regions

(Lampos, 2012a)

Circadian mood patterns (1/3)

Compute **24-h** mood score patterns

Mood score computation for a **time interval** u = 24hours using n **mood terms** (WordNet) and a sample of D **days**:

$$\mathcal{M}_s(u) = \frac{1}{|D|} \sum_{j=1}^{|D|} \left(\frac{1}{n} \sum_{i=1}^n sf_i^{(t_{j,u})} \right)$$

$$sf_i^{(t_{d,u})} = \frac{f_i^{(t_{d,u})} - \bar{f}_i}{\sigma_{f_i}}, \ i \in \{1, ..., n\}.$$

 $f_i^{(t_{d,u})}$: normalised frequency of a mood term i during time interval u in day $d \in D$

Circadian mood patterns (2/3)

Figure 14: Circadian (24-hour) mood patterns based on UK Twitter content

Circadian mood patterns (3/3)

(c) Joy

Figure 15: Autocorrelation of circadian mood patterns based on hourly lags revealing daily and weekly periodicities

Further analysis available in (Lampos, Lansdall-Welfare, Araya and Cristianini, 2013)

(d) Anger

Emotion in Books

Input: Google Ngram corpus of \sim 5m digitised books (Michel et al., 2010)

Tool: WordNet Affect (Strapparava and Valitutti, 2004)

Figure 16: Emotion trends in 20th century books

through time

(Acerbi, Lampos, Garnett and Bentley, 2013)

Inferring Voting Intention from Social Media Content

... and a new way for modelling text regression

Motivations and Aims

- Social Media contain a vast amount of information about various topics (health, politics, finance)
- This information (X) can be used to assist **predictions** (y)
- $f: X \rightarrow y$, f usually formulates a **linear** regression task
- X accounts only for word frequencies; can we incorporate user information as well?
- Could we also exploit the statistical information held in multiple response variables?

Data Sets

UK case study

- 60m tweets by 42K users from 30/04/2010 to 13/02/2012
- Random selection and distribution of geo-located users proportional to regional population figures
- Main language: **English**
- 240 unique voting intention polls from YouGov
 - percentages for Conservatives (CON), Labour Party (LAB) and Liberal Democrats (LIB)

Austrian case study

- **800K tweets** by **1.1K users** from 25/01 to 01/12/2012
- Users manually selected by Austrian political analysts
- Main language: German
- 98 unique voting intention polls from various pollsters
 - percentages for Social Democratic Party (SPÖ), People's Party (ÖVP), Freedom Party (FPÖ) and Green Alternative Party (GRÜ)

The Bilinear Model (1/2)

The main idea is simple:

$$f(X) = \mathbf{u}^{\mathsf{T}} X \mathbf{w} + \beta$$

 $X \in \mathbb{R}^{m \times p}$: matrix of user-word frequencies $\emph{\textbf{u}}, \ \emph{\textbf{w}}$: user and word weights

Our original bilinear text regression model:

$$\{\boldsymbol{w}^*, \boldsymbol{u}^*, \boldsymbol{\beta}^*\} = \underset{\boldsymbol{w}, \boldsymbol{u}, \boldsymbol{\beta}}{\operatorname{argmin}} \sum_{i=1}^{n} \left(\boldsymbol{u}^{\mathsf{T}} \mathcal{Q}_{i} \boldsymbol{w} + \boldsymbol{\beta} - y_{i} \right)^{2} + \psi(\boldsymbol{w}, \rho_{1}) + \psi(\boldsymbol{u}, \rho_{2})$$

 $\mathcal{Q}_i \hbox{:} \ X \ \text{for time instance} \ i, \ \pmb{y} \in \mathbb{R}^n \hbox{:} \ \text{response variable (voting intention)} \\ \pmb{\pmb{w}} \in \mathbb{R}^m, \ \pmb{\pmb{u}} \in \mathbb{R}^p \hbox{:} \ \text{word and user weights,} \ \beta \in \mathbb{R} \hbox{:} \ \text{bias} \\ \psi(\cdot) \hbox{:} \ \text{a regularisation function}$

Elastic Net (Zhou and Hastie, 2005) for $\psi(\cdot)$

→ Bilinear Elastic Net (**BEN**) (Lampos, Preoţiuc-Pietro and Cohn, 2013)

The Bilinear Model – Multi-Task Learning (2/2)

Apply ℓ_1/ℓ_2 regulariser (Argyriou, Evgeniou and Pontil, 2008) Extends the notion of **Group LASSO** (Yuan and Lin, 2006) for a τ -dimensional ${\bf y}$

Bilinear Group ℓ_1/ℓ_2 (**BGL**)

$$\begin{split} \{W^*, U^*, \pmb{\beta}^*\} &= \operatorname*{argmin}_{W,U,\pmb{\beta}} \sum_{t=1}^{\tau} \sum_{i=1}^{n} \left(\pmb{u}_t^\mathsf{T} \mathcal{Q}_i \pmb{w}_t + \beta_t - y_{ti} \right)^2 \\ &+ \lambda_1 \sum_{j=1}^{m} \|W_j\|_2 + \lambda_2 \sum_{k=1}^{p} \|U_k\|_2, \end{split}$$

 $W = [\pmb{w}_1 \ ... \ \pmb{w}_{ au}]$: words weight matrix $-\pmb{w}_t$ refers to t-th political entity $U = [\pmb{u}_1 \ ... \ \pmb{u}_{ au}]$: users weight matrix W_j , U_j : j-th rows of weight matrices W and U respectively $\pmb{\beta} \in \mathbb{R}^{\tau}$: bias term per task

(Lampos, Preoţiuc-Pietro and Cohn, 2013)

Evaluation – Performance Tables (1/2)

Table 5: UK case study — Average RMSEs representing the error of the inferred voting intention percentage for a 10-step validation process

	CON	LAB	LIB	μ
B_{μ}	2.272	1.663	1.136	1.69
B_{last}	2	2.074	1.095	1.723
LEN	3.845	2.912	2.445	3.067
BEN	1.939	1.644	1.136	1.573
BGL	1.785	1.595	1.054	1.478

 Table 6: Austrian case study

	SPÖ	ÖVP	FPÖ	GRÜ	μ
B_{μ}	1.535	1.373	3.3	1.197	1.851
B_{last}	1.148	1.556	1.639	1.536	1.47
LEN	1.291	1.286	2.039	1.152	1.442
BEN	1.392	1.31	2.89	1.205	1.699
BGL	1.619	1.005	1.757	1.374	1.439

Evaluation (2/3)

Figure 17: UK case study — 50 consecutive poll predictions

Evaluation (3/3)

Figure 18: Austrian case study — 50 consecutive poll predictions

Conclusions

- Social Media hold valuable information
- We can develop methods to extract portions of this information automatically
 - o detect, quantify, nowcast events (examples of flu and rainfall rates)
 - extract collective mood patterns (we can do this for books too!)
 - o model other domains (such as politics)
- Different types of information (word frequencies, user accounts)
 can be fused for improved inference performance
- Side effect: user privacy

Significant collaborators...

Prof. Nello Cristianini, University of Bristol (*Artificial Intelligence*)

Prof. Alexander Bentley, University of Bristol (*Anthropology*)

Dr. Trevor Cohn, University of Sheffield (*Natural Language Processing*)

Dr. Alberto Acerbi, University of Bristol (Anthropology)

Daniel Preoțiuc-Pietro, University of Sheffield (Computer Science)

Last Slide!

The end.

Any questions?

Download the slides from

http://www.lampos.net/research/presentations-and-posters

References

- Acerbi, Lampos, Garnett and Bentley. The Expression of Emotions in 20th Century Books. PLoS ONE, 2013.
- Argyriou, Evgeniou and Pontil. Convex multi-task feature learning. Machine Learning, 2008.
- Bach. Bolasso: Model Consistent Lasso Estimation through the Bootstrap. ICML, 2008.
- Bartlett, Mendelson and Neeman. L1-regularized linear regression: persistence and oracle inequalities. PTRF, 2011.
- Debatin, Lovejoy, Horn and Hughes. Facebook and Online Privacy: Attitudes, Behaviors, and Unintended Consequences. JCMC, 2009.
- Efron et al.. Least Angle Regression. The Annals of Statistics, 2004.
- Ginsberg et al. Detecting influenza epidemics using search engine query data. Nature, 2009.
- Lampos and Cristianini. Tracking the flu pandemic by monitoring the Social Web. CIP, 2010.
- Lampos, De Bie and Cristianini. Flu Detector Tracking Epidemics on Twitter. ECML PKDD, 2010.
- Lampos and Cristianini. Nowcasting Events from the Social Web with Statistical Learning. ACM TIST, 2012.
- Lampos. Detecting Events and Patterns in Large-Scale User Generated Textual Streams with Statistical Learning Methods. Ph.D. Thesis, University of Bristol, 2012.(a)
- Lampos. On voting intentions inference from Twitter content: a case study on UK 2010 General Election.
 CoRR, 2012.(b)
- Lampos, Preoţiuc-Pietro and Cohn. A user-centric model of voting intention from Social Media. ACL, 2013.
- Lampos, Lansdall-Welfare, Araya and Cristianini. Analysing Mood Patterns in the United Kingdom through Twitter Content. CoRR, 2013.
- Lansdall-Welfare, Lampos and Cristianini. Effects of the Recession on Public Mood in the UK. WWW, 2012.(a)
- Lansdall-Welfare, Lampos and Cristianini. Nowcasting the mood of the nation. Significance, 2012.(b)
- Manning, Raghavan and Schütze. Introduction to Information Retrieval, 2008.
- Michel et al. Quantitative Analysis of Culture Using Millions of Digitized Books. Nature, 2010.
- Porter. An algorithm for suffix stripping. Program, 1980.
- Strapparava and Valitutti. WordNet-Affect: an affective extension of WordNet. LREC, 2004.
- Tibshirani. Regression Shrinkage and Selection via the LASSO. JRSS, 1996.
- Yuan and Lin. Model selection and estimation in regression with grouped variables. JRSS, 2006.
- Zhao and Yu. On model selection consistency of LASSO. JMLR, 2006.