Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	5
1.2 Описание выходных данных	
2 МЕТОД РЕШЕНИЯ	7
3 ОПИСАНИЕ АЛГОРИТМОВ	8
3.1 Алгоритм функции main	8
3.2 Алгоритм метода calculation класса Arifmetik	8
3.3 Алгоритм метода calculate класса Arifmetik	g
3.4 Алгоритм метода get_result класса Arifmetik	10
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	11
5 КОД ПРОГРАММЫ	13
5.1 Файл Arifmetik.cpp	13
5.2 Файл Arifmetik.h	14
5.3 Файл main.cpp	14
6 ТЕСТИРОВАНИЕ	16
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	17

1 ПОСТАНОВКА ЗАДАЧИ

Создать объект, который вычисляет значение целочисленного арифметического выражения, состоящего из трех последовательных операции. Операция деления заменена на операцию вычисления целочисленного остатка.

Объект обладает следующей функциональностью:

- выполняет первую операцию выражения, в качестве параметров передается первый целочисленный параметр, символ операции (+,-,*,%), второй целочисленный параметр;
- вычисляет вторую и далее операцию, в качестве параметров передается символ операции (+,-,*,%), второй целочисленный параметр;
- возвращает значение вычисленного выражения (значение можно получить после выполнения трех операции).

Написать программу, которая:

- 1. Создает объект.
- 2. Вводит значения аргументов для первой операции.
- 3. Выполняет первую операцию.
- 4. Вводит значение аргументов для второй операции.
- 5. Выполняет вторую операцию.
- 6. Вводит значение аргументов для третьей операции.
- 7. Выполняет третью операцию.
- 8. Выводит результат.

1.1 Описание входных данных

Первая строка:

«целое число в десятичном формате», «символ операции», «целое число в

десятичном формате»

Вторая строка:

«символ операции» «целое число в десятичном формате»

Третья строка:

«символ операции» "«целое число в десятичном формате»

1.2 Описание выходных данных

Первая строка, с первой позиции:

«значение выражения»

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект obj класса Arifmetik;
- функция main для Основная функция;
- Объект стандартного потока ввода/вывода cin/ cout;
- Оператор множественного выбора.

Класс Arifmetik:

- свойства/поля:
 - о поле Результат выполнения операций:
 - наименование result;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод calculation вычисление первой операции;
 - о метод calculate вычисление второй и последующих операций;
 - о метод get_result Возвращение результата подсчёта.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм функции main

Функционал: Основная функция.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм функции представлен в таблице 1.

Таблица 1 – Алгоритм функции таіп

N₂	Предикат	Действия	Nº
			перехода
1		Объявление целочисленных перемнных х и у	2
2		Объявление символьной переменной symbol	3
3		Создание объекта obj класса Arifmetik	4
4		Ввод значений переменных x,symbol, y	5
5		Выполнение метода calculation() с параметрами x, symbol, y	6
6		Ввод значений переменных symbol, у	7
7		Выполнение метода calculate() с параметрами symbol, у	8
8		Ввод значений переменных symbol, у	9
9		Выполнение метода calculate() с параметрами symbol, у	10
10		Вывод результата методом get_result()	

3.2 Алгоритм метода calculation класса Arifmetik

Функционал: Выполняет первую операцию между двумя целочисленными переменными.

Параметры: Целочисленные х,у и символьный symbol.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода calculation класса Arifmetik

N₂	Предикат	Действия	
			перехода
1	Знак операции "+"	Подсчёт х + у и присваивание это значения	Ø
		переменной result	
			2
2	Знак операции "-"	Подсчёт х - у и присваивание это значения	Ø
		переменной result	
			3
3	Знак операции " * "	Подсчёт х * у и присваивание это значения	Ø
		переменной result	
			4
4	Знак операции "%"	Подсчёт х % у и присваивание это значения	Ø
		переменной result	
			Ø

3.3 Алгоритм метода calculate класса Arifmetik

Функционал: Последующие выполнения операций над целыми числами.

Параметры: целочисленный у и символьный symbol.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода calculate класса Arifmetik

N	Предикат	Действия		Nº		
						перехода
1	Знак операции "+"	Прибавление	значение	переменной	result	кØ
		переменной у				

N₂	Предикат	Действия	
			перехода
			2
2	Знак операции "-"	Вычитание значение переменной у от переменной	Ø
		result	
			3
3	Знак операции " * "	Умножение значения переменной result на	Ø
		значение у	
			4
4	Знак операции "%"	Целочисленное деление result на у	Ø
			Ø

3.4 Алгоритм метода get_result класса Arifmetik

Функционал: Возвращение результата подсчёта.

Параметры: нет.

Возвращаемое значение: Целое.

Алгоритм метода представлен в таблице 4.

Таблица 4 – Алгоритм метода get_result класса Arifmetik

N₂	Предикат	Действия	N₂
			перехода
1		Возвращает значение result	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-2.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл Arifmetik.cpp

Листинг 1 – Arifmetik.cpp

```
#include "Arifmetik.h"
void Arifmetik::calculation(int x, char symbol, int y)
  switch(symbol)
  case('+'):
        result = x + y;
        break;
  case('-'):
        result = x - y;
        break;
  case('*'):
        result = x * y;
        break;
  case('%'):
        result = x \% y;
        break;
  }
void Arifmetik::calculate(char symbol, int y)
  switch(symbol)
  case('+'):
        result += y;
        break;
  case('-'):
        result -= y;
        break;
  case('*'):
        result *= y;
        break;
  case('%'):
        result %= y;
        break;
  }
int Arifmetik::get_result()
```

```
return result;
}
```

5.2 Файл Arifmetik.h

Листинг 2 – Arifmetik.h

```
#ifndef __ARIFMETIK__H
  #define __ARIFMETIK__H
  #include <iostream>
  using namespace std;

class Arifmetik
  {
  private:
    int result;
  public:
    void calculation(int x, char sign, int y);
    void calculate(char sign, int y);
    int get_result();
  };
  #endif
```

5.3 Файл таіп.срр

Листинг 3 - main.cpp

```
#include <stdlib.h>
#include <stdio.h>
#include "Arifmetik.h"
int main()
{
    int x,y;
    char symbol;
    Arifmetik obj;
    cin >> x >> symbol >> y;
    obj.calculation(x,symbol,y);

    cin >> symbol >> y;
    obj.calculate(symbol,y);

cin >> symbol >> y;
    obj.calculate(symbol,y);

cin >> symbol >> y;
    obj.calculate(symbol,y);

cout <<obj.get_result();</pre>
```

return(0);
}

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 5.

Таблица 5 – Результат тестирования программы

Входные данные	Ожидаемые выходные	Фактические выходные	
	данные	данные	
1+2+3+4	10	10	
10%2+5-2	2	3	
10%2+5-2	3	3	
14*2-18-1	9	9	
14 2-10-1	9	9	

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).