### 12. QPs and QCQPs

- Ellipsoids
- Simple examples
- Convex quadratic programs
- Example: portfolio optimization

## **Ellipsoids**

- For linear constraints, the set of x satisfying  $c^Tx = b$  is a hyperplane and the set  $c^Tx \le b$  is a halfspace.
- For quadratic constraints, the set of x satisfying  $x^TQx \le b$  is an ellipsoid if  $Q \succ 0$ .
- If  $Q \succ 0$ , then  $x^T Q x \le b \iff \|Q^{1/2} x\|^2 \le b$ .

## Degenerate ellipsoids

Ellipsoid axes have length  $\frac{1}{\sqrt{\lambda_i}}$ . When an eigenvalue is close to zero, contours are stretched in that direction.



- Warmer colors = larger values
- If  $\lambda_i = 0$ , then  $Q \succeq 0$ . The ellipsoid  $x^T Q x \le 1$  is degenerate (stretches out to infinity in direction  $u_i$ ).

# Ellipsoids with linear terms

If  $Q \succ 0$ , then the quadratic form with extra affine terms:

$$x^{\mathsf{T}}Qx + r^{\mathsf{T}}x + s$$

is a *shifted* ellipsoid. To see why, complete the square! If they were scalars, we would have:

$$qx^{2} + rx + s = q\left(x + \frac{r}{2q}\right)^{2} + \left(s - \frac{r^{2}}{4q}\right)$$

In the matrix case, we have:

$$x^{\mathsf{T}}Qx + r^{\mathsf{T}}x + s = \left(x + \frac{1}{2}Q^{-1}r\right)^{\mathsf{T}}Q\left(x + \frac{1}{2}Q^{-1}r\right) + \left(s - \frac{1}{4}r^{\mathsf{T}}Q^{-1}r\right)$$

## Ellipsoids with linear terms

Therefore, the equation  $x^{T}Qx + r^{T}x + s \leq b$  is equivalent to:

$$\left(x + \frac{1}{2}Q^{-1}r\right)^{\mathsf{T}}Q\left(x + \frac{1}{2}Q^{-1}r\right) \le \left(b - s + \frac{1}{4}r^{\mathsf{T}}Q^{-1}r\right)$$

This is an ellipse centered at  $-\frac{1}{2}Q^{-1}r$  with shifted contours!

Writing this using the matrix square root, we have:

$$||Q^{1/2}x + \frac{1}{2}Q^{-1/2}r||^2 \le (b-s+\frac{1}{4}r^{\mathsf{T}}Q^{-1}r)$$

### Norm constraints

Constraints of the form  $||Ax - b||^2 \le c$  are (possibly degenerate) ellipsoids.

**Proof:** When we expand the square, we get the quadratic  $x^{T}A^{T}Ax - 2b^{T}Ax + b^{T}b$ . But notice that:

$$x^{\mathsf{T}}A^{\mathsf{T}}Ax = \|Ax\|^2 \ge 0$$

Therefore,  $A^TA \succeq 0$ , so we must have an ellipsoid. In the case where  $A^TA$  is invertible (A is tall with linearly independent columns), the ellipsoid will be non-degenerate.

# **Example 1: feasible affine subspace**





# **Example 1: feasible affine subspace**





# **Example 2: feasible single point**





# **Example 2: feasible single point**

$$\underset{x}{\text{minimize}} \quad \left\| \begin{bmatrix} \frac{1}{2} & 1\\ 1 & -2 \end{bmatrix} x - \begin{bmatrix} 2\\ 0 \end{bmatrix} \right\|^2 + \lambda \|x\|^2$$



# **Quadratic programs**

Quadratic program (QP) is like an LP, but with quadratic cost:

minimize 
$$x^T P x + q^T x + r$$
  
subject to:  $Ax \le b$ 

- If  $P \succeq 0$ , it is a convex **QP** 
  - feasible set is a polyhedron
  - solution can be on boundary or in the interior
  - relatively easy to solve
- If  $P \not\succeq 0$ , it is **very hard** to solve in general.

# **Quadratic programs**

$$\begin{array}{ll}
\text{minimize} & x^{\mathsf{T}} P x + q^{\mathsf{T}} x + r \\
\text{subject to:} & A x \leq b
\end{array}$$



#### First case:

If the ellipsoid center is feasible, then it is also the optimal point.

# **Quadratic programs**

minimize 
$$x^T P x + q^T x + r$$
  
subject to:  $Ax \le b$ 



#### Second case:

If the ellipsoid center is infeasible, optimal point is on the boundary. (not always at a vertex!)

Quadratically constrained quadratic program (QCQP) has both a quadratic cost and quadratic constraints:

minimize 
$$x^T P_0 x + q_0^T x + r_0$$
  
subject to:  $x^T P_i x + q_i^T x + r_i \le 0$  for  $i = 1, ..., m$ 

- If  $P_i \succeq 0$  for i = 0, 1, ..., m, it is a convex QCQP
  - feasible set is convex
  - solution can be on boundary or in the interior
  - relatively easy to solve
- If any  $P_i \not\succeq 0$ , the QCQP becomes **very hard** to solve.

minimize 
$$x^T P_0 x + q_0^T x + r_0$$
  
subject to:  $x^T P_i x + q_i^T x + r_i \le 0$  for  $i = 1, ..., m$ 



The feasible set is the intersection of multiple ellipsoids.

minimize 
$$x^T P_0 x + q_0^T x + r_0$$
  
subject to:  $x^T P_i x + q_i^T x + r_i \le 0$  for  $i = 1, ..., m$ 



#### First case:

If the ellipsoid center is feasible, then it is also the optimal point.

minimize 
$$x^T P_0 x + q_0^T x + r_0$$
  
subject to:  $x^T P_i x + q_i^T x + r_i \le 0$  for  $i = 1, ..., m$ 



#### **Second case:**

If the ellipsoid center is infeasible, optimal point is on the boundary. (not always at a vertex!)

## Difficult quadratic constraints

The following types of quadratic constraints make a problem nonconvex and generally difficult to solve (but not always).

### Indefinite quadratic constraints.

- Example:  $x^2 + 2y^2 z^2 \le 1$  corresponds to the nonconvex region on the right.
- Note: be mindful of  $\leq$  vs  $\geq$  ! e.g.  $x^2 + y^2 \geq 1$  is nonconvex.



### Quadratic equalities.

• Using quadratic equalities, you can encode boolean constraints. Example:  $x^2 = 1$  is equivalent to  $x \in \{-1, 1\}$ .

# Where do quadratics commonly occur?

- 1. As a regularization or penalty term
  - $(\cos t) + \lambda ||x||^2$ : standard  $L_2$  regularizer
  - (cost) +  $\lambda x^T Q x$  (with  $Q \succ 0$ ): weighted  $L_2$  regularizer
- 2. Hard norm bounds on a decision variable
  - ▶  $||x||^2 \le r$ : a way to ensure that x doesn't get too big.
- **3.** Allowing some tolerance in constraint satisfaction
  - ▶  $||Ax b||^2 \le e$ : we allow a tolerance e.
- 4. Energy quantities (physics/mechanics)
  - examples:  $\frac{1}{2}mv^2$ ,  $\frac{1}{2}kx^2$ ,  $\frac{1}{2}CV^2$ ,  $\frac{1}{2}I\omega^2$ ,  $\frac{1}{2}VE\varepsilon^2$ . (kinetic) (spring) (capacitor) (rotational) (strain)
- **5.** Covariance constraints (statistics)

We must decide how to invest our money, and we can choose between i = 1, 2, ..., N different assets.

• Each asset can be modeled as a random variable (RV) with an expected return  $\mu_i$  and a standard deviation  $\sigma_i$ .



Standard deviation is a measure of uncertainty.

If Z is the RV representing an asset:

- The expected return is  $\mu = \mathbf{E}(Z)$  (expected value)
- The variance is  $\mathbf{var}(Z) = \sigma^2 = \mathbf{E}((Z \mu)^2)$
- The standard deviation is the square root of the variance.
- Sometimes write  $Z \sim (\mu, \sigma^2)$  for short.

If 
$$Z_1 \sim (\mu_1, \sigma_1^2)$$
 and  $Z_2 \sim (\mu_2, \sigma_2^2)$  are two RVs

- The covariance is  $\mathbf{cov}(Z_1, Z_2) = \mathbf{E}((Z_1 \mu_1)(Z_2 \mu_2)).$
- Note that: var(Z) = cov(Z, Z)
- covariance measures tendency of RVs to move together.

If 
$$Z_1 \sim (\mu_1, \sigma_1^2)$$
 and  $Z_2 \sim (\mu_2, \sigma_2^2)$ , what is  $x_1 Z_1 + x_2 Z_2$ ?

### Calculating the mean:

$$\mathbf{E}(x_1 Z_1 + x_2 Z_2) = x_1 \mu_1 + x_2 \mu_2$$
$$= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$

### Calculating the variance:

$$\begin{aligned} \mathbf{var}(x_1 Z_1 + x_2 Z_2) &= \mathbf{E} \left( x_1 (Z_1 - \mu_1) + x_2 (Z_2 - \mu_2) \right)^2 \\ &= x_1^2 \, \mathbf{var}(Z_1) + 2 x_1 x_2 \, \mathbf{cov}(Z_1, Z_2) + x_2^2 \, \mathbf{var}(Z_2) \\ &= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^\mathsf{T} \begin{bmatrix} \mathbf{cov}(Z_1, Z_1) & \mathbf{cov}(Z_1, Z_2) \\ \mathbf{cov}(Z_2, Z_1) & \mathbf{cov}(Z_2, Z_2) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{aligned}$$

If  $Z_1, \ldots, Z_n$  are **jointly distributed** with:

$$\bullet \ \mathsf{mean} \ \mu = \begin{bmatrix} \mathbf{E}(Z_1) \\ \vdots \\ \mathbf{E}(Z_n) \end{bmatrix}$$

• covariance matrix 
$$\Sigma = \begin{bmatrix} \mathbf{cov}(Z_1, Z_1) & \dots & \mathbf{cov}(Z_1, Z_n) \\ \vdots & \ddots & \vdots \\ \mathbf{cov}(Z_n, Z_1) & \dots & \mathbf{cov}(Z_n, Z_n) \end{bmatrix}$$

• short form:  $Z \sim (\mu, \Sigma)$ .

$$\sum_{i=1}^{n} x_i Z_i \sim (x^{\mathsf{T}} \mu, x^{\mathsf{T}} \Sigma x)$$







uncorrelated

$$\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

somewhat correlated

$$\Sigma = \begin{bmatrix} 1 & .5 \\ .5 & 1 \end{bmatrix}$$

highly correlated

$$\Sigma = \begin{bmatrix} 1 & .99 \\ .99 & 1 \end{bmatrix}$$

Correlation is modeled by a confidence ellipsoid

### **Example:**

- There are 16 different stocks: Z<sub>1</sub>,..., Z<sub>16</sub>. Each has expected return of 2% with standard deviation of 5%. You have \$100 in total to invest.
- If you invest in just one of them, you will earn \$102  $\pm$  \$5.
- If the stocks are all correlated (e.g. all the same industry) and you invest evenly in all stocks, you still earn:  $$102 \pm $5$ .
- If the stocks are **uncorrelated** (e.g. very diverse) and you invest evenly in all stocks, the new variance is  $16 \times (\frac{5}{16})^2$ . Therefore, you will earn \$102  $\pm$  \$1.25.

Julia code: Portfolio.ipynb

Dataset containing 225 assets. How should we invest?

- We know the expected return  $\mu_i$  for each asset
- We know the covariance  $\Sigma_{ij}$  for each pair of assets



Dataset containing 225 assets. How should we invest?

- We know the expected return  $\mu_i$  for each asset
- We know the covariance  $\Sigma_{ii}$  for each pair of assets



Suppose we buy  $x_i$  of asset  $Z_i$ . We want:

- A high total return. Maximize  $x^T \mu$ .
- Low variance (risk). Minimize  $x^T \Sigma x$ .

Pose the optimization problem as a tradeoff:

minimize 
$$-x^{\mathsf{T}}\mu + \lambda x^{\mathsf{T}}\Sigma x$$
  
subject to:  $x_1 + \dots + x_{225} = 1$   
 $x_i \ge 0$ 

**Fun fact:** This is the basic idea behind "Modern portfolio theory". Introduced by economist Harry Markowitz in 1952, for which he was later awarded the Nobel Prize.

Quality of each individual asset:



#### Some solutions:



Pareto curve ("efficient front")

