Introduction to TensorFlow

Setup

郭耀仁

大綱

- 開發環境
- Kaggle Datasets
- 隨堂練習

開發環境

兩種開發環境

• 瀏覽器: Google Colaboratory

● 本機端

建立瀏覽器開發環境

安裝步驟 (https://www.datainpoint.com/python-essentials/01-quick-start.html#%E5%BB%BA%E7%AB%8B%E7%80%8F%E8%A6%BD%E5%99%A8%E7%9A%

建立本機端開發環境

Miniconda (https://www.anaconda.com/download/)

檢視可用虛擬環境

conda env list

建立虛擬環境

conda create --name tensorflow python=3.6

啟動虛擬環境

conda activate tensorflow

填寫需要的模組

• 在專案資料夾中新增一個 requirements.txt 文字檔作為安裝模組清單

tensorflow scipy scikit-learn matplotlib jupyter pandas numpy kaggle

安裝

pip install -r requirements.txt

建立新的 Jupyter Notebook Kernel

python -m ipykernel install --user --name tensorflow --display-name "TensorFlow"

檢視可用的 Jupyter Notebook Kernel

jupyter kernelspec list

開啟以 TensorFlow 為 Kernel 的 Notebook

Hello TensorFlow

```
In [1]: import tensorflow as tf

hello = tf.constant('Hello, TensorFlow!')
with tf.Session() as sess:
    print(sess.run(hello))
```

b'Hello, TensorFlow!'

Kaggle Datasets

註冊一個 <u>Kaggle (https://www.kaggle.com/)</u> 帳號

使用 pip 安裝 kaggle 套件(Done)

pip install kaggle

參與三個 Getting Started 競賽

- <u>Titanic (https://www.kaggle.com/c/titanic)</u>
- <u>House Prices: Advanced Regression Techniques (https://www.kaggle.com/c/house-prices-advanced-regression-techniques)</u>
- <u>Digit Recognizer (https://www.kaggle.com/c/digit-recognizer)</u>

建立新的 API 憑證

- My Account
- Create New API Token

將 kaggle.json 置放在

- UNIX: /Users/USERNAME/.kaggle/kaggle.json
- Windows: C:\Users\USERNAME\.kaggle\kaggle.json

設定憑證讀寫權限

chmod 600 /Users/USERNAME/.kaggle/kaggle.json

Google Colab

```
!mkdir /root/.kaggle
import json

token = {"username": "YOUR-USERNAME", "key": "YOUR-KEY"}
with open('/root/.kaggle/kaggle.json', 'w') as file:
    json.dump(token, file)
!chmod 600 /root/.kaggle/kaggle.json
```

```
In [2]:
        !kaggle competitions download -c titanic --force
        Downloading train.csv to /Users/kuoyaojen/intro-to-tensorflow
        100%
                                                                                  59.8k/
        59.8k [00:00<00:00, 408kB/s]
        Downloading test.csv to /Users/kuoyaojen/intro-to-tensorflow
          0 %
                                                               0.00/28.0k [00:00<?, ?B/
        s]
                                                                                28.0k/2
        100%
        8.0k [00:00<00:00, 1.87MB/s]
        Downloading gender submission.csv to /Users/kuoyaojen/intro-to-tensorflow
                                                               0.00/3.18k [00:00<?, ?B/
          0%
        s]
                                                                                3.18k/3.
        100%
        18k [00:00<00:00, 2.85MB/s]
```

```
In [3]:
         !kaggle competitions download -c house-prices-advanced-regression-techniques --for
         ce
        Downloading sample submission.csv to /Users/kuoyaojen/intro-to-tensorflow
                                                                 0.00/31.2k [00:00<?, ?B/
           0 % |
        s]
         100%
                                                                                    31.2k/
         31.2k [00:00<00:00, 336kB/s]
        Downloading test.csv to /Users/kuoyaojen/intro-to-tensorflow
         100%
                                                                                       441
        k/441k [00:02<00:00, 158kB/s]
        Downloading train.csv to /Users/kuoyaojen/intro-to-tensorflow
         100%
                                                                                       450
        k/450\overline{k} [00:01<00:00, 314kB/s]
        Downloading data description.txt to /Users/kuoyaojen/intro-to-tensorflow
                                                                 0.00/13.1k [00:00<?, ?B/
           0 %
         s]
         100%
                                                                                    13.1k/
         13.1k [00:00<00:00, 844kB/s]
```

```
In [4]:
        !kaggle competitions download -c digit-recognizer --force
        Downloading train.csv to /Users/kuoyaojen/intro-to-tensorflow
        100%
                                                                                73.2M/7
        3.2M [01:35<00:00, 1.22MB/s]
        Downloading test.csv to /Users/kuoyaojen/intro-to-tensorflow
        100%
                                                                                48.8M/4
        8.8M [00:37<00:00, 1.51MB/s]
        Downloading sample submission.csv to /Users/kuoyaojen/intro-to-tensorflow
                                                                0.00/235k [00:00<?, ?B/
          0%
        s]
        100%
                                                                                   235
        k/235k [00:00<00:00, 3.16MB/s]
```

68.8M [02:38<00:00, 508kB/s]

隨堂練習

建立瀏覽器的開發環境

在 Google Colab 完成 Hello TensorFlow

```
import tensorflow as tf

hello = tf.constant('Hello, TensorFlow!')
with tf.Session() as sess:
    print(sess.run(hello))
```

建立本機端的開發環境

在 TensorFlow 環境完成 Hello TensorFlow

```
import tensorflow as tf

hello = tf.constant('Hello, TensorFlow!')
with tf.Session() as sess:
    print(sess.run(hello))
```

建立本機端的開發環境

在 TensorFlow 環境完成 Hello TensorBoard]

```
In [6]: import tensorflow as tf

x = tf.constant(8, name="x")
y = tf.constant(7, name="y")
tf_add = tf.add(x, y)

with tf.Session() as sess:
    writer = tf.summary.FileWriter('./graphs/tf_add', sess.graph)
    print(sess.run(tf_add))
writer.close()
```

啟動 TensorBoard

```
tensorboard --logdir=./graphs/tf_add --host=127.0.0.1
## Starting TensorBoard b'41' on port 6006
## (You can navigate to http://127.0.0.1:6006)
```

打開 TensorBoard

- 打開瀏覽器前往 http://127.0.0.1:6006 (http://127.0.0.1:6006)
- 點選 GRAPHS 頁籤

We are all set!

以 Kaggle Dataset API 讀入 titanic 並顯示前五列

```
In [7]:
        !kaggle competitions download -c titanic --force
        Downloading train.csv to /Users/kuoyaojen/intro-to-tensorflow
        100%
                                                                                  59.8k/
        59.8k [00:00<00:00, 261kB/s]
        Downloading test.csv to /Users/kuoyaojen/intro-to-tensorflow
          0 %
                                                               0.00/28.0k [00:00<?, ?B/
        s]
                                                                                  28.0k/
        100%
        28.0k [00:00<00:00, 611kB/s]
        Downloading gender submission.csv to /Users/kuoyaojen/intro-to-tensorflow
                                                               0.00/3.18k [00:00<?, ?B/
          0%
        s]
                                                                                3.18k/3.
        100%
        18k [00:00<00:00, 1.75MB/s]
```

Out[8]:

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

以 Kaggle Dataset API 讀入 house-prices-advanced-regression-techniques 並顯示前五列

```
In [9]:
        !kaggle competitions download -c house-prices-advanced-regression-techniques --for
        ce
        Downloading sample submission.csv to /Users/kuoyaojen/intro-to-tensorflow
        100%
                                                                                  31.2k/
        31.2k [00:00<00:00, 307kB/s]
        Downloading test.csv to /Users/kuoyaojen/intro-to-tensorflow
        100%
                                                                                     441
        k/441k [00:00<00:00, 835kB/s]
        Downloading train.csv to /Users/kuoyaojen/intro-to-tensorflow
        100%
                                                                                   450
        k/450k [00:00<00:00, 2.34MB/s]
        Downloading data description.txt to /Users/kuoyaojen/intro-to-tensorflow
          0%
                                                               0.00/13.1k [00:00<?, ?B/
        s]
        100%
                                                                                 13.1k/
        13.1k [00:00<00:00, 863kB/s]
```

```
In [10]: df = pd.read_csv("train.csv")
    df.head()
```

Out[10]:

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	 PoolArea	PoolQC	Fence
0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	NaN
1	2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	NaN
2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN
3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN
4	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN

5 rows × 81 columns

以 Kaggle Dataset API 讀入 digit-recognizer 並視覺化前十張圖片

```
In [14]: import matplotlib.pyplot as plt

train = pd.read_csv("train.csv")
fig, axes = plt.subplots(2, 5, figsize=(12, 5))
for i in range(10):
    obs = train.loc[i, "pixel0":].values.reshape(28, -1)
    row_i, col_i = i//5, i%5
    subplot = axes[row_i, col_i]
    subplot.imshow(obs, cmap="gray")
    subplot.set_xticks([])
    subplot.set_yticks([])
    subplot.set_title(train.loc[i, "label"])
plt.show()
```


以 Kaggle Dataset API 讀入 fashionmnist 並視覺化前十張圖片

In []: !kaggle datasets download -d zalando-research/fashionmnist
!unzip fashionmnist.zip

```
In [16]:
        import pandas as pd
         import matplotlib.pyplot as plt
         ref dict = {
             0: "T-shirt/top",
             1: "Trouser",
             2: "Pullover",
             3: "Dress",
             4: "Coat",
             5: "Sandal",
             6: "Shirt",
             7: "Sneaker",
             8: "Bag",
             9: "Ankle boot"
         train = pd.read csv("fashion-mnist train.csv")
         fig, axes = plt.subplots(2, 5, figsize=(12, 5))
         for i in range(10):
             obs = train.loc[i, "pixel1":].values.reshape(28, -1)
             row i, col i = i//5, i%5
             subplot = axes[row i, col i]
             subplot.imshow(obs, cmap="gray")
             subplot.set xticks([])
             subplot.set yticks([])
             lab = train.loc[i, "label"]
             item = ref dict[lab]
             subplot.set title(item)
         plt.show()
```

