II Università di Roma, Tor Vergata

Dipartimento d'Ingegneria Civile e Ingegneria Informatica LM in Ingegneria dell'Informazione e dell'Automazione

Complementi di Probabilità e Statistica - Advanced Statistics Instructors: Roberto Monte & Massimo Regoli

Final Test - 2020-02-25 - Statistics

Problem 1 Let X be a geometrically distributed real random variable with unknown success probability $p \in (0,1)$ representing the occurrence of the first success at the nth trial, where $n \in \mathbb{N}$, in binary random experiment. An investigator wants to estimate p on the basis of a simple random sample X_1, \ldots, X_n of size n drawn from X.

1. Assume the investigator applies the method of moments. What is the estimator \hat{p}_n^M ? Hint: it may be useful to recall that

$$\sum_{n=1}^{\infty} q^n = \frac{q}{1-q}$$

and that, since $q \in (0,1)$, the formula

$$\frac{d}{dq}\sum_{n=1}^{\infty}q^n = \sum_{n=1}^{\infty}\frac{d}{dq}q^n$$

holds true.

- 2. Is \hat{p}_n^M unbiased? Is \hat{p}_n^M consistent in probability?
- 3. Assume the investigator applies the likelihood methods. What is the estimator \hat{p}_n^{LM} ? Hint: pay attention to writing the density function of X.
- 4. Given a realization x_1, \ldots, x_{50} of a sample X_1, \ldots, X_{50} of size 50 drawn from X such that $\sum_{k=1}^{50} x_k = 150$ apply the formulas obtained to get the realizations $\hat{p}_n^M(\omega)$ and $\hat{p}_n^{LM}(\omega)$ of the estimators \hat{p}_n^M and \hat{p}_n^{LM} .
- 5. Give an estimate of the mean and the variance of X.

Solution.

Problem 2 Let X a random variable representing a trait of a population. Assume that X has a density $f_X : \mathbb{R} \to \mathbb{R}$ given by

$$f_X(x) \stackrel{def}{=} \frac{1}{\theta} e^{-\frac{x-3}{\theta}} 1_{[3,+\infty)}(x), \quad \forall x \in \mathbb{R}.$$

- 1. Apply the method of moments to find the estimator $\hat{\theta}_{MM}$ of the parameter θ .
- 2. Apply the maximum likelihood method to find the estimator $\hat{\theta}_{ML}$ of the parameter θ .
- 3. Check whether $\hat{\theta}_n^M$ is unbiased and consistent in probability. Can you also check whether $\hat{\theta}_n^M$ is consistent in square mean?
- 4. Use the estimators $\hat{\theta}_{MM}$ and $\hat{\theta}_{ML}$ to build estimators for $\mathbf{E}[X]$ and $\mathbf{D}^{2}[X]$.

Solution.

Problem 3 Assume that a library master believes that the mean duration in days of the borrowing period is 20d. However, the library master selects a simple random sample of 100 books in the library and discovers that the sample mean and standard deviation of the borrowing days are 18d and 4d, respectively.

- 1. Determine a 95% confidence interval for the mean duration of the borrowing days to check if library master's initial quess is correct.
- 2. Test the null hypothesis $H_0: \mu = 20$ against the alternative $H_1: \mu > 20$ at the significance level $\alpha = 0.05$.
- 3. Can you also compute the probability β (23) of a II type error?

Solution.

Problem 4 A random sample of 25 chickens from a hen-house are selected and two diets are given to them to increase their weight. A sub-sample of 13 chickens are fed with diet X and the remaining 12 chickens are fed with diet Y. After one month the chickens of the two samples are weighted and the weights in kg are the following

```
1.60, 1.70,
             1.55,
                   1.70, 1.75,
                                 1.35,
                                       1.65,
                                              1.75,
                                                    1.70, 1.65, 1.56,
                                                                         1.60,
1.70
      1.35
             1.50
                    1.65
                           1.50
                                 1.60
                                        1.70
                                               1.75
                                                     1.60, 1.65, 1.55,
```

The weight of a chicken is assumed to be modeled by a normal random variable.

- 1. Find the mean μ_X and μ_Y and the standard deviation σ_X and σ_Y for the weight of each sample.
- 2. Find an estimate of the pooled variance s_p^2 which estimates the variance of the whole sample.
- 3. Find a confidence interval for $\mu_X \mu_Y$ at the 95% confidence level.
- 4. Formulate a null and an alternative hypothesis from the farmer's point of view who aims to test whether diet X is better than Y. Test such a null hypothesis against the alternative at the 5% significance level by using the rejection method and the p-value method.

Solution.

Problem 5 Let X [resp. Y] be a Gaussian distributed random variables with (unknown) mean $\mu_X \in \mathbb{R}$ [resp. $\mu_Y \in \mathbb{R}$] and variance $\sigma_X^2 > 0$ [resp. $\sigma_Y^2 > 0$]. Assume that X and Y describe the same trait of different populations, for instance the cholesterol concentration in the blood of 25+ years aged males in Iceland and Democratic Republic of Congo in 2008. Then it is rather natural to assume that X and Y are idependent. Let X_1, \ldots, X_m [resp. Y_1, \ldots, Y_n] be a simple random sample drawn by X [resp. by Y]. Assume to have measured

```
x_1 = 5.80 x_2 = 5.70 x_3 = 5.30 x_4 = 5.60 x_5 = 5.90 x_6 = 6.20 x_7 = 6.10 y_1 = 3.20 y_2 = 3.40 y_3 = 4.70 y_4 = 3.30 y_5 = 4.50 y_6 = 3.60 y_7 = 4.30 y_8 = 4.20 y_9 = 4.10
```

1. Should we reject the null hypothesis $H_0 = \mu_Y = \mu_X$ against the alternatives $H_1 = \mu_Y \neq \mu_X$ and $H_1 = \mu_Y > \mu_X$ at the significance level $\alpha = 0.05$? Consider both the rejection region method and the p-value method.

2. Under the assumption that two random variables U and V are independent and such that $U \sim \chi_m^2$ and $V \sim \chi_n^2$, we know that the random variable (U/m)/(V/n) has the Fisher-Snedecor distribution with m numerator degrees of freedom and n denominator degrees of freedom. In symbols,

 $U \sim \chi_m^2, \ V \sim \chi_n^2, \ U \perp V \Rightarrow \frac{U/m}{Y/n} \sim F(m,n).$

We also know that the density of any Fisher-Snedecor distribution is concentrated on the positive real axis and is not symmetric (the graph of the density is similar to the graph of a χ^2 density). For some standard values of α (for instance $\alpha=0.1, \alpha=0.05, \alpha=0.25, \alpha=0.01,\ldots$) the lower [resp. upper] critical value $f_{m,n,\alpha}^-$ [resp. $f_{m,n,\alpha}^+$] of F(m,n) can be found in statistical tables or computed by almost all statistical softwares, for several values of m and n. Therefore, we assume to know $f_{m,n,\alpha}^-$ and $f_{m,n,\alpha}^+$. Now, in light of what we know, can you introduce a statistic to test the null hypothesis $H_0: \sigma_X^2 = \sigma_Y^2$ against the alternative $H_1: \sigma_X^2 > \sigma_Y^2$ and $H_1: \sigma_X^2 < \sigma_Y^2$ and describe for this statistic both the rejection method and the p-value method?

Solution.