TECHNISCHE UNIVERSITÄT MÜNCHEN

FLORIAN ETTLINGER ÜBUNG DIENSTAG FERIENKURS LINEARE ALGEBRA WS 2011/12

Aufgabe 1 Folgende Matrizen seien gegeben:

$$A = \begin{pmatrix} 2 & 3 & 4 & 5 \\ 1 & 1 & 2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 3 \\ 2 & 2 \\ 3 & 1 \\ 4 & 4 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Man berechne $A \cdot B$ und $B \cdot A$, sowie alle Potenzen C^k mit $k \in \mathbb{N}_0$.

LÖSUNG:

Aufgabe 2 Man untersuche die gegebenen Matrizen auf Invertierbarkeit und berechne gegebenenfalls die jeweils inverse Matrix.

Hinweis: Bei dem Gauss-Jordan-Verfahren wird die Matrix zunächst in eine obere Dreiecksmatrix transformiert. Was kann man in diesem Stadium über die Invertierbarkeit aussagen?

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 & -3 \\ 2 & 1 & 0 \\ 4 & -2 & 5 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & \mathbf{i} & \mathbf{i} \\ -\mathbf{i} & -1 & 0 \\ \mathbf{i} & 0 & 1 \end{pmatrix}$$

LÖSUNG:

Sollte eine Matrix nicht invertierbar sein, so stellen wir dieses spätestens dann fest, wenn wir sie mit dem Gauss-Jordan-Verfahren in eine obere Dreiecksmatrix umgewandelt haben. Ist dann einer der Diagonaleinträge Null, so ist der Rang nicht voll und die Matrix nicht invertierbar.

$$A^{-1} = \begin{pmatrix} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{pmatrix}, \quad B^{-1} = \begin{pmatrix} -5 & 4 & -3 \\ 10 & -7 & 6 \\ 8 & -6 & 5 \end{pmatrix}, \quad C^{-1} = \frac{1}{3} \cdot \begin{pmatrix} 1 & i & -i \\ -i & -2 & -1 \\ -i & 1 & 2 \end{pmatrix}$$

Aufgabe 3 Sei K ein Körper und $n, m \in \mathbb{N}$. Man zeige:

a) Sei $A \in K^{n \times m}$. Die Matrix $A \cdot A^t$ ist symmetrisch.

LÖSUNG:

 $A \cdot A^t$ symmetrisch $\Leftrightarrow (A \cdot A^t) = (A \cdot A^t)^t$

Wir rechnen dieses nach:

$$(A \cdot A^t)^t = (A^t)^t \cdot A^t = A \cdot A^t$$

b) Sei $A \in GL(n, K)$. Es ist $A^t \in GL(n, K)$ und es gilt $(A^{-1})^t = (A^t)^{-1}$.

LÖSUNG:

Es gilt:

$$(A^{-1})^t \cdot A^t = (A \cdot A^{-1})^t = E_n^t = E_n \text{ und } A^t \cdot (A^{-1})^t = (A^{-1} \cdot A)^t = E_n$$

Hieraus folgt $A^t \in GL(n, K)$ und $(A^{-1})^t = (A^t)^{-1}$.

Aufgabe 4 Man berechne (ohne elektronische Hilfsmittel) A^{20} für die Matrix

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix}.$$

Hinweise: Man verwende die Zerlegung

$$A = E_3 + \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}.$$

Wenn zwei Matrizen A und B kommutieren, d.h. wenn $A \cdot B = B \cdot A$, dann gilt die binomische Formel:

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} \cdot A^k \cdot B^{n-k}$$

Man verwende ausserdem, dass

$$\begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}^k = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

für $k \ge l$ und ein bestimmtes zu berechnendes l.

LÖSUNG:

$$\begin{pmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 3 & 1
\end{pmatrix}^{20} = \sum_{k=0}^{20} {20 \choose k} \cdot {0 & 0 & 0 \choose 2 & 0 & 0 \\
0 & 3 & 0
\end{pmatrix}^{k} \cdot {1 & 0 & 0 \choose 0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}^{20-k} = \sum_{k=0}^{20} {20 \choose k} \cdot {0 & 0 & 0 \choose 2 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}^{k} = \sum_{k=0}^{20} {20 \choose k} \cdot {0 & 0 & 0 \choose 2 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}^{k} = \sum_{k=0}^{20} {20 \choose k} \cdot {0 & 0 & 0 \choose 2 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}^{k} = \sum_{k=0}^{20} {20 \choose k} \cdot {0 & 0 & 0 \choose 2 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}^{k} = 1 \cdot {1 & 0 & 0 \choose 0 & 0 & 1} + 20 \cdot {0 & 0 & 0 \choose 2 & 0 & 0 \choose 0 & 3 & 0} + 190 \cdot {0 & 0 & 0 \choose 6 & 0 & 0} = {1 & 0 & 0 \choose 40 & 1 & 0 \choose 1140 & 60 & 1}$$

Aufgabe 5 Es seien die Matrizen

$$A = \begin{pmatrix} a_{11} & 2 & 3 \\ a_{21} & 1 & 3 \\ a_{31} & -1 & -2 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & -2 & 1 \\ 0 & b_{22} & 2 \\ 0 & 1 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & -3 & c_{13} \\ 4 & -3 & c_{23} \\ 0 & 0 & c_{33} \end{pmatrix}$$

gegeben mit $A \cdot B = C$. Man bestimme a_{ij}, b_{ij}, c_{ij} .

LÖSUNG:

$$a_{11} = 1$$
, $a_{21} = 2$, $a_{31} = 0$, $b_{22} = -2$, $c_{13} = 11$, $c_{23} = 10$, $c_{33} = -6$

Aufgabe 6 Man bestimme jeweils $L\ddot{o}s(A, \vec{b})$.

a) $A = \begin{pmatrix} 2 & 4 \\ 3 & 6 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 10 \\ 15 \end{pmatrix}$

LÖSUNG:

$$\operatorname{L\ddot{o}s}(A, \vec{b}) = \left\{ \begin{pmatrix} 5 - 2\lambda \\ \lambda \end{pmatrix}, \ \lambda \in \mathbb{R} \right\}$$

b) $A = \begin{pmatrix} 2 & 3 & -2 \\ 1 & -2 & 3 \\ 4 & -1 & 4 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix}$

LÖSUNG:

$$\text{L\"os}(A,\vec{b})=\emptyset$$

c) $A = \begin{pmatrix} 2 & 1 & -2 \\ 3 & 2 & 2 \\ 5 & 4 & 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 10 \\ 1 \\ 4 \end{pmatrix}$

LÖSUNG:

$$\text{L\"{o}s}(A, \vec{b}) = \left\{ \begin{pmatrix} 1\\2\\-3 \end{pmatrix} \right\}$$

Aufgabe 7 Man löse das LGS $A\vec{x} = \vec{b}$ über \mathbb{F}_2 . Wie viele Lösungen gibt es?

$$(A, \vec{b}) = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Hinweis: Es gilt für $a \in \mathbb{F}_2$, dass -a = +a.

LÖSUNG:

Wir addieren Gleichung (I) zu (III) und zu (V):

Nun addieren wir (III) zu (IV):

Wir sehen, dass die Gleichungen (II), (IV) und (V) übereinstimmen, zwei davon können also gestrichen werden.

Damit haben wir die Matrix auf Zeilenstufenform gebracht und können die Lösung ablesen:

$$\begin{array}{rcl} x_6 & = & \lambda_1 \\ x_5 & = & \lambda_2 \\ x_4 & = & \lambda_3 \\ x_3 & = & 1 - \lambda_3 = 1 + \lambda_3 \\ x_2 & = & 1 - \lambda_2 - \lambda_3 = 1 + \lambda_2 + \lambda_3 \\ x_1 & = & -1 - \lambda_1 - \lambda_2 - \lambda_3 = 1 + \lambda_1 + \lambda_2 + \lambda_3 \end{array}$$

$$\text{L\"os}(A, \vec{b}) = \left\{ \begin{pmatrix} 1\\1\\1\\0\\0\\0\\0 \end{pmatrix} + \begin{pmatrix} 1\\0\\0\\0\\1 \end{pmatrix} \lambda_1 + \begin{pmatrix} 1\\1\\0\\0\\1\\0 \end{pmatrix} \lambda_2 + \begin{pmatrix} 1\\1\\1\\1\\0\\0 \end{pmatrix} \lambda_3, \ \lambda_i \in \mathbb{F}_2 \right\}$$

Es gibt also 8 Lösungen.

Aufgabe 8 Man löse die folgenden LGS in Abhängigkeit von $\alpha \in \mathbb{R}$.

a)
$$\begin{pmatrix} 2 & 4 & 2 \\ 2 & 12 & 7 \\ 1 & 10 & 6 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 12\alpha \\ 12\alpha + 7 \\ 7\alpha + 8 \end{pmatrix}$$

LÖSUNG:

Wir bringen zunächst die erweiterte Koeffizientenmatrix auf Zeilenstufenform:

$$\begin{pmatrix}
2 & 4 & 2 & | & 12\alpha \\
2 & 12 & 7 & | & 12\alpha + 7 \\
1 & 10 & 6 & | & 7\alpha + 8
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
2 & 4 & 2 & | & 12\alpha \\
0 & 8 & 5 & | & 7 \\
0 & 0 & 0 & | & \alpha + 1
\end{pmatrix}$$

Es entscheidet sich also anhand der dritten Zeile ob das LGS lösbar ist. Falls $\alpha \neq -1$ ist die Lösungsmenge leer:

$$L = \emptyset$$

Für $\alpha = -1$ können wir durch die übliche Rückwärtssubstitution eine Lösung finden:

$$L = \left\{ \begin{pmatrix} -31/4 + 1/4 \cdot \lambda \\ 7/8 - 5/8 \cdot \lambda \\ \lambda \end{pmatrix}, \lambda \in \mathbb{R} \right\} = \begin{pmatrix} -31/4 \\ 7/8 \\ 0 \end{pmatrix} + \begin{pmatrix} 1/4 \\ -5/8 \\ 1 \end{pmatrix} \cdot \mathbb{R}$$

b)

$$\begin{pmatrix} 1 & 2 & 2 \\ 1 & 3 & 3 \\ 3 & 4 & 7 \\ 2 & 4 & \alpha \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -3 \\ -4 \\ 2 \\ 3 \end{pmatrix}$$

LÖSUNG:

$$\begin{pmatrix} 1 & 2 & 2 & | & -3 \\ 1 & 3 & 3 & | & -4 \\ 3 & 4 & 7 & | & 2 \\ 2 & 4 & \alpha & | & 3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 2 & | & -3 \\ 0 & 1 & 1 & | & -1 \\ 0 & 0 & 3 & | & 9 \\ 0 & 0 & 0 & | & -3\alpha + 21 \end{pmatrix}$$

Für $\alpha \neq 7$ ist $L = \emptyset$. Für $\alpha = 7$ finden wir eine eindeutige Lösung:

$$L = \left\{ \begin{pmatrix} -1 \\ -4 \\ 3 \end{pmatrix} \right\}$$

Aufgabe 9 Man zeige, dass das folgende LGS über \mathbb{R} nur für $\beta = 1$ oder $\beta = 2$ Lösungen besitzt und gebe diese in beiden Fällen an.

$$\left(\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & \beta \\
1 & 4 & 10 & \beta^2
\end{array}\right)$$

LÖSUNG:

$$\begin{pmatrix}
1 & 1 & 1 & | & 1 \\
1 & 2 & 4 & | & \beta \\
1 & 4 & 10 & | & \beta^2
\end{pmatrix}
\quad \rightsquigarrow
\quad
\begin{pmatrix}
1 & 1 & 1 & | & 1 \\
0 & 1 & 3 & | & \beta - 1 \\
0 & 0 & 0 & | & \beta^2 - 3\beta + 2
\end{pmatrix}$$

Das LGS ist genau dann lösbar, wenn

$$\beta^2 - 3\beta + 2 = 0$$

, also, wie man mit der Mitternachtsformel oder durch scharfes Hinsehen herausfindet, für $\beta=1$ oder $\beta=2$. In diesen beiden Fällen lesen wir die Lösung

$$\vec{x} = \begin{pmatrix} 2 - \beta \\ \beta - 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} \lambda$$

ab.

Aufgabe 10 Es sei $a_{ij}, b_i \in K$. Man betrachte das folgende LGS:

$$\begin{array}{rcl} (I) & a_{11}x_1 + a_{12}x_2 & = & b_1 \\ (II) & a_{21}x_1 + a_{22}x_2 & = & b_2 \end{array}$$

In Abhängigkeit von a_{ij} und b_i beschreibe man die Lösungsmenge L des LGS.

- Wann ist L einelementig?
- Wann ist L leer?
- Wann enthält L mehr als ein Element? Wie sieht L dann aus?

Hinweis: Man berücksichtige, dass jede der beiden Gleichungen eine Gerade beschreibt.

LÖSUNG:

Falls $a_{11}a_{22} - a_{12}a_{21} \neq 0$ findet man eine eindeutige Lösung durch:

$$(I^*): a_{22}(I) \quad a_{11}a_{22}x_1 + a_{12}a_{22}x_2 = b_1a_{22}$$

$$(II^*): a_{12}(II) \quad a_{21}a_{12}x_1 + a_{22}a_{12}x_2 = b_2a_{12}$$

$$(I^*) - (II^*): (a_{11}a_22 - a_{21}a_{12})x_1 = a_{22}b_1 - a_{12}b_2$$

$$a_{22}b_1 - a_{12}b_2$$

$$x_1 = \frac{a_{22}b_1 - a_{12}b_2}{a_{11}a_{22} - a_{12}a_{21}}$$

Analog für x_2 :

$$x_2 = \frac{a_{11}b_2 - a_{21}b_2}{a_{11}a_{22} - a_{12}a_{21}}$$

Wenn $a_{11}a_{22} - a_{12}a_{21} = 0$, dann müssen wir zwei Fälle unterscheiden.

1. $a_{11} = a_{22} = a_{12} = a_{21} = 0$

$$(b_1, b_2) \neq (0, 0) \Rightarrow L = \emptyset$$

 $(b_1, b_2) = (0, 0) \Rightarrow L = K^2$

2. $(a_{11}, a_{22}, a_{12}, a_{21}) \neq (0, 0, 0, 0)$ In diesem Fall sind die beiden durch (I) und (II) beschriebenen Geraden (echt oder unecht) parallel.

6

$$L = \emptyset$$
 oder $L = v + K \cdot w$