Momentum methods: principle

Increase stepsize because previous updates consistently moved weight right

Decrease stepsize because previous updates kept changing direction

Stepsize shrinks along w2 but increases along w1

- Ideally: Have component-specific step size
 - But the resulting updates will not be against the gradient and do not guarantee descent
- Adaptive solution: Start with a common step size
 - Shrink step size in directions where the weight oscillates
 - Expand step size in directions where the weight moves consistently in one direction

Quick recap: Momentum methods

Momentum

$$\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss (W^{(k-1)})^T$$

Nestorov

$$W_{extend}^{(k)} = W^{(k-1)} + \beta \Delta W^{(k-1)}$$

$$\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss \left(W_{extend}^{(k)}\right)^T$$

$$W^{(k)} = W^{(k-1)} + \Delta W^{(k)}$$

- Momentum: Retain gradient value, but smooth out gradients by maintaining a running average
 - Cancels out steps in directions where the weight value oscillates
 - Adaptively increases step size in directions of consistent change

The training formulation

 Given input output pairs at a number of locations, estimate the entire function

Start with an initial function

- Start with an initial function
- Adjust its value at all points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at all points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points

- Start with an initial function
- Adjust its value at all points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at all points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points

- Start with an initial function
- Adjust its value at all points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at all points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points

- Start with an initial function
- Adjust its value at all points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at all points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points

- Start with an initial function
- Adjust its value at all points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at all points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points

Effect of number of samples

- Problem with conventional gradient descent: we try to simultaneously adjust the function at all training points
 - We must process all training points before making a single adjustment
 - "Batch" update

- Alternative: adjust the function at one training point at a time
 - Keep adjustments small

- Alternative: adjust the function at one training point at a time
 - Keep adjustments small

- Alternative: adjust the function at one training point at a time
 - Keep adjustments small

- Alternative: adjust the function at one training point at a time
 - Keep adjustments small

- Alternative: adjust the function at one training point at a time
 - Keep adjustments small
 - Eventually, when we have processed all the training points, we will have adjusted the entire function
 - With greater overall adjustment than we would if we made a single "Batch" update

Incremental Update: Stochastic Gradient Descent

- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights $W_1, W_2, ..., W_K$
- Do:
 - For all t = 1:T
 - For every layer *k*:
 - Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - Update

$$W_k = W_k - \eta \nabla_{W_k} \mathbf{D} i \mathbf{v} (Y_t, \mathbf{d}_t)^T$$

Until Loss has converged

Stochastic Gradient Descent

- The iterations can make multiple passes over the data
- A single pass through the entire training data is called an "epoch"
 - An epoch over a training set with T samples results in T updates of parameters

Incremental Update: Stochastic Gradient Descent

- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights $W_1, W_2, ..., W_K$
- Do:
 - Randomly permute $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
 - For all t = 1:T
 - For every layer *k*:
 - Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - Update

$$W_k = W_k - \eta \nabla_{W_k} \mathbf{Div}(\mathbf{Y_t}, \mathbf{d_t})^T$$

Until Loss has converged

SGD convergence

- SGD converges "almost surely" to a global or local minimum for most functions
 - Sufficient condition: step sizes follow the following conditions

$$\sum_k \eta_k = \infty$$

Eventually the entire parameter space can be searched

$$\sum_{k} \eta_k^2 < \infty$$

- The steps shrink
- The fastest converging series that satisfies both above requirements is

$$\eta_k \propto \frac{1}{k}$$

- This is the optimal rate of shrinking the step size for strongly convex functions
- More generally, the learning rates are heuristically determined
- If the loss is convex, SGD converges to the optimal solution
- For non-convex losses SGD converges to a local minimum

SGD convergence

- We will define convergence in terms of the number of iterations taken to get within ϵ of the optimal solution
 - $\left| f(W^{(k)}) f(W^*) \right| < \epsilon$
 - Note: f(W) here is the error on the *entire* training data, although SGD itself updates after every training instance
- Using the optimal learning rate 1/k, for strongly convex functions,

$$|W^{(k)} - W^*| < \frac{1}{k} |W^{(0)} - W^*|$$

- Strongly convex → Can be placed inside a quadratic bowl, touching at any point
- Giving us the iterations to ϵ convergence as $O\left(\frac{1}{\epsilon}\right)$
- For generically convex (but not strongly convex) function, various proofs report an ϵ convergence of $\frac{1}{\sqrt{k}}$ using a learning rate of $\frac{1}{\sqrt{k}}$.

Batch gradient convergence

 In contrast, using the batch update method, for strongly convex functions,

$$|W^{(k)} - W^*| < c^k |W^{(0)} - W^*|$$

- Giving us the iterations to ϵ convergence as $O\left(\log\left(\frac{1}{\epsilon}\right)\right)$
- For generic convex functions, iterations to ϵ convergence is $O\left(\frac{1}{\epsilon}\right)$
- Batch gradients converge "faster"
 - But SGD performs T updates for every batch update

SGD example

- A simpler problem: K-means
- Note: SGD converges slower
- Also note the rather large variation between runs
 - Lets try to understand these results..

Recall: Modelling a function

• To learn a network f(X; W) to model a function g(X) we minimize the expected divergence

$$\widehat{\boldsymbol{W}} = \underset{W}{\operatorname{argmin}} \int_{X} div(f(X; W), g(X))P(X)dX$$
$$= \underset{W}{\operatorname{argmin}} E[div(f(X; W), g(X))]$$

Recall: The *Empirical* risk

In practice, we minimize the empirical risk (or loss)

$$Loss(f(X; W), g(X)) = \frac{1}{N} \sum_{i=1}^{N} div(f(X_i; W), d_i)$$

$$\widehat{W} = \underset{W}{\operatorname{argmin}} Loss(f(X; W), g(X))$$

The expected value of the empirical risk is actually the expected divergence

$$E[Loss(f(X; W), g(X))] = E[div(f(X; W), g(X))]$$

Recall: The *Empirical* risk

In practice, we minimize the empirical risk (or loss)

$$Loss(f(X; W), g(X)) = \frac{1}{N} \sum_{i=1}^{N} div(f(X_i; W), d_i)$$

The empirical risk is an unbiased estimate of the expected loss

Though there is no guarantee that minimizing it will minimize the expected loss

$$E[Loss(f(X; W), g(X))] = E[div(f(X; W), g(X))]$$

Recall: The *Empirical* risk

The variance of the empirical risk: var(Loss) = 1/N var(div)

The variance of the estimator is proportional to 1/N

The larger this variance, the greater the likelihood that the W that minimizes the empirical risk will differ significantly from the W that minimizes the expected loss

$$Loss(f(X; W), g(X)) = \frac{1}{N} \sum_{i=1}^{N} div(f(X_i; W), d_i)$$

The empirical risk is an unbiased estimate of the expected loss

Though there is no guarantee that minimizing it will minimize the expected loss

$$E[Loss(f(X; W), g(X))] = E[div(f(X; W), g(X))]$$

SGD

- At each iteration, **SGD** focuses on the divergence of a **single** sample $div(f(X_i; W), d_i)$
- The expected value of the sample error is still the expected divergence E[div(f(X; W), g(X))]

SGD

The sample error is also an unbiased estimate of the expected error

- At each iteration, SGD focuses on the divergence of a **single** sample $div(f(X_i; W), d_i)$
- The expected value of the sample error is still the expected divergence E[div(f(X; W), g(X))]

SGD

The variance of the sample error is the variance of the divergence itself: var(div) This is N times the variance of the empirical average minimized by batch update

The sample error is also an unbiased estimate of the expected error

- At each iteration, SGD focuses on the divergence of a **single** sample $div(f(X_i; W), d_i)$
- The expected value of the sample error is still the expected divergence E[div(f(X; W), g(X))]

- The blue curve is the function being approximated
- The red curve is the approximation by the model at a given W
- The heights of the shaded regions represent the point-by-point error
 - The divergence is a function of the error
 - We want to find the W that minimizes the average divergence

 Sample estimate approximates the shaded area with the average length of the lines

- Sample estimate approximates the shaded area with the average length of the lines
- This average length will change with position of the samples

- Sample estimate approximates the shaded area with the average length of the lines
- This average length will change with position of the samples

- Having more samples makes the estimate more robust to changes in the position of samples
 - The variance of the estimate is smaller

- Having very few samples makes the estimate swing wildly with the sample position
 - Since our estimator learns the W to minimize this estimate, the learned W too can swing wildly

- Having very few samples makes the estimate swing wildly with the sample position
 - Since our estimator learns the W to minimize this estimate, the learned W too can swing wildly

Explaining the variance

- Having very few samples makes the estimate swing wildly with the sample position
 - Since our estimator learns the W to minimize this estimate, the learned W too can swing wildly

SGD example

- A simpler problem: K-means
- Note: SGD converges slower
- Also has large variation between runs

SGD vs batch

- SGD uses the gradient from only one sample at a time, and is consequently high variance
- But also provides significantly quicker updates than batch
- Is there a good medium?

- Alternative: adjust the function at a small, randomly chosen subset of points
 - Keep adjustments small
 - If the subsets cover the training set, we will have adjusted the entire function
- As before, vary the subsets randomly in different passes through the training data

- Alternative: adjust the function at a small, randomly chosen subset of points
 - Keep adjustments small
 - If the subsets cover the training set, we will have adjusted the entire function
- As before, vary the subsets randomly in different passes through the training data

- Alternative: adjust the function at a small, randomly chosen subset of points
 - Keep adjustments small
 - If the subsets cover the training set, we will have adjusted the entire function
- As before, vary the subsets randomly in different passes through the training data

- Alternative: adjust the function at a small, randomly chosen subset of points
 - Keep adjustments small
 - If the subsets cover the training set, we will have adjusted the entire function
- As before, vary the subsets randomly in different passes through the training data

Incremental Update: Mini-batch update

- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights $W_1, W_2, ..., W_K; j = 0$
- Do:
 - Randomly permute $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
 - For t = 1:b:T
 - j = j + 1
 - For every layer k:

$$-\Delta W_k = 0$$

- For t' = t: t+b-1
 - For every layer k:
 - » Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - » $\Delta W_k = \Delta W_k + \frac{1}{b} \nabla_{W_k} Div(Y_t, d_t)^T$
- Update
 - For every layer k:

$$W_k = W_k - \eta_i \Delta W_k$$

Until Err has converged

Incremental Update: Mini-batch update

- Given (X_1, d_1) , (X_2, d_2) ,..., (X_T, d_T)
- Initialize all weights $W_1, W_2, ..., W_K$; j = 0
- Do:
 - Randomly permute $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
 - For t = 1:b:T
 - j = j + 1

Mini-batch size

- For every layer k:
 - $-\Delta W_k = 0$

Shrinking step size

- For t' = t: t+b-1
 - For every layer k:
 - » Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - » $\Delta W_k = \Delta W_k + \frac{1}{b} \nabla_{W_k} Div(Y_t, d_t)^T$
- Update
 - For every layer k:

$$W_k = W_k - \eta_j \Delta W_k$$

Until <u>Err</u> has converged

Mini Batches

• Mini-batch updates compute and minimize a batch loss

$$BatchLoss(f(X; W), g(X)) = \frac{1}{b} \sum_{i=1}^{b} div(f(X_i; W), d_i)$$

• The expected value of the batch loss is also the expected divergence

$$E[BatchLoss(f(X; W), g(X))] = E[div(f(X; W), g(X))]$$

Mini Batches

The batch loss is also an unbiased estimate of the expected loss

Mini-batch updates compute and minimize a batch loss

$$BatchLoss(f(X; W), g(X)) = \frac{1}{b} \sum_{i=1}^{b} div(f(X_i; W), d_i)$$

• The expected value of the batch loss is also the expected divergence

$$E[BatchLoss(f(X; W), g(X))] = E[div(f(X; W), g(X))]$$

Mini Batches

The variance of the batch loss: var(BatchLoss) = 1/b var(div)
This will be much smaller than the variance of the sample error in SGD

The batch loss is also an unbiased estimate of the expected error

Mini-batch updates compute and minimize a batch loss

$$BatchLoss(f(X; W), g(X)) = \frac{1}{b} \sum_{i=1}^{b} div(f(X_i; W), d_i)$$

• The expected value of the batch loss is also the expected divergence

$$E[BatchLoss(f(X; W), g(X))] = E[div(f(X; W), g(X))]$$

Minibatch convergence

- For convex functions, convergence rate for SGD is $O\left(\frac{1}{\sqrt{k}}\right)$.
- For *mini-batch* updates with batches of size b, the convergence rate is $\mathcal{O}\left(\frac{1}{\sqrt{bk}} + \frac{1}{k}\right)$
 - Apparently an improvement of \sqrt{b} over SGD
 - But since the batch size is b, we perform b times as many computations per iteration as SGD
 - We actually get a degradation of \sqrt{b}
- However, in practice
 - The objectives are generally not convex; mini-batches are more effective with the right learning rates
 - We also get additional benefits of vector processing

SGD example

- Mini-batch performs comparably to batch training on this simple problem
 - But converges orders of magnitude faster

Training and minibatches

- In practice, training is usually performed using minibatches
 - The mini-batch size is a hyper parameter to be optimized
- Convergence depends on learning rate
 - Simple technique: fix learning rate until the error plateaus,
 then reduce learning rate by a fixed factor (e.g. 10)
 - Advanced methods: Adaptive updates, where the learning rate is itself determined as part of the estimation