Guida Strategica per l'Esame di Calcolo 2

Versione ampliata con strategie, esempi pratici e formulario avanzato

Filippo Spinella 12 giugno 2025

Sommario

Questa guida nasce con l'obiettivo di fornire un supporto pratico e schematico per affrontare con successo l'esame di Calcolo 2. Non si limita a un elenco di formule, ma propone un **metodo di ragionamento** e una serie di **strategie operative** per ogni tipologia di esercizio, arricchite con esempi tratti da prove d'esame reali. Leggila attentamente, mettila in pratica e usala per costruire la tua sicurezza. In bocca al lupo!

Indice

1	Esei	cizio 1: Serie Numeriche e di Potenze	3	
	1.1	Studio della Convergenza di Serie Numeriche	3	
		1.1.1 Analisi Dettagliata dei Criteri		
	1.2	Serie di Potenze $\sum c_n(x-x_0)^n$		
2	Esercizio 2: Taylor, Fourier e Dini			
	2.1	Polinomi di Taylor / MacLaurin	5	
	2.2	Serie di Fourier		
	2.3	Teorema della Funzione Implicita (Dini)		
3	Esercizi 3 e 4: Funzioni di Due Variabili			
	3.1	Analisi di Base: Dominio e Derivate	6	
		3.1.1 Dominio e Proprietà Topologiche	6	
		3.1.2 Calcolo delle Derivate Parziali e del Gradiente	6	
		3.1.3 Differenziabilità, Derivata Direzionale e Piano Tangente	7	
	3.2	Ottimizzazione Libera e Vincolata	8	
		3.2.1 Ottimizzazione Libera (Ricerca di Massimi, Minimi e Selle)	8	
		3.2.2 Ottimizzazione Vincolata su un Insieme Compatto C	9	
\mathbf{A}	Formulario Avanzato			
	A.1	Sviluppi di MacLaurin Fondamentali $(x \to 0)$	11	
		Formule per Serie di Fourier (Periodo T)		
		Trigonometria Utile per Integrali di Fourier		

1 Esercizio 1: Serie Numeriche e di Potenze

Questo è spesso il primo scoglio. L'obiettivo è capire il "carattere" di una serie. La chiave è la sistematicità.

1.1 Studio della Convergenza di Serie Numeriche

Strategia Vincente

Flowchart mentale:

- 1. Condizione Necessaria: Il termine $a_n \to 0$? Se NO \implies DIVERGE. Se SÌ, procedi.
- 2. **Segno:** La serie è a termini positivi? (o definitivamente positivi). Se SÌ, usa i criteri per serie positive (confronto asintotico è il più potente). Se NO, vai al punto 3.
- 3. Convergenza Assoluta: Studia $\sum |a_n|$ (che è a termini positivi). Se converge, hai finito: la serie converge ASSOLUTAMENTE (e quindi anche semplicemente). Se diverge, non puoi concludere nulla sulla convergenza semplice, vai al punto 4.
- 4. Convergenza Semplice (Criterio di Leibniz): La serie è a segni alterni, della forma $\sum (-1)^n b_n$ con $b_n > 0$? Se SÌ, verifica le due condizioni di Leibniz $(b_n \to 0 \text{ e } b_n \text{ decrescente})$. Se valgono, la serie converge SEMPLICEMENTE.

1.1.1 Analisi Dettagliata dei Criteri

1. Condizione Necessaria: $\lim_{n\to\infty} a_n = 0$.

Errore Comune da Evitare

Se il limite è 0, non puoi concludere nulla! La condizione è solo necessaria, non sufficiente. Dire "siccome $a_n \to 0$ la serie converge" è un errore grave che invalida l'esercizio.

- 2. Convergenza Assoluta (Studio di $\sum |a_n|$):
 - Confronto Asintotico (il più potente): Semplifica $|a_n|$ per $n \to \infty$ usando gli sviluppi di MacLaurin o le equivalenze asintotiche notevoli (es. $\sin(x) \sim x$, $\ln(1+x) \sim x$, $e^x 1 \sim x$ per $x \to 0$). Confrontala con la serie armonica generalizzata $\sum \frac{1}{n^{\alpha}}$ (converge se $\alpha > 1$) o la serie geometrica $\sum q^n$ (converge se |q| < 1).
 - Criterio del Rapporto: Utile con fattoriali (n!) o termini esponenziali (k^n) . Calcola $L = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$. Se L < 1 converge assolutamente, se L > 1 diverge, se L = 1 è inconclusivo.
 - Criterio della Radice: Utile con potenze n-esime. Calcola $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$. Le conclusioni sono le stesse del criterio del rapporto.

Esempio Pratico (dagli esami)

Studiare la convergenza di $\sum_{n=1}^{+\infty} 2^n \sin\left(\frac{1}{5^n}\right)$. La serie è a termini positivi. Per $n \to \infty$, l'argomento del seno $1/5^n \to 0$. Usiamo il confronto asintotico: $\sin(1/5^n) \sim 1/5^n$. Quindi, la nostra serie ha lo stesso carattere di:

$$\sum_{n=1}^{+\infty} 2^n \cdot \frac{1}{5^n} = \sum_{n=1}^{+\infty} \left(\frac{2}{5}\right)^n$$

Questa è una serie geometrica di ragione q=2/5. Poiché |q|<1, la serie converge.

- 3. Convergenza Semplice (se non c'è conv. assoluta):
 - Criterio di Leibniz: Per una serie a segno alterno $\sum (-1)^n b_n$ con $b_n \geq 0$, verifica entrambe le condizioni:
 - (a) $\lim_{n\to\infty} b_n = 0$ (la condizione necessaria!).
 - (b) b_n è **definitivamente decrescente**. Per provarlo, puoi studiare il segno della derivata della funzione associata f(x) (se f'(x) < 0) o verificare che $b_{n+1} \le b_n$.
 - Stima dell'errore (Leibniz): Se una serie a termini alterni converge a S, l'errore commesso troncando la serie alla somma parziale S_N è minore in valore assoluto del primo termine trascurato: $|S S_N| \le b_{N+1}$.

1.2 Serie di Potenze $\sum c_n(x-x_0)^n$

1. Raggio di Convergenza ρ : Si calcola sempre con il criterio del rapporto o della radice applicato al valore assoluto dei coefficienti, $|c_n|$.

$$L = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|$$
 oppure $L = \lim_{n \to \infty} \sqrt[n]{|c_n|}$

Il raggio di convergenza è $\rho = \frac{1}{L}$. (Se $L = 0 \implies \rho = +\infty$. Se $L = +\infty \implies \rho = 0$).

- 2. **Intervallo di Convergenza:** La serie converge assolutamente (e quindi semplicemente) nell'intervallo aperto $(x_0 \rho, x_0 + \rho)$.
- 3. Studio agli Estremi: Sostituisci $x = x_0 \rho$ e $x = x_0 + \rho$ nell'espressione della serie. Ottieni due serie numeriche da studiare con i metodi del punto precedente.

Errore Comune da Evitare

Dimenticarsi di studiare il comportamento agli estremi è uno degli errori più frequenti e costa punti preziosi. L'insieme di convergenza non è completo senza questa analisi.

4. **Insieme di Convergenza:** È l'unione dell'intervallo aperto e degli eventuali estremi in cui la serie converge. Può essere (a, b), [a, b), (a, b] o [a, b].

2 Esercizio 2: Taylor, Fourier e Dini

2.1 Polinomi di Taylor / MacLaurin

Strategia Vincente

Non calcolare **mai** le derivate una per una, a meno che non sia esplicitamente richiesto o la funzione sia banalissima. La strada maestra è usare gli **sviluppi notevoli** (vedi formulario) e combinarli algebricamente (somma, prodotto, composizione).

- Come operare: Sostituisci, somma, moltiplica e componi gli sviluppi notevoli. Ricorda di fermarti all'ordine richiesto e di usare il simbolo di o-piccolo $o((x-x_0)^n)$. Gestisci con cura le potenze e gli ordini degli o-piccoli.
- Calcolo di $f^{(n)}(0)$: Dalla teoria, il coefficiente c_n del termine x^n nello sviluppo di MacLaurin è $c_n = \frac{f^{(n)}(0)}{n!}$. La formula inversa è potentissima per calcolare derivate in zero senza fatica:

$$f^{(n)}(0) = n! \cdot c_n$$

2.2 Serie di Fourier

Strategia Vincente

- 1. **Disegna la funzione!** Un grafico del prolungamento periodico ti aiuta a vedere subito simmetrie e punti di discontinuità.
- 2. Simmetrie: Se f è pari (f(-x) = f(x)), allora tutti i $b_n = 0$. Se f è dispari (f(-x) = -f(x)), allora $a_0 = 0$ e tutti gli $a_n = 0$. Questo ti dimezza il lavoro!
- 3. Calcolo Coefficienti: Usa le formule, prestando attenzione agli estremi di integrazione (di solito $[-\pi,\pi]$ o [-T/2,T/2]). L'integrazione per parti è quasi sempre necessaria.
- 4. Convergenza Puntuale (Teorema di Dirichlet):
 - Dove f è continua, la serie converge a f(x).
 - Nei punti di discontinuità a salto x_d , la serie converge al valore medio del salto: $\frac{f(x_d^+)+f(x_d^-)}{2}$.
- 5. **Identità di Parseval:** Utile per calcolare la somma di serie numeriche. $\frac{1}{T} \int_{-T/2}^{T/2} |f(x)|^2 dx = \frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$

2.3 Teorema della Funzione Implicita (Dini)

Data F(x,y)=0 e un punto $P_0(x_0,y_0)$ tale che $F(P_0)=0$.

- 1. Verifica Ipotesi: Per poter definire una funzione y = g(x) in un intorno di x_0 , devi verificare due condizioni fondamentali:
 - $F(x_0, y_0) = 0$ (il punto appartiene al luogo di zeri).

- La derivata parziale di F rispetto alla variabile da esplicitare (y) è diversa da zero nel punto: $F_y(x_0, y_0) \neq 0$.
- 2. Calcolo Derivata Prima: La formula è un "must know":

$$g'(x) = -\frac{F_x(x,y)}{F_y(x,y)} \implies g'(x_0) = -\frac{F_x(x_0,y_0)}{F_y(x_0,y_0)}$$

3. Calcolo Derivata Seconda (se richiesta): Deriva l'espressione di g'(x) usando la regola del quoziente e ricordando che y = g(x), quindi la sua derivata rispetto a $x \in g'(x)$.

$$g''(x) = -\frac{(F_{xx} + F_{xy}g'(x))F_y - F_x(F_{yx} + F_{yy}g'(x))}{(F_y)^2}$$

Questa formula è complessa. All'esame, di solito si calcola nel punto x_0 , dove il valore di $g'(x_0)$ è già noto dal passo precedente, semplificando il calcolo.

3 Esercizi 3 e 4: Funzioni di Due Variabili

Questi esercizi testano la capacità di analizzare una funzione f(x, y) in un'area del piano. La procedura è standardizzata, ma richiede attenzione ai dettagli. Distinguiamo due scenari principali: l'analisi in un insieme aperto (ottimizzazione libera) e l'ottimizzazione su un insieme compatto (vincolata).

3.1 Analisi di Base: Dominio e Derivate

3.1.1 Dominio e Proprietà Topologiche

- Determinazione del Dominio:
 - Argomenti di logaritmi: > 0.
 - Denominatori: $\neq 0$.
 - Radici con indice pari: argomento ≥ 0 .

Disegnalo sempre! Un disegno aiuta a capire la geometria del problema.

• Proprietà del Dominio: Specifica sempre se è aperto (non contiene la sua frontiera, es. $x^2 + y^2 < 1$), chiuso (contiene la sua frontiera, es. $x^2 + y^2 \le 1$), limitato (può essere racchiuso in un cerchio di raggio finito), connesso (è un pezzo unico).

3.1.2 Calcolo delle Derivate Parziali e del Gradiente

Il calcolo delle derivate parziali è il primo passo per quasi ogni analisi di funzioni di più variabili.

- Derivata Parziale rispetto a x (f_x o $\frac{\partial f}{\partial x}$): Si calcola trattando la variabile y come se fosse una costante. Si applicano poi le normali regole di derivazione per la sola variabile x.
- Derivata Parziale rispetto a y (f_y o $\frac{\partial f}{\partial y}$): Si calcola trattando la variabile x come se fosse una costante e derivando rispetto a y.

• Gradiente (∇f) : È semplicemente il vettore che raccoglie le derivate parziali:

$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}(x,y), \frac{\partial f}{\partial y}(x,y)\right) = (f_x, f_y)$$

Esempio Pratico (dagli esami)

Data $f(x,y) = x^2 e^y + e^y$.

• Per calcolare f_x , trattiamo e^y come una costante (es. k). La derivata di $kx^2 + k$ rispetto a $x \in 2kx$. Quindi:

$$f_x(x,y) = 2xe^y$$

• Per calcolare f_y , trattiamo x^2 come una costante (es. c). La derivata di $ce^y + e^y$ rispetto a $y \in ce^y + e^y$. Quindi:

$$f_y(x,y) = x^2 e^y + e^y = (x^2 + 1)e^y$$

• Il gradiente è: $\nabla f(x,y) = (2xe^y, (x^2+1)e^y)$.

3.1.3 Differenziabilità, Derivata Direzionale e Piano Tangente

- Differenziabilità (Teorema del Differenziale Totale): Il modo più rapido per provarla è calcolare le derivate parziali f_x e f_y . Se queste sono **continue** in un intorno di un punto P_0 , allora la funzione è differenziabile in P_0 . Poiché la maggior parte delle funzioni elementari e loro composizioni ha derivate parziali continue nel loro dominio, spesso la differenziabilità è garantita.
- Derivata Direzionale: Rappresenta la pendenza della funzione lungo una certa direzione \vec{v} . Se f è differenziabile, si calcola con la formula del gradiente:

$$D_{\vec{v}}f(P_0) = \nabla f(P_0) \cdot \vec{v}$$

Questa formula è un prodotto scalare tra il gradiente calcolato nel punto P_0 e il vettore direzione \vec{v} .

Strategia Vincente

Per calcolare $D_{\vec{v}}f(P_0)$:

- 1. Calcola il gradiente $\nabla f(x,y) = (f_x, f_y)$.
- 2. Valuta il gradiente nel punto $P_0(x_0, y_0)$ per ottenere il vettore numerico $\nabla f(P_0)$.
- 3. Controlla la norma del vettore direzione \vec{v} . Se $||\vec{v}|| \neq 1$, devi normalizzarlo per trovare il versore $\hat{v} = \frac{\vec{v}}{||\vec{v}||}$.
- 4. Calcola il prodotto scalare: $D_{\hat{v}}f(P_0) = \nabla f(P_0) \cdot \hat{v}$.

Errore Comune da Evitare

Usare un vettore \vec{v} non normalizzato (cioè, con norma diversa da 1) nella formula del prodotto scalare è un errore concettuale. La derivata direzionale è definita rispetto a un **versore** (un vettore di norma 1).

Esempio Pratico (dagli esami)

Calcolare la derivata di f(x,y) = 4xy + 4x nel punto P(1,-1) lungo il vettore v = (3,2).

- 1. **Gradiente:** $\nabla f(x,y) = (4y + 4, 4x)$.
- 2. Gradiente nel punto: $\nabla f(1,-1) = (4(-1)+4,4(1)) = (0,4)$.
- 3. Normalizzazione del vettore: Il vettore è v=(3,2). La sua norma è $||v||=\sqrt{3^2+2^2}=\sqrt{13}$. Non è un versore. Il versore corrispondente è $\hat{v}=\frac{v}{||v||}=\left(\frac{3}{\sqrt{13}},\frac{2}{\sqrt{13}}\right)$.
- 4. Prodotto scalare:

$$D_{\hat{v}}f(1,-1) = \nabla f(1,-1)\cdot\hat{v} = (0,4)\cdot\left(\frac{3}{\sqrt{13}},\frac{2}{\sqrt{13}}\right) = 0\cdot\frac{3}{\sqrt{13}} + 4\cdot\frac{2}{\sqrt{13}} = \frac{8}{\sqrt{13}}$$

• Piano Tangente: È l'approssimazione di Taylor al primo ordine e la sua equazione è fondamentale:

$$z = f(P_0) + f_x(P_0)(x - x_0) + f_y(P_0)(y - y_0)$$

3.2 Ottimizzazione Libera e Vincolata

- 3.2.1 Ottimizzazione Libera (Ricerca di Massimi, Minimi e Selle)
 - 1. Trova Punti Critici: Sono i punti interni al dominio dove il piano tangente è orizzontale. Si trovano annullando il gradiente, cioè risolvendo il sistema:

$$\nabla f(x,y) = \vec{0} \iff \begin{cases} f_x(x,y) = 0\\ f_y(x,y) = 0 \end{cases}$$

- 2. Classificazione con Matrice Hessiana: Calcola le derivate seconde e costruisci la matrice Hessiana in un generico punto (x,y): $H(x,y) = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$. Per ogni punto critico P_0 trovato, calcola l'Hessiano $H(P_0)$ e il suo determinante $\det(H(P_0))$.
 - Se $det(H(P_0)) > 0$ e $f_{xx}(P_0) > 0 \implies P_0$ è un punto di minimo locale.
 - Se $\det(H(P_0)) > 0$ e $f_{xx}(P_0) < 0 \implies P_0$ è un punto di massimo locale.
 - Se $det(H(P_0)) < 0 \implies P_0$ è un punto di sella.
 - Se $\det(H(P_0)) = 0 \implies$ il test è inconcludente. Bisogna studiare il segno di $\Delta f(P) = f(P) f(P_0)$ in un intorno di P_0 , un'analisi più complessa che di solito non è richiesta in un esame standard.

3.2.2 Ottimizzazione Vincolata su un Insieme Compatto C

Questa è una delle tipologie di esercizio più complete e richiede una procedura rigorosa per non perdere punti. L'obiettivo è trovare il massimo e il minimo **assoluti** di f(x, y) su un insieme chiuso e limitato C.

Nota Teorica

Teorema di Weierstrass: Se f è una funzione continua e C è un insieme chiuso e limitato (compatto), allora l'esistenza del massimo e minimo assoluti di f su C è garantita. La tua unica responsabilità è trovarli.

- 1. Punti Critici Interni a C: Risolvi $\nabla f(x,y) = (0,0)$ come nell'ottimizzazione libera. Prendi in considerazione solo le soluzioni che cadono all'interno del vincolo C (cioè, non sulla sua frontiera). Metti questi punti in una lista di "candidati".
- 2. Studio sulla Frontiera ∂C : Questo è il cuore del problema.

Caso A: La frontiera è una curva parametrizzabile (es. circonferenza, ellisse)

- Parametrizzazione: Scrivi l'equazione della frontiera in forma parametrica. Esempi comuni:
 - Circonferenza $x^2 + y^2 = R^2 \implies x = R\cos t, y = R\sin t, \text{ con } t \in [0, 2\pi].$
 - Ellisse $x^2/a^2 + y^2/b^2 = 1 \implies x = a \cos t, y = b \sin t, \text{ con } t \in [0, 2\pi].$
- Restrizione: Sostituisci la parametrizzazione in f(x,y) per ottenere una funzione di una sola variabile, g(t) = f(x(t), y(t)).
- Ottimizzazione in 1D: Studia massimi e minimi di g(t) nell'intervallo del parametro t. I candidati sono i punti dove g'(t) = 0 e gli estremi dell'intervallo di t. Aggiungi questi nuovi punti (x(t), y(t)) alla lista dei candidati.

Caso B: La frontiera è un poligono (es. quadrato, triangolo)

- Analisi dei Lati: La frontiera è composta da più segmenti. Devi analizzare ogni lato separatamente, parametrizzandolo. Ad esempio, il lato di un quadrato da (0,0) a (1,0) si parametrizza come x=t,y=0 con $t\in[0,1]$. Riduci f a una funzione della sola variabile t e cerchi i suoi massimi e minimi su quel segmento.
- I Vertici: I vertici del poligono sono sempre punti candidati. Spesso i massimi o minimi assoluti si nascondono proprio lì.

Errore Comune da Evitare

Dimenticare di includere i vertici di un dominio poligonale nella lista dei candidati è un errore gravissimo e molto comune. Aggiungili sempre alla lista!

Metodo Alternativo: Moltiplicatori di Lagrange Utile se il vincolo g(x, y) = k è complesso da parametrizzare. Risolvi il sistema di 3 equazioni in 3 incognite

 (x, y, λ) :

$$\begin{cases} \nabla f(x,y) = \lambda \nabla g(x,y) \\ g(x,y) = k \end{cases} \iff \begin{cases} f_x = \lambda g_x \\ f_y = \lambda g_y \\ g(x,y) = k \end{cases}$$

Le soluzioni (x, y) sono i punti candidati sulla frontiera. Aggiungili alla lista.

- 3. Tabella di Confronto Finale: Crea una tabella con tutti i punti candidati trovati:
 - \bullet Critici interni a C.
 - Candidati sulla frontiera (da parametrizzazione, Lagrange, o vertici).

Calcola il valore di f in ogni candidato. Il valore più alto è il **massimo assoluto**, il più basso è il **minimo assoluto**.

Esempio Pratico (dagli esami)

Trovare max/min assoluti di $f(x,y) = x^2 e^y + e^y$ su $C = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = 2\}.$

- 1. Weierstrass: f è continua. C (una circonferenza) è un insieme chiuso e limitato. Quindi max e min assoluti esistono.
- 2. Punti interni: Non ci sono punti interni, il dominio è solo la frontiera.
- 3. Frontiera con Lagrange: Il vincolo è $g(x,y) = x^2 + y^2 2 = 0$. $\nabla f = (2xe^y, x^2e^y + e^y), \nabla g = (2x, 2y)$. Il sistema dei moltiplicatori è:

$$\begin{cases} 2xe^y = \lambda(2x) \\ (x^2 + 1)e^y = \lambda(2y) \\ x^2 + y^2 = 2 \end{cases}$$

Dalla prima equazione: $2x(e^y - \lambda) = 0$. Questo dà due casi:

- Caso 1: x = 0. Sostituendo nella terza eq: $y^2 = 2 \implies y = \pm \sqrt{2}$. Otteniamo i punti $P_1(0, \sqrt{2})$ e $P_2(0, -\sqrt{2})$.
- Caso 2: $\lambda = e^y$. Sostituendo nella seconda eq: $(x^2 + 1)e^y = e^y(2y) \implies x^2 + 1 = 2y$. Sostituiamo $x^2 = 2y 1$ nella terza eq: $(2y 1) + y^2 = 2 \implies y^2 + 2y 3 = 0 \implies (y + 3)(y 1) = 0$. Se y = 1, allora $x^2 = 2(1) 1 = 1 \implies x = \pm 1$. Otteniamo i punti $P_3(1,1)$ e $P_4(-1,1)$. Se y = -3, allora $x^2 = 2(-3) 1 = -7$, che non ha soluzioni reali.

I nostri candidati sono P_1, P_2, P_3, P_4 .

- 4. Confronto:
 - $f(0,\sqrt{2}) = (0^2 + 1)e^{\sqrt{2}} = e^{\sqrt{2}} \approx 4.11$
 - $f(0, -\sqrt{2}) = (0^2 + 1)e^{-\sqrt{2}} = e^{-\sqrt{2}} \approx 0.24$ (Minimo Assoluto)
 - $f(1,1) = (1^2 + 1)e^1 = 2e \approx 5.43$ (Massimo Assoluto)
 - $f(-1,1) = ((-1)^2 + 1)e^1 = 2e \approx 5.43$ (Massimo Assoluto)

A Formulario Avanzato

A.1 Sviluppi di MacLaurin Fondamentali $(x \to 0)$

Funzione	Sviluppo
e^x	$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n)$
$\sin(x)$	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$
$\cos(x)$	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$
$\ln(1+x)$	$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n)$
$(1+x)^{\alpha}$	$1 + \alpha x + \frac{\alpha(\alpha - 1)}{2}x^2 + \dots + {\binom{\alpha}{n}}x^n + o(x^n)$
$\frac{1}{1-x}$	$1 + x + x^2 + x^3 + \dots + x^n + o(x^n)$
$\arctan(x)$	$x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$
$\tan(x)$	$x + \frac{x^3}{3} + \frac{2x^5}{15} + o(x^6)$

Fonte: Tabella riassuntiva basata su.

A.2 Formule per Serie di Fourier (Periodo T)

$$S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{2\pi nx}{T}\right) + b_n \sin\left(\frac{2\pi nx}{T}\right) \right)$$

•
$$a_0 = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \, dx$$

•
$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \cos\left(\frac{2\pi nx}{T}\right) dx$$

•
$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \sin\left(\frac{2\pi nx}{T}\right) dx$$

Fonte: Formule standard per serie di Fourier.

A.3 Trigonometria Utile per Integrali di Fourier

• Formule di Werner:

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$
$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$$
$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

• Angoli notevoli:

$$\sin(n\pi) = 0, \quad \cos(n\pi) = (-1)^n$$
$$\sin\left(\frac{\pi}{2} + n\pi\right) = (-1)^n, \quad \cos\left(\frac{\pi}{2} + n\pi\right) = 0$$