Order Formula and its Applications

Günthner

Winter 2024

Contents

1	Introduction	1
2	Proving the Order Formula 2.1 Decomposition of $(\mathbb{Z}/p^k\mathbb{Z})^{\times}$	1 2 3
3	Proving the Order Formula for $p=2$	5
4	Appendix 4.1 Proof of Lemma 3	
	4.2 Proof of Lemma 5	6

1 Introduction

In this paper we will be examining the following order formula:

$$\operatorname{ord}(n) = \operatorname{ord}(n) \cdot p^{\max(0, k - k_p(n))} (\mathbb{Z}/p^k \mathbb{Z})^{\times} \quad (\mathbb{Z}/p\mathbb{Z})^{\times}$$

for p and odd prime, k a natural number and $k_p(n)$ a special function.

2 Proving the Order Formula

This first proof only targets $p \neq 2$. We will see a modified proof later which will clarify the situation for p = 2.

Before we tackle the formula directly, we should start by understanding $(\mathbb{Z}/p^k\mathbb{Z})^{\times}$.

2.1 Decomposition of $(\mathbb{Z}/p^k\mathbb{Z})^{\times}$

We know from Gauss' work that the group $(\mathbb{Z}/p^k\mathbb{Z})^{\times}$ is cyclic [1], meaning that

$$(\mathbb{Z}/p^k\mathbb{Z})^{\times} \cong \mathbb{Z}/\varphi(p^k)\mathbb{Z}$$

with $\varphi(p^k)$ the Euler- φ -Function which counts the number of coprime integers smaller than the number. The value is $\varphi(p^k) = (p-1)p^k$ and we get:

$$(\mathbb{Z}/p^k\mathbb{Z})^{\times} \cong \mathbb{Z}/(p-1)p^{k-1}\mathbb{Z}$$

Next we would like to simplify $\mathbb{Z}/(p-1)p^{k-1}\mathbb{Z}$ for which we can use the Chinese Remainder Theorem which tells us that for two coprime integers a, b we get

$$\mathbb{Z}/ab\mathbb{Z} \cong \mathbb{Z}/a\mathbb{Z} \oplus \mathbb{Z}/b\mathbb{Z}$$

Now we can write

$$(\mathbb{Z}/p^k\mathbb{Z})^{\times} \cong \mathbb{Z}/(p-1)p^{k-1}\mathbb{Z} \cong (\mathbb{Z}/(p-1)\mathbb{Z}) \oplus (\mathbb{Z}/p^{k-1}\mathbb{Z})$$
 (1)

This is still quite abstract so let's find subgroups of $(\mathbb{Z}/p^k\mathbb{Z})^{\times}$ that correspond to the summands. Define the projection onto $(\mathbb{Z}/p\mathbb{Z})^{\times}$:

$$\pi_k: \left(\mathbb{Z}/p^k\mathbb{Z}\right)^{\times} \to \left(\mathbb{Z}/p\mathbb{Z}\right)^{\times}$$

with

$$\pi_k(n) = n \bmod p$$

One of the interesting subgroups is

$$\ker(\pi_k) = \{ n \in (\mathbb{Z}/p^k\mathbb{Z})^{\times} : \text{ The last digit of n is } 1 \}$$

The order of this group is $\#\ker(\pi_k) = p^{k-1}$. Now since equation (1) $\ker(\pi_k)$ must lie entirely inside $\mathbb{Z}/p^{k-1}\mathbb{Z}$, because its order is coprime to that of $\mathbb{Z}/(p-1)\mathbb{Z}$. Now since

$$\#\ker(\pi_k) = \#\mathbb{Z}/p^{k-1}\mathbb{Z}$$

and one of the groups is contained in the other, the groups are equal and we can rephrase equation (1):

$$(\mathbb{Z}/p^k\mathbb{Z})^{\times} \cong \mathbb{Z}/(p-1)\mathbb{Z} \oplus \ker(\pi_k)$$

Substituting $(\mathbb{Z}/p\mathbb{Z})^{\times}$ for $\mathbb{Z}/(p-1)\mathbb{Z}$ gives us

Lemma 1. Decomposition of $(\mathbb{Z}/p^k\mathbb{Z})^{\times}$

$$(\mathbb{Z}/p^k\mathbb{Z})^{\times} \cong (\mathbb{Z}/p\mathbb{Z})^{\times} \oplus \ker(\pi_k)$$

2.2 Applications to the formula

What can we learn from Lemma 1?

Lemma 2. Multiplicativity of ord

Which we will prove using the more general

Lemma 3. Let A, B be arbitrary finite groups and $(a, b) \in A \oplus B$

$$\underset{A \oplus B}{\operatorname{ord}(a,b)} = \operatorname{lcm} \left(\underset{A}{\operatorname{ord}(a)}, \ \underset{B}{\operatorname{ord}(b)} \right)$$

The proof of which will be deferred to the Appendix in section 4.1.

Well we know that

$$\operatorname{ord}(n)$$
 and $\operatorname{ord}(n)$ coprime $(\mathbb{Z}/p\mathbb{Z})^{\times}$ $\ker(\pi_k)$

since the orders of their respective groups is coprime. This simplifies the lcm to a product and proves Lemma 2. (a, b) coprime integers implies that lcm(a, b) = ab

Now all that remains open is $\operatorname{ord}(n)$, for this we will need the following definition:

Definition 1. For p prime and $n \in \ker(\pi_k)$, meaning that $n \equiv 1 \pmod{p}$

$$k_p(n) := \max \{ i \in \mathbb{N} : n \equiv 1 \pmod{p^i} \}$$

This is almost the function from the Introduction, but with a reduced domain. Now we can prove

Lemma 4. For p prime and $n \in \ker(\pi_k)$

$$\operatorname{ord}(n) = p^{\max(0, k - k_p(n))}$$
$$\ker(\pi_k)$$

Let us rewrite that using $(a)_{\perp} := \max(0, a)$:

$$\operatorname{ord}(n) = p^{\left(k - k_p(n)\right)_{+}}$$

$$\ker(\pi_k)$$

In the proof of this formula we will be using

Lemma 5. $n, l \in \mathbb{N}$, then

$$\operatorname{ord}_{\mathbb{Z}/l\mathbb{Z}}(n) = \frac{l}{\gcd(n, l)}$$

This lemma will again be proven in the Appendix in section 4.2.

Now this lemma only deals with the additive group $\mathbb{Z}/p^k\mathbb{Z}$ so let us start here by proving

$$\operatorname{ord}(t) = p^{k - k_p'(t)} \tag{2}$$

with the function k'_p the equivalent of k_p for the additive group

$$k_p'(t) \coloneqq \max\{i \in \mathbb{N} : t \equiv 0 \pmod{p^i}\}$$

To prove equation (2) we can do a simple calculation (ν_p denotes the *p*-adic valuation):

$$\operatorname{ord}(t) \stackrel{5}{=} \frac{p^{k}}{\gcd(p^{k}, t)} = \frac{p^{k}}{p^{\min(k, \nu_{p}(t))}}$$
$$= p^{k - \min(k, \nu_{p}(t))} = p^{k + \max(-k, -\nu_{p}(t))}$$
$$= p^{\max(0, k - \nu_{p}(t))} = p^{\binom{k - \nu_{p}(t)}{+}}$$

But how do we translate equation (2) to the multiplicative group and Lemma 4?

Lemma 6. Given the isomorphism

$$\iota: \quad \mathbb{Z}/p^{k-1}\mathbb{Z} \quad \to \quad \ker(\pi_k)$$
$$\quad l \quad \mapsto \quad g^l$$

and $t \in \ker(\pi_k)$:

$$k_p(t) = k_p'(\iota^{-1}(t))$$

Proof. We want to show the equality by proving that any exponent—in the set over which k_p is the maximum of—is also a valid exponent for k'_p (and vice versa)

Let $t \in \ker(\pi_k)$ and $i \in \mathbb{N}$ with $t \equiv 1 \pmod{p}^i$

Now ι restricts to an isomorphism $\iota': \mathbb{Z}/p^{i-1}\mathbb{Z} \to \ker(\pi_i)$. Since neutral elements are mapped to neutral elements by isomorphisms we get

$$\iota^{-1}(t) \equiv 0 \pmod{p^{i-1}}$$

This proof also works with k_p and k_p' switched, giving us the equality.

Proof of Lemma 4.

$$\operatorname{ord}(n) = \operatorname{ord}(\iota^{-1}(n)) \stackrel{2}{=} p^{\left(k - k'_p(\iota^{-1}(n))\right)_+} \stackrel{6}{=} p^{\left(k - k_p(n)\right)_+}$$

$$\ker(\pi_k) \quad \mathbb{Z}/p^{k-1}\mathbb{Z}$$

Now we have almost proved the order formula, all that is missing is the k_p function for all natural numbers:

Definition 2. Generalized k_p function

$$k_p(n) \coloneqq \max\{i \in \mathbb{N} : n^{\theta(n)} \equiv 1 \pmod{p^i}\} = k_p(n^{\theta(n)})$$

with

$$\theta(n) \coloneqq \operatorname{ord}(\pi_k(n))$$
$$(\mathbb{Z}/p\mathbb{Z})^{\times}$$

Now we can finish the proof of the formula by calculation:

$$\operatorname{ord}(n) = \theta(n) \cdot \operatorname{ord}(n^{\theta(n)}) = \theta(n) \cdot p^{\left(k - k_p(n^{\theta(n)})\right)_+} \\
= \theta(n) \cdot p^{\left(k - k_p(n)\right)_+} = \operatorname{ord}(n) \cdot p^{\left(k - k_p(n)\right)_+} \\
= \left(\mathbb{Z}/p\mathbb{Z}\right)^{\times}$$

3 Proving the Order Formula for p=2

This proof really is almost the same as that in section 2, the only difference lies in the structure of $(\mathbb{Z}/p^k\mathbb{Z})^{\times}$. While $(\mathbb{Z}/p^k\mathbb{Z})^{\times}$ is cyclic for $p \neq 2$, it is semicyclic for p = 2, it has two generators. (semicyclic for $k \geq 3$)

For the decomposition we define

$$\begin{array}{cccc} \pi: & \mathbb{Z}/2^k\mathbb{Z} & \to & \mathbb{Z}/4\mathbb{Z} \\ & n & \mapsto & n \bmod 4 \end{array}$$

4 Appendix

4.1 Proof of Lemma 3

Lemma 3. Let A, B be arbitrary finite groups and $(a, b) \in A \oplus B$

$$\underset{A \oplus B}{\operatorname{ord}(a,b)} = \operatorname{lcm} \left(\underset{A}{\operatorname{ord}(a)}, \ \underset{B}{\operatorname{ord}(b)} \right)$$

Proof.

Let o_a, o_b denote $\operatorname{ord}(a), \operatorname{ord}(b)$ respectively and let o_{ab} denote $\operatorname{ord}(a, b)$. $A = B = A \oplus B$ $o_a \mid o_{ab}$, since $n^{o_{ab}} = e$ (Same for o_b). This gives us $\operatorname{lcm}(o_a, o_b) \mid o_{ab}$. $o_{ab} \mid \operatorname{lcm}(o_a, o_b)$, since $(a, b)^{\operatorname{lcm}(o_a, o_b)} = (a^{\operatorname{lcm}(o_a, o_b)}, b^{\operatorname{lcm}(o_a, o_b)}) = (e, e)$

4.2 Proof of Lemma 5

Lemma 5. $n, l \in \mathbb{N}$, then

$$\operatorname{ord}_{\mathbb{Z}/l\mathbb{Z}}(n) = \frac{l}{\gcd(n, l)}$$

Proof. A number x is equal to $\operatorname{ord}(n)$ exactly if it is the smallest number such that $l \mid nx$. Now $n \cdot \operatorname{ord}(n) = \operatorname{lcm}(n, l)$. The smallest multiple of n that is divisible by l. Now calculate

$$n \cdot \frac{l}{\gcd(n,l)} = \frac{nl}{\gcd(n,l)} = \operatorname{lcm}(n,l)$$

telling us that $\frac{l}{\gcd(n,l)} = \operatorname{ord}(n)$

References

[1] Carl Gauss. Disquisitiones Arithmeticae.