

■ NOT: Bu ders materyali sadece ilgili bölümün mevcut dönemi için geçerlidir. Her yıl güncellenebilmektedir. Sadece kayıtlı olduğunuz ders için kullanılabilir. Ders harici her türlü paylaşım yasaktır, herhangi başka bir yerde yayımlanamaz.

Ç.Ü. İnş.Müh.Böl.

KESİKLİ (AYRIK, SÜREKSİZ) REASTGELE DEĞİKENLERİN DAĞILIMLARI

Böyle bir rastgele değişkene ait çeşitli olayların olasılıkları;

$$P(x_i) = P(X = x_i)$$

şeklinde xi değerlerinin hizasında birer düşey çizgi ile gösterilirse bu değişkenin olasılık kütle fonksiyonu (**o.k.f**) elde edilmiş olur. Düşey çizgilerin toplamı daima 1 'e eşittir.

$$\sum_{x_i} p(x_i) = 1$$

$$F(x_i) = P(X \le x_i)$$

Pratikte önem taşıyan bu fonksiyona eklenik dağılım fonksiyonu (e.d.f) denilir. F(x) fonksiyonu 0 dan 1 e doğru gittikçe artan basamaklı bir fonksiyondur.

3

Örnek

Bir trafik ışığında belirli bir anda durmakta olan araç sayısı X ile gösterilirse ve yapılan gözlemler sonucu aşağıdaki olasılıkların belirlenmiş olduğu kabul edilirse, bu değişkene ait olasılık kütle fonksiyonu ve eklenik dağılım fonksiyonunu çiziniz.

p(0) = 0.10

p(1) = 0.20

p(2) = 0.30

p(3) = 0.20

p(4) = 0.10

p(5) = 0.10

p(6) = 0.00

p(7) = 0.00

Δ

Sürekli Rastgele Değişkenlerin Dağılımları

- Sürekli rastgele değişkenin alabileceği değerlerin sayısı sonsuzdur.
- Sürekli rastgele değişkenin alabileceği değerlerin sayısı sonsuz, bu değerleri alma olsaılıkları toplamı ise 1 'e eşit olacağından X = x şeklindeki basit olayların olasılıkları sıfıra gidecektir.
- Bu nedenle sürekli rastgele değişkenlerde basit olayların olasılıkları yerine değişkenin x ile x+dx arasındaki bir aralıkta kalması şeklindeki bileşik olayın olasılığını tanımlamak yoluna gidilir.
- Bu durumda Olasılık Yoğunluk Fonksiyonu (O.Y.F.):

$$f(x) \cdot dx = P(x < X \le x + dx)$$

Sürekli Rastgele Değişkenlerin Dağılımları

Olasılık Yoğunluk Fonksiyonu

$$P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f(x) . dx$$

7

Sürekli Rastgele Değişkenlerin Dağılımları

■ Değişkenin (-∞, +∞) aralığında bir değer alması kesin (olasılığı 1 olan) bir olay olduğuna göre f(x) daima

$$\int_{-\infty}^{\infty} f(x) \cdot dx = 1$$

koşuluna uyar. Sürekli değişken halinde eklenik dağılım fonksiyonunun tanımı değişmez:

$$F(x) = P(X \le x)$$

- Eklenik dağılım fonksiyonu daima şu koşulları sağlar:
- $0 \le F(x) \le 1$
- F(-∞) = 0
- F(∞) = 1
- ε>0 için F(x+ε) ≥ F(x)
- $F(x2) F(x1) = P(x1 < X \le x2)$

Dağılımların	Parametreleri

		Süreksiz			
PARAMETRE	Sürekli	Sınıflara Ayrılmamış	Sınıflara Ayrılmış		
Ortalama	$\mu_{x} = E_{x} = \int_{0}^{\infty} x.p(x).dx$	$\mathbf{u} = \mathbf{F} = \mathbf{v} = \frac{1}{N} \mathbf{v}$	$\mathbf{u} = \mathbf{F} = \mathbf{v} - \mathbf{v} \mathbf{v} \cdot \mathbf{f}(\mathbf{v}_1)$		
(Beklenen Değer)	$\mu_{X} - L_{X} = \int X.p(X).dX$	$\mu_{x} - L_{x} - x - \sum_{i=1}^{\infty} x_{i}$	$\mu_{\mathbf{x}} = \mathbf{E}_{\mathbf{x}} = \mathbf{x} = \sum_{i=1}^{n} \mathbf{x}_{i} . \mathbf{I}(\mathbf{x}_{i})$		
Varyans	$Var_{x} = \int_{-\infty}^{\infty} (x - \mu_{x})^{2}.p(x).dx$	$Var_{x} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2}$	$Var_{x} = \sum_{i=1}^{m} (x_{i} - \overline{x})^{2}.f(x_{i})$		
Standart Sapma	$\sigma_{\rm x} = \sqrt{{\rm Var}_{\rm x}}$				
Değişim Katsayısı	$C_{v_x} = \frac{\sigma_x}{\mu_x}$				
	· ·				

q

Dağılımların Parametreleri

		Süreksiz		
PARAMETRE	Sürekli	Sınıflara Ayrılmamış	Sınıflara Ayrılmış	
Çarpıklık Katsayısı	$C_{s_x} = \frac{\int\limits_{-\infty}^{\infty} (x - \mu_x)^3 . p(x) . dx}{\sigma^3}$	$C_{s_x} = \frac{\frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^3}{\sigma^3}$	$C_{s_x} = \frac{\sum_{i=1}^{m} (x_i - \overline{x})^3.f(x_i)}{\sigma^3}$	
Basıklık Katsayısı	$k_x = \frac{\int\limits_{-\infty}^{\infty} (x - \mu_x)^4 . p(x) . dx}{\sigma^4}$	$k_x = \frac{\frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^4}{\sigma^4}$	$k_x = \frac{\sum_{i=1}^{m} (x_i - \overline{x})^4.f(x_i)}{\sigma^4}$	

Örnek

Aşağıdaki frekans tablosuna göre, Ortalama, Varyans, Standart Sapma, Çarpıklık Katsayısı ve Basıklık Katsayısını bulunuz.

% f
9
18
18
27
18
9

Tarih	Qmax
12.3.1981	21
14.2.1982	22
10.3.1983	45
7.2.1984	37
22.3.1985	48
20.4.1986	67
12.4.1987	51
10.3.1988	45
11.5.1989	34
12.3.1990	59
2.4.1991	11
·	•

11

Sınıf	Sınıf Orta Noktaları (X)	% f	Ortalama	Varyans	Çarpıklık	Basıklık	
[1]	[2]	[3]	[4]=[2]*[3]	[5]=[2]-(40.05) ^{2*} [3]	[6]=[2]-(40.05) ^{3*} [3]	[7]=[2]-(40.05) ^{4*} [3]	
10-20	15	0.09	1.35	56.48	-1414.70	35438.34	
20-30	25	0.18	4.50	40.77	-613.60	9234.61	
30-40	35	0.18	6.30	4.59	-23.18	117.07	
40-50	45	0.27	12.15	6.62	32.75	162.10	
50-60	55	0.18	9.90	40.23	601.45	8991.61	
60-70	65	0.09	5.85	56.03	1397.83	34875.84	
			40.05	204.71	-19.46	88819.57	
Ortalama = 40.05 $s_x = \sqrt{Varyans} = \sqrt{204.71} = 14.31$							

Varyans = 204.71

$$s_x = \sqrt{Varyans} = \sqrt{204.71} = 14.31$$

$$Cs_x = \frac{-19.46}{14.31^3} = -0.01 \qquad k_x = \frac{88819.57}{14.31^4} = 2,12$$

ÖNEMLİ OLASILIK DAĞILIM FONKSİYONLARI

■ Binom Dağılımı

Bir kesikli rastgele değişken için sadece 2 olay mevcutsa (olmak veya olmamak, ya da gerçekleşmek veya gerçekleşmemek gibi), ve bunların olasılıkları p ve q = 1 - p ile gösterilirse; n elemanlı bir örnek için olasılığı p olan olayın x defa görülmesi olasılığı:

$$P(x) = \binom{n}{x} p^{x} q^{n-x} \qquad \binom{n}{x} = \frac{n(n-1)...(n-x+1)}{1.2...(x-1)x} = \frac{n!}{x!(n-x)!}$$

 Rastgele değişkene ait birbirinden bağımsız n deneme yapılması durumunda olasılığı p olan olayın x defa görülmesi olasılığı binom dağılımına uyar ve bu denemelere de istatistikte Bağımsız Bernoulli Denemeleri adı verilir.

13

Örnek

■ Bir barajın dolu savağı 20 yıllık taşkın debisine göre boyutlandırıldığına göre, barajın 50 yıllık ömrü boyunca söz konusu debinin sırasıyla 0, 1, 2, 3 defa görülmesi olasılıklarını hesaplayınız.

■ Çözüm:

- Debinin görülme olasılığı ⇒ p = 1/20 = 0.05
- Debinin görülmeme olasılığı ⇒ q = 1 p = 1 0.05 = 0.95
- 50 yıl boyunca hiç görülmeme olasılığı ⇒

$$P(0) = {50 \choose 0} 0.05^{0}.0.95^{50-0} = \frac{50!}{0!(50-0)!} 0.05^{0}.0.95^{50} = 0.077$$

■ 50 yıl boyunca 1 defa görülme olasılığı ⇒

$$P(1) = {50 \choose 1} 0.05^{1}.0.95^{50-1} = \frac{50!}{1!(50-1)!} 0.05^{1}.0.95^{49} = 0.202$$

15

■ 50 yıl boyunca 2 defa görülme olasılığı ⇒

$$P(2) = {50 \choose 2} 0.05^2 \cdot 0.95^{50-2} = \frac{50!}{2!(50-2)!} 0.05^2 \cdot 0.95^{48} = 0.261$$

■ 50 yıl boyunca 3 defa görülme olasılığı ⇒

$$P(3) = {50 \choose 3} 0.05^3 \cdot 0.95^{50-3} = \frac{50!}{3!(50-3)!} 0.05^3 \cdot 0.95^{47} = 0.220$$

■ Poisson Dağılımı

- Bir kesikli rastgele değişken için sadece 2 olay mevcut olsun(olmak veya olmamak, ya da gerçekleşmek veya gerçekleşmemek gibi),
- bunların olasılıkları p ve q = 1 p ile gösterilsin.
- Ancak bu olaslıkılardan biri çok küçükse (p → 0), buna karşılık n deneme sayısı çok büyükse (n → ∞) ve np çarpımı sonlu ise: n denemede olasılığı p olan olayın x defa görülmesi olasılığı:

$$P(x) = \frac{\lambda^{x} . e^{-\lambda}}{x!} \quad \lambda = n.p$$

17

Örnek

- Bir barajın dolu savağı 1000 yıllık taşkın debisine göre boyutlandırıldığına göre, barajın 100 yıllık ömrü boyunca söz konusu debinin hiç görülmemesi veya 1 defa görülmesi olasılıklarını hesaplayınız.
- Çözüm:

$$n = 100$$
 $p = 1/1000 = 0.001$ $\lambda = n.p = 100 . 0.001 = 0.10$

$$P(0) = \frac{\lambda^{x} \cdot e^{-\lambda}}{x!} = \frac{0.10^{0} \cdot e^{-0.10}}{0!} = 0.905$$

$$P(1) = \frac{\lambda^{x} \cdot e^{-\lambda}}{x!} = \frac{0.10^{1} \cdot e^{-0.10}}{1!} = 0.091$$

■ Geometrik Dağılım

 Bağımsız Bernoulli denemelerinde ilk başarının x inci denemede görülmesi olasılığı:

$$P(x) = q^{x-1}.p$$

■ Bu dağılımın olasılık dağılım fonksiyonu ise:

$$F(x) = 1 - q^x$$

şeklindedir.

19

Örnek

- Zar atma olayında, ilk atışta 6 gelmesi olasılığı, ilk defa ikinci atışta 6 gelme olasılığı ve ilk defa üçüncü atışta 6 gelme olasılığını hesaplayınız.
- Çözüm:

$$P(X = 1) = q^{1-1}.p = (\frac{5}{6})^{0}.(\frac{1}{6}) = \frac{1}{6}$$

$$P(X = 2) = q^{2-1}.p = (\frac{5}{6})^{1}.(\frac{1}{6}) = \frac{5}{36}$$

$$P(X = 3) = q^{3-1}.p = (\frac{5}{6})^2.(\frac{1}{6}) = \frac{25}{216}$$

Normal Dağılım (Gauss Dağılımı)

- Normal dağılım simetrik bir dağılımdır.
- $C_s = 0$ (Çarpıklık Katsayısı)
- k = 3 (kurtosis (basıklık) katsayısı)

23

Normal Dağılım (Gauss Dağılımı)

 Bir rastgele değişkenin a ve b arasında bir değer alma olasılığı:

$$\int_{a}^{b} \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^{2}/(2\sigma^{2})} dx$$

 Bu denklemin normal integrasyon teknikleri ile çözümü oldukça güçtür

standart normal değişken

 Bu durumda normal dağılım, ortalaması μ = 0, standart sapması σ = 1 olan standart normal dağılım adını alır.

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2} \qquad -\infty < z < \infty$$

Normal Dağılım

z nin (-) negatif değerleri Normal Dağılım tablosundan okunurken, dağılımın simetrikliğinden dolayı z nin (+) değerinin karşılığı tablodan okunur ve 1 den çıkarılır.

$$z = 0.23 \implies p_{0.25} = 0.5910$$

$$z = -0.23 \Rightarrow p_{-0.23} = 1-z(+0.23)$$

$$P_{-0.23} = 1-0,5910 = 0,409$$

27

Tablo Okuma Uygulamaları

- Tablodan okunan değerler olasılık değerleridir (0,8413 = % 84,13)
- Tablodan okunan değerler daima sol taraf alanıdır (küçük olma olasılığı)
- Tabloda z 'nin negatif değerleri yoktur. z nin negatif değerlerinin karşılığı olan alanları bulmak için z nin pozitif değeri okunur, okunan değer 1 '

den çıkartılır

Tablo Okuma Uygulamaları

```
z=0.35 için p=0.6368 (sol taraf alanı, küçük olma olasılığı)
z=1,68 için p=0,9535 (sol taraf alanı, küçük olma olasılığı)
z = 2,75 için p = 0,9970 (sol taraf alanı, küçük olma olasılığı)
```

```
z = -1.83 için p_{-1.83} = 1 - p_{+1.83} = 1 - 0.9664 = 0.0336
z=-1,42 için p_{-1,42}=1-p_{+1,42}=1-0,9222=0,0778
z = -1.83 için p_{-1.83} = 1 - p_{+1.83} = 1 - 0.7734 = 0.2266
```

Olasılık (p) belli iken z 'nin bulunması

```
z_{0,75} = 0,67
P =% 75
                       p = 0,7500
                      z_{0,99} = 2,33
p = 0,9500
z_{0,95} = 1,64
p = 0,9000
                                        z_{0,99} = 2,33
P =% 99
P = \% 95
P = \% 90
                    p= 0,2500 (Tablo içerisinde bu değer yok. Tablodaki en küçük
değer 0,50000 dir. O halde z negatiftir. Bu durumda
1 - 0.25 = 0.75 z_{0.75} = 0.67
                                            z_{0,25} = -0,67
```

p= 0,4300 (Tablo içerisinde bu değer yok. Tablodaki en küçük değer 0,50000 dir. O halde z negatiftir. Bu durunda P = % 43

1 - 0.43 = 0.57 $z_{0.57} = 0.18$ $z_{0,43} = -0.18$

31

ÖRNEK

Örnek İmal edilen ampullerin ortalama ömrü 800 saat, standart sapması 40 saattir. Ampulün ömrünün normal dağılım gösterdiği bilindiğine göre bir ampulün;

- □ 778 saatten daha fazla bir ömre,
- □ 778 saatten daha az bir ömre
- □ 834 saatten daha fazla bir ömre
- □ 834 saatten daha az bir ömre
- □ 778 saat ile 834 saat arasında bir ömre sahip olması olasılığını

bulunuz.

Çözüm

a)
$$X = 778$$
 sa $z = \frac{x - \mu_X}{\sigma_X} = \frac{778 - 800}{40} = -0.55$
F(-0.55) = 1 - F(0.55) = 1 - 0.7088 = 0.2912
P($X > 778$) = 1- F(-0.55) = 1 - 0.2912 = 0.7088 $\cong \%$ 71

b) X = 778 sa $z = \frac{x - \mu_X}{\sigma_X} = \frac{778 - 800}{40} = -0.55$ F(-0.55) = 1 - F(0.55) = 1 - 0.7088 = 0.2912 $P(X < 778) = F(-0.55) = 0.2912 \cong \% 29$

c) $X = 834 \text{ sa } z = \frac{x - \mu_X}{\sigma_X} = \frac{834 - 800}{40} = 0.85$ F(0.85) = 0.8023 P(X > 834) = 1 - F(0.85) = 1 - 0.8023 = 0.1977 = % 20

33

d)
$$X = 834 \text{ sa} \quad z = \frac{x - \mu_X}{\sigma_X} = \frac{834 - 800}{40} = 0.85$$

$$F(0.85) = 0.8023$$

 $P(X < 834) = F(0.85) = 0.8023 \cong \% 80$

e)
$$X_1 = 778 \text{ sa}$$
 $z_1 = \frac{x_1 - \mu_X}{\sigma_X} = \frac{778 - 800}{40} = -0.55$
 $X_2 = 834 \text{ sa}$ $z_2 = \frac{x_2 - \mu_X}{\sigma_X} = \frac{834 - 800}{40} = 0.85$
 $F(-0.55) = 1 - F(0.55) = 1 - 0.7088 = 0.2912$
 $F(0.85) = 0.8023$

$$X_1 = 778$$
 $X_2 = 834$
 $z_2 = -0.55$ $z_2 = 0.85$

P(778 < X < 834) = F(0.85) - F(-0.55)

P(778 < X < 834) = 0.8023 - 0.2912 = 0.5111 \cong % 51

ÖRNEK

Bir yağış ölçeğinden elde edilen yıllık ortalama yağışlara ait ölçüm sonuçları tabloda verilmiştir.

a) Normal Dağılıma
b) Log-Normal Dağılıma
göre herhangi bir yılda yıllık
ortalama yağışın 200 ila 300
mm arasında kalma olasılığını
bulunuz.

Yıllar	(X)
1986	250
1987	180
1988	270
1989	240
1990	190
1991	210
1992	170
1993	240
1994	260
1995	220

Yılık Yağış (mm)

37

a) Normal Dağılıma göre :

Normal Dağılım için Parametreler hesaplanır:

	Yılık Yağış (mm)	
	X	$(x_1-\mu_x)^2$
1986	240	100
1987	190	1600
1988	280	2500
1989	240	100
1990	190	1600
1991	200	900
1992	170	3600
1993	290	3600
1994	280	2500
1995	220	100
$\sum_{\mathbf{X}} =$	2300	16600

$$\mu_x = E_x = \bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i = \frac{2300}{10} = 230 \ mm$$

$$Var_x = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2 = \frac{16600}{10} = 1660 \ mm^2$$

$$\sigma_x = \sqrt{Var_x} = \sqrt{1660} = 40{,}74~mm$$

$$x_1 = 200 \text{ mm} \implies Z_1 = \frac{x_1 - \mu_X}{\sigma_X} = \frac{200 - 230}{41} = -0.91 ;$$

 $x_2 = 300 \text{ mm} \implies Z_2 = \frac{2 - \mu_X}{\sigma_X} = \frac{300 - 230}{41} = 2.13 ;$

$$P(200 < X < 300)$$
 = $F(2.13) - F(-0.91) = F(2.13) - (1 - F(+0.91))$
= $0.9834 - (1 - 0.8186) = 0.802 = \% 80$

b) Log-Normal Dağılıma göre:

Log-normal dağılım için y = $\ln(x)$ dönüşümü yapılarak y değerlerinin parametreleri hesaplanır:

$$x_1 = 200 \text{ mm} \implies y_1 = \ln(200) = 5.30 \implies z_1 = \frac{y_1 - \mu_y}{\sigma_y} = \frac{5.30 - 5.422}{0.178} = -0.69$$

$$x_2 = 300 \text{ mm} \Rightarrow y_2 = \ln(300) = 5,70 \Rightarrow z_2 = \frac{y_2 - \mu_y}{\sigma_y} = \frac{5,70 - 5,422}{0,178} = 1,58$$

$$P(200 < X < 300) = P(5.70 < Y < 5.30) = F(1.58) - F(-0.69)$$
$$= F(1.58) - (1 - F(+0.69)) = 0.9429 - (1 - 0.7549) = 0.698 = \% 70$$

ÖRNEK

Örnek: Bir yağış ölçeğinden elde edilen yıllık ortalama yağışlara ait ölçüm sonuçları tabloda verilmiştir.

- Normal Dağılıma
- Log-Normal Dağılıma

göre herhangi bir yılda yıllık ortalama yağışın 300 ila 450 mm arasında kalma olasılığını bulunuz.

	Yılık Yağış (mm)
Yıllar	(X)
1986	220
1987	350
1988	460
1989	520
1990	640
1991	540
1992	320
1993	180
1994	300
1995	410

ÇÖZÜM

■ a) Normal Dağılıma göre :

Normal Dağılım için Parametreler hesaplanır:

$$P(300 < X < 450) = F(0.40) - F(-0.67) = F(0.40) - (1 - F(+0.67)) = 0.6554 - (1 - 0.7486) = 0.404 = % 40$$

43

■ b) Log-Normal Dağılıma göre:

Log-normal dağılım için y = ln(x) dönüşümü yapılarak y değerlerinin parametreleri hesaplanır:

$$\frac{\textbf{y=ln} \times (\textbf{y-}\hat{\textbf{y}})^2}{5,394} = 0.264 \\ 5,858 = 0.002 \\ 6,131 = 0.050 \\ 6,254 = 0.120 \\ 6,461 = 0.307 \\ 6,292 = 0.148 \\ 5,768 = 0.019 \\ 5,193 = 0.510 \\ 5,704 = 0.041 \\ \frac{6,016}{6,016} = 0.012 \\ \mathbf{\Sigma}\textbf{y} = \frac{1}{N} \sum_{i=1}^{N} (y_i - \overline{\textbf{y}})^2 = \frac{1.474}{10} = 0.147 \\ 6,292 = 0.148 \\ 5,768 = 0.019 \\ 5,193 = 0.510 \\ 5,704 = 0.041 \\ \frac{6,016}{6,016} = 0.012 \\ 59,071 = 1.474 \\ \mathbf{x}_1 = 300 \text{ mm} \implies \textbf{y}_1 = \ln(300) = 5.704 \implies \textbf{z}_1 = \frac{\textbf{y}_1 - \mu_y}{\sigma_y} = \frac{5.704 - 5.907}{0.384} = -0.53 \\ \mathbf{x}_2 = 450 \text{ mm} \implies \textbf{y}_2 = \ln(450) = 6.109 \implies \textbf{z}_2 = \frac{\textbf{y}_2 - \mu_y}{\sigma_y} = \frac{6.109 - 5.907}{0.384} = 0.53 \\ \mathbf{P}(300 \times X \times 450) = \mathbf{P}(5.704 \times \mathbf{y} \times 6.109) = \mathbf{F}(0.53) - \mathbf{F}(-0.53) = \mathbf{F}(0.53) - (1 - \mathbf{F}(+0.53)) \\ = 0.7019 - (1 - 0.7019) = 0.404 = \% 40$$

Dönüş Aralığı (Tekerrür Periyodu)

45

Ekstrem Değer Dağılımları

■ Dönüş Aralığı (Tekerrür Periyodu)

$$p + q = 1.0$$
 $p = 1- q$

$$p = 1/Tr$$
 $q = 1 - (1/Tr)$

- p aşılma olasılığı
- q aşılmama olasılığı
- Tr tekerrür periyodu

Ekstrem Değer Dağılımları

■ Proje Periyodu ve Risk

Proje hesaplarında gözönüne alınan Tr yıllık taşkın debisinin proje periyodu olan n yıllık bir süre içinde p_n ile gösterilen bir aşılma olasılığı vardır ki bu olasılık kabul edilebilecek risk 'i ifade etmekte olup ekonomik düşüncelerle belirlenecek olan bir proje kriteridir.

Dönüş Aralığı Tr yıl olan bir debinin n yıl boyunca hiç aşılmaması olasılığı;

 $p_n = 1 - \left(1 - \frac{1}{Tr}\right)^n$

aşılması olasılığı ise;

$$p_n = 1 - \left(1 - \frac{1}{Tr}\right)^n$$

47

Ekstrem Değer Dağılımları										
Frekans Dönüş Aralığı Risk										
Örnek	(m)	California	Weibull	Hazen	California	Weibull	Hazen	California	Weibull	Hazen
		m/n	m/(n+1)	(2m-1)/2n	n/m	(n+1)/m	2n/(2m-1)	1-(1-1/Tr) ^N	1-(1-1/Tr) ^N	1-(1-1/Tr) ^N
435	1	0.083	0.077	0.042	12.0	13.0	24.0	0.648	0.617	0.400
345	2	0.167	0.154	0.125	6.0	6.5	8.0	0.888	0.865	0.799
256	3	0.250	0.231	0.208	4.0	4.3	4.8	0.968	0.957	0.939
234	4	0.333	0.308	0.292	3.0	3.3	3.4	0.992	0.988	0.984
167	5	0.417	0.385	0.375	2.4	2.6	2.7	0.998	0.997	0.996
154	6	0.500	0.462	0.458	2.0	2.2	2.2	1.000	0.999	0.999
127	7	0.583	0.538	0.542	1.7	1.9	1.8	1.000	1.000	1.000
120	8	0.667	0.615	0.625	1.5	1.6	1.6	1.000	1.000	1.000
90	9	0.750	0.692	0.708	1.3	1.4	1.4	1.000	1.000	1.000
87	10	0.833	0.769	0.792	1.2	1.3	1.3	1.000	1.000	1.000
56	11	0.917	0.846	0.875	1.1	1.2	1.1	1.000	1.000	1.000
45	12	1.000	0.923	0.958	1.0	1.1	1.0	1.000	1.000	1.000

n = serideki eleman sayısıdır (örneğimizde n=12 dir)

Ekstrem Değer Dağılımları

- Log-Normal Dağılım
- Gumbel Dağılımı
- Pearson Tip III Dağılımı
- Log-Pearson Tip III Dağılımı

49

Ekstrem Değer Dağılımları

GUMBEL DAĞILIMI (Fisher Tippett I) (Eksterm Değer Dağılımı Tip I)

■ Dağılımın genel OYF'u:

$$f(x) = \frac{1}{\beta} e^{-\frac{x-\mu}{\beta}} e^{-e^{-\frac{x-\mu}{\beta}}}$$

 Dağılımın <u>yer parametresi</u> μ = 0 <u>ölçek</u> <u>parametresi</u> β = 1 alınırsa STANDART GUMBEL DAĞILIMI'nın OYF'si:

$$f(x) = e^{-x}e^{-e^{-x}}$$

Ekstrem Değer Dağılımları

- Gumbel Dağılımı (Fisher Tippett I)
- Dağılımın OYF'u ve Tekerrür periyodu

$$q = e^{-e^{-y}}$$

q = 1 - p

$$y = a (X - X_0)$$

- Büyük örnekler için (N > 30)
- $a = \frac{1.28255}{5}$
- $X_o = \mu_x 0.45 \,\sigma_x$

- Küçük örnekler için (N ≤ 30)
- $a = \frac{\sigma_n}{\sigma_x}$
- $X_0 = \mu_X \overline{Y}_n \frac{\sigma_X}{\sigma_n}$

51

Gumbel Dağılımı (Fisher Tippett I)

N	Yn	σ _n
0	0.4952	0.9496
10	0.4952	0.9496
11	0.4997	0.9675
12	0.5035	0.9833
13	0.5070	0.9971
14	0.5100	1.0095
15	0.5129	1.0206
16	0.5154	1.0306
17	0.5177	1.0397
18	0.5198	1.0481
19	0.5218	1.0558
20	0.5235	1.0628
21	0.5252	1.0694
22	0.5267	1.0755
23	0.5282	1.0812
24	0.5296	1.0865
25	0.5308	1.0914
26	0.5320	1.0962
27	0.5333	1.1005
28	0.5342	1.1047
29	0.5353	1.1086
30	0.5362	1.1124
00	0,4500	1,2826

ÖRNEK 1)

12 yıllık kaydedilmiş değerleri bulunan taşkın serisinin ortalaması 18 m³/s, standart sapması ise 3 m³/s olarak hesaplanmıştır. Normal Dağılım kullanarak 100 yıl tekerrürlü taşkın pikini bulunuz.

Çözüm 1:

$$\mu_x = 18$$
 $\sigma_x = 3$

Tr = 100 yıl
$$\Rightarrow p = \frac{1}{100} = 0.01$$
 1- 0.01 = 0.99 \Rightarrow z = K = 2.33 Normal Dağılım Tablosundan $z = \frac{X - \mu_x}{\sigma_x}$ $X = \mu_x + z \times \sigma_x$

$$Q_{100} = \mu_x + z \times \sigma_x = 18 + 2.33 \times 3 = 25 \ m^3/s$$

ÖRNEK 2)

18 yıllık kaydedilmiş değerleri bulunan taşkın serisinin y=ln(x) dönüşümü yapıldıktan sonra ortalaması 4, standart sapması ise 0.8 olarak hesaplanmıştır. Log-Normal Dağılım kullanarak 50 yıl tekerrürlü taşkın pikini bulunuz.

Çözüm 2:

$$y = \ln(x) \to X = e^y$$

$$y = ln(x)$$
 $\mu_y = 4$ $\sigma_y = 0.8$

$$y = \log(x) \to X = 10^y$$

Tr = 50 yıl
$$\Rightarrow$$
 $p = \frac{1}{50} = 0.02$

Normal dağılım tablosu sol taraf alanlarına göre düzenlendiğinden

$$z = K = 2.055$$
 (

z = K = 2.055 (Normal Dağılım Tablosundan)

(z=2,05 veya z=2,06 da alabilirsiniz. Ya da ikisinin ortalamasını da alabilirsiniz.)

$$Y = \mu_y + z \times \sigma_y = 4 + 2.055 \times 0.8 = 5.644 \Rightarrow Q_{50} = e^{5.644} = 283 \ m^3/s$$

55

ÖRNEK 3)

28 yıllık kaydedilmiş değerleri bulunan taşkın serisinin y=ln(x) dönüşümü yapıldıktan sonra ortalaması 2.6 , standart sapması ise 0.2 olarak hesaplanmıştır. Log-Normal Dağılım kullanarak 21 m³/s lik bir debinin kaç yılda bir gözleneceğini bulunuz.

Çözüm 3:

$$y = ln(x)$$
 $\mu_y = 2.6$ $\sigma_y = 0.2$

$$z = \frac{Y - \mu_y}{\sigma_y} = \frac{\ln(21) - 2.6}{0.2} = 2,22$$
 z = 2,22 için q = 0,9868

$$p = 1 - q = 1 - 0.9868 = 0.0132$$
 Tr = 1 / 0.0132 = 76 yil

$$Tr = 1 / 0.0132 = 76 yil$$

ÖRNEK 4)

22 yıllık kaydedilmiş değerleri bulunan taşkın serisinin y=log(x) dönüşümü yapıldıktan sonra ortalaması 1,23 , standart sapması ise 0,08 olarak hesaplanmıştır. Log-Normal Dağılım kullanarak 25 m^3/s lik bir debinin kaç yılda bir tekrarlanacağını bulunuz.

Çözüm 4:

y = log(x)
$$\mu_y$$
 = 1,23 σ_y = 0,08
$$z = \frac{Y - \mu_y}{\sigma_y} = \frac{\log(25) - 1.23}{0.08} = 2,099 \qquad z$$
 = 2,10 igin q = 0,9821

$$p = 1 - q = 1 - 0.9821 = 0.0179$$
 Tr = 1 / 0.0179 = 56 yil

57

ÖRNEK 5)

22 yıllık kaydedilmiş değerleri bulunan taşkın serisinin ortalaması 28 m³/s, standart sapması ise 9 m³/s olarak hesaplanmıştır. Gumbel Dağılımı kullanarak 56,3 m³/s lik bir debinin kaç yılda bir tekrarlanacağını bulunuz.

Çözüm 5:

$$\mu_x = 28$$
 $\sigma_x = 9$

N \leq 30 olduğundan tablo kullanılır. N = 22 için \Rightarrow σ_n = 1,075 \overline{Y}_n = 0,527

$$a = \frac{\sigma_n}{\sigma_x} = \frac{1.075}{9} = 0,1194$$
 $X_o = \mu_x - \bar{Y}_n \frac{\sigma_x}{\sigma_n} = 28 - 0,527 \frac{9}{1.075} = 23,588$

$$y = a(X - X_0) = 0.1194(56,3 - 23,588) = 3,906$$

$$q = e^{-e^{-y}} = e^{-e^{-3.906}} = 0.980$$
 $Tr = \frac{1}{1-q} = \frac{1}{1-0.980} = 50 \text{ yil}$

ÖRNEK 6)

27 yıllık kaydedilmiş değerleri bulunan taşkın serisinin ortalaması 152 m³/s, standart sapması ise 43 m³/s olarak hesaplanmıştır. Gumbel dağılımını kullanarak 50, 100 ve 1000 yıl tekerrürlü taşkın piklerini bulunuz.

Çözüm 6:

N = 27 yıl

$$\mu_x = 152 \text{ m}^3/\text{s}$$
 $\sigma_x = 43 \text{ m}^3/\text{s}$

 $N \le 30$ olduğundan tablo kullanılır. N = 27 için $\Rightarrow \sigma_n = 1.101$

$$N = 27$$
 icin $\Rightarrow \sigma_n = 1.101$

$$\overline{V}_{1} = 0.533$$

$$a = \frac{\sigma_n}{\sigma_r} = \frac{1.101}{43} = 0.0256$$

$$X_o = \mu_x - \bar{Y}_n \frac{\sigma_x}{\sigma_n} = 152 - 0.533 \frac{43}{1.101} = 131.18$$

59

$$y = a(X - X_0) = 0.0256(X - 131.18)$$

$$q = e^{-e^{-y}} = e^{-e^{-(0.0256(X-131.18))}}$$

$$X = Q = -\frac{\ln(-\ln q)}{0.0256} + 131.18$$

a) T = 50 yıl
$$q = 1 - \frac{1}{T} = 1 - \frac{1}{50} = 0.98$$

$$Q_{50} = -\frac{\ln(-\ln{(0.98)})}{0.0256} + 131.18 = 283 \ m^3/s$$

b) T = 100 yıl
$$q = 1 - \frac{1}{T} = 1 - \frac{1}{100} = 0.99$$

$$Q_{100} = -\frac{\ln(-\ln(0.99))}{0.0256} + 131.18 = 311 \ m^3/s$$

c) T=1000 yıl
$$q=1-\frac{1}{T}=1-\frac{1}{1000}=0.9999$$

$$Q_{1000}=-\frac{ln(-\ln{(0.999)})}{0.0256}+131.18=\mathbf{418}~\mathbf{m^3/s}$$

ÖDEV 7)

32 yıllık kaydedilmiş değerleri bulunan taşkın serisinin ortalaması 18 m³/s, standart sapması 3 m³/s, çarpıklık katsayısı ise 1.6 olarak hesaplanmıştır. Pearson Tip III Dağılımı kullanarak 34,113 m³/s lik bir debi kaç yılda bir tekrarlanacağını bulunuz.

Çözüm 7:

$$\mu_x = 18$$
 $\sigma_x = 3$ $Cs_x = 1.6$

$$K = \frac{X - \mu_X}{\sigma_X} = \frac{34,113 - 18}{3} = 5,371$$
 K = 5,371 için T = 1000 yıl (Tablodan)

Pearson Tip III
Tablosundan Okuma

ÖDEV 8)

50 yıllık kaydedilmiş değerleri bulunan taşkın serisinin ortalaması 246 m³/s, standart sapması 140 m³/s, Çarpıklık katsayısı ise 1.2 olarak hesaplanmıştır. $\frac{\text{Y} = \log{(\text{X})}}{\text{dönüşümü yapıldıktan sonraki ortalama 2.33 m³/s standart sapma 0.24 m³/s, çarpıklık katsayısı ise 0.18 olarak elde edilmiştir. Pearson Tip III ve Log-Pearson Tip III dağılımlarını kullanarak 100 ve 1000 yıl tekerrürlü taşkın piklerini bulunuz.$

Çözüm 8:

63

ÖRNEK

- Bir istasyonda kaydedimiş 10 yıllık maksimum akımlar aşağıda verilmiştir. Normal, Log-Normal, Gumbel, Pearson Tip III ve Log-Pearson Tip III dağılımlarını kullanarak;
- 50 ve 100 yıl tekerrürlü gelmesi muhtemel akımı
- 176 m³/s değerinde bir akımın gelebileceği tekerrür periyodunu belirleyiniz

									1994	
Qp (m³/s)	94.0	123.5	108.5	87.9	128.8	148.5	98.8	89.3	113.6	81.0

75

,				110.00	1990							σ	Cs
Qp (m³/s)	94.0	123.5	108.5	87.9	128.8	148.5	98.8	89.3	113.6	81.0	107.4	21.366	0.7
log(Qp)	1.97	2.09	2.04	1.94	2.11	2.17	1.99	1.95	2.06	1.91	2.023	0.086	0.4
(m^3/s)													

a) Normal Dağılım Tr = 50 yıl
$$\Rightarrow p = \frac{1}{50} = 0.02$$

Normal dağılım tablosu sol taraf alanlarına göre düzenlendiğinden

$$1 - 0.02 = 0.98 \Rightarrow z = K = 2.055$$
 (Normal Dağılım Tablosundan)

$$Q_{50} = X = \mu_x + z \times \sigma_x = 107.4 + 2.055 \times 21.366 = 151 \text{ m}^3/\text{s}$$

Tr = 100 yıl
$$\Rightarrow p = \frac{1}{100} = 0.01$$

1- $0.01 = 0.99 \implies z = K = 2.33$ (Normal Dağılım Tablosundan)

$$Q_{100} = X = \mu_x + z \times \sigma_x = 107.4 + 2.33 \times 21.366 = 157 \ m^3/s$$

Log-Normal Dağılım

$$p = \frac{1}{50} = 0.02$$

Normal dağılım tablosu sol taraf alanlarına göre düzenlendiğinden

 $1 - 0.02 = 0.98 \Rightarrow z = K = 2.055$ (Normal Dağılım Tablosundan)

$$Y = \mu_y + z \times \sigma_y = 2,023 + 2,055 \times 0,086 = 2,199 \rightarrow Q_{50} = 10^{2,199} = 158 \ m^3/s$$

Tr = 100 yıl
$$\Rightarrow$$
 $p = \frac{1}{100} = 0.01$

1- $0.01 = 0.99 \implies z = K = 2.33$ (Normal Dağılım Tablosundan)

$$Y = \mu_y + z \times \sigma_y = 2,023 + 2,33 \times 0,086 = 2,223 \rightarrow Q_{50} = 10^{2,223} = 167 \ m^3/s$$

77

Gumbel (Ekstrem Değer) Dağılımı

N = 10 yıl
$$\Rightarrow$$
 N < 30 olduğu için $\bar{Y}_n = 0.495$ $\sigma_n = 0.9496$

$$a = \frac{\sigma_n}{\sigma_x} = \frac{0.9496}{21.366} = 0.044$$
 $X_o = \bar{X} - \bar{Y}_n \frac{\sigma_x}{\sigma_n} = 107.4 - 0.495 \frac{21.366}{0.9496} = 96.26$

$$y = a(X - X_0) = 0.044 (X - 96.26)$$

$$q = e^{-e^{-0.044(X-96.26)}} \Rightarrow \ln(-\ln q) = -0.044(X-96.26)$$

$$Q = X = -\frac{\ln(-\ln q)}{0.044} + 96.26$$

$$q = 1 - \frac{1}{50} = 0.98$$
 \Rightarrow $Q_{50} = -\frac{\ln(-\ln 0.98)}{0.044} + 96.26 = 184.05 m^3/s$

$$q = 1 - \frac{1}{100} = 0.99$$
 \Rightarrow $Q_{100} = -\frac{\ln(-\ln 0.99)}{0.044} + 96.26 = 200 m3/s$

Pearson Tip III Dağılımı

$$Tr = 50$$
 $Cs = 0.7$ $K = 2.407$ (Tablodan)

$$Q_{50}$$
 = 107.4 + 2.407 × 21.366 = **159** m³/s

Tr = 100 Cs =
$$0.7$$
 K = 2.824 (Tablodan)

$$Q_{100}$$
 = 107.4 + 2.824 × 21.366 = **168** m³/s

79

<u>Log-Pearson Tip III Dağılımı</u>

$$Tr = 50$$
 $Cs = 0.1$ $K = 2.107$ (Tablodan)

$$log (Q_{50}) = 2.023 + 2.107 \times 0.086 = 2.204$$
 $\Rightarrow Q_{100} = 10^{2.204} =$ **160** m³/s

$$Tr = 100$$
 $Cs = 0.1$ $K = 2.400$ (Tablodan)

$$log (Q_{100}) = 2.023 + 2.400 \times 0.086 = 2.239$$
 \Rightarrow $Q_{100} = 10^{2.239} = 173 \text{ m}^3/\text{s}$

Farklı yöntemlerle bulunan 50 ve 100 yıl tekerrürlü muhtemel debiler (m³/s)

YÖNTEM	Tr = 50 yıl	Tr = 100 yıl		
Normal	151.3	157.2		
Log - Normal	158.2	167.0		
Gumbel	184.1	200.0		
Pearson Tip III	159.0	168.0		
Log - Pearson Tip III	160.0	173.0		

81

b) T = ?

Normal Dağılım

$$\mu_X = 107.4$$
, $\sigma_X = 21.366$

$$z = \frac{X - \mu_X}{\sigma_X} = \frac{176 - 107.4}{21.366} = 3,21$$

z = 3.21 için q = 0.9993 Tablodan

$$p = 1 - q = 1 - 0.9993 = 0.0007 \qquad \quad Tr = 1 \ / \ 0.0007 = \textbf{1429 yil}$$

Log - Normal Dağılım

$$z = \frac{Y - \mu_y}{\sigma_y} = \frac{\log(176) - 2.023}{0.086} = 2,59$$

$$z = 2,59 i cin q = 0.9952$$
 (Tablodan)

$$p = 1 - q = 1 - 0.9952 = 0.0048 \qquad Tr = 1 \ / \ 0.0048 = 208 \ yil$$

83

Gumbel Dağılımı

$$q = e^{-e^{-0.044(X-96.26)}} = e^{-e^{-0.044(176-9.26)}} = e^{-e^{-3.509}} = e^{-0.030} = 0.971$$

$$Tr = \frac{1}{1-q} = \frac{1}{1-0.971} = 35 \text{ yil}$$

Pearson Tip III Dağılımı

$$K = \frac{X - \mu_X}{\sigma_X} = \frac{176 - 107.4}{21.366} = 3.21$$

$$Cs_x = 0.7$$
 ve K = 3.21 için (K \cong 3.223) T = 200 yıl

Log - Pearson Tip III Dağılım

$$\mu_y = 2.023, \sigma_y = 0.086$$
 $Cs_y = 0.4$

$$K = \frac{Y - \mu_y}{\sigma_y} = \frac{\log(176) - 2.023}{0.086} = 2,59$$

 $\textit{Csx} = 0.7 \text{ ve K} = 2.59 \text{ için } (K \cong 2.615 \text{)} \text{ Tr = 100 yıl}$

YÖNTEM	$Q = 176 \text{ m}^3/\text{s}$
Normal	1429 yıl
Log - Normal	208 yıl
Gumbel	35 yıl
Pearson Tip III	200 yıl
Log - Pearson Tip III	100 yıl