

SECOND SEMESTER 2024-2025

Course Handout Part II

Date: 06-01-2025

In addition to Part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : BITS F441
Course Title : ROBOTICS

Instructor-in-Charge : **Prof. ARSHAD JAVED**

Course Description: See Page VI-18 in Bulletin 2024-2025

Scope and Objective: This course is intended to provide a comprehensive knowledge of the technology related to robotics. The necessity of human like machines to replace human beings from the work-sites have been long felt for a large variety of reasons. The field of robotics has emerged as one of the important present engineering areas.

The course will develop overall background of the student in interdisciplinary robotic technology with emphasis on mechanical aspects. Mechanisms which can be used in robots, their characteristics, kinematic and dynamic analysis and design will be discussed in detail along with the issues, applications and implementation principles of industrial and mobile robotics.

Text Book:

(T1) Mittal R. K. & Nagrath I. J., "Robotics and Control", TMH, 2003 (Reprint 2007 or later).

Reference Books:

- (R1) Groover, M. P., et al., "Industrial Robotics", MGHISE, 1986.
- (R2) Fu, K. S., et al., Robotic: Control, Sensing, Vision & Intelligence, MGHISE, 1987.
- (R3) Niku, Saeed B. Introduction to robotics: analysis, control, applications. John Wiley & Sons, 2020.
- (R4) Siegwart R., Nourbakhsh I.R., Scaramuzza D., "Introduction to Autonomous Mobile Robots", The MIT Press, second edition 2011.

Course Plan:

Lecturer No.	Learning Objectives	Topics to be covered	Reference Chap./Sec.	
1	Introduction	Introduction of Robotics, Progressive Advancement. The Robotics trends and the future prospects.	T1-1	
2	Fundamentals of Robot Anatomy, Degrees of Freedom (DOF) in a Manipulator			
3	Robot	Arm & Wrist Configuration, The End-effector, Human arm	T1-2	
	Technology	characteristics, Design & Control issues	R1-2	
4-8	Robot Motion Analysis	Co-ordinate frames mapping, Mapping between frames,	T1-2	
		Transformations, Fundamental Rotation Matrices – Principle axes	R1-4	
		Rotation fixed, Euler and Equivalent angle axis Representations	R2-2	
9-13	Kinematics of	Kinematic Modeling of Manipulator, Direct kinematics model	T1-3	
		mechanical structure & Notations Description of links & Joints,	R1-4	
	Manipulators	Denavit – Hertenberg Notation, Examples.	R1-3	
14-16		The Inverse kinematics manipulator: workspace, solvability of inverse	T1-4, 5	
		kinematic model. Solution technique, closed form solutions,	R1-4, R3	
		Singularities.	K1-4, K3	
17-19	Differential	Differential kinematics, linear and angular velocity of a Rigid Body,	T1-5	
17-19	Motion and	Relationship between Transformation matrix and angular velocity,	R1-5	

	Statics	mapping velocity vectors, velocity propagation along links. Manipulator Jacobian, Jacobian Inverse, Jacobian singularities, Static Analysis. Jacobian, Examples.	
20-24	Dynamics of Mechanisms	Introduction, Lagrangian Mechanics, Lagrange – Euler formulation - Velocity of a point on the manipulator, The inertia tensor, The kinetic energy, the potential energy. Equations of Motions, the Lagrangian-Euler (LE) Dynamic model algorithm. Examples on Dynamic modeling.	T1-6 R2-3 R1-4
25-28	Trajectory Planning	Terminology, Joint-Space Technique, Cartesian Space Technique	T1-7 R3
29-32	Robot Control	Control of movements of mechanical joints, control sequence, n-joints manipulator control system, system performance, control system with damping, control strategy, Architecture of control systems.	T1-8 R2-5 R1-8
33-35	Sensors and Actuators	The meaning of sensing, sensors in Robotics kinds of sensor used in Robotics, Tactile sensors Force-Torque sensors. Types of actuators, AC, DC, motors	T1-8, R2-5 R1-6, R3-7
36	Robot Programming	Types of programming method, Robot Programming issues, commands, Writing programs for different tasks	R1-8, 9 R2-9 R3-9
37-38	Fundamentals of Mobile robot	Introduction to Mobile robots, Legged and Wheeled Mobile Robots	R4-1, 2
39-42	Mobile Robot Kinematics	Kinematic Models and Constraints, Mobile Robot Maneuverability, Mobile Robot Workspace	R4-3

Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of Component
Mid Semester Test	90 min	25	04/03 2.00 - 03.30PM	Close book
Quiz		10		Open book
Viva interaction	15 min	10		Close book
Project		20		
Comprehensive- Examination	180 min	35	05/05FN	Open book

Chamber Consultation Hour: Will be decided based on Time table and availability of the students.

Notices: All the necessary announcements will be made in the classroom itself.

Make-up Policy: Make-up will be given with prior concern and genuine reasons only.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Plagiarism and AI tool policy: All take home Assignment/Project repots should be free from any plagiarism and application of (AI) Artificial Intelligence tools. If found, the marks of that component will be nullified.

INSTRUCTOR-IN-CHARGE

