# Al481 - Al for Medicine and Healthcare

# **Assignment 2:**

# CXR Classification using MobileNetV2 and DenseNet121



Supervised By: Dr. Ahmad Alzubi

# | Team Members

- Hamza Sami Mohammad Alsawaftah
  - o ID: 161395
- Nidal Khaled Abdel Hameed Shahin
  - o ID: 162278

### **Abstract**

In this assignment, we explore the application of **CNN-based** architectures, specifically: **MobileNetV2** and **DenseNet121**, to classify chest X-ray (CXR) images into three categories: **Normal**, **COVID-19**, and **Pneumonia**. Models were trained from scratch without pre-trained weights, identical training configurations and settings applied were adapted from the proposed reference of AlexNet implementation.

## Introduction

In respiratory diseases diagnosis, **CXR imaging** is **vital**. Machine and Deep Learning models, **Convolutional Neural Networks** (CNNs) in particular, were the core of automating these diagnoses. In this study, famous architectures like **MobileNetV2** and **DenseNet121** were used to classify chest X-ray images, following guidelines established in the provided GitHub AlexNet notebook [1].

#### Method

- Dataset: Used COVID-QU-Ex dataset [2], balanced distribution and richer in images, compared to the proposed alternatives.
- Models: MobileNetV2 and DenseNet121, initialized with "weights=None", finetuned their final layers for three output classes.
- Preprocessing:
  - Images were converted from grayscale to RGB.
  - Resized to (224x224) to match the models' architectures.

- Normalized images
  using dataset-specific
  computed mean and
  standard deviation
  (std).
- Training Settings:

Optimizer: Adam

Learning rate: 0.0001

o Batch size: 32

Epochs: 10

Loss function: Cross

**Entropy Loss** 

# | Experiment

**Trained** both models **from scratch** using the configuration described above. After each epoch in training, **Validation** was performed to monitor the F1-Score and **save** the model with the best performance.

**Evaluation** (Testing) was done on a separate specialized **test set**, reporting both **macro** and **per-class** precision, recall, F1-Score, and accuracy for each model. Generated **plots** to compare training & validation loss, accuracy, and F1-Score trends. Confusion matrices and classification reports were also visualized.

# | Results & Visuals

# 1<sup>st</sup> Data distribution (class-wise) [3]





### **2**nd Training and Validation Trends [3]



# **3**<sup>rd</sup> Evaluation Confusion Matrices [3]





# 4<sup>th</sup>| Evaluation Metrics Visual [3]



**5**th Evaluation Metrics as a Table

| Model       | Class     | Precision | Recall | F1   | Accuracy |
|-------------|-----------|-----------|--------|------|----------|
| MobileNetV2 | Macro Avg | 0.90      | 0.89   | 0.89 | 0.90     |
|             | Normal    | 0.85      | 0.90   | 0.87 | -        |
|             | COVID-19  | 0.95      | 0.95   | 0.95 | -        |
|             | Pneumonia | 0.89      | 0.84   | 0.87 | -        |
| DenseNet121 | Macro Avg | 0.93      | 0.93   | 0.93 | 0.93     |
|             | Normal    | 0.89      | 0.94   | 0.91 | -        |
|             | COVID-19  | 0.98      | 0.96   | 0.97 | -        |
|             | Pneumonia | 0.93      | 0.89   | 0.91 | -        |

## Discussion

MobileNetV2 and DenseNet121 both were effective for CXR classification under this constrained setup [1]. DenseNet's with its deeper architecture captured finer & more complex details, thus had better F1-scores, especially for COVID-19 cases. MobileNetV2, being lightweight, had 3x faster training time but slightly lower predictive performance.

Batch size (32) and epochs (10) ensured a feasible computation without sacrificing the models' abilities.

## Conclusion

Even when trained from **scratch**, both **MobileNetV2** and **DenseNet121** showed **promising results** for the detection of respiratory disease under the given configuration. **DenseNet121** was the **superior** model in terms of overall **classification performance**, **MobileNetV2** also demonstrated strong potential for supporting medical decisions.

### References

[1] Roshan Sadath, "Medical-Image-Diagnosis-using-Convolutional-Neural-Networks" (GitHub Link)

[2] COVID-QU-Ex (dataset source link)

[3] Notebook (<u>Google Collaboratory</u>), Run-Ready with all requirements (<u>Kaggle Environment</u>)