Resumo: Derivada, gradiente, diferencial e acréscimos

Sadao Massago

Novembro de 2010

Apresentação

Por ser um resumo, muito enxuto, não será apresentado definição ou explicação detalhada, sendo apenas um complemento do texto mais completo.

Função real de uma variável

Apesar de ser tópico do Cálculo 1, faremos pequena revisão de diferencial e acréscimos, pois o seu entendimento é importante para curvas e funções reais de várias variáveis.

 $f: \mathbb{R} \to \mathbb{R}$ então

Derivada: f'(x) mede a taxa de variação de f em relação a variável x que é o coeficiente angular da reta tangente ao gráfico de f. A derivada f'(a) é o coeficiente angular da reta que melhor aproxima a função no ponto.

Diferencial: df = f'(x)dx. A formalização correta do diferencial envolve campo de vetores, o que não é do nível de cálculo. Vamos usar o diferencial com a definição acima, sem preocupar com estudo teórico do que é diferencial. O uso da diferencial permite resolver problemas envolvendo mudança d variáveis (como regra de cadeia e integração) com facilidade. Exemplos

- 1. $\frac{df}{dx} = f'(x)$ que pode ser obtido imediatamente do df = f'(x)dx. Uma das aplicações é a regra de cadeia. Dado $(f^{\circ}u)(x)$ temos que df = f'(u)du e du = u'(x)dx de modo que df = f'(u)du = f'(u)u'(x)dx e consequentemente, $(f^{\circ}u)'(x) = \frac{df}{dt} = f'(u)u'(x)$. Exemplo: Considerem $f(x) = \ln x$ e $g(x) = \cos x$. Encontre $(f^{\circ}g)'(x)$ usando diferencial. Primeira coisa a fazer é alterar a(s) letra(s) da(s) variável(is) para que não seja usada mesmo símbolo para variáveis diferente (variáveis da f não é mesmo da g). Seja $f(u) = \ln u$ e $g(x) = \cos x$. Como $(f^{\circ}g)(x) = f(g(x))$, $u = g(x) = \cos x$ e $du = g'(x)dx = -\operatorname{sen} xdx$. Assim, $df = f'(u)du = \ln udu = \ln u(-\operatorname{sen} x)dx = -\ln u\operatorname{sen} xdx = -\ln(\cos x)\operatorname{sen} xdx$. Logo, $\frac{df}{dx} = -\ln(\cos x)\operatorname{sen} x$.
- 2. $\int f(x)dx$ significa que x é a variável a ser considerado na integração. A mudança de variável na integração é facilitado, se usar a notação de diferencial. Por exemplo, em $\int e^{x^2}xdx$, considerando $u=x^2$ temos que du=2xdx de onde $dx=\frac{du}{2x}$. Assim, $\int e^{x^2}xdx=\int e^ux\frac{du}{2x}=\frac{1}{2}\int e^udu=\frac{1}{2}(e^u+c)=\frac{e^u}{2}+\frac{C}{2}=\frac{e^{x^2}}{2}+D$.

Acréscimo: $\Delta f(x_0) \cong f'(x_0) \Delta x_0$ onde $\Delta f(x_0) = f(x) - f(x_0)$ e $\Delta x_0 = x - x_0$. O acréscimo fornece uma boa aproximação de f(x) para x próximo de x_0 . Note a similaridade das fórmulas de acréscimo e do diferencial. Para analisar como será o erro desta aproximação, requer o estudo do Taylor de primeira ordem.

Exemplo: Encontrar uma aproximação de $\sqrt{4.1}$ sem usar a calculadora. Considerando $f(x) = \sqrt{x}$, temos que $\sqrt{4.1} = f(4.1)$. Sendo f' diferenciável, podemos usar o acréscimo.

Os pontos onde podemos obter valores de f sem a calculadora são $\pm 1, \pm 4, \pm 9, \pm 16, \ldots$ onde perto de 4.1 seria 4. Sendo $x_0 = 4$ e x = 4.1 temos $f(x_0) = f(4) = 2$ e como $f'(x) = \frac{1}{2\sqrt{x}}$, temos $f'(x_0) = f'(4) = \frac{1}{4}$. Assim, $\Delta x_0 = x - x_0 = 4.1 - 4 = 0.1$, $\Delta f(x_0) = f(x) - f(x_0) = f(4.1) - f(4) = f(4.1) - 2$ e $f'(x_0) = f'(4) = \frac{1}{4}$. Assim, $\Delta f(x_0) \cong f'(x_0) \Delta x_0$ implica $f(4.1) - 2 \cong \frac{1}{4} \times 0.1 = \frac{1}{40}$ e logo, $f(4.1) \cong 2 + \frac{1}{40} = \frac{81}{40}$.

 $\frac{1}{4} \times 0.1 = \frac{1}{40}$ e logo, $f(4.1) \cong 2 + \frac{1}{40} = \frac{81}{40}$. Observação: Teorema do valor médio. No caso de ter f contínua no intervalo contendo a e b, temos que f(b) - f(a) = f'(c)(b - a) para algum c entre a e b. O teorema de valor médio escrito como acréscimo é $\Delta f(x_0) = f'(z)\Delta x_0$ com z entre x_0 e x. Esta igualdade é essencial para estimativa do limitante de erros nas aproximações.

Curvas

 $f: \mathbb{R} \to \mathbb{R}^n$ dado por $(x_1, \dots, x_n) = f(t) = (f_1(t), \dots, f_n(t))$. Derivadas, diferencial e acréscimos são feitos, coordenada a coordenada.

Considerando que tem as derivadas, temos

Derivada: $(x'_1(t), \ldots, x'_n(t)) = f'(t) = (f'_1(t), \ldots, f'_n(t))$ é o vetor tangente ao traço (imagem) da curva. Derivada das coordenadas são taxas de variação das coordenadas. A derivada é o vetor diretor da reta que melhor aproxima a curva no ponto.

Exemplo: Encontrar a reta tangente a curva $\alpha(t)=(t^2,\cos t,\sin t)$ no ponto $\alpha(\frac{\pi}{2})$. Sendo $\alpha'(t)=(2t,-\sin t,\cos t)$, temos que $\alpha(\frac{\pi}{2})=(\frac{\pi^2}{4},0,1)$ e $\alpha'(\frac{\pi}{2})=(\pi,-1,0)$ no ponto em questão. como $\alpha'(\frac{\pi}{2})$ é vetor diretor da reta tangente e $\alpha(\frac{pi}{2})$ é o ponto da reta, temos a parametrização $r:(\frac{\pi^2}{4},0,1)+\lambda(\pi,-1,0)$.

Diferencial: $(dx_1, \ldots, dx_n) = df = (df_1, \ldots, df_n)$. Diferencial simplifica o uso da a regra de cadeia e integração, como no caso anterior.

Exemplo: Seja $\alpha(t) = (t^2, \cos t, \operatorname{sent}) e f(t) = te^t$. Encontre $(\alpha^{\circ} f)'(t)$. Mudando de nome das variáveis, temos $\alpha(t) = (t^2, \cos t, \operatorname{sent}) e f(s) = se^s$. Como $(\alpha^{\circ} f)(s) = \alpha(f(s))$, temos que $t = f(s) = se^s$ de onde $dt = (e^s + se^s)ds$. Logo $d\alpha = \alpha'(t)dt = \alpha'(t)(e^s + se^s)ds = (2t, -\operatorname{sent}, \cos t)(e^s + se^s)ds$ por ter $\alpha'(t) = (2t, -\operatorname{sent}, \cos t)$. substituindo o valor de t, temos $d\alpha = (2se^s, -\operatorname{sen}(se^s), \cos(se^s))(e^s + se^s)ds$. Assim, $(\alpha^{\circ} f)'(s) = \frac{d\alpha}{ds} = (2s(e^s + se^s)e^s, -(e^s + se^s)\operatorname{sen}(se^s), (e^s + se^s)\cos(se^s))$.

Acrescimos: $(\Delta x_1, \ldots, \Delta x_n) = \Delta f = (f_1'\Delta x_1, \ldots, f_n'\Delta x_n)$. Encontre aproximação de $\alpha(1.5)$ para $\alpha(t) = (t^2, \cos t, \sin t)$ sem a calculadora. Os pontos onde podemos obter facilmente os valores são para $t = \theta + k\pi$, onde $\theta = 0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}$ onde o mais próximo é $t_0 = \frac{\pi}{2}$. Assim, queremos determinar $\alpha(t)$ com t = 1.5 a partir de $t_0 = \frac{\pi}{2}$. Como $\alpha'(t) = (2t, -\sin t, \cos t)$, temos que $\alpha(t_0) = \alpha(\frac{\pi}{2}) = (\frac{\pi^2}{4}, 0, 1)$, e $\alpha'(\frac{\pi}{2}) = (\pi, -1, 0)$. Logo, $\Delta \alpha(t_0) = \alpha(t) - \alpha(t_0) = \alpha(1.5) - (\frac{\pi^2}{4}, 0, 1)$, $\Delta t_0 = t - t_0 = 1.5 - \frac{pi}{2} = \frac{3-\pi}{2}$. colocando na fórmula do acréscimo $\Delta \alpha(t_0) \cong \alpha'(t_0) \Delta t_0$, temos $\alpha(1.5) - (\frac{\pi^2}{4}, 0, 1) \cong (\pi, -1, 0) \times \frac{3-\pi}{2}$. Assim, $\alpha(1.5) \cong (\frac{\pi^2}{4}, 0, 1) + (\pi, -1, 0) \times \frac{3-\pi}{2} = (\frac{6\pi-\pi^2}{4}, \frac{\pi-3}{2}, 1)$.

Observação: para trabalhar com a curva, podemos trabalhar coordenada a coordenada, em vez de tratar vetorialmente. A resolução será essencialmente o mesmo.

Função real de várias variáveis

Considerando $f: \mathbb{R}^n \to \mathbb{R}$ com derivadas parciais contínuas, temos

Gradiente: $\nabla f(x_1,\ldots,x_n) = \left(\frac{\partial f}{\partial x_1},\cdots,\frac{\partial f}{\partial x_n}\right)$ é um vetor associado a taxa de variação. Cada coordenada é a taxa de variação nas coordenadas correspondentes. Gradiente é uma das mais importantes para o estudo de funções de várias variáveis.

Derivada: $f'(x_1, \dots, x_n) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \dots & \frac{\partial f}{\partial x_n} \end{bmatrix}$ Matriz usado para regra de cadeia geral. No caso da função $f: \mathbb{R}^n \to \mathbb{R}$, a regra de cadeia pode ser resolvida com o diferencial, sem precisar

da forma matricial. A derivada é a parte linear da transformação afins (soma de linear com o constante) que melhor aproxima a função no ponto.

Com o uso da álgebra linear, podemos provar que uma transformação linear de $\mathbb{R}^n \to \mathbb{R}$ pode ser representado pelo vetor em vez da matriz. O gradiente é a representação da derivada (matriz linha) como vetor. Representando o vetor como matriz coluna, vale $\langle \vec{u}, \vec{v} \rangle = [\vec{v}]^t [\vec{u}]$ na base canônica. Com isso, podemos substituir derivada por gradiente na expressões e resultados relacionados com as derivadas. A vantagem de usar gradiente em vez da derivada é poder explorar as propriedades geométricas por gradiente ser um vetor.

É necessário tomar cuidado com os textos estrangeiros, pois alguns paises adotam mesma representação matricial que a nossa (sistema linear é AX = b, vetor é matriz coluna e $\langle \vec{u}, \vec{v} \rangle = [\vec{v}]^t[\vec{u}]$), mas outros países podem adotam a representação estilo americano (sistema linear é XA = b, vetor é matriz linha e $\langle \vec{u}, \vec{v} \rangle = [\vec{v}][\vec{u}]^t$).

Diferencial: $df = \frac{\partial f}{\partial x_1} dx + \cdots + \frac{\partial f}{\partial x_n} dx_n$. Não vamos preocupar do que ele é, pois envolve álgebra linear. Vamos usar como notação.

Exemplos

- 1. Encontre a derivada de $(f^{\circ}g)(t)$ no ponto t=1, sabendo que $f(x,y)=xy^2$, g(1)=(2,-3) e $g'(x)=(\cos x,\ln(x+1))$. Trocando o símbolo da variável de g, temos $g'(t)=(\cos t,\ln(t+1))$ e no ponto será $g'(1)=(\cos 1,\ln 2)$. Temos $df=\frac{\partial f}{x}dx+\frac{\partial f}{y}dy=y^2dx+2xydy$ e como $(f^{\circ}g)(t)=f(g(t)), (x,y)=g(t)$ de onde $dx=x'(1)dt=\cos 1dt$ e $dy=y'(1)=\ln 2dt$ no ponto t=1, temos $df=y^2\cos 1dt+2xy\ln 2dt$ em t=1. Como g(1)=(2,-3), x=2, y=-3 neste ponto, o que fornece $df=9\cos 1dt-12\ln 2dt$ de onde $(f^{\circ}g)'(1)=\frac{df}{dt}|_{t=1}=9\cos 1-12\ln 2$.
- 2. Encontre $\nabla(f^{\circ}g)(x,y)$ onde $f(x)=\tan x$ e $g(x,y)=x^2+y^2$. Ajustando o símbolo da variável de f temos $f(u)=\tan u$ e $g(x,y)=x^2+y^2$. $f'(u)=(\sec u)^2$ pela regra do quociente, o que implica que $df=(\sec u)^2du$. Como $(f^{\circ}g)(x,y)=f(g(x,y))$, temos que u=g(x,y) e logo, $du=dg=\frac{\partial g}{\partial x}dx+\frac{\partial g}{\partial y}dy$. substituindo da diferencial de df, temos $df=(\sec u)^2(\frac{\partial g}{\partial x}dx+\frac{\partial g}{\partial y}dy)$. substituindo o valor de $u=g(x,y)=x^2+y^2$ e $\frac{\partial g}{\partial x}=2x$ e $\frac{\partial g}{\partial y}=2y$ temos $df=(\sec(x^2+y^2))^2(2xdx+2ydy)$ de onde $\nabla(f^{\circ}g)(x,y)=((\sec(x^2+y^2))^22x,(\sec(x^2+y^2))^22y)$.
- 3. Seja y(x) definido pela equação $x^2+y^2=1$. Obter y' em relação à solução (x,y) da equação. Aplicando diferencial em ambos os lados da equação, temos 2xdx+2ydy=d1=0. Assim, $2ydy=-2xdx \implies \frac{dy}{dx}=\frac{-2x}{2y} \implies y'(x)=\frac{-x}{y}$ para $y\neq 0$. Mais geralmente, podemos provar a fórmula da regra de derivação implícita como segue. Seja y(x) definido pela equação f(x,y)=c. Calculando diferencial, temos $\frac{\partial f(x,y)}{\partial x}dx+\frac{\partial f(x,y)}{\partial y}dy=dc=0$. Assim, temos $\frac{\partial f(x,y)}{\partial y}dy=-\frac{\partial f(x,y)}{\partial x}dx$ de modo que $\frac{dy}{dx}=\frac{-\partial f/\partial x}{\partial f/\partial y}$ para $\frac{\partial f}{\partial y}\neq 0$.

Acréscimos: $\Delta f \cong \frac{\partial f}{\partial x_1} \Delta x_1 + \dots + \frac{\partial f}{\partial x_n} \Delta x_n$ Estima a variação da função em relação a variável. Observe a similaridade com a diferencial. Caso a derivada parcial não for contínua, não há garantia de que a aproximação é boa.

Exemplos

1. Estime o valor de π^{e} . Considerando que $\pi \cong 3$ e $e \cong 3$, considere $f(x,y) = x^{y}$. Temos que $\nabla f(x,y) = (yx^{y-1}, (\ln x)x^{y})$ (exercício). Podemos calcular no ponto $(x_{0}, y_{0}) = (3, 3)$, tendo os valores $f(x_{0}, y_{0}) = 3^{3} = 27$, $\nabla f(x_{0}, y_{0}) = (3 \times 3^{2}, (\ln 3)3^{3}) = (27, 27 \ln 3)$ de onde $\frac{\partial f}{\partial x}(x_{0}, y_{0}) = 27$, $\frac{\partial f}{\partial y}(x_{0}, y_{0}) = 27 \ln 3$, $\Delta x_{0} = x - x_{0} = \pi - 3$ e $\Delta y_{0} = y - y_{0} = 3 - 3$. Colocando na fórmula de acréscimos $\Delta f \cong \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y$, temos $f(\pi, e) - f(3, 3,) \cong 27(\pi - 3) + 77(\ln 3)(e-3)$ e logo, $f(\pi, e) \cong 27 + 27(\pi - 3) + 27(\ln 3)(e-3) = 27(\pi - 2 + (\ln 3)(e-3))$. Obs.: Valor estima é 22.4665 enquanto que $\pi^{e} \cong 22.4592$.

2. Encontre a aproximação de z(1.1,2) onde z(x,y) é dado por z(1,1.5)=-1 e $x+y+z+e^{x+z}+e^{2y+3z}=3.5$.

Usando a derivação implícita através do diferencial, temos $\nabla z(x,y,z)=(-1,\frac{-1-2e^{2y+3z}}{1+3e^{2y+3z}})$ (exercício). O ponto onde conhece os valores de z é (1,1.5). Assim, temos $\nabla z(1,1.5,-1)=(-1,\frac{-1-2e^0}{1+3e^0})=(-1,\frac{-3}{4})$. Usando o $x_0=1,y_0=1.5,z_0=z(x_0,y_0)=-1$ e (x,y)=(1.1,2) temos $\Delta x=x-x_0=0.1,$ $\Delta y=y-y_0=0.5$ e $\nabla z(x_0,y_0,z_0)=(-1,\frac{-3}{4})$ (logo, $\frac{\partial z}{\partial x}(x_0,y_0,z_0)=-1$ e $\frac{\partial z}{\partial y}(x_0,y_0,z_0)=\frac{-3}{4}$). substituindo a fórmula de acréscimos acréscimo $\Delta z\cong z_0+\frac{\partial z}{\partial x}\Delta x+\frac{\partial z}{\partial y}\Delta y$, temos $\Delta z\cong -\Delta x-\frac{3}{4}\Delta y\Rightarrow z-(-1)\cong -0.1-\frac{3}{4}0.5\Rightarrow z\cong -1-0.1-0.375=-1.475$.

Observação: Teorema do valor médio (essencial para análise de erros de aproximação) no caso das funções de várias variáveis. Seja f cotínua no aberto contendo o segmento \overline{AB} . Então $f(B) - f(A) = \langle \nabla f(C), B - A \rangle$ para algum ponto C no segmento \overline{AB} . A forma similar ao do acréscimo será $\Delta f(X_0) = \langle (\nabla f(Z), \Delta X_0) \rangle$ com Z no segmento $\overline{X_0X}$.