第一章电路基本概念和基本定律

分院(系)	班级	姓名	学号	第 1 次
万 阮 (归纵	灶石	子与	第 1

1—1 在图示电路中,已知 $U_S = 12 \text{ V}, I_S = 2 \text{ A}$ 。求A、B两点间的电压 U_{AB} ,并验证功率平衡;说明哪些元件是电源?哪些元件是负载?(答案: $U_{AB}=-18~\mathrm{V}$)

1—2 图 示 电 路 中,已 知 I_1 = 11 mA, I_4 = 12 mA, I_5 = 6 mA。求 I_2 , I_3 和 I_6 。(答案: I_3 =5mA; I_2 =-7mA; I_6 =18mA)

1—3 图 示 电 路 中,已 知: $I_{S1}=3$ A, $I_{S2}=2$ A, $I_{S3}=1$ A, $R_1=6$ Ω , $R_2=5$ Ω , $R_3=7\,\Omega$ 。用基尔霍夫电流定律求电流 I_1 , I_2 和 I_3 。(答案: $I_1=-1$ A ; I_2 $=-2A; I_3=1A)$

1—4 图 示 电 路 中,已 知: $I_S=2$ A, $U_S=12$ V, $R_1=R_2=4$ Ω , $R_3=16$ Ω 。求: (1) S 断 开 后 A 点 电 位 $V_{\rm A}$; (2) S 闭 合 后 A 点 电 位 $V_{\rm A}$ 。(答案: (1) $V_{\rm A}$ =20 V $(2) V_{A} = -2.4 V$

1—5 求下图所示电路中的开路电压 \mathbf{U}_{ab} 。(答案: $U_{AB} = -2\mathbf{V}$)

1—6 在图示电路中,试计算开路电压 U2.($U_2=8\mathrm{V}$)

第二章电路的分析方法及电路定理

分院(系)	班级	姓名	学号	第 1 🤾	7
カルドル・ くえぼ ノ	1)1,5/X	9T.4D	+ 7	717 I 1.	ハ

2—1 图 示 电 路 中 , 己 知: $U_{\rm S1}$ = 15V , $U_{\rm S2}$ = 5V , $U_{\rm S3}$ = 70V , $R_{\rm 1}$ = 6 Ω , $R_2=R_3=10\Omega$, $R_4=2.25\Omega$, $R_5=15\Omega$ 。试用电源等效变换法求电 流 I。(答案: I = 1.15A)

2—3 用电源等效变换法求图示电路中的 I_{S2} 。(答案: $I_{S2}=5$ A)

2-4 用支路电流法求图中电流 I_1 , I_2 , I_3 和电压 U,并说明电压源和电流源是发出功率还是吸收功率。(答案: $I_1=4.5A$; $I_2=-1A$; $I_3=-0.5A$; U=-1V)

2—5 图示电路中,已知: $U_S = 30$ V, $I_{S1} = 10$ A, $I_{S2} = 5$ A, $R_1 = R_2 = R_3 = R_4 = 3$ Ω。 试用支路电流法求各未知支路电流。(答案: $I_1 = 6.67$ A $I_2 = -1.67$ A $I_3 = 6.67$ A $I_4 = 3.33$ A)

第二章 电路的分析方法及电路定理

分院(系)	班级	姓名	学号	第 2 次
万 阮 (归纵	灶石	子与	データ カーグ カーチャング カーチャング サーバス かっぱい カース カース かんしょう かんしゅう かんしゅう かいしゅう かいしゅ しゅう かいしゅう かいしゅ しゅう かいしゅ しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう し

2—6 图 示 电 路 中, 已 知: $U_{S} = 15 \text{ V}$, 当 I_{S} 单 独 作 用 时, 3Ω 电 阻 中 电 流 $I_1=2\,\mathrm{A}$,那 么 当 I_S 、 U_S 共 同 作 用 时 ,求 2 Ω 电 阻 中 电 流 I_o (I=6 A)

2—7 用叠加定理求图中电路中的 I。(答案: I = 3A)

2-8 用结点电压法求图中的电压 U。(U=-1V)

习题 2-8 图

2—9 图 示 电 路 中,已 知: $U_{S1}=2$ V, $U_{S2}=2$ V, $I_{S1}=1$ A, $I_{S2}=4$ A, $R_1=R_2=R_3$ $=R_4=R_5=2\,\Omega$ 。用 戴 维 宁 定 理 求 电 流 I 。(答案: $U_0=-8\,\mathrm{V}$; $R_0=4\,\Omega$;

I = -1A

2—10 图 示 电 路 中,已 知: $R_1=4\Omega$, $R_2=6\Omega$, $R_3=12\Omega$, $R=16\Omega$ 。用 戴 维 宁 定 理 求 电 流 I 。(答案: $U_0=6$ V; $R_0=8\Omega$; I=0.25A)

2---11 图 示 电 路 中,已 知: $U_S = 30 \text{ V}$, $I_S = 4 \text{ A}$, $R_1 = 1 \Omega$, $R_2 = 3 \Omega$, $R_3 = R_4 = 6 \Omega$ 。求 A,B 两 端 的 戴 维 宁 等 效 电 压 源。(答案: $U_{AB} = -2 \text{ V}$; $R_0 = 2 \Omega$)

第三章 动态电路分析

3-1 试确定如图电路在开关 S 闭合后的初始值。(答案: $i_L = 5mA$ $u_C = 10V$)。

3-2 已知: K 在 t=0 时闭合,换路前电路处于稳态。求: 电感电压

(答案: $u_L(t) = -4 e^{-2t} V$)

3-3 已知: 开关 K 原在"3"位置, 电容未充电。当 t=0 时, K 合向"1", t=20 ms 时, K 再 从"1"合向"2", 求: $u_c(t)$ 、i(t)

(答案:
$$u_c(t-20) = 2.5 - 0.5 e^{\frac{t-20}{3}} V$$
)
 $i(t-20) = 1.25 + 0.25 e^{\frac{t-20}{3}} \text{ mA}$

在第四章 正弦交流电路

4—2 已知 $i_1=10\sin(314t+30^\circ)$ A, $i_2=10\sin(314t-60^\circ)$ A, $i=i_1+i_2$ 。 试用 相量法求i,并画出三个电流的相量图。(答案: $i=10\sqrt{2}\sin(314t-15^\circ)$ A)

Shiring Ray Institute

第四章 正弦交流电路

分院 (系)	班级	姓名	学号	第 <u>2</u> _	_次
--------	----	----	----	--------------	----

4—3 电压 $u=220\sqrt{2}\sin 314t$ V ,分别作用在(1) R=100 Ω ;(2) L=0.5 H ;(3) C=10 μ F 的元件上。试求 i_R 、 i_L 、 i_C ,并画出相量图。(答案: $i_R=2.2\sqrt{2}\sin 314t$ A; $i_L=1.4\sqrt{2}\sin(314t-90^0)$ A; $i_C=0.69\sqrt{2}\sin(314t+90^0)$ A)

4—4 一个电感线圈接在 $U=120~\rm V$ 的直流电源上,电流为 20 A,若接在 $f=50~\rm Hz$, $U=220~\rm V$ 的交流电源上,则电流为 28.2 A,求该线圈的电阻和电感。(答案: $R=6~\Omega$; $L=15.9~\rm mH$)

4—5 如图所示电路中 $R=4\Omega$,频率 $f=50~{\rm Hz}$ 时,电路的功率 $P=16~{\rm W}$,功率因数 $\lambda=0.8$,求 $f=25~{\rm Hz}$ 时电路的电流 I ,有功功率 P ,无功功率 Q 和视在功率 S 。(答案: $I=2.34~{\rm A}$; $P=21.9~{\rm W}$; $Q=8.21~{\rm Var}$; $S=23.4~{\rm VA}$)

题 4-5 电路图

4-6 无源二端网络如图所示,输入端电压 $u=220\sqrt{2}\sin(314t+20^0)$ V ,电流 $i=4.4\sqrt{2}\sin(314t-33^0)$ A,求该二端网络的等效电路(两个元件串联)和元件参数值;并求二端网络的功率因数及输入的有功功率和无功功率。(答案: $R=30\,\Omega$; $L=0.127\,\mathrm{H}$; $\cos\varphi=0.6$; $P=580.8\,\mathrm{W}$; $Q=773\,\mathrm{Var}$)

题 4-6 电路图

第四章 正弦交流电路

4—7 在图示电路中, 电源电压 $\dot{U} = 220/0^{\circ} \text{ V}$, 阻抗

$$Z_1 = 4.4 + i2.65 \Omega$$

$$Z_1 = 4.4 + j2.65 \Omega$$
 , $Z_2 = 21.69 - j12.6 \Omega$

 $Z_3 = 1.5 + j2.6 \Omega$ 求电路的有功功率,无功功率和视在功

率。(答案:
$$P = 5.39 \text{ kW}$$
; $Q = 4 \text{ kVar}$; $S = 6.71 \text{ kVA}$)

题 4-7 电路图

4—8 图示电路中, $u=100\sqrt{2}\sin 314t$ V,

 $R=30\,\Omega$, $X_L=40\,\Omega$, $X_C=80\,\Omega$ 。(1) 求电流i及 功率因数 λ ; (2) 若u的有效值不变,调节其频率使电路 谐振,求谐振时的电流 I_0 及谐振频率 f_0 。(答案: (1)

 $i = 2\sqrt{2}\sin(314t + 53.1^{\circ}) \text{ A}$; $\lambda = 0.6$ (2)

 $I_0 = 3.33 \,\mathrm{A}$; $f_0 = 70.6 \,\mathrm{Hz}$)

4-9 在图示电路中,已知:

$$Z_1 = 12 + j16 \Omega$$
, $Z_2 = 10 - j20 \Omega$, $U = 120 + j160 \mathrm{V}$,求各支路电流 I 、 I_1 、 I_2 ,总有功功率 P 及总功率因数 $\cos \varphi$,作电压、电流相量图。(答案: $I = 10/\underline{53.13^0}$ A $I_1 = 10/\underline{0^0}$ A $I_2 = 8.94/\underline{116.56^0}$ A $P = 2000 \mathrm{W}$ $\cos \varphi = 1$)

习题 4-9 电路图

arphi=1) $4—10\$ 图示电路中, $R_2=48\,\Omega$, $X_L=36\,\Omega$, R_1 、 R_2

所消耗的有功功率 $P_1 = P_2 = 1.5 \text{ W}$, 求 R_1 及电流源的电流

有效值 I_s 。(答案: $R_1 = 75 \Omega$; $I_s = 0.303 A$)

第四章 正弦交流电路

4-11 在图示电路中,电流有效值 I=5 A , $I_2=3$ A , R=25 Ω ,求电路的阻抗 |Z| 为多

17. (** State of the state of t

4-12 日光灯电路如图所示,灯管电阻 $R = 530 \Omega$, 镇 流 器 电 阻 $r = 120 \Omega$, 电 感 L=1.9 H,接在220 V, 50 Hz交流电源上,求 电路电流; 灯管电压; 镇流器电压; $P \setminus Q \setminus S$ 及 $\cos \varphi_1$,要把电路功率因数提高到 $\cos \varphi = 0.85$,问 在日光灯两端应并多大电容? (答案: I = 0.25 A $U_R = 132.16 \text{ V}$ $U_{rL} = 152.14 \text{ V}$ P = 40.63 W Q = 37.29 Var $S = 55.15 \text{ VA} \quad \cos \varphi_1 = 0.74 \quad C = 0.8 \ \mu F$

习题 4-12 电路图

4—13 在图示 R、L 串联电路中, 已知 $i = 2.82\sqrt{2} \sin 314t \text{ A}$, $R = 60 \Omega$, L = 0.255 H, \Re (1) 若在电路两端并联 $C = 11.3 \mu F$ 的电容,电源供出电流的有效 值变化了多少? (2) 并联电容后的功率因数。(答案: (1) $\Delta I = 0.71 \,\mathrm{A}\,;$ (2) $\lambda' = 0.8$)

题 4-13 电路图

4—14 一用电设备(电感性负载)接于220 V的交流电源上,如图所示,电源频率 f = 50 Hz,电流表和功率表测得的电流 I = 0.41 A,功率 P = 40 W 。试求 (1) 该电器 设备的功率因数 λ : (2) 因该电器设备是电感性负载,故可用并联电容器 C 来提高整个电 路的功率因数。若 $C=4.75 \mu F$,电流表的读数和整个电路的功率因数为多少?(答案:

(1) $\lambda = 0.4435$; (2) I' = 0.186 A; $\lambda' = 0.977$)

题 4-14 电路图

五章 三相交流电路

分院(系)<u>班级</u>姓名<u>学号</u>第<u>1</u>次

5—1 当发电机的三相绕组联成星形时,设线电压 $u_{AB}=380\sqrt{2}\sin(\omega t+45^{0})\mathrm{V}$,试写出相电压 u_{A} 、 u_{B} 、 u_{C} 的三角函数式。(答案: $u_{A}=220\sqrt{2}\sin(\omega t+15^{0})\mathrm{V}$

Z sin(at - . $u_B = 220\sqrt{2}\sin(\omega t - 105^{\circ})V$ $u_C = 220\sqrt{2}\sin(\omega t + 135^{\circ})V$)

额定电压为 220V 的三个单相负载,每 相 负 载 R=3 Ω , $X_C=4$ Ω ,已 知 电 源 线 电 压 $u_{\rm AB}=380\sqrt{2}\sin\omega t$ V,求: (1) 负载应如何连接? (2) 求 各 线 电 流 瞬 时 值;(答案:(1) Y 接;(2) $Z = R - j X_c = 5 \angle -53.1^{\circ} \Omega$ $\dot{U}_{AB} = 380 \angle 0^{\circ} V$, $i_{A} = 44\sqrt{2}\sin(\omega t + 23.1^{\circ}) \text{ A}$ $i_{B} = 44\sqrt{2}\sin(\omega t - 96.9^{\circ}) \text{ A}$ $44\sqrt{2}\sin(\omega)$ $i_{\rm C} = 44\sqrt{2}\sin(\omega t + 143.1^{\circ})\,\mathrm{A}\,)$

五章 三相交流电路

分院(系) 班级 姓名 学号 第 2 次 5-3 一 台 50 Hz 的 三 相 对 称 电 源, 向 星 形 连 接 的 对 称 感 性 负 载提供30 kVA的视在功率和15 kW的有功功率,已知负载线电流为 45.6 A。求 感 性 负 载 的 参 数 R, L。(答案: $R=2.41\Omega$, $X_L=4.17\Omega$,

$$L = \frac{X_L}{\omega} = 13.3 \times 10^{-3} \,\mathrm{H})$$

<u>/L</u> = 13. 5—4 图示电路中,对称三相负载各相的电阻为80 Ω ,感抗为60 Ω, 电源的线电压为 380 V。当开关S 投向上方和投向下方两种情况 时,三相负载消耗的有功功率各为多少?(答案:(1)S向上,负载接成 Δ,则 $U_{\rm p\Delta}=U_{l\Delta}=380~{
m V}$, $I_{\rm p\Delta}=3.8~{
m A}$, $P_{\Delta}=3.47~{
m kW}$;(2) S 向 下,将 负 载 接 成 Y, $U_{pY} = 220 \text{ V}$ $I_{pY} = 2.2 \text{ A } P_{Y} = 1.16 \text{ kW}$)

5—5 在图示电路中,三相四线制电源电压为 $380/220~\rm V$,接有对称星形连接的白炽灯负载,其总功率为 $180~\rm W$,此外,在 C 相上接有额定电压为 $220~\rm V$,功率为 $40~\rm W$,功率因数为 $\cos \varphi = 0.5$ 的日光灯一支。试求 I_A 、 I_B 、 I_C 、 I_N 。 设 $U_A = 220/0^0~\rm V$ 。 (答案: $I_A = 0.273/0^0~A \qquad I_B = 0.273/-120^0~A \qquad I_C = 0.553/85.3^0~A$ $I_N = 0.364/60^0~A$)

5-6 三相四线制 380 V 电源供电给三层大楼,每一层作为一相负载,装有数目相同的 220 V 的日光灯和白炽灯,每层总功率 2000 W,总功率因数皆为 0.91。试求(1)负载如何 接入电源?并画出线路图;(2)求全部满载时的线电流及中线电流;(3)如第一层仅用 $\frac{1}{2}$ 的 电灯,第二层仅用 $\frac{3}{4}$ 的电灯,第三层满载,各层的功率因数不变,问各线电流和中线电流 —7 图示三相四线制电路,已知电源相电压 $\dot{U}_A=220/\underline{0^0}$ V, $\dot{U}_B=220/\underline{-120^0}$ V, $\dot{U}_C=220/\underline{-240^0}$ V,供给两组对称的三相负载和一组单相负载。第一组三相负载为星形联结,每相阻抗 $Z_1=22$ Ω ,经过 $Z_0=5$ Ω 接到中性线。第二组三相负载为三角形联结,每相阻抗为 $Z_2=-j76$ Ω 。单相负载 R=10 Ω ,接在 A 相和中性线之间,求各线电流 \dot{I}_A 、 \dot{I}_B 、 \dot{I}_C 和中性线电流 \dot{I}_N 。(答案: $\dot{I}_A=33.15/\underline{15.14^0}$ A; $\dot{I}_B=13.2/\underline{-79.11^0}$ A; $\dot{I}_C=/\underline{-199.11^0}$ A; $\dot{I}_N=22$ A)

第六章 变压器

6—2 有一单相照明变压器,容量为 $10\,\mathrm{kVA}$,额定电压为 $3300\,\mathrm{V}/220\,\mathrm{V}$ 。今欲在二次侧接上 $40\,\mathrm{W}$ 、 $220\,\mathrm{V}$ 的白炽灯,如果要变压器在额定情况下运行,这种电灯可接多少盏? 并求一次、二次绕组的额定电流。(答案: $n=250\,$ 盏; $I_{1N}=3.03\,\mathrm{A}$; $I_{2N}=45.5\,\mathrm{A}$)

6—3 某单相变压器一次绕组 $N_1=460$ 匝,接于 220 V 的电源上,空载电流略去不计。现 二 次 侧 需 要 三 个 电 压: $U_{21}=110$ V, $U_{22}=36$ V, $U_{23}=6.3$ V ; 电 流 分 别 为 $I_{21}=0.2$ A, $I_{22}=0.5$ A, $I_{23}=1$ A,负载均为电阻性。试求:(1) 二次绕组匝数 N_{21} 、 N_{22} 、 N_{23} ;(2)变压器容量 S 和一次侧电流 I_1 。(答案: $N_{21}=230$; $N_{22}=75$; $N_{23}=13$;(2) S=46.3 VA; $I_1=0.21$ A)

6—4 一 信 号 源 的 内 阻 R_0 为 200 Ω, U_S 的 有 效 值 为 18 V, 负 载 电 阻 R_L 为 10 Ω。求: (1) 负 载 直 接 接 在 信 号 源 上, 信 号 源 的 输 出 功 率; (2) 负 载 通 过 变 比 为 4 的 变 压 器 接 到 信 号 源 时, 信 号 源 的 输 出 功 率。(答案:

(1)
$$I = 0.086 \,\mathrm{A}$$
 , $P = 73 \,\mathrm{mW}$; (2) $R'_{\mathrm{L}} = K^2 R_{\mathrm{L}} = 160 \,\Omega$, $P = 400 \,\mathrm{mW}$)

6—5 已知信号源电压为 $10\,\mathrm{V}$,内阻 R_0 为 $560\,\Omega$,负载电阻 R_L 为 $8\,\Omega$,欲使负载获得最大功率,阻抗需要变换,今在信号源与负载之间接入一变压器,如图所示。(1)试求变压器最合理的变比;(2)原、副边电流及电压;(3)负载获得的功率。(答案:(1) K=8.4;

(2)
$$U_1 = 5 \text{ V}$$
; $U_2 = 0.6 \text{ V}$; $I_1 = 9 \text{ mA}$; $I_2 = 75 \text{ mA}$ (3)

 $P_L = 45 \text{ mW}$

第七章 三相交流异步电动机

分院(系)	班级	姓名	学号	第 <u>1</u>	次
-------	----	----	----	------------	---

7—1 有一台三相异步电动机,其额定转速 $n_{\scriptscriptstyle N}=975\,r/{\rm min}$,电源频率 $f_{\scriptscriptstyle 1}=50~{\rm Hz}$ 。

试求电动机的磁极对数和额定负载时的转差率。(答案: P=3; $S_N=0.025$)

第七章 三相交流异步电动机

分院(系)	班级	姓名	学号	第 2 次
77 1九 (糸)	灯纵	姓.石	子与	毎 4 仏

7-3 有一台 Y225M-4 型三相异步电动机,其额定数据如下表所示,试求:(1)额定 电流 I_N ; (2) 额定转差率 s_N ; (3) 额定转矩 T_N 、最大转矩 T_{\max} 、起动转矩 T_{st} 。

功率	转速	电压	效率	功率因数	I_{st}/I_{N}	T_{st}/T_N	$T_{ m max}/T_{ m \scriptscriptstyle N}$
45 kW	1480 <i>r</i> /min	380 V	92.3%	0.88	7.0	1.9	2.2
	9/						

(答案: (1) $I_N = 84.2 \text{ A}$; (2) $S_N = 0.013$; (3) N·m; I_s

 $T_N = 290.4 \text{ N} \cdot \text{m}; T_{\text{max}} = 638.8 \text{ N} \cdot \text{m}; T_{st} = 551.8 \text{ N} \cdot \text{m}$)

7—4 某 鼠 笼 式 异 步 电 动 机, 电 压 为 380 V, 接 法 为 Δ 形, 额 定 功 率 为 40 kW, 额 定 转 速 为 1 470 r / min, $T_{\rm st}$ / $T_{\rm N}$ = 1.2。求: (1) 额 定 转 矩 T $_{
m N}$; (2)采用 Y- $_{
m A}$ 起动时,负载转矩须应小于何值? ((1) $T_{
m N}=259.86{
m N\cdot m}$, $(2)T_{\text{stY}} = \frac{1}{3} \times 1.2T_{\text{N}} = 104.19 \,\text{N·m}$, 负载 T_{L} 必须 小于 104.19 N·m)

一 台 三 相 异 步 电 动 机, 铭 牌 数 据 如 下: Y 形 接 法, $P_{\rm N}=2.2~{\rm kW}$, $U_{\rm N}=380\,{
m V},\;n_{\rm N}=2\,970\,{
m r/min},\eta_{\rm N}=82\,{
m \%}$, $\lambda_{\rm N}=0.83$ 。试 求 此 电 动 机 的 额 定 相 电 流, 支电流 Δ
 小起 动电流? 为什 Δ.
 T_N = 7.07N·m, 因 为 电 动 机 在 额 定 运 行 的 μ.
 接, 所 以 不 能 采 用 Y-Δ 起 动 法 降 低 起 动 电 流。) 线电流及额定转矩,并问这台电动机能否采用Υ-Δ起动方法来减

 $T_{\rm N}=7.07{
m N\cdot m}$,因为电动机在额定运行时的定子绕组连接方式为Y

7 — 6 — 台 三 相 异 步 电 动 机 , 铭 牌 数 据 如 下 : \triangle 接 法 , $U_{\scriptscriptstyle N}=380\,\mathrm{V}$, $I_N=15.2~\mathrm{A}$, $n_N=1450~\mathrm{r/min}$, $\eta_N=87\%$, $\cos\psi_N=0.86$, $I_{st}/I_N=6.5$, T_{max} / $T_{N}=1.8$ 。(1) 求此电动机短时能带动的最大负载转矩是多少? (2)如果电源允许 的最大起动电流为 $30 \, A$,试问能否采用 $Y - \Delta$ 方法起动该电动机? (答案: 8.74N.m

RATHRAMAN

R (1) $T_{\text{max}} = 88.74 \text{N.m}$; 不能。)

7—7 Y801-2 型 三 相 异 步 电 动 机 的 额 定 数 据 如 下: $U_{\rm N}=380\,{\rm V}$, $I_{\rm N}=$ 1.9 A, $P_{\rm N}=0.75$ kW, $n_{\rm N}=2$ 825 r/min, $\lambda_{\rm N}=0.84$,Y 形接法。求: (1) 在额定情况下 的效率 η_N 和额定转矩 T_N ; (2) 若电源线电压为220V,该电动机应采 用何种接法才能正常运转?此时的额定线电流为多少?

 $(1)\eta_{N}=0.715$, $T_{N}=2.54$ N·m; (2) 电源线电压为 220 V,应采用 Δ 形接法才

第八章 低压电器与继电接触控制

	分院(系)	班级	姓名	学号	第 <u>_1_</u> 次	ζ
8-1 填空	空题:					
1、多	夏合按钮被按下时		开开	后闭合。		
2、Н	Z10-20/3 型的组合开	干关,其额定	医电流为、	极、交流	额定电压为_	o
3、自 能。	目动空气断路器中的_	`		对电路完成欠	压保护和过载	(保护的功
4、交	芝流接触器通电后 ,两	 对触点的 动]作顺序是:"_		干,	_后闭合"。
和	安使继电器动作的参数 、压					
和	0		3).			
	简答题: 1、 过流保护和过载	保护的主要	区别是什么?	2		
				Proposition of the second seco		
					×	
					47	<
						$\langle \rangle$

2、分别画出接触器联锁和按钮联锁的正反转控制电路图,说明电路中各元件的名称 和作用并简述电路中的保护措施。

第八章 低压电器与继电接触控制

关保护,行走机构两侧也有行程开关保护, 电路并进行简单说明。	提升重物和吊车行走。提升机构上限有行程开 电动机均采用按钮点动控制方式。试设计控制
Thurst and a second sec	

8-4 一台功率为 2.2kW 的三相交流鼠笼式电动机拖动一台运货小车沿轨道正反方向运转,要求:

- (1) 正向运转到终点后自动停止; 3分钟后自动返回;
- (2) 返回起点后自动停止;再次运行时需要人工发出指令。 设计该电路,绘出电气控制原理图。

Shiring All Martinstitute

第九章 可编程控制器原理及应用

分院(系)	班级	姓名	学号	第 1	次

HASEMAN AND THE STATE OF THE ST 9-1 有三台三相鼠笼式电动机M₁、M₂、M₃, 按下启动按钮SB₂时,M₁起动,延时5s后M₂起动, 再延时4s后M。起动。设计用PLC实现控制的硬件连接图,编制实现上述控制要求的梯形图。

9-2 有8个彩灯排成一行,自左至右依次每秒有一个灯点亮,循环五次后,全部灯同时点亮,5s后,全部熄灭,2s后,自右至左每秒由一个灯点亮,循环五次后,全部灯同时点亮,5s后,全部熄灭。2s后,重新开始从左至右,如此不断重复循环,使用PLC实现上述的控制。

Shiring Allange Paring Allange Parin

第十章 建筑施工供电与安全用电

	分院(系)	班级	姓名	学号	第 <u>_1</u> 次	
10-1 ‡	真空题:					
1、电	力系统的组成包括_		0			
2、采	用高电压输电的优	点有		;		;
以及_	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		等。			
3、国	家标准规定,一般	允许供电线路	的电压偏移为	, 即线路	首端(电源端)) 电压应
于电网	网额定电压,而约	线路末端电压	可 于电网	额定电压 ,	如电网额定电	退压为 10
kV,	则发电机额定电压应	区为 <u>k</u> V。				
4、电	力系统负荷的计算	方法主要有:	٠.		_ `	<u></u> 等。
其中,	建筑电气系统设计	施工中计算	负荷最常采用的	勺是	•	
5、变	电所主结线的形式	<u> </u>			_确定。	
6、高月	玉隔离开关的作用是	<u> </u>		È .		拉闸。
10-2 育	奇答题 :			5		
1、简	单叙述负荷计算的·	一般步骤和计	算原则是什么	?		
					×	
					< x,	
					Y	
						Q .

2、简单叙述变电所位置的选择依据。

Shiring har huang parting the state of the s

第十章 建筑施工供电与安全用电

	分院(系)	班级	姓名	学号	第_2_次
10-3 空	题:				
1、高月	医阀型避雷器的作	用是			
2、选择	圣 一台变压器的容	量选择原则是	<u></u>		0
3、架匀	2线路由 <u></u>		组成;电线	缆线路由	组成
10-4 简	答题:				
	分别简单叙述低 什么是 TN—C、		Parin	7	
					Chx

10-5 计算题: 某宿舍楼白炽灯照明负荷 20kW,采用 380/220v 三相四线制供电,距离变电 所 250m 远,用 BLX 线供电,要求电压损耗不超过 5%,试选择导线的截面(环境温度 30 ℃,明敷)。

Shiring Rail Martinstitute

第十章 建筑施工供电与安全用电

	分院(系)_		姓名	学号	第_3_次
10-6 简名	夸题:				
)))	原因和形式都有	什么?影响	前触电严重程度的	因素有哪些?
2,		安全电压的等级		生内容?	
3、	什么是施工供	:电组织设计? 它	应包括那些	些内容?	X12/2

10-7 设计题:

某桥梁施工现场使用的电气设备清单如表所示: 高压侧的电源电压为 10KV。

1 混凝土搅拌机 2 7.5kW 0.9 380V 3 2 沙浆搅拌机 2 2.8kW 0.92 380V 1 65% 3 电焊机 4 22kVA 380V 1 65% 4 起重机 1 40kW 0.9 380V 3 25% 5 照明 10kW 220V 1 白炽灯 求总的计算负荷 P _{is} 、 S _{js} 、 I _{js} , 选择为该工地所列负荷供电的变压器型号和容量。	序号	设备名称	台数	额定容量	效率	额定电压	相数	备注
3 电焊机 4 22KVA 380V 1 65% 4 起重机 1 40kW 0.9 380V 3 25% 5 照明 10kW 220V 1 白炽灯	1	混凝土搅拌机	2	7. 5kW	0. 9	380V	3	
4 起重机 1 40kW 0.9 380V 3 25% 5 照明 10kW 220V 1 白炽灯	2	沙浆搅拌机	2	2.8kW	0. 92	380V	3	
5 照明 10kW 220V 1 白炽灯	3	电焊机	4	22KVA		380V	1	65%
	4	起重机	1	40kW	0. 9	380V	3	25%
求总的计算负荷 P_{js} 、 Q_{js} 、 S_{js} 、 I_{js} ,选择为该工地所列负荷供电的变压器型号和容量。	5	照明		10kW		220V	1	白炽灯
∂ .×			(P)	Ś				

第十一章 模拟电子技术基础

11-1 二极管组成的电路如图 11-1 所示,设二极管是理想的,求输出电压 U_0 。(答

案(a)-9V; (b)0V; (c) -5V。)

设有两个稳压管的稳压值分别是 6V 和 7V, 正向压降均是 0.7V。如果将它们 11-2 用不同的方法串联后接入电路,可能得到几种不同的稳压值?试画出各种不同的串联方法。

(答案3种)

Shiring Pariman Maximore

第十一章 模拟电子技术 基础

11-3 判断图 11-3 中各电路是否能放大交流信号?为什么?(答案只有

习题 11-3 图

(a)能放大)

Sh.

11-4 电路如图 11-4 所示,已知 V_{CC} =12V, R_B =300k Ω , R_C =4k Ω , β =50。

- (1) 估算电路的静态工作点;
- (2) 画出微变等效电路;
- (3) 求输入电阻 R_i 和输出电阻 R_0 ;
- (4) 求电压放大倍数 \dot{A}_{u} ;
- (5) 求输出端接有负载 R_L =4k Ω 时的电压放大倍数,

并说明负载电阻 R_L 对放大倍数的影响。

(参考答案(1) $I_B = 38\mu A$, $I_C = 1.9mA$, $U_{CE} = 4.5V$;

习题 11-4 图

 $(2)\,r_{be} = 0.99\,K\Omega\;;\;\;(3)\;\;R_{i} = 0.987\,K\Omega\;,\;R_{O} = 4\,K\Omega\;;\;\;(4)\;\;\text{-203}\;\;(5)\;\;\text{-102}\;$

电路如图 11-5 所示,已知 V_{CC} =12V, R_{B1} =33k Ω , R_{B2} =10k Ω , R_{C} =2k Ω , 11-5

 $R_E = 1 \text{k} \Omega$, $\beta = 50$. $U_S = 10 \text{mv}$, $R_S = 1 \text{k} \Omega$.

- (1) 估算电路的静态工作点;
- (2) 画出微变等效电路;
- (3) 求输入电阻 R_i 和输出电阻 R_0 ;
- (5) 若 R_s =0, 再求 U_0 , 并说明信号源

内阻 R_s 对放大倍数的影响。

案

 $V_{\scriptscriptstyle B} = 2.79 V, I_{\scriptscriptstyle C} \approx I_{\scriptscriptstyle E} = 2.1 mA, I_{\scriptscriptstyle B} = 41 \mu A, U_{\scriptscriptstyle CE} = 5.8 V$

寸 晒 11 € 図

; (3) $r_{be} = 0.934 K\Omega$, $R_i = 0.833 K\Omega$, $R_O = 2 K\Omega$; (4) $u_i = 4.5 mV$, $A_u = -54$, I Wast to Strate

54

 $u_O = -241mV$ (5) $u_O = -540mV$.)

第十一章 模拟电子技术基础

分院(系)__ 班级 姓名 第 3次

射极输出器电路如图 11-6 所示,已知: 11-6

 $V_{CC} = 12 \text{V}, \quad R_B = 560 \text{ k}\ \Omega \ , \qquad R_E = 5.6 \text{ k}\ \Omega \ , \quad \beta = 100, \quad R_L = 1.2 \text{ k}\ \Omega \ .$

- (1) 估算电路的静态工作点;
- (2) 画出微变等效电路;
- (3) 求输入电阻 R_i 和输出电阻 R_0 ;
- (4) 求电压放大倍数。

(参考答案(1)
$$I_B = 10 \mu A, I_C = 1 m A, U_{CE} = 6.32 V$$
; (3) $r_{be} = 2889.75 K\Omega$,

$$R_i = 86.78K\Omega, R_O = 29\Omega;$$
 (4) $A_u = 0.97$)

.), k_o 电路如图 11-7 所示,已知 V_{CC} =12V, 11-7

$$R_{B1} = R_{B2} = 75 \text{k} \Omega$$
, $R_C = 2 \text{k} \Omega$, $R_L = 2 \text{k} \Omega$, $\beta = 50$.

- (1) 画出直流通路,计算电路的静态值 I_{co} ;
- (2) 画出微变等效电路;
- (3) 求 \dot{A}_{u} 、 R_{i} 和 R_{0} 。

(参考答案(1)
$$I_B = 44.8 \mu A, I_C = 2.24 mA$$
;

$$(3)\,r_{be} = 892\Omega\;,\;\;A_u = -56\;\;R_i \approx r_{be}, R_O \approx 1k\Omega\;)$$

两级阻容耦合放大电路如图 11-69 所示,已知 $oldsymbol{eta}_1$ = $oldsymbol{eta}_2$ =40, r_{be1} =1.2k Ω , $r_{be\,2}$ =0.8k Ω . 各个电阻的阻值及电源电压都已标在电路图中。

- (1) 求各级电压放大倍数 \dot{A}_{u1} 、 \dot{A}_{u2} 及总的电压放大倍数 \dot{A}_{u} ;
- (2) 若不要射极输出器,将负载直接接到第

一级的输出端,这时 A_{u1} 是多少?由计算结果分析 接入射极输出器的好处。

(参考答案(1);

$$A_{u1} = -91, A_{u2} = 0.98, A_u = -89;$$
 (2)

$$A_{u} = -33.3$$
)

第十一章 模拟电子技术基础

11-9 集成运放组成的电路如图 11-9 所示,试计算开关 S 断开和闭合时的电压放大

$$A_{u1} = -91, A_{u2} = 0.98, A_u = -89;$$
 (2)

$$A_u = -33.3$$
)

11-10 求图 11-10 中运放的输出电压

$$u_{21}$$
° (答案(1); $A_{uf} = -10$,; (2) $A_{uf} = \frac{20}{3}$)

11-11 求图 11-11 电路输出电 $\mathbb{E} u_0$ 与输入电 $\mathbb{E} u_{i1}$, u_{i2} 的函数式。

(答案
$$u_o = 11u_{i2} - 5.5u_{i1}$$
)

11-12 在图 11-12 中,已知 R_1 =10k

 Ω , $R_2 = 20 \text{k} \Omega$, $R_3 = 10 \text{k} \Omega$, $R_4 = 1 \text{M}$

Ω,C=1 μ F。(1)求 u_{01} 和 u_{i1} , u_{i2} 的关系

(2) 以 (答案 (1) $u_{O1} = -u_{I1}$ (2) $\int (u_{i1} + 0.5u_{i2})dt$) 式; (2) 求 u_0 和 u_{i1} , u_{i2} 的关系式。

(2)
$$\int (u_{i1} + 0.5u_{i2})dt$$
)

习题 11-12 图

11-13 在图 11-13 中已知 R_F =4 R_1 ,求 u_0 和 u_i 的关系。(答案 u_O = $-1.5u_i$)

第十一章 模拟电子技术基础

分院(系)______班级_____姓名_

11-14 电路如图所示,求出输出电 压 u_0 与输入电压 u_{i1} 、 u_{i2} 、 u_{i3} 之间的

运算关系。(答案 $u_0 = 3u_{i3} - u_{i2} - u_{i1}$)

- $(1)R_{\rm W}$ 滑动端在最上端时 $U_{\rm O}=?$

- 正确画出图 11-16 中桥式整流电容滤波电路的四个二极管,设u,的有效值 U_2 =12V,估算:
 - 输出电压 U_0 ; (1)

- (2) 电容开路时的 U_0 ;
- (3) 只有负载开路时的 U_0 ;
- (4) 电容和一个二极管同时开路时 U_0 ;
- 二极管所承受的最大反向工作电 (答案(1) 14.4; 5.4 (5) 17)

压电路,指出图中有哪些错误,并加以改正。

第十二章 数字电子技术基础

12-1 如图 12-1 所示,写出 Z₁、Z₂的逻辑表达式。

the design of the second of th -1中,如果输入信号的波形如图 12-2 所示,画出输出端 Z_1 、 Z_2 的波形。

12-3 如图 12-3 所示,分别画出 Z 端的波形

12-4 利用逻辑代数化简逻辑

函数

(1)
$$Z = ABC + \overline{AB} + AB\overline{C}$$

(2)
$$Z = \overline{AB} + \overline{ABCD}(E + F)$$

(3)
$$Z = AB + \overline{AC} + \overline{BC}$$

(4)
$$Z = ABC + \overline{A}B\overline{C} + AB\overline{C}$$

(5)
$$Z = AB + BCD + \overline{AC} + \overline{BC}$$

(6)
$$Z = AB(C+D) + D + \overline{D}(A+B)(\overline{B} + \overline{C})$$

12-5 写出图 12—4 所示组合电路的逻辑表达式,列出真值表。

第十二章 数字电子技术基础

12-6 基本 RS 触发器中, \overline{R} 、 \overline{S} 端的波形如图所示,试对应画出Q、 \overline{Q} 端的波形。

12-7 同步 RS 触发器中,CP、R、S 端的波形如图所示,试对应画出 Q端的波形。触发器起始状态为 0。

12-8 主从 JK 触发器中,CP、J、K 端的波形如图所示,试对应画出Q、 \overline{Q} 端的波形。触发器起始状态为 1。

12-9 **D**触发器中,CP、D端的波形如图 12—7 所示,试对应画出Q、 \overline{Q} 端的波形。触发器起始状态为 0。

12-10 如图 12—8 所示,已知各主从 JK 触发器的起始状态为 0,画出在 CP 脉冲的作用下,

各Q端的波形。

12-11 如图 12—9 所示,已知各 D 触发器起始状态为 0,画出在 CP 脉冲的作用下,各 Q 端的波形。

Shiring harhuang Paring I have been stricted to

答案

- 12-1 (a) Z_1 , =A+B
 - (b) $Z_2 = AB$
- 12-4(1) **B**
 - (2) $\overline{A}B$
 - (3) AB + C
 - (4) $AB + B\overline{C}$
 - (5) AB+C
 - (6) $A + B\overline{C} + D$
- 12 5(a)
 - (b)

12-5 (b) 真值表

Z_1 、=A+B Z_2 =AB B AB AB AB AB AB AB AB	$Z_2 = AB$ B O	12	0 (0,	/ / `	ユーレマ			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Z_{1} =A+B	A	В	С	D	Z	
\overline{AB} $AB + C$ $AB + B\overline{C}$ $O O O O O O O O O O O O O O O O O O O $	\overline{AB} $AB + C$ $AB + B\overline{C}$ $O O O O O O O O O O O O O O O O O O O $	$Z_2=AB$	0	0	0	0	0	
$ \begin{array}{c cccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	3	0	0	0	1	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{A}R$	0	0	1	0	0	
$AB + B\overline{C}$	$AB + B\overline{C}$		0	0	1	1	0	
AB+BC	AB+BC	AB+C	0	1	0	0	0	
$AB+C$ $A+B\overline{C}+D$ $Z=\overline{A}B+A\overline{B}$ (异或) $Z=AB+BC+ACD$ $\begin{vmatrix} 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{vmatrix}$	$AB+C$ $A+B\overline{C}+D$ $1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $	$AB + B\overline{C}$						
$AB+C$ $A+B\overline{C}+D$ $Z=\overline{AB}+A\overline{B}$ (异或) $Z=AB+BC+ACD$ $\begin{vmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{vmatrix}$	$AB+C$ $A+B\overline{C}+D$ $C=\overline{A}B+A\overline{B}$ (异或) $C=AB+BC+ACD$ C	A.D. L. C.	0	1	1	0	1	
$A + B\overline{C} + D$	$A + B\overline{C} + D$	AB+C	0	1	1	1	1	
$Z=AB+A\overline{B}$ (异或) $Z=AB+BC+ACD$	$Z=\overline{A}B+A\overline{B}$ (异或) $Z=AB+BC+ACD$ $\begin{vmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{vmatrix}$ $\begin{vmatrix} 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1$	$A + B\overline{C} + D$	1	0	0	0	0	
Z=AB+AB(异或) 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Z=AB+AB(异或) 1 0 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<	1	0	0	1	0	
$Z = AB + BC + ACD$ $\begin{vmatrix} 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{vmatrix}$ $\begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{vmatrix}$	$Z = AB + BC + ACD$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Z=AB+A\overline{B}$ (异或)	1	0	1	0	0	
		Z=AB+BC+ACD	1	0	1	1	1	
		. 43	1	1	0	0	1	
		40	1	1	0	1	1	
		60.	1	1	1	0	1	
		W. Q.		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		×	•	