FLEXIBLE CONDUCTOR 2

Voltera Flexible Conductor 2 (1000383)

Description

The second-generation flexible conductive ink allows for higher conductivity, better printing resolution, improved bending performance, and more robust soldering - all the ingredients required to print your own flexible circuits.

Compatible with PET, polyimide, and other flexible polymer substrates.

Application Notes Printing and Curing

Apply adhesive-backed polyimide to a rigid substrate and print as normal.

For best curing results, follow recommendation in Table 4.

For curing on the V-One, flip and cure as normal using the automatic bake cycle. Carefully peel once cool-down temperature reaches 50°C.

Cure immediately - any delay may affect flexibility.

Soldering

Use SMD291 flux. For best results, burnish before soldering for Table 3: Printing Properties 20[s] with supplied abrasive burnishing pad.

180°C – excellent solderability and rework.

Recommended Substrates

- PET (polyethylene terephthalate) 5 [mil]/125 [μm]
- Polyimide 5 [mil]/125 [μm]

Design recommendations

For circuit board applications with the standard 250µm nozzle, consider these design recommendations:

- Minimum IC pin-to-pin pitch: 0.65 [mm]
- Minimum 2-terminal package: 0402 (imperial)
- Minimum tracewidth: $8 \ mil/200 \ [\mu m]$ (recommend 10mil)

Safety and Handling

See MSDS for safety, handling, and disposal information.

Table 1: Physical & Electrical Properties (Post-cure)

Test	Value
Sheet Resistance:	3.29 [mΩ/sq]
(45 μm film thickness)	
Resistivity (4-point-probe):	$1.36 \times 10^{-7} [\Omega. m]$
Typical cured film thickness:	40 – 70 [um]
Film shrinkage, post-cure:	Not measured
*Bend radius at fracture:	< 0.7 [mm]
Joint strength (lbs force):	Not measured
Adhesion (cross-hatch tape test):	No transfer

^{*}Test fracture on 5mil PET

Table 2: Composition Properties

Test	Value
Viscosity recovery ratio:	Not measured
1° Cone and plate, 25°C	
Recovery viscosity [Pa. s]:	Not measured
1° Cone and plate, 25°C	
Viscosity target [Pa. s]:	Not measured
1° Cone and plate, 25°C	
Density:	3.35 [g/mL]
Clean-up solvent:	Isopropyl Alcohol (99%)

Test	Value
Trace spread after print:	< 20%
Recommended Nozzle ID:	150 – 225 [μm]
Typical Line Width:	6-10 [mil]
	150-250 [um]
** Typical Print Height:	50 – 80 [μm]
** Typical Feedrate:	300 - 500 [mm/min]
** Typical Kick:	0.35 [mm]

^{**} V-One specific settings

Table 4: Processing Parameters

Test	Value	
Curing:	30 [min], 170°C	
Compatible solder:	SnBiAg₁	
	SnBiAg _{0.4}	
Typical shelf life:	12 months, unopened	
Storage:	$4-10^{\circ}$ C, sealed container.	