Fig 1: System Layers

- 8. Functional Applications
- 7. Cellular Automata (CA) Simulations
- 6. Multi-Agent System (MAS) and Intelligent Mobile Software Agents (IMSA)
- 5. Omni-Nodal Evolutionary Artificial Neural Network (EANN)
- Dynamic Distributed Object Relational Database Management System (ORDbMS)
- 3. Flexible Mobile Grid Computing Architecture in Dynamic Clusters
- Distributed Mobile Robotic System (MRS) for Mobile Robotic Agents (MRAs)
- Second-order Synthetic Hybrid Control System (HCS) for Mobile Robotic Agents (MRAs)

Fig 2: MRA Synthetic Hybrid Control System Architecture

Fig 3: Dynamic Database Organization

Modular Architecture Type	One Unit	Distributed Network	Mobility
MRAs in MRS	Hardware agent	Distributed comput- ers (Data manage- ment within network)	Mobile robotic agents with chang- ing spatial positions
	ORDb data organization	Sharing ORDbs (sharing data organi- zation functions)	
IMSAs in MAS	Software agents that analyze, decide, and negotiate	Mobile groups of interacting software agents	Limited range of IMSA interactions within wireless mobile robotic agent network
Evolutionary Artificial Neural Networks	Computation resource management	Continuous restructuring of network grid to maximize computation power	Wireless mobile grid of flexible network rewiring as it adapts to environment

Fig 4: Identifying MRA Locations With Sensors

Fig 5: Assessing Environmental Situation and Coordinating Change in MRA State

Fig 6: Metacomputing Model for Distributed MRS: Flexible Mobile Grid Architecture in Dynamic Clusters

Fig 7: Sharing Computation Resources Among MRA Nodes in Wireless Mobile MRS: Efficient Routing of Database and Analytical Functions

Fig 8: Database Coordination in Distributed MRS

Fig 9: Dynamic Distributed Object Relational Database
Data Flow Process

Fig 10: Temporal Objects in ORDbMS

Fig 11: Mobile Grid Dynamics

Fig 12: Autonomous Blackboards For MRAs

Direction vector

Speed

Data set changes from phase one to phase two

Speed

Direction vector

Direction vector

Speed

Direction vector

Speed

Fig 13: IMSA Operations Control of MRAs

Fig 14: MRA Juvenile and Adult Training Levels

Fig 15: MRA Attitude Biases

Behavior Spectrum

Fig 16: Learning From Environmental Interaction: Adaptation

Fig 17: MRA Training Process - "Experience" of Environmental Interaction Combined With Group Sensor Data

Fig 18: Reinforcement Learning:
(A) Intensity of Sensor Data and (B) Quantity of Sensor Data

Fig 19: Hybrid Learning Model With Time Constraints

Fig 20: Social Learning: Learning From Inter-MRA Interaction

Fig 21: MRAs That Teach Other MRAs

Fig 22: Asymmetric MRA Leadership and the Emergence of Temporary Hubs

Fig 23: Specialized Learning (in Teams): Division of Labor in Self-Organizing Groups

Fig 24: Auto Specialization: Self Organization by Task Division for Individual Specialization

Fig 25: Self Organizing Map

Fig 26: Flow Chart of Genetic Algorithm

Fig 27: Binary Genetic Algorithm Model

Fig 28: Tree Architecture - Genetic Programming Model

Fig 29: Parallel Subpopulations Fitness Evaluation

Fig 30: Two Layer Neural Network

Fig 31: Artificial Neural Network Connection Weights

Fig 32: Genetic Programming Calculates Initial Weights

Fig 33: Genetic Programming Applied to Indeterministic ANN

Fig 34: Neuroevolution - Evolutionary A-NN Connection and Node Additions

Fig 35: Evolutionary A-NN Non-deterministic Feed Forwarded

Fig 36: Evolutionary Search For Connection Weights in an ANN

Genotype: 0010 0001 0110 1001 1010

3670

Binary representation of connection weight chromosome encoding

Fig 37: Fuzzy Logic Module

Fig 38: Neuro Fuzzy Controller with Two Input Variables & Three Rules

Fig 40: Adaptive Network Based Fuzzy Inference System

Fig 41: Self Organizing Neural Fuzzy Inference Network Architecture

Fig 42: Dynamic Evolving Fuzzy Neural Network

Fig 43: Flexible Extensible Distributed ANN - Shared ANN Computation Between MRAs

Fig 44: IMSA Dynamics in MAS: MRA Interactions via IMSAs

Fig 45: IMSA Relations Between MRAs

Fig 46: Analytical Agents

Fig 47: Search Agents

4810 Initiator INA Meta-agent is launched 4820 4825 4830 Initiator INA Micro-Initiator INA Micro-Initiator INA Microagent 1 launched agent 2 launched for agent 3 launched for for specific negotiaspecific negotiation specific negotiation tion session at INA2 session at INA3 session at INA4 location location location 4835 4840 4845 Negotiation ses-Negotiation ses-Negotiation session sion at remote sion at remote at remote location location location 4850 Initiator INA at home or remote location 4855 Winner determination at home location 4860 Mutual agreement: **INA3 & Initiator INA** 4865 Close sessions for 4870 INA2 & INA4 End session

Fig. 48: Intelligent Negotiation Agents

Fig 49: IMSA Intercommunication

Fig 50: INA Architecture

Fig. 51: Pre-Negotiation

Fig. 52: INA Logistics

Fig. 53A: Negotiation in a Distributed System with Mobility

Fig. 53B: Negotiation in a Distributed System with Mobility (Continued)

Fig 54: Simultaneous Multi-lateral Negotiation Process with Multiple Variables

Fig 55: Multivariate Negotiation Factors

Fig. 56: Winner Determination in Competitive INA Framework

Fig 57: Argumentation Process

Temporal ⁵⁷¹⁰	5720	5730
Phases	Α	В
Negotiation variables		X
Prune out uncompromise variable	X	
Prune out variables non-negotiable		X
Compromise key variables	X	X

Fig 58: Anticipating Opposing INA Strategies

Fig 59: Identify Problems: Group Agrees To Narrow Focus

Fig 60: Develop Solution Options Between MRAs

Fig 61: Solution Option Selection Method

Fig 62: MRAs Select Best Available (not Optimum) Solution To Problem in Present Circumstance While Waiting For Most Recent Relevant Information

Fig 63: MRA Group Agreement

Fig 64: Temporal Aspect of Decision Process

Fig 65: Applying Multivariate Analysis to Problem Solving

Fig 66: Applying Regression Analysis to Problem Solving of Conflicting MRAs for Winner Determination

Fig 67: Applying Pattern Analysis and Trend Analysis to Problem Solving of Conflicting MRAs for Winner Determination

Fig 68: Modeling MRS Activity with Simulations-Situation Assessment

MRAs A, B, C move from place 1 to place 3 in a cubic space

Fig 69: Synchronizing Simulations Within MRA Cluster

Fig 70: Contingency CA Scenario Option Simulations

		2	3	4	
(A)		1""	3		
	7020	2"	2")	1')	X
				2'	Υ
(B)	7030	1"")	1")		
				1'	X
·	7040	2""	2"	2'	Y

Fig 71: Reversible (Deterministic) CA-Projecting Backwards From A Goal

	4	3	2	1	
(A)	7110	1')			X
	7120	3 (1')	2")	2"	Y
(B)	7130	1'	1")		
	7140		2"	2"	Y

Fig 72: Adaptive Geometric Set Theory Applied To MRS

Fig 73: Selecting Optimal Simulation-(Temporary) Convergence of Simulation Scenarios

Fig 74: Initiation of Aggregation Process - Sets of MRAs Forming From Larger Collective

Fig 75: Initiating Homogeneous MRA Group Formation

Fig 76: Initiating Common Heterogeneous MRA Group Formation

Fig 77: Initiating Complementary Heterogeneous (Specialized) MRA Group Formation

Fig 78: Demand Initiated Environmental Adaptation: Initial Phase

Fig 79: Continuous MRA Group Composition Reconfiguration

Fig 80: Continuous Reconfiguration of Sub-networks (Scalable Capacity Increases and Decreases)

Fig 81: Dynamic Group Behavior Adaptation to Environmental Interaction

Fig 82: Parallel Dynamic Traveling Salesman with Cooperating Autonomous Agents

Fig 83: Sacrificing (Altruistic) MRAs in Order to Acquire Sensor Information to Increase Chances of Overall Mission Success

Fig 84: General Dynamic Coalition Process

Fig 85: Group Coordination and Obstacle Avoidance

Fig 86: Specialization: Specific MRA Functionality

Fig 87: Specialized MRAs Working As A Team

Fig 88: Multi-functional MRAs in Self Organizing Process

Fig 89: Surveillance & Reconnaissance - Mobile Object Sensed & Tracked By Multiple Micro-MRAs

Fig 90: Remote Exploration: Initial Tracking of Multiple Objects
With Multiple Micro-MRAs

Fig 91: Sentry Action - Limited Perimeters - Defending Multiple Objects With Multiple MRAs

Fig 92: Cinematography - One Mobile Object (or Cluster of Mobile Objects) Sensed and Tracked with MRAs

Fig 93: Toxic Site Cleanup - Static Cleanup Within Land Perimeters by Multiple MRAs

Fig 94: Oil Spill: Dynamic Cleanup Within Limited Hydro Perimeters by Multiple MRAs

Sheet 95 of 100

Fig 95: Fir Fighting - Dynamic Interaction With Complex Environment by Multiple MRAs

Fig 96: Manufacturing Production: Object Creation Using Multiple MRAs

Fig 97: Assembly: Combining Parts To Create Whole Object Using Multiple MRAs

Fig 98: Building Roads: Road Creation Using Multiple MRAs

Fig 99: Surgical Micro MRAs for Trauma Intervention & Stabilization

