A2
Proposer un modèle de connaissance et de comportement

Proposer un modèle de connaissance et de comportement

1.1 Modéliser la cinématique d'un ensemble de solides ... 2

Modéliser la cinématique d'un ensemble de solides ... 6

1 Proposer un modèle de connaissance et de comportement

1.1 Modéliser la cinématique d'un ensemble de solides

Exercice 1 - Mouvement T - *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 1 Quel est le mouvement de **1** par rapport à

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **1** par rapport à **0**.

Corrigé voir ??.

Exercice 2 - Mouvement R *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \mathrm{mm}$.

Question 1 Quel est le mouvement de **1** par rapport à **0**.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **1** par rapport à **0**.

Corrigé voir ??.

Exercice 3 - Mouvement TT - *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$.

Question 1 Quel est le mouvement de **2** par rapport à **0**.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un cercle de centre A et de rayon R.

Question 3 Donner les expressions de $\lambda(t)$ et $\mu(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \,\mathrm{m\,s^{-1}}$.

Question 4 En utilisant tracer $\lambda(t)$, $\mu(t)$ et la trajectoire générée.

Corrigé voir ??.

Exercice 4 - Mouvement RR *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$ et $\overrightarrow{BC} = L \overrightarrow{i_1}$ avec $L = 15 \, \text{mm}$.

Question 1 Donner l'ensemble des positions accessibles par le point C.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un segment entre les points [-25, 25] et [25, 25].

Question 3 Donner les expressions de $\theta(t)$ et $\varphi(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \,\mathrm{m\,s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\varphi(t)$ et la trajectoire générée.

Corrigé voir ??.

Exercice 5 - Mouvement RT *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Tracer le graphe des liaisons.

Question 2 *Retracer le schéma cinématique pour* θ = $\frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm.

Question 3 Retracer le schéma cinématique pour $\theta =$ $\frac{-\pi}{4}$ rad et $\lambda(t) = -20$ mm.

Corrigé voir ??.

Exercice 6 - Mouvement RT *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} =$

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta =$ $\frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm.

Question 3 Retracer le schéma cinématique pour $\theta =$ $\frac{-\pi}{4}$ rad et $\lambda(t) = -20$ mm.

Corrigé voir ??.

Exercice 7 - Mouvement RR 3D **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \, \text{mm}$ et $r = 10 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique en 3D pour $\theta(t) = \frac{\pi}{2}$ rad et $\varphi(t) = \frac{\pi}{2}$ rad.

Corrigé voir ??.

3

Exercice 8 - Mouvement RR 3D **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique en 3D pour $\theta(t) = \pi \operatorname{rad} \operatorname{et} \varphi(t) = -\frac{\pi}{4} \operatorname{rad}$.

Corrigé voir ??.

Exercice 9 - Mouvement RT - RSG ** **B2-12** Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} =$ $\lambda(t)\overrightarrow{i_1}$. De plus R = 15 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad et $\lambda(t) = 20$ mm. On notera I_1 le point de contact entre 0 et 1.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2} rad \ et \ \lambda(t) = 30 \, \text{mm}$. On notera I_2 le point de contact entre ${\bf 0}$ et ${\bf 1}$. On précisera la position des points $I_{0,0}$ et $I_{0,1}$, points résultants de la rupture de contact lors du passage de $\theta(t)$ de 0 à $\frac{\pi}{2}$.

Corrigé voir ??.

Exercice 10 - Pompe à palettes **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \overrightarrow{i_0}$ et $\overrightarrow{AB} =$ $\lambda(t) \overrightarrow{i_1}$. De plus e = 10 mm et R = 20 mm. Le contact entre 0 et 2 en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \pi$ rad.

Question 4 En déduire la course de la pièce 2.

Corrigé voir ??.

Exercice 11 - Pompe à pistons radiaux ** B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = e \overrightarrow{i_1}$ et $\overrightarrow{BI} = R \overrightarrow{j_0}$. De plus, e = 10 mm et R = 20 mm. Le contact entre $\mathbf{1}$ et $\mathbf{2}$ en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre $\mathbf{0}$ et $\mathbf{2}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2} rad$.

Question 4 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2} rad$.

Question 5 En déduire la course de la pièce 2.

Corrigé voir ??.

Exercice 12 - Système bielle manivelle ** B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CB} = L \overrightarrow{i_2}$. De plus, $R = 10 \, \text{mm}$ et $L = 20 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 4 En déduire la course de la pièce 3.

Corrigé voir ??.

Exercice 13 - Système de transformation de mouvement **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CA} = H \overrightarrow{j_0}$. De plus, $R = 30 \, \text{mm}$ et $H = 40 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2} rad$.

Question 3 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 4 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 5 En déduire la course de la pièce 3.

Corrigé voir ??.

Exercice 14 - Barrière Sympact ** B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} =$

Soit le mécanisme suivant. On a AC = H J_0 et CB = R i_1 . De plus, H = 120 mm et R = 40 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2} rad$.

Corrigé voir ??.

Exercice 15 - Barrière Sympact **

B2-12 Pas de corrigé pour cet exercice. Soit le mécanisme suivant. On a $\overrightarrow{AC}=H$ $\overrightarrow{j_0}$ et $\overrightarrow{CB}=R$ $\overrightarrow{i_1}$. De plus, $H=120\,\mathrm{mm},\,R=40\,\mathrm{mm}$ $BI=10\,\mathrm{mm}.$

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2} rad.$

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2} rad.$

Corrigé voir ??.

Exercice 16 - Poussoir **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = L \overrightarrow{i_0} + H \overrightarrow{j_0}$. De plus, $H = 120 \,\text{mm}, L = 40 \,\text{mm}.$

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{4} rad.$

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{4} rad.$

Corrigé voir ??.

Exercice 17 - Système 4 barres ***

B2-12 Pas de corrigé pour cet exercice.

On a:

- $\overrightarrow{OA} = a \overrightarrow{x_1} f \overrightarrow{y_1}$ avec $a = 355 \,\mathrm{mm}$ et $f = 13 \,\mathrm{mm}$;
- $\overrightarrow{AB} = b \overrightarrow{x_2}$ avec $b = 280 \,\mathrm{mm}$;
- $\overrightarrow{BC} = -c \overrightarrow{x_3}$ avec $c = 280 \,\text{mm}$; $\overrightarrow{OC} = -d \overrightarrow{x_0} e \overrightarrow{y_0}$ avec $d = 89.5 \,\text{mm}$ et e =160 mm;

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta_1(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta_1(t) = -\frac{\pi}{2} rad.$

Question 4 En déduire la course angulaire (θ_4) de la pièce 3.

Corrigé voir ??.

Exercice 18 - Maxpid ***

B2-12 Pas de corrigé pour cet exercice.

Soit le schéma suivant.

Par ailleurs $a = 107,1 \,\mathrm{mm},\ b = 80 \,\mathrm{mm},\ c = 70 \,\mathrm{mm},$ $d = 80 \,\mathrm{mm}$. Le pas de la vis est de 4 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2} rad.$

Question 4 En déduire la course de λ .

Corrigé voir ??.

1.2 Modéliser la cinématique d'un ensemble de solides

Exercice 19 - Mouvement T - *

B2-13 Pas de corrigé pour cet exercice.

Question 1 Quel est le mouvement de 1 par rapport à 0.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **1** par rapport à **0**.

Exercice 20 - Mouvement R *

B2-13 Pas de corrigé pour cet exercice.

Question 1 *Quel est le mouvement de 1 par rapport à 0.*

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **1** par rapport à **0**.

Exercice 21 - Mouvement TT - *

B2-13 Pas de corrigé pour cet exercice.

Question 1 Quel est le mouvement de 2 par rapport à 0.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un cercle de centre A et de rayon R.

Question 3 Donner les expressions de $\lambda(t)$ et $\mu(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant tracer $\lambda(t)$, $\mu(t)$ et la trajectoire générée.

Exercice 22 - Mouvement RR *

B2-13 Pas de corrigé pour cet exercice.

Question 1 *Donner l'ensemble des positions accessibles par le point C*.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un segment entre les points [-25, 25] et [25, 25].

Question 3 Donner les expressions de $\theta(t)$ et $\varphi(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\varphi(t)$ et la trajectoire générée.

Exercice 23 - Mouvement RT *

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{1}{4} \pi rad$ et $\lambda(t) = -20$ mm.

Exercice 24 - Mouvement RT *

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4} \pi$ rad et $\lambda(t) = -20 \text{ mm}$.

Exercice 25 - Mouvement RR 3D **

B2-12 Pas de corrigé pour cet exercice.

Question 1 *Tracer le graphe des liaisons.*

Question 2 Retracer le schéma cinématique en 3D pour $\theta(t) = \frac{\pi}{2}$ rad et $\varphi(t) = \frac{\pi}{2}$ rad.

Exercice 26 - Mouvement RR 3D **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique en 3D pour $\theta(t) = \pi$ rad et $\varphi(t) = -\frac{\pi}{4}$ rad.

Exercice 27 - Mouvement RT - RSG **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad et $\lambda(t) = 20$ mm. On notera I_1 le point de contact entre 0 et 1.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad et $\lambda(t) = 30$ mm. On notera I_2 le point de contact entre $\mathbf{0}$ et $\mathbf{1}$. On précisera la position des points $I_{0,0}$ et $I_{0,1}$, points résultants de la rupture de contact lors du passage de $\theta(t)$ de 0 à $\frac{\pi}{2}$.

Exercice 28 - Pompe à palettes **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 *Retracer le schéma cinématique pour* $\theta(t) = \pi \ rad$.

Question 4 En déduire la course de la pièce 2.

Exercice 29 - Pompe à pistons radiaux **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad. Question 4 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 5 En déduire la course de la pièce 2.

Exercice 30 - Système bielle manivelle **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 4 En déduire la course de la pièce 3.

Exercice 31 - Système de transformation de mouvement **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 4 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 5 En déduire la course de la pièce 3.

Exercice 32 - Barrière Sympact **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Exercice 33 - Barrière Sympact **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Exercice 34 - Poussoir **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{4}$ rad. Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{4}$ rad.

Exercice 35 - Système 4 barres ***

B2-12 Pas de corrigé pour cet exercice.

Question 1 *Tracer le graphe des liaisons.*

Question 2 Retracer le schéma cinématique pour $\theta_1(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta_1(t) = -\frac{\pi}{2}$ rad.

Question 4 En déduire la course angulaire (θ_4) de la pièce $\overline{\bf 3}$.

Exercice 36 - Maxpid ***

B2-12 Pas de corrigé pour cet exercice.

Par ailleurs $a = 107.1 \,\mathrm{mm}$, $b = 80 \,\mathrm{mm}$, $c = 70 \,\mathrm{mm}$, $d = 80 \,\mathrm{mm}$. Le pas de la vis est de 4 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 4 En déduire la course de λ .