TP 3 Complejos

Ejercicio 8. Resolver la siguiente ecuación en C.

$$h) \frac{z^3 \left(2e^{\frac{\pi}{6}i}\right)^2}{1-i} = 2\sqrt{2} e^{\frac{\pi}{4}i}$$

$$z^3 = \frac{2\sqrt{2}\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)(1-i)}{2\left(1+\sqrt{3}i\right)} = \frac{(1+i)(1-i)}{\left(1+\sqrt{3}i\right)} = \frac{2\left(1-\sqrt{3}i\right)}{\left(1+\sqrt{3}i\right)\left(1-\sqrt{3}i\right)} = \frac{2\left(1-\sqrt{3}i\right)}{1^2+\sqrt{3}^2}$$

$$z^3 = \frac{2\left(1-\sqrt{3}i\right)}{4} = \frac{1}{2} - \frac{\sqrt{3}i}{2} = 1_{300^\circ}$$

$z = \sqrt[3]{1_{300^{\circ}}}$	k=0	$z_0 = 1_{\frac{300^{\circ} + 360^{\circ}.0}{3}}$	$z_0 = 1_{100^{\circ}}$
$z_k = 1_{\frac{300 + 360^{\circ} \cdot k}{3}}$	k=1	$z_1 = 1_{\frac{300^{\circ} + 360^{\circ}.1}{3}}$	$z_1 = 1_{220^{\circ}}$
	k=2	$z_2 = 1_{\frac{300^{\circ} + 360^{\circ} \cdot 2}{3}}$	$z_2 = 1_{340^{\circ}}$