炸炸

	과도상태93	단락입력임피던스314
	과도응답332	단락출력어드미턴스310
가상접지282	과도현상93	단위계단함수 346, 400
가역성과 대칭성 <i>319</i>	권수비238	단위임펄스함수405
가용전력66	규준화249	대역제거필터 <i>390</i>
가청주파변압기2 <i>37</i>	₹381	대역통과필터249, 396
각종 3상회로 <i>428</i>	극-영점과 주파수응답 <i>382</i>	대칭3상전원428
각주파수98	극-영점도381	대칭파109
감쇠상수 <i>353</i>	극좌표형식135	대폭249
강압변압기240	극좌표형식에 의한 승제136	데시벨390
강제응답331, 367	기준절점43	△→Y 변환68
개방루프이득280	기준페이저 <i>145</i>	△←Y 변환 ·······200
개방순방향 전달임피던스 312	꺾임주파수394	△결선428
개방역방향 전달임피던스 312	내부저항20, 63	△형회로68
개방역방향 전압이득314	1,7,75	독립전원18
개방입력임피던스312		두 코일의 직렬229
개방출력어드미턴스314		등가회로 ·······2
개방출력임피던스312		0771
결합계수237	노턴의 등가회로62	
계단응답346	노턴의 정리61, 199	
계단응답의 평가361	누설자속226	라플라스변환404
계단함수346	능동소자92	라플라스변환 가능404
고역통과필터396	능동회로의 해석275	라플라스변환쌍404
고유주파수250		라플라스변환의 회로해석 응용 408
고조파294		라플라스변환표40.
공심변압기237		라플라스역변환404, 410
공액복소수134	단락순방향 전달어드미턴스 … 310	,
공액정합221	단락순방향 전류이득 <i>314</i>	
공진곡선253	단락역방향 전달어드미턴스 … 310	
공진주파수252	단락입력어드미턴스310	망로방정식50

480 알기쉬운 회로이론

망로전류 <i>49</i>	볼트암페어2 <i>14</i>	선전류433
몇 가지 중요한 함수의 라플라스	부하18	선전압 <i>430</i>
변환 ······404	불평형3상회로429	선형회로93
무효율212	불평형부하428	선형회로의 해석92
무효전력212	브리지회로의 평형 <i>193</i>	세틀링시간 <i>361</i>
무효전력의 평형216	비대폭256	소결합237
미분방정식328	비반전단자280	수개의 병렬부하가 있는 경우의
미정계수330	비반전증폭기28 <i>3</i>	전력계산217
밀결합237		수동 LC 필터397
		수동소자92
	<u>^</u>	순간전력205
	비사인주기파294	순간치98
바212	비사인파에 대한 선형회로의 정	승압변압기240
반공진주파수264	상상태의 응답 <i>300</i>	시간영역과 주파수영역302
반사임피던스232	비선형소자92	시상수 <i>330</i>
반전단자280	사다리꼴회로35	실제적 병렬공진회로267
반전력대폭255	4단자회로307	실제적 전원의 등가회로20
반전력주파수255	사인파에 대한 각 회로소자에서	실효치104
반전증폭기283	의 전압-전류 관계115	쌍대성91
반파대칭300	사인파의 중요성109	쌍대적 회로32
반파전류파109	사인파형97	
버퍼284	삼각함수형식135	
변압기단자에서의 전압-전류 관	3단자회로68	0
계 및 코일의 극성표시 227	3상4선식 <i>428</i>	암페어
변압기의 등가 T형회로235	3상3선식428	R-C 직렬회로171
변환회로410	3상전력의 측정 <i>440</i>	<i>R-C</i> 회로의 시간응답327
병렬공진회로 263	3상전압의 발생 <i>426</i>	R-L 직렬회로125, 167
병렬회로173	3상전원 <i>427</i>	<i>R-L</i> 회로의 시간응답337
보드선도392	3상회로의 전력 <i>437</i>	R- L - C 병렬회로의 시간응답 363
복소수132	3전력계법441	<i>R-L-C</i> 직렬회로와 병렬회로
복소수의 연산133	상전압 ······427, 430	187, 225, 247, 273, 293, 351
복소수표시143	상호유도작용226	R- L - C 직렬회로의 완전응답 362
복소어드미턴스174	상호인덕턴스226	R- L - C 직렬회로의 자연응답
복소주파수372, 373	상호자속226	351, 371, 389, 403, 425
복소주파수평면381	상호저항 <i>50</i>	어드미턴스174
복소진폭373	상호컨덕턴스45	어드미턴스 파라미터308
복소평면132	샐렌-키 필터 <i>3</i> 98	<i>ABCD</i> 파라미터316
복잡한 1차회로의 시간응답 343	서셉턴스성분175	A'B'C'D' 파라미터317
볼트5	선-중성점간 전압 <i>430</i>	<i>n</i> 제곱근140

역률208	e^{st} 형식의 전원에 대한 강제응	자기컨덕턴스45
역률개선219	답375	자속78
연산의 라플라스변환 ······ 407	2전력계법442	자연응답 <i>330</i>
연산의 라플라스변환표407	2차필터398	저역통과필터249, 395
연산증폭기280	2차회로의 시간응답(과감쇠의	저지대역397
연산증폭기의 기본 응용회로 282	경우)354, 355	저항15
영상태응답 <i>412</i>	2차회로의 시간응답(무손실의	저항기15
영입력응답412	경우)358	저항기에서의 전력과 에너지 16
영점381	2차회로의 시간응답(임계감쇠의	저항의 직렬회로와 병렬회로 27
오버슈트361	경우)357	적분상수 <i>330</i>
오일러의 정리138	2포트의 종속접속 ······317	전달어드미턴스 <i>379</i>
<u>Ф</u>	2포트회로307	전달임피던스 <i>379</i>
옴의 법칙15	2포트회로 파라미터간의 관계 319	전달전류비 <i>379</i>
Y 결선 ······427	2포트회로의 등가회로 ··········320	전달전압비 <i>379</i>
Y→△ 변환70	인덕터79	전력 7
y파라미터309	인덕턴스77, 79	전력삼각도214
y 파라미터의 물리적 의미 $\cdots \cdots 309$	인덕턴스에서의 $v{ ext{-}}i$ 관계 \cdots 79	전력용 변압기237
Y형회로68	인덕턴스에서의 전력과 에너지 82	전류3
완전결합237	인덕턴스의 직렬 및 병렬83	전류, 전압의 기준방향1 <i>0</i>
완전응답332	인덕티브 서셉턴스176	전류제어 전류전원274
웨버78	일반 2 단자회로의 Z , Y 의 실수	전류제어 전압전원 ······274
위상100	부와 허수부의 관계 ······179	전송파라미터316
위상각100	일반화 어드미턴스 <i>378</i>	전압5
위상스펙트럼296	일반화 임피던스377	전압제어 전류전원274
위상응답곡선248	일반회로에서의 전력208	전압제어 전압전원274
위상이 늦다103	1사이클98	전원18
위상이 앞선다103	1차 <i>R-C</i> 회로의 시간응답··328	전원변환36, 37, 197
위상이 어긋났다103	1차 <i>R-L</i> 시간응답 <i>337</i>	전원에서의 전력 ······19
위상차102, 103	1차필터397	전원의 등가회로2 <i>1</i>
유기전압79	1차회로의 시간응답 <i>327</i>	전원의 직렬 및 병렬2 <i>1</i>
유도결합회로225	1포트회로307	전원의 회로모델2 <i>1</i>
유도결합회로의 해석231	임피던스 파라미터311	전위차5
유효전력212	임피던스변환240	전파정류파109
유효전력의 평형216	입력저항28, 29	전하
2단자망307	입력컨덕턴스29	절점 ·······43
2단자쌍회로307		절점방정식 ······45
이상변압기238	大	절점전압43
이상적 OP 앰프281		절점해석법43, 45
이상적 전류원18	자기에너지82	절점해석법과 망로해석법의 선
이상적 전압워18	자기저항50	태53

482 알기쉬운 회로이론

정상상태93		평균전력205
제어전원273		평면회로51
j에 관한 연산 140	차단주파수397	평형부하428
z 파라미터의 물리적 의미 $\cdots \cdots 311$	첨예도255	평형3상전류428
조파분석296	초기조건328	평형3상전압428
종속전원273	최대전력의 전달64, 220	평형3상전원428
주기97, 98	출력저항63	평형3상회로429
주기파98		평형3상회로에 대한 등가단상
주기파의 대칭성299		회로432
주파수97, 98		평형3상부하에서의 선전류, 선
주파수스펙트럼296	커패시터에서의 전력과 에너지 88	전압과 상전압과의 관계 435
주파수응답247	커패시턴스85	평형조건194
주파수응답곡선248	커패시턴스에서의 <i>v-i</i> 관계 ····· 86	폐루프이득284
중성선427	커패시턴스의 직렬 및 병렬 89	푸리에계수295
중성점427	커패시티브 서셉턴스176	푸리에급수294
중첩의 원리60, 198	컨덕턴스15	푸리에급수에 의한 비사인파의
지로44	컨덕턴스성분175	전개294
지로전류 <i>44</i>	코일의 극성표시227	푸리에급수의 성질299
지멘스15	코롬 <i>3</i>	푸리에분석293, 296
지상역률210	Q에 의한 자연응답의 분류 360	피상전력214
지수함수406	크래머의 방법48	필터의 종류395
지수형식 및 이에 의한 승제 139	키르히호프의 전류법칙12	
지연시간361	키르히호프의 전압법칙 <i>13</i>	•
직각좌표형식135	71-17-41 11-11-11-11-11-11-11-11-11-11-11-11-11	
직렬공진회로251		하이브리드 <i>h</i> 파라미터 <i>314</i>
직렬공진회로와 병렬공진회로의		하이브리드 g 파라미터 $\cdots 314$
대비265		하이브리드 파라미터313
직렬공진회로의 대폭255	테브난의 정리61, 199	해석법의 선택72
직렬공진회로의 어드미턴스의	통과대역397	허수단위 <i>132</i>
규준화253	특성근352	헨리79
직렬공진회로의 전압응답 257	특성방정식 <i>352</i>	홀함수299
직렬회로와 병렬회로27		회로망정리의 이용197
직류성분295		회로망함수 <i>37</i> 9
직병렬회로33, 192		회로모델21
진상역률210	파형의 이동300	회로상수92
진폭98	패러드86	회로소자110
진폭스펙트럼 296	%오버슈트 <i>361</i>	효율66
진폭응답곡선248	페이저143	휘트스톤 브리지47
짝함수299	페이저도143	