

SEQUENCE LISTING

- (1) GENERAL INFORMATION
- (i) APPLICANT: Wei-Wu He, Kristine K. Kikly, Vishva M. Dixit, Steven M. Ruben
- (ii) TITLE OF THE INVENTION: INTERLEUKIN-1 BETA CONVERTING ENZYME LIKE APOPTOSIS PROTEASE-6
 - (iii) NUMBER OF SEQUENCES: 9
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SmithKline Beecham Corporation
 - (B) STREET: 709 Swedeland Road
 - (C) CITY: King of Prussia
 - (D) STATE: PA
 - (E) COUNTRY: USA
 - (F) ZIP: 19406-2799
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compacible
 - (C) OPERATING SYSTEM: DOS
 - (D) SOFTWARE: FastSEQ Version 1.5
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: UNKNOWN
 - (B) FILING DATE: HEREWITH
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 60/018,961
 - (B) FILING DATE: 05 JUNE 1996
 - (A) APPLICATION NUMBER: 60/020,344
 - (B) FILING DATE: 23 MAY 1996
 - (A) APPLICATION NUMBER: 60/017,949
 - (B) FILING DATE: 20 May 1996
 - (viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Han, William T.
- (B) REGISTRATION NUMBER: 34,344
- (C) REFERENCE/DOCKET NUMBER: P50483-2

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: 610-270-5219
- (B) TELEFAX: 610-270-5090
- (C) TELEX:

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 416 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (iv) ANTISENSE: NO
- (v) FRAGMENT TYPE: N-terminal
- (vi) ORIGINAL SOURCE:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Met Asp Glu Ala Asp Arg Leu Leu Arg Arg Cys Arg Leu Arg Leu 1 5 10 15

Val Glu Glu Leu Gln Val Asp Gln Leu Trp Asp Val Leu Leu Ser Arg
20 25 30

Glu Leu Phe Arg Pro His Met Ile Glu Asp Ile Gln Arg Ala Gly Ser
35 40 45

Gly Ser Arg Arg Asp Gln Ala Arg Gln Leu Ile Ile Asp Leu Glu Thr
50 55 60

Arg Gly Ser Gln Ala Leu Pro Leu Phe Ile Ser Cys Leu Glu Asp Thr 65 70 75 80

Gly Gln Asp Met Leu Ala Ser Phe Leu Arg Thr Asn Arg Gln Ala Gly 85 90 95

Lys Leu Ser Lys Pro Thr Leu Glu Asn Leu Thr Pro Val Val Leu Arg

Pro Glu Ile Arg Lys Pro Glu Val Leu Arg Pro Glu Thr Pro Arg Pro
115 120 125

Val Asp Ile Gly Ser Gly Gly Phe Gly Asp Val Gly Ala Leu Glu Ser 130 135 140

Leu	Arg	Gly	Asn	Ala	Asp	Leu	Ala	Tyr	Ile	Leu	Ser	Met	Glu	Pro	Cys
145					150					155					160
Gly	His	Cys	Leu	Ile	Ile.	Asn	Asn	Val	Asn	Phe	Cys	Arg	Glu	Ser	Gly
				165					170					175	
Leu	Arg	Thr	Arg	Thr	Gly	Ser	Asn	Ile	Asp	Cys	Glu	Lys	Leu	Arg	Arg
		•	180					185					190		
Arg	Phe	Ser	Ser	Leu	His	Phe	Met	Val	Glu	Val	Lys	Gly	Asp	Leu	Thr
		195					200					205			
Ala	ŗλa	Lys	Met	Val	Leu	Ala	Leu	Leu	Glu	Leu	Ala	Arg	Gln	Asp	His
	210					215					220				
Gly	Ala	Leu	Asp	Cys	Cys	Val	Val	Val	·Ile	Leu	Ser	His	Gly	Cys	Gln
225					230					235					240
Ala	Ser	His	Leu	Gln	Phe	Pro	Gly	Ala	Val	Tyr	Gly	Thr	Asp	Gly	Cys
				245					250					255	
Pro	Val	Ser	Val	Glu	Lys	Ile	Val	Asn	Ile	Phe	Asn	Gly	Thr	Ser	Cys
			260		*			265					270		
Pro	Ser	Leu	Gly	Gly	Lys	Pro	ŗλz	Leu	Phe	Phe	Ile	Gln	Ala	Cys	Gly
•		275					280	•				285			
Gly	Glu	Gln	Lys	Asp	His	Gly	Phe	Glu	Val	Ala	Ser	Thr	Ser	Pro	Glu
	290		,			295			•		300				
Asp	Glu	Ser	Pro	Gly	Ser	Asn	Pro	Glu	Pro	Asp	Ala	Thr	Pro	Phe	Gln
305					310					315					320
Glu	Gly	Leu	Arg	Thr	Phe	. Asp	Gln	Leu	Asp	Ala	Ile	Ser	Ser	Leu	Pro
				325				•	330					335	
Thr	Pro	Ser	Asp	Ile	Phe	Val	Ser	Tyr	Ser	Thr	Phe	Pro	Gly	Phe	Val
			340			•		J 1J					350		
Ser	Trp	Arg	.Asp	Pro	Lys	Ser	Gly	Ser	Trp	Tyr	Val	Glu	Thr	Leu	Asp
		355					360	•	•			365			
Asp	Ile	Phe	Glu	Gln	Trp	Ala	His	Ser	Glu	Asp	Leu	Gln	Ser	Leu	Leu
	370					375					380	•	ē	*	-
Leu	Arg	Val	Ala	Asn	Ala	Val	Ser	Val	Lys	Gly	Ile	Tyr	Lys	Gln	Met
385					390					395					400
Pro	Gly	Cys	Phe		Phe	Leu	Arg	Lys	Lys	Leu	Phe	Phe	ГЛа	Thr	Ser
				405					410					415	

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1578 base pairs
- (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

- (iii) HYPOTHETICAL: NO
- (iv) ANTISENSE: NO
- (v) FRAGMENT TYPE:
- (vi) ORIGINAL SOURCE:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

	GCCATGGACG	AAGCGGATCG	GCGGCTCCTG	CGGCGGTGCC	GGCTGCGGCT	GGTGGAAGAG	60
	CTGCAGGTGG	ACCAGCTCTG	GGACGTCCTG	CTGAGCCGCG	AGCTGTTCAG	GCCCCATATG	120
	ATCGAGGACA	TCCAGCGGGC	AGGCTCTGGA	TCTCGGCGGG	ATCAGGCCAG	GCAGCTGATC	180
	ATAGATCTGG	AGACTCGAGG	GAGTCAGGCT	CTTCCTTTGT	TCATCTCCTG	CTTAGAGGAC	240
	ACAGGCCAGG	ACATGCTGGC	TTCGTTTCTG	CGAACTAACA	GGCAAGCAGG	AAAGTTGTCG	300
	AAGCCAACCC	TAGAAAACCT	TACCCCAGTG	GTGCTCAGAC	CAGAGATTCG	CAAACCAGAG	360
	GTTCTCAGAC	CGGAAACACC	CAGACCAGTG	GACATTGGTT	CTGGAGGATT	CGGTGATGTC	420
	GGTGCTCTTG	AGAGTTTGAG	GGGAAATGCA	GATTTGGCTT	ACATCCTGAG	CATGGAGCCC	480
	TGTGGCCACT	GCCTCATTAT	CAACAATGTG	AACTTCTGCC	GTGAGTCCGG	GCTCCGCACC	540
	CGCACTGGCT	CCAACATCGA	CTGTGAGAAG	TTGCGGCGTC	GCTTCTCCTC	GCTGCATTTC	600
	ATGGTGGAGG	TGAAGGGCGA	CCTGACTGCC	AAGAAAATGG	TGCTGGCTTT	GCTGGAGCTG	660
	GCGCGGCAGG	ACCACGGTGC	TCTGGACTGC	TGEGTGGTGG	TCATTCTCTC	TCACGGCTGT	720
	CAGGCCAGCC	ACCTGCAGTT	CCCAGGGGCT	GTCTACGGCA	CAGATGGATG	CCCTGTGTCG	780
2	GTCGAGAAGA	TTGTGAACAT	CTTCAATGGG	ACCAGCTGCC	CCAGCCTGGG	AGGGAAGCCC	. 840
	AAGCTCTTTT	TCATCCAGGC	CTGTGGTGGG	GAGCAGAAAG	ACCATGGGTT	TGAGGTGGCC	900
	TCCACTTCCC	CTGAAGACGA	GTCCCCTGGC	AGTAACCCCG	AGCCAGATGC	CACCCCGTTC	960
	CAGGAAGGTT	TGAGGACCTT	CGACCAGCTG	GACGCCATAT	CTAGTTTGCC	CACACCCAGT	1020
	GACATCTTTG	TGTCCTACTC	TACTTTCCCA	GGTTTTGTTT	CÇTGGAGGGA	CCCCAAGAGT	1080
	GGCTCCTGGT	ACGTTGAGAC	CCTGGACGAC	ATCTTTGAGC	AGTGGGCTCA	CTCTGAAGAC	1140
	CTGCAGTCCC	TCCTGCTTAG	GGTCGCTAAT	GCTGTTTCGG	TGAAAGGGAT	TTATAAACAG	1200
	ATGCCTGGTT	GCTTTAATTT	CCTCCGGAAA	AAACTTTTCT	TTAAAACATC	ATAAGGCCAG	1260
,	GGCCCCTCAC	CCTGCCTTAT	CTTGCACCCC	AAAGCTTTCC	TGCCCCAGGC	CTGAAAGAGG	1320
	CTGAGGCCTG	GACTTTCCTG	CAACTCAAGG	ACTTTGNAGC	CGGCACAGGG	TCTGCTCTTT	1380
	CTCTGCCAGT	GACAGACAGG	CTCTTAGCAG	CTTCCAGATT	GACGACAAGT	GCTGAACAGT	1440
	GGAGGAAGAG	GGACAGATGA	ATGCCGTGGA	TTGCACGTGG	NCTCTTGAGC	AGTGGCTGGT	1500
	CCAGGGCTAG	TGACTTGGTG	TCCCATGATC	CCTGTGTTGG	TCTCTAGGAG	CAGGGATTAA	1560
	CCTCTGCACT	ACTGACAT	•				1578

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 639 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO
(iv) ANTISENSE: NO
(v) FRAGMENT TYPE:
(vi) ORIGINAL SOURCE:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CTGACTGCCA AGAAAATGGT GCTGGCTTTG CTGGAGCTGG C

CTGACTGCCA	AGAAAATGGT	GCTGGCTTTG	CTGGAGCTGG	CGCGGCAGGA	CCACGGTGCT	60
CTGGACTGCT	GCGTGGTGGT	CATTCTCTCT	CACGGCTGTC	AGGCCAGCCA	CCTGCAGTTC	120
CCAGGGGCTG	TCTACGGCAC	AGATGGATGC	CCTGTGTCGG	TCGAAAAGAT	TGTGAACATC	180
TTCAATGGGA	CCAGCTGCCC	CAGCCTGGGA	GGGAAGCCCA	AGCTCTTTTT	CATCCAGGCC	240
TGTGGTGGGG	AGCAGAAAGA	CCATGGGTTT	GAGGTGGCCT	CCACTTCCCC	TGAAGACGAG	300
TCCCCTGGCA	GTAACCCCGA	GCCAGATGCC	ACCCCGTTCC	AGGAAGGTTT	GAGGACCTTC	360
GACCAGCTGG	ACGCCATATC	TAGTTTGCCC	ACACCCAGTG	ACATCTTTGT	GTCCTACTCT	420
ACTTTCCCAG	GTTTTGTTTC	CTGGAGGGAC	CCCAAGAGTG	GCTCCTGGTA	CGTTGAGACC	480
CTGGACGACA	TCTTTGAGCA	GTGGGCTCAC	TCTGAAGACC	TGCAGTCCCT	CCTGCTTAGG	-,540
GTCGCTAATG	CTGTTTCGGT	GAAAGGGATT	TATAAACAGA	TGCCTGGTTG	CTTTAATTTC	. 600
CTCCGGAAAA	AACTTTTCTT	TTAAAACATC	ATAAGGCAG			639

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 203 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (iv) ANTISENSE: NO
- (v) FRAGMENT TYPE: N-terminal
- (vi) ORIGINAL SOURCE:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met	Val	Leu	Ala	Leu	Leu	Glu	Leu	Ala	Arg	Gln	Asp	His	Gly	Ala	Leu
1			•	5					10					15	
Asp	Cys	Cys	Val	Val	Val	Ile	Leu	Ser	His	Gly	Cys	Gln	Ala	Ser	His
		•	20		-		•	25	-				30		
Leu	Gln	Phe	Pro	Gly	Ala	Val	Tyr	Gly	Thr	Asp	Gly	Cys	Pro	Val	Ser
		35					40				•	45			
Val	Glu	Lys	Ile	Val	Aśn	Ile	Phe	Asn	Gly	Thr	Ser	Cys	Pro	Ser	Leu
	50					55					60				
Gly	Gly	Ĺуs	Pro	Lys	Leu	?he	?he	Ile	Gln	Ala	Cys	Gly	Gly	Glu	Gln

65		•	70					75 ·				•	80
Lys Asp	His Gly	Phe	Glu	Val	Ala	Ser	Thr	Ser	Pro	Glu	Asp	Glu	Ser
		85					90					95	
Pro Gly	Ser Asn	Pro:	Glu	Pro	Asp	Ala	Thr	Pro	Phe	Glņ	Glu	Gly	Leu
	100					105					110		
Arg Thr	Phe Asp	Gln	Leu	Asp	Ala	Ile	Ser	Ser	Leu	Pro	Thr	Pro	Ser
	115				120					125			
	Phe Val	Ser	-		Thr	Phe	Pro	Gly		Val	Ser	Trp	Arg
130				135					140				
_	Lys Ser			Trp	Tyr	Val	Glu		Leu	Asp	Asp	Ile	
145			150		_	_	,	155		_	<u>.</u>	_	160
Glu Glr	Trp Ala		Ser	GLu	Asp	Leu		Ser	Leu	Ļeu	Leu		.Val
		165		_		.	170					175	_
Ala Asr	Ala Val		VaI	Lys	GLY		Tyr	rys	Gln	Met		ĠΤĂ	CAR
:	180		_			185	, . D1			,	190		
Phe Asr	Phe Leu	Arg	гХs	гуз		Pne	rne	Met					, ~
	195				200						•	- 1	* -
	(0) 73	, 	MTON	7 50	n c r	S. TD.	NO.	· = .					
	(2) IN	FORMA	YT TOÙ	y FO	ישנ א	עו נ	NO:	J:		-	·.		
	(i) SEQUE	מורב ר	מסגשי	ነ ርጥ ድ	D T CT	TCG			-				
•	(I) SEQUE (A) LEN		`										
		E: n			_	,	.•				•		
	,	LANDEI				۾ َ	•						
		OLOGY				-	• *						
	(15) 101				-					.:			`

- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTISENSE: NO
- (v) FRAGMENT TYPE:
- (vi) ORIGINAL SOURCE:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GAACGGGGTA CCGCCATGGA CGAAGCGGAT CGGC

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 60 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE: (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: TGCTCTAGAT TAGTGGTGGT GGTGGTGGTG TGATGTTTTA AAGAAAAGTT TTTTCCGGAG (2) INFORMATION FOR SEQ ID NO:7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 41 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE: (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: AAGCTCTTTT TCATCCAGGC CGCGGGTGGG GAGCAGAAGA C (2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

(v) FRAGMENT TYPE:
(vi) ORIGINAL SOURCE:

39

GTCTTTCTGC TCCCCACCCG CGGCCTGGAT GAAAAAAGC	
(2) INFORMATION FOR SEQ ID NO:9:	-

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 66 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTISENSE: NO
- (v) FRAGMENT TYPE:
- (vi) ORIGINAL SOURCE:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

TGCTCTAGAT	TACTTGTCAT	CGTCGTCCTT	GTAGTCTGAT	GTTTTAAAGT	TAAGTTTTTT	60
CCCCAC	•	•		-		6

What is claimed is: 1. An isolated polynucleotide comprising a member selected from the group consisting of:

5

20

25

- (a) a polynucleotide having at least a 70% identity to a polynucleotide encoding a polypeptide comprising amino acids of SEQ ID NO: 1;
 - (b) a polynucleotide which is complementary to the polynucleotide of (a); and
- (c) a polynucleotide comprising at least 15 bases of the polynucleotide of 10 (a) or (b).
 - 2. The polynucleotide of Claim 1 wherein the polynucleotide is DNA.
 - 3. The polynucleotide of Claim 1 wherein the polynucleotide is RNA.

4. The polynucleotide of Claim 2 which encodes a polypeptide comprising amino acid set forth in SEQ ID NO: 1.

5. An isolated polynucleotide comprising a member selected from the group consisting of:

- (a) a polynucleotide having at least a 70% identity to a polynucleotide encoding the same mature polypeptide expressed by the human DNA in SEQ ID NO: 2;
 - (b) a polynucleotide complementary to the polynucleotide of (a); and
- (c) a polynucleotide comprising at least 15 bases of the polynucleotide of (a) or (b).
 - 6. A vector comprising the DNA of Claim 2.
- 30 7. A host cell comprising the vector of Claim 6.

- 8. A process for producing a polypeptide comprising: expressing from the host cell of Claim 7 a polypeptide encoded by said DNA.
- 9. A process for producing a cell which expresses a polypeptide comprising transforming or transfecting the cell with the vector of Claim 6 such that the cell expresses the polypeptide encoded by the human cDNA contained in the vector.
- 10. A polypeptide comprising an amino acid sequence which is at least 10 70% identical to amino acid set forth in SEQ ID NO: 1.
 - 11. A polypeptide comprising an amino acid sequence as set forth in SEQ ID NO: 1.
 - 12. An agonist to the polypeptide of Claim 10.

15

25

- 13. An antibody against the polypeptide of Claim 10.
- 14. An antagonist which inhibits the activity of the polypeptide of 20 Claim 10.
 - 15. A method for the treatment of a patient having need of ICE LAP-6 comprising: administering to the patient a therapeutically effective amount of the polypeptide of Claim 10.
 - 16. The method of Claim 15 wherein said therapeutically effective amount of the polypeptide is administered by providing to the patient DNA encoding said polypeptide and expressing said polypeptide *in vivo*.

- 17. A method for the treatment of a patient having need to inhibit ICE LAP-6 polypeptide comprising: administering to the patient a therapeutically effective amount of the antagonist of Claim 14.
- 18. A process for diagnosing a disease or a susceptibility to a disease related to expression of the polypeptide of Claim 10 comprising: determining a mutation in the nucleic acid sequence encoding said polypeptide.

5

20

- 19. A diagnostic process comprising: analyzing for the presence of the polypeptide of Claim 10 in a sample derived from a host.
 - 20. A method for identifying compounds which bind to and activate or inhibit a receptor for the polypeptide of Claim 10 comprising: contacting a cell expressing on the surface thereof a receptor for the polypeptide, said receptor being associated with a second component capable of providing a detectable signal in response to the binding of a compound to said receptor, with a compound to be screened under conditions to permit binding to the receptor; and determining whether the compound binds to and activates or inhibits the receptor by detecting the presence or absence of a signal generated from the interaction of the compound with the receptor.

ABSTRACT OF THE DISCLOSURE

Human ICE LAP-6 polypeptides and DNA (RNA) encoding such ICE LAP-6 and a procedure for producing such polypeptides by recombinant techniques is disclosed. Also disclosed are methods for utilizing such ICE LAP-6 for the treatment of a susceptibility to viral infection, tumorogenesis and to diseases and defects in the control embryogenesis and tissue homeostasis, and the nucleic acid sequences described above may be employed in an assay for ascertaining such susceptibility. Antagonists against such ICE LAP-6 and their use as a therapeutic to treat Alzheimer's disease, Parkinson's disease, rheumatoid arthritis, septic shock, sepsis, stroke, chronic inflammation, acute inflammation, CNS inflammation, osteoporosis, ischemia reperfusion injury, cell death associated with cardiovascular disease, polycystic kidney disease, apoptosis of endothelial cells in cardiovascular disease, degenerative liver disease, MS, ALS, cererbellar degeneration, ischemic injury, myocardial infarction, AIDS, myelodysplastic syndromes, aplastic anemia, male pattern baldness, and head injury damage are also disclosed. Also disclosed are diagnostic assays for detecting diseases related to mutations in the nucleic acid sequences and altered concentrations of the polypeptides. Also disclosed are diagnostic assays for detecting mutations in the polynucleotides encoding the interleukin-1 beta converting enzyme apoptosis proteases and for detecting altered levels of the polypeptide in a host.