```
In [1]: # Dependencies
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   # import locale
   # import requests
   # import os
   import csv
   import scipy.stats as stats
   import warnings
   warnings.filterwarnings('ignore')
```

```
In [2]: # Collecting base data...
    temp_df = pd.read_csv("Resources/election_all.csv")
    pop_df = pd.read_csv("Resources/population2000-2016ALL.csv")
    #v2000 = pd.read_csv("Resources/FOR_JINHO_2000.csv.csv")
    #v2004 = pd.read_csv("Resources/FOR_JINHO_2004.csv.csv")
    v2008 = pd.read_csv("Resources/FOR_JINHO_2008.csv")
    v2012 = pd.read_csv("Resources/FOR_JINHO_2012.csv")
    #v2016 = pd.read_csv("Resources/FOR_JINHO_2016.csv.csv")
    v2012.head()
```

Out[2]:

	Location	total_votes	2012_deffloctat_votes	2012_republican_votes
0	Alabama, Autauga	23932	6363.0	17379.0
1	Alabama, Baldwin	85338	18424.0	66016.0
2	Alabama, Barbour	11509	5912.0	5550.0
3	Alabama, Bibb	8420	2202.0	6132.0
4	Alabama, Blount	24006	2970.0	20757.0

Location total votes 2012 democrat votes 2012 republican votes

```
In [3]: # Creating master State, County details...
    master_location_df = temp_df[['state','county','state_po']]
    master_location_df = master_location_df.drop_duplicates()
    master_location_df['Location'] = master_location_df.state+", "+master_location_df.co
    master_location_df.columns = ['State', 'County', 'State_po', 'Location']
    master_location_df = master_location_df.dropna()
    master_location_df.to_csv(r'Resources/master_state_info.csv', index=False, header=Tr
    # print(len(master_location_df))
    # master_location_df.head()
```

```
In [4]: # Collecting required fields...
# pop_df = pop_df[['Location','2000','2004','2008','2012','2016']]
pop_df = pop_df[['Location','2012']]
# print(len(pop_df))
# pop_df.head()
pop_final = pd.merge(pop_df, master_location_df, on='Location')
pop_final
# Creating summary data by state...
pop_state_summary = pop_final.groupby('State')
pop_state_summary = pop_state_summary.sum()

pop_county_summary = pop_final.groupby('Location')
pop_county_summary = pop_county_summary.sum()
pop_county_summary = pop_county_summary[pop_county_summary['2012'] != 0]
pop_county_summary.reset_index
pop_county_summary.head()
```

Out[4]:

2012

Location	
Alabama, Autauga	54954
Alabama, Baldwin	190145
Alabama, Barbour	27169
Alabama, Bibb	22667
Alabama, Blount	57580

```
In [5]: # Creating summary for State...
        v2012 final = pd.merge(v2012, master location df, on='Location')
        v2012_final['2012_other_votes'] = v2012_final["total_votes"]-v2012_final["2012_democ
        v2012 state summary = v2012 final.groupby('State')
        v2012 state summary = v2012 state summary.sum()
        # v2012 state summary.head()
        v2012 state summary['year'] = '2012'
        year = v2012_state_summary['year'].iloc[0]
        # print(v2012 state summary['total votes'].min()/1000, v2012 state summary['total vo
        # merge population data to calcuate avg.
        v2012_state_summary = v2012_state_summary.merge(pop_state_summary, on='State')
        v2012_state_summary['avg_votes'] = round(v2012_state_summary['total_votes']*100/v201
        v2012_state_summary['2012_democrat_votes'] = round(v2012_state_summary['2012_democrat
        v2012 state summary['2012 republican votes'] = round(v2012 state summary['2012 republican votes']
        v2012 state summary['2012 other votes'] = round(v2012 state summary['2012 other vote
        hv st = v2012 state summary['avg votes'].max()
        highst = v2012 state summary.loc[v2012 state summary['avg votes'] == hv st]
        hv st = highst.index.tolist()
        lv st = v2012 state summary['avg votes'].min()
        lowst = v2012 state summary.loc[v2012 state summary['avg votes'] == lv st]
        lv st = lowst.index.tolist()
        v2012 state summary.head()
```

Out[5]:

	total_votes	2012_democrat_votes	2012_republican_votes	2012_other_votes	year	2012	avg_vote
State							
Alabama	2070353	17.0	27.0	0.0	2012	4730827	44.
Arizona	2299254	16.0	19.0	1.0	2012	6554978	35.
Arkansas	1069468	13.0	22.0	1.0	2012	2924172	37.
California	13038547	21.0	13.0	1.0	2012	37948800	34.
Colorado	2569217	25.0	23.0	1.0	2012	5192647	49.

```
In [6]: # Creating summary for Counties..
        v2012 county summary = v2012 final.groupby('Location', as index=False)
        v2012 county summary = v2012 county summary.sum()
        # print(v2012 county summary['total votes'].min(), v2012 county summary['total votes
        v2012 county summary = v2012 county summary.merge(pop county summary, on='Location')
        v2012 county summary['avg votes'] = round(v2012 county summary['total votes']*100/v2
        v2012_county_summary['2012_democrat_votes'] = round(v2012_county_summary['2012_democrat_votes'])
        v2012_county_summary['2012_republican_votes'] = round(v2012_county_summary['2012_rep
        v2012 county summary['2012 other votes'] = round(v2012 county summary['2012 other votes']
        hv cy = v2012 county summary['avg votes'].max()
        highcy = v2012 county summary.loc[v2012 county summary['avg votes'] == hv cy]
        hv cy = highcy.Location.tolist()
        lv_cy = v2012_county_summary['avg_votes'].min()
        lowcy = v2012 county summary.loc[v2012 county summary['avg votes'] == lv cy]
        lv cy = lowcy.Location.tolist()
        v2012 county summary.head()
```

Out[6]:

	Location	total_votes	2012_democrat_votes	2012_republican_votes	2012_other_votes	2012	avg_votes
0	Alabama, Autauga	23932	12.0	32.0	0.0	54954	44.0
1	Alabama, Baldwin	85338	10.0	35.0	0.0	190145	45.0
2	Alabama, Barbour	11509	22.0	20.0	0.0	27169	42.0
3	Alabama, Bibb	8420	10.0	27.0	0.0	22667	37.0
4	Alabama, Blount	24006	5.0	36.0	0.0	57580	42.0

```
In [7]:
        # Voter turnout by state...
        title = year+' Avg. Voter Turnout By State'
        pfile = title.replace(" ",'_')+'.png'
        pfile = f"Resources/Images/{pfile}"
        plt.figure(figsize=(30,15))
        plt.rc('axes', titlesize=32)
        plt.rc('axes', labelsize=28)
        plt.rc('xtick', labelsize=22)
        plt.rc('ytick', labelsize=22)
        plt.bar(v2012 state summary.index, v2012 state summary.avg votes)
        plt.xticks(rotation=90)
        plt.yticks(rotation=360)
        plt.xlabel('States')
        plt.ylabel("Avg. Voter Turnout")
        plt.title(title)
        plt.xlim(-0.75, len(v2012 state summary.index)-.25)
        plt.ylim(0, v2012_state_summary.avg_votes.max()+10)
        plt.tight_layout()
        plt.savefig(pfile)
        plt.show()
```



```
In [8]:
        # Avg. Party votes by state...
        plt.figure(figsize=(30,15))
        plt.rc('axes', titlesize=32)
        plt.rc('axes', labelsize=28)
        plt.rc('xtick', labelsize=22)
        plt.rc('ytick', labelsize=22)
        plt.rc('legend', fontsize=22)
        title = year+' Party Votes By State'
        pfile = title.replace(" ",' ')+'.png'
        pfile = f"Resources/Images/{pfile}"
        maxy = v2012 state summary['2012 democrat votes'].max()
        if maxy < v2012_state_summary['2012_republican_votes'].max():</pre>
            maxy = v2012 state summary['2012 republican votes'].max()
        Democrat = plt.plot(v2012 state summary.index, v2012 state summary["2012 democrat vo
        Republican = plt.plot(v2012 state summary.index, v2012 state summary["2012 republical
        Others = plt.plot(v2012 state summary.index, v2012 state summary["2012 other votes"]
        plt.xticks(rotation=90)
        plt.yticks(rotation=360)
        plt.xlabel('States')
        plt.ylabel("Avg. Voter Turnout")
        plt.title(title)
        plt.xlim(-0.75, len(v2012_state_summary.index)-.25)
        plt.ylim(0, maxy+5)
        plt.legend(loc="best")
        plt.tight_layout()
        plt.savefig(pfile)
        plt.show()
```



```
In [9]: # Generating Random 50 counties...
random_sample_county = pd.DataFrame(v2012_county_summary.Location.sample(n=50, randorandom_sample_county.head()
v2012_filtered_county_summary = pd.merge(v2012_county_summary,random_sample_county,
# v2012_filtered_county_summary.head()
```

```
In [10]: # Avg. Voter turnout by random counties...
         title = year+' Avg. Voter Turnout By Random Counties'
         pfile = title.replace(" ",'_')+'.png'
         pfile = f"Resources/Images/{pfile}"
         plt.figure(figsize=(30,15))
         plt.rc('axes', titlesize=32)
         plt.rc('axes', labelsize=28)
         plt.rc('xtick', labelsize=22)
         plt.rc('ytick', labelsize=22)
         plt.bar(v2012_filtered_county_summary.Location, v2012_filtered_county_summary.avg_vc
         plt.xticks(rotation=90)
         plt.yticks(rotation=360)
         plt.xlabel('Counties')
         plt.ylabel("Avg. Voter Turnout")
         plt.title(title)
         plt.xlim(-0.75, len(v2012_filtered_county_summary.Location)-.25)
         plt.ylim(0, v2012_filtered_county_summary.avg_votes.max()+10)
         plt.tight_layout()
         plt.savefig(pfile)
         plt.show()
```



```
# Party votes by random counties...
In [11]:
         plt.figure(figsize=(30,15))
         title = year+' Party Votes By Random Counties'
         pfile = title.replace(" ",' ')+'.png'
         pfile = f"Resources/Images/{pfile}"
         plt.rc('axes', titlesize=32)
         plt.rc('axes', labelsize=28)
         plt.rc('xtick', labelsize=22)
         plt.rc('ytick', labelsize=22)
         plt.rc('legend', fontsize=22)
         maxy = v2012_state_summary['2012_democrat_votes'].max()
         if maxy < v2012_state_summary['2012_republican_votes'].max():</pre>
             maxy = v2012 state summary['2012 republican votes'].max()
         Democrat = plt.plot(v2012 filtered county summary.Location, v2012 filtered county su
         Republican = plt.plot(v2012 filtered county summary.Location, v2012 filtered county
         Others = plt.plot(v2012 filtered county summary.Location, v2012 filtered county summ
         plt.xticks(rotation=90)
         plt.yticks(rotation=360)
         plt.xlabel('Counties')
         plt.ylabel("Avg. Voter Turnout")
         plt.title(title)
         plt.xlim(-0.75, len(v2012_filtered_county_summary.Location)-.25)
         plt.ylim(0, maxy+5)
         plt.legend(loc="best")
         plt.tight_layout()
         plt.savefig(pfile)
         plt.show()
```



```
In [12]: # Highest/Lowest voter turnout...
#

print(year + " Highest Voter Turnout for the State : " + ','.join(hv_st))
print(year + " Lowest Voter Turnout for the State : " + ','.join(lv_st))
print("")
print(year + " Highest Voter Turnout for the County : " + ','.join(hv_cy))
print(year + " Lowest Voter Turnout for the County : " + ','.join(lv_cy))
```

2012 Highest Voter Turnout for the State : Wisconsin 2012 Lowest Voter Turnout for the State : Hawaii, Texas

2012 Highest Voter Turnout for the County : Colorado, Mineral

2012 Lowest Voter Turnout for the County : Georgia, Chattahoochee

In [13]: population_votes = v2012_state_summary[['2012_democrat_votes','2012_republican_votes
 population_votes.columns = ['2012_democrat_votes', '2012_republican_votes','2012_oth
 population_votes['pop_notvoted'] = (100-(population_votes['2012_democrat_votes']+pop
 population_votes.head()

Out[13]:

2012_democrat_votes 2012_republican_votes 2012_other_votes pop_notvoted

State				
Alabama	17.0	27.0	0.0	56.0
Arizona	16.0	19.0	1.0	64.0
Arkansas	13.0	22.0	1.0	64.0
California	21.0	13.0	1.0	65.0
Colorado	25.0	23.0	1.0	51.0

```
In [14]:
         # Poplulation vs. Voter turnout by state for the year 2012...
         title = year+' Population Vs. Voter Turnout By State'
         pfile = title.replace(" ",' ')+'.png'
         pfile = f"Resources/Images/{pfile}"
         plt.figure(figsize=(30,15))
         bottom = 0
         label = ['Democrat', 'Republican', 'Other Parties', 'Population Not Voted']
         plt.rc('axes', titlesize=32)
         plt.rc('axes', labelsize=28)
         plt.rc('xtick', labelsize=22)
         plt.rc('ytick', labelsize=22)
         for i in population votes.columns:
             plt.bar(population votes.index, population votes[i], width=0.7, bottom=bottom)
             bottom += population_votes[i]
         #
         plt.xticks(rotation=90)
         plt.yticks(rotation=360)
         plt.legend(label)
         plt.xlabel('States')
         plt.ylabel("Population (%)")
         plt.title(title)
         plt.xlim(-0.75, len(population votes.index)-.25)
         plt.tight_layout()
         plt.savefig(pfile)
         plt.show()
```



```
In [15]: # Outliers
#

quartiles = v2012_county_summary['avg_votes'].quantile([.25,.5,.75])
lowerq = quartiles[0.25]
upperq = quartiles[0.75]
iqr = upperq-lowerq
lower_bound = lowerq - (1.5*iqr)
upper_bound = upperq + (1.5*iqr)

print(f"The lower quartile of county outliers is :{lowerq}")
print(f"The upper quartile of county outliers is :{upperq}")
print(f"The interquartile range of county outliers is :{iqr}")
print(f"The median of county volume is :{quartiles[0.5]}")
print(f"Values below {round(lower_bound,6)} could be outliers. ")
print(f"Values above {round(upper_bound,6)} could be outliers. ")
print(" ")
```

```
The lower quartile of county outliers is :38.0
The upper quartile of county outliers is :49.0
The interquartile range of county outliers is :11.0
The median of county volume is :43.0
Values below 21.5 could be outliers.
Values above 65.5 could be outliers.
```

```
In [16]: title = year+' Avg. Voter Turnout By County'
         pfile = title.replace(" ",' ')+'.png'
         pfile = f"Resources/Images/{pfile}"
         boxplot data = v2012 county summary['avg votes']
         fig = plt.figure()
         plt.rc('axes', titlesize=12)
         plt.rc('axes', labelsize=12)
         plt.rc('xtick', labelsize=12)
         plt.rc('ytick', labelsize=12)
         plt.rc('legend', fontsize=12)
         c = "red"
         plt.boxplot(boxplot data, notch=True, patch artist=True,
                     boxprops=dict(facecolor=c, color=c), flierprops=dict(color=c, markeredge
         plt.title(title)
         plt.savefig(pfile)
         plt.show()
```


In [17]:	<pre>pop_county = v2012_county_summary['avg_votes'] sample_county = pd.DataFrame(v2012_county_summary.avg_votes.sample(n=1000, random_st</pre>
	stats.ttest_1samp(sample_county, pop_county.mean())
Out[17]:	Ttest_1sampResult(statistic=array([0.52359702]), pvalue=array([0.60067498]))
In []:	
In []:	
In []:	