Estadística. Grupo m3

Hoja 4. Intervalos de confianza

Método de la cantidad pivotal

• Si μ es un parámetro de localización (la distribución de $X-\mu$ no depende de μ), entonces

$$T(\mathbf{X},\mu) = T((X_1,\ldots,X_n),\mu) = \bar{X} - \mu$$

es una cantidad pivotal.

ullet Si σ es un parámetro de escala (la distribución de $rac{X}{\sigma}$ no depende de σ) , entonces

$$T(\mathbf{X}, \sigma) = \frac{\bar{X}}{\sigma}$$

es una cantidad pivotal.

• Si μ es un parámetro de localización y σ es un parámetro de escala (la distribución de $\frac{\bar{X}-\mu}{\sigma}$ no depende de (μ,σ)), entonces

$$T_1(\mathbf{X}, (\mu, \sigma)) = \frac{\bar{X} - \mu}{\sigma}$$

$$T_2(\mathbf{X}, \mu) = \frac{\bar{X} - \mu}{S}$$

Método de la cantidad pivotal

- Estadístico suficiente.
- La cantidad

$$T(\mathbf{X}, \theta) = -2\sum_{j=1}^{n} \ln F_{\theta}(X_j) \sim \chi_{2n}^2$$

es una cantidad pivotal siempre que F_{θ} sea continua y monótona en θ .

Sea $(X_1, X_2, ..., X_n)$ una muestra aleatoria simple de $X \sim N(\theta, \sigma^2 = \theta^2)$ para $\theta > 0$. Construir una cantidad pivotal y utilizarla para hallar un intervalo de cofianza para θ al nivel de confianza $1 - \alpha$.

Como $\bar{X} \sim N(\theta, \theta^2/n)$ entonces

$$T(\mathbf{X}, \theta) = \frac{\bar{X} - \theta}{\theta / \sqrt{n}} \sim N(0, 1)$$

es una cantidad pivotal.

Al nivel de confianza $1-\alpha$, hay que encontrar a y b de forma que

$$1 - \alpha = P(a < T(\mathbf{X}, \theta) < b).$$

Como la distribución de $T(\mathbf{X},\theta)$ es simétrica, el intervalo de longitud mínima es el que tiene probabilidad de colas iguales. Entonces, la probabilidad de cada cola será $\alpha/2$ de forma que

$$P(T(\mathbf{X}, \theta) \ge b) = \alpha/2$$

 $P(T(\mathbf{X}, \theta) \le a) = \alpha/2$

y entonces $a=-z_{\alpha/2}$ y $b=z_{\alpha/2}$. El intervalo de confianza para θ se obtiene al escribir la desigualdad en términos de θ

$$\begin{array}{rcl} a & < & T(\mathbf{X},\theta) < b \\ -z_{\alpha/2} & < & T(\mathbf{X},\theta) < z_{\alpha/2} \\ -z_{\alpha/2} & < & \frac{\bar{X}-\theta}{\theta/\sqrt{n}} < z_{\alpha/2} \\ -z_{\alpha/2}\theta/\sqrt{n} & < & \bar{X}-\theta < z_{\alpha/2}\theta/\sqrt{n} \end{array}$$

Entonces

$$\begin{array}{rcl} -z_{\alpha/2}\theta/\sqrt{n} & < & \bar{X}-\theta \\ -z_{\alpha/2}\theta/\sqrt{n}+\theta & < & \bar{X} \\ \theta(1-z_{\alpha/2}/\sqrt{n}) & < & \bar{X} \end{array}$$

Es decir

$$\theta < \bar{X}/(1 - z_{\alpha/2}/\sqrt{n})$$

Por otra parte

$$\begin{array}{rcl} \bar{X} - \theta & < & z_{\alpha/2}\theta/\sqrt{n} \\ & \bar{X} & < & z_{\alpha/2}\theta/\sqrt{n} + \theta \\ & \bar{X} & < & \theta(1 + z_{\alpha/2}/\sqrt{n}) \end{array}$$

y entonces

$$\bar{X}/(1+z_{\alpha/2}/\sqrt{n})<\theta$$

Por tanto

$$\bar{X}/(1 + z_{\alpha/2}/\sqrt{n}) < \theta < \bar{X}/(1 - z_{\alpha/2}/\sqrt{n})$$

y el intervalo de confianza al nivel $1-\alpha~$ para $\theta~$ es

$$IC_{1-\alpha}(\theta) = \left(\frac{\bar{X}}{1 + z_{\alpha/2}/\sqrt{n}}, \frac{\bar{X}}{1 - z_{\alpha/2}/\sqrt{n}}\right)$$

Sean (X_1,X_2) una muestra aleatoria simple de $X\sim N(0,\sigma^2=1/\theta)$ y $T=\frac{X_1^2+X_2^2}{2}$ un estadístico. Demostrar que $2T\theta$ es una cantidad pivotal y utilizarla para construir un intervalo de confianza para θ al nivel de confianza $1-\alpha$.

Se sabe que $\frac{X_1}{1/\sqrt{\theta}}=\sqrt{\theta}X_1\sim N(0,1)\;\;$ y $\sqrt{\theta}X_2\sim N(0,1)$, de forma que $2T\theta=\theta X_1^2+\theta X_2^2\sim \chi_2^2.$

Al nivel de confianza $1-\alpha$, hay que encontrar a y b de forma que

$$1 - \alpha = P(a < 2T\theta < b).$$

Si calculamos el intervalo que tiene probabilidad de colas iguales, la probabilidad de cada cola será $\alpha/2$ de forma que

$$P(2T\theta \geq b) = \alpha/2$$

$$P(2T\theta \leq a) = \alpha/2$$

y entonces $a=\chi^2_{2;1-\alpha/2}$ y $b=\chi^2_{2;\alpha/2}$.

El intervalo de confianza para heta se obtiene al escribir la desigualdad en términos de heta

$$\begin{array}{rcl} \chi^2_{2;1-\alpha/2} & < & 2T\theta < \chi^2_{2;\alpha/2} \\ \chi^2_{2;1-\alpha/2}/(2T) & < & \theta < \chi^2_{2;\alpha/2}/(2T) \\ \chi^2_{2;1-\alpha/2}/(X_1^2 + X_2^2) & < & \theta < \chi^2_{2;\alpha/2}/(X_1^2 + X_2^2) \end{array}$$

El intervalo de confianza al nivel $1-\alpha~$ para $\theta~$ es

$$IC_{1-\alpha}(\theta) = \left(\frac{\chi_{2;1-\alpha/2}^2}{X_1^2 + X_2^2}, \frac{\chi_{2;\alpha/2}^2}{X_1^2 + X_2^2}\right)$$

Se han medido los siguientes valores de una determinada magnitud: 521, 742, 593, 635, 788, 717, 606, 639, 666, 624. Suponiendo que esta magnitud se distribuye según una normal y para un nivel de confianza del 95%, se pide:

a) Hallar un intervalo de confianza para la media.

Si $X \sim N(\mu, \sigma^2)$, una cantidad pivotal para μ es $T_1(\mathbf{X}, \mu) = \frac{X - \mu}{S}$. Para calcular su distribución utilizamos el lema de Fisher, de forma que

$$\bar{X} \sim N(\mu, \sigma^2/n)$$
 $\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

y esta última cantidad depende de σ , que es desconocida.

Por otra parte

$$(n-1)\frac{S^2}{\sigma^2} \sim \chi_{n-1}^2$$

y entonces

$$\frac{\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}}{\sqrt{(n-1)\frac{S^2}{\sigma^2}/(n-1)}} = \frac{\bar{X}-\mu}{S/\sqrt{n}} = T(\mathbf{X},\mu) \sim t_{n-1}.$$

Al nivel de confianza $1-\alpha$, hay que encontrar a y b de forma que

$$1 - \alpha = P(a < T(\mathbf{X}, \mu) < b).$$

Como la distribución de $T(\mathbf{X},\mu)$ es simétrica, el intervalo de longitud mínima es el que tiene probabilidad de colas iguales. Entonces, la probabilidad de cada cola será $\alpha/2$ de forma que

$$P(T(\mathbf{X}, \mu) \geq b) = \alpha/2$$

 $P(T(\mathbf{X}, \mu) \leq a) = \alpha/2$

y entonces $a=-t_{n-1;\alpha/2}$ y $b=t_{n-1;\alpha/2}$.

El intervalo de confianza para μ se obtiene al escribir la desigualdad en términos de μ

$$\begin{array}{rcl} a & < & T(\mathbf{X},\mu) < b \\ -t_{n-1;\alpha/2} & < & T(\mathbf{X},\mu) < t_{n-1;\alpha/2} \\ -t_{n-1;\alpha/2} & < & \frac{\bar{X}-\mu}{S/\sqrt{n}} < t_{n-1;\alpha/2} \\ \\ -t_{n-1;\alpha/2}S/\sqrt{n} & < & \bar{X}-\mu < t_{n-1;\alpha/2}S/\sqrt{n} \\ \bar{X}-t_{n-1;\alpha/2}S/\sqrt{n} & < & \mu < \bar{X}+t_{n-1;\alpha/2}S/\sqrt{n} \end{array}$$

El intervalo de confianza al nivel $1-\alpha$ para μ es

$$IC_{1-\alpha}(\mu) = \left(\bar{X} - t_{n-1;\alpha/2}S/\sqrt{n}, \bar{X} + t_{n-1;\alpha/2}S/\sqrt{n}\right)$$

Para los datos observados, $\bar{x}=653.1,\ s=78.18\,$ y el intervalo de confianza al nivel $1-\alpha=0.95$ es

$$IC_{1-\alpha}(\mu) = \left(653.1 - 2.262 \frac{78.18}{\sqrt{10}}, 653.1 + 2.262 \frac{78.18}{\sqrt{10}}\right) = (597, 709)$$

donde $t_{n-1;\alpha/2} = t_{9;0.025} = 2.262$.

b) Hallar un intervalo de confianza para la varianza.

Utilizaremos como cantidad pivotal $T(\mathbf{X}, \sigma^2) = (n-1)\frac{S^2}{\sigma^2} \sim \chi^2_{n-1}$. De esta forma, al nivel de confianza $1-\alpha$, hay que encontrar a y b de forma que

$$1 - \alpha = P(a < T(\mathbf{X}, \sigma^2) < b).$$

Tomando probabilidad de colas iguales $a=\chi^2_{n-1;1-\alpha/2}$ y $b=\chi^2_{n-1;\alpha/2}$.

El intervalo de confianza para σ^2 se obtiene al escribir la desigualdad en términos de σ^2

$$\begin{array}{cccc} \chi^2_{n-1;1-\alpha/2} & < & T(\mathbf{X},\sigma^2) < \chi^2_{n-1;\alpha/2} \\ & \chi^2_{n-1;1-\alpha/2} & < & (n-1)\frac{S^2}{\sigma^2} < \chi^2_{n-1;\alpha/2} \\ & (n-1)S^2/\chi^2_{n-1;\alpha/2} & < & \sigma^2 < (n-1)S^2/\chi^2_{n-1;1-\alpha/2} \end{array}$$

El intervalo de confianza al nivel $1-\alpha$ para σ^2 es

$$IC_{1-\alpha}(\sigma^2) = \left(\frac{(n-1)S^2}{\chi^2_{n-1;\alpha/2}}, \frac{(n-1)S^2}{\chi^2_{n-1;1-\alpha/2}}\right).$$

Para los datos observados, $s^2=78.18^2\,$ y el intervalo de confianza es

$$IC_{1-\alpha}(\sigma^2) = \left(\frac{9*78.18^2}{19.02}, \frac{9*78.18^2}{2.7}\right) = (2892, 20374).$$

donde $\chi^2_{n-1;\alpha/2}=\chi^2_{9;0.025}=19.02\;\;$ y $\chi^2_{n-1;1-\alpha/2}=\chi^2_{9;0.975}=2.7\;\;$

El número diario de piezas fabricadas por una máquina A en 5 días ha sido: 50, 48, 53, 60, 37; mientras que, en esos mismos días, una máquina B ha fabricado: 40, 51, 62, 55, 64.

Suponiendo independencia, se pide:

b) Construir un intervalo de confianza al nivel de confianza $1-\alpha=0.90$ para el cociente de las varianzas.

Sabemos que $X \sim N(\mu_1, \sigma_1^2) \;\; \text{y} \; Y \sim N(\mu_2, \sigma_2^2).$

Para construir el intervalo de confianza para el cociente de varianzas $\frac{\sigma_1^2}{\sigma_2^2}$, observamos que

$$W_1 = \frac{(n-1)S_1^2}{\sigma_1^2} \sim \chi_{n-1}^2$$

$$(n-1)S_2^2 \sim \chi_{n-1}^2$$

$$W_2 = \frac{(n-1)S_2^2}{\sigma_2^2} \sim \chi_{n-1}^2$$

y entonces

$$T\left((\mathbf{X}, \mathbf{Y}), \frac{\sigma_1^2}{\sigma_2^2}\right) = \frac{W_1/(n-1)}{W_2/(n-1)} = \frac{S_1^2}{S_2^2} \frac{\sigma_2^2}{\sigma_1^2} \sim F_{n-1, n-1}$$

es una cantidad pivotal para $\frac{\sigma_1^2}{\sigma_2^2}$. De esta forma, al nivel de confianza $1-\alpha$, hay que encontrar a y b de forma que

$$1 - \alpha = P\left(a < T\left((\mathbf{X}, \mathbf{Y}), \frac{\sigma_1^2}{\sigma_2^2}\right) < b\right).$$

Tomando probabilidad de colas iguales $a = F_{n-1,n-1;1-\alpha/2}$ y $b = F_{n-1,n-1;\alpha/2}$.

El intervalo de confianza para $\frac{\sigma_1^2}{\sigma_2^2}$ se obtiene al escribir la desigualdad en términos de $\frac{\sigma_1^2}{\sigma_2^2}$

$$F_{n-1,n-1;1-\alpha/2} < T\left((\mathbf{X},\mathbf{Y}), \frac{\sigma_1^2}{\sigma_2^2}\right) < F_{n-1,n-1;\alpha/2}$$

$$F_{n-1,n-1;1-\alpha/2} < \frac{S_1^2}{S_2^2} \frac{\sigma_2^2}{\sigma_1^2} < F_{n-1,n-1;\alpha/2}$$

$$\frac{S_1^2}{S_2^2} / F_{n-1,n-1;\alpha/2} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{S_1^2}{S_2^2} / F_{n-1,n-1;1-\alpha/2}$$

El intervalo de confianza al nivel $1-\alpha~$ para $\frac{\sigma_1^2}{\sigma_2^2}~$ es

$$IC_{1-\alpha}\left(\frac{\sigma_1^2}{\sigma_2^2}\right) = \left(\frac{\frac{S_1^2}{S_2^2}}{F_{n-1,n-1;\alpha/2}}, \frac{\frac{S_1^2}{S_2^2}}{F_{n-1,n-1;1-\alpha/2}}\right).$$

Las cuasivarianzas muestrales son $s_1^2=70.3~$ y $s_2^2=92.3.$ El intervalo de confianza al nivel $1-\alpha=0.9$ es

$$IC_{1-\alpha}\left(\frac{\sigma_1^2}{\sigma_2^2}\right) = \left(\frac{70.3/92.3}{6.39}, \frac{70.3/92.3}{0.156}\right) = (0.119, 4.882)$$

donde
$$F_{n-1,n-1;lpha/2}=F_{4,4;0.05}=6.39\,$$
 y
$$F_{n-1,n-1;1-lpha/2}=F_{4,4;0.95}=\frac{1}{F_{4,4;0.05}}=\frac{1}{6.39}=0.156.$$

a) Construir un intervalo de confianza al nivel de confianza $1-\alpha=0.95$ para la diferencia de medias.

Podemos asumir que $X \sim N(\mu_1, \sigma^2)~$ y $Y \sim N(\mu_2, \sigma^2)~$ y entonces

$$egin{array}{lcl} ar{X} & \sim & N(\mu_1, \sigma^2/n) \\ ar{Y} & \sim & N(\mu_2, \sigma^2/n) \\ ar{X} - ar{Y} & \sim & N(\mu_1 - \mu_2, 2\sigma^2/n) \end{array}$$

Por tanto,

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sigma\sqrt{2/n}} \sim N(0, 1)$$

.

Pero esta cantidad depende de σ , que es desconocida.

Por el lema de Fisher

$$\frac{(n-1)S_1^2}{\sigma^2} \sim \chi_{n-1}^2$$

$$\frac{(n-1)S_2^2}{\sigma^2} \sim \chi_{n-1}^2$$

Entonces

$$\frac{(n-1)S_1^2}{\sigma^2} + \frac{(n-1)S_2^2}{\sigma^2} = \frac{(n-1)S_1^2 + (n-1)S_2^2}{\sigma^2} \sim \chi_{2n-2}^2$$

Por tanto

$$T((\mathbf{X}, \mathbf{Y}), \mu_1 - \mu_2) = \frac{\frac{\bar{X}_1 - \bar{X}_2 - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{(n-1)S_1^2 + (n-1)S_2^2}{\sigma^2}}/(2n-2)}}{\sqrt{\frac{(n-1)S_1^2 + (n-1)S_2^2}{\sigma^2}}/(2n-2)} = \frac{(\bar{X}_1 - \bar{X}_2 - (\mu_1 - \mu_2))}{S_p \sqrt{2/n}} \sim t_{2n-2}$$

donde

$$S_p^2 = \frac{(n-1)S_1^2 + (n-1)S_2^2}{2n-2}$$

Entonces

$$a < T((\mathbf{X}, \mathbf{Y}), \mu_1 - \mu_2) < b$$

$$-t_{2n-2;\alpha/2} < T((\mathbf{X}, \mathbf{Y}), \mu_1 - \mu_2) < t_{2n-2;\alpha/2}$$

$$-t_{2n-2;\alpha/2} < \frac{(\bar{X} - \bar{Y} - (\mu_1 - \mu_2))}{S_p \sqrt{2/n}} < t_{2n-2;\alpha/2}$$

$$-t_{2n-2;\alpha/2} S_p \sqrt{2/n} < (\bar{X} - \bar{Y} - (\mu_1 - \mu_2)) < t_{2n-2;\alpha/2} S_p \sqrt{2/n}$$

$$\bar{X} - \bar{Y} - t_{2n-2;\alpha/2} S_p \sqrt{2/n} < \mu_1 - \mu_2 < \bar{X} - \bar{Y} + t_{2n-2;\alpha/2} S_p \sqrt{2/n}$$

y el intervalo de confianza al nivel 1-lpha para $\mu_1-\mu_2$ es

$$IC_{1-\alpha}(\mu_1 - \mu_2) = (\bar{X} - \bar{Y} - t_{2n-2;\alpha/2}S_p\sqrt{2/n}, \bar{X} - \bar{Y} + t_{2n-2;\alpha/2}S_p\sqrt{2/n}).$$

Las medias y las cuasivarianzas muestrales son $\bar{x}=49.6, \, \bar{y}=54.4, \, s_1^2=70.3\,$ y $s_2^2=92.3.$ El intervalo de confianza al nivel $1-\alpha=0.95$ es

$$IC_{1-\alpha}(\mu_1 - \mu_2) = (49.6 - 54.4 - 2.306 * 9.0166\sqrt{2/5}, 49.6 - 54.4 + 2.306 * 9.0166\sqrt{2/5})$$

$$IC_{1-\alpha}(\mu_1 - \mu_2) = (-17.9502, 8.3502)$$

donde

$$s_p = \sqrt{\frac{(n-1)S_1^2 + (n-1)S_2^2}{2n-2}} = \sqrt{\frac{4*70.3 + 4*92.3}{8}} = 9.0166$$

y
$$t_{2n-2;\alpha/2} = t_{8;0.025} = 2.306$$