# MA 322: Scientific Computing Lecture - 9



# Convergence of Lagrange's Interpolating polynomial

#### Result

• Suppose  $x_0, x_1, \ldots, x_n$  are distinct real numbers, and let f be a given real valued function with n+1 continuous derivatives on the interval  $I_t = \mathcal{H}\{t, x_0, x_1, \ldots, x_n\}$ , with t some given real number. Then there exits a number  $\xi_t \in I_t$  such that

$$f(t) - p_n(t) = \frac{f^{(n+1)}(\xi_t)}{(n+1)!}(t-x_0)(t-x_1)\dots(t-x_n), \qquad (1)$$

where  $p_n(t) = \sum_{j=0}^n f(x_j) \ell_j(t)$  is the Lagrange interpolating polynomial of f with degree n.

Proof. We define the error function *E* by

$$E(t) = f(t) - p_n(t), \quad p_n(t) = \sum_{j=0}^{n} f(x_j) \ell_j(t)$$
 (2)

# Convergence of Lagrange's Interpolating polynomial

Result

• Suppose  $x_0, x_1, \ldots, x_n$  are distinct real numbers, and let f be a given real valued function with n+1 continuous derivatives on the interval  $I_t = \mathcal{H}\{t, x_0, x_1, \ldots, x_n\}$ , with t some given real number. Then there exits a number  $\xi_t \in I_t$  such that

$$f(t)-p_n(t)=\frac{f^{(n+1)}(\xi_t)}{(n+1)!}(t-x_0)(t-x_1)\dots(t-x_n), \qquad (1)$$

where  $p_n(t) = \sum_{j=0}^n f(x_j) \ell_j(t)$  is the Lagrange interpolating polynomial of f with degree n.

Proof. We define the error function *E* by

$$E(t) = f(t) - p_n(t), \quad p_n(t) = \sum_{j=0}^{n} f(x_j) \ell_j(t)$$
 (2)

and a user defined function G by

$$G(x) = E(x) - \frac{\Psi(x)}{\Psi(t)}E(t)$$
(3)

with 
$$\Psi(x) = (x - x_0)(x - x_1) \dots (x - x_n)$$
.

Then for the user defined function

$$G(x) = E(x) - \frac{\Psi(x)}{\Psi(t)}E(t), \quad \Psi(x) = (x - x_0)(x - x_1)\dots(x - x_n), \quad (4)$$

observe that

$$G(x_i) = E(x_i) - \frac{\Psi(x_i)}{\Psi(t)}E(t) = 0, \quad i = 0, 1, 2, ..., n$$
 (5)

$$G(t) = E(t) - E(t) = 0.$$
 (6)

Then for the user defined function

$$G(x) = E(x) - \frac{\Psi(x)}{\Psi(t)}E(t), \quad \Psi(x) = (x - x_0)(x - x_1)\dots(x - x_n), \quad (4)$$

observe that

$$G(x_i) = E(x_i) - \frac{\Psi(x_i)}{\Psi(t)}E(t) = 0, \quad i = 0, 1, 2, ..., n$$
 (5)

$$G(t) = E(t) - E(t) = 0.$$
 (6)

Thus, the function G has n+2 distinct roots in the interval  $I_t$ .

Then for the user defined function

$$G(x) = E(x) - \frac{\Psi(x)}{\Psi(t)}E(t), \quad \Psi(x) = (x - x_0)(x - x_1)\dots(x - x_n), \quad (4)$$

observe that

$$G(x_i) = E(x_i) - \frac{\Psi(x_i)}{\Psi(t)} E(t) = 0, \quad i = 0, 1, 2, ..., n$$
 (5)

$$G(t) = E(t) - E(t) = 0.$$
 (6)

Thus, the function G has n+2 distinct roots in the interval  $I_t$ . Then using the MVT, G' has n+1 distinct roots in the interval  $I_t$ .

Then for the user defined function

$$G(x) = E(x) - \frac{\Psi(x)}{\Psi(t)}E(t), \quad \Psi(x) = (x - x_0)(x - x_1)\dots(x - x_n), \quad (4)$$

observe that

$$G(x_i) = E(x_i) - \frac{\Psi(x_i)}{\Psi(t)} E(t) = 0, \quad i = 0, 1, 2, ..., n$$
 (5)

$$G(t) = E(t) - E(t) = 0.$$
 (6)

Thus, the function G has n+2 distinct roots in the interval  $I_t$ . Then using the MVT, G' has n+1 distinct roots in the interval  $I_t$ . Inductively,  $G^{(n+1)}$  has one root, say  $\xi$ , in the interval  $I_t$ ,

Then for the user defined function

$$G(x) = E(x) - \frac{\Psi(x)}{\Psi(t)}E(t), \quad \Psi(x) = (x - x_0)(x - x_1)\dots(x - x_n), \quad (4)$$

observe that

$$G(x_i) = E(x_i) - \frac{\Psi(x_i)}{\Psi(t)} E(t) = 0, \quad i = 0, 1, 2, ..., n$$
 (5)

$$G(t) = E(t) - E(t) = 0.$$
 (6)

Thus, the function G has n+2 distinct roots in the interval  $I_t$ . Then using the MVT, G' has n+1 distinct roots in the interval  $I_t$ . Inductively,  $G^{(n+1)}$  has one root, say  $\xi$ , in the interval  $I_t$ , so that

$$G^{(n+1)}(\xi)=0.$$

Then for the user defined function

$$G(x) = E(x) - \frac{\Psi(x)}{\Psi(t)}E(t), \quad \Psi(x) = (x - x_0)(x - x_1)\dots(x - x_n), \quad (4)$$

observe that

$$G(x_i) = E(x_i) - \frac{\Psi(x_i)}{\Psi(t)} E(t) = 0, \quad i = 0, 1, 2, ..., n$$
 (5)

$$G(t) = E(t) - E(t) = 0.$$
 (6)

Thus, the function G has n+2 distinct roots in the interval  $I_t$ . Then using the MVT, G' has n+1 distinct roots in the interval  $I_t$ . Inductively,  $G^{(n+1)}$  has one root, say  $\xi$ , in the interval  $I_t$ , so that

$$G^{(n+1)}(\xi)=0.$$

Then, for the error function  $E(x) = f(x) - p_n(x)$ , we obtain

$$E^{(n+1)}(x) = f^{(n+1)}(x)$$

Then for the user defined function

$$G(x) = E(x) - \frac{\Psi(x)}{\Psi(t)}E(t), \quad \Psi(x) = (x - x_0)(x - x_1)\dots(x - x_n), \quad (4)$$

observe that

$$G(x_i) = E(x_i) - \frac{\Psi(x_i)}{\Psi(t)} E(t) = 0, \quad i = 0, 1, 2, ..., n$$
 (5)

$$G(t) = E(t) - E(t) = 0.$$
 (6)

Thus, the function G has n+2 distinct roots in the interval  $I_t$ . Then using the MVT, G' has n+1 distinct roots in the interval  $I_t$ . Inductively,  $G^{(n+1)}$  has one root, say  $\xi$ , in the interval  $I_t$ , so that

$$G^{(n+1)}(\xi)=0.$$

Then, for the error function  $E(x) = f(x) - p_n(x)$ , we obtain

$$E^{(n+1)}(x) = f^{(n+1)}(x) \& \Psi^{(n+1)}(x) = (n+1)!$$
 (7)

Then for the user defined function

$$G(x) = E(x) - \frac{\Psi(x)}{\Psi(t)}E(t), \quad \Psi(x) = (x - x_0)(x - x_1)\dots(x - x_n), \quad (4)$$

observe that

$$G(x_i) = E(x_i) - \frac{\Psi(x_i)}{\Psi(t)} E(t) = 0, \quad i = 0, 1, 2, ..., n$$
 (5)

$$G(t) = E(t) - E(t) = 0.$$
 (6)

Thus, the function G has n+2 distinct roots in the interval  $I_t$ . Then using the MVT, G' has n+1 distinct roots in the interval  $I_t$ . Inductively,  $G^{(n+1)}$  has one root, say  $\xi$ , in the interval  $I_t$ , so that

$$G^{(n+1)}(\xi)=0.$$

Then, for the error function  $E(x) = f(x) - p_n(x)$ , we obtain

$$E^{(n+1)}(x) = f^{(n+1)}(x) \& \Psi^{(n+1)}(x) = (n+1)!$$
 (7)

Therefore, we have

$$G^{(n+1)}(x) = f^{(n+1)}(x) - \frac{(n+1)!}{\Psi(t)} E(t)$$
 (8)

Now, substitute  $x = \xi$  in the following relation

$$G^{(n+1)}(x) = f^{(n+1)}(x) - \frac{(n+1)!}{\Psi(t)} E(t)$$
(9)

to obtain

$$E(t) = \frac{\Psi(t)}{(n+1)!} f^{(n+1)}(\xi). \tag{10}$$

Now, substitute  $x = \xi$  in the following relation

$$G^{(n+1)}(x) = f^{(n+1)}(x) - \frac{(n+1)!}{\Psi(t)} E(t)$$
(9)

to obtain

$$E(t) = \frac{\Psi(t)}{(n+1)!} f^{(n+1)}(\xi). \tag{10}$$

Hence, for any real number x, we have following error representations

$$f(x) - p_n(x) = \frac{(x - x_0)(x - x_1)\dots(x - x_n)}{(n+1)!} f^{(n+1)}(\xi_x), \tag{11}$$

where  $\xi_x \in \mathcal{H}\{x, x_0, x_1, \dots, x_n\}$ .

Now, substitute  $x = \xi$  in the following relation

$$G^{(n+1)}(x) = f^{(n+1)}(x) - \frac{(n+1)!}{\Psi(t)} E(t)$$
(9)

to obtain

$$E(t) = \frac{\Psi(t)}{(n+1)!} f^{(n+1)}(\xi). \tag{10}$$

Hence, for any real number x, we have following error representations

$$f(x) - p_n(x) = \frac{(x - x_0)(x - x_1)\dots(x - x_n)}{(n+1)!} f^{(n+1)}(\xi_x), \tag{11}$$

where  $\xi_x \in \mathcal{H}\{x, x_0, x_1, \dots, x_n\}$ .

#### Remark:

• Now, we wish to calculate the distance between f and  $p_n$ , which is done by introducing norm over function spaces.

Norm: Generalization of | · |

# Norm: Generalization of | · |

• Suppose  $(X, +, \cdot)$  is a vector space over  $\mathbb{R}$ .

• Suppose  $(X, +, \cdot)$  is a vector space over  $\mathbb{R}$ . Then, a real-valued function, denoted by  $\|\cdot\|$ , is called a **norm** if it satisfies the following properties:

- Suppose  $(X, +, \cdot)$  is a vector space over  $\mathbb{R}$ . Then, a real-valued function, denoted by  $\|\cdot\|$ , is called a **norm** if it satisfies the following properties:
  - $||x|| \ge 0$  for all  $x \in X$ , and ||x|| = 0 if and only if x = 0,

- Suppose  $(X, +, \cdot)$  is a vector space over  $\mathbb{R}$ . Then, a real-valued function, denoted by  $\|\cdot\|$ , is called a **norm** if it satisfies the following properties:
  - $||x|| \ge 0$  for all  $x \in X$ , and ||x|| = 0 if and only if x = 0,
  - $\|\alpha x\| = |\alpha| \|x\|$  for all  $x \in X$  and  $\alpha \in \mathbb{R}$ ,

- Suppose  $(X, +, \cdot)$  is a vector space over  $\mathbb{R}$ . Then, a real-valued function, denoted by  $\|\cdot\|$ , is called a **norm** if it satisfies the following properties:
  - $||x|| \ge 0$  for all  $x \in X$ , and ||x|| = 0 if and only if x = 0,
  - $\|\alpha x\| = |\alpha| \|x\|$  for all  $x \in X$  and  $\alpha \in \mathbb{R}$ ,
  - $||x + y|| \le ||x|| + ||y||$  for all  $x, y \in X$ .

- Suppose  $(X, +, \cdot)$  is a vector space over  $\mathbb{R}$ . Then, a real-valued function, denoted by  $\|\cdot\|$ , is called a **norm** if it satisfies the following properties:
  - $||x|| \ge 0$  for all  $x \in X$ , and ||x|| = 0 if and only if x = 0,
  - $\|\alpha x\| = |\alpha| \|x\|$  for all  $x \in X$  and  $\alpha \in \mathbb{R}$ ,
  - $||x + y|| \le ||x|| + ||y||$  for all  $x, y \in X$ .
- A vector space X equipped with a norm is called normed linear space and it is denoted by pair  $(X, \|\cdot\|)$ .

- Suppose  $(X, +, \cdot)$  is a vector space over  $\mathbb{R}$ . Then, a real-valued function, denoted by  $\|\cdot\|$ , is called a **norm** if it satisfies the following properties:
  - $||x|| \ge 0$  for all  $x \in X$ , and ||x|| = 0 if and only if x = 0,
  - $\|\alpha x\| = |\alpha| \|x\|$  for all  $x \in X$  and  $\alpha \in \mathbb{R}$ ,
  - $||x + y|| \le ||x|| + ||y||$  for all  $x, y \in X$ .
- A vector space X equipped with a norm is called normed linear space and it is denoted by pair  $(X, \|\cdot\|)$ .
- Remark:

- Suppose  $(X, +, \cdot)$  is a vector space over  $\mathbb{R}$ . Then, a real-valued function, denoted by  $\|\cdot\|$ , is called a **norm** if it satisfies the following properties:
  - $||x|| \ge 0$  for all  $x \in X$ , and ||x|| = 0 if and only if x = 0,
  - $\|\alpha x\| = |\alpha| \|x\|$  for all  $x \in X$  and  $\alpha \in \mathbb{R}$ ,
  - $||x + y|| \le ||x|| + ||y||$  for all  $x, y \in X$ .
- A vector space X equipped with a norm is called normed linear space and it is denoted by pair  $(X, \|\cdot\|)$ .
- Remark:
  - A norm  $\|\cdot\|$  on a vector space X defines the distance between two vectors in X.

- Suppose  $(X, +, \cdot)$  is a vector space over  $\mathbb{R}$ . Then, a real-valued function, denoted by  $\|\cdot\|$ , is called a **norm** if it satisfies the following properties:
  - $||x|| \ge 0$  for all  $x \in X$ , and ||x|| = 0 if and only if x = 0,
  - $\|\alpha x\| = |\alpha| \|x\|$  for all  $x \in X$  and  $\alpha \in \mathbb{R}$ ,
  - $||x + y|| \le ||x|| + ||y||$  for all  $x, y \in X$ .
- A vector space X equipped with a norm is called normed linear space and it is denoted by pair  $(X, \|\cdot\|)$ .
- Remark:
  - A norm || · || on a vector space X defines the distance between two vectors in X. How?

- Suppose  $(X, +, \cdot)$  is a vector space over  $\mathbb{R}$ . Then, a real-valued function, denoted by  $\|\cdot\|$ , is called a **norm** if it satisfies the following properties:
  - $||x|| \ge 0$  for all  $x \in X$ , and ||x|| = 0 if and only if x = 0,
  - $\|\alpha x\| = |\alpha| \|x\|$  for all  $x \in X$  and  $\alpha \in \mathbb{R}$ ,
  - $||x + y|| \le ||x|| + ||y||$  for all  $x, y \in X$ .
- A vector space X equipped with a norm is called normed linear space and it is denoted by pair  $(X, \|\cdot\|)$ .
- Remark:
  - A norm || · || on a vector space X defines the distance between two vectors in X. How?
  - Because a normed linear space  $(X, \|\cdot\|)$  is also a metric space with respect to the metric

# Norm: Generalization of | · |

- Suppose  $(X, +, \cdot)$  is a vector space over  $\mathbb{R}$ . Then, a real-valued function, denoted by  $\|\cdot\|$ , is called a **norm** if it satisfies the following properties:
  - $||x|| \ge 0$  for all  $x \in X$ , and ||x|| = 0 if and only if x = 0,
  - $\|\alpha x\| = |\alpha| \|x\|$  for all  $x \in X$  and  $\alpha \in \mathbb{R}$ ,
  - $||x + y|| \le ||x|| + ||y||$  for all  $x, y \in X$ .
- A vector space X equipped with a norm is called normed linear space and it is denoted by pair  $(X, \|\cdot\|)$ .
- Remark:
  - A norm || · || on a vector space X defines the distance between two vectors in X. How?
  - Because a normed linear space  $(X, \|\cdot\|)$  is also a metric space with respect to the metric

$$d(x,y) = ||x - y|| \ \forall x, y \in X.$$



- Suppose  $(X, +, \cdot)$  is a vector space over  $\mathbb{R}$ . Then, a real-valued function, denoted by  $\|\cdot\|$ , is called a **norm** if it satisfies the following properties:
  - $||x|| \ge 0$  for all  $x \in X$ , and ||x|| = 0 if and only if x = 0,
  - $\|\alpha x\| = |\alpha| \|x\|$  for all  $x \in X$  and  $\alpha \in \mathbb{R}$ ,
  - $||x + y|| \le ||x|| + ||y||$  for all  $x, y \in X$ .
- A vector space X equipped with a norm is called normed linear space and it is denoted by pair  $(X, \|\cdot\|)$ .
- Remark:
  - A norm || · || on a vector space X defines the distance between two vectors in X. How?
  - Because a normed linear space  $(X,\|\cdot\|)$  is also a metric space with respect to the metric

$$d(x,y) = ||x - y|| \ \forall x, y \in X.$$

• Therefore, in order to define the distance between two functions in C[a, b], we first try to associate vector space C[a, b] a norm.



• For  $f, g \in C[a, b]$ ,



• For  $f, g \in C[a, b]$ , the distance between f and g at a particular x is given by |f(x) - g(x)|.



• For  $f,g \in C[a,b]$ , the distance between f and g at a particular x is given by |f(x)-g(x)|. To measure the distance, which takes care all x, we may try to evaluate  $\max_{x \in [a,b]} |f(x)-g(x)|$ .



• For  $f,g \in C[a,b]$ , the distance between f and g at a particular x is given by |f(x)-g(x)|. To measure the distance, which takes care all x, we may try to evaluate  $\max_{x \in [a,b]} |f(x)-g(x)|$ . Does it represents the distance between f and g?



For f, g ∈ C[a, b], the distance between f and g at a particular x is given by |f(x) - g(x)|. To measure the distance, which takes care all x, we may try to evaluate max<sub>x∈[a,b]</sub> |f(x) - g(x)|. Does it represents the distance between f and g? It will measure the distance between f and g provided this distance is generated from a norm.



- For f, g ∈ C[a, b], the distance between f and g at a particular x is given by |f(x) g(x)|. To measure the distance, which takes care all x, we may try to evaluate max<sub>x∈[a,b]</sub> |f(x) g(x)|. Does it represents the distance between f and g? It will measure the distance between f and g provided this distance is generated from a norm.
- It is an easy exercise to verify that  $||f||_{\infty} = \max_{x \in [a,b]} |f(x)|$  defines a norm on C[a,b], known as infinity norm.



- For f, g ∈ C[a, b], the distance between f and g at a particular x is given by |f(x) g(x)|. To measure the distance, which takes care all x, we may try to evaluate max<sub>x∈[a,b]</sub> |f(x) g(x)|. Does it represents the distance between f and g? It will measure the distance between f and g provided this distance is generated from a norm.
- It is an easy exercise to verify that  $||f||_{\infty} = \max_{x \in [a,b]} |f(x)|$  defines a norm on C[a,b], known as infinity norm. The distance associated with this norm is given by

$$d_{\infty}(f,g) = \max_{x \in [a,b]} |(f-g)(x)| = \max_{x \in [a,b]} |f(x) - g(x)|.$$

- lacksquare In  $(C[a,b],d_{\infty})$ 
  - A sequence  $\langle f_n \rangle$  in C[a,b] is said to be convergent w.r.t  $d_{\infty}$ , if there exists a  $f \in C[a,b]$  s. t.

$$d_{\infty}(f_n, f) \to 0$$
 or equivalently  $||f_n - f||_{\infty} \to 0$  as  $n \to \infty$ . (12)

Remark:

- lacksquare In  $(C[a,b],d_{\infty})$ 
  - A sequence  $\langle f_n \rangle$  in C[a,b] is said to be convergent w.r.t  $d_{\infty}$ , if there exists a  $f \in C[a,b]$  s. t.

$$d_{\infty}(f_n, f) \to 0$$
 or equivalently  $||f_n - f||_{\infty} \to 0$  as  $n \to \infty$ . (12)

#### Remark:

• Convergence with respect to the  $\|\cdot\|_{\infty}$  norm leads to uniform convergence.



- lacksquare In  $(C[a,b],d_{\infty})$ 
  - A sequence  $\langle f_n \rangle$  in C[a,b] is said to be convergent w.r.t  $d_{\infty}$ , if there exists a  $f \in C[a,b]$  s. t.

$$d_{\infty}(f_n, f) \to 0$$
 or equivalently  $||f_n - f||_{\infty} \to 0$  as  $n \to \infty$ . (12)

#### Remark:

- Convergence with respect to the  $\|\cdot\|_\infty$  norm leads to uniform convergence. Again uniform convergence has following consequences
  - Uniform limit of a sequence of continuous functions is also continuous.

- lacksquare In  $(C[a,b],d_{\infty})$ 
  - A sequence  $\langle f_n \rangle$  in C[a,b] is said to be convergent w.r.t  $d_{\infty}$ , if there exists a  $f \in C[a,b]$  s. t.

$$d_{\infty}(f_n, f) \to 0$$
 or equivalently  $||f_n - f||_{\infty} \to 0$  as  $n \to \infty$ . (12)

#### Remark:

- Convergence with respect to the  $\|\cdot\|_{\infty}$  norm leads to uniform convergence. Again uniform convergence has following consequences
  - Uniform limit of a sequence of continuous functions is also continuous.
  - If  $f_n \to f$  converges in  $(C[a, b], d_\infty)$ , then

$$\lim_{n\to\infty}\int_a^b f_n(x)dx = \int_a^b \lim_{n\to\infty} f_n(x)dx = \int_a^b f(x)dx. \tag{13}$$



# About Uniform Convergence of Interpolating Polynomials

Consider again the error formula

$$f(x) - p_n(x) = \frac{(x - x_0)(x - x_1)\dots(x - x_n)}{(n+1)!} f^{(n+1)}(\xi_x), \tag{14}$$

where  $\xi_x \in \mathcal{H}\{x, x_0, x_1, ..., x_n\}$ .

# About Uniform Convergence of Interpolating Polynomials

Consider again the error formula

$$f(x) - p_n(x) = \frac{(x - x_0)(x - x_1)\dots(x - x_n)}{(n+1)!} f^{(n+1)}(\xi_x), \tag{14}$$

where  $\xi_x \in \mathcal{H}\{x, x_0, x_1, \dots, x_n\}$ . Then for any interval I that contains  $\mathcal{H}\{x, x_0, x_1, \dots, x_n\}$  and for  $f \in C^{(n+1)}(I)$ , we obtain

$$\max_{x \in I} |f(x) - p_n(x)| \le \frac{1}{(n+1)!} \max_{x \in I} |f^{(n+1)}(\xi_x)| \max_{x \in I} |\Psi_n(x)|, \tag{15}$$

where  $\Psi_n(x) = (x - x_0)(x - x_1) \dots (x - x_n)$ 

Remark:

• Now,  $p_n \to f$  uniformly provided quantities

$$M_{n+1} = \max_{x \in I} |f^{(n+1)}(\xi_x)|$$
 and  $\max_{x \in I} |\Psi_n(x)|$ 

are uniformly bounded in I.

# About Uniform Convergence of Interpolating Polynomials

Consider again the error formula

$$f(x) - p_n(x) = \frac{(x - x_0)(x - x_1)\dots(x - x_n)}{(n+1)!} f^{(n+1)}(\xi_x), \tag{14}$$

where  $\xi_x \in \mathcal{H}\{x,x_0,x_1,\ldots,x_n\}$ . Then for any interval I that contains  $\mathcal{H}\{x,x_0,x_1,\ldots,x_n\}$  and for  $f \in C^{(n+1)}(I)$ , we obtain

$$\max_{x \in I} |f(x) - p_n(x)| \le \frac{1}{(n+1)!} \max_{x \in I} |f^{(n+1)}(\xi_x)| \max_{x \in I} |\Psi_n(x)|, \tag{15}$$

where  $\Psi_n(x) = (x - x_0)(x - x_1) \dots (x - x_n)$ 

Remark:

• Now,  $p_n \to f$  uniformly provided quantities

$$M_{n+1} = \max_{x \in I} |f^{(n+1)}(\xi_x)| \text{ and } \max_{x \in I} |\Psi_n(x)|$$

are uniformly bounded in I. More precisely, we may expect  $\|f-p_n\|_{\infty}\to 0$  as  $n\to\infty$  for  $C^{\infty}$  (infinitely many times differentiable functions) functions when

$$\left(M_{n+1}\cdot\max_{x\in I}|\Psi_n(x)|\right)$$
 are uniformly bounded in  $I$ .

Unfortunately, this is not so, since the sequence

$$\left(M_{n+1}\cdot\max_{x\in I}|\Psi_n(x)|\right)$$

may tend to  $\infty$ , as  $n \to \infty$ , faster than the sequence  $\frac{1}{(n+1)!}$  tends to 0.

Unfortunately, this is not so, since the sequence

$$\left(M_{n+1}\cdot\max_{x\in I}|\Psi_n(x)|\right)$$

may tend to  $\infty$ , as  $n \to \infty$ , faster than the sequence  $\frac{1}{(n+1)!}$  tends to 0. This is known as *Runge phenomenon*.

Unfortunately, this is not so, since the sequence

$$\left(M_{n+1}\cdot\max_{x\in I}|\Psi_n(x)|\right)$$

may tend to  $\infty$ , as  $n \to \infty$ , faster than the sequence  $\frac{1}{(n+1)!}$  tends to 0. This is known as *Runge phenomenon*. Example:

Unfortunately, this is not so, since the sequence

$$\left(M_{n+1}\cdot\max_{x\in I}|\Psi_n(x)|\right)$$

may tend to  $\infty$ , as  $n \to \infty$ , faster than the sequence  $\frac{1}{(n+1)!}$  tends to 0. This is known as *Runge phenomenon*.

Example: Consider the function  $f(x) = \frac{1}{1+x^2}$ ,  $x \in [-5, 5]$  and let us try to calculate  $||f - p_n||$  for different values of n.

Unfortunately, this is not so, since the sequence

$$\left(M_{n+1}\cdot\max_{x\in I}|\Psi_n(x)|\right)$$

may tend to  $\infty$ , as  $n \to \infty$ , faster than the sequence  $\frac{1}{(n+1)!}$  tends to 0. This is known as *Runge phenomenon*.

Example: Consider the function  $f(x) = \frac{1}{1+x^2}$ ,  $x \in [-5, 5]$  and let us try to calculate  $||f - p_n||$  for different values of n.

| Degree $n$ | Max error |
|------------|-----------|
| 2          | 0.65      |
| 4          | 0.44      |
| 6          | 0.61      |
| 8          | 1.04      |
| 10         | 1.92      |
| 12         | 3.66      |
| 14         | 7.15      |
| 16         | 14.25     |
| 18         | 28.74     |
| 20         | 58.59     |
| 22         | 121.02    |
| 24         | 252.78    |