Introduction to Aerial Robotics Lecture 4

Shaojie Shen
Assistant Professor
Dept. of ECE, HKUST

29 September 2015

Outline

- Review: Quadrotor Control
- Trajectory Generation

Review: Quadrotor Control

Quadrotor Dynamics

Quadrotor Dynamics

- Motor model: $\dot{\omega}_i = k_m(\omega_i^{des} \omega_i)$
- Thrust from individual motor: $F_i = k_F \omega_i^2$
- Moment from individual motor: $M_i = k_M \omega_i^2$

Newton Equation:
$$m\ddot{\pmb{r}} = \begin{bmatrix} 0 \\ 0 \\ -mg \end{bmatrix} + \pmb{R} \begin{bmatrix} 0 \\ 0 \\ F_1 + F_2 + F_3 + F_4 \end{bmatrix}$$

• Euler Equation:
$$I \cdot \begin{bmatrix} \dot{\omega}_x \\ \dot{\omega}_y \\ \dot{\omega}_z \end{bmatrix} + \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix} \times I \cdot \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix} = \begin{bmatrix} l(F_2 - F_4) \\ l(F_3 - F_1) \\ M_1 - M_2 + M_3 - M_4 \end{bmatrix}$$

Control for Hovering

$$m\ddot{\mathbf{r}} = \begin{bmatrix} 0\\0\\-mg \end{bmatrix} + R \begin{bmatrix} 0\\0\\F_1 + F_2 + F_3 + F_4 \end{bmatrix}$$
 ation
$$u_1$$

Linearization

$$(u_1 \sim mg, \theta \sim 0, \phi \sim 0, \psi \sim \psi_0)$$
$$\ddot{r}_1 = \ddot{x} = g(\theta \cos \psi + \phi \sin \psi)$$

$$\ddot{r}_2 = \ddot{y} = g(\theta \sin \psi - \phi \cos \psi)$$

Trajectory Generation

Smooth 3D Trajectories

- Smooth trajectory is beneficial for autonomous flight
 - Smooth trajectories respect the continuous nature of aerial robots
 - The robot should not stop at turns

Smooth 3D Trajectories

- General setup
 - Start, goal positions (orientations)
 - Waypoint positions (orientations)
 - Waypoints can be found by path planning (A*, RRT*, etc)
 - Smoothness criterion
 - Generally translates into minimizing rate of change of "input"

- The states and the inputs of a quadrotor can be written as algebraic functions of four carefully selected flat outputs and their derivatives
 - Enables automated generation of trajectories
 - Any smooth trajectory in the space of flat outputs (with reasonably bounded derivatives) can be followed by the under-actuated quadrotor
 - A possible choice:
 - $\sigma = [x, y, z, \psi]^T$
 - Trajectory in the space of flat outputs:
 - $\sigma(t) = [T_0, T_M] \rightarrow \mathbb{R}^3 \times SO(2)$

- Quadrotor states
 - Position, orientation, linear velocity, angular velocity

$$\mathbf{x} = [x, y, z, \phi, \theta, \psi, \dot{x}, \dot{y}, \dot{z}, p, q, r]^{T}$$

– Equation of motions:

$$m\ddot{\mathbf{r}} = -mg\mathbf{z}_W + u_1\mathbf{z}_B.$$

$$\dot{\omega}_{\mathcal{BW}} = \mathcal{I}^{-1} \left[-\omega_{\mathcal{BW}} \times \mathcal{I}\omega_{\mathcal{BW}} + \left[\begin{array}{c} u_2 \\ u_3 \\ u_4 \end{array} \right] \right]$$

 Position, velocity, and acceleration are simply derivatives of the flat outputs

- Orientation
 - Quadrotor state:

$$\mathbf{x} = [x, y, z, \phi, \theta, \psi, \dot{x}, \dot{y}, \dot{z}, p, q, r]^{T}$$

- From the equation of motion:

$$\mathbf{z}_B = \frac{\mathbf{t}}{\|\mathbf{t}\|}, \ \mathbf{t} = \left[\ddot{\sigma}_1, \ \ddot{\sigma}_2, \ \ddot{\sigma}_3 + g\right]^T$$

- Define the yaw vector (Z-X-Y Euler):

$$\mathbf{x}_C = \left[\cos \sigma_4, \sin \sigma_4, \ 0\right]^T$$

$$\mathbf{y}_B = \frac{\mathbf{z}_B \times \mathbf{x}_C}{\|\mathbf{z}_B \times \mathbf{x}_C\|}, \ \mathbf{x}_B = \mathbf{y}_B \times \mathbf{z}_B \qquad {}^W R_B = [\mathbf{x}_B \ \mathbf{y}_B \ \mathbf{z}_B]$$

- Angular velocity
 - Quadrotor state:

$$\mathbf{x} = [x, y, z, \phi, \theta, \psi, \dot{x}, \dot{y}, \dot{z}, p, q, r]^{T}$$

Take the derivative of the equation of motion

$$m\ddot{\mathbf{r}} = -mg\mathbf{z}_W + u_1\mathbf{z}_B. \longrightarrow m\dot{\mathbf{a}} = \dot{u}_1\mathbf{z}_B + \omega_{\mathcal{B}W} \times u_1\mathbf{z}_B$$

— Quadrotors only have vertical thrust:

Body angular velocity viewed in the world frame

$$\dot{u}_1 = \mathbf{z}_B \cdot m\dot{\mathbf{a}}$$

- We have:

$$\mathbf{h}_{\omega} = \omega_{\mathcal{BW}} \times \mathbf{z}_{B} = \frac{m}{u_{1}} (\dot{\mathbf{a}} - (\mathbf{z}_{B} \cdot \dot{\mathbf{a}}) \mathbf{z}_{B}).$$

- Angular velocity
 - Quadrotor state:

$$\mathbf{x} = [x, y, z, \phi, \theta, \psi, \dot{x}, \dot{y}, \dot{z}, p, q, r]^{T}$$

— We have:

$$\mathbf{h}_{\omega} = \omega_{\mathcal{BW}} \times \mathbf{z}_{B} = \frac{m}{u_{1}} (\dot{\mathbf{a}} - (\mathbf{z}_{B} \cdot \dot{\mathbf{a}}) \mathbf{z}_{B}).$$

- This is the projection of $\frac{m}{u_1}\dot{a}$ onto the x_B-y_B plane
- We know that:

$$\omega_{\mathcal{BW}} = p\mathbf{x}_B + q\mathbf{y}_B + r\mathbf{z}_B.$$

- Angular velocities along x_B and y_B directions can be found as:

$$p = -\mathbf{h}_{\omega} \cdot \mathbf{y}_{B}, \ q = \mathbf{h}_{\omega} \cdot \mathbf{x}_{B}$$

- Angular velocity
 - Quadrotor state:

$$\mathbf{x} = [x, y, z, \phi, \theta, \psi, \dot{x}, \dot{y}, \dot{z}, p, q, r]^{T}$$

– We have:

$$\mathbf{h}_{\omega} = \omega_{\mathcal{BW}} \times \mathbf{z}_{B} = \frac{m}{u_{1}} (\dot{\mathbf{a}} - (\mathbf{z}_{B} \cdot \dot{\mathbf{a}})\mathbf{z}_{B}).$$

- This is the projection of $\frac{m}{u_1}\dot{a}$ onto the x_B-y_B plane
- Since $\omega_{BW}=\omega_{BC}+\omega_{CW}$, where ω_{BC} has no z_B component:

$$r = \omega_{CW} \cdot \mathbf{z}_B = \dot{\psi} \mathbf{z}_W \cdot \mathbf{z}_B.$$

- Summary
 - Quadrotor state:

$$\mathbf{x} = [x, y, z, \phi, \theta, \psi, \dot{x}, \dot{y}, \dot{z}, p, q, r]^{T}$$

- Flat outputs:
 - $\sigma = [x, y, z, \psi]^T$
- Position, velocity, acceleration
 - Derivatives of flat outputs
- Orientation

$$\mathbf{x}_C = [\cos \sigma_4, \sin \sigma_4, 0]^T \longrightarrow {}^W R_B = [\mathbf{x}_B \ \mathbf{y}_B \ \mathbf{z}_B]$$

Angular velocity

$$p = -\mathbf{h}_{\omega} \cdot \mathbf{y}_{B}, \ q = \mathbf{h}_{\omega} \cdot \mathbf{x}_{B}$$

$$r = \omega_{CW} \cdot \mathbf{z}_B = \dot{\psi} \mathbf{z}_W \cdot \mathbf{z}_B.$$

How about Inputs (u_1, u_2) ??

commanded
$$\mathbf{r}, \mathbf{r}$$
 actual (feedback) $(\ddot{r}_{i,des} - \ddot{r}_{i,c}) + k_{d,i}(\dot{r}_{i,des} - \dot{r}_i) + k_{p,i}(r_{i,des} - \dot{r}_i) = 0$ specified

$$u_{1} = m(g + \ddot{r}_{3,c}) \qquad \qquad \phi_{c} = \frac{1}{g}(\ddot{r}_{1,c}\sin\psi_{des} - \ddot{r}_{2,c}\cos\psi_{des})$$

$$\theta_{c} = \frac{1}{g}(\ddot{r}_{1,c}\cos\psi_{des} + \ddot{r}_{2,c}\sin\psi_{des})$$

$$\mathbf{u}_{2} = \begin{bmatrix} k_{p,\phi}(\phi_{c} - \phi) + k_{d,\phi}(p_{c} - p) \\ k_{p,\theta}(\theta_{c} - \theta) + k_{d,\theta}(q_{c} - q) \\ k_{p,\psi}(\psi_{c} - \psi) + k_{d,\psi}(r_{c} - r) \end{bmatrix}$$

Polynomial Trajectories

Flat outputs:

$$-\sigma = [x, y, z, \psi]^T$$

Trajectory in the space of flat outputs:

$$-\sigma(t) = [T_0, T_M] \to \mathbb{R}^3 \times SO(2)$$

- Polynomial functions can be used to specify trajectories in the space of flat outputs
 - Easy determination of smoothness criterion with polynomial orders
 - Easy and closed form calculation of derivatives
 - Decoupled trajectory generation in three dimensions

• Design a trajectory x(t) such that:

$$-x(0)=a$$

$$-x(T)=b$$

• 5^{th} order polynomial trajectory:

$$-x(t) = c_5 t^5 + c_4 t^4 + c_3 t^3 + c_2 t^2 + c_1 t + c_0$$

Boundary conditions

	Position	Velocity	Acceleration
t = 0	a	0	0
t = T	Ь	0	0

Solve:

$$\begin{bmatrix} a \\ b \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ T^5 & T^4 & T^3 & T^2 & T & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 5T^4 & 4T^3 & 3T^2 & 2T & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 20T^3 & 12T^2 & 6T & 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} c_5 \\ c_4 \\ c_3 \\ c_2 \\ c_1 \\ c_0 \end{bmatrix}$$

Bang-Bang Trajectory

Smooth Multi-Segment Trajectory

- Smooth the corners of straight line segments
- Preferred constant velocity motion at v
- Preferred zero acceleration
- Requires special handling of short segments

• Generate each 5^{th} order polynomial indepently:

$$-x(t) = c_5 t^5 + c_4 t^4 + c_3 t^3 + c_2 t^2 + c_1 t + c_0$$

Boundary conditions

	Position	Velocity	Acceleration
t = 0	a	v_0	0
t = T	Ь	v_T	0

• Solve:

$$\begin{bmatrix} a \\ b \\ \mathbf{v}_{0} \\ \mathbf{v}_{0} \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ T^{5} & T^{4} & T^{3} & T^{2} & T & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 5T^{4} & 4T^{3} & 3T^{2} & 2T & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 20T^{3} & 12T^{2} & 6T & 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} c_{5} \\ c_{4} \\ c_{3} \\ c_{2} \\ c_{1} \\ c_{0} \end{bmatrix}$$

Optimization-based Trajectory Generation

- Explicitly minimize certain derivatives in the space of flat outputs
- Quadrotor dynamics

Derivative	Translation	Rotation	Thrust
0	Position		
1	Velocity		
2	Acceleration	Rotation	
3	Jerk	Angular Velocity	
4	Snap	Angular Acceleration	Differential Thrust
5	Crackle	Angular Jerk	Change in Thrust

Optimization-based Trajectory Generation

- Explicitly minimize certain derivatives in the space of flat outputs
 - Minimum jerk: minimize angular velocity, good for visual tracking
 - Minimum snap: minimize differential thrust, saves energy

Derivative	Translation	Rotation	Thrust
0	Position		
1	Velocity		
2	Acceleration	Rotation	
3	Jerk	Angular Velocity	
4	Snap	Angular Acceleration	Differential Thrust
5	Crackle	Angular Jerk	Change in Thrust

Multi-segment minimum snap trajectory

Formulation – segment durations must be known!

$$f(t) = \begin{cases} f_1(t) \doteq \sum_{i=0}^{N} p_{1,i} (t - T_0)^i & T_0 \le t \le T_1 \\ f_2(t) \doteq \sum_{i=0}^{N} p_{2,i} (t - T_1)^i & T_1 \le t \le T_2 \\ & \vdots \\ f_M(t) \doteq \sum_{i=0}^{N} p_{M,i} (t - T_{M-1})^i & T_{M-1} \le t \le T_M \end{cases}$$

Subject to:

Derivative constraints:
$$\begin{cases} f_{j}^{(k)}(T_{j-1}) &= x_{0,j}^{(k)} \\ f_{j}^{(k)}(T_{j}) &= x_{T,j}^{(k)} \end{cases}$$

Continuity constraints:
$$f_j^{(k)}(T_j) = f_{j+1}^{(k)}(T_j)$$

- Minimum degree polynomial:
 - Minimum jerk: N = 2 * 3(jerk) 1 = 5
 - Minimum snap: N = 2 * 4(snap) 1 = 7

Cost function for one polynomial segment:

$$f(t) = \sum_{i} p_{i} t^{i}$$

$$\Rightarrow f^{(4)}(t) = \sum_{i \geq 4} i(i-1)(i-2)(i-3)t^{i-4}p_{i}$$

$$\Rightarrow (f^{(4)}(t))^{2} = \sum_{i \geq 4, j \geq 4} i(i-1)(i-2)(i-3)j(j-1)(j-2)(j-3)t^{i+j-8}p_{i}p_{j}$$

$$\Rightarrow J(T) = \int_{0}^{T} (f^{(4)}(t))^{2} dt = \sum_{i \geq 4, j \geq 4} \frac{i(i-1)(i-2)(i-3)j(j-1)(j-2)(j-3)}{i+j-7} T^{i+j-7}p_{i}p_{j}$$

$$\Rightarrow J(T) = \int_{0}^{T} (f^{(4)}(t))^{2} dt = \begin{bmatrix} \vdots \\ p_{i} \\ \vdots \end{bmatrix}^{T} \begin{bmatrix} \vdots \\ p_{i} \\ \vdots \end{bmatrix}^{T} \begin{bmatrix} \vdots \\ p_{i+j-7} \\ \vdots \end{bmatrix}^{T} \begin{bmatrix} \vdots \\ p_{j} \\ \vdots \end{bmatrix}^{T} \begin{bmatrix} \vdots \\ p$$

$$\Rightarrow J_k(T) = \mathbf{p}_k^T \mathbf{Q}_k \mathbf{p}_k$$

Minimize this!

- Derivative constraint for one polynomial segment
 - Also models waypoint constraint (0^{th} order derivative)

$$f_{j}^{(k)}(T_{j}) = x_{j}^{(k)}$$

$$\Rightarrow \sum_{i \geq k} \frac{i!}{(i-k)!} T_{j}^{i-k} p_{j,i} = x_{T,j}^{(k)}$$

$$\Rightarrow \left[\cdots \quad \frac{i!}{(i-k)!} T_{j}^{i-k} \quad \cdots \right] \left[\begin{array}{c} \vdots \\ p_{j,i} \\ \vdots \end{array} \right] = x_{T,j}^{(k)}$$

$$\Rightarrow \left[\cdots \quad \frac{i!}{(i-k)!} T_{j-1}^{i-k} \quad \cdots \right] \left[\begin{array}{c} \vdots \\ p_{j,i} \\ \vdots \end{array} \right] = \left[\begin{array}{c} x_{0,j}^{(k)} \\ x_{T,j}^{(k)} \end{array} \right]$$

$$\Rightarrow \mathbf{A}_{j} \mathbf{p}_{j} = \mathbf{d}_{j}$$

- Continuity constraint between two segments:
 - Ensures continuity between trajectory segments when no specific derivatives are given

$$f_{j}^{(k)}(T_{j}) = f_{j+1}^{(k)}(T_{j})$$

$$\Rightarrow \sum_{i \geq k} \frac{i!}{(i-k)!} T_{j}^{i-k} p_{j,i} - \sum_{l \geq k} \frac{l!}{(l-k)!} T_{j}^{l-k} p_{j+1,l} = 0$$

$$\Rightarrow \left[\cdots \quad \frac{i!}{(i-k)!} T_{j}^{i-k} \quad \cdots \quad -\frac{l!}{(l-k)!} T_{j}^{l-k} \quad \cdots \right] \begin{bmatrix} \vdots \\ p_{j,i} \\ \vdots \\ p_{j+1,l} \\ \vdots \end{bmatrix} = 0$$

$$\Rightarrow \left[\mathbf{A}_{j} \quad -\mathbf{A}_{j+1} \right] \begin{bmatrix} \mathbf{p}_{j} \\ \mathbf{p}_{j+1} \end{bmatrix} = 0$$

Constrained quadratic programming (QP) formulation:

$$\min \begin{bmatrix} \mathbf{p}_1 \\ \vdots \\ \mathbf{p}_M \end{bmatrix}^T \begin{bmatrix} \mathbf{Q}_1 \\ & \ddots \\ & \mathbf{Q}_M \end{bmatrix} \begin{bmatrix} \mathbf{p}_1 \\ \vdots \\ \mathbf{p}_M \end{bmatrix}$$
s.t.
$$\mathbf{A} \begin{bmatrix} \mathbf{p}_1 \\ \vdots \\ \mathbf{p}_M \end{bmatrix} = \begin{bmatrix} \mathbf{d}_1 \\ \vdots \\ \mathbf{d}_M \end{bmatrix}$$

- Direct optimization of polynomial trajectories is numerically unstable
- A change of variable that instead optimizes segment endpoint derivatives is preferred

$$J = \begin{bmatrix} \mathbf{d}_1 \\ \vdots \\ \mathbf{d}_M \end{bmatrix}^T \begin{bmatrix} A_1 \\ \ddots \\ A_M \end{bmatrix}^{-T} \begin{bmatrix} Q_1 \\ \ddots \\ Q_M \end{bmatrix} \begin{bmatrix} A_1 \\ \ddots \\ A_M \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{d}_1 \\ \vdots \\ \mathbf{d}_M \end{bmatrix}$$

- Use a selection matrix to separate free and constrained variables
 - Free variables: derivatives unspecified, only enforced by continuity constraints

$$J = \begin{bmatrix} \mathbf{d}_F \\ \mathbf{d}_P \end{bmatrix}^T \underbrace{CA^{-T}QA^{-1}C^T}_{P} \begin{bmatrix} \mathbf{d}_F \\ \mathbf{d}_P \end{bmatrix} = \begin{bmatrix} \mathbf{d}_F \\ \mathbf{d}_P \end{bmatrix}^T \begin{bmatrix} R_{FF} & R_{FP} \\ R_{PF} & R_{PP} \end{bmatrix} \begin{bmatrix} \mathbf{d}_F \\ \mathbf{d}_P \end{bmatrix}$$

 Turned into an unconstrained quadratic programming that can be solved in closed form:

$$J = \mathbf{d}_F^T R_{FF} \mathbf{d}_F + \mathbf{d}_F^T R_{FP} \mathbf{d}_P + \mathbf{d}_P^T R_{PF} \mathbf{d}_F + \mathbf{d}_P^T R_{PP} \mathbf{d}_P$$
$$\mathbf{d}_P^* = -R_{PP}^{-1} R_{FP}^T \mathbf{d}_F$$

Final trajectory

Aggressive Quadrotor Part II

Daniel Mellinger and Vijay Kumar GRASP Lab, University of Pennsylvania

Smooth Trajectory Generation with Guaranteed Obstacle Avoidance

Smooth Trajectory Generation with Guaranteed Obstacle Avoidance

(a) The proposed method

(b) Our previous method [17] (c) Waypoint-based method [2]

Smooth Trajectory Generation with Guaranteed Obstacle Avoidance

Quadratic programming formulation

min
$$\mathbf{p}^{T}\mathbf{H}\mathbf{p}$$

s.t. $\mathbf{A}_{eq}\mathbf{p} = \mathbf{b}_{eq}$
 $\mathbf{A}_{lq}\mathbf{p} \leq \mathbf{b}_{lq}$

sition points within overlapping regions

Results - Trajectory Generation with Obstacle Avoidance

Results - Trajectory Generation with Obstacle Avoidance

Online Generation of Collision-Free Trajectories for Quadrotor Flight In Unknown Environments

Jing Chen, Tianbo Liu, and Shaojie Shen

High resolution video available at: http://www.ece.ust.hk/~eeshaojie/icra2016jing.mp4

Reading

- Paper Reading: "The GRASP Multiple Micro-UAV Test Bed", Nathan Michael, Daniel Mellinger, Quentin Lindsey, and Vijay Kumar.
- Paper Reading: "Minimum Snap Trajectory Generation and Control for Quadrotors", Daniel Mellinger and Vijay Kumar.

Logistics

- Project 1, phase 2 will be released tomorrow (30/9)
 - Tentative due: 7/10