

BEIJING 2017

智能运维里的时间序列

异常检测•根源分析•预测

赵宇辰/销售易技术VP

智能运维里的时间序列

- 性能监控里的时间序列
- 传统方法
- AI + 时间序列
 - 异常检测
 - 根源分析
- 总结

性能监控里的时间序列

常见的时间序列 / metrics:

- Block Time (ms), Average Block Time (ms)
- Calls, Number of Calls
- Calls/min, Calls per Minute
- CPU Used (ms), JVM CPU Burnt (ms/min)
- Errors/min, Errors per Minute
- Response Time (ms), Average Response Time (ms), Avg. Time per Call
- Slow Transactions, Number of Slow Calls
- Stalled Transactions, Stall Count
- Wait Time (ms), Average Wait time (ms)

性能监控里的时间序列

常见的时间序列类型:

- Backends / 后端
- End User Monitoring / 用户UE
- Mobile / 手机
- Service End Points / 服务端
- Overall Application Performance / 全局
- Business Transaction Performance / 业务相关
- Application Infrastructure Performance / 基础设施
- Errors / 错误

性能上控里的时间序列

常见的时间序列计算:

- 原始数值 (observation)
- 最小值 / 最大值 (min / max)
- 总和 (sum)
- 平均值 (avg)
- 数量 (count)
- 百分比(%)
- 百分位数 (percentile)

智能运维里的时间序列

- 性能监控里的时间序列
- 传统方法
- AI + 时间序列
 - 异常检测
 - 根源分析
- 总结

传统方法

方法一:固定阈值

- 如果value > 阈值X,发出警报
- 如果value < 阈值Y, 发出警报

传统方法

方法二:动态阈值

- 计算
- (1) 平均值 µ
- (2) 方差 σ
- 正常取值区间: μ ± 2σ
- 如果value在区间外,发出警报

传统方法往往效果不好

原因1: 忽视周期性 (seasonality)

周期性的时间序列

例子:

- · 每两小时的定时任务 (cron job)
- 每两周升级计划

周期性的时间序列

在平均值附近,传统方法不会发出警报,但是否真的没有异常?

原因2: 忽视趋势 (trend)

时间序列里的趋势

时间序列里往往包含趋势:

- 增长的趋势
- 降低的趋势

传统方法(固定阈值/历史平均值)

- 用过去的数据作为标准
- 造成误判 (false positive)

原因3: 数据是不完美的

理论看上去很美

- 计算
- (1) 平均值 µ
- (2) 方差 σ
- 正常取值区间: μ ± 2σ
- · 如果value在区间外,发出警报

基于normal distribution的假设

即便数据符合normal distribution...

假设每个metric每一分钟有一个值(比如errors per min, avg latency per min等)

- 每天有: 1 x 60 x 24 = 1,440 数据点
- 假设我们用μ±3σ区间
- 根据normal distribution定义,99.7%的数据在该范围内
- 1,440 x 99.7% = 1435.68个数据点被认为正常
- 系统认为1,440-1435.68 = 4.32个数据点为异常

这意味着:

• 即使完全正常,每天每个metric会收到4.32个错误警报提醒(false alarms)!

原因4:数据孤岛

数据孤岛

- 每个metric被单独考虑
- · 系统里有成千上万个metric
- 彼此相互联系 / 关联
- · 能否把所有的metrics联合起来一起考虑?

Photo Credit: Argos @ Uber

智能运维里的时间序列

- 性能监控里的时间序列
- 传统方法
- AI + 时间序列
 - 异常检测
 - 根源分析
- 总结

Moving Average Based

- 对历史值赋予不同权重
- Autoregressive Integrated Moving Average (ARIMA)
- 几乎所有的time series包里都有实现
- 缺点:
 - 需手动设置参数
 - · assumption较为简单

Exponential Smoothing Based

- Double exponential (Holt-Linear):
 - · 能追踪level和trend
- Triple exponential:
 - · 能追踪level和trend
 - · 还能追踪seasonality
- 缺点:
 - · 需手动设置参数

分解 (decomposition) Based

- DFT (Discrete Fourier Transform) / 傅立叶分解
 - 对周期性数据效果较好
 - · 对spike model能力较弱

分解 (decomposition) Based

- DWT (Discrete Wavelet Transform) / 小波分解
 - 速度快,压缩能力强
 - ·对spike等异常非常有效
- · 在分解后的模块(比如小波分解后的components)

上再进行auto regression

深度学习 (Deep Learning) Based

- Feedforward Neural Network
- Recurrent Neural Network (e.g., LSTM)
- Convolutional Neural Network

LSTM 例子:

- 1 input
- a hidden layer with 4 LSTM neurons
- an output layer

矩阵 (Matrix) Based

用sliding window构建矩阵,假设矩阵为low rank 分解矩阵后重建,差异大的地方为异常

- Principle Component Analysis
- SVD
- Robust PCA
- Auto-Encoder Neural Network
- Convolutional Auto-Encoder Neural Network

slice 1

业界应用

Twitter: Seasonal Hybrid ESD (S-H-ESD)

https://blog.twitter.com/2015/introducing-practical-and-robust-anomaly-detection-in-a-time-series

Netflix: Robust PCA

http://techblog.netflix.com/2015/02/rad-outlier-detection-on-big-data.html

Numenta: neural network
http://numenta.com/press/2015/11/10/numenta-anomaly-benchmark-nab-evaluates-anomaly-detection-techniques/

Anodot: online machine learning algorithm
http://www.anodot.com/

Linkedin: exponential smoothing
https://github.com/linkedin/luminol

Uber: multivariate non-linear model
https://eng.uber.com/argos/

Credit: Yi Hong @ AppDynamics

这么多方法,选哪个呢?

自动模型选取:Ensemble Learning

- 多个模型同时预测
- 根据历史数据调整不同模型权重
- 无需人工选取/调整
- 自动得到一个共同决策

• 异常检测

• 产生警报

智能运维里的时间序列

- 性能监控里的时间序列
- 传统方法
- AI + 时间序列
 - 异常检测
 - · 根源分析
- 总结

所有metrics集合

基于相关性的RCA

异常的metrics

- 从异常的metrics里找到最相关的metric
- 算法: Pearson correlation
- 生产环境例子:

警报metric: Overall Response Time

最相关的metric (相关度0.9876): es_data-02|QueryPhase|Slow Calls

基于决策树的RCA

- 将异常 / 正常metrics分成labeled data
- 算法: decision tree (或其他classifier)
- 总结出异常metrics的规律
- 生产环境例子:

生成的Rules:

- EsIndexCluster=prd28-7 && node=indexer_insert_001_prd28
- Application=prd28-analytics && EsIndexCluster=prd28-2 && transactionName=InsertEventIndexingStage
- EsIndexCluster=prd28-1 && tier=indexer_prd28

RCA:

• ES Cluster = prd28, stage = insert, tier = indexer

AI+性能協注

异常检测

被动式 (reactive)

根源分析

实时 (real time)

预测

前瞻性 (proactive)

智能运维里的时间序列 - 总结

- 性能监控里的时间序列
- 传统方法
 - 固定阈值
 - 基于平均值的动态阈值
- · 为什么传统方法不work?
 - 忽视周期性
 - 忽视趋势
 - 数据不完美
 - 数据孤岛

- AI + 时间序列
 - 异常检测
 - Moving average based
 - Exponential Smoothing Based
 - · 分解 (decomposition) Based
 - 深度学习 (Deep Learning) Based
 - 矩阵 (Matrix) Based
 - · 自动模型选取: Ensemble Learning
 - 根源分析
 - ·基于相关性的RCA
 - ·基于决策树的RCA
 - 预测

关注QCon微信公众号, 获得更多干货!

Thanks!

INTERNATIONAL SOFTWARE DEVELOPMENT CONFERENCE

