Demultiplexing from FASTQ files to count matrix

05/11/20 - Gaël Blivet

Different demultiplexing tools with different strategies

- Which one should I use to process unusual -different from 10X- read structure?
- Do these different strategies have an impact on the next stages of the analysis?
- Can it be wise to go back to multiplexing to integrate different analyzes?

What error rate are we talking about?

Step	RT	PCR	Sequencing	
Enzyme	Superscript III (MMLV-RT)	Phusion, Q5	?	
Error rate / base	~10-5	~10-6 to ~10-7	~10-3 + phasing	
References	Invitrogen; Orton RJ, BMC Genomics. 2015; Potter J, Focus. 2003	NEB	Marinier 2015, BMC Bioinformatics; Orton RJ. BMC Genomics. 2015, Tilo Buschmann 2016	

Origin of phasing effects

Pfeiffer, F., Gröber, C., Blank, M. et al. Systematic evaluation of error rates and causes in short samples in next-generation sequencing. Sci Rep 8, 10950 (2018).

Protocol specific read structure with similar info

- Cell barcode (BC)
- UMI (Unique Molecular identifier)
- Insert (gene)

Different demultiplexing tools...

- Cellranger is:
 - Not flexible: can't analyse something else than fastq generated by 10x
 - Slow
 - Resource consuming (memory, space storage?)
 - Black box
- (non-exhaustive) alternatives

2017	2018	20	019	2020			
cellranger							
	zUMI [1]						
	UMI-tools [2]		Alevin [3]				
				STARsolo [4]			

...with different strategies

	Flexible str.	BC correction	UMI correction	Mapping	Speed est.
Cellranger	10X compatible	Hamming dist. based	No?	STAR	16h (4 CPUs)
alevin	A bit, more to come	1 error (sub or indel)	Graph-based	Pseudo-alignment	20' (4 CPUs)
STARsolo	Yes	Hamming dist. based	Various modes	STAR	35' (3 CPUs)
zUMI	Yes	No?	Hamming dist based	STAR	Fast
LBCpipe	Yes	Seqlev or Hamming dist.	Shift correction	Rsubread	22h (4 CPUs)

Barcode extraction

- Pattern flexibility
- Error correction strategies
 - o Error type: sub vs indels, shifts
 - Metric: Hamming, Levenshtein, Seqlev, Alevin specific...
 - o [LBCpipe] Shift correction
- Barcode database filtering
 - "Knee plot" approach
 - [alevin] second pass with trained classifier

UMI deduplication

- Pattern flexibility
- UMI deduplication strategies
 - No deduplication
 - Hamming distance
 - Graph-based approach
- [alevin] Multimapping strategy (transcript-level)
- [LBCpipe] shift correction

UMI-tools

Alevin

Insert mapping

- Bulk mapping considerations + 3' bias
- [alevin] Pseudo-alignment + decoys
- [cellranger] Biotype discard
- Gene/transcript level => impact on UMI correction
- Resources: computing time, memory footprint

Litterature comparison

- Comparison of alevin, cellranger and EmptyDrops:
 https://lazappi.github.io/phd-thesis/5-analysis.html#pre-processing
- Alevin compares to cellranger in its paper [3]:
 - Better for genes with a lower "sequence uniqueness"
 - Cellranger discards multimappers? (not true anymore since cellranger3?)

Different demultiplexing tools with different strategies

- Which one should I use to process unusual -different from 10X- read structure?
- Do these different strategies have an impact on the next stages of the analysis?
- Can it be wise to go back to multiplexing to integrate different analyzes?

Considered strategy

- 1. Benchmarking on a spike-ins dataset
 - No reference genome issues
 - No biological variations (cell degradation, cell types/states, etc)
 - Only technical variations
 - Dropout exploration
- 2. Benchmarking on a classical single-cell dataset
 - Reference genome management
- 3. Benchmarking on a multi-organism single-cell dataset
 - Quality check through secondary analysis
- 4. Datasets integration
 - From matrices vs from FASTQ
 - Quality check through secondary analysis

Dataset 1

- 10X ERCC 1k cells
 - <u>Massively parallel digital transcriptional profiling of single cells</u>, Zheng et al. 2017, Nature communications
 - Listed in 10X datasets
 - 10X v2 chemistry
 - 14bp BC + 10bp UMI
 - 1k droplets
 - 92 ERCCs (spike-ins) in various expected quantities
- No reference genome compatibility issues

Counts correlation

Intersection of detected cells

Dataset 2

- Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell Carcinoma, Ji et al., Cell 2020
 - One "Normal" skin sample, ~320M reads
 - Chromium v2 chemistry
 - 16 bp BC + 10bp UMI
- Reference genome issues
 - Built from Ensembl 101
 - Considering gene IDs (not names)

First impressions

- Cellranger can be replaced without results quality loss
 - to go faster
 - to handle unusual read structure
 - STARsolo seems to be the best candidates for these 2 features
- Differences between common demultiplexing tools seem to be marginal though different strategies are applied
- Need to investigate relevancy of shift correction and UMI correction

Perspectives

- Study the impact of these different strategies on secondary analysis
 - On dataset2
 - On a reference dataset from "Benchmarking single-cell RNA-sequencing protocols for cell atlas projects", Mereu et al., Nature biotechnology 2020
 - ~3k cells
 - A lots of protocols (n=13: 10X, Quartz-seq3, plate-based, etc)
 - Control mix of human, murine and canine cells
- Datasets integration
 - From matrices vs from FASTQ
 - Quality check through secondary analysis

Tools references

- [1] <u>zUMIs A fast and flexible pipeline to process RNA sequencing data with UMIs</u>, Parekh *et al.*, GigaScience 2018
- [2] <u>UMI-tools: Modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy</u>, Smith *et al.*, Genome Research 2017
- [3] <u>Alevin efficiently estimates accurate gene abundances from dscRNA-seq</u> data, Srivastava et al., Genome Biology 2019
- [4] https://github.com/alexdobin/STAR/blob/master/docs/STARsolo.md, Dobin, 2020