实验报告

实验名称 非线性方程求解 第 4 次实验

- 三、实验过程与结果(包括建立的模型、程序、运行结果、结果分析等)
- 1. (教材 p.134: 6.5.1) ① 用 fzero, fsolve 程序求解方程 $\sin x x^2/2 = 0$ 的所有根,准确到 10^{-10} ,取不同的初值计算,输出初值、根的近似值和迭代次数,分析不同根的收敛域。
- ② 自己构造某个迭代公式(如 $x = (2 \sin x)^{1/2}$ 等)用迭代法求解,并自己编写牛顿法的程序进行求解和比较.

解: 因为 $|\sin x| \le 1$,且当 |x| > 2 时 $x^2/2 > 1$, |x| > 2 时 $\sin x - x^2/2 < 0$,即 $\sin x - x^2/2 = 0$ 的所有根均在[-2,2]内,作函数 $y = \sin x - x^2/2$ 在[-2,2]内的图形如下:

 $f = inline('sin(x) - x^2/2')$

fzero 求解结果

ezplot(f, [-2, 2]),grid %作图

由图可见,方程 $\sin x - x^2/2 = 0$ 恰有两个根,分别在 0 和 1.4 附近。

在以区间 [-5,10] 内的值(间隔 0.1)作为初值,用 fzero, fsolve 求解此方程的根,程序如下:

fsolve 求解结果

```
f = inline('sin(x) - x^2/2')
x = fzero(f, 1.4);
ans1 = [];
for i = -5:0.1:10 % 对不同初值,观察其收敛性
        [x, fv, ev, out] = fzero(f, i);
        ans1 = [ans1; i, x, fv,ev, out.iterations,out.funcCount];
end

ans2 = [];
for i = -5:0.1:10 % 对不同初值,观察其收敛性
        [x, fv, ev, out] = fsolve(f, i);
        ans2 = [ans2; i, x, fv,ev, out.iterations,out.funcCount];
end
由图可见,方程 sinx - x²/2 = 0 恰有两个根,分别在 0 和 1.4 附近。
```

初值	解	函数值		迭代 次数	解	函数值		迭代 次数
-5	-2.46680E-25	-2.46680E-25	1	13	-2.60376E-10	-2.60376E-10	1	8
-4.9	8.01048E-19	8.01048E-19	1	13	-9.57686E-10	-9.57686E-10	1	7
-4.8	-6.90253E-31	-6.90253E-31	1	13	-7.88135E-10	-7.88135E-10	1	7
-4.7	-7.13430E-18	-7.13430E-18	1	13	-7.28167E-10	-7.28167E-10	1	7
-4.6	-1.04266E-17	-1.04266E-17	1	13	-7.16401E-10	-7.16401E-10	1	7
-4.5	-7.96057E-18	-7.96057E-18	1	13	-7.14519E-10	-7.14519E-10	1	7
-4.4	-4.31150E-18	-4.31150E-18	1	13	-6.93335E-10	-6.93335E-10	1	7
-4.3	2.29307E-23	2.29307E-23	1	14	-6.33373E-10	-6.33373E-10	1	7
-4.2	4.31026E-25	4.31026E-25	1	14	-5.30317E-10	-5.30317E-10	1	7
-4.1	-1.78709E-16	-1.78709E-16	1	13	-3.97464E-10	-3.97464E-10	1	7
-4	2.91165E-17	2.91165E-17	1	13	-2.60376E-10	-2.60376E-10	1	7
-3.9	1.13913E-17	1.13913E-17	1	13	-9.57686E-10	-9.57686E-10	1	6
-3.8	1.22727E-20	1.22727E-20	1	13	-7.88135E-10	-7.88135E-10	1	6
-3.7	-4.19800E-26	-4.19800E-26	1	13	-7.28167E-10	-7.28167E-10	1	6
-3.6	-2.99767E-29	-2.99767E-29	1	13	-7.16401E-10	-7.16401E-10	1	6
-3.5	1.32718E-16	1.32718E-16	1	12	-7.14519E-10	-7.14519E-10	1	6
-3.4	3.99992E-18	3.99992E-18	1	12	-6.93335E-10	-6.93335E-10	1	6
-3.3	1.25590E-19	1.25590E-19	1	12	-6.33373E-10	-6.33373E-10	1	6
-3.2	5.93665E-22	5.93665E-22	1	12	-5.30317E-10	-5.30317E-10	1	6
-3.1	1.56650E-25	1.56650E-25	1	12	-3.97464E-10	-3.97464E-10	1	6
-3	7.96714E-18	7.96714E-18	1	11	-2.60376E-10	-2.60376E-10	1	6
-2.9	3.79074E-20	3.79074E-20	1	11	-9.57686E-10	-9.57686E-10	1	5
-2.8	1.58108E-22	1.58108E-22	1	11	-7.88135E-10	-7.88135E-10	1	5
-2.7	-8.55125E-28	-8.55125E-28	1	11	-7.28166E-10	-7.28166E-10	1	5
-2.6	9.70795E-17	9.70795E-17	1	10	-7.16401E-10	-7.16401E-10	1	5
-2.5	1.46070E-19	1.46070E-19	1	10	-7.14519E-10	-7.14519E-10	1	5
-2.4	1.13825E-22	1.13825E-22	1	10	-6.93335E-10	-6.93335E-10	1	5
-2.3	5.53697E-26	5.53697E-26	1	10	-6.33373E-10	-6.33373E-10	1	5
-2.2	6.345 62E -18	6.34562E-18	1	9	-5.30318E-10	-5.30318E-10	1	5
-2.1	4.50139E-20	4.50139E-20	1	9	-3.97464E-10	-3.97464E-10	1	5
-2	-4.52364E- 25	-4.52364E-25	1	9	-2.60376E-10	-2.60376E-10	1	5
-1.9	-1.65345E- 27	-1.65345E-27	1	9	-1.45043E-10	-1.45043E-10	1	5
-1.8	-5.52203E-30	-5.52203E-30	1	9	-6.63082E-11	-6.63082E-11	1	5
-1.7	1.11631E-16	1.11631E-16	1	8	-2.36729E-11	-2.36729E-11	1	5
-1.6	5.88745E-18	5.88745E-18	1	8	-6.12921E-12	-6.12921E-12	1	5
-1.5	2.94719E-19	2.94719E-19	1	8	-1.02239E-12	-1.02239E-12	1	5
-1.4	1.37797E-20	1.37797E-20	1	8	-4.29289E-07	-4.29289E-07	1	4
-1.3	5.86299E-22	5.86299E-22	1	8	-7.75535E-08	-7.75535E-08	1	4
-1.2	2.18642E-23	2.18642E-23	1	8	-5.55402E-09	-5.55402E-09	1	4
-1.1	6.79129E-25	6.79129E-25	1	8	-3.97464E-10	-3.97464E-10	1	4
-1	-7.68978E-17	-7.68978E-17	1	7	-2.60376E-10	-2.60376E-10	1	4
-0.9	3.21284E-17	3.21284E-17	1	7	-1.45043E-10	-1.45043E-10	1	4
-0.8	2.13878E-18	2.13878E-18	1	7	-6.63082E-11	-6.63082E-11	1	4

-0.7	9.82842E-20	9.82842E-20	1	7	-2.36729E-11	-2.36729E-11	1	4
-0.6	2.70803E-21	2.70803E-21	1	7	-6.12920E-12	-6.12920E-12	1	4
-0.5	3.59854E-23	3.59854E-23	1	7	-1.02239E-12	-1.02239E-12	1	4
-0.4	-5.14748E-17	-5.14748E-17	1	6	-4.29289E-07	-4.29289E-07	1	3
-0.3	-4.22718E-19	-4.22718E-19	1	6	-7.75535E-08	-7.75535E-08	1	3
-0.2	-3.70360E-22	-3.70360E-22	1	6	-5.55402E-09	-5.55402E-09	1	3
-0.1	-1.18014E-27	-1.18014E-27	1	6	-4.05987E-11	-4.05987E-11	1	3
0	0	0	1	0	0	0	1	0
0.1	5.88917E-23	5.88917E-23	1	6	-1.54352E-10	-1.54352E-10	1	3
0.2	4.02748E-18	4.02748E-18	1	6	-8.07824E-08	-8.07824E-08	1	3
0.3	-2.52435E-29	-2.52435E-29	1	7	-9.53681E-12	-9.53681E-12	1	4
0.4	-1.70505E-24	-1.70505E-24	1	7	-4.48937E-09	-4.48937E-09	1	4
0.5	1.61992E-16	1.61992E-16	1	7	-7.83346E-13	-7.83346E-13	_1	6
0.6	-1.01732E-26	-1.01732E-26	1	8	-2.43349E-10	-2.43349E-10	1	6
0.7	-3.67303E-18	-3.67303E-18	1	8	-7.75535E-08	-7.75535E-08	1	4
8.0	1.404414824	0	1	8	1.404414824	-1.17644E-11	1	8
0.9	1.404414824	-3.33067E-16	1	7	1.404414824	-4.21895E-10	1	6
1	1.404414824	0	1	6	1.404414824	-2.25777E-11	1	6
1.1	1.404414824	0	1	6	1.404414837	-1.55547E-08	1	4
1.2	1.404414824	0	1	6	1.404414824	-6.25611E-12	1	4
1.3	1.404414824	0	1	5	1.40441483	-7.26297E-09	1	3
1.4	1.404414824	0	1	5	1.404414824	-2.46114E-10	1	2
1.5	1.404414824	0	1	5	1.404414825	-1.03394E-09	1	3
1.6	1.404414824	0	1	5	1.404414969	-1.79881E-07	1	3
1.7	1.404414824	0	1	6	1.404414824	-5.32840E-12	1	4
1.8	1.404414824	0	1	5	1.404414824	-2.01594E-10	1	4
1.9	1.404414824	0	1	6	1.404414826	-2.80095E-09	1	4
2	1.404414824	0	1	5	1.404414841	-2.09119E-08	1	4
2.1	1.404414824	0	1	7	1.404414907	-1.02804E-07	1	4
2.2	1.404414824	0	1	7	1.404415127	-3.75009E-07	1	4
2.3	1.404414824	3.33E-16	1	7	1.404414824	-7.93809E-13	1	5
2.4	1.404414824	0	1	6	1.404414824	-4.72922E-12	1	5
2.5	1.404414824	0	1	5	1.404414824	-2.18009E-11	1	5
2.6	1.404414824	0	1	9	1.404414824	-8.08086E-11	1	5
2.7	1.404414824	0	1	8	1.404414824	-2.50649E-10	1	5
2.8	1.404414824	0	1	8	1.404414825	-6.69135E-10	1	5
2.9	1.404414824	0	1	8	1.404414826	-2.80095E-09	1	5
3	1.404414824	0	1	8	1.404414841	-2.09119E-08	1	5
3.1	1.404414824	3.33E-16	1	8	1.404414907	-1.02805E-07	1	5
3.2	1.404414824	0	1	7	1.404415127	-3.75012E-07	1	5
3.3	1.404414824	0	1	7	1.404414824	-7.93809E-13	1	6
3.4	1.404414824	0	1	7	1.404414824	-4.72922E-12	1	6
3.5	1.404414824	0	1	7	1.404414824	-2.18009E-11	1	6
3.6	1.404414824	0	1	6	1.404414824	-8.08086E-11	1	6

3.7	1.404414824	0	1	6	1.404414824	-2.50649E-10	1	6
3.8	1.404414824	-3.33E-16	1	6	1.404414825	-6.69135E-10	1	6
3.9	1.404414824	0	1	4	1.404414825	-1.57352E-09	1	6
4	1.404414824	0	1	12	1.404414827	-3.31990E-09	1	6
4.1	1.404414824	0	1	12	1.404414829	-6.37488E-09	1	6
4.2	1.404414824	0	1	12	1.404414833	-1.12694E-08	1	6
4.3	1.404414824	0	1	12	1.404414839	-1.85249E-08	1	6
4.4	1.404414824	0	1	12	1.404414847	-2.85348E-08	1	6
4.5	1.404414824	0	1	12	1.404414858	-4.14619E-08	1	6
4.6	1.404414824	0	1	12	1.40441487	-5.71467E-08	1	6
4.7	1.404414824	0	1	13	1.404414885	-7.50831E-08	1	6
4.8	1.404414824	0	1	13	1.4044149	-9.44151E-08	1	6
4.9	1.404414824	0	1	13	1.404414916	-1.14061E-07	_1	6
5	1.404414824	0	1	13	1.404414931	-1.32843E-07	1	6
5.1	1.404414824	0	1	13	1.404414945	-1.49653E-07	1	6
5.2	1.404414824	0	1	13	1.404414956	-1.63626E-07	1	6
5.3	1.404414824	0	1	13	1.404414965	-1.74245E-07	1	6
5.4	1.404414824	0	1	13	1.404414971	-1.81416E-07	1	6
5.5	1.404414824	0	1	13	1.404414974	-1.85483E-07	1	6
5.6	1.404414824	0	1	13	1.404414975	-1.87165E-07	1	6
5.7	1.404414824	3.33E-16	1	14	1.404415127	-3.75012E-07	1	6
5.8	1.404414824	3.33E-16	1	14	1.404414824	-7.93809E-13	1	7
5.9	1.404414824	-3.33E-16	1	14	1.404414824	-4.72922E-12	1	7
6	1.404414824	0	1	14	1.404414824	-2.18009E-11	1	7
6.1	1.404414824	0	1	14	1.404414824	-8.08086E-11	1	7
6.2	1.404414824	0	1	14	1.404414824	-2.50649E-10	1	7
6.3	1.404414824	0	1	14	1.404414825	-6.69135E-10	1	7
6.4	1.404414824	0	1	14	1.404414825	-1.57353E-09	1	7
6.5	1.404414824	0	1	14	1.404414827	-3.31990E-09	1	7
6.6	1.404414824	0	1	14	1.404414829	-6.37403E-09	1	7
6.7	1.404414824	0	1	14	1.404414833	-1.12694E-08	1	7
6.8	1.404414824	0	1	14	1.404414839	-1.85249E-08	1	7
6.9	1.404414824	3.33E-16	1	14	1.404414847	-2.85348E-08	1	7
7	1.404414824	0	1	13	1.404414858	-4.14619E-08	1	7
7.1	1.404414824	0	1	13	1.40441487	-5.71467E-08	1	7
7.2	1.404414824	0	1	13	1.404414824	-2.50649E-10	1	8
7.3	1.404414824	0	1	13	1.404414825	-6.69135E-10	1	8
7.4	1.404414824	0	1	13	1.404414825	-1.57353E-09	1	8
7.5	1.404414824	0	1	13	1.404414827	-3.31990E-09	1	8
7.6	1.404414824	0	1	13	1.404414829	-6.37403E-09	1	8
7.7	1.404414824	0	1	13	1.404414833	-1.12694E-08	1	8
7.8	1.404414824	-3.33E-16	1	13	1.404414839	-1.85249E-08	1	8
7.9	1.404414824	0	1	12	1.404414847	-2.85348E-08	1	8
8	1.404414824	0	1	12	1.404414858	-4.14619E-08	1	8

```
0
                                      12
                                            1.40441487
8.1
     1.404414824
                                  1
                                                          -5.71467E-08
                                                                              8
                                                                         1
8.2
     1.404414824
                         0
                                  1
                                      12
                                            1.404414824
                                                          -2.50649E-10
                                                                              9
                                                                         1
8.3
     1.404414824
                     -3.33E-16
                                  1
                                      12
                                            1.404414824
                                                          -7.93809E-13
                                                                              8
     1.404414824
                         0
                                      11
                                            1.404414824
                                                          -4.72922E-12
                                                                              8
                                  1
                                                                         1
8.5
     1.404414824
                                  1
                                            1.404414824
                                                          -2.18009E-11
                                                                              8
                         0
                                       11
8.6
     1.404414824
                         0
                                  1
                                       11
                                            1.404414824
                                                          -8.08086E-11
                                                                              8
8.7
                                  1
                                       11
                                            1.404414824
     1.404414824
                         0
                                                          -2.50649E-10
                                                                              8
     1.404414824
                                  1
                                            1.404414825
                                                          -6.69135E-10
                                                                              8
8.8
                         0
                                       11
                                                                         1
                                                                              8
8.9
     1.404414824
                         0
                                  1
                                      10
                                            1.404414825
                                                          -1.57352E-09
9
                                            1.404414827
     1.404414824
                         0
                                  1
                                      10
                                                          -3.31990E-09
                                                                              8
                                                                         1
9.1
     1.404414824
                         0
                                  1
                                      10
                                            1.404414829
                                                          -6.37403E-09
                                                                         1
                                                                              8
9.2
                                  1
                                      10
                                            1.404414833
                                                                              8
     1.404414824
                         0
                                                          -1.12694E-08
                                                                         1
9.3
     1.404414824
                         0
                                  1
                                      10
                                            1.404414839
                                                          -1.85242E-08
                                                                              8
9.4
     1.404414824
                                  1
                                      10
                                            1.404414847
                                                          -2.85348E-08
                                                                              8
                         0
9.5
     1.404414824
                         0
                                  1
                                      10
                                            1.404414858
                                                          -4.14608E-08
                                                                         1
                                                                              8
9.6
     1.404414824
                         0
                                  1
                                      10
                                            1.40441487
                                                          -5.71467E-08
                                                                              8
                                                          -7.50831E-08
9.7
     1.404414824
                     3.33E-16
                                  1
                                      10
                                            1.404414885
                                                                              8
9.8
     1.404414824
                         0
                                  1
                                       9
                                             1.4044149
                                                          -9.44151E-08
                                                                              8
     1.404414824
                                       9
                                            1.404414916
9.9
                         0
                                  1
                                                          -1.14061E-07
                                                                              8
                                                                         1
     1.404414824
                         0
                                       9
                                            1.404414931
                                                          -1.32843E-07
                                                                              8
 从程序结果可以看到, 使用这两个命令时,
              初值 x_0 \le 0.7 时,收敛到 0,x_0 \ge 0.8 时,收敛到 1.404414824.
 fsolve 命令的收敛性不如 fzeros, 但迭代次数少。
 增加精度选项,程序为
```

```
opt = optimset('TolX',1e-10);
```

```
ans3 = [];
for i = -5:0.1:10 % 对不同初值,观察其收敛性
     [x, fv, ev, out] = fzero(f, i, opt);
     ans3 = [ans3; i, x, fv,ev, out.iterations,out.funcCount];
end
```

ans4 = []; for i = -5:0.1:10 % 对不同初值,观察其收敛性

[x, fv, ev, out] = fsolve(f, i, opt); ans4 = [ans4; i, x, fv,ev, out.iterations,out.funcCount];

end

结果与前面的类似,不同初值的收敛范围也相同。

```
以下用迭代方法计算
```

```
eps1 = 1e-10; maxi = 1000;
```

ans5 = [];

```
for i = -5:0.1:10 % 对不同初值,观察其收敛性 用书上提示迭代公式
    x0 = i
    x = sqrt(2*sin(x0));
    ii = 0;
    while (abs(x0 - x) > eps1) & (ii < maxi)
       x0 = x;
       x = sqrt(2*sin(x0));
       ii = ii + 1;
    end
    if abs(x0 - x) < eps1
      ev = 1;
    else
      ev = 0:
    end
    ans5 = [ans5; i, real(x),imag(x),real( sin(x) - x^2/2), ev, ii];
end
ans6 = [];
for i = -5:0.1:10 % 对不同初值,观察其收敛性 用牛顿迭代公式
    x0 = i:
     x = x0 - (\sin(x0) - x0^2/2) / (\cos(x0) - x0);
    ii = 0;
    while (abs(x0 - x) > eps1) & (ii < maxi)
       x0 = x;
       x = x0 - (\sin(x0) - x0^2/2) / (\cos(x0) - x0);
       ii = ii + 1;
    end
    if abs(x0 - x) < eps1
      ev = 1;
    else
     ev = 0;
    end
    ans6 = [ans6; i, real(x),imag(x),real(\sin(x) - x^2/2), ev, ii];
end
第一种迭代方法在不同初值下都收敛到 1.4044,
```

用牛顿切线法迭代时不同初值的收敛范围与前面相同。迭代次数比前面的方法少,计算速度明显较快。

2. (教材 p.137: 6.5.4) 水槽由半圆柱体水平放置而成,如图所示,圆柱体长 L,半径为r,当给定水槽内盛水的体积 V后,要求计算从水槽边沿到水面的距离 x。现已知 L=25.4m,r=2m,求 V分别为 10, 50, 100 m³ 的 x。

```
解: 扇形角 \alpha = 2\arccos(x/r)
扇形面积 S_1 = r^2\alpha/2 = r^2\arccos(x/r)
三角形面积 S_2 = 2 \times \frac{x\sqrt{r^2 - x^2}}{2}
```



```
= x\sqrt{r^2-x^2}
   截面积 S = S_1 - S_2
   体积 V = LS
   计算程序为
   L = 25.4; r = 2; V = [10, 50, 100];
   fun = inline('(r^2 * acos(x/r) - x * sqrt(r^2 - x^2)) * L - Vi ','x', 'L', 'r', 'Vi')
        [x(i), fv(i), ef(i)] = fzero(fun, 0, [], L, r, V(i));
   end
   x,fv,ef
   运行结果是
   x = 1.7166 	 1.1447
                            0.5955
   fv = 1.0e-013*
      -0.0178 -0.0711 0.1421
   ef =
               1
          1
   即 V 分别为 10, 50, 100 m³ 时,从水槽边沿到水面的距离 x 分别是 1.7166, 1.1447,
0.5955 m.
   3. (教材 p.137: 6.5.5) 由汽缸控制关闭的门,关闭状态的示意图如图 6.13(a),门宽 a,
门枢在 H 处,与 H 相距 b 处有一门销,通过活塞与圆柱形的汽缸相连,活塞半径 r,汽缸
长 l_0, 汽缸内气体的压强为 p_0。当用力 F 推门, 使门打开一个角度 \alpha 时(示意图如图 6.13(b)),
活塞下降的距离为c,门销与H的水平距离b保持不变,于是汽缸内的气体被压缩,对活
塞的压强增加。已知在绝热条件下,气体的压强 p 和体积 V 满足 pV^{\gamma} = C,其中 \gamma 是绝热系
数,C是常数。试利用开门力矩和作用在活塞上的力矩平衡的关系(对门枢而言),求在一
定的力 F 作用下,门打开的角度 \alpha 。设 a=0.8m; b=0.25m; r=0.04m; l_0=0.5m; p_0=10^4
N/m^2; \gamma = 1.4; F = 25N.
解:根据物理知识,压强p与力F、受力面积s的关系为p=F/s,现s=\pi r^2为活塞面积;
   在 b 处初始受力 F_0 = s \cdot p_0,
   a 处受力 F 下,在 b 处受力 F_c = F_0 + F \cdot a/b,
   气体的压强 p 和体积 V 满足 pV^{\prime}=C,汽缸(圆柱体)的 V=sh,h=l_0,l_0-c;
   所以有 p_0(s \cdot l_0)^{\gamma} = \frac{F_0 + F \cdot a/b}{s} (s \cdot (l_0 - c))^{\gamma}, 即 p_0 l_0^{\gamma} = \frac{F_0 + F \cdot a/b}{s} (l_0 - c)^{\gamma},
   计算程序为
   %%%==========方法 1
   a=0.8;b=0.25;r=0.04;l0=0.5;
   p0=10000;ga=1.4;F=25;
   ff=@(c)((F*a/b+p0*(pi*r*r))*(I0-c)^ga/(pi*r*r) - p0*I0^ga)
   [x, fv, ef]=fsolve(ff, 0.1)
   alpha=atan(x/b)
   dec = alpha *180/pi
   a=0.8;b=0.25;r=0.04;l0=0.5;
   p0=10000;ga=1.4;F=25;
```

```
s = pi*r*r;
                                     %活塞面积=容器接受外力的表面积
                                     %压下 c 时容器的体积
   vc = @(c)(pi*r*r*(I0-c));
   v0 = vc(0);
                                     %c=0 时 b 处的压力
   F0 = s*p0;
                                     %压下 c 时 b 处的压力
   Fc = F0 + F*a/b;
   pc = Fc/s;
                                     %压下 c 时 b 处的压强
   ff = @(c)(p0*v0^ga - pc*vc(c)^ga);
   [x, fv, ef]=fsolve(ff, 0.1)
   alpha=atan(x/b)
   dec = alpha *180/pi
   运行结果是
   alpha = 0.77883(44.624^{\circ})
   书上答案= 0.4329(24.80°)
以下程序错
   %%%==========方法 1
   a=0.8;b=0.25;r=0.04;l0=0.5;
   p0=10000;ga=1.4;F=25;
   ff = @(c)((F*a/b+p0*(2*pi*r*r+2*pi*r*l0))*(l0-c)^{ga}/(2*pi*r*r+2*pi*r*(l0-c)) - p0*l0^{ga})
   [x, fv, ef]=fsolve(ff, 0.1)
   alpha=atan(x/b)
   %%%=========方法 2
   a=0.8;b=0.25;r=0.04;l0=0.5;
   p0=10000;ga=1.4;F=25;
   sc = @(c)( 2*pi*r*r+2*pi*r*(I0-c) );
                                     %压下 c 时容器的表面积
   s0 = sc(0);
                                     %压下 c 时容器的体积
   vc = @(c)(pi*r*r*(10-c));
   v0 = vc(0);
                                     %c=0 时 b 处的压力
   F0 = s0*p0;
   Fc = F0 + F*a/b;
                                     %压下 c 时 b 处的压力
   pc = @(c)(Fc/sc(c));
   ff = @(c)(p0*v0^ga - pc(c)*vc(c)^ga);
    [x, fv, ef]=fsolve(ff,0.1)
   alpha=atan(x/b)
    dec = alpha *180/pi
   alpha = 0.22198(12.718^{\circ})
    书上答案= 0.4329(24.80°)
```