6.4: Values of the Trigonometric Functions

E. Kim

MTH 151

All notation and terminology is based on Swokowski, Cole. *Algebra and Trigonometry: with analytic geometry.* Classic 12th Edition.

Accompanying handout:

- ▶ Black-and-white: http://www.uwlax.edu/faculty/ekim/resources/unit-circle.pdf
- Color: http://www.uwlax.edu/faculty/ekim/resources/unit-circle-color.pdf

Goal

Goal

Goal

Why understand the unit circle?

For all special angles, we can compute sine, cosine, etc. by knowing these values only for $30^\circ,\,45^\circ,$ and $90^\circ.$

Why understand the unit circle?

For all special angles, we can compute sine, cosine, etc. by knowing these values only for 30° , 45° , and 90° .

For the other special angles, just change the sign as appropriate.

Take a nonquadrantal θ .

 $^{^1}$ Nonquadrantal means that θ is not a multiple of 90° .

¹Nonquadrantal means that θ is not a multiple of 90° .

¹Nonquadrantal means that θ is not a multiple of 90° .

¹Nonquadrantal means that θ is not a multiple of 90° .

(

(

heta in Quadrant 1

$$\theta_R = \theta$$

θ in Quadrant 2

$$\theta_R = \pi - \theta$$

 $\theta_R = 180^{\circ} - \theta$

heta in Quadrant 1

$$\theta_R = \theta$$

$$\theta_R = \pi - \theta$$

$$\theta_R = 180^{\circ} - \theta$$

heta in Quadrant 1

$$\theta_R = \theta$$

θ in Quadrant 2

$$\theta_R = \pi - \theta$$

 $\theta_R = 180^{\circ} - \theta$

(

heta in Quadrant 1

$$\theta_R = \theta$$

θ in Quadrant 2

$$\theta_R = \pi - \theta$$
$$\theta_R = 180^\circ - \theta$$

(

heta in Quadrant 1

$$\theta_R = \theta$$

θ in Quadrant 2

$$\theta_R = \pi - \theta$$
$$\theta_R = 180^\circ - \theta$$

$$\theta_R = \theta - \pi$$

$$\theta_R = \theta - 180^{\circ}$$

heta in Quadrant 1

$$\theta_R = \theta$$

θ in Quadrant 2

$$\theta_R = \pi - \theta$$
$$\theta_R = 180^\circ - \theta$$

$$\theta_R = \theta - \pi$$

$$\theta_R = \theta - 180^{\circ}$$

heta in Quadrant 1

$$\theta_R = \theta$$

θ in Quadrant 2

$$\theta_R = \pi - \theta$$
$$\theta_R = 180^\circ - \theta$$

$$\theta_R = \theta - \pi$$

$$\theta_R = \theta - 180^{\circ}$$

heta in Quadrant 1

$$\theta_R = \theta$$

θ in Quadrant 2

$$\theta_R = \pi - \theta$$
$$\theta_R = 180^\circ - \theta$$

$$\theta_R = \theta - \pi$$

$$\theta_R = \theta - 180^{\circ}$$

heta in Quadrant 1

$$\theta_R = \theta$$

θ in Quadrant 2

$$\theta_R = \pi - \theta$$
$$\theta_R = 180^\circ - \theta$$

θ in Quadrant 3

$$\theta_R = \theta - \pi$$
$$\theta_R = \theta - 180^{\circ}$$

$$\theta_R = 2\pi - \theta$$
$$\theta_R = 360^\circ - \theta$$

heta in Quadrant 1

$$\theta_R = \theta$$

θ in Quadrant 2

$$\theta_R = \pi - \theta$$
$$\theta_R = 180^\circ - \theta$$

θ in Quadrant 3

$$\theta_R = \theta - \pi$$

$$\theta_R = \theta - 180^{\circ}$$

$$\theta_R = 2\pi - \theta$$
$$\theta_R = 360^\circ - \theta$$

heta in Quadrant 1

$$\theta_R = \theta$$

θ in Quadrant 2

$$\theta_R = \pi - \theta$$
$$\theta_R = 180^\circ - \theta$$

θ in Quadrant 3

$$\theta_R = \theta - \pi$$

$$\theta_R = \theta - 180^{\circ}$$

$$\theta_R = 2\pi - \theta$$

$$\theta_R = 360^{\circ} - \theta$$

heta in Quadrant 1

$$\theta_R = \theta$$

θ in Quadrant 2

$$\theta_R = \pi - \theta$$
$$\theta_R = 180^\circ - \theta$$

θ in Quadrant 3

$$\theta_R = \theta - \pi$$

$$\theta_R = \theta - 180^{\circ}$$

$$\theta_R = 2\pi - \theta$$
$$\theta_R = 360^\circ - \theta$$

Example: $\theta=315^\circ$

-

Example: $\theta=315^\circ$

Example: $\theta = 315^{\circ}$

Example: $\theta = 315^{\circ}$

-

Example: $\theta = 4$. (Note this is four **radians**, not degrees!)

g

Example: $\theta = 4$. (Note this is four **radians**, not degrees!)

g

Example: $\theta = 4$. (Note this is four **radians**, not degrees!)

g

First, find the coterminal angle to θ between 0° and $360^{\circ}.$

First, find the coterminal angle to θ between 0° and $360^{\circ}.$

Example: $\theta = -240^{\circ}$.

First, find the coterminal angle to θ between 0° and 360° .

Example: $\theta = -240^{\circ}$.

$$\theta = -240^{\circ}$$
 is coterminal to $-240^{\circ} + 360^{\circ}$

First, find the coterminal angle to θ between 0° and 360° .

Example: $\theta = -240^{\circ}$.

$$\theta = -240^{\circ}$$
 is coterminal to $-240^{\circ} + 360^{\circ} = 120^{\circ}$

First, find the coterminal angle to θ between 0° and 360° .

Example: $\theta = -240^{\circ}$.

$$\theta = -240^{\circ}$$
 is coterminal to $-240^{\circ} + 360^{\circ} = 120^{\circ}$

To find θ_R , use $\theta = 120^{\circ}$.

If $\theta=\frac{5\pi}{6}$, find $\sin\theta$, $\cos\theta$, and $\tan\theta$ Reference angle is $\theta_R=\frac{\pi}{6}$

Reference angle is $\theta_R = \frac{\pi}{6}$

$$\sin\frac{\pi}{6} = \frac{1}{2}$$
 $\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$ $\tan\frac{\pi}{6} = \frac{\sqrt{3}}{3}$

Reference angle is $\theta_R = \frac{\pi}{6}$

$$\sin \frac{\pi}{6} = \frac{1}{2}$$
 $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$ $\tan \frac{\pi}{6} = \frac{\sqrt{3}}{3}$

Reference angle is $\theta_R = \frac{\pi}{6}$

If $\theta = \frac{5\pi}{6}$, find $\sin \theta$, $\cos \theta$, and $\tan \theta$ Reference angle is $\theta_R = \frac{\pi}{6}$

$$\sin\frac{\pi}{6} = \frac{1}{2} \qquad \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2} \qquad \tan\frac{\pi}{6} = \frac{\sqrt{3}}{3}$$

$$\sin\frac{5\pi}{6} = +\frac{1}{2}$$
 $\cos\frac{5\pi}{6} = -\frac{\sqrt{3}}{2}$ $\tan\frac{5\pi}{6} = -\frac{\sqrt{3}}{3}$

If $\theta = 315^{\circ}$, find $\sin \theta$, $\cos \theta$, and $\tan \theta$

If $\theta = 315^{\circ}$, find $\sin \theta$, $\cos \theta$, and $\tan \theta$

If $\theta=315^\circ$, find $\sin\theta$, $\cos\theta$, and $\tan\theta$ Reference angle is $\theta_{\rm R}=45^\circ$

Reference angle is $\theta_R = 45^{\circ}$

$$\sin 45^{\circ} = \frac{\sqrt{2}}{2}$$
 $\cos 45^{\circ} = \frac{\sqrt{2}}{2}$ $\tan 45^{\circ} = 1$

Reference angle is $\theta_R = 45^{\circ}$

$$\sin 45^{\circ} = \frac{\sqrt{2}}{2}$$
 $\cos 45^{\circ} = \frac{\sqrt{2}}{2}$ $\tan 45^{\circ} = 1$

Reference angle is $\theta_R = 45^{\circ}$

$$\sin 45^{\circ} = \frac{\sqrt{2}}{2}$$
 $\cos 45^{\circ} = \frac{\sqrt{2}}{2}$ $\tan 45^{\circ} = 1$

Reference angle is $\theta_R = 45^{\circ}$

$$\sin 45^{\circ} = \frac{\sqrt{2}}{2}$$
 $\cos 45^{\circ} = \frac{\sqrt{2}}{2}$ $\tan 45^{\circ} = 1$

$$\sin 315^\circ = -\frac{\sqrt{2}}{2}$$
 $\cos 315^\circ = +\frac{\sqrt{2}}{2}$ $\tan 315^\circ = -1$

Summary of using reference angles

- 1. Find the reference angle θ_R for your angle θ .
- 2. Compute \sin , \cos , and \tan for the reference angle θ_R .
- 3. Adjust the sign based on the quadrant of terminal side of θ .

Finding angles with a calculator

Problem

If θ is an acute angle and $\sin \theta = 0.6635$, what is θ ?

Problem

If θ is an acute angle and $\sin \theta = 0.6635$, what is θ ?

If $\sin \theta = k$, then $\theta = \sin^{-1} k$.

Problem

If θ is an acute angle and $\sin \theta = 0.6635$, what is θ ?

If
$$\sin \theta = k$$
, then $\theta = \sin^{-1} k$.

$$\theta = \sin^{-1}(0.6635)$$

Problem

If θ is an acute angle and $\sin \theta = 0.6635$, what is θ ?

If
$$\sin \theta = k$$
, then $\theta = \sin^{-1} k$.

$$\theta = \sin^{-1}(0.6635) \approx 41.57^{\circ} \approx 0.7255$$

Problem

If θ is an acute angle and $\sin \theta = 0.6635$, what is θ ?

If
$$\sin \theta = k$$
, then $\theta = \sin^{-1} k$.

$$\theta = \sin^{-1}(0.6635) \approx 41.57^{\circ} \approx 0.7255$$

Problem

If θ is an acute angle and $\sin \theta = 0.6635$, what is θ ?

If
$$\sin \theta = k$$
, then $\theta = \sin^{-1} k$.

$$\theta = \sin^{-1}(0.6635) \approx 41.57^{\circ} \approx 0.7255$$
 degrees radians

Problem

If θ is an acute angle and $\sin \theta = 0.6635$, what is θ ?

If
$$\sin \theta = k$$
, then $\theta = \sin^{-1} k$.

$$\theta = \sin^{-1}(0.6635) \approx 41.57^{\circ} \approx 0.7255$$
 degrees radians

If
$$\cos \theta = k$$
, then $\theta = \cos^{-1} k$.
If $\tan \theta = k$, then $\theta = \tan^{-1} k$.

Use the reciprocal formulas:

$$csc \theta = \frac{1}{\sin \theta} \quad \sec \theta = \frac{1}{\cos \theta} \quad \cot \theta = \frac{1}{\tan \theta}$$

Use the reciprocal formulas:

$$csc \theta = \frac{1}{\sin \theta} \quad \sec \theta = \frac{1}{\cos \theta} \quad \cot \theta = \frac{1}{\tan \theta}$$

Example:
$$\csc \theta = 2$$

Use the reciprocal formulas:

$$csc \theta = \frac{1}{\sin \theta} \quad \sec \theta = \frac{1}{\cos \theta} \quad \cot \theta = \frac{1}{\tan \theta}$$

Example: $\csc \theta = 2$

Convert to

$$\frac{1}{\sin \theta} = 2$$

Use the reciprocal formulas:

$$csc \theta = \frac{1}{\sin \theta} \quad \sec \theta = \frac{1}{\cos \theta} \quad \cot \theta = \frac{1}{\tan \theta}$$

Example: $\csc \theta = 2$

Convert to

$$\frac{1}{\sin \theta} = 2$$

Take reciprocal of both sides

$$\sin \theta = \frac{1}{2}$$

Use the reciprocal formulas:

$$csc \theta = \frac{1}{\sin \theta} \quad \sec \theta = \frac{1}{\cos \theta} \quad \cot \theta = \frac{1}{\tan \theta}$$

Example: $\csc \theta = 2$

Convert to

$$\frac{1}{\sin \theta} = 2$$

Take reciprocal of both sides

$$\sin \theta = \frac{1}{2}$$

Use inverse sine function (also called arcsin or asin)

$$\theta = \sin^{-1}\left(\frac{1}{2}\right)$$

Use the reciprocal formulas:

$$csc \theta = \frac{1}{\sin \theta} \quad \sec \theta = \frac{1}{\cos \theta} \quad \cot \theta = \frac{1}{\tan \theta}$$

Example: $\csc \theta = 2$

Convert to

$$\frac{1}{\sin \theta} = 2$$

Take reciprocal of both sides

$$\sin \theta = \frac{1}{2}$$

Use inverse sine function (also called arcsin or asin)

$$\theta = \sin^{-1}\left(\frac{1}{2}\right) = 30^{\circ}$$

$$\sin \theta = 0.5$$
 $\theta = \sin^{-1}(\frac{1}{2}) = 30^{\circ} \approx 0.5236$

$$\sin \theta = 0.5$$

$$\theta = \sin^{-1}(\frac{1}{2}) = 30^{\circ} \approx 0.5236$$

$$\cos \theta = 0.5$$

$$\theta = \cos^{-1}(\frac{1}{2}) = 60^{\circ} \approx 1.0472$$

$$\sin \theta = 0.5$$

$$\theta = \sin^{-1}(\frac{1}{2}) = 30^{\circ} \approx 0.5236$$

$\cos \theta = 0.5$

$$\theta = \cos^{-1}(\frac{1}{2}) = 60^{\circ} \approx 1.0472$$

$\tan \theta = 0.5$

$$\theta = \tan^{-1}(\frac{1}{2}) \approx 26.57^{\circ} \approx 0.4636$$

$\sin \theta = 0.5$

$$\theta = \sin^{-1}(\frac{1}{2}) = 30^{\circ} \approx 0.5236$$

$$\csc\theta = 2$$

$$\theta = \sin^{-1}(\frac{1}{2}) = 30^{\circ} \approx 0.5236$$

$$\cos \theta = 0.5$$

$$\theta = \cos^{-1}(\frac{1}{2}) = 60^{\circ} \approx 1.0472$$

$\tan \theta = 0.5$

$$\theta = \tan^{-1}(\frac{1}{2}) \approx 26.57^{\circ} \approx 0.4636$$

$$\sin \theta = 0.5$$

$$\theta = \sin^{-1}(\frac{1}{2}) = 30^{\circ} \approx 0.5236$$

$$\csc\theta = 2$$

$$\theta = \sin^{-1}(\frac{1}{2}) = 30^{\circ} \approx 0.5236$$

$$\cos \theta = 0.5$$

$$\theta = \cos^{-1}(\frac{1}{2}) = 60^{\circ} \approx 1.0472$$

$$\sec \theta = 2$$

$$\theta = \cos^{-1}(\frac{1}{2}) = 60^{\circ} \approx 1.0472$$

$\tan \theta = 0.5$

$$\theta = \tan^{-1}(\frac{1}{2}) \approx 26.57^{\circ} \approx 0.4636$$

$\overline{\sin \theta} = 0.5$

$$\theta = \sin^{-1}(\frac{1}{2}) = 30^{\circ} \approx 0.5236$$

$\csc \theta = 2$

$$\theta = \sin^{-1}(\frac{1}{2}) = 30^{\circ} \approx 0.5236$$

$\cos \theta = 0.5$

$$\theta = \cos^{-1}(\frac{1}{2}) = 60^{\circ} \approx 1.0472$$

$$\sec \theta = 2$$

$$\theta = \cos^{-1}(\frac{1}{2}) = 60^{\circ} \approx 1.0472$$

$\tan \theta = 0.5$

$$\theta = \tan^{-1}(\frac{1}{2}) \approx 26.57^{\circ} \approx 0.4636$$

$\cot \theta = 2$

$$\theta = \tan^{-1}(\frac{1}{2}) \approx 26.57^{\circ} \approx 0.4636$$

$$\sin \theta = 0.5$$

$$\theta = \sin^{-1}(\frac{1}{2}) = 30^{\circ} \approx 0.5236$$

$$\csc \theta = 2$$

$$\theta = \sin^{-1}(\frac{1}{2}) = 30^{\circ} \approx 0.5236$$

$$\cos \theta = 0.5$$

$$\theta = \cos^{-1}(\frac{1}{2}) = 60^{\circ} \approx 1.0472$$

$$\sec \theta = 2$$

$$\theta = \cos^{-1}(\frac{1}{2}) = 60^{\circ} \approx 1.0472$$

$\tan \theta = 0.5$

$$\theta = \tan^{-1}(\frac{1}{2}) \approx 26.57^{\circ} \approx 0.4636$$

$$\cot \theta = 2$$

$$\theta = \tan^{-1}(\frac{1}{2}) \approx 26.57^{\circ} \approx 0.4636$$

Column on right copies column on left because of reciprocal identities

Since $f(x) = \sin(x)$ is periodic, what is $\sin^{-1} k$ giving you?

Inverse Sine

If you put $\sin^{-1}k$ into your calculator, the answer will be an angle

- ▶ in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ using radian mode
- ▶ in $[-90^{\circ}, 90^{\circ}]$ in degree mode

Since $f(x) = \sin(x)$ is periodic, what is $\sin^{-1} k$ giving you?

Inverse Sine

If you put $\sin^{-1} k$ into your calculator, the answer will be an angle

- in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ using radian mode
- \blacktriangleright in $[-90^\circ,90^\circ]$ in degree mode

Inverse Cosine

If you put $\cos^{-1} k$ into your calculator, the answer will be an angle

- in $[0,\pi]$ using radian mode
- ▶ in $[0, 180^{\circ}]$ in degree mode

Since $f(x) = \sin(x)$ is periodic, what is $\sin^{-1} k$ giving you?

Inverse Sine

If you put $\sin^{-1} k$ into your calculator, the answer will be an angle

- in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ using radian mode
- ▶ in $[-90^\circ, 90^\circ]$ in degree mode

Inverse Cosine

If you put $\cos^{-1} k$ into your calculator, the answer will be an angle

- in $[0,\pi]$ using radian mode
- ▶ in $[0, 180^{\circ}]$ in degree mode

Inverse Tangent

If you put $\tan^{-1} k$ into your calculator, the answer will be an angle

- in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ using radian mode
- ▶ in $(-90^{\circ}, 90^{\circ})$ in degree mode

$\sin\theta = -0.5$

$$\theta = \sin^{-1}(-\frac{1}{2}) = -30^{\circ} \approx -0.5236$$

$$\sin\theta = -0.5$$

$$\theta = \sin^{-1}(-\frac{1}{2}) = -30^{\circ} \approx -0.5236$$

$$\cos \theta = -0.5$$

$$\theta = \cos^{-1}(-\frac{1}{2}) = 120^{\circ} \approx 2.0944$$

$\sin\theta = -0.5$

$$\theta = \sin^{-1}(-\frac{1}{2}) = -30^{\circ} \approx -0.5236$$

$\cos \theta = -0.5$

$$\theta = \cos^{-1}(-\frac{1}{2}) = 120^{\circ} \approx 2.0944$$

$\tan \theta = -0.5$

$$\theta = \tan^{-1}(-\frac{1}{2}) \approx -26.57^{\circ} \approx -0.4636$$

$$\sin\theta = -0.5$$

$$\theta = \sin^{-1}(-\frac{1}{2}) = -30^{\circ} \approx -0.5236$$

$\cos \theta = -0.5$

$$\theta = \cos^{-1}(-\frac{1}{2}) = 120^{\circ} \approx 2.0944$$

$\tan \theta = -0.5$

$$\theta = \tan^{-1}(-\frac{1}{2}) \approx -26.57^{\circ} \approx -0.4636$$

If the calculator doesn't give you the angle $\boldsymbol{\theta}$ you wanted...

...use reference angles to find the angle you want!

Find θ such that $\tan\theta=-0.4623$ and $0^{\circ}\leq\theta<360^{\circ}$

Find θ such that $\tan\theta = -0.4623$ and $0^{\circ} \leq \theta < 360^{\circ}$

Putting $\tan^{-1}(-0.4623)$ in the calculator (in degree mode).

Putting $\tan^{-1}(-0.4623)$ in the calculator (in degree mode).

• Get $\approx -24.8^{\circ}$.

Putting $\tan^{-1}(-0.4623)$ in the calculator (in degree mode).

▶ Get $\approx -24.8^{\circ}$.

Problem: We wanted θ such that $0^{\circ} \leq \theta < 360^{\circ}$.

24

Putting $\tan^{-1}(-0.4623)$ in the calculator (in degree mode).

• Get $\approx -24.8^{\circ}$.

Problem: We wanted θ such that $0^{\circ} \leq \theta < 360^{\circ}$.

Putting $\tan^{-1}(-0.4623)$ in the calculator (in degree mode).

• Get $\approx -24.8^{\circ}$.

Problem: We wanted θ such that $0^{\circ} \leq \theta < 360^{\circ}$.

Putting $tan^{-1}(-0.4623)$ in the calculator (in degree mode).

• Get $\approx -24.8^{\circ}$.

Problem: We wanted θ such that $0^{\circ} \leq \theta < 360^{\circ}$.

Solution: tan is

180°-periodic:

- ightharpoonup Add 180° to -24.8°
 - $\theta = 155.2^{\circ}$

Putting $\tan^{-1}(-0.4623)$ in the calculator (in degree mode).

• Get $\approx -24.8^{\circ}$.

Problem: We wanted θ such that $0^{\circ} \leq \theta < 360^{\circ}$.

Solution: tan is

- 180°-periodic:
 - ightharpoonup Add 180° to -24.8°
 - $\theta = 155.2^{\circ}$
 - ► Add 180° to 155.2°
 - $\theta = 335.2^{\circ}$

Putting $\cos^{-1}(-0.3842)$ in the calculator (in radian mode).

Putting $\cos^{-1}(-0.3842)$ in the calculator (in radian mode).

• Get ≈ 1.9651 .

25

Putting $\cos^{-1}(-0.3842)$ in the calculator (in radian mode).

- Get ≈ 1.9651 .
- ▶ Since 1.9651 is between 0 and π , reference angle is $\approx \pi 1.9651 \approx 1.1765$

Putting $\cos^{-1}(-0.3842)$ in the calculator (in radian mode).

- Get ≈ 1.9651 .
- ▶ Since 1.9651 is between 0 and π , reference angle is $\approx \pi 1.9651 \approx 1.1765$

 $\theta\approx 1.9651$ is a solution.

Putting $\cos^{-1}(-0.3842)$ in the calculator (in radian mode).

- Get ≈ 1.9651 .
- ▶ Since 1.9651 is between 0 and π , reference angle is $\approx \pi 1.9651 \approx 1.1765$

 $\theta \approx 1.9651$ is a solution.

Find another θ with the same x value?

Putting $\cos^{-1}(-0.3842)$ in the calculator (in radian mode).

- Get ≈ 1.9651 .
- ▶ Since 1.9651 is between 0 and π , reference angle is $\approx \pi 1.9651 \approx 1.1765$

 $\theta \approx 1.9651$ is a solution.

Find another θ with the same x value?

Putting $\cos^{-1}(-0.3842)$ in the calculator (in radian mode).

- Get ≈ 1.9651 .
- ▶ Since 1.9651 is between 0 and π , reference angle is $\approx \pi 1.9651 \approx 1.1765$

 $\theta \approx 1.9651$ is a solution.

Find another θ with the same x value?

Putting $\cos^{-1}(-0.3842)$ in the calculator (in radian mode).

- Get ≈ 1.9651 .
- ▶ Since 1.9651 is between 0 and π , reference angle is $\approx \pi 1.9651 \approx 1.1765$

Main idea

Use the symmetry in the circle with \pm to get $\sin,\,\cos,\,\tan$

Main idea

Use the symmetry in the circle with \pm to get \sin , \cos , \tan

The angles which have related x and y value have the same reference angle!

26