Xilinx Zynq FPGA, TI DSP, MCU 프로그래밍 및 회로 설계 전문가 과정

강사 – Innova Lee(이상훈) gcccompil3r@gmail.com

Kalman Filter

Introduction Kalman Filter

우선 Kalman Filter 가 어디에 사용되는지 부터 알아보도록 하자 ~ 수업 시간에 학습하였던 Low Pass Filter 라든지 IIR Filter 라든지 와 마찬가지로 복잡한 수식이 들어가지만 왜 사용하는지를 알면 좀 더 공부할 명분과 의욕이 생길 것이다.

CHARACTERISTICS LENGTH 610 FT BEAM 80.7 FT STARTICAL COMMON DATA LINKS DRAFT 27.6 FT SPEED 30 KT ELEGTRO-DITIGAL WINDOW ENGLOOURE (GEWE) -DISPLACEMENT 15,742 LT INSTALLED POWER 78 MW CREW SIZE 175 (INCL. AVIATION DETACHMENT) IZ) MK-46 GUN MOUNTE PERSONAL BAPETY GARRIERS (PBB) TELO CONTROL STATION BOAT BAY MISTA L ADVANCED GUN SYSTEM -BQ5 - 61 LAUNCH EVETEN (PVLB) BUNAR BUB - 60 ANCHOR HANDLING

BOATS

- * (1) 7M RHIB
- * (1)11M RHIB

AVIATION

* (2) MH-60R

SUPERSTRUCTURE

- . STEEL BTRUCTURE
 - * COMPOSITE DECKHOUSE / HANDAR

INTEGRATED POWER SYSTEM (IPS)

- * (2) MAIN TURBINE GENERATORS (MTG)
- * (2) AUXILIARY TURBINE GENERATORS (ATG)
- * (2) MW ADVANCED INDUCTION MOTORS (AIM)
- * INTEGRATED FIGHT THROUGH POWER

WEAPONS

- . MK-57 (BD CELLS TOTAL)
- * (2) ADVANCED GUN SYSTEMS (AGS)
 - * (600) 155 MM ROUNDS
- * (2) MK-46 GUN SYSTEM

HULL

. WAVE-PIERCING

GLASS SHIP DOS 1000 REVK - DAVID HEATH 101315

이와 같이 최첨단 군용 시스템에서 Kalman Filter 는 밥먹듯이 활용되고 있다. 우리가 진행하는 프로젝트가 RC 항공기, RC 선박, RC 탱크등이므로 이의 자세를 제어하는데 필수적이다. 군용으로 사용되는데는 아래와 같은 경우들이 존재한다.

- 1. 미사일 정밀 타격
- 2. 헬기 자세 제어
- 3. 전투기 자세 제어
- 4. 선박 자세 제어

위의 모든 케이스에서 Kalman Filter 가 필수적으로 활용된다. 서론이 길었으니 이제 실제로 Kalman Filter 에 대해 알아보도록 하자 Kalman Filter 에 대해 알아보기 이전에 Gamma Function 에 대한 간략한 개요를 살펴보도록 하겠다.

Gamma Function

감마 함수를 아래와 같이 정의한다.

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$$

Euler 가 정의한 감마 함수는 아래와 같다.

$$\Gamma(x) = \int_0^1 [-ln(u)]^{x-1} du$$

$$t = -ln(u), \qquad du = -e^{-t} dt$$

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

위 감마 함수를 아래와 같이 확장할 수 있다.

$$\Gamma(x+1) = \int_0^\infty e^{-t} t^x \, dt = -e^{-t} t^x \Big|_0^\infty + x \int_0^\infty e^{-t} t^{x-1} \, dt = x \Gamma(x)$$

$$\Gamma(1) = 1 = \int_0^\infty e^{-t} \, dt = -e^{-t} \Big|_0^\infty = 1$$

또한 아래와 같은 함수를 생각해보자!

$$y=e^{-ax^2}$$

여기서 좀 더 나아가 아래와 같은 가정을 하고 Laplace Integral 을 수행해보도록 한다.

$$\int_{-\infty}^{\infty} e^{-ax^2} dx = S, \qquad \int_{-\infty}^{\infty} e^{-ax^2} dx = S,$$

위의 둘을 곱하면 아래와 같은 결과가 나올 것이다.

$$S^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-a(x^2+y^2)} dxdy$$

이를 해석하기에 적절한 좌표계는 바로 극좌표이므로 이를 도입한다.

$$x^2 + y^2 = r^2$$
$$dxdy = rdrd\theta$$

$$x^2 + y^2 = r^2$$
$$dxdy = rdrd\theta$$

반지름 항이 하나 추가로 붙는 이유는 수업 시간에 설명한 Taylor Series 의 결과 때문이다. 또한 극좌표가 도입되면서 적분 구간이 바뀌게 된다. 반지름은 0 ~ 무한대, 각도는 0 ~ 2pi 구간이 된다.

$$S^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-a(x^{2}+y^{2})} dxdy = \int_{0}^{2\pi} \int_{0}^{\infty} re^{-ar^{2}} drd\theta$$

여기서 치환 적분을 다시 시도해보자

$$ar^{2} = t \rightarrow 2ardr = dt$$

$$\int_{0}^{\infty} re^{-ar^{2}} dr = \int_{0}^{\infty} \frac{1}{2a} e^{-t} dt = \frac{1}{2a}$$

나머지 적분을 계산한다.

$$S^2 = \int_{-\infty}^{\infty} \frac{1}{2a} d\theta = \frac{\pi}{a} \to S = \sqrt{\frac{\pi}{a}}$$

확률 함수는 적분 결과가 1 이어야 하므로

$$\therefore y = \sqrt{\frac{a}{\pi}}e^{-ax^2}$$

이제 분산과 관련된 계수 sigma 값을 구해보자!

$$\sigma^2 = \int (x-m)^2 y \, dx$$

가우시안 분포를 가정하면 평균은 0 이다.

$$\sigma^2 = \sqrt{\frac{a}{\pi}} \int_{-\infty}^{\infty} x^2 e^{-ax^2} dx$$

원래라면 적분을 수행할 수 없지만 이제 우리는 감마 함수와 관련하여 Laplace Integral 기법을 알고 있으므로 이 적분을 수행할 수 있다.

$$\sigma^2 = \sqrt{\frac{a}{\pi}} \int_{-\infty}^{\infty} x^2 e^{-ax^2} dx = \sqrt{\frac{a}{\pi}} \int_{-\infty}^{\infty} x \cdot x e^{-ax^2} dx$$

부분 적분법을 사용하도록 한다.

$$u = x, u' = 1, v' = xe^{-ax^2}, v = -\frac{1}{2a}e^{-ax^2}$$

$$\sigma^2 = \sqrt{\frac{a}{\pi}} \int_{-\infty}^{\infty} x^2 e^{-ax^2} dx = \sqrt{\frac{a}{\pi}} \int_{-\infty}^{\infty} x \cdot x e^{-ax^2} dx = \sqrt{\frac{a}{\pi}} \left\{ \left[-\frac{1}{2a} x e^{-ax^2} \right]_{\infty}^{\infty} + \int_{-\infty}^{\infty} \frac{1}{2a} e^{-ax^2} dx \right\}$$

중괄호의 첫 번째 항이 기함수이므로 Fourier Integral 에서와 마찬가지로 무한대 적분의 결과는 0 이다.

$$\sigma^2 = \sqrt{\frac{a}{\pi}} \left\{ 0 + \int_{-\infty}^{\infty} \frac{1}{2a} e^{-ax^2} dx \right\} = \sqrt{\frac{a}{\pi}} \times \frac{1}{2a} \times \sqrt{\frac{\pi}{a}} = \frac{1}{2a}$$
$$\therefore a = \frac{1}{2\sigma^2}$$

다음으로 평균을 고려해서 이를 완료해보도록 하자!

$$y = \sqrt{\frac{a}{\pi}}e^{-ax^2} = \frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-x^2}{2\sigma^2}}$$

이 함수는 여전히 우함수로 평균이 0 이다.

$$E(Ax + B) = AE(x) + B$$

$$E(x + m) = E(X) + m = 0 + m$$

결국 변수들을 m 만큼 증가시키는 것은 f(x) 대신 f(x - m) 을 대입하면 된다.

$$y = \sqrt{\frac{a}{\pi}}e^{-ax^2} = \frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-m)^2}{2\sigma^2}}$$

이것이 정규분포의 확률밀도 함수에 해당한다.

Covariance

$$cov(x,y) = E[(x-x_m)(y-y_m)] = E[xy] - x_m y_m = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

x 의 분산은 x 들의 평균을 중심으로 얼마나 흩어져 있는지를 나타낸다. x 와 y 의 공분산은 x, y 의 흩어진 정도가 얼마나 서로 상관 관계를 가지고 흩어졌는지를 나타낸다. 예로 x 와 y 각각의 분산은 일정한데 x 가 x 의 평균보다 클 때 y 도 y 의 평균보다 크다면 공부산은 최대가 되고 x 가 x 의 평균보다 커질 때 y 가 y 의 평균보다 작아지면 공분산은 최소인 음수가 된다.

서로 상관관계가 없을 경우에는 공분산이 0 이 된다.

Covariance Matrix

공분산 행렬은 데이터의 좌표 성분들 사이의 공분산 값을 원소로 하는 행렬로 데이터의 i 번째 좌표 성분과 j 번째 좌표 성분의 공분산 값을 행렬의 i 행 j 열 원소값으로 하는 행렬이다.

$$cov(x,y) = E[(x-x_m)(y-y_m)] = E[xy] - x_m y_m = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

$$var(X) = \begin{bmatrix} cov(x_1, x_1) & cov(x_1, x_2) & \dots & cov(x_1, x_n) \\ cov(x_2, x_1) & cov(x_2, x_2) & \dots & cov(x_2, x_n) \\ \vdots & & \vdots & \vdots & \dots \\ cov(x_n, x_1) & cov(x_n, x_2) & \dots & cov(x_n, x_n) \end{bmatrix}$$

이외에도 일반화시켜 아래와 같이 표기할 수 있다.

$$var(X) = E[(X - E[X])(X - E[X])^T]$$

Linear Transform of Expectation & Variance

분산과 기대값은 모두 아래와 같은 선형 변환을 만족한다.

$$E(AX + B) = AE(X) + B$$
$$Var(AX + B) = A^{2}Var(X)$$

이 내용들을 활용하여 Kalman Filter 를 도출해낼 수 있다.

Kalman Filter 는 아래의 Linear System 을 가정한다.

$$x_k = F_{k-1}x_{k-1} + G_{k-1}u_{k-1} + \omega_{k-1}, \qquad \omega_{k-1} \sim N(0, Q_{k-1})$$
 (입력) $y_k = H_k x_k + V_k, \qquad v_k \sim N(0, R_k)$ (출력)

X, F, G, H 는 보편적으로 상수값의 벡터 혹은 행렬로 구성된다.

$$\widehat{x}_k^- = E[x_k|y_1,...,y_{k-1}]$$
 Dynamic Update $\widehat{x}_k^+ = E[x_k|y_1,...,y_k]$ Measurement Update $\widehat{P}_k^- = E[(x-\widehat{x}_k^-)(x-\widehat{x}_k^-)^T]$ Dynamic Update(공분산) $\widehat{P}_k^+ = E[(x-\widehat{x}_k^+)(x-\widehat{x}_k^+)^T]$ Measurement Update(공분산)

Dynamic Update

$$\widehat{x}_{k}^{-} = E[x_{k}|y_{1}, \dots, y_{k-1}] = E[F_{k-1}x_{k-1} + G_{k-1}u_{k-1} + \omega_{k-1}|y_{1}, \dots, y_{k-1}] = F_{k-1}\widehat{x}_{k-1}^{+} + G_{k-1}u_{k-1}$$

$$\widehat{P}_{k}^{-} = E[(x_{k} - \widehat{x}_{k}^{-})(x - \widehat{x}_{k}^{-})^{T}] = E[(F_{k-1}x_{k-1} + G_{k-1}u_{k-1} + \omega_{k-1} - F_{k-1}\widehat{x}_{k-1}^{+} - G_{k-1}u_{k-1})(F_{k-1}x_{k-1} + G_{k-1}u_{k-1} + \omega_{k-1} - F_{k-1}\widehat{x}_{k-1}^{+} - G_{k-1}u_{k-1})^{T}]$$

아래의 식들을 참고하여 위 식을 변환한다.

$$\begin{split} \widehat{P}_{k-1}^+ &= E[(x_{k-1} - \widehat{x}_{k-1}^+)(x_{k-1} - \widehat{x}_{k-1}^+)^T] \\ E[(F_{k-1}x_{k-1} + G_{k-1}u_{k-1} + \omega_{k-1} - F_{k-1}\widehat{x}_{k-1}^+ - G_{k-1}u_{k-1})] &= E[F_{k-1}(x_{k-1} - \widehat{x}_{k-1}^+) + \omega_{k-1}] \\ E[(F_{k-1}x_{k-1} + G_{k-1}u_{k-1} + \omega_{k-1} - F_{k-1}\widehat{x}_{k-1}^+ - G_{k-1}u_{k-1})^T] &= E[\{F_{k-1}(x_{k-1} - \widehat{x}_{k-1}^+) + \omega_{k-1}\}^T] \end{split}$$

아래와 같은 식을 얻을 수 있다.

$$\widehat{P}_{k}^{-} = E[(x_{k} - \widehat{x}_{k}^{-})(x - \widehat{x}_{k}^{-})^{T}] = F_{k-1}E[(x_{k-1} - \widehat{x}_{k-1}^{+})(x_{k-1} - \widehat{x}_{k-1}^{+})^{T}]F_{k-1}^{T} + F_{k-1}E[(x_{k-1} - \widehat{x}_{k-1}^{+})\omega_{k-1}^{T}] + E[\omega_{k-1}(x_{k-1} - \widehat{x}_{k-1}^{+})]F_{k-1}^{T} + E[\omega_{k-1}\omega_{k-1}^{T}]F_{k-1}^{T} + F[\omega_{k-1}\omega_{k-1}^{T}]F_{k-1}^{T}]F_{k-1}^{T} + F[\omega_{k-1}\omega_{k-1}^{T}]F_{k-1}^{T} + F[\omega_{k-1}\omega_{k-1}^{T}]F_{k-1}^{T} + F[\omega_{k-1}\omega_{k-1}^{T}]F_{k-1}^{T}]F_{k-1}^{T} + F[\omega_{k-1}\omega_{k-1}^{T}]F_{k-1}^{T} + F[\omega_{k-1}\omega_$$

앞서 얻은 식을 다시 적어보도록 하자!

$$\widehat{P}_{k}^{-} = E[(x_{k} - \widehat{x}_{k}^{-})(x - \widehat{x}_{k}^{-})^{T}] = F_{k-1}E[(x_{k-1} - \widehat{x}_{k-1}^{+})(x_{k-1} - \widehat{x}_{k-1}^{+})^{T}]F_{k-1}^{T} + F_{k-1}E[(x_{k-1} - \widehat{x}_{k-1}^{+})\omega_{k-1}^{T}] + E[\omega_{k-1}(x_{k-1} - \widehat{x}_{k-1}^{+})]F_{k-1}^{T} + E[\omega_{k-1}(x_{k-1} - \widehat{x}_{k-1}^{+})^{T}]F_{k-1}^{T} + E[\omega_{k-1}(x_{k-1}$$

앞서 적었던 상관 관계에 대해 상기해보자!

여기서 입력치와 측정치간에 발생하는 오차와 시스템 모델에 대한 오차(Process Noise)는 어떠한 상관 관계도 없다. 그러므로 아래와 같이 적을 수 있다.

$$F_{k-1}E[(x_{k-1}-\widehat{x}_{k-1}^+)\omega_{k-1}^T]=E[\omega_{k-1}(x_{k-1}-\widehat{x}_{k-1}^+)]F_{k-1}^T=0$$

즉 위의 공분산 오차에 대한 예측치는 아래와 같이 다시 쓸 수 있다.

$$\begin{aligned} \widehat{P}_{k}^{-} &= E[(x_{k} - \widehat{x}_{k}^{-})(x - \widehat{x}_{k}^{-})^{T}] = F_{k-1}E[(x_{k-1} - \widehat{x}_{k-1}^{+})(x_{k-1} - \widehat{x}_{k-1}^{+})^{T}]F_{k-1}^{T} + E[\omega_{k-1}\omega_{k-1}^{T}] \\ &= F_{k-1}\widehat{P}_{k-1}^{+}F_{k-1}^{T} + Q_{k-1} \end{aligned}$$

다음으로 Measurement Update 를 살펴보기 이전에 Bayes Probability 일명 Conditional Probability 부분을 살펴보도록 하자! 이 내용을 파악해야 Kalman Filter 의 Measurement Update 를 이해할 수 있다. (필요한 개념의 핵심은 조건부 기대값과 조건부 공분산, 그리고 이에 대한 가우시안 분포다)

Introduction Conditional Probability

조건부 확률 문제를 생각해보기 위해 카지노를 예로 들어보도록 하자! 내부자의 조력을 통해 공이 검정색에 들어갔음을 알았다고 할 때 최종 베팅을 하기 위한 상황을 고려해보도록 한다. 선택할 수 있는 마지막 결정지는 짝수와 홀수중 선택하는 것이며 짝수에 베팅해보도록 한다.

이 문제를 풀 때 자칫 실수할 수 있는 부분이 있다. 검정색이면서 짝수를 구하는 확률과 동일하지 않다.

- 이 문제는 우선 검정색이 확정적일 때
- 이 조건하에서 짝수가 걸릴 확률에 해당한다.

$$P(Black \& Even) = \frac{10}{38}$$

위 확률은 검정색이면서 짝수인 녀석을 구하는 확률이다. 망할각이므로 이 베팅은 포기하는것이 좋다 생각할수도 있지만 실제로는 해볼만한 베팅이다.

$$P(Even \mid Black) = \frac{10}{18}$$

실질적으로 50% 를 넘어가는 확률로 해볼만한 베팅이란 것이다.

조건부 확률은 앞서 표기하였듯이 아래와 같이 표기한다.

 $P(A \mid B)$

위 표현식은 B 가 발생했다는 것을 알 때 A 가 발생할 확률을 의미한다. 좌측의 벤 다이어그램을 관찰하여 위 계산식은 아래와 같음을 알 수 있다.

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

위 식을 다시 정리하면 아래와 같이 쓸 수 있다.

$$P(A \mid B) \times P(B) = P(A \cap B)$$

 $P(B \mid A) \times P(A) = P(B \cap A)$

조건 및 사건이 복합적일 경우엔 벤 다이어그램이 매우 복잡해질 수 있다. 이런 경우에는 Probability Tree 를 사용하는 것도 좋은 방법이 된다. Roulette Game 의 확률을 Probability Tree 로 그려보도록 하자.

위의 확률 트리를 활용하여 P(Black | Even) 을 구할 수 있다.

$$P(Black \mid Even) = \frac{P(Black \cap Even)}{P(Even)}$$

먼저 검정색과 짝수가 동시에 만족되는 경우부터 찾도록 한다.

$$P(Black \cap Even) = P(Black) \times P(Even \mid Black)$$

$$P(Black \mid Even) = \frac{P(Black) \times P(Even \mid Black)}{P(Even)}$$

다음으로 짝수를 찾아야 한다. 짝수를 찾는 것은 결국 검정색이면서 짝수인것과 빨간색이면서 짝수인것의 합으로 찾을 수 있다.

$$\begin{split} P(Even) &= P(Black \cap Even) + P(Red \cap Even) \\ &= P(Black) \times P(Even \mid Black) + P(Red) \times P(Even \mid Red) \\ &= \frac{18}{38} \times \frac{10}{18} + \frac{18}{38} \times \frac{8}{18} \\ &= \frac{9}{19} \end{split}$$

조건부 확률을 보다 일반화 해보자! 다음과 같은 Probability Tree 가 있다고 가정하자! 그리고 초기의 수식에서부터 시작해보자!

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

앞서서와 마찬가지로 Probability Tree 를 이용하여 분자를 찾을 수 있다. 다음으로 P(B) 도 P(B) 가 발생할 수 있는 모든 경우를 더해서 구할 수 있다. 이를 통계 용어로는 전확률의 법칙이라 부른다. 즉 P(B) 는 아래와 같이 쓸 수 있다.

$$P(B) = P(A \cap B) + P(A' \cap B)$$

또한 이 값들을 Probability Tree 를 활용하여 적을 수도 있다.

$$P(A \cap B) = P(A) \times P(B \mid A)$$

$$P(A' \cap B) = P(A') \times P(B \mid A')$$

P(B) 에 대한 식에 위의 식을 대입한다.

$$P(B) = P(A) \times P(B \mid A) + P(A') \times P(B \mid A')$$

Bayes's Theorem

확률에서 가장 어려운 내용중 하나로 손꼽히는 베이즈 정리에 대해 알아보도록 한다. 막상 알고나면 별것도 없는 것이기도 하다. 일단 우리의 시작점으로 돌아가보자!

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

분자는 아래와 같이 이미 알고 있는 값이다.

$$P(A \cap B) = P(A) \times P(B \mid A)$$

앞서 구한 분모도 대입한다.

$$P(B) = P(A) \times P(B \mid A) + P(A') \times P(B \mid A')$$

최종적으로 아래와 같이 적을 수 있다.

$$P(A \mid B) = \frac{P(A) \times P(B \mid A)}{P(A) \times P(B \mid A) + P(A') \times P(B \mid A')}$$

위 식을 베이즈 정리라고 한다.

다음으로 넘어가기 이전에 먼저 다변수 가우시안 분포에 대해 생각해보도록 하자! 이 부분은 사실 통계학 내용에서도 가장 어려운 랜덤 프로세스에 해당하는 분야로 온갖 인공지능 알고리즘, 레이더 알고리즘등에서 활용되고 있으니 예제 코드를 통해 좀 더 깊이 있게 이해해보길 바란다.

Multivariate Normal Distribution

먼저 아래와 같은 정의를 생각해보자!

$$Z = X + AY, \qquad A = -\frac{Cov(X,Y)}{Cov(Y,Y)}$$

$$Cov(Z,Y) = Cov(X,Y) + Cov(AY,Y)$$

$$= Cov(X,Y) + ACov(Y,Y)$$

$$= Cov(X,Y) - \frac{Cov(X,Y)}{Cov(Y,Y)}Cov(Y,Y) = 0$$

Z 와 Y 는 상관 관계가 없으므로 독립임을 알 수 있고 이에 대한 기대값을 고려해보자!

$$E(X | Y) = E(Z - AY | Y)$$

$$= E(Z) - AY$$

$$= \mu_1 + A(\mu_2 - Y)$$

$$= \mu_1 + \frac{Cov(X, Y)}{Cov(Y, Y)}(Y - \mu_2)$$

이제 조건부 분산을 고려해보도록 한다.

$$Var(X + Y) = Var(X) + Var(Y) + Cov(X,Y) + Cov(Y,X)$$

$$\begin{aligned} Var(X \mid Y) &= Var(Z) = Var(X + AY) \\ &= Var(X) + AVar(Y)A' + ACov(X,Y) + Cov(Y,X)A' \\ &= Cov(X,X) + \frac{Cov(X,Y)}{Cov(Y,Y)}\frac{Cov(Y,Y)}{Cov(Y,Y)}Cov(Y,X) - \frac{2Cov(X,Y)}{Cov(Y,Y)}Cov(Y,X) \\ &= Cov(X,X) + \frac{Cov(X,Y)}{Cov(Y,Y)}Cov(Y,X) - \frac{2Cov(X,Y)}{Cov(Y,Y)}Cov(Y,X) \\ &= Cov(X,X) - \frac{Cov(X,Y)}{Cov(Y,Y)}Cov(Y,X) \\ & \therefore P(X \mid Y = y) \sim N \left(E[X] + \frac{Cov(X,Y)}{Cov(Y,Y)}(Y - E[Y]), Cov(X,X) - \frac{Cov(X,Y)}{Cov(Y,Y)}Cov(Y,X) \right) \end{aligned}$$

이제 Measurement Update 에 대해 알아보자!

$$\begin{split} P(X \mid Y = y) \sim N \left(E[X] + \frac{Cov(X,Y)}{Cov(Y,Y)} (Y - E[Y]), Cov(X,X) - \frac{Cov(X,Y)}{Cov(Y,Y)} Cov(Y,X) \right) \\ \widehat{x}_k^+ &= E[x_k | y_1, \dots, y_k] = \widehat{x}_k^- + Cov(x,y) \cdot Cov(y,y)^{-1} (y - E[y]) \\ \widehat{P}_k^+ &= E[(x - \widehat{x}_k^+) (x - \widehat{x}_k^+)^T] = Cov(x,x) - Cov(x,y) \cdot Cov(y,y)^{-1} Cov(y,x) \end{split}$$

공분산의 원 정의를 활용한다. $cov(x, y) = E[(x - x_m)(y - y_m)] = E[xy] - x_m y_m$

$$\begin{aligned} Cov(X,Y) &= E[(x-\widehat{x}_{k}^{-})(y-E[y])^{T}] \\ &= E[(x-\widehat{x}_{k}^{-})(H_{k}x_{k}+V_{k}-H_{k}\widehat{x}_{k}^{-})^{T}] \\ &= E[(x-\widehat{x}_{k}^{-})(H_{k}(x-\widehat{x}_{k}^{-})+V_{k})^{T}] \\ &= E[(x-\widehat{x}_{k}^{-})(x-\widehat{x}_{k}^{-})^{T}]H_{k}^{T} + E[(x-\widehat{x}_{k}^{-})V_{k}^{T}] \\ &= \widehat{P}_{k}^{-}H_{k}^{T} \\ Cov(Y,Y) &= E[(H_{k}x_{k}+V_{k}-H_{k}\widehat{x}_{k}^{-})(H_{k}x_{k}+V_{k}-H_{k}\widehat{x}_{k}^{-})^{T}] \\ &= E[(H_{k}(x-\widehat{x}_{k}^{-})+V_{k})(H_{k}(x-\widehat{x}_{k}^{-})+V_{k})^{T}] \\ &= H_{k}E[(x-\widehat{x}_{k}^{-})(x-\widehat{x}_{k}^{-})^{T}]H_{k}^{T} + H_{k}E[(x-\widehat{x}_{k}^{-})V_{k}^{T}] + E[V_{k}(x-\widehat{x}_{k}^{-})]H_{k}^{T} + E[V_{k}V_{k}^{T}] \\ &= H_{k}E[(x-\widehat{x}_{k}^{-})(x-\widehat{x}_{k}^{-})^{T}]H_{k}^{T} + E[V_{k}V_{k}^{T}] \\ &= H_{k}\widehat{P}_{k}^{-}H_{k}^{T} + R_{k} \end{aligned}$$

최종적으로 아래와 같이 정리할 수 있다.

$$\hat{x}_{k}^{+} = \hat{x}_{k}^{-} + \hat{P}_{k}^{-} H_{k}^{T} (H_{k} \hat{P}_{k}^{-} H_{k}^{T} + R_{k})^{-1} (y_{k} - H_{k} \hat{x}_{k}^{-})$$

$$\hat{P}_{k}^{+} = \hat{P}_{k}^{-} - \hat{P}_{k}^{-} H_{k}^{T} (H_{k} \hat{P}_{k}^{-} H_{k}^{T} + R_{k})^{-1} H_{k} \hat{P}_{k}^{-}$$

$$\begin{aligned} x_k &= F_{k-1} x_{k-1} + G_{k-1} u_{k-1} + \omega_{k-1}, & \omega_{k-1} \sim N(0, Q_{k-1}) \\ y_k &= H_k x_k + V_k, & v_k \sim N(0, R_k) \end{aligned}$$

$$\hat{x}_k^- &= E[x_k | y_1, \dots, y_{k-1}]$$

$$\hat{x}_k^+ &= E[x_k | y_1, \dots, y_k]$$

$$\hat{P}_k^- &= E[(x - \hat{x}_k^-)(x - \hat{x}_k^-)^T]$$

 $\widehat{P}_{\nu}^{+} = E[(x - \widehat{x}_{\nu}^{+})(x - \widehat{x}_{\nu}^{+})^{T}]$

이제 Kalman Filter 식을 마무리 하기 위해 Measurement Update 에서 구한 식의 일부를 가져와보자!

$$K_k = \widehat{P}_k^- H_k^T (H_k \widehat{P}_k^- H_k^T + R_k)^{-1}$$

위 식을 Kalman Gain 이라고 정의하도록 한다. 그러면 아래와 같은 관계가 성립함을 볼 수 있다.

이와같이 유명한 Kalman Filter 식이 성립됨을 확인할 수 있다. 여기서 조금 더 절차를 간단하게 만들면 One Step Priori / Posteriori Kalman Filter 를 만들 수 있다.

단순화 과정까지 마무리를 해보도록 하자! * priori

$$\widehat{x}_{k+1}^{-} = F_k \widehat{x}_k^{+} + G_k u_k
= F_k (\widehat{x}_k^{-} + K_k (y_k - H_k \widehat{x}_k^{-})) + G_k u_k
= (F_k - K_k H_k) \widehat{x}_k^{-} + F_k K_k y_k + G_k u_k
= F_k (I - K_k H_k) \widehat{x}_k^{-} + F_k K_k y_k + G_k u_k
\widehat{P}_{k+1}^{-} = F_k \widehat{P}_k^{+} F_k^{T} + Q_k
= F_k (\widehat{P}_k^{-} - K_k H_k \widehat{P}_k^{-}) F_k^{T} + Q_k
= F_k \widehat{P}_k^{-} F_k^{T} - F_k K_k H_k \widehat{P}_k^{-} F_k^{T} + Q_k$$

* posteriori

$$\begin{split} \widehat{x}_{k}^{+} &= \widehat{x}_{k}^{-} + K_{k}(y_{k} - H_{k}\widehat{x}_{k}^{-}) \\ &= (I - K_{k}H_{k})\widehat{x}_{k}^{-} + K_{k}y_{k} \\ &= (I - K_{k}H_{k})(F_{k-1}\widehat{x}_{k-1}^{+} + G_{k-1}u_{k-1}) + K_{k}y_{k} \\ \widehat{P}_{k}^{+} &= \widehat{P}_{k}^{-} - K_{k}H_{k}\widehat{P}_{k}^{-} \\ &= (I - K_{k}H_{k})\widehat{P}_{k}^{-} \\ &= (I - K_{k}H_{k})(F_{k-1}\widehat{P}_{k-1}^{+}F_{k-1}^{T} + Q_{k-1}) \end{split}$$

$$\begin{split} \widehat{x}_{k}^{-} &= F_{k-1} \widehat{x}_{k-1}^{+} + G_{k-1} u_{k-1} \\ \widehat{P}_{k}^{-} &= F_{k-1} \widehat{P}_{k-1}^{+} F_{k-1}^{T} + Q_{k-1} \\ K_{k} &= \widehat{P}_{k}^{-} H_{k}^{T} \big(H_{k} \widehat{P}_{k}^{-} H_{k}^{T} + R_{k} \big)^{-1} \\ \widehat{x}_{k}^{+} &= \widehat{x}_{k}^{-} + K_{k} (y_{k} - H_{k} \widehat{x}_{k}^{-}) \\ \widehat{P}_{k}^{+} &= \widehat{P}_{k}^{-} - K_{k} H_{k} \widehat{P}_{k}^{-} \end{split}$$

$$y = \sqrt{\frac{a}{\pi}} e^{-ax^2} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-m)^2}{2\sigma^2}} = P(x|m,\sigma^2)$$
 $\frac{1}{Z(R)} e^{\frac{-(x-m)^T R(x-m)}{2}} = P(x|m,R)$ $Z(R) = \left[det\left(\frac{R}{2\pi}\right)\right]^{\frac{1}{2}}$ (여기서 R 은 공분산 행렬의 역행렬이다)