

A Temporally Consistent Image-based Sun Tracking Algorithm for Solar Energy Forecasting Applications

Quentin Paletta

Supervised by Prof. Joan Lasenby and Prof. Carola Schönlieb
Signal Processing and Communication Lab
Engineering Department, University of Cambridge

Short-term forecasting using sky images

- Temporal resolution: 1-2 min
- Predictions up to next 20 min

What is the position of the Sun in the image?

Short-term forecasting using sky images

- Temporal resolution: 1-2 min
- Predictions up to next 20 min

1. Find the angular position of the Sun in the sky $(\theta, \phi)^*$

Source: Dangerous atmospheric events: a new physical-mathematical approach, Sergey A. Arsen'yev et al. 2019

^{*}Ibrahim Reda and Afshin Andreas. Solar position algorithm for solar radiation applications. Solar Energy, 2004.

Philippe Blanc, Lucien Wald. The SG2 algorithm for a fast and accurate computation of the position of the Sun for multi-decadal time period. Solar Energy, 2012.

- 1. Find the angular position of the Sun in the sky (θ, ϕ)
- 2. Calibrate the camera*

- 1. Find the angular position of the Sun in the sky (θ, ϕ)
- 2. Calibrate the camera
- 3. Translate the angular position of the Sun into pixel coordinates

$$(\theta, \varphi) \Rightarrow (x, y)$$

- 1. Find the angular position of the Sun in the sky (θ, ϕ)
- 2. Calibrate the camera
- 3. Translate the angular position of the Sun into pixel coordinates

Requires external parameters and access to the camera! => Limits research on open access datasets and industrial applications

Suggested method: estimate the position of the Sun based solely on the sky images

Suggested method: estimate the position of the Sun based solely on the sky images

Smooth Sun Trajectory

- 1. Position of the Sun for four consecutive months at 12:00
- 2. Position of the Sun for four consecutive hours over a day

Binary segmentation — Visible / hidden Sun

Binary segmentation – Visible / hidden Sun

Sun Localisation

Sun Localisation

Distribution of visible Sun position over a year

Time (days: 0 => 365)

White pixel: Visible Sun position Black pixel: Not visible Sun position

Time (minutes: 0 => 1440)

Time (minutes: 0 => 1440)

19

20

Daily Sun trajectory from minute-by-minute estimates

Daily Sun trajectory from minute-by-minute estimates

Smooth trajectory of the Sun over days

Dots: visible Sun

Solid lines: trajectory of the Sun predicted by the algorithm

Predicts a smooth trajectory of the Sun

A Temporally Consistent Image-based Sun Tracking Algorithm for Solar Energy Forecasting Applications

Quentin Paletta

Supervised by Prof. Joan Lasenby and Prof. Carola Schönlieb
Signal Processing and Communication Lab
Engineering Department, University of Cambridge

