

1 In the claims:

- 2 1. A method for gamut mapping of an input image using a space varying
- 3 algorithm, comprising:
 - 4 receiving the input image;
 - 5 converting color representations of an image pixel set to produce a corresponding
 - 6 electrical values set;
 - 7 applying the space varying algorithm to the electrical values set to produce a
 - 8 color-mapped value set; and
 - 9 reconverting the color-mapped value set to an output image.

10 2. The method of claim 1, wherein the space varying algorithm minimizes a
11 variational problem represented by:

$$12 E(u) = \int_{\Omega} (D^2 + \alpha |\nabla D|^2) d\Omega, \text{ subject to } u \in \mathcal{G}, \text{ wherein } \Omega \text{ is a support of the input}$$

13 image, α is a non-negative real number, $D = g^*(u - u_0)$, g is a normalized Gaussian kernel
14 with zero mean and a small variance σ , u_0 is the input image, and u is the output image.

15 3. The method of claim 2, further comprising:

- 16 solving the variational problem at a high value of α ;
- 17 solving the variational problem at a low value of α ; and
- 18 averaging the solutions.

19 4. The method of claim 3, wherein the step of averaging the solutions comprises
20 using a spatially adaptive weighting scheme, comprising:

$$u_{final}[k, j] = w[k, j]u_{small}[k, j](1 - w[k, j])u_{high}[k, j],$$

21 wherein the weight $w[k, j]$, comprises:

$$w[k, j] = \frac{1}{1 + \beta |\nabla g * u_0|^2}, \text{ and}$$

22 wherein β is a non-negative real number.

23 5. The method of claim 2, wherein the variational problem is solved according to:

$$24 \frac{du}{dt} = \alpha g * \Delta D - g * D, \text{ subject to } u \in \mathcal{G}.$$

25 6. The method of claim 2, wherein the space varying algorithm is solved according
26 to:

1 $u_y^{n+1} = u_y^n + \tau(\alpha L_y^n - \overline{D_y^n})$, subject to $u_y^n \in \mathcal{G}$, wherein

2 $\tau = dt$,

2 $\overline{D^n} = g * g * (u^n - u_0)$

2 $L^n = D_2 * (u^n - u_0)$ and

2 $D_2 = g_x * g_x + g_y * g_y$

3 7. The method of claim 1, wherein the space varying algorithm minimizes a
4 variational problem represented by:

5 $E(u) = \int_{\Omega} (\rho_1(D) + \alpha \rho_2(|\nabla D|)) d\Omega$, subject to $u \in \mathcal{G}$, wherein ρ_1 and ρ_2 are scalar

6 functions.

7 8. The method of claim 2, further comprising:

8 decimating the input image to create one or more resolution layers, wherein the
9 one or more resolution layers comprises an image pyramid; and

10 solving the variational problem for each of the one or more resolution layers.

11 9. The method of claim 1, wherein the method is executed in a camera.

12 10. The method of claim 1, wherein the method is executed in a printer.

13 11. A method for color gamut mapping, comprising:

14 converting first colorimetric values of an input image to second colorimetric
15 values of an output device, wherein output values are constrained within a gamut of the
16 output device; and

17 using a space varying algorithm that solves an image difference problem.

18 12. A computer-readable memory for color gamut mapping, comprising an instruction
19 set for executing color gamut mapping steps, the steps, comprising:

20 converting first colorimetric values of an original image to second colorimetric
21 values, wherein output values are constrained within a gamut of the output device; using a
22 space varying algorithm that solves an image difference problem; and

23 optimizing a solution to the image difference problem.

24 13. The computer-readable memory of claim 12, wherein the image difference
25 problem is represented by:

26 $E(u) = \int_{\Omega} (D^2 + \alpha |\nabla D|^2) d\Omega$

1 subject to $u \in \mathcal{G}$, wherein Ω is a support of an input image, α is a non-negative real
2 number, $D = g^*(u - u_0)$, g is a normalized Gaussian kernel with zero mean and small
3 variance σ , u_0 is the input image, and u is an output image.

4 14. The computer-readable memory of claim 12, wherein the instruction set further
5 comprises steps for:

6 solving the image difference problem at a high value of α ;
7 solving the image difference problem at a low value of α ; and
8 averaging the solutions.

9 15. The computer-readable memory of claim 14, wherein averaging the solutions
10 comprises using a spatially adaptive weighting scheme, comprising:

$$u_{final}[k, j] = w[k, j]u_{small}[k, j](1 - w[k, j])u_{high}[k, j], \text{ and}$$

11 wherein the weight $w[k, j]$, comprises:

$$w[k, j] = \frac{1}{1 + \beta|\nabla g * u_0|^2}, \text{ and}$$

13 wherein β is a non-negative real number.

14 16. The computer-readable memory of claim 12, wherein the image difference
15 problem is represented by:

$$E(u) = \int_{\Omega} (\rho_1(D) + \alpha \rho_2(|\nabla D|)) d\Omega, \text{ wherein } \rho_1 \text{ and } \rho_2 \text{ are scalar functions.}$$

17 17. The computer-readable memory of claim 12, wherein the instruction set further
18 comprises steps for:

19 decimating the input image to create one or more resolution layers, wherein the
20 one or more resolution layers comprise an image pyramid; and

21 solving the image difference problem for each of the one or more resolution
22 layers.

23 18. The computer-readable memory of claim 17, wherein the instruction set further
24 comprises steps for:

25 (a) initializing a first resolution layer;

26 (b) calculating a gradient G for the resolution layer, the gradient G comprising:

1 $G = \Delta(u - u_o) + \alpha_k(u - u_o)$, wherein Δx is a convolution of each color

2 plane of x with $K_{LAP} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ and $\alpha_k = \alpha_o * 2^{2(k-1)}$;

3 (c) calculating a normalized steepest descent value $L_j = L_{j-1} - \mu_o * \mu_{NSD} * G$, wherein
4 μ_o is a constant;

5 (d) projecting the value onto constraints $\text{Proj}_{\mathcal{S}}(L_j)$, wherein $\text{Proj}_{\mathcal{S}}(x)$ is a projection
6 of x into a gamut \mathcal{S} ; and

7 (e) for a subsequent resolution layer, repeating steps (b) – (d).

8 19. A method for image enhancement using gamut mapping, comprising:
9 receiving a input image;

10 from the input image, constructing an image pyramid having a plurality of
11 resolution layers;

12 processing each resolution layer, wherein the processing includes completing a
13 gradient iteration, by:

14 calculating a gradient G ;

15 completing a gradient descent iteration; and

16 projecting the completed gradient descent iteration onto constraints; and

17 computing an output image using the processed resolution layers.

18 20. The method of claim 19, wherein the gradient G , comprises:

19
$$G = \Delta(u - u_o) + \alpha_k(u - u_o),$$

20 wherein u is the output image, u_o is the input image, and α is a non-negative real
21 number.

22 21. The method of claim 19, wherein completing the gradient descent iteration
23 comprises calculating:

24
$$\mu_{NSD} = \frac{\Sigma G^2}{(\Sigma(G * \Delta G) + \alpha_k \Sigma G^2)} ; \text{ and}$$

25
$$L_j = L_{j-1} - \mu_o \cdot \mu_{NSD} \cdot G,$$

26 wherein μ_{NSD} is a normalized steepest descent parameter, μ_o is a constant, k is a number
27 of resolution layers in the image pyramid, and j is a specific resolution layer.

28 22. The method of claim 19, wherein projecting the completed gradient descent
29 iteration onto the constraints is given by:

1 $L_j = \text{Proj}_{\mathcal{G}}(L_j),$

2 wherein $\text{Proj}_{\mathcal{G}}(x)$ is a projection of x into a gamut \mathcal{G} .

3 23. The method of claim 19, wherein constructing the image pyramid, comprises:

4 smoothing the input image with a Gaussian kernel;

5 decimating the input image; and

6 setting initial conductive $L_0 = \max\{S_p\}$, wherein S_p is an image with the coarsest

7 resolution layer for the image pyramid.

8 24. The method of claim 23, wherein the Gaussian kernel, comprises:

9
$$K_{PYR} = \begin{bmatrix} \frac{1}{16} & \frac{1}{8} & \frac{1}{16} \\ \frac{1}{8} & \frac{1}{4} & \frac{1}{8} \\ \frac{1}{16} & \frac{1}{8} & \frac{1}{16} \end{bmatrix}$$

10 25. The method of claim 19, wherein processing each resolution layer further
11 comprises applying a space varying algorithm to minimize a variational problem
12 represented by:

13
$$E(u) = \int_{\Omega} (D^2 + \alpha |\nabla D|^2) d\Omega, \text{ subject to } u \in \mathcal{G}, \text{ wherein } \Omega \text{ is a support of the}$$

14 image, and $D = g^*(u - u_0)$, wherein g is a normalized Gaussian kernel with zero mean and
15 small variance σ , u_0 is the input image, u is the output image, and wherein α is a non-
16 negative real number.

17 26. The method of claim 19, wherein processing each resolution layer comprises
18 applying a space varying algorithm to minimize a variational problem represented by:

19
$$E(u) = \int_{\Omega} (\rho_1(D) + \alpha \rho_2(|\nabla D|)) d\Omega, \text{ subject to } u \in \mathcal{G}, \text{ wherein } \rho_1 \text{ and } \rho_2$$

20 are scalar functions.

21 27. The method of claim 26, wherein ρ_1 and ρ_2 are chosen from the group
22 comprising $\rho(x) = |x|$ and $\rho(x) = \sqrt{1 + x^2}$.