統計計算與模擬 期末報告

第 10 組 林健宏、陳初勝、許晉瑋

一、 K-means 與 EM for mixture normal 的比較

給定一組資料(並不知道資料的群集特性)

例:

註:圖中每一種顏色表示一個群集(clusters),圖中共有五種顏色

1. K-means

• 步驟

- (1) 給定一組初始值(用於決定多少群,且該值為每一群的中心值/平均數)
- (2) 加入資料後,計算每一資料與中心值的距離,並將資料分配到與其自身相 小距離的中心值的群裡。
- (3) 重新計算找出群的新中心。
- (4) 重複(2)與(3)的步驟直到新平均值與舊平均值之間的差異可被忽略為止。

• 演算法

$$\begin{split} S_{i}^{(t)} &= \left\{ x_{p} : \left\| x_{p} - m_{i}^{(t)} \right\|^{2} \leq \left\| x_{p} - m_{j}^{(t)} \right\|^{2} \forall j, 1 \leq j \leq k \right\} \\ m_{i}^{(t+1)} &= \frac{1}{\left| S_{i}^{(t)} \right|} \sum_{x_{j} \in S_{i}^{(t)}} x_{j} \\ S_{i}^{(t+1)} &- S_{i}^{(t)} < \varepsilon \Rightarrow converge \end{split}$$

 x_p 為某一資料位置 m_i 為第 i 群之平均值 ε 為誤差值

• 優點

- (1) 以群內變異小、群間變異大為分群的核心概念。
- (2) 想法簡單,收斂速度快(因為與平方有關係)。
- (3) 不需要分佈假設。

缺點

- (1) 實務上,global optimization 的解不太容易求得,大部分皆為 local optimization。
- (2) 最終收斂結果與起始值選取有關。
- (3) 倘若資料本身有重疊部分,則重疊部分的資料有可能被分到錯誤類別。
- (4) 易受到極端值影響,雖此缺陷有機會透過 K-Mediods 法改善,也就是改以中位數而非平均數去作為衡量距離的基準點,但同時收斂速度也會變得較慢。
- (5) 邊界是由直線分割的,有時在 fit data 的過程中較難達到精準的效果。
- (6) K 值(群數)需要事先選定,選值的最適方法較難掌握,然而不合適的 K 值可能影響分類效果。

2. EM for mixture normal

• 步驟

- (1) 決定資料混合模型。
- (2) 給定一組起始值(起始值為假設分佈模型的參數值)。
- (3) 寫下 likelihood function 並求其期望值。(E-steps)
- (4) 求其參數使得 likelihood function 最大值。(M-steps)
- (5) 重複(3)與(4)直到新的參數估計值與舊的參數估計值相差不大。

• 演算法

$$\begin{aligned} &Q(\theta \big| \theta^{(t)}) = E_y[\log p(x,y \big| \theta) \big| x, \theta^{(t)}] \Leftarrow E - steps \\ &\theta^{(t+1)} = \arg \max_{\theta} Q(\theta \big| \theta^{(t)}) \Leftarrow M - steps \\ &\theta^{(t+1)} - \theta^{(t)} < \varepsilon \Rightarrow converge \end{aligned}$$

註: θ 為參數估計值 (可以表示成一個或一組參數)

• 優點

- (1) 因為 EM 演算法主要是利用 likelihood function,因此對於有重疊性質的資料,會利用比較機率大小來判定該筆資料屬於那一群,因此錯判可能性較低。
- (2) 因為該演算法建立在常態模型之上,因此可以利用一些文獻上的方法去 推估該筆資料有幾個 modes。
- (3) EM 演算法可利用於遺失值的插補, E-step 是對遺漏值利用 likelihood function 做最佳的估計, M-step 則求出 MLE、再進行取代, 重複迭代直到估計值的變化可以被忽略為止。

• 缺點

- (1) 起始值選取會直接影響最後收斂結果。
- (2) 實務上,其收斂結果大部分為 local optimization。
- (3) 倘若這些樣本非 i.i.d,其 likelihood function 不容易被推導。

Remark: Case of Mixture Normal distribution

(1) E-steps

$$Q(\theta|\theta^{(t)}) = E_{y}[\log P(\bar{x}, \bar{y}|\theta)|\bar{x}, \theta^{(t)}]$$

$$\Rightarrow Q(\theta|\theta^{(t)}) = E_{y}\{\sum_{i} \log[P(y_{i}|\theta)P(x_{i}|y_{i}, \theta)]|\bar{x}, \theta^{(t)}\}$$

$$\therefore Q(\theta|\theta^{(t)}) = \sum_{i=1}^{n} \sum_{j=1}^{K} \log\{\alpha_{j}\phi(x_{i}|\mu_{j}, \sigma_{j})\}P(y_{i}|x_{i}, \theta^{(t)})$$

$$and \sum_{j=1}^{n} \alpha_{j} = 1$$

(2) M-steps

$$\mu^{(t+1)}{}_{j} = \frac{\sum_{i} x_{i} P(y_{i} = j | x_{i}, \theta^{(t)})}{\sum_{i} P(y_{i} = j | x_{i}, \theta^{(t)})}$$

$$\sigma_{j}^{2(t+1)} = \frac{\sum_{i} (x_{i} - \mu^{(t)}{}_{j})^{2} P(y_{i} = j | x_{i}, \theta^{(t)})}{\sum_{i} P(y_{i} = j | x_{i}, \theta^{(t)})}$$

$$\alpha_{j}^{(t+1)} = \frac{1}{n} \sum_{i} p(y_{i} = j | x_{i}, \theta^{(t)})$$

二、Clustering Old Faithful data

1. Descriptive statistics

• Scatter plot

根據以上 eruptions 與 waiting 兩變數的散布圖,我們可以初步推測將 data 分為兩群應是個不錯的選項。

• Histograms & Frequency tables

由上圖所示,我們可以發現兩個變數分佈皆呈現明顯的雙峰型態, 與散佈圖所呈現的資訊相呼應。

此外,有一個值得思考的問題是,若我們接下來打算依循前面介紹 的兩種分群方法(K-means 與 EM)來進行分群,都必須事先選取一組

起始值,且不論使用哪種方法,起始值的選取皆容易影響最終結果,故 起始值的選取成了一個重要的課題,因此我們希望起始值能夠透過一個 較有根據的方式選出,這也是我們在此事先進行敘述統計分析的一大主 因。

像是若我們要用 K-means 來做分群,透過前面的觀察,我們會選擇分兩群(K=2),且兩變數的 histogram 也皆呈現雙峰,因此,我們可以分別從那兩個高峰中取出適當的起始值。例如:第一個起始點,waiting 的部分可以選擇從 $50\sim55$ 的區間取出,相對的,eruption 的部分可以從 $0\sim2$ 的區間取出;第二個起始點的 waiting 可從 $75\sim85$ 的區間抽出,eruption 可從 $4\sim4.5$ 的區間抽出。如果我們希望再取得更精準一些,也可以觀察以下的 frequency table,用紅色框住的部分代表明顯的高峰地帶:

若我們選擇使用 EM for mixture normal,則我們需選定的起始值即為 normal 分配的 mean 以及 standard deviation,既然我們決定分兩群,因此 mean 的部份我們一樣可以參考兩個高峰值,至於 standard deviation 的部分我們就選擇兩個變數分別計算出來的標準差,結果如下:

> sd(waiting)
[1] 13.59497
> sd(eruption)
[1] 1.141371

2. By Hierarchical Clustering

若我們想比較 K-means 與 EM 的分類效果好壞,但分群的結果並無明確的標準答案,因此我們需要尋求一個評斷的標準,依此為標準答案,分別與 K-means 與 EM 的分群結果做比較。我們選擇採用的是 Hierarchical Clustering method:

由以上 Banner plot 所示,無論使用哪種 linkage,分為兩群依舊是我們的最佳選擇,為追求高標準的分群結果,我們比較了以上 Hierarchical Clustering 的其中兩種 linkage,發現 Ward 的 AC 值趨近於 1,因此我們決定以 Ward method 的分群結果為評斷標準。

3. By K-means

根據前面的種種觀察,我們這裡依然選擇分為兩群,也就是 K=2。選出兩個起始點後,利用計算距離取其短的方式分群,分完一次後會得到一組新的起始點,再依此作分群,以此類推,迭代30次後,得到最終的中心點為(2.09433,54.75)與(4.29793,80.28488),最終的中心點以及分群結果示意圖如下所示,1與2代表兩群個別的中心點,紅色筆直虛線代表的是分隔線(因 K-means分群皆是以直線型邊界為基礎):

Diagram of old faithful fountain

另外,我們也做了主成份分析,並將以上的分類結果投影在以前兩個主 成份為軸的圖上:

4. By EM

若依據 EM for mixture normal 為分群準則,透過本報告第一部分所述的步驟,進行 10 次迭代,得到最終參數組合如下所示:

\$alpha

[1] 0.3558592 0.6441408

\$mu1

eruptions waiting 2.036355 54.478183

\$mu2

eruptions waiting 4.289633 79.967760

\$sigma1

[,1] [,2] [1,] 0.06914135 0.4348933

[2,] 0.43489327 33.6954167

\$sigma2

[,1] [,2]

[1,] 0.06914135 0.4348933

[2,] 0.43489327 33.6954167

$$\alpha_1 = 0.3559, \alpha_2 = 0.6441$$

$$\overrightarrow{\mu_1} = (2.0364, 54.4782), \overrightarrow{\mu_2} = (4.2896, 79.9678)$$

$$\overrightarrow{\sigma_1^2} = \overrightarrow{\sigma_2^2} = \begin{bmatrix} 0.0691 & 0.4349 \\ 0.4349 & 33.6954 \end{bmatrix}$$

分群結果如下圖所示:

Waiting time vs Eruption time of the Old Faithful geyser

三、Clustering NIPS_1987-2015

文字檔屬於文章與單字的聯合次數表,以下展示出前 6 筆單字與前 6 篇文章的次數矩陣:

	X1987_1	X1987_2	X1987_3	X1987_4	X1987_5	X1987_6
abalone	0	0	0	0	0	0
abbeel	0	0	0	0	0	0
abbott	0	0	0	0	0	0
abbreviate	0	0	0	0	0	0
abbreviated	0	0	0	0	0	0
abc	0	0	0	0	0	0

横軸代表第幾篇文章,例如 X1987_1 指的是 1987 年的第一篇文章,而縱軸 為該篇可能使用的單字,格子內為該單字在該篇文章內的使用次數。文章年份從 1987 到 2015,總篇數為 5811 篇,而單字數則為 11463 個。

我們先檢測是否有單字數全為 0 的文章,發現共有 7 篇文章的單字數全為 0,我們決定將這7篇文章移除以便分析,因此剩下 5804 篇。接著清除單字時態的問題(將同單字不同時態或詞性合併為同一單字),透過 R package "textstem",將這 11463 個單字縮減為 8426 個。

但縮減後的單字量依然太大,因此我們依照2個不同的標準去篩選分析用的單字:

1. 前 2000 個總出現次數的單字。

次數最多的為 model 125399 個,這 100 個中次數最少的單字為 apply 17501 個。其中前 10 名出現在最多的單字如下表所示:

model	use	learn	algorithm	set	function	datum	show	network	result
125399	122437	95682	84159	79371	73146	72427	56092	55984	55095

直方圖

different metal case input neural popular per la case input neural popular per la case input neural popular per la case input neural popular p

文字雲

我們使用這100個單字對這5804篇文章進行k-means分群並投影到PCA。

- 2. 使用 tf-idf 去選擇重要度較高的單字。
- 逆向文件頻率 (inverse document frequency, IDF)

假設詞彙 t 總共在 d_t 篇文章中出現過 則詞彙 t 的 IDF 定義成 $idf_t = \log(\frac{D}{d_t})$ 。

比如說,假設文字 1 總共出現在 25 篇不同的文件,則 $idf_1 = \log(\frac{D}{25})$ 。如果

詞彙 t在非常多篇文章中都出現過,就代表 d_t 很大,此時 idf_t 就會比較小。 → 我們使用 tf 與 idf 的相乘為重要度,相乘的值越大,代表該字對於該篇文章越重要,反之亦是。 得到下表各個單字對於每一篇文章的重要度,以下僅顯示前 6 個單字及前 6 筆文章的重要度值:

	X1987_1	X1987_2	X1987_3	X1987_4	X1987_5	X1987_6
model	0.000237	0.000431	0.000398	0.002418	0.000287	0.000094
use	0.000034	0.000032	0.000032	0.000055	0.000005	0.000027
learn	0.002797	0.003047	0.001253	0.002551	0.000967	0.001854
algorithm	0	0.000594	0.000962	0.000102	0.000849	0.001628
set	0.000076	0.000042	0.000103	0.000019	0.000119	0.000395
function	0.001314	0.000186	0.000196	0.000763	0.001111	0.00029

透過將每個字對於每篇文章的重要度相加,得到每個字的重要度總和,並取總合中前 100 的單字,重要度數值最高的為 neuron 18.61700 以及重要度最低的為 score 5.808552。以下為重要度前 10 高的單字:

network	policy	kernel	image	neurons
13.2283	12.1828	11.9686	11.8317	11.5664
training	spike	units	neuron	images

<u>直方圖</u>

文字雲

然而,考慮到可能有些文字每篇文章都出現,造成字數累計上比其他單字來得多,最後我們採用 case 2 用 tf-idf 去取用最重要的前 100 個單字當作分群用資料。

首先,加總每個字在該年度使用次數得到下表,並計算該字在該年度使用 頻率:

	每年該字使用的次數 (僅顯示前 10 個單字在前 10 年的使用次數)									
	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996
network	1647	1572	1571	2185	2165	1668	1922	1679	1501	1169
policy	1	4	25	33	26	55	96	135	115	120
kernel	13	6	5	28	104	26	51	35	20	78
image	207	208	248	312	371	287	271	348	235	271
neurons	568	287	439	350	333	448	484	327	306	297
training	369	568	728	977	1109	1054	1129	1125	1215	1025
spike	105	15	81	69	67	115	147	17	218	195
units	608	644	642	806	805	585	688	698	496	593
neuron	384	371	350	296	283	378	336	187	286	216
images	67	75	110	156	216	135	233	230	163	252

每年該字使用的頻率(tf)(僅顯示前 10 個單字在前 10 年的使用次數)										
	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996
network	0.0826	0.0867	0.0749	0.0855	0.075	0.065	0.0669	0.0585	0.0506	0.0393
policy	0.0001	0.0002	0.0012	0.0013	0.0009	0.0021	0.0033	0.0047	0.0039	0.004
kernel	0.0007	0.0003	0.0002	0.0011	0.0036	0.001	0.0018	0.0012	0.0007	0.0026
image	0.0104	0.0115	0.0118	0.0122	0.0128	0.0112	0.0094	0.0121	0.0079	0.0091

neurons	0.0285	0.0158	0.0209	0.0137	0.0115	0.0175	0.0168	0.0114	0.0103	0.01
training	0.0185	0.0313	0.0347	0.0382	0.0384	0.0411	0.0393	0.0392	0.0409	0.0345
spike	0.0053	0.0008	0.0039	0.0027	0.0023	0.0045	0.0051	0.0006	0.0073	0.0066
units	0.0305	0.0355	0.0306	0.0315	0.0279	0.0228	0.0239	0.0243	0.0167	0.0199
neuron	0.0193	0.0205	0.0167	0.0116	0.0098	0.0147	0.0117	0.0065	0.0096	0.0073
images	0.0034	0.0041	0.0052	0.0061	0.0075	0.0053	0.0081	0.008	0.0055	0.0085

將這 10 個字在每一年度的使用頻率繪製散佈圖,發現有些字使用頻率逐年下降,有些字使用頻率反而上升,也有些字使用頻率持平。

我們將這100個單字依照使用頻率上升、下降以及持平分為三類:

使用頻率上升	Policy, kernel, image, matrix 共 50 個字
使用頻率下降	Network, neurons, training, unit 共 33 個字
使用頻率持平	Spike, action, node, object 共 17 個字

另外,我們亦用 K-means 方法,以年份為變數將文字分成 3 群,經過迭代 50 次,並將文字分群後的結果投影到 PCA 的第一、第二主成份上,以圖呈現分 群結果:

前 10 個單字分群結果					
	Cluster				
network	2				
policy	3				
kernel	2				
image	2				
neurons	3				
training	2				
spike	3				
units	3				
neuron	3				
images	3				

四、Appendix

• R code

https://github.com/kevinpiger/StatisticalComputingandSimulation-Final

- 參考資料來源
- 1. https://taweihuang.hpd.io/2017/03/01/tfidf/
- 2. https://rpubs.com/saqib/DocumentClustering
- 3. https://commons.wikimedia.org/wiki/File:Em_old_faithful.gif