13780-2/226A/CO93.US CP2

IN THE CLAIMS:

Please amend claims 1-9 and add new claims 10-27 as follows.

1. (Amended) A compound of formula I

$$\begin{array}{c}
R^1 \\
R^2 \\
R^4
\end{array}$$
I

or a pharmaceutically acceptable salt or prodrug thereof,

wherein R¹, R², R³, R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, halogen, alkyl, haloalkyl, alkoxy, cyano, nitro, cycloalkyl, carboxaldehyde, and a group of formula II defined as

subject to the proviso that one or more than one of R¹ or R³ is a group of formula II as defined above;

wherein D, B, Y and Z at each occurrence are independently selected from the group consisting of -CR⁶:=, -CR⁷R⁸-, C(O)-, O-, -SO₂-, -S-, -N=, and -NR⁹-;

n is an integer of zero to three;

10

J:\Biogen-ICOS\13780-2\Response and Amendment.wrd

Sulpi

13780-2/226A/CO93.US CP2

R⁶, R⁷, R⁸, and R⁹, at each occurrence, are each independently selected from the group consisting of hydrogen, alkyl, carboxy, hydroxyalkyl, alkylaminocarbonyla kyl, dialkylaminocarbonylalkyl and carboxyalkyl; and

R¹⁰ and R¹ are each independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkoxyalkyl, alkoxycarbonylalkyl, carboxyalkyl, hydroxyalkyl, heterocyclyl, heterocyclylalkyl and heterocyclylamino; or

R¹⁰ and R¹¹ are taken together with N to form a three to seven membered unsubstituted heterocyclyl ring, or a three to seven membered substituted heterocyclyl ring, substituted with one or more than one substitutent R¹³, wherein R¹³, at each occurrence is independently selected from the group consisting of alkyl, alkylene, alkoxylakyl, cycloalkyl, aryl, heterocyclyl, heterocyclylalkyl, heterocyclylalkylaminocarbonyl, hydroxy, hydroxyal yl, hydroxyalkoxyalkyl, carboxy, carboxyalkyl, carboxycarbonyl, carboxaldeh de, alkoxycarbonyl, arylalkoxycarbonyl, aminoalkyl, aminoalkanoyl, aminocarbonyl, carboxamido, alkoxycarbonylalkyl, carboxamidoalkyl, cyaro, tetrazolyl, alkanoyl, hydroxyalkanoyl, alkanoyloxy, alkanoylamino, alkanoyloxyalkyl, alkanoylaminoalkyl, sulfonate, alkylsulfonyl, alkylsulfonylaminocarbonyl, arylsulfonylaminocarbonyl and heterocyclylsulfonylaminocarbonyl;

wherein A is an unsubstituted aryl group, an unsubstituted heterocyclyl group, a substituted aryl group, or a substituted heterocyclyl group, substituted with one or more than one substituent R¹², wherein R¹², at each occurrence, is independently selected from the group consisting of halogen, alkyl, aryl, haloalkyl, hydroxy, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxyalkoxy, hydroxyalkyl, aminoalkyl, aminocarbonyl, alkyl(alkoxycarbonylalkyl) aminoalkyl, heterocyclyl, heterocyclylalkyl, carboxaldehyde, carboxaldehyde hydrazone, carboxamido, alkoxycarbonylalkyl, carboxy, carboxyalkyl,

J:\Biogen-ICO\$\13780-2\Response and Amendment.wpd

13780-2/226A/CO93.US CP2

carboxyalkoxy, hydroxyalkylaminocarbonyl, cyano, amino,

heterocyclylalkylamino, carboxythioalkoxy, carboxycycloalkoxy, thioalkoxy, carboxyalkylamino, trans-cinnamyl and heterocyclylalkylaminocarbonyl; an

wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹² and R¹³ are unsubstituted or substituted with one or more than one electron donating or electron withdrawing group.

2. A compound according to claim 1 wherein R³ is the group of formula II

 $\begin{array}{c} Y \\ D \\ Z \\ n \end{array}$

wherein R¹⁰, R¹¹, D, B, Y, Z, and n are defined as in claim 1.

3. (Amended) A compound according to claim I of formula III

$$P_{p}(R^{12}) \xrightarrow{|I|} S = R^{1}$$

$$R^{2}$$

$$R^{$$

wherein R¹, R², R⁴, R⁵, R¹⁰, R¹¹, R¹², D, B, Y, Z, and n are defined as in claim 1; and p is an integer of zero to five.

4. (Amended) A compound according to claim 3 wherein p is one;

R4 and R5 are hydrogen;

J:\Biogen-ICOS\13780-2\Response and Amendment.wpd

12

13780-2/226A/CO93.US CP2

R¹² is selected from the group consisting of halogen, alkyl, alkoxy, carboxyalkoxy, carboxyalkyl and heterocyclyl;

R¹⁰ and R¹¹ are taken together with N to form a three to seven membered unsubstituted heterocyclyl ring, or a three to seven membered substituted heterocyclyl ring, substituted with one or more than one substituent R¹³, wherein R¹³ is defined as in claim 1, and wherein said substituted heterocyclyl, or unsubstituted heterocyclyl ring is selected from the group consisting of piperidine, pipera ine, morpholine, pyrrolidine, and azetidine; and

wherein R¹⁰, R¹¹, R¹² and R¹³ are unsubstituted or substituted with at least one elect on donating or electron withdrawing group.

5. (Amended) A compound according to claim 1 of formula IV

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

wherein D and B are each independently selected from the group consisting of -N= and -CR⁶=;

R¹ and R² are each independently selected from the group consisting of hydrogen, halogen and haloalkyl;

R¹⁰ and R¹¹ are defined as in claim 1;

R¹², at each occurrence, is independently selected from the group consisting of halogen, alkyl, haloalkyl, alkoxy, carboxyalkoxy, carboxyalkyl and

13

J:\Biogen-ICOS\13780-2\Response and Amendment.wpd

13780-2/226A/CO93.US CP2

heterocyclyl, wherein R¹² is unsubstituted or substituted with at least one electron donating group or electron withdrawing group; and

p is an integer of zero to five.

6. (Amended) A compound according to claim 5 wherein p is one; and

R¹⁰ and R¹¹ are taken together with N to form a three to seven membered substitute heterocyclyl ring, or a three to seven membered unsubstituted heterocyclyl ling, substituted with one or more substituents R¹³, wherein R¹³ is defined as in claim 1, and wherein said substituted heterocyclyl ring, or unsubstituted heterocyclyl ring is selected from the group consisting of piperidine, piperazine, morpholine, pyrrolidine, and azetidine.

7. (Amended) A compound according to claim 1 selected from the group consisting of 1-(1)-(4-(2-isopropyl-phenylsulfanyl)-3-trifluromethyl-phenyl)-pyrimidin-4-yl)-piperidine-3carboxylic acid, 4-(4-(2-isopropyl-phenylsulfanyl)-3-trifluoromethyl-phenyl)-6-(3-(2H-tetrizol-5-yl)-piperidin-1-yl)-pyrimidine, 4-(4\(2-isopropyl-phenylsulfanyl)-3-trifluoromethyl-phenyl)-6-(4-(2H-tetrazol-5-yl)-piperidin-1-yl)-pxrimidine, (1-(6-(4-(2-isopropyl-phenylsulfanyl)-3trifluoromethyl-phenyl)-pyrimidin-4-yl)-piperidin-3-yl)-methanol, 2-(1-(6-(4-(2isopropylphenylsulfanyl)-3-trifluoromethyhl-phenyl)-pyrimidin-4-yl)-piperidin-4-yl)-ethanel, N-(1-(4-(4-(2-isopropyl-phenylsulfanyl)-3-trifludcomethyl-phenyl)-pyridin-2-yl)-pyrrolidin-3yl)-acetamide, 1-(4-(4-(2-methoxy-phenylsulfanyl)\3-trifluoromethyl-phenyl)pyridin-2-yl)pyrrolidine-3-ol, N-1-(4-(4-(2-methoxy-phenylsulfanyl)-3-trifluoromethyl-phenyl)-pyridinyl)-pyrrolidine-3-yl)-acetamide, N-1-(4-(4-(2-methoxy-phenylsulfanyl)-3-trifluromethylphenyl)-pyridin-2-yl)-pyrrolidine-3-yl)-acedemide, N-1-(4-(2-methoxy-phenylsulfanyl)-1 trifluoromethyl-phenyl)-pyridin-2-yl)-pyrrolidin-3-yl)-acetamide, 4'-(4-(2,3-dihydro-benze 1,4) dioxin-6-ylsulfanyl)-3-trifluoromethyl-phenyl)-3,4,5,6-tetrahydro-2H-(1,2') bipyridinyl 4carboxylic acid, and 4'-(4-(2,3-dihydrobenzo (1,4) dioxin-6-ylsulfanyl)-3-trifluoromethylphenyl)-3,4,5,6-tetrahydro-2H-(1,2')(bipyridinyl-3-carboxylic acid.

13780-2/226A/CO93.US CP2

T-056

09/888,840

- 8. (Amended) A composition comprising:
 - a compound according to claim 1 and a pharmaceutically acceptable carrier.
- 9. (Amended) A method of inhibiting inflammation or suppressing immune response in a mammal comprising administering to said mammal a therapeutic amount of a compound according to claim 1.
- 10. (New) A compound according to claim 1 wherein A is
- (i) an unsubstituted or substituted aryl group, substituted by one or more than one substituent R^{12} , wherein R^{12} is defined as in claim 1, or
 - (ii) an unsubstituted or substituted heterocyclyl group of the formula

AS

wherein

R¹² and is defined as in claim 1;

p is an integer of 0 to 5;

X* and Z* are each independently selected from the group consisting of -C.I.₂-,
-CH₂NH-, -CH₂O-, -NH-, and -O-, with the proviso that at least one of
X* and Z* is not -CH₂-; and

 Y^* is $-(C(R'')_2)_{v^-}$, wherein

R" is hydrogen or alkyl; and

v is 1, 2, or 3.

13780-2/226A/CO93.US CP2

- 11. (New) A compound according to claim 1 or 10 wherein A is an unsubstituted or substituted aryl group, wherein the aryl group is
 - (I) a mono- or a bicyclic carbocyclic ring system having one or two aromatic rings or
 - (ii) a mono- or a bicyclic carbocyclic ring system having one or two aromatic rings wherein one or more than one of the aromatic rings is fused to a ring selected from the group consisting of cyclohexane, cyclohexene, cyclopentane, and cyclopentene.

12. (New) A compound according to claim 1 wherein A is an unsubstituted or substituted aryl group of the formula

Subject

wherein R¹² is defined as in claim 1; and p is an integer of 0 to 5.

13. (New) A compound according to claim 1 wherein

D is
$$-CR^6 = \text{ or } -N =$$
,

B is -S-, -O-, -CR
6
 = or -N=,

Y is
$$-CR^6 = \text{ or } -N =$$
,

Z is
$$-CR^6 = \text{ or } -N == ;$$
 and

n is zero or one.

14. (New) A compound according to claim 1 wherein R³ is selected from the group consisting of

5 Jh 85

J:\Biogon-ICOS\13780-2\Response and Amendment.wtd

13780-2/226A/CO93.US CP2

15. (New) A compound according to claim 1 wherein

D is
$$-CR^6 =$$
;

Y is
$$-N=$$
; and

n is zero.

16. (New) A compound according to claim 1 wherein

D is
$$-CR^6 = \text{ or } -N = ;$$

B is
$$-N=$$
;

Y is
$$CR^6 =$$
; and

n is 1.

17. (New) A compound according to claim 1 wherein

R¹ and R² are each independently selected from the group consisting of hydrogen, halogen, alkyl, and nitro;

R4 and R5 are each independently selected from the group consisting of hydrogen and

alkyl; and

R3 is

NR¹⁰R¹¹

wherein

D is
$$-CR^6 = \text{ or } -N =$$
,

B is -S-, -O-, -CR
6
 = or -N=,

J:\Biogen-ICOS\13780-2\Response and Amendment.wpd

13780-2/226A/CO93.US CP2

Y is
$$-CR^6 = \text{ or } -N =$$
,

Z is
$$-CR^6 = \text{ or } -N == ;$$
 and

n is zero or one.

18. (New) A compound according to claim 1 wherein

R¹ and R² are each independently selected from the group consisting of hydrogen, halogen, and haloalkyl; and

R⁴ and R⁵ are each independently hydrogen.

19. (New) A compound according to claim 1 wherein

R¹ and R² are each independently selected from the group consisting of hydrogen, halogen, and haloakyl;

R4 and R5 are each independently hydrogen; and

R³ is

wherein

D is
$$-CR^6 = \text{ or } -N =$$
,

B is -S-, -O-, -CR
6
 = or -N=,

Y is
$$-CR^6 = \text{ or } -N =$$
,

Z is
$$-CR^6 = \text{ or } -N = ;$$
 and

n is zero or one.

20. (New) A compound according to claim 1 wherein

J:\Biogan-ICOS\13780-2\Response and Amendment.wpd

13780-2/226A/CO93.US CP2

R¹ and R² are each independently are selected from the group consisting of hydrogen, chloro, and trifluoromethyl;

5 mg le

R⁴ and R⁵ are each independently hydrogen; and

R³ is selected from the group consisting of

AS

- 21. (New) A compound according to claim 1 wherein R⁶ is hydrogen.
- 22. (New) A compound according to claim 1 wherein

R1 is selected from the group consisting of hydrogen, halogen and haloalkyl,

R² is selected from the group consisting of hydrogen and halogen, and

R⁴ and R⁵ are each independently hydrogen.

23. (New) A compound according to claim 22 wherein

R¹ is trifluoromethyl, and

R² is hydrogen.

- 24. (New) A compound according to claim 22 wherein R¹ and R² are each independently chloro.
- 25. (New) A compound according to claim 1 which has an IC₅₀ of less than 20 μ M when tested in one or both of
 - (i) an ICAM-1/LFA-1 Biochemical Interaction Assay, or
 - (ii) an ICAM-1/JY-8 Cell Adhesion Assay.

13780-2/226A/CO93.US CP2

26. (New) A method for ameliorating a pathology in a mammal arising from the interaction of LFA-1 with ICAM-1 or ICAM-3 comprising administering to said mammal a therapeutic amount of a compound according to claim 1.

27. (New) A method according to claim 26 wherein the pathology is selected from an inflammatory disease, an autoimmune disease, tumor metastasis, allograft rejection and reperfusion injury.