Procedimiento Método del árbol PROYECTO 2

Paso 1) expresión regular.

Expresión regular

Le = $[A_Z, a_z]$ $LeT = [A_Z, a_z, \n, \t, \r,]$ Let = $[A_Z, a_z,\t,]$ Palabra = Le+ $Di = [0_9]$ Digito = (-)?Di+(.Di+)?Id = Le + $Sim = (=, [,],',', \{,\}, (,),';')$

Cadena = "Le*"

Expresión regular

Id | Sim | Cadena | Digito | #(Let)*(\n) | ""(LeT)*""

Pase 1.1) Agregar al final de la expresión regular el \$.

Expresión regular

(Id | Sim | Cadena | Digito | #(Let)*(\n) | ""(LeT)*"")\$

Paso 2) Formar Árbol de sintaxis (Siguiente página).

Para este paso se determinó para cada nodo lo siguiente.

- Si era Anulable o no Anulable marcando con un V si es Anulable y F si no lo es.
- Se determinó para cada nodo sus siguientes.
- Se determinó para cada nodo sus últimos.

Figura 1. Diagrama del árbol binario con todos los procedimientos realizados.

Fuente: elaboración propia, 2021.

Paso 2.1) Calcular tabla de siguientes.

3) CALCULANDO SIGUIENTES						
VALOR	НОЈА	SIGUIENTES				
""	1	2,3				
LeT	2	2,3				
Ш	3	16				
#	4	5,6				
Let	5	5,6				
\n	6	16				
Le	7	7,16				
Sim	8	16				
"	9	10,11				
Le	10	10,11				
11	11	16				
-	12	13				
Di	13	13,14,16				
1.1	14	15				
Di	15	15,16				
\$	16					

Paso 2.2) Construyendo tabla de transiciones.

	4) CONSTRUYENDO TABLA DE TRANSICIONES								
	ESTADO	VALORES	SIGUIENTES						
			(''') :{2,3} =S1						
			(#): {5,6} = S2						
			(Le): {7,16} = S3						
0	S0	1(""),4(#),7(Le),8(Sim),9("),12(-),13(Di)	(Sim): {16} = S4						
			(''): {10,11} = S5						
			(-): {13} = S6						
			(Di): {13,14,16}= S7						
	S1	2(LeT),3(''')	LeT: {2,3} = S1						
	31	2(Le1),3()	''': {16}=S4						
	S2	5(Let), 6(\n)	Let: {5,6} = S2						
	32	S(Let), o((II)	\n: {16} = \$4						
\$	S3	7(Le), 16(\$)	Le: {7,16} =S3						
\$	S4	16(\$)							
	S5	10(Le), 11('')	Le: {10,11} = S5						
	35	10(Le), 11()	'': {16} = S4						
	S6	13(Di)	Di: {13,14,16} =S7						
\$	S 7	13(Di), 14(.), 16(\$)	Di: {13,14,16} =S7						
Ş 	3/	13(01), 14(.), 10(3)	(.): {15} = S8						
	S8	15(Di)	Di: {15,16} =S9						
\$	S9	15(Di), 16(\$)	Di: {15,16} =S9						

Paso 2.3) Construir Tabla de transiciones

	5) TABLA DE TRANSICIONES											
	ESTADOS	Ξ	LeT	#	Let	\n	Le	Sim	"	1	Di	•
0	S0	S1		S2			S3	S4	S5	S6	S 7	
	S1	S4	S1									
	S2				S2	S4						
\$	S3						S3					
\$	S4											
	S5						S5		S4			
	S6										S7	
\$	S7										S 7	S8
	S8										S9	
\$	S9										S9	

Paso 3) Formar el Automata Finito Determinista (AHD).

Figura 2. Autómata Finito Determinista (AFD) resultante del método del árbol.

Fuente: elaboración propia, 2021.