Лабораторная работа 3.3.4 Эффект Холла в полупроводниках.

10 сентября 2021 г.

Старченко Иван Александрович

Цель работы:

Измерение подвижности и концентрации носителей заряда в полупроводниках.

В работе используются:

Электромагнит с источником питания, батарейка, амперметр, реостат, цифровой вольтметр, милливеберметр, образцы легированного германия.

1. Экспериментальная установка.

Схема экспериментальной установки показана на рис. 2.

В зазоре электромагнита (рис. 1a) создаётся постоянное магнитное поле, величину которого можно менять с помощью регуляторов источника питания. Ток измеряется амперметром источника питания A_1 . Разъем K_1 позволяет менять направление тока в обмотках электромагнита.

Образец из легированного германия, смонтированный в специальном держателе (рис. 1б), подключается к батарее. При замыкании ключа K_2 вдоль длинной стороны образца течет ток, величина которого регулируется реостатом R и измеряется миллиамперметром $_2$.

В образце с током, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра.

Контакты 3 и 4 вследствие неточности подпайки не всегда лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец.

Рис. 1: Схема установки для исследования эффекта Холла в полупроводниках

Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при другом их разности. В этом случае ЭДС Холла \mathcal{E}_X может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остается неизменным. От него следует (с учетом знака) отсчитывать величину ЭДС Холла:

$$\mathcal{E}_{X} = U_{34} \pm U_{0}$$

При таком способе измерения нет необходимости проводить повтор-

2

.

ные измерения с противоположным направлением магнитного поля.

По знаку \mathcal{E}_X можно определить характер проводимости - электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле:

$$\sigma = \frac{I \cdot L_{35}}{U_{35} \cdot a \cdot l} \tag{1}$$

где L_{35} - расстояние между контактами 3 и 5, a - толщина образца, l - его ширина.

2. Ход работы

- 1) Проведём калибровку электромагнита. Для этого снимем зависимость магнитной индукции B, пронизывающего катушку в поле, от тока I_M . Результаты занесём в таблицу, а также представим на графике.
- 2) Проведём измерение ЭДС Холла. Снимем зависимость напряжения U_{3-4} от тока через обмотки магнита (с учётом U_0 при $I_M = 0$). Выполним серию экспериментов для различных токов через образец I (от 0.3 до 0.8 мА). Результаты измерений занесём в таблицу, построим на одном графике семейство прямых.
- 3) Рассчитаем коэффициенты наклона семества графиков из предыдущщего пункта и занесем в таблицу.

I_M, mA	0.3	0.4	0.5	0.6	0.7	0.8
$k, \frac{\text{MB}}{\text{B6}}$	0.59	1.37	2.05	2.77	3.47	4.17

Таблица 1: Коэффициент наклона при разных I_M

4) Построим график k(I) и найдем коэффиуиент наклона графика,

затем посчитаем R_H

$$R_H = \frac{h}{I} \cdot \frac{U}{B} = (106.8 \pm 0.2) \cdot 10^{-6} \frac{\text{M}^3}{\text{K}_{\text{II}}}$$

5) Посчитаем концентрацию n:

$$n = \frac{1}{R_H \cdot e} = (585 \pm 2) \cdot 10^{20} \frac{1}{\text{M}^3}$$

6) Посчитаем удельную проводимость материала σ :

$$\sigma = \frac{I \cdot L_{3-5}}{U_{3-5} \cdot h \cdot l} = (490 \pm 1) \cdot \frac{1}{Omm}$$

7) Вычислис подвижность μ :

$$\mu = \sigma \cdot R_H = (519 \pm 9) \frac{\text{cm}^2}{B \cdot c}$$

3. Вывод

Мы изучили явление эффекта Холла в полупроводниках, измерили для нашего образца (Германий) такие величины как постоянная Холла, концентрацию электронов, удельную проводимость и подвижность электронов.

4. Список используемой литературы

- Никулин М.Г. Лабораторный практикум по общей физике. Электричество и магнетизм
 - Описание лабораторных работ на кафедре общей физики МФТИ
- П.В. Попов, А.А. Нозик. Обработка результатов учебного эксперимента

5. Графики

Рис. 2: Калибровка электромагнита

Рис. 3: Семейство U(B) при разных I_M

6. Таблицы

I_M, A	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7
$B \cdot 10^{3}, Вб$	20.8	57.5	186.9	289.6	389.3	481.7	576.7	671.5
I_M, A	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.47
$B \cdot 10^{3}, B6$	747.1	814.3	868.3	919.9	949.2	984.1	1011	1025.2

Таблица 2: Калибровка электромагнита

I_M, A	$B \cdot 10^3$, Вб	I = 0.3, A	I = 0.4, A	I = 0.5A	I = 0.6, A	I = 0.7, A	I = 0.8, A
0	20.8	0	0	0	0	0	0
0.2	186.9	0.011	0.025	0.037	0.05	0.06	0.075
0.4	389.3	0.023	0.051	0.076	0.102	0.127	0.153
0.6	576.7	0.033	0.076	0.115	0.153	0.18	0.231
0.8	747.1	0.043	0.101	0.15	0.199	0.25	0.302
1	868.3	0.05	0.118	0.174	0.235	0.292	0.353
1.2	949.2	0.056	0.127	0.193	0.259	0.324	0.389
1.4	1011	0.059	0.137	0.205	0.276	0.347	0.416

Таблица 3: Семейство U(B) при разных I_M