Equivalencia lógica para lógica de predicados

Clase 06

IIC 1253

Prof. Cristian Riveros

Recordatorio: Predicados n-arios

Definición

- Un predicado n-ario $P(x_1,...,x_n)$ es una afirmación con n variables, cuyo valor de verdad depende de los objetos en el cuál es evaluado.
- Para un predicado $P(x_1,...,x_n)$ y valores $a_1,...,a_n$, la valuación $P(a_1,...,a_n)$ es el valor de verdad de P en $a_1,...,a_n$.

¿cuál es el valor de verdad de las siguientes valuaciones?

- $O(x,y) := x \le y$
- S(x, y, z) := x + y = z
- Padre(x, y) := x es padre de y
 - $O(2,3) \qquad S(5,10,15) \qquad S(4,12,1) \qquad \textit{Padre}(\mathsf{Homero},\mathsf{Bart})$

Recordatorio: Predicados y dominio

Definición

- Un predicado n-ario $P(x_1,...,x_n)$ es una afirmación con n variables, cuyo valor de verdad depende de los objetos en el cuál es evaluado.
- Para un predicado $P(x_1,...,x_n)$ y valores $a_1,...,a_n$, la valuación $P(a_1,...,a_n)$ es el valor de verdad de P en $a_1,...,a_n$.
- Todos los predicados están restringidos a un dominio de evaluación.

Ejemplos depredicados y sus dominios

$$O(x,y) := x \le y$$

sobre $\mathbb N$

$$S(x, y, z) := x + y = z$$

sobre $\mathbb Q$

Padre
$$(x, y) := x$$
 es padre de y

sobre todas las personas

Recordatorio: Predicados compuestos (o formulas)

Definición

Un predicado es **compuesto** si es un predicado básico, o la negación (\neg) , conjunción (\land) , disyunción (\lor) , condicional (\rightarrow) , bicondicional (\leftrightarrow) de predicados compuestos sobre el **mismo dominio**.

El **valuación** de un predicado **compuesto** corresponde a la valuación recursiva de sus conectivos lógicos y predicados básicos.

Ejemplos

Para los predicados $P(x) \coloneqq x$ es par y $O(x,y) \coloneqq x \le y$ sobre \mathbb{N} :

$$P'(x) := \neg P(x)$$

$$O'(x,y,z) := O(x,y) \wedge O(y,z)$$

$$P''(x,y) := (P(x) \land P(y)) \rightarrow O(x,y)$$

Recordatorio: Cuantificador universal

Definición

Para b_1, \ldots, b_n en D y $P'(y_1, \ldots, y_n) := \forall x. P(x, y_1, \ldots, y_n)$, definimos:

$$P'(b_1,\ldots,b_n) = 1$$

si para todo a en D se tiene que $P(a, b_1, ..., b_n) = 1$, y 0 en otro caso.

<i>y</i> ₁	<i>y</i> ₂	•••	Уn	Ρ'
:	:	:	÷	:
b_1	b_2	•••	b_n	1
÷	:	:	÷	:

ssi

¿cuándo ocurre que
$$P'(b_1, ..., b_n) = 0$$
?

Recordatorio: Cuantificador existencial

Definición

Para b_1, \ldots, b_n en D y $P'(y_1, \ldots, y_n) := \exists x. P(x, y_1, \ldots, y_n)$, definimos:

$$P'(b_1,\ldots,b_n) = 1$$

ssi

si existe a en D tal que $P(a, b_1, ..., b_n) = 1$, y 0 en otro caso.

y_1	y ₂	•••	y_n	P'
:	:	:	÷	:
b_1	b_2	•••	b_n	1
÷	÷	÷	÷	:

¿cuándo ocurre que
$$P'(b_1, ..., b_n) = 0$$
?

Recordatorio: Lógica de Predicados

(re)Definición

Decimos que una predicado es compuesto (o también formula) si es:

- un predicado básico,
- la negación (¬), conjunción (∧), disyunción (∨), condicional (→), bicondicional (↔) de predicados compuestos sobre el mismo dominio o
- la cuatificación universal (\forall) o existencial (\exists) de un pred. compuesto.

El valuación de un predicado compuesto corresponde a la valuación recursiva de sus cuantificadores, conectivos lógicos y predicados básicos.

Outline

Interpretaciones

Equivalencia lógica

Outline

Interpretaciones

Equivalencia lógica

¿de qué depende si una formula sea verdadera o falsa?

¿és la formula verdadera o falsa?

$$\alpha = \exists x. \ \forall y. \ x \leq y$$

- lacksquare si el "dominio" donde se evalúa lpha son los naturales.
- lacksquare si el "dominio" donde se evalúa lpha son los enteros.
- $lue{}$ si el "dominio" donde se evalúa lpha son nombres de personas. (?)

Depende de la **interpretación** (significado) del dominio y el símbolo ≤.

Notación

Desde ahora, diremos que $P(x_1,...,x_n)$ es un símbolo de predicado.

Definición

Una interpretación \mathcal{I} para sím. de predicado P_1, \ldots, P_m se compone por:

- 1. un dominio $\mathcal{I}(dom)$ y
- 2. para cada símbolo P_i un **predicado** $\mathcal{I}(P_i)$.

Definición

Una interpretación \mathcal{I} para sím. de predicado P_1, \ldots, P_m se compone por:

- 1. un dominio $\mathcal{I}(\textit{dom})$ y
- 2. para cada símbolo P_i un predicado $\mathcal{I}(P_i)$.

Ejemplos

Considere los símbolos P(x) y O(x,y).

- $\mathcal{I}_1(\textit{dom}) := \mathbb{N}$ $\mathcal{I}_1(P) := x \text{ es par }$ $\mathcal{I}_1(O) := x < y$
- $\mathcal{I}_2(dom) := \mathbb{Z}$ $\mathcal{I}_2(P) := x > 0$ $\mathcal{I}_2(Q) := x + y = 0$

$$\mathcal{I}_2(O) \qquad \coloneqq \quad x+y=0$$

Definición

Sea α una oración (sin variables libres) y $\mathcal I$ una interpretación de α .

Diremos que $\mathcal I$ satisface α y lo denotamos como:

$$\mathcal{I} \models \alpha$$

si α es **verdadero** al evaluar cada símbolo en α según \mathcal{I} .

Ejemplos

Para los símbolos P(x) y O(x,y):

Definición (caso general)

Sea $\alpha(x_1,\ldots,x_n)$ una formula y \mathcal{I} una interpretación de los símbolos en α .

Diremos que la interpretación \mathcal{I} satisface α sobre a_1, \ldots, a_n en $\mathcal{I}(dom)$:

$$\mathcal{I} \models \alpha(a_1,\ldots,a_n)$$

si $\alpha(a_1,\ldots,a_n)$ es **verdadero** al evaluar cada símbolo en α según \mathcal{I} .

Ejemplos

$$\mathcal{I}_1(\textit{dom}) := \mathbb{N} \qquad \qquad \mathcal{I}_2(\textit{dom}) := \mathbb{Z}$$

$$\mathcal{I}_1(P) := x \text{ es par} \qquad \qquad \mathcal{I}_2(P) := x > 0$$

$$\mathcal{I}_1(O) := x < y \qquad \qquad \mathcal{I}_2(O) := x + y = 0$$

$$\alpha(x) := \exists y. P(y) \land O(x,y)$$

$$\blacksquare \mathcal{I}_1 \models \alpha(1) := \exists y. \ y \text{ es par } \land 1 < y$$

■
$$\mathcal{I}_2 \models \alpha(-1) := \exists y. \ y > 0 \land -1 + y = 0$$

Definición (caso general)

Sea $\alpha(x_1,\ldots,x_n)$ una formula y $\mathcal I$ una interpretación de los símbolos en α .

Diremos que la interpretación \mathcal{I} satisface α sobre a_1, \ldots, a_n en $\mathcal{I}(dom)$:

$$\mathcal{I} \models \alpha(a_1, \ldots, a_n)$$

si $\alpha(a_1,\ldots,a_n)$ es **verdadero** al evaluar cada símbolo en α según \mathcal{I} .

Si \mathcal{I} **NO** satisface α sobre a_1, \ldots, a_n en $\mathcal{I}(dom)$ lo anotaremos como:

$$\mathcal{I} \not\models \alpha(a_1,\ldots,a_n)$$

Notar que: $\mathcal{I} \not\models \alpha$ si, y solo si, $\mathcal{I} \models \neg \alpha$

Outline

Interpretaciones

Equivalencia lógica

Equivalencia lógica en lógica de predicados

Definición

Sean α y β dos oraciones en lógica de predicados (no tienen variables libres). Decimos que α y β son lógicamente equivalentes:

$$\alpha \equiv \beta$$

si para toda interpretación $\mathcal I$ se cumple:

$$\mathcal{I} \vDash \alpha$$
 si, y solo si, $\mathcal{I} \vDash \beta$

¿son lógicamente equivalentes?

$$(\forall x. P(x)) \to (\exists y. R(y)) \stackrel{?}{\equiv} (\neg \exists y. R(y)) \to (\neg \forall x. P(x))$$

$$\forall y. \exists x. P(x,y) \stackrel{?}{\equiv} \exists x. \forall y. P(x,y)$$

Equivalencia lógica en lógica de predicados

Definición

Sean α y β dos oraciones en lógica de predicados (no tienen variables libres). Decimos que α y β son **lógicamente equivalentes**:

$$\alpha \equiv \beta$$

si para toda interpretación \mathcal{I} se cumple:

$$\mathcal{I} \vDash \alpha$$
 si, y solo si, $\mathcal{I} \vDash \beta$

Caso general

Sean $\alpha(x_1,\ldots,x_n)$ y $\beta(x_1,\ldots,x_n)$ dos formulas en lógica de predicados. Decimos que α y β son lógicamente equivalentes $(\alpha \equiv \beta)$, si para toda interpretación \mathcal{I} y para todo a_1,\ldots,a_n en $\mathcal{I}(dom)$:

$$\mathcal{I} \vDash \alpha(a_1, \dots, a_n)$$
 si, y solo si, $\mathcal{I} \vDash \beta(a_1, \dots, a_n)$

Equivalencias lógicas sencillas

Todas las equivalencias de lógica proposicional son equivalencias en lógica de predicados.

Ejemplos

Para fórmulas α , β y γ en lógica de predicados:

- 1. Conmutatividad: $\alpha \land \beta \equiv \beta \land \alpha$
- 2. Asociatividad: $\alpha \wedge (\beta \wedge \gamma) \equiv (\alpha \wedge \beta) \wedge \gamma$
- 3. Distributividad: $\alpha \land (\beta \lor \gamma) \equiv (\alpha \land \beta) \lor (\alpha \land \gamma)$
- 4. **De Morgan**: $\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$
- 5. . . .

Demostración (ejercicio)

Para formulas α y β en lógica de predicados:

- 1. $\neg \forall x. \alpha \equiv \exists x. \neg \alpha$.
- 2. $\neg \exists x. \alpha \equiv \forall x. \neg \alpha$.

Demostración: $\neg \forall x. \alpha \equiv \exists x. \neg \alpha (\Rightarrow)$

Sea ${\mathcal I}$ una interpretación cualquiera, y suponga que:

$$\mathcal{I} \vDash \neg \forall x. \, \alpha(x) \quad \Rightarrow \quad \mathcal{I} \not \models \forall x. \, \alpha(x)$$

$$\Rightarrow \quad \text{existe a en } \mathcal{I}(\textit{dom}) \text{ tal que } \mathcal{I} \not \models \alpha(\textit{a})$$

$$\Rightarrow \quad \text{existe a en } \mathcal{I}(\textit{dom}) \text{ tal que } \mathcal{I} \vDash \neg \alpha(\textit{a})$$

$$\Rightarrow \quad \mathcal{I} \vDash \exists x. \, \neg \alpha(x)$$

Para formulas α y β en lógica de predicados:

- 1. $\neg \forall x. \alpha \equiv \exists x. \neg \alpha$.
- 2. $\neg \exists x. \alpha \equiv \forall x. \neg \alpha$.

Demostración: $\neg \forall x. \alpha \equiv \exists x. \neg \alpha (\Leftarrow)$

Sea ${\mathcal I}$ una interpretación cualquiera, y suponga que:

$$\mathcal{I} \vDash \exists x. \neg \alpha(x) \quad \Rightarrow \quad \text{existe a en } \mathcal{I}(\textit{dom}) \text{ tal que } \mathcal{I} \vDash \neg \alpha(\textit{a}) \\ \Rightarrow \quad \text{existe a en } \mathcal{I}(\textit{dom}) \text{ tal que } \mathcal{I} \not \vDash \alpha(\textit{a}) \\ \Rightarrow \quad \mathcal{I} \not \vDash \forall x. \, \alpha(x) \\ \Rightarrow \quad \mathcal{I} \vDash \neg \forall x. \, \alpha(x)$$

Demuestre la otra equivalencia!

Para formulas α y β en lógica de predicados:

- 3. $\forall x. (\alpha \land \beta) \equiv (\forall x. \alpha) \land (\forall x. \beta).$
- 4. $\exists x. (\alpha \lor \beta) \equiv (\exists x. \alpha) \lor (\exists x. \beta).$

Demostración:
$$\exists x. (\alpha \lor \beta) \equiv (\exists x. \alpha) \lor (\exists x. \beta) (\Rightarrow)$$

Sea ${\mathcal I}$ una interpretación cualquiera, y suponga que:

$$\mathcal{I} \vDash \exists x. \left(\alpha(x) \lor \beta(x) \right) \quad \Rightarrow \quad \text{existe a en } \mathcal{I}(\textit{dom}) \text{ tal que } \mathcal{I} \vDash \alpha(\textit{a}) \lor \beta(\textit{a})$$

$$\Rightarrow \quad \text{existe a en } \mathcal{I}(\textit{dom}) \text{ tal que } \mathcal{I} \vDash \alpha(\textit{a}) \text{ (SPDG)}$$

$$\Rightarrow \quad \mathcal{I} \vDash \exists x. \, \alpha(x)$$

$$\Rightarrow \quad \mathcal{I} \vDash \exists x. \, \alpha(x) \lor \exists x. \, \beta(x)$$

SPDG := Hay dos (o más casos) y "Sin Perdida De Generalidad" demostramos un caso (el otro es análogo).

Para formulas α y β en lógica de predicados:

3.
$$\forall x. (\alpha \land \beta) \equiv (\forall x. \alpha) \land (\forall x. \beta)$$
.

4.
$$\exists x. (\alpha \lor \beta) \equiv (\exists x. \alpha) \lor (\exists x. \beta).$$

Demostración:
$$\exists x. (\alpha \lor \beta) \equiv (\exists x. \alpha) \lor (\exists x. \beta) (\Leftarrow)$$

Sea ${\mathcal I}$ una interpretación cualquiera, y suponga que:

$$\mathcal{I} \vDash \exists x. \ \alpha(x) \lor \exists x. \ \beta(x) \quad \Rightarrow \quad \mathcal{I} \vDash \exists x. \ \alpha(x) \quad (\mathsf{SPDG})$$

$$\Rightarrow \quad \mathsf{existe} \ \mathsf{a} \ \mathsf{en} \ \mathcal{I}(\mathsf{dom}) \ \mathsf{tal} \ \mathsf{que} \ \mathcal{I} \vDash \alpha(\mathsf{a})$$

$$\Rightarrow \quad \mathsf{existe} \ \mathsf{a} \ \mathsf{en} \ \mathcal{I}(\mathsf{dom}) \ \mathsf{tal} \ \mathsf{que} \ \mathcal{I} \vDash \alpha(\mathsf{a}) \lor \beta(\mathsf{a})$$

$$\Rightarrow \quad \mathcal{I} \vDash \exists x. \ (\alpha(x) \lor \beta(x)) \qquad \Box$$

Demuestre la otra equivalencia!

¿es verdad que ...?

...en N

 $\forall x. (x \text{ es par} \lor x \text{ es impar}) \not\equiv (\forall x. x \text{ es par}) \lor (\forall x. x \text{ es impar})$

$$\exists x. (\alpha \land \beta) \stackrel{?}{\equiv} (\exists x. \alpha) \land (\exists x. \beta)$$

...en N

 $\exists x. (x \text{ es par } \land x \text{ es impar}) \not\equiv (\exists x. x \text{ es par}) \land (\exists x. x \text{ es impar})$