ELEC 402

MOS Basics Lecture 4

Reza Molavi
Dept. of ECE
University of British Columbia
reza@ece.ubc.ca

Slides Courtesy: Dr. Res Saleh (UBC), Dr. Sudip Shekhar (UBC), Dr. D. Sengupta (AMD)

PN Junction and Diodes

p-type semi-conductor heavily doped with acceptor atoms, e.g. boron

n-type semi-conductor is heavily doped with donor atoms, e.g. arsenic and phosphorus

PN Junction

Diffusion (Majority Carriers)

- The concentration of different carrier in p, and n-type semi-conductors (also called gradient) causes diffusion of electrons from n to p and holes from p to n leaving immobile ions behind
- The region at junction where majority carriers are removed, is called the *depletion* or *space-charge*region

PN Junction Basics

- The charges in each region create an electric field across the boundary of junction to counteract the diffusion of majority carriers
- -This electric field creates a potential across the junction called *contact* or *barrier potential*

MOS Transistor Basics

The source and drain regions (*n*+) and substrate (*p*) in NMOS transistor create two back-to-back diodes at equilibrium (therefore, requires external stimulus for any conduction)

Definition of Threshold Voltage

Energy-band diagram for doped p-type silicon.

- We need to apply an external voltage to turn the *p*-type substrate into an *n*-type substrate to create a channel for conduction
- As we apply a positive V_{GS} the substrate is first depleted under the gate area (immobile ions)
- Further increase of V_{GS} creates a conducting layer of minority carriers under the gate
- The V_{GS} voltage required to make the surface of the substrate "as much *n*-type as the rest of substrate is *p*" is called Threshold Voltage

Definition of Threshold Voltage

The onset of inversion in NMOS transistor (creation of channel under the gate in (d)

Effect of Body bias on Threshold Voltage

- Application of negative voltage to bulk attracts holes and leaves behind "negatively charged ions"
- As a result, there should be more positive charge on gate plate to mirror the negative ions in the substrate and more positive voltage is required to create the channel, i.e. V_{TH} increases

$$V_{T0}+\gamma \left(\sqrt{V_{SB}+|2\phi_F|}-\sqrt{|2\phi_F|}
ight)$$
 where $\gamma=rac{1}{C_{\rm ox}}\sqrt{2qarepsilon_{si}N_{\!A}}$ body-effect coefficient

MOS Current Calculation

MOS Current Calculation

$$Q_d = WQ_n(y)$$

Charge density along direction of current

$$I=Q_d\cdot v.$$

Total charge in the grey box (amount of charge hat passes through the channel in 1 second)

$$v = \mu E$$
 where $E = \frac{dV(y)}{dy}$

Velocity of carriers is a function of the horizontal electric field

$$I_{DS} = C_{ox} [(V_{GS} - V(y)) - V_T] \times \mu_n E \times W$$

MOS Current Calculation

$$I_{DS} = k' \frac{W}{L} \left[\left(V_{GS} - V_T \right) V_{DS} - \frac{V_{DS}^2}{2} \right]$$

$$k' = \mu_n C_{ox} = \frac{\mu_n \varepsilon_{ox}}{t_{ox}}$$

Nonphysical

 n^+

positive mobile carriers

(Board Notes)

This equation predicts roll-off after reaching a peak due to the existence of non-physical positive carriers. Therefore, the equation must be adjusted after V_{DS} reaches V_{GS} - V_{T}

MOS Current in Saturation

If we increase V_{DS} beyond V_{GS} - V_{T} , The local potential difference is not enough to sustain the inverted channel. The channel is "pinched-off "

After the pinch-off is reached, the current stays relatively constant!

Channel-length Modulation (I_{DS} dependence on V_{DS})

nMOS I-V (65nm)

L = 50nm W = 100nm μ_n = 80 cm²/V-s Temp = 70°C V_{tn} = 0.3V t_{ox} = 10.5Å Calculate β_n

> Overestimates current at high voltages

pMOS I-V

- > All dopings and voltages are inverted for pMOS
 - Source is the more positive terminal
- \triangleright Mobility μ_p is determined by holes
 - Typically 2-3x lower than that of electrons μ_n
 - 40 cm²/V-s in 65nm process
- > Thus pMOS must be wider to provide same current
 - Assume $\mu_n / \mu_p = 2$

Short Channel Effects

(Large *E* Fields in Short Channel Devices)

1980	1995	2001
$E_y = \frac{5V}{5\mu{\rm m}} = 10^4{\rm V/cm}$	$E_y = \frac{3.3 \text{V}}{0.35 \mu\text{m}} = 9.4 \times 10^4 \text{V/cm}$	$E_{\rm y} = \frac{1.2 \rm V}{0.1 \mu \rm m} = 1.2 \times 10^5 \rm V/cm$

Horizontal Electric field (between the source and drain) = V_{DS} (= V_{dd}) / L

1980	1995	2001
$E_{\rm x} = \frac{5\rm V}{1000~{\rm \AA}} = 50 \times 10^4 {\rm V/cm}$	$E_x = \frac{3.3 \text{ V}}{75 \text{ Å}} = 4.4 \times 10^6 \text{ V/cm}$	$E_x = \frac{1.2 \text{V}}{22 \text{ Å}} = 5.5 \times 10^6 \text{ V/cm}$

Vertical Electric field (between the gate and channel) = V_{GS} (= V_{dd}) / t_{ox}

Large electrical field causes an early velocity saturation for carriers in short channel devices

Velocity Saturation

- Beyond a certain field limit velocity does not increase!
- NMOS saturates faster than PMOS (due to their larger mobility)

$$u = \mu_e \frac{E_y}{\left(1 + \frac{E_y}{E_c}\right)}$$
 $E_y \le E_c$
 $E_{cn} = 6 \times 10^4 \frac{\text{V}}{\text{cm}} \text{ for electrons}$
 $v = v_{sat}$
 $E_y \ge E_c$
 $E_{cp} = 24 \times 10^4 \frac{\text{V}}{\text{cm}} \text{ for holes}$

Short-Channel MOS Current

$$I_{DS} = W \times Q_n \times \nu$$

General current of short channel MOS

$$= W \times C_{ox}(V_{GS} - V_T - V(y)) \left(\frac{\mu_e E_y}{1 + \frac{E_y}{E_c}}\right)$$

where $E_y = \frac{dV(y)}{dy}$

Plugging in and re-arranging produces

$$I_{DS}dy = W\mu_e \left[C_{ox}(V_{GS} - V_T - V(y)) - \frac{I_{DS}}{W\mu_e E_e} \right] dV(y)$$

After integration, we obtain

$$I_{DS} = \frac{W}{L} \frac{\mu_e C_{ox}}{\left(1 + \frac{V_{DS}}{E_c L}\right)} \left(V_{GS} - V_T - \frac{V_{DS}}{2}\right) V_{DS}$$

Similar to long channel device except for an extra term in denominator

Cont'd

$$I_{DS} = W \times Q_n \times v_{sat}$$

Current of short channel MOS in saturation

Since the current is the same throughout the channel we can set $V(y) = V_{DS}$ and write

$$I_{DS} = W \times C_{ox} (V_{GS} - V_T - V_{DS}) v_{sat}$$

Equating this current and that of previous slide gives the required V_{DS} for saturation

$$V_{Dsat} = \frac{(V_{GS} - V_T) E_c L}{(V_{GS} - V_T) + E_c L}$$

Always smaller than V_{GS}-V_T indicates early saturation

(Board Notes)

Example for 0.18 um CMOS Technology

NMOS and PMOS Saturation Voltages for 0.18 μ m Technology

Problem:

Consider a 0.18 μ m technology. Compute the values of V_{Dsat} for the NMOS and PMOS device assuming $V_{GS}=1.8$ V, $V_{TN}=0.5$ V, $V_{TP}=-0.5$ V. Assume the channel length is 200 nm for convenience.

Solution:

Using (2.22), we find that $E_{cp}L_p = 6 \times 10^4$ (0.2 μ m) ≈ 1.2 V and $E_{cp}L_p = 24 \times 10^4$ (0.2 μ m) ≈ 4.8 V. Using (2.28),

NMOS:
$$V_{Dsat} = \frac{(1.8 - 0.5)(1.2)}{(1.8 - 0.5 + 1.2)} \approx 0.6 \text{ V}$$

PMOS:
$$V_{Dsat} = \frac{(1.8 - 0.5)(4.8)}{(1.8 - 0.5 + 4.8)} \approx 1.0 \text{ V}$$

- Note how fast NMOS saturates (at VDS of 0.6 rather than 1.3 (1.8-0.5)
- Note the difference between NMOS and PMOS

MOS Capacitor: Operating Modes

Accumulation

- -ve voltage to G → -ve charge on G
- Holes attracted to the region beneath G
- Depletion
 - +ve voltage to G → +ve charge on G
 - Holes repelled beneath G, forming a depletion region
- Inversion
 - Even more +ve charge on G
 - Holes repelled further
 - Some free electrons attracted beneath G

