```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

In [2]: df = pd.read_csv("aerofit.csv")

In [3]: df.shape

Out[3]: (180, 9)

In [4]: df.head()
```

Out[4]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85
4	KP281	20	Male	13	Partnered	4	2	35247	47

```
In [5]: #basic exploration
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 180 entries, 0 to 179
        Data columns (total 9 columns):
             Column
                            Non-Null Count Dtype
             Product
                            180 non-null
                                            object
             Age
                            180 non-null
                                            int64
         1
             Gender
                            180 non-null
                                            object
                            180 non-null
                                           int64
             Education
             MaritalStatus 180 non-null
                                           object
             Usage
                            180 non-null
                                            int64
         5
         6
            Fitness
                            180 non-null
                                            int64
                            180 non-null
                                            int64
             Income
             Miles
                            180 non-null
                                            int64
        dtypes: int64(6), object(3)
        memory usage: 12.8+ KB
```

No null values

dtype: float64

```
In [6]: df.isnull().sum()/df.shape[0] * 100 #proportion of missing values in %
Out[6]: Product
                         0.0
                         0.0
        Age
        Gender
                         0.0
                         0.0
        Education
                         0.0
        MaritalStatus
        Usage
                         0.0
                         0.0
        Fitness
                         0.0
        Income
        Miles
                         0.0
```

In [7]: df.describe()

Out[7]:

	Age	Education	Usage	Fitness	Income	Miles
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444
std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605
min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000
75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000
max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000

In [8]: df["Product"].value_counts(normalize = True) * 100

Out[8]: KP281 44.44444

KP481 33.333333
KP781 22.22222

Name: Product, dtype: float64

- 1) 44.44% of the people are buying KP281 which is an entry-level treadmill.
- 2) 33.33% of the people are buying KP481 which is mid-level treadmill.
- 3) 22.22% of the people are buying KP781 which is an advanced treadmill.

In [9]: df.groupby("Product")["Income"].describe()

Out[9]:

	count	mean	std	mın	25%	50%	75%	max
Product								
KP281	80.0	46418.025	9075.783190	29562.0	38658.00	46617.0	53439.0	68220.0
KP481	60.0	48973.650	8653.989388	31836.0	44911.50	49459.5	53439.0	67083.0
KP781	40.0	75441.575	18505.836720	48556.0	58204.75	76568.5	90886.0	104581.0

- 1) There is no major difference in mean and median values of income ==> Less outliers.
- 2) Mean income of people who buy KP281 is less than other two groups's mean income.
- 3) People who buy KP781 have the highest mean income among all three groups.

In [11]: sns.countplot(x = df["Gender"], hue = df["Product"])
plt.show()

- 1) Very few females bought KP781 as compared to males.
- 2) Both males and females have bought almost equal number of KP281 and KP481

```
In [12]: sns.countplot(x = df["MaritalStatus"], hue = df["Product"])
plt.show()
```


1) Partnered cusomers are more for all three products.

```
In [13]: sns.countplot(x = df["Fitness"], hue = df["Product"])
         plt.show()
```


max

50.000000 Name: Age, dtype: float64

1) Fit people are prefering KP781 and average people going for KP281 and KP481

```
In [14]: df["Age"].describe()
Out[14]: count
                  180.000000
         mean
                   28.788889
                    6.943498
         std
         min
                   18.000000
         25%
                   24.000000
         50%
                   26.000000
         75%
                   33.000000
```

```
In [16]:
    sns.boxplot(x = "Age_bins", y = "Income", data = df)
    plt.show()
```



```
In [17]: sns.lineplot(x = "Age_bins", y = "Income", data = df)
plt.show()
```


1) As age increases income also increases.

In [18]: sns.countplot(x = df["Age_bins"], hue = df["Product"])
plt.show()

Observations:

- 1) People in the age group of "21-25" are more interested in fitness.
- 2) In all age groups KP281 is the most prefered product except "31-35" age group where KP481 is prefered.

Suggestion:

1) Target people in the age group of "21-40"

```
In [19]: sns.boxplot(x = "MaritalStatus", y = "Income", data = df)
plt.show()
```


1) Single customers have lower income than Partnered

```
In [20]: sns.boxplot(x = "Gender", y = "Income", data = df)
plt.show()
```


1) Male customers have higher income than Female

- 1) Customers with higher income tend to buy KP781
- 2) Customers dont find KP481 more value for money product than KP281
- 3) There is no much difference in median income of male and female who are buying KP281 and KP481.
- 4) There is difference in median income of male and female who are buying KP781

Suggestion:

1) Improve some features of KP481 and increase its price also.

```
In [22]: sns.boxplot(x = "Gender", y = "Miles", data = df, hue = "Product")
plt.show()
```


1) People who are fitness freak buys KP781

```
In [23]: sns.boxplot(x = "Gender", y = "Education", data = df, hue = "Product")
plt.show()
```


1) Highly educated people buy KP781

- 1) Highly educated people have high income.
- 2) Fit people runs more.
- 3) People who runs more have very high usage

Marginal Probabilities:

```
In [25]:
df["Product"].value_counts(normalize = True)*100
```

Out[25]: KP281 44.444444 KP481 33.333333 KP781 22.22222

Name: Product, dtype: float64

- 1) p(people buying KP281) = 44.44%
- 2) p(people buying KP481) = 33.33%
- 3) p(people buying KP781) = 22.22%

```
In [26]: df["MaritalStatus"].value_counts(normalize = True)*100
```

Out[26]: Partnered 59.444444 Single 40.555556

Name: MaritalStatus, dtype: float64

Observations:

- 1) p(customer being partnered) = 59.44%
- 2) p(customer being Single) = 40.56%

```
In [27]: |df["Gender"].value_counts(normalize = True)*100
```

Out[27]: Male 57.777778 Female 42.22222

Name: Gender, dtype: float64

- 1) p(customer being male) = 57.78%
- 2) p(customer being female) = 42.22%

Joint probabilities:

Out[28]:

Product	KP281	P281 KP481 KI		All
MaritalStatus				
Partnered	26.666667	20.000000	12.777778	59.444444
Single	17.777778	13.333333	9.444444	40.555556
All	44.44444	33.333333	22.22222	100.000000

- 1) p(customer being Single and buying KP281) = 17.78%
- 2) p(customer being Single and buying KP481) = 13.33%
- 3) p(customer being Single and buying KP781) = 9.44%
- 4) p(customer being Partnered and buying KP281) = 26.66%
- 5) p(customer being Partnered and buying KP481) = 20.00%
- 6) p(customer being Partnered and buying KP781) = 12.78%

Out[29]:

Product	KP281	KP481	KP781	All	
Gender					
Female	22.22222	16.111111	3.888889	42.22222	
Male	22.22222	17.222222	18.333333	57.777778	
All	44.44444	33.333333	22.22222	100.000000	

- 1) p(customer being male and buying KP281) = 22.22%
- 2) p(customer being male and buying KP481) = 17.22%
- 3) p(customer being male and buying KP781) = 18.33%
- 4) p(customer being female and buying KP281) = 22.22%
- 5) p(customer being female and buying KP481) = 16.11%
- 6) p(customer being female and buying KP781) = 3.88%

Conditional probabilities:

Out[30]:

Product	KP281	KP481	KP781	
MaritalStatus				
Partnered	44.859813	33.644860	21.495327	
Single	43.835616	32.876712	23.287671	
All	44.44444	33.333333	22.22222	

Observations:

```
1) p( KP781 | Partnered) = 21.50%
```

2) p(KP781 | Single) = 23.29%

3) p(KP481 | Partnered) = 33.64%

4) p(KP481 | Single) = 32.88%

5) p(KP281 | Partnered) = 44.86%

6) p(KP281 | Single) = 43.84%

Customer profiling:

Profile1:high income, highly educated fit male

Out[69]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	Age_bins
72	KP281	39	Male	16	Partnered	4	4	59124	132	36-40
126	KP481	34	Male	16	Partnered	3	4	59124	85	31-35
141	KP781	22	Male	16	Single	3	5	54781	120	21-25
143	KP781	23	Male	16	Single	4	5	58516	140	21-25
146	KP781	24	Male	16	Single	4	5	61006	100	21-25
147	KP781	24	Male	18	Partnered	4	5	57271	80	21-25
151	KP781	25	Male	16	Partnered	4	4	62251	160	21-25
154	KP781	25	Male	18	Partnered	6	4	70966	180	21-25
155	KP781	25	Male	18	Partnered	6	5	75946	240	21-25
156	KP781	25	Male	20	Partnered	4	5	74701	170	21-25
158	KP781	26	Male	16	Partnered	5	4	64741	180	26-30
159	KP781	27	Male	16	Partnered	4	5	83416	160	26-30
161	KP781	27	Male	21	Partnered	4	4	90886	100	26-30
163	KP781	28	Male	18	Partnered	7	5	77191	180	26-30
164	KP781	28	Male	18	Single	6	5	88396	150	26-30
168	KP781	30	Male	18	Partnered	5	4	103336	160	26-30
169	KP781	30	Male	18	Partnered	5	5	99601	150	26-30
170	KP781	31	Male	16	Partnered	6	5	89641	260	31-35
172	KP781	34	Male	16	Single	5	5	92131	150	31-35
173	KP781	35	Male	16	Partnered	4	5	92131	360	31-35
174	KP781	38	Male	18	Partnered	5	5	104581	150	36-40
175	KP781	40	Male	21	Single	6	5	83416	200	36-40
176	KP781	42	Male	18	Single	5	4	89641	200	41-45
177	KP781	45	Male	16	Single	5	5	90886	160	41-45
178	KP781	47	Male	18	Partnered	4	5	104581	120	46-50

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	Age_bins
179	KP781	48	Male	18	Partnered	4	5	95508	180	46-50

In [70]: profile1["Product"].value_counts(normalize = True)*100

Out[70]: KP781 92.307692 KP281 3.846154

KP481 3.846154

Name: Product, dtype: float64

Observations:

1) 92.3% is the probability that high income, highly educated fit male will buy KP781

Profile2: average/less fit, average/less usage

Out[75]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	Age_bins
1	KP281	19	Male	15	Single	2	3	31836	75	15-20
3	KP281	19	Male	12	Single	3	3	32973	85	15-20
5	KP281	20	Female	14	Partnered	3	3	32973	66	15-20
6	KP281	21	Female	14	Partnered	3	3	35247	75	21-25
7	KP281	21	Male	13	Single	3	3	32973	85	21-25
135	KP481	40	Female	16	Partnered	3	3	61398	85	36-40
136	KP481	40	Female	16	Single	3	3	57987	85	36-40
137	KP481	40	Male	16	Partnered	3	3	64809	95	36-40
138	KP481	45	Male	16	Partnered	2	2	54576	42	41-45
139	KP481	48	Male	16	Partnered	2	3	57987	64	46-50

91 rows × 10 columns

In [76]: profile2["Product"].value_counts(normalize = True)*100

Out[76]: KP281 56.043956 KP481 43.956044

Name: Product, dtype: float64

- 1) Less fit and less usage user go for KP281 and KP481
- 2) No clear distinction between KP281 and KP481 ==> Users dont find KP481 attractive pricewise and featurewise

Recommendations:

- 1) Improve some features of KP481 and increase its price also.
- 2) Target high income, highly educated fit male for KP781
- 3) People in the age group of "21-40" are more aware about fitness so target them.
- 4) Target less fit and less usage user for KP281.

In []:		
In []:	,	