赋能正确率介于 0.85 至 0.9 的题目

 $_{3,5,0.884}$ 已知 $(a+3b)^n$ 的展开式中, 各项系数的和与各项二项式系数的和之比为 64, 则 n=___

 $_{3,9,0.884}$ 如图, 在 $\triangle ABC$ 中, $\angle B=45^{\circ}$, D 是 BC 边上的一点, AD=5, AC=7, DC=3, 则 AB 的长

 $_{8,10,0.886}$ 已知点 A 是圆 $O:x^2+y^2=4$ 上的一个定点, 点 B 是圆 O 上的一个动点, 若满足 $|\overrightarrow{AO}+\overrightarrow{BO}|=0$

 $_{9,8,0.872}$ 集合 $\{x|\cos(\pi\cos x)=0,x\in[0,\pi]\}=$ _____(用列举法表示).

 $_{9,10,0.897}$ 已知 x、y 满足曲线方程 $x^2+\frac{1}{y^2}=2$,则 x^2+y^2 的取值范围是______.

 $_{12,6,0.886}$ 已知 α 为锐角,且 $\cos(\alpha + \frac{\pi}{4}) = \frac{3}{5}$,则 $\sin \alpha =$ _______

12,7,0.886 已知正四棱柱 $ABCD-A_1B_1C_1D_1,\ AB=a,\ AA_1=2a,\ E$ 、F 分别是棱 AD、CD 的中点, 则异面 直线 BC_1 与 EF 所成角是

 $\begin{cases} 2x-y\leq 0, \\ x+y\leq 3, \end{cases}$,则 2x+y 的最大值是_____. $x\geq 0,$ $x\geq 0,$ $x\geq 0,$ $x\geq 0$ 所表示的圆的圆心轨迹方程是_____. (结果化为

普通方程).

 $_{15,8,0.884}$ 将一个正方形绕着它的一边所在的直线旋转一周, 所得几何体的体积为 $27\pi\mathrm{cm}^3$, 则该几何体的侧面积 为_____cm³.

17,5,0.884 已知复数 $z = a + bi(a, b \in \mathbf{R})$ 满足 |z| = 1, 则 $a \cdot b$ 范围是_____

17.6,0.860 某学生要从物理、化学、生物、政治、历史、地理这六门学科中选三门参加等级考, 要求是物理、化 学、生物这三门至少要选一门, 政治、历史、地理这三门也至少要选一门, 则该生的可能选法总数是______.

 $^{20,9,0.884}$ 已知圆锥的轴截面是等腰直角三角形, 该圆锥的体积为 $\frac{8}{3}\pi$, 则该圆锥的侧面积等于______.

 $^{21,5,0.886}$ 已知直线 l 的一个法向量是 $\overrightarrow{n}=(\sqrt{3},-1),$ 则 l 的倾斜角的大小是_____

 $z_{22,7,0.857}$ 已知 i 是虚数单位, z 是复数 z 的共轭复数, 若 $\begin{vmatrix} z & 1+i \\ 1 & 2i \end{vmatrix} = 0$, 则 \overline{z} 在复平面内所对应的点所在的象

22,9,0.881 若直线 l:x+y=5 与曲线 $C:x^2+y^2=16$ 交于两点 $A(x_1,y_1),\ B(x_2,y_2),\ 则\ x_1y_2+x_2y_1$ 的值

$$_{23,6,0.886}$$
 若存在 $x\in[0,+\infty)$ 使 $\begin{vmatrix} 2^x & 2^x \\ m & x \end{vmatrix} < 1$ 成立, 则实数 m 的取值范围是______.

24,3,0.864 不等式 $2^{x^2-4x-3} > (\frac{1}{2})^{3(x-1)}$ 的解集为_____. $\overline{\mathbf{a}}_{25,9,0.884}$ 著名的斐波那契数列 $\{a_n\}:1,1,2,3,5,8,\cdots,$ 满足 $a_1=a_2=1,a_{n+2}=a_{n+1}+a_n$ $(n\in\mathbf{N}^*),$ 那么 $\begin{cases} x = t^2, \\ y = 2t, \end{cases}$ (t 为参数) 的曲线的焦点坐标为_____. 31,5,0.884 已知正四棱锥的底面边长是 2, 侧棱长是 $\sqrt{3}$, 则该正四棱锥的体积为_____. $_{34,9,0.884}$ 设 a>0, 若对于任意的 x>0, 都有 $\frac{1}{a}-\frac{1}{x}\leq 2x$, 则 a 的取值范围是______. $_{35,9,0.884}$ 已知等差数列 $\{a_n\}$ 的公差为 2, 前 n 项和为 S_n , 则 $\lim_{n \to \infty} \frac{S_n}{a_n a_{n+1}} =$ _______. 有且仅有两个, 则实数 a 的取值范围为 $_{--}$ 39,7,0.884 在报名的 8 名男生和 5 名女生中, 选取 6 人参加志愿者活动, 要求男、女生都有, 则不同的选取方式 $|a_{0,4,0.860}|$ 若 $|\log_2 x - 1|$ $|a_{0,4,0.860}|$ $|a_{0,4,0.8$ 42,3,0.860 函数 $f(x) = \lg(3^x - 2^x)$ 的定义域为 $_{42,9,0.860}$ 将两颗质地均匀的骰子抛掷一次, 记第一颗骰子出现的点数是 m, 记第二颗骰子出现的点数是 n, 向量 $\overrightarrow{a} = (m-2, 2-n)$, 向量 $\overrightarrow{b} = (1, 1)$, 则向量 $\overrightarrow{a} \perp \overrightarrow{b}$ 的概率是_____. 44,1,0.860 已知集合 $A = \{1,2,3\}B = \{1,m\}$, 若 $3-m \in A$, 则非零实数 m 的数值是 $_{46,8,0.884}$ 已知抛物线的顶点在坐标原点, 焦点在 y 轴上, 抛物线上一点 $M(a,-4)\ (a>0)$ 到焦点 F 的距离为 5. 则该抛物线的标准方程为 $_{48,10,0.860}$ 一个四面体的顶点在空间直角坐标系 O-xyz 中的坐标分别是 (0,0,0),(1,0,1),(0,1,1),(1,1,0), 则 该四面体的体积为 $_{49,1,0.884}$ 抛物线 $x^2 = 12y$ 的准线方程为______ 49,3,0.860 若函数 $f(x) = \sqrt{2x+3}$ 的反函数为 g(x), 则函数 g(x) 的 为 $\begin{cases} x = \cos \theta, \\ y = \frac{1}{2} \sin \theta, \end{cases} (\theta \text{ 为参数}), 则直线 <math>l$ 与椭圆 C 的公共点坐标为_____. $C: y = -\sqrt{9-x^2}$, 直线 l: y = 2, 若对于点 A(0,m), 存在 C 上的点 P 和 l 上的点 Q, 使 得 $\overrightarrow{AP} + \overrightarrow{AQ} = \overrightarrow{0}$, 则 m 取值范围是______. $_{52,2,0.884}$ $(x+rac{1}{x})^n$ 的展开式中的第 3 项为常数项, 则正整数 n=______.

 $\left| \begin{array}{ll} a & \sin(rac{\pi}{2} + B) \\ b & \cos A \end{array} \right| = 0, \,$ 则 $\triangle ABC$ 的形状为______. $b = 0, \,$ 0,则 $b = 0, \,$ 0,

 $P,\,M$ 在直线 PF 上,且满足 $\overrightarrow{OM}\cdot\overrightarrow{PF}=0,\,$ 则 $\frac{|\overrightarrow{PM}|}{|\overrightarrow{PF}|}=$ ______.

$$\begin{cases} x+y\geq 2,\\ x-y\leq 2, & \text{则目标函数 } z=-\frac{3}{2}x-y \text{ 的最大值为}___.\\ 0\leq y\leq 3,\\ 56,12,0.860 \text{ 从集合 } A=\{1,2,3,4,5,6,7,8,9,10\} \text{ 中任取两个数,欲使取到的一个数大于 } k, 另一个数小于 } k(其中 2) \end{cases}$$

 $k \in A$) 的概率是 $\frac{2}{5}$, 则 $k = _____$.