Apex-Sense Integrated Platform for Real-Time Predator Ecology

Team: maverickk

Problem Statement

Existing shark tags only track location, omitting critical real-time feeding data. This prevents building effective predictive models necessary for dynamic marine conservation and fisheries management.

Addressing the Critical Constraint: The Behavioral and Temporal Data Gap

Challenge 1

Insufficient Behavioral Context

 Traditional tags only provide low-resolution geo-location upon surfacing, failing to capture high-frequency kinetic data needed to discern crucial behaviors like hunting, mating, or foraging.

Challenge 2

Ecological Ambiguity (The Trophic Gap)

→ We track movement, but cannot confirm trophic interactions (feeding) in real-time. This inability to identify prey type and consumption frequency results in speculative ecological models.

Challenge 3

Data Latency

→ Data is often retrieved months to years after collection, rendering it historical and unusable for real-time dynamic management of conservation efforts or fisheries.

The Solution: The Apex-Sense

Core Function

A robust platform that measures Location,
High-Resolution
Kinematics, and
Bio-Acoustics to
algorithmically
confirm and transmit
feeding events

System Architecture

On-board
Micro-Processor runs a
Feeding Trigger
Algorithm to filter raw
sensor data, packaging
only confirmed
behavioral events for
immediate satellite
transmission.

Key Differentiator

We shift telemetry from purely descriptive tracking to predictive behavioral intelligence by providing validated data points for trophic ecology.

APEX-SENSE: REAL-TIME DATA FLOW ARCHITECTURE

Technical Breakdown: Feeding Event Confirmation

High-Resolution Kinematics (The Strike)

3-Axis Accelerometer and Gyroscope: Detects specific, high-frequency kinetic signatures, primarily sudden increases in VeDBA (Vectorial Dynamic Body Acceleration), lunges, and lateral head-shakes indicative of a predatory strike. (The Primary Trigger

Bio-Acoustic Verification (The Prey)

Miniature Hydrophone Array: Records and analyzes ambient sound. Specific acoustic patterns—such as the distinctive sounds of prey schools or noise anomalies associated with consumption—are used to corroborate the kinetic strike and classify prey.

Environmental Context (The Confirmation)

Temperature, Salinity, and Pressure Probes: Localized, rapid environmental changes (e.g., a drop in temperature from ingesting colder prey) provide a third confirmation point, which is essential for reducing false-positive event alerts.

Low-Latency Data Architecture & Power Management

STPrimary Satellite Uplink (Iridium/Argos)RENGTHS

→ Function: Activated upon surfacing. Transmits small, high-value JSON packets containing confirmed event metadata (Time, Location, Confirmation Score). Achieves low-latency, global real-time alerts. Secondary Acoustic Modem

→ Function: Activated when in range (approx. 5 km) of a receiving coastal buoy. Performs high-bandwidth offload of full raw sensor logs (acceleration and acoustic traces) for ML model validation. Power Management: Harvesting

→ Integration of a Piezoelectric Generator to convert low-frequency kinetic energy from continuous tail-beats into supplemental power, substantially extending operational lifespan.

Ecological Impact and Predictive Modeling

Output 1: Predictive Modeling of Hot Zones

The validated data is used to train a Convolutional Neural Network (CNN), which forecasts areas of High Predator-Prey Interaction Probability based on environmental correlation.

Application 1:

Dynamic

Conservation Policy

Enables marine protected area (MPA) boundaries to become dynamic, shifting in real-time based on predicted feeding activity, thereby increasing the efficiency of conservation resource deployment.

Application 2:
Responsible Fisheries
Governance

Real-time alerts and predictive maps can be used by governance bodies to issue dynamic, spatially-explicit advisories to commercial fishing vessels, minimizing unwanted bycatch.

prototype

Conclusion

The Apex-Sense system fundamentally redefines marine telemetry by delivering real-time, confirmed feeding event data, moving beyond traditional location-only tracking. This multi-sensor, intelligent platform empowers unprecedented predictive ecological modeling, offering the actionable intelligence crucial for dynamic marine conservation and sustainable resource management.

THANKYOU

Any questions?