Tilastollinen päättely 1 – erilliskoe 17. 3. 2016 (ent. Johdatus tilastolliseen päättelyyn)

Vastaa valintasi mukaan neljään (4) tehtävään. Omia taulukoita, kaavakirjoja tai "lunttilappuja" ei saa käyttää.

- 1. Tarkastellaan seuraavanlaista koeasetelmaa: Tiettyä koetta toistetaan riippumattomasti samanlaisissa olosuhteissa n kertaa. Kukin koe joko onnistuu tai epäonnistuu, ja onnistumisen todennäköisyys on tuntematon luku θ . Satunnaismuuttuja X kertoo onnistumisten lukumäärän.
 - a) Minkänimistä jakaumaa X noudattaa, ja mikä on sen pistetodennäköisyysfunktio?
 - b) Oletetaan, että toistoja tehtiin n=7 ja niistä X=4 onnistui. Muodosta tätä havaintoa vastaava uskottavuusfunktio ja johda (esim. derivaattatarkastelun avulla) suurimman uskottavuuden estimaatti θ :lle.
- 2. Lasiliikkeessä mitattiin seitsemän satunnaisotannalla valitun ikkunalasin paksuuksiksi 3.15, 2.95, 3.20, 3.15, 3.00, 3.10 ja 3.15 millimetriä. Laske mittausten otoskeskiarvo ja otoskeskihajonta. Oletetaan, että paksuudet noudattavat likimain normaalijakaumaa $N(\mu, \sigma^2)$. Testaa hypoteesia $H_0: \mu = 3.00$ vastaan $H_1: \mu \neq 3.00$ merkitsevyystasolla 0.05. Tarvittava taulukko on ohessa.
- 3. Olkoon Y_1, \ldots, Y_n satunnaisotos normaalijakaumasta $N(\mu, \sigma^2)$, jossa sekä odotusarvo μ että varianssi σ^2 ovat tuntemattomia parametreja ja otoskoko n on tunnettu luku. Parametria σ^2 on tapana estimoida havainnoista y_1, \ldots, y_n laskettavalla otosvarianssilla s^2 . Vastaavalle satunnaismuuttujalle S^2 pätee jakaumatulos $\frac{n-1}{\sigma^2}S^2 \sim \chi_{n-1}^2$ (khii-toiseen-jakauma, n-1 vapausastetta). Johda tämän avulla jokin 95 %:n luottamusväli keskihajonnalle σ . Kerro lyhyesti johtamasi luottamusvälin tulkinta; erityisesti miten valittu luottamustaso 0.95 on ymmärrettävä.
 - Tarvittavia taulukoita ei ole liitteenä, vaan sinun tulee kertoa, minkä funktion arvoja luottamusvälin laskemisessa käytetään.
- 4. Lineaarista (regressio) mallia käytetään muotoa $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ olevan havaintoaineiston mallintamiseen. Esittele tämä malli. Kiinnitä huomiota erityisesti seuraaviin: Miten malli rakennetaan? Mihin jakaumaan ja muihin oletuksiin se perustuu? Mitkä ovat parametrit? Anna vielä kaavat parametrien tavanomaisille estimaateille.
 - Vihje. Yksi estimointiin liityvä kaava on $b = s(\mathbf{x}, \mathbf{y})/s(\mathbf{x}, \mathbf{x})$. Sinun tulee tietää, mitä tässä esiintyvät suureet ovat ja minkä parametrin estimointiin kaava liittyy.
- 5. Kulhossa on neljä samanmuotoista palloa, joista K on valkoisia ja loput mustia. Kalle ei ollut paikalla näkemässä, kun pallot pantiin kulhoon, joten hän ei tiedä K:n arvoa. Hän on kuitenkin täysin varma siitä, että kulhossa on ainakin yksi valkoinen pallo ja ainakin yksi musta pallo; muuten eri vaihtoehdot K:lle tuntuvat hänestä yhtä todennäköisiltä. Kalle nostaa kulhosta palloja umpimähkään siten, että nostettu pallo aina palautetaan kulhoon ennen uutta nostoa. Ensimmäinen pallo on musta ja samoin toinen pallo on musta.
 - a) Mikä on Kallen priorijakauma K:lle?
 - b) Mikä on nostettuja kahta palloa vastaava uskottavuusfunktio?
 - c) Mikä on Kallen posteriorijakauma K:lle?

Taulukko: t-jakauman u-yläkvantiileja $t_{\nu}(u)$, joille $u=P(X>t_{\nu}(u))$, kun $X\sim t_{\nu}$. Tässä ν on jakauman vapausasteluku ja t_{∞} tarkoittaa standardinormaalijakaumaa N(0,1).

$\overline{\nu \backslash u}$	0.05	0.025	0.01	0.005	0.001
1	6.314	12.706	31.821	63.657	318.31
2	2.920	4.303	6.965	9.925	22.327
3	2.353	3.182	4.541	5.841	10.214
4	2.132	2.776	3.747	4.604	7.173
5	2.015	2.571	3.365	4.032	5.893
6	1.943	2.447	3.143	3.707	5.208
7	1.895	2.365	2.998	3.499	4.785
8	1.860	2.306	2.896	3.355	4.501
9	1.833	2.262	2.821	3.250	4.297
10	1.812	2.228	2.764	3.169	4.144
11	1.796	2.201	2.718	3.106	4.025
12	1.782	2.179	2.681	3.055	3.930
13	1.771	2.160	2.650	3.012	3.852
14	1.761	2.145	2.624	2.977	3.787
15	1.753	2.131	2.602	2.947	3.733
16	1.746	2.120	2.583	2.921	3.686
17	1.740	2.110	2.567	2.898	3.646
18	1.734	2.101	2.552	2.878	3.610
19	1.729	2.093	2.539	2.861	3.579
20	1.725	2.086	2.528	2.845	3.552
21	1.721	2.080	2.518	2.831	3.527
22	1.717	2.074	2.508	2.819	3.505
23	1.714	2.069	2.500	2.807	3.485
24	1.711	2.064	2.492	2.797	3.467
25	1.708	2.060	2.485	2.787	3.450
26	1.706	2.056	2.479	2.779	3.435
27	1.703	2.052	2.473	2.771	3.421
28	1.701	2.048	2.467	2.763	3.408
29	1.699	2.045	2.462	2.756	3.396
30	1.697	2.042	2.457	2.750	3.385
31	1.696	2.040	2.453	2.744	3.375
32	1.694	2.037	2.449	2.738	$3.365 \\ 3.356$
33	1.692	2.035	2.445	2.733	
34	1.691	2.032	2.441	2.728	3.348
35	1.690	2.030	2.438	2.724	3.340
36	1.688	2.028	$2.434 \\ 2.431$	$2.719 \\ 2.715$	3.333 3.326
37	1.687	2.026	$\frac{2.431}{2.429}$	$\frac{2.713}{2.712}$	3.319
38	1.686	2.024	$\frac{2.429}{2.426}$	2.712	3.313
39	1.685	$2.023 \\ 2.021$	2.423	$\frac{2.708}{2.704}$	3.307
40	1.684		2.423	$\frac{2.704}{2.690}$	3.281
45	1.679	2.014	2.412	$\frac{2.090}{2.678}$	3.261
50	1.676	$2.009 \\ 1.960$	2.403	$\frac{2.016}{2.576}$	3.090
∞	1.645	1.900	2.320	2.010	9.090