(1.1) As the data are linearly seperable, logistic regression will	
find a line that fits the data perfectly.	
There is a unique ML decision boundary which makes 0 errors	5,
but there are several possible decision boundaries which all	
makes 0 error: 1/2/ +++ + 0 000	
1.2) Heavily regularizing we sets we=0, this means point (0,0) must be on the decision boundary. There are several possible line with different slopes, but	
must be on the decision boundary.	
must be on the decision boundary. There are several possible line with different slopes, but	
must be on the decision boundary. There are several possible line with different slopes, but	
must be an the decision boundary. There are several possible line with different slopes, but all will make I error	
must be an the decision boundary. There are several possible line with different slopes, but all will make I error	
must be an the decision boundary. There are several possible line with different slopes, but all will make I error **E* ++++	
must be an the decision boundary. There are several possible line with different slopes, but all will make I error **E* ++++	
must be an the decision boundary. There are several possible line with different slopes, but all will make I error **E* ++++	
There are several possible line with different slopes, but all will make lerror ++++	

(1.3) Regularizing w.	males. H	ne line hori	zontal since	e. 241 is
ignored.				
There will be	2 classif	fication ex	04	
Yn /	N			
	+++	0		
		0		
			········	
	+	000		
			> X,	
(1.4) Regularizing Wz	makes the	line vertico	al since X2	is ignored.
There will be				
Have will the			1	
	+++			
	+			
		0,0		
÷		000		
•••••	+			
***************************************			7.	
;**********************************				

(2.1) $\phi(\infty) = (1,-1,1)$ $\phi(\infty_2) = (1,2,4)$
w is perpendicular to the decision boundary between two
points, which is a line through olice) and olice)
A vector that is perpondicular to the optimal prientation
of the weight vector w in the transformed 3D space can
be found by taking the cooss product of the feature vectors
$\phi(x_1)$ and $\phi(x_2)$
$(1,-1,1)\times(1,2,4)=(-6,3,3)$
or any scalar multiple of this
(2.2) There are 2 support vectors, namely two darks points.
The decision boundary will be halfway between them. This
midpoint is $m = \frac{(1,2,4)+(1,-1,1)}{2} = (1,\frac{1}{2},\frac{\pi}{2})$.
The distance of each of the training points to this
midpoint is
110(x1)-m11=110(x2)-m11=11(0,1,1)111.
$=\int_{0^{2}+1^{2}+1^{2}}$
=\(\bar{2}\):
Hence, the margin is 52
vector w:
(1,2,4)-(1,-1,1)=(0,3,3)
(0,1,1) is scalar multiple

(2.3) we have $w = (0, \frac{1}{2}, \frac{1}{2})$ which is parallel to (0, 3, 3) and has $||w|| = \sqrt{\frac{1}{2}^2 + \frac{1}{2}^2} = \frac{1}{\sqrt{2}}$ as required

(3.1) In this dotaset, a linear SVM classifier connot perfectly seperate the two classes (class -1 and class +1) due to the circular arrangement of data points. A linear SVM draws a straight line to seperate data points, but in this case, a single straight line cannot admostly divide the classes with no errors.

In this case, a nonlinear SVM dassifier like the Radial Books Function (RBF) kernel is needed. The RBF kernel allows us to map the data into a higher-dimensional feature space where it might become linearly sepercible.

The kernel function is defined as:

 $K(x,x') = \exp(-\tau ||x-x'||^2)$

where I and I' are data points

It is a hyperparameter controlling bernel shape appropriately

By appropriately choosing I value and using RBF leurnel,

we can transform the data into a higher-dimensional

Space where it may be linearly seperable, allowing for

effective classificantion of the circularly arranged data

Points.

(3.2) The Radial Basis Function (RBF) kernel is a kernelized
method used in support vector machines (SVMs) for solving
problems that involve non-linearly seperable data. It allows for
non-linear seperation in the feature space by mapping dotta
points into a higher-dimensional space.
- The RBF kernel computes the similarity (or distance)
between data points in original feature space
- It was a Gausian function to create a feature
space where the data may become linearly separable
Advantages of the RBF kernel over Linear SVM:
-Non-Linear Seperation: The RBF Kernel can handle complex and
non-linear decision boundaries. In the specific doctores provided,
the circular arrangement of data points connot be separated by
a straight line, but the RBF kernel can capture the director
partern by transforming the data into a higher-dimensional
Space
- Flexibility: The RBF Lemel allows for a high degree of flexibility
in modelling complex relamonships in the data. By adjusting
the "y" parameter, it allows for control of smoothness and complainty
of the decision boundary, making it adopted to different types
of data distribution

- Better Fit: The RBF kernel can model intricate parterns
and adopt to irregularly shaped clusters. In the Provide
dotoset, it can accurately capture the direvolute seperation
portern that linear SVM cannot.
- Generalization. The RBF kernel often provides better
generalization to unseen douta. It can capture the
underlying darta distribution more acchirately, which is
particularly useful in cases where the dataset is noisy
or when making accurate predictions on new unseen data
William or 1997 to Million & CANS TRANSPORT OF THE STATE
(200 368 art Akar a laval (398) art 18 199
Annaharatic Tempini a union atra est. 200 (1901 (1901))
("N"x-x 11 = 0xp (-7 11 x-x 11 2)
ener 375 an ha kan wan T. Aren de Communication de Commun
At the second of
and the same of the base of the same of th

(4.1) The margin width T is defined as the distance between the two
hyperplanes that are equidistant to the decision boundary. We can
express I in terms of the support vectors, which are data points
that lie on the marigin
$\gamma = \frac{2}{11 \text{ w/1}}$
where w is the normal vector to the boundary
We can also express in in terms of the support rectors and
the kernel functions:
$w = \sum_{i} a_{i} \gamma_{i} \phi(x_{i})$
The inner product between two transformed feature vectors
φίχι) and φίχι) can be expressed as!
$\phi(\alpha_i) \cdot \phi(\alpha_i) = K(\alpha_i, \alpha_i)$
Using inner product property, we can rewrite II will as:
Let n=i,m=j w = \\ \[\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\
Now substituting I will in the expression for margin with T
Y = JEEa; a; y; y; K(x; x;)
This expression relates the margin width I to the Lagrange
multipliers {dn} through the kernel function K. The kernel function
captures the influence of the transformation on the inner
product between footure vectors

(4.2) We can rewrite the expression of as follows:
$\frac{1}{\sqrt{2}} = \frac{1}{(11 \sum_{i} \alpha_{i} y_{i} \phi (x_{i}) 1^{2})}$
_ 11\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
= 11w11 ²
a.
Since w 2 is related to the Lagrange multipliers {do}, the original
relationship 12 = 2 on holds true even under transformation of
The introduction of the transformation & in SVMs emphasizes implicit
mapping to a higher-dimensional feature space, influencing the decision
boundary's geometry. Kernels facilitate operations in this transformed
space. The weight vector (w) is impacted by the transformed feature
vectors, highlighting SVM's ability to bandle non-linear boundaries.
The proof underscores the relationship between 72 and 2 ans
validity under transformations, showeding SM columns
•••••••••••••••••