HW #1

```
In [89]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

data = pd.read_csv('housing.csv')
```

1. Data Information

```
In [14]: print('Data Head\n')
   head = data.head()
   print(head)
   print('\nData Info\n')
   info = data.info()
   print('\nData Description\n')
   describe = data.describe()
   print(describe)
```

Data Head

	longitude	latitude ho	ousing_median_ag	e total_rooms t	total_bedrooms \
0	-122.23	37.88	41.	0 880.0	129.0
1	-122.22	37.86	21.	0 7099.0	1106.0
2	-122.24	37.85	52.	0 1467.0	190.0
3	-122.25	37.85	52.	0 1274.0	235.0
4	-122.25	37.85	52.	0 1627.0	280.0
	population	households	median_income	median_house_val	lue ocean_proximi
ty					
0	322.0	126.0	8.3252	452600	0.0 NEAR B
ΑY					
1	2401.0	1138.0	8.3014	358500	0.0 NEAR B
ΑY					
2	496.0	177.0	7.2574	352100	0.0 NEAR B
ΑY					
3	558.0	219.0	5.6431	341300	0.0 NEAR B
ΑY					
4	565.0	259.0	3.8462	342200	0.0 NEAR B
ΑY					

Data Info

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	longitude	20640 non-null	float64
1	latitude	20640 non-null	float64
2	housing_median_age	20640 non-null	float64
3	total_rooms	20640 non-null	float64
4	total_bedrooms	20433 non-null	float64
5	population	20640 non-null	float64
6	households	20640 non-null	float64
7	median_income	20640 non-null	float64
8	median_house_value	20640 non-null	float64
9	ocean_proximity	20640 non-null	object

dtypes: float64(9), object(1)

memory usage: 1.6+ MB

Data Description

	longitude	latitude	housing_median_ag	e total_rooms	\
count	20640.000000	20640.000000	20640.00000	0 20640.000000	
mean	-119.569704	35.631861	28.63948	6 2635.763081	
std	2.003532	2.135952	12.58555	8 2181.615252	
min	-124.350000	32.540000	1.00000	0 2.000000	
25%	-121.800000	33.930000	18.00000	0 1447.750000	
50%	-118.490000	34.260000	29.00000	0 2127.000000	
75%	-118.010000	37.710000	37.00000	0 3148.000000	
max	-114.310000	41.950000	52.00000	9 39320.000000	
	total_bedrooms	populatior	n households m	edian_income \	
count	20433.000000	20640.000000	20640.000000	20640.000000	
mean	537.870553	1425.476744	499.539680	3.870671	
std	421.385070	1132.462122	382.329753	1.899822	
min	1.000000	3.000000	1.000000	0.499900	
25%	296.000000	787.000000	280.000000	2.563400	

50%	435.000000	1166.000000	409.000000	3.534800
75%	647.000000	1725.000000	605.000000	4.743250
max	6445.000000	35682.000000	6082.000000	15.000100

median_house_value 20640.000000 count 206855.816909 mean std 115395.615874 14999.000000 min 25% 119600.000000 50% 179700.000000 75% 264725.000000 500001.000000 max

2. Visualize the Data


```
In [81]: # Remove ocean_proxmitity
    numerical_cols = data.columns.delete(9)
    fig, axes = plt.subplots(3,3, figsize=(15, 15))
    for index, col_name in enumerate(numerical_cols):
        row = index % 3
```


3. Longitude and Latitude Scatterplots

```
In [86]: plt.scatter(data['longitude'], data['latitude'])
    plt.show()
    plt.scatter(data['longitude'], data['latitude'],data['population'], data[
```


Out[86]: <matplotlib.collections.PathCollection at 0x78288d194f20>

4. Median House Price and Median Income Correlation

Q5

```
In [146...
         import math
         differences = []
         MIN DIM = 2
         MAX DIM = 50
         SIZE = 500
         DIM_RANGE = range(MIN_DIM, MAX_DIM)
         for dim in DIM RANGE:
             matrix_500_dim = np.random.rand(SIZE, dim)
             matrix dim = np.random.rand(dim)
             diff = [np.linalg.norm(matrix 500 sliced - matrix dim) for matrix 500
             max_diff = max(diff)
             min diff = min(diff)
             log_diff = math.log10((max_diff-min_diff)/min_diff)
             differences.append(log diff)
         plt.plot(DIM RANGE, differences)
         plt.xlabel('Number of dimensions')
         plt.ylabel('log 10((MAX DIST = MIN DIST) / MIN DIST)')
         plt.show()
```

