5. Wurzeln und rationale Exponenten

Hilfssatz 5.1

- (1) Sind $x, y \in \mathbb{R}, x, y \ge 0$ und $n \in \mathbb{N}$, so gilt: $x \le y \Leftrightarrow x^n \le y^n$
- (2) Ist $\beta > 0 \Rightarrow \exists m \in \mathbb{N} : \frac{1}{m} < \beta$

Beweis

(1) ,, \Rightarrow "(induktiv)

I.A.
$$n=1\sqrt{}$$

I.V. Sei $n \in \mathbb{N}$ und $x^n \leq y^n$

I.S.
$$x^{n+1} = x^n x \le y^n x \le y^n y = y^{n+1}$$

"\equivarrantes ": Annahme: $y < x \xrightarrow{\text{wie oben}} y^k < x^k \ \forall k \in \mathbb{N}$, Wid.

(2)
$$2.1(4) \Rightarrow \exists m \in \mathbb{N} : m > \frac{1}{\beta} \Rightarrow \frac{1}{m} < \beta$$
.

Definition 5.2 (Wurzeln)

Sei $a \in \mathbb{R}, a \geq 0$ und $n \in \mathbb{N}$. Dann existiert genau ein $x \in \mathbb{R}$ mit: $x \geq 0$ und $x^n = a$. Dieses x heißt die n-te **Wurzel** aus a und wird mit $\sqrt[n]{a}$ bezeichnet $(\sqrt{a} := \sqrt[2]{a})$.

Bemerkung: (1) $\sqrt[n]{a} \ge 0$ (Beispiel: $\sqrt{4} = 2, \sqrt{4} \ne -2$; die Gleichung $x^2 = 4$ hat zwei Lösungen)

$$(2) \ \sqrt{b^2} = |b| \ \forall b \in \mathbb{R}$$

Beweis

Eindeutigkeit: Sei $x,y \geq 0$ und $x^n = a = y^n \xrightarrow{5.1(1)} x = y$

Existenz: O.B.d.A.: a > 0 und n > 2

$$M := \{ y \in \mathbb{R} : y \ge 0, y^n < a \}, M \ne \emptyset, \text{ denn } 0 \in M$$

Sei $y \in M \Rightarrow y^n < a < 1 + na \stackrel{\text{BU}}{\leq} (1+a)^n \stackrel{5.1(1)}{\Longrightarrow} y < 1 + a.$ M ist nach oben beschränkt.

$$(\mathbf{A15}) \Rightarrow \exists x := \sup M.$$
 Wir zeigen: $x^n = a$

Annahme: $x^n < a$. Sei $m \in \mathbb{N}$:

$$(x + \frac{1}{m}) \stackrel{4.4}{=} \sum_{k=0}^{n} \binom{n}{k} x^{n-k} \frac{1}{m^k} = x^n + \sum_{k=1}^{n} \binom{n}{k} x^{n-k} \underbrace{\frac{1}{m^k}}_{\leq \frac{1}{m}} \leq x^n + \frac{1}{m} \underbrace{\sum_{k=1}^{n} \binom{n}{k} x^{n-k}}_{\alpha}$$

$$\Rightarrow (x+\frac{1}{m})^n \leq x^n + \frac{\alpha}{m}. \ 4.1(2) \implies \exists m \in \mathbb{N}: \frac{1}{m} < \frac{a-x^2}{\alpha} \implies x^2 + \frac{\alpha}{m} < a. \ \text{Dann} \\ (x+\frac{1}{m})^n \leq x^n + \frac{\alpha}{m} < a \implies x + \frac{1}{m} \in M \implies x + \frac{1}{m} \leq x \implies \frac{1}{m} < 0. \ \text{Widerspruch} \\ \implies x^n \geq a$$

Annahme:
$$x^n > a$$
. $(x - \frac{1}{m})^n = (x(1 - \frac{1}{mx}))^n = x^n(1 - \frac{1}{mx})^n \stackrel{\text{BU}}{\geq} x^n(1 - \frac{n}{mx}) \text{ falls } -\frac{1}{mx} \geq -1,$ also falls $\frac{1}{m} \leq x$. Also: $(x - \frac{1}{m})^n \geq x^n(1 - \frac{n}{mx})$ für $m \in \mathbb{N}$ mit $\frac{1}{m} \leq x$. [Nebenrechnung: $x^n(1 - \frac{n}{mx}) > a \iff \frac{1}{m} < \frac{x(x^n - a)}{nx^n} =: \alpha$] 5.1(2) $\implies \exists m \in \mathbb{N} \text{ mit } \frac{1}{m} \leq x \text{ und } \frac{1}{m} \leq \alpha.$

5. Wurzeln und rationale Exponenten

$$\begin{array}{ll} \operatorname{Dann}\,(x-\frac{1}{m})^n>a.\ x-\frac{1}{m}\ \mathrm{ist}\ \mathrm{keine}\ \mathrm{obere}\ \mathrm{Schranke}\ \mathrm{von}\ M\implies\exists y\in M:y>x-\frac{1}{m}\ \stackrel{5.1(1)}{\Longrightarrow}\ y^n>(x-\frac{1}{m})^n>a.\ \mathrm{Also}\ y^n>a.\ \mathrm{Widerspruch},\ \mathrm{denn}\ y\in M.$$
 Daraus folgt: $x^n=a.$

Satz 5.3 (Eindeutigkeit von rationalen Potenzen)

Sei $a \ge 0$, $m, n, p, q \in \mathbb{N}$ und es sei $\frac{m}{n} = \frac{p}{q}$. Dann $(\sqrt[n]{a})^m = (\sqrt[q]{a})^p$.

Beweis

$$x:=(\sqrt[n]{a})^m,\,y:=(\sqrt[q]{a})^p.$$
 Wegen 5.1(1) genügt es zu zeigen: $x^q=y^q.$ Es ist $mq=np.$ $x^q=\sqrt[n]{a}^{mq}=\sqrt[n]{a}^{np}=a^p=\sqrt[q]{a}^{pq}=y^q$

Definition (Rationale Potenzen)

- (1) Sei $a \in \mathbb{R}$, $a \ge 0$ und $r \in \mathbb{Q}^+ = \{x \in \mathbb{Q} : x > 0\}$. Dann existiert $m, n \in \mathbb{N} : r = \frac{m}{n}$. Es sei $a^r := \sqrt[n]{a}^m$. (Wegen 5.3 ist a^r wohldefiniert).
- (2) Sei $a>0,\,r\in\mathbb{Q}$ und r<0. $a^r=\frac{1}{a^{-r}}$

Es gelten die Rechenregeln $(a^{r+s} = a^r a^s, ...)$ als bekannt.