ELEC 3300 Introduction to Embedded Systems

Course Introduction

Prof. Tim Woo

Email: eetim@ust.hk

Course Arrangement for Fall 2022-23

All the Lectures, Tutorials, LABs and Project will be running ONLY Face to Face Mode.

ELEC 3300 Introduction to Embedded Systems

Teaching Team:

– Course Instructor:

Prof. Tim K T WOO (email: eetim@ust.hk , Room 2419)

– Teaching Associate:

Fox C H WU (email: eefox@ust.hk , Room 2395)

– Technicians:

Darwin T W WONG (email: eetwwong@ust.hk, Room 3130)

• Sam C W LAI (email: eecwlai@ust.hk, Room 3130)

– Teaching Assistants:

• CHAN, C. L. Jonathan (email: cljchanac@connect.ust.hk)

• DUNDA, Gerry W. M. (email: gwmdunda@connect.ust.hk)

• LIU, Jiaqi (email: jliuel@connect.ust.hk)

• LIU, Tianyu (email: tliubk@connect.ust.hk)

YANG, Bowen (email: byangar@connect.ust.hk)

• ZHANG, Xinjie (email: xzhangga@connect.ust.hk)

ELEC 3300 Introduction to Embedded Systems

- Course Notes and Lab Notes: CANVAS system
- Course prerequisites and Background Knowledge
 - COMP2611/ELEC 2300/ELEC2350/ISDN 4000F
 - Basic assembly language programming
 - Basic structure of a processor
- Background Knowledge
 - ELEC 1100 Introduction to Electro-Robot Design
 - Digital logic circuits designs
 - Simple circuit timing and timing diagrams
 - Electronic devices measurement

Teaching and Learning Activities

Teaching activities

- Lecture: 2 x 1.5-hour sessions (Week 1 to Week 7)
- Tutorial: 1.5-hour sessions (Week 1 to Week 7)
- Laboratory experiments: 2-hour sessions (Week 3 to Week 9)
- Mini-talks: (Week 10 to Week 11)
- Project: Talent-made schedule (Week 7 to Week 13 inclusive)

Other activities:

- Preliminary proposal discussion
- 1 Final proposal presentation
- 1 Interim project demonstration
- 1 final project demonstration
- As there is no examination in this course, your participation and contribution is very important.

Teaching, Learning Activities and their grading scheme

Continuous assessment: (55%)

In-class activities

- The in-class activities in the first two weeks are the pilot run. The score will be counted toward starting from week 3.
- There are two criteria in getting the score:
 - First 6% is counted in the percentage of the questions you attempted.
 - The rest 2% will be given if more than 70% of questions are answered correctly.

 2 Homework assignments 	10%
 6 Laboratory experiments 	18%
 1 Preliminary proposal discussion (peer) 	4%
 1 Proposal presentation 	6%
 1 Interim project demonstration 	9%

Final assessment: (45%)

 1 Final project demonstration and prese 	entation 40%
1 Final report	5%

Requirements

- To be fair for those students who submit assignment on time, a penalty of late submission is listed as follow:
 - Late submission within 12 hours, Penalty of 25%
 - Late submission between 12 to 24 hours, Penalty of 50%
 - We will not accept any late assignment for more than 24 hours.
- Passing requirements of the course is
 - 1. Attend all the 6 laboratory experiments with demonstration
 - 2. Composite score > 45%
 - If you miss any meetings, a makeup meeting can be arranged if you could provide a supporting document.
 - Only maximum of one makeup meetings can be arranged.

Topics

Item	Lecture	Tutorial	Laboratory (Start from Week 2)
1	Introduction to Embedded Systems	Introduction to use of Equipment	Use of Equipment
2	Basic Computer Structure	Number System and STM32 Structure	I/O Interface, Interrupt function of STM32
3	Embedded System Structure	I/O and Interrupt function of STM32	Graphic LCD Interfacing
4	Interrupt Organization	Controlling Graphic LCD using FSMC function of STM32	Timer and PWM Function
5	Interfacing LCD	STM32 Timer and PWM Function	ADC Applications
6	Timer and Counter	ADC of STM32	I2C Interface Programming
7	ADC and Motor Interfacing	Inter-Integrated Circuit (I2C) function of STM32	
8	Serial Communication		
9	DMA		
10	Memory Interface		
11	Applications of Embedded Systems (Experience sharing by TAs)		

ELEC 3300 : Fall 2022-23

ELEC 3300 Introduction to Embedded Systems

Student initiated projects

ELEC 3300 : Fall 2022-23 Tim Woo 9

ELEC 3300 Introduction to Embedded Systems

Team size: 2 students Evaluated by Project Grading Rubric

ELEC 3300 Project Grading Rubric

Project Demonstration: Max 32 marks

Project Presentation: Max 8 marks

Acknowledgment - This rubric is adopted and modified from the INQUIRY AND ANALYSIS VALUE RUBRIC by Association of American Colleges and Universities. Number in bracket shows the corresponding marks for that level of performance.

	Capstone	Milestones		Benchmark
	4	3	2	1
Project	The whole project consists of a	Hardware consists of various kind of	Project hardware is a mix of analogue	The processor directly controls all the
Complexity	complex hardware and software	interface before going to the	and digital signals, software part used	aspects of the hardware, simple
(P03)	design. Careful hardware design and	processor, with software controlling	all the features of the processor. (6)	controls are used in the software. (3)
	software design algorithm is being	the other interfaces. (9)		
	shown. (12)			
Project	Clear understanding of the project.	System is designed with appropriate	System is simply designed according	Little understanding of the project.
Understanding	System is designed with justification	use of analog, digital signals, and	to the LAB understanding. Cannot	System is designed without
(P05)	and appropriate use of analog, digital	correct methodology. (6)	justify uses of analog or digital	justification of LAB knowledge or
	signals and methodology. (10)		signals or methodology. (4)	methodology. (2)
Project	Application of labs together with extra	Extended integration of lab materials	Project is an application of all the labs	Project is an application of two to
Originality	circuits or software extended to	with extra circuits or software. (4)	done before. (2)	three of the lab experiments. (1)
	creative design. (6)			
Completeness	The project can run smoothly without	The project can run with specified	The project can run, however, it	The project cannot run, however, can
(P10)	major error. (4)	inputs. It encounters error with input	encounters errors on specified input.	show partial functionality with forced
		that is not specified. (3)	(2)	input with either hardware or
				software. (1)
Oral	Presentation referenced to	Project presentation is dear and	Fair description of project, still	Project function be deduced, but is
Presentation	information or analysis that	consistent with the supporting	understandable, but is not often	not explicitly stated in the
with	significantly supports the project	material. (6)	repeated and is not memorable. (4)	presentation. (2)
PowerPoint	work. (8)			

Evaluators are encouraged to assign a zero to any work sample or collection of work that does not meet benchmark (cell one) level performance.

In the course design, we involve

- Student's centered learning
 - Experiential learning

- Benjamin Franklin

Homework Assignments, Laboratory experiments, Student's project

I hear and I forget, I see and I remember, I do and I understand.

- Confucius (551 BC to 479 BC)

What do we teach?

We will NOT give you a fish; instead, we will teach you how to fish.

From project idea to prototype design

Developing since 2009

Self-driving car http://goo.gl/Z0JLsy

Abstract idea:

- How does the car drive? Stop the car? Right steering?
 Move forward?
- How to guide the car from starting location to the destination?
- How to get the information about the surrounding?
- Can we change the driving path in the real time?
- What is the maximum driving speed?
- Does the car need to communicate with other vehicles?

Hardware devices:

 Which are the suitable / potential hardware devices in addressing each abstract idea?

Abstract idea of project (Define the functionality of the system) Hardware devices (Microcontroller, Peripherals, sensors)

What do we teach?

Further information:

https://en.wikipedia.org/wiki/Waymo

From project idea to prototype design

Developing since 2009

Self-driving car

http://goo.gl/Z0JLsy

Description

Abstract idea of project (Define the functionality of the system)

• • • •

...

•••

Hardware devices (Microcontroller, Peripherals, sensors)

Other potential devices for:
- global positioning
- Monitoring the tire pressure

Automobile

Measurements

- RPM (Revolutions Per Minute): How many times the engine's crankshaft makes one full rotation every minute (Tachometer).
- Speedometer: Vehicle speed
- Odometer: Distance travelled
- Fuel Level Gauge: Fuel Tank Level (float and potentiometer / capacitance)
- **Temperature Sensor:** Inside and outside air temperature (Resistance Temperature Detector / Thermistor)

Aircraft Instrumentation

Measurements

Altimeter: Altitude above sea level

Attitude Indicator: Aircraft's orientation relative to the Earth's

horizon

Heading indicator

- **Heading Indicator:** Aircraft's direction
- Vertical Speed Indicator: Rate of climb or descent of an aircraft
- Horizontal Speed, Fuel level gauge, Pressure, Temperature,
 Engine Vibration, Cabin Oxygen, Smoke, etc.

Mobile Phone

Modern Mobile Phones have built-in sensors that measure motion, orientation, and various environmental conditions.

Class activity:

Find sensors in your mobile device

Step 1: Install an app "Physics Toolbox Sensor Suite"

Google Play Store

Apple App Store

Step 2: Start an interactive tool - Mentimeter Go to www.menti.com

Hints: work with your classmate.

One student uses the app One student writes the answers through Mentimeter

Mobile Phone

Modern Mobile Phones have built-in sensors that measure motion, orientation, and various environmental conditions.

Accelerometer for motion detection: Measures the acceleration force applied to a device on all three physical axes (orientation, shake)

Temperature sensor: Air temperature

Light sensor: Ambient light intensity (to control screen brightness)

Pressure sensor: Air pressure

Proximity sensor: Proximity of an object relative to the screen

Humidity sensor: Relative Humidity

What is the scope of this course?

Overview of Computer systems

ELEC 3300 : Fall 2022-23 Tim Woo 19

Overview of Computer systems

Outcomes Expected from YOU

- On successful completion of this course, you will be able to
 - CILO1: Recognize the marketing and engineering views of embedded system applications.
 - -CILO2: Understand and analyze the building blocks of embedded system, and the interfacing techniques of simple external devices.
 - -CILO3: Understand and compare different up-to-date computer interfacing technologies.
 - –CILO4: Use CAD tools to program and emulate the performance of the micro-controller.
- CILO: Course Intended Learning Outcome

First iPRS in-class activity

For Android devices, search HKUST iLearn at Play Store.

For iOS devices, search **HKUST iLearn** at App Store.

https://ilearn.ust.hk/iLearn/home.html

Course Outline

Which knowledge do I learn in class and how do they link up?

Course Outline: 1. Introduction to Embedded Systems 2. Basic Computer Structure 3. Microcontroller Structure 4. Interrupt Organization 5. Timer and Counter 6. 7. 8. Interfacing LCD 9. Motor Interfacing 10.

Laboratory

- Objective (CILO2 and CILO4)
 - Enrich your knowledge in the circuit interfacing and basic programming skills with CAD tools

 A brief discussion on the laboratory experiment will be conducted in tutorial sessions.

Design architecture of an embedded system

· After completing the laboratory experiments, you are able to integrate

Course Project

- Objective (CILO5):
 - Put in practice what you have learned in both hardware and software skills in your talent-made project
 - Work effectively in a team and lead a team
- Team size:
 - 2-3 students from same / different laboratory sessions
 - Please submit your team to the Teaching Associate within three weeks. Otherwise, you will be randomly assigned. (Please check the CANVAS)

Course Project

- At the end of the course, you are able to submit:
 - Final Project Demonstration + Power-point Presentation
 - Each team is required to conduct a fifteen-minute demonstration and presentation.
 - A final project report in HTML format
 - Peer-evaluation from your team member (this reflects your overall performance in the project)

You may ask about the grading

What are the grading criteria of project?

ELEC 3300 Project Grading Rubric

Project Demonstration: Max 32 marks

Project Presentation: Max 8 marks

Acknowledgment - This rubric is adopted and modified from the INQUIRY AND ANALYSIS VALUE RUBRIC by Association of American Colleges and Universities. Number in bracket shows the corresponding marks for that level of performance. Students may ask to modify their codes during the project demonstration in need.

	Capstone	Milestones		Benchmark	Below Benchmark
	4	3	2	1	0
Project	The whole project consists of a	Hardware consists of various	Project hardware includes extra	Project hardware is a mix of	The processor directly
Complexity	complex hardware and software	kind of interface before going to	hardware/software components	analogue and digital signals,	controls all the aspects of
	design. Careful hardware design	the processor, with software	and other features of the	software part used majority	the hardware, simple
	and software design algorithm is	controlling the other interfaces.	processor. (6)	lab-covered features of the	controls are used in the
	being shown. (12)	(9)		processor. (3)	software. (0)
Design	System is designed with clear	System is designed with	System is designed only	Little understanding of the	No understanding of the
Justification	and correct justification.	appropriate use of analog,	according to the LAB material.	project. System is designed with	project. System is designed
	Students show the appropriate	digital signals, and correct	Little justification and	weak justification and	without any justification of
	use of analog, digital signals and	methodology. (6)	demonstration the use of I/O in	demonstration of LAB	LAB knowledge nor
	methodology. (10)		the design. (4)	knowledge or methodology. (2)	methodology. (0)
Project	Application of labs together with	Extended integration of lab	Project is an application of all	Project is an application of three	Project is an application of
Originality	extra circuits or software	materials with extra circuits or	the labs done before. (2)	or more of the lab experiments.	less than three lab
	extended to creative design. (6)	software. (4)		(1)	experiments. (0)
Completeness	The project can run smoothly	The project can run with	The project can run smoothly,	The project can run, however, it	The project cannot run,
	without major error. (4)	specified inputs. It encounters	however, it encounters errors on	encounters errors on specified	however, can show partial
		error with input that is not	specified input. (2)	input. (1)	functionality with forced
		specified. (3)			input with either hardware
					or software. (0)
Oral	Presentation referenced to	Project presentation is clear and	Project functions are described	Fair description of project, still	Project function can only be
Presentation	information or analysis that	consistent with the supporting	clearly with explanation of	understandable, but is not often	deduced, it is not explicitly
with	significantly supports the	material. (6)	special features.	repeated and is not memorable.	stated in the presentation.
PowerPoint	project work. (8)			(2)	(0)

You may ask about the grading

Who grade the project? Is the grading fair?

Instructor and Teaching Associate

4-5 Postgraduates (Teaching Assistants)

ELEC 3300 : Fall 2022-23 Tim Woo 28

- You are required to do peer evaluations to your group member during the project period.
- Below shows an example, each evaluation mark will be from 0 − 16.

Group's Average Peer Evaluation Mark = (14 + 11.5) / 2 = 12.75Members Difference percentage = (14 - 11.5)/12.75 = 19.6%

- You are required to do peer evaluations to your group member during the project period.
- Below shows an example, each evaluation mark will be from 0 16.

Group's Average Peer Evaluation Mark = (14 + 11.67 + 13) / 3 = 12.89Members Difference percentage for student A = (14 - 12.89) / 12.89 = 8.61%Members Difference percentage for student B = (11.67 - 12.89) / 12.89 = -9.46%Members Difference percentage for student C = (13 - 12.89) / 12.89 = 0.85%

- You are required to do peer evaluations to your group member during the project period.
- Below shows an example, each evaluation mark will be from 0 16.

Group's Average Peer Evaluation Mark = (14 + 10 + 13) / 3 = 12.33Members Difference percentage for student A = (14 - 12.33) / 12.33 = 13.51%Members Difference percentage for student B = (10 - 12.33) / 12.33 = -18.92%Members Difference percentage for student C = (13 - 12.33) / 12.33 = 5.41%

 Based on the difference in percentage, the project mark that got by the member will be multiplied by a factor as shown in the table

Difference (Absolute value)	Factor for Member who has more contribution	Factor for Member who has less contribution
0 – 10%	1	1
10 – 20%	1 + X	1 – X
20 – 30%	1 + Y	1 – Y
> 30%	1.15	1 – 2Z

• Note: 0 < X < Y < 0.15 < Z < 0.5

Project Assessment

- We will also monitor the progress and the reflection from peer evaluations in order to achieve a fair environment.
- A special meeting will be arranged if some abnormal case is observed.
- You should seek for help as early as possible if you have any difficulties.
 There is nothing we can help in the last minutes.
- A normalization of progress marks among different assessor will be done.

Outcomes and Means

- Outcomes:
 - To be a well-trained UG student and get success, you need
 - Teamwork, Discipline, Both theoretical and technical knowledge, Creativity, Good Presentation skill, Good in Time Management
- How can we help you in this course?

	Lecture / Tutorial	Lab experiment	Project
Teamwork		✓	✓
Discipline		✓	✓
Theoretical knowledge	✓	✓	✓
Technical knowledge	✓	✓	✓
Creativity			✓
Presentation skill			✓
Time Management	✓	✓	✓

• Important Note: Curve fitting is NOT applied in the letter grade. The grade is assigned by criteria referencing. Much effort you put, higher grade you get.