ANLIS - Spick

Johanna Koch

Vorwort

Zusammenfassung in LaTeX für ANLIS. Inhalt und Aufbau an Folien orientiert. Keine Garantie für Vollständigkeit!!

LaTeX-Repo hier: https://github.com/angry-Johanna/ANLIS

Wer Zusammenfassung erweitert soll diese doch bitte auch wieder auf https://studentbox.ch teilen :-)

Contents

1	Grui	ndlagen	8
	1.1	Wurzeln	8
	1.2	Potenzen	8
	1.3	Brüche	9
	1.4	Logarithmen	9
	1.5	Binome	9
		1.5.1 1. Binom	9
		1.5.2 2. Binom	9
		1.5.3 3. Binom	9
	1.6	Quadratische Gleichung	9
	1.7	Ableitungen/Integrationen	10
	1.8	Vektoren	12
	1.9	Beispiele	12
2	wx	MAXIMA Cheatsheet	13
_	2.1	Grundlagen	13
		2.1.1 Einfache Operationen	14
	2.2	Systemvariablen	14
	2.3	Logische Ausdrücke	15
	2.4	Summen und Grenzwerte	15
	2.5	Differenzieren und Integrieren	15
	2.6	Gleichungen	16
	2.0	2.6.1 Beispiele	16
	2.7	Funktionen	17
3	CVV	01 Funktionen	18
3			18
	3.1	Lineare Funktion	_
	3.2	Polynomfunktion	18
	3.3	Quadratische Funktionen	18
	3.4	Exponentialfunktion	18
	3.5	Logarithmusfunktion	18

4	SW	02 Folg	gen und Reihen	19
	4.1	Arithn	netische Folgen und Reihen	19
		4.1.1	Beispiele von Folgen	19
		4.1.2	Summe der Glieder einer AF: Arithmetische Reihe	19
		4.1.3	Nützliche andere Formeln	20
	4.2	Geome	etrische Folgen	20
	4.3		etrische Reihe	20
	4.4		en mit Folgen, Eigenschaften	20
	4.5		n Eigenschaften	21
		4.5.1	Konvergenz/Divergenz	21
		4.5.2	Explizite Folge	21
		4.5.3	Rekursive Folge	21
		4.5.4	Nullfolge	
		4.5.5	Alternierende Folge	
			-	
5			nzwerte und Stetigkeit	22
	5.1	Grenz		22
		5.1.1	Linksseitiger Grenzwert	22
		5.1.2	Rechtsseitiger Grenzwert	22
		5.1.3	Zweiseitiger Grenzwert	22
		5.1.4	Uneigentliche Grenzwerte	22
		5.1.5	Grundlegende Grenzwerte Theorem	22
		5.1.6	Rechnen mit Grenzwerten	23
		5.1.7	Squeezing-Theorem	24
	5.2	-	n	24
	5.3	_	keit	24
		5.3.1	Grenzwert einer Funktion von x - Theorem	25
		5.3.2	Rechenregeln	25
		5.3.3	Eigenschaften stetiger Funktionen	25
		5.3.4	Regula Falsi	26
	5.4	Beispi	ele	26
		5.4.1	Geschickt erweitern	26
		5.4.2	GW Polynom	26
		5.4.3	GW Quotient	26
6	SW	04 Diff	erentialrechnung I – Tangente und Ableitung	27
	6.1		ekante	27
			Sekante durch P und Q	27
	6.2	Tange	ente und Ableitung	27
	0	6.2.1	Beispiel Quadratische Funktion	27
	6.3	-	ung der Potenzfunktion	28
	0.0	6.3.1	Beispiel Tangente	28
		6.3.2	Newton-Raphson Verfahren	28
	6.4		Ableitungsregeln	29
	0.7	6.4.1	Theorem Faktorregel	29
		6.4.2	•	29

	6.5	Quotie	entenregel	29
	6.6	Forme	ln	29
		6.6.1	Ableitungen	30
7	SW	05 Diff	erentialrechnung II — Kettenregel	31
	7.1		tige Ableitung	31
	7.2		nregel	31
	7.3		hrfunktion	31
	7.4		ung Logarithmus	32
	7.5		ung Wurzel	32
	7.6	Ableit	ungen Arkusfunktionen	32
	7.7		ungen Areafunktionen	32
8	SW	06 Diff	erentialrechnung III – Differential, höhere Ableitungen	33
	8.1		ite Ableitung	33
		8.1.1	Beispiel	33
		8.1.2	y nach x	34
	8.2	Differe	ential	34
		8.2.1	Beispiel Differential	35
		8.2.2	Rechenregeln für Differentiale	35
	8.3	Monot	tonie	35
		8.3.1	Lokale oder relative Extrema	36
	8.4	Höher	e Ableitungen	36
	8.5		mung	36
9	SW	07 Diff	erentialrechnung IV – Kurvendiskussion, Optimierung	37
	9.1		neterdarstellung von Kurven	37
		9.1.1	Beispiel	37
		9.1.2	Ableitung eines Vektors	38
		9.1.3	Ableitung einer in Parameterform gegebenen Funktion	38
		9.1.4	Krümmungskreismittelpunkt	38
	9.2	Kurve	n in Polarkoordinaten	39
		9.2.1	Ableitung einer in Polarkoordinaten gegebene Funktion	39
	9.3	Kurve	ndiskussion	40
		9.3.1	Symmetrien Beispiele	40
		9.3.2	Wende- und Sattelpunkte	41
		9.3.3	Beispiel	41
	9.4		ierungsproblem - Allgemeines Vorgehen	42
	-	9.4.1	Brechungsgesetz	$\overline{42}$
	9.5	-	von de l'Hôpital	42
		9.5.1	Theorem - Regel von de l'Hôpital für unbestimmte Ausdrücke	
		- · - · · ·	der Form 0/0	42
		9.5.2	Vorgehen	
		9.5.3	Vorgehen für weitere unbestimmte Ausdrücke	

10	SWO	08 Integralrechnung I – Flächenberechnung und Integral	44
	10.1	Stammfunktion	44
		Umkehrung der Differentiation	44
	10.3	Bestimmtes Integral Flächenberechnung	45
		10.3.1 Beispiel Rechter Rand	45
		10.3.2 Beispiel Linker Rand	45
	10.4	Summen vereinfachen	46
11		9 Integralrechnung II – unbestimmtes Integral und Hauptsatz	
		Infinitesimalrechnung	47
	11.1	Unbestimmtes Integral und Flächenfunktion	47
		11.1.1 Theorem - unbestimmte Integrale	47
		11.1.2 Beispiel	48
		Delta x ändern	48
	11.3	Fundamentalsatz der Differential- und Integralrechnung Theorem	48
		11.3.1 Beispiele	49
	11.4	Berechnung bestimmter Integrale mit Stammfunktion	49
		11.4.1 Beispiel	49
	11.5	1. Substitutionsregel für unbestimmte Integrale - Theorem	50
		11.5.1 Beispiele	50
	11.6	1. Substitutionsregel für bestimmte Integrale - Theorem	50
		11.6.1 Beispiele	51
12	SW1	0 Integralrechnung III – Integrationstechnik	52
	12.1	2. Substitutionsregel	52
		12.1.1 Theorem - 2. Substitutionsregel für unbestimmte Integrale .	52
		12.1.2 Beispiele	53
		12.1.3 Theorem - 2. Substitutionsregel für bestimmte Integrale	53
		12.1.4 Beispiele	54
		Häufige Integralsubstitutionen	55
	12.3	Theorem - Partielle Integration - Produktintegration	56
		12.3.1 Beispiel	57
		12.3.2 Rekursionsbeziehung - Beispiel	57
		12.3.3 Nur einen Faktor - Beispiel	58
		12.3.4 Mehrfache partielle Integration - Beispiel	58
	12.4	Theorem - Produktintegration für bestimmte Integrale	58
		12.4.1 Beispiele	58
	12.5	Mittelwerte	59
		12.5.1 Theorem - lineare Mittelwert	59
		12.5.2 Beispiel	59
		12.5.3 Theorem - quadratische Mittelwert	60
		12.5.4 Theorem - Mittelwertsatz der Integralrechnung	60

13	SW1	1 Integralrechnung IV- Anwendungen	61
	13.1	Trapezregel	61
	13.2	Trapezregel - kurz	61
		13.2.1 Beispiel	62
	13.3	Simpsonregel - kurz	62
		13.3.1 Beispiel	62
	13.4	Definition Bogenlänge	62
	-	13.4.1 Beispiel	63
	13.5	Kurven in Polarform	63
	20.0	13.5.1 Beispiel	63
	13.6	Kurven in Parameterform	63
		Beispiel	64
	15.1	Despici	01
14	SW1	2 Potenz- und Taylor-Reihen	65
	14.1	Potenzreihe - Definition	65
		14.1.1 Theorem - Konvergenzradius	65
	14.2	Definition Taylor-Polynom	66
		14.2.1 Beispiel 1	66
		14.2.2 Beispiel 2	67
	14.3	Definition - Taylor-Reihe	67
		Definition - Restglied nach Lagrange	67
		14.4.1 Theorem - Konvergenz von Taylor-Reihen	68
	14.5	Definition Binomial-Reihe	68
		14.5.1 Beispiel	68
	14.6	Rechnen mit Potenzreihen	69
		14.6.1 Beispiel - addieren, subtrahieren	69
		14.6.2 Beispiel - differenzieren, integrieren	69
15		3 Mehrdimensionale Differentialrechnung I	70
		Multivariate Funktionen	70
	15.2	Konturlinie	70
		15.2.1 Beispiel	70
	15.3	Partielle Ableitung	71
		15.3.1 Definition	71
		15.3.2 Beispiel 1	72
		15.3.3 Beispiel 2	72
		15.3.4 Beispiel 3	72
	15.4	Definition - Der Gradient	72
		15.4.1 Beispiel 1	72
		15.4.2 Beispiel 2	73
		15.4.3 Eigenschaften des Gradienten	73
	15.5	Richtungsableitung	74
		15.5.1 Beispiel mit Richtungsvektor	74
		15.5.2 Beispiel ohne Richtungsvektor	74
	15.6	Richtungsableitung und Gradient	75
		15.6.1 Raisnial	75

45 00444 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
10 00011 Weinamendende Emerentian eenmang 11	77
16.1 Totales Differential	77
16.2 Linearisierung von Funktionen	77
16.2.1mit einer Variable	77
16.2.2mit mehrern Variablen	77
16.3 Tangente an die Konturlinie	78
16.4 Tangentialebene an die Konturfläche	78
16.5 Newton-Raphson Methode	78
16.6 Mehrdimensionale Newton-Raphson Methode	78
16.7 Kettenregel	79
16.7.1 Beispiel	79
16.8 Kettenregel mit Abhängigkeitsgraphen	79
16.8.1 Beispiel	30
16.9 Kritische Punkte Beispiel	30
16.10Partielle Ableitungen zweiter Ordnung	31
16.10.1 Beispiel	
16.11Klassifikation kritischer Punkte - Theorem	
16.11.1 Beispiel	32

Grundlagen

1.1 Wurzeln

$$\sqrt{x} = x^{\frac{1}{2}}$$

$$\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$$

$$\sqrt{a} + \sqrt{b} \neq \sqrt{a + b}$$

$$\sqrt{a^2 \times b} = a \times \sqrt{b}$$

$$\sqrt[b]{a^b} = (a^b)^{\frac{1}{b}} = a$$

$$\sqrt[a]{x^b} = x^{\frac{b}{a}}$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

$$\sqrt{a} - \sqrt{b} \neq \sqrt{a - b}$$

$$\frac{a}{\sqrt{b}} = \frac{a\sqrt{b}}{b}$$

$$\frac{1}{\sqrt[a]{a}} = a^{-\frac{1}{n}}$$

1.2 Potenzen

$$x^{-a} = \frac{1}{x^a}$$

$$x^a \times x^b = x^{a+b}$$

$$x^{ab} = x^{a \times b}$$

$$\frac{a}{bx^{-c}} = \frac{a}{b}x^{-c}$$
$$\frac{x^a}{x^b} = x^{a-b}$$
$$\frac{a^x}{a^{x+1}} = \frac{1}{a}$$

1.3 Brüche

$$\frac{a}{b} + \frac{c}{d} = \frac{ad}{bd} + \frac{cb}{bd} = \frac{ab+cb}{bd}$$

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

$$\frac{1}{x} = x^{-1}$$

$$\frac{1}{x^3} = x^{-3}$$

$$\frac{x}{5} = \frac{1}{5}x$$

$$\frac{a}{b} - \frac{c}{d} = \frac{ab}{bd} - \frac{cb}{bd} = \frac{ab-cb}{bd}$$

$$\frac{\frac{a}{b}}{\frac{c}{a}} = \frac{a}{b} : \frac{d}{c}$$

$$\frac{1}{x^2} = x^{-2}$$

$$\frac{4}{3}x^{-4} = \frac{4}{3x^{-4}}$$

$$\frac{x^4}{9} = \frac{1}{9}x^4$$

1.4 Logarithmen

$$y = log_a(x) <=> x = a^y$$
$$\log_b(\frac{x}{y}) = \log_b(x) - \log_b(y)$$

$$\log_b(xy) = \log_b(x) + \log_b(y)$$
$$\log_b(x^y) = y \log_b(x)$$

1.5 Binome

1.5.1 1. Binom

$$(a+b)^2 = a^2 + 2ab + b^2$$

1.5.2 2. Binom

$$(a-b)^2 = a^2 - 2ab + b^2$$

1.5.3 3. Binom

$$(a+b)(a-b) = a^2 - b^2$$

1.6 Quadratische Gleichung

Für:

$$ax^2 + bx + c = 0$$

Dann:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1.7 Ableitungen/Integrationen

Wenn integrieren, +C nicht vergessen!

f(x)	f'(x)
\overline{x}	1
x^a	ax^{a-1}
$\frac{x^{a+1}}{a+1}$	x^a
$\sqrt[n]{x^m} = x^{\frac{m}{n}}$	$\frac{m}{n}x^{\frac{m}{n}-1}, a \neq -1$
e^x	e^x
a^x	$(\ln(a))a^x(a<0)$
$rac{a^x}{ln(a)}$	a^x
$\ln(x) - x$	$\ln x$
$\ln x $	$\frac{1}{x} = x^{-1}$
$a \times ln(x)$	$\frac{a}{x}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$
$-\cot x$	$\frac{1}{\sin^2 x}$
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}} +$
$-\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
$\arctan x$	$\frac{1}{1+x^2}$
$-\arctan x$	$\frac{1}{1+x^2}$
$\sinh x$	$\cosh x$
$\cosh x$	$\sinh x$
$\tanh x$	$\frac{1}{\cosh^2 x} = 1 + \tanh^2 x$
$\operatorname{arsinh} x$	$\frac{1}{\sqrt{1+x^2}}$
$\operatorname{arcosh} x$	$\frac{1}{\sqrt{1-x^2}}$
$\operatorname{artanh} x$	$\frac{1}{1-x^2}$
$\coth x$	$-\frac{1}{\sinh^2 x}$
* falls $x \in (-1, 1)$	

1.8 Vektoren

Länge eines Vektors $\vec{a} = \begin{pmatrix} b \\ c \end{pmatrix}$: $|\vec{a}| = \sqrt{b^2 + c^2}$

Einheitsvektor $\vec{a_0}$ aus $\vec{a} = \begin{pmatrix} b \\ c \end{pmatrix}$: $\vec{a_0} = \frac{1}{|\vec{a}|} \cdot \vec{a} = \frac{\vec{a}}{|\vec{a}|}$

1.9 Beispiele

$$\frac{2}{3\sqrt[4]{x^5}} = \frac{2}{3x^{-\frac{5}{4}}} = \frac{2}{3}x^{-\frac{5}{4}}$$

WX MAXIMA Cheatsheet

Mehrzeilige Eingabe mit Enter. Shift-Enter um auszurechnen.

2.1 Grundlagen

a+b,a-b,a*b,a/b	Addition, Subtraktion, Multiplikation, Division
a**b	Potenzierung
sqrt(x),exp(x),log(x)	Wurzel, Exponentialfunktion,
	natürlicher Logarithmus
sin(x),cos(x),tan(x)	Winkelfunktionen
asin(x),acos(x),atan(x)	Arkusfunktionen
float(x)	Umwandlung aller Zahlen im
, ,	Ausdruck x in Gleitkommazahlen
floor(x), round(x)	Abschneiden und Runden
%pi,%e,%i	Pi, Eulersche Zahl und imaginäre Finheit

Alle Zahlen müssen explizit multipliziert werden, um also "2x" zu schreiben muss man "2*x" eingeben.

2.1.1 Einfache Operationen

a:b	Zuweisung; der Wert von b wird dem Symbol a zugewiesen.
kill(a)	a löschen
values	Liste aller mit einem Wert belegten
	Benutzervariablen
kill(x1,x2,)	Löschen der Variablen x1, x2,
ev(expr,opts)	Auswerten des Ausdrucks expr mit
	den optionalen Parametern opts
expr,opts	Verkürzte Form des Auswertebefehls.
	Optionen:var=val Einsetzen eines
	Werteseval nochmaliges
	Auswerteninfeval wiederholtes
	Auswertennumer
	Gleitkommadarstellung
xthru(expr)	Auf gleichen Nenner bringen
ratsimp(expr)	Vereinfachen und auf gleichen Nenner
	bringen
expand(expr)	Expandieren (Ausmultiplizieren)
map(expand,expr)	Zähler und Nenner getrennt
,	expandieren
num(expr),denom(expr)	Zähler bzw. Nenner von expr

2.2 Systemvariablen

fpprintprec	Anzahl der signifikanten Stellen bei der Ausgabe vonGleitkommazahlen
float	Umwandlung aller Zahlen in
	${\sf Gleitkommazahlen}({\sf Default:false})$
numer	Wiefloat, veranlasst zusätzlich
	mathematischeFunktionen zur
	Auswertung in
	${\sf Gleitkommadarstellung}({\sf Default:false})$

2.3 Logische Ausdrücke

true,false	Logische Konstantenwahrundfalsch
=,#,j,j=,¿,¿=	Vergleichsoperatorengleich, ungleich,
	kleiner, kleinergleich, größer, größer
	gleich
and,or,not	Logische Operatoren und, oder, nicht
equal(a,b)	Überprüfung, ob die beiden Ausdrücke
	a und b denselben Wert ergeben
is(expr)	Auswerten des Vergleichsausdrucks
	expr zu true, false oder unknown

2.4 Summen und Grenzwerte

inf,minf	Symbole für unendlich und negativ
	unendlich
sum(expr,i,i0,i1)	Summe $\sum\limits_{i=i0}^{i1} expr$
limit(expr,i,i0)	Grenzwert $\lim_{i \to i0} expr$
simpsum	Systemvariable, veranlasst die
	Berechnung von Summen mit
	symbolischen Indexgrenzen (zB inf)
	(Default:false)
Beispiel	sum(1/n**2,n,1,inf),simpsum=true;

2.5 Differenzieren und Integrieren

diff(expr,x[,n])	n-te Ableitung des Ausdrucks expr nach der Variablen x; die Angabe von n ist optional, Default: 1.
integrate(expr,x)	Unbestimmtes Integral des Ausdrucks
	expr mit der Integrationsvariablen x
integrate(expr,x,x0,x1)	Bestimmtes Integral des Ausdrucks
	expr mit der Integrationsvariablen x
	zwischen den Grenzen x0 und x1
Für partielle int/diff: $diff(f(x,y),x)$	

2.6 Gleichungen

solve(eqn,var)	Lösen der algebraischen Gleichung eqn nach der Variablen var
solve(eqns,vars)	Lösen einer Liste eqns von
	algebraischen Gleichungen nach den
	Variablen in der Liste vars
allroots(p)	Numerische Berechnung aller
	Nullstellen des Polynoms p
find_root(expr,x1,x2)	Numerische Ermittlung einer Nullstelle
	des Ausdrucks expr innerhalb des
	Intervalls x1x2

2.6.1 Beispiele

```
Eine quadratische Gleichung liefert zwei
                                            (%i81) res1:solve((x+5)/(x^2-a)=2,x);
                                            (%081) [x = -\frac{\sqrt{16 \ a + 41} - 1}{4}, x = \frac{\sqrt{16 \ a + 41} + 1}{4}]
Um eine Lösung als Wert zu erhalten, ist (%i82) ev(x,res1); die entsprechende Variable mit dem \sqrt{16 \ a+41}
                                            (\%082) -\frac{\sqrt{16 \ a+41} - 1}{4}
Befehl ev und der Angabe der Lösung
auszuwerten.
                                            (%i83) g1:2*x+y=3;
g2:2*x-4*y=5;
(%o83) y+2x=3
Zwei lineare Gleichungen in zwei
Variablen
                                            (\%084) \ 2 \ x - 4 \ y = 5
                                            (%i85) res2:solve([g1,g2],[x,y]);
(%o85) [[x = \frac{17}{10}, y = -\frac{2}{5}]]
Die Lösung für beide Variablen wird in
einer doppelt geschachtelten Liste
zurückgeliefert.
Zugriff auf eine Lösungsvariable mit der (\%i86) ev(x,res2);
Anweisung ev:
                                            (\%086) \frac{17}{10}
                                            (%i87) g1:2*x^2+x-y^2=1;
Quadratische Gleichung in zwei
                                            (\%087) - y^2 + 2 x^2 + x = 1
Auch für nichtlineare Gleichungssysteme
                                           (%i88) res3:solve([g1,g2],[x,y]);
können Lösungen gefunden werden.
                                             (%088) [[x = -\frac{4\sqrt{23}+9}{14}, y = -\frac{\sqrt{23}+11}{7}], [x =
                                             \frac{4\sqrt{23}-9}{14}, y = \frac{\sqrt{23}-11}{7}
Für ein Polynom 5. Ordnung kann solve (%i89) res4:solve(x^5-x^3+2*x^2+5*x-1=0,x);
keine Nullstellen ermitteln.
                                            (%089) [0=x^5-x^3+2 x^2+5 x-1]
Numerische Berechnung der Nullstellen
                                            (%i90) res5:allroots(x^5-x^3+2*x^2+5*x-1);
                                            (%090) [x = 0.187, x = 0.719 %i -1.2334, x = -0.719
eines Polynoms:
                                            %i -1.2334, x = 1.1496 %i +1.1398, x = 1.1398 -
                                            1.1496 %i]
                                            (%i91) res6:find_root(exp(-x)=x,x,0,10);
Berechnung einer Nullstelle einer
transzendenten Funktion innerhalb
                                            (%091) 0.567
eines Intervalls:
```

2.7 Funktionen

f(x1,x2,...):=expr

SW01 Funktionen

3.1 Lineare Funktion

$$f(x) = ax + b$$

a = Steigung

3.2 Polynomfunktion

Grad der Funktion: Höchster Exponent von x.

Nullstellen: Maximal so viele wie der Grad der Funktion.

$$f(x) = ax^n + bx^{n-1} + cx^{n-2}...$$

3.3 Quadratische Funktionen

Polynomfunktion zweites Grades

$$f(x) = ax^2 + bx + c$$

3.4 Exponentialfunktion

$$f(x) = a \times b^x$$

3.5 Logarithmusfunktion

Umkehrfunktion von Exponentialfunktion

$$f(x) = log_b(x)$$

SW02 Folgen und Reihen

4.1 Arithmetische Folgen und Reihen

$$a_n = a_1 + (n-1) \cdot d$$

 $(a_n) = a_1, a_2, a_3, ..., a_n, ...$

Differenz d zweier beliebiger aufeinanderfolgender Glieder a_n, a_{n+1} ist konstant.

Eine AF ist eindeutig beschrieben durch zwei Grössen:

- ullet beliebiges Glied a_n und Differenz d
- zwei beliebige Glieder a_n und a_{n+k}

Bildungsgesetz: Funktionsvorschrift nach welcher aus n das n-Glied (a_n) berechnet werden kann.

4.1.1 Beispiele von Folgen

$$(a_n)=-\frac{1}{2},-\frac{1}{4},-\frac{1}{8},\dots$$
 Bildungsgesetz: $a_n=-\frac{1}{2n}$

$$(a_n)=1^3,2^3,3^3,\dots$$
 Bildungsgesetz: $a_n=n^3$

$$(a_n)=0,rac{1}{2},rac{2}{3},rac{3}{4},...$$
 Bildungsgesetz: $a_n=rac{n-1}{n}$

4.1.2 Summe der Glieder einer AF: Arithmetische Reihe

$$\sum_{k=1}^{n} a_k = na_1 + d\frac{n(n-1)}{2} = n\frac{a_1 + a_n}{2}$$

Wobei bei " $n\frac{a_1+a_n}{2}$ " a_1 das erste Glied ist, a_n das letzte, n die Anzahl Glieder und 2 den Mittelwert vom ersten und letzten Glied bildet.

4.1.3 Nützliche andere Formeln

Gegeben:
$$a_n = v$$
, $a_{n+x} = z$

Gesucht
$$d$$
: $d = \frac{z-v}{(n+x)-n}$

4.2 Geometrische Folgen

$$a_n = a_1 \cdot q^{n-1}$$

Die geometrische Folge ist dadurch charakterisiert, dass der Quotient q zweier beliebiger aufeinanderfolgender Glieder a_n und a_{n+1} konstant ist.

$$a_{n+1} = qa_n, n = 1, 2$$

$$q = \frac{a_{n+1}}{a_n}$$

Eine GF ist eindeutig beschrieben durch zwei Grössen, entweder:

- durch ein beliebiges Glied a_n und den Quotienten q
- durch zwei beliebige Glieder a_n und a_{n+k}

4.3 Geometrische Reihe

$$S_n = \sum_{i=1}^n a_i = a_1 \cdot \frac{q^n - 1}{q - 1}$$

4.4 Rechnen mit Folgen, Eigenschaften

• Folge (a_n) multipliziert man mit einer reellen Zahl λ , indem man jedes Glied der Folge mit dieser Zahl multipliziert:

$$\lambda(a_n) = (\lambda a_n)$$

• Zwei Folgen (a_n) und (b_n) addiert man, indem man entsprechende Glieder addiert:

$$(a_n) + (b_n) = (a_n + b_n)$$

- Eine Folge heisst konstante Folge, falls $a_n=c\in\mathbb{R}, \forall n\in\mathbb{N}$ AF ist konstant wenn d=0, GF ist konstant wenn q=1
- Eine Folge (a_n) ist streng monoton zunehmend/abnehmend falls $(a_{n+1}>a_n)$ bzw $(a_{n+1}< a_n)$
- Eine Folge (a_n) ist **beschränkt** (höhö) falls eine positive Zahl c existiert mit $|a_n| \leq c, \forall n$: alle Glieder der Folge liegen im Graphen unter einem Teppich der Breite 2c. Anderfalls heisst die Folge (a_n) **unbeschränkt**

4.5 Folgen Eigenschaften

4.5.1 Konvergenz/Divergenz

Folge ist **konvergent**, wenn sie einen Grenzwert besitzt. Folge ist **divergent**, wenn es keinen Grenzwert gibt.

4.5.2 Explizite Folge

Beispiel: $(a_n)_n = (\frac{1}{n})_n$ a_n für den Wert direkt erkennbar.

4.5.3 Rekursive Folge

Beispiel: $a_{n+1} = a_n + a_{n+1}$ a_n ergibt sich aus den vorherigen Glieder der Rekursionsvorschrift.

4.5.4 Nullfolge

Folge konvergiert zum Grenzwert 0.

4.5.5 Alternierende Folge

Beinhaltet etwas in der Art $(-1)^n$. Fallunterscheidung machen für GW, weil wenn n gerade, dann Folgenglied positiv, wenn n ungerade, dann Folgenglied negativ.

SW03 Grenzwerte und Stetigkeit

5.1 Grenzwert

$$\lim_{x \to a} f(x) = L \text{ oder } f(x) \to L, \text{ falls } x \to a.$$

5.1.1 Linksseitiger Grenzwert

$$\lim_{x \to a^-} f(x)$$

5.1.2 Rechtsseitiger Grenzwert

$$\lim_{x\to a^+} f(x)$$

5.1.3 Zweiseitiger Grenzwert

Der zweiseitige Grenzwert existiert genau dann, wenn links- und rechtsseitiger Grenzwert exisitieren und diese gleich sind:

$$\lim_{x\to a}f(x)=L$$
 genau dann, wenn $\lim_{x\to a^-}f(x)=L=\lim_{x\to a^+}f(x)$

5.1.4 Uneigentliche Grenzwerte

Grenzwert wächst bis über alle Grenzen wenn man \boldsymbol{x} gegen \boldsymbol{a} gehen lässt:

$$\lim_{x \to a} f(x) = \infty$$

5.1.5 Grundlegende Grenzwerte Theorem

$$\lim_{x \to a} k = k$$

$$\lim_{x\to a} x = a$$

$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$

$$\lim_{x\to 0^+} \frac{1}{x} = \infty$$

5.1.6 Rechnen mit Grenzwerten

Theorem Summe

Falls $a \in \mathbb{R} \cup \{-\infty, +\infty\}, \mu, \nu \in \mathbb{R}$ und

$$\lim_{x \to a} f(x) = L_1$$
 und $\lim_{x \to a} g(x) = L_2$ dann gilt:

Der GW einer Summe/Differenz ist gleich der Summe/Differenz der GWs; Konstanten kommen vor den GW:

$$\lim_{x \to a} [\mu f(x) \pm \nu g(x)] = \mu \lim_{x \to a} f(x) \pm \nu \lim_{x \to a} g(x) = \mu L_1 \pm \nu L_2$$

Theorem Produkt

Der GW eines Produkts ist gleich dem Produkt der GWs:

$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \times \lim_{x \to a} g(x) = L_1 L_2$$

Theorem Quotient

Ist $L_2 \neq 0$ und g in einer Umgebung von a verschieden von 0, dann ist der **GW** des **Quotienten gleich dem Quotienten der GWs**:

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \lim_{\substack{x \to a \\ \text{lim } g(x)}} f(x) = \frac{L_1}{L_2}$$

Siehe 5.4.3 GW Quotient für Beispiel.

Folgerungen Exponent

$$\lim_{x \to a} x^n = (\lim_{x \to a} x)^n = a^n \qquad \lim_{x \to a} [f(x)]^n = (\lim_{x \to a} f(x))^n$$

Folgerungen Polynom

Für ein Polynom $p(x)=c_0+c_1x+\ldots+c_nx^n=\sum\limits_{k=0}^nc_kx^k$ gilt:

$$\lim_{x \to a} p(x) = c_0 + c_1 x + \dots + c_n x^n = p(a)$$

Siehe 5.4.2 GW Polynom für Beispiel.

Folgerungen Quotient

Für eine rationale Funktion $r(x)=\frac{p(x)}{q(x)}$ (dabei sind p(x) und q(x) Polynome) und eine $a\in\mathbb{R}$ gilt:

- (a) Falls $q(a) \neq 0$, dann ist $\lim_{x \to a} r(x) = r(a)$
- (b) Falls q(a) = 0 und $p(a) \neq 0$, dann existiert $\lim_{x \to a} r(x)$ nicht.
- (c) Falls q(a)=0 und p(a)=0, dann kann der GW existieren, muss aber nicht! Siehe 5.4.3 GW Quotient für Beispiel.

5.1.7 Squeezing-Theorem

Gilt für drei Funktionen f, g und h in einer Umgebung von c (evt. mit Ausnahme von c)

$$g(x) \leq f(x) \leq h(x) \text{ und } \lim_{x \rightarrow c} g(x) = \lim_{x \rightarrow c} h(x) = L$$

 $\text{dann gilt auch } \lim_{x \to c} f(x) = L$

5.2 Epsilon

 $|a_n - g| < \epsilon$

 a_n : Folgenglied

g: Grenzwert

 ϵ : Abweichung von Folgenglied zu Grenzwert.

$$g - \epsilon < a_n < g + \epsilon$$

5.3 Stetigkeit

Salopp: Eine Funktion f heisst stetig, wenn man deren Graphen zeichnen kann, ohne den Stift absetzen zu müssen.

Genauer ist eine Funktion f stetig in a, falls:

- Die Funktion f dort existiert, d.h. falls f(a) definiert ist.
- · Links- und rechtsseitiger Grenzwert existieren und gleich sind

$$\lim_{x\to a^-}f(x)=\lim_{x\to a^+}f(x)=\lim_{x\to a}f(x)$$

• Die genannten Grenzwerte mit dem Funktionswert übereinstimmen.

Zusammengefasst: f ist stetig in a, falls

$$\lim_{x \to a} f(x) = f(a)$$

Eine Funktion heisst stetig, falls sie überall, d.h. $\forall x \in D(f)$ stetig ist.

5.3.1 Grenzwert einer Funktion von x - Theorem

Sei $a\in\mathbb{R}\cup\{-\infty,+\infty\}$. Gilt dann $\lim_{x\to c}g(x)=L$ und ist f im Punkt L stetig, dann gilt:

$$\lim_{x\to c} f(g(x)) = f(\lim_{x\to c} g(x))$$

Insbesondere gilt zB

$$\lim_{x \to c} |g(x)| = \left| \left(\lim_{x \to c} g(x) \right| \right|$$

 $\text{falls } \lim_{x \to c} g(x) \text{ existiert!}$

5.3.2 Rechenregeln

- · Summe und Differenz stetiger Funktionen sind stetig.
- Der Quotient zweier stetiger Funktionen ist dort stetig, wo der Nenner nicht verschwindet.
- Polynome $p(x) = \sum_{k=0}^{n} a_k x^k$ sind stetig.
- Rationale Funktionen $r(x)=\frac{p(x)}{q(x)}$ sind dort stetig, wo das Nennerpolynom q(x) nicht verschwindet.
- Sinus- $(\sin x)$ und Kosinusfunktion $(\cos x)$ sind stetig.
- Der Tangens $(\tan x = \frac{\sin x}{\cos x})$ ist stetig, falls $\cos x \neq 0$, dh falls $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$
- Exponential- und Logarithmusfunktionen sind in ihrem Definitionsbereichen stetig.
- Zusammensetzung stetiger Funktionen ist stetig.
- Eine zusammegesetzte Funktion kann dort unstetig sein, wo eine der verwendeten Funktionen nicht stetig ist.

5.3.3 Eigenschaften stetiger Funktionen

Theorem Zwischenwertsatz

Ist f im Interval [a,b] stetig, dann nimmt f jeden Wert zwischen f(a) und f(b) (inklusive) mindestens einmal an.

Corollary - Nullstellensatz von Bolzano

Ist f auf [a,b] stetig und gilt f(a)f(b)<0, dann besitzt f in [a,b] wenigstens eine Nullstelle, dh. $\exists x\in [a,b]$ mit f(x)=0

In anderen Worten: Wenn eine Funktion im Bereich [a,b] stetig ist und es vom Intervall a zu b einen Vorzeichenwechsel gibt, dann gibt es mindestens eine Nullstelle.

5.3.4 Regula Falsi

Basierend auf dem Nullstellensatz von Bolzano.

Der Schnittpunkt der Sekante (grün) durch (a,f(a)) und (b,f(b)) mit der x-Achse ergibt eine erste Näherung für die Nullstelle (NS) von f:

$$x = a - f(a) \frac{b-a}{f(b) - f(a)} = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

Gilt dann f(x)f(a) < 0, dann liegt die NS im Intervall [a,x], sonst in [b,x].

Wiederhole die Prozedur mit dem Intervall welches die NS enthält!

5.4 Beispiele

5.4.1 Geschickt erweitern

$$\lim_{x \to 1} \frac{x-1}{\sqrt{x}-1} = \lim_{x \to 1} \frac{x-1}{\sqrt{x}-1} \times \frac{\sqrt{x}+1}{\sqrt{x}+1} = \lim_{x \to 1} \frac{(x-1)(\sqrt{x}+1)}{x-1} =$$

$$\lim_{x \to 1} (\sqrt{x} + 1) = \lim_{x \to 1} \sqrt{x} + \lim_{x \to 1} 1 = 1 + 1 = 2$$

5.4.2 GW Polynom

$$\lim_{x \to 1} (x^7 - 2x^5 + 1)^{35} = (1^7 - 2 \times 1^5 + 1)^{35} = 0$$

5.4.3 GW Quotient

$$\lim_{x\to 2} \frac{5x^3+4}{x-3} = \frac{\lim_{x\to 2} 5x^3+4}{\lim_{x\to 2} x-3}$$
 und wegen der Regel für Polynome:

$$\lim_{x \to 2} \frac{5x^3 + 4}{x - 3} = \frac{5 \times 2^3 + 4}{2 - 3} = -44$$

SW04 Differentialrechnung I – Tangente und Ableitung

6.1 Die Sekante

Steigung: $m=rac{\Delta y}{\Delta x}$ Wobei $\Delta x=x_1-x_0$ und $\Delta y=y_1-y_0$

6.1.1 Sekante durch P und Q

 $P(x_0|f(x_0)),Q(x_1|f(x_1))$ auf dem Graphen g(f)

Steigung der Sekante durch P und Q:

$$m = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Sekantengleichung (Punkt-Richtungs-Form)

 $(y - y_0) = m(x - x_0)$

Steigung: $m=\frac{\Delta y}{\Delta x}=$ Differenzquotient von f an der Stelle x_0

6.2 Tangente und Ableitung

6.2.1 Beispiel Quadratische Funktion

Gegeben die Funktion (rot) $f(x)=x^2$. Gesucht der Differenzquotient von f an der Stelle x_0 :

$$\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
$$\frac{(x_0 + \Delta x)^2 - x_0^2}{\Delta x}$$
$$\frac{x_0^2 + 2x_0 \Delta x + \Delta x^2 - x_0^2}{\Delta x}$$
$$\frac{2x_0 \Delta x + \Delta x^2}{\Delta x} = 2x_0 + \Delta x$$

Steigung der Sekante : $2x_0 + \Delta x$

Gleichung der Sekante: $y = x_0^2 + (2x_0 + \Delta x)(x - x_0) = (2x_0 + \Delta x)x - (x_0 + \Delta x)x_0.$

Für die Tangente an der Stelle x_0 geht man mit dem Punkt Q immer näher an Punkt P, bis $\Delta x=0$ (Weil die Tangente f nur an einer Stelle berührt)

$$\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to 0}2x_0+\Delta x=2x_0=$$
 Steigung der Tangente

Damit Gleichung der Tangente an f:

$$(y - f(x_0)) = 2x_0(x - x_0)$$

$$y = f(x_0) + 2x_0(x - x_0) = x_0^2 + 2x_0(x - x_0) = 2x_0x - x_0^2$$

6.3 Ableitung der Potenzfunktion

$$f(x) = x^n$$
$$f'(x) = nx^{n-1}$$

6.3.1 Beispiel Tangente

Tangente t(x) an der Stelle P(1,1) an der Kurve $f(x)=x^2$?

$$f(x) = x^2$$
, $f'(x) = 2x$

$$P(1,1)$$
, $P(x_0/f(x_0))$

$$f'(x_0) = 2x_0 = 2 \times 1 = 2 =$$
Steigung Tangente

$$t(x) = f(x_0) + f'(x_0) \times (x - x_0)$$

$$= 1 + 2(x - 1) = 1 + 2x - 2 = 2x - 1$$

6.3.2 Newton-Raphson Verfahren

Wir wollen die (nichtlineare) Gleichung f(x)=0 lösen, dh wir wollen ein x_* so finden, dass $f(x_*)=0$. Idee: Starte mit x_0 , und berechne den Schnittpunkt x_1 der Tangente durch $(x_0,f(x_0))$ mit der x-Achse. Wiederhole diesen Schritt!

$$f'(x_k) = \frac{f(x_k)}{x_k - x_{k+1}} = \frac{x_k}{-\Delta x_k}$$

Ausgehend von x_0 , iterieren wir über k = 1, 2, ...

$$f'(x_k)\Delta x_k = -f(x_k)$$

6.4 Einige Ableitungsregeln

6.4.1 Theorem Faktorregel

Falls f'(x) existiert, dann darf ein konstanter Faktor $c \in \mathbb{R}$ vor die Ableitung gezogen werden.

$$[c\times f(x)]'=c\times f'(x)$$
 auch geschrieben als $\frac{d}{dx}[c\times f(x)]=c\times \frac{d}{dx}[f(x)]$

6.4.2 Theorem Produkteregel

Existieren die Ableitungen u'(x) und v'(x), dann gilt für die Ableitungen des Produkts die Regel:

$$[u(x) \times v(x)]' = u'(x)v(x) + u(x)v'(x)$$

auch geschrieben als

$$\frac{d}{dx}(u(x)v(x)) = \frac{d}{dx}[u(x)]v(x) + u(x) \times \frac{d}{dx}[v(x)]$$

6.5 Quotientenregel

Existieren die Ableitungen u'(x) und v'(x), dann gilt für die Ableitungen des Quotienten von u(x) und $v(x) \neq 0$ die Regel:

$$[\tfrac{u(x)}{v(x)}]' = \tfrac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2} \text{ kurz } [\tfrac{u}{v}]' = \tfrac{u'v - uv'}{v^2}$$

auch geschrieben als

$$\tfrac{d}{dx}\big[\tfrac{u(x)}{v(x)}\big] = \tfrac{\tfrac{d}{dx}[u(x)]v(x) - u(x)\tfrac{d}{dx}v(x)}{(v(x))^2} \ \text{kurz} \ \big[\tfrac{u}{v}\big]' = \tfrac{u'v - uv'}{v^2}$$

6.6 Formeln

Steigung: $m = \frac{\Delta y}{\Delta x}$

Tangenten Gleichung: $t(x) = f(x_0) + f'(x_0) \times (x - x_0)$

Faktorregel: $[c \times f(x)]' = c \times f'(x)$

Produkteregel: $[u(x)\times v(x)]'=u'(x)v(x)+u(x)v'(x)$

Quotientenregel: $[\frac{u(x)}{v(x)}]'=\frac{u'(x)v(x)-u(x)v'(x)}{(v(x))^2}$ kurz $[\frac{u}{v}]'=\frac{u'v-uv'}{v^2}$

6.6.1 Ableitungen

f(x)	f'(x)
x^n	nx^{n-1}
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
tan(x)	$\frac{\frac{1}{\cos^2(x)}}{e^x}$
e^x	e^x
e^{3x}	$3e^{3x}$
$c(c \in \mathbb{R})$	0
x	1
$\sum_{k=0}^{n} c_k x^k$	$\sum_{k=0}^{n} c_k x^{k-1}$

SW05 Differentialrechnung II — Kettenregel

7.1 Einseitige Ableitung

Strebt Δx in der Definition der Ableitung von der positiven Seite gegen Null erhält man die **rechtsseitige Ableitung von der f an der Stelle** x_0 :

$$f'(x_0^+) = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \text{ (analog für die linksseitige Ableitung)}$$

7.2 Kettenregel

Auch kombinierbar mit anderen Regeln:

$$(f(g(x)))' = f'(g(x)) \times g'(x)$$

7.3 Umkehrfunktion

Durch die Abbildung f wird der Punkt x auf f(x) abgebildet. Die Umkehrabbildung f^{-1} bildet diesen Punkt wieder auf x ab, dh. es gilt $f(f^{-1}(x)) = Id(x) = x$ (die identische Abbildung Id bildet x auf x ab.)

Leite
$$f(f^{-1}(x)) = x$$
 nach x ab.

$$[f^{-1}(x)]' = \frac{1}{f'(f^{-1}(x))}$$

7.4 Ableitung Logarithmus

$$(\ln(x))' = \frac{1}{x}$$
$$(a \times \ln(x))' = \frac{a}{x}$$

7.5 Ableitung Wurzel

$$(\sqrt[n]{x^m})' = (x^{\frac{m}{n}})' = \frac{m}{n} x^{\frac{m}{n} - 1}$$

7.6 Ableitungen Arkusfunktionen

f(x)	f'(x)
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$ *
$\arccos x$	$\frac{1}{\sqrt{1-x^2}} *$ $-\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1+x^2}$
$\arctan x$	$\frac{1}{1+x^2}$
* felle m c (1 1)	

^{*} falls $x \in (-1, 1)$

7.7 Ableitungen Areafunktionen

f(x)	f'(x)
$\sinh x$	$\cosh x$
$\cosh x$	$\sinh x$
$\tanh x$	$\frac{1}{\cosh^2 x} = 1 + \tanh^2 x$
$\operatorname{arsinh} x$	$\frac{1}{\sqrt{1+x^2}}$
$\operatorname{arcosh} x$	$\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1-x^2}$
$\operatorname{artanh} x$	$\frac{1}{1-x^2}$

SW06 Differentialrechnung III – Differential, höhere Ableitungen

8.1 Implizite Ableitung

Explizite Form: y = f(x)

Man kann für jedes x den Funktionswert berechnen und die Kurve zeichnen.

Implizite Form: F(x,y) = 0

Oft ist eine Auflösung nach y nicht möglich. Leite Gliedweise nach x ab, wobei y=y(x) als Funktion von x betrachtet werden muss und mit der Kettenregel ableiten.

8.1.1 Beispiel

$$x^2 + y^2 = R^2$$

$$F(x,y) = x^2 + y^2 - R^2 = 0$$

 $x^2+(y(x))^2-R^2=0$ \mid differenzieren nach x, Achtung: Leite sowohl was links als auch rechts vom "=" ist!!

$$2x + 2y(x) \times y'(x) - 0 = 0$$

$$y'(x) \times y(x) = -x$$

$$y'(x) = -\frac{x}{y(x)} = -\frac{x}{\sqrt{R^2 - x^2}}$$

8.1.2 y nach x

Kettenregel

$$y^3 = (y(x))^3$$

 $3y(x)^2y'(x) = 3y^2y'$

Produkteregel Kettenregel

$$\begin{split} 2xy^2 &= 2x \times y^2 \mid \mathsf{Produkteregel!} \\ (2x)' \times y^2 + 2x \times (y^2)' \mid \mathsf{Kettenregel f\"{u}r} \ (y^2)' \\ (2x)' \times y^2 + 2x \times (2y^2 \times y') \\ 2y^2 + 2x \times 2yy' &= 2y^2 + 4xyy' \end{split}$$

8.2 Differential

Um wieviel verändert sich die Funktion y=f(x), wenn man sich von x_0 um Δx entfernt?

Es gilt
$$\Delta y = f(x_0 + \Delta x) - f(x_0)!$$

Steigung der Tangente (blau) in x_0

$$f'(x_0) = \frac{dy}{dx}$$

Die Symbole dx und dy nennt man Differentiale. Das Differential von f an der Stelle x_0 ist

$$dy = f'(x_0)dx$$

Es gilt also approximativ:

$$\Delta y \approx dy = f'(x_0)dx$$

Statt dy und Δy verwendet man auch die Bezeichnung df und Δf .

- Das Differential df=dy=f'(x)dx der Funktion y=f(x) an der Stelle x ist gleich der Änderungen des Ordinaten- oder y-Wertes der Tangente durch P(x,f(x)), wenn man den Abszissen- oder x-Wert um $dx=\Delta x$ ändert.
- Das Differential dy von y=f(x) an der Stelle x wird verwendet, um die wahre Änderung von Δy zu approximieren

$$\Delta y \approx dy = f'(x)dx$$

Diese Approximation ist umso genauer, je kleiner $dx = \Delta x$ ist.

• Das Differential dy ist gleich der Änderung der an der Stelle x linearisierten Funktion, wenn sich x um $dx = \Delta x$ ändert.

- ullet Für eine lineare Funktion gilt somit $dy=\Delta y$
- Vorteil gegenüber der exakten Änderung: die Berechnung für ein anderes $dx = \Delta x$ ist lediglich eine Multiplikation mit f'(x)

8.2.1 Beispiel Differential

Sei $f(x)=x^2+e^{x-1}$. Um wieviel verändert sich f, wenn x von 1 auf 1.1 erhöht wird?

$$f(x) = x^2 + e^{x-1}$$
$$x_0 = 1, x_1 = 1.1$$

Exakt:

$$f(x_1) - f(x_0) = 1.1^2 + e^{1.1-1} - (1^2 + e^{1-1}) = 1.21 + e^0.1 - 2 = 0.315$$

Approximativ:

$$\begin{split} f'(x) &= 2x + e^{x-1} \times 1 \\ f'(x_0) &= 2 \times 1 + e^{1-1} = 3 \\ f'(x) &= 3 = \frac{dy}{dx}; dy = 3dx \mid \text{Differentialschreibweise} \\ \Delta y &= f(x_1) - f(x_0); \Delta x = x_1 - x_0 \\ \Delta y &\approx dy = 3dx \approx \Delta x = 3 \times 0.1 = 0.3 \end{split}$$

8.2.2 Rechenregeln für Differentiale

Ableitungsregeln	Regeln für Differentiale
[c]' = 0	d[c] = 0
[cf]' = cf'	d[cf] = cdf
[f+g]' = f' + g'	d[f+g] = df + dg
[fg]' = f'g + fg'	$d[fg] = df \times g + f \times dg$
$[\frac{f}{g}]' = \frac{f'g - fg'}{g^2}$	$d[\frac{f}{g}] = \frac{df \times g - f \times dg}{g^2}$

8.3 Monotonie

- Gilt f'(x) > 0 in einem Intervall I, dann ist f dort streng monoton wachsend.
- Gilt $f'(x) \ge 0$ in einem Intervall I, dann ist f dort monoton wachsend.
- Gilt f'(x) < 0 in einem Intervall I, dann ist f dort streng monoton fallend.
- Gilt $f'(x) \le 0$ in einem Intervall I, dann ist f dort monoton fallend.

8.3.1 Lokale oder relative Extrema

Notwendige Bedingung für ein lokales Extremum von f in x_0 : $f'(x_0) = 0$ Diese Bedingung ist aber nicht hinreichend, es ist erst ein **kritischer Punkt**

Wenn $f'(x_0) = 0$ und:

 $f''(x_0) > 0$ dann liegt ein lokales (oder relatives) Minimum vor. $f''(x_0) < 0$ dann liegt ein lokales (oder relatives) Maximum vor.

8.4 Höhere Ableitungen

$$y'' = f''(x) = \frac{d}{dx}[f'(x)] = \frac{d}{dx}(\frac{dy}{dx}) = \frac{d^2y}{dx^2}$$

Geometrische Bedeutung: die 2. Ableitung ist positiv wenn die 1. Ableitung (also die Steigung) zunimmt wenn man sich in Richtung zunehmender x entlang der Kurve bewegt.

- Gilt f''(x) > 0 in einem Intervall I, dann weist f dort eine **Linkskrümmung** auf. Wir sagen f ist **konvex**.
- Gilt f''(x) < 0 in einem Intervall I, dann weist f dort eine **Rechtskrümmung** auf. Wir sagen f ist **konkav**.

8.5 Krümmung

Die Krümmung der Kurve y = f(x) an der Stelle x ist:

$$K(x) = \frac{y''(x)}{[1+(y'(x))^2]^{\frac{3}{2}}}$$
 ; Krümmungskreisradius $p(x) = \frac{1}{|K(x)|}$

Für K > 0 hat man eine Links- und für K < 0 eine Rechtskrümmung.

Chapter 9

SW07 Differentialrechnung IV – Kurvendiskussion, Optimierung

9.1 Parameterdarstellung von Kurven

Neben der Form y=f(x) kann man Kurven auch in der Parameterform beschreiben. Jedem Wert des Parameters t wird dabei ein Punkt $\vec{x}(t)$ in der Ebene (oder auch im Raum) zugeordnet. Man nennt dies auch Parameterdarstellung der Kurve.

Eine Kurve γ ist eine Abb. der Form:

$$\gamma: [a, b] \to \mathbb{R}^2, t \mapsto \vec{x}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$$

Für t=a ist man am Kurvenanfang, für ein beliebiges $t\in [a,b]$ an der Stelle $\vec{x}(t)$ und für t=b am Kurvenende.

Für jeden Punkt \vec{x} auf der Kurve gibt es genau ein $t \in [a,b]$ so, dass $\vec{x}(t)$ (und auch die Umkehrung gibt!)

9.1.1 Beispiel

Funktion: $f:[a,b] \to \mathbb{R}, x \mapsto y = f(x)$

Parameter: t = x

Parameterform:
$$\gamma:[a,b] \to \mathbb{R}^2, t \mapsto \vec{x}(t) = \begin{bmatrix} t \\ f(t) \end{bmatrix}$$

Funktion: $y = x^2$ $f: \mathbb{R} \to \mathbb{R}^+_0, x \mapsto x^2$

Kurve: $c: \mathbb{R} \to \mathbb{R} x \mathbb{R}_0^+, t \mapsto \begin{bmatrix} t \\ t^2 \end{bmatrix}$

9.1.2 Ableitung eines Vektors

Einen Vektor $\vec{x}(t)$ leitet man nach dem Parameter t ab, indem man jede Komponente des Vektors nach t ableitet.

Ableitung einer in Parameterform gegebenen Funktion

Parameterform der Kurve γ

$$\vec{x}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}, a \leq t \leq b.$$

Ist γ gleich dem Graphen von y=f(x) dann gilt für die Steigung der **Tangente**

$$y' = \frac{\dot{y}}{\dot{x}}$$

wobei \dot{y} die Ableitung von y(t), bzw \dot{x} von x(t) nach t ist.

Beachte: die Steigung der Tangente an y' ist die selbe wie die Steigung des Vektors $\vec{x}(t)$. Und diese lässt sich aus den beiden Komponenten $\dot{y}(t)$ und $\dot{x}(t)$ berechnen.

Krümmungskreismittelpunkt

Punkt auf der Kurve $\vec{x}(t)$ = $[x,y(x)]^T$, Tangente $\vec{t}=[1,y'(x)]^T$, Normale $\vec{n}(x)=[-y'(x),1]^T$. Mittelpunkt des Krümmungskreises (rot):

$$\vec{x}_M(x) = \vec{x}(x) + \frac{1}{K(x)} \frac{\vec{n}(x)}{|\vec{n}(x)|}$$

Damit hat man für den Krümmungskreismittelpunkt:

$$\vec{x}_M(x) = \begin{bmatrix} x_M(x) \\ y_M(x) \end{bmatrix} = \begin{bmatrix} x - y'(x) \frac{1 + (y'(x))^2}{y''(x)} \\ y(x) + \frac{1 + (y'(x))^2}{y''(x)} \end{bmatrix} \text{ wobei } K(x) = \frac{y''(x)}{(1 + (y'(x))^2)^{\frac{3}{2}}}$$

Kurven in Polarkoordinaten 9.2

Oft verwendet man anstelle der kartesischen Koordinaten (x,y) Polarkoordinaten (r, ϕ) . Für die Koordinatentransformation gilt:

Polar- zu kartesischen Koordinaten:

$$x = r \cos \phi$$

$$y = r \sin \phi$$

Kartesiche zu Polarkoordinaten:

$$r=\sqrt{x^2+y^2}$$

$$\tan \phi = \frac{3}{2}$$

 $\tan\phi=\frac{y}{x}$ Beachte: Verwendet man $\phi=\arctan(\frac{y}{x})$ erhält man $\phi\in(\frac{-\pi}{2},\frac{\pi}{2})$. Die Vorzeichen von x und y bestimmen, in welchem Quadranten der Punkt P liegt. Damit kann dann $\phi \in [0, 2\pi]$ bestimmt werden.

Eine in Polarkoordinaten gegebene Kurve γ wird durch folgende Abbildung spezifiziert:

$$\gamma: [\alpha, \beta] \to \mathbb{R}, \phi \mapsto r = r(\phi)$$

Jedem Winkel $\phi \in [\alpha, \beta]$ wird der Abstand der Kurve $r = r(\phi)$ vom Ursprung zugeordnet.

Beachte: Alle Winkel werden positiven x-Achse im Gegenuhrzeigersinn gemessen. Hier ist damit $\alpha < 0$ und $\beta > 0$.

Ableitung einer in Polarkoordinaten gegebene Funk-9.2.1

Die gewöhnliche Ableitung einer Funktion wird bestimmt, indem man die Polarkoordinaten in Parameterform transformiert

$$x = x(\phi) = r(\phi)\cos\phi$$

$$xy = y(\phi) = r(\phi)\sin\phi$$

Hier ist jetzt ϕ der Parameter. Formel $y'(x) = \frac{\dot{y}}{\dot{x}}$

$$y'(x) = \frac{dy}{dx} = \frac{\frac{dy}{d\phi}}{\frac{dx}{d\phi}} = \frac{\dot{r}(\phi)\sin\phi + r(\phi)\cos\phi}{\dot{r}(\phi)\cos\phi - r(\phi)\sin\phi}$$

9.3 Kurvendiskussion

Generelles Vorgehen:

- Definitions- und Wertebereich, Definitionslücken, Unstetigkeitsstellen
- Symmetrien: ist f gerade f(x)=f(-x), ungerade f(x)=-f(-x) oder T-periodisch f(x+T)=f(x).
- Nullstellen f(x) = 0; Schnittpunkte mit y-Achse f(0) = y
- Pole: Nenner verschwindet; senkrechte Asymptoten: Polgeraden
- Ableitungen in der Regel bis zur 3. Ordnung
- Relative Extremwerte (Maxima, Minima): Notwendige Bedingung f'(x) = 0, f''(x) > 0 = Minima, f''(x) < 0 = Maxima.
- Monotonieeigenschaften, Wendepunkte, Krümmung
- Asymptotisches Verhalten für $x \to \pm \infty$
- Krümmungskreismittelpunkt
- Graph G(f) der Funktion f skizzieren

9.3.1 Symmetrien Beispiele

Funktion	Bemerkung	
x^{2n}	Gerade: x^2, x^4, x^6	
x^{2n-1}	Ungerade: x, x^3, x^5	
$\cos 3x$	Periodisch: $T = \frac{2\pi}{3}$	
e^{-x^2}	Gerade	
$\sin 2x$	Ungerade, Periodisch $T=\pi$	
$x^3 \sin x$	Gerade	

In Quotient-funktion: Zähler gerade, Nenner ungerade = Funktion ungerade.

9.3.2 Wende- und Sattelpunkte

Notwendige und hinreichende Bedingung für einen Wendepunkt der Funktion y =f(x) in x_0 :

$$f''(x_0) = 0$$
, und $f'''(x_0) \neq 0$.

Gilt zudem $f'(x_0) = 0$, dann hat man in x_0 einen Sattelpunkt.

9.3.3 Beispiel

Funktion: $y = \frac{-5x^2+5}{x^3}$

Definitions- und Wertebereich:

$$D = \mathbb{R} \setminus \{0\}, W = \mathbb{R}$$

Symmetrie:

Zähler gerade, Nenner ungerade = Funktion ungerade.

Nullstellen:
$$y = \frac{-5x^2 + 5}{x^3} = 5\frac{1 - x^2}{x^3} = 5\frac{(1 + x)(1 - x)}{x^3}$$

$$x_{1,2} = -1, 1$$

Polstellen bei 0:

$$\lim_{x \to 0^{-}} \frac{-5x^{2} + 5}{x^{3}} = \frac{5}{0^{-}} = -\infty$$

$$\lim_{x \to 0^+} \frac{-5x^2 + 5}{x^3} = \frac{5}{0^+} = \infty$$

Ableitungen:

$$y = \frac{-5x^2 + 5}{x^3}$$

$$y' = 5 \frac{x^2 - 3}{x^4}$$

$$y'' = 5\frac{12-2x^2}{x^5}$$

$$y''' = 30 \frac{x^2 - 10}{x^6}$$

Extrema:
$$y' = 5\frac{x^2 - 3}{x^4} = 0; x^2 - 3 = 0; x_{1,2} = \pm \sqrt{3}$$

$$y''(x_1) = y''(\sqrt{3}) = 5\frac{12 - 2\sqrt{3}^2}{\sqrt{3}^5} > 0$$
 Minimum

$$y''(x_2) = y''(-\sqrt{3}) = 5\frac{12 - 2 \times -\sqrt{3}^2}{-\sqrt{3}^5} < 0$$
 Maximum

Wendepunkte:

$$y'' = 5\frac{12-2x^2}{x^5} = 0; 12 - 2x^2 = 0; 6 = x^2; x = \pm\sqrt{6}$$

$$y'''(\pm\sqrt{6}) = 30 \frac{(\pm\sqrt{6})^2 - 10}{(\pm\sqrt{6})^6} = 30 \frac{-4}{6^3} \neq 0$$

Wendepunkte bei $-\sqrt{6}$ und $\sqrt{6}$

Asymptotisches Verhalten:

$$\lim_{x \to \infty} \frac{5 - 5x^2}{x^3} = \lim_{x \to \infty} 5 \frac{1 - x^2}{x^3} = \lim_{x \to \infty} 5 \left(\frac{1}{x^3} - \frac{1}{x} \right) = 5 \left(\lim_{x \to \infty} \frac{1}{x^3} - \lim_{x \to \infty} \frac{1}{x} \right) = 0$$

9.4 Optimierungsproblem - Allgemeines Vorgehen

Bei Extremalwertprobleme (oder Extremwert- oder Extremalaufgaben) sucht man einen Extremwert für ein bestimmtes Problem, zB maximales Volumen, minimale Distanz, etc.

- Zuerst die Funktion bestimmen, welche das Problem beschreibt.
- Aus den Nullstellen der Ableitung (f'(x) = 0) erhält man Kandidaten für Extrempunkte x_0 (mit zugehörigen Extremwerten $f(x_0)$)
- Mit den höheren Ableitungen überprüft man, ob es sich um Minima, Maxima oder Sattelpunkte handelt:

Rel. Max in x_0 : $f^{(n)}(x_0) < 0$, n gerade und $f^{(k)}(x_0) = 0$, für $1 \le k < n$ **Rel. Min in** x_0 : $f^{(n)}(x_0) > 0$, n gerade und $f^{(k)}(x_0) = 0$, für $1 \le k < n$ **Sattelpunkt** x_0 : $f^{(n)}(x_0) \ne 0$, n ungerade und $f^{(k)}(x_0) = 0$, für $2 \le k < n$

 Die Funktionswerte der gefundenen Maxima (Minima) und die Werte der Funktion an den Rändern werden jetzt verglichen. Das grösste (kleinste) ist der gesuchte Extremwert.

9.4.1 Brechungsgesetz

???

9.5 Regel von de l'Hôpital

9.5.1 Theorem - Regel von de l'Hôpital für unbestimmte Ausdrücke der Form 0/0

Wir nehmen an f und g seien in einer Umgebung von x=a differenzierbar und $\lim_{x\to a}f(x)=0$ und $\lim_{x\to a}g(x)=0$. Dann gilt $\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)}$ falls die rechte Seite existiert oder $\pm\infty$ ist.

Weiter gilt die Regel auch für die Grenzübergänge $x\to a^-, x\to a^+, x\to +\infty, x\to -\infty.$

9.5.2 Vorgehen

• Überprüfe, ob $\lim_{x\to a} \frac{f(x)}{g(x)}$ ein unbestimmter Ausdruck der Form 0/0 ist.

- Wenn ja, leite f und g separat ab.
- bestimme den Grenzwert $\lim_{x \to a} \frac{f'(x)}{g'(x)}$. Wenn dieser endlich ist oder $\pm \infty$, dann ist dies der gesuchte Grenzwert.

9.5.3 Vorgehen für weitere unbestimmte Ausdrücke

- Satz gilt entsprechend auch für unbestimmte Ausdrücke der Form $\frac{\infty}{\infty}$
- Unbestimmte Ausdrücke der Form $0\times\infty$ bringt man mittels der Identität $f(x)g(x)=rac{f(x)}{\frac{1}{g(x)}}$ auf einen unbestimmten Ausdruck der Form 0/0.
- Unbestimmte Ausdrücke der Form $\infty \infty$ lassen sich of durch geeignete algebraische Umformungen auf unbestimmte Ausdrücke der Form 0/0 zurückführen.
- Unbestimmte Ausdrücke der Form $0^0,\infty^0,1^\infty$ schreiben wir in der Form $y=f(x)^{g(x)}$, logarithmieren beide Seiten und erhalten dann mit $lny=g(x)\times ln(f(x))$ einen der oben besprochenen Ausdrücke.

Chapter 10

SW08 Integralrechnung I – Flächenberechnung und Integral

Umkehrung der Differenzierung / Ableitung

10.1 Stammfunktion

Eine differenzierbare Funktion F(x) heisst Stammfunktion von f(x) falls: $F^{\prime}(x)=f(x)$

Eigenschaften der Stammfunktion:

- Zu jeder stetigen Funktion f(x) gibt es ∞ -viele Stammfunktionen
- Zwei beliebige Stammfunktionen $F_1(x)$ und $F_2(x)$ unterscheiden sich nur durch eine additive Konstante, dh

$$F_1(x) - F_2(x) = const$$

- Ist $F_1(x)$ eine beliebige Stammfunktion von f(x), dann ist auch $F_2(x)=F_1(x)+C(C\in\mathbb{R})$ eine Stammfunktion von f(x). Daher ist die Menge aller Stammfunktionen von der Form
 - $F(x) = F_1(x) + C$, wobei C eine beliebige (reelle) Konstante ist.

10.2 Umkehrung der Differentiation

Für Polynomfunktion:

$$f(x) = x^n \to F(x) = \frac{x^{n+1}}{n+1} + C$$

Für alle anderen Funktionen siehe: 6.6.1 Ableitungen Konstante +C dabei nicht vergessen!

10.3 Bestimmtes Integral Flächenberechnung

$$I = \int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_k) \Delta x$$

$$\Delta x = \frac{b-a}{n}$$

$$x_k = a + k\Delta x$$

Wenn rechter Rand: f an der Stelle $x_k^{\ast} = x_k$

Wenn linker Rand: f an der Stelle $x_k^* = x_{k-1}$

$$S_n = \sum_{k=1}^n f(x_k) \Delta x$$
 auflösen bis alle k weg (siehe 10.4 Summen vereinfachen)

 $\lim_{n\to\infty}S_n$ auflösen, Resultat gleich Fläche im Interval [a,b]

10.3.1 Beispiel Rechter Rand

(siehe 10.4 Summen vereinfachen)

$$y = x^2, [0, 1], a = 0, b = 1$$

$$\Delta x = \frac{b-a}{n} = \frac{1-0}{n} = \frac{1}{n}$$

$$x_k = a + k\Delta x = 0 + k\frac{1}{n} = \frac{k}{n}$$

Rechter Rand:
$$x_k^* = x_k, f(x_k^*) = f(x_k) = x_k^2 = (\frac{k}{n})^2$$

$$S_n = \sum_{k=1}^n f(x_k) \Delta x = \sum_{k=1}^n \left(\frac{k}{n}\right)^2 \frac{1}{n} = \sum_{k=1}^n \frac{k^2}{n^3} = \frac{1}{n^3} \sum_{k=1}^n k^2$$

$$= \frac{1}{n^3} \frac{n(n+1)(2n+1)}{6} = \dots = \frac{1}{6} \left(1 + \frac{1}{n}\right) \left(2 + \frac{1}{n}\right)$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1}{6} (1 + \frac{1}{n})(2 + \frac{1}{n}) = \frac{1}{6} \lim_{n \to \infty} (1 + \frac{1}{n})(2 + \frac{1}{n}) = \frac{1}{3}$$

10.3.2 Beispiel Linker Rand

(siehe 10.4 Summen vereinfachen)

$$y = x^3, [0, 2], a = 0, b = 2$$

$$\Delta x = \frac{b-a}{n} = \frac{2-0}{n} = \frac{2}{n}$$

$$x_k = a + k\Delta x = 0 + k\frac{2}{n} = \frac{2k}{n}$$

Linker Rand:
$$x_k^* = x_{k-1}, f(x_k^*) = f(x_{k-1}) = x_{k-1}^3 = (\frac{2(k-1)}{n})^3$$

$$S_n = \sum_{k=1}^n f(x_k) \Delta x = \sum_{k=1}^n \left(\frac{2(k-1)}{n}\right)^3 \frac{2}{n} = \sum_{k=1}^n \left(\frac{2}{n}\right)^3 (k-1)^3 \frac{2}{n} = \sum_{k=1}^n \left(\frac{2}{n}\right)^4 (k-1)^3$$

$$(\frac{2}{n})^4 \sum_{k=1}^n (k-1)^3 = (\frac{2}{n})^4 \sum_{k=1}^{n-1} k^3 = (\frac{2}{n})^4 \frac{(n(n-1))^2}{n^4} = 4(1-\frac{1}{n})^2$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} 4(1-\frac{1}{n})^2 = 4 \lim_{n \to \infty} (1-\frac{1}{n})^2 = 4$$

10.4 Summen vereinfachen

$$\begin{split} &\sum_{k=1}^n k = \frac{n(n+1)}{2} \\ &\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6} \\ &\sum_{k=1}^n k^3 = (\frac{n(n+1)}{2})^2 \\ &\sum_{k=1}^n (k-1)^3 = \sum_{k=1}^{\mathbf{n-1}} k^3 = (\frac{n(n-1)}{2})^2 \end{split}$$

Chapter 11

SW09 Integralrechnung II – unbestimmtes Integral und Hauptsatz der Infinitesimalrechnung

11.1 Unbestimmtes Integral und Flächenfunktion

$$I(x) = \int_{a}^{x} f(t)dt$$

a ist ein bestimmter Wert, x ist unbestimmt. Darum unbestimmtes Integral.

11.1.1 Theorem - unbestimmte Integrale

- Das unbestimmte Integral $I(x)=\int\limits_a^x f(t)dt$ stellt den Flächeninhalt zwischen y=f(t) über dem Intervall [a,x] in Abhängigkeit von der oberen Grenze x dar.
- Zu jeder Funktion f(t) gibt es ∞ -viele unbestimmte Integrale, die sich nur durch ihre untere Grenze (a) unterscheiden.
- Die Differenz zweier unbestimmter Integrale $I_1(x)$ und $I_2(x)$ ist eine Konstante.

Die geom. Deutung als Fläche ist nur für $f(t) \ge 0$ und $x \ge a$ möglich. Man muss klar zwischen dem bestimmten Integral (das ist eine reelle Zahl) und dem unbestimmten Integral (das ist eine Funktion der oberen Grenze) unterscheiden!

11.1.2 Beispiel

Zwei unbestimmte Integrale der Normalparabel $f(t)=t^2$

$$I_1(x)=\int\limits_0^x t^2 dt$$
 und $I_2(x)=\int\limits_1^x t^2 dt$

Deuten Sie den Unterschied $I_1(x)-I_2(x)$ geometrisch!

$$A = I_1(x) - I_2(x) = \int_0^1 t^2 dt$$

11.2 Delta x ändern

Wir lassen die unterschiedliche Bezeichnung zwischen der Integrationsvariabeln und der oberen Grenze fallen. Aus der Abb. liest man folgendes:

Einerseits hat man $\Delta I = I(x + \Delta x) -$ I(x) anderseits gilt die Approximation $\Delta I \approx f(x)\Delta x$. Also zusammenge-

$$f(x) \approx \frac{I(x + \Delta x) - I(x)}{\Delta x}$$

Man kann zeigen, dass für stetige f gilt:

$$f(x) = \lim_{\Delta x \to 0} \frac{I(x + \Delta x) - I(x)}{\Delta x} = I'(x)$$

Wegen I'(x) = f(x) ist also das unbestimmte Integral (oder die Flächenfunktion) I(x) eine Stammfunktion von f(x).

11.3 Fundamentalsatz der Differential- und **Integralrechnung Theorem**

Jedes unbestimmte Integral $\int\limits_{-x}^{x}f(t)dt$ der stetigen Funktion f(x) ist eine Stammfunktion von f(x):

$$I(x) = \int\limits_a^x f(t)dt \Longrightarrow I'(x) = f(x).$$
 Folgerungen aus dem Fundamentalsatz:

- ullet I(x) ist wegen I'(x) = f(x) eine stetig differenzierbare Funktion (falls f
- Jedes unbestimmte Integral hat die Form

$$I(x) = \int_{0}^{x} f(t)dt = F(x) + C$$

wobei $\overset{u}{F}(x)$ irgendeine (spezielle) Stammfunktion von f(x) und C_1 eine geeignete (reelle) Konstante bedeutet (die von a abhängt).

- Die Menge aller unbestimmter Integrale von f(x) hat die Form $\int f(x)dx = F(x) + C$ (F'(x) = f(x)) wobei F(x) irgendeine (spezielle) Stammfunktion von f(x) ist und $C \in \mathbb{R}$ alle reellen Werte durchläuft. Man nennt C Integrationskonstante.
- Für stetige Funktionen sind Stammfunktionen und unbestimmtes Integral das selbe.

11.3.1 Beispiele

$$F_1(x) = \int (2x+1)dx = x^2 + x + C$$

$$F_2(x) = \int e^x dx = e^x + C$$

$$F_3(x) = \int \frac{4}{1+x^2} dx = 4 \arctan(x) + C$$

$$F_4(x) = \int \ln(x) dx = x \ln(x) - x + C$$

Berechnung bestimmter Integrale mit Stammfunktion

$$I(x) = \int_{a}^{x} f(t)dt = F(x) + C$$

$$I(a) \int_{a}^{a} f(x)dx = F(a) + C = 0 \longrightarrow C = -F(a)$$

somit gilt:

$$I(x) = \int_{a}^{x} f(t)dt = F(x) - F(a)$$
, und schliesslich $\int_{a}^{b} f(t)dt = F(b) - F(a)$

Das Integral hängt nicht von der Wahl der Stammfunktion F(x) ab: man kann irgendeine (spezielle) Stammfunktion wählen!

11.4.1 Beispiel

Berechnen Sie die bestimmten Integrale $\int_{0}^{1} x^{2} dx$.

$$\int_{0}^{1} x^{2} dx = \left[\frac{1}{3}x^{3} + C\right]_{0}^{1} = \left(\frac{1}{3}1^{3} + C\right) - \left(\frac{1}{3}0^{3} + C\right) = \frac{1}{3} + C - 0 - C = \frac{1}{3}$$

ightarrow Hier beim bestimmten Integral zum Flächenberechnen kann man +C weglassen (aber nur hier, da es sich immer rauskürzt)!

Berechnen Sie die bestimmten Integrale
$$\int\limits_0^\pi \sin x dx$$
.
$$\int\limits_0^\pi \sin x dx = [-\cos x]_0^\pi = -[\cos x]_0^\pi = -(\cos \pi - \cos 0) = -(-2) = 2$$

11.5 1. Substitutionsregel für unbestimmte Integrale - Theorem

Es gilt: $\int f(g(x))g'(x)dx = \left[\int f(u)du\right]_{u=g(x)}$

- Substituiere formal g(x) = u, g'(x)dx = du
- Integriere unbestimmt nach u
- Ersetze u wieder durch g(x)

11.5.1 Beispiele

Berechne das unbestimmte Integral $I=\int (x^2+1)^{50}2xdx$ $u=x^2+1$ $\frac{du}{dx}=2x$ du=2xdx $I=\int (x^2+1)^{50}2xdx=\int u^{50}du=\frac{1}{51}u^{51}+C=\frac{1}{51}(x^2+1)^{51}+C$

Berechne das unbestimmte Integral $I=\int x\cos x^2dx$ $u=x^2$ $\frac{du}{dx}=2x$ du=2xdx $\int x\cos x^2dx=\frac{1}{2}\int\cos x^22xdx=\frac{1}{2}\int\cos(u)du=\frac{1}{2}\int\sin(u)+C=\frac{1}{2}\int\sin(x^2)+C$

11.6 1. Substitutionsregel für bestimmte Integrale - Theorem

Es gilt:

$$\int\limits_a^b f(g(x))g'(x)dx = \int\limits_{g(a)}^{g(b)} f(u)du$$
 Vorgehen:

- Substituiere formal g(x) = u, g'(x)dx = du
- Ersetze die x-Grenzen a,b durch die u-Grenzen g(a), g(b)
- Integriere

11.6.1 Beispiele

Berechne das bestimmte Integral $I = \int_{0}^{2} x(x^2+1)^3 dx$

$$u = u(x) = x^2$$

$$\frac{du}{dx} = 2x$$

$$du = 2xdx$$

$$I = \int_{0}^{2\pi} x(x^{2} + 1)^{3} dx = \frac{1}{2} \int_{0}^{2} 2x(x^{2} + 1)^{3} dx$$

$$\begin{array}{l} u=u(x)=x^2+1\\ \frac{du}{dx}=2x\\ du=2xdx\\ I=\int\limits_0^2 x(x^2+1)^3dx=\frac{1}{2}\int\limits_0^2 2x(x^2+1)^3dx\\ \text{Intervallgrenzen: 2, 0. Neue Grenzen: }u(2)=5,u(0)=1\\ \frac{1}{2}\int\limits_1^5 u^3du=\frac{1}{2}\left[\frac{1}{4}u^4\right]_1^5=\frac{1}{8}\left[u^4\right]_1^5=\frac{1}{8}(625-1)=78 \end{array}$$

Berechne das bestimmte Integral $I = \int_{0}^{\frac{\pi}{3}} \frac{\cos x}{1+4\sin^2 x} dx$

$$u = u(x) = \sin x$$
$$\frac{du}{dx} = \cos x$$
$$du = \cos x dx$$

$$\frac{du}{dx} = \cos x$$

$$du = \cos x dx$$

Intervallgrenzen: $\frac{\pi}{3}$, 0. Neue Grenzen: $u(\frac{\pi}{3})=\frac{\sqrt{3}}{2}, u(0)=0$

$$\int_{0}^{\frac{\sqrt{3}}{2}} \frac{du}{a+4u^{2}} \int_{0}^{\frac{\sqrt{3}}{2}} \frac{du}{a+(2u)^{2}} \frac{1}{2} \int_{0}^{\frac{\sqrt{3}}{2}} \frac{2du}{a+(2u)^{2}}$$

$$v = v(x) = 2u$$

$$\frac{dv}{du} = 2$$

$$dv = 2du$$

$$v = v(x) = 2i$$

$$\frac{dv}{dv} =$$

$$dv = 2dv$$

Intervallgrenzen: $\frac{\sqrt{3}}{2}$, 0, neue Grenzen: $v(\frac{\sqrt{3}}{2}) = \sqrt{3}, v(0) = 0$

$$\frac{1}{2} \int_{0}^{\sqrt{3}} \frac{dv}{1+v^2} = \frac{1}{2} \left[\arctan(v) \right]_{0}^{\sqrt{3}} = \frac{1}{2} \left(\arctan\sqrt{3} - \arctan 0 \right) = \frac{\pi}{6}$$

Chapter 12

SW10 Integralrechnung III – Integrationstechnik

12.1 2. Substitutionsregel

Die 2. Substitutionsregel ist flexibler und auf beliebige Integrale anwendbar:

$$\int f(x)dx$$

indem man dort x=u(t) setzt und somit wegen $dx=u^{\prime}(t)dt$ schreiben kann.

$$\int f(x)dx = \left[\int f(u(t))u'(t)dt\right]_{t=u^{-1}(x)}$$

u muss im verwendeten t-Intervall umkehrbar sein, damit man x=u(t) nach t auflösen, dh. durch x ausdrücken kann $(t=u^{-1}(x))$.

12.1.1 Theorem - 2. Substitutionsregel für unbestimmte Integrale

Es gilt:
$$\int f(x)dx = \left[\int f(u(t))u'(t)dt\right]_{t=u^{-1}(x)}$$

Vorgehen:

- ullet Wähle eine geeignete invertierbare Substitutionsfunktion u
- Substituiere formal x = u(t), dx = u'(t)dt
- \bullet Integriere nach t
- Drücke t durch x aus

12.1.2 Beispiele

Berechne
$$I=\int x^2\!\sqrt{x-1}dx$$
 $u=x-1$ $x=u+1$ $\frac{du}{dx}=1$ $du=dx$
$$I=\int x^2\!\sqrt{x-1}dx = \int (u+1)^2\!\sqrt{u}du = \int (u^2+2u+1)u^{\frac{1}{2}}du = \int (u^{\frac{5}{2}}+2u^{\frac{3}{2}}+u^{\frac{1}{2}})du$$
 $=\frac{u^{\frac{7}{2}}}{\frac{7}{2}}+\frac{u^{\frac{5}{2}}}{\frac{5}{2}}+\frac{u^{\frac{3}{2}}}{\frac{3}{2}}+C=\frac{2}{7}u^{\frac{7}{2}}+\frac{2}{5}u^{\frac{5}{2}}+\frac{2}{3}u^{\frac{3}{2}}+C$ $=(\frac{2}{7}u^{\frac{6}{2}}+\frac{2}{5}u^{\frac{4}{2}}+\frac{2}{3}u^{\frac{2}{2}})u^{\frac{1}{2}}+C=(\frac{2}{7}u^{\frac{6}{2}}+\frac{2}{5}u^{\frac{4}{2}}+\frac{2}{3}u^{\frac{2}{2}})\sqrt{u}+C=(\frac{2}{7}u^3+\frac{2}{5}u^2+\frac{2}{3}u)\sqrt{u}+C$ $=(\frac{2}{7}(x-1)^3+\frac{2}{5}(x-1)^2+\frac{2}{3}(x-1))\sqrt{(x-1)}+C$

Berechne $I=\int \frac{dx}{\sqrt{1+e^x}}$ es werden zwei Substitutionen benötigt.

$$\begin{array}{l} u = e^x \\ \frac{du}{dx} = e^x \\ du = e^x dx \Longrightarrow dx = \frac{du}{e^x} = \frac{du}{u} \\ I = \int \frac{dx}{\sqrt{1 + e^x}} = \int \frac{\frac{du}{u}}{\sqrt{1 + u}} = \int \frac{du}{u\sqrt{1 + u}} \\ v = \sqrt{1 + u} \\ v^2 = 1 + u \Longrightarrow u = v^2 - 1 \\ \frac{du}{dv} = 2v \\ du = 2v dv \\ \int \frac{2v dv}{(v^2 - 1)v} = 2 \int \frac{dv}{v^2 - 1} = \frac{1}{2} 2 \log \left| \frac{v - 1}{v + 1} \right| + C = \log \left| \frac{\sqrt{1 + u} - 1}{\sqrt{1 + v} + 1} \right| + C = \log \left| \frac{\sqrt{1 + e^x} - 1}{\sqrt{1 + e^x} + 1} \right| + C \end{array}$$

12.1.3 Theorem - 2. Substitutionsregel für bestimmte Integrale

Es gilt:
$$\int\limits_a^b f(x)dx = \int\limits_{u^{-1}(a)}^{u^{-1}(b)} f(u(b))u'(t)dt$$

Vorgehen:

- ullet Wähle eine geeignete invertierbare Substitutionsfunktion u
- Substituiere formal x = u(t), dx = u'(t)dt
- Ersetze die x-Grenzen a,b durch die t-Grenzen $u^{-1}(a),u^{-1}(b)$
- Integriere

12.1.4 Beispiele

Berechne
$$I = \int_{1}^{2} x^2 \sqrt{x-1} dx$$

$$t = x - 1$$

$$x = t + 1$$

$$\frac{dx}{dt} = 1$$

$$dx = dt$$

$$\frac{dx}{dx} = 1$$

$$dx = dt$$

Alte Grenzen:
$$a=1,b=2$$
 neue Grenzen: $t(a)=0,t(b)=1$

$$\int_{0}^{1} (t+1) \sqrt[3]{t} dt = \int_{0}^{1} (t^{2} + 2t + 1) t^{\frac{1}{2}} = \int_{0}^{1} (t^{\frac{5}{2}} + 2t^{\frac{3}{2}} + t^{\frac{1}{2}}) dt = \left[\frac{2}{7} t^{\frac{7}{2}} + \frac{4}{5} t^{\frac{5}{2}} + \frac{2}{3} t^{\frac{3}{2}} \right]_{0}^{1}$$

$$= \frac{2}{7} + \frac{4}{5} + \frac{2}{3} - 0 = \frac{184}{105}$$

Berechne $I=\int\limits_0^{\ln 3}\frac{dx}{\sqrt{1+e^x}}$ es werden zwei Substitutionen benötigt. $u=e^x$

$$u = e^x$$

$$x = \ln u$$

$$dx = \frac{1}{u}du$$

$$I = \int_{0}^{\ln 3} \frac{dx}{\sqrt{1 + e^x}} = \int_{0}^{\ln 3} \frac{1}{\sqrt{1 + e^x}} dx$$

Alte Grenzen: $a=0,b=\ln 3$, neue Grenzen: $u(\ln 3)=3,u(0)=1$

$$\int_{1}^{3} \frac{1}{\sqrt{1+u}} \times \frac{1}{u} du$$

$$v = \sqrt{1+u}$$

$$v = \sqrt{1 + u}$$

$$v^{2} = 1 + u$$

$$u = v^{2} - 1$$

$$\frac{du}{dv} = 2v$$

$$du = 2vdv$$

$$u - v^2 -$$

$$\frac{du}{du} = 2u$$

$$du - 2vdi$$

Alte Grenzen: a=1,b=3, neue Grenzen: $v(1)=\sqrt{2},v(3)=2$

$$\int_{\sqrt{2}}^{2} \frac{1}{v} \frac{1}{v^{2}-1} 2v dv = 2 \int_{\sqrt{2}}^{2} \frac{dv}{v^{2}-1} = 2 \left[\frac{1}{2} \log \left| \frac{v-1}{v+1} \right| \right]_{\sqrt{2}}^{2} \approx 0.6641$$

12.2 Häufige Integralsubstitutionen

A) Integraltyp	Substitution
$\int f(ax+b)dx$	$u = ax + b$ $dx = \frac{du}{a}$

Merkmal: Die Variable x tritt in der linearen Form ax + b auf $(a \neq 0)$

A) Beispiele	Substitution
$\int (2x-3)^6 dx$	u = 2x - 3
$\int \sqrt{4x+5}dx$	u = 4x + 5
$\int e^{4x+2}$	u = 4x + 2

Merkmal: Der Integrand ist das Produkt aus einer Funktion f(x) und ihrer Ableitung f'(x)

B) Beispiele	Substitution
$\int \sin(x)\cos(x)dx$	$u = \sin x$
$\int \frac{\ln x}{x} dx$	$u = \ln x$

C) Integraltyp	Substitution
$\int \frac{f'(x)}{f(x)} dx$	$u = f(x)$ $dx = \frac{du}{f'(x)}$
	$ax = \frac{f'(x)}{f'(x)}$

Merkmal: Im Zähler steht die Ableitung des Nenners.

C) Beispiele	Substitution
$\int \frac{2x-3}{x^2-3x+1} dx$	$u = x^2 - 3x + 1$
$\int \frac{e^x}{e^x+5} dx$	$u = e^x + 5$

D) Integraltyp	Substitution
$\int f(x; \sqrt{a^2 - x^2}) dx$	$x = a \sin u$ $dx = a \cos(u) du$
Merkmal: Der Integrand enthält eine Wurzel vom Typ $\sqrt{a^2-x^2}$	$\sqrt{a^2 - x^2} = a \cos u$
D) Beispiele	Substitution
$\int \sqrt{r^2 - x^2} dx$	$x = r\sin u$
$\int x \times \sqrt{r^2 - x^2} dx$	$x = r \sin u$
$\int \frac{x}{\sqrt{4-x^2}}$	$x = 2\sin u$
E) Integraltyp	Substitution
$\int f(x; \sqrt{a^2 + x^2}) dx$	$x = a \sinh u$ $dx = a \cosh(u) du$
Merkmal: Der Integrand enthält eine Wurzel vom Typ $\sqrt{a^2+x^2}$	$\sqrt{a^2 + x^2} = a \cosh u$
E) Beispiele	Substitution
$\int \sqrt{x^2 + 1} dx$	$x = \sinh u$
$\int \frac{dx}{\sqrt{x^2 + 4}}$	$x = 2\sinh u$
F) Integraltyp	Substitution
$\int f(x; \sqrt{x^2 - a^2}) dx$	$x = a \cosh u$ $dx = a \sinh(u) du$
Merkmal: Der Integrand enthält eine Wurzel vom Typ $\sqrt{x^2-a^2}$	$\sqrt{x^2 - a^2} = a \sinh u$
F) Beispiele	Substitution
$\int \sqrt{x^2-9}$	$x = 3\cosh u$
$\int \frac{x}{\sqrt{x^2 - 25}} dx$	$x = 5 \cosh u$

12.3 Theorem - Partielle Integration - Produktintegration

Es gilt: $\int u'(x)v(x)dx=u(x)v(x)-\int u(x)v'(x),dx$ Vorgehen (Ziel: das Integral auf der Rechten Seite muss einfacher sein):

- Zerlege den Integranden in ein Produkt von zwei Faktoren
- ullet Ein Faktor ist u'(x), der andere ist v(x)

- $\bullet\,$ Der erste Faktor u'(x) kommt auf die rechte Seite überall in integrierter Form, dh als u(x) vor
- Der zweite Faktor v(x) kommt auf der rechten Seite nur unter dem Integral in abgeleiteter Form, dh als $v^\prime(x)$ vor

Ausserdem:

$$(uv)' = u'v + uv'$$

$$uv = \int u'vdx + \int uv'dx$$

$$uv - \int u'vdx = \int uv'dx$$

12.3.1 Beispiel

```
Berechne I=\int x\cos(x)dx u=x u'=1 v=\sin x v'=\cos x w'=\cos x w'
```

12.3.2 Rekursionsbeziehung - Beispiel

Bei Integralen vom Typus $\int x^n \exp(\lambda x) dx$, $\int x^n \sin x dx$ und $\int x^n \cos x dx$, $(n \in \mathbb{N})$ lässt sich der vorkommende Exponent durch partielle oder Produktintegration um eins erniedrigen und somit rekursiv auf Null bringen.

Beispiel:

Leite eine Rekursionsbeziehung her, um $I_n=\int x^n\exp(\lambda x)dx$ zu berechnen. $u=x^n$ $u'=nx^{n-1}$ $v=\frac{1}{\lambda}e^{\lambda x}$ $v'=e^{\lambda x}$ $v'=e^{\lambda x}$ $\frac{1}{\lambda}e^{\lambda x}x^n-\int nx^{n-1}\frac{1}{\lambda}e^{\lambda x}dx=\frac{1}{\lambda}e^{\lambda x}x^n-\frac{n}{\lambda}\int x^{n-1}e^{\lambda x}dx$ $I_{n-1}=\int x^{n-1}e^{\lambda x}dx$ $I_n=\frac{1}{\lambda}e^{\lambda x}x^n-\frac{n}{\lambda}I_{n-1}; I_0=\frac{1}{\lambda}e^{\lambda x}+C$

$$I_{1} = \frac{1}{\lambda}e^{\lambda x}x^{1} - \frac{1}{\lambda}I_{0} = \frac{1}{\lambda}e^{\lambda x}x^{1} - \frac{1}{\lambda}(\frac{1}{\lambda}e^{\lambda x} + C)$$

= $\frac{1}{\lambda}e^{\lambda x}x^{1} - \frac{1}{\lambda^{2}}e^{\lambda x} - \frac{C}{\lambda}; -\frac{C}{\lambda} = C_{1}$

12.3.3 Nur einen Faktor - Beispiel

Künstlich ein Produkt herstellen um partielle oder Produktintegration anwenden.

```
Berechne mit Hilfe partieller Integration I=\int \ln x dx. I=\int \ln x dx=\int 1 \times \ln x dx u=\ln x u'=\frac{1}{x} v=x v'=1 \int 1 \times \ln x dx=x \ln x-\int \frac{1}{x} x dx=x \ln x-x+C Probe: (x\ln x-x+C)'=1\ln x+x\frac{1}{x}-1+0=\ln x
```

12.3.4 Mehrfache partielle Integration - Beispiel

Oft muss man mehrere Male hintereinander partiell integrieren!

```
Berechne mit Hilfe partieller Integration I=\int e^{\alpha x}\sin(\beta x)dx u=\sin(\beta x) u'=\beta\cos(\beta x) v=\frac{1}{\alpha}e^{\alpha x} v'=e^{\alpha x} v'=e^{\alpha x} \frac{1}{\alpha}e^{\alpha x}\sin(\beta x)-\frac{\beta}{\alpha}\int e^{\alpha x}\cos(\beta x)dx u=\cos(\beta x) u'=-\beta\sin(\beta x) v=\frac{1}{\alpha}e^{\alpha x} v'=e^{\alpha x}
```

12.4 Theorem - Produktintegration für bestimmte Integrale

Es gilt:
$$\int\limits_a^b u'(x)v(x)dx=\left[u(x)v(x)\right]_a^b-\int\limits_a^b u(x)v'(x),dx$$

Das Vorgehen ist (fast) exakt gleich bei unbestimmten Integralen ausser dass bei bestimmten Integralen die obere und untere Integrationsgrenze ins Spiel kommt.

12.4.1 Beispiele

Berechne mit Hilfe partieller Integration $I=\int\limits_0^R xe^{-x}dx.$ u=x u'=1 $v=-e^{-x}$

$$v' = e^{-x}$$

$$[-xe^{-x}]_0^R + \int_0^R e^{-x} dx = -Re^{-R} + [-e^{-x}]_0^R = -Re^{-R} - e^{-R} - (-1) = 1 - (1 + R)e^{-R} = 1 - \frac{1+R}{e^R}$$

Berechne mit Hilfe partieller Integration $I=\int\limits_0^\pi \sin^2 x dx$

$$\begin{split} I &= \int\limits_{0}^{\pi} \sin^{2}x dx = \int\limits_{0}^{\pi} \sin x \sin x dx \\ u &= \sin x \\ u' &= \cos x \\ v &= -\cos x \\ v' &= \sin x \\ [-\sin x \cos x]_{0}^{\pi} + \int\limits_{0}^{\pi} \cos^{2}x dx = 0 + \int\limits_{0}^{\pi} (1 - \sin^{2}x) dx = \int\limits_{0}^{\pi} dx - \int\limits_{0}^{\pi} \sin^{2}x dx \\ I &= [x]_{0}^{\pi} - I \\ 2I &= \pi \\ I &= \frac{\pi}{2} \end{split}$$

12.5 Mittelwerte

Der lineare Mittlwert \overline{y}_{linear} der Funktion y=f(x) über dem Intervall [a,b] gibt an, welchen Wert diese Funktion im Mittel hat.

Die Fläche des Rechtecks der Höhe \overline{y} ist gleich der Fläche der Kurve y=f(x)

$$A = \overline{y}_{linear}(b-a) = \int_{a}^{b} f(x)dx$$

12.5.1 Theorem - lineare Mittelwert

Der lineare Mittelwert von f über [a,b]: $\overline{y}_{linear} = \frac{1}{b-a} \int\limits_a^b f(x) dx$

12.5.2 Beispiel

Berechne den linearen Mittelwert der Funktion $y=\ln x$ im Intervall [1,5]

$$\overline{y}_{linear} = \frac{1}{5-1} \int_{1}^{5} \ln x dx = \frac{1}{4} \left[x(\ln x) \right]_{1}^{5} = \frac{1}{4} (5(\ln 5 - 1)) - 1(0 - 1) \approx 1.012$$

12.5.3 Theorem - quadratische Mittelwert

Der quadratische Mittelwert von y=f(x) über dem Intervall $\left[a,b\right]$ ist definiert durch:

$$\overline{y}_{quadratisch} = \sqrt{\frac{1}{b-a} \int\limits_{a}^{b} [f(x)]^2 dx}$$

Sowohl lineare wie auch quadratische Mittelwerte werden oft im Zusammenhang mit periodischen Funktionen verwendet. In diesem Fall ist das Intervall [a,b] meist ein Intervall von der Länge einer Periode T. Dabei ist es egal, welches der unendlich vielen Intervalle mit dieser Eigenschaft verwendet wird. Meist verwendet man deshalb das Intervall [0,T].

12.5.4 Theorem - Mittelwertsatz der Integralrechnung

Ist f auf dem Intervall [a,b] stetig, dann gibt es einen Punkt $\epsilon \in [a,b]$ so, dass gilt: $f(\epsilon)(b-a)=\int\limits_a^b f(x)dx$

Chapter 13

SW11 Integralrechnung IV- Anwendungen

13.1 Trapezregel

Unterteile das Intervall [a,b] in n gleich grosse Teilintervalle $[x_{j-i},x_j], j=1,2,...,n$.

In jedem Teilintervall approximiere man die Funktion f durch eine lineare Funktion. Das Integral über jedes Teilintervall wird approximiert durch die Trapezfläche.

 $x_0 = a$ x_1 x_1 x_2 x_3 x_{n-1} $b = x_n$ Die Summe der Trapezflächen ist dann eine gute Approximation des bestimmten Integrals, vor allem wenn man n genügend gross wählt:

$$\int\limits_a^b f(x) dx \approx \sum\limits_{j=1}^n \frac{h}{2} (f(x_{j-1} + f(x_j)) \text{ wobei } h = \frac{b-a}{n}.$$

Der bei der Trapezregel

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2}(f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + 2f(x_n)) = I_T(h)$$

gemachte Fehler ϵ_T ist für genügend anständige (zB stückweise stetige) Funktion f beschränkt durch

$$|\epsilon_T| = |\int_a^b f(x)dx - I_T(h)| \le \frac{(b-a)^3}{12n^2} \max_{a \le \epsilon \le b} |f''(\epsilon)|$$

13.2 Trapezregel - kurz

Funktion: f(x)Intervall: [a, b]

Anzahl Teilintervalle: n

Fläche:
$$\int\limits_a^b f(x)dx=\tfrac{1}{2}\tfrac{b-a}{n}(y_0+2y_1+2y_2+\ldots+2y_{n-1}+y_n)$$
 y_i also die versch. y in Formel oben: $y_i=f(x_i)=f(a+i\tfrac{b-a}{n}); 0\leq i\leq n$

13.2.1 Beispiel

$$\begin{array}{l} f(x)=\frac{3}{x}\\ [a,b]=[1,4]\\ n=3 \end{array}$$

$$\begin{array}{l} \int\limits_{a}^{b}f(x)dx=\frac{1}{2}\frac{b-a}{n}(y_{0}+2y_{1}+2y_{2}+...+2y_{n-1}+y_{n})=\frac{1}{2}\frac{4-1}{3}(y_{0}+2y_{1}+2y_{2}+y_{3})\\ \text{Die versch. }y\text{ herausfinden mit: }y_{i}=f(x_{i})=f(a+i\frac{b-a}{n})\\ y_{0}=f(x_{0})=f(1+0\frac{4-1}{3})=f(1)=3\\ y_{1}=f(x_{1})=f(1+1\frac{4-1}{3})=f(2)=1.5\\ y_{2}=f(x_{2})=f(1+2\frac{4-1}{3})=f(3)=1\\ y_{3}=f(x_{3})=f(1+3\frac{4-1}{3})=f(4)=0.75 \end{array}$$
 Einsetzen:
$$\frac{1}{2}\frac{4-1}{3}(3+2(1.5)+2(1)+0.75)=4.375$$

13.3 Simpsonregel - kurz

Funktion: f(x)Intervall: [a, b]

Anzahl Teilintervalle: n

Fläche:
$$\int\limits_{a}^{b} f(x) dx \approx \frac{b-a}{6n} (y_0 + 4y_1 + 2y_2 + 4y_3 + \ldots + 2y_{2n-2} + 4y_{2n-1} + y_{2n})$$
 y_i also die versch. y in Formel oben: $y_i = f(x_i) = f(a + i\frac{b-a}{2n}); 0 \leq i \leq 2n$

13.3.1 Beispiel

Gleiches Vorgehen wie bei der Trapezregel!

13.4 Definition Bogenlänge

Ist y=f(x) eine glatte Kurve (f' ist stetig) im Intevall [a,b], dann ist die Länge dieser Kurve über [a,b] gegeben durch:

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx = \int_{a}^{b} \sqrt{1 + (\frac{dy}{dx})^2} dx$$

13.4.1 Beispiel

Berechne die Bogenlänge L der Kurve $y=x^{\frac{3}{2}}$ von (1,1) nach $(2,2\sqrt{2})$.

$$L = \int_{1}^{2} \sqrt{1 + (f'(x))^{2}} dx = \int_{1}^{2} \sqrt{1 + (\frac{3}{2})^{2} x^{(\frac{1}{2})^{2}}} dx = \int_{1}^{2} \sqrt{1 + \frac{9}{4} x} dx$$

$$t = 1 + \frac{9}{4} x$$

$$dt = \frac{9}{4} dx$$

$$dx = \frac{9}{4} dt$$

$$=\int_{\frac{13}{4}}^{\frac{22}{4}} \sqrt{t} \frac{4}{9} dt = \int_{\frac{13}{4}}^{\frac{22}{4}} t^{\frac{1}{2}} \frac{4}{9} dt$$

$$\int t^{\frac{1}{2}} dt = \frac{t^{\frac{3}{2}}}{\frac{3}{2}}$$

$$= \frac{4}{9} \left[\frac{2}{3} t^{\frac{3}{2}} \right]_{\frac{13}{3}}^{\frac{22}{4}} = \frac{8}{27} \left(\left(\frac{22}{4} \right)^{\frac{3}{2}} - \left(\frac{13}{4} \right)^{\frac{3}{2}} \right) = \frac{8}{27(8)} (22 \times \sqrt{22} - 13 \times \sqrt{13})$$

13.5 Kurven in Polarform

Das Bogenelement ist

$$(ds)^{2} = (rd\phi)^{2} + (dr)^{2} = \sqrt{(r(\phi))^{2} + (r'(\phi))^{2}} d\phi$$

Integration von α bis β liefert die Bogenlänge.

Die Bogenlänge einer in Polarkoordinaten gegebenen glatten Kurven (dh r' stetig) $r=r(\phi)$ mit $\alpha \leq \phi \leq \beta$ ist gegeben durch:

$$L = \int_{0}^{\beta} \sqrt{(r(\phi))^{2} + (r'(\phi))^{2}} d\phi$$

13.5.1 Beispiel

Man hat $r(\phi)=R$ und damit, weil r gar nicht von ϕ abhängt $r'(\phi)=0$. Also findet man für den Umfang des Kreises mit Radius R:

$$U = \int_{0}^{2\pi} \sqrt{(r(\phi))^2 + (r'(\phi))^2} d\phi = \int_{0}^{2\pi} \sqrt{R^2 + 0^2} d\phi = \int_{0}^{2\pi} R d\phi = 2\pi R$$

13.6 Kurven in Parameterform

Das infinitesimale Bogenelement der Kuve in Parameterform

$$\gamma: [a,b] \to \mathbb{R}^2, t \mapsto \vec{x}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

ist gegeben durch

$$ds=|\dot{\vec{x}}(t)|dt=\sqrt{(\dot{x}(t))^2+(\dot{y}(t))^2}dt$$

Integration von t=a bis t=b liefert die Bogenlänge der in Parameterform gegebene Kurve

$$L = \int_{a}^{b} ds = \int_{a}^{b} |\dot{\vec{x}}(t)| dt = \sqrt{(\dot{x}(t))^{2} + (\dot{y}(t))^{2}} dt$$

13.7 Beispiel

$$\gamma = \begin{pmatrix} R\cos(t) \\ R\sin(t) \end{pmatrix} = R\begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$$

$$\dot{\gamma}(t) = R \begin{pmatrix} -\sin(t) \\ \cos(t) \end{pmatrix} \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

$$(\dot{x}(t))^2 = (-R\sin(t))^2 = R^2\sin^2 t$$

$$(\dot{y}(t))^2 = (R\cos(t))^2 = R^2\cos^2 t$$

$$(\dot{x}(t))^2 + (\dot{y}(t))^2 = R^2 \sin^2 t + R^2 \cos^2 t = R^2 (\sin^2 t + \cos^2 t) = R^2$$

$$L = \int\limits_{\alpha}^{\beta} \! \sqrt{(\dot{x}(t))^2 + (\dot{y}(t))^2} dt = \int\limits_{0}^{2\pi} \! \sqrt{R^2} dt = \int\limits_{0}^{2\pi} R dt = \dots = 2\pi R$$

Chapter 14

SW12 Potenz- und Taylor-Reihen

14.1 Potenzreihe - Definition

Eine Potenzreihe in Potenzen von $(x-x_0)$ ist eine Reihe der Form

$$\sum_{k=0}^{\infty} a_k (x - x_0)^k = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + a_3 (x - x_0)^3 + \dots$$

Hier sind die $a_k(k=0,1,\ldots)$ die Koeffizienten, x_0 der Entwicklungspunkt und x die Variable der Potenzreihe.

14.1.1 Theorem - Konvergenzradius

Für jede Potenzreihe

$$\sum_{k=0}^{\infty} a_k (x - x_0)^k = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + a_3 (x - x_0)^3 + \dots$$

gibt es eine reelle $R\geq 0$, genannt Konvergenzradius, sodass die Potenzreihe konvergiert, falls $|x-x_0|< R$, und divergiert, falls $|x-x_0|> R$ (für $|x-x_0|= R$ kann die Reihe entweder konvergieren oder divergieren). Dabei gilt:

$$R = \lim_{k \to \infty} |\frac{a_k}{a_{k+1}}|$$
, bzw. $R = (\lim_{k \to \infty} \sqrt[k]{|a_k|})^{-1}$

falls einer oder beide dieser Grenzwerte existiert.

Beispiel

Berechne den Konvergenzradius der Potenzreihe

$$\sum_{k=0}^{\infty} \frac{x^k}{3^k} = 1 + \frac{x}{3} + \frac{x^2}{3^2} + \dots$$

$$\sum_{k=0}^{\infty} \frac{x^k}{3^k} = \sum_{k=0}^{\infty} \frac{1}{3^k} (x - x_0)^k$$

wobei: $a_k = \frac{1}{3^k}, x_0 = 0$

$$R = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| = \lim_{k \to \infty} \left| \frac{\frac{1}{3^k}}{\frac{1}{2^{k+1}}} \right| = \lim_{k \to \infty} \left| \frac{1}{3^k} \frac{3^{k+1}}{1} \right| = \lim_{k \to \infty} |3| = 3$$

$$R = (\lim_{k \to \infty} \sqrt[k]{|a_k|})^{-1} = \frac{1}{R} = \lim_{k \to \infty} \sqrt[k]{|a_k|} = \lim_{k \to \infty} \sqrt[k]{|\frac{1}{3^k}|} = \lim_{k \to \infty} \frac{1}{3}$$
$$= \frac{1}{R} = \frac{1}{3} \longrightarrow R = 3$$

Konvergenzradius = 3

14.2 Definition Taylor-Polynom

Wir nehmen an, dass die Funktion $f:[a,b]\to\mathbb{R}, x\mapsto f(x)$ genügend oft stetig differenzierbar ist. Dann ist das Taylor-Polynom n-ten Grades von f an der Stelle x_0 definiert durch:

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

$$=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\frac{f'''(x_0)}{3!}(x-x_0)^3+\dots$$
 Ist $x=0$, nennt man $T_n(x)$ auch Maclaurin-Polynom n-ten Grades von f .
$$a_k=\frac{f^{(k)}(x_0)}{k!}$$

14.2.1 Beispiel 1

Bestimmen sie die Taylor-Polynome 2-ten und 3-ten Grades von $f(x)=e^x$ an der Stelle $x_0=0$ (auch Maclaurin-Polynome genannt).

000.00	k	$f^k(x)$	$f^k(x_0)$
	0	e^x	1
	1	e^x	1
	2	e^x	1
	3	e^x	1
T	$\frac{n}{n} f^{(k)}(x_0)$	\	

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

$$=\sum_{k=0}^{n} \frac{1}{k!} (x-0)^k = \sum_{k=0}^{n} \frac{x^k}{k!} = \frac{1}{0!} + \frac{x^1}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$

14.2.2 Beispiel 2

Bestimmen sie die Taylor-Polynome 2-ten und 3-ten Grades von $f(x)=x^3+2x^2$ $x + 3; x_0 = 0$

k	$f^k(x)$	$f^k(x_0)$	
0	$x^3 + 2x^2 - x + 3$	3	-
1	$3x^2 + 4x - 1$	-1	
2	6x + 4	4	
3	6	6	
4	0	0	
$T_0(x) = f^{(0)}(x_0) =$	3		
T(n) = f(1)(n)(n)	$f(0)(x_1) = 3$	(x = 0) = 3	

$$T_0(x) = f^{(0)}(x_0) = 3$$

$$T_1(x) = f^{(1)}(x_0)(x - x_0) + f^{(0)}(x_0) = 3 - (x - 0) = 3 - x$$

$$T_2(x) = T_1(x) + \frac{f^{(2)(x_0)}}{2!} = 3 - x + \frac{4}{2}(x - x_0)^2 = 3 - x + 2x^2$$

$$T_3(x) = 3 - x + 2x^2 + x^3 = f(x)$$

14.3 **Definition - Taylor-Reihe**

Wir nehmen an, die Funktion $f:[a,b]\to\mathbb{R},x\mapsto f(x)$ sei beliebig oft differenzierbar. Dann ist die Taylor-Reihe von f an der Stelle x_0 definiert durch:

$$T(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \frac{f'''(x_0)}{3!} (x - x_0)^3 + \dots$$

Ist $x_0 = 0$, dann nennt man T(x) auch Maclaurin-Reihe von f.

Die ersten zwei Terme ergeben die lineare Approximation der Funktion f an der Stelle x_0 bzw 0.

Definition - Restglied nach Lagrange 14.4

Die Frage ist, ob die Taylor-Reihe einer Funktion wirklich gleich der Funktion ist. Kann man also schreiben T(x) = f(x)?

Die Antwort liefert das Restglied nach Lagrange: Es ist gleich dem Fehler, den wir machen, wenn wir die Funktion f durch das n-te Taylor-Polynom ersetzten.

Falls die Funktion $f:[a,b]\to\mathbb{R}, x\mapsto f(x)$ mindestens (n+1)-mal stetig differenzierbar ist, dann gilt:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n(x)$$

wobei das Restglied nach Lagrange gegeben ist durch:

$$R_n(x) = \frac{f^{n+1)}(c)}{(n+1)!} (x-x_0)^{n+1} \text{ mit } c \text{ zwischen } x \text{ und } x_0$$

14.4.1 Theorem - Konvergenz von Taylor-Reihen

Die Taylor-Reihe von f an der Stelle x_0 konvergiert in ihrem Konvergenzbereich genau dann gegen f(x) wenn das n. Restglied nach Lagrange:

$$R_n(x)=f(x)-\sum\limits_{k=0}^n rac{f^{(k)}(x_0)}{k!}(x-x_0)^k$$
 für $n\to\infty$ gegen 0 konvergiert.

Wir schreiben dann:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Eine beliebig oft differenzierbare Funktion von f lässt sich in einer Umgebung $(x_0 - R, x_0 + R)$ von x_0 in eine konvergente Taylor-Reihe entwickeln, falls gilt:

$$|f^{(n)}(x)| \leq KM^n$$
 für alle $n \in \mathbb{N}$ und alle $x \in (x_0 - R, x_0 + R)$.

Dabei dürfen die Konstanten K und M nicht von n und x abhängen.

14.5 Definition Binomial-Reihe

Binomial-Reihe:

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} \binom{\alpha}{k} x^k \text{ mit } \binom{\alpha}{k} = \frac{\alpha \cdot (\alpha-1) \cdots (\alpha-k+1)}{k \cdot (k-1) \cdots 3 \cdot 2 \cdot 1}$$

Ist definiert für $\alpha \in \mathbb{R}$ und |x| < 1

14.5.1 Beispiel

Wie lautet die Binomial-Reihe von $\sqrt{1+x}$? Schreiben sie die ersten 3 Glieder auf.

$$\sqrt{1+x} = (1+x)^{\frac{1}{2}} = \sum_{k=0}^{\infty} {1 \choose k} x^k$$

$$\sqrt{1+x} \approx \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} x^0 + \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} x^1 + \begin{pmatrix} \frac{1}{2} \\ 2 \end{pmatrix} x^2$$

$$\begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} = \frac{1}{1} = 1$$

$$\begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} = \frac{\frac{1}{2}}{1} = \frac{1}{2}$$

$$\begin{pmatrix} \frac{1}{2} \\ 2 \end{pmatrix} = \frac{\frac{1}{2} \cdot (\frac{1}{2} - 2 + 1)}{2 \cdot 1} = -\frac{1}{8}$$

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2$$

14.6 Rechnen mit Potenzreihen

- Potenzreihen lassen sich im Konvergenzbereich gliedweise addieren und subtrahieren
- Potenzreihen lassen sich im Konvergenzbereich gliedweise differenzieren und integrieren.

14.6.1 Beispiel - addieren, subtrahieren

$$e^x = \sum\limits_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \dots$$

$$e^{-x} = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \frac{x^5}{5!} + \dots$$

$$e^x + e^{-x} = 2 + 2 \cdot \frac{x^2}{2!} + 2 \cdot \frac{x^4}{4!} + \dots$$

$$e^x - e^{-x} = 2x + 2 \cdot \frac{x^3}{3!} + 2 \cdot \frac{x^5}{5!} + \dots$$

14.6.2 Beispiel - differenzieren, integrieren

Zeigen sie, dass man die Potenzreieh von $\sin x$ erhält, wenn man die Potenzreihe von $\cos x$ gliedweise integriert.

von
$$\cos x$$
 gliedweise integriert.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} \dots$$

$$(\sin x)' = 1 - \frac{3x^2}{3!} + \frac{5x^4}{5!} - \frac{7x^6}{7!} + \frac{9x^8}{9!} \dots$$

$$=1-\frac{3x^2}{3\cdot 2!}+\frac{5x^4}{5\cdot 4!}-\frac{7x^6}{7\cdot 6!}+\frac{9x^8}{9\cdot 8!}...=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\frac{x^8}{8!}...=\cos x$$

Chapter 15

SW13 Mehrdimensionale Differentialrechnung I

15.1 Multivariate Funktionen

f(x,y)=x+y, wobei $\mathbb{R}^2 \to \mathbb{R}$ (\mathbb{R}^2 weil zwei Argumente, (x,y))

15.2 Konturlinie

Um Kontur- oder Niveaulinien für irgend ein Niveau c zu zeichnen, muss man die Gleichung f(x,y)=c nach (x,y) auflösen.

15.2.1 Beispiel

$$f(x,y) = x^2 - y^2$$

Konturlinie: f(x,y) = c = const

$$x^2 - y^2 = c$$

$$y = \pm \sqrt{x^2 - c}$$

$$x = \pm \sqrt{y^2 + c}$$

15.3 Partielle Ableitung

Sei f eine reellwertige Funktion von zwei Variablen. Wir betrachten die Ebene $y=y_0$ für eine Konstante y_0 . Dann hängt die Funktion

$$g(x) = f(x, y_0)$$

nur noch von der einen Varbialen x ab. Diese Funktion können wir mit den bereits bekannten Methoden nach x ableiten. Das Resultat ist nichts anderes, als die partielle Ableitung von f nach x.

$$g'(x) = f_x(x, y_0) = \frac{\partial f(x, y)}{\partial x}|_{x, y = y_0}$$

an der Stelle $(x, y = y_0)$.

Hier bezeichnen f_x , oder $\frac{\partial f(x,y)}{\partial x}$, die partielle Ableitung von f nach der Variablen x.

Analog können wir $x=x_0$ fixieren und erhalten eine Funktion, die nur noch von y abhängt:

$$h(y) = f(x_0, y)$$

Die gewöhnliche Ableitung von h nach y ist dann nichts anderes, als die partielle Ableitung von f nach y

$$h'(y) = f_y(x_0, y) = \frac{\partial f(x, y)}{\partial x}|_{x=x_0, y}$$

an der Stelle $(x = x_0, y)$.

Wieder bezeichnen f_y , oder $\frac{\partial f(x,y)}{\partial x}$, die partielle Ableitung von f nach der Variablen y.

15.3.1 Definition

Die partiellen Ableitungen von f nach x und y an der Stelle (x_0,y_0) sind nach dem oben Gesagten wie folgt definiert:

$$\frac{\partial f}{\partial x}|_{(x_0,y_0)} = f_x(x_0,y_0) =$$

Änderungsrate von f bezüglich x in (x_0, y_0)

$$= \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

$$\frac{\partial f}{\partial y}|_{(x_0,y_0)} = f_y(x_0,y_0) =$$

Änderungsrate von f bezüglich y in (x_0, y_0)

$$= \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}$$

15.3.2 Beispiel 1

Sei
$$f(x,y) = \frac{x^2}{y+1}$$
. Gesucht $f_x(3,2)$

$$\frac{\partial f}{\partial x} = \frac{1}{y+1} \cdot 2x = \frac{2x}{y+1}$$

$$\frac{\partial f}{\partial x}|_{(3,2)} = \frac{2 \cdot 3}{2+1} = 2$$

15.3.3 Beispiel 2

$$f(x,y) = (3xy + 2x)^5$$

$$\frac{\partial f}{\partial x} = 5(3xy + 2x)^4 \cdot (3y + 2)$$
 (nach x abgeleitet)

$$\frac{\partial f}{\partial y} = 5(3xy + 2x)^4 \cdot (3x)$$
 (nach y abgeleitet)

15.3.4 Beispiel 3

$$f(x,y) = e^{x+3y}\sin(x,y)$$

$$\frac{\partial f}{\partial x} = e^{x+3y} \cdot 1 \cdot \sin(x,y) + e^{x+3y} \cdot \cos(x,y) \cdot y = e^{x+3y} (\sin(x,y) + y \cos(x,y))$$

$$\frac{\partial f}{\partial y} = e^{x+3y} \cdot 3 \cdot \sin(x,y) + e^{x+3y} \cdot \cos(x,y) \cdot x = e^{x+3y} (3\sin(x,y) + x \cos(x,y))$$

15.4 Definition - Der Gradient

Sei f eine reellwertige Funktion (ein Skalar) welche von zwei Variablen x und y abhängt.

Dann ist der Gradient von f derjenige Vektor, dessen Komponenten die partiellen Ableitungen von f nach den einzelnen Variablen sind, dh:

$$\nabla f(\chi) = \begin{bmatrix} f_x(\chi) \\ f_y(\chi) \end{bmatrix} \text{ oder ein bisschen ausführlicher } \nabla f(x,y) = \begin{bmatrix} f_x(x,y) \\ f_y(x,y) \end{bmatrix}$$

15.4.1 Beispiel 1

Gesucht ist der Gradient von $f(x,y)=x+e^y$. Wie lautet der Gradient an der Stelle (1,1).

$$f_x(x,y) = \frac{\partial f}{\partial x} = 1$$

$$f_y(x,y) = \frac{\partial f}{\partial y} = e^y$$

$$\nabla f(x,y) = \begin{bmatrix} f_x(x,y) \\ f_y(x,y) \end{bmatrix} = \begin{bmatrix} 1 \\ e^y \end{bmatrix}$$

$$\nabla f(1,1) = \nabla f|_{(1,1)} = \begin{bmatrix} 1\\e \end{bmatrix}$$

15.4.2 Beispiel 2

Gesucht ist der Gradient von $f(x,y)=3x^2y$ für einen beliebigen Punkt. Wie lautet der Gradient an der Stelle (1,1).

$$f_x(x,y) = \frac{\partial f}{\partial x} = 6xy$$

$$f_y(x,y) = \frac{\partial f}{\partial y} = 3x^2$$

$$\nabla(x,y) = \begin{bmatrix} 6xy \\ 3x^2 \end{bmatrix}$$

$$\nabla(1,1) = \begin{bmatrix} 6\\3 \end{bmatrix}$$

$$\nabla(0,0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

15.4.3 Eigenschaften des Gradienten

Ist f eine anständige Funktion, dh insbesondere im Punkt (x_0,y_0) differenzierbar mit dem Gradienten $\nabla f(x_0,y_0) \neq 0$, dann ist:

- die Richtung des Gradienten $\nabla f(x_0, y_0) \neq 0$
 - senkrecht (orthogonal) zu den Konturlinien von f durch (x_0,y_0) , dh den Kurven mit $f(x_0,y_0)=f(x,y)$
 - in Richtung der maximalen Zunahme von f
- ullet der Betrag des Gradienten $||\nabla f(x_0,y_0)||$ ist
 - ist gleich der maximalen Änderungsrate von f in diesem Punkt
 - ist gross, wenn die Konturlinien nahe beieinander sind und klein, wenn sie weit auseinander liegen.

15.5 Richtungsableitung

Die Änderungsrate wird Richtungsableitung von f im Punkt x_0 in Richtung von e genannt und bezeichnet mit:

$$D_e f(x_0) = \lim_{t \to 0+} \frac{f(x_0 + te) - f(x_0)}{t}$$

15.5.1 Beispiel mit Richtungsvektor

Berechne die Richtungsableitung von f(x,y)=x+y (Ebene) im Punkt $x_0=[0,0]^T$ in Richtung des Einheitsvektors $e=[\cos\psi,\sin\psi]^T$. Ist e ein Einheitsvektor? f(x,y)=x+y

P(0/0)

$$e = \begin{pmatrix} \cos \psi \\ \sin \psi \end{pmatrix}$$

||e|| bedeutet Länge von e

$$||e||^2 = \cos^2 \psi + \sin^2 \psi = 1$$

||e|| = 1 Vektor e ist Einheitsvektor, weil länge = 1

Ableitung von f im Punkt P mit Richtung e:

$$\begin{aligned} \mathbf{f}(\mathbf{p} + \mathbf{t}\mathbf{e}) &= f\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} \cos \psi \\ \sin \psi \end{pmatrix}\right) = f\left(\begin{pmatrix} t \cos \psi \\ t \sin \psi \end{pmatrix}\right) f(t \cos \psi, t \sin \psi) = t \cos \psi + t \sin \psi = t (\cos \psi + \sin \psi) \end{aligned}$$

$$f(\mathbf{p}) = f\begin{pmatrix} 0 \\ 0 \end{pmatrix} = f(0,0) = 0 + 0 = 0$$

$$D_e f(0,0) = \lim_{t \to 0} \frac{f(p+te) - f(p)}{t} = \lim_{t \to 0} \frac{t(\cos \psi + \sin \psi)}{t} = \cos \psi + \sin \psi$$

15.5.2 Beispiel ohne Richtungsvektor

Für einfachere Berechnung siehe 15.6 Richtungsableitung und Gradient Bestimme die Richtungsableitung von $f(x,y,z)=2x^2+3y^3+z^2$ in $x_0=[2,1,3]^T$ in Richtung von $a=[1,0,-2]^T$. Beachte, a ist kein Richtungsvektor.

$$f(x, y, z) = 2x^2 + 3y^3 + z^2$$

P(2/1/3)

$$|a| = \sqrt{1^2 + 0^2 + (-2)^2} = \sqrt{1 + 4} = \sqrt{5}$$

$$a_0 = e = \frac{a}{|a|} = \frac{1}{\sqrt{5}} \cdot \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ 0 \\ -\frac{2}{\sqrt{5}} \end{pmatrix}$$

$$\mathbf{f}(\mathbf{p} + \mathbf{te}) = f \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + t \begin{pmatrix} \frac{1}{\sqrt{5}} \\ 0 \\ \frac{-2}{\sqrt{5}} \end{pmatrix} = f \begin{pmatrix} 2 + \frac{t}{\sqrt{5}} \\ 1 \\ 3 - \frac{2t}{\sqrt{5}} \end{pmatrix} f(2 + \frac{t}{\sqrt{5}}, 1, 3 - \frac{2t}{\sqrt{5}})$$

$$x(t) = 2 + \frac{t}{\sqrt{5}}$$

$$y(t) = 1$$

$$z(t) = 3 - \frac{2t}{\sqrt{5}}$$

$$f(t) = 2(x(t))^2 + 3(y(t))^3 + (z(t))^2 = 2(2 + \frac{t}{\sqrt{5}})^2 + 3(1)^3 + (3 - \frac{2t}{\sqrt{5}})^2 = \mathbf{f}(\mathbf{p} + \mathbf{te})$$

Falls wir uns vom Punkt p in Richtung des Vektors a um eine Einheit bewegen, nimmt die Funktion um $-\frac{4}{\sqrt{5}}$ ab.

15.6 Richtungsableitung und Gradient

Für eine anständige (sprich differenzierbare) Funktion kann die Richtungsableitung von f im Punkt p in Richtung des Einheitsvektors e mit Hilfe des Gradienten bestimmt werden:

$$D_e f(p) = \nabla f(p) \cdot e = |\nabla f(p)| \cos \phi$$

 $D_e f(0,0) = \lim_{t \to 0} \frac{f(p+te) - f(p)}{t} = \dots = -\frac{4}{\sqrt{5}}$

15.6.1 Beispiel

$$f(x, y, z) = 2x^{2} + 3y^{3} + z^{2}$$

$$P(2/1/3)$$

$$|a| = \sqrt{1^{2} + 0^{2} + (-2)^{2}} = \sqrt{1 + 4} = \sqrt{5}$$

$$e = \frac{a}{|a|} = \frac{1}{\sqrt{5}} \cdot \begin{pmatrix} 1\\0\\-2 \end{pmatrix}$$

$$\nabla f(x, y, z) = \begin{pmatrix} 4x\\9y^{2}\\2z \end{pmatrix}$$

$$\nabla f(2, 1, 3) = \begin{pmatrix} 8\\9\\3 \end{pmatrix}$$

$$D_{e}f(2,1,3) = \nabla f(2,1,3) \cdot e = \begin{pmatrix} 8 \\ 9 \\ 3 \end{pmatrix} \cdot \frac{1}{\sqrt{5}} \cdot \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} = \frac{1}{\sqrt{5}} \cdot ((8 \cdot 1) + (9 \cdot 0) + (6 \cdot -2))$$
$$= \frac{1}{\sqrt{5}} \cdot (8 + 0 - 12) = \frac{-4}{\sqrt{5}}$$

Chapter 16

SW14 Mehrdimensionale Differentialrechnung II

16.1 Totales Differential

"Komplete" Ableitung von Funktion mit mehreren Variablen f(x,y): $df = f_x(a,b)dx + f_y(a,b)dy \text{ oder in Kurzform } df = f_x dx + f_y dy$

16.2 Linearisierung von Funktionen

16.2.1 ...mit einer Variable

f(x),t(x) ist die Linearisierung (Tangente), x_0 ist der Punkt wo linearisiert wird/Tangente anliegt

$$\begin{array}{l} t(x) = mx + b \text{ oder } t(x) = f(x_0) + f'(x)(x - x_0) = f(x_0) + f'(x_0) \cdot x - f'(x_0) \cdot x_0 \\ m = f'(x_0) \\ b = f(x_0) - f'(x_0) \cdot x_0 \end{array}$$

16.2.2 ...mit mehrern Variablen

g(x,y)

$$L(x,y) = g(x_0, y_0) + g_x(x_0, y_0)(x - x_0) + g_y(x_0, y_0)(y - y_0)$$

$$\nabla g(x_0, y_0) = \begin{pmatrix} g_x(x_0, y_0) \\ g_y(x_0, y_0) \end{pmatrix}$$

$$L(x,y) = g(x_0, y_0) + \nabla g(x_0, y_0) \cdot \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}$$

$$\nabla h(x_0, y_0, z_0) = \begin{pmatrix} h_x(x_0, y_0, z_0) \\ h_y(x_0, y_0, z_0) \\ h_z(x_0, y_0, z_0) \end{pmatrix}$$

$$M(x, y, z) = h(x_0, y_0, z_0) + \nabla h(x_0, y_0, z_0) \cdot \begin{pmatrix} x - x_0 \\ y - y_0 \\ z - z_0 \end{pmatrix}$$

16.3 Tangente an die Konturlinie

$$\begin{array}{l}
f(x,y) \\
p(x_0,y_0)
\end{array}$$

Gleichung der Tangente an die Konturlinie von f im Punkt p ist:

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) = 0$$

16.4 Tangentialebene an die Konturfläche

$$f(x, y, z) p(x_0, y_0, z_0)$$

Gleichung der Tangentialebene an die Konturfläche:

$$f_x(x_0, y_0, z_0)(x - x_0) + f_y(x_0, y_0, z_0)(y - y_0) + f_z(x_0, y_0, z_0)(z - z_0) = 0$$

16.5 Newton-Raphson Methode

Wir wollen die nichtlineare Gleichung f(x) = 0 lösen.

Startpunkt: x_n

$$x_n - \frac{f(x_n)}{f'(x_n)} = x_{n+1}$$

Prozess beliebig wiederholen mit x_{n+1} etc, bis man Nullstelle gefunden hat.

16.6 Mehrdimensionale Newton-Raphson Methode

Wird eher nicht an der Prüfung kommen.

16.7 Kettenregel

Falls f,g,h differenzierbar sind und falls $z=f(x,y),\ x=g(t),\ y=h(t),$ dann ist die Ableitung von f nach t:

$$f(x,y)$$

$$\frac{df}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt}$$

16.7.1 Beispiel

Sei $z=f(x,y)=x\sin y$, wobei $x=t^2$ und $x=t^2$. Sei $z=\bar{f}(t)=f(x(t),y(t))$. Berechnen sie $\bar{f}'(t)$ einerseits direkt und anderseits mit der Kettenregel.

$$f(x,y) = x \sin y$$
$$x = t^{2}$$
$$x = t^{2}$$

Direkt (Produkt- und Kettenregl):

$$f(x(t), y(t)) = x(t)\sin(y(t)) = t^{2}(\sin(2t+1))$$

$$\frac{df}{dt} = 2t\sin(2t+1) + t^{2}\cos(2t+1) \cdot 2$$

Kettenregel:

$$\frac{df}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt}$$

$$\frac{\partial f}{\partial x} = \sin y$$

$$\frac{\partial f}{\partial y} = x \cos y$$

$$\frac{dx}{dt} = x'(t) = 2t$$

$$\frac{dy}{dt} = y'(t) = 2$$

$$\frac{df}{dt} = \sin(2t+1) \cdot 2t + t^2 \cos(2t+1) \cdot 2$$

16.8 Kettenregel mit Abhängigkeitsgraphen

Um die partielle Ableitung einer zusammengesetzten Funktion mit mehreren Variablen zu berechnen, hilft der Abhängigkeitsgraph, welcher aufzeigt, wie die Variablen voneineander abhängen.

- Zeichne einen Graphen, in welchem die Beziehungen zwischen den Variablen ersichtlich werden. Knoten sind die Variablen und auf den Kanten wird die entsprechende partielle Ableitung eingetragen.
- Für jeden Pfad zwischen zwei Variablen werden die partiellen Ableitungen auf den Kanten multipliziert.
- Dann werden die Beträge der jeweiligen Pfaden addiert.

Falls f,g,h differenzierbar sind und falls z=f(x,y), x=g(u,v), y=(u,v), dann gilt:

$$\tfrac{\partial z}{\partial u} = \tfrac{\partial z}{\partial x} \cdot \tfrac{\partial x}{\partial u} + \tfrac{\partial z}{\partial y} \cdot \tfrac{\partial y}{\partial u} \text{ und } \tfrac{\partial z}{\partial v} = \tfrac{\partial z}{\partial x} \cdot \tfrac{\partial x}{\partial v} + \tfrac{\partial z}{\partial y} \cdot \tfrac{\partial y}{\partial v}$$

16.8.1 Beispiel

$$z = x^2 e^y$$

$$x = 4u$$

$$y = 3u^2 - 2v$$

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u}$$

$$=2xe^{y}\cdot 4+x^{2}e^{y}\cdot 6u=8xe^{y}+6ux^{2}e^{y}=2xe^{y}(4+3ux)=2\cdot 4u\cdot e^{3u^{2}-2v}(4+3u\cdot 4u)=8ue^{3u^{2}-2v}(4+12u^{2})=32ue^{3u^{2}-2v}(1+3u^{2})$$

zv gleich berechnen!

16.9 Kritische Punkte Beispiel

$$f(x,y) = \frac{1}{4}(x^4 - 2x^2 + y^4 - 2y^2)$$

$$\nabla f = \begin{pmatrix} x^3 - x \\ y^3 - y \end{pmatrix}$$
 Kritische Punkte: $\nabla f = 0$

$$I: x^3 - x = x(x^2 - 1) = 0 \longrightarrow x = 0; x = 1; x = -1$$

$$II: y^3 - y = y(y^2 - 1) = 0 \longrightarrow y = 0; y = 1; y = -1$$

x und y wild kombinieren für alle kritischen Punkte!

16.10 Partielle Ableitungen zweiter Ordnung

Die partiellen Ableitungen einer Funktion sind meist wieder Funktionen und können deshalb wieder abgeleitet werden. Dadurch entstehen die zweiten partiellen Ableitungen oder die partiellen Ableitungen 2. Ordnung. Diesen Prozess kann man natürlich wiederholen!

Die partiellen Ableitungen zweiter Ordnung von z = f(x, y)

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 z}{\partial x^2} = f_{xx} = (f_x)_x$$

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 z}{\partial y^2} = f_{yy} = (f_y)_y$$

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 z}{\partial y \partial x} = f_{xy} = (f_x)_y$$

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 z}{\partial x \partial y} = f_{yx} = (f_y)_x$$

Die partiellen Ableitungen zweiter Ordnung haben etwas mit der **Krümmung** der Funktion zu tun.

16.10.1 Beispiel

$$f(x,y) = xy^2 + 3x^2e^y$$

$$f_x = y^2 + 6xe^y$$

$$f_{xx} = 6e^y$$

$$f_{xy} = 2y + 6xe^y$$

$$f_y = 2xy + 3x^2e^y$$

$$f_{yy} = 2x + 3x^2e^y$$

$$f_{yx} = 2y + 6xe^y = f_{xy}$$

16.11 Klassifikation kritischer Punkte - Theorem

Die Funktion $f:(x,y)\mapsto f(x,y)$ habe stetige partielle Ableitungen bis und mit 2. Ordnung und (x_0,y_0) sei ein kritischer Punkt von f. Wir definieren:

$$D = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - [f_{xy}(x_0, y_0)]^2$$

Dann gilt:

- Falls D>0 und $f_{xx}(x_0,y_0)>0$, dann ist f minimal in (x_0,y_0) ,
- Falls D>0 und $f_{xx}(x_0,y_0)<0$, dann ist f maximal in (x_0,y_0) ,

- Falls D < 0, dann ist (x_0, y_0) ein Sattelpunkt,
- ullet Falls D=0, dann kann ohne weitere Untersuchungen nichts gesagt werden.

16.11.1 Beispiel

Bestimme die lokale Minima, Maxima und Sattelpunkte von $f(x,y)=4xy-x^4-y^4$

$$f(x,y) = 4xy - x^4 - y^4$$

$$f_x = 4y - 4x^3$$

$$f_{xx} = -12x^2$$

$$f_{xy} = 4$$

$$f_y = 4x - 4y^3$$

$$f_{yy} = -12y^2$$

$$f_{yx} = 4$$

$$I.4y - 4x^3 = 0; y - x^3 = 0; x^3 = y$$

$$II.4x - 4y^3 = 0; x - y^3 = 0; y^3 = x$$

Kritische Punkte: x=0, x=1, x=-1 und y=0, y=1, y=-1

Kritische Punkte (x_0,y_0)	$f_{xx}(x_0, y_0)$	$f_{yy}(x_0, y_0)$	$f_{xy}(x_0, y_0)$	$D = f_{xx}f_{yy} - f_{xy}^2$
(0,0)	0	0	4	-16
(1,1)	-12	-12	4	128
(-1,-1)	-12	-12	4	128