Optimization: Basic Concepts

Optimization

Centro de Investigación en Matemáticas A.C.

What is optimization? I

- Roughly speaking, it refers to the task of finding the best solution to a given function under some constraints
- Optimization is part of almost everything that we do:

Basic Concepts

- Personnel schedules.
- Routing planning,
- Shopping,
- Ftc

What is optimization? II

Minimization

Maximization

Optimization (CIMAT)

Formal Definition

Formally...

min
$$f_i(\mathbf{x})$$
, $i = \{1, ..., m\}$
Subject to: $g_j(\mathbf{x}) \le 0$, $j = \{1, ..., p\}$
 $h_k(\mathbf{x}) = 0$, $k = \{1, ..., q\}$

where:

- x is an *n*-dimensional vector of decision variables
- $f_i(\mathbf{x})$ is called objective function
- $g_j(\mathbf{x})$ and $h_k(\mathbf{x})$ are called inequality and equality constraints, respectively is an equality constraint

The objective function

- It expresses the main goal of the problem which is either to be minimized or maximized
- Problems can have:
 - no objective function,
 - a single objective function,

Basic Concepts

multiple objective functions

Minimization or maximization?

An optimization problem can be written as a minimization problem or as a maximization problem. These two problems are easily converted to the other form:

$$\min f(\mathbf{x}) \iff \max -f(\mathbf{x})$$

 $\max f(\mathbf{x}) \iff \min -f(\mathbf{x})$

Decision Variables

- Decision variables represent the parameters that need to be determined to solve the problem
- They control the value of the objective function
- Defining the set of variables to a problem is one of the most difficult and crucial steps when formulating an optimization problem

Constraints

- Constraints narrow the admissible values of the decision variables
- They can be
 - implicit:

$$0 \le x_i \le 10$$

– explicit:

$$x_1 + x_2 - x_3 = 0$$
$$x_1 - x_3 \le 0$$

A solution that meets the constraints is known as feasible solution.

• A solution that meets the constraints is known as **feasible solution**.

[5, 5, 5]	
-----------	--

[9, 5, 5]

[9, 0, 9]

[3, 1, 4]

A solution that meets the constraints is known as feasible solution.

5,	5,	5]	
9.	5	51	

$$[9, 0, 9]$$
 $[3, 1, 4]$

Basic Concepts

A solution that meets the constraints is known as feasible solution.

[5, 5, 5]	
[9, 5, 5]	
[9, 0, 9]	
[3, 1, 4]	

Basic Concepts

• A solution that meets the constraints is known as **feasible solution**.

[5, 5, 5]	×
9, 5, 5]	×
9,0,9]	•
3 1 4]	√

• The set of all feasible solutions is known as the feasible region

Optimization (CIMAT)

Local and Global Optima I

Definition

A solution \mathbf{x}^* is called local optimum if and only if

Basic Concepts

 $\forall \mathbf{x} \in \mathbf{X}_{\mathsf{vecindad}} : f(\mathbf{x}^*) \lhd f(\mathbf{x})$

Definition

A solution \mathbf{x}^* is called global optimum if and only if $\forall \mathbf{x} \in \mathbf{X} : f(\mathbf{x}^*) \triangleleft f(\mathbf{x})$

Optimization (CIMAT)

Local and Global Optima II

Optimization (CIMAT)

Classification I

Optimization problems can be categorized based on:

- their constraints
 - Constrained optimization problems
 - Unconstrained optimization problems
- their functions;
 - Separable optimization problems
 - Non-separable optimization problems
- the sort of solution;
 - Continuous optimization problems
 - Combinatorial optimization problems

Classification II

- their decision variables;
 - Static optimization problems
 - Dynamic optimization problems
- the values on decision variables;
 - Integer programming
 - Real-valued optimization
 - Mixed-integer optimization

Classification III

- the sort to equations;
 - Quadratic programming
 - Geometric programming
 - Linear programming
 - No-linear optimization
- the number of objectives
 - Single objective optimization
 - Multi-objective optimization
 - Many objective optimization

Black-box Optimization I

- It refers to a problem setup in which an optimization algorithm is supposed to optimize an objective function in a so-called black-box fashion
- Problems of this type regularly appear in practice:
 - When optimizing parameters of an unknown model
 - When modeling is too complex

16

Optimization (CIMAT) Optimization

Black-box Optimization II

There are a number of algorithms for black-box optimization

Basic Concepts

- Random Search.
- Pattern Search.
- Nelder-Mead Simplex,
- Evolutionary Algorithms,
- Particle Swarm Optimization,
- Simulating Annealing Search,
- Bat Search.
- Bee Search.

No Free Lunch Theorem

One kind of interpretation of No Free Lunch theorem

Retrieved from Xinjie Yu and Mitsuo Gen (2010). Introduction to Evolutionary CIMAT Algorithms. Springer-Verlag.

The Exploration-Exploitation Dilemma I

- Exploration refers to exploring unknown regions with the aim of gaining new knowledge
- Exploitation refers to delving in what it is known with the aim of getting something close to what it is expected

Should we explore or exploit?

The Exploration-Exploitation Dilemma II

Basic Concepts

- An "intelligent search" requires the proper balance of exploration and exploitation
- The proper balance of exploration and exploitation depends on how regular our environment is
- If our environment is rapidly changing, then our knowledge quickly becomes obsolete and we cannot rely as much on exploitation
- However, if our environment is highly consistent, then our knowledge is dependable and it may not make sense to try very many new ideas

