

BE-2: Mouvement Latéral

Figure 1: Ryan Navion USAF 1948

Prenons pour exemple un mouvement à un degré de liberté, en s'intéressant au mouvement d'un avion qui serait contraint de sorte à ne pouvoir réaliser qu'un simple mouvement de lacet. La figure suivante illustre un montage en soufflerie qui réaliserait ce type de mouvement sur une maquette.

Figure 2 : modèle réduit en soufflerie contraint à un pur mouvement de lacet

Dynamique du vol Philippe PASTOR – ISAE-SUPAERO

Dans ce cas l'équation du mouvement s'écrit da la façon suivante :

$$I_z \frac{dr}{dt} = \sum$$
 moments de lacet = N

avec $r = \dot{\psi}$

En considérant des mouvements autour d'un point d'équilibre, si l'on écrit le moment de lacet N et l'angle d'azimut ψ :

$$N = N_0 + \Delta N \qquad \psi = \psi_0 + \Delta \psi$$

On obtient l'équation :

$$I_z \, \Delta \ddot{\psi} = \Delta N \tag{1}$$

Avec au premier ordre:

$$\Delta N = \frac{\partial N}{\partial \beta} \Delta \beta + \frac{\partial N}{\partial r} \Delta r + \frac{\partial N}{\partial \delta_n} \Delta \delta_n$$

Due à la contrainte sur l'avion et sur son centre de gravité, nous avons les relations suivantes entre ψ , β et r.

$$\Delta \psi = -\Delta \beta$$
 et $\Delta \dot{\psi} = \Delta r$

Question:

En utilisant les données en annexe pour un aéronef d'aviation générale type Ryan Navion, déterminez :

- a) Les équations du mouvement mises sous forme d'état $\dot{X}=f(X,U)$ puis sous forme linéaire $\dot{X}=A\,X+B\,U$
- b) Estimer l'effet initial $\Delta\dot{\psi}$ et $\Delta\dot{r}$ pour un échelon de gouverne $\Delta\delta n=5^\circ$, et déterminer l'état final ($\Delta\psi$ et Δr)
- c) L'équation caractéristique et les valeurs propres du système
- d) l'amortissement λ et la pulsation propre non amortie ω_0
- e) puis l'amortissement réduit ξ et la période des oscillations $T=2\pi/\omega_n$

On suppose que l'état d'équilibre initial est β =0, r=0.

Dynamique du vol Philippe PASTOR – ISAE-SUPAERO

Annexe: Données du Ryan Navion

Centrage et masse :

m = 1250 kg

cg à 29,5% de la corde

 $I_x = 1420 \text{ kg.m}^2$

 $I_y = 4067 \text{ kg.m}^2$

 $I_z = 4786 \text{ kg.m}^2$

 $I_{xz} = 0$

Géométrie de référence :

Surface $S = 17 \text{ m}^2$

Envergure b = 10.2 m

Corde $\bar{c} = 1.7 \text{ m}$

Les **coefficients aérodynamiques latéraux** (par radian) pour une vitesse en Mach **M = 0,158** au niveau de la mer

Coef.	Су	Cl	Cn
β	$Cy_{\beta} = -0.564$	$Cl_{\beta} = -0.44$	$Cn_{\beta} = 0.43$
p	$Cy_p = 0$	$Cl_p = -7,38$	$Cn_p = -1.035$
r	$Cy_r = 0$	$Cl_r = 1,93$	$Cn_r = -2,25$
δl	$Cy_{\delta l}=0$	$Cl_{\delta l} = -0.80$	$Cn_{\delta l} = -0.021$
δn	$Cy_{\delta n} = 0.157$	$Cl_{\delta n} = 0,642$	$Cn_{\delta n} = -0.43$

$$Y = \frac{1}{2}\rho V^2 S C y \text{ avec} \qquad C y = C y_\beta \beta + C y_p \frac{p \bar{c}}{V} + C y_r \frac{r \bar{c}}{V} + C y_{\delta l} \delta l + C y_{\delta n} \delta n$$

$$N = \frac{1}{2}\rho V^2 S \bar{c} C n \dots$$