Finding the strenght of Cement

```
Importing Libraries
In [1]:
         from pycaret.regression import *
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import plotly.express as px
         import scipy.stats as stats
         from sklearn.preprocessing import StandardScaler
         import joblib
         df=pd.read csv('concrete.csv')
In [2]:
         df.head()
                           ash water superplastic coarseagg
Out[2]:
           cement
                    slag
                                                           fineagg
                                                                   age
                                                                        strength
                                                     971.8
             141.3 212.0
                           0.0
                                203.5
                                             0.0
                                                              748.5
                                                                     28
                                                                           29.89
             168.9
                    42.2
                         124.3
                                158.3
                                            10.8
                                                     1080.8
                                                             796.2
                                                                           23.51
         2
                                                                           29.22
             250.0
                     0.0
                          95.7
                                187.4
                                             5.5
                                                     956.9
                                                             861.2
                                                                     28
```

932.0

1047.4

670.0

696.7

28

28

45.85

18.29

EDA

df.info() In [3]:

3

266.0 114.0

154.8 183.4

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1030 entries, 0 to 1029 Data columns (total 9 columns):

0.0

0.0

228.0

193.3

0.0

9.1

Column Non-Null Count Dtype # -------cement 1030 non-null float64 0 1 slag 1030 non-null float64 2 ash 1030 non-null float64 3 water 1030 non-null float64 superplastic 1030 non-null float64 4 5 coarseagg 1030 non-null float64 fineagg 1030 non-null float64 7 1030 non-null int64 age 1030 non-null float64 strength dtypes: float64(8), int64(1)

df.describe()

memory usage: 72.5 KB

In [4]:

Out[4]:

		cement	slag ash		water superplastic		coarseagg	fineagg	age	
	count	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	
	mean	281.167864	73.895825	54.188350	181.567282	6.204660	972.918932	773.580485	45.662136	
	std	104.506364	86.279342	63.997004	21.354219	5.973841	77.753954	80.175980	63.169912	

min	102.000000	0.000000	0.000000	121.800000	0.000000	801.000000	594.000000	1.000000
25%	192.375000	0.000000	0.000000	164.900000	0.000000	932.000000	730.950000	7.000000
50%	272.900000	22.000000	0.000000	185.000000	6.400000	968.000000	779.500000	28.000000
75%	350.000000	142.950000	118.300000	192.000000	10.200000	1029.400000	824.000000	56.000000
max	540.000000	359.400000	200.100000	247.000000	32.200000	1145.000000	992.600000	365.000000

In [5]: sns.heatmap(df.corr(),annot=True,cmap="rocket")
plt.show()


```
In [6]: mean=df.mean()
    median=df.median()
    std=df.std()
    a=pd.DataFrame({'Mean':mean.tolist(),'Median':median.tolist(),'STD':std.tolist()},index=
    sns.heatmap(a,annot=True,cmap='YlGnBu')
    plt.show()
```

cement	2.8e+02	2.7e+02	1e+02	
slag	74	22	86	800
ash	54	0	64	
water	astic 6.2 6.4		21	600
superplastic			6	
coarseagg			78	400
fineagg	7.7e+02	7.8e+02	80	
age	46	28	63	200
strength	36	34	17	
	Mean	Median	STD	0

Cement

In [7]: fig=px.histogram(df.cement,marginal='box')
fig.show()

value

```
In [8]: def detect_outlier_z_score(data,threshold=3):
    mean=np.mean(data)
    std=np.std(data)
    z_scores=[(x-mean)/std for x in data]
    outliers=[x for i,x in enumerate(data) if np.abs(z_scores[i])>threshold]
    return outliers

outliers=detect_outlier_z_score(df.cement,3)
print(outliers)
```

No outliers

Slag

```
In [9]: fig=px.histogram(df.slag,title="Histogram of Slag",marginal="box")
fig.show()
```

Histogram of Slag


```
In [10]: def detect_outlier_z_score(data,threshold=3):
    mean=np.mean(data)
    std=np.std(data)
    z_scores=[(x-mean)/std for x in data]
    outliers=[]
    for i,x in enumerate(data):
        if z_scores[i]>threshold or z_scores[i]<-threshold:</pre>
```

```
outliers.append(x)
return outliers
outliers=detect_outlier_z_score(df.slag,3)
print(outliers)
```

[342.1, 342.1, 359.4, 359.4]

```
In [12]: fig=px.histogram(df.slag,title="Histogram of Slag",marginal="box")
fig.show()
```

Histogram of Slag


```
In [13]: outliers=fix_z_score(df.ash,3)
    print(outliers)
```

None

Ash

In [14]: fig=px.histogram(df.ash,title="Histogram of Ash",marginal="box")

fig.show()

Histogram of Ash


```
In [15]: outliers=detect_outlier_z_score(df.ash,3)
    print(outliers)
```

[]

Water

In [16]: fig=px.histogram(df.water,title="Histogram of Water",marginal="box")
fig.show()

Histogram of Water

Histogram of Water

Superplastic

Histogram of Superplastic


```
In [22]: outliers=detect_outlier_z_score(df.superplastic,3)
    print(outliers)

[28.2, 28.2, 32.2, 32.2, 28.2, 32.2, 28.2, 32.2, 28.2]

In [23]: fix_z_score(df.superplastic,3)
    fig=px.histogram(df.superplastic,title="Histogram of Superplastic",marginal="box")
    fig.show()
```

Histogram of Superplastic

Coarseagg

In [24]: fig=px.histogram(df.coarseagg,title="Histogram of Coarseagg",marginal="box")
 fig.show()

Histogram of Coarseagg


```
In [25]: outliers=detect_outlier_z_score(df.ash,3)
    print(outliers)
```

Fineagg

In [26]: fig=px.histogram(df.fineagg,title="Histogram of Fineagg",marginal="box")
fig.show()

Histogram of Fineagg

age

In [28]: fig=px.histogram(df.age,title="Histogram of Ash",marginal="box")
fig.show()

Histogram of Ash


```
100
0 100 200 300
value
```

In [29]: outliers=detect_outlier_z_score(df.age,3)
 print(outliers)

[365, 365, 270, 360, 365, 365, 270, 270, 270, 270, 270, 360, 360, 365, 360, 365, 365, 270, 365, 270, 270, 365, 365, 365, 365, 360, 270, 365, 365, 270]

Strenght

In [30]: fig=px.histogram(df.strength,title="Histogram of Ash",marginal="box")
 fig.show()

Histogram of Ash

In [31]: outliers=detect_outlier_z_score(df.strength,3)
 print(outliers)

In [32]: df.describe()

Out[32]: cement slag ash water superplastic coarseagg fineagg age

count	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	•
mean	281.167864	73.825372	54.188350	181.564658	6.145607	972.918932	773.580485	45.662136	
std	104.506364	86.058467	63.997004	21.346259	5.759096	77.753954	80.175980	63.169912	
min	102.000000	0.000000	0.000000	121.800000	0.000000	801.000000	594.000000	1.000000	
25%	192.375000	0.000000	0.000000	164.900000	0.000000	932.000000	730.950000	7.000000	
50%	272.900000	22.000000	0.000000	185.000000	6.400000	968.000000	779.500000	28.000000	
75%	350.000000	142.950000	118.300000	192.000000	10.200000	1029.400000	824.000000	56.000000	
max	540.000000	332.608170	200.100000	245.598831	24.117482	1145.000000	992.600000	365.000000	

Model

```
In [33]: X=df.drop(['strength'],axis=1)
y=df['strength']

In [36]: from sklearn.model_selection import train_test_split
X train, X test, y train, y test=train test split(X, y, test size=0.2, random state=42)
```

Linear Regression

```
In [40]: from sklearn.linear_model import LinearRegression
In [54]: sns.heatmap(df.corr(),annot=True,cmap="rocket")
plt.show()
```


Lasso Regression

from sklearn.linear model import Lasso

Out[67]:

In [68]:

```
lasso=Lasso(alpha=0.1)
lasso.fit(X_train[lr],y_train)

Out[68]:

Lasso(alpha=0.1)

In [69]: lasso.score(X_train[lr],y_train)

Out[69]: 0.5590002045714899
```

```
lasso.score(X test[lr],y test)
In [70]:
          0.5611548241877874
Out[70]:
          Gradient Boosting Regressor
          from sklearn.ensemble import GradientBoostingRegressor
In [71]:
          gb reg=GradientBoostingRegressor(learning rate=0.35,n estimators=120)
In [100...
          gb reg.fit(X train,y train)
          GradientBoostingRegressor(learning rate=0.35, n estimators=120)
Out[100]:
          gb reg.score(X test,y test)
In [101...
          0.9166958423019668
Out[101]:
          gb_reg.score(X_train,y_train)
In [102...
          0.9819700648802545
Out[102]:
          Lightgbm
          import lightgbm as lgb
In [44]:
          lgbm=lgb.LGBMRegressor()
In [37]:
          lgbm.fit(X train,y train)
          LGBMRegressor()
Out[37]:
          lgbm.score(X_test,y_test)
In [38]:
          0.918382974239084
Out[38]:
          lgbm.score(X train,y train)
In [39]:
          0.9813716964133293
Out[39]:
          Extract Model
          joblib.dump(lgbm,'c s.joblib')
In [202...
          ['c s.joblib']
Out[202]:
          cs=joblib.load('c s.joblib')
In [203...
          a=X train[2:3]
In [213...
Out[213]:
                       slag ash water superplastic coarseagg fineagg
               cement
                                                                  age
          334
                323.7 282.8
                           0.0
                                183.8
                                            10.3
                                                     942.7
                                                             659.9
                                                                    3
          cs.predict([[323.7,282.8,0.0,183.8,10.3,942.7,659.9,3]])
In [214...
          array([32.5437865])
```

```
y train[2:3]
In [210...
                    28.3
Out[210]:
           Name: strength, dtype: float64
           Standration
            df1=df.copy()
In [121...
            X=df1.drop(['strength','ash'],axis=1)
In [134...
            scaler=StandardScaler()
In [135...
            scaler.fit(X)
In [136...
            StandardScaler()
Out[136]:
In [137...
            s d=scaler.transform(X)
In [138...
            y=df1['strength']
            reg1=setup(data=X, target=y)
In [139...
            compare models()
                         Description
                                               Value
             0
                           Session id
                                                6234
             1
                              Target
                                             strength
             2
                          Target type
                                           Regression
             3
                          Data shape
                                             (1030, 8)
             4
                     Train data shape
                                              (721, 8)
             5
                      Test data shape
                                              (309, 8)
             6
                                                   7
                     Numeric features
             7
                                                 True
                          Preprocess
             8
                      Imputation type
                                               simple
             9
                  Numeric imputation
                                                mean
            10
                Categorical imputation
                                               mode
            11
                                                KFold
                      Fold Generator
            12
                        Fold Number
                                                   10
            13
                           CPU Jobs
                                                   -1
            14
                            Use GPU
                                                False
            15
                      Log Experiment
                                                False
            16
                    Experiment Name
                                     reg-default-name
```

Out[214]:

17

USI

c8d8

lightgbm	Light Gradient Boosting Machine	3.5585	27.5975	5.1750	0.8960	0.1593	0.1224	0.0450
et	Extra Trees Regressor	3.4568	29.4587	5.3636	0.8878	0.1635	0.1186	0.1180
gbr	Gradient Boosting Regressor	3.9763	30.9675	5.4781	0.8838	0.1720	0.1375	0.0670
xgboost	Extreme Gradient Boosting	3.5520	31.0731	5.4991	0.8815	0.1698	0.1209	0.0680
rf	Random Forest Regressor	3.8981	32.5945	5.6525	0.8770	0.1754	0.1359	0.1520
dt	Decision Tree Regressor	4.8986	60.5304	7.6538	0.7699	0.2286	0.1662	0.0280
ada	AdaBoost Regressor	6.6680	66.5895	8.1146	0.7505	0.2899	0.2756	0.0750
knn	K Neighbors Regressor	7.1211	91.3703	9.4912	0.6563	0.3102	0.2759	0.0260
br	Bayesian Ridge	8.5879	116.4277	10.7373	0.5630	0.3452	0.3324	0.0230
ridge	Ridge Regression	8.5837	116.5186	10.7441	0.5627	0.3439	0.3307	0.0280
en	Elastic Net	8.5880	116.5095	10.7425	0.5627	0.3446	0.3316	0.0220
lr	Linear Regression	8.5837	116.5187	10.7441	0.5627	0.3439	0.3307	0.0790
lar	Least Angle Regression	8.5837	116.5187	10.7441	0.5627	0.3439	0.3307	0.0310
lasso	Lasso Regression	8.5936	116.5675	10.7446	0.5625	0.3451	0.3322	0.0240
huber	Huber Regressor	8.6722	124.3654	11.1040	0.5347	0.3408	0.3260	0.0350
par	Passive Aggressive Regressor	10.3783	167.0260	12.7322	0.3592	0.4116	0.4024	0.0310
omp	Orthogonal Matching Pursuit	11.7288	206.6712	14.3445	0.2238	0.4717	0.4978	0.0180
llar	Lasso Least Angle Regression	13.2627	271.7688	16.4592	-0.0162	0.5345	0.5923	0.0270
dummy	Dummy Regressor	13.2627	271.7688	16.4592	-0.0162	0.5345	0.5923	0.0260

Processing: 0%| | 0/81 [00:00<?, ?it/s]

Out[139]: LGBMRegressor(random_state=6234)

```
In [142... X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.2, random_state=42)
lgbm1=lgb.LGBMRegressor()
lgbm1.fit(X_train, y_train)
lgbm1.score(X_test, y_test)
```

Out[142]: 0.9160112028208413

In [143... lgbm1.score(X_train,y_train)

Out[143]: 0.9811978387851121

In []: