九年级第一学期期末质量检测

数学试卷

武钢实验学校 914 班数学兴趣小组命制

2024-2

本试卷满分 120 分, 考试用时 120 分钟

— ,	选择题:	本大颗共10小颗	. 每小题 3 分.	共30分。	在每小题给出的四个选项中,	只有一项是符合题目要求的。

- 1. "数学王子" 高斯在 19 岁时发现了正十七边形的尺规作法,无论对他本人还是对数学界都是莫大的贡献,因此,人们 在他的墓碑上刻上了正十七边形,作为永久的纪念.正十七边形()
 - A. 既是轴对称图形,又是中心对称图形
- B. 是轴对称图形, 但不是中心对称图形
- C. 既不是轴对称图形,也不是中心对称图形
- D. 是中心对称图形, 但不是轴对称图形
- 2. 一元二次方程 $2x^2 + x 4 = 0$ 的两根之和为 ()
 - A.

C. -4

- 3. 如图, 四边形 ABCD 和 AEFG 均是正方形, 连 $BE \times DG$, 则下列说法中, 不一定成立的是 (
 - A. BE = DG

B. $BE \perp DG$

C. $\angle EBC + \angle GDC = 180^{\circ}$

- D. $\angle FEB = \angle GDC$
- 4. 掷两个质地均匀的骰子,则下列事件中,是随机事件的是()
 - A. 两骰子掷得的点数之和小于 13

B. 两骰子掷得的点数之和等于1

C. 两骰子掷得的点数之差等于 4

- D. 两骰子掷得的点数之差等于 6
- 5. 将抛物线 $y = 2x^2 8x + 10$ 先向左平移 4 个单位长度,再向上平移 10 个单位长度得到的抛物线的解析式是()
 - A. $y = 2x^2 2x + 16$

B.
$$y = 2x^2 - 24x + 84$$

C. $y = 2x^2 + 8x$

- D. $y = 2x^2 + 8x + 20$
- 6. 已知抛物线 $y = ax^2 3ax 2a + 1$ 与 y 轴交于负半轴,且过点 $(1, y_1)$ 、 $(3, y_2)$ 和 $(-1, y_3)$,则 y_1 、 y_2 、 y_3 之间的大 小关系是(
 - A. $y_1 < y_2 < y_3$
- B. $y_3 < y_2 < y_1$
- C. $y_1 < y_3 < y_2$
- 7. 已知 m 是一个实数,记 $p \setminus q$ 分别为直线 y = -x 与抛物线 $y = x^2 (m+1)x + m$ 的两个公共点的横坐标,若 $p^2 + mq = 6$,则 m 所有可以取的值的和为 ()
 - A. -2

B. -1

C. 0

- 8. 如图, PM、PN 分别切 $\odot O$ 于 A、B 两点, C 为 $\odot O$ 上一点, 连 AC、BC. 若 $\angle P=60^{\circ}$ 、 $\angle MAC=75^{\circ}$ 、 $BC=\sqrt{2}$, 则线段 AP 的长度为()
 - A. $\sqrt{3} 1$
- B. $\sqrt{2} + 1$
- C. $\sqrt{3}$

- D. $\sqrt{2}$
- 9. 如图, $AB \in O$ 的一条弦,C 是优弧 \widehat{ACB} 上一点,已知将弧 \widehat{BC} 沿弦 BC 折叠后刚好经过弦 AB 的中点 D,若 $\odot O$ 的半径为 $\sqrt{5}$ 、AB = 4,则弦 BC 的长度为 ()
 - A. $3\sqrt{2}$
- B. $2\sqrt{6}$
- C. $\sqrt{6} + \sqrt{2}$
- D. $3 + 2\sqrt{2}$

(第3题)

(第8题)

(第9题)

10. 已知实数 t 满足当 -5 < x < 1 时,抛物线 $y = tx^2 - x$ 与折线 y = 4t|x| - t + 3 恰有 2 个公共点. 若 t 是一个非零整 数,则符合条件的t有()个.

二、填空题: 本大题共6小题, 每小题3分, 共18分.

- 11. 已知点 (2,m) 和点 (n,-1) 关于原点中心对称,那么代数式 m+n 的值是
- 12. 记点 O 和点 I 分别为 $\triangle ABC$ 的外心和内心,若 $\angle AOB = 64^{\circ}$,则 $\angle AIB =$
- 13. "标记重捕法"是种群密度的常用调查方法之一,在一个鱼塘里随机抓取 24 条鱼标上记号后放回鱼塘,一段时间后重新抓 18 条鱼,发现其中有 4 条有记号,据此可估计该鱼塘内鱼的数量是 条.
- 14. 已知当 x > -1 时,二次函数 $y = x^2 2bx + 5$ 的最小值是 1,则实数 b 的值为
- 15. 已知三个实数 a、b、c 之间满足 |a| > |b|、c > 0、4a + 2b + c = 0,则有下列说法:
 - ① a+b+c>0;
 - ② 2a + c < 0;
 - ③ 已知两实数 m、n 满足 m < n, 那么若 m + n > 1, 则有 $am^2 + bm > an^2 + bn$;
 - ④ 对任意的 -2 < q < 0,不等式 $aq^2 bq \frac{c}{2}q \ge 0$ 恒成立.

其中正确的是_____

16. 如图,正方形 ABCD 的边长为 4,将线段 AD 绕点 D 顺时针旋转得到线段 PD,使点 P 落在正方形 ABCD 内. 过 P 作 $PQ\bot AD$ 于 Q,连 CD 的中点 T 和 $\triangle PDQ$ 的内心 I,则当 $\angle ITD$ 最大时,线段 IT 的长度为

三、解答题:本大题共8小题,共72分,解答应写出必要的文字说明、证明过程或演算步骤.

- 17. 已知关于 x 的一元二次方程 $ax^2 + bx + c = 0$ 有一个根为 x = 1,且 a、b 满足 $b = \sqrt{a-2} + \sqrt{2-a} 3$,解关于 y 的方程 $\frac{1}{4}y^2 c = 0$.
- 18. 如图, 在等边 $\triangle ABC$ 中, $E \neq BC$ 上一点, 连 AE, 将 $\triangle ABE$ 绕点 A 旋转至 $\triangle ACF$ 处, 连 EF.
 - (1) 判断 △AEF 的形状并说明理由.
 - (2) 若 BE = 1、CE = 2,求 $\triangle CEF$ 的面积.

- 19. 一个不透明的袋子里装有四个球,四个球分别标有 2、3、4、6 四个数字,除标号不同外,四个球在各方面完全一样. 现从袋中随机摸出 2 个球.
 - (1) 若每次摸出球后都放回袋中,直接写出两球的标号之积为4的倍数的概率是
 - (2) 若每次摸出球后都不放回袋,求两球的标号互质(除1外没有公因数)的概率.

- 20. 如图, 边长为 $2\sqrt{3}$ 的等边三角形 ABC 内接于 $\odot O$, D 是 \widehat{AB} 上一点, 连 CD、AD、BD, 有 $\angle ACD = 45^{\circ}$.
 - (1) 直接写出 DB^l 的值和 \widehat{AD} 与弦 AD 所围成区域的面积 S.
 - (2) 求 BD + DC 的值.

- 21. 如图是由小正方形组成的 7×7 网格,每个小正方形的顶点叫做格点. 已知 $\odot O$ 交格点于 $B \times C$,交网格线于点 A,连 $AB \times AC$. 仅用无刻度的直尺在给定网格中完成画图,其中作图过程用虚线,作图结果用实线:
 - (1) 作弦 *AD* 平分 ∠*BAC*.
 - (2) 连 BD, 在弦 AD 上作点 E, 使得 ED = BD.
 - (3) 作弦 AF 与 BD 平行.

22. 如图是某兴趣小组设计的游戏装置. 在一个水平滑道上,小球甲在被加速后以 40 dm/s 的初速度从滑道 A 点出发,沿滑道向右作匀减速直线运动,其滑行距离 s (dm)、瞬时速度 v_1 (dm/s) 与滑行时间 t_1 (s) 之间的关系如下表所示:

滑行时间 t_1 (s)	0	0.5	1	
滑行距离 s (dm)	0	17.5	30	
瞬时速度 v_1 (dm/s)	40	30	20	

与此同时,在滑道 B 点处有另一个静止的小球乙被一根绳子悬挂着,绳长 $OB=4\mathrm{dm}$,且小球乙正好与滑道相切. 当小球甲撞到小球乙时,其速度 v_1 将全部传给小球乙,成为乙的初速度 v_2 . 随后,小球乙将绕点 O、以 OB 为半径作圆周运动,其上升高度 h(dm)和运动时间 t_2 (s)之间满足 $h=v_2t_2-2t_2^2$. 小球乙在上升到最高点 D 后摆回至点 B,随后停止运动.

现已知 $s = t_1, v_1 = t_1$ 之间的函数关系是我们学过的函数,若不计两小球的大小,回答下列问题:

- (1) 直接写出 $s = t_1$ 、 $v_1 = t_1$ 之间的函数关系式(不必写出自变量的取值范围).
- (2) 若小球乙共运动了3秒,求AB的长度.
- (3) 若 $\angle DOB = 60^{\circ}$, 求 AB 的长度.

- 23. 如图,菱形 ABCD 的边长为 $2\sqrt{5}$,且 $\angle ABC=60^\circ$,等边 $\triangle AEF$ 绕点 A 在菱形 ABCD 内部旋转,连 BE 和 DF.
 - (1) 如图 1, 当 $B \times E \times F$ 三点共线时,求证: $\angle ABE = \angle DAF$.
 - (2) 如图 2, 当 $\angle ABE + \angle ADF = 75^{\circ}$ 时, 若 $DF = 2\sqrt{2}$, 求线段 BE 的长.
 - (3) 如图 3,以 BA、BE 为边,作平行四边形 ABEP,连 P 和 CD 中点 Q,若等边 $\triangle AEF$ 的边长为 3,直接写 出线段 PQ 长度的最小值.

(第23题)

- 24. 在平面直角坐标系 xOy 中,恒过点 F(0,2) 的动圆 $\odot P$ 保持与 x 轴相切. 记点 P 的运动轨迹为 Γ .
 - (1) 如图 1,已知 Γ 是一条抛物线,试根据下面的问题求其解析式.
 - ① 当点 P 运动到 y 轴上时,点 P 的坐标是_______; 当 $\odot P$ 与 y 轴相切时,点 P 的坐标是_
 - ② 根据①的结果,直接写出 Γ 的解析式是_____
 - (2) 如图 2,当点 P 的横坐标为 -2 时,平面内一动直线 l: y = kx + 2k + 4 交 Γ 于点 M 、N ,连 MP 、NP ,求 $\triangle MNP$ 面积的最小值.
 - (3) 如图 3,作直线 PF 交 Γ 于点 Q,分别过点 P、Q 作两条不与 y 轴平行的直线交于点 T,使得直线 PT 和 QT 均与 Γ 有且仅有一个公共点,连 TF,求证:TF $\bot PQ$.

(第24题)