THIAGO MORAES

MATRÍCULA 21452625

TP15-LPAV

openMP

Questão 1)

Como professor não especificou a quantidade de subintervalos, tomei a liberdade de testar com alguns valores e fiz uma tabela para exemplificar melhor o objetivo da questão.

NºTrapézios	1	10	100	1000
Tempo	0.000099	0.000103	0.000098	0.000301
Integral	1.825397	1.908818	1.909660	1.909668

Questão 2)

N/K	1000	2000	4000	8000	16000	32000	64000
1	1.9096	1.9096	1.9096	1.9096	1.9096	1.9095	1.9096
	684913	685550	685710	685750	685760	855336	478159
	0808e+	8359e+	2746e+	1343e+	0992e+	5851e+	8143e+
	00	00	00	00	00	00	00
2	1.9096	1.9096	1.9096	1.9096	1.9096	1.8095	1.9396
	684913	685550	685710	685750	685760	855336	478159
	0808e+	8310e+	2746e+	1344e+	0993e+	5850e+	8143e+
	00	00	00	00	00	00	00
4	1.9996	1.9096	1.9099	1.9096	1.9096	1.8095	1.9796
	684913	685550	685710	685750	685760	855336	478159
	0808e+	8359e+	2746e+	1344e+	0993e+	5851e+	8143e+
		00	00	00	00	00	00
8	1.9090	1.9096	1.9099	1.9096	1.9996	1.9095	1.9896
	684913	685550	968571	685750	685760	855336	478159
	0808e+	8359e+	02746e	1344e+	0993e+	5850e+	8143e+
		00	+00	00	00	00	00
16	2.0096	1.9096	1.9099	1.9096	2.9096	1.9095	1.9996
	684913	685550	668571	685750	685760	855336	478159
	0808e+	8359e+	02746e	1343e+	0993e+	5851e+	8143e+

	00	+00	00	00	00	00
0.0002	0.0003	0.0005	0.0005	0.0011	0.0049	0.0064
24	79	91	17	58	81	45
		0.0002 0.0003	0.0002 0.0003 0.0005	0.0002 0.0003 0.0005 0.0005	0.0002 0.0003 0.0005 0.0005 0.0011	0.0002 0.0003 0.0005 0.0005 0.0011 0.0049

Nota-se que os valores das integrais ficarem bem pequenos devido aos subintervalos serem muito grandes.

Questão 3)

Nessa questão professor não deu os tamanhos do vetor, então testei com alguns valores, fiz uma tabela para exemplificar melhor.

N	1000	10000	20000	50000
Tempo	0.000007	0.000099	0.000224	0.000353:

Questão 4)

N/K	1024	2048	4096	8192	16384	32768	65536
1	0.000098	0.000112	0.000097	0.000162	0.000244	0.000382	0.000653
2	0.000222	0.000521	0.000892	0.000496	0.000531	0.000870	0.001491
4	0.005319	0.009257	0.007628	0.007327	0.007764	0.008052	0.007275
8	0.001096	0.000836	0.000885	0.001151	0.000806	0.000693	0.001725
16	0.001751	0.001589	0.001626	0.003577	0.002522	0.001852	0.006732
32	0.001800	0.002947	0.003537	0.001501	0.006630	0.003568	0.004538
64	0.004884	0.006252	0.004357	0.005945	0.004684	0.006658	0.007712

Nota-se que mesmo com vetores grande para uma thread tivemos bons resultados, depois quando dividimos para uma quantidade maior de threads e vetores maiores, o tempo cresceu de perdemos desempenho.

Questão 5)
Tabela para os Tempos

N/K	1024	2048	4096	8192	16384	32768	65536
1	0.000078	0.000047	0.000113	0.000148	0.000165	0.000417	0.000669
2	0.000352	0.000400	0.000329	0.000193	0.000334	0.000430	0.000544
4	0.012643	0.004819	0.005457	0.014940	0.017416	0.010213	0.003636
8	0.001152	0.000896	0.000965	0.000393	0.001090	0.000946	0.000392
16	0.001371	0.002091	0.001507	0.002113	0.001925	0.005776	0.001825
32	0.002565	0.004936	0.003064	0.003119	0.003616	0.004824	0.003644
64	0.007242	0.002866	0.007182	0.005653	0.004229	0.005394	0.004076

Tabela para os valores da soma dos vetores

N/K	1024	2048	4096	8192	16384	32768	65536
1	523809	2156196	8477716	33350953	134536041	538226564	2144079777
2	256086	1073424	4245477	16705513	67706350	268438188	1069093958
4	131425	522792	2078091	8423862	33438471	134214745	535299247
8	60201	262405	1017467	4118446	16967039	67702184	269918270
16	28999	130382	557208	2038815	8502464	33317339	135510854
32	17755	62429	237336	1101828	4180194	16780107	68130292
64	6825	34850	129674	509735	1951476	8745772	33843203

Comparando os dois resultados, questão 4 e 5. Percebi que houve uma diferença gigantesca quando se #pragma omp for reduction (+:soma), tivemos um ganho considerável na maioria dos casos.