Jacob Alspaw Assignment 4 EECS 341 – Bebek 21 November 2016

Question 1

A) Keys: {C,D,M,P,S,T}

Candidate Keys: CM and DM

M only appears in the left side of our FD's, therefore it must be a part of our candidate key. However, $M^+ = \{M\}$, so we need to pair M with C or D. Doing so we get the entire set of keys $\{C,D,M,P,S,T\}$.

B) Use DM as candidate key and put into canonical form

 $C \rightarrow D$: Redundant BCNF $C \rightarrow S$: Not BCNF R1 = { \underline{C} ,S} C \rightarrow S

 $DM \rightarrow P$: BCNF $R2 = \{\underline{D},\underline{M},P,C\}$ $DM \rightarrow PC$ $DM \rightarrow C$: BCNF $R3 = \{D,T\}$ $D \rightarrow T$

 $D \rightarrow T$: not BCNF

This does not preserve all dependencies because $C \rightarrow D$ is lost.

C) Use DM as candidate key and put into canonical form

 $C \rightarrow D$ 3NF $C \rightarrow S$ $R1 = \{\underline{C}, S, D\}$ $DM \rightarrow P$ $R2 = \{\underline{D}, \underline{M}, P, C\}$ $DM \rightarrow C$ $R3 = \{\underline{D}, T\}$

 $D \rightarrow T$

Question 2

Aa) $\{ACE\}^+ = \{A,B,C,D,E\}$

- Ab) R_1 is NOT in 3NF. The FD A \rightarrow B isn't trivial. A isn't a superkey of R_1 , and B isn't part of a candidate key for R1.
- Ac) R₁ is NOT in BCNF because it isn't in 3NF.

A BCNF decomposition:

R1a: $\{\underline{A},B\}$ A \rightarrow B R1b: $\{C,D\}$ C \rightarrow D

R1c: {A,C,E} Included to ensure lossless join and avoid losing E entirely.

- Ba) $\{AB\}^+ = \{A,B,F\}$
- Bb) R₂ is NOT in 3NF. The FD B→F isn't trivial. B isn't a superkey of R₂, and F isn't part of a candidate key for R₂.
- Bc) R_2 is NOT in BCNF because it isn't in 3NF.

A BCNF decomposition:

R2a: $\{\underline{B},F\}$ B \rightarrow F

R2b: {A,B} Included to ensure lossless join and avoid losing A entirely.

Note that AB→F isn't specifically included because it is trivially derived from B→F.

- Ca) For R₃ $\{A\}^+ = \{A,B\}$; For R₄ $\{C\}^+ = \{C,D,E,F\}$; $\{AC\}^+ = \{A,B,C,D,E,F\}$
- Cb) R₃ is in 3NF. For the FD A->B, A is a superkey of R₃. R₄ is NOT in 3NF. The FD D→EF isn't a trivial FD, and D isn't a superkey of R₄, and neither E nor F are part of a superkey in R₄.
- Cc) R₃ is in BCNF since A is a R₃ superkey. R₄ is NOT in BCNF because it isn't in 3NF. A BCNF decomposition:

R3: $\{\underline{A},B\}$ A \rightarrow B R4a: $\{\underline{C},D\}$ C \rightarrow D R4b: $\{D,E,F\}$ D \rightarrow EF

- Da) $\{CDE\}^+ = \{A,B,C,D,E\}$
- Db) R_5 is NOT in 3NF. The FD D \rightarrow B is not trivial and D isn't a superkey of R_5 , and B isn't part of a key in R5.
- Dc) R₅ is NOT in BCNF because it isn't in 3NF.

A BCNF decomposition:

R5a: $\{B,\underline{D}\}$ D \rightarrow B R5b: $\{A,C,E\}$ CE \rightarrow A

- Ea) $\{ACD\}^+ = \{A,B,C,D,E\}; \{BCD\}^+ = \{A,B,C,D,E\}; \{CDE\}^+ = \{A,B,C,D,E\}$
- Eb) R_6 is in 3NF. For every non-trivial FD, there is a candidate key that includes the "Y" part of X \rightarrow Y. For example, in A \rightarrow E, CDE is a candidate key, for BC \rightarrow A, ACD is candidate key, and for DE \rightarrow B, BCD is a candidate key).
- Ec) R₆ is NOT in BCNF. Example, A→E isn't a trivial FD, and A isn't a superkey of R₆. A BCNF decomposition:

R6a: $\{\underline{A}, E\}$ $A \rightarrow E$ R6b: $\{A, \underline{B}, \underline{C}\}$ $BC \rightarrow A$ R6c: $\{B, \underline{D}, \underline{E}\}$ $DE \rightarrow B$

Question 3

A) Attribute closure of AB⁺ = {ABCDEF}

 $AB \rightarrow A$

 $A \rightarrow D$

 $D \rightarrow C$

 $D \rightarrow F$

 $A \rightarrow E$

 $AB \rightarrow B$

- B) <u>Lossless:</u> After doing table of decomposition (Chase Algorithm), relation ABC has row filled with distinguished variables, therefore lossless. Also, R₁ ∩ R₃ → R₃. <u>Dependency Preserving:</u> Not dependency preserving, for example lost A → D. Answer: This relation is lossless, not dependency preserving.
- C) <u>Lossless</u>: After doing table of decomposition (Chase Algorithm), relation ABCE has a row filled with distinguished variables, therefore lossless. Also, R₁ ∩ R₂ → R₂. <u>Dependency Preserving</u>: All FD's can be found in the given relations. Answer: This relation is lossless and dependency preserving.

Question 4

A) The given set of FD's do not provide a minimum cover because there are a number of redundant variables on the RHS of the FD's. One minimal cover is:

 $A \rightarrow B$ $B \rightarrow C$ $AD \rightarrow E$ $BE \rightarrow F$ $D \rightarrow G$

- B) F⁺ is the set of all FD's entailed by F. So AD→BCEFG and all of the FD's implied by this FD is the collection of FD's that make up F⁺. The implied FD's include AD→A, AD→D, AD→AD, AD→BC, and so on. This results in over 2400 FD's.
- C) {B}+ = {B (trivial), C (FD 2)}
 {G}+ = {G (trivial)}
 {AD}+ = {A (trivial), D (trivial), B (FD 1), C (FD 3), E (FD 3), G (FD 3)}