EMISSION SOURCES - EMISSION CAPS AND INDIVIDUAL EMISSIONS LIMITATIONS

Permit Numbers 50607, PSDTX331M1, PSDTX804, and PSDTX1017M1

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

See Attachment D for list of Emission Point Nos. (EPNs) and Source Descriptions for emission points included in each Source Category.

EMISSION CAPS (NORMAL OPERATIONS) (10)

AIR CONTAMINANT DATA

Source Categories	Air Contaminant Name (3)	<u>Emissio</u> lb/hr	on Rates * TPY**
Combustion Units, Cooling Towers, Flares/Vapor Combustor, Fugitives (4),	VOC Benzene	397.2 18.28	1,128 36.73
Loading, Process Vents, Storage Tanks, and Wastewater			
Combustion Units, Flares/Vapor Combustor, and Process Vents	NO _x CO	197.4 506.6	832.5 1,908
	SO ₂	202.9	626.9
Combustion Units, Cooling Towers, and Process Vents	PM/PM ₁₀	56.92	214.3
Combustion Units, Flares/Vapor Combustor, Fugitives, Process Vents, and Storage Tanks	H ₂ S	3.20	12.13

EMISSION SOURCES - EMISSION CAPS AND INDIVIDUAL EMISSIONS LIMITATIONS INDIVIDUAL EMISSION LIMITATIONS

Emission	Source	AIR COI Air Contaminant			DATA ion Rates *
Point No. (1)	Name (2)	Name (3)		lb/hr	TPY**
F-028	DHT/ASU (4)	NH ₃	0.01		0.01
F-100	No. 1 Crude (4)	NH ₃	0.01		0.02
F-850	South Merox Unit (4)	NH₃	0.01		0.01
F-1000	POU (4)	NH_3	0.01		0.01
F-1400	Vacuum (4)	NH_3	0.01		0.01
F-1500	HCU (4)	NH ₃	0.01		0.02
F-2000	ROSE Unit (4)	NH ₃	0.01		0.01
F-2200	DOT/Reformate Splitter (4)	NH ₃	0.17		0.76
F-2300	ATS (4)	NH_3	0.01		0.01
F-2300	SWS (4)	NH ₃	0.01		0.04
F-2400	FCCU (4)	NH ₃	0.04		0.17
F-2400	FCCU Gas Con (4)	NH ₃	0.01		0.01
F-2400	FCCU Merox (4)	NH ₃	0.01		0.01
F-3700	HCU (4)	NH_3	0.01		0.01
F-3800	No. 2 HDU (4)	NH ₃	0.01		0.02
F-3900	LEU (4)	NH ₃	0.01		0.01
F-4000	No. 1 and No. 2 SRU (4)	NH ₃	0.01		0.04
H-028	Crude Charge Heater 1	NO_x CO VOC SO_2 PM/PM_{10}	11.18 14.63 1.10 6.17 1.51		23.41 44.41 4.80 7.56 6.63

H-036	Crude Charge Heater 1	NO _x CO VOC SO ₂ PM/PM ₁₀	11.18 14.61 1.10 7.95 1.51	31.56 55.54 4.80 9.23 6.63
H-016	Vacuum Unit Charge Heater	NO _x CO VOC SO ₂ PM/PM ₁₀	4.66 9.57 0.72 6.24 0.99	20.12 19.66 3.14 6.75 4.34
H-021	ROSE "DAGO" Heater	NO _x CO VOC SO ₂ PM/PM ₁₀	1.31 2.69 0.24 1.18 0.33	4.71 4.71 0.84 1.60 1.17
H-022	Asphalt Heater	NO _x CO VOC SO ₂ PM/PM ₁₀	0.98 1.96 0.15 1.09 0.20	4.28 3.96 0.64 1.38 0.89
H-020	Isostripper Reboiler Heater	NO_x CO VOC SO_2 PM/PM_{10}	1.99 3.12 0.27 0.47 0.37	4.90 3.83 0.75 1.16 1.04
B-007	"BTX" Boiler	NO _x CO VOC SO ₂ PM/PM ₁₀	12.33 18.02 1.26 0.13 1.74	34.16 27.76 4.70 0.44 6.49
H-043	H043 BTX Reboil Heater	NO _x CO VOC SO ₂ PM/PM ₁₀	1.34 2.69 0.20 1.64 0.28	5.88 5.50 0.88 1.90 1.22

H-044	BTX Reboil Heater	NO_x CO VOC SO_2 PM/PM_{10}	1.83 3.65 0.28 1.50 0.39	5.75 4.93 0.89 1.68 1.22
B-004	Boiler 6F1-A & Boiler 6F1-B	NO_x CO VOC SO_2 PM/PM_{10}	25.97 9.28 0.80 3.79 1.11	72.43 12.94 2.23 4.77 3.08
B-006	East Plant Boiler Emissions	NO_x CO VOC SO_2 PM/PM_{10}	13.07 7.83 0.59 3.67 0.81	49.82 12.98 2.24 4.52 3.09
H-041	DOT H2 Recycle Furnace	NO_x CO VOC SO_2 PM/PM_{10}	1.10 1.83 0.16 0.88 0.23	2.39 2.00 0.36 0.78 0.50
H-040	Steam Methane Reformer Heater	NO_x CO VOC SO_2 PM/PM_{10}	4.96 2.99 0.27 1.31 0.37	14.56 4.37 0.78 1.60 1.08
H-039	No. 1 SRU Hot Oil Heater	NO_x CO VOC SO_2 PM/PM_{10}	0.69 0.50 0.04 0.33 0.05	1.60 2.17 0.16 0.31 0.23
H-047	No. 2 SRU Hot Oil Heater	NO_x CO VOC SO_2 PM/PM_{10}	1.39 0.14 0.14 1.21 0.19	6.07 0.15 0.61 1.30 0.84

H-015	Lubr. Oil Crude Atmospheric Heater	NO_x CO VOC SO_2 PM/PM_{10}	1.07 1.90 0.17 0.02 0.24	4.01 3.32 0.76 0.08 1.05
H-037	HDU Charge Heater 2	NO_x CO VOC SO_2 PM/PM_{10}	2.68 3.28 0.26 1.34 0.36	5.96 3.38 0.58 0.24 0.81
H-038	HDU Reboiler Heater 2	NO_x CO VOC SO_2 PM/PM_{10}	1.85 2.88 0.25 0.88 0.34	4.11 3.21 0.55 0.99 0.77
H-014	Naphtha Splitter Reboiler	NO_x CO VOC SO_2 PM/PM_{10}	4.16 4.60 0.34 1.96 0.48	13.11 6.05 1.09 2.09 1.50
H-026	Glycol Contactor Heater	NO_x CO VOC SO_2 PM/PM_{10}	0.33 0.24 0.02 0.16 0.02	1.30 1.04 0.08 0.17 0.11
H-034	H.C.U. Recycle Heater	NO_x CO VOC SO_2 PM/PM_{10}	3.47 4.99 0.37 2.40 0.52	11.24 7.02 1.21 2.24 1.67
H-035	H.C.U. Debutanizer Reboiler Heater	NO _x CO VOC SO ₂ PM/PM ₁₀	2.66 4.79 0.36 2.21 0.50	11.67 9.26 1.57 2.81 2.17

H-018	H.C.U. Fractionation Heater	NO _x CO VOC SO ₂ PM/PM ₁₀	4.24 2.82 0.21 1.85 0.29	10.52 3.05 0.53 0.93 0.73
H-019	H.C.U. Fractionation Heater	NO_x CO VOC SO_2 PM/PM_{10}	2.70 1.57 0.13 1.37 0.19	8.02 2.33 0.40 1.51 0.55
H-030	No. 2 Reformer Charge Heater	NO_{x} CO VOC SO_{2} PM/PM_{10}	13.11 9.54 1.03 5.42 1.43	32.81 31.64 3.12 6.24 4.31
H-032	No. 2 Reformer Charge Heater	NOx CO VOC SO ₂ PM/PM ₁₀	6.27 4.34 0.66 3.58 0.91	15.99 22.86 2.02 4.60 2.80
H-033	No. 2 Reformer Stab. Reboiler	NO_x CO VOC SO_2 PM/PM_{10}	1.31 2.04 0.18 0.84 0.24	4.00 3.12 0.54 1.03 0.74
H-045	DHT Charge Heater	NO_x CO VOC SO_2 PM/PM_{10}	2.05 2.95 0.22 1.93 0.31	8.98 5.53 0.97 1.82 1.34
H-046	Fractionator Feed Heater	NO_x CO VOC SO_2 PM/PM_{10}	2.88 4.59 0.34 2.87 0.48	12.59 9.06 1.51 3.11 2.09

H-023	Tracing Oil Heater	NO_x CO VOC SO_2 PM/PM_{10}	0.09 0.15 0.01 0.08 0.02	0.27 0.22 0.04 0.08 0.06
H-004	Lubr. HDS Charge Heater	NO_x CO VOC SO_2 PM/PM_{10}	0.35 0.76 0.05 0.01 0.07	1.54 3.32 0.23 0.03 0.32
H-031	No. 1 HDU Stripper Reboiler Heater	NO_x CO VOC SO_2 PM/PM_{10}	0.60 1.21 0.09 0.79 0.13	2.64 5.29 0.40 0.85 0.55
H-010	No. 1 HDU Reactor Charge Heater	NO_x CO VOC SO_2 PM/PM_{10}	0.79 1.57 0.12 1.03 0.16	3.44 6.89 0.52 1.11 0.71
H-011	No. 1 Ref. Stabilizer Reboiler Heater	NO_x CO VOC SO_2 PM/PM_{10}	0.52 0.83 0.06 0.54 0.09	2.26 3.61 0.27 0.59 0.37
H-012	Reformer Charge Heater	NO_x CO VOC SO_2 PM/PM_{10}	5.41 7.56 0.57 4.94 0.78	23.72 16.86 2.48 5.34 3.43
H-013	No. 1 Stabilizer Reboiler Heater	NO_x CO VOC SO_2 PM/PM_{10}	0.99 0.66 0.05 0.44 0.07	4.34 1.99 0.22 0.47 0.30

B-005	West Plant No. 2 Boiler	NO_x CO VOC SO_2 PM/PM_{10}	3.24 3.88 0.29 2.53 0.40	14.19 8.90 1.27 2.74 1.76
S-007, S-008, S-031, S-032, S-033, S-034, S-035, S-036, S-037, S-038, S-039, S-040, S-041, S-042, S-043, S-044, S-100, S-101, S-102, S-108, S-114, S-115, S-116, S-119, S-120, S-127, S-128, S-129, S-130, S-200, S-201, S-206, S-207, S-208, S-209, S-210, S-211, S-212, S-213, S-214, S-215, S-216, S-217, S-218, S-219, S-220, S-221, S-222, S-223, S-224, S-225, S-300, S-301, S-302, S-303, S-304, S-305, S-306, S-308, S-309, S-310, S-311, S-312, S-313, S-314, S-315, S-316, S-317, S-318, S-316, S-317, S-318, S-331, S-332, S-334, S-335, S-336, S-337, S-338, S-339, S-340, S-401, S-402, S-680-6, S-680-7, S-680-8, S-680-9		VOC	83.37	132.4
FL-003, FL-004, FL-006 FL-501, FL-005	Subcaps for Flares	NO _x CO VOC SO ₂	8.22 42.94 55.24 2.87	17.32 90.11 118.63 4.74

F-28, F-100 (#1 Crude), F-100 (Desalter), F-400, F-500, F-620, F-660 (EPItFlareE), F-660 (EPItFlareS), F-660 (West Plant Flare System), F-700, F-820, F-830S, F-850 (S Merox Unit), F-850 (Tank Farm), F-900, F-1000, F-1200, F-1400, F-1500, F-2000, F-2100 F 2200 (DOT/Ref Splitter), F-2200 (East Plant Alky Splitter), F-2300 (ATS), F-2300 (SWS), F-2400 (FCCU), F-2400 (FCCU) Merox), F-2500, F-2600, F-2700, F-2800 (EP Cool Twr), F-2800(EP Utilities), F-3700 (HCU Hot Oil Drum), F-3800, F-3900 (LEU), F-3900 (HCU), F-4000, F-4300, F-5400, F-2600N, F-660 (EPItFlareW), F-680 (WWTP Tanks), F-680 (WWTP Tanks), F-680W, F-800E, F-800W, F-830 (RAIL), F-830E, F-830N, F-830 (West Rack), F-830W, F-850N, F-850S, F-ROSE	Equipment Fugitives (4)(9)	VOC	130.87	573.57
F-0670	West Plant Cooling Tower	VOC PM/PM ₁₀	0.25 0.36	1.10 1.58
F-2810	East Plant Cooling Tower	VOC PM/PM ₁₀	1.68 2.40	7.36 10.52
F-3670	No. 2 West Plant Cooling Tower	VOC PM/PM ₁₀	0.59 0.84	2.57 3.69

F-0680	F-0680 Open-Top Biotreatment	VOC	23.08	36.23
F-0671	No. 2 API Separator	VOC	0.48	0.95
F-0682	Crude Unit Sump	VOC	3.27	6.50
F-0683	No. 1 Reformer Sump	VOC	1.66	3.31
F-0684	600 Unit Sump	VOC	0.01	0.03
F-0685	R. R. Rack Sump	VOC	0.10	0.20
F-0686	Truck Loading Sump	VOC	0.09	0.18
F-0687	Landfarm	VOC	2.26	4.50
F-0688	Vacuum Unit Sump	VOC	2.08	4.14
F-0689	Crude Unload Sump	VOC	0.24	0.47
F-3110	No. 2 Reformer Sump	VOC	0.59	1.18
V-006	No. 1 Reformer Regeneration	CO VOC Cl ₂	37.50 1.40 0.40	1.50 0.06 0.02
V-007	No. 2 Reformer Regeneration	CO VOC Cl ₂	5.00 0.04 0.01	14.02 0.13 0.04
V-010	FCCU Regeneration Vent	NO_x CO VOC SO_2 PM/PM_{10} H_2SO_4	62.69 195.47 6.16 43.64 30.00 13.69	96.32 184.29 14.51 52.65 69.98 59.96
V-008, V-009	Subcaps for Sulfur Plants	NO _x CO VOC SO ₂ PM/PM ₁₀ TRS	6.16 29.09 12.21 48.13 0.37 2.26	14.12 116.32 38.43 98.22 1.58 9.94
V-003	A.T.S. Secondary Absorber	SO ₂	0.09	0.01

L-001	Oil Truck Loading Rack	VOC	0.02	0.02
L-002	Gasoline Truck Loading Rack	VOC	16.08	6.48
L-004	Tank Car Loading Rack	VOC	0.01	0.01
L-005	Aromatic Rail Load Rack Fugitives	VOC	7.56	2.05
VCU-1	Loading Rack Vapor Combustor	NO _x CO VOC	0.86 2.50 9.38	0.54 1.56 5.78

EMISSION SOURCES - EMISSION CAPS AND INDIVIDUAL EMISSIONS LIMITATIONS

PLANNED MAINTENANCE, STARTUP, AND SHUTDOWN (MSS) EMISSION LIMITATIONS

AIR CONTAMINANT DATA

Source Categories	Air Contaminant	Emiss	sion Rates *	
	Name (3)	lb/hr	TPY**	
Cooling Towers, Combustion Units,	Rates From January 1, 2011	2010 Through	December 31,	
Flares/Vapor Combustor	VOC (5) (6)	4709.54	260.63	
Fugitives (4),	NO _x (5) (6)	302.76	43.07	
Loading,	CO (5) (6)	790.39	173.64	
Process Vents,	SO ₂ (5) (6)	868.02	237.24	
Storage Tanks, and	$PM/PM_{10}/PM_{2.5}$ (5) (6)	3.14	0.57	
Wastewater	H ₂ S (5) (6)	2.37	2.44	
	Benzene (5) (6) (8)	89.50	4.89	
	CS ₂ (6)	0.33	0.02	
	COS (6)	1.89	0.11	
	Rates Beginning January 1, 2012			
	VOC (5) (7)	4711.24	99.82	
	$NO_{x}(\dot{5})'(\dot{7})'$	305.53	17.71	
	CO (5) (7)	804.36	42.14	
	SO ₂ (5) (7)	894.13	61.54	
	PM/PM ₁₀ /PM _{2.5} (5) (7)	3.14	0.57	
	H ₂ S (5) (7)	2.65	0.52	
	Benzene (5) (7) (8)	90.70	2.90	
	CS ₂ (7)	0.33	0.02	
	COS (7)	1.89	0.11	

EMISSION SOURCES - EMISSION CAPS AND INDIVIDUAL EMISSIONS LIMITATIONS

- (1) Emission point identification either specific equipment designation or emission point number (EPN) from a plot plan.
- (2) Specific point source names. For fugitive sources, use an area name or fugitive source name.
- (3) VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1
 - NO_x total oxides of nitrogen
 - CO carbon monoxide
 - SO₂ sulfur dioxide
 - PM particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}
 - PM₁₀ particulate matter equal to or less than 10 microns in diameter PM_{2.5} particulate matter equal to or less than 2.5 microns in diameter
 - Cl₂ chlorine
 - COS carbonyl sulfide
 CS₂ carbon disulfide
 H₂S hydrogen sulfide
 H₂SO₄ sulfuric acid
 NH₃ ammonia
 - TRS total reduced sulfur
- (4) Emission rate is an estimate and compliance is demonstrated by meeting the requirements of the applicable special conditions and permit application representations.
- (5) Planned MSS VOC, NO_x, CO, SO₂, PM₁₀, H₂S, and Benzene allowable emissions are NOT included in the Emission Caps (Normal Operations) allowable emissions.
- (6) The MSS emission rates from January 1, 2010 through December 31, 2010, shall be the sum of the monthly MSS emissions for calendar year (CY) 2010. The MSS emissions for this period shall not include the MSS emissions prior to January 1, 2010. Beginning January 1, 2011, MSS emissions shall be based on a rolling 12-month period.
- (7) The MSS emission rates beginning January 1, 2012 through December 31, 2012, shall be the sum of the monthly MSS emissions for CY 2012. The MSS emissions for this period shall not include the MSS emissions prior to January 1, 2012. Beginning January 1, 2013, MSS emissions shall be based on a rolling 12-month period.
- (8) Benzene MSS allowables are included in the VOC allowables.
- (9) Ammonia fugitive allowable emissions are specified by EPN.
- (10) These emission caps have been carried forward from the flexible permit and do not include MSS emissions. The only emission cap that is limiting (lower than the sum of the subcaps and individual emission rate limits for that air contaminant) is the hourly cap for NO_x.

*	Emission rates schedule:	are based	on and	the	facilities	are	limited	by	the	following	maximum	operatin	g
	Hrs/day	Day	/s/week		Wee	ks/ye	ear or_	8,7	60_I	Hrs/year			

** Compliance with annual emission limits is based on a rolling 12-month period.

EMISSION SOURCES - EMISSION CAPS AND INDIVIDUAL EMISSIONS LIMITATIONS

Dated: December 10, 2010