Song Mood Classification

Classifying songs into happy or sad using Spotify's audio features

By Ryan Moerer

Motivation

- Try my hand at song classification.
- Gain insight into what characteristics of a song contribute to making it happy or sad.
- Fit, tune, and compare several popular machine learning models.
- Be able to make accurate predictions about whether a song is happy or sad.

Data Collection

Spotify API

- Spotify's API provides a variety of audio features and information for each track in its collection:
 - Acousticness
 - Danceability
 - Instrumentalness
 - Energy
 - Speechiness
 - Valence (Musical positivity)
 - Liveness (Likelihood that a track is live)
 - Loudness
 - Key (Pitch Class notation. E.g. 0 = C, 1 = C #/D, 2 = D, and so on)
 - Mode (1 = Major, 0 = Minor)
 - o Tempo
 - Time Signature (ranges from 3 to 7 indicating time signatures of "3/4", to "7/4")
 - Explicit
 - Duration

Challenges

- Finding a sample of songs accurately labelled happy and sad.
- Creating a representative sample of happy and sad songs.
- Combining various Spotify API calls into a single dataframe.

Data Collection Method

- Get a subset of 50 playlists entitled "happy songs" and "sad songs" respectively.
- Get all track id's for all playlists.
- Get track meta-information (name, artist, album, etc.).
- Get audio features for each track.
- Combine all information into single dataframe.
- Create balanced dataset.

Dataset

- 4555 Happy songs
- 4555 Sad Songs
- y = {1: happy, 0: sad}

playlist_name	Sad Song
playlist_id	37i9dQZF1DX7qK8ma5wgG
name	Bedroom Ceilin
album_name	Bedroom Ceilin
artist	Sod
id	1jXKRARVJQFG3jTvZEgxs
popularity	5.
explicit	False
danceability	0.4
energy	0.41
key	
loudness	-7.70
mode	
speechiness	0.12
acousticness	0.72
instrumentalness	(
liveness	0.069
valence	0.23
tempo	125.92
duration_ms	18008
time_signature	
у	(

Data Cleaning & Pre-Processing

- Only include information relevant to the musical characteristics of the track.
- Remove unnecessary/noisy features.
- One-hot encoding categorical data?
 - Mode and explicit already encoded as binary features.
 - Key already ordinally ranked.
- Split dataset into testing and training set (70% training, 30% testing, stratify=True).
- Further preprocessing/variable transformation done on model by model basis.

False
0.545
0.78
7
-4.867
0
0.0436
0.0309
4.64e-05
0.0828
0.458
125.014
255093

Data Exploration

Correlation Matrix of Features

explicit -	1.00	0.13	-0.00	0.00	-0.01	-0.07	0.27	-0.05	-0.03	0.02	-0.04	-0.00	-0.13
danceability -	0.13	1.00	0.23	0.01	0.13	-0.09	0.18	-0.28	-0.08	0.00	0.48	-0.12	-0.19
energy -	-0.00	0.23	1.00	0.03	0.74	-0.05	0.11	-0.76	-0.16	0.17	0.54		0.00
key -	0.00	0.01	0.03	1.00	0.02	-0.11	-0.00	-0.02	0.00	0.00	0.03	0.03	-0.00
loudness -	-0.01	0.13	0.74	0.02	1.00	-0.02	-0.01	-0.56	-0.30	0.08	0.29	0.11	0.03
mode -	-0.07	-0.09	-0.05	-0.11	-0.02	1.00	-0.10	0.06	-0.01	-0.01	-0.01	0.02	-0.01
speechiness -	0.27	0.18	0.11	-0.00	-0.01	-0.10	1.00	-0.07	-0.03	0.08		0.07	-0.17
acousticness -	-0.05	-0.28	-0.76	-0.02	-0.56	0.06	-0.07	1.00	0.14	-0.10	-0.42	-0.12	-0.01
instrumentalness -	-0.03	-0.08	-0.16	0.00	-0.30	-0.01	-0.03		1.00	0.00	-0.13	-0.01	-0.07
liveness -	0.02	0.00	0.17	0.00	0.08	-0.01	0.08	-0.10	0.00	1.00	0.12	0.03	-0.03
valence -	-0.04	0.48	0.54	0.03	0.29	-0.01		-0.42	-0.13	0.12	1.00	0.07	-0.14
tempo -	-0.00	-0.12		0.03	0.11	0.02	0.07	-0.12	-0.01	0.03	0.07	1.00	-0.01
duration_ms -		-0.19	0.00	-0.00	0.03	-0.01	-0.17	-0.01	-0.07	-0.03	-0.14	-0.01	1.00
	explicit -	danceability -	energy -	key -	loudness -	mode -	speechiness -	acousticness -	strumentalness -	liveness -	valence -	- odwat	duration_ms -

- 1

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

- -0.6

3D PCA Plot of Features

Modeling

Methodology

- Model choices:
 - K Nearest Neighbors
 - Logistic Regression
 - Random Forest
 - An ensemble approach to modelling that fits a multitude of decision trees and outputs the class selected by the most trees.
- Use cross-validation and grid search to tune hyperparameters.
- Metric of interest: Accuracy

K Nearest Neighbors

```
# standardize the training features
scaler = StandardScaler()
X train scaled = scaler.fit transform(X train)
# create param grid
params = {'n neighbors': list(range(1,51))}
# KNN classifier with weights computed as inverse of distance
knn = KNeighborsClassifier(weights='distance')
# grid search to tune k
grid search knn = GridSearchCV(knn, param grid=params, scoring='accuracy', cv=10)
grid search knn.fit(X train scaled, y train)
# best training accuracy and params
knn gridsearch.best params , knn gridsearch.best score
({'n neighbors': 21}, 0.832453080627238)
```

Logistic Regression

```
# create param grid
params = {'C':10**np.linspace(-4,5,20)}
# Logistic Regression with 11 regularization
log reg = LogisticRegression(penalty='l1', solver='liblinear', random state=42)
# grid search to tune penalty parameter
log gridsearch = GridSearchCV(log reg, params, scoring='accuracy', cv=10)
log gridsearch.fit(X train scaled, y train)
# best params/best cross-validated accuracy
log gridsearch.best params , log gridsearch.best score
({'C': 0.023357214690901212}, 0.8350192410585671)
```

Logistic Regression Coefficients

valence	1.233662
energy	0.843703
mode	0.160252
danceability	0.138826
liveness	0.019129
tempo	0.000000
instrumentalness	0.000000
key	0.000000
speechiness	-0.075846
duration_ms	-0.144780
loudness	-0.326367
explicit	-0.329135
acousticness	-0.556455

Random Forest

```
# param grid
params = {'max features': [1,2,3,4,5,6]}
# RF model with 1000 trees
rf clf = RandomForestClassifier(n estimators=1000, random state=42)
# gridsearch to find best number of features to sample at each split
rf gridsearch = GridSearchCV(rf clf, param grid=params, cv=5)
rf_gridsearch.fit(X_train, y train)
# best params/cross-validate accuracy
rf gridsearch.best params , rf gridsearch.best score
({'max features': 2}, 0.8435143061295829)
```

Feature Importance

Test Set Results

Model	Precision	Recall	F1 Score	Accuracy
Random Forest	0.836	0.826	0.831	0.832
Logistic Regression	0.834	0.803	0.817	0.821
KNN	0.820	0.803	0.812	0.814

Нарру

	name	artist	happy_prob	у
0	Accidentally In Love - From "Shrek 2" Soundtrack	Counting Crows	0.994	1
1	Valerie (feat. Amy Winehouse) - Version Revisited	Mark Ronson	0.996	1
2	Tamma Tamma Again	Bappi Lahiri	0.994	1
3	Classic	MKTO	0.999	1
4	Good Time	Owl City	0.993	1
5	Move Your Feet	Junior Senior	0.995	1
6	Bad Vibrations	Val Astaire	0.995	1
7	You Drive Me Crazy - (Single Version) [Remaste	Shakin' Stevens	0.993	1
8	Out of My League	Fitz and The Tantrums	0.994	1
9	Don't Slack (from Trolls World Tour)	Anderson .Paak	0.993	1

Sad

	name	artist	sad_prob	у
0	Rainbow	Josh Rabenold	0.9922	0
1	Skinny Love	Birdy	0.9960	0
2	High Hopes	Kodaline	0.9980	0
3	Behind the page	Kwon Jin Ah	0.9970	0
4	Skinny Love	Birdy	0.9960	0
5	Bad Day	IU	0.9940	0
6	Wish	Urban Zakapa	0.9900	0
7	Love Like This - Acoustic	Kodaline	0.9940	0
8	DOWN	PARK WON	0.9930	0
9	lovely	Billie Eilish	0.9930	0

Areas For Improvement

- Include other moods.
- Larger, more representative sample of data.
- Include other characteristics of songs (Song title, lyrics, artist, etc.).
- Spend more time on tuning hyperparameters.
- Try smarter/different models