

planetmath.org

Math for the people, by the people.

compound matrix

Canonical name CompoundMatrix
Date of creation 2013-03-22 16:13:39
Last modified on 2013-03-22 16:13:39
Owner Mathprof (13753)
Last modified by Mathprof (13753)

Numerical id 9

Author Mathprof (13753)

Entry type Definition
Classification msc 15-00
Defines rth adjugate

Defines Sylvester -Franke theorem

Suppose that A is an $m \times n$ matrix with entries from a field F and $1 \le r \le \min(m, n)$. The r^{th} compound matrix or r^{th} of A is the $\binom{m}{r} \times \binom{n}{r}$ matrix whose entries are $\det A[\alpha, \beta]$, $\alpha \in Q_{r,m}$ and $\beta \in Q_{r,n}$, arranged in lexicographic order and we use submatrix notation. The notation for this matrix is $C_r(A)$.

Properties

- 1. $C_r(AB) = C_r(A)C_r(B)$ when r is less than or equal to the number of rows or columns of A and B
- 2. If A is nonsingular, the $C_r(A)^{-1} = C_r(A^{-1})$.
- 3. If A has complex entries, then $C_r(A^*) = (C_r(A))^*$.

4.
$$C_r(A^T) = (C_r(A))^T$$

5.
$$C_r(\overline{A}) = \overline{C_r(A)}$$

6. For any
$$k \in F$$
 $C_r(kA) = k^r C_r(A)$

7.
$$C_r(I_n) = I_{\binom{n}{r}}$$

8.
$$\det(C_r(A)) = \det(A)^{\binom{n-1}{r-1}}$$
 (Sylvester — Franke theorem)