

Linear Algebra

Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee rabiee@sharif.edu

Maryam Ramezani maryam.ramezani@sharif.edu

Overview

Introduction

Linear Transformation (Linear Map)

Rotation-Projection-Reflection

Onto Linear Transformation

One-to-One Linear Transformation

Multiple Transformation

Inner Product and Linear Transformation

Introduction

Matrix is a linear transformation: map one vector to another vector

$$A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n, y \in \mathbb{R}^m$$
: $y_{m \times 1} = A_{m \times n} x_{n \times 1}$
 $A : \mathbb{R}^n \to \mathbb{R}^m$

■ Input-output

Domain, codomain, and range of $T: \mathbb{R}^n \to \mathbb{R}^m$

Example

Let
$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$, and define a transformation $T : \mathbb{R}^2$

 $\rightarrow \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$, so that

$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{bmatrix}$$

- a. Find $T(\mathbf{u})$, the image of \mathbf{u} under the transformation T.
- b. Find an \mathbf{x} in \mathbb{R}^2 whose image under T is \mathbf{b} .
- c. Is there more than one x whose image under T is b?
- d. Determine if c is in the range of the transformation T.

Linear Transformation (Linear Map)

Linear mapping

Definition

Let V and W be vector spaces over the field \mathbb{F} . A linear transformation (or a linear map) from V into W is a function $T:V\to W$ that satisfies following properties for all x,y in V and all scalars a in \mathbb{F} :

$$T(x + y) = T(x) + T(y)$$
$$T(\alpha x) = \alpha T(x)$$

Notes

- $\Box T(0) = 0$
- ☐ Transformation preserves linear combinations

$$T(\alpha_1 x_1 + \dots + \alpha_n x_n) = \alpha_1 \big(T(x_1) \big) + \dots + \alpha_n \big(T(x_n) \big)$$

Linear mapping

Example

Which are linear mapping?

- \square zero map $0: V \to W$
- \square identity map $I:V\to V$
- \square Let $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F})$ be the **differentiation** map defined as $T_{\mathcal{P}(z)} = \mathcal{P}(z)$
- Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the map given by T(x, y) = (x 2y, 3x + y)
- $T(x_1, ..., x_n) = (a_{11}x_1 + ... + a_{1n}x_n, ..., a_{m1}x_1 + ... + a_{mn}x_n)$
- \square $T: \mathbb{F} \to \mathbb{F}$ given by T(x) = x 1

Linear mapping

Theorem

Let (v_1, \ldots, v_n) be a ordered basis of finite-dimensional vector space V over the field $\mathbb F$ and (w_1, \ldots, w_n) an arbitrary list of any vectors in W. Then there exists a unique linear map

$$T: V \to W$$
 such that $T(v_i) = w_i$.

Proof

Rotation-Projection-Reflection

Rotation with $oldsymbol{ heta}$ degree

$$\square R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Projection

Example

If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$

projects points in \mathbb{R}^3 onto the x_1x_2 -plane because

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$$

Projection

Transformation Image of the Unit Square Standard Matrix

Projection onto the x_1 -axis

 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

Projection onto the x_2 -axis

 $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Projection

Theorem

Suppose that V is a vector space and $P: V \rightarrow V$ is a linear transformation.

- a) If $P^2 = P$ then P is called a **projection**.
- b) If V is an inner product space and $P^2 = P = P^*$ then P is called an orthogonal projection.

We furthermore say that P projects onto range(P).

- □Projection of vector v on:
 - ☐Two orthogonal vectors
 - ☐ Two non-orthogonal vectors

Projection on θ Line

$$P = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix}$$

$$P^2 = P$$

Reflection in the θ Line

$$\square R = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$$

$$R^2 = I$$

Reflection

Transformation Image of the Unit Square Standard Matrix

Reflection through the x_1 -axis

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Reflection through the x_2 -axis

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Reflection through the line $x_2 = x_1$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Reflection

Reflection through the line $x_2 = -x_1$

$$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

Reflection through the origin

 $egin{bmatrix} -1 & 0 \ 0 & -1 \end{bmatrix}$

Applications

Uniform Scaling

$$\square S = sI = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix}$$

Non-uniform Scaling

$$\Box S = \begin{bmatrix} s_{\chi} & 0 \\ 0 & s_{y} \end{bmatrix}$$

Shearing

Example

Let
$$A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$
. The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$

A typical shear matrix is of the form

$$S = \begin{pmatrix} 1 & 0 & 0 & \lambda & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

sheep

sheared sheep

Shearing

A shear parallel to the x axis results in $\dot{x} = x + \lambda y$ and $\dot{y} = y$. In matrix form:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Similarly, a shear parallel to the y axis has $\dot{x} = x$ and $\dot{y} = y + \lambda x$.

In matrix form:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Difference Matrix

Note

$$D_{(n-1)\times n} = \begin{bmatrix} -1 & 1 & 0 & 0 & \cdots & 0 \\ 0 & -1 & 1 & 0 & \cdots & 0 \\ \vdots & & \ddots & \ddots & & \vdots \\ 0 & 0 & \dots & -1 & 1 & 0 \\ 0 & 0 & \dots & 0 & -1 & 1 \end{bmatrix}$$

$$D: \mathbb{R}^n \to \mathbb{R}^{n-1} \quad \Rightarrow \quad D \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \\ \vdots \\ x_n - x_{n-1} \end{bmatrix}$$

Example

$$\begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 3 \\ 2 \\ 5 \end{bmatrix} = \begin{bmatrix} -1 - 0 \\ 3 - (-1) \\ 2 - 3 \\ 5 - 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \\ -1 \\ 3 \end{bmatrix}$$

Selectors

 \square an $m \times n$ selector matrix: each row is a unit vector (transposed)

$$A = \begin{bmatrix} e_{k_1}^T \\ \vdots \\ e_{k_m}^T \end{bmatrix}$$

multiplying by A selects entries of x:

$$Ax = (x_{k_1}, x_{k_2}, \dots, x_{k_m})$$

Selectors

Example

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 0 \\ -3 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

- ☐ Selecting first and last elements of vector:
- □ Reversing the elements of vector:

Slicing

□ Keeping m elements from r to s (m=s-r+1)

$$\begin{bmatrix} 0_{m\times(r-1)} & I_{m\times m} & 0_{m\times(n-s)} \end{bmatrix}$$

Example

□ Slicing two first and one last elements:

$$\begin{bmatrix} -1\\2\\0\\-3\\5 \end{bmatrix} = \begin{bmatrix} 0\\-3 \end{bmatrix}$$

Down Sampling

□ Down sampling with k: selecting one sample in every k samples

Example

$$K = 2$$
?

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ \vdots \end{bmatrix} = \begin{bmatrix} x_1 \\ x_3 \\ x_5 \\ \vdots \end{bmatrix}$$

Applications

Rotation matrix

(i)
$$\sin 2A = 2 \sin A \cos A$$

(ii)
$$\cos 2A = \cos^2 A - \sin^2 A$$

$$R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \Rightarrow R^n = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}^n = \begin{bmatrix} \cos(n\theta) & -\sin(n\theta) \\ \sin(n\theta) & \cos(n\theta) \end{bmatrix}$$

□ Adjacency matrix

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 2 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Onto Linear Transformation

Onto Mapping

□ A mapping T : $\mathbb{R}^n \to \mathbb{R}^m$ is said to be onto (surjective) \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of at least one **x** in \mathbb{R}^n

Onto (surjective) Transformation

Definition

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto if, for every vector b in \mathbb{R}^m , the equation T(x) = b has at least one solution x in \mathbb{R}^n .

Note

Here are some equivalent ways of saying that T is onto:

- The range of T is equal to the codomain of T.
- Every vector in the codomain is the output of some input vector.

Onto Transformations

Note

Here are some equivalent ways of saying that T is not onto:

- The range of T is smaller to the codomain of T.
- There exists a vector b in \mathbb{R}^m such that the equation T(x) = b does not have a solution
- There is a vector in the codomain that is not the output of any input vector.

Onto Transformation

Theorem

Let A be an $m \times n$ matrix and let T(x) = Ax be the associated matrix transformation. The following statement are equivalent:

- T in onto.
- T(x) = b has at least one solution for every b in \mathbb{R}^m .
- Ax = b is consistent for every b in \mathbb{R}^m .
- The columns of A span \mathbb{R}^m .
- A has a pivot in every row.
- The range of T has dimension m.

Onto Transformations

Important

Tall matrices do not have onto transformations.

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is an onto matrix transformation, what can we say about the relative sizes of n and m?

The matrix associated to T has n columns and m rows. Each row and each column can only contain one pivot, so in order for A to have a pivot in every row, it must have at least as many columns as rows: $m \le n$.

This says that for instance, \mathbb{R}^2 is **too small** to admit an onto linear transformation to \mathbb{R}^3 .

Note that there exist wide matrices that are not onto, for example,

$$\begin{pmatrix} 1 & -1 & 2 \\ -2 & 2 & -4 \end{pmatrix}$$

Does not have a pivot in every row.

Solution

The reduction row echelon form of A is:

$$\begin{pmatrix} 1 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

There is not a pivot in every row, so T is not onto. The range of T is the column space of A which is equal to

$$span \left\{ \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ -4 \end{pmatrix} \right\} = span \left\{ \begin{pmatrix} 1 \\ -2 \end{pmatrix} \right\}$$

since all three columns of A are collinear. Therefore, any vector not on the line through $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ is not in the range of T. for instance, if b = $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ then T(x) = b has no solution.

One-to-one

One-to-One Mapping

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be one-to-one (injective) \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of at most one **x** in \mathbb{R}^n

One-to-One (injective) Linear Transformation

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then t is one-to-one if and only if the equation T(x) = 0 has only the trivial solution.

Proof

Example

Example

Let T be the linear transformation whose standard matrix is

$$A = \begin{pmatrix} 1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5 \end{pmatrix}$$

Does T map \mathbb{R}^4 onto \mathbb{R}^3 ? Is T a one-to-one mapping?

One-to-One Linear Transformation

Important

Let $\mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let A be the standard matrix for T. Then:

- a. T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m .
- b. T is one-to-one if and only if the columns of A are linearly independence.

Example

Let $T(x_1, x_2) = (3x_1 + x_2, 5x_1 + 7x_2, x_1 + 3x_2)$. Show that T is a one-to-one linear transformation. Does T map \mathbb{R}^2 onto \mathbb{R}^3 ?

One-to-One Transformations

Definition

One-to-one transformations: A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if, for every vector b in \mathbb{R}^m , the equation T(x) = b has at most one solution x in \mathbb{R}^n .

Remark

Here are some equivalent ways of saying that T is one-to-one:

- For every vector b in \mathbb{R}^m , the equation T(x) = b has zero or one solution x in \mathbb{R}^n .
- Different inputs of T have different outputs.
- If T(u) = T(v) then u = v.

One-to-One Transformations

Remark

Here are some equivalent ways of saying that T is **not** one-to-one:

- There exist some vector b in \mathbb{R}^m such that the equation T(x) = b has more than one solution x in \mathbb{R}^n .
- There are two different inputs of T with the same output.
- There exist vectors u, v such that $u \neq v$ but T(u) = T(v).

One-to-one Transformations

Theorem

Let A be an m \times n matrix and let T(x) = Ax be the associated matrix transformation. The following statements are equivalent:

- 1. T is one-to-one.
- 2. For every b in \mathbb{R}^m , the equation T(x) = b has at most one solution.
- 3. For every b in \mathbb{R}^m , the equation T(x) = b has a unique solution or is inconsistent.
- 4. Ax = 0 has only the trivial solution.
- 5. The columns of A are linearly independent.
- 6. A has a pivot in every column.
- 7. The range of T has dimension n.

One-to-one Transformations

Important

Wide matrices do not have one-to-one transformations.

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is an one-to-one matrix transformation, what can we say about the relative sizes of n and m?

The matrix associated to T has n columns and m rows. Each row and each column can only contain one pivot, so in order for A to have a pivot in every column, it must have at least as many rows as columns:

$$n \leq m$$
.

This says that for instance, \mathbb{R}^3 is **too big** to admit a one-to-one linear transformation into \mathbb{R}^2 .

Note that there exist tall matrices that are not one-to-one, for example,

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Does not have a pivot in every column.

Comparison

A is an m \times n matrix, and T: $\mathbb{R}^n \to \mathbb{R}^m$ is the matrix transformation T(x) = Ax.

T is one-to-one

T(x) = b has at most one solution for every b.

The columns of *A* are linearly independent.

A has a pivot in every column.

The range of T has dimension n.

T is onto

T(x) = b has at least one solution for every b.

The columns of A span \mathbb{R}^m .

A has a pivot in every row.

The range of T has dimension m.

One-to-one and onto

Important

One-to-one is the same as onto for square matrices. We observed that a square has a pivot in every row if and only if it has a pivot in every column. Therefore, a matrix transformation T from \mathbb{R}^n to itself is one-to-one if and only if it is onto: in this case, the two notations are equivalent.

Conversely, by this note, if a matrix transformation T: $\mathbb{R}^m \to \mathbb{R}^n$ is both one-to-one and onto, then m = n.

Note that in general, a transformation T is both one-to-one and onto if and only if T(x) = b has exactly one solution for all b in \mathbb{R}^m .

Bijective

Note

- One-to-one and onto.
- If and only if every possible image is mapped to by exactly one argument.

onto

One-to-one

Machine learning application

☐ The central problem in machine learning and deep learning is to meaningfully transform data; in other words, to learn useful representations of the input data at hand – representations that get us to the expected output.

Multiple Transformation

Multiple Transformation

$$\square \qquad x_{n \times 1} \xrightarrow{A_{m \times n}} y_{m \times 1} \xrightarrow{B_{p \times m}} z_{p \times 1} \Rightarrow \begin{cases} y = Ax \\ z = By \end{cases} \Rightarrow z = B(Ax) = BAx$$

Example

☐ Difference Matrix

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \xrightarrow{4 \times 5} y = \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \\ x_4 - x_3 \\ x_5 - x_4 \end{bmatrix} \xrightarrow{3 \times 4} z = \begin{bmatrix} x_3 - x_2 - (x_2 - x_1) \\ x_4 - x_3 - (x_3 - x_2) \\ x_5 - x_4 - (x_4 - x_3) \end{bmatrix} = \begin{bmatrix} x_3 - 2x_2 + x_1 \\ x_4 - 2x_3 + x_2 \\ x_5 - 2x_4 + x_3 \end{bmatrix}$$

$$x \to z \begin{bmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix}_{3 \times 5}$$

$$x \to y \to z$$

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}_{3\times4} \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}_{4\times5} = \begin{bmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix}$$

Multiple Transformation

$$\square \qquad x_{n \times 1} \xrightarrow{A_{m \times n}} y_{m \times 1} \xrightarrow{B_{p \times m}} z_{p \times 1} \Rightarrow \begin{cases} y = Ax \\ z = By \end{cases} \Rightarrow z = B(Ax) = BAx$$

Example

□ Rotation

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$[\cos(\delta + \theta) & -\sin(\delta + \theta) = -\sin(\delta + \theta) = -\sin(\delta + \theta)$$

$$x \to z$$
 $z = R_{\delta + \theta} x$
$$\begin{bmatrix} \cos(\delta + \theta) & -\sin(\delta + \theta) \\ \sin(\delta + \theta) & \cos(\delta + \theta) \end{bmatrix}$$

$$x \to y \to z \begin{cases} y = R_{\theta}x \\ z = R_{\delta}y \end{cases} \Rightarrow z = R_{\delta}R_{\theta}x \qquad \begin{bmatrix} \cos \delta & -\sin \delta \\ \sin \delta & \cos \delta \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
$$= \begin{bmatrix} \cos \delta \cos \theta - \sin \delta \sin \theta & -\cos \delta \sin \theta - \sin \delta \cos \theta \\ \sin \delta \cos \theta + \cos \delta \sin \theta & -\sin \delta \sin \theta + \cos \delta \cos \theta \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\delta + \theta) & -\sin(\delta + \theta) \\ \sin(\delta + \theta) & \cos(\delta + \theta) \end{bmatrix}$$

Invertible Linear Transformations

Definition

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be **invertible** if there exists a

function $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$S(T(\mathbf{x})) = \mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n

$$T(S(\mathbf{x})) = \mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n

Invertible Linear Transformations

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S given by $S(\mathbf{x}) = A^{-1}\mathbf{x}$ is the unique function satisfying

$$S(T(\mathbf{x})) = \mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n

$$T(S(\mathbf{x})) = \mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n

Inner Product and Linear Transformation

Hermitian Matrix

□ Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose

$$A \ Hermitian \iff A = A^H$$

□ conjugate transpose

$$A^H = A^* = (\overline{A})^T$$

Unitary matrix

$$U^*U = UU^* = UU^{-1} = I$$

Note

If U is a square, complex matrix, then the following conditions are equivalent:

- 1. U is unitary.
- 2. U^* is unitary.
- 3. U is invertible with $U^{-1} = U^*$.
- 4. The columns of U form an orthonormal basis of \mathbb{C}^n with respect to usual inner product. In other words, $U^*U=1$.
- 5. The rows of U form an orthonormal basis of \mathbb{C}^n with respect to usual inner product. In other words, $UU^* = 1$.

Normal Matrix

 \square A matrix $A \in \mathcal{M}_n(\mathbb{C})$ is called **normal** if $A^*A = AA^*$

□ A normal and upper triangle matrix is a diagonal matrix.

Inner Product

Note

$$\langle Ax, y \rangle = \langle x, A^T y \rangle$$

What about symmetric matrix?

Example

Show that unitary matrix preserves inner product. $\langle Ux, Uy \rangle = \langle x, y \rangle$

References

- □ Chapter 1: Advanced Linear and Matrix Algebra, Nathaniel Johnston
- Chapter 6: Linear Algebra David Cherney
- Linear Algebra and Optimization for Machine Learning
- □ Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares