

planetmath.org

Math for the people, by the people.

a surjection between finite sets of the same cardinality is bijective

 ${\bf Canonical\ name} \quad {\bf ASurjection Between Finite Sets Of The Same Cardinality Is Bijective}$

Date of creation 2013-03-22 15:23:28 Last modified on 2013-03-22 15:23:28

Owner ratboy (4018) Last modified by ratboy (4018)

Numerical id 5

Author ratboy (4018)

Entry type Result Classification msc 03-00

 $Related\ topic \\ One To One Function From Onto Function$

Theorem. Let A and B be finite sets of the same cardinality. If $f: A \to B$ is a surjection then f is a bijection.

Proof. Let A and B be finite sets with |A| = |B| = n. Let $C = \{f^{-1}(\{b\}) \mid b \in B\}$. Then $\bigcup C \subseteq A$, so $|\bigcup C| \le n$. Since f is a surjection, $|f^{-1}(\{b\})| \ge 1$ for each $b \in B$. The sets in C are pairwise disjoint because f is a function; therefore, $n \le |\bigcup C|$ and

$$\left| \bigcup C \right| = \sum_{b \in B} |f^{-1}(\{b\})|.$$

In the last equation, n has been expressed as the sum of n positive integers; thus $|f^{-1}(\{b\})| = 1$ for each $b \in B$, so f is injective. \Box