MTH 411, Fall 2018, Quiz 3 (Tuesday Short Quiz/6 pts)

- 1. (2 points) Given a binary algebraic structure $\langle U, \star \rangle$, define what it means for an element $x \in U$ to be an idempotent for \star .
 - Solution. (p. 281) An element $x \in U$ is an idempotent for \star if $x \star x = x$.
- 2. (2 points) Given a binary algebraic structure $\langle U, \star \rangle$, define what it means for an element $z \in U$ to be an identity element for \star .
 - Solution. (p. 32) An element $z \in U$ is an identity element for \star if for every $x \in U$ it follows that

$$z \star x = x \star z = x$$
.

- 3. (2 points) Define what it means for two binary algebraic structures $\langle U, \star \rangle$ and $\langle V, \odot \rangle$ to be isomorphic.
 - Solution. (p. 29) The binary algebraic structures $\langle U, \star \rangle$ and $\langle V, \odot \rangle$ are isomorphic if there exists a bijective map $\phi : U \to V$ such that for every $x, y \in U$ we have that

$$\phi(x \star y) = \phi(x) \odot \phi(y).$$

- 4. (Bonus!) Define what it means for a binary structure $\langle U, \star \rangle$ to be a group.
 - Solution. (p. 37) A binary structure $\langle U, \star \rangle$ is a **group** if the following axioms are satisfied: G_1 (associativity of \star) For every $a, b, c \in U$ we have

$$(a \star b) \star c = a \star (b \star c).$$

 \mathcal{G}_2 (existence of an identity element for \star) There exists an element $e \in U$ such that for all $x \in G$

$$e \star x = x \star e = x$$
.

 \mathcal{G}_3 (existence of inverse elements) For each $x \in G$ there exists $x' \in G$ such that

$$x \star x' = x' \star x = e$$
.

¹ "To avoid an overwhelming quantity of such labels and numberings, we define many terms within the body of the text and exercises using boldface type." – Page 2 in Fraleigh.