Design of Wind Energy Systems

CIP Tutorial 01 Hints for the selection of main parameters

Prof. Dr. M. Kühn Bernd Kuhnle, Luis Vera-Tudela

ForWind – Wind Energy Systems

Topics

- CIP tutorials & groups
- Review of supporting files
- Warm up where do we start?
- Summary

No reproduction, publication or dissemination of this material is authorized, except with written consent of the author.

Oldenburg, April 2015

Prof. Dr. Martin Kühn

CIP Tutorials

Main parameters

Characteristic curves **Turbine dynamics** Rotor design

Load analysis

External conditions

Groups

Nr.	Color	Student 1	Student 2	Student 3
1	Red	Mubdi Al-Masry		
2	Green	Alina Roß	Sonja Krüger	Laura Schröder
3	Blue	Teklehaimanot Aman		
4	Yellow	Paula Nardone	Alejandro Nitto	
5	Pink	Hossein Rezazadeh		
6	Turquoise	Stefan Arens		
7	Orange	Florian Börgel	Andreas Wöste	
8	Black	Darja Döhle	Jeroen Barnhoorn	David Schillebeeckx
9	Violett	Loma Al-Azzawi		
10	Grey	Arnd Fligg	Anja Külpmann	

Supporting files

- 1) Document with instructions
- 2) Table with airfoil data
- 3) Table with turbine data

Institut für Physik

AG Windenergiesysteme (WE-Sys) • Prof. Dr. Dipl.-Ing. Martin Kühn

1

Design of Wind Energy Systems - Summer Semester 2015 Design-Tutorial 1: Selection of main parameters & rotor design

Prof. Dr. Martin Kühn

Bernd Kuhnle, Luis Vera-Tudela

Introduction

In tutorial 1 you have selected the most suitable wind turbine for given site conditions and related your choice to specific rating. In this design-tutorial you will estimate other main parameters that will help you to define a wind turbine model and will compare it to commercial turbines.

Additionally, you will calculate airfoil aerodynamic properties from tables and define the geometry of your blade, which will be used in following tutorials.

Section 1

Let's define the main parameters of your wind turbine and discuss some results.

- Calculate total conversion efficiency (use Cp-reference, mechanical efficiency and electrical efficiency) and compare it to other technologies.
- Using the total conversion efficiency, evaluate how much wind power has to be captured to obtain the nominal electrical power.
- Estimate the rated wind speed and round it up. Use the reference max. blade length given.

angle of attack g [deg]	coefficient	coefficient	coefficient c _м [-]	drag ratio 1/ε [-]	
	-66.3	c₀ [-]			
-180.0	0.000	0.010	0.000		<u>Determination of the optimum coefficients:</u>
-170.0		0.010			
-160.0		0.096		9.900	lift coefficient cL [-] dragcoefficient cD [-] lift to drag ratio 1/s [-]
-150.0		0.322			and agreement to [-]
-140.0		0.600			1.8
-130.0		0.898			
-120.0		1.180			16
-110.0	0.404	1.414			100
-100.0	0.205	1.574	0.406	0.130	1.4
-90.0		1.641	0.450		
-80.0	-0.205	1.574			
-70.0		1.414	0.464	-0.286	Z 1.2 80
-60.0	-0.579	1.180		-0.491	
-50.0	-0.718	0.898	0.430	-0.800	5 co s co
-40.0		0.600		-1.373	50 TO
-30.0	-0.922	0.322	0.458	-2.863	E
-20.0	-0.941	0.124	0.544	-7.594	
-10.0	-0.406	0.064	0.392	-6.304	5 BULDOW
0.0	0.186	0.005	0.042	39.198	± 0.6
0.5	0.245	0.005	0.043	51.384	
1.0	0.304	0.005	0.043		0.4
1.5		0.005			- 20
2.0	0.422	0.005	0.045	85.172	0.2
2.5	0.480	0.005			
3.0		0.005			
3.5	0.594	0.006	0.046	104.894	0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
4.0	0.649	0.006	0.046	104.951	
4.5	0.702	0.007	0.046	101.416	angle of attack [deg]

Data for group →	Unit	Black		General variables	Unit	Value		Rotor configuration	Unit	Value	
Airfol profile set number	- Oille	4		Air density	kg/m³	1.225		Hub vertical offset	m	3	
Design wind regime		Rayleigh		Steel density	ka/m³	8500		Blade set angle	dea	0	
Target wind regime		Medium		Steel E-modulus	N/m²	2.0000E+011		Cone angle	deg	3	
Weithill A-factor (scal)	m/s	8		Gravity	kg/m²	9.81		Tilt angle	deg	5	
Weibull k-factor (call)		2.15		Co – Betz	-9	0.5926		Overhang	m	6	+
Raced electrical parker	kW	3500		Cp - reference		0.5255		Lateral offset	m	0	+
Number of blades		3		Mechanical efficiency		0.9455		Hub diameter		25	
Cut-in wind speed	m/s	3.5		Electrical efficiency		0.9469		Spinner drag coefficient	1	1	
Cut-out wind speed	m/s	25									
Max. tip speed	m/s	77					7				
Max. hub height – reference (*)	m	115									
Max. blade length - reference (*)	m	65		element 2 3 4	-						
Blade root length	m	5.5	1	no. 1 2 3 4	6	7 8					
Transmission		115		station 0 1 2 3 4	5 6	7 8 9					
Transmission		110		no. 0 1 2 3 4 :	, ,	/ 6 9	_		_		
Main parameters	Unit	Value	_	Blade aerodynamics	Unit	Value		Profile data	Unit	Value	Profile
Calculate total conversion efficiency (Cp ref, mech eff, elec eff)		Vinde		Lift coefficient - Profile 1		V		Thickness to chord ratio	95	70700	l
Total wind power that needs to be extracted	kW			Lift coefficient – Profile 2	١.			Reynolds Number	1		
Raced wind speed (rounded up)	m/s			Lift coefficient - Profile 3 (cylinder)	1			Pitching Moment Center	99	0.25	Profile 1
Rotor radius (rounded up)	m			Drag coefficient Profile 1				Deployment Angle	dea	0.25	Plule
Blade length (without hub)				Dray coefficient - Profile 2				Including pitching Movement	ucy	Yes	+
	m ²		-						_	100	_
Rotor area (rounded radius)			-	Drag coefficient - Profile 3 (cylinder)	-			Thickness to chord ratio	95		-
Specific rating (design)	W/m ²			Angle of attack - Profile 1	deg			Reynolds Number			
λD Design tip speed ratio				Angle of attack – Profile 2	deg			Pitching Moment Center	95	0.25	Profile 2
Rotor rated speed	rpm			Angle of attack - Profile 3 (cylinder)	deg			Deployment Angle	deg	0	_
Blade element length (assume 8 elements of equal length)	m							Including pitching Movement		Yes	
Blade geometry		Description	Unit					Section number			
		Station number (not element)		0	1	2	3	4	5	6	7
Theory calculation		Distance (from rotor center)	m								
		Distance (from blade root)	m								
	Profile 1	Chord length	m								
		Twist angle	deg								
Betz theory	Profile 2	Chord length	m								
		Twist angle	deg								
	Check	Power per element	kW								
	Profile 1	Chord length	m								
Schmitz theory Profile 2		Twist angle	deg								
		Chord length	m								
		Twist angle	deq								

Warm up

Where do we start?

Power

1. How is the power <u>extracted</u> from the wind calculated?

Power

1. How is the power extracted from the wind calculated?

$$P = \frac{1}{2} * C_p * \rho * \pi * R^2 * V^3$$

- 2. What ,type' of power is it?
 - a) Kinematic
 - b) Aero-mechanical
 - c) Mechanical
 - d) Electrical

Power

1. How is the power extracted from the wind calculated?

$$P = \frac{1}{2} * C_p * \rho * \pi * R^2 * V^3$$

- 2. What ,type' of power is it?
 - a) Kinematic
 - b) Aero-mechanical
 - c) Mechanical
 - d) Electrical

Rated wind speed & blade length

1. How does the increase of rated wind speed affects the selection of blade length?

$$P_{aero} = \frac{1}{2} * C_{p-Betz} * \rho * \pi * R^2 * V^3$$

Air density [kg/m3]	1.225
Cp Betz[-]	0.59
Nominal power [kW]	1500
Nominal wind speed [m/s]	9

Note: example with P-aero

Rated wind speed & blade length

1. How does the increase of rated wind speed affects the selection of blade length?

$$P_{aero} = \frac{1}{2} * C_{p-Betz} * \rho * \pi * R^2 * V^3$$

Air density [kg/m3]	1.225
Cp Betz[-]	0.59
Nominal power [kW]	1500
Nominal wind speed [m/s]	9

Note: example with P-aero

Rated wind speed & blade length

1. How does the increase of rated wind speed affects the selection of blade length?

$$P_{aero} = \frac{1}{2} * C_{p-Betz} * \rho * \pi * R^2 * V^3$$

Air density [kg/m3]	1.225
Cp Betz[-]	0.59
Nominal power [kW]	1500
Nominal wind speed [m/s]	10

Note: example with P-aero

Rated wind speed & energy output

1. How does the increase of rated wind speed impacts output energy?

Air density [kg/m3]	1.225
Cp Betz[-]	0.59
Nominal power [kW]	1500
Nominal wind speed [m/s]	9

Rated wind speed & energy output

1. How does the increase of rated wind speed impacts output energy?

Air density [kg/m3]	1.225
Cp Betz[-]	0.59
Nominal power[kW]	1500
Nominal wind speed [m/s]	9
AFP [MWh]	8114.66

Rated wind speed & energy output

1. How does the increase of rated wind speed impacts output energy?

Air density [kg/m3]	1.225
Cp Betz[-]	0.59
Nominal power[kW]	1500
Nominal wind speed [m/s]	10
AEP [MWh]	7280.82

1. What is the turbine rating?

1. What is the turbine rating?

$$rating \ [^{W}/_{m}] = \frac{electrical \ power}{area}$$

1. What is the turbine rating?

$$rating \ [^{W}/_{m}] = \frac{electrical \ power}{area}$$

2. How does the rating of the wind turbine varies with the increase of the blade length?

Vera-Tudela's own analysis of few commercial wind turbines, 2014

1. What is the turbine rating?

$$rating \ [^{W}/_{m}] = \frac{electrical \ power}{area}$$

2. How does the rating of the wind turbine varies with the increase of the blade length?

Vera-Tudela's own analysis of few commercial wind turbines, 2014

Summary / Conclusion

- We went trough the list of CIPs and groups
- We reviewed the supporting files for this CIP
- We recall the relation between power, energy, rated wind, blade length and rating of wind turbines