Context-Aware Retrieval-based Deep Commit Message Generation

Lorenzo Borelli, Simone Mattioli, Giovanni Minelli

Objectives

• Reproduce CoRec model and results;

• Introduce Transformers;

 Use scheduled sampling and retrieval module with Transformers;

Automatic commit message generation

Produce commit messages starting from git diffs;

- 3 main techniques:
 - Rule-based:
 - Retrieval-based;
 - Learning-based;

NMT

Learn optimal parameters to translate source sequence into a target language.

Exposure bias

Low frequency words

CoRec

Preprocessed data Train Translate

Transformer

6/13

Scheduled sampling

Metrics

Bleu

Meteor

Rouge-L

BERTScore

Results: top1000

Top 1000 repositories: 22K valid samples.

Low results respect LSTM

Overfitting with Transformers

Results: top10000

Top 10000 repositories: 98K valid samples.

	Bleu	Rouge-L	Meteor	Bert F1
BiLSTM+ss+retrieval	54.70%	42.86%	39.88%	39.96%
Transformer	52.16%	43.51%	40%	40.06%
Transformer+retrieval	53.29%	43.84%	40.19%	40.75%
Transformer+ss	48.64%	42.25%	37.47%	37.87%
Transformer+ss+retrieval	50.79%	43.01%	38.84%	39.09%

Best results without dropout and scheduled sampling decay, but with retrieval module

Output descriptions and errors

- Bias of Bleu
- High reliability of BertScore

Example

Prediction: modified ognlvariableexpressionevaluator constructor to protected .

Gold: modified ognlvariableexpressionevaluator constructor to protected .

Generation of copyed words out of context

Problems with long sentences

Scheduled Sampling effects

Evidences from training and evaluation:

- Lower accuracy -
- Lower cross entropy and perplexity +
- Lower translation metrics -

From correlation analysis:

- All translation metrics become highly correlated
- Reduced correlation of translation metrics with training signals due to stochastic factor

Conclusions

- ~ Transformers
- X Scheduled sampling
- ✔ Retrieval module
- ? Attention role in the task

Project extension Attention analysis

? Other approaches

Project extension Task survey

Attention role

Try to direct the focus of a network between all words regardless of their respective position in a sentence

- <u>Distribution analysis</u>
- Exploitation for difficulty reduction (Luong 2015)

(Transformer + retrieval)	Parameters	Bleu	Rouge-L	Meteor	Bert F1
Baseline	126235220	53.29%	43.84%	40.19%	40.75%
Targets reduced	102137983(-19.1%)	48.69%	41.06%	36.60%	34.19%
Pos_unk reduction	104339118 (-17.3%)	50.8%	41.73%	37.67%	36.67%

Methods for automatic code summarization

Rule-based

- Stereotypes
- Templates defined by devs
- Poor generalization

Retrieval-based

- Description-code pairs
- Relevant information
- Too dependent on similarity

Learning-based

- Semantic relation between source and target.
- Feature engineering

NMT papers

Loyola et al.	Liu et al.	Siyuan et al.	Hu et al.	Tang et al.	Nie et al.	Tae-Hwan Jung
First NMT based approach to code summariz ation	Deal with OOV	VDO filter. QA with human evaluation.	AST, SBT, type annotation of OOV.	Relation matrices, tree attention.	Transform er for contextuali zed token embeddin gs.	Pre-traine d CodeBER T for add/del pairs.

Conclusions

• NMT approaches are state-of-the-art.

Some employ mixed approaches to handle domain-specific problems.

• Human judgement and evaluation is still needed.