SIMPLICIAL NEURAL NETWORKS

Stefania Ebli, Michaël Defferrard, Gard Spreemann

 L_2 : 2-Laplacian

Convolution: a way to exploit the space's structure

Basic building blocks of a space: simplices

Simplicial Neural Networks

Laplacians for simplicial complexes

The graph Laplacian can be extended to Laplacians for simplices of any dimension k [1]. The k-Laplacian can be interpreted as a function propagating values of functions on the k-simplices. These functions are called k-cochains, x_k .

 L_1 : 1-Laplacian

Simplicial Neural Networks (SNNs)

- The convolutional filters are low-degree polynomials in the Laplacian with learnable coefficients.
- The inputs are multiple k-cochains on the k-simplices, W_k .

L₀: Graph Laplacian

- 1. Convolutions can be implemented by sparse matrix-vector multiplications: the computational cost is $\mathcal{O}(\xi|W_k|)$.
- 2. The number of weights to be learned is reduced from $\mathcal{O}(|W_k|)$ to $\mathcal{O}(1)$.
- 3. The operation is d-localizing: if two simplices are more than d hops apart, there is no interaction between them.

Coauthorship complex: from a bipartite graph to a complex

Predicting missing citations on the coauthorship complex

Data

Coauthorship complexes are built from the Semantic Scholar dataset [2] where missing citations are introduced at random on the k-cochains (k = 1, 2, 3) at five rates: 10%, 20%, 30%, 40%, and 50%.

First Results

Mean accuracy \pm standard deviation over 5 samples in imputing missing citations.

Performance of baselines: mean accuracy \pm standard deviation over 5 samples for 30% missing citations.

Method	Dimension 0	Dimension 1	Dimension 2
Global Mean	3.30 ± 0.82	5.75 ± 1.28	2.96 ± 0.49
Global Median	7.78 ± 2.70	10.44 ± 1.00	12.50 ± 0.63
Neighbors Mean	11.88 + 5.29	24.15 + 1.85	27.38 + 1.18

Code: https://github.com/stefaniaebli/simplicial_neural_networks

References

- [1] D. Horak and J. Jost, Spectra of combinatorial Laplace operators on simplicial complexes, Adv. in Math. 2013.
- [2] W. Ammar et al., Construction of the Literature Graph in Semantic Scholar, https://www.semanticscholar.org/paper/09e3cf5704bcb16e6657f6ceed70e93373a54618.