CS 4100: Foundations of Artificial Intelligence (Spring 2020)

Roi Yehoshua
(Due) March 26, 2020

Machine Learning: Classification

1 KNN

Consider the following data set comprised of three numerical features $(f_1, f_2, \text{ and } f_3)$ and one binary output:

	1	-	-	
Example	(f_1)	(f2	J_3	y
\mathbf{x}_1	1	4	1	1
\mathbf{x}_2	1	2	3	1
X3	0	0	1	1
X4	-1	4	0	1
X5	1	0	-2	0
X 6	-1	-1	1	0
X7	0	-4	0	0
X 8	1	0	-3	0

Based on this training set, classify a new vector $\mathbf{x} = (1, 0, 1)$ using KNN with k = 3 and Manhattan distance. Show your work.

$$d(x, x) = 10 + 4 + 01 = 4$$

$$d(x, x) = 16 - 21 = 4$$

$$d(x, x) = 10 - 11 = 1$$

$$d(x, x) = 1 - 2 + 4 - 11 = 1$$

$$d(x, x) = 1 - 1 - 2 = 3$$

$$d(x, x) = 1 - 1 - 2 = 3$$

$$d(x, x) = 1 - 1 - 2 = 6$$

$$d(x, x) = 1 - 2 - 2 = 6$$

$$d(x, x) = 1 - 2 - 2 = 6$$

$$d(x, x) = 1 - 2 - 2 = 6$$

2 Naive Bayes

The following table shows a set of random samples from a customer database:

age	income	student	credit_rating	Class: buys_computer
youth	high	no		no
youth	high	no		no
middle_aged	high	no		yes
senior	medium	no		yes
senior	low	yes		yes
senior	low	yes		no
middle_aged	low	ves		yes
youth	medium			no
youth	low			yes
senior	medium			
vouth				yes
	youth youth middle_aged senior senior senior middle_aged youth youth	youth high youth high middle_aged high senior low senior low middle_aged low youth medium youth low senior medium youth medium youth medium middle_aged medium middle_aged medium middle_aged high	youth high no middle_aged high no senior low yes senior low yes middle_aged low yes senior medium no youth low yes senior medium no youth low yes senior medium yes senior medium yes middle_aged medium yes middle_aged high yes	youth high no fair youth high no excellent middle_aged high no fair senior medium no fair senior low yes fair senior low yes excellent middle_aged low yes excellent youth medium no fair youth medium no fair youth low yes fair senior medium yes fair senior medium yes fair youth medium yes excellent middle_aged medium no excellent middle_aged high yes fair

Based on this training set, use Naive Bayes classification to classify the following sample: $\mathbf{x} = (\text{age} = \text{youth}, \text{income} = \text{medium}, \text{student} = \text{yes}, \text{credit_rating} = \text{fair})$ Don't use Laplace smoothing. Show your work.

Consider the following data set comprised of three binary input attributes (A_1, A_2, A_3) and one binary output:

Example	A_1	A_2	A_3	Output y
x ₁	1	0	0	0
X2	1	0	1	0
X3	0	1	0	0
X 4	1	1	1	1
X 5	1	1	0	1

Use the algorithm in Figure 18.5 to learn a decision tree for these data. Show the computations made to determine the attribute to split at each node.

function DECISION-TREE-LEARNING(examples, attributes, parent_examples) **returns** a tree

if examples is empty then return PLURALITY-VALUE(parent_examples) else if all examples have the same classification then return the classification else if attributes is empty then return PLURALITY-VALUE(examples) else

 $A \leftarrow \operatorname{argmax}_{a \in attributes} \text{ IMPORTANCE}(a, examples) \\ tree \leftarrow \text{a new decision tree with root test } A \\ \textbf{for each value } v_k \text{ of } A \textbf{ do} \\ exs \leftarrow \{e : e \in examples \text{ and } e.A = v_k\} \\ subtree \leftarrow \text{DECISION-TREE-LEARNING}(exs, attributes - A, examples) \\ \text{and } v_k = v_k \text{ of } A \text{ of }$

add a branch to tree with label $(A = v_k)$ and subtree subtree return tree

Figure 18.5 The decision-tree learning algorithm. The function IMPORTANCE is described in Section 18.3.4. The function PLURALITY-VALUE selects the most common output value among a set of examples, breaking ties randomly.

12-A13
splot splot

4 Classification Metrics

Suppose that you are working on a spam detection system. You formulated the problem as a classification task where "Spam" is the positive class and "not Spam" is the negative class. Your training set contains n=1000 emails, 99% of these are non-Spam and 1% are spam.

- 1. What is the accuracy of a classifier that always predicts "not Spam"?
- 2. Suppose you trained a classifier on this training set, and you've got the following confusion matrix:

		Predicted class	
		Spam	not Spam
Actual class	Spam	8	2
	not Spam	16	974

What are the accuracy, precision and recall of the classifier?

1 199 = 89/ is the accomput a classifer

07 recision 8 = 13

recall: 8/ = 4/5