PERTEMUAN 1 & 2

REPRESENTASI DATA DALAM PYTHON SEBAGAI PENDAHULUAN PADA PENGENALAN POLA

TUJUAN PRAKTIKUM

Mahasiswa mampu menterjemahkan representasi data dalam Python dan manipulasinya sehingga bisa menjadi input bagi sistem pengenalan Pola

Review – Representasi Data dalam Python

1. Vektor

Deklarasi variabel diawali dengan

Vektor dapat dituliskan dengan dan tanpa bantuan libarary

```
# vektor python numpy with range value
import numpy as np
print("vektor default python\n")
a = np.arange(1,20,1)
b = np.arange(1,20,2)

import numpy as np
print (" \n vektor via numpy \n")

# vektor via numpy
c = np.array ([1,2,3,4,5])
d = np.array ([1.5, 2.5, 5, 6, 7])

print(a)
print(b)
print(a.ndim)
print(a.shape)
```

2. Matrix

Matriks adalah basic 2D table dari data dan dapat berisi nilai numerik dan/atau karakter. Dapat dibuat dengan cara sederhana dengan membuat urutan dari vektor, mengubah dari vektor atau membaca dari file

```
# mengubah dari 1D menjadi matrik 2D
a = np.arange(1,21,1)
c = a.reshape((4,5))
print(c)
```

3. List

List merupakan merupakan representasi struktur data yang dapat menyimpan data dengan nilai numerik, karakter, dan lain-lain secara bersamaan

```
list1 = ["apple", "banana", "cherry"]
list2 = [1, 5, 7, 9, 3]
list3 = [True, False, False]
list4 = ["abc", 34, True, 40, "male"]
print(list1);
```

4. data.Frame

Data frame adalah spesialisasi dari tipe list untuk menyimpan vektor ke dalam bentuk frame (menyerupai basis data). Kelebihan dibandingkan matriks adalah dapat dimanipulasi dalam berbagai bentuk dan cara.

Import dan Export data serta manipulasinya

1. Import Data (loading data in Python: csv, text, XML, image)

Buat file dengan header, misalkan terdiri dari Nama Pasisen, Umur, Penyakit, Gender seperti pada tabel berikut dan simpan kedalam format CSV dan Text (Tab delimeter)

Nama Pasien	Umur	Gender	Diagnosa Sakit
Anto	24	L	Tidak
Budi	35	L	Ya
Adi	55	L	Ya
Delima	32	P	Ya
Dodi	21	L	Tidak
Tukiyem	19	P	Tidak
Rama	23	L	Tidak
Santi	35	P	Tidak

Mery	44	P	Ya
Yanti	27	P	Tidak
Parto	43	L	Ya
Dea	24	P	Tidak

Kemudian lakukan pembacaan untuk file tersebut:

```
# Membaca data dari file dengan format CSV
   import pandas as pd
   data = pd.read_csv("Data.csv", sep=";")
   print(data)

# Membaca data dari file dengan format text (delimeter)

print("\n read text data with tab delimiter")

with open ('Data.txt') as data:
     print(data.read())

# Membaca data dari URL
import pandas as pd

f = pd.read_csv('http://www.exploredata.net/ftp/Spellman.csv')

print(f)
```

Membaca file dan menyajikan dalam bentuk grafik.

Untuk dapat menyajikan dalam bentuk grafik terlebih dahulu melakukan instalasi paket matplotlib.

```
import numpy as sp
traffic = sp.genfromtxt("web_traffic.tsv",delimiter='\t')
print(traffic[:10])
print(traffic.shape)

x = traffic[:,0]
y = traffic[:,1]

x = x[~sp.isnan(y)]
y = y[~sp.isnan(y)]
import matplotlib.pyplot as plt
plt.scatter(x,y)
```

```
plt.title("Web traffic last month")
plt.xlabel("Time")
plt.ylabel("Hits/hour")

plt.xticks([w*7*24 for w in range(10)],['week %i' %w for w in range(10)])
plt.autoscale(tight=True)
plt.grid()

lakukan perintah di atas dan perhatikan hasilnya kemudian tunjukkan pada kolom berikut
```

- # Operasi image pada Python
- # Instalasi paket open cv

pip install opencv-contrib-python

pilihan load image (contoh logo ipb)

```
import matplotlib.pyplot as plt
import cv2
import numpy as np

print("read images using opencv")
five = cv2.imread("5.png")
print(five.shape)
print(five.size)
plt.imshow(five)
cv2.waitKey(0)
```


konversi image

import cv2

```
babon =
cv2.imread("babon.jpg")
babon_gray =
cv2.cvtColor(babon,
cv2.COLOR_BGR2GRAY)

plt.imshow(babon)
plt.imshow(babon gray)
```

mengambil nilai matriksnya

```
# acces pixel of images per postion
pixels = five[100,100]
print(pixels)
```

TUGAS PRAKTIKUM

Pelajari secara mandiri terkait dengan Python pengolahan dasar mulai dari text ataupun citra. Lakukan operasi-operasi dasar teks dan citra tersebut!

Buat dalam repostori github untuk masing-masing yang sudah Anda lakukan. Link repo github dapat dishare via newlms.

DAFTAR PUSTAKA

1. Richert W & Coelho LP. *Builidng Machine Learning System with Python*. 2013. Packt Publising. Birmingham, UK.