TRANSPORTSCHROEVEN

NIVOBA VEENDAM HOLLAND TRANSPORTSCHROEF voor keur voorkeur **MATERIAAL** MATERIAA MATERIAAL MATERIAAI SPOED SPOED SPOED SPOED RECHTSE RECHTSE LINKSE MOTOR MOTOR MOTOR MOTOR DRAAIT RECHTS DRAAIT LINKS DRAAIT DRAAIT LINKS **RECHTS**

Sp=RECHTS

Sp=RECHTS

GRONDVLAK HORIZONTALE OPSTELLING

Sp=LINKS

Sp=LINKS

POSTBUS 64, 1560 AB KROMMENIE NOORDERVAARTDIJK 3, 1561 PS KROMMENIE, HOLLAND TELEFOON 075-6287855, FAX 075-6280476

Klinkenberg

Uitslag van een sped van een schroefvijzel (II)

Vraag: In Uw antwoord op de vraag: cenuitslag van een schroefvijzelspoed (zie Metaal en Kunststof van 18 sept. 1965, nr. 38) geeft U een oplossing, die naar mijn mening volkomen onjuist is. Dit is nl. een vraag, die niet beantwoord kan worden. U noemt de afwijking van Uw oplossing met de werkelijkheid gering. In Uw voorbeeld bent U echter 25% fout. De spoed wordt geen 120 mm, maar 150 mm.

Bovendien zou zo'n vijzel niet functioneren, omdat ze het materiaal, dat er mee verplaatst moet worden, niet zou willen loslaten. Vijzels maken is specialistenwerk, dat niet berekend mag worden, doch slechts op het gevoel en met veel ervaring kan worden gedaan.

Antwoord: Met belangstelling heb ik Uw reactie op de beantwoording van de vraag: een uitslag te geven van een schroefvijzel, gelezen.

Ik ben het met u eens, dat het antwoord onjuist is. De gegeven oplossing is bij nader inzien voor de praktijk onaanvaardbaar. Het is slechts een grove benadering van hetgeen men zou willen verkrijgen. Ik heb me hiermede dus in de vingers gesneden, die schroef is niet uit te slaan. Desondanks moeten er in de praktijk schroefvijzels worden gemaakt. Daarvoor worden benaderings-

formules gebruikt, die acceptabel zijn voor schroeven met geringe bladhoogte t.o.v. de kleinste diameter van de schroef, en als de spoed zeer flauw, ef extreem groot is. Omdat het materiaal van het schroefblad min of meer elastisch is zal het redelijk goed gaan op deze manier: Er komt echter veel vakmanschap voor kijken om het "scheluw" trekken van de plaat te bewerkstelligen. De in de praktijk gehanteerde formules berusten op de volgende redenering: Als we de buitenomtrek van de schroef beschouwen, dan blijkt dat de kromtestraal in elk punt gelijk is. Bij de binnenomtrek is dit eveneens zo. Dus alle lijnen, waarvan de punten op gelijke afstand van de hartlijn liggen, hebben dezelfde eigenschappen. De beschrijvende lijn Is recht, en dus moet de uitslag een cirkelvormige plaat zijn.

De spoed van de binnen- en buitendiameter is gelijk, maar de lengte van de schroeflijnen niet. In afb. 1 is de schroefvijzel getekend. In afb. 2 is de uitslag van de binnen- en buitenomtrek aangegeven met boog CD en AB. In afb.3 is de cirkelvormige plaat weergegeven, die de uitslag zou moeten zijn. De boog AB en afb. 3 moet gelijk zijn aan die van afb. 2 en dit is eveneens het geval met CD.

Afbeelding 1

Afbeelding 2

Metaal en Kunststof 3 (1985) - no. 47 (20 nov.)

De hoogte h van het schroefblad moet gelijk zijn aan R₁- R₂, waaruit hoek Q bepaald kan worden.

Dus nu is:

boog AB =
$$\sqrt{(\pi D^2) + S^2} = R_1 - Q$$
 (1)
boog CD = $\sqrt{(\pi d^2) + S^2} = R_2 - Q$ (2)
h = $R_1 - R_2 = 1/2$ (D-d)

$$h = R - R = 1/2 (D-d)$$

hieruit volgt:

$$\frac{\text{boog AB } R_1R_2 + R - r}{\text{boog CD } R_2: R_2}$$
 (3)

Uit (1), (2) en (3) volgt mu:
$$\frac{R_2 + R - r}{R_2} = \frac{\sqrt{(2\pi R)^2 + S^2}}{\sqrt{(2\pi r)^2 + S^2}} \text{ of } \\ R_2 + R - r \cdot \sqrt{(2\pi r)^2 + S^2} = R_2 \sqrt{(2\pi R)^2 + S^2} \\ R_2 \left\{ \sqrt{(2\pi R)^2 + S^2} - \sqrt{(2\pi r)^2 + S^2} \right\} = (R - r) \sqrt{(2\pi r)^2 + S^2}$$

dus:

$$R_{2} = \frac{(R-r)\sqrt{(2\pi r)^{2} + S^{2}}}{\sqrt{(2\pi R)^{2} + S^{2} - \sqrt{(2\pi r)^{2} + S^{2}}}}$$

$$R_{1} = R_{2} + h = R_{2} + R - r$$

en:

De omtrek van de boog CD = $\sqrt{(2\pi r)^2 + S^2}$. De totale omtrek van de cirkel met straal R_2 is $2\pi R_2$.

Hieruit volgt:

$$Q = \frac{\sqrt{(2\pi r)^2 + S^2}}{2\pi R_2} = 360^{\circ}$$

Afbeelding 4

De fout in deze redenering is de volgende:

Met bovenstaande formules worden de bogen AC en BC, alsmede hock Q bepaald (zie afb. 4 en 5).

Is nu de boog DC, die midden tussen de twee andere bogen in ligt, wel gelijk aan derechte DC van afbeelding 4? Het is duidelijk, dat de rechte DC de zwaartelijn is in driehoek ACB. De boog DC in afbeelding 5 is het gemiddelde van de bogen AC en BC. Maar zoals bekend, is de zwaartelijn van een willekeurige driehoek niet gelijk aan het gemiddelde van de lengte van de aanliggende zijden. We zien dus dat de uitslag van afbeelding 5 slechts een benadering is. Deze benadering is acceptabel als AB klein is t.o.v. AE, en als de spoed s zeer klein of zeer groot is t.o.v. AE.

7.d.B.

Afbeelding 5

Tabel	2
-------	---

		· · · · · · · · · · · · · · · · · · ·	¬		
materialen	g t/m 3	Ks	materialen	g t/m 3	K
aardappelmeel	0,72	4,4	lijnzood	0,65	2
aardappels	0,75	2,5	mais	T	
aarde, droog	1,5	4	melkpoeder	0,4	2
alkalicellulose	0,25	4	modder	0,56	3,2
aluminiumhydraat	0,21-0,29	3,4	moutmeel	1,6 -1,8	3,5
asbest, gemalen	0,24	4	potas	0,58-0,64	2,3
bakpoeder	0,66-0,9	2,8	pijpaarde, droog	1,12	3,5
boekweit	0,64-0,67	2,3	sojabonen	1,0	4
bonen	0,55-0,75	2	stijfsel	0,6 -0,75	2,3
borax	0,8	2;8	suiker, ongeraffineerd	0,7	4
cacaobonen	0,55	5	talk	0,67-0,86	3,5
cellofaanplaatj es	0,46	2,3	tarwe	0,9	2,9
cement, los	1,2	3,5	vismeel	0,7 -0,9	1,8
eierpoeder	0,25	3,4	vliegas	0,56-0,9	2,4
gips, gebroken, los	1,3 -1,5	5,5	ijzererts, los	0,8 -1,2	5
grint	1,5	5		2,0 -2,4	5,1
grondnoten (pinda's)	0,65	2	zaagsel, fijn	0, 11-0, 19	2,8
gruis	0,66	2,3	zand, fijn, droog	1,5 -1,6	5
houtmeel	0,25-0,6	1,8	zeeppoeder zinkoxide, licht	0,32-0,48	2,5
kaliumzout	0,9	3,5		0,5	4
koffie, gebrand	0,35-0,41	2,3	zinkoxide, zwaar	0,8	3,5
kolen, stukkolen	0,83	5			<u> </u>
kolenstof	0,8	2,3			
kopra, meel	0,65	2,1			· · · · · · · · · · · · · · · · · · ·

Het toerental en de vullingsgraad

Tabel 3

Groepsletter	Max. aantal omw./min.	Vullingsgraad
Α	140	45%
B, C., D, E en F	100	30%
G, H, J, K, L en M	50	30%
N, O, P, R, S en T	50	15%

EINDLOOS KOUDGEWALSTE SCHROEFBLADEN

The eindloos koudgewalste schroefbladen, zoals deze worden toegepast in onze standaard transportschroeven, kunnen wij ook afzonderlijk aanbieden.

De tabellen geven een overzicht van de gangbare schroefbladafmetingen.

Afwijkende maten kunnen ook geleverd worden. Een geringere spoed is echter alleen mogelijk bij een grotere asgatdiameter.

Toleranties:

Buiten Ø (D) :	+	2 mm	1
-------------	-----	---	------	---

Spoed (
$$S$$
) : $\pm 20 \text{ mm}$

(D)	(S)	(d)
mm	mm	mm
480	400 — 450	280
485	400 — 450	285
490	400 — 460	290
495	400 — 470	295
500	420 — 500	300
505	420 — 510	300
510	420 — 520	310
525	420 — 530	310
525	430 — 540	320
530	440 — 550	320
530	450 — 550	320
550	460 — 550	320

Toleranties:

Buiten	Ø (D) :	+	2	mm

Spoed (S): tot 250 mm
$$\pm$$
 10 mm

$$van 250 \text{ mm} \pm 20 \text{ mm}$$

As
$$\emptyset$$
 (d): tot 50 mm + 10 %

(D)	(S)	(d)
mm	mm	mm
50 60 70 80 90 100 110 120 125 130 140 * 150 160 170 180 190 * 200 210 220 230 240 * 250 260 270 280 290 * 300 310 320 330 340 350 360 370 380 390 * 400	40 — 50 50 — 60 60 — 85 80 — 90 80 — 100 80 — 110 80 — 120 90 — 140 100 — 150 100 — 160 100 — 170 110 — 180 115 — 190 120 — 200 130 — 210 140 — 220 150 — 240 160 — 240 180 — 250 180 — 250 180 — 250 200 — 260 200 — 270 240 — 280 250 — 290 260 — 300 270 — 310 270 — 320 270 — 340 270 — 350 270 — 360 270 — 360 270 — 360 270 — 360 300 — 360 300 — 360 300 — 360 300 — 360	10 — 12 15 — 22 18 — 25 18 — 25 18 — 25 20 — 30 20 — 40 25 — 40 27 — 40 27 — 50 30 — 60 35 — 70 40 — 70 45 — 70 45 — 70 45 — 70 45 — 70 45 — 70 45 — 70 60 — 70 70 — 85 75 — 90 75 — 95 80 — 100 85 — 105 100 — 115 110 — 125 120 — 130 130 — 150 140 — 160 160 — 175 170 — 180 170 — 180

De met * gemerkte bladen in voorraad.

Stortgoed	Soortelijke stort- mossa J (t/m ³)	K – faktor	Taludhoek (graden)	Bijzonderheden
lijnzaad linseed Leinsamen graines de lin	0,65	2	30	r
mais, kiemen corn, germs Mais, keim mais, germes céréales	0,4	2'	30-45	
maismeel cornmeal Maismehl farine de mais	0,64	2,4	30-45	r
melksuiker lactose Milchzucker lactose	0,51	3,2	30 -45 :	bederfelijk perishable leichtverderblich périssable
potas potash Potasche potasse	1,12	3,5	30	P
suiker, kristal sugar, granulated Kristallzucker sucre, cristallisé	0,67-0,86	3,4	30-45	bederfelijk perishable leichtverderblich pěrissable
talk, fijn soapstone, talc fine Talkum, fein talc, fin	0,64-0,9	2,9	45	wordt vloeibaar met lucht becomes liquified with air wird flüssig mit Luft se liquifie avec air
tarwe wheat Weizen froment	0,7-0,9	1,8	30	r
zeeppoeder soappowder Seifenpulver poudre de savon	0,32-0,48	2,5	30-45	

Tabel 1 (de onderstaande waarden zijn indikatief)

Tabel 1 (de ondersta	ande waarden zijn	indikatief)				
Stortgoed	Soortelijke stort- massa J (t/m ³)	K _s -faktor	Taludhoek (graden)	Bijzonderheden		
aardappelmeel potato starch Kartoffelstaerke fécule	0,72	4,4	35-45	r-w		
boekweit buckwheat Buchweizen sarrasin	0,64-0,67	2,3	30	r		
bonen, gehele beans, whole Rizinus, ganze Samen fèves, entières	0,55-0,75	2	30	;		
cacaobonen, gebroken cacao, nibs Kakaobrocken cacao, cassé	0,55	5	30-45	•		
cement cement Zement ciment	1,2	3,5	30-40	wordt vloeibaar becomes liquifie wird flüssig mit l se liquifie avec	d with air . Luft	
glutenmeel glutenmeal Klebermehl gluten, farine	0,64	2,5	30-45	r		
grondnoten in dop peanuts in shells Erdnuss mit Schalen cacahuète	0,24-0,32	2	30-45	q		
klaverzood cloverseed Klee Samen trèfle	0,77	2,3	30	r		
koffie, gemalen coffee, ground Kaffee, gemahlen café, moule	0,35-0,41	2,3	30-45		-	

BEPALING VAN HET BENODIGDE MOTORVERMOGEN

De capaciteit van de transportschroef wordt bepaald met behulp van de volgende formule:

$$Q = 47 \times D^2 \times S \times n \times f$$

waarin: Q = capaciteit schroef (m^3/h)

D = buiten diameter schroef (m)

S = spoed schroef . (m)

n = toerental schroef (omw/min)

f. = vullingsgraad schroef tabel 3

Voor standaardschroeven geldt:

$$Q = 47 \times D^3 \times n \times f$$

en $Qg = opbrengst schroef = 47 \times D^3 \times f \times g \times n$

waarin: g = specifiek stortgewicht (t/m^3)

Het vaststellen van het vermogen aan de schroef is een ingewikkelde zaak omdat vele moeilijk meetbare faktoren hierbij een rol spelen. Men kan echter een redelijk nauwkeurige, aan de praktijk getoetste richtwaarde berekenen met behulp van de volgende formule:

$$Ns = \frac{Qg \times L \times Ks}{270}$$

waarin: Ns = vermogen aan de schroef (pk)

L = werkzame lengte van de trog (m)

Ks = wrijvingsfaktor tabel 2

Het benodigde motorvermogen is nu eenvoudig te bepalen volgens :

$$Nb = \frac{Ns}{0.85}$$
 (pk)

Bij problemen kunt u ons altijd raadplegen.

X Berekeningsvoorbeeld 2

Een vertikale schroeftransporteur dient door een toevoerschroef met aardappelmeel te worden gevoed. De te leveren opbrengst is 20 t/h en de opvoerhoogte is 8 m. Vullingsgraad, diameter, toerental en vermogen worden als volgt bepaald:

In verband met de opvoerhoogte gaan we uit van een diameter van 0,4 m. Het bijbehorend toerental bedraagt dan volgens grafiek $A \pm 260$ t/min. De kapaciteit Q is (20:0,72) = 27,8 m $^3/h$. In grafiek A vinden we voor deze kapaciteit en diameter een vullingsgraad van $\pm 10\%$.

H wordt (8 + 1,5) = 9,5 m en uit tabel 1 blijkt dat $K_s = 4,4$;

$$N = \frac{Qg.H.Ks}{41} = \frac{20.9, 5.4, 4}{41} = , 19,3 pk;$$

We kiezen hiervoor een elektromotor van 20 pk.

Stortgoed klassifikatie

materiaaleigenschappen	symbool	materiaaleigenschappen	symbool
onder druk of zelfstandig samenpakkend packs under pressure or naturally s'agglomère sous pression ou indépendant unter Druck oder selbstständig aufbauend	n.	licht ontvlambaar inflammable inflammable brennbar	S
slijtage veroorzakend abrasive abrasif abrasiv (schleifend)	o	stoffig dusty poussièreux staubend	
korrosief corrosive corrosif korrosiv (schleifend)	Р	zeer vochtig tot nat wet humide feucht	U
makkelijk te beschadigen easily damaged fragile zerbrechlich	q	plakkerig sticky collant klebrig	V
explosief explosive explosif explosiv	r	vochtaantrekkend hygroscopic hygroscopique hygroskopisch	W

transportschroef algemeen

De door ons vervaardigde standaardtransportschroeven kunnen van willekeurige, door de cliënt op te geven, lengte zijn.

Behalve in de gewone St37 uitvoering, vervaardigen wij onze schroeven ook in roestvrijstaal, Corten, etc.

De normale door ons toegepaste aandrijvingen kunnen vervangen worden door een regelbare aandrijving.

Aangezien soms de eis gesteld wordt van een goede trogafdichting d.m.v. een deksel, waarbij zo min mogelijk stof doorgelaten wordt, hebben wij een eenvoudige afsluiting met rubberstrip ontworpen, welke aan deze gestelde eisen ten volle tegemoet komt. De schroef kan tot een bepaalde hoek ook schuin naar boven transporteren.

Om de snaaraandrijving wordt een plaatijzeren schermkapje bijgeleverd.

Schroef- diam.	A	8	С	D	Фε	F	G	н	Дκ	L	м
150	160	250	200	140	160	130	100	150	240		70
200	210	306	240	165	210	160	135	175	292	keuze	87
250	260	355	285	190	260	180	165	200	342	naar ke	104
300	310	400	330	215	310	210	200	225	392		120,5

SCHRAPER VOORSTUK VS ENKELESCHROEF VES LENGTE SPOED RECHTS TUSSENSTUK IS EINDSTUK ES

schroefstuk

Schroefstukken worden normaal uitgevoerd met rechtse spoed. De spoed is gelijk aan de diameter (\$ = 0\$). Voor bijzondere gevallen zijn zij ook met linkse- of afwijkende spoed te leveren. Op de as is bij de afvoermond een keerschoep aangebracht voor het schoonhouden van het trogeinde. De schroeven met een diameter van 150 en 200 mm zijn uitgevoerd met een massieve as met aangedraaide astappen.

					Lex	egte	
Bestel- nummer	Schroef dism.		Voorstek VS	Entain setu. VES	Tussenetuk TS	Eindetuk ES	
VS 150 VES 150 TS 150 ES 150	150	150	AS ø 50	2965		2940	
VS 200 VES 200 TS 200 ES 200	200	200	A\$ a 50	2965	de tragleng	2940	de trogieng
VS 200 VES 200 TS 250 ES 250	260	250	PIJP INW, s 52	2965	aihankelijk van de troplengte	2940	aihanekiijk van de trogiangte
VS 300 VES 300 TS 300 ES 300	300	300	PIJP INW. a 70	2960	4	2930	를

lintschroefstuk

Deze worden toegepast indien het materiaal neiging tot samenkleven vertoont. De capaciteit wordt ca. 20% à 25% lager dan het overeenkomende volblad type.

	ĺ				Len	ngte	,
Bestel- nummer	Schrout diam.	Speed	Р	Voorstuk VSL	Enkele schr. VESL	Turnenstuk TSL	Eindatuk ESL
VSL 150 VESL 150 TSL 150 ESL 150	150	150	AS ø 50	2965	2	2940	
VSL 200 VESL 200 TSL 200 ESL 200	200	200	AS e 50	2965	van de troglengte	2940	sthankelijk ven de troglengte
VSL 250 VESL 250 TSL 250 ESL 260	250	250	PIJP INW. ø 52	2965	efhenkelijk van	2940	mketijk van
VSL 300 VESL 300 TSL 300 ESL 300	300	300	PIJP INW, p 70	2960	€	2930	Ę

schuif door handof kettingwiel bediend

Op de schuif is een tandreep aangebracht, welke door een rondsel wordt aangedreven. In plaats van een handwiel kan ook een nestenschijf voor kraanketting gebruikt worden

MET KETTINGWIEL KWS

MET HANDWIEL: HWS

Bestel- nummer	Schroef diam.	ФА	В	С	D1	D2
HWS 150 KWS 150	150	164	535	142	195	150
HWS 200 KWS 200	200	214	635	172	220	175
HWS 250 KWS 250	250	266	735	192	245	200
HWS 300 KWS 300	300	316	835	222	270	225

handschuif

De schuif is uitgevoerd met lange geleidingsstrippen om schranken bij het verschuiven te voorkomen.

Bestel- nummer	Schroef diam.	ΦА	В	С
HS150	150	164	275	142
HS200	200	214	325	172
HS250	250	266	3 75	192
HS300	300	316	425	222

Pijpschroef

Wooral daar waar het transport onder een helling moet plaatsvinden heeft de pijpschroef een groot toepassingsgebied.

Verwarmingsschroef

Deze schroef is onontbeerlijk als een goede menging en een gelijkmatige verwarming vereist zijn.

Stofschroef 1

De stofschroef is voorzien van een goede afdichting en een speciale lagering en vindt veel aftrek in de asfaltverwerkende industrieën.

Mengschroef

Deze met linten uitgevoerde schroef wordt overwegend gebruikt voor het mengen van kleverige materialen zoals men deze in de verfindustrie aantreft.

Live-bottom hopper

De live-bottom hopper heeft tal van mogelijkheden maar vindt vooral in de chemische industrie toepassing.

Koelschroef

Deze koelschroef is ontworpen voor het afkoelen van zware ertsen en heeft daartoe een doelgerichte konstruktie.

Snelkoppeling

Deze speciale koppeling maakt een snelle en eenvoudige montage of demontage ten behoeve van onderhoud mogelijk.

ÉLÉVATEURS A HÉLICES VERTICAL SCREW CONVEYORS SCHNECKENSENKRECHTFORDERER

N∘ du	Désignation			
repère	FRANÇAIS	ANGLAIS	ALLEMAND	
1 2 3 4 5 6	Trémie d'alimentation Vis d'alimentation Trémie d'alimentation (variante) Vis élévatrice Gaine tubulaire Élément moteur Tubulure de sortie	Feed hopper Feed screw Feed hopper (alternative) Lifting screw Tubular casing Drive unit Outlet	Aufgabetrichter Speiseschnecke Aufgabetrichter (alterna- tiv) Hubschnecke Rohrgehäuse Antriebsstation Auslauf	

Standaard vertikale schroeftransporteurs

De standaard vertikale schroeftransporteurs VS 200 en VS 300, uitgerust met een toevoertrechter, bestrijken een veelgevraagd gedeelte van het kapaciteitsgebied. Toepassing van een toevoerschroef geeft een aanzienlijke kapaciteitsvergroting.

Grafiek A De kapaciteit Q uitgezet als funktie van de vullingsgraad, de inwendige manteldiameter en het toerental, woarbij geldt : $K_n = \frac{2 \cdot w^2 \cdot D}{g} = 15$

Bestelling/aanvraag voor vertikale schroeftransporteur	
Dotum :	
Bedrijf	
Afdeling:	
Ref.	and the second second
Toestelnr.:	
D_1 •••	
Belangrijke gegevens	
soort stortgoed :	
opvoerhoogte (m): 4.26	
opprendst (+/L)	
stortgewicht (t/m ³):	
taludhoek (ar)	
korretarootta	
temperátuur stortgoed (C°):	
vochtig ? ja / neen ×	
explosief ? ja / neen X	
agressief? ja / neen X	
kleverig ? ja / neen × doorhalen wat niet v	an toepassing is
Eventuele andere gegevens:	
	e <u>ga amanan kangana</u> hisebara 1988

Schijvenelevator

De schijvenelevator is een kontinutransportmiddel dat wordt toegepast bij het opvoeren van grote hoeveelheden stofvormige produkten of granulaten. De bijzondere konstruktie maakt een grote opvoerhoogte mogelijk.

De schijvenelevator, waarbij het draagorgaan aan het drijforgaan gekoppeld is, is samengesteld uit twee vertikale pijpdelen met een bovenkop en onderbocht. Het opvoeren van het materiaal geschiedt d.m.v. schijven, welke zijn aangepast aan de eigenschappen van het te transporteren materiaal.

Enige voordelen t.o.v. konventionele transportmiddelen voor vertikaal transport zijn:

- a. grote opvoerhoogte
- b. grote kapaciteit
- c. gesloten systeem
- d. vrijwel geluidloos
- e. geen inwendige vervuiling
- f. geringe verpulvering van het materiaal
- g. weinig onderhoud

*

HET KOSTENASPEKT

Het gebied waarbinnen de schotjeselevator wordt toegepast en dat in de eerste plaats wordt bepaald door de bijzondere transporteigenschappen, breidt zich aanzienlijk uit naarmate grotere opbrengsten en/of opvoerhoogten vereist zijn. Afhankelijk van de eigenschappen van het op te voeren materiaal en de opvoerhoogte is de kostenfaktor per (ton/mtr/h) snel kleiner dan bij bakjeselevatoren. Bovendien is t.g.v. het hoge volumetrische rendement relatief een klein vermogen nodig, hetgeen resulteert in een laag energieverbruik.

176	schijvenelevator	GB disc lift	D scheibenelevator	F élévateur à disques
}	aandrijfschijf	head drive sprocket	antriebskettenstern e	
	kabe l	cable	seil	roue d'entrainement
3	klem	clamp	klemme	pince
4	schilf	disc	scheibe -	disque
5	aandrijfkettingwiel	driving chainwheel	antriebskettenrad	roue de tension
6	aandrijfketting	driving chain	antriebskette	
7	(elektro) motor	drive unit	antriebsstation	chaîne de tenstion
8	beschermkap	guard	schutzkasten	élément moteur
9	deksal	cover plate	abdeckung	carter de protection
10	transportpijp	conveying pipe		couvercle
11-	bochstuk	bend	rohrgehäuse	tuyau de transport
12	konnole luik	control door	kurve	tuyau courbe
13	uitizatmond	outlet	kontrollfenster	volet de contrôle
14 -	intermond	inlet	auslauf	tubelure de sortie
15	voetstuk	boot	aufgabetrichter	trémie d'alimentation
13	Voetsruk	boot	fusz	pied

Tabel 3

De stromingseigenschappen worden ingedeeld als volgt:

Symbool	Kohesie (taludhoek)	
1	Als vloeistof	
2	Goed lopend, taludhoek kleiner dan 30°	
3	Normaal lopend, taludhoek van 30° – 45°	
4	Moeilijk lopend, taludhoek van 45° – 60°	
5	Kompakt, taludhoek groter dan 60°	
6	Ineengestrengeld	

Tabel 4

De bijzondere eigenschappen worden aangegeven als in de volgende tabel.

De voorbeelden geven het karakter aan.

Symbool	Materiaal voorkomen	Voorbeeld
n	Samenpakkend	Gieterij zand, poeder, suiker
O'	Slijtage veroorzakend	Cokes, Hoogovenslak
p	Chemisch aantastend	Keukenzout
q	Gemakkelijk te bescha- digen.	Zeepvlokken
F	Explosief	Kolenstof, zinkerstof
y s	Licht ontvlambaar	Zaagsel, houtafval
t	Stoffig	Cement
U	Zeer vochtig tot nat	Bezinksel, bagger
V	Plakkerig	Natte klei
w	Vochtaantrekkend	Ammonium nitraat, keukenzout
x	Kwalijk riekend	Rioolwater

V∞rbeeld

Met behulp van de tabellen kunnen we nu de volgende omschrijving van zand maken: Zond (gieterij) A - i - 2 - n, stortgewicht 1600 kgf/m³.

Kapaciteit

De kapaciteit van de schijvenelevator wordt bepaald door de materiaalstroom in de toevoeropening. De grootte van de materiaalstroom wordt beinvloed door de eigenschappen van het stortgoed. Met behulp van de tabellen 1, 2, 3 en 4 kan het stortgoed meestal zodanig geklassificeerd worden dat een goed inzicht omtrent de toepassing van de schijvenelevator hieruit af te leiden is. Grafiek 1 geeft een indruk omtrent de kapaciteiten van de 55-Ø 100 en 55-Ø200 voor goed stromende stortgoederen. Mocht uw produkt, door de specifieke eigenschappen, niet eenvoudig te klassificeren zijn of andere moeilijkheden opleveren, dan is het gewenst enige proeven te nemen in onze installatie (zie ook foto).

Met deze proefinstallatie is reeds een groot aantal proefnemingen uitgevoerd. Het benodigde hoeveelheidstortgoed voor de 5S-Ø 100 en de 5S-Ø 200 is respektievelijk ca. 25 liter en ca. 150 liter.

Foto:

De proefinstallatie voor 5S-Ø 100.

Stortgoed klassifikatie

(overeenkomstig V.D.I. blad 2393 en M.T.P.S. blad 10294 - 2)

De stortgoederen worden volgens deze klassifikatie ingedeeld naar:

Korrelgrootte

Stromingseigenschappen

Korrelvorm

Bijzondere eigenschappen

Tabel 1

Symbool	Korrelgrootte		
A	van 0 tot 0,4 mm	0" - 1/64"	
В	0,4 tot 1,0 mm	1/64" — 1/32"	
, C	1,0 tot 3,0 mm	1/32" - 1/8"	
D	3,0 tot 10,0 mm	1/8" — 3/8"	. !
E	10,0 tot 25,0 mm	3/8" — 1"	
F	25,0 tot 50,0 mm	1" - 2"	
G	50,0 tot 75,0 mm	2" - 3"	
H	75,0 tot 150,0 mm	3" - 6"	
	150,0 tot 300,0 mm	6" — 12"	
Κ	300,0 en groter	12"	

Het betreft hier een korrelgrootte welke overwegend is. Overwegend wil zeggen 60% van het volume of meer.

Tabel 2

Bij de korrel onderscheidt men zes verschijningsvormen.

Symbool	Korrelvorm	Voorbeeld
1 1	Scherpe hoeken, waarbij 3 dimensiesgelijk zijn.	Kubusvormig
11	Scherpe hoeken, waarbij êên der dimensies kennelijk groter is dan de andere twee.	Prismavormig
Ш	Scherpe hoeken, waarbij één der dimensies kennelijk kleiner is dan de andere twee.	Plaat-, schelp- vormig
IV :	Ronde hoeken, waarbij 3 dimensies ongeveer gelijk zijn.	Sferisch
V	Ronde hoeken, waarbij een dimensies kennelijk groter is dan de andere twee.	Cilinder, staaf
VI	Draadvormig.	Draaikrullen

Berekeningsvoorbeeld 2

Een vertikale schroeftransporteur dient door een toevoerschroef met aardappelmeel te worden gevoed. De te leveren opbrengst is 20 t/h en de opvoerhoogte is 8 m. Vullingsgraad, diameter, toerental en vermogen worden als volgt bepaald:

In verband met de opvoerhoogte gaan we uit van een diameter van 0,4 m. Het bijbehorend toerental bedraagt dan volgens grafiek $A\pm260$ t/min. De kapaciteit Q is (20:0,72)=27,8 m $^3/h$. In grafiek A vinden we voor deze kapaciteit en diameter een vullingsgraad van $\pm10\%$.

H wordt
$$(8 + 1,5) = 9,5$$
 m en uit tabel 1 blijkt dat $K_s = 4,4$;

$$N = \frac{Qg.H.Ks}{41} = \frac{20.9, 5.4, 4}{41} = , 19,3 pk;$$

We kiezen hiervoor een elektromotor van 20 pk.

Stortgoed klassifikatie

Λ.		<u> </u>	
materiaaleigenschappen	symbool	materiaaleigenschappen	symbool
onder druk of zelfstandig samenpakkend packs under pressure or naturally s'agglomère sous pression ou indépendant unter Druck oder selbstständig aufbauend	n	licht ontvlambaar inflammable inflammable brennbar	s
slijtage veroorzakend abrasive abrasif abrasiv (schleifend)	o	stoffig dusty poussièreux staubend	t
korrosief corrosive' corrosif korrosiv (schleifend)	p	zeer vochtig tot nat wet humide feucht	U
makkelijk te beschadigen easily damaged fragile zerbrechlich	q	plakkerig sticky collant klebrig	V
explosief explosive explosif explosiv	r	vochtaantrekkend hygroscopic hygroscopique hygroskopisch	w

Stortgoed klassifikatie

(overeenkomstig V.D.I. blad 2393 en M.T.P.S. blad 10294 - 2)

De stortgoederen worden volgens deze klassifikatie ingedeeld naar:

Korrelgrootte

Stromingseigenschappen

Korrelvorm

Bijzondere eigenschappen

Tabel 1

Symbool	. Korrelgrootte	
A	van 0 tot 0,4 mm	0" - 1/64"
В	0,4 tot 1,0 mm	1/64" — 1/32"
, C	1,0 tot 3,0 mm	1/32" - 1/8"
D ·	3,0 tot 10,0 mm	1/8" — 3/8"
E	10,0 tot 25,0 mm	3/8" — 1"
F	25,0 tot 50,0 mm	1" - 2"
G	50,0 tot 75,0 mm	2" — 3"
н	75,0 tot 150,0 mm	3" - 6"
J	150,0 tot 300,0 mm	6" - 12"
κ	300,0 en groter	12" —

Het betreft hier een korrelgrootte welke overwegend is. Overwegend wil zeggen 60% van het volume of meer.

Tabel 2

Bij de korrel onderscheidt men zes verschijningsvormen.

Symbool	Korrelvorm	Voorbeeld
i .	Scherpe hoeken, waarbij 3 dimensiesgelijk zijn.	Kubusvormig
11	Scherpe hoeken, waarbij één der dimensies kennelijk groter is dan de andere twee.	Prismavormig
Ш	Scherpe hoeken, waarbij één der dimensies kennelijk kleiner is dan de andere twee.	Plaat-, schelp- vormig
IV	Ronde hoeken, waarbij 3 dimensies ongeveer gelijk zijn.	Sferisch
٧	Ronde hoeken, waarbij een dimensies kennelijk groter is dan de andere twee.	Cilinder, staaf
V١	Draadvormig.	Draaikrullen

Opvoerhoogte

De maximale opvoerhoogte is afhankelijk van het stortgoed. Deze opvoerhoogte kan voor sommige produkten voor de 5S-Ø100 en 5S-Ø200 respektievelijk ca. 25 mtr en 40 mtr bedragem. Voor deze grote opvoerhoogten is het evenwel gewenst kontakt op te nemen met Gebr. Klinkenberg B.V.

Tabel 5

GESCHIKTE STORTGOEDEREN VOOR DE SCHIJVENELEVATOR

		1	
	NL.	GB	D
1	aardnoten zonder dop	peanuts without shell	Erdnüsse ohne schale
2	bakelietsplinters	bakelit splitter	Bakelitesplinter
3	bonen	beans	Bohnen
4	cacaobonen	cocoa beans	Kakaobohnen
,5	cacaobonen, gebroken	cocoa nibs	Kakaobrocken
6	carbon black	carbon black	Carbon black
7	glutenmeel	glutenmeal	Klebermehl
8	granen	grains	Getreide
9 -	harsschilfers	resin flakes	Harzschiefer
10	klinkercement	cement klinker	Zementklinker
11	koffiebonen, gebrand	coffee beans, roasted	Kaffeebohnen, geröstet
12	PVC granulaten	PVC granulates	PVC, körnig
13	rijst	rice	Reis
14	sojabonen	soybeans, whole	Sojabohnen
15	sojaschroot	soybeans, cracked	Sojaschrot
16	suiker, korrelig	sugar, corn	Zucker, körnig
17	tapiocameel	tapioca, ground	Tapiocamehl
18	vermicelli	vermicelli	Nudeln
19	zaden	seeds	Samen
20	zand, droog	sand, dry	Sand, trocken

Kapaciteit

De kapaciteit van de vertikale schroeftransporteur wordt bepaald door vullingsgraad, toerental, spoed, inwendige manteldiameter en koefficienten van de glijdende wrijving tussen het korrelvormige stortgoed, het schroefblad en het manteloppervlak (resp. μ_s en μ_m). Een met een standaardtrechter uitgeruste vertikale schroeftransporteur heeft, afhankelijk van de stromingseigenschappen van het stortgoed, een vullingsgraad van ca. 5 tot 15% (taludhoek \leq 45°). In grafiek A zijn voor korrelvormige stortgoederen met 0,3 $< \mu_m = \mu_s < 0$,4, kapaciteit (bij benadering), vullingsgraad en het bijbehorend toerental uitgezet tegen een inwendige manteldiameter, waarbij de volgende formules zijn gebruikt:

$$Q = \frac{18.D^3.n.f.}{100}$$
 en $K_n = \frac{2.W^2.D}{g}$ waarin:

Q (m^3/h) = kapaciteit van de vertikale schroeftransporteur

g (m/s^2) = versnelling van de zwaartekracht

n (omw./min) = toerental van de wormas

f (%) = relatieve vulling, gedefinieerd als het ruimtepercentage van de mantelinhoud die het stortgoed inneemt

 K_{n} ()) = versnellingskental

W (rad/s) = hoeksnelheid van de wormas

D (m) = inwendige manteldiameter

In verband met de konstruktie van de schroeftransporteur (stijve wormas) mag de diameter niet te klein worden gekozen. Hierbij is de opvoerhoogte van belang. Bij opvoerhoogten van 8 m en meer kunt u ons raadplegen.

٨

Grafiek A De kapaciteit Q uitgezet als funktie van de vullingsgraad, de inwendige manteldiameter en het toerental, waarbij geldt : $K_n = \frac{2 \cdot w^2 \cdot D}{g} = 15$

De "Spaans Standaard"

Voor het ontwerp en de constructie van schroeftransporteurs bestaan standaard formules. Verhoudingen tussen diameter en lengte, toerental en capaciteit spelen een belangrijke rol.
Om u een indruk te geven, vindt u op

deze

pagina enige gegevens met betrekking tot capaciteiten en hoofdafmetingen.

In bepaalde gevallen moet en kan het ook anders. Spaans blijft specialist in maatwerk en wij zullen u daar in de praktijk graag van overtuigen.

Horizontale schroeftransporteurs Capaciteiten en dimensies

	Cap in m3/h	10	15	30	45	70	90	120	200	500	600
	Diameter D	265	315	365	460	600	700	800	1000	1200	1350
	Troghoogte	205	228	251	298	375	425	475	575	675	750
	Voethoogte	230	260	280	320	450	500	550	675	775	850
	Dekselbreedte	380	430	480	580	760	860	980	1220	1420	1570
(Afmetingen in mm)											

Vanzelfsprekend hangen de bovenge-noemde capaciteiten ook samen met het te transporteren product. Wij adviseren u hier graag in.

Terug

Verder >

Schroefvormen

Volblad

Volblad met verlopende spoed

Volblad met verlopende spoed

Lintschroef

Palet vaste uitvoering diverse paletvormen mogelijk

Palet verstelbare uitvoering diverse paletvormen mogelijk

Mengschroef schroef en lint met tegengestelde spoedrichting

Spiraalschroef

<u>≦</u> Terug Verder >

Spaans Bulk Handling Systems

Spaans tussenlagers

Spaans tussenlagers kunnen in vele uitvoeringen geleverd worden. Door het toepassen van een speciaal door Spaans ontwikkelde flexibele koppeling ontstaat een tussenlagering die grotere lagerafstanden mogelijk maakt bij een minimale lagerbelasting.

De voordelen op een rij:

- minimale lagerbelasting door toepassing van een flexibele koppeling
- lange levensduur
- grote lagerafstanden mogelijk
- · minimaal aantal tussenlagers nodig
- cascade opstelling transporteurs is overbodig
- in te bouwen in bestaande schroeftransporteurs
- geschikt voor schroeftransporteurs met twee draairichtingen
- vele mogelijkheden in uitvoering van afdichtingen, van geheel open lagers tot volledig gesloten met levensduur smering
- aansluiting op externe overdruksystemen mogelijk

≦ Terug Verder >

Rotorliften

Werking
Door het hoge toerental van de
gebalanceerde schroef ontstaat een
centrifugaalkracht, die het product naar
buiten slingert. Door de gesloten
buitenmantel beweegt het te transporteren
product zich gelijkmatig over de omtrek in
een spiraalvormige baan naar boven, tot
de uitlaat is bereikt.

Kenmerken

- grote capaciteit bij geringe afmetingen
- gesloten en stofdicht
- bedrijfszeker
- geen retourpart
- weinig hoogteverlies bij in- en
- lageringen buiten het produkt
- in- en uitlaat kunnen in alle richtingen t.o.v. elkaar worden uitgevoerd
- voeding mogelijk op diverse plaatsen
- ook diagonaal op te stellen

Capaciteiten rotorliften

Capaciteit in m3/h	10	20	40	50	70	100	130	160
Diameter in mm	250	300	375	450	550	700	800	950
Max. lengte in m	6	8	10,5	12	13	14	15	16

De genoemde capaciteiten geven een indicatie van de prestaties van verschillende rotorliften. Natuurlijk hangen deze ook af van de eigenschappen van het op te voeren product.

Rotrliften worden over het algemeen niet uitgevoerd met tussenlagers. Bij toepassingen waar grote opvoerhoogtes gevraagd worden, is een getrapte opstelling met twee of meer rotorliften een oplossing.

Rotorliften zijn op vele plaatsen en voor vele

producten toe te passen. Door het ontbreken van een retourpart neemt een rotorlift zeer weinig plaats in. Dit is een groot voordeel bij het inbouwen van een rotorlift in een bestaande situatie.

Standaard afmetingen (afmetingen in mm)

Diameter	250	300	375	450	550	700	800	950
Lengte in m	6	8	10,5	12	13	14	15	16
Hoogte H1	300	300	300	300	300	450	500	500
Hoogte H2	300	350	400	450	560	730	750	775
Flens F	345	415	480	570	670	820	920	1070

<u>≤</u> Terug <u>Verder ></u>

transportschroeven

holt b.v.

a. d. b(

buis met astappen

levering af fabriek

capaciteitstabel transportschroeven

voor fijnkorrelige materialen

de capaciteit hangt af van de diameter, spoed en het aantal omw./min. alsmede van het sg. en de vul-

voor een horizontale transportschroef als boven afgebeeld is de capaciteit als volgt:

$$Q_G = \frac{D^2 \cdot \pi}{4} s \cdot Q \cdot 60 n \cdot \gamma [t/h]$$

D = schroefdiameter in m

= spoed in m = aantal omw./min.

 $\gamma = s.g.$ Q = vullingsgraad

de snelheid resulteert uit spoed en aantal omw./min.

$$[s/m] \cdot \frac{09}{0} =$$

normaal zijn de snelheden van 0,2 tot 0,4 m/s. de variatie is gelegen in de hoedanigheid van het te transporteren materiaal, zie onder klasse A tot C.

voorbeelden

horizontale transportschroeven Q, (m³/h) en omw./min.

c	56 56 57 45
o 12%	2,5 4 4,5 11 18
c	125 110 100 90 80 71
30% Qv	3,5 6,5 11,5 20 35 35
e e	180 160 140 125 110
45% Qv	7
materiaalklasse vullingsgraad cap./o/min.	
netingen spoed	125 160 200 250 300 350
schroefafr in mm diameter	125 160 200 250 315 400

de capaciteit van transportspiralen ligt ca. 30% lager.

links draaien, linkse spoed en rechts draaien, rechtse spoed = materiaal komt naar u toe.

transportschroeven

vullingsgraad overeenkomend met soort materiaal

15%

klasse A=b.v. meel, rogge, tarwe, gerst, droge poederkolen etc. klasse B=b.v. graan, grof zout, zaagmeel, cement etc. klasse C=b.v. as, cokes, grind, zand etc.

vermogen

horizontaal gemonteerde schroef

$$N_a = \frac{Q_G \cdot L \cdot K}{367}$$
 [KW] of $N_a = \frac{Q_v \cdot g \cdot L \cdot K}{367}$ [KW]

t/h m³/h $\begin{array}{ll} N_a &= \text{vermogen aan de as van de schroef KW} \\ Q_G &= \text{gewicht van het materiaal} & t/h \\ Q_v &= \text{volume van het materiaal} & m^3/h \end{array}$

L = lengte van de schroef m s.g. s.g. $K = wrijvingscoefficient: klasse <math>A = \pm 2,3$ A = 4 A =

smeedbaar gietijzer

paletten

<u></u>

-							
1	passend voor	5r	-	-		gewicht	
חומזווברבו	as of puls	draag-	genele	aantal blade	en per meter	E X S	
, +	diam. mm	einden	taplengte	tweedelig	tweedelig vierdelig	2/2	4/4
4′′	43	31,71	65	17		0.1	900
''		- E	: F	. [ŗ		2
n	ţ	8	?	_	3/	0,15	-
, ,	43	3/2	20	4	53	0.5	0.15
١.,	20	3/2	75	73	23	2,0	5
8′,	20	», " , "	8 8	<u>+</u>	2 2	4.0	0.25
10"	04	7 1 11	8 7	ِ م		, ,	7
12,,	S S	5 77	3 5	\ a	7	<u>,</u>	5 0
14"	8 8	5/ //	2 5	o 1-	2 7	- •) c
	2	œ	3	,	<u>+</u>	4.	>

a. d. b/ choit b.v.

transportschroefbladen

stuik voor te lassen

diameter mm 120 150 levering van voorraad

plaatdiktemm 2 spoed mm 100 vooras-Ømm 35 plaatdikte mm spoed mm

riek
fabi
af
levering

2,8

1,95

gewicht in kg 0,29 0,34 0,37 0,52 0,57 0,66 0,78 0,83 1,43 1,53 1,48 1,65

tevens af fabriek leverbaar: schroeflinten tot 3 meter lengte

		4	7, 1, 2	~5	4	ις	9	8	9
diameter	spoed	gewich	ewichten per stuk in kg	uk in kg	!				İ
130	130	0,28	0,34	4.0					
140	140	0,31	0,38	0.45					
150	150	0,35	0,43	0.52					
160	160	0,39	0.49	0.59	0.78				
190	190	0,55	89'0	0,82	, t.				
200	200	9,0	0.75	6.0	1.5				
210	210	0,7	0.93	1 05	<u> </u>	1 84			
220	220	8,0	<u>.</u>	1.2	,				
230	230	0,86	1.21	1.29	5,5	2 42			
250	290	1,05	1,48	1,58	2,1	2,96	3,15		
270	270	1.2	7.5	8	7.4	~			
300	300	1,35	1,7	2	7.7	ار در 4	o, 4		
330	300	1,65	2,05	2,42	'n	, 4 , ,	4 84 48		
350	350	7	2,5	m	4	ıc			
400	300	2,4	m	3,6	4,8	9	7,2		
400	400	2.64	3,3	3.96	5.28	99	7 93		
450	450			8	6.4	oc	9.6	13.8	16
200	200			9	oc	10	1,1	2 7	2 2
550	200				10	7 2	ίť	2 6	3 2
009	500				2	, t	<u>, α</u>	2 6	3 8
650	200				73.5	16.9	30.05	ן ני	3 6
200	450				16	, 00	74.02	۲ ۲	2 5

tussenliggende diameters, andere spoed resp. grotere plaatdikten kunnen ook worden geleverd. maximum leverbare diameter is 2000 mm grote vijzelbladen worden in segmenten uitgevoerd. roestvrijstalen schroefbladen af fabriek leverbaar.

ers		©	v	<u>.</u>
verstelbare middenlagers	inclusief vetpot, voor schroefgoten gietijzer			afmetingen

a. d. b. kholt b.v.

	dismeter						4	8	U	
Δ	schroef	щ	Ľ.	_	Σ	I	vetpot	spindel	bout	gewicht in kg
32 20 20 20 20	150-160 190-200-210 250-270-300 350-400	88 2 2 2	26 125 150 150	3228	25 110 128	135 200 240	no. 4-1/4" no. 4-1/4" no. 5-1/4"	7/8,′′WW 7/8,′′WW 1/*WW 1/*WW	3/8 × 40 3/8 × 45 1/2 × 50 5/8 × 65	2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
brug vooi gieti	bruggen voor middenlagers gietijzer	ýs								- -
								-0		- 8 -

45 50 50	voor as-Ø	diameter schroef	_	I	¥	ш	∢	8	υ	۵	gewicht in kg
	35 60 60	150-160 190-200-210 250-270 300-350	300 - 420 - 470	170 220 285 350	8889	38 38 67 70	7 7 7 10	10 10 18 18	r 2	45 45 50 50	2, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,

tronsportsthroeven

STANDAARDISATIE TRANSPORTSCHROEVEN

Dod is to komen tot een standaard transportschroeven programma wat gebaseerd is op de volgende punten:

- a) Terugbrengen van het aantal mogelijke uitvoeringen in het verleden tot een geselecteerd aantal standaardonderdelen en constructies.
- b) Hominale och-oefdiameters gekozen in overeen-stemming met DIH 15261
- c) Zoveel mogetyk aanstruitend by de bestaande constructiewyze van Werkland.
- d) Standaard tekeningen op A4 formaat voor fabricage en documentatie
- a) In de bestaande opzet van transportschroeven bestaan 8 schroefdiameters. Bijkst aantal varianten dat mogelijk is komen we o.a. tot z6 verschillende lagerstoelen in lagerblok. Litvoering en 12 lagerstoelen in flenslageruitvoering met gelijke aantallen voor de motorstoelen (rechtstreekse aandrijving d.m.v. motorreductor en koppeling).

 Rekenen we hier ook nog bij de motorstoelen voor indirecte aandrijving (motorreductor met ketting overbrenging) dan ontstaat een zeer groot aantal variëteiten.

In de nieuwe opzet is gekozen voor 6 schroefdiameters wat resulteert in 6 trogvormen, glagerstoelen in lagerblokuitvoering 4 lagerstoelen in flenslageruitvoering en gelijke aantallen voor motorstoelen voor directe en indirecte aandrijving. Door het toepassen van zoveel mogelijk standaardonderdelen wordt de variant pas in het eindstadium bepaald.

Standuard onderdelen zijn: eindschild, lagerstoel (plaat), schetsplaten, motorplaat e.d.

Deze onderdelen kunnen in hun grondvorm (eventueel in leegloop-uren) worden aangemaakt (magazijn voorraad) waarna de definitieve vorm bij opdracht wordt bepaald.

Nabewerkingen aan samengestelde constructies behoeven niet plaats te vinden mits er in mallen op zorgvuldige wijze wordt gelast zodat trekken wordt voorkomen.

Ter illustratie de diverse fasen van een eindschild.

knippen witv. B6-B7 uilu. A.B.B Lasson motorstocl Lagerstoel motorstock indir. aandr. dir. aandr.

b) Bij het bepalen van de standaard schroefdiameters is er uitgegaan van een zestal in DIN 15261 genormeerde diameters (zie overzichtsblad Werkland transportschroeven).
Bij de genoemde spoedafstanden is het capaciteitsverschil tussen opeenvolgende schroefdiameters steeds ca 90% (D400 -> 500: 75%)

De gootlengte is afhankelijk van de totale schroeflengte, de goot kan opgebouwd worden uit standaardlengtes van 3000 mm (plaatafmeting) met één passtuk ter completering van de totale troglengte.

De troghoogte is afwijkend van de DIN-norm en bedraagt de halve breedte van het eindschild, go verdraaien is dan mogelijk.

c) De constructies zijn geënt op de bij Werkland gebruikelijke constructies. Hierbij is uitgegaan van de gedachte dat transportschroeven altijd op order aangemaakt zullen worden en er van een ochte scrieproduktie geen sprake zal zijn. Zetwork wordt alleen toegepast voor goot en deksels. Motor-en lagerstoclen kunnen uit plaat, strip en profielstaal worden samengesteld (lassen) uit een zo klein mogelijk aantal verschillende onderdelen.
Gootdeksels hebben een lengte van 1500 mm (plaatafmeting), per goot wordt er maximaal één pasdeksel toegepast.

Topvoer en uitvalmond kunnen in ronde of vierkante uitvoering worden uitgevoerd. Flenzen van toevoer-en uitvalmond en gootkrammen altijd uit strip 45x8,

Bevestigings bouten: materiaal 8.8, M10.

uitvooring gemerkt.

Schroefbladdiameter en spoed zijn overeenkomstig DIN 15261.

De buisdiameter is zo gekozen dat een troglengte van ca. 5 m

zonder tussenlagers mogelijk is.

Voor de astappen zijn 3 diameters gekozen: 50mm - D160 t/m 315,

65 mm - D 315 t/m 500, 80 mm - D400.500.

Miet tot de standaard behorende schroefassen zoals: grotere buisdiam. verlopende spoed e.d. dienen zoveel mogelijk volgens het zelfde grondpatroon te worden gefabriceerd uit zoveel mogelijk standaardonderdelen.

d) Van alle standaardonderdelen worden op A.A. formaat maatschetsen gemaakt met de afmetingen in tabelvorm.

Tijdrovend tekenwerk en werkvoorbereiding kan met behulp hiervan worden voorkomen.

Op het overzichtsblad wordt aangegeven welke uitvoering en lengte gewenst zijn, op de nderdeelbladen wordt de betreffende

Deze maatschetsen vervangen de nu gebruikelijke tekeningen en hebben als voordeel:

- besparing op tekenkosten

- fotocopieën in plaats van lichtdrukken

- convoudig op te bargen

- to gebruiken bij offerte als aanbiedingstekening.

Om te voorkomen dat er toch nog tamenstellingstekeningen worden gemaakt moeten er afspraken worden gemaakt over het falorikaat aandrijving welke standaard zal worden toegepast. Regelmatig toegepaste motorreductoren zijn: SEW, Stophan, Cebeha, Stöber variatoren.

De afmetingen van reductoren zijn niet, zoals bij electromotoren, gestandaardiseerd zodat een eenheid in motorstoden voor diverse fabrikaten reductoren niet mogelijk zal zijn.

Aanbevolen wordt één fabrikaat als standaard te kiezen waarbij de voorkeur uitgaat naar SEW, hiermee is bij 5 kastgrootten en vermogens tussen 0.55 en 7.5 kW een maximum aan toerentallen megelijk.

Minder mogelijkheden voor een aanmerkelijk gunstiger prijs bieden

de costduitse VEM motorreductoren.

Kiezen we voorts voor een ketting overbrenging van 1:2 (19:38 tanden) met 1"simplex rollenketting voor de kleinere vermogens, en 1"duplex rollenketting voor de grotere vermogens, dan blijft de mogelijkheid open om, door wisselen van kettingwielen, het toerental van de schroef aan de praktijk aan te passen.

Op een specificatieblad (invulblaid) worden de specifiche gegevens van de transportschroef aangegeven zoals: aandrijving, ketting, kettingwielen, koppeling, lagers, toevoer- en ruitvalmond, en alle op de uitvoering betrekking hebbende gegevens. Het is de bedoeling dat voor fabricage alleen het specificatieblad wordt uitgegeven (vanuit tekenkamer), copieën al naar gelang daar behoefte aan bestaat voor de diverse werkplaatsen. Onderdelen worden gemaakt van de maatschetsbladen, copieën gebruikt voor de fabricage behoeven niet per order te worden bewaard, alleen het specificatieblad gaat in het archief.

capaciteit C m³/uur vullingsgraad 30%

L volgens opgave -

		J = J										0	•		肾	
D	сар,	a	b	С	q	е	f	g	h	i	k	กา	S	Ļ,	L	
160	17.57	180	:37	197	140	180	165	274	:80	78	78	234 5 x	100			
200	0.113	220	157	217	160	220	185	314	220	90	94	274 5 x	200		:	
250	/ 12	270	182	242	185	270	210	364	270	108	108	324 8×	. 250			_1
31,5	1.2	335	215	275	220	335	245	431	335	130	131	390 8 x	300		:	-
400	. 1	425	260	320	255	425	290	521	4.25	150	151	480 8x	355		i	
500		525	,310	370	315	525	240	523	525	145	145,5 2 x	5 <i>8</i> 0 12×	400		1	

Werliend

transportschroeven

diagrai : transportcapaciteit

4000

A voor niet - tende stoffen

B voor slijtende stoffen

machinefabriek werkland b.v. 1955 postbus 3 7830 AA nieuw-weerdings 1955 Lolex:53931

Uerkland

tran portschroeven

4000

003

op/rachtgever		order nr.	•
		aantal	diameter D
tradienate $L = -m = -x/3.00 \text{ mm} + 1x$	ero	toevoermond	1/2 mirvalmond 1/2
andrijving motorreductor: type	omw/mio.		num 'spiebnan vig. num DIN 6385 bl.1
rendseld tanden kettingwield type dup/sim type klembus / nr.		simi s	ting t" dup/sim chalcals ncl.sluitscholol
asúirseter laserblok/stelringén a	andrijtzi	ide mitvalaid	de tet. matal
↓ No. SKE SNA STITA + 1211K + 1211 Setellingen FRE f1,5/10cP flenslager INA TCJ 50*			
∅ 65 - SET SHA SISTA + 1215K + H215 2 stofringen FRB 13,5/1302			***
/ 00 SEF SNA 318TA + 1218K+ 11218 O stelringen DEB 17,5/1602			we is some
schroefas: lengte: 1. = 20 mm = buisdiameter: spoed: standaard:	om asei	eter b = nden Ø = standnard:	50 k 7.79
potorstoel:	lagerstoe	1:	
dense(s: x150) ngs + 1x mm	dokselslu	iting:	Asset :
aga:diehting: annt:	hang lager	:	annt:
materiaal:			hekired
⊭ _{Pr} ervinktebehandeling: SVS lasmaden: beitse stalen delen: staals finksa :		iveren	
constructionrondslagen: te transporteren bateriaal: materiaalcode: toooretische capaciteit: m3, vallingsgraad: /	/uar	stort jewicht :	i ke7 ku ³ Zuur
Opneskingen:			

Uerland

transportschroeven schroefas

4000 00

Laandrijfestap blad

Terndastyr blod

4 propilissien montrek

astoppen in burs krimpen

 $\frac{5 \text{ teshend}}{2}$

(bekaring RVS 2 mm

uitsieg x

							,	, ,	RVS-j+,	10/10/1
Đ	ďη	.d2 bu≔s	5	t ibidikte	L max	1 €	a	ь	dg	,
160	50	75,1 × 2,9	16.0	3	4400				81	243
		76,1 × 2,9	0.75	3	4300		: : 5	75		
200		88,5 ×3,2	2.70	3	4800			,	94	224
350		88,5×3,2	2: 0		4500				37.	. →
2 50	50	105 ×3,5	Z 77.	• 3	5300				112	
	57)	152×3,5		1	5200		İ	: 		351
315	n, n,	105435	300	3	37.50		1			
	*5*5	: : 13 (x 4		;	6000			İ	137	419
		108×3,6	!		4800		10	80	1:2	351
405	55	133 x 4	355	4	5000					
	Ar	133×4	1		5500		İ			
	: (t ,		1.00	,	5.000				137	1 419
•,	80	133×4	400	5	5300	1				

^{*}E vrijens opgave blad 003

mater ant. buts. St. 7 met bekled \gtrsim RVS 3047375 schreeffield. St. 7 RVS \approx 47335

es premonueum Elicifeleuriy

transportschroeven astap aandrijfzijde

4000 · 00

5 echroet	o ₁ h8	d ₂ -0.2	L	L1	Γ	a+0.2	5	е	f
160		70,3			,				
200	•		_		5				
	50	82,5	355	255		5,5	14 ×9		
250		,				•		5	63
	• • • • • • • • • • • • • • • • • • • •	100,8							
315			385	285					
	65	125			10	7	18 ×11		
400		100,8			. 0	,	, ,	15	53
400 400		125	470	370				.)	0.0
	8 C					9	22 ×14	10	17%

					flens uitvo	lager ering	
.0 schroef	d ₁ 58	0 d ₂ -0,2	Ĺ	L ₁	L ₂	L ₃	٢
16.0		70,3					
200	٠		280	180			5
	50	82,5			200	100	
230							
		100,8	290	190	•	•	
315			310	210	geen flenslager uitvoering		
	65	125	310	210			10
400	0.57	100,8	220	230			
400		125	330	230			
500	80	123	345	245			

Vermogensberekening voor horizontale transportschroeven.

Het benodigd vermogen voor aandrijving van horizontale transportschroeven kan worden berekend aan de hand van de volgende formules:

$$P_{f} = 2.5 \frac{L \times n \times Fd \times Fl}{10^{6}} \text{ kW}$$
 (1)

$$P_{\rm m} = \frac{C \times \psi \times L \times Fs \times Fm \times Fb}{367, 2} \text{ kW}$$
 (2)

$$P_{tot} = \frac{(Pf + Pm) \times Fo}{7} \quad kW$$
 (3)

waarin:

Pf = wrijvingsvermogen voor de lege schroef in kW

Pm = wrijvingsvermogen voor te transporteren materiaal in kW.

C = capaciteit v.d. schroef in m3/uur.

i = lengte v.d. transportschroef in m.

 γ = stortgewicht van het materiaal zoals getransporteerd in kg/dm3 vlgs.tabel 0.16

n = transportsnelheid in omw/min.

7 = rendement van de aandrijving vlgs. tabel 017

Fb = schroefbladfactor vlgs. tabel 013

Fd = schroefdiameter factor vlgs. tabel 012

11 = lagerfactor vlgs. tabel 011

Fm = materiaalfactor vlgs. tabel 016

Fs = schoopfactor vlgs. tabel 014

To = overbelastingsfactor vlgs. figur 015

Voor standaardschroeven geldt: Fl = 1; Fs = 1; Fb = 1 en kan wolstaan worden met de formule:

$$Pm = \frac{C \times \gamma \times L \times Fm}{367} \quad kW \tag{4}$$

boordat het berekende vermogen altijd naar boven afgerond zal worden ter verkrijging van het te installeren vermogen, is het verwaarlozen van Pf aanvaardbaar. (Deze komt voor standaardschroeven tot 10 m. lengte niet boven 0,5 kW) (schroef Ø 500). Fit ste installeren vermogen wordt dan:

$$P_{tot} = \frac{Pm \times Fo}{7} + kW$$
 (5)

of:
$$P_{tot} = \frac{C \times y \times \times Fm \times Fo}{367 - 77} \quad kW$$
 (5a)

	* f ***	MARIO THE	TOR		alesia off		
-	Some	Learn.			Lacker	in the second se	
		11 V 11111 114 1818 1818 1811 1811	·				
	+	Manal Louis	Y ² , 10				
			•		1,0	,	
		Lanes			ļ		
	75	and the second					
	; · · · · · · · · · · · · · · · · · · ·	Grafieth	27 (21/2 <u>2)</u> 26 .	•		•	
		The gen	n programme d	- Vor Clan			
		The gain	ulskallyneer eg	hout !			
		· Geografists					
		Literatur fines i	Man 4:0:01	·C			
		1 Hylon					
		1 Barrel	** ** ** ** ** ** ** ** ** ** ** ** **		3,0		
	5						
		a Oslaman	oppirula's		4	*	
					!		
	Superproperty of the	Joseph Com W					
		operation of the contract of t					
		•					
	•	<u>हि । सार्यक्रम</u> इन	A FOLLOS	÷ † &.	Saly of	7-1-T	
	Com Spinis		Τ,	Sec. (۸ ۱ , ۲ ، پر		
	e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co	15 • 15		515 400		6 s te:}-	
	1.876)			ー		l de gr	
	•						
		e od Var e Con .	T 60 - 4 - 4	******	4 m	No. 8 Wes	
			1 1	*	1 May 2 2 1 1	- 4,3	
	Company to be by	j 4	seton It's	San San San	la esperante	And Jan	
		1	15%	to the	1.5%	· · · · · ·	
)	Stone we are		1,0	1,0	1,0	↓ #	
	production of the second second		110	1,16	1,72	, " :	
	a salah terdikan kacamatan dari dari berasaran dari berasaran dari berasaran dari berasaran dari berasaran dari Berasaran dari berasaran dari berasaran dari berasaran dari berasaran dari berasaran dari berasaran dari beras	1. W. C. K		1.5	1,7		
	e de la companya de la filosofia. La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co		lot ·	具人	1, 1,	44 = 4 A	
	· · · · · · · · · · · · · · · · · · ·						
		extended to be	mor.	TE		.1.7	
				,			
	Can		green or	The second of the second			
Ì				4			
	Street St.	1.5	1,00	109	17.7		

Overbelastingsfactor Fo (fig.015)

Vermogen Pf + Pm in kW . Voor waarden van Pf + Pm groter dan 3,88 kW . Fo = 1,0

Schroefdiam	Pijpdiam.		ermogen 100 onw			Mw max Nm Tw = 300	Koppeling Fenner HRC
160,200	76,1x2,9	9	7	5	3,5	694	125
200,250	88,9x3,2	13	10	7	5	1046	145
250,315,400	108 x3,6	23	18	13	9	1752	175
×	114,3x3,6	25	20	15	10	1975	175
315,400,500	133 x4	39	31	23	15	2987	21.

^{*} wordt voor standaardschroeven anet toegepast.

Gegoten rechte tandwielen in open kast

0.85

Soort aandrijving Rende	mentscoëfficient
V-snaren en schijven	0.94
Precisierollenketting op gestoken tandw.open besch. kast	0.93
Precisierollenketting op gestoken tandw., oliebad- kettingkast	0.94
Een-traps schuine- of pijlvertandingsvertr. of motorreductor	0.95
Twee-traps " " " " " " " "	0.94
Drie-traps ⁿ ⁿ ⁿ ⁿ ⁿ ⁿ	0.93
Een-traps gesloten holle as reductoren met schuine vertanding	0.95
Twee-traps " " " " " " " "	0.94
Gesloten wormvertraging, kleine vertraging(tot 20:1)	0.90
" , gemid. " (20:1-60:1)	0.70
" , grote " (60:1-100:1)	0.50
Haakse of conische tandwielen in gesloten kast	0.93
Rechte tandwielen in gesloten kast	0.93
Haakse of conische tandwielen in open kast	0.90
Gestoken rechte tandwielen in open kast	0.90

```
plantable s
              ţ i
                         D
              I iij
                        160 1
                                            (37)
                                214
                                      202
              江 工
                                51A
                                      377
                                            157
                                                  54
                        200
              3.1 III
                                135
                                      3/37
                                            152
                                                  56
                        7.55
              加加
                        345
                                Abt
                                      4,35
                                            215
                                                  ÷1
              51. I
                                            240
                        400
                                521
                                      525
              3月 正
                                623
                        500
                                      625
                                            310
                                                 J_{A}
                                                       the transfer
                                            <u>:</u>
                        160
                                       715
                                 774
                   77
                                                  19
              8.7
                                 31L
                                       710
                        200
                                 367
                                                 181
                        255
                                      210
              41
                   17.
                        3/5
                                 131
                                       Tio 135
                                                 ļ* -
                                                       15
            71
                   ..i..
                        400
                                 621
                                      1010 TA0
                                                 1.7
                                                       : :
              ,
3,
                   ----
                         €20 1
                                 373
                                      770 Dya
                                                 15
                                                       3.7
         strations to
                                            c .
                                 9_
                                                        c
               r in I
                        1/20
                                . . .
                                      770
                                            110 00
                 ** 1 PT
                        200
                                 317
                                      130
                                            210 t/3
                                                        7.5
                        7.50
                                 354
                                            270 210
                                      270
                                                        7.5
               T_{i}
                        સ્કાઈ
                                 131
                                      270
                                            240 270
                                                        - -
                 400
                                 52 (
                                     370
                                            the two
                                                        300
                 77.
                         500
                                 623 370
                                            395 315
            124111 12
                                            c
                                9
               1 11 = 160
                                274 220
                                           7.80
                 700
                                271
                                     770
                                            140
                                                 175
                                                       25
                                                             ។ ភូមិខេត្តសំភ
               / 31 IL 250
                               - 270
                                    270
                                                 ~ : *)
                                                             17.00 1. 3
                                           170
               16 t II 316 / 200 320
                                           623
                                                 225
                                                       € 2
               17 M 400
                               150
                                     3 o
                                                             \mathcal{L}_{1}(\underline{b}) \leftarrow 0 = 0
                                           300
                                                 31.5
                                                      . .
1.
               1 1 II 500 1 460
                                     7114
                                                 213
                   Caw Kont !
                                      1
                         7 30 F
                                     ξ. ξ
                                             乜
                                 4.2
                                      , ,
                         7.1
                                 115
                                            3.5
                        3, 46
                                 195
                                      1,65
                                            0.0
                                                  \xi^{-\frac{1}{2}}
                        T: 70
                                170
                                      7-7-7
                                            - -
                        805
                                115
                                      2.65
                                            80
                        890 -
                                750
                                            4.00
                                      3.10
```


NIVOBA

VEENDAM HOLLAND Meelwatertabel. aardappelmeel. 0,05 - 2,5°Bé

4-T1-137-1

soortelijk gewicht der vloeistof bij $15^{\circ}C = \frac{144.3}{144.3 - n}$ (n = °Bé) soortelijk gewicht van het zetmeel abs. droog = 1,65 kg/dm³

1	2	3	4	5	6
°Bé	soortelljk gew. v.d. vloeistof	in 100 itr. vlooi stof is kg. zetmeel abs. dr.	uit 100 kg zet- meel cbs. dr. ontstaatltr vloeistof	in 100 kg. vloei- stof is kg. zetmeel abs. dr.	uit 100 kg zet- meel abs. dr. ontstact kg
0,05	1,000347	0,0879882	113651,66	0,0879577	113691,06
0,10	1,000693	0,1760375	56806,08	0,1759155	56845,48
0,15	1,001041	0,2641480	37857,57	0,2638734	37869,96
0,20	1,001388	0,352 319 4	28383,33	0,3516311	28422,73
0,25	1,001736	0,4405523	22698,78	0,4397890	22738,18
0,30	1,002083	0,5288461	18909,09	0,5277466	18948,49
0,35	1,002431	0,6172015	16202,16	0,6157045	16241,56
0,40	1,002730	0,7056182	14171,97	0,7036622	14211,36
0,45	1,003128	0,7940965	12592,93	0,7916201	12632,32
0,50	1,003477	0,8826360	11329,70	0,8795777	11369,09
0,55	1,003826	0,9712375	10296,14	0,9675356	10335,54
0,60	1,004175	1,059900	9434,850	1,055493	9474,243
0,65	1,004525	1,148625	8706,060	1,143451	8745,454
0,70	1,004875	1,237412	8081,385	1,231409	8120,779
0,75	1,005225	1,326260	7540,001	1,319367	7579,395
0,80	1,005575	1,415170	7066,288	1,407325	7105,682
0,85	1,005925	1,504143	6648,306	1,495282	6687,700
0,90	1,006276	1,593177	6276,767	1,583240	6316,161
0,95	1,006627	1,682273	5944,338	1,671198	5983,732
1,0	1,006978	1,771432	5645,152	1,759156	5684,546
1,1	1,007682	1,949935	5128,375	1,935071	5167,769
1,2	1,008386	2,128689	4697,727	2,110987	4737,121
1,3	1,009091	2,307693	4333,333	2,286902	4372,727
1,4	1,009797	2,486946	4020,996	2,462818	4060,390
1,5	1,010504	2,666451	3750,304	2,638733	3789,698
1,6	1,011212	2,846207	3513,448	2,814648	3552,842
1,7	1,011921	3,026217	3304,456	2,990565	3343,850
1,8	1,012632	3,206478	3118,687	-3,166480	3158,061
1,9	1,013343	3,386993	2952,471	3,342396	2991,865
2,0	1,014055	3, 567 759	2802,880	3,518310	2842,273
2,1	1,014768	3,748782	2667,533	3,694226	2706,927
2,2	1,015482	3,930059	2544,491	3,870141	2583,885
2,3	1,016197	4,111592	2432,148	4,046057	3471,542
2,4	1,016913	4,293381	2329,167	4,221974	2368,561
2,5	1,017630	4,475427	2234,424	4,397890	2273,818

NIVO)BA		Meelv	vatertabel				
		ENDAM OLLAND	į.	ppelmeel 2,	4-T1-137-2			
1	10 2		2 3			4	5	6
2,5 2,6 2,7 2,8 2,9	1,017630 1,018349 1,019068 1,019788 1,020509	4,475427 4,657727 4,840288 5,023105 5,206179		2234,424 2146,970 2065,993 1990,800 1920,794	4,397890 4,573804 4,749721 1,925637 5,101550	2273,818 2186,364 2105,387 2030,194 1260,128		
3,1 3,2 3,3 3,4	1,021231 1,001975 1,022679 1,723404 1,024131	5,3898 5,5733 5,7569 5,9410 6,1254	109 964 981	05,455 11,031 737,027 263,195 1632,531	5,277466 5,453381 5,629298 5,035215 5,901129	1874,847 1833,775 1776,421 1722,567 1671,925		
3,5 3,6 3,7 3,8 3,9	1,024358 1,025586 1,026316 1,027046 1,027778	6,3100 6,4949 6,6801 6,8655 7,0512	96 62 89	1584,762 1539,647 1496,970 1456,539 1418,182	6,157044 6,332959 6,500876 6,684791 6,860707	1624,156 1579,041 1536,364 1495,933 1457,576		
4,0 4,1 4,2 4,3 4,4	1,028510 1,029244 1,029979 1,030714 1,031451	7,2372 7,4234 7,6099 7,7967 7,9837	62 50 04	1381,743 1347,080 1314,069 1282,593 1252,548	7,036621 7,212539 7,388454 7,564370 7,740285	1421,137 1386,474 1353,463 1321,987 12 9 1,942		
4,5 4,6 4,7 4,8 4 ,9	1,032189 1,032928 1,033668 1,034409 1,035151	8,1710 8,3585 8,5463 8,7344 8,9228	70 96 91	1223,838 1196,377 1170,084 1144,886	7,916200 8,092115 8,260031 8,443946 8,619863	1263,2% 1235,771 1209,478 1134,289		
5,0 5,2 5,4 5,6 5,8	1,035894 1,037383 1,038877 1,040375 1,041877	9,1114 9,4895 9,8687 10,2490 10,63038	76 49 2	97,515 053,788 1013,300 975,703 940,700	8,795777 9,147610 9,499440 9,851271 10,20310	16,909 1023,182 1052,694 1015,097 980,094		
6,0 6,2 6,4 6,6 6,8	1,043384 1,044895 1,046410 1,047730 1,049455	11,01285 11,39642 11,78111 12,16692 12,55385		908,030 877,468 848,816 821,901 796,569	10,55493 10,90676 11,25860 11,61043 11,96226	947,424 916,861 888,21 861,22 835,962		
7,0 7,2 7,4 7,6 7,8	1,050983 1,052516 1,054054 1,055596 1,057143	12,94190 13,33109 13,72141 14,11288 14,50550		772,684 750,126 728,788 708,573 689,394	12,31409 12,66592 13,01775 13,36958 13,72141	812, 37 . 789, 520 768, 189 749, 966 728, 768		
8,0 8,2 8,4 8,6 8,8	1,058694 1,060250 1,061810 1,063375 1.064945	14,89926 15,29419 15,69027 16,08752 16,48595		671,174 653,843 637,338 621,600 606,577	14,07325 14,42503 14,77691 15,12874 15,48057	710,562 693,237 676,732 660,994 645,271		
9.0	1,066519	16,88555		592,222	15,83240	631,616		

£' ₹ ₹

Ť,

É (

.

1

NIVO	ВА		Meelw	aterta b el		
		IDAM LAND	aarda	ppelmeel 9	- 25°8é	4-T1-137-3
1	2	3		4	5	6
9,0 9,2 9,4 9,6 9,8	1,066519 1,068098 1,069681 1,071269 1,072862	16,88 17,28 17,68 18,09 18,49	634 832 149	592,222 578,491 565,345 552,746 540,662	15,83240 16,18423 16,53606 16,88789 17,23972	631,616 617,885 604,739 592,140 580,056
10,0 10,5 11,0 11,5	1,074460 1,078475 1,082521 1,086596	18,90 19,92 20,94 21,98	066 754	529,061 501,991 477,383 454,914	17,59156 18,47113 19,35071 20,23022	568,455 541,385 516,777 494,308
12,0 12,5 13,0 13,5	1,090703- 1,094841 1,099010 1,103211	23,024 24,07- 25,13: 26,199	494 328 9 72	404,318 415,370 397,879 381,684	21,10987 21,98945 22,86902 23,74860	473,712 454,764 437,273 421,077
14,0 14,5 15,0 15,5	1,107444 1,111710 1,116009 1,120342	2Z,274 28,357 29,448 30,548	724 851 826	366,645 352,644 339,576 327,351	24,62818 25,50776 26,38733 27,26691	406,039 392,038 378,970 366,745
16,0 16,5 17,0 17,5	1,124708 1,129108 1,133543 1,138013	31,656 32,773 33,899 35,033	356 9 3 3 397	315,890 305,124 294,991 285,437	28,14649 29,02607 29,90564 30,78522	355,284 344,518 334,385 324,831
18,0 18,5 19,0 19,5	1,142518 1,147059 1,151636 1,156250	36,177 37,330 38,492 39,663	032. 223 346	276,414 267,879 259,793 252,121	31,66480 32,54438 33,42396 34,30353	315,808 307,273 299,187 291,515
20,0 20,5 21,0 21,5	1,160901 1,165590 1,170316 1,175081	40,844 42,034 43,234 44,443	430 414 3 7 5	244,833 237,901 231,299 225,004	35,18311 36,06290 36,94227 37,82184	284,227 277,295 270,693 264,397
22,0 22,5 23,0 23,5	1,179886 1,184729 1,189613 1,194536	45,663 46,893 48,133 49,383	2 76 241 232	218,994 213,253 207,760 202,502	38,70142 39,58100 40,46058 41,34016	258,388 252,646 247,154 241,896
24,0 24,5 25,0	1,192501 1,204508 1,109556	50,642 51,913 53,194	344	197,462 192,628 187,988	42,21973 43,09931 43,97889	236,856 232,021 227,381

.

f