The following separable problem will be considered:

$$\min_{x_1, x_2, x_3} \qquad f_1(x_1, x_3) + f_2(x_2, x_3)$$

or equivalently:

$$\min_{x_1,\xi_1,x_2,\xi_2} f_1(x_1,\xi_1) + f_2(x_2,\xi_2)$$
s.t.
$$\xi_1 = \xi_2,$$

where $x_1 \in \mathbb{R}^n$, $x_2 \in \mathbb{R}^m$ and $x_3, \xi_1, \xi_2 \in \mathbb{R}$, for some n and m. Then the dual function is

$$q(\lambda) = \inf_{x_1, \xi_1, x_2, \xi_2} [f_1(x_1, \xi_1) + f_2(x_2, \xi_2) - \lambda^{\top}(\xi_1 - \xi_2)]$$

= $\inf_{x_1, \xi_1} [f_1(x_1, \xi_1) - \lambda^{\top}(\xi_1)] + \inf_{x_2, \xi_2} [f_2(x_2, \xi_2) + \lambda^{\top}(\xi_2)]$
= $q_1(\lambda) + q_2(\lambda)$

We seek a λ that maximises this dual function, which can be found using the subgradient method. Here the negative subgradient of the dual function at a given point λ_k is given as $g_k = \xi_1 - \xi_2$. The subgradient method involves iteratively

- finding $(x_1, \xi_1, x_2, \xi_2) \in \arg\min_{x_1, \xi_1, x_2, \xi_2} [f_1(x_1, \xi_1) + f_2(x_2, \xi_2) \lambda^{\top}(\xi_1 \xi_2)],$ and
- updating $\lambda_{k+1} = \lambda_k \alpha_k(\xi_1 \xi_2)$.

The method of dual decomposition is simply making use of the fact that the dual function can be decomposed into $q_1(\lambda)$ and $q_2(\lambda)$ as shown above, and so finding

$$(x_1, \xi_1, x_2, \xi_2) \in \arg\min_{x_1, \xi_1, x_2, \xi_2} [f_1(x_1, \xi_1) + f_2(x_2, \xi_2) - \lambda^{\top}(\xi_1 - \xi_2)]$$

can instead be done by two individual agents finding the minimisers

$$(x_1, \xi_1) \in \arg\min_{x_1, \xi_1} [f_1(x_1, \xi_1) - \lambda^{\top}(\xi_1)], \text{ and}$$

$$(x_2, \xi_2) \in \arg\min_{x_2, \xi_2} [f_2(x_2, \xi_2) + \lambda^{\top}(\xi_2)]$$

separately.