Techniques for proving NP-Completeness *Restriction *Local replacement *Component design

Restriction

- The simplest, and perhaps the most frequently applicable.
- Way:
 - show that problem Π contains a known NP-complete problem Π' as a special case,
 - Or equivalently, showing that placing some additional restrictions on instances of Π so that the resulting restricted problem is NP-complete.
- Why the above is a way of NPcompleteness proof for Π?

- Examples we have shown:
 - X3C: was shown to be NP-complete by restricting its instances to 3-sets that contain one element from a set W, one from a set X and one from a set Y, where W, X, and Y are disjoint sets having the same cardinality, there by obtaining the 3DM problem.
 - Directed Hamiltonian Circuit: restricting each directed arc (u,v) to occurs only in conjunction with oppositely directed arc (v,u).

2007/11/21 CS,OUC 2

Restriction--Examples (I)

1. Minimum Cover

Instance: Collection *C* of subset of a set *S*, positive integer *K*.

Question: Does C contain a cover for S of size K or less, that is, a subset $C \subseteq C$ with $|C'| \le K$ and such that $\bigcup_{c \in C} C = S$?

Proof: Restrict to X3C by allowing only instances having |c|=3 for all $c \in C$ and having K=|S|/3.

2. Subgraph Isomorphism (子图同构)

Instance: Two graphs, $G=(V_G, E_G)$ and $G=(V_H, E_H)$.

Question: Does G contain a subgraph isomorphic to H, that is, a subset $V \subseteq V_G$ and a subset $E \subseteq E_G$ such that $|V| = |V_H|$, $|E| = |E_H|$, and there is a one-to-one function $f: V_H \to V$ satisfying $\{u, v\} \in E_H \Leftrightarrow \{f(u), f(v)\} \in E_H$?

Proof: Restrict to CLIQUE by allowing only instances for which H is a complete graph.

3

2007/11/21 CS.OUC

Restriction--Examples (II)

3. KNAPSACK (背包)

Instance: A finite set U, a "size" $s(u) \in Z^+$ and a "value" $v(u) \in Z^+$ for each $u \in U$, and a size constraint $B \in Z^+$, and a value goal $K \in Z^+$.

Question: Is there a subset $U \subseteq U$ such that $\sum_{u \in U'} s(u) \le B$ and $\sum_{u \in U'} v(u) \ge K$?

Proof: Restrict to PARTITION by allowing only instances in which s(u) = v(u) for all $u \in U$ and $B = K = (1/2) \sum_{u \in U} s(u)$.

2007/11/21

CS,OUC

Local replacement

- The transformations by local replacement:
 - Pick up some aspect of the known NP-complete problem Π' to make up a collection of basic units.
 - Obtain the corresponding instance of the target problem Π by replacing each unit, in a uniform way, with a different structure.
- Examples we have shown:
 - SAT→3SAT:
 - The basic units of an instance of SAT are the
 - Each clause is replaced by a set of clauses according to the same general rule.
 - 3SAT→VC.
 - 3DM→SS.

2007/11/21

CS,OUC

Local replacement An example

Partition Into Triangles (PIT)

Instance: A graph G=(V, E), with |V|=3qfor a positive integer q. Question: Is there a partition of V into q disjoint sets V_1 , $V_1, ..., V_n$ of three vertices each such that, , ..., v_g is the vertices each such that, for each $V_i = \{v_{i[1]}, v_{i[2]}, v_{i[3]}\}$, the edges $\{v_{i[1]}, v_{i[2]}, \{v_{i[1]}, v_{i[3]}\}$, and $\{v_{i[2]}, v_{i[3]}\}$ all belong to E?

Proof: We transform X3C to PIT. Let the set X with |X|=3a and the collection C of 3-element subsets of X be an arbitrary instance of X3C.

We shall construct a graph G=(V, E), with |V|=3q' such that the desired partition exists for G if and only if C contains an exact cover.

element subsets in C. The local replacement substitutes for each such

subset $c_i = \{x_i, y_i, z_i\} \in C$ the collection E_i of 18 edges shown in the figure.

Thus G=(V, E) is defined by

 $V=X\cup U_{1\leq i\leq |C|}\{a_{i[i]}\mid 1\leq j\leq 9\}$ and $E=U_{1\leq i\leq |C|}E_{i}$. If $C' = \{c_1, c_2, ..., c_a\} \subseteq C$ forms a exact cover for X, then the corresponding partition $V=V_1 \cup V_2 \cup ... V_{a'}$ of V is given by taking $\{a_{i[1]}, a_{i[2]}, x_i\}$, $\{a_{i[4]}, a_{i[5]}, y_i\}$, $\{a_{i[7]}, a_{i[8]}, z_i\}, \{a_{i[3]}, v_{i[6]}, a_{i[9]}\}\$ whenever $c_i = \{x_i, y_i\}$ $y_i, z_i \in C'$ and by taking $\{a_{i[1]}, a_{i[2]}, a_{i[3]}\}, \{a_{i[4]}, a_{i[4]}, a$ $a_{i[5]}, a_{i[6]}\}, \{a_{i[7]}, a_{i[8]}, a_{i[9]}\}$ whenever $c_i \notin C'$. The converse argument is left to you.

2007/11/21

CS,OUC

Component design

- Examples we have shown: "making choice" component.
 - 3SAT→VC
 - VC→HC
 - 3SAT→3DM
- Basic idea: to design certain "components".
- In general, there are three basic types of components.

- - E.g., Selecting vertices, choose truth values for variables,
- "testing" component.
 - E.g., checking that each edge is covered, checking that each clause is satisfied....
- "Communication" component.
 - To join the first two types of components.

2007/11/21 CS,OUC