

Matching and synthetic controls

Nils Droste

2021 ClimBEco course

Introduction

Matching

exact match distance match machine-learning model compariso

Synthetic Control

stimation

References

Synopsis: Today, we will be looking into methods that help us find (aka *match*) or simulate (aka *synthesize*) a control group for inferring causal effects from observational data, and its recent developments

In particular, we will develop an understanding of

Introduction

Matching

exact match distance match machine-learning model comparison

Synthetic Control

estimation example

References

Synopsis: Today, we will be looking into methods that help us find (aka *match*) or simulate (aka *synthesize*) a control group for inferring causal effects from observational data, and its recent developments

In particular, we will develop an understanding of

matching approaches

Introduction

Matching

exact match distance match machine-learning

example

Synthetic Control

estimation example

References

Synopsis: Today, we will be looking into methods that help us find (aka *match*) or simulate (aka *synthesize*) a control group for inferring causal effects from observational data, and its recent developments

In particular, we will develop an understanding of

- matching approaches
 - classical
 - machine-based learning

Introduction

Matching

exact match distance match machine-learning model comparison

Synthetic Control

estimation example

References

Synopsis: Today, we will be looking into methods that help us find (aka *match*) or simulate (aka *synthesize*) a control group for inferring causal effects from observational data, and its recent developments

In particular, we will develop an understanding of

- matching approaches
 - classical
 - machine-based learning
- synthetic controls

Intuition

Introduction

Matching

exact match distance match machine-learning model compariso

Synthetic Control

stimation

References

Consider a situation where the untreated are very different from the treated:

Image source: Schleicher et al. 2020

Intuition

Introduction

Matching

exact match
distance match
machine-learning
model comparison

Synthetic Contro

estimation example

References

Consider a situation where the untreated are very different from the treated:

Matching, def: any method that strategically subsamples dataset to balance covariate distribution in treated and control groups such that after matching both groups share an equal probability of treatment.

Non-Random Treatment Assignment

Average Treatment Effect on the Treated + Selection Bias

to Subsample

Image source: Sizemore and Alkurdi 2019

Intuition

Introduction

Matching

distance match machine-learning model comparison example

Synthetic Control

estimation

example

References

Consider a situation where the untreated are very different from the treated:

Matching, def: any method that strategically subsamples dataset to balance covariate distribution in treated and control groups such that after matching both groups share an equal probability of treatment.

Non-Random Treatment Assignment

Average Treatment Effect on the Treated + Selection Bias

to Subsample

Image source: Image source: Sizemore and Alkurdi 2019

 \rightarrow matching is a *pre-analytical procedure*, allowing unbiased inference.

Procedure

Introduction

Matching

exact match distance match machine-learning model comparison

Synthetic Control

estimation

References

5/40

Procedure

Introduction

Matching

exact match distance match machine-learning model comparison

Synthetic Contro

estimation

References

Image source: Schleicher et al. 2020

2021 ClimBEco course

5/40

Introduction

Matching

distance match machine-learning model comparisor example

Synthetic Control

estimation example

References

The classical overarching conditions for robust causal inference:

- stable unit treatment value assumption (SUTVA)
 - treating one individual unit does not affect another's (potential) outcome
 - treatment is comparable [no (strong) variation in treatment]

Introduction

Matching

distance match machine-learning model comparisor

Synthetic Contro

estimation example

References

The classical overarching conditions for robust causal inference:

- stable unit treatment value assumption (SUTVA)
 - treating one individual unit does not affect another's (potential) outcome
 - treatment is comparable [no (strong) variation in treatment]
- unconfoundedness (strong ignorability)
 - \blacksquare $(Y(1), Y(0)) \perp T$: treatment assignment is independent of the outcomes
 - i.e. no omitted variable bias (recall the storch example)
 - \blacksquare or, at least, conditional unconfoundedness $(Y(1), Y(0)) \perp T | X$

Introduction

Matching

distance match machine-learning model comparisor example

Synthetic Contro

estimation example

References

The classical overarching conditions for robust causal inference:

- stable unit treatment value assumption (SUTVA)
 - treating one individual unit does not affect another's (potential) outcome
 - treatment is comparable [no (strong) variation in treatment]
- unconfoundedness (strong ignorability)
 - \blacksquare $(Y(1), Y(0)) \perp T$: treatment assignment is independent of the outcomes
 - i.e. no omitted variable bias (recall the storch example)
 - \blacksquare or, at least, conditional unconfoundedness $(Y(1), Y(0)) \perp T | X$

 $\rightarrow \pi(X_i) = Pr(D_i = 1|X_i)$ or propensity score can be used for matching

Introduction

Matching

distance match machine-learning model comparisor example

Synthetic Contro

estimation example

References

The classical overarching conditions for robust causal inference:

- stable unit treatment value assumption (SUTVA)
 - treating one individual unit does not affect another's (potential) outcome
 - treatment is comparable [no (strong) variation in treatment]
- unconfoundedness (strong ignorability)
 - \blacksquare $(Y(1), Y(0)) \perp T$: treatment assignment is independent of the outcomes
 - i.e. no omitted variable bias (recall the storch example)
 - \blacksquare or, at least, conditional unconfoundedness $(Y(1), Y(0)) \perp T | X$
- $\to \pi(X_i) = Pr(D_i = 1 | X_i)$ or propensity score can be used for matching
- ightarrow but should maybe not (King and R. Nielsen 2019), we will see alternatives

Overview

Here is a general overview of possible matching methods

miroduction

Matching exact match

distance match

model comparis example

Synthetic Control

estimation

References

Image source: Sizemore and Alkurdi 2019

Introduction

Matching

exact match distance match machine-learning model comparison

Countries Countries

Synthetic Control

estimation example

References

Consider that we aim to estimate *conditional average treatment effect* (CATE) (cf. Abrevaya, Hsu and Lieli 2015)

$$CATE = E(Y(1) - Y(0)|X = x)$$
 (1)

Introduction

Matching exact match

distance match machine-learning model compariso

Synthetic Control

estimation

example

Consider that we aim to estimate *conditional average treatment effect* (CATE) (cf. Abrevaya, Hsu and Lieli 2015)

$$CATE = E(Y(1) - Y(0)|X = x)$$
 (1)

How to find the sufficiently similar subsamples?

Matching

Consider that we aim to estimate conditional average treatment effect (CATE) (cf. Abrevaya, Hsu and Lieli 2015)

$$CATE = E(Y(1) - Y(0)|X = x)$$
 (1)

King and Nielsen (2019) formulate a general pruning (matching) function M:

$$X_{\ell} = M(X|A_{\ell}, T_i = 1, T_j = 0, \delta) \equiv M(X|A_{\ell}) \subseteq X$$
 (2)

providing X_{ℓ} , subset of matched observation based on condition A_{ℓ} .

ntroduction

Matching

exact match
distance match
machine-learning
model compariso

Synthetic Control

estimation example

References

Consider that we aim to estimate *conditional average treatment effect* (CATE) (cf. Abrevaya, Hsu and Lieli 2015)

$$CATE = E(Y(1) - Y(0)|X = x)$$
(1)

King and Nielsen (2019) formulate a general pruning (*matching*) function *M*:

$$X_{\ell} = M(X|A_{\ell}, T_i = 1, T_j = 0, \delta) \equiv M(X|A_{\ell}) \subseteq X$$
 (2)

providing X_{ℓ} , subset of matched observation based on condition A_{ℓ} .

 \rightarrow in what follows we will look at different pruning method ℓ to produce the best matched subset δ .

Exact matching

Introductio

Matching

exact match

machine-learning

example

Synthetic Control

estimation

example

References

For exact matching we find exactly equal pairs

$$X_{EM} = M(X|X_i = X_j) \tag{3}$$

Note: X can be a vector of covariates.

Coarsened Exact Matching (CEM)

Introduction

Matching

exact match

machine-learnin model comparis

example

Synthetic Control

estimation

References

For coarsened exact matching we approximate

$$X_{CEM} = M(X|C_{\delta}(X_i) = C_{\delta}(X_i))$$
 (4)

where C_{δ} is a vector of same dimensions as X, but coarsened values, e.g. at "natural breakpoints" such as years in one school type, levels of income, etc.

Mahalanobis Distance Method (MDM)

For multidimensional data, we can identify nearest neighbours in an n-dimensional space.

exact match

distance match

model comparise

Synthetic Control

estimation

References

$$md(X_i, X_j) = \{(X_i - X_j)^\top S^{-1}(X_i - X_j)\}^{\frac{1}{2}}$$

(Above) Mahalanobis distance measure, where S denotes the covariance matrix of X. [24]

(Left) A contour plot is overlaid on a Mahalanobis distance scatter plot of 100 observations randomly drawn from a bivariate normal distribution. The centroid, in blue, is the reference point for distance between two points.

Image credit and description: Statistics How To: Mahalanobis Distance, Simple Definitions, Examples. Retrieved 10-08-2019 from: https://www.statisticshowto.datasciencecentral.com/mahalanobis-distance/

Image source: Sizemore and Alkurdi 2019

Propensity score matching (PSM)

Introduction

Matching

exact match

distance match

model comparis

Synthetic Control

estimation

onampio

References

Else, we can estimate probability of being treated, aka propensity score $\pi(X_i) = Pr(D_i = 1|X_i)$ by logistic regression

<u>Advantages</u>	<u>Disadvantages</u>
solves matching problem for high dimensions	misspecification of PS model = bad matches
many available R packages for easy implementation	matched pairs may be dissimilar across X

Image source: Sizemore and Alkurdi 2019

Introduction

Matching

exact match

distance match

model comparis

Synthetic Contro

intuition

example

Introduction

Matching

distance match

machine-learni

model comparise example

Synthetic Control

estimation

References

> m.out

A matchit object

- method: Optimal full matching

- distance: Propensity score

- estimated with logistic regression

- number of obs.: 614 (original), 614 (matched)

- target estimand: ATT

- covariates: age, educ, race, married, nodegree, re74, re75

Introduction

Matching

exact match

distance match

model comparisor

Synthetic Centre

Synthetic Control

estimation

References

Code source: Greifer 2020

ntroduction

Matching

exact match

distance match

model compariso

Synthetic Control

estimation

example

References

100 × 11 × 100 × 1

ntroduction

Matching

distance match

machine-learnin

model comparise example

Synthetic Contro

estimation example

References

Code source: Greifer 2020

Intermediate discussion

Introductio

Matching

distance match

machine-learni

model compariso

Synthetic Control

estimation example

References

There is a bit of critique on PSM

- King and Nielsen (2019)
 - "PSM is ... uniquely blind to the often large portion of imbalance"
 - "easy to avoid by switching to one of the other popular methods of matching"
 - i.e.: CEM and MDM
- Sizemore and Alkurdi (2019)
 - test PSM against machine learning based methods
 - logistic PSM > random forest PSM > genetic matching
 - CEM ???

Random forest (RF)

RF are multiple regression trees classifying the data by partitioning

Code source: Wikipedia

machine-learning

References

We can use this to predict treatment (aka propensity scores)

eXtreme Gradient Boosting (XGBoost)

Machine learning such as XGBoost or even ensambles can also be used to

Code source: Quant Insti

→ predict treatment (aka propensity scores)

Introduction

exact match

distance match machine-learning

example

Synthetic Contro

estimation example

Genetic matching

Genetic Matching combines PSM and MDM

$GMD(X_i, X_j, W) = \sqrt{(X_i)^T (S^{-\frac{1}{2}})^T W S^{-\frac{1}{2}} (X_i - X_j)}$ (5)

Image source: Sizemore and Alkurdi 2019

ntroduction

Matching

exact match

machine-learning

model comparis

Synthetic Control

Intuition

estimation

comparison - fitting distributions

Introduction

Matching

exact match distance match machine-learnin

model comparison example

Synthetic Control

Synthetic Contro

estimation example

comparison - mean absolute error

troductio

Matching

exact match distance match machine-learnin

model comparison example

Synthetic Control

intuition

comparison - summary

Introduction

Matching exact match

distance match machine-learning

model comparison

Synthetic Controls

Synthetic Control

estimation

References

for the comparison above I used nearest neighbour matching, reducing sample size

comparison - summary

Introduction

exact match

distance match machine-learning

model comparison example

Synthetic Control

estimation

- for the comparison above I used nearest neighbour matching, reducing sample size
- maximizing post-match balance does not necessarily improve explanatory model power (Colson et al. 2016)

Introduction

exact match

distance match machine-learning model comparison example

Synthetic Control

estimation example

References

- for the comparison above I used nearest neighbour matching, reducing sample size
- maximizing post-match balance does not necessarily improve explanatory model power (Colson et al. 2016)
- possibly both sample size and balance need to be taken into account (King, Lucas and R. A. Nielsen 2017)

Introduction

Matchin

distance match
machine-learning
model comparison
example

Synthetic Control

estimation example

References

- for the comparison above I used nearest neighbour matching, reducing sample size
- maximizing post-match balance does not necessarily improve explanatory model power (Colson et al. 2016)
- possibly both sample size and balance need to be taken into account (King, Lucas and R. A. Nielsen 2017)
- latest approaches include almost exact matching (Dieng et al. 2018a; Dieng et al. 2018b), text matching (Roberts, Stewart and R. A. Nielsen 2020), generalized optimal matching (Kallus 2020)

Introductio

Matchina

exact match
distance match
machine-learning
model comparison

Synthetic Contro

estimation example

Reference

- for the comparison above I used nearest neighbour matching, reducing sample size
- maximizing post-match balance does not necessarily improve explanatory model power (Colson et al. 2016)
- possibly both sample size and balance need to be taken into account (King, Lucas and R. A. Nielsen 2017)
- latest approaches include almost exact matching (Dieng et al. 2018a; Dieng et al. 2018b), text matching (Roberts, Stewart and R. A. Nielsen 2020), generalized optimal matching (Kallus 2020)
- R packages include MatchIt, Matching, and PanelMatch

Introductio

Matchi

exact match distance match machine-learning model comparison

Synthetic Control

estimation example

Reference

- for the comparison above I used nearest neighbour matching, reducing sample size
- maximizing post-match balance does not necessarily improve explanatory model power (Colson et al. 2016)
- possibly both sample size and balance need to be taken into account (King, Lucas and R. A. Nielsen 2017)
- latest approaches include almost exact matching (Dieng et al. 2018a; Dieng et al. 2018b), text matching (Roberts, Stewart and R. A. Nielsen 2020), generalized optimal matching (Kallus 2020)
- R packages include <u>MatchIt</u>, <u>Matching</u>, and <u>PanelMatch</u>
- for the debate around propensity score matching (King and R. Nielsen 2019), see also Hünermund, (2019)

an example

Introduction

exact match

distance match machine-learning

example

Synthetic Control

stimation

References

Ferraro and Hanauer (2014) use matching approach (MDM) to assess the effect of protected areas on poverty reduction

Causal model of PA on poverty effects, source: Ferraro and Hanauer 2014

Synthetic Controls

Introduction

Matching avast match

exact match distance match machine-learning model comparisor

Synthetic Control

intuition

estimation example

References

What if we do only have one treated unit?

California introduces tobacco control in 1988, cf. Abadie et al. 2010

a case and an idea

Introduction

Matching

exact match distance match machine-learning model comparison

Synthetic Control

Synthetic Contro

intuition estimation example

References

How about we compare to a weighted average of untreated?

California introduces tobacco control in 1988, cf. Abadie et al. 2010

and a notation

Introduction

watching

exact match
distance match
machine-learning

Synthetic Control

Synthetic Contro

estimation

Poforoncos

$\hat{Y}_{t,post}(0) = \mu + \sum_{i=1}^{N} w_i Y_{i,T}^{obs}$ (6)

"In other words, the imputed control outcome for the treated unit is a linear combination of the control units, with intercept μ and weights w_i for control unit i." (**Doudchenko2016**: 7)

the process

We compare the treated to the non-treated

ntroduction

Matching exact match

distance match machine-learning model comparison

Synthetic Control

intuition

example

References

Figure 5. Per-capita cigarette sales gaps in California and placebo gaps in 34 control states (discards states with pre-Proposition 99 MSPE twenty times higher than California's).

the process

and compute the difference to a counterfactual weighted set of untreated

ntroductioi

exact match

exact match distance match machine-learning model compariso

Synthetic Control

intuition

estimation example

References

Figure 3. Per-capita cigarette sales gap between California and synthetic California.

California vs SynthCal, cf. Abadie et al. 2010

Introduction

Matching

exact match distance match machine-learning model comparison

Synthetic Controls

landeles.

estimation

References

THE PART OF THE PA

Recall the ordinary least square estimate (OLS)

OLS, img source: Gavrilova, 2020

Introduction

Matching

exact match
distance match
machine-learning
model comparison

Synthetic Control

intuition

estimation

References

For
$$\hat{Y}_{t,post}(0) = \mu + \sum_{i=1}^{N} w_i Y_{i,T}^{obs}$$

 μ and w_i can, in principle, be estimate with OLS (cf. **Doudchenko2016**)

$$(\hat{\mu}^{ols}, \hat{\mathbf{w}}^{ols}) = \arg\min_{\mu, w} \sum_{s=1}^{T_0} \left(Y_{0, T_0 - s + 1}^{obs} - \mu - \sum_{i=1}^{N} w_i \cdot Y_{0, T_0 - s + 1}^{obs} \right)^2 \tag{7}$$

Introductio

Matching

exact match distance match machine-learning model comparison

Synthetic Control

estimation

example

References

For $\hat{Y}_{t,post}(0) = \mu + \sum_{i=1}^{N} w_i Y_{i,T}^{obs}$

 μ and w_i can, in principle, be estimate with OLS (cf. **Doudchenko2016**)

$$(\hat{\mu}^{ols}, \hat{w}^{ols}) = \arg\min_{\mu, w} \sum_{s=1}^{T_0} \left(Y_{0, T_0 - s + 1}^{obs} - \mu - \sum_{i=1}^{N} w_i \cdot Y_{0, T_0 - s + 1}^{obs} \right)^2$$
(7)

Abadie et al. 2010 impose conditions, $\mu = 0$, $\sum_{i=1}^{N} w_i = 1$, and $w_i \ge 0 \forall i$.

Introduction

Matching

exact match
distance match
machine-learning
model comparison
example

Synthetic Control

estimation

example

References

For covariate vector x

 μ and w_i we would also want to minimize (cf. **Doudchenko2016**)

$$\|Y_{t,pre}^{obs} - \mu - \mathbf{w}^T Y_{c,pre}^{obs}\|_2^2 = \left(Y_{t,pre}^{obs} - \mu - \mathbf{w}^T Y_{c,pre}^{obs}\right)^T \left(Y_{t,pre}^{obs} - \mu - \mathbf{w}^T Y_{c,pre}^{obs}\right)$$
(8)

or, in simpler terms $||X_{treat} - X_{control}W||$ which resembles a balancing approach (á la matching). Here, this mathing is often performed on lagged outcomes $Y_{t-(1,...,T)}$.

Introduction

Matching

exact match
distance match
machine-learning
model comparison
example

Synthetic Control

estimation

example

References

For covariate vector x

 μ and w_i we would also want to minimize (cf. **Doudchenko2016**)

$$\|Y_{t,pre}^{obs} - \mu - \mathbf{w}^T Y_{c,pre}^{obs}\|_2^2 = \left(Y_{t,pre}^{obs} - \mu - \mathbf{w}^T Y_{c,pre}^{obs}\right)^T \left(Y_{t,pre}^{obs} - \mu - \mathbf{w}^T Y_{c,pre}^{obs}\right)$$
(8)

or, in simpler terms $||X_{treat} - X_{control}W||$ which resembles a balancing approach (á la matching). Here, this mathing is often performed on lagged outcomes $Y_{t-(1,...,T)}$.

Introductio

Matching

distance match machine-learning model comparison example

Synthetic Contro

estimation

example

References

For covariate vector x

 μ and w_i we would also want to minimize (cf. **Doudchenko2016**)

$$\|Y_{t,pre}^{obs} - \mu - \mathbf{w}^T Y_{c,pre}^{obs}\|_2^2 = \left(Y_{t,pre}^{obs} - \mu - \mathbf{w}^T Y_{c,pre}^{obs}\right)^T \left(Y_{t,pre}^{obs} - \mu - \mathbf{w}^T Y_{c,pre}^{obs}\right)$$
(8)

or, in simpler terms $||X_{treat} - X_{control}W||$ which resembles a balancing approach (á la matching). Here, this mathing is often performed on lagged outcomes $Y_{t-(1,...,T)}$.

See Doudchenko and Imbens (**Doudchenko2016**) for a balanced, cross-validated, elastic net type penalty approach, combining Lasso and ridge regressions to regularize *w*.

current development

Introductio

Matching

distance match

model compariso example

Synthetic Control

intuition

estimation example

References

Arkhangelsky et al. 2019 suggest a synthetic diff-in-diff approach, where SynthControl:

$$(\hat{\mu}, \hat{\beta}, \hat{\tau}^{sc}) = \arg\min_{\mu, \beta, \tau} \sum_{t=1}^{N} \sum_{t=1}^{N} T (Y_{it} - \mu - \beta_t - W_{it}\tau)^2 \hat{w}_i^{SC}$$
(9)

DiD:

$$(\hat{\mu}, \hat{\alpha}, \hat{\beta}, \hat{\tau}^{did}) = \arg\min_{\mu, \alpha, \beta, \tau} \sum_{t=1}^{N} \sum_{t=1}^{T} T(Y_{it} - \mu - \alpha_i - \beta_t - W_{it}\tau)^2$$
(10)

SynthDiD:

$$(\hat{\mu}, \hat{\alpha}, \hat{\beta}, \hat{\tau}^{sdid}) = \arg\min_{\mu, \beta, \tau} \sum_{t=1}^{N} \sum_{t=1}^{T} T \left(Y_{it} - \mu - \alpha_i - \beta_t - W_{it} \tau \right)^2 \hat{w}_i \hat{\lambda}_t \quad (11)$$

intermediate summary

ntroductio

Matching

distance match machine-learning model compariso example

Synthetic Control

estimation

References

A synthetic control approach allows us to

- compare a single treated unit group with an untreated quasi-counterfactual
- you can compute placebo tests for the effect on an untreated unit
- so far, has not been widely applied (for examples see Abadie 2020
- I think it underestimated (i.e. by applied researchers)

software

Introduction

Matching

exact match distance match machine-learning model comparison example

Synthetic Controls

Synthetic Contro

estimation

example

References

available packages

- Synth
- synthdid
- <u>scul</u>
- gsynth

an example

Introductio

Matching

exact match distance match machine-learning model compariso

Synthetic Control

Synthetic Contro

estimation

example

References

Bayer and Aklin (2020) use synthetic controls to assess the effect of EU Emission Trading System (ETS) on CO₂ emissions

Effect of the EU ETS over time, source: Bayer and Aklin 2020

an example

Introductio

Matching

exact match distance match machine-learnin

Country Country

Synthetic Contro

estimation

example

References

20 --40-2000 2015 2010

Bayer and Aklin (2020) use synthetic controls to assess the effect of EU

ATT Estimates for EU ETS, 2008–2016 Generalized synthetic control

Emission Trading System (ETS) on CO₂ emissions

Effect of the EU ETS over time, source: Bayer and Aklin 2020

References I

Introduction

exact match

distance match machine-learning model comparisor

Synthetic Contro

estimation example

References

- Abadie, Alberto (2020). 'Using Synthetic Controls: Feasibility, Data Requirements, and Methodological Aspects'. In: *Journal of Economic Literature*.
- Abadie, Alberto et al. (2010). 'Synthetic control methods for comparative case studies: Estimating the effect of California's Tobacco control program'. In: *Journal of the American Statistical Association* 105.490, pp. 493–505. ISSN: 01621459. DOI: 10.1198/jasa.2009.ap08746.
- Abrevaya, Jason, Yu Chin Hsu and Robert P. Lieli (2015). 'Estimating Conditional Average Treatment Effects'. In: *Journal of Business and Economic Statistics* 33.4, pp. 485–505. ISSN: 15372707. DOI: 10.1080/07350015.2014.975555.
- Arkhangelsky, Dmitry et al. (2019). 'Synthetic difference in differences'. URL: http://www.nber.org/papers/w25532.
- Bayer, Patrick and Michaël Aklin (2020). 'The European Union Emissions Trading System reduced CO2 emissions despite low prices'. In: *Proceedings of the National Academy of Sciences of the United States of America* 117.16, pp. 8804–8812. ISSN: 10916490. DOI: 10.1073/pnas.1918128117.
- Colson, K. Ellicott et al. (2016). 'Optimizing matching and analysis combinations for estimating causal effects'. In: Scientific Reports 6.March, pp. 1–11. DOI: 10.1038/srep23222. URL: http://dx.doi.org/10.1038/srep23222.
- Dieng, Awa et al. (2018a). 'Almost-Exact Matching with Replacement for Causal Inference'. In: arXiv, pp. 1–28. arXiv: 1806.06802. URL: http://arxiv.org/abs/1806.06802.

References II

Introduction

Matching exact match

distance match

model comparise

example

intuition

example

References

Ferraro, Paul J. and Merlin M. Hanauer (2014). 'Quantifying causal mechanisms to determine how protected areas affect poverty through changes in ecosystem services and infrastructure'. In: Proceedings of the National Academy of Sciences of the United States of America 111.11, pp. 4332–4337. ISSN: 10916490. DOI: 10.1073/pnas.1307712111.

Kallus, Nathan (2020). 'Generalized optimal matching methods for causal inference'. In: *Journal of Machine Learning Research* 21, pp. 1–54. ISSN: 15337928. arXiv: 1612.08321.

King, Gary, Christopher Lucas and Richard A. Nielsen (2017). 'The Balance-Sample Size Frontier in Matching Methods for Causal Inference'. In: *American Journal of Political Science* 61.2, pp. 473–489. DOI: 10.1111/ajps.12272.

King, Gary and Richard Nielsen (2019). 'Why Propensity Scores Should Not Be Used for Matching'. In: *Political Analysis* 27.4, pp. 435–454. ISSN: 14764989. DOI: 10.1017/pan.2019.11.

Roberts, Margaret E., Brandon M. Stewart and Richard A. Nielsen (2020). 'Adjusting for Confounding with Text Matching'. In: *American Journal of Political Science* 64.4, pp. 887–903. DOI: 10.1111/ajps.12526.

Schleicher, Judith et al. (2020). 'Statistical matching for conservation science'. In: Conservation Biology 34.3, pp. 538–549. ISSN: 15231739. DOI: 10.1111/cobi.13448.

References III

Introduction

Matching exact match

distance match machine-learning model comparison

Synthetic Control

estimation

References

Sizemore, Samantha and Raiber Alkurdi (2019). Matching Methods for Causal Inference: A Machine Learning Update. URL: https://humboldt-wi.github.io/blog/research/applied%7B%5C_%7Dpredictive%7B%5C_%7Dmodeling%7B%5C_%7D19/matching%7B%5C_%7Dmethods/ (visited on 01/05/2021).

