Analysis

Wenxiao Yang *

 $^*\mbox{Department}$ of Mathematics, University of Illinois at Urbana-Champaign

2022

Contents

1	Basis	2
	1.1 Sequence Definitions	2
	1.2 Scalar Sequences	
	1.3 Functions Basis	
	1.4 Sets	
2	Functions	3
	2.1 Extreme of Functions	3
	2.1.1 Weierstrass' Theorem(Extreme value Theorem)	4
3	$\operatorname{Big} \mathcal{O} ext{ and Small } \wr \operatorname{Notation}$	5
	3.1 Definition	5
	3.1.1 Extension	5
4	Lipschitz Continuous	5
	4.1 Definition	5
	4.2 Example	6
	4.3 Contraction Mapping	6
5	Fixed point theorem	6

1 **Basis**

Sequence Definitions 1.1

Sequences $\{x_k\}_{k=1}, \ldots$ or $\{x_k\}, x_k \in \mathbb{R}^n$

Definition 1 (Convergence: note $x_k \to x$, $\lim_{k \to \infty} x_k = x$). Given $\varepsilon > 0$, $\exists N_{\varepsilon}$ s.t.

$$||x_k - x|| < \varepsilon \quad \forall k \geqslant N_{\varepsilon}$$

Definition 2 (Cauchy Sequence). $\{x_k\}$ is Cauchy if given $\varepsilon > 0$, $\exists N_{\varepsilon} \ s.t.$

$$||x_k - x_m|| < \varepsilon, \ \forall k, m \geqslant N_{\varepsilon}.$$

Note:

$$\{x_k\}$$
 converges $\iff \{x_k\}$ is Cauchy

Definition 3 (Subsequence). Infinite subset of $\{x_k\}$: $\{x_k : k \in \mathcal{K}\}\$ or $\{x_k\}_{\mathcal{K}}$, where \mathcal{K} is subset of \mathbb{Z}^+ .

Definition 4 (Limit point). x is a limit point of $\{x_k\}$ if \exists a subsequence of $\{x_k\}$ that converges to x.

Definition 5 (Bounded Sequence).

$$||x_k|| \leq b, \forall k$$

Results about Bounded sequences:

- 1. Every bounded has at least one limit point.
- 2. A bounded sequence converges iff it has a **unique limit point**.

1.2Scalar Sequences

Scalar sequences $\{x_k\}, x_k \in \mathbb{R}$:

Proposition 1. If $\{x_k\}$ is bounded above (below) and non-decreasing (non-increasing) it converges.

Proposition 2. The largest(smallest) limit point of $\{x_k\}$ is $\lim_{k\to\infty} \sup x_k$ ($\lim_{k\to\infty} \inf x_k$)

Proposition 3. $\{x_k\}$ converges $\iff -\infty < \lim_{k \to \infty} \inf x_k = \lim_{k \to \infty} \sup x_k < \infty$

1.3 Functions Basis

Definition 6 (Continuouty). A real-valued function f is continuous at x if for every $\{x_k\}$ converging to x satisfies that $\lim_{k\to\infty} f(x_k) = f(x)$. Equivalent: given $\varepsilon > 0, \exists \delta > 0 \text{ s.t. } |f(x) - f(y)| < \varepsilon \quad \forall ||y - x|| < \delta$ f is continuous if it is continuous at all points x.

Definition 7 (Coercive). A real-valued function $f: \& \to \mathbb{R}$ is <u>coercive</u> if for **every** $\{x_k\} \subset \&$ s.t. $||x_k|| \to \infty, f(x_k) \to \infty$

Example 1 (Check coercive).

- 1) $x \in \mathbb{R}^2$, $f(x) = x_1^2 + x_2^2$ coercive 2) $x \in \mathbb{R}$, $f(x) = 1 e^{-|x|}$ not coercive 3) $x \in \mathbb{R}^2$, $f(x) = x_1^2 + x_2^2 2x_1x_2$ not coercive (we need $f(x_k) \to \infty$ for all $||x_k|| \to \infty$)

1.4 Sets

Definition 8 (Open Sets). A set & $\subseteq \mathbb{R}^n$ is open if $\forall x \in \&$ we can draw a ball around x that is contained in &. i.e. $\forall x \in \&$, $\exists \varepsilon > 0$ s.t. $\{y : ||y - x|| < \varepsilon\} \subseteq \&$

Definition 9 (Closed Sets). & is closed if $\&^c$ is open Equivalent: if & contains all limit points of all sequences in &

Example 2 (Closed and Open Sets).

- 1) $(1,2) = \{x \in \mathbb{R} : 1 < x < 2\}$ open
- 2) \mathbb{R} is both open and closed
- 3) $(-\infty, 1) = \{x \in \mathbb{R} : x < 1\}$ open
- 4) $[1,\infty)$ is closed because its complement open
- 5) (1,2] is neither open nor closed

Definition 10 (Bounded Set). A is bounded if $\exists M \ s.t. \ ||x|| \leq M \ \forall x \in \&$

Definition 11 (Compact Set). $\mathcal{L} \subseteq \mathbb{R}^n$ is compact of it is closed and bounded.

Example 3 (Compact Set). $[1,2] = \{x \in \mathbb{R} : 1 \le x \le 2\}; \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 \le 4\}$

Definition 12 (Extreme of sets of scalars, sup A, inf A). Let $A \subset \mathbb{R}$.

- The infimum of A, or inf A is largest y s.t. $y \leq x, \forall x \in A$. If no such y exists, $\inf A = -\infty$
- Similar definition for supremum of A (or wrote as $\sup A$).

Proposition 4. If $\inf A(\sup A) = x^* \in A$, then $x^* = \min A(\max A)$

Definition 13 (Sublevel Set). The sublevel set of a function $f : \mathbb{R}^n \to \mathbb{R}$ (for some level $c \in \mathbb{R}$) is the set

$$\overline{L_c} = \{ x \in \mathbb{R}^n : f(x) \le c \}$$

2 Functions

2.1 Extreme of Functions

Definition 14 (Extreme of Functions). Let $\& \subseteq \mathbb{R}^n$, $f : \& \to \mathbb{R}$

$$\inf_{x \in \&} f(x) = \inf\{f(x) : x \in \&\}$$

If $\exists x^* \in \&$ s.t. inf $f(x) = f(x^*)$. Then, f achieves (attains) its minimum and $f(x^*) = \min_{x \in \&} f(x)$ x^* is called a **minimizer** of f, written as $x^* \in \arg\min_{x \in \&} f(x)$. If x^* is unique, we write $x^* = \arg\min_{x \in \&} f(x)$

Similarly, supremum and maximum of f.

2.1.1 Weierstrass' Theorem(Extreme value Theorem)

Theorem 1 (Weierstrass' Theorem(Extreme value Theorem)).

If f is a continuous function on a compact set, & $\subseteq \mathbb{R}^n$, then f attains its min and max on & i.e.,

$$\exists x_1 \in \& \ s.t. \ f(x_1) = \inf_{x \in \&} f(x)$$

$$\exists x_2 \in \& \ s.t. \ f(x_2) = \sup_{x \in \&} f(x)$$

Proof. (for existence of min; max is similar)

Let $\{\sigma_k\} \subseteq \&$ be s.t.

$$\inf_{x \in \&} f(x) \le f(\sigma_k) \le \inf_{x \in \&} f(x) + \frac{1}{k}$$

Then $\lim_{k\to\infty} f(\sigma_k) = \inf_{x\in\&} f(x)$

 \mathcal{L} is bounded $\Rightarrow \{\sigma_k\}$ has it least one limit point x,

 \mathcal{L} is closed $\Rightarrow x_1 \in \&$

$$f$$
 is continuous $\Rightarrow f(x_1) = \lim_{k \to \infty} f(\sigma_k) = \inf_{x \in \&} f(x)$

Corollary 1 (Corollary to WT). Let f be continuous on closed set & (not necessarily bounded). If f is coercive on & it attains its min on &.

Proof. Consider $\{\sigma_k\}$ as in proof of WT.

Since f is closed, $f(x) < \infty$, $\forall x \in \&$. And f is coercive on &, which means $f(x) \to \infty$ if $||x|| \to \infty$. Hence, $\{\sigma_k\} \in \&$ is bounded. Rest of proof same as proof of WT.

Example 4.
$$f(x) = f(x_1, x_2, x_3) = x_1^4 + 2x_2^2 + e^{-x_3} + e^{2x_3}$$

- 1) Does f achieve its min and max on $\mathcal{L}_1 = \{x \in \mathbb{R}^3 : x_1^2 + 2x_2^2 + 3x_3^2 \le 6\}$?
 - \mathcal{L}_1 is compact and f is continuous. Both min and max are achieved (WT).
- 2) Does f achieve its min and max over \mathbb{R}^3 ?
 - $f \to \infty$ whenever $||x|| \to \infty \Rightarrow f$ is coercive.
 - \mathbb{R}^3 is closed.
 - $\Rightarrow f$ achieves its min. on \mathbb{R}^3 by corollary to WT.
 - max does not exist since $f \to \infty$ as $||x|| \to \infty$.
- 3) Does f achieve its min and max over $\mathcal{L}_2 = \{x \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 3\}$?
 - \mathcal{L}_2 is closed, but not bounded.
 - Since f is coercive, min achieved.
 - max does not exist since setting $x_1 = 0$ $x_2 = 3 x_3$ and letting $x_3 \to \infty$ makes $f \to \infty$

3 Big \mathcal{O} and Small o Notation

3.1 Definition

Complexity:

Definition 15. A sequence f(n) is O(1) if $\lim_{n\to\infty} f(n) < \infty$.

Definition 16. A sequence f(n) is O(g(n)) if $\frac{f(n)}{g(n)}$ is O(1).

Definition 17. A sequence f(n) is o(1) if $\lim_{n\to\infty} \sup f(n) = 0$.

Definition 18. A sequence f(n) is o(g(n)) if $\lim_{n\to\infty} \sup \frac{f(n)}{g(n)} = 0$.

Definition 19. A sequence f(n) is <u>asymptotic</u> to g(n) if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 1$. (This is denoted by $f(n) \sim g(n)$ as $a \to \infty$)

For two scalar functions $f(x) \in \mathbb{R}, g(x) \in \mathbb{R}_+$, where $x \in \mathbb{R}$, we write:

1. $f(x) = \mathcal{O}(g(x))$ if $\limsup_{x \to \infty} \frac{|f(x)|}{g(x)} < \infty$; we say f is dominated by g asymptotically.

2. $f(x) = \Omega(g(x))$ if $\lim \inf_{x \to \infty} \frac{|f(x)|}{g(x)} > 0$.

3. $f(x) = \Theta(g(x))$ if $f(x) = \mathcal{O}(g(x))$ and $f(x) = \Omega(g(x))$ both hold.

4. f(x) = o(g(x)) if $\lim \inf_{x \to \infty} \frac{f(x)}{g(x)} = 0$.

Example 5.

$$n^{3} + n + 2 = \Omega(1), n^{3} + n + 2 = \Omega(n^{2})$$

$$n^{3} + n + 2 = \Theta(n^{3})$$

$$n^{3} + n + 2 = o(n^{4})$$

3.1.1 Extension

 $f(x) = \mathcal{O}(g(x))$ as $x \to a$ if $\limsup_{x \to a} \frac{|f(x)|}{g(x)} < \infty$.

Example 6. $\varepsilon^2 + \varepsilon^3 = \mathcal{O}(\varepsilon^2)$ as $\varepsilon \to 0$

4 Lipschitz Continuous

4.1 Definition

Definition 20. Lipschitz continuous: if a function $f: \mathbb{R}^n \to \mathbb{R}^m$ satisfies

$$||f(\mathbf{x}) - f(\mathbf{y})|| \le \gamma ||\mathbf{x} - \mathbf{y}||, \forall \mathbf{x}, \mathbf{y}$$

the function is called γ -Lipschitz continuous;

If f is γ -Lipschitz continuous, then it is also $(\gamma + 1)$ -Lipschitz continuous

The minimal such γ is called a Lipschitz constant of function f

Remark: Here $\|\cdot\|$ can be any given norm of the space \mathbb{R}^n and \mathbb{R}^m , such as Euclidean norm, ℓ_1 -norm, etc.

When not specified, we assume it is Euclidean norm.

4.2 Example

Example 1: f(x) = 2x is 2-Lipschitz continuous;

Example 2: What about $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$, where **A** is a matrix? Spectral norm $\|\mathbf{A}\|_2$ (for Euclidean norm).

Example 3: What about $f(x) = x^2$? Not Lipschitz continuous, or the Lipschitz constant is ∞ .

4.3 Contraction Mapping

1. If the Lipschitz constant $\gamma \leq 1$, then f is called a non-expansive mapping.

2. If $\gamma < 1$, then f is called a contraction mapping

Example 1: f(x) = 2x is not a contraction mapping; f(x) = 0.5x is.

Example 2: f(x) = Ax is a contraction mapping (with respect to Euclidean norm) iff $||A||_2 < 1$.

5 Fixed point theorem

- 1. Fixed point theorem: If f is a contraction mapping that maps \mathbb{R}^n to itself, then the following two results hold:
- 1) There exists a unique fixed point x* satisfying

$$\mathbf{x}^* = f\left(\mathbf{x}^*\right)$$

2) In addition, the iterated function sequence

$$\mathbf{x}, f(\mathbf{x}), f(f(\mathbf{x})), \cdots,$$

converges to this unique fixed point \mathbf{x}^* (independent of the initial point x).

2. Remark: This is a special case of "Banach fixed point theorem" (which applies to any complete metric space).