

TodSlaveClock

Reference Manual

Product Info					
Product Manager	Sven Meier				
Author(s)	Sven Meier				
Reviewer(s)	-				
Version	1.9				
Date	26.01.2023				

Copyright Notice

Copyright © 2023 NetTimeLogic GmbH, Switzerland. All rights reserved. Unauthorized duplication of this document, in whole or in part, by any means, is prohibited without the prior written permission of NetTimeLogic GmbH, Switzerland.

All referenced registered marks and trademarks are the property of their respective owners

Disclaimer

The information available to you in this document/code may contain errors and is subject to periods of interruption. While NetTimeLogic GmbH does its best to maintain the information it offers in the document/code, it cannot be held responsible for any errors, defects, lost profits, or other consequential damages arising from the use of this document/code.

NETTIMELOGIC GMBH PROVIDES THE INFORMATION, SERVICES AND PRODUCTS AVAILABLE IN THIS DOCUMENT/CODE "AS IS," WITH NO WARRANTIES WHATSOEVER. ALL EXPRESS WARRANTIES AND ALL IMPLIED WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF PROPRIETARY RIGHTS ARE HEREBY DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT SHALL NETTIMELOGIC GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, SPECIAL AND EXEMPLARY DAMAGES, OR ANY DAMAGES WHATSOEVER, ARISING FROM THE USE OR PERFORMANCE OF THIS DOCUMENT/CODE OR FROM ANY INFORMATION, SERVICES OR PRODUCTS PROVIDED THROUGH THIS DOCUMENT/CODE, EVEN IF NETTIMELOGIC GMBH HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

IF YOU ARE DISSATISFIED WITH THIS DOCUMENT/CODE, OR ANY PORTION THEREOF, YOUR EXCLUSIVE REMEDY SHALL BE TO CEASE USING THE DOCUMENT/CODE.

Overview

NetTimeLogic's Time Of Day (TOD) Slave Clock is a full hardware (FPGA) only implementation of a synchronization core able to synchronize to a Time of Day source via NMEA or UBX over UART.

The whole message parsing, algorithms and calculations are implemented in the core, no CPU is required. This allows running TOD synchronization completely independent and standalone from the user application. The core can be configured either by signals or by an AXI4Lite-Slave Register interface.

This core only adapts the second part of the clock, and does no drift or offset correction in the sub second range, this shall be done in a combination with the PPS Slave Clock.

Key Features:

- Time of Day Slave Clock
- Built-in UART receiver with configurable baudrate
- NMEA message parser
- Support for UBX (uBlox®) protocol
- Support for TSIP (Trimble®) protocol
- Support for GPS, GLONASS, GALILEO, BEIDOU or Combined GNSS
- Supports NMEA GxZDA and GxRMC messages
- Supports UBX NAV_TIME_UTC, NAV_TIME_LS, NAV_STATUS, MON_HW and NAV_SAT messages
- Supports TSIP TIMING_INFO, POSITION_INFO, RECEIVER_STATUS, SYSTEM_ALARMS and SAT_INFO messages
- Optional support for proprietary NMEA GxUTC message for UTC information and handling
- UTC handling and additional Status information for UBX and TSIP
- Quality supervision and filtering of GxRMC messages
- Hardware time conversion from Time of Day format (hh:mm:ss dd:mm:yyyy)
 into seconds since midnight 1.1.1970 (Linux, TAI, PTP)
- Second adjustment at the local second overflow
- In UBX/TSIP mode provides Current UTC offset to TAI and Leap Second information
- In combination with a PPS Slave Clock from NetTimeLogic: synchronization accuracy: +/- 25ns
- AXI4Lite register set or static configuration

Revision History

This table shows the revision history of this document.

Version	Date	Revision
0.1	28.12.2015	First draft
1.0	13.05.2016	First release
1.1	19.05.2016	Added structured types section
1.2	20.12.2017	Status interface added
1.3	17.02.2020	Added Polarity swap mode
1.4	28.07.2020	Added more Error indications
1.5	30.07.2020	Added Id check for different GNSS system
1.6	21.10.2020	Added UBX Support
1.7	02.08.2022	Added UBX GNSS Info Support
1.8	03.01.2023	Added Vivado upgrade version description
1.9	13.01.2023	Added TSIP Support
2.0	26.01.2023	Added GxUTC

Table 1: Revision History

Content

1	INTRODUCTION	10
1.1	Context Overview	10
1.2	Function	11
1.3	Architecture	11
2	NMEA BASICS	13
2.1	Interface	13
2.2 2.2. 2.2.	Messages NMEA ZDA - Date and Time NMEA RMC - Recommended Minimum Data	13 13 14
2.3	Message rate and phase	15
2.4	UTC vs TAI time bases	15
3	UBX BASICS	17
3.1	Interface	17
3.2 3.2. 3.2.	Messages 1 UBX NAV_TIME_UTC - Date and Time 2 UBX NAV_TIME_LS - Leap Seconds and UTC Offset	17 18 19
3.3	Message rate and phase	20
3.4	UTC vs TAI time bases	20
4	TSIP BASICS	21
4.1	Interface	21
4.2 4.2.	Messages 1 TSIP TIMING INFO - Date, Time and UTC Offset	21 22
4.3	Message rate and phase	24

4.4	UTC vs TAI time bases	24
5	REGISTER SET	25
5.1	Register Overview	25
5.2 5.2	Register Descriptions 2.1 General	26 26
6	DESIGN DESCRIPTION	40
6.1	Top Level - Tod Slave	40
6.2	Design Parts 2.1 RX Processor 2.2 UART Interface Adapter 2.3 Registerset	57 57 63 66
	Configuration example 3.1 Static Configuration 3.2 AXI Configuration	73 73 73
	Clocking and Reset Concept 4.1 Clocking 4.2 Reset	75 75 75
7	RESOURCE USAGE	77
7.1	Intel/Altera (Cyclone V)	77
7.2	AMD/Xilinx (Artix 7)	77
8	DELIVERY STRUCTURE	78
9	TESTBENCH	79
9.1	Run Testbench	79
10	REFERENCE DESIGNS	83
10.1	Intel/Altera: Terasic SocKit	8

TodSlave Reference Manual 2.0

10.2 AMD/Xilinx:	Diailent Artv	82
10.2.1 GPS receiv		83
10.3 AMD/Xilinx :	Vivado version	84

TodSlave Reference Manual 2.0

Definitions

Definitions	
	Is a combined electrical and data specification for commu-
	nication between marine electronics such as echo sounder,
	sonars, anemometer, gyrocompass, autopilot, GPS receiv-
NMEA 0183	ers and many other types of instruments. The NMEA 0183
	standard uses a simple ASCII, serial communications proto-
	col that defines how data are transmitted in a "sentence"
	from one "talker" to multiple "listeners" at a time
Tod Slave Clock	A clock that can synchronize itself to NMEA 0183 messages
Tod Slave Clock	via UART
PI Servo Loop	Proportional-integral servo loop, allows for smooth correc-
FI Servo Loop	tions
Offset	Phase difference between clocks
Drift	Frequency difference between clocks

Table 2: Definitions

Abbreviations

Abbreviations	
AXI	AMBA4 Specification (Stream and Memory Mapped)
IRQ	Interrupt, Signaling to e.g. a CPU
PPS	Pulse Per Second
TOD	Time of Day
TS	TOD Slave
GNSS	Global Navigation Satellite System
BEIDOU	Chinese GNSS System
GALILEO	European GNSS System
GLONASS	Russian GNSS System
GPS	American GNSS System (often also used instead of GNSS)
NMEA	National Marine Electronics Association

TS	Timestamp	
ТВ	Testbench	
UART/RS232	Universal Asynchronous Receiver Transmitter	
LUT	Look Up Table	
FF	Flip Flop	
RAM	Random Access Memory	
ROM	Read Only Memory	
FPGA	Field Programmable Gate Array	
VHDL	Hardware description Language for FPGA's	
UTC	Coordinated Universal Time, popularly known as GMT (Greenwich Mean Time)	
UBX	uBlox Protocol	
TSIP	Trimble Protocol	
TAI	Temps Atomique International, is the international atomic time scale based on a continuous counting of the SI second. TAI is currently ahead of UTC by 36 seconds. TAI is always ahead of GPS by 19 seconds.	

Table 3: Abbreviations

1 Introduction

1.1 Context Overview

The TOD Slave Clock is meant as a co-processor handling Time of Day (TOD) inputs in the form of NMEA or UBX messages via UART. It receives NMEA or UBX messages from a NMEA/UBX source (GPS receiver) via an UART/RS232 interface; it does not send any message to the source though.

This means it parses and processes NMEA or UBX messages directly in hardware, converts the time into the same format and time base as the Counter Clock and sets the time of the Counter Clock if not correct.

The TOD Slave Clock is designed to work in cooperation with the Counter Clock core from NetTimeLogic (not a requirement). It can be combined with a PPS Slave clock to synchronize for e.g. to a GPS receiver. Offset and drift are then corrected by the PPS Slave Clock to the next second and the TOD Slave Clock will correct the absolute time on seconds level.

It contains an AXI4Lite slave for configuration and supervision from a CPU, this is however not required since the TOD Slave Clock can also be configured statically via signals/constants directly from within the FPGA.

Figure 1: Context Block Diagram

1.2 Function

The TOD Slave Clock takes an UART input and converts the UART with configurable baud rate to an AXI byte stream. This byte stream parses the NMEA data stream for GxZDA and GxRMC messages or UBX data stream for NAV_TIME_UTC and NAV TIME LS messages and extracts the UTC time in a time of day format and converts it in case of NMEA from ASCII to binary. The next step is to convert the UTC time in the hh:mm:ss dd:mm:yyyy format to seconds since midnight 1.1.1970 (no fractions of seconds used) taking leap years into account. To this time an additional offset is added or subtracted to convert the UTC time to TAI time (in case of UBX this information is received from the GPS Receiver) or any other time base (leap seconds or different start of epoch). This time is then taken as reference time and waited for the next local second overflow before the local time is overwritten if required. If no difference exists, no overwrite takes place. This will cause a time jump of a second every now and then if the NMEA message reception drifts away (slips over a second of the local clock) from the local clock if not compensated (a PPS Slave would compensate the drift and offset and avoid these time jumps).

1.3 Architecture

The core is split up into different functional blocks for reduction of the complexity, modularity and maximum reuse of blocks. The interfaces between the functional blocks are kept as small as possible for easier understanding of the core.

Figure 2: Architecture Block Diagram

Register Set

This block allows reading status values and writing configuration.

UART Receiver

This block is an UART Receiver which converts the serial stream into a byte aligned AXI stream.

NMEA Parser

This block parses the data stream for time messages from the NMEA, UBX or TSIP source and extracts the UTC in time of day format and in case of UBX or TSIP also the leap second and UTC offset information as well as additional Receiver information

Time Converter

This block converts the UTC time in time of day format into TAI format in seconds since 1.1.1970 without leap seconds for NMEA and with leap seconds for UBX

Time Calculator

This block adds or subtracts additional offsets for leap second corrections or different time bases, compares this with the time of the local clock, and corrects the local clock if needed on the next second wraparound of the local clock.

2 NMEA Basics

2.1 Interface

NMEA 0183 is a standard for communication between navigation equipment on ships defined by the National Marine Electronics Association which also defines how the communication between a GPS receiver and a PC shall look like. The NMEA 0183 standard uses a simple ASCII, serial communications protocol that defines how data are transmitted in messages from one source to multiple sinks at a time.

Typical Baud rate 4800

Data bits 8

Parity None

Stop bits 1

Handshake None

2.2 Messages

NMEA messages always start with a "\$" character, followed by the source id which is "GP" for GPS, "GL" for GLONASS, "GA" for GALILEO, "GB" for BEIDOU or "GN" for Combined, followed by a three character message type. Then a message type dependent number of fields of different lengths follow, each field separated with a "," character. The last field is terminated with a "*" character and followed by a checksum in hexadecimal format.

There are many message types defined for GNSS sources, however only a few contain the time of day: ZDA (Date and Time) and RMC (Recommended Minimum Data).

The message format of the two messages used are described in the next chapters, be aware that some GNSS receiver have higher accuracy on some values and will add fractions, so fields don't always have the same width (e.g. seconds might be with or without fractions).

2.2.1 NMEA ZDA - Date and Time

This message is specifically made for transferring time. It has the local time offset for local time but this is not used.

\$GxZDA,hhmmss.ss,dd,mm,yyyy,aa,bb*CC

• x: P (GPS), L (GLONASS), A (GALILEO), B (BEIDOU), N (All)

hh: hours (00 - 23)mm: minutes (00 - 59)

• ss.ss: decimal seconds (00.99 - 60.99)

dd: day (01 - 31)
 mm: month (01 - 12)
 yyyy: year (1970 - 2106)

• aa: local zone hours (ignored)

• bb: local zone minutes (ignored)

• *CC: checksum (00-FF)

2.2.2 NMEA RMC - Recommended Minimum Data

This message is supported by all GPS receivers, it describes the minimum message that a GPS receiver has to be able to output when conforming with the NMEA 2.0standard.

\$GxRMC,hhmmss.ss,S,xxx.xxxx,N,xxx.xxxx,E,v.vv,aaa.aa,ddmmyy,vv.v,E,F*CC

• x: P (GPS), L (GLONASS), A (GALILEO), B (BEIDOU), N (All)

hh: hours (00 - 23)mm: minutes (00 - 59)

• ss.ss: decimal seconds (00.99 - 60.99)

S status A=active or V=Void

xxx.xxxx,N latitude (ignored)xxx,xxxxx,E longitude (ignored)

v.vv speed (ignored)aaa.aa course (ignored)

dd: day (01 - 31)
 mm: month (01 - 12)
 yy: year (1970 - 2069)

vv.v,E: magnetic variation (ignored)F: mode: M=manual input mode

• *CC: checksum (00-FF)

2.2.3 NMEA UTC - Recommended Minimum Data

This is a proprietary NMEA message defined by NetTimeLogic for proving UTC information to NMEA Slaves, since standard NMEA has no message defining these values.

\$GxUTC,ooo,tttt,N,xxx.xxxx,S*CC

• x: P (GPS), L (GLONASS), A (GALILEO), B (BEIDOU), N (All)

• ooo: TAI-UTC offset in seconds (000 - 255)

• tttt: time to leap second in seconds (0000 - 9999)

• ss.ss: decimal seconds (00.99 - 60.99)

• S status as ASCII represented hex (0-F)

BitO: TAI-UTC offset valid

Bit1: Leap info valid

Bit2: Leap61 announcement Bit3: Leap59 announcement

• *CC: checksum (00-FF)

2.3 Message rate and phase

The message rates of these two messages shall be set to once per second if possible. It is important that the received NMEA message is received in a rather fixed phase to the second overflow (PPS) e.g. always around 500ms after the UTC second overflow other ways time jumps can happen. Only one of the messages shall be available or only one message type shall be enabled in the core.

Figure 3: NMEA to PPS alignment

2.4 UTC vs TAI time bases

Both messages contain the time of day on UTC base. UTC has an offset to TAI which is the time base normally used for the Counter Clock. This time offset can be

set in the core so the local clock can still run on a TAI base. UTC in comparison to TAI or GPS time has so called leap seconds. A leap second is an additional second which is either added or subtracted from the current time to adjust for the earth rotation variation over time. Until 2020 UTC had additional 37 leap seconds, therefore TAI time is currently 37 seconds ahead of UTC. The issue with UTC time is, that the time makes jumps with the leap seconds which may cause that synchronized nodes go out of sync for a couple of seconds. Leap seconds are normally introduced at midnight of either the 30 of June or 31 of December. For an additional leap second the seconds counter of the UTC time will count 59 twice before wrapping around to zero, for one fewer leap second the UTC second counter will wrap directly from 58 to 0 by skipping 59 (this has not happened yet).

Be aware that this core takes no additional precautions to handle leap seconds in case of pure NMEA since NMEA just DOES NOT provide any information about UTC Offset and LEAP seconds, so it will make a time jump at a UTC leap second and will lose synchronization since it thinks that it has an offset of one second at tries to adjust this offset. A way to avoid this is to disable the adjustment at the two dates right before midnight (e.g. one minute earlier), wait for the leap second to happen, fetch some time server to get the new offset between TAI and UTC, set this offset to the core and enable the core again. This way the local clock on TAI base makes no jump since the new offset is already taken into account. The only issue with this is that for the time around midnight the clock is free running without a reference.

If the GxUTC message is enabled we get the leap second and UTC offset information, the core just disables adjustments 4 seconds before and after midnight UTC of the two dates (actually 4 dates, but only two were used so far) until a new UTC offset is available and from the calculations there is no time jump because UTC made a jump and the UTC offset was also increased/decreased which will lead to a continuous time.

3 UBX Basics

3.1 Interface

UBX is a proprietary protocol from uBlox® for communication between a GPS receiver and GPS Sink.

The UBX protocl uses a simple binary, serial communications protocol that defines how data are transmitted in messages from one source to multiple sinks at a time.

Typical Baud rate 38400

Data bits 8

Parity None

Stop bits 1

Handshake None

Multibyte values are transferred in little endian format (LSB first)

3.2 Messages

UBX messages always start with 0xB5 followed by 0x62 for synchronization of message boundaries. Then comes a Message Class byte (0x01 for the ones we look at) followed by a message ID byte and a 16bit length field. Then follows the payload of the length specified before followed by a two byte checksum.

There are many message types defined for GNSS sources, however only a few contain the time of day and information about leap seconds and UTC offset: NAV_TIME_UTC (Date and Time) and NAV_TIME_LS (Leap Second and UTC offset).

The message format of the two messages used are described in the next chapters,

3.2.1 UBX NAV_TIME_UTC - Date and Time

This message is specifically made for transferring UTC time.

Message	UBX-NA\	/-TIMEUTC						
	UTC time	solution						
Туре	Periodic/p	polled						
Comment	Note that during a leap second there may be more or less than 60 seconds in a minute.							
	See the d	lescription of leap	seconds in the	e Integratio	on manual for details.			
Message	Header	Class ID	Length (Bytes	s)	Payload Check			
structure	0xb5 0x6	2 0x01 0x21	20		see below	CK_A CK_B		
Payload descr	iption:							
Byte offset	Туре	Name	Scale	Unit	Description			
0	U4	iTOW	-	ms	GPS time of week of the navigation	epoch.		
					See the section iTOW timestam manual for details.	ps in Integration		
4	U4	tAcc	-	ns	Time accuracy estimate (UTC)			
8	14	nano	-	ns	Fraction of second, range -1e9 1e	9 (UTC)		
12	U2	year	-	у	Year, range 19992099 (UTC)			
14	U1	month	-	month	Month, range 112 (UTC)			
15	U1	day	-	d	Day of month, range 131 (UTC)			
16	U1	hour	-	h	Hour of day, range 023 (UTC)			
17	U1	min	-	min	Minute of hour, range 059 (UTC)			
18	U1	sec	-	S	Seconds of minute, range 060 (UT	C)		
19	X1	valid	-	-	Validity Flags			
bit 0	U:1	validTOW	-	-	1 = Valid Time of Week (see section Integration manual for details)	on Time validity in		
bit 1	U:1	validWKN	-	-	1 = Valid Week Number (see section Integration manual for details)	on Time validity in		
bit 2	U:1	validUTC	-	-	1 = Valid UTC Time			
bits 74	U:4	utcStandard	-	-	UTC standard identifier. (Not supposersions less than 15.00)	orted for protocol		
					O = Information not available 1 = Communications Research I Tokyo, Japan 2 = National Institute of Standa Technology (NIST) 3 = U.S. Naval Observatory (USN 4 = International Bureau of Weig Measures (BIPM)	rds and		

Figure 4: UBX NAV TIME UTC Frame format

3.2.2 UBX NAV_TIME_LS - Leap Seconds and UTC Offset

This message contains information about UTC offsets and Leap Seconds.

Message	UBX-NAV-TIMELS									
	Leap sec	Leap second event information								
Туре	Periodic/polled									
Comment	Informati	ion abou	t the u	pcomi	ng leap se	econd even	t if one is scheduled.			
Message	Header Class ID			Lei	ngth (Byt	es)	Payload	Checksum		
structure	0xb5 0x6	2 0x0	1 0x2	6 24			see below	CK_A CK_B		
Payload desc	cription:									
Byte offset	Type	Name			Scale	Unit	Description			
0	U4	iTOW			-	ms	GPS time of week of the navigation	n epoch.		
							See the section iTOW timestar manual for details.	mps in Integration		
4	U1	versi	on		-	-	Message version (0x00 for this ver	sion)		
5	U1[3]	reser	ved0				Reserved			
8	U1	srcOf	CurrLs	;	-	-	Information source for the curre seconds. O = Default (hardcoded in the foutdated) 1 = Derived from time difference and GLONASS time 2 = GPS 3 = SBAS 4 = BeiDou 5 = Galileo 6 = Aided data 7 = Configured 255 = Unknown	irmware, can be		
9	I1	currL	s		-	S	Current number of leap seconds time (Jan 6, 1980). It reflects how ahead of UTC time. Galileo number the same as GPS. BeiDou number of less than GPS. GLONASS follows U seconds.	v much GPS time is r of leap seconds is rf leap seconds is 14		

Figure 5: UBX NAV TIME UTC Frame format

3.3 Message rate and phase

The message rates of these two messages shall be set to once per second if possible. It is important that the received UBX message is received in a rather fixed phase to the second overflow (PPS) e.g. always around 500ms after the UTC second overflow otherwise time jumps can happen.

Figure 6: UBX to PPS alignment

3.4 UTC vs TAI time bases

NAV_TIME_UTC contains the time of day on UTC base. UTC has an offset to TAI which is the time base normally used for the Counter Clock. This time offset will be extracted from the NAV_TIME_LS message and corrected so the local clock can still run on a TAI base. UTC in comparison to TAI or GPS time has so called leap seconds. A leap second is an additional second which is either added or subtracted from the current time to adjust for the earth rotation variation over time. Until 2020 UTC had additional 37 leap seconds, therefore TAI time is currently 37 seconds ahead of UTC. The issue with UTC time is, that the time makes jumps with the leap seconds which may cause that synchronized nodes go out of sync for a couple of seconds. Leap seconds are normally introduced at midnight of either the 30 of June or 31 of December. For an additional leap second the seconds counter of the UTC time will count 59 twice before wrapping around to zero, for one fewer leap second the UTC second counter will wrap directly from 58 to 0 by skipping 59 (this has not happened yet).

Since with UBX we get the leap second and UTC offset information, the core just disables adjustments 4 seconds before and after midnight UTC of the two dates (actually 4 dates, but only two were used so far) until a new UTC offset is available and from the calculations there is no time jump because UTC made a jump and the UTC offset was also increased/decreased which will lead to a continuous time. Also it would be possible to do the same mechanism as for NMEA where the core is disabled before midnight and enabled after midnight, but this would be redundant.

4 TSIP Basics

4.1 Interface

TSIP is a proprietary protocol from Trimble® for communication between a GPS receiver and GPS Sink.

The TSIP protocl uses a simple binary, serial communications protocol that defines how data are transmitted in messages from one source to multiple sinks at a time.

Typical Baud rate 38400

Data bits 8

Parity None

Stop bits 1

Handshake None

Multibyte values are transferred in big endian format (MSB first)

4.2 Messages

TSIP messages always start with 0x10 and ends with 0x10 followed by 0x03 for synchronization of message boundaries. Then comes a Packet ID followed by a Subpacket ID byte and a 16bit length field. Then follows a Mode field which is always 2 for Responses. Then follows the payload of the length specified before followed by a two byte checksum.

There are many message types defined for GNSS sources, however only one contains the time of day and information about UTC offset: TSIP TIMING INFO (Date, Time and UTC offset).

The message format of this message is described in the next chapters,

4.2.1 TSIP TIMING INFO - Date, Time and UTC Offset

This message contains information about UTC offsets and Leap Seconds.

Byte	ltem	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA1	Packet ID
2	Subpacket ID	UINT8	0x00	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6–9	Time of Week	UINT32	Any	Time of week
10–11	Week Number	UINT16	Any	Week number
12	Hours	UINT8	0-23	Hours
13	Minutes	UINT8	0-59	Minutes
14	Seconds	UINT8	0–59	Seconds
15	Month	UINT8	1–12	Month
16	Day of month	UINT8	1-31	Day of month

Byte	Item	Type	Value	Description
17–18	Year	UINT16	Any	Four digits of year
19	Time base	UINT8		Bit 2:0:
				0: GPS 1: GLO 2: BDS 3: GAL
				Bit 3 - UTC (UTC according to the constellation set in bit 0-bit 2)
20	PPS base	UINT8		Bit 2:0:
				0: GPS 1: GLO 2: BDS 3: GAL
				Bit 3 - UTC (UTC according to the constellation set in bit 0-bit 2)
21	Flags	UINT8		Bit 0:
				0: UTC invalid 1: UTC valid
				Bit 1:
				0: Time invalid 1: Time valid
22-23	UTC Offset	SINT16	Any	UTC offset from chosen constellation time
24-27	PPS Quantization Error	SINGLE	Any	
28-31	Bias	SINGLE	Any	In seconds
32-35	Bias rate	SINGLE	Any	In seconds/second
36	Checksum	UINT8	Any	
37	Delimiter 1	UINT8	0x10	End of packet 1
38	Delimiter 2	UINT8	0x03	End of packet 2

Figure 7: TSIP TIMING INFO Frame format

4.3 Message rate and phase

The message rates of these two messages shall be set to once per second if possible. It is important that the received TSIP message is received in a rather fixed phase to the second overflow (PPS) e.g. always around 500ms after the UTC second overflow otherwise time jumps can happen..

Figure 8: TSIP to PPS alignment

4.4 UTC vs TAI time bases

TSIP_TIMING_INFO contains the time of day on UTC base. UTC has an offset to TAI which is the time base normally used for the Counter Clock. This time offset will be extracted also from the TSIP_TIMING_INFO message and corrected so the local clock can still run on a TAI base. UTC in comparison to TAI or GPS time has so called leap seconds. A leap second is an additional second which is either added or subtracted from the current time to adjust for the earth rotation variation over time. Until 2020 UTC had additional 37 leap seconds, therefore TAI time is currently 37 seconds ahead of UTC. The issue with UTC time is, that the time makes jumps with the leap seconds which may cause that synchronized nodes go out of sync for a couple of seconds. Leap seconds are normally introduced at midnight of either the 30 of June or 31 of December. For an additional leap second the seconds counter of the UTC time will count 59 twice before wrapping around to zero, for one fewer leap second the UTC second counter will wrap directly from 58 to 0 by skipping 59 (this has not happened yet).

Since with TSIP we get the leap second and UTC offset information, the core just disables adjustments 4 seconds before and after midnight UTC of the two dates (actually 4 dates, but only two were used so far) until a new UTC offset is available and from the calculations there is no time jump because UTC made a jump and the UTC offset was also increased/decreased which will lead to a continuous time. Also it would be possible to do the same mechanism as for NMEA where the core is disabled before midnight and enabled after midnight, but this would be redundant.

5 Register Set

This is the register set of the TOD Slave Clock. It is accessible via AXI4Lite Memory Mapped. All registers are 32bit wide, no burst access, no unaligned access, no byte enables, no timeouts are supported. Register address space is not contiguous. Register addresses are only offsets in the memory area where the core is mapped in the AXI inter connects. Non existing register access in the mapped memory area is answered with a slave decoding error.

5.1 Register Overview

Registerset Overview										
Name	Description	Offset	Access							
Tod SlaveControl Reg	Tod Slave Enable Control Register	0x0000000	RW							
Tod SlaveStatus Reg	Tod Slave Error Status Register	0x0000004	WC							
Tod SlaveUartPolarity Reg	Tod Slave UART Polarity Register	0x0000008	RW							
Tod SlaveVersionReg	Tod Slave Version Register	0x0000004	WC							
Tod SlaveCorrection Reg	Tod Slave Second Corrections Register	0x0000010	RW							
Tod SlaveUartBaudRate Reg	Tod Slave UART Baud Rate Register	0x00000020	RW							
Tod SlaveUtcStatus Reg	Tod Slave UTC Status Register	0x0000030	RO							
Tod SlaveTimeToLeapSecond Reg	Tod Slave Time to Leap Second Register	0x0000034	RO							
TodSlaveGnssStatus Reg	TodSlave GNSS Status Register	0x0000040	RO							
TodSlaveSatelliteNumber Reg	TodSlave Satelite Number Register	0x00000044	RO							

Table 4: Register Set Overview

TodSlave Reference Manual 2.0 Page 25 of 86

5.2 Register Descriptions

5.2.1 General

5.2.1.1 TOD Slave Control Register

Used for general control over the TOD Slave Clock, all configurations on the core shall only be done when disabled.

Tod Sla	Tod SlaveControl Reg											
Reg Des	Reg Description											
31 30	29 28	27 26 25 24	23 22 21	20	19	18	17	16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0			
	PROTOCOL	GNSS	RESERVED	UBX_SAT_TSIP_SAT	UBX_MON_TSIP_POS	NMEA_UTC_UBX_STATUS_TSIP_STA	NMEA_ZDA_UBX_UTC_TSIP_UTC	NMEA_RMC_UBX_LS_TSIP_LS		EIVADLE		
RO	RW	RW	RW	RW	RW	RW	RW	RW	RV	V		
						Reset	: 0x000	00000	00			
						Off	set: 0x	0000				

Name Description Bits Access

TodSlave Reference Manual 2.0 Page 26 of 86

-	Reserved, read 0	Bit: 31:30	RO
PROTOCOL	Serial Protocol: 0=NMEA, 1=UBX, 2=TSIP	Bit: 29:28	RW
GNSS	GNSS System to be used: 0=ALL 1=COMBINED 2=GPS 3=GLONASS 4=GALILEO 5=BEIDOU	Bit: 27:24	RW
RESERVED	Reserved, readback possible but no influence (write 0)	Bit: 23:21	RW
UBX_SAT	Disable UBX NAV SAT (if Protocol = UBX) Disable TSIP SATELLITE INFO (if Protocol = TSIP)	Bit: 20	RW
UBX_MON	Disable UBX HW MON (if Protocol = UBX) Disable TSIP POSITION INFO (if Protocol = TSIP)	Bit: 19	RW
NMEA_UTC_UBX_STATUS_TSIP_STA	Disable NMEA UTC (if Protocol = NMEA) Disable UBX NAV STATUS (if Protocol = UBX) Disable TSIP RECEIVER STATUS (if Protocol = TSIP)	Bit: 18	RW
NMEA_ZDA_UBX_UTC_TSIP_UTC	Disable NMEA ZDA (if Protocol = NMEA) Disable UBX NAV TIME UTC (if Protocol = UBX) Disable TSIP TIMING INFO (if Protocol = TSIP)	Bit: 17	RW
NMEA_RMC_UBX_LS_TSIP_LS	Disable NMEA RMC (if Protocol = NMEA) Disable UBX NAV TIME LS (if Protocol = UBX) Disable TSIP SYSTEM ALARMS (if Protocol = TSIP)	Bit: 16	RW
-	Reserved, read 0	Bit: 15:1	RO
ENABLE	Enable	Bit: 0	RW

TodSlave Reference Manual 2.0

5.2.1.2 TOD Slave Status Register

Shows the current status of the TOD Slave Clock.

Tod SlaveStatus Reg										
Reg Description										
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3	2	1	0							
	UART_ERROR	CHECKSUM_ERROR	ERROR							
RO	W	W	WC							
Reset: 0x0000000	Reset: 0x0000000									
Offset: 0x0004										

Name	Description	Bits	Access
-	Reserved, read 0	Bit: 31:2	RO
UART_ERROR	NMEA UART Error (sticky)	Bit: 2	WC
CHECKSUM_ERROR	NMEA Checksum Error (sticky)	Bit: 1	
PARSE_ERROR	NMEA Parser Error (sticky)	Bit: 0	

TodSlave Reference Manual 2.0

5.2.1.3 TOD Slave Polarity Register

Used for setting the UART signal polarity, shall only be done when disabled. Default value is set by the UartPolarity_Gen generic.

Tod SlavePolarity Reg										
Reg Description										
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2	1 0									
	POLARITY									
RO										
Reset: 0x000000X										
Offset: 0x0008										

Name	Description	Bits	Access
-	Reserved, read 0	Bit:31:1	RO
POLARITY	UART Polarity (0 = Inversed, 1 = normal UART)	Bit: 0	RW

TodSlave Reference Manual 2.0 Page 29 of 86

5.2.1.4 TOD Slave Version Register

Version of the IP core, even though is seen as a 32bit value, bits 31 down to 24 represent the major, bits 23 down to 16 the minor and bits 15 down to 0 the build numbers.

Name	Description	Bits	Access
VERSION	Version of the core	Bit: 31:0	RO

TodSlave Reference Manual 2.0 Page 30 of 86

5.2.1.5 TOD Slave Correction Register

Correction register to compensate for leap seconds between the different time domains. NMEA is UTC time, all other time in the system is TAI, this leads to a correction of 37 seconds by 2020. NMEA has NO message which contains the current UTC offset so this register must be used to pass UTC offset to TAI. For UBX/TSIP this register shall be set to 0 if UTC offset infromation is available.

То	Tod SlaveCorrection Reg																														
Reg	Reg Description																														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
COR_SIGN																COR_S															
RW										•																					
	Reset: 0x0000000																														
	Offset: 0x0010																														

Name	Description	Bits	Access
COR_SIGN	Correction sign	Bit: 31	RW
COR_S	Correction in seconds to the time extracted from the NMEA => used to convert between TAI, UTC and GPS (leap seconds) for UBX/TSIP this shall be set to 0 if UTC Offset information is available	Bit: 30:0	RW

TodSlave Reference Manual 2.0 Page 31 of 86

5.2.1.6 TOD Slave UART Baud Rate Register

This set the receive baud rate of the UART. The baud rate can only be changed when the core is disabled. Otherwise the changes have no effect. Only the most common baud rates are available from a range of 1.2k to 2m baud.

Tod SlaveUartBaudRate Reg										
Reg Description										
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5	4 3 2 1 0									
	BAUD_RATE									
RO	RW									
Reset: 0x000000X										
Offset: 0x0020										

Name	Description	Bits	Access
-	Reserved, read 0	Bit: 31:4	RO

TodSlave Reference Manual 2.0 Page 32 of 86

BAUD_RATE	Encoded Baudrate of the UART receiver: 0 => 1200 1 => 2400 2 => 4800 3 => 9600 4 => 19200 5 => 38400 6 => 57600 7 => 115200 8 => 230400 9 => 460800 10 => 921600 11 => 1000000	Bit: 3:0	RW
	9 => 460800 10 => 921600		
	Default can be set by generic		

TodSlave Reference Manual 2.0

5.2.1.7 TOD Slave UTC Status Register

This Register is only available in NMEA with UTC Message and in UBX/TSIP mode and only filled if UBX/TSIP is selected as Protocol and the UBX NAV TIME LS or TSIP TIMING INFO and/or TSIP SYSTEM ALARMS messages not disabled, otherwise it will be all 0. This allows to read the current Status for the UTC time, e.g. UTC Offset to TAI (our clock runs in TAI time), the announcement of a leap second and which one (Leap59 or Leap61) also it marks if either the UTC Offset information or the Leap Second information is valid (as indicated by the GPS receiver and some checks). The Leap Indications are earliest available 12h before the leap second event and maximum 12 hours after the event happened (depending ion the announcement by the GPS receiver)

Tod SlaveUtcStatus Reg										
Reg Description										
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17	16	15 14	4 13	12	11 10 9	8	7 6 5 4 3 2 1 0			
1	LEAP_INFO_VALID	' ·	LEAP61 LEAP59	LEAP_ANNOUNCE	1	UTC_INFO_VALID	UTC_OFFSET			
RO	RO F	RO R	O RO	RO	RO	RO	RO			
Reset: 0x0000000										
0	ffset: 0x	×0030								

Name	Description	Bits	Access
-	Reserved, read 0	Bit:31:17	RO

TodSlave Reference Manual 2.0 Page 34 of 86

LEAP_INFO_VALID	Leap Second Information valid = 1	Bit:31:1	RO
-	Reserved, read 0	Bit:15	RO
LEAP61	Reserved, read 0	Bit:14	RO
LEAP59	Reserved, read 0	Bit:13	RO
LEAP_ANNOUNCE	Announce that a Leap Second will happen within the next 12 h	Bit:12	RO
-	Reserved, read 0	Bit:11:9	RO
UTC_INFO_VALID	UTC Offset Information valid = 1	Bit: 8	RO
UTC_OFFSET	Current UTC Offset to TAI	Bit: 7:0	RO

TodSlave Reference Manual 2.0

5.2.1.8 TOD Slave Time To Leap Second Register

This Register is only available in UBX mode and only filled if UBX is selected as Protocol and the UBX NAV TIME LS message not disabled, otherwise it will be all 0 (TSIP 7FFFFFF). This shows the number of Seconds to the next Leap Second (if positive >0) or the number of Seconds since the last Leap Second (if negative <0) or that the Leap Second is in progress (if 0).

То	Tod SlaveTimeToLeapSecond Reg																														
Reg	Reg Description																														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	10_																														
																' J															
	Ш' ∑ ⊢																														
DO.																															
	RO Reset: 0x0000000																														
Offset: 0x0034																															

Name	Description	Bits	Access
TIME_TO_LEAP	Time in Seconds to next Leap Second (>0) or since last Leap Second (<0)	Bit: 31:0	RO

TodSlave Reference Manual 2.0 Page 36 of 86

5.2.1.9 TOD Slave GNSS Status Register

This Register is only available in UBX/TSIP mode and only filled if UBX/TSIP is selected as Protocol and the UBX MON HW and/or UBX NAV STATUS or TSIP POSITION INFO, TSIP RECEIVER STATUS and/or TSIP SYSTEM ALARMS messages are not disabled.

TodSla	TodSlaveGnssStatus Reg								
Reg Des	Reg Description								
31 30	29	28	27	26 25	24 23 22 21 20 19 18 17	16	15	14 13	12 11 10 9 8 7 6 5 4 3 2 1 0
,	ANT_JAM_VAL	FIX_SPOOF_VAL		SPOOF_STATE	X L	FIX_OK		ı	JAM_INDICATION JAM_STATE ANT_STATUS
RO	RO	RO	RO	RO	RO	RO		RO	RO RO RO
	Reset: 0x0000000								
					Of	fset:	0x004	-0	

Name	Description	Bits	Access
-	Reserved, read 0	Bit:31:30	RO
ANT_JAM_VAL	Antenna and Jamming info valid	Bit:29	RO
FIX_SPOOF_VAL	Fix and Spoofing info valid	Bit:28	RO
-	Reserved, read 0	Bit:27	RO
SPOOF_STATE	Spoofing detection state 0: Unknown or deactivated 1: No spoofing indicated 2: Spoofing indicated	Bit:26:25	RO

TodSlave Reference Manual 2.0 Page 37 of 86

FIX	GNSS fix. This value does not qualify a fix as valid and within the limits. O=No fix 1= Dead reckoning only 2=2-D fix 3=3-D fix 4=GPS+dead reckoning combined Else=Reserved	Bit:24:17	RO
FIX_OK	GNSS fix OK.	Bit:16	RO
-	Reserved, read 0	Bit:15:13	RO
JAM_INDICATION	CW jamming indicator, scaled (0=no CW jamming, 255 strong CW jamming)	Bit:12:5	RO
JAM_STATE	Output from jamming/interference monitor 0=Unkonwn or featured disabled 1=OK, no significant jamming 2=Warning, interference visible, but fix OK 3=Critical, interference visible and no fix	Bit:4:3	RO
ANT_STATUS	O=INIT 1=DONTKNOW 2=OK 3=SHORT 4=OPEN	Bit:2:0	RO

TodSlave Reference Manual 2.0

5.2.1.10 TOD Slave Number of Satellites Register

This Register is only available in UBX/TSIP mode and only filled if UBX/TSIP is selected as Protocol and the UBX NAV SAT or TSIP SATELLITE INFO message is not disabled.

TodSlaveSatelliteNumber Reg							
Reg Description							
31 30 29 28 27 26 25 24 23 22 21 20 19 18	16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0					
ı	NR_SAT_VAL NR_SAT_LOCKED NR_SAT_SEEN						
RO RO RO							
Reset: 0x0000000							
	Offset: 0x0044						

Name	Description	Bits	Access
-	Reserved, read 0	Bit:31:17	RO
NR_SAT_VAL	Number of satellites info valid	Bit:16	RO
NR_SAT_LOCKED	Number of locked satellites	Bit:15:8	RO
NR_SAT_SEEN	Number of seen satellites	Bit:7:0	RO

TodSlave Reference Manual 2.0 Page 39 of 86

6 Design Description

The following chapters describe the internals of the TOD Slave Clock: starting with the Top Level, which is a collection of subcores, followed by the description of all subcores.

6.1 Top Level - Tod Slave

6.1.1 Parameters

The core must be parametrized at synthesis time. There are a couple of parameters which define the final behavior and resource usage of the core.

Name	Туре	Size	Description
GpsSupport_Gen	boolean	1	Support for GPS (GPxxx)
		,	NMEA messages
GlonassSupport_Gen	boolean	1	Support for GLONASS
			(GLxxx) NMEA messages
GalileoSupport_Gen	boolean	1	Support for GALILEO (GAxxx)
Cameosapport_cerr	Doorcari	'	NMEA messages
BeidouSupport_Gen	boolean	1	Support for BEIDOU (GBxxx)
DelaouSupport_Gen	Doolean	'	NMEA messages
CombinedGnss	boolean	1	Support for Combined
Support_Gen	Doolean	'	(GNxxx) NMEA messages
AllGnssSupport_Gen	boolean	1	Support for any GNSS identi-
Allonssoupport_oen	boolean	'	fier
			Support for GxZDA Messag-
GxZdaMessage	boolean	1	es:
Support_Gen			true = supported, false = not
			supported
GxRmcMessage			Support for GxRMC Message:
Support_Gen	boolean	1	true = supported, false = not
Support_Gen			supported
GylltcMossago			Support for GxUTC Messages:
GxUtcMessage Support_Gen	boolean	1	true = supported, false = not
Support_Gen			supported
NmeaValidTimeout	natural	1	Timeout for NMEA UTC mes-
Millisecond_Gen	Hatural		sage

NmeaSupport_Gen	boolean	1	Support for NMEA Protocol
UbxNavTimeLs MessageSupport_Gen	boolean	1	Support for UBX_NAV_TIME_LS Messages: true = supported, false = not supported
UbxNavTimeUtc MessageSupport_Gen	boolean	1	Support for UBX_NAV_TIME_UTC Mes- sage: true = supported, false = not supported
UbxNavStatus MessageSupport_Gen	boolean	1	Support for UBX_NAV_STATUS Message: true = supported, false = not supported
UbxMonHw MessageSupport_Gen	boolean	1	Support for UBX_HW_MON Message: true = supported, false = not supported
UbxNavSat MessageSupport_Gen	boolean	1	Support for UBX_NAV_SAT Message: true = supported, false = not supported
UbxValidTimeout Millisecond_Gen	natural	1	Timeout for UBX status messages
UbxSupport_Gen	boolean	1	Support for UBX Protocol
TsipTimingInfo MessageSupport_Gen	boolean	1	Support for TSIP_TIMING_INFO Messages: true = supported, false = not supported
TsipPosInfo MessageSupport_Gen	boolean	1	Support for TSIP_POSITION_INFO Mes- sage: true = supported, false = not supported
TsipRecvStatusMes- sageSupport_Gen	boolean	1	Support for TSIP_RECEIVER_STATUS Message:

			true = supported, false = not
			supported
			Support for
TsipSysAlarms			TSIP_SYS_ALARMS Message:
MessageSupport_Gen	boolean	1	true = supported, false = not
			supported
			Support for
			TSIP_SATELLITE_INFO Mes-
TsipSatInfo	boolean	1	sage:
MessageSupport_Gen		·	true = supported, false = not
			supported
TsipValidTimeout			Timeout for TSIP status mes-
Millisecond_Gen	natural	1	sages
TsipSupport_Gen	boolean	1	Support for TSIP Protocol
rsipsupport_Gen	boolean	I	
Chalia Caudin Can	L L	1	If Static Configuration or AXI
StaticConfig_Gen	boolean	1	is used:
			true = Static, false = AXI
			NMEA, UBX, TSIP correction
	_Gen natural		in seconds for when the
			message arrive to the next
			second overflow.
NmeaCorrection_Gen		1	There are some GPS receiver
			which send the NMEA of the
			next second and some of the
			current. Default is the next,
			then no correction is needed
ClockClkPeriod	natural	1	Clock Period in Nanosecond:
Nanosecond_Gen	Tiaturai	'	Default for 50 MHz = 20 ns
			Default Baudrate encoded:
			O => 1200
			1 => 2400
			2 => 4800
		1	3 => 9600
UartBaudRate_Gen	natural	1	4 => 19200
			5 => 38400
			6 => 57600
			7 => 115200
			8 => 230400

			9 => 460800 10 => 921600 11 => 1000000 12 => 2000000
UartPolarity_Gen	boolean	1	true = normal UART (idle '1') false = inversed
AxiAddressRang Low_Gen	std_logic_vector	32	AXI Base Address
AxiAddressRange High_Gen	std_logic_vector	32	AXI Base Address plus Registerset Size Default plus 0xFFFF
Sim_Gen	boolean	1	If in Testbench simulation mode: true = Simulation, false = Synthesis

Table 5: Parameters

One of the two parameters GxZdaMessageSupport_Gen and GxZdaMessageSupport_Gen has to be true.

6.1.2 Structured Types

6.1.2.1 Clk_Time_Type

Defined in Clk_Package.vhd of library ClkLib

Type represents the time used everywhere. For this type overloaded operators + and - with different parameters exist.

Field Name	Туре	Size	Description
Second	std_logic_vector	32	Seconds of time
Nanosecond	std_logic_vector	32	Nanoseconds of time
Fraction	std_logic_vector	2	Fraction numerator (mostly
1 raction	Std_logic_vector		not used)
Sign	std_logic	1	Positive or negative time, 1 =
31911	364_10916	'	negative, 0 = positive.
TimeJump	std_logic	1	Marks when the clock makes a
Timesamp	sta_logic		time jump (mostly not used)

Table 6: Clk_Time_Type

6.1.2.2 Clk_UtcInfo_Type

Defined in Clk_Package.vhd of library ClkLib

Type represents the UTC info commonly provided by all cores having UTC information.

Field Name	Туре	Size	Description
UtcOffset	std_logic_vector	16	UTC Offset
UtcOffsetValid	std_logic	1	If UTC Offset is valid
Leap59	std_logic	1	Leap Second 59
Leap61	std_logic	1	Leap Second 61

Table 7: Clk_UtcInfo_Type

6.1.2.3 Clk_TimeAdjustment_Type

Defined in Clk_Package.vhd of library ClkLib

Type represents the time used everywhere. For this type overloaded operators + and - with different parameters exist.

Field Name	Туре	Size	Description
TimeAdjustment	Clk_Time_Type	1	Time to adjust
			Adjustment interval, for the
			drift correction this is the
			denumerator of the rate in
	std_logic_vector	32	nanoseconds (TimeAdjust-
			ment every Interval = drift
Interval			rate), for offset correction this
			is the period in which the time
			shall be correct-
			ed(TimeAdjustment in Inter-
			val), for setting the time this
			has no mining.
Valid	std logic	1	Whether the Adjustment is
Valid	std_logic		valid or not

Table 8: Clk_TimeAdjustment_Type

${\bf 6.1.2.4\,Tod_SlaveStaticConfig_Type}$

Defined in Tod_SlaveAddrPackage.vhd of library TodLib This is the type used for static configuration.

Field Name	Туре	Size	Description		
Protocol	std_logic_vector	2	O=NMEA 1=UBX 2=TSIP		
Gnss	std_logic_vector 4		Which GNSS mechanism shall be used (mainly used for NMEA) 0=ALL 1=COMBINED 2=GPS 3=GLONASS 4=GALILEO 5=BEIDOU		
DisableMessages	std_logic_vector	8	Bit O: Disable NMEA RMC (if Protocol = NMEA), Disable UBX NAV TIME LS (if Protocol = UBX), Disable TSIP SYSTEM ALARMS (if Protocol = TSIP) Bit 1: Disable NMEA ZDA (if Protocol = NMEA), Disable UBX NAV TIME UTC (if Protocol = UBX), Disable TSIP TIMING INFO (if Protocol = TSIP) Bit 2: Disable NMEA UTC (if Protocol = NMEA), Disable UBX NAV STATUS (if Protocol = UBX), Disable TSIP RECEIV- ER STATUS (if Protocol = TSIP) Bit 3: Disable UBX HW MON (if Protocol = UBX), Disable TSIP POSITION INFO (if Protocol =		

			TSIP) Bit 4: Disable UBX NAV SAT (if Protocol = UBX), Disable TSIP	
			SATELLITE INFO (if Protocol = TSIP)Bits 5-7: Reserved	
Polarity	std_logic 1		'1' = normal UART, '0' = in- versed signal level UART	
Correction	Clk_Time_Type 1		Time to correct the parsed time to correct UTC to TAI or another base.	
UartBaudRate	std_logic_vector	4	Baudrate encoded: 0 => 1200 1 => 2400 2 => 4800 3 => 9600 4 => 19200 5 => 38400 6 => 57600 7 => 115200 8 => 230400 9 => 460800 10 => 921600 11 => 1000000 12 => 2000000	

Table 9: Tod_SlaveStaticConfig_Type

6.1.2.5 Tod_SlaveStaticConfigVal_Type

Defined in Tod_SlaveAddrPackage.vhd of library TodLib This is the type used for valid flags of the static configuration.

Field Name	Туре	Size	Description
Enable_Val	std_logic	1	Enables the TOD Slave

Table 10: Tod_SlaveStaticConfigVal_Type

6.1.2.6 Tod_GnssInfo_Type

Defined in Tod_SlaveAddrPackage.vhd of library TodLib
This is the type used for GNSS supervision, it is only filled when UBX or TSIP is used.

Field Name	Туре	Size	Description		
Fix	std_logic_vector 8		GNSS fix. This value does not qualify a fix as valid and within the limits. O=No fix 1= Dead reckoning only 2=2-D fix 3=3-D fix 4=GPS+dead reckoning combined Else=Reserved		
FixOk	std_logic	1	GNSS fix ok		
SpoofingDetection State	std_logic_vector	2	Spoofing detection state O: Unknown or deactivated 1: No spoofing indicated 2: Spoofing indicated		
FixAndSpoofing InfoValid	std_logic	1	Fix and Spoofing info valid		
JammingDetection- State	std_logic_vector	2	Output from jamming/interference monitor O=Unkonwn or featured disabled 1=OK, no significant jamming 2=Warning, interference visible, but fix OK 3=Critical, interference visible and no fix		
JammingIndication	std_logic_vector	8	CW jamming indicator, scaled (0=no CW jamming, 255 strong CW jamming)		
AntennaStatus	std_logic_vector	3	0=INIT 1=DONTKNOW		

			2=OK
			3=SHORT
			4=OPEN
			NEO-M9 does not measure
			this and signals OK
AntennaAnd JammingInfoValid	std_logic	1	Antenna and Jamming info valid
NumberOfSatellites Seen	std_logic_vector	8	Numbers of Satellites seen
NumberOfSatellites Locked	std_logic_vector	8	Numbers of Satellites locked to
NumberOfSatellites InfoValid	std_logic	1	Numbers of Satellites info valid

Table 11: Tod_GnssInfo_Type

6.1.2.7 Tod_SlaveStaticStatus_Type

Defined in Tod_SlaveAddrPackage.vhd of library TodLib This is the type used for static status supervision.

Field Name	Туре	Size	Description			
CoreInfo	Clk_CoreInfo_ Type	1	Infor about the Cores state			
UtcInfo	Clk_UtcInfo_ Type	1	Info about UTC offset and leap seconds (only available with UBX, TSIP or NMEA UTC)			
GnssInfo	Tod_GnssInfo_ Type	1	Info about GNSS fix, jamming and spoofing, nr of Satellites (only available with UBX or TSIP)			

Table 12: Tod_SlaveStaticStatus_Type

6.1.2.8 Tod_SlaveStaticStatusVal_Type

Defined in Tod_SlaveAddrPackage.vhd of library TodLib This is the type used for valid flags of the static status supervision.

Field Name Type Size	Description
----------------------	-------------

CoreInfo_Val	std_logic	1	Core Info valid
UtcInfo_Val	std_logic	1	UTC Info valid
GnssInfo_Val	std_logic	1	GNSS Info valid

Table 13: Tod_SlaveStaticStatusVal_Type

6.1.2.9 Entity Block Diagram

Figure 9: TOD Slave Clock

6.1.2.10 Entity Description

Rx Processor

This module handles all incoming NMEA or UBX or TSIP message. It extracts the time from the NMEA GxZDA or NMEA GxRMC or UBX NAV_TIME_UTC or TSIP TIMING_INFO messages, converts the time from the Time of Day format (with UTC Offset in case of NMEA UTC, UBX or TSIP) to seconds since 1.1.1970 and does the offset and time adjustment of the clock aligned with the local clocks second overflow.

See 6.2.1 for more details.

UART Interface Adapter

This module converts the serial UART signal to an AXI stream. It handles the RS232 protocol data stream with one start, eight data, one stop and no parity. AXI stream from this module is 8 bit width. It can handle baud rates from 1.2k up to 1m. See 6.2.2 for more details.

Registerset

This module is an AXI4Lite Memory Mapped Slave. It provides access to all registers and allows configuring the TOD Slave Clock. It can be configured to either run in AXI or StaticConfig mode. If in StaticConfig mode, the configuration of the registers is done via signals and can be easily done from within the FPGA without

CPU. If in AXI mode, an AXI Master has to configure the Datasets with AXI writes to the registers, which is typically done by a CPU See 6.2.3 for more details.

6.1.2.11Entity Declaration

Name	Dir	Туре	Size	Description
		Generics		
General			I	
				Support for GPS
GpsSupport_Gen	-	boolean	1	(GPxxx) NMEA
				messages
				Support for
GlonassSupport_Gen	-	boolean	1	GLONASS (GLxxx)
				NMEA messages
				Support for GALI-
GalileoSupport_Gen	-	boolean	1	LEO (GAxxx) NMEA
				messages
				Support for BEIDOU
BeidouSupport_Gen	-	boolean	1	(GBxxx) NMEA
				messages
0 1: 10				Support for Com-
CombinedGnss	-	boolean	1	bined (GNxxx)
Support_Gen				NMEA messages
		boolean	1	Support for any
AllGnssSupport_Gen	-			GNSS identifier
GxZdaMessage				Support for GxZDA
Support_Gen	-	boolean	1	Messages
GxRmcMessage			1	Support for GxRMC
Support_Gen	-	boolean		Message
				Support for NMEA
NmeaSupport_Gen	-	boolean	1	Protocol
				Support for
				UBX NAV TIME LS
UbxNavTimeLs				Messages:
MessageSupport_Gen	-	boolean	1	true = supported,
				false = not support-
				ed
				Support for
UbxNavTimeUtc				UBX_NAV_TIME_U
MessageSupport_Gen	-	boolean	1	TC Message:
Hessagesupport_deri	port_Gen			true = supported,
				ti de - supported,

				false = not support-
				ed
UbxNavStatus MessageSupport_Gen	-	boolean	1	Support for UBX_NAV_STATUS Message: true = supported, false = not support- ed
UbxMonHw MessageSupport_Gen	-	boolean	1	Support for UBX_HW_MON Message: true = supported, false = not support- ed
UbxNavSat MessageSupport_Gen	-	boolean	1	Support for UBX_NAV_SAT Message: true = supported, false = not support- ed
UbxValidTimeout Millisecond_Gen	-	natural	1	Timeout for UBX status messages
UbxSupport_Gen	-	boolean	1	Support for UBX Protocol
TsipTimingInfo MessageSupport_Gen	-	boolean	1	Support for TSIP_TIMING_INFO Messages: true = supported, false = not support- ed
TsipPosInfo MessageSupport_Gen	-	boolean	1	Support for TSIP_POSITION_INF O Message: true = supported, false = not support- ed
TsipRecvStatusMes- sageSupport_Gen	-	boolean	1	Support for TSIP_RECEIVER_ST

				ATUS Message:
				true = supported,
				false = not support-
				ed
				Support for
				TSIP_SYS_ALARMS
TsipSysAlarms				Message:
MessageSupport_Gen	-	boolean	1	true = supported,
1 103349CG4PPG11_GG11				false = not support-
				ed
				Support for
				TSIP_SATELLITE_IN
TsipSatInfo				FO Message:
MessageSupport_Gen	-	boolean	1	true = supported,
Messagesupport_deri				false = not support-
				ed
Tsin\/alidTimoout				Timeout for TSIP
TsipValidTimeout	-	natural	1	
Millisecond_Gen				status messages
TsipSupport_Gen	-	boolean	1	Support for TSIP
				Protocol
StaticConfig_Gen	-	boolean	1	If Static Configura-
				tion or AXI is used
				NMEA correction in
N				seconds for when
NmeaCorrection_Gen	-	natural	1	the message arrive
				to the next second
				overflow.
ClockClkPeriod	_	natural	1	Clock Period in
Nanosecond_Gen				Nanosecond
				Default Baudrate
				encoded:
				0 => 1200
				1=> 2400
UartBaudRate_Gen	-	natural	1	2 => 4800
				3 => 9600
				4 => 19200
				5 => 38400
				6 => 57600
		i	1	i

				7 => 115200
				8 => 230400
				9 => 460800
				10 => 921600
				11 => 1000000
				12 => 200000
			1	true = normal UART
UartPolarity_Gen	-	boolean	1	(idle '1')
				false = inversed
AxiAddressRang	_	std_logic_vector	32	AXI Base Address
Low_Gen				
AxiAddressRange				AXI Base Address
High_Gen	-	std_logic_vector	32	plus Registerset
Tilgri_Oeri				Size
Sim_Gen		boolean	1	If in Testbench
Siiii_Geii	_	Doolean	ļ	simulation mode
		Ports		
System	ile	atal la gia	1	Cyatama Clask
SysClk_ClkIn	in	std_logic	1	System Clock
SysRstN_RstIn	in	std_logic	1	System Reset
Config		Tod_Slave		Static Configuration
StaticConfig_DatIn	in	StaticConfig_Type	1	
		Tod_Slave		Static Configuration
StaticConfig_ValIn	in	StaticConfigVal	1	valid
Static Corning_valin	""			valid
Status		_Type		
		Tod_Slave		Static Status
StaticStatus_DatOut	out	StaticStatus_Type	1	
		Tod Slave		Static Status valid
StaticStatus_ValOut	out	StaticStatusVal	1	
		I IVDE		l I
Timer		_Type		
Timer		_Type		Millisecond timer
	in	_Type std_logic	1	Millisecond timer adjusted with the
Timer Timer1ms_EvtIn	in		1	
	in		1	adjusted with the Clock
Timer1ms_EvtIn Time Input		std_logic		adjusted with the
Timer1ms_EvtIn	in		1	adjusted with the Clock

ClockTime_ValIn	in	std_logic	1	Adjusted Clock Time valid
AXI4 Lite Slave AxiWriteAddrValid ValIn	in	std_logic	1	Write Address Valid
	out	std_logic	1	Write Address Ready
AxiWriteAddrAddress AdrIn	in	std_logic_vector	32	Write Address
AxiWriteAddrProt _DatIn	in	std_logic_vector	3	Write Address Protocol
AxiWriteDataValid Valln	in	std_logic	1	Write Data Valid
AxiWriteDataReady RdyOut	out	std_logic	1	Write Data Ready
AxiWriteDataData DatIn	in	std_logic_vector	32	Write Data
AxiWriteDataStrobe DatIn	in	std_logic_vector	4	Write Data Strobe
AxiWriteRespValid _ValOut	out	std_logic	1	Write Response Valid
AxiWriteRespReady _RdyIn	in	std_logic	1	Write Response Ready
AxiWriteResp Response_DatOut	out	std_logic_vector	2	Write Response
AxiReadAddrValid _ValIn	in	std_logic	1	Read Address Valid
AxiReadAddrReady _RdyOut	out	std_logic	1	Read Address Ready
AxiReadAddrAddress AdrIn	in	std_logic_vector	32	Read Address
AxiReadAddrProt _DatIn	in	std_logic_vector	3	Read Address Protocol
AxiReadDataValid ValOut	out	std_logic	1	Read Data Valid
AxiReadDataReady _RdyIn	in	std_logic	1	Read Data Ready
AxiReadData Response_DatOut	out	std_logic_vector	2	Read Data
AxiReadDataData _DatOut	out	std_logic_vector	32	Read Data Re- sponse
Time of Day Input				UART from the
Uart_DatIn	in	std_logic	1	NMEA source
Time Adjustment Outpu TimeAdjustment _DatOut	ut out	Clk_TimeAdjustment	1	Time to set hard

		_Type		
TimeAdjustment ValOut	out	std_logic	1	Time valid
Offset Adjustment Out	out			
OffsetAdjustment _DatOut	out	Clk_TimeAdjustment _Type	1	Calculated new Offset between Master and Slave (unused)
OffsetAdjustment _ValOut	out	std_logic;	1	Calculated new Offset valid
Drift Adjustment Outpu	ıt			
DriftAdjustment _DatOut	out	Clk_TimeAdjustment _Type	1	Calculated new Drift between Master and Slave Slave (un- used)
DriftAdjustment _ValOut	out	std_logic;	1	Calculated new Drift valid Slave (unused)
Offset Adjustment Inpu	t			
Offset Adjustment Inpu OffsetAdjustment _DatIn	t in	Clk_TimeAdjustment _Type	1	Calculated new Offset after the PI Servo loop Slave (unused)
OffsetAdjustment _DatIn OffsetAdjustment _ValIn			1	Offset after the PI Servo loop Slave
OffsetAdjustment _DatIn OffsetAdjustment	in	_Type		Offset after the PI Servo loop Slave (unused) Calculated new Offset after the PI Servo loop valid Slave (unused)
OffsetAdjustment _DatIn OffsetAdjustment _ValIn	in	_Type		Offset after the PI Servo loop Slave (unused) Calculated new Offset after the PI Servo loop valid

Table 14: TOD Slave Clock

6.2 Design Parts

The TOD Slave Clock core consists of a couple of subcores. Each of the subcores itself consist again of smaller function block. The following chapters describe these subcores and their functionality.

6.2.1 RX Processor

6.2.1.1 Entity Block Diagram

Figure 10: RX Processor

6.2.1.2 Entity Description

NMEA Parser

This module parses all incoming NMEA frames. It extracts the time in case of NMEA from GxZDA or GxRMC frames in case of UBX from NAV_TIME_UTC and in case of TSIP from TIMING_INFO, checks if the data is valid if GxRMC or UBX or TSIP is used and checks the CRC. The time is converted from ASCII decimal values to binary values for NMEA. No local time offset is used if GxZDA is used. After extraction the UTC time is in the format hh:mm:ss dd:mm:yyyy which will be passed to the time converter for conversion. In case of UBX NAV_TIME_LS or TSIP support also the current UTC offset is passed to the time convertion to get from UTC to TAI.

Time Converter

This module converts the time from the Time of Day format: hh:mm:ss dd:mm:yyyy into seconds since midnight 1.1.1970. It loops over the years, months and days taking the leap years into account and finally adds the seconds of the hours, minutes and seconds. If UBX or TSIP is used also the UTC corrections are taken into account. After this conversion a final correction is done if the received second is for the past second or next second. Then this timestamp is passed to the time calculation module.

Time Calculation

This module calculates the reference second by adding or subtracting additional seconds from the Correction register to the received timestamp. It then checks that at least two messages were received before starting to correct the clock value. It waits until the local clock reaches the second boundary and sets the new time if the second part of the local time was different than expected. If the second part of the time is as expected, no correction is done.

6.2.1.3 Entity Declaration

Name	Dir	Туре	Size	Description
	•	Generics		
General ClockClkPeriod			_	Clock Period in
Nanosecond_Gen	-	natural	1	Nanosecond
Sim_Gen	-	boolean	1	If in Testbench simulation mode
RX Processor				
GpsSupport_Gen	-	boolean	1	Support for GPS (GPxxx) NMEA messages
GlonassSupport_Gen	-	boolean	1	Support for GLONASS (GLxxx) NMEA messages
GalileoSupport_Gen	-	boolean	1	Support for GALI- LEO (GAxxx) NMEA messages
BeidouSupport_Gen	-	boolean	1	Support for BEIDOU (GBxxx) NMEA messages
CombinedGnss Support_Gen	-	boolean	1	Support for Combined (GNxxx) NMEA messages
AllGnssSupport_Gen	-	boolean	1	Support for any GNSS identifier
GxZdaMessage Support_Gen	-	boolean	1	Support for GxZDA Messages
GxRmcMessage	-	boolean	1	Support for GxRMC

Support_Gen				Message
NmeaSupport_Gen	-	boolean	1	Support for NMEA Protocol
UbxNavTimeLs MessageSupport_Gen	-	boolean	1	Support for UBX_NAV_TIME_LS Messages: true = supported, false = not support- ed
UbxNavTimeUtc MessageSupport_Gen	-	boolean	1	Support for UBX_NAV_TIME_U TC Message: true = supported, false = not support- ed
UbxNavStatus MessageSupport_Gen	-	boolean	1	Support for UBX_NAV_STATUS Message: true = supported, false = not support- ed
UbxMonHw MessageSupport_Gen	-	boolean	1	Support for UBX_HW_MON Message: true = supported, false = not support- ed
UbxNavSat MessageSupport_Gen	-	boolean	1	Support for UBX_NAV_SAT Message: true = supported, false = not support- ed
UbxValidTimeout Millisecond_Gen	-	natural	1	Timeout for UBX status messages
UbxSupport_Gen	-	boolean	1	Support for UBX Protocol
TsipTimingInfo	ı	boolean	1	Support for

MessageSupport_Gen				TSIP_TIMING_INFO Messages: true = supported, false = not support- ed Support for
TsipPosInfo MessageSupport_Gen	-	boolean	1	TSIP_POSITION_INF O Message: true = supported, false = not support- ed
TsipRecvStatusMes- sageSupport_Gen	-	boolean	1	Support for TSIP_RECEIVER_ST ATUS Message: true = supported, false = not support- ed
TsipSysAlarms MessageSupport_Gen	-	boolean	1	Support for TSIP_SYS_ALARMS Message: true = supported, false = not support- ed
TsipSatInfo MessageSupport_Gen	-	boolean	1	Support for TSIP_SATELLITE_IN FO Message: true = supported, false = not support- ed
TsipValidTimeout Millisecond_Gen	-	natural	1	Timeout for TSIP status messages
TsipSupport_Gen	-	boolean	1	Support for TSIP Protocol
NmeaCorrection_Gen	-	natural	1	NMEA correction in seconds for when the message arrive to the next second overflow.

		Ports		
System SysClk_ClkIn SysRstN_RstIn	in in	std_logic std_logic	1	System Clock System Reset
Timer Timer1ms_EvtIn	in	std_logic	1	Millisecond timer adjusted with the Clock
Time of Day Error Outp	out out	std_logic_vector	2	Marks a parser error
Parser Config Input TodParser Config_DatIn	in	Tod_Parser Config_Type	1	Parser Configura- tion
UTC Info Output TodUtcInfo DatOut	out	Tod_UtcInfo_Type	1	UTC Information
TodUtcInfo_ValOut	out	std_logic	1	UTC Information valid, set at every update
GNSS Info Output TodGnssInfo DatOut	out	Tod_GnssInfo_Type	1	GNSS Information
TodGnssInfo_ValOut	out	std_logic	1	GNSS Information valid, set at every update
Enable Input Enable_EnaIn	in	std_logic	1	Enables the correction
Time Input ClockTime_DatIn	in	Clk_Time_Type	1	Adjusted Clock Time
ClockTime_ValIn	in	std_logic	1	Adjusted Clock Time valid
Axi Input	in	std logic	1	AVI Ctroom frame
AxisValid_ValIn	in out	std_logic std_logic	1	AXI Stream frame input
AxisReady_ValOut	in	std_logic_vector	8	
AxisData_DatIn AxisStrobe_ValIn	in	std_logic_vector	1	-
AxisKeep_Valln	in	std_logic_vector	1	
AxisLast_Valln	in	std_logic	1	
AxisUser_DatIn Time of Day Correction	in	std_logic_vector	2	
Time of Day Correction	приц			

TodCorrection_DatIn	in	Clk_Time_Type	1	Additional correction to convert from UTC to a different time format with an offset
Time Adjustment Outpu	ut			
TimeAdjustment		Clk_TimeAdjustment	1	Time to set hard
_DatOut	out	_Type		
TimeAdjustment _ValOut	out	std_logic	1	Time valid

Table 15: RX Processor

6.2.2 UART Interface Adapter

6.2.2.1 Entity Block Diagram

Figure 11: UART Interface Adapter

6.2.2.2Entity Description

RX Interface Adapter

This module converts the serial UART signal to an AXI stream. It handles the RS232 protocol data stream with one start, eight data (LSB first), one stop and no parity. Data is oversampled and center aligned sampling is done. Metastability flipflops handle the asynchronous input. AXI stream from this module is 8 bit width. It can handle baud rates from 1.2k up to 2m baud. It also has an error detection internally to decide if a byte was valid or not. The receiver has no buffer and only pushes the byte to the next module. The next module has a half bit time on UART to acknowledge the receipt otherwise the byte is dropped. Since the next module can handle byte streams up to 400mbit no bytes will be dropped under normal conditions.

6.2.2.3Entity Declaration

Name	Dir	Туре	Size	Description
		Generics		
General				
ClockClkPeriod		 natural	1	Clock Period in
Nanosecond_Gen	-	Haturai		Nanosecond
Interface Adapter				
UartBaudRate_Gen	ı	natural	1	Default Baudrate encoded: 0 => 1200 1 => 2400 2 => 4800 3 => 9600 4 => 19200

	l			5 => 38400
				6 => 57600
				7 => 115200
				8 => 230400
				9 => 460800
				10 => 921600
				11 => 1000000
				12 => 2000000
				true = normal UART
UartPolarity_Gen	-	boolean	1	(idle '1')
				false = inversed
		Ports		
System			1	Contour Cl
SysClk_ClkIn	in	std_logic	1	System Clock
SysRstN_RstIn	in	std_logic	1	System Reset
Enable Input	in	std_logic	1	Enables the Uart
Enable_EnaIn UART Error Output	1111	364_10916	'	Enables the out
OART Effor Output				UART error detect-
Uart_ErrOut	err	std_logic	1	ed (wrong baud
				rate)
UART Input				
Uart_DatIn	:	std_logic	1	UART from the
Cart_Datiii	in	364_10916	'	NMEA source
UART Baud Rate Input				
				Baudrate encoded:
				0 => 1200
				1 => 2400
				2 => 4800
				3 => 9600
				4 => 19200
				5 => 38400
UartBaudRate_DatIn	in	std_logic_vector	4	6 => 57600
				7 => 115200
				8 => 230400
				9 => 460800
				10 => 921600
				11 => 1000000
				12 => 2000000
	_			

UartPolarity_DatIN	in	std_logic	1	UART polarity true = normal UART (idle '1') false = inversed
Axi Output				
AxisValid_ValOut	out	std_logic	1	AXI Stream frame
AxisReady_ValIn	in	std_logic	1	output
AxisData_DatOut	out	std_logic_vector	8	
AxisStrobe_ValOut	out	std_logic_vector	1	
AxisKeep_ValOut	out	std_logic_vector	1	
AxisLast_ValOut	out	std_logic	1	
AxisUser_DatOut	out	std_logic_vector	2	

Table 16: UART Interface Adapter

6.2.3 Registerset

6.2.3.1 Entity Block Diagram

Figure 12: Registerset

6.2.3.2Entity Description

Register Set

This module is an AXI4Lite Memory Mapped Slave. It provides access to all registers and allows configuring the TOD Slave Clock. AXI4Lite only supports 32 bit wide data access, no byte enables, no burst, no simultaneous read and writes and no unaligned access. It can be configured to either run in AXI or StaticConfig mode. If in StaticConfig mode, the configuration of the registers is done via signals and can be easily done from within the FPGA without CPU. For each configuration parameter a valid signal is available, the enable signal shall be set last (or simultaneously). To change configuration parameters the clock has to be disabled and enabled again, the correction value can be changed at runtime. If in AXI mode, an AXI Master has to configure the registers with AXI writes to the registers, which is typically done by a CPU. Parameters can in this case also be changed at runtime. There is also a Static Status which is put out as a Vector which contains information which otherwise can also be read via AXI from Registers.

6.2.3.3Entity Declaration

Name	Dir	Туре	Size	Description
		Generics		
Register Set				
				Default Baudrate
				encoded:
UartBaudRate_Gen	-	natural	1	0 => 1200
				1 => 2400
				2 => 4800

	1		1	
				3 => 9600
				4 => 19200
				5 => 38400
				6 => 57600
				7 => 115200
				8 => 230400
				9 => 460800
				10 => 921600
				11 => 100000
				12 => 200000
				true = normal UART
UartPolarity_Gen	-	boolean	1	(idle '1')
				false = inversed
				Support for GPS
GpsSupport_Gen	_	 boolean	1	(GPxxx) NMEA
opssupport_ocn		Doorcan	'	messages
				Support for
ClanassCunnart Can		boolean	1	
GlonassSupport_Gen	_	DOOIEAN	'	GLONASS (GLXXX)
				NMEA messages
			1	Support for GALI-
GalileoSupport_Gen	-	boolean	1	LEO (GAxxx) NMEA
				messages
				Support for BEIDOU
BeidouSupport_Gen	-	boolean	1	(GBxxx) NMEA
				messages
CombinedGnss				Support for Com-
Support_Gen	-	boolean	1	bined (GNxxx)
				NMEA messages
AllGnssSupport_Gen	_	boolean	1	Support for any
Allonssoupport_oeri		Doolean	'	GNSS identifier
GxZdaMessage		boolean	1	Support for GxZDA
Support_Gen	_	DOOLEGIT	'	Messages
GxRmcMessage		la a a la a r	1	Support for GxRMC
Support_Gen	_	boolean	1	Message
No. 2 Company		1 1	1	Support for NMEA
NmeaSupport_Gen	-	boolean	1	Protocol
UbxNavTimeLs			_	Support for
MessageSupport_Gen	-	boolean	1	UBX_NAV_TIME_LS
			1	

				Messages:
				true = supported,
				false = not support-
				ed
			1	Support for
	-	boolean		UBX_NAV_TIME_U
UbxNavTimeUtc				TC Message:
MessageSupport_Gen				true = supported,
				false = not support-
				ed
				Support for
			1	UBX_NAV_STATUS
UbxNavStatus	_	boolean		Message:
MessageSupport_Gen		boolean		true = supported,
				false = not support-
				ed
				Support for
UbxMonHw MessageSupport_Gen	-	boolean	1	UBX_HW_MON
				Message:
				true = supported,
				false = not support-
				ed
				Support for
	-	boolean	1	UBX_NAV_SAT
UbxNavSat				Message:
MessageSupport_Gen				true = supported,
110000g000pport_0011				false = not support-
				ed
				Support for UBX
UbxSupport_Gen	-	boolean	1	Protocol
				Support for
TsipTimingInfo MessageSupport_Gen	-	boolean	1	
				TSIP_TIMING_INFO
				Messages:
				true = supported,
				false = not support-
T : D : (ed
TsipPosInfo	-	boolean	1	Support for
MessageSupport_Gen				TSIP_POSITION_INF

				O Message:
				true = supported,
				false = not support-
				ed
				Support for
		boolean	1	TSIP_RECEIVER_ST
TsipRecvStatusMes-	-			ATUS Message:
sageSupport_Gen				true = supported,
				false = not support-
				ed
				Support for
			1	TSIP_SYS_ALARMS
TsipSysAlarms	_	boolean		Message:
MessageSupport_Gen		Doolean	'	true = supported,
				false = not support-
				ed
				Support for
	-			TSIP_SATELLITE
TsipSatInfo		boolean	1	INFO Message:
MessageSupport_Gen				true = supported,
				false = not support-
				ed
TsipValidTimeout	_	natural	1	Timeout for TSIP
Millisecond_Gen		Tracarar	'	status messages
TsipSupport_Gen	_	boolean	1	Support for TSIP
13.p3dpp311_3311				Protocol
StaticConfig_Gen	-	boolean	1	If Static Configura-
			·	tion or AXI is used
AxiAddressRange	-	std_logic_vector	32	AXI Base Address
Low_Gen				
AxiAddressRange			7.0	AXI Base Address
High_Gen	-	std_logic_vector	32	plus Registerset
				Size
Ports				
System SysClk_ClkIn	in	std_logic	1	System Clock
SysRstN_RstIn	in	std_logic	1	System Reset
Config				

StaticConfig_DatIn	in	Tod_Slave StaticConfig_Type	1	Static Configuration
StaticConfig_ValIn	in	Tod_Slave StaticConfigVal _Type	1	Static Configuration valid
Status				
StaticStatus_DatOut	out	Tod_Slave StaticStatus_Type	1	Static Status
StaticStatus_ValOut	out	Tod_Slave StaticStatusVal _Type	1	Static Status valid
AXI4 Lite Slave			T	
AxiWriteAddrValid _Valln	in	std_logic	1	Write Address Valid
AxiWriteAddrReady _RdyOut	out	std_logic	1	Write Address Ready
AxiWriteAddrAddress _AdrIn	in	std_logic_vector	32	Write Address
AxiWriteAddrProt _DatIn	in	std_logic_vector	3	Write Address Protocol
AxiWriteDataValid Valln	in	std_logic	1	Write Data Valid
AxiWriteDataReady RdyOut	out	std_logic	1	Write Data Ready
AxiWriteDataData DatIn	in	std_logic_vector	32	Write Data
AxiWriteDataStrobe DatIn	in	std_logic_vector	4	Write Data Strobe
AxiWriteRespValid _ValOut	out	std_logic	1	Write Response Valid
AxiWriteRespReady _RdyIn	in	std_logic	1	Write Response Ready
AxiWriteResp Response_DatOut	out	std_logic_vector	2	Write Response
AxiReadAddrValid ValIn	in	std_logic	1	Read Address Valid
AxiReadAddrReady _RdyOut	out	std_logic	1	Read Address Ready
AxiReadAddrAddress _AdrIn	in	std_logic_vector	32	Read Address
AxiReadAddrProt _DatIn	in	std_logic_vector	3	Read Address Protocol
AxiReadDataValid _ValOut	out	std_logic	1	Read Data Valid
AxiReadDataReady	in	std_logic	1	Read Data Ready

RdvIn	l	I		1
AxiReadData Response DatOut	out	std_logic_vector	2	Read Data
AxiReadDataData _DatOut	out	std_logic_vector	32	Read Data Re- sponse
UART Baud Rate Outpu	ut			
UartBaud Rate_DatOut	out	std_logic_vector	4	Baudrate encoded: 0 => 1200 1 => 2400 2 => 4800 3 => 9600 4 => 19200 5 => 38400 6 => 57600 7 => 115200 8 => 230400 9 => 460800 10 => 921600 11 => 1000000 12 => 2000000
UART Polarity Output	1	T	ī	LIABT
UART Polarity Output UartPolarity_DatOut	out	std_logic	1	UART polarity true = normal UART (idle '1') false = inversed
	out	std_logic	1	true = normal UART (idle '1') false = inversed
UartPolarity_DatOut Correction Output TodCorrection_DatOut	out	std_logic Clk_Time_Type	1	true = normal UART (idle '1')
UartPolarity_DatOut Correction Output TodCorrec-				true = normal UART (idle '1') false = inversed Additional correction to the received UTC time UTC Information
UartPolarity_DatOut Correction Output TodCorrection_DatOut UTC Info Input TodUtcInfo_DatIn TodUtcInfo_ValIn	out	Clk_Time_Type	1	true = normal UART (idle '1') false = inversed Additional correction to the received UTC time
UartPolarity_DatOut Correction Output TodCorrection_DatOut UTC Info Input TodUtcInfo_DatIn TodUtcInfo_ValIn GNSS Info Input	out in in	Clk_Time_Type Tod_UtcInfo_Type std_logic	1	true = normal UART (idle '1') false = inversed Additional correction to the received UTC time UTC Information UTC Information valid, set at every update
UartPolarity_DatOut Correction Output TodCorrection_DatOut UTC Info Input TodUtcInfo_DatIn TodUtcInfo_ValIn GNSS Info Input TodGnssInfo_DatIn TodGnssInfo_DatIn	out	Clk_Time_Type Tod_UtcInfo_Type	1	true = normal UART (idle '1') false = inversed Additional correction to the received UTC time UTC Information UTC Information valid, set at every
Correction Output TodCorrection_DatOut UTC Info Input TodUtcInfo_DatIn TodUtcInfo_ValIn GNSS Info Input TodGnssInfo_DatIn	out in in	Clk_Time_Type Tod_UtcInfo_Type std_logic Tod_GnssInfo_Type	1 1	true = normal UART (idle '1') false = inversed Additional correction to the received UTC time UTC Information UTC Information valid, set at every update GNSS Information GNSS Information valid, set at every

Config_DatIn		Config_Type		tion
Error Input				
Tod_ErrIn	in	std_logic_vector	3	An error happened
Enable Output				
TodSlave Enable_DatOut	out	std_logic	1	Enable TOD Slave Clock

Table 17: Registerset

6.3 Configuration example

In both cases the enabling of the core shall be done last, after or together with the configuration.

6.3.1 Static Configuration

```
constant TodStaticConfigSlave_Con : Tod_SlaveStaticConfig_Type := (
                  => "00", -- NMEA
 Protocol
                    => std logic vector(to unsigned(Tod SlaveGnss AllGnss Con,4)),
 DisableMessages => x"01", -- no ZDA
                    => '1',
 Polarity
 Correction
   Second
                    => x"00000025", -- UTC 37 leap seconds
   Nanosecond
                    => (others => '0'), -- no nanoseconds
                   => (others => '0'), -- no fractions
   Fraction
                    => '0', -- UTC correct in positive
   TimeJump
                    => '0'), -- no
                    => x"7"-115200 (same enum as with generic)
 UartBaudRate
);
constant TodStaticConfigValSlave Con : Tod SlaveStaticConfigVal Type := (
 Enable Val
               => '1'
);
```

Figure 13: Static Configuration

The UartBaudRate, Protocol and Gnss has to be configured before enabling; changes on this value only have an effect on a transition from disabled to enabled. The Correction value can be set at runtime and has immediate effect; only the seconds and sign part of the correction are used.

6.3.2 AXI Configuration

The following code is a simplified pseudocode from the testbench: The base address of the TOD Slave Clock is 0x10000000.

```
-- TOD SLAVE
-- Config
-- correction of plus 37 second to convert UTC to TAI for NMEA
AXI WRITE 10000010 00000025
-- change baud rate to 115200
AXI WRITE 10000020 00000007
-- enable TOD Slave, NMEA, no ZDA and all GNSS
AXI WRITE 10000000 00010001
```

Figure 14: AXI Configuration

In the example the clock gets a correction of 36 seconds to correct UTC to TAI and the baud rate is set to 115200 baud/s

6.4 Clocking and Reset Concept

6.4.1 Clocking

To keep the design as robust and simple as possible, the whole TOD Slave Clock, including the Counter Clock and all other cores from NetTimeLogic are run in one clock domain. This is considered to be the system clock. Per default this clock is 50MHz. Where possible also the interfaces are run synchronous to this clock. For clock domain crossing asynchronous fifos with gray counters or message patterns with meta-stability flip-flops are used. Clock domain crossings for the AXI interface is moved from the AXI slave to the AXI interconnect.

Clock	Frequency	Description
System		
System Clock	50MHz	System clock where the Tod Slave runs
System Clock	(Default)	on as well as the counter clock etc.
UART Interface		
		No clock, asynchronous data signal,
UART RX	101.11- 1041.1-	external receive clock from the UART.
		Must be defined for the core prior to use
		of the interface not all frequencies apply.
AXI Interface		
AXI Clock	50MHz	Internal AXI bus clock, same as the
ANI CIOCK	(Default)	system clock

Table 18: Clocks

6.4.2Reset

In connection with the clocks, there is a reset signal for each clock domain. All resets are active low. All resets can be asynchronously set and shall be synchronously released with the corresponding clock domain. All resets shall be asserted for the first couple (around 8) clock cycles. All resets shall be set simultaneously and released simultaneously to avoid overflow conditions in the core. See the reference designs top file for an example of how the reset shall be handled.

Reset	Polarity	Description		
System				
System Reset	Active low	Asynchronous set, synchronous release		

		with the system clock
AXI Interface		
AXI Reset	Active low	Asynchronous set, synchronous release with the AXI clock, which is the same as the system clock

Table 19: Resets

7 Resource Usage

Since the FPGA Architecture between vendors and FPGA families differ there is a split up into the two major FPGA vendors.

7.1 Intel/Altera (Cyclone V)

Configuration	FFs	LUTs	BRAMs	DSPs
Minimal (Static Config, NMEA and RMC only)	570	1920	0	0
Maximal (AXI, NMEA, UBX, TSIP all GNSS and all Messages)	1600	7570	0	0

Table 20: Resource Usage Intel/Altera

7.2 AMD/Xilinx (Artix 7)

Configuration	FFs	LUTs	BRAMs	DSPs
Minimal (Static Config, NMEA and RMC only)	560	1210	0	0
Maximal (AXI, NMEA, UBX, TSIP all GNSS and all Messages)	1250	3250	0	0

Table 21: Resource Usage AMD/Xilinx

8 Delivery Structure

AXI -- AXI library folder

CLK -- CLK library folder

COMMON -- COMMON library folder

PPS -- PPS library folder

SIM -- SIM library folder

|-Testbench -- SIM library testbench template sources

TOD -- TOD library folder |-Core -- TOD library cores

|-Testbench -- TOD library cores testbench sources and sim/log

9 Testbench

The Tod Slave testbench consist of 3 parse/port types: AXI, CLK and TOD. The TOD transmit port takes the CLK port time as reference and send the timestamp generated by this clock as NMEA messages. The TOD receiver port takes the time of the Clock instance as reference and the NMEA data stream from the TOD transmit port. Once the clock is synchronized the CLK port and Clock generated time should be the same.. In addition for configuration and result checks an AXI read and write port is used in the testbench and for accessing more than one AXI slave also an AXI interconnect is required.

Figure 15: Testbench Framework

For more information on the testbench framework check the Sim_ReferenceManual documentation.

With the Sim parameter set the time base for timeouts are divided by 1000 to 100000 to speed up simulation time.

9.1 Run Testbench

 Run the general script first source XXX/SIM/Tools/source_with_args.tcl

2. Start the testbench with all test cases

src XXX/TOD/Testbench/Core/TodSlave/Script/run Tod Slave Tb.tcl

3.	Check the log file LogFile1.txt in the XXX/TOD/Testbench/Core/TodSlave/Log/folder for simulation results.

10 Reference Designs

The TOD Slave reference design contains a PLL to generate all necessary clocks (cores are run at 50 MHz), an instance of the TOD Slave Clock IP core and an instance of the Adjustable Counter Clock IP core (needs to be purchased separately). Optionally it also contains an instance of a PPS Slave Clock IP core and an instance of a PPS Master Clock IP core (both have to be purchased separately). To instantiate the optional IP cores, change the corresponding generics (PpsMasterAvailable_Gen, PpsSlaveAvailable_Gen) to true via the tool specific wizards. The Reference Design with a PPS and TOD Slave Clock is intended to be connected to a GPS receiver with a baudrate of 9600. If another baud rate shall be used this can be set via the Static Configuration. The absolute second is corrected via the TOD Slave Clock and the Phase and Frequency is corrected via the PPS Slave Clock. The PPS Master Clock is used to create a PPS output which is compensated for the output delay and has a configurable duty cycle, if not available an uncompensated PPS is directly generated out of the MSB of the Time. All generics can be adapted to the specific needs.

Figure 16: Reference Design

10.1 Intel/Altera: Terasic SocKit

The SocKit board is an FPGA board from Terasic Inc. with a Cyclone V SoC FPGA from Intel/Altera. (http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=816)

1. Open Quartus 16.x

- 2. Open Project /TOD/Refdesign/Altera/SocKit/TodSlave/TodSlave.qpf
- 3. If the optional cores PPS Slave and PPS Master Clock are available add the files from the corresponding folders (PPS/Core, PPS/Library, PPS/Package and CLK/Library)
- 4. Change the generics (PpsMasterAvailable_Gen, PpsSlaveAvailable_Gen) in Quartus (in the settings menu, not in VHDL) to true for the optional cores that are available.
- 5. Rerun implementation
- 6. Download to FPGA via JTAG

Figure 17: SocKit (source Terasic Inc)

For the ports on the HSMC connector the GPIO to HSMC adapter from Terasic Inc. was used.

10.2 AMD/Xilinx: Digilent Arty

The Arty board is an FPGA board from Digilent Inc. with an Artix7 FPGA from AMD/Xilinx. (http://store.digilentinc.com/arty-board-artix-7-fpga-development-board-for-makers-and-hobbyists/

Open Vivado 2019.1
 Note: If a different Vivado version is used, see chapter 10.3.

- 2. Run TCL script /TOD/Refdesign/Xilinx/Arty/TodSlave/TodSlave.tcl
 - a. This has to be run only the first time and will create a new Vivado Project
- 3. If the project has been created before open the project and do not rerun the project TCL
- 4. If the optional cores PPS Slave and PPS Master Clock are available add the files from the corresponding folders (PPS/Core, PPS/Library, PPS/Package and CLK/Library) to the corresponding Libraries (PpsLib and ClkLib).
- 5. Change the generics (PpsMasterAvailable_Gen, PpsSlaveAvailable_Gen) in Vivado (in the settings menu, not in VHDL) to true for the optional cores that are available.
- 6. Rerun implementation
- 7. Download to FPGA via JTAG

Figure 18: Arty (source Digilent Inc)

10.2.1 GPS receiver

As stated in earlier chapters the NMEA source often is a GPS receiver.

The GPS receiver used in the reference design is a PMOD GPS receiver from Digilent Inc. (http://store.digilentinc.com/pmodgps-gps-receiver/) which can be directly connected to the upper row of PMOD JA on the Arty. This receiver requires quite direct view to the sky, so an extension cable might be needed.

Figure 19: PMOD GPS (source Digilent Inc)

10.3 AMD/Xilinx: Vivado version

The provided TCL script for creation of the reference-design project is targeting AMD/Xilinx Vivado 2019.1.

If a lower Vivado version is used, it is recommended to upgrade to Vivado 2019.1 or higher.

If a higher Vivado version is used, the following steps are recommended:

- Before executing the project creation TCL script, the script's references of Vivado 2019 should be manually replaced to the current Vivado version. For example, if version Vivado 2022 is used, then:
 - The statement occurrences:

```
set_property flow "Vivado Synthesis 2019" $obj
shall be replaced by:
```

set property flow "Vivado Synthesis 2022 \$obj

The statement occurrences:

set_property flow "Vivado Implementation 2019" \$obj
shall be replaced by:

set property flow "Vivado Implementation 2022" \$obj

- After executing the project creation TCL script, the AMD/Xilinx IP cores, such as the Clocking Wizard core, might be locked and a version upgrade might be required. To do so:
 - 1. At "Reports" menu, select "Report IP Status".
 - 2. At the opened "IP Status" window, select "Upgrade Selected". The tool will upgrade the version of the selected IP cores.

A List of tables

Table 1:	Revision History	4
Table 2:	Definitions	8
Table 3:	Abbreviations	9
Table 4:	Register Set Overview	25
Table 5:	Parameters	43
Table 6:	Clk_Time_Type	43
Table 7:	Clk_UtcInfo_Type	44
Table 8:	Clk_TimeAdjustment_Type	44
Table 9:	Tod_SlaveStaticConfig_Type	46
Table 10:	Tod_SlaveStaticConfigVal_Type	46
Table 11:	Tod_GnssInfo_Type	48
Table 12:	Tod_SlaveStaticStatus_Type	48
Table 13:	Tod_SlaveStaticStatusVal_Type	49
Table 14:	TOD Slave Clock	56
Table 15:	RX Processor	62
Table 16:	UART Interface Adapter	65
Table 17:	Registerset	72
Table 18:	Clocks	75
Table 19:	Resets	76
Table 20:	Resource Usage Intel/Altera	77
Table 21:	Resource Usage AMD/Xilinx	77
B List	of figures	
Figure 1:	Context Block Diagram	10
Figure 2:	Architecture Block Diagram	12
Figure 3:	NMEA to PPS alignment	15
Figure 4:	UBX NAV TIME UTC Frame format	18
Figure 5:	UBX NAV TIME UTC Frame format	19
Figure 6:	UBX to PPS alignment	20
Figure 7:	TSIP TIMING INFO Frame format	23
Figure 8:	TSIP to PPS alignment	24
Figure 9:	TOD Slave Clock	49
Figure 10:	RX Processor	57
Figure 11:	UART Interface Adapter	63
Figure 12:	Registerset	66

Figure 13: Static ConfigurationFigure 14: AXI Configuration	
Figure 14: AXI Configuration	73
9	
Figure 15: Testbench Framework	79
Figure 16: Reference Design	81
Figure 17: SocKit (source Terasic Inc)	82
Figure 18: Arty (source Digilent Inc)	83
Figure 19: PMOD GPS (source Digilent Inc)	84