Fonética General UVG Altiplano

Como hacer grabaciones de alta calidad

Teoría

Procesamiento de Señales

Un sonido es un señal **analógica**.

- O sea que es un fenómeno continuo.
 - Se puede meter una señal analógica con cualquier nivel de precisión quiere.
 - Siempre hay intervalo de tiempo más pequeño en que uno puede meter un sonido.

Pero las computadoras tiene una capacidad de almacenaje finita.

Operan en un dominio digital (discreto).

Procesamiento de Señales

Si queremos grabar audio, entonces, necesitamos hacer una conversión analógica-digital.

Hay dos consideraciones.

- El muestreo (dominio de tiempo)
- Cuantificación (dominio de aplitud)

Procesamiento de Señales

La frecuencia de muestreo indica con que frecuencia el amplitud del señal se mide.

 frecuencia de muestreo más alto = más precisión en el dominio del tiempo.

Teorema Nyquist: para capturar un componente de una onda compleja con frecuencia f_k , necesita muestrear la señal con una frecuencia de $2f_k$ (o más).

Porque?

Hay que meter la cresta y el valle de la onda.

La Frecuencia Nyquist es la frecuencia más alta que se puede representar con una frecuencia de muestreo particular.

- La información que es perteneciente al estudio de hable sola sube a 10kHz.
- Por lo tanto: Es crítico que usa una frecuencia de muestro al menos 20kHz.
 - Se puede usar una frecuencia de muestreo mas alta para grabar todas las frecuencias audibles. (Calidad de CD = 44.1kHz).

La frecuencia de muestreo es importante cuando piensa sobre la almacenamiento de nuestras grabaciones.

- Una frecuencia de muestreo más alta requiere más almacenaje.
 - Porque requiere más medidas cada segunda.
- Una frecuencia de muestreo más bajo (al menos 22kHz) se puede usar cuando la cantidad de memoria en tu dispositivo de almacenaje es poca.

Cuantización

Cuantización es la precisión de la medida de amplitud.

- Basicamente, indica cuantos niveles diferentes nivels de amplitud se puede representar.
- Usualmente hablamos en bits.
 - 16 bits = 2^{16} = 65,536 distintas niveles de aplitud.
- Cuantización de 16 bit está bien para investigaciones del habla.

Cuantización

Cuantización es importante porque explica un fenómeno encontramos a veces cuando grabamos que se llama "clipping" o recorte del señal.

[Praat demonstration]

Cuantización

Clipping ocurre cuando el señal es mas alto que se puede representar con el ajuste de cuantización.

Usualmente solo necesita bajar el volumen del micrófono.

Compresión

Hemos introducido dos factores que afectan la calidad de grabaciones: Cuantización y La Frecuencia de Muestreo.

- También es importante pensar en el formato del audio.
 - Hay formatos que sacar información de algunas frecuencias de la señal para reducir el tamaño de los archivos.
 - Siempre es mejor evitar esos formatos que aplica compresión así.

Compresión

Formatos Lossless (mejor):

- WAV
- FLAC

Formatos Lossy (peor):

- MP3
- MP4
- OGG

Recomendaciones Generales para el Equipo

Determinado por la teoría, podemos recomendar una grabador con:

- una frecuencia de muestreo al menos 20kHz al 48kHz
- Cuantificación de 16 bits
- La opción de grabar en formato .wav
- (También que acepta micrófonos XLR)

Hay varios tipos de micrófonos. Cada tiene su propio uso, pero vamos a enfocar en la fonética:

- Propiedades principales de micrófonos
 - Direccionalidad
 - Condenser vs Dinámico
 - Tamaño o Forma
 - Respuesta en Frecuencia

Direccionalidad:

- Omnidireccional: Graba sonido en todas direcciones
- Unidireccional (Cardioide): Sola graba sonido en una región estrecha.

Usualmente los micrófonos omnidireccionales son mas sensitivos, pero para trabajo del campo presentan dificultades.

Recomendamos un micrófono unidireccional

Condenser vs. Dinámico:

- Condenser: Más preciso, pero necesitan poder externa (por el grabador o batería)
- Dinámico: Menos preciso, pero son menos frágil y no necesitan poder.

Recomendamos un micrófono condenser porque cuando hacemos investigaciones fonéticas, la precisión es muy importante.

Tamaño o Forma:

Hay micrófonos en varios tamaños y formas. Para estudios fonéticos queremos que:

- el micrófono quede cerca de la boca (para reducir el ruido)
- el micrófono siempre quede la misma distancia de la boca (para hacer medidas precisas)

Recomendamos un micrófono de diadema (que se coloca en la cabeza) o micrófono lavalier (que se coloca en la camisa o blusa)

Respuesta en Frecuencia:

La respuesta en frecuencia indica cuales frecuencias el micrófono enfatiza.

 Para la fonética preferimos una respuesta en frecuencia nivel...no queremos enfatizar nada. Queremos una grabación fiel.

frequency response: 40-15,000 Hz

ATM73a

Práctica