RESURTEN CINERATICA

	1. 2 1 1 2		0	. 0	0
•	Moormientos	ય)	d	espacio, definicions	eniciales:

[pefe	uncia (20))	-
1-12 3	- \	A ath	≠
	(1)2		A(+)

El mariniento de una pontrala se describe con las siguientes magnitudes:

· despeazamiento, 2 (t): posición relativa de un cuerpo en una referència

· delocidad, $\vec{x}(t)$ ratio de cambio del desplatamiento con el tiempo: $\frac{\vec{x}(t)}{t}$ · aceleración, a(t): vario de cambio de la selocidad con el tiempo: " o(t)"

desplazamiento + distancia (rapidez)

dist(t) corresponde al espació total recorrido. Con esto, la celeridad será: ((+) = distrt) (ménula con str)
coincidan)

Estas variables de un movimiento se pueden relacionan maternáticamente tal que:

S (+) = coordenadas del cuerpo en el espacio dado un tiempo - coordenadas iniciales (referència)

$$\mathcal{O}(t) = \lim_{\Delta t \to 0} \frac{\Delta S(t)}{\Delta t} = \frac{dS(t)}{dt} \stackrel{\text{inderso}}{\Longrightarrow} S(t) = \int_{0}^{t} \mathcal{D}(t) dt \quad (\text{si estudianner con } \underline{t_{\text{initial}}} = 0 \text{ sepunder})$$

$$a(t) = \lim_{\Delta t \to 0} \frac{\Delta a(t)}{\Delta t} = \frac{d^2 S(t)}{dt} = \frac{d^2 S(t)}{dt^2} \iff S(t) = \int_0^t \left(\int_0^{T_2} a(t)dt\right) dt \ge 0 \quad \delta(t) = \int_0^t a(t)dt$$

· Tipos de movimientos de interes:

- Movimiento rectilineo (1D)

① MRUniforme:
$$o(t) = cte = o \Rightarrow z(t) = \int_0^t d(t)dt = ot + x_0$$
.

② MR Uniformemente acelerado:
$$a(t) = cte = 0$$
 $s(t)$
 $\Rightarrow a(t) = \int a(t)dt = x_0 + at \Rightarrow s(t) = \int a(t)dt = \int (at + x_0)dt = \frac{1}{2}at^2 + x_0t + x_0$.

De Encentrar punto máxima alfura imponenos ⇒ de dt = 0 co at + 27 = 0 co tuarost - 27 (x = 5 (tmax) = punto alfura max.

Lo Encontrar punto final: sylt)=0 = rounalmente = s(tz)

(4) MCircular Uniforme: con a(t) = af(t) + an(t), por esto: $\vec{a} = \vec{a}_n = \frac{v^2}{a_{nn}} \vec{u}_n$ (= $\vec{v}^2 R \vec{u}_n$)

definings también:
$$w = \frac{dy}{dt} = \frac{2\pi}{T} [\text{rad} :] \text{ in a una}$$

$$\Rightarrow \text{ P(t)} = \text{ Po} + \text{ wot}$$

$$= (wy) \times (\frac{Px}{Px})$$

(5) MCUAcelerado: con alti-at + an, defininos aceleración engular: $x = \frac{d \dot{w}_{(t)}}{dt}$

· Consideracions gráficas

distancia distur

integral (por trosos)