Aspectos Formais da Computação

Prof. Sergio D Zorzo

Departamento de Computação – UFSCar

1º semestre / 2017

Aula 16

- É o estudo sobre o que os computadores podem e o que não podem fazer
- Trata-se de uma limitação conceitual
- Existem problemas que não são "computáveis"
 - Ou: existem problemas para os quais não existe um algoritmo
 - Ou: existem linguagens para as quais não existem decisores (Máquinas de Turing que sempre param)

- Para que estudar indecidibilidade?
 - 1. Se você se depara com um problema insolúvel, não há alternativa
 - Precisa ser simplificado ou alterado
 - 2. Ajuda a ganhar perspectiva sobre a computação
 - Sabendo o que é insolúvel, você conhece os limites do que pode e não pode fazer
 - Ajuda no projeto de soluções algorítmicas

Um problema insolúvel

- Problema da Correspondência de Post (PCP)
- Uma instância do PCP é:
 - Duas listas de strings, com o mesmo tamanho k:
 - A = w1, w2, ..., wk
 - B = x1, x2, ..., xk
 - Para cada i, o par (wi,xi) é:
 - Um par correspondente
 - Uma correspondência
- Uma solução para essa instância do PCP é:
 - Uma sequência de um ou mais inteiros
 - S = i1, i2, ..., im
 - Que quando interpretados como índices nas listas A e B
 - a concatenação das strings apontadas por S em A é igual à concatenação das strings apontadas por S em B

- Exemplo:
 - Considere a instância do PCP à direita:
 - Essa instância tem solução:
 - S = (2,1,1,3)
 - i1 = 2, i2 = 1, i3 = 1, i4 = 3
 - Pois:
 - w2w1w1w3 = 10111 1 1 1 1 0 = 1011111110
 - x2x1x1x3 = 10 111 111 0 = 101111110
 - Outra solução:
 - S = (2,1,1,3,2,1,1,3)

	Lista A	Lista B
i	wi	хi
1	1	111
2	10111	10
3	10	0

- Outro exemplo:
 - Considere a instância do

PCP à direita:

Essa instância NÃO tem solução!

	Lista A	Lista B		
i	wi	xi		
1	10	101		
2	011	11		
3	101	011		

- É simples demonstrar:
 - Uma solução S = (i1,i2,i3,...), certo?
- i1 = 2 e i1 = 3 é impossível, portanto i1 = 1!
 - Então S = (1,i2,i3,...), certo?
 - Então
 - A = 10....
 - B = 101...
 - Certo?

- Continuando, e i2, o que poderia ser?
- i2 = 1 e i2 = 2 é impossível
 - Portanto i2 = 3!
- Então temos:
 - S = (1,3,i3,...)
 - A = 10101...
 - B = 101011...

•	Nesse	ponto,	i3 = i	1 e	i3 =	2	é	imp	ossí	ve	ì
---	-------	--------	--------	-----	------	---	---	-----	------	----	---

- Portanto i3 = 3
- S = (1,3,3,...)
- A = 10101101...
- B = 101011011...
- Da mesma forma, i4=3,i5=3,i6=3, etc...
 - Nunca vai parar! Ou seja, nunca haverá uma correspondência!

	Lista A	Lista B
i	wi	xi
1	10	101
2	011	11
3	101	011

 Outra forma de visualizar o PCP é imaginando um conjunto de peças de dominó, com strings de letras ao invés de números:

- O objetivo é fazer uma lista de peças
 - Sem girá-las
 - Com repetições permitidas
 - Não precisa usar todas
- De forma que, lendo-se a linha de cima, tem-se a mesma string que lendo-se a linha de baixo

а	b	ca	а	abc	→ abcaaabc
ab	ca	а	ab	С	→ abcaaabc

- Para alguns conjuntos de peças, existe uma solução (exemplo anterior)
- Para outros (veja abaixo), não existe

O problema da correspondência de Post é:

Dada uma instância do PCP, diga se essa instância tem uma solução

- Esse problema é insolúvel
 - Não existe um algoritmo que consiga resolvê-lo

Outra maneira de vermos o PCP

- Suponha uma versão binária do PCP (como a que vimos anteriormente)
 - Ou seja, as strings somente possuem 0s e 1s
- Uma linguagem que descreve instâncias do PCP poderia ser:
 - Linguagem LPCP é uma linguagem sobre Σ = {0,1,#}
 - Onde as cadeias representam instâncias do PCP, no seguinte formato:

 E as cadeias representam instâncias do PCP que possuem solução

PCP como uma linguagem

Exemplos

Cadeia c1

1	1	#	1	#	1	0	1	1	1	#	1	0	#	1	1	1	#	1	0	#	0

	Lista A	Lista B
i	wi	xi
1	1	111
2	10111	10
3	10	0

	Lista A	Lista B		
i	wi	xi		
1	10	101		
2	011	11		
3	101	011		

Cadeia c2

	1	1	#	1	0	#	0	1	1	#	1	0	1	#	1	0	1	#	1	1	#	0	1	1
- 1												I .						l						l

PCP como uma linguagem

- Nos exemplos anteriores
 - c1 pertence à linguagem
 - c2 não pertence à linguagem
 - nenhuma cadeia que n\u00e3o est\u00e1 no formato correto pertence \u00e0 linguagem
- Dessa forma, o PCP pode ser visto como um problema de pertinência em uma linguagem
 - Que é a nossa definição de problema!
- Ou seja:
 - Dada uma cadeia c, determinar se ela pertence ou não à linguagem LPCP

Outra forma de vermos a insolubilidade do PCP

- Veremos que n\u00e3o existe um algoritmo para o PCP (por enquanto, acredite que n\u00e3o existe)
- Na terminologia formal, isto significa que:
 - Não existe um decisor para a linguagem LPCP ou
 - É impossível projetar uma Máquina de Turing que sempre para (aceitando ou rejeitando) para a linguagem LPCP

ou

 É impossível construir um programa em C, Java, C#, Pascal ou qualquer outra linguagem de programação, que resolve este problema!

- Veremos:
 - Como provar que o PCP é insolúvel
 - Usaremos obviamente Máquinas de Turing e conceitos de linguagem para isso
 - Mas poderíamos fazer o mesmo com a noção de algoritmos!
- Veremos que existem duas formas de indecidibilidade
 - Existem problemas para os quais é impossível projetar uma MT
 - Linguagens não-recursivamente enumeráveis
 - Existem problemas para os quais é possível projetar uma MT, mas ela pode entrar em loop
 - Ou seja, não é um decisor
 - Linguagens não-recursivas
- Na prática, dá no mesmo, pois em ambos os casos não existe um algoritmo

Uma linguagem que não é RE

RE = Recursivamente Enumerável

Uma linguagem que não é RE

Hierarquia	Gramáticas	Linguagens	Autômato mínimo		
Tipo-0	Recursivamente Enumeráveis ou irrestritas	Recursivamente Enumeráveis	Máquinas de Turing		
Tipo-1	Sensíveis ao contexto	Sensíveis ao contexto	MT com fita limitada		
Tipo-2	Livres de contexto	Livres de contexto	Autômatos de pilha		
Tipo-3	Regulares (Expressões regulares)	Regulares	Autômatos finitos		

Hierarquia de linguagens

Linguagens (problemas) dedicíveis

Linguagens (problemas) indedicíveis Não-recursivamente enumeráveis

Linguagens (problemas) recursivamente enumeráveis

Hierarquia de linguagens

Existe uma MT que sempre para (decisor)

Não existe MT Não-recursivamente enumeráveis

Existe uma MT, mas ela pode entrar em loop (reconhecedor)

Hierarquia de linguagens

Existe uma MT que sempre para (decisor) Não existe MT Não-recursivamente Existe uma MT, mas ela pode entrar em loop (reconhecedor) enumeráveis Turing-reconhecíveis ou recursivamente enumeráveis Decidíveis ou recursivas Sensíveis ao contexto Livres de Veremos um exemplo contexto de linguagem que está Regulares aqui

Mas antes, alguns conceitos

- Enumeração de strings binários
 - Veremos como codificar algumas coisas como strings binários
 - A exemplo do que fizemos na codificação das listas do PCP
 - Será útil atribuir inteiros a todos os strings binários possíveis
 - Cada string irá corresponder a um único inteiro
 - E cada inteiro irá corresponder a um único string

1	3
2	0
3	1
4	00
5	01
6	11
•••	
i	wi

Mas antes, alguns conceitos

- Enumeração de strings binár segundo string
 - Veremos como codificar algumas coisas como strings binários
 - A exemplo do que fizemos na codificação das listas do PCP
 - Será útil atribuir inteiros a todos os strings binários possíveis
 - Cada string irá corresponder único inteiro
 - E cada inteiro irá corresponder a um único string

- Vamos criar um código binário para máquinas de Turing
- Ou seja, representaremos uma máquina de Turing M em uma longa string de 0s e 1s

Atenção! Exemplo meramente ilustrativo. Essa não é uma codificação válida de uma MT!

- Para que codificar uma MT em binário?
- Acabamos de enumerar todos os strings binários
- Poderemos, portanto, enumerar todas as MTs possíveis!
- Essa enumeração será útil na prova da indecidibilidade

Índice	МТ	MT codificada em binário
1	M1	ε
2	M2	0
3	M3	1
4	M4	00
293924	M293924	1011010100010011010101 00100101010010011101
293925	M293925	1011010100010011010101 00100101010010011110
i	Mi	wi

- Para que codificar uma MT em binário?
- Acabamos de enumerar todos os strings binários
- Poderemos, portanto, enumerar todas as possíveis!
- Obviamente, as primeiras posições não são códigos "válidos" para MTs

Índice	МТ	MT codificada em binário
1	M1	ε
2	M2	0
3	M3	1
4	M4	00
293924	M293924	1011010100010011010101 00100101010010011101
293925	M293925	1011010100010011010101 00100101010010011110
i	Mi	wi

- $M = (Q, \Sigma, \Gamma, \delta, q0, B, F)$
 - Primeiro: $\Sigma = \{0,1\}$
 - Ou seja, assumimos que a entrada é codificada em binário
- Em seguida, precisamos codificar estados, símbolos de fita e sentidos E e D
 - $Q = \{q1, q2, ..., qr\}$
 - chamaremos os estados de q1,q2,...,qr, para algum r
 - q1 será o estado inicial (q0)
 - q2 será o único estado de aceitação (F) (é sempre possível converter uma MT com mais de um estado de aceitação para uma que tenha apenas um estado de aceitação)
 - Usaremos um código simples para representar cada qi
 - Ex: q1 = 0, q2 = 00, q3 = 000, q4 = 0000, ...

- $M = (Q, \Sigma, \Gamma, \delta, q0, B, F)$
 - $\Gamma = \{X1, X2, ..., Xs\}$
 - chamaremos os símbolos de fita de X1,X2,...,Xs, para algum s
 - X1 será o símbolo 0
 - X2 será o símbolo 1
 - X3 será B, o branco
 - Outros símbolos podem ser atribuídos aos inteiros restantes (4,5,6, ...)
 - Usaremos o código anterior para representar cada Xi
 - Ex: X1 = 0, X2 = 00, X3 = 000, X4 = 0000, ...

- $M = (Q, \Sigma, \Gamma, \delta, q0, B, F)$
 - Sentido E e D:
 - D1 = esquerda
 - D2 = direita
 - Usaremos o código anterior para representar cada Di
 - Ex: D1 = 0, D2 = 00

- $M = (Q, \Sigma, \Gamma, \delta, q0, B, F)$
 - δ:
 - Uma regra de transição no formato:
 - $\delta(q_i, X_i) = (q_k, X_i, D_m)$
 - É codificada como:
 - 0ⁱ10^j10^k10^l10^m
 - Nesse código, i,j,k,l e m são no mínimo 1, ou seja, não existirá nenhuma ocorrência de dois ou mais 1s consecutivos dentro de uma única transição

- $M = (Q, \Sigma, \Gamma, \delta, q0, B, F)$
 - M:
 - O código para a máquina M será:
 - C₁ 11 C₂ 11 ... C_{n-1} 11 C_n
 - Onde cada um dos C's é o código para uma transição de M
- Obs: nenhum código válido para uma MT possui três 1s em sequência
 - Isso será útil depois

- Ex: $M = (\{q1,q2,q3\},\{0,1\},\{0,1,B\},\delta,q1,B,\{q2\})$
- onde δ é definido pelas regras:
 - $\delta(q_1, 1) = (q_3, 0, D)$
 - $\delta(q_3, 0) = (q_1, 1, D)$
 - $\delta(q_3, 1) = (q_2, 0, D)$
 - $\delta(q_3, B) = (q_3, 1, E)$
- Os códigos para as regras são:
 - 0 1 00 1 000 1 0 1 00
 - 000 1 0 1 0 1 00 1 00
 - 000 1 00 1 00 1 0 1 00
 - 000 1 000 1 000 1 00 1 0
- O código para M é

- Existem muitos códigos "inválidos"
 - 1, 0, 11, 111111111111, etc
- Nesses casos, assumiremos que a MT possui apenas um estado e nenhuma transição
 - Ou seja, a MT para imediatamente sobre qualquer entrada, sem aceitar
 - Ou seja, a linguagem dessas máquinas é vazia (Ø)

Índice	МТ	MT codificada em binário	Linguagem
1	M1	ε	Ø
2	M2	0	Ø
3	M3	1	Ø
4	M4	00	Ø
293924	M293924	010010001010011 00010101001	L293924 = {11,101,}
293925	M293925	10110110010010 1010010011110	Ø
i	Mi	wi	Li

- Existem muitos códigos "inválidos"
 - 1, 0, 11, 111111111111, etc
- Nesses casos, assumiremos que a MT possui apenas um estado e nenhuma transição
 - Ou seja, a MT para imediatamente sobre qualquer entrada, sem aceitar
 - Ou seja, a linguagem dessas máquinas é vazia (Ø)

Índice	МТ	MT codificada em binário	Linguagem
1	M1	3	Ø
Código "inválido" 3 M3		0	Ø
		1	Ø
Código "inválido"		00	Ø
Código ""		010010001010011 00010101001	L293924 = {11,101,}
"válido 293925 M	M293925	10110110010010 1010010011110	Ø
Código "inválido"			
		wi	Li

Uma definição vital

- A linguagem L_d, a linguagem da diagonalização, é o conjunto de strings w_i, tais que w_i não está em L(M_i)
- Vamos detalhar essa definição:
 - w_i é uma string:

- A linguagem L_d, a linguagem da diagonalização, é o conjunto de strings w_i, tais que w_i não está em L(M_i)
- Vamos detalhar essa definição:
 - w_i é uma string:
 - w_i codifica uma MT ("válida" ou "inválida") chamada M_i

- A linguagem L_d, a linguagem da diagonalização, é o conjunto de strings w_i, tais que w_i não está em L(M_i)
- Vamos detalhar essa definição:
 - w_i é uma string:
 - w_i codifica uma MT ("válida" ou "inválida") chamada M_i
 - Usaremos wi como entrada para Mi

- Se M_i aceitar w_i, w_i não faz parte de L_d
- Se M_i não aceitar w_i, w_i faz parte de L_d
- Ou seja, L_d consiste de todos os strings que codificam máquinas de Turing que não aceitam quando recebem a si mesmas como entrada

- Considere a tabela à direita
 - Cada célula diz se uma Máquina de Turing M_i aceita o string de entrada w_j
 - 1 significa "sim, M_i aceita w_i"
 - 0 significa "não, M_i não aceita w_i"
- Cada linha i é chamada de vetor característico para a linguagem L(M_i)
 - Cada 1 nessa linha indica uma string que faz parte dessa linguagem
- Exs:
 - M₄ aceita w₂ e w₄
 - M₃ não aceita w₁ nem w₂
 - M₂ aceita w₁ e w₂

		1	2	3	4	
i	1	0	1	1	0	
	2	1	1	0	0	
	3	0	0	1	1	
	4	0	1	0	1	

Exemplo ilustrativo, pois as primeiras posições não são códigos "válidos" para MTs

- Nessa tabela, a diagonal é interessante
 - Informam as MTs que aceitam a si próprias como entrada
 - Ou seja, o complemento de L_d
- Para construir L_d, basta complementar a diagonal
 - Nesse exemplo: 1000 ...
 - Ou seja:
 - w₁ pertence a L_d
 - w₂ não pertence a L_d
 - w₃ não pertence a L_d
 - w₄ não pertence a L_d
 - Etc...

		1	2	3	4	
i	1	0	1	1	0	
	2	1	7	9	0	:
	3	0	6	/ _/	7	:
	4	0	1	6	$(\overline{\gamma})$	

- Suponha que L_d fosse L(M) para alguma MT M
 - Então existiria uma MT cujo vetor característico é o complemento da diagonal da tabela à direita
 - Ou seja, em alguma linha, por exemplo k, o complemento da diagonal (1000...) iria aparecer

- Observe a célula marcada com "?"
 - Ela fica no encontro entre a diagonal e a linha hipotética k
 - Que valor deveria ser colocado nessa célula?
- Precisamos olhar sob o ponto de vista da linha k e da diagonal
- Devemos analisar o processo de "transposição" da diagonal para a linha k

		j						
		1	2	3	4	5	6	
i	1	6	1	1	0	1	1	
	2	1	1	9	0	1	0	
	3	0	0	7	7	1	0	:
	4	0	1	0	1	7	0	
	5	1	1	0	1	9	7	:
	6	1	0	0	0	1	\times	

- Acompanhe no exemplo
- Suponha que k = 6
- Suponha que X = 0
 - Diagonal = 011100
 - Complemento = 100011

- Acompanhe no exemplo
- Suponha que k = 6
- Suponha que X = 0
 - Diagonal = 011100
 - Complemento = 100011

- O mesmo aconteceria para qualquer k, e para qualquer X
- Ou seja, há um paradoxo, uma contradição
- Nossa suposição de que M_k existe deve ser falsa
- Portanto, não existe uma máquina de Turing M_k
- Ou seja, a linguagem L_d não é reconhecível por uma máquina de Turing

Ou seja, L_d não é uma linguagem recursivamente enumerável

Uma linguagem não-RE

- O que significa isso?
- O "problema" Ld é indecidível
- Ou seja, dada uma máquina de Turing, é impossível decidir (determinar/resolver) se ela aceita a si mesma como entrada
- Ou seja, não existe um algoritmo que faça isso, para qualquer máquina de Turing

Um problema indecidível que é RE

Um problema indecidível que é RE

- Agora iremos refinar a estrutura das linguagens RE (ou Turing-reconhecíveis)
- Dividiremos em duas classes:
 - Algoritmos: problemas para os quais existe uma MT que reconhece a linguagem, mas também reconhece (decide) as cadeias que não pertencem à linguagem.
 - São as MTs que sempre param, independente do fato de alcançar ou não um estado de aceitação
 - Linguagens RE que não são aceitas por nenhuma máquina de Turing com garantia de parada
 - Inconvenientes: se a entrada estiver na linguagem, saberemos disso mas, se a entrada não estiver na linguagem, a MT poderá continuar funcionando para sempre, e nunca teremos certeza de que a entrada não será aceita mais tarde

Hierarquia de linguagens

Existe uma MT que sempre para (decisor)

Não existe MT

Não-recursivamente Existe uma MT, mas ela pode entrar em loop (reconhecedor) enumeráveis

Linguagens recursivas

- Uma linguagem L é recursiva se L = L(M) para alguma máquina de Turing M tal que:
 - Se w está em L, então M aceita (e portanto para)
 - Se w não está em L, então M para eventualmente, embora nunca entre em um estado de aceitação
- Uma MT desse tipo corresponde à nossa noção informal de um "algoritmo"
 - Nesse caso, L é um "problema" decidível, ou seja, existe um algoritmo que o resolve
- Na prática, a divisão entre recursiva/não-recursiva é mais importante do que a divisão RE/não-RE

- Existem alguns teoremas bastante simples de se provar, úteis nas demonstrações a seguir:
- Teorema: Se L é uma linguagem recursiva, o complemento de L (~L) também o é.
- Prova:
 - Se L é recursiva, existe uma MT que sempre para, aceitando ou não a entrada
 - Basta modificar MT, de forma a inverter aceitação/nãoaceitação, e iremos obter uma MT' que também sempre para (a modificação não altera esse fato)
 - MT' irá aceitar quando MT rejeita, e rejeitar quando MT aceita, reconhecendo exatamente o complemento de L
 - Ou seja, ~L é recursiva, pois existe um decisor

- Teorema: Se L e seu complemento são ambas RE, então L é recursiva (assim como seu complemento, pelo teorema anterior)
- Prova:
 - Se L é RE, existe uma MT1 que sempre para aceitando quando a entrada é um w que pertence a L (embora possa não parar nunca caso não pertença)
 - Se ~L é RE, existe uma MT2 que sempre para aceitando quando a entrada é um w que não pertence a L (embora possa não parar nunca caso pertença)
 - Basta construir uma MT' que simula MT1 e MT2, aceitando quando MT1 aceitar (e parar), e rejeite quando MT2 aceitar (e parar)
 - Dessa forma, MT' sempre para, aceitando ou rejeitando, portanto L é recursiva.

- Ou seja, existem apenas quatro possibilidades:
 - L e ~L são ambas recursivas
 - Nem L nem ~L é RE
 - L é RE mas não-recursiva, e ~L não é RE
 - L é RE mas não recursiva, e L não é RE
- Todas as outras possibilidades são excluídas pelos teoremas anteriores
- Exemplo: L_d não é RE, e portanto ~L_d não pode ser recursiva
 - Ou seja, pode até existir uma MT para [~]L_d, mas não há garantia de que ela vá parar sempre

- Esses resultados são intuitivos
 - Suponha que exista um problema indecidível (como o PCP)
 - Suponha que eu conseguisse resolver a versão "negada" do PCP
 - Ou seja, encontrar as instâncias do PCP para as quais não existe solução
 - Bastaria inverter a resposta, e pronto, resolvi um problema insolúvel!
 - Mas isso é impossível, já que o PCP é indecidível!

- Vimos anteriormente que uma MT pode simular um computador, executando um programa armazenado
 - Utilizando várias fitas, que armazenam o programa, os dados, rascunho, etc...
- E se esse programa armazenado for uma máquina de Turing?
 - Mais especificamente, a codificação binária que vimos no início dessa aula?
 - É possível construir uma máquina de Turing que executa máquinas de Turing codificadas?

Máquina de Turing universal

Máquina de Turing universal

- M_u opera da seguinte forma:
 - Examina a entrada para ter certeza que é um código válido
 - 2. Inicializa a segunda fita para conter a entrada w
 - Insere 0 (estado inicial de M) na terceira fita e move a cabeça da segunda fita de M_u para a primeira célula simulada
 - 4. M_u procura na primeira fita uma transição 0ⁱ10^j10^k10^l10^m, olhando:
 - 1. Na fita 3 em busca de i
 - 2. Na fita 2 em busca de j

Máquina de Turing universal

- M_u opera da seguinte forma:
 - 4. Encontrando a transição 0ⁱ10^j10^k10^l10^m:
 - a. Muda o conteúdo da fita 3 para 0^k
 - Substitui 0^j na fita 2 por 0^l (usando o rascunho para fazer o deslocamento e administrar o espaço)
 - Move a cabeça na fita 2 para a posição do próximo 1 à esquerda ou direita, dependendo de m (m=1 → esquerda, m=2 → direita)
 - 5. Se M não tem nenhuma transição, M_u para
 - 6. Se M entrar em estado de aceitação, M, aceita

- A entrada da MT universal é um par (M,w), onde M é uma MT codificada em binário e w é uma string binária
- Em alguns casos, M aceita w, em outros, M não aceita w
- O conjunto de todos os pares (M,w), tal que M aceita w é conhecido como linguagem universal, ou L,

- Qual é o "problema" descrito pela linguagem universal?
 - Dada uma máquina de Turing M e uma cadeia qualquer w, determinar se M aceita w
- Pensando em termos mais práticos:
 - Dado um programa de computador, e as possíveis entradas e saídas, esse "problema" consiste em verificar, automaticamente (algoritmicamente), se o programa funciona conforme o esperado
 - Se for possível resolver esse problema, eliminaríamos a necessidade de testes de software!!!
 - Bastaria construir um algoritmo (ou MT, ou programa) que fosse um verificador automático

- Se a linguagem universal fosse decidível:
 - O Windows não teria bugs
 - Nossa vida de programadores seria muito mais fácil
- Mas.... (como você já deve ter adivinhado)
 - L_{II} é indecidível!
 - É RE! Mas não recursiva!!
 - Ou seja ... Não existe algoritmo
 - Precisamos testar nossos programas
 - Teremos muitos e muitos bugs pela frente

O problema da parada

- Semelhante à L_{II}, mas mais genérico
 - Seja H(M) o conjunto de entradas w tais que uma MT M para em w (aceitando ou não)
 - O problema da parada da MT é:
 - Dado um par (M,w), decidir se M para em w ou não
- É o mesmo problema
 - Também é RE, mas não recursivo
 - Ou seja, indecidível

Indecidibilidade da linguagem universal

- Teorema: L_{II} é RE mas não é recursiva
- A prova de que L_{II} é RE já foi feita
 - M_{II} existe (mostramos anteriormente)
 - Portanto L_{II} é Turing-reconhecível
 - Portanto L_{II} é RE
- Continuando
 - Vamos supor que L_u fosse recursiva (buscaremos uma contradição)
 - Então, ~L_{II} (o complemento de L_{II}) também deve ser recursiva
 - Ou seja, existe uma MT M_{nu} que aceita ~L_{II}

Indecidibilidade da linguagem universal

- Vamos supor que exista M_{nu}, tal que L(M_{nu}) = ~L_u
 - Ou seja, dada uma entrada (M,w), M_{nu} aceita se M rejeita w, e M_{nu} rejeita se M aceita w
- E se eu aplicar, como entrada para M_{nu}, a entrada w11w? Ou melhor, um par (w,w)?
 - Ou melhor: um par (M,M)
 - Ou seja, w é um determinado w_i, da nossa enumeração de M_i's anterior
 - Ou seja, w codifica uma MT qualquer

Indecidibilidade da linguagem universal

- Vemos então que M_{nu} é uma máquina bastante poderosa!!!
 - O que significa M_{nii} aceitar w111w?
 - Significa que a máquina M rejeita a si mesma como entrada
 - O que significa M_{nu} rejeitar w111w?
 - Significa que a máquina M aceita a si mesma como entrada
- Peraí: essa é a linguagem L_d!!
 - Quer dizer que M_{nu} decide a linguagem L_d?
 - Mas L_d é indecidível!!
 - Exatamente: aí está a contradição!!
 - Mnu não pode existir!
 - Ou seja, L_{II} é não-RE!
 - Ou seja, L, não é recursiva!!

Hierarquia de linguagens

Existe uma MT que sempre para (decisor)

Não existe MT

Não-recursivamente

