พื้นฐานของดิจิทัลและไมโครคอนโทรลเลอร์

รหัสวิชา 30127-2004 (2-3-3) ดิจิทัลและใมโครคอนโทรลเลอร์

Digital And Microcontroller

พื้นฐานไมโครคอนโทรลเลอร์

พื้นฐานไมโครคอนโทรลเลอร์

- 1. ความหมายและคุณสมบัติของไมโครคอนโทรลเลอร์
 - 1.1 ความหมายของไมโครคอนโทรลเลอร์
 - 1.2 สถาปัตยกรรมของไมโครคอนโทรลเลอร์
 - 1.3 ประเภทของไมโครคอนโทรลเลอร์
- 1.4 คุณสมบัติของไมโครคอนโทรลเลอร์ AT89C51ED2 ,PIC16F887 และ

ATMEGA32

1.5 การใช้งานขาสัญญาณของไมโครคอนโทรลเลอร์

Digital And Microcontroller

_

พื้นฐานไมโครคอนโทรลเลอร์

- 2. ชุดคำสั่งภาษาแอสเซมบลีของไมโครคอนโทรลเลอร์
 - 2.1 ชุดคำสั่งภาษาแอสเซมบลีของไมโครคอนโทรลเลอร์ตระกูล MCS51
 - 2.2 ชุดคำสั่งภาษาแอสเซมบลีของไมโครคอนโทรลเลอร์ตระกูล PIC16F
 - 2.3 ชุดคำสั่งภาษาแอสเซมบลีของไมโครคอนโทรลเลอร์ตระกูล AVR
 - 2.4 ชุดคำสั่งภาษาแอสเซมบลีของไมโครคอนโทรลเลอร์ที่ใช้สำหรับการ

เขียนโปรแกรมเพื่อจำลองการทำงานเป็นลอจิกเกต

2.5 การเขียนโปรแกรมภาษาแอสเซมบลี

Digital And Microcontroller

พื้นฐานไมโครคอนโทรลเลอร์

- 3. การใช้งานชอฟต์แวร์เพื่อเขียนโปรแกรมภาษาแอสเซมบลีของไมโครคอนโทรลเลอร์
- 3.1 การใช้งานโปรแกรม Keil uVision3 สำหรับเขียนโปรแกรมภาษาแอสเชมบลี ของไมโครคอนโทรลเลอร์ตระกูล MCS51
- 3.2 การใช้งานโปรแกรม MPLAB X สำหรับเขียนโปรแกรมภาษาแอสเซมบลีของ ไมโครคอนโทรลเลอร์ตระกูล PIC16F
- 3.3 การใช้งานโปรแกรม AVR Studio 6.2 สำหรับเขียนโปรแกรมภาษาแอสเซมบลี ของไมโครคอนโทรลเลอร์ตระกูล AVR

Digital And Microcontroller

พื้นฐานไมโครคอนโทรลเลอร์

4. การใช้งานโปรแกรม Proteus เพื่อจำลองการทำงานของวงจรไมโครคอนโทรลเลอร์

4.1 การใช้งานโปรแกรม Proteus เพื่อจำลองการทำงานของวงจร
 ไมโครคอนโทรลเลอร์ตระกูล MCS51

4.2 การใช้งานโปรแกรม Proteus เพื่อจำลองการทำงานของวงจร ไมโครคอนโทรลเลอร์ตระกูล PIC16F

 4.3 การใช้งานโปรแกรม Proteus เพื่อจำลองการทำงานของวงจร ไมโครคอนโทรลเลอร์ตระกูล AVR

Digital And Microcontroller

พื้นฐานไมโครคอนโทรลเลอร์

1. ความหมายและคุณสมบัติของไมโครคอนโทรลเลอร์

1.1 ความหมายของไมโครคอนโทรลเลอร์

ไมโครคอนโทรลเลอร์ (Microcontroller เรียกย่อ ๆ ว่า µC, uC หรือ MCU) หมายถึงอุปกรณ์ใอซีประเภทการประมวลผล ที่รวมเอาความสามารถที่ คล้ายคลึงกับไมโครคอมพิวเตอร์บรรจุเข้าไว้ในตัวถึงเดียวกัน แล้วสามารถนำไปต่อใช้ งานได้เลย เพราะภายในของไมโครคอนโทรลเลอร์จะประกอบด้วย 5 องค์ประกอบ สำคัญ ได้แก่ ส่วนที่เป็นขาสัญญาณที่ใช้ในการติดต่อกับอุปกรณ์อินพุต ,ส่วนที่เป็น ขาสัญญาณที่ใช้ในการติดต่อกับอุปกรณ์เอาต์พุต ,ส่วนที่ใช้ในการประมวลผลข้อมูลใน รูปแบบคณิตศาสตร์ และลอจิก ที่นิยมเรียกว่า CPU ,ส่วนที่เป็นหน่วยความจำ และส่วนสุดท้ายคือส่วนโมดูลที่ทำหน้าที่พิเศษอื่น ๆ ซึ่งไมโครคอนโทรลเลอร์เป็นอุปกรณ์ที่ สามารถเขียนโปรแกรมควบคุมการทำงานไว้ภายในไอซีได้

Digital And Microcontroller

6

พื้นฐานไมโครคอนโทรลเลอร์

1.2 สถาปัตยกรรมของไมโครคอนโทรลเลอร์

สถาปัตยกรรมของไมโครคอนโทรลเลอร์ จะกล่าวถึงส่วนสำคัญทั้งหมด

3 ส่วน

1.2.1 โครงสร้างของไมโครคอนโทรลเลอร์

รูปที่ 1.2 โครงสร้างภายในของไมโครคอนโทรลเลอร์

Digital And Microcontroller

7

พื้นฐานไมโครคอนโทรลเลอร์

- 1.2.2 สถาปัตยกรรมของไมโครคอนโทรลเลอร์ที่เกี่ยวข้องกับการเชื่อมต่อหน่วยความจำ สถาปัตยกรรมของไมโครคอนโทรลเลอร์ถ้าแบ่งตามลักษณะของการเชื่อมต่อ หน่วยความจำ หรือการแบ่งพื้นที่หน่วยความจำของไมโครคอนโทรลเลอร์ จะสามารถ แบ่งออกได้เป็น 2 รูปแบ คือ
- สถาปัตยกรรมแบบพ่อนนอยมันน์ (Von Neumann Architecture) มีหลักการ คือการประมวลผลทั้งหมดจะกระทำที่หน่วยประมวลผลกลาง คำสั่งและข้อมูลจะถูกเก็บ ที่หน่วยความจำเดียวกัน เช่น ไมโครคอนโทรลเลอร์ตระกูล MCS-51
- สถาปัตยกรรมแบบฮาร์วาด (Harvard Architecture) เป็นสถาปัตยกรรมที่ ออกแบบเพื่อแก้ปัญหาจุดอ่อนของ Von Neumann โดยแยกหน่วยความจำโปรแกรม และหน่วยความจำข้อมูลออกจากกันรวมทั้งแยกบัสข้อมูลด้วย ซึ่งเป็นสถาปัตยกรรมของ ไมโครคอนโทรลเลอร์ในยุคปัจจุบัน เช่น ไมโครคอนโทรลเลอร์ตระกูล PIC และ AVR

Digital And Microcontroller

8

พื้นฐานไมโครคอนโทรลเลอร์

1.2.3 สถาปัตยกรรมของไมโครคอนโทรลเลอร์ที่กล่าวถึงลักษณะของการประมวลผล สถาปัตยกรรมของไมโครคอนโทรลเลอร์ที่แบ่งแยกตามลักษณะของการ ประมวลผลสามารถแบ่งได้เป็น 2 กลุ่ม ได้แก่

- สถาปัตยกรรมการประมวลผลแบบ CISC (Complex Instruction Set Computing)

รูปที่ 1.3 ลักษณะการประมวลผลแบบ CISC

Digital And Microcontroller

พื้นฐานไมโครคอนโทรลเลอร์

- สถาปัตยกรรมการประมวลผลแบบ RISC (Reduced Instruction Set Computing)

รูปที่ 1.4 ลักษณะการประมวลผลแบบ RISC

Digital And Microcontroller

พื้นฐานไมโครคอนโทรลเลอร์

1.3 ประเภทของไมโครคอนโทรลเลอร์

- 1. ไมโครคอนโทรลเลอร์ที่มี CPU ในการประมวลผลขนาด 8 บิต และ 1 พอร์ตจะมีขาสัญญาณได้สูงสุดจำนวน 8 ขา เช่นไมโครคอนโทรลเลอร์ ตระกูล MCS-51 ,PIC10F ,PIC12F ,PIC16F , ,PIC18F และ AVR เป็นต้น
- ไมโครคอนโทรลเลอร์ที่มี CPU ในการประมวลผลขนาด 16 บิต และ 1 พอร์ตจะมีขาสัญญาณได้สูงสุดจำนวน 16 ขา เช่นไมโครคอนโทรลเลอร์ ตระกูล MSP430 , PIC24F และ dsPIC30F เป็นต้น
- ไมโครคอนโทรลเลอร์ที่มี CPU ในการประมวลผลขนาด 32 บิต และ 1 พอร์ตจะมีขาสัญญาณได้สูงสุดจำนวน 32 ขา เช่นไมโครคอนโทรลเลอร์ ตระกุล ARM7 ,PIC32F ,STM32 ,ESP8285 ,ESP8266 และESP32 เป็นต้น

Digital And Microcontroller

พื้นฐานไมโครคอนโทรลเลอร์

1.4 คุณสมบัติของไมโครคอนโทรลเลอร์ AT89C51ED2 ,PIC16F887 และ ATMEGA32

ตารางที่ 1.1 ตารางเปรียบเทียบคุณสมบัติของไมโครคอนโทรลเลอร์ตระกูลต่างๆ

ไมโครคอนโทรลเลอร์	ตระกูล	Program	Data	External	EEPROM	1/0	PWM	SPI	Timer/	I2C	UART	ADC
เบอร์		Memory	Memory	Memory			(ch)	(ch)	Counter	(ch)	(ch)	(ch)
AT89C51ED2	MCS51	64Kbyte	256byte	1792byte	2Kbyte	32	5	1	3	-	1	-
PIC16F887	PIC16F	8Kword	368byte	-	256byte	36	2	1	3	1	1	14
ATMEGNAS									-			

รูปที่ 1.5 รูปตำแหน่งขาสัญญาณและตัวถึงของไมโครคอนโทรลเลอร์ตระกูล MCS-51 เบอร์ AT89C51ED2

Digital And Microcontroller

12

พื้นฐานไมโครคอนโทรลเลอร์

1.5 การใช้งานขาสัญญาณของไมโครคอนโทรลเลอร์

ตารางที่ 1.2 ตารางเปรียบเทียบรีจิสเตอร์ของไมโครคอนโทรลเลอร์ตระกูล MCS51 , PIC16F และ AVR ที่เกี่ยวกับการใช้งานขาสัญญาณพอร์ตเพื่อติดต่อกับอุปกรณ์อินพุต หรือเอาต์พุต

ไมโครคอนโทรลเลอร์	มโครคอนโทรลเลอร์ เบอร์ของอุปกรณ์		รีจิสเตอร์ที่ทำหน้าที่	รีจิสเตอร์ที่ทำหน้าที่	
ตระกูล		กำหนดทิศทาง	ติดต่อกับอุปกรณ์	ติดต่อกับอุปกรณ์	
		ขาสัญญาณ	อินพุต	เอาต์พุต	
MCS-51	AT89C51ED2	-	Px	Px	
PIC16F	PIC16F887	TRISx	PORTX	PORTx	
AVR	ATMEGA32	DDRx	PINx	PORTx	

Digital And Microcontroller

พื้นฐานไมโครคอนโทรลเลอร์

2. ชุดคำสั่งภาษาแอสเซมบลีของไมโครคอนโทรลเลอร์

2.1 ชุดคำสั่งภาษาแอสเซมบลีของไมโครคอนโทรลเลอร์ตระกูล MCS-51

ไมโครคอนโทรลเลอร์ MCS-51 มีรูปแบบชุดคำสั่งภาษาแอสเซมบลีทั้งหมดประมาณ 111 รูปแบบชุดคำสั่ง และแต่ละรูปแบบชุดคำสั่งจะมีขนาดของข้อมูลที่ไม่เท่ากัน โดยสามารถแบ่งออกเป็น กลุ่มได้ 5 กลุ่ม ดังนี้

- 1. กลุ่มคำสั่งการรโอนย้ายข้อมูล (Data Transfer Instructions) มี 28 รูปแบบชุดคำสั่ง
- 2. กลุ่มคำสั่งทำงานคณิตศาสตร์ (Arithmetic Operation instructions) มี 24 รูปแบบ ชุดคำสั่ง
 - 3. กลุ่มคำสั่งทำงานลอจิก (Logical Operation Instructions) มี 25 รูปแบบชุดคำสั่ง
- 4. กลุ่มคำสั่งจัดการข้อมูลระดับบิต (Boolean Variable Manipulated Instructions) มี 17 รูปแบบชุดคำสั่ง
 - 5. กลุ่มคำสั่งกำรกระโดด (Program Branching Instructions) มี 17 รูปแบบชุดคำสั่ง

Digital And Microcontroller

15

พื้นฐานไมโครคอนโทรลเลอร์

2.2 ชุดคำสั่งภาษาแอสเซมบลีของไมโครคอนโทรลเลอร์ตระกูล PIC16F

ไมโครคอนโทรลเลอร์ PIC16F มีรูปแบบชุดคำสั่งภาษาแอสเชมบลีทั้งหมด ประมาณ 35 รูปแบบชุดคำสั่งและแต่ละรูปแบบชุดคำสั่งจะมีขนาดของข้อมูลเท่ากันที่ 14 บิต โดยสามารถแบ่งออกเป็นกลุ่มได้ 3 กลุ่ม ดังนี้

- กลุ่มคำสั่งกระทำกับข้อมูลแบบไบต์ (Byte-Oriented File Register Operation) มี 18 รูปแบบชุดคำสั่ง
- 2. กลุ่มคำสั่งกระทำกับข้อมูลแบบบิต (Bit-Oriented File Register Operation) มี 4 รูปแบบชุดคำสั่ง
- กลุ่มคำสั่งกระทำกับค่าข้อมูลคงที่ (Literal and Control Operation) มี 13 รปแบบชุดคำสั่ง

Digital And Microcontroller

16

พื้นฐานไมโครคอนโทรลเลอร์

2.3 ชุดคำสั่งภาษาแอสเซมบลีของไมโครคอนโทรลเลอร์ตระกูล AVR

ไมโครคอนโทรลเลอร์ AVR มีรูปแบบชุดคำสั่งภาษาแอสเซมบลีทั้งหมดประมาณ 131 รูปแบบชุดคำสั่ง โดยสามารถแบ่งออกเป็นกลุ่มได้ 5 กลุ่ม ดังนี้

- 1. กลุ่มคำสั่งกระทำทางคณิตศาสตร์และลอจิก (Arithmetic and Logic Instructions) มี 28 รูปแบบพลคำสั่ง
 - 2. กลุ่มคำสั่งการกระโดด (Branch Instructions) มี 36 รูปแบบชุดคำสั่ง
 - 3. กลุ่มคำสั่งการโอนย้ายข้อมูล (Data transfer Instructions) มี 35 รูปแบบชุดคำสั่ง
 - 4. กลุ่มคำสั่งการกระโดด (Bit and Bit-Test Instructions) มี 28 รูปแบบชุดคำสั่ง
 - 5. กลุ่มคำสั่งการโอนย้ายข้อมูล (MCU control Instructions) มี 4 รูปแบบชุดคำสั่ง

Digital And Microcontroller

พื้นฐานไมโครคอนโทรลเลอร์

2.4 ชุดคำสั่งภาษาแอสเซมบลีของไมโครคอนโทรลเลอร์ที่ใช้สำหรับการเขียน โปรแกรมเพื่อจำลองการทำงานเป็นลอจิกเกต

2.4.1 กลุ่มคำสั่งจัดการข้อมูลระดับบิตของไมโครคอนโทรลเลอร์ MCS-51 ได้แก่

CLR C ORL C,bit CLR bit ORL C,/bit MOV C,bit SETB C MOV bit,C SETB bit JC rel CPL C JNC rel CPL bit JB bit,rel ANL C,bit JNB bit,rel ANL C,/bit JBC bit.rel

Digital And Microcontroller

พื้นฐานไมโครคอนโทรลเลอร์

2.4.2 กลุ่มคำสั่งจัดการข้อมูลระดับบิตของไมโครคอนโทรลเลอร์ PIC16F ได้แก่
BCF f,b; ทำให้บิตของข้อมูล ณ ตำแหน่งที่ b ของหน่วยความจำข้อมูลที่ f
มีค่าเป็นลอจิก '0'

BSF f,b ; ทำให้บิตของข้อมูล ณ ตำแหน่งที่ b ของหน่วยความจำข้อมูลที่ f มีค่าเป็นลอจิก '1'

BTFSC f,b ; ทำการตรวจสอบบิตของข้อมูล ณ ตำแหน่งที่ b ของ หน่วยความจำข้อมูลที่ f ถ้ามีค่าเป็นลอจิก '0' ให้ข้ามการประมวลผลไป 1 คำสั่ง

BTFSS f,b ; ทำการตรวจสอบบิตของข้อมูล ณ ตำแหน่งที่ b ของ หน่วยความจำข้อมูลที่ f ถ้ามีค่าเป็นลอจิก '1' ให้ข้ามการประมวลผลไป 1 คำสั่ง

Digital And Microcontroller

19

พื้นฐานไมโครคอนโทรลเลอร์

2.4.3 กลุ่มคำสั่งจัดการข้อมูลระดับบิตของไมโครคอนโทรลเลอร์ AVR ได้แก่

CBI P,b ; ทำให้บิตของข้อมูล ณ ตำแหน่งที่ b ของหน่วยความจำที่ I/O มี ค่าเป็นลอจิก '0'

SBI P,b ; ทำให้บิตของข้อมูล ณ ตำแหน่งที่ b ของหน่วยความจำที่ I/O มี ค่าเป็นลอจิก '1'

SBIC P,b ; ทำการตรวจสอบบิตของข้อมูล ณ ตำแหน่งที่ b ของ หน่วยความจำ I/O ถ้ามีค่าเป็นลอจิก '0' ให้ข้ามการประมวลผลไป 1 คำสั่ง

SBIS P,b ; ทำการตรวจสอบบิตของข้อมูล ณ ตำแหน่งที่ b ของหน่วยความจำ I/O ถ้ามีค่าเป็นลอจิก '1' ให้ข้ามการประมวลผลไป 1 คำสั่ง

Digital And Microcontroller

20

พื้นฐานไมโครคอนโทรลเลอร์

2.5 การเขียนโปรแกรมภาษาแอสเซมบลี

การเขียนโปรแกรมภาษาแอสเซมบลีประกอบด้วย 4 ส่วนหลัก ซึ่งแยกได้โดยใช้ปุ่ม Tab คือ

- ลาเบล (Label) ใช้ในการอ้างถึงบรรทัดใดบรรทัดหนึ่งของโปรแกรมที่ทำการเขียน ขึ้น โดยลาเบลจะต้องเขียนตามหลังด้วยเครื่องหมายโคล้อน ":"
- 2. รหัสน์โมนิก (Mnemonic) เป็นส่วนแสดงคำสั่งของไมโครคอนโทรลเลอร์ที่ต้องการ ให้กระทำ
- โอเปอร์แรนด์ (Operand) เป็นส่วนที่แสดงถึงตัวกระทำหรือถูกกระทำและข้อมูลที่ใช้ ในการกระทำตามคำสั่งที่กำหนดโดยรหัสน์โมนิกก่อนหน้านี้
- 4. คอมเมนต์ (Comment) เป็นส่วนที่ผู้เขียนโปรแกรมเขียนขึ้นเพื่อใช้ในการอธิบาย คำสั่งที่กระทำ หรือผลของการกระทำคำสั่งในบรรทัดหรือโปรแกรมย่อยนั้น ๆ โดยคอมเมนต์จะต้อง เขียนตามหลังด้วยเครื่องหมายเซมิโคล้อน ";" และการเขียนภาษาแอสเซมบส์ในแต่ละบรรทัดจะมี หรือไม่มีในส่วนคอมเมนต์ก็ได้

Digital And Microcontroller

21

พื้นฐานไมโครคอนโทรลเลอร์

ตารางที่ 1.3 แสดงตัวอย่างการแบ่งพื้นที่หน้ากระดาษในการเขียนโปรแกรมภาษาแอสเซมบลี

Label	Mnemonic	Operand	Comment
	ORG	0000H	
Start:	MOV	SP,#128-32	;Set Stack Address
	MOV	R2,#20	;R2 = 14H
	END		

Digital And Microcontroller

22

พื้นฐานไมโครคอนโทรลเลอร์ 3. การใช้งานขอฟต์แวร์เพื่อเขียนโปรแกรมภาษาแอสเขมบลีของไมโครคอนโทรลเลอร์ 3.1 การใช้งานโปรแกรม Keil แVision3 สำหรับเขียนโปรแกรมภาษาแอสเขมบลีของ ไมโครคอนโทรลเลอร์ตระกูล MCS51 วูปที่ 1.28 รูปแสดงโอคอนของโปรแกรม หลับ เป็นเปลดงโอคอนของโปรแกรม Keil uVision3

Digital And Microcontroller

