Intro to Analysis Homework 8

Zachary Meyner

1. Suppose f is continuous in [a,b] and f(c) > 0 for some $c \in (a,b)$. Then show that there exists an open interval for which f(x) > 0 on the interval.

Proof. Consider $\varepsilon = \frac{f(x)}{2} > 0$. Since f is continuous at x = c, $\exists \delta > 0$ s.t. $\forall x \in [a, b]$ with $0 < |x - c| < \delta$ with $|f(x) - f(c)| < \varepsilon = \frac{f(c)}{2}$. Consider the interval $(c - \delta, c + \delta)$. If $x \in (c - \delta, c + \delta)$

$$f(x) = f(c) - f(c) + f(x)$$

$$= f(c) - (f(c) + f(x))$$

$$\ge f(c) - |f(c) + f(x)|$$

$$\ge f(c) - \frac{f(c)}{2}$$

$$= \frac{f(c)}{2} > 0$$

- 2. Show that $f(x) = x^3 2x^2 3x + 1$ has at least one zero on [-1, 1] f(1) = 3 and f(-1) = -5, so by the Location of Roots Theorem $\exists c$ in the domain s.t. f(c) = 0.
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous function and suppose $f(x) \leq 0$ for all rational numbers. Prove that $f(x) \leq 0$ for all real numbers.

Proof. BMOC, suppose $\exists c \in \mathbb{R}$ s.t. f(c) > 0. Then by number 1 there is an open interval (a,b) for which f(x) > 0 $\forall x \in (a,b)$ with $c \in (a,b)$, but (a,b) is a nonempty, open interval, so $\exists d \in (a,b)$ s.t. $d \in \mathbb{Q}$. Thus f(d) > 0, this is a contraction, so c does not exists.

4. Consider $f(x) = \begin{cases} 3x^2 + 2 & x \neq 2 \\ 0 & x = 2 \end{cases}$. Prove that f is not continuous at x = 2. Consider $(x_n) = 2 + \frac{1}{n}$. Clearly $\lim_{n \to \infty} x_n = 2$. We know $(x_n) \neq 2 \ \forall n$ So $f(x_n) = 3(x_n)^2 + 2$, so $\lim_{n \to \infty} f(x_n) = 3(x_n) + 2 = 3(2)^2 + 2 = 14$. But $f(\lim_{n \to \infty} x_n) = f(2) = 0$. $14 \neq 0$ so this function is not continuous at x = 2.

5. Suppose $f, g : \mathbb{R} \to \mathbb{R}$ are both continuous functions. Show that 3f - 2g is a continuous function too.

Proof. Let $\varepsilon > 0$ be given, and let $c \in \mathbb{R}$.

Since f is continuous at c, $\exists \delta_f > 0$ s.t. $\forall x \in \mathbb{R}$ with $0 < |x - a| < \delta_f$

$$|f(x) - f(a)| < \frac{\varepsilon}{6}$$

Since g is continuous at c, $\exists \delta_g > 0$ s.t. $\forall x \in \mathbb{R}$ with $0 < |x - a| < \delta_g$

$$|g(x) - g(a)| < \frac{\varepsilon}{4}$$

Consider $\delta = \min(\delta_f, delta_q)$

Then $\forall x \in \mathbb{R}$ with $0 < |x - a| < \delta$

$$\begin{aligned} \left| (3f(x) - 2g(x)) - (3f(a) - 2g(a)) \right| &= \left| 3f(x) - 3f(a) + 2g(a) + 2g(x) \right| \\ &\leq 3|f(x) - f(a)| + 2|g(a) - g(x)| \\ &< \frac{3\varepsilon}{6} + \frac{2\varepsilon}{4} \\ &= \varepsilon \end{aligned}$$

- 6. For each statement, conclude if the statement is true because of Bolzano's Intermediate Value Theorem
 - (a) If f is a function satisfying that f(0) = 10 and f(8) = 2, then it must be that $\exists x \in (0,8)$ satisfying that f(x) = 5. We cannot conclude that $\exists x \in (0,8)$ satisfying f(x) = 5 because the function could be discontinuous.
 - (b) Suppose revenue can be modeled by a function R(x), where x is measured in thousands of units for units ranging from 0 to 20,000. Revenue for 2,000 units is known to be \$4500 and revenue for 3,000 units is known to be \$7200, but at no point in time was revenue \$5500. We can conclude therefore that the revenue function is not continuous.

If R is continuous then $\exists c$ where R(c) = 5500.

(c) If f is a continuous function satisfying that f(20) = 10 and f(8) = 2, then $\exists x \in (8, 20)$ satisfying f(x) = 15.

We can not make a conclustion on this because the known values for f(x) when $x \in (8,20)$ only guarantee that f(x) touches all the values in a range of at least (2,10).