

Index

- Problem Introduction
- Related Work
- Research Questions
- Methodology
- Experiments and Evaluation
- Conclusion

Problem Introduction

- Cardiovascular diseases, such as Atrial Fibrillation, are among the leading causes of death in the population, resulting in an increased demand for cardiac assessment
- Deep learning can be used to develop multi-classification models for arrhythmia detection and improve medical monitoring
- Today, much research and accurate models are available for simpler arrhythmia classification tasks, e.g. AFIB classification (binary) or grouped common arrhythmia types (i.e. AAMI standard)

Problem Introduction

- Problem: Professional treatment requires individual and detailed ECG assessment
- In recent years, Transformer models have gained considerable popularity due to the self-attention mechanism and research papers that apply Transformer models on less comprehensive ECG arrhythmia classification tasks show good results
- However, research and accurate models are limited on comprehensive arrhythmia detection tasks including Transformer models and rare subdiseases, such as Atrial Flutter, Premature Ventricular Contractions, Prolonged QT interval etc.

Related work: Classification of ECG Using Ensemble of Residual CNNs with Attention Mechanism

- Prop. by Nejedly et. al
- Winning paper of the Physionet 2021 challenge
- Achieves 58% accuracy on challenge metrics on all subtasks (2-, 3-, 4-, 6- and 12-leads) for multi-label classification of 26 classes
- Uses several residual CNN blocks in combination with attention (a single encoder-block)
- Specific designed loss function that incorparates class weights of Challenge evaluation metrics
- Authors show in a follow up study "Classification of ECG using ensemble of residual CNNs with or without attention mechanism" that the Multi-Head attention block does not improve model performance (model achieves 59% challenge score without)

Related work: ECGBERT: Understanding Hidden Language of ECGs with Self-Supervised Representation Learning

- Prop. by Choi et. al
- Based on BERT methodology: authors create own wave segment vocabular to tokenize ECGs, apply similar training approach (MLM) on model, which can be fine-tuned on multiple downstream tasks
- First, ECG signals are preprocessed (filtering etc.) and splitted by fiducial points
 - Segment vocabular is previously obtained from clustering ECG segments into 70 distinct clusters using K-mean and Dynamic Time Warping to train four classifiers for P, QRS, T and background wave clusters -> classifiers are trained based on extracted fiducial points from ECG segments resulting in 12 P, 19 QRS, 14 T and 25 background (e.g. PR or ST intervals) wave clusters
- Each segment is classified by the corresponding classifier and assigned to a specific wave cluster Classified wave segments are then mapped to tokens; authors do not describe how encoding of tokens look like (I assume these are random initialized embeddings, whether these are on top
- trainable parameters in the model is also not described in their paper)
- In addition, positional information (temporal) and CNN feature embeddings are added to tokens
- Authors reason that tokens can only provide general ECG context information, but CNN features
- provide refined pattern information; CNN features are extracted from raw ECG using an U-Net
- Based on this pipeline, the autors create training samples that form ECG sentences of wave
- segments, where each sentence contain 1-8 consecutive heartbeats (a heartbeat is composed of several wave segments)
- The sentence are then inputted to the Transformer-encoder module, where several sequences can be inputted which are splitted by a seperation "[SEP]" token
- Training data from Physionet.org: (AFIB/arrhythmia) MIT-BIH database and Apnea-ECG database
- Model is pre-trained using 15% masking (similar to Masked Language Modeling in LLMs)
- Several models are fine-tuned (at low cost using pre-trained model) on different downstream tasks by adapting/fine-tuning the output layers to: AFIB classification (binary), heartbeat classification (4 classes, AAMI standard), ECG patient verification and sleep apnea detection

Figure 2: Illustration of the proposed ECGBERT architecture

AFIB Model	Paradigm	Signal Length		Perform	ance	
ALID			Accuracy	Specificity	Sensitivity	PPV
Tuboly et al. [2021]	Intra-patient	60s	0.980	0.987	0.974	0.988
ResNet	Inter-patient	10s	0.884	0.951	0.846	0.969
Andersen et al. [2019]	Inter-patient	30 RRIs	0.978	0.989	0.969	0.957
Pereira and Andreão [2022]	Inter-patient	10	0.908	0.910	0.915	-
ECGBERT	Inter-patient	10s	0.973	0.976	0.970	0.981

Hearth	eat Predicted					I	Per-class Performance					
classifi	cation	N	S	V	Q	Accuracy	Specificity	Sensitivity	PPV			
True	N	38538	1483	1941	1119	0.86	0.45	0.89	0.94			
	\mathbf{S}	187	26	39	7	0.95	0.99	0.10	0.01			
	V	1778	201	1280	277	0.91	0.94	0.36	0.38			
	Q	451	77	25	2445	0.96	0.99	0.82	0.64			

Research Questions

- 1. How well does a Transformer-based model perform on the Physionet 2021 challenge data compared to a feature-based model or a Convolutional Network?
- 2. Can an ensemble of Transformer model and Convolutional Network effectively capture spatio-temporal information and improve accuracy?
- 3. Which model performs best at discriminating SR, AF, AFL, PAC and PVC on both datasets?
- 4. What are the challenges in transferring the pre-trained models from the Physionet 2021 challenge data to the MyDiagnostick database? Do the models generalise well, even though different ECG devices were used?

Methodology

Several models are compared:

- 1. Feature-based classifier (Biobss features)
- 2. Residual Convolutional Network
- 3. Standard Transformer Encoder
- 4. Convolutional Network + Attention
- 5. Ensemble of various models (use multiple models or AdaBoost)

Methodology: Transformer

- Developed model uses Multi-head attention block from Transformer encoder, since it is appropriate for classification tasks
- Decoder objective is generation, which uses cross-attention and adds masking to map input sequence to output sequence
- Multi-head attention block outputs same number of inputted embeddings as outputs, but enrichted with attention / contextualized

Outputted embeddings can then be feeded to a dense layer for

classification tasks

Mathematical background: Transformer

Figure 3.2: Scaled Dot-Product Attention

Figure 3.3: Multi-head attention

Methodology: Ensemble of models

- Can be different models
- Can be same model using different validation splits(+ AdaBoost?)

Experiments and Evaluation

- For all model training the Physionet 2021 challenge database will be used: https://physionet.org/content/challenge-2021/1.0.3/
- Experiments & evaluation will focus on two tasks:
 - 1. Physionet 2021 challenge database for training & evaluation (contains 26 classes annotations); models will be compared with other pariticipant models (https://moody-challenge.physionet.org/2021/results/) using the evaluation metrics (https://github.com/physionetchallenges/evaluation-2021)
 - 2. MyDiagnostick database (annotations contain 5 classes: SR, AF, AFL, PAC, PVC), is used for evaluation (not training) to evaluate the generalization of the transfered models from pre-training on the Physionet data
 - At the moment only single-lead (I) ECGs are used for training and evaluation, because the MyDiagnostick data only provides single-lead ECGs (I am not sure if I will be able to focus on multiple leads experiments in time)

Data: Physionet 2021 Challenge database

Dataset source	Average ECG length (seconds)	Data samples	
Ningbo database	10s	34,905	
PTB-XL database	10s	21,837	
Chapman-Shaoxing database	10s	10,247	
Georgia 12-lead challenge data	9s	10,344	
CPSC database	15s	6. 877	
CPSC-extra database	15s	3,453	
PTB database	110s	516	
INCART database	1800s	74	

- database is composed of several datasets
- contains about 89.000 12-lead ECGS with more than 100 arrhythmia type annotations

Physionet 2021 data distribution

Physionet 2021 challenge data distribution (subset)

• Official Physionet 2021 challenge uses a subset of 26 arrhythmia classes (4 classes are grouped, e.g. premature ventricular contractions PVC & ventricular premature beats VPB are treated as same class, PAC & SVPB as same, ...)

Evaluation: Training data

- Class balance not entirely possible, because samples are multi-label annotated
- Many Sinus Rhythm cases present, which are classified as both Sinus Rhythm and any minor class
- However, class balancing to some extend possible
- Unbalanced (image up), balanced (image down)

Evaluation: Test data

- I noticed that the challenge evaluation scores are highly depend on test data distribution, e.g. if Sinus Rhythm is downsampled in testset it highly affects the calculated challenge score
- Example: Above testset yielded for the same model a challenge score of 0.30, while below for same model (with less SR) only 0.05
- Reason: Challenge scores affected by metric weights and proportion of Sinus Rhythm samples

Evaluation: Test data

- Problem: Official Physionet 2021 challenge test dataset is private/withhold
- I tried to reach out to the Physionet 2021 challenge organisers to be able to access/evaluate the models on the official Physionet data

At the moment I created a testset from the training data

Evaluation: Test data

- I do not expect to get an answer from the Physionet organisers
- I expect a similar amount of Sinus Rhythm cases to be in the test set: 89k are public, (29k from 89k are Sinus Rhythm) and 36k (amount of Sinus Rhythm?) are privat samples
- <u>TODO</u>: Implement cross-validation to make challenge metrics to some extend comparable

Experimental results: Transformer

Input shape	Positional encoding	Encoder blocks	Heads	qkv dim	ff dim	Dropout	Trainable param.	Accuracy	Precision	Recall	F1
(40, 50)	True	1	1	25	24	0.1	155.375	0.096	0.514	0.120	0.194
(40, 50)	True	1	1	25	24	0.4	155.375	0.065	0.418	0.083	0.139
(40, 50)	True	8	1	25	24	0.1	878.818	0.061	0.579	0.079	0.139
(40, 50)	True	8	1	25	24	0.4	878.818	0.098	0.592	0.122	0.203
(40, 50)	False	1	1	25	24	0.1	155.375	0.227	0.747	0.25	0.374
(40, 50)	False	1	1	25	24	0.4	155.375	0.224	0.742	0.253	0.378
(40, 50)	False	8	1	25	24	0.1	878.818	0.228	0.765	0.261	0.389
(40, 50)	False	8	1	25	24	0.4	878.818	0.226	0.737	0.255	0.379
(10, 200)	False	8	1	25	24	0.1	1.004.818	0.160	0.744	0.174	0.283
(10, 200)	False	8	8	25	24	0.1	2.129.018	0.177	0.709	0.197	0.308
(40, 50)	False	8	8	400	24	0.1	6.035.018	0.223	0.762	0.247	0.374
(40, 50)	False	8	8	25	2048	0.1	65.947.210	0.219	0.740	0.257	0.382
(40, 50)	False	8	8	400	2048	0.1	70.819.210	0.226	0.751	0.257	0.383
(40, 50)	False	8	8	400	2048	0.4	70.819.210	0.245	0.739	0.286	0.413

Table 4.2: Physionet 2021 train/test split model comparison

Testing standard Transformer encoder model on the Physionet data (gridsearch)

Experimental results: Physionet 2021 metrics

Model	Accuracy	Precision	Recall	F-measure
Random Forest (Biobss features)	0.272	0.800	0.291	0.427
Residual CNN	0.392	0.839	0.505	0.63
Standard Transformer Encoder*	0.238	0.733	0.280	0.406
CNN + Attention	0.272	0.768	0.330	0.462
Wavelet + CNN + Attention	0	0	0	0
$\begin{array}{c} {\rm Spectogram} + {\rm CNN} \\ + {\rm Attention} \end{array}$	0	0	0	0
Ensemble of Transformer (AdaBoost)	0	0	0	0
Ensemble of various Models	0	0	0	0

Table 4.3:	Physionet 2021	train/test sp	lit model	comparison

Model	AUROC	AUPRC	Accuracy	F-measure	Challenge metric
Random Forest (Biobss features)	0.554	0.146	0.272	0.137	0.073
Residual CNN	0.895	0.477	0.392	0.359	0.376
Standard Transformer Encoder*	0.740	0.246	0.238	0.163	0.055
CNN + Attention	0.797	0.278	0.272	0.162	0.140
Wavelet + CNN + Attention	0	0	0	0	0
Spectogram + CNN + Attention	0	0	0	0	0
Ensemble of Transformer (AdaBoost)	0	0	0	0	0
Ensemble of various Models	0	0	0	0	0

Table 4.4: Physionet 2021 challenge metric scores model comparison

- * Input dimension: (40, 50), Positional encoding: False, Encoder blocks: 8, Heads: 1, qkv_dim: 25, ff_dim: 24 (~1mio.t.p.)
- Different models compared on Physionet data (26 classes) using train-test split (no cross-validation yet)
- Averages from all classes: accuracy, precision, recall f-measure (left)
- Physionets 2021 offical challenge metric evaluation (right)

Experimental results: Residual CNN confusion matrix

- Multi-label classification problem turned into multiclassification problem
- Residual CNN from different runs, predicted on 100 test samples for each class

Experimental results: Residual CNN confusion matrix

Experimental results: MyDiagnostick data (todo)

Experimental results: MyDiagnostick data (todo)

Next

- Continue on thesis writing, evaluation and answer research questions in thesis
- Work on own approach (including own graphs)
- Stick to plan

