CoronaSV Group 3

CoronaSV team

- Daniel Agustinho (Washington University in St Louis School of Medicine, MO)
- Yunxi Liu (Rice University, Houston, TX)
- Todd Treangen (Rice University, Houston, TX)
- Daniela Soto (UC Davis, Davis, CA)
- Shangzhe Zhang (Lanzhou University, Lanzhou, China)
- Max Marin (Harvard Medical School, Boston, MA)
- Arda Söylev (Konya Food and Agriculture University, Turkey)

Background

Research | Open Access | Published: 31 August 2020

Emerging of a SARS-CoV-2 viral strain with a deletion in nsp1

Journal of Translational Medicine 18, Article number: 329 (2020) | Cite this article

ARTICLES | VOLUME 396, ISSUE 10251, P603-611, AUGUST 29, 2020

| VOLUME 396, ISSUE 10251, P603-611, AUGUST 29, 2020

| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020

| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020

| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE 10251, P603-611, AUGUST 29, 2020
| Volume 396, ISSUE

Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into

Adrian Viehweger, ^{1,2,5} Sebastian Krautwurst, ^{1,2,5} Kevin Lamkiewicz, ^{1,2} Ramakanth Madhugiri, ³ John Ziebuhr, ^{2,3} Martin Hölzer, ^{1,2} and Manja Marz^{1,2,4}

structural variants and enables modification analysis

Verified the 382 bp deletion of ORF8 (Based on available public assembly)

- We have observed discordant results across low frequency single nucleotide variant (SNV) calls for SARS-CoV-2
- Our hypothesis is that we will see similar (if not stronger) discordance for SV calls for SARS-CoV-2 given its complex transcriptional landscape and varying sequencing strategies and biases
- We will test this hypothesis by combining short read variant calling + long read variant calling + assembly based variant calling and using SURVIVOR to see which SVs "survive"

CoronaSV

Dataset description

- A set of 45 isolates with paired Illumina & ONT sequencing data
- 139 SRA sequencing runs (86 Ilumina, 52 ONT)
- Raw reads were trimmed and filtered in the pre-processing step
 - Trimmomatic for short reads with universal adapters
 - NanoFilt for long reads

Links from BioSample

Items: 2

- Illumina NovaSeg 6000 paired end sequencing
- 1 ILLUMINA (Illumina NovaSeq 6000) run: 29.4M spots, 8.9G bases, 2.6Gb downloads Accession: ERX4136993
- GridION sequencing
- 1 OXFORD_NANOPORE (GridION) run: 1.2M spots, 592.3M bases, 536.8Mb downloads Accession: ERX4136994

Metadata

CoronaSV_metadata ☆ 🔥 🛆 Ħ

	BioProject	MATERIAL CONTRACTOR						
2		SRA_Study	Run	Experiment	BioSample	SRA_Sample	Assay_Type	F
	PRJEB33797	ERP116617	ERR3460958	ERX3482709	SAMEA5841278	ERS3629828	RNA-Seq	1
3	PRJEB33797	ERP116617	ERR3460959	ERX3482710	SAMEA5841279	ERS3629829	RNA-Seq	1
1	PRJEB33797	ERP116617	ERR3460960	ERX3482711	SAMEA5841280	ERS3629830	RNA-Seq	11
5	PRJEB33797	ERP116617	ERR3460961	ERX3482712	SAMEA5841281	-	RNA-Seq	C
3	PRJEB33797	ERP116617	ERR3460962	ERX3482713	SAMEA5841282		RNA-Seq	C
7	PRJEB38459	ERP121890	ERR4173381	ERX4136993	SAMEA6853602	ERS4581192	RNA-Seq	IL
3	PRJEB38459	ERP121890	ERR4173382	ERX4136994	SAMEA6853602	ERS4581192	AMPLICON	C
9	PRJNA607948	SRP250294	SRR11140744	SRX7777166	SAMN14154205	SRS6189924	WGS	it
0	PRJNA607948	SRP250294	SRR11140745	SRX7777165	SAMN14154204	SRS6189920	WGS	C
1	PRJNA607948	SRP250294	SRR11140746	SRX7777164	SAMN14154203	SRS6189919	WGS	IL
2	PRJNA607948	SRP250294	SRR11140747	SRX7777163	SAMN14154202	SRS6189917	WGS	C
3	PRJNA607948	SRP250294	SRR11140748	SRX7777162	SAMN14154201	SRS6189918	WGS	IL
4	PRJNA607948	SRP250294	SRR11140749	SRX7777161	SAMN14154200	SRS6189916	WGS	C
5	PRJNA607948	SRP250294	SRR11140750	SRX7777160	SAMN14154199	SRS6189914	WGS	IL
6	PRJNA607948	SRP250294	SRR11140751	SRX7777159	SAMN14154198	SRS6189915	WGS	C
7	PRJNA616147	SRP254488	SRR11445485	SRX8023307	SAMN14483190	SRS6395996	AMPLICON	C
8	PRJNA616147	SRP254488	SRR11445486	SRX8023306	SAMN14483189	SRS6395995	AMPLICON	C
9	PRJNA616147	SRP254488	SRR11514749	SRX8086361	SAMN14483190	SRS6395996	AMPLICON	IL
0	PRJNA616147	SRP254488	SRR11514750	SRX8086360	SAMN14483189	SRS6395995	AMPLICON	Ш
1	PRJNA616147	SRP254488	SRR11542243	SRX8112342	SAMN14596409	SRS6477428	AMPLICON	IL

IGV SURVIVOR

Next steps

- Finalize individual pipelines (short read, long read, assembly based)
- Finalize SURVIVOR integration
- Explore adding Trinity/transcript assembler for tracking canonical and noncanonical junctions
- Integrate everything into a single snakemake workflow
- Run CoronaSV on 100s of samples and analyze results

and...

Win awesome prize!