

Redes Neuronales Convolucionales y Recurrentes para el Análisis de Electromiogramas del Aparato Bucal de Vinchucas

Sistema para el registro de datos

Variables que pueden medirse a partir de los Electromiogramas

- a. Número de veces que el insecto pica
- b. Tiempo de cada evento de picado
- c. Tiempo de bombeo
- d. Tiempo de no-picado
- e. Número de bombeos totales
- f. Frecuencia de bombeo (durante c)
- g. Amplitud media de bombeo

Definir intervalos temporales de interés

Los intervalos temporales donde se miden estas variables se definen manualmente.

El objetivo consiste en elaborar un modelo de red neuronal capaz de reconocer dos clases:

Ausencia de Picos

Presencia de Picos

El problema de clasificación

Automatizar el proceso de detección inicio/fin de región de interés (con picos).

Distinguir regiones sin pico de regiones con pico.

Sin pico: el insecto no está comiendo.

Con pico: el insecto está comiendo (región de interés).

Preprocesamiento de la señal

Eliminar ruido, estimar la línea basal de la señal y corregir su deriva mediante el algoritmo BEADS (Baseline Estimation and Denoising with Sparsity).

Preproceso de las series por BEADS¹

http://www.laurent-duval.eu/
siva-beads-baseline-background-removal-filtering-sparsity.html

División de la señal en ventanas temporales de 0.5 y 1 segundo de duración

Partición en ventanas para clasificar

Se parte la serie en ventanas, cada una clasificada Sí/No región de interés.

Luego a la primera Sí: inicio región de interés A la primera No: fin región de interés

Primeras redes

Redes convolucionales con estas arquitecturas:

- Input: ventanas de 6 seg. O sea seriel temporal 1D de 1500 datos (250 Hz).
- Convolucional 1D de 5x60 (stride=1 o 2, padding=20)
- ► ReLu
- Convolucional 1D de 10x30 (stride=1, padding=10)
- Max Pooling de 4 o de 2
- ► ReLu
- FC de 1830 a 300 (luego tanh)
- Prueba agregando FC a 300/400
- ► FC de 300 a Sí/No

Accuracy de aprox. 90-92 %.

Segundas redes: algo más profundas

Una red convolucional con esta arquitectura:

- Input: ventanas de 6 seg. O sea seriel temporal 1D de 1500 datos (250 Hz).
- Convolucional 1D de 5x60 (stride=1, padding=30)
- ReLu
- Convolucional 1D de 10x30 (stride=2, padding=20)
- Max Pooling de 2
- ReLu
- Convolucional 1D de 20x15 (stride=2, padding=30)
- Max Pooling de 2
- ReLu
- FC de 580 a 300 (luego tanh)
- FC de 300 a 100 (luego tanh)
- ► FC de 100 a Sí/No

Accuracy de aprox. 93-94 %.

Terceras redes: con ventanas de 1 seg.

Una red convolucional con esta arquitectura:

- Input: ventanas de 1 seg. O sea seriel temporal 1D de 250 datos (250 Hz).
- Convolucional 1D de 5x60 (stride=1, padding=30)
- ReLu
- Convolucional 1D de 10x30 (stride=2, padding=30)
- Max Pooling de 2
- ReLu
- Convolucional 1D de 20x15 (stride=2, padding=30)
- Max Pooling de 2
- ► ReLu
- FC de 580 a 300 (luego tanh)
- ► FC de 300 a 100 (luego tanh)
- ► FC de 100 a Sí/No

Accuracy de aprox. 94 %.

Terceras redes: con ventanas de 1 seg.

Ídem antes, ahora normalizando los datos Accuracy de aprox. 95-96 %.

Cuarta red: con las FFTs de las ventanas de 1 seg.

Prueba rápida anoche:

- Input: FFTs de las ventanas de 1 seg.
- Convolucional 1D de 5x60 (stride=1, padding=30)
- ReLu
- Convolucional 1D de 10x30 (stride=2, padding=30)
- ► Max Pooling de 2
- ► ReLu
- Convolucional 1D de 20x15 (stride=2, padding=30)
- ► Max Pooling de 2
- ► ReLu
- FC de 580 a 100 (luego tanh)
- FC de 100 a Sí/No

Accuracy de aprox. 91-92 %.

Otro Modelo de Red Convolucional

Stack de 4 bloques

Input Data

Dilated Convolution Layer

Instance Normalization

RELU

Spatial Dropout

Dilated Convolution Layer

Instance Normalization

RELU

Spatial Dropout

Addition

Input Data

+

Output Data

Número de filtros:

175

Tamaño del filtro:

3

Stride: 1

Classes: 2

Fully Connected Layer

Otro Modelo de Red Convolucional

Dilated Convolution Layer $\longrightarrow R = (f-1)(2^k-1) + 1$

R = Padding

Formato de los datos de entrada en el dominio temporal

Resultados

Ventana sin picos

Ventana con picos

Accuracy: 0.9644

Resultados

Aplicando la transformada de Fourier a las filas

Ventana con picos

Ventana con picos

Accuracy: 0.9523

Modelo de Red Recurrente

Input Data

LSTM Layer

Instance Normalization

Fully Connected

Softmax Layer

Classification Layer

Número de Unidades Ocultas: 100

Resultados

Accuracy: 0.9300

Conclusiones y pasos futuros:

- Probar otras Recurrentes.
- Input con series temporal + FFTs.
- Ensambles.
- Barrer el tamaño de la ventana más exahustivamente.
- Barrer tamaño de batch más exahustivamente.

¡GRACIAS!