Due: Feb 11th

- 1. If $A = \{a + a^{-1} : a > 0\}$, then find inf A and min A. Prove your answers (which may be that it doesn't exist) are correct.
- 2. Suppose that S and T are bounded nonempty subsets of \mathbb{R} .
 - (a) If $S \subseteq T$, prove that $\inf T \leq \inf S \leq \sup S \leq \sup T$.
 - (b) Prove that $\sup(S \cup T) = \max\{\sup S, \sup T\}$. (Do not assume S is a subset of T.)
 - (c) Find a formula expressing $\inf(S \cup T)$ in terms of $\inf S$ and $\inf T$. You do **not** need to prove it is correct.
- 3. Let S and T be nonempty subsets of \mathbb{R} with the following property: $s \leq t$ for all $s \in S$ and all $t \in T$.
 - (a) Observe that S is bounded above and T is bounded below.
 - (b) Prove that $\sup S \leq \inf T$.
 - (c) Give an example of such sets S and T where $S \cap T$ is nonempty.
 - (d) Give an example of such sets S and T where $S \cap T = \emptyset$ and $\sup S = \inf T$.
- 4. Let \mathbb{I} be the set of all irrational numbers, i.e., all real numbers that are not rational numbers. Prove that if $a, b \in \mathbb{R}$ and a < b, then there is $x \in \mathbb{I}$ with

$$a < x < b$$
.

Hint: First show that $\{r + \sqrt{2} : r \in \mathbb{Q}\} \subseteq \mathbb{I}$. You may assume $\sqrt{2} \in \mathbb{I}$.

- 5. Let A and B be nonempty bounded subsets of \mathbb{R} . If S is the set of all sums a+b where $a \in A$ and $b \in B$, then prove the following:
 - (a) $\sup S = \sup A + \sup B$, and
 - (b) $\inf S = \inf A + \inf B$.
- 6. Extra Credit: If A is a nonempty subset of \mathbb{R} , we call b an **almost upper bound** for A if there are only **finitely** many numbers $a \in A$ with $a \geq b$.
 - (a) Find all almost upper bounds for each of $\{n/(n+1) : n \in \mathbb{N}\}$ and $\{1/n : n \in \mathbb{N}\}$.
 - (b) If A is a bounded infinite set, prove that the set of all almost upper bounds is nonempty and bounded below.
 - (c) Find an infinite subset of \mathbb{R} so that the set of all almost upper bounds is \mathbb{R} .