第4回 多変量分布と統計的推測に必要な分布(3.3, 3.5)

村澤 康友

2024年4月30日

今日のポイント

1.	(X,Y) の同時 cdf は $F_{X,Y}(x,y)$:=
	$\Pr[X \leq x, Y \leq y]$. X または Y のみの
	cdf を周辺 cdf という. (X,Y) の同時 pmf
	$l \sharp p_{X,Y}(x,y) := \Pr[X = x, Y = y]. X$
	または Y のみの pmf を周辺 pmf という.
	多重積分すると同時 cdf が得られる関数
	(同時 cdf の交差偏導関数)を同時 pdf と
	いう.

- 2. g(X,Y) の期待値は,離散なら $\sum_{x}\sum_{y}g(x,y)p_{X,Y}(x,y)$, 連 続 な $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X,Y}(x, y) dx dy.$ X と Y の共分散は cov(X,Y) := E((X - E(X))(Y - E(Y))). 標準化した 確率変数の共分散を相関係数という.
- $3. \ Y = y$ が与えられたときの X の 条件つき pdf は $f_{X|Y}(x|Y = y) :=$ $f_{X,Y}(x,y)/f_Y(y)$. Y = y が与えら れたときの X の条件つき期待値は $\int_{-\infty}^{\infty} x f_{X|Y}(x|Y = y) dx. \quad f_{X|Y}(x|Y = y) dx$ $y) = f_X(x)$ なら X と Y は独立という.
- 4. 測定誤差は正規分布にしたがう. 正規分 布の線形変換も正規分布であり、標準化し た正規分布を標準正規分布という.
- 5. $Z_1, \ldots, Z_n \sim N(0,1)$ が独立のとき、 $Z_1^2 +$ $\cdots + Z_n^2 \sim \chi^2(n)$. $Z \sim N(0,1) \geq X \sim$ $\chi^2(n)$ が独立のとき, $Z/\sqrt{X/n} \sim \mathrm{t}(n)$. $U \sim \chi^2(m)$ と $V \sim \chi^2(n)$ が独立のとき, $(U/m)/(V/n) \sim F(m, n)$.

目次

1	同時分布と周辺分布	1	
1.1	累積分布関数(p. 62)	1	
1.2	確率質量関数(p. 50)	2	
1.3	確率密度関数 (p. 62)	2	
•	1± -	_	
2	積率	2	
2.1	期待値	2	
2.2	共分散 (p. 50)	2	
2.3	相関係数(p. 51)	2	
3	条件つき分布と確率変数の独立性	3	
3.1	条件つき分布(p. 54)	3	
3.2	確率変数の独立性(p. 52)	3	
4	統計的推測に必要な分布	4	
4.1		4	
4.2	•	_	
	/t · · · · · · · · · · · · · · · · · · ·	4	
4.3		5	
4.4	F 分布(p. 70)	5	
5	今日のキーワード	5	
	16 To 16 To 16 West	_	
6	次回までの準備	5	
1 同時分布と周辺分布			
11 関	精分布関数 (n. 62)		

(X,Y) を確率ベクトルとする.

定義 1. (X,Y) の同時 (結合) cdf は, 任意の (x,y)について

 $F_{X,Y}(x,y) := \Pr[X \le x, Y \le y]$

定義 2. X の周辺 cdf は、任意の x について

$$F_X(x) := \Pr[X \le x]$$

注 1. 同時 cdf と周辺 cdf の関係は

$$F_X(x) := \Pr[X \le x]$$

$$= \Pr[X \le x, Y < \infty]$$

$$= F_{X,Y}(x, \infty)$$

1.2 確率質量関数 (p. 50)

(X,Y) を離散確率ベクトルとする.

定義 3. (X,Y) の同時 (結合) pmf は、任意の (x,y) について

$$p_{X,Y}(x,y) := \Pr[X = x, Y = y]$$

定義 4. X の周辺 pmf は、任意の x について

$$p_X(x) := \Pr[X = x]$$

注 2. 同時 pmf と周辺 pmf の関係は

$$p_X(x) = \sum_{y} p_{X,Y}(x,y)$$

1.3 確率密度関数 (p. 62)

(X,Y) を連続確率ベクトルとする.

定義 5. 任意の (x,y) について

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(s,t) \,\mathrm{d}s \,\mathrm{d}t$$

となる $f_{X,Y}(.,.)$ を (X,Y) の同時(結合) pdf という.

注 3. 任意の a,b,c,d について

$$\Pr[a < X \le b, c < Y \le d]$$

$$= \int_{a}^{d} \int_{a}^{b} f_{X,Y}(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

注 4. F_{X,Y}(.,.) が微分可能なら

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}}{\partial x \partial y}(x,y)$$

定義 6. X の周辺 pdf は、任意の x について

$$f_X(x) := \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}y$$

2 積率

2.1 期待値

定義 7. g(X,Y) の期待値は

E(g(X,Y))

$$:= \begin{cases} \sum_{x} \sum_{y} g(x, y) p_{X,Y}(x, y) & (\text{#th}) \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X,Y}(x, y) \, \mathrm{d}x \, \mathrm{d}y & (\text{#th}) \end{cases}$$

定理 1 (期待値の線形性).

$$E(aX + bY) = aE(X) + bE(Y)$$

証明.復習テスト.

2.2 共分散 (p. 50)

定義 8. X と Y の共分散は

$$cov(X, Y) := E((X - E(X))(Y - E(Y)))$$

注 5. σ_{XV} と表す.

注 6. X が大きいと Y も大きいなら共分散は正, X が大きいと Y は小さいなら共分散は負.

定理 2.

$$cov(X, Y) = E(XY) - E(X)E(Y)$$

証明.復習テスト.

定理 3.

$$var(aX + bY) = a^{2} var(X) + 2ab cov(X, Y)$$
$$+ b^{2} var(Y)$$

証明.復習テスト.

2.3 相関係数 (p. 51)

定義 9. 確率変数から平均を引き標準偏差で割る変換を**標準化**という.

注 7. 式で表すと

$$Z := \frac{X - \mu_X}{\sigma_X}$$

E(Z) = 0, var(Z) = 1 となる.

定義 10. 標準化した確率変数の共分散を相関係 数という. 注 8. X と Y の関係の強さを表す.

注 9. ρ_{XY} と表す. すなわち

$$\begin{split} \rho_{XY} &:= \operatorname{cov}\left(\frac{X - \mu_X}{\sigma_X}, \frac{Y - \mu_Y}{\sigma_Y}\right) \\ &= \operatorname{E}\left(\frac{X - \mu_X}{\sigma_X} \frac{Y - \mu_Y}{\sigma_Y}\right) \\ &= \frac{\operatorname{E}((X - \mu_X)(Y - \mu_Y))}{\sigma_X \sigma_Y} \\ &= \frac{\sigma_{XY}}{\sigma_X \sigma_Y} \end{split}$$

定義 11. $\rho_{XY} = 0$ なら X と Y は無相関という.

定理 4 (コーシー=シュワルツの不等式).

$$|\cos(X,Y)| \le var(X)^{1/2} var(Y)^{1/2}$$

証明. 省略.

系 1.

$$|\rho_{XY}| \leq 1$$

3 条件つき分布と確率変数の独立性

3.1 条件つき分布 (p. 54)

定義 12. $Y \le y$ が与えられたときの X の条件つき cdf は、任意の x について

$$F_{X|Y}(x|Y \le y) := \frac{F_{X,Y}(x,y)}{F_Y(y)}$$

注 10. 条件つき確率で定義する.

定義 13. Y = y が与えられたときの X の条件つき pmf は、任意の x について

$$p_{X|Y}(x|Y=y) := \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

定義 14. Y = y が与えられたときの X の条件つき pdf は、任意の x について

$$f_{X|Y}(x|Y=y) := \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

注 11. 条件つき確率と同様に定義する.

定義 15. Y = y が与えられたときの X の条件つき期待値は

定義 16. Y = y が与えられたときの X の条件つき分散は

$$\operatorname{var}(X|Y=y) := \operatorname{E}\left((X - \operatorname{E}(X|Y=y))^2|Y=y\right)$$

定理 5 (繰り返し期待値の法則).

$$E(E(X|Y)) = E(X)$$

証明.復習テスト.

3.2 確率変数の独立性 (p. 52)

定義 17. 任意の (x,y) について

$$f_{X|Y}(x|Y=y) = f_X(x)$$

ならXとYは**独立**という.

注 12. 条件つき pdf の定義より

$$f_{X|Y}(x|Y=y) = f_X(x)$$

$$\iff f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

定義 18. 任意の (x_1,\ldots,x_n) について

$$f_{X_1,...,X_n}(x_1,...,x_n) = f_{X_1}(x_1) \cdots f_{X_n}(x_n)$$

なら X_1, \ldots, X_n は**独立**という.

注 13. cdf で定義してもよい.

定理 6. X と Y が独立なら,任意の f(.) と g(.) に ついて

$$E(f(X)g(Y)) = E(f(X)) E(g(Y))$$

証明.(X,Y)が連続なら

$$\begin{split} & \mathrm{E}(f(X)g(Y)) \\ & := \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x)g(y)f_{X,Y}(x,y) \,\mathrm{d}x \,\mathrm{d}y \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x)g(y)f_{X}(x)f_{Y}(y) \,\mathrm{d}x \,\mathrm{d}y \\ & = \int_{-\infty}^{\infty} f(x)f_{X}(x) \,\mathrm{d}x \int_{-\infty}^{\infty} g(y)f_{Y}(y) \,\mathrm{d}y \\ & = \mathrm{E}(f(X)) \,\mathrm{E}(g(Y)) \end{split}$$

離散の場合も同様.

系 2. XとYが独立なら

$$cov(X, Y) = 0$$

証明.復習テスト.

注 14. すなわち独立なら無相関. 逆は必ずしも成立しない.

4 統計的推測に必要な分布

4.1 正規分布 (p. 64)

定義 **19.** 正規分布の pdf は

$$f(x) := \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right)$$

注 15. N (μ, σ^2) と書く.

例 1. 測定誤差,標本平均(中心極限定理).

定義 20. N(0,1) を標準正規分布という.

注 16. N(0,1) の cdf を Φ (.), pdf を ϕ (.) で表す. すなわち

$$\phi(x) := \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

$$\Phi(x) := \int_{-\pi}^{x} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz$$

例 2. N(0,1) の cdf と pdf は図 1 の通り.

定理 7. $X \sim N(\mu, \sigma^2)$ なら

$$E(X) = \mu$$
$$var(X) = \sigma^2$$

証明. 省略.

定理 8. $X \sim N(\mu, \sigma^2)$ なら

$$aX + b \sim N(a\mu + b, a^2\sigma^2)$$

証明. 省略.

系 3. $X \sim N(\mu, \sigma^2)$ なら

$$\frac{X-\mu}{\sigma} \sim N(0,1)$$

証明. 前の定理で $a:=1/\sigma$, $b:=-\mu/\sigma$ とする.

注 17. したがって $X \sim \mathcal{N}\left(\mu,\sigma^2\right)$ の累積確率は標準正規分布表から求まる. すなわち

$$F_X(x) := \Pr[X \le x]$$

$$= \Pr\left[\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right]$$

$$= \Phi\left(\frac{x - \mu}{\sigma}\right)$$

ただし $\Phi(.)$ でなく $Q(.) := 1 - \Phi(.)$ の表の場合も多い.

例 3. $X \sim N(1,9)$ について $\Pr[X \le 2]$ を求める. $(X-1)/3 \sim N(0,1)$ より

$$\Pr[X \le 2] = \Pr\left[\frac{X - 1}{3} \le \frac{2 - 1}{3}\right]$$
$$= \Phi\left(\frac{1}{3}\right)$$
$$= 1 - Q\left(\frac{1}{3}\right)$$
$$= 1 - .3707$$
$$= .6293$$

4.2 χ^2 分布 (p. 67)

定義 21. $Z_1, \ldots, Z_n \sim N(0,1)$ が独立のとき $Z_1^2 + \cdots + Z_n^2$ の分布を自由度 n の χ^2 分布という.

注 18. $\chi^2(n)$ と書く.

注 19. 累積確率は χ^2 分布表を参照.

例 4. $\chi^2(n)$ の pdf の例は図 2 の通り.

定理 9. $X \sim \chi^2(n)$ なら

$$E(X) = n$$

証明. $X = Z_1^2 + \cdots + Z_n^2$ とすると

$$E(X) = E(Z_1^2 + \dots + Z_n^2)$$

$$= E(Z_1^2) + \dots + E(Z_n^2)$$

$$= var(Z_1) + \dots + var(Z_n)$$

$$= n$$

図 1 N(0,1) の cdf と pdf

4.3 t 分布 (p. 69)

定義 22. $Z \sim N(0,1)$ と $X \sim \chi^2(n)$ が独立のとき $Z/\sqrt{X/n}$ の分布を自由度 n の t 分布という.

注 20. t(n) と書く.

注 21. 累積確率は t 分布表を参照.

注 22. t(1) はコーシー分布, $t(\infty)$ は N(0,1).

例 5. t(n) の pdf の例は図 3 の通り.

4.4 F 分布 (p. 70)

定義 23. $U \sim \chi^2(m)$ と $V \sim \chi^2(n)$ が独立のとき (U/m)/(V/n) の分布を自由度 (m,n) の F 分布という.

注 23. F(m,n) と書く.

注 24. 累積確率は F 分布表を参照.

注 25. $X \sim F(m,n)$ なら $1/X \sim F(n,m)$.

注 26. $t \sim t(n)$ なら $t^2 \sim F(1, n)$.

例 6. F 分布の pdf の例は図 4 の通り.

5 今日のキーワード

同時(結合) cdf, 周辺 cdf, 同時(結合) pmf, 周辺 pmf, 同時(結合) pdf, 周辺 pdf, 期待值, 共分

散,標準化,相関係数,無相関,条件つき cdf,条件 つき pmf,条件つき pdf,条件つき期待値,条件つき分散,繰り返し期待値の法則,独立,正規分布,標準正規分布, χ^2 分布,t分布,F分布

6 次回までの準備

提出 宿題 2

復習 教科書第3章3,5節,復習テスト4

予習 教科書第4章

図 2 $\chi^2(n)$ の pdf の例

図 3 t(n) の pdf の例

図4 F分布の pdf の例