Lecture #19 String Matching (2)

Algorithm
JBNU
Jinhong Jung

In This Lecture

■ We previously study the following

- String matching problem
 - Let's match a pattern P of length m in a document A of length n
- Naïve algorithm
 - \circ Takes O(mn) time
- Rabin-Karp algorithm
 - \circ Takes O(m + Fn) time where F is # of that fingerprints are hit
 - Average case time: O(n)
 - Worst case time: O(mn)

☐ More efficient algorithm for string matching

Automata algorithm

Outline

☐ Intuition for automata algorithm

☐ String matching automata

☐ Search phase in automata algorithm

☐ Automata construction phase

☐ How can we improve the naïve algorithm?

 Consider the following situation where P is not matched with the sub-string of A

☐ How can we improve the naïve algorithm?

Then, the naïve algorithm keeps searching next as the following:

☐ How can we improve the naïve algorithm?

Note that the front (prefix) of P can be partially matched with the rear (suffix) of the sub-string of A.

☐ How can we improve the naïve algorithm?

Using this information, we can skip Steps 2, 3, & 4 and jump to Step 5!

Outline

☐ Intuition for automata algorithm

☐ String matching automata

☐ Search phase in automata algorithm

☐ Table construction phase in automata algorithm

String Matching Automata (1)

- □ A directed graph represents procedures of matching a pattern string
 - A node is a state while matching the pattern.
 - An edge is a transition from state to state given a label.
 - For other labels not given in the edge, go back to State 0.
 - Example of an automata of pattern "ababaca"
 - State 0: nothing is matched & Final state: "ababaca" is matched
 - State 1: "a" is matched & State 3: "aba" is matched

String Matching Automata (2)

☐ Automata knows how to handle "not-matched"

- Do not need to do match from scratch (can jump!)
- For example, suppose we are currently at State 5 for the pattern "ababaca", and the next A[i] is "b"

String Matching Automata (3)

☐ Automata knows how to handle "not-matched"

- Do not need to do match from scratch
- By going back State 4 with "b", we can resume matching after "abab"!

Automata Algorithm

■ Phases of Automata Algorithm

- Automata construction phase
 - Construct the automata from the pattern string P
- Search phase
 - \circ Match the pattern P over the document string A with the automata

 For convenience, let's first check the searching phase assuming a valid automata is given

After then, let's check how to construct the automata

Outline

☐ Intuition for automata algorithm

☐ String matching automata

☐ Search phase with automata

☐ Automata construction phase

Search Phase with Automata (1)

\square Initially, start at A[1] and State 0

■ No edge with label "t" at State 0 ⇒ Move to State 0

Search Phase with Automata (2)

☐ Given label "a" at State 0, move to State 1

Meaning "a" is matched

Search Phase with Automata (3)

☐ No edge with label "c" at State 1, go back to State 0

Search Phase with Automata (4)

☐ Given label "a" at State 0, move to State 1

Meaning "a" is matched

Search Phase with Automata (5)

☐ Given label "b" at State 1, move to State 2

Meaning "ab" is matched

Search Phase with Automata (6)

☐ Given label "a" at State 2, move to State 3

Meaning "aba" is matched

Search Phase with Automata (7)

☐ Given label "b" at State 3, move to State 4

Meaning "abab" is matched

Search Phase with Automata (8)

☐ Given label "a" at State 4, move to State 5

Meaning "ababa" is matched

Search Phase with Automata (9)

☐ Now "b" is given at State 5

Meaning not-matched event occurs here!

Search Phase with Automata (10)

☐ Then, move to State 4 given label "b"

Going back State 4 means we can resume from "abab"

Search Phase with Automata (11)

☐ Given label "a" at State 4, move to State 5

b A:b b a a a a a a 0 p t b b C a a a a b **Final** Initial

Input pattern:

"ababaca"

Search Phase with Automata (12)

☐ Given label "c" at State 5, move to State 6

"ababaca" b A:b a a a a b a C a 0 p t b b a a C a a a **Final** Initial

Input pattern:

Search Phase with Automata (13)

☐ Given label "a" at State 6, move to State 7

At the final state, the pattern is matched!

Search Phase with Automata (14)

☐ Repeat until checking all characters in A

Search Phase with Automata

☐ How to represent the automata?

- The automata is represented by 2D-array called *T*
 - Rows indicate states, and columns indicates characters
 - $\Sigma = \{a, b, c\}$ is the set of unit characters

T	а	b	С
0	1	0	0
1	1	2	0
2	3	0	0
3	1	4	0
4	5	0	0
5	1	4	6
6	7	0	0
7	1	2	0

Search Phase with Automata

☐ Pseudocode of search phase

```
def automata-search(A, T):
    s ← 0  # state
    for i ← 1 to n:
        c ← A[i]
    if c ∉ Σ: s ← 0
    else: s ← T[s][c] # get the next state
    if s is at the final state (=m):
        output "there is a matching at A[i - m + 1]"
```

☐ Time and space complexities

- Time complexity: O(n) due to repeating the loop n times
- Space complexity: $O(|\Sigma|m+n)$
 - Input space: O(m+n) for **A** and **P**
 - Extra space: $O(|\Sigma|m)$ for T

Outline

☐ Intuition for automata algorithm

☐ String matching automata

☐ Search phase with automata

■ Automata construction phase

Overview

☐ How to construct the automata from a pattern?

• Given the automata, searching is very fast (0(n)) time

- We cover an easier version for constructing the automata
 - \circ It takes $O(|\Sigma|m^3)$ time, but easy-to-understand the key intuition
 - There is a more efficient version taking $O(|\Sigma|m)$ time, but it is out-of-scope (due to time limit see [link] if interested)
- To understand the algorithm, we first need to check the definition of prefix and suffix of a string

Prefix and Suffix

- □ Prefix: p is a prefix of a string t if there exists a string s such that t = ps
 - Proper prefix is one of prefixes excluding the original string t
 - e.g., "A", "AB" are proper prefixes of "ABC"

- □ Suffix: s is a suffix of a string t if there exists a string p such that t = ps
 - lacktriangle Proper suffix is one of suffixes excluding the original string t
 - e.g., "C", "BC" are proper suffixes of "ABC"

Intuition of Automata Construction

☐ Consider the following case:

■ It fails matching at s + 1, meaning $P[1 \cdots s]$ is matched

- Which part can be re-useable in the above result?
 - We can use the longest proper prefix of " $P[1 \cdots s]$ b" that is also a suffix of the sub-string of A (or " $P[1 \cdots s]$ b").
 - Let's call it "longest prefix-suffix (LPS)" of " $P[1 \cdots s]$ b"
 - Given label "b", the next state is the state of "abab" obtained from the above LPS.
 - Thus, the automata is constructed from the LPS information.

Automata Construction Phase (1)

☐ Main idea of the construction phase

 $\circ O(|\mathbf{\Sigma}|m^3)$

■ Try all possible prefixes starting from the longest possible that can be also a suffix of " $P[1\cdots s]x$ " for each $x \in \Sigma$

```
def construct-automata(P, \Sigma):
                                                               def get next state(P, s, x):
                                                                    if s < m and P[s+1] is x:
        initialize T
       for s \leftarrow 0 to m:
                                                                          return s+1
             for x \in \Sigma:
                                                                    else:
                  T[s][x] \leftarrow \text{get next state}(P, s, x)
                                                                    # check if proper prefix of "X = P[1 \cdots s]x"
        return T
                                                                      is a suffix from largest to smallest
                                                                           X \leftarrow P[1 \cdots s] + x
                                                                           for len \leftarrow s downto 1:
                                                                                 p' \leftarrow \text{get prefix}(X, \text{len})
                                                                                 s' \leftarrow \text{get suffix}(X, \text{len})
Time complexity
                                                                                 if p' is s':
```

return len

when nothing is found

return 0

Automata Construction Phase (1)

\square Example of P = "ababaca"

■ When s = 0, find the LPS of " $P[1 \cdots 0]x$ " = "x" for $x \in \{a, b, c\}$

```
def get_next_state(P, s, x):
    if s < m and P[s+1] is x:
        return s+1

else:
        X \leftarrow P[1 \cdots s] + x
        for len \leftarrow s downto 1:
            p' \leftarrow \text{get\_prefix}(X, \text{len})
            s' \leftarrow \text{get\_suffix}(X, \text{len})
        if p' is s':
            return len

return 0 # when nothing is found \Leftarrow "b" and "c"
```

T	а	b	С
0	1	0	0
1			
2			
3			
4			
5			
6			
7			

Automata Construction Phase (2)

\square Example of P = "ababaca"

■ When s = 1, find the LPS of " $P[1 \cdots 1]x$ " for $x \in \{a, b, c\}$

```
def get_next_state(P, s, x):
    if s < m and P[s+1] is x:
        return s+1

else:
        X \leftarrow P[1 \cdots s] + x
        for len \leftarrow s downto 1:
            p' \leftarrow \text{get\_prefix}(X, \text{len})
        s' \leftarrow \text{get\_suffix}(X, \text{len})
        if p' is s':
        return len
    return 0 # when nothing is found \Leftarrow "ac"
```


T	а	b	С
0	1	0	0
1	1	2	0
2			
3			
4			
5			
6			
7			

Automata Construction Phase (3)

\square Example of P = "ababaca"

■ When s = 2, find the LPS of " $P[1 \cdots 2]x$ " for $x \in \{a, b, c\}$

T	а	b	C
0	1	0	0
1	1	2	0
2	З	0	0
3			
4			
5			
6			
7			

Automata Construction Phase (4)

\square Example of P = "ababaca"

■ When s = 3, find the LPS of " $P[1 \cdots 3]x$ " for $x \in \{a, b, c\}$

T	а	b	С
0	1	0	0
1	1	2	0
2	3	0	0
3	1	4	0
4			
5			
6			
7			

Automata Construction Phase (5)

\square Example of P = "ababaca"

■ When s = 4, find the LPS of " $P[1 \cdots 4]x$ " for $x \in \{a, b, c\}$

T	а	b	С
0	1	0	0
1	1	2	0
2	3	0	0
3	1	4	0
4	5	0	0
5			
6			
7			

Automata Construction Phase (6)

\square Example of P = "ababaca"

■ When s = 5, find the LPS of " $P[1 \cdots 5]x$ " for $x \in \{a, b, c\}$

```
def get_next_state(P, s, x):
    if s < m and P[s+1] is x:
        return s+1

else:
        X \leftarrow P[1 \cdots s] + x
        for len \leftarrow s downto 1:
            p' \leftarrow \text{get\_prefix}(X, \text{len})
            s' \leftarrow \text{get\_suffix}(X, \text{len})
        if p' is s':
            return len

return 0  # when nothing is found

### Comparison of the comparison of
```


T	а	b	C
0	1	0	0
1	1	2	0
2	3	0	0
3	1	4	0
4	5	0	0
5	1	4	6
6			
7			

Automata Construction Phase (7)

\square Example of P = "ababaca"

■ When s = 6, find the LPS of " $P[1 \cdots 6]x$ " for $x \in \{a, b, c\}$

T	а	b	С
0	1	0	0
1	1	2	0
2	3	0	0
3	1	4	0
4	5	0	0
5	1	4	6
6	7	0	0
7			

Automata Construction Phase (8)

\square Example of P = "ababaca"

■ When s = 7, find the LPS of " $P[1 \cdots 7]x$ " for $x \in \{a, b, c\}$

```
def get_next_state(P, s, x):
    if s < m and P[s+1] is x:
        return s+1
    else:
        X \leftarrow P[1 \cdots s] + x
        for len \leftarrow s downto 1:
            p' \leftarrow \text{get\_prefix}(X, \text{len})
            s' \leftarrow \text{get\_suffix}(X, \text{len})
        if p' is s':
            return len
    return 0 # when nothing is found \Leftarrow "ababacac"
```


T	а	b	С
0	1	0	0
1	1	2	0
2	3	0	0
3	1	4	0
4	5	0	0
5	1	4	6
6	7	0	0
7	1	2	0

What You Need To Know

☐ String automata algorithm

- Do not need to do match from scratch when not matched
- Automata knows where we jump when not matched,
 which is constructed by longest prefix-suffix information
 - Searching takes O(n) time, and constructing takes $O(|\Sigma|m^3)$ time

Algorithm	Time			Space	
Atgorium	Preprocessing	Searching	Total	Input	Extra
Naïve	0(1)	O(mn)	0(<i>mn</i>)		0(1)
Rabin-Karp	0(m)	O(n+Fm)	O(n+Fm)	0(m+n)	0(1)
Automata	$O(\mathbf{\Sigma} m^3)$	0(n)	$O(\mathbf{\Sigma} m^3+n)$		$O(\mathbf{\Sigma} m)$

^{*} Rabin-karp's search phase shows O(n) average-case time and O(mn) worst-case time

^{*} Automata can be constructed in $O(|\Sigma|m)$ time using the optimized version

In Next Lecture

- ☐ Can we do string matching faster than automata?
 - Yes! KMP algorithm does!

Thank You