Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/017706

International filing date: 29 November 2004 (29.11.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-167941

Filing date: 07 June 2004 (07.06.2004)

Date of receipt at the International Bureau: 27 January 2005 (27.01.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

30.11.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2004年 6月 7日

出 願 番 号

特願2004-167941

Application Number: [ST. 10/C]:

[JP2004-167941]

出 願 人
Applicant(s):

塩野義製薬株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 1月14日

塩野義製薬株式会社

塩野義製薬株式会社

塩野義製薬株式会社

塩野義製薬株式会社

特許願 【書類名】 04P00049 【整理番号】 平成16年 6月 7日 【提出日】 特許庁長官殿 【あて先】 A61K 31/41 【国際特許分類】 C07D261/02 【発明者】 大阪府大阪市福島区鷺洲5丁目12番4号 塩野義製薬株式会社 【住所又は居所】 内 福井 喜一 【氏名】 【発明者】 大阪府大阪市福島区鷺洲5丁目12番4号 【住所又は居所】 内 笹谷 【氏名】 降司 【発明者】 大阪府大阪市福島区鷺洲5丁目12番4号 【住所又は居所】 内 松村 謙一 【氏名】 【発明者】 大阪府大阪市福島区鷺洲5丁目12番4号 【住所又は居所】 内 石塚 夏樹 【氏名】 【発明者】 大阪府大阪市福島区鷺洲5丁目12番4号 塩野義製薬株式会社 【住所又は居所】 内 【氏名】 矢野 利定 【発明者】 大阪府大阪市福島区鷺洲5丁目12番4号 【住所又は居所】 内 神田 泰彦 【氏名】 【特許出願人】 000001926 【識別番号】 塩野義製薬株式会社 【氏名又は名称】 【代理人】 【識別番号】 100108970 【弁理士】 山内 秀晃 【氏名又は名称】 06-6455-2056 【電話番号】 【選任した代理人】 【識別番号】 100113789 【弁理士】 【氏名又は名称】 杉田 健一

【電話番号】 06-6455-2056 【先の出願に基づく優先権主張】 特願2003-403274 【出願番号】 平成15年12月 2日 【出願日】

【先の出願に基づく優先権主張】 特願2004-121635 【出願番号】

平成16年 4月16日 【出願日】

【手数料の表示】

【予納台帳番号】 044602 【納付金額】 16,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

【物件名】明細書 1【物件名】要約書 1【包括委任状番号】9720909【包括委任状番号】9905998

【請求項1】

式(I):

【化1】

(式中、

R¹はハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいカルバモイルは置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいヒドラジノカルボニル、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールオまたは置換基を有していてもよいアリールオまたは置換基を有していてもよいアリールオまであり、

R²は水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を 有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を 有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキ シカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよい アシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置 換基を有していてもよいチオカルバモイル、置換基を有していてもよいカルバモイルオキ シ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいヒド ラジノカルボニル、置換基を有していてもよい低級アルキルスルホニルオキシ、置換基を 有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリール、置換 基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置 換基を有していてもよいヘテロ環式基であり、

R³およびR⁴は各々独立して、水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよいへテロ環式基であり、

 R^5 、 R^6 、 R^7 および R^8 は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキール、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、 R^6 は R^{14} または R^{15} と共に隣接する原子と一緒になって環を形成してもよく、 R^9 および R^{10} は各々独立して水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノまたは置

換基を有していてもよいアリールであり、 R^9 は R^{16} と一緒になって結合を形成してもよく、 R^{10} は R^{15} と共に隣接する炭素原子と一緒になって環を形成してもよく、 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニル)、 $-CR^{12}R^{13}CO-$ 、 $-CR^{12}R^{13}$ $-CR^{12}R^{1$

ルホニルまたは置換基を有していてもよいアリールスルホール)、一して、R しし、、 $-(CR^{12}R^{13}) mO-$ 、 $-(CR^{12}R^{13}) mS-$ または $-O(CR^{12}R^{13}) m-$ (ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは $1\sim3$ の整数)であり、

 X^2 は単結合、-O-、-S-、 $-NR^{14}-$ (ここで R^{14} は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニルであり、 R^{14} は R^{6} と共に隣接する原子と一緒になって環を形成してもよい)または $-CR^{15}R^{16}-$ (ここで R^{15} および R^{16} は各々独立して水素または低級アルキルであり、 R^{15} は R^{6} または R^{10} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^{16} は R^{9} と一緒になって結合を形成してもよい)であり、

 $X^{3} LLCOOR^{17}$, $C (= NR^{17}) NR^{18}OR^{19}$,

【化2】

(ここで $R^{17}\sim R^{19}$ は各々独立して水素または低級アルキル)である)で示される化合物(但し、 R^1 が非置換低級アルキルかつ R^5 および R^7 が共にブロモかつ X^1 が-O-である化合物、 R^1 が非置換低級アルキルかつ X^2 が一C R^{15} R^{16} -である化合物、および R^2 が水素かつ X^2 が一O-である化合物を除く)、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

【請求項2】

R¹がハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよいアリールまたは置換基を有していてもよいヘテロ環式基である、請求項1記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

【請求項3】

 R^2 が、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよいアルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいアリールまたは置換基を有していてもよいアリールチオである、請求項1記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

【請求項4】

 R^2 が水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよいアルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいアリールまたは置換基を有していてもよいアリールチオである、請求項1記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

【請求項5】

 R^3 および R^4 が共に水素である、請求項1記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

【請求項6】

R⁵およびR⁶が各々独立して水素、ハロゲン、置換基を有していてもよい低級アルキルま たは置換基を有していてもよい低級アルコキシであり、 R^7 および R^8 は共に水素である、 請求項1記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの 溶媒和物。

【請求項7】

 R^9 および R^{10} が共に水素である、請求項1記載の化合物、そのプロドラッグ、それらの 製薬上許容される塩またはそれらの溶媒和物。

【請求項8】

 X^1 がO、S、NR 11 (ここで R^{11} は水素または置換基を有していてもよい低級アルキル) またはCH₂COである、請求項1記載の化合物、そのプロドラッグ、それらの製薬上 許容される塩またはそれらの溶媒和物。

【請求項9】

 X^3 が $COOR^{17}$ である、請求項1記載の化合物、そのプロドラッグ、それらの製薬上許 容される塩またはそれらの溶媒和物。

【請求項10】

R¹が低級アルキル、置換基を有していてもよいアリール(置換基としては、ハロゲンま たは置換基を有していてもよい低級アルキル)またはヘテロ環式基であり、

R²が水素、ハロゲン、置換基を有していてもよい低級アルキル(置換基としては、ハロ ゲン、ヒドロキシ、低級アルコキシ、低級アルキルアミノ、置換基を有していてもよいア リールまたはヘテロ環式基)、置換基を有していてもよい低級アルキニル(置換基として は、アリール)、置換基を有していてもよい低級アルコキシ(置換基としては、ハロゲン)、アルコキシカルボニル、アシル、置換基を有していてもよいアリール(置換基として は、置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルコ キシ) またはアリールチオであり、

R³およびR⁴が各々独立して、水素、低級アルキル、置換基を有していてもよいアリール (置換基としては、ハロゲン)であり、

 R^5 、 R^6 、 R^7 および R^8 は各々独立して、水素、ハロゲン、置換基を有していてもよい低 級アルキル (置換基としては、ハロゲン) または置換基を有していてもよい低級アルコキ シ(置換基としては、ハロゲン)、

 R^9 および R^{10} が各々独立して水素または低級アルキルであり、 R^9 は R^{16} と一緒になって 結合を形成してもよく、

 X^1 は O、 S、 N H または C H₂ C O であり、

 $X^3 \& C O O R^{17}, C (= N R^{17}) N R^{18} O R^{19},$

【化3】

(ここで $\mathbb{R}^{17}\sim\mathbb{R}^{19}$ は各々独立して水素または低級アルキルである)である、請求項1記 載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

【請求項11】

 X^2 が単結合または-O-である、請求項 $1\sim1$ Oのいずれかに記載の化合物、そのプロ ドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

【請求項12】

 X^2 が $-CR^{15}R^{16}-$ (ここで R^{15} は水素または低級アルキルであり、 R^{16} は R^9 と一緒に なって結合を形成している)である、請求項1~10のいずれかに記載の化合物、そのプ ロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

【請求項13】

 X^2 が $-NR^{14}-$ (ここで R^{14} は R^6 と共に隣接する原子と一緒になって環を形成している)または $-CR^{15}R^{16}-$ (ここで R^{15} は R^{6} と共に隣接する炭素原子と一緒になって環を 形成している、または、 R^{15} は R^{10} と共に隣接する炭素原子と一緒になって環を形成かつ R^{16} は R^{9} と一緒になって結合を形成している)である、請求項 $1\sim10$ のいずれかに記 載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

【請求項14】

R²がハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有して いてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有して いてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカル ボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル 、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を 有していてもよいチオカルバモイル、置換基を有していてもよいカルバモイルオキシ、置 換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいヒドラジノ カルボニル、置換基を有していてもよい低級アルキルスルホニルオキシ、置換基を有して いてもよいアリールスルホニルオキシ、置換基を有していてもよいアリール、置換基を有 していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を 有していてもよいヘテロ環式基であり、

 R^9 および R^{10} が各々独立して水素であり、

 X^{1} は-O-、-S-、-($CR^{12}R^{13}$)mO-または-($CR^{12}R^{13}$)mS-(ここで \mathbb{R}^{12} および \mathbb{R}^{13} は各々独立して水素または低級アルキルであり、 \mathbb{R}^{12} の整数)であ

 X^2 は-0-であり、

 X^3 はCOOHである、請求項1記載の化合物、そのプロドラッグ、それらの製薬上許容さ れる塩またはそれらの溶媒和物。

【請求項15】

 R^1 はハロゲン、ヒドロキシ、置換基を有している低級アルキル、置換基を有していても よい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していても よい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル 、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換 基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有して いてもよいチオカルバモイル、置換基を有していてもよいカルバモイルオキシ、置換基を 有していてもよいチオカルバモイルオキシ、置換基を有していてもよいヒドラジノカルボ ニル、置換基を有していてもよい低級アルキルスルホニルオキシ、置換基を有していても よいアリールスルホニルオキシ、置換基を有していてもよいアリール、置換基を有してい てもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有して いてもよいヘテロ環式基であり、

 R^9 は R^{16} と一緒になって結合を形成しており、

R¹⁰水素であり、

 X^{1} は-O-、-S-、-($CR^{12}R^{13}$)mO-または-($CR^{12}R^{13}$)mS-(ここで \mathbb{R}^{12} および \mathbb{R}^{13} は各々独立して水素または低級アルキルであり、 \mathbb{R}^{12} の整数)であ n.

 X^2 は $-CR^{15}R^{16}-$ (ここで R^{15} は水素または低級アルキルであり、 R^{16} は R^9 と一緒に なって結合を形成している)であり、

 X^3 はCOOHである、請求項1記載の化合物、そのプロドラッグ、それらの製薬上許容さ れる塩またはそれらの溶媒和物。

【請求項16】

R²がハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有して いてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有して いてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカル ボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいヒドラジノカルボニル、置換基を有していてもよい低級アルキルスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリール・置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

 R^9 および R^{10} が各々独立して水素であり、

 X^1 は-O-、-S-、-($CR^{12}R^{13}$)mO-または-($CR^{12}R^{13}$)mS-(ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは $1\sim3$ の整数)であり、

 X^2 は単結合または $-CR^{15}R^{16}-$ (ここで R^{15} および R^{16} は各々独立して水素である)であり、

 X^3 はCOOHである、請求項1記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

【請求項17】

R⁹およびR¹⁰が各々独立して水素であり、

 X^1 は- O-、- S-であり、

 X^2 が $-NR^{14}-$ (ここで R^{14} は R^6 と共に隣接する原子と一緒になって環を形成している) または $-CR^{15}R^{16}-$ (ここで R^{15} は R^6 と共に隣接する炭素原子と一緒になって環を形成している) であり、

 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、請求項1記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

【請求項18】

 R^9 は R^{16} と一緒になって結合を形成しており、

 X^1 d-O-, -S-cbb,

 X^2 が $-CR^{15}R^{16}-$ (ここで R^{15} は R^{10} と共に隣接する炭素原子と一緒になって環を形成かつ R^{16} は R^9 と一緒になって結合を形成している)であり、

 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、請求項1記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

【請求項19】

請求項1~18のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物を有効成分とする医薬組成物。

【請求項20】

請求項 $1\sim18$ のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物を有効成分とするペルオキシソーム増殖活性化受容体アゴニストとして使用する医薬組成物。

【書類名】明細書

【発明の名称】ペルオキシソーム増殖活性化受容体アゴニスト活性を有するイソキサゾー ル誘導体

【技術分野】

[0001]

本発明はペルオキシソーム増殖活性化受容体(以下、PPARとする)アゴニスト活性 を有し、医薬として有用な化合物に関する。

【背景技術】

[0002]

細胞内顆粒であるペルオキシソームを増殖させるペルオキシソーム増殖薬は、脂質代謝 の重要な調節因子であると考えられている。そのペルオキシソーム増殖薬によって活性化 される核内受容体PPARは、内分泌、代謝、炎症等に関わる多機能な受容体であること が判明しており、そのリガンドが種々の医薬品として応用可能であるとして近年活発な研 究が行われている。

[0003]

PPARは種々の動物臓器からサブタイプ遺伝子が見出されており、ファミリーを形成 している。哺乳類においては $PPAR\alpha$ 、 $PPAR\delta$ ($PPAR\beta$ と呼ばれることもある) および P P A R γ の 3 種のサブタイプに分類されている。

[0004]

高脂血症薬として用いられているフィブラート類はΡΡΑΚαの活性化を介した血清脂 質改善遺伝子群の転写促進によりその活性を示すと考えられている。また、骨代謝および 非ステロイド性抗炎症薬の活性発現にPPARαが関与している可能性も示唆されている

[0005]

インスリン抵抗性改善剤であるチアゾリジンジオン系化合物はΡΡΑΚγのリガンドで ある。これらの化合物が血糖降下作用、脂質低下作用、脂肪細胞分化誘導作用等を示すこ とから、PPARγアゴニストは糖尿病、高脂血症、肥満等の治療薬としての開発が期待 される。また、 $PPAR\gamma$ アゴニストは慢性膵炎、炎症性大腸炎、糸球体硬化症、アルツ ハイマー症、乾癬、パーキンソン症、バセドウ氏病、慢性関節リウマチ、癌(乳癌、結腸 癌、前立腺癌等)および不妊等の治療薬となり得るとして期待されている。

[0006]

PPARδを脂肪細胞特異的に過剰発現させたトランスジェニックマウスが太りにくい こと等が報告されており、PPARるアゴニストは抗肥満薬、糖尿病薬になり得ると考え られている。さらにPPAR&アゴニストは結腸癌、骨粗しょう症、不妊、乾癬、多発性 硬化症等の治療薬としても可能性も示唆されている。

[0007]

これらの知見より、PPARアゴニストは高脂血症、糖尿病、高血糖、インスリン抵抗 性、肥満、動脈硬化、アテローム性動脈硬化、高血圧、シンドロームX、炎症、アレルギ ー性疾患(炎症性大腸炎、慢性関節リウマチ、慢性膵炎、多発性硬化症、糸球体硬化症、 乾癬等)、骨粗しょう症、不妊、癌、アルツハイマー症、パーキンソン症、バセドウ氏病 等の治療または予防に有用であるとして期待されている(非特許文献1参照)。

[0008]

特許文献1および特許文献2にはPPARアゴニスト活性を有する種々の化合物が開示 されており、イソキサゾール化合物も記載されている。しかし、本発明化合物のようにイ ソキサゾール骨格およびフェノキシ酢酸、フェニルチオ酢酸またはフェニルアミノ酢酸骨 格を併せ持つ化合物は記載されていない。さらに、特許文献2のイソキサゾール化合物は 本発明化合物と比較すると、イソキサゾール上の置換基の位置関係が異なる。また、PP $AR\alpha$ および(または) $PPAR\gamma$ アゴニスト活性は確認されているが $PPAR\delta$ アゴニ スト活性についてはデータが記載されていない。さらに、イソキサゾール化合物について t_{α} また t_{α} アゴニスト活性すらデータが記載されておらず、PPARアゴニスト活性が

[0009]

特許文献3にはイソキサゾール化合物が記載されているが、本発明化合物と比較すると 、イソキサゾール上の置換基の位置関係が異なる。また、FXR NR1H4受容体のリ ガンドであり高コレステロール血症や高脂血症に有用であると記載されているが、PPA Rアゴニスト活性については記載されていない。

[0010]

特許文献4にはイソキサゾール化合物が記載されているが、本発明化合物と比較すると イソキサゾール上の置換基の位置関係が異なる。また、動脈硬化や高血圧に有用である 旨開示されているが、PPARアゴニスト活性については記載されていない。

$[0\ 0\ 1\ 1]$

特許文献5および6には、チアゾール化合物、オキサゾール化合物およびイミダゾール 化合物がPPARaアゴニスト活性を有することが記載されているが、イソキサゾール化 合物については示唆されていない。

[0012]

特許文献7には、末端が桂皮酢酸であるイソキサゾール化合物が記載されている。甲状 腺受容体アンタゴニスト活性を有することが記載されているが、PPARアゴニスト活性 については記載されていない。

[0013]

特許文献8には、イソキサゾール化合物が記載されている。本発明化合物と異なり、末 端がフェノキシ酢酸である場合に、イソキサゾール上の置換基に水素が存在する。PPA $R\alpha$ および δ アゴニスト活性のデータが開示されている。

[0014]

【特許文献1】国際公開第WO99/11255号パンフレット

【特許文献2】国際公開第WO99/58510号パンフレット

【特許文献3】国際公開第WO03/15771号パンフレット

【特許文献4】欧州特許出願公開第0558062号明細書

【特許文献5】国際公開第WO01/00603号パンフレット

【特許文献6】国際公開第WO02/14291号パンフレット

【特許文献7】国際公開第W〇01/36365号パンフレット

【特許文献8】国際公開第WO03/084916号パンフレット

【非特許文献1】 カレント メディシナル ケミストリー (Current Medicinal Chemis try)、2003年、第10巻、第267-280頁

【発明の開示】

【発明が解決しようとする課題】

[0015]

本発明の目的は、優れたPPARアゴニストを提供することにある。

【課題を解決するための手段】

[0016]

本発明者らは、鋭意研究の結果、以下の優れたPPARアゴニストの合成に成功した。 イソキサゾールの4位が水素でありかつ末端がフェノキシ酢酸である化合物が特許文献8 で公知となっている。しかし、本発明者らは、4位の水素をメチルなど他の置換基に置換 した化合物が、置換前の化合物と比較して、PPAR転写活性が大きく改善されることを 見出した。また、末端の側鎖をフェノキシ酢酸から桂皮酸に置換した化合物が、置換前の 化合物と比較して、酵素阻害が少ないことを見出した。

[0017]

本発明は、

(1) 式(I):

【化1】

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{8}
 R^{10}
 R^{10}
 R^{10}
 R^{10}

(式中、

R¹はハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいヒドラジノカルボニル、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいアフロ環式基であり、

R²は水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいとドラジノカルボニル、置換基を有していてもよいチリールスルホニルオキシ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオまたは置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

R³およびR⁴は各々独立して、水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよいアリールまたは置換基を有していてもよいヘテロ環式基であり、

 R^5 、 R^6 、 R^7 および R^8 は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいへテロ環式基であり、 R^6 は R^{14} または R^{15} と共に隣接する原子と一緒になって環を形成してもよく、 R^9 および R^{10} は各々独立して水素、ハロゲン、置換基を有していてもよい低級アルキル

、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノまたは置換基を有していてもよいアリールであり、 R^9 は R^{16} と一緒になって結合を形成してもよく、 R^{10} は R^{15} と共に隣接する炭素原子と一緒になって環を形成してもよく、

 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換基を有していてもよいアシルスルホニルまたは置換基を有していてもよいアリールスルホニル)、 $-CR^{12}R^{13}CO-$ 、

 $-(CR^{12}R^{13})mO-、-(CR^{12}R^{13})mS-または<math>-O(CR^{12}R^{13})m-(CCR^{12}R^{13}R^{13})m-(CCR^{12}R^{13}R^{13})m-(CCR^{12}R^{13}R^{13})m-(CCR^{12}R^{13}R^{13})m-(CCR^{12}R^{13}R^{$

 X^2 は単結合、-O-、-S-、 $-NR^{14}-$ (ここで R^{14} は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニルであり、 R^{14} は R^{6} と共に隣接する原子と一緒になって環を形成してもよい)または $-CR^{15}R^{16}-$ (ここで R^{15} および R^{16} は各々独立して水素または低級アルキルであり、 R^{15} は R^{6} または R^{10} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^{16} は R^{9} と一緒になって結合を形成してもよい)であり、

 $X^3 \text{ lt C O O R}^{17}$, C (= N R¹⁷) N R¹⁸ O R¹⁹,

【化2】

(ここで $R^{17} \sim R^{19}$ は各々独立して水素または低級アルキル)である)で示される化合物(但し、 R^1 が非置換低級アルキルかつ R^5 および R^7 が共にブロモかつ X^1 が-O ーである化合物、 R^1 が非置換低級アルキルかつ X^2 が-C R^{15} R^{16} ーである化合物、および R^2 が水素かつ X^2 が-O ーである化合物を除く)、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物、

- (2) R¹がハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよいアリールまたは置換基を有していてもよいヘテロ環式基である、(1)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物、
- (3) R²が、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよいアルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいアリールまたは置換基を有していてもよいアリールチオである、(1) 記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物、
- (4) R²が水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよいアルキニル、置換基を有していてもよいアシル、置換基を有していてもよいアリールまたは置換基を有していてもよいアリールチオである、(1)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物、
- (5) R^3 および R^4 が共に水素である、(1) 記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物、
- (6) R^5 および R^6 が各々独立して水素、ハロゲン、置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルコキシであり、 R^7 および R^8 は共に水素である、(1)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物、
- (7) R^9 および R^{10} が共に水素である、(1)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物、
- (8) X^1 がO、S、N R^{11} (ここで R^{11} は水素または置換基を有していてもよい低級アルキル) またはC H_2 C O である、(1) 記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物、
 - (9) X^3 が $COOR^{17}$ である、(1) 記載の化合物、そのプロドラッグ、それらの製薬

上許容される塩またはそれらの溶媒和物、

(10) R^1 が低級アルキル、置換基を有していてもよいアリール(置換基としては、ハロゲンまたは置換基を有していてもよい低級アルキル)またはヘテロ環式基であり、 R^2 が水素、ハロゲン、置換基を有していてもよい低級アルキル(置換基としては、ハロゲン、ヒドロキシ、低級アルコキシ、低級アルキルアミノ、置換基を有していてもよいアリールまたはヘテロ環式基)、置換基を有していてもよい低級アルキニル(置換基としては、アリール)、置換基を有していてもよい低級アルコキシ(置換基としては、ハロゲン)、アルコキシカルボニル、アシル、置換基を有していてもよいアリール(置換基としては、置換基を有していてもよい低級アルコキシ)またはアリールチオであり、

 R^3 および R^4 が各々独立して、水素、低級アルキル、置換基を有していてもよいアリール(置換基としては、ハロゲン)であり、

 R^5 、 R^6 、 R^7 および R^8 は各々独立して、水素、ハロゲン、置換基を有していてもよい低級アルキル(置換基としては、ハロゲン)または置換基を有していてもよい低級アルコキシ(置換基としては、ハロゲン)、

 R^9 および R^{10} が各々独立して水素または低級アルキルであり、 R^9 は R^{16} と一緒になって結合を形成してもよく、

 X^1 はO、S、NHまたはCH₂COであり、

 X^{3} kt $C \cap C \cap R^{17}$, $C = (N \cap R^{17}) \cap N \cap R^{18} \cap R^{19}$,

【化3】

(ここで $\mathbb{R}^{17} \sim \mathbb{R}^{19}$ は各々独立して水素または低級アルキルである)である、(1)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物、

(11) X^2 が単結合または-O-である、(1) \sim (10)のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物、

(12) X^2 が $-CR^{15}R^{16}-$ (ここで R^{15} は水素または低級アルキルであり、 R^{16} は R^9 と一緒になって結合を形成している)である、(1)~(10)のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物、

 $(1\ 3)\ X^2$ が $-N\ R^{14}-$ (ここで R^{14} は R^6 と共に隣接する原子と一緒になって環を形成している)または $-C\ R^{15}\ R^{16}-$ (ここで R^{15} は R^6 と共に隣接する炭素原子と一緒になって環を形成している、または、 R^{15} は R^{10} と共に隣接する炭素原子と一緒になって環を形成かつ R^{16} は R^9 と一緒になって結合を形成している)である、(1) \sim (10)のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物、

(14) R²がハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリール、置換基を有していてもよいアリール、置換基を有していてもよいアリールチオまたは

置換基を有していてもよいヘテロ環式基であり、

 R^9 および R^{10} が各々独立して水素であり、

 X^1 は-O-、-S-、-(C R^{12} R^{13})mO-または-(C R^{12} R^{13})mS-(ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは 1 \sim 3 の整数)であり、

 X^2 は-0-であり、

 X^3 はCOOHである、請求項1記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物、

(15) R¹はハロゲン、ヒドロキシ、置換基を有している低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいへテロ環式基であり、

 R^9 は R^{16} と一緒になって結合を形成しており、

R¹⁰水素であり、

 X^1 は-O-、-S-、-($CR^{12}R^{13}$)mO-または-($CR^{12}R^{13}$)mS-(ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは $1\sim3$ の整数)であり、

 X^2 は $-CR^{15}R^{16}-$ (ここで R^{15} は水素または低級アルキルであり、 R^{16} は R^9 と一緒になって結合を形成している)であり、

 X^3 はCOOHである、(1)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物、

(16) R²がハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいアフロ環式基であり、

 R^9 および R^{10} が各々独立して水素であり、

 X^1 は-O-、-S-、-($CR^{12}R^{13}$)mO-または-($CR^{12}R^{13}$)mS-(ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは $1\sim3$ の整数)であり、

 X^2 は単結合または $-CR^{15}R^{16}-$ (ここで R^{15} および R^{16} は各々独立して水素である)であり、

 X^3 はCOOHである、(1)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物、

(17) R^9 および R^{10} が各々独立して水素であり、

 X^1 は-O-、-S-であり、

 X^2 が $-NR^{14}-$ (ここで R^{14} は R^6 と共に隣接する原子と一緒になって環を形成している

)または $-CR^{15}R^{16}-$ (ここで R^{15} は R^{6} と共に隣接する炭素原子と一緒になって環を形成している)であり、

 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、(1)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

(18) R⁹はR¹⁶と一緒になって結合を形成しており、

 X^1 は-O-、-S-であり、

 X^2 が $-CR^{15}R^{16}-$ (ここで R^{15} は R^{10} と共に隣接する炭素原子と一緒になって環を形成かつ R^{16} は R^9 と一緒になって結合を形成している)であり、

 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、(1)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物、

(19) (1) ~ (18) のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物を有効成分とする医薬組成物、

(20) (1) \sim (18) のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物を有効成分とするペルオキシソーム増殖活性化受容体アゴニストとして使用する医薬組成物、を提供する。

さらには、以下の発明も提供する。

(X1)式(I):

【化39】

(式中、

R¹およびR²は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、電換基を有していてもよいカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、

R³およびR⁴は各々独立して、水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよいアリールまたは置換基を有していてもよいへテロ環式基であり、

 \mathring{R}^5 、 \mathring{R}^6 、 \mathring{R}^7 および \mathring{R}^8 は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいへテロ環式基であり、

 R^9 および R^{10} は各々独立して水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノまたは置換基を有していてもよいアリールであり、 R^9 は R^{16} と一緒になって結合を形成してもよく、

 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニル)、 $-CR^{12}R^{13}CO-$ 、 $-(CR^{12}R^{13})$ mO-または $-O(CR^{12}R^{13})$ m-(ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは $1\sim3$ の整数)であり、

 X^2 は単結合、-O-、-S-、 $-NR^{14}-$ (ここで R^{14} は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニル)または $-CR^{15}$ $R^{16}-$ (ここで R^{15} および R^{16} は各々独立して水素または低級アルキルであり、 R^{16} は R^{16} 0 と一緒になって結合を形成してもよい)であり、

 $X^{3}UCOOR^{17}$, $C (=NR^{17}) NR^{18}OR^{19}$,

【化40】

(ここで $R^{17} \sim R^{19}$ は各々独立して水素または低級アルキル)である)で示される化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

(X 2) R^1 がハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよいアリールまたは置換基を有していてもよいヘテロ環式基である、(X 1)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

(X3) R^2 が水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよいアルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいアリールまたは置換基を有していてもよいアリールチオである、(X1)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

(X4) R^3 および R^4 が共に水素である、(X1) 記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

(X5) R^5 および R^6 が各々独立して水素、ハロゲン、置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルコキシであり、 R^7 および R^8 は共に水素である、(X1) 記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

(X6) R^9 および R^{10} が共に水素である、(X1) 記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

(X 7) X^1 が-O-、-S-、-N R^{11} -(ここで R^{11} は水素または置換基を有していてもよい低級アルキル)または-C H_2 C O-である、(X 1)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

 $(X8)X^2$ が単結合または-O-である、(X1)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

(X9) X^3 がカルボキシである、(X1) 記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

(X10) (X1) \sim (X9) のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物を有効成分とする医薬組成物。

(X11) (X1) \sim (X9) のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物を有効成分とするペルオキシソーム増殖活性化受容体アゴニストとして使用する医薬組成物。

(好ましくは上記化合物のうち、 X^3 が $-COOR^{17}$ であり、 X^2 が $-CR^{15}R^{16}$ ーであり、かつ R^{16} が水素または低級アルキルである化合物を除いた化合物である)を提供する。

[0018]

さらに、上記化合物、そのプロドラッグ、その製薬上許容される塩またはそれらの溶媒和物を投与することを特徴とする、PPAR活性化方法、詳しくは高脂血症、糖尿病、肥満、動脈硬化、アテローム性動脈硬化、高血糖および/またはシンドロームXの治療方法および/または予防方法を提供する。

[0019]

別の態様として、PPAR活性化のための医薬、詳しくは高脂血症、糖尿病、肥満、動脈硬化、アテローム性動脈硬化、高血糖および/またはシンドローム<math>Xの治療および/または予防のための医薬を製造するための、化合物(I)、そのプロドラッグ、その製薬上許容される塩またはそれらの溶媒和物の使用を提供する。

【発明の効果】

[0020]

後述の試験結果から明らかなとおり、本発明化合物はPPARアゴニスト作用を示し、本発明化合物は医薬品、特に高脂血症、糖尿病、肥満、動脈硬化、アテローム性動脈硬化、高血糖および/またはシンドロームXの治療および/または予防のための医薬として非常に有用である。

【発明を実施するための最良の形態】

[0021]

本明細書中において、「ハロゲン」とは、フッ素、塩素、臭素およびヨウ素を包含する。特にフッ素および塩素が好ましい。

[0022]

「低級アルキル」とは、炭素数 $1\sim 1$ 0、好ましくは炭素数 $1\sim 6$ 、さらに好ましくは炭素数 $1\sim 3$ の直鎖または分枝状のアルキルを包含し、例えばメチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s e c -ブチル、t e r t - ブチル、n -ペンチル、イソペンチル、ネオペンチル、ヘキシル、イソヘキシル、n-ヘプチル、イソヘプチル、n-カクチル、イソオクチル、n-ノニルおよびn-デシル等が挙げられる

[0023]

「低級アルケニル」とは、任意の位置に1以上の二重結合を有する炭素数2~10、好ましくは炭素数2~6、さらに好ましくは炭素数2~4の直鎖または分枝状のアルケニルを包含する。具体的にはビニル、プロペニル、イソプロペニル、ブテニル、イソブテニル、プレニル、ブタジエニル、ペンテニル、イソペンテニル、ペンタジエニル、ヘキセニル、イソヘキセニル、ヘキサジエニル、ヘプテニル、オクテニル、ノネニルおよびデセニル等を包含する。

[0024]

「低級アルキニル」とは、炭素数 $2\sim10$ 、好ましくは炭素数 $2\sim6$ 、さらに好ましくは炭素数 $2\sim4$ の直鎖状または分枝状のアルキニルを意味し、具体的には、エチニル、プロピニル、ブチニル、ペンチニル、ヘキシニル、ヘプチニル、オクチニル、ノニニル、デシニル等を包含する。これらは任意の位置に 1 以上の三重結合を有しており、さらに二重結合を有していてもよい。

[0025]

「置換基を有していてもよい低級アルキル」、「置換基を有していてもよい低級アルケ 出証特2004-3122706 ニル」、「置換基を有していてもよい低級アルキニル」の置換基としてはハロゲン、ヒド ロキシ、低級アルコキシ、ハロゲノ低級アルコキシ、ヒドロキシ低級アルコキシ、アミノ 、低級アルキルアミノ、アリールアミノ、ヘテロ環アミノ、アシルアミノ、低級アルコキ シカルボニルアミノ、メルカプト、低級アルキルチオ、アシル、アシルオキシ、カルボキ シ、低級アルコキシカルボニル、カルバモイル、低級アルキルカルバモイル、チオカルバ モイル、低級アルキルチオカルバモイル、カルバモイルオキシ、低級アルキルカルバモイ ルオキシ、チオカルバモイルオキシ、低級アルキルチオカルバモイルオキシ、スルファモ イル、低級アルキルスルファモイル、低級アルキルスルホニルオキシ、シアノ、ニトロ、 シクロアルキル、置換基を有していてもよいアリールオキシ、置換基を有していてもよい アリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリー ルチオ、置換基を有していてもよいアリール低級アルコキシ、置換基を有していてもよい アリールスルホニルオキシ、置換基を有していてもよいヘテロ環式基(ここで置換基とは ハロゲン、ヒドロキシ、低級アルキル、ハロゲノ低級アルキル、ヒドロキシ低級アルキル 、低級アルケニル、低級アルコキシ、アリール低級アルコキシ、ハロゲノ低級アルコキシ 、カルボキシ、低級アルコキシカルボニル、カルバモイル、低級アルキルカルバモイル、 アリールカルバモイル、アシルアミノ、メルカプト、低級アルキルチオ、アミノ、低級ア ルキルアミノ、アシル、アシルオキシ、シアノ、ニトロ、フェニル、ヘテロ環式基等)が 挙げられ、任意の位置がこれらから選択される1以上の基で置換されていてもよい。

[0026]

「置換基を有していてもよい低級アルキル」、「置換基を有していてもよい低級アルケ ニル」、「置換基を有していてもよい低級アルキニル」等の置換基としての「ヘテロ環式 基」として好ましくはモルホリノ、ピペリジノ、ピペラジノ、フリル、チエニルまたはピ リジルである。

[0027]

「ハロゲノ低級アルキル」、「ヒドロキシ低級アルキル」、「低級アルコキシ」、「ハ ロゲノ低級アルコキシ」、「アリール低級アルコキシ」、「ヒドロキシ低級アルコキシ」 、「低級アルキルアミノ」、「低級アルキルチオ」、「低級アルキルスルホニルオキシ」 「低級アルキルカルバモイル」、「低級アルキルチオカルバモイル」、「低級アルキル カルバモイルオキシ」、「低級アルキルチオカルバモイルオキシ」、「低級アルキルスル ファモイル」、「低級アルコキシカルボニル」および「低級アルコキシカルボニルアミノ 」の低級アルキル部分は上記「低級アルキル」と同様である。

[0028]

「置換基を有していてもよい低級アルコキシ」、「置換基を有していてもよい低級アル コキシカルボニル」、「置換基を有していてもよい低級アルキルチオ」および「置換基を 有していてもよい低級アルキルスルホニルオキシ」の置換基は上記「置換基を有していて もよい低級アルキル」の置換基と同様である。

[0029]

「アシル」とは (a) 炭素数 $1\sim10$ 、さらに好ましくは炭素数 $1\sim6$ 、最も好ましく は炭素数1~3の直鎖もしくは分枝状のアルキルカルボニルもしくはアルケニルカルボニ ル、(b) 炭素数4~9、好ましくは炭素数4~7のシクロアルキルカルボニルおよび(c) 炭素数7~11のアリールカルボニルを包含する。具体的には、ホルミル、アセチル 、プロピオニル、ブチリル、イソブチリル、バレリル、ピバロイル、ヘキサノイル、アク リロイル、プロピオロイル、メタクリロイル、クロトノイル、シクロプロピルカルボニル 、シクロヘキシルカルボニル、シクロオクチルカルボニルおよびベンゾイル等を包含する

[0030]

「アシルアミノ」および「アシルオキシ」のアシル部分は上記「アシル」と同様である

[0031]

「置換基を有していてもよいアシル」の置換基としては上記「置換基を有していてもよ 出証特2004-3122706

[0032]

「置換基を有していてもよいアミノ」の置換基としては上記「置換基を有していてもよ い低級アルキル」と同様のものが挙げられる。さらに低級アルキル、ハロゲノ低級アルキ ル、ヒドロキシ低級アルキル、低級アルケニル、ハロゲノ低級アルケニルおよび/または ヒドロキシ低級アルケニル等で置換されていてもよい。

[0033]

「置換基を有していてもよいカルバモイル」、「置換基を有していてもよいチオカルバ モイル」、「置換基を有していてもよいカルバモイルオキシ」、「置換基を有していても よいチオカルバモイルオキシ」、「置換基を有していてもよいヒドラジノカルボニル」の 置換基としては上記「置換基を有していてもよい低級アルキル」と同様のものが挙げられ る。

[0034]

「シクロアルキル」とは、炭素数3~8、好ましくは5または6の環状のアルキルを包 含する。具体的には、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル 、シクロヘプチルおよびシクロオクチル等が挙げられる。

[0035]

「アリール」とは、フェニル、ナフチル、アントリルおよびフェナントリル等を包含す る。また、他の非芳香族炭化水素環式基と縮合しているアリールも包含し、具体的にはイ ンダニル、インデニル、ビフェニルイル、アセナフテニルおよびフルオレニル等が挙げら れる。他の非芳香族炭化水素環と縮合している場合、結合手はいずれの環に有していても よい。アリールの好ましい例としてはフェニルが挙げられる。

[0036]

「置換基を有していてもよいアリール」の置換基としては、特に記載のない限り、上記 「置換基を有していてもよい低級アルキル」の置換基と同様のものが挙げられる。さらに 、低級アルキル、ハロゲノ低級アルキル、ヒドロキシ低級アルキル、低級アルケニル、ハ ロゲノ低級アルケニル、ヒドロキシ低級アルケニルおよび/またはオキソ等で置換されて いてもよい。

[0037]

「アリールオキシ」、「アリールチオ」、「アリール低級アルコキシ」、「アリールア ミノ」および「アリールスルホニルオキシ」のアリール部分は上記「アリール」と同様で ある。

[0038]

「置換基を有していてもよいアリールオキシ」、「置換基を有していてもよいアリール チオ」および「置換基を有していてもよいアリールスルホニルオキシ」の置換基は特に記 載のない限り、上記「置換基を有していてもよいアリール」の置換基と同様である。

[0039]

「ヘテロ環式基」とは、O、SおよびNから任意に選択されるヘテロ原子を環内に1以 上有するヘテロ環を包含し、具体的にはピロリル、イミダゾリル、ピラゾリル、ピリジル 、ピリダジニル、ピリミジニル、ピラジニル、トリアゾリル、トリアジニル、テトラゾリ ル、イソオキサゾリル、オキサゾリル、オキサジアゾリル、イソチアゾリル、チアゾリル 、チアジアゾリル、フリルおよびチエニル等の5~6員のヘテロアリール;インドリル、 イソインドリル、インダゾリル、インドリジニル、キノリル、イソキノリル、シンノリニ ル、フタラジニル、キナゾリニル、ナフチリジニル、キノキサリニル、プリニル、プテリ ジニル、ベンゾピラニル、ベンズイミダゾリル、ベンズイソオキサゾリル、ベンズオキサ ゾリル、ベンズオキサジアゾリル、ベンゾイソチアゾリル、ベンゾチアゾリル、ベンゾチ アジアゾリル、ベンゾフリル、イソベンゾフリル、ベンゾチエニル、ベンゾトリアゾリル

[0040]

 R^1 および R^2 としての「ヘテロ環式基」の好ましい例はピリジル、モルホリノ、ピペラジノまたはピペリジノである。

[0041]

「置換基を有していてもよいヘテロ環式基」の置換基は上記「置換基を有していてもよいアリール」と同様である。

[0042]

「ヘテロ環アミノ」のヘテロ環部分は上記「ヘテロ環式基」と同様である。

[0043]

 ΓR^{14} は R^6 と共に隣接する原子と一緒になって環を形成」するとは、 R^{14} と R^6 が、式 (I) のベンゼン環に縮合する $1 \sim 3$ のヘテロ原子を持つ $4 \sim 7$ 員環を形成することを意 味する。ベンゼン環との2環の縮合複素環の好ましい例は、置換基を有していてもよい2 環のヘテロ環であり、例えば、インドール、ベンズイミダゾール、1H-インダゾール、2,3 -ジヒドロインドール、1,2,3,4-テトラヒドロキノリン、2,3-ジヒドロ-1,4-ベンゾオキザ ジン、 2,3-ジヒドロベンズチアゾール、2,3-ジヒドロベンズオキサゾール、1,2-ジヒド ロキノリン、1,4-ジヒドロキノリン等が挙げられる。「置換基を有していてもよい2環の ヘテロ環」の置換基は、式(I)中のベンゼン環上の置換基と同様の置換基及びオキソ基 である。置換基としては、例えば、ハロゲン、ヒドロキシ、置換基を有していてもよい低 級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級 アルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級 アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置 換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を 有していてもよいアリールチオ、置換基を有していてもよいヘテロ環式基、オキソである 。特に、ベンゼン環に縮合している複素環上の置換基としては、オキソ、ハロゲン、ヒド ロキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アル キルチオ、置換基を有していてもよい低級アルキルが好ましい。

なお、「置換基を有していてもよいヘテロ環」の好ましい例は、

(式中、

 R^5 、 R^7 、 R^8 および $R^{20}\sim R^{22}$ は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい下シル、置換基を有していてもよいアシル、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいへテロ環式基であり、

 R^9 および R^{10} は各々独立して水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノまたは置換基を有していてもよいアリールであり、

 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニル)、 $-CR^{12}R^{13}CO-$ 、 $-(CR^{12}R^{13})mO-$ 、 $-(CR^{12}R^{13})mS-$ または $-O(CR^{12}R^{13})m-$ (ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは $1\sim3$ の整数)であり(特に好ましくは、-O-、-S-、特に-S-である)、 X^3 は $COOR^{17}$ 、C($=NR^{17}$) $NR^{18}OR^{19}$ 、

【化42】

(ここで $\mathbb{R}^{17} \sim \mathbb{R}^{19}$ は各々独立して水素または低級アルキル)である)である(特に、 \mathbb{C} OOR 17 (ここで \mathbb{R}^{17} は水素または低級アルキル)である)。

[0044]

 $\lceil R^{15}$ は R^6 と共に隣接する炭素原子と一緒になって環を形成」するとは、 R^{15} と R^6 が 、式(I)のベンゼン環に縮合する0~3のヘテロ原子を持つ4~7員環を形成すること を意味する。ベンゼン環との2環の縮合環の好ましい例は、置換基を有していてもよい炭 素数8~11の環の炭素環(特に、置換基を有していてもよいナフタレン)または置換基 を有していてもよい2環のヘテロ環である。例えば、インドール、ベンゾチオフェン、ベ ンゾフラン、ベンゾイソキサゾール、1H-インダゾール、ナフタレン、キナゾリン、イソ キノリン、2H-クロメン、1,4-ジヒドロナフタレン、1,2,3,4-テトラヒドロナフタレン等 が挙げられる。「置換基を有していてもよい炭素数8~11の環の炭素環(特に、置換基 を有していてもよいナフタレン)」および「置換基を有していてもよい2環のヘテロ環」 の置換基は、式(I)中のベンゼン環上の置換基と同様の置換基及びオキソ基である。置 換基としては、例えば、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル 、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル 、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチ オ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有し ていてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していて もよいアリールチオ、置換基を有していてもよいヘテロ環式基、オキソである。特に、ベ ンゼン環に縮合している複素環上の置換基としては、オキソ、ハロゲン、ヒドロキシ、置 換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチオ、 置換基を有していてもよい低級アルキルが好ましい。

なお、「置換基を有していてもよい炭素数8~11の環の炭素環(特に、置換基を有していてもよいナフタレン)」および「置換基を有していてもよい2環のヘテロ環」の好ましい例は、

【化43】

(式中、

 R^5 、 R^7 、 R^8 および R^{20} ~ R^{22} は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいアシル、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

R⁹およびR¹⁰は各々独立して水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノまたは置換基を有していてもよいアリールであり、

R²³は各々独立して水素、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい下シル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニル、置換基を有していてもよいアミノ、置換基を有していてもよいアリールまたは置換基を有していてもよいへテロ環式基であり、

 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換基を有していてもよいのエルスルホニルは置換基を有していてもよいアリールスルホニル)、 $-CR^{12}R^{13}CO-$ 、 $-(CR^{12}R^{13})$ mO-、 $-(CR^{12}R^{13})$ mS-または $-O(CR^{12}R^{13})$ m-(ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは $1\sim3$ の整数)であり(特に好ましくは、-O-、-S-、特に-S-である)、

 $X^3 L C O O R^{17}$, $C (= N R^{17}) N R^{18} O R^{19}$, [4L44]

(ここで $R^{17} \sim R^{19}$ は各々独立して水素または低級アルキル) である(特に、 $COOR^{17}$ (ここで R^{17} は水素または低級アルキル) である。

[0045]

 $\lceil R^{15} d R^{10}$ と共に隣接する炭素原子と一緒になって環を形成」するとは、 $R^{15} C R^{10}$ が、0~3のヘテロ原子を持つ4~7員環を形成することを意味する。該環の好ましい例 は、置換基を有していてもよい炭素数4~7の炭素単環(特に、置換基を有していてもよ いフェニル)または置換基を有していてもよいヘテロ単環である。例えば、チオフェン、 ピリミジン、フラン、ピリジン、イミダゾール、イソチアゾール、イソキサゾール、ピリ ダジン、ピラジン、チアゾール、オキサゾール等が挙げられる。特に、 R^{16} が R^9 と一緒 になって結合を形成している場合が好ましい。「置換基を有していてもよい炭素数4~7 の炭素単環(特に、置換基を有していてもよいナフタレン)」および「置換基を有してい てもよいヘテロ単環 | の置換基は、式(I) 中のベンゼン環上の置換基と同様の置換基で ある。置換基としては、例えば、ハロゲン、ヒドロキシ、置換基を有していてもよい低級 アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級ア ルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級ア ルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換 基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有 していてもよいアリールチオ、置換基を有していてもよいヘテロ環式基、オキソである。 特に、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルコキシ、置換基を有し ていてもよい低級アルキルチオ、置換基を有していてもよい低級アルキルが好ましい。

なお、「置換基を有していてもよい炭素数4~7の炭素単環(特に、置換基を有していてもよいフェニル)」および「置換基を有していてもよいヘテロ単環」の好ましい例は、

【化45】

(式中、

 R^5 、 R^7 、 R^8 、 R^{20} および R^{21} は各々独立して水素、ハロゲン、ヒドロキシ、置換基を 有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有 していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、置換基を有 していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有してい てもよいアミノ、置換基を有していてもよいアリール、置換基を有していてもよいアリー ルオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテ 口環式基であり、

R⁹およびR¹⁰は各々独立して水素、ハロゲン、置換基を有していてもよい低級アルキル

、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノまたは置 換基を有していてもよいアリールであり、

 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級 アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルス ルホニルまたは置換基を有していてもよいアリールスルホニル)、 $-CR^{12}R^{13}CO-$ 、 $-(CR^{12}R^{13})mO-,-(CR^{12}R^{13})mS-または<math>-O(CR^{12}R^{13})m-($ ここ で \mathbb{R}^{12} および \mathbb{R}^{13} は各々独立して水素または低級アルキルであり、 \mathbb{R}^{13} は名々独立して水素または低級アルキルであり、 \mathbb{R}^{13} あり(特に好ましくは、一〇一、一S一、特に一S一である)、 $X^3 LCOOR^{17}$, $C (= NR^{17}) NR^{18}OR^{19}$,

【化46】

(ここで $\mathbb{R}^{17}\sim\mathbb{R}^{19}$ は各々独立して水素または低級アルキル) である(特に、 \mathbb{C} \mathbb{O} \mathbb{R}^{17} (ここで \mathbb{R}^{17} は水素または低級アルキル)である。

[0046]

 $\lceil R^9$ は R^{16} と一緒になって結合を形成」する、または $\lceil R^{16}$ は R^9 と一緒になって結合 を形成」するとは、

【化4】

(式中、各記号は前記と同義) であることを意味する。

[0047]

本発明化合物には、各々の化合物の生成可能であり、製薬上許容される塩を包含する。 「製薬上許容される塩」としては、例えば塩酸、硫酸、硝酸またはリン酸等の無機酸の塩 ;パラトルエンスルホン酸、メタンスルホン酸、シュウ酸またはクエン酸等の有機酸の塩 ;アンモニウム、トリメチルアンモニウムまたはトリエチルアンモニウム等の有機塩基の 塩;ナトリウムまたはカリウム等のアルカリ金属の塩;およびカルシウムまたはマグネシ ウム等のアルカリ土類金属の塩等を挙げることができる。

本発明化合物はその溶媒和物を包含し、化合物(Ⅰ)に対し、任意の数の溶媒分子と配 位していてもよい。好ましくは水和物である。

[0049]

また、本発明化合物はそのプロドラッグを包含する。プロドラッグとは、化学的または 代謝的に分解できる基を有する本発明化合物の誘導体であり、加溶媒分解によりまたは生 理学的条件下でインビボにおいて薬学的に活性な本発明化合物となる化合物である。適当 なプロドラッグ誘導体を選択する方法および製造する方法は、例えばDesign of Prodrugs, Elsevier, Amsterdam 1985に記載されてい

[0050]

例えば、本発明化合物(I)がカルボキシを有する場合は、化合物(I)のカルボキシと適当なアルコールを反応させることによって製造されるエステル誘導体、または化合物(I)のカルボキシと適当なアミンを反応させることによって製造されるアミド誘導体のようなプロドラッグが例示される。

[0051]

本発明化合物 (I) が不斉炭素原子を有する場合には、ラセミ体および全ての立体異性体 (ジアステレオマー、鏡像異性体等)を含む。また、本発明化合物 (I) が二重結合を有する場合には、二重結合の置換基配置につき、幾何異性体が存在するときはそのいずれをも含む。

[0052]

本発明化合物(I)は、例えば次の方法で合成する事が出来る。

(第1法)化合物(I a)($X^1 = O$ 、($CR^{12}R^{13}$)mO、O($CR^{12}R^{13}$)m)の合成

【化5】

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{9}
 R^{10}
 R^{10}

(式中、AおよびDは一方がO Hで他方が(C R^{12} R^{13})m O Hであるか、共にO Hであり、その他の記号は前記と同義)

式(II-1)および式(III)で示される化合物は公知の化合物を用いてもよく、公知化合物から常法により誘導された化合物を用いてもよい。

[0053]

(第 2 法)化合物(I b)($X^1 = O$ 、Sまたは NR^{11})の合成【化 6】

$$R_3$$
 R_4 R_5 R_8 R_9 R_{10} R_7 R_8 R_9 R_{10} R_9 R_9 R_{10} R_9 R_9 R_{10} R_9 R_9 R_{10} R_9 R_9

(式中、LGはハロゲン、低級アルキルスルホニルオキシ等の脱離基であり、その他の記号は前記と同義)

式 (II-2) で示される化合物と式 (III) で示される化合物を反応させることに 出証特 2 0 0 4 - 3 1 2 2 7 0 6

より、化合物 (Ib) を合成することもできる。反応は適当な溶媒中、塩基存在下、-1 0~180℃、好ましくは0~150℃で、0.5~90時間行えばよい。溶媒は上記第 1法に記載と同様の溶媒を用いることができる。塩基としては例えば金属水素化物(例、 水素化ナトリウム、水素化カリウムなど)、金属水酸化物(例、水酸化ナトリウム、水酸 化カリウム、水酸化カルシウム、水酸化バリウムなど)、金属炭酸塩(例、炭酸ナトリウ ム、炭酸カリウム、炭酸カルシウム、炭酸セシウムなど)、金属アルコキシド(例、ナト リウムメトキシド、ナトリウムエトキシド、カリウムtert-ブトキシドなど)、炭酸 水素ナトリウム、金属ナトリウム、有機アミン(トリエチルアミン、DBUなど)等が挙 げられる。

式(II-2)および式(III)で示される化合物は公知の化合物を用いてもよく、 公知の化合物から常法により誘導された化合物を用いてもよい。

[0054]

(第3法) 化合物 (Ic) (X¹=CR¹²R¹³CO) の合成

式(Ic)で示される化合物で表される化合物は以下のルートで合成できる。

【化7】

(式中、 X^2 はO、Sまたは NR^{14} であり、Rは低級アルキル、LGはハロゲン、低級ア ルキルスルホニル等の脱離基、Halはハロゲン、Proは保護基であり、その他の記号 は前記と同義)

式(II-3)で示される化合物と式(IV)で示される化合物を付加反応に付し、式 (V) で示される化合物を得る。反応は、好ましくは適当な溶媒中、塩基存在下で-50 $\mathbb{C}\sim 150\mathbb{C}$ 、好ましくは $-20\mathbb{C}\sim 100\mathbb{C}$ で、 $0.5\sim 60$ 時間反応させればよい。 溶媒としては上記第1法に記載のものを用いることができ、塩基としては上記第2法に記 載のものを用いることができる。

次に化合物(V)を酸で処理して式(VI)で示される化合物を得る。反応は酢酸、水 等の溶媒中または無溶媒下、塩酸、硫酸等の酸を用いて0℃~180℃、好ましくは20 $\mathbb{C}\sim 150\mathbb{C}$ で、 $0.5\sim 90$ 時間反応させればよい。目的化合物が \mathbb{R}^{13} が水素である場 合は本工程で目的化合物が得られるが、目的化合物がR¹³が置換基を有していてもよい低 級アルキルである場合には、本工程の後または次工程の後等、適当な段階で常法によりア ルキル化すればよい。

最後に化合物(VI)を脱保護し、得られたフェノール体とハロゲン化合物を反応させ て目的化合物 (Ic)を得る。脱保護は常法により行うことができる。反応は塩基存在下 、適当な溶媒中で目的とする $\mathbb{C} \, \mathbb{R}^9 \, \mathbb{R}^{10} \, \mathbb{X}^3$ 基を有する対応するハロゲン化物と $-1 \, 0 \sim 1$ 80℃、好ましくは0~150℃で0.5~90時間反応させればよい。溶媒としては上 記第1法に記載のものを用いることができる。塩基としては、上記第2法に記載のものを 用いることができる。式(II-3)および式(VI)で示される化合物は公知の化合物 を用いてもよく、公知の化合物から常法により誘導された化合物を用いてもよい。

[0055]

(第4法)化合物(Id)($X^3=C$ (=NH)NHOH)の合成式(Id)で表される化合物は以下の方法で合成できる。

【化8】

(式中、各記号は前記と同義)

式(VIII)で示される化合物をヒドロキシルアミンと反応させ、目的化合物(Id)を得ることができる。反応は適当な溶媒中で 0 \mathbb{C} \sim 1 5 0 \mathbb{C} 、好ましくは 2 0 \mathbb{C} \sim 1 0 \mathbb{C} で 0 . 0 \mathbb{C} に 0

式(VIII)で示される化合物は公知の化合物を用いてもよく、公知の化合物から常法により誘導された化合物を用いてもよい。

[0056]

(第 5 法) 化合物 (I e) (X^3 =オキサジアゾロン) の合成

【化9】

(式中、各記号は前記と同義)

上記第 4 法で得られた式(I d)で示される化合物とCDI、ホスゲン、トリホスゲン等を反応させ、目的化合物(I e)を得ることができる。反応は適当な溶媒中で-30 \sim 150 \sim 、好ましくは0 \sim 100 \sim 0 \sim

目的化合物(Ie)のオキサジアゾロンが R^{17} で置換されている化合物である場合、上記方法により R^{17} がHである化合物を得た後、常法により置換基を導入する反応に付せばよい。

[0057]

(第6法) 化合物 (If) ($X^3 =$ オキサジアジノン) の合成

【化10】

(式中、各記号は前記と同義)

上記第4法で得られた式(Id)で示される化合物とハロゲン化合物を反させ、目的化 合物(Ie)を得ることができる。反応は適当な溶媒中で-30 \mathbb{C} \sim 150 \mathbb{C} 、好ましく は 0 \mathbb{C} \sim 1 0 0 \mathbb{C} $\overline{0}$ 0 0 5 時間 \sim 0 9 0 時間反応させればよい。溶媒としては上記第 1 法に 記載のものを用いることができる。塩基としては、上記第2法に記載のものを用いること ができる。

[0058]

(第7法) 化合物(Ig)($X^1=0$,SまたはN R^{11})の合成 式(Ig)で示される化合物で表される化合物は以下のルートで合成できる。 【化11】

(式中、各記号は前記と同義)

式(II-2)で示される化合物と式(IX)で示される化合物を付加反応に付し、式 (X) で示される化合物を得る。反応は好ましくは適当な溶媒中、塩基存在下で-50℃ ~150℃、好ましくは-20℃~100℃で、0.5~60時間反応させればよい。溶 媒としては上記第1法に記載のものを用いることができ、塩基としては上記第2法に記載 のものを用いることができる。

次に化合物(X)を化合物(X I)とカップリング反応に付し、式(I g)で示される 化合物を得る。反応は、好ましくは適当な溶媒中、塩基およびパラジウム触媒存在下でー 50 \mathbb{C} \sim 200 \mathbb{C} 、好ましくは 20 \mathbb{C} \sim 150 \mathbb{C} \mathbb{C} \mathbb{C} \mathbb{C} \mathbb{C} 0. 5 \sim 60 時間反応させればよ い。溶媒としては上記第1法に記載のものを用いることができ、塩基としては上記第2法 に記載のものを用いることができる。パラジウム触媒としては種々パラジウム触媒を用い ることができるが、好ましくはトリス(ビスベンジリデンアセトン)ジパラジウムをトリ -o-トリルホスフィンと組み合わせたもの、または酢酸パラジウムとトリフェニルホス フィンと組み合わせたものなどが用いられる。

式(II-2)、式(IX)および式(XI)で示される化合物は公知の化合物を用 いてもよく、公知の化合物から常法により誘導された化合物を用いてもよい。

[0059]

上記のいずれかの方法により得られた化合物が $X^3 = COOR^{17}$ のエステル体である場合、この化合物を常法により加水分解して $X^3 = COOH$ のカルボン酸体を得ることができる。

必要に応じ、上記製造法の適当な段階においていずれかの置換基を公知の有機合成反応 を利用し、異なる置換基に変換してもよい。

例えば、いずれかの化合物がハロゲンを有している場合、DMF、テトラヒドロフラン等の溶媒中、水素化ナトリウム、水素化カリウム等の塩基および水酸化アルカリ金属、炭酸水素アルカリ金属、炭酸アルカリ金属、有機塩基等の脱酸剤存在下、-20℃-100℃でアルコールと反応させれば置換基が低級アルコキシに変換された化合物が得られる。

また、いずれかの化合物がヒドロキシを有している場合、二クロム酸ピリジニウム、ジョーンズ試薬、二酸化マンガン、過マンガン酸カリウム、四酸化ルテニウム等の酸化剤とジメチルホルムアミド、テトラヒドロフラン、ジクロロメタン、ベンゼン、アセトン等の溶媒中で反応させることにより、置換基がカルボキシに変換された化合物が得られる。

[0060]

また、必要であれば、適当な段階で化合物のアミノまたはヒドロキシを常法により保護した後に反応に付し、適当な段階で酸または塩基で処理して脱保護してもよい

[0061]

アミノ保護基としてはフタルイミド、低級アルコキシカルボニル、低級アルケニルオキシカルボニル、ハロゲノアルコキシカルボニル、アリール低級アルコキシカルボニル、トリアルキルシリル、低級アルキルスルホニル、ハロゲノ低級アルキルスルホニル、アリールスルホニル、低級アルキルカルボニル、アリールカルボニル等を使用することができる

[0062]

ピドロキシ保護基としてはアルキル(t-ブチル等)、アラルキル(トリフェニルメチル、ベンジル)、トリアルキルシリル(t-ブチルジメチルシリル、トリイソプロピルシリル等)、アルキルジアリールシリル(t-ブチルジフェニルシリル等)、トリアラルキルシリル(トリベンジルシリル等)、アルコキシアルキル(メトキシメチル、1-エトキシエチル、1-メチル-1-メトキシエチル等)、アルコキシアルコキシアルキル(メトキシエトキシメチル等)、アルキルチオアルキル(メチルチオメチル等)、テトラヒドロピラン-2-イル、4-メトキシテトラヒドロピラン-4-イル等)、テトラヒドロチオピラニル(テトラヒドロチオピラニル(テトラヒドロチオピラン-2-イル等)、テトラヒドロチオフラン-2-イル等)、テトラヒドロチオフラン-2-イル等)、アラルキルオキシアルキル(ベンジルオキシメチル等)アルキルスルホニル、アシル、2-トルエンスルホニル等が挙げられる。

[0063]

脱保護反応はテトラヒドロフラン、ジメチルホルムアミド、ジエチルエーテル、ジクロロメタン、トルエン、ベンゼン、キシレン、シクロヘキサン、ヘキサン、クロロホルム、酢酸エチル、酢酸ブチル、ペンタン、ヘプタン、ジオキサン、アセトン、アセトニトリルまたはそれらの混合溶媒等の溶媒中、ヒドラジン、ピリジン、水酸化ナトリウム、水酸化カリウム等の塩基または塩酸、トリフルオロ酢酸、フッ化水素酸等の酸を用いて行えばよい。

[0064]

本発明化合物のうち、好ましい化合物は以下の通りである。

1) 式:

【化12】

$$R^2$$
 R^3
 R^4
 R^4
 R^2
 R^3
 R^4

で示される部分 (A部分) が下記のいずれかである化合物、 【0065】

【表1】

$$\begin{bmatrix}
R^{2} & R^{3} & R^{4} \\
R^{1} & 0 & R^{3} & R^{4}
\end{bmatrix} = \begin{bmatrix}
R^{20} & R^{3} & R^{4} \\
R^{2} & R^{3} & R^{4}
\end{bmatrix}$$

$$(CH_{2}) n O N R^{3}$$
a1

A部分No.	タイ	R20	n	R2	R3,R4
	プー	_			
A1	a1	4-CI	0	Н	H,H
A2	a1	4-CI	0	Н	Me,Me
A3	a1	4-CI	0	Н	Et,Et
A4	a1	4−Cl	0	Н	H.Et
A5	a1	4-CI	0	Н	H,Ph
A6	a1	4-CI	0	Н	H,C6H4-4-F
A7	a1	4-CI	0	Me	H,H
A8	a1	4-CI	0	Me	Me,Me
A9	a1	4-Cl	0	Me	Et,Et
A10	аĭ	4-CI	0	Me	H.Et
A11	a1	4-CI	0	Me	H,Ph
A12	a1	4-CI	0	Me	H,C6H4-4-F
A13	a1	4-Cl	0	OMe	H,H
A14	a1	4-CI	0	OMe	Me,Me
A15	a1	4-CI	0	OMe	Et,Et
A16	a1	4-CI	0	OMe	H.Et
A17	a1	4-CI	0	OMe	H,Ph
A18	a1	4-CI	0	OMe	H,C6H4-4-F
A19	a1	4-CI	0	CH2OH	H,H
A20	a1	4-CI	0	CH2OH	H,C6H4-4-F
A21	a1	4-CI	0	CH2OMe	H,H
A22	a1	4-CI	0	CH2OMe	Me,Me
A23	a1	4-CI	0	CH2OMe	Et,Et
A24	a1	4-CI	0	CH2OMe	H.Et
A25	al	4-CI	0	CH2OMe	H,Ph
A26	a1	4-CI	0	CH2OMe	H,C6H4-4-F
A27	a1	4-CI	0	CF3	H,H
A28	a1	4-CI	0	CF3	Me,Me
A29	a1	4-CI	0	CF3	Et,Et
A30	al	4-CI	0	CF3	H.Et
A31	al	4-CI	0	CF3	H,Ph
A32	a1	4-CI	0	CF3	H,C6H4-4-F
A33	a1	4-CI	0	CH2OPh	H,H

[0066]

【表2】

A34	a1 l	4-CI	0	CH2OPh	H,C6H4-4-F
A35	a1	4-CI	0	CH2OCH2Ph	H,H
A36	a1	4-CI	0	CH2OCH2Ph	H,C6H4-4-F
A37	a1	4-CI	0	CH2-morpholino	H,H
A38	at	4-CI	0	CH2-morpholino	Me,Me
A39	al	4-CI	0	CH2-morpholino	Et,Et
A40	a1	4-CI	0	CH2-morpholino	H.Et
A41	at	4-CI	0	-	H,Ph
A42	al	4–CI	0	CH2-morpholino	H,C6H4-4-F
A43	a1	4-CI	0	CH2NHBu	H,H
A44	a1	4-CI	0	CH2NHBu	H,C6H4-4-F
A45	a1	4-CI	0	C≣CPh	H,H
A46	al	4-CI	0	C≡CPh	H,C6H4-4-F
A47	at	4-CI	0	Ph	н,н
A48	a1	4-CI	0	Ph	H,C6H4-4-F
A49	a1	4-CI	0	C6H4-4-CF3	н,н
A50	a1	4-CI	0	C6H4-4-CF3	H,C6H4-4-F
A51	a1	4-CI	0	C6H4-3-CF3	н,н
A52	a1	4-CI	0	C6H4-3-CF3	H,C6H4-4-F
A53	a1	4-CI	0	C6H4-4-OH	н,н
A54	a1	4-CI	0	· C6H4-4-OH	H,C6H4-4-F
A55	a1	4-CI	0	CH2Ph	H,H
A56	a1	4–CI	0	CH2Ph	H,C6H4-4-F
A57	al	4-Ci	0	CH2C6H4-4-CF3	H,H
A58	a1	4-CI	0	CH2C6H4-4-CF3	Me,Me
A59	a1	4-CI	0	CH2C6H4-4-CF3	Et,Et
A60	a1	4-CI	0	CH2C6H4-4-CF3	H.Et
A61	a1	4-C1	0	CH2C6H4-4-CF3	H,Ph
A62	a1	4-CI	0	CH2C6H4-4-CF3	H,C6H4-4-F
A63	a1	4-CI	0	CH2C6H4-4-OCF3	Н,Н
A64	a1	4-CI	0	CH2C6H4-4-OCF3	1
A65	a1	4-CI	0	CH2C6H4-4-Ph	H,H
A66	a1	4-CI	0	CH2C6H4-4-Ph	H,C6H4-4-F
A67	a1	4-CI	0	CH2C6H4-2-CI	H,H
A68	a1	4-CI	0	CH2C6H4-2-CI	H,C6H4-4-F
A69	a1	4-CI	0	(CH2)2Ph	H,H
A70	a1	4-CI	0	(CH2)2Ph	H,C6H4-4-F
A71	a1	4-CI	0	SPh	H,H
A72	a1	4-Cl	0	SPh	H,C6H4-4-F
A73	a1	4-CI	0	NH2	H,H
A74	a1	4-CI	0	NH2	H,C6H4-4-F
A75	a1	4-Cl	0	NHMe	H,H
A76	a1	4-CI	0	NHMe	H,C6H4-4-F
A77	a1	4-CI	0	CH2-piperazino-Ph	[H, H

【表3】

A78	a1	4-CI	lol	CH2-piperazino-Ph	H,C6H4-4-F
A79	a1	4-CI	o	CH2-piperidino	н,н
A80	al	4-CI	0	CH2-piperidino	H,C6H4-4-F
A81	a1	4-CI	o	OCH2Ph	н,н
A82	a1	4-CI	o	OCH2Ph	H,C6H4-4-F
A83	at	4-CI	0	Ac	Н,Н
A84	a1	4-CI	0	Ac	H,C6H4-4-F
A85	al	4-CI	0	CONH2	н,н
A86	a1	4-CI	0	CONH2	H,C6H44-F
A87	a1	4-CI	o	CSNH2	н,н
A88	al	4-CI	0	CSNH2	H,C6H4-4-F
A89	a1	4-CI	o	OCONH2	н,н
A90	a1	4-CI	0	OCONH2	H,C6H4-4-F
A91	a1	4-CI	0	OCSNH2	H,H
A92	a1	4-CI	0	OCSNH2	H,C6H4-4-F
A93	al	4-CI	0	OSO2Me	H,H
A94	a1	4-Ci	0	OSO2Me	H,C6H4-4-F
A95	a1	4-CI	0	OSO2Ph	H,H
A96	a1	4CI	0	OSO2Ph	H,C6H4-4-F
A97	a1	4-CI	0	I	H,H
A98	al	4-CI	0	I	H,C6H4-4-F
A99	a1	4-CI	1	Н	H,H
A100	a1	4−Cl	1	Н	Me,Me
A101	a1	4-CI	1	Н	Et,Et
A102	a1	4-CI	1	н	H.Et
A103	a1	4-CI	1	Н	H,Ph
A104	a1	4-CI	1	H .	H,C6H4-4-F
A105	a1	4-CI	1	Me	H,H
A106	a1	4-CI	1	Me	Me,Me
A107	a1	4-CI	1	Me	Et,Et
A108	a1	4-CI	1	Me	H.Et
A109	a1	4-CI	1	Me	H,Ph
A110	a1	4-CI	1	Me	H,C6H4-4-F
A111	a1	4-C1	1	OMe	H,H
A112	a1	4-CI	1	OMe	Ме,Ме
A113	a1	4-CI	1	OMe	Et,Et
A114	a1	4-CI	1	OMe	H.Et
A115	a1	4-CI	1	OMe	H,Ph
A116	a1	4-CI	1	OMe	H,C6H4-4-F
A117	a1	4-CI	1	CH2OH	H,H
A118	a1	4-Cl	1	CH2OH	H,C6H4-4-F
A119	a1	4-CI	1		H,H
A120	a1	4-CI	1	CH2OMe	Me,Me
A121	a1	4-CI	1	CH2OMe	Et,Et

【表4】

A122	a1	4-CI	111	CH2OMe	H.Et
A123	a1	4-CI	11	CH2OMe	H,Ph
A124	ai	4-CI	11	CH2OMe	H,C6H4-4-F
A125	a1	4-Cl	1	CF3	H,H
A126	a1	4-CI	11	CF3	Me,Me
A127	a1	4-CI	1	CF3	Et,Et
A128	a1	4-CI	111	CF3	H.Et
A129	a1	4-CI	1	CF3	H,Ph
A130	a1	4-CI	11	CF3	H,C6H4-4-F
A131	a1	4-CI	11	CH2OPh	H,H
A132	a1	4-CI	11	CH2OPh	H,C6H4-4-F
A133	a1	4-CI	1	CH2OCH2Ph	H,H
A134	a1	4-CI	1	CH2OCH2Ph	H,C6H4-4-F
A135	a1	4-CI	1	CH2-morpholino	H,H
A136	a1	4-CI	1	CH2-morpholino	Me,Me
A137	a1	4-CI	11	CH2-morpholino	Et,Et
A138	a1	4-CI	1	CH2-morpholino	H.Et
A139	a1	4-C1	11	CH2-morpholino	H,Ph
A140	a1	4-CI	1	CH2-morpholino	H,C6H4-4-F
A141	al	4-CI	1 1	CH2NHBu	H,H
A142	a1	4−CI	1	CH2NHBu	H,C6H4-4-F
A143	a1	4-CI	1	C≡CPh	H,H
A144	a1	4-CI	1 1	C≡CPh	H,C6H4-4-F
A145	a1	4-CI	11	Ph	H,H
A146	a1	4-CI	1	Ph	H,C6H4-4-F
A147	a1	4-CI	1	C6H4-4-CF3	H,H
A148	a1	4-CI	1	C6H4-4-CF3	H,C6H4-4-F
A149	a1	4-CI	1	C6H4-3-CF3	H,H
A150	a1	4-CI	1	C6H4-3-CF3	H,C6H4-4-F
A151	a1	4-CI	1	C6H4-4-OH	H,H
A152	a1	4-CI	1	C6H4-4-OH	H,C6H4-4-F
A153	a1	4-CI	1 1	CH2Ph	H,H
A154	a1	4-CI	1	CH2Ph	H,C6H4-4-F
A155	a1	4-CI		CH2C6H4-4-CF3	H,H
A156	a1	4-CI	1	CH2C6H4-4-CF3	Me,Me
A157	a1	4-CI	1	CH2C6H4-4-CF3	Et,Et
A158	a1	4-CI	1	CH2C6H4-4-CF3	H.Et
A159	a1	4-CI		CH2C6H4-4-CF3	H,Ph
A160	al	4-CI	11	CH2C6H4-4-CF3	H,C6H4-4-F
A161	a1	4-CI		CH2C6H4-4-OCF3	
A162	a1	4-CI		CH2C6H4-4-OCF3	1
A163	a1	4-Cl	1	CH2C6H4-4-Ph	H,H H,C6H4-4-F
A164	a1	4-Cl		CH2C6H4-4-Ph	H,H
A165	a1	4-CI	1	CH2C6H4-2-CI	lu'u

[0069]

【表5】

lA166 l	a1	4-CI	1	CH2C6H4-2-CI	H,C6H4-4-F
A167	a1	4-CI	1	(CH2)2Ph	H,H
A168	a1	4-CI	1	(CH2)2Ph	H,C6H4-4-F
A169	a1	4-CI	1	SPh	H,H
A170	at	4-CI	1	SPh	H,C6H4-4-F
A171	a1	4-CI	1	NH2	H,H
A172	a1	4-Ci	1	NH2	H,C6H4-4-F
A173	a1	4-CI	1	NHMe	н,н
A174	al	4-CI	1	NHMe	H,C6H4-4-F
A175	a1	4-C1	1	CH2-piperazino-Ph	н,н
A176	a1	4-CI	1	CH2-piperazino-Ph	
A177	a1	4-CI	1	CH2-piperidino	H,H
A178	a1	4-CI	1	CH2-piperidino	H,C6H4-4-F
A179	al	4-CI	1	OCH2Ph	H,H
A180	a1	4-CI	1	OCH2Ph	H,C6H4-4-F
A181	a1	4-CI	1	Ac	H,H
A182	a1	4-CI	1	Ac	H,C6H4-4-F
A183	a1	4-CI	1	CONH2	н,н
A184	ai	4-CI	1	CONH2	H,C6H4-4-F
A185	a1	4-CI	1	CSNH2	H,H
A186	a1	4-Cl	1	CSNH2	H,C6H4-4-F
A187	a1	4-CI	1	OCONH2	H,H
A188	a1	4-CI	1	OCONH2	H,C6H4-4-F
A189	at	4-CI	1	OCSNH2	H,H
A190	a1	4-CI	1	OCSNH2	H,C6H4-4-F
A191	a1	4-CI	1	OSO2Me	H,H
A192	a1	4-CI	1	OSO2Me	H,C6H4-4-F
A193	a1	4-CI	1	OSO2Ph	H,H
A194	a1	4-CI	1	OSO2Ph	H,C6H4-4-F
A195	a1	4-CI	1	I	H,H
A196	a1	4-CI	1	I	H,C6H4-4-F
A197	a1	4-CI	2	ÌН	H,H
A198	a1	4-CI	2	Н	Me,Me
A199	a1	4-CI	2	Н	Et,Et
A200	a1	4-CI	2	Н	H.Et
A201	a1	4-CI	2	Н	H,Ph
A202	a1	4-CI	2	H	H,C6H4-4-F
A203	a1	4-CI	2	Me	H,H
A204	a1	4-CI	2	Me	Me,Me
A205	a1	4-CI	2	Me	Et,Et
A206	a1	4-CI	2	Me	H.Et
A207	a1	4-CI	2	Me	H,Ph
A208	a1	4-CI	2	Me	H,C6H4-4-F
A209	a1	4-CI	2	OMe	H,H

[0070]

【表6】

A210	a1	4-CI	2	OMe	Me,Me
A210 A211	aı a1	4-CI	2	OMe	Et,Et
1			2	OMe	H.Et
A212	a1	4-CI 4-CI	2	OMe	H,Ph
A213	a1		2	OMe	H,C6H4-4-F
A214	a1	4-CI	2	CH2OH	H,H
A215	a1	4-CI	1 1	CH2OH	H,C6H4-4-F
A216	a1	4-CI	2	CH2OH CH2OMe	H,H
A217	a1	4-Cl	2 2	CH2OMe	Me,Me
A218	al	4-CI	1 -		Et,Et
A219	a1	4-CI	2	CH2OMe	H.Et
A220	a1	4-CI	2	CH2OMe	
A221	a1	4-CI	2	CH2OMe	H,Ph
A222	a1	4-CI	2	CH2OMe	H,C6H4-4-F
A223	a1	4-Cl	2	CF3	H,H
A224	a1	4-CI	2	CF3	Me,Me
A225	a1	4-CI	2	CF3	Et,Et
A226	a1	4-CI	2	CF3	H.Et
A227	a1	4-CI	2	CF3	H,Ph
A228	a1	4-CI	2	CF3	H,C6H4-4-F
A229	a1	4-CI	2	CH2OPh	H,H
A230	a1	4−CI	2	CH2OPh	H,C6H4-4-F
A231	a1	4–CI	2	CH2OCH2Ph	H,H
A232	a1	4-CI	2	CH2OCH2Ph	H,C6H4-4-F
A233	a1	4-CI	2	CH2-morpholino	H,H
A234	a1	4-CI	2	CH2-morpholino	Me,Me
A235	a1	4-CI	2	CH2-morpholino	Et,Et
A236	a1	4-CI	2	CH2-morpholino	H.Et
A237	a1	4-CI	2	CH2-morpholino	H,Ph
A238	a1	4-CI	2	CH2-morpholino	H,C6H4-4-F
A239	a1	4-CI	2	CH2NHBu	H,H
A240	a1	4-Cl	2	CH2NHBu	H,C6H4-4-F
A241	a1	4-CI	2	C≡CPh	H,H
A242	a1	4-CI	2	C≡CPh	H,C6H4-4-F
A243	a1	4-CI	2	Ph	H,H
A244	a1	4-CI	2	Ph	H,C6H4-4-F
A245	a1	4-CI	2	C6H4-4-CF3	H,H
A246	a1	4-CI	2	C6H4-4-CF3	H,C6H4-4-F
A247	a1	4-CI	2	C6H4-3-CF3	H,H
A248	a1	4-CI	2	C6H4-3-CF3	H,C6H4-4-F
A249	a1	4-CI	2	C6H4-4-OH	H,H
A250	a1	4-Ci	2	C6H4-4-OH	H,C6H4-4-F
A251	a1	4-CI	2	CH2Ph	H,H
A252	a1	4-Cl	2	CH2Ph	H,C6H4-4-F
A253	a1	4-CI	2	CH2C6H4-4-CF3	н,н

[0071]

【表7】

A254	a1	4-CI	2	CH2C6H4-4-CF3	Me,Me
A255	a1	4-CI	2		Et,Et
A256	a1	4-CI	2		H.Et
A257	a1	4-CI	2	· ·	H,Ph
A258	a1	4-CI	2	· ·	H,C6H4-4-F
A259	a1	4-CI	2	· · · · 	н,н
A260	a1	4-CI	2		H,C6H4-4-F
A261	a1	4-CI	2	CH2C6H4-4-Ph	H,H
A262	a1	4-CI	2	CH2C6H4-4-Ph	H,C6H4-4-F
A263	a1	4-CI	2	CH2C6H4-2-CI	H,H
A264	a1	4-Cl	2	CH2C6H4-2-CI	H,C6H4-4-F
A265	a1	4-CI	2	(CH2)2Ph	н,н
A266	al	4-CI	2	(CH2)2Ph	H,C6H4-4-F
A267	a1	4-CI	2	SPh	н,н
A268	a1	4-CI	2	SPh	H,C6H4-4-F
A269	a1	4-CI	2	NH2	H,H
A270	a1	4-CI	2	NH2	H,C6H4-4-F
A271	a1	4-CI	2	NHMe	н,н
A272	a1	4-CI	2	NHMe	H,C6H4-4-F
A273	a1	4-Cl	2	CH2-piperazino-Ph	H,H
A274	a1	4-CI	2	CH2-piperazino-Ph	H,C6H4-4-F
A275	a1	4-CI	2	CH2-piperidino	H,H
A276	a1	4-CI	2	CH2-piperidino	H,C6H4-4-F
A277	a1	4-CI	2	OCH2Ph	H,H
A278	a1	4-CI	2	OCH2Ph	H,C6H4-4-F
A279	a1	4-CI	2	Ac	H,H
A280	a1	4-CI	2	Ac	H,C6H4-4-F
A281	a1	4-CI	2	CONH2	H,H
A282	a1	4-CI	2	CONH2	H,C6H4-4-F
A283	a1	4-Cl	2	CSNH2	H,H
A284	a1	4-CI	2	CSNH2	H,C6H4-4-F
A285	a1	4-CI	2	OCONH2	H,H
A286	a1	4-CI	2	OCONH2	H,C6H4-4-F
A287	a1	4-CI	2	OCSNH2	H,H
A288	a1	4-CI	2	OCSNH2	H,C6H4-4-F
A289	a1	4-CI	2	OSO2Me	H,H
A290	a1	4-CI	2	OSO2Me	H,C6H4-4-F
A291	a1	4-CI	2	OSO2Ph	H,H
A292	a1	4-CI	2	1	H,C6H4-4-F
A293	a1	4-CI	2	L .	H,H
A294	a1	4-CI	2		H,C6H4-4-F
A295	a1	4-CF3	0		H,H
A296	a1	4-CF3	0	AND THE RESERVE OF THE PARTY OF	Me,Me
A297	a1	4-CF3	0	Н	Et,Et

【表8】

A298	a1	4-CF3	0	Н	H.Et
A299	a1	4-CF3	0	Н	H,Ph
A300	a1	4-CF3	0	Н	H,C6H4-4-F
A301	a1	4-CF3	0	Me	н,н
A302	al	4-CF3	0	Ме	Me,Me
A303	a1	4-CF3	0	Me	Et,Et
A304	a1	4-CF3	0	Me	H.Et
A305	al	4-CF3	0	Me	H,Ph
A306	a1	4-CF3	0	Me	H.C6H4-4-F
A307	a1	4-CF3	0	OMe	н,н
A308	a1	4-CF3	o	OMe	Me,Me
A309	a1	4~CF3	0	OMe	Et,Et
A310	a1	4-CF3	0	OMe	H.Et
A311	a1	4-CF3	0	OMe	H,Ph
A312	a1	4-CF3	ol	OMe	H,C6H4-4-F
A313	al	4-CF3	0	CH2OH	H,H
A314	a1	4-CF3	0	CH2OH	H,C6H4-4-F
A315	a1	4CF3	0	CH2OMe	H,H
A316	a1	4-CF3	0	CH2OMe	Me,Me
A317	a1	4-CF3	0	CH2OMe	Et,Et
A318	a1	4-CF3	0	CH2OMe	H.Et
A319	a1	4-CF3	0	CH2OMe	H,Ph
A320	a1	4-CF3	0	CH2OMe	H,C6H4-4-F
A321	at	4-CF3	0	CF3	H,H
A322	a1	4-CF3	0	CF3	Me,Me
A323	a1	4-CF3	0	CF3	Et,Et
A324	a1	4-CF3	0	CF3	H.Et
A325	a1	4-CF3	0	CF3	H,Ph
A326	a1	4-CF3	0	CF3	H,C6H4-4-F
A327	a1	4-CF3	0	CH2OPh	H,H
A328	a1	4-CF3	0	CH2OPh	H,C6H4-4-F
A329	a1	4-CF3	0	CH2OCH2Ph	H,H
A330	a1	4-CF3	0	CH2OCH2Ph	H,C6H4-4-F
A331	a1	4-CF3	0	CH2-morpholino	H,H
A332	al	4-CF3	0	CH2-morpholino	Me,Me
A333	a1	4-CF3	0	CH2-morpholino	Et,Et
A334	a1	4-CF3	0	CH2-morpholino	H.Et
A335	a1	4-CF3	0	CH2-morpholino	H,Ph
A336	a1	4-CF3	0	CH2-morpholino	H,C6H4-4-F
A337	al	4-CF3	0	CH2NHBu	H,H
A338	a1	4-CF3	0	CH2NHBu	H,C6H4-4-F
A339	a1	4-CF3	0	C≣CPh	H,H
A340	a1	4-CF3	0	C≣CPh	H,C6H4-4-F
A341	a1	4-CF3	0	Ph	H,H

【表9】

A342	a1	4-CF3	0	Ph	H,C6H4-4-F
A343	a1	4-CF3	0	C6H4-4-CF3	H,H
A344	a1	4-CF3	0	C6H4-4-CF3	H,C6H4-4-F
A345	a1	4-CF3	0	C6H4-3-CF3	H,H
A346	a1	4-CF3	0	C6H4-3-CF3	H,C6H4-4-F
A347	a1	4-CF3	0	C6H4-4-OH	H,H
A348	a1	4-CF3	0	C6H4-4-OH	H,C6H4-4-F
A349	a1	4-CF3	0	CH2Ph	H,H
A350	a1	4-CF3	0	CH2Ph	H,C6H4-4-F
A351	a1	4-CF3	0	CH2C6H4-4-CF3	H,H
A352	a1	4-CF3	0	CH2C6H4-4-CF3	Me,Me
A353	аĭ	4-CF3	0	CH2C6H4-4-CF3	Et,Et
A354	a1	4-CF3	0	CH2C6H4-4-CF3	H.Et
A355	a1	4-CF3	0	CH2C6H4-4-CF3	H,Ph
A356	a1	4-CF3	0	CH2C6H4-4-CF3	H,C6H4-4-F
A357	a1	4-CF3	0	CH2C6H4-4-OCF3	H,H
A358	a1	4-CF3	0	CH2C6H4-4-OCF3	H,C6H4-4-F
A359	a1	4-CF3	0	CH2C6H4-4-Ph	H,H
A360	a1	4-CF3	0	CH2C6H4-4-Ph	H,C6H4-4-F
A361	a1	4-CF3	0	CH2C6H4-2-CI	H,H
A362	a1	4-CF3	0	CH2C6H4-2-CI	H,C6H4-4-F
A363	a1	4-CF3	0	(CH2)2Ph	Н,Н
A364	a1	4-CF3	0	(CH2)2Ph	H,C6H4-4-F
A365	aī	4-CF3	0	SPh	H,H
A366	a1	4-CF3	0	SPh	H,C6H4-4-F
A367	a1	4-CF3	0	NH2	H,H
A368	a1	4-CF3	0	NH2	H,C6H4-4-F
A369	a1	4-CF3	0	NHMe	H,H
A370	a1	4-CF3	0	NHMe	H,C6H4-4-F
A371	a1	4-CF3	0	CH2-piperazino-Ph	i i
A372	a1	4-CF3	0	CH2-piperazino-Ph	H,C6H4-4-F
A373	a1	4-CF3	0	CH2-piperidino	H,H
A374	a1	4-CF3	0	CH2-piperidino	H,C6H4-4-F
A375	аĭ	4-CF3	0	OCH2Ph	H,H
A376	a1	4-CF3	0	OCH2Ph	H,C6H4-4-F
A377	a1	4-CF3	0	Ac	H,H
A378	a1	4-CF3	0	Ac	H,C6H4-4-F
A379	a1	4-CF3	0	CONH2	H,H
A380	a1	4-CF3	0	CONH2	H,C6H4-4-F
A381	a1	4-CF3	0	CSNH2	H,H
A382	a1	4-CF3	0	CSNH2	H,C6H4-4-F
A383	a1	4-CF3	0	OCONH2	H,H
A384	a1	4-CF3	0	4.	H,C6H4-4-F
A385	a1	4-CF3	0	OCSNH2	H,H

[0074]

【表10】

A386	a1	4-CF3	0	OCSNH2	H,C6H4-4-F
A387	a1	4-CF3	0	OSO2Me	н,н
A388	a1	4-CF3	0	OSO2Me	H,C6H4-4-F
A389	a1	4-CF3	0	OSO2Ph	н,н
A390	a1	4-CF3	0	OSO2Ph	H,C6H4-4-F
A391	a1	4-CF3	0	I	H,H
A392	a1	4-CF3	0	I	H,C6H4-4-F
A393	a1	4-CF3	1	Н	н,н
A394	a1	4-CF3	1	Н	Me,Me
A395	a1	4-CF3	1	Н	Et,Et
A396	a1	4-CF3	1	Н	H.Et
A397	a1	4-CF3	1	Н	H,Ph
A398	a1	4-CF3	1	Н	H,C6H4-4-F
A399	a1	4-CF3	1	Me	H,H
A400	a1	4-CF3	1	Me	Me,Me
A401	a1	4-CF3	1	Ме	Et,Et
A402	a1	4-CF3	1	Me	H.Et
A403	a1	4-CF3	1 1	Me	H,Ph
A404	a1	4-CF3	1	Me	H,C6H4-4-F
A405	a1	4-CF3	1	OMe	H,H
A406	a1	4-CF3	1	OMe	Me,Me
A407	a1	4-CF3	1	OMe	Et,Et
A408	a1	4-CF3	1	OMe	H.Et
A409	a1	4-CF3	1	OMe	H,Ph
A410	a1	4-CF3	1	OMe	H,C6H4-4-F
A411	a1	4-CF3	1 1	CH2OH	H,H
A412	a1	4-CF3	1	CH2OH	H,C6H4-4-F
A413	a1	4-CF3	1	CH2OMe	H,H
A414	a1	4-CF3	1	CH2OMe	Me,Me
A415	a1	4CF3	1	CH2OMe	Et,Et
A416	a1	4-CF3	1	CH2OMe	H.Et
A417	a1	4-CF3	1	CH2OMe	H,Ph
A418	a1	4-CF3	1	CH2OMe	H,C6H4-4-F
A419	a1	4-CF3	1	CF3	H,H
A420	a1	4-CF3	1	CF3	Me,Me
A421	a1	4-CF3	1	CF3	Et,Et
A422	a1	4-CF3	1	CF3	H.Et
A423	a1	4-CF3	1	CF3	H,Ph
A424	a1	4-CF3	1	CF3	H,C6H4-4-F
A425	a1	4-CF3	1	CH2OPh	H,H
A426	a1	4-CF3	1	CH2OPh	H,C6H4-4-F
A427	a1	4-CF3	1	CH2OCH2Ph	H,H
A428	al	4-CF3	1	CH2OCH2Ph	H,C6H4-4-F
A429	a1	4-CF3	11	CH2-morpholino]н,н

[0075]

【表11】

A430	a1	4-CF3	1	CH2-morpholino	Me,Me
A431	a1	4-CF3	1	CH2-morpholino	Et,Et
A432	a1	4-CF3	1	CH2-morpholino	H.Et
A433	a1	4-CF3	1	CH2-morpholino	H,Ph
A434	a1	4-CF3	1	CH2-morpholino	H,C6H4-4-F
A435	a1	4-CF3	1	CH2NHBu	H,H
A436	a1	4-CF3	1	CH2NHBu	H,C6H4-4-F
A437	a1	4-CF3	1	C≣CPh	H,H
A438	a1	4-CF3	1	C≣CPh	H,C6H4-4-F
A439	a1	4-CF3	1	Ph	H,H
A440	a1	4-CF3	1	Ph	H,C6H4-4-F
A441	a1	4-CF3	1	C6H4-4-CF3	H,H
A442	a1	4-CF3	1	C6H4-4-CF3	H,C6H4-4-F
A443	a1	4-CF3	1	C6H4-3-CF3	H,H
A444	a1	4-CF3	1	C6H4-3-CF3	H,C6H4-4-F
A445	a1	4-CF3	1	C6H4-4-OH	H,H
A446	a1	4-CF3	1	C6H4-4-OH	H,C6H4-4-F
A447	a1	4-CF3	1	CH2Ph	H,H
A448	a1	4-CF3	1	CH2Ph	H,C6H4-4-F
A449	a1	4-CF3	1	CH2C6H4-4-CF3	H,H
A450	a1	4-CF3	1	CH2C6H4-4-CF3	Me,Me
A451	a1	4-CF3	1	CH2C6H4-4-CF3	Et,Et
A452	a1	4-CF3	1	CH2C6H4-4-CF3	H.Et
A453 .	a1	4-CF3	1	CH2C6H4-4-CF3	H,Ph
A454	a1	4-CF3	1	CH2C6H4-4-CF3	H,C6H4-4-F
A455	a1	4-CF3	1	CH2C6H4-4-OCF3	H,H
A456	a1	4-CF3	1	CH2C6H4-4-OCF3	H,C6H4-4-F
A457	a1	4-CF3	1	CH2C6H4-4-Ph	H,H
A458	a1	4-CF3	1	CH2C6H4-4-Ph	H,C6H4-4-F
A459	a1	4-CF3	1	CH2C6H4-2-CI	Н,Н
A460	a1	4-CF3	1	CH2C6H4-2-CI	H,C6H4-4-F
A461	a1	4-CF3	1	(CH2)2Ph	H,H
A462	a1	4-CF3	1	(CH2)2Ph	H,C6H4-4-F
A463	a1	4-CF3	1	SPh	H,H
A464	a1	4-CF3	1	SPh	H,C6H4-4-F
A465	a1	4-CF3	1	NH2	H,H
A466	a1	4-CF3	1	NH2	H,C6H4-4-F
A467	a1	4-CF3	1	NHMe	H,H
A468	a1	4-CF3	1	NHMe	H,C6H4-4-F
A469	a1	4-CF3	1	CH2-piperazino-Ph	
A470	a1	4-CF3	1	CH2-piperazino-Ph	1
A471	a1	4-CF3	1	CH2-piperidino	H,H
A472	a1	4-CF3	1	CH2-piperidino	H,C6H4-4-F
A473	al	4-CF3	1	OCH2Ph	Н,Н

【表12】

A474	a1	4-CF3	1]	OCH2Ph	H,C6H4-4-F
A475	ai	4-CF3	1	Ac	H,H
A476	al	4-CF3	1	Ac	H,C6H4-4-F
A477	a1	4-CF3	1	CONH2	H,H
A478	a1	4-CF3	1	CONH2	H,C6H4-4-F
A479	a1	4-CF3	1	CSNH2	H,H
A480	at	4-CF3	1	CSNH2	H,C6H4-4-F
A481	a1	4-CF3	1	OCONH2	H,H
A482	a1	4-CF3	1	OCONH2	H,C6H4-4-F
A483	a1	4-CF3	1	OCSNH2	H,H
A484	a1	4-CF3	1	OCSNH2	H,C6H4-4-F
A485	a1	4-CF3	1	OSO2Me	H,H
A486	a1	4-CF3	1	OSO2Me	H,C6H4-4-F
A487	a1	4-CF3	1	OSO2Ph	H,H
A488	a1	4-CF3	1	OSO2Ph	H,C6H4-4-F
A489	a1	4-CF3	1	I	H,H
A490	a1	4-CF3	1 1	I	H,C6H4-4-F
A491	a1	4-CF3	2	Н	H,H
A492	a1	4-CF3	2	Н	Me,Me
A493	a1	4-CF3	2	. Н	Et,Et
A494	a1	4-CF3	2	Н	H.Et
A495	a1	4-CF3	2	Н	H,Ph
A496	a1	4-CF3	2	Н	H,C6H4-4-F
A497	a1	4-CF3	2	Ме	H,H
A498	a1	4-CF3	2	Me	Me,Me
A499	a1	4-CF3	2	Ме	Et,Et
A500	a1	4-CF3	2	Ме	H.Et
A501	a1	4-CF3	2	Me	H,Ph
A502	a1	4-CF3	2	Ме	H,C6H4-4-F
A503	a1	4-CF3	2	OMe	H,H
A504	a1	4-CF3	2	OMe	Me,Me
A505	a1	4-CF3	2	OMe	Et,Et
A506	a1	4-CF3	2	OMe	H.Et
A507	a1	4-CF3	2	OMe	H,Ph
A508	a1	4-CF3	2	OMe	H,C6H4-4-F
A509	a1	4-CF3	2	CH2OH	H,H
A510	a1	4-CF3	2	CH2OH	H,C6H4-4-F
A511	a1	4-CF3	2	CH2OMe	H,H
A512	a1	4-CF3	2	CH2OMe	Me,Me
A513	a1	4-CF3	2	CH2OMe	Et,Et
A514	a1	4-CF3	2	CH2OMe	H.Et H,Ph
A515	a1	4-CF3	2	1	H,C6H4-4-F
A516	a1	4-CF3	2	1	H,H
A517	a1	4-CF3	2	CF3	իւմել

【表13】

A518	a1	4-CF3	2	CF3	Me,Me
A519	a1	4-CF3	2	CF3	Et,Et
A520	a1	4-CF3	2	CF3	H.Et
A521	a1	4-CF3	2	CF3	H,Ph
A522	a1	4-CF3	2	CF3	H,C6H4-4-F
A523	a1	4-CF3	2	CH2OPh	H,H
A524	a1	4-CF3	2	CH2OPh	H,C6H4-4-F
A525	al	4-CF3	2	CH2OCH2Ph	н,н
A526	a1	4-CF3	2	CH2OCH2Ph	H,C6H4-4-F
A527	a1	4-CF3	2	CH2-morpholino	H,H
A528	a1	4-CF3	2		Me,Me
A529	a1	4-CF3	2	CH2-morpholino	Et,Et
A530	a1	4-CF3	2	CH2-morpholino	H.Et
A531	a1	4-CF3	2	CH2-morpholino	H,Ph
A532	a1	4-CF3	2	CH2-morpholino	H,C6H4-4-F
A533	a1	4-CF3	2	CH2NHBu	H,H
A534	a1	4-CF3	2	CH2NHBu	H,C6H4-4-F
A535	a1	4-CF3	2	C≡CPh	H,H
A536	a1	4-CF3	2	C≡CPh	H,C6H4-4-F
A537	a1	4-CF3	2	Ph	H,H
A538	a1	4-CF3	2	Ph	H,C6H4-4-F
A539	a1	4-CF3	2	C6H4-4-CF3	H,H
A540	a1	4-CF3	2	C6H4-4-CF3	H,C6H4-4-F
A541	a1	4-CF3	2	C6H4-3-CF3	H,H
A542	a1	4-CF3	2	C6H4-3-CF3	H,C6H4-4-F
A543	a1	4-CF3	2	C6H4-4-OH	H,H
A544	a1	4-CF3	2	C6H4-4-OH	H,C6H4-4-F
A545	a1	4-CF3	2	CH2Ph	H,H
A546	a1	4-CF3	2	CH2Ph	H,C6H4-4-F
A547	a1	4-CF3	2	CH2C6H4-4-CF3	H,H
A548	a1	4-CF3	2	CH2C6H4-4-CF3	Me,Me
A549	a1	4-CF3	2	CH2C6H4-4-CF3	Et,Et
A550	a1	4-CF3	2	CH2C6H4-4-CF3	H.Et
A551	a1	4-CF3	2	CH2C6H4-4-CF3	H,Ph
A552	a1	4-CF3	2	CH2C6H4-4-CF3	H,C6H4-4-F
A553	a1	4-CF3	2	CH2C6H4-4-OCF3	
A554	a1	4-CF3	2	CH2C6H4-4-OCF3	t e
A555	a1	4-CF3	2	CH2C6H4-4-Ph	H,H
A556	a1	4-CF3	2	CH2C6H4-4-Ph	H,C6H4-4-F
A557	a1	4-CF3	2	CH2C6H4-2-CI	H,H
A558	a1	4-CF3	2	CH2C6H4-2-CI	H,C6H4-4-F
A559	a1	4-CF3	2	(CH2)2Ph	H,H
A560	al	4-CF3	2	(CH2)2Ph	H,C6H4-4-F
A561	a1	4-CF3	2	SPh	н,н

【表14】

A562	a1	4-CF3	2	SPh	H,C6H4-4-F
A563	a1	4-CF3	2	NH2	H,H
A564	a1	4-CF3	2	NH2	H,C6H4-4-F
A565	a1	4-CF3	2	NHMe	H,H
A566	a1	4-CF3	2	NHMe	H,C6H4-4-F
A567	a1	4-CF3	2	CH2-piperazino-Ph	н,н
A568	a1	4-CF3	2	CH2-piperazino-Ph	1
A569	a1	4-CF3	2	CH2-piperidino	H,H
A570	a1	4-CF3	2	CH2-piperidino	H,C6H4-4-F
A571	a1	4-CF3	2	OCH2Ph	н,н
A572	a1	4-CF3	2	OCH2Ph	H,C6H4-4-F
A573	a1	4-CF3	2	Ac	H,H
A574	a1	4-CF3	2	Ac	H,C6H4-4-F
A575	a1	4-CF3	2	CONH2	H,H
A576	a1	4-CF3	2	CONH2	H,C6H4-4-F
A577	a1	4-CF3	2	CSNH2	H,H
A578	a1	4-CF3	2	CSNH2	H,C6H4-4-F
A579	a1	4-CF3	2	OCONH2	H,H
A580	a1	4-CF3	2	OCONH2	H,C6H4-4-F
A581	a1	4-CF3	2	OCSNH2	н,н
A582	a1	4-CF3	2	OCSNH2	H,C6H4-4-F
A583	a1	4-CF3	2	OSO2Me	H,H
A584	a1	4-CF3	2	OSO2Me	H,C6H4-4-F
A585	a1	4-CF3	2	OSO2Ph	H,H
A586	a1	4-CF3	2	OSO2Ph	H,C6H4-4-F
A587	a1	4-CF3	2	I	H,H
A588	a1	4-CF3	2	I	H,C6H4-4-F
A589	a1	н	0	Н	H,H
A590	a1	3-F	0	H	Me,Me
A591	a1	2-Me	0	Н	Et,Et
A592	a1	3-OMe	0	Н	H.Et
A593	a1	4-OH	0	Н	H,Ph
A594	a1	4-OMe	0	Н	H,C6H4-4-F
A595	a1	2-Ac	0	1	H,H
A596	a1	4-CH=CH2	1	1	Me,Me
A597	a1	4-CF3, 3-F	0	1	Et,Et
A598	a1	4-OCF3	0		H.Et
A599	a1	4-SMe	0		H,Ph
A600	a1	3,5-difluore	0	•	H,C6H4-4-F
A601	a1	Н	0		H,H
A602	a1	3-F	0		Me,Me
A603	a1	2-Me	0		Et,Et
A604	a1	3-OMe	0	Her.	H.Et
A605	a1	4-OH	0	OMe	H,Ph

[0079]

【表15】

A606	a1	4-OMe	0	OMe	H,C6H4-4-F
A607	a1	2-Ac	0	CH2OH	H,H
A608	a1	4-CH=CH2	0	CH2OH	H,C6H4-4-F
A609	a1	4-CF3, 3-F	0	CH2OMe	H,H
A610	a1	4-OCF3	0	CH2OMe	Me,Me
A611	a1	4-SMe	0	CH2OMe	Et,Et
A612	a1	3,5-difluoro	0	CH2OMe	H.Et
A613	a1	н	0	CH2OMe	H,Ph
A614	a1	3-F	0	CH2OMe	H,C6H4-4-F
A615	a1	2-Me	0	CF3	н,н
A616	a1	3-OMe	0	CF3	Ме,Ме
A617	a1	4-OH	0	CF3	Et,Et
A618	a1	4-OMe	0	CF3	H.Et
A619	a1	2-Ac	0	CF3	H,Ph
A620	a1	4-CH=CH2	0	CF3	H,C6H4-4-F
A621	a1	4-CF3, 3-F	0	CH2OPh	H,H
A622	a1	4-OCF3	0	CH2OPh	H,C6H4-4-F
A623	a1	4-SMe	0	CH2OCH2Ph	Н,Н
A624	a1	3,5-difluoro	0	CH2OCH2Ph	H,C6H4-4-F
A625	a1	Н	0	CH2-morpholino	н,н
A626	a1	3-F	0	CH2-morpholino	Me,Me
A627	a1	2-Me	0	CH2-morpholino	Et,Et
A628	a1	3-OMe	0	CH2-morpholino	H.Et
A629	a1	4-OH	0	CH2-morpholino	H,Ph
A630	a1	4-OMe	0	CH2-morpholino	H,C6H4-4-F
A631	a1	2-Ac	0	CH2NHBu	H,H
A632	a1	4-CH=CH2	0	CH2NHBu	H,C6H4-4-F
A633	a1	4-CF3, 3-F	0	C≣CPh	H,H
A634	a1	4-OCF3	0	C≡CPh	H,C6H4-4-F
A635	a1	4-SMe	0	Ph	H,H
A636	a1	3,5-difluoro	0	Ph	H,C6H4-4-F
A637	a1	Н	0	C6H4-4-CF3	H,H
A638	a1	3-F	0	C6H4-4-CF3	H,C6H4-4-F
A639	a1	2-Me	0	C6H4-3-CF3	H,H
A640	a1	3-OMe	0	C6H4-3-CF3	H,C6H4-4-F
A641	a1	4-OH	0	C6H4-4-OH	H,H
A642	a1	4-OMe	0	C6H4-4-OH	H,C6H4-4-F
A643	a1	2-Ac	0	CH2Ph	H,H
A644	a1	4-CH=CH2	1	CH2Ph	H,C6H4-4-F
A645	a1	4-CF3, 3-F		CH2C6H4-4-CF3	H,H
A646	a1	4-OCF3	0	CH2C6H4-4-CF3	Me,Me
A647	a1	4-SMe	0	CH2C6H4-4-CF3	Et,Et
A648	a1	3,5-difluoro		CH2C6H4-4-CF3	H.Et
A649	a1	н	0	CH2C6H4-4-CF3	H,Ph

[0080]

【表16】

A650	a1	3-F	οl	CH2C6H4-4-CF3	H,C6H4-4-F
A651	a1	2-Me	0	CH2C6H4-4-OCF3	· ·
F 1	a1	3-OMe	0	CH2C6H4-4-OCF3	H,C6H4-4-F
A652		4-OH	0	CH2C6H4-4-Ph	H,H
A653	al	4-0H 4-0Me	0	CH2C6H4-4-Ph	H,C6H4-4-F
A654	a1 i			CH2C6H4-4-PII	H,H
A655	a1	2-Ac	0		H.C6H4-4-F
A656	a1	4-CH=CH2	0	CH2C6H4-2-CI	'
A657	a1	4-CF3, 3-F	0	(CH2)2Ph	H,H
A658	a1	4-OCF3	0	(CH2)2Ph	H,C6H4-4-F
A659	a1	4-SMe	0	SPh	H,H
A660	a1	3,5-difluoro	0	SPh	H,C6H4-4-F
A661	a1	H	0	NH2	H,H
A662	a1	3-F	0	NH2	H,C6H4-4-F
A663	a1	2-Me	0	NHMe	H,H
A664	aī	3-OMe	0	NHMe	H,C6H4-4-F
A665	a1	4-OH	0	CH2-piperazino-Ph	
A666	a1	4-OMe	0	CH2-piperazino-Ph	H,C6H4-4-F
A667	a1	2-Ac	0	CH2-piperidino	H,H
A668	a1	4-CH=CH2	0	CH2-piperidino	H,C6H4-4-F
A669	a1	4-CF3, 3-F	0	OCH2Ph	H,H
A670	a1	4-OCF3	0	OCH2Ph	H,C6H4-4-F
A671	a1	4-SMe	0	Ac	H,H
A672	a1	3,5-difluoro		Ac	H,C6H4-4-F
A673	a1	н	0	CONH2	H,H
A674	a1	3-F	0	CONH2	H,C6H4-4-F
A675	a1	2-Me	0	CSNH2	H,H
A676	a1	3-OMe	0	CSNH2	H,C6H4-4-F
A677	a1	4-OH	0	OCONH2	H,H
A678	a1	4-OMe	0	OCONH2	H,C6H4-4-F
A679	a1	2-Ac	0	OCSNH2	H,H
A680	aĭ	4-CH=CH2	0	OCSNH2	H,C6H4-4-F
A681	a1	4-CF3, 3-F	0	OSO2Me	H,H
A682	a1	4-OCF3	0	OSO2Me	H,C6H4-4-F
A683	a1	4-SMe	0	OSO2Ph	H,H
A684	a1	3,5-difluoro	0	OSO2Ph	H,C6H4-4-F
A685	a1	H	0	I	H,H
A686	a1	3-F	0	I	H,C6H4-4-F
A687	a1	Н	1	Н	H,H
A688	a1	3-F	1	Н	Me,Me
A689	a1	2-Me	1	H	Et,Et
A690	a1	3-OMe	1	Н	H.Et
A691	a1	4-OH	1	Н	H,Ph
A692	a1	4-OMe	1	Н	H,C6H4-4-F
A693	a1	2-Ac	1	Me	H,H
A694	a1	4-CH=CH2	1	Me	Me,Me
A695	a1	4-CF3, 3-F	1	Me	Et,Et

【表17】

A696	a1	4-OCF3	1 l	Me	H.Et
A697	a1	. 00.0	<u>.</u>	Me	H,Ph
A698	al al	7 00	1	Me	H,C6H4-4-F
1	al al	H H	1	OMe	н,н
A699	1	3-F	1	OMe	Me,Me
A700	a1			OMe	Et,Et
A701	a1	2-Me	1	OMe	H.Et
A702	a1	3-OMe	1	OMe	H,Ph
A703	a1	4-OH	· 1	OMe	H,C6H4-4-F
A704	a1	4-OMe	1		H,H
A705	a1	2-Ac	1	CH2OH	H,C6H4-4-F
A706	a1	4-CH=CH2	1	CH2OH	l '
A707	a1	4-CF3, 3-F	1	CH2OMe	H,H
A708	a1	4-OCF3	1	CH2OMe	Me,Me
A709	a1	4-SMe	1	CH2OMe	Et,Et
A710	a1	3,5-difluoro	1	CH2OMe	H.Et
A711	a1	H	1	CH2OMe	H,Ph
A712	a1	3-F	1	CH2OMe	H,C6H4-4-F
A713	a1	2-Me	1	CF3	Н,Н
A714	a1	3-OMe	1	CF3	Me,Me
A715	a1	4-OH	1	CF3	Et,Et
A716	a1	4-OMe	1	CF3	H.Et
A717	a1	2-Ac	1	CF3	H,Ph
A718	a1	4-CH=CH2	1	CF3	H,C6H4-4-F
A719	aī	4-CF3, 3-F	1	CH2OPh	H,H
A720	a1	4-OCF3	1	CH2OPh	H,C6H4-4-F
A721	a1	4-SMe	1	CH2OCH2Ph	H,H
A722	a1	3,5-difluoro	1	CH2OCH2Ph	H,C6H4-4-F
A723	a1	H	1	CH2-morpholino	H,H
A724	a1	3-F	1	CH2-morpholino	Me,Me
A725	a1	2-Me	1	CH2-morpholino	Et,Et
A726	a1	3-OMe	1	CH2-morpholino	H.Et
A727	a1	4-OH	1	CH2-morpholino	H,Ph
A728	a1	4-OMe	1	CH2-morpholino	H,C6H4-4-F
A729	a1	2-Ac	1	CH2NHBu	H,H
A730	a1	4-CH=CH2	1	CH2NHBu	H,C6H4-4-F
A731	a1	4-CF3, 3-F	1	- C≡CPh	H,H
A732	a1	4-OCF3	1	C≡CPh	H,C6H4-4-F
A733	a1	4-SMe	1	Ph	Н,Н
A734	a1	3,5-difluoro	1	Ph	H,C6H4-4-F
A735	a1	Н	2	C6H4-4-CF3	H,H
A736	a1	3-F	2	C6H4-4-CF3	H,C6H4-4-F
A737	a1	2-Me	2	C6H4-3-CF3	H,H
A738	a1	3-OMe	2	C6H4-3-CF3	H,C6H4-4-F
A739	a1	4OH	2	C6H4-4-OH	H,H
A740	a1	4-OMe	2	C6H4-4-OH	H,C6H4-4-F
A741	al	2-Ac	2	CH2Ph	н,н

【表18】

A742	a1	4-CH=CH2	2	GH2Ph	H,C6H4-4-F
A743	a1	4-CF3, 3-F	2	CH2C6H4-4-CF3	H,H
A744	a1	4-OCF3	2	CH2C6H4-4-CF3	Me,Me
A745	a1	4-SMe	2	CH2C6H4-4-CF3	Et,Et
A746	a1	3.5-difluoro	2	CH2C6H4-4-CF3	H.Et
A747	a1	н	2	CH2C6H4-4-CF3	H,Ph
A748	a1	3-F	2	CH2C6H4-4-CF3	H,C6H4-4-F
A749	a1	2-Me	2	CH2C6H4-4-OCF3	н,н
A750	a1	3-OMe	2	CH2C6H4-4-OCF3	H,C6H4-4-F
A751	a1	4-OH	2	CH2C6H4-4-Ph	H,H
A752	a1	4-OMe	2	CH2C6H4-4-Ph	H,C6H4-4-F
A753	a1	2-Ac	2	CH2C6H4-2-CI	H,H
A754	a1	4-CH=CH2	2	CH2C6H4-2-CI	H,C6H4-4-F
A755	a1	4-CF3, 3-F	2	(CH2)2Ph	H,H
A756	a1	4-0CF3	2	(CH2)2Ph	H,C6H4-4-F
A757	a1	4−SMe	2	SPh	H,H
A758	a1	3,5-difluoro	2	SPh	H,C6H4-4-F
A759	a1	Н	2	NH2	H,H
A760	a1	3-F	2	NH2	H,C6H4-4-F
A761	a1	2−Me	2	NHMe	H,H
A762	аĭ	3−OMe	2	NHMe	H,C6H4-4-F
A763	a1	4-OH	2	CH2-piperazino-Ph	1
A764	a1	4-OMe	2	CH2-piperazino-Ph	
A765	a1	2-Ac	2	CH2-piperidino	H,H
A766	a1	4-CH=CH2	2	CH2-piperidino	H,C6H4-4-F
A767	al	4-CF3, 3-F	2	OCH2Ph	H,H
A768	a1	4-OCF3	2	OCH2Ph	H,C6H4-4-F
A769	a1	4-SMe	2	Ac	H,H
A770	a1	3,5-difluoro	1	Ac	H,C6H4-4-F
A771	a1	H	2	CONH2	H,H
A772	a1	3-F	2	CONH2	H,C6H4-4-F
A773	a1	2-Me	2	CSNH2	H,H
A774	a1	3-OMe	2	CSNH2	H,C6H4-4-F
A775	a1	4-OH	2	OCONH2	H,H
A776	a1	4-OMe	2	OCONH2	H,C6H4-4-F
A777	a1	2-Ac	2	OCSNH2	H,H
A778	at	4-CH=CH2		OCSNH2	H,C6H4-4-F
A779	a1	4-CF3, 3-F		OSO2Me	H,H
A780	a1	4-OCF3	2	OSO2Me	H,C6H4-4-F
A781	a1	4-SMe	2	OSO2Ph	H,H
A782	a1	3,5-difluoro	1	OSO2Ph	H,C6H4-4-F
A783	a1	Н	2	l .	H,H
A784	a1	3-F	2	I	H,C6H4-4-F

[0083]

【表19】

$$\begin{bmatrix}
R^2 & R^3 & R^4 \\
N & R^5
\end{bmatrix} = \begin{bmatrix}
R^3 & R^4 \\
R^1 & O & R^5
\end{bmatrix}$$

$$A \qquad a7$$

A部分No.	タイプ	R1	R2	R3,R4
A2353	a7	Me	Н	H,H
A2354	a7	Me	Н	Me,Me
A2355	а7	Me	Н	Et,Et
A2356	а7	Me	Н	H.Et
A2357	a7	Me	Н	H,Ph
A2358	a7	Me	Н	H,C6H4-4-F
A2359	a7	Me	Me	H,H
A2360	a7	Ме	Me	Me,Me
A2361	a7	Ме	Me	Et,Et
A2362	а7	Me	Ме	H.Et
A2363	а7	Ме	Me	H,Ph
A2364	а7	Ме	Me	H,C6H4-4-F
A2365	а7	Ме	CH2OMe	H,H
A2366	а7	Ме	CH2OMe	Me,Me
A2367	a7	Me	CH2OMe	Et,Et
A2368	а7	Ме	CH2OMe	H.Et
A2369	а7	Me	CH2OMe	H,Ph
A2370	а7	Me	CH2OMe	H,C6H4-4-F
A2371	а7	Me	CF3	H,H
A2372	a7	Me	CF3	Me,Me
A2373	a7	Me	CF3	Et,Et
A2374	a7	Me	CF3	H.Et
A2375	a7	Me	CF3	H,Ph
A2376	а7	Me	CF3	H,C6H4-4-F
A2377	a7	Me	CH2OH	H,H
A2378	а7	Me	CH2OH	H,C6H4-4-F
A2379	a7	Me	CH2NHBu	Н ,Н
A2380	a7	Ме	CH2NHBu `	H,C6H4-4-F
A2381	a7	Ме	сн2с≡сн	H,H
A2382	a7	Ме	CH2C≡CH	H,C6H4-4-F
A2383	a7	Me	OMe	Н,Н
A2384	a7	Ме	OMe	H,C6H4-4-F
A2385	a7	Ме	NH2	H,H
A2386	a7	Me	NH2	H,C6H4-4-F

[0084]

【表20】

A2387 a7			H,H	
A2388 a7	Me	NHMe	H,C6H4-4-F	
A2389 a7	Me	CH2OPh	н,н	
A2390 a7	Me	CH2OPh	H,C6H4-4-F	
A2391 a7	Ме	CH2OCH2Ph	нн	
A2392 a7	Me	CH2OCH2Ph	H,C6H4-4-F	
A2393 a7	Me	CH2-morpholino	н,н	
A2394 a7	Me	CH2-morpholino	H,C6H4-4-F	
A2395 a7	Me	CH=CH-pyridyl	н,н	
A2396 a7	Me	CH=CH-pyridyl	H.C6H4-4-F	
A2397 a7	Me	C≣CPh	Н,Н	
A2398 a7	Me	C≣CPh	H,C6H4-4-F	
A2399 a7	Me	Ph	н,н	
A2400 a7	Me	Ph	H,C6H4-4-F	
A2401 a7	Me	C6H4-4-CF3	Н,Н	
A2402 a7	Me	C6H4-4-CF3	Me,Me	
A2403 a7	Me	C6H4-4-CF3	Et,Et	
A2404 a7	Me	C6H4-4-CF3	H.Et	
A2405 a7	Me	C6H4-4-CF3	H,Ph	
A2406 a7	Me	C6H4-4-CF3	H,C6H4-4-F	
A2407 a7	Me	C6H4-3-CF3	н,н	
A2408 a7	Ме	C6H4-3-CF3	H,C6H4-4-F	
A2409 a7	Me	C6H4-4-OH	н,н	
A2410 a7	Me	C6H4-4-OH	H,C6H4-4-F	
A2411 a7	Me	CH2Ph	H,H	
A2412 a7	Me	CH2Ph	H,C6H4-4-F	٠
A2413 a7	Me	CH2C6H4-4-CF3	H,H	
A2414 a7	Me	CH2C6H4-4-CF3	Ме,Ме	
A2415 a7	Me	CH2C6H4-4-CF3	Et,Et	
A2416 a7	Me	CH2C6H4-4-CF3	H.Et	
A2417 a7	Me	CH2C6H4-4-CF3	H,Ph	
A2418 a7	Me	CH2C6H4-4-CF3	H,C6H4-4-F	
A2419 a7	Me	CH2C6H4-4-OCF3	H,H	
A2420 a7	Me	CH2C6H4-4-OCF3	H,C6H4-4-F	
A2421 a7	Ме	CH2C6H4-4-Ph	H,H	
A2422 a7	Ме	CH2C6H4-4-Ph	H,C6H4-4-F	
A2423 a7	Ме	CH2C6H4-2-CI	H,H	
A2424 a7	Ме	CH2C6H4-2-CI	H,C6H4-4-F	
A2425 a7	Ме	(CH2)2Ph	Н,Н	
A2426 a7	Ме	(CH2)2Ph	H,C6H4-4-F	
A2427 a7	Ме	CH2-piperazino-Ph	Н,Н	
A2428 a7	Me	CH2-piperazino-Ph	Me,Me	
A2429 a7	Me	CH2-piperazino-Ph	Et,Et	
A2430 a7	Me	CH2-piperazino-Ph	H.Et	

【表21】

A2431	a7	Me	CH2-piperazino-Ph	H,Ph	
A2432	a7	Me	CH2-piperazino-Ph	H,C6H4-4-F	
A2433	a7	Me	CH2-piperidino	Н,Н	
A2434	a7	Me	CH2-piperidino	H,C6H4-4-F	
A2435	a7	Me	SPh	н,н	
A2436	a7	Me	SPh	H,C6H4-4-F	
A2437	a7	Me	OCH2Ph	H,H	
A2438	a7	Me	OCH2Ph	H,C6H4-4-F	
A2439	a7	Me	Ac	н,н	
A2440	a7	Me	Ac	H,C6H4-4-F	
A2441	a7	Ме	CONH2	н,н	
A2442	a7	Me	CONH2	H,C6H4-4-F	
A2443	a7	Me	CSNH2	н,н	!
A2444	а7	Ме	CSNH2	H,C6H4-4-F	!
A2445	a7	Me	OCONH2	H,H	
A2446	а7	Ме	OCONH2	H,C6H4-4-F	
A2447	a7	Me	OCSNH2	H,H	
A2448	а7	Me	OCSNH2	H,C6H4-4-F	
A2449	а7	Ме	OSO2Me	н,н	
A2450	а7	Me	OSO2Me	H,C6H4-4-F	
A2451	а7	Me	OSO2Ph	H,H	
A2452	а7	Мe	OSO2Ph	H,C6H4-4-F	
A2453	а7	Ме	I	H,H	
A2454	а7	Me	I	H,C6H4-4-F	
A2455	a7	CF3	Н	H,H	
A2456	a7	CF3	H	Me,Me	
A2457	a7	CF3	Н	Et,Et	
A2458	a7	CF3	Н	H.Et	
A2459	a7	CF3	H	H,Ph	
A2460	a7	CF3	Н	H,C6H4-4-F	
A2461	a7	CF3	Ме	H,H	
A2462	a7	CF3	Me	Me,Me	
A2463	a7	CF3	Me	Et,Et	
A2464	a7	CF3	Me	H.Et	
A2465	а7	CF3	Me	H,Ph	
A2466	а7	CF3	Me	H,C6H4-4-F	
A2467	a7	CF3	CH2OMe	H,H	
A2468	a7	CF3	CH2OMe	Me,Me	
A2469	a7	CF3	CH2OMe	Et,Et	
A2470	a7	CF3	CH2OMe	H.Et	
A2471	a7	CF3	CH2OMe	H,Ph	
A2472	a7	CF3	CH2OMe	H,C6H4-4-F	
A2473	a7	CF3	CF3	H,H	
A2474	a7	CF3	CF3	Me,Me	

【表22】

A2475	a7	CF3	CF3	Et,Et
A2476	a7	CF3	CF3	H.Et
A2477	a7	CF3	CF3	H,Ph
A2478	a7	CF3	CF3	H,C6H4-4-F
A2479	a7	CF3	CH2OH	H,H
A2480	a7	CF3	CH2OH	H,C6H4-4-F
A2481	a7	CF3	CH2NHBu	Н,Н
A2482	a7	CF3	CH2NHBu	H,C6H4-4-F
A2483	a7	CF3	CH2C≡CH	н,н
A2484	a7	CF3	- CH2C≡CH	H,C6H4-4-F
A2485	a7	CF3	OMe	н,н
A2486	a7	CF3	OMe	H,C6H4-4-F
A2487	a7	CF3	NH2	H,H
A2488	a7	CF3	NH2	H,C6H4-4-F
A2489	a7	CF3	NHMe	H,H
A2490	a7	CF3	NHMe	H,C6H4-4-F
A2491	a7	CF3	CH2OPh	н,н
A2492	a7	CF3	CH2OPh	H,C6H4-4-F
A2493	a7	CF3	CH2OCH2Ph	H,H
A2494	a7	CF3	CH2OCH2Ph	H,C6H4-4-F
A2495	a7	CF3	CH2-morpholino	H,H
A2496	a7	CF3	CH2-morpholino	H,C6H4-4-F
A2497	a7	CF3	CH=CH-pyridyl	H,H
A2498	a7	CF3	CH=CH-pyridyl	H,C6H4-4-F
A2499	a7	CF3	C≡CPh	H,H
A2500	a7	CF3	C≡CPh	H,C6H4-4-F
A2501	a7	CF3	Ph	H,H
A2502	a7	CF3	Ph	H,C6H4-4-F
A2503	a7	CF3	C6H4-4-CF3	H,H
A2504	a7	CF3	C6H4-4-CF3	Me,Me
A2505	a7	CF3	C6H4-4-CF3	Et,Et
A2506	a7	CF3	C6H4-4-CF3	H.Et
A2507	a7	CF3	C6H4-4-CF3	H,Ph
A2508	a7	CF3	C6H4-4-CF3	H,C6H4-4-F
A2509	a7	CF3	C6H4-3-CF3	H,H
A2510	a7	CF3	C6H4-3-CF3	H,C6H4-4-F
A2511	а7	CF3	C6H4-4-OH	H,H
A2512	a7	CF3	C6H4-4-OH	H,C6H4-4-F
A2513	a7	CF3	CH2Ph	H,H
A2514	a7	CF3	CH2Ph	H,C6H4-4-F
A2515	a7	CF3	CH2C6H4-4-CF3	H,H
A2516	a7	CF3	CH2C6H4-4-CF3	Me,Me
A2517	a7	CF3	CH2C6H4-4-CF3	Et,Et
A2518	a7	CF3	CH2C6H4-4-CF3	H.Et

[0087]

【表23】

A2519	a7	CF3	CH2C6H4-4-CF3	H,Ph
A2520	a7	CF3	CH2C6H4-4-CF3	H,C6H4-4-F
A2521	a7	CF3	CH2C6H4-4-OCF3	н,н
A2522	a7	CF3	CH2C6H4-4-OCF3	H,C6H4-4-F
A2523	a7	CF3	CH2C6H4-4-Ph	Н,Н
A2524	a7	CF3	CH2C6H4-4-Ph	H,C6H4-4-F
A2525	a7	CF3	CH2C6H4-2-CI	H,H-
A2526	a7	CF3	CH2C6H4-2-CI	H,C6H4-4-F
A2527	a7	CF3	(CH2)2Ph	н,н
A2528	a7	CF3	(CH2)2Ph	H,C6H4-4-F
A2529	a7	CF3	CH2-piperazino-Ph	н,н
A2530	a7	CF3	CH2-piperazino-Ph	Ме,Ме
A2531	a7	CF3	CH2-piperazino-Ph	Et,Et
A2532	a7	CF3	CH2-piperazino-Ph	H.Et
A2533	a7	CF3	CH2-piperazino-Ph	H,Ph
A2534	a7	CF3	CH2-piperazino-Ph	H,C6H4-4-F
A2535	а7	CF3	CH2-piperidino	H,H
A2536	a7	CF3	CH2-piperidino	H,C6H4-4-F
A2537	a7	CF3	SPh	H,H
A2538	a7	CF3	SPh	H,C6H4-4-F
A2539	а7	CF3	OCH2Ph	H,H
A2540	a7	CF3	OCH2Ph	H,C6H4-4-F
A2541	а7	CF3	Ac	H,H
A2542	а7	CF3	Ac	H,C6H4-4-F
A2543	a7	CF3	CONH2	H,H
A2544	a7	CF3	CONH2	H,C6H4-4-F
A2545	a7	CF3	CSNH2	H,H
A2546	a7	CF3	CSNH2	H,C6H4-4-F
A2547	a7	CF3	OCONH2	H,H
A2548	a7	CF3	OCONH2	H,C6H4-4-F
A2549	a7	CF3	OCSNH2	H,H
A2550	a7	CF3	OCSNH2	H,C6H4-4-F
A2551	a7	CF3	OSO2Me	H,H
A2552	а7	CF3	OSO2Me	H,C6H4-4-F
A2553	a7	CF3	OSO2Ph	H,H
A2554	a7	CF3	OSO2Ph	H,C6H4-4-F
A2555	a7	CF3	I	H,H
A2556	а7	CF3	I	H,C6H4-4-F
A2557	a7	CH=CHPh	Н	H,H
A2558	a7	CH=CHPh	Н	Me,Me
A2559	a7	CH=CHPh	Н	Et,Et
A2560	a7	CH=CHPh	Н	H.Et
A2561	a7	CH=CHPh	Н	H,Ph
A2562	a7	CH=CHPh	H	H,C6H4-4-F

[0088]

【表24】

A2563	a7	CH=CHPh	Me	н ,н
A2564	a7	CH=CHPh	Me	Me,Me
A2565	a7	CH=CHPh	Me	Et,Et
A2566	a7	CH=CHPh	Me	H.Et
A2567	a7	CH=CHPh	Me	H,Ph
A2568	a7	CH=CHPh	Me	H,C6H4-4-F
A2569	a7	CH=CHPh	CH2OMe	H,H
A2570	a7	CH=CHPh	CH2OMe	Me,Me
A2571	a7	CH=CHPh	CH2OMe	Et,Et
A2572	a7	CH=CHPh	CH2OMe	H.Et
A2573	a7	CH=CHPh	CH2OMe	H,Ph
A2574	a7	CH=CHPh	CH2OMe	H,C6H4-4-F
A2575	a7	CH=CHPh	CF3	н,н
A2576	а7	CH=CHPh	CF3	Me,Me
A2577	a7	CH=CHPh	CF3	Et,Et
A2578	a7	CH=CHPh	CF3	H.Et
A2579	a7	CH=CHPh	CF3	H,Ph
A2580	а7	CH=CHPh	CF3	H,C6H4-4-F
A2581	а7	CH=CHPh	CH2OH	H,H
A2582	a7	CH=CHPh	CH2OH	H,C6H4-4-F
A2583	a7	CH=CHPh	CH2NHBu	н,н
A2584	a7	CH=CHPh	CH2NHBu	H,C6H4-4-F
A2585	а7	CH=CHPh	CH2C≡CH	H,H
A2586	а7	CH=CHPh	CH2C≡CH	H,C6H4-4-F
A2587	а7	CH=CHPh	OMe	н,н
A2588	а7	CH=CHPh	OMe	H,C6H4-4-F
A2589	а7	CH=CHPh	NH2	H,H
A2590	а7	CH=CHPh	NH2	H,C6H4-4-F
A2591	a7	CH=CHPh	NHMe	H,H
A2592	а7	CH=CHPh	NHMe	H,C6H4-4-F
A2593	а7	CH=CHPh	CH2OPh	H,H
A2594	а7	CH=CHPh	CH2OPh	H,C6H4-4-F
A2595	a7	CH=CHPh	CH2OCH2Ph	H,H
A2596	а7	CH=CHPh	CH2OCH2Ph	H,C6H4-4-F
A2597	a7	CH=CHPh	CH2-morpholino	H,H
A2598	a7	CH=CHPh	CH2-morpholino	H,C6H4-4-F
A2599	a7	CH=CHPh	CH=CH-pyridyl	H,H
A2600	a7	CH=CHPh	CH=CH-pyridyl	H,C6H4-4-F
A2601	a7	CH=CHPh	C≡CPh	H,H
A2602	a7	CH=CHPh	C≡CPh	H,C6H4-4-F
A2603	a7	CH=CHPh	Ph	H,H
A2604	a7	CH=CHPh	Ph	H,C6H4-4-F
A2605	a7	CH=CHPh	C6H4-4-CF3	H,H
A2606	a7	CH=CHPh	C6H4-4-CF3	Me,Me

[0089]

【表25】

A2607	a7	CH=CHPh	C6H4-4-CF3	Et,Et
A2608	a7	CH=CHPh	C6H4-4-CF3	H.Et
A2609	a7	CH=CHPh	C6H4-4-CF3	H,Ph
A2610	a7	CH=CHPh	C6H4-4-CF3	H,C6H4-4-F
A2611	a7	CH=CHPh	C6H4-3-CF3	н,н
A2612	a7	CH=CHPh	C6H4-3-CF3	H,C6H4-4-F
A2613	a7	CH=CHPh	C6H4-4-OH	H,H
A2614	a7	CH=CHPh	C6H4-4-OH	H,C6H4-4-F
A2615	a7	CH=CHPh	CH2Ph	н,н
A2616	a7	CH=CHPh	CH2Ph	H,C6H4-4-F
A2617	a7	CH=CHPh	CH2C6H4-4-CF3	H,H
A2618	a7	CH=CHPh	CH2C6H4-4-CF3	Ме,Ме
A2619	a7	CH=CHPh	CH2C6H4-4-CF3	Et,Et
A2620	а7	CH=CHPh	CH2C6H4-4-CF3	H.Et
A2621	a7	CH=CHPh	CH2C6H4-4-CF3	H,Ph
A2622	а7	CH=CHPh	CH2C6H4-4-CF3	H,C6H4-4-F
A2623	а7	CH=CHPh	CH2C6H4-4-OCF3	н,н
A2624	a7	CH=CHPh	CH2C6H4-4-OCF3	H,C6H4-4-F
A2625	a7	CH=CHPh	CH2C6H4-4-Ph	H,H
A2626	a7	CH=CHPh	CH2C6H4-4-Ph	H,C6H4-4-F
A2627	a7	CH=CHPh	CH2C6H4-2-CI	Н,Н
A2628	a7	CH=CHPh	CH2C6H4-2-CI	H,C6H4-4-F
A2629	a7	CH=CHPh	(CH2)2Ph	H,H
A2630	a7	CH=CHPh	(CH2)2Ph	H,C6H4-4-F
A2631	a7	CH=CHPh	CH2-piperazino-Ph	H,H
A2632	a7	CH=CHPh	CH2-piperazino-Ph	Me,Me
A2633	a7	CH=CHPh	CH2-piperazino-Ph	Et,Et
A2634	a7	CH=CHPh	CH2-piperazino-Ph	H.Et
A2635	a7	CH=CHPh	CH2-piperazino-Ph	H,Ph
A2636	a7	CH=CHPh	CH2-piperazino-Ph	H,C6H4-4-F
A2637	a7	CH=CHPh	CH2-piperidino	H,H
A2638	a7	CH=CHPh	CH2-piperidino	H,C6H4-4-F
A2639	a7	CH=CHPh	SPh	H,H
A2640	a7	CH=CHPh	SPh	H,C6H4-4-F
A2641	a7	CH=CHPh	OCH2Ph	H,H
A2642	a7	CH=CHPh	OCH2Ph	H,C6H4-4-F
A2643	a7	CH=CHPh	Ac	H,H
A2644	a7	CH=CHPh	Ac	H,C6H4-4-F
A2645	a7	CH=CHPh	CONH2	H,H
A2646	a7	CH=CHPh	CONH2	H,C6H4-4-F
A2647	a7	CH=CHPh	CSNH2	H,H
A2648	a7	CH=CHPh	CSNH2	H,C6H4-4-F
A2649	a7	CH=CHPh	OCONH2	H,H
A2650	a7	CH=CHPh	OCONH2	H,C6H4-4-F

[0090]

【表26】

A2651	a7	CH=CHPh	OCSNH2	н,н
A2652	a7	CH=CHPh	OCSNH2	H,C6H4-4-F
A2653	a7	CH=CHPh	OSO2Me	H,H
A2654	a7	CH=CHPh	OSO2Me	H,C6H4-4-F
A2655	a7	CH=CHPh	OSO2Ph	н,н
A2656	а7	CH=CHPh	OSO2Ph	H,C6H4-4-F
A2657	a7	CH=CHPh	I	н,н
A2658	a7	CH=CHPh	I	H,C6H4-4-F
A2659	а7	≡CPh	Н	H,H
A2660	а7	≡CPh	н	Me,Me
A2661	a7	≡CPh	Н	Et,Et
A2662	а7	≡CPh	Н	H.Et
A2663	а7	≡CPh	Н	H,Ph
A2664	а7	≡CPh	Н	H,C6H4-4-F
A2665	a7	≡ CPh	Me	H,H
A2666	а7	≡CPh	Ме	Me,Me
A2667	a7	≡ CPh	Me	Et,Et
A2668	а7	≡CPh	Me	H.Et
A2669	a7	≣CPh	Me	H,Ph
A2670	а7	≣CPh	Me	H,C6H4-4-F
A2671	a7	≕ CPh	CH2OMe	H,H
A2672	a7	≡CPh	CH2OMe	Me,Me
A2673	a7	≡CPh ·	CH2OMe	Et,Et
A2674	а7	≡CPh	CH2OMe	H.Et
A2675	a7	≡CPh	CH2OMe	H,Ph
A2676	a7	≡CPh	CH2OMe	H,C6H4-4-F
A2677	a7	≡CPh	CF3	H,H
A2678	a7	≡CPh	CF3	Me,Me
A2679	a7	≡CPh	CF3	Et,Et
A2680	a7	≡CPh	CF3	H.Et
A2681	a7	≡CPh	CF3	H,Ph
A2682	a7	≡CPh	CF3	H,C6H4-4-F
A2683	a7	≡CPh	CH2OH	H,H
A2684	a7	≡CPh	CH2OH	H,C6H4-4-F
A2685	а7	≡CPh	CH2NHBu	H,H
A2686	а7	≡CPh	CH2NHBu	H,C6H4-4-F
A2687	а7	≡CPh	CH2C≡CH	Н,Н
A2688	а7	≡CPh	CH2C≡CH	H,C6H4-4-F
A2689	а7	≣CPh	OMe	H,H
A2690	a7	≡CPh	OMe	H,C6H4-4-F
A2691	a7	≡CPh	NH2	H,H
A2692	a7	≡CPh	NH2	H,C6H4-4-F
A2693	a7	≡CPh	NHMe	H,H
A2694	a7	≡CPh	NHMe	H,C6H4-4-F

[0091]

【表27】

A2695	a7	≡cPh	CH2OPh	н,н
A2696	a7	≡CPh	CH2OPh	H,C6H4-4-F
A2697	a7	≡CPh	CH2OCH2Ph	H,H
A2698	a7	≣CPh	CH2OCH2Ph	H,C6H4-4-F
A2699	a7	≡CPh	CH2-morpholino	H,H
A2700	a7	≡CPh	CH2-morpholino	H,C6H4-4-F
A2701	a7	≡CPh	CH=CH-pyridyl	H,H
A2702	a7	≡CPh	CH=CH-pyridyl	H,C6H4-4-F
A2703	a7	≡CPh	C≡CPh	H,H
A2704	а7	≡CPh	C≡CPh	H,C6H4-4-F
A2705	a7	≡CPh	Ph	Н,Н
A2706	а7	≡CPh	Ph	H,C6H4-4-F
A2707	а7	≡CPh	C6H4-4-CF3	H,H
A2708	a7	≡CPh	C6H4-4-CF3	Me,Me
A2709	а7	≡ CPh	C6H4-4-CF3	Et,Et
A2710	a7	≡CPh	C6H4-4-CF3	H.Et
A2711	a7	≡CPh	C6H4-4-CF3	H,Ph
A2712	a7	≡CPh	C6H4-4-CF3	H,C6H4-4-F
A2713	a7	≡CPh	C6H4-3-CF3	H,H
A2714	a7	≡CPh	C6H4-3-CF3	H,C6H4-4-F
A2715	a7	≡CPh	C6H4-4-OH	H,H
A2716	a7	⊟CPh	C6H4-4-OH	H,C6H4-4-F
A2717	а7	≡CPh	CH2Ph	H,H
A2718	а7	≡CPh	CH2Ph	H,C6H4-4-F
A2719	а7	≡CPh	CH2C6H4-4-CF3	H,H
A2720	a7	≡CPh	CH2C6H4-4-CF3	Me,Me
A2721	а7	≡CPh	CH2C6H4-4-CF3	Et,Et
A2722	a7	≡CPh	CH2C6H4-4-CF3	H.Et
A2723	a7	≡CPh	CH2C6H4-4-CF3	H,Ph
A2724	a7	≡CPh	CH2C6H4-4-CF3	H,C6H4-4-F
A2725	a7	≡CPh	CH2C6H4-4-OCF3	H,H
A2726	а7	≡CPh	CH2C6H4-4-OCF3	H,C6H4-4-F
A2727	а7	≡CPh	CH2C6H4-4-Ph	H,H
A2728	a7	≡CPh	CH2C6H4-4-Ph	H,C6H4-4-F
A2729	a7	≡CPh	CH2C6H4-2-CI	H,H
A2730	a7	≡CPh	CH2C6H4-2-CI	H,C6H4-4-F
A2731	a7	≡CPh	(CH2)2Ph	H,H
A2732	a7	≡CPh	(CH2)2Ph	H,C6H4-4-F
A2733	a7	≡CPh	CH2-piperazino-Ph	H,H
A2734	a7	≡CPh	CH2-piperazino-Ph	Me,Me
A2735	a7	≡CPh	CH2-piperazino-Ph	Et,Et
A2736	a7	≡CPh	CH2-piperazino-Ph	H.Et
A2737	a7	≡CPh	CH2-piperazino-Ph	H,Ph
A2738	a7	≡CPh	CH2-piperazino-Ph	H,C6H4-4-F

【表28】

A2739	a7	≣CPh	CH2-piperidino	н,н
A2740	а7	≡CPh	CH2-piperidino	H,C6H4-4-F
A2741	а7	≡CPh	SPh	H,H
A2742	a7	≣CPh	SPh	H,C6H4-4-F
A2743	а7	≡CPh	OCH2Ph	H,H
A2744	a7	≡ CPh	OCH2Ph	H,C6H4-4-F
A2745	а7	≡CP h	Ac	H,H
A2746	a7	≡CPh	Ac	H,C6H4-4-F
A2747	а7	≡CPh	CONH2	H,H
A2748	a7	≡CPh	CONH2	H,C6H4-4-F
A2749	a7	≡ CPh	CSNH2	Н,Н
A2750	а7	≡ CPh	CSNH2	H,C6H4-4-F
A2751	a7	≡CPh	OCONH2	н,н
A2752	a7	≡CPh	OCONH2	H,C6H4-4-F
A2753	a7	≡CPh	OCSNH2	H,H
A2754	a7	≡CPh	OCSNH2	H,C6H4-4-F
A2755	a7	≡CPh	OSO2Me	H,H
A2756	a7	≡ CPh	OSO2Me	H,C6H4-4-F
A2757	а7	≡CPh	OSO2Ph	H,H
A2758	а7	≡CPh	OSO2Ph	H,C6H4-4-F
A2759	а7	≡CPh	I	H,H
A2760	a7	≡CPh	I	H,C6H4-4-F
A2762	a7	F	Н	Me,Me
A2763	a7	Et	Н	Et,Et
A2764	a7	iBu	H	H.Et
A2765	a7	CH=CHMe	H	H,Ph
A2766	a7	ОН	Н	H,C6H4-4-F
A2767	a7	OEt	Me	H,H
A2768	a7	COPh	Me	Me,Me
A2769	a7	4-pyridyl	Ме	Et,Et
A2770	a7	morpholino	Ме	H.Et
A2771	а7	NHiPr	Me	H,Ph
A2773	a7	F	CH2OMe	H,H
A2774	a7	Et	CH2OMe	Me,Me
A2775	a7	iBu	CH2OMe	Et,Et
A2776	a7	CH=CHMe	CH2OMe	H.Et
A2777	a7	ОН	CH2OMe	H,Ph
A2778	a7	OEt	CH2OMe	H,C6H4-4-F
A2779	a7	COPh	CF3	H,H
A2780	a7	4-pyridyl	CF3	Me,Me
A2781	a7	morpholino	CF3	Et,Et
A2782	a7	NHiPr	CF3	H.Et
A2784	a7	F	CF3	H,C6H4-4-F
A2785	a7	Et	CH2OH	H,H

[0093]

【表29】

A2786	a7	iBu	СН2ОН	H,C6H4-4-F
A2787	a7	CH=CHMe	CH2NHBu	н,н
A2788	a7	ОН	CH2NHBu	H,C6H4-4-F
A2789	a7	OEt	CH2C≡CH	н,н
A2790	a7	COPh	CH2C≡CH	H,C6H4-4-F
A2791	a7	4-pyridyl	OMe	н,н
A2792	a7	morpholino	OMe	H,C6H4-4-F
A2793	a7	NHiPr	NH2	н,н
A2795	a7	F	NHMe	н,н
A2796	a7	Et	NHMe	H,C6H4-4-F
A2797	a7	iBu	CH2OPh	Н,Н
A2798	a7	CH=CHMe	CH2OPh	H,C6H4-4-F
A2799	a7	ОН	CH2OCH2Ph	н,н
A2800	a7	OEt	CH2OCH2Ph	H,C6H4-4-F
A2801	a7	COPh	CH2-morpholino	н,н
A2802	a7	4-pyridyl	CH2-morpholino	H,C6H4-4-F
A2803	a7	morpholino	CH=CH-pyridyl	H,H
A2804	a7	NHiPr	CH=CH-pyridyl	H,C6H4-4-F
A2806	а7	F	C≡CPh	H,C6H4-4-F
A2807	a7	Et	Ph	H,H
A2808	a7	iBu	Ph	H,C6H4-4-F
A2809	a7	CH=CHMe	C6H4-4-CF3	Н,Н
A2810	a7	ОН	C6H4-4-CF3	Me,Me
A2811	а7	OEt	C6H4-4-CF3	Et,Et
A2812	a7	COPh	C6H4-4-CF3	H.Et
A2813	a7	4-pyridyl	C6H4-4-CF3	H,Ph
A2814	a7	morpholino	C6H4-4-CF3	H,C6H4-4-F
A2815	а7	NHiPr	C6H4-3-CF3	H,H
A2817	а7	F	C6H4-4-OH	H,H
A2818	a7	Et	C6H4-4-OH	H,C6H4-4-F
A2819	a7	iBu	CH2Ph	H,H
A2820	a7	CH=CHMe	CH2Ph	H,C6H4-4-F
A2821	a7	ОН	CH2C6H4-4-CF3	H,H
A2822	a7	OEt	CH2C6H4-4-CF3	Me,Me
A2823	a7	COPh	CH2C6H4-4-CF3	Et,Et
A2824	a7	4-pyridyl	CH2C6H4-4-CF3	H.Et
A2825	a7	morpholino	CH2C6H4-4-CF3	H,Ph
A2826	a7	NHiPr	CH2C6H4-4-CF3	H,C6H4-4-F
A2828	a7	F	CH2C6H4-4-OCF3	H,C6H4-4-F
A2829	a7	Et	CH2C6H4-4-Ph	H,H
A2830	a7	iBu	CH2C6H4-4-Ph	H,C6H4-4-F
A2831	a7	CH=CHMe	CH2C6H4-2-CI	H,H
A2832	a7	ОН	CH2C6H4-2-CI	H,C6H4-4-F
A2833	a7	OEt	(CH2)2Ph	н,н

【表30】

A2834	a7	COPh	(CH2)2Ph	H,C6H4-4-F
A2835	a7	4-pyridyl	CH2-piperazino-Ph	н,н
A2836	a7	morpholino	CH2-piperazino-Ph	Me,Me
A2837	a7	NHiPr	CH2-piperazino-Ph	Et,Et
A2839	a7	· F	CH2-piperazino-Ph	H,Ph
A2840	a7	Et	CH2-piperazino-Ph	H,C6H4-4-F
A2841	a7	iBu	CH2-piperidino	H,H
A2842	a7	CH=CHMe	CH2-piperidino	H,C6H4-4-F
A2843	a7	ОН	SPh	H,H
A2844	a7	OEt	SPh	H,C6H4-4-F
A2845	a7	COPh	OCH2Ph	H,H
A2846	a7	4–pyridyl	OCH2Ph	H,C6H4-4-F
A2847	a7	morpholino	Ac	H,H
A2848	а7	NHiPr	Ac	H,C6H4-4-F
A2850	a7	F	CONH2	H,C6H4-4-F
A2851	a7	Et	CSNH2	H,H
A2852	a7	iBu	CSNH2	H,C6H4-4-F
A2853	a7	CH=CHMe	OCONH2	H,H
A2854	a7	ОН	OCONH2	H,C6H4-4-F
A2855	a7	OEt	OCSNH2	H,H
A2856	a7	COPh	OCSNH2	H,C6H4-4-F
A2857	a7	4–pyridyl	OSO2Me	H,H
A2858	а7	morpholino	OSO2Me	H,C6H4-4-F
A2859	a7	NHiPr	OSO2Ph	H,H
A2861	a7	F	I	H,H
A2862	a7	Et	I	H,C6H4-4-F
A3385	a7	CH2OMe	Ме	H,H
A3386	a7	CH2OMe	Me	Me,Me
A3387	a7	CH2OMe	Me	Et,Et
A3388	a7	CH2OMe	Me	H.Et
A3389	a7	CH2OMe	Me	H,Ph
A3390	a7	CH2OMe	Me	H,C6H4-4-F
A3397	a7	CH2OH	Me	H,H
A3552	a7	CH2-piperazino-Ph	CF3	H.Et
A3553	a7	CH2-piperazino-Ph	CF3	H,Ph
A3554	a7	CH2-piperazino-Ph	CF3	H,C6H4-4-F
A3555	a7	CH2-piperidino	CF3	H,H
A3556	a7	CH2-piperidino	CF3	H,C6H4-4-F
A3557	a7	SPh	CF3	H,H
A3558	a7	SPh	CF3	H,C6H4-4-F
A3559	a7	OCH2Ph	CF3	H,H
A3560	a7	OCH2Ph	CF3	H,C6H4-4-F
A3561	a7	Ac	CF3	H,H
A3562	a7	Ac	CF3	H,C6H4-4-F

【表31】

lA3563	a7	CONH2	CF3	н,н
A3564	a7	CONH2	CF3	H,C6H4-4-F
A3565	a7	CSNH2	CF3	H,H
A3566	a7	CSNH2	CF3	H,C6H4-4-F
A3567	a7	OCONH2	CF3	н,н
A3568	a7 a7	OCONH2	CF3	H,C6H4-4-F
	a7 a7	OCSNH2	CF3	Н,Н
A3569	a7 a7	OCSNH2	CF3	H.C6H4-4-F
A3570	a7 a7	OSO2Me	CF3	н,н
A3571 A3572	a7 a7	OSO2Me	CF3	H,C6H4-4-F
A3572 A3573	a7 a7	OSO2Me OSO2Ph	CF3	н,н
A3574	a7 a7	OSO2Ph	CF3	H,C6H4-4-F
A3574	a7	I I	CF3	н,н
A3576	a7 a7	ī	CF3	H,C6H4-4-F
A3627	a7	C6H4-4-CF3	CH=CHPh	Et,Et
A3628	a7 a7	C6H4-4-CF3	CH=CHPh	H.Et
A3629	a7 a7	C6H4-4-CF3	CH=CHPh	H,Ph
A3630	a7 a7	C6H4-4-CF3	CH=CHPh	H,C6H4-4-F
A3631	a7 a7	C6H4-3-CF3	CH=CHPh	H,H
A3632	a7	C6H4-3-CF3	CH=CHPh	H.C6H4-4-F
A3633	a7	C6H4-4-OH	CH=CHPh	н,н
A3634	a7	C6H4-4-OH	CH=CHPh	H,C6H4-4-F
A3635	a7	CH2Ph	CH=CHPh	нн
A3636	a7	CH2Ph	CH=CHPh	H,C6H4-4-F
A3637	a7	CH2C6H4-4-CF3	CH=CHPh	н,н
A3638	a7	CH2C6H4-4-CF3	CH=CHPh	Ме,Ме
A3639	a7	CH2C6H4-4-CF3	CH=CHPh	Et,Et
A3640	a7	CH2C6H4-4-CF3	CH=CHPh	H.Et
A3641	a7	CH2C6H4-4-CF3	CH=CHPh	H,Ph
A3642	a7	CH2C6H4-4-CF3	CH=CHPh	H,C6H4-4-F
A3643	a7	CH2C6H4-4-OCF3	CH=CHPh	H,H
A3644	a7	CH2C6H4-4-OCF3	CH=CHPh	H,C6H4-4-F
A3645	a7	CH2C6H4-4-Ph	CH=CHPh	Н,Н
A3646	a7	CH2C6H4-4-Ph	CH=CHPh	H,C6H4-4-F
A3647	a7	CH2C6H4-2-CI	CH=CHPh	H,H
A3648	a7	CH2C6H4-2-CI	CH=CHPh	H,C6H4-4-F
A3649	a7	(CH2)2Ph	CH=CHPh	H,H
A3650	a7	(CH2)2Ph	CH=CHPh	H,C6H4-4-F
A3651	a7	CH2-piperazino-Ph	CH=CHPh	H,H
A3652	a7	CH2-piperazino-Ph	CH=CHPh	Me,Me
A3704	a7	CH2OH	⊟CPh	H,C6H4-4-F
A3705	a7	CH2NHBu	≡CPh	H,H
A3706	a7	CH2NHBu	≡CPh	H,C6H4-4-F
A3707	a7	CH2C≡CH	≣CPh	H,H
A3708	а7	CH2C≡CH	≡CPh	H,C6H4-4-F
A3709	a7	OMe	≡CPh	Н,Н

【表32】

A3710	a7	OMe	≡CPh	H,C6H4-4-F
A3711	a7	NH2	≡CPh	н,н
A3711	a7	NH2	≡CPh	H,C6H4-4-F
A3713	a7	NHMe	≡CPh	н,н
A3714	a7	NHMe	≡CPh	H,C6H4-4-F
A3715	a7	CH2OPh	≡CPh	H,H
A3716	a7	CH2OPh	≡CPh	H,C6H4-4-F
A3717	a7	CH2OCH2Ph	≡CPh	н,н
A3717	a7	CH2OCH2Ph	≡CPh	H,C6H4-4-F
A3719	a7	CH2-morpholino	≡CPh	н,н
A3719	a7	CH2-morpholino	≡CPh	H,C6H4-4-F
A3721	a7	CH=CH-pyridyl	≡CPh	н,н
A3721	a7	CH=CH-pyridyl	≡CPh	H,C6H4-4-F
A3722 A3723	a7	C≣CPh	≡CPh	н,н
A3724	a7	C≣CPh	≡CPh	H,C6H4-4-F
A3724 A3725	a7	Ph	≡CPh	н,н
A3726	a7	Ph	≡CPh	H,C6H4-4-F
A3727	a7	C6H4-4-CF3	≡CPh	н,н
A3728	a7	C6H4-4-CF3	≡CPh	Me,Me
A3806	a7	CH2OH	iBu	H,C6H4-4-F
A3807	a7	CH2NHBu	CH=CHMe	н,н
A3808	a7	CH2NHBu	ОН	H,C6H4-4-F
A3809	a7	CH2C≡CH	OEt	н,н
A3810	a7	CH2C≡CH	COPh	H,C6H4-4-F
A3811	a7	OMe	4-pyridyl	н,н
A3812	a7	OMe	morpholino	H,C6H4-4-F
A3813	a7	NH2	NHiPr	H,H
A3814	a7	NH2	н	H;C6H4-4-F
A3815	a7	NHMe	F	H,H
A3816	a7	NHMe	Et	H,C6H4-4-F
A3817	a7	CH2OPh	iBu	H,H
A3818	a7	CH2OPh	CH=CHMe	H,C6H4-4-F
A3819	a7	CH2OCH2Ph	ОН	H,H
A3820	a7	CH2OCH2Ph	OEt	H,C6H4-4-F
A3821	a7	CH2-morpholino	COPh	H,H
A3822	a7	CH2-morpholino	4-pyridyl	H,C6H4-4-F
A3823	a7	CH=CH-pyridyl	morpholino	H,H
A3824	a7	CH=CH-pyridyl	NHiPr	H,C6H4-4-F
A3825	a7	C≣CPh	Н	H,H
A3826	а7	C≡CPh	F	H,C6H4-4-F
A3827	a7	Ph	Et	H,H
A3828	a7	Ph	iBu	H,C6H4-4-F
A3829	a7	C6H4-4-CF3	CH=CHMe	H,H
A3830	a7	C6H4-4-CF3	ОН	Me,Me

【表33】

				50	D2 D4
A部分No.	タイプ	R20	n	R2	R3,R4
A3883	a1	4-CI	0	Ме	H,4-pyridyl
A3884	a1	4-CI	0	CH2OMe	H,CH2CH=CH2
A3885	a1	4-CI	0	CH2-morpholino	H,C≡CPh
A3886	at	4-CF3	0	CH2C6H4-4-CF3	H,CH=CH2
A3887	a1	4-CF3	0	OMe	H,C6H4-4-Ph
A3888	a1	4-CF3	0	CF3	H,CH2C≡CH
A3889	a1	4-CF3	0	Ме	H,CH=CHPh
A3890	a1	4-CF3	0	CH2OMe	H,3-furyl

[0098]

2) 式:

【化13】

で示される部分(B部分)が下記のいずれかである化合物、 【0099】

【表34】

$$R^{5} \xrightarrow{R^{6}} R^{8}$$

	В	
B部分 No.	X1	R5,R6,R7,R8
B1	S	н,н,н,н
B2	S	Н,Ме,Н,Н
B3	S	H,nPr,H,H
В4	S	H,OCH2CF3,H,H
B5	S	н,он, н,н
В6	S	H,OMe,H,H
В7	S	H,SMe,H,H
B8	S	Me,H,H,H
В9	S	OMe,H,H,H
B10	S	H, SPh,H,H
B11	S	Me,Me,Me
B12	S	H,Me,H,Me
B13	S	OCH2CF3,H,H,H
B14	S	CI,CI,H,H
B15	S	CI,H,H,H
B16	S	H,CI,H,H
B17	S	H,F,H,H
B18	s	F,F,H,H
B19	S	F,H,H,H
B20	S	H,CH2CH=CH2,H,H
B21	0	н,н,н,н
B22	0	H,Me,H,H
B23	0	H,nPr,H,H
B24	0	H,OCH2CF3,H,H
B25	0	Н,ОН, Н,Н
B26	0	H,OMe,H,H
B27	0	H,SMe,H,H
B28	0	Me,H,H,H
B29	0	OMe,H,H,H
B30	0	Me,Me,H,H
B31	0	Me,Me,Me
B32	0	H,OPh,H,H
B33	0	OCH2CF3,H,H,H
B34	0	CI,CI,H,H
B35	0	CI,H,H,H
B36	0	H,CI,H,H
B37	0	H,F,H,H
B38	0	F,F,H,H
B39	0	F,H,H,H
B40	0	H,CH2CH=CH2,H,H
B41	CH2CO	H,H,H,H

[0100]

【表35】

B42	CH2CO	H,Me,H,H
B43	CH2CO	H,nPr,H,H
B44	CH2CO	H,OCH2CF3,H,H
B45	CH2CO	н,он, н,н
B46	CH2CO	H,OMe,H,H
B47	CH2CO	H,SMe,H,H
B48	CH2CO	CI,H,H,H
B49	CH2CO	OMe,H,H,H
B50	CH2CO	Me,Me,H,H
B51	CH2CO	Me,CH=CH2,Me,Me
B52	CH2CO	H,Me,H,NHMe
B53	CH2CO	OCH2CF3,H,H,H
B54	CH2CO	CI,CI,H,H
B55	CH2CO	сі,н,н,н
B56	CH2CO	H,F,H,H
B57	CH2CO	H,CH2CH=CH2,H,H
B58	NH	н,н,н,н
B59	NH	H,Me,H,H
B60	NH	H,nPr,H,H
B61	NH	H,OCH2CF3,H,H
B62	NH	н,он, н,н
B63	NH	H,OMe,H,H
B64	NH	H,SMe,H,H
B65	NH	Me,H,H,H
B66	NH	OMe,H,H,H
B67	NH	Me,CH≡CH,H,H
B68	NH	Me,Me,Me
B69	NH	H,Ac,H,H
B70	NH	OCH2CF3,H,H,H
B71	NH	CI,CI,H,H
B72	NH	CI,H,H,H
B73	NH	H,F,H,H
B74	NH	H,CH2CH=CH2,H,H
B75	NMe	Н,Н,Н,Н
B76	NMe	H,Me,H,H
B77	NMe	H,nPr,H,H
B78	NMe	H,OCH2CF3,H,H
B79	NMe	н,он, н,н
B80	NMe	H,OMe,H,H
B81	NMe	H,SMe,H,H
B82	NMe	Me,H,H,H
B83	NMe	H,Ph,H,H
B84	NMe	Me,Me,H,H
B85	NMe	Me,Me,Me
B86	NMe	H,Me,H,Me
B87	NMe	OCH2CF3,H,H,H
B88	NMe	CI,CI,H,H
B89	NMe	CI,H,H,H

【0101】 【表36】

B90	NMe	H,F,H,H
B91	NMe	H,CH2CH=CH2,H,H
B92	NEt	н,н,н,н
B93	NMe	Н,Ме,Н,Н
B94	NCH2Ph	H,nPr,H,H
B95	NAc	H,OCH2CF3,H,H
B96	NCOEt	H,OMe,H,H
B97	NCOPh	Me,H,H,H
B98	NSO2Me	H,Ph,H,H
B99	NSO2Et	Me,Me,H,H
B100	NSO2Ph	Me,Me,Me
B101	NSO2C6H4-p-Me	OCH2CF3,H,H,H
B102	CH2O	H,H,H,H
B103	CH2O	Н,Ме,Н,Н
B104	CH2O	H,nPr,H,H
B105	CH2O	H,OCH2CF3,H,H
B106	CH2O	н,он, н,н
B107	CH2O	H,OMe,H,H
B108	CH2O	H,CI,H,H
B109	CH2O	Me,H,H,H
B110	CH2O	H,Ph,H,H
B111	CH2O	Me,Me,H,H
B112	CH2O	Me,Me,Me
B113	CH2O	H,Me,H,Me
B114	CHEtO	OCH2CF3,H,H,H
B115	OCH2	н,н,н,н
B116	OCH2	H,Me,H,H
B117	OCH2	H,nPr,H,H
B118	OCH2	H,OCH2CF3,H,H
B119	OCH2	∖н,он, н,н
B120	OCH2	H,OMe,H,H
B121	OCH2	H,SMe,H,H
B122	OCH2	Me,H,H,H
B123	OCH2	H,Ph,H,H
B124	OCH2	H,F,H,H
B125	OCH2	Me,Me,Me,Me
B126	OCH2	H,Me,H,Me
B127	OCHMe	OCH2CF3,H,H,H

【0102】 3)式:

【化14】

で示される部分 (C部分) が下記のいずれかである化合物。 【0103】

【表37】

C部分No. タイプ X2 R9,R10 R17 C1 c1 O H,H H C2 c1 O H,H H C3 c1 O Me,H H C4 c1 O Me,H H C5 c1 O Et,H H C6 c1 O CH2OMe,H Me C6 c1 O nPr,H H C8 c1 O nPr,H H C8 c1 O nPr,H H C9 c1 O Me,Me H C10 c1 O Ph,Me H C11 c1 S H,H H H C11 c1 S H,H H	- 	4 /-B		R9,R10	R17	
C2						
C3			-			
C4						
C5						
C6						
ST						
C C C C C C C C C C C C C		1				
C9		1 ,				
C10		1 1				
Ci1	1					
C12			Ç			
C21			9	1	1 1	
C21		1 1	0			
C21		1 1	9			
C21		1 1	9			
C21			Š			
C21			õ			
C21			8			1
C21			Š			l
C21			9			ļ
C22						l
C22					Me	1
C24						
C25					Me	
NH					H	
NH					Me	
C28 c1 NH nPr,H Me C29 c1 NH Me,Me H C30 c1 NH Me,Me H C31 c1 NEt H,H H C32 c1 NMe H,H H C32 c1 NMe H,H H C33 c1 NMe H,H H C34 c1 NAc Me,H H Me,H H Me H H C35 c1 NCOPh Et,H H Me H NSO2Me nPr,H Me Me H NSO2Et NPr,H Me Me,Me H H H H C40 c1 NSO2C6H4-p-Me *1 *1 H C41 c1 *1 *1 H H C42 c2 G H,H H H C44				1 '	H	ļ
C29 c1 NH Me,Me H C30 c1 NH Me,Me H C31 c1 NEt H,H H C32 c1 NMe H,H H C32 c1 NMe H,H H C33 c1 NMe Me,H H C34 c1 NAc Me,H H Me,H Me Me H C35 c1 NCOPh Et,H H Me NSO2Me nPr,H Me Me C37 c1 NSO2Et nPr,H Me Me,Me H Me,Me Me H C40 c1 NSO2C6H4-p-Me *1 H H H C41 c1 *1 *1 H H H H H H H H H H H H H H H H H <td< td=""><td></td><td></td><td></td><td></td><td>Me</td><td>1</td></td<>					Me	1
C30 c1 NH Me,Me tBu C31 c1 NEt H,H H C32 c1 NMe H,H Me C33 c1 NCH2Ph Me,H H C34 c1 NAc Me,H H Me NAc Me,H H H C35 c1 NCOEt Et,H H Me NSO2Me nPr,H Me Me C37 c1 NSO2Me nPr,H Me Me,Me H Me,Me H Me C39 c1 NSO2C6H4-p-Me Me,Me Me Me C41 c1 x1 x1 H<					H	1
NEt		1		Ме,Ме	tBu	1
C32 c1 NMe H,H Me H Me H H Me H Me H Me H H Me H H Me H H Me H H Me NSO2Me nPr,H Me Me NSO2Et nPr,H Me Me <t< td=""><td></td><td></td><td></td><td>lH,H</td><td>Н</td><td>1</td></t<>				lH,H	Н	1
C33 c1 NCH2Ph Me,H H C34 c1 NAc Me,H Me C35 c1 NCOEt Et,H H C36 c1 NCOPh Et,H Me C37 c1 NSO2Me nPr,H Me C38 c1 NSO2Me nPr,H Me C39 c1 NSO2Et nPr,H Me Me,Me H Me,Me Me C40 c1 NSO2C6H4-p-Me Me,Me Me C41 c1 *1 *1 H C42 c1 *1 *1 H H C43 c2 O H,H H H C44 c2 S H,H H H C45 c2 CH2 H,H H H C46 c2 CH2 H,H H H C48 c2 NH *1 H		L .		H,H	Me	1
C34 c1 NAc Me,H Me C35 c1 NCOEt Et,H Me C36 c1 NCOPh Et,H Me C37 c1 NSO2Me nPr,H Me C38 c1 NSO2Me nPr,H Me C39 c1 NSO2Et nPr,H Me Me,Me H Me,Me Me C40 c1 NSO2C6H4-p-Me Me,Me Me C41 c1 *1 *1 H C42 c1 *1 *1 Me C43 c2 O H,H H C44 c2 S H,H H C45 c2 CH2 H,H H C46 c2 CH2 H,H H C48 c2 *1 *1 H C49 c3 O H,H H C50 c3 O Me,H			NCH2Ph	Me,H		
C35 c1 NCOEt Et,H H C36 c1 NCOPh Et,H Me C37 c1 NSO2Me nPr,H Me C38 c1 NSO2Et nPr,H Me C39 c1 NSO2Ph Me,Me H C40 c1 NSO2C6H4-p-Me Me,Me Me C41 c1 *1 *1 H C42 c1 *1 *1 H C43 c2 O H,H H C44 c2 S H,H H C45 c2 S H,H H C46 c2 CH2 H,H H C47 c2 NH *1 H C48 c2 *1 *1 H C49 c3 O H,H H C50 c3 O Me,H H C51 c3 O Me,H </td <td></td> <td>c1</td> <td>NAc</td> <td>Me,H</td> <td></td> <td>i</td>		c1	NAc	Me,H		i
C36 c1 NCOPh Et,H Me C37 c1 NSO2Me nPr,H Me C38 c1 NSO2Et nPr,H Me C39 c1 NSO2Ph Me,Me H C40 c1 NSO2C6H4-p-Me Me,Me Me C41 c1 *1 *1 H C42 c1 *1 *1 Me C43 c2 O H,H H C43 c2 S H,H H C45 c2 S H,H H C46 c2 CH2 H,H H C47 c2 NH *1 H C48 c2 *1 *1 H C49 c3 O H,H H C50 c3 O Me,H H C51 c3 O Me,H H Me,H H Me,H H		c1	NCOEt	Et,H		
C37 c1 NSO2Me nPr,H H C38 c1 NSO2Et nPr,H Me C39 c1 NSO2Ph Me,Me H C40 c1 NSO2C6H4-p-Me Me,Me H C41 c1 *1 *1 H C42 c1 *1 *1 H C43 c2 O H,H H H C43 c2 S H,H H H C44 c2 S H,H H H C45 c2 C CH2 H,H H H C46 c2 CH2 H,H H H H C48 c2 *1 *1 H H H C49 c3 O H,H H H H H H H H H H H H H H H H H <t< td=""><td></td><td>c1</td><td>NCOPh</td><td>Et,H</td><td></td><td>1</td></t<>		c1	NCOPh	Et,H		1
C38 c1 NSO2Et nPr,H Me C39 c1 NSO2Ph Me,Me H C40 c1 NSO2C6H4-p-Me Me,Me Me C41 c1 *1 *1 H C42 c1 *1 *1 Me C43 c2 O H,H H H C43 c2 S H,H H H C44 c2 S H,H H H C45 c2 CH2 H,H H H C46 c2 CH2 H,H H H C47 c2 NH H,H H H C48 c2 *1 *1 H H C50 c3 O H,H H H C51 c3 O Me,H H H C52 c3 O Me,H H H		c1	NSO2Me			
C39 c1 NSO2C6H4-p-Me Me,Me Me C41 c1 *1 *1 H C42 c1 *1 *1 Me C43 c2 O H,H H H C43 c2 単結合 H,H H H C44 c2 S H,H H H C45 c2 CH2 H,H H H C46 c2 CH2 H,H H H C47 c2 NH H,H H H C48 c2 *1 *1 H H C49 c3 O H,H H H C50 c3 O Me,H H C51 c3 O Me,H H C52 c3 O Me,H Me		c1			l l	1
C41 c1 *1 *1 H C42 c1 *1 *1 Me C43 c2 O H,H H C44 c2 単結合 H,H H C45 c2 S H,H H C46 c2 CH2 H,H H C47 c2 NH H,H H C48 c2 *1 *1 H C49 c3 O H,H H C50 c3 O H,H Me C51 c3 O Me,H H C52 c3 O Me,H H Me,H Me	C39	c1		•		1
C41 C1 *1 *1 Me C42 C2 O H,H H C43 C2 D H,H H C44 C2 E E H,H H C45 C2 C CH2 H,H H C46 C2 CH2 H,H H H C47 C2 NH H,H H H C48 C2 *1 *1 H C49 C3 O H,H H C50 C3 O Me,H H C51 C3 O Me,H H C52 C3 O Me,H Me	C40	c1				1
C43 c2 O H,H H C44 c2 単結合 H,H H C45 c2 S H,H H C46 c2 CH2 H,H H C47 c2 NH H,H H C48 c2 *1 *1 H C49 c3 O H,H H C50 c3 O H,H Me C51 c3 O Me,H H C52 c3 O Me,H Me	C41	c1	•	1 -		
C44 c2 単結合 H,H H C45 c2 S H,H H C46 c2 CH2 H,H H C47 c2 NH H,H H C48 c2 *1 *1 H C49 c3 O H,H H C50 c3 O H,H Me C51 c3 O Me,H H C52 c3 O Me,H Me	C42			1 -		
C45		c2				1
C46						1
C47 C48 C2 NH H,H H H H H H H H H H H H H H H H H						
C48	l l					
C49 c3 O H,H H Me C50 c3 O Me,H H Me C52 c3 O Me,H Me						1
C50 c3 O H,H Me H C52 c3 O Me,H Me						
C51 c3 O Me,H H Me C52 c3 O Me,H Me						
C52 c3 O Me,H Me						
1002	C51					
IC93 c3 O IECHT III	C52			E+ H		
	JC53	1 63	1	1=0,1	,	,

【表38】

C54 C55 C56 C57 C58 C59 C60 C61 C62 C63 C64 C65 C666 C67 C68 C70 C71 C72 C73 C74 C75 C78 C80 C81 C82 C83 C84 C85 C86 C87 C88 C89 C91 C92 C93 C94 C95 C97 C98	33 33 33 33 33 33 33 33 33 33 33 33 33	〇〇〇〇〇結結結結結のののののはは、100000ははは、100000でははは、100000では、1000000では、100000では、100000では、100000では、100000では、100000では、100000では、1000000では、100000では、100000では、100000では、100000では、100000では、100000では、1000000では、100000では、100000では、100000では、100000では、100000では、100000では、1000000では、100000では、100000では、100000では、100000では、100000では、100000では、1000000では、100000では、100000では、100000では、100000では、100000では、100000では、1000000では、100000では、100000では、100000では、100000では、100000では、100000では、1000000では、100000では、100000では、1000000では、100000では、100000では、100000では、1000000では、100000では、100000では、100000では、100000では、100000では、100000では、100000では、100000では、100000では、100000では、100000では、100000では、100000では、1000000では、100000では、100000では、100000では、100000では、100000では、100000では、1000000では、1000000では、100000では、100000では、1000000では、1000000では、1000000では、1000000では、10000000では、10000000では、10000000では、10000000では、1000000では、10000000では、10000000では、10000000では、1000000では、10000000では、10000000では、10000000	OEt,H nPr,H nPr,H Me,Me Me,Me H,H OMe,H Et,H NPr,Me H,H Ph,Me Et,H nPr,Me H,H Me,H H,H H,H H,H H,H H,H H,H H,H	M T M T M T H T T T T T T T T T T T T T
	1 - 1	S	H,H	H
C96	с6			
				1
C99	c1	CH2	H,H	H
C100	cl	CH2	Н,Ме	
C101	c1	CH2	H,H	Me
C102	<u>c1</u>	CH2	H,Me	Me

[0105]

具体的には、化合物(I)のA部分、B部分およびC部分の組み合わせが下記の通りである化合物が好ましい。

[0106]

【表39】

No.	Α	В	С	I	43	A321	В4	C1	1	158	A2466	B78	lc11 l
	1 A7	B1	C1			A326	B4	C3			A2467	B78	C21
	2 A12	B1	C3	4		A331	В4	C7			A2472	B78	C32
	3 A13	B1	C7			A336	В4	C11			A2473	B78	C41
	4 A18	B1	C11	1		A351	B4	C21			A2478	B78	C43
	5 A21	B1	C21			A356	B4	C32	4		A2503	B78	C49
	6 A26	B1	C32			A399	B4	C41			A2508	B78	C81
	7 A27	B1	C41			A404	B4	C43			A2515	B78	C87
	8 A32	B1	C43			A405	B4	C49			A2520	B78	C93
	9 A37	B1	C49			A410	B4	C81			A2529	B78	C99
	10 A42	B1	C81			A413	B4	C87			A2534	B78	C102
	11 A57	B1	C87			A418	B4	C93			A2563	B92	C1
	12 A62	B1	C93			A419	B4	C99			A2568	B92	C3
	13 A105	B1	C99			A424	B4	C102			A2569	B92	C7
	14 A110	B1	C102			A429	B21	C1			A2574	B92	C11
	15 A111	B2	C1			A434	B21	СЗ			A2575	B92	C21
	16 A116	B2	C3			A449	B21	C7			A2580	B92	C32
	17 A119	B2	C7			A454	B21	C11			A2605	B92	C41
	18 A124	B2	C11			A497	B21	C21			A2610	B92	C43
	19 A125	B2	C21			A502	B21	C32			A2617	B92	C49
	20 A130	B2	C32			A503	B21	C41			A2622	B92	C81
	21 A135	B2	C41			A508	B21	C43			A2631	B92	C87
	22 A140	B2	C43			A511	B21	C49			A2636	B92	C93
	23 A155	B2	C49			A516	B21	C81			A2665	B92	C99
	24 A160	B2	C81			A517	B21	C87			2 A2670	B92	C102
	25 A203	B2	C87			A522	B21	C93			3 A2671	B93	C1
	26 A208	B2	C93			A527	B21	C99			4A2676	B93	СЗ
	27 A209	B2	C99			A532	B21	C102		18	5 A2677	B93	C7
	28 A214	B2	C102			A547	B22	C1	ĺ ,	18	6 A2682	B93	C11
1	29 A217	B3	C1		1	A552	B22	СЗ		18	7 A2707	B93	C21
1	30 A222	B3	C3		ŧ .	A2359	B59	C21		18	8 A2712	B93	C32
	31 A223	B3	C7		t .	A2364	B59	C32		18	9 A2719	B93	C41
	32 A228	B3	C11			A2365	B59	C41	1 15	19	0 A2724	B93	C43
	33 A233	B3	C21		1	A2370	B59	C43		19	1 A2733	B93	C49
	34 A238	B3	C32	1	1	A2371	B59	C49		19.	2 A2738	B93	C81
	35 A253	B3	C41			A2376		C81	1	L			
	36 A258	B3	C43			A2401	B59		l				
,	37 A301	B3	C49			A2406		C93	1				
	38 A306	B3	C81		1	A2413	B59	1	İ				
	39 A307	B3	C87			1A2418	B59						
1	40 A312	B3	C93			A2427	B78	1					
	41 A315	B3	C99		1	6 A2432	1	C3					
	42 A320	B3	C102		1	7 A2461	B78	1					

[0107]

【表40】

No.	A	В	С	1	285	A27	B46	C11		331	A105	B92	C43
241		B2	C3		286	A27	B47	C21		332	A105	B93	C49
242		B3	C7		287	A27	B48	C32		333	A105	B94	C81
243		B4	C11		288	A27	B49	C41		334	A105	B95	C87
244	1	B5	C21		289	A27	B50	C43		335	A105	B96	C93
245		B6	C32		290	A27	B51	C49		336	A105	B97	C99
246		B7	C41		291	A27	B52	C81		337	A105	B98	C102
247		B8	C43		292	A27	B53	C87		338	A111	B99	C1
248	5	В9	C49		293	A27	B54	C93		339	A111	B100	C3
249		1	C81		294	A27	B55	C99		340	A111	B101	C7
250		B11	C87		295	A27	B56	C102	ı		A111	B102	C11
251	1		C93		296	A37	B57	C1		342	A111	B103	
252	1	!	C99		297	A37	B58	C3			A111	B104	
253			C102		298	A37	B59	C7		344	A111	B105	
	A13	B15	C1		299	A37	B60	C11		345	A111	B106	
	A13	B16	СЗ		300	A37	B61	C21			A111	B107	
I .	A13	B17	C7		301	A37	B62	C32			A111	B108	1
•	A13	B18	C11		302	A37	B63	C41			A111	B109	
	A13	B19	C21		303	A37	B64	C43		349	A111	B110	
1	A13	B20	C32		304	A37	B65	C49		350	A111	B111	
	A13	B21	C41		305	A37	B66	C81			A111	1	C102
t	A13	B22	C43		306	A37	B67	C87			A119	B113	
1	A13	B23	C49		307	A37	B68	C93			A119	B114	
	A13	B24	C81		308	A37	B69	C99			A119	B115	:
	A13	B25	C87		309	A37	B70	C102			A119	B116	
	A13	B26	C93			A57	B71	C1			A119	B117	
	A13	B27	C99		ł .	A57	B72	C3			A119	B118	
	A13	B28	C102		312	A57	B73	C7			A119	B119	1
268	A21	B29	C1		1	A57	1	C11			A119	B120	1
269	A21	B30	C3	- 1		A57	B75	C21			A119	B121	
270	A21	B31	C7			A57	B76	C32			A119	B122	1
271	A21	B32	C11			A57	B77	C41			A119	B123	
272	A21	B33	C21		•	A57	B78	C43			A119	B124	
273	A21	B34	C32		318	A57	B79	C49			A119	B125	
274	A21	B35	C41		1	A57	B80	C81			A119	1	C102
275	A21	B36	C43		•	A57	B81	C87			A223	B127	
276	A21	B37	C49			A57	B82	C93			A223	Bi	C3
277	A21	B38	C81	18	1	A57	1	C99			A223	B2	C7
278	A21	B39	C87		No.	A57	B84				A223	B3	C11
279	A21	B40	C93		1	A105	B85	1			A223	B4	C21
280	A21	B41	C99			A105	B86	1			A223	B5	C32
281	A21	B42	C102			A105	B87		1	1	A223	B6	C41
282	2 A27	B43	C1		1	A105		C11	1		A223	B7	C43
283	A27	B44				A105		C21	1		A223	B8	C49
284	1 A27	B45	C7		E .	A105	B90				A223	B9	C81
-					330	A105	B91	C41	1	376	A223	B10	C87

[0108]

【表41】

1	377 A223	B11	C93	1	423	A307	B57	C3		469	A429	B103	C32	
ı	378 A223	B12	C99		424	A307	B58	C7	- 1	470	A429	B104	C41	
1	379 A223	B13	C102	ı	425	A307	B59	C11		471	A429	B105	C43	
ı	380 A233	B14	C1	- 1	426	A307	B60	C21	1	472	A429	B106	C49	
t	381 A233	B15	C3		427	A307	B61	C32	1	473	A429	B107	C81	
l	382 A233	B16	C7		428	A307	B62	C41		474	A429	B108	C87	
l	383 A233	B17	C11			A307	B63	C43		475	A429	B109	C93	
l	384 A233	B18	C21			A307	B64	C49		476	A429	B110	C99	
ı	385 A233	B19	C32		431	A307	B65	C81		477	A429	B111	C102	
۱	386 A233	B20	C41			A307	B66	C87		478	A449	B112	C1	
l	387 A233	B21	C43		433	A307	B67	C93		479	A449	B113	C3	
l	388 A233	B22	C49		434	A307	B68	C99		480	A449	B114	C7	
ļ	389 A233	B23	C81		435	A307	B69	C102		481	A449	B115	C11	
١	390 A233	B24	C87	l	436	A315	B70	C1		482	A449	B116	C21	
I	391 A233	B25	C93	. !	437	A315	B71	C3		483	A449	B117	C32	
ı	392 A233	B26	C99		438	A315	B72	C7		484	A449	B118	C41	
١	393 A233	B27	C102		439	A315	B73	C11		485	A449	B119	C43	
ļ	394 A253	B28	C1		440	A315	B74	C21		486	A449	B120	C49	
İ	395 A253	B29	СЗ		441	A315	B75	C32	l		A449	B121		İ
I	396 A253	B30	C7		442	A315	B76	C41			A449	B122		
ı	397 A253	B31	C11		443	A315	B77	C43			A449	B123		
1	398 A253	B32	C21		444	A315	B78	C49			A449	B124		
1	399 A253	B33	C32			A315	B79	C81			A449	1	C102	l
İ	400 A253	B34	C41			A315	B80	C87			A497	B126		ļ
١	401 A253	B35	C43			A315	B81	C93			A497	B127		
İ	402 A253	B36	C49			A315	B82	C99			A497	B1	C7	l
I	403 A253	B37	C81			A315	B83	C102			A497	B2	C11	
1	404 A253	B38	C87			A419	B84	C1			A497	B3	C21	
١	405 A253	B39	C93			A419	B85	C3			A497	B4	C32	
١	406 A253	B40	C99			A419	B86	C7	13		A497	B5	C41	
١	407 A253	B41	C102	1		A419	B87	C11			A497	B6	C43	
1	408 A301	B42	C1			A419	B88	C21			A497	B7	C49	ı
١	409 A301	B43	C3			A419	B89	C32			A497	B8	C81	
I	410 A301	B44	C7			A419	B90	C41			A497	B9	C87	
1	411 A301	B45	C11			A419	B91	C43			A497	B10 B11	C93	ı
١	412 A301	B46	C21			A419	B92	C49	UY		A497	B12	C102	
ı	413 A301	B47	C32			A419	B93	C81	ĺ		A497	B13		
1	414 A301	1	C41			A419	1	C87			A503		1	ı
١	415 A301	B49	1	1		A419		C93			A503	B14	C3	ı
	416 A301	B50				A419	1	C99 C102			A503 A503	B15 B16	C7 C11	ı
1	417 A301	B51	C81			A419		1			A503	B17	G21	١
	418 A301	B52	1	1		A429	B98 B99	C1 C3			A503	B18	C32	1
	419 A301	B53			1	A429	B100				A503	B19	C41	1
	420 A301	B54		1		A429	B101				A503	B20	1	
	421 A301	B55				A429 A429	B102				A503	B21	C49	١
П	422 A307	B56	C1	1	1 408	11423	10102	1021	1	1 014	1, 1000	1 521	10 10	ı

[0109]

【表42】

	1	1	land I	1	504		l pec l	01001	- 1	607	A2427	B114	C11 1	
	515 A503		C81	- 1		A2365		C102	1		A2427	B115		
	516 A503	4	C87			A2371	B69	C1				B116		
	517 A503		C93			A2371	B70	C3	-		A2427	B117		
	518 A503	I	C99			A2371	B71	C7	ı		A2427	B118		
l	519 A503	1	C102			A2371	B72	C11			A2427	1 1		
	520 A511	1	C1			A2371	B73	C21			A2427	B119		
	521 A511	1	C3			A2371	B74	C32			A2427	B120		
	522 A511	1	C7	i		A2371	B75	C41			A2427	B121		
	523 A511	1	C11			A2371	B76	C43			A2427	B122		Í
1	524 A511	1	C21		1	A2371	B77	C49			A2427	B123		
	525 A511	B32	C32			A2371	B78	C81	- 1	l l	A2427	1	C102	
1	526 A511	B33	C41		ı	A2371	B79	C87			A2461	B125		İ
1	527 A511	B34	C43			A2371	B80	C93			A2461	B126		ĺ
	528 A511	B35	C49			A2371	B81	C99		i i	A2461	B127		ĺ
1	529 A511	B36	C81			A2371	B82	C102			A2461	B1	C11	
	530 A511	B37	C87		576	A2401	B83	C1		1	A2461	B2	C21	ı
	531 A511	B38	C93	1 1		A2401	B84	C3			A2461	B3	C32	ĺ
1	532 A511	B39	C99		578	A2401	B85	C7			A2461	B4	C41	ĺ
	533 A511	I B40	C102		579	A2401	B86	C11			A2461	B5	C43	
	534 A23	59 B41	C1	1	580	A2401	B87	C21			A2461	B6	C49	ı
	535 A23	59 B42	C3			A2401	B88	C32			A2461	B7	C81	
1	536 A23	59 B43	C7		582	A2401	B89	C41			A2461	B8	C87	l
	537 A23	59 B44	C11	1		A2401	B90	C43			A2461	B9	C93	ı
	538 A23	59 B45	C21		1	A2401	B91	C49			A2461	B10	C99	
	539 A23	59 B46	C32		585	A2401	B92	C81		ł .	A2461	B11	C102	l
	540 A23	59 B47	C41		586	A2401	B93	C87			A2467	B12	C1	Ì
1	541 A23	59 B48	C43		587	A2401	B94	C93		1	A2467	B13	C3	
1	542 A23	59 B49	C49		588	A2401	B95	C99	l		A2467	B14	C7	
1	543 A23	59 B50	C81	1	589	A2401	B96	C102	1		A2467	B15	C11	١
1	544 A23	59 B51	C87		590	A2413	B97	C1	10	1	A2467	B16	C21	ı
	545 A23	59 B52	C93	1	591	A2413	B98	C3	1		A2467	B17	C32	١
	546 A23	59 B53	C99		592	A2413	B99	C7			A2467	B18	C41	L
1	547 A23	59 B54	C102		593	A2413	1 -	C11		1	A2467	B19	C43	١
1	548 A23	65 B5	5 C1	1		A2413		C21			A2467	B20	C49	l
1	549 A23	65 B56	C3	1	595	A2413		C32			A2467	B21	C81	ı
1	550 A23	65 B5	7 C7			A2413		G41			A2467	B22	C87	1
1	551 A23	65 B5	3 C11		1	A2413	1	C43			A2467	B23	C93	١
U	552 A23	65 B5	C21	1		A2413		C49			A2467		C99	L
	553 A23	65 B6	C32	1		A2413		C81			A2467	1	C102	1
1	554 A23	65 B6	1 C41	1		A2413	1	7 C87	1	1	A2473	B26		ı
	555 A23	65 B6	2 C43		1	A2413	1	C93			A2473	B27	t	
İ	556 A23		3 C49			A2413		C99	1		A2473	B28		1
	557 A23		4 C81			A2413		C102	1		A2473	B29	1	1
	558 A23	65 B6	5 C87			A2427	B11				A2473	B30		1
	559 A23					A2427		2 C3			A2473	B31	5	1
	560 A23	65 B6	7 C99	1	606	A2427	B11	3 C7	t	652	A2473	B32	C41	1

[0110]

【表43】

١	653 A2473	B33	C43	1	684	A2617	B64	C87		715	A2665	B95	C102	ĺ
l	654 A2473	B34	C49		685	A2617	B65	C93		716	A2671	B96	C1	
١	655 A2473	B35	C81		686	A2617	B66	C99		717	A2671		C3	
١	656 A2473	B36	C87		687	A2617	B67	C102		718	A:2671		C7	
l	657 A2473	B37	C93		688	A2631	B68	C1		719	A2671	B99	C11	
I	658 A2473	B38	C99		689	A2631	B69	C3		720	A2671	B100	C21	
İ	659 A2473	B39	C102		690	A2631	B70	C7		721	A2671	B101	C32	
١	660 A2605	B40	C1		691	A2631	B71	C11		722	A2671	B102	C41	
Ì	661 A2605	B41	C3		692	A2631	B72	C21		723	A2671	B103		
١	662 A2605	B42	C7		693	A2631	B73	C32		724	A2671	B104		İ
١	663 A2605	B43	C11		694	A2631	B74	C41		725	A2671	B105		ŀ
l	664 A2605	B44	C21		695	A2631	B75	C43		726	A2671	B106	1 1	
I	665 A2605	B45	C32		696	A2631	B76	C49		727	A2671	B107		
١	666 A2605	B46	C41		697	A2631	B77	C81			A2671	B108	1	
l	667 A2605	B47	C43		698	A2631	B78	C87			A2671		C102	ĺ
ı	668 A2605	B48	C49		699	A2631	B79	C93		•	A2677	B110		ĺ
Į	669 A2605	B49	C81		700	A2631	B80	C99			A2677	B111		l
	670 A2605	B50	C87		701	A2631	B81	C102	1		A2677	B112		
Ì	671 A2605	B51	C93		702	A2665	B82	C1			A2677	B113		ı
ı	672 A2605	B52	C99		703	A2665	B83	C3		ì	A2677	B114		١
	673 A2605	B53	C102	1		A2665	B84	C7		i .	A2677	B115		
	674 A2617	B54	C1		705	A2665	B85	C11		ł .	A2677	B116		ı
	675 A2617	B55	C3	1		A2665	B86	C21		1	A2677	B117		ı
	676 A2617	B56	C7			A2665	B87	C32			A2677	B118		l
	677 A2617	B57	C11	ļ	1	A2665	B88	C41			A2677	B119	1	ĺ
	678 A2617	B58	C21	ĺ		A2665	B89	C43		1	A2677	B120		l
	679 A2617	B59	C32	Ì		A2665	B90	C49		•	A2677	B121	1	
1	680 A2617	B60	C41			A2665	B91	C81	1		A2677	B122	1	١
	681 A2617	B61	C43			A2665	B92	C87		743	A2677	B123	C102	Į
	682 A2617	B62	C49		1	A2665	B93	C93						
	683 A2617	B63	C81	1	714	A2665	B94	C99	ı					

[0111]

【表44】

No.	Α	В	С	- 1	784	A21	B58	C41		825	A57	ВЗ	C83	
744		B2	G2		785	A21	B59	C43		826	A57	В4	C84	
745		В3	C3		786	A21	B78	C44		827	A57	B21	C85	
746	1	В4	C4	1	787	A21	B92	C45		828	A57	B22	C86	
747	1	B21	C5	1	788	A21	B93	C46	1	829	A57	B23	C87	
748	1	B22	C6		789	A21	B102	C47		830	A57	B24	C88	
749	}	B23	C7		790	A21	B115	C48		831	A57	B42	C89	
750		B24	C8	i	791	A27	B1	C49		832	A57	B58	C90	
751		B42	C9	i	792	A27	B2	C50		833	A57	B59	C91	ĺ
752		1	C10		793	A27	В3	C51		834	A57	B78	C92	ĺ
753	1	B59	C11	İ	794	A27	B4	C52		835	A57	B92	C93	
	A7	B78	C12	1	795	A27	B21	C53		836	A57		C94	
	A7	B92	C13		796	A27	B22	C54		837	A57	B102	l	İ
1	A7	B93	C14		797	A27	B23	C55		838	A57	B115	i	İ
	A7	B102	C15		798	A27	B24	C56			A105	B1	C97	
	A7	B115	C16		799	A27	B42	C57			A105	B2	C98	ĺ
ì	A13	B1	C17		800	A27	B58	C58		1	A105	B3	C99	l
760	A13	B2	C18		801	A27	B59	C59			A105	B4	C100	١
761	A13	B3	C19		802	A27	B78	C60			A105	B21	C101	١
762	2 A13	B4	C20		803	A27	B92	C61			A105	B22	C102	١
76	3 A13	B21	C21		804	A27	B93	C62		1	A105	B23	C1	١
764	4 A13	B22	C22			A27	1	C63		1	A105	B24	C2	۱
76	5 A13	B23	C23			A27		C64		1	A105	B42	C3	١
76	6 A13	B24	C24	1		A37	B1	C65			A105	B58	C4	l
76	7 A13	B42	C25	Ì		A37	B2	C66			A105	B59	C5	l
76	8 A13	B58	C26			A37	B3	C67		1	A105	B78	C6	I
76	9 A13	B59	C27		1	A37	B4	C68	1	ł	A105	B92	C7	١
77	0 A13	B78				1 A37	B21	C69	1	1	A105	B93 B102	1	١
77	1 A13	B92				2 A37	B22	1		1	A105		C10	I
77	2 A13	B93				3 A37	B23	1		1	4 A105	B1	C11	I
l l	3 A13	- 1	2 C31		l .	4 A37	B24	1			5 A111 6 A111	B2	C12	
	4 A13		5 C32		1	5 A37	B42	1		1	7 A111	B3	C13	
1	5 A21	B1			1	6 A37	B58	1		1	B A111	B4	C14	Į
i i	6 A21	B2			1	7 A37	1	C75			9 A111	B21		
1	7 A21	B3				8 A37	B78	1			0 A111	B22		
	8 A21	B4	1			9 A37	- 1	C77			1 A111	B23		
	9 A21	B2	i			0 A37	1	C78		1	2 A111	B24		
	80 A21	B2:	h h		4	1 A37	1	2 C79			3 A111	1	C19	
	31 A21		3 C39			2 A37		C80 C81		1	4 A111	B58		
	32 A21	l l	4 C40		1	3 A57	B1	1		1	5 A111	B59		
78	33 A21	B4	2 C41	ı	1 82	4 A57	B2	C82	1	1 30	op. C.	1 230	102.	

[0112]

【表45】

				4.5					1	1		Dog I	00 1	
	866 A111	B78	C22		907 A2		321				A301	B93		
	867 A111	B92	C23	1	908 A2	1	1	C64	- 1		A301	B102		
	868 A111	B93	C24	1	909 A2	233 E	323	C65	1		A301	B115		
	869 A111	B102	C25		910 A2	233 E	324	C66			A307	B1	C5	
	870 A111	B115	C26		911 A	233 E	B42	C67			A307	B2	C6	
	871 A119	B1	C27		912 A	233 E	B58	C68	- 1	953	A307	B3	C7	
	872 A119	B2	C28		913 A	233 1	B59	C69			A307	B4	C8	
	873 A119	ВЗ	C29		914 A	233 1	B78	C70	1		A307	B21	C9	
	874 A119	B4	C30	1	915 A	233	B92	C71			A307	B22	C10	
	875 A119	B21	C31		916 A	233	B93	C72			A307	B23	C11	
	876 A119	B22	C32		917 A	233 E	3102	C73	- 1	958	A307	B24	C12	ł
	877 A119	1		- 1	918 A	233 E	3115	C74	l		A307	B42	C13	١
ı	878 A119		1	- {	919 A	253	В1	C75	l	960	A307	1	C14	
	879 A119	1	1 3		920 A	253	B2	C76		961	A307	B59	C15	
	880 A119				921 A	253	B3	C77	1	962	A307		C16	ı
	881 A119		1 '		922 A	253	В4	C78		963	A307	B92	C17	İ
ı	882 A119				923 A	253	B21	C79		964	1A307	B93	C18	1
l	883 A119				924 A	253	B22	C80		965	A307		C19	
1	884 A119	1			925 A	253	B23	C81		966	A307	B115	C20	
1	885 A119		2 C41		926 A	253	B24	C82		96	7 A315	B1	C21	
1	886 A119		5 C41		927	253	B42	C83		968	B A315	B2	C22	
1	887 A22		1		928	1253	B58	C84		969	9 A315	B3	C23	
١	888 A22		1		929	1253	B59	C85		97	0 A315	B4	C24	
١	889 A22		1	1	930	1253	B78	C86		97	1 A315	B21		١
١	890 A22				931	A253	B92	C87		97	2 A315	B22		
ı	891 A22	_	1		932	4253	B93	C88		97	3 A315	B23	C27	
	892 A22		i		933	4253	B102	2 C89		97	4 A315	B24	C28	١
1	893 A22		1		934	A253	B11	5 C90		97	5 A315	B42	1	1
	894 A22		1		935	A301	B1	C91		97	6 A315	B58	C30	1
1	895 A22			l	936	A301	B2	C92		97	7 A315	B59	C31	1
1	896 A22				937	A301	B3	C93		97	8 A315	B78	3 C32	1
1	897 A22	I	- 1		938	A301	B4	C94		97	79 A315	B92		1
١	898 A22	-	8 C54		939	A301	B21	C95		98	30 A315			١
1	899 A22	i i	2 C55		940	A301	B22	2 C96	1	98	31 A315	B10	2 C35	1
Į	900 A22	1	3 C56		1 1	A301	B23	3 C97	1	98	32 A315	L L	5 C36	
	901 A22		02 C57		1	A301	B24	4 C98		98	33 A419	B1	C37	1
1	902 A22	1	15 C58		1 1	A301	B4:	2 C99		98	34 A419) B2	C38	1
	903 A23		1 C59			A301	B5	8 0100		91	85 A419) B3	C39	1
1	904 A2		2 C60			A301	B5	9 C101		9	86 A419) B4	I C40	1
	905 A2		3 C61			A301	B7	8 C102	2	1	87 A419		1 C41	
	906 A2	1	64 C62			A301	B9	2 C1		9	88 A419) B2	2 C41	
	300172	-5 -	1002	1	1	ı	1		0		•	•		

[0113]

【表46】

989 A419 B23	C43	1030	A449	B115	C84	- 1	1071	A511	B42	C23	
	C44		A497	1	C85		1072	A511	B58	C24	
1 000	C45		A497	B2	C86		1073	A511	B59	C25	
	C46		A497	ВЗ	C87		1074	A511	B78	C26	
	C47		A497	B4	C88	1	1075	A511	B92	C27	
1	C48		A497	B21	C89		1076	A511	B93	C28	
1 1	C49		A497	B22	C90		1077	A511	B102	C29	
1	C50		A497	B23	C91		1078	A511	B115	C30	
996 A419 B93 997 A419 B102			A497	B24	C92		1079	A2359	B1	C31	
998 A419 B115			A497	B42	C93		1080	A2359	B2	C32	
999 A429 B1	C53		A497	B58	C94		1081	A2359	B3	C33	
1000 A429 B2	C54		A497	B59	C95		1082	A2359	B4	C34	
1000 A429 B3	C55		A497	B78	C96		1083	A2359	B21	C35	
1001 A429 B4	C56		A497	B92	C97	li	1084	A2359	B22	C36	
1002 A429 B21	C57	1044	A497	B93	C98		1085	A2359	B23	C37	
1004 A429 B22		1045	A497	B102	C99		1086	A2359	B24	C38	
1005 A429 B23	1 1 1	1046	A497	B115	C100		1087	A2359	B42	C39	
1006 A429 B24	1 1	104	7 A503	B1	C101		1088	A2359	B58	C40	
1007 A429 B42		1048	A503	B2	C102	ļ i	1089	A2359	B59	C41	
1008 A429 B58	l I	104	9 A503	В3	C1		1	A2359	B78	C41	
1009 A429 B59	C63	105	0 A503	B4	C2			A2359	B92	C43	
1010 A429 B78	C64	105	1 A503	B21	C3		l .	A2359	B93	C44	
1011 A429 B92	C65	105	2 A503	B22	C4			A2359	1	C45	١
1012 A429 B93	C66	105	3 A503	B23	C5	1		A2359	ì	C46	
1013 A429 B10	2 C67	105	4 A503	B24	C6		1	A2365	B1	C47	١
1014 A429 B11	5 C68	105	5 A503	B42			1	A2365		C48	١
1015 A449 B1	C69	105	6 A503	B58				A2365	B3	C49	١
1016 A449 B2	C70		7 A503	B59	1	1		A2365	I .	C50	١
1017 A449 B3	C71		8 A503	B78	1	1		A2365		C51	١
1018 A449 B4	C72	1	69 A503	B92				A2365	1	1	١
1019 A449 B2	C73	1	0 A503	B93				1 A2365	1	1	١
1020 A449 B2	2 C74	1	1 A503	1	2 C13		1	2 A2365	1	3.4	I
1021 A449 B2			52 A503		5 C14	1		3 A2365			١
	4 C76	1	3 A511	B1	- 1	1		4 A2365		C56	1
	2 G77	1	64 A511	B2				5 A2365	1	C58	l
	8 C78	1	65 A511	B3	1		1	6 A2365	1	C59	I
	9 C79		66 A511	B4	i			7 A2365 8 A2365	l l	C60	١
1026 A449 B7			67 A511	B2		1		9 A2365			
	2 C81		68 A511	- 1	2 C20			9 A236		[
	3 C82		69 A511	1	3 C21			1 A237			
1029 A449 B10	02 C83	10	70 A511	BZ	4 C22	I	7	1/423/	' 5'	1000	

[0114]

【表47】

1112 A2371 B2 C64	1153 A2413 B59 C3	1194 A2467 B4 C44	
1113 A2371 B3 C65	1154 A2413 B78 C4	1195 A2467 B21 C45	1
1114 A2371 B4 C66	1155 A2413 B92 C5	1196 A2467 B22 C46	1
1115 A2371 B21 C67	1156 A2413 B93 C6	1197 A2467 B23 C47	1
1116 A2371 B22 C68	1157 A2413 B102 C7	1198 A2467 B24 C48	1
1117 A2371 B23 C69	1158 A2413 B115 C8	1199 A2467 B42 C49	1
1118 A2371 B24 C70	1159 A2427 B1 C9	1200 A2467 B58 C50	1
1119 A2371 B42 C71	1160 A2427 B2 C10	1201 A2467 B59 C51	١
1120 A2371 B58 C72	1161 A2427 B3 C11	1202 A2467 B78 C52	١
1121 A2371 B59 C73	1162 A2427 B4 C12	1203 A2467 B92 C53	
1122 A2371 B78 C74	1163 A2427 B21 C13	1204 A2467 B93 C54	١
1123 A2371 B92 C75	1164 A2427 B22 C14	1205 A2467 B102 C55	1
1124 A2371 B93 C76	1165 A2427 B23 C15	1206 A2467 B115 C56	
1125 A2371 B102 C77	1166 A2427 B24 C16	1207 A2473 B1 C57	1
1126 A2371 B115 C78	1167 A2427 B42 C17	1208 A2473 B2 C58	- 1
1127 A2401 B1 C79	1168 A2427 B58 C18	1209 A2473 B3 C59	1
1128 A2401 B2 C80	1169 A2427 B59 C19	1210 A2473 B4 C60	- 1
1129 A2401 B3 C81	1170 A2427 B78 C20	1211 A2473 B21 C61	- 1
1130 A2401 B4 C82	1171 A2427 B92 C21	1212 A2473 B22 C62	ı
1131 A2401 B21 C83	1172 A2427 B93 C22	1213 A2473 B23 C63	
1132 A2401 B22 C84	1173 A2427 B102 C23	1214 A2473 B24 C64	
1133 A2401 B23 C85	1174 A2427 B115 C24	1215 A2473 B42 C65	- 1
1134 A2401 B24 C86	1175 A2461 B1 G25	1216 A2473 B58 C66	
1135 A2401 B42 C87	1176 A2461 B2 C26	1217 A2473 B59 C67	- 1
1136 A2401 B58 C88	1177 A2461 B3 C27	1218 A2473 B78 C68	
1137 A2401 B59 C89	1178 A2461 B4 C28	1219 A2473 B92 C69	
1138 A2401 B78 C90	1179 A2461 B21 C29	1220 A2473 B93 C70	
1139 A2401 B92 C91	1180 A2461 B22 C30	1221 A2473 B102 C71	
1140 A2401 B93 C92	1181 A2461 B23 C31	1222 A2473 B115 C72	
1141 A2401 B102 C93	1182 A2461 B24 C32	1223 A2605 B1 C73	
1142 A2401 B115 C94	1183 A2461 B42 C33	1224 A2605 B2 C74	
1143 A2413 B1 C95	1184 A2461 B58 C34	1225 A2605 B3 C75	
1144 A2413 B2 C96	1185 A2461 B59 C35	1226 A2605 B4 C7	_
1145 A2413 B3 C97	1186 A2461 B78 C36	1227 A2605 B21 C7	
1146 A2413 B4 C98	1187 A2461 B92 C37		
1147 A2413 B21 C99	1188 A2461 B93 C38		
1148 A2413 B22 C100	1189 A2461 B102 C39		
1149 A2413 B23 C101	1190 A2461 B115 C40		
1150 A2413 B24 C102	1191 A2467 B1 C41	1232 A2605 B58 C8 1233 A2605 B59 C8	
1151 A2413 B42 C1	1192 A2467 B2 C41	1234 A2605 B78 C8	
1152 A2413 B58 C2	1193 A2467 B3 C43	1 1204 12003 270 00	

[0115]

【表48】

												1	1		
١	1235	A2605	B92	C85	- 1	1264	A2631	B58	C12		1	A2671	B23		
۱		A2605		C86		1265	A2631	B59	C13			A2671	B24		
١			B102	C87		1266	A2631	B78	C14		1295	A2671	B42	C43	١
١			B115	C88		1267	A2631	B92	C15	1	1296	A2671	B58		١
١		A2617	B1	C89	- 1	1268	A2631	B93	C16		1297	A2671	B59	C45	l
١		A2617	B2	C90		1269	A2631	B102	C17		1298	A2671		C46	l
l		A2617	В3	C91		1270	A2631	B115	C18		1299	A2671	B92	C47	ļ
l		A2617	B4	C92		1271	A2665	В1	C19		1300	A2671	B93	C48	۱
ł		A2617	B21	C93		1272	A2665	B2	C20		1301	A2671	B102	C49	۱
۱		A2617	B22	C94		1273	A2665	B3	C21	1	1302	A2671	B115	C50	l
I		A2617	B23	C95		1274	A2665	B4	C22	1	1303	A2677	B1	C51	l
		A2617	B24	C96	l 1	1275	A2665	B21	C23		1304	A2677	B2	C52	١
1		A2617	B42	C97		1276	A2665	B22	C24		1305	A2677	B3	C53	I
		A2617	1	C98		1277	A2665	B23	C25		1306	A2677	B4	C54	۱
		A2617	l	C99		1278	A2665	B24	C26	1	l .	A2677	B21	C55	١
		A2617	ı	C100		1279	A2665	B42	C27	1	1308	A2677	B22	C56	
		A2617	ì	C101		1280	A2665	B58	C28		i	A2677	B23	C57	
		A2617		C102		1281	A2665	B59	C29		1310	A2677	B24	C58	
		A2617		2 C1	1	1282	2 A2665	B78	C30			A2677	B42	1	
	ł	A2617	1	5 C2		1283	A2665	B92	C31			A2677	B58		
	1	A2631	1	C3		128	4 A2665	B93	C32		1313	A2677	B59	1	
	1	A2631	1	C4		128	5 A2665	B102	C33	1		A2677	1	1	
	125	7 A2631	B3	C5	1	128	6 A2665	B115	C34		1	A2677	i	1	
	1	B A2631		C6	ľ	128	7 A2671	B1	C35		1	A2677		1	
	1	9 A2631		C7		128	8 A2671	B2	C36		3	A2677		2 C65	
	1	0 A2631	1	C8			9 A2671	1	C37		1318	A2677	B115	C66	_
	126	1 A2631	1 B23	C9	1	129	0 A2671	B4	C38						
	1	2 A263	1	C10		129	1 A2671								
	126	3 A263	1 B42	2 C11		129	2 A2671	B22	C40	1					
	1	-	ı	1	•					-					

[0116]

【表49】

<u>. </u>	-т.		5		[1364	Λ12	B22	C41] [1410	A26	B22	C1
No.	_/			C]	1365		B22	C59		1411			C5
	19		1	C5		1366		B1	C1		1412			C41
	20		B1	C41		1367		B1	C5		1413		1	C59
	21		B1	C59				B1	C41		1414		B1	C1
	22		B2	C1		1368					1415		B1	C5
	23		B2	C5		1369		B1	C59		1416		B1	C59
	24		B2	C41		1370		B2	C1		1417		B2	C1
1	25		B2	C59		1371		B2	C5		1418		B2	C5
1	26		B21	C1		1372		B2	C41		1419		B2	C41
1	27		B21	C5		1373	1	B2	C59		1419		B2	C59
13	28	47	B21	C41		1374		B21	C1				B21	C1
1	29		B21	C59		1375	L .	B21	C5		1421	L	B21	C5
13	30	A 7	B22	C1		1376	L .	B21	C41		1422	h .	l .	C41
13	31	A7	B22	C5		1377	1	B21	C59		1423	1	B21	1 1
13	32	A7	B22	C41		1378	1	B22	C1	•	1424	1	B21	C59
13	33	A7	B22	C59		1379		B22	C5		1425	1	B22	C1
13	34	A12	B1	C1		1380	1	B22	C41		1426	r .	B22	C5
13	35	A12	B1	C5		1381		B22	C59		1427	t .	B22	C41
13	36	A12	B1	C41		1382	1	B1	C1	į .	1428	1	B22	C59
13	37	A12	B1	C59		1383		B1	C5		1429	1	B1	C1
13	38	A12	B2	C1		1384	1	B1	C41		1430	1	B1	C5
13	339	A12	B2	C5		1385	1	B1	C59		1431		B1	C41
13	340	A12	B2	C41		1386	1	B2	C1		1	A32	B1	C59
13	341	A12	B2	C59		1387	1	B2	C5		í	A32	B2	C1
13	342	A12	B21	C1		1388	1	B2	C41		1	A32	B2	C5
1:	343	A12	B21	C5			A21	B2	C59		1	A32	B2	C41
1:	344	A12	B21	C41			A21	B21	C1			A32	B2	C59
1:	345	A12	B21	C59		1	A21	B21	C5			A32	B21	C1
1:	346	A12	B22	C1		1392	2 A21	B21	C41		1	A32	B21	C5
1:	347	A12	B22	C5	İ	1	A21	B21	C59		1	A32	B21	C41
1:	348	A12	B22	C41		1394	A21	B22	C1			A32	B21	C59
1:	349	A12	B22	C59		1395	5 A21	B22	C5		1	A32	B22	C1
1:	350	A13	B1	C1		1396	6 A21	B22	C41			A32	B22	C5
		A13	В1	C5	1	1397	7 A21	B22	C59		1	3 A32	B22	C41
1		A13	В1	C41		1398	3 A26	B1	C1	l		1 A32	B22	C59
1	353	A13	В1	C59		1399	A26	B1	C5	1		A37	B1	C1
		A13	B2	C1	1		A26	B1	C41			A37	B1	C5
1	355	A13	B2	C5			1 A26	B1	C59		1	7 A37	B1	C41
- 1		A13	B2	C41		1	2 A26	B2	C1		1	B A37	B1	C59
		A13	B2	C59		1	3 A26	B2	C5		1	9 A37	B2	C1
		A13	B21	C1			4 A26	B2	C41		1	0 A37	B2	C5
		A13	B21	C5		1	5 A26	B2	C59	1	· ·	1 A37	B2	C41
		A13	B21			140	6 A26	B21	C1			2 A37	B2	C59
		A13	B21	f	1		7 A26	B21	C5		l.	3 A37	B21	C1
		A13	B22	1			8 A26	B21	C41			4 A37	B21	C5
		A13	B22	i i		140	9 A26	B21	C59	╛	145	5 A37	B21	C41
نــا														

[0117]

B21

B21

B21

B22

B22

B22

В1

В1

B1

B1

B2

B2

B2

B2

B21

B21

B21

B21

B22

B22

B1

B1

В1

B1

B2

B2

B2

B2

B21

B21

B21

B21 B22 C1

В1

B1

B1

B1

B2

B2

B22 C5 B22 C41

B22 C59

C1

C5

C41

C59

C1

C5

C1

C5

C41 B21 C59 B22

C1

C5

C41

C59

C1

C5

C41

C59

C1 C5

C41 C59

C1

C5

C41

C59

C1

C5 B22 C41

C1

C5

C41

C59

C1

C5

C41

C59

C1

C5

C41 C59

B22 C59

【表50】

					_					r		
	1456	A37	B21	C59	Γ	1502	A62	B21	C5	1	1548	
	1457	1	B22	C1		1503	A62	B21	C41		1549	A111
	1458			C5	İ	1504	A62	B21	C59		1550	A111
1	1459			C41		1505	A62	B22	C1	Ì	1551	A111
1	1460		B22	C59		1506	A62	B22	C5		1552	A111
	1461		B1	C1		1507	A62	B22	C41		1553	A111
	1462	Y .	B1	C5		1508	A62	B22	C59	1	1554	A111
	1463		B1	C41		1509	A105	B1	C1		1555	A111
	1464		B1	C59			A105	B1	C5]	1556	A116
	1465	1	B2	C1		1511	A105	B1	C41	1	1557	A116
	1466		B2	C5		1512	A105	В1	C59	ĺ	1558	A116
	1467	1	B2	C41			A105	B2	C1	}	1559	A116
	1468		B2	C59		1514	A105	B2	C5	İ	1560	A116
	1469	1	B21	C1			A105	B2	C41	-	1561	A116
	1470		B21	C5			A105	B2	C59	Ì	1562	A116
	1471		B21	C41			A105	B21	C1	į	1563	A116
	1472	1	B21	C59			A105	B21	C5		1564	A116
	1473	L	B22	C1		1519	A105	B21	C41		1565	A116
	1474		B22	C5			A105	B21	C59	į	1566	A116
	}	A42	B22	C41			A105	B22	C1		1567	A116
	1	A42	B22	C59			A105	B22	C5	l	1568	A116
	1	A57	B1	C1			A105	B22	C41	!	1569	A116
		A57	В1	C5			A105	B22	C59		1570	A116
	1	A57	B1	C41		1525	A110	B1	C1		1571	A116
	1	A57	B1	C59			A110	B1	C5		1572	A119
		A57	B2	C1	}	1527	A110	B1	C41		1573	A119
	1	A57	B2	C5		1528	A110	B1	C59		1574	A119
		A57	B2	C41		1529	A110	B2	C1		1575	A119
	1	A57	B2	C59		1530	A110	B2	C5		1576	A119
		A57	B21	C1		1531	A110	B2	C41		1577	A119
	1	A57	B21	C5		1532	A110	B2	C59		1578	A119
	1	A57	B21	C41		1533	3A110	B21	C1		1579	A119
	,	A57	B21	C59		1534	1A110	B21	C5			A119
	1	A57	B22	C1		1535	A110	B21	C41			A119
	1	A57	B22	C5		1536	A110	B21	C59			A119
	149	1 A57	B22	C41	ŀ	153	7 A110	B22	C1			A119
	1492	2 A57	B22	C59		1538	A110	B22	C5			1 A119
	149	3 A62	B1	C1		1539	A110	B22	C41		1	A119
		4 A62	B1	C5		1540	A110	B22				6 A119
	149	5 A62	B1	C41		154	1 A111	B1	C1			7 A119
		6 A62	B1	C59			2 A111	B1	C5			B A124
		7 A62	B2	C1			3 A111	B1	C41		1	9 A124
		8 A62	B2	C5		1	4 A111	B1	C59		1	0 A124
		9 A62	B2	C41			5 A111	B2	C5		1	1 A124
	150	0 A62	B2	C59			6 A111	B2	C41			2 A124
	1	1 A62	B21	C1		154	7 A111	B2	C59		159	3 A124

[0118]

【表51】

ı	1504 4	104	B2	C41	Γ	1640	A135	B2	C1	1	1686	A160	B1	C59	
	1594 A			C59	1		A135	B2	C5			A160	B2	C1	
	1595 A	1		C1			A135	B2	C59			A160	B2	C5	ĺ
	1596 A	l l	i i	C5	l		A135	B21	C1			A160	B2	C41	
	1597 A		- 1	C41	1		A135	B21	C5			A160	B2	C59	١
	1598 A	3	l l				A135	B21	C41			A160	B21	C1	l
	1599 A			C59			A135	B21	C59			A160	B21	C5	ĺ
	1600 A	,		C1			A135	B22	C1			A160	B21	C41	l
	1601 A			C5	1		A135	B22	C5			A160	B21	C59	
	1602 A			C41	1		A135	B22	C41			A160	B22	C1	١
	1603 A		B22	C59	i		A135	B22	C59			A160	B22	C5	
	1604 A		B1	C1			A140	B1	C1			A160	B22	C41	
	1605 A		B1	C5			1	1	C5		!	A160	B22	C59	l
	1606 A		B1	C41	İ		A140	B1	1	İ	ı	A203	B1	C1	١
	1607 A		B1	C59			A140	B1	C41 C59		1	A203	B1	C5	
	1608 A		B2	C1			A140	B1			•	A203	B1	C41	l
	1609 A		B2	C5			A140	B2	C1	1	1	A203	B1	C59	l
	1610 A		B2	C41			A140	B2	C5			A203	B2	C1	١
	1611 A		B2	C59			A140	B2	C41		1	A203	B2	C5	١
	1612		B21	C1			A140	B2	C59			A203	B2	C41	١
	1613 A		B21	C5			A140	B21	C1		1	1	B2	C59	ı
	1614		B21	C41			A140	B21	C5	1		A203	B21	C1	١
	1615	A125	B21	C59			A140	B21	C41			A203	1	C5	1
	1616	4125	B22	C1			A140	B21	C59		1	A203	B21	C41	1
	1617	4125	B22	C5			A140	B22	C1			A203	B21 B21	C59	I
	1618	4125	B22	C41		l	A140	B22	C5		1	A203		1	١
	1619	4125	B22	C59		Į.	A140	B22	C41			A203	B22	C1 C5	
	1620	4130	B1	C1			A140	B22	C59			A203	B22	C41	
	1621	4130	B1	C5			7 A155	B1	C1		1	A203	B22	C59	
	1622	A130	B1	C41		•	A155	B1	C5		1	A203	B22	C1	ļ
	1623	A130	B1	C59		1	A155	B1	C41		l l	A208	B1	C5	
	1624	A130	B2	C1		Į.	A155	B1	C59	1	1	A208	B1		Ì
	1625	A130	B2	C5			1 A155	B2	C1	ļ	1	A208	B1	C41 C59	
	1626	A130	B2	C41			2 A155	B2	C5			A208	B1		
	1627	A130	B2	C59		1	3 A155	B2	C41		1	A208	B2	C1	
	1628	A130	B21	C1	l		4 A155	B2	C59		1	A208	B2	C5	
	1629	A130	B21	C5			5 A155	B21	C1		1	1 A208	B2	C41	
	1630	A130	B21	C41		1	6 A155	B21	C5			2 A208	B2	C59	
	1631		B21	L .			7 A155	B21	i i		1	3 A208	B21	C1	
	1632	A130	B22	C1			8 A155	B21	1			4 A208	B21	1	
	1633	A130	B22	C5			9 A155	B22				5 A208	B21	1	
	1 1	A130	B22	C41	1		0 A155	B22				6 A208	B21	1	
		A130	B22	C59			1 A155	B22		İ		7 A208	B22		
	1636	A135	B1	C1			2 A155	B22				8 A208	B22	1	
	1637	A135	B1	C5		1	3 A160	B1	C1		L	9 A208	B22		
	1638	A135	B1	C41		1	4 A160		C5		1	0 A208	B22		
	1639	A135	B1	C59	_	168	5 A160	B1	C41		173	1 A209	B1	C1	_

[0119]

【表52】

1732 A209	B1	C5	1778	A217	B22	C59		1824	A228	B22	C5
, , ,		C41		A222	B1	C1		1825	A228	B22	C41
1 1 1		C59		A222	В1	C5		1826	A228	B22	C59
1		C1		A222	В1	C41		1827	A233	B1	C1
1736 A209		C5		A222	B1	C59		1828	A233	B1	C5
1737 A209	1 1	C41	ŧ	A222	B2	C1		1829	A233	B1	C41
1737 A203	1 1	C59		A222	B2	C5	İ	1830	A233	B1	C59
1739 A209	i I	C1	ł .	A222	B2	C41		1831	A233	B2	C1
1740 A209	ı ı	C5	1	A222	B2	C59		1832	A233	B2	C5
1741 A209	1 1	C41	Į.	A222	B21	C1		1833	A233	B2	C41
1741 A209		C59		A222	B21	C5		1834	A233	B2	C59
1742 A209	1 1	C1	1	A222	B21	C41		1835	A233	B21	C1
1744 A209	ŧ I	C5		A222	B21	C59		1836	A233	B21	C5
1745 A209	1 1	C41		A222	B22	C1		1837	A233	B21	C41
1745 A209	B22	C59	•	A222	B22	C5			A233	B21	C59
1747 A214	B1	C1	ł .	A222	B22	C41		1	A233	B22	C1
1748 A214	B1	C5	1	A222	B22	C59		!	A233	B22	C5
1749 A214	B1	C41		A223	B1	C1			A233	B22	C41
1750 A214	B1	C59		A223	В1	C5		1842	A233	B22	C59
1751 A214	B2	C1		A223	B1	C41		1843	A238	B1	C1
1751 A214	B2	C5	1	A223	B1	C59		1844	A238	B1	C5
1753 A214	B2	C41	1	A223	B2	C1		1845	A238	B1	C41
1754 A214	B2	C59	,	A223	B2	C5		1846	A238	B1	C59
1755 A214	B21	C1	1	A223	B2	C41		1847	A238	B2	C1
1756 A214	B21	C5		A223	B2	C59		1848	A238	B2	C5
1757 A214	B21	C41	1803	A223	B21	C1		1849	A238	B2	C41
1758 A214	B21	C59	1804	1 A223	B21	C5		1850	A238	B2	C59
1759 A214	B22	C1	I .	A223	B21	C41	1	1851	A238	B21	C1
1760 A214	B22	C5	1806	A223	B21	C59		1852	A238	B21	C5
1761 A214	B22	C41	180	7 A223	B22	C1		1853	A238	B21	C41
1762 A214	B22	C59	180	B A223	B22	C5		1	A238	B21	C59
1763 A217	B1	C1	180	9 A223	B22	1		1	A238	B22	C1
1764 A217	B1	C5	1816	A223	B22	C59		1	A238	B22	
1765 A217	B1	C41	181	1 A228	B1	C1			7 A238	B22	
1766 A217	B1	C59	181	2 A228	B1	C5		1	3 A238	B22	1
1767 A217	B2	C1	181	3 A228	B1	C41			A253	B1	C1
1768 A217	B2	C5	181	4 A228	B1	C59	1	1	A253	B1	C5
1769 A217	B2	C41	181	5 A228	B2	C1			1 A253	В1	C41
1770 A217	B2	C59		6 A228	B2	C5			2 A253	B1	C59
1771 A217	B21	C1	•	7 A228	B2	C41		1	3 A253	B2	C1
1772 A217	B21	C5		8 A228	B2	C59		1	4 A253	B2	C5
1773 A217	B21	C41	1	9 A228	B21			T .	5 A253	B2	C41
1774 A217	B21	C59		0 A228	B21	}		1	6 A253	B2	C59
1775 A217	B22	1 1		1 A228	B21	1			7 A253	B21	1
1776 A217	B22			2 A228	B21			1	8 A253	B21	
1777 A217	B22	C41	182	3 A228	B22	C1	┙	186	9 A253	B21	C41

[0120]

【表53】

1870 A253	B21	C59		A306	B21	C5			A315	B2	C59
1871 A253	B22	C1		A306	B21	C41			A315	B21	C1
1872 A253	B22	C5	1918	A306	B21	C59		1964	A315	B21	C5
1873 A253	B22	C41	1919	A306	B22	C1		1965	A315	B21	C41
1874 A253	B22	C59	1920	A306	B22	C5		1966	A315	B21	C59
1875 A258	B1	C1	1921	A306	B22	C41		1967	A315	B22	C1
1876 A258	B1	C5	1922	A306	B22	C59		1968	A315	B22	C5
1877 A258	B1	C41	1923	A307	B1	C1		1969	A315	B22	C41
1878 A258	, ,	C59	1924	A307	B1	C5		1970	A315	B22	C59
1879 A258	, ,	C1	1925	A307	B1	C41		1971	A320	B1	C1
1880 A258	, ,	C5	1926	A307	B1	C59		1972	A320	B1	C5
1881 A258	1 1	C41	1927	A307	B2	C1		1973	A320	В1	C41
1882 A258	1 1	C59		A307	B2	C5			A320	B1	C59
1883 A258	1 1	C1	1	A307	B2	C41			A320	B2	C1
1884 A258	1	C5	1	A307	B2	C59			A320	B2	C5
1885 A258	1 1	C41		A307	B21	C1			A320	B2	C41
1886 A258	1 1	C59		A307	B21	C5			A320	B2	C59
1887 A258		C1		A307	B21	C41			A320	B21	C1
1888 A258		C5		A307	B21	C59			A320	B21	C5
1889 A258	1 1	C41		A307	B22	C1			A320	B21	C41
1890 A258	1 1	C59		A307	B22	C5			A320	B21	C59
1891 A301		C1		A307	B22	C41			A320	B22	C1
1892 A301		C5		A307	B22	C59			A320	B22	C5
1893 A301		C41		A312	B1	C1			A320	B22	C41
1894 A301		C59		A312	В1	C5		•	A320	B22	C59
1895 A301	1 [C1	1941	A312	B1	C41		1987	A321	B1	C1
1896 A301	1 1	C5	1942	A312	B1	C59		1988	A321	B1	C5
1897 A301	1 1	G41	1943	A312	B2	C1		1989	A321	B1	C41
1898 A301	1 1	C59	1944	A312	B2	C5		1990	A321	B1	C59
1899 A301	B21	C1	1945	A312	B2	C41		1991	A321	B2	C1
1900 A301	B21	C5	1946	A312	B2	C59		1992	A321	B2	C5
1901 A301	B21	G41	1947	A312	B21	C1		1993	A321	B2	C41
1902 A301	B21	C59	1948	A312	B21	C5		1994	A321	B2	C59
1903 A301	B22	C1	1949	A312	B21	C41		1995	A321	B21	C1
1904 A301	B22	C5	1950	A312	B21	C59	}	1996	A321	B21	C5
1905 A301	B22	C41	1951	A312	B22	C1		1997	A321	B21	C41
1906 A301	B22	C59	1952	A312	B22	C5		1998	A321	B21	C59
1907 A306	B1	C1	1953	A312	B22	C41		1999	A321	B22	C1
1908 A306	B1	C5	1954	A312	B22	C59		2000	A321	B22	C5
1909 A306	B1	C41	1955	A315	B1	C1		2001	A321	B22	C41
1910 A306	B1	C59	1956	A315	B1	C5		2002	A321	B22	C59
1911 A306	B2	C1	1957	A315	B1	C41			A326	B1	C1
1912 A306	B2	C5	1958	A315	B1	C59		2004	A326	B1	C5
1913 A306	B2	C41	1959	A315	B2	C1 -		2005	A326	B1	C41
1914 A306	B2	C59	1960	A315	B2	C5		2006	A326	В1	C59
1915 A306	B21	C1	1961	A315	B2	C41	}	2007	A326	B2	C1
							_				

[0121]

【表54】

2009 A326 B2	ſ	2000	000	D0	C5	Г	2054	Δ351	B1	C59	ſ	2100	A404	B1	C5	ĺ
2010 A326 B2 C59 2056 A351 B2 C5 C41 2103 A404 B2 C5 C5 C5 C5 C5 C5 C5 C	١	L			1		- 1									l
2011 A326 B21 C1	l			- 1										1		1
2012 A326 B21 C55 C55 C41 C55 C41 C55 C41 C55 C41 C41 C55 C41 C4			i i		1	1			l 1					B2	C1	
2013 A326 B21 C41 2059 A351 B21 C5 2106 A404 B2 C5 C5 2015 A326 B22 C5 2060 A351 B21 C5 2108 A404 B21 C5 C5 2017 A326 B22 C5 2062 A351 B21 C5 2108 A404 B21 C5 2017 A326 B22 C5 2062 A351 B22 C1 2109 A404 B21 C5 2018 A326 B22 C5 2064 A351 B22 C1 2109 A404 B21 C5 2019 A331 B1 C1 2065 A351 B22 C5 2110 A404 B21 C5 2019 A331 B1 C5 2064 A351 B22 C5 2110 A404 B22 C1 2020 A331 B1 C5 2066 A351 B22 C41 2111 A404 B22 C5 2021 A331 B1 C5 2066 A351 B22 C59 2112 A404 B22 C5 2023 A331 B2 C1 2069 A356 B1 C5 2034 A331 B2 C1 2069 A356 B1 C5 2014 A404 B22 C5 2023 A331 B2 C1 2069 A356 B1 C5 2014 A404 B22 C5 2024 A331 B2 C1 2069 A356 B1 C5 2014 A405 B1 C1 2024 A331 B2 C1 2073 A356 B2 C5 2118 A405 B1 C1 2024 A331 B2 C41 2071 A356 B2 C5 2118 A405 B1 C5 2028 A331 B2 C1 2073 A356 B2 C5 2118 A405 B1 C5 2027 A331 B2 C1 2073 A356 B2 C5 2118 A405 B1 C5 2028 A331 B21 C41 2075 A356 B2 C5 2118 A405 B2 C5 2028 A331 B21 C41 2075 A356 B2 C5 2120 A405 B2 C5 2028 A331 B22 C1 2076 A356 B21 C5 2122 A405 B2 C41 2034 A331 B22 C5 2076 A356 B21 C5 2122 A405 B2 C41 2034 A331 B22 C41 2077 A356 B21 C5 2122 A405 B2 C5 2038 A336 B1 C5 2088 A356 B21 C5 2122 A405 B2 C5 2037 A336 B1 C5 2088 A356 B21 C5 2122 A405 B2 C5 2037 A336 B1 C5 2088 A356 B21 C5 2122 A405 B2 C5 2037 A336 B2 C41 2034 A331 B22 C41 2034 A336 B2 C5 2038 A339 B1 C5 2130 A405 B2 C5 2034 A336 B2 C5 2088 A399 B1 C5 2134 A410 B1 C1 2044 A336 B2	١				1				! !					B2	C5	ĺ
2014 A326 B21 C59 2060 A351 B21 C5 2106 A404 B21 C5 C5 C6 A326 B22 C5 2062 A351 B21 C5 C5 C6 C6 C6 C6 C6 C6		, ,	1			ļ							1	l i	C41	ĺ
2015 A326 B22 C1 2061 A351 B21 C41 2107 A404 B21 C5 C5 C5 C5 C5 C5 C5 C									1 1				l .	1 1		١
2016 A326 B22 C5 C5 C62 A351 B21 C59 C641 C									1 1				ì	l 1		l
2017 A326 B22 C41 2063 A351 B22 C5 2110 A404 B21 C59 C59 A331 B1 C41 2065 A351 B22 C59	į					1			t I				ł.			l
2018 A326 B22 C59 C5								i	1				l .	1 1		l
2018 A331 B1 C1 2065 A351 B22 C41 2111 A404 B22 C5 C5 C5 C5 C5 C5 C5		1 1						1	1				1			
2020 A331 B1 C5		1 1							1	ı			1	1		١
2021 A331 B1 C41 2067 A356 B1 C5 2113 A404 B22 C59						ļ		ł .	1	1			1			l
2022 A331 B1 C59 2068 A356 B1 C59 2114 A404 B22 C59 2023 A331 B2 C5 2070 A356 B1 C59 2116 A405 B1 C51 C41		1 1		l				1		1			1		i	l
2022 A331 B2 C5 C5 C41 C1 C59 C1 C2024 A331 B2 C5 C41 C2034 A331 B2 C5 C41 C2034 A331 B2 C59 C2070 A356 B1 C59 C59 C2070 A356 B2 C1 C1 C2036 A331 B2 C59 C2072 A356 B2 C5 C1 C2037 A331 B21 C1 C2038 A331 B21 C5 C2074 A356 B2 C59 C2029 A331 B21 C5 C2074 A356 B2 C59 C2029 A331 B21 C41 C2075 A356 B2 C59 C2029 A331 B21 C41 C2075 A356 B21 C1 C2030 A331 B21 C59 C2076 A356 B21 C1 C2030 A331 B22 C59 C2076 A356 B21 C5 C2030 A331 B22 C59 C2076 A356 B21 C5 C41 C2030 A331 B22 C59 C2078 A356 B21 C5 C41 C2030 A331 B22 C59 C2078 A356 B21 C59 C41 C2030 A331 B22 C5 C2078 A356 B21 C41 C2030 A331 B22 C59 C2078 A356 B21 C59 C2030 A331 B22 C59 C2078 A356 B21 C59 C2030 A331 B22 C41 C2079 A356 B22 C5 C2030 A336 B22 C59 C2030 A336 B1 C1 C2031 A356 B22 C5 C2030 A336 B1 C5 C2032 A336 B1 C5 C2032 A336 B1 C5 C2032 A336 B1 C5 C2032 A336 B1 C5 C2032 A336 B2 C1 C2034 A339 B1 C41 C2034 A336 B2 C59 C2034 A336 B2 C1 C2034 A339 B1 C41 C2034 C41 C2034 C41 C2034 C41 C2034 C41 C2034 C41 C2034 C41 C2034 C41 C2034 C41 C2034 C41 C2034 C41 C2034 C41 C2034 C41 C2034 C41 C2034 C41		()						1	1			!	l .	1	l .	l
2023 A331 B2		1 1			i i			1		1		1			l	1
2024 A331 B2 C41 2071 A356 B2 C1 2117 A405 B1 C59 C59 C72 A356 B2 C5 C59 C73 A356 B2 C59 C74 A356 B2 C59 C75				l .	1 1			l .	l .	ŧ		1	1		1	١
2026 A331 B2 C59 C59 C72 A356 B2 C5 C59 C11 C59 C59 C11 C59 C11 C59 C11 C59 C11 C59 C11				ł				i .)						l	l
2026 A331 B21 C1		1 1		1				l .	1	3		1	1		L	l
2027 A331 B21 C5 2074 A356 B2 C59 2120 A405 B2 C41 2029 A331 B21 C5 2074 A356 B2 C59 2120 A405 B2 C41 2030 A331 B21 C59 2076 A356 B21 C5 2122 A405 B2 C59 2031 A331 B22 C1 2077 A356 B21 C5 2122 A405 B2 C59 2032 A331 B22 C5 2078 A356 B21 C59 2124 A405 B21 C1 2032 A331 B22 C5 2078 A356 B21 C59 2124 A405 B21 C5 2033 A331 B22 C59 2080 A356 B22 C1 2125 A405 B21 C41 2034 A331 B22 C59 2080 A356 B22 C5 2126 A405 B21 C41 2035 A336 B1 C1 2081 A356 B22 C59 2128 A405 B22 C5 2037 A336 B1 C5 2082 A356 B22 C59 2128 A405 B22 C5 2038 A336 B1 C5 2084 A399 B1 C5 2130 A405 B22 C59 2039 A336 B2 C5 2084 A399 B1 C5 2130 A405 <t< td=""><td></td><td></td><td></td><td></td><td>1 1</td><td></td><td></td><td>l .</td><td></td><td></td><td></td><td>1</td><td></td><td>1</td><td>i</td><td>١</td></t<>					1 1			l .				1		1	i	١
2029 A331 B21 C41 2075 A356 B21 C5 2076 A356 B21 C5 2121 A405 B2 C59 2031 A331 B22 C1 2077 A356 B21 C5 2122 A405 B2 C59 2031 A331 B22 C5 2078 A356 B21 C59 2124 A405 B21 C1 2032 A331 B22 C5 2078 A356 B21 C59 2124 A405 B21 C5 2033 A331 B22 C59 2080 A356 B22 C1 2125 A405 B21 C59 2034 A331 B22 C59 2080 A356 B22 C5 2126 A405 B21 C59 2035 A336 B1 C1 2081 A356 B22 C59 2128 A405 B22 C1 2036 A336 B1 C5 2082 A356 B22 C59 2128 A405 B22 C5 2037 A336 B1 C5 2082 A356 B22 C59 2128 A405 B22 C5 2037 A336 B1 C59 2084 A399 B1 C5 2130 A405 B22 C5 2038 A336 B2 C1 2086 A399 B1 C5 2130 A405 B22 C59 2039 A336 B2 C5 2086 A399 <t< td=""><td></td><td>1 1</td><td></td><td>1</td><td>1</td><td></td><td>•</td><td>1</td><td>1</td><td>1</td><td></td><td></td><td>1</td><td>1</td><td>l .</td><td>١</td></t<>		1 1		1	1		•	1	1	1			1	1	l .	١
2029 A331 B21 C59 2076 A356 B21 C51 C52 C52 C52 C53 C53 C54 C54 C54 C54 C55 C54 C55		1		1			i .	L.	1	1		l .	i i	1		١
2030 A331 B21 C39 2077 A356 B21 C59 2123 A405 B21 C5 C5 C5 C5 C5 C5 C5 C		j 1		1	l .		t	1	1	1		1	ł .	1	1	Ì
2032 A331 B22 C5 2078 A356 B21 C59 2124 A405 B21 C41 C59 2033 A331 B22 C41 2079 A356 B22 C5 2125 A405 B21 C41 C59 2034 A331 B22 C59 2080 A356 B22 C5 2126 A405 B21 C59 C59 2035 A336 B1 C1 2081 A356 B22 C59 2128 A405 B22 C1 C59 2036 A336 B1 C5 2082 A356 B22 C59 2128 A405 B22 C5 C1 2037 A336 B1 C5 2082 A356 B22 C59 2128 A405 B22 C5 C41 2038 A336 B1 C59 2084 A399 B1 C5 2130 A405 B22 C59 C41 2039 A336 B2 C1 2085 A399 B1 C5 2130 A405 B22 C59 C59 2040 A336 B2 C5 2086 A399 B1 C59 2132 A410 B1 C5 C1 2041 A336 B2 C59 2088 A399 B2 C5 2133 A410 B1 C5 C59 2043 A336 B21 C1 2093 A399 B2 C5				1				1		1		1		1	1	١
2032 A331 B22 C41 2079 A356 B22 C1 2125 A405 B21 C41 2034 A331 B22 C59 2080 A356 B22 C5 2126 A405 B21 C59 2035 A336 B1 C1 2081 A356 B22 C41 2127 A405 B22 C1 2036 A336 B1 C5 2082 A356 B22 C59 2128 A405 B22 C5 2037 A336 B1 C41 2083 A399 B1 C1 2129 A405 B22 C41 2038 A336 B1 C59 2084 A399 B1 C5 2130 A405 B22 C59 2040 A336 B2 C1 2085 A399 B1 C5 2130 A405 B22 C59 2041 A336 B2 C41 2087 A399 B2 C1 2133 A410 B1 C5 2044 A336 B21 C1 2089 A399 B2 C5 2134 A410 B2 C1 2044 A336		1 1			1		1	1		,			1	l l	1	١
2033 A331 B22 C41 2075 A356 B22 C5 2126 A405 B21 C59 2035 A336 B1 C1 2081 A356 B22 C41 2127 A405 B22 C1 2036 A336 B1 C5 2082 A356 B22 C59 2128 A405 B22 C5 2037 A336 B1 C41 2083 A399 B1 C1 2129 A405 B22 C51 2038 A336 B1 C59 2084 A399 B1 C5 2130 A405 B22 C59 2039 A336 B2 C1 2085 A399 B1 C5 2130 A405 B22 C59 2040 A336 B2 C5 2086 A399 B1 C51 2130 A405 B22 C59 2041 A336 B2 C41 2087 A399 B2 C1 2133 A410 B1 C5 2044 A336 B21 C1 2089 A399 B2 C5 2134 A410 B2 C1 2044 A336		1 1		L					1	1	1		L	1	1	
2035 A336 B1 C1 2081 A356 B22 C41 2127 A405 B22 C5 2037 A336 B1 C5 2082 A356 B22 C59 2128 A405 B22 C5 2037 A336 B1 C41 2083 A399 B1 C1 2129 A405 B22 C5 2039 A336 B1 C59 2084 A399 B1 C5 2130 A405 B22 C59 2039 A336 B2 C1 2085 A399 B1 C5 2130 A405 B22 C59 2040 A336 B2 C5 2086 A399 B1 C59 2132 A410 B1 C5 2041 A336 B2 C59 2088 A399 B2 C1 2133 A410 B1 C5 2043 A336 B21 C1 2084 A399		1 1		1	t t	ļ	l .		1			1	1	1		ļ
2036 A336 B1 C5 2082 A356 B22 C59 2128 A405 B22 C41 C5 2037 A336 B1 C41 2083 A399 B1 C1 2129 A405 B22 C41 C41 2084 A399 B1 C5 2128 A405 B22 C59 C41 2084 A399 B1 C5 2129 A405 B22 C59 C59 C41 2084 A399 B1 C5 C5 C59 C5 C59 C5 C59 C5 C59 C5 C59 C5 C59 C5 C59 C5 C59 C5 C59 C5 C59 C5 C59 C5 C59 C5 C41 C5 C5 C41 C5 C41 C5 C41 C5 C41 C5<							1				İ	1	1	1	1	١
2037 A336 B1 C41 2083 A399 B1 C1 2129 A405 B22 C41 2038 A336 B1 C59 2084 A399 B1 C5 2130 A405 B22 C59 2039 A336 B2 C1 2085 A399 B1 C5 2130 A405 B22 C59 2040 A336 B2 C5 2086 A399 B1 C59 2132 A410 B1 C5 2041 A336 B2 C41 2087 A399 B2 C1 2133 A410 B1 C5 2042 A336 B2 C59 2088 A399 B2 C5 2134 A410 B1 C59 2043 A336 B21 C1 2089 A399 B2 C59 2136 A410 B2 C1 2044 A336 B21 C5 2090 A399<		1 1		1	1		1	i i		1		l .	1		1	١
2037 A336 B1 C51 2084 A399 B1 C5 2130 A405 B22 C59 2039 A336 B2 C1 2085 A399 B1 C41 2131 A410 B1 C1 2040 A336 B2 C5 2086 A399 B1 C59 2132 A410 B1 C5 2041 A336 B2 C41 2087 A399 B2 C1 2133 A410 B1 C5 2042 A336 B2 C59 2088 A399 B2 C5 2134 A410 B1 C5 2043 A336 B21 C1 2089 A399 B2 C5 2134 A410 B1 C59 2043 A336 B21 C1 2089 A399 B2 C41 2135 A410 B2 C1 2044 A336 B21 C5 2090 A399 B2 C59 2136 A410 B2 C5 2045 A336 B21 C51 2091 A399 B21 C1 2137 A410 B2 C41 2048 A336 B22		1 1	1		1		1			ļ.	1	1	١			١
2039 A336 B2 C1 2085 A399 B1 C41 2131 A410 B1 C5 2040 A336 B2 C5 2086 A399 B1 C59 2132 A410 B1 C5 2041 A336 B2 C41 2087 A399 B2 C1 2133 A410 B1 C41 2042 A336 B2 C59 2088 A399 B2 C5 2134 A410 B1 C59 2043 A336 B21 C1 2089 A399 B2 C41 2135 A410 B2 C1 2044 A336 B21 C5 2090 A399 B2 C59 2136 A410 B2 C5 2045 A336 B21 C41 2091 A399 B21 C1 2137 A410 B2 C41 2046 A336 B21 C59 2092 A399 B21 C5 2138 A410 B2 C59 2047 A336 B22 C1 2093 A399 B21 C5 2138 A410 B21 C1 2048 A336		1	1	1	3			1		I .		1			1	1
2039 A336 B2 C1 2086 A399 B1 C59 2132 A410 B1 C5 2041 A336 B2 C41 2087 A399 B2 C1 2133 A410 B1 C41 2042 A336 B2 C59 2088 A399 B2 C5 2134 A410 B1 C59 2043 A336 B21 C1 2089 A399 B2 C41 2135 A410 B2 C1 2044 A336 B21 C5 2090 A399 B2 C59 2136 A410 B2 C5 2045 A336 B21 C51 2091 A399 B21 C1 2137 A410 B2 C5 2046 A336 B21 C59 2092 A399 B21 C5 2138 A410 B2 C41 2047 A336 B22 C1 2093 A399 B21 C5 2138 A410 B2 C59 2048 A336 B22 C5 2094 A399 B21 C5 2138 A410 B2 C59 2048 A336				l l	1	1	1	1	1			1	1	1	ı	
2040 A336 B2 C3 2087 A399 B2 C1 2133 A410 B1 C41 2042 A336 B2 C59 2088 A399 B2 C5 2134 A410 B1 C59 2043 A336 B21 C1 2089 A399 B2 C41 2135 A410 B2 C1 2044 A336 B21 C5 2090 A399 B2 C59 2136 A410 B2 C5 2045 A336 B21 C5 2091 A399 B21 C1 2137 A410 B2 C41 2046 A336 B21 C59 2092 A399 B21 C5 2138 A410 B2 C59 2047 A336 B22 C1 2093 A399 B21 C5 2138 A410 B2 C59 2048 A336 B22 C1 2093 A399 B21 C5 2138 A410 B2 C59 2049 A336 B22 C5 2094 A399 B21 C5 2140 A410 B21 C5 2050 A336			l	1		•		,	1	ł.			1	1		
2041 A336 B2 C41 2067 A399 B2 C5 2134 A410 B1 C59 2043 A336 B21 C1 2089 A399 B2 C41 2135 A410 B2 C1 C1 2044 A336 B21 C5 2090 A399 B2 C59 2136 A410 B2 C5 C5 2045 A336 B21 C41 2091 A399 B21 C1 2137 A410 B2 C41 B2 C41 2046 A336 B21 C59 2092 A399 B21 C5 2138 A410 B2 C59 C59 2047 A336 B22 C1 2093 A399 B21 C41 2139 A410 B2 C59 C59 2048 A336 B22 C5 2094 A399 B21 C59 2140 A410 B21 C5 C5 2049 A336 B22 C41 2095 A399 B22 C1 2141 A410 B21 C41 B21 C41 2050 A336 B22 C59 2096 A399 B22 C5 2142 A410 B21 C59 2051 A351 B1 C1 2097 A399 B22 C59 2144 A410 B22 C5 2052 A351 B1 C5 2098 A399 B22 C59 2144 A410 B22 C5			i	ı			1		1	1		1				
2042 A336 B2 C33 C33 C33 C33 C33 C33 C33 C33 C33 C33 C33 C33 C33 C33 C33 C33 C41 C33 C41 C33 C41 C33 C41 C33 C41 C33 C41 C59 C41 C41 C59 C41 C41 C41 C59 C41 C41 C59 C41 C41 C41 C41 C41 C41 C41 C41 C41 C41 C41 C41 C41 C41 C41 C41				1	1		1	t .	i	1		1		1		
2043 A336 B21 C5 2090 A399 B2 C59 2136 A410 B2 C5 2045 A336 B21 C41 2091 A399 B21 C1 2137 A410 B2 C41 2046 A336 B21 C59 2092 A399 B21 C5 2138 A410 B2 C59 2047 A336 B22 C1 2093 A399 B21 C41 2139 A410 B21 C1 2048 A336 B22 C5 2094 A399 B21 C59 2140 A410 B21 C5 2049 A336 B22 C41 2095 A399 B22 C1 2141 A410 B21 C41 2050 A336 B22 C59 2096 A399 B22 C5 2142 A410 B21 C59 2051 A351 B1 C1 2097 A399 B22 C41 2143 A410 B22 C1 2052 A351 B1 C5 2098 A399 B22 C59 2144 A410 B22 C5				1	1		1	1	1	1			1	1		
2044 A336 B21 C41 2091 A399 B21 C5 2137 A410 B2 C41 2046 A336 B21 C59 2092 A399 B21 C5 2138 A410 B2 C59 2047 A336 B22 C1 2093 A399 B21 C41 2139 A410 B2 C59 2048 A336 B22 C5 2094 A399 B21 C59 2140 A410 B21 C5 2049 A336 B22 C41 2095 A399 B22 C1 2141 A410 B21 C41 2050 A336 B22 C59 2096 A399 B22 C5 2142 A410 B21 C59 2051 A351 B1 C1 2097 A399 B22 C41 2143 A410 B22 C5 2052 A351 B1 C5 2098 A399 B22 C59 2144 A410 B22 C5		1	1	1	1				1	,		1		1	1	
2043 A336 B21 C59 2092 A399 B21 C5 2138 A410 B2 C59 2047 A336 B22 C1 2093 A399 B21 C41 2139 A410 B21 C1 2048 A336 B22 C5 2094 A399 B21 C59 2140 A410 B21 C5 2049 A336 B22 C41 2095 A399 B22 C1 2141 A410 B21 C41 2050 A336 B22 C59 2096 A399 B22 C5 2142 A410 B21 C59 2051 A351 B1 C1 2097 A399 B22 C41 2143 A410 B22 C1 2052 A351 B1 C5 2098 A399 B22 C59 2144 A410 B22 C5		1	1		1	ļ		1		1			1	H		
2046 A336 B21 C33 C33 C33 C33 C33 C33 C33 C33 C33 C33 C33 C33 C33 C33 C33 C33 C33 C33 C41		,	l .		1		1			1		1	L .	1		
2047 A336 B22 C5 2094 A399 B21 C59 2140 A410 B21 C5 2049 A336 B22 C41 2095 A399 B22 C1 2141 A410 B21 C41 2050 A336 B22 C59 2096 A399 B22 C5 2142 A410 B21 C59 2051 A351 B1 C1 2097 A399 B22 C41 2143 A410 B22 C1 2052 A351 B1 C5 2098 A399 B22 C59 2144 A410 B22 C5			4	1		1	1							1		
2048 A336 B22 C3 2049 A336 B22 C41 2095 A399 B22 C1 2141 A410 B21 C41 2050 A336 B22 C59 2096 A399 B22 C5 2142 A410 B21 C59 2051 A351 B1 C1 2097 A399 B22 C41 2143 A410 B22 C1 2052 A351 B1 C5 2098 A399 B22 C59 2144 A410 B22 C5			1		1	1	l .	1	1			1	1	1	1	
2050 A336 B22 C59 2096 A399 B22 C5 2142 A410 B21 C59 2051 A351 B1 C5 2098 A399 B22 C59 2144 A410 B22 C1 2052 A351 B1 C5 2098 A399 B22 C59 2144 A410 B22 C5 2052 A351 B1 C5 2098 A399 B22 C59 2144 A410 B22 C5		•	1	1		1				i i		•		i	I.	
2050 A356 B22 C35 2051 A351 B1 C1 2097 A399 B22 C41 2143 A410 B22 C1 2052 A351 B1 C5 2098 A399 B22 C59 2144 A410 B22 C5			1	1	L			1	ł			1	1			
2051 A351 B1 C5 2098 A399 B22 C59 2144 A410 B22 C5		1					F	1				L		i		
2032 A331 B1 00 2000 1000 1000 1		7			1				1				•		1	
				1			1		1			1	5 A410	B22		
2053 A351 B1 C41 2099 A404 B1 C1 2145 A410 B22 C41		2053	A351	B1	C41		209	9 404	Bi	<u> </u>		214	المحران	المدر	1041	-

[0122]

【表55】

				_									
2146	A410	B22	C59	ſ	2192	A419	B22	C5		2238	A434		C1
2147		В1	C1		2193	A419	B22	C41	1	2239	A434	1	C5
	A413	B1	C5		2194	A419	B22	C59			A434	l 1	C41
1	A413	В1	C41	l	2195	A424	B1	C1			A434	B22	C59
	A413	В1	C59	i	2196	A424	B1	C5		2242	A449	B1	C1
	A413	B2	C1	- 1	2197	A424	B1	C41		2243	A449	B1	C5
1	A413	B2	C5	ļ	2198	A424	B1	C59			A449	B1	C41
1	A413	B2	C41		2199	A424	B2	C1			A449	B1	C59
1	A413	B2	C59	İ	2200	A424	B2	C5			A449	B2	C1
1	A413	B21	C1		2201	A424	B2	C41		2247	A449	B2	C5
1	A413	B21	C5	İ	2202	A424	B2	C59		2248	A449	B2	C41
l .	A413	B21	C41	Ì	2203	A424	B21	C1		l .	A449	B2	C59
l .	A413	B21	C59		2204	A424	B21	C5		l .	A449	B21	C1
	A413	B22	C1		2205	A424	B21	C41		1	A449	B21	C5
1	A413	B22	C5		2206	A424	B21	C59			A449	B21	C41
1	A413	B22	C41		2207	A424	B22	C1	ļ		A449	B21	C59
	A413	B22	C59		2208	A424	B22	C5		1	A449	B22	C1
2163	A418	B1	C1		2209	A424	B22	C41		1	A449	B22	C5
1	A418	B1	C5		2210	A424	B22	C59		i .	A449	B22	C41
2165	A418	B1	C41			A429	B1	C1			A449	B22	C59
2166	A418	B1	C59		1	A429	B1	C5		i	A454	B1	C1
2167	7 A418	B2	C1		2213	A429	B1	C41			A454	B1	C5
2168	A418	B2	C5		2214	1 A429	B1	C59	1	1	A454	B1	C41
2169	A418	B2	C41		1	A429	B2	C1	1		1 A454	B1	C59
2170	A418	B2	C59		i	6 A429	B2	C5		1	2 A454	B2	C1
217	1 A418	B21	C1			7 A429	B2	C41		1	3 A454	B2	C5
217	2 A418	B21	C5		l	B A429	B2	C59			4 A454	B2	C41
217	3 A418	B21	C41		1	9 A429	B21	C5		1	5 A454	B2 B21	C59 C1
217	4 A418	B21	C59		1	0 A429	B21	C41		1	6 A454	B21	C5
	5 A418	B22	C1		1	1 A429	B21	C59		1	7 A454	B21	C41
217	6 A418	B22	C5			2 A429	B22	1		1	8 A454 9 A454	B21	C59
1	7 A418	B22			1	3 A429	B22	1		1	0 A454	B22	C1
	8 A418	B22		•	l .	4 A429	B22				1 A454	B22	C5
	9 A419	B1	C1			5 A429	B22	C59			2 A454	B22	C41
	0 A419	B1	C5			6 A434	B1	C5		1	3 A454	B22	
	1 A419	B1	C41	1		7 A434	B1	C41		1	4 A497	B1	C1
	2 A419	B1	C59			8 A434		C59	-		5 A497	B1	C5
•	3 A419	B2	C1		1	9 A434 0 A434	B1 B2	C1		1	6 A497	B1	C41
	4 A419	B2	C5			1 A434	B2	C5			7 A497	В1	C59
	5 A419	B2	C41			2 A434	B2	C41			8 A497	B2	C1
1	6 A419	B2	C59		1	3 A434	1	C59			9 A497	B2	C5
	7 A419	B21	_			4 A434	- 1	l l			80 A497	B2	C41
	8 A419	B21	1			5 A434	1	1			31 A497	B2	C59
	9 A419	B21				6 A434		- 1			32 A497	B21	1
	0 A419	Į	1		1	37 A434					3 A497	B21	C5
219	1 A419	B22	2 01	ا		, , , , , , , , , , , , , , , , , , , ,		. 1000		L			

[0123]

【表56】

ſ				244	Г	0000	A E O O	D21	C5	[2376	A517	B2	C59
ļ	2284 A	- 1		C41	Ì	2330			C41			A517	l 1	C1
	2285 A	1		C59	1	2331		B21	C59			A517	B21	C5
	2286 A			C1	İ	2332		B21				A517	B21	C41
	2287 A			C5		2333		B22	C1			A517	B21	C59
	2288 A	1		C41	ł	2334		B22	C5			A517	B22	C1
	2289 A		B22	C59	ļ	2335		B22	C41			A517	B22	C5
	2290 A		B1	C1		2336		B22	C59			A517	B22	C41
	2291 A		B1	C5	ļ	2337		B1	C1	'		A517	B22	C59
	2292 A		B1	C41		2338		B1	C5			A522	B1	C1
	2293 A	502	B1	C59		2339		B1	C41			A522	B1	C5
	2294 A		B2	C1		2340		B1	C59		l	A522	B1	C41
	2295 A	502	B2	C5		2341		B2	C1			A522	B1	C59
	2296 A	502	B2	C41		2342		B2	C5		L		B2	C1
	2297 A	1502	B2	C59		2343	1	B2	C41		ŀ	A522	B2	C5
	2298 A	1502	B21	C1			A511	B2	C59		1	A522	B2	C41
	2299 A	\502	B21	C5		1	A511	B21	C1		l .	A522	B2	C59
	2300 A	\502	B21	C41		1	A511	B21	C5		1	A522	B21	C1
	2301 A	\502	B21	C59		1	A511	B21	C41	}	1	A522		C5
	2302	\502	B22	C1		1	A511	B21	C59			A522	B21	C41
	2303	\502	B22	C5	ŀ	1	A511	B22	C1		1	A522	B21	C59
	2304	4502	B22	C41			A511	B22	C5	1	i	A522	B21	C1
	2305	4502	B22	C59		Į.	A511	B22	C41		1	A522	B22	C5
	2306	4503	B1	C1			A511	B22	C59		l l	A522	B22	C41
	2307	4503	B1	C5		1	A516	B1	C1			A522	B22	C59
	2308	4503	B1	C41	İ		A516	B1	C5			A522	B22	C1
	2309	A503	B1	C59		1	A516	B1	C41	ļ		A527	B1 B1	C5
	2310	A503	B2	C1			A516	B1	C59		1	2 A527	1	C41
	2311		B2	C5		1	A516	B2	C1	1	1	3 A527	B1 B1	C59
	2312		B2	C41			A516	B2	C5		1	4 A527	B2	C1
	2313	A503	B2	C59		1	A516	B2	C41			5 A527	B2	C5
	2314	A503	B21	C1		1	A516	B2	C59			6 A527	B2	C41
	2315		B21	C5	1		A516	B21	C1			7 A527	B2	C59
	2316		B21	C59			2 A516	B21	C5	}		8 A527	B21	C1
	2317		B22	1		,	3 A516	B21	C41		1	9 A527	B21	C5
	2318		B22	1		1	4 A516	B21	C59		1	0 A527	B21	C41
	2319		B22	1			5 A516	B22				1 A527	B21	C59
	2320		B22	1			6 A516	B22				2 A527	I	1
		A508	B1	C1	1		7 A516	B22				3 A527	B22	C1 C5
		A508	B1	C5		1	8 A516	B22	1		1	4 A527	B22	
		A508	B1	C41		l.	9 A517	B1	C1			5 A527	B22	1
		A508	B1	C59			0 A517	B1	C5		1	6 A527		C1
	1	A508	B2	C1			1 A517	B1	C41			7 A532	B1	C5
		A508	B2	C5			2 A517	B1	C59			8 A532	B1	
		A508	B2	C41			3 A517	B2	C1			9 A532	B1 B1	C41 C59
	I I	A508	B2	C59			4 A517	B2	C5			A532		1
	2329	A508	B21	C1		237	5 A517	B2	C41	J	242	21 A532	B2	C1

[0124]

【表57】

_				
			B2	C5
		A532	B2	C41
		A532	B2	C59
		A532	B21	C1
١		A532	B21	C5
	2427	A532	B21	C41
l		A532	B21	C59
	2429	A532	B22	C1
١		A532	B22	C5
		A532	B22	C41
	2432	A532	B22	C59
١		A547	B1	C1
١		A547	B1	C5
		A547	B1	C41
		A547	B1	C59
	_	A547	B2	C1
	2438	A547	B2	C5
Ì		A547	B2	C41
		A547	B2	C59
ļ		A547	B21	C1
١	-	A547	B21	C5
١	_	A547	B21	C41
1		A547	B21	C59
1		A547	B22	C5
		A547	B22	C41
		A547	B22	C59
١		A552	B1	C1
١		A552	B1	C5
١	-	A552	B1	C41
١		A552	B1	C59
		A552	B2	C1
		A552	B2	C5
		A552	B2	C41
1		A552	B2	C59
-		A552	B21	C1
		A552	B21	C5
		A552	B21	C41
		A552	B21	C59
į		A552	B22	C1
		A552	B22	C5
		A552	B22	C41
		3 A552	B22	C59
		A2359	1	C1
		A2359		C5
	1	7 A 2359	1	C41
	3618	8 A2359	B1	C59

3619	A2359	B2	C1
3620	A2359	B2	C5
3621	A2359	B2	C41
3622	A2359	B2	C59
3623	A2359	B21	C1
3624	A2359	B21	C5
3625	A2359	B21	C41
	A2359	B21	C59
	A2359	B22	C1
	A2359	B22	C5
- 1	A2359	B22	C41
	A2359	B22	C59
	A2364	B1	C1
	A2364	B1	C5
	A2364	B1	C41
	A2364	B1	C59
	A2364	B2	C1
	A2364	B2	C5
	A2364	B2	C41
	A2364	B2	C59
	A2364	B21	C1
	A2364	B21	C5
	A2364	B21	C41
	A2364	B21	C59
	A2364	B22	C5
	A2364	B22	C41
	A2364 A2364	B22 B22	C59
	A2365	B1	C1
	A2365	B1	C5
	A2365	B1	C41
00.0	A2365	B1	C59
1	A2365	B2	C1
	A2365	B2	C5
	A2365	B2	C41
ļ	A2365	B2	C59
1	A2365	B21	C1
	A2365	B21	C5
	A2365	B21	C41
	A2365	B21	C59
1	A2365	B22	C1
1	A2365	B22	C5
	A2365	B22	C41
1	A2365	B22	C59
ł	A2370	B1	C1
3664	A2370	В1	C5

3665	A2370	B1	C41
3666	A2370	В1	C59
3667	A2370	B2	C1
3668	A2370	B2	C5
3669	A2370	B2	C41
3670	A2370	B2	C59
3671	A2370	B21	C1
3672	A2370	B21	C5
3673	A2370	B21	C41
3674	A2370	B21	C59
3675	A2370	B22	C1
3676	A2370	B22	C5
3677	A2370	B22	C41
3678	A2370	B22	C59
3679	A2371	B1	C1
3680	A2371	В1	C5
3681	A2371	B1	C41
3682	A2371	B1	C59
3683	A2371	B2	C1
3684	A2371	B2	C5
3685	A2371	B2	C41
3686	A2371	B2	C59
3687	A2371	B21	C1
3688	A2371	B21	C5
3689	A2371	B21	C41
3690	A2371	B21	C59
	A2371	B22	C1
3692	A2371	B22	C5
3693	A2371	B22	C41
3694	A2371	B22	C59
3695	A2376	B1	C1
	A2376	B1	C5
3697	A2376	B1	C41
	A2376	B1	C59
	A2376	B2	C1
	A2376	B2	C5
	A2376	B2	C41
1	A2376	B2	C59
1	A2376	B21	C1
	A2376	B21	C5
ı	A2376	B21	C41
	A2376	B21	C59
1	A2376	B22	C1
	3 A2376	B22	C5
1	A2376	B22	C41
3710	D A2376	B22	C59

【表58】

_	0711	A 2 4 0 1	D1	C1
	-	A2401	i	1
ı		A2401	B1	C5
1		A2401	B1	C41
		A2401	B1	C59
	_	A2401	B2	C1
		A2401	B2	C5
l		A2401	B2	C41
		A2401	B2	C59
		A2401	B21	C1
		A2401	B21	C5
1		A2401	B21	C41
		A2401	B21	C59
		A2401	B22	C1
		A2401	B22	C5
		A2401	B22	C41
		A2401	B22	C59
		A2406	B1	C1
		A2406	B1	C5
		A2406	B1	C41
	• . • •	A2406	B1	C59
		A2406	B2	C5
l		A2406	B2	C41
I		A2406	B2	C59
1		A2406	B2 B21	C1
		A2406	B21	C5
		A2406	B21	C41
۱		A2406	B21	C59
	-	A2406	B22	C1
۱		A2406	B22	C5
١		A2406	B22	C41
		A2406	B22	C59
		3 A2413	B1	C1
	•	4 A2413	B1	C5
		5 A2413		C41
1		6 A2413	1	C59
Į		7 A2413		C1
		8 A2413		C5
1		9 A2413		C41
		0 A2413	ľ	C59
		1 A2413	1	C1
		2 A2413	1	C5
		3 A2413	1 .	C41
		4 A2413		C59
		5 A2413	1	1
		6 A2413	1	1

3757 A2413	B22	C41
3758 A2413	B22	C59
3759 A2418	В1	C1
3760 A2418	B1	C5
3761 A2418	B1	C41
3762 A2418	B1	C59
3763 A2418	B2	C1
3764 A2418	B2	C5
3765 A2418	B2	C41
3766 A2418	B2	C59
3767 A2418	B21	C1
3768 A2418	B21	C5
3769 A2418	B21	C41
3770 A2418	B21	C59
3771 A2418	B22	C1
3772 A2418	B22	C5
3773 A2418	B22	C41
3774 A2418	B22	C59
3775 A2427	B1	C1
3776 A2427	B1	C5
3777 A2427	B1	C41
3778 A2427	B1	C59
3779 A2427	B2	C1
3780 A2427	B2	C5
3781 A2427	B2	C41 C59
3782 A2427	B2 B21	C1
3783 A2427 3784 A2427	B21	C5
3785 A2427	B21	C41
3786 A2427	B21	C59
3787 A2427	B22	C1
3788 A2427	B22	C5
3789 A2427	B22	C41
3790 A2427	1	C59
3791 A2432		C1
3792 A2432		C5
3793 A2432	1	C41
3794 A2432		C59
3795 A2432		C1
3796 A2432	1	C5
3797 A2432	1	C41
3798 A2432	1	C59
3799 A2432		C1
3800 A2432		C5
3801 A2432	B21	C41
3802 A2432	B21	C59

3803	A2432	B22	C1
3804	1 A2432	B22	C5
	A2432	B22	C41
3806	A2432	B22	C59
3807	7 A2461	B1	C1
3808	3 A2461	B1	C5
3809	A2461	B1	C41
	A2461	B1	C59
381	1 A2461	B2	C1
3812	2 A2461	B2	C5
	3 A2461	B2	C41
	4 A2461	B2	C59
	5 A2461	B21	C1
	6 A2461	B21	C5
	7 A2461	B21	C41
	8 A2461	B21	C59
	9 A2461	B22	C1
	0 A2461	B22	C5
	1 A2461	B22	C41
	2 A2461	B22	C59
	3 A2466	B1	C1
	4 A2466	B1 B1	C5 C41
1	5 A2466	B1	C59
l .	6 A2466 7 A2466	B2	C1
	8 A2466	i — —	C5
l .	9 A2466		C41
	0 A2466	_ :-	C59
	1 A2466		C1
1	2 A2466	1	C5
	3 A2466		C41
	4 A2466		C59
	5 A2466		C1
ł	6 A2466		C5
1	7 A2466		C41
	8 A2466	l l	C59
1	39 A2467		C1
1	10 A2467		C5
1	11 A2467		C41
	12 A2467	1	C59
1	13 A2467	1	C1
384	14 A2467	7 B2	C5
1	45 A2467		C41
384	46 A246	7 B2	C59
384	47 A246	7 B21	C1
384	48 A246	7 B21	C5

【表59】

,		
3849 A2467	1 1	C41
3850 A2467	B21	C59
3851 A2467	B22	C1
3852 A2467	B22	C5
3853 A2467	B22	C41
3854 A2467	B22	C59
3855 A2472	B1	C1
3856 A2472	B1	C5
3857 A2472	В1	C41
3858 A2472	В1	C59
3859 A2472	B2	C1
3860 A2472	B2	C5
3861 A2472	B2	C41
3862 A2472	B2	C59
3863 A2472	B21	C1
3864 A2472	B21	C5
3865 A2472	B21	C41
3866 A2472	B21	C59
3867 A2472	B22	C1
3868 A2472	B22	C5
3869 A2472	B22	C41
3870 A2472	B22	C59
3870 A2472		C1
1 - 1	1	C5
3872 A2473	ı	C41
3873 A2473	l .	C59
3874 A2473	1-	C1
1 1	1	C5
3876 A2473	l	C41
3877 A2473		C59
3878 A2473	1	C1
3879 A2473	l	1 .
3880 A2473	4	C5
3881 A2473	1	C41
3882 A2473		C59
3883 A2473		C1
3884 A2473		C5
3885 A2473		C41
3886 A2473		C59
3887 A2478	4	C1
3888 A2478	1	C5
3889 A247	1	C41
3890 A247	- 1	C59
3891 A247	1	C1
3892 A247		C5
3893 A247	1	C41
3894 A247	8 B2	C59

3895 A2478		C1
3896 A2478		C5
3897 A2478		C41
3898 A2478		C59
3899 A2478	1	C1
3900 A2478	1 I	C5
3901 A2478		C41
3902 A2478	B22	C59
3903 A2503	B1	C1
3904 A2503	B1	C5
3905 A2503	B1	C41
3906 A2503	B1	C59
3907 A2503	B2	C1
3908 A2503	B2	C5
3909 A2503	B2 B2	C41 C59
3910 A2503	B21	C1
3911 A2503	B21	C5
3912 A2503 3913 A2503	B21	C41
3914 A2503	B21	C59
3915 A2503	B22	C1
3916 A2503	B22	C5
3917 A2503	B22	C41
3918 A2503	B22	C59
3919 A2508	В1	C1
3920 A2508	B1	C5
3921 A2508	B1	C41
3922 A2508	B1	C59
3923 A2508	B2	C1
3924 A2508	B2	C5
3925 A2508	B2	C41
3926 A2508	B2	C59
3927 A2508	B21	C1
3928 A2508	B21	C5
3929 A2508	B21	C41
3930 A2508	i	C59
3931 A2508	- 1	
3932 A2508	i	1
3933 A2508	i	1
3934 A2508		1
3935 A2515		C1
3936 A2515		C5
3937 A251		C41
3938 A251		C59
3939 A251		C1
3940 A251	5 B2	C5

3941	A2515	B2	C41
3942	A2515	B2	C59
3943	A2515	B21	C1
3944	A2515	B21	C5
3945	A2515	B21	C41
3946	A2515	B21	C59
3947	A2515	B22	C1
3948	A2515	B22	C5
3949	A2515	B22	C41
3950	A2515	B22	C59
3951	A2520	В1	C1
3952	A2520	В1	C5
3953	A2520	B1	C41
3954	A2520	B1	C59
3955	A2520	B2	C1
3956	A2520	B2	C5
3957	A2520	B2	C41
3958	A2520	B2	C59
3959	A2520	B21	C1
3960	A2520	B21	C5
3961	A2520	B21	C41
3962	A2520	B21	C59
3963	A2520	B22	C1
3964	A2520	B22	C5
3965	A2520	B22	C41
3966	A2520	B22	C59
3967	A2529	B1	C1
3968	A2529	B1	C5
3969	A2529	B1	C41
3970	A2529	B1	C59
3971	A2529	B2	C1
3972	A2529	B2	C5
3973	A2529	B2	C41
3974	1 A2529	B2	C59
397	A2529	B21	C1
3970	A2529	B21	C5
397	7 A2529	B21	C41
397	8 A2529	B21	C59
397	9 A2529	B22	C1
398	0 A2529	B22	C5
398	1 A2529	B22	C41
398	2 A2529	B22	C59
398	3 A2534	₽ B1	C1
398	4 A2534	1 B1	C5
1	5 A2534		C41
4	6 A2534		C59

【表60】

				 1
	3987	A2534	B2	C1
	3988	A2534	B2	C5
	3989	A2534	B2	C41
1	3990	A2534	B2	C59
	3991	A2534	B21	C1
	3992	A2534	B21	C5
l	3993	A2534	B21	C41
Į	3994	A2534	B21	C59
	3995	A2534	B22	C1
	3996	A2534	B22	C5
	3997	A2534	B22	C41
١	3998	A2534	B22	C59
	3999	A2563	B1	C1
	4000	A2563	B1	C5
	4001	A2563	B1	C41
	4002	A2563	В1	C59
	4003	A2563	B2	C1
	4004	A2563	B2	C5
	4005	A2563	B2	C41
	4006	A2563	B2	C59
١	4007	A2563	B21	C1
		A2563	B21	C5
-	4009	A2563	B21	C41
	4010	A2563	B21	C59
1	4011	A2563	B22	C1
l	4012	A2563	B22	C5
		A2563	B22	C41
		1A2563	B22	C59
١		A2568	B1	C1
İ		6 A2568	B1	C5
Į		7 A2568	B1	C41
l		BA2568	B1	C59
		9 A2568		C1
		0 A2568		C5
į		1 A2568		C41
		2 A2568		C59
		3 A2568		
	1	4 A2568	i	
		5 A2568	1	
		6 A2568	1	
	Ł	7 A2568		
		8 A2568		1
		9 A2568		
		0 A2568		1
		1 A2569		C1
	403	2 A2569) B1	C5

4033 A2569	- 1	C41
100 1, 12000	_	C59
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	B2	C1
4036 A2569	B2	C5
4037 A2569	B2	C41
4038 A2569	B2	C59
4039 A2569	B21	C1
4040 A2569	B21	C5
4041 A2569	B21	C41
4042 A2569	B21	C59
4043 A2569	B22	C1
4044 A2569	B22	C5
4045 A2569	B22	C41
4046 A2569	B22	C59
4047 A2574	B1	C1
4048 A2574	B1	C5
4049 A2574	B1	C41
4050 A2574	B1	C59
4051 A2574	B2 B2	C1 C5
4052 A2574		C41
4053 A2574 4054 A2574	B2 B2	C59
4054 A2574 4055 A2574	B21	C1
4055 A2574 4056 A2574	B21	C5
4056 A2574 4057 A2574	B21	C41
4057 A2574 4058 A2574	B21	C59
4059 A2574	B22	C1
4060 A2574	B22	C5
4061 A2574	B22	C41
4062 A2574	B22	C59
4063 A2575	B1	C1
4064 A2575	B1	C5
4065 A2575	В1	C41
4066 A2575	В1	C59
4067 A2575	B2	C1
4068 A2575	1	C5
4069 A2575	B2	C41
4070 A2575	B2	C59
4071 A2575	i	C1
4072 A2575	B21	C5
4073 A2575	B21	C41
4074 A2575	B21	C59
4075 A2575	6 B22	C1
4076 A2575	B22	C5
4077 A2575	B22	C41
4078 A2575	B22	C59

4079 A2580 B1 C1 4080 A2580 B1 C5 4081 A2580 B1 C41 4082 A2580 B1 C59
4081 A2580 B1 C41 4082 A2580 B1 C59
4082 A2580 B1 C59
4082 A2580 B1 C59
1 1 1
4083 A2580 B2 C1
4084 A2580 B2 C5
4085 A2580 B2 C41
4086 A2580 B2 C59
4087 A2580 B21 C1
4088 A2580 B21 C5
4089 A2580 B21 C41
4090 A2580 B21 C59
4091 A2580 B22 C1
4092 A2580 B22 C5
4093 A2580 B22 C41
4094 A2580 B22 C59
133
4096 A2605 B1 C5 4097 A2605 B1 C41
4098 A2605 B1 C59
4099 A2605 B2 C1
11001.12000
4102 A2605 B2 C59
4103 A2605 B21 C1
4104 A2605 B21 C5
4105 A2605 B21 C41
4106 A2605 B21 C59
4107 A2605 B22 C1
4108 A2605 B22 C5
4109 A2605 B22 C41
4110 A2605 B22 C59
4111 A2610 B1 C1
4112 A2610 B1 C5
4113 A2610 B1 C41
4114 A2610 B1 C59
4115 A2610 B2 C1
4116 A2610 B2 C5
4117 A2610 B2 C41
4118 A2610 B2 C59
4119 A2610 B21 C1
4120 A2610 B21 C5
4121 A2610 B21 C41
4122 A2610 B21 C59
4123 A2610 B22 C1
4124 A2610 B22 C5

【表61】

	4125 A2610	B22	C41
	4126 A2610	B22	C59
i	4127 A2617	B1	C1
	4128 A2617	B1	C5
	4129 A2617	В1	C41
	4130 A2617	B1	C59
	4131 A2617	B2	C1
	4132 A2617	B2	C5
l	4133 A2617	B2	C41
١	4134 A2617	B2	C59
	4135 A2617	B21	C1
	4136 A2617	B21	C5
	4137 A2617	B21	C41
ļ	4138 A2617	B21	C59
	4139 A2617	B22	C1
	4140 A2617	B22	C5
	4141 A2617	B22	C41
	4142 A2617	B22	C59
	4143 A2622	В1	C1
1	4144 A2622	В1	C5
	4145 A2622	В1	C41
	4146 A2622	В1	C59
	4147 A2622	B2	C1
	4148 A2622	B2	C5
	4149 A2622	B2	C41
	4150 A2622	B2	C59
	4151 A2622	1	C1
	4152 A2622		C5
١	4153 A2622	B21	C41
	4154 A2622	B21	C59
	4155 A2622	B22	C1
	4156 A2622	B22	1 1
	4157 A2622	B22	1
ļ	4158 A2622	B22	C59
	4159 A2631	В1	C1
	4160 A2631	B1	C5
	4161 A2631	B1	C41
	4162 A2631	B1	C59
	4163 A2631	B2	C1
	4164 A2631	B2	C5
	4165 A2631	B2	C41
	4166 A2631	B2	C59
	4167 A2631		
	4168 A2631		
	4169 A2631		
	4170 A2631	- 1	1

		B22	C1
- 1		B22	C5
		B22	C41
4174	A2631	B22	C59
4175	A2636	B1	C 1
4176	A2636	В1	C5
4177	A2636	B1	C41
	A2636	B1	C59
4179	A2636	B2	C1
	A2636	B2	C5
	A2636	B2	C41
1	A2636	B2	C59
4183	A2636	B21	C1
	A2636	B21	C5
	A2636	B21	C41
	A2636	B21	C59
	A2636	B22	C1
	A2636	B22	C5
	A2636	B22	C41
	A2636	B22	C59
	A2665	B1	C1
	A2665	B1	C5
	A2665 A2665	B1	C41
		B1 B2	C1
	A2665 A2665	B2	C5
	A2665	B2	C41
	A2665	B2	C59
	A2665	B21	C1
	A2665	B21	C5
4201		B21	C41
	A2665	B21	C59
	A2665	B22	C1
1	A2665	B22	C5
	A2665	B22	C41
i i	A2665	B22	C59
l .	A2670	B1	C1
i	A2670	В1	C5
1	A2670		C41
1	A2670		C59
1	A2670		C1
i .	A2670	1	C5
1	A2670	1	C41
	1 A2670	1	C59
4215	A2670	B21	C1
4216	A2670	B21	C5

4217 A2670	B21	C41
4218 A2670	B21	C59
4219 A2670	B22	C1
4220 A2670	B22	C5
4221 A2670	B22	C41
4222 A2670	B22	C59
4223 A2671	В1	C1
4224 A2671	В1	C5
4225 A2671	В1	C41
4226 A2671	В1	C59
4227 A2671	B2	C1
4228 A2671	B2	C5
4229 A2671	B2	C41
4230 A2671	B2	C59
4231 A2671	B21	C1
4232 A2671	B21	C5
4233 A2671	B21	C41
4234 A2671	B21	C59
4235 A2671	B22	C1
4236 A2671	B22	C5
4237 A2671	B22	C41
4238 A2671	B22	C59
4239 A2676	B1	C1
4240 A2676	B1	C5
4241 A2676	В1	C41
4242 A2676	В1	C59
4243 A2676	B2	C1
4244 A2676	B2	C5
4245 A2676	B2	C41
4246 A2676	B2	C59
4247 A2676	B21	C1
4248 A2676	B21	C5
4249 A2676	B21	C41
4250 A2676	B21	C59
4251 A2676	B22	C1
4252 A2676	B22	C5
4253 A2676	B22	C41
4254 A2676	B22	C59
4255 A2677	B1	C1
4256 A2677	B1	C5
4257 A2677	B1	C41
4258 A2677	B1	C59
4259 A2677	B2	C1
4260 A2677		C5
4261 A2677	1	C41
4262 A2677	1	C59
7202/72011	122	1000

【表62】

	4263	A2677	B21	C1
	4264	A2677	B21	C5
	4265	A2677	B21	C41
	4266	A2677	B21	C59
i	4267	A2677	B22	C1
	4268	A2677	B22	C5
	4269	A2677	B22	C41
	4270	A2677	B22	C59
	4271	A2682	B1	C1
	4272	A2682	В1	C5
	4273	A2682	В1	C41
	4274	A2682	B1	C59
	4275	A2682	B2	C1
	4276	A2682	B2	C5
		A2682	B2	C41
1		A2682	B2	C59
	4279	A2682	B21	C1
		A2682	B21	C5
	4281	A2682	B21	C41
		A2682	B21	C59
	4283	A2682	B22	C1
		A2682	B22	C5
1		A2682	B22	C41
		A2682	B22	C59
		A2707	B1	C1
		A2707	B1	C5
		A2707	B1	C41
		A2707	B1	C59
		A2707	B2	C1
		A2707	B2	C5
		A2707	B2	C41
		A2707	B2 B21	C59
		A2707	1	C5
,		A2707	B21 B21	C41
	I	A2707	1	C59
		A2707	1	
	1	A2707	1	1
	1	A2707		1
		2 A2707	- 1	
	1	1	1	C1
	430	3 A2712	. 101	101

4304 A2712	В1	C5
4305 A2712	В1	C41
4306 A2712	Вi	C59
4307 A2712	B2	C1
4308 A2712	B2	C5
4309 A2712	B2	C41
4310 A2712	B2	C59
4311 A2712	B21	C1
4312 A2712	B21	C5
4313 A2712	B21	C41
4314 A2712	B21	C59
4315 A2712	B22	C1
4316 A2712	B22	C5
4317 A2712	B22	C41
4318 A2712	B22	C59
4319 A2719	B1	C1
4320 A2719	B1	C5
4321 A2719	B1	C41
4322 A2719	B1	C59
4323 A2719	B2	C1
4324 A2719	B2	C5
4325 A2719	B2	C41
4326 A2719	B2	C59
4327 A2719	B21	C1
4328 A2719	B21	C5
4329 A2719	B21	C41
4330 A2719	B21	C59
4331 A2719	B22	C1
4332 A2719	B22	C5
4333 A2719	B22	C41
4334 A2719	B22	C59
4335 A2724	B1	C1
4336 A2724		C5
4337 A2724		C41
4338 A2724		C59
4339 A2724		C1
4340 A2724	i i	C5
4341 A2724	1	C41
4342 A2724	- 1	C59
4343 A2724	1	C1
4344 A2724	B21	C5

_			 	
_	4345	A2724	B21	C41
	4346	A2724	B21	C59
	4347	A2724	B22	C1
	4348	A2724	B22	C5
	4349	A2724	B22	C41
	4350	A2724	B22	C59
	4351	A2733	B1	C1
	4352	A2733	B1	C5
١	4353	A2733	B1	C41
	4354	A2733	B1	C59
	4355	A2733	B2	C1
	4356	A2733	B2	C5
	4357	A2733	B2	C41
		A2733	B2	C59
	4359	A2733	B21	C1
		A2733	B21	C5
		A2733	B21	C41
	4362	A2733	B21	C59
		A2733	B22	C1
		A2733	B22	C5
	4365	A2733	B22	C41
		A2733	B22	C59
	4367	A2738	B1	C1
	4368	A2738	B1	C5
		A2738	B1	C41
ļ		A2738	B1	C59
		A2738	B2	C1
-		A2738	B2	C5
		A2738	B2	C41
		A2738	B2	C59
	1	A2738	B21	C1
		A2738	B21	C5
	!	A2738	B21	C41
	4378	A2738	B21	C59
	4379	A2738	B22	C1
	4380	A2738	B22	C5
	4381		B22	C41
	4382	2 A2738	B22	C59

[0130]

【表63】

				t t	1		1 !	l l	ı		1	1	
No.	Α	В	С			A3885		C59				B2	C59
5151	A3883	B1	C1			A3885	B22	C1				B21	C1
5152	A3883	В1	C5			A3885	B22	C5				B21	C5
5153	A3883	В1	C41	1		A3885	B22	C41			A3888	B21	C41
5154	A3883	В1	C59	1	5198	A3885	B22	C59		l l	A3888	B21	C59
5155	A3883	В2	C1			A3886	B1	C1				B22	C1
5156	A3883	В2	C5			A3886	B1	C5		1		B22	C5
5157	A3883	B2	C41			A3886	B1	C41		1	A3888	B22	C41
1	A3883	B2	C59		5202	A3886	B1	C59			A3888	B22	C59
1	A3883	B21	C1		5203	A3886	B2	C1			A3889	B1	C1
5160	A3883	B21	C5		5204	A3886	B2	C5				B1	C5
1	A3883	B21	C41]	5205	A3886	B2	C41		t	A3889	B1	C41
5162	A3883	B21	C59	l	5206	A3886	B2	C59			A3889	B1	C59
	A3883	B22	C1		5207	A3886	B21	C1			A3889	B2	C1
1	A3883	B22	C5	. 1	5208	A3886	B21	C5			A3889	B2	C5
	A3883	B22	C41	.	5209	A3886	B21	C41			A3889	B2	C41
1	A3883	B22	C59		5210	A3886	B21	C59			A3889	B2	C59
	A3884	В1	C1		5211	A3886	B22	C1			A3889	B21	C1
1	A3884	В1	C5		5212	A3886	B22	C5			A3889	B21	C5
1	A3884	В1	C41		5213	A3886	B22	C41			A3889	B21	C41
1	A3884	В1	C59		5214	A3886	B22	C59		,	A3889	B21	C59
	A3884	B2	C1		5215	A3887	B1	C1	1		A3889	B22	C1
	A3884	B2	C5		5216	A3887	B1	C5		t .	A3889	B22	C5
1	A3884	B2	C41		5217	A3887	B1	C41			A3889	B22	C41
	A3884	B2	C59			A3887		C59	1	1	A3889	B22	C59
1	A3884	B21	C1		5219	A3887	B2	C1		k .	A3890	B1	C1
i	A3884		C5	ļ	5220	A3887	B2	C5)	A3890	B1	C5
1	A3884	1	C41		5221	A3887	B2	C41		1	A3890	B1	C41
1	A3884	B21	C59		5222	2 A3887	B2	C59	1		A3890	B1	C59
ì	A3884	B22	C1		5223	3 A3887	B21	C1		ľ	A3890	B2	C1
5180	A3884	B22	C5		5224	1 A3887	B21	C5	1	1	A3890	1	C5
	1 A3884		C41			5 A3887	1	C41		1	A3890	1	C41
	2 A3884	•	•		1	6 A3887		C59		1	A3890		C59
	3 A3885		C1		ļ	7 A3887		C1			A3890		C1
1	4 A3885		C5			3 A3887	I.				A3890	1	C5
	5 A3885		C41			9 A3887				1	A3890		
	6 A3885		C59		1) A3887				1	A3890	i i	C59
i	7 A3885		C1			1 A3888	1	C1	1	1	A3890	1	
1	8 A3885	1	C5			2 A3888	1	C5		1	A3890		1
1	9 A3885		C41			3 A3888		C41	1	1 .	A3890		i
519	0 A3885	B2	C59			4 A3888		C59		5278	3 A3890	B22	C59
	1 A3885	1	C1			5 A3888		C1					
519	2 A3885	B21	C5			6 A3888	1	C5					
519	3 A3885	B21	C41		523	7 A3888	B2	C41	1				

[0131]

本発明のPPARアゴニスト用医薬組成物はPPARの関与する疾患全般に有効に作用するが、特に高脂血症、異脂肪症、脂質代謝異常、低HDL症、高LDL症、高VLDL

症、高TG症、糖尿病、高血糖、インスリン抵抗性、肥満、神経性多食症、動脈硬化、ア テローム性動脈硬化、高血圧、シンドロームX、虚血性疾患、炎症、アレルギー性疾患(炎症性大腸炎、慢性関節リウマチ、慢性膵炎、多発性硬化症、糸球体硬化症、乾癬、湿疹 等)、骨粗しょう症、不妊、癌(乳癌、結腸癌、大腸癌、卵巣癌、肺癌等)、アルツハイ マー症、パーキンソン症、バセドウ氏病の予防および/または治療に対して有効である。 特に、PPARアゴニスト活性を有する本発明化合物のうち、PPARS選択的アゴニス ト活性を有する化合物は、高いHDL上昇作用が期待できること、副作用が軽減され得る こと等の理由から優れた医薬品となり得る。

[0132]

本発明化合物をPPARアゴニスト用医薬組成物として投与する場合、経口的、非経口 的のいずれの方法でも投与することができる。経口投与は常法に従って錠剤、顆粒剤、散 剤、カプセル剤、丸剤、液剤、シロップ剤、バッカル剤または舌下剤等の通常用いられる 剤型に調製して投与すればよい。非経口投与は、例えば筋肉内投与、静脈内投与等の注射 剤、坐剤、経皮吸収剤、吸入剤等、通常用いられるいずれの剤型でも好適に投与すること ができる。本発明化合物は経口吸収性が高いため、経口剤として好適に使用できる。

[0133]

本発明化合物の有効量にその剤型に適した賦形剤、結合剤、湿潤剤、崩壊剤、滑沢剤、 希釈剤等の各種医薬用添加剤とを必要に応じて混合し医薬製剤とすることができる。注射 剤の場合には適当な担体と共に滅菌処理を行なって製剤とすればよい。

[0134]

具体的には、賦形剤としては乳糖、白糖、ブドウ糖、デンプン、炭酸カルシウムもしく は結晶セルロース等、結合剤としてはメチルセルロース、カルボキシメチルセルロース、 ヒドロキシプロピルセルロース、ゼラチンもしくはポリビニルピロリドン等、崩壊剤とし てはカルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、デンプン、 アルギン酸ナトリウム、カンテン末もしくはラウリル硫酸ナトリウム等、滑沢剤としては タルク、ステアリン酸マグネシウムもしくはマクロゴール等が挙げられる。坐剤の基剤と してはカカオ脂、マクロゴールもしくはメチルセルロース等を用いることができる。また 、液剤もしくは乳濁性、懸濁性の注射剤として調製する場合には通常使用されている溶解 補助剤、懸濁化剤、乳化剤、安定化剤、保存剤、等張剤等を適宜添加しても良く、経口投 与の場合には嬌味剤、芳香剤等を加えても良い。

[0135]

本発明化合物のPPARアゴニスト用医薬組成物としての投与量は、患者の年齢、体重 、疾病の種類や程度、投与経路等を考慮した上で設定することが望ましいが、成人に経口 投与する場合、通常 $0.05\sim100$ m g / k g / 日であり、好ましくは $0.1\sim10$ m g/kg/日の範囲内である。非経口投与の場合には投与経路により大きく異なるが、通 常0.005~10mg/kg/日であり、好ましくは0.01~1mg/kg/日の範 囲内である。これを1日1回~数回に分けて投与すれば良い。

[0136]

以下に実施例を示し、本発明をさらに詳しく説明するが、これらは本発明を限定するも のではない。

[0137]

実施例

実施例中、各略語の意味は以下の通りである。

がしたりて、	中型的 小学小学
Ме	メチル
Εt	エチル
пВи	nーブチル
t B u	tertーブチル
пРr	nープロピル
Ρh	フェニル
Вn	ベンジル

アセチル Ас メタンスルホニル Мs トリメチルシリル TMS ピリジニウムクロロクロメート PCC 1, 1, -カルボニルジイミダゾール CDI1,8-ジアザビシクロ[5.4.0]ウンデセー7-エン DBU 1, 2-ジメトキシエタン DME ジフェニルメチル DPM 3-tert-ブチルジメチルシリル TBS 4-トリフルオロメチルフェニル TFMP [0138] 【化15】 1) LiN(TMS)2

1) LiN(TMS)₂
(COOEt)₂

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{1}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R$$

参考例1

5-(4-トリフルオロメチルフェニル)-イソキサゾール-3-カルボン酸エチルエス テル $(R^1 = T F M P, R^2 = H, 1-1-1)$

乾燥エーテル60mlにリチウムビス(トリメチルシリル)アミド溶液15mlを加え 、内温−70℃以下に冷却し、4−トリフルオロメチルアセトフェノン2.82gのエー テル15m1溶液を内温−65℃以下に保ち6分間で滴下した。その後バスを除き室温で 17時間攪拌し反応液にエーテル100mlを加え氷冷、析出した結晶を濾過しピルベー トのリチウム塩を第1晶として2.9g得、さらに濾液を濃縮しエーテルで希釈し氷冷す ることで第2晶を610mg得た。このリチウム塩3.5gにエタノール35ml、塩酸 ヒドロキシルアミン1.22gを加え20時間還流した。溶媒留去後、水を加え、クロロ ホルムで抽出、有機層を無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られ た残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:1)で溶出し、標記化 合物を無色結晶として2.55g得た。収率60%

[0139] (1-1-2) ~ (1-1-4) も同様に合成した。 [0140]【表64】

No	\mathbb{R}^1	\mathbb{R}^2	NMR
1-1-1	TFMP	H	1.46(3H,t,J=6.9Hz),4.49(2H,q,J=6.9Hz),7.04(1 H,s),7.77(2H,d,J=8.7Hz),7.95(2H,d,J=8.7Hz)
1-1-2	TFMP	Me	1.46(3H,t,J=6.9Hz),2.47(3H,s),4.49(2H,q,J=6.9 Hz),7.78(2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz)
1-1-3	p-Cl-C ₆ H ₄ -	H	1.45(3H,t,J=7.2Hz),4.48(2H,q,J=7.2Hz),6.92(1 H,s),7.47(2H,d,J=8.4Hz),7.75(2H,d,J=8.4Hz)
1-1-4	ピリジン- 4-イル	Н	1.46(3H,t,J=7.2Hz),4.50(2H,q,J=7.2Hz),7.12(1 H,s),7.68(2H,d,J=6.0Hz),8.79(2H,d,J=6.0Hz)

[0141]

参考例 2

5-プロモー4-メチルーイソキサゾールー3-カルボン酸エチルエステル(1-2-1) [0142]

4-メチルー5-オキソー2, 5-ジヒドロイソキサゾールー3-カルボン酸エチルエステル6. 45 gとオキシ臭化リン54. 0 g の混合物にトリエチルアミン5. 3 m 1 を加え、80 $\mathbb C$ で 2 時間攪拌した。その後反応液を氷中に注ぎ、エーテルで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:8)で溶出し、標記化合物を薄黄色の油状物として7. 36 g 得た。収率 80 %

 1 H-NMR(CDC1₃): 1.43(3H, t, J=7.2Hz), 2.19(3H, s), 4.45(2H, q, J=7.2Hz).

[0143]

【化17】

参考例3

4-メチルー5-(4-トリフルオロメチルフェニル)-イソキサゾールー3-カルボン酸エチルエステル($R^1=TFMP$ 、1-1-2)

化合物(1-2-1) 243 m g を DME 6 m 1 に溶解し、4- トリフルオロメチルフェニルボロン酸 285 m g、炭酸カリウム 420 m g、 P d C 1_2 (d p p f) 81 m g を加え、100 で 7 時間攪拌した。その後反応液に水を加え、酢酸エチルで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:8)で溶出し、標記化合物を無色の結晶として 239 m g 得た。収率 80%

[0144]

【化18】

参考例 4

[5-(4-)7)7 [5-(4-)7) [5-

5-(4-1)フルオロメチルフェニル) -4ソキサゾールー3ーカルボン酸エチルエステル(1-1-1)1. 0gをメタノール15 m l に溶解し、氷冷水下、水素化ホウ素ナトリウム35 8 m g を加え、5分後室温に戻し更に2時間攪拌した。反応液に10 $\mathbb C$ 以下で1 M 塩酸を加え弱酸性とした後、減圧下溶媒を留去、残留液に水を加えクロロホルムで抽出。飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:8)で溶出し、標記化合物を結晶として820 m g(収率96%)得た。これを酢酸エチルーヘキサンから再結晶し、融点111-113 $\mathbb C$ 0 の結晶を得た。

[0145]

(2-1-2) ~ (2-1-9) も同様に合成した。

[0146]

【表65】

No	\mathbb{R}^1	\mathbb{R}^2	NMR(CDCl ₃)
2-1-1	TFMP	H	2.04(1H,t,J=6.0Hz),4.85(1H,d,J=6.0Hz),6.70(1H,s),
			7.74(2H,d,J=8.4Hz), 7.91(2H,d,J=8.4Hz)
2-1-2	TFMP	Me	1.97(1H,t,J=6.6Hz),4.80(2H,m),7.76(2H,d,J=8.4Hz),
			7.85(2H,d,J=8.4Hz)
2-1-3	4-Cl- C ₆ H ₄ -	H	4.82(2H,s),6.58(1H,s),7.50(2H,d,J=8.7Hz),7.72(2H,d
	0 1		,J=8.7Hz)
2-1-4	4-Cl- C ₆ H ₄ -	Et	1.25(3H,t,J=7.2Hz),2.68(2H,q,J=7.2Hz),4.80(2H,s),
			7.47(2H,d,J=8.4Hz),7.63(2H,d,J=8.4Hz)
2-1-5	Me	H	2.30(1H,s),2.42(3H,d,J=0.6Hz),4.71(2H,s),6.04(1H,q
			,J=0.6Hz)
2-1-6	Et	H	1.30(3H,t,J=7.5Hz),2.23(1H,s),2.77(2H,qd,J=7.5,0.6
]	Hz),4.72(2H,s),6.04(1H,t,J=0.6Hz)
2-1-7	Br	Me	2.03(3H,s),2.06(1H,brt,J=7.5Hz),4.73(2H,d,
			J=5.7Hz)
2-1-8	モルホリン	Me	1.98(3H,s),3.35-3.38(4H,m),3.78-3.82(4H,m),
	-4-イル		4.60(2H,s)
2-1-9		H	2.20(1H,brs),4.85(2H,s),6.81(1H,s),7.65(2H,d,J=6.0
	イル		Hz),8.75(2H,d,J=6.0Hz)
	1		1

[0147]【化19】

参考例 5

第1工程 保護

3-tert-ブチルジメチルシリルオキシメチル-5-(4-トリフルオロメチルフェ ニル) イソキサゾール $(R^1 = TFMP, R^2 = H, 2-2-1-1)$

[5-(4-トリフルオロメチルフェニル) イソキサゾールー3-イル] メタノール (2-1-1) 8. 31g、t-ブチルジメチルシリルクロライド 5. <math>67g、イミダゾー ル3. 49g、塩化メチレン160mlの混合物を2時間攪拌した。反応液に水を加えク ロロホルムで2回抽出した。有機層を水、飽和食塩水で順次洗浄後、硫酸マグネシウムで 乾燥し、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル :ヘキサン(1:9)で溶出し、標記化合物を無色結晶として11.5g得た。収率94 %。

 1 H-NMR(CDC1₃): 0.14(6H, s), 0.94(9H, s), 4.82(2H, s), 6.68(1H, s), 7.73(2H, d, J) =8.4 Hz), 7.91 (2H, d, J=8.4 Hz).

[0148]

第2工程 4位修飾

(リチオ化法)

TBS体 $\rightarrow R^1 = TFMP$ 、 $R^2 = Br$

4-ブロモー3-tert-ブチルジメチルシリルオキシメチル-5-(4-トリフルオ ロメチルフェニル) イソキサゾール (2-2-2-1)

3-tert-ブチルジメチルシリルオキシメチル-5-(4-トリフルオロメチルフ ェニル) イソキサゾール (2-2-1-1) 9. 50 gをテトラヒドロフラン 190 m 1 に溶解した。この溶液にn-ブチルリチウムのヘキサン溶液(1.57M)を-78℃

出証特2004-3122706

で15分かけて滴下した。-78℃で70分間攪拌後、臭素9.36gを10分かけて滴 下した。-78℃で2時間攪拌後、室温まで昇温し10%亜硫酸ナトリウム水溶液を加え 反応を停止した。酢酸エチルで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後 、減圧下溶媒を留去し、標記化合物を黄色の油状物として11.6g得た。収率100%

 $^{1}\text{H-NMR}(\text{CDC1}_{3}): 0.16(6\text{H, s}), 0.94(9\text{H, s}), 4.81(2\text{H, s}), 7.77(2\text{H, d}, J=8.1 Hz), 8.1$ 8(2H, d, J=8.1 Hz).

[0149]

(クロスカップリング法)

TBS体、 $R^2 = B r \rightarrow R^1 = TFMP$, $R^2 = ベンジル$

4 ーベンジルー3 ー (tertーブチルジメチルシリルオキシメチル) - 5 - (4 - トリ フルオロメチルフェニル)イソキサゾール(2-2-2)

亜鉛196mgをテトラヒドロフラン2mlに懸濁し、1,2-ジブロモエタン28m gを加えて5分間、クロロトリメチルシラン16mgを加えて5分間攪拌した。ベンジル ブロマイド376mgをテトラヒドロフラン4mlに溶解し、これを反応液に滴下した。 30分間還流後、反応液を4-ブロモ-3-tert-ブチルジメチルシリルオキシメチ ルー5-(4-トリフルオロメチルフェニル) イソキサゾール(2-2-2-1)376 mg、酢酸パラジウム11mg、トリシクロヘキシルホスフィン(14mg、テトラヒド ロフラン4m1の混合液に滴下し30分間還流した。反応液に水を加え、酢酸エチルで抽 出、水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得 られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:50)で溶出し、 標記化合物を黄色結晶として358mg得た。収率80%

 $^{1}\text{H-NMR}(\text{CDC1}_{3}): 0.03(6\text{H, s}), 0.86(9\text{H, s}), 4.13(2\text{H, s}), 4.66(2\text{H, s}), 7.14-7.31(5\text{H, s})$ m), 7.67(2H, d, J=8.4 Hz), 7.76(2H, d, J=8.4 Hz).

[0150]

第3工程 脱保護

4-ベンジル-5-(4-トリフルオロメチルフェニル)イソキサゾール-3-イル]メ タノール $(R^1 = T F M P, R^2 = B n, 2-2-3-1)$

4-ベンジル-3-(tert-ブチルジメチルシリルオキシメチル)-5-(4-ト リフルオロメチルフェニル) イソキサゾール (2-2-2-2) 358mgをテトラヒド ロフラン8mlに溶解し、tetra-ブチルアンモニウムフルオライド0.88ml (1 Mテトラヒドロフラン溶液)を加えた。室温で1時間攪拌後、水を加え反応を停止した 。酢酸エチルで抽出、水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶 媒を留去した。残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:3)で溶 出し、標記化合物を無色結晶として207mg得た。収率78%。

 1 H-NMR(CDC1₃): 4.10(2H, s), 4.62(2H, s), 7.15-7.34(5H, m), 7.70(2H, d, J=8.7Hz), 7.77(2H, d, J=8.7Hz).

[0151]

(2-2-3-2) $\sim (2-2-3-4)$ も同様に合成した。

[0152]

【表66】

No	\mathbb{R}^1	\mathbb{R}^2	第2工程	NMR
2-2-3-	TFMP	Bn	クロスカッ	0.03(6H,s),0.86(9H,s),4.13(2H,s),4.66(2H,s),7.1
1			プリング法	4-7.31(5H,m),7.67(2H,d,J=8.4Hz),
1			, , , , , , , , , , , , , , , , , , , ,	7.76(2H,d,J=8.4Hz)
2-2-3-	TFMP	Br	リチオ化法	2.15(1H,brs),4.82(2H,s),7.49(2H,d,J=8.7Hz),7.
2		ļ		98(2H,d,J=8.7Hz)
2-2-3-	TEMP	CH	リチオ化法	3.74(1H,t,J=7.5Hz),4.89(2H,d,J=7.5Hz),7.88(2
3		0		H,d,J=8.1Hz),7.95(2H,d,J=8.1Hz),10.10(1H,s)
2-2-3-	TEMP	SPh	リチオ化法	0.04(6H,s),0.85(9H,s),4.74(2H,s),7.11-
4	1 - 1 - 1		, , , , , , ,	7.26(5H,m),7.70(2H,d,J=8.7Hz),8.22(2H,d,J=8.
1				7Hz)

参考例6

[4-ブロモー5-(4-クロロフェニル)-イソキサゾールー3-イル]ーメタノール $(R^1 = 4 - C \cdot 1 - C_6 \cdot H_4 - , R^2 = B \cdot r , 2 - 3 - 1)$

[5-(4-クロロフェニル)ーイソキサゾールー3-イル]ーメタノール(2-1-3) 2. 51gと塩化メチレン25mlの溶液に、氷冷下Nーブロムこはく酸イミド2. 16gを加え、30分攪拌後、更に常温で16時間反応した。反応液をクロロホルムで希 釈した後、氷水下1M水酸化ナトリウム水溶液を加え、クロロホルムで抽出した。水洗、 無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロ マトに付し、酢酸エチル:ヘキサン(1:2)で溶出し、標記化合物を結晶として1.4 1 g 得た。収率 4 9 %

[0154]

(2-3-2) および(2-3-3) はハロゲン化剤として一塩化ヨウ素を用い、同様 に合成した。

[0155]

【表67】

No 2-3-1 2-3-2	R ¹ 4-Cl- C ₆ H ₄ - Me	$egin{array}{c} \mathbf{R}^2 \\ \mathbf{Br} \\ \mathbf{I} \end{array}$	NMR 2.18(1H,t,J=6.6Hz),4.82(2H,d,J=6.6Hz),7.49(2H,d,J=8.7Hz),7.98(2H,d,J=8.7Hz) 2.11(1H,t,J=6.6Hz),2.47(3H,s),4.69(2H,d,J=6.6Hz)
2-3-3	Et	I	1.30(3H,t,J=7.5Hz),2.82(2H,q,J=7.5Hz),4.70(2H,s)

[0156]

【化21】

参考例7

2-[4-メチル-5-(4-トリフルオロメチルフェニル)ーイソキサゾール-3-イ ル]ープロパンー2ーオール(2-4-1)

5-(4-トリフルオロメチルフェニル)-イソキサゾール-3-カルボン酸エチルエ ステル (1-1-2) 1. 03gを無水テトラヒドロフラン10m1に溶解し、氷―メタ ノール冷却下、1 Mメチルマグネシウムブロミド7. 3 m 1 を加え、反応液を室温に戻し て24時間攪拌した。その後反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで 抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得ら れた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:4)で溶出し、無色 の結晶を得た。これをエーテルーヘキサンより再結晶し標記化合物を738mg得た。収 率 7 5 %

融点126-127℃

 $^{1}\text{H-NMR}(\text{CDC1}_{3}):\ 1.71(6\text{H},\text{s})\,,\ 2.38(3\text{H},\text{s})\,,\ 7.75(2\text{H},\text{d},\text{J=8.4Hz})\,,\ 7.81(2\text{H},\text{d},\text{J=8.4Hz})\,.$

[0157]【化22】

参考例8

第1工程 酸化

4-メチル-5-(4-トリフルオロメチルフェニル)-イソキサゾール-3-カルバル デヒド(2-5-1-1)

化合物(2-1-2)4.88gを塩化メチレン200mlに溶解し、ピリジニウムク ロロクロメート8.30gを加え、室温下22時間攪拌した。その後反応液をシリカゲル 濾過し、クロロホルムで洗浄後、濾液を減圧下留去した。得られた残渣をシリカゲルクロ マトに付し、酢酸エチル:ヘキサン(1:4)で溶出し、無色の結晶を得た。これをヘキ サンより再結晶し標記化合物を4.14g得た。収率86%

 1 H-NMR(CDC1₃): 2.49(3H, s), 7.79(2H, d, J=8.1Hz), 7.87(2H, d, J=8.1Hz), 10.23(1H, s).

[0158]

第2工程 アルキル化

1-[4-メチル-5-(4-トリフルオロメチルフェニル)ーイソキサゾールー3-イ ル] ープロパンー $1 - オール (R^4 = E t , 2 - 5 - 2 - 1)$

第1工程で得られた化合物(2-5-1-1)765mgを無水テトラヒドロフラン2 0 m l に溶解し、-70℃で1Mエチルマグネシウムブロマイド3.2 m l を加え、さら に1.5時間攪拌した。その後反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチル で抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得 られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:3)で溶出し、標 記化合物を無色の結晶として345mg得た。収率40%

[0159]

同様に(2-5-2-2)を合成した。

[0160]

【表68】

No	\mathbb{R}^4	NMR
2-5-2-1	Et	1.05(3H,t,J=7.5Hz),1.92-2.04(2H,m),2.30(3H,s),4.83
		(1H,t,J=6.6Hz),7.75(2H,t,J=8.4Hz), 7.83(2H,d,J=8.4Hz)
2-5-2-2	4-F- C ₆ H ₄ -	2.03(3H,s),6.03(1H,s),7.05-7.11(2H,m),7.42-7.47(2H,m),7.73(2H,d,J=8.4Hz),7.79(2H,d,J=8.4Hz)

[0161]

参考例 9

(4-メチル-5-モルホリン-4-イル-イソキサゾール-3-イル) -メタノール(2-6-1)

[0 1 6 2]

【化23】

化合物 (2-1-7) 1.66gをモルホリン5mlに溶解し、140℃で2時間攪拌 した。その後反応液に水を加え、酢酸エチルで抽出、飽和食塩水で洗浄、無水硫酸マグネ シウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢 酸エチル:ヘキサン(2:1)で溶出し、標記化合物を薄黄色の結晶として1.14g得 $^{1}\text{H-NMR}(\text{CDC1}_{3}): 1.98(3\text{H,s}), 3.35-3.38(4\text{H,m}), 3.78-3.82(4\text{H,m}), 4.60(2\text{H,s}).$

[0163]

[14:24]

参考例10 A法(LG=OMs)

メタンスルホン酸4-ホルミル-5-(4-トリフルオロメチルフェニル) -イソキサゾ $-\mu$ - 3 - イルメチルエステル (R^1 = T F M P、 R^2 = C H O, R^3 、 R^4 = H、3 - 1 -1 - 1)

化合物(2-2-4-2)1.79gを塩化メチレン30m1に懸濁し、氷冷下メタン スルホニルクロライド 0. 61 m 1、トリエチルアミン1. 38 m 1を加え、1時間攪拌 した。その後反応液に水を加え、クロロホルムで抽出、飽和食塩水で洗浄、無水硫酸マグ ネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、 クロロホルムで溶出し、無色の結晶を得た。これにヘキサンを加えて粉砕後濾取し、標記 化合物を無色の結晶として2.21g得た。融点129-130℃ 収率96%

[0164]

同様に(3-1-1-2)を合成した。

[0165]【表69】

No	\mathbb{R}^1	\mathbb{R}^2	NMR
3-1-1-1	TFMP	CHO	3.21(3H,s),5.58(2H,s), 7.88(2H,d,J=8.4Hz),8.01(2H,d, J=8.4Hz),10.14(1H,s)
3-1-1-2	モルホリ ンー4- イル	Me	2.01(3H,s),3.05(3H,s),3.38-3.41(2H,m),3.79- 3.82(2H,m), 5.16(2H,s)

[0166]

参考例11 B法(LG=C1)

 $3-クロロメチルー5-(4-クロロフェニル) -イソキサゾール (<math>R^1=4-C1-C_6$ H_4 , $R^2 = H$, $R^3 = H$, $R^4 = H$, 3 - 1 - 2 - 1)

[5-(4-クロローフェニル)ーイソキサゾールー3-イル]ーメタノール(2-1 -3) 1.73g、クロロホルム30mlの溶液に塩化チオニル2.1gを加え、氷冷下 ピリジン630mgとクロロホルム2m1の溶液を3分で滴下。室温で5時間攪拌した。 反応後減圧下溶媒を留去。残渣にクロロホルムと水を加えで抽出。有機層は水洗、無水硫 酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに 付し、酢酸エチル:ヘキサン(1:1)で溶出し、標記化合物を結晶として1.72g得 た。収率92%

[0167]

同様に (3-1-2-2) ~ (3-1-2-15) の化合物を合成した。

[0168]

【表70】

3-1-2-1 4-C 3-1-2-2 TF	Cl- C ₆ H ₄ -	H	H,H	4.64(2H,s),6.63(1H,s),7.46(2H,d,J=8.4
3-1-2-2 TF	MD		- - ,	
3-1-2-2 TF	N/ID			Hz),7.73(2H,d,J=8.4Hz)
1	IVIL	H	H,H	4.66(2H,s),6.45(1H,s),7.75(2H,d,J=9.0
				Hz),7.91(2H,d,J=9.0Hz)
3-1-2-3 TF	MP	Me	H,H	2.33(3H,s),4.65(2H,s),7.76(2H,d,J=8.7
]				Hz),7.85(2H,d,J=8.7Hz)
3-1-2-4 TF	MP	CHO	H,H	4.89(2H,s),7.87(2H,d,J=8.7Hz),8.03(2
				H,d,J=8.7Hz),10.17(1H,s)
3-1-2-5 TF	MP	Me	H,Et	1.15(3H,t,J=7.5Hz),2.30(2H,qd,J=7.5,
	I			7.5Hz),4.93(1H,t,J=6.6Hz),7.76(2H,t,
}				J=8.4Hz), 7.83(2H,d,J=8.4Hz)
3-1-2-6 TF	MP	Me	H,4-F-	2.14(3H,s),6.62(1H,s),7.07-
			C_6H_4 -	7.13(2H,m),7.50-7.55(2H,m),
				7.75(2H,d,J=8.4Hz),7.81(2H,d,J=8.4H
				z)
3-1-2-7 TF	MP	SPh	H,H	4.55(2H,s),7.13-
	İ			7.27(5H,m),7.73(2H,d,J=8.7Hz),8.25(
				2H,d,J=8.7Hz)
3-1-2-8 TF	MP	Bn	H,H	4.15(2H,s),4.41(2H,s),7.15-
				7.35(5H,m),7.71(2H,d,J=8.7Hz),7.78(
				2H,d,J=8.7Hz)
3-1-2-9 4-0	Cl-C ₆ H ₄ -	H	H,H	4.64(2H,s),6.63(1H,s),7.46(2H,d,J=8.4
				Hz),7.73(2H,d,J=8.4Hz)
3-1-2-10 4-0	Cl-C ₆ H ₄ -	Br	H,H	4.46(2H,s),7.50(2H,d,J=8.7Hz),7.99(2
				H.d,J=8.7Hz)
3-1-2-11 4-0	Cl-C ₆ H ₄ -	Et	H,H	1.28(3H,t,J=7.5Hz),2.72(2H,q,J=7.5H
	- 0 1	i		z),4.64(2H,s),7.47(2H,d,J=8.4Hz),7.65
				(2H,d,J=8.4Hz)
3-1-2-12 Br		Me	H,H	2.06(3H,s),4.56(2H,s)
3-1-2-13 ピ	リジン-	H	H,H	4.66(2H,s),6.85(1H,s),7.67(2H,d,J=6.0
1	イル			Hz),8.77(2H,d,J=6.0Hz)
3-1-2-14 M		I	H,H	2.49(3H,s),4.53(2H,s)
0-1-2-1-1	•	-		
3-1-2-15 Et	:	I	H,H	1.31(3H,t,J=7.5Hz),2.83(2H,q,J=7.5H
0-1-2-10	,	_		z)4.53(2H,s)

[0169]

参考例12

[3-クロロメチルー5-(4-トリフルオロメチルフェニル)ーイソキサゾールー4-[-1, 1]

[0170] 【化25】

3-クロロメチル-5-(4-トリフルオロメチルフェニル)ーイソキサゾール-4-出証特2004-3122706

カルバルデヒド(3-1-2-4)203mgとメタノール5mlの溶液に氷冷下、水素 化ホウ素ナトリウム21mgを加え室温にて2時間攪拌した。反応後減圧下溶媒を留去。 残渣に水を加えクロロホルムで抽出。飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後 、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキ サン(1:3)で溶出し、標記化合物を結晶として210mg得た。収率87%

[0171]【化26】

参考例13

第一工程 チオカルバモイル化

ジメチルチオカルバミン酸 2-フルオロー4-ホルミルフェニルエステル(R=3-F、 R^1 $^{7} = Me, 4-1-1$

3-フルオロー4-ヒドロキシベンズアルデヒド5.00g、N,N-ジメチルチオカル バモイルクロリド5. 29g、トリエチルアミン4.33g、N, N-ジメチルアミノピリ ジン436mg、ジオキサン50m1の混合物を3時間攪拌した。反応液に水を加え、酢 酸エチルで抽出した。有機層を水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、 減圧下溶媒を留去した。残渣をイソプロピルエーテルで洗浄し、標記化合物を褐色結晶と して7.05g得た。収率71%

 $^{1}\text{H-NMR}(\text{CDC1}_{3})$: 3.39(3H, s), 3.47(3H, s), 7.27(7.35(1H, m), 7.67(7.74(2H, m), 9.9) 7(1H, s).

[0172]

第2工程 Horner-Emmons 反応

3- (4-ジメチルチオカルバモイルオキシ-3-フルオロフェニル) アクリル酸 メチ ルエステル (R=3-F、 $R^{17}=Me$ 、5-1-1)

ジメチルチオカルバミン酸 2-フルオロー4-ホルミルフェニルエステル (4-1-1) 7.05g、ジメチルホスホノ酢酸メチル5.89g、塩化リチウム1.57g、ジ メチルホルムアミド70m1の混合物に1,8-ジアザビシクロ[5.4.0]ウンデカ -7-エン5.16gを加え、室温で2.5時間攪拌した。反応液に水を加えた後、酢酸 エチルで抽出した。有機層を水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減 圧下溶媒を留去した。残渣をイソプロピルエーテルで洗浄し、標記化合物を褐色結晶とし て7.50g得た。収率86%

 1 H-NMR(CDCl₃): 3.37(3H, s), 3.46(3H, s), 3.81(3H, s), 6.39(1H, d, J=15.9 Hz), 7. 12(1H, m), 7.30(7.35(2H, m), 7.63(1H, d, J=15.9Hz).

[0173]

第3工程 転位反応

3-(4-ジメチルカルバモイルスルファニル-3-フルオロフェニル)アクリル酸 メ チルエステル (R=3-F、 $R^{17}=Me$ 、6-1-1)

3-(4-ジメチルチオカルバモイルオキシ-3-フルオロフェニル) アクリル酸 メチ ルエステル (5-1-1) 7. 00gとジフェニルエーテルの混合物を265℃で30分 間攪拌した。反応液を室温に冷却後、シリカゲルクロマトに付し、クロロホルムで溶出し 、標記化合物を無色結晶として7.00g得た。収率100%

[0174]

同様に(6-1-2)~(6-1-17)を合成した。

[0175]

【表71】

No	R	\mathbb{R}^{17}	NMR
6-1-1	3-F	Me	3.04(3H,br),3.13(3H,br),3.82(3H,s),
			6.45(1H,d,J=16.2Hz),7.26-7.31(2H,m),
			7.48-7.53(1H, m), 7.64(1H, d, J=16.2 Hz)
0.1.0	3-OMe	Me	2.95-3.20(6H,m),3.82(3H,s),3.90(3H,s),
6-1-2	3-Ome	1416	6.45(1H,d,J=15.9Hz),6.95-7.18(2H,m),
			7.48(1H,d,J=7.8Hz), 7.67(1H, d, J=16.2 Hz)
	0.01	Me	2.96-3.18(6H,m),3.80(3H,s),3.89(3H,s),
6-1-3	2-OMe	Me	6.53(1H,d,J=16.2Hz),7.06-7.13(2H,m),
			7.49(1H,d,J=8.1Hz), 7.96(1H, d, J=16.2 Hz)
	O.D. F.OM	Me	2.90-3.30(6H,m),3.82(3H,s),3.89(3H,s),
6-1-4	3-Br, 5-OMe	Ivie	6.45(1H,d,J=15.9Hz),7.26(1H,brs),
		1	7.48(1H,brs),7.59(1H, d, J=15.9 Hz)
		3.5	2.90-3.20(6H,m),3.79(3H,s),3.88(6H,s),
6-1-5	2-OMe, 6-	Me	6.73(2H,s) 6.88(1H, d, J=16.2 Hz),
	OMe	ļ	8.08(1H, d, J=16.2 Hz)
			1.34(3H,t,J=6.9Hz),1.43(3H,t,J=6.6Hz),2.90
6-1-6	3-OEt	Me	1.34(3H,t,J=6.9Hz),1.45(5H,t,J=6.0Hz)
			3.30(6H,m),4.12(2H,q,J=6.9Hz),
			4.27(2H,q,J=7.2Hz),6.43(1H,d,J=15.9Hz)
			7.04(1H,d,J=1.5Hz),7.12(1H,dd,J=7.8Hz,1.8
			Hz),7.48(1H,d,J=7.8Hz)
			7.64(1H, d, J=15.9 Hz)
6-1-7	3-Br	Me	2.95-3.23(6H,m),3.81(3H,s),
			6.45(1H,d,J=15.9Hz),7.45(1H,dd,J=8.1Hz,2
		1	1Hz),7.60(1H,d,J=16.2Hz),
			7.6(1H,d,J=8.1Hz), 7.81(1H,J=2.1Hz)
6-1-8	3,5-diBr	Me	2.80-3.20(6H,m),3.74(3H,s),
		ļ	6.90(1H,d,J=15.9Hz),7.60(1H,d,J=15.9Hz),
			8.21(2H,s)
6-1-9	3Cl,5OMe	Me	2.90-3.30(6H,m),3.82(3H,s),3.90(3H,s),
			6.45(1H,d,J=16.2Hz),6.96(1H,d,J=1.5Hz),7.
			31(1H,d,J=1.5Hz), 7.60(1H, d, J=16.2Hz)
6-1-10	3-OMe, 5-	Me	2.85-3.35(6H,m),3.82(3H,s),
0-1-10	OMe		3.89(6H,s),6.46(1H,d,J=15.9Hz)
	02.20		6.76(2H,s),7.66(1H, d, J=15.9Hz)
6-1-11	2-Cl	Me	2.90-3.20(6H,m),3.82(3H,s),
0-1-11	201		6.44(1H.d.J=15.9Hz),7.36-7.60(2H,m),
			7.60(1H,d,J=8.1Hz), 8.06(1H,J=16.2 Hz)
6-1-12	3-Br, 5-OEt	Me	1.42(3H,t,J=7.2Hz),2.85-3.35(6H,m),
0-1-12	0-11, 0-010		3.01(3H.s),4.10(2H,q,J=7.2Hz),
			6.43(1H,d,J=15.9Hz),6.97(1H,brs),
			7.46(1H,brs), 7.57 (1H, d, J=15.9 Hz)
C 1 12	2-F	Me	2.95-3.15(6H,m),3.82(3H,s),
6-1-13	2-1 '	1416	6.55(1H,d,J=16.5Hz),7.26-7.33(2H,m),
1			7.52(1H,d,J=7.8Hz), 7.79(1H,J=16.2 Hz)
	0.34	NAG	2.43(3H,s),3.04(3H,br),3.09(3H,br), 3.81(3l
6-1-14	2-Me	Me	s),6.37(1H,d,J=15.9Hz),7.33-7.35(2H,m),
			7.54(1H,d,J=8.7Hz),7.94(1Hm,d,J=15.9Hz)
1			1.04(111,0,0=8.1112),1.04(111111,0,0=10.0112)

[0176]

【表72】

6-1-15	H	Me	3.06(6H,br),3.81(3H,s),6.45(1H,d,J=15.9Hz), 7.51(4H,brs),7.68(1H,d,J=15.9Hz)
6-1-16	2-Me, 3-OMe	Me	3.02(3H,Br),3.12(3H,Br),3.82(3H,s),3.88(3H,s),6.37(1H,d,J=15.9Hz),7.07(1H,s),7.32(1H,s),7.92(1H,d,J=15.9Hz)
6-1-17	3-Cl	Me	3.05(3H,br),3.13(3H,br),3.81(3H,s),6.45(1H,d,J=15.9Hz),7.40(1H,dd,J=1.8Hz,8.1Hz),7.5 8-7.63(3H,m)

[0177]参考例14(5-ヒドロキシインドール-1-イル)酢酸メチルエステル 【化47】

第1工程

(5-ベンジルオキシインドール-1-イル) 酢酸メチルエステル

5-ベンジルオキシインドール 4 4 6 m g のジメチルホルムアミド 5 m 1 溶液に氷冷下水 素化ナトリウム88mgを加え、室温で3時間撹拌した。反応液を氷冷し、ブロモ酢酸メ チル228mlを加え1時間30分間撹拌した。反応液に2規定塩酸、水を加え酢酸エチ ルで抽出した。有機層を水、飽和食塩水で順次洗浄後、硫酸マグネシウムで乾燥し、減圧 下溶媒を留去した。得られた残渣をシリカゲルクロマト(酢酸エチル:ヘキサン(1:4)で溶出)精製し、標記化合物を400mg得た。収率68%。

 $^{1}\text{H-NMR}$ (CDC1₃) δ : 3.74(3H,s), 4.82(2H,s), 5.10(2H,s), 6.47(1H,dd,J=0.6,3.3Hz), 6.94-7.50 (10H, m).

第2工程

(5-ヒドロキシインドール-1-イル) 酢酸メチルエステル

(5-ベンジルオキシインドール-1-イル) 酢酸メチルエステル400mgのテトラヒ ドロフラン5m1-メタノール5m1溶液に10%パラジウム炭素120mgを加え水素 雰囲気下室温で3時間撹拌した。反応液を濾過し、減圧下溶媒を留去した。得られた残渣 をシリカゲルクロマト(酢酸エチル:ヘキサン(2:3)で溶出)精製し、標記化合物を 256mg得た。収率92%。

 $^{1}\text{H-NMR}$ (CDC1₃) δ : 3.74(3H,s), 4.49(1H,s), 4.82(2H,s), 6.44(1H,d,J=3.0Hz), $9\,(1\text{H},\,dd,\,J=2.\,7,\,9.\,0\text{Hz})\,,\ \ 7.\,04\,(1\text{H},\,d,\,J=2.\,7\text{Hz})\,,\ \ 7.\,06\,(1\text{H},\,d,\,J=3.\,0\text{Hz})\,,\ \ 7.\,10\,(1\text{H},\,d,\,J=9.\,0\text{Hz})$

[0178]

参考例15

(5-ジメチルカルバモイルスルファニルインドール-1-イル) 酢酸メチルエステル 【化48】

$$\begin{array}{c} \text{Me}_2\text{NCOCI} \\ \text{Et}_3\text{N, DMAP} \\ \text{CO}_2\text{Me} \end{array} \begin{array}{c} \text{N} \\ \text{CO}_2\text{Me} \end{array}$$

(5-ジメチルチオカルバモイルオキシインドール-1-イル) 酢酸メチルエステル

(5-ヒドロキシインドール-1-イル) 酢酸メチルエステル724mg、N, N-ジメチ ルチオカルバモイルクロリド523mg、トリエチルアミン0.59ml、N, N-ジメチ ルアミノピリジン43mg、ジオキサン7m1の混合物を3時間30分間攪拌した。反応 液に水を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄、硫酸マグネ シウムで乾燥後、減圧下溶媒を留去した。残渣をイソプロピルエーテルーメタノールで洗 浄し、標記化合物を褐色結晶として443mg得た。収率43%

 1 H-NMR (CDCl₃) δ : 3.37(3H,s), 3.48(3H,s), 3.75(3H,s), 4.84(2H,s), 6.55(1H,d,J= 3.3Hz), 6.95(1H, dd, J=2.4, 9.0Hz), 7.12(1H, d, J=3.3Hz), 7.23(1H, d, J=9.0Hz), 7.29(1H, d, J=9.0Hz)H, d, J=2.4Hz).

第2工程

(5-ジメチルカルバモイルスルファニルインドール-1-イル) 酢酸メチルエステル (5-ジメチルチオカルバモイルオキシインドール-1-イル) 酢酸メチルエステル21 4 mgとジフェニルエーテル3 m1の混合物を270℃で5時間攪拌した。反応液を室温 に冷却後、シリカゲルクロマト(酢酸エチル:ヘキサン(1:3)で溶出)に付し標記化 合物を139mg得た。収率65%

 1 H-NMR (CDC1₃) δ : 3.07(6H,s), 3.73(3H,s), 4.85(2H,s), 6.55(1H,d,J=3.3Hz), 7.1 0(1H, d, J=3.3Hz), 7.08-7.35(2H, m), 7.78(1H, d, J=1.5Hz).

[0179]

参考例 1 6

2- (4-ジメチルカルバモイルスルファニルフェニル) チオフェン-3-カルボン酸メ チルエステル

【化49】

第1工程

2- (4-ニトロフェニル)チオフェン-3-カルボン酸メチルエステル

4-ブロモニトロベンゼン3. 49g、チオフェン-3-カルボン酸メチルエステル3.

44g、テトラキストリフェニルホスフィンパラジウム1.0、酢酸カリウム2.54g 、トルエン35mlの混合物を60時間加熱還流した。反応液に水を加え酢酸エチルで抽 出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去し た。得られた残渣をシリカゲルクロマト後(酢酸エチル:ヘキサン(1:6)で溶出)標 記化合物を2.78g得た。収率61%。

 $^{1}\text{H-NMR}$ (CDC1₃) δ : 3.77(3H,s), 7.37(1H,d,J=5.4Hz), 7.56(1H,d,J=5.4Hz), 7.67(2H) , d, J=9.0Hz), 8.26(2H, d, J=9.0Hz).

第2工程

2- (4-アミノフェニル)チオフェン-3-カルボン酸メチルエステル

鉄318mg、2規定塩酸95ml、2-(4-ニトロフェニル) チオフェン-3-カル ボン酸メチルエステル250mg、エタノール4.8ml-水1.2mlの混合物を15 分間加熱還流した。反応液を冷却後濾過し減圧下濃縮した。得られた残渣をシリカゲルク ロマト後(酢酸エチル:ヘキサン(1:2)で溶出)標記化合物を213mg得た。収率

 1 H-NMR (CDC1₃) δ : 3.75(3H,s), 4.23(2H,brs), 6.73(2H,d,J=8.7Hz), 7.15(1H,d,J=5. 4Hz), 7.33(2H, d, J=8.7Hz), 7.46(1H, d, J=5.4Hz).

第3工程 2- (4-ヒドロキシフェニル)チオフェン-3-カルボン酸メチルエステル

2- (4-アミノフェニル) チオフェン-3-カルボン酸メチルエステル790mgの水 90m1-濃硫酸5.3m1懸濁液を-4℃に冷却し、亜硝酸ナトリウム237mgの水 溶液2.5mlを5分間で滴下した。-4℃で40分間撹拌後、硝酸銅(II) 3.77g の水溶液15m1、

酸化銅(I) 822mgを加え同温度で20分、室温で45分間撹拌した。反応液に水を 加え酢

酸エチルで抽出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下 溶媒を留去した。得られた残渣をシリカゲルクロマト後(酢酸エチル:ヘキサン(1:3) で溶出) 標記化合物を363mg得た。収率46%。

 1 H-NMR (CDCl₃) δ : 3.76(3H,s), 4.49(1H,brs), 6.84(2H,d,J=8.4Hz), 7.19(1H,d,J=5. 7Hz), 7.39(2H, d, J=8.4Hz), 7.48(1H, d, J=5.7Hz).

第4工程

2- (4-ジメチルチオカルバモイルオキシフェニル)チオフェン-3-カルボン酸メチ ルエステル

2- (4-ヒドロキシフェニル) チオフェン-3-カルボン酸メチルエステル530mg 、N, N-ジメチルチオカルバモイルクロリド336mg、トリエチルアミン0. 38m1 、N, N-ジメチルアミノピリジン28mg、ジオキサン6m1の混合物を5時間攪拌した 。反応液に水を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄、硫酸 マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をイソプロピルエーテルーメタノー ルで洗浄し、標記化合物を褐色結晶として632mg得た。収率87%。

 1 H-NMR (CDC1₃) δ : 3.36(3H,s), 3.48(3H,s), 3.74(3H,s), 7.11(2H,d,J=8.7Hz), 7.24 (1H, d, J=5.4Hz), 7.50(1H, d, J=5.4Hz), 7.51(2H, d, J=8.7Hz).

第5工程

2- (4-ジメチルカルバモイルスルファニルフェニル) チオフェン-3-カルボン酸メ チルエステル

2- (4-ジメチルチオカルバモイルオキシフェニル)チオフェン-3-カルボン酸メチ ルエステル660mgとジフェニルエーテル6mlの混合物を270℃で1時間30分間 攪拌した。反応液を室温に冷却後、シリカゲルクロマト(酢酸エチル:ヘキサン(1:4) で溶出) に付し標記化合物を601mg得た。収率91%

 $^{1}\text{H-NMR}$ (CDC1₃) δ : 3.06(6H,brs), 3.74(3H,s), 7.25-7.55(6H,m).

【実施例1】

[0180]

 $(\alpha-1$ 法)

【化27】

{2-メチル-4-[5-(4-トリフルオロメチルフェニル) ーイソキサゾール-3 -イルメトキシ] -フェノキシ - 一酢酸メチルエステル(R^1 = $TFMP、<math>R^2$ = R^3 = R^4 = H , R = 2 - M e , $R^{17} = M e$, $\alpha - 1 - 1$)

[5-(4-トリフルオロメチルフェニル) ーイソキサゾールー3ーイル] メタノール (2-1-1) 243 mg、トリフェニルホスフィン266 mg、4-(クロロスルホニルーフェノキシ) ー酢酸メチルエステル176 mgとテトラヒドロフラン8 mlに氷冷下1,1'-(アゾジカルボニル) ジピペリジン252 mgを加え、ついで室温で20時間 攪拌した。反応液にクロロホルムと水を加え有機層を分離。無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン (1:2) で溶出し、標記化合物を無色結晶として270 mg(収率64%)得た。収率64

これを酢酸エチルーへキサンの混合溶媒で再結晶すると融点107-109℃の結晶が 得られた。

【実施例2】

[0181]

(α-2法)

【化28】

 $\{2-$ メチルー4-[5-(4-トリフルオロメチルフェニル) ーイソキサゾールー 3-イルメチルスルファニル] ーフェノキシ $\}$ 一酢酸エチルエステル $\{R^1=TFMP,R^2=R^3=R^4=H,R=2-Me,R^9=R^{10}=H,R^{17}=Et,\alpha-2-1\}$

3-クロロメチルー5-(4-トリフルオロメチルフェニル)ーイソキサゾール(3-1-2-1)277 mg、(4-メルカプトー2-メチルーフェノキシ)ー酢酸エチルエステル255 mgをアセトニトリル5 m1に溶解し、炭酸セシウム740 mgを加え、80℃で2時間加熱攪拌した。アセトニトリルを留去後、水を加え、クロロホルムで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:6)で溶出し、無色の結晶を得た。これをエーテルー石油エーテルから再結晶し、標記化合物を無色の結晶として358 mg得た。融点63-640 収率75%

【実施例3】

[0182]

 $(\alpha - 3 法)$

【化29】

Hal = Br, I

[2-メチルー4-[4-(4-トリフルオロメチルベンジル) -5-(4-トリフルオロメチルフェニル) イソキサゾール-3-イルメチルスルファニル] フェノキシ] 酢酸エチルエステル(Hal=Br、 $R^1=TFMP$ 、 $R^2=4-トリフルオロメチルベンジル、<math>\alpha-3-8$)

亜鉛111mgをテトラヒドロフラン2m1に懸濁し、1,2-ジブロモエタン16m

gを加えて5分間、クロロトリメチルシラン9mgを加えて5分間攪拌した。反応液にp ートリフルオロメチルベンジルブロミド297mgを加え、30分間還流した。室温に冷 却後、[4-[4-ブロモ-5-(4-トリフルオロメチルフェニル) イソキサゾールー 3-イルメチルスルファニル]-2-メチルフェノキシ]酢酸エチルエステル($\alpha-2-$ 22)300mg、酢酸パラジウム6mg、トリシクロヘキシルホスフィン16mgを加 え45分間還流した。反応液に水を加え、酢酸エチルで抽出、水および飽和食塩水で洗浄 、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルクロマトに付し 、酢酸エチル:ヘキサン(1:9)で溶出し、標記化合物を無色結晶として239mg得 た。収率68%

【実施例4】

[0183]

 $(\alpha - 4 法)$

【化30】

OHC
$$R^{1}$$
 N R^{2} R^{1} N R^{2} R^{1} N N

{4-[4-ブチルアミノメチルー5-(4-トリフルオロメチルフェニル)ーイソキ サゾール-3-イルメチルスルファニル] -2-メチル-フェノキシ - 酢酸 t e r t -ブチルエステル $(R^1 = TFMP, R^2 = CH_2NHnBu, R^{17} = tBu, \alpha - 4 - 1)$

化合物 $(\alpha-2-16)$ 238 mg、n-ブチルアミン43 mgをメタノール6 mlに 溶解し、室温下26時間攪拌した後、水素化ホウ素ナトリウム36mgを加え1時間攪拌 した。反応液に水を加え、クロロホルムで抽出、飽和食塩水で洗浄、無水硫酸マグネシウ ムで乾燥後、減圧下溶媒を留去した。得られた残渣をアルミナクロマトに付し、酢酸エチ ル:ヘキサン(1:6)で溶出し、標記化合物を無色の油状物として225mg得た。収 率 8 5 %

[0184]

同様に {2-メチル-4-[4-モルホリン-4-イルメチル-5-(4-トリフルオ ロメチルフェニル) ーイソキサゾールー3ーイルメチルスルファニル] ーフェノキシ ー 酢酸エチルエステル $(\alpha-4-2)$ を得た。

【実施例5】

[0185]

(a - 5 法)

【化31】

{4-[4-メトキシメチル-5-(4-トリフルオロメチルフェニル)ーイソキサゾ -ル-3-イルメトキシ] -2-メチルーフェノキシ - 酢酸 $(\alpha-5-1)$

{4-[4-ヒドロキシメチル-5-(4-トリフルオロメチルフェニル)ーイソキサ ゾールー3ーイルメトキシ] -2-メチルーフェノキシ - 酢酸エチルエステル (α-2

-11) 210mgのテトラヒドロフラン3ml溶液に水素化ナトリウム19mgを加え 室温で30分間攪拌した。反応液にヨウ化メチル90mgのテトラヒドロフラン0.5m 1溶液を加え、更に16時間攪拌した。その後、氷冷水下、1M水酸化ナトリウム溶液を 1. 5 m l 加え、室温で5時間攪拌した。反応溶液に氷、希塩酸を加え中和し酢酸エチル で抽出した。有機層は食塩水で洗浄、無水硫酸マグネシウムで乾燥、溶媒を減圧留去した 。残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(2:1)で溶出し、標記化 合物を無色結晶として175mg得た。収率86%。これを酢酸エチルーイソプロピルエ ーテルの混合溶媒で再結晶し、結晶を得た。

【実施例6】

[0186]

(a-6法)

【化32】

第1工程 アルキル化

(3-(4-ベンジルオキシー3-メチルーフェニル) -2-[4-メチルー5-(4-メチルー5-(4-メチルーケー)] - (4-メチルー5-(4-メチルーケー)] - (4-メチルー5-(4-メチルーケー)] - (4-メチルーケー) - (4-メチルケー) - (4-メチルーケー) - (4-メチルーケー) -ートリフルオロメチルフェニル)-イソキサゾール-3-イルメチル]-3-オキソープ ロピオン酸エチルエステル $(\alpha-6-1-1)$

氷冷下テトラヒドロフラン 7 m 1 に水素化ナトリウム 4 8 m g を加え、次いで 3 ー (4 -ベンジルオキシ-3-メチル-フェニル)-3-オキソ-プロピオン酸エチルエステル 375mgのテトラヒドロフラン溶液6mlを15分間で滴下した。室温に戻し3ークロ ロメチルー3ーメチルー5ー(4ートリフルオロメチルフェニル)ーイソキサゾール(3 -1-2-2) 276mg、ヨウ化カリウム187mgを加え、17時間加熱還流した。 冷却後、酢酸エチルで抽出。無水硫酸マグネシウムで乾燥、溶媒を減圧留去後、残渣をシ リカゲルクロマトに付し、酢酸エチル:ヘキサン(1:2)で溶出し、標記化合物を無色 油状物として530mg得た。収率96%

第2工程 脱炭酸

1-(4-ヒドロキシー3-メチルーフェニル) <math>-3-[4-メチルー5-(4-トリフルオロメチルフェニル) ーイソキサゾールー3ーイル] ープロパンー1ーオン (α-6 -2-1)

上記で得られたエステル($\alpha-6-1-1$) 5 3 0 m g に酢酸 4 m l 、濃塩酸 1. 2 m 1を加え6時間加熱還流した。冷却後氷冷水に注ぎアンモニア水で中和、酢酸エチルを加 え抽出した。有機層は食塩水で洗浄、無水硫酸マグネシウムで乾燥、溶媒を減圧留去した 。残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:2)で溶出し、標記化 合物を無色結晶として210mg得た。収率58%。これを酢酸エチルーへキサンの混合 溶媒で再結晶し、結晶を得た。

 $^{1}\,\mathrm{HNMR}\,(\mathrm{CDC1_{3}}\,)\,:\,2.\,\,26\,(3\mathrm{H,\,s})\,,\,2.\,\,27\,(3\mathrm{H,\,s})\,,\,3.\,\,07\,(2\mathrm{H,\,t,\,J=}7.\,\,8\mathrm{Hz})\,,\,3.\,\,48\,(2\mathrm{H,\,t,\,J=}7.\,\,8\mathrm{Hz})\,,\,6.\,\,81\,(1\mathrm{Hz})\,,\,1.\,\,1.$, d, J=8.4Hz), 7.74-7.85(6H, m).

第3工程 アルキル化

(2-メチル-4- {3-[4-メチル-5-(4-トリフルオロメチルフェニル)-イ ソキサゾールー3ーイル]ープロピオニル ーフェノキシ)一酢酸メチルエステル (αー 6 - 3 - 1

上記で得られたフェノール化合物 ($\alpha-6-2-1$) 130 mgとジメチルホルムアミ ド3m1の溶液にブロモ酢酸メチルエステル55mg、炭酸カリウム50mg、ヨウ化カ リウム9mgを加えた後、室温で7時間攪拌した。その後氷冷水に注ぎクロロホルムで抽 出した。有機層は食塩水で洗浄、無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。残 渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:2)で溶出し、標記化合物 を結晶として140mg得た。収率93%。これを酢酸エチルーイソプロピルエーテルの 混合溶媒で再結晶し、結晶を得た。

第4工程 加水分解

(2-メチルー4- ${3-[4-$ メチルー5-(4-トリフルオロメチルフェニル)ーイ ソキサゾールー3ーイル] ープロピオニル $\}$ ーフェノキシ) ー酢酸 $(\alpha - 6 - 4 - 1)$

上記エステル $(\alpha-6-3-1)$ 130mgをテトラヒドロフラン4.5mlに溶解さ せた後、1 M水酸化リチウム水溶液 0. 5 7 m l を加え室温で l 時間攪拌した。次いで氷 冷水下、1 M塩酸にて中和した。減圧下溶媒を濃縮し、残留液を水で希釈し、氷冷下析出 した結晶を濾取して標記化合物を110mg得た。収率87%。これを酢酸エチルーイソ プロピルエーテルの混合溶媒で再結晶し、結晶を得た。

【実施例7】

[0187]

(.α-7法)

【化33】

「2-メチル-4- [4-メチル-5- (4-トリフルオロメチルフェニル) イソキサゾ ールー3ーイルメチルスルファニル]フェニル]アセトニトリル($R=CF_3$ 、 $X^1=S$ 、 $X^2 = C H_2, \quad \alpha - 7 - 1 - 1$

3-クロロメチルー4-メチルー5-(4-トリフルオロメチルフェニル)イソキサゾ

ール (3-1-2-3) 225mg、(4-メルカプト-2-メチルフェニル) アセトニ トリル140mg、炭酸セシウム585mg、アセトニトリル5mlの混合物を室温で2 0時間攪拌した。反応液に水を加えた後、酢酸エチルで抽出、水および飽和食塩水で洗浄 、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルクロマトに付し 、トルエン:酢酸エチル(95:5)で溶出し、標記化合物を黄色結晶として300mg 得た。収率92%

¹H-NMR(CDCl₃): 2.29(3H, s), 2.31(3H, s), 3.63(2H, s), 4.14(2H, s), 7.26-7.28(3H, m), 7.74(2H, d, J=8.4 Hz), 7.82(2H, d, J=8.4 Hz)

[0188]

同様の方法で、 [2-メチル-4-[4-メチル-5-(4-トリフルオロメチルフェ ニル) イソキサゾールー3ーイルメトキシ] フェニル] アセトニトリル (α-7-1-2 、 X^1 =O)を得た。収率88%、Rf=0.25(メルク社シリカゲルプレート、酢酸 エチル:ヘキサン=1:3で展開)。

[0189]

第2工程

N-ヒドロキシー2-[2-メチルー4-[4-メチルー5-(4ートリフルオロメチルフェニル) イソキサゾールー3-イルメチルスルファニル] フェニル] アセトアミジン($\alpha - 7 - 2 - 1$

[2-メチル-4-[4-メチル-5-(4-トリフルオロメチルフェニル) イソキサ ゾールー3ーイルメチルスルファニル]フェニル]アセトニトリル(αー7ー1ー1)3 00mg、ヒドロキシルアミン塩酸塩259mg、28%ナトリウムメトキシド 0.7 6 m l 、メタノール 1 0 m l の混合物を 2 0 時間還流した。減圧下溶媒を留去した後、残 渣に水を加えた。酢酸エチルで抽出、水および飽和食塩水で洗浄、硫酸マグネシウムで乾 燥後、減圧下溶媒を留去した。標記化合物を無色結晶として299mg得た。収率92%

[0190]

同様の方法で、N-ヒドロキシー2- [2-メチルー4- [4-メチルー5- (4-ト リフルオロメチルフェニル) イソキサゾールー3ーイルメトキシ] フェニル] アセトアミ ジン $(\alpha-7-2-2$ 、 $X^1=0$)を得た。収率 5 7%

[0191]

第3工程

3-[2-メチルー4-[4-メチルー5-(4-トリフルオロメチルフェニル) イソキサゾールー3ーイルメチルスルファニル]ベンジル]ー4H-[1,2,4]オキサジア ゾール-5-オン $(\alpha-7-3-1)$

N-ヒドロキシー2-[2-メチルー4-[4-メチルー5-(4ートリフルオロメチルフェニル) イソキサゾールー3ーイルメチルスルファニル] フェニル] アセトアミジン $(\alpha - 7 - 2 - 1)$ 299mg、1, 1' ーカルボニルジイミダゾール123mg、1, 8-ジアザビシクロ[5, 4, 0]ウンデセー7-エン419 mg、テトラヒドロフラン 10m1の混合物を室温で1時間攪拌した。反応液に水を加え、1M)塩酸で中和した。 酢酸エチルで抽出、水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒 を留去した。残渣をシリカゲルクロマトに付し、トルエン:酢酸エチル(95:5)で溶 出した。得られた粗物をアセトンより再結晶し標記化合物を無色結晶として133mg得 た。収率42%

【実施例8】

[0192]

(α-7法)

3- {2-メチル-4-[4-メチル-5-(4-トリフルオロメチルフェニル)-イソ キサゾール-3-イルメトキシ] -ベンジル -4 H-[1, 2, 4] オキサジアジンー $5-オン (\alpha-7-4-1)$

N-ヒドロキシー2-[2-メチルー4-[4-メチルー5-(4ートリフルオロメチルフェニル) イソキサゾールー3ーイルメタノール] フェニル] アセトアミジン (α-7

-2-2) 100 mg、メチルブロモアセテート 55 mg、炭酸セシウム 155 mg、ジメチルホルムアミド 3 m 1 の混合物を室温で 20 時間、100 \mathbb{C} で 1 時間攪拌した。反応液に水を加えた後、エーテルで抽出、水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥した。減圧下溶媒を留去した後、残渣をシリカゲルクロマトに付し、クロロホルム:アセトニトリル(95:5)で溶出し標記化合物を黄色結晶として 40 mg 得た。収率 37

【実施例9】

[0193]

(a-8法)

【化34】

 $3-\{2-メチルー4-[4-メチルー5-(4-トリフルオロメチルフェニル) イソキサゾールー3ーイルメトキシ] フェニル アクリル酸 メチルエステル <math>(R^1=TFMP,\ R^2=Me,\ R^3=R^4=H,\ R=2-Me,\ R^{17}=Me,\ \alpha-8-10)$

【実施例10】

[0194]

(α-9法)

 $3-\{3-\text{メトキシ-}4-[4-\text{メチル-}5-(4-\text{トリフルオロメチルフェニル}) イソキサゾールー<math>3-\text{イルメチルスルファニル}]$ フェニル アクリル酸メチルエステル (R 1 =TFMP, R^2 =Me, R^3 = R^4 =H, R = 3-OMe, R^{17} = Me、 $\alpha-9-8$)

3-(4-i)メチルカルバモイルスルファニルー3-メトキシフェニル)アクリル酸メチルエステル(6-1-2)224 mg、1 mol/Lナトリウムメトキシドメタノール溶液 1. 3 mLの混合物を 2 時間還流後、氷冷下に 1 M塩酸にて中和した。酢酸エチルで抽出後、有機層は食塩水で洗浄、無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた残査をアセトニトリル4 mLに溶解し、3-クロロメチルー4-メチルー5-(4-トリフルオロメチルフェニル)イソキサゾール(3-1-2-3) 209 mg、炭酸セシウム 296 mgを加え、室温で 2 時間攪拌した。反応液に水を加えた後、酢酸エチルで抽出、水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルクロマトに付し、クロロホルムで溶出し、標記化合物を無色結晶とし

て227mg得た。収率65%

【実施例11】

[0195]

(a-10法)

【化36】

第1工程 アルキル化

3-(4-ブロモ-2-フルオロフェノキシメチル)-4-メチル-5-(4-トリフ ルオロメチルフェニル) イソキサゾール (R^1 =TFMP, R^2 =Me, R^3 = R^4 =H, R = 2-F, X = 0、 $\alpha - 1 \ 0 - 1 - 1$

3-クロロメチルー4ーメチルー5ー(トリフルオロメチルフェニル)イソキサゾール (3-1-2-3) 1. 5g、4-プロモー2-フルオロフェノール1. 25g、炭酸セ シウム2.13g、アセトニトリル20mlの混合物を75度で11時間攪拌した。反応 液に水を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄、硫酸マグネ シウムで乾燥後、減圧下溶媒を留去した。残渣をn-ヘキサンで洗浄し、標記化合物を結 晶として1. 82g得た。収率78%

[0196]

同様に $(\alpha-10-1-2)$ ~ $(\alpha-10-1-5)$ を合成した。

[0197]

【表73】

No.	R	X	NMR
α-10-1-1	2-F	О	2.35(3H,s),5.25(2H,s),7.00-7.30(3H,m), 7.76(2H,d,J=8.1Hz), 7.84(2H,d,J=8.1Hz)
α-10-1-2	H	0	2.28(3H,s),4.12(2H,s),7.25-7.45(4H,m), 7.74(2H,d,J=8.4Hz),7.82(2H,d,J=8.4Hz)
α-10-1-3	3,5-diF	0	7.76(2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz)
α-10-1-4	3-CF ₃	S	2.29(3H,s),4.17(2H,s),7.51(2H,d,J=8.4Hz), 7.62(1H,dd,J=8.4Hz,2.1Hz),7.74(2H,d,J=8.4Hz), 7.77(1H,d,J=2.1Hz),7.81(2H,d,J=8.4Hz)
α-10-1-5	2-CF ₃	S	2.29(3H,s),4.16(2H,s),7.43(1H,dd,J=8.4Hz,2.4Hz), 7.62(1H,d,J=8.4Hz),7.65(1H,d,J=2.4Hz), 7.74(2H,d,J=8.7Hz),7.81(2H,d,J=8.7Hz)

[0198]

第2工程 Heck 反応

3-{3-7ルオロ-4-[4-メチル-5-(4-トリフルオロメチルフェニル)イ ソキサゾールー3ーイルメトキシ] フェニル アクリル酸メチルエステル $(R^1=TFMP, R^2)$ =Me, $R^3 = R^4 = H$, R = 3-F, X = 0, $R^{17} = Me$, $\alpha - 1 \cdot 0 - 2 - 1$)

3-(4-ブロモ-2-フルオロフェノキシメチル)-4-メチル-5-(4-トリフ ルオロメチルフェニル) イソキサゾール (α-10-1-1) 0.35g、アクリル酸メ チル1.06g、酢酸パラジウム(II)37mg、トリエチルアミン0.16g、トリフェ ニルホスフィン8

 $6 \, \mathrm{mg}$ 、ジメチルホルムアミド $2 \, \mathrm{ml}$ の混合物をアルゴン気流中 $1 \, 0 \, 0$ 度で $1 \, 1$ 時間攪拌した。 反応液に水を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー $(n-\wedge + + \nu / m + \nu)$ により精製し、標記化合物を結晶として $0.3 \, 3 \, g$ 得た。収率 $9 \, 2 \, \%$

【0199】 (α-11法) 【化50】

$$R^{5}$$
 R^{20} R^{2} R^{2} R^{2} R^{3} R^{4} R^{2} R^{3} R^{4} R^{2} R^{3} R^{4} R^{5} R^{2} R^{3} R^{4} R^{5} $R^{$

 $\{5-[4-メチル-5-(4-トリフルオロメチルフェニル) イソキサゾールー3ーイルメトキシ] インドールー<math>1-イル\}$ 酢酸メチルエステル($R^1=TFMP$, $R^2=Me$, $R^3=R^4=R^5=R^7=R^8=R^20=R^21=H$,a-11-1)

(5ーヒドロキシインドールー 1ーイル)酢酸メチルエステル 2 0 0 m g の アセトニトリル 5 m 1 溶液に 3 ークロロメチルー 4 ーメチルー 5 ー (4 ートリフルオロメチルフェニル)ーイソキサゾール 2 2 4 m g および炭酸セシウム 3 1 8 m g を加え、室温で 1 5 時間、6 0 $\mathbb C$ で 1 時間 3 0 分間撹拌した。反応液を濾過し、ろ液を減圧下留去した。得られた残渣をシリカゲルクロマト後(酢酸エチル:ヘキサン(1:4)で溶出)標記化合物を 2 4 3 m g 得た。収率 6 7 %。

【0200】 (α-12法) 【化51】

 $2-\{4-[4-x + N-5-(4-y - N)]$ フェニル) イソキサゾールー 3-4 - イルメチルスルファニル] フェニル $\{1,2,3\}$ チオフェンー $\{1,2\}$ - カルボン酸メチルエステル($\{1,2\}$ - TFMP, $\{1,2\}$ - Me, $\{1,2\}$ - R³ = R⁴ = R⁵ = R⁶ = R⁷ = R⁸ = H, a-12-1)

2-(4-i)メチルカルバモイルスルファニルフェニル)チオフェン-3-iカルボン酸メチルエステル321mgのメタノール7m1溶液に1規定ナトリウムメトキシド溶液(メタノール溶液)1.5m1を加え3時間加熱還流した。反応液を冷却後2規定塩酸と氷水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣249mgのアセトニトリル5m1溶液に3-i0ロメチル-4-i2チル-5-(4-i1カリフルオロメチルフェニル)-41カナゾール28mg3よび炭酸セシウム323mg5加え、室温で35時間撹拌した。反応液を濾過し、ろ液を減圧下留去した。得られた残渣を酢酸エチル-41カウス合溶媒で再結晶し、標記化合物を349mg4待た。収率52%。

【実施例12】 【0201】

(β-1法)

【化37】

 $\{2-$ メチルー4-[5-(4-トリフルオロメチルフェニル) ーイソキサゾールー3-イルメチルスルファニル] ーフェノキシ $\}$ 一酢酸($R^1=$ TFMP、 $R^2=R^3=R^4=R^9=R^{10}=$ H、R=2-Me、 $X^1=$ S、 $\beta-1-2$)

 $\{2-x+\nu-4-[5-(4-\nu)]$ アルオロメチルフェニル) -4 アンキサゾールー3 -4 アンチルスルファニル -2 - アェノキシ -1 一下酸エチルエステル -2 - 2

【実施例13】

[0202]

(β-2法)

【化38】

 $3-\{3-7$ ルオロー4-[4-メチル-5-(4-トリフルオロメチルフェニル)イソキサゾールー3-イルメトキシ] フェニル $\}$ アクリル酸(10)(R^1 =TFMP, R^2 =Me, R^3 = R^4 =H,R= 3-F, X^1 = 0, R^{17} = Me、 β -2-15)

 $3-\{3-7$ ルオロー4-[4-メチルー5-(4-トリフルオロメチルフェニル)イソキサゾールー3-イルメトキシ]フェニル $\}$ アクリル酸メチルエステル $(\alpha-10-2-1)$ 0.79g、4 N-LiOH 1.5 m 1、水 3 m 1、THF 2 0 m 1 の混合物を5 5 度で4.5 時間攪拌した。減圧下溶媒を留去し、2 N-HC1にて酸性にした。析出した結晶を水洗した後アセトンより再結晶して標記化合物 0.7 gを得た。収率9 1 %

[0203]

(β-3法)

【化52】

$$R^{20}$$
 R^{21} CO_2Me R^2 R^2 R^3 R^4 R^5 R^5 R^8 R^7 R^8 R^7 R^8

 $\{5-[4-メチル-5-(4-$ トリフルオロメチルフェニル)イソキサゾール-3-イルメトキシ] インドール-1-イル 酢酸($R^1=$ TFMP, $R^2=$ Me, $R^3=$ R $^4=$ R $^5=$ R $^7=$ R $^8=$ R $^2=$ R $^{21}=$ H,b-3-1)

[0204]

(β-4法)

【化53】

 $\{5-[4-メチル-5-(4-トリフルオロメチルフェニル) イソキサゾールー3ーイルメチルスルファニル] インドールー<math>1-イル\}$ 酢酸($R^1=TFMP$, $R^2=Me$, $R^3=R^4=R^5=R^7=R^8=R^2=R^2=H$,b-4-1)

(5ージメチルカルバモイルスルファニルインドールー1ーイル) 酢酸メチルエステル 2 20 mg のメタノール 5 ml 溶液に 2 規定水酸化ナトリウム溶液 3 ml を加え 8 時間加熱 還流した。反応液に 2 規定塩酸と水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣 177 mg の 7 ve トニトリル 5 ml 溶液に 3 - 2 ud フェニル) - 4 ve チルフェニル) - 4 ve ナルフェニル) - 4 ve アセトニトリル 5 ml 溶液に 3 ve の 4 ve

【0205】 (β-5法)

【化54】

$$R^{2}$$
 R^{3} R^{4} R^{5} R^{6} R^{6} R^{6} R^{6} R^{6} R^{7} R^{8} R^{7} R^{8} R^{7} R^{8} R^{1} R^{1} R^{1} R^{2} R^{3} R^{4} R^{5} R^{6} R^{6} R^{2} R^{3} R^{4} R^{5} R^{6} R^{7} R^{8} R^{1} R^{1} R^{1} R^{2} R^{3} R^{4} R^{5} R^{7} R^{8} R^{1} R^{1} R^{1} R^{1} R^{2} R^{3} R^{4} R^{5} R^{7} R^{1} R^{2} R^{3} R^{4} R^{5} R^{7} R^{8} R^{1} R^{1} R^{2} R^{3} R^{4} R^{5} R^{5} R^{7} R^{1} R^{2} R^{3} R^{4} R^{5} R^{5} R^{5} R^{7} R^{1} R^{2} R^{3} R^{4} R^{5

 $2-\{4-[4-x+\nu-5-(4-y+\nu-1)]$ フェニル $\}$ インキサゾール-3-イルメチルスルファニル $\}$ フェニル $\}$ チオフェン-3-カルボン酸(R^1 =TFMP, R^2 =Me, R^3 = R^4 = R^5 = R^6 = R^7 = R^8 =H, b-5-1)

 $2-\{4-[4-x+n-5-(4-n)]$ フェニル チオフェンー3ーカルボン酸メチルエステル34ーイルメチルスルファニル フェニル チオフェンー3ーカルボン酸メチルエステル347mgのテトラヒドロフラン7mlーメタノール3.5ml溶液に2規定水酸化ナトリウム溶液0.43mlを加え室温で2時間撹拌した。反応液に2規定水酸化ナトリウム溶液0.1mlを追加し60℃で1時間30分間攪拌した。冷却後、反応液に2規定塩酸1.

5mlと水20mlを加え析出した結晶を濾取、水洗後乾燥した。得られた粗結晶をアセトンーへキサンの混合溶媒で再結晶し、標記化合物を289mg得た。収率86%。

[0206]

以下、同様にして以下の化合物を合成する。

[0207]

【表74】

No	合成法	R1	R2	X1	R3,R4	R17	mp	NMR(CDCl3 or DMSO-d6)
α-1-2	α-1	F ₃ C	Me	0	Н,Н	Ме	oil	2.29(3H,s),2.32(3H,s),3.80(3H,s),4.61(2H,s)5.13 (2H,s),6.67(1H,d,J=9.0Hz),6.79(1H,dd,J=9.0,2.7 Hz),6.86(1H,d,J=2.7Hz),7.75(2H,d,J=8.1Hz),7.8 4(2H,J=8.1Hz)
α-1-3	α-1	F ₃ C	Me	0	Ме,Ме	Me	oil	1.76(6H,s),2.20(3H,s),2.37(3H,s),3.78(3H,s),4.56 (2H,s),6.49-6.50(2H,m), 6.67(1H,m),7.75(2H,dJ=8.1Hz),7.84(2H,d,J=8.1 Hz)

[0208]

【表75】

No	合成	R1	R2	X1	R3,R4	R17	mp	NMR(CDCl3 or DMSO-d6)
α-2-2	法 α-2	F ₃ C	Me	S	Н,Н	Et	63-64	1.29(3H,t,J=7.2Hz),2.23(3H,s),2.24(3H,s),4.03(2 H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s)6.61(1H,d,J= 8.4Hz),7.18(1H,dd,J=8.4,2.1Hz),7.23(1H,J=2.1H z),7.74(2H,d,J=8.1Hz),7.82(2H,d,J=8.1Hz)
α-2-4	α-2	○ N	Ме	S	H,H	Et	58-59	1.30(3H,t,J=7.2Hz),1.91(3H,s)2.25(3H,s),3.34(4 H,t,J=4.8Hz),3.79(4H,t,J=4.8Hz),3.87(2H,s),4.26 (2H,q,J=7.2Hz),4.61(2H,s),6.62(1H,d,J=8.4Hz),7. 71-7.22(2H,m)
α-2-5	α−2		Ме	0	н,н	Ме	112- 113	1.99(3H,s)2.27(3H,s),3.37(4H,t,J=4.8Hz),3.78-3.81(4H,m),4.60(2H,s),4.93(2H,s),6.65(1H,d,J=8.7Hz),6.76(1H,dd,J=8.7,3.0Hz),6.83(1H,dJ=3.0Hz)
α-2-6	α-2	CI	Ме	S	H,H	Et	oil	1.28(3H,t,J=7.2Hz),2.19(3H,s),2.24(3H,s),4.01(2 H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s)6.61(1H,d,J= 8.7Hz),7.18(1H,dd,J=8.4,2.4Hz),7.22(1H,J=2.4H z),7.46(2H,d,J=8.4Hz),7.63(2H,d,J=8.4Hz)
α-2-7	α-2	CI		S	H,H	Et	oil	1.29(3H,t,J=7.2Hz),2.22(3H,s),3.93(3H,s),4.25(2 H,q,J=7.2Hz),4.61(2H,s)6.58(1H,d,J=9.0Hz),7.12 -7.14(2H,m),7.26-7.32(5H,m),7.42-7.45(4H,m)
α-2-8	α-2	ci	F ₃ C	S	H,H	Et	oil	1.29(3H,t,J=7.2Hz),2.21(3H,s),3.93(3H,s),4.25(2 H,q,J=7.2Hz),4.61(2H,s)6.57(1H,d,J=8.1Hz),7.07 -7.12(2H,m),7.29- 7.46(6H,m),7.70(2H,d,J=8.1Hz)
α-2-9	α-2	F ₃ C	Ме	S	H,Et	Et	oil	1.07(3H,t,J=7.5Hz),1.28(3H,t,J=7.2Hz),1.98- 2.17(2H,m), 2.21(3H,s),2.26(3H,s),4.03(1H,dd, J=8.4,7.5Hz),4.24(2H,q,J=7.2Hz),4.60(2H,s),6.57 (1H,d,J=8.1Hz),7.09- 7.14(2H,m),7.74(2H,dJ=8.4Hz),7.81(2H,d,J=8.4 Hz)
α-2-10	α-2	F ₃ C	Me	S	H, 4-F- C6H4	Et	oil	1.28(3H,t,J=7.2Hz),2.09(3H,s),2.20(3H,s),4.22(2 H,q,J=7.2Hz),4.60(2H,s),5.28(1H,s),6.55(1H,d,J= 8.4Hz), 6.95-7.03(2H,m),7.06-7.14(2H,m),7.32- 7.38(2H,m),7.73(2H,dJ=8.4Hz),7.80(2H,d,J=8.4 Hz)

[0209]

【表76】

No	合成法	R1	R2	X1	R3,R4	R17	mp	NMR(CDCl3 or DMSO-d6)
α-2-11	α-2	F ₃ C	но	s	н,н	Et	oil	1.28(3H,t,J=7.2Hz),2.23(3H,s),4.11(2H,s),4.24(2H,q,J=7.2Hz),4.61(2H,s),4.66(2H,s),6.60(1H,d,J=8.4Hz),7.15(1H,dd,J=8.4,2.4Hz),7.22(1H,d,J=2.4Hz),7.77(2H,d,J=8.1Hz),796(2H,d,J=8.1Hz)
α-2-12	α-2	F ₃ C		S	Н,Н	Et	oil	1.29(3H,t,J=6.9Hz),2.23(3H,s),3.82(2H,s),4.10(2H,s),4.25(2H,q,J=6.9Hz),4.61(2H,s),6.60(1H,d,J=8.4Hz),7.11-7.73(7H,m),7.68(2H,d,J=8.1Hz),7.76(2H,d,J=8.1Hz)
α-2-13	α-2	F ₃ C	S,	S	Н,Н	Et	oil	1.29(3H,t,J=7.2Hz),2.23(3H,s),3.96(2H,s),4.25(2H,q,J=7.2Hz),4.60(2H,s),6.59(1H,d,J=8.1Hz),7.07-7.28(7H,m),7.70(2H,d,J=9.Hz),8.22(2H,d,J=9.0Hz)
α-2-14	α-2	Me	1	s	н,н	Et	53-54	1.29(3H,t,J=7.2Hz),2.24(3H,s),2.44(3H,s),3.92(2H,s),4.26(2H,q,J=7.2Hz),4.61(2H,s),6.61(1H,d,J=8.4Hz),7.17(1H,dd,J=8.4,2.4Hz),7.19(1H,d,J=2.4Hz)
α-2-15	α-2	F ₃ C	Q	S	н,н	Et	oil	1.29(3H,t,J=7.2Hz),2.25(3H,s),2.92- 2.99(4H,m),3.79(2H,s),4.26(2H,q,J=7.2Hz),4.61(2H,s),6.61(1H,d,J=8.4Hz),7.09- 7.26(7H,m),7.70(4H,s)
α-2-16	α-3	F ₃ C	онс-	s	H,H	tBu	oil	1.47(9H,s),2.24(3H,s),4.28(2H,s),4.51(2H,s),6.6 0(1H,d,J=8.4Hz),7.18- 7.24(2H,m),7.84(2H,d,J=8.7Hz),8.03(2H,d,J=8.7 Hz),10.10(1H,d,J=0.6Hz)

[0210]

【表77】

No	含成法	R1	R2	X1	R3,R4	X ² X ³ R ¹⁰	mp	NMR(CDCl3 or DMSO-d6)
α-2-17	α-2	F ₃ C	Ме	Ø	н,н	.Me O COOEt	oil	1.23(3H,t,J=7.2Hz),1.66(3H,d,J=6. 9Hz),2.22(3H,s),4.02(2H,s),4.20(2 H,q,J=7.7Hz),4.71(1H,q,J=6.9Hz),6. .79(2H,d,J=9.0Hz),7.33(2H,d,J=9.0 Hz),7.74(2H,d,J=8.1Hz),7.82(2H,d,J=8.1Hz)
α-2-18	α-2	F ₃ C	Мө	s	н,н	Et COOEt	oil	1.06(3H,t,J=7.2Hz),1.23(3H,t,J=7.2Hz),1.93-2.02(2H,m),2.22(3H,s),4.03(2H,s),4.16-4.23(2H,m),4.51(1H,t,J=6.3Hz),6.80(2H,d,J=9.0Hz),7.32(2H,d,J=9.0Hz),8.13(2H,d,J=8.4Hz),7.82(2H,d,J=8.4Hz)
α-2-1	9 α-2	F ₃ C	Me	s	н,н	nPr COOEt	oil	0.97(3H,t,J=7.2Hz),1.23(3H,t,J=7.2Hz),1.48-1.57(2H,m),1.86-1.96(2H,m),2.22(3H,s),4.02(2H,s),4.19(2H,q,J=7.2Hz),4.54-4.58(1H,m),6.79(2H,d,J=9.0Hz),7.32(2H,d,J=9.0Hz),7.74(2H,d,J=8.1Hz),7.81(2H,d,J=8.1Hz)
α-2-2	α-2	F ₃ C	М	9 8	H,nP	_OCOOEt	oil	0.90(3H,t,J=7.2Hz),1.27(3H,t,J=7. 2Hz),1.55- 1.62(2H,m),2.22(3H,s),2.59(2H,t,J=7.5Hz),4.02(2H,s),4.24(2H,q,J=7. 2Hz),4.61(2H,s),6.62(1H,d,J=8.1Hz),7.17- 7.22(2H,m),7.74(2H,d,J=8.3Hz),7.8 1(2H,d,J=8.3Hz)
α-2-2	21 α-2	a	В	r s	s н,н	_0C00Et	55-57	2(2H,s),4.25(2H,q,J=7.2Hz),4.61(2 H,s),6.61(1H,d,J=8.4Hz),7.19- 7.26(2H,m),7.48(2H,d,J=9.0Hz),7.9 8(2H,d,J=9.0Hz)
α-2-	22 α-2	F ₃ C	В	ir :	S H,F	OCOOE		1.30(3H,t,J=7.2Hz),2.25(3H,s),4.0 4(2H,s),4.25(2H,q,J=7.2Hz),4.61(2 H,s),6.62(1H,d,J=8.4Hz),7.19- 7.23(2H,m),7.77(2H,d,J=9.0Hz),8.1 6(2H,d,J=9.0Hz)

[0211]

【表78】

			R2	X1	R3.R4	R17	mp	NMR(CDCl3 or DMSO-d6)
Nο α-3-1	合成法	R1 Me	F ₃ C	s		Et	oil	1.30(3H,t,J=7.2Hz),2.21(3H,s),2.40(3H,s),3.98(2H,s),4.26(2H,q,J=7.2Hz),4.61(2H,s),6.56(1H,d,J=8.4Hz),7.06-7.12(2H,m),7.41(2H,d,J=8.1Hz),7.68(2H,d,J=8.1Hz)
α-3-2	α-3	Ме	F ₃ C	0	н,н	Me	105-107	H,s),5.01(2H,s),6.61- 6.72(3H,m),7.50(2H,d,J=8.4Hz),7.68(2H,d,J=8.4Hz)
α-3-3	α-3	F ₃ C	F ₃ C	s	н,н	Et	oil	1.28(3H,t,J=7.2Hz),2.21(3H,s),3.94(2H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s),6.57(1H,d,J=8.4Hz),6.90(1H,d,J=9.0Hz),7.07-7.12(2H,m),7.43(3H,m),7.56(2H,s),7.72(2H,d,J=8.4Hz)
α-3-4	α-3	F ₃ C	F _S C C	s	н,н	Et	oil	1.29(3H,t,J=7.2Hz),2.21(3H,s),3.95(2H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s),6.58(1H,d,J=9.0Hz),7.09(2H,m),7.51-7.74(8H,m) 1.29(3H,t,J=7.2Hz),2.23(3H,s),3.83(2H
α-3-	5 α-3	F ₃ C	F ₃ CO	s	н,н	Et	oil	s),4.12(2H,s),4.25(2H,q),4.61(2H,s),6.59 (1H,d,J=8.4Hz),7.09-7.14(6H,m),7.71- 7.72(4H,m)
α-3-	6 α-3	₃ F ₃ C	<u> </u>	s	н,н	ł Et	oil	1.28(3H,t,J=7.2Hz),2.19(3H,s),4.13(2H,s),4.24(2H,q,J=7.2Hz),4.56(2H,s),6.58(1H,d,J=8.4Hz),7.23(3H,m),7.41-7.42(2H,m),7.52-7.55(2H,m),7.77(2H,d,J=9.0Hz),8.30(2H,d,J=9.0Hz)
α-3-	-7 α-	3 F ₃ C	Ph-	s	н,і	H E		Rf=0.34 (EtOAc:Hexane=1:3 メルク社シリカゲル)
α-3	-8 α-	-3 F ₃ C	F ₃ C—		s Н,	нЕ	oil t	1.29(3H, t, J=7.2 Hz), 2.22(3H, s), 3.83(2H, s), 4.15(2H, s), 4.25(2H, q, J=7.2 Hz), 4.61(2H, s), 6.59(1H, d, J=7.8Hz), 7.09-7.12(2H, m), 7.23(2H, d, J=8.1Hz), 7.55(2H, d, J=8.1Hz), 7.71(4H, s)
α-3	i–9 α-	-3 F ₃ C	F ₉ CO		s H	,н Е	oil	1.29(3H,t,J=6.9Hz),2.23(3H,s),3.84(2H,s),4.15(2H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s),6.60(1H,d,J=8.1Hz),6.99-7.14(5H,m),7.29-7.35(1H,m),7.70-7.71(4H,m)
α-3	-10 α	-3 F ₃ C	F ₃ C		s F	ı,H	oil ≣t	1.29(3H,t,J=7.2Hz),2.23(3H,s),3.83(2H,s),4.14(2H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s),6.60(1H,d,J=8.4Hz),7.09-7.13(2H,m),7.29-7.53(4H,m),7.71(4H,s)

[0212]

【表79】

		F3C				
No	含成法	R2	X1	X ² X ³ R ⁹ R ¹⁰	mp	NMR(CDCl3 or DMSO-d6)
α-4-1	α-4	nBuNHCH2~	s	OCH2COOtBu		0,93(3h,t,J=7.5Hz),1.33- 1.60(13H,m),2.24(3H,s), 2.69 (2H,t,J=6.9Hz), 3.73(2H,s),4.12(2H,s),4.50(2H,s), 6.59 (1H,d,J=8.4Hz),7.15(1H,dd,J=8.4,2.1Hz), 7.21(1H, d, J=2.1Hz),7.74(2H,d,J=8.1Hz), 8.04 (2H,d, J=8.1Hz)
α-4-2	α-4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	s	OCH2COOEt		1.29(3H,t,J=7.2Hz),2.25(3H,s),2.44(4H,m),3. 54(2H,s),3.68(4H,m), 4.19(2H,q,J=7.2Hz),4.19(2H,s),4.25(2H, q, J=7.2 Hz),4.61(2H,s),6.61 (1H,d,J=8.4Hz), 7.18(1H, dd, J=8.4,2.1Hz),7.22(1H,m), 7.75(2H,d, J=8.4Hz), 7.96(2H,d,J=8.4Hz)
α-5-1	α-5	-CH2OMe	S	осн2соон	105–107	2.24(3H,s), 3.43(3H,s),4.12(2H,s), 4.46(2H,s),4.66 (2H,s), 6.65(1H,d, J=8.5Hz),7.18-7.24(2H,m),7.76(2H, d,J=8.7Hz),7.88(2H,d,J=8.7Hz)
α-6-3-1	α-6	Me	CH2CO	OCH2COOMe	133-134	7.87(6H,m).
α-6-4-1	α-6	Me	CH2CO	оснісоон	191-194	2.27(3H,s),2.34(3H,s),3.08(2H,t,J=7.2Hz),3. 50(2H,t,J=7.2Hz),4.72(2H,s),6.77(1H,d,J=9. 0Hz),7.73-7.88(6H,m).
α-7-2-1	α-7	Me	s	CH2C(=NH)NHOH		MS m/e 452 (MH+)
α-7-2-2		Me	0	CH2C(=NH)NHOH	152-154	2.32(6H,s),3.42(2H,s),5.17(2H,s),6.8- 6.90(2H,m),7.14(1H,d,J=7.8Hz),7.75(2H,d,J =8.1Hz),7.84(2H,d,J=8.1Hz) MS m/e 420 (MH+)
α-7-3-1	α-7	Me	s	N-O	203- 204.5	2.29(3H,s),2.31 (3H,s), 3.83(2H,s),4.06(2H,s),7.11-7.22(3H,m), 7.76(2H,d,J=8.6Hz),7.82 (2H, d,J=8.6 Hz)
α-7-3-2	α-7	Me	0	N-0	190-192	2.33(6H,s),3.80(2H,s),5.18(2H,s),6.86(2H,m),7.15(1H,d,J=8.1Hz),7.77(2H,d,J=8.7Hz),7.8,7(2H,d,J=8.7Hz)
α-7-3-3	α-7	Me	s	N-O	156.5- 158.5	2.18(3H,s),2.28(3H,s),4.01(2H,s),4.97(2H,s), 6.75(1H,d,J=8.4Hz),7.19- 7.21(2H,m),7.74(2H,d,J=8.4Hz),7.80(2H,d,J=8.4Hz),9.93(1H,br)
α-7-3-4	4 α-7	Ме	0	0 Th	163-165	2.24(3H,s),2.32(3H,s),4.96(2H,s),5.14(2H,s), 6.80- 6.88(3H,m),7.75(2H,d,J=8.6Hz),7.84(2H,d,J=8.6Hz)
α-7-4-	α-7	Me	0	110	166.5- 168.5	2.32(3H,s), 2.34(3H,s), 3.68(2H,s),4.18(2H,s),5.19(2H,s),6.87- 6.90(2H, m),7.12(1H,d, J=8.1Hz), 7.24 (1H,br),7.75(2H,d,J=8.4Hz), 7.85(2H, d, J=8.4Hz)

[0213]

【表80】

				R ¹	0				-	_			
No	合成法	R1	R2	X1	R3,R4	R5	R6	R7		_	R17	mp	NMR(CDCl3 or DMSO-d6)
α-B-1	α−8	F ₃ C	Ме	0	H,H	Н	Н	Н		H	DPM		2.32(3H,s), 5.23(2H,s), 6.45(1H,d,J=15.9Hz), 7.01(1H,s), 7.05(2H,d,J=9.0Hz), 7.20-7.40(10H,m), 7.51(2H,d,J=8.7Hz), 7.71(1H,d,J=15.9Hz), 7.75(2H,d,J=8.7Hz), 7.84(2H,d,J=8.7Hz)
α-8-2	α-8	F ₃ C	Ме	0	н,н	OMe	Н	Н		Н	DPM		2.34(3H,S),3.01(3H,s),5.20(2H,s), 6.45(1H,d,J=15.9Hz), 7.00- 7.41(13H,m),7.02(1H,s), 7.69(1H,d,J=15.9Hz), 7.74(2H,d,J=8.7Hz) 7.83(2H,d,J=8.7Hz)
α-8-3	α-8	F ₃ C	GO2Me	0	Н,Н	Н	Н		1	Н	DPM		3.81(3H,s),5.41(2H,s),6.46(1H,d,J=16.2Hz),7.02- 7.42(14H,m),7.52(1H,d,J=8.7Hz),7.72(1H,d,J=16.2Hz),7.78(2H,d,J=8.4Hz),8.09(2H,d,J=8.4Hz)
α-8-4	α-8	F ₃ C	OCH2CF 3	0	H,H	Н	Н	ŀ	H	Н	Ме		4.44(2H,q,J=7.8Hz), 5.27(2H,s), 6.47(1H,d,J=16.2Hz), 7.01(1H,s)7.04(2H,d,J=8.7Hz), 7.24– 7.44(10H,m),7.53(2H,d,J=9Hz), 7.71(1H,d,J=15.9Hz), 7.77(2H,d,J=8.4Hz),8.03(2H,d,J=8.4Hz)
α−8−5	α-8	F ₃ C	CH2OC H3	0	Н,Н	Н	H		Н	Н	DPM		3.42(3H,s),4.50(2H,s),5.29(2H,s),6.46(1Hd,J=16.2Hz),7.01-7.06(2H,m),7.26-7.41(12H,m),7.52(1H,d,J=8.7Hz),7.71(1Hd,J=16.2Hz),7.78(2H,d,J=8.4Hz),7.93(2Hd,J=8.4Hz).
α-8-6	α-8	F ₃ C	Н	0	H, 4-F- C6H4	1		1	Н	H	DPM		6.40(1H,d,J=15.9Hz),6.51(1H,s),6.62(1H),7.00-7.13(5H,m),7.28-7.39(10H,m),7.45-7.56(4H,m),7.67(1H,d,J=15.9Hz),7.70(2Hd,J=8.7Hz),7.85(2H,d,J=8.7Hz)
α-8-7	α-8	F ₃ C	CO2Me	: 0	н,н	H	N	le	Н	H	l tBu		1.54(9H,S),2.43(3H,S),3.81(3H,S),5.38(2,s),6.22(1H,d,J=15.9Hz),6.83-6.91(2H,m),7.54(1H,d,J=9.3Hz),7.78(2H,J=8.1Hz),7.83(1H,d,J=15.9Hz),8.09(2H,J=8.1Hz)
α-8-	8 α-8	F ₃ C	CH2OC H3	0	Н,Н	F		Ле	Н				2.44(3H,S),3.42(3H,S),3.80(3H,S),4.50(4,s),5.27(2H,s),6.28(1H,d,J=15.9Hz),6.85 6.93(2H,m),7.53(1H,d,J=8.4Hz),7.74(2H,J=8.7Hz),7.92(2H,d,J=15.9Hz),7.93(1H,J=8.7Hz),7.92(2H,d,J=15.9Hz),7.93(1H,J=8.7Hz)
α-8-	9 α-8	F ₃ C	Н	C	H, 4-F C6H	-	₹	Мe	H	1	H M		2.40(3H,S),3.79(3H,S),6.25(1H,d,J=15.6 z),6.50(1H,S),6.62(1H,S),6.83- 6.90(2H,m),7.06-7.15(2H,m),7.46- 7.56(3H,m),7.70(2H,d,J=8.4Hz),7.83- 7.92(3H,m)

[0214]

【表81】

No	合成法	R1	R2	X1	R3.R4	R5	R6	R7	R8	R17	mp	NMR(CDCl3 or DMSO-d6)
			Me	0	H,H	Н	Me		H	Me		2.32(3H,S),2.44(3H,S),3.80(3H,S),5.21(2H
$\alpha - 8 - 10$	α−8	_	IVIC	١	1 1,1 1		"""		٠. ا			.s),6.28(1H,d,J=15.9Hz),6.84-
				i					- 1			6.92(2H,m),7.54(1H,d,J=8.4Hz),7.75(2H,d,
i i		F ₃ C	ļ	l				i				J=8.4Hz),7.84(2H,d,J=8.4Hz),7.91(1H,d,J
												=15.9Hz)
α-8-11	α-8		CH2OEt	0	H.H	OMe	Н	Н	Н	Ме		1.26(3H,t,J=6.9Hz),3.58(2H,q,J=6.9Hz),3.
μ ο ι ι	α 5			_								90(3H,s),4.60(2H,s),5.35(2H,s),6.45(1H,d,
												J=15.9Hz),7.02(1H,s),7.06~
											ļ	7.13(3H,m),7.27-
1.		1 30										7.42(10H,m),7.69(1H,d,J=15.9Hz),7.77(2
1											1	H,d,J=8.4Hz),7.94(1H,d,J=8.1Hz)
α-8-12	<u>α</u> −8		CH2OEt	0	H,H	Н	Ме	Н	Н	Ме		1.23(3H,t,J=6.9Hz),2.44(3H,s),3.58(2H,q,
" " -	" "				·						i	J=6.9Hz),3.80(3H,s),4.54(2H,s),5.27(2H,s
1											1),6.28(1H,d,J=15.9Hz),6.87-
		E.C.				i '						6.91(2H,m),7.54(1H,d,J=8.1Hz),7.77(2H,d,
		1 30					1					J=8.4Hz),7.92(1H,d,J=15.9Hz),7.93(2H,d,
	ĺ	1										J=8.41Hz)
α-9-1	α-9		CH2OC	S	H,H	H	Н	Н	Н	Ме		3.44(3H,s),3.80(3H,s),4.29(2H,s),4.51(2H,
			нз									s),6.40(1H,d,J=15.9Hz),7.40-
		Fac						ĺ	•]	1	7.47(4H,m),7.63(1H,d,J=15.9Hz),7.76(2H,
		3-										dJ=8.4Hz),7.85(2H,d,J=8.4Hz)
α-9-2	α-9		Ме	S	H,H	OCF	Н	Н	Н	Me		2.31(3H,s),3.81(3H,s),4.11(2H,s),6.41(1H,
				ĺ		3]	١.	1	ļ	ļ	d,J=15.9Hz),7.34-
		Fac		İ	l		١	1	1]	\	7.60(4H,m),7.74(2H,d,J=8.4Hz),7.81(2H,d,
												J=8.4Hz)
α-9-3	α-9		Н	s	H,	Н	Me	Н	H	Ме	İ	2.35(3H,S),3.80(3H,S),5.68(1H,S),6.31(1H
				•	4-F-	}				i	1	,d,J=15.9Hz),6.70(1H,S),7.01-
İ	ļ				C6H4	1		1	1		1	7.10(2H,m),7.12–7.18(2H,m),7.39–
		F3C)			1		1		ļ	7.48(3H,m),7.71(2H,d,J=8.4Hz),7.86(2H,d,
	<u></u>					<u> </u>	<u> </u>	ļ.,	 	 		J=8.4Hz)7.86(1H,d,J=15.9Hz)
α−9−4	α-9		Me	S	H,H	H	Me	Н	Н	Me		2.29(3H,S),2.41(3H,S),3.81(3H,S),4.19(2H
İ			1	ļ	į				1	ì		,s),6.33(1H,d,J=15.9Hz),7.22- 7.28(2H,m),7.49(1H,d,J=9.0Hz),7.74(1H,d,
ŀ			1	1	l	1		ļ	1	l		J=8.4Hz),7.82(2H,d,J=8.4Hz),7.90(2H,d,J
		1 30	İ								1	3=8.4Hz), 7.62(2H,d,0=6.4Hz), 7.90(2H,d,0
		ļ	011677	 _	1,,,,	1	-	 	1.	Me	 	2.41(3H,S),3.44(3H,S),3.81(3H,s),4.28(2H
α-9-5	α-9	1	CH2OM	S	H,H	H	Ме	H	Н	ivie	1	.s),4.50(2H,s),6.33(1H,d,J=15.9Hz),7.24-
	1		e			1			1			7.26(2H,m),7.49(1H,d,J=9.0Hz),7.76(2H,d,
	1	Foc	1			1				1	1	J=9.0Hz),7.86(2H,d,J=9.0Hz),7.90(1H,d,J
	1	1. 3-	j		1	1			1			=15.9Hz)
	 		11	s	 	H	H	Н	Н	Me	+	3.79(3H,s),6.38(2H,d,J=16.2Hz),6.69(1H,s
α-9-6	α-9		Н	"	H, 4-F-	"	"	"	1"	IVIE),7.02–7.08(2H,m),7.31–
				1					1			7.40(6H,m),7.60(1H,d,J=16.2Hz),7.71(2H,
]	F ₃ C			C6H4			1		1	1	d,J=8.4Hz),7.86(2H,d,J=8.4Hz)
	1 -	 	Me	s	H,H	F	Н	Н	H	Me	+	2.31(3H,s),3.81(3H,s),4.19(2H,s),6.41(1H,
α-9-7	α-9	1 ~	IVIE	"	17,17	['	''	١.,	1			d,J=15.9Hz),7.22-7.27(2H,m),7.45-
		1_1				1						7.50(1H,m),7.59(1H,d,J=15.9Hz),7.75(2H,
	1	F ₃ C ~		1						1	1	d,J=8.4Hz),7.82(2H,d,J=8.4Hz)
1	+		Me	s	H,H	ОМ	H	Н	1	Me	+	2.28(3H,s),3,73(3H,s),3.87(3H,s),4.35(2H,
α-9-8	α-9		- 1	ľ	'',''	""	1''	''	''	""		s),6.71(1H,d,J=15.9Hz),7.29-
		F ₃ C		1	1	1		1		1	1	7.47(3H,m),7.63(1H,d,J=15.9Hz),7.88-
· ·		LaC .		1						1		7.97(4H,m)
1	I	_l		ل					۰			1

[0215]

【表82】

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		MR(CDCl3 or DMSO-d6)	mp	R17	₹8	R7	R6	R5	R3.R4	X1	R2	R1	合成法	
α-9-10 α-9 Me CH2OEt S H,H H Me H Me H,H H Me H,H H Me H,H H Me H,H H,H H Me H,H H Me H,H H Me H,H H Me H,H H Me H,H H Me H,H H Me H,H H Me H,H H Me H,H H Me H,H H Me H,H H Me H,H H Me H,H H Me H,H H Me H,H H Me H,H H H,H H Me H,H H,H H H,H H H,H H Me H,H	s),6.34(1F	2.41(3H,S),3.80(3H,s),4.27(2H,s),6.	<u>-</u> -	Me	-	-								No
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.48-	i,J=15.9Hz),7.25-7.28(2H,m),7.48-							' ',	١	0,0		α-9	$\alpha - 9 - 9$
CH2OEt S H,H H Me H H H Me H H H Me H H H Me H H H Me H H H Me H H H Me H H H H Me H H H H H H H H H	J=8.4Hz).7	7.51(1H,d,J=8.7Hz),7.78(2H,d,J=8.		1	Ī		I	1	l	1				
Green Gre	15.9Hz)	35(2H,d,J=8.4Hz),7.90(1H,d,J=15.9		- 1	1			- 1	1			F ₃ C \circ		
Garding Gar	3.60(2H,q	1.27(3H,t,J=6.9Hz),2.41(3H,S),3.60		Me	н	н	Me	н	нн	-	CH2OE+			
F ₃ C Me S H,H H O H H Me H Me S H,H H O Me Me S H,H H O Me Me S H,H H O Me Me S H,H H O Me Me S H,H H O Me Me S H,H H O Me Me S H,H H O Me Me S H,H H Me S H,H Me S H,H Me S H,H Me S H,H Me S H,H Me S H,H Me S H,H Me S H,H Me S H,H Me S H,H Me S H,H Me S H,H Me S H,H Me S H,H Me S H,H Me S H,H Me S H,H H Me S H,H H Me S H,H H Me S H,H H Me S H,H H Me S H,H H Me S H,H H Me S H,H H Me S S H,H H Me S S S S S S S S S					`			٠٠ ا	11,11	٦	OHZOEL		α-9	α-9-10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,6.33(1H,d,J=15.6Hz),7.23-		- 1			Ì		1	ł				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.26(2H,m),7.47-							•					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,7.86(2H,	7.50(1H,m),7.75(2H,d,J=8.4Hz),7.8			1				1			F ₃ C		
α-9-11 α-9 Me S H,H OEt H H H Me s),6,49(1H,d,J=16,2Hz),6,95-6,99(2H,m),741(1H,d,J=8,Hz),7,9-16,2Hz),7.82(2H,d,J=8,Hz),7,9-16,2Hz),7.82(2H,d,J=8,Hz),7,9-16,2Hz),7.82(2H,d,J=8,Hz),7.92(1H,d,J=15,Hz),7.82(2H,d,J=8,Hz),7.94(2H,d,J=15		J=8.4Hz),7.90(1H,d,J=15.6Hz)												
α-9-11 α-9 Me S H,H OEt H H H Me s),6.49(1H,d,J=16,2Hz),6.95-6.99(2H,m),7.41(1H,d,J=8,7Hz),7.9 =6.99(2H,m),7.41(1H,d,J=8,7Hz),7.9 =16.2Hz) α-9-12 α-9 Me S H,H OEt H H H Me 1.50(3H,t,J=7.2Hz),2.31(3H,a),3.4 4.15(3H,d,J=7.2Hz),2.31(3H,a),3.9(3H,a)	s),4.21(2H	2.30(3H,S),3.79(3H,s),3.89(3H,s),4.		Me	н	Н	0	н	НН		Ma			
G.99(2H,m),7.41(1H,d,J=8.4Hz),7.9=16.2Hz) G.99(2H,m),7.41(1H,d,J=8.4Hz),7.9=16.2Hz) G.99(2H,m),7.41(1H,d,J=8.7Hz),7.9=16.2Hz) G.99(2H,m),7.41(1H,d,J=8.7Hz),7.9=16.2Hz) G.99(2H,m),7.41(1H,d,J=8.4Hz),7.9=16.2Hz) G.99(2H,m),7.41(1H,d,J=8.4Hz),7.3(1H,d,J=1.2Hz),9.0Hz),7.42(1H,d,J=1.2Hz),9.0Hz),7.42(1H,d,J=1.2Hz),9.0Hz),7.42(1H,d,J=1.2Hz),7.3(1H,d,J=1.2Hz),9.0Hz),7.42(1H,d,J=8.4Hz) G.99(1H,d,J=1.5Hz),7.3(1H,d,J=1		s),6.49(1H,d,J=16.2Hz),6.95-				``			1 .,. 1	١	IVIC		α-9	$\alpha -9-11$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$),7.74(2H,	6.99(2H,m),7.41(1H,d,J=8.4Hz),7.7			Ì									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.90(1H,d,	J=8.7Hz),7.82(2H,d,J=8.7Hz),7.90(l			Ì						F ₃ C		
α-9-12 α-9 Me S H,H OMe H Br H Me S 1.5(3H,q,J=7.2Hz),4.19(2H,s).6.1(1H,d,J=1.2Hz),7.73(2H,d,J=8.4Hz).1(2H,d,J=15.9Hz),7.73(2H,d,J=8.4Hz).1(2H,d,J=15.9Hz),7.73(2H,d,J=8.4Hz).1(2H,d,J=15.9Hz),7.54(1H,d,J=15.9Hz),7.54(1H,d,J=15.9Hz),7.54(1H,d,J=15.9Hz),7.73(2H,d,J=8.4Hz).7.79(2H,d,J=8.4Hz).7.79(2H,d,J=8.4Hz).7.79(2H,d,J=8.4Hz).7.79(2H,d,J=8.4Hz).7.79(2H,d,J=8.4Hz).7.79(2H,d,J=8.4Hz).7.79(2H,d,J=8.4Hz).7.79(2H,d,J=8.4Hz).7.79(2H,d,J=8.4Hz).7.79(2H,d,J=8.4Hz).7.79(2H,d,J=8.4Hz).7.79(2H,d,J=8.4Hz).7.79(2H,d,J=15.9Hz).7.79(2H,d,J=15.9Hz).7.79(2H,d,J=8.4Hz).												<u> </u>		
α-9-12 α-9 Me S H,H OMe H Br H Me S 1.15(3H,q,J=7,2Hz),6.97(1Hd,J=1,2Hz),7.73(2H,d,J=8,1),7.73(2H,d,J=8,1),7.73(2H,d,J=8,1),7.73(2H,d,J=8,1),7.73(2H,d,J=8,1),7.73(2H,d,J=8,1),7.73(2H,d,J=8,1),8.93(3H,s),3.92(3H,s),8.64(1H,d,J=1,5Hz),7.54(1H,d,J=1,5Hz),7.54(1H,d,J=1,5Hz),7.54(1H,d,J=1,5Hz),7.73(2H,d,J=8,4Hz),7.79(2H,d,J=8,4Hz),7.79(2H,d,J=8,4Hz),7.79(2H,d,J=8,4Hz),7.79(2H,d,J=8,4Hz),7.79(2H,d,J=8,4Hz),7.79(2H,d,J=8,4Hz),7.79(2H,d,J=8,4Hz),7.79(2H,d,J=8,4Hz),7.79(2H,d,J=8,4Hz),7.79(2H,d,J=8,4Hz),7.79(2H,d,J=1,5Hz),7.79(2H,d,J=8,4Hz),7	3.81(3H,s	1.50(3H,t,J=7.2Hz),2.31(3H,s),3.81		Me	н	Н	Н	OEt	н.н	S	Me			0.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,6.39(1 H,d	4.15(3H,q,J=7.2Hz),4.19(2H,s),6.39	l			·			,		1410		α-9	α -9-12
α -9-13 α -9 Me S H,H OMe H Br H Me 2.35(3H,s),3.81(3H,s),3.92(3H,s),s),6.41(1H,d,J=15,9Hz),6.93(1H,d,J=1,5Hz),7.54(1H,d,J=1,5Hz),7.54(1H,d,J=1,5Hz),7.54(1H,d,J=1,5Hz),7.73(2H,d,J=8,4Hz),7.73(2H,d,J=8,4Hz),7.73(2H,d,J=8,4Hz),7.73(2H,d,J=8,4Hz),7.73(2H,d,J=8,4Hz),7.81(2H,d,J=8,4Hz),7.81(2H,d,J=8,4Hz),7.81(2H,d,J=8,4Hz),7.81(2H,d,J=1,8,4Hz),7.81(2H,d,J=1,8,4Hz),7.81(2H,d,J=1,8,4Hz),7.81(2H,d,J=1,8,4Hz),7.15(2H,d,J	,7.08(1H,c	J=15.9Hz),6.97(1H,d,J=1.2Hz),7.0												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.0Hz),7.6	d,J=1.2Hz,9.0Hz),7.42(1H,d,J=9.0I												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	=8.4Hz),7.		1									F ₃ C		
α-9-13 α-9 Me S H,H H O Me S 11,H,d,J=15,9Hz),6.93(1H,d,z),7.36(1H,d,J=15,Hz),7.54(1H,d,z),7.73(2H,d,J=8,4Hz),7.79(2H,d,J=8,4Hz),7.79(2H,d,J=8,4Hz),7.79(2H,d,J=8,4Hz),8.86(6H,s) s), 6.62(2H,s),6.82(1H,d,J=16,2Hz),7.74(2H,d,J=8,4Hz),7.74(2H,d,J=8,4Hz),7.74(2H,d,J=8,4Hz),7.81(2H,d,J=8,4Hz),8.92(1H,d,J=18,Hz),7.81(2H,d,J=18,Hz),7.9(1(2H,d,J=8.4Hz)		ì										
S), 6.41(1H,d,J=15.9Hz), 6.93(1H,d,z), 7.36(1H,d,J=15.Hz), 7.54(1H,d,z), 7.73(2H,d,J=8.4Hz), 7.79(2H,d,z), 7.73(2H,d,J=8.4Hz), 7.79(2H,d,J=8.4Hz), 7.81(2H,d,J=8.4Hz), 8.04(1H,d,J=6.2Hz), 6.92(1H,d,J=16.2Hz), 6.92(1H,d,J=16.2Hz), 6.92(1H,d,J=16.2Hz), 6.92(1H,d,J=16.2Hz), 6.92(1H,d,J=16.2Hz), 6.92(1H,d,J=16.2Hz), 6.92(1H,d,J=16.2Hz), 6.92(1H,d,J=16.2Hz), 6.92(1H,d,J=16.2Hz), 6.92(1H,d,J=16.2Hz), 6.92(1H,d,J=16.2Hz), 6.92(1H,d,J=16.2Hz), 7.91(2H,	s),4.11(2H	2.35(3H,s),3.81(3H,s),3.92(3H,s),4.		Me	Н	Br	Н	OMe	H,H	s	Me		or −9	0 -0-13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H,d,J=1.5l	s),6.41(1H,d,J=15.9Hz),6.93(1H,d,											u v	4 3 13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d,J=15.9l,	z),7.36(1H,d,J=1.5Hz),7.54(1H,d,J												
α-9-14 α-9 κ	,d,J=8.4H	z),7.73(2H,d,J=8.4Hz),7.79(2H,d,J					_					1 30		
Me				Me	0	Н	0	Н	Н,Н	S	Me		α-9	~ -9-14
α-9-15 α-9 Me S H,H OEt H Br H Me 1.52(3H,t,J=7.2Hz),2.35(3H,s),3.4.15(2H,s),4.14(2H,q,J=7.2Hz),6.92(1H,d,J=1.8Hz),7.52(1H,d,J=1.8Hz),7.52(1H,d,J=1.5Hz),7.52(1H,d,J=1.5Hz),7.79(2H,d,J=8.4Hz) α-9-16 α-9 Me S H,H Br H Br H Me 2.34(3H,S),3.81(3H,s),4.16(2H,s),4.16	2Hz),				Ме	ĺ	Ме			1			" '	" "
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	ļ				1				FaC		1
α-9-15 α-9 H S H,H Br H Br H Me Land (3,4,5),4.14(2H,q,J=7.2Hz),6.12(1H,d,J=1.8Hz),7.52(1H,d,J=1.8Hz),7.79(2H,d,J=1.8Hz),7.79(2H,d,J=1.5Hz),7.79(2H,d,J=8.4Hz) Δ-9-16 α-9 Δ-9 Me S H,H Br H Me Land (3,4,5),3.81(3H,s),4.16(2H,s),4.1	J=16.2Hz	7.81(2H,d,J=8.4Hz),8.04(1H,d,J=1	ļ							l		. 30		
α-9-16 α-9 H S H,H Br H Br H Me S H,H Br H Me Cl H,H H H H H Me Cl H,H H H H H Me Cl H,H H H H H Me Cl H,H H H H Me Cl H,H H H H Me Cl H H,H H H H H Me Cl H H,H H <td< td=""><td>,3.09(3H,s</td><td>1.52(3H,t,J=7.2Hz),2.35(3H,s),3.0</td><td></td><td>Me</td><td>Н</td><td>Br</td><td>Н</td><td>OEt</td><td>H,H</td><td>S</td><td>Me</td><td></td><td>α-9</td><td>α-9-15</td></td<>	,3.09(3H,s	1.52(3H,t,J=7.2Hz),2.35(3H,s),3.0		Me	Н	Br	Н	OEt	H,H	S	Me		α-9	α-9-15
C	,0.39(1H,0	4.15(2H,s),4.14(2H,q,J=7.2Hz),6.3								1				
α-9-16 α-9 Me S H,H Br H Br H Me 2.34(3H,S),3.81(3H,s),4.16(2H,S),d,J=15.9Hz),7.48(1H,d,J=15.9Hz),7.76(4H,m),7.80(2H,d,J=8.7Hz) α-9-17 α-9 H S H,H H H Me 4.39(3H,S),3.80(3H,S),4.19(2H,S),d,J=15.9Hz),6.52(1H,S),7.17-7.20(2H,m),7.40-7.45(3H,m),7.67(2H,d,J=8.4Hz),J=15.9Hz) α-9-18 α-9 H S H,H OMe H H H Me 3.80(3H,S),3.93(3H,S),4.18(2H,S),3.93(3H,S),4.18(2H,S),3.93(3H,S),3.93(3H,S),3.93(3H,S),4.18(2H,S),3.93(3H,S),3.),/.33(1H,0	J=16,2Hz),6.92(1H,d,J=1.8Hz),7.3	1			l		i	ļ]		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$), / . / 3\ZM,		1		İ	1		1]	1		F ₃ C		
α-9-16 α-9 H S H,H H Me H H Me 2.39(3H,s),3.80(3H,S),4.19(2H,s),4.15,9Hz d,J=15.9Hz),7.46(1H,d,J=15.9Hz) 7.76(4H,m),7.80(2H,d,J=8.7Hz) 1.39(3H,s),3.80(3H,S),4.19(2H,s),4.15,9Hz),6.52(1H,s),7.17 1.20(2H,m),7.40 1.39(3H,s),7.67(2H,d,J=8.4Hz),7.17 1.20(2H,m),7.17 1.20(2H,m),7.17 1.20(2	-) C 40(1	J=8.4Hz), 7.79(2H,d,J=8.4Hz)	 	ļ	L	_	<u> </u>				<u> </u>]	
7.76(4H,m),7.80(2H,d,J=8.7Hz) 7.76(4H,m),7.80(2H,d,J=8.7Hz) 7.76(4H,m),7.80(2H,d,J=8.7Hz) 7.76(4H,m),7.80(2H,d,J=8.7Hz) 7.76(4H,m),7.80(2H,d,J=8.7Hz) 2.39(3H,s),3.80(3H,s),4.19(2H,s) 4.J=15.9Hz),6.52(1H,s),7.17- 7.20(2H,m),7.40- 7.45(3H,m),7.67(2H,d,J=8.4Hz), J=15.9Hz) 1.2-2-18 α-2 H S H,H OMe H H H Me 3.80(3H,s),3.93(3H,s),4.18(2H,s)				Me	Н	Br	H	Br	H,H	s	Me		α−9	α-9-16
α-9-17 α-9 H S H,H H Me H H Me 2.39(3H,s),3.80(3H,S),4.19(2H,s), d,J=15.9Hz),6.52(1H,s),7.17- 7.20(2H,m),7.40- 7.45(3H,m),7.67(2H,d,J=8.4Hz), J=15.9Hz) 1.10 -			1		Ì					1			1	
α-9-17 α-9 d,J=15.9Hz),6.52(1H,s),7.17- 7.20(2H,m),7.40- 7.45(3H,m),7.67(2H,d,J=8.4Hz), J=15.9Hz) α-9-18 α-9 H S H,H OMe H H H Me 3.80(3H,s),3.93(3H,S),4.18(2H,s)	.)	7.76(4H,m),7.80(2H,d,J=8.7Hz)		1	1			1		1		F ₃ C	1	
α-9-17 α-9 d,J=15.9Hz),6.52(1H,s),7.17- 7.20(2H,m),7.40- 7.45(3H,m),7.67(2H,d,J=8.4Hz), J=15.9Hz) α-9-18 α-9 H S H,H OMe H H H Me 3.80(3H,s),3.93(3H,S),4.18(2H,s)	l,s),6.32(1	2,39(3H,s),3.80(3H,S),4.19(2H,s),6	+-	Me	Н	H	Me	П		+-	LI			
7.20(2H,m),7.40- 7.45(3H,m),7.67(2H,d,J=8.4Hz), J=15.9Hz) 3.80(3H,s),3.93(3H,S),4.18(2H,s			1		1 ''	Ι.,	'*'	'''	1,1,17	3		ì	α^{-9}	$\alpha - 9 - 17$
7.45(3H,m),7.67(2H,d,J=8.4Hz),7 J=15.9Hz) H S H,H OMe H H H Me 3.80(3H,s),3.93(3H,S),4.18(2H,s)		7.20(2H,m),7.40-		1	1						1			1
J=15.9Hz) N=0-18	z),7.89(1H	7.45(3H,m),7.67(2H,d,J=8.4Hz),7.			1		1	1	1					1
		J=15.9Hz)	1					1						
	l,s),6.39(1	3.80(3H,s),3.93(3H,S),4.18(2H,s),	1	Me	Н	Н	Н	ОМ	H.H	1 5	н	+	6:-0	2.04
		d,J=15.9Hz),6.54(1H,s),7.07(1H,d			1	1	1	1		١	''		α^{-9}	α-9-11
		1.5Hz),7.32(1H,d,J=8.1Hz),7.40-			1	1			1					
CI 7.43(2H,m),7.62(1H,d,J=15.9Hz)	√1z),7.64	7.43(2H,m),7.62(1H,d,J=15.9Hz),			1		1	1				CI		
7.67(2H,m)				1_	1		1							
		2.40(3H,s),3.80(3H,s),4.21(2H,s),6		Me	Н	H	М	Н	н.н	s	H	+	2 ~-0	0 -0-1
d,J=15.9Hz),6.63(1H,s),7.18-								1	1				γ α-9	α -9-1
7.20(2H,m),7.47(1H,d,J=8.7Hz),	z),7.71(2H	7.20(2H,m),7.47(1H,d,J=8.7Hz),7.			1			1	1					1
	,7.89(1H,d	J=8.4Hz),7.87(2H,d,J=8.4Hz).7.89			1	1						F ₃ C		1
=15.9Hz)		=15.9Hz)												

[0216]

【表83】

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R17	mp	NMR(CDCl3 or DMSO-d6)
α-9-20	α-9	F ₃ C	Н	S	H,H	ОМе	Н	I	Η	Ме		3.80(3H,s),3.93(3H,s),4.20(2H,s),6.39(1H,d,J=15.9Hz),6.64(1H,s),6.97(1H,d,J=1.5Hz),7.07(1H,dd,J=1.5Hz,8.1Hz),7.32(1H,d,J=8.1Hz),7.62(1H,d,J=15.9Hz),7.30(2H,d,J=8.1Hz),7.84(2H,d,J=8.1Hz)
α-9-21	α-9	F ₃ C	CH2OEt	S	н,н	OMe	Ή	H	Η	Ме		1.27(3H,t,J=7.2Hz),3.61(2H,q,J=7.2Hz),3. 81(3H,s),3.93(3H,s),4.27(2H,s),4.57(2H,s), 6.40(1H,d,J=15.9Hz),6.98(1H,d,J=1.5Hz), 7.09(1H,dd,J=7.8,1.5Hz),7.43(1H,d,J=7.8 Hz),7.63(1H,d,J=15.9Hz),7.75(2H,d,J=8.1 Hz),7.86(1H,d,J=8.1Hz)
α-9-22	α-9	F ₃ C	Ме	S	H,H	OMe	Н	Н	Ме	Ме		2.30(3H,s),2.36(3H,s),3.82(3H,s),3.90(3H,s),4.17(2H,s),6.34(1H,d,J=15.9Hz),7.00(1H,s),7.25(1H,s),7.72-7.93(5H,m)
α-9-23	α-9	F ₃ C	CH2OM e	S	н,н	ОМе	Н	H	Н	Me		3.44(3H,s),3.81(3H,s),3.93(3H,s),4.26(2H,s),4.52(2H,s),6.41(1H,d,J=16.4Hz),6.98(1H,d,J=1.8Hz),7.09(1H,dd,J=1.8Hz,8.1Hz),7.43(1H,d,J=8.1Hz),7.63(1H,d,J=15.9Hz),7.75(2H,d,J=8.7Hz)
α-9-24	α-9	F ₃ C	Ме	S	H,H	CI	Н	Н	Н	Ме		2.32(3H,s),3.81(3H,s),4.23(2H,s),6.40(1H,d,J=16.8Hz),7.37-7.41(1H,m),7.52-7.60(3H,m),7.74(2H,d,J=8.4Hz),7.81(2H,d,J=8.4Hz)
α-10-2 -2	α-10	F ₃ C	Ме	S	H,H	Н	Н	Н	Н	Ме		2.29(3H,s),3.80(3H,s),4.19(2H,s),6.40(1H, d,J=15.9Hz),7.40-7.84(9H,m)
α-10-2 -1	α-10	F ₃ C	Ме	0	H,H	F	Н	Н	Н	Ме		2.35(3H,s),3.00(3H,s),5.31(2H,s), 6.31(1H,d,J=15.9Hz),7.10- 7.34(3H,m),7.59(1H,d,j=15.9Hz),7.76(2H,d,J=8.1Hz),7.84(2H,d,J=8.1Hz)
α-10-2 -3	α-10	F ₃ C	Ме	0	H,H	F	Н	F	Н	Ме		2.41(3H,s),3.81(3H,s),5.32(2H,s),6.34(1H,d,J=15.9Hz),7.083(2H,d,J=8.7Hz),7.52(1H,d,J=15.9Hz),7.76(2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz)
α-10-2 -4		F ₃ C	Ме	S	H,H	CF3		H	H	Ме		2.31(3H,s),3.816(3H,s),4.247(2H,s),6.46 3(1H,d,J=15.9Hz),7.60-7.80(8H,m)
α-10-2 -5	2 α-10	F ₃ C	Ме	S	н,н	Н	CF 3	H	Н	Me		2.31(3H,s),3.82(3H,s),4.22(2H,s),6.39(1H,d,J=15.9Hz),7.56- 8.06(4H,m),7.74(2H,d,J=8.7Hz),7.82(2H,d,J=8.7Hz)

[0217]

【表84】

No	合成法	R1	R2	X1	R3,R4	mp	NMR(CDCl3 or DMSO-d6)
β-1-3	. β−1	F ₃ C	Me	S	Н,Н	129-131	2.24(3H,s),2.25(3H,s),4.04(2H,s),4.67(2H, s),6.65(1H,d,J=8.1Hz),7.18- 7.23(2H,m),7.74(2H,d,J=8.1Hz),7.82(2H,d ,J=8.1Hz)
β-1-4	β-1	F ₃ C	Ме	0	н,н	136-138	2.28(3H,s),2.31(3H,s)4.62(2H,s),5.13(2H,s),6.71(1H,d,J=9.0),6.80(1H,dd,J=9.0,2.7 Hz),6.87(1H,d,J=2.7Hz),7.75(2H,d,J=8.1Hz),7.84(2H,d,J=8.1Hz)
β-1-6	β-1		Ме	S	H,H	134-136	1.88(3H,s)2.15(3H,s),3.24- 3.27(4H,m),3.67(4H,t,J=4.8Hz),3.94(2H,s) ,4.69(2H,s),6.77(1H,d,J=8.4Hz)7.15- 7.21(2H,m),13.00(1H,brs)
β-1-7	β−1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ме	0	Н,Н	126-127	1.94(3H,s)2.17(3H,s),3.28- 3.32(4H,m),3.67- 3.70(4H,m),4.61(2H,s),4.90(2H,s),6.72- 6.86(3H,m)12.89(1H,brs)
<i>β</i> -1-8	β-1	CI	Me	Ø	H,H	157-159	2.21(3H,s),2.24(3H,s),4.02(2H,s),4.66(2H,s),6.65(1H,d,J=8.4Hz),7.20(1H,dd,J=8.4,2,4Hz),7.22(1H,m),746(2H,d,J=9.0Hz),7.63(2H,d,J=9.0Hz)
β-1-9	β-1	CI		S	Н,Н	131-132	2.22(3H,s),3.93(3H,s),4.66(2H,s)6.62(1H,d,J=9.0Hz),7.14-7.16(2H,m),7.27-7.33(5H,m),7.42-7.45(4H,m)
β-1- 10	β−1	cı	F ₃ C	S	Н,Н	131-133	2.22(3H,s),3.93(3H,s),4.67(2H,s)6.62(1H,d,,1=8.1Hz),7.10-7.14(2H,m),7.30-7.47(6H,m),7.70(2H,d,J=8.1Hz)
β-1- 11	β−1	F ₃ C	Me	0	Ме,Ме	115-116	1.76(6H,s),2.20(3H,s),2.37(3H,s),3.78(3H,s),4.56(2H,s),6.49-6.50(2H,m), 6.67(1H,m),7.75(2H,dJ=8.1Hz),7.84(2H,d,J=8.1Hz)

[0218]

【表85】

No	合成法	R1	R2	Х1	R3,R4	mp	NMR(CDCl3 or DMSO-d6)
β-1-12	β-1	F ₃ C	Ме	s	H,Et	115–117	1.07(3H,t,J=7.5Hz),1.98-2.16(2H,m), 2.20(3H,s),2.29(3H,s),4.04(1H,t,J=7.5Hz),4.65(2H,s),6.61(1H,d,J=8.1Hz),7.10-7.14(2H,m),7.74(2H,dJ=8.4Hz),7.81(2H,d,J=8.4Hz)
β-1-13	β−1	F ₃ C	Me	s	H, 4-F-C6H4	110–112	2.29(3H,s),2.20(3H,s),4.67(2H,s),5.29(1H,s),6.59(1H,d,J=8.4Hz), 6.96-7.15(4H,m),7.32-7.37(2H,m),7.73(2H,dJ=8.4Hz),7.79(2H,dJ=8.4Hz)
β-1-14	β-1	F ₃ C	но	s	н.н	138–139	2.23(3H,s),4.11(2H,s),4.66(2H,d,J=3.6),3. 34(1H,br.s),6.64(1H,d,J=8.4Hz),7.16- 7.29(2H,m),7.77(2H,d,J=8.4Hz),7.95(2H, d,J=8.4Hz)
β-1-15	β−1	F ₃ C	MeO	s	н,н	105–107	2.24(3H,s),3.43(3H,s),4.12(2H,s),4.46(2H,s),4.66(2H,s),6.65(1H,d,J=8.5Hz),7.18-7.24(2H,m),7.76(2H,d,J=8.7Hz),7.88(2H,d,J=8.7Hz)
β-1-16	β−1	F ₃ C		s	н,н	oil 183–186 (as HClsalt)	2.23(3H,s),2.49(4H,m),3.62(2H,s),3.69(4 H,m),4.18(2H,s),4.64(2H,s),6.65(1H,d,J= 9.0Hz),7.18- 7.21(2H,m),7.74(2H,d,J=7.8Hz),790(2H,d ,J=7.8Hz)
β-1-17	β−1	F ₃ C	0	s	н,н	138–139	2.23(3H,s),3.83(2H,s),4.12(2H,s),4.66(2H,s),6.64(1H,d,J=9.0Hz),7.11-7.16(2H,m),7.24-7.31(m,5H),7.08(2H,d,J=8.4Hz),7.76(2H,d,J=8.4Hz)
β-1-18	β-1	F ₃ C	O's.	s	н,н	123-124	2.23(3H,s),3.97(2H,s),4.67(2H,s),6.63(1H .d,J=8.1Hz),7.08-7.26(7H,m), 7.70(2H,d,J=8.4Hz),8.22(2H,d,J=8.4Hz)
β-1-19	β-1	Me	I	s	н,н	126-127	2.24(3H,s),2.44(3H,s),3.92(2H,s),4.66(2H,s),6.64(1H,d,J=8.1Hz),7.18(2H,dd,J=8.1,1.8Hz),7.22(2H,d,J=1.8Hz)
β-1-20	β-1	Ме	F ₃ C	s	н,н	oil	2.21(3H,s),2.40(3H,s),3.98(2H,s),4.66(2H,s),6.60(1H,d,J=8.1Hz),7.08-7.12(2H,m),7.42(2H,d,J=8.1Hz),7.68(2H,d,J=8.1Hz)
β-1-21	β-1	Ме	F ₃ C	0	н,н	153-154	2.25(3H,s),2.49(3H,s),4.62(2H,s),5.02(2H,s),6.65- 6.73(3H,m),7.50(2H,d,J=8.4Hz),7.68(2H,d,J=8.4Hz)
β-1 - 22	β-1	F ₃ C	F ₃ C	s	н,н	136.5–137.5	2.22(3H,s),3.95(2H,s),4.67(2H,S),6.62(1 H,d,J=8.1Hz),7.11- 7.14(2H,m),7.47(2H,d,J=8.4Hz),7.60(4H, s),7.72(2H,d,J=8.4Hz)
β-1-23	β-1	F ₃ C	F ₃ C	s	н,н	128-129.5	2.22(3H,s),3.95(2H,s),4.67(2H,s),6.62(1H,d,J=9.0Hz),7.13-7.15(2H,m),7.50-7.74(8H,m)

[0219]

【表86】

No	合成法	R1	R2	X1	R3,R4	mp	NMR(CDCl3 or DMSO-d6)
β-1-24	β-1	F ₃ C	F ₃ CO	s	н,н	135–136	2.23(3H,s),3.84(2H,s),4.12(2H,s),4.67(2H,s),6.64(1H,d,J=9.0Hz),7.11-7.14(6H,m),7.71-7.72(4H,m)
β-1-25	β-1	F ₃ C	<u> </u>	s	н,н	196–197.5	2.19(3H,s),4.13(2H,s),4.55(2H,s),6.63(1H,d,J=8.4Hz),7.28(2H,m), 7.41-7.43(3H,s),7.53(2H,s),7.79(2H,d,J=8.4Hz),8.31(2H,d,J=8.4Hz)
β-1-26	β-1	F ₃ C	Ph-	s	н,н	137–138	2.22(3H,s),3.87(2H,s),4.16(2H,s),4.65(2H,s),6.63(1H,d,J=9.0Hz),7.14-7.21(4H,m),7.34-7.56(7H,m),7.70(2H,d,J=8.1Hz),7.78(2H,d,J=8.1Hz)
β-1-27	β−1	F ₃ C	BuNHCH2-	s	н,н	177–178	0.84(3h,t,J=7.2Hz),1.22- 1.45(4H,m),2.14(3H,s), 2.56 (2H,t,J=7.2Hz), 3.72(2H,s),4.27(2H,s),4.63(2H,s), 6.76(1H,d,J=8.4Hz),7.15-7.23(2H,m), 7.91(2H,d,J=8.4Hz), 8.08(2H,d,J=8.4Hz)
β -1-28	β-1	F ₃ C		s	н,н	150-152	2.24(3H,s),2.93- 2.30(4H,m),3.79(2H,s),4.67(2H,s),6.65(1 H,d,J=8.1Hz),7.09- 7.29(7H,m),7.70(4H,s)
β-1-29	β-1	F ₃ C	F ₈ C-\(\bigc\)	s	н,н	141.5-142.5	2.23(3H,s),3.84(2H,s),4.12(2H,s),4,67(2H,s),6.64(1H,d,J=9.0Hz),7.11-7.13(2H,m),7.24(2H,d,J=8.7Hz),7.56(2H,d,J=8.7Hz),7.71(4H,s)
β-1-30	β-1	F ₃ C	F ₃ CQ	s	н,н	130-132	2.23(3H,s),3.85(2H,s),4.13(2H,s),4.67(2H,s),6.64(1H,d,J=9.6Hz),6.99-7.15(5H,m),7.30-7.35(1H,m),7.71(4H,s)
β-1-31	β-1	F ₃ C	F ₃ C	s	н,н	127-128.5	2.23(3H,s),3.84(2H,s),3.84(2H,s),4.67(2H,s),6.63(1H,d.J=8.4Hz),7.11-7.14(2H,m),7.27-7.53(4H,m),7.71(4H,s)

[0220]

【表87】

$$\begin{array}{c|c} R^2 & X^1 & R^6 & X^2 & X^3 \\ \hline R^1 & N & R^{10} & R^{10} & R^{10} & R^{10} & R^{10} & R^{10} \end{array}$$

No	合成法	R1	R2	X1	R6	X ² X ³ R ⁹ R ¹⁰	mp	NMR(CDCl3 or DMSO-d6)
β-1-32	β-1	FaC	Me	Ø	H	Ме	121-122	1.65(3H,d,J=6.9Hz),2.24(3H,s),4.0 3(2H,s),4.77(1H,q,J=6.9Hz),6.82(2 H,d,J=9.0Hz),7.34(2H,d,J=9.0Hz),7 .74(2H,d,J=8.4Hz),7.81(2H,d,J=8.4 Hz)
β-1-33	β-1	F ₃ C	Me	ø	н	COOH	116-118	1.09(3H,t,J=7.5Hz),1.99- 2.04(2H,m),2.24(3H,s),4.03(2H,s),4 .56- 4.60(1H,m),6.82(2H,d,J=8.7Hz),7.3 3(2H,d,J=8.7Hz),7.73(2H,d,J=8.5H z),7.81(2H,d,J=8.5Hz)
β-1-34	β-1	FaC	Me	s	Н	nPr COOH	75.5- 77.5	0.97(3H,t,J=7.2Hz),1.50- 1.60(2H,m),1.91- 2.00(2H,m),2.24(3H,s),4.03(2H,s),4 .61- 4.65(1H,m),6.82(2H,d,J=8.7Hz),7.3 5(2H,d,J=8.7Hz),7.73(2H,d,J=8.7H z),7.81(2H,d,8.7Hz)
β-1-35	β−1	F ₃ C	Me	s	nPr	_0_COOH	85–87	0.89(3H,t,J=7.2Hz),1.51- 1.63(2H,m),2.24(3H,s),2.58(2H,t,J =7.2Hz),4.03(2H,s),4.66(2H,m),6.7 0(1H,d,J=8.4Hz),7.17- 7.24(2H,m),7.74(2H,d,J=8.6Hz),7.8 1(2H,d,J=8.6Hz)
β-1-36	β-1	CI	Br	s	н	_ocooh	150-151	2.24(3H,s),4.03(2H,s),4.66(2H,s),6. 65(1H,d,J=8.4Hz),7.21-7.26 (2H,m), 7.47 (2H,d,J=8.7Hz), 7.97(2H,d,J=8.7Hz)

[0221]

【表88】

$$R^2$$
 R^3
 R^4
 R^5
 R^8
 R^8

					R' O						
No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	•	NMR(CDCl3 or DMSO-d6)
β-2-1	β-2	F ₃ C	Ме	0	H,H	H	Η	Η	Н	224.5	2.35(3H,s), 5.25(2H,s), 6.32(1H,d,J=15.6Hz), 7.07(2H,d,J=8.7Hz), 7.54(2H,d,J=8.7Hz), 7.65(1H,d,J=16.2Hz), 7.78(2H,d,J=8.4Hz), 7.88(2H,d,J=8.4Hz)
β-2-2	β-2	F ₃ C	Me	0	H,H	OM e	Н	н	Η	235.5	2.38(3H,s), 3.93(3H,s), 5.30(2H,s), 6.33(1H,d,J=15.9Hz), 7.01-7.20(3H,m), 7.64(1H,d,J=15.9Hz), 7.782(2H,d,J=8.4Hz), 7.87(2H,d,J=8.4Hz)
β-2-3	β−2	F ₃ C	GO2Me	0	Н,Н	Н	Н	Н	H	201-203	3.83(3H,s),5.43(2H,s),6.33(1H,d,J=15.9Hz), 7.06(2H,d,J=8.7Hz),7.54(2H,d,J=8.7Hz),7.6 6(1H,d,J=15.9Hz),7.80(2H,d,J=8.7Hz),8.10 (2H,d,J=8.7Hz)
β-2-4	β-2	F ₃ C	Me	S	н,н	Н	н	Н	Н	214.5- 215.5	2.31(3H,s), 4.25(2H,s), 7.36-7.52(4H,m), 7.64(1H,d,J=15.9Hz), 7.77(2H,d,J=8.4Hz), 7.85(2H,d,J=8.4Hz)
β-2-5	β-2	F ₃ C	OCH2 CF3	0	Н,Н	Н	Н	Н	H		4.86(2H,q,J=9.0Hz), 5.45(2H,s), 6.42(1H,d,J=15.9Hz), 7.14(2H,d,J=8.1Hz), 7.56(1H,d,J=15.9Hz), 7.69(2H,d,J=8.4Hz), 7.97(2H,d,J=8.4Hz),8.07(2H,d,J=8.4Hz)
β-2-6	β-2	F ₃ C	Ме	NH	н,н	Н	Н	Н	Н		2.26(3H,S), 4.45(2H,d,J=5.7Hz), 6.18(1H,d,J=15.9Hz),6.72(2H,d,J=8.4Hz),6. 82-6.90(1H,m),7.36-7.50(3H,m), 7.91(2H,d,J=8.4Hz), 7.96(2H,d,J=8.4Hz)
β-2 - 7	β-2	F ₃ C	CH2O CH3	0	н,н	Н	H	H			3.43(3H,s),4.52(2H,s),5.03(2H,s),6.32(1H,d, J=15.9Hz),7.06(2H,d,J=8.7Hz),7.53(2H,d,J =8.7Hz),7.65(1H,d,J=15.9Hz),7.79(2H,d,J= 8.7Hz),7.93(2H,d,J=8.7Hz)
β-2-8	β-2	F ₃ C	Н	0	H, 4-F-C6H4	Н	Н	Н			5.71(1H,s),6.38(1H,d,J=15.9Hz),6.76(1H,s), 7.02-7.08(2H,m),7.33- 7.50(6H,m),7.59(1H,d,J=15.9Hz),7.72(2H,d, J=8.7Hz),7.87(2H,d,J=8.7Hz)
β-2-9	β-2	F ₃ C	CH2O CH3	S	H,H	Н	H	Н			3.45(3H,s),4.29(2H,s),4.52(2H,s),6.39(1H,d, J=16.2Hz),7.42(2H,d,J=8.7Hz),7.47(2H,d,J =8.7Hz),7.63(1H,d,J=16.2Hz),7.77(2H,d,J= 8.1Hz),7.87(2H,d,J=8.1Hz)
β-2- 10	β-2	F ₃ C	GO2Me	0	H,H	Н	Ме	H	Н	195-196	2.46(3H,S),3.82(3H,S),5.40(2H,s),6.30(1H,d ,J=15,6Hz),6.85- 6.94(2H,m),7.60(1H,d,J=8.4Hz),7.78(2H,d,J =8.4Hz),8.03(1H,d,J=15.6Hz),8.09(2H,d,J= 8.4Hz)

[0222]

【表89】

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	mp	NMR(CDCi3 or DMSO-d6)
β-2- 11	β-2	F ₃ C	CH2O CH3	0	н,н	Н	Me	Н	Н		CDCl3 & (300 MHz) 2.46(3H,S),3.42(3H,S),4.51(2H,s),5.28(2H,s),6.30(1H,d,J=15.9Hz),6.87- 6.96(2H,m),7.59(1H,d,J=8.4Hz),7.78(2H,d,J=8.7Hz),7.93(2H,d,J=8.7Hz),8.02(1H,d,J=15.9Hz)
β-2- 12	β-2	F ₃ C	Н	0	H, 4-F-C6H4	Н	Ме	Н	Н		2.41(3H,S),6.26(1H,d,J=15.9Hz),6.51(1H,S),6.62(1H,S),6.86-6.93(2H,m),7.06-7.16(2H,m),7.48-7.58(3H,m),7.70(2H,d,J=9.0Hz),7.86(2H,d,J=9.0Hz),7.97(1H,d,J=15.9Hz)
β-2- 13	β-2	F ₃ C	Ме	0	н,н	Н	Ме	Н	H		2.32(3H,S),2.46(3H,S),5.22(2H,s),6.30(1H,d ,J=15.6Hz),6.86- 6.96(2H,m),7.59(1H,d,J=8.4Hz),7.76(2H,d,J =8.7Hz),7.85(2H,d,J=8.7Hz),8.02(1H,d,J=1 5.6Hz)
β-2- 14	β-2	F ₃ C	Me	S	Н,Н	OC F3	Н	Н			2.30(3H,S), 4.51(2H,s), 6.64(1H,d,J=16.2Hz), 7.60(1H,d,J=15.9Hz), 7.70-7.84(3H,m),7.91(2H,d,J=8.7Hz), 7.95(2H,d,J=8.7Hz)
β-2- 15	β-2	F ₃ C	Me	0	H,H	F	H	H		261- 262.5	2.30(3H,S), 5.43(2H,s), 6.49(1H,d,J=15.9Hz), 7.34– 7.60(2H,m),7.54(1H,d,J=15.9Hz),7.71(1H,d, J=12.3Hz), 7.93(2H,d,J=8.4Hz), 8.00(2H,d,J=8.4Hz),
β-2- 16	β-2	F ₃ C	Ме	0	H,H	F	Н	F	Н		2.35(3H,S), 5.36(2H,s), 6.61(1H,d,J=16.2Hz), 7.51(1H,d,J=16.2Hz),7.62(2H,d,J=9.6Hz), 7.93(2H,d,J=8.1Hz), 8.00(2H,d,J=8.1Hz),
β-2- 17	β-2	F ₃ C	H	S	H, 4-F-C6H4	H	Ме	Н			3 2.37(3H,S),5.70(1H,S),6.32(1H,d,J=15.9Hz),6.70(1H,S),7.01-7.10(2H,m),7.13- 7.20(2H,m),7.42- 7.52(3H,m),7.72(2H,d,J=8.4Hz),7.87(2H,d,J=8.4Hz)7.95(1H,d,J=15.9Hz)
β-2- 18	β-2	F ₃ C	Me	S	н,н	H	Me	H	H	218-219	9 2.28(3H,s),2.36(3H,S),4.42(2H,s),6.42(1H,d,J=15.9Hz),7.24- 7.34(2H,m),7.67(1H,d,J=8.1Hz),7.74(1H,d,J=15.9Hz),7.91(2H,d,J=8.7Hz),7.96(2H,d,J=8.7Hz)
β-2- 19	β-2	F ₃ C	CH2O Me	S	H,H	Н				187),6.35(1H,d,J=15.9Hz),7.25- 7.27(2H,m),7.52(1H,d,J=9.0Hz),7.76(2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz),7.99(1H,d,J=15.9Hz)
β-2- 20	- β-2	F ₃ C	Н	S	H, 4–F–C6H	4 4	Н	1	1 1	1 191.5- 193.5	

[0223]

【表90】

	△ c# 2±	R1	R2	X1	R3.R4	R5	R6	R7	R8	mp	NMR(CDCl3 or DMSO-d6)
No	合成法 β-2	- Ki	CO2Me	S	H.H	Н	Me	Н	Н	171-	2.43(3H,s),3.88(3H,s),4.41(2H,s),6.35(1H,d,
β-2- 21	β-2		GOZIVIE	١	' ',' '					172.5	J=16.2Hz),7.27(2H,m),7.53(1H,d,J=8.7Hz),
21	1		1						j		7.76(2H,d,J=8.4Hz),8.00(1H,d,J=16.2Hz),8.
		r ₃ C	1	ļ					- [04(2H,d,J=8.4Hz)
β-2-	<i>B</i> −2		CO2Me	s	H,H	Н	Н	Н	Н	161.5-	3.88(3H,s),4.43(2H,s),6.41(1H,d,J=16.2Hz),
22	ρ-2		10021110							163	7.42-
22]										7.50(4H,m),7.72(1H,d,J=16.2Hz),7.76(2H,d,
ļ		F3C									J=8.4Hz),8.04(2H,d,J=8.4Hz)
β-2-	β-2		Ме	s	H,H	F	H	Ξ	Н		2.32(3H,s),4.19(2H,s),6.40(1H,d,J=15.9Hz),
23	~ -		1							220.5	7.23-7.27(2H,m),7.44-
		Fac							l		7.50(1H,m),7.58(1H,d,J=15.9Hz),7.69(2H,d,
		. 30									J=8.4Hz),7.82(2H,d,J=8.4Hz)
β-2-	β-2		Me	S	H,H	ОМ	Н	Н	Н	209-210	2.31(3H,s),3.94(3H,s),4.18(2H,s),6.40(1H,d,
24	"		4 1			е					J=15.9Hz),7.02(1H,d,J=1.5Hz),7.10(1H,dd,
	1		1 1								J=1.5Hz,7.8Hz),7.42(1H,d,J=7.8Hz),7.63(1
l	l	F ₃ C ~				· '					H,d,J=15.9Hz),7.74(2H,d,J=8.1Hz),7.82(2H
ļ								<u> </u>			,d,J=8.1Hz)
β-2-	β−2		CF3	S	H,H	н	Me	H	н	194-196	2.42(3H,S),4.27(2H,S),6.32(1H,d,J=15.9Hz)
25			1 1								,7.25- 7.28(2H,m),7.51(1H,d,J=8.7Hz),7.79(2H,d,J
	}						l				7.28(2H,m), 7.51(1H,d,3-6.7H2), 7.75(2H,d,0) =8.4Hz), 7.88(2H,d,J=8.4Hz), 7.91(1H,d,J=1
1		F ₃ C				l	1				=8.4Hz),7.88(2H,d,0=6.4Hz),7.81(11,d,0=1 5.9Hz)
						 		1.		170 100	1.27(3H,tJ=6.9Hz),2.43(3H,S),3.60(2H,q,J
β-2-	β −2		CH2OE	S	н,н	H	Ме	H	Н	1/8-180	=6.9Hz),4.30(2H,s),4.56(2H,s),6.34(1H,d,J=
26			/ t			1					15.9Hz),7.25-
1	1	F ₂ C	1					1	1		7.28(2H,m),7.75(2H,d,J=8.4Hz),7.87(2H,d,J
		1, 30			ŀ						=8.4Hz),7.99(1H,d,J=15.9Hz)
	 	 	1	s	H.H	Н	ОМ	H	Н	199-201	2.30(3H,S),3.89(2H,s),4.22(2H,s),6.47(1H,d
β-2-	β-2		Me	٦	1,55	1 ''	e	1	1	'** '	.J=16.2Hz),6.96-
27	\		1	İ		1		1	1		7.00(2H,m),7.43(1H,d,J=8.4Hz),7.75(2H,d,J
-		F ₃ C				1		1	1		=8.7Hz),7.82(2H,d,J=8.7Hz),7.92(1H,d,J=1
	1		1				1	1	1		6.2Hz)
β-2-	B-2	 	Me	s	H,H	Н	OE	Н	Н	215-216	1.50(3H,t,J=7.2Hz),2.31(3H,s),4.16(3H,q,J
28								1			=7.2Hz),4.20(2H,s),6.39(1H,d,J=15.9Hz),6.
20											99(1H,d,J=1.2Hz),7.10(1H,dd,J=1.2Hz,7.8
		Fac							1	İ	Hz),7.44(1H,d,J=7.8Hz),7.70(1H,d,J=15.9H
	1	1. 30				1					z),7,74(2H,d,J=8.7Hz),7.82(2H,d,J=8.7Hz)
					<u></u>			_	1_	<u> </u>	
β-2-	β-2		Me	S	H,H	ОМ	H	Bı	Ή.	246-247	2.30(3H,s),3.86(3H,s),4.18(2H,s),6.70(1H,d,
29						е	1				J=15.9Hz),7.39(1H,s),7.51(1H,d,J=15.9Hz),
		F ₃ C		1			1			1	7.58(1H,s),7.90(4H,s)
				 _	1,,,,	1,,	014	I H	$\frac{1}{6}$	176.5-	2.301(3H,S), 3.879(6H,s), 4.527(2H,s),
β-2-	- β-2		Me	S	H,H	H	OM e	'\'"	Me	1	6.637(1H,d,J=16.2Hz),
30							"		1,416	1 ''	6.761(2H,s),7.848(1H,d,J=16.2Hz),
1	1	F ₃ C		1							7.906(2H,d,J=8.7Hz), 7.964(2H,d,J=8.7Hz)
	+		1 1/2	s	H,H	Br	+	+	H	220.5-	
β-2-	- β-2		Me	"	1 ","	1 "	1 ''	'	1	222	6.535(1H,d,J=15.9Hz).
31	1										7.535(1H,d,J=15.9Hz),
		F ₃ C									7.615(1H,d,J=8.4Hz),7.75-8.10(6H,m),
β-2-	B-2	+	Me	s	H,H	OE	t H	В	rН	228-22	1.36(3H,t,J=6.6Hz),2.30(3H,s),4.14(2H,q,J
32			/	1	''''				1		=6.6Hz),4.21(2H,s),6.69(1H,d,J=15.6Hz),7.
32		FaC								1	37(1H,s),7.50(1H,d,J=15.6),7.56(1H,s),7.90
		1. 30		1				\perp	\perp		(4H,s)
L											

[0224]

【表91】

No							- 1					MAD(ODOIS DMCO de)
33 33 34 37 37 37 37 37	No	合成法	R1	R2		R3,R4			_	R8		NMR(CDCl3 or DMSO-d6)
F _S C	β-2-	β-2		Me	s	H,H	Br	н	Br	н	243-245	2.33(3H,S),4.16(2H,S),0.41(1H,d,0-10.51/2)
B - 2	33	1			- 1							, /.4/(1H,d,J=10.9HZ), /.74(2H,Df.S), /.70(2
S			F ₃ C	ļ	}	Ì	ĺ		ļ			H,d,J=8.4Hz),7.81(2H,d,J=6.7H2)
S										-	100 100	2.41/2H S) 4.20(2H e) 6.33(1H d J=15.9Hz)
3-4	β-2-	β-2		H	s	H,H	н	Me I	H	н	180-180	e 52/14 c) 7 19-7 21/2H m) 7 40-
35	34				į							7.6.55(17,5),7.18-7.21(21,111),7.19
β-2-35 β-2 H S H,H OM H <t< td=""><td></td><td></td><td>CI C</td><td>1</td><td>ļ</td><td></td><td></td><td>i</td><td></td><td></td><td></td><td>7.40(2H,M),7.01(1H,d,0=0.0112),7.00</td></t<>			CI C	1	ļ			i				7.40(2H,M),7.01(1H,d,0=0.0112),7.00
187.5 8.54(1Ha.),7.08(1Hdd.)=7.81,5H2),7.92(1Hd.)=3.181,7.94(2Hm),7.82(1Hd.)=3.181,7.94(2Hm),7.82(1Hd.)=3.181,7.94(2Hm),7.82(1Hd.)=3.181,7.94(2Hm),7.82(1Hd.)=3.181,7.94(2Hm),7.82(1Hd.)=3.942) β-2- β-2									\perp		4.05	7.70(2H,M),7.98(11,d,0=10.01.12)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	β-2-	β-2		H	S	H,H	ОМ	н	Н	Н		3.94(3H,S),4.19(2H,S),0.39(1H,G,0-10.3112)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	1			1		е				187.5	1,0.54(1H,S),7.06(1H,dd,0~7.6,1.6112),7.52(1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		l .			- 1							
S												
Second Second	β-2-	β-2		Me	s	H,H	ОМ	Н	· ·			
F ₃ C		1			,		е		Me		242.5	16.66(1H,d,J=15.9Hz),
β -2		1	F ₃ C		İ						l	
8 - 2	1									_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	β-2-	β-2		Me	s	H,H	ом	Н	CI	H	1 -	
F ₃ C	1	1			Ì		e				235.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Fac									
181.5 6.66(1H,s),7.19-7.21(2H,d,J=8.4),7.72(2H,d,J=1Hz),7.87(2H,d,J=8.4),7.72(2H,d,J=1Hz),7.87(2H,d,J=8.4),7.72(2H,d,J=1Hz),7.87(2H,d,J=8.4),7.72(2H,d,J=1Hz),7.87(2H,d,J=8.4),7.72(2H,d,J=1.2),7.87(2H,d,J=8.4),7.72(2H,d,J=1.2),7.87(2H,d,J=1.2),7.87(2H,d,J=1.2),7.87(2H,d,J=1.2),7.87(2H,d,J=1.2),7.86(2H,d,J=1.2),7.72(2H,d,J=8.1Hz),7.86(2H,d,J=8.1Hz),7.86(2H,d,J=8.1Hz),7.86(2H,d,J=8.1Hz),7.86(2H,d,J=8.1Hz),7.86(2H,d,J=8.1Hz),7.86(2H,d,J=8.1Hz),7.75(2H,d,J=8.1Hz),7.75(2H,d,J=8.1Hz),7.75(2H,d,J=8.1Hz),7.75(2H,d,J=8.1Hz),7.75(2H,d,J=8.1Hz),7.75(2H,d,J=8.1Hz),7.75(2H,d,J=8.1Hz),7.75(2H,d,J=8.1Hz),7.75(2H,d,J=8.1Hz),7.75(2H,d,J=8.1Hz),7.84(2H,d,J=8.2),7.77(2H,d,J=8.1Hz),7.84(2H,d,J=8.2),7.77(2H,d,J=8.1Hz),7.84(2H,d,J=8.2),7.77(2H,d,J=8.1Hz),7.84(2H,d,J=8.2),7.77(2H,d,J=8.1Hz),7.84(2H,d,J=8.2),7.77(3=						$oldsymbol{oldsymbol{oldsymbol{eta}}}$			9Hz), /.80-8.00(4H,m)
181.5 6.66(1H,s),7.19 7.21(2H,m),7.50(1H,d,J=8.4),7.72(2H,d,J=1.1Hz),7.87(2H,d,J=8.1Hz),7.90(1H,d,J=16.2Hz),7.87(2H,d,J=8.1Hz),7.90(1H,d,J=16.2Hz),7.87(2H,d,J=8.1Hz),7.90(1H,d,J=16.2Hz),8.9 8	B-2-	β-2		Н	S	Н,Н	H	Me	H	H		
F ₃ C		"		1 1						1	181.5	6.66(1H,s),7.19-
B - 2		ļ		1			.		1	1	ŀ	7.21(2H,m),7.50(1H,d,J=8.4),7.72(2H,d,J=6
8 - 2	1		F ₃ C	!	į				l			1.1Hz),7.87(2H,d,J=8.1Hz),7.90(1H,d,J=15.9
8 - 2	1		ļ	1)
8 -2- β -2 CH2OE t t CH2OE t t S H.H OM H H H 203-204 1.21(3H,t,J=7.2Hz).3.59(2H,d,J=8.1Hz).7.72(1H,d,J=8.1Hz).7.58(1H,d,J=8.1Hz).7.58(1H,d,J=8.1Hz).7.58(1H,d,J=8.1Hz).7.58(1H,d,J=8.1Hz).7.58(1H,d,J=8.1Hz).7.72(1H,d,J=15.9Hz).7.75(2H,d,J=8.1Hz).7.72(1H,d,J=15.9Hz).7.75(2H,d,J=8.1Hz).7.72(1H,d,J=15.9Hz).7.75(2H,d,J=8.1Hz).7.72(1H,d,J=15.9Hz).7.75(2H,d,J=8.1Hz).7.86(1H,d,J=15.9Hz).7.77(2H,d,J=15.9Hz).7.77(2H,d,J=8.1Hz).7.84(1H,d,J=15.9Hz).7.77(2H,d,J=8.1Hz).7.84(1H,d,J=15.9Hz).7.77(2H,d,J=8.1Hz).7.84(1H,d,J=15.9Hz).7.77(2H,d,J=8.1Hz).7.84(1H,d,J=8.1Hz).8.01(1H,d,J=15.9Hz).7.77(2H,d,J=8.1Hz).7.94(2H,d,J=8.1Hz).8.01(1H,d,J=15.9Hz).7.77(2H,d,J=8.1Hz).7.94(2H,d,J=8.1Hz).7.77(2H,d,J=8.1Hz).7.94(2H,d,J=8.1Hz).7.77(2H,d,J=8.1Hz).7.94(2H,d,J=8.1Hz).7.77(2H,d,J=8.1Hz).7.94(2H,d,J=15.9Hz).7.79(2H,d,J=8.1Hz).7.91(2H,d,J=8.7Hz).7.79(2H,d,J=8.7Hz).7.79(2H,d,J=8.7Hz).7.91(2H,d,J=8.7Hz).7.97(2H,d,J=8.7Hz).7.97(2H,d,J=8.7Hz).7.97(2H,d,J=8.7Hz).7.91(2H,d,J=8.7Hz).7.97(2H,d,J=8.7Hz).7.91(2H,d,J=8.7Hz).7.97(2H,d,J=8.7Hz).7.91(2H,d,J=8.7Hz).7.97(2H,d,J=8.7Hz).7.91(2H,d,J=8.7Hz).7.97(2H,d,J=8.7Hz).7.91(2H,d,J=8.7Hz).7.91(2H,d,J=8.7Hz).7.91(2H,d,J=8.7Hz).7.91(2H,d,J=8.7Hz).7.91(2H,d,J=8.7Hz).7.91(2H,d,J=8.7Hz).7.91(2H,d,J=8.7Hz).7.91(2H,d,J=8.7Hz).7.91(2H,d,J=8.7Hz).7.91(2H,d,J=8.7Hz).7.91(2H,d,J=8.7Hz).7.9	B-2-	β-2		Н	s	H,H	ОМ	Н	ļΗ	H	207-209	3.95(3H,s),4.21(2H,s),6.39(1H,d,J=16.2HZ),
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		.			е			i		6.68(1H,s),7.02(1H,d,J=1.5Hz),7.08(1H,dd,
B-2- β-2 β-2 CH2OE S H,H OM H H H 188-190 1.27(3Ht,J=7.2Hz),3.62(2H,q,J=7.2Hz),3.62(2H,q,J=7.2Hz),3.62(2H,q,J=7.2Hz),3.62(2H,q,J=7.2Hz),3.62(2H,q,J=7.2Hz),3.62(2H,q,J=7.2Hz),3.62(2H,q,J=7.2Hz),3.62(2H,q,J=7.2Hz),3.59(2H,q,J=8.1Hz),3.59	1	1				· ·	ŀ		1	ł		J=1.5Hz,8.1Hz),7.33(2H,d,J=8.1Hz),7.62(1
β-2-40 β-2 to to to to to to to to to to to to to		1	F ₃ C	1				1				
6									1_	L		
t	B-2-	B-2		CH2OE	S	H,H	ОМ	Н	H	Н	188-190	11.27(3H,t,J=7.2Hz),3.62(2H,q,J=7.2Hz),3.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 -			t			e		1	1	l	4(3H,s),4.28(2H,s),4.58(2H,s),6.41(1H,d,J=
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	ì		1				1		1	1	15.9Hz),7.00(1H,d,J=1.5Hz),7.12(1H,dd,J=
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	FoC					l		1	ļ	7.8,1.5Hz),7.45(1H,d,J=8.1Hz),7.72(1H,d,J
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		, 30					İ			1	
B - 2	1							_	_	1_	<u> </u>	[8.1Hz)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B-2-	B-2		CH2OE	0	H,H	ОМ	H	H	H	203-204	1.21(3H,t,J=7.2Hz),3.59(2H,q,J=7.2Hz),3.9
F ₃ C F ₃		" ~			1		е		1	1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	''	1		1						1	1	=15.9Hz),7.06-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			F ₃ C									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					L			<u> </u>	_	\bot		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B-2-	- B-2		CH2OE	0	H,H	H	Me	: H	۱þ	189-19	11.22(3H,t,J=7.2Hz),2.46(3H,s),3.59(2H,q,J
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-		t		1	1			1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		}		1					1			15.9Hz),6.88-
B-2-)	F ₂ C				İ				1	6.93(2H,m),7.59(1H,d,J=8.7Hz),7.77(2H,d,J
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	3-	l	}						1	1
B-2- 43 β-2- 44 β-2- 44 Me S H,H H CF3 H H 189-190 2.30(3H,S), 4.56(2H,S), 6.64(1H,d,J=15.6Hz), 7.68-7.83(3H,m), 7.91(2H,d,J=8.7Hz), 7.97(2H,d,J=8.7Hz), 7.97(2H,d,J=8.7Hz),		1	1	1					\perp	\bot		
6.69(1H,d,J=15.9Hz), 7.64(1H,d,J=15.9Hz), 7.82–8.08(7H,m), β-2- β-2	R -2-	- B-2		Me	s	H,H	CF	H	۱F	1 1	1 236-23	7 2.28(3H,S), 4.57(2H,s),
F ₃ C 7.82-8.08(7H,m),		-		1			1	1				
β-2- β-2 Me S H,H H CF3 H H 189-190 2.30(3H,S), 4.56(2H,s), 6.64(1H,d,J=15.6Hz), 7.68-7.83(3H,m), 7.91(2H,d,J=8.7Hz), 7.97(2H,d,J=8.7Hz),	73	- [Fac		1		-	1				7.82-8.08(7H,m),
6.64(1H,d,J=15.6Hz), 7.68-7.83(3H,m), 7.91(2H,d,J=8.7Hz), 7.97(2H,d,J=8.7Hz),			. 3-		L				\bot	_ _		150(0)1
44 (6.64(1H,d,J=15.6Hz), 7.66-7.83(3H,m), 7.91(2H,d,J=8.7Hz), 7.97(2H,d,J=8.7Hz),	B-2-	- B-2		Me	S	H,H	H	CF	3 1	1 1	1 189–19	0 [2.30(3H,S), 4.56(2H,S),
F ₋ C ⁻ / ₋		'		1					1			6.64(1H,d,J=15.6Hz), /.68-/.83(3H,m),
, , , , , , , , , , , , , , , , , , ,			Fac						1		Ì	1
8.01(1H,a,J=8.4Hz)					<u> </u>					丄		8.01(1H,d,J=8.4Hz)

[0225]

【表92】

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8		NMR(CDCl3 or DMSO-d6)
β-2- 45	β-2	F ₃ C	Me	S	H,H	OM e	Н	Н	Ме		2.30(3H,s),2.36(3H,s),3.91(3H,s),4.17(2H,s),6.31(1H,d,J=15.9Hz),7.03(1H,s),7.24(1H,s),7.72–7.83(4H,m),7.90(1H,d,J=15.9Hz)
β-2- 46	β-2	F ₃ C	CH2O Me	S	н,н	OM e	H	H	Н		3.45(3H,s),3.93(3H,s),4.26(2H,s),4.53(2H,s),6.39(1H,d,J=15.9Hz),7.01-7.11(2H,m),7.42(1H,d,J=7.8Hz),7.63(1H,d,J=15.9Hz),7.76(2H,d,J=8.1Hz),7.86(2H,d,J=8.1Hz)
β-2- 47	β-2	F ₃ C	Ме	S	н,н	Н	CI	Н	Н		2.29(3H,S), 4.52(2H,s), 6.61(1H,d,J=15.9Hz), 7.41(1H,dd,J=8.4Hz,1.8Hz),7.63(1H,d,J=1. 8Hz),7.81(1H,d,J=15.9Hz),7.89(1H,d,J=8.4 Hz), 7.91(2H,d,J=8.7Hz), 7.96(2H,d,J=8.7Hz),
β-2- 49	β-2	F ₃ C	Ме	S .	н,н	Н	F	H	H		2.29(3H,S), 4.51(2H,s), 6.56(1H,d,J=16.2Hz), 7.24- 7.47(2H,m),7.59(1H,d,J=16.2Hz), 7.78(1H,t,J=8.1Hz),7.90(2H,d,J=8.7Hz), 7.96(2H,d,J=8.7Hz)
β -2- 50	β-2	F ₃ C	Ме	S	H,H	Ме	Н	Me		241 241.5	2.19(3H,S), 2.39(6H,s),4.01(2H,s), 6.53(1H,d,J=14.4Hz), 7.40- 7.54(3H,m),792(4H,brs)
β - 2- 51	β-2	F ₃ C	Me	S	Н,Н	CI	Н	Н	H		2.33(3H,s),4.24(2H,s),6.39(1H,d,J=15.9Hz), 7.41(1H,dd,J=1.5Hz),8.4Hz),7.53- 7.55(2H,m),7.56(1H,d,J=15.9Hz),7.75(2H,d, J=8.4Hz),7.84(2H,d,J=8.4Hz)

【0226】 【表93】

No	合成法	R1	R2	X1	R3,R4	R5	R7	R8	R20	R21	 NMR(CDCI3 or DMSO-d6)
α-11-1	α-11	F ₃ C	Ме	0	Н,Н	H	Н	Н	Н	Н	2.34(3H,s),3.75(3H,s),4.83(2H,s),5.2 3(2H,s),6.51(1H,d,J=3.0Hz),6.97(1H,dd,J=2.4,9.0Hz),7.08(1H,d,J=3.0Hz),7.16(1H,d,J=9.0Hz),7.27(1H,d,J=2.4Hz),7.75(2H,d,J=9.0Hz),7.85(2H,d,J=9.0Hz).

[0227]

【表94】

			V4 1		R5	R7	R8	R9	R10	R20	R21.
No	R1	R2	X1 S	R3,R4 H,H	Н	<u>г/</u> Н	Н	Н	Н	H	Н
AA-1	F ₃ C	Ме	3	F1,F1	11	•					
AA-2	F ₃ C	· Me	0	H,H ·	Н	Н	Н	Ме	Н	Н	H
AA-3	F ₃ C	Ме	S	н,н	Н	Н	Н	Ме	Н	Н	Н
AA-4	F ₃ C	Me	0	H,H	Н	H	H	Et	Н	н	H ,
AA-5	F ₃ C	Ме	S	H,H	Н	Н	Н	Et	Н	Н	н
AA-6	F ₃ C	Me	0	Н,Н	Н	Н	Н	nPr	H	Н	н
AA-7	F ₃ C	Me	S	н,н	Н	Н	Н	nPi	Н	Н	Н
AA-8	F ₃ C	Ме	0	Н,Н	Н	Н	Н	Me	Me	Н	H
AA-9	F ₃ C	Me	S	н,н	Н	Н	Н	Me			Н
		Me	0	H,H	Н	H					Me
AA-11	F ₃ C	Me	S	H,H	H						Me
AA-12	F ₃ C	Me	() H,H	l F	1 1	1 h	1 1	4 H	Н	OMe

[0228]

【表95】

No	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21
AA-13	F ₃ C	Ме	S	Н,Н	Н	Н	Н	Н	H	Н	OMe
AA-14	F ₃ C	Me	0	н,н	Н	Н	Н	Н	Н	Ме	Me
AA-15	F ₃ C	Me	S	Н,Н	Н	Н	Н	Н	Н	Me	Ме
AA-16	F ₃ C	Me	0	н,н	Н	Н	Н	Н	Н	Ме	Н
AA-17	F ₃ C	Ме	S	Н,Н	Н	Н	Н	H	Н	Ме	Н
AA-18	F ₃ C	Ме	0	H,H	Н	Н	Н	Н	Н	Et	Н
AA-19	F ₃ C	Ме	S	Н,Н	Н	Н	Н	Н	Н	Et	Н
AA-20	F ₃ C	Ме	0	Н,Н	Н	Н	Н	Н	Н	nPr	Н
AA-21		Me	S	Н,Н	Н	Н	Н	Н	Н	nPr	Н
AA-22	F ₃ C	Me	0	H,H	Н	Н	Н	H	Н	CH2CH2NMe2	Н
AA-23		Ме	s	н,н	Н	H	 	I F	і Н	CH2CH2NMe2	H
AA-24	F ₃ C	Me	0	н,н	H	F	l F	1 1	Н	CH2CONH2	Н
AA-2!		Me	S	н,н	Н	I F	1 1	1 1	1 H		Н
AA-2		Me	7) Н,Н	ı F	1 1	1 !	-1	- F	CH2CH2OH	
AA-2	7 F ₃ C	Me	5	S H,F	1 1	1 1	Н	H	H F	GH2CH2OH	Н

【表96】

No	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21
AA-28	F ₃ C		0	Н,Н	Н	Н	Н	Н	Н	CH2CH2OMe	Н
AA-29	F ₃ C	Ме	s	н,н	Н	Н	Н	Н	Н	CH2CH2OMe	Н
AA-30	F ₃ C	Ме	0	Н,Н	Н	OMe	Н	Н	Н	Н	Н
AA-31	F ₃ C	Me	S	н,н	Н	OMe	Н	Ħ	Н	н	Н
AA-32	F ₃ C	Me	0	Н,Н	Н	Ме	Н	Н	Н	н	H .
AA-33	F ₃ C	Ме	S	Н,Н	Н	Me	Н	Н	Н	Н	Н
AA-34	F ₃ C	Ме	0	H,H	H	Н	Ме	Н	Н	Н	Н ,
AA-35	 	Ме	S	H,H	н	Н	ОМе	Н	Н	н	Н
AA-36	F ₃ C	Ме	0	н,н	Н	Н	ОМ	H	Н	Н	Н
AA-37	F ₃ C	Me	s	Н,Н	Н	Н	Ме	Н	Н	Н	Н
AA-38		MeOCH 2	0	н,н	Н	Н	Н	Н	Н	H	Н
AA-39	F ₃ C	MeOCH 2	S	H,H	H	Н	Н	Н	Н	Н	Н
AA-40	F ₃ C	EtOCH2	0	H,H	F	I H	Н	F	i H	Н	Н
AA-4	1 F ₃ C	EtOCH	2 S		F	1 -	I H	ŀ	i F	Н	Н

[0230]

【表97】

【表98】

No	R1	R2	X1	R3,R4	R ⁵ X ² CO ₂ Me
AAA-13	F ₃ C	Me	0	Н,Н	O−N CO ₂ Me
AAA-14	F ₃ C	Ме	S	н,н	O-N CO ₂ Me
AAA-15	F ₃ C	Me	0	H,H	HN-N CO ₂ Me
AAA-16	F ₃ C	Me	S	Н,Н	HN-N CO ₂ Me
AAA-17	F ₃ C	Me	0	Н,Н	Me N-N CO ₂ Me
AAA-18	F ₃ C	Ме	S	Н,Н	Me N-N CO ₂ Me
AAA-19	F ₃ C	Ме	0	Н,Н	CO₂Me
AAA-20	F ₃ C	Me	S	H,H	CO₂Me
AAA-21	F ₃ C	Ме	0	H,H	N CO₂Me
AAA-22	F ₃ C	Ме	S	Н,Н	N N CO₂Me
AAA-23	F ₃ C	Me	0	Н,Н	CO ₂ Me
AAA-24	F ₃ C	Ме	S	Н,Н	CO ₂ Me
AAA-25	F ₃ C	Ме	0	Н,Н	CO ₂ Me

【表99】

No	R1	R2	X1	R3,R4	R ⁵ X ² CO ₂ Me
AAA-26	F ₃ C	Me	S	Н,Н	CO ₂ Me
AAA-27	F ₃ C	Ме	0	H,H	N_CO ₂ Me
AAA-28	F ₃ C	Ме	S	н,н	N_CO ₂ Me
AAA-29	F ₃ C	Me	0	н,н	N_CO ₂ Me
AAA-30	F ₃ C	Me	s	H,H	N_CO ₂ Me
AAA-31	F ₃ C	Me	0	н,н	N CO ₂ Me
AAA-32	F ₃ C	Me	S	H,H	ON_CO ₂ Me
AAA-3	F ₃ C	Ме	0	н,н	N_CO ₂ Me
AAA-3	F ₃ C	Me	S	н,н	
AAA-3	F ₃ C	Ме	C	н,н	N CO ₂ Me
AAA-	F ₃ C	Me	S	; H,H	N_CO ₂ Me
AAA-	F ₃ C	Me	(1,H	N CO ₂ Me
AAA-	38 F ₃ C	Me		S H,F	S CO₂Me

【表100】

No	R1	R2	X1	R3,R4	R ⁵ X ² CO₂Me
AAA-39	F ₃ C	Me	0	Н,Н	N CO ₂ Me
AAA-40	F ₃ C	Ме	S	H,H	O CO ₂ Me
AAA-41	F ₃ C	Me	0	H,H	CO ₂ Me
AAA-42	F ₃ C	Me	S	н,н	CO ₂ Me
AAA-4S	F ₃ C	Ме	0	Н,Н	O CO ₂ Me
AAA-4	F ₃ C	Me	S	H,H	O CO ₂ Me
AAA-4	F ₃ C	Me	0	н,н	N_CO ₂ Me
AAA-4	F ₃ C	Me	S	H,H	N CO₂Me
AAA-4	F ₃ C	Me	C) Н,Н	N_CO₂Me
AAA-	F ₃ C	Me		S H,F	N_CO ₂ Me
AAA-	49 F ₃ C	Me		1,H C	N_CO ₂ Me
AAA-	F ₃ C	Me		S H,I	H O N CO ₂ Me

【表101】

$$R^3$$
 R^4 R^5 R^6

No	合成法	R1	R2	Х1	R3,R4	R ⁵ R ⁸ CO ₂ Me	*****	NMR(CDCl3 or DMSO-d6)
α-12-1	α-12	F ₃ C	Me	S	Н,Н	S CO ₂ Me		2.29(3H,s),3.74(3H,s),4.21(2H,s),7.2 3- 7.52(6H,m),7.74(2H,d,J=8.7Hz),7.8 3(2H,d,J=8.7Hz).

[0235]

【表102】

$$R^2$$
 R^3
 R^4
 R^5
 R^6
 R^8
 CO_2Me

					R 0
No	R1	R2	X1	R3,R4	R ⁵ R ⁶ CO₂Me
AAAA-1	F ₃ C	Me	0	Н,Н	S CO ₂ Me
AAAA-2	F ₃ C	MeOCH 2	0	H,H	S CO ₂ Me
AAAA-3	F ₃ C	MeOCH 2	S	Н,Н	S CO ₂ Me
AAAA-4	F ₃ C	EtOCH2	0	н,н	CO ₂ Me
AAAA-5	F ₃ C	EtOCH2	S	H,H	S CO ₂ Me
AAAA-6	F ₃ C	Me	0	H,H	N S CO ₂ Me
AAAA-7	F ₃ C	Me	S	Н,Н	N S CO ₂ Me

[0236]

【表103】

		•			
No	R1	R2	X1	R3,R4	R ⁵ R ⁵ CO ₂ Mo
AAAA-8	F ₃ C	Ме	0	н,н	N O CO ₂ Me
AAAA-9	F ₃ C	Ме	S	н,н	N O CO ₂ Me
AAAA- 10	F ₃ C	Me	0	н,н	S N CO ₂ Me
AAAA- 11	F ₃ C	Me	S	н,н	S N CO₂Me
AAAA- 12	F ₃ C	Me	0	Н,Н	O N CO₂Me
AAAA- 13	F ₃ C	Me	S	H,H	CO ₂ Me
14	F ₃ C	Ме	0	H,H	CO ₂ Me
AAAA- 15	F ₃ C	Me	S	H,H	CO ₂ Me
AAAA 16	F ₃ C	Me	0	Н,Н	S-N CO₂Me
AAAA 17	F ₃ C	Me	S	H,H	CO ₂ Me
AAAA 18	F ₃ C	Me	C) H,H	N-O CO ₂ Me
AAAA 19	F ₃ C	Me		S H,F	NO CO ₂ Me
AAA/ 20	\-\ F ₃ C \	Me		I,H C	CO₂M
AAA/ 21	F ₃ C	Me		S H,I	H N-S CO₂M

【表104】

No	R1	R2	X1	R3,R4	H ⁶ → H ⁸ CO ₂ Me
22	F ₃ C	Ме	0	Н,Н	CO ₂ Me
AAAA- 23	F ₃ C	Ме	S	н,н	CO ₂ Me
AAAA- 24	F ₃ C	Ме	0	Н,Н	N N CO ₂ Me
25	F ₃ C	Ме	S	н,н	N N CO ₂ Me
AAAA- 26	F ₃ C	Ме	0	Н,Н	N CO ₂ Me
AAAA- 27	F ₃ C	Ме	S	Н,Н	N CO ₂ Me
AAAA- 28	F ₃ C	Ме	0	H,H	N°N CO ₂ Me
AAAA- 29	F ₃ C	Ме	S	H,H	N=N CO ₂ Me
AAAA- 30	F ₃ C	Ме	0	H,H	N CO ₂ Me
AAAA- 31	F ₃ C	Me	S	H,H	N N CO ₂ Me

[0238]

【表105】

No	合成法	R1	R2	X1	R3,R4	R5	R7	R8	R20	R21	mp	NMR(CDCl3 or DMSO-d6)
β-3-1	β-3	F ₃ C	Me	0	Н,Н	Н	Н	Н	I	I	160	2.34(3H,s),4.88(2H,s),5.23(2H,s),6.5 2(1H,d,J=3.0Hz), 6.98(1H,dd,J=2.4,9.0Hz),7.08(1H,d, J=3.0Hz),7.17(1H,d,J=9.0Hz),7.27(1H,d,J=2.4Hz),7.75(2H,d,J=8.4Hz), 7.84(2H,d,J=8.4 Hz).
β-4-1	β-4	F ₃ C	Me	S	Н,Н	Н	Н	Н	H	H	141	2.23(3H,s),4.18(2H,s),4.79(2H,s),6.3 6(1H,d,J=2.7Hz), 7.12-7.36 (2H,m), 7.63(1H,S),7.90(2H,d,J=9.0Hz),7.94 (2H,d,J=9.0 Hz).

【0239】 【表106】

	- D4	70	V4	D0 D4	R5	D7	DO	R9	R10	B20	R21
No	R1	R2	X1	R3,R4		R7	R8	113		R20	
BB-1	F ₃ C	Me	0	H,H	H	Н	Н	Ме	Н	Н	Н
BB-2	F ₃ C	Me	S	н,н	H	Η	H	Me	Н	Н	H
BB-3	F ₃ C	Me	0	Н,Н	Н	Н	Н	Et	Н	Н	Н
BB-4	F ₃ C	Ме	S	H,H	Н	Н	Н	Et	Н	н	Н
BB-5	F ₃ C	Ме	0	H,H	Н	Н	Н	nPr	Н	Н	Н
BB-6	F ₃ C	Me	S	H,H	H	Н	Н	nPr	Н	H	Н

[0240]

【表107】

		R2	X1	R3,R4	R5	R7	R8	F	R9	R10		R20	R21	
No BB-7	R1	Me	0	н,н	Н	Н	Н	•	Me	Ме		Н	Н	
BB-8	F ₃ C	Me	S	H,H	Н	H	Н	+	Ме	Me		Н	Н	
BB-9	F ₃ C	Me	0	H,H	Н	H	Н		Н	Н		Н	Ме	,
BB-10		Me	S	H,H	Н	Н	+	1	Н	Н		Н	Me	3
BB-11	F ₃ C	Me	0	H,F	i H	F	1	1	Н	Н		Н	ON	1e
BB-12		Me	S	; H,i	- F	1 1	1	H	Н	Н		Н	Of	Мe
BB-13	5 l	Me	, () H,	H 1	4	Н .	Н	Н	F	1	Ме		le
BB-1	F ₃ C F ₃ C	M	Э	S H	н	н	Н	Н	H	1	1	Ме	N	Иe
BB-1		M	e	0 H	i,H	Н	Н	Н	+	1	H	Ме		Н
BB-		M	le	S	i,H	Н	Н	Н	1	H	Н	Me		Н
BB-			Лe	0 1	H,H	H	Н	H	1	Н	Н	Et		Н
BB-			Me	S	н,н	н	Н	. +	4	Н	н	Et		Н
BB		7	Me	0	Н,Н	Н	Н		Н	Н	Н	nPr		H
ВВ	-20 F ₃ C	7	Me	S	Н,Н	Н	Н		Н	Н	Н	nPr		Н
BE	3-21 F ₃ C	7	Ме	0	н,н	Н	H		Н	Н	Н	CH2CH2N	IMe2	н

[0241]

【表108】

No	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21
BB-22	F ₃ C	Ме	S	н,н	Н	Н	Н	Н	H	CH2CH2NMe2	Н
BB-23	F ₃ C	Ме	0	Н,Н	Ħ	H	Н	Н	Н	CH2GONH2	Н
BB-24	F ₃ C	Ме	Ø	н,н	Η	Н	Н	Н	Н	CH2CONH2	Н
BB-25		Ме	0	H,H	H	Ξ	Н	Н	H	СН2СН2ОН	Н
BB-26	F ₃ C	Ме	S	н,н	Н	Н	Н	Н	H	СН2СН2ОН	Н
BB-27	F ₃ C	Ме	0	H,H	Н	H	Н	Н	Н	CH2CH2OMe	Н
BB-28	F ₃ C	Me	S	H,H	Н	Н	Н	Н	Н	CH2CH2OMe	Н
BB-29	F ₃ C	Ме	0	H,H	Н	OMe	Н	Н	Н	Н	Н
BB-30	E-C	Me	S	H,H	Н	OMe	Н	Н	Н	Н	Н
BB-31	F ₃ C	Ме	0	н,н	Н	Ме	Н	Н	Н	H	Н
BB-32	F ₃ C	Me	S	н,н	Н	Me	Н	Н	Н	н	Н
BB-33	F ₃ C	Ме	0	Н,Н	Н	Н	Ме	Н	Н	Н	н
BB-34	F ₃ C	Ме	S	Н,Н	Н	Н	ОМе	Н	Н	Н	Н
BB-35	F ₃ C	Me	0	Н,Н	Н	Н	OMe	Н	Н	Н	Н
BB-36	F ₃ C	Ме	S	н,н	Н	Н	Ме	Н	Н	Н	Н

[0242]

【表109】

No	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21
BB-37		MeOCH 2	0	Н,Н	Н	Н	Н	Н	Н	Н	Н
BB-38	F ₃ C	MeOCH 2	S	Н,Н	Н	Н	Н	Н	Н	Н	Н
BB-39	F ₃ C	EtOCH2	0	н,н	Н	Н	Н	H	Н	Н	Н
BB-40	F ₃ C	EtOCH2	S	H,H	Н	Н	Н	Н	Н	Н	Н

[0243]

【表110】

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 X^{2}
 $CO_{2}H$
 R^{7}
 R^{8}

No	R1	R2	X1	R3,R4	R^5 X^2 CO_2H R^8
BBB-1	F ₃ C	Me	0	н,н	N=CO ₂ H
BBB-2	F ₃ C	Ме	S	н,н	N CO ₂ H
BBB-3	F ₃ C	Ме	0	Н,Н	N CO ₂ H
BBB-4	F ₃ C	Ме	S	Н,Н	N CO ₂ H
BBB-5	F ₃ C	Me	0	H,H	HN CO ₂ H
BBB-6	F ₃ C	Me	S	H,H	HN CO ₂ H
BBB-7	F ₃ C	Me	0	H,H	Me CO ₂ H

[0244]

【表111】

No	R1	R2	X1	R3,R4	R ⁵
BBB-8	F ₃ C	Ме	S	H,H	Me N CO₂H
BBB-9	F ₃ C	Me	0	н,н	S CO₂H
BBB-10	F ₃ C	Ме	S	Н,Н	S_CO₂H
BBB-11	F ₃ C	Ме	0	Н,Н	CO₂H
BBB-12	F ₃ C	Me	S	Н,Н	CO ₂ H
BBB-13	F ₃ C	Me	0	н,н	O-N CO₂H
BBB-14	F ₃ C	Me	S	Н,Н	O−N CO₂H
BBB-15	F ₃ C	Me	0	н,н	HN-N CO₂H
BBB-16	F ₃ C	Me	S	H,H	HN−N CO₂H
BBB-17	F ₃ C	Ме	0	Н,Н	Me, N−N CO ₂ H
BBB-18	F ₃ C	Ме	S	H,H	Me N-N CO ₂ H
BBB-19	F ₃ C	Ме	0	н,н	CO ₂ H
BBB-20	F ₃ C	Ме	S	Н,Н	CO ₂ H

[0245]

【表112】

No	R1	R2	Х1	R3,R4	R ⁵
BBB-21	F ₃ C	Ме	0	Н,Н	N N CO ₂ H
BBB-22	F ₃ C	Ме	S	Н,Н	N CO ₂ H
BBB-23	F ₃ C	Ме	0	Н,Н	CO ₂ H
BBB-24	F ₃ C	Ме	S	H,H	N CO₂H
BBB-25	F ₃ C	Ме	0	Н,Н	CO ₂ H
BBB-26	F ₃ C	Me	S	н,н	CO ₂ H
BBB-27	F ₃ C	Me	0	H,H	N CO ₂ H
BBB-28	F ₃ C	Me	S	н,н	N_CO ₂ H
BBB-29	F ₃ C	Me	0	Н,Н	N_CO ₂ H
BBB-30	F ₃ C	Ме	S	н,н	N_CO₂H
BBB-31	F ₃ C	Ме	0	н,н	O N CO₂H
BBB-32	F ₃ C	Ме	S	Н,Н	N_CO ₂ H
BBB-33	F ₃ C	Me	0	H,H	N_CO ₂ H

[0246]

【表113】

_					
No	R1	R2	X1	R3,R4	H ⁶ X ² CO ₂ H
BBB-34	F ₃ C	Me	S	H,H	N_CO ₂ H
BBB-35	F ₃ C	Ме	0	H,H	N_CO ₂ H
BBB-36	F ₃ C	Me	S	H,H	O CO₂H
BBB-37	F ₃ C	Ме	0	H,H	S CO₂H
BBB-38	F ₃ C	Ме	S	H,H	S CO ₂ H
BBB-39	F ₃ C	Ме	0	H,H	O CO₂H
BBB-40	F ₃ C	Me	S	H,H	O CO2H
BBB-4	F ₃ C	Me	0	H,H	CO₂H
BBB-4	F ₃ C	Me	S	н,н	CO₂H
BBB-4	3 F ₃ C	Me	0	Н,Н	N CO ₂ H
BBB-4	F ₃ C	Ме	S		N CO ₂ H
BBB-4	F ₃ C	Ме		НН	N_CO₂H

【表114】

No	R1	R2	X1	R3,R4	R ⁵ X ² CO ₂ H
BBB-46	F ₃ C	Ме	S	Н,Н	O CO ₂ H
BBB-47	F ₃ C	Me	0	H,H	N CO ₂ H
BBB-48	F ₃ C	Me	S	H,H	CO ₂ H
BBB-49	F ₃ C	Ме	0	H,H	N_CO ₂ H
BBB-50	F ₃ C	Ме	S	H,H	N_CO ₂ H

【0248】 【表115】

No	合成法	R1	R2	X1	R3,R4	R ⁵ R ⁵ CO ₂ H	mp	NMR(CDCl3 or DMSO-d6)
β-5-	1 β-5	F ₃ C	Me	S	н,н	S CO ₂ H	209	2.52(3H,s),4.20(2H,s),7.26(1H,d,J=5 .4Hz),7.41(2H,d,J=8.7Hz),7.45(2H,d ,J=8.7Hz),7.54(1H,d,J=5.4Hz),7.72(2H,d,J=8.4Hz),7.81(2H,d,J=8.4Hz).

[0249]

【表116】

					R ¹ ON
No	R1	R2	X1	R3,R4	R ⁵ → CO₂H
BBBB-1	F ₃ C	Ме	0	H,H	S CO ₂ H
BBBB-2	F ₃ C	MeOCH 2	0	Н,Н	S CO ₂ H
BBBB-3	F ₃ C	MeOCH 2	S	H,H	S CO ₂ H
BBBB-4	F ₃ C	EtOCH2	0	Н,Н	S CO ₂ H
BBBB-5	F ₃ C	EtOCH2	S	н,н	S CO ₂ H
BBBB-6	F ₃ C	Ме	0	Н,Н	N S CO ₂ H
BBBB-7	F ₃ C	Ме	\$	Н,Н	N S CO ₂ H
BBBB-8	F ₃ C	Ме	0	Н,Н	N CO ₂ H
BBBB-9	F ₃ C	Me	S	н,н	N O CO ₂ H
BBBB- 10	F ₃ C	Ме	0	н,н	S N CO ₂ H
BBBB- 11	F ₃ C	Me	S	Н,Н	S N CO ₂ H
BBBB- 12	F ₃ C	Ме	0	Н,Н	O N CO ₂ H

[0250]

【表117】

					R ⁰
No	R1	R2	X1	R3,R4	R ⁵ → R ⁵ CO₂H
BBBB- 13	F ₃ C	Me	S	Н,Н	CO ₂ H
BBBB- 14	F ₃ C	Me	0	Н,Н	O-N CO ₂ H
BBBB- 15	F ₃ C	Me	S	Н,Н	CO ₂ H
BBBB- 16	F ₃ C	Ме	0	H,H	S-N CO ₂ H
BBBB- 17	F ₃ C	Ме	S	н,н	S-N CO ₂ H
BBBB- 18	F ₃ C	Me	0	Н,Н	N CO₂H
BBBB- 19	F ₃ C	Me	S	н,н	N CO₂H
8888- 20	F ₃ C	Me	0	Н,Н	N-S CO₂H
BBBB- 21	F ₃ C	Me	S	Н,Н	N-S CO ₂ H
BBBB- 22	F ₃ C	Me	0	H,H	CO ₂ H
BBBB- 23	F ₃ C	Me	S	H,H	CO ₂ H
BBBB- 24	F ₃ C	Me	0	н,н	N N N CO ₂ H
BBBB 25	F ₃ C	Me	S	н,н	N N N CO ₂ H
BBBB 26	- F ₃ C	Me	C	H,H	N CO ₂ H

[0251]

【表118】

No	R1	R2	X1	R3,R4	R ⁶ → R ⁶ ← CO₂H
BBBB- 27	F ₃ C	Ме	S	' н,н	N CO ₂ H
BBBB- 28	F ₃ C	Me	0	H,H	N CO ₂ H
BBBB- 29	F ₃ C	Ме	S	н,н	N°N CO ₂ H
BBBB- 30	F ₃ C	Me	0	Н,Н	N N CO ₂ H
8888- 31	F ₃ C	Ме	S	Н,Н	N CO ₂ H

[0252]

試験例1 PPAR δ および α に対する転写活性化試験

PPAR遺伝子転写活性化アッセイはキメラ転写因子による核内レセプターの活性検出系を用いた。すなわち酵母の転写因子であるGAL4のDNA結合ドメインとレセプターのリガンド結合ドメインとの融合蛋白質を発現するプラスミドおよびレポータープラスミドの2つのプラスミドをCHO細胞へ一過性にトランスフェクションし、レポータープラスミドにコードされているGAL4の認識配列を含むプロモーターの活性を指標にすることによりレセプターの活性化度を検出するものである。

[0253]

プラスミド:ヒトPPAR δ (h PPAR δ) および α (h PPAR α) のリガンド結合領域 (δ : aa $139 \sim \text{C末端}$; α : aa $167 \sim \text{C末端}$) はHuman Universal Quick-Clone cDNA (CLONTECH社)を用いてPCR増幅により得た。増幅されたcDNAはそれぞれpCR2.1-TOPOベクター(Invitrogen社)にサブクローニングした後、シークエンスを行い塩基配列を確認した。得られた各々のcDNAフラグメントをさらにpBINDベクター(Promega社)にサブクローニングすることにより、酵母転写因子GAL4のDNA結合ドメインとの融合蛋白質を発現するプラスミドを構築した。レポータープラスミドはpG51ucベクター(Promega社)を使用した。

[0254]

細胞培養およびトランスフェクション:CHO細胞を $10\%FBS-\alpha$ MEM中で培養した。96 ウェルプレート(Costar社)を用いて、トリプシン処理にて剥離したCHO細胞を1 ウェル当たり 20000 個、および上記の手順にて得られた2000プラスミドを1 ウェル当たりそれぞれ 2500 の 2500 を製造者のインストラクションに従いFuGene試薬(Roche社)を用

[0255]

転写活性化能の測定:上記手順にてトランスフェクションしたCHO細胞をDMSOに溶解した試験化合物があらかじめ $0.5\mu1$ スポットされた各ウェルに $100\mu1$ ずつ分注した。細胞と試験化合物は共に24時間CO2インキュベーター内にて培養した後、ルシフェラーゼ発光基質ピッカジーンLT2.0(東洋インキ社)を1ウェル当たり $100\mu1$ 添加することによってルシフェラーゼ活性を測定した。測定はLUMINOUS CT-9000D (DIA-IATRON社)を用いた。

[0256]

PPAR δ については、得られた発光量から飽和発光量の1/2量を示す試験化合物の濃度をエクセルにて計算し、試験化合物のPPAR δ 活性化作用におけるEC50値を算出した。結果を表119に示す。

[0257]

PPARαについては試験化合物の濃度 1 μ Mおよび 1 0 μ Mにおいて、DMSOを対照として発光量が何倍になったかを算出し、上昇率とした。結果を表 1 2 0 に示す。

[0258]

【表119】

P E	EC ₅₀ (nM)
No.	hPPAR δ
比較例化合物 $F_3C \longrightarrow O \longrightarrow N$ Me	37
α-7-3-1	9.5
β -1-3	9.9
β-1-15	1.5
β-1-8	11
β -4-1	16
β-5-1	14

[0259]

【表120】

No.	hPPAR α			
	$1 \mu M$	10 μ M		
β-1-32	22.9	44.5		
β-1-33	18.4	40.7		

[0260]

試験例2 СҮР2С9酵素阻害試験

CYP2C9酵素阻害試験は、ヒト肝ミクロソームを用いて、CYP2C9の典型的な 反応であるトルブタミド4位水酸化活性を指標にして行う。

[0261]

反応条件は以下のとおり:基質、 $5\,\mu$ M トルブタミド(14 C標識化合物);反応時間、 $3\,0$ 分;反応温度、 $3\,7$ C;蛋白濃度、 $0.2\,5\,\mathrm{mg/mL}$ (ヒト肝ミクロソーム、 $1\,5\,\mathrm{p}$ o 1、L o t. $2\,1\,0\,2\,9\,6$ 、米国XenoTech社)。

[0262]

HEPES Buffer (pH7.4) 中に蛋白 (ヒト肝ミクロソーム)、薬物溶液、基質を上記の組成で加え、反応の補酵素であるNADPHを添加して反応を開始する。所定の時間反応後、2N 塩酸溶液を加え除蛋白することによって反応を停止する。クロロホルムで残存する基質薬物および生成する代謝物を抽出し、溶媒を留去したものをメタノールで再溶解する。これをTLCにスポットして、クロロホルム:メタノール:酢酸=90:10:1で展開し、イメージングプレートに約14~20時間コンタクトさせた後、BAS200で解析する。代謝物であるトルブタミド4位水酸化体の生成活性について、薬物を溶解した溶媒を反応系に添加したものをコントロール(100%)とし、被検薬物溶液を加えたものの残存活性(%)を算出する。

【0263】 【表121】

No.	EC ₅₀ (nM) HPPARδ	残存活性 (%) CYP2C9
比較例化合物 F_3C ON Me	37	28
β-2-38	35	47

【要約】

ペルオキシソーム増殖活性化受容体アゴニストとして有用な化合物を提供す 【課題】 る。

【解決手段】式(I):

【化1】

(式中、

 $R^1 \sim R^{10}$ は各々独立して水素、ハロゲン、置換基を有していてもよい低級アルキル等で あり、 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素または低級アルキル等)、 $-CR^{12}R^{13}CO-$ 、 $-(CR^{12}R^{13})mO-$ または $-O(CR^{12}R^{13})m-$ (ここでR 12 および R^{13} は各々独立して水素または低級アルキルであり、 m は $1\sim3$ の整数)等であ り、 X^2 は単結合、-O-、-S-、 $-NR^{14}-$ (ここで R^{14} は水素または低級アルキル 等、 R^{14} は R^{6} と共に隣接する原子と一緒になって環を形成してもよい)または $-CR^{15}$ $R^{16}-$ (ここで R^{15} および R^{16} は各々独立して水素または低級アルキルであり、 R^{15} はR 6 または R^{10} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^{16} は R^9 と一 緒になって結合を形成してもよい)であり、 X^3 は $COOR^{17}$ またはC($=NR^{17}$) NR^1 ⁸ O R ¹⁹ 等である)

で示される化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒 和物。

【選択図】 なし

特願2004-167941

出願人履歴情報

識別番号

[000001926]

1. 変更年月日 [変更理由] 住 所

氏 名

1990年 8月23日

新規登録

大阪府大阪市中央区道修町3丁目1番8号

塩野義製薬株式会社