$$\begin{array}{rcl}
\text{Zij} &= P(z_i = j \mid x, \hat{\theta}^{old}) \\
&= P(x_i \mid z_i = j, \hat{\theta}^{old}) \cdot P(z_i = j \mid \hat{\theta}^{old}) \\
&= P(x_i \mid z_i = j, \hat{\theta}^{old}) \cdot P(z_i = j \mid \hat{\theta}^{old}) \\
&= \frac{1}{\pi_{i}} \cdot e^{-\lambda_{i}} \cdot \lambda_{i}^{x_{i}} \cdot \pi_{j}}{Z_{i} \cdot \pi_{k} \cdot x_{k}^{x_{i}}}
\end{array}$$

U-Step
$$\frac{\partial}{\partial y} l(0) = \frac{2}{2} \frac{2}{3} \frac{1}{3} \left(-1 + \frac{x_1}{x_2}\right) = 0$$

$$\Rightarrow \qquad \frac{1}{2} = \frac{2}{2} \frac{2}{3} \frac{1}{3} \cdot x_1$$

PS2.1 M2 for a Paisson $\hat{J} = \frac{Z}{N}$ We denote $\hat{N}_{i} = Z\hat{J}_{i}$ is the number of paints assigned to class;

then $Z\hat{J}_{i} \times X_{i}$ is the sum of X_{i} value for those paints $\hat{J}_{i} = \frac{Z\hat{J}_{i} \times X_{i}}{N}$ is similar to an MZ for a Paisson with class;

$$f = l(\theta) + \lambda (2\pi i)$$

$$\frac{\partial}{\partial \pi} f = 0 \Rightarrow 2\pi i + \lambda = 0$$

$$\frac{\partial}{\partial \pi} f = 0 \Rightarrow 2\pi i = 1$$

$$-\lambda 2\pi i - 22\pi i = n$$

$$\lambda = -\frac{\lambda}{2\pi i} = -\pi$$

$\Rightarrow \hat{\tau} = \frac{Z\hat{s}_{1}}{n}$

A denotes how many weight eve assign to class j

according to the number of samples belonging to it

(b)
$$log-likelihood = log p(x|\hat{\theta})$$

= $z log p(x|\hat{\theta})$
= $z log z \hat{\eta}_j possion(x|x_j)$

From these two figures plotted in MATLAB, we see that log likelihood of 2 andon stays around -728 for k=1 to k=5, whereas Antherp increases significantly from k=1 to k=2, and then stay around -747.

	V						_		• / •	/		
lambda_Antwerp ×							lambda_london 💥					
	5x5 double						5x5 double					
	1	2	3	4	5		1	2	3	4	5	
1	0.8958	0	0	0	0	1	0.9288	0	0	0	0	
2	2.3059	0.2623	0	0	0	2	0.9953	0.8651	0	0	0	
3	1.0881	0.1392	2.4459	0	0	3	1.1139	1.1220	0.6995	0	0	
4	0.1202	0.5533	1.5377	2.6478	0	4	0.8226	0.7502	1.0724	1.1687	0	
5	2.5882	1.6660	0.1522	0.1722	0.4533	5	1.1456	0.8189	1.1185	1.1084	0.6273	

From the lambda, we see that London tends to have a random affack, whereas in Antwerp, there are some squares with higher probability of being affack.