Отчет о выполненой лабораторной работе 2.2.1

Котляров Михаил, Б01-402

1 Введение

Цель работы: Определение коэффициента диффузии гелия в воздухе

Оборудование: форвакуумный насос; баллон с гелием; манометр; источник питания; магазин сопротивления; мультиметр; установка

2 Теоретические сведения

Диффузией называют самопроизвольное взаимное проникновение веществ друг в друга, происходящее вследствие хаотичного теплового движения молекул. При перемешивании молекул разного сорта говорят о взаимной (или концентрационной) диффузии.

В системе, состоящей из двух компонентов, плотность потока вещества в результате взаимной диффузии описывается законом Фика:

$$j_a = -D\frac{\partial n_a}{\partial x}, j_b = -D\frac{\partial n_b}{\partial x},$$

где D – коэффициент взаимной диффузии компонентов, j_{ab} = плотности потока частиц соответствующего сорта (количество частиц, пересекающих единичную площадку в единицу времени).

В данной работе исследуется взаимная диффузия гелия и воздуха. Давление P и температура T в условиях опыта предполагаются неизменными: $P=(n_{He}+n_{\rm B})k_{\rm B}T=const,$ где n_{He} и $n_{\rm B}$ — концентрации (объёмные плотности) диффундирующих газов. Поэтому для любых изменений концентраций справедливо $\Delta n_{\rm B}=-\Delta n_{He}.$ Следовательно, достаточно ограничиться описанием диффузии одного из компонентов, например гелия n_{He}

$$j_{He} = -D \frac{\partial n_{He}}{\partial x} \tag{1}$$

Проведём теоретическую оценку величины коэффициента взаимной диффузии. В работа мала концентрация гелия, более того, масса атомов гелия много меньше массы молекул, составляющих воздух. При таких условиях перемешивание газов в эксперимента можно рассматривать как диффузию гелия на стационарном форне воздуха. Тогда коэффициент диффузии приблизительно равен

$$D = \frac{1}{3}\lambda \bar{v},\tag{2}$$

где $\bar{v}=\sqrt{\frac{8kT}{\pi m}}$ — средняя тепловая скорость частиц примеси, $\lambda=\frac{1}{n_0\sigma}$ — длина свободного пробега частиц, n_0 —концентрация рассеивающих центров (фона), σ — сечение столкновения частиц примеси с частицами фона. В общем случае необходимо считать $\lambda=\frac{1}{n_\Sigma\sigma}$, где $n_\Sigma=n_{He}+n_{\rm B}=\frac{P_\Sigma}{kT}$ — полная концентрация частиц. Также \bar{v} — средняя относительная скорость частиц разных сортов. Таким образом, теоретическая оценка предполагает, что коэффициент диффузии не зависит от пропорция элементов, а обратно пропорционален давлению $D\propto\frac{1}{P_\Sigma}$.

3 Экспериментальная установка и метод измерения

Рассмотрим подзадачу о диффузии в соединительной трубке. Предположим сперва, что концентрации примеси (гелия) на её торцах поддерживаются постоянными и равными n_1 и n_2 соответственно. Тогда через некоторое время в трубке установится стационарный поток частиц, одинаковый в каждом сечении трубки (в противном случае, если бы поток зависел от x, частицы бы накапливались в трубке, и процесс перестал бы быть стационарным). Применяя закон Фика в трубке, получим

$$j = -D\frac{\partial n}{\partial x} = const.$$

Следовательно, распределение концентрации в трубке n(x) – линейная функция:

$$n(x) = \frac{\Delta n}{L}x,\tag{3}$$

и плотность потока частиц всюду постоянна и равна

$$j = -D\frac{\Delta n}{L},\tag{4}$$

где $\Delta n = n_2 - n_1$ – разность концентраций гелия на концах трубки.

Тогда полное число частиц примеси в сосудах равно соответственно $N_1 = n_1 V$ и $N_2 = n_2 V$. Прозведение плотности потока на площадь сечения трубки S дает количество частиц, пересекающих в единицу времени любое поперечное сечение трубки. Поэтому

$$\frac{dN_1}{dt} = jS$$
, $\frac{dN_2}{dt} = -jS$.

Выразим отсюда скорость изменения Δn . Вычитая из второго равенства первое и деля результат на объём сосуда V, с учетом (4) получим

$$\frac{d(\Delta n)}{dt} = -\frac{\Delta n}{\tau} \tag{5}$$

Интегрируя (5), получаем, что разность концентраций будет убывать по экспоненциальному закону

$$\Delta n = \Delta n_0 e^{-\frac{t}{\tau}} \tag{6}$$

где $au = \frac{VL}{2DS}$ — характерное время выравнивания концентраций между сосудами, Δn_0 — разность концентраций примеси в сосудах в начальный момент времени.

Для измерения разности концентраций в установке применяются датчики теплопроводности. Тонкая платиновая проволочка, протянутая вдоль оси стеклянного цилиндра, нагревается током. Тепло от проволочки к стенке цилиндра передаётся главным образом за счёт теплопроводности газа, находящегося внутри цилиндра. При заданной мощности нагревания приращение температуры проволочки и, следовательно, приращение её сопротивления пропорциональны теплопроводности газа. При малой разности Δn концентраций в ссудах можно ожидать, что разность теплопроводностей будет изменяться прямо пропорционально Δn :

$$\Delta \kappa = \kappa(n_2) - \kappa(n_1) \approx const \cdot \Delta n.$$

При незначительном различии в составах смесей показания вольтметра, подсоединённого к диагонали моста, будут пропорциональны разности концентраций примеси: $U \propto \Delta \kappa \propto \Delta n$. В процессе диффузии разность концентраций убывает по закону (8), и значит по тому же закону изменяется напряжение:

$$U = U_0 e^{-\frac{t}{\tau}},\tag{7}$$

где U_0 — показание гальванометра в начальный момент времени.

Схема установки

 I_1 I_2 I_2 I_3 I_4 I_4 I_5 I_6 I_8 I_8

Рис. 2. Электрическая схема установки

Рис. 1. Экспериментальная установка

4 Приборы и данные

- Вакуумметр образцовый ГОСТ 6521-60, класс точности 0,4.
- Форвакуумный насос Адвавак 2, скорость откачки 2 м³/час
- Источник постоянного напряжения GW Instek GPS-2303, погрешность 0.5% + 10 мВ
- Цифровой мульиметр Вольтметр универсальный В7-78, погрешность измерения постоянного напряжения 0.0035% + 0.0005% диапазона мВ.

5 Выполнение

1. Ход выполнения каждого эксперимента

Вначале откачаем до предела воздух из всей установки. Значение на манометре 101,5 делений. Давление в комнате 756 торр. По этим данным получаем 1 деление $\approx 7,45$ торр. Запустим в установку воздух до давление $P_1=50$ торр. С помощью магазина сопротивлений установик на нити напряжение не более 0,1 мВ. Откачаем весь воздух. Наполним первый сосуд гелием до $0,2P_1$. Откачаем оставшийся в трубках гелий. Накачаем воздух во второй сосуд до давления $1,7P_1$. После этого откроем краны K1 и K2, чтоб давление и температура выровнялись. Закроем краны, зафиксируем получившееся давление в системе, откроем кран K3 и запустим программу, фиксирующую показания вольтметра. Будем ждать, пока напряжение упадет на 30-50%. Проделаем этот опыт еще 5 раз для разных давлений.

По полученным данным построим графики зависимости напряжения от времени U(t), а также эту же зависимость в логарифмическом масштабе по оси оридинат.

Экспоненциальная зависимость напряжения от времени для $P_1,\,P_2,\,P_3$

Экспоненциальная зависимость напряжения от времени для $P_4,\,P_5,\,P_6$

Зависимость логарифма напряжения от времени для $P_1,\,P_2,\,P_3$

Зависимость логарифма напряжения от времени для $P_4,\,P_5,\,P_6$

2. По полученным значениям au определим коэффициент диффузии для данного давления.

Р, дел	P, $Topp$	au, c	$D, \frac{c_{\text{M}}^2}{c}$	$\sigma_D, \frac{\mathrm{cm}^2}{\mathrm{c}}$	$\varepsilon_D,\%$
6.5 ± 0.4	48.4 ± 3.0	258.44 ± 0.20	7.31	0.19	2.63
8.0 ± 0.4	59.5 ± 3.0	301.88 ± 0.19	6.26	0.16	2.63
11.5 ± 0.4	85.6 ± 3.0	406.68 ± 0.22	4.65	0.12	2.63
14.5 ± 0.4	108.0 ± 3.0	494.21 ± 0.23	3.82	0.10	2.63
19.0 ± 0.4	141.5 ± 3.0	692.70 ± 0.33	2.73	0.07	2.63
28.5 ± 0.4	212.3 ± 3.0	946.35 ± 0.51	2.00	0.05	2.63

Таблица 1. Зависимость времени релаксации au и диаметра пятна D от давления P

3. По получненным коэффициентам диффузии построим по методу χ^2 зависимость $D(\frac{1}{P})$. Экстраполируя график к атмосферному давлению, оценим соответствующий коэффициент диффузии.

Зависимость коэффициента диффузии от обратного давления $D(\frac{1}{P})$

Параметры графика: коэффициент наклона $a=351, 36\pm 8, 82, \chi^2=12.08,$ степень свободы i=4, параметр p=0.0167. Коэффициент диффузии для нашего давления в комнате $D_{756}=0,820\pm 0,075~\frac{\text{см}^2}{\text{c}}~(\varepsilon_{D_{756}}=9,2\%),$ для нормального атмосферного давления $D_{760}=0,817\pm 0,075~\frac{\text{см}^2}{\text{c}}~(\varepsilon_{D_{756}}=9,2\%).$

4. По полученным значениям оценим длину свободного пробега атомов гелия в воздухе λ_{He} , а также эффективное сечение столкновений атомов гелия с молекулами воздуха $\sigma_{He-возд}$.

Для этого рассчитаем концентрацию молекул $n_0=\frac{P}{kT},\ \bar{v}=\sqrt{\frac{8kT}{\pi m}}$ — среднюю тепловую скорость частиц примеси.

$$\begin{split} n_0^1 &= \frac{P_1}{kT_0} = \frac{48, 4\cdot 133, 322}{1,38\cdot 10^{-23}\cdot 298} \approx 1,57\cdot 10^{24}~\text{m}^{-3} \\ \sigma_{n_0^1} &= n_0^1 \frac{\sigma_{P_1}}{P_1} = 1,57\cdot 10^{24} \frac{3}{48,4} = 9,8\cdot 10^{22}~\text{m}^{-3} \\ &\varepsilon_{n_0^1} = 6,3\% \\ \bar{v} &= \sqrt{\frac{8RT}{\pi\mu}} = \sqrt{\frac{8\cdot 8,31\cdot 298}{3,1415\cdot 4\cdot 10^{-3}}} = 1255,6\frac{\text{M}}{\text{c}} \\ \lambda_1 &= \frac{3D}{\bar{v}} = \frac{3\cdot 7,31\cdot 10^{-4}}{1255,6} \approx 1747,3~\text{hm} \end{split}$$

$$\sigma_{\lambda_1} = \lambda_1 \varepsilon_{D_1} = 45,9 \text{ нм}$$

$$\sigma_{He}^1 = \frac{1}{n_0^1 \lambda_1} = \frac{1}{1,57 \cdot 10^{24} \cdot 1747, 3 \cdot 10^{-9}} \approx 3,65 \cdot 10^{-19} \text{ м}^2$$

$$\Delta_{\sigma_{He}^1} = \sigma_{He}^1 \sqrt{\left(\frac{\sigma_{n_0^1}}{n_0^1}\right)^2 + \left(\frac{\sigma_{\lambda_1}}{\lambda_1}\right)^2} = 1747, 3\sqrt{(6,25 \cdot 10^{-2})^2 + (2,63 \cdot 10^{-2})^2} = 2,48 \cdot 10^{-20} \text{ м}^2$$

$$\varepsilon_{\sigma_{He}^1} = 6,78\%$$

Р, торр	$n_0, 10^{24} \text{ m}^{-3}$	$10^{24} \mathrm{m}^{-3}$	λ , HM	σ_{λ} , HM	$\sigma_{He}, \ 10^{-19} \text{ m}^2$	$\Delta \sigma_{He}, \ 10^{-19} \text{ m}^2$	$\varepsilon_{\sigma_{He}}, \%$
48.4 ± 3.0	1.57	0.10	1747.3	45.9	3.65	0.25	6.8
59.5 ± 3.0	1.93	0.10	1495.9	39.3	3.47	0.20	5.7
85.6 ± 3.0	2.78	0.10	1110.4	29.2	3.24	0.14	4.4
108.0 ± 3.0	3.50	0.10	913.7	24.0	3.13	0.12	3.8
141.5 ± 3.0	4.59	0.10	651.9	17.1	3.34	0.11	3.4
212.3 ± 3.0	6.88	0.10	477.2	12.5	3.04	0.09	3.0
756.0 ± 3.0	24.51	0.10	195.8	18.0	2.08	0.19	9.2
760.0 ± 3.0	24.64	0.10	195.2	18.0	2.08	0.19	9.2

Таблица 2. Результаты расчёта концентрации n_0 , длины свободного пробега λ и эффективного сечения столкновений σ_{He} при различных давлениях P

Рассчитаем по формулам из теории и табличному значению коэффициента диффузии при атмосферном давлении и температуре $20^{\circ}C$ эти значения. $D_{\text{табл}} = 0{,}697 \; \frac{\text{см}^2}{c}^*$

$$\lambda_{{
m Ta6},{
m I}}=166,5$$
 нм
$$\sigma_{{
m Ta6},{
m I}}=rac{1}{n_0^{760}\lambda_{{
m Ta6},{
m I}}}=2,44\cdot 10^{-19}~{
m M}^2$$

Теперь найдем эффективное сечение столкновений σ_{He}^a по коэффициенту ноклона прямой $D(\frac{1}{P})$, поскольку по теории $D=\frac{kT^{\frac{3}{2}}}{3\sigma_{He}}\sqrt{\frac{8R}{\pi\mu}}\frac{1}{P}$. Отсюда $\sigma_{He}=\frac{kT^{\frac{3}{2}}}{3a}\sqrt{\frac{8R}{\pi\mu}}$.

$$\begin{split} \sigma_{He}^a &= \frac{1}{n_0^{760} \lambda_{\text{табл}}} = 3,68 \cdot 10^{-19} \text{ m}^2 \\ \Delta_{\sigma_{He}^a} &= \sigma_{He}^a \frac{\sigma_a}{a} = 3,68 \frac{8,82}{351,36} = 0,09 \cdot 10^{-19} \text{ m}^2 \end{split}$$

6 Результаты и обсуждения

- 1. По графикам 1-4 отчетливо видно, что процесс диффузии подчиняется закону (6).
- 2. Из графика 5 видно, что коэффициент диффузии обратно пропорционален давлению. Об этом говорят значения величин $\frac{\chi^2}{i}$ и p.
- 3. Сравним полученный коэффициент диффузии для атмосферного давления при $25^{\circ}C$ с табличным для $20^{\circ}C$. С учетом грубых теоретических приближений, а также погрешностей, результат можно считать

Величина	Эксп. зн.	Табл. зн.
$D, \frac{c_{\text{M}}^2}{c}$	0,817	0,697
$\sigma_D, \frac{c_M^2}{c}$	0,075	0,120
ε_D , %	9,2	17,2

Таблица 3. Сравнение экспериментального и табличного значений коэффициента диффузии

приемлимым.

4. Сравним экспериентальное и высчитанное на основе табличных данных значения эффективного сечения столкновений атомов гелия с молекулами воздуха.

Полученное экспериметнальное значение довольно близко к табличному.

^{*}Значение данного коэффициента диффузии взято с сайта https://www.engineeringtoolbox.com/air-diffusion-coefficient-gas-mixture-temperature-d_2010.html

Величина	Эксп. зн.	Табл. зн.
σ , 10^{-19} m^2	2,079	2,437
$\Delta \sigma, 10^{-19} \text{ m}^2$	0,192	0,358
ε_{σ} , %	9,2	14,7

Таблица 4. Сравнение экспериментального и табличного значений эффективного сечения σ

7 Выводы

Были проведены 6 серий измерений напряжения от времени для разных давлений. Были построены графики зависимостей U(t), lnU(t). По ним определили коэффициенты диффузии. По полученным данным построили график зависимости $D(\frac{1}{P})$. Экстраполируя график к атмосферному давлению, оценили соответствующий коэффициент диффузии (см таблицу 3). Вычислили длину свободного пробега, эффективное сечение столкновений атомов гелия с молекулами воздуха для каждого давления. Сравнили со значениями, вычисленными на основе табличного значения коэффициента диффузии.