

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
29. August 2002 (29.08.2002)

(10) Internationale Veröffentlichungsnummer
WO 02/066870 A1

- | | | |
|---|-------------------------------|---|
| (51) Internationale Patentklassifikation ⁷ : | F16H 63/20, | (30) Angaben zur Priorität: |
| 63/30 | | 101 08 990.2 23. Februar 2001 (23.02.2001) DE |
| (21) Internationales Aktenzeichen: | PCT/DE02/00577 | 101 15 056.3 27. März 2001 (27.03.2001) DE |
| (22) Internationales Anmeldedatum: | 18. Februar 2002 (18.02.2002) | 101 15 055.5 27. März 2001 (27.03.2001) DE |
| (25) Einreichungssprache: | Deutsch | 101 19 879.5 24. April 2001 (24.04.2001) DE |
| (26) Veröffentlichungssprache: | Deutsch | 101 26 263.9 29. Mai 2001 (29.05.2001) DE |
| | | 101 27 323.1 6. Juni 2001 (06.06.2001) DE |
| | | 101 41 610.5 24. August 2001 (24.08.2001) DE |

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): LUK LAMELEN UND KUPPLUNGSBAU

[Fortsetzung auf der nächsten Seite]

(54) Title: TRANSMISSION

(54) Bezeichnung: GETRIEBE

WO 02/066870 A1

eines Endausgangsmechanismus ist, welcher vom Endbetätigungsmechanismus betätigt wird, mit der es tragenden Welle verbunden wird und wobei die Schaltabfolge

(57) Abstract: According to the invention, transmission stages are selected by connecting an idler wheel to the shaft that bears said wheel, using a final output element (101, 102, 103, 104) that forms part of a final output mechanism, actuated by a final actuating mechanism. The selection sequence of the transmission stages is not determined in the final actuating mechanism. The latter comprises at least one primary actuating element (111), such as a selection finger, which interacts with the final output mechanism in such a way that a transmission stage can be selected using a first final output mechanism and the primary actuating element(s) can then interact with another final output mechanism, without having to deselect the previously selected transmission stage. The final actuating mechanism comprises at least one secondary actuating element (116, 118).

(57) Zusammenfassung: Getriebe wobei Übersetzungsstufen eingelegt werden, indem ein Losrad mittels eines Endausgangselementes (101/102/103,104), das Teil

[Fortsetzung auf der nächsten Seite]

BETEILIGUNGS KG [DE/DE]; Industriestrasse 3, 77815 Bühl (DE).

(72) **Erfinder; und**

(75) **Erfinder/Anmelder (nur für US): NORUM, Viggo, L.** [NO/NO]; Musikklokka 15, N-3612 Kongsberg (NO). **LEIN, Lars** [NO/NO]; Prahmsgt. 44, N-3613 Kongsberg (NO). **HUSEBY, Geir** [NO/NO]; Sand, N-3320 Vestfossen (NO). **HIRT, Gunter** [DE/NO]; Gutes Gate 18 a, N-3625 Kongsberg (NO). **BERGER, Reinhard** [DE/DE]; Sasenweg 6, 77815 Bühl (DE). **BÜNDER, Carsten** [DE/DE]; Schwarzwaldstrasse 75, 77830 Bühlertal (DE). **SEREBRENNIKOV, Boris** [RU/DE]; Burgweg 27, 77815 Bühl (DE). **METZGER, Jörg** [DE/DE]; Wintereckweg 1, 77830 Bühlertal (DE). **FISCHER, Robert** [DE/DE]; Fichtenstrasse 16, 77815 Bühl (DE). **POLLAK, Burkhard** [DE/DE]; Im Eichert 5, 77815 Bühl (DE). **AHNERT, Gerd** [DE/DE]; Holunderweg 1, 77880 Sasbach (DE).

(74) **Gemeinsamer Vertreter: LUK LAMELLEN UND KUPPLUNGSBAU BETEILIGUNGS KG;** Guido EGE, 77813 Bühl (DE).

(81) **Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR,**

CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) **Bestimmungsstaaten (regional):** ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

der Übersetzungsstufen nicht im Endbetätigungsmechanismus festgelegt ist, bei dem der Endbetätigungsmechanismus zumindest ein Hauptbetätigungs-element (111) wie Schaltfinger umfasst, das mit den Endausgangsmechanismen derart in Wirkverbindung tritt, dass eine Übersetzungsstufe mittels eines ersten Endausgangsmechanismus einlegbar ist und das zumindest ein Hauptbetätigungs-element dann mit einem anderen Endausgangsmechanismus in Wirkverbindung treten kann, ohne die zuvor eingelegte Übersetzungsstufe auslegen zu müssen, und der Endbetätigungs-mechanismus wenigstens ein Nebenbetätigungs-element (116,118) umfasst.

- 1 -

Getriebe

- Die Erfindung betrifft ein Getriebe, insbesondere für ein Kraftfahrzeug, welches eine
- 5 Mehrzahl Übersetzungsstufen bildende Radsätze aufweist, die jeweils durch ein mit einer Welle fest verbundenes Gangrad und ein mit einer Welle verbindbares Losrad gebildet sind, wobei Übersetzungsstufen eingelegt werden, indem ein Losrad mittels eines Endausgangselementes, das Teil eines Endausgangsmechanismus ist, welcher vom Endbetätigungsmechanismus betätigt wird, mit der es tragenden Welle verbunden wird, wobei
- 10 die Schaltabfolge der Übersetzungsstufen nicht im Endbetätigungsmechanismus festgelegt ist.

Das Endausgangselement ist das Element, welches bewegt wird, um ein Übersetzungsverhältnis festzulegen, d.h. welches die Verbindung zwischen zwei Kraftübertragungsmitteln herstellt, wie beispielsweise eine Kupplungsmuffe. Dieses Endausgangselement ist Teil des Endausgangsmechanismus, der beispielsweise neben der Kupplungsmuffe eine Schaltgabel umfaßt, die mit der Kupplungsmuffe in Verbindung steht und mittels eines Schaltfingers, der mit ihr in Wirkverbindung treten kann, verschiebbar ist, so daß die Kupplungsmuffe bewegt wird, um eine Übersetzungsstufe ein- oder auszulegen, wobei

15 der Schaltfinger Teil des Endbetätigungsmechanismus ist, der den Endausgangsmechanismus betätigt; als Endbetätigungsmechanismus wird die gesamte kinematische Kette zwischen Schalt- bzw. Wählantrieb und Endausgangsmechanismus bezeichnet.

20

Bei Getrieben des Standes der Technik erfolgt das Zusammenwirken von Endausgangsmechanismus und Endbetätigungsmechanismus derart, daß das Einlegen einer Übersetzungsstufe nur erfolgen kann, wenn keine andere Übersetzungsstufe eingelegt ist. Um eine Übersetzungsstufe einzulegen, müssen zwangsweise zuvor alle anderen Übersetzungsstufen ausgelegt werden. So sind die Schaltgabelmäuler, mit denen der Schaltfinger in Verbindung treten kann, um über die jeweilige Schaltgabel die Kupplungsmuffe zu schalten, so ausgebildet, daß der Schaltfinger nur mit einer anderen Schaltgabel in Verbindung tragen kann, wenn die Kupplungsmuffe, mit deren Schaltgabel er gerade in Verbindung steht, sich in der Neutralposition befindet. In Bezug auf ein bekanntes Handschaltgetriebe mit H-Schaltbild äußert sich dies darin, daß eine Wählbewegung des

25

- 2 -

Gangschalthebels von einer Schaltgasse in eine andere nur in der Neutralgasse erfolgen kann, wobei bei einer Hebelbewegung aus einer Schaltgasse in die Neutralgasse immer die gerade eingelegte Übersetzungsstufe ausgelegt wird. Die Übersetzungsstufen, die durch dieselbe Kupplungsmuffe schaltbar sind, sind ohnehin nicht gleichzeitig einlegbar.

- 5 Für einen Schaltvorgang ist es folglich notwendig, eine alte Übersetzungsstufe auszulegen, eine Wählbewegung durchzuführen und dann eine neue Übersetzungsstufe einzulegen; während dieser Zeit ist der Momentenfluß durch eine geöffnete Anfahrkupplung unterbrochen, da der Strang während des Schaltvorganges lastfrei sein muß. Falls ein
10 Wählen einer Schaltgasse notwendig ist, gestaltet sich der Schaltvorgang relativ lang, was insbesondere bei automatischen Schaltgetriebe mit Zugkraftunterbrechung störend und sicherheitsrelevant, beispielsweise bei Überhol- Abbiegevorgängen und dergleichen sein kann.

Insbesondere bei lastschaltbaren Getrieben, bei denen die Übersetzungsstufen Gruppen

- 15 bilden oder zu Gruppen zusammengefasst sind, zwischen denen zugkraftunterbrechungsfreie Lastschaltungen durchführbar sind; beispielsweise indem die Übersetzungsstufen von verschiedenen parallelen Getriebesträngen umfaßt werden, die unterschiedlichen Ausgangselementen einer Reibungskupplung zugeordnet sind, so daß durch eine Betätigung der Reibungskupplung im übergehenden Wechsel ein kontinuierlicher Wechsel
20 des Momentes von einem Strang auf einen anderen Strang bewirkt werden kann, sind Ausgestaltungen der Verbindung von Endausgangsmechanismus und Endbetätigungsmechanismus bekannt geworden, die es erlauben, eine Übersetzungsstufe einzulegen ohne eine andere gegebenenfalls bereits eingelegte Übersetzungsstufe auslegen zu müssen. Auf diese Weise ist es möglich, mittels eines einzigen Endbetätigungsmechanismus
25 zugleich mehrere Übersetzungsstufen in mehreren Getriebesträngen einzulegen, indem zuerst eine Übersetzungsstufe in einem Strang eingelegt wird, der Schaltfinger dann – ohne die betreffende Übersetzungsstufe auslegen zu müssen – mit anderen Schaltgabeln in Verbindung treten kann, um weitere Übersetzungsstufen einzulegen. In diesem Zusammenhang wird auf die Anmeldung DE 100 20 821 A1 der Anmelderin Bezug genommen, deren Inhalte auch zum Offenbarungsinhalt der vorliegenden Anmeldung gehören.
30

Üblicherweise werden zwei Gruppen von Übersetzungsstufen gebildet, wobei bezüglich der Abstufung ihrer Übersetzung aufeinanderfolgende Übersetzungsstufen unterschiedlich

- 3 -

chen Gruppen zugehören. Beispielsweise umfaßt bei einem Schaltgetriebe mit einem Rückwärtsgang und sechs Vorwärtsgängen eine Gruppe die Gänge 1, 3 und 5 und die andere Gruppe die Gänge R, 2, 4 und 6.

- 5 Bei einem derartigen Getriebe ergibt sich die Möglichkeit, in einem mittels der Reibungskupplung in den Momentenfluß einbezogenen Getriebestrang eine Übersetzungsstufe eingelegt zu haben und dann in einem anderen – noch geöffneten Strang – die Übersetzungsstufe einzulegen, in die nachfolgend durch Umlenken des Momentenflusses auf den betreffenden Strang geschaltet werden soll. Während eines Beschleunigungsvorganges
10 beispielsweise kann, während in einem geschlossenen Getriebestrang, in dem der 3. Gang eingelegt ist, im anderen Strang der 4. Gang während einer Hochschaltung eingelegt werden. Falls jetzt jedoch plötzlich doch eine Rückschaltung in den 2. Gang erfolgen soll, muß erst der 4. Gang ausgelegt und dann der 2. Gang eingelegt werden, was insbesondere einen sehr großen Zeitverlust bedingt, wenn die Gänge 2 und 4 von unterschiedlichen Kupplungsmuffen geschaltet werden.
15

Weiterhin kann eine negative Situation einer Getriebeschaltung auftreten, bei der im geöffneten Getriebestrang mehr als eine Übersetzungsstufe eingelegt ist, was ein sehr großes Sicherheitsrisiko darstellt, da sobald dieser Strang in den Momentenfluß eingebunden wird, mehrere Übersetzungsstufen mit unterschiedlichen Übersetzungen wirksam sind, was dazu führen kann, daß das Getriebe blockiert oder sogar zerstört wird.
20

Es sind zudem sogenannte Schaltwalzengetriebe bekannt geworden, bei denen die Endausgangsmechanismen der Übersetzungsstufen mittels einer drehbaren Schaltwalze betätigt werden. Beispielsweise sind in der Schaltwalze kulissenartige Nuten eingebracht, die sich auf der Oberfläche der zylindrischen Schaltwalze sowohl in Umfangsrichtung als auch in axialer Richtung erstrecken, so daß bei einer Drehung der Schaltwalze um ihre Längsachse Schaltgabeln, die mittels in den Nuten gleitenden Elementen kinematisch mit der Schaltwalze verbunden sind, eine Bewegung in Achsrichtung der Schaltwalze ausführen.
25
30 Die Schaltabfolge der Übersetzungsstufen bezüglich der Drehung der Schaltwelle ist durch den Verlauf der Nuten festgelegt. Derartige Schaltwalzengetriebe ermöglichen bei entsprechender Ausgestaltung der Nuten ein sich überschneidendes Auslegen einer alten und Einlegen einer neuen Übersetzungsstufe, wodurch ein gewisser Zeitvorteil bei einem

- 4 -

Schaltvorgang erzielt wird und somit die Dauer der Zugkraftunterbrechung reduziert werden kann, jedoch sind Schaltungen nur in sequentieller Folge möglich, eine direkte Schaltung beispielsweise vom 1. in den 3. Gang ist ebensowenig möglich, wie ein direkte Rückschaltung beispielsweise vom 5. in den 1. Gang.

5

Aufgabe der Erfindung ist es, ein Getriebe, beispielsweise ein automatisiertes Schaltgetriebe, ein lastschaltendes Getriebe, ein Doppelkupplungsgetriebe mit auf mindestens zwei unterschiedliche Wellen verteilte Getriebestufen und dergleichen zu schaffen, bei dem die Schaltabfolge der Übersetzungsstufen nicht im Endbetätigungsmechanismus festgelegt ist, bei dem die Schaltzeiten wesentlich verkürzt sind und das in Bezug auf die Sicherheit wesentlich verbessert ist. Das Getriebe soll weiterhin einen einfachen Aufbau mit möglichst wenig Bauteilen haben und einfach ohne zusätzliche Sicherheitsvorkehrungen zu betätigen sein.

- 10 15 Diese Aufgabe wird dadurch gelöst, daß bei einem Getriebe, bei dem der Endbetätigungsmechanismus zumindest ein Hauptbetätigungsselement wie Schaltfinger umfaßt, das beispielsweise durch axiales Verschieben einer Schaltwelle, auf der es angeordnet ist, mit den Endausgangsmechanismen, die beispielsweise durch Schaltgabeln und damit verbundene Kupplungsmuffen gebildet sind, derart in Wirkverbindung tritt, daß eine Übersetzungsstufe einlegbar ist, beispielsweise indem die Schaltwelle, auf der das zumindest eine Hauptbetätigungsselement angeordnet ist, verdreht wird und es dann mit einem anderen Endausgangsmechanismus in Wirkverbindung treten kann, ohne daß die zuvor eingelegte Übersetzungsstufe ausgelegt werden muß, der Endbetätigungsmechanismus wenigstens ein Nebenbetätigungsselement umfaßt. Dieser Entbetätigungsmechanismus im Sinne der 20 25 Erfindung mit zumindest einem Haupt- und einem Nebenelement wird teilweise in den folgenden Anmeldunterlagen als active interlock bezeichnet. Es versteht sich, dass dieser Begriff Gegenstand von Markenanmeldungen sein kann und dessen Bedeutung in diesem Zusammenhang für diese Markenanmeldung nicht einschränkend aufzufassen ist.
- 30 Gemäß einer besonders zu bevorzugenden Ausgestaltung tritt, sobald das zumindest eine Hauptbetätigungsselement mit einem Endausgangsmechanismus in Wirkverbindung tritt, das wenigstens eine Nebenbetätigungsselement mit wenigstens einem weiteren Endausgangsmechanismus in Wirkverbindung, beispielsweise tritt in einer bestimmten Position

- 5 -

- ein Hauptbetätigungsselement mit einem Endausgangsmechanismus in Verbindung und dabei treten zugleich Nebenbetätigungsselemente mit den weiteren Endausgangsmechanismen in Verbindung. Bei einer Betätigung eines Endausgangsmechanismus zum Einlegen einer Übersetzungsstufe mittels des zumindest einen Hauptbetätigungsselementes beispielsweise durch Verdrehen der Schaltwelle wird vorteilhafterweise zugleich der wenigstens eine weitere Endausgangsmechanismus mittels des wenigstens einen Nebenbetätigungsselementes zum Auslegen der dazugehörigen Übersetzungsstufen betätigt. Besonders zweckmäßig ist es, daß so nur eine Übersetzungsstufe gleichzeitig einlegbar ist und daß aufgrund des sich überschneidenden Auslegens der alten und Einlegens der neuen Übersetzungsstufe sowie der bereits durchgeführten Wählbewegung ein erheblicher Zeitvorteil erzielt wird.

- Gemäß eines weiteren, ebenfalls besonders bevorzugten Ausführungsbeispiels tritt bei einem Getriebe, bei dem die Übersetzungsstufen Gruppen bilden, zwischen denen ein zugkraftunterbrechungsfreier Wechsel erfolgen kann, das wenigstens eine Nebenbetätigungsselement mit wenigstens einem weiteren Endausgangsmechanismus derselben Gruppe in Wirkverbindung, sobald das zumindest eine Hauptbetätigungsselement mit einem Endausgangsmechanismus einer Gruppe in Wirkverbindung tritt. Sehr zweckmäßig ist es bei diesem Ausführungsbeispiel, daß bei einer Betätigung eines Endausgangsmechanismus einer Gruppe zum Einlegen einer Übersetzungsstufe mittels des zumindest einen Hauptbetätigungsselementes zugleich der wenigstens eine weitere Endausgangsmechanismus derselben Gruppe mittels des wenigstens einen Nebenbetätigungsselementes zum Auslegen der dazugehörigen Übersetzungsstufen betätigt wird. Vorteilhafterweise tritt das wenigstens eine Nebenbetätigungsselement mit keinem Endausgangsmechanismus der anderen Gruppe in Wirkverbindung, sobald das zumindest eine Hauptbetätigungsselement mit einem Endausgangsmechanismus einer Gruppe in Wirkverbindung tritt. Sehr zweckmäßig ist, daß so in jeder Gruppe eine Übersetzungsstufe gleichzeitig einlegbar ist, jedoch nicht mehrere Übersetzungsstufen einer Gruppe.
- Gemäß einer beispielhaften, jedoch besonders zu bevorzugenden Ausgestaltung der Endausgangsmechanismen, die Verbindungselemente, wie Schaltgabeln umfassen, weisen diese einen ersten Funktionsbereich für den Eingriff eines Hauptbetätigungsselementes und einen zweiten Funktionsbereich für den Eingriff eines Nebenbetätigungsselementes

- 6 -

auf, so daß jeder Endausgangsmechanismus mittels eines Hauptbetätigungslementes oder mittels eines Nebenbetätigungslementes betätigbar ist. Bei einem Getriebe ist dabei das zumindest eine Nebenbetätigungslement auf der bei Betätigung um ihre Längsachse verdrehbaren Schaltwelle angeordnet und der zweite Funktionsbereich ist so ausgebildet

5 Ist, daß bei einer Drehung der Schaltwelle eine Kraft von einem Nebenbetätigungslement auf den zweiten Funktionsbereich in Ausrückrichtung der zugehörigen Übersetzungsstufe übertragbar ist, die gleich oder größer der zum Ausrücken erforderlichen Kraft ist. Die Verbindung zwischen Nebenbetätigungslement und Endausgangsmechanismus muß nicht geeignet sein, auch eine Kraft zum Einlegen einer Übersetzungsstufe zu übertragen.

10

In einem weiteren Ausführungsbeispiel wird eine Ausgestaltung des wenigstens einen Nebenbetätigungslementes bevorzugt, die es ermöglicht, das Nebenbetätigungslement mit zumindest zwei Endausgangsmechanismen zu verbinden. Hierzu weist das wenigstens eine Nebenbetätigungslement eine besonders große Breite in Schaltwellenachsrichtung auf, die vorteilhafterweise wenigstens annähernd der Breite zweier Schaltgabelmäuler und deren gemeinsamen Abstand entspricht.

15

Gemäß eines besonders bevorzugten Ausführungsbeispiels wirken das wenigstens eine Nebenbetätigungslement und die zweiten Funktionsbereiche derart zusammen, daß ein Auslegen einer Übersetzungsstufe bei einer Drehung der Schaltwelle unabhängig von der Drehrichtung erfolgt. Ausgehend von der Ausgangsstellung, in der sich die Schaltwelle in einer Mittellage bezüglich ihrer Drehung befindet und in der auch das Hauptbetätigungslement mit dem ersten Funktionsbereich eines Endausgangsmechanismusses in Eingriff getreten ist, erfolgt eine Einlegen einer Übersetzungsstufe, indem die Schaltwelle entweder rechts oder links herum verdreht wird, wobei in jedem Fall das wenigstens eine Nebenbetätigungslement die ihm zugeordnete(n) Übersetzungsstufe(n) im Sinne eines Auslegens betätigt.

20

Im Ausführungsbeispiel wird es als besonders vorteilhaft erachtet, wenn hierzu das wenigstens eine Nebenbetätigungslement und die zweiten Funktionsbereiche symmetrisch ausgebildet sind.

- 7 -

In einem besonders zu bevorzugenden Ausführungsbeispiel weist das wenigstens eine Nebenbetätigungs element zwei nockenartige Endbereiche und die zweiten Funktionsbereiche damit korrespondierende Ausnehmungen auf.

- 5 In einem anderen, ebenfalls besonders zu bevorzugenden Ausführungsbeispiel weisen die zweiten Funktionsbereiche zwei nockenartige Endbereiche und das wenigstens eine Nebenbetätigungs element damit korrespondierende Ausnehmungen auf.

Hierbei erfolgt die Kraftübertragung zwischen Nebenbetätigungs element und zweitem
10 Funktionsbereich über die Spitze der nockenartigen Endbereiche, wobei es in einem anderen Ausführungsbeispiel auch sehr zweckmäßig ist, wenn die Kraftübertragung zwischen Nebenbetätigungs element und zweitem Funktionsbereich über die Seitenflächen der nockenartigen Endbereiche erfolgt.

- 15 Nach einem weiteren erfinderischen Gedanken der Endbetätigungsmechanismus so vorgesehen werden, dass mittels eines entsprechend ausgelegten Nebenbetätigungs elements ein definierter neutraler Schaltzustand einstellbar ist. Nach dem erfinderischen Gedanken ist nach einem Einlegen einer Übersetzungsstufe das Hauptbetätigungs element, beispielsweise ein Schaltfinger, gegenüber dem Endbetätigungs element, beispielsweise
20 einem Schaltmaul mit nachgeschalteter Schaltgabel, verlagerbar, das heißt die Information, welche Übersetzungsstufe eingelegt ist, ist aus der Stellung des Hauptbetätigungs element nicht eindeutig zuzuordnen. In konventionellen Anordnungen nach dem Stand der Technik, bei denen der Schaltfinger nach Einlegen einer Übersetzungsstufe nicht aus dem Schaltmaul verlagert werden kann, ist die Neutralstellung durch Anfahren der Neutralgas-
25 se eindeutig. Um für die vorliegende Erfindung ebenfalls eine eindeutige Neutralstellung zu definieren, kann eine separate Schaltgasse vorgesehen sein, bei der ein entsprechend ausgestaltetes Nebenbetätigungs element mit allen Endbetätigungs elementen, mittels derer eine Übersetzungsstufe eingelegt ist, in Wechselwirkung tritt und ein Auslegen der eingelegten Übersetzungsstufe bewirkt. Hierzu kann beispielsweise ein in Richtung der
30 Schaltwelle, die Haupt- und Nebenbetätigungs element aufnimmt, axial verlängerter Schaltnocken als Nebenbetätigungs element vorgesehen sein, der gleichzeitig mit zumindest zwei Schaltmäulern in Wechselwirkung treten kann, so dass in einer Axialposition der Schaltwelle stets die eingelegte Übersetzungsstufe durch Verdrehung der Schaltwelle

- 8 -

ausgelegt werden kann. Da hierbei nur ein Auslegen der Übersetzungsstufe und nicht ein zusätzliches Einlegen einer neuen Übersetzungsstufe zu erfolgen hat, kann vorteilhafterweise die Verdrehung der Schaltwelle gegenüber einer Schaltung zwischen zwei Übersetzungsstufen mit wesentlich kleineren Verdrehwinkeln, beispielsweise

- 5 mit einem Drittel des Verdrehwinkels erfolgen. Die Begrenzung des Verdrehwinkels zur Einstellung der Neutralposition kann mittels einer entsprechenden Ansteuerung des Aktors für die Verdrehung der Schaltwelle erfolgen, wobei die Information der Axialstellung der Schaltwelle in Verbindung mit der Neutralstellung gebracht werden und entsprechende Wegaufnahmesignale der Axialstellung, beispielsweise Wegsensorsignale oder Stell-
10 signale des Aktors zur axialen Verlagerung der Steuerwelle, ausgewertet werden kann. Alternativ oder zusätzlich hat sich eine Kulisse zur Begrenzung des Verdrehwinkels zur Einstellung einer Neutralposition bewährt. Die Einstellung einer definierten Neutralposition ist insbesondere beim Start der Brennkraftmaschine, beim Fahrzeugstillstand und in vergleichbaren Fahrsituationen vorteilhaft. Weiterhin kann eine Parksperrenfunktion bestehend aus der Verblockung des Getriebes durch gleichzeitiges Einlegen zweier Übersetzungsstufen vorteilhaft sein, wobei mittels der vorgeschlagenen Neutralstellung diese Parksperre einfach und schnell wieder aufgehoben werden kann.
15

- 20 Eine weitere vorteilhafte Ausgestaltungsform kann vorsehen, eine übliche Parksperre mittels der Aktorik der Getriebeschaltung zu betätigen. So kann beispielsweise die Parksperre durch Anfahren einer zusätzlichen Schaltgasse aktiviert und deaktiviert werden. Es kann dabei zusätzlich eine erste Übersetzungsstufe eingelegt worden sein und dann bei eingelegter Übersetzungsstufe nachträglich eine Parksperre betätigt werden, indem die Schaltgasse der eingelegten Übersetzungsstufe verlassen und die Position zur Aktivierung der Parksperre angefahren wird.
25

- Nach einem weiteren erfinderischen Gedanken, kann es besonders vorteilhaft sein, das active interlock in Verbindung mit einem automatisierten Schaltgetriebe, dessen Übersetzungsstufen durch Zahnradpaare zwischen zwei Wellen, beispielsweise einer Getriebeingangswelle und einer Getriebeausgangswelle gebildet werden, wobei während eines Schaltvorgangs eine Kupplung die Antriebswelle und die Getriebeingangswelle trennt und daher eine Zugkraftunterbrechung während des Schaltvorgangs auftritt, einzusetzen. Dabei kann der Phasenwinkel bei Schaltvorgängen, bei denen die Schaltgasse gewech-

- 9 -

selt wird, zwischen dem Haupt- und dem Nebenbetätigungslement so ausgestaltet werden, dass sich bei einem Schaltvorgang das Auslegen der eingelegten Übersetzung und das Einlegen der neu einzulegenden Übersetzungsstufe überschneiden. Dies führt zu schnelleren Schaltzeiten und zu kürzeren Zugkraftunterbrechungen. In konventionellen

- 5 Systemen mit einem Schaltfinger, der eine eingelegte Übersetzungsstufe zuerst auslegt, dann die Schaltgasse wechselt und danach eine neu einzulegende Übersetzungsstufe einlegt wird ungefähr nach einem Drittel des Gesamtweges der Schiebemuffe der Formschluss zur eingelegten Übersetzungsstufe aufgehoben, dann über die Synchronisierung und die Neutralstufe gefahren und danach der Formschluss zur neuen Übersetzungsstufe
- 10 gebildet. Nach dem erfinderischen Gedanken kann der Schaltvorgang verkürzt werden, indem die Einlegebewegung für die neu einzulegende Übersetzungsstufe bereits durch das Hauptbetätigungslement beginnt, wenn der Formschluss zur eingelegten Übersetzungsstufe getrennt ist, das heißt, die Synchronisierung der neu einzulegenden Übersetzungsstufe beginnt praktisch zeitgleich mit der Trennung des Formschlusses der eingelegten Übersetzungsstufe.
- 15

Nach einem weiteren erfinderischen Gedanken kann ein Getriebe in der Weise vorgesehen werden, dass nur eine einzige Synchronisationsvorrichtung an einer Gangradpaarung vorgesehen ist, wobei diese Synchronisationsvorrichtung nach Auslegen des eingelegten

- 20 Gangs mittels eines Hauptbetätigungslements wie beispielsweise eines Schaltfingers bis zum Erreichen der Zieldrehzahl der Getriebeeingangswelle für den neu einzulegenden Gang betätigt wird. Nach Erreichen der Zieldrehzahl wird das Hauptbetätigungslement in die Schaltgasse des neu einzulegenden Gangs verlagert und legt den neu einzulegenden Gang ein. Es versteht sich, dass für diesen Vorgang für die Synchronisation und das Ein- und Auslegen der Gänge unterschiedliche Hauptbetätigungslemente verwendet werden können. Diese Anordnung kann insbesondere für ein Doppelkupplungsgetriebe mit zwei Getriebesträngen in der Weise vorgesehen werden, dass in jedem Getriebestrang nur eine einzige Synchronisationsvorrichtung für alle Übersetzungsstufen eines Getriebestrangs vorgesehen ist. Eine nähere Erläuterung hierzu ist in der deutschen Anmeldung
- 25
- 30 DE 101 33 695.0 enthalten, die hiermit voll inhaltlich in die vorliegende Anmeldung aufgenommen ist. Die Hochschaltung von einer Übersetzungsstufe auf die andere erfolgt dabei in der Weise, dass am entsprechenden Getriebestrang zuerst das Moment abgebaut wird, indem beispielsweise die Kupplung zur Antriebswelle gelöst wird, anschließend wird mit-

- 10 -

tels eines Nebenbetätigungsselement oder mittels eines Hauptbetätigungsselement der eingelegte Gang ausgelegt und mittels eines Hauptbetätigungsselement in der Schaltgasse der höchsten Getriebeübersetzung die Synchronisationsvorrichtung durch eine Verlagerung der entsprechenden Schiebehülse der höchsten Getriebestufe betätigt ohne die
5 diesen Gang einzulegen und damit die frei drehende Getrieberringangswelle an die Zieldrehzahl des neu einzulegenden Gangs angepasst. Nach Erreichend der Zieldrehzahl wird mittels des Schaltfingers der neue Gang eingelegt. Eine vorteilhafte Variante zur Verminde-
10 rung der Wege, die die Schaltwelle mit Hauptbetätigungs- und Nebenbetätigungssele-
menten zurücklegt, sieht vor, die Synchronisationseinrichtung ohne einen Eingriff eines Hauptbetätigungsselement in den Endausgangsmechanismus der höchsten Überset-
15 zungsstufe, beispielsweise ohne einen der Schaltfinger in das Schaltmaul der höchsten Übersetzungsstufe zu verlagern, zu betätigen, indem an der Schaltwelle sowie am End-
ausgangsmechanismus, beispielsweise der Schaltgabel entsprechende Steuerteile wie Ringsegmentkonusse, Nocken und dergleichen vorgesehen sind. Diese Steuerteile bewir-
ken während einer Verdrehung der Schaltwelle zum Auslegen der aktuell eingelegten Ü-
bersetzungsstufe und/oder während einer Axialverlagerung der Schaltwelle zum Wählen
einer anderen Schaltgasse ein Verlagern des Endausgangsmechanismus, beispielsweise der Schiebehülse, des höchsten Gangs in der Weise, dass die Synchronisationsvorrich-
tung zwar betätigt, dieser Gang aber nicht eingelegt wird, so dass aufwendige Hin- und
20 Herverlagerungen der Schaltwelle vermieden werden können.

Insbesondere für Doppelkupplungsgetriebe mit zumindest zwei Getriebesträngen, die un-
abhängig voneinander mit der Antriebseinheit wie beispielsweise einer Brennkraftmaschi-
ne durch eine Kupplung verbindbar sind und bei denen ein Getriebestrang das Antriebs-
25 moment mittels eines aktuellen Fahrgangs an die Antriebsräder überträgt, während in dem oder den anderen Getriebestrang/-strängen der dem aktuellen Fahrgang folgende Gang bereits eingelegt wird, kann es vorteilhaft sein, auf diesen neu einzulegenden Gang sogenannte Vorwahlstrategien anzuwenden. Die Vorwahlstrategien sehen eine vorausschauende Wahl des neu einzulegenden Ganges vor, um bei einem durch den Fahrer selbst
30 oder die Steuerlogik initiierten Schaltwunsch diese Schaltung möglichst schnell und effizient für den weiteren vom Fahrer gewünschten Fahrverlauf des Kraftfahrzeugs auszuführen. Bei einem mit den richtigen Voraussagen bereits eingelegten Gang erfolgt die vom Fahrer wahrgenommene Schaltung nur noch durch die Übergabe des Moments von ei-

- 11 -

nem Getriebestrang auf den anderen durch Öffnen und Schließen der entsprechenden Kupplungen zwischen der Antriebswelle der Antriebseinheit und den entsprechenden Getriebereingangswellen.

Vorteil der vorliegenden Erfindung ist hierbei, dass mit dem Endbetätigungsmechanismus

5 die Hauptbetätigungsselemente nach der Schaltung eines Gangs in einem Getriebestrang sofort in Neutralstellung gebracht werden können und nicht in der Schaltgasse des eingelegten Gangs verbleiben müssen. Dabei können neben fahrtechnischen auch sicherheitstechnische Aspekte, beispielsweise ein Überdrehschutz für einen neuen Fahrgang, berücksichtigt werden. Folgende Vorwahlstrategien können vorteilhaft sein:

- 10 • Einlegen des nächst höheren Ganges:
Nach einem Schaltvorgang, das heißt wenn die Kupplung den aktuellen Fahrgang eines Getriebestrangs mit Drehmoment beaufschlagt, wird der zum aktuellen Fahrgang auf dem anderen, lastfreien Getriebestrang eingelegt. Gibt es keinen höheren Gang wird der höchste Gang auf diesem Strang eingelegt. Hierdurch ist ein Überdrehschutz
- 15 beim Schalten des Drehmoments auf diesen Getriebestrang gewährleistet. Ein zuvor noch eingelegter Gang wird mit diesem Schaltvorgang mittels der Nebenbetätigungs-elemente ausgelegt. Die Kupplung in diesem Getriebestrang bleibt geöffnet, bis eine Schaltanforderung für den eingelegten Gang von der Schaltlogik ausgelöst wird.
- Vorwahl eines niedrigeren Ganges:
20 Nachdem in dem lastfreien Getriebestrang nach der oben beschriebenen Routine der nächst höhere Gang eingelegt ist, wird der Getriebeaktor in die Neutralstellung positioniert, ohne den eingelegten Gang wieder auszulegen. Daraufhin erfolgt eine Positionierung in Wählrichtung an eine Schaltgasse eines Ganges einer Übersetzung, die vorzugsweise kleiner als die des aktuellen Fahrgangs und die des auf dem lastfreien
- 25 Getriebestrang eingelegten Gangs ist. Besonders vorteilhaft ist beispielsweise der Gang, bei einem Kick-Down des Fahrers als Zielgang für die maximale Leistung von der Schaltlogik berechnet wird, wobei sich dieser Gang während des Betriebs in dieser Getriebestellung ändern kann, worauf auch die Stellung des Wählaktors geändert werden kann. Im manuellen Betrieb, bei dem der Fahrer aktiv die nächste Fahrstufe wählt, des Fahrzeugs kann die eingestellte Schaltgasse die des Gangs sein, der die nächst kleinere Übersetzung des aktuellen Fahrgangs aufweist. Eine weitere Variante bei starker Beschleunigung des Fahrzeugs, beispielsweise bei einer Betätigung des Fahrpedals über eine vorgebbare Schwelle hinaus, kann die Schaltgasse mit dem
- 30

- 12 -

Gang angewählt werden, in den das Fahrzeug schalten würde, wenn das Fahrzeug fortan mit der momentanen Geschwindigkeit konstant weiterbetrieben würde, zum Beispiel ein Gang mit hoher Übersetzung (Overdrive) zur ökonomischen Betriebsweise des Fahrzeugs. Es versteht sich, dass entsprechend der aktuellen Fahrsituation die Wählbewegung nachgeführt und dadurch stets die aktuelle Gangalternative zu dem auf dem lastfreien Getriebestrang eingelegten Gang mittels einer einfachen Schalt-/Auslegebewegung bereit gehalten werden kann.

Getriebe nach dem erforderlichen Gedanken können nach anderen Gesichtspunkten ausgelegt werden, bei denen nicht berücksichtigt werden muß, dass die in bekannten Anordnungen bezüglich ihrer Übersetzung benachbart angeordneten Gängen, beispielsweise Gang 1 und 2 in einer Schaltgasse und Gang 3 und 4 in der benachbarten Schaltgasse, benachbart angeordnet sind, da während der neu einzulegende Gang mittels des Hauptbetätigungselements eingelegt und der eingelegte Gang mittels eines Nebenbetätigungselements ohne zusätzliche Wählvorgänge ausgelegt werden kann. Zur Beschleunigung der Schaltzeiten kann der neu einzulegende Gang bereits vorgewählt werden, so lange der eingelegte Gang noch eingelegt ist. Die Schaltbewegung kann bereits initiiert werden, während der eingelegte Gang noch nicht ausgelegt ist, so dass der Getriebeschaltaktor vor dem Schaltvorgang eine Anlaufzeit erfahren kann und nicht aus dem Stillstand angefahren muß, da bekanntlich der Anlauf aus dem Stillstand besonders zeitaufwendig ist und den Schaltvorgang verzögert.

Zur Erzielung besonders schneller Schaltvorgänge kann es auch bei einem Einstranggetriebe mit einer Getriebeeingangswelle und einer Getriebeausgangswelle vorteilhaft sein, den wahrscheinlich folgenden bereits vorzuwählen. Folgende Vorwahlkriterien können in Abhängigkeit von der Fahrsituation beziehungsweise der Stellung des Wählhebels des Getriebes ohne bereits erfolgte Schaltanforderung in einen anderen Gang vorteilhaft sein:

- Wählhebel ist in Position Fahren (D) oder manueller Betriebsmodus (M; die einzelnen Gänge werden vom Fahrer angesteuert, beispielsweise mittels einer Tip-Schaltung), ein Vorwärtsgang ist eingelegt. Solange in diesem Fahrmodus das Fahrzeug mit einer Geschwindigkeit oberhalb einer für jeden eingelegten Gang festzulegenden Schwelle fährt, wird die Fahrpedalstellung oder Längsbeschleunigung des Fahrzeugs ausgewertet um den nächst höheren oder nächst niedrigeren Gang des eingelegten Gangs vorzuwählen. Bei beschleunigendem Fahrzeug wird

- 13 -

der nächst höhere, bei einem verzögerndem Fahrzeug der nächst niedrigere Gang vorgewählt. Um unnötige Stellbewegungen in der zu vermeiden, kann ein Hystereseband in der Vorwählroutine vorgesehen sein. Im höchsten Gang wird der nächst niedrigere vorgewählt. In Gang 1 kann ab einer festzulegenden Geschwindigkeits-
5 schwelle Gang 2, darunter die Neutralstellung des Getriebes vorgewählt.

- In Neutralstellung (N) des Wählhebels wird Gang 1 vorgewählt. Vorteilhaft kann eine Anordnung des Gangs 1 und des Rückwärtsgangs in einer Schaltgasse sein.
- In der Rückwärtsstellung (R) des Wählhebels wird Gang 1 oder alternativ die Neutralstellung vorgewählt.

10

Ist bereits eine Schaltabsicht von der Steuerungslogik des Getriebes festgestellt worden, kann ein beschleunigter Gangwechsel durch folgende Maßnahmen erzielt werden, da nach dem Erkennen der Schaltabsicht in der Regel einige zeitaufwändige Prozesse wie beispielsweise Abbau des Motor- und Kupplungsmoments durchlaufen werden, wobei im
15 erfindungsgemäßen Getriebe diese Zeit zum Vorwählen des neu einzulegenden Gangs genutzt werden kann ohne eine Belastung der Getriebeaktorik zu riskieren:

Nachdem die Steuerlogik den neu einzulegenden Gang festgelegt hat, wird die zugehörige Vorwählposition bestimmt und angefahren. Bei allen Vorwählbewegungen wird das Hauptbetätigungsselement zuerst in Richtung Neutralstellung bewegt und zwar zumindest
20 soweit, dass das Hauptbetätigungsselement aus der Schaltgasse des eingelegten Gangs ausfädeln kann. Anschließend oder in einer kombinierten Bewegung mit der Schaltbewegung wird die Schaltgasse des neu einzulegenden Ganges gewählt. Ist bereits der richtige Gang vorgewählt, wird nach der Schaltfreigabe durch die Schaltlogik geschaltet. Die Ausmaße des Bewegungsspielraums des Hauptbetätigungselements in den Schaltmäulern
25 der Schaltgassen ist von der Auslegung dieser abhängig und kann in der Steuerlogik zum Zweck einer optimierten Schaltbewegung hinterlegt sein. Hierzu können feste Größen im Programmcode oder entsprechende einstellbare Größen in einem Speicher, beispielsweise EEPROM, hinterlegt sein. Die einstellbaren Größen können bei der Inbetriebnahme durch Anfahren der Grenzpositionen bestimmt und während der Lebensdauer des Fahrzeugs an sich wechselnde Bedingungen wie Verschleiß oder Teilerersatz adaptiert werden, wobei auch gegebenenfalls Verschleißverläufe und -grenzen abgelegt und verarbeitet werden können. Eine Anpassung an Schaltmäuler mit unterschiedlichen Dimensionen für die Schaltgassen der verschiedenen Gänge kann ebenfalls vorteilhaft sein.
30

- Da in dem erfindungsgemäßen Endbetätigungsmechanismus keine Korrelation zwischen der Position des oder der Hauptbetätigungsmechanismus und dem eingelegten Gang besteht, kann es, insbesondere wenn die Getriebesteuerung, beispielsweise das Getriebesteuerungsgerät, keine zuverlässige Information mehr zur Verfügung hat, beispielsweise bei der Wiederinbetriebnahme nach einer Reparatur oder zur Plausibilisierung der Daten während des Betriebs des Kraftfahrzeugs beim Start, Abstellen oder während der Fahrt, notwendig werden, eine sogenannte aktive Neutralposition einzustellen, bei der mit Sicherheit alle Gänge ausgelegt sind. Hierzu wird das zumindest eine Hauptbetätigungsmechanismus in eine Position gefahren, in der es bei einer Verdrehung der Schaltwelle keinen Gang neu einlegt. Sollte eine derartige sogenannte freie Schaltgasse in dem verwendeten H-Schaltbild nicht vorhanden sein, kann die freie Länge der Wählfunktion verlängert werden und eine zusätzliche Gasse geschaffen werden. In dieser Gasse kann dann ein oder mehrere eingelegte Gänge mittels der Nebenbetätigungsmechanismus ausgelegt werden.
- Sollte eine Änderung der Schaltgeometrie nicht gegeben sein, kann durch Auffinden des eingelegten Gangs dieser auch mit dem Hauptbetätigungsmechanismus ausgelegt werden. Hierzu muß das Hauptbetätigungsmechanismus in die Schaltgasse des eingelegten Gangs gebracht und eine Auslegebewegung ausgeführt werden, ohne einen neuen Gang einzulegen. Hierzu können die Auslegepositionen gelernt bei der Inbetriebnahme gelernt werden.
- Als Ausgangspunkt zur Bestimmung der Auslegeposition kann dabei der Synchronisationspunkt des gegenüberliegenden Ganges angenommen werden. Dieser Synchronisationspunkt wird dann zum Auslegen des gegenüberliegenden Ganges angefahren. Die Erkennung der Synchronisationspunkte kann durch Lernen, das heißt Kalibrieren erfolgen, indem die entsprechende Position gegenüber einem Referenzpunkt festgelegt und durch Sensoren beispielsweise Inkrementalwegsensoren überwacht wird. Eine weitere Möglichkeit kann die absolute Feststellung des Synchronisationspunktes sein, indem Aktorgrößen wie beispielsweise der Aktorstrom überwacht werden und eine Auswertung dieser, beispielsweise eine Erhöhung des Aktorstroms am Synchronisationspunkt, ausgewertet und dadurch die Lage der Synchronisationspunkte bestimmt wird.
- Unter Bezugnahme auf Figuren sind nachfolgend Ausführungsbeispiele beschrieben, dabei zeigen schematisch und beispielhaft:

Figur 1a ein Fahrzeug mit automatisiert betätigbarer Kupplung und Getriebe,

- 15 -

- Figur 1b ein Fahrzeug mit verzweigtem Antriebsstrang,
5 Figur 2 Endausgangsmechanismen mit Endbetätigungsmechanismus,
Figur 3a Wirkungsweise eines Nebenbetätigungslementes,
Figur 3b Wirkungsweise eines Nebenbetätigungslementes,
Figur 3c Wirkungsweise eines Nebenbetätigungslementes,
Figur 3d Wirkungsweise eines Nebenbetätigungslementes,
10 Figur 4 ein Diagramm bezüglich des Schaltwellendrehwinkels und der Kupp-
lungsmuffenbewegung,
Figur 5a eine Anordnung eines Hauptbetätigungslementes und eines Nebenbe-
tätigungslementes auf einer Schaltwelle,
15 Figur 5b eine Anordnung eines Hauptbetätigungslementes und eines Nebenbe-
tätigungslementes auf einer Schaltwelle,
Figur 6a eine Anordnung eines Hauptbetätigungslementes und zweier besonders
20 breiter Nebenbetätigungslemente zur Betätigung von zwei Endaus-
gangsmechanismen zugleich,
Figur 6a eine Anordnung eines Hauptbetätigungslementes und zweier besonders
breiter Nebenbetätigungslemente zur Betätigung von zwei Endaus-
gangsmechanismen zugleich,
25 Figur 7 Ausgestaltungen von Nebenbetätigungslementen,
Figur 8 Schaltwellenposition und H-Schaltbild,
30 Figur 9 Schaltwellenposition und H-Schaltbild mit breitem Nebenbetätigungselen-
ment
Figur 10 H-Schaltbild für ein Getriebe mit Neutralposition,

- 16 -

Figur 10a eine beispielhafte Ausgestaltung der Erfindung zur Anwendung bei einem herkömmlichen Handschaltgetriebe,

5 Figur 10b Hülse des BetätigungsElements,

Figur 11a eine beispielhafte Ausgestaltung der Erfindung zur Anwendung bei einem automatisierten Schaltgetriebe,

10 Figur 11b ein Seitenelement,

Figur 11c ein buchesenförmiges Element,

Figur 12a eine beispielhafte Ausgestaltung der Erfindung zur Anwendung bei einem Doppelkupplungsgetriebe,

15 Figur 12b ein Seitenelement,

Figur 13 eine Anordnung eines HauptbetätigungsElements und eines NebenbetätigungsElements gemäß eines Ausführungsbeispiele der Erfindung,

20 Figur 14 eine Anordnung eines HauptbetätigungsElements und eines NebenbetätigungsElements gemäß eines Ausführungsbeispiele der Erfindung,

Figur 15 eine Anordnung eines HauptbetätigungsElements und eines NebenbetätigungsElements gemäß eines Ausführungsbeispiele der Erfindung,

25 Figur 16 eine Anordnung eines HauptbetätigungsElements und eines NebenbetätigungsElements gemäß eines Ausführungsbeispiele der Erfindung, Figuren 17-18 Anordnungen eines Endbetätigungsmechanismus mit Getriebebremse, Figur 19 ein Weg-Zeit-

30 Diagramm für einen Schaltvorgang in einem automatisierten Getriebe mit Zugkraftunterbrechung und überschneidendem Auslege- und Einlegevorgang

- 17 -

- Figur 20 ein Endbetätigungsmechanismus für ein Doppelkupplungsgetriebe mit Synchroniservorrichtungen am höchsten Gang,
- Figuren 21a-c eine Ansicht eines Endbetätigungsmechanismus für Drehwähl- und Schiebeschaltbetätigung,
- 5 Figur 22 eine Ansicht eines Endbetätigungsmechanismus für Drehschalt- und Schiebewählbetätigung,
- Figuren 23a, b eine 3D-Ansicht einer Getriebeaktoreinheit mit einem Endbetätigungsmechanismus,
- Figuren 24a, b eine beispielhafte Anordnung einer Schaltschiene
- 10 Figuren 25a, b eine systematische Darstellung eines Ausführungsbeispiels eines Endbetätigungsmechanismus
und
- Figur 26 ein Ausführungsbeispiel einer Routine für den Gangwechsel.
- 15 Die Figur 1a zeigt schematisch und beispielhaft ein Fahrzeug 1, bei dem die Erfindung besonders vorteilhaft zur Anwendung kommen kann. Die Kupplung 4 ist vorliegend im Kraftfluß zwischen Antriebsmotor 2 und Getriebevorrichtung 6 angeordnet. Zweckmäßigerverweise ist zwischen Antriebsmotor 2 und der Kupplung 4 eine geteilte Schwungmasse angeordnet, deren Teilmassen gegeneinander unter Zwischenschaltung einer Feder-
- 20 Dämpfer-Einrichtung verdrehbar sind, wodurch wesentlich insbesondere die schwingungstechnischen Eigenschaften des Antriebsstranges verbessert werden. Vorzugsweise wird die Erfindung mit einer Dämpfungseinrichtung zum Aufnehmen bzw. Ausgleichen von Drehstößen bzw. Einrichtung zum kompensieren von Drehstößen bzw. Drehstoß mindernder Einrichtung bzw. Einrichtung zum Dämpfen von Schwingungen kombiniert, wie
- 25 sie insbesondere in den Veröffentlichungen DE OS 34 18 671, DE OS 34 11 092, DE OS 34 11 239, DE OS 36 30 398, DE OS 36 28 774 und DE OS 37 21 712 der Anmelderin beschrieben ist, deren Offenbarungen auch zum Offenbarungsinhalt der vorliegenden Anmeldung gehören.
- 30 Das Fahrzeug 1 wird von einem Antriebsmotor 2, der vorliegend als Verbrennungsmotor wie Otto- oder Dieselmotor dargestellt ist, angetrieben. In einem anderen Ausführungsbeispiel kann der Antrieb auch mittels Hybridantrieb, elektromotorisch oder hydromotorisch erfolgen. Die Kupplung 4, ist im gezeigten Ausführungsbeispiel eine Reibungskupplung,

- 18 -

mittels derer der Antriebsmotor 2 von der Getriebevorrichtung 6 insbesondere zum Anfahren oder zur Durchführung von Schaltvorgängen trennbar ist. Durch ein zunehmendes Ein- bzw. Ausrückenrücken der Kupplung wird mehr oder weniger Drehmoment übertragen, hierzu werden eine Anpreßplatte und eine Druckplatte axial relativ gegeneinander

5 verschoben und nehmen eine zwischengeschaltete Reibscheibe mehr oder weniger mit. Die als Kupplung ausgebildete Kupplung 4 ist vorteilhaft selbstdurchstellend, d.h. der Verschleiß der Reibbeläge wird derart ausgeglichen, daß eine konstante geringe Ausrückkraft gewährleistet ist. Vorzugsweise wird die Erfindung mit einer Reibungskupplung kombiniert,

10 wie sie insbesondere in den Anmeldungen DE OS 42 39 291, DE OS 42 39 289 und DE OS 43 06 505 der Anmelderin beschrieben ist, deren Offenbarungen auch zum Offenbarungsinhalt der vorliegenden Anmeldung gehören.

Mittels einer Welle 8 sind die Räder 12 des Fahrzeuges 1 über ein Differential 10 angetrieben. Den angetriebenen Rädern 12 sind Drehzahlsensoren 60, 61 zugeordnet, wobei

15 gegebenenfalls auch nur ein Drehzahlsensor 60 oder 61 vorgesehen ist, die jeweils ein Signal entsprechend der Drehzahl der Räder 12 erzeugen. Zusätzlich oder alternativ ist ein Sensor 52 an anderer geeigneter Stelle im Antriebsstrang, beispielsweise an der Welle 8, zur Ermittlung der Getriebeausgangsdrehzahl vorgesehen. Die Getriebeeingangsdrehzahl kann mittels eines weiteren Sensors ermittelt werden oder auch, wie im vorliegenden

20 Ausführungsbeispiel, aus der Antriebsmotordrehzahl bestimmt werden, so kann beispielsweise das im Getriebe eingestellte Übersetzungsverhältnis festgestellt werden.

Eine Betätigung der Reibungskupplung 4, die vorteilhaft gedrückt, in einem anderen Ausführungsbeispiel zweckmäßigerverweise auch gezogen ausgeführt werden kann, erfolgt vorliegend mittels einer Betätigungsseinrichtung 46, wie Kupplungsaktuator. Zur Betätigung des Getriebes 6 ist eine zwei Aktoren 48 und 50 umfassende Betätigungsseinrichtung vorgesehen, wobei einer der Aktoren eine Wählbetätigung und der andere eine Schaltbetätigung durchführt. Der Kupplungsaktuator 46 ist als elektrohydraulisches System ausgeführt, wobei eine Ein- bzw. Ausrückbewegung mittels eines elektrischen Antriebes beispielsweise mittels eines elektrischen Gleichstrommotors erzeugt und über eine hydraulische Strecke auf das Ausrücksystem übertragen wird. Die Getriebeaktuatoren 48, 50 sind als elektrische Antriebe beispielsweise als elektrische Gleichstrommotoren ausgeführt, die über eine Kinematik mit den bewegten Gliedern im Getriebe 6 in Verbindung stehen, die

- 19 -

zur Festlegung des Übersetzungsverhältnisses betätigt werden. In einem anderen Ausführungsbeispiel, insbesondere wenn große Betätigungs Kräfte gefordert sind, kann es auch sehr zweckmäßig sein, ein hydraulisches System zur Betätigung vorzusehen. Es versteht sich, dass auch zur Betätigung der Kupplung(en) rein elektromechanisch betätigtes Aktoren
5 vorgesehen werden können. Hierzu zeigt die DE 100 33 649 nicht abschließend mögliche Ausführungsbeispiele.

Die Steuerung der Kupplung 4 und des Getriebes 6 erfolgt durch eine Steuereinrichtung 44, die zweckmäßigerweise mit dem Kupplungsaktuator 46 eine bauliche Einheit bildet,
10 wobei es in einem anderen Ausführungsbeispiel auch von Vorteil sein kann, diese an anderer Stelle im Fahrzeug anzubringen. Die Betätigung von Kupplung 4 und Getriebe 6 kann in einer automatischen Betriebsart durch die Steuereinrichtung 44 automatisiert erfolgen, oder in einer manuellen Betriebsart durch eine Fahrereingabe mittels einer Fahrereingabevorrichtung 70, wie Schalt oder Wählhebel, wobei die Eingabe mittels Sensor 71
15 erfaßt wird. In der automatischen Betriebsart werden Übersetzungsstufenwechsel durch eine entsprechende Ansteuerung der Aktoren 46, 48 und 50 gemäß Kennlinien oder Kennfeldern durchgeführt, die in einem der Steuereinrichtung 44 zugeordneten Speicher abgelegt sind. Es sind eine Mehrzahl von durch zumindest eine Kennlinie festgelegter Fahrprogramme vorhanden, zwischen denen der Fahrer wählen kann, wie ein sportliches
20 Fahrprogramm, in dem der Antriebsmotor 2 leistungsoptimiert betrieben wird, ein Economy-Programm, in welchen der Antriebsmotor 2 verbrauchsoptimiert betrieben wird oder ein Winter-Programm, in dem das Fahrzeug 1 fahrsicherheitsoptimiert betrieben wird. Weiterhin sind im beschriebenen Ausführungsbeispiel Kennlinien adaptiv beispielsweise an das Fahrerverhalten und/oder an andere Randbedingungen wie Fahrbahnreibung,
25 Fahrzeug- beziehungsweise Fahrbahnneigung, Außentemperatur etc. anpaßbar.

Eine Steuereinrichtung 18 steuert den Antriebsmotor 2 über Einflußnahme auf Gemischzuführung oder Zusammensetzung, wobei in der Figur stellvertretend eine Drosselklappe 22 dargestellt ist, deren Öffnungswinkel mittels eines Winkelgebers 20 erfaßt wird und dessen Signal der Steuereinrichtung 18 zur Verfügung steht. Bei anderen Ausführungen der Antriebsmotorregelung wird der Steuereinrichtung 18, falls es sich um einen Verbrennungsmotor handelt, ein entsprechendes Signal zur Verfügung gestellt, anhand dessen die Gemischzusammensetzung und/oder das zugeführte Volumen bestimmt werden kann.
30

- 20 -

Zweckmäßigerweise wird auch das Signal einer vorhandenen Lambdasonde verwendet. Weiterhin steht der Steuereinrichtung 18 im vorliegenden Ausführungsbeispiel ein Signal eines vom Fahrer betätigten Lasthebels 14, dessen Stellung mittels eines Sensors 16 erfaßt wird, ein Signal über eine Motordrehzahl, erzeugt durch einen Drehzahlsensor 28, der 5 der Motorabtriebswelle zugeordnet ist, ein Signal eines Saugrohrdrucksensors 26 sowie ein Signal eines Kühlwassertemperatursensors 24 zur Verfügung.

Die Steuereinrichtungen 18 und 44 können in baulich und/oder funktionell getrennten Teilbereichen ausgebildet sein, dann sind sie zweckmäßigerverweise beispielsweise mittels eines CAN-Bus 54 oder eine andere elektrische Verbindung zum Datenaustausch miteinander verbunden. Jedoch kann es auch vorteilhaft sein, die Bereiche der Steuereinrichtungen zusammenzufassen, insbesondere da eine Zuordnung der Funktionen nicht immer eindeutig möglich ist und ein Zusammenwirken notwendig ist. Insbesondere kann während bestimmten Phasen des Übersetzungsstufenwechsels die Steuereinrichtung 44 den 15 Antriebsmotor 2 bezüglich der Drehzahl und/oder des Momentes steuern.

Sowohl der Kupplungsaktor 46 als auch die Getriebeakteure 48 und 50 erzeugen Signale, aus denen eine Aktorposition zumindest abgeleitet werden kann, welche der Steuereinrichtung 44 zur Verfügung stehen. Die Positionsermittlung erfolgt vorliegend innerhalb des 20 Aktors, wobei ein Inkrementalwertgeber verwendet wird, der die Aktorposition in Bezug zu einem Referenzpunkt bestimmt. In einem anderen Ausführungsbeispiel kann es jedoch auch zweckmäßig sein, den Geber außerhalb des Aktors anzurufen und/oder eine absolute Positionsbestimmung beispielsweise mittels eines Potentiometers vorzusehen. Eine Bestimmung der Aktorposition ist in Hinblick auf den Kupplungsaktor insbesondere deshalb von großer Bedeutung, als hierdurch der Greifpunkt der Kupplung 4 einem bestimmten Einrückweg und somit einer Aktorposition zuordenbar wird. Vorteilhaft wird der Greifpunkt der Kupplung 4 bei Inbetriebnahme und während des Betriebs wiederholt neu bestimmt, insbesondere in Abhängigkeit von Parametern wie Kupplungsverschleiß, Kupplungstemperatur etc. Eine Bestimmung der Getriebeaktektorpositionen ist in Hinblick auf die 25 30 Bestimmung des eingelegten Übersetzungsverhältnisses wichtig.

Weiterhin stehen der Steuereinrichtung 44 Signale von Drehzahlsensoren 62 und 63 der nicht angetriebenen Räder 65 und 66 zur Verfügung. Zur Bestimmung einer Fahrzeugge-

- 21 -

schwindigkeit kann es sinnvoll sein, den Durchschnittswert der Drehzahlsensoren 62 und 63 bzw. 60 und 61 heranzuziehen, um Drehzahlunterschiede etwa bei Kurvenfahrt auszugleichen. Mittels der Drehzahlesignale kann die Fahrzeuggeschwindigkeit ermittelt und darüber hinaus auch eine Schlupferkennung durchgeführt werden. In der Figur sind Ausgabeverbindungen der Steuereinrichtungen als durchgezogene Linien dargestellt, Eingabeverbindungen sind gestrichelt dargestellt. Die Verbindung der Sensoren 61, 62 und 63 zur Steuereinrichtung ist nur angedeutet.

Auch bei einem Fahrzeug mit einem wie in Figur 1b schematisch und beispielhaft gezeigten Antriebsstrang 1001 kann die vorliegende Erfindung besonders vorteilhaft angewendet werden. Bei einem derartigen Fahrzeug ist es möglich, Übersetzungsstufen zugkraftunterbrechungsfrei zu wechseln. Zwischen Antriebsmotor 1010 und Abtrieb 1100 sind zwei Stränge 1110 und 1120 gebildet, über die der Momentenfluß erfolgen kann. Jeder der Stränge ist einer Kupplung 1020 bzw. 1030 zugeordnet und kann mittels ihr in den Momentenfluß eingebunden werden. Gezeigt ist eine bevorzugte Ausführungsform, bei der die Kupplungen 1020 und 1030 zwischen Antriebsmotor 1010 und Übersetzungsstufen 1040 bzw. 1050 angeordnet sind. In einem anderen Ausführungsbeispiel kann es jedoch auch zweckmäßig sein, eine oder beide Kupplungen 1020 und/oder 1030 zwischen den Übersetzungsstufen 1040, 1050 und dem Abtrieb 1100 anzuordnen

Durch eine Betätigung der Kupplungen 1020 bzw. 1030 im übergehenden Wechsel kann ein kontinuierlicher Wechsel des Momentenflusses von einem Strang 1110, 1120 auf den anderen Strang 1120, 1110 erreicht werden. Es sind zwei Gruppen 1040 und 1050 von Übersetzungsstufen vorhanden, die jeweils von einem der Stränge 1110 bzw. 1120 umfaßt werden, wobei Übersetzungsstufen, zwischen denen ein zugkraftunterbrechungsfreier Wechsel möglich sein soll, unterschiedlichen Gruppen zugehören. Bevorzugterweise gehören bezüglich ihrer Übersetzung aufeinanderfolgende Übersetzungsstufen unterschiedlichen Gruppen zu, beispielsweise bilden die Gänge 1, 3 und 5 eine Gruppe 1040 und die Gänge 2, 4 und gegebenenfalls 6 eine Gruppe 1050; der Rückwärtsgang (R) wird zweckmäßigerweise der Gruppe 1050 zugeordnet. In anderen Ausführungsbeispielen kann es jedoch auch von Vorteil sein, wenn die Aufteilung der Übersetzungsstufen in Gruppen anders erfolgt oder wenn bestimmte Übersetzungsstufen sowohl in einer Gruppe 1040 als auch in der anderen Gruppe 1050 nutzbar sind bzw. in beiden Gruppen vorhanden sind.

- Auch die Kupplungen 1030 und 1020, sowie die Übersetzungsstufen der Gruppen 1040 und 1050 sind, wie im mit Figur 1a gezeigten und beschriebenen Beispiel automatisiert betätigbar. Hierzu sind Kupplungsaktoren 1060 und 1070 zur Betätigung der Kupplungen 5 1020 und 1030 gezeigt. Es kann in einem anderen Ausführungsbeispiel auch sehr zweckmäßig sein, nur einen Kupplungsaktor zur Betätigung beider Kupplungen zu verwenden. In der Figur sind weiterhin Betätigungsseinrichtungen (Aktoren) 1080 und 1090 zur Betätigung der Übersetzungsstufen der Gruppen 1040 und 1050 gezeigt. Besonders vorteilhaft ist jedoch ein Ausführungsbeispiel, das nur eine Betätigungsseinrichtung zur 10 Betätigung der Übersetzungsstufen beider Gruppen 1040 und 1050 aufweist. Eine Betätigungsseinrichtung umfaßt dabei einen Wählantrieb und einen Schaltantrieb. Bezuglich weiterer Einzelheiten der Kupplungs- und der Getriebebetätigung sowie der Steuerung wird auf die Figur 1a mit zugehöriger Beschreibung verwiesen.
- 15 Weiterhin kann die vorliegende Erfindung bei einem Fahrzeug zur Anwendung kommen, dessen Antriebsstrang einen zum Hauptstrang parallelen Nebenstrang umfaßt, über den während eines Schaltvorganges im Hauptstrang das Antriebsmoment übertragen wird. Derartige Getriebe sind in verschiedenen Ausgestaltungen als unterbrechungsfreie Schaltgetriebe bekannt geworden.
- 20 Figur 2 zeigt Endausgangsmechanismen mit Endbetätigungsmechanismus gemäß eines erfindungsgemäßen besonders bevorzugten Ausführungsbeispiels in Anwendung bei einem wie mit Figur 1b gezeigten und beschriebenen Fahrzeug. Die Endausgangsmechanismen werden jeweils durch eine Kupplungsmuffe 101, 102, 103, 104 und eine mit ihr in 25 Verbindung stehende Schaltgabel 105, 106, 107, 108 gebildet. Eine Gruppe von Übersetzungsstufen wird mittels der Endausgangselemente 101 und 104, wie Kupplungsmuffen, betätigt, die andere Gruppe von Übersetzungsstufen wird mittels der Endausgangselemente 102 und 103 betätigt. Der Endbetätigungsmechanismus weist zur Verbindung mit den Endausgangsmechanismen der beiden Gruppen Haupt- und Nebenbetätigungelemente auf. Ein erstes Hauptbetätigungelement 111 und ein in dieser Ansicht nicht sichtbares weiteres Hauptbetätigungelement sind geeignet, Übersetzungsstufen einzulegen, die Nebenbetätigungelemente 116, 113 stellen dabei sicher, daß jeweils alle anderen 30 Übersetzungsstufen derselben Gruppe ausgelegt sind. Die Schaltgabeln 105, 106, 107,

- 23 -

- 108 sind auf Wellen 109 axial verschieblich angeordnet, ihre Schaltgabelmäuler sind so ausgebildet, daß sie jeweils mit einem Hauptbetätigungsselement wie Schaltfinger 111 oder einem Nebenbetätigungsselement wie Doppelnocken 113, 116 in Verbindung treten können. Hierzu sind erste Teilbereiche 114 zur Verbindung mit einem Schaltfinger 111
5 und zweite Teilbereiche 115 zur Verbindung mit einem Doppelnocken 113 vorgesehen. Zum Einlegen einer Übersetzungsstufe tritt beispielsweise der Schaltfinger 111 mit dem Endbereich 110 der entsprechenden Schaltgabel 105 oder 106 in Verbindung, indem die Schaltwelle 112 in axialer Richtung verschoben wird. Zugleich tritt der Doppelnocken 113 jeweils mit der entsprechenden Schaltgabel 107 oder 108 in Verbindung, die zur selben
10 Gruppe von Übersetzungsstufen gehört. Eine Drehung der Schaltwelle 112 verschwenkt den Schaltfinger 111, wodurch die Schaltgabel 105 bzw. 106 auf der Welle 109 und somit auch die dazugehörige Kupplungsmuffe 101 oder 102 verschoben wird und die entsprechende Übersetzungsstufe eingelegt wird. Zugleich bewirkt die Verdrehung des Doppelknockens 113 ein Auslegen der betreffenden Übersetzungsstufe, falls eingelegt.
- 15 Handelt es sich um ein Getriebe mit einer Kupplung und einem Getriebestrang, wie in Figur 1a gezeigt, treten jeweils Nebenbetätigungsselemente mit allen weiteren Endausgangsmechanismen in Verbindung, wenn ein Hauptbetätigungsselement mit einem ersten Endausgangsmechanismus in Verbindung tritt. Bei einem Doppelkupplungsgetriebe mit
20 zwei parallelen Getriebesträngen treten jeweils Nebenbetätigungsselemente mit allen weiteren Endausgangsmechanismen eines Stranges in Verbindung, wenn ein Hauptbetätigungsselement mit einem ersten Endausgangsmechanismus dieses Stranges in Verbindung tritt. So ist in einem Strang nur jeweils eine Übersetzungsstufe zugleich einlegbar, jedoch ist es möglich gleichzeitig eine Übersetzungsstufe in jedem Strang einzulegen.
- 25 In Figur 3 ist die Wirkungsweise eines Nebenbetätigungsselementes genauer gezeigt. Ausgehend von Figur 3a, in der die zur Schaltgabel 201 gehörende Übersetzungsstufe eingelegt ist und das Nebenbetätigungsselement durch axiale Verschiebung der Schaltwelle mit der Schaltgabel 201 in Verbindung getreten ist, wird die Schaltwelle 203 verdreht, so daß der Endbereich 202 des Doppelknockens – siehe 113 in Figur 2 – gegen die Schräge 201a gedrückt wird und so eine Kraft in Ausrückrichtung erzeugt wird, die größer oder gleich der erforderlichen Ausrückkraft ist, wodurch eine Ausrückbewegung erzeugt wird, wie die Figuren 3b und 3c zeigen. In Figur 3d ist die Übersetzungsstufe vollständig

- 24 -

- ausgelegt und die Schaltwelle 203 kann frei weiter verdreht werden, ohne daß Kraft in Ein- oder Ausrückrichtung auf die Schaltgabel 201 übertragen werden, wobei sich der Doppelnocken innerhalb des durch 201b begrenzten Kreises dreht. Der in Figur 3d gezeigte Zustand herrscht auch vor, wenn von Beginn an keine Übersetzungsstufe der betreffenden
- 5 Schaltgabel 201 eingelegt. Das Nebenbetätigungsselement kann frei im durch 201b begrenzten Kreis verdreht werden.

Analog zum eben beschriebenen Auslegevorgang erfolgt das Auslegen, falls die andere mittels derselben Schaltgabel betäigte Übersetzungsstufe eingelegt ist. In der Figur 3a

10 wäre dann die Schaltgabel 201 zu Beginn gegenüber der Schaltwelle 203 nach rechts verschoben und die Wirkung würde zwischen dem Nocken 202a und der Schräge 201c erfolgen. Das Auslegen erfolgt sowohl für beide zur Schaltgabel 201 gehörenden Übersetzungsstufen als auch für beide Drehrichtungen der Schaltwelle 203.

- 15 Das Ein- bzw. Auslegen einer alten bzw. einer neuen Übersetzungsstufe bei Drehung der Schaltwelle ist in Figur 4 gezeigt. Zuerst wird mittels des Doppelknockens die alte Übersetzungsstufe ausgelegt, siehe durchgezogene Linie, bei weiterer Verdrehung erfolgt ein Einlegen der neuen Übersetzungsstufe, siehe gestrichelte Linie. Deutlich wird das zeitlich eng beieinander liegende, sich sogar leicht überschneidende Aus- bzw. Einlegen der Übersetzungsstufen, welches dadurch möglich ist, daß das Hauptbetätigungsselement und Nebenbetätigungsselemente zugleich im Eingriff mit den jeweiligen Schaltgabeln stehen und bei einer Drehung der Schaltwelle beide Betätigungsselemente praktisch gleichzeitig verschwenkt werden. Der Versatz zwischen der Auslegebewegung der Kupplungsmuffe der alten Übersetzungsstufe und der Einlegebewegung der neuen Übersetzungsstufe wird
- 20 maßgeblich durch das Spiel des Hauptbetätigungsselementes im Schaltgabelmaul, durch die Ausgestaltung der Doppelknocken und der relativen winkelmäßigen Anordnung von Haupt- und Nebenbetätigungsselement auf der Schaltwelle – siehe auch Figur 5a – bestimmt. Besonders zu bevorzugen ist aufgrund der Symmetrie eine Anordnung, bei der die Achse des Doppelknockens von Spitze 403a zu Spitze 403b auf der Achse des Schaltfingers 402 senkrecht steht. Jedoch kann es auch zweckmäßig sein, wenn diese Achsen
- 25 aufeinander nicht senkrecht stehen, insbesondere, wenn eine Schaltgabel zu betätigen ist, die nur eine Übersetzungsstufe schaltet.
- 30

- 25 -

In Figur 5a und 5b ist eine Anordnung eines Hauptbetätigungsselementes 402 und eines Nebenbetätigungsselementes 403 auf einer Schaltwelle 401 gezeigt. Schaltfinger und zugehörige Doppelnocken sind axial auf der Schaltwellenachse so beabstandet, daß sie jeweils mit Schaltgabeln in Verbindung treten, die dem selben Getriebestrang zugeordnet
5 sind, wenn die Schaltwelle entsprechend in axiale Richtung verschoben wird, so daß bei einer nachfolgenden Drehung der Schaltwelle die betreffenden Übersetzungsstufen zugleich betätigt werden können. Radial stehen die Achsen des Schaltfingers 402 und des Doppelnockens 403 mit den Endbereichen 403a und 403b in einem dargestellten bevorzugten Ausführungsbeispiel normal zueinander. Eine weitere Anordnung ist mit den Figu-
10 ren 6a und 6b gezeigt. Auf der Schaltwelle 501 sind neben einem Schaltfinger 502 zwei Doppelnocken 503 und 504 mit ihren Endbereichen 503a, 503b, 504a und 504b angeordnet. Auch in diesem Ausführungsbeispiel stehen die Achsen des Schaltfingers 502 und der Doppelnocken 503, 504 normal zueinander. Die Doppelnocken 503, 504 sind besonders breit ausgebildet, so daß sie jeweils mit zwei Schaltgabeln in Verbindung treten kön-
15 nen. Jeder der Doppelnocken 503, 504 kann so zwei Schaltgaben zum Auslegen der zu- gehörigen Übersetzungsstufen betätigen. In einem anderen Ausführungsbeispiel kann es auch sehr vorteilhaft sein, solche breite Doppelnocken und einfache Doppelnocken zu kombinieren. Es kann auch zweckmäßig sein, wenn ein Doppelnocken insbesondere in axiale Richtung noch weiter verbreitert wird, um gleichzeitig mehr als zwei Schaltgabeln zu
20 betätigen. Die Verwendung von besonders breiten Nebenbetätigungsselementen ist immer dann zu bevorzugen, wenn Endausgangsmechanismen betätigt werden sollen, deren Schaltgabeln nebeneinander liegen.

Figur 7 zeigt Ausgestaltungen von Nebenbetätigungsselementen. Der bisher beschrieben
25 Doppelnocken ist mit a gezeigt. Sowohl die Nockenendbereiche als auch die damit kor- respondierenden Ausnehmungen 603 sind keilförmig ausgebildet. Beispielhaft wird ein Nocken 604 beschrieben. Es sind zwei spitz zueinander laufende Funktionsflächen 601a und 601 b gezeigt, der Nockenendbereich 602 ist abgerundet. Im bevorzugten Ausfüh- rungsbeispiel schließen die Flächen 601a und 601 b einen Winkel von 40° bis 45° ein,
30 wobei der Winkel umso größer gewählt wird, je größer die zum Auslegen der zu betätigenden Übersetzungsstufe erforderliche Auslegekraft ist. Die Form des Nockens bestimmt maßgeblich den Verlauf der zur Erzeugung einer Ausrückbewegung erzeugbaren Aus- rückkraft bei Drehung der Schaltwelle. In einem weiteren Ausführungsbeispiel wird daher

- 26 -

die Form des Nockens dem während eines Ausrückens auftretenden erforderlichen Kraftverlauf angepaßt. Die mit dem Nocken korrespondierende Ausnehmung 603 schließt mit den sie begrenzenden Flächen einen etwas größeren Winkel als der Winkel des Nockens ein. Die Ausgestaltung der Ausnehmung hängt von der Form des Nockens ab, da das zusammenwirken zwischen Nocken und Ausnehmung maßgebend ist.

Kombinationen mit einem Keilförmigen und einem rechteckförmigen Korrespondenzteil zeigen die Varianten b und d. In Variante b weist das drehbare Nebenbetätigungsselement rechteckförmige Ausnehmungen 606 auf, die mit keilförmigen Nocken 607 der verschieblichen Schaltgabel in Verbindung stehen, in Variante d weist die verschiebliche Schaltgabel rechteckförmige Ausnehmungen 608 auf, die mit keilförmigen Nocken 609 des drehbaren Nebenbetätigungsselementes in Verbindung stehen. Variante e zeigt ebenso wie Variante a zwei keilförmige Korrespondenzteile, wobei hier jedoch das drehbare Nebenbetätigungsselement 610 die Ausnehmung 615 und die verschiebliche Schaltgabel 611 den Nocken 614 aufweist. Zwei rechteckförmige Korrespondenzteile 612, 613 zeigt die Variante c.

Die gezeigten Varianten variieren den Gedanken einer Keilform und einer Rechteckform mit Ausnehmung bzw. Nocken am mit der Schaltwelle verdrehbaren Betätigungsselement bzw. am verschieblichen Endbetätigungsmechanismus.

Schaltwellenposition und H-Schaltbild sind in Figur 8 gezeigt. Das Beispiel betrifft ein Doppelkupplungsgetriebe, bei dem die Gänge 1, 3, 5 und 7 eine Gruppe bilden, die einer Kupplung zugeordnet sind und die Gänge 2, 4, 6 sowie der Rückwärtsgang R eine weitere Gruppe bilden, die der anderen Kupplung zugeordnet ist. Die Teilfigur a zeigt das Einlegen des 1. Ganges. Da jeweils nur ein Gang einer Gruppe zugleich eingelegt sein darf, muß sichergestellt sein, daß bei einer Schaltung in den 1. Gang die Gänge 3, 5 und 7 ausgelegt sind. Der 3. Gang wird von der selben Schaltkupplung wie der 1. Gang betätigt, er kann also ohnehin nicht gleichzeitig eingelegt sein. Bei axialer Verschiebung der Schaltwelle 705 zum Verbinden des Schaltfingers 703 mit der zum 1. Gang gehörenden Schaltgabel tritt zugleich das Nebenbetätigungsselement 704 mit der Schaltgabel, zu der die Gänge 5 und 7 gehören, in Verbindung. Die Drehung der Schaltwelle 705 zum Einlegen des 1. Ganges bewirkt ein Auslegen der Gänge 5 bzw. 7. Teilfigur b zeigt das Einle-

- 27 -

gen des 2. Ganges, bei dem das Nebenbetätigungslement 704 die Gänge 6 bzw. R Auslegt. Beim Einlegen des 5. Ganges mittels des Schaltfingers 701 werden mittels des Nebenbetätigungslementes 702 die Gänge 1 bzw. 3 ausgelegt, siehe Teilfigur c. Teilfigur d zeigt das Einlegen des 6. Ganges, wobei die Gänge 2 bzw. 4 ausgelegt werden.

- 5 Die Synchronisation kann in mittels actice interlock betätigten Getrieben mittels Synchronisationsvorrichtungen an jeder einzelnen Übersetzungsstufe erfolgen. Vorteilhaft kann jedoch eine zentrale Synchronisationsvorrichtung sein, die beispielsweise an der höchsten Übersetzungsstufe angeordnet ist. So kann beispielweise in dem gezeigten Ausführungsbeispiel eines Doppelkupplungsgetriebes der Figur 8 jeweils eine Synchronisationsvorrichtung am Getriebestrang der Übersetzungsstufen 1, 3, 5, 7 an Übersetzungsstufe 7 und eine Synchronisationsvorrichtung am Getriebestrang der Übersetzungsstufen 2, 4, 6, R an Übersetzungsstufe 6 angeordnet sein. Beispielhaft für eine Schaltung von Gang 1 nach Gang 3 soll die Funktionsweise erläutert werden. Hierbei wird der eingelegte Gang 1 mittels des Schaltfingers 703 ausgelegt. Die Schaltwelle 705 wird nun axial verlagert, so dass der Schaltfinger 701 in Eingriff mit der Schiebehülse des Gangs 7 gebracht werden kann und eine Betätigung der Synchronisationsvorrichtung des Gangs 7 durch Verdrehen der Schaltwelle 705 erfolgen kann, Gang 7 jedoch nicht eingelegt wird. Nach Erreichen der Zieldrehzahl wird die Schaltwelle 705 wieder axial zurückverlagert, sodass der Schaltfinger 703 mittels einer Verdrehung der Schaltwelle 705 den Gang 3 einlegt.

20

Die Funktionsweise eines wie unter den Figuren 6a und 6b beschriebenen breiten Nockens zeigt Figur 9. Beim Einlegen beispielsweise des 2. Ganges – siehe Teilfigur – werden zugleich die Gänge 3, 4, 5 bzw. R ausgelegt, bei Einlegen des Rückwärtsganges – siehe Teilfigur b – werden zugleich die Gänge 1, 2, 3 bzw. 4 ausgelegt.

25

Figur 10 zeigt am Beispiel eines H-Schaltbilds für ein Getriebe mit sechs Übersetzungsstufen 1 – 6 und einem Rückwärtsgang R die Verwendung einer Neutralstellung N. Das Ein- und Auslegen der einzelnen Übersetzungsstufen erfolgt wie unter der Figur 9 beschrieben. In dem gezeigten Ausführungsbeispiel ist in der Schaltgasse des Rückwärtsganges R die Neutralstellung N schaltbar. Dabei sind die an der Schaltwelle angeordneten Neben- und Hauptbetätigungslemente so angeordnet, dass bei einer Verdrehung der Schaltwelle die Übersetzungsstufen 1 – 6 mittels des Nebenbetätigungslementes, das entsprechend axial in Richtung der Achse der Schaltwelle erweitert ist oder aus einzelnen,

- 28 -

in den Schaltgassen der einzelnen Übersetzungsstufen 1/2, 3/4, 5/6 positionierten Schaltnocken besteht, ausgelegt werden, wobei die Verdrehung der Schaltwelle geringer ausgelegt werden kann als bei einer Schaltung zwischen zwei Übersetzungsstufen, da nur Übersetzungsstufen ausgelegt werden. Ein gegebenenfalls eingelegter Rückwärtsgang R

- 5 wird mittels des Hauptbetätigungsselementes wie Schaltfinger ausgelegt. Es versteht sich, dass die Neutralposition auch in anderen Schaltgassen vorgesehen sein oder in einer zusätzlichen Schaltgasse angeordnet sein kann, wie dies beispielsweise bei Getrieben mit fünf Gangstufen vorteilhaft sein kann, da hier der Rückwärtsgang meistens in der Schaltgasse der Gangstufe 5 angeordnet ist (siehe Figur 9). Hier wird eine zusätzliche Schaltgasse zusätzlich für die Neutralposition vorgesehen und die Übersetzungsstufen 1 – 5, R werden mittels der Nebenbetätigungsselemente entsprechend ausgelegt. Das Hauptbetätigungsselement wie Schaltfinger legt dabei keine Übersetzungsstufe aus.
- 10

Die Neutralposition kann auch zum Deaktivieren einer Parksperrre vorgesehen werden.

Hierbei werden zum Aktivieren der Parksperrre zwei Übersetzungsstufen im Getriebe nach

- 15 Fahrzeugstillstand eingelegt und mit der Schaltung der Neutralposition wieder ausgelegt.

Figur 10a zeigt eine beispielhafte Ausgestaltung der Erfindung zur Anwendung bei einem herkömmlichen Handschaltgetriebe, die jedoch zugleich auch besonders bevorzugt wird. Obwohl nur eine Schaltgabel 1080 gezeigt ist, weist das beschriebene Getriebe mehrere

- 20 Schaltgabeln auf. Die Schaltgabeln 1080 eines derartigen Getriebe weisen einen Eingriffsbereich 1082a für den Eingriff eines Schaltfingers 1082b, sowie zwei Schenkel 1083a auf. Die Schenkel 1082b bilden zusammen eine Bogenform, die in ihrem Durchmesser zumindest annähernd dem Durchmesser eines hülsenförmigen Betätigungsselementes 1081 entspricht, welches zwischen den bogenförmigen Schenkeln 1083a einsitzt. Das Hülsenförmigen Betätigungsselementes 1081 ist im Betrieb in bestimmten Positionen beispielsweise mittels eines handbetätigten Schaltgestänges verdrehbar und axial verschiebbar. Durch axiale Verschiebung des hülsenförmigen Betätigungsselementes 1081 kann ein Schaltfinger 1082b mit dem Betätigungsreich 1082a der gewünschten Schaltgabel in Verbindung gebracht werden, so dass eine nachfolgende Verdrehung des hülsenförmigen
- 25 Betätigungsselementes 1081 ein Verschwenken des Schaltfingers 1082b und somit eine Verschiebung der Schaltgabel 1080 bewirkt. Die Verdrehung wird ermöglicht, da in der Hülse des Betätigungsselementes 1081 Ausschnitte 1083b vorgesehen sind, in welche bei einer Drehbetätigung die Schankelenden 1083a eingreifen können. Wie bereits beschrie-
- 30

- 29 -

- ben, sind im Getriebe bezüglich des hülsenförmigen Betätigungs-elementes 1081 axial beabstandet weitere Schaltgabeln vorhanden. Diese Schaltgabeln weisen ebenfalls bogenförmige Schenkel auf, in denen das hülsenförmige Betätigungs-element 1081 einsitzt.
- 5 Da axial auf Höhe dieser weiteren Schaltgabeln keine Ausschnitte wie 1083b im hülsenförmigen Betätigungs-element 1081 vorhanden sind, sind diese Schaltgabeln in ihrer Mitte-lage entsprechend der Neutralstellung fixiert. Es wird auf diese Weise besonders effektiv ein Betätigungsmechanismus zur Betätigung der gewünschten Schaltgabel mit einer Verriegelung der übrigen Schaltgabeln in der Neutralstellung verbunden. Die Verbindung der Hülse des Betätigungs-elementes 1081 mit einer hier nicht gezeigten Betätigungsstan-
- 10 ge erfolgt beispielsweise mittels buchsenförmigen Elementen 1084. Der Schaltfinger 1082b wird vorteilhaft durch eine sehr feste Verbindung mit der Hülse verbunden. Beson-ders geeignet sind hierzu Schweiß- oder Klebeverfahren. Alternativ oder in Kombination damit kann der Schaltfinger 1082b mechanisch formschlüssig mit der Hülse verbunden werden.
- 15 In Figur 10b ist die Hülse 1090 des Betätigungs-elementes 1081 näher gezeigt. Die Hülse wird besonders vorteilhaft aus einem Rohrstück hergestellt, in das dann beispielsweise spanabhebend oder auch mittels einer Schneidtechnik wie Laserschneiden oder Brennschneiden die Ausnehmungen 1091 und 1092 eingebracht werden. Die Ausnehmungen
- 20 1091 und 1092 entsprechen in ihrer Grundform zumindest annährend dem Querschnitt der Schaltgabelschenkel 1083a, sie sind jedoch besonders in Umfangsrichtung etwas da-rüberhinaus ausgedehnt, um die Verschiebung der Schaltgabel 1080 zu ermöglichen. Ebenfalls vorteilhaft ist es, die Hülse aus einem ebenen Blech herzustellen, das dann gerollt und verbunden wird. Die Ausnehmungen 1091 und 1092 werden im ebenen Zustand des
- 25 Bleches beispielsweise durch Stanzen hergestellt.

Figur 11a zeigt eine beispielhafte Ausgestaltung der Erfindung zur Anwendung bei einem wie weiter oben ausführlich beschriebenen automatisierten Schaltgetriebe, die jedoch zugleich auch besonders bevorzugt wird. Die Schaltgabel 1180 weist einen ersten Funkti-

30 onsbereich 1182a zum Eingriff eines Schaltfingers 1182b auf, der derart verbreitert ist, dass auch nach Einlegen einer Übersetzungsstufe durch Verschieben der Schaltgabel 1180 eine Wählgasse verbleibt, die breit genug ist, dass der Schaltfinger die Schaltgabel bei weiterhin eingelegter Übersetzungsstufe verlassen kann, um mit dem ersten Funkti-

- 30 -

- onsbereich einer weiteren Schaltgabel in Verbindung zu treten. Wird nun eine Übersetzungsstufe dieser weiteren Schaltgabel eingelegt, soll zugleich die alte Übersetzungsstufe ausgelegt werden, wozu an der Schaltgabel zweite Funktionsbereiche 1183a vorgesehen sind, die mit entsprechenden Ausnehmungen 1183b in Verbindung treten. Bei einer Ver-
- 5 drehung des Betätigungsselementes 1181 wird die Schaltgabel auf jeden Fall in ihre Neutralposition verschoben, die Ausrückkraft wird von den aus einem entsprechenden umgebogenen Blech gebildeten Seitenbereichen der Ausnehmung 1183b auf den keilförmigen zweiten Funktionsbereich der Schaltgabel übertragen. Das Betätigungsselement 1181 ist beispielsweise aus einem buchsenförmigen Element 1184 und damit verbundenen Sei-
- 10 tenelementen 1185a und 1185b aus Blech gebildet, deren Endbereiche derart geformt sind, dass die gewünschten Funktionsflächen gebildet werden. Zudem ist mit dem Seiten-element 1185b der Schaltfinger 1182b verbunden, wobei diese Verbindung ebenso wie die Verbindung des Schaltfingers in Figur 10a erfolgen kann. Deutlich wird in Figur 11a weiterhin, dass der Schaltfinger 1182b – das Hauptbetätigungsselement – und die Aus-
- 15 nehmungen 1183b – die Nebenbetätigungsselemente – auf der Achse des Betätigungs-elementes 1181 derart axial beabstandet angeordnet sind, dass der Schaltfinger 1182b mit einer Schaltgabel und die Ausnehmung 1183b mit einer weiteren Schaltgabel zugleich in Verbindung treten können. Bei einer (Schalt-) Betätigung werden beide Schaltgabeln zugleich betätigt, so dass eine Übersetzungsstufe eingelegt wird und zugleich wenigstens
- 20 eine andere ausgelegt wird bzw. sichergestellt wird, dass die Neutralposition vorherrscht. Mit dieser Figur wird nur eine besondere Ausgestaltung beispielhaft beschrieben werden, die gesamte Funktionsweise wurde bereits mit vorstehenden Figuren gezeigt, so dass stellvertretend nur ein Element mit einem Haupt- und einem Nebenbetätigungsselement gezeigt ist.
- 25 Das Seitenelement 1185b aus Figur 11a ist in Figur 11b näher gezeigt. Das Element ist aus Blech vorzugsweise gestanzt hergestellt. Der mittlere Bereich 1189 ist eine gegenüber den Endbereichen 1186 verbreitert, wodurch sich eine besondere Stabilität im Bereich des Schaltfingers 1188 ergibt. Zudem sind die Endebereiche 1187 leicht verformbar. Die umgebogenen Enden 1187 bilden das Gegenstück zum zweiten Funktionsbereich 1183b
- 30 der Schaltgabel.

Das buchsenförmige Element 1184 aus Figur 11a ist in Figur 11c näher gezeigt. Das Element ist vorzugsweise zweiteilig aus einem Rohrstück 1085 und einem damit verbunde-

- 31 -

nen gestanzten Blechkragen 1086 hergestellt, der durch Umformen in die gezeigte Form gebogen wird. In einem anderen Ausführungsbeispiel ist das gesamte Element einteilig ausgeführt. Dann wird aus einem Rohrstück durch Umformung der Kragen in der gezeigten Form gestaltet. Die beiden Seitenbereiche 1088 und 1089 der Ausnehmungen 1087
5 zum Eingriff der zweiten Funktionsbereiche 1183a der Schaltgabel 1180 sind unterschiedlich ausgebildet. Nur der für die Funktion relevante Seitenbereich 1089 weist den umgebogenen Endbereich auf.

Figur 12a zeigt eine beispielhafte Ausgestaltung der Erfindung zur Anwendung bei einem
10 wie weiter oben ausführlich beschriebenen Doppelkupplungsgetriebe, die jedoch zugleich auch besonders bevorzugt wird. Das buchsenförmige Element 1281 besteht aus zwei inneren Buchsen 1285, die so zueinander angeordnet sind, dass ihre Krägen voneinander abgewandt sind. Sie tragen die beiden Seitenbereiche 1286, von denen einer einen Schaltfinger 1282b umfasst, der mit ersten Funktionsbereichen 1282 in Wirkverbindung
15 treten kann. Ausnehmungen 1283b sind dazu geeignet, mit zweiten Funktionsbereichen 1283a in Verbindung zu treten, um wie bereits beschrieben die Neutralposition einer Schaltgabel zu sichern. Diese Ausnehmungen – in der gezeigten Darstellung je eine auf jeder Seite des Schaltfingers – sind hülsenaxial, also in axialer Richtung der Hülse betrachtet, vom Schaltfinger 1282b derart beabstandet, dass Schaltfinger und Ausnehmungen jeweils mit den gewünschten Schaltgabeln zugleich in Verbindung treten. Hülsenaxial auf Höhe des Schaltfingers 1282b sind Nuten 1284 vorgesehen, die bei einer Schaltbewegung entsprechend einer Drehung des Elementes 1281 zur Betätigung einer Schaltgabel Raum für die zweiten Funktionsbereiche 1283a derselben Schaltgabel bieten, so dass eine ungehinderte Schaltbewegung ermöglicht wird.
20

25 Ein Seitenelement 1286 aus Figur 12a ist in Figur 12b näher gezeigt. Das Element ist aus Blech vorzugsweise gestanzt hergestellt. Dargestellt ist ein Element mit Schaltfinger 1288. Die Nuten sind in flachem Zustand beispielsweise gestanzt, in einem nachfolgenden Arbeitsgang wird das Element 1287 in den gewünschten Radius gebogen und mit den Umbördelungen 1290 versehen.
30

Gemäß einem weiteren erfinderischen Gedanken wird vorgeschlagen, in Verbindung mit dem vorliegenden Getriebe eine Elektromaschine vorzusehen, deren Rotor,

- 32 -

beispielsweise mit einer frei drehbare Schwungmasse, die vorteilhaft mittels zumindest einer Kupplung von der Antriebseinheit wie Brennkraftmaschine und von der Abtriebseinheit wie Getriebe zum Schwungnutz isolierbar ist, verbunden ist, beziehungsweise diese bildet, so daß mittels dieser Anordnungen Hybridantriebe möglich
5 sind.

Das Getriebe ermöglicht gemäß dieser Ausgestaltung eine umfassende Nutzung der Elektromaschine beispielsweise als Startereinheit für die Brennkraftmaschine, Stromgenerator, Teilantrieb, Vollantrieb sowie als Einheit zur Umwandlung kinetischer Energie in elektrische Energie oder in kinetische Rotationsenergie unter Verwendung des Rotors als
10 Schwungmasse bei Verzögerungsvorgängen des Fahrzeugs bei abgekoppelter Brennkraftmaschine (Rekuperation).

Die Figuren 13 bis 16 zeigen weitere vorteilhafte Ausführungsbeispiele der Erfindung. Bei diesen erfindungsgemäßen Ausführungsbeispielen ist ein Hauptbetätigungsselement, wie
15 beispielsweise Schaltfinger, mit einer Schaltwelle 1301 drehfest verbunden. Weiterhin sind Nebenbetätigungsselemente 1310, 1311 wie beispielsweise Auslegefinger, vorgesehen, die relativ zu dem Hauptbetätigungsselement verdrehbar angeordnet sind. Zwischen dem Hauptbetätigungsselement 1300 und den Nebenbetätigungsselementen ist ein Feder- oder Kraftspeichermechanismus 1320 angeordnet, so dass die Nebenbetätigungsselemente
20 entgegen der Rückstellkraft des Kraftspeichers relativ zum Hauptbetätigungsselement verdrehbar ist. Der Kraftspeicher 1320 ist als Schlingfeder ausgebildet, wobei sich die Feder zumindest einfach, vorteilhafter Weise jedoch mehrfach um die zentrale Welle 1301 wickelt. Die Feder hat dabei zwei Endbereiche 1321 und 1322, die im wesentlichen in radialer Richtung hervorstehen und sich an jeweiligen Anlagebereichen abstützen. Diese
25 Anlagebereiche sind Bestandteil einer Sperrvorrichtung (1360).

Die Sperrvorrichtung (1360) weist einen zylindrischen Körper 1330 auf, der einen Bereich 1331 größerer radialer Ausdehnung aufweist. Im Bereich dieses Abschnitts größerer radialer Ausdehnung sind weitere Elemente vorgesehen, wobei ein Element 1340 mit den
30 Anlagebereichen 1341 und 1342 zur Anlage der Endbereiche der Feder vorgesehen ist. Dieses Element 1340 ist Zylindersegmentförmig ausgebildet und weist eine Öffnung 1344 auf, in die bzw. durch die ein Element 1345, wie beispielsweise eine Kugel, aufgenommen ist bzw. hindurchtreten kann. Das Element 1340 ist derart angeordnet, das es mit der

- 33 -

- Welle 1301 oder dem Hauptbetätigungsselement 1300 verdrehfest verbunden bzw. aufgenommen ist. Weiterhin ist ein Element 1350 vorgesehen, das mit den Nebenbetätigungs-elementen drehfest verbunden ist. Das Element 1350 ist im wesentlichen ebenfalls Zylindersegmentförmig bzw. hohlzylindersegmentförmig ausgebildet und weist an seinen End-
5 bereichen Anlagebereiche 1351 und 1352 auf, die an den radial ausgerichteten Bereichen der Feder 1320 zur Anlage kommen können. Durch eine Relativverdrehung der Elemente 1340 und 1350 wird die Feder beaufschlagt und gespannt.
- Durch diese Verdrehung wird die Kugel 1345, die in einer Mulde 1355 des Elementes 1350 liegt relativ zu dem element 1350 verschoben und wandert die Steigungsfläche am
10 Rand der Mulde hinauf und ragt aus der Öffnung 1344 heraus. Dadurch wird die maximale relative Verdrehung der beiden Teile 1350 und 1340 begrenzt, da die Kugel an die Seitenflächen 1338 oder 1339 stößt und damit die weitere Relativverdrehung unterbindet. Somit kann eine Relativverdrehung des Hauptbetätigungselements 1300 relativ zu den Neben-
15 betätigungsselementen erfolgen, wobei die Verdrehung entgegen einer Rückstellkraft erfolgt und der maximale Verdrehwinkel begrenzt ist.

Die Erfindung bezieht sich weiterhin auf eine Getriebebremse für ein Getriebe. Besonders vorteilhaft ist es, wenn dies mit einer erfindungsgemäßigen integrierten Getriebebremse erfolgt. Das Abbremsen der Getriebeeingangswelle (GE) auf Synchrongeschwindigkeit sollte
20 nach dem Herausnehmen des alten Ganges und vor dem Einlegen des neuen Ganges erfolgen. Zu diesem Zweck wird die zentrale Schaltwelle des Getriebes durch erfindungsgemäßige Formelemente ergänzt, siehe Figur 17a und Figur 17b.

Dabei kann bei Verwendung eines Getriebes mit einer Getriebeeingangswelle durch Betätigung des Wähllementes oder des Wählaktuators eine Getriebebremse die eine Getriebeeingangswelle abgebremst werden. Bei der Verwendung eines Getriebes mit zumindest zwei Getriebeeingangswellen kann es zweckmäßig sein, wenn durch die Betätigung des Wählaktuators eine Getriebebremse aktiviert oder betätigt wird, die zumindest eine und/oder beide Getriebeeingangswellen abbremst.
30

Durch den Einsatz der Formelemente 1401 an der Schaltwelle 1400 wird über einen Stößel 1410, einen Umlenkmechanismus 1411 und einen weiteren Stößel 1412 eine Getrie-

- 34 -

bebremse 1420 angesteuert. Die Getriebebremse ist in der Figur 17a als Symbol 1420 dargestellt, das ansteuerbar ist.

Weiterhin ist es vorteilhaft, wenn ein zusätzliches Kupplungs- oder Bremselement, beispielweise eine Magnetkupplung eingesetzt wird. Da diese nicht direkt die Bremse betätigt, sondern am Betätigungsselement angebracht ist und dieses steuert, kann sie sehr klein und einfach ausgeführt werden. Folgende Wirkungen werden durch die Magnetkupplung erreicht: 1. Mit dem Erreichen der Synchondrehzahl kann die Magnetkupplung geöffnet und unmittelbar der Zielgang eingelegt werden. Die Restdrehzahldifferenz ist minimal. Temperaturabhängigkeiten, Schleppmomente etc. können vernachlässigt werden. 10 2. Bei Rückschaltungen bleibt die Magnetkupplung 1430 offen, so daß die Getriebebremse nicht betätigt wird.

Für die Getriebebremse sind zwei Grundfunktionalitäten zweckmäßig: 1. Bei größeren Motormomenten wird eine Getriebebremse (z.B. als Bandbremse) so angeordnet, daß stets beide Getriebeeingangswellen abgebremst werden. Das kurzzeitige (< 1sec) Abbremsen der aktiven Welle wird nicht spürbar sein und kann somit hingenommen werden. 2. Bei geringeren Motormomenten müssen für beide Getriebeeingangswellen getrennte Bremsen vorgesehen werden, welche auch getrennt (also über zwei Magnetkupplungen) betätigt werden.

Die erfindungsgemäße Ausführung ermöglicht die vollständige Substitution der Synchronisierungen an allen Gängen. Deren Funktion wird durch eine Getriebebremse übernommen. Da die gegebenenfalls vorhandene Magnetkupplung nicht an der Bremse selbst, sondern an der Betätigseinrichtung 1400 angebracht ist, kann sie entsprechend klein und einfach ausgeführt werden. Das Auslegen des alten Ganges, das Synchronisieren und das Einlegen des neuen Ganges erfolgt in einem Bewegungsvorgang ohne Wählbewegung. Somit sind sehr kurze Schaltzeiten möglich. Die Synchondrehzahl läßt sich genau einstellen.

30

Gemäß eines weiteren erfindungsgemäßen Gedankens ist es zweckmäßig, wenn bei Hochschaltungen die Getriebeeingangswelle des Zielganges auf Synchondrehzahl verzögert wird. Dies kann durch die oben genannten Getriebebremsen erfolgen. Dabei ist

- 35 -

es zweckmäßig, wenn die zentrale Schaltwelle 1500 des Getriebes mit einem zusätzlichen Element 1510, ähnlich einem Schaltfinger 1501 oder einem Auslegenocken 1502 zu versehen, welcher zusätzlich zu den bisherigen Betätigungslementen 1501, 1502 auf der zentralen Schaltwelle angeordnet ist und in das H-Schaltbild 1511 einer zusätzlichen Hülse 1512 eingreift, siehe Figur 18, wobei das H-Schaltbild 1511 der zusätzlichen Schalt-

5 hülse 1512 geteilt ausgeführt und auf mehrere Hülsen aufgeteilt sein kann, welche an beliebiger Stelle zweckmäßig auf der zentralen Schaltwelle angeordnet sein können. Nach dem Auslegen des alten Ganges durch den Auslegenocken 1502 greift der o.g. zusätzliche Finger 1510 in das H-Schaltbild 1511 der zusätzlichen Hülse 1512. Diese ist axial auf
10 der zentralen Schaltwelle verschiebbar und wirkt in axialem Richtung auf die Getriebebremse. Durch den Wählmotor des Getriebes wird die zentrale Schaltwelle geringfügig in Wählrichtung bewegt, wobei beide Richtungen möglich sind. Damit wird die Getriebebremse betätigt. Mit Erreichen der Synchrondrehzahl kann der neue Gang durch den Schaltfinger 1501 eingelegt werden, ohne daß Wählbewegungen erforderlich sind, da der
15 Schaltfinger 1501 während des Synchroniservorganges in der Gasse des Zielganges stehen bleibt. Die Gassenbreite kann dabei geringfügig vergrößert werden um zu verhindern, daß der Schaltfinger beim Synchroniservorgang durch die Getriebebremse die Gasse verläßt. Durch eine geeignete Ausführung der Getriebebremsen ist es möglich, unter Nutzung der beiden axialen Betätigungsrichtungen (nach „oben“ oder „unten“) jeweils die
20 Gänge auf der Hohlwelle oder der Vollwelle zu synchronisieren. Die oben beschriebene erfindungsgemäße Vorrichtung ermöglicht die Substitution der Synchronisierungen an allen Gängen. Deren Funktion wird durch eine Getriebebremse übernommen. Außer dem zusätzlichen Finger 1510 an der zentralen Schaltwelle 1500 und der Hülse 1512 als Betätigungsseinrichtung für die Getriebebremse sind im wesentlichen keine zusätzlichen Betätigungslemente erforderlich. Das Auslegen des alten Ganges, das Synchronisieren und
25 das Einlegen des neuen Ganges erfolgen in einem Bewegungsvorgang. Somit sind sehr kurze Schaltzeiten möglich. Auch läßt sich die Synchrondrehzahl genau einstellen.

Da der axial zur Verfügung stehende Bauraum zwischen zwei Schaltgassen in der Regel nicht einfach verlängert werden kann, kann der Weg, der für die Betätigung der oben beschriebenen Getriebebremse durch den Wählaktor – also eine Axialverlagerung der Schaltwelle – nötig ist, begrenzt sein. Um diesen Weg zu minimieren kann es vorteilhaft sein, an den Bauteilen der Schaltgassen, jedoch zumindest an den Bauteilen zur Bildung der Schaltgassen für die Bremse, Einführschrägen, an denen der Schaltfinger bei einer

- 36 -

- Schaltbetätigung entlanggleitet, anzubringen, so dass bereits bei einer Schaltbewegung (Drehbewegung der Schaltwelle) der Schaltfinger entlang der Einführschräge eine Axialverlagerung der Schaltgabel bewirkt, die bereits zur Einleitung des Bremsvorgangs genutzt werden kann. Vorteilhafterweise wird die Axialweg zum Lüften der Bremse genutzt,
- 5 da hierzu ein entsprechend kleines Moment vom Schaltaktor aufzubringen ist.

- Figur 19 zeigt einen Schaltvorgang zwischen zwei Übersetzungsstufen, die in unterschiedlichen Schaltgassen angeordnet sind, beispielsweise bei einer Schaltung in einem automatisierten Schaltgetriebe mit einer H-Schaltanordnung von Gang 2 auf Gang 3 oder
- 10 Von Gang 4 auf Gang. In dem in Figur 19 gezeigten Weg-Zeit-Diagramm ist dabei der zurückgelegte Weg der Schiebehülse eines ersten, aktuell eingelegten Gangs oder Übersetzungsstufe von einer Endlage 801a bei eingelegtem Zustand in die Neutrallage 801b bei nicht mehr eingelegtem Zustand während des Schaltvorgangs in Abhängigkeit von der Zeit als gestrichelte Linie 801 gezeigt. Die durchgezogene Linie 802 zeigt den Weg einer
- 15 Schiebehülse eines aktuell nicht eingelegten Gangs ausgehend von einer nicht eingelegten, neutralen Ausgangsstellung 802a bis zum eingerückten Zustand 802b. Bereits bei Aufhebung des Formschlusses zwischen Getriebeeingangswelle und Getriebeausgangswelle des aktuell eingelegten Gangs im Verlauf 801c der Schiebehülse beginnt die Synchronisierung des neu einzulegenden Gangs im Verlauf 802c der Schiebehülse für den
- 20 neu einzulegenden Gang.

- Figur 20 zeigt schematisch einen zur Figur 7 ähnlichen Endbetätigungsmechanismus für ein Doppelkupplungsgetriebe mit den Gängen oder Übersetzungsstufen 1, 2, 3, 4, 5, 6, 7 und dem Rückwärtsgang R. Dabei sind die Übersetzungsstufen 1, 3, 5, 7, einem ersten Getriebestrang und die Übersetzungsstufen 2, 4, 6, R einem zweiten Getriebestrang zugeordnet. Die Gänge 1 und 3 werden mittels des Endausgangsmechanismus 1410, beispielsweise bestehend aus Schaltmaul, Schaltgabe und Schiebehülse, die Gänge 5, 7 mittels des Endausgangsmechanismus 1420, die Gänge 2, 4 mittels des Endausgangsmechanismus 1430 und die Gänge 6, R mittels des Endausgangsmechanismus 1440 geschaltet, indem in die Endausgangsmechanismen jeweils eines der Hauptbetätigungslemente wie Schaltfinger 1401, 1403 eingreifen, wobei diese an der Schaltwelle 1405 befestigt und durch Verdrehen dieser die Endausgangsmechanismen verlagern und den damit verbundenen Gang einlegen. Die zuvor eingelegten Gänge werden mittels derselben

- 37 -

Drehbewegung zum Einlegen eines neu einzulegenden Gangs praktisch gleichzeitig beziehungsweise mit einem gewissen Zeitversatz vorher mittels der Nebenbetätigungselenmente 1404, 1404 ausgelegt. In der gezeigten Anordnung ist jeweils eine – nicht näher dargestellte – Synchronisationsvorrichtung an den Gängen 6, 7 mit der höchsten Übersetzung der Getriebegänge vorgesehen. Die Betätigung der Synchronisationsvorrichtung erfolgt im Gegensatz zur unter Figur 7 beschriebenen Abfolge nicht mittels eines Hauptbetätigungselements sondern während einer Wählbewegung durch Axialverlagerung der Schaltwelle 1405 und/oder einer Schaltbewegung durch Verdrehung der Schaltwelle 1405. Hierzu sind an der Schaltwelle 1405 im Bereich der Nebenbetätigungselenmente 1402, 1404 radial von diesen her abnehmende Nocken 1450, 1460 vorgesehen, die mit Gegennocken 1470, 1480, die an den Endbetätigungselenmenten 1420, 1440 zur Betätigung der jeweils höchsten Gänge fest angeordnet sind, in Wechselwirkung treten. Die Beaufschlagung der Gegennocken 1480 erfolgt dabei während einer Wählbewegung, also während einer Axialverlagerung der Schaltwelle 1405. Über eine Kraftübertragung entlang der Rampe 1451 beziehungsweise 1461 der Nocken 1450, 1460 wird der jeweilige Gegennocken 1470, 1480 senkrecht zur Längsachse der Schaltwelle 1405 verlagert und damit die Synchronisationsvorrichtung beaufschlagt. Weisen die Nocken 1450, 1460 zusätzlich einen in Umfangsrichtung verlaufenden positiven Radialanteil auf, kann über sie zusätzlich bei einer Drehbewegung der Schaltwelle einer der Gegennocken 1470, 1480 beaufschlagt werden. Hierzu stehen sich jeweils die Nocken 1450 und Gegennocken 1480 beziehungsweise 1460 und 1470 dann axial auf gleicher Höhe gegenüber, wenn ein Haupt- oder Nebenbetätigungselenment sich in einer Schaltgasse befindet. Der Spiralnocken 1490 wirkt auf den Gegennocken 1480 bei einer Drehbewegung der Schaltwelle, also während eines Schaltvorgangs beispielsweise bei einer Verdrehung der Schaltwelle 1405 ein und betätigt die Synchronisationsvorrichtung beispielsweise, wenn keine Wählbewegung sondern lediglich eine Schaltbewegung der Schaltwelle vorgesehen ist. Hierzu verfügt der Spiralnocken 1490 über ein Radialprofil, das über den Umfang radial zunimmt, also rechtwinklig zur Drehachse der Schaltwelle ein spiralförmige oder schneckenförmiges Oberflächenprofil hat. Weiterhin kann in Bewegungsrichtung zum Gegennocken 1480 eine Einfuhschräge vorgesehen sein.

Die Figuren 21a bis 21c zeigen beispielhaft einen Endbetätigungsmechanismus 1500 für eine Schiebeschalt- und eine Wähldehbewegung, der vorzugsweise jedoch nicht aus-

- 38 -

schließlich- für einen Längseinbau des Getriebes in einem Kraftfahrzeug Verwendung finden kann, in einer 3D-Schnittansicht. Figur 21a zeigt den Endbetätigungsmechanismus 1500 in Neutralstellung. Auf einer zentralen, innen hohlen und axial mittels eines Getriebeaktors, beispielsweise mittels eines Elektromotors axial verlagerbare Schaltwelle 1512 sind an deren Außenumfang zwei axial gegeneinander und gegen diese verlagerbare Nebenbetätigungsselemente 1513, 1516 mit flanschartig ausgebildeten radialen Erweiterungen 1513a, 1516a, die mit entsprechend angeordneten, nicht dargestellten Endausgangsmechanismen wie Schaltmäulern einer Schiebehülse in Wechselwirkung treten, so dass bei einer Axialverlagerung der Nebenbetätigungsselemente 1513, 1516 ein eingelegter Gang ausgelegt wird. Die Nebenbetätigungsselemente 1513, 1516 weisen Längsschlitz 1513b, 1516b auf, die von Hauptbetätigungsselementen 1511 radial durchgriffen werden. Die Hauptbetätigungsselemente 1511 sind an der zentralen Schaltwelle 1512 über den Umfang versetzt angebracht und treten bei einer Axialverlagerung der zentralen Schaltwelle 1512 mit den Endausgangsmechanismen des Getriebes in der Weise in Wechselwirkung, dass ein eingelegter Gang ausgelegt und ein neu einzulegender Gang eingelegt werden kann, das heißt, die Hauptbetätigungsselemente 1511 können im Gegensatz zu den Nebenbetätigungsselementen 1513, 1516 in beide Richtungen während einer Axialverlagerung der Schaltwelle 1512 mit jeweils einer Eingriffsfläche eines Schaltmauls in Verbindung treten.

20

Die axiale Verlagerung der beiden Nebenbetätigungsselemente 1513, 1516 gegenüber der Schaltwelle 1512 erfolgt mittels einer an einem Ende axial fest gelagerten, beispielsweise fest mit einem Getriebe- oder Getriebeaktorgehäuse verbundenen Schubstange 1517, die im Innern der Schaltwelle 1512 geführt ist und an ihrem anderen Ende einen Längsschlitz 1518 aufweist, in dem ein Steuerteil 1519 entlang des Längsschlitzes 1518 verdrehbar aufgenommen ist. Das Steuerteil 1519 verfügt über zwei radial erweiterte Nocken 1520, 1521, die vorzugsweise um 180° versetzt durch jeweils einen Längsschlitz 1522 in der Schaltwelle 1512 in jeweils einen Führungsschlitz 1523 in den Nebenbetätigungsselementen 1513, 1516 ragen. Zumindest ein Nocken 1520, 1521 weist eine dem Längsschlitz 1522 zugewandte Steuerkante 1524 auf, die mit einer entsprechend angepassten Kante 1522a bei einer Axialverlagerung der Schaltwelle 1512 in Wechselwirkung tritt und damit das Steuerteil 1519 verdreht, wodurch die beiden Nebenbetätigungsselemente 1513, 1516

- 39 -

axial gegeneinander verlagert werden. Es versteht sich, dass zur Optimierung der Kinetik die Nocken 1520, 1521 und die Slitze 1523 aufeinander abgestimmt sind.

Die Verlagerung der Schiebehülse 1512 kann entgegen die Wirkung eines axial wirksamen Energiespeichers erfolgen, so dass diese nur in eine Richtung von einem Aktor betätigt werden muß, wobei sie durch Entspannen des Energiespeichers wieder zurückgestellt wird. Die ist beispielsweise in dem in Figur 21a gezeigten Ausführungsbeispiel in der Weise ausgeführt, dass das Nebenbetätigungsselement 1513 mittels einer Schraubenfeder 1525, die sich an einem axialen Ende an einem Gehäuseteil und am anderen Ende am

- 5 Nebenbetätigungsselement 1513 abstützt, vorgespannt ist und die Schraubenfeder 1525 bei einer Axialverlagerung der Schaltwelle 1512 entlang der Wirkungskette über den Nocken 1521, das Steuerteil 1519 und die gehäusefest angebrachte Schubstange 1517 ver-
spannt wird.

- 10 15 Die Schaltwelle 1512 ist zur Ausführung des Wählvorgangs verdrehbar. Bei einem Ver-
drehen der Schaltwelle 1512 werden die Hauptbetätigungsselemente 1511 in die entspre-
chenden Schaltgassen des Getriebes verdreht, wobei die Schaltgassen um die Schalt-
welle angeordnet sind. Die Verdrehung erfolgt selbstverständlich so, dass sich nie
zwei Hauptbetätigungsselemente 1511 gleichzeitig in jeweils einer Schaltgasse befinden.

- 20 25 30 In der Figur 21b zeigt den Endbetätigungsmechanismus 1500 mit gegeneinander verla-
gerten Nebenbetätigungsselementen 1513, 1516 infolge einer Verlagerung der Schaltwelle 1512 entgegen der Schiebestange 1517. Die Verlagerung der beiden Nebenbetätigungs-
elemente 1513, 1516 erfolgt dabei gerade so weit, bis der Wirkunggriff der radialen Erwei-
terungen 1513a, 1516a in die Schaltmäuler den eingelegten Gang ausgelegt hat. In dieser
Stellung sichern die Nebenbetätigungsselemente 1513, 1516 das unbeabsichtigte Einlegen
eines nicht gewünschten Ganges, indem sie entsprechenden Endausgangsselemente an
einer Verschiebung hindern. Die Hauptbetätigungsselemente 1511 sind in dieser Phase auf
gleicher axialer Höhe wie die Nebenbetätigungsselemente 1513, 1516. Die Steuerkante
1524 bestimmt das Maß der radialen Auslenkung der Nebenbetätigungsselemente 1513,
1516 und verliert in dieser Phase den Wirkkontakt zur Schaltwelle 1512, so dass bei einer
weiteren Verlagerung dieser die Nebenbetätigungsselemente nicht mehr weiter axial ge-
geneinander verschoben werden und eine axiale Verlagerung der Hauptbetätigungssele-

- 40 -

mente 1511 gegenüber den Nebenbetätigungsselementen 1513, 1516 tritt ein. Dies geht aus der Figur 21c hervor, die den Endzustand eines Schaltungsvorgangs der Endbetätigungsseinrichtung 1500 zeigt. Hier ist durch die weitere axiale Verlagerung der Hauptbetätigungsselemente 1511 über die Nebenbetätigungsselemente 1513, 1516 hinaus der entsprechende Gang durch ein Hauptbetätigungsselement 1511 eingelegt worden. Das zweite Hauptbetätigungsselement läuft dabei – abhängig von der Auswahlfunktion, also der Drehstellung der Schaltwelle 1512 – ins Leere oder kann eine zusätzlich gewünschte Funktion ausführen, beispielsweise bei einem Stillstand des Fahrzeugs eine Parksperre betätigen. Alternativ hierzu können als Parksperre gleichzeitig zwei Gänge eingelegt werden, wodurch das Getriebe verblockt wird.

Die Figur 22 zeigt einen Endbetätigungsmechanismus 1600 zur Drehschalt- und Schiebewählbetätigung, der insbesondere zur Verwendung für Kraftfahrzeuge vorteilhaft, die eine quer zur Fahrtrichtung eingebautes Getriebe aufweisen. Die Schaltwelle 1612 kann je nachdem, ob es sich um ein automatisiertes oder manuell betätigtes Schaltgetriebe handelt, von jeweils von den entsprechenden – nicht dargestellten Betätigungsseinrichtungen verdreht und axial verlagert werden, um die Schaltvorgänge im Getriebe auszuführen. Im Falle einer manuellen Schaltbetätigung ohne Automatisierung des Getriebes ist es weiterhin vorteilhaft, die Hauptbetätigungsselemente 1611a, 1611b so auszugestalten, dass sie ohne Spiel mit den Schaltgabeln 1610a, 1610b einen Evolventeneingriff bilden. Es versteht sich, dass in anderen, ähnlichen Ausführungsbeispielen die Anordnung und Anzahl der Schaltgabeln 1610a, 1610b so erfolgen kann, dass ein einziges Hauptbetätigungs-element 1611a alle Schaltgabeln beaufschlagen kann. Beim automatisierten Schaltgetriebe können die Mittel zum Betätigen der Gänge Schalt- und Wählaktoren, beispielsweise Elektromotoren, oder bei einem manuell betätigten Getriebe Anlenkhebel für Bowdenzüge oder Schaltgestänge sein. Vorteilhaft ist die Verwendung einer einzigen Getriebeverision für ein manuell und automatisiertes Schaltgetriebe, bei dem lediglich die Schaltwelle 1612 beziehungsweise nach einem weiteren erfinderischen Gedanken ein mit der Schaltwelle 1612 beispielsweise mittels der Verzahnung 1612a formschlüssig verbundener Ansatz, an den die Getriebeaktorik oder manuelle Betätigungs vorrichtung angreift.

Auf der Schaltwelle 1612 sind die Hauptbetätigungsselemente 1611a, 1611b und Nebenbetätigungsselemente 1613a, 1613b aufgenommen. Besonders vorteilhaft ist die einstücki-

- 41 -

ge Ausbildung von Neben- und Hauptbetätigungsselementen, beispielsweise aus einem nachbearbeiteten Guß- oder Schmiedeteil, als ein einziges Bauteil 1616a, 1616b. Weiterhin können in gleicher Weise die Schaltwelle 1612 und die Bauteile 1616a, 1616b einstufig ausgeführt sein. Die Haupt- und Nebenbetätigungsselemente 1611a, 1613a betätigen
5 die Endausgangsselemente wie Schaltgabeln 1610a und die Haupt- und Nebenbetätigungsselemente 1611b, 1613b betätigen die Endausgangsselemente wie Schaltgabeln 1610b mittels eines Eingriffs in das Schaltmaul 1620 der Endausgangsselemente. Zwischen den beiden Schaltgabegruppen 1610a, 1610b verläuft im wesentlichen senkrecht zur Schaltwelle 1612 die nicht dargestellte Getrieberringangswelle mit den Losräder für
10 die entsprechenden Gänge, die mittels von den Schaltgabeln 1610a, 1610b axial verlagerten Schiebemuffen bei einer Gangschaltung mit der Getrieberringangswelle formschlüssig verbunden werden. Hierzu greifen die Hauptbetätigungsselemente 1611a, 1611b in die Schaltmäuler 1614 formschlüssig ein und verlagern die Schaltgabeln 1610a, 1610b bei einer Verdrehung der Schaltwelle 1612 senkrecht zur Schaltwelle, sofern die entsprechende Schaltgabel zuvor angewählt wurde, das heißt, das entsprechende Hauptbetätigungsselement 1611a, 1611b zuvor durch eine Axialverlagerung der Schaltwelle 1612 auf
15 axial gleiche Höhe wie die entsprechende Schaltgabel 1610a, 1610b gebracht wurde. Die Profilierung 1614a der Schaltmäuler 1614 und die Profilierung 1615 der Hauptbetätigungsselemente 1611a, 1611b, die als Nocken ausgebildet sein können, ist so aufeinander abgestimmt, dass einen Evolventenabwälzung der Profile 1614a, 1615 aufeinander resultiert. Der Hub der Schaltgabeln 1610a, 1610b reicht dabei aus um die zwei mittels der Schiebehülse einlegbaren Gänge komplett einzulegen, wobei ein eingelegter Gang in der gleichen Schaltgasse, als im Wirkungsbereich derselben Schaltgabel 1610a, 1610b infolge der Verlagerung der Schaltgabel 1610a, 1610b zum Einlegen des neuen Gangs von
20 dem Hauptbetätigungsselement 1611a, 1611b ausgelegt wird. Das Profil 1614a zur Abwälzung mit den Hauptbetätigungsselementen 1611a, 1611b geht in Richtung der Gabelenden der Schaltgabeln 1610a, 1610b in ein Evolventenprofil 1616 über, das mit dem Evolventenprofil 1617 der Nebenbetätigungsselemente 1613a, 1613b in Wirkungseintritt treten kann. Die axiale Erstreckung der Nebenbetätigungsselemente 1613a, 1613b ist so ausgelegt,
25 dass zumindest zwei Schaltgabeln 1610a, 1610b jeweils mit einem Nebenbetätigungsselement in Wirkungseintritt treten können, wobei die Hauptbetätigungsselemente 1611a, 1611b jeweils von einem Nebenbetätigungsselement 1613a, 1613b axial umgeben sind, so dass bei einem Einlegen eines Gangs mittels des Hauptbetätigungsselements 1611a, 1611b alle

- 42 -

Gänge – im Normalfall der aktuell eingelegte Gang – zuvor ausgelegt werden. Die Hauptbetätigungsselemente 1611a, 1611b sind axial in der Weise beabstandet, dass stets nur ein Hauptbetätigungsselement 1611a, 1611b einen Gang einlegen kann. Vorteilhafterweise stehen hierzu die Schaltgabeln 1610a beziehungsweise 1611b auf Lücke, so dass bei
5 einem Schaltvorgang durch das Hauptbetätigungsselement 1611a; 1611b einer Gruppe das Hauptbetätigungsselement 1611b: 1611a der anderen Schaltgabelgruppe zwischen die Schaltgabeln verdreht wird.

Die Figuren 23a und 23b zeigen ein Ausführungsbeispiel einer Getriebeaktoreinheit 1750
10 in unterschiedlichen, geschnittenen 3D-Ansichten. Die Getriebeaktoreinheit 1750 ist für jede Art Endbetätigungsmechanismen einsetzbar, insbesondere mit der Endbetätigungsmechanismus 1700 nach dem erfinderischen Gedanken. Die Komponenten der Getriebeaktoreinheit 1750 sind in einem 1730 untergebracht, das direkt mit dem Getriebegehäuse als sogenannte „add-on“-Komponente verbindbar, beispielsweise mittels Schrauben,
15 Verriegelungseinrichtungen oder dergleichen. An dem Gehäuse 1730 sind die Getriebeaktoren 1780, 1790 vorzugsweise senkrecht zueinander bezüglich ihrer Wirkachse angeordnet, wobei Aktorgehäuse und Gehäuse 1730 fest miteinander verbunden sind. Die Getriebeaktoren 1780, 1790 können aus Drehantrieben jeglicher Art gebildet sein, vorteilhafterweise werden Elektromotoren verwendet, die vorzugsweise klein und kompakt ausgebildet werden, indem zur Erhöhung der magnetischen Feldstärke im zur Verfügung stehenden Bauraum die Permanentmagnete aus Seltenerdmetallen gebildet sein. Vorteilhafterweise können die Elektromotoren bürstenlose ausgeführt sein, wobei eine Erregung des elektromagnetischen Felds zu deren Betrieb kommutativ erfolgen kann. Dabei kann der Rotor die Permanentmagnete tragen und die Erregerwicklung im Stator vorgesehen
20 sein. Die Verwendung derartiger kommutativ betriebener Elektromotoren erlaubt eine Beschränkung des Bauraums der Getriebeaktoren in der Weise, dass gegenüber den Betätigungsmittern zur manuellen Betätigung des Getriebes durch Bowdenzüge oder Schaltgestänge kein wesentlich erhöhter Bauraumbedarf besteht, so dass in der Auslegung des Motorraums eines Kraftfahrzeugs Ausführungen als automatisiertes und als manuell betätigtes Schaltgetriebe im wesentlichen keine Unterscheidung getroffen werden muß. Insbesondere für das Ausrücken von Kupplungen, beispielsweise als Kupplungsaktor, beispielsweise dem Aktor 46 in Figur 1a können derartige Elektromotoren zusätzlich oder alternativ im Antriebsstrang eines Kraftfahrzeugs vorteilhaft sein. Hierbei kann der Elekt-

- 43 -

romotor als ein einen hydraulischen Geberzylinder betreibender, einen Nehmerzylinder zur Betätigung der Kupplung beaufschlagender, oder direkt als bezüglich seiner Wirkachse parallel zur Getriebeeingangswelle angeordneter, einen Hebelmechanismus betätigender oder konzentrisch um die Getriebeeingangswelle angeordneter Aktor vorgesehen sein. Es versteht sich, dass derartige Elektromotoren neben dem Endbetätigungsmechanismus gemäß des erfinderischen Gedankens dieser Anmeldung für alle Getriebeaktoren und Kupplungsaktoren vorteilhaft sein können.

Zur weiteren Verringerung des Bauraums ist das Gehäuse 1730 eingeformt, um den Getriebeaktor 1790 ohne wesentliche Zunahme der räumlichen Ausdehnung aufzunehmen. Der Getriebeaktor 1780 steht vorzugsweise im wesentlichen senkrecht vom Gehäuse 1730 ab, in dessen Richtung gewöhnlicherweise Bowdenzüge oder Schaltgestänge herangeführt werden.

Zur Ausführung der Dreh- und Verlagerungsbewegungen des Endbetätigungsmechanismus zum Wählen und Schalten des Getriebes ist in diesem Ausführungsbeispiel je ein Getriebeaktor als Schaltaktor 1790 und Wählaktor 1780 vorgesehen. Der Schaltaktor 1790 bewirkt die Drehbewegung des Endbetätigungsmechanismus 1700 dabei, dass er mittels eines Rads 1791 mit Außenprofil, beispielsweise eines Zahnrads, in ein Antriebs-
element 1792 mit zu diesem komplementäres Außenprofil, beispielsweise einem Zahndaußschnitt, einen Formschluss bildet. Das Antriebselement 1792 ist vorzugsweise einteilig mit einer axial fixierten Stange 1793 verbunden, die mittels zweier mit dem Gehäuse 1730 verbundener oder aus diesem gebildeter Lagerböcke 1730a verdrehbar und axial fest gelagert ist. Die Haupt- und Nebenbetätigungsselemente 1711, 1713 sind auf der Stange 1793 axial verlagerbar und drehfest aufgenommen und sind in einer diese beidseitig axial umfassenden Muffe 1794 umgeben, die diese axial zur Verlagerung dieser beaufschlägt. Die Muffe 1794 ist mittels eines Ansatzes 1795 axial fest mit einer Hülse 1797 verbunden, die gegenüber dem Gehäuse 1730 beispielsweise auf einer im Gehäuse vorgesehenen Stange 1798 axial verlagerbar angeordnet ist und von dem Wählaktor 1780 mittels eines Formschlusses angetrieben wird. Hierzu greift der Getriebeaktor mittels eines entsprechend profilierten Antriebsrads 1796, beispielsweise eines Zahnrads in eine – nicht gezeigte - Linearprofilierung, beispielsweise in Form einer Verzahnung, der Hülse 1797 ein.

- 44 -

Durch den Aufbau der Getriebeaktoreinheit 1750 ist eine entkoppelte Bewegung der Schalt- und Wählfunktion möglich. Die Ausführung maßgeblicher Bauteile, beispielsweise die Stange 1793 mit Zahnsegment 1792, Muffe 1794, Gehäuse 1730 usw., als Blechteile,

- 5 die entsprechend gestanzt und geformt sind, kann das Ausführungsbeispiel entsprechend kostengünstig gefertigt werden. Es versteht sich, dass in die Getriebeaktoren 1780, 1790 beziehungsweise deren kinematische Wirkungskette sich bekannte Schaltelastizitäten und/oder Wegsensoren wie beispielsweise Inkrementalwegsensoren integriert sein können.

10

Die Figuren 24a und 24b zeigen beispielhaft übereinander angeordnete Schalschiene 1810, 1811, die bei einer Verlagerung in Pfeilrichtung 1810a jeweils eine Schiebehülse zum Einlegen von den beiden ihr zugeordneten Gängen beaufschlagen. Um im Falle einer Auswahl durch den Wählaktor Ein- und Auslegevorgänge zu bewirken greifen – nicht ge-

- 15 zeigte – Haupt- und Nebenbetätigungsmittel jeweils in ein Schaltmaul 1814, 1814a ein. Das Ausführungsbeispiel in Figur 24a zeigt der Übersicht halber eine, das in Figur 24b zwei Schalschienen 1810, 1811. Es versteht sich, dass mehrere derartige Schalschienen 1810 übereinander zur Bildung eines Endbetätigungsmechanismus angeordnet sein können. Da dieser in einem Doppelkupplungsgetriebe, wie beispielsweise in Figur 2 gezeigt –

- 20 in einer Ganggruppe – repräsentiert durch die Schalschiene 1810 wirksam sein kann und einen Gang ein- beziehungsweise auslegen kann, erfolgt eine Sicherung gegen Bewegungen der die Gänge der anderen Ganggruppe schaltenden Schalschienen 1811 nur mittels hierfür vorgesehener Hinterschnitte und Rastierungen. Um eine diesbezüglich verbesserte Sicherung der Schalschienen 1810, 1811 jeweils einer Ganggruppe zu bewirken
- 25 und damit ein unbeabsichtigtes Ein- beziehungsweise Auslegen eines Gangs einer anderen Ganggruppe zu verhindern, kann eine Sperre vorgesehen werden, die die Schalschienen 1810, 1811 jeweils einer Ganggruppe sperrt. Diese Sperre besteht aus einer kinematisch mit der Wählbewegung entlang der Pfeilrichtung 1885 gekoppelten Schiene

- 1886, die bei einer Verlagerung der Schiene entlang der Wählrichtung 1885 in Ausnehmungen 1888a, 1888b, 1888c, 1888c' der Schalschienen 1810, 1811 geführt wird. In der Schiene 1886 sind Ausnehmungen 1887a, 1887b, 1887c in der Weise vorgesehen, dass bei einer Einstellung einer Nut 1887a, 1887b, 1887c auf die Höhe einer der Schalschienen 1810, 1811 - beispielsweise im Ausführungsbeispiel der Figur 24b die Schalschiene

- 45 -

1810 - diese für die Schaltbewegung in Richtung 1810a freigegeben wird. Die übrigen Schaltschienen werden mittels der Schiene 1886 blockiert. Dabei erfolgt die Blockade der Schaltschienen 1810, 1811 in dem Schaltzustand, in dem sich die Schaltschienen 1810, 1811 gerade befinden, beispielsweise im gezeigten Zustand in den mittleren Ausnehmungen 1887b der Neutralstellung. Die diese umgebenden Ausnehmungen 1887a, 1887c, 1887c' sind für die Schaltzustände bei einem der beiden durch die Schaltschienen 1810, 1811 schaltbaren Gänge vorgesehen.

Das Ausführungsbeispiel zeigt eine Anordnung von benachbarten Schaltschienen 1810, 10 1811, die unterschiedlichen Ganggruppen zugeordnet sind. Die Anordnung der den unterschiedlichen Ganggruppen zugeordneten Schaltschienen 1810, 1811 kann benachbart abwechselnd sein oder ganggruppenweise geordnet sein, wobei in diesem Fall die Lage der Ausnehmungen 1887a, 1887b, 1887c entsprechend gegenüber dem gezeigten Ausführungsbeispiel zu ändern wäre.

15 Die Figuren 25a und 25b zeigen schematisch und am Beispiel für die Gänge 1, 2, 3, 4 den Endbetätigungsmechanismus 1900 mit der Schaltwelle 1912, den Hauptbetätigungslementen 1911 und den Nebenbetätigungslementen 1913 sowie den Schaltgabel 1910 für die Gänge 1 und 2 und die Schaltgabel 1910a für die Gänge 3 und 4. Die Haupt- und Nebenbetätigungslemente sindnockenförmig ausgebildet, die Figur 25b stellt diese den Positionen 1911a, 1913a dar, in denen kein Eingriff in die Schaltgabeln stattfindet. Die Schaltgabeln 1910, 1910a sind an ihren Eingriffsflächen 1920a, 1920b, 1921a, 1921b zu den Haupt- und Nebenbetätigungslementen 1911, 1913 abgeschrägt, so dass bei einem 20 Wirkeingriff dieser während einer Axialverlagerung der Schaltwelle 1912 ebenfalls teilweise verlagert werden können. Auf diese Weise kann bereits während des Wählvorgangs eine Schiebehülse durch Verlagern der Schaltgabeln 1910, 1910a bewegt werden, wodurch ein eingelegter Gang bereits in der Wählphase beispielsweise mittels eines Nebenbetätigungslements 1913 zumindest teilweiseausgelegt und/oder ein einzulegender Gang bis zur Synchronposition mittels des Hauptbetätigungslementes 1911 vorgespannt 25 werden kann. Die verschiedenen Stellungen a, b, c der Schaltgabeln 1910, 1910a repräsentieren werden in den Figuren 25a, 25b die Schaltpositionen der Gänge 1-4 neutral (a), Gang ausgelegt (b) und Gang eingelegt (c).

- 46 -

Der Endbetätigungsmechanismus 1900 kann in der skizzierten Ausgestaltung in vorteilhafter Weise nicht abschließend mit folgenden Schaltstrategien betrieben werden:

Ein Anfahren der Schiebhülse 1910 in Position a während der Wählbewegung an der radial äußereren Kante 1910' bei ausgelegtem Gang 2 und eingelegtem Gang 1 – also eine

- 5 Schaltung von Gang 1 nach Gang 2 – an der radial äußereren Kante 1910' der Schiebehülse 1910 bewirkt ein Ansynchronisieren des Gangs 1, bevor Gang 1 vom Nebenbetätigungs element 1913 ausgelegt wird. Wird unter gleichen Verhältnissen die radial innere Kante 1910" angefahren, wird zuerst der Gang 1 mittels des Nebenbetätigungs elements 1913 ausgelegt und erst durch die Schaltbewegung der Schaltwelle 1912 der Gang 2 eingelegt. Sind die Übergänge zwischen den Haupt- und Nebenelementen 1911, 1913 bezüglich ihrer radialen Erstreckung gleitend ausgelegt, kann das Koppelverhalten zwischen dem neu einzulegenden und dem auszulegenden Gang noch weiter gesteuert werden.
- 10

Figur 26 zeigt einen Flussdiagramm während einer typischen Schaltung mittels eines

- 15 Endbetätigungsmechanismus wie er beispielsweise in den vorhergehenden Figuren beschrieben wurde. Wird in Feld 2000 ein neu einzulegender Gang angefordert, wird in Feld 2001 abgefragt, ob die für die Schaltung zuständige Schaltgasse bereits angewählt ist, wenn dies bereits der Fall ist, wird mit Abbau des Moments

- 20 Die mit der Anmeldung eingereichten Patentansprüche sind Formulierungsvorschläge ohne Präjudiz für die Erzielung weitergehenden Patentschutzes. Die Anmelderin behält sich vor, noch weitere, bisher nur in der Beschreibung und/oder Zeichnungen offenbare Merkmalskombination zu beanspruchen.

- 25 In Unteransprüchen verwendete Rückbeziehungen weisen auf die weitere Ausbildung des Gegenstandes des Hauptanspruches durch die Merkmale des jeweiligen Unteranspruches hin; sie sind nicht als ein Verzicht auf die Erzielung eines selbständigen, gegenständlichen Schutzes für die Merkmalskombinationen der rückbezogenen Unteransprüche zu verstehen.

- 30 Da die Gegenstände der Unteransprüche im Hinblick auf den Stand der Technik am Prioritätstag eigene und unabhängige Erfindungen bilden können, behält die Anmelderin sich vor, sie zum Gegenstand unabhängiger Ansprüche oder Teilungserklärungen zu machen.

- 47 -

Sie können weiterhin auch selbständige Erfindungen enthalten, die eine von den Gegenständen der vorhergehenden Unteransprüche unabhängige Gestaltung aufweisen.

Die Ausführungsbeispiele sind nicht als Einschränkung der Erfindung zu verstehen. Vielmehr sind im Rahmen der vorliegenden Offenbarung zahlreiche Abänderungen und Modifikationen möglich, insbesondere solche Varianten, Elemente und Kombinationen und/oder Materialien, die zum Beispiel durch Kombination oder Abwandlung von einzelnen in Verbindung mit den in der allgemeinen Beschreibung und Ausführungsformen sowie den Ansprüchen beschriebenen und in den Zeichnungen enthaltenen Merkmalen bzw. Elementen oder Verfahrensschritten für den Fachmann im Hinblick auf die Lösung der Aufgabe entnehmbar sind und durch kombinierbare Merkmale zu einem neuen Gegenstand oder zu neuen Verfahrensschritten bzw. Verfahrensschrittfolgen führen, auch soweit sie Herstell-, Prüf- und Arbeitsverfahren betreffen.

Patentansprüche

1. Getriebe insbesondere für ein Kraftfahrzeug, welches eine Mehrzahl Übersetzungsstufen bildende Radsätze aufweist, die jeweils durch ein mit einer Welle fest verbundenes Gangrad und ein mit einer Welle verbindbares Losrad gebildet sind, wobei Übersetzungsstufen eingelegt werden, indem ein Losrad mittels eines Endausgangselementes, das Teil eines Endausgangsmechanismus ist, welcher vom Endbetätigungsmechanismus betätigt wird, mit der es tragenden Welle verbunden wird und wobei die Schaltabfolge der Übersetzungsstufen nicht im Endbetätigungsmechanismus festgelegt ist.
2. Getriebe insbesondere nach Anspruch 1, bei dem der Endbetätigungsmechanismus zumindest ein Hauptbetätigungsselement wie Schaltfinger umfaßt, das mit den Endausgangsmechanismen derart in Wirkverbindung tritt, daß eine Übersetzungsstufe mittels eines ersten Endausgangsmechanismus einlegbar ist und das zumindest eine Hauptbetätigungsselement dann mit einem anderen Endausgangsmechanismus in Wirkverbindung treten kann, ohne die zuvor eingelegte Übersetzungsstufe auslegen zu müssen, dadurch gekennzeichnet, daß der Endbetätigungsmechanismus wenigstens ein Nebenbetätigungsselement umfaßt.
3. Getriebe insbesondere nach Anspruch 2, dadurch gekennzeichnet, daß, sobald das zumindest eine Hauptbetätigungsselement mit einem Endausgangsmechanismus in Wirkverbindung tritt, das wenigstens eine Nebenbetätigungsselement mit wenigstens einem weiteren Endausgangsmechanismus in Wirkverbindung treten kann.
4. Getriebe insbesondere nach Anspruch 3, dadurch gekennzeichnet, dass der wenigstens eine weitere Endausgangsmechanismus einer noch eingelegten Übersetzungsstufe zugeordnet ist.
5. Getriebe insbesondere nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß bei einer Betätigung eines Endausgangsmechanismus zum Einlegen einer Übersetzungsstufe mittels des zumindest einen Hauptbetätigungsselementes zugleich we-

- 49 -

nigstens ein weiterer Endausgangsmechanismus mittels des wenigstens einen Nebenbetätigungslementes zum Auslegen der dazugehörigen Übersetzungsstufen betätigt wird.

5 6. Getriebe insbesondere nach Anspruch 3 bis 5, dadurch gekennzeichnet, dass bei einem eingelegtem Gang zumindest ein nicht eingelegter Gang am unbeabsichtigten Einlegen mittels des zumindest einen Nebenbetätigungslements gehindert wird, wenn das Hauptbetätigungslement des eingelegten Gangs im Bereich einer Endstellung, die das Einlegen des Gangs festlegt, verharrt.

10

7. Getriebe insbesondere nach wenigstens einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, daß durch das zumindest eine Hauptbetätigungslement nur eine Übersetzungsstufe gleichzeitig einlegbar ist.

8. Getriebe insbesondere nach Anspruch 2, bei dem die Übersetzungsstufen Gruppen bilden, zwischen denen ein zugkraftunterbrechungsfreier Wechsel erfolgen kann, dadurch gekennzeichnet, daß, sobald das zumindest eine Hauptbetätigungslement mit einem Endausgangsmechanismus einer Gruppe in Wirkverbindung tritt, das wenigstens eine Nebenbetätigungslement mit wenigstens einem weiteren Endausgangsmechanismus derselben Gruppe in Wirkverbindung treten kann.

15

9. Getriebe insbesondere nach Anspruch 8, dadurch gekennzeichnet, dass der wenigstens eine weitere Endausgangsmechanismus derselben Gruppe einer noch eingelegten Übersetzungsstufe zugeordnet ist.

10. Getriebe insbesondere nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß bei einer Betätigung eines Endausgangsmechanismusses einer Gruppe zum Einlegen einer Übersetzungsstufe mittels des zumindest einen Hauptbetätigungslementes zugleich wenigstens eine weiterer Endausgangsmechanismus derselben Gruppe mittels des wenigstens einen Nebenbetätigungslementes zum Auslegen der dazugehörigen Übersetzungsstufen betätigt wird.

20

11. Getriebe insbesondere nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß, sobald das zumindest eine Hauptbetätigungslement mit einem Endausgangsmechanismus einer Gruppe in Wirkverbindung tritt, das wenigstens eine Nebenbetäti-

- 50 -

gungselement mit keinem Endausgangsmechanismus der anderen Gruppe in Wirkverbindung tritt.

12. Getriebe insbesondere nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet,

- 5 dass jeweils bei einem eingelegtem Gang einer Gruppe zumindest ein nicht eingelegter Gang dieser Gruppe am unbeabsichtigten Einlegen mittels des zumindest einen Nebenbetätigungselements gehindert wird, wenn das Hauptbetätigungs element des eingelegten Gangs dieser Gruppe im Bereich einer Endstellung, die das Einlegen dieses Gangs festlegt, verharrt.

10

13. Getriebe insbesondere nach wenigstens einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, daß in jeder Gruppe nur jeweils eine Übersetzungsstufe gleichzeitig einlegbar ist.

15

14. Getriebe insbesondere nach Anspruch 2, dadurch gekennzeichnet, dass das zumindest eine Hauptbetätigungs element gegenüber zumindest einem Nebenbetätigungs element entgegen der Wirkung eines Energiespeichers begrenzt verdrehbar ist.

25

15. Getriebe insbesondere nach zumindest einem der Ansprüche 3, 4, 14, dadurch gekennzeichnet, dass bei einer Betätigung eines Endausgangsmechanismusses das Synchronisieren eines Losrades einer neu einzulegenden Übersetzungsstufe mittels des zumindest einen Hauptbetätigungs elementes beginnt, bevor wenigstens ein weiterer Endausgangsmechanismus mittels des wenigstens einen Nebenbetätigungs elementes zum Auslegen der dazugehörigen Übersetzungsstufen betätigt wird.

30

16. Getriebe insbesondere nach Anspruch 15, dadurch gekennzeichnet, dass mittels des zumindest einen Nebenbetätigungs elementes das Auslegen der dazugehörigen Übersetzungsstufe erfolgt, bevor das Synchronisieren des einen Losrades beendet ist und das Einlegen der neu einzulegenden Übersetzungsstufe mittels des Hauptbetätigungs elementes erfolgt.

17. Getriebe insbesondere nach Anspruch 16, dadurch gekennzeichnet, dass bei einem eingelegtem Gang zumindest ein nicht eingelegter Gang am unbeabsichtigten Einle-

- 51 -

gen mittels des zumindest einen Nebenbetätigungselements gehindert wird, wenn das Hauptbetätigungs element des eingelegten Gangs im Bereich einer Endstellung, die das Einlegen des Gangs festlegt, verharrt.

- 5 18. Getriebe insbesondere nach einem der Ansprüche 16, dadurch gekennzeichnet, dass die Bewegung des Hauptbetätigungs elements zum Einlegen der neu einzulegenden Übersetzungsstufe durch eine vom Nebenbetätigungs element angesteuerte Sperrvorrichtung verhindert wird, wobei das Nebenbetätigungs element solange die Sperrvorrichtung sperrt, bis die eingelegte Übersetzungsstufe ausgelegt ist.
- 10 19. Getriebe insbesondere nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Endausgangsmechanismen Verbindungselemente, wie Schaltgabeln oder Schaltschienen umfassen, die einen ersten Funktionsbereich für den Eingriff eines Hauptbetätigungs elements und einen zweiten Funktionsbereich für den Eingriff eines Nebenbetätigungs elements aufweisen.
- 15 20. Getriebe insbesondere nach Anspruch 19, bei dem das zumindest eine Nebenbetätigungs element auf einer bei Betätigung um ihre Längsachse verdrehbaren Schaltwelle angeordnet ist, und bei dem der zweite Funktionsbereich so ausgebildet ist, daß bei einer Drehung der Schaltwelle eine Kraft von einem Nebenbetätigungs element auf den zweiten Funktionsbereich in Ausrückrichtung der zugehörigen Übersetzungsstufe übertragbar ist, die gleich oder größer der zum Ausrücken erforderlichen Kraft ist.
- 20 21. Getriebe insbesondere nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß wenigstens ein Nebenbetätigungs element mit einem oder mehreren Endausgangsmechanismen gleichzeitig wirkverbindbar ist.
- 25 22. Getriebe insbesondere nach Anspruch 21, dadurch gekennzeichnet, daß das wenigstens eine Nebenbetätigungs element in Schaltwellenachsrichtung eine Breite aufweist, damit zumindest zwei Endausgangsmechanismen gleichzeitig beaufschlagbar sind. .
- 30 23. Getriebe insbesondere nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das wenigstens eine Nebenbetätigungs element und die

- 52 -

zweiten Funktionsbereiche derart zusammenwirken, daß ein Auslegen einer Übersetzungsstufe bei einer Drehung der Schaltwelle unabhängig von der Drehrichtung dieser erfolgt.

- 5 24. Getriebe insbesondere nach Anspruch 23, dadurch gekennzeichnet, daß das wenigstens eine Nebenbetätigungsselement und die zweiten Funktionsbereiche bezüglich einer auf der Schaltwelle errichteten Ebene symmetrisch ausgebildet sind.
- 10 25. Getriebe insbesondere nach Anspruch 23, dadurch gekennzeichnet, daß das wenigstens eine Nebenbetätigungsselement zwei nockenartige Endbereiche und die zweiten Funktionsbereiche damit korrespondierende Ausnehmungen aufweist.
- 15 26. Getriebe insbesondere nach Anspruch 23, dadurch gekennzeichnet, daß die zweiten Funktionsbereiche zwei nockenartige Endbereiche und das wenigstens eine Nebenbetätigungsselement damit korrespondierende Ausnehmungen aufweist.
- 20 27. Getriebe insbesondere nach wenigsten einem der Ansprüche 23 bis 26, dadurch gekennzeichnet, daß die Kraftübertragung zwischen Nebenbetätigungsselement und zweitem Funktionsbereich über die Spitze der nockenartigen Endbereiche erfolgt.
- 25 28. Getriebe insbesondere nach wenigsten einem der Ansprüche 23 bis 26, dadurch gekennzeichnet, daß die Kraftübertragung zwischen Nebenbetätigungsselement und zweitem Funktionsbereich über die Seitenflächen der nockenartigen Endbereiche erfolgt.
- 30 29. Getriebe insbesondere nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass eine zumindest aus einem Schaltaktor und einem Wählaktor gebildete Getriebeakteureinheit mit einem Endbetätigungsmechanismus als separate Baugruppe auf ein vormontiertes Getriebe mit einer Öffnung für einen Zugriff des Endbetätigungsmechanismus auf zumindest einen Endausgangsmechanismus montierbar ist.
30. Getriebe insbesondere nach Anspruch 1, dadurch gekennzeichnet, dass eine zumindest aus einem manuell zu betätigenden Wahlselement und einem manuell zu betätig-

- 53 -

genden Schaltelement gebildete Getriebebetätigungsseinheit mit einem Endbetätigungsmechanismus als separate Baugruppe auf ein vormontiertes Getriebe mit einer Öffnung für einen Zugriff des Endbetätigungsmechanismus auf zumindest einen Endausgangsmechanismus montierbar ist.

5

31. Getriebe insbesondere nach Anspruch 29 und 30, dadurch gekennzeichnet, dass das für die Getriebeaktoreinheit und für die Getriebebetätigungsseinheit dieselbe Öffnung benutzt wird.

10 32. Getriebe insbesondere nach Anspruch 29 und 30, dadurch gekennzeichnet, dass für die Getriebeaktoreinheit und die Getriebebetätigungsseinheit dieselben Endausgangsmechanismen zum Ein- und Auslegen der Übersetzungsstufen benutzen.

15 33. Getriebe insbesondere nach Anspruch 23, dadurch gekennzeichnet, dass der Endbetätigungsmechanismus aus einem Hauptbetätigungsselement gebildet ist, das im wesentlichen spielfrei unter Ausbildung eines Evolventeneingriffs in das zumindest eine Endausgangselement eingreift und dieses betätigt.

20 34. Getriebe insbesondere nach Anspruch 29, dadurch gekennzeichnet, dass der Endbetätigungsmechanismus aus einem Hauptbetätigungsselement gebildet ist, das im wesentlichen spielfrei in das zumindest eine Endausgangselement eingreift und dieses betätigt.

25 35. Getriebe insbesondere nach Anspruch 34, dadurch gekennzeichnet, dass der spiel-
freie Eingriff ein Evolventeneingriff ist.

30 36. Getriebe insbesondere nach einem der vorhergehenden Ansprüche, dadurch gekenn-
zeichnet, dass zumindest ein Haupt- und/oder Nebenbetätigungsselement mit zumin-
dest einem Endausgangsselement unter Ausbildung eines Evolventeneingriffs wech-
selwirkt.

- 54 -

37. Getriebe insbesondere nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Haupt – und ein Nebenbetätigungsselement einstückig sind.
- 5 38. Getriebe insbesondere nach Anspruch 37, dadurch gekennzeichnet, dass zumindest ein Hauptbetätigungsselement entlang seiner Drehachse von zwei Nebenbetätigungs-elementen umgeben ist und dass Haupt- und Nebenbetätigungsselemente einstückig ausgebildet sind.
- 10 39. Getriebe insbesondere nach Anspruch 37 oder 38, dadurch gekennzeichnet, dass zumindest eines der Haupt- oder Nebenbetätigungsselemente mit einer diese aufneh-menden Schaltwelle einstückig ist.
- 15 40. Getriebe insbesondere nach Anspruch 26, dadurch gekennzeichnet, dass das zumindest eine Hauptbetätigungsselement und zumindest eine Nebenbetätigungsselement ei-nen Evolventeneingriff auf ein einziges Schaltmaul ausüben, wobei für das zumindest eine Hauptbetätigungsselement und für das zumindest eine Nebenbetätigungsselement jeweils ein separater Evolventenbereich vorgesehen sind.
- 20 41. Getriebe insbesondere nach einem der Ansprüche 1 bis 40, dadurch gekennzeichnet, dass das Einlegen einer Übersetzungsstufe nach einem linearen Wegverhältnis zwi-schen Endausgangsselement und Hauptbetätigungsselement erfolgt.
- 25 42. Getriebe insbesondere nach einem der Ansprüche 1 bis 40, dadurch gekennzeichnet, dass das Einlegen einer Übersetzungsstufe gemäß eines nicht linearen Wegverhält-nisses zwischen Endausgangsselement und Hauptbetätigungsselement erfolgt.
- 30 43. Getriebe insbesondere nach einem der Ansprüche 1 bis 42, dadurch gekennzeichnet, dass das Auslegen einer Übersetzungsstufe nach einem linearen Wegverhältnis zwi-schen Endausgangsselement und Nebenbetätigungsselement erfolgt.

- 55 -

44. Getriebe insbesondere nach einem der Ansprüche 1 bis 42, dadurch gekennzeichnet, dass das Auslegen einer Übersetzungsstufe gemäß eines nicht linearen Wegverhältnisses zwischen Endausgangselement und Nebenbetätigungs element erfolgt.
- 5 45. Getriebe insbesondere nach einem der Ansprüche 1 bis 44, dadurch gekennzeichnet, dass sich eine Einlegebewegung einer einzulegenden und eine Auslegebewegung einer auszulegenden Übersetzungsstufe überschneiden.
- 10 46. Getriebe insbesondere nach einem der Ansprüche 1 bis 44, dadurch gekennzeichnet, dass sich eine Einlegebewegung einer einzulegenden und eine Auslegebewegung einer auszulegenden Übersetzungsstufe nicht überschneiden.
- 15 47. Getriebe insbesondere nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Wählbewegung zur Positionierung des zumindest einen Hauptbetätigungs elements an einen Endmechanismus eine Verlagerung dessen entlang einer Drehachse ist und eine Schaltbewegung eine Drehbewegung des zumindest einen Hauptbetätigungs elements um diese Drehachse ist.
- 20 48. Getriebe insbesondere nach zumindest einem der Ansprüche 1 bis 46, dadurch gekennzeichnet, dass eine Wählbewegung zur Positionierung des zumindest einen Hauptbetätigungs elements an einen Endausgangsmechanismus mittels einer Drehbewegung um eine Drehachse und eine Schaltbewegung mittels einer Verlagerung entlang dieser Drehachse erfolgt.
- 25 49. Getriebe insbesondere nach Anspruch 48, dadurch gekennzeichnet, dass ein Endbetätigungsmechanismus in der Weise ausgebildet ist, dass eine um eine Drehachse verdrehbare Hohlwelle zumindest ein nach radial außen abstehendes Hauptbetätigungs element aufweist und in der Hohlwelle eine durch Schlitze in der Hohlwelle hindurchgreifende Zwangssteuerung für zwei auf der Hohlwelle angeordnete Nebenbetätigungs elemente mit radial erweiterten Beaufschlagungseinrichtungen für die Endausgangselemente vorgesehen ist, die die Nebenbetätigungs elemente bei einer Verlagerung der Hohlwelle längs der Drehachse über einen begrenzten Abstand gegeneinander beabstandet, wobei die Endausgangsmechanismen über zumindest ein Umfangs-
- 30

- 56 -

segment um die Drehachse der Hohlwelle angeordnet sind und bei einer ersten Verlagerung der Hohlwelle innerhalb des begrenzten Abstands die Nebenbetätigungselen-

mente einen eingelegten Gang auslegen und bei einer weiteren Verlagerung der

Hohlwelle über den begrenzten Abstand hinaus das zumindest eine Hauptbetätig-

5 element einen neu einzulegenden Gang einlegt, nachdem mittels einer Verdrehung der Hohlwelle das zumindest eine Hauptbetätigungselen und der Endausgangsmechanismus für den neu einzulegenden Gang in dieselbe Umfangsposition gebracht wurden.

10 50. Getriebe insbesondere nach Anspruch 49, dadurch gekennzeichnet, dass zwei Hauptbetätigungselen über den Umfang verteilt angeordnet sind und jeweils eine Gruppe von Endausgangsmechanismen betätigen.

15 51. Getriebe insbesondere nach Anspruch 49 oder 50, dadurch gekennzeichnet, dass in den Nebenbetätigungselen Längsschlitz vorgesehen sind, entlang derer die Hauptbetätigungselen bei einer Verlagerung der Hohlwelle geführt werden.

52. Getriebe insbesondere nach Anspruch einem der Ansprüche 48 bis 51, dadurch gekennzeichnet, dass die beiden Nebenbetätigungselen vorgespannt sind.

20 53. Getriebe insbesondere nach Anspruch 2, dadurch gekennzeichnet, dass im Getriebe zumindest eine Getriebebremse zum Abbremsen einer Getriebeingangswelle vorgesehen ist, die mittels eines Haupt- oder Nebenbetätigungselen betätigt wird.

25 54. Getriebe insbesondere nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Endausgangselen zwei Gruppen mit einem Abstand entlang einer Drehachse ihrer Wirkungsrichtung betrachtet bilden.

30 55. Getriebe insbesondere nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Endausgangsel in einem Bereich eines Wirkegriffs mit zumindest einem Haupt- und/oder Nebenbetätigungselen gegenüber der Drehachse des bei einem Schaltvorgang zu verdrehenden zumindest einen Haupt- und/oder Nebenbetätigungselen von radial innen nach radial außen angeschrägt ist.

56. Getriebe insbesondere nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass unabhängig von der Stellung der Endausgangselemente das zumindest eine Hauptbetätigungs element in eine Neutralstellung (N) bringbar ist, in der alle eingelegten Gänge durch das zumindest eine Nebenbetätigungs element ausgelegt werden.
57. Getriebe insbesondere nach Anspruch 56, dadurch gekennzeichnet, dass die Neutralstellung mittels einer Wählbewegung des zumindest einen Hauptbetätigungs elements über die Endausgangselemente hinaus und einer anschließenden Schaltbewegung erreicht wird.
58. Getriebe insbesondere nach Anspruch 56, dadurch gekennzeichnet, dass die Neutralstellung (N) in einem Endausgangsmechanismus, vorgesehen ist der nur einen Gang (R) betätigt und die Schaltbewegung zum Einstellen der Neutralstellung entgegen der Schaltbewegung zur Betätigung des von diesem Endausgangselement geschalteten Gangs erfolgt.
59. Getriebe insbesondere nach Anspruch 56, dadurch gekennzeichnet, dass die Neutralstellung mittels einer Wählbewegung des Hauptbetätigungs elements zwischen zwei Endausgangselemente und einer anschließenden Schaltbewegung erreicht wird.
60. Getriebe insbesondere nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein einen Endausgangsmechanismus für eine neu einzulegende Übersetzungsstufe festlegender Wählvorgang während einer Abbauphase eines von einer Antriebseinheit bereitgestellten Antriebsmomentes in einem Antriebsstrang des Kraftfahrzeuges unmittelbar vor dem Auslegen einer eingelegten und dem Einlegen einer neu einzulegenden Übersetzungsstufe erfolgt.
61. Getriebe insbesondere nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Getriebe aus zumindest zwei Getriebesträngen mit jeweils einer Getriebeeingangswelle und darauf verdrehbaren Losrädern, die mittels der Endausgangsmechanismen mit den Getriebeeingangswellen zum Schalten von

- 58 -

Gängen verbindbar sind, wobei während des Betriebs des Fahrzeugs mittels einer ersten Getriebeingangswelle und einem geschalteten Gang entsprechend der Fahrsituation auf der zweiten Getriebeingangswelle ein wahrscheinlich nachfolgender Gang mit zu der Fahrsituation passender Übersetzung eingelegt ist.

5

62. Getriebe insbesondere nach Anspruch 61, dadurch gekennzeichnet, dass die wahrscheinlich nachfolgende Übersetzungsstufe die gegenüber der auf der ersten Getriebeingangswelle eingelegten Übersetzung nächst höhere Übersetzungsstufe ist.

10 63. Getriebe insbesondere nach Anspruch 61, dadurch gekennzeichnet, dass bei einem Stillstand des Kraftfahrzeugs auf jeder der Getriebeingangswellen eine Übersetzungsstufe eingelegt ist, mittels der das Kraftfahrzeug anfahrbar ist.

15 64. Getriebe insbesondere nach Anspruch 63, dadurch gekennzeichnet, dass eine Übersetzungsstufe, mit der das Fahrzeug anfahrbar ist, ein Rückwärtsgang oder ein Vorwärtsgang ist.

20 65. Getriebe nach zumindest einem der Ansprüche 61 bis 64, dadurch gekennzeichnet, dass bei wechselnder Fahrsituation die wahrscheinlich nachfolgende Übersetzungsstufe gewechselt wird.

25 66. Getriebe insbesondere nach einem der Ansprüche 61 bis 65, dadurch gekennzeichnet, dass entsprechend der Fahrsituation mittels eines Hauptbetätigungslementes ein Endausgangsmechanismus ausgewählt, jedoch nicht betätigt wird, der einer zur wahrscheinlich nachfolgenden Übersetzungsstufe alternativen Übersetzungsstufe entspricht.

30 67. Getriebe insbesondere nach Anspruch 66, dadurch gekennzeichnet, dass die alternative Übersetzungsstufe bei einem Teillastbetrieb des Kraftfahrzeugs eine Übersetzungsstufe mit größerer Übersetzung als die, mit der das Fahrzeug zu diesem Zeitpunkt betrieben wird, entspricht, wobei mit dieser größeren Übersetzung im Vollastbetrieb die maximale Beschleunigung des Kraftfahrzeugs erzielbar ist.

- 59 -

68. Getriebe insbesondere nach Anspruch 66, dadurch gekennzeichnet, dass die alternative Übersetzungsstufe bei einem Vollastbetrieb des Kraftfahrzeuges eine Übersetzungsstufe mit kleinerer Übersetzung als die, mit der das Fahrzeug zu diesem Zeitpunkt betrieben wird, entspricht, wobei mit dieser kleineren Übersetzung das Kraftfahrzeug in einem besonders ökonomischen Teillastbetrieb betreibbar ist.

5 69. Getriebe insbesondere nach zumindest einem der Ansprüche 60 bis 68, dadurch gekennzeichnet, dass nach einem Anwählen eines Endausgangselementes das Haupt- und/oder Nebenbetätigungs element zumindest ein Endausgangselement einer auszulegenden Übersetzungsstufe in einer Weise beaufschlagt, dass ein Auslegevorgang dieser auszulegenden Übersetzungsstufe erst dann erfolgt, wenn ein Moment an dem das Losrad mit einer Getriebewelle verbindenden Endausgangselement nahe Null ist.

10 70. Kraftfahrzeug mit einem Getriebe nach den Ansprüchen 1 bis 69.

1/25

Fig. 1a

2/25

Fig. 1b

3/25

Fig. 2

4/25

Fig. 3a

Fig. 3b

Fig. 3c

Fig. 3d

5/25

Fig. 4

6/25

Fig. 5a

Fig. 5b

Fig. 6a

Fig. 6b

7/25

Fig. 7

8/25

Fig. 8

9/25

Fig. 9b

Fig. 9a

10/25

Fig. 10a

Fig. 10b

11/25

Fig. 11a

Fig. 11b

Fig. 11c

12/25

Fig. 12a

Fig. 12b

13/25

Fig. 13

14/25

Fig. 14

15/25

Fig. 15

16/25

Fig. 16

17/25

Fig. 17a

Fig. 17b

18/25

Fig. 18

19/25

Fig. 10

Fig. 19

20/25

Fig. 20

21/25

Fig. 21a

Fig. 21b

Fig. 21c

22/25

Fig. 22

23/25

Fig. 23a

Fig. 23b

24/25

Fig. 24a

Fig. 24b

Fig. 25a

Fig. 25b

Fig. 26

INTERNATIONAL SEARCH REPORT

International	Classification No
PCT/DE 02/00577	

A. CLASSIFICATION OF SUBJECT MATTER		
IPC 7	F16H63/20	F16H63/30

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 F16H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
--

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 4 432 251 A (MALOTT THEODORE A) 21 February 1984 (1984-02-21) column 1, line 62 - line 66 ---	1-7, 15, 16, 19, 23-40, 42, 45, 48, 55, 56, 70
X	US 1 749 837 A (NICKELL JR ARTHUR CORNWALL) 11 March 1930 (1930-03-11) figures ---	1, 19-22, 36-39, 41, 43, 46, 47, 55-57, 70

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
---	--

25 June 2002	04/07/2002
--------------	------------

Name and mailing address of the ISA	Authorized officer
-------------------------------------	--------------------

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel: (+31-70) 340-2040, Tx: 31 651 epo nl Fax: (+31-70) 340-3016	Goeman, F
--	-----------

INTERNATIONAL SEARCH REPORT

Internat
PCT/DE 02/00577

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 149 020 A (IVECO FIAT) 24 July 1985 (1985-07-24) the whole document ----	1-7, 15, 16, 19-21, 37, 39, 41-45, 47, 70
X	US 1 928 782 A (CHURCH HAROLD D) 3 October 1933 (1933-10-03) figures -----	1, 46, 70

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internat	cation No
PCT/DE	02/00577

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 4432251	A	21-02-1984	BR CA DE MX	8200412 A 1180207 A1 3202470 A1 156445 A		30-11-1982 01-01-1985 19-08-1982 23-08-1988
US 1749837	A	11-03-1930		NONE		
EP 0149020	A	24-07-1985	IT DE EP	1161521 B 3475554 D1 0149020 A2		18-03-1987 12-01-1989 24-07-1985
US 1928782	A	03-10-1933		NONE		

INTERNATIONALER RECHERCHENBERICHT

Internat: : Aktenzeichen
PCT/DE 02/00577

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 F16H63/20 F16H63/30

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 F16H

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ

C. ALS WESENTLICH ANGESEHENDE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 4 432 251 A (MALOTT THEODORE A) 21. Februar 1984 (1984-02-21) Spalte 1, Zeile 62 – Zeile 66 ---	1-7, 15, 16, 19, 23-40, 42, 45, 48, 55, 56, 70
X	US 1 749 837 A (NICKELL JR ARTHUR CORNWALL) 11. März 1930 (1930-03-11) Abbildungen ---	1, 19-22, 36-39, 41, 43, 46, 47, 55-57, 70

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
 "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
 "E" älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist
 "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
 "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- "T" Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
 "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
 "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
 "g" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche 25. Juni 2002	Absendedatum des Internationalen Recherchenberichts 04/07/2002
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel: (+31-70) 340-2040, Tx: 31 651 epo nl Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Goeman, F

INTERNATIONALER RECHERCHENBERICHT

Internat	Ktenzelchen
PCT/DE 02/00577	

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	EP 0 149 020 A (IVECO FIAT) 24. Juli 1985 (1985-07-24) das ganze Dokument ----	1-7, 15, 16, 19-21, 37, 39, 41-45, 47, 70
X	US 1 928 782 A (CHURCH HAROLD D) 3. Oktober 1933 (1933-10-03) Abbildungen ----	1, 46, 70

WEITERE ANGABEN

PCT/SAF 210

Fortsetzung von Feld I.2

Die Verwendung des Ausdrucks "inbesondere nach Anspruch..." für die Rückbeziehung des Ansprüche 2-64,66-69 führt dazu, dass diese Ansprüche auch als unabhängige Ansprüche anzusehen sind, denn der Ausdruck "inbesondere" bewirkt keine Einschränkung des Schutzmanges, d.h. nach "inbesondere" stehende Ausdrücke sind als ganz und gar fakultativ zu betrachten.

Im Falle der Annahme von unabhängigen Ansprüchen würde dies zu einer Vielzahl von Erfindungen führen, die nicht dem Erfordernis der Einheitlichkeit erfüllen würden.

Für die Recherche wurde deshalb angenommen, dass der Ausdruck "inbesondere" gestrichen ist. Es wurde also nur die abhängige Version dieser Ansprüche recherchiert.

Angesichts der großen Zahl wie auch des Wortlauts der resultierenden Patentansprüche, welche es damit erschweren wenn nicht gar unmöglich machen, den durch sie erstrebten Schutzmangel zu bestimmen, entspricht die vorliegende Patentanmeldung den Anforderungen des Artikels 6 PCT (vgl. auch Regel 6.1(a) PCT) in einem Maße nicht, daß eine sinnvolle Recherche undurchführbar ist.

Daher wurde die Recherche auf die Teile der Patentansprüche gerichtet, welche im o.a. Sinne als gestützt und offenbart erscheinen, nämlich ein Getriebe wobei Übersetzungsstufen eingelegt werden, in dem ein Losrad mittels eines Endausgangselementes (101,102,103,104), das Teil eines Endausgangsmechanismus ist, welcher vom Endbetätigungsmechanismus betatigt wird, mit der es tragenden Welle verbunden wird und wobei die Schaltabfolge der Übersetzungsstufen nicht im Endbetätigungsmechanismus festgelegt ist, bei dem der Endbetätigungsmechanismus zumindest ein Hauptbetätigungsselement (111) wie Schaltfinger umfasst, das mit den Endausgangsmechanismen derart in Wirkverbindung tritt, dass eine Übersetzungsstufe mittels eines ersten Endausgangsmechanismus einlegbar ist und dass zumindest eine Hauptbetätigungsselement dann mit einem anderen Endausgangsmechanismus in Wirkverbindung treten kann, ohne die zuvor eingelegte Übersetzungsstufe auslegen zu müssen, und der Endbetätigungsmechanismus wenigstens ein Nebenbetätigungsselement (116, 118) umfasst.

Der Anmelder wird darauf hingewiesen, daß Patentansprüche, oder Teile von Patentansprüchen, auf Erfindungen, für die kein internationaler Recherchenbericht erstellt wurde, normalerweise nicht Gegenstand einer internationalen vorläufigen Prüfung sein können (Regel 66.1(e) PCT). In seiner Eigenschaft als mit der internationalen vorläufigen Prüfung beauftragte Behörde wird das EPA also in der Regel keine vorläufige Prüfung für Gegenstände durchführen, zu denen keine Recherche vorliegt. Dies gilt auch für den Fall, daß die Patentansprüche nach Erhalt des internationalen Recherchenberichtes geändert wurden (Art. 19 PCT), oder für den Fall, daß der Anmelder im Zuge des Verfahrens gemäß Kapitel II PCT neue Patentansprüche vorlegt.

INTERNATIONALER RECHERCHENBERICHTInter.....les Aktenzeichen
PCT/DE 02/00577**Feld I Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1)**

Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:

1. Ansprüche Nr.
weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich

2. Ansprüche Nr.
weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
siehe Zusatzblatt WEITERE ANGABEN PCT/ISA/210

3. Ansprüche Nr.
weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.

Feld II Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:

1. Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.

2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.

3. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.

4. Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:

Bemerkungen hinsichtlich eines Widerspruchs

- Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.
 Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internat	Inzelchen
PCT/DE 02/00577	

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 4432251	A	21-02-1984	BR CA DE MX	8200412 A 1180207 A1 3202470 A1 156445 A		30-11-1982 01-01-1985 19-08-1982 23-08-1988
US 1749837	A	11-03-1930		KEINE		
EP 0149020	A	24-07-1985	IT DE EP	1161521 B 3475554 D1 0149020 A2		18-03-1987 12-01-1989 24-07-1985
US 1928782	A	03-10-1933		KEINE		