MATHEMATICAL FORMULAS*

Ouadratic Formula

If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Binomial Theorem

$$(1+x)^n = 1 + \frac{nx}{1!} + \frac{n(n-1)x^2}{2!} + \cdots$$
 $(x^2 < 1)$

Products of Vectors

Let θ be the smaller of the two angles between \vec{a} and \vec{b} . Then

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} = a_x b_x + a_y b_y + a_z b_z = ab \cos \theta$$

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

$$= \hat{\mathbf{i}} \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} - \hat{\mathbf{j}} \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} + \hat{\mathbf{k}} \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix}$$

$$= (a_y b_z - b_y a_z) \hat{\mathbf{i}} + (a_z b_x - b_z a_x) \hat{\mathbf{j}} + (a_x b_y - b_x a_y) \hat{\mathbf{k}}$$

$$|\vec{a} \times \vec{b}| = ab \sin \theta$$

Trigonometric Identities

$$\sin \alpha \pm \sin \beta = 2 \sin \frac{1}{2} (\alpha \pm \beta) \cos \frac{1}{2} (\alpha \mp \beta)$$
$$\cos \alpha + \cos \beta = 2 \cos \frac{1}{2} (\alpha + \beta) \cos \frac{1}{2} (\alpha - \beta)$$

Derivatives and Integrals

$$\frac{d}{dx}\sin x = \cos x$$

$$\int \sin x \, dx = -\cos x$$

$$\frac{d}{dx}\cos x = -\sin x$$

$$\int \cos x \, dx = \sin x$$

$$\int e^x \, dx = e^x$$

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln(x + \sqrt{x^2 + a^2})$$

$$\int \frac{x \, dx}{(x^2 + a^2)^{3/2}} = -\frac{1}{(x^2 + a^2)^{1/2}}$$

$$\int \frac{dx}{(x^2 + a^2)^{3/2}} = \frac{x}{a^2(x^2 + a^2)^{1/2}}$$

Cramer's Rule

Two simultaneous equations in unknowns x and y,

$$a_1x + b_1y = c_1$$
 and $a_2x + b_2y = c_2$,

have the solutions

$$x = \frac{\begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}} = \frac{c_1 b_2 - c_2 b_1}{a_1 b_2 - a_2 b_1}$$

and

$$y = \frac{\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}} = \frac{a_1c_2 - a_2c_1}{a_1b_2 - a_2b_1}.$$

SI PREFIXES*

Factor	Prefix	Symbol	Factor	Prefix	Symbol
10 ²⁴	yotta	Y	10-1	deci	d
10^{21}	zetta	Z	10^{-2}	centi	c
10^{18}	exa	E	10^{-3}	milli	m
10^{15}	peta	P	10^{-6}	micro	μ
10^{12}	tera	T	10^{-9}	nano	n
10^{9}	giga	G	10^{-12}	pico	p
10^{6}	mega	M	10^{-15}	femto	f
10^{3}	kilo	k	10^{-18}	atto	a
10^{2}	hecto	h	10^{-21}	zepto	Z
10^{1}	deka	da	10^{-24}	yocto	у

^{*}In all cases, the first syllable is accented, as in ná-no-mé-ter.

^{*}See Appendix E for a more complete list.

SOME PHYSICAL CONSTANTS*

Speed of light	С	$2.998 \times 10^{8} \mathrm{m/s}$
Gravitational constant	G	$6.673 \times 10^{-11} \mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}^2$
Avogadro constant	$N_{ m A}$	$6.022 \times 10^{23} \mathrm{mol^{-1}}$
Universal gas constant	R	8.314 J/mol ⋅ K
Mass-energy relation	c^2	$8.988 imes 10^{16} \mathrm{J/kg}$
		931.49 MeV/u
Permittivity constant	$oldsymbol{arepsilon}_0$	$8.854 \times 10^{-12} \mathrm{F/m}$
Permeability constant	μ_0	$1.257 \times 10^{-6} \mathrm{H/m}$
Planck constant	h	$6.626 \times 10^{-34} \mathrm{J\cdot s}$
		$4.136 \times 10^{-15} \text{eV} \cdot \text{s}$
Boltzmann constant	k	$1.381 \times 10^{-23} \text{J/K}$
		$8.617 \times 10^{-5} \mathrm{eV/K}$
Elementary charge	e	$1.602 \times 10^{-19} \mathrm{C}$
Electron mass	$m_{ m e}$	$9.109 \times 10^{-31} \mathrm{kg}$
Proton mass	$m_{ m p}$	$1.673 \times 10^{-27} \mathrm{kg}$
Neutron mass	$m_{ m n}$	$1.675 \times 10^{-27} \mathrm{kg}$
Deuteron mass	$m_{ m d}$	$3.344 \times 10^{-27} \mathrm{kg}$
Bohr radius	а	$5.292 \times 10^{-11} \mathrm{m}$
Bohr magneton	$\mu_{ m B}$	$9.274 \times 10^{-24} \mathrm{J/T}$
		$5.788 \times 10^{-5} \mathrm{eV/T}$
Rydberg constant	R	$1.097373 \times 10^7\mathrm{m}^{-1}$

^{*}For a more complete list, showing also the best experimental values, see Appendix B.

THE GREEK ALPHABET

Alpha	A	α	Iota	I	ι	Rho	P	ρ
Beta	В	$oldsymbol{eta}$	Kappa	K	κ	Sigma	Σ	σ
Gamma	Γ	γ	Lambda	Λ	λ	Tau	T	au
Delta	Δ	δ	Mu	\mathbf{M}	μ	Upsilon	Υ	v
Epsilon	E	ϵ	Nu	N	ν	Phi	Φ	ϕ , φ
Zeta	Z	ζ	Xi	Ξ	ξ	Chi	X	χ
Eta	Η	η	Omicron	O	o	Psi	Ψ	ψ
Theta	θ	θ	Pi	П	π	Omega	Ω	ω

SOME CONVERSION FACTORS*

Mass and Density

 $1 \text{ kg} = 1000 \text{ g} = 6.02 \times 10^{26} \text{ u}$

1 slug = 14.59 kg

 $1 \text{ u} = 1.661 \times 10^{-27} \text{ kg}$

 $1 \text{ kg/m}^3 = 10^{-3} \text{ g/cm}^3$

Length and Volume

1 m = 100 cm = 39.4 in. = 3.28 ft

1 mi = 1.61 km = 5280 ft

1 in. = 2.54 cm

 $1 \text{ nm} = 10^{-9} \text{ m} = 10 \text{ Å}$

 $1 \text{ pm} = 10^{-12} \text{ m} = 1000 \text{ fm}$

1 light-year = 9.461×10^{15} m

 $1 \text{ m}^3 = 1000 \text{ L} = 35.3 \text{ ft}^3 = 264 \text{ gal}$

Time

1 d = 86400 s

 $1 \text{ y} = 365\frac{1}{4} \text{ d} = 3.16 \times 10^7 \text{ s}$

Angular Measure

 $1 \text{ rad} = 57.3^{\circ} = 0.159 \text{ rev}$

 $\pi \operatorname{rad} = 180^{\circ} = \frac{1}{2} \operatorname{rev}$

Speed

1 m/s = 3.28 ft/s = 2.24 mi/h

1 km/h = 0.621 mi/h = 0.278 m/s

Force and Pressure

 $1 \text{ N} = 10^5 \text{ dyne} = 0.225 \text{ lb}$

1 lb = 4.45 N

1 ton = 2000 lb

 $1 \text{ Pa} = 1 \text{ N/m}^2 = 10 \text{ dyne/cm}^2$

 $= 1.45 \times 10^{-4}$ lb/in.²

 $1 \text{ atm} = 1.01 \times 10^5 \text{ Pa} = 14.7 \text{ lb/in.}^2$

 $= 76.0 \,\mathrm{cm}\,\mathrm{Hg}$

Energy and Power

 $1 J = 10^7 erg = 0.2389 cal = 0.738 ft \cdot lb$

 $1 \text{ kW} \cdot \text{h} = 3.6 \times 10^6 \text{ J}$

1 cal = 4.1868 J

 $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$

1 horsepower = $746 W = 550 \text{ ft} \cdot \text{lb/s}$

Magnetism

 $1 T = 1 Wb/m^2 = 10^4 gauss$

^{*}See Appendix D for a more complete list.