Suppose $f(x) = x^3 - x$.

- a) Find a formula for f'(x).
- b) Sketch the graph of the curve y = f'(x).

a)	f'hi) = lim florth)-fr) (a+h) (x+h)
•	4-0
	= $\lim_{x \to \infty} (x+h)^3 - (x+h) - (x^3 - x)$
	4-0
	= $\lim_{x \to 0} x^3 + 3x^2h^2 + 3x^2h^2 + h^3 - x - h - x^3 + x$
	h→0
	= lim 322h + 3262+43-h
	4-30
	= $\lim_{x \to 0} Bx^2 + 3xh + h^2 - 1$
	A->0
	$=3n^{7}$
	$50, \frac{1}{1}(x) = 3x^2 - 1.$

Example 14

If $f(x) = \sqrt{x}$, find the derivative of f and find the domain of f'.

$$\frac{1}{h} = \lim_{h \to 0} \frac{1}{h} \frac{1}{h} - \frac{1}{h} \frac{1}{h} \qquad (a+b)(a-b) = a^2 - b^2 + b^2 +$$

Example 16

Where is the function f(x) = |x| differentiable?

$$|x| = \begin{cases} x & , x \ge 0 \\ -x & , x < 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & , x \ge 0 \end{cases}$$

$$|x| = \begin{cases} x & ,$$

So, j'(0) doesn't veist (undern).

0

Find f''(x) of $f(x) = x^3 - x$.

So,

$$(x^3)' = 3x^2$$
 $x' = 1$

So,

 $f'(x) = 6x - 0 = 6x$.

Dorny it with the defember. From Example 13, we know that $f'(x) = 3x^2 - 1$.

So,

 $f''(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h}$
 $= \lim_{h \to 0} \frac{3(x+h)^2 - 1 - (3x^2 - 1)}{h}$
 $= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 1 - 3x^2 + 1}{h}$
 $= \lim_{h \to 0} \frac{(6xh + 3h^2)}{h}$
 $= \lim_{h \to 0} \frac{(6xh + 3h)}{h}$

$$= \lim_{h \to 0} \frac{(e + 3h^2)}{h}$$

$$= \lim_{h \to 0} \frac{(e + 3h)}{h}$$

$$50, \qquad f''(x) = 6x$$

Example 21

Compute the derivatives of the following functions:

- a) $f(x) = x^6$
- b) $y = t^{1/5}$
- c) $y = u^{\pi}$.
- d) $u = v^{2/3}$.

