Ejercicio 1

20.12.2023

See
$$\pi: \mathbb{R}^3 \to \mathbb{R}^3$$
 la $\pi.L.$ definida per $\pi(x) = \Delta x$, dende:

 $A = \frac{1}{9} \binom{2}{1} (2 \cdot 2)$

Comprobar que π es una projección y hollar una base B

tot que:

 $[\pi]_B^B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Jua
$$A \in \mathbb{R}^{3 \times 3}$$
:
$$A = \begin{bmatrix} 2/5 & 0 & 1/3 \\ 1/5 & 0 & 1/3 \\ 1/5 & 0 & 2/3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix} = \frac{1}{3} B$$
Colcular line $A^n \begin{bmatrix} 6 \\ 7 \\ 6 \end{bmatrix}$

See $A \in \mathbb{R}^{3\times3}$ le motriz vivietrice que posse les si prientes propie dodes: $\sigma(A) = \{1/2\}$ y $Nul(A-\overline{k}) = \{u, \{(10-1)^T\}$.

Colcular $A^2(111)^T$

$$A = \begin{bmatrix} 2 & -1 & 2 \\ 2 & 2 & 2 \\ -1 & 2 & -1 \end{bmatrix}$$

a) Hallot todos los reliciones por poradrados minimos de Ax = [4] }
b) Determinar la de norma mínime.

EZERCICIO 5

Sea $\Pi: \mathbb{R}^3 \to \mathbb{R}^3$ la projección sobre el Islano $\{X \in \mathbb{R}^3: X_2 = 0\}$ en la dirección de la recta gen $\{[2 \ 2 \ 1]^{\top}\}$. Hallar y graficar la imagen por Π de la esfera unitaria de \mathbb{R}^3