Stat 401

defining povemeter

(MER' togotion peremeter Normal distribution \$ >0 dispersion perometer (Goussin distribution) Gouss wis person family of normal distributions who first presented the $Z \sim N(0.1)$ Normal distribution = M + & E[z] = O V[x]=V[x+1] = M Ocotion - scile transformation X=U+JZ E[X] = E[u++Z] = E[N] + E[+Z] V[n++Z] $=V(\partial Z)$ $=V(\partial Z)=\partial^2 V(Z)$ $\frac{\chi \sim N\left(u_1 \sigma^2\right)}{\int u_1 \sigma^2}$ $+ u_1 \sigma^2 = \frac{1}{\int u_1 \sigma^2} \exp\left\{-\frac{1}{2} x^2\right\}$ Change of Variables X= M+ + Z $\frac{X-M}{+}=Z$ Tin exp (-2+(t-W)2) dt 20 exp(-1 x2) $\frac{dx}{dz} = d + dx = ddz$ $dz = \frac{dx}{dx}$

for any of ER'	V[a+bx] X+c
and bER'	
a+b X~ N(a+bu)	=V[6X] ×
E[a+bx]=E[a]+bE[x]	
= a + b u	= 62 V(x)=602 ->
	j j
	5 &[bX] = b sd[x]
	Variance 13 square Of Sd
Z=X-M standardination	of sd
4	
it implies that your only	y~N(1.25, 0.462)
need the percentiles for	U. Property
the standard normal	Xo.75
a + bx becomes norm.1	P(X C X 0.7s)
again 13 X is norm.1	
J J	P(x-1.25 Z x0.75-1.25)=0.75
Ne Normal Family 13	0.46
closed under linear	
trins formition	
	0.75,
$\frac{P(7 \leq x_{ons} - 1.25)}{0.46} = 0.$	75 Julia .
P17< Za)= 0.75	X0.75=0.674.0.06
X0.75 + 0.75 = Za	+1.25
0.46	0.674 = 1.56

= 0.568

$$P(X-1.25) = P(X-1.25)$$

$$= P(\frac{x-1.25}{0.06}) = \frac{1-1.25}{0.06}$$

$$= P(2 < \frac{0.5}{0.06}) - u(2 < -0.25)$$

$$P(x > 2)$$

$$P(x > 2) + P(x > 2) = 1$$

$$P(x > 2) = 1 - P(x < 2)$$

$$\frac{P(x)2) = P(\frac{x-1.75}{0.46} \leq \frac{2-1.75}{0.46})}{= P(Z \leq \frac{0.75}{0.46})}$$

$$= 0.948$$