- [1] E. H. L. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines. Wiley, 1989.
- [2] J. Abello, A. Buchsbaum, and J. Westbrook. A functional approach to external graph algorithms. *Algorithmica*, 32(3):437–458, 2002.
- [3] W. Ackermann. Zum hilbertschen Aufbau der reellen Zahlen. Mathematische Annalen, 99:118–133, 1928.
- [4] G. M. Adel'son-Vel'skii and E. M. Landis. An algorithm for the organization of information. Soviet Mathematics Doklady, 3:1259–1263, 1962.
- [5] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems. *Communications of the ACM*, \$1(9):1116–1127, 1988.

  [6] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. *The Design and Analysis of*
- Computer Algorithms. Addison-Wesley, 1974.
- [7] A. V. Aho, B. W. Kernighan, and P.J. Weinberger. The AWK Programming Language. Addison-Wesley, 1988.
- [8] R. K. Ahuja, R. L. Magnanti, and J. B. Orlin. Network Plows. Prentice Hall, 1993.
- [9] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan. Faster algorithms for the shortest path problem. *Journal of the ACM*, 3(2):213–223, 1990.
- [10] N. Alon, M. Dietzfelbinger, P. B. Miltersen, E. Petrank, and E. Tardos. Linear hash functions. *Journal of the ACM*, 46(5):667,683, 1999.
- [11] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman. Sorting in linear time? Journal of Computer and System Sciences, 57(1):74–93, 1998.
- [12] F. Annexstein, M. Baumslag, and A. Rosenberg. Group action graphs and parallel architectures. SIAM Journal on Computing, 19(3):544–569, 1990.
- [13] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. *The Traveling* Salesman Problem: A Computational Study. Princeton University Press, 2007.
- [14] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi. Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, 1999.
- [15] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast routing in road networks with transit nodes. Science, 316(5824):566, 2007.

- [16] R. Bayer and E. M. McCreight. Organization and maintenance of large ordered indexes. *Acta Informatica*, 1(3):173–189, 1972.
- [17] R. Beier and B. Vöcking. Random knapsack in expected polynomial time. *Journal of Computer and System Sciences*, 69(3):306–329, 2004.
- [18] R. Bellman. On a routing problem. *Quarterly of Applied Mathematics*, 16(1):87–90, 1958.
- [19] M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cache-oblivious B-trees. In 41st Annual Symposium on Foundations of Computer Science, pages 399 409, 2000.
- [20] J. L. Rentley and M. D. McIlroy. Engineering a sort function. *Software Practice and Experience*, 23(11):1249–1265, 1993.
- [21] J. L. Bendey and T. A. Ottmann. Algorithms for reporting and counting geometric intersections. *IEEE Transactions on Computers*, pages 643–647, 1979.
- [22] J. L. Bentley and R. Sedgewick. Fast algorithms for sorting and searching strings. In 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 360–369, 1997.
- [23] D. Bertsimas and J. N. Tsitsiklis. *Introduction to Linear Optimization*. Athena Scientific, 1997.
- [24] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha. A comparison of sorting algorithms for the connection machine CM-2. In 3rd ACM Symposium on Parallel Algorithms and Architectures, pages 3–16, 1991.
- [25] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for selection. *Journal of Computer and System Sciences*, 7(4):448, 1972.
- [26] N. Blum and K. Mehlhorn. On the average number of rebalancing operations in weight-balanced trees. *Theoretical Computer Science*, 11:303–320, 1980.
- [27] Boost.org. Boost C++ Libraries. www.boost.org.
- [28] O. Boruvka. O jistém problému minimálním. *Pràce, Moravské Prirodovedecké Spolecnosti*, pages 1–58, 1926.
- [29] F. C. Botelho, R. Pagh, and N. Ziviani. Simple and space-efficient minimal perfect hash functions. In *10th Workshop on Algorithms and Data Structures*, volume 4619 of Lecture Notes in Computer Science, pages 139–150. Springer, 2007.
- [30] G. S. Brodal. Worst-case efficient priority queues. In 7th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 52–58, 1996.
- [31] G. S. Brodal and J. Katajainen. Worst-case efficient external-memory priority queues. In *6th Scandinavian Workshop on Algorithm Theory*, volume 1432 of Lecture Notes in Computer Science, pages 107–118. Springer, 1998.
- [32] M. R. Brown and R. E. Tarjan. Design and analysis of a data structure for representing sorted lists. *SIAM Journal of Computing*, 9:394–614, 1980.
- [33] R. Brown. Calendar queues: A fast O(1) priority queue in plementation for the simulation event set problem. *Communications of the ACM*, 31(10):1220–1227, 1988.
- [34] J. L. Carter and M. N. Wegman. Universal classes of hash functions. *Journal of Computer and System Sciences*, 18(2):143–154, Apr. 1979.

- [35] B. Chazelle. A minimum spanning tree algorithm with inverse-Ackermann type complexity. *Journal of the ACM*, 47:1028–1047, 2000.
- [36] B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring technique. *Algorithmica*, 1(2):133–162, 1986.
- [37] B. Chazelle and L. J. Guibas. Fractional cascading: II. Applications. *Algorithmica*, 1(2):463–191, 1986.
- [38] J.-C. Chen. Proportion extend sort. *SIAM Journal on Computing*, 31(1):323–330, 2001.
- [39] J. Cheriyan and K. Mehlhorn. Algorithms for dense graphs and networks. *Algorithmica*, 15(6):521–549, 1996.
- [40] B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest path algorithms: Theory and experimental evaluation. *Mathematical Programming*, 73:129–174, 1996.
- [41] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin packing: A survey. In D. Hochbaum, editor, *Approximation Algorithms for NP-Hard Problems*, pages 46–93. PWS, 1997.
- [42] D. Cohen-Or, D. Levin, and O. Remez. Progressive compression of arbitrary triangular meshes. In *IEEE Conference on Visualization*, pages 67–72, 1999.
- [43] S. A. Cook. *On the Minimum Computation Time of Functions*. PhD thesis, Harvard University, 1966.
- [44] S. A. Cook. The complexity of theorem proving procedures. In *3rd ACM Symposium on Theory of Computing*, pages 151–158, 1971.
- [45] G. B. Dantzig. Maximization of a linear function of variables subject to linear inequalities. In T. C. Koopmans, editor, *Activity Analysis of Production and Allocation*, pages 339–347. Wiley, 1951.
- [46] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. *Computational Geometry Algorithms and Applications*. Springer, 2nd edition, 2000.
- [47] R. Dementiev, L. Kettner, J. Mehnert, and P. Sanders. Engineering a sorted list data structure for 32 bit keys. In 6th Workshop on Algorithm Engineering & Experiments, New Orleans, 2004.
- [48] R. Dementiev, L. Kettner, and P. Sanders. STXXL: Standard Template Library for XXL data sets. *Software: Practice and Experience*, 2007. To appear, see also http://stxxl.sourceforge.net/.
- [49] R. Dementiev and P. Sanders. Asynchronous parallel disk sorting. In 15th ACM Symposium on Parallelism in Algorithms and Architectures, pages 138–148, San Diego, 2003.
- [50] R. Dementiev, P. Sanders, D. Schultes, and J. Sibeyn. Engineering an external memory minimum spanning tree algorithm. In *IFIP TCS*, Toulouse, 2004.
- [51] L. Devroye. A note on the height of binary search trees. *Journal of the ACM*, 33:289–498, 1986.
- [52] R. B. Dial. Shortest-path forest with topological ordering. *Communications of the ACM*, 12(11):632–633, 1969.
- [53] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A reliable randomized algorithm for the closest-pair problem. *Journal of Algorithms*, 1(25):19–51, 1997.

- [54] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and R. E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. *SIAM Journal of Computing*, 23(4):738–761, 1994.
- [55] M. Dietzfelbinger and C. Weidling. Balanced allocation and dictionaries with tightly packed constant size bins. *Theoretical Computer Science*, 380(1–2):47–63, 2007.
- [56] E. W. Dijkstra, A note on two problems in connexion with graphs. *Numerische Mathematik*, 1:269–271, 1959.
- [57] E. A. Dinic. Economical algorithms for finding shortest paths in a network. In *Transportation Modeling Systems*, pages 36–44, 1978.
- [58] W. Domschke and A. Drexl. Einführung in Operations Research. Springer, 2007.
- [59] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures persistent. *Journal of Computer and System Sciences*, 38(1):86–124, 1989.
- [60] J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest paths, and near linear time. *Journal of Computer and System Sciences*, 72(5):868–889, 2006.
- [61] R. Fleischer. A tight lower bound for the worst case of Bottom-Up-Heapsort. *Algorithmica*, 11(2):104–115, 1994.
- [62] R. Floyd. Assigning meaning to programs. In J. Schwarz, editor, *Mathematical Aspects of Computer Science*, pages 19–32. AMS, 1967.
- [63] L. R. Ford. Network flow theory. Technical Report P-923, Rand Corporation, Santa Monica, California, 1956.
- [64] E. Fredkin. Trie memory. Communications of the ACM, 3:490–499, 1960.
- [65] M. L. Fredman. On the efficiency of pairing heaps and related data structures. *Journal of the ACM*, 46(4):473–501, 1999.
- [66] M. L. Fredman, J. Komlos, and E. Szemeredi. Storing a sparse table with O(1) worst case access time. *Journal of the ACM*, 31:538–544, 1984.
- [67] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan. The pairing heap: A new form of self-adjusting heap. Algorithmica, 1:111–129, 1986.
- [68] M. L. Fredman and R. E. Tarjan. Fibonacch heaps and their uses in improved network optimization algorithms. *Journal of the ACM*, 34:596–615, 1987.
- [69] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. In *40th IEEE Symposium on Foundations of Computer Science*, pages 285–298, 1999.
- [70] H. N. Gabow. Path-based depth-first search for strong and biconnected components. *Information Processing Letters*, pages 107–114, 2000.
- [71] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. *Design Patterns: Elements of Reusable Object-Oriented Software*. Addison-Wesley, 1995.
- [72] M. R. Garey and D. S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*. W. H. Freeman, 1979.
- [73] B. Gärtner and J. Matousek. *Understanding and Using Linear Programming*. Springer, 2006.

- [74] GMP (GNU Multiple Precision Arithmetic Library). http://gmplib.org/.
- [75] A. V. Goldberg. Scaling algorithms for the shortest path problem. *SIAM Journal on Computing*, 24:494–504, 1995.
- [76] A. V. Goldberg. A simple shortest path algorithm with linear average time. In 9th European Symposium on Algorithms, volume 2161 of Lecture Notes in Computer Science, pages 230–241. Springer, 2001.
- [77] A. V. Goldberg and C. Harrelson. Computing the shortest path: A\* meets graph theory. In 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 156–165, 2005.
- [78] M. T. Goodrich and R. Tamassia. JDSL the data structures library in Java. http://www.jdsl.org/.
- [79] G. Graefe and P.-A. Larson. B-tree indexes and CPU caches. In 17th International Conference on Data Engineering, pages 349–358. IEEE, 2001.
- [80] R. L. Graham. Bounds for certain multiprocessing anomalies. *Bell System Technical Journal*, 45:1563–1581, 1966.
- [81] R. L. Graham, D. E. Knuth, and O. Patashnik. *Concrete Mathematics*. Addison-Wesley, 2nd edition, 1994.
- [82] J. F. Grantham and C. Pomerance. Prime numbers. In K. H. Rosen, editor, *Handbook of Discrete and Combinatorial Mathematics*, chapter 4.4, pages 236–254. CRC Press, 2000.
- [83] R. Grossi and G. Italiano. Efficient techniques for maintaining multidimensional keys in linked data structures. In 26th International Colloquium on Automata, Languages and Programming, volume 1644 of Lecture Notes in Computer Science, pages 372–381. Springer, 1999.
- [84] S. Halperin and U. Zwick. Optimal randomized EREW PRAM algorithms for finding spanning forests and for other basic graph connectivity problems. In 7th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 438–447, 1996.
- [85] Y. Han and M. Thorup. Integer sorting in  $O(n\sqrt{\log\log n})$  expected time and linear space. In 42nd IEEE Symposium on Foundations of Computer Science, pages 135–144, 2002.
- [86] G. Handler and I. Zang. A dual algorithm for the constrained shortest path problem. *Networks*, 10:293–309, 1980.
- [87] J. Hartmanis and J. Simon. On the power of multiplication in random access machines. In *5th IEEE Symposium on Foundations of Computer Science*, pages 13–23, 1974.
- [88] M. Held and R. Karp. The traveling-salesman problem and minimum spanning trees. *Operations Research*, 18:1138–1162, 1970.
- [89] M. Held and R. Karp. The traveling-salesman problem and minimum spanning trees, part II. *Mathematical Programming*, 1:6–25, 1971.
- [90] P. V. Hentenryck and L. Michel. *Constraint-Based Local Search*. MIT Press, 2005.
- [91] C. A. R. Hoare. An axiomatic basis for computer programming. *Communications of the ACM*, 12:576–585, 1969.

- [92] C. A. R. Hoare. Proof of correctness of data representations. *Acta Informatica*, 1:271–281, 1972.
- [93] R. D. Hofstadter. Metamagical themas. *Scientific American*, pages 16–22, January 1983.
- [94] P. Høyer. A general technique for implementation of efficient priority queues. In 3rd Israeli Symposium on Theory of Computing and Systems, pages 57–66, 1995.
- [95] S. Huddlestone and K. Mehlhorn. A new data structure for representing sorted lists. *Acta Informatica*, 17:157–184, 1982.
- [96] J. Iacono. Improved upper bounds for pairing heaps. In 7th Scandinavian Workshop on Algorithm Theory, volume 1851 of Lecture Notes in Computer Science, pages 32–45. Springer, 2000.
- [97] A. Itai, A. G. Konheim, and M. Rodeh. A sparse table implementation of priority queues. In 8th International Colloquium on Automata, Languages and Programming, volume 115 of Lecture Notes in Computer Science, pages 417–431. Springer, 1981.
- [98] V. Jarník. O jistém problému minimálním. *Práca Moravské Přírodovědecké Společnosti*, 6:57–63, 1930.
- [99] K. Jensen and N. Wirth. *Pascal User Manual and Report: ISO Pascal Standard*. Springer, 1991.
- [100] T. Jiang, M. Li, and P. Vitányi. Average-case complexity of shellsort. In 26th International Colloquium on Automata, Languages and Programming, volume 1644 of Lecture Notes in Computer Science, pages 453–462. Springer, 1999.
- [101] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by simulated annealing: Experimental evaluation, part II, graph coloring and number partitioning. *Operations Research*, 39(3):378–406, 1991.
- [102] K. Kaligosi and P. Sanders. How branch mispredictions affect quicksort. In *14th European Symposium on Algorithms*, volume 4168 of Lecture Notes in Computer Science, pages 780–791. Springer, 2006.
- [103] H. Kaplan and R. E. Tarjan. New heap data structures. Technical Report TR-597-99, Princeton University, 1999.
- [104] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata. *Soviet Physics Doklady*, 7(7):595–596, 1963.
- [105] D. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm for finding minimum spanning trees. *Journal of the ACM*, 42:321–329, 1995.
- [106] N. Karmakar. A new polynomial-time algorithm for linear programming. *Combinatorica*, pages 373–395, 1984.
- [107] J. Katajainen and B. B. Mortensen. Experiences with the design and implementation of space-efficient deque. In *Workshop on Algorithm Engineering*, volume 2141 of Lecture Notes in Computer Science, pages 39–50. Springer, 2001.
- [108] I. Katriel, P. Sanders, and J. L. Träff. A practical minimum spanning tree algorithm using the cycle property. Technical Report MPI-I-2002-1-003, MPI Informatik, Germany, October 2002.

- [109] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.
- [110] L. Khachiyan. A polynomial time algorithm in linear programming. Soviet Mathematics Doklady, 20(1):191–194, 1979.
- [111] V. King. A simpler minimum spanning tree verification algorithm. Algorithmica, 18:263–270, 1997.
  [112] D. E. Knuth. The Art of Computer Programming: Sorting and Searching,
- volume 3. Addison-Wesley, 2nd edition, 1998.
- [113] D. E. Knuth. MMIXware: A RISC Computer for the Third Millennium, volume 1750 of Lecture Notes in Computer Science. Springer, 1999.
- [114] R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intelligence, 27 97–109, 1985.
- [115] B. Korte and J.Vygen. Combinatorial Optimization: Theory and Algorithms. Springer, 2000.
- [116] J. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society, 7:48-50, 1956.
- [117] E. L. Lawler, J. K. Lenstra, A. H. G. Rinooy Kan, and D. B. Shmoys. *The* Traveling Salesman Problem. Wiley, 1985.
- [118] LEDA (Library of Efficient Data Types and Algorithms). www. algorithmic-solutions.com.
- [119] L. Q. Lee, A. Lumsdaine, and J. G. Siek. The Boost Graph Library: User Guide and Reference Manual. Addison-Wesley, 2002.
- [120] L. Levin. Universal search problems. Problemy Peredachi Informatsii, 9(3):265–266, 1973.
- [121] I. Lustig and J.-F. Puget. Program does not equal program: Constraint programming and its relationship to mathematical programming. *Interfaces*, 31:29-53, 2001.
- [122] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementations. Wiley, 1990.
- [123] C. Martínez and S. Roura. Optimal sampling strategies in Quicksort and Quickselect. SIAM Journal on Computing, 31(3):683-705, 2002.
- [124] C. McGeoch, P. Sanders, R. Fleischer, P. R. Cohen, and D. Precup. Using finite experiments to study asymptotic performance. In Experimental Algorithmics — From Algorithm Design to Robust and Efficient Software, volume 2547 of Lecture Notes in Computer Science, pages 1–23. Springer, 2002.
- [125] MCSTL: The Multi-Core Standard Template Library. http://algo2. iti.uni-karlsruhe.de/singler/mcstl/.
- [126] K. Mehlhorn. A faster approximation algorithm for the Steiner problem in graphs. *Information Processing Letters*, 27(3):125–128, Mar. 1988.
- [127] K. Mehlhorn. Amortisierte Analyse. In T. Ottmann, editor, Prinzipien des Algorithmenentwurfs, pages 91–102. Spektrum Lehrbuch, 1998.
- [128] K. Mehlhorn and U. Meyer. External memory breadth-first search with sublinear I/O. In 10th European Symposium on Algorithms, volume 2461 of Lecture Notes in Computer Science, pages 723–735. Springer, 2002.

- [129] K. Mehlhorn and S. Näher. Bounded ordered dictionaries in  $O(\log \log N)$  time and O(n) space. Information Processing Letters, 35(4):183–189, 1990.
- [130] K. Mehlhorn and S. Näher. Dynamic fractional cascading. Algorithmica, 5:215-241, 1990.
- [131] K. Mehlhorn and S. Näher. The LEDA Platform for Combinatorial and Geo-
- metric Computing. Cambridge University Press, 1999. [132] K. Mehlhorn, S. Näher, and P. Sanders. Engineering DFS-based graph algorithms. Submitted, 2007.
- [133] K. Mehlhorn, V. Priebe, G. Schäfer, and N. Sivadasan. All-pairs shortestpaths computation in the presence of negative cycles. *Information Processing Letters*, 81(6):341–343, 2002.
- [134] K. Mehlhorn and P. Sanders, Scanning multiple sequences via cache memory. Algorithmica, 35(1):75–93, 2003.
- [135] K. Mehlhorn and M. Ziegelmann. Resource constrained shortest paths. In 8th European Symposium on Algorithms, volume 1879 of Lecture Notes in Computer Science, pages 326–337, 2000.
- [136] R. Mendelson, R. E. Tarjan, M. Thorup, and U. Zwick. Melding priority queues. In 9th Scandinavian Workshop on Algorithm Theory, pages 223–235,
- [137] Meyers Konversationslexikon. Bibliographisches Institut, 1888.
- [138] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd edition,
- [139] U. Meyer. Average-case complexity of single-source shortest-path algorithms: Lower and upper bounds. *Journal of Algorithms*, 48(1):91–134, 2003.
- [140] U. Meyer and P. Sanders.  $\Delta$ -stepping: A parallel shortest path algorithm. In 6th European Symposium on Algorithms, number 1461 in Lecture Notes in Computer Science, pages 393–404. Springer, 1998.
- [141] U. Meyer, P. Sanders, and J. Sibeyn, editors. Algorithms for Memory Hierarchies, volume 2625 of Lecture Notes in Computer Science. Springer, 2003.
- [142] B. M. E. Moret and H. D. Shapiro. An empirical analysis of algorithms for constructing a minimum spanning tree. In 2nd Workshop on Algorithms and Data Structures, volume 519 of Lecture Notes in Computer Science, pages 400-411. Springer, 1991.
- [143] R. Morris. Scatter storage techniques. Communications of the ACM, 11(1):38– 44, 1968.
- [144] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.
- [145] S. Näher and O. Zlotowski. Design and implementation of efficient data types for static graphs. In 10th European Symposium on Algorithms, volume 2461 of Lecture Notes in Computer Science, pages 748–759. Springer, 2002.
- [146] G. Nemhauser and Z. Ullmann. Discrete dynamic programming and capital allocation. Management Science, 15(9):494-505, 1969.
- [147] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. Wiley, 1988.

- [148] J. Nešetřil, H. Milková, and H. Nešetřilová. Otakar Boruvka on minimum spanning tree problem: Translation of both the 1926 papers, comments, history. *Discrete Mathematics*, 233(1–3):3–36, 2001.
- [149] K. S. Neubert. The flashsort1 algorithm. *Dr. Dobb's Journal*, pages 123–125, February 1998.
- [150] J. Nievergelt and E. Reingold. Binary search trees of bounded balance. *SIAM Journal of Computing*, 2:33–43, 1973.
- [151] K. Noshita. A theorem on the expected complexity of Dijkstra's shortest path algorithm. *Journal of Algorithms*, 6(3):400–408, 1985.
- [152] R. Pagh and F. Rodler. Cuckoo hashing. *Journal of Algorithms*, 51:122–144, 2004.
- [153] W. W. Peterson. Addressing for random access storage. *IBM Journal of Research and Development*, 1(2), Apr. 1957.
- [154] S. Pettie. Towards a final analysis of pairing heaps. In 46th IEEE Symposium on Foundations of Computer Science, pages 174–183, 2005.
- [155] S. Pettie and V. Ramachandran. An optimal minimum spanning tree algorithm. In 27th International Colloquium on Automata, Languages and Programming, volume 1853 of Lecture Notes in Computer Science, pages 49–60. Springer, 2000.
- [156] J. Pinkerton. Voyages and Travels, volume 2. 1808.
- [157] P. J. Plauger, A. A. Stepanov, M. Lee, and D. R. Musser. *The C++ Standard Template Library*. Prentice Hall, 2000.
- [158] R. C. Prim. Shortest connection networks and some generalizations. *Bell Systems Technical Journal*, pages 1389–1401, Nov. 1957.
- [159] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. *Communications of the ACM*, 33(6):668–676, 1990.
- [160] A. Ranade, S. Kothari, and R. Udupa. Register efficient mergesorting. In *High Performance Computing*, volume 1970 of Lecture Notes in Computer Science, pages 96–103. Springer, 2000.
- [161] J. H. Reif. Depth-first search is inherently sequential. *Information Processing Letters*, 20(5):229–234, 1985.
- [162] N. Robertson, D. P. Sanders, P. Seymour, and R. Thomas. Efficiently four-coloring planar graphs. In 28th ACM Symposium on Theory of Computing, pages 571–575, 1996.
- [163] G. Robins and A. Zelikwosky. Improved Steiner tree approximation in graphs. In 11th ACM-SIAM Symposium on Discrete Algorithms, pages 770–779, 2000.
- [164] P. Sanders. Fast priority queues for cached memory. ACM Journal of Experimental Algorithmics, 5(7), 2000.
- [165] P. Sanders and D. Schultes. Highway hierarchies hasten exact shortest path queries. In *13th European Symposium on Algorithms*, volume *36*69 of Lecture Notes in Computer Science, pages 568–579. Springer, 2003.
- [166] P. Sanders and D. Schultes. Engineering fast route planning algorithms. In 6th Workshop on Experimental Algorithms, volume 4525 of Lecture Notes in Computer Science, pages 23–36. Springer, 2007.

- [167] P. Sanders and S. Winkel. Super scalar sample sort. In 12th European Symposium on Algorithms, volume 3221 of Lecture Notes in Computer Science, pages 784–796. Springer, 2004.
- [168] R. Santos and F. Seidel. A better upper bound on the number of triangulations of a planar point set. *Journal of Combinatorial Theory, Series A*, 102(1):186–193, 2003
- [169] R. Schaffer and R. Sedgewick. The analysis of heapsort. *Journal of Algo- rithms*, 15:76–100, 1993.
- [170] A. Schönhage. Storage modification machines. SIAM Journal on Computing, 9:490-508, 1980.
- [171] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. *Computing*, 7:281–292, 1971.
- [172] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.
- [173] D. Schultes. Route Planning in Road Networks. PhD thesis, 2008.
- [174] R. Sedgewick. Analysis of shellsort and related algorithms. In *4th European Symposium on Algorithms*, volume 1136 of Lecture Notes in Computer Science, pages 1–11. Springer, 1996.
- [175] R. Sedgewick and R. Flajolet. An Introduction to the Analysis of Algorithms. Addison-Wesley, 1996.
- [176] R. Seidel and C. Aragon. Randomized search trees. *Algorithmica*, 16(4–5):464–497, 1996.
- [177] R. Seidel and M. Sharir. Top-down analysis of path compression. *SIAM Journal of Computing*, 34(3):515–525, 2005.
- [178] M. Sharir. A strong-connectivity algorithm and its applications in data flow analysis. *Computers and Mathematics with Applications*, 7(1):67–72, 1981.
- [179] J. C. Shepherdson and H. E. Sturgis. Computability of recursive functions. *Journal of the ACM*, 10(2):217–255, 1963.
- [180] J. Singler, P. Sanders, and F. Putze. MCSTL: The Multi-Core Standard Template Library. In *Euro-Par*, volume 4641 of Lecture Notes in Computer Science, pages 682–694. Springer, 2007.
- [181] M. Sipser. *Introduction to the Theory of Computation* MIT Press, 1998.
- [182] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. *Journal of Computer and System Sciences*, 26(3):362–391, 1983.
- [183] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. *Journal of the ACM*, 32(3):652–686, 1985.
- [184] D. Spielman and S.-H. Teng. Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. *Journal of the ACM*, 51(3):385–463, 2004.
- [185] R. E. Tarjan. Depth first search and linear graph algorithms. *SIAM Journal on Computing*, 1:146–160, 1972.
- [186] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. *Journal of the ACM*, 22(2):215–225, 1975.
- [187] R. E. Tarjan. Shortest paths. Technical report, AT&T Bell Laboratories, 1981.
- [188] R. E. Tarjan. Amortized computational complexity. *SIAM Journal on Algebraic and Discrete Methods*, 6(2):306–318, 1985.

- [189] R. E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm. *SIAM Journal on Computing*, 14(4):862–874, 1985.
- [190] M. Thorup. Undirected single source shortest paths in linear time. *Journal of the ACM*, 46:362–394, 1999.
- [191] M. Thorup. Even strongly universal hashing is pretty fast. In 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 496–497, 2000.
- [192] M. Thorup. Compact oracles for reachability and approximate distances in planar digraphs. *Journal of the ACM*, 51(6):993–1024, 2004.
- [193] M. Thorup. Integer priority queues with decrease key in constant time and the single source shortest paths problem. In 35th ACM Symposium on Theory of Computing, pages 149–138, 2004.
- [194] M. Thorup. Integer priority queues with decrease key in constant time and the single source shortest paths problem. *Journal of Computer and System Sciences*, 69(3):330–353, 2004.
- [195] M. Thorup and U. Zwick. Approximate distance oracles. In *33rd ACM Symposium on the Theory of Computing*, pages 183–192, 2001.
- [196] A. Toom. The complexity of a scheme of functional elements realizing the multiplication of integers. *Soviet Mathematics Doklady*, 150(3):496–498, 1963.
- [197] Unknown. Der Handungsreisende wie er sein soll und was er zu thun hat, um Auftraege zu erhalten und eines gluecklichen Erfolgs in seinen Geschaeften gewiss zu sein Von einem alten Commis-Voyageur. 1832.
- [198] P. van Emde Boas. Preserving order in a forest in less than logarithmic time. *Information Processing Letters*, 6(3):80–82, 1977.
- [199] R. Vanderbei. *Linear Programming: Foundations and Extensions*. Springer, 2001.
- [200] V. Vazirani. Approximation Algorithms. Springer, 2000.
- [201] J. von Neumann. First draft of a report on the EDVAC. Technical report, University of Pennsylvania, 1945.
- [202] J. Vuillemin. A data structure for manipulating priority queues. *Communications of the ACM*, 21:309–314, 1978.
- [203] L. Wall, T. Christiansen, and J. Orwant. *Programming Perl*. O'Reilly, 3rd edition, 2000.
- [204] I. Wegener. BOTTOM-UP-HEAPSORT, a new variant of HEAPSORT beating, on an average, QUICKSORT (if *n* is not very small). *Theoretical Computer Science*, 118(1):81–98, 1993.
- [205] I. Wegener. Complexity Theory: Exploring the Limits of Efficient Algorithms. Springer, 2005.
- [206] R. Wickremesinghe, L. Arge, J. S. Chase, and J. S. Vitter. Efficient sorting using registers and caches. *ACM Journal of Experimental Algorithmics*, 7(9), 2002.
- [207] R. Wilhelm and D. Maurer. Compiler Design. Addison-Wesley, 1995.
- [208] J. W. J. Williams. Algorithm 232: Heapsort. *Communications of the ACM*, 7:347–348, 1964.



## Index

| "folklore" (result), 79<br>15-puzzle, 248 | approximation algorithm, 241 average case, <b>41</b> , 84, 103, 107, 109, 115, |
|-------------------------------------------|--------------------------------------------------------------------------------|
|                                           | 117, 124, 148, 199, 205, 245                                                   |
| Aarts, E. H. L., 255                      | global, 41                                                                     |
| (a,b)-tree, see under sorted sequence     | master theorem, <b>37</b> , 104                                                |
| Abello, J., 232                           | randomized, <b>45</b> , 107, 109, 115, 121                                     |
| Ackermann, W., 224                        | recursion, 9, 16, 37, 104                                                      |
| Ackermann function (inverse), 224         | recursive, 9, 12                                                               |
| addition, 2                               | smoothed analysis, 262                                                         |
| address, 24, 27                           | sum, 4, <b>36</b>                                                              |
| Adel'son-Vel'skii, G. M., 165             | worst case, 109                                                                |
| adjacency array, see under graph          | algorithm design, 1                                                            |
| adjacency list, see under graph           | "make the common case fast", 66                                                |
| adjacency matrix, see under graph         | algebraic, 9, 86, 87, 89, 101, 171, 174                                        |
| adjacent, 49                              | black-box solvers, 234, 248, 261                                               |
| Aggarwal, A., 120                         | ce <mark>rtif</mark> icate, <b>33</b> , 36, 5 <mark>1</mark> , 187             |
| Aho, A. V., 165                           | de <mark>te</mark> rministic, <b>46</b> , <mark>10</mark> 0                    |
| Ahuja, R. K., 201                         | divide-and-conquer, 7, 34, 37, 103                                             |
| al-Khwarizmi, Muhammad ibn Musa, 1, 6     | building a heap, 131                                                           |
| ALD, see under shortest path              | mergesort, 103                                                                 |
| algorithm, 1                              | MSD radix sort, 117                                                            |
| algorithm analysis, 36, see also          | multiplication, 7                                                              |
| running time, 36                          | multiway mergesort, 119                                                        |
| amortized, 60, 135, 158, 203              | quicksort, 108, 114                                                            |
| accounting method, 68                     | dynamic programming, <b>243</b> , <mark>261</mark>                             |
| binary counter, 70                        | Bellman–Ford algorithm, 206                                                    |
| deamortization, 70                        | changing money, 245                                                            |
| general definition, 71                    | knapsack, 243, 245                                                             |
| operation sequence, 71                    | matrix products, chained, 245                                                  |
| potential method, 68                      | minimum edit distance, 245                                                     |
| token, <b>68</b>                          | principle of optimality, 243, 246                                              |
| unbounded array, 66                       | shortest paths, 193                                                            |
| universality of potential method, 73      | evolutionary algorithm, <b>259</b> , 262                                       |

| greedy, 101, <b>239</b> , 257, 261                                                   | Aragon, S. R., 165                         |
|--------------------------------------------------------------------------------------|--------------------------------------------|
| changing money, 245                                                                  | arbitrage, 207                             |
| cycle detection, 51                                                                  | Arge, L., 123                              |
| Dijkstra's algorithm, 196                                                            | arithmetic, 26                             |
| Jarník–Prim algorithm, 219                                                           | arithmetics, 24                            |
| knapsack, 239, 240                                                                   | array, 26, <b>26</b> , 59                  |
| Kruskal's algorithm, 221                                                             | access [·], <b>66</b>                      |
| machine scheduling, 241                                                              | associative, 81                            |
| local search, <b>249</b> , 262                                                       | find, <b>82</b>                            |
| hill climbing, 250                                                                   | forall, <b>82</b>                          |
| relaxing constraints, 256                                                            | insert, <b>82</b>                          |
| restarts, 259                                                                        | remove, <b>82</b>                          |
| simplex algorithm, 250                                                               | circular, <b>75</b> , 201                  |
| simulated annealing, 252                                                             | growing, 66                                |
| tabu search, 258                                                                     | popBack, 66                                |
| threshold acceptance, 258                                                            | pushBack, 66                               |
| lookup table, 203                                                                    | reallocate, 66                             |
| preprocessing, 34, 100                                                               | shrinking, 66                              |
| random sampling, 120, 232                                                            | size, <b>66</b>                            |
| randomized, <b>45</b> , 92, 125, 1 <mark>65, 226</mark> , 262                        | sorting, 111                               |
| Las Vegas, <b>48</b> , 85, 108, 114                                                  | unbounded, 170                             |
| Monte Carlo, <b>48</b> , 101                                                         | assertion, 32                              |
| recursion, 7, 9, 53, 104, 108, 113, 114,                                             | assignment, 28                             |
| 117, 131, 178, 246                                                                   | asymptotic, 11, 20, <b>21</b> , 25         |
| result checking, 6, <b>33</b> , 101, 198<br>systematic search, <b>246</b> , 248, 261 | Ausiello, G., 54                           |
| constraint programming, 248, <b>262</b>                                              | average case, see under running time       |
| ILP solving, 248                                                                     | AVL tree, <i>see under</i> sorted sequence |
| iterative deepening, 248                                                             | AWK, 81                                    |
| knapsack, 246                                                                        |                                            |
| use of sorting, 34, 99–101, 125, 172, 239                                            | B (block size), 25                         |
| algorithm engineering, <b>1</b> , 5, 10, 11, 92, 95,                                 | B-tree, 163                                |
| 111, 120, 123, 125, 163, 199, 209,                                                   | bandwidth, 25                              |
| 257, 261                                                                             | base,                                      |
| alignment, 8, 163                                                                    | Bast, H., 212                              |
| all-pairs shortest path, see under                                                   | Bayer, R., 163                             |
| shortest path                                                                        | Beier, R., 245                             |
| allocate, 27                                                                         | Bellman, R., 206                           |
| Alon, N., 97                                                                         | Bellman-Ford algorithm, see under          |
| amortized, see under algorithm analysis                                              | shortest path                              |
| analysis, see also algorithm analysis                                                | Bender, M. A., 165                         |
| ancestor, 52                                                                         | Bentley, J. L., 124                        |
| AND, <b>24</b>                                                                       | Bertsekas, D. P., 262                      |
| Andersson, A, 125                                                                    | best case, see under running time          |
| antisymmetric, <b>264</b>                                                            | best-first branch-and-bound, 128           |
| Applegate, D. L., 230                                                                | bin packing, 146, 242                      |
| approximation algorithm, 217, <b>240</b>                                             | binary heap, see under priority queue      |
| approximation ratio, 240                                                             | binary operation, 24                       |
| Aragon, C. R., 257                                                                   | binary search, <i>see under</i> searching  |
| <del>-</del>                                                                         |                                            |

| binary search tree, see under               | Cayley, A., 174                                      |
|---------------------------------------------|------------------------------------------------------|
| sorted sequence                             | census, 99                                           |
| binomial coefficient, 270                   | certificate, see algorithm design                    |
| binomial heap, see under priority queue     | certifying algorithm, 33                             |
| binomial tree, 137                          | changing money, 245                                  |
| bisection method, 35                        | characteristic function, 54                          |
| bit operation, 24                           | Chase, S., 123                                       |
| Bixby, E. E., 230                           | Chazelle, B., 166, 232                               |
| Blelloch, G. E., 125                        | checksum, 6                                          |
| block, <i>see</i> memory block              | Cheriyan, J., 189                                    |
| Blum, N., 124, 165                          | Cherkassky, B., 214                                  |
| Boolean formula, 242                        | Chernoff bound, 122, 269                             |
| Boolean value, <b>26</b>                    | chess, 81                                            |
| Boost, 57                                   | child, 52                                            |
| Bellman–Ford algorithm, 214                 | Chvátal, V., 230                                     |
| Dijkstra's algorithm, 214                   | class, 26, 27, <b>31</b>                             |
| graph, 173                                  | clique, see under graph                              |
| graph traversal, 189                        | clock cycle, 25                                      |
| union–find, 231                             | clustering, 217                                      |
| Boruvka, O., 231                            | Coffman, E. G., 146                                  |
| Botelho, F., 97                             | Cohen-Or, D., 174                                    |
| bottleneck shortest path, 217               | collision, 82                                        |
| bottom-up heap operation, 131               | combinatorial search, 81                             |
| bounded array, 59                           | comparison, 24                                       |
| branch, 24                                  | three-way, 34, 108, 109                              |
| branch prediction, 125, 162                 | two-way, 35                                          |
| branch-and-bound, 128, 246                  | comparison-b <mark>a</mark> sed algorithm, 34, 106   |
| branch-and-cut, 249                         | competitive ratio, 242                               |
| Bro Miltersen, P., 97                       | compiler, 3, 26, 58, 81, 123                         |
| Brodal, G., 141, 143                        | symbol table, 81                                     |
| Brown, M. R., 79                            | comp <mark>lex number, 31, 1</mark> 00               |
| Brown, R., 143                              | com <mark>ple</mark> xity, 24, see also running time |
| Buchsbaum, A., 232                          | com <mark>pl</mark> exity theory, 5 <mark>4</mark>   |
| bucket, 121                                 | composite data structure, 27                         |
| bucket sort, see under sorting              | composite type, 26                                   |
|                                             | computation, model of, 24                            |
| C, 26                                       | concave function, 200, 265                           |
| C++, 17, 26, 31, 57, 78, 96, 123, 142, 164, | conditional branch instruction, 125                  |
| 173, 214, 231                               | conditional statement, 28                            |
| cache, 24                                   | cone, 251                                            |
| limited associativity, 123                  | congruent, 264                                       |
| cache-oblivious, 142, 165                   | constant, 24                                         |
| calendar queue, see under priority queue    | constant factor, 21, 25                              |
| call by reference, 29                       | constraint, 235                                      |
| call by value, 29                           | constraint programming, see under                    |
| carry, 1, 2                                 | algorithm design, systematic search                  |
| Carter, J., 97                              | contract, 32                                         |
| cascading cut, 138                          | convex, 265                                          |
| casting out nines, 6                        | convex polytope, 251                                 |
|                                             |                                                      |

| Cook, W. J., 18, 230                   | Dijkstra's algorithm, see under         |
|----------------------------------------|-----------------------------------------|
| cooling schedule, 254                  | shortest path                           |
| coprocessor, 25                        | Dijkstra, E., 196, 219                  |
| core, 25                               | discrete-event simulation, 128          |
| correctness, 31                        | disk, see hard disk                     |
| cost vector, 235                       | dispose, 27                             |
| crossover operation, 260               | distributed system, 25                  |
| C#, 26                                 | div, 24                                 |
| cuneiform script, 59                   | division (integer), 6                   |
| cycle, 50                              | Driscoll, J., 166                       |
| Hamiltonian, 50, 54                    | dynamic programming, see under          |
| simple, <b>50</b>                      | algorithm design                        |
| testing for, <b>51</b>                 | dynamic tree, 222                       |
| testing for, 61                        |                                         |
| DAG, see graph, directed, acyclic      | edge, <b>49</b>                         |
| Dantzig, G. B., 235                    | associated information, 167             |
| data dependency, 24                    | backward, 175, 179                      |
| data struct. inv., see under invariant | contraction, 189                        |
| data structure, VII                    | cost, <b>50</b>                         |
|                                        | cross, 175, 179, 181                    |
| data type, see type                    | crossing, 51                            |
| database, 147, 163                     | forward, 175, 179                       |
| database join, 81                      | parallel, 167, 173                      |
| decision problem, 54                   | reduced cost, 207, see also             |
| declaration, <b>26</b> , 29            | node potential                          |
| implicit, 29                           | tree, 175, 179                          |
| decrement (), <b>28</b>                | weight, <b>50,</b> 167                  |
| degree, 49                             | edge contraction, 226                   |
| Delaunay triangulation, 232            | edge query, 168, 171                    |
| Demaine, E. D., 165                    | edgeArray, 168                          |
| Dementiev, R., 124, 125, 166, 225      | efficiency, see running time            |
| deque, <b>75</b> , 79                  | Eiffe <mark>l, 5</mark> 6               |
| first, <b>75</b>                       | eight-queens problem, 248, 256          |
| last, <b>75</b>                        | element, <b>26</b> , 99                 |
| popBack, <b>75</b>                     | empty sequence $\langle \rangle$ , 27   |
| pushFront, <b>75</b>                   | equals (=), <b>24</b>                   |
| pushBack, <b>75</b>                    | equivalence relation, 265               |
| pushFront, <b>75</b>                   | Eratosthenes, 31                        |
| dereference, 27                        | event, <b>266</b>                       |
| descendant, 52                         | evolutionary algorithm, see under       |
| design by contract, 32                 | algorithm design                        |
| deterministic algorithm, see under     | exchange argument, 219, 239             |
| algorithm design                       | exclusive OR (⊕), 24                    |
| Devroye, L., 148                       | execution time, see running time        |
| dictionary, 81, 99                     | existence problem, 233                  |
| diet problem, 235                      | expected value, 41, 266                 |
| Dietzfelbinger, M., 97                 | exponential search, 35                  |
| digit, 1                               | external memory, see also machine model |
| digraph, see graph, directed           | building heap, 132                      |
| <del>-</del> -                         | = -                                     |

| 1 1 1 100                                |                                               |
|------------------------------------------|-----------------------------------------------|
| lower bound, 120                         | generic methods, 233                          |
| merging, 119                             | generic programming, <b>31</b> , 173          |
| MST, 225                                 | genome, 259                                   |
| parallel disks, 120, 125                 | geometric series, see under sum               |
| priority queue, 139                      | geometry, 252                                 |
| queue, 76                                | GMP, 17                                       |
| scanning, 119                            | Goldberg, A., 205, 212, 214                   |
| semiexternal algorithm, 226              | Goodrich, M. T., 174                          |
| sorting, 118, 120, 124                   | Graefe, G., 163                               |
| stack, 76                                | Graham, R. L., 40, 58, 241                    |
|                                          | graph, 49                                     |
| Fakcharoenphol, J., 215                  | 2-edge-connected components, 187              |
| false, 24                                | adjacency array, 168                          |
| Farach-Colton, M., 165                   | adjacency list, 170                           |
| fast memory, 25                          | adjacency matrix, 171                         |
| ferry connections, 217                   | undirected, 171                               |
| Fibonacci, L., 135                       | average degree, 228                           |
| Fibonacci heap, see under priority queue | BFS, <b>176</b> , 192                         |
| field (algebraic), 86, 265               | implementation, 188                           |
| field (of variable), 27                  | biconnected components, 188, 189              |
| FIFO queue, <b>74</b> , 177              | bidirected, <b>49</b> , 167, 170              |
| external-memory, 76                      | bipartite, <b>34</b> , 174                    |
| first, <b>74</b>                         | breadth-first search, see BFS                 |
| popFront, <b>74</b>                      | Cayley, 174                                   |
| pushBack, <b>74</b>                      | citation network, 167                         |
| using circular array, 75                 | clique, <b>54</b> , 55                        |
| using two stacks, 75                     | coloring, 3 <mark>4, 54</mark> , 55, 255, 257 |
| file, 27                                 | fixed-K annealing, 258                        |
| filing card, 145                         | Kempe chain annealing, 255                    |
| Flajolet, P., 40                         | penalty function annealing, 256               |
| Fleischer, R., 142                       | XRLF greedy algorithm, 257                    |
| floating-point, <b>24</b> , 56, 203      | co <mark>m</mark> munication network, 175     |
| flow, 237                                | co <mark>m</mark> plete, 54                   |
| Floyd, R. W., 58, 124                    | component, 50                                 |
| for, <b>28</b>                           | compression, 174                              |
| Ford, L. R., Jr., 206                    | connected components, 50, 177                 |
| forest, 51                               | construction, 168                             |
| Fredkin, E., 166                         | conversion, 168, 169                          |
| Fredman, M. L., 97, 135, 143             | counting paths, 171                           |
| frequency allocation, 258                | cut, 172, 218                                 |
| Frigo, M., 142                           | cycle detection, 170                          |
| function object, 96                      | DAG, see graph, directed, acyclic (DAG)       |
| function pointer, 123                    | dense, 171                                    |
| Funke, S., 212                           | depth-first search, see DFS                   |
|                                          | DFS, 175, <b>178</b> , 206                    |
| Gabow, H., 189                           | backtrack, 178                                |
| Gärtner, B., 262                         | init, 178                                     |
| garbage collection, <b>57</b>            | root, 178                                     |
| Garey, M. R., 54, 146                    | traverseNonTreeEdge, 178                      |
|                                          |                                               |

traverseTreeEdge, 178 strongly connected components, 50, 175, diameter, 209 181 closed, 183 directed, 49 acyclic (DAG), 50, 51, 52, 180 implementation, 188 invariant, 182 dynamic, 168, 170 more algorithms, 189 ear decomposition, 189 open, 183 edge, see under edge subgraph (induced), 50 edge sequence, 168, 221 topological sorting, 180, 195 exploration, see graph traversal transitive closure, 177 face, 174 traversal, 175 grid, 172 triconnected components, 189 hypergraph, 174 undirected, 49 input, 168 vertex, see node interval graph, 17 visitor, 189 interval-, 100 graphics processor, 25 Kempe chain, 255 greater than (>), 24 layer, 176 greedy algorithm, see under algorithm linked edge objects, 170 design minimum spanning tree, Grossi, R., 166 MST group, 174 MST, see MST grouping, 100 multigraph, 167, 173 growth rate, 20 navigation, 168 Guibas, L. J., 166 negative cycle, see under shortest path network design, 217 Hagerup, T., 125 node, see node half-space, 25 output, 168 Halperin, S., 232 planar, 51, 174 Hamilton, W. R., 50 4-coloring, 255 Han, Y., 125, 143 5-coloring, 256 handle, **26**, 60, 128, Handler, G., 215 embedding, 189 testing planarity, 189 hard disk, 25 random, 208, 257 harmonic sum, see under sum random geometric graph, 257 Harrelson, C., 212 representation, 167 hash function, 82 reversal information, 168 hash table, see hashin SCC, see graph, strongly connected hashing, **81**, 100 component closed, 90 shortest path, see shortest path large elements, 96 shrunken graph, 182 large keys, 96 sparse, 170 linear probing, 83, 90 static, 168 cyclic, 91 Steiner tree, 228 find, 90 2-approximation, 228 insert. 90 street network, 51 remove, 90 strongly connected component unbounded, 91 certificate, 187 open, 90 open, 182 perfect, 92

stack, 79 Konheim, A. G., 165 Korf, R. E., 248 TreeMap, 164 Korst, J., 255 TreeSet, 164 vector, 79 Korte, B., 232 JDSL, 57 Kosaraju, S. R., 189 Dijkstra's algorithm, Kothari, S., 123 graph, 174 Kruskal, J., 221 graph traversal, 189 MST, 231 Landis, E. M., 165 PriorityQueue, 147 Larsen, P.-A., 163 Jiang, T., 125 Las Vegas algorithm, see under <mark>14</mark>6, 257 Johnson, D. S., 54 algorithm design, randomized jump, 24 latency, 25 Lawler, E. L., 230 Kaligosi, K., 125 leading term, 22 Kaplan, H., 143 leaf, 52 LEDA, 17, 57 Karatsuba, A., 9 Karger, D., 232 Bellman-Ford algorithm, 214 Karlin, A., 97 bounded stack, 78 Karmakar, N., 237 Dijkstra's algorithm, 214 Karp, R., 230 graph, 173 Katajainen, J., 79, 141 graph traversal, 188 Katriel, I., 232 *h\_array*, 96 Kellerer, H., 233 list, 78 Kempe, A. B., 256 map, 9 Kempe chain, see under graph MST, 231 Kettner, L., 124, 166  $node\_pq, 21$ key, 82, 99, 127 priority queue, 142 queue, 78 Khachian, L., 237 King, V., 232 sortseq, 164 Klein, P., 232 stack. knapsack, 54, 191 static graph, 173 union-find, 231 knapsack problem, 233 2-approximation (round), 240 Lee, L. W., 173 left-to-right maximum, 42, 45, 110, 200 as an ILP, 238 Leiserson, C. E., 125, average case, 245 branch-and-bound algorithm, 246 Lenstra, J. K. less than (<), 24 dynamic programming, 243 Levenshtein distance, 245 by profit, 245 evolutionary algorithm, 260 Levin, D., 174 fractional, 238, 239, 247 lexicographic order, 100, 265 fractional solver, 239 Li, M., 125 greedy algorithm, 240 linear algebra, 171, 252 local search, 250 linear order, 99, 215, **265** simulated annealing, 255 linear program (LP), 234 use of, 233 fractional solution, 238 knot, 59 integer (ILP), 236, 238 Knuth, D., 40, 58, 97, 125 0-1 ILP, 238, 248 Komlos, J., 97 branch-and-cut, 249

| knapsack, 238                               | load instruction, 24                            |
|---------------------------------------------|-------------------------------------------------|
| pigeonhole principle, 242                   | local search, <i>see under</i> algorithm design |
| set covering, 239                           | locate, see under sorted sequence               |
| maximum flow, 237                           | logarithm, 264                                  |
| minimum-cost flow, 237                      | logical operations, 24                          |
| mixed integer (MILP), 238                   | loop, <b>28</b> , 36                            |
| relaxation of ILP, 238                      | loop fusion, 3                                  |
| rounding, 238                               | loop invariant, see under invariant             |
| shortest path, 236                          | lower bound, 241                                |
| simplex algorithm, 250                      | "breaking", 116                                 |
| smoothed analysis, 262                      | element uniqueness, 108                         |
| solver, 262                                 | external sorting, 120                           |
| strict inequality, 251                      | minimum, 107                                    |
| tight inequality, 251                       | pairing heap priority queue, 143                |
| linearity of expectations, 41, 85, 86, 110, | sorting, 106                                    |
| 228, <b>267</b>                             | lower-order term, 22                            |
| list, 27, 59, 83, 170                       |                                                 |
| blocked, 76, 106, 118                       | LP, see linear program                          |
| bulk insert, 105                            | Lucas, E., 75<br>Lumsdaine, A., 173             |
| circular, 136, 170                          | · · · · · · · · · · · · · · · · · · ·           |
| concat, 64, 65                              | Lustig, I. J., 262                              |
| concatenate, 60, 65                         |                                                 |
| doubly linked, <b>60</b> , 145              | M (size of fast memory), 25                     |
| dummy item, <b>61</b> , 170                 | machine instruction, see instruction            |
| empty, 61                                   | machine model, 21, 23                           |
| find, 63, 65                                | accurate, 25                                    |
| findNext, 64, 65                            | complex, 25                                     |
| first, 64, 65                               | external m <mark>em</mark> ory, 25              |
| head, 64, 65                                | parallel, <b>24</b> , <b>25</b>                 |
| insert, <b>62</b> , 64, 65                  | RAM, <b>23</b> , 26                             |
| interference between ops., 64               | real <mark>, 24</mark>                          |
| invariant, 60                               | se <mark>que</mark> ntial, 23                   |
| isEmpty, 64, 65                             | si <mark>m</mark> ple, 25                       |
| last, 64, 65                                | von Neumann, 23                                 |
| linked, 60                                  | word, 125                                       |
| makeEmpty, 64, 65                           | machine program, 24, 26                         |
| memory management, 61, 64                   | machine scheduling, 241                         |
| move item, <b>61</b>                        | decreasing-size algorithm, 242                  |
| popBack, 64                                 | online algorithm, 241                           |
| popFront, 64, 65                            | shortest-queue algorithm, <b>241</b>            |
| pushBack, 64, 65                            | machine word, 23, 24                            |
| pushFront, 64, 65                           | Maggs, B. M., 125                               |
| remove, 61, 64, 65                          | makespan, 241                                   |
| rotation, 64                                | map coloring, 255                               |
| singly linked, 65, 95                       | Markov, A., 48                                  |
| size, <b>64</b>                             | Markov's inequality, see under                  |
| sorting, 105                                | inequality                                      |
| splice, <b>61</b> , 65                      | Martello, S., 233                               |
| swapping sublists, <b>64</b>                | Martinez, C., 124                               |
|                                             |                                                 |

| master theorem, see under algorithm        | MST, <b>217</b>                                         |
|--------------------------------------------|---------------------------------------------------------|
| analysis 👠                                 | 2-approximation of TSP, 230                             |
| mating, 260                                | Boruvka's algorithm, 231                                |
| Matousek, J., 262                          | clustering, 217, 232                                    |
| matrix, 171                                | cut property, <b>218</b> , 221                          |
| matrix products, chained, 245              | cycle property, 219, 221, 232                           |
| Mauer, D., 58                              | Euclidean, 232                                          |
| maximization problem, 233                  | external memory, 225                                    |
| maximum flow, 237                          | Held-Karp lower bound, 230                              |
| McCreight, E. M., 163                      | Jarník-Prim algorithm, 219                              |
| McGeoch, L. A., 257                        | maximum-cost spanning tree, 218                         |
| McIlroy, M. D., 124                        | parallel, 232                                           |
| median, 114, see also selection, 265       | semiexternal Kruskal algorithm, 226                     |
| Mehlhorn, K., 79, 97, 165, 166, 189, 201,  | streaming algorithm, 222                                |
| 209, 215, 229                              | uniqueness conditions, 219                              |
| Mehnert, J., 166                           | use of, 217, 228, 232                                   |
| member variable, 31                        | multicore processor, 25                                 |
| memcpy, 78                                 | multigraph, 167, 173                                    |
| memory access, 24                          | multikey quicksort, 113                                 |
| memory block, 25                           | multiplication (integer)                                |
| memory cell, 23, see also machine word     | Karatsuba, 9                                            |
| memory management, 27                      | refined, 12                                             |
| memory size, 24                            | recursive, 7                                            |
| Mendelson, R., 143                         | school method, 1, 3                                     |
| mergesort, see under sorting               | use of, 1                                               |
| merging, 103, 244                          | multithreading, 25                                      |
| external, 119                              | mutation, 259                                           |
| multiway, 119                              |                                                         |
| Meyer auf der Heide, F., 97                | Näher, S., 166, 171                                     |
| Meyer, B., 56                              | Nemhauser, G., 244, 248                                 |
| Meyer, U., 189, 205, 214                   | network, 25, see also graph                             |
| Michel, L., 262                            | co <mark>m</mark> munication net <mark>w</mark> ork, 49 |
| minimization problem, 233                  | de <mark>s</mark> ign, 217                              |
| minimum edit distance, 245                 | Neubert, K. S., 125                                     |
| minimum spanning forest, see               | Nilsson, S., 125                                        |
| MST                                        | node, <b>49</b>                                         |
| minimum spanning tree, see                 | active, 178                                             |
| MST                                        | associated info., 167                                   |
| mobile device, 25                          | depth, 52, 176                                          |
| mod, 24                                    | dfsNum, 178                                             |
| modulo, 7, <b>264</b>                      | finishing time, 178                                     |
| Monte Carlo algorithm, see under           | interior, 52                                            |
| algorithm design, randomized               | marked, 178                                             |
| Moret, B., 231                             | numbering, 167                                          |
| Morris, R., 97                             | ordering relation (≺), N79                              |
| most significant distinguishing index, 202 | potential, <b>207</b> , 211, 230                        |
| move-to-front, 44                          | reached, 176, 197                                       |
| msd, see most significant distinguishing   | representative, 177, 182                                |
| index                                      | scanned, 196                                            |

| NodeArray, 168, 173 Noshita, K., 200 NOT, 24 NP, 53 NP+complete, 54 NP-hard, 55, 238 numeric type, 26                                                                                                                                                                                                                                          | Peterson, W. W., 90<br>Petrank, E., 97<br>Pettie, S., 143, 232<br>Pferschy, U., 233<br>pigeonhole principle, 242<br>pipelining, 4<br>Pisinger, D., 233<br>pivot, <b>108</b> , 121                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $O(\cdot)$ , 21<br>$o(\cdot)$ , 21<br>object, 26<br>object-oriented, 31<br>objective function, 233<br>of (in type declaration), 26, 27, 31<br>Ofman, Y., 9<br>$\Omega(\cdot)$ , 21<br>$\omega(\cdot)$ , 21<br>online algorithm, 44, 241<br>optimization, 233<br>optimization problem, 56, 233<br>OR, 24<br>Orlin, J., 201<br>oversampling, 121 | selection, 111, 124 Plaxton, C. G., 125 pointer, 26 polynomial, 22, 101, see also under running time polytope, 251 population, 259 postcondition, 32 potential function, see node, potential powers (of numbers), 32 Pratt, V. R., 124 precedence relation, 49 precondition, 32 predecessor, 60, 60 Priebe, V., 209 |
| P, 53<br>Pagh, R., 97<br>pair, 27                                                                                                                                                                                                                                                                                                              | Prim. R. C., 219 Prim's algorithm, see MST, Jarník–Prim algorithm prime number, 31, 86, 101, <b>265</b>                                                                                                                                                                                                             |
| pairing heap, <i>see under</i> priority queue parallel assignment, 28 parallel processing, 24, <b>25</b> , 121, 214, 232, 259, 262                                                                                                                                                                                                             | abundance, 88 primitive operation full adder, 1 product, 2                                                                                                                                                                                                                                                          |
| parameter, <b>29</b> actual, 29 formal, 29                                                                                                                                                                                                                                                                                                     | principle of optimality, <b>243</b> , 246<br>priority queue, <b>127</b><br>addressable, <b>128</b> , 133, 198                                                                                                                                                                                                       |
| parameterized class, <b>31</b> parent, <b>52</b> Pareto, V., 244                                                                                                                                                                                                                                                                               | binary heap, 129, 199<br>addressable, 129, 133<br>bottom up delete Min, 142                                                                                                                                                                                                                                         |
| Pareto-optimal, 244, 261<br>parser, 53<br>partition, 222                                                                                                                                                                                                                                                                                       | building, 131<br>bulk insertion, 133<br>deleteMin, 131                                                                                                                                                                                                                                                              |
| Pascal, 26 Patashnik, O., 40, 58 path, <b>50</b> simple, <b>50</b>                                                                                                                                                                                                                                                                             | insert, <b>130</b> invariant, 129 siftDown, <b>131</b> siftUp, <b>130</b>                                                                                                                                                                                                                                           |
| Perl, 81<br>permutation, 42, 100, 101, 106<br>random, 42, 45                                                                                                                                                                                                                                                                                   | binomial heap, 137<br>bounded, 129<br>bucket, 143                                                                                                                                                                                                                                                                   |
| persistent data structure, 166<br>Peru, 59                                                                                                                                                                                                                                                                                                     | bucket queue, <b>201</b> invariant, 202                                                                                                                                                                                                                                                                             |

| calendar queue, 143                             | functional, 105                           |
|-------------------------------------------------|-------------------------------------------|
| decrease key, <b>128</b> , 199                  | logical, 105                              |
| deleteMin, <b>127</b>                           | programming model, see machine model      |
| double-ended, 156                               | Prokop, H., 142                           |
| éxternal, 139                                   | pseudo-polynomial algorithm, 245          |
| fat heap, 143                                   | pseudocode, 26, 56                        |
| Fibonacci heap, 135, 199, see also              | Puget, JF., 262                           |
| priority queue, heap-ordered forest             | Pugh, W., 165                             |
| decreașeKey, <mark>138</mark>                   |                                           |
| deleteM <mark>in, <b>136</b></mark>             | quartile, 114, see also selection         |
| item, <b>136</b>                                | queue, 27, 170, see also FIFO             |
| rank, <b>136</b>                                | quickselect, see under selection          |
| heap-ordered fo <mark>re</mark> st, <b>133</b>  | quicksort, see under sorting              |
| cut, <b>133</b>                                 | quipu, <b>59</b>                          |
| decreaseKey, <b>133</b>                         |                                           |
| deleteMin, 133                                  | radix sort, see under sorting             |
| insert, 133                                     | Radzik, T., 214                           |
| invariant, 133                                  | RAM model, see under machine model        |
| link, <b>133</b>                                | Ramachandran, S., 142                     |
| merge, 135                                      | Ramachandran, V., 232                     |
| new tree, 133                                   | Raman, R., 125                            |
| remove, 135                                     | Ranade, A., 123                           |
| insert, <b>128</b>                              | random experiment, 266                    |
| integer, 142, 143, <b>201</b>                   | random number, 46                         |
| item, 133                                       | random source, 57                         |
| memory management, 141                          | random variable, 41, <b>266</b>           |
| merge, <b>128</b>                               | independe <mark>nt, 268</mark>            |
| minimum, <b>127</b> , 130, 133                  | indicator, 266                            |
| monotone, 128, 143, 198, <b>201</b>             | product, 268                              |
| naive, 129, 199                                 | randomized algorithm, see under           |
| pairing heap, 135, see also                     | algorithm design; algorithm analysis      |
| priority q., heap-ordered forest                | rank <mark>, 1</mark> 03, <b>265</b>      |
| complexity, 143                                 | Rao, \$., 215                             |
| three-pointer items, 135                        | realloe, 78                               |
| two-pointer items, 135                          | recombination, 259, 260                   |
| radix heap, 201                                 | record, see composite type                |
| base <i>b</i> , 204                             | recurrence relation, 9, 16, 35, 37, 58    |
| remove, 128                                     | recursion, 29, see also under             |
| thin heap, 143                                  | algorithm design; algorithm               |
| unbounded, 129                                  | analysis                                  |
| use of, 102, 120, 125, 128, 198, 226            | elimination, 113, 141                     |
| probability, 266                                | red-black tree, see under sorted sequence |
| probability space, 41, <b>266</b>               | reduction, 55                             |
| problem instance, 20                            | reflexive, 265                            |
| procedure, 29                                   | register, 24, <b>24</b> , 25              |
| profit vector, see cost vector                  | Reif, J., 189                             |
| program, 24                                     | relation, 265                             |
| program analysis, <i>see</i> algorithm analysis | antisymmetric, 264                        |
| programming language, 26, 28, 58                | equivalence, 265                          |
|                                                 |                                           |

| reflexive, 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | range, 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| symmetric, 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | shortest path, see under shortest path                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| transitive, 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sedgewick, R., 40, 125, 142, 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| weakly antisymmetric, 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Seidel, R., 165, 174, 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| relaxation, 256, see also under                                                                                                                                                                                                                                                                                                                                                                                                                                                          | selection, 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| linear program                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | deterministic, 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| remainder, 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | quickselect, 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Remez, O., 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | streaming, 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| removing from a sequence, 60                                                                                                                                                                                                                                                                                                                                                                                                                                                             | self-loop, 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| repeat, 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | semicolon (in pseudocode), 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| result checking, see under algorithm design                                                                                                                                                                                                                                                                                                                                                                                                                                              | sentinel, 63, 95, 102, 106, 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| return, 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sequence, 27, 27, 59, 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Rivest, R. L., 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | overview of operations, 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| road map, 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | space efficiency, 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Robertson, N., 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | series, see sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Robins, G., 229                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | server, 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Rodeh, M., 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | set, <b>27</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| root, see under tree                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | set covering, 239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Roura, S., 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Seymour, P., 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| run, see under sorting                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S <mark>h</mark> apiro, H. D., 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| running time, 20, <b>24</b> , 28, 36, see also                                                                                                                                                                                                                                                                                                                                                                                                                                           | shared memory, 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| algorithm analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sharir, M., 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| average case, <b>20</b> , 41                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Shell sort, see under sorting                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| best case, <b>20</b> , 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sheperdson, J., 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| polynomial, 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | shift, 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| worst case, 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Shmoys, D. B., 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | shortest path, 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| worst case, <b>20</b> sample space, <b>266</b>                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | shortest path, <b>191</b><br>acyclic, 1 <b>92</b><br>ALD (average linear Dijkstra), <b>205</b> , 214                                                                                                                                                                                                                                                                                                                                                                                               |
| sample space, 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | shortest path, <b>191</b> acyclic, 192 ALD (average linear Dijkstra), <b>205</b> , 214 all-pairs, 191                                                                                                                                                                                                                                                                                                                                                                                              |
| sample space, <b>266</b> Sanders, D. P., 255 Sanders, P., 124, 125, 141, 142, 166, 212, 214, 215, 225, 232                                                                                                                                                                                                                                                                                                                                                                               | shortest path, 191 acyclic, 192 ALD (average linear Dijkstra), 205, 214 all-pairs, 191 all-pairs with negative costs, 207                                                                                                                                                                                                                                                                                                                                                                          |
| sample space, <b>266</b><br>Sanders, D. P., 255<br>Sanders, P., 124, 125, 141, 142, 166, 212,                                                                                                                                                                                                                                                                                                                                                                                            | shortest path, 191 acyclic, 192 ALD (average linear Dijkstra), 205, 214 all-pairs, 191 all-pairs with negative costs, 207 arbitrary edge costs, 206                                                                                                                                                                                                                                                                                                                                                |
| sample space, <b>266</b> Sanders, D. P., 255 Sanders, P., 124, 125, 141, 142, 166, 212, 214, 215, 225, 232                                                                                                                                                                                                                                                                                                                                                                               | shortest path, 191 acyclic, 192 ALD (average linear Dijkstra), 205, 214 all-pairs, 191 all-pairs with negative costs, 207 arbitrary edge costs, 206 as a linear prograph, 236                                                                                                                                                                                                                                                                                                                      |
| sample space, <b>266</b> Sanders, D. P., 255 Sanders, P., 124, 125, 141, 142, 166, 212, 214, 215, 225, 232 Santos, R., 174 Sarnak, N., 166 SAT solver, 242                                                                                                                                                                                                                                                                                                                               | shortest path, 191 acyclic, 192 ALD (average linear Dijkstra), 205, 214 all-pairs, 191 all-pairs with negative costs, 207 arbitrary edge costs, 206 as a linear program, 236 A* search, 211                                                                                                                                                                                                                                                                                                        |
| sample space, <b>266</b> Sanders, D. P., 255 Sanders, P., 124, 125, 141, 142, 166, 212, 214, 215, 225, 232 Santos, R., 174 Sarnak, N., 166                                                                                                                                                                                                                                                                                                                                               | shortest path, 191 acyclic, 192 ALD (average linear Dijkstra), 205, 214 all-pairs, 191 all-pairs with negative costs, 207 arbitrary edge costs, 206 as a linear prograph, 236                                                                                                                                                                                                                                                                                                                      |
| sample space, <b>266</b> Sanders, D. P., 255 Sanders, P., 124, 125, 141, 142, 166, 212, 214, 215, 225, 232 Santos, R., 174 Sarnak, N., 166 SAT solver, 242 satisfiability problem, <b>54</b> satisfiable, 242                                                                                                                                                                                                                                                                            | shortest path, 191 acyclic, 192 ALD (average linear Dijkstra), 205, 214 all-pairs, 191 all-pairs with negative costs, 207 arbitrary edge costs, 206 as a linear program, 236 A* search, 211 Bellman-Ford algorithm, 206 refined, 214                                                                                                                                                                                                                                                               |
| sample space, <b>266</b> Sanders, D. P., 255 Sanders, P., 124, 125, 141, 142, 166, 212, 214, 215, 225, 232 Santos, R., 174 Sarnak, N., 166 SAT solver, 242 satisfiability problem, <b>54</b> satisfiable, 242 Schäfer, G., 209                                                                                                                                                                                                                                                           | shortest path, 191 acyclic, 192 ALD (average linear Dijkstra), 205, 214 all-pairs, 191 all-pairs with negative costs, 207 arbitrary edge costs, 206 as a linear program, 236 A* search, 211 Bellman-Ford algorithm, 206 refined, 214 bidirectional search, 209                                                                                                                                                                                                                                     |
| sample space, <b>266</b> Sanders, D. P., 255 Sanders, P., 124, 125, 141, 142, 166, 212, 214, 215, 225, 232 Santos, R., 174 Sarnak, N., 166 SAT solver, 242 satisfiability problem, <b>54</b> satisfiable, 242 Schäfer, G., 209 Schaffer, R., 142                                                                                                                                                                                                                                         | shortest path, 191 acyclic, 192 ALD (average linear Dijkstra), 205, 214 all-pairs, 191 all-pairs with negative costs, 207 arbitrary edge costs, 206 as a linear program, 236 A*-search, 211 Bellman-Ford algorithm, 206 refined, 214 bidirectional search, 209 bottleneck, 217, 232                                                                                                                                                                                                                |
| sample space, <b>266</b> Sanders, D. P., 255 Sanders, P., 124, 125, 141, 142, 166, 212, 214, 215, 225, 232 Santos, R., 174 Sarnak, N., 166 SAT solver, 242 satisfiability problem, <b>54</b> satisfiable, 242 Schäfer, G., 209                                                                                                                                                                                                                                                           | shortest path, 191 acyclic, 192 ALD (average linear Dijkstra), 205, 214 all-pairs, 191 all-pairs with negative costs, 207 arbitrary edge costs, 206 as a linear program, 236 A*-learch, 211 Bellman-Ford algorithm, 206 refined, 214 bidirectional search, 209 bottleneck, 217, 232 by table lookup, 212                                                                                                                                                                                           |
| sample space, <b>266</b> Sanders, D. P., 255 Sanders, P., 124, 125, 141, 142, 166, 212, 214, 215, 225, 232 Santos, R., 174 Sarnak, N., 166 SAT solver, 242 satisfiability problem, <b>54</b> satisfiable, 242 Schäfer, G., 209 Schaffer, R., 142                                                                                                                                                                                                                                         | shortest path, 191 acyclic, 192 ALD (average linear Dijkstra), 205, 214 all-pairs, 191 all-pairs with negative costs, 207 arbitrary edge costs, 206 as a linear program, 236 A*-search, 211 Bellman-Ford algorithm, 206 refined, 214 bidirectional search, 209 bottleneck, 217, 232                                                                                                                                                                                                                |
| sample space, <b>266</b> Sanders, D. P., 255 Sanders, P., 124, 125, 141, 142, 166, 212, 214, 215, 225, 232 Santos, R., 174 Sarnak, N., 166 SAT solver, 242 satisfiability problem, <b>54</b> satisfiable, 242 Schäfer, G., 209 Schaffer, R., 142 scheduling, 128, 191, <b>241</b> Schevon, C., 257 Schönhage, A., 18                                                                                                                                                                     | shortest path, 191 acyclic, 192 ALD (average linear Dijkstra), 205, 214 all-pairs, 191 all-pairs with negative costs, 207 arbitrary edge costs, 206 as a linear program, 236 A*-learch, 211 Bellman-Ford algorithm, 206 refined, 214 bidirectional search, 209 bottleneck, 217, 232 by table lookup, 212                                                                                                                                                                                           |
| sample space, <b>266</b> Sanders, D. P., 255 Sanders, P., 124, 125, 141, 142, 166, 212, 214, 215, 225, 232 Santos, R., 174 Sarnak, N., 166 SAT solver, 242 satisfiability problem, <b>54</b> satisfiable, 242 Schäfer, G., 209 Schaffer, R., 142 scheduling, 128, 191, <b>241</b> Schevon, C., 257 Schönhage, A., 18 Schrijver, A., 262                                                                                                                                                  | shortest path, 191 acyclic, 192 ALD (average linear Dijkstra), 205, 214 all-pairs, 191 all-pairs with negative costs, 207 arbitrary edge costs, 206 as a linear program, 236 A*-search, 211 Bellman-Ford algorithm, 206 refined, 214 bidirectional search, 209 bottleneck, 217, 232, by table lookup, 212 constrained, 215, 246 correctness criterion, 194 DAG, 195                                                                                                                                |
| sample space, <b>266</b> Sanders, D. P., 255 Sanders, P., 124, 125, 141, 142, 166, 212, 214, 215, 225, 232 Santos, R., 174 Sarnak, N., 166 SAT solver, 242 satisfiability problem, <b>54</b> satisfiable, 242 Schäfer, G., 209 Schaffer, R., 142 scheduling, 128, 191, <b>241</b> Schevon, C., 257 Schönhage, A., 18 Schrijver, A., 262 Schultes, D., 212, 225                                                                                                                           | shortest path, 191 acyclic, 192 ALD (average linear Dijkstra), 205, 214 all-pairs, 191 all-pairs with negative costs, 207 arbitrary edge costs, 206 as a linear progrant, 236 A* search, 211 Bellman-Ford algorithm, 206 refined, 214 bidirectional search, 209 bottleneck, 217, 232 by table lookup, 212 constrained, 215, 246 correctness criterion, 194 DAG, 195 Dijkstra's algorithm, 196                                                                                                      |
| sample space, <b>266</b> Sanders, D. P., 255 Sanders, P., 124, 125, 141, 142, 166, 212, 214, 215, 225, 232 Santos, R., 174 Sarnak, N., 166 SAT solver, 242 satisfiability problem, <b>54</b> satisfiable, 242 Schäfer, G., 209 Schaffer, R., 142 scheduling, 128, 191, <b>241</b> Schevon, C., 257 Schönhage, A., 18 Schrijver, A., 262 Schultes, D., 212, 225 search tree, <i>see</i> sorted sequence                                                                                   | shortest path, 191 acyclic, 192 ALD (average linear Dijkstra), 205, 214 all-pairs, 191 all-pairs with negative costs, 207 arbitrary edge costs, 206 as a linear program, 236 A* search, 211 Bellman-Ford algorithm, 206 refined, 214 bidirectional search, 209 bottleneck, 217, 232 by table lookup, 212 constrained, 215, 246 correctness criterion, 194 DAG, 195 Dijkstra's algorithm, 196 invariant, 201                                                                                        |
| sample space, 266 Sanders, D. P., 255 Sanders, P., 124, 125, 141, 142, 166, 212, 214, 215, 225, 232 Santos, R., 174 Sarnak, N., 166 SAT solver, 242 satisfiability problem, 54 satisfiable, 242 Schäfer, G., 209 Schaffer, R., 142 scheduling, 128, 191, 241 Schevon, C., 257 Schönhage, A., 18 Schrijver, A., 262 Schultes, D., 212, 225 search tree, see sorted sequence searching, 145, see also sorted sequence                                                                      | shortest path, 191 acyclic, 192 ALD (average linear Dijkstra), 205, 214 all-pairs, 191 all-pairs with negative costs, 207 arbitrary edge costs, 206 as a linear program, 236 A* search, 211 Bellman-Ford algorithm, 206 refined, 214 bidirectional search, 209 bottleneck, 217, 232 by table lookup, 212 constrained, 215, 246 correctness criterion, 194 DAG, 195 Dijkstra's algorithm, 196 invariant, 201 edge relaxation, 194                                                                   |
| sample space, 266 Sanders, D. P., 255 Sanders, P., 124, 125, 141, 142, 166, 212, 214, 215, 225, 232 Santos, R., 174 Sarnak, N., 166 SAT solver, 242 satisfiability problem, 54 satisfiable, 242 Schäfer, G., 209 Schaffer, R., 142 scheduling, 128, 191, 241 Schevon, C., 257 Schönhage, A., 18 Schrijver, A., 262 Schultes, D., 212, 225 search tree, see sorted sequence searching, 145, see also sorted sequence binary search, 34, 56, 100, 121, 151                                 | shortest path, 191 acyclic, 192 ALD (average linear Dijkstra), 205, 214 all-pairs, 191 all-pairs with negative costs, 207 arbitrary edge costs, 206 as a linear program, 236 A* tearch, 211 Bellman-Ford algorithm, 206 refined, 214 bidirectional search, 209 bottleneck, 217, 232 by table lookup, 212 constrained, 215, 246 correctness criterion, 194 DAG, 195 Dijkstra's algorithm, 196 invariant, 201 edge relaxation, 194 geometric, 215                                                    |
| sample space, 266 Sanders, D. P., 255 Sanders, P., 124, 125, 141, 142, 166, 212, 214, 215, 225, 232 Santos, R., 174 Sarnak, N., 166 SAT solver, 242 satisfiability problem, 54 satisfiable, 242 Schäfer, G., 209 Schaffer, R., 142 scheduling, 128, 191, 241 Schevon, C., 257 Schönhage, A., 18 Schrijver, A., 262 Schultes, D., 212, 225 search tree, see sorted sequence searching, 145, see also sorted sequence binary search, 34, 56, 100, 121, 151 dynamic, 43                     | shortest path, 191 acyclic, 192 ALD (average linear Dijkstra), 205, 214 all-pairs, 191 all-pairs with negative costs, 207 arbitrary edge costs, 206 as a linear program, 236 A* tearch, 211 Bellman-Ford algorithm, 206 refined, 214 bidirectional search, 209 bottleneck, 217, 232 by table lookup, 212 constrained, 215, 246 correctness criterion, 194 DAG, 195 Dijkstra's algorithm, 196 invariant, 201 edge relaxation, 194 geometric, 215 goal-directed search, 211                          |
| sample space, 266 Sanders, D. P., 255 Sanders, P., 124, 125, 141, 142, 166, 212, 214, 215, 225, 232 Santos, R., 174 Sarnak, N., 166 SAT solver, 242 satisfiability problem, 54 satisfiable, 242 Schäfer, G., 209 Schaffer, R., 142 scheduling, 128, 191, 241 Schevon, C., 257 Schönhage, A., 18 Schrijver, A., 262 Schultes, D., 212, 225 search tree, see sorted sequence searching, 145, see also sorted sequence binary search, 34, 56, 100, 121, 151 dynamic, 43 exponential, 35, 56 | shortest path, 191 acyclic, 192 ALD (average linear Dijkstra), 205, 214 all-pairs, 191 all-pairs with negative costs, 207 arbitrary edge costs, 206 as a linear program, 236 A* tearch, 211 Bellman–Ford algorithm, 206 refined, 214 bidirectional search, 209 bottleneck, 217, 232 by table lookup, 212 constrained, 215, 246 correctness criterion, 194 DAG, 195 Dijkstra's algorithm, 196 invariant, 201 edge relaxation, 194 geometric, 215 goal-directed search, 211 hierarchical search, 212 |
| sample space, 266 Sanders, D. P., 255 Sanders, P., 124, 125, 141, 142, 166, 212, 214, 215, 225, 232 Santos, R., 174 Sarnak, N., 166 SAT solver, 242 satisfiability problem, 54 satisfiable, 242 Schäfer, G., 209 Schaffer, R., 142 scheduling, 128, 191, 241 Schevon, C., 257 Schönhage, A., 18 Schrijver, A., 262 Schultes, D., 212, 225 search tree, see sorted sequence searching, 145, see also sorted sequence binary search, 34, 56, 100, 121, 151 dynamic, 43                     | shortest path, 191 acyclic, 192 ALD (average linear Dijkstra), 205, 214 all-pairs, 191 all-pairs with negative costs, 207 arbitrary edge costs, 206 as a linear program, 236 A* tearch, 211 Bellman-Ford algorithm, 206 refined, 214 bidirectional search, 209 bottleneck, 217, 232 by table lookup, 212 constrained, 215, 246 correctness criterion, 194 DAG, 195 Dijkstra's algorithm, 196 invariant, 201 edge relaxation, 194 geometric, 215 goal-directed search, 211                          |

linear average time, 205 insert, 151 multicriteria, 215 invariant, 149 negative cycle, 192 item, 150 nonnegative edge cost, 192 locate, 150 parallel, 214 parent pointer, 161 parent pointer, 193 reduction, 161 public transportation, 19 remove, 153 query, 209 removing a range, 158 relaxing of edges, 194 splitter, 149 single-source, 191 splitting, 157 subpath, 193 adaptable, 165 tentative distance, 194 AVL tree, 165 transit node routing, 212 binary search tree, 147 degenerate, 148 tree, 193 uniqueness, 193 expected height, 148 unit edge cost, 192 implicit, 149 use of, 191, 207 insert, 147 shortest-queue algorithm, locate, 147 perfect balance, 147 shrunken graph, 182 rotation, 149 Sibeyn, J., 225 sibling, 52 selection, 161 sibling pointer, 136 cache-oblivious, 165 Siek, J. G., 173 finger search, 161 sieve of Eratosthenes, 31 first, **146**, 156 SIMD, 25, 95 nsert, 145 simplex algorithm, see under integer, 166 linear programming last, **146**, 1<mark>5</mark>6 locate, 145, 146 simulated annealing, see under merging, 161 algorithm design, local search Singler, J., 124 navigation, 14 Sipser, M., 54 persistent, 166 pr<mark>ed</mark>, **146** Sivadasan, N., 209 Sleator, D., 79, 143, 165, 166, 222 randomized search tree, 165 range searching, 156 slow memory, 25 red-black tree, 155, 164 Smith, S. J., 125 snow plow heuristic, 125 remove, 145 solution skip list, 165 feasible, 233 sparse table, 165 potential, 233 splay tree, 165 sorted sequence, 34, 145 strings, 166 succ, 146 (a,b)-tree, **149** split (node), 152 trie, 166 use of, 146, 147 amortized update cost, 158 weight-balanced tree, 160, 165 augmentation, 160 balance, 153 sorting, 99 build/rebuild, 156 almost sorted inputs, 103 concatenation, 157 bottom-up heapsort, 142 fusing, 153 bucket, 116 height, 150 comparison-based, 116

| dynamic, 102                                  | hash_multiset, 96                                      |
|-----------------------------------------------|--------------------------------------------------------|
| external, 118                                 | hash_set, 96                                           |
| flash, 125                                    | iterator, 78, 123                                      |
| heapsort, 128, 132                            | list, 78                                               |
| in-place, <b>101</b> , 111                    | map, 164                                               |
| insertion, 36, <b>102</b> , 105               | multimap, 164                                          |
| large elements, 123                           | multiset, 164                                          |
| list, 105                                     | priority_queue, 142                                    |
| lower bound, 116                              | set, 164                                               |
| mechanical, 99                                | sort, 123                                              |
| mergesort, <b>103</b> , 124                   | stack, 78                                              |
| multiway merge, 119                           | store instruction, 24                                  |
| numbers, 116, <b>116</b> , 122, 170           | Strassen, V., 18                                       |
| parallel, 121, 125                            | streaming algorithm, 115, 222                          |
| parallel disks, 125                           | string, 27, 59, 100                                    |
| quicksort, <b>108</b> , 123, <b>1</b> 24, 148 | striping, 125                                          |
| radix, <b>116</b>                             | struct, see composite type                             |
| LSD, 116                                      | Sturgis, H., 23                                        |
| MSD, <b>117</b> , 123                         | STXXL, 124, 141, 142                                   |
| random numbers, 117                           | subroutine, 29                                         |
| run formation, 119, 125                       | successor, 60, 60                                      |
| sample, <b>120</b> , 125                      | succinct data structure, 97                            |
| selection, <b>101</b> , 128                   | Sudoku, 255                                            |
| Shell sort, 125                               | sum, 58, see also under algorithm analysis             |
| small inputs, 102, 108                        | estimation by integral, 271                            |
| small subproblems, 111                        | geometric, 38, <b>270</b>                              |
| stable algorithm, <b>116</b>                  | harmonic, 43, 45, 88, 110, 200, 228, 264,              |
| strings, 113, 116                             | 270                                                    |
| use of, 34, 99–101, 125, 172, 226, 239        | Sumerian, 59                                           |
| word model, 125                               | survival of the fittest, 259                           |
| source node, 49                               | swap, 28                                               |
| spellchecking, 125                            | swee <mark>p-</mark> line algorithm, <mark>1</mark> 46 |
| Spielmann, D., 262                            | symmetric, <b>265</b>                                  |
| splitter, 121, 147                            | syntax, 26                                             |
| stack, 27, 29, 74, 75                         | Szemeredi, E., 97                                      |
| bounded, 75                                   |                                                        |
| external-memory, 76                           | table, 59                                              |
| pop, <b>74</b>                                | tablet, 59                                             |
| push, <b>74</b>                               | tabu list, see tabu search                             |
| top, <b>74</b>                                | tabu search, <i>see under</i> algorithm design,        |
| unbounded, 75                                 | local search                                           |
| statement, 28                                 | tail bound, 269                                        |
| static array, 27, 59                          | tail recursion, see recursion, elimination             |
| statistics, 114                               | Tamassia, R., 174                                      |
| Stirling's approximation, 107, 118, 270       | Tardos, E., 97                                         |
| STL, 13, 57, 164                              | target node, 49                                        |
| deque, 78                                     | Tarjan, R. E., 79, 97, 124, 135, 143, 165,             |
| hash_map, 96                                  | 166, 189, 201, 214, 222, 224, 232                      |
| hash_multimap, 96                             | telephone book, 99                                     |
|                                               |                                                        |

| template programming, 31, 123                                      | Ullmann, Z., 244                                      |
|--------------------------------------------------------------------|-------------------------------------------------------|
| Teng, S. H., 262                                                   | unary operation, 24                                   |
| termination, 33, 34                                                | unbounded array, 60, 66                               |
| $\Theta(\cdot)$ , 21                                               | undefined value ( $\perp$ ), <b>26</b>                |
| Thômas, R., 255                                                    | uniform memory, 23                                    |
| Thompson, K., 246                                                  | union-find, 222                                       |
| Thorup, M., 95, 125, 143, 214                                      | path compression, 223                                 |
| thread, 25                                                         | union by rank, 223                                    |
| threshold acceptance, see under                                    | universe $(\mathcal{U})$ , 233                        |
| algorit <mark>hm design, l</mark> ocal <mark>se</mark> arch        | upper bound, see worst case                           |
| time, see running time                                             |                                                       |
| time step, 24                                                      | Vöcking, B., 245                                      |
| Toom, A., 18                                                       | van Emde Boas layout, 165                             |
| total order, 99, 265, <b>265</b>                                   | van Emde Boas, P., 166                                |
| Toth, P., 233                                                      | Van Hentenryck, P., 262                               |
| tournament tree, 125                                               | Vanderbei, R. J., 262                                 |
| Tower of Hanoi, 75                                                 | variable, <b>26</b> , 235                             |
| Träff, J. L., 232                                                  | Vazirani, V., 232                                     |
| transitive, 265                                                    | vector (in C++), 78                                   |
| translation, 27–30                                                 | verification, 32, 103                                 |
| traveling salesman problem, <b>54</b> , <b>5</b> 5, 56, <b>230</b> | vertex, see node                                      |
| 2-exchange, 250                                                    | Vishkin, U., 189                                      |
| 3-exchange, 250                                                    | visitor, see under graph                              |
| Held-Karp lower bound, 230                                         | Vitányi, P., 125                                      |
| hill climbing, 250                                                 | Vitter, J. S., 120, 123                               |
| tree, <b>51</b> , 147                                              | von Neumann, J., 23                                   |
| depth, 52                                                          | von Neumann machine, see under                        |
| dynamic, 222                                                       | machine model                                         |
| expression tree, 53                                                | Vuillemin, J., 137                                    |
| height, 52                                                         | Vygen, J., 232                                        |
| implicitly defined, 129                                            |                                                       |
| interior node, 52                                                  | weak <mark>ly</mark> antisymmetric <mark>, 265</mark> |
| ordered, 53                                                        | Weg <mark>e</mark> ner, I., 54, 142                   |
| representation, 136                                                | Wegman, M., 97                                        |
| root, <b>52</b>                                                    | Weidling, C., 97                                      |
| sorting tree, 106                                                  | Westbrook, J., 232                                    |
| traversal, 53                                                      | while, 28                                             |
| triangle inequality, <b>230</b> , 250                              | Wickremsinghe, R., 123                                |
| trie, see under sorted sequence                                    | Wilhelm, R., 58                                       |
| triple, 27                                                         | Williams, J. W. J., 129                               |
| true, <b>24</b>                                                    | Winkel, S., 125, 142                                  |
| truth value, 24                                                    | witness, <i>see</i> algorithm design, certificate     |
| Tsitsiklis, J. N., 262                                             | Wolsey, L., 248                                       |
| TSP, see traveling salesman problem                                | word, see machine word                                |
| tuple, <b>27</b> , 100                                             | worst case, see under running time                    |
| type, <b>26</b>                                                    |                                                       |
|                                                                    | XOR (⊕), <b>24</b> , 203                              |
| Udupa, R., 123                                                     |                                                       |
| Ullman, J., 165                                                    | Zagha, M., 125                                        |
|                                                                    |                                                       |

Zang, I., 215 Zelikowski, A., 229 Ziegelmann, M., 21: Ziviani, N., 91 Zlotowski, O., 171 Zwick, U., 143, 232