國立陽明交通大學

Biological Databases: Theories and Practice

430032

Database Schema and Entity-Relationship Model

Instructor: Prof. LEE, Tzong-Yi (李宗夷)

Email: leetzongyi@nycu.edu.ctw

Professor
Institute of Bioinformatics and Systems Biology,
National Yang Ming Chiao Tung University

Outline

- Modeling
- Constraints
- E-R Diagram
- Weak Entity Sets
- Reduction to Relation Schemas
- Design Issues
- Extended E-R Features

Modeling

- A database can be modeled as:
 - a collection of entities,
 - relationship among entities.
- An entity is an object that exists and is distinguishable from other objects.
 - Example: specific person, company, event, plant
- Entities have attributes
 - Example: people have *names* and *addresses*
- An entity set is a set of entities of the same type that share the same properties.
 - Example: set of all persons, companies, trees, holidays

Entity Sets: instructor and student

instructor_ID instructor_name

76766	Crick
45565	Katz
10101	Srinivasan
98345	Kim
76543	Singh
22222	Einstein
·	

instructor

student-ID student_name

98988	Tanaka		
12345	Shankar		
00128	Zhang		
76543	Brown		
76653	Aoi		
23121	Chavez		
44553	Peltier		

student

Relationship Sets

A relationship is an association among several entities

Example:

```
44553 (Peltier) <u>advisor</u> 22222 (<u>Einstein</u>) 
student entity relationship set instructor entity
```

• A relationship set is a mathematical relation among $n \ge 2$ entities, each taken from entity sets

$$\{(e_1, e_2, ..., e_n) \mid e_1 \in E_1, e_2 \in E_2, ..., e_n \in E_n\}$$

where $(e_1, e_2, ..., e_n)$ is a relationship

• Example:

$$(44553,22222) \in advisor$$

Relationship Set: advisor

Relationship Sets (Cont.)

- An attribute can also be property of a relationship set.
- For instance, the advisor relationship set between entity sets instructor and student may have the attribute date which tracks when the student started being associated with the advisor

Relationship Sets with Attributes

Degree of a Relationship Set

- Binary relationship
 - involve two entity sets (or degree two).
 - most relationship sets in a database system are binary.
- Relationships between more than two entity sets are rare. Most relationships are binary.
- Example: students work on research projects under the guidance of an instructor.
 - relationship proj_guide is a ternary relationship between instructor, student, and project

E-R Diagram with a Ternary Relationship

Attributes

- An entity is represented by a set of attributes, that is descriptive properties
 possessed by all members of an entity set.
 - Example:

```
instructor = (ID, name, street, city, salary )
course= (course_id, title, credits)
```

- Domain the set of permitted values for each attribute
- Attribute types:
 - Simple and composite attributes.
 - Single-valued and multivalued attributes
 - Example: multivalued attribute: phone_numbers
 - Derived attributes
 - Can be computed from other attributes
 - Example: age can be obtained from date of birth

Composite Attributes

Example

The entity *instructor* contains composite, multivalued, and derived attributes.

Keys

- A super key of an entity set is a set of one or more attributes whose values uniquely determine each entity.
- A candidate key of an entity set is a minimal super key
 - *ID* is candidate key of *instructor*
 - course id is candidate key of course
- Although several candidate keys may exist, one of the candidate keys is selected to be the primary key.

E-R Diagrams

- Rectangles represent entity sets.
- Diamonds represent relationship sets.
- Attributes listed inside entity rectangle
- Underline indicates primary key attributes

Roles

- We indicate roles in E-R diagram by labeling the lines that connect diamonds to rectangles.
- Entity sets of a relationship need not be distinct
 - Each occurrence of an entity set plays a "role" in the relationship
- The labels "course_id" and "prereq_id" are called roles.

Mapping Cardinality Constraints

- Express the number of entities to which another entity can be associated via a relationship set.
- Most useful in describing binary relationship sets.
- For a binary relationship set the mapping cardinality must be one of the following types:
 - One to one
 - One to many
 - Many to one
 - Many to many

Mapping Cardinalities

Note: Some elements in A and B may not be mapped to any elements in the other set

Mapping Cardinalities

Many to one

Many to many

Note: Some elements in A and B may not be mapped to any elements in the other set

Cardinality Constraints

- We express cardinality constraints by drawing either a directed line
 (→), signifying "one," or an undirected line (−), signifying "many,"
 between the relationship set and the entity set.
- One-to-one relationship:
 - A student is associated with at most one instructor via the relationship advisor
 - A student is associated with at most one department via relationship stud_dept

One-to-One Relationship

- One-to-one relationship between an *instructor* and a *student*
 - an *instructor* is associated with at most one *student* via *advisor*
 - and a student is associated with at most one instructor via advisor

One-to-Many Relationship

- One-to-many relationship between an instructor and a student
 - an *instructor* is associated with several (including 0) *students* via *advisor*
 - a student is associated with at most one instructor via advisor

Many-to-One Relationships

- In a many-to-one relationship between an *instructor* and a *student*
 - an instructor is associated with at most one student via advisor,
 - and a *student* is associated with several (including 0) *instructors* via *advisor*

Many-to-Many Relationship

- An instructor is associated with several (possibly 0) students via advisor
- A student is associated with several (possibly 0) instructors via advisor

Participation of an Entity Set in a Relationship Set

- Total participation (indicated by double line): every entity in the entity set participates in at least one relationship in the relationship set
 - E.g., participation of section in sec_course is total
 - every section must have an associated course

- Partial participation: some entities may not participate in any relationship in the relationship set
 - Example: participation of instructor in advisor is partial

Alternative Notation for Cardinality Limits

- Cardinality limits can also express participation constraints:
 - The line with cardinality 1...1 between advisor and student means each student must have exactly one advisor.
 - The line with cardinality θ ...* between *advisor* and *instructor* means an instructor can have zero or more students.
 - The mapping cardinality is **one-to-many** from *instructor* to *student*.
 - The participation of *student* in *advisor* is **total**.

Weak Entity Sets

- An entity set that does not have a primary key is referred to as a weak entity set.
- The existence of a weak entity set depends on the existence of a identifying entity set
 - It must relate to the identifying entity set via a total, one-to-many relationship set from the identifying to the weak entity set
 - Identifying relationship depicted using a double diamond
- The discriminator (or partial key) of a weak entity set is the set of attributes that distinguishes among all the entities of a weak entity set.
- The primary key of a weak entity set is formed by the primary key of the strong entity set on which the weak entity set is existence dependent, plus the weak entity set's discriminator.

Weak Entity Sets (Cont.)

- We underline the discriminator of a weak entity set with a dashed line.
- We put the identifying relationship of a weak entity in a double diamond.
- Primary key for section (course_id, sec_id, semester, year)

Weak Entity Sets (Cont.)

• Note: the primary key of the **strong entity set** is not explicitly stored with the **weak entity set**, since it is implicit in the **identifying relationship**.

course_id	sec_id	semester	year	building	room_number	time_slot_id
BIO-101	1	Summer	2009	Painter	514	В
BIO-301	1	Summer	2010	Painter	514	A
CS-101	1	Fall	2009	Packard	101	Н
CS-101	1	Spring	2010	Packard	101	F
CS-190	1	Spring	2009	Taylor	3128	E
CS-190	2	Spring	2009	Taylor	3128	A
CS-315	1	Spring	2010	Watson	120	D
CS-319	1	Spring	2010	Watson	100	В
CS-319	2	Spring	2010	Taylor	3128	C
CS-347	1	Fall	2009	Taylor	3128	A
EE-181	1	Spring	2009	Taylor	3128	C
FIN-201	1	Spring	2010	Packard	101	В
HIS-351	1	Spring	2010	Painter	514	C
MU-199	1	Spring	2010	Packard	101	D
PHY-101	1	Fall 2023 F	all 2009 Tz	^{on} ₩Vatt§⊌n	100	A

E-R Diagram for University Enterprise

Reduction to Relation Schemas

- Entity sets and relationship sets can be expressed uniformly as *relation schemas* that represent the contents of the database.
- A database which conforms to an E-R diagram can be represented by a collection of schemas.
- For each entity set and relationship set there is a unique schema that is assigned the name of the corresponding entity set or relationship set.
- Each schema has a number of columns (generally corresponding to attributes), which have unique names.

Representing Relationship Sets

- A many-to-many relationship set is represented as a schema with attributes for the primary keys of the two participating entity sets, and any descriptive attributes of the relationship set.
- Example: schema for relationship set advisor
 advisor = (instructor_ID, student_ID)

Representing Entity Sets With Simple Attributes

- A strong entity set reduces to a schema with the same attributes
 course = (course_id, title, credits)
- A weak entity set becomes a table that includes a column for the primary key of the identifying strong entity set section = (course_id, sec_id, semester, year)

Redundancy of Schemas

- Many-to-one and one-to-many relationship sets that are **total** on the many-side can be represented by adding an extra attribute to the "many" side, containing the primary key of the "one" side
 - Example: Instead of creating a schema for relationship set *inst_dept*, add an attribute *dept_name* to the schema arising from entity set *instructor*

Redundancy of Schemas (Cont.)

- For one-to-one relationship sets, either side can be chosen to act as the "many" side
 - That is, extra attribute can be added to either of the tables corresponding to the two entity sets
- If participation is partial on the "many" side, replacing a schema by an extra attribute in the schema corresponding to the "many" side could result in null values
- The schema corresponding to a relationship set linking a weak entity set to its identifying strong entity set is **redundant**.
 - Example: The section schema already contains the attributes that would appear in the sec_course schema

Composite and Multivalued Attributes

- Composite attributes are flattened out by creating a separate attribute for each component attribute
 - Example: given entity set instructor with composite attribute name containing component attributes first_name, middle_initial, and last_name
 - The schema has three attributes first_name, middle_initial,
 and last_name
- Ignoring multivalued attributes, extended instructor schema is

phone number is not here

 instructor(<u>ID</u>, first_name, middle_initial, last_name, street_number, street_name, apt_number, city, state, zip_code, date_of_birth)
 2023 Fall / Dr. Lee Tzong-Yi / NYCU

instructor

```
ID
name
  first_name
   middle_initial
   last name
address
   street
      street_number
      street name
      apt_number
   city
   state
   zip
{ phone_number }
date_of_birth
age ()
```

Composite and Multivalued Attributes

- A multivalued attribute M of an entity E is represented by a separate schema EM
 - Schema EM has attributes corresponding to the primary key of E and an attribute corresponding to multivalued attribute M
 - Example: Multivalued attribute *phone_number* of *instructor* is represented by a schema:

inst_phone= (ID, phone number)

- Each value of the multivalued attribute maps to a separate tuple of the relation on schema EM
 - For example, an *instructor* entity with primary key 22222 and phone numbers 456-7890 and 123-4567 maps to two tuples:

(22222, 456-7890) and (22222, 123-4567)

Design Issues

there is no certain answer

Use of entity sets vs. attributes

 Use of phone as an entity allows extra information about phone numbers (plus multiple phone numbers)

Design Issues

single relationship.

Binary vs. n-ary relationship sets
 Although it is possible to replace any non-binary (n-ary, for n > 2)
 relationship set by a number of distinct binary relationship sets, a n-ary
 relationship set shows more clearly that several entities participate in a

Placement of relationship attributes

e.g., attribute *date* as attribute of *advisor* or as attribute of *student*

Converting Non-Binary Relationships to Binary **Form**

- In general, any non-binary relationship can be represented using binary relationships by creating an artificial entity set.
 - Replace R between entity sets A, B and C by an entity set E, and three relationship sets:

 - 1. R_A , relating E and A 2. R_B , relating E and B 3. R_C , relating E and C

- Create a special identifying attribute for E
- Add any attributes of R to E

В

- For each relationship (a_i, b_i, c_i) in R, create
 - 1. a new entity e_i in the entity set E_i 2. add (e_i, a_i) to R_A

3. add (e_i, b_i) to R_R

4. add (e_i, c_i) to R_C

(b)

2023 Fall / Dr. Lee Tzong-Yi / NYCU (a)

40

Extended E-R Features: Specialization

- Top-down design process: we designate subgroupings within an entity set that are distinctive from other entities in the set.
- These subgroupings become lower-level entity sets that have attributes or participate in relationships that do not apply to the higherlevel entity set.
- Depicted by a triangle component labeled ISA (E.g., instructor "is a" person).
- Attribute inheritance a lower-level entity set inherits all the attributes and relationship participation of the higher-level entity set to which it is linked.

Extended ER Features: Generalization

- A bottom-up design process combine a number of entity sets that share the same features into a higherlevel entity set.
- Specialization and generalization are simple inversions of each other; they are represented in an E-R diagram in the same way.
- The terms specialization and generalization are used interchangeably.

Specialization and Generalization

- Can have multiple specializations of an entity set based on different features.
- E.g., permanent_employee vs. temporary_employee, in addition to instructor vs. secretary
- Each particular employee would be
 - a member of one of permanent_employee or temporary_employee,
 - and also a member of one of instructor, secretary
- The ISA relationship also referred to as superclass subclass relationship

Representing Specialization via Schemas

- Method 1:
 - Form a schema for the higher-level entity
 - Form a schema for each lower-level entity set, include **primary key** of higher-level entity set and local attributes

schema	attributes
person	ID, name, street, city
student	ID, tot_cred
employee	ID, salary

• **Drawback**: getting information about, an *employee* requires accessing two relations, the one corresponding to the low-level schema and the one corresponding to the high-level schema

Representing Specialization as Schemas (Cont.)

Method 2:

• Form a schema for each entity set with all local and inherited attributes

schema	attributes
person	ID, name, street, city
student	ID, name, street, city, tot_cred
employee	ID, name, street, city, salary

- If specialization is total, the schema for the generalized entity set (*person*) not required to store information
 - Can be defined as a "view" relation containing union of specialization relations
 - But explicit schema may still be needed for foreign key constraints
- **Drawback**: *name*, *street* and *city* may be stored redundantly for people who are both students and employees

E-R Design Issues

- The use of an attribute or entity set to represent an object.
- Whether a real-world concept is best expressed by an entity set or a relationship set.
- The use of a ternary relationship versus a pair of binary relationships.
- The use of a strong or weak entity set.
- The use of specialization/generalization contributes to modularity in the design.

Summary of Symbols Used in E-R Notation

