Лекция 5. Полнота. Некоторые полные системы. Замыкание. Замкнутые классы. Замкнутость классов T_0 , T_1 , L, S, M.

Лектор — Селезнева Светлана Николаевна selezn@cs.msu.ru

факультет ВМК МГУ имени М.В. Ломоносова

Лекции на сайте http://mk.cs.msu.ru

Полная система

Пусть $A \subseteq P_2$. Множество A называется полной системой, если формулами над A можно выразить любую функцию алгебры логики.

Полнота системы $\{x \cdot y, x \lor y, \bar{x}\}$

Предложение 5.1. *Система* $A = \{x \cdot y, x \lor y, \bar{x}\}$ является полной.

Доказательство. Рассмотрим произвольную функцию $f \in P_2$.

- 1. Если f=0, то $f=\bar{x}\cdot x$.
- 2. Если $f \neq 0$, то представим f ее совершенной ДНФ.

Полнота системы $\{x \cdot y, x \oplus y, 1\}$

Предложение 5.2. *Система* $A = \{x \cdot y, x \oplus y, 1\}$ является полной.

Доказательство. Рассмотрим произвольную функцию $f \in P_2$.

- 1. Если f = 0, то $f = x \oplus x$.
- 2. Если $f \neq 0$, то представим f ее полиномом Жегалкина.

Лемма о двух системах

Покажем полноту некоторых других систем.

Для доказательства полноты нам понадобится следующая лемма.

Лемма 5.1. Пусть $A, B \subseteq P_2$. Если B — полная система и каждая функция из B выражается формулой над множеством A, то A — также полная система.

Лемма о двух системах

Доказательство. Рассмотрим произвольную функцию $f \in P_2$.

Система B — полна, поэтому найдется некоторая формула F над множеством B, которая выражает функцию f.

Пусть в формуле F встречаются только функции $g_1, \dots, g_t \in B$, т. е. $F = F[g_1, \dots, g_t]$.

По условию утверждения каждая функция $g_i \in B$ может быть выражена некоторой формулой G_i над множеством A, $i=1,\ldots,t$.

Тогда, подставив в формулу F вместо каждой функции g_i формулу G_i , получим формулу $F[G_1, \ldots, G_t]$ над множеством A, которая выражает функцию f.

Некоторые полные системы

Теорема 5.1. Следующие множества являются полными системами:

1.
$$A = \{\bar{x}, x \cdot y\},\$$

$$2. \quad A = \{\bar{x}, x \vee y\},\$$

3.
$$A = \{x/y\},\$$

4.
$$A = \{x \downarrow y\}$$
.

Некоторые полные системы

Доказательство. Применим лемму о двух системах.

- 1. Выразим все функции из полной системы $\{x\cdot y, x\vee y, \bar{x}\}$ формулами над $A: x\vee y=\overline{\bar{x}\cdot \bar{y}}.$
- 2. Выразим все функции из полной системы $\{x\cdot y, x\vee y, \bar{x}\}$ формулами над $A: x\cdot y = \overline{\bar{x}\vee \bar{y}}.$
- 3. Выразим все функции из полной системы $\{x\cdot y, \bar{x}\}$ формулами над A: $\bar{x}=x/y$, $x\cdot y=\overline{x/y}=(x/y)/(x/y)$.
- 4. Выразим все функции из полной системы $\{x \lor y, \bar{x}\}$ формулами над $A: \bar{x} = x \downarrow y, \ x \lor y = \overline{x \downarrow y} = (x \downarrow y) \downarrow (x \downarrow y).$

Полная система

Пусть $A \subseteq P_2$. Множество A называется полной системой, если формулами над A можно выразить любую функцию алгебры логики.

А как проверить полноту заданной системы А?

Оказывается, что можно рассматривать замкнутые классы.

Замыкание множества

Пусть $A \subseteq P_2$. Замыканием [A] множества A называется множество всех функций, которые могут быть выражены формулами над A.

Замыкание множества

Замыкание множества A можно определить по-другому.

Замыканием [A] называется множество всех функций из P_2 , которые можно получить из функций множества A применением следующих операций:

- 1) добавлением или удалением несущественных переменных;
- 2) подстановкой в функции из A вместо переменных других переменных (не обязательно различных);
- 3) подстановкой в функции из A вместо переменных функций из A или функций, которые уже получены.

Суперпозиция

Операции 1–3 называем операциями суперпозиции.

Поэтому замыкание [A] — множество всех функций из P_2 , которые можно получить из функций из A суперпозициями.

Предложение 5.3. Два приведенных определения замыкания множества A, $A \subseteq P_2$, равносильны, т. е. они определяют одно и то же понятие.

Свойства замыкания множества

Для произвольных множеств $A, B \subseteq P_2$ верны следующие свойства:

1.
$$[P_2] = P_2$$
,

2.
$$A \subseteq [A]$$
,

3. если
$$A \subseteq B$$
, то $[A] \subseteq [B]$,

4.
$$[[A]] = [A]$$
.

Замкнутый класс

Пусть $A \subseteq P_2$. Множество A называется **замкнутым классом**, если A = A.

Из свойств замыкания множества следует, что если A=[B] для некоторого множества $B,\ B\subseteq P_2$, то A — замкнутый класс.

В частности, P_2 — замкнутый класс.

Замкнутые классы и полнота

Предложение 5.4. Пусть $A \subseteq P_2$, A — замкнутый класс и $A \neq P_2$. Тогда для любого множества B, $B \subseteq P_2$, верно: если $B \subseteq A$, то B — не полная система.

Доказательство. Итак,

$$B\subseteq A$$
.

По свойствам замыкания и из условия получаем:

$$[B]\subseteq [A]=A\neq P_2.$$

Значит, $[B] \neq P_2$, т. е. B — не полная система.

Конгруэнтные функции

Функции $f \in P_2$ и $g \in P_2$ назовем конгруэнтными, если переменные одной из них можно так переименовать, что получится функция, равная другой.

Т. к. в при построении формулы можно подставлять любые переменные (из X) в функции, любой замкнутый класс вместе с каждой функцией содержит все функции, конгруэнтные ей.

Конгруэнтные функции

1. Функции $f_1 = x_1$ и $f_2 = x_2$ — конгруэнтны (считаем, что разные переменные обозначаются по-разному).

Их можно рассматривать как функции переменных x_1, x_2 :

$$f_1(x_1,x_2)=x_1, \ f_2(x_1,x_2)=x_2.$$

2. Функции $f_1=x_1,\ f_2=x_2,\ \dots,\ f_n=x_n,\ \dots$ — также конгруэнтны.

Это функции, конгруэнтные тождественной функции f(x) = x, их счетное число.

Функции, конгруэнтные тождественной функции

Пусть
$$e_i^n \in P_2^{(n)}$$
 и $e_i^n(x_1, \dots, x_n) = x_i$, $i = 1, \dots, n$, $n \geqslant 1$.

Функции e_i^n назовем функциями выбора (i-й переменной из n переменных), $i=1,\ldots,n,\ n\geqslant 1$.

Положим:

$$I = \{e_i^n \mid i = 1, \dots, n, n \geqslant 1\}$$

множество всех функций выбора.

Т. е. I — множество всех функций (переменных из X), конгруэнтных тождественной функции.

Лемма о замкнутом классе

Для дальнейшего нам понадобится следующая лемма.

Лемма 5.2. Пусть $A \subseteq P_2$ и $I \subseteq A$. Если для любых функций $f_0(y_1,\ldots,y_m) \in A$, $f_i(x_1,\ldots,x_n) \in A$, $i=1,\ldots,m$, причем функции f_i могут зависеть несущественно от некоторых своих переменных, верно

$$f_0(f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n))\in A,$$

то множество А является замкнутым классом.

Лемма о замкнутом классе

Доказательство. Рассмотрим произвольную функцию $f \in [A]$ Она выражается некоторой формулой F над множеством A.

Докажем индукцией по числу d вхождений в формулу F обозначений функций из $A\setminus I$, что $f\in A$.

1. Базис индукции: d=0. Если $F=x_i$, то $f\in A$ по условию утверждения.

Лемма о замкнутом классе

2. Индуктивный переход. Пусть любая функция, которая может быть выражена формулой не более чем с d_0 вхождениями обозначений функций из $A \setminus I$, содержится в A.

Рассмотрим функцию $f(x_1,\ldots,x_n)\in [A]$, которая выражается формулой F с d_0+1 вхождениями обозначений функций из $A\setminus I$.

Тогда $F = f_0(F_1, \ldots, F_m)$, где $f_0 \in A \setminus I$, а F_i — формулы не более чем с d_0 вхождениями обозначений функций из $A \setminus I$, $i = 1, \ldots, m$.

По предположению индукции $f_{F_i} \in A$, $i=1,\ldots,m$. Значит,

$$f(x_1,...,x_n) = f_0(f_{F_1}(x_1,...,x_n),...,f_{F_m}(x_1,...,x_n)).$$

Далее по условию утверждения $f \in A$.

Функции, сохраняющие константу 0

Функция $f(x_1,\ldots,x_n)\in P_2$ сохраняет 0, если

$$f(0,\ldots,0)=0.$$

Множество всех функций, сохраняющих 0, обозначим T_0 .

Отметим, что $I \subseteq T_0$.

Заметим, что $T_0 \neq \emptyset$, т. к., например, $0, x \oplus y, x \cdot y \in T_0$, и $T_0 \neq P_2$, т. к., например, $1, \bar{x}, x \sim y \notin T_0$.

Замкнутость T_0

Теорема 5.2. *Множество* T_0 *является замкнутым классом.*

Доказательство. Применим лемму о замкнутом классе. Пусть $f_0(y_1,\ldots,y_m)\in T_0$ и $f_i(x_1,\ldots,x_n)\in T_0$, $i=1,\ldots,m$, причем функции $f_i,\ i=1,\ldots,m$, могут зависеть несущественно от некоторых своих переменных.

Рассмотрим функцию

$$f(x_1,\ldots,x_n)=f_0(f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n)).$$

Получаем:

$$f(0,\ldots,0) = f_0(f_1(0,\ldots,0),\ldots,f_m(0,\ldots,0)) = f_0(0,\ldots,0) = 0,$$

т. к. $f_i \in T_0$ для всех i = 1, ..., m и $f_0 \in T_0$.

Значит, $f \in T_0$.

Функции, сохраняющие константу 1

Функция $f(x_1,\ldots,x_n)\in P_2$ сохраняет 1, если

$$f(1,\ldots,1)=1.$$

Множество всех функций, сохраняющих 1, обозначим T_1 .

Отметим, что $I \subseteq T_1$.

Заметим, что $T_1 \neq \emptyset$, т. к., например, $1, x \sim y, x \cdot y \in T_1$, и $T_1 \neq P_2$, т. к., например, $0, \bar{x}, x \oplus y \notin T_1$.

Замкнутость T_1

Теорема 5.3. *Множество* T_1 *является замкнутым классом.*

Доказательство полностью аналогично доказательству предыдущего утверждения.

Линейные функции

Функция $f(x_1, \ldots, x_n) \in P_2$ называется **линейной**, если она может быть представлена в виде:

$$f(x_1,\ldots,x_n)=c_0\oplus c_1x_1\oplus\ldots\oplus c_nx_n,$$

где коэффициенты $c_0, c_1, \ldots, c_n \in E_2$.

Другими словами, функция f — линейна, если в ее полиноме Жегалкина нет слагаемых с хотя бы двумя переменными (т. е. ранга, большего единицы).

Множество всех линейных функций обозначим L.

Отметим, что $I \subseteq L$.

Заметим, что $L \neq \emptyset$, т. к., например, $0, \bar{x}, x \oplus y \in L$, и $L \neq P_2$, т. к., например, $x \cdot y, x \vee y = xy \oplus x \oplus y \notin L$.

Замкнутость L

Теорема 5.4. *Множество L является замкнутым классом*.

Доказательство. Достаточно заметить, что при при подстановке вместо переменных линейной функции каких-то других линейных функций не могут появиться конъюнкции переменных в слагаемых. Поэтому при такой подстановке получается линейная функция.

Самодвойственные функции

Функция $f(x_1,\ldots,x_n)\in P_2$ называется самодвойственной, если

$$f^*(x_1,\ldots,x_n)=\overline{f(\bar{x}_1,\ldots,\bar{x}_n)}=f(x_1,\ldots,x_n).$$

Другими словами, функция f — самодвойственна, если двойственная к ней функция с ней совпадает.

Перепишем равенство прямой и двойственной функций в виде:

$$f(\bar{x}_1,\ldots,\bar{x}_n)=\overline{f(x_1,\ldots,x_n)}.$$

Теперь для любого набора $\alpha \in E_2^n$ получаем:

$$f(\bar{\alpha}) = \overline{f(\alpha)}.$$

Значит, функция f — самодвойственна тогда и только тогда, когда на всех парах противоположных наборов она принимает противоположные значения.

Самодвойственные функции

Множество всех самодвойственных функций обозначим S.

Отметим, что $I \subseteq S$.

Заметим, что $S \neq \emptyset$, т. к., например, $x, \bar{x} \in S$, и $S \neq P_2$, т. к., например, $0, 1, x \cdot y \notin S$.

Замкнутость S

Теорема 5.5. *Множество* S *является замкнутым классом.*

Доказательство. Применим лемму о замкнутом классе. Пусть $f_0(y_1,\ldots,y_m)\in S$ и $f_i(x_1,\ldots,x_n)\in S$, $i=1,\ldots,m$, причем функции $f_i,\ i=1,\ldots,m$, могут зависеть несущественно от некоторых своих переменных.

Рассмотрим функцию

$$f(x_1,...,x_n) = f_0(f_1(x_1,...,x_n),...,f_m(x_1,...,x_n)).$$

Получаем:

$$\overline{f(\bar{x}_{1},...,\bar{x}_{n})} = \overline{f_{0}(f_{1}(\bar{x}_{1},...,\bar{x}_{n}),...,f_{m}(\bar{x}_{1},...,\bar{x}_{n}))} =
= \underline{f_{0}(\overline{f_{1}(\bar{x}_{1},...,\bar{x}_{n})},...,\overline{f_{m}(\bar{x}_{1},...,\bar{x}_{n})})} =
= \underline{f_{0}(f_{1}(x_{1},...,x_{n}),...,f_{m}(x_{1},...,x_{n}))} =
= \underline{f_{0}(f_{1}(x_{1},...,x_{n}),...,f_{m}(x_{1},...,x_{n}))} = f(x_{1},...,x_{n}),$$

т. к. $f_i \in S$ для всех $i = 1, \dots, m$ и $f_0 \in S$.

Монотонные функции

Если $\alpha, \beta \in E_2^n$, то скажем, что $\alpha \leqslant \beta$ при $\alpha_i \leqslant \beta_i$ для всех $i=1,\ldots,n$.

Функция $f(x_1,\ldots,x_n)\in P_2$ называется монотонной, если для любых наборов $\alpha,\beta\in E_2^n$ из $\alpha\leqslant\beta$ следует $f(\alpha)\leqslant f(\beta)$.

Множество всех монотонных функций обозначим M.

Отметим, что $I \subseteq M$.

Заметим, что $M \neq \emptyset$, т. к., например, $0,1,x \in M$, и $M \neq P_2$, т. к., например, $\bar{x} \notin M$.

Свойство немонотонной функции

Наборы $\alpha, \beta \in E_2^n$ назовем **соседними**, если они отличаются только в одном разряде.

Предложение 5.5. Если $f(x_1, ..., x_n) \notin M$, то найдутся два таких соседних набора $\alpha, \beta \in E_2^n$, что $\alpha \leqslant \beta$, но $f(\alpha) > f(\beta)$.

Доказательство проведите самостоятельно.

Значит, функция f — монотонна тогда и только тогда, когда на всех парах соседних наборов она принимает значения, не нарушающие монотонность.

Замкнутость M

Теорема 5.6. Множество М является замкнутым классом.

Доказательство. Применим лемму о замкнутом классе. Пусть $f_0(y_1,\ldots,y_m)\in M$ и $f_i(x_1,\ldots,x_n)\in M$, $i=1,\ldots,m$, причем функции $f_i,\ i=1,\ldots,m$, могут зависеть несущественно от некоторых своих переменных.

Замкнутость M

Доказательство. Рассмотрим функцию

$$f(x_1,...,x_n) = f_0(f_1(x_1,...,x_n),...,f_m(x_1,...,x_n)).$$

Пусть $\alpha, \beta \in E_2^n$ и $\alpha \leqslant \beta$. Тогда:

$$f(\alpha) = f_0(f_1(\alpha), \dots, f_m(\alpha)) = f_0(\gamma),$$

$$f(\beta) = f_0(f_1(\beta), \dots, f_m(\beta)) = f_0(\delta),$$

где
$$\gamma, \delta \in E_2^m$$
, $f_i(\alpha) = \gamma_i$, $f_i(\beta) = \delta_i$ для всех $i = 1, \ldots, m$.

Но $f_1,\ldots,f_m\in M$, поэтому $\gamma_i\leqslant \delta_i$ для всех $i=1,\ldots,m$, а значит, $\gamma\leqslant \delta$.

Ho $f_0 \in M$, поэтому $f_0(\gamma) \leqslant f_0(\delta)$, а значит, $f(\alpha) \leqslant f(\beta)$.

Следовательно, $f \in M$.

Проверка принадлежности функции к T_0 , T_1 , L, S, M

Отметим, что для функции $f(x_1,\dots,x_n)\in P_2$ алгоритмы проверки ее принадлежности к каждому из классов

$$T_0$$
, T_1 , L , S , M

можно построить на основе условий, определяющих наличие у функции каждого из этих свойств.

- 1. Сохранения константы: нужно проверить, что f(0, ..., 0) = 0 или, соответственно, f(1, ..., 1) = 1.
- 2. Линейность: можно найти коэффициенты полинома Жегалкина функции f и проверить, что $c_f(\alpha)=0$ для всех таких $\alpha\in E_2^n$, что $|\alpha|\geqslant 2$.

Проверка принадлежности функции к T_0 , T_1 , L, S, M

- 3. Самодвойственность: можно проверить, что на всех парах противоположных наборов f принимает противоположные значения.
- 4. Монотонность: можно проверить, что на всех парах соседних наборов f принимает значения, не нарушающие монотонность.

Задачи для самостоятельного решения

- 1. Докажите теорему 5.3 и предложение 5.5.
- 2. Покажите, что если таблицу наборов из E_2^n , $n\geqslant 1$, разделить линией пополам, то все пары противоположных наборов будут находиться симметрично относительно этой линии. На основе этого наблюдения опишите алгоритм проверки принадлежности функции $f\in P_2^{(n)}$, $n\geqslant 1$, к классу S по ее вектору значений $\alpha_f\in E_2^{2^n}$.

Литература к лекции

- 1. Алексеев В. Б. Лекции по дискретной математике. М.: Инфра-М, 2012. С. 13–20.
- 2. Марченков С. С. Основы теории булевых функций. М.: Физматлит, 2014. С. 33–38.
- 3. Яблонский С.В. Введение в дискретную математику. М.: Высшая школа, 2001. С. 30–39.
- 4. Гаврилов Г. П., Сапоженко А. А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004.