F228 – Lista 2 – Equilíbrio e Elasticidade

- 1) O sistema da figura 1 está em equilíbrio, com a corda do centro exatamente na horizontal. O bloco A pesa 40 N, o bloco B pesa 50 N e o ângulo φ é 35°. Determine:
- a) A tensão T_1 b) A tensão T_2 c) A tensão T_3 d) O ângulo θ .

Figura 1

- 2) Na figura 2, um alpinista de 55 kg está subindo por uma chaminé na pedra, com as mãos puxando um lado da chaminé e os pés pressionando o lado oposto. A chaminé tem uma largura w = 0,20 m e o centro de massa do alpinista está a uma distância horizontal d = 0,40 m da chaminé. O coeficiente de atrito estático entre mãos e rocha é $\mu_1 = 0,40$ e entre as botas e a pedra é $\mu_2 = 1,2$.
- a) Qual é a menor força horizontal das mãos e dos pés que mantém o alpinista estável?
- b) Para a força horizontal do item (a), qual deve ser a distância vertical h entre as mãos e os pés?
- c) Se o alpinista encontra uma pedra molhada, para a qual os valores de μ_1 e μ_2 são menores, o que acontece com a resposta do item (a)?
- d) E a resposta do item (b)?

Figura 2

3) Na figura 3, uma prancha homogênea, com um comprimento L de 6,10 m e um peso de 445 N, repousa apoiada no chão e em um rolamento sem atrito no alto de uma parede de altura h = 3,05 m. A prancha permanece em equilíbrio para qualquer valor de $\theta \ge 70^{\circ}$, mas escorrega se $\theta < 70^{\circ}$. Determine o coeficiente de atrito estático entre a prancha e o chão.

Figura 3

- 4) Na figura 4, um tijolo de chumbo repousa horizontalmente sobre os cilindros A e B. As áreas das faces superiores dos cilindros obedecem à relação $A_A = 2A_B$; os módulos de Young dos cilindros obedecem à relação $E_A = 2E_B$. Os cilindros tinham a mesma altura antes que o tijolo fosse colocado sobre eles. Que fração da massa do tijolo é sustentada:
- a) Pelo cilindro A?
- b) Pelo cilindro B?
- c) Sendo as distâncias horizontais entre o centro de massa do tijolo e os $\,$ eixos dos cilindros são d_A e d_B , qual é o valor da razão d_A/d_B ?

Figura 4

- 5) Na figura 5, um tronco homogêneo de 103 kg está pendurado por dois fios de aço, A e B, ambos com 1,20 mm de raio. Inicialmente, o fio A tinha 2,50 m de comprimento e era 2,00 mm mais curto que o fio B. O tronco está agora na horizontal. Qual é o módulo da força exercida sobre o tronco:
- a) Pelo fio A
- b) Pelo fio B
- c) Qual o valor da razão d_A/d_B?

Figura 5

- 6) Na figura 6 um pacote de massa m está pendurado em uma corda que, por sua vez, está presa à parede através da corda 1 e ao teto através da corda 2. A corda 1 faz um ângulo $\phi = 40^{\circ}$ com a horizontal; a corda 2 faz um ângulo θ .
- a) Para que valor de θ a tensão na corda 2 é mínima?
- b) Qual é a tensão mínima da corda 2, em de mg?

Figura 6

7) Centro de gravidade de um carro. Para um automóvel com peso w, as rodas dianteiras suportam uma fração f do peso, de modo que a força normal exercida sobre as rodas dianteiras é fw, e sobre as rodas traseiras a força normal é (1-f)w. A distância entre o eixo das rodas dianteiras e o eixo traseiro é d.

Mostre que o centro de gravidade do carro está a uma distância fd em frente ao eixo das rodas traseiras.

- 8) Uma ginasta com massa 46 kg está de pé no final de uma trave uniforme conforme mostra a Figura 7. A trave possui 5 m de comprimento e uma massa de 250 kg (excluindo a massa dos suportes). Cada suporte está a 0.54 m de distância da extremidade mais próxima da trave. Em termos de vetores unitários, qual é a força exercida sobre a trave:
- a) Pelo suporte 1.
- b) Pelo suporte 2.

Figura 7

- 9) Uma viga de comprimento L é carregada por três homens, um em uma extremidade e os outros dois apoiando a viga entre eles em uma barra transversal posicionada de tal forma que o peso da viga é dividido igualmente entre os três homens. A que distância da extremidade livre da viga está a barra de apoio? (Despreze a massa da barra de apoio.)
- 10) A figura 8 mostra um arranjo estacionário de duas caixas de lápis e três cordas. A caixa A tem uma massa de 11,0 kg e está sobre uma rampa de ângulo $\theta = 30,0^{\circ}$; a caixa B tem uma massa de 7,00 kg e está pendurada. A corda presa à caixa A está paralela à rampa cujo atrito é desprezível.
- a) Qual é a tensão da corda de cima?
- b) Que ângulo a corda de cima faz com a horizontal?

Figura 8

Respostas:

- 1) (a) $T_1 = 49N$ (b) $T_2 = 28$ (c) $T_3 = 57N$ (d) $\theta = 29^{\circ}$
- 2) (a) $N_1 = N_2 = 337N$ (b) h = 0.88 m (c) N_1 e N_2 aumentarão (d) h diminuirá 3) 0.34
- 4) (a) 0,80
 - (b) 0.20
 - (c) 0,25
- 5) (a) 866 N
 - (b) 143 N
 - (c) 0,165
- 6) (a) $\theta = 50^{\circ}$ (b) $T_{2 \text{ Min}} = 0.77 \text{ mg}$
- 7) Provar!!
- 8) $\mathbf{F_1} = (1.16 \times 10^3 \text{ N}) \mathbf{y}$ (b) $\mathbf{F_2} = (1.74 \times 10^3 \text{ N}) \mathbf{y}$

9) L/4

10) (a) 106 N (b) 64,0°