Class 10: Halloween Mini Project

Simran Patel

```
# webshot::install_phantomjs()
```

Importing candy data

candy = read.csv("https://raw.githubusercontent.com/fivethirtyeight/data/master/candy-power
head(candy)

	choco	olate	fruity	caramel	peanut	yalmondy	nougat	crispedr	cicewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	${\tt hard}$	bar j	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	C)	0.732	0	.860	66.97173	
3 Musketeers	0	1	C)	0.604	0	.511	67.60294	
One dime	0	0	C)	0.011	0	.116	32.26109	
One quarter	0	0	C)	0.011	0	.511 4	46.11650	
Air Heads	0	0	C)	0.906	0	.511 !	52.34146	
Almond Joy	0	1	C)	0.465	0	.767	50.34755	

#Q1. How many different candy types are in this dataset?

```
nrow(candy)
```

[1] 85

There are 85 different candy types in the dataset.

#Q2. How many fruity candy types are in the dataset?

```
sum(candy$fruity)
```

[1] 38

There are 38 different candy types in the dataset.

What is your favorate candy?

We can use the 'winpercent' function to find percentage of people who prefer a candy over another random candy.

```
candy["Twix", ]$winpercent
```

[1] 81.64291

Q3. What is your favorite candy in the dataset and what is it's winpercent value?

```
candy["Snickers", ]$winpercent
```

[1] 76.67378

My favorite candy is Snickers and the winpercent is 76.67%.

Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat", ]$winpercent
```

[1] 76.7686

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candy["Tootsie Roll Snack Bars", ]$winpercent
```

[1] 49.6535

The win percent of Tootsie Roll Snack Bars is 49.65%.

Let's install the skimr package.

```
# install.packages("skimr")
library("skimr")
skim(candy)
```

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	_
numeric	12
Group variables	None

Variable type: numeric

skim_variable n	_missingcomp	olete_ra	tmean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	

skim_variable	n_missingcomp	olete_ra	atmean	sd	p0	p25	p50	p75	p100	hist
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

The winpercent appears to be on a differ scale compared to the other rows as it is not on the zero to one scale.

Q7. What do you think a zero and one represent for the candy\$chocolate column?

A zero most likely represents if the candy has chocolate (1) or not (0).

Let's plot the data in a histogram

#Q8. Plot a histogram of winpercent values

hist(candy\$winpercent)

Histogram of candy\$winpercent

Q9. Is the distribution of winpercent values symmetrical?

The distribution is not symmetrical, it is slightly skewed to the right.

Q10. Is the center of the distribution above or below 50%?

The center of distribution is below 50%.

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

```
mean(candy$winpercent[as.logical(candy$chocolate)])
[1] 60.92153

mean(candy$winpercent[as.logical(candy$fruity)])
[1] 44.11974
```

On avergae, the chocolate candy ranks higher than the fruity candy.

Q12. Is this difference statistically significant?

```
t.test(candy$winpercent[as.logical(candy$chocolate)], candy$winpercent[as.logical(candy$fr

Welch Two Sample t-test

data: candy$winpercent[as.logical(candy$chocolate)] and candy$winpercent[as.logical(candy$fr
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
11.44563 22.15795
```

```
sample estimates:
mean of x mean of y
60.92153 44.11974
```

The p value is less than 0.05 indicating that the data is significantly different and there is a clear favoring towards chocolate candy and fruity candy.

Overall Candy Rankings

Q13. What are the five least liked candy types in this set?

head(candy[order(candy\$winpercent),], n=5)

					_	_	_		
		chocolate	fruity	cara	nel j	peanutyaln	nondy :	nougat	
Nik L Nip		0	1		0		0	0	
Boston Baked	Beans	0	0		0		1	0	
Chiclets		0	1		0		0	0	
Super Bubble		0	1		0		0	0	
Jawbusters		0	1		0		0	0	
		crispedrio	ewafer	hard	bar	pluribus	sugar	percent	pricepercent
Nik L Nip			0	0	0	1		0.197	0.976
Boston Baked	Beans		0	0	0	1		0.313	0.511
Chiclets			0	0	0	1		0.046	0.325
Super Bubble			0	0	0	0		0.162	0.116
Jawbusters			0	1	0	1		0.093	0.511
		winpercent	;						
Nik L Nip		22.44534	Ŀ						
Boston Baked	Beans	23.41782	2						
Chiclets		24.52499)						
Super Bubble		27.30386	3						
Jawbusters		28.12744	Ŀ						

The top 5 least liked candy is the Nik L Nip, Boston Baked Beans, Chiclets, Super Bubble, and Jawbusters. # Q14. What are the top 5 all time favorite candy types out of this set?

```
tail(candy[order(candy$winpercent),], n=5)
```

	${\tt chocolate}$	fruity	caran	nel	peanutyaln	nondy	nougat
Snickers	1	0		1		1	1
Kit Kat	1	0		0		0	0
Twix	1	0		1		0	0
ReeseÕs Miniatures	1	0		0		1	0
ReeseÕs Peanut Butter cup	1	0		0		1	0
	crispedrio	cewafer	hard	bar	pluribus	sugar	percent
Snickers		0	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Twix		1	0	1	0		0.546
ReeseÕs Miniatures		0	0	0	0		0.034
ReeseÕs Peanut Butter cup		0	0	0	0		0.720
	priceperce	ent winp	percer	nt			
Snickers	0.6	551 76	6.6737	78			
Kit Kat	0.5	511 76	5.7686	30			
Twix	0.9	906 81	1.6429	91			
ReeseÕs Miniatures	0.2	279 81	1.8662	26			
ReeseÕs Peanut Butter cup	0.6	S51 84	1.1802	29			

Thew top 5 most liked can dies are Snickers, Kit Kat, Twix, Reeses minis, and Resses Peanut Butter Cups.

Q15. Make a first barplot of candy ranking based on winpercent values.

```
library("ggplot2")

ggplot(candy) +
  aes(winpercent, rownames(candy)) +
  geom_col()
```


Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
library("ggplot2")

ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col()
```


Time to add some useful color

```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy),winpercent)) +
   geom_col(fill=my_cols)
```


Q17. What is the worst ranked chocolate candy?

The worst ranekd chocolate candy is sixlets.

Q18. What is the best ranked fruity candy?

The best ranked fruity candy is starburst.

Taking a look at pricepercent

What is the best candy for the least money?

```
library(ggrepel)

# How about a plot of price vs win
ggplot(candy) +
   aes(winpercent, pricepercent, label=rownames(candy)) +
   geom_point(col=my_cols) +
```

```
geom_text_repel(col=my_cols, size=3.3, max.overlaps = 5)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps

ord <- order(candy\$pricepercent, decreasing = TRUE)
head(candy[ord,c(11,12)], n=5)</pre>

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
HersheyÕs Krackel	0.918	62.28448
HersheyÕs Milk Chocolate	0.918	56.49050

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

Reeses miniatures offers the most bang for your buck.

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

The top 5 most expensive candies are Nip L Nips, Nestle Smarties, Ring pop, Hershey Krackel, and Hershey Milk Chocolate. Out of these the Nik L Nips are the least popular.

Q21

Make a barplot again with geom_col() this time using pricepercent and then improve this step by step, first ordering the x-axis by value and finally making a so called "dot chat" or "lollipop" chart by swapping geom_col() for geom_point() + geom_segment().

```
library("ggplot2")

ggplot(candy) +
  aes(pricepercent, rownames(candy)) +
  geom_col()
```


Let's order this.

```
ggplot(candy) +
  aes(pricepercent, reorder(rownames(candy),pricepercent)) +
  geom_col()
```


Let's change this to a lollipop chart.

Exploring the correlation structure

```
library(corrplot)
corrplot 0.92 loaded
```

cij <- cor(candy)
corrplot(cij)</pre>

Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Chocolate and fruity candies are anti correlated.

Q23. Similarly, what two variables are most positively correlated?

The variables that are the most positively correlated are chocolate and bar.

Principal Component Analysis

```
pca <- prcomp(candy, scale = TRUE)
summary(pca)</pre>
```

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 Standard deviation 2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530

Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539 Cumulative Proportion 0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369 PC8 PC9 PC10 PC11 PC12 Standard deviation 0.74530 0.67824 0.62349 0.43974 0.39760 Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317 Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000

Now we can plot our main PCA score plot of PC1 vs PC2.

```
plot(pca$rotation[,1])
```


plot(pca\$x[,1:2], col=my_cols, pch=16)

We can make a much nicer plot with the ggplot2 package.

Again we can use the ggrepel package and the function ggrepel::geom_text_repel() to label up the plot with non overlapping candy names.

Warning: ggrepel: 60 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

You can change the max.overlaps value to allow more overlapping labels or pass the ggplot object p to plotly like so to generate an interactive plot that you can mouse over to see labels:

```
# install.packages("plotly")
library(plotly)
```

Attaching package: 'plotly'

The following object is masked from 'package:ggplot2':

last_plot

The following object is masked from 'package:stats':

filter

The following object is masked from 'package:graphics':

layout

ggplotly(p)

Let's finish by taking a quick look at PCA our loadings. Do these make sense to you? Notice the opposite effects of chocolate and fruity and the similar effects of chocolate and bar (i.e. we already know they are correlated).

```
par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```


#Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

Fruity, hard, and pluribus were all strongly picked up by PC1 in the postive direction. This makes sense as most fruity candies are hard and most candies that come in a box are fruity and hard.