Teorie grafů

16. a 17. přednáška z LGR

Obsah

- Stromy
 - Charakterizace stromů
 - Počet stromů
- Minimální kostra grafu
 - Algoritmus na minimální kostru
 - Borůvkův Kruskalův algoritmu
 - Jarníkův Primův algoritmus

Obsah

- Stromy
 - Charakterizace stromů
 - Počet stromů
- Minimální kostra grafu
 - Algoritmus na minimální kostru
 - Borůvkův Kruskalův algoritmu
 - Jarníkův Primův algoritmus

Definice

Strom je souvislý graf neobsahující kružnici (jako svůj podgraf).

Poznámka

Každý strom je obyčejným grafem, neboť smyčky či paralelní hrany by znamenaly přítomnost kružnice.

Definice

Strom je souvislý graf neobsahující kružnici (jako svůj podgraf).

Poznámka

Každý strom je obyčejným grafem, neboť smyčky či paralelní hrany by znamenaly přítomnost kružnice.

Tvrzení

Každý strom s $n \ge 2$ vrcholy má alespoň dva vrcholy stupně jedna (tzv. listy).

Tvrzení

Každý graf bez kružnic s $n \ge 2$ vrcholy a $m \ge 1$ hranami má alespoň dva vrcholy stupně jedna.

Věta (Eulerův vzorec)

Každý strom T=(V,E) o n vrcholech má n-1 hran, tj. |E|=|V|-1.

Věta

Nechť *G* je graf o *n* vrcholech. Následující tvrzení jsou ekvivalentní:

- \bigcirc *G* je strom.
- ② G je souvislý a má n-1 hran.
- **3** G je bez kružnic a má n-1 hran.

Tvrzení

Má-li graf $n \geq 2$ vrcholů a n-1 hran a nemá-li izolované vrcholy (tj. nemá vrchol stupně nula), pak v něm existují alespoň dva vrcholy stupně jedna.

Věta

Nechť G je graf. Následující tvrzení jsou ekvivalentní:

- \bigcirc *G* je strom.
- Q je souvislý a odebráním libovolné hrany přestane být souvislý (G je minimální souvislý).
- 3 *G* je bez kružnic a přidáme-li ke grafu libovolnou hranu, uzavřeme přesně jednu kružnici (*G* je maximální bez kružnic).
- Mezi každými dvěma jeho vrcholy vede právě jedna cesta.

Poznámka: Hrana v grafu G se nazývá most, pokud její odebrání zvětší počet komponent souvislosti grafu. Tvrzení 2 říká, že ve stromu je každá hrana mostem.

Tvrzení

Počet stromů na n vrcholech je n^{n-2} .

Tvrzení

Nechť $d_1 \ge d_2 \ge \cdots \ge d_n > 0$. Pak existuje strom se skóre (d_1, d_2, \ldots, d_n) , právě když $\sum_{i=1}^n d_i = 2(n-1)$.

Důkazy těchto tvrzení používají Prüferovy kódy a zájemci je mohou nalézt v knize: Matoušek, Nešetřil: Kapitoly z diskrétní matematiky.

Je aspoň tolik neizomorfních stromů na n vrcholech, kolik je možných stromových skóre, tj. nerostoucích n-tic (d_1, d_2, \ldots, d_n) kladných čísel, v nichž $\sum_{i=1}^{n} d_i = 2(n-1)$.

(Podmínka $d_n = d_{n-1} = 1$ z předchozího plyne automaticky).

Přitom může existovat více neizomorfních stromů se stejným skóre.

Označme počet neizomorfních stromů na n vrcholech jako t_n . Počet neizomorfních stromů rychle roste:

Definice

Graf, který neobsahuje kružnice, se nazývá les.

Poznámka: Komponenty souvislosti lesa jsou tedy stromy.

Tvrzení

Les o n vrcholech a k komponentách souvislosti má n-k hran.

Problém minimální kostry

Otakar Borůvka řešil v souvislosti s elektrifikací Jižní Moravy tzv. problém minimální kostry grafu. Cílem bylo propojit vesnice a města tak, aby náklady na elektrické vedení byly co nejmenší. Borůvka publikoval v roce 1926 dva algoritmy na hledání minimální kostry, z nichž představíme jen jeden. Dále uvedeme algoritmus od Vojtěcha Jarníka z roku 1930.

Algoritmy jsou známé pod jmény amerických matematiků jako Kruskalův algoritmus (1956) a Primův algoritmus (1957).

Definice

Nechť G je souvislý graf. Faktor grafu G, který je stromem, se nazývá kostra grafu.

Tvrzení

Každý souvislý graf má aspoň jednu kostru.

V angličtině se kostra grafu nazývá "spanning tree" = *vepsaný strom*. Analogicky, "spanning forest" = *vepsaný les* je faktor (obecně nesouvislého) grafu *G*, který je lesem.

Definice

Nechť G je souvislý graf. Faktor grafu G, který je stromem, se nazývá kostra grafu.

Tvrzení

Každý souvislý graf má aspoň jednu kostru.

V angličtině se kostra grafu nazývá "spanning tree" = *vepsaný strom*. Analogicky, "spanning forest" = *vepsaný les* je faktor (obecně nesouvislého) grafu *G*, který je lesem.

Definice

Nechť G=(V,E) je souvislý graf, který má ohodnocené hrany, tj. je dáno zobrazení $c\colon E\to \mathbb{R}^+\colon c(e)=$ cena hrany e. Minimální kostra grafu G je taková kostra K=(V,L), která má nejmenší součet cen hran $\sum_{e\in L} c(e)$ mezi všemi kostrami grafu G.

Tvrzení

Každý souvislý ohodnocený graf má minimální kostru (nemusí však být jediná).

Obecný algoritmus na minimální kostru

Vstup: Souvislý graf G=(V,E) s ohodnocením hran $c\colon E\to \mathbb{R}^+$ Výstup: Hrany minimální kostry K=(V,L)

Myšlenka algoritmu: Začne s jednovrcholovými komponentami budoucí kostry K a postupně přidává hrany tak, že vždy spojí nějaké dvě komponenty takovou hranou, která je (aspoň) pro jednu z nich tou nejlevnější hranou, která z ní trčí ven.

Obecný algoritmus

(inicializace)

- $\mathscr{S} \leftarrow \{\{v\}, v \in V\}$ množina komponent souvislosti podgrafu K
- $L \leftarrow \emptyset$

(přidávání hran)

- while $|\mathcal{S}| > 1$ do
 - vyber hranu $e \in E$, která spojuje dvě různé komponenty $S, S' \in \mathcal{S}$ a aspoň pro jednu z nich je tou nejlevnější hranou, která z ní trčí
 - $L \leftarrow L \cup \{e\}$
 - do \mathscr{S} dej $S \cup S'$ místo S a S' (spoj komponenty S a S')
 - enddo
- output L

Tvrzení

Nechť G=(V,E) je ohodnocený souvislý graf a K=(V,L) je jeho kostra. K je minimální kostra, právě když pro každou hranu $e \in E \setminus L$ platí: e je tou nejdražší hranou na kružnici, která vznikne, když hranu e přidáme ke kostře K.

Tvrzení

Nechť G=(V,E) je ohodnocený souvislý graf a K=(V,L) je jeho kostra. K je minimální kostra, právě když pro každou hranu $e \in L$ platí: e je tou nejlevnější hranou mezi množinami vrcholů dvou komponent souvislosti, na něž se kostra rozpadne, když hranu e z kostry vyhodíme.

Obecný algoritmus - korektnost

- Terminace variant = $|\mathcal{S}|$ = počet komponent souvislosti podgrafu K.
 - (Ten po každém opakování cyklu klesne o jedna, lze použít též for-cyklus "for $i \leftarrow 1$ to n-1 do ...", kde n=|V|.)
- Parciální korektnost invariant = "Existuje minimální kostra K' taková, že $L\subseteq E(K')$."

```
(Lze dokázat indukcí z předchozích tvrzení.) 
Jelikož algoritmus zastaví, když |L| = n - 1 = |E(K')|, tak K = K' je minimální kostra.
```

Ukážeme nyní dva speciální případy obecného algoritmu.

Borůvkův - Kruskalův algoritmus

Vstup: Ohodnocený (ne nutně souvislý) graf G = (V, E)Výstup: Hrany minimální kostry K = (V, L)

Myšlenka algoritmu: Bere hrany do kostry od nejlevnějších, pokud nevytvoří kružnici (tj. pokud oba vrcholy hrany neleží ve stejné komponentě souvislosti). Jedná se tedy o "hladový algoritmus".

Pokud přidáváme celkově nejlevnější mezikomponentovou hranu, pak je to jistě (dokonce pro obě komponenty) ta nejlevnější hrana trčící z komponenty ven, jde o speciální případ obecného algoritmu.

Borůvkův - Kruskalův algoritmus

(inicializace)

- $\mathscr{S} \leftarrow \{\{v\}, v \in V\}$
- $L \leftarrow \emptyset$, $i \leftarrow 1$

(přidávání hran)

- seřaď hrany podle ceny: e_1, \ldots, e_m , kde $c(e_i) \leq c(e_j)$ pro i < j
- while $|\mathscr{S}| > 1$ and $i \leq m$ do
 - if $e_i = \{u, v\}$ má vrcholy v různých komponentách, tj. $u \in S$, $v \in S'$, $S \neq S'$, then
 - $L \leftarrow L \cup \{e_i\}$
 - do \mathscr{S} dej $S \cup S'$ místo S a S' endif
 - $i \leftarrow i + 1$ enddo
- output L

Poznámka

Algoritmus je napsán tak, aby zastavil, i když na vstupu bude nesouvislý ohodnocený graf. V tom případě zastaví po probrání všech hran a najde minimální vepsaný les.

Poznámka

Algoritmus má ještě daleko do konkrétní implementace. Otázkou je, jak bude datově representován soubor množin $\mathscr S$ (komponent souvislosti). Až pak bude možné odhadnou čas potřebný pro

- vyhledání, do které komponenty patří vrchol v FIND(v),
- sjednocení dvou komponent UNION(S, S').

Poznámka

Algoritmus je napsán tak, aby zastavil, i když na vstupu bude nesouvislý ohodnocený graf. V tom případě zastaví po probrání všech hran a najde minimální vepsaný les.

Poznámka

Algoritmus má ještě daleko do konkrétní implementace. Otázkou je, jak bude datově representován soubor množin $\mathscr S$ (komponent souvislosti). Až pak bude možné odhadnou čas potřebný pro

- vyhledání, do které komponenty patří vrchol v FIND(v),
- sjednocení dvou komponent UNION(S, S').

Borůvkův - Kruskalův algoritmus - časová náročnost

Komponenty souvislosti podgrafu K jsou zadané svými vrcholy, množina komponent $\mathscr S$ tvoří rozklad na množině V (= systém po dvou disjunktních množin, jejichž sjednocením je celá množina V).

Možná datová struktura: $\mathscr S$ může být pole délky n=|V|, kde $\mathscr S(v)$ je jméno komponenty obsahující vrchol v.

FIND(v) trvá čas O(1), UNION(S, S') čas $O(\min\{|S|, |S'|\})$. Celkový čas pro přidávání hran do kostry je $O(m + n \log(n))$. Nejdelší fází je tedy setřídění hran dle cen, které vyžaduje čas $O(m \log(m)) = O(m \log(n))$.

Jarníkův - Primův algoritmus

Vstup: Ohodnocený (ne nutně souvislý) graf G = (V, E)

Výstup: Hrany minimální kostry K = (V, L)

Myšlenka algoritmu: Zvětšuje stále první komponentu souvislosti o nejlevnější hranu, která z ní trčí, resp. o druhý vrchol té hrany. Stačí tedy pamatovat si pouze vrcholy první komponenty.

Jarníkův - Primův algoritmus

(inicializace)

- vyber vrchol $v \in V$, $S \leftarrow \{v\}$
- $L \leftarrow \emptyset$

(přidávání hran)

- ullet while S
 eq V and trčí nějaká hrana z S do
 - ullet vyber nejlevnější hranu $e=\{u,w\}$ takovou, že $u\in S$, $w\notin S'$
 - $L \leftarrow L \cup \{e\}$
 - $S \leftarrow S \cup \{w\}$ enddo
- output L

Poznámka

Algoritmus je opět napsán tak, aby zastavil, i když na vstupu bude nesouvislý ohodnocený graf. V tom případě najde minimální kostru první komponenty souvislosti (té, v níž je vybraný vrchol v).

Jarníkův - Primův algoritmus - časová náročnost

Pokud si budeme držet v paměti pole těch nejlevnějších hran z komponenty S do vrcholů mimo S, bude časová náročnost $O(n^2)$.

Poznámka

Algoritmus je opět napsán tak, aby zastavil, i když na vstupu bude nesouvislý ohodnocený graf. V tom případě najde minimální kostru první komponenty souvislosti (té, v níž je vybraný vrchol v).

Jarníkův - Primův algoritmus - časová náročnost

Pokud si budeme držet v paměti pole těch nejlevnějších hran z komponenty S do vrcholů mimo S, bude časová náročnost $O(n^2)$.

Příklad

Ohodnocený graf G s vrcholy $V = \{1, 2, 2, 4, 5\}$ má hrany zadané maticí cen:

$$\begin{pmatrix}
-3 & 1 & 2 & - \\
3 & -3 & 6 & 5 \\
1 & 3 & -1 & 4 \\
2 & 6 & 1 & - & - \\
-5 & 4 & - & -
\end{pmatrix}$$

Jarníkův - Primův algoritmus nalezne minimální kostru K=(V,L) s hranami $\{1,2\}$, $\{1,3\}$, $\{3,4\}$, $\{3,5\}$ o celkové ceně c(K)=9.

Příklad

Borůvkův - Kruskalův algoritmus, při tomto setřídění hran dle ceny: $\{1,3\},\ \{3,4\},\ \{1,4\},\ \{2,3\},\ \{1,2\},\ \{3,5\},\ \{2,5\},\ \{2,4\},$ nalezne minimální kostru K'=(V,L') s hranami $\{1,3\},\ \{2,3\},$ $\{3,4\},\ \{3,5\}$ o celkové ceně c(K')=9.

Náš graf G má tedy aspoň dvě minimální kostry.

Stromy a minimální kostry

Literatura

- J. Demel: Grafy a jejich aplikace, Academia, 2015.
- J. Matoušek, J. Nešetřil: Kapitoly z diskrétní matematiky, Nakladatelství Karolinum, 2000.
- M. Dostál: Cvičení k přednášce LGR (najdete v nich důkazy některých tvrzení z přednášky a mnoho dalších příkladů).