Closed testing

Simes inequality and confidence for the FDP

Jelle Goeman Aldo Solari

Radboud University Medical Center

University of Milano-Bicocca

International Society for Clinical Biostatistics 23 August 2015

Multiple testing and flexibility

•0000000

Hypothesis test results are often intermediary

P-values calculated and corrected at the probe level

Later

- Aggregated to gene or pathway level
- Selected from
- Turned into networks
- Used in integrated analysis

Question

Conclusions still OK?

Top diff. expression

Multiple testing and flexibility

0000000

Gene	<i>p</i> -value
XDH	5.5e-10
NEK3	6.7e-7
TAF5	7.1e-7
CYP2A7	1.6e-6
NAT2	1.8e-6
ZNF19	2.6e-6
SKP1	2.7e-6
NAT1	3.1e-6
GDF3	2.0e-5
CCDC25	2.1e-5
:	:

False discovery rate control

Expected: < 5% false positives

Practice

Genes chosen for further analysis

Question

How many false positives to expect?

Closed testing

Relationship methylation \longleftrightarrow gene expression

Tested: 4.734,505 CpG—gene combinations

Found

Multiple testing and flexibility

00000000

12,159 combinations at FDR < 5%.

Belonging to

6,540 CpG's and 3,521 genes

Claim: 3,521 genes have expression influenced by a CpG

How many false positives to expect?

Flexibility

Hypothesis test in bioinformatics

Often an intermediary result, not an end result

Needed: flexibility

Valid assessment of error rates after

- aggregation
- selection

Needed: allow post hoc reasoning

Decisions on aggregation/selection taken after seeing the data

Closed testing

Example: FDR and aggregation

Simple simulation

- N = 100 genes of 10 probes each
- Two genes with strong effect in all probes
- Other 98 genes no effect
- FDR controlled at the probe level at 5%

Aggregated result

Realized FDR at the gene level 29%.

Example: FDR, limma and fold change selection

Multiple testing and flexibility

00000000

Subsetting property

Multiple testing and flexibility

00000000

Subsetting property

If an error rate is controlled on \mathcal{R} , also on $\mathcal{S} \subset \mathcal{R}$

- Holds for FWER
- Does not hold for FDR

Random \mathcal{R}

FWER and FDR select \mathcal{R} for the user

Post hoc chosen \mathcal{R}

User is free to choose \mathcal{R} after seeing the data

Goals

0000000

Summary

Multiple testing and flexibility

- FWER: flexibility; low power
- FDR: good power; no flexibility

Can we have our cake and eat it too?

Flexibility and power. . .

Two ingredients

- Simes' inequality
- 2 Closed testing

Histogram of p-values

Multiple testing and flexibility

and expectation if all the hypotheses were true

Sorted p-value curve

Multiple testing and flexibility

 $(i, p_{(i)})$ with $p_{(i)} = i$ th ordered p-value

Expected curve

Multiple testing and flexibility

if all the hypotheses were true

Expected curve

Multiple testing and flexibility

is the observed significantly smaller than expected?

it depends on the (joint) null distribution P_0 of p-values

it depends on the (joint) null distribution P_0 of p-values

Simultaneous lower bound

Multiple testing and flexibility

if joint distribution P_0 known

observed curve crosses: evidence of at least one false hypothesis

Simes: general lower bound

If all hypotheses true, with probability at least $1-\alpha$,

$$p_{(i)} > \frac{i\alpha}{n}$$
 for all $i = 1, \dots, n$

Closed testing

Assumptions

- Research ongoing (Sarkar and others)
- Sufficient: two-sided joint normal test statistics
- Same assumptions as Benjamini & Hochberg FDR

Use: global test

If Simes violated: at least one null hypothesis false

Simes' test

Multiple testing and flexibility

Simes test: reject if observed curve crosses Simes curve

Validity of Simes

Multiple testing and flexibility

Sufficient: PDS condition

For the pvalues q_1, \ldots, q_{m_0} of true hypotheses

$$\mathrm{E}[f(q_1,\ldots,q_{m_0})\mid q_i=u]$$

is non-decreasing in u for every i and for every coordinate-wise non-decreasing function f.

Rodland

Distributions violating Simes' inequality are quite exotic

Laüter

Simes holds for two-sided *p*-values from normally distributed statistics

Version of Simes that is always valid

$$q_{(i)} > \frac{i\alpha}{m_0 \sum_{j=1}^{m_0} 1/j}$$
 for all $i = 1, \ldots, m_0$,

Closed testing

Advantages

No worries on PDS conditions Can always be substituted for Simes in methods

Drawbacks

Caters for a very exotic worst case distribution Quite conservative for most other distributions

Intersection hypothesis

 $H = A \cap B \cap C$ is true if and only if A, B and C are all true

Example

Multiple testing and flexibility

A: gene A is not differentially expressed

B: gene B is not differentially expressed

C: gene C is not differentially expressed

Then H: A, B and C are not differentially expressed

Compare

Gene set tests for pathway testing

Closed testing

0000000000

Hypotheses

Multiple testing and flexibility

 H_1, \ldots, H_m

True hypotheses

 $\mathcal{T} \subseteq \{1, \dots, m\}$ indices of true hypotheses

Intersection hypothesis

$$H_C = \bigcap_{i \in C} H_i$$
, for $C \subseteq \{1, \dots, m\}$

Closure

Collection of all $2^m - 1$ intersection hypotheses

Closed Testing: ingredients

Marcus, Peritz and Gabriel (1976)

Fundamental principle of FWER control

Local test

Multiple testing and flexibility

Valid α -level test for every intersection hypothesis

Example of local test

- global test
- Bonferroni local test
- Simes test

Closed testing: procedure

Raw rejections

Multiple testing and flexibility

Hypotheses rejected by the local test (with $p < \alpha$)

Multiplicity-corrected rejections

Reject hypotheses H_C , if H_I rejected for every $J \supset H$

Statement

With probability at least $1-\alpha$, no true (intersection) hypothesis rejected

Closed testing (graphically)

Multiple testing and flexibility

Multiplicity-corrected rejections

Closed testing on gene sets

Huge number of tests performed

All $2^m - 1$ possible gene sets

No Bonferroni factors

Multiple testing and flexibility

All tests performed at level α

Replaced by constraint

Only reject gene set R if all gene sets containing R are rejected

Still familywise error control

Probability $(1-\alpha)$: no false rejection

Shortcut: fast algorithms

Start with *m* **hypothesis**

Require $2^m - 1$ tests in closed testing

Use Simes as a local test

Obtain adjusted test results in $m \log(m)$ time

Reason

Multiple testing and flexibility

Simple structure of test \rightarrow implications between test results

Hommel's method

- Use closed testing plus Simes
- Report all rejected elementary hypotheses
- Use shortcut to avoid exponential calculations

Hochberg's method

- Also uses closed testing plus Simes
- Even faster simpler shortcut
- Sacrifices power for quick calculations

Adjusted *p*-values for Hochberg's procedure

Start with p-values for m hypotheses

- Sort the *p*-values $p_{(1)}, \ldots, p_{(m)}$.
- Multiply each $p_{(i)}$ by its adjustment factor $a_i = m i + 1, i = 1, ..., m$
- If the multiplication in step 2 violates the original ordering, repair this: decrease the highest p-value in all violating pairs:

$$\tilde{p}_{(i)} = \min_{j=i,\dots,m} a_j p_{(j)}$$

• Set $\tilde{p}_{(i)} = \min(\tilde{p}_{(i)}, 1)$ for all i.

Compare with Holm

Same critical values, but step-up rather than step-down

Step-down and step-up

Multiple testing and flexibility

Back to flexibility

Selection and aggregation

Probability statements must be post hoc valid

Desired statements

- Is there any signal in this set?
- What is the false discovery proportion (FDP) of this set?
- What is the FDP of this collection of sets?

Single set statements

Closed testing

Multiple testing and flexibility

All possible sets tested; FWER control

Is there signal in this set?

Automatically answered for all sets

Post hoc validity (flexibility)

Automatic from FWER control

Set *R* **of interest**

- Chosen post hoc
- Starting point for further analysis

Questions

Multiple testing and flexibility

- Number of true/false hypotheses in R
- Proportion of true/false hypotheses in R

Inference on false discovery proportion

Many weak effects

Bounding the false discovery proportion

With probability $1 - \alpha$: ≤ 1 true null hypothesis among A, B, C

Results

Multiple testing and flexibility

Closed testing gives flexibility

- Confidence statements for FDP for all sets
- Also: point estimate for FDP (use $\alpha = 0.50$)

Simultaneous coverage for free

Probability $1 - \alpha$: closed testing makes no error: all confidence statements simultaneously correct

Simultaneous control over all R

Consequence: coverage robust against post hoc selection of R

Regular confidence interval

Multiple testing and flexibility

- Each individually covers true parameter with probability $1-\alpha$
- Some confidence intervals cover, some don't
- Some non-covering intervals are present in every experiment
- Selected (interesting) confidence interval is likely non-covering

Simultaneous confidence intervals

- With probability $1-\alpha$, all intervals cover simultaneously
- With probability $1-\alpha$ no non-covering intervals present
- With probability $1-\alpha$ the selected interval covers
- Simultaneous intervals are robust against selection

R	confidence set for $\tau(R)$	confidence set for $\phi(R)$
$\overline{\{A\}}$	{0,1}	{0,1}
{ <i>B</i> }	{0,1}	{0,1}
{ <i>C</i> }	$\{0,1\}$	$\{0,1\}$
$\{A,B\}$	{0,1}	{1,2}
$\{A,C\}$	{0,1}	{1,2}
{ <i>B</i> , <i>C</i> }	{0,1}	{1,2}
$\{A,B,C\}$	{0,1}	{2,3}

Link with Benjamini & Hochberg FDR control

- Same assumptions, same weak FWER control
- FDR rejected set R: 95% conf. FDP < (#R 1)/#R
- FDR rejected set R always has estimated FDP $\leq 10\%$

Link with Hommel/Bonferroni FWER procedures

- Hommel-rejected set always has 95% conf. FDP = 0
- Hommel is a more powerful variant of Bonferroni
- But obtain additional FDP statements for other sets

Top diff. expression

Multiple testing and flexibility

Gen	p-waarde
XDH	5.5e-10
NEK3	6.7e-7
TAF5	7.1e-7
CYP2A7	1.6e-6
NAT2	1.8e-6
ZNF19	2.6e-6
SKP1	2.7e-6
NAT1	3.1e-6
GDF3	2.0e-5
CCDC25	2.1e-5
:	:

False discovery rate control

Expected: < 5% false positives

Practice

Genes chosen for further analysis

How many false positives to expect?

95% conf.: max. 1 false positive

Point estimate

No false positives

Example: Rosenwald DLBCL data

Data

Multiple testing and flexibility

240 diffuse large B-cell lymphoma patients; 7399 hypotheses

Classical results

- Bonferroni, Holm, Hocherg, Hommel: 4 hypotheses
- Benjamini and Hochberg: 72 hypotheses

FDP estimates and bounds: top *k p*-values


```
# start with a named vector of sorted p-values
ps
# prepare the closed testing procedure
hom <- hommelFast(ps)
# how many false hypotheses in the top 10?
pickSimes(hom, 1:10)
10 hypotheses selected. At confidence level 0.95:
False null-hypotheses >= 6; True null-hypotheses <= 4.
# or in some other group
pickSimes(hom, c('RAF', 'ERK1', 'ERK2', 'MEK1', 'MEK2'))
5 hypotheses selected. At confidence level 0.95:
False null-hypotheses >= 2; True null-hypotheses <= 3.
```

```
# estimate
pickSimes(hom, 1:10, alpha=0.5)
10 hypotheses selected. At confidence level 0.5:
False null-hypotheses >= 10; True null-hypotheses <= 0.
# make a curve like in the plot
false <- curveSimes(hom, 1:72)</pre>
fdp <- 1-false/1:72
# curve for the fdp
plot(fdp, type='S')
```

Subsetting property

FDP type statements

Never have the subsetting property

However

Simultaneous FDP statements over all subsets

Advantages

- FDP statement for the set of real interest
- FDP statements for subsets of that set
- All simultaneous \rightarrow confidence guaranteed

Closed testing

Multiple testing in genomics

Flexibility is important

Multiple testing and flexibility

Users will always aggregate or select

Flexibility is limited

- FWER control allows it.
- EDR control does not

FDP confidence methods

Combine flexibility and control

Closed testing

FDP confidence based on Simes

Closed testing

Multiple testing and flexibility

Tests all intersection hypotheses ('gene set tests')

Simes' inequality

Makes this computationally feasible

Result

- Great flexibility
- Point estimate and confidence bound of FDP for any set
- ullet Simultaneous o post hoc valid
- Little loss of power relative to Benjamini & Hochberg