# Data and Data Sources

## Market Basket analysis



- It identifies associations between products in transactions.
- Uses Association Rule Mining to generate rules like "If a customer buys X, they are likely to buy Y."
- Commonly applied in retail, e-commerce, and recommendation systems.



Association Analysis is a data mining technique used to discover relationships or patterns between items in large datasets. It is widely used in market basket analysis, recommendation systems, fraud detection, and web usage mining.

### **Objective:**

To find frequent item-sets and association rules that describe how items are related within a dataset.

#### **Association Rules**

Association rules are statements in the form of:

If  $X \Rightarrow Y$ , Which means, if item X appears, item Y is also likely to appear.



### Example:

- •{Bread, Butter}  $\rightarrow$  {Milk} (People who buy bread and butter often buy milk)
- •{Laptop} → {Mouse} (People who buy a laptop are likely to buy a mouse)

### Key metrics used to evaluate association rules:

#### 1. Support

Measures how frequently an itemset appears in the dataset.

$$Support(X) = \frac{\text{Frequency of X in dataset}}{\text{Total transactions}}$$



Example: If Milk appears in 30 out of 100 transactions, then:

$$Support(Milk) = \frac{30}{100} = 30\%$$

#### 2. Confidence

Measures how often Y appears when X is present.

$$Confidence(X \Rightarrow Y) = rac{\mathrm{Support}(\mathrm{X} \cup \mathrm{Y})}{\mathrm{Support}(\mathrm{X})}$$

Example: If Bread appears in 50 transactions, and in 40 of them, Milk is also bought:

$$Confidence(Bread\Rightarrow Milk) = rac{40}{50} = 80\%$$



### 3. Lift

Measures how much **stronger** the association is compared to a random occurrence.

$$Lift(X\Rightarrow Y) = rac{ ext{Confidence}( ext{X} o ext{Y})}{ ext{Support}( ext{Y})}$$

If Lift > 1: X and Y are positively correlated (buying one increases the likelihood of buying the other).

If Lift < 1: X and Y are negatively correlated (buying one reduces the likelihood of buying the other).



### **Problems**

A retailer wants to analyze buying patterns based on 500 transactions in a week:

- {Laptop} appears in 100 transactions.
- {Laptop, Mouse} together appear in 60 transactions.
- {Mouse} appears in 150 transactions.

### Questions:

- What is the confidence of the rule {Laptop} → {Mouse}?
- What is the confidence of the rule {Mouse} → {Laptop}?



## **Problems: Supermarket Transactions**

#### **Transaction Dataset**

| Transaction ID | Items Purchased           |
|----------------|---------------------------|
| T1             | Milk, Bread, Butter       |
| T2             | Bread, Butter             |
| T3             | Milk, Bread               |
| T4             | Milk, Bread, Butter, Eggs |
| T5             | Bread, Butter, Eggs       |

### Step 1: Compute Support

- Support(Milk)
- Support(Bread)
- Support(Butter)
- Support({Milk, Bread})
- Support({Bread, Butter})

#### Step 2: Compute Confidence

- Confidence(Milk  $\rightarrow$  Bread)
- Confidence(Bread  $\rightarrow$  Butter)

### Step 3: Compute Lift

- Lift(Milk  $\rightarrow$  Bread)
- Lift(Bread  $\rightarrow$  Butter)



## **Problems**

#### **Transaction Data**

| Transaction ID | Items Purchased      |
|----------------|----------------------|
| T1             | Apple, Banana, Milk  |
| T2             | Apple, Banana        |
| Т3             | Apple, Banana, Milk  |
| T4             | Banana, Milk, Bread  |
| T5             | Apple, Bread         |
| T6             | Banana, Bread        |
| T7             | Apple, Banana, Bread |

0.87

 $Lift(Apple \rightarrow Banana)$ 

Lift(Banana  $\rightarrow$  Bread) 0.60



## **Applications of Market Basket analysis**

#### **Retail:**

- Optimize product placement (e.g., placing Milk near Bread).
- . Identify frequently bought-together items for promotions.

#### **E-commerce & Recommendations:**

- Suggest items frequently bought together (Amazon's "Customers who bought this also bought...").
- . Improve personalized recommendations.

**Healthcare:** Analyze patient symptoms and medications that are frequently prescribed together.

Finance: Detect fraud by identifying unusual spending patterns.



- Q. Using the following transactional dataset of customer purchases. Find:
- i. Frequent Itemset/s
- ii. Association rules
- iii. Support, confidence and lift of the rules

| Transaction ID | Items Purchased             |
|----------------|-----------------------------|
| 1              | Bread, Milk, Eggs           |
| 2              | Bread, Butter               |
| 3              | Milk, Butter                |
| 4              | Bread, Milk, Butter, Cheese |
| 5              | Eggs, Milk                  |
| 6              | Bread, Eggs                 |
| 7              | Milk                        |
| 8              | Bread, Butter, Milk         |



#### Frequent Itemsets (Let's use a minimum support of 2):

#### •Individual Items:

- Bread: 5/8 = 0.625 (Support = 0.625)
- Milk: 6/8 = 0.75 (Support = 0.75)
- Eggs: 3/8 = 0.375 (Support = 0.375)
- Butter: 4/8 = 0.5 (Support = 0.5)
- Cheese: 1/8 = 0.125 (Support = 0.125)

#### •Pairs:

- {Bread, Milk}: 3/8 = 0.375 (Support = 0.375)
- {Bread, Butter}: 3/8 = 0.375 (Support = 0.375)
- {Milk, Butter}: 3/8 = 0.375 (Support = 0.375)
- {Milk, Eggs}: 2/8 = 0.25 (Support = 0.25)
- {Bread, Eggs}: 2/8 = 0.25 (Support = 0.25)

#### •Triplets:

• {Bread, Milk, Butter}: 2/8 = 0.25 (Support = 0.25)

| Transaction ID | Items Purchased             |
|----------------|-----------------------------|
| 1              | Bread, Milk, Eggs           |
| 2              | Bread, Butter               |
| 3              | Milk, Butter                |
| 4              | Bread, Milk, Butter, Cheese |
| 5              | Eggs, Milk                  |
| 6              | Bread, Eggs                 |
| 7              | Milk                        |
| 8              | Bread, Butter, Milk         |



#### **Support, Confidence, and Lift:**

- •Support: The proportion of transactions that contain the itemset.
- •Confidence: The probability that a transaction containing A also contains B (A -> B).
- •Lift: The ratio of the observed support to the support if A and B were independent. A lift greater than 1 suggests a positive association.

#### **Association Rules (Using the frequent itemsets):**

#### •{Bread, Milk} -> {Butter}:

- •Support = 2/8 = 0.25
- •Confidence = 2/3 = 0.666
- •Lift = (2/8) / ((3/8) \* (4/8)) = 1.33
- •{Bread, Butter} -> {Milk}:
- •Support = 2/8 = 0.25
- •Confidence = 2/3 = 0.666
- •Lift = (2/8) / ((3/8) \* (6/8)) = 0.888
- •{Milk, Butter} -> {Bread}:
- •Support = 2/8 = 0.25
- •Confidence = 2/3 = 0.666
- •Lift = (2/8) / ((3/8) \* (5/8)) = 1.066

| Transaction ID | Items Purchased             |
|----------------|-----------------------------|
| 1              | Bread, Milk, Eggs           |
| 2              | Bread, Butter               |
| 3              | Milk, Butter                |
| 4              | Bread, Milk, Butter, Cheese |
| 5              | Eggs, Milk                  |
| 6              | Bread, Eggs                 |
| 7              | Milk                        |
| 8              | Bread, Butter, Milk         |

| Transaction ID | Items Purchased             |
|----------------|-----------------------------|
| 1              | Bread, Milk, Eggs           |
| 2              | Bread, Butter               |
| 3              | Milk, Butter                |
| 4              | Bread, Milk, Butter, Cheese |
| 5              | Eggs, Milk                  |
| 6              | Bread, Eggs                 |
| 7              | Milk                        |
| 8              | Bread, Butter, Milk         |

| Rule                      | Support | Confidence | Lift  |
|---------------------------|---------|------------|-------|
| {Bread} -> {Milk}         | 0.375   | 0.6        | 8.0   |
| {Bread} -> {Butter}       | 0.375   | 0.6        | 1.2   |
| {Milk} -> {Bread}         | 0.375   | 0.5        | 8.0   |
| {Milk} -> {Butter}        | 0.375   | 0.5        | 1     |
| {Butter} -> {Bread}       | 0.375   | 0.75       | 1.5   |
| {Butter} -> {Milk}        | 0.375   | 0.75       | 1.25  |
| {Bread, Milk} -> {Butter} | 0.25    | 0.666      | 1.33  |
| {Bread, Butter} -> {Milk} | 0.25    | 0.666      | 0.888 |
| {Milk, Butter} -> {Bread} | 0.25    | 0.666      | 1.066 |