# Milestone 1

By Sumaiya Jahan Sharlin(2011126042) & Shaira Aktar Shove (2122179642)

## Understanding the problem

Develop a physics-focused chatbot with the to content from the provided Physics Textbook.

The chatbot should be user-friendly, with a clean chat interface and support for clearing the chat.

### **Proposed User Interface**



# A comparative analysis of different Small/Large Language Models

| Feature                     | Small Language Models (SLMs)                                  | Large Language Models (LLMs)                                   |
|-----------------------------|---------------------------------------------------------------|----------------------------------------------------------------|
| Examples                    | DistilBERT, MiniLM                                            | GPT-4, BERT-large, T5-large                                    |
| Model Size                  | Small (e.g., 6M - 60M parameters)                             | Large (e.g., billions of parameters)                           |
| Performance                 | Suitable for specific or narrow tasks                         | Better at handling complex and open-ended tasks                |
| Computation & Speed         | Faster inference, uses less memory                            | Slower inference, requires more computing power                |
| Training Costs              | Lower training cost due to fewer parameters                   | Expensive to train, requiring significant hardware             |
| Use Cases                   | Simple, real-time applications, mobile devices                | Advanced NLP tasks like text generation, summarization         |
| Fine-tuning<br>Requirements | Requires less data and resources to fine-tune                 | Needs large datasets and more time for fine-tuning             |
| Ассигасу                    | Adequate for basic queries but less accurate on complex tasks | Higher accuracy, especially in understanding nuanced questions |
| Deployment                  | Easier to deploy, even on smaller devices                     | Typically deployed in cloud environments due to resource needs |

For our limited domain (Provided Physics textbook), an SLM will offer a balance between speed and accuracy.



- Focused Task: The chatbot is limited to a physics textbook. SLMs handle specific, domain-focused tasks efficiently, while LLMs are overkill for such narrow topics.
- 2. Speed and Efficiency: SLMs are faster and use fewer resources, providing quick responses, which is essential for real-time interaction.
- 3. Cost-Effective: SLMs are cheaper to deploy and maintain. LLMs, with their size and complexity, are more costly and not needed for this task.
- 4. Good Accuracy: SLMs like DistilBERT can handle the level of complexity in the textbook without sacrificing quality.
- 5. Easier Fine-Tuning: SLMs can be fine-tuned easily on the specific physics content, whereas LLMs require more effort and resources.

In short, SLMs are more efficient, affordable, and sufficient for this project's needs compared to LLMs.

#### What is an Embedding Model?

Embedding models are tools used in natural language processing (NLP) to convert words, phrases, or sentences into numerical vectors (arrays of numbers) so that computers can understand.

| Embedding Model                        | What It Does                                                    | Strengths                            | Limitations                                                      | Suitability for Physics<br>Chatbot                        |
|----------------------------------------|-----------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------|
| Word2Vec                               | Creates word-level<br>embeddings from context                   | Fast and efficient                   | Lacks sentence context;<br>struggles with<br>multi-word meanings | Not suitable;<br>misses crucial<br>physics concepts       |
| GloVe                                  | Generates word embeddings<br>based on global word<br>statistics | Captures relationships between words | Focuses on word-level;<br>no sentence<br>understanding           | Not suitable; fails<br>to grasp contextual<br>meaning     |
| BERT                                   | Provides deep contextual embeddings for tokens                  | Excellent at understanding context   | Requires combining token embeddings for sentences                | Not optimal for fast retrieval                            |
| FastText                               | Considers subword information for better coverage               | Handles rare words well              | Still focuses on word-level; limited context                     | Not suitable;<br>doesn't capture full<br>sentence meaning |
| InferSent                              | Produces sentence<br>embeddings using<br>supervised learning    | Good for basic sentence-level tasks  | Less powerful than newer models                                  | Limited effectiveness for complex physics queries         |
| USE (Universal<br>Sentence<br>Encoder) | Generates embeddings for sentences and paragraphs               | Good for general NLP tasks           | Not specialized for specific semantic searches                   | May not provide<br>the precision<br>needed for physics    |
|                                        |                                                                 |                                      | Decision of the second                                           | Doot shoise                                               |

SBERT (Sentence-BERT) is the best choice for our physics chatbot due to its ability to generate high-quality sentence embeddings, fast retrieval capabilities, and effective handling of context, making it ideal for answering physics-related questions accurately and efficiently.

### What do we mean by Chunking Strategy?

Chunking strategy refers to the method of breaking down text into smaller, manageable pieces or "chunks." This is important in natural language processing (NLP) because it helps models understand and process the text more effectively.

### A comparative analysis of different chunking

stratenies

| Chunking Strategy        | Description                                                             | Use Cases                                         | Strengths                                                 | Limitations                                 |
|--------------------------|-------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|---------------------------------------------|
| Sentence Chunking        | Divides text into individual sentences                                  | Sentiment<br>analysis, question<br>answering      | Simple and<br>straightforward for<br>sentence-level tasks | May miss context across sentences           |
| Phrase Chunking          | Dividing text into phrases based on grammatical structures              | Information extraction, parsing                   | Captures<br>relationships<br>between words                | Requires complex parsing techniques         |
| Fixed-Size Chunking      | Splits text into chunks of a specific size                              | Training models<br>needing uniform<br>input sizes | Ensures consistency in input size                         | May cut off important context               |
| Overlapping<br>Chunking  | Creates chunks that overlap with each other                             | Contextual<br>analysis, dialogue<br>systems       | Retains context<br>across chunk<br>boundaries             | Increased complexity in handling overlaps   |
| Semantic Chunking        | Breaking text into chunks based on the meaning of the words and phrases | Ensures coherent context per chunk                | Captures complex relationships.                           | Requires deep<br>semantic<br>understanding. |
| Hierarchical<br>Chunking | Organizes chunks in a<br>hierarchical structure                         | Document summarization, topic modeling            | Maintains context at multiple levels                      | More complex to implement and analyze       |

Semantic Chunking is the best choice for your physics chatbot as it enhances the understanding of complex physics concepts, preserves context, and improves the overall accuracy of responses.