

Coimbra, 10 de maio de 2021

Disciplina: Análise Matemática II

Docente: Professor Arménio Correia

Discentes: João Almeida 2020144466

Nuno Santos 2019110035

Pedro Nogueira 2020136533

Índice

1.	Intr	odução	3
2.	Mé	odos Numéricos para resolução de Sistemas de ED	4
	2.0 C	álculo do Passo	4
	2.1 M	étodo de Euler	5
	2.1	1 Fórmulas	5
	2.1	2 Algoritmo/Função	7
	2.2 M	étodo de Euler Melhorado ou Modificado	8
	2.2	1 Fórmulas	8
	2.2	2 Algoritmo/Função	8
	2.3 M	étodo de Runge-Kutta de Ordem 2	10
	2.3	1 Fórmulas	10
	2.3	2 Algoritmo/Função	13
	2.4 M	étodo de Runge-Kutta de Ordem 4	15
	2.4	1 Fórmulas	15
	2.4	2 Algoritmo/Função	20
3.	Exe	mplos de aplicação e teste dos métodos	21
	3.1 AI	goritmo de Resolução	21
	3.2 Pı	oblema do Pêndulo	22
	3.2 M	ovimento Livre Amortecido	25
	3.3	Modelo Vibratório Mecânico	27
	3.4	Movimento Harmónico Simples	29
	3.5	Circuitos Elétricos em Série	31
4.	Cor	nclusão	33
5.	Bib	liografia	35

1. Introdução

Este trabalho surge no âmbito da unidade curricular de Análise Matemática 2 – Matemática Computacional do curso de Engenharia Informática do Instituto Superior de Engenharia de Coimbra e consiste na redefinição e adaptação das funções implementadas anteriormente na Atividade01 (Métodos Numéricos para a resolução de Equações Diferenciais Ordinárias (EDO) e Problemas de Valor Inicial (PVI)) para a resolução de Sistemas de Equações Diferenciais com condições iniciais.

Pretende-se a implementação desses Métodos através do desenvolvimento de um GUI em linguagem de programação MATLAB, com o intuito de resolver exemplos/exercícios (Pêndulo, Sistemas Mecânicos Massa-Mola com amortecimento e sem amortecimento, circuitos elétricos modelados por equações de 2ª ordem, entre outros), de modo a testar as funções implementadas.

Por fim, é também pretendido apresentar uma breve pesquisa sobre a aplicação de equações diferenciais lineares de 2ª ordem a outros problemas em áreas da engenharia, biologia ou economia e resolver esses problemas de aplicação recorrendo à aplicação a criar nesta atividade.

2. Métodos Numéricos para resolução de Sistemas de ED

2.0 Cálculo do Passo

O valor do passo, **h**, será usado por todos os Métodos Numéricos implementados. Assim, a fim de evitar repetição e redundância, decidimos apresentar aqui a sua definição e fórmula de cálculo.

Este valor é o tamanho de cada subintervalos no intervalo original **[a, b]**, e pode ser calculado da seguinte forma:

$$h = \frac{(b-a)}{n}$$

onde:

- *h* → Tamanho de cada subintervalo (passo);
- a → Limite esquerdo do intervalo;
- b → Limite direito do intervalo;
- n → Número de sub-intervalos.

2.1 Método de Euler

2.1.1 Fórmulas

O método de Euler é um procedimento numérico de primeira ordem (y') para aproximar a solução da equação diferencial y' = f(t,y) que satisfaz a condição inicial: $y(t_0) = y_0$

O Método de Euler para resolver um Sistema de Equações é dado pelas seguintes equações:

Fórmula Geral (EDs 1º ordem):

$$y_{i+1} = y_i + hf(x_i, y_i)$$

onde:

- y_{i+1} → Próximo valor aproximado da solução do problema original (na abcissa t_{i+1});
- y_i → Valor aproximado da solução do problema original na abcissa atual;
- $h \rightarrow \text{Valor de cada subintervalo (passo)};$
- $f(t_i, y_i) \rightarrow \text{Valor de } f \text{ no ponto } (t_i, y_i);$

Fórmula Geral modificada para um Sistema de Equações:

$$u_{i+1} = u_i + hf(t_i, u_i, v_i)$$

$$v_{i+1} = v_i + hg(t_i, u_i, v_i)$$

onde:

- u_{i+1} → Próxima ordenada da solução aproximada y(t);
- v_{i+1} → Próxima ordenada da solução aproximada y'(t)
- u_i → Ordenada atual da solução aproximada y(t);
- v_i → Ordenada da solução aproximada y'(t);
- $h \rightarrow \text{Valor de cada subintervalo (passo)}$;
- $f(t_i, u_i, v_i) \rightarrow \text{Valor de } f \text{ no ponto } (t_i, u_i, v_i);$
- $g(t_i, u_i, v_i) \rightarrow \text{Valor de } g \text{ no ponto } (t_i, u_i, v_i).$

2.1.2 Algoritmo/Função

Algoritmo:

- 1. Definir o valor do passo h;
- 2. Criar um vetor \mathbf{u} e um vetor \mathbf{v} para guardar as soluções e atribuir $\mathbf{u}_1 = \mathbf{u}_0$ e $\mathbf{v}_1 = \mathbf{v}_0$;
- 3. Atribuir o primeiro valor de **u** e de **v**;
- 4. Para *i* de 1 a *n*, fazemos o cálculo do método de Euler para a iésima iteração no vetor *u* e o vetor *v*.

Função (MATLAB):

2.2 Método de Euler Melhorado ou Modificado

2.2.1 Fórmulas

Este método também se pode referir como Método de Euler Melhorado ou Modificado, ou um método de Runge-Kutta de ordem 2.

Fórmula Geral (EDs 1º ordem):

$$\begin{array}{l} y_{i+1} = y_i + h f(t_i, y_i) \\ y_{i+1} = y_i + \frac{h}{2} \left(f(t_i, y_i) + f(t_{i+1}, y_{i+1}) \right), \ i = 0, 1, ..., n-1 \end{array}$$

onde:

- y_{i+1} → Próximo valor aproximado da solução do problema original (na abcissa t_{i+1});
- y_i → Valor aproximado da solução do problema original na abcissa atual;
- *h* → Valor de cada subintervalo (passo);
- $f(t_i, y_i) \rightarrow \text{Valor de } f \text{ no ponto } (t_i, y_i);$

•

2.2.2 Algoritmo/Função

Algoritmo:

- 1. Definir o valor do passo *h*;
- 2. Criar um vetor \mathbf{u} e um vetor \mathbf{v} para guardar as soluções e atribuir $\mathbf{u}_1 = \mathbf{u}_0$ e $\mathbf{v}_1 = \mathbf{v}_0$;
- 3. Atribuir o primeiro valor de **u** e de **v**;
- 4. Para i de 1 a n, fazemos o cálculo do método de Euler Melhorado para a iésima iteração no vetor u e o vetor v.

Função (MATLAB):

2.3 Método de Runge-Kutta de Ordem 2

2.3.1 Fórmulas

É um método de passo simples que requer apenas derivadas de primeira ordem e pode fornecer aproximações precisas.

O Método de RK2 para resolver um PVI é dado pelas seguintes equações:

Fórmula Geral (EDs 1º ordem):

$$y_{i+1} = y_i + \frac{1}{2}(k_1 + k_2), i = 0, 1, 2, ..., n - 1$$

onde:

- y_{i+1} → Próximo valor aproximado da solução do problema original (na abcissa t_{i+1});
- y_i → Valor aproximado da solução do problema original na abcissa atual;
- k₁ → Inclinação no início do intervalo;
- k₂ → Inclinação no fim do intervalo.

Cálculo de k1:

$$k_1 = h * f(t_i, y_i)$$

- k₁ → Inclinação no início do intervalo;
- $h \rightarrow \text{Valor de cada subintervalo (passo)};$
- $f(t_i, y_i) \rightarrow \text{Valor de } f \text{ no ponto } (t_i, y_i)$;

Cálculo de k2:

$$k_1 = h * f(t_i, y_i)$$

- k₂ → Inclinação no fim do intervalo;
- $t_i \rightarrow$ Abcissa atual do intervalo escolhido;
- h → Tamanho de cada subintervalo (passo);
- y_i → Valor aproximado da solução do problema original na abcissa atual;
- k₁ → Inclinação no início do intervalo.

Fórmula Geral modificada para um Sistema de Equações:

$$u_{i+1} = u_i + (k1u + k2u)/2$$

$$v_{i+1} = v_i + (k1v + k2v)/2$$

onde:

- u_{i+1} → Aproximação do método de RK2 para a iésima iteração;
- v_{i+1} → Aproximação do método de RK2 para a iésima iteração;
- u_i → Ordenada atual da solução aproximada y(t);
- v_i → Ordenada atual da solução aproximada y'(t);

Cálculo de k1u:

$$k1u = h * \boldsymbol{f}(t_i, u_i, v_i)$$

- k1u → Inclinação no início do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- $f(t_i, u_i, v_i) \rightarrow \text{Valor de } f \text{ no ponto } (t_i, u_i, v_i).$

Cálculo de k1v:

$$k1v = h * \boldsymbol{g}(t_i, u_i, v_i)$$

- k1v → Inclinação no início do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- t_i → Abcissa atual do intervalo escolhido;
- u_i → Ordenada atual da solução aproximada y(t);
- v_i → Ordenada atual da solução aproximada y'(t);
- $g(t_i, u_i, v_i) \rightarrow \text{Valor de } g \text{ no ponto } (t_i, u_i, v_i).$

Cálculo de k2u:

$$k2u = h * f(t_{i+1}, u_i + k1u, v_i + k1v)$$

- k2u → Inclinação no fim do intervalo;
- h → Tamanho de cada subintervalo (passo);
- t_{i+1} → Próxima abcissa do intervalo escolhido;
- k1u → Inclinação no início do intervalo;
- u_i → Ordenada atual da solução aproximada y(t);
- v_i → Ordenada atual da solução aproximada y'(t);
- k1v → Inclinação no início do intervalo.

Cálculo de k2v:

$$k2v = h * \boldsymbol{g}(t_{i+1}, u_i + k1u, v_i + k1v)$$

- $k2v \rightarrow$ Inclinação no fim do intervalo;
- h → Tamanho de cada subintervalo (passo);
- $t_{i+1} \rightarrow \text{Pr\'oxima abcissa do intervalo escolhido}$;
- k1u → Inclinação no início do intervalo;
- u_i → Ordenada atual da solução aproximada y(t);
- v_i → Ordenada atual da solução aproximada y'(t);
- k1v → Inclinação no início do intervalo.

2.3.2 Algoritmo/Função

Algoritmo:

- 1. Definir o passo *h*;
- 2. Criar um vetor \boldsymbol{u} e um vetor \boldsymbol{v} para guardar as soluções e atribuir $\boldsymbol{u}_1 = \boldsymbol{u}_0$ e $\boldsymbol{v}_1 = \boldsymbol{v}_0$;
- 3. Atribuir o primeiro valor de **u** e de **v**;
- 4. Cálculo da inclinação no início do intervalo;
- 5. Cálculo da inclinação no fim do intervalo;
- 6. Cálculo da média das inclinações;
- 7. Cálculo do valor aproximado para a iésima iteração.

Função (MATLAB):

```
function [t,u,v] = NRK2SED(f,g,a,b,n,u0,v0)
h = (b-a)/n;
t = a:h:b;
u = zeros(1,n+1);
v = zeros(1,n+1);
u(1) = u0;
v(1) = v0;
for i = 1:n
    klu = h*f(t(i),u(i),v(i));
    k1v = h*g(t(i),u(i),v(i));
    k2u = h*f(t(i+1),u(i)+k1u,v(i)+k1v);
    k2v = h*g(t(i+1),u(i)+k1u,v(i)+k1v);
    u(i+1) = u(i)+(k1u+k2u)/2;
    v(i+1) = v(i) + (k1v+k2v)/2;
end
end
```


2.4 Método de Runge-Kutta de Ordem 4

2.4.1 Fórmulas

O método de Runge-Kutta de ordem 4 não necessita do cálculo de qualquer derivada de f, mas depende de outra função que é definida avaliando f em diferentes pontos.

O método RK4 para resolver um PVI é dado pelas seguintes equações:

Fórmula Geral (EDs 1º ordem):

$$y_{i+1} = y_i + \frac{h}{6} (k_1 + 2 k_2 + 2 k_3 + k_4), \quad i = 0, 1, \dots$$

onde:

- y_{i+1} → Aproximação pelo método RK4 de y(x_{n+1});
- y_i → Valor de y na iésima iteração;
- $h \rightarrow \text{Valor de cada subintervalo (passo)}$.

e:

$$k_1 = f(x_i, y_i)$$

$$k_2 = f(x_i + \frac{h}{2}, y_i + \frac{h}{2}k_1)$$

$$k_3 = f(x_i + \frac{h}{2}, y_i + \frac{h}{2}k_2)$$

$$k_4 = f(x_i + h, y_i + h k_3)$$

onde:

- k₁ → Inclinação no início do intervalo;
- k₂ → Inclinação no ponto médio do intervalo;
- k₃ → Inclinação (novamente) no ponto médio do intervalo;
- k₄ → Inclinação no final do intervalo.

Média ponderada das inclinações: $\frac{k_1+2k_2+2k_3+k_4}{6}$

Fórmula Geral modificada para um Sistema de Equações:

$$u_{i+1} = u_i + (k1u + 2 * k2u + 2 * k3u + k4u)/6$$

$$v_{i+1} = v_i + (k1v + 2 * k2v + 2 * k3v + k4v)/6$$

onde:

- u_{i+1} → Aproximação do método de RK4 para a iésima iteração;
- V_{i+1} → Aproximação do método de RK4 para a iésima iteração;
- u_i → Ordenada atual da solução aproximada y(t);
- v_i → Ordenada atual da solução aproximada y'(t);

Cálculo de k1u:

$$k1u = h * \boldsymbol{f}(t_i, u_i, v_i)$$

- k1u → Inclinação no início do intervalo;
- h → Tamanho de cada subintervalo (passo);
- $f(t_i, u_i, v_i) \rightarrow \text{Valor de } f \text{ no ponto } (t_i, u_i, v_i).$

Cálculo de k1v:

$$k1v = h * \boldsymbol{g}(t_i, u_i, v_i)$$

- k1v → Inclinação no início do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- $g(t_i, u_i, v_i) \rightarrow \text{Valor de } g \text{ no ponto } (t_i, u_i, v_i).$

Cálculo de k2u:

$$k2u = h * f(t_i + \frac{h}{2}, u_i + 0.5 * k1u, v_i + 0.5 * k1v)$$

- k2u → Inclinação no ponto médio do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- t_i → Abcissa atual do intervalo escolhido;
- k1u → Inclinação no início do intervalo;
- u_i → Ordenada atual da solução aproximada y(t);
- v_i → Ordenada atual da solução aproximada y'(t);
- k1v → Inclinação no início do intervalo.

Cálculo de k2v:

$$k2v = h * \mathbf{g}(t_i + \frac{h}{2}, u_i + 0.5 * k1u, v_i + 0.5 * k1v)$$

- k2v → Inclinação no ponto médio do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- t_i → Abcissa atual do intervalo escolhido;
- k1u → Inclinação no início do intervalo;
- u_i → Ordenada atual da solução aproximada y(t);
- v_i → Ordenada atual da solução aproximada y'(t);
- k1v → Inclinação no início do intervalo.

Cálculo de k3u:

$$k3u = h * f(t_i + \frac{h}{2}, u_i + 0.5 * k2u, v_i + 0.5 * k2v)$$

- k3u → Inclinação (novamente) no ponto médio do intervalo;
- h → Tamanho de cada subintervalo (passo);
- t_i → Abcissa atual do intervalo escolhido;
- k2u → Inclinação no ponto médio do intervalo;
- u_i → Ordenada atual da solução aproximada y(t);
- v_i → Ordenada atual da solução aproximada y'(t);
- k2v → Inclinação no ponto médio do intervalo.

Cálculo de k3v:

$$k3v = h * \mathbf{g}(t_i + \frac{h}{2}, u_i + 0.5 * k2u, v_i + 0.5 * k2v)$$

- k3v → Inclinação (novamente) no ponto médio do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- t_i → Abcissa atual do intervalo escolhido:
- k2u → Inclinação no ponto médio do intervalo;
- u_i → Ordenada atual da solução aproximada y(t);
- v_i → Ordenada atual da solução aproximada y'(t);
- k2v → Inclinação no ponto médio do intervalo.

Cálculo de k4u:

$$k4u = h * f(t_{i+1}, u_i + k3u, v_i + k3v)$$

- k4u → Inclinação no final do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- t_{i+1} → Próxima abcissa do intervalo escolhido;
- k3u → Inclinação no ponto médio do intervalo;
- u_i → Ordenada atual da solução aproximada y(t);
- v_i → Ordenada atual da solução aproximada y«(t);
- k3v → Inclinação no ponto médio do intervalo.

Cálculo de k4v:

$$k4v = h * \mathbf{g}(t_{i+1}, u_i + k3u, v_i + k3v)$$

- k4v → Inclinação no final do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- t_{i+1} → Próxima abcissa do intervalo escolhido;
- k3u → Inclinação no ponto médio do intervalo;
- u_i → Ordenada atual da solução aproximada y(t);
- v_i → Ordenada atual da solução aproximada y«(t);
- k3v → Inclinação no ponto médio do intervalo.

2.4.2 Algoritmo/Função

Algoritmo:

- 1. Definir o passo *h*;
- 2. Criar um vetor \boldsymbol{u} e um vetor \boldsymbol{v} para guardar as soluções e atribuir $\boldsymbol{u}_1 = \boldsymbol{u}_0$ e $\boldsymbol{v}_1 = \boldsymbol{v}_0$;
- 3. Atribuir o primeiro valor de **u** e de **v**;
- 4. Cálculo da inclinação no início do intervalo;
- 5. Cálculo da inclinação no ponto médio do intervalo;
- 6. Cálculo (novamente) da inclinação no ponto médio do intervalo;
- 7. Cálculo da inclinação no fim do intervalo;
- 8. Cálculo da média ponderada das inclinações;
- 9. Cálculo do valor aproximado para a iésima iteração.

Função (MATLAB):

```
function [t,u,v] = NRK4SED(f,g,a,b,n,u0,v0)
h = (b-a)/n;
t = a:h:b;
u = zeros(1,n+1);
v = zeros(1,n+1);
u(1) = u0;
v(1) = v0;
for i = 1:n
    k1u = h*f(t(i),u(i),v(i));
    k1v = h*g(t(i),u(i),v(i));
    k2u = h*f(t(i)+h/2,u(i)+0.5*k1u,v(i)+0.5*k1v);
    k2v = h*g(t(i)+h/2,u(i)+0.5*k1u,v(i)+0.5*k1v);
    k3u = h*f(t(i)+h/2,u(i)+0.5*k2u,v(i)+0.5*k2v);
    k3v = h*g(t(i)+h/2,u(i)+0.5*k2u,v(i)+0.5*k2v);
    k4u = h*f(t(i)+h,u(i)+k3u,v(i)+k3v);
    k4v = h*g(t(i)+h,u(i)+k3u,v(i)+k3v);
    u(i+1) = u(i)+(k1u+2*k2u+2*k3u+k4u)/6;
    v(i+1) = v(i) + (k1v+2*k2v+2*k3v+k4v)/6;
end
end
```


3. Exemplos de aplicação e teste dos métodos

3.1 Algoritmo de Resolução

A resolução e aplicação dos diferentes exercícios no nosso GUI segue sempre os mesmos 5 passos. Começamos, por hipótese, com uma Equação Diferencial de 2ª ordem, ou seja, do tipo:

$$Ay'' + By' + Cy + D = 0$$

Sendo y, A, B, C e D funções em t.

O objetivo é obter, numericamente, y(t), solução da ED.

1º Passo – Resolver em ordem a y'' a equação dada:

$$y'' = -\frac{B}{A}y' - \frac{C}{A}y - \frac{D}{A}$$

2º Passo - Mudança de variável:

$$\begin{cases} u = y \\ v = y' \end{cases}$$

 3° Passo – Derivar \boldsymbol{u} e \boldsymbol{v} e efetuar as devidas substituições:

$$\begin{cases} u' = y' \\ v' = y'' \end{cases} \Leftrightarrow \begin{cases} u' = v \\ v' = -\frac{B}{A}y' - \frac{C}{A}y - \frac{D}{A} \end{cases}$$
$$\Leftrightarrow \begin{cases} u' = v \\ v' = -\frac{B}{A}v - \frac{C}{A}u - \frac{D}{A} \end{cases}$$

4º Passo – Definir os PVIs e o sistema de EDs.

$$\begin{cases} u' = v \\ v' = -\frac{B}{A}v - \frac{C}{A}u - \frac{D}{A} \end{cases}$$
$$t \in [a, b]$$
$$\begin{cases} u(0) = u_0 \\ v(0) = v_0 \end{cases}$$

5º Passo – Aplicar Métodos Numéricos na GUI, com f(t, u, v) = u' e g(t, u, v) = v', de modo a obter uma aproximação de y(t).

Aplicando, agora, este algoritmo a problemas concretos e reais:

3.2 Problema do Pêndulo

Example 13-A Motion of a Nonlinear Pendulum

The motion of a pendulum of length L subject to damping can be described by the angular displacement of the pendulum from the vertical, θ , as a function of time. (See Fig. 13.1.) If we let m be the mass of the pendulum, g the gravitational constant, and c the damping coefficient (i.e., the damping force is $F = -c\theta'$), then the ODE initial-value problem describing this motion is

$$\theta'' + \frac{c}{mL}\theta' + \frac{g}{L}\sin\theta = 0.$$

The initial conditions give the angular displacement and velocity at time zero; for example, if $\theta(0) = a$ and $\theta'(0) = 0$, the pendulum has an initial displacement, but is released with 0 initial velocity.

Analytic (closed-form) solutions rely on approximating $\sin \theta$; the exact solutions to this approximated system do not have the characteristics of the physical pendulum, namely, a decreasing amplitude and a decreasing period. (See Greenspan, 1974, for further discussion.)

FIGURE 13.1a Simple pendulum.

No problema do Pêndulo, resolvido na aula, considerámos o seguinte:

$$\frac{C}{mL} = 0.3 \qquad \frac{G}{L} = 1 \qquad t \in [0, 15] \qquad \theta = y$$

Como o pêndulo é, neste caso, largado com velocidade nula, no ponto em que a sua corda está perpendicular ao seu suporte, temos as condições iniciais:

$$y(0) = \frac{\pi}{2} \qquad \qquad y'(0) = 0$$

Assim, temos a seguinte equação diferencial:

$$y'' + 0.3y' + \sin(y) = 0$$

Aplicando agora o algoritmo de resolução apresentado no tópico 3.1, obtemos o seguinte sistema:

$$\begin{cases} u' = v \\ v' = -sin(u) - 0.3v \end{cases}$$

$$t \in [0, 15]$$

$$\begin{cases} u(0) = \frac{\pi}{2} \\ v(0) = 0 \end{cases}$$

Aplicando esta informação na GUI (ou simplesmente carregando, no menu, no botão correspondente ao problema em questão) temos:

Nota: O Equação Diferencial do Problema do Pêndulo não é linear, logo não é possível calcular a solução exata através do MATLAB.

3.2 Movimento Livre Amortecido

c) Um pero de 6.4 lb provoca, numa mola, um alongamento de 1.28 ft. O sistema está sujeito à acção duma força amortecedora, numericamente igual ao dobro da sua velocidade instantânea. Determine a equação do movimento do pero, supondo que ele parte da posição de equilíbrio com uma velocidade dirigida para cima de 4 ft/s.

Resolução:

Sabe-se, pela lei de Hooke, que W=ks

No caso em estudo
$$k=\frac{6.4}{1.28}\Leftrightarrow k=5$$
 lb/ft . Como $W=mg$, tem-se $m=\frac{6.4}{32}\Leftrightarrow m=0.2$

A equação que descreve o movimento livre amortecido é

$$m\frac{d^2x}{dt^2} = -Kx - b\frac{dx}{dt}$$

onde b é uma constante positiva e o sinal "-" indica que as forças amortecedoras actuam na direcção oposta ao movimento.

Então a equação diferencial de movimento de peso é 0.2x''=-5x-2x'

$$\Leftrightarrow x'' + 10x' + 25x = 0 \text{ com } x(0) = 0 \text{ } e \text{ } x'(0) = -4$$

A partir do enunciado, e considerando x(t) = y(t), obtemos a seguinte equação diferencial:

$$y'' + 10y' + 25y = 0$$

E também as condições iniciais:x\

$$y(0) = 0 y'(0) = -4$$

Aplicando agora o algoritmo de resolução apresentado no tópico 3.1, obtemos o seguinte sistema:

$$\begin{cases} u' = v \\ v' = -10v - 25u \end{cases}$$
$$t \in [0, 2]$$
$$\begin{cases} u(0) = 0 \\ v(0) = -4 \end{cases}$$

Aplicando esta informação na GUI (ou simplesmente carregando, no menu, no botão correspondente ao problema em questão) temos:

3.3 Modelo Vibratório Mecânico

Modelos vibratórios mecânicos

Nestes sistemas, o deslocamento x obedece à equação diferencial linear de 2ª ordem

$$mx'' + bx' + k(x) = f(t)$$

onde:

m = massa; x = declocamento; b = factor de amortecimento;

k = constante da mola e f(t) = força aplicada

2.

a)
$$x'' + 2x' + 2x = 4\cos t + 2\sin t$$
, $x(0) = 0$ $x'(0) = 3$

A partir do enunciado, e considerando x(t) = y(t), obtemos a seguinte equação diferencial:

$$y'' + 2y' + 2y - 4\cos(t) + 2\sin(t) = 0$$

E também as condições iniciais:

$$y(0) = 0 \qquad \qquad y'(0) = 3$$

Aplicando agora o algoritmo de resolução apresentado no tópico 3.1, obtemos o seguinte sistema:

$$\begin{cases} \begin{cases} u' = v \\ v' = -2v - 2u + 4cos(t) + 2sin(t) \end{cases} \\ t \in [0, 15] \\ \begin{cases} u(0) = 0 \\ v(0) = 3 \end{cases} \end{cases}$$

Aplicando esta informação na GUI (ou simplesmente carregando, no menu, no botão correspondente ao problema em questão) temos:

3.4 Movimento Harmónico Simples

b) A equação mx'' + kx = 0 descreve o movimento harmónico simples, ou movimento livre não amortecido, e está sujeita às condições iniciais x(0) = a + x'(0) = b representando, respectivamente, a medida do deslocamento inicial e a velocidade inicial.

Use este conhecimento para dar uma interpretação física do problema de Cauchy x'' + 16x = 0 x(0) = 9 x'(0) = 0

e resolva-o

A partir do enunciado, e considerando x(t) = y(t), obtemos a seguinte equação diferencial:

$$y'' + 16y = 0$$

E também as condições iniciais:

$$y(0) = 9$$
 $y'(0) = 0$

Aplicando agora o algoritmo de resolução apresentado no tópico 3.1, obtemos o seguinte sistema:

$$\begin{cases} u' = v \\ v' = -16u \end{cases}$$
$$t \in [0, 10]$$
$$\begin{cases} u(0) = 9 \\ v(0) = 0 \end{cases}$$

Aplicando esta informação na GUI (ou simplesmente carregando, no menu, no botão correspondente ao problema em questão) temos:

3.5 Circuitos Elétricos em Série

· Circuito eléctrico em série

$$Lq'' + rq' + \frac{1}{e}q = e(t)$$
 (*)

L - Indutância

q - carga

R - Resistência

C - capacidade

e(t) - força electromotriz

Pelas leis de Kirchoff, num circuito indutivo-restritivo-capacitivo (L-R-C) série, em que a corrente varia com o tempo, a carga q acumulada no condensador é dada pela equação diferencial linear de 2º Ordem. (*)

CIRCUITOS ELÉTRICOS

Uma circuito possui um capacitor de $0.5 \times 10^{-1} F$, um resistor de 25Ω e um indutor de 5 H, em série. O capacitor se encontra descarregado. No instante t=0 conecta-se esse circuito a uma bateria cuja tensão é de $10 e^{-t/4} V$, e o circuito é fechado. Determine a carga no capacitor em qualquer inste t>0.

A partir do enunciado e da explicação acima, obtemos a seguinte equação diferencial:

$$y'' + 5y' + 4y - 2e^{-\frac{t}{4}} = 0$$

Considerando que o circuito se encontrava totalmente desligado no instante t = 0, temos:

$$y(0) = 0 \qquad \qquad y'(0) = 0$$

Aplicando agora o algoritmo de resolução apresentado no tópico 3.1, obtemos o seguinte sistema:

$$\begin{cases} u' = v \\ v' = -5v - 4u + 2e^{-\frac{t}{4}} \end{cases}$$

$$t \in [0, 10]$$

$$\begin{cases} u(0) = 0 \\ v(0) = 0 \end{cases}$$

Aplicando esta informação na GUI (ou simplesmente carregando, no menu, no botão correspondente ao problema em questão) temos:

4. Conclusão

Com este trabalho podemos concluir que, através da adaptação de métodos numéricos existentes (neste caso, Euler, EulerM, RK2 e RK4), podemos aplicar esses mesmos métodos a Sistemas de Equações Diferenciais com condições iniciais, o que possibilita a resolução de problemas Equações Diferenciais de 2ª ordem.

Como já visto anteriormente, verificamos que quanto maior for o número de subintervalos n, menor é o erro dos Métodos.

Relativamente à comparação entre os vários métodos, observamos que o método que verifica menor erro e, consequentemente, melhor aproximação ao valor exato, é, igualmente, o método de Runge-Kutta de ordem 4, que muitas vezes apresenta erros na ordem apenas das milésimas ou menor. Em contrapartida temos o método de Euler, cujo erro é relativamente grande comparado com todos os outros métodos implementados.

Por fim, vemos que <u>através</u> de Equações Diferenciais de 2ª ordem é possível a resolução de diversos problemas de diversas áreas distintas (Engenharia, Biologia, Economia, entre outras), sendo usadas no dia-a-dia de certas profissões.

Breve Explicação do Programa

5. Bibliografia

- https://moodle.isec.pt/moodle/course/view.php?id=9661
- https://www.mathworks.com/
- https://www.wolframalpha.com/