This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. Normally the first step in debugging is to attempt to reproduce the problem. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. Compilers harnessed the power of computers to make programming easier by allowing programmers to specify calculations by entering a formula using infix notation. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. Many applications use a mix of several languages in their construction and use. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. Code-breaking algorithms have also existed for centuries.