Fluessigkeitsgekuehlter OElkuehler fuer Brennkraftmaschinen mit Heisskuehlung

A5

Publication number: DE766237

Publication date: 1952-04-21
Inventor: REHR MAN

BEHR MANFRED DIPL-ING

Applicant:

SUEDDEUTSCHE KUEHLER BEHR

Classification:

- international: F01P11/08; F01P3/18; F01P7/14; F01P7/16;

F01P11/08; F01P3/00; F01P7/14

- European:

F01P11/08

Application number: DE1938S130853D 19380217 **Priority number(s):** DE1938S130853D 19380217

Report a data error here

Abstract not available for DE766237

Data supplied from the esp@cenet database - Worldwide

Der Zeitraum vom 8. Mai 1945 bis einschließlich 7. Mai 1950 wird auf die Patentdauer nicht angerechnet (Ges. v. 15. 7. 51)

Erteilt auf Grund der VO. vom 12.5.1943 – RGBl. II S. 150

AUSGEGEBEN AM 21. APRIL 1952

REICHSPATENTAMT

PATENTSCHRIFT

Mr. 766 237 KLASSE 46c4 GRUPPE 7

S 130853 Ia/46c4

Nachträglich gedruckt durch das Deutsche Patentamt in München

(§ 20 des Ersten Gesetzes zur Anderung und Überleitung von Vorschriften auf dem Gebiet des gewerblichen Rechtsschutzes vom 8. Juli 1949)

Dipl.=Sug. Manfred Behr, Stuttgart ist als Erfinder genannt worden

Süddeutsche Kühlerfabrik Julius Fr. Behr, Stuttgart

Flüssigkeitsgekühlter Olkühler für Brennkraftmaschinen mit Heißkühlung

Patentiert im Deutschen Reich vom 17. Februar 1938 an Der Zeitraum vom 8. Mai 1945 bis einschließlich 7. Mai 1950 wird auf die Patentdauer nicht angerechnet (Ges. v. 15, 7, 51)

Patenterteilung bekanntgemacht am 12. Juli 1951

Es ist bereits bekannt, die zur Rückkühlung von Schmieröl, Getriebeöl usw. bei Brennkraftmaschinen verwendeten Ölkühler nicht mit Luft, sondern mit dem Kühlmittel 5 der Maschine zu kühlen.

Es ist auch schon vorgeschlagen worden, den Ölkühler in den Kühlwasserstrom zu legen und wahlweise von Kühlwasser, das den Wasserkühler schon durchflossen hat, oder 10 von nicht rückgekühltem Kühlwasser bespülen zu lassen, derart, daß beim Anfahren dem Ölkühler unter Umgehung des Wasserrückkühlers zum Anwärmen und Auftauen heißes

Wasser aus der Maschine unmittelbar zugeleitet wird.

Bei den bekannten Kühlanlagen, bei welchen der Kühler für das Kühlwasser und der Ölkühler einfach hintereinandergeschaltet sind, kann das Öl selbstverständlich nur auf Temperaturen herabgekühlt werden, welche nicht 20 unterhalb der Austrittstemperatur des Kühlwassers aus dem Kühler liegen. Dadurch sind diese Kühler ungeeignet für Brennkraftmaschinen, die mit sog. Heißkühlung arbeiten, bei welchen also ein Kühlmittel verwendet wird, das verhältnismäßig sehr hoch erhitzt

wird. Bekanntlich können durch diese Art der Heißkühlung die Temperaturen der Maschine und damit der thermische Wirkungsgrad erheblich höher gehalten werden, als dies bei reiner Wasserkühlung möglich ist. Die Kühlflüssigkeitstemperatur liegt dabei auch nach dem Austritt aus dem Kühler noch sehr hoch, und zwar etwa in den Grenzen zwischen 130 und 190°. Würde das Kühlmittel mit dieser Temperatur dem Ölkühler zugeführt werden, so wäre selbstverständlich eine Kühlung des Öles auf die hierfür geeignete Temperatur von 60 bis 80° völlig unmöglich. Da andererseits das Öl bei hohen Temperaturen seine Schmierfähigkeit verliert und der Gefahr des Verkrackens ausgesetzt ist, so wäre die Heißkühlung mit diesen Kühleinrichtungen überhaupt nicht anwendbar.

Es wurde auch schon vorgeschlagen, die Anordnung so zu treffen, daß das Kühlmittel entweder zunächst durch den Kühler und dann mit dessen Austrittstemperatur durch den Ölkühler oder auch unmittelbar aus der Maschine in den Ölkühler und von diesem in die Maschine zurückgeleitet wird. In diesen Fällen tritt aber das Kühlmittel in die Maschine nur mit jener Temperatur zurück, welches es beim Austritt aus dem Ölkühler besitzt, also mit einer Temperatur, die unterhalb der Öltemperatur liegen muß und deshalb nicht die bei Heißkühlung erwünschte Höhe besitzen kann. Abgesehen davon, muß auch die Eintrittstemperatur in den Ölkühler selbstverständlich so tief liegen, daß eine 35 wirksame Ölkühlung stattfinden kann.

Gegenstand der Erfindung ist ein flüssigkeitsgekühlter Ölkühler für Brennkraftmaschinen mit Heißkühlung, dessen Kühlmittelstrom einem Nebenkühler des Hauptkühlers entnommen wird; dabei ist eine wirksame Ölkühlung während des Betriebes und zugleich eine Anwärmung des Öles beim Anfahren dadurch ermöglicht, daß in den Ableitungen des Hauptkühlers und Nebenkühlers Drosselstellen des derart angeordnet sind. daß beim Anfahren die Ableitung aus dem Hauptkühler geschlossen oder gedrosselt wird, so daß der Kühlmittelstrom vollständig oder nahezu vollständig durch den Nebenkühler über den Ölkühler zur Maschine fließt. Der Kühlmittelstrom kann also hierbei während des Einfahrens mehr oder weniger vollständig durch den Nebenkühler geleitet und dadurch dem Ölkühler zugeführt werden, wogegen er während des Betriebes derart unterteilt wird, daß der Hauptkühlmittelstrom im Sinne einer Heißkühlung wirkt, während ein kleiner Teilstrom stark herabgekühlt und zur Kühlung des Ölkühlers verwendet wird. Vorteilhaft werden in den Ableitungen des Haupt- und Nebenkühlers Steuerglieder angeordnet, die durch ein Gestänge gemeinsam selbsttätig oder von Hand so bewegt werden können, daß entweder die Nebenleitung oder die 65 Hauptleitung gedrosselt oder freigegeben wird. Es kann aber auch nur in der Ableitung des Hauptkühlers eine Drosselvorrichtung vorgesehen und dem Nebenkühler ein so hoher Widerstand gegeben werden, daß er unmittelbar als Drosselstelle für den Nebenkühlmittelkreislauf wirkt.

Zwei Ausführungsbeispiele für die Ölkühlung gemäß der Erfindung sind in einfacher Form in der Zeichnung dargestellt.

Fig. 1 zeigt die Gesamtanordnung der einen Kühleinrichtung und

75

Fig. 2 eine etwas andere Anordnung.

Bei dem Ausführungsbeispiel nach Fig. I strömt das Kühlmittel von der Maschine I in der Pfeilrichtung durch die Leitung 2 zum Kühlmittelkühler, der aus einem gemeinsamen Eintrittssammelkasten 3. einem Hauptkühler 4. einem zu diesem parallel geschalteten Nebenkühler 5 und einem entsprechend den beiden Kühlerteilen durch eine Zwischenwand 6 unterteilten Austrittssammelkasten 7 besteht.

Aus dem Hauptkühler 4 fließt das Kühlmittel durch die Leitung 8 zur Pumpe 9 und aus dieser durch die Leitung 10 zur Maschine 1 zurück.

Das von der Maschine kommende Öl wird durch die Leitung 12 dem Ölkühler 13 zugeleitet und strömt aus diesem durch die 95 Leitung 14 zur Maschine zurück.

Der Ölkühler 13 wird durch einen Kühlmittelteilstrom gekühlt, der durch den Nebenkühler 5 und die Leitung 16 strömt und dessen Stärke durch eine in letztere ein- 100 geschaltete Drosselstelle 17 so geregelt wird, daß die durchfließende Kühlmittelmenge bis unterhalb der Öltemperatur abgekühlt wird. Aus dem Ölkühler fließt der Kühlmittelteilstrom durch die Leitung 18 zur Pumpe und zur 105 Hauptkühlmittelleitung. Die Drosselvorrichtung kann auch an eine andere Stelle des Kühlmittelkreislaufes für den Ölkühler gelegt werden, oder es können der Ölkühler, der Nebenkühler oder die Leitung 16 selbst durch ent- 110 sprechend hohen Durchflußwiderstand als Drosselstellen ausgebildet sein.

Statt den Hauptkühler 4 und den Nebenkühler 5 in der dargestellten Weise geschlossen zusammenzubauen, können die 115 beiden Kühler auch räumlich getrennt voneinander angeordnet sein, ohne daß dadurch am Wesen der Erfindung etwas geändert wird.

Zum raschen Aufheizen des Öles ist eine Kurzschlußleitung 19 vorgesehen, durch 120 welche das von der Maschine kommende heiße Kühlmittel unter Umgehung des Rück-

55

kühlers 5 unmittelbar zum Ölkühler 13 geführt werden kann. Dabei kann auch der Hauptkühler 4 ausgeschaltet werden, so daß sich auch das Kühlmittel selbst schneller erwärmt. Die Steuerung erfolgt hierbei beispielsweise durch einen vom Öldruck oder der Öltemperatur abhängigen Regler 20, durch welchen gleichzeitig eine in der Leitung 19 befindliche Drossel- oder Absperrstelle 21 und eine gleiche Stelle 22 in der Hauptkühlmittelleitung 7 in entgegengesetztem Sinn derart bewegt werden, daß beim Anfahren die Drosselstelle 21 geöffnet und die Absperrstelle 22 geschlossen wird, während nach Erreichung der Betriebstemperatur des Öles der umgekehrte Vorgang stattfindet.

Auch durch Aufhebung der Drosselung an der Drosselstelle 17 kann eine raschere Aufheizung des Öles bewirkt werden, da in diesem Fall auch der durch den Nebenkühler 5 geführte Kühlmittelteilstrom entsprechend rasch durchläuft und deshalb nur um ein geringes Maß abgekühlt wird, so daß er mit entsprechend hoher Temperatur durch

den Ölkühler strömt.

Eine weitere Möglichkeit der schnellen Anwärmung des Öles beim Anfahren sei an Hand der Fig. 2 erläutert. Hier ist in die Hauptkühlmittelleitung 8 eine Drosselstelle 23 eingebaut, die beim Anfahren stark drosselt oder vollständig abschließt, während gleichzeitig die Drosselvorrichtung 17 in der Nebenleitung 16 geöffnet wird, so daß die ganze Kühlmittelmenge durch den Neben-35 kühler fließt. Infolge der großen Durchflußmenge und der geringen Abmessungen dieses Kühlers findet hierbei nur eine geringe Abkühlung des Kühlmittels statt, so daß dieses gleichfalls mit verhältnismäßig hoher Temperatur in den Ölkühler gelangt. Die Steuerung der beiden in beliebiger Weise miteinander gekuppelten Drosselvorrichtungen kann auch hier selbsttätig durch einen Regler 24 bewirkt werden, der über eine Leitung 25 mit der Ölleitung 12 in Verbindung steht.

Die Drosselglieder können in allen Fällen

entweder von Hand bewegt oder wärmeempfindlich gesteuert werden, und zwar je nach den besonderen Verhältnissen in Abhängigkeit von der Kühlmitteltemperatur oder von der Öltemperatur oder vom Öldruck oder auch in gleichzeitiger Abhängigkeit von mehreren dieser Zustandswerte.

PATENTANSPRÜCHE:

1. Flüssigkeitsgekühlter Ölkühler für Brennkraftmaschinen mit Heißkühlung, dessen Kühlmittelstrom einem Nebenkühler des Hauptkühlers entnommen wird, dadurch gekennzeichnet, daß in den Ableitungen (8, 16) des Haupt- (4) und Nebenkühlers (5) Drosselstellen (17, 22, 23) derart angeordnet sind, daß beim Anfahren die Ableitung (8) aus dem Hauptkühler (4) geschlossen oder gedrosselt wird, so daß der Kühlmittelstrom vollständig oder nahezu vollständig durch den Nebenkühler (5) über den Ölkühler (13) zur Maschine (1) fließt.

2. Olkühler nach Anspruch I, dadurch gekennzeichnet, daß in den Ableitungen (8, 16) des Haupt- und Nebenkühlers durch ein Gestänge gemeinsam selbsttätig oder von Hand bewegte Steuerglieder an-

geordnet sind.

3. Ölkühler nach den Ansprüchen I und 2, dadurch gekennzeichnet, daß nur in der Ableitung des Hauptkühlers eine Drosselvorrichtung vorgesehen ist, während der Nebenkühler einen so hohen Widerstand besitzt, daß er unmittelbar drosselnd wirkt.

Zur Abgrenzung des Erfindungsgegenstands vom Stand der Technik sind im Erteilungsverfahren folgende Druckschriften in Betracht gezogen worden:

Deutsche Patentschrift Nr. 557 762; französische Patentschrift Nr. 401 677; USA.-Patentschriften Nr. 1 598 738,

Hierzu I Blatt Zeichnungen

