§ 25. МАГНІТНЕ ПОЛЕ ЗЕМЛІ

Для обізнаної людини XXI ст. не становить великої проблеми під час подорожі визначити, у якому напрямку рухатися. Для цього достатньо скористатися супутниковою системою GPS. Але що робити, коли відповідного пристрою немає? Звичайно ж, скористатися компасом — пристроєм, який люди знають з давніх давен (рис. 25.1). А от чому стрілка компаса одним кінцем вказує на північ, а другим — на південь і чи завжди це так, ви дізнаєтеся з цього параграфа.

📆 Доводимо, що Земля має магнітне поле

Те, що магнітна стрілка біля поверхні Землі завжди орієнтується певним чином, доводить, що *планета Земля має магнітне поле*. Стрілка встановлюється вздовж магнітних ліній цього поля. Магнітне поле Землі

Рис. 25.1. Старовинний китайський компас

здавна допомагало зорієнтуватись мандрівникам, морякам, військовим і не лише їм. Доведено, що риби, морські ссавці й птахи під час своїх міграцій орієнтуються за магнітним полем Землі. Так само орієнтуються, шукаючи шлях додому, і деякі тварини, наприклад кішки.

Перші експерименти з вивчення земного магнетизму провів Вільям Ґільберт (див. рис. 3.1). Він виготовив із постійного магніту кулю і переконався, що вона має два полюси: північний і південний. Розташувавши на цій кулі компас, Ґільберт з'ясував, що північний

полюс магнітної стрілки завжди вказує на південний полюс кулі. Цей експеримент дозволив ученому припустити, що Земля— це великий магніт і що на півночі нашої планети розташований її південний магнітний полюс. Подальші дослідження повністю підтвердили гіпотезу Ґільберта.

Аналізуючи картину ліній магнітного поля Землі (рис. 25.2), можна зробити декілька висновків.

По-перше, поблизу південного географічного полюса Землі розташований північний магнітний полюс, з якого лінії магнітного поля виходять. І навпаки, біля північного географічного полюса Землі розташований південний магнітний полюс, у який лінії магнітного поля входять.

По-друге, магнітний і географічний полюси не збігаються (вони віддалені один від одного приблизно на 2100 км), тому стрілка компаса вказує напрямок на північ і на південь лише приблизно.

По-трете, лінії магнітного поля не паралельні поверхні планети. Якщо закріпити магнітну стрілку таким чином, щоб вона могла вільно обертатися як навколо горизонтальної, так і навколо вертикальної осей, то вона встановиться під певним кутом до поверхні Землі (рис. 25.3). При наближенні до магнітного полюса стрілка буде все більше схилятися до вертикалі й на магнітному полюсі встановиться вертикально.

Рис. 25.2. Схема розташування ліній магнітного поля Землі

Рис. 25.3. Магнітна стрілка, що може вільно обертатися навколо вертикальної і горизонтальної осей, установлюється під кутом до поверхні Землі

Дізнаємося про магнітні бурі та магнітні аномалії

Ретельні дослідження показали, що магнітне поле Землі у будь-якій місцевості не є постійним. Так, установлено, що магнітна стрілка періодично, щодоби, дещо відхиляється. Спостерігаються також невеликі щорічні зміни магнітного поля Землі. Однак іноді трапляються й дуже різкі його зміни. Сильні збурення магнітного поля Землі, що охоплюють всю планету і тривають від одного до кількох днів, називають магнітними бурями. Помічено, що магнітні бурі спостерігаються одночасно зі зростанням сонячної активності (рис. 25.4).

Магнітні бурі практично не відчуваються здоровими людьми, а от у тих, хто страждає на серцево-судинні захворювання та захворювання нервової системи, вони викликають погіршення самопочуття.

Рис. 25.4. У період підвищення сонячної активності збільшується площа темних плям на Сонці (а); а на Землі спостерігаються магнітні бурі й полярні сяйва (б)

Під час магнітних бур магнітна стрілка поводиться аномально, тобто не встановлюється в напрямку «північ — південь». Утім, на нашій планеті є певні ділянки, де магнітна стрілка поводиться аномально завжди: напрямок, що вона вказує, повсякчає не збігається з напрямком ліній магнітного поля Землі. Такі ділянки називають магнітними аномаліями. У місцях магнітних аномалій магнітне поле завжди відхилене від норми. Дослідження деяких магнітних аномалій дозволяють виявляти поклади корисних копалин, у першу чергу залізної руди, а в комплексі з іншими методами — визначати глибину їх залягання та кількість запасів.

Підбиваємо підсумки

Планета Земля має магнітне поле, що задає напрямок магнітним стрілкам компасів,— ті встановлюються вздовж ліній магнітного поля Землі. Поблизу південного географічного полюса Землі розташований

ії північний магнітний полюс; поблизу північного географічного полюса Землі — її південний магнітний полюс.

Зазвичай магнітне поле Землі зазнає незначних періодичних змін, однак у період збільшення сонячної активності спостерігаються й різкі зміни магнітного поля. Це явище одержало назву магнітних бур.

Ділянки на поверхні Землі, де магнітне поле завжди відхилене від норми, називають магнітними аномаліями.

Контрольні запитання =

1. Доведіть, що Земля має магнітне поле. 2. Як розташовані магнітні полюси Землі відносно географічних? 3. Чим можна пояснити виникнення магнітних бур? Як вони впливають на самопочуття людини? 4. Що таке магнітна аномалія?

🥜 Вправа № 22

- 1. У якому місці Землі магнітна стрілка обома полюсами вказує на південь?
- 2. Чому сталеві віконні ґрати можуть з часом намагнітитися?
- Якій вимозі має відповідати матеріал, що використовують для будівництва науково-дослідних кораблів, на яких науковці вивчають магнітне поле Землі?

Експериментальне завдання =

- За стрілкою компаса визначте напрямок магнітного поля Землі у вашій кімнаті. Чи буде ваша відповідь правильною, якщо біля стрілки розмістити сталевий предмет? постійний магніт? Поясніть своє припущення та перевірте його експериментально.
- Піднесіть компас спочатку до дна, а потім до верхньої частини залізного відра, що стоїть на землі. Поясніть спостережуване явище.