Definition: Topological Space

Definition: Topological Space

A **topological space** is a Set X together with a collection τ of subsets of X satisfying the following axioms:

Axioms for a Topology

The collection τ must satisfy:

- 1. Empty set and whole space: $\emptyset \in \tau$ and $X \in \tau$
- 2. Arbitrary unions: If $\{U_i\}_{i\in I}$ is any collection of sets in τ , then

$$\bigcup_{i\in I} U_i \in \tau$$

3. Finite intersections: If $U_1, U_2, \dots, U_n \in \tau$, then

$$\bigcap_{i=1}^{n} U_i \in \tau$$

Terminology

- The collection τ is called a **topology** on X
- The sets in τ are called **open sets**
- The pair (X, τ) is called a **topological space**
- When the topology is clear from context, we may simply refer to "the topological space X"

Examples

- 1. **Discrete topology**: $\tau = \mathcal{P}(X)$ (all subsets are open)
- 2. **Indiscrete topology**: $\tau = \{\emptyset, X\}$ (only the empty set and X are open)
- 3. Standard topology on \mathbb{R} : Open sets are unions of open intervals

Properties

Key properties that follow from these axioms:

- The union of any collection of open sets is open
- The intersection of finitely many open sets is open
- Complements of open sets are called **closed sets**

Related Concepts

• Definition: Open Set

Definition: Continuous Function (coming soon)
Definition: Homeomorphism (coming soon)
Definition: Basis for a Topology (coming soon)

Dependency Graph

Local dependency graph