AMENDMENTS TO THE CLAIMS

1. (Original) A compound of formula (I) or a pharmaceutically acceptable derivative thereof:

$$(R^{1})_{m} \qquad (CH_{2})_{t} \qquad (R^{2})_{n}$$

$$(CH_{2})_{t} \qquad (R^{3})_{p}$$

$$(I)$$

wherein

A, B and D are independently aryl or heteroaryl;

 R^1 , R^2 and R^3 are independently C_{1-6} alkyl, halogen, C_{1-6} alkoxy, hydroxy, cyano, CF_3 , OCF_3 , nitro, C_{1-6} alkylthio, amino, mono- or di- C_{1-6} alkylamino, carboxy, C_{1-6} alkanoyl, amido, mono or di- C_{1-6} alkyl amido, -NHCOR 9 or -NHSO $_2$ R 9 {in which R^9 is C_{1-6} alkyl, C_{3-7} cycloalkyl or phenyl (optionally substituted by up to three groups selected from C_{1-6} alkyl, halogen, C_{1-6} alkoxy, cyano, phenyl and CF_3)} or is a group -E-(CH_2) $_{1-6}$ NR x R y (in which E is a single bond or -OCH $_2$ - and R^x and R^y are independently hydrogen, C_{1-6} alkyl or combine together to form a 5 - 7 membered heterocyclic ring);

 R^4 and R^4 ' are independently hydrogen, C_{1-6} alkyl, halogen or C_{1-6} alkoxy;

V is O, S, NH, N- C_{1-6} alkyl, NNO $_2$ or NCN;

W, X, Y and Z are independently C, CH or N, subject to the proviso that at least one of X, Y and Z is N;

L is $-(CH_2)_{q}$ or $-(CH_2)_{q}$ O- where q is 0, 1, 2 or 3 and q' is 2 or 3;

- J is (i) a group $CR^5 = CR^6$ where R^5 and R^6 are independently hydrogen or C_{1-6} alkyl;
 - (ii) a group -CHR 7 -CHR 8 where R 7 and R 8 are independently hydrogen, C_{1-6} alkyl, C_{3-7} cycloalkyl, aryl, heteroaryl, a group -NHCOR 9 or -NHSO $_2$ R 9 in which R 9 is as defined above or a group -(CH $_2$) $_{1-6}$ NR x R y in which R x and R y are as defined above;
 - (iii) a single bond;
 - (iv) $-CHR^6$ where R^6 is as defined above; or
 - (v) a group -O-CHR¹⁰-, -NR¹¹-CHR¹⁰- or -CR¹²R¹³-CHR¹⁰- where R¹⁰ and R¹¹ are independently hydrogen or C_{1-6} alkyl and R¹² and R¹³ are independently C_{1-6} alkyl or R¹² and R¹³ combine together to form a C_{3-7} cycloalkyl or a 5 7 membered heterocyclic ring;

m, n and p are independently 0, 1, 2 or 3; and t is 0, 1 or 2.

2. (Original) The compound according to claim 1, wherein the compound is of formula (I') or a pharmaceutically acceptable derivative thereof:

Application No.: NEW

$$(R^{1})_{m} \qquad (CH_{2})_{t} \qquad (R^{2})_{n} \qquad (R^{3})_{p} \qquad (CH_{2})_{t} \qquad (R^{3})_{p} \qquad (R^{3})_{p}$$

in which $R^1 - R^4$, m, n, p, t, A, B, D, L, J, V, W, X, Y and Z are as defined in formula (I).

- 3. (Currently amended) The compound according to claim 1 or 2, wherein A is phenyl or pyridyl.
- 4. (Currently amended) The compound according to any of the preceding claims claim 1, wherein B is phenyl.
- 5. (Currently amended) The compound according to any of the preceding claims claim 1, wherein D is phenyl or pyridyl.
- 6. (Original) The compound according to claim 1, wherein the compound is of formula (Ia) or a pharmaceutically acceptable derivative thereof:

$$(R^{1})_{m} \xrightarrow{H} \xrightarrow{(R^{2})_{n}} R^{4} \xrightarrow{(R^{3})_{p}} (CH_{2})_{t} \xrightarrow{(R^{3})_{p}} CO_{2}H$$

$$(Ia)$$

in which:

 R^1 - R^4 , R^4 ', L, J, X, Y, Z, m, n, p and t are as defined in formula (I).

7. (Original) The compound according to claim 6, wherein the compound is of formula (Ia') or a pharmaceutically acceptable derivative thereof:

7

$$(R^{1})_{m}$$

$$(CH_{2})_{t}$$

$$(Ia')$$

in which:

 R^1-R^4 , L, J, X, Y, Z, m, n, p and t are as defined in formula (I).

8. (Currently amended) The compound according to any of the preceding claims claim 1 in which R¹, R² and R³ are, independently, selected from the group consisting of C₁₋₆alkyl, halogen, C₁₋₆alkoxy, cyano and CF₃.

- 9. (Currently amended) The compound according to any of the preceding claims claim 1 in which J is selected from the group consisting of -CH = CH-, -(CH₂)₂- and -CHR⁷-CH₂- in which R^7 is C_{1-6} alkyl.
- 10. (Currently amended) The compound according to any of the preceding claims claim 1 in which L is $-(CH_2)_{q}$ where q is 0, 1, 2 or 3.
- 11. (Original) The compound according to claim 1 which is selected from the group consisting of E1 E18 or a pharmaceutically acceptable derivative thereof
- 12. (Original) A process for the preparation of the compound of formula (I) or a pharmaceutically acceptable derivative thereof which comprises hydrolysis of a carboxylic acid ester derivative of formula (II):

$$(R^{1})_{m} \xrightarrow{H} \stackrel{H}{\downarrow} \stackrel{H}{\downarrow} \stackrel{H}{\downarrow} \stackrel{(R^{2})_{n}}{\downarrow} \stackrel{R^{4'}}{\downarrow} \stackrel{R^{4}}{\downarrow} \stackrel{L}{\downarrow} \stackrel{(R^{3})_{p}}{\downarrow} \stackrel{(R^{3})_{p}}{\downarrow} \stackrel{(R^{3})_{p}}{\downarrow} \stackrel{(R^{1})_{m}}{\downarrow} \stackrel{(R^{2})_{n}}{\downarrow} \stackrel{(R^{2})_{n}}{\downarrow} \stackrel{(R^{2})_{n}}{\downarrow} \stackrel{(R^{2})_{n}}{\downarrow} \stackrel{(R^{2})_{n}}{\downarrow} \stackrel{(R^{2})_{n}}{\downarrow} \stackrel{(R^{3})_{p}}{\downarrow} \stackrel{(R^{3}$$

in which R¹ - R⁴, R⁴, m, n, p, t, A, B, D, L, J, V, W, X, Y and Z are as defined in formula (I) and R is a group capable of forming a carboxylic acid ester and optionally thereafter forming a pharmaceutically acceptable derivative thereof.

- 13. (Currently amended) The compound according to any one of claims 1 to 11 claim 1 for use in therapy.
- 14. (Currently amended) A pharmaceutical composition which comprises a therapeutically effective amount of the compound according to any one of claims 1 to 11 claim 1 in admixture with a pharmaceutically acceptable carrier or diluent.
- 15. (Currently amended) A pharmaceutical composition comprising the compound according to any one of claims 1—11 claim 1 together with another therapeutically active agent.

16. (Currently amended) A use of the compound according to any one of claims 1 to 11 claim 1 in the manufacture of a medicament for the treatment or prevention of conditions in which an inhibitor of α_4 integrin mediated cell adhesion is beneficial.

- 17. (Currently amended) A method for the treatment or prevention of conditions in which an inhibitor of α_4 integrin mediated cell adhesion is beneficial which comprises administering to a patient in need thereof a safe and effective amount of the compound according to any one of claims 1 to 11 claim 14.
- 18. (Original) The method according to claim 17, wherein said condition is selected from the group consisting of rheumatoid arthritis (RA); asthma; allergic conditions such as rhinitis; adult respiratory distress syndrome; AIDS-dementia; Alzheimer's disease; cardiovascular diseases; thrombosis or harmful platelet aggregation; reocclusion following thrombolysis; reperfusion injury; skin inflammatory diseases such as psoriasis, eczema, contact dermatitis and atopic dermatitis; diabetes (e.g., insulin-dependent diabetes mellitus, autoimmune diabetes); multiple sclerosis; systemic lupus erythematosus (SLE); inflammatory bowel disease such as ulcerative colitis, Crohn's disease (regional enteritis) and pouchitis (for example, resulting after proctocolectomy and ileoanal anastomosis); diseases associated with leukocyte infiltration to the gastrointestinal tract such as Celiac disease, nontropical Sprue, enteropathy associated with seronegative arthropathies, lymphocytic or collagenous colitis, and eosinophilic gastroenteritis; diseases associated with leukocyte infiltration to other epithelial lined tissues, such as skin, urinary tract, respiratory airway, and joint synovium; pancreatitis; mastitis (mammary gland);

hepatitis; cholecystitis; cholangitis or pericholangitis (bile duct and surrounding tissue of the liver); bronchitis; sinusitis; inflammatory diseases of the lung which result in interstitial fibrosis, such as hypersensitivity pneumonitis; collagen disease (in SLE and RA); sarcoidosis; osteoporosis; osteoarthritis; atherosclerosis; neoplastic diseases including metastasis of neoplastic or cancerous growth; wound healing enhancement; certain eye diseases such as retinal detachment, allergic conjunctivitis and autoimmune uveitis; Sjogren's syndrome; rejection (chronic and acute) after organ transplantation; host vs. graft or graft vs. host diseases; intimal hyperplasia; arteriosclerosis (including graft arteriosclerosis after transplantation); reinfarction or restenosis after surgery such as percutaneous transluminal coronary angioplasty (PTCA) and percutaneous transluminal artery recanalization; nephritis; tumor angiogenesis; malignant tumor; multiple myeloma and myeloma-induced bone resorption; sepsis; and central nervous system injury such as stroke, traumatic brain injury and spinal cord injury and Meniere's disease.

- 19. (Original) The method according to claim 17, wherein said condition is asthma, allergic conditions, inflammatory bowel disease, rheumatoid arthritis, atopic dermatitis, multiple sclerosis or rejection after organ transplantation.
- 20. (Original) A compound of formula (II):

$$(R^{1})_{m} \qquad (CH_{2})_{t} \stackrel{H}{\overset{H}{\overset{}}} \qquad (R^{2})_{n}$$

$$(CH_{2})_{t} \stackrel{H}{\overset{}} \qquad (CH_{2})_{t} \stackrel{H}{\overset{}} \qquad (R^{3})_{p}$$

$$(CH_{2})_{t} \stackrel{H}{\overset{}} \qquad (CH_{2})_{t} \stackrel{H}{\overset{}} \qquad (R^{3})_{p}$$

(II)

in which R^1 - R^4 , R^4 ', m, n, p, t, A, B, D, L, J, V, W, X, Y and Z are as defined in formula (I) and R is a group capable of forming a carboxylic acid ester.