ЛЕКЦИЯ №9 «РАСПРОСТРАНЕНИЕ ЭЛЕКТРОМАГНИТНЫХ ВОЛН В РАЗЛИЧНЫХ СРЕДАХ»

Особенности распространения электромагнитных волн в конкретной среде определяются свойствами этой среды. В электродинамике для локального описания свойств среды используют материальные уравнения

$$D = (\varepsilon_a)E$$
, $B = (\mu_a)H$, $J = (\sigma)E$.

Коэффициенты (ε_a), (μ_a) и (σ) в общем случае являются тензорами и могут зависеть от ряда параметров. Характер этих зависимостей положен в основу классификации различных сред. Так, если свойства среды зависят от направления приложенных полей **E** и **H**, то такие среды называют анизотропными. Если коэффициенты (ε_a), (μ_a) и (σ) зависят от абсолютных величин **E** и **H**, то подобные среды являются нелинейными. Различают также неоднородные среды, в которых величины (ε_a), (μ_a) являются функциями координаты выбранной точки среды, и однородные среды, в которых эта зависимость отсутствует. Коэффициенты (ε_a), (μ_a) и (σ) могут зависеть и от частоты электромагнитных колебаний ω . В этом случае среды являются дисперсионными.

Однородные изотропные ионизированные среды

Ионизированный газ в силу его особенностей часто выделяют как специфическую среду, называемую *плазмой*. По составу газовая плазма представляет собой смесь нейтральных, отрицательно заряженных и положительно заряженных частиц. В целом плазма квазинейтральна, т. е. концентрация отрицательно заряженных частиц (обычно электронов) в среднем равна концентрации положительно заряженных частиц (ионов).

Частицы, составляющие плазму, взаимодействуют как с внешними электромагнитными полями, так и между собой. Взаимодействие между частицами приводит к появлению в плазме различных коллективных движений (колебаний), что является характерной особенностью плазмы как среды. Простейшие колебания плазмы связаны с кулоновским взаимодействием заряженных частиц. Частота этих колебаний называется *плазменной частотой* ω_0 . Для электронов

$$\omega_0 = \sqrt{\frac{e^2 N}{m \varepsilon_0}},$$

где e и m — заряд и масса электрона; N — концентрация электронов в плазме.

Акт взаимодействия между двумя частицами в плазме называют *столкновением*. Многие процессы в плазме определяются величиной v_{ij} — числом столкновений в секунду заряженной частицы сорта i с другими частицами сорта j. В газовой плазме наиболее важной характеристикой является частота столкновений электронов с нейтральными молекулами газа $v_{em} = v$.

С макроскопической точки зрения плазма характеризуется электродинамическими параметрами ϵ , μ и σ . Собственный магнетизм плазмы невелик, и можно с большой степенью точности считать, что μ = 1.

Если электрическое поле изменяется с частотой ω , а внешнее постоянное магнитное поле отсутствует, то относительная диэлектрическая проницаемость и проводимость плазмы равны соответственно:

$$\varepsilon = 1 - \frac{\omega_0^2}{\omega^2 + \nu^2}, \quad \sigma = \frac{\omega_0^2 \nu \varepsilon_0}{\omega^2 + \nu^2}. \tag{13.1}$$

При $\nu << \omega$ формулы (13.1) упрощаются:

$$\varepsilon \approx 1 - \frac{\omega_0^2}{\omega^2}$$
, $\sigma \approx \frac{\omega_0^2 \nu \varepsilon_0}{\omega^2}$. (13.2)

Понятие плазмы может быть распространено на электронно-дырочный газ в полупроводниках. Электродинамические параметры невырожденного полупроводника с двумя типами электропроводности, для которого эффективные частоты столкновений электронов и дырок равны $\nu_{\rm n}$ и $\nu_{\rm p}$, а диэлектрическая проницаемость решетки ${\rm e_p}$, будут выражаться формулами

$$\varepsilon = \varepsilon_p \left(1 - \frac{\omega_{0n}^2}{\omega^2 + \nu_n^2} - \frac{\omega_{0p}^2}{\omega^2 + \nu_p^2} \right),$$

$$\sigma = \frac{\omega_{0n}^2 \nu_n \varepsilon_0 \varepsilon_p}{\omega^2 + \nu_n^2} + \frac{\omega_{0p}^2 \nu_p \varepsilon_0 \varepsilon_n}{\omega^2 + \nu_n^2}.$$
(13.3)

Плазменные частоты электронов и дырок соответственно; N и P — концентрации электронов и дырок; m^*_n и m^*_p — эффективные массы электрона и дырки.

Если в полупроводнике имеется несколько сортов частиц с различными эффективными массами, то это должно быть отражено соответствующими членами в формуле (13.3). Обобщенной электродинамической характеристикой среды служит комплексная диэлектрическая проницаемость

$$\tilde{\varepsilon}_a = \varepsilon_a - j\frac{\sigma}{\omega}.\tag{13.4}$$

Коэффициент распространения плоской монохроматической волны в среде

$$\gamma = \frac{\omega}{c} \sqrt{\tilde{\varepsilon}} = \beta - j\alpha ,$$

$$\beta = \frac{\omega}{c} \sqrt{\frac{\varepsilon}{2} + \sqrt{\left(\frac{\varepsilon}{2}\right)^2 + \left(\frac{\sigma}{2\omega\varepsilon_0}\right)^2}},$$

$$\alpha = \frac{\omega}{c} \sqrt{-\frac{\varepsilon}{2} + \sqrt{\left(\frac{\varepsilon}{2}\right)^2 + \left(\frac{\sigma}{2\omega\varepsilon_0}\right)^2}}.$$
(13.5)

Если активные потери в плазме невелики и выполняется условие $\sigma \rightarrow 0$, то выражения (13.5) приобретают вид

$$\beta = \frac{\omega}{c} \sqrt{\varepsilon},$$

$$\alpha = \frac{\omega}{c} \frac{\sigma}{2\omega\varepsilon_0\sqrt{\varepsilon}}.$$
(13.6)

Иногда коэффициенты β и α выражают через действительную и мнимую части коэффициента преломления:

$$n = \sqrt{\tilde{\varepsilon}} = n' - jn''$$

При прохождении плоской электромагнитной волны через однородный плазменный слой толщиной L составляющие векторов электромагнитного поля испытывают ослабление на величину

$$\Delta = 8.686 \int_0^L \alpha dz \,. \tag{13.7}$$

При этом дополнительный сдвиг фазы, вызванный наличием плазмы

$$\delta \varphi = \int_0^L (\beta - \frac{2\pi}{\lambda}) dz. \tag{13.8}$$

Однородные анизотропные среды

В анизотропных средах направление приложенного поля не совпадает с направлением вызванного этим полем отклика. Так, существуют среды, в которых вектор E и возникающий под его воздействием вектор электрической поляризованности P не совпадают по направлению. Имеются также среды, в которых вектор напряженности магнитного поля H и вектор намагниченности M различаются своими направлениями. В обоих случаях пары векторов D и E, B и H связаны между собой тензорами второго ранга

$$(\varepsilon) = \begin{vmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \end{vmatrix}$$

$$(\mu) = \begin{vmatrix} \mu_{xx} & \mu_{xy} & \mu_{xz} \\ \mu_{yx} & \mu_{yy} & \mu_{yz} \\ \mu_{zx} & \mu_{zy} & \mu_{zz} \end{vmatrix}$$

$$(13.9)$$

Аналогично, если вектор напряженности электрического поля ${\bf E}$ не совпадает по направлению с вызываемым им вектором плотности тока проводимости ${\bf J}$, то ${\bf J}$ и ${\bf E}$ будут связаны тензором удельной проводимости

$$(\sigma) = \begin{vmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{vmatrix},$$

который входит в формулировку дифференциального закона Ома

$$J = (\sigma)E$$
.

В конкретных средах некоторые компоненты тензоров (ϵ), (μ) и (σ) могут оказаться равными нулю. Например, существуют монокристаллические диэлектрики и полупроводники, так называемые одноосные кристаллы, для которых справедливы следующие соотношения:

$$\varepsilon_{xx} = \varepsilon_{yy} = \varepsilon_{\perp}$$
, $\varepsilon_{zz} = \varepsilon_{\parallel}$, $\varepsilon_{xy} = \varepsilon_{yx} = \varepsilon_{yz} = \varepsilon_{zy} = \varepsilon_{xz} = 0$, $(\mu) = 1$.

При распространении плоской электромагнитной волны вдоль оси z такого одноосного кристалла анизотропные свойства вещества не проявляются и волна распространяется, как в изотропной среде с $\varepsilon=\varepsilon_{\perp}$. При поперечном распространении волны проявляется анизотропия кристаллов. Если вектор $E\perp l_z$, то волна распространяется, как в среде с $\varepsilon=\varepsilon_{\perp}$. В случае же, когда $E\parallel l_z$, волна распространяется, как в среде с $\varepsilon=\varepsilon_{\parallel}$. Первую волну называют обыкновенной, вторую — необыкновенной.

Коэффициенты фазы обеих волн будут соответственно равны:

$$\beta_0 = \frac{\omega}{c} \sqrt{\varepsilon_{\perp}} = \frac{\omega}{c} n_0 ,$$

$$\beta_e = \frac{\omega}{c} \sqrt{\varepsilon_{\parallel \parallel}} = \frac{\omega}{c} n_e .$$
(13.10)

Различие коэффициентов фаз приводит к тому, что волны, в которых присутствуют оба вида поляризации, при падении на границу раздела, параллельную оси кристалла, претерпевают расщепление. Это явление называют двойным лучепреломлением.

Гиротропные среды

Частным случаем анизотропных сред являются гиротропные среды, для которых хотя бы один из тензоров (ϵ), (μ) имеет вид

$$(\varepsilon) = \begin{vmatrix} \varepsilon_{xx} & -j\varepsilon_{xy} & 0 \\ j\varepsilon_{yx} & \varepsilon_{yy} & 0 \\ 0 & 0 & \varepsilon_{zz} \end{vmatrix}$$

$$(\mu) = \begin{vmatrix} \mu_{xx} & -j\mu_{xy} & 0\\ j\mu_{yx} & \mu_{yy} & 0\\ 0 & 0 & \mu_{zz} \end{vmatrix}$$

Гиротропные свойства проявляют некоторые среды, помещенные в постоянное магнитное поле. Так, для газовой плазмы в присутствии постоянного магнитного поля $H_0 = H_0 1_z$ составляющие тензора диэлектрической проницаемости записываются в виде

$$\varepsilon_{\chi\chi} = 1 - \frac{\omega_0^2}{2\omega} \left[\frac{\omega - \omega_H}{(\omega - \omega_H)^2 + \nu^2} + \frac{\omega + \omega_H}{(\omega + \omega_H)^2 + \nu^2} \right],$$

$$\varepsilon_{\chi\chi} = \frac{\omega_0^2}{2\omega} \left[\frac{\omega - \omega_H}{(\omega - \omega_H)^2 + \nu^2} - \frac{\omega + \omega_H}{(\omega + \omega_H)^2 + \nu^2} \right],$$

$$\varepsilon_{zz} = 1 - \frac{\omega_0^2}{\omega^2 + \nu^2},$$
(13.11)

где $\omega_H = \mu_0 \frac{|e|}{m} H = \gamma H = 2,21 \cdot 10^6 H \, (\text{A/M})$ — частота ларморовской прецессии.

При учете столкновений составляющие тензора комплексной диэлектрической проницаемости газовой плазмы имеют вид

$$\tilde{\varepsilon}_{xx} = 1 - \frac{\omega_0^2(\omega - j\nu)}{\omega[(\omega - j\nu)^2 - \omega_H^2]},$$

$$\tilde{\varepsilon}_{xy} = \frac{\omega_0^2 \omega_H}{\omega[(\omega - j\nu)^2 - \omega_H^2]},$$

$$\tilde{\varepsilon}_{zz} = 1 - \frac{\omega_0^2}{\omega(\omega - j\nu)}.$$
(13.12)

Примером гиротропной среды с тензором (μ) является феррит, помещенный в постоянное магнитное поле $\mathbf{H_0}$. Составляющие тензора комплексной магнитной проницаемости феррита при $H_0 = H_0 \mathbf{1}_z$ записываются в виде

$$\tilde{\mu}_{xx} = 1 - \frac{\omega_S \omega_H}{(\omega - jv)^2 - \omega_H^2},$$

$$\tilde{\mu}_{xy} = \frac{\omega_S (\omega - jv)}{(\omega - jv)^2 - \omega_H^2},$$

$$\tilde{\mu}_{zz} = 1,$$
(13.13)

где $\omega_H = \gamma H_0$, $\omega_S = \gamma M_0$ (M_0 — намагниченность насыщения феррита); γ — частота релаксации, определяющая магнитные потери в феррите.

Составляющие тензора комплексной магнитной проницаемости, описываемые выражениями (13.13), в общем случае содержат действительную и мнимую части:

$$\tilde{\mu}_{xx} = \mu'_{xx} - j\mu''_{xx}$$
, $\tilde{\mu}_{xy} = \mu'_{xy} - j\mu''_{xy}$.

Если потери в ферритах отсутствуют, то

$$\widetilde{\mu}_{xx} = \mu'_{xx} = 1 - \frac{\omega_S \omega_H}{\omega^2 - \omega_H^2}, \ \widetilde{\mu}_{xy} = \mu'_{xy} = \frac{\omega \omega_S}{\omega^2 - \omega_H^2}, \ \widetilde{\mu}_{zz} = 1.$$
(13.14)

Зависимость от частоты компонентов xx и xy тензоров гиротропных сред носит резонансный характер. Резонансная частота пропорциональна напряженности магнитного поля H_0 , а ширина резонансной кривой определяется параметром ν .

Общее рассмотрение распространения электромагнитной волны в гиротропной среде удобно свести к двум предельным случаям — распространению волны вдоль определенной оси (как правило, вдоль постоянного магнитного поля) и поперек ее.

При распространении плоской волны вдоль постоянного подмагничивающего поля наблюдается эффект Фарадея — вращение плоскости поляризации линейно поляризованной волны. Этот эффект связан с тем, что при продольном (вдоль подмагничивающего поля) распространении волны с правой круговой поляризацией ведут себя так же, как волны, распространяющиеся в среде с параметрами $\varepsilon_{\Pi} = \sqrt{\varepsilon_{xx} - \varepsilon_{xy}}$, $\mu_{\Pi} = \sqrt{\mu_{xx} - \mu_{xy}}$, а волны с левой поляризацией — как волны в среде с параметрами $\varepsilon_{\Pi} = \sqrt{\varepsilon_{xx} + \varepsilon_{xy}}$, $\mu_{\pi} = \sqrt{\mu_{xx} + \mu_{xy}}$. Коэффициенты распространения для таких волн различны:

$$\gamma_{\Pi} = \frac{\omega}{c} \sqrt{\varepsilon_{\Pi} \mu_{\Pi}},$$

$$\gamma_{\Pi} = \frac{\omega}{c} \sqrt{\varepsilon_{\Pi} \mu_{\Pi}}.$$
(13.15)

Представляя линейно поляризованную волну в виде геометрической суммы двух векторов с одинаковыми длинами, вращающихся в противоположном направлении, можно найти угол вращения плоскости поляризации для прошедшей электромагнитной волны. Если волна прошла расстояние r_0 в среде, описываемой выражениями (13.15), то этот угол равен

$$\varphi = \frac{z_0}{2} (\gamma_{\Pi} - \gamma_{\Lambda}) = \frac{\omega z_0}{2c} \left(\sqrt{\varepsilon_{\Pi} \mu_{\Pi}} - \sqrt{\varepsilon_{\Lambda} \mu_{\Lambda}} \right). \tag{13.16}$$