코로나 확진자 수의 선형 및 비선형 회귀 모형 적합

Son Jaehyeon

2021 4 29

1. Introduction

본 보고서에서는 코로나 발발 이후 시점부터의 누적 확진자 수를 적절한 회귀 모형으로 적합한다. 이후, 백신 접종이 일일 코로나 확진자 수 감소에 기여하고 있는지 extra sum of square 방식으로 검정하고자 한다. 국가들 중 러시아의 데이터를 사용하여 분석을 진행하였다.

소프트웨어는 R 4.0.2 version을 사용하였다. 사용할 라이브러리는 다음과 같다.

```
library(dplyr)
library(ggplot2)
library(nls2)
library(segmented)
```

2. EDA & Data Preprocessing

df_RUS\$Date <- df_RUS\$Date %>% as.Date("%Y.%m.%d")

2.1 Cumulative Cases Fitting

```
df <- read.csv("global_confirmed_cases_210420.csv")
str(df)

## 'data.frame': 75148 obs. of 6 variables:
## $ CountryName: chr "Aruba" "Aruba" "Aruba" "Aruba" ...
## $ CountryCode: chr "ABW" "ABW" "ABW" "ABW" ...
## $ Date : chr "2020.3.13" "2020.3.14" "2020.3.15" "2020.3.16" ...
## $ Cases : int 2 2 2 2 3 4 4 5 5 9 ...
## $ Difference: int 2 0 0 0 1 1 0 1 0 4 ...
## $ Days : int 1 2 3 4 5 6 7 8 9 10 ...

대이터를 로드하였다. 이 중 러시아 데이터만을 추출하여 적절히 변수형을 변환하였다.

df_RUS <- filter(df, CountryCode == "RUS")
```

head(df_RUS)

##		${\tt CountryName}$	${\tt CountryCode}$	Date	Cases	Difference	Days
##	1	Russia	RUS	2020-01-31	2	2	1
##	2	Russia	RUS	2020-02-01	2	0	2
##	3	Russia	RUS	2020-02-02	2	0	3
##	4	Russia	RUS	2020-02-03	2	0	4
##	5	Russia	RUS	2020-02-04	2	0	5
##	6	Russia	RUS	2020-02-05	2	0	6

먼저 위의 Cases 변수를 response로, Days 변수를 regressor로 적합하기 위해 두 변수를 간단히 시각화 하였다.

```
ggplot(data = df_RUS, mapping = aes(Days, Cases)) +
  geom_line(size = 1.3, colour = 'blue') +
  ggtitle("Days After Start vs Cumulative Cases") +
  theme(plot.title=element_text(size=15, hjust=0.5, face="bold", colour="black", vjust=2))
```

Days After Start vs Cumulative Cases

시각화 결과를 바탕으로, 선형 모형 중 $4\sim6$ 차 정도의 polynomial model을 적합하고, 비선형 모형 중 logistic model과 Gompertz model을 적합하여 서로 비교하는 방식으로 분석하기로 결정하였다.

이후 overfitting을 방지하기 위하여 데이터를 train set과 test set으로 나누었다. 데이터 중 마지막 1개월만을 test set으로 분리하였다.

```
df_RUS_train <- df_RUS %>% filter(Date <= "2021-03-20")
df_RUS_test <- df_RUS %>% filter(Date > "2021-03-20")
```

2.2 Effect of Vaccine on Daily Cases

누적 백신 접종자 수가 추가로 포함된 데이터를 로드하여 마찬가지로 전처리하였다. 또한 최초 백신 접종일부터 지난 날짜를 Days 변수로 지정하였다.

```
vacc <- read.csv("covid_vaccine.csv")</pre>
str(vacc)
## 'data.frame':
                   3121 obs. of 6 variables:
## $ CountryName
                       : chr "United States" "United States" "United States" "United States" ...
  $ CountryCode
                             "USA" "USA" "USA" "USA" ...
                       : chr
## $ Date
                             "2020.12.20" "2020.12.21" "2020.12.22" "2020.12.23" ...
                       : chr
## $ Cases
                       : int 17954675 18153724 18351735 18581353 18775557 18873203 19099491 19255126 1
## $ Difference
                       : int 187819 199049 198011 229618 194204 97646 226288 155635 174634 200252 ...
## $ people_vaccinated: int 556208 614117 614117 1008025 1008025 1008025 1944585 1944585 2127143 2127
vacc_RUS <- vacc %>% filter(CountryCode == "RUS")
vacc_RUS$Date <- vacc_RUS$Date %>% as.Date("%Y.%m.%d")
vacc_RUS <- vacc_RUS %>% mutate(Days = as.integer(Date - vacc_RUS$Date[1] + 1))
head(vacc_RUS)
```

##		CountryName	CountryCode	Date	Cases	Difference	${\tt people_vaccinated}$	Days
##	1	Russia	RUS	2020-12-15	2682866	26265	28500	1
##	2	Russia	RUS	2020-12-16	2708940	26074	28500	2
##	3	Russia	RUS	2020-12-17	2736727	27787	28500	3
##	4	Russia	RUS	2020-12-18	2764843	28116	28500	4
##	5	Russia	RUS	2020-12-19	2792615	27772	28500	5
##	6	Russia	RUS	2020-12-20	2821125	28510	28500	6

Daily Cases와 Days 변수를 시각화하였다.

```
ggplot(data = vacc_RUS, mapping = aes(Days, Difference)) +
  geom_line(size = 1.3, colour = 'blue') +
  ggtitle("Days After Vaccination vs Daily Cases") +
  theme(plot.title=element_text(size=15, hjust=0.5, face="bold", colour="black", vjust=2))
```

Days After Vaccination vs Daily Cases

시간이 지남에 따라 확진자 수가 감소하는 경향을 확인할 수 있었다.

다음으로, 일일 확진자 수와 누적 백신 접종자 수를 시각화하였다.

```
ggplot(data = vacc_RUS, mapping = aes(people_vaccinated, Difference)) +
  geom_line(size = 1.3, colour = 'blue') +
  ggtitle("# of People vaccinated vs Daily Cases") +
  theme(plot.title=element_text(size=15, hjust=0.5, face="bold", colour="black", vjust=2))
```


백신 접종자 수가 늘어남에 따라 일일 확진자 수가 감소하는 경향을 확인할 수 있었다. 그러나, 백신 접종자 수가 충분히 유의하게 일일 확진자 수 감소에 영향을 미쳤는지는 검정이 필요하다고 판단하였다.

train set과 test set을 나누었다. 최근 한달의 데이터만 test set으로 분리해 적합한 모델을 검증할 수 있도록록 하였다.

```
vacc_RUS_train <- vacc_RUS %>% filter(Date <= "2021-03-20")
vacc_RUS_test <- vacc_RUS %>% filter(Date > "2021-03-20")
```

3. Analysis

3.1 Cumulative Cases

3.1.1 Polynomial Model

먼저 누적 확진자 수를 적합하기 위해 polynomial model을 적합하였다. train set으로 적합하여 test set에서 가장 작은 mse를 나타내는 7차 모형을 선택하였다.

```
getMSE <- function(y, yhat){
   MSE <- sum((y-yhat)^2)/length(y)
   return(MSE)
}</pre>
```

```
poly.mse <- c()
for(i in 3:8){
    poly <- lm(Cases ~ poly(Days,i), data = df_RUS_train)
    poly.mse <- c(poly.mse, getMSE(df_RUS_test$Cases, predict(poly, df_RUS_test)))
}
print(poly.mse)

## [1] 6.347075e+11 2.192754e+11 4.529044e+11 1.062444e+12 2.489695e+10

## [6] 3.876874e+11

linear.fit <- lm(Cases ~ poly(Days,7), data = df_RUS_train)</pre>
```

3.1.2 Logistic Model

logistic model을 적합하였다. 적당한 초기값의 grid를 잡아 brute-force 방식으로 모델을 적합한 후, 가우스 뉴턴 방식으로 모델을 최적화하였다.

```
##
## Formula: Cases \sim a/(1 + exp(b - (c * Days)))
##
## Parameters:
##
     Estimate Std. Error t value Pr(>|t|)
## a 6.550e+06 1.610e+05 40.69
                                  <2e-16 ***
## b 4.610e+00 3.735e-02 123.44
                                  <2e-16 ***
## c 1.322e-02 2.293e-04 57.64
                                  <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 131200 on 412 degrees of freedom
## Number of iterations to convergence: 7
```

Achieved convergence tolerance: 5.63e-06

3.1.3 Gompertz Model

Gompertz model을 적합하였다. 적당한 초기값의 grid를 잡아 brute-force 방식으로 모델을 적합한 후, 가우스 뉴턴 방식으로 모델을 최적화하였다.

```
Gompertz.formula <- Cases ~ a * exp(-b * exp(-c * Days))</pre>
Gompertz.grid <- expand.grid(a = max(df_RUS_train$Cases),</pre>
                             b = seq(1, 100, 1),
                             c = seq(0, 1, 0.01))
Gompertz.fit1 <- nls2(Gompertz.formula, data = df_RUS_train, start = Gompertz.grid,</pre>
                      algorithm = "brute-force")
Gompertz.fit2 <- nls2(Gompertz.formula, data = df_RUS, start = coef(Gompertz.fit1),</pre>
                      algorithm = "default")
summary(Gompertz.fit2)
##
## Formula: Cases \sim a * exp(-b * exp(-c * Days))
##
## Parameters:
      Estimate Std. Error t value Pr(>|t|)
## a 1.021e+07 4.944e+05 20.64
                                    <2e-16 ***
## b 6.810e+00 1.542e-01 44.17 <2e-16 ***
## c 5.066e-03 1.833e-04 27.64 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 168200 on 443 degrees of freedom
##
## Number of iterations to convergence: 10
## Achieved convergence tolerance: 9.866e-06
```

3.1.4 Predict

각 모델의 누적 확진자 수 예측치를 출력하였다. 2021 년 3월 20일 까지의 값은 train set에 해당하고, 3월 21일 이후 값은 test set에 해당한다. test dataset의 예측치를 출력하였다.

```
model.linear = linear.fit
model.logistic = logistic.fit2
model.Gompertz = Gompertz.fit2
```

```
y_hat_linear = predict(model.linear, df_RUS)
y_hat_logistic = predict(model.logistic, df_RUS)
y_hat_Gompertz = predict(model.Gompertz, df_RUS)

predict <- data.frame(Days = df_RUS$Days, y_hat_linear, y_hat_logistic, y_hat_Gompertz)
print(predict %>% filter(Days >= df_RUS_test$Days[1]))
```

##		Days	<pre>y_hat_linear</pre>	<pre>y_hat_logistic</pre>	<pre>y_hat_Gompertz</pre>
##	416	416	4393479	4640202	4459640
##	417	417	4403327	4658033	4478334
##	418	418	4413514	4675764	4497011
##	419	419	4424079	4693396	4515671
##	420	420	4435065	4710927	4534314
##	421	421	4446515	4728356	4552938
##	422	422	4458474	4745684	4571545
##	423	423	4470990	4762909	4590133
##	424	424	4484109	4780031	4608702
##	425	425	4497883	4797049	4627252
##	426	426	4512363	4813963	4645782
##	427	427	4527602	4830772	4664292
##	428	428	4543656	4847476	4682782
##	429	429	4560581	4864074	4701251
##	430	430	4578437	4880566	4719699
##	431	431	4597283	4896952	4738126
##	432	432	4617183	4913230	4756531
##	433	433	4638201	4929402	4774914
##	434	434	4660403	4945465	4793275
##	435	435	4683858	4961421	4811613
##	436	436	4708637	4977269	4829928
##	437	437	4734811	4993008	4848219
##	438	438	4762456	5008638	4866487
##	439	439	4791648	5024159	4884731
##	440	440	4822466	5039571	4902950
##	441	441	4854992	5054874	4921145
##	442	442	4889308	5070067	4939315
##	443	443	4925502	5085151	4957460
##	444	444	4963660	5100124	4975579
##	445	445	5003873	5114988	4993672
##	446	446	5046235	5129742	5011740

3.1.5 test MSE & R squared

각모델을 평가하기 위해 먼저, 일일 확진자 수를 얼마나 잘 예측하는지 test MSE를 계산하였다.

```
getMSE <- function(y, yhat){</pre>
  MSE <- sum((y-yhat)^2)/length(y)
 return (MSE)
}
MSE_test_linear_daily <- getMSE(y = df_RUS_test$Difference,</pre>
                               (y_hat_linear - c(0, y_hat_linear[-length(y_hat_linear)]))[df_RUS_test$D
MSE_test_logistic_daily <- getMSE(y = df_RUS_test$Difference,</pre>
                              (y_hat_logistic - c(0, y_hat_logistic[-length(y_hat_logistic)]))[df_RUS_t
MSE_test_Gompertz_daily <- getMSE(y = df_RUS_test$Difference,
                              (y_hat_Gompertz - c(0, y_hat_Gompertz[-length(y_hat_Gompertz)]))[df_RUS_t
cat("test MSE of linear model :", MSE_test_linear_daily %>% format(scientific = TRUE), "\n")
## test MSE of linear model: 3.004062e+08
cat("test MSE of logistic model :", MSE_test_logistic_daily %>% format(scientific = TRUE), "\n")
## test MSE of logistic model: 7.194612e+07
cat("test MSE of Gompertz model :", MSE_test_Gompertz_daily %>% format(scientific = TRUE), "\n")
## test MSE of Gompertz model : 1.105573e+08
일일 확진자 수를 예측하는 것은 logistic model이 가장 탁월하였다.
한편, 누적 확진자 수를 얼마나 잘 예측하는지를 측정하기 위해 R squared 값을 계산하였다. 각 모델의 R squared 값은
다음과 같다.
getRsq <- function(y, yhat){</pre>
  Rsq \leftarrow 1 - (sum((y-yhat)^2) / sum((y-mean(y))^2))
  return(Rsq)
}
data.frame(linear = summary(model.linear)$adj.r.squared,
           logistic = getRsq(df_RUS$Cases,y_hat_logistic),
           Gompertz = getRsq(df_RUS$Cases,y_hat_Gompertz)
##
        linear logistic Gompertz
## 1 0.9998575 0.9898478 0.9886231
누적 확진자 수 분포를 가장 잘 적합한 모형은 polynomial model 이었다.
```

3.1.6 Visualization

세 모형을 시각화한 결과는 다음과 같다.

```
df_fitted <- data.frame(Days = df_RUS$Days,</pre>
                           y_hat_linear,
                           y_hat_logistic,
                           y_hat_Gompertz)
df predict <- data.frame(x = rep(df fitted$Days,3),</pre>
                          yhat_cases = c(y_hat_linear, y_hat_logistic, y_hat_Gompertz),
                          yhat_difference = c(y_hat_linear - c(0, y_hat_linear[-length(y_hat_linear)]),
                                               y_hat_logistic - c(0, y_hat_logistic[-length(y_hat_logisti
                                               y_hat_Gompertz - c(0, y_hat_Gompertz[-length(y_hat_Gompertz
                          type = rep(c("Linear model", "Logistic model", "Gompertz model"),
                                     each = nrow(df_fitted)))
df_predict$type <- factor(df_predict$type,</pre>
                           levels = c("Linear model", "Logistic model", "Gompertz model"))
t0 <- df_RUS$Date[1]
model_labels <- c("Linear model", "Logistic model", "Gompertz model")</pre>
models <- list(model.linear, model.logistic, model.Gompertz)</pre>
col_list <- c("red", "blue", "green")</pre>
shape_list <- c("Linear model"="dashed", "Logistic model"="solid", "Gompertz model"="dotdash")</pre>
p_1 <- ggplot(data=df_RUS, aes(x = Days, y = Cases)) +</pre>
  geom_point(color='black', shape = 1, size=5) +
 theme_bw() +
  labs(title = paste0("COVID-19 Cases"),
       subtitle = paste0("Russia", " / ", "Cumulated"),
       x = paste0('Days Since ', as.character(t0)),
       y = 'Number of Cases') +
  geom_line(data = df_predict,
            aes(x = x,y = yhat_cases, colour = type, linetype = type), size=1.5)+
  scale_color_manual(name = "Model",
                     labels = model_labels,
                     values = col_list) +
  scale_linetype_manual(name = "Model",
```

COVID-19 Cases

Russia / Cumulated

누적 확진자 수를 linear model이 가장 잘 적합하였음을 알 수있다. 나머지 두 비선형 모형은 test set에 대해 확진자 수를 과대 추정하는 경향을 보였다.

3.2 Daily Cases with vaccination

검정하고자 하는 가설은 다음과 같다.

 H_0 : 백신은 효과가 없다.; H_1 : 백신은 효과가 있다.

이를 검정하기 위하여 Daily Cases를 Days 변수만으로 적합하여 reduced model을 만들고, Days와 people_vaccinated

변수 모두를 적합한 full model을 비교하여 partial F test를 시행하기로 하였다.

3.2.1 Daily Cases vs Days

reduced model은 다음과 같이 적합되었다.

```
fit_1 <- glm(Difference ~ log(1+Days) + Days, data = vacc_RUS_train, family = poisson)</pre>
seg_fit_1 <- segmented(fit_1, seg.Z = ~ Days,</pre>
                       npsi = 2, control = seg.control(it.max = 10000, n.boot = 50))
vacc_predict = data.frame(x = vacc_RUS$Days,
                          yhat_cases = exp(predict(seg_fit_1, vacc_RUS)))
t1 <- vacc_RUS$Date[1]</pre>
p_2 <- ggplot(data=vacc_RUS, aes(x = Days, y = Difference)) +</pre>
  geom_point(color='black', size=2) +
  theme_bw() +
  labs(title = paste0("COVID-19 Cases"),
       subtitle = paste0("Russia", " / ", "daily"),
       x = paste0('Days Since ', as.character(t1)),
       y = 'Number of Cases') +
  geom_line(data = vacc_predict,
            aes(x = x, y = yhat_cases), size=1.5, colour='red')+
  theme(plot.title=element_text(size=25, hjust=0.5, face="bold", colour="black", vjust=2),
        plot.subtitle=element_text(size=16, hjust=0.5, face="italic", color="maroon", vjust=2),
        axis.text=element text(size=14, face = "bold", colour = "black"),
        axis.text.x = element text(size = 14, hjust = 0),
        axis.title=element_text(size=16, colour = "black"),
        legend.title = element_text(size = 15),
        legend.text = element_text(size = 13))
p_2
```

COVID-19 Cases

Russia / daily

summary(seg_fit_1)

```
##
##
   ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.glm(obj = fit_1, seg.Z = ~Days, npsi = 2, control = seg.control(it.max = 10000,
      n.boot = 50))
##
##
## Estimated Break-Point(s):
                Est. St.Err
##
## psi1.Days 38.001 0.780
## psi2.Days 74.001 0.613
##
## Meaningful coefficients of the linear terms:
                   Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                 10.1321833 0.0064180 1578.70
                                                 <2e-16 ***
## log(1 + Days) 0.1008705 0.0039835
                                         25.32
                                                 <2e-16 ***
## Days
                 -0.0144965 0.0002824 -51.33
                                                 <2e-16 ***
```

```
## U1.Days
               -0.0045706 0.0002511 -18.20
                                                  NA
## U2.Days
                0.0079695 0.0003393
                                     23.49
                                                  NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
           deviance: 231522.5 on 95 degrees of freedom
## Null
## Residual deviance:
                      2673.5 on 89 degrees of freedom
## AIC: 3798.5
##
## Convergence attained in 7 iter. (rel. change 4.2858e-06)
test set을 과소추정 하였지만, 비교적 잘 적합되었다고 판단하였다.
```

3.2.2 Daily Cases vs Days + # of People Vaccinated

full model은 다음과 같이 적합되었다.

```
fit_2 <- glm(Difference~ log(1+Days) + Days + log(1+people_vaccinated) + people_vaccinated,
             data = vacc_RUS_train, family = poisson)
seg_fit_2 <- segmented(fit_2, seg.Z = ~ Days,</pre>
                       npsi = 2, control = seg.control(it.max = 10000, n.boot = 50))
vacc_predict = data.frame(x = vacc_RUS$Days,
                          yhat_cases = exp(predict(seg_fit_2, vacc_RUS)))
t1 <- vacc_RUS$Date[1]</pre>
p_3 <- ggplot(data=vacc_RUS, aes(x = Days, y = Difference)) +</pre>
  geom_point(color='black', size=2) +
  theme bw() +
  labs(title = paste0("COVID-19 Cases"),
       subtitle = pasteO("Russia", " / ", "daily"),
       x = paste0('Days Since ', as.character(t1)),
       y = 'Number of Cases') +
  geom_line(data = vacc_predict,
            aes(x = x, y = yhat_cases), size=1.5, colour='blue')+
  theme(plot.title=element_text(size=25, hjust=0.5, face="bold", colour="black", vjust=2),
        plot.subtitle=element_text(size=16, hjust=0.5, face="italic", color="maroon", vjust=2),
        axis.text=element_text(size=14, face = "bold", colour = "black"),
```

```
axis.text.x = element_text(size = 14, hjust = 0),
axis.title=element_text(size=16, colour = "black"),
legend.title = element_text(size = 15),
legend.text = element_text(size = 13))
p_3
```

COVID-19 Cases

Russia / daily


```
summary(seg_fit_2)
```

```
##
## ***Regression Model with Segmented Relationship(s)***
##
## Call:
## segmented.glm(obj = fit_2, seg.Z = ~Days, npsi = 2, control = seg.control(it.max = 10000,
## n.boot = 50))
##
## Estimated Break-Point(s):
## Est. St.Err
## psi1.Days 33.346 0.335
## psi2.Days 87.000 0.429
##
```

```
## Meaningful coefficients of the linear terms:
##
                              Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                             1.064e+01 2.212e-02 481.13
                                                          <2e-16 ***
## log(1 + Days)
                             8.867e-02 4.554e-03
                                                  19.47 <2e-16 ***
## Days
                            -7.889e-03 4.855e-04 -16.25
                                                         <2e-16 ***
## log(1 + people_vaccinated) -5.047e-02 2.034e-03 -24.81
                                                          <2e-16 ***
## people_vaccinated
                            3.320e-08 1.515e-09
                                                   21.92
                                                         <2e-16 ***
## U1.Days
                            -1.087e-02 4.274e-04 -25.44
                                                              NA
## U2.Days
                             1.643e-02 1.132e-03
                                                  14.52
                                                               NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
## Null
           deviance: 231522.5 on 95 degrees of freedom
## Residual deviance: 1941.8 on 87 degrees of freedom
## AIC: 3070.8
##
## Convergence attained in 6 iter. (rel. change 7.137e-07)
test set을 과대추정하였지만, 비교적 잘 적합하였다고 판단하였다.
```

3.2.3 Partial F test

```
anova(seg_fit_1, seg_fit_2)
## Analysis of Deviance Table
##
## Model 1: Difference ~ log(1 + Days) + Days + U1.Days + U2.Days + psi1.Days +
##
       psi2.Days
## Model 2: Difference ~ log(1 + Days) + Days + log(1 + people_vaccinated) +
       people_vaccinated + U1.Days + U2.Days + psi1.Days + psi2.Days
##
     Resid. Df Resid. Dev Df Deviance
##
            89
                   2673.5
## 1
## 2
            87
                   1941.8 2 731.73
F0 = (731.73/2)/(1941.8/87)
F0 > qf(0.05, 2, 87, lower.tail=FALSE)
```

[1] TRUE

 ${
m F}$ statistics 값이 기각역에 포함되어, H_0 를 기각할 수 있었다. 따라서 백신은 일일 확진자 수에 영향을 미친다고 할 수 있다.

그러나 모델 summary 에서 알 수 있듯이, people_vaccinated의 계수가 매우 작지만 양수이므로, 백신이 코로나 확진자수 감소에 영향을 미친다고 해석하기는 어렵다고 판단한다.

4. Conclusion

코로나 누적 확진자 수를 여러 모형으로 적합하였다. 그 중 polynomial model이 비선형 모형들보다 누적 확진자 수를 잘 설명하였다.

일일 확진자 수를 적합 할 때, 백신 접종자수를 regressor로 추가했을 때 fitting은 매우 개선되었으나, 백신이 코로나 확진자수를 뚜렷이 감소시킨다고는 판단할 수 없었다.