

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classific	tion 6
-------------------------------------	--------

C12N 15/12, 5/10, 1/21, C07K 14/47, 16/18, C12N 1/21, C07K 14/47, 16/18, C12Q 1/68, G01N 33/50, 33/53, 33/68, A61K 38/17

(11) International Publication Number:

WO 98/39448

(43) International Publication Date: 11 September 1998 (11.09.98)

(21) International Application Number:

PCT/US98/04493

(22) International Filing Date:

6 March 1998 (06.03.98)

(30) Priority Data:		
60/040,162	7 March 1997 (07.03.97)	US
60/040,333	7 March 1997 (07.03.97)	US
60/038,621	7 March 1997 (07.03.97)	US
60/040,161	7 March 1997 (07.03.97)	US
60/040,626	7 March 1997 (07.03.97)	US
60/040,334	7 March 1997 (07.03.97)	US
60/040,336	7 March 1997 (07.03.97)	US
60/040,163	7 March 1997 (07.03.97)	US
60/043,580	11 April 1997 (11.04.97)	US
60/043.568	11 April 1997 (11.04.97)	US

(Continued on the following page)

(71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).

(72) Inventors: and

(75) Inventors/Applicants (for US only): RUBEN, Steven, M. [US/US]; 18528 Heritage Hills Drive, Olney, MD 20832 (US). ROSEN, Craig, A. [US/US]; 22400 Rolling Hills Road, Laytonsville, MD 20882 (US). FISCHER, Carrie, L. [US/US]; 5810 Hall Street, Burke, VA 22015 (US). SOP-PET, Daniel, R. [US/US]; 15050 Stillfield, Place, Centreville, VA 22020 (US). CARTER, Kenneth, C. [US/US]; 11601 Brandy Hall Lane, North Potomac, MD 20878 (US). BEDNARIK, Daniel, P. [US/US]; 8822 Blue Sea Drive, Columbia, MD 21046 (US). ENDRESS, Gregory, A. [US/US]; 9729 Clagett Farm Drive, Potomac, MD 20854 (US). YU, Guo-Liang [CN/US]; 13524 Straw Bale Lane, Darnestown, MD 20878 (US). NI, Jian [CN/US]; 5502 Manorfield Road, Rockville, MD 20853 (US). FENG, Ping [CN/US]; 4 Relda Court, Gaithersburg, MD 20878 (US). YOUNG, Paul, E. [US/US]; 122 Beckwith Street, Gaithersburg, MD 20878 (US). GREENE, John, M. [US/US]; 872 Diamond Drive, Gaithersburg, MD 20878 (US). FERRIE, Ann, M. [US/US]; 13203 L Astoria Hill Court, Germantown,

MD 20874 (US). DUAN, Roxanne [US/US]; 4541 Fairfield Drive, Bethesda, MD 20814 (US). HU, Jing-Shan [CN/US]; 1247 Lakeside Drive #3034, Sunnyvale, CA 94086 (US). FLORENCE, Kimberly, A. [US/US]; 12805 Atlantic Avenue, Rockville, MD 20851 (US). OLSEN, Henrik, S. [DK/US]; 182 Kendrick Place #24, Gaithersburg, MD 20878 (US). EBNER, Reinhard [DE/US]; 9906 Shelburne Terrace #316, Gaithersburg, MD 20878 (US). BREWER, Laurie, A. [US/US]; 14920 Mount Nebo Road, Poolesville, MD 20837 (US). MOORE, Paul, A. [GB/US]; Apartment #104, 1908 Holly Ridge Drive, McLean, VA 22102 (US). SHI, Yanggu [CN/US]; 437 West Side Drive, Gaithersburg, MD 20878 (US). LAFLEUR, David, W. [US/US]; 1615 Q Street, N.W. #807, Washington, DC 20009 (US). LI, Yi [CN/US]; 1247 Lakeside Drive #3034, Sunnyvale, CA 94086 (US). ZENG, Zhizhen [CN/US]; 13950 Saddleview Drive, Gaithersburg, MD 20878 (US). KYAW, Hla [BU/US]; 520 Sugarbush Circle, Frederick, MD 21703 (US).

- (74) Agents: BROOKES, Anders, A. et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 10850 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: 186 HUMAN SECRETED PROTEINS

(57) Abstract

The present invention relates to 186 novel human secreted proteins and isolated nucleic acids containing the coding regions of the genes encoding such proteins. Also provided are vectors, host cells, antibodies, and recombinant methods for producing human secreted proteins. The invention further relates to diagnostic and therapeutic methods useful for diagnosing and treating disorders related to these novel human secreted proteins.

60/043,314 11 april 1997 (11.04.97) 60/047,596 23 May 1997 (23.05.97) US 60/043,569 11 april 1997 (11.04.97) 60/047,612 23 May 1997 (23.05.97) US US 60/043,311 11 april 1997 (11.04.97) 60/047,632 23 May 1997 (23.05.97) 60/043,671 11 april 1997 (11.04.97) 60/047,601 23 May 1997 (23.05.97) US US 60/047,595 23 May 1997 (23.05.97) 60/043,674 11 april 1997 (11.04.97) US US 60/047,599 23 May 1997 (23.05.97) 60/043,669 11 april 1997 (11.04.97) US US 60/043,312 11 april 1997 (11.04.97) 60/047,588 23 May 1997 (23.05.97) US HS 60/043,313 11 april 1997 (11.04.97) US 60/047,585 23 May 1997 (23.05.97) US 60/043,672 11 april 1997 (11.04.97) 60/047,586 23 May 1997 (23.05.97) US US 60/043,578 11 april 1997 (11.04.97) US 60/047,590 23 May 1997 (23.05.97) US 60/043,576 11 april 1997 (11.04.97) US 60/047,594 23 May 1997 (23.05.97) US 60/047,589 23 May 1997 (23.05.97) 60/043,670 11 april 1997 (11.04.97) US US 60/047,593 23 May 1997 (23.05.97) 60/047,600 23 May 1997 (23.05.97) US 60/047,614 23 May 1997 (23.05.97) 60/047,615 23 May 1997 (23.05.97) US US 60/047,597 23 May 1997 (23.05.97) 60/047,501 23 May 1997 (23.05.97) US US 60/047,502 23 May 1997 (23.05.97) US 60/048,974 06 June 1997 (06.06.97) US 60/048,964 06 June 1997 (06.06.97) 60/047,633 23 May 1997 (23.05.97) US US 60/047,583 23 May 1997 (23.05.97) US 60/049,610 13 June 1997 (13.06.97) US 60/051,926 08 July 1997 (08.07.97) 60/047,617 23 May 1997 (23.05.97) US US 60/052,874 16 July 1997 (16.07.97) US 60/047,618 23 May 1997 (23.05.97) US 60/047,503 23 May 1997 (23.05.97) US 60/055,724 18 August 1997 (18.08.97) US 60/047,592 23 May 1997 (23.05.97) 60/056,886 22 August 1997 (22.08.97) US US 60/047.581 23 May 1997 (23.05.97) 60/056,877 22 August 1997 (22.08.97) US 60/056,889 22 August 1997 (22.08.97) US 60/047,584 23 May 1997 (23.05.97) US 60/047,500 23 May 1997 (23.05.97) US 60/056,893 22 August 1997 (22.08.97) US 60/047,587 23 May 1997 (23.05.97) 60/056,630 22 August 1997 (22.08.97) US 60/056,878 22 August 1997 (22.08.97) US 60/047,492 23 May 1997 (23.05.97) US 60/056,662 22 August 1997 (22.08.97) US 60/047,598 23 May 1997 (23.05.97) US 60/056,872 22 August 1997 (22.08.97) US 60/047,613 23 May 1997 (23.05.97) US 60/047,582 23 May 1997 (23.05.97) 60/056,882 22 August 1997 (22.08.97) US

60/056,637 22 August 1997 (22.08.97) US US 60/056,903 22 August 1997 (22.08.97) 60/056,888 22 August 1997 (22.08.97) US 60/056,879 22 August 1997 (22.08.97) US 60/056,880 22 August 1997 (22.08.97) US 60/056,894 22 August 1997 (22.08.97) US 60/056,911 22 August 1997 (22.08.97) US 60/056,636 22 August 1997 (22.08.97) 60/056,874 22 August 1997 (22.08.97) LIS 60/056,910 22 August 1997 (22.08.97) US 60/056,864 22 August 1997 (22.08.97) US 60/056,631 22 August 1997 (22.08.97) US 60/056,845 22 August 1997 (22.08.97) 60/056,892 22 August 1997 (22.08.97) US 60/056,632 22 August 1997 (22.08.97) US 60/056,664 22 August 1997 (22.08.97) US 60/056,876 22 August 1997 (22.08.97) US 60/056,881 · 22 August 1997 (22.08.97) 60/056,909 22 August 1997 (22.08.97) US 60/056,875 22 August 1997 (22.08.97) US 60/056,862 22 August 1997 (22.08.97) US 60/056,887 22 August 1997 (22.08.97) US 60/056,908 22 August 1997 (22.08.97) US 60/056,884 22 August 1997 (22.08.97) 60/057,761 05 September 1997 (05 09.97).US 60/057,650 05 September 1997 (05 09.97).US 60/057,669 05 September 1997 (05 09.97).US 60/058,785 12 September 1997 (12.09.97) US

60/061,060 02 October 1997 (02.10.97) US

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil ·	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	18	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
Cl	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

10

15

20

25

30

35

Field of the Invention

This invention relates to newly identified polynucleotides and the polypeptides encoded by these polynucleotides, uses of such polynucleotides and polypeptides, and their production.

Background of the Invention

Unlike bacterium, which exist as a single compartment surrounded by a membrane, human cells and other eucaryotes are subdivided by membranes into many functionally distinct compartments. Each membrane-bounded compartment, or organelle, contains different proteins essential for the function of the organelle. The cell uses "sorting signals," which are amino acid motifs located within the protein, to target proteins to particular cellular organelles.

One type of sorting signal, called a signal sequence, a signal peptide, or a leader sequence, directs a class of proteins to an organelle called the endoplasmic reticulum (ER). The ER separates the membrane-bounded proteins from all other types of proteins. Once localized to the ER, both groups of proteins can be further directed to another organelle called the Golgi apparatus. Here, the Golgi distributes the proteins to vesicles, including secretory vesicles, the cell membrane, lysosomes, and the other organelles.

Proteins targeted to the ER by a signal sequence can be released into the extracellular space as a secreted protein. For example, vesicles containing secreted proteins can fuse with the cell membrane and release their contents into the extracellular space - a process called exocytosis. Exocytosis can occur constitutively or after receipt of a triggering signal. In the latter case, the proteins are stored in secretory vesicles (or secretory granules) until exocytosis is triggered. Similarly, proteins residing on the cell membrane can also be secreted into the extracellular space by proteolytic cleavage of a "linker" holding the protein to the membrane.

Despite the great progress made in recent years, only a small number of genes encoding human secreted proteins have been identified. These secreted proteins include the commercially valuable human insulin, interferon, Factor VIII, human growth hormone, tissue plasminogen activator, and erythropoeitin. Thus, in light of the pervasive role of secreted proteins in human physiology, a need exists for identifying and characterizing novel human secreted proteins and the genes that encode them. This knowledge will allow one to detect, to treat, and to prevent medical disorders by using secreted proteins or the genes that encode them.

10

15

20

25

30

35

The present invention relates to novel polynucleotides and the encoded polypeptides. Moreover, the present invention relates to vectors, host cells, antibodies, and recombinant methods for producing the polypeptides and polynucleotides. Also provided are diagnostic methods for detecting disorders related to the polypeptides, and therapeutic methods for treating such disorders. The invention further relates to screening methods for identifying binding partners of the polypeptides.

Detailed Description

Definitions

The following definitions are provided to facilitate understanding of certain terms used throughout this specification.

In the present invention, "isolated" refers to material removed from its original environment (e.g., the natural environment if it is naturally occurring), and thus is altered "by the hand of man" from its natural state. For example, an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be "isolated" because that vector, composition of matter, or particular cell is not the original environment of the polynucleotide.

In the present invention, a "secreted" protein refers to those proteins capable of being directed to the ER, secretory vesicles, or the extracellular space as a result of a signal sequence, as well as those proteins released into the extracellular space without necessarily containing a signal sequence. If the secreted protein is released into the extracellular space, the secreted protein can undergo extracellular processing to produce a "mature" protein. Release into the extracellular space can occur by many mechanisms, including exocytosis and proteolytic cleavage.

As used herein, a "polynucleotide" refers to a molecule having a nucleic acid sequence contained in SEQ ID NO:X or the cDNA contained within the clone deposited with the ATCC. For example, the polynucleotide can contain the nucleotide sequence of the full length cDNA sequence, including the 5' and 3' untranslated sequences, the coding region, with or without the signal sequence, the secreted protein coding region, as well as fragments, epitopes, domains, and variants of the nucleic acid sequence. Moreover, as used herein, a "polypeptide" refers to a molecule having the translated amino acid sequence generated from the polynucleotide as broadly defined.

In the present invention, the full length sequence identified as SEQ ID NO:X was often generated by overlapping sequences contained in multiple clones (contig

15

20

25

30

35

analysis). A representative clone containing all or most of the sequence for SEQ ID NO:X was deposited with the American Type Culture Collection ("ATCC"). As shown in Table 1, each clone is identified by a cDNA Clone ID (Identifier) and the ATCC Deposit Number. The ATCC is located at 12301 Park Lawn Drive, Rockville, Maryland 20852, USA. The ATCC deposit was made pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for purposes of patent procedure.

A "polynucleotide" of the present invention also includes those polynucleotides capable of hybridizing, under stringent hybridization conditions, to sequences contained in SEQ ID NO:X, the complement thereof, or the cDNA contained within the clone deposited with the ATCC. "Stringent hybridization conditions" refers to an overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 mM NaCl, 75 mM sodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 μg/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65°C.

Also contemplated are nucleic acid molecules that hybridize to the polynucleotides of the present invention at lower stringency hybridization conditions. Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature. For example, lower stringency conditions include an overnight incubation at 37°C in a solution comprising 6X SSPE (20X SSPE = 3M NaCl; 0.2M NaH₂PO₄; 0.02M EDTA, pH 7.4), 0.5% SDS, 30% formamide, 100 ug/ml salmon sperm blocking DNA; followed by washes at 50°C with 1XSSPE, 0.1% SDS. In addition, to achieve even lower stringency, washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC).

Note that variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility.

Of course, a polynucleotide which hybridizes only to polyA+ sequences (such as any 3' terminal polyA+ tract of a cDNA shown in the sequence listing), or to a

10

15

20

25

30

35

complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide," since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone).

The polynucleotide of the present invention can be composed of any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. For example, polynucleotides can be composed of single-and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, the polynucleotide can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. A polynucleotide may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications can be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically, or metabolically modified forms.

The polypeptide of the present invention can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids. The polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine,

15

20

30

35

formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. (See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993); POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al., Meth Enzymol 182:626-646 (1990); Rattan et al., Ann NY Acad Sci 663:48-62 (1992).)

"SEQ ID NO:X" refers to a polynucleotide sequence while "SEQ ID NO:Y" refers to a polypeptide sequence, both sequences identified by an integer specified in Table 1.

"A polypeptide having biological activity" refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. In the case where dose dependency does exist, it need not be identical to that of the polypeptide, but rather substantially similar to the dose-dependence in a given activity as compared to the polypeptide of the present invention (i.e., the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity, and most preferably, not more than about three-fold less activity relative to the polypeptide of the present invention.)

25 Polynucleotides and Polypeptides of the Invention

FEATURES OF PROTEIN ENCODED BY GENE NO: 1

This gene is expressed primarily in testes tumor and to a lesser extent in fetal brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer particularly of the testes, and defects of the central nervous system such as seizure and neurodegenerative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly cancer of the testes and central nervous system,

10

15

20

25

30

35

expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., testes and other reproductive tissue, brain and other tissue of the nervous system, and blood cells, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of testicular cancer and treatment of central nervous system disorders since this gene is primarily expressed in the testes tumor and developing brain.

FEATURES OF PROTEIN ENCODED BY GENE NO: 2

This gene is expressed primarily in cancer tissues, such as breast cancer and Wilm's tumor, and to a lesser extent in fetal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, and/or tumors, particularly, those found in the breast, and developmental abnormalities or disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the glandular tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., mammary tissue, and fetal tissue and, cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 314 as residues: Pro-11 to Thr-18, Leu-43 to Pro-50, Gly-64 to Leu-72, and Leu-81 to Lys-86.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of cancers and/or tumors, particularly, those found in the breast since expression is mainly in cancer/tumor tissues. May serve as therapeutic proteins for proliferation/differentiation of fetal tissues.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 3

This gene is expressed primarily in CD34 depleted buffy coat and to a lesser extent in spleen, chronic lymphocytic leukemia.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: blood disorders or leukemias, diseases of the immune system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of blood disorders or leukemias, diseases of the immune system since expression is in tissues related to immune function.

FEATURES OF PROTEIN ENCODED BY GENE NO: 4

This gene is expressed primarily in CD34 depleted buffy coat.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: blood disorders or lymphocytic diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

30

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of blood disorders since expression is in tissues related to immune function.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 5

This gene is expressed primarily in CD34 depleted buffy coat.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: blood or immune diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 317 as residues: Pro-13 to Lys-21.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of blood disorders since expression is in tissues related to immune function.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 6

This gene is expressed primarily in CD34 depleted buffy coat.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: blood or immune diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level

10

15

20

25

30

35

in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 318 as residues: Lys-31 to Lys-39.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of blood diseases since it is expressed in tissues related to immune function.

FEATURES OF PROTEIN ENCODED BY GENE NO: 7

This gene is expressed primarily in CD34 depleted buffy coat and to a lesser extent in pineal gland.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases of the immune system and brain associated diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and pineal gland, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of blood disorders, immune diseases or brain associated diseases (specifically of the pineal gland) since expression is in tissues related to immune function.

FEATURES OF PROTEIN ENCODED BY GENE NO: 8

The translation product of this gene shares sequence homology with an organic cation transporter which is thought to be important in organic cation uptake in the kidney and liver. (See Accession No. 2343059.) Preferred polypeptide fragments comprise the amino acid sequence ITIAIQMICLVNXELYPTFVRNXGVMVCSSLCDIGGIITP FIVFRLREVWQALPLILFAVLGLLAAGVTLLLPETKGVALPETMKDAENLGRKAKPKENTIYLK VQTSEPSGT (SEQ ID NO: 615) or TMKDAENLGRKAKPKENT (SEQ ID NO: 616) as well as N-terminal and C-terminal deletions of these fragments. Also preferred are polynucleotide fragments encoding these polypeptide fragments.

10

15

20

25

30

35

This gene is expressed primarily in liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hepatic and renal diseases where drug elimination/cation exchange (organic cation uptake) in the liver and kidney are problematic. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic or renal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., kidney and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 320 as residues: Asn-64 to Asn-74, and Gln-81 to Gly-87.

The tissue distribution and homology to organic cation transporter indicate that polynucleotides and polypeptides corresponding to this gene are useful as a polyspecific transporter that is important for drug elimination in the liver (and possibly kidney) since expression is found in the liver.

FEATURES OF PROTEIN ENCODED BY GENE NO: 9

This gene is expressed primarily in eosinophil induced with IL-5 and to a lesser extent in fetal liver and spleen. This gene also maps to chromosome 15, and therefore can be used in linkage analysis as a marker for chromosome 15.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases of the immune system, particularly allergies or asthma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, liver, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the

10

15

20

25

35

standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating/diagnosis of diseases involving esosinphil reactions since expression seems to be concentrated in eosinophils and other tissues involved in immunity such as the liver and spleen.

FEATURES OF PROTEIN ENCODED BY GENE NO: 10

This gene is expressed primarily in tissues of hematopoietic lineage and to a lesser extent in Hodgkins lymphoma. Any frame shifts in this sequence can easily be clarified using known molecular biology techniques.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, and immune deficiency or dysfunction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, lymphoid and reticuloendothelial tissues, and cancerous tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/ diagnosis for lymphomas or immune dysfuction or as a therapeutic protein useful in immune modulation based on expression in anergic T-cells and lymphomas.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 11

This gene is expressed primarily in neutrophils and to a lesser extent in activated lymphoid cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the cell type present in a biological sample and for diagnosis of diseases and conditions: inflamation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders

15

20

25

30

35

of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 323 as residues: Glu-40 to Lys-46.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for modulation of an immune reaction or as a growth factor for the differentiation or proliferation of neutrophils for the treatment of neutropenia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 12

This gene is expressed primarily in brain and to a lesser extent in activated T-cells. It is likely that the open reading frame containing the predicted signal peptide continues in the 5' direction. Preferred polypeptide fragments comprise the amino acid sequence PRVRNSPEDLGLSLTGDSCKL (SEQ ID NO:617).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurodegenerative disorders including ischemic shock, alzheimers and cognitive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and brain, and other tissue of the nervous system and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 324 as residues: Ser-5 to Glu-14, Ile-21 to Pro-35, Ser-65 to Asp-81, Cys-89 to Val-96, Lys-136 to Ser-145, Ile-152 to Met-169, and Arg-189 to Lys-196.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnostic/treatment for cancers of the given tissue or in the treatment of neurological disorders of the CNS.

10

15

20

25

This gene was also recently cloned by other groups, naming this calcium-activated potassium channel gene, hKCa4. (See Accession No. AF033021, see also, Accession No. 2584866.) This gene is mapped to human chromosome 19q13.2. A second signal sequence likely exists upstream from the predicted signal sequence as described in Table 1. Preferred polypeptide fragments comprise: QADDLQATVAALCVLRGGGPWAG SWLSPKTPGAMGGDLVLGLGALRRRKRLL (SEQ NO: 618); or EQEKSLAGWALVLAXXGIGL MVLHAEMLWFGGCSAVNATGHLSDTLWLIPITFLTIGYGDVVPGTMWGKIVCLCTGVMGVCC TALLVAVVARKLEFNKAEKHVHNFMMDIQYTKEMKESAARVLQEAWMFYKHTRRKESHAAR XHQRXLLAAINAFRQVRLKHRKLREQVNSMVDISKMHMILYDLQQNLSSSHRALEKQIDTLAG KLDALTELLSTALGPRQLPEPSQQSK (SEQ ID NO: 619), as well as N-terminal and C-terminal deletions. Also preferred are polynulcleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in breast lymph node and T-cells, and to a lesser extent in placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hematologic and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., lymphoid tissue, blood cells and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 325 as residues: Arg-13 to Lys-23.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment/diagnosis of hematologic and diseases involving immune modulation based or distribution in the lymph node and T-cells.

30

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 14

This gene was recently cloned by another group, calling it PAPS synethase. (See Accession No. e1204135.) Preferred polypeptide fragments comprise the amino acid sequence YQAHHVSRNKRGQVVGTRGGFRGCTVWLTGLSGAGK (SEQ ID NO: 620). Also preferred are the polynucleotide fragments encoding this polypeptide fragment.

It has been discovered that this gene is expressed primarily in benign prostate hyperplasia, Human Umbilical Vein Endothelial Cells and to a lesser extent in smooth muscle and Human endometrial stromal cells-treated with estradiol.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: inflamation, ischemia, and restenosis, based on endothelial cell and smooth muscle cell expression, and prostate diseases such as benign prostate hyperplasia or prostate cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the prostate or vessels of the circulatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., prostate, endothelial cells, smooth muscle, and endometrium, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 326 as residues: Arg-21 to Asp-26, Lys-35 to Lys-44, Glu-49 to Asn-58.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating/diagnosing diseases or conditions where the endothelial cell lining of the veins and arteries of underlying smooth muscle are involved.

FEATURES OF PROTEIN ENCODED BY GENE NO: 15

This gene is expressed primarily in human 6 week embryo and to a lesser extent in placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: developmental anomalies or fetal deficiencies. Similarly, polypeptides and antibodies directed to these

10

15

20

25

30

polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly developmental in nature, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 327 as residues Lys-50 to Glu-57.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection of developmental abnormalities.

FEATURES OF PROTEIN ENCODED BY GENE NO: 16

This gene is expressed primarily in kidney and amygdala and to a lesser extent in fetal tissues. This gene is mapped to chromosome 14, and therefore is useful in linkage analysis as a marker for chromosome 14.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) present in a biological sample and for diagnosis of diseases and conditions: kidney diseases, neurological disorders and developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s). For a number of disorders of the above tissues, particularly of the renal system or developing fetal tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., kidney, amygdala, and fetal tissues, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment or diagnosis of conditions affecting the brain, kidneys and fetal development.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 17

This gene is expressed primarily in ovarian cancer.

10

15

20

25

30

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: solid tumors similar to ovarian cancer Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system. expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., ovarian and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 329 as residues Ser-51 to Val-56.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of solid tumors of the reproductive system such as ovarian cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 18

This gene is expressed primarily in brain medulloblastoma. Preferred polypeptide fragments comprise the amino acid sequence: IRHEQHPNFSLEMHSKGSSLLLFLPQL ILILPVCAHLHEELNC (SEQ ID NO: 643) and SFFISEEKGHLLLQAERHPWVAGALVGVSG GLTLTTCSGPTEKPATKNYFLKRLLQEMHIRAN (SEQ ID NO: 644), as well as N-terminal and C-terminal deletions. Also preferred are polynucleotide fragments encoding these polypeptide fragments.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors particularly of the CNS or Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the Central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene

expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating medulloblastoma or similar tumors.

5

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 19

This gene is expressed primarily in adipocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: obesity. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the adipose tissues expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adipocytes and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating obesity by regulating the function and number of adipocytes

FEATURES OF PROTEIN ENCODED BY GENE NO: 20

This gene is expressed primarily in B cell lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, of the immune system with an emphasis on B cell lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the tumors of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

10

15

20

25

30

35

the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of B cell derived tumors based on its expression in b cell lymphomas

FEATURES OF PROTEIN ENCODED BY GENE NO: 21

This gene is expressed primarily in immune cells and to a lesser extent in fetal tissues

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: inflammatory diseases Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., cells of the immune system, and fetal tissues, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:333 as residues Asp-10 to Pro-19, Ser-74 to Tyr-79, Glu-95 to Lys-110.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of diseases involving alterations in T cell activity.

FEATURES OF PROTEIN ENCODED BY GENE NO: 22

It has been discovered that this gene is expressed primarily in ovarian tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors particularly of the ovary. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of tumors of the reproductive organs. expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., ovarian

and other reproductive tissue and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEO ID NO. 334 as residues: Leu-22 to Gln-27.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of ovarian tumors as it has only been identified in ovarian tumors.

10

15

20

25

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 23

It has been discovered that this gene is expressed primarily in fetal tissues and to a lesser extent in osteoclastoma cell line

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: osteoporosis or arthritis Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone cells, and fetal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of conditions of abnormal bone remodeling due to enhanced activity of osteoclasts. This may be useful as a specific marker for malignancies derived from osteoclasts or their precursors.

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 24

The translation product of this gene shares sequence homology with a periplasmic ribonuclease which is thought to be important in degrading extracellular polynucleotides

35 It has been discovered that this gene is expressed primarily in serum treated smooth muscle cells

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: vascular disease such as restenosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vasculature expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 336 as residues: Gln-30 to Lys-36, and Pro-41 to Arg-48.

The tissue distribution and homology to ribonucleases indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment of pathological conditions of smooth muscle associated with bacterial or viral infiltration

FEATURES OF PROTEIN ENCODED BY GENE NO: 25

This gene is expressed primarily in Early Stage Human Brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: human brain development and related diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the human brain development and related diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to this gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases affecting human brain development and related diseases.

10

15

20

25

30

35

It has been discovered that this gene is expressed primarily in human brain tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: human brain diseases and other diseases related to brain diseases, which may be caused by brain diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the human brain diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of human brain diseases and other diseases related.

FEATURES OF PROTEIN ENCODED BY GENE NO: 27

It has been discovered that this gene is expressed primarily in Anergic T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune diseases, inflammatory diseases and diseases related to T lymph cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune diseases, inflammatory diseases and diseases related to T lymph cells, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene

10

15

20

25

30

35

expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for immune diseases, inflammatory diseases and diseases related to T lymph cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 28

The translation product of this gene shares sequence homology with *Shigella flexneri* positive transcriptional regulator CriR (criR) gene which is thought to be important in regulation of gene expression.

This gene is expressed primarily in human synovial sarcoma and normal human brain tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: human brain diseases particularly sarcomas of the synovium. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the human brain and synovium and other related human brain diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain (e.g., synovial tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of human synovial sarcoma and other related human brain diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 29

This gene is expressed in bone marrow, infant brain, fetal liver and spleen, prostate and to a lesser extent in pineal gland, adipose tissue, kidney, adrenal gland, umbilical vein endothelial cells, and T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases related to bone marrow or

WO 98/39448

10

15

20

25

30

35

hematoplastic tissues, prostate, kidney, adrenal gland, and cardiovascular tissue or organs. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the diseases related to hematoplastic tissues, immune system, prostate, kidney, adrenal gland, and cardiovascular tissue or organs, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone marrow, hematopoietic cells, pineal gland, adipose tissue, kidney, adrenal gland, endothelial cells, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases related to hematoplastic tissues, immune system, prostate, kidney, adrenal gland, and cardiovascular tissue or organs.

FEATURES OF PROTEIN ENCODED BY GENE NO: 30

This gene is expressed primarily in meningea and to a lesser extent in breast and adult brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Diseases of the meningea and related brain diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the meningea and related brain diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., miningea, mammary tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

WO 98/39448

10

15

20

25

30

35

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 31

This gene is expressed in meningea, fetal spleen, osteoblast and to a lesser extent in activated T-cells, endometrial stromal cells, fetal lung, HL-60, thymus, testis and endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: meningeal disease, osteoporosis, immune diseases, and hematoplastic diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the meningeal diseases, osteoporosis, immune diseases, and hematoplastic diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, endometrium, lung, thymus, testis, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of meningeal, osteoporosis, immune diseases, hematoplastic diseases, testis diseases and lung diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 32

This gene is expressed primarily in human thymus and to a much lesser extent in infant brain, T-cells, smooth muscle, endothelial cells, bone marrow, human ovarian tumor and keratinocytes testes, osteoclastoma, breast, and tonsils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Diseases involving the thymus, particularly thymic cancer and diseases involving T-cell maturation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a

20

25

number of disorders of the above tissues or cells, particularly of the thymus, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., thymus, brain, and other tissue of the nervous system, blood cells, bone marrow, ovaries, and testes, and other reproductive tissue, mammary tissue, tonsils, melanocytes and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases of the thymus particularly thymic cancer and diseases involving T-cell maturation.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 33

This gene is expressed primarily in human tonsils, and placenta, and to a lesser extent in adipocytes, melanocyte, and infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: inflammatory diseases, immune diseases, and obesity. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the inflammatory diseases, immune diseases, and obesity, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., tonsils, placenta, adipocytes, melanocytes, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to this gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases such as inflammation, immune diseases, and obesity.

30

10

15

25

This gene is expressed in activated T cells, and to a lesser extent in pituitary, testis, and breast lymph node.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases relating to T cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the disorders of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., pituitary, testes and other reproductive tissue, mammary tissue, and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of immune disorders.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 35

This gene is expressed primarily in infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological disorders.

- Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the diseases relating to neurological disorders, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g.,
- brain, and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.
- The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neurological disorders.

10

FEATURES OF PROTEIN ENCODED BY GENE NO: 36

This gene is expressed primarily in infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the diseases relating to neurological disorders, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neurological disorders.

20

25

30

35

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 37

This gene is expressed primarily in human ovary.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: ovarian cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the ovarian disorders such as those involving germ cells, ovarian follicles, stromal cells, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., ovary and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of ovariopathy.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 38

This gene is expressed primarily in lymph node breast cancer.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: breast cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the breast cancer, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., mammary tissue and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

28

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for used as a diagnostic marker for breast cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 39

This gene is expressed primarily in brain and to a lesser extent in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neuronal disorders such as trauma, brain degeneration, and brain tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and therapeutic treatment of neuronal disorders.

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 40

This gene is expressed in early stage human embryo, adrenal gland tumor, and immune tissues such as fetal liver, fetal spleen, T-cell, and myoloid progenitor cell line and to a lesser extent in ovary, colon cancer, and a few orther tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumorigenesis including adrenal gland tumor, colon cancer and various other tumors, developmental and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cancer tissues, early stage human tissues, and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, blood cells, bone marrow, ovary and other reproductive tissue, and colon, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and therapeutic treatment of immune and developmental disorders, and tumorigenesis.

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 41

This gene is expressed primarily in fetal lung, endothelial cells, liver, thymus and a few other immune tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune disorders such as immune deficiency and autoimmune diseases, pulmonary diseases, liver diseases, and tumor matasis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal lung, liver, endothelial cells, and immune tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain

10

15

20

25

30

tissues and cell types (e.g., lung, endothelial cells, liver, thymus, and other tissue of the immune system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis of immune disorders and pulmonary and hepatic diseases. Its promoter may also be used for immune system and lung-specific gene therapies. The expression of this gene in endothelial cells indicates that it may also involve in angiogenesis which therefore may play role in tumor matasis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 42

This gene is expressed primarily in liver, thyroid, parathyroid and to a lesser extent in fetal lung, stomach and early embryos.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: metabolic regulation, obesity, heptic failure, heptacellular tumors or thyroiditis and thyroid tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive/endocrine system expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, thyroid, parathyroid, lung, stomach, and embryonic tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and the extracellular locations indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of digestive/endocrine disorders, including metabolic regulation, heptic failure, malabsortion, gastritis and neoplasms.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 43

This gene is expressed primarily in Schizophrenic adult brain, pituitary, front cortex, hypothalmus and to a lesser extent in retina, adipose and stomach cancer and placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: schizophrenia and other neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nerve system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., retinal tissue, adipose, stomach, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in treatment/detection of disorders in the nerve system, including schizophrenia, neurodegeneration, and neoplasia. Additionally, a secreted protein in brain may serve as an endocrine.

FEATURES OF PROTEIN ENCODED BY GENE NO: 44

The translation product of this gene shares sequence homology with GTP binding proteins which are thought to be important in signal transduction and protein transport.

This gene is expressed primarily in umbilical vein and microvascular endothelial cells, GM-CSF treated macrophage, anergic T cells, osteoblast, osteoclast, CD34+ cells and to a lesser extent in gall bladder.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: bone formation and growth, osteonecrosis, osteoporosis, angiogenesis and/or hematopoeisis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal and hematopoeisis systems, expression of this gene at significantly higher or lower levels

10

15

20

25

30

may be routinely detected in certain tissues and cell types (e.g., endothelial cells, blood cells, bone, and gall bladder, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to GTP binding proteins indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment/detection of bone formation and growth, osteonecrosis, osteoporosis, and/or hematopoeisis because its involvement in the growth signaling or angiogenesis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 45

The translation product of this gene shares sequence homology with signal sequence receptor gamma subunit which is thought to be important in protein translocation on endoplasmic reticulum.

This gene is expressed primarily in adrenal gland, salivary gland, prostate, and to a lesser extent in endothelial cells and smooth muscle.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: protein secretion. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the secretory organs, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adrenal gland, salivary gland, prostate, endothelial cells, and smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to SSR gamma subunit indicate that polynucleotides and polypeptides corresponding to this gene are useful for endocrine disorders, prostate cancer, xerostomia or sialorrhea.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 46

This gene is expressed primarily in osteoclastoma cells and to a lesser extent in melanocyte, amygdala, brain, and stomach.

10

15

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: ossification, osteoporosis, fracture, osteonecrosis, osteosarcoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., melanocytes, amygdala, brain and other tissue of the nervous system, and stomach, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in intervention of ossification, osteoporosis, fracture, osteonecrosis and osteosarcoma.

FEATURES OF PROTEIN ENCODED BY GENE NO: 48

The translation product of this gene shares sequence homology with proline rich proteins which is thought to be important in protein-protein interaction.

This gene is expressed primarily in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological and psychological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nerve system and endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to proline-rich proteins indicate that polynucleotides and polypeptides corresponding to this gene are useful in intervention

15

20

25

30

35

and detection of neurological diseases, including trauma, neoplasia, degenerative or metabolic conditions in the central nerve system. Additionally, the gene product may be a secreted by the brain as an endocrine.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 49

The translation product of this gene shares sequence homology with the AOCB gene from Aspergillus nidulans which is important in asexual development.

This gene is expressed primarily in infant brain and to a lesser extent in the developing embryo, trachea tumors, B-cell lymphoma and synovial sarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurodegenerative diseases, leukemia and sarcoma's. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue, blood cells, trachea, and synovial tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in infant brain and sarcoma's and homology to a gene involved in a key step of eukaryotive development (fungal spore formation) indicates that the protein product of this clone could play a role in neurological diseases such as schizophrenia, particularly in infants. The existence of the gene in a B-cell lymphoma indicates the gene may be used in the treatment and detection of leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 50

This gene is expressed primarily in fetal lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: pulmonary disorders including lung cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the pulmonary system, expression of this gene at significantly higher or

10

15

20

25

30

lower levels may be routinely detected in certain tissues and cell types (e.g., lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene only in fetal lung indicates that it plays a key role in development of the pulmonary system. This would suggest that misregulation of the expression of this protein product in the adult could lead to lymphoma or sarcoma formation, particularly in the lung. It may also be involved in predisposition to certain pulmonary defects such as pulmonary edema and embolism, bronchitis and cystic fibrosis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 51

This gene is expressed primarily in hematopoietic cell types and fetal cells and to a lesser extent in all tissue types.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects in the immune system and hematopoeisis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, and fetal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene predominantly in hematopoeitic cells and in the developing embryo indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection and treatment of lymphomas and disease states affecting the immune system or hematopoeisis disorders such as leukemia, AIDS, arthritis and asthma..

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 52

This gene is expressed primarily in prostate and to a lesser extent in fetal spleen, fetal liver, infant brain and T cell leukemias.

The tissue distribution of this gene in prostate indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection or treatment of prostate disorders or prostate cancer. Its distribution in fetal liver and fetal spleen indicates it may play a role in the immune system and its misregulation could lead to immune disorders such as leukemia, arthritis and asthma.

20

25

30

35

15

disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 53

The translation product of this gene shares sequence homology with dynein. This gene is expressed primarily in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neuro-degenerative diseases of the brain. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly neuro-degenerative diseases expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

10

15

20

25

30

35

The predominant tissue distribution in the brain and homology to dynein, a microtubule motor protein involved in the positioning of cellular organelles and molecules indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection/treatment of neurodegenerative diseases, such as Alzheimers, Huntigtons, Parkinsons diseases and shizophrenia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 54

The translation product of this gene shares sequence homology with ubiquitinconjugation protein, an enzyme which is thought to be important in the processing of the Huntingtons Disease causing gene.

This gene is expressed primarily in brain and to a lesser extent in activated macrophages.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurodegenerative disease states including Huntington's disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of brain tissues. For a number of disorders of the above tissues or cells, particularly of the neurological systems expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The predominant tissue distribution of this gene in the brain and its homology to a Huntington interacting protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for the regulation of the expression of the Huntington disease gene and other neurodegenerative diseases including spinocerebullar ataxia types I and III, dentatorubropallidoluysian and spinal bulbar muscular atrophy. In addition, the existence of elevated levels of free ubiquitin pools in Alzheimer's disease, Parkinson's disease and amylotrophic lateral sclerosis indicates that the ubiquitin pathway of protein degradation plays a role in these disease states. Thus, considering the gene described here is homologous to a ubiquitin-conjugation protein it may play a general role in neurodegenarative conditions.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 56

This gene is expressed primarily in T-cells (anergic T-cells, resting T-Cells, apoptotic T-cells) and lymph node (breast), as well as brain (hypothalamus, hippocampus, pituitary, infant brain, early-stage brain).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune (e.g. immunodeficiencies, autoimmunities, inflammation, leukemias & lymphomas) and neurological (e.g. Alzheimer's disease, dementia, schizophrenia) disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous, hematopoietic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, lymphoid tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in the intervention or detection of pathologies associated with the hematopoietic and immune systems, such as anemias (leukemias). In addition, the expression in brain (including fetal) might suggest a role in developmental brain defects, neuro-degenerative diseases or behavioral abnomalities (e.g. schizophrenia, Alzheimer's, dementia, depression, etc.).

FEATURES OF PROTEIN ENCODED BY GENE NO: 57

This gene is expressed primarily in lung, and to a lesser extent in a variety of other hematological cell types (e.g. Raji cells, bone marrow cell line, activated monocytes).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: pulmonary and/or hematological disfunction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vasculo-pulmonary and hematopoietic systems, expression of this

10

15

20

25

30

35

gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., lung and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in the intervention and detection of pathologies associated with the vasculo-pulmonary system. In addition the expression of this gene in a variety of leukocytic cell types and a bone marrow cell line might suggest a role in hematopoietic and immune system disorders, such as leukemias & lymphomas, inflammation, immunodeficiencies and autoimmunities.

FEATURES OF PROTEIN ENCODED BY GENE NO: 58

The translation product of this gene shares sequence homology with adenylate kinase isozyme 3 (gil163528 GTP:AMP phosphotransferase (EC 2.7.4.10) [Bos taurus]), which is thought to be important in catalyzing the phosphorylation of AMP to ADP in the presence of ATP or inorganic triphosphate.

This gene is expressed primarily in fetal liver, heart and placenta, and to a lesser extent in many other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hepatic, cardiovascular or reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic, cardiovascular and reproductive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, heart, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.c., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of conditions related to hepatic function and pathogenesis, in particular, those dealing with liver development and the differentiation of hepatocyte progenitor cells.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 59

This gene is expressed primarily in CD34 positive cells (Cord Blood).

Therefore, polynucleotides and polyneptides of the invention are useful.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hematopoietic differentiation and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of hematopoietic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in the detection and treatment of conditions associated with CD34-positive cells, and therefore as a marker for cell differentiation in hematapoiesis, as well as immunological disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 60

The translation product of the predicted open reading frame of this contig has sequence identity to the murine gene designated Insulin-Like Growth Factor-Binding Protein (IGFBP)-1 as described by Lee and colleagues (Hepatology 19 (3), 656-665 (1994)).

This gene is expressed exclusively in hemangiopericytoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of hemangiopericytoma and other pericyte or endothelial cell proliferative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the circulatory and immune systems, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., pericyte or endothelial cells, and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or

another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Polynucleotides and polypeptides corresponding to this gene are useful as cell growth regulators since IGFBP-1-like molecules function as modulators of insulin-like growth factor activity. In addition, since IGFBP-1 is expressed at high levels following hepatectomy and during fetal liver development, polynucleotides of the present invention may also be used for the diagnosis of developmental disorders. Further, polypeptides of the present invention may be used therapeutically to treat developmental liver disorders as well as to regulate hepatocyte and supporting cell growth following hepatectomy or to treat liver disorders.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of hemangiopericytoma and liver disorders.

15

20

25

30

10

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 61

This gene is expressed primarily in schizophrenic frontal cortex.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: nervous system and cognitive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the frontal cortex and CNS expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, treatment and diagnosis of frontal cortex, neuro-degenerative and CNS disorders

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 62

This gene is expressed primarily in human adrenal gland tumor, and to a lesser extent in human kidney, medulla and adult pulmonary tissue.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: metabolic, endocrine disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine and nervous system disorders and neoplasia, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adrenal gland, kidney, brain and other tissue of the nervous system, pulmonary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, treatment and diagnosis of neurological and endocrine disorders including neoplasia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 63

This gene is expressed primarily in human adipocytes, and to a lesser extent in spleen, 12-week old human, and testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune, metabolic and growth disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adipocytes, spleen, and testes and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis and treatment of immune, developmental and metabolic disorders.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 64

One translated product of this clone is homologous to the mouse zinc finger protein PZF. (See Accession No. 453376; see also Gene 152 (2), 233-238 (1995).) Preferred polypeptide fragments correspond to the highly conserved domains shared between mouse and man. For example, preferred polypeptide fragments comprise the amino acid sequence: LQCEICGFTCRQKASLNWHMKKHDADSFYQFSCNICGKKFEKKDSVVAHKAKSH PEV (SEQ ID NO: 621); ITSTDILGTNPESLTQPSD (SEQ ID NO: 622); NSTSGECLLLEAEGM SKSY (SEQ ID NO: 623); CSGTERVSLMADGKIFVGSGSSGGTEGLVMNSDILGATTEVLIEDSD SAGP (SEQ ID NO: 624); IQYVRCEMEGCGTVLAHPRYLQHHIKYQHLLKKKYVCPHPSCGRLF RLQKQLLRHAKHHT (SEQ ID NO: 625); DQRDYICEYCARAFKSSHNLAVHRMIHTGEK (SEQ ID NO: 626); RSSRTSVSRHRDTENTRSSRSKTGSLQLICKSEPNTDQLDY (SEQ ID NO: 627); PFKDDPRDETYKPHLERETPKPRRKSG (SEQ ID NO: 630); QYVRCEMEGCGTVLAHPRYLQ HHIKYQHLLKKKYVCPHPSCGRLFRLQKQLLRHAKHHTD (SEQ ID NO: 629); or residues 151-182 of QRDYICEYCARAFKSSHNLAVHRMIHTGEKHY (SEQ ID NO: 628). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in Rhabdomyosarcoma, melanocyte and colon cancer tissue and to a lesser extent in smooth muscle, pancreatic tumor, and apoptotic T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hemopoetic, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., striated muscle, melanocytes, colon, smooth muscle, pancreas, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis and treatment of cancer and hemopoetic disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 65

This gene is expressed primarily in human adipose and salivary gland tissue and to a lesser extent in human bone marrow and fetal kidney.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: metabolic and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the metabolic and hemopoetic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adipose, salivary gland, bone marrow, and kidney, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis of metabolic and immune disorders.

20

25

30

35

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 66

This translated product of this gene was recently identified as oxytocinase splice variant 1. (See Accession Nos. 2209276 and d1010078.) Preferred polypeptide fragments comprise the amino acid sequence: EMFDSLSYFKGSSLLLMLKTYLSEDVFQHAVVLYLHN HSYASIQSDDLWDSFNEVTNQTLDVKRMMKTWTLQKGFPLVTVQKKGKELFIQQERFFLNMK PEIQPSDTRYM (SEQ ID NO: 631). Also preferred are polynucleotide fragments encoding this polypeptide fragment.

FEATURES OF PROTEIN ENCODED BY GENE NO: 67

This gene is expressed primarily in hemopoetic cells, particularly apoptotic T-cells, and to lesser extent in primary dendritic cells and adipose tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of apoptotic T-cells, primary denritic cells, and adipose tissue present in a biological sample and for diagnosis of diseases and conditions: hemopoetic diseases including cancer and general immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell

15

20

25

30

35

type(s). For a number of disorders of the above tissues or cells, particularly of the oral and intestinal mucosa as well as hemopoetic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of diseases of the immune system, including cancer, hemopoetic and infectious diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 68

This gene is expressed primarily in kidney cortex and to a lesser extent in infant brain, heart, uterus, and blood.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of kidney tissue present in a biological sample and for diagnosis of diseases and conditions: soft tissue cancer, inflammation, kidney fibrosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and endocrines systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., kidney, brain, and other nervous tissue, heart, uterus, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study and treatment of cancer and fibroses.

FEATURES OF PROTEIN ENCODED BY GENE NO: 69

The translation product of this gene shares strong sequence homology with vertebrate and invertebrate protein tyrosine phosphatases.

This gene is expressed primarily in endometrial tumors, melanocytes, myeloid progenitors and to a lesser extent in infant brain, adipocytes, and several hematopoietic stem cells.

10

15

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of transformed hematopoietic and epithelial cells present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, of skin and endometrium, leukemia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and hemopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endometrium, melanocytes, bone marrow, adipocytes, hematopoietic cells, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and sequence similarity with tyrosine phosphatases indicate that polynucleotides and polypeptides corresponding to this gene are useful for study and treatment of cancer and hematopoietic disorders.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 70

This gene is expressed primarily in osteoclastoma, breast, and infant brain and to a lesser extent in various fetal and transformed bone, ovarian, and neuronal cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: degenerative conditions of the brain and skeleton. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and skeletal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone, mammary tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

25

30

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study and treatment of degenerative, neurological and skeletal disorders.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 71

This gene was originally cloned from tumor cell lines. Recently another group has also cloned this gene, calling it the human malignant melanoma metastasis-suppressor (KiSS-1) gene. (See Accession No. U43527.) Preferred polypeptide fragments comprise the amino acid sequence: LEKVASVGNSRPTGQQLESLGLLA (SEQ ID NO: 632); VHREEASCYCQAEPSGDL (SEQ ID NO: 633); RPALRQAGGGTREPRQKRWAGL (SEQ ID NO: 634); and AVNFRPQRSQSM (SEQ ID NO: 635). Any frame shifts can easily be resolved using known molecular biology techniques.

This gene is expressed primarily in many types of carcinomas and to a lesser extent in many normal organs.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissues(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer particularly melanomas, and other hyperproliferative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of transformed organ tissue, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. As a tumor suppressor gene, increase amounts of the polypeptide can be used to treat patients having a particular cancer.

The tissue distribution indicates that this gene and the translated product is useful for diagnosing and study of cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 72

This gene is expressed primarily in striatum and to a lesser extent in adipocytes and hemangioperiocytoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of striatal cells present in a biological sample and for diagnosis of diseases and conditions: neurological, fat and lysosomal storage

diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., striatal tissue, adipocytes, and vascular tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis, study and treatment of neurodegenerative and growth disorders.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 73

This gene is expressed primarily in bone marrow stromal cells and to a lesser extent in smooth muscle, testes, endothelium, and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of bone marrow present in a biological sample and for diagnosis of diseases and conditions: connective tissue and hematopoietic diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal and hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone marrow, stromal cells, smooth muscle, testes and other reproductive tissue, endothelium, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis, and treatment of connective tissue and blood diseases.

10

20

25

30

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 74

This gene is expressed primarily in brain, fetal liver and lung and to a lesser extent in retina, spinal chord, activated T-cells and endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of brain and regenerating liver present in a biological sample and for diagnosis of diseases and conditions: CNS and spinal chord injuries, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, liver, pulmonary tissue, blood cells, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study and treatment of hematopoietic and neurological conditions.

FEATURES OF PROTEIN ENCODED BY GENE NO: 75

The translation product of this gene shares sequence homology with GTP binding proteins (intracellular).

This gene is expressed primarily in bone marrow, brain, and melanocytes and to a lesser extent in various endocrine and hematopoietic tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hematopietic and nervous system conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone marrow, melanocytes, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder,

10

15

20

25

30

35

relative to the standard gene expression level, i.e., the expression level in healthy tissue

The tissue distribution and homology to nucleotide binding factors indicate that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis, and treatment of brain degenerative, skin and blood diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 76

or bodily fluid from an individual not having the disorder.

This gene is expressed primarily in activated T-cells and to a lesser extent in retina, brain, and fetal bone.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of activated T-cells and developing brain present in a biological sample and for diagnosis of diseases and conditions: immune deficiencies and skeletal and neuronal growth disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous, immune, and skeletomuscular sustems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, brain and other tissue of the nervous system, retinal tissue, and bone, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis, study and treatment of cancer, urogenital, and brain degenerative diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 77

This gene is expressed primarily in fetal liver, activated monocytes, osteoblasts and to a lesser extent in synovial, brain, and lymphoid tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of myeloid and lymphoid present in a biological sample and for diagnosis of diseases and conditions: inflammation, immune deficiencies, cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and skeleton, expression of this gene at significantly

10

15

20

25

30

higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, blood cells, bone, synovial tissue, brain and other tissue of the nervous system, and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis, and treatment of lymphoid and mesenchymal cancers and nervous system diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 78

The translation product of this gene shares sequence homology with polymerase polyprotein precursor which is thought to be important in DNA repair and replication

This gene is expressed primarily in infant brain and to a lesser extent in tumors and tumor cell lines

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, especially of the neural system and developing organs. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neural system expression of this gene at significantly higher or lower levels may be routinely detected in certain (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to polymerase polyprotein precursor indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancers especially of the neural system and developing organs

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 79

This gene is expressed primarily in muscle and endothelial cells and to a lesser extent in brain.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: vascular diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain (e.g., muscle, endothelial cells, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of disorders of the vascular and neural system including cardiovascular and endothelial.

FEATURES OF PROTEIN ENCODED BY GENE NO: 80

This gene is expressed primarily in placenta and to a lesser extent in fetal liver. Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: developmental disorders and disorder of the haemopoietic system, fetal liver and placenta. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of developmental disorders and disorder of the haemopoietic system, fetal liver and placenta, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of developmental disorders and disorders of the haemopoietic system, fetal liver and placenta.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 81

This gene is expressed primarily in bone marrow, placenta and tissues and organs of the hematopoietic system.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: disorders of the bone and haemopoietic system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, bone and hematopoietic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone marrow, placenta, and hematopoietic cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of disorders of the immune, bone and hematopoietic system

FEATURES OF PROTEIN ENCODED BY GENE NO: 82

The translation product of this gene shares sequence homology with secretory carrier membrane protein which is thought to be important in protein transport and export. Any frame shifts in coding sequence can be easily resolved using standard molecular biology techniques. Another group recently cloned this gene, calling it SCAMP. (See Accession No. 2232243.)

This gene is expressed primarily in prostate, breast and spleen, and to a lesser extent in several other tissues and organs.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: disorders of the breast prostate and spleen. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly disorders of the breast prostate and spleen, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell

15

20

25

types (e.g., prostate, mammary tissue, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to secretory carrier membrane protein indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of disorders of the breast, prostate and spleen.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 83

This gene is expressed primarily in developing organs and tissue like placenta and infant brain and to a lesser extent in developed organs and tissue like cerebellum and heart.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neural system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, heart, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of diseases of the neural system including neurological disorders and cancer.

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 84

The translation product of this gene shares sequence homology with ATPase 6 in Trypanosoma brucei which is thought to be important in metabolism.

This gene is expressed primarily in tumor and fetal tissues and to a lesser extent in melanocytes, kidney cortex, monocytes and ovary.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

10

15

20

25

30

35

biological sample and for diagnosis of diseases and conditions: metabolism disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., fetal tissues, melanocytes, kidney, blood cells, ovary and other tissue of the reproductive system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ATPase indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of metabolism disorders, especially in fetal and tumor tissue growth.

FEATURES OF PROTEIN ENCODED BY GENE NO: 85

The translation product of this gene shares sequence homology with the immunoglobulin superfamily of proteins which are known to be important in immune response and immunity.

This gene is expressed primarily in stromal cells, colon cancer, lung, amygdala, melanocyte and to a lesser extent in a variety of other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of stromal cell development and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the stromal cells, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., stromal cells, colon, lung, amygdala, and melanocytes, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to immunoglobulin indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of immune system disorders.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 86

The translation product of this gene shares sequence homology with transcription iniation factor eIF-4 gamma which is thought to be important in gene transcription.

This gene is expressed primarily in tumor tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumorigenesis.

Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly in tumor tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endometrium and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to transcription iniation factor eIF-4 gamma indicate that polynucleotides and polypeptides corresponding to this gene are useful for gene regulation in tumorigenesis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 87

The translation product of this gene shares sequence homology at low level in prolines with secreted basic proline-rich peptide II-2 which is thought to be important in protein structure or inhibiting hydroxyapatite formation in vitro.

This gene is expressed primarily in endometrial tumor and fetal lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: endometrial tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the muscular/skeletal and reproductive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endometrium, and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample

10

15

20

25

30

35

taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to secreted basic proline-rich peptide II-2 indicate that polynucleotides and polypeptides corresponding to this gene are useful for inhibiting hydroxyapatite formation or establishing cell/tissue structure.

FEATURES OF PROTEIN ENCODED BY GENE NO: 88

This gene is expressed primarily in: amniotic cells inducted with TNF in culture; and to a lesser extent in colon tissue from a patient with Crohn's Disease; parathyroid tumor; activated T-cells; cells of the human Caco-2 cell line; adenocarcinoma; colon; corpus colosum; fetal kidney; pancreas tumor; fetal brain; early stage brain, and anergic T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system; e.g., tumors, expression of this gene at significantly higher or lower levels may be routinely detected in certain (e.g., amniotic cells, colon, kidney, pancreas, parathyroid, brain and other tissue of the nervous system, blood cells, hematopoietic cells, liver, spleen, bone, testes and other reproductive tissue, brain and other tissue of the nervous system, and epithelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for modulating tumorigenesis and other immune system conditions such as disorders in immune response.

FEATURES OF PROTEIN ENCODED BY GENE NO: 89

This gene is expressed primarily in fetal liver/spleen and hematopoietic cells and to a lesser extent in brain, osteosarcoma, and testis tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

10

15

20

25

30

35

biological sample and for diagnosis of diseases and conditions: leukemia and hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, liver, spleen, bone, testes, and other reproductive tissue, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of hematopoietic and immune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 90

The translation product of this gene shares weak sequence homology with mouse Gcap1 protein which is developmentally regulated in brain.

This gene is expressed primarily in infant and adult brain and fetal liver/spleen and to a lesser extent in smooth muscle, T cells, and a variety of other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological or hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous, hematopoietic, immune, and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, blood cells, liver, spleen ,and smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and its homology to Gcap1 protein indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatubg and diagnosis of disorders in neuronal, hematopoietic, immune, and endocrine systems.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 91

This gene is expressed primarily in brain and hematopoietic cells and to a lesser extent in tumor tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: disorder in nervous, hematopoietic, immune systems and tumorigenesis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the in nervous, hematopoietic, immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of disorders in the nervous, hematopoietic, and immune systems.

25

35

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 92

The translation product of this gene shares sequence homology with neuroendocrine-specific protein A which is thought to be important in neurologic systems.

This gene is expressed primarily in brain tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neural disorders and degeneration disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central or peripheral nervous systems, expression of this gene at

significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to neuroendocrine-specific protein A indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment or diagnosis of neural disorders and degeneration disease.

10

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 93

The translation product of this gene shares sequence homology with collagenlike protein and prolin-rich protein which are thought to be important in connective tissue function and tissue structure.

15

20

25

30

This gene is expressed primarily in fetal liver/spleen and brain tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neuronal or hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to collagen-like protein and proline-rich proteins indicate that polynucleotides and polypeptides corresponding to this gene are useful for supporting brain and hematopoietic tissue function and diagnosis and treatment of disorders in these functions.

FEATURES OF PROTEIN ENCODED BY GENE NO: 94

35

This gene is expressed primarily in embryonic tissues and tumor tissues. Therefore, polynucleotides and polypeptides of the invention are useful as

reagents for differential identification of the tissue(s) or cell type(s) present in a

20

25

30

35

biological sample and for diagnosis of diseases and conditions which include, but are not limited to,. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system (e.g., tumors), expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancer.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 95

This gene is expressed primarily in brain tumor, placenta, and melanoma. Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: brain tumor or melanoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain or melanocytes, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, placenta, and melanocytes, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the translation product of this gene is useful in the diagnosis and treatment of brain tumors and melanoma.

FEATURES OF PROTEIN ENCODED BY GENE NO: 96

The translation product of this gene shares sequence homology with a yeast membrane protein, SUR4, which encodes for APA1 that acts on a glucose-signaling pathway that controls the expression of several genes that are transcriptionally regulated by glucose.

This gene is expressed primarily in fetal liver, and to a lesser extent in placenta and breast tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of fetal liver or defects of glucose-regulated ATPase activities in tissues. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal immune/hematopoietic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, placenta, and mammary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to yeast SUR4 membrane protein indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of defects of fetal liver or defects of glucose-regulated ATPase activities.

This gene is expressed primarily in fetal liver, brain, and amniotic fluid.

20

25

30

35

15

5

10

FEATURES OF PROTEIN ENCODED BY GENE NO: 97

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of the fetal immune system and adult brain. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal immune system and adult brain, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., amniotic fluid, serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having

The tissue distribution indicates that the protein product of this clone is useful for detecting defects of the fetal immune and hematopoietic systems since fetal liver is

in healthy tissue or bodily fluid from an individual not having the disorder.

such a disorder, relative to the standard gene expression level, i.e., the expression level

15

20

25

30

35

the predominant organ responsible for hematopoiesis in the fetus. In addition, the gene product of this gene is thought to be useful for detecting certain neurological defects of the brain.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 98

The translation product of this gene shares sequence homology with an yolk protein precursor, Vitellogenin which is thought to be important in binding lipids such as phosvitin.

This gene is expressed primarily in amniotic cells and fetal liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects in amniotic cells, fetal liver development and the fetal immune system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the [insert system where a related disease state is likely, e.g., immune], expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., amniotic cells, and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to vitellogenin indicate that the protein product of this clone is useful for treatment and diagnosis of defects in amniotic cells, fetal liver development and the fetal immune system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 99

This gene is expressed primarily in placenta, endometrial tumor, osteosarcoma and stromal cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumor of the endometrium or bone, and osteosarcoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the obstetric system (e.g. placenta,

10

15

20

25

30

endometrium) and the bones, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, endometrium, bone, and stromal cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of tumors and abnormalities of the endometrium, and the bones because of its abundance in the aforementioned tissues...

FEATURES OF PROTEIN ENCODED BY GENE NO: 100

This gene is expressed primarily in hepatocellular tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hepatocellular tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the liver, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of hepatocellular cancer because of its abundant expression in this tissue.

FEATURES OF PROTEIN ENCODED BY GENE NO: 101

This gene is expressed primarily in Corpus Colosum, fetal lung and infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of the Corpus Colosum or defects of the fetal lung. Similarly, polypeptides and antibodies directed to

10

20

25

30

these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the Corpus Colosum and brain in general, and fetal lung, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., lung, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of defects of the Corpus Colosum and brain in general, and defects of fetal lung.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 102

This gene is expressed primarily in T cells and stromal cells, and to a lesser extent in adrenal gland.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of T cell immunity and stromal cell development. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, stromal cells, and adrenal gland, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of defects of T cell immunity and stromal cell development because of its abundant expression in these tissues.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 103

This gene is expressed primarily in infant brain and placenta.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of the brain and nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system, especially brain, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and placenta, cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for detecting defects of the brain, especially in young children.

FEATURES OF PROTEIN ENCODED BY GENE NO: 105

This gene is expressed primarily in human osteoclastoma and to a lesser extent in human pancreas tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer particularly osteoclastoma and pancreatic tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly in transformed tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone and pancreas, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of some types of tumors, particularly pancreatic cancer and osteoclastoma.

10

15

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 106

This gene is expressed primarily in fetal liver/spleen, and to a lesser extent in activated T-Cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis or treatment of immune disorders.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 107

This gene is expressed primarily in human embryo and to a lesser extent in spleen and chronic lymphocytic leukemia.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: leukemia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune or hemopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue, spleen, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for the diagnosis and treatment of leukemia.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 108

This gene is expressed primarily in placenta, and to a lesser extent in early stage human brain and in lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: fetal developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly in fetal and amniotic tissue, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, brain and other tissue of the nervous system, and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this is useful for production of growth factor(s) associated with fetal development. Preferred polypeptides comprise the full-length polypeptide shown in the sequence listing, truncated however, at the amino terminus and beginning with QTIE.

FEATURES OF PROTEIN ENCODED BY GENE NO: 109

This gene is expressed primarily in fetal spleen, and to a lesser extent in B-Cell lymphoma and T-Cell lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., spleen and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

10

15

20

25

30

35

The tissue distribution indicates that the protein product of this clone is useful for the treatment and diagnosis of human lymphomas.

FEATURES OF PROTEIN ENCODED BY GENE NO: 110

The translation product of this gene shares sequence homology with sarcoma amplified sequence (SAS), a tetraspan receptor which is thought to be important in malignant fibrous histiocytoma and liposarcoma.

This gene is expressed primarily in human osteoclastoma, and to a lesser extent in pineal gland and infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: malignant fibrous histiocytoma and liposarcoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone, pineal gland, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to sarcoma amplified sequence (SAS) indicate that the protein product of this clone is useful for treatment of, osteosarcoma, malignant fibrous histiocytoma and liposarcoma and related cancers, particularly sarcomas.

FEATURES OF PROTEIN ENCODED BY GENE NO: 111

The translation product of this gene shares sequence homology with 6.8K proteolipid protein, mitochondrial - bovine.

This gene is expressed primarily in Wilm's tumor and to a lesser extent in cerebellum and placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Wilm's tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell

10

15

20

25

30

35

type(s). For a number of disorders of the above tissues or cells, particularly of the immune or renal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to 6.8K proteolipid protein indicate that the protein product of this clone is useful for diagnostic and therapeutics associated with tumors, particularly Wilm's tumor disease.

FEATURES OF PROTEIN ENCODED BY GENE NO: 112

This gene is expressed primarily in embryonic tissue and to a lesser extent in osteoblasts, endothelial cells, macrophages (GM-CSF treated), and bone marrow.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue, bone, endothelial cells, blood cells and bone marrow, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment or diagnosis of immune disorders. Preferred polypeptides encoded by this gene comprise the following amino acid sequence: MITDVQLAIFANMLGVSLFLLVVLYHYVAVNNPKKQE (SEQ ID NO: 636).

FEATURES OF PROTEIN ENCODED BY GENE NO: 113

This gene is expressed primarily in hepatocellular tumor, and to a lesser extent in fetal liver/spleen.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors, particularly hepatocellular tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

71

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of tumors, particularly hepatocellular tumors.

FEATURES OF PROTEIN ENCODED BY GENE NO: 114

The translation product of this gene exhibits a very high degree of sequence identity with the human Pig8 gene which is thought to be important in p53 mediated apoptosis. The sequence of this gene has since been published by Polyak and colleagues (Nature 389, 300-306 (1997)). In addition, the predicted translation product of this contig exhibits very high sequence homology with a murine gene denoted as EI24 which is also thought to be important in p53 mediated apoptosis.

This gene is expressed primarily in infant brain and activated T-cells and to a lesser extent in bone marrow, fetal liver, and prostate.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, and tissue damage by radiation and anti-cancer drugs. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, blood cells, bone marrow, liver, and prostate, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder,

10

15

25

30

35

relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to human Pig8 and murine E124 genes indicate that polynucleotides and polypeptides corresponding to this gene are useful for preventing apoptosis in patients being treated with anti-oncogenic drugs such as etoposide, hydroperoxycyclophosphamide, and X-irradiation, since this protein product is upregulated in cells undergoing such treatment where p53 was overexpressed. It may also be useful in the treatment of hematopoietic disorders and in boosting numbers of hematopoietic stem cells by interfering with the apoptosis of progenitor cells. The mature polypeptide is predicted to comprise the following amino acid sequence: EEMADSVKTFLQDLARGIKDSIWGICTISKLDARIOOKREEORRRASSVLAORRAOSIERKOES EPRIVSRIFQCCAWNGGVFWFSLLLFYRVFIPVLQSVTARIIGDPSLHGDVWSWLEFFLTSIFSA LWVLPLFVLSKVVNAIWFQDIADLAFEVSGRKPHPFPSVSKIIADMLFNLLLOALFLIOGMFVSL FPIHLVGQLVSLLHMSLLYSLYCFEYRWFNKGIEMHQRLSNIERNWPYYFGFGLPLAFLTAMQ SSYIISGCLFSILFPLFIISANEAKTPGKAYLFQLRLFSLVVFLSNRLFHKTVYLQSALSSSTSAEK FPSPHPSPAKLKATAGH (SEQ ID NO: 637). Accordingly, polypeptides comprising the foregoing amino acid sequence are provided as are polynucleotides encoded such polypeptides.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 115

This gene is expressed primarily in stromal cells and to a lesser extent in multiple sclerosis.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: affecting the nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., stromal cells and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of multiple sclerosis and other autoimmune diseases.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 116

This gene is expressed primarily in the gall bladder

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: gall stones or infection of the digestive system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system or renal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., gall bladder and tissue of the digestive system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for possible prevention of digestive disorders where there may be a lack of digestive enzymes produced or in the detection and possible prevention of gall stones.

FEATURES OF PROTEIN ENCODED BY GENE NO: 117

The translation product of this gene shares sequence homology with dystrophin gene which is thought to be important in building and maintenance of muscles.

This gene is expressed primarily in placenta and to a lesser extent in fetal brain and fetal liver, and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: muscular dystropy, Duchenne and Becker's muscular dystropies. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal muscle system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, brain and other tissue of the nervous system, muscle, liver, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from

20

25

35

an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the dystrophin gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diseases related the degenerative myopathies that are characterized by the weakness and atrophy of muscles without neural degradation; such as Duchenne and Becker's muscular dystropies.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 118

This gene is expressed primarily in olfactory tissue and to a lesser extent in cartilage.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: connective tissue diseases; chondrosarcoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the connective tissue, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., olfactory tissue and cartilage, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for tumors of connective tissues, osteoarthritis and the treatment and diagnosis of chondrosarcoma.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 119

This gene is expressed primarily in Activated Neutrophils and to a lesser extent in fetal spleen, and CD34 positive cells from cord blood.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: allergies, defects in hematopoiesis and inflammation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential

10

15

20

25

30

35

identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and hematopoiesis system the, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for reducing the allergic effects felt by allergy suffers by neutralizing the activity of the immune system, especially since neutrophils are abundant in persons suffering from allergies and other inflammatory conditions.

FEATURES OF PROTEIN ENCODED BY GENE NO: 120

The translation product of this gene shares sequence homology with poly A binding protein II which is thought to be important in RNA binding for transcription of RNA to DNA

This gene is expressed primarily in colon and to a lesser extent in brain and immune system.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: colon cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and digestive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., colon, tissue and cells of the immune system, and brain or other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to poly A binding protein II indicate that polynucleotides and polypeptides corresponding to this gene are useful for detection and treatment of colon cancer and other disorders of the digestive system..

15

20

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 121

The translation product of this gene shares sequence homology with thymidine diphosphoglucose 4.6 dehydrase which is thought to be important in the metabolism of sugar.

5 This gene is expressed primarily in fetal liver and spleen and to a lesser extent in infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diabetes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to thymidine diphospoglucose 4.6 dehydrase indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment of persons with diabetes since it appears that this protein is needed in the metabolism of sugar in to its more basic components.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 122

The translation product of this gene shares sequence homology with ceruloplasmin which is thought to be important in the metabolism and transport of iron and copper. Ceruloplasmin also contains domains with homology to clotting factors V and VIII. Defects in the circulating levels of ceruloplasmin (aceruloplasminemia) have been associated with certain disease conditions such as Wilson disease, and the accompanying hepatolenticular degeneration.

This gene is expressed primarily in brain and retina and to a lesser extent in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases marked by defects in iron metabolism; aceruloplasminemia not characterized by defects in the

10

15

20

25

30

35

known ceruloplasmin gene locus; nonclassical Wilson disease; movement disorders; and tumors derived from a brain tissue origin. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, retina, and nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, retinal tissue, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ceruloplasmin indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment of patients with aceruloplasminemia, or other defects in iron and/or copper metabolism. Mutations in this locus could also be diagnostic for patients currently experiencing or predicted to experience aceruloplasminemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 123

This gene is expressed primarily in brain and B cell lymphoma and to a lesser extent in fetal liver and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: B cell lymphoma; tumors and diseases of the brain and/or spleen; hematopoietic defects. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and hematopoietic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, blood cells, liver, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of disorders in neuronal,

hematopoietic, and immune systems. It could potentially be useful for neurodegenerative disorders and neuronal and/or hematopoietic cell survival or proliferation.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 124

This gene is expressed primarily in osteoclastoma, dermatofibrosarcoma, and B cell lymphoma and to a lesser extent in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer in particular osteoclastoma, dermatofibrosarcoma, and B cell lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the bone, immune, and circulatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone, epidermis, blood cells, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancers and lymphoma; osteoporosis; and the control of cell proliferation and/or differentiation.

25

30

35

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 125

This gene is expressed primarily in immune tissues and hematopoietic cells, particularly in activated T cells and neutrophils, spleen, and fetal liver, and to a lesser extent in infant adrenal gland.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects in T cell activation; hematopoietic disorders; tumors of a hematopoietic and/or adrenal gland origin. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic and/or endocrine systems, expression of this gene at significantly higher

10

15

20

25

30

or lower levels may be routinely detected in certain tissues and cell types (e.g., cells and tissues of the immune system, hematopoietic cells, blood cells, liver, and adrenal gland, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for immune and/or hematopoietic disorders; diseases related to proliferation and/or differentiation of hematopoietic cells; defects in T cell and neutrophil activation and responsiveness; and endocrine and/or metabolic disorders, particularly of early childhood.

FEATURES OF PROTEIN ENCODED BY GENE NO: 126

This gene is expressed primarily in placenta and endothelial cells and to a lesser extent in melanocytes and embryonic tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors of an endothelial cell origin; angiogenesis associated with tumor development and metastasis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular system and developing embryo, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, endothelial cells, melanocytes, and embryonic tissues, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of developmental disorders; inhibition of angiogenesis; and vascular patterning.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 127

This gene is expressed primarily in endothelial cells and hematopoietic tissues, including spleen, tonsils, leukocytes, and both B- and T-cell lymphomas.

10

15

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the manipulation of angiogenesis; the differentiation and morphogenesis of endothelial cells; the proliferation and/or differentiation of hematopoietic cells; and the commitment of hematopoietic cells to distinct cell lineages.

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 128

individual not having the disorder.

This gene is expressed primarily in kidney medulla and to a lesser extent in spleen from chronic myelogenous leukemia patients, prostate cancer, and some other tissues.

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors of a kidney origin; chromic myelogenous leukemia; prostate cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the kidney and spleen, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., kidney, spleen, and prostate, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

10

15

20

25

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of kidney disorders and cancer, particularly chromic myelogenous leukemia and prostate cancer. It may also be useful for the enhancement of kidney tubule regeneration in the treatment of acute renal failure.

FEATURES OF PROTEIN ENCODED BY GENE NO: 129

This gene is expressed primarily in adult and infant brain and to a lesser extent in mesenchymal or fibroblast cells, as well as tissues with a mesenchymal origin.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors of a brain and/or mesenchymal origin; neurodegenerative disorders; cancer; fibrosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and of mesenchymal cells and tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis of tumors of a brain and/or mesenchymal origin; neurodegenerative disorders; cancer; and fibrosis, based upon the expression of this gene within those tissues. Fibrosis is considered as mesenchymal cells and fibroblasts are the primary cellular targets involved in this pathological condition.

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 130

This gene is expressed primarily in hepatocellular cancer and to a lesser extent in fetal tissues as well as testes tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: liver cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing

10

15

20

25

30

35

immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, fetal tissue, and testes and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of liver cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 131

This gene is expressed only in infant early brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: development and diseases of the nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating diseases of the brain in children and in treating nervous system disorders such as Alzheimer's disease, schizophrenia, dementia, depression, etc.

FEATURES OF PROTEIN ENCODED BY GENE NO: 132

This gene is expressed primarily in brain and to a lesser extent in glioblastoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Alzheimer's disease,

10

20

25

30

35

schizophrenia, depression, mania, and dementia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating brain disorders such as Alzheimer's disease, schizophrenia, depression, mania, and dementia.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 133

The translation product of this gene shares sequence homology with ribitol dehydrogenase of bacteria which is thought to be important in metabolism of sugars.

This gene is expressed primarily in macrophage and to a lesser extent in T-cell lymphoma and lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tissue destruction in inflammation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ribitol dehydrogenase indicate that polynucleotides and polypeptides corresponding to this gene are useful for altering macrophage metabolism in diseases such as inflammation where macrophages are causing excess tissue destruction.

10

15

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 134

This gene is expressed primarily in pancreatic tumor and to a lesser extent in synovial sarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine and connective tissue systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., pancreas, and synovial tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating and diagnosing various cancers.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 135

This gene is expressed primarily in T cell lines such as Raji and to a lesser extent in infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune system disorders and inflammation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating and diagnosing inflammatory diseases

10

15

20

25

30

35

such as rheumatoid arthritis, sepsis, inflammatory bowel disease, and psoriasis, as well as neutropenia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 136

The translation product of this gene shares high sequence homology with SAR1 subfamily of GTP-binding proteins which is thought to be important in vesicular transport in mammalian cells.

This gene is expressed primarily in serum-stimulated smooth muscle cells and to a lesser extent in a T-cell lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases affecting vesicular transport. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the muscular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to GTP-binding proteins indicate that polynucleotides and polypeptides corresponding to this gene are useful for gene therapy in treating the large number of diseases involved in defective vesicular transport within cells..

FEATURES OF PROTEIN ENCODED BY GENE NO: 137

The translation product of this gene shares sequence homology with a protein found in *C. elegans* cosmid F25B5.

This gene is expressed primarily in a fetal tissues and to a lesser extent in melanocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: abnormal fetal development, especially of the pulmonary system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes

15

20

25

30

35

for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal pulmonary system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., fetal tissue, pulmonary tissue, and melanocytes, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of diseases affecting the pulmonary system, such as emphysema.

FEATURES OF PROTEIN ENCODED BY GENE NO: 138

This gene is expressed primarily in gall bladder and to a lesser extent in smooth muscle.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: digestive system disease and gall bladder problems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., gall bladder and tissue of the digestive system, and smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating diseases of the digestive system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 139

This gene is expressed primarily in placenta and to a lesser extent in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: abnormal fetal development. Similarly, polypeptides and antibodies directed to these polypeptides are

10

15

20

25

30

35

useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of developing tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating and diagnosing abnormal fetal development.

FEATURES OF PROTEIN ENCODED BY GENE NO: 140

This gene is expressed primarily in smooth muscle and to a lesser extent in ovary, prostate cancer, and activated monocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hypertension and atherosclerosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the circulatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., smooth muscle, ovary and other reproductive tissue, prostate, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating diseases of the circulatory system, such as hypertension, atherosclerosis, etc.

FEATURES OF PROTEIN ENCODED BY GENE NO: 141

This gene is expressed primarily in fetal spleen and to a lesser extent in placenta and bone marrow.

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: anemia and other diseases affecting blood cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the circulatory and pulmonary systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., spleen, placenta, bone marrow, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the generation of red and white blood cells and for the diagnosis of disease of these cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 142

The predicted translation product of this contig is a human homolog of the murine tetracycline/sugar transporter molecule recently reported by Matsuo and colleagues (Biochem. Biophys. Res. Commun. 238 (1), 126-129 (1997)).

This gene is expressed primarily in synovium and to a lesser extent in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: rheumatoid arthritis and inflammation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and lymphatic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., synovial tissue, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of inflammatory diseases, such as rheumatoid arthritis, leukemia, neutropenia, inflammatory bowel disease, psoriasis, sepsis, and the like.

5

10

15

20

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 143

This gene is expressed primarily in placenta and to a lesser extent in melanocyte, fetal liver and spleen, and bone marrow.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: abnormal early development. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, melanocytes, liver, spleen, and bone marrow, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of abnormal early development phenomena and diseases.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 144

This gene is expressed primarily in fetal liver and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: anemia and neutropenia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and blood systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the

10

15

20

25

30

35

expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in hematopoeisis and bone marrow regeneration as it is most abundant in fetal tissues responsible for the generation of hematopoeitic cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 145

The translation product of this gene shares sequence homology with protein tyrosine phosphatase which is thought to be important in transducing signal to activate cells such as T cell, B cell and other cell types.

This gene is expressed primarily in T cells and tissues in early stages of development and to a lesser extent in cancers.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immuno-related diseases and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic and fetal tissue, undifferentiated cells, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the protein tyrosine phosphatase family indicate that polynucleotides and polypeptides corresponding to this gene are useful for modulating the immune system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 146

This gene is expressed primarily in T cell and to a lesser extent in B cell, macrophages and tumor tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immuno-disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in

15

20

25

30

35

providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for regulating the immune system therefore can be used in treating diseases such as autoimmune diseases and cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 147

This gene is expressed primarily in placenta and to a lesser extent in endothelial cells, testis tumor, ovarian cancer, uterine cancer.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, endothelial cells, testis and ovary and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 148

This sequence has significant homology to mouse torsin A. Recently, another group cloned the human Torsin A gene. (See, Accession No. 2358279; see also Nature Genet. 17, 40-48 (1997).)

This gene is expressed primarily in osteoclastoma, T-cell, and placenta and to a lesser extent in fetal lung, fetal liver, fetal brain, adult brain and tumor tissues

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: disease conditions in hematopoiesis and cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoiesis system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, bone, placenta, lung, liver, and brain and other tissues of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating blood related diseases such as deficiencies in red blood cell, white blood cell, platelet and other hematopoiesis cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 149

This gene is expressed primarily in T cell, prostate and prostate cancer, endothelial cells and to a lesser extent in monocyte, dendritic cell, bone marrow, salivary gland, colon cancer, stomach cancer, pancreatic tumor, uterine cancer, fetal spleen and osteoclastoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immuno-related diseases and cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, prostate, endothelial cells, dendritic cells, bone marrow, salivary gland, colon, stomach, pancreas, uterus, spleen and bone, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

10

15

20

25

30

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 150

This gene was recently cloned by another group, calling it eIF3-p66. (See Accession No. 2351378.) This gene plays a role in RNA binding and macromolecular assembly, and therefore, any mutations in this gene would likely result in a diseased phenotype. Preferred polypeptide fragments comprise the amino acid sequence:

MAKFMTPVIQDNPSGWGPCAVPEQFRDMPYQPFSKGDRLGKVADWTGATYQDKRYTNKYSS QFGGGSQYAYFHEEDESSFQLVDTARTQKTAYQRNRMRFAQRNLRRDKDRRNMLQFNLQILP KSAKQKERERIRLQKKFQKQFGVRQKWDQKSQKPRDSSVEVRSDWEVKEEMDFPQLMKMRY LEVSEPQDIECCGALEYYDKAFDRITTRSEKPLRXXKRIFHTVTTTDDPVIRKLAKTQGNVFATD AILATLMSCTRSVYSWDIVVQRVGSKLFFDKRDNSDFDLLTVSETANEPPQDEGNSFNSPRNL AMEATYINHNFSQQCLRMGKERYNFPNPPPFVEDDMDKNEIASVAYRYRSGKLGDDIDLIVRC EHDGVMTGANGEVSFINIKTLNEWDSRHCNGVDWRQKLDSQRGAVIATELKNNSYKLARWTC CALLAGSEYLKLGYVSRYHVKDSSRHVILGTQQFKPNEFASQINLSVENAWGILRCVIDICMKL EEGKYLILKDPNKQVIRVYSLPDGTFSS (SEQ ID NO: 638), as well as N-terminal and C-terminal deletions of this polypeptide fragment.

This gene is expressed primarily in T cell, bone marrow, embryo and endothelial cells and to a lesser extent in testis tumor and endometrial tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune diseases and tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for immune disorders and cancers.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 151

This gene is expressed primarily in testis and to a lesser extent in T cell, spinal cord, placenta, neutrophil and monocyte.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: male reproductive and endocrine disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive, immune and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., testis and other reproductive tissue, blood cells, tissue of the nervous system, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for regulating immune and reproductive functions.

FEATURES OF PROTEIN ENCODED BY GENE NO: 152

The translation product of this gene shares sequence homology with tyrosyltRNA synthetase which is thought to be important in cell growth.

This gene is expressed primarily in brain, liver, keratinocytes, tonsils, and heart.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer autoimmune diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, liver, keratinocytes, tonsils, heart expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissues of the nervous system, liver, keratinocytes, tonsils and heart, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard

10

15

20

25

30

35

gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to tyrosyl-tRNA synthetase indicate that polynucleotides and polypeptides corresponding to this gene are useful for modulating cell growth.

FEATURES OF PROTEIN ENCODED BY GENE NO: 153

This gene is homologous to the Drosophila transcriptional regulator dre4. (See Accession No. 2511745.) Dre4 is a gene required for steroidogenesis in Drosophila melanogaster and encodes a developmentally expressed homologue of the yeast transcriptional regulator CDC68. Preferred polypeptide fragments comprise the amino acid sequence: KKRHTDVQFYTEVGEITTDLGKHQHMHDRDDLYAEQMEREMRHKLKTAFKN FIEKVEALTKEELEFEVPFRDLGFNGAPYRSTCLLOPTSSALVNATEWPPFVVTLDEVELIHFXR VQFHLKNFDMVIVYKDYSKKVTMINAIPVASLDPIKEWLNSCDLKYTEGVQSLNWTKIMKTIVD DPEGFFEQGGWSFL (SEQ ID NO: 639), as well as N-terminal and C-terminal deletions of this fragments. Also preferred are polynucleotide fragments encoding this polypeptide fragment.

This gene is expressed primarily in fetal liver, spleen, placenta, lung, T cell, thyroid, testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: brain tumor, heart and liver diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal liver, spleen, placenta, lung, T cell, thyroid, testes expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, placenta, lung, blood cells, thyroid, and testes and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 154

This gene is expressed primarily in brain and to a lesser extent in fetal heart, testis, spleen, lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: heart, liver and spleen diseases, immunological diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, fetal heart, testis, spleen, lung expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, heart, testes and other reproductive tissue, spleen, and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

25

30

35

10

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 155

Activation of T cells through the T cell antigen receptor (TCR) results in the rapid tyrosine phosphorylation of a number of cellular proteins, one of the earliest being a 100 kDa protein. This gene is the human equivalent of murine valosin containing protein (VCP). VCP is a member of a family of ATP binding, homo-oligomeric proteins, and the mammalian homolog of Saccharomyces cerevisiae cdc48p, a protein essential to the completion of mitosis in yeast. Both endogenous and expressed murine VCP are tyrosine phosphorylated in response to T cell activation. Thus we have identified a novel component of the TCR mediated tyrosine kinase activation pathway that may provide a link between TCR activation and cell cycle control.

This gene is expressed primarily in brain, liver, spleen, placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, liver, spleen, placenta expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, liver, spleen, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from

10

15

20

25

30

an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to VCR indicate that polynucleotides and polypeptides corresponding to this gene are useful for treating cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 156

The translation product of this gene shares sequence homology with rat growth response protein which is thought to be important in cell growth. A group recently cloned the human homolog of this gene, calling it insulin induced protein 1. (See Accession No. 2358269, see also, Genomics 43 (3), 278-284 (1997).) Preferred polypeptide fragments comprise the amino acid sequence: RSGLGLGTTAFLATLITQF LVYNGVYQYTSPDFLYIRSWLPCIFFSGGVTVGNIGRQLAMGVPEKPHSD (SEQ ID NO: 640), as well as N-terminal and C-terminal deletions of this polypeptide fragment. Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in brain, liver, placenta, heart, spleen, lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, liver, placenta, heart, spleen. expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, liver, placenta, heart, spleen, and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to growth-response protein indicate that polynucleotides and polypeptides corresponding to this gene are useful for modulating cell growth.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 157

This gene is expressed primarily in Glioblastoma, endometrial tumor, lymphoma and pancreas tumor.

98

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Glioblastoma, Endometrial tumor, lymphoma and pancreas tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endometrium, lymphoid tissue, pancreas, and tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 158

The translation product of this gene shares sequence homology with IGE receptor which is thought to be important in allergy and asthma.

This gene is expressed primarily in T cell, and fetal liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: allergy and asthma and other immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

25

30

35

The tissue distribution and homology to IgE receptor indicate that polynucleotides and polypeptides corresponding to this gene are useful for allergy and asthma.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 159

The translation product of this gene shares sequence homology with immunoglobin heavy chain which is thought to be important in immune response to the antigen.

This gene is expressed primarily in activated neutrophil and to a lesser extent in activated T cell, monocyte and heart.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: infection, inflammation and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and heart, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to immunoglobin heavy chain variable region indicate that polynucleotides and polypeptides corresponding to this gene are useful for making the ligand to block specific antigen which cause certain disease.

FEATURES OF PROTEIN ENCODED BY GENE NO: 160

The translation product of this gene shares sequence homology with mouse X inactive specific transcript protein which is thought to be important in X chromosome inactivation.

This gene is expressed primarily in HSA172 cell and to a lesser extent in normal ovary tissue, ovarian cancer, frontal cortex and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: ovarian tumor, schizophrenia and other neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for

10

15

20

25

30

35

differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and neural system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., ovary and other reproductive tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to X inactive specific transcript protein indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of reproductive system tumors and CNS tumors.

FEATURES OF PROTEIN ENCODED BY GENE NO: 161

This gene is expressed primarily in adipose cell and to a lesser extent in liver and prostate.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: obesity and liver disorder. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the adipose cell, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adipose cells, liver, and prostate, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of obesity and liver disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 162

The translation product of this gene shares sequence homology with yeast ubiquitin activating enzyme homolog which is thought to be important in protein posttraslation processing.

This gene is expressed primarily in stromal cell and to a lesser extent in retina, H. Atrophic Endometrium, colon carcinoma and myeloid progenitor cell.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of stromal cell development, neuronal growth disorders and tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and neural system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., retinal cells, endometrium, colon, and bone marrow, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ubiquitin-activating enzyme homolog indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis or treatment of some type of tumors, fucosidosis and neuronal growth disorders.

20

25

30

35

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 163

This gene is expressed primarily in primary breast cancer and hemangiopericytoma and to a lesser extent in adult brain and cerebellum.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: breast cancer, leukemia and cerebellum disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and neural system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., mammary tissue, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

25

30

35

disease involved in neural system.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis or treatment of various tumors and

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 164

The translation product of this gene shares sequence homology with proline rich proteins. Recently, another group has also cloned this gene, calling it CD84 leukocyte antigen, a new member of the Ig superfamily. (See Accession No. U82988, see also, Blood 90 (6), 2398-2405 (1997).)

This gene is expressed primarily in Weizmann olfactory tissue and osteoclastoma and to a lesser extent in anergic T-cell.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: ostsis and immune disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., olfactory tissue, bone, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the Ig superfamily indicate that the protein product of this clone is useful for treatment of osteoporosis, autoimmune disease, and other immune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 165

This gene is expressed primarily in atrophic endometrium and colon cancer and to a lesser extent in some fetal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system,

expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endometrium, colon, and fetal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of tumors, specifically endometrium and colon tumors.

10

15

20

25

30

35

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 166

This gene is expressed primarily in human primary breast cancer and to a lesser extent in activated monocyte. Although the predicted signal sequence is identified in Table 1, other upstream sequences are also relevant. Preferred polypeptide fragments comprise the amino acid sequence: VTQPKHLSASMGGSVEIPFSFYYPWELAXXPXVRISWRRGHFHG QSFYSTRPPSIHKDYVNRLFLNWTEGQESGFLRISNLRKEDQSVYFCRVELDTRRSG (SEQ ID NO: 641), as well as N-terminal and C-terminal deletions. Also preferred are polynucleotide fragments encoding these polypeptide fragments.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: breast cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., mammary tissue, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis of breast cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 167

This gene is expressed primarily in fetal tissues and to a lesser extent in adult lung. This gene has also been mapped to chromosomal location 9q34, and thus, can be used as a marker for linkage analysis for chromosome 9.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the embryo tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., fetal tissues, and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 168

The translation product of this gene shares sequence homology with Ig Heavy Chain which is thought to be important in immune response.

This gene is expressed primarily in prostate cancer tissue specifically

Therefore, polynucleotides and polypeptides of the invention are useful as
reagents for differential identification of the tissue(s) or cell type(s) present in a
biological sample and for diagnosis of diseases and conditions: prostate cancer.

Similarly, polypeptides and antibodies directed to these polypeptides are useful in
providing immunological probes for differential identification of the tissue(s) or cell
type(s). For a number of disorders of the above tissues or cells, particularly of the
prostate, expression of this gene at significantly higher or lower levels may be routinely
detected in certain tissues and cell types (e.g., prostate, tissue and cells of the immune
system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma,
urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an
individual having such a disorder, relative to the standard gene expression level, i.e.,
the expression level in healthy tissue or bodily fluid from an individual not having the
disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 169

The translation product of this gene shares sequence homology with cytosolic acyl coenzyme-A hydrolase, which is thought to be important in neuron-specific fatty acid metabolism. The gene represented by this contig has since been published by Hajra and colleagues (GenBank Accession No. U91316).

This gene is expressed primarily in human pituitary gland and to a lesser extent in colorectal cancer tissue. This gene has also been observed in the LNCAP cell line.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hyperlipidemias of familial and/or idiopathic origins. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly blood, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., pituitary and colon, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to rat cytosolic acyl coenzyme-A hydrolase indicate that polynucleotides and polypeptides corresponding to this gene are useful for the detection or treatment of hyperlipidemia disease states by virtue of the ability of specific drugs to activate the enzyme.

20

30

35

15

5

10

FEATURES OF PROTEIN ENCODED BY GENE NO: 170

The translation product of this gene shares sequence homology with a *Caenorhabditis elegans* gene which is thought to be important in organism development.

This gene is expressed primarily in human synovial sarcoma tissue, bone marrow, and to a lesser extent in human brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, of bone, specifically synovial sarcoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the bone, connective tissues and possibly immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., synovial tissue, bone marrow, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another

10

15

20

25

30

35

tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to Caenorhabditis elegans indicate that polynucleotides and polypeptides corresponding to this gene are useful as a diagnostic and/or therapeutic modality directed at the detection and/or treatment of connective tissue sarcomas or other related bone diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 171

The translation product of this gene shares sequence homology with beta1-6GlcNAc transferase which is thought to be important in the transfer and metabolism of beta1-6, N-acetylglucosamine. This gene product has previously been shown to suppress melanoma lung metastasis in both syngeneic and nude mice, decreased invasiveness into the matrigel, and inhibition of cell attachment to collagen and laminin without affecting cell growth.

This gene is expressed primarily in human testes and prostate tissues, and to a lesser extent in kidney, medulla, and pancreas.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer particularly melanoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., testes and other reproductive tissue, prostate, kidney, pancreas, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to beta1-6GlcNAc transferase indicate that the protein product of this clone is useful for the development of diagnostic and/or therapeutic modalities directed at the detection and/or treatment of cancer, the metastasis of malignant tissue or cells. Defects in this potentially secreted enzyme may play a role in metastasis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 172

This gene is expressed primarily in fetal spleen and liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune disorders, Wilm's tumor disease, hepatic disorders, and hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoiesis and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., spleen and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and identification of fetal defects along with correcting diseases that affect hematopoiesis and the immune system.

20

25

30

35

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 173

The translation product of this gene shares sequence homology with ret II oncogene which is thought to be important in Hirschsprung disease and many types of cancers.

This gene is expressed in multiple tissues including the lymphatic system, brain, and thyroid.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Hirschsprung disease and multiple cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., lymphoid tissue, thyroid, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to

10

15

20

25

30

35

the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ret II oncogene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of various cancers. It would also be useful for the diagnosis and treatment of Hirschsprung disease. Preferred polypeptides of the invention comprise the amino acid sequence: MEAQQVNEAESAREQLQXLHDQIAGQKASKQELETELERLKQEFHYIEEDLY RTKNTLQSRIKDRDEEIQKLRNQLTNKTLSNSSQSELENRLHQLTETLIQKQTMLESLSTEKNSL VFQLERLEQQMNSASGSSSNGSSINMSGIDNGEGTRLRNVPVLFNDTETNLAGMYGKVRKAAS SIDQFSIRLGIFLRRYPIARVFVIIYMALLHLWVMIVLLTYTPEM HHDQPYGK (SEQ ID NO: 642).

FEATURES OF PROTEIN ENCODED BY GENE NO: 174

The translation product of this gene shares sequence homology with testis enhanced gene transcript which is thought to be important in regulation of human development.

This gene is expressed primarily in infant brain and to a lesser extent in a variety of other tissues and cell types, including the prostate, testes, monocytes, macrophages, dendritic cells, keratinocytes, and adipocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological, developmental, immune and inflammation disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, prostate, testes and other reproductive tissue, blood cells, keratinocytes, and adipocytes, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to testis enhanced gene transcript indicate that the protein product of this clone is useful for diagnosis and treatment of disorders involving the developing brain and the immune system.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 175

This gene is expressed primarily in prostate and to a lesser extent in various other tissues, including placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancers, especially of the prostate. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the prostate, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., prostate and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of prostate disorders and cancer. It may also be useful for the diagnosis and treatment of endocrine disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 176

The translation product of this gene shares sequence homology with *Sacchromyces cerevisiae* YNT20 gene which is thought to be important in mitochondrial function.

This gene is expressed at a particularly high level in muscle tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases related to such tissues and cell types including: muscle wasting diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neuromuscular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., muscle and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

10

15

20

25

30

35

the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the YNT20 gene indicate that this protein is useful for treatment and detection of neuromuscular diseases caused by loss of mitochondrial function. For example this gene or its protein product could be used in replacement therapy for such diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 177

This gene is expressed primarily in the brain and to a lesser extent in kidney, placenta, smooth muscle, heart and lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neuromuscular diseases, degenerative diseases of the central nervous system, and heart disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neuromuscular system, central nervous system, and heart, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, kidney, placenta, muscle, heart and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

This gene or its protein product could also be used for replacement therapy for the above mentioned diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 178

The translation product of this gene shares sequence homology with caldesmon which is thought to be important in the cellular response to changes in glucose levels.

This gene is expressed primarily in multiple tissues including brain and retina.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: central nervous system disorders and retinopathy. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for identification of the tissue(s) or cell

15

20

25

30

The tissue distribution and homology to caldesmon indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment of retinopathies.

FEATURES OF PROTEIN ENCODED BY GENE NO: 179

The translation product of this gene shares sequence homology with mouse fibrosin protein which is thought to be important in regulation of fibrinogenesis in certain chronic inflammatory diseases.

This gene is expressed primarily in amniotic cells and breast tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of breast cancer and abnormal embryo development. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., amniotic cells, and mammary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to fibrosin indicate that the protein product of this clone is useful for treatment of breast cancer. This gene or its protein product could be used in replacement therapy for breast cancer. In addition the protein product of this gene is useful in the treatment of chronic inflammatory diseases.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 180

This gene is expressed several infant tissues including brain and liver and various adult tissues including brain, lung, liver, testes, and prostate.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, brain cancer, lung cancer, liver cancer and cancers of the reproductive system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, hepatic system, and reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, lung, liver, testes and other reproductive tissue, and prostate, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene product indicates that the protein product of this clone is involved in growth regulation and could be used as a growth factor or growth blocker in a variety of settings including treatment of cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 181

This gene is expressed primarily in activated monocytes and to a lesser extent in melanocytes and dendritic cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of immune system diseases and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, melanocytes, and dendritic cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone could be involved in growth regulation and could be used as a growth factor or growth blocker in a variety of settings including treatment of cancers.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 182

This gene is expressed primarily in placenta and several tumors of various tissue origin and to a lesser extent in normal tissues including liver, lung, brain, and skin,

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of cancers of all kinds. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, respiratory system and skin, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, lung, brain and other tissues of the nervous system, and skin, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The high expression of this gene in multiple tumors indicates that the protein product of the clone may be involved in cell growth control and therefore would be useful for treatment of certain cancers. Likewise molecules developed to block the activity of the protein product of this clone could be used to block its potential role in tumor growth promotion.

FEATURES OF PROTEIN ENCODED BY GENE NO: 183

The translation product of this gene shares sequence homology with the mouse Ndr1 gene which is thought to be important in cancer progression.

This gene is expressed multiple cell types and tissues including brain, lung, kidney, bone marrow, liver, and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of all types of cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous, immune, and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, lung, kidney, bone marrow, liver and spleen, and cancerous and wounded

tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to Ndr1 gene, which is thought to be involved in cancer progression, indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment of certain cancers. Likewise molecules developed to block the activity of the protein product of this clone could be used to block its potential role in tumor growth promotion.

10

15

20

25

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 184

This gene is expressed primarily in early stage human brain and liver and to a lesser extent in several other fetal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: brain and liver cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, liver, and fetal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The expression of this gene in embryonic tissues indicates that the protein could be involved in growth regulation and could be used as a growth factor or growth blocker in a variety of settings including treatment of cancers.

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 185

This gene is expressed primarily in infant and embryonic brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of degenerative nervous system disorders and brain cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell

10

15

20

25

30

type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The expression of this gene in embryonic tissues indicates that the protein could be involved in growth regulation and could be used as a growth factor or growth blocker in a variety of settings including treatment of cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 186

This gene is expressed primarily in multiple tissues including placenta, fetal lung, fetal liver, and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of all types of cancers including liver, brain and lung. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, pulmonary system, and hepatic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, lung, liver, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The expression of this gene in embryonic tissues indicates that the protein could be involved in growth regulation and could be used as a growth factor or growth blocker in a variety of settings including treatment of cancers.

Last AA of ORF	22	22	128	33	28	28
Predicted First AA of Secreted Portion	19	61	31	21	25	25
Last AA of Sig Pep	18	18	30	20	24	24
First AA of Sig Pep	-		1	Ī		
AA SEQ ID NO: Y	313	466	314	200	315	501
S' NT Of AA IV SEQ AA of ID Signal NO:	177	442	81	196	1	35
5' NT of Start Codon	177	442	81		1	35
3' NT of Clone Seq.	582	830	465	343	474	319
S' NT 3' NT of of clone Clone Clone Seq. Seq.	1	296		229	1	1
Total NT Seq.	582	1020	465	524	474	332
SEQ NÖ: BEQ	-	197	12	198	13	199
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	ZAP Express	ZAP Express
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID	HTTEZ21	HTTEZ21	HBGBW52	HBGBW52	HCUFM41	HCUFM41
Gene No.	-	-	2	2	د	£

Last AA of ORF	2	21	39	33	& &	23
First Last Predicted AA AA First AA of of of Sig Sig Secreted Pep Pep Portion	35	19	23	27	45	22
Last AA of Sig Pep	34	18	22	26	4	21
First AA of Sig Pep	-	_	-			1
AA SEQ ID NO: Y	316	317	318	319	320	321
of AA F First SEQ / AA of ID Signal NO: 9	122	30	239	278	77	129
S' NT of Start Codon	122	30	239	278	77	129
3' NT of Clone Seq.	298	613	356	414	469	550
S' NT 3' NT of of Clone Clone Seq. Seq.				185		-
Total NT Seq.	314	613	356	414	469	550
NT SEQ ID NO:	14	15	16	17	18	19
Vector	ZAP Express	ZAP Express	ZAP Express	ZAP Express	pCMVSport 3.0	Uni-ZAP XR
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID	нсиғ022	нспело	50	HCUIM14	3	HEIAX07
Gene No.	4	ν	9	7	∞	6

Last AA of ORF	15	27	2	19	961	29
of AA First Last Predicted of AA of ID of of Signal NO: Sig Sig Secreted Pep Perion C	6		31		31	
Last AA of Sig Pep	∞		30		30	
First AA of Sig Pep	1	1	1		-	-
AA SEQ ID NO: Y	502	322	323	503	324	504
5' NT of First AA of Signal Pep	1	190	62	409	64	109
of of Start		190	62		4	109
3' NT of Clone Seq.	376	741	991	1137	653	513
S' NT 3' NT of of Clone Clone Seq. Seq.	6	55		253	-	-
Total NT Seq.	376	741	991	1192	653	589
NT SEQ ID NO:	200	20	21	201	22	202
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pSport1	pSport1
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID	HEIAX07	HSAXR76		HNGJJ68	HCFAW04	HCFAW04
Gene No.	6	91	Ξ		12	12

Last AA of ORF	252	75	01	207	89	36	84
Predicted First AA of Secreted Portion	55	31		34	22	26	31
Last AA of Sig Pep	54	30		33	21	25	30
First AA of Sig Pep	1	.	1	1	1		
AA SEQ ID NO: Y	325	505	506	507	326	208	327
of AA F of First SEQ AA of D Signal NO: S	102	28	069	001	1242	303	304
NT of tart	102	87		001	1242	303	304
3' NT of Clone Seq.	1418	839	850	1354	2059	1226	683
S' NT 3' NT of S' CC	965	-	52	24		113	_
Total NT Seq.	1486	847	852	1354	2323	1378	683
SEQ NÖ: NÖ:	23	203	204	205	24	206	25
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	209235 09/04/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID	HLMAV65	HLMAV65	HLMAV65	HTXEF04	HPMFD84	HPMFD84	HE6DB26
Gene No.	13	13	13	13	14	14	15

Last AA of ORF	19	36	63	32	35	23
Predicted First AA of Secreted Portion	19	21	31	32	25	20
Last AA of Sig Pep	18	20	30	31	24	19
First AA of Sig Pep	1	_		_	,	_
AA SEQ BD NO: Y	605	328	329	510	330	331
of AA F First SEQ / AA of D Signal NO: 9	267	214	70	33	39	116
S' NT of Start Codor	267	214	70	33	39	116
3' NT of Clone Seq.	884	6561	717	269	495	556
S' NT 3' NT of of SCIONE Seq. Seq.	281	14	-	2		
Total NT Seq.	1166	2036	717		495	556
NT SEQ UD NO:	207	56	27	208	28	29
Vector	Uni-ZAP XR	Uni-ZAP XR				Uni-ZAP XR
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID	HE6DB26	HHFFL33	НОБВБЗЗ	НОВВ		HOUAW01
Gene No.	15	16	17	17	<u>8</u>	19

Last AA of ORF	40	111	28	106	50	26
First Last Predicted A AA First AA of of of Sig Sig Secreted Pep Pep Portion (36	31	28	22	31	26
Last AA of Sig Pep	35	30	27	21	30	25
First AA of Sig Pep	1	1	1	I	I	-
AA SEQ D NO: Y	332	333	511	334	335	512
S' NT AA F First SEQ AA of D Signal NO: Pep Y	78	<i>L</i> 8.	387	137	436	81
S' NT of Start Codon	78	87	387	137	436	81
3' NT of Clone Seq.	434	715	932	486	725	647
S' NT 3' NT of of Clone Clone Seq. Seq.		-	274		1	
Total NT Seq.	434	715	932	486	725	661
NT SEQ DD NO:	30	31	209	32	33	210
Vector	Uni-ZAP XR	pSport1		pCMVSport 2.0	<u> </u>	Uni-ZAP XR
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID		HCFME41	HCFME41	HOGCO71	HOSEX08	HOSEX08
Gene No.	20	21	21	22	23	23

Last AA of ORF	48	41	33	76	47	31
First Last Predicted AA AA First AA of of of of Sig Sig Secreted Pep Portion	31	31	25	21	31	21
Last AA of Sig Pep	30	30	24	20	30	20
First AA of Sig Pep	-	_	-	1	-	-
AA SEQ ID NO: Y	336	337	513	338	514	339
of AA F First SEQ AA of ID Signal NO: 19 Pep Y	85	196	72	375	17	201
s' NT of Start Sodon	85	196	72	375		
3' NT of Clone Seq.	437	943	534	604	509	349
S' NT 3' NT of of Scione Seq. Seq.		-	-	.	, -	
Total NT Seq.	437	943	592	604	938	349
NT SEQ ID NO:	34	35	211	36	212	37
Vector	pBluescript	Uni-ZAP XR				
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97
cDNA Clone ID	HSKNJ72	невев69	невев69	НЕ6ЕН18	НЕ6ЕН18	HSAUZ47
Gene No.	24	25	25	26	26	27

Last AA of ORF	42	26	56	157	43	520
Signal NO: Sig Sig Secreted Per Not Pepping Secreted Port No. Sig Sig Secreted Portion Of Pepping No. Sig Sig Secreted No. Sig Secreted No. Sig Sig Secreted No. Sig Secreted No. Sig Secreted No. Sig Secreted No. Sig Sig Secreted No. Sig Secreted N	39	21	25	31	24	12
Last AA of Sig Pep	38	20	24	30	23	11
First AA of Sig Pep		. —	_		-	-
ASEQ NO P	340	341	342	343	515	344
5' NT of First AA of Signal Pep	22	309	147	427	739	27
S' NT 3' NT of of S' NT Clone Clone Clone of Seq. Start Seq.	22	309	147	427		27
3' NT of Clone Seq.	672	8061	458	1153	968	1983
5' NT of Clone Seq.	1	135	93		502	1092
Total NT Seq.	672	1908	458	1153	1079	1983
NO N	38	39	40	41		42
Vector	Uni-ZAP XR	Uni-ZAP XR	pSport1	pSport1	pSport1	Uni-ZAP XR
ATCC Deposit No: Z and Date	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97
cDNA Clone ID	HSSDM73				HMKCU94	HRDEW41
Gene No.	28	29	30	31	31	32

Last AA of ORF	3	39	234	174	169	43
First Last Predicted AA AA First AA I of of Sig Sig Secreted Pep Pep Portion C		20	31	19	20	33
Last AA of Sig Pep		19	30	18	19	32
First AA of Sig Pep		-	1		1	
AA SEQ ID NO: Y	516	345	346	517	347	518
of AA F of AA F First SEQ AA AA of ID Signal NO: Signal NO: Sep	2030	19	74	638	14	844
S' NT of Start Codor			74		14	844
S' NT 3' NT of of Clone Clone Seq. Seq.	3357	695	1153	1036	1569	1404
5' NT of Clone Seq.	2757	1	851	822	768	770
Total NT Seq.	3791	1406	1391	1334	1569	1511
SEQ NÖ BÖ	214	43	44	215	45	216
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97
cDNA Clone ID	HRDEW41	HTOJN06	HBGDA21	HBGDA21	HFGAK75	HFGAK75
Gene No.	32	33	34	34	35	35

						, , , , , , , , , , , , , , , , , , , ,
Last AA of ORF	43	78	24	274	13	47
Last Predicted AA First AA of of Sig Secreted Pep Portion	20	38	20	31		31
Last AA of Sig Pep	19	37	61	30		30
First AA of Sig Pep	I	-	_	_	_	
SEQ NO: Y	348	349	350	351	519	352
of AA F First SEQ AA of D Signal NO: Pep Y	62	141	19	177	448	61
5' NT of Start Codon	62	141	61	177		61
3' NT of Clone Seq.	1891	396	346	1300	581	1404
S' NT 3' NT of of Clone Clone Seq. Seq.	Ţ	252		882	192	110
Total NT Seq.	1924	475	346	1366	642	1405
NT SEQ ID NO:	46	47	48	49	217	20
Vector	Uni-ZAP XR	pSport1	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97
cDNA Clone ID	HHPBD40	HOVCL83	HBCAY62	HBICM48	HBICM48	HLTCL35
Gene No.	36	37	38	39	39	40

Last AA of ORF	30	6	52	132	47	204
Predicted First AA of Secreted Portion	22		25	09	27	31
Last AA of Sig Pep	21		24	59	26	30
First AA of Sig Pep	1	-	-	-	_	
AA SEQ ID NO: Y	520	353	354	355	521	356
S' NT of AA F First SEQ AA of ID Signal NO:	172	222	113	41	399	166
5' NT of Start Codon	172	222	113	4]	399	166
3' NT of Clone Seq.	1241	485	214	419	989	1749
S' NT 3' NT of of Clone Clone Seq. Seq.	-	207	-		186	222
Total NT Seq.	1241	504	777	602	0801	1749
SEQ NÖ: SEQ	218	51	52	53	219	54
Vector	Uni-ZAP XR	Uni-ZAP XR	ZAP Express	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97
cDNA Clone ID	HLTCL35	HLHCK50	HRSAN45	HSNBB14	HSNBB14	HMABL38
Gene No.	40	41	42	43	43	44

Last AA of ORF	84	179	04	25	224	57
Predicted First AA of Secreted Portion	34	31	19	22	31	61
Last AA of Sig Pep	33	30	18	21	30	∞
First AA of Sig Pep			-		_	
Ş Ş Ö B Ö P Ö P Ö P Ö	360	361	525	362	363	526
of AA F First SEQ AA A Signal NO: S	335	189	1164	<u> 2</u> 8	06	1953
of of Start Sodon	335	189	1164	164	06	1953
3' NT of Clone Seq.	1049	1737	1791	443	2888	2517
S' NT 3' NT of of 'Clone Clone Seq. Seq.	362	854	979	_	1909 2888	1597
Total NT Seq.	1049	1776	1791	443	2888	2517
NT SEQ D NO:	28	59	223	8	61	224
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pBluescript SK-	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97
cDNA Clone ID	HFCAI74	HAGBI17	HAGBI17	HLFBC91	HPRCA31	HPRCA31
Gene No.	48	49	49	50	51	51

ATCC							
ATCC Deposit of Deposi	Last AA of ORF	349	21	467	152	39	373
ATCC Deposit of Deposi	Predicted First AA of Secreted Portion	31	18	26	31	25	31
ATCC SEQ of of of of or	Last AA of Sig Pep	30	17	25	30	24	30
ATCC SEQ of of of of or	First AA of Sig Pep			_	-	_	I
ATCC SEQ of of of of or	AA SEQ ID NO: Y	364	527	365	366	528	367
ATCC SEQ of of of of or	5' NT of First AA of Signal Pep	139	530	964	229	436	236
ATCC SEQ Of	of of Start Codo	139		964	229	436	236
ATCC SEQ Deposit Deposit No: Z SEQ Deposit No: Z SEQ Deposit No: Z SEQ Deposit And Date No: Z SEQ No: Z SEQ DA1899 Uni-ZAP XR 62 1851 209045 SEQ DA15/97 SEQ DA15/97 SEQ DA15/97 SEQ DA15/97 SEQ DEXPLOYER SEQ DEPOSITE SEQ DEPOSI	3' NT of Clone Seq.		2309	3492	883	1033	1541
ATCC SEQ Deposit Deposit No: Z SEQ Deposit No: Z SEQ Deposit No: Z SEQ Deposit And Date No: Z SEQ No: Z SEQ DA1899 Uni-ZAP XR 62 1851 209045 SEQ DA15/97 SEQ DA15/97 SEQ DA15/97 SEQ DA15/97 SEQ DEXPLOYER SEQ DEPOSITE SEQ DEPOSI	5' NT of Clone Seq.	1568	299	883			
ATCC Deposit Deposit Deposit No: Z No: Z No: Z No: Z Clone ID and Date Vector X 209045 No: Z 209045 No: Z-09045 No	Total NT Seq.	1851	2424	3542	883	1080	1541
ATCC Deposit No: Z Clone ID and Date 02/26/97 209045 05/15/97 HPRCE95 97899 02/26/97 209045 05/15/97 HMADJ02 97899 Uni-ZAP XR 02/26/97 209045 05/15/97 HMADJ02 97899 Uni-ZAP XR 02/26/97 209045 05/15/97 C209045 05/15/97 AMADJ02 97899 Uni-ZAP XR 02/26/97 209045 05/15/97 209045 05/15/97 209045 05/15/97 209045 05/15/97 209045 05/15/97 209045 05/15/97 05/15/97 05/15/97	NT SEQ NO:	62	225	63	64	226	65
CDNA Clone ID HPRCE95 CHATLC66 CHAMADJ02 CHAMADJ02 CHAMADJ02 CHAMADJ02 CHAMADJ02 CHAMADJ03 CHAMA	Vector	Uni-ZAP XR	Uni-ZAP XR	ZAP Express			Uni-ZAP XR
	ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97
Gene No. 52 52 53 54 54 55	cDNA Clone ID	HPRCE95	HPRCE95	HHTLC66	HMADJ02	HMADJ02	HPRCU93
	Gene No.	52	52	53	54	54	55

Last AA of ORF	128	83	82	21	20	227	79
Predicted First AA of Secreted Portion	56	19	21			20	31
Last AA of Sig Pep	25	18	20			61	30
First AA of Sig Pep	-	_	_	1	-	.	
AA SEQ ID NO: Y	529	368	530	698	531	370	371
S' NT of AA F First SEQ AA of D Signal NO: 19 Pep Y 1	946	163	1262	264	227	56	22
5' NT of Start Codon	946	163	1262	264	227	95	22
3' NT of Clone Seq.	1336	869	1756	629	536	1751	508
S' NT of Clone Seq.	4	4 <u>1</u>	1133	-	25	375	
Total NT Seq.	1336	732	2043	629	540	1751	508
SEQ NÖ:	227	99	228	<i>L</i> 9	229	89	69
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	ZAP Express
ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	209011 04/28/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97
cDNA Clone ID	HPRCU93	HSAXS65	HSAXS65	HKTAG35	HMEFX42	HHFHN61	нсмеғ90
Gene No.	55	56	56	57	57	58	59

Last AA of ORF	75	51	61	09	40	39
Predicted First AA of Secreted Portion	23	2	31	18	31	29
Last AA of Sig Pep	22		30	17	30	28
First AA of Sig Pep	_	_	1	-	1	1
AA SEQ ID NO: Y	532	372	373	533	374	534
S' NT of First Last Properties of AA First SEQ AA AA First AA of ID of of Signal NO: Sig Sig Sig Sig Pep First AA of ID of AA First AA of ID of Of Signal NO: Sig		93		210	169	329
S' NT of Start Codor		93	-	210	169	329
3' NT of Clone Seq.	448	245	361	407	713	580
S' NT 3' NT of of SCIONE Seq. Seq.	6	-			∞	061
Total NT Seq.	448	245	361	407	713	830
NT SEQ BD NO:	230	70	71	231	72	232
Vector	ZAP Express	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
	HCWEF90	HHGCM20	HFRAU10	HFRAU10	HATDT67	HATDT67
Gene No.	59	09	19	61	62	62

Last AA of ORF	44	2	203	36	29	136
of AA First Last Predicted of AA of ID of	31		31	23	29	31
Last AA of Sig Pep	30		30	22	28	30
First AA of Sig Pep	_	-	1		_	-
AA SEQ ID NO: Y	375	535	376	536	377	378
5' NT of First AA of Signal Pep	<i>L</i> 9	287	730	2577	112	13
5' N' of Star Codc	67	287	730	2577	112	13
3' NT of Clone Seq.	862	905			1195	475
S' NT 3' NT of of Clone Clone Seq. Seq.	1	138	4162	2406 2739		_
Total NT Seq.	862	932	4602	2786	1255	475
NT SEQ ID NO:	73	233	74		75	76
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
cDNA Clone ID			HMWEX24	HMWEX24	HSGBA84	HTOCD52
Gene No.	63	63	4	49	65	99

A F	4	_	<u>∞</u>	81	29	29
Last AA of ORF	<u> </u>	4	468		2	2
of AA First Last Predicted of AA of ID of of of Signal NO: Sig Sig Secreted Per No.		34	. 31		21	28
Last AA of Sig Pep		33	30		20	27
First AA of Sig Pep	-	_	-	-	_	_
AA SEQ D NO: Y	537	379	380	538	381	382
5' NT of First AA of Signal Pep	26	74	26	251	267	292
5' N7 of Start Codo	26	74	26	251	267	292
3' NT of Clone Seq.	458	299	1730	444	1168	1285
S' NT 3' NT of of S Clone Clone Seq. Seq.	_	25	1627			132
Total NT Seq.	458	465	1907	591	1168	1285
NT SEQ UD NO:	235	77	78	236	79	08
Vector	Uni-ZAP XR	Uni-ZAP XR	pBluescript	pBluescript	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
cDNA Clone ID	HTOCD52	HTGCP16	HKIXR69	HKIXR69	HETGJ09	HOBNC61
Gene No.	99	67	89	89	69	70

Last AA of ORF	108	106	_	299	136	424
Predicted First AA of Secreted Portion	38	16		54	4	36
First Last I AA AA I of of Sig Sig Pep	37	15		53	43	35
First AA of Sig Pep	1	1	I	1	I	_
AA SEQ ID NO: Y	540	541	388	389	542	543
S' NT Of AA F First SEQ AA of D Signal NO: 9 Pep Y	1	294	17	166	207	390
of of Start odon	1		17	166	507	390
3' NT of Clone Seq.	734	794	918	1458	2080	1520
S' NT 3' NT 5' Of	I	80	36	6	841	311
Total NT Seq.	734	808	1238	1460	2201	1661
X SEQ X	238	239	98	87	240	241
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
cDNA Clone ID	HBIAB39	HBIAB39	HTXDU73	HOEAS24	HOEAS24	HOEAS24
Gene No.	75	75	76	77	77	77

Last AA of ORF	49	19	39	79	36	180
AA First Last Predicted SEQ AA AA First AA Of of of of Of Of Of YO: Sig Sig Secreted Y Pep Pep Portion	37	50	22	31	33	31
Last AA of Sig Pep	36	49	21	30	32	30
First AA of Sig Pep	-		_	–	_	-
AA SEQ D NO: Y	390	391	544	392	393	394
S' NT of AA F First SEQ AA of D Signal NO: 17	639	540	564	1503	359	86
5' NT of Start Codon	639	540	564	1503	359	86
3' NT of Clone Seq.	1395	1186	1146	1614	862	969
S' NT 3' NT of of Clone Clone Seq. Seq.	267	352	329	1203	253	349
Total NT Seq.	1395	1186	1146	1821	862	969
SEQ NÖ:	88	68	242	06	16	92
Vector	Uni-ZAP XR	pBluescript	pBluescript	Uni-ZAP XR	Uni-Zap XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
	HTEIY30	HSKNE46	HSKNE46	HPMFL27	HMWDN32	HPRAX55
Gene No.	78	79	79	08	∞	82

ed fe	}		τ			· ·····	
Last AA of ORF	28	21	09	152	33	480	367
Last Predicted AA First AA of Sig Secreted Pep Portion	33		22	33	21	31	22
Last AA of Sig Pep	32		21	32	20	30	21
First AA of Sig Pep	-	_	-	-	-	1	-
AA SEQ ID NO: Y	545	395	396	397	546	398	547
of AA For First SEQ AA of D Signal NO: 9	348	197	785	206	161	234	125
5' NT of Start Codon	348	197	785	206	191	234	125
S' NT 3' NT of of Clone Clone Seq. Seq.	1230	1759	1772	1648	911	2801	1537
5' NT of Clone Seq.	265	-	742	1	72	418	-
Total NT Seq.	1350	1886	1774	2503	1529	2801	1537
NT SEQ ID NO:	243	93	2 6	95	244	96	245
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97901 02/26/97 209047 05/15/97	209076 05/22/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HPRAX55	HHFFW36	HE2PL77	HSDFV29	HCQAV53	HTPEG42	HTPEG42
Gene No.	82	83	84	85	85	98	86

Last AA of ORF	423	78	77	74	47	20
First Last Predicted AA AA First AA of of of Sig Sig Secreted Pep Pep Portion (2	24	33	19	22	
Last AA of Sig Pep	I	23	32	18	21	
First AA of Sig Pep	1	I	1	1	Ţ	_
SEQ NÖ: YÖ:	399	400	548	401	549	402
S' NT of AA F First SEQ AA of D Signal NO: S	1	197	183	456	363	2
5' NT 3' NT of of of 5' NT Clone Clone of 2' Seq. Start Seq. Start Seq. Start Seq. Start Seq. Seq. Start Seq. Seq. Seq. Seq. Seq. Seq. Seq. Seq.		197	183	456	363	
3' NT of Clone Seq.	1631	504	499	1416	1348	2847
of Of Clone Seq.	916	26	-	145	84	v=-4
Total NT Seq.	1631	504	506	1416	1348	2847
×ÖBÖN XÖ:	76	86	246	66	247	001
Vector	Uni-ZAP XR	Uni-ZAP XR	I-	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HLHDR57	HAUAV32	HAUAV32	HNEBI60	HNEB160	HSHCJ16
Gene No.	87	88	88	68	68	06

Last AA of ORF	87	92	891	124	21	174
First Last Predicted AA AA First AA 1 of of of of Sig Secreted Pep Pep Portion (24	31	31	19		35
Last AA of Sig Pep	23	30	30	81		34
First AA of Sig Pep	1			-	1	-
AA SEQ ID NO: Y	403	404	550	551	405	406
S' NT AA F Of AA Of D AA Of D Signal NO: 9	602	518	356	147	975	248
5' NT of Start Codon	602	518	356		975	248
S' NT 3' NT of of Clone Clone Seq. Seq.	1346	794	1766	1708	1531	871
S' NT3' NT of of Clone Clone Seq. Seq.	809		42	47	868	106
Total NT Seq.	1394	794	1766	2664	1544	871
X SEQ	101	102	248	249	103	104
Vector	pBluescript	Uni-ZAP XR				
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HTSEL31	HAUBL57	HAUBL57	HAUBL57	HODAS59	HE6CT48
Gene No.	91	92	92	92	93	94

Last AA of ORF	177	2	72	280	45	251	284
Last Predicted AA First AA of of Sig Secreted Pep Portion	20	22	23	52	16	41	31
Last AA of Sig Pep	61	21	22	51	15	40	30
First AA of Sig Pep	-	-	-	–	-	-	-
¥SEQ NÖ:	552	407	553	408	554	555	409
5' NT of First AA of Signal Pep	258	16	829	122	633	82	465
S' NT of Start Codon	258	16	829	122		82	465
3' NT of Clone Seq.	865	404	2074	1542	1482	834	2327
S' NT 3' NT of of Clone Clone Seq. Seq.	26		852	506	508	-	1528
Total NT Seq.	865	404	2082	1542	1482	834	2327
SEQ NO: NO:	250	105	251	106	252	253	107
Vector	Uni-ZAP XR	ZAP Express	Uni-ZAP XR				
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	209215 08/21/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HE6CT48	HMDAA61	HMDAA61	НА QВК61	HAQBK61	НС ОНВ01	HAQBF73
Gene No.	94	95.	95	96	96	96	97

Last AA of ORF	61	187	237	217	82	192
First Last Predicted AA AA First AA of of of Sig Sig Secreted Pep Pep Portion		29	31	31	13	47
Last AA of Sig Pep		28	30	30	12	46
First AA of Sig Pep	I	1	1	-		I
AA SEQ ID NO: Y	556	410	411	557	558	412
S' NT AA F of First SEQ AA of ID Signal NO: Pep Y 1	886	172	903	176	1151	4
5' NT of Start Codon		172	606	176		4
3' NT of Clone Seq.	1508	1062	2501	2431	2288	1751
S' NT3' NT of of Clone Clone Seq. Seq.	885	157	275	265	465	696
Total NT Seq.	1508	1062	2539	2514	2357	1751
NT SEQ NÖ:	254	801	601	255	256	110
Vector	Uni-ZAP XR	Uni-ZAP XR		Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HAQBF73	НАОВТ94	нетнео7	нетнео7	нетнео7	HLQAB52
Gene No.	67	86	66	66	66	100

Last AA of ORF	95	54	21	108	51	50	32
of AA First Last Predicted of AA First AA L AA First AA L AA Signal NO: Signal NO: Pep Pep Portion O	19	29	50	25	31	36	
Last AA of Sig Pep	18	28	61	24	30	35	
First AA of Sig Pep		-	-	1	-	1	
SEQ NÖ:	529	560	413	561	414	562	415
5' NT of First AA of Signal Pep	314	25	1	242	271	35	709
S' N' of Start Codo	314	25		242	271	35	709
3' NT of Clone Seq.	655	2377	1117	1135	1313	1262	1654
S' NT 3' NT of of SCIone Seq. Seq.	218	5		69	128	26	553
Total NT Seq.	689	2377	71117	1193	1313	1262	1654
Z S S S S S S S S S S S S S S S S S S S	257	258	111	259	112	260	113
Vector	Lambda ZAP II	pSport1	Uni-ZAP XR	Other	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	209119	97901 02/26/97 209047 05/15/97	209627	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HLQAB52	HEONN58	HCRAM28	HIBEK16	HE2BG03	HE2BG03	HEBDJ82
Gene No.	001	001	101	101	102	102	103

Last AA of ORF	163	253	81	174		73
S' NT of AA First Last Predicted First SEQ AA AA First AA I AA of ID of of of of Signal NO: Sig Sig Secreted NPep Y Pep Pep Portion O	31	31		99		34
Last AA of Sig Pep	30	30		65		33
First AA of Sig Pep			•	_	-	-
AA SEQ ID NO: Y	416	563	564	417		366
5' NT of First AA of Signal Pep	337	335	942	100	*	413
of of Start	337	335	942	100		
3' NT of Clone Seq.	1171	1161	1131	800	735	783
S' NT3' NT of of Clone Clone Seq. Seq.	540	979	629	373	290	416
Total NT Seq.	1171	1179	1162	842	735	783
SEQ NÖ: SEQ	114	261	262	115	263	264
Vector	ZAP Express	ZAP Express	ZAP Express	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HCUBC79	HCUBC79	HCUBC79	HSVAF07	HSVAF07	HSVAF07
Gene No.	104	104	104	105	105	105

Last AA of ORF	50	263	70	120	159	34
Predicted First AA of Secreted Portion	31	31	25	29	31	24
ast	30	30	24	28	30	23
First L AA of Sig S				-	_	-
SEQ YOU	418	267	568	419	420	569
5' NT of AA F First SEQ / AA of D Signal NO: 9 Pep Y F	581	119	438	499	301	227
5' NT of Start Codon	581	119	438	499	301	227
3' NT of Clone Seq.	1470	1405	1188	906	1079	1050
S' NT 3' NT of of Clone Seq. Seq.	187	301	148	418	21	25
Total NT Seq.	1640	1638	1455	952	1256	1086
NT SEQ ID NO:	116	265	366	117	811	267
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HT3AM65	HT3AM65	HT3AM65	HE6DK18	невек93	HEBEK93
Gene No.	106	106	901	107	108	108

Last AA of ORF	154	104	132	204	19	32
Predicted First AA of Secreted Portion	51	35	28	33	31	28
Last AA of of Sig Pep	90	34	27	32	30	27
First AA of Sig	-	-	_	-		
AA SEQ ID NO: Y	421	570	571	422	423	572
S' NT of AA F First SEQ AA AA of D Signal NO: 9	175	115	232	138	50	337
S' NT of Start Codon	175	115	232	138	50	337
S' NT 3' NT of of Clone Clone Seq. Seq.	1051	1003	1015	1720	609	995
5' NT of Clone Seq.	171	21	174		18	
Total NT Seq.	1143	1003	1234	1782	610	574
NT SEQ BD NO:	119	268	269	120	121	270
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HJPCM10	HJPCM10	HJPCM10	HSXBL78	HOEAW81	HOEAW81
Gene No.	109	109	109	110	Ξ	11

Last AA of ORF	25	299	28	13	198	40
of AA First Last Predicted of First SEQ AA AA First AA L AA Signal NO: Sig Sig Secreted Pep Portion O	22	31	19		16	23
Last AA of Sig Pep	21	30	8		15	22
First AA of Sig Pep	-	I	-	-	-	1
AA SEQ ID NO: Y	424	425	573	426	427	574
5' NT of First AA of Signal Pep	143	48	988	92	145	280
of of Start	143	48	988	76	145	280
3' NT of Clone Seq.	375	1976	1626	1640	804	637
S' NT 3' NT of of SCione Seq. Seq.	185	1179	688	764	-	77
Total NT Seq.	526	2081	1731	1717	804	1320
SEQ NO:	122	123	271	124	125	272
Vector	Uni-ZAP XR	Uni-ZAP XR		Uni-ZAP XR	pSport1	pSport1
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
cDNA Clone ID	HOEAP41	HEAAR60	HEAAR60	HTXGS75	HOVBA03	HOVBA03
Gene No.	112	113	113	114	115	115

Last AA of ORF	47	30	370	29	30	24
D A L	4		κ	(4		
S' NT of AA First Last Predicted of AA of ID of of of Signal NO: Sig Sig Secreted Pep Portion C	39	21	31	19		
Last AA of Sig Pep	38	20	30	18		
First AA of Sig Pep	Ī		-	I	-	1
AA SEQ ID NO: Y	428	575	429	576	430	431
5' NT of First AA of Signal Pep	73	43	748	2777	968	1265
of of Start	73	43	748	7772	968	1265
3' NT of Clone Seq.	431	515	3752	2995	1144	1830
5' NT 3' NT of of 3' Clone Clone Seq. Seq.	_	, -1	3465	2738 2995	699	1234
Total NT Seq.	431	515	3752	2995	1144	1830
X S B S S S S S S S S S S S S S S S S S	126	273	127	274	128	129
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
cDNA Clone ID	HGBGK76	HGBGK76	НВМ СW78	HBMUW78	HASAS24	HSIDN55
Gene No.	116	116	117	117	118	119

Last AA of ORF	53	176	92	77	32	30
Predicted First AA of Secreted Portion	38	36	17	23	56	26
Last AA of Sig Pep	37	35	16	22	25	25
First AA of Sig Pep	-	-	-	-		_
AA SEQ DO: Y	432	433	577	434	435	436
of AA F First SEQ AA of ID Signal NO: S	1578	46	71	1127	962	274
of of Start Codon	1578	46	71	1127	962	274
3' NT of Clone Seq.	1741	1214	1128	1986	1632	1565
S' NT 3' NT of of SCIONE Seq. Seq.	1505		∞	853	0/9	281
Total NT Seq.	1864	2041	0661	2012	1669	1565
NT SEQ ID NO:	130	131	275	132	133	134
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pBluescript SK-	Uni-ZAP XR
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
cDNA Clone ID	HGBGZ64	H6EBJ64	H6EBJ64	HOECP43	H2CBV31	HPCAD23
Gene No.	120	121	121	122	123	124

Last AA of ORF	69	61	43	42	33	53
First Last Predicted A AA First AA I of of of Sig Sig Secreted Pep Pep Portion C	40		31	31	19	26
Last AA of Sig Pep	39		30	30	T8	25
First AA of Sig Pep	-	-	_	-		-
AA SEQ ID NO: Y	437	438	439	578	440	1 41
of AA F of AA F First SEQ / AA of ID Signal NO: S	1124	107	184	726	1183	585
of of Start Sodon	1124	107	184	726	1183	585
S' NT3' NT of of SCIONE Seq. Seq.	2007	1180	9061	2436	1044 1794	1347
5' NT of Clone Seq.	1101	-	-	572	1044	572
Total NT Seq.	2007	1291	1906	276 2436	1935	1446
NT SEQ BD NO:	135	136	137	276	138	139
Vector	pSport1	Uni-ZAP XR	Lambda ZAP II	Lambda ZAP II	pSport1	Uni-ZAP XR
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
cDNA Clone ID	HSPAGIS	негонзі	HUSHH48	ноѕнн48	HLYAU95	HHSCV65
Gene No.	125	126	127	127	128	129

Last AA of ORF	64	34	68	70	350	49
S' NT of AA First Last Predicted AA of ID of of of Of Signal NO: Sig Sig Secreted Pepper Portion C	25		31	32	26	17
Last AA of Sig Pep	24		30	31	25	16
First AA of Sig Pep	1	_			1	- -
AA SEQ ID NO: Y	442	443	444	579	445	446
5' NT of First AA of Signal Pep	919	56	Ī	571	52	306
of of Start Codor	676	95	1		55	306
S' NT 3' NT of of Olone Clone Seq.	1109	497	269	781	1262	1871
S' NT 3' NT of of SCIONE Clone Seq. Seq.	639	6	, —	408	22	76
Total NT Seq.	1109	497	269	782	1269	1944
X SEQ	140	141	142	277	143	144
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
cDNA Clone ID	HTTAD57	HEBGA37	HEBFU93		HSGSC60	HPMGD24
Gene No.	130	131	132	132	133	134

Predicted First AA Last of AA Secreted of Portion ORF 19 87 315 13 47 22 52 52	31 383	39
Predicted First AA of Secreted Portion 19 13	31	
		33
Last AA of Sig Pep 18	30	32
First Last I AA AA I of of Sig Sig Pep Pep I 18 I 18 I 12 I 12 I 12 I 12 I 12 I 12		-
AA SEQ ID NO: Y 450 450 583 583	453	584
S' NT of AA First SEQ AA of D Signal NO: SPep Y Fep Y A50 241 451 241 451 451 451 451 451 451 451 451 451 4	48	294
Start Codon 784 784 417	48	294
Seq. Seq. Clone Clone Seq. Seq. 721 2044 1689 1847 113 1517	1540	2196
Seq. 11689	538	270
Total NT Seq. 2098 799 1569	1540	2196
SEQ SEQ NO: 148 NO: 148 NO: 150 150	151	282
Vector Uni-Zap XR pBluescript pBluescript Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date 97902 02/26/97 209048 05/15/97 97902 02/26/97 209048 05/15/97 97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
cDNA Clone ID HMWGI25 HSKGF03 HSKGF03	HCMSH30	HCMSH30
Gene No. 138 139 139	141	141

Last AA of ORF	186	163	61	46	105	23
First Last Predicted AA AA First AA I of of of of Sig Secreted Pep Pep Portion C	23	27		22	24	21
Last AA of Sig Pep	52	56		21	23	20
First AA of Sig Pep	-	-	-		_	_
AA SEQ ID NO: Y	454	455	585	456	457	586
of AA F First SEQ AA of ID Signal NO: Pep Y	9	195	621	40	411	878
S' NT of Start Codon	9	195	621	40	411	878
3' NT of Clone Seq.	1575	863	1166	512	2031	1485
S' NT 3' NT of of S Clone Clone Seq. Seq.	069	_	277	_	699	615
Total NT Seq.	1719	863	1185	1101	2031	1634
SEQ NO: NO:	152	153	283	154	155	284
Vector	pSport1	pBluescript	pBluescript	Uni-ZAP XR	Lambda ZAP II	Lambda ZAP II
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HTWCB92	HBMDM46	HBMDM46	HFAMG13	HFXHL79	нғхнг,
Gene No.	142	143	143	144	145	145

Last AA of ORF	70	69	155	77	155	332	V
Predicted First AA of Secreted Portion	24	34	23	31	23	24	
Last AA of Sig Pep	23	33	22	30	22	23	·
First AA of Sig Pep			-	_	-	-	_
SEQ YÖ.	458	587	459	588	589	460	461
5' NT of AA I First SEQ AA of ID Signal NO:	1592	1562	22	224	22	32	1440
5' NT of Start Codon	1592	1562	22	224	22	32	1440
3' NT of Clone Seq.	1809	1749	912	858	915	1422	1509 2382
5' NT of Clone Seq.	1458	1458	45	46	I		
Total NT Seq.	1981	1795	915	858	915	2117	2395
NA NO: NO:	156	285	157	286	287	158	159
Vector	Uni-ZAP XR	Uni-ZAP XR	pSport1	pSport1	Uni-ZAP XR		Lambda ZAP II
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	209139	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HSNAK17	HSNAK17	HCFBC03	HCFBC03	HSJAP03	HSKG026	HCQAV96
Gene No.	146	146	147	147	147	148	149

Last AA of ORF	4	285	24	08	38	47
Predicted First AA of Secreted Portion		31		31	17	31
Last AA of Sig Pep		30		30	91	30
First AA of Sig Pep	1		_		_	
AA SEQ D NO: Y	462	463	590	464	591	465
S' NT of AA F First SEQ AA of ID Signal NO: 3	1416	46	1062	288	281	1611
5' NT of Start Codon	1416	46	1062	288	281	1611
S' NT 3' NT of of Clone Clone Seq. Seq.	2108	006	1517	1003	1195	2180
5' NT 3' NT of of Clone Clone Seq. Seq.	1223	482	783		217	1607 2180
Total NT Seq.	2120	006	1517	1003	3865	2196
NT SEQ ID NO:	160	161	288	162	289	163
Vector	Uni-ZAP XR	pBluescript				
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HSHCC16	HTLEF62	HTLEF62	HTLAD94	HTLAD94	HTSFQ12
Gene No.	150	151	151	152	152	153

Last AA of ORF	96	69	399	308	-	273
of AA First Last Predicted First SEQ AA AA First AA I AA of ID of of of of Signal NO: Sig Sig Secreted Pep Pep Pep Portion C	64	40	31	46		32
Last AA of Sig Pep	63	39	30	45		31
First AA of Sig Pep	ī	_	-	-	_	_
AA SEQ NÖ:	466	592	467	593	468	469
5' NT of First AA of Signal Pep	299	355	258	525	341	284
of of Start Codor	299	355	258	·		284
3' NT of Clone Seq.	1840	1818	2871	2838	2221	1816
S' NT 3' NT of of Clone Clone Seq. Seq.	271	279	489	486	343	1130
Total NT Seq.	1945	1910	2933	3276	2243	1816
NT SEQ ID NO:	164	290	165	291	166	167
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	не6FL83	HE6FL83	HTXFJS5	HTXFJS5	HJPCJ76	HLTED27
Gene No.	154	154	155	155	156	157

Last AA of ORF	22	192	234	105	24	32
Predicted First AA of Secreted Portion		19	27	46	·	24
Last AA of Sig Pep		81	56	45		23
First AA of Sig Pep	1	1		-	_	-
AA SEQ NO: Y	594	470	471	472	595	473
S' NT of AA F of AA of ID of Signal NO: S	1306	208	61	1001	510	1722
S' N' of Start	1306	208	61	1001	510	1722
3' NT of Clone Seq.	1548	787	816	1869	1501	2100
S' NT 3' NT of of Clone Clone Seq. Seq.	1098	Ī	46	798	438	1642
Total NT Seq.	1695	945	905	1883	1501	2100
NT SEQ ID NO: X	292	168	169	170	293	171
Vector	Uni-ZAP XR	pSport1	pBluescript	Uni-ZAP XR	Uni-ZAP XR	pBluescript SK-
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HLTED27	4	HNFIP24	HCELB21	HCELB21	HAWBA28
Gene No.	157	158	159	160	160	161

Last AA of ORF	571	24	312	_	329	∞
Predicted First AA of Secreted Portion	31		31		22	
Last AA of Sig Pep	30		30		21	
First AA of Sig Pep	-	-	1		-	_
AA SEQ ID NO: Y	474	596	475	597	476	598
of AA F First SEQ AA AA Of ID Signal NO: S	9	431	122	976	51	305
of of Start Codon	65	431	122	976	51	305
3' NT of Clone Seq.	1930	2683	1451	1420	2972	828
S' NT 3' NT of of Sclone Clone Seq. Seq.	187	183		961	2197	52
Total NT Seq.	1930	2683	1509	1454	3173	828
NT SEQ ID NO:	172	294	173	295	174	296
Vector	pBluescript SK-	pBluescript SK-	pBluescript SK-	pBluescript SK-	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HSAAS44	HSAAS44		HAFAL73	HSAWF26	HSAWF26
Gene No.	162	162	163	163	164	164

Last AA of ORF	178	25	52	62	27	27
S' NT of AA First Last Predicted First SEQ AA AA First AA I AA of ID of of of of Signal NO: Sig Sig Secreted Teach Pep Pep Portion C	25	19	26	23	22	22
Last AA of Sig Pep	24	18	25	22	21	21
First AA of Sig Pep	_	-	_		_	_
AA SEQ ID NO: Y	477	599	478	479	480	009
5' NT of First AA of Signal Pep	09	1473	889	173	11	17
S' NT 3' NT of of 5' NT Clone Clone of Seq. Seq. Start Codon	09	1473		173	11	17
3' NT of Clone Seq.	970	2413	1290	2290	549	545
5' NT of Clone Seq.	374	1387	499		1	_
Total NT Seq.	166	2416	1290	2290	549	545
NT SEQ DD NO:	175	297	176	177	178	298
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	ŀ	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HEAAL31	HEAAL31	HFKFX55			HPFDZ95
Gene No.	165	165	166	167	168	168

	1	T		<u> </u>		
Last AA of ORF	339	- 61	32	48	59	38
First Last Predicted AA AA First AA I of of of of Sig Sig Secreted Pep Pep Portion C	31	24	27	31	24	30
Last AA of Sig Pep	30	23	26	30	23	29
First AA of Sig Pep	-	_		-	-	1
AA SEQ NO: Y	481	109	482	483	209	484
of AA F First SEQ AA of ID Signal NO: 9	92	295	566	51	300	14
of of Start Codon	92	562	995	51	300	14
3' NT of Clone Seq.	1352	1530	1250	777	766	791
S' NT 3' NT of of Clone Clone Seq. Ceq.	294	385	985	,	244	
Total NT Seq.	1509	1530	1316	777	997	791
X SEQ		299	180	181	300	182
Vector	Uni-ZAP XR	Uni-ZAP XR	pSport1	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	HPTTÜII	HPTTU11	HCFAE79	HTEDJ34	HTEDJ34	HODCW06
Gene No.	169	169	170	171	171	172

Last AA of ORF	61	346	69	237	24	200
First Last Predicted AA AA First AA of of of Sig Sig Secreted Pep Pep Portion	21	25	57	31	10	31
Last AA of Sig Pep	20	24	36	30	6	30
First AA of Sig Pep	1	_	-	_		_
AA SEQ ID NO: Y	485	486	603	487	, 604	488
S' NT of AA F F First SEQ AA of ID Signal NO: S	575	131	233	67	09	257
5' NT of Start Codon	575	131	233	29		257
3' NT of Clone Seq.	1405	1596	2345	2288	1946	1180
S' NT 3' NT of of Clone Clone Seq. Seq.	346	75	75	355	2	462
Total NT Seq.	1405	9651	2345	2293	2369	1212
NT SEQ ID NO:	183	184	301	185	302	186
Vector	Uni-ZAP XR	pBluescript SK-	pBluescript SK-	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	HFTAR26	H2MBF44	H2MBF44	HE8BI92	HE8B192	HFTBR48
Gene No.	173	174	174	175	175	176

Last AA of ORF	35	351	130	265	23	25
Last Predicted AA First AA of of Sig Secreted Pep Portion	24	31	44	31	19	
Last AA of Sig Pep	23	30	43	30	81	
First AA of Sig Pep	1	Ī	-	-	,— 1	-
AS BS A S A S A S A S A S A S A S A S A	605	489	909	490		491
S' NT of AA F First SEQ AA of ID Signal NO: S	693	166	187	∞	54	401
of of Start Sodon	699	166		8	54	
3' NT of Clone Seq.	1149	1554	1515	1516	1261	681
S' NT 3' NT of of SCIONE Seq. Seq.	424	770	719	096		287
Total NT Seq.	1181	1605	1537	1516	1493	189
× Š B Š Š	303	187	304	188	305	681
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	HFTBR48	HE9CM64	HE9CM64	HATAV51	HATAVSI	HAQAF27
Gene No.	176	771	177	178	178	179

Last AA of ORF	159	9	279	232	34	193
First Last Predicted AA AA First AA 1 of of of of Sig Sig Secreted Pep Pep Portion (31		31	31	33	34
AA Of Sig	30		30	30	32	33
First AA of Sig Pep	1	_		-	-	1
AA SEQ ID NO: Y	492	809	493	609	610	494
S' NT of First I of First SEQ AA AA of ID of Signal NO: Sig	360	175	1153	21	302	45
5' NT of Start Codon	360		1153	21	302	45
3' NT of Clone Seq.	1014	577	2630	2860	978	1923
S' NT 3' NT of of Clone Clone Seq. Seq.	703		2207	163	275	30
Total NT Seq.	1014	577	2779	2860	876	1923
NT SEQ UD NO:	190	306		307	308	192
Vector	Uni-ZAP XR	Uni-ZAP XR	pBluescript SK-	pBluescript SK-	pBluescript SK-	Uni-ZAP XR
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	нсееков	нсееков	HAFAU18	HAFAU18	HAFAU18	HETBY74
Gene No.	180	180	181	181	181	182

Last AA of ORF	205	21	147	6	26	29
of AA First Last Predicted T First SEQ AA AA First AA L AA of ID of	31	6]	12		31	61
Last AA of Sig Pep	30	<u>&</u>	=		30	8
First AA of Sig Pep		-		-	-	-
AA SEQ NÖ:	495	611	496	612	497	613
5' NT of First AA of Signal Pep	178	971	434	2131	297	107
S' NT 3' NT of of of Clone Clone of Seq. Seq. Start St	178	971	434		297	107
S' NT 3' NT of of Clone Clone Seq.	2286	2025	3054	3026	907	712
5' NT of Clone Seq.	1160 2286	840	2004	1966	152	<i>L</i> 9
Tota NT Seq.	2346	2025	3054	3026	907	712
NT SEQ DO: NO:	193	309	194	310	195	311
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	HTOAF35	HTOAF35	HCRBX32		HEBGB80	HEBGB80
Gene No.	183	183	184	184	185	185

AA of OF	94	30
S' NT 3' NT Of AA First Last Predicted of Of S' NT First SEQ AA AA First AA Last Clone Clone of AA of ID of of of AA NT Seq. Start Signal NO: Sig Sig Secreted of Codon Pep Y Pep Portion ORF	498 1 30 31	29
Last AA of Sig Pep	30	28
First AA of Sig Pep	-	_
AA SEQ ID NO: Y	498	614
5' NT of First AA of Signal Pep	225	927
5' NT of Start Codon	225	785 1289 927 927 614 1 28
3' NT of Clone Seq.	608	1289
S' NT of Clone Seq.	84	785
Total NT Seq.	1290	1289
NT SEQ ID NO:	961	312
Vector	Uni-ZAP XR 196 1290	Uni-ZAP XR 312 1289
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	186 HFAMH74	186 HFAMH74
Gene No.	186	186

10

15

20

25

30

35

Table 1 summarizes the information corresponding to each "Gene No." described above. The nucleotide sequence identified as "NT SEQ ID NO:X" was assembled from partially homologous ("overlapping") sequences obtained from the "cDNA clone ID" identified in Table 1 and, in some cases, from additional related DNA clones. The overlapping sequences were assembled into a single contiguous sequence of high redundancy (usually three to five overlapping sequences at each nucleotide position), resulting in a final sequence identified as SEQ ID NO:X.

The cDNA Clone ID was deposited on the date and given the corresponding deposit number listed in "ATCC Deposit No:Z and Date." Some of the deposits contain multiple different clones corresponding to the same gene. "Vector" refers to the type of vector contained in the cDNA Clone ID.

"Total NT Seq." refers to the total number of nucleotides in the contig identified by "Gene No." The deposited clone may contain all or most of these sequences, reflected by the nucleotide position indicated as "5' NT of Clone Seq." and the "3' NT of Clone Seq." of SEQ ID NO:X. The nucleotide position of SEQ ID NO:X of the putative start codon (methionine) is identified as "5' NT of Start Codon." Similarly, the nucleotide position of SEQ ID NO:X of the predicted signal sequence is identified as "5' NT of First AA of Signal Pep."

The translated amino acid sequence, beginning with the methionine, is identified as "AA SEQ ID NO:Y," although other reading frames can also be easily translated using known molecular biology techniques. The polypeptides produced by these alternative open reading frames are specifically contemplated by the present invention.

The first and last amino acid position of SEQ ID NO:Y of the predicted signal peptide is identified as "First AA of Sig Pep" and "Last AA of Sig Pep." The predicted first amino acid position of SEQ ID NO:Y of the secreted portion is identified as "Predicted First AA of Secreted Portion." Finally, the amino acid position of SEQ ID NO:Y of the last amino acid in the open reading frame is identified as "Last AA of ORF."

SEQ ID NO:X and the translated SEQ ID NO:Y are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below. For instance, SEQ ID NO:X is useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling a variety of forensic and diagnostic methods of the invention. Similarly, polypeptides identified from SEQ ID NO:Y may be used to generate antibodies which bind specifically to the secreted proteins encoded by the cDNA clones identified in Table 1.

15

20

25

30

35

Nevertheless, DNA sequences generated by sequencing reactions can contain sequencing errors. The errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence. The erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence. In these cases, the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).

Accordingly, for those applications requiring precision in the nucleotide sequence or the amino acid sequence, the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X and the predicted translated amino acid sequence identified as SEQ ID NO:Y, but also a sample of plasmid DNA containing a human cDNA of the invention deposited with the ATCC, as set forth in Table 1. The nucleotide sequence of each deposited clone can readily be determined by sequencing the deposited clone in accordance with known methods. The predicted amino acid sequence can then be verified from such deposits. Moreover, the amino acid sequence of the protein encoded by a particular clone can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.

The present invention also relates to the genes corresponding to SEQ ID NO:X, SEQ ID NO:Y, or the deposited clone. The corresponding gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.

Also provided in the present invention are species homologs. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for the desired homologue.

The polypeptides of the invention can be prepared in any suitable manner. Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.

The polypeptides may be in the form of the secreted protein, including the mature form, or may be a part of a larger protein, such as a fusion protein (see below).

10

15

20

25

30

35

It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro-sequences, sequences which aid in purification, such as multiple histidine residues, or an additional sequence for stability during recombinant production.

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of a polypeptide, including the secreted polypeptide, can be substantially purified by the one-step method described in Smith and Johnson, Gene 67:31-40 (1988). Polypeptides of the invention also can be purified from natural or recombinant sources using antibodies of the invention raised against the secreted protein in methods which are well known in the art.

Signal Sequences

Methods for predicting whether a protein has a signal sequence, as well as the cleavage point for that sequence, are available. For instance, the method of McGeoch, Virus Res. 3:271-286 (1985), uses the information from a short N-terminal charged region and a subsequent uncharged region of the complete (uncleaved) protein. The method of von Heinje, Nucleic Acids Res. 14:4683-4690 (1986) uses the information from the residues surrounding the cleavage site, typically residues -13 to +2, where +1 indicates the amino terminus of the secreted protein. The accuracy of predicting the cleavage points of known mammalian secretory proteins for each of these methods is in the range of 75-80%. (von Heinje, supra.) However, the two methods do not always produce the same predicted cleavage point(s) for a given protein.

In the present case, the deduced amino acid sequence of the secreted polypeptide was analyzed by a computer program called SignalP (Henrik Nielsen et al., Protein Engineering 10:1-6 (1997)), which predicts the cellular location of a protein based on the amino acid sequence. As part of this computational prediction of localization, the methods of McGeoch and von Heinje are incorporated. The analysis of the amino acid sequences of the secreted proteins described herein by this program provided the results shown in Table 1.

As one of ordinary skill would appreciate, however, cleavage sites sometimes vary from organism to organism and cannot be predicted with absolute certainty. Accordingly, the present invention provides secreted polypeptides having a sequence shown in SEQ ID NO:Y which have an N-terminus beginning within 5 residues (i.e., + or - 5 residues) of the predicted cleavage point. Similarly, it is also recognized that in some cases, cleavage of the signal sequence from a secreted protein is not entirely

10

15

20

25

uniform, resulting in more than one secreted species. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

Moreover, the signal sequence identified by the above analysis may not necessarily predict the naturally occurring signal sequence. For example, the naturally occurring signal sequence may be further upstream from the predicted signal sequence. However, it is likely that the predicted signal sequence will be capable of directing the secreted protein to the ER. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

Polynucleotide and Polypeptide Variants

"Variant" refers to a polynucleotide or polypeptide differing from the polynucleotide or polypeptide of the present invention, but retaining essential properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the polynucleotide or polypeptide of the present invention.

"Identity" per se has an art-recognized meaning and can be calculated using published techniques. (See, e.g.: (COMPUTATIONAL MOLECULAR BIOLOGY, Lesk, A.M., ed., Oxford University Press, New York, (1988); BIOCOMPUTING: INFORMATICS AND GENOME PROJECTS, Smith, D.W., ed., Academic Press, New York, (1993); COMPUTER ANALYSIS OF SEQUENCE DATA, PART I, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, (1994);

SEQUENCE ANALYSIS IN MOLECULAR BIOLOGY, von Heinje, G., Academic Press, (1987); and SEQUENCE ANALYSIS PRIMER, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, (1991).) While there exists a number of methods to measure identity between two polynucleotide or polypeptide sequences, the term "identity" is well known to skilled artisans. (Carillo, H., and Lipton, D., SIAM J Applied Math 48:1073 (1988).) Methods commonly employed to determine identity or similarity between two sequences include, but are not limited to, those disclosed in "Guide to Huge Computers," Martin J. Bishop, ed., Academic Press, San Diego,

Methods for aligning polynucleotides or polypeptides are codified in computer programs, including the GCG program package (Devereux, J., et al., Nucleic Acids Research (1984) 12(1):387 (1984)), BLASTP, BLASTN, FASTA (Atschul, S.F. et al., J. Molec. Biol. 215:403 (1990), Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park,

(1994), and Carillo, H., and Lipton, D., SIAM J Applied Math 48:1073 (1988).

575 Science Drive, Madison, WI 53711 (using the local homology algorithm of Smith and Waterman, Advances in Applied Mathematics 2:482-489 (1981).)

10

15

20

25

30

35

When using any of the sequence alignment programs to determine whether a particular sequence is, for instance, 95% identical to a reference sequence, the parameters are set so that the percentage of identity is calculated over the full length of the reference polynucleotide and that gaps in identity of up to 5% of the total number of nucleotides in the reference polynucleotide are allowed.

A preferred method for determing the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. 6:237-245 (1990).) The term "sequence" includes nucleotide and amino acid sequences. In a sequence alignment the query and subject sequences are either both nucleotide sequences or both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB search of a DNA sequence to calculate percent identity are: Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization Group Length=0, and Cutoff Score=1, Gap Penalty=5, Gap Size Penalty 0.05, and Window Size=500 or query sequence length in nucleotide bases, whichever is shorter. Preferred parameters employed to calculate percent identity and similarity of an amino acid alignment are: Matrix=PAM 150, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty=0.05, and Window Size=500 or query sequence length in amino acid residues, whichever is shorter.

As an illustration, a polynucleotide having a nucleotide sequence of at least 95% "identity" to a sequence contained in SEQ ID NO:X or the cDNA contained in the deposited clone, means that the polynucleotide is identical to a sequence contained in SEQ ID NO:X or the cDNA except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the total length (not just within a given 100 nucleotide stretch). In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to SEQ ID NO:X or the deposited clone, up to 5% of the nucleotides in the sequence contained in SEQ ID NO:X or the cDNA can be deleted, inserted, or substituted with other nucleotides. These changes may occur anywhere throughout the polynucleotide.

Further embodiments of the present invention include polynucleotides having at least 85% identity, more preferably at least 90% identity, and most preferably at least 95%, 96%, 97%, 98% or 99% identity to a sequence contained in SEQ ID NO:X or the cDNA contained in the deposited clone. Of course, due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large number of the polynucleotides having at least 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity

10

15

20

25

30

35

will encode a polypeptide identical to an amino acid sequence contained in SEQ ID NO:Y or the expressed protein produced by the deposited clone.

Similarly, by a polypeptide having an amino acid sequence having at least, for example, 95% "identity" to a reference polypeptide, is intended that the amino acid sequence of the polypeptide is identical to the reference polypeptide except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the total length of the reference polypeptide. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

Further embodiments of the present invention include polypeptides having at least 80% identity, more preferably at least 85% identity, more preferably at least 90% identity, and most preferably at least 95%, 96%, 97%, 98% or 99% identity to an amino acid sequence contained in SEQ ID NO:Y or the expressed protein produced by the deposited clone. Preferably, the above polypeptides should exhibit at least one biological activity of the protein.

In a preferred embodiment, polypeptides of the present invention include polypeptides having at least 90% similarity, more preferably at least 95% similarity, and still more preferably at least 96%, 97%, 98%, or 99% similarity to an amino acid sequence contained in SEQ ID NO:Y or the expressed protein produced by the deposited clone.

The variants may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. Nucleotide variants produced by silent substitutions due to the degeneracy of the genetic code are preferred. Moreover, variants in which 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred. Polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host such as E. coli).

Naturally occurring variants are called "allelic variants," and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an

10

15

20

25

30

35

organism. (Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985).) These allelic variants can vary at either the polynucleotide and/or polypeptide level. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.

Using known methods of protein engineering and recombinant DNA technology, variants may be generated to improve or alter the characteristics of the polypeptides of the present invention. For instance, one or more amino acids can be deleted from the N-terminus or C-terminus of the secreted protein without substantial loss of biological function. The authors of Ron et al., J. Biol. Chem. 268: 2984-2988 (1993), reported variant KGF proteins having heparin binding activity even after deleting 3, 8, or 27 amino-terminal amino acid residues. Similarly, Interferon gamma exhibited up to ten times higher activity after deleting 8-10 amino acid residues from the carboxy terminus of this protein. (Dobeli et al., J. Biotechnology 7:199-216 (1988).)

Moreover, ample evidence demonstrates that variants often retain a biological activity similar to that of the naturally occurring protein. For example, Gayle and coworkers (J. Biol. Chem 268:22105-22111 (1993)) conducted extensive mutational analysis of human cytokine IL-1a. They used random mutagenesis to generate over 3,500 individual IL-1a mutants that averaged 2.5 amino acid changes per variant over the entire length of the molecule. Multiple mutations were examined at every possible amino acid position. The investigators found that "[m]ost of the molecule could be altered with little effect on either [binding or biological activity]." (See, Abstract.) In fact, only 23 unique amino acid sequences, out of more than 3,500 nucleotide sequences examined, produced a protein that significantly differed in activity from wild-type.

Furthermore, even if deleting one or more amino acids from the N-terminus or C-terminus of a polypeptide results in modification or loss of one or more biological functions, other biological activities may still be retained. For example, the ability of a deletion variant to induce and/or to bind antibodies which recognize the secreted form will likely be retained when less than the majority of the residues of the secreted form are removed from the N-terminus or C-terminus. Whether a particular polypeptide lacking N- or C-terminal residues of a protein retains such immunogenic activities can readily be determined by routine methods described herein and otherwise known in the art.

Thus, the invention further includes polypeptide variants which show substantial biological activity. Such variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity. For example, guidance concerning how to make

10

15

20

25

30

35

phenotypically silent amino acid substitutions is provided in Bowie, J. U. et al., Science 247:1306-1310 (1990), wherein the authors indicate that there are two main strategies for studying the tolerance of an amino acid sequence to change.

The first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity of the protein.

The second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. (Cunningham and Wells, Science 244:1081-1085 (1989).) The resulting mutant molecules can then be tested for biological activity.

As the authors state, these two strategies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at certain amino acid positions in the protein. For example, most buried (within the tertiary structure of the protein) amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Moreover, tolerated conservative amino acid substitutions involve replacement of the aliphatic or hydrophobic amino acids Ala, Val, Leu and Ile; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement of the amide residues Asn and Gln, replacement of the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement of the small-sized amino acids Ala, Ser, Thr, Met, and Gly.

Besides conservative amino acid substitution, variants of the present invention include (i) substitutions with one or more of the non-conserved amino acid residues, where the substituted amino acid residues may or may not be one encoded by the genetic code, or (ii) substitution with one or more of amino acid residues having a substituent group, or (iii) fusion of the mature polypeptide with another compound, such as a compound to increase the stability and/or solubility of the polypeptide (for example, polyethylene glycol), or (iv) fusion of the polypeptide with additional amino acids, such as an IgG Fc fusion region peptide, or leader or secretory sequence, or a sequence facilitating purification. Such variant polypeptides are deemed to be within the scope of those skilled in the art from the teachings herein.

10

15

20

25

30

35

For example, polypeptide variants containing amino acid substitutions of charged amino acids with other charged or neutral amino acids may produce proteins with improved characteristics, such as less aggregation. Aggregation of pharmaceutical formulations both reduces activity and increases clearance due to the aggregate's immunogenic activity. (Pinckard et al., Clin. Exp. Immunol. 2:331-340 (1967); Robbins et al., Diabetes 36: 838-845 (1987); Cleland et al., Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377 (1993).)

Polynucleotide and Polypeptide Fragments

In the present invention, a "polynucleotide fragment" refers to a short polynucleotide having a nucleic acid sequence contained in the deposited clone or shown in SEQ ID NO:X. The short nucleotide fragments are preferably at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt in length. A fragment "at least 20 nt in length," for example, is intended to include 20 or more contiguous bases from the cDNA sequence contained in the deposited clone or the nucleotide sequence shown in SEQ ID NO:X. These nucleotide fragments are useful as diagnostic probes and primers as discussed herein. Of course, larger fragments (e.g., 50, 150, 500, 600, 2000 nucleotides) are preferred.

Moreover, representative examples of polynucleotide fragments of the invention, include, for example, fragments having a sequence from about nucleotide number 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 651-700, and 701 to the end of SEQ ID NO:X or the cDNA contained in the deposited clone. In this context "about" includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini. Preferably, these fragments encode a polypeptide which has biological activity.

In the present invention, a "polypeptide fragment" refers to a short amino acid sequence contained in SEQ ID NO:Y or encoded by the cDNA contained in the deposited clone. Protein fragments may be "free-standing," or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the invention, include, for example, fragments from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, 102-120, 121-140, 141-160, and 161 to the end of the coding region. Moreover, polypeptide fragments can be about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 amino acids in length. In this context "about"

10

15

20

25

30

35

includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) amino acids, at either extreme or at both extremes.

Preferred polypeptide fragments include the secreted protein as well as the mature form. Further preferred polypeptide fragments include the secreted protein or the mature form having a continuous series of deleted residues from the amino or the carboxy terminus, or both. For example, any number of amino acids, ranging from 1-60, can be deleted from the amino terminus of either the secreted polypeptide or the mature form. Similarly, any number of amino acids, ranging from 1-30, can be deleted from the carboxy terminus of the secreted protein or mature form. Furthermore, any combination of the above amino and carboxy terminus deletions are preferred. Similarly, polynucleotide fragments encoding these polypeptide fragments are also preferred.

Also preferred are polypeptide and polynucleotide fragments characterized by structural or functional domains, such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions.

Polypeptide fragments of SEQ ID NO:Y falling within conserved domains are specifically contemplated by the present invention. Moreover, polynucleotide fragments encoding these domains are also contemplated.

Other preferred fragments are biologically active fragments. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.

Epitopes & Antibodies

In the present invention, "epitopes" refer to polypeptide fragments having antigenic or immunogenic activity in an animal, especially in a human. A preferred embodiment of the present invention relates to a polypeptide fragment comprising an epitope, as well as the polynucleotide encoding this fragment. A region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." In contrast, an "immunogenic epitope" is defined as a part of a protein that elicits an antibody response. (See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998- 4002 (1983).)

10

15

20

25

30

Fragments which function as epitopes may be produced by any conventional means. (See, e.g., Houghten, R. A., Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985) further described in U.S. Patent No. 4,631,211.)

In the present invention, antigenic epitopes preferably contain a sequence of at least seven, more preferably at least nine, and most preferably between about 15 to about 30 amino acids. Antigenic epitopes are useful to raise antibodies, including monoclonal antibodies, that specifically bind the epitope. (See, for instance, Wilson et al., Cell 37:767-778 (1984); Sutcliffe, J. G. et al., Science 219:660-666 (1983).)

Similarly, immunogenic epitopes can be used to induce antibodies according to methods well known in the art. (See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen. Virol. 66:2347-2354 (1985).) A preferred immunogenic epitope includes the secreted protein. The immunogenic epitopes may be presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough (at least about 25 amino acids), without a carrier. However, immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting.)

As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules as well as antibody fragments (such as, for example, Fab and F(ab')2 fragments) which are capable of specifically binding to protein. Fab and F(ab')2 fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody. (Wahl et al., J. Nucl. Med. 24:316-325 (1983).) Thus, these fragments are preferred, as well as the products of a FAB or other immunoglobulin expression library. Moreover, antibodies of the present invention include chimeric, single chain, and humanized antibodies.

Fusion Proteins

Any polypeptide of the present invention can be used to generate fusion proteins. For example, the polypeptide of the present invention, when fused to a second protein, can be used as an antigenic tag. Antibodies raised against the polypeptide of the present invention can be used to indirectly detect the second protein by binding to the polypeptide. Moreover, because secreted proteins target cellular 35 locations based on trafficking signals, the polypeptides of the present invention can be used as targeting molecules once fused to other proteins.

10

15

20

25

30

35

Examples of domains that can be fused to polypeptides of the present invention include not only heterologous signal sequences, but also other heterologous functional regions. The fusion does not necessarily need to be direct, but may occur through linker sequences.

Moreover, fusion proteins may also be engineered to improve characteristics of the polypeptide of the present invention. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence during purification from the host cell or subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to facilitate handling of polypeptides are familiar and routine techniques in the art.

Moreover, polypeptides of the present invention, including fragments, and specifically epitopes, can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life in vivo. One reported example describes chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. (EP A 394,827; Traunecker et al., Nature 331:84-86 (1988).) Fusion proteins having disulfide-linked dimeric structures (due to the IgG) can also be more efficient in binding and neutralizing other molecules, than the monomeric secreted protein or protein fragment alone. (Fountoulakis et al., J. Biochem. 270:3958-3964 (1995).)

Similarly, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. (EP-A 0232 262.) Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. (See, D. Bennett et al., J. Molecular Recognition 8:52-58 (1995); K. Johanson et al., J. Biol. Chem. 270:9459-9471 (1995).)

Moreover, the polypeptides of the present invention can be fused to marker sequences, such as a peptide which facilitates purification of the fused polypeptide. In

10

15

20

25

30

35

preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Another peptide tag useful for purification, the "HA" tag, corresponds to an epitope derived from the influenza hemagglutinin protein. (Wilson et al., Cell 37:767 (1984).)

Thus, any of these above fusions can be engineered using the polynucleotides or the polypeptides of the claimed invention.

Vectors, Host Cells, and Protein Production

The present invention also relates to vectors containing the polynucleotide of the present invention, host cells, and the production of polypeptides by recombinant techniques. The vector may be, for example, a phage, plasmid, viral, or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.

The polynucleotides may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.

The polynucleotide insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E. coli lac, trp, phoA and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation. The coding portion of the transcripts expressed by the constructs will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.

As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase, G418 or neomycin resistance for eukaryotic cell culture and tetracycline, kanamycin or ampicillin resistance genes for culturing in E. coli and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS,

293, and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.

Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE-9, available from QIAGEN, Inc.; pBluescript vectors, Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene Cloning Systems, Inc.; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia Biotech, Inc. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Other suitable vectors will be readily apparent to the skilled artisan.

Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al., Basic Methods In Molecular Biology (1986). It is specifically contemplated that the polypeptides of the present invention may in fact be expressed by a host cell lacking a recombinant vector.

A polypeptide of this invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification.

Polypeptides of the present invention, and preferably the secreted form, can also be recovered from: products purified from natural sources, including bodily fluids, tissues and cells, whether directly isolated or cultured; products of chemical synthetic procedures; and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect, and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, polypeptides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes. Thus, it is well known in the art that the N-terminal methionine encoded by the translation initiation codon generally is removed with high efficiency from any protein after translation in all eukaryotic cells. While the N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins, this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked.

10

15

20

25

30

35

Uses of the Polynucleotides

Each of the polynucleotides identified herein can be used in numerous ways as reagents. The following description should be considered exemplary and utilizes known techniques.

The polynucleotides of the present invention are useful for chromosome identification. There exists an ongoing need to identify new chromosome markers, since few chromosome marking reagents, based on actual sequence data (repeat polymorphisms), are presently available. Each polynucleotide of the present invention can be used as a chromosome marker.

Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the sequences shown in SEQ ID NO:X. Primers can be selected using computer analysis so that primers do not span more than one predicted exon in the genomic DNA. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the SEQ ID NO:X will yield an amplified fragment.

Similarly, somatic hybrids provide a rapid method of PCR mapping the polynucleotides to particular chromosomes. Three or more clones can be assigned per day using a single thermal cycler. Moreover, sublocalization of the polynucleotides can be achieved with panels of specific chromosome fragments. Other gene mapping strategies that can be used include in situ hybridization, prescreening with labeled flow-sorted chromosomes, and preselection by hybridization to construct chromosome specific-cDNA libraries.

Precise chromosomal location of the polynucleotides can also be achieved using fluorescence in situ hybridization (FISH) of a metaphase chromosomal spread. This technique uses polynucleotides as short as 500 or 600 bases; however, polynucleotides 2,000-4,000 bp are preferred. For a review of this technique, see Verma et al., "Human Chromosomes: a Manual of Basic Techniques," Pergamon Press, New York (1988).

For chromosome mapping, the polynucleotides can be used individually (to mark a single chromosome or a single site on that chromosome) or in panels (for marking multiple sites and/or multiple chromosomes). Preferred polynucleotides correspond to the noncoding regions of the cDNAs because the coding sequences are more likely conserved within gene families, thus increasing the chance of cross hybridization during chromosomal mapping.

Once a polynucleotide has been mapped to a precise chromosomal location, the physical position of the polynucleotide can be used in linkage analysis. Linkage

10

15

20

25

30

35

analysis establishes coinheritance between a chromosomal location and presentation of a particular disease. (Disease mapping data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library).) Assuming 1 megabase mapping resolution and one gene per 20 kb, a cDNA precisely localized to a chromosomal region associated with the disease could be one of 50-500 potential causative genes.

181

Thus, once coinheritance is established, differences in the polynucleotide and the corresponding gene between affected and unaffected individuals can be examined. First, visible structural alterations in the chromosomes, such as deletions or translocations, are examined in chromosome spreads or by PCR. If no structural alterations exist, the presence of point mutations are ascertained. Mutations observed in some or all affected individuals, but not in normal individuals, indicates that the mutation may cause the disease. However, complete sequencing of the polypeptide and the corresponding gene from several normal individuals is required to distinguish the mutation from a polymorphism. If a new polymorphism is identified, this polymorphic polypeptide can be used for further linkage analysis.

Furthermore, increased or decreased expression of the gene in affected individuals as compared to unaffected individuals can be assessed using polynucleotides of the present invention. Any of these alterations (altered expression, chromosomal rearrangement, or mutation) can be used as a diagnostic or prognostic marker.

In addition to the foregoing, a polynucleotide can be used to control gene expression through triple helix formation or antisense DNA or RNA. Both methods rely on binding of the polynucleotide to DNA or RNA. For these techniques, preferred polynucleotides are usually 20 to 40 bases in length and complementary to either the region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxy-nucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988).) Triple helix formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques are effective in model systems, and the information disclosed herein can be used to design antisense or triple helix polynucleotides in an effort to treat disease.

Polynucleotides of the present invention are also useful in gene therapy. One goal of gene therapy is to insert a normal gene into an organism having a defective gene, in an effort to correct the genetic defect. The polynucleotides disclosed in the

present invention offer a means of targeting such genetic defects in a highly accurate manner. Another goal is to insert a new gene that was not present in the host genome, thereby producing a new trait in the host cell.

The polynucleotides are also useful for identifying individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identifying personnel. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The polynucleotides of the present invention can be used as additional DNA markers for RFLP.

The polynucleotides of the present invention can also be used as an alternative to RFLP, by determining the actual base-by-base DNA sequence of selected portions of an individual's genome. These sequences can be used to prepare PCR primers for amplifying and isolating such selected DNA, which can then be sequenced. Using this technique, individuals can be identified because each individual will have a unique set of DNA sequences. Once an unique ID database is established for an individual, positive identification of that individual, living or dead, can be made from extremely small tissue samples.

Forensic biology also benefits from using DNA-based identification techniques as disclosed herein. DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, semen, etc., can be amplified using PCR. In one prior art technique, gene sequences amplified from polymorphic loci, such as DQa class II HLA gene, are used in forensic biology to identify individuals. (Erlich, H., PCR Technology, Freeman and Co. (1992).) Once these specific polymorphic loci are amplified, they are digested with one or more restriction enzymes, yielding an identifying set of bands on a Southern blot probed with DNA corresponding to the DQa class II HLA gene. Similarly, polynucleotides of the present invention can be used as polymorphic markers for forensic purposes.

There is also a need for reagents capable of identifying the source of a particular tissue. Such need arises, for example, in forensics when presented with tissue of unknown origin. Appropriate reagents can comprise, for example, DNA probes or primers specific to particular tissue prepared from the sequences of the present invention. Panels of such reagents can identify tissue by species and/or by organ type. In a similar fashion, these reagents can be used to screen tissue cultures for contamination.

In the very least, the polynucleotides of the present invention can be used as molecular weight markers on Southern gels, as diagnostic probes for the presence of a specific mRNA in a particular cell type, as a probe to "subtract-out" known sequences in the process of discovering novel polynucleotides, for selecting and making oligomers for attachment to a "gene chip" or other support, to raise anti-DNA antibodies using DNA immunization techniques, and as an antigen to elicit an immune response.

Uses of the Polypeptides

5

10

15

20

25

30

35

Each of the polypeptides identified herein can be used in numerous ways. The following description should be considered exemplary and utilizes known techniques.

A polypeptide of the present invention can be used to assay protein levels in a biological sample using antibody-based techniques. For example, protein expression in tissues can be studied with classical immunohistological methods. (Jalkanen, M., et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, M., et al., J. Cell . Biol. 105:3087-3096 (1987).) Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase, and radioisotopes, such as iodine (125I, 121I), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and technetium (99mTc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.

In addition to assaying secreted protein levels in a biological sample, proteins can also be detected in vivo by imaging. Antibody labels or markers for in vivo imaging of protein include those detectable by X-radiography, NMR or ESR. For X-radiography, suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma.

A protein-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, 131I, 112In, 99mTc), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously, or intraperitoneally) into the mammal. It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20

10

15

20

25

30

35

millicuries of 99mTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain the specific protein. In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982).)

Thus, the invention provides a diagnostic method of a disorder, which involves (a) assaying the expression of a polypeptide of the present invention in cells or body fluid of an individual; (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of a disorder.

Moreover, polypeptides of the present invention can be used to treat disease. For example, patients can be administered a polypeptide of the present invention in an effort to replace absent or decreased levels of the polypeptide (e.g., insulin), to supplement absent or decreased levels of a different polypeptide (e.g., hemoglobin S for hemoglobin B), to inhibit the activity of a polypeptide (e.g., an oncogene), to activate the activity of a polypeptide (e.g., by binding to a receptor), to reduce the activity of a membrane bound receptor by competing with it for free ligand (e.g., soluble TNF receptors used in reducing inflammation), or to bring about a desired response (e.g., blood vessel growth).

Similarly, antibodies directed to a polypeptide of the present invention can also be used to treat disease. For example, administration of an antibody directed to a polypeptide of the present invention can bind and reduce overproduction of the polypeptide. Similarly, administration of an antibody can activate the polypeptide, such as by binding to a polypeptide bound to a membrane (receptor).

At the very least, the polypeptides of the present invention could be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. Polypeptides can also be used to raise antibodies, which in turn are used to measure protein expression from a recombinant cell, as a way of assessing transformation of the host cell. Moreover, the polypeptides of the present invention can be used to test the following biological activities.

Biological Activities

The polynucleotides and polypeptides of the present invention can be used in assays to test for one or more biological activities. If these polynucleotides and polypeptides do exhibit activity in a particular assay, it is likely that these molecules

may be involved in the diseases associated with the biological activity. Thus, the polynucleotides and polypeptides could be used to treat the associated disease.

Immune Activity

5

10

15

20

25

30

35

A polypeptide or polynucleotide of the present invention may be useful in treating deficiencies or disorders of the immune system, by activating or inhibiting the proliferation, differentiation, or mobilization (chemotaxis) of immune cells. Immune cells develop through a process called hematopoiesis, producing myeloid (platelets, red blood cells, neutrophils, and macrophages) and lymphoid (B and T lymphocytes) cells from pluripotent stem cells. The etiology of these immune deficiencies or disorders may be genetic, somatic, such as cancer or some autoimmune disorders, acquired (e.g., by chemotherapy or toxins), or infectious. Moreover, a polynucleotide or polypeptide of the present invention can be used as a marker or detector of a particular immune system disease or disorder.

A polynucleotide or polypeptide of the present invention may be useful in treating or detecting deficiencies or disorders of hematopoietic cells. A polypeptide or polynucleotide of the present invention could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat those disorders associated with a decrease in certain (or many) types hematopoietic cells. Examples of immunologic deficiency syndromes include, but are not limited to: blood protein disorders (e.g. agammaglobulinemia, dysgammaglobulinemia), ataxia telangiectasia, common variable immunodeficiency, Digeorge Syndrome, HIV infection, HTLV-BLV infection, leukocyte adhesion deficiency syndrome, lymphopenia, phagocyte bactericidal dysfunction, severe combined immunodeficiency (SCIDs), Wiskott-Aldrich Disorder, anemia, thrombocytopenia, or hemoglobinuria.

Moreover, a polypeptide or polynucleotide of the present invention could also be used to modulate hemostatic (the stopping of bleeding) or thrombolytic activity (clot formation). For example, by increasing hemostatic or thrombolytic activity, a polynucleotide or polypeptide of the present invention could be used to treat blood coagulation disorders (e.g., afibrinogenemia, factor deficiencies), blood platelet disorders (e.g. thrombocytopenia), or wounds resulting from trauma, surgery, or other causes. Alternatively, a polynucleotide or polypeptide of the present invention that can decrease hemostatic or thrombolytic activity could be used to inhibit or dissolve clotting. These molecules could be important in the treatment of heart attacks (infarction), strokes, or scarring.

A polynucleotide or polypeptide of the present invention may also be useful in treating or detecting autoimmune disorders. Many autoimmune disorders result from

inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing autoimmune disorders.

Examples of autoimmune disorders that can be treated or detected by the present invention include, but are not limited to: Addison's Disease, hemolytic anemia, antiphospholipid syndrome, rheumatoid arthritis, dermatitis, allergic encephalomyelitis, glomerulonephritis, Goodpasture's Syndrome, Graves' Disease, Multiple Sclerosis, Myasthenia Gravis, Neuritis, Ophthalmia, Bullous Pemphigoid, Pemphigus, Polyendocrinopathies, Purpura, Reiter's Disease, Stiff-Man Syndrome, Autoimmune Thyroiditis, Systemic Lupus Erythematosus, Autoimmune Pulmonary Inflammation, Guillain-Barre Syndrome, insulin dependent diabetes mellitis, and autoimmune inflammatory eye disease.

Similarly, allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems, may also be treated by a polypeptide or polynucleotide of the present invention. Moreover, these molecules can be used to treat anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.

A polynucleotide or polypeptide of the present invention may also be used to treat and/or prevent organ rejection or graft-versus-host disease (GVHD). Organ rejection occurs by host immune cell destruction of the transplanted tissue through an immune response. Similarly, an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues. The administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing organ rejection or GVHD.

Similarly, a polypeptide or polynucleotide of the present invention may also be used to modulate inflammation. For example, the polypeptide or polynucleotide may inhibit the proliferation and differentiation of cells involved in an inflammatory response. These molecules can be used to treat inflammatory conditions, both chronic and acute conditions, including inflammation associated with infection (e.g., septic shock, sepsis, or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, or resulting from over production of cytokines (e.g., TNF or IL-1.)

10

25

Hyperproliferative Disorders

A polypeptide or polynucleotide can be used to treat or detect hyperproliferative disorders, including neoplasms. A polypeptide or polynucleotide of the present invention may inhibit the proliferation of the disorder through direct or indirect interactions. Alternatively, a polypeptide or polynucleotide of the present invention may proliferate other cells which can inhibit the hyperproliferative disorder.

For example, by increasing an immune response, particularly increasing antigenic qualities of the hyperproliferative disorder or by proliferating, differentiating, or mobilizing T-cells, hyperproliferative disorders can be treated. This immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, decreasing an immune response may also be a method of treating hyperproliferative disorders, such as a chemotherapeutic agent.

Examples of hyperproliferative disorders that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but are not limited to neoplasms located in the: abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvic, skin, soft tissue, spleen, thoracic, and urogenital.

Similarly, other hyperproliferative disorders can also be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of such hyperproliferative disorders include, but are not limited to: hypergammaglobulinemia, lymphoproliferative disorders, paraproteinemias, purpura, sarcoidosis, Sezary Syndrome, Waldenstron's Macroglobulinemia, Gaucher's Disease, histiocytosis, and any other hyperproliferative disease, besides neoplasia, located in an organ system listed above.

Infectious Disease

A polypeptide or polynucleotide of the present invention can be used to treat or detect infectious agents. For example, by increasing the immune response, particularly increasing the proliferation and differentiation of B and/or T cells, infectious diseases may be treated. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, the polypeptide or polynucleotide of the present invention may also directly inhibit the infectious agent, without necessarily eliciting an immune response.

symptoms or diseases.

10

15

Viruses are one example of an infectious agent that can cause disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of viruses, include, but are not limited to the following DNA and RNA viral families: Arbovirus, Adenoviridae, Arenaviridae, Arterivirus, Birnaviridae, Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, Flaviviridae, Hepadnaviridae (Hepatitis), Herpesviridae (such as, Cytomegalovirus, Herpes Simplex, Herpes Zoster), Mononegavirus (e.g., Paramyxoviridae, Morbillivirus, Rhabdoviridae), Orthomyxoviridae (e.g., Influenza), Papovaviridae, Parvoviridae, Picornaviridae, Poxviridae (such as Smallpox or Vaccinia), Reoviridae (e.g., Rotavirus), Retroviridae (HTLV-I, HTLV-II, Lentivirus), and Togaviridae (e.g., Rubivirus). Viruses falling within these families can cause a variety of diseases or symptoms, including, but not limited to: arthritis, bronchiollitis, encephalitis, eye infections (e.g., conjunctivitis, keratitis), chronic fatigue syndrome, hepatitis (A, B, C, E, Chronic Active, Delta), meningitis, opportunistic infections (e.g., AIDS), pneumonia, Burkitt's Lymphoma, chickenpox, hemorrhagic fever, Measles, Mumps, Parainfluenza, Rabies, the common cold, Polio, leukemia, Rubella, sexually transmitted diseases, skin diseases (e.g., Kaposi's, warts), and viremia. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these

188

20 Similarly, bacterial or fungal agents that can cause disease or symptoms and that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following Gram-Negative and Gram-positive bacterial families and fungi: Actinomycetales (e.g., Corynebacterium, Mycobacterium, Norcardia), Aspergillosis, Bacillaceae (e.g., Anthrax, Clostridium), Bacteroidaceae, 25 Blastomycosis, Bordetella, Borrelia, Brucellosis, Candidiasis, Campylobacter, Coccidioidomycosis, Cryptococcosis, Dermatocycoses, Enterobacteriaceae (Klebsiella, Salmonella, Serratia, Yersinia), Erysipelothrix, Helicobacter, Legionellosis, Leptospirosis, Listeria, Mycoplasmatales, Neisseriaceae (e.g., Acinetobacter, Gonorrhea, Menigococcal), Pasteurellacea Infections (e.g., Actinobacillus, 30 Heamophilus, Pasteurella), Pseudomonas, Rickettsiaceae, Chlamydiaceae, Syphilis, and Staphylococcal. These bacterial or fungal families can cause the following diseases or symptoms, including, but not limited to: bacteremia, endocarditis, eye infections (conjunctivitis, tuberculosis, uveitis), gingivitis, opportunistic infections (e.g., AIDS related infections), paronychia, prosthesis-related infections, Reiter's Disease, 35 respiratory tract infections, such as Whooping Cough or Empyema, sepsis, Lyme Disease, Cat-Scratch Disease, Dysentery, Paratyphoid Fever, food poisoning, Typhoid, pneumonia, Gonorrhea, meningitis, Chlamydia, Syphilis, Diphtheria,

10

15

20

25

30

35

Leprosy, Paratuberculosis, Tuberculosis, Lupus, Botulism, gangrene, tetanus, impetigo, Rheumatic Fever, Scarlet Fever, sexually transmitted diseases, skin diseases (e.g., cellulitis, dermatocycoses), toxemia, urinary tract infections, wound infections. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Moreover, parasitic agents causing disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following families: Amebiasis, Babesiosis, Coccidiosis, Cryptosporidiosis, Dientamoebiasis, Dourine, Ectoparasitic, Giardiasis, Helminthiasis, Leishmaniasis, Theileriasis, Toxoplasmosis, Trypanosomiasis, and Trichomonas. These parasites can cause a variety of diseases or symptoms, including, but not limited to: Scabies, Trombiculiasis, eye infections, intestinal disease (e.g., dysentery, giardiasis), liver disease, lung disease, opportunistic infections (e.g., AIDS related), Malaria, pregnancy complications, and toxoplasmosis. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Preferably, treatment using a polypeptide or polynucleotide of the present invention could either be by administering an effective amount of a polypeptide to the patient, or by removing cells from the patient, supplying the cells with a polynucleotide of the present invention, and returning the engineered cells to the patient (ex vivo therapy). Moreover, the polypeptide or polynucleotide of the present invention can be used as an antigen in a vaccine to raise an immune response against infectious disease.

Regeneration

A polynucleotide or polypeptide of the present invention can be used to differentiate, proliferate, and attract cells, leading to the regeneration of tissues. (See, Science 276:59-87 (1997).) The regeneration of tissues could be used to repair, replace, or protect tissue damaged by congenital defects, trauma (wounds, burns, incisions, or ulcers), age, disease (e.g. osteoporosis, osteocarthritis, periodontal disease, liver failure), surgery, including cosmetic plastic surgery, fibrosis, reperfusion injury, or systemic cytokine damage.

Tissues that could be regenerated using the present invention include organs (e.g., pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac), vascular (including vascular endothelium), nervous, hematopoietic, and skeletal (bone, cartilage, tendon, and ligament) tissue. Preferably, regeneration occurs without or decreased scarring. Regeneration also may include angiogenesis.

Moreover, a polynucleotide or polypeptide of the present invention may increase regeneration of tissues difficult to heal. For example, increased tendon/ligament regeneration would quicken recovery time after damage. A polynucleotide or polypeptide of the present invention could also be used prophylactically in an effort to avoid damage. Specific diseases that could be treated include of tendinitis, carpal tunnel syndrome, and other tendon or ligament defects. A further example of tissue regeneration of non-healing wounds includes pressure ulcers, ulcers associated with vascular insufficiency, surgical, and traumatic wounds.

Similarly, nerve and brain tissue could also be regenerated by using a polynucleotide or polypeptide of the present invention to proliferate and differentiate nerve cells. Diseases that could be treated using this method include central and peripheral nervous system diseases, neuropathies, or mechanical and traumatic disorders (e.g., spinal cord disorders, head trauma, cerebrovascular disease, and stoke). Specifically, diseases associated with peripheral nerve injuries, peripheral neuropathy (e.g., resulting from chemotherapy or other medical therapies), localized neuropathies, and central nervous system diseases (e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome), could all be treated using the polynucleotide or polypeptide of the present invention.

20

25

5

10

15

Chemotaxis

A polynucleotide or polypeptide of the present invention may have chemotaxis activity. A chemotaxic molecule attracts or mobilizes cells (e.g., monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells) to a particular site in the body, such as inflammation, infection, or site of hyperproliferation. The mobilized cells can then fight off and/or heal the particular trauma or abnormality.

A polynucleotide or polypeptide of the present invention may increase chemotaxic activity of particular cells. These chemotactic molecules can then be used to treat inflammation, infection, hyperproliferative disorders, or any immune system disorder by increasing the number of cells targeted to a particular location in the body. For example, chemotaxic molecules can be used to treat wounds and other trauma to tissues by attracting immune cells to the injured location. Chemotactic molecules of the present invention can also attract fibroblasts, which can be used to treat wounds.

35

30

It is also contemplated that a polynucleotide or polypeptide of the present invention may inhibit chemotactic activity. These molecules could also be used to treat

disorders. Thus, a polynucleotide or polypeptide of the present invention could be used as an inhibitor of chemotaxis.

Binding Activity

5

10

15

20

25

30

35

A polypeptide of the present invention may be used to screen for molecules that bind to the polypeptide or for molecules to which the polypeptide binds. The binding of the polypeptide and the molecule may activate (agonist), increase, inhibit (antagonist), or decrease activity of the polypeptide or the molecule bound. Examples of such molecules include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

Preferably, the molecule is closely related to the natural ligand of the polypeptide, e.g., a fragment of the ligand, or a natural substrate, a ligand, a structural or functional mimetic. (See, Coligan et al., Current Protocols in Immunology 1(2):Chapter 5 (1991).) Similarly, the molecule can be closely related to the natural receptor to which the polypeptide binds, or at least, a fragment of the receptor capable of being bound by the polypeptide (e.g., active site). In either case, the molecule can be rationally designed using known techniques.

Preferably, the screening for these molecules involves producing appropriate cells which express the polypeptide, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or *E. coli*. Cells expressing the polypeptide (or cell membrane containing the expressed polypeptide) are then preferably contacted with a test compound potentially containing the molecule to observe binding, stimulation, or inhibition of activity of either the polypeptide or the molecule.

The assay may simply test binding of a candidate compound to the polypeptide, wherein binding is detected by a label, or in an assay involving competition with a labeled competitor. Further, the assay may test whether the candidate compound results in a signal generated by binding to the polypeptide.

Alternatively, the assay can be carried out using cell-free preparations, polypeptide/molecule affixed to a solid support, chemical libraries, or natural product mixtures. The assay may also simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide, measuring polypeptide/molecule activity or binding, and comparing the polypeptide/molecule activity or binding to a standard.

Preferably, an ELISA assay can measure polypeptide level or activity in a sample (e.g., biological sample) using a monoclonal or polyclonal antibody. The

antibody can measure polypeptide level or activity by either binding, directly or indirectly, to the polypeptide or by competing with the polypeptide for a substrate.

All of these above assays can be used as diagnostic or prognostic markers. The molecules discovered using these assays can be used to treat disease or to bring about a particular result in a patient (e.g., blood vessel growth) by activating or inhibiting the polypeptide/molecule. Moreover, the assays can discover agents which may inhibit or enhance the production of the polypeptide from suitably manipulated cells or tissues.

Therefore, the invention includes a method of identifying compounds which bind to a polypeptide of the invention comprising the steps of: (a) incubating a candidate binding compound with a polypeptide of the invention; and (b) determining if binding has occurred. Moreover, the invention includes a method of identifying agonists/antagonists comprising the steps of: (a) incubating a candidate compound with a polypeptide of the invention, (b) assaying a biological activity, and (b) determining if a biological activity of the polypeptide has been altered.

15

20

25

30

35

10

5

Other Activities

A polypeptide or polynucleotide of the present invention may also increase or decrease the differentiation or proliferation of embryonic stem cells, besides, as discussed above, hematopoietic lineage.

A polypeptide or polynucleotide of the present invention may also be used to modulate mammalian characteristics, such as body height, weight, hair color, eye color, skin, percentage of adipose tissue, pigmentation, size, and shape (e.g., cosmetic surgery). Similarly, a polypeptide or polynucleotide of the present invention may be used to modulate mammalian metabolism affecting catabolism, anabolism, processing, utilization, and storage of energy.

A polypeptide or polynucleotide of the present invention may be used to change a mammal's mental state or physical state by influencing biorhythms, caricadic rhythms, depression (including depressive disorders), tendency for violence, tolerance for pain, reproductive capabilities (preferably by Activin or Inhibin-like activity), hormonal or endocrine levels, appetite, libido, memory, stress, or other cognitive qualities.

A polypeptide or polynucleotide of the present invention may also be used as a food additive or preservative, such as to increase or decrease storage capabilities, fat content, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional components.

10

15

20

25

30

35

Other Preferred Embodiments

Other preferred embodiments of the claimed invention include an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 50 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Clone Sequence and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Start Codon and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Similarly preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 150 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

Further preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 500 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

A further preferred embodiment is a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NO:X beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence of SEQ ID NO:X.

10

15

20

25

30

35

Also preferred is an isolated nucleic acid molecule which hybridizes under stringent hybridization conditions to a nucleic acid molecule, wherein said nucleic acid molecule which hybridizes does not hybridize under stringent hybridization conditions to a nucleic acid molecule having a nucleotide sequence consisting of only A residues or of only T residues.

Also preferred is a composition of matter comprising a DNA molecule which comprises a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the material deposited with the American Type Culture Collection and given the ATCC Deposit Number shown in Table 1 for said cDNA Clone Identifier.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in the nucleotide sequence of a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the deposit given the ATCC Deposit Number shown in Table 1.

Also preferred is an isolated nucleic acid molecule, wherein said sequence of at least 50 contiguous nucleotides is included in the nucleotide sequence of the complete open reading frame sequence encoded by said human cDNA clone.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 150 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 500 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is a method for detecting in a biological sample a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing a nucleotide sequence of at least one nucleic acid molecule in said sample with a sequence selected from said group and determining

15

20

25

30

35

whether the sequence of said nucleic acid molecule in said sample is at least 95% identical to said selected sequence.

195

Also preferred is the above method wherein said step of comparing sequences comprises determining the extent of nucleic acid hybridization between nucleic acid molecules in said sample and a nucleic acid molecule comprising said sequence selected from said group. Similarly, also preferred is the above method wherein said step of comparing sequences is performed by comparing the nucleotide sequence determined from a nucleic acid molecule in said sample with said sequence selected from said group. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

A further preferred embodiment is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting nucleic acid molecules in said sample, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for identifying the species, tissue or cell type of a biological sample can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject nucleic acid molecules, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for diagnosing a pathological condition can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

15

20

25

30

35

Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1.

Also preferred is a polypeptide, wherein said sequence of contiguous amino acids is included in the amino acid sequence of SEQ ID NO:Y in the range of positions beginning with the residue at about the position of the First Amino Acid of the Secreted Portion and ending with the residue at about the Last Amino Acid of the Open Reading Frame as set forth for SEQ ID NO:Y in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the complete amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is a polypeptide wherein said sequence of contiguous amino acids is included in the amino acid sequence of a secreted portion of the secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the

10

15

20

25

30

35

amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

197

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is an isolated antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method for detecting in a biological sample a polypeptide comprising an amino acid sequence which is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group and determining whether the sequence of said polypeptide molecule in said sample is at least 90% identical to said sequence of at least 10 contiguous amino acids.

Also preferred is the above method wherein said step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group comprises determining the extent of specific binding of polypeptides in said sample to an antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an

10

15

20

25

30

35

amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method wherein said step of comparing sequences is performed by comparing the amino acid sequence determined from a polypeptide molecule in said sample with said sequence selected from said group.

Also preferred is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting polypeptide molecules in said sample, if any, comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method for identifying the species, tissue or cell type of a biological sample, which method comprises a step of detecting polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the above group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

In any of these methods, the step of detecting said polypeptide molecules includes using an antibody.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a nucleotide sequence encoding a polypeptide wherein said polypeptide comprises an amino acid sequence that is at least

10

15

20

25

30

35

90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

199

Also preferred is an isolated nucleic acid molecule, wherein said nucleotide sequence encoding a polypeptide has been optimized for expression of said polypeptide in a prokaryotic host.

Also preferred is an isolated nucleic acid molecule, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method of making a recombinant vector comprising inserting any of the above isolated nucleic acid molecule into a vector. Also preferred is the recombinant vector produced by this method. Also preferred is a method of making a recombinant host cell comprising introducing the vector into a host cell, as well as the recombinant host cell produced by this method.

Also preferred is a method of making an isolated polypeptide comprising culturing this recombinant host cell under conditions such that said polypeptide is expressed and recovering said polypeptide. Also preferred is this method of making an isolated polypeptide, wherein said recombinant host cell is a eukaryotic cell and said polypeptide is a secreted portion of a human secreted protein comprising an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y beginning with the residue at the position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y wherein Y is an integer set forth in Table 1 and said position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y is defined in Table 1; and an amino acid sequence of a secreted portion of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The isolated polypeptide produced by this method is also preferred.

Also preferred is a method of treatment of an individual in need of an increased level of a secreted protein activity, which method comprises administering to such an individual a pharmaceutical composition comprising an amount of an isolated

10

15

polypeptide, polynucleotide, or antibody of the claimed invention effective to increase the level of said protein activity in said individual.

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

Examples

Example 1: Isolation of a Selected cDNA Clone From the Deposited Sample

Each cDNA clone in a cited ATCC deposit is contained in a plasmid vector. Table 1 identifies the vectors used to construct the cDNA library from which each clone was isolated. In many cases, the vector used to construct the library is a phage vector from which a plasmid has been excised. The table immediately below correlates the related plasmid for each phage vector used in constructing the cDNA library. For example, where a particular clone is identified in Table 1 as being isolated in the vector "Lambda Zap," the corresponding deposited clone is in "pBluescript."

	b the same of the	
	Vector Used to Construct Library	Corresponding Deposited Plasmid
	Lambda Zap	pBluescript (pBS)
	Uni-Zap XR	pBluescript (pBS)
20	Zap Express	pBK
	lafmid BA	plafmid BA
	pSport1	pSport1
	pCMVSport 2.0	pCMVSport 2.0
	pCMVSport 3.0	pCMVSport 3.0
25	pCR [®] 2.1	pCR [®] 2.1
		-

Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S. Patent Nos. 5,128, 256 and 5,286,636), Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 16:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res.

- 30 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Both can be transformed into E. coli strain XL-1 Blue, also available from Stratagene. pBS comes in 4 forms SK+, SK-, KS+ and KS.
- The S and K refers to the orientation of the polylinker to the T7 and T3 primer sequences which flank the polylinker region ("S" is for SacI and "K" is for KpnI which are the first sites on each respective end of the linker). "+" or "-" refer to the orientation

15

20

25

of the f1 origin of replication ("ori"), such that in one orientation, single stranded rescue initiated from the f1 ori generates sense strand DNA and in the other, antisense.

Vectors pSport1, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. (See, for instance, Gruber, C. E., et al., Focus 15:59 (1993).) Vector lafmid BA (Bento Soares, Columbia University, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue. Vector pCR®2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. (See, for instance, Clark, J. M., Nuc. Acids Res. 16:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991).) Preferably, a polynucleotide of the present invention does not comprise the phage vector sequences identified for the particular clone in Table 1, as well as the corresponding plasmid vector sequences designated above.

The deposited material in the sample assigned the ATCC Deposit Number cited in Table 1 for any given cDNA clone also may contain one or more additional plasmids, each comprising a cDNA clone different from that given clone. Thus, deposits sharing the same ATCC Deposit Number contain at least a plasmid for each cDNA clone identified in Table 1. Typically, each ATCC deposit sample cited in Table 1 comprises a mixture of approximately equal amounts (by weight) of about 50 plasmid DNAs, each containing a different cDNA clone; but such a deposit sample may include plasmids for more or less than 50 cDNA clones, up to about 500 cDNA clones.

Two approaches can be used to isolate a particular clone from the deposited sample of plasmid DNAs cited for that clone in Table 1. First, a plasmid is directly isolated by screening the clones using a polynucleotide probe corresponding to SEQ ID NO:X.

Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported.

- The oligonucleotide is labeled, for instance, with ³²P-γ-ATP using T4 polynucleotide kinase and purified according to routine methods. (E.g., Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982).) The plasmid mixture is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art, such as those provided by the vector supplier or in related publications or patents cited above.
- those provided by the vector supplier or in related publications or patents cited above.

 The transformants are plated on 1.5% agar plates (containing the appropriate selection

10

15

20

25

30

35

agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening (e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edit., (1989), Cold Spring Harbor Laboratory Press, pages 1.93 to 1.104), or other techniques known to those of skill in the art.

Alternatively, two primers of 17-20 nucleotides derived from both ends of the SEQ ID NO:X (i.e., within the region of SEQ ID NO:X bounded by the 5' NT and the 3' NT of the clone defined in Table 1) are synthesized and used to amplify the desired cDNA using the deposited cDNA plasmid as a template. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 µl of reaction mixture with 0.5 ug of the above cDNA template. A convenient reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 µM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.

Several methods are available for the identification of the 5' or 3' non-coding portions of a gene which may not be present in the deposited clone. These methods include but are not limited to, filter probing, clone enrichment using specific probes, and protocols similar or identical to 5' and 3' "RACE" protocols which are well known in the art. For instance, a method similar to 5' RACE is available for generating the missing 5' end of a desired full-length transcript. (Fromont-Racine et al., Nucleic Acids Res. 21(7):1683-1684 (1993).)

Briefly, a specific RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcripts. A primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the gene of interest is used to PCR amplify the 5' portion of the desired full-length gene. This amplified product may then be sequenced and used to generate the full length gene.

This above method starts with total RNA isolated from the desired source, although poly-A+ RNA can be used. The RNA preparation can then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA which may interfere with the later RNA ligase step. The phosphatase should then be inactivated and the RNA treated with tobacco acid pyrophosphatase in order to

PCT/US98/04493

remove the cap structure present at the 5' ends of messenger RNAs. This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase.

203

This modified RNA preparation is used as a template for first strand cDNA synthesis using a gene specific oligonucleotide. The first strand synthesis reaction is used as a template for PCR amplification of the desired 5' end using a primer specific to the ligated RNA oligonucleotide and a primer specific to the known sequence of the gene of interest. The resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the desired gene.

10

15

20

25

30

35

5

Example 2: Isolation of Genomic Clones Corresponding to a Polynucleotide

A human genomic P1 library (Genomic Systems, Inc.) is screened by PCR using primers selected for the cDNA sequence corresponding to SEQ ID NO:X., according to the method described in Example 1. (See also, Sambrook.)

Example 3: Tissue Distribution of Polypeptide

Tissue distribution of mRNA expression of polynucleotides of the present invention is determined using protocols for Northern blot analysis, described by, among others, Sambrook et al. For example, a cDNA probe produced by the method described in Example 1 is labeled with P³² using the rediprimeTM DNA labeling system (Amersham Life Science), according to manufacturer's instructions. After labeling, the probe is purified using CHROMA SPIN-100TM column (Clontech Laboratories, Inc.), according to manufacturer's protocol number PT1200-1. The purified labeled probe is then used to examine various human tissues for mRNA expression.

Multiple Tissue Northern (MTN) blots containing various human tissues (H) or human immune system tissues (IM) (Clontech) are examined with the labeled probe using ExpressHybTM hybridization solution (Clontech) according to manufacturer's protocol number PT1190-1. Following hybridization and washing, the blots are mounted and exposed to film at -70°C overnight, and the films developed according to standard procedures.

Example 4: Chromosomal Mapping of the Polynucleotides

An oligonucleotide primer set is designed according to the sequence at the 5' end of SEQ ID NO:X. This primer preferably spans about 100 nucleotides. This primer set is then used in a polymerase chain reaction under the following set of

10

15

20

25

30

35

PCT/US98/04493

conditions: 30 seconds, 95°C; 1 minute, 56°C; 1 minute, 70°C. This cycle is repeated 32 times followed by one 5 minute cycle at 70°C. Human, mouse, and hamster DNA is used as template in addition to a somatic cell hybrid panel containing individual chromosomes or chromosome fragments (Bios, Inc). The reactions is analyzed on either 8% polyacrylamide gels or 3.5 % agarose gels. Chromosome mapping is determined by the presence of an approximately 100 bp PCR fragment in the particular somatic cell hybrid.

204

Example 5: Bacterial Expression of a Polypeptide

A polynucleotide encoding a polypeptide of the present invention is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence, as outlined in Example 1, to synthesize insertion fragments. The primers used to amplify the cDNA insert should preferably contain restriction sites, such as BamHI and XbaI, at the 5' end of the primers in order to clone the amplified product into the expression vector. For example, BamHI and XbaI correspond to the restriction enzyme sites on the bacterial expression vector pQE-9. (Qiagen, Inc., Chatsworth, CA). This plasmid vector encodes antibiotic resistance (Amp^r), a bacterial origin of replication (ori), an IPTG-regulatable promoter/operator (P/O), a ribosome binding site (RBS), a 6-histidine tag (6-His), and restriction enzyme cloning sites.

The pQE-9 vector is digested with BamHI and XbaI and the amplified fragment is ligated into the pQE-9 vector maintaining the reading frame initiated at the bacterial RBS. The ligation mixture is then used to transform the E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan^r). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis.

Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D.⁶⁰⁰) of between 0.4 and 0.6. IPTG (Isopropyl-B-D-thiogalacto pyranoside) is then added to a final concentration of 1 mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression.

Cells are grown for an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic

10

15

20

25

30

35

agent 6 Molar Guanidine HCl by stirring for 3-4 hours at 4°C. The cell debris is removed by centrifugation, and the supernatant containing the polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (available from QIAGEN, Inc., *supra*). Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure (for details see: The QIAexpressionist (1995) QIAGEN, Inc., *supra*).

Briefly, the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the polypeptide is eluted with 6 M guanidine-HCl, pH 5.

The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein can be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins are eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4°C or frozen at -80°C.

In addition to the above expression vector, the present invention further includes an expression vector comprising phage operator and promoter elements operatively linked to a polynucleotide of the present invention, called pHE4a. (ATCC Accession Number XXXXXX.) This vector contains: 1) a neomycinphosphotransferase gene as a selection marker, 2) an E. coli origin of replication, 3) a T5 phage promoter sequence, 4) two lac operator sequences, 5) a Shine-Delgarno sequence, and 6) the lactose operon repressor gene (lacIq). The origin of replication (oriC) is derived from pUC19 (LTI, Gaithersburg, MD). The promoter sequence and operator sequences are made synthetically.

DNA can be inserted into the pHEa by restricting the vector with NdeI and XbaI, BamHI, XhoI, or Asp718, running the restricted product on a gel, and isolating the larger fragment (the stuffer fragment should be about 310 base pairs). The DNA insert is generated according to the PCR protocol described in Example 1, using PCR primers having restriction sites for NdeI (5' primer) and XbaI, BamHI, XhoI, or Asp718 (3' primer). The PCR insert is gel purified and restricted with compatible enzymes. The insert and vector are ligated according to standard protocols.

The engineered vector could easily be substituted in the above protocol to express protein in a bacterial system.

Example 6: Purification of a Polypeptide from an Inclusion Body

5

10

15

20

25

30

The following alternative method can be used to purify a polypeptide expressed in *E coli* when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

206

Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells are then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 xg for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 xg centrifugation for 15 min., the pellet is discarded and the polypeptide containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

Following high speed centrifugation (30,000 xg) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

To clarify the refolded polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 μm membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a

10

15

20

25

30

35

stepwise manner. The absorbance at 280 nm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

Fractions containing the polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant polypeptide should exhibit greater than 95% purity after the above refolding and purification steps. No major contaminant bands should be observed from Commassie blue stained 16% SDS-PAGE gel when 5 µg of purified protein is loaded. The purified protein can also be tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

Example 7: Cloning and Expression of a Polypeptide in a Baculovirus Expression System

In this example, the plasmid shuttle vector pA2 is used to insert a polynucleotide into a baculovirus to express a polypeptide. This expression vector contains the strong polyhedrin promoter of the *Autographa californica* nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites such as BamHI, Xba I and Asp718. The polyadenylation site of the simian virus 40 ("SV40") is used for efficient polyadenylation. For easy selection of recombinant virus, the plasmid contains the beta-galactosidase gene from *E. coli* under control of a weak Drosophila promoter in the same orientation, followed by the polyadenylation signal of the polyhedrin gene. The inserted genes are flanked on both sides by viral sequences for cell-mediated homologous recombination with wild-type viral DNA to generate a viable virus that express the cloned polynucleotide.

Many other baculovirus vectors can be used in place of the vector above, such as pAc373, pVL941, and pAcIM1, as one skilled in the art would readily appreciate, as long as the construct provides appropriately located signals for transcription, translation, secretion and the like, including a signal peptide and an in-frame AUG as

10

15

20

25

30

35

required. Such vectors are described, for instance, in Luckow et al., Virology 170:31-39 (1989).

Specifically, the cDNA sequence contained in the deposited clone, including the AUG initiation codon and the naturally associated leader sequence identified in Table 1, is amplified using the PCR protocol described in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the pA2 vector does not need a second signal peptide. Alternatively, the vector can be modified (pA2 GP) to include a baculovirus leader sequence, using the standard methods described in Summers et al., "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures," Texas Agricultural Experimental Station Bulletin No. 1555 (1987).

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The plasmid is digested with the corresponding restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.).

The fragment and the dephosphorylated plasmid are ligated together with T4 DNA ligase. E. coli HB101 or other suitable E. coli hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates. Bacteria containing the plasmid are identified by digesting DNA from individual colonies and analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing.

Five μg of a plasmid containing the polynucleotide is co-transfected with 1.0 μg of a commercially available linearized baculovirus DNA ("BaculoGold™ baculovirus DNA", Pharmingen, San Diego, CA), using the lipofection method described by Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987). One μg of BaculoGold™ virus DNA and 5 μg of the plasmid are mixed in a sterile well of a microtiter plate containing 50 μl of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards, 10 μl Lipofectin plus 90 μl Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm tissue culture plate with 1 ml Grace's medium without serum. The plate is then incubated for 5 hours at 27° C. The transfection solution is then removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. Cultivation is then continued at 27° C for four days.

10

15

20

30

35

After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, *supra*. An agarose gel with "Blue Gal" (Life Technologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10.) After appropriate incubation, blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf). The agar containing the recombinant viruses is then resuspended in a microcentrifuge tube containing 200 µl of Grace's medium and the suspension containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4° C.

To verify the expression of the polypeptide, Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovirus containing the polynucleotide at a multiplicity of infection ("MOI") of about 2. If radiolabeled proteins are desired, 6 hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc., Rockville, MD). After 42 hours, 5 μ Ci of ³⁵S-methionine and 5 μ Ci ³⁵S-cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then are harvested by centrifugation. The proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled).

Microsequencing of the amino acid sequence of the amino terminus of purified protein may be used to determine the amino terminal sequence of the produced protein.

25 Example 8: Expression of a Polypeptide in Mammalian Cells

The polypeptide of the present invention can be expressed in a mammalian cell. A typical mammalian expression vector contains a promoter element, which mediates the initiation of transcription of mRNA, a protein coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription is achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses, e.g., RSV, HTLVI, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular elements can also be used (e.g., the human actin promoter).

Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden),

10

15

20

25

30

35

PCT/US98/04493

pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146), pBC12MI (ATCC 67109), pCMVSport 2.0, and pCMVSport 3.0. Mammalian host cells that could be used include, human Hela, 293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.

Alternatively, the polypeptide can be expressed in stable cell lines containing the polynucleotide integrated into a chromosome. The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.

The transfected gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) marker is useful in developing cell lines that carry several hundred or even several thousand copies of the gene of interest. (See, e.g., Alt, F. W., et al., J. Biol. Chem. 253:1357-1370 (1978); Hamlin, J. L. and Ma, C., Biochem. et Biophys. Acta, 1097:107-143 (1990); Page, M. J. and Sydenham, M. A., Biotechnology 9:64-68 (1991).) Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) and NSO cells are often used for the production of proteins.

Derivatives of the plasmid pSV2-dhfr (ATCC Accession No. 37146), the expression vectors pC4 (ATCC Accession No. 209646) and pC6 (ATCC Accession No. 209647) contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al., Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart et al., Cell 41:521-530 (1985).) Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, XbaI and Asp718, facilitate the cloning of the gene of interest. The vectors also contain the 3' intron, the polyadenylation and termination signal of the rat preproinsulin gene, and the mouse DHFR gene under control of the SV40 early promoter.

Specifically, the plasmid pC6, for example, is digested with appropriate restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.

A polynucleotide of the present invention is amplified according to the protocol outlined in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the vector does not need a second signal peptide. Alternatively, if the

10

15

20

25

30

35

naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The amplified fragment is then digested with the same restriction enzyme and purified on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC6 using, for instance, restriction enzyme analysis.

Chinese hamster ovary cells lacking an active DHFR gene is used for transfection. Five µg of the expression plasmid pC6 is cotransfected with 0.5 µg of the plasmid pSVneo using lipofectin (Felgner et al., supra). The plasmid pSV2-neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of metothrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 µM, 2 µM, 5 µM, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100 -200 µM. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.

Example 9: Protein Fusions

The polypeptides of the present invention are preferably fused to other proteins. These fusion proteins can be used for a variety of applications. For example, fusion of the present polypeptides to His-tag, HA-tag, protein A, IgG domains, and maltose binding protein facilitates purification. (See Example 5; see also EP A 394,827; Traunecker, et al., Nature 331:84-86 (1988).) Similarly, fusion to IgG-1, IgG-3, and albumin increases the halflife time in vivo. Nuclear localization signals fused to the polypeptides of the present invention can target the protein to a specific subcellular localization, while covalent heterodimer or homodimers can increase or decrease the activity of a fusion protein. Fusion proteins can also create chimeric molecules having

10

15

20

more than one function. Finally, fusion proteins can increase solubility and/or stability of the fused protein compared to the non-fused protein. All of the types of fusion proteins described above can be made by modifying the following protocol, which outlines the fusion of a polypeptide to an IgG molecule, or the protocol described in Example 5.

Briefly, the human Fc portion of the IgG molecule can be PCR amplified, using primers that span the 5' and 3' ends of the sequence described below. These primers also should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector.

For example, if pC4 (Accession No.209646) is used, the human Fc portion can be ligated into the BamHI cloning site. Note that the 3' BamHI site should be destroyed. Next, the vector containing the human Fc portion is re-restricted with BamHI, linearizing the vector, and a polynucleotide of the present invention, isolated by the PCR protocol described in Example 1, is ligated into this BamHI site. Note that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced.

If the naturally occurring signal sequence is used to produce the secreted protein, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

Human IgG Fc region:

GGGATCCGGAGCCCAAATCTTCTGACAAAACTCACACATGCCCACCGTGCC CAGCACCTGAATTCGAGGGTGCACCGTCAGTCTTCCTCTTCCCCCCAAAACC 25 CAAGGACACCCTCATGATCTCCCGGACTCCTGAGGTCACATGCGTGGTGGT GGACGTAAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAAC AGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTG AATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAGCCCTCCCAACCCCC ATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT 30 GTACACCCTGCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCT GACCTGCCTGGTCAAAGGCTTCTATCCAAGCGACATCGCCGTGGAGTGGGA GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG ACTCCGACGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCA GGTGGCAGCAGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGC 35 ACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGAGTGC GACGGCCGCGACTCTAGAGGAT (SEQ ID NO:1)

10

15

20

25

30

35

Example 10: Production of an Antibody from a Polypeptide

The antibodies of the present invention can be prepared by a variety of methods. (See, Current Protocols, Chapter 2.) For example, cells expressing a polypeptide of the present invention is administered to an animal to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation of the secreted protein is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

In the most preferred method, the antibodies of the present invention are monoclonal antibodies (or protein binding fragments thereof). Such monoclonal antibodies can be prepared using hybridoma technology. (Köhler et al., Nature 256:495 (1975); Köhler et al., Eur. J. Immunol. 6:511 (1976); Köhler et al., Eur. J. Immunol. 6:292 (1976); Hammerling et al., in: Monoclonal Antibodies and T-Cell Hybridomas, Elsevier, N.Y., pp. 563-681 (1981).) In general, such procedures involve immunizing an animal (preferably a mouse) with polypeptide or, more preferably, with a secreted polypeptide-expressing cell. Such cells may be cultured in any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56°C), and supplemented with about 10 g/l of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 μg/ml of streptomycin.

The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP2O), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands et al. (Gastroenterology 80:225-232 (1981).) The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide.

Alternatively, additional antibodies capable of binding to the polypeptide can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody

10

15

whose ability to bind to the protein-specific antibody can be blocked by the polypeptide. Such antibodies comprise anti-idiotypic antibodies to the protein-specific antibody and can be used to immunize an animal to induce formation of further protein-specific antibodies.

It will be appreciated that Fab and F(ab')2 and other fragments of the antibodies of the present invention may be used according to the methods disclosed herein. Such fragments are typically produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). Alternatively, secreted protein-binding fragments can be produced through the application of recombinant DNA technology or through synthetic chemistry.

For in vivo use of antibodies in humans, it may be preferable to use "humanized" chimeric monoclonal antibodies. Such antibodies can be produced using genetic constructs derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric antibodies are known in the art. (See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671; Boulianne et al., Nature 312:643 (1984); Neuberger et al., Nature 314:268 (1985).)

20

25

30

35

Example 11: Production Of Secreted Protein For High-Throughput Screening Assays

The following protocol produces a supernatant containing a polypeptide to be tested. This supernatant can then be used in the Screening Assays described in Examples 13-20.

First, dilute Poly-D-Lysine (644 587 Boehringer-Mannheim) stock solution (1mg/ml in PBS) 1:20 in PBS (w/o calcium or magnesium 17-516F Biowhittaker) for a working solution of 50ug/ml. Add 200 ul of this solution to each well (24 well plates) and incubate at RT for 20 minutes. Be sure to distribute the solution over each well (note: a 12-channel pipetter may be used with tips on every other channel). Aspirate off the Poly-D-Lysine solution and rinse with 1ml PBS (Phosphate Buffered Saline). The PBS should remain in the well until just prior to plating the cells and plates may be poly-lysine coated in advance for up to two weeks.

Plate 293T cells (do not carry cells past P+20) at 2 x 10⁵ cells/well in .5ml DMEM(Dulbecco's Modified Eagle Medium)(with 4.5 G/L glucose and L-glutamine (12-604F Biowhittaker))/10% heat inactivated FBS(14-503F Biowhittaker)/1x Penstrep(17-602E Biowhittaker). Let the cells grow overnight.

10

15

20

25

30

35

The next day, mix together in a sterile solution basin: 300 ul Lipofectamine (18324-012 Gibco/BRL) and 5ml Optimem I (31985070 Gibco/BRL)/96-well plate. With a small volume multi-channel pipetter, aliquot approximately 2ug of an expression vector containing a polynucleotide insert, produced by the methods described in Examples 8 or 9, into an appropriately labeled 96-well round bottom plate. With a multi-channel pipetter, add 50ul of the Lipofectamine/Optimem I mixture to each well. Pipette up and down gently to mix. Incubate at RT 15-45 minutes. After about 20 minutes, use a multi-channel pipetter to add 150ul Optimem I to each well. As a control, one plate of vector DNA lacking an insert should be transfected with each set of transfections.

Preferably, the transfection should be performed by tag-teaming the following tasks. By tag-teaming, hands on time is cut in half, and the cells do not spend too much time on PBS. First, person A aspirates off the media from four 24-well plates of cells, and then person B rinses each well with .5-1ml PBS. Person A then aspirates off PBS rinse, and person B, using a12-channel pipetter with tips on every other channel, adds the 200ul of DNA/Lipofectamine/Optimem I complex to the odd wells first, then to the even wells, to each row on the 24-well plates. Incubate at 37°C for 6 hours.

While cells are incubating, prepare appropriate media, either 1%BSA in DMEM with 1x penstrep, or CHO-5 media (see below) with 2mm glutamine and 1x penstrep. (BSA (81-068-3 Bayer) 100gm dissolved in 1L DMEM for a 10% BSA stock solution). Filter the media and collect 50 ul for endotoxin assay in 15ml polystyrene conical.

The transfection reaction is terminated, preferably by tag-teaming, at the end of the incubation period. Person A aspirates off the transfection media, while person B adds 1.5ml appropriate media to each well. Incubate at 37°C for 45 or 72 hours depending on the media used: 1%BSA for 45 hours or CHO-5 for 72 hours.

On day four, using a 300ul multichannel pipetter, aliquot 600ul in one 1ml deep well plate and the remaining supernatant into a 2ml deep well. The supernatants from each well can then be used in the assays described in Examples 13-20.

It is specifically understood that when activity is obtained in any of the assays described below using a supernatant, the activity originates from either the polypeptide directly (e.g., as a secreted protein) or by the polypeptide inducing expression of other proteins, which are then secreted into the supernatant. Thus, the invention further provides a method of identifying the protein in the supernatant characterized by an activity in a particular assay.

HGS-CHO-5 medium formulation:

Inorganic Salts

CaCl2 (anhyd)	116.6 mg/L
CuSO ₄ -5H ₂ O	0.00130
Fe(NO ₃) ₃ -9H ₂ O	0.050
FeSO ₄ -7H ₂ O	0.417
KCl	311.80
MgCl ₂	28.64
$MgSO_4$	48.84
NaCl	6995.50
NaHCO ₃	2400.0
NaH ₂ PO ₄ -H ₂ 0	62.50
Na ₂ HPO4	71.02
ZnSO ₄ -7H ₂ O	.4320

5 Lipids

Arachidonic Acid	.002 mg/L
Cholesterol	1.022
DL-alpha-	.070
Tocopherol-Acetate	
Linoleic Acid	0.0520
Linolenic Acid	0.010
Myristic Acid	0.010
Oleic Acid	0.010
Palmitric Acid	0.010
Palmitic Acid	0.010
Pluronic F-68	100
Stearic Acid	0.010
Tween 80	2.20

Carbon Source

D-Glucose 4551 mg/L

Amino Acids

L- Alanine	130.85 mg/ml
L-Arginine-HCL	147.50
L-Asparagine-H ₂ 0	7.50
L-Aspartic Acid	6.65
L-Cystine-2HCL- H ₂ 0	29.56
L-Cystine-2HCL	31.29
L-Glutamic Acid	7.35
L-Glutamine	365.0
Glycine	18.75
L-Histidine-HCL-	52.48

H ₂ 0	
L-Isoleucine	106.97
L-Leucine	111.45
L-Lysine HCL	163.75
L-Methionine	32.34
L-Phenylalainine	68.48
L-Proline	40.0
L-Serine	26.25
L-Threonine	101.05
L-Tryptophan	19.22
L-Tryrosine-2Na-	91.79
2H ₂ 0	
L-Valine	99.65

Vitamins

Biotin	0.0035 mg/L
D-Ca Pantothenate	3.24
Choline Chloride	11.78
Folic Acid	4.65
i-Inositol	15.60
Niacinamide	3.02
Pyridoxal HCL	3.00
Pyridoxine HCL	0.031
Riboflavin	0.319
Thiamine HCL	3.17
Thymidine	0.365
Vitamin B ₁₂	0.680

Other Components

HEPES Buffer	25 mM
Na Hypoxanthine	2.39 mg/L
Lipoic Acid	0.105
Sodium Putrescine-2HCL	0.081
Sodium Pyruvate	55.0
Sodium Selenite	0.0067
Ethanolamine	20uM
Ferric Citrate	0.122
Methyl-B-Cyclodextrin complexed with Linoleic Acid	41.70
Methyl-B-Cyclodextrin complexed with Oleic Acid	33.33
Methyl-B-Cyclodextrin complexed with Retinal Acetate	10

5

10

15

20

25

30

35

Example 12: Construction of GAS Reporter Construct

One signal transduction pathway involved in the differentiation and proliferation of cells is called the Jaks-STATs pathway. Activated proteins in the Jaks-STATs pathway bind to gamma activation site "GAS" elements or interferon-sensitive responsive element ("ISRE"), located in the promoter of many genes. The binding of a protein to these elements alter the expression of the associated gene.

GAS and ISRE elements are recognized by a class of transcription factors called Signal Transducers and Activators of Transcription, or "STATs." There are six members of the STATs family. Stat1 and Stat3 are present in many cell types, as is Stat2 (as response to IFN-alpha is widespread). Stat4 is more restricted and is not in many cell types though it has been found in T helper class I, cells after treatment with IL-12. Stat5 was originally called mammary growth factor, but has been found at higher concentrations in other cells including myeloid cells. It can be activated in tissue culture cells by many cytokines.

The STATs are activated to translocate from the cytoplasm to the nucleus upon tyrosine phosphorylation by a set of kinases known as the Janus Kinase ("Jaks") family. Jaks represent a distinct family of soluble tyrosine kinases and include Tyk2, Jak1, Jak2, and Jak3. These kinases display significant sequence similarity and are generally catalytically inactive in resting cells.

The Jaks are activated by a wide range of receptors summarized in the Table below. (Adapted from review by Schidler and Darnell, Ann. Rev. Biochem. 64:621-51 (1995).) A cytokine receptor family, capable of activating Jaks, is divided into two groups: (a) Class 1 includes receptors for IL-2, IL-3, IL-4, IL-6, IL-7, IL-9, IL-11, IL-12, IL-15, Epo, PRL, GH, G-CSF, GM-CSF, LIF, CNTF, and thrombopoietin; and (b) Class 2 includes IFN-a, IFN-g, and IL-10. The Class 1 receptors share a conserved cysteine motif (a set of four conserved cysteines and one tryptophan) and a WSXWS motif (a membrane proxial region encoding Trp-Ser-Xxx-Trp-Ser (SEQ ID NO:2)).

Thus, on binding of a ligand to a receptor, Jaks are activated, which in turn activate STATs, which then translocate and bind to GAS elements. This entire process is encompassed in the Jaks-STATs signal transduction pathway.

Therefore, activation of the Jaks-STATs pathway, reflected by the binding of the GAS or the ISRE element, can be used to indicate proteins involved in the proliferation and differentiation of cells. For example, growth factors and cytokines are known to activate the Jaks-STATs pathway. (See Table below.) Thus, by using GAS elements linked to reporter molecules, activators of the Jaks-STATs pathway can be identified.

	ICDC		<u>JAKs</u>			<u>STATS</u>	GAS(elements) or
	<u>ISRE</u> <u>Ligand</u>	tyk2	Jak 1	Jak2	Jak3		
5	IFN family						
	IFN-a/B	+	+	-	-	1,2,3	ISRE
	IFN-g (IRF1>Lys6>IFP)		+	+	-	I	GAS .
	II-10	+	?	?	-	1,3	
10	120 f 'l						
	gp130 family IL-6 (Pleiotrohic)	+	+	+	?	1,3	GAS
	(IRF1>Lys6>IFP)	т	т	T	•	1,5	·
	Il-11(Pleiotrohic)	?	+	?	?	1,3	
15	OnM(Pleiotrohic)	?	+	+	?	1,3	
	LIF(Pleiotrohic) CNTF(Pleiotrohic)	? -/+	+	+ +	? ?	1,3 1,3	
	G-CSF(Pleiotrohic)	?	+	?	?	1,3	
	IL-12(Pleiotrohic)	+	-	+	+	1,3	
20	0.6 "						
	g-C family IL-2 (lymphocytes)					1 2 5	CAC
	IL-4 (lymph/myeloid)	-	+ +	-	+ +	1,3,5 6	GAS GAS (IRF1 = IFP
	>>Ly6)(IgH)		•		•	Ü	ons (in i – ii i
25	IL-7 (lymphocytes)	-	+	-	+	5	GAS
	IL-9 (lymphocytes)	-	+	-	+	5	GAS
	IL-13 (lymphocyte) IL-15	- ?	++	?	? +	6 5	GAS GAS
	12 13	•	т	•	r	3	OAS
30	gp140 family						
	IL-3 (myeloid)	-	-	+	-	5	GAS
	(IRF1>IFP>>Ly6) IL-5 (myeloid)	_	_	+	_	5	GAS
	GM-CSF (myeloid)	-	_	+	-	5	GAS
35	, ,						
	Growth hormone fami					F	
	GH PRL	? ?	- +/-	+ +	-	5 1,3,5	
	EPO	;	 //-	+	-	1,3,3 5	GAS(B-
40	CAS>IRF1=IFP>>Ly6)		,		3	G/IS(D
	Receptor Tyrosine Kir	กลรคร					
	EGF	?	+	+	_	1,3	GAS (IRF1)
45	DDGE						,
45	PDGF CSF-1	?	+	+	-	1,3	CAS (not IDE1)
	C31'-1	<i>:</i>	+	+	-	1,3	GAS (not IRF1)

10

15

20

To construct a synthetic GAS containing promoter element, which is used in the Biological Assays described in Examples 13-14, a PCR based strategy is employed to generate a GAS-SV40 promoter sequence. The 5' primer contains four tandem copies of the GAS binding site found in the IRF1 promoter and previously demonstrated to bind STATs upon induction with a range of cytokines (Rothman et al., Immunity 1:457-468 (1994).), although other GAS or ISRE elements can be used instead. The 5' primer also contains 18bp of sequence complementary to the SV40 early promoter sequence and is flanked with an XhoI site. The sequence of the 5' primer is: 5':GCGCCTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCC

The downstream primer is complementary to the SV40 promoter and is flanked with a Hind III site: 5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

PCR amplification is performed using the SV40 promoter template present in the B-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI/Hind III and subcloned into BLSK2-. (Stratagene.) Sequencing with forward and reverse primers confirms that the insert contains the following sequence:

25

30

35

With this GAS promoter element linked to the SV40 promoter, a GAS:SEAP2 reporter construct is next engineered. Here, the reporter molecule is a secreted alkaline phosphatase, or "SEAP." Clearly, however, any reporter molecule can be instead of SEAP, in this or in any of the other Examples. Well known reporter molecules that can be used instead of SEAP include chloramphenical acetyltransferase (CAT), luciferase, alkaline phosphatase, B-galactosidase, green fluorescent protein (GFP), or any protein detectable by an antibody.

The above sequence confirmed synthetic GAS-SV40 promoter element is subcloned into the pSEAP-Promoter vector obtained from Clontech using HindIII and XhoI, effectively replacing the SV40 promoter with the amplified GAS:SV40 promoter element, to create the GAS-SEAP vector. However, this vector does not contain a

10

15

25

30

35

neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

Thus, in order to generate mammalian stable cell lines expressing the GAS-SEAP reporter, the GAS-SEAP cassette is removed from the GAS-SEAP vector using Sall and Notl, and inserted into a backbone vector containing the neomycin resistance gene, such as pGFP-1 (Clontech), using these restriction sites in the multiple cloning site, to create the GAS-SEAP/Neo vector. Once this vector is transfected into mammalian cells, this vector can then be used as a reporter molecule for GAS binding as described in Examples 13-14.

Other constructs can be made using the above description and replacing GAS with a different promoter sequence. For example, construction of reporter molecules containing NFK-B and EGR promoter sequences are described in Examples 15 and 16. However, many other promoters can be substituted using the protocols described in these Examples. For instance, SRE, IL-2, NFAT, or Osteocalcin promoters can be substituted, alone or in combination (e.g., GAS/NF-KB/EGR, GAS/NF-KB, Il-2/NFAT, or NF-KB/GAS). Similarly, other cell lines can be used to test reporter construct activity, such as HELA (epithelial), HUVEC (endothelial), Reh (B-cell), Saos-2 (osteoblast), HUVAC (aortic), or Cardiomyocyte.

20 Example 13: High-Throughput Screening Assay for T-cell Activity.

The following protocol is used to assess T-cell activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate T-cells. T-cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The T-cell used in this assay is Jurkat T-cells (ATCC Accession No. TIB-152), although Molt-3 cells (ATCC Accession No. CRL-1552) and Molt-4 cells (ATCC Accession No. CRL-1582) cells can also be used.

Jurkat T-cells are lymphoblastic CD4+ Th1 helper cells. In order to generate stable cell lines, approximately 2 million Jurkat cells are transfected with the GAS-SEAP/neo vector using DMRIE-C (Life Technologies)(transfection procedure described below). The transfected cells are seeded to a density of approximately 20,000 cells per well and transfectants resistant to 1 mg/ml genticin selected. Resistant colonies are expanded and then tested for their response to increasing concentrations of interferon gamma. The dose response of a selected clone is demonstrated.

Specifically, the following protocol will yield sufficient cells for 75 wells containing 200 ul of cells. Thus, it is either scaled up, or performed in multiple to generate sufficient cells for multiple 96 well plates. Jurkat cells are maintained in RPMI

10

15

20

25

30

+ 10% serum with 1%Pen-Strep. Combine 2.5 mls of OPTI-MEM (Life Technologies) with 10 ug of plasmid DNA in a T25 flask. Add 2.5 ml OPTI-MEM containing 50 ul of DMRIE-C and incubate at room temperature for 15-45 mins.

During the incubation period, count cell concentration, spin down the required number of cells (10^7 per transfection), and resuspend in OPTI-MEM to a final concentration of 10^7 cells/ml. Then add 1ml of 1 x 10^7 cells in OPTI-MEM to T25 flask and incubate at 37°C for 6 hrs. After the incubation, add 10 ml of RPMI + 15% serum.

The Jurkat:GAS-SEAP stable reporter lines are maintained in RPMI + 10% serum, 1 mg/ml Genticin, and 1% Pen-Strep. These cells are treated with supernatants containing a polypeptide as produced by the protocol described in Example 11.

On the day of treatment with the supernatant, the cells should be washed and resuspended in fresh RPMI + 10% serum to a density of 500,000 cells per ml. The exact number of cells required will depend on the number of supernatants being screened. For one 96 well plate, approximately 10 million cells (for 10 plates, 100 million cells) are required.

Transfer the cells to a triangular reservoir boat, in order to dispense the cells into a 96 well dish, using a 12 channel pipette. Using a 12 channel pipette, transfer 200 ul of cells into each well (therefore adding 100, 000 cells per well).

After all the plates have been seeded, 50 ul of the supernatants are transferred directly from the 96 well plate containing the supernatants into each well using a 12 channel pipette. In addition, a dose of exogenous interferon gamma (0.1, 1.0, 10 ng) is added to wells H9, H10, and H11 to serve as additional positive controls for the assay.

The 96 well dishes containing Jurkat cells treated with supernatants are placed in an incubator for 48 hrs (note: this time is variable between 48-72 hrs). 35 ul samples from each well are then transferred to an opaque 96 well plate using a 12 channel pipette. The opaque plates should be covered (using sellophene covers) and stored at -20°C until SEAP assays are performed according to Example 17. The plates containing the remaining treated cells are placed at 4°C and serve as a source of material for repeating the assay on a specific well if desired.

As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate Jurkat T cells. Over 30 fold induction is typically observed in the positive control wells.

10

15

20

25

30

Example 14: High-Throughput Screening Assay Identifying Myeloid Activity

The following protocol is used to assess myeloid activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate myeloid cells. Myeloid cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The myeloid cell used in this assay is U937, a pre-monocyte cell line, although TF-1, HL60, or KG1 can be used.

To transiently transfect U937 cells with the GAS/SEAP/Neo construct produced in Example 12, a DEAE-Dextran method (Kharbanda et. al., 1994, Cell Growth & Differentiation, 5:259-265) is used. First, harvest 2x10e⁷ U937 cells and wash with PBS. The U937 cells are usually grown in RPMI 1640 medium containing 10% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 mg/ml streptomycin.

Next, suspend the cells in 1 ml of 20 mM Tris-HCl (pH 7.4) buffer containing 0.5 mg/ml DEAE-Dextran, 8 ug GAS-SEAP2 plasmid DNA, 140 mM NaCl, 5 mM KCl, 375 uM Na₂HPO₄.7H₂O, 1 mM MgCl₂, and 675 uM CaCl₂. Incubate at 37°C for 45 min.

Wash the cells with RPMI 1640 medium containing 10% FBS and then resuspend in 10 ml complete medium and incubate at 37°C for 36 hr.

The GAS-SEAP/U937 stable cells are obtained by growing the cells in 400 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 400 ug/ml G418 for couple of passages.

These cells are tested by harvesting $1x10^8$ cells (this is enough for ten 96-well plates assay) and wash with PBS. Suspend the cells in 200 ml above described growth medium, with a final density of $5x10^5$ cells/ml. Plate 200 ul cells per well in the 96-well plate (or $1x10^5$ cells/well).

Add 50 ul of the supernatant prepared by the protocol described in Example 11. Incubate at 37°C for 48 to 72 hr. As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate U937 cells. Over 30 fold induction is typically observed in the positive control wells. SEAP assay the supernatant according to the protocol described in Example 17.

10

15

20

25

30

35

Example 15: High-Throughput Screening Assay Identifying Neuronal Activity.

When cells undergo differentiation and proliferation, a group of genes are activated through many different signal transduction pathways. One of these genes, EGR1 (early growth response gene 1), is induced in various tissues and cell types upon activation. The promoter of EGR1 is responsible for such induction. Using the EGR1 promoter linked to reporter molecules, activation of cells can be assessed.

Particularly, the following protocol is used to assess neuronal activity in PC12 cell lines. PC12 cells (rat phenochromocytoma cells) are known to proliferate and/or differentiate by activation with a number of mitogens, such as TPA (tetradecanoyl phorbol acetate), NGF (nerve growth factor), and EGF (epidermal growth factor). The EGR1 gene expression is activated during this treatment. Thus, by stably transfecting PC12 cells with a construct containing an EGR promoter linked to SEAP reporter, activation of PC12 cells can be assessed.

The EGR/SEAP reporter construct can be assembled by the following protocol. The EGR-1 promoter sequence (-633 to +1)(Sakamoto K et al., Oncogene 6:867-871 (1991)) can be PCR amplified from human genomic DNA using the following primers:

- 5' GCGCTCGAGGGATGACAGCGATAGAACCCCGG -3' (SEQ ID NO:6)
- 5' GCGAAGCTTCGCGACTCCCCGGATCCGCCTC-3' (SEQ ID NO:7)

Using the GAS:SEAP/Neo vector produced in Example 12, EGR1 amplified product can then be inserted into this vector. Linearize the GAS:SEAP/Neo vector using restriction enzymes XhoI/HindIII, removing the GAS/SV40 stuffer. Restrict the EGR1 amplified product with these same enzymes. Ligate the vector and the EGR1 promoter.

To prepare 96 well-plates for cell culture, two mls of a coating solution (1:30 dilution of collagen type I (Upstate Biotech Inc. Cat#08-115) in 30% ethanol (filter sterilized)) is added per one 10 cm plate or 50 ml per well of the 96-well plate, and allowed to air dry for 2 hr.

PC12 cells are routinely grown in RPMI-1640 medium (Bio Whittaker) containing 10% horse serum (JRH BIOSCIENCES, Cat. # 12449-78P), 5% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 ug/ml streptomycin on a precoated 10 cm tissue culture dish. One to four split is done every three to four days. Cells are removed from the plates by scraping and resuspended with pipetting up and down for more than 15 times.

10

15

20

25

30

Transfect the EGR/SEAP/Neo construct into PC12 using the Lipofectamine protocol described in Example 11. EGR-SEAP/PC12 stable cells are obtained by growing the cells in 300 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 300 ug/ml G418 for couple of passages.

To assay for neuronal activity, a 10 cm plate with cells around 70 to 80% confluent is screened by removing the old medium. Wash the cells once with PBS (Phosphate buffered saline). Then starve the cells in low serum medium (RPMI-1640 containing 1% horse serum and 0.5% FBS with antibiotics) overnight.

The next morning, remove the medium and wash the cells with PBS. Scrape off the cells from the plate, suspend the cells well in 2 ml low serum medium. Count the cell number and add more low serum medium to reach final cell density as $5x10^5$ cells/ml.

Add 200 ul of the cell suspension to each well of 96-well plate (equivalent to $1x10^5$ cells/well). Add 50 ul supernatant produced by Example 11, 37°C for 48 to 72 hr. As a positive control, a growth factor known to activate PC12 cells through EGR can be used, such as 50 ng/ul of Neuronal Growth Factor (NGF). Over fifty-fold induction of SEAP is typically seen in the positive control wells. SEAP assay the supernatant according to Example 17.

Example 16: High-Throughput Screening Assay for T-cell Activity

NF-kB (Nuclear Factor kB) is a transcription factor activated by a wide variety of agents including the inflammatory cytokines IL-1 and TNF, CD30 and CD40, lymphotoxin-alpha and lymphotoxin-beta, by exposure to LPS or thrombin, and by expression of certain viral gene products. As a transcription factor, NF-kB regulates the expression of genes involved in immune cell activation, control of apoptosis (NF-kB appears to shield cells from apoptosis), B and T-cell development, anti-viral and antimicrobial responses, and multiple stress responses.

In non-stimulated conditions, NF- κB is retained in the cytoplasm with I-κB (Inhibitor κB). However, upon stimulation, I- κB is phosphorylated and degraded, causing NF- κB to shuttle to the nucleus, thereby activating transcription of target genes. Target genes activated by NF- κB include IL-2, IL-6, GM-CSF, ICAM-1 and class 1 MHC.

WO 98/39448

5

10

30

Due to its central role and ability to respond to a range of stimuli, reporter constructs utilizing the NF-kB promoter element are used to screen the supernatants produced in Example 11. Activators or inhibitors of NF-kB would be useful in treating diseases. For example, inhibitors of NF-kB could be used to treat those diseases related to the acute or chronic activation of NF-kB, such as rheumatoid arthritis.

The downstream primer is complementary to the 3' end of the SV40 promoter and is flanked with a Hind III site:

5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

- PCR amplification is performed using the SV40 promoter template present in the pB-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI and Hind III and subcloned into BLSK2-. (Stratagene) Sequencing with the T7 and T3 primers confirms the insert contains the following sequence:
- 5':CTCGAGGGGACTTTCCCGGGGACTTTCCGGGGACTTTCC
 ATCTGCCATCTCAATTAGTCAGCAACCATAGTCCCGCCCTAACTCCGCCCA
 TCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACT
 AATTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTC
 CAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTT:
 3' (SEQ ID NO:10)

Next, replace the SV40 minimal promoter element present in the pSEAP2-promoter plasmid (Clontech) with this NF-κB/SV40 fragment using XhoI and HindIII. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

In order to generate stable mammalian cell lines, the NF-kB/SV40/SEAP cassette is removed from the above NF-kB/SEAP vector using restriction enzymes SalI and NotI, and inserted into a vector containing neomycin resistance. Particularly, the

10

15

20

25

NF-kB/SV40/SEAP cassette was inserted into pGFP-1 (Clontech), replacing the GFP gene, after restricting pGFP-1 with SalI and NotI.

Once NF-kB/SV40/SEAP/Neo vector is created, stable Jurkat T-cells are created and maintained according to the protocol described in Example 13. Similarly, the method for assaying supernatants with these stable Jurkat T-cells is also described in Example 13. As a positive control, exogenous TNF alpha (0.1,1, 10 ng) is added to wells H9, H10, and H11, with a 5-10 fold activation typically observed.

Example 17: Assay for SEAP Activity

As a reporter molecule for the assays described in Examples 13-16, SEAP activity is assayed using the Tropix Phospho-light Kit (Cat. BP-400) according to the following general procedure. The Tropix Phospho-light Kit supplies the Dilution, Assay, and Reaction Buffers used below.

Prime a dispenser with the 2.5x Dilution Buffer and dispense $15\,\mu l$ of 2.5x dilution buffer into Optiplates containing $35\,\mu l$ of a supernatant. Seal the plates with a plastic sealer and incubate at 65° C for 30 min. Separate the Optiplates to avoid uneven heating.

Cool the samples to room temperature for 15 minutes. Empty the dispenser and prime with the Assay Buffer. Add 50 µl Assay Buffer and incubate at room temperature 5 min. Empty the dispenser and prime with the Reaction Buffer (see the table below). Add 50 µl Reaction Buffer and incubate at room temperature for 20 minutes. Since the intensity of the chemiluminescent signal is time dependent, and it takes about 10 minutes to read 5 plates on luminometer, one should treat 5 plates at each time and start the second set 10 minutes later.

Read the relative light unit in the luminometer. Set H12 as blank, and print the results. An increase in chemiluminescence indicates reporter activity.

Reaction Buffer Formulation:

# of plates	Rxn buffer diluent (ml)	CSPD (ml)	
10	60	3	
11	65	3.25	
12	70	3.5	
13	75	3.75	
14	80	4	

	•	
15	85	4.25
16	90	4.5
17	95	4.75
18	100	5
19	105	5.25
20	110	5.5
21	115	5.75
22	120	6
23	125	6.25
24	130	6.5
25	135	6.75
26	140	7
27	145	7.25
28	150	7.5
29	155	7.75
30	160	8
31	165	8.25
32	170	8.5
33	175	8.75
34	180	9
35	185	9.25
36	190	9.5
37	195	9.75
38	200	10
39	205	10.25
40	210	10.5
41	215	10.75
42	220	11
43	225	11.25
44	230	11.5
45	235	11.75
46	240	12
47	245	12.25
48	250	12.5
49	255	12.75
50	260	13

WO 98/39448

10

15

20

25

30

35

Example 18: High-Throughput Screening Assay Identifying Changes in Small Molecule Concentration and Membrane Permeability

Binding of a ligand to a receptor is known to alter intracellular levels of small molecules, such as calcium, potassium, sodium, and pH, as well as alter membrane potential. These alterations can be measured in an assay to identify supernatants which bind to receptors of a particular cell. Although the following protocol describes an assay for calcium, this protocol can easily be modified to detect changes in potassium, sodium, pH, membrane potential, or any other small molecule which is detectable by a fluorescent probe.

The following assay uses Fluorometric Imaging Plate Reader ("FLIPR") to measure changes in fluorescent molecules (Molecular Probes) that bind small molecules. Clearly, any fluorescent molecule detecting a small molecule can be used instead of the calcium fluorescent molecule, fluo-3, used here.

For adherent cells, seed the cells at 10,000 -20,000 cells/well in a Co-star black 96-well plate with clear bottom. The plate is incubated in a CO₂ incubator for 20 hours. The adherent cells are washed two times in Biotek washer with 200 ul of HBSS (Hank's Balanced Salt Solution) leaving 100 ul of buffer after the final wash.

A stock solution of 1 mg/ml fluo-3 is made in 10% pluronic acid DMSO. To load the cells with fluo-3, 50 ul of 12 ug/ml fluo-3 is added to each well. The plate is incubated at 37°C in a CO₂ incubator for 60 min. The plate is washed four times in the Biotek washer with HBSS leaving 100 ul of buffer.

For non-adherent cells, the cells are spun down from culture media. Cells are re-suspended to 2-5x10⁶ cells/ml with HBSS in a 50-ml conical tube. 4 ul of 1 mg/ml fluo-3 solution in 10% pluronic acid DMSO is added to each ml of cell suspension. The tube is then placed in a 37°C water bath for 30-60 min. The cells are washed twice with HBSS, resuspended to 1x10⁶ cells/ml, and dispensed into a microplate, 100 ul/well. The plate is centrifuged at 1000 rpm for 5 min. The plate is then washed once in Denley CellWash with 200 ul, followed by an aspiration step to 100 ul final volume.

For a non-cell based assay, each well contains a fluorescent molecule, such as fluo-3. The supernatant is added to the well, and a change in fluorescence is detected.

To measure the fluorescence of intracellular calcium, the FLIPR is set for the following parameters: (1) System gain is 300-800 mW; (2) Exposure time is 0.4 second; (3) Camera F/stop is F/2; (4) Excitation is 488 nm; (5) Emission is 530 nm; and (6) Sample addition is 50 ul. Increased emission at 530 nm indicates an extracellular

10

15

20

25

30

35

signaling even which has resulted in an increase in the intracellular Ca++ concentration.

Example 19: High-Throughput Screening Assay Identifying Tyrosine Kinase Activity

The Protein Tyrosine Kinases (PTK) represent a diverse group of transmembrane and cytoplasmic kinases. Within the Receptor Protein Tyrosine Kinase RPTK) group are receptors for a range of mitogenic and metabolic growth factors including the PDGF, FGF, EGF, NGF, HGF and Insulin receptor subfamilies. In addition there are a large family of RPTKs for which the corresponding ligand is unknown. Ligands for RPTKs include mainly secreted small proteins, but also membrane-bound and extracellular matrix proteins.

Activation of RPTK by ligands involves ligand-mediated receptor dimerization, resulting in transphosphorylation of the receptor subunits and activation of the cytoplasmic tyrosine kinases. The cytoplasmic tyrosine kinases include receptor associated tyrosine kinases of the src-family (e.g., src, yes, lck, lyn, fyn) and non-receptor linked and cytosolic protein tyrosine kinases, such as the Jak family, members of which mediate signal transduction triggered by the cytokine superfamily of receptors (e.g., the Interleukins, Interferons, GM-CSF, and Leptin).

Because of the wide range of known factors capable of stimulating tyrosine kinase activity, the identification of novel human secreted proteins capable of activating tyrosine kinase signal transduction pathways are of interest. Therefore, the following protocol is designed to identify those novel human secreted proteins capable of activating the tyrosine kinase signal transduction pathways.

Seed target cells (e.g., primary keratinocytes) at a density of approximately 25,000 cells per well in a 96 well Loprodyne Silent Screen Plates purchased from Nalge Nunc (Naperville, IL). The plates are sterilized with two 30 minute rinses with 100% ethanol, rinsed with water and dried overnight. Some plates are coated for 2 hr with 100 ml of cell culture grade type I collagen (50 mg/ml), gelatin (2%) or polylysine (50 mg/ml), all of which can be purchased from Sigma Chemicals (St. Louis, MO) or 10% Matrigel purchased from Becton Dickinson (Bedford,MA), or calf serum, rinsed with PBS and stored at 4°C. Cell growth on these plates is assayed by seeding 5,000 cells/well in growth medium and indirect quantitation of cell number through use of alamarBlue as described by the manufacturer Alamar Biosciences, Inc. (Sacramento, CA) after 48 hr. Falcon plate covers #3071 from Becton Dickinson (Bedford,MA) are

15

20

25

30

35

used to cover the Loprodyne Silent Screen Plates. Falcon Microtest III cell culture plates can also be used in some proliferation experiments.

To prepare extracts, A431 cells are seeded onto the nylon membranes of Loprodyne plates (20,000/200ml/well) and cultured overnight in complete medium. 5 Cells are quiesced by incubation in serum-free basal medium for 24 hr. After 5-20 minutes treatment with EGF (60ng/ml) or 50 ul of the supernatant produced in Example 11, the medium was removed and 100 ml of extraction buffer ((20 mM HEPES pH 7.5, 0.15 M NaCl, 1% Triton X-100, 0.1% SDS, 2 mM Na3VO4, 2 mM Na4P2O7 and a cocktail of protease inhibitors (# 1836170) obtained from Boeheringer Mannheim (Indianapolis, IN) is added to each well and the plate is shaken on a rotating shaker for 5 minutes at 4°C. The plate is then placed in a vacuum transfer manifold and the extract filtered through the 0.45 mm membrane bottoms of each well using house vacuum. Extracts are collected in a 96-well catch/assay plate in the bottom of the vacuum manifold and immediately placed on ice. To obtain extracts clarified by centrifugation, the content of each well, after detergent solubilization for 5 minutes, is removed and centrifuged for 15 minutes at 4°C at 16,000 x g.

Test the filtered extracts for levels of tyrosine kinase activity. Although many methods of detecting tyrosine kinase activity are known, one method is described here.

Generally, the tyrosine kinase activity of a supernatant is evaluated by determining its ability to phosphorylate a tyrosine residue on a specific substrate (a biotinylated peptide). Biotinylated peptides that can be used for this purpose include PSK1 (corresponding to amino acids 6-20 of the cell division kinase cdc2-p34) and PSK2 (corresponding to amino acids 1-17 of gastrin). Both peptides are substrates for a range of tyrosine kinases and are available from Boehringer Mannheim.

The tyrosine kinase reaction is set up by adding the following components in order. First, add 10ul of 5uM Biotinylated Peptide, then 10ul ATP/Mg₂₊ (5mM ATP/50mM MgCl₂), then 10ul of 5x Assay Buffer (40mM imidazole hydrochloride, pH7.3, 40 mM beta-glycerophosphate, 1mM EGTA, 100mM MgCl₂, 5 mM MnCl₂ 0.5 mg/ml BSA), then 5ul of Sodium Vanadate(1mM), and then 5ul of water. Mix the components gently and preincubate the reaction mix at 30°C for 2 min. Initial the reaction by adding 10ul of the control enzyme or the filtered supernatant.

The tyrosine kinase assay reaction is then terminated by adding 10 ul of 120mm EDTA and place the reactions on ice.

Tyrosine kinase activity is determined by transferring 50 ul aliquot of reaction mixture to a microtiter plate (MTP) module and incubating at 37°C for 20 min. This

10

15

20

25

30

35

allows the streptavadin coated 96 well plate to associate with the biotinylated peptide. Wash the MTP module with 300ul/well of PBS four times. Next add 75 ul of anti-phospotyrosine antibody conjugated to horse radish peroxidase(anti-P-Tyr-POD(0.5u/ml)) to each well and incubate at 270C for one hour. West the well are

POD(0.5u/ml)) to each well and incubate at 37°C for one hour. Wash the well as above.

Next add 100ul of peroxidase substrate solution (Boehringer Mannheim) and incubate at room temperature for at least 5 mins (up to 30 min). Measure the absorbance of the sample at 405 nm by using ELISA reader. The level of bound peroxidase activity is quantitated using an ELISA reader and reflects the level of tyrosine kinase activity.

Example 20: High-Throughput Screening Assay Identifying Phosphorylation Activity

As a potential alternative and/or compliment to the assay of protein tyrosine kinase activity described in Example 19, an assay which detects activation (phosphorylation) of major intracellular signal transduction intermediates can also be used. For example, as described below one particular assay can detect tyrosine phosphorylation of the Erk-1 and Erk-2 kinases. However, phosphorylation of other molecules, such as Raf, JNK, p38 MAP, Map kinase kinase (MEK), MEK kinase, Src, Muscle specific kinase (MuSK), IRAK, Tec, and Janus, as well as any other phosphoserine, phosphotyrosine, or phosphothreonine molecule, can be detected by substituting these molecules for Erk-1 or Erk-2 in the following assay.

Specifically, assay plates are made by coating the wells of a 96-well ELISA plate with 0.1ml of protein G (lug/ml) for 2 hr at room temp, (RT). The plates are then rinsed with PBS and blocked with 3% BSA/PBS for 1 hr at RT. The protein G plates are then treated with 2 commercial monoclonal antibodies (100ng/well) against Erk-1 and Erk-2 (1 hr at RT) (Santa Cruz Biotechnology). (To detect other molecules, this step can easily be modified by substituting a monoclonal antibody detecting any of the above described molecules.) After 3-5 rinses with PBS, the plates are stored at 4°C until use.

A431 cells are seeded at 20,000/well in a 96-well Loprodyne filterplate and cultured overnight in growth medium. The cells are then starved for 48 hr in basal medium (DMEM) and then treated with EGF (6ng/well) or 50 ul of the supernatants obtained in Example 11 for 5-20 minutes. The cells are then solubilized and extracts filtered directly into the assay plate.

After incubation with the extract for 1 hr at RT, the wells are again rinsed. -As a positive control, a commercial preparation of MAP kinase (10ng/well) is used in place of A431 extract. Plates are then treated with a commercial polyclonal (rabbit) antibody (1ug/ml) which specifically recognizes the phosphorylated epitope of the Erk-1 and Erk-2 kinases (1 hr at RT). This antibody is biotinylated by standard procedures. The bound polyclonal antibody is then quantitated by successive incubations with Europium-streptavidin and Europium fluorescence enhancing reagent in the Wallac DELFIA instrument (time-resolved fluorescence). An increased fluorescent signal over background indicates a phosphorylation.

10

15

5

Example 21: Method of Determining Alterations in a Gene Corresponding to a Polynucleotide

RNA isolated from entire families or individual patients presenting with a phenotype of interest (such as a disease) is be isolated. cDNA is then generated from these RNA samples using protocols known in the art. (See, Sambrook.) The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO:X. Suggested PCR conditions consist of 35 cycles at 95°C for 30 seconds; 60-120 seconds at 52-58°C; and 60-120 seconds at 70°C, using buffer solutions described in Sidransky, D., et al., Science 252:706 (1991).

20

PCR products is then sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTherm Polymerase. (Epicentre Technologies). The intron-exon borders of selected exons is also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations is then cloned and sequenced to validate the results of the direct sequencing.

25

PCR products is cloned into T-tailed vectors as described in Holton, T.A. and Graham, M.W., Nucleic Acids Research, 19:1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals is identified by mutations not present in unaffected individuals.

30

Genomic rearrangements are also observed as a method of determining alterations in a gene corresponding to a polynucleotide. Genomic clones isolated according to Example 2 are nick-translated with digoxigenindeoxy-uridine 5'-triphosphate (Boehringer Manheim), and FISH performed as described in Johnson, Cg. et al., Methods Cell Biol. 35:73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the corresponding genomic locus.

35

20

25

30

35

Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium iodide, producing a combination of C- and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera

(Photometrics, Tucson, AZ) and variable excitation wavelength filters. (Johnson, Cv. et al., Genet. Anal. Tech. Appl., 8:75 (1991).) Image collection, analysis and chromosomal fractional length measurements are performed using the ISee Graphical Program System. (Inovision Corporation, Durham, NC.) Chromosome alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated disease.

Example 22: Method of Detecting Abnormal Levels of a Polypeptide in a Biological Sample

A polypeptide of the present invention can be detected in a biological sample, and if an increased or decreased level of the polypeptide is detected, this polypeptide is a marker for a particular phenotype. Methods of detection are numerous, and thus, it is understood that one skilled in the art can modify the following assay to fit their particular needs.

For example, antibody-sandwich ELISAs are used to detect soluble polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific antibodies, at a final concentration of 0.2 to 10 ug/ml. The antibodies are either monoclonal or polyclonal and are produced by the method described in Example 10. The wells are blocked so that non-specific binding of the polypeptide to the well is reduced.

The coated wells are then incubated for > 2 hours at RT with a sample containing the polypeptide. Preferably, serial dilutions of the sample should be used to validate results. The plates are then washed three times with deionized or distilled water to remove unbounded polypeptide.

Next, 50 ul of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbounded conjugate.

Add 75 ul of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate (NPP) substrate solution to each well and incubate 1 hour at room temperature. Measure the reaction by a microtiter plate reader. Prepare a standard curve, using serial dilutions of a control sample, and plot polypeptide concentration on

Interpolate the concentration of the polypeptide in the sample using the standard curve.

5

10

15

20

25

30

35

the X-axis (log scale) and fluorescence or absorbance of the Y-axis (linear scale).

Example 23: Formulating a Polypeptide

The secreted polypeptide composition will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side effects of treatment with the secreted polypeptide alone), the site of delivery, the method of administration, the scheduling of administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations.

As a general proposition, the total pharmaceutically effective amount of secreted polypeptide administered parenterally per dose will be in the range of about 1 µg/kg/day to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the secreted polypeptide is typically administered at a dose rate of about 1 μg/kg/hour to about 50 μg/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.

Pharmaceutical compositions containing the secreted protein of the invention are administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

The secreted polypeptide is also suitably administered by sustained-release systems. Suitable examples of sustained-release compositions include semi-permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules. Sustained-release matrices include polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman, U. et al., Biopolymers 22:547-556 (1983)), poly (2-hydroxyethyl methacrylate) (R. Langer et al., J. Biomed. Mater. Res. 15:167-277 (1981), and R. Langer, Chem. Tech. 12:98-105 (1982)), ethylene vinyl acetate (R. Langer et al.) or poly-D- (-)-3-hydroxybutyric

10

15

20

25

30

35

acid (EP 133,988). Sustained-release compositions also include liposomally entrapped polypeptides. Liposomes containing the secreted polypeptide are prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci. USA 82:3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal secreted polypeptide therapy.

For parenteral administration, in one embodiment, the secreted polypeptide is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to polypeptides.

Generally, the formulations are prepared by contacting the polypeptide uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes.

The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.

The secreted polypeptide is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of

10

15

20

25

30

PCT

about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.

Any polypeptide to be used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Therapeutic polypeptide compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

Polypeptides ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous polypeptide solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized polypeptide using bacteriostatic Water-for-Injection.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the polypeptides of the present invention may be employed in conjunction with other therapeutic compounds.

Example 24: Method of Treating Decreased Levels of the Polypeptide

It will be appreciated that conditions caused by a decrease in the standard or normal expression level of a secreted protein in an individual can be treated by administering the polypeptide of the present invention, preferably in the secreted form. Thus, the invention also provides a method of treatment of an individual in need of an increased level of the polypeptide comprising administering to such an individual a pharmaceutical composition comprising an amount of the polypeptide to increase the activity level of the polypeptide in such an individual.

For example, a patient with decreased levels of a polypeptide receives a daily dose 0.1-100 ug/kg of the polypeptide for six consecutive days. Preferably, the polypeptide is in the secreted form. The exact details of the dosing scheme, based on administration and formulation, are provided in Example 23.

Example 25: Method of Treating Increased Levels of the Polypeptide

Antisense technology is used to inhibit production of a polypeptide of the present invention. This technology is one example of a method of decreasing levels of a polypeptide, preferably a secreted form, due to a variety of etiologies, such as cancer.

For example, a patient diagnosed with abnormally increased levels of a polypeptide is administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5, 2.0 and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the treatment was well tolerated. The formulation of the antisense polynucleotide is provided in Example 23.

10

15

20

25

30

35

5

Example 26: Method of Treatment Using Gene Therapy

One method of gene therapy transplants fibroblasts, which are capable of expressing a polypeptide, onto a patient. Generally, fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin, is added. The flasks are then incubated at 37°C for

approximately one week.

At this time, fresh media is added and subsequently changed every several days.

After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks.

pMV-7 (Kirschmeier, P.T. et al., DNA, 7:219-25 (1988)), flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

The cDNA encoding a polypeptide of the present invention can be amplified using PCR primers which correspond to the 5' and 3' end sequences respectively as set forth in Example 1. Preferably, the 5' primer contains an EcoRI site and the 3' primer includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is then used to

10

15

20

25

transform bacteria HB101, which are then plated onto agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted.

The amphotropic pA317 or GP+am12 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).

Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is being produced.

The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.

It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.

The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background of the Invention, Detailed Description, and Examples is hereby incorporated herein by reference.

(1) GENERAL INFORMATION:

5	(i) APPLICANT: Human Genome Sciences, Inc. et al.
	(ii) TITLE OF INVENTION: 186 Human Secreted Proteins
10	(iii) NUMBER OF SEQUENCES: 644
10	(iv) CORRESPONDENCE ADDRESS:
	(A) ADDRESSEE: Human Genome Sciences, Inc.
15	(B) STREET: 9410 Key West Avenue
	(C) CITY: Rockville
20	(D) STATE: Maryland
20	(E) COUNTRY: USA
	(F) ZIP: 20850
25	
	(v) COMPUTER READABLE FORM:
30	(A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage
	(B) COMPUTER: HP Vectra 486/33
	(C) OPERATING SYSTEM: MSDOS version 6.2
35	(D) SOFTWARE: ASCII Text
40	(vi) CURRENT APPLICATION DATA:
	(A) APPLICATION NUMBER:
	(B) FILING DATE: March 6, 1998
45	(C) CLASSIFICATION:
50	(vii) PRIOR APPLICATION DATA:
	(A) APPLICATION NUMBER:
	(B) FILING DATE:

_	
•	

	viii) ATTORNEY	/AGENT	INFORMATION
--	------	------------	--------	-------------

(A) NAME: A. Anders Brookes, Esq.

5 (B) REGISTRATION NUMBER: 36,373

(C) REFERENCE/DOCKET NUMBER: PS002.PCT

10

(vi) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: (301) 309-8504

15

(B) TELEFAX: (301) 309-8439

20

25

35

40

45

50

55

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 733 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1: 30

GGGATCCGGA GCCCAAATCT TCTGACAAAA CTCACACATG CCCACCGTGC CCAGCACCTG 60 120 AATTCGAGGG TGCACCGTCA GTCTTCCTCT TCCCCCCAAA ACCCAAGGAC ACCCTCATGA TCTCCCGGAC TCCTGAGGTC ACATGCGTGG TGGTGGACGT AAGCCACGAA GACCCTGAGG 180 TCAAGTTCAA CTGGTACGTG GACGGCGTGG AGGTGCATAA TGCCAAGACA AAGCCGCGGG 240 AGGAGCAGTA CAACAGCACG TACCGTGTGG TCAGCGTCCT CACCGTCCTG CACCAGGACT 300 360 GCCTGAATGG CAAGGAGTAC AAGTGCAAGG TCTCCAACAA AGCCCTCCCA ACCCCCATCG 420 AGAAAACCAT CTCCAAAGCC AAAGGGCAGC CCCGAGAACC ACAGGTGTAC ACCCTGCCCC 480 CATCCCGGGA TGAGCTGACC AAGAACCAGG TCAGCCTGAC CTGCCTGGTC AAAGGCTTCT ATCCAAGCGA CATCGCCGTG GAGTGGGAGA GCAATGGGCA GCCGGAGAAC AACTACAAGA CCACGCCTCC CGTGCTGGAC TCCGACGGCT CCTTCTTCCT CTACAGCAAG CTCACCGTGG 600 660 ACAAGAGCAG GTGGCAGCAG GGGAACGTCT TCTCATGCTC CGTGATGCAT GAGGCTCTGC ACAACCACTA CACGCAGAAG AGCCTCTCCC TGTCTCCGGG TAAATGAGTG CGACGGCCGC 720 733 GACTCTAGAG GAT

	(2) INFORMATION FOR SEQ ID NO: 2:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2: Trp Ser Xaa Trp Ser 1 5	
15		
	(2) INFORMATION FOR SEQ ID NO: 3:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 86 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
	GCGCCTCGAG ATTTCCCCGA AATCTAGATT TCCCCGAAAT GATTTCCCCG AAATGATTTC	60
30	CCCGAAATAT CTGCCATCTC AATTAG	86
35	(2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
45	GCGGCAAGCT TTTTGCAAAG CCTAGGC	27
50	(2) INFORMATION FOR SEQ ID NO: 5:	
.	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 271 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
55	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
60	CTCGAGATTT CCCCGAAATC TAGATTTCCC CGAAATGATT TCCCCGAAAT GATTTCCCCG	60

	243	
AAATATCTGC CATCTCAATT AGTCAGCAAC CA	ATAGTCCCG CCCCTAACTC CGCCCATCCC	C 120
GCCCCTAACT CCGCCCAGTT CCGCCCATTC TO	CGCCCCAT GGCTGACTAA TTTTTTTTA	r 180
TTATGCAGAG GCCGAGGCCG CCTCGGCCTC TC	GAGCTATTC CAGAAGTAGT GAGGAGGCT	r 240
TTTTGGAGGC CTAGGCTTTT GCAAAAAGCT T		271
(2) INFORMATION FOR SEQ ID NO: 6:		
(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 32 base p (B) TYPE: nucleic ac: (C) STRANDEDNESS: dou (D) TOPOLOGY: linear	pairs id	
(xi) SEQUENCE DESCRIPTION: S	EO ID NO: 6:	
GCGCTCGAGG GATGACAGCG ATAGAACCCC GG	•	32
(2) INFORMATION FOR SEQ ID NO: 7:		
(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 31 base p (B) TYPE: nucleic aci (C) STRANDEDNESS: dou (D) TOPOLOGY: linear	airs d	
(xi) SEQUENCE DESCRIPTION: S	EQ ID NO: 7:	
GCGAAGCITC GCGACTCCCC GGATCCGCCT C		31
(2). INFORMATION FOR SEQ ID NO: 8:		
(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 12 base p (B) TYPE: nucleic aci (C) STRANDEDNESS: dou (D) TOPOLOGY: linear	airs d	
(xi) SEQUENCE DESCRIPTION: SE	EQ ID NO: 8:	
GGGGACTTTC CC		12

(2) INFORMATION FOR SEQ ID NO: 9:

60 (i) SEQUENCE CHARACTERISTICS:

_	(A) LENGTH: 73 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
	GCGGCCTCGA GGGGACTTTC CCGGGGACTT TCCGGGGACT TTCCATCCTG	60
10	CCATCTCAAT TAG	73
15	(2) INFORMATION FOR SEQ ID NO: 10:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 256 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
25	CTCGAGGGGA CTTTCCCGGG GACTTTCCGG GGACTTTCCA TCTGCCATCT	60
	CAATTAGTCA GCAACCATAG TCCCGCCCCT AACTCCGCCC ATCCCGCCCC TAACTCCGCC	120
30	CAGTTCCGCC CATTCTCCGC CCCATGGCTG ACTAATTITT TTTATTTATG CAGAGGCCGA	180
	GGCCGCCTCG GCCTCTGAGC TATTCCAGAA GTAGTGAGGA GGCTTTTTTG GAGGCCTAGG	240
	CTTTTGCAAA AAGCTT	256
35		
	(2) INFORMATION FOR SEQ ID NO: 11:	
10	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 582 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
50	GGCACGAGGT AATTTCTACC AGAAATTTCC AGAGCATTAT GTAGGTAGAA AAAAATGCAA	60
50	GCAAGCTGTT AAAGATCTTG GATCCCATTA TATAGTATGT ATAGCTGAAA TCTGTAATTC	120
	AATCACTITT TCTCTTTTAT CCTCTAACCA AAAAATTGTT TAATTTTGCA TCCCAAATGT	180
55	TITTAATCIT TGTATATITT TTAAAAATCC TTTTCTCCTC ATCATIGCCT TTTTTGTGGT	240
	TGTAAATAGA CITACTTGCA CTTTGAAGAT GAGTTACTCC TTGTCATCTT ACAAATATGT GATATGGTAA TTTTCATAAC AGATGTCAGT TTTGAACCAA GAATTGGTGA TTTGTTTATA	300 360
50	ACARARAC TOCCOTOCATO TOCOCOCARA TOCOCOCATO ARREST TOCACOCOCOCO	420

	AAGCCAACTG AGATACCGTG ATGGTGTTGA TTTCTTTCAA TGATGCTTAC CATCTATTTT	480
5	AGCCACTGAG CCTTTTATTA TTTGTCTATT TGTAAAGTTT ATTTGTCTTA ACTCATTTAA	540
,	TAAATATACT GTTTATCTGT TTCTGAAAAA AAAAAAAAAA	582
10		
	(2) INFORMATION FOR SEQ ID NO: 12:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 465 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
20	GTTTGGGGT GAGGCCGAGC TGCTGCGGGG CTTCGTCGCC GGCCAGGACA CAGCTACTCG	60
	CACGGCGGGG GCGCCTGGCT ATGATGTTCC TCACCCAGGG CGGGCCTCTG CCCTCTACTC	120
25	GTGCCAGGCC CACTTGCCAG GCAGGAGCCC TCCCCAAGCC TTCAGGGCTG CTCGGAGTCA	180
	CCTGTTGGAA TGGACTAAAA GGACCCTTGT GTGGGAACAG GTGCTCCCCA AACACCCTGC	240
30	TECTESCTEC CAGGCAGGCC CTCTGGAAGG GAAGGGGCAG GACTCATCAG GACCTCCCTG	300
50	GACCCCTGCA GGGCAGGCAG CTTGGGCCCG AGCCCAAGCA TTTGGCTCTG CTGCCCCCAA	360
	GGGGACAGGA AGCCTCTTGG GCCTCTTCCC TTCCTGGACA AGGCCCCCTG CCTTTGCCTC	420
35	ACATAAACTG TACAGTATTT TCATTAAAAG CCTCTTTCAT AAAAA	465
40	(2) INFORMATION FOR SEQ ID NO: 13:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 474 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
50	ATGCAATTCC TGCTCACAGC CTTTCTGTTG GTGCCACTTC TGGCTCTTTG TGATGTCCCC	60
	ATATCCCTAG GCTTCTCCCC CTCCTAGAAG GGCTTCTTGA TAGATTAGAA AATAAGAATG	120
55	AGTGACATTT CCTATGTGCA TATAAGAAGG AGCCACAAGA CATGTCTTTT AAATAAAAGG	180
JJ	ACAGTGTCCA TCCTTTTAGC TGCCGAATAG AACCTTGGTC TCATCCTCCT GGAGCTAGGC	240
	CTTTAAAACA GCTTCTGTGT TTCTCATTTG TCTCAGTGTT TTGCCAGGGT TTTATCGGAA	300
60	AGATAATGTT CCGTTTAAAA TATTTCCTAA TGAGGCCGGG CCTGCTGCTC CACGCCTGTA	360

360

420

480

540

55

60

	ACCCTAGCAM TTGGGGGCTG AGCGGTGGA TCACGAGGTC AGGAGATCGA GACCATCCTG	420
5	GSTAACATGG TGAAACCCCG TCTCTACTAA AAATACAAAA AAAAAAAAAA	474
10	(2) INFORMATION FOR SEQ ID NO: 14: (i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 314 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
20	TTATGTTGGG GAGCAAGACC TGATAGCCAG CCTTTACATG GGAGTATAAT TCTGTCCTCC	60
20	ATCTCATAAG CCCCAGTACC TGAGCCAGAA TGATTATAAC CAACCACACT GTCTCTTTAT	120
	CATGGATGGC TITAGCAGTA GGITATITIC ATCATTGCCA TITGTAGCTC TACAGTGGTT	180
25	TATAGTAATT TOTCATCTTT TAAGTCTCTC CCTCAGTGCC TGTTGTTATC AAACTCATTG	240
	CTCTCTCANG CAGITGAGCT CTGCATTCTC CCYTATGGGG GAGAGCTGTG TTGGAGAGAG	300
30	AGAATATNAC TTCC	314
35	(2) INFORMATION FOR SEQ ID NO: 15: (i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 613 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
45	CTCATATTGC CGTCTGGCTA AAAGTGAACA TGCCATTGAT CAATCTGCTT TTATTATATT	60
	ATCTTCCTAA TGGTGGCAAG CAAGACAAGA AGTAGAAAGA AAGATGGTGT AAGCTCAAGA	120
	ACCCACTAAA TCTATCCTAT GGCCTGGGTT CACCCAGCCT GCTTTGTGGA TTTTGTCTCA	180
50	CTATAACAGA GCTCCCAAGG AGACTGCAGA GTCAGCTCCC TTAAGCACTG TAACTAAAGC	240

CTAACTCTTC CGTTCCACCC AACAATGTYC CCAGCTCATC CTCTTTCCCR AAGTCCCCTT

TCTGCCCCAG ATGCGAATTG CATTTAACTA ATCCTCAAGT GAAATGTCCA CACAGRATTC

CATTITAATT AGCATACCAT AGTITITGTG CAAATITGCT TTCAGARGAC TCCCATTGCA

GCTGCTCAGA GACGCTAAWG GCAGGGCCTC TTGAWGCTTT CCCGATAGCT TTCAGCTGCA

ATAGCTCTTA GGCAGAATGC CATGAGCGTC CTGCCCAACT GTATTACTGG GGAACACCTG

	ATTGGCTAGA AGTTGATCCT CCTGTAACTT TTCTGAGTTC TTTACATTTA CTCGTGAAAC	600
5	CCAAATATGC CAC	613
10	(2) INFORMATION FOR SEQ ID NO: 16:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 356 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
15	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
20	CCCCCCCAT TGAACCCTGG GCTGTGAAAG TTTTTGCCTG TGTGGGTCGT TCTGTGTGGC	60
	GCCTGGTGTG TGGKTCCCAA CTCCTGTTGC AAAGTGGCAG CAGCCAATCA TGAAGCGCCC	120
	TTATTTTTAG TTGCAGATGA CCAGGTCTCC CCCCCACAGC CTCTGTCTGG TCCCTCATTG	180
25	GTGAGTGGTC TGCCTGCCCA AGGAGCCTGA TTGGTGGGAA ATGGCATCAT CTAATATGAT	240
	GGGAAGGCAT TTGGTCCTGG TTATGTTTAT TACAACATCA TTGCACTCTG GGACTCCAGT	300
30	CCCTGAAAAC GTAATTTGTG GTGTTACCAA AGGACCACAG GGGAAAAAAA AAAAAA	356
35	(2) INFORMATION FOR SEQ ID NO: 17:	
<i>J J</i>	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 414 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
	GAAACTANAT CCCGGGGCTT TTAACNGGTA CTTGGGAAAT AAGTATTGGG TAATCACTAA	60
45	GNGGACATTG ACTGCACCAA ACCAAAGCTA TAGAAAGAAA TGATTGACTT TTTAAAATAT	120
	ATTCACATTA ACTGTCCTAG GATACTTCTC TTGAGGCTTT GGAAAACTTC TTCCTTGAAA	180
50	TTTGCATATC CACTCCAGTT CTGTCACCAA AGATTTTAAT CTTCAGATCG CAATTTCCTC	240
	TCTCCCAGAA AAAAGTACTA CAACAGGCTC AAGGGATATG CTTTGGTGGT CAAGGGATTA	300
55	CACTATEGTT TECCTTETET TEACAATEGT ATTTACAGGA GACCTTETCA TEAGAGGACG	360
	TACTGAACTA TCTTTATGAC TTTGGATTTG ATCAGAGGTT TAAAAAAAAA AAAA	414

4	
•	
•	

(2)	INFORMATION	FOR	SEO	מד	NO.	18.
,	T141 O. C. W. 11 T. O. I.	LON	JEQ	10	110.	дО.

í	ı i	SECTIENCE	CHARACTERISTICS:

(A) LENGTH: 469 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

10 AATCACCATT GCAATACAAA TGATCTGCCT GGTGAATGYT GAGCTGTACC CCACATTCGT 60 CAGGAACYTC GGAGTGATGG TGTGTTCCTC CCTGTGTGAC ATAGGTGGGA TAATCACCCC 120 15 CTTCATAGTC TTCAGGCTGA GGGAGGTCTG GCAAGCCTTG CCCCTCATTT TGTTTGCGGT GTTGGGCCTG CTTGCCGCGG GAGTGACGCT ACTTCTTCCA GAGACCAAGG GGGTCGCTTT 240 GCCAGAGACC ATGAAGGACG CCGAGAACCT TGGGAGAAAA GCAAAGCCCA AAGAAAACAC 300 20 GATTTACCTT AAGGTCCAAA CCTCAGAACC CTCGGGCACC TGAGAGAGAT GTTTTGCGGC 360 GATGTCGTGT TGGAGGGATG AAGATGGAGT TATCCTCTGC AGAAATTCCT AGACGCCTTC 420 25 ACTICICIST ATTCTTCCTC ATACTTGCCT ACCCCCAAAT TAATATCAG 469

30 (2) INFORMATION FOR SEQ ID NO: 19:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 550 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

40 CCCCCCCCC CCCCACACT TTCAGGAGTC ACCCCCAGC ATTTGGGGTT GGGTTGGCCC 60 TACTCCAGCC TGGAGCTCCC TGAGGGAGCC TGCACTCCCT GCTCCCAATC CCCGCTACTG 120 GTGCAGGGAT GCAGCCTGGA GCTGGCGTCC TTGTTCTGGG CCTGCTGCTG CCGCCACCCC 180 45 AGAGCCCCAG CCTGTCCTGA ATTGACATCA GTGCTTCCCT GAACTGCCTC CCCCACCCCT 240 GGGCATTATC CCAGGAAACT TTATGTTTTC TAGAAGCTAA GCAGCTGCTG GGACTCAGGG 300 50 ACTOGTOCAG GTAGGCTGAG TOGCAGCTCA GTCCTAGAAG GTCTCTGAAG ATCTGGACTG AGGACCTTGC TACTCCCCAA GCCAGAGCCC ATCAGCCAGG CCTGCTGTGA GCCACCTGCC 420 TGTGGAGTGC TGAGCTCAAC CAAAGGCTGG CAAGCTCTGG GCCTCATTTA AGGGATTCTG 480 55 ATGAGCCGAT GGGCCCTGGA GGCAGCCCAT TAAAGCATCT GGCTCGTTTT TGGAAAAAAA 540 Αλλλλλλλλ 550

35

120

180

240

300

55

60

	(2) INFORMATION FOR SEQ ID NO: 20:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 741 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
	TCTTGAAGAG TGTACAGTAC AGGATTATTA TAATGAAAGT TTATATCAAC AGGGTTTCGT	60
15	TGGCTCTGCA TATATTATAA GCAAAAGAGA TTGGTAAAGT GCCACAGTAT TCCAGATAAC	120
	TTTTCAGTTG CGGCCTTTCT TCTCGTTCTT TAATTTGAAA CCTAGATACA TGCAGTAAAA	180
20	ACTAGGAGAA TGACTTTTAC CCTTGGGGAC AGCCAAGITT TGTTGATAAA CCTATTTCCT	240
	AGCATGCCTT CAGGAAGTTG TGCCAGACCC TAGATTGTGA AGGACCCACT GTTCTTCTGT	300
	TGTACGAGCT CCCTGAACCA TTGTTCAGAG GACCAATGTC ACATCGCTTC ATGGGCATGG	360
25	NCCATGGGAG CATCTGGGTG ATAYCTGTCT ACAGTATTGG CTCTTCTGCG AGGCTGATAC	420
	ACAAGGCCTC TCTTCCACAT GATCATTTGC AAACCTCCCC CAGCCCCTAC CATCCAATGT	480
30	GGAAGGAAAA CAAGAACTGC CTGAAGAAGA GTCCAAGCTA CAGATACACA GCGTGTGCAT	540
	TGCGGCTGTC ACCTTCCTCC TCCCACTTCT GTATCCTCAG AGATGCTGCG TGGATGTTTC	600
	CTTAACCTCA GCTGACTTCC CTGTGAATGT CTAATGCTAG TTCAGGGCCT CCAGGCATTG	660
35	ATTTGTACAG TGGTAACTCC CAATGAGGCT TCTGTTATCA TITGGTGTGC TTTYTCTGTC	720
	ATTAAAAGAA ATGATTITICC C	741
40		
	(2) INFORMATION FOR SEQ ID NO: 21:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 991 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	

GGCACGAGTC TCCCCTGGGG AAGTTTTTCT TTTTCAGGAG GGAGGAGGGC TTTCCCAGGT

AATGTGTCTA GAGTGTTGGG CAGAAAATCT GGGACCACAC CACACCAGTT CTCTCCTTAA

TCCACGTCAT TTGCCTTCTA TCCCAGCTAT GTTTCCAGTG TCCTCTGGGT GTTTCCAAGA

GCAACAAGAA ATGAATAAAT CTCTGGTGAG TTGTTTATTT GTTCTTCACT TTGTTTTACA

CTGTATTTTC TGAGTTTATG GGTGTCTGTG AATTAAAAAG GAAAAGTAGA AATAAGTAAA

	ACTCAGGITG	AAGGAAATAT	ACATAAATAA	GATAAAGCTG	ACCTGTAGAT	ATAGCAGGTT	360
5	ATAAAGCTTA	GAGTTGTCTA	AGTTGAGTGC	AAATTTTCCT	CTGATCTTTC	TGATGCCGAA	420
	CAAAAAAGCA	GTCATGTTTG	TTATGTGATT	GGAATGGAAC	CCGAGAAGAG	AGCATGCTGT	480
	GTTCTTGTGG	GACAGGAAAG	CTTGCGTGCA	CCAAGTCTGA	ACCACCACCT	TCATGGTGAC	540
10	ATAGATTATG	TGCTGGAACA	TATTTCACAC	CGGCCTGGCA	GTAAACACTT	GTAGTGTTGT	600
	GCAGTGGAAA	CGGTCATCTT	CCGCTAAAGC	ACGGCGTGTT	GTGCAGCGGA	AATGGTCATC	660
15	TGCTGCTAAA	ACACAGCTTC	CATCGTAATG	TATGCTCCTT	ACTCAAAGAG	TGTGGTCCCA	720
	AACAGCCTTT	GGGAGGTCCT	CCTTGATTCA	TGGATGAAAC	CTGGAACATC	TTGAGGACTG	780
	AGTTAACCAT	AGGTCCTTAA	ATAACTCTCC	ACACGTTTTT	CTTAGTTTAT	CTCTACATGC	840
20	AGGCTGTGCA	GCAGCCTGTT	CAAAGTCATA	TTTTCTGGGA	AATATTTCCA	GIGITTATIT	900
	GCACTTTAGC	CCACTCTGTG	TAGCCTTATT	TCTTCTAAAC	TCACCATTAA	TCTGAATAAT	960
25	AGTCAAATTT	AGGGGGACTG	TATTIGCCTT	A		-	991
	(2) INFORMA	TION FOR SE	Q ID NO: 22	! :			
30	(i)	SEQUENCE CH	MARACTERIST	ics:			
			STH: 653 bas E: nucleic a				
35		(C) STRA	ANDEDNESS: O	double			
	(xi)	SEQUENCE D	ESCRIPTION:	SEQ ID NO:	22:		
	CCACGCGTCC	GGAATTCCCC	TGAGGATCTT	GGGCTATCTT	TGACAGGGGA	TTCTTGCAAG	60
10	TTGATGCTTT	CTACAAGTGA	ATATAGTCAG	TCCCCAAAGA	TGGAGAGCTT	GAGTTCTCAC	120
	AGAATTGATG	AAGATGGAGA	AAACACACAG	ATTGAGGATA	CGGAACCCAT	GTCTCCAGTT	180
15	CTCAATTCTA .	AATTTGTTCC	TGCTGAAAAT	GATAGTATCC	TGATGAATCC	AGCACAGGAT	240
	GGTGAAGTAC .	AACTGAGTCA	GAATGATGAC	AAAACAAAGG	GAGATGATAC	AGACACCAGG	300
	GATGACATTA	GTATTTTAGC	CACTGGTTGC	AAGGGCAGAG	AAGAAACGGT	AGCAGAAGAA	360
50	GTTTGTATTG	ATCTCACTTG	TGATTCGGGG	AGTCAGGCAG	TTCCGTCACC	AGCTACTCGA	420
	TCTGAGGCAC	TTTCTAGTGT	GTTAGATCAG	GAGGAAGCTA	TGGAAATTAA	AGAACACCAT	480
: =							540
55	CCAGAGGAGG	GGTCTTCAGG	GTCTGAGGTG	GAAGAAATCC	CTGAGACACC	TTGTGAAAGT	540

(2) INFORMATION FOR SEQ ID NO: 23:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1486 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

15	GGCAGGCTGA	CGACCTGCAA	GCCACAGTGG	CTGCCCTGTG	CGTGCTGCGA	GGTGGGGGAC	60
	CCTGGGCAGG	AAGCTGGCTG	AGCCCCAAGA	CCCCGGGGGC	CATGGGCGGG	GATCTGGTGC	120
	TTGGCCTGGG	GCCTTGAGA	CGCCGAAAGC	GCTTGCTGGA	GCAGGAGAAG	TCTCTRGCCG	180
20	GCTGGGCACT	GGTGCTGGCA	SGARCTGGCA	TTGGACTCAT	GGTGCTGCAT	GCAGAGATGC	240
	TGTGGTTCGG	GGGGTGCTCG	GCTGTCAATG	CCACTGGGCA	CCTTTCAGAC	ACACTTTGGC	300
25	TGATCCCCAT	CACATTCCTG	ACCATCGGCT	ATGGTGACGT	GGTGCCGGGC	ACCATGTGGG	360
	GCAAGATCGT	YTGCCTGTGC	ACTGGAGTCA	TGGGTGTCTG	CTGCACAGCC	CIGCIGGIGG	420
	CCCTCCTGGC	CCGGAAGCTG	GAGITTAACA	AGGCAGAGAA	GCACGTGCAC	AACTTCATGA	480
30	TGGATATCCA	GTATACCAAA	GAGATGAAGG	AGTCCGCTGC	CCGAGTGCTA	CAAGAAGCCT	540
	GGATGTTCTA	CAAACATACT	CGCAGGAAGG	AGTCTCATGC	TGCCCGCANG	CATCAGCGCA	600
35	ANCTGCTGGC	CGCCATCAAC	GCGTTCCGCC	AGGTGCGGCT	GAAACACCGG	AAGCTCCGGG	660
	AACAAGTGAA	CTCCATGGTG	GACATCTCCA	AGATGCACAT	GATCCTGTAT	GACCTGCAGC	720
	AGAATCTGAG	CAGCTCACAC	CGGGCCCTGG	AGAAACAGAT	TGACACGCTG	GCGGGGAAGC	780
40	TGGATGCCCT	GACTGAGCTG	CTTAGCACTG	CCCTGGGGCC	GAGGCAGCTT	CCAGAACCCA	840
	GCCAGCAGTC	CAAGTAGCTG	GACCCACGAG	GAGGAACCAG	GCTACTTTCC	CCAGTACTGA	900
45	GCTGCTGGAC	ATCGTCTCTG	CCACTCCTGA	CCCAGCCCTG	AACAAAGCAC	CTCAAGTGCA	960
	AGGACCAAAG	CCCCCCTCC	CTTGGAGTGG	GITGGCTTGC	TGATGGCTGC	TGGAGGGGAC	1020
	GCTGGCTAAA	GTGGGKAGGC	CTTGGCCCAC	CTGAGGCCCC	AGGTGGGAAC	ATGGTCACCC	1080
50	CCACTCTGCA	TACCCTCATC	AAAAACACTC	TCACTATGCT	GCTATGGACG	ACCTCCAGCT	1140
	CTCAGTTACA	AGTGCAGGCG	ACTGGAGGCA	GGACTCCTGG	GTCCCTGGGA	AAGAGGGTAC	1200
55	TAGGGGCCCG	GATCCAGGAT	TCTGGGAGGC	TTCAGTTACC	GCTGGCCGAG	CTGAAGAACT	1260
	GGCTATGAGG	CTGGGGGGGG	GCTGGAGGTG	GCGCCCCCTG	GTGGGACAAC	AAAGAGGACA	1320
	CCATTTTTCC	AGAGCTGCAG	AGAGCACCTG	GTGGGGAGGA	AGAAGTGTAA	CTCACCAGCC	1380
60	TCTGCTCTTA	TCTTTGTAAT	AAATGTTAAA	GCCAGAAAAA	аатааааааа	АДАААААДА	1440

AACTCGAGGG GGGCCCRKAC CCAATCWCCC TATAGTAKAC GTANNN

1486

5

10

(2) INFORMATION FOR SEQ ID NO: 24:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2323 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

-15	(xi)	SECUENCE	DESCRIPTION:	SEO	TΠ	NO.	24.

15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:	
	CTTCGCCGTT TCTCCTGCCA GGGGAGGTCC CGGCTTCCCG TGGAGGCTCC GGACCAAGCC	60
20	CCTTCAGCTT CTCCCTCCGG ATCGATGTGC TGCCGCCGCC GCCGCCGCCG TCCCGCGTCC	120
	TTCGGTCTCT GCTCCCGGGA CCCGGCTCCG CGCAGCCAGC CAGCATGTCG GGGATCAAGA	180
	AGCAAAAGAC GGAGAACCAG CAGAAATCCA CCAATGTAGT CTATCAGGCC CACCATGTGA	240
25	GCAGGAATAA GAGAGGGCAA GTGGTTGGAA CAAGGGGTGG GTTCCGAGGA TGTACCGTGT	300
	GGCTAACAGG TCTCTCTGGT GCTGGGAAAA ACAACGATAA GTTTTGCCCT GGAGGAGTAC	360
30	TTGTCTCCCA TGCCATCCCT GTTAATTCCT GGATGGGGAC AATGTCCGTC ATGGCCTTAA	420
	CAGAATCCCC CAGATGGCTT CATGGCCCCC AAAGCATGGA AGGTCCTGAC AGATTATTAC	480
	AGGTCCCTGC AGAAGAACTA AGCCTTTGGT CCAGAGTTTC TTTCTGAAGT GCTCTTTGAT	540
35	TACCTTTTCT ATTTTTATGA TTAGATGCTT TGTATTAAAT TGCTTCTCAA TGATGCATTT	600
	TAATCTTTTA TAATGAAGTA AAAGTTGTGT CTATAATTAA AAAAATATAT ATATATATAC	660
40	ACACACACA ATACATACAA AGTCAAACTG AAGACCAAAT CTTAGCAGGT AAAAGCAATA	720
	TTCTTATACA TTTCATAATA AAATTAGCTC TATGTATTTT CTACTGCACC TGAGCAGGCA	780
	GGTCCCAGAT TTCTTAAGGC TTTGTTTGAC CATGTGTCTA GTTACTTGCT GAAAAGTGAA	840
45	TATATTTTCC AGCATGTCTT GACAACCTGT ACTCTTCCAA TGTCATTTAT CAGTTGTAAA	900
	ATATATCAGA TGTGTCCTCT TCTGTACAAT TGACAAAAAA AAAAATTTTT TTTTCTCACT	960
50	CTAAAAGAGG TGTGGCTCAC ATCAAGATTC TTCCTGATAT TTTACCTCAT GCTGTACAAA	1020
	GCCTTAATGT TGTAATCATA TCTTACGTGT TGAAGACCTG ACTGGAGAAA CAAAATGTGC	1080
	AATAACGTGA ATTTTATCTT AGAGATCTGT GCAGCCTATT TCTGTCACAA AAGTTATATT	1140
55	GTCTAATAAG AGAAGTCTTA ATGGCCTCTG TGAATAATGT AACTCCAGTT ACACGGTGAC	1200
	TITTAATAGC ATACAGTGAT TIGATGAAAG GACGTCAAAC AATGTGGCGA TGTCGTGGAA	1260
60	AGTTATCTTT CCCGCTCTTT GCTGTGGTCA TTGTGTCTTG CAGAAAGGAT GGCCCTGATG	1320
~~		

120

180

240

300

360

420

50

55

60

	CAGCAGCAGC GCCAGCTGTA ATAAAAAATA ATTCACACTA TCAGACTAGC AAGGCACTAG	1380
	AACTGGAAAA GACCACAGAA AACAAAGAAT CCAACCCTTT CATCTTACAG GTGAACAAAC	1440
5	TGTGATGATG CACATGTATG TGTTTTGTAA GCTGTGAGCA CCGTAACAAA ATGTAAATTT	1500
	GCCATTATTA GGAAGTGCTG GTGGCAGTGA AGAAGCACCC AGGCCACTTG ACTCCCAGTC	1560
10	TGGTGCCCTG TCTACACCAG ACAACACAGG AGCTGGGTCA GATTCCCCTC AGCTGCTTAA	1620
10	CAAAGTTCCT CGAACAGAAA GTGCTTACAA AGCTGCCTTC TCGGATACTG AAAGGTCGAG	1680
	TTTTCTGAAC TGCACTGATT TTATTGCAGT TGAAAAAAAA AAAAAGCTAT TCCAAAGATT	1740
15	TCAAGCTGTT CTGAGACATC TTCTGATGGC TTTACTTCCT GAGAGGCAAT GTTTTTACTT	1800
	TATGCATAAT TCATTGTTGC CAAGGAATAA AGTGAAGAAA CAGCACCTTT TAATATATAG	1860
20	GTCTCTCTGG AAGAGACCTA AATTAGAAAG AGAAAACTGT GACAATTTTC ATATTCTCAT	1920
20	TCTTAAAAAA CACTAATCTT AACTAACAAA AGTTCTTTTG AGAATAAGTT ACACACAATG	.1980
	GCCACAGCAG TTTGTCTTTA ATAGTATAGT GCCTATACTC ATGTAATCGG TTACTCACTA	2040
25	CTGCCTTTAA AAAAAAAAAC CAGCATATTT ATTGAAAACA TGAGACAGGA TTATAGTGCC	2100
	TTAACCGATA TATTTTGTGA CTTAAAAAAT ACATTTAAAA CTGCTCTTCT GCTCTAGTAC	2160
30	CATGCTTAGT GCAAATGATT ATTTCTATGT ACAACTGATG CTTGTTCTTA TTTTAATAAA	2220
50	ТТТАТСАБАБ ТБАЛАЛАЛА ЛАЛАЛАЛАЛ ЛАЛАЛАЛАЛ ДАЛАЛАЛАЛ ЛАЛАЛАЛА	2280
	AAA AAAAAAAA AAAAAAAAA AAAAAAAAA AAAAAA	2323
35		
	(2) INFORMATION FOR SEQ ID NO: 25:	
40	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 683 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
45	(vi) CENTENCE DECEDITION. CEO TO NO. OF	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	

GGCACGAGCC TGTGTGGTCA TGTTCCTCGT GGTGCAGTAC CTGACATGAG CCAGCCACGC

TCAGTGGCTG AACAGCATTC CCACAGCCTG CAAGTGTGTG TGTGTGTGAA AGAGAGAGGG

GGGCCCAGAG CCGCCTTTTG AAATGTTTGC CTGTCTGAAC TGTGAAGACA CTTGGGAGTG

ATTGTGGTCT AATTTCCAAC CTGCTCTGTT TTCTGTGACA TCTTGGAGGG GAGCTAGTGC

CACACCATGC GCGGTGCTTA GAAATGAAAA AGTCCCGGGT CTGTCTCTCT CACTCTCGCT

CTCATGGGGG AGGGAAAGAA TGGCTTTGGT GGCTTTGTTC ACACAGCTGA TGCGTGCTGG

GAAGGTGTCC ACAGTGAGCC TGTGTGCAGG ACTGTCCACA CGGTTCACAC TTGTCACCAT

	CAGGCCTTTC	TGGTCCTGAT	AGGGTGGAGC	AAAAGTGGAA	AGGAAAGGAA	AGAGGCTTTT	480
5	CTCACAGCCA	TTATATTAAA	TAGTAGGTCG	ATTCACATCT	CGTGCTCCTG	GCCACCTTCC	540
	CCTGTGCCTC	AGTGACATGT	AGATGACTGA	CTGCCAATAC	TTGTCACCAT	TCCCTGGAAG	600
	CAGCTACCTA	GGGGAAACAA	GATGTAGTGC	TATTGCCGAT	AACAAGTAAG	ATTTTCCACA	660
10	СТААААААА	аааааааа	AAA			•	683

15 (2) INFORMATION FOR SEQ ID NO: 26:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2036 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

25 CTGAGAAAGG AAAGCATTCG GATCTGCTGC AAAAACACAT ATATCCATAA AGACTCATGT 60 TATTCAGAAA ACAGATTGTG AACACAATCA CATTCGCATG AATCCTTTAA AAGGAAGAAG 120 ACCTTAAAGT ATCTGCAAAT CTGAATTTCT ATTTATTCCT TCACTGAATA TAGAAACAAT 180 30 GGTTATCTGA TTATTAGAGA TATTATTTTG GATATGTTAC TTATTAACTT GCTATGGCTG GTAACCATGA TAAAGTCTGT TATTAATAAC AACATAATTC TTTTTTTAAA GAAGAAAAGC 300 35 TTATTTTTCA TTGACAGTGT ATAGATTTAT CTACTTAGTT GTGTTTTGCT ATTAGTGTTT 360 TAATTTTTT TITAAGTTGA GIGITTGATA AATTTTAAGA CCCTGTCCCC ACCTTGTTTT 420 GAGTCCTGTG TTGACTACAG GTATATAGCY CAWITTAAAA ATCCTAAAGC AAAAGAATTT 480 40 TATTTATAAA AGAATCMAMC MGTTGCATGC ATGAGGCTGT GAAGTCAGAT ATTTAGTAAT 540 AAAAGCAGCA GTGCCTTTTT TTGTATTTAC CCATTGACCC CCACCAAATG CAACTGTTTT 600 45 ATATTAAGAA AATAGTAACA ATTTTAAAAT CTCAGAGTAA AATCTATTTC ACTACATGCT TTTCCCCCCT TGTTCTGATT TAAGCAGTGT GTACTTGGCA TCTCTACATT GTCCTAGGGA 720 CAGTGGTGTT CTACAATATT ATCATGTATG ATGTTTTATT GGTGCTTTTT ATTCATAGTG 780 50 GCTTCTTACC AGAAACAGTA GGAAGAAACA CATGAACTGT GTACAAGACA TGAAACATTG 840 CTGCTGATAT GTTGTTTTT CACATGCTTT TGAGTTTTCA CTTTTTAAAC GAGAGCCAGC 900 55 AAGCAAAATA GATGTGGCTG GGTCTGCCTG TCCGGGCGGC TYTTTGCACC GAGCTCTCAA 960 ATCCTGTGTA TTGAGGGTTC CTTTTTGGTA CTCAGGATTG GAGCTACAGC TGGGCCCCCC 1020 TCTCTCCCAT TCGTTTGAAG AGACACTGAG GGAAACAAGG GTTTCTTTTG AGGTGTCCTT 1080 60

	GGCTGCCTTT	TACGGGATGG	GAGCCTTCTC	CGGATCTTTT	GTTCTTCTGC	ACCTCTTGTA	1140
	GCTACTGCCG	GTGCAAGGTT	GTAGATGTTA	TTCCCCAGGA	GCCTGGGCTK	GGGGCTGAG	1200
5	CTGGGCTGAA	TGCAAAAGCA	TGCAACCAGA	AGGCGGGCAA	GGGGAGGAAA	AGCAGGCCTG	1260
	GCCTCATTGG	TCCCCTGGAG	ATGTCTGTAG	CAGTCAGCTC	CAGCTTGGGC	CTGGGGAAGC	1320
10	AGCCTGACCA	AGGCGCTCAG	GTGTGCCTGT	TACAAGAAGA	ACCTGCAGAA	GGATAATTTG	1380
10	CACATGGAGC	TGTGATAACA	CTAATGTTGA	TTTTTTTTT	TTTTACAAGT	CATCAGRGAT	1440
	GTTTGCAAAG	TGAGTTTTAT	TTTTTTGTAA	TTCCTTTATC	ТТТАСТТААА	GGTGAATGTG	1500
15	TATTCCTCTG	GGAGGAATAG	GAAGAAAACA	GGAATGTTAA	TAATGTCGAA	CAGAAAACTT	1560
	CCTCCCTTAT	ТААТАТАТАА	TCYTCATGTA	TTTATGCCNT	AATGTAAGCT	GACTTTTAAA	1620
20	AAGCTTTCTT	TTGTTGCATG	CCCTGTGCAG	GCATCTGTAT	TGTACATGCA	TGCCTTTCGT	1680
20	CCTGTTTTCC	TGTATAAAGT	TAGTGAACAA	AGAAATATTT	TTGCCCTAGT	TCATGTTGCC	1740
	AAGCAATGCA	TATTTTTTAA	ATTTGTCATA	TATGGAAAGA	GCATGTTTGT	ТАСАТСТААА	1800
25	AGCTTTACTG	ATATACAGAT	ATACTAATGT	TTGAAGATGC	TGTTCTTTGC	AAGTGTACAG	1860
	TTTTCAAATG	TTGTTACCAG	TGAAACACCC	TTGTGGTTTA	AACTTGCTAC	AATGTATTTA	1920
	TTATTCATTT	CCTCCCATGT	AACTAAGAAT	CATGGCTATA	TTTCATATCA	ACGTTATATT	1980
30	GAAAGTGAAG	GGAAATGATT	AATACAAGGT	TTTGTAACAA	AAAAAAAA	ANNAAA	2036

40

(2) INFORMATION FOR SEQ ID NO: 27:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 717 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

45 GGCACGAGAT AACATAGGCA CAATAATACT GTATGTCTAC TTCTAGGATT ATAAGGAATT 60 AACATTGAGA TGACATTTCC ATTTGAGAAG AAAATAGTTG CTTTCAGTGC CTTTTATTTG 120 50 ATTCCTGGAG AGAGCAGACT CGCACCAACA TTCAACCCCA GCGCTGATAT GACAGTAATC 180 CTCAGAGGCA GAGCCCAGCA CAAAACAGCA ATGCTAGAAA GTTACAATTG GAAAGTTTCC 240 TGCCAGCTTC GGGAATGACA CTGCAAAGCT GATGCCAGAA ACTGCCAGAG TAATTCTCCT 300 55 CATTACTGCT CTACCCACCC ACTTTCAGCT CCCCAAATTA ACTAGTGCAG TTGACTAATC 360 CTCTTTACCT TTATCATTTA GGTGAGGCAT TGCACAAAAA CTCTCGACTT TGCCATATAA 420 60 GGGCTGTGGT TCTCTGTGGT CCTGGATAAG AGGCATCACC ATTATCTGGA AACATGCAGT 480

	AAATGCAGAT TCTTCATCTT CTCCCCAGAC CTCCTGAGTT AGAAATTCAC AAGTTCTCCA	540
5	GGTGATCTCA TACATGCTAA AGTTTGAGAA CCATTGAGTA AAGTTAATGC ATTAAGAAGA	600
5	GATTAGATAG GGATGGTGGC GTATCTTCCT ACAGTTTCCC TGTTAACAAG AAAGTCAGAG	.660
	GTCAGTTGAT CAGACATTAG ATTATTTATT GCTAAAACTA AAAAAAATTA AAAAAAA	717
10		
	(2) INFORMATION FOR SEQ ID NO: 28:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 495 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
	GAATTCGGCA CGAGCAGCAT CCTAATTTTA GTTTGGAGAT GCATTCTAAA GGATCTTCTC	60
25	TATTGCTTTT TCTCCCACAA TTAATCTTGA TTCTGCCTGT CTGTGCACAT TTGCATGAGG	120
	AACTGAACTG TTGTTTTCAT AGGTAAATGA GAGACTGAGT TTTTTCATTT CTGAAGAGAA	180
30	AGGGCATTTG CTCCTACAAG CTGAAAGGCA CCCCTGGGTG GCTGGGGGCCC TCGTGGGAGT	240
	TTCTGGGGGA TTGACCCTTA CAACATGCAG TGGCCCTACA GAAAAACCTG CAACTAAAAA	300
	TTATTTTTA AAAAGGCTCC TCCAGGAAAT GCATATAAGG GCTAATCACC CAGTATTTTG	360
35	ARGCTTCGAA GARGTAATAR AMCCCTGGAG AGAGAAACTG AGACATGTAA GAGGGTGGGA	420
	ATGACTCAGT GGTGGCACAC TATGGAGTCC TGCCCACAAG TAGCACACAT CAACCCACTA	480
40	CACAGAAATC CTAGG	495
45	(2) INFORMATION FOR SEQ ID NO: 29:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 556 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
55	AGCTTAACGT CATGATTCAT TAGGGGAATG CAAGGCAAAA CCATGATGAG AATGCCCCTA	60
	GACACCTCTT AGAAGAGCTG CTAGAAAGGC AGACAGCACC AAGCGCTTAA ATGAGATGGG	120
	GGCACTGGTG CTTCTTCTGT GCCTACTGGT AGGGGTGCAG CAGAGTGGTT CAGTCTGGGA	180
60	CAGTTAGCTG GACATCACGT GGACCCAACA CACGCATTTC CTGGGTTACT TACCAAGGAG	240

120

180

	AATAGAAAGC AGGCAGATCT TTACAGCAGC TCTTACCTGW TTGCAAAACA ATGGAAATGC	300
5	CCACATGTCC ACAAACAAGT KTGTGGTCTG CCTGTGCCAT GAAGCACAGT GTGGCTGAGC	360
3	GTCAAGAGTC CCCACACTCA AAGGAGGCAG CAGATACAGG GCTGCACACT GTGTGATTCC	420
	ACACATGTGA CATTCTGGAC ACGGACATGC TGGATGGCAA AACGAGCATC GGGCTGAGAG	480
10	GACTGCTGAG AAGGGGAACG GGGCTGCTGG GATGTGGGTT GATTGTAGCA GTAGCTCATG	540
	GAGATGTGAC CTCAAA	556
15		
15	(2) INFORMATION FOR SEQ ID NO: 30:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 434 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:	
	CTAAATGGTG ACTGTGGCTT TGTCGAGACA GGCCCCAAAT GGTAGGTGTG AACACAACAT	60
30	GCACAGAATG AGGAGACATG CAGAGTGCTG AAATACTGTC CTGGACAGAT GTGTTACATG	120
50	ACTITICITIT CAGCITATIT CIGIGGCCTG CCTTTGAAGA TAGAGCTTTG TIGATATITA	180
	CATTAAACCA AATTGTATAA YTATGTTCCA TTCTGACATG TTATTTAGCA AARGAAAAAR	240
35	GAGTAATTCT ACATCAGCAT CTTTAGTGCA TGCTAAAAGA TTAAAAATGT CTTTTGGGGA	300
	ACATGTTTTG TATACATAAA TGTTTAGATA GAAATATTTA TAGAATNCTC TATGTGAGTA	360
40	TTNATCTCCC TATGTATATT TATATCTAGA TGTGTCAATC TTTGTATTGA TATGAAATGC	420
	TATGAATAGT GAGA	434
45	(2) INFORMATION FOR SEQ ID NO: 31:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 715 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

CCACGCGTCC GATCTCACAG CTCCGACACT ATTGCGAGCC ATACACAACC TGGTGTCAGG

AAACGTACTC CCAAACTAAG CCCAAGATGC AAAGTTTGGT TCAATGGGGG TTAGACAGCT

ATGACTATCT CCAAAATGCA CCTCCTGGAT TTTTTCCGAG ACTTGGTGTT ATTGGTTTTG

55

60

AGGTCAGTEG GGAGAGATTA TATGACTGGG GTTTACGAGG ATATGATAGTC ATAGAAGATT TGTGGAAGGA GAACTTTCAA AAGCCAGGAA ATGTGAAGAA TTCACCTGGA ACTAAGTAGA AAACTCCATG CTCTGCCATC TTAATCAGTT ATAGGTAAAC ATTGGAACTC CATAGAATAA ATCAGTATTT CTACAGAAAA ATGGCATAGA AGTCAGTATT GAATGTATTA AATTGGCTTT CTTCTTCAGG AAAACTAGA CCAGACCTCT GTTATCTTCT GTGAAATCAT CCTACAAGCA AACTAACCTG GAATCCCTTC ACCTAGAGAT AATGTACAAG CCTTAGAACT CCTCATTCTC ATGTTGCTAT TTATGTACCT AATTAAAACC CAAGTTAAAA AAAAAAAAAA		CIOCCITI TOOCTABAB GITCAAAAAT AAAGAAGCIA GIGTATCCGC	240
TGTGGAAGGA GAACTTTCAA AAGCCAGGAA ATGTGAAGAA TTCACCTGGA ACTAAGTAGA AAACTCCATG CTCTGCCATC TTAATCAGTT ATAGGTAAAC ATTGGAACTC CATAGAATAA ATCAGTATTT CTACAGAAAA ATGGCATAGA AGTCAGTATT GAATGTATTA AATTGGCTTT CTTCTTCAGG AAAAACTAGA CCAGACCTCT GTTATCTTCT GTGAAATCAT CCTACAAGCA AACTAACCTG GAATCCCTTC ACCTAGAGAT AATGTACAAG CCTTAGAACT CCTCATTCTC ATGTTGCTAT TTATGTACCT AATTAAAACC CAAGTTAAAA AAAAAAAAA AAAAA 20 (2) INFORMATION FOR SEQ ID NO: 32: (A) LENGTH: 486 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32: GAGCCAGTGC CGGCGAAAGG GGACCTTCCT CTACTTCCTG CCACAGACCC TGTCCCCACA 35 CACTTCCTGC CCCTGCTTG CTGGGAGGCC ACTTCCTCCC CCAGTGCTGG ATTCCACCCC CAGCTCACCC TCAAACATGG CCCCCTCTCT CCTCCTGCTT GCCCCTCTT GCTCCCTGGA 40 GGCTGTTCTG TCCTCCCCTC TTGAAAAGCA ATGCCAGCTT CCTGGGATCT TCTGCCAACT CCAGCTACCA TGCCCTTTGC TCCTGTCAGC TCAGCTCCTC AAGGGAATTG TCTAMCCTCG GTGTCCTGCT TCCCCCCTC ACCTCCTCA CCCTGCTCCA ACCTGGCATA TCCCCCTCCA 45 CTGCACAGAA CGGNTCCCCC ACCACCTGCC TTTACAGGGA GGAAGCAGA ACATGGAAGA ANCGAACTAT AGGGGCTACA ANGATGCTCA GCTCTGATCC CGAAGGCAAA AAGNATCTTT GGGCCAC	5	CTGGTTTCAT GGGATTAGCT GCCTCCCTCT ATTATCCACA ACAAGCCATC GTGTTTGCCC	300
AAACTCCATG CTCTGCCATC TTAATCAGTT ATAGGTAAAC ATTGGAACTC CATAGAATAA ATCAGTATTT CTACAGAAAA ATGGCATAGA AGTCAGTATT GAATGTATTA AATTGGCTTT CTTCTTCAGG AAAAACTAGA CCAGACCTCT GTTATCTTCT GTGAAATCAT CCTACAAGCA AACTAACCTG GAATCCCTTC ACCTAGAGAT AATGTACAAG CCTTAGAACT CCTCATTCTC ATGTTGCTAT TTATGTACCT AATTAAAACC CAAGTTAAAA AAAAAAAAAA		AGGTCAGTGG GGAGAGATTA TATGACTGGG GTTTACGAGG ATATATAGTC ATAGAAGATT	360
ATCAGTATT CTACAGAAAA ATGGCATAGA AGTCAGTATT GAATGTATTA AATTGGCTTT CTTCTTCAGG AAAAACTAGA CCAGACCTCT GITATCTTCT GIGAAATCAT CCTACAAGCA AACTAACCTG GAATCCCTTC ACCTAGAGAT AATGTACAAA CCTTAGAACT CCTCATTCTC ATGTTGCTAT TTATGTACCT AATTAAAACC CAAGTTAAAA AAAAAAAAAA		TGTGGAAGGA GAACTITCAA AAGCCAGGAA ATGTGAAGAA TTCACCTGGA ACTAAGTAGA	420
CTTCTTCAGG AAAAACTAGA CCAGACCTCT GITATCTTCT GTGAAATCAT CCTACAAGCA AACTAACCTG GAATCCCTTC ACCTAGAGAT AATGTACAAG CCTTAGAACT CCTCATTCTC ATGTTGCTAT TTATGTACCT AATTAAAACC CAAGTTAAAA AAAAAAAAAA	10	AAACTCCATG CTCTGCCATC TTAATCAGTT ATAGGTAAAC ATTGGAACTC CATAGAATAA	480
AACTAACCTG GAATCCCTTC ACCTAGAGAT AATGTACAAG CCTTAGAACT CCTCATTCTC ATGTTGCTAT TTATGTACCT AATTAAAACC CAAGTTAAAA AAAAAAAAAA		ATCAGTATTT CTACAGAAAA ATGGCATAGA AGTCAGTATT GAATGTATTA AATTGGCTTT	540
20 (2) INFORMATION FOR SEQ ID NO: 32: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 486 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32: GAGCCAGTGC CGGGGAAAGG GGACCTTCCT CTACTTCCTG CCACAGACCC TGTCCCCACA 35 CACTTCCTGC CCCTGCTCTG CTGGGAGGCC ACTTCCTCC CCAGTGCTGG ATTCCACCCC CAGCTCACCC TCAAACATGG CCCCCTCTCT CCTCCTGCTT GCCCCTCTT GCTCCCTGGA 40 CCAGCTACCA TGCCCTTTGC TCCTGTCAGC TCAGCTCCTC AAGGGAATTG TCTAMCCTCG GTGTCCTGCT TCCCTCCCTC AACCTCCTCA CCCTGCTCCA AGCTGGCATC TGCCCCTCCA 45 CTGCACAGAA CGGNTCCCCC ACCACCTGC TTTACAGGGA GGAAGCAGCA ACATGGAAGA ANCGAACTAT AGGGGCTACA ANGATGCTCA GCTCTGATCC CGAAGGCAAA AAGNATCTTT GGGCAC	15	CTTCTTCAGG AAAAACTAGA CCAGACCTCT GTTATCTTCT GTGAAATCAT CCTACAAGCA	600
20 (2) INFORMATION FOR SEQ ID NO: 32: 25 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 486 base pairs (B) TYPE: nucleic acid (C) STRANDEIMESS: double (D) TOPOLOGY: linear 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32: GAGCCAGTGC CGGCGAAAGG GGACCTTCCT CTACTTCCTG CCACAGACCC TGTCCCCACA 35 CACTTCCTGC CCCTGCTCTG CTGGGAGGCC ACTTCCTCC CCAGTGCTGG ATTCCACCCC CAGCTCACCC TCAAACATGG CCCCCTCTCT CCTCCTGCTT GCCCCTCTT GCTCCCTGGA 40 GGCTGTTCTG TCCTCCCCTC TTGAAAAGCA ATGCCAGCTT CCTGGGATCT TCTGCCAACT CCAGCTACCA TGCCCTTTGC TCCTGTCAGC TCAGCTCCTC AAGGGAATTG TCTAMCCTCG GTGTCCTGCT TCCCTCCCTC AACCTCCTCA CCCTGCTCCA AGCTGGCATC TGCCCCTCCA 45 CTGCACAGAA CGGNTCCCCC ACCACCTGCC TTTACAGGGA GGAAGCAGCA ACATGGAAGA ANCGAACTAT AGGGGCTACA ANGATGCTCA GCTCTGATCC CGAAGGCAAA AAGNATCTTT GGGCAC		AACTAACCTG GAATCCCTTC ACCTAGAGAT AATGTACAAG CCTTAGAACT CCTCATTCTC	660
(2) INFORMATION FOR SEQ ID NO: 32: 25 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 486 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32: GAGCCAGTGC CGGCGAAAGG GGACCTTCCT CTACTTCCTG CCACAGACCC TGTCCCCACA 35 CACTTCCTGC CCCTGCTCTG CTGGGAGGCC ACTTCCTCCC CCAGTGCTGG ATTCCACCCC CAGCTCACCC TCAAACATGG CCCCCTCTCT CCTCCTGCTT GCCCCTCTT GCTCCTGGA 40 GGCTGTTCTG TCCTCCCCTC TTGAAAAGCA ATGCCAGCTT CCTGGGATCT TCTGCCAACT CCAGCTACCA TGCCCTTTGC TCCTGTCAGC TCAGCTCCTC AAGGGAATTG TCTAMCCTCG GTGTCCTGCT TCCCTCCCTC AACCTCCTCA CCCTGCTCCA AGCTGGCATC TGCCCCTCCA 45 CTGCACAGAA CGGNTCCCCC ACCACCTGCC TTTACAGGGA GGAAGCAGCA ACATGGAAGA ANCGAACTAT AGGGGCTACA ANGATGCTCA GCTCTGATCC CGAAGGCAAA AAGNATCTTT GGGCACC		ATGITGCTAT TTATGTACCT AATTAAAACC CAAGITAAAA AAAAAAAAAA AAAAA	715
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 486 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32: GAGCCAGTGC CGGCGAAAGG GGACCTTCCT CTACTTCCTG CCACAGACCC TGTCCCCACA 35 CACTTCCTGC CCCTGCTCTG CTGGGAGGCC ACTTCCTCCC CCAGTGCTGG ATTCCACCCC CAGCTCACCC TCAAACATGG CCCCCTCTCT CCTCCTGCTT GCCCCTCTT GCTCCCTGGA GGCTGTTCTG TCCTCCCCTC TTGAAAAGCA ATGCCAGCTT CCTGGGATCT TCTGCCAACT CCAGCTACCA TGCCCTTTGC TCCTGTCAGC TCAGCTCCTC AAGGGAATTG TCTAMCCTCG GTGTCCTGCT TCCCTCCCTC AACCTCCTCA CCCTGCTCCA AGCTGGCATC TGCCCCTCCA 45 CTGCACAGAA CGGNTCCCCC ACCACCTGCC TTTACAGGGA GGAAGCAGCA ACATGGAAGA ANCGAACTAT AGGGGCTACA ANGATGCTCA GCTCTGATCC CGAAGGCAAA AAGNATCTTT GGGCAC	20		
(A) LENGTH: 486 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32: GAGCCAGTEC CGGCGAAAGG GGACCTTCCT CTACTTCCTG CCACAGACCC TGTCCCCACA 35 CACTTCCTGC CCCTGCTCTG CTGGGAGGCC ACTTCCTCCC CCAGTGCTGG ATTCCACCCC CAGCTCACCC TCAAACATGG CCCCCTCTCT CCTCCTGCTT GCCCCTCTT GCTCCCTGGA GGCTGTTCTG TCCTCCCCTC TTGAAAAGCA ATGCCAGCTT CCTGGGATCT TCTGCCAACT CCAGCTACCA TGCCCTTTGC TCCTGTCAGC TCAGCTCCTC AAGGGAATTG TCTAMCCTCG GTGTCCTGCT TCCCTCCCTC AACCTCCTCA CCCTGCTCCA AGCTGGCATC TGCCCCTCCA 45 CTGCACAGAA CGGNTCCCCC ACCACCTGCC TTTACAGGGA GGAAGCAGCA ACATGGAAGA ANCGAACTAT AGGGGCTACA ANGATGCTCA GCTCTGATCC CGAAGGCAAA AAGNATCTTT GGGCAC		(2) INFORMATION FOR SEQ ID NO: 32:	
(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32: GAGCCAGTGC CGGCGAAAGG GGACCTTCCT CTACTTCCTG CCACAGACCC TGTCCCCACA 35 CACTTCCTGC CCCTGCTCTG CTGGGAGGCC ACTTCCTCCC CCAGTGCTGG ATTCCACCCC CAGCTCACCC TCAAACATGG CCCCCTCTCT CCTCCTGCTT GCCCCTCTCT GCTCCCTGGA 40 GGCTGTTCTG TCCTCCCCTC TTGAAAAGCA ATGCCAGCTT CCTGGGATCT TCTGCCAACT CCAGCTACCA TGCCCTTTGC TCCTGTCAGC TCAGCTCCTC AAGGGAATTG TCTAMCCTCG GTGTCCTGCT TCCCTCCCTC AACCTCCTCA CCCTGCTCCA AGCTGGCATC TGCCCCTCCA 45 CTGCACAGAA CGGNTCCCCC ACCACCTGCC TTTACAGGGA GGAAGCAGCA ACATGGAAGA ANCGAACTAT AGGGGCTACA ANGATGCTCA GCTCTGATCC CGAAGGCAAA AAGNATCTTT GGGCAC	25	(i) SEQUENCE CHARACTERISTICS:	
(C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32: GAGCCAGTGC CGGCGAAAGG GGACCTTCCT CTACTTCCTG CCACAGACCC TGTCCCCACA 35 CACTTCCTGC CCCTGCTCTG CTGGGAGGCC ACTTCCTCCC CCAGTGCTGG ATTCCACCCC CAGCTCACCC TCAAACATGG CCCCCTCTCT CCTCCTGCTT GCCCCTCTGT GCTCCCTGGA 40 GGCTGTTCTG TCCTCCCCTC TTGAAAAGCA ATGCCAGCTT CCTGGGATCT TCTGCCAACT CCAGCTACCA TGCCCTTTGC TCCTGTCAGC TCAGCTCCTC AAGGGAATTG TCTAMCCTCG GTGTCCTGCT TCCCTCCCTC AACCTCCTCA CCCTGCTCCA AGCTGGCATC TGCCCCTCCA 45 CTGCACAGAA CGGNTCCCCC ACCACCTGCC TTTACAGGGA GGAAGCAGCA ACATGGAAGA ANCGAACTAT AGGGGCTACA ANGATGCTCA GCTCTGATCC CGAAGGCAAA AAGNATCTTT GGGCAC		<u>.</u>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32: GAGCCAGTGC CGGCGAAAGG GGACCTTCCT CTACTTCCTG CCACAGACCC TGTCCCCACA 35 CACTTCCTGC CCCTGCTCTG CTGGGAGGCC ACTTCCTCCC CCAGTGCTGG ATTCCACCCC CAGCTCACCC TCAAACATGG CCCCCTCTCT CCTCCTGCTT GCCCCTCTT GCTCCCTGGA GGCTGTTCTG TCCTCCCCTC TTGAAAAAGCA ATGCCAGCTT CCTGGGATCT TCTGCCAACT CCAGCTACCA TGCCCTTTGC TCCTGTCAGC TCAGCTCCTC AAGGGAATTG TCTAMCCTCG GTGTCCTGCT TCCCTCCCTC AACCTCCTCA CCCTGCTCCA AGCTGGCATC TGCCCCTCCA 45 CTGCACAGAA CGGNTCCCCC ACCACCTGCC TTTACAGGGA GGAAGCAGCA ACATGGAAGA ANCGAACTAT AGGGGCTACA ANGATGCTCA GCTCTGATCC CGAAGGCAAA AAGNATCTTT GGGCAC			
GAGCCAGTGC CGGCGAAAGG GGACCTTCCT CTACTTCCTG CCACAGACCC TGTCCCCACA 35 CACTTCCTGC CCCTGCTCTG CTGGGAGGCC ACTTCCTCCC CCAGTGCTGG ATTCCACCCC CAGCTCACCC TCAAACATGG CCCCCTCTCT CCTCCTGCTT GCCCCTCTCT GCTCCCTGGA 40 GGCTGTTCTG TCCTCCCCTC TTGAAAAAGCA ATGCCAGCTT CCTGGGATCT TCTGCCAACT CCAGCTACCA TGCCCTTTGC TCCTGTCAGC TCAGCTCCTC AAGGGAATTG TCTAMCCTCG GTGTCCTGCT TCCCTCCCTC AACCTCCTCA CCCTGCTCCA AGCTGGCATC TGCCCCTCCA 45 CTGCACAGAA CGGNTCCCCC ACCACCTGCC TTTACAGGGA GGAAGCAGCA ACATGGAAGA ANCGAACTAT AGGGGCTACA ANGATGCTCA GCTCTGATCC CGAAGGCAAA AAGNATCTTT GGGCAC	30	(D) TOPOLOGY: linear	
CACCTCCTCC CCCTGCTCTG CTGGGAGGCC ACTTCCTCCC CCAGTGCTGG ATTCCACCCC CAGCTCACCC TCAAACATGG CCCCCTCTCT CCTCCTGCTT GCCCCTCTCT GCTCCCTGGA GGCTGTTCTG TCCTCCCCTC TTGAAAAAGCA ATGCCAGCTT CCTGGGATCT TCTGCCAACT CCAGCTACCA TGCCCTTTGC TCCTGTCAGC TCAGCTCCTC AAGGGAATTG TCTAMCCTCG GTGTCCTGCT TCCCTCCCTC AACCTCCTCA CCCTGCTCCA AGCTGGCATC TGCCCCTCCA 45 CTGCACAGAA CGGMTCCCCC ACCACCTGCC TTTACAGGGA GGAAGCAGCA ACATGGAAGA ANCGAACTAT AGGGGCTACA ANGATGCTCA GCTCTGATCC CGAAGGCAAA AAGNATCTTT GGGCAC		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:	
CAGCTCACCC TCAAACATGG CCCCCTCTCT CCTCCTGCTT GCCCCTCTCT GCTCCCTGGA 40 GGCTGTTCTG TCCTCCCCTC TTGAAAAGCA ATGCCAGCTT CCTGGGATCT TCTGCCAACT CCAGCTACCA TGCCCTTTGC TCCTGTCAGC TCAGCTCCTC AAGGGAATTG TCTAMCCTCG GTGTCCTGCT TCCCTCCCTC AACCTCCTCA CCCTGCTCCA AGCTGGCATC TGCCCCTCCA 45 CTGCACAGAA CGGNTCCCCC ACCACCTGCC TTTACAGGGA GGAAGCAGCA ACATGGAAGA ANCGAACTAT AGGGGCTACA ANGATGCTCA GCTCTGATCC CGAAGGCAAA AAGNATCTTT GGGCAC		GAGCCAGTGC CGGCGAAAGG GGACCTTCCT CTACTTCCTG CCACAGACCC TGTCCCCACA	60
40 GGCTGTTCTG TCCTCCCCTC TTGAAAAGCA ATGCCAGCTT CCTGGGATCT TCTGCCAACT CCAGCTACCA TGCCCTTTGC TCCTGTCAGC TCAGCTCCTC AAGGGAATTG TCTAMCCTCG GTGTCCTGCT TCCCTCCCTC AACCTCCTCA CCCTGCTCCA AGCTGGCATC TGCCCCTCCA 45 CTGCACAGAA CGGMTCCCCC ACCACCTGCC TTTACAGGGA GGAAGCAGCA ACATGGAAGA ANCGAACTAT AGGGGCTACA ANGATGCTCA GCTCTGATCC CGAAGGCAAA AAGNATCTTT GGGCAC	35	CACTTCCTGC CCCTGCTCTG CTGGGAGGCC ACTTCCTCCC CCAGTGCTGG ATTCCACCCC	120
CCAGCTACCA TGCCCTTTGC TCCTGTCAGC TCAGCTCCTC AAGGGAATTG TCTAMCCTCG GTGTCCTGCT TCCCTCCCTC AACCTCCTCA CCCTGCTCCA AGCTGGCATC TGCCCCTCCA 45 CTGCACAGAA CGGNTCCCCC ACCACCTGCC TTTACAGGGA GGAAGCAGCA ACATGGAAGA ANCGAACTAT AGGGGCTACA ANGATGCTCA GCTCTGATCC CGAAGGCAAA AAGNATCTTT GGGCAC		CAGCTCACCC TCAAACATGG CCCCCTCTCT CCTCCTGCTT GCCCCTCTCT GCTCCCTGGA	180
45 CTGCACAGAA CGGNTCCCCC ACCACCTGCC TTTACAGGGA GGAAGCAGCA ACATGGAAGA ANCGAACTAT AGGGGCTACA ANGATGCTCA GCTCTGATCC CGAAGGCAAA AAGNATCTTT GGGCAC	40	GCCTGTTCTG TCCTCCCCTC TTGAAAAGCA ATGCCAGCTT CCTGGGATCT TCTGCCAACT	240
45 CTGCACAGAA CGGNTCCCCC ACCACCTGCC TTTACAGGGA GGAAGCAGCA ACATGGAAGA ANCGAACTAT AGGGGCTACA ANGATGCTCA GCTCTGATCC CGAAGGCAAA AAGNATCTTT GGGCAC		CCAGCTACCA TGCCCTTTGC TCCTGTCAGC TCAGCTCCTC AAGGGAATTG TCTAMCCTCG	300
ANCGAACTAT AGGGGCTACA ANGATGCTCA GCTCTGATCC CGAAGGCAAA AAGNATCTTT GGGCAC		GTGTCCTGCT TCCCTCCTC AACCTCCTCA CCCTGCTCCA AGCTGGCATC TGCCCCTCCA	360
GGGCAC 4	45	CTGCACAGAA CGGNTCCCCC ACCACCTGCC TTTACAGGGA GGAAGCAGCA ACATGGAAGA	420
		ANCGAACTAT AGGGGCTACA ANGATGCTCA GCTCTGATCC CGAAGGCAAA AAGNATCTTT	480
	50	GGGCAC	486

(2) INFORMATION FOR SEQ ID NO: 33: 55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 725 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

60 (D) TOPOLOGY: linear

	PCT/US98/04493
259	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:	
5	GTTCCTCTGG TAATAATTAG GTTATTCCCA GAAGCACAGT GTCATTCTTT AAATAAAAGC	60
,	TTTCCTGTTT AAAGCTTTTC AAAGGAGCAG ACCACCTTGA AGATTCCCCC TAGGGTTGAT	120
	ATGTGTCTAA TICATTTAT AAAAATTATT CTTGTCTTCA TTTTAAAGCT TTGGCTATAT	180
10	AGTCAGAAAT GTCCTAAATA ACAAACTATT TTGTATTTAA TITAGGGAAG ACTAAAGGGA	240
	AGAAAAATGA AAACTCAGTC TTTATGTAAG CTCCAAGGAT ATTAGGGCTT AAAGGGCTTT	300
15	TCTAGTTTTA TGAGAATTTG TACTACTGAT TTTTATATAT TCCTGTTTTT GATGAACAGA	360
1.5	TCTCTGGGGA AATTGTTGAG TTACAATGGC ATTTCACTGT GATCCCTCTC AAGCTCAGAT	420
	CAGTTCTATA ACCCAATGAC AACCTGTCTC TTTGGTTTAC TGTCCTGTGA AATGTCAGCT	480
20	CAAGTTTCCC AGAAGTCGTG TGTTTATGAT GAGTCAGAGT GCTTTTCCTC GGTGGGACAG	540
	TTGCTGGCCC TCTTAATTTT GGTGTATGTG CTTCCAAGTA TCTAAACCTC CAGTCTGATC	600
25	TGTATATGCT ATCCTAACTG TTAATTGTAT TATTGATTAT GTTGATTATC TTGCTTGAAG	660
23	GTTCATACTT TTCAATTTGA TAGAAATAAA GTTTTTTTCT GCTTATAAAA AAAAAAAAAA	720
	AAAAA	
	nnan	725
30	annan	725
30		725
	(2) INFORMATION FOR SEQ ID NO: 34:	725
30 35	(2) INFORMATION FOR SEQ ID NO: 34: (i) SEQUENCE CHARACTERISTICS:	725
	(2) INFORMATION FOR SEQ ID NO: 34: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 437 base pairs (B) TYPE: nucleic acid	725
35	(2) INFORMATION FOR SEQ ID NO: 34: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 437 base pairs	725
	(2) INFORMATION FOR SEQ ID NO: 34: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 437 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	725
35	(2) INFORMATION FOR SEQ ID NO: 34: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 437 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	725
35	(2) INFORMATION FOR SEQ ID NO: 34: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 437 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:	
35	(2) INFORMATION FOR SEQ ID NO: 34: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 437 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34: CACACAGCAT GCTGCCCTCA GACGTGTCCA TCCTGTACCA CATGAAAACG CTGCTGCTCC	60
35 40 45	(2) INFORMATION FOR SEQ ID NO: 34: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 437 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34: CACACAGCAT GCTGCCCTCA GACGTGTCCA TCCTGTACCA CATGAAAACG CTGCTGCTCC TGCAAGATAC TGAGAGATTG AAGCATGCTC TGGAAATGTT CCCAGAACAT TGCACGATGC	60
35	(2) INFORMATION FOR SEQ ID NO: 34: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 437 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34: CACACAGCAT GCTGCCCTCA GACGTGTCCA TCCTGTACCA CATGAAAACG CTGCTGCTCC TGCAAGATAC TGAGAGATTG AAGCATGCTC TGGAAATGTT CCCAGGAACAT TGCACGATGC CTCCTGCTTT TATTGGCTCT TGTCGAAATC AAATTGGAAG ATCTTCAGTC CCAGCTGCAC	60 120 180
35 40 45	(2) INFORMATION FOR SEQ ID NO: 34: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 437 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34: CACACAGCAT GCTGCCCTCA GACGTGTCCA TCCTGTACCA CATGAAAACG CTGCTGCTCC TGCAAGATAC TGAGAGATTG AAGCATGCTC TGGAAATGTT CCCAGGAACAT TGCACGATGC CTCCTGCTTT TATTGGCTCT TGTCGAAATC AAATTGGAAG ATCTTCAGTC CCAGCTGCAC CCAACGTGGA AAAGTATTCC AGGTCCATCC CCAAGGAACC AACACCGATG ACATGGACTC	60 120 180 240

AAAAAAAAA AACTCNA

	PCT

(2)	INFORMATION FOR SEQ ID NO: 35:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 943 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

	GGCACGAGCT	GGAACAGAGA	CTAAATCCCA	CGAAACTGAC	ATTGTTAAAC	ACACTAAAAC	60
15	AGAAGTACTT	ACCTCTTGAA	GATTTAATAT	ATAATGGTTG	ACATGATACA	TGTACATGAT	120
13	GAATGACCAG	ATGCTTATGG	TCTACATTTT	CCTTTATCCT	GTTAGTATTA	CCTTCCTTAA	180
	TCTTTGTTCA	TTAACATGCT	AATTCCTCTT	CAGTGTTTAT	TTTCTAGTGA	CAGAATGCTA	240
20	ACATTTCTTA	CACCCTGGCA	GAAGGGAGAG	AAATGTGTTT	TGGGGTGGGT	AACTAAATTT	300
	TTGAGTGAAA	TATCATAAGA	TGANAATGGA	AANAAGGAGA	CACAAANAGT	TATNACAAAA	360
25	AAACAATGGT	TTTTTTAGCC	ATTTGACTGG	СТСТТТАААТ	AGTCTACAAG	ACATTCACGT	420
	TTAACATCAC	TTTTAGTGAA	ATAAAATGTG	CCATACTAGT	ATGTGCTTCA	AAAGGGCAAA	480
	TGTGCTTTAG	TGCCCTAAGG	CTAAATTTTG	GTCATTTGAC	ATCAGAGATG	TTGTAAGTAT	540
30	TGCACTTAAT	ACGCACCTAT	TINTCAATAG	TGTTATTTT	TGGNTAGCAT	ттттттасс	600
	ACTATIVITGT	TGATAGCTTT	TIGITCININ	AGGTTGNAAN	ATGACAGTGC	TNATNTCAAA	660
35	CAGATTACCC	ATNTGCAGAA	CTAAGGGAAG	CNATTTATGT	ATGAAAGNAA	TTNTTGAATT	720
	NGICATTNIC	AACCNTTGNA	TTAAAGCTTA	GACTAAATAG	TAATATATNG	TGGGNAGGAT	780
	TTTGGTTTTG	TGATATTINI	GTGNATTAAG	GNATAGATGT	TAACCNITAT	TTTGTAGNAA	840
40	AGTGANTTGT	ATGTGGTTAA	TTATAAATAA	AACTGGTACC	AGGNAAAAA	AAAAAAAAN	900
	NAAAAAAAA	АААААААА	ааааааааа	ааааааааа	AAA		943

45

50

(2) INFORMATION FOR SEQ ID NO: 36:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 604 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

GGCACGAGAA ATCTTCATGC TGTAGTCACT CCAGACCATG GAGTGGCTTT CCAGCTGAAT 60
GAATCCTATG TCTCGCGTGC AGGTGGTTGG TTTTCAATGT TCTTGCTAAT TTTTTTTCTA 120

60

	TTGGATCTTG GGAGTTTTCT TTGTTTGCTC CTGTGTTTGC CCAGCTTTAA TAAAACCAGG	180
	CGCAAACAAA AACCATAGCA TTCTGAACAA TAGGGGGCCC ACATTGGACC CAGTATGTCA	240
5	CTTTAATGGA CTTCAAGAAA AAATCTGAAT GGGAAAAATG ACACTAGGAA TGTATACTCC	300
	ACACATTTTA TGCCATATAA TGGTGTGTT TCTTAATTTT GTTTCTTGTG GCGAAATGTG	360
10	GCTTTCAAAT TAAAATGACC TTTTCTTCTT TGAAACTTTT TGTTTTGACT TGTATAATTA	420
10	AGGTTTGGA AAGATTCATA ATTCTGAGAG AGGTTTGCAA CCAGGAGATA CAAAGAAGTC	480
	TCAGTAGTAA TCTTGTTCAT GTGCTTTTAC AGCCAGCTAC ATTTAAGGAT GTATTAGTTA	540
15	CAGAAATTAT ATGTCTGTGT ATGTGTCTCT ACTCAATAAA GTACATGCCT CCACAAAAAA	600
	AAAA	604
20		
	(2) THEODYNITON FOR CEC VP NO. 27	
	(2) INFORMATION FOR SEQ ID NO: 37:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 349 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:	
	GTGAGTGCCC GGGAGCCCCG AGGCCCTGCC CCTAAGAAGG ATATCTYTRA CCGCTCCCTT	60
35	GTCCACACCC TAACCCCCCA GCTGCTCAGG CAGTGGGCAC ATGGCAGGGG CCTCACTGGG	120
	GGCACATAGA GCATTTGGGG GACTGCGAGT GCTCACCTTT GACTTCCTGC AGGTCGGGGG	180
	AAAACCAGAT CATGATGACC AAAGTYTACA TATTCTTGAT CTTCATGGTG CTGATCCTGC	240
10	CCTCCCTGGG TCTCACCAGG TATATGCCAC CACYTTCTGY TCTAAATTCA GAATAAGAGT	300
	CACATCAGGA GAGCACTGTC CCCAGGANAA TGCAAACGGG TTGGCAGCA	349
15		
	(2) INFORMATION FOR SEQ ID NO: 38:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 672 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	

GTAGTCGTTG CGGTTGCCGG GATGGCGAAG ATCTCGCCGT TTGAAGTCGT AAAACGCACC

TCGGTACCGG TGCTTGTTGG TTTGGTGATT GTWATCGTTG CTACAGAGCT GATGGTGCCA

	GGAACGCCAG	CAGCGGTCAC	AGGCAAGTAA	ATAGTAATGC	CGGAGCAAGT	TTCCTCCGGC	180
	TTTATCATGT	CACCCACTGT	GGTATATGCG	TTGTGGTCTG	CCAACTTTGC	CGTGAACAAT	240
5	TTCAGCAATA	ATCAGATGGC	GGCTGGCGCA	ATATTCAAGA	TAACGCCTGG	CAGTGGTGCG	300
	GCTGATGGTT	CAGTGCCTGC	GSCACCGTTT	YTGCCGTATG	TTGCACACCA	GGNTCTTTAA	360
10	ACAGTTTTCG	SACCGCGTTT	AGCGTCAAGG	GTTCAATGCC	GGTCGGTAGC	TCGTCCTTAG	420
10	GTTCACCGCG	AGCATAAGCA	TTAAACATCT	CATCAATTTG	CTTCTGGCTG	GCGCTATCAA	480
	TACTTTCCAG	CATATGTTTA	CGCTGGCGGA	AACGGGTTAG	CGTTTGCCCC	ARCMGWTCAT	540
15	AGGCAATGGG	CTTAATGAGA	TAATCAAATA	CACCACAACG	TACGGCTTCA	GACACCGTTT	600
	CCATATCGCT	GGCTGCAGTG	GTAAACACCA	CGTCGCCGGG	ATAATGCGCC	TGCACCAGTT	660
20	CATGCAGTAA	AT					672

(2) INFORMATION FOR SEQ ID NO: 39:

25

30

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1908 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

AGACTTGATA TTTTTAGAAA CAGTAATTTT ACTTTTAAGG AAATTGGCTA GCTCTTTGAC 60 35 120 TNNAGAGCTG TAGGAAGCTC AACATTTCTT TGTAGAGAAC GTTGCTTTTT TTGGATTGTA CAGGTATAAA AACATTGCTT TTGTTGAATT GTATAGGTGT AAAAAGGGAA TAACTGTATG 40 CAGGTTTGAA AAGGAAATGT GCTTTAGGCA TGAGTCATAA GATGCCATTG TACTTGTAGG 240 CATTITATIT TCCTTTAGAA ATGGACATCA GCTCTTCTCT TCTGACTGGT AACACATAGC 300 CCCAAAGCAT GAGATTATTT TTCATTGGGT TTTTATTGTT GTTTAGTTTT GGTTTGTTAC 360 45 420 GCCAGCCCAG TCTGTCTGCG GAACACTGAC TCTGCTCTCT AATGAGAACA AAGTTAGAAA TCTGCCGATA ACCTAAAATA ATTTAGAAAT GAATTAAAAA TGTGAAATCG GGTTAAAGTG 480 50 540 ATGATGATAA AATAGCATGC AAGAAACAAG CTCCTTCCAT CAGACTTGGC TACTGTTTTC 600 TTCTGCTACG ATTTGGTTTG GAAGAGCCTC TTGTTTCCTT CTCTTTGGGG TATGTCTTCG TTTCTTAATA TGTTTGTAAC ATTATTGAGA TATAATTCAC ATACCTTACA ATTCACTTAT 660 55 TTTAAGGGTA CAATTTAGTG GTTTTTAGTG TATTCACAAA GTTGTGTAAC CGTGACCACA 720 GTCAATTTTA GAACATTTCG TTACCCCAAA AAGAAACCCT GTACCCTTGA GCAGTCACCT 780 60 840 CTCATTTTCT CCCAGTGCCC ACCCCATCCC CGAGCCCCKG GAACCACTAA TCTATTTCTC

	TCTCTGTAGA	TTTGCTTATT	CTGGTCATTT	CATATAAATG	GAATTCTACA	ATATTCGGTC	900
5	TTTTGGGACT	GGCTTCCCAA	ATATGATTTT	CTATATGGAG	TGAGAAAATT	CTTCTCATCT	960
,	TGAGAACTCT	TATTGCTGTG	AAAGGGAGTG	GTTGGTAAAA	TCAATAGATT	TCAGGCAAGA	1020
	GGCCAGATA	CCTAACAGGT	TTTTCTCCGT	GAATCTTATG	CTGAGTAGTT	TTTCCTCATA	1080
10	ACCAAGCATT	TATGATATAT	TACTACTTAT	AATACTGTGG	CTAGTCTCTA	GAATGGATGT	1140
	TGAAATCTTT	GCCTCCTCAG	TCGGGAAGAG	TCCTGCTAAA.	AATCAGGCTA	AAAATCAGGC	1200
15	CAAAAATCAG	GCCAAATGAC	TTGGCAAATA	ATTGACAAAG	TGGTTTTCAC	GTGTGTCTAT	1260
	CTTTGCTAGC	AGCTTGTATA	CCTCAGGCCA	GGTGAGCTCC	CCAAATTTCT	TTTTTCATTT	1320
	ACTCCAGTGA	GTTTCTGCTG	TCTTTTTCAA	GTATGTACCA	TAGGACTTAA	AGGTGATTTG	1380
20	GATGCGTTGT	AACACTGCTA	AATATGCTAA	GTACAGAATT	TTATCTACAG	TACTGTGAGA	1440
	CAGTCAATTA	TTGCCTAGGG	TAGTTCAAAA	ATATGATGTG	AGCTAGTTAA	GCCTTTGCTT	1500
25	GACTGATTTC	AGTGATATTC	AGAAGTGTGT	ACCAATCAAG	GCTCTTTAAA	ATACGGAACG	1560
	ACTCACTTAA	TAACCAGGGA	ACCAGCCAAA	TACTGTGCAG	CCGCAGAATA	TGCATATCAA	1620
	TGAGTTGGAG	GTGATTATTC	TCTGTAACTC	CCTAATGATT	GTTTTCTAAG	CATTGTGGCT	1680
30	TCTCAGTGGC	TTGACAGCAT	CTTCCTGGTT	GTATGTGGCC	TGTTTACATG	ATGTATTGAA	1740
	TAATGTTGTT	TGTTGTGAGC	ATCAATGCCT	GTAACACCAA	ACTAAACACG	TGTTTTTGGG	1800
35	ATATGTTICC	AAATTTTTAAA	TGACCTTGCC	CTGTCCAATA	AATAAATGAT	TGTCTCACCC	1860
	TGITAAAAAA	ТТАААААААТ	AAAAAAACTG	OGNGGGGGGC	CCGGTACN		1908

45

(2) INFORMATION FOR SEQ ID NO: 40:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 458 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:

CCTCAAAAAA AAAAANGAAA GGAAAGAGGT CTCTACACAA GCCCGTGATT CTTCATGGCA 60
AGGGATAACA TCAGAAATGT TTCATTTYCK GCTATTAGTT TCCATTCCTT TCCCCATCCA 120
55 GGCATAAAGA GAAACAAAAG ACAATGATGG TATTCTCTGT GTCCTCAGCT TTGGCACTTT 180
TGTTGATGTT GCTAAGGAGC AGTGACCTTG CTAAAAAAGAC TGAATAATCC ACCCACTGAA 240
TAGCTAACCT GGGGAGGAAA TGAAAAATTTC CTTTGTGGAT CTCCCCAAAT CCATTGTTGT 300

	CACCAGGCCC	TCCCAGAACC	TCCTCAGTTC	CTTCACAGIG	CAACCCTGTG	TACTTGGCCC	360
	GCAACCCAAT	AGTATTGTGC	CTCACTTCAC	CTTCCATGGG	CAACTGCCCT	CCCTTCTGGA	420
5	CATAAAACCT	САТАТТТТАА	ATNAAGTTGA	AATTTGAA			458

10 (2) INFORMATION FOR SEQ ID NO: 41:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1153 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

GGCACAGAGC CTCCGACCCA GGTGGTCTGG AGCCTGCCGG GAGAGTGGTG GCATCTGAGA 60 GGCTGGTCGT GGACTGTGGT TGGGGGAGGT GGGAGCTGTT TTAACCGTGT GCCCCCTCTC 120 CTGTGCCGGC GTGGGCATCC CCCGGGGCAG TGGAACCCGG GCGCTCCTCC AGCTTCCGAG 180 TCCAGCCAGC CTGGGCGCGG GGCGCCCC GAGACACCCG AGGAGTCCGT TCCTCCCTGG 240 TTACGTGGAC TGTGGAGCTG GTCTCTTGTG GCTCAGCGCC GTGCGGAGGT TGAAGCGTAC 300 CTGCGGAGGT CGCACCAGGG CGTGAGGAGG AGGAGGAAGG GCATGAGCCG AGCTTGAGGA 360 ATCCGTGCTC CAAACTCTAC ACTCAAGGAT GCACTGCGCA ACTCTGGTGG CGATGGGCTG 420 GGGCAGATGT CCTTGGAGTT CTACCAGAAG AAGAAGTCTC GCTGGCCATT CTCAGACGAG 480 TGCATCCCAT GGGAAGTGTG GACGGTCAAG GTGCATGTGG TAGCCCTGGC CACGGAGCAG 540 GAGCGCAGA TCTGCCGGGA GAAGGTGGGT GAGAAACTCT GCGAGAAGAT CATCAACATC 600 GTGGAGGTGA TGAATCGGCA TGAGTACTTG CCCAAGATGC CCACACAGTC GGAGGTGGAT 660 AACGTGTTTG ACACAGGCTT GCGGGACGTG CAGCCCTACC TGTACAAGAT CTCCTTCCAG 720 ATCACTGATG CCCTGGGCAC CTCAGTCACC ACCACCATGC GCAGGCTCAT CAAAGACACC 780 CTGCCCTCTG AGCGTCGCTG GATCTCTGGG AGCTCCTTGA TGGCTCCCAG ACCTTGGCTT 840 TTGGGAATIG CACTITTGGG CCTTTGGGCT CTGGAACCTG CTCTGGGTCA TTGGTGAGAC 900 TTGGAAGGG CAGCCCCGC TGGCTTCTTG GTTTTGTGGT TGCCAGCCTC AGGTCATCCT TTTAATCTTT GCTGACGGTT CAGTCCTGCC TCTACTGTCT CTCCATAGCC CTGGTGGGGT 1020 CCCCCTTCTT TCTCCACTGT ACAGAAGAGC CACCACTGGG ATGGGGAATA AAGTTGAGAA 1080 1140 ΑΑΑΑΑΑΑΑΑΑ ΑΑΑ 1153

55

15

20

25

30

35

40

45

50

(2) INFORMATION FOR SEQ ID NO: 42:

5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1983 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double(D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

	GGCACGAGAG	GGGCCGAGCC	GACAAGATGT	TCTTGCTGCC	TCTTCCGGCT	GCGGGGGGAG	60
15	TAGTCGTCCG	ACGTCTGGCC	GTGAGACGTT	TCGGGAGCCG	GAGTCTCTCC	ACCGCAGACA	120
	TGACGAAGGG	CCTTGTTTTA	GGAATCTATT	CCAAAGAAAA	AGAAGATGAT	GTGCCACAGT	180
20	TCACAAGTGC	AGGAGAGAAT	TTTGATAAAT	TGTTAGCTGG	AAAGCTGAGA	GAGACTTTGA	240
20	ACATATCTGG	ACCACCTCTG	AAGGCAGGGA	AGACTCGAAC	CTTTTATGGT	CTGCATCAGG	300
	ACTTCCCCAG	CGTGGTGCTA	GTTGGCCTCG	GCAAAAAGGC	AGCTGGAATC	GACGAACAGG	360
25	AAAACTGGCA	TGAAGGCAAA	GAAAACATCA	GAGCTGCTGT	TGCAGCGGGG	TGCAGGCAGA	420
	TTCAAGACCT	GGAGCTCTCG	TCTGTGGARG	TGGATCCCTG	TGGAGACGCT	CAGGCTGCTG	480
30	CGGAGGGAGC	GGTGCTTGGT	CTCTATGAAT	ACGATGACCT	AAAGCAAAAA	AAGAAGATGG	540
50	CTCTCTCGGC	AAAGCTCTAT	GGAAGTGGGG	ATCAGGAGGC	CTGGCAGAAA	GGAGTCCTGT	600
	TTGCTTCTGG	GCAGAACTTG	GCACGCCAAT	TGATGGAGAC	GCCAGCCAAT	GAGATGACGC	660
35	CAACCAGATT	TGCCGAAATT	ATTGAGAAGA	ATCTCAAAAG	TGCTAGTAGT	AAAACCGAGG	720
	TCCATATCAG	ACCCAAGTCT	TGGATTGAGG	AACAGGCAAT	GGGATCATTC	CTCAGTGTGG	780
40	CCAAAGGATC	TGACGAGCCC	CCAGTCTTCT	TGGAAATTCA	CTACAAAGGC	AGCCCCAATG	840
	CAAACGAACC	ACCCCTGGTG	TTTGTTGGGA	AAGGAATTAC	CTTTGACAGT	GGTGGTATCT	900
	CCATCAAGGC	TTCTGCAAAT	ATGGACCTCA	TGAGGGCTGA	CATGGGAGGA	GCTGCAACTA	960
45	TATGCTCAGC	CATCGTGTCT	GCTGCAAAGC	TTAATTTGCC	CATTAATATT	ATAGGTCTGG	1020
	CCCCTCTTTG	TGAAAATATG	CCCAGCGGCA	AGGCCAACAA	GCCGGGGGAT	GTTGTTAGAG	1080
50	CCAAAAACGG	GAAGACCATC	CAGGTTGATA	ACACTGATGC	TGAGGGGAGG	CTCATACTGG	1140
50	CTGATGCGCT	CTGTTACGCA	CACACGTTTA	ACCCGAAGNT	CATCCTCAAT	GCCGCCACCT	1200
	TAACAGGTGC	CATGGATGTA	GCTTTGGGAT	CAGGTGCCAC	TGGGGTCTTT	ACCAATTCAT	1260
55	CCTGGCTCTG	GAACAAACTC	TTCGAGGCCA	GCATTGAAAC	AGGGGACCGT	GTCTGGAGGA	1320
	TGCCTCTCTT	CGAACATTAT	ACAAGACAGG	TTGTAGATTG	CCAGCTTGCT	GATGTTAACA	1380
60	ACATTGGAAA	ATACAGATCT	GCAGGAGCAT	GTACAGCTGC	AGCATTCCTG	AAAGAATTCG	1440

10

15

20

25

35

TAACTCATCC	TAAGTGGGCA	CATTTAGACA	TAGCAGGCGT	GATGACCAAC	AAAGATGAAG	1500
	1000					
TICCCTATCT	ACGGAAAGGC	ATGACTGGGA	GGCCCACAAG	GACTCTCATT	GAGTTCTTAC	1560
TTCGTTTCAG	TCAAGACAAT	GCTTAGTTCA	GATACTCAAA	AATGTCTTCA	CTCTGTCTTA	1620
AATTGGACAG	TTGAACTTAA	AAGGTTTTTG	AATAAATGGA	TGAAAATCTT	TTAACGGAGA	1680
CAAACCAMCC	m2mm2222	mam. 0				45.40
CAMAGGATGG	TATTTAAAAA	TGTAGAACAC	AATGAAATTT	Grangeerig	ATTTTTTT	1740
CATTTCACAC	Aaagatttat	AAAGGTAAAG	TTAATATCTT	ACTTGATAAG	GATTTTTAAG	1800
АТАСТСТАТА	AATGATTAAA	ATTTTTAGAA	CTTCCTAATC	ACTITICAGA	GTATATGTTT	1860
mmo1 mmo1 c1	1001111					
TICATIGAGA	AGCAAAATIG	TAACICAGAT	TIGIGATGCT	AGGAACATGA	GCAAACTGAA	1920
AATTACTATG	CACTTGTCAG	АААСААТААА	TGCAACTTGT	TGTGCAAAAA	AAAAAAAA	1980
AAA						1983

(2) INFORMATION FOR SEQ ID NO: 43:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1406 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

30 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

ATGATGATGA CTTTGAAGAC GATTTTATTC CTCTTCCTCC AGCTAAGCGC CTTGAGGTTA 60 ATAGTTOGAA AAGACTCTAT AGATATTGAC ATTTCTTCAA OGAGAAGAGA AGATCAGTCT 120 TTAAGGCTTA ATGCCTAAGC NCTTGGTCTT AACTTGACCT GGGATAACTA CTTTAAAGAA 180 40 ATAAAAAATT CCAGTCAATT ATTCCTCAAC TGAAAGTTTA GTGGCAGCAC TTCTATTGTC 240 CCTTCACTTA TCAGCATACT ATTGTAGAAA GTGTACAGCA TACTGACTCA ATTCTTAAGT 300 CTGATTTGTG CAAATTTTTA TCGTACTTTT TAAATAGCCT TCTTACGTGC AATTCTGAGT 360 45 TAGAGGTAAA GCCCTGTTGT AAAATAAAGG CTCAAGCAAA ATTGTACAGT GATAGCAACT 420 TTCCACACAG GACGTTGAAA ACAGTAATGT GGCTACACAG TTTTTTTAAC TGTAAGAGCA 480 50 TCAGCTGGCT CTTTAATATA TGACTAAACA ATAATTTAAA ACAAATCATA GTAGCAGCAT 540 ATTAAGGGTT TCTAGTATGC TAATATCACC AGCAATGATC TTTGGCTTTT TGATTTATTT 600 GCTAGATGTT TCCCCCTTGG AGTTTTGTCA GTTTCACACT GTTTGCTGGC CCAGGTGTAC 660 55 TGTTTGTGGC CTTTGTTAAT ATCGCAAACC ATTGGTTGGG AGTCAGATTG GTTTCTTAAA 720 AAAAAAAAA AAAACGACAT ACGTGACAGC TCACTTTTCA GTTCATTATA TGTACCGAGG 780 60 GTAGCAGTGT GTGGGATGAG GTTCGATACA GNCGTATTTA TTGCTTGTCA TGTAAATTAA 840

	AAACCTTGTA	TTTAACTCTT	TTCAATCCTT	TTAGATAAAA	TIGITCITIG	CAAGAATGAT	900
5	TGGTGCTTAT	TTTTTCAAAA	ATTIGCTGTG	AACAACGTGA	TGACAACAAG	CAACATTTAT	960
J	CTAATGAACT	ACAGCTATCT	TAATTTGGTT	CTTCAAGTTT	TCTGKTGCAC	TTGTAAAATG	1020
	CTACAAGGAA	TATTAAAAAA	ATCTATTCAC	TTTAACTTAT	AATAGTTTAT	GAAATAAAAA	1080
10	CATGAGTCAC	AGCTTTTGTT	CTGTGGTAAC	СТАТААААА	AGTTTGTCTT	TGAGATTCAA	1140
	TGTAAAGAAC	TGAAAACAAT	GTATATGTTG	TAAATATTTG	TGTGTTGTGA	GAAATTTTTG	1200
15	TCATAAGAAA	TTAAAAGAAC	TTACCAGGAA	GGTTTTTAAG	TTAGAAATAT	TCCATGCCAA	1260
13	TAAAATAGGA	ААТТАТАААТ	ATATAGTTTT	AAGCCTGCAT	CAGTGGGAGT	CTTGGCTATG	1320
	TAGTTATGTA	GTTATTATGN	AACCACCAAG	ATTTTTTTGG	CTATTTACCG	TAACCAAAGG	1380
20	GCCCGATTAA	NIGGTTTGAA	GNCTTG				1406

25 (2) INFORMATION FOR SEQ ID NO: 44:

30

35

40

45

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1391 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

GGGCCTGAAG GCGGCRCGCC AGTCCCGAGC AGTGCTCGCT CCTGCTCGGG GCGCTGCGGC 60 CCCGGGCGTC GCCATGACCA GTGAGCTGGA CATCTTCGTG GGGAACACGA CCCTTATCGA 120 CGAGGACGTG TATCGCCTCT GGCTCGATGG TTACTCGGTG ACCGACGCGG TGGCCCTGCG 180 GGTGCGCTCG GGAATCCTGG AGCAGACTGG CGCCACGGCA GCGGTGCTGC AGAGCGACAC 240 CATGGACCAT TACCGCACCT TCCACATGCT CGAGCGGCTG CTGCATGCGC CGCCCAAGCT 300 ACTGCACCAG CTCATCTTCC AGATTCCGCC CTCCCGGCAG GCACTACTCA TCGAGAGGTA 360 CTATGCCTTT GATGAGGCCT TTGTTCGGGA GGTGCTGGGC AAGAAGCTGT CCAAAGGCAC 420 CAAGAAAGAC CTGGATGACA TCAGCACCAA AACAGGCATC ACCCTCAAGA GCTGCCGGAG 480 ACAGTTTGAC AACTTTAAAC GGGTCTTCAA GGTGGTAGAG GAAATGCGGG GCTCCCTGGT 540 GGACAATATT CAGCAACACT TCCTCCTCTC TGACCGGTTG GCCAGGGACT ATGCAGCCAT 600 CGTCTTCTTT GCTAACAACC GCTTTGAGAC AGGGAAGAAA AAACTGCAGT ATCTGAGCTT 660 CGGTGACTTT GCCTTCTGCG CTGAGCTCAT GATCCAAAAC TGGACCCTTG GACCCGTCGA 720 CTCACAGATG GATGACATGG ACATGGACTT AGACAGGAAT TTCTCCAGGA CTTGAAGGAG 780

CTCAAGGTGC	TAGTGGCTGA	CAAGGACCTT	CTGGACCTGC	ACAAGAGCCT	GGTGTGCACT	840
GCTCTCCGGG	AAAGCTGGGC	GTCTTCTCTG	AGATGGAAGC	CAACTTCAAG	AACCTGTCCC	900
GGGGGCTGGT	GAACGTGCCG	CCAAGCTGAC	CCACAATAAA	GATGTCAGAG	ACCTGTTTGT	960
GGACCTCGTG	GAGAAGTITG	TGGAACCCTG	CCGCTCCGAC	CACTGGCCAC	TCAGCGACGT	1020
GCGGTTCTTC	CTGAATCAGT	ATTCAGCGTC	TGTCCAATCC	CTCGATGGCT	TCCGACACCA	1080
GGCCCTCTGG	GACCGCTACA	TGGGCACCCT	CCGCGGCTGC	crecrecece	TGTATCATGA	1140
CTGAGGTGCC	TCCCAACGTC	CGCCCACGCT	GACAATAAAG	TTGCTCTGAG	TTTGGAGACT	1200
GGTCCTCGCT	CCGGGGAGCA	AGTGGGGGGC	GTGCAGATGT	GCCTGTGTCT	GTCTCTGAGC '	1260
ACCTGGTGTC	CGTGTACAAG	GATGGATGTG	TNCNGTGGCT	CCTTGGGAAC	TGAGACATAT	1320
CTCAGGGAAT	GGTGTCTGTG	CTCAGCCCAT	CCACCAGAAG	AGTCTGCTCA	САААААААА	1380
АААААААА	A					1391

30

5

10

15

20

(2) INFORMATION FOR SEQ ID NO: 45:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1569 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

35 GGCACGAGTG GAGATGGCTG CGGCCGTGGC GGGGATGCTG CGAGGGGGTC TCCTGCCCCA 60 GGCGGGCCGG CTGCCTACCC TCCAGACTGT CCGCTATGGC TCCAAGGCTG TTACCCGCCA 120 40 COGTOGTOTG ATGCACTITIC AGCGGCAGAA GCTGATGGCT GTGACTGAAT ATATCCCCCC 180 GAAACCAGCC ATCCACCCAT CATGCCTGCC ATCTCCTCCC AGCCCCCCAC AGGAGGAGAT 240 AGGCCTCATC AGGCTTCTCC GCCGGGAGAT AGCAGCAGTT TTCCAGGACA ACCGAATGAT 300 45 AGCCGTCTGC CAGAATGTGG CTCTGAGTGC AGAGGACAAG CTTCTTATTG CGACACCAGC 360 TGCGGAAACA CAAGATCCTG ATGAAGGTCT TCCCCAACCA GGTCCTGAAA GCCCTTCCTG 420 50 GAGGATTCCA AGTACCAAAA TCTGCTGCCC CTTTTTGTGG GGCACAACAT GCTGCTGGTC 480 AGTGAAGAGC CCAAGGTCAA GGAGATGGTA CGGATCTTAA GGGACTGTGC CATTCCTGCC 540 GCTGCTAGGT GGCTGCATTG ATGACACCAT CCTCAGCAGG CAGGGCTTTA TCAACTACTC 600 55 CAAGCTCCCC AGCCTGCCCC TGGTGCAGGG GGAGCTTGTA GGAGGCCTCA CCTGCCTCAC 660 AGCCCAGACC CACTCCCTGC TCCAGCACCA GCCCCTCCAG CTGACCACCC TGTTGGACCA 720 60 GTACATCAGA GAGCAACGCG AGRAAGGATT CTGTCATGTC GGCCAATGGG AAGCCAGATC 780

	CTGACACTGT	TCCGGACTCG	TAGCCAGCCT	GTTTAGCCAG	CCCTGCGCAT	AAATACACTC	840
5	TGCGTTATTG	GCTGTGCTCT	CCTCAATGGG	ACATGTGGAA	GAACTTGGGG	TCGGGGAGTG	900
-	TGTTTGTCAC	TTGGTTTTCA	CTAGTAATGA	TATTGTCAGG	TATAGGGCCA	CTTGGAGATG	960
	CAGAGGATTC	CATTTCAGAT	GTCAGTCACC	GGCTTCGTCC	TTAGTTTTCC	CAACTTGGGA	1020
10	CGTGATAGGA	GCAAAGTCTC	TCCATTCTCC	AGGTCCAAGG	CAGAGATCCT	GAAAAGATAG	1080
	GGCTATTGTC	CCCTGCCTCC	TTGGTCACTG	CCTCTTGCTG	CACGGGCTCC	TGAGCCCACC	1140
15	CCCTTGGGGC	ACAACCTGCC	ACTGCCACAG	TAGCTCAACC	AAGCAGTTGT	GCTGAGAATG	1200
	GCACCTGGTG	AGAGCCTGCT	GTGTGCCAGG	CTTTGTGCTG	AGTGCTGTTA	CATGTATTAG	1260
	TTCCTTTACT	GCTGACCACA	TTGTACCCAT	TTCACAGAGA	AGGAGCAGAG	AAATTAAGTG	1320
20	GCTTGCTCAA	GGTCATGCAG	TTAGTAAGTG	GCAGAACAGG	GACTTGAACC	AAGCCCTCTG	1380
	CTCTGAAGAC	CGCGTCCTGA	ATTTCTTCAC	TAGAGCTTCC	TCATCAGGTT	ACCCAGAAGT	1440
25	GGCTCCCATC	CACCATCCAG	GTGTGCTTGG	ATGTTAGTTC	TCCACCCTCG	AGGTGTACGC	1500
	TGTGAAAAGT	TTGGGAGCAC	TGCTTTATAA	TAAAATGAAA	TATATTCTAA	АААААААА	1560
	ААААААА						1569

(2) INFORMATION FOR SEQ ID NO: 46:

35 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1924 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

40

45

50

55

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

GGGCCCCCC WCGWKTTTT TTTTTTTTT TTTAATTAGG ATAATGCCTT TATTAACGAG 60 AATGAAACGT TCATTCCTCC TTCCACTCCT TCTCGTTGGT TTTCTGGACA CAGCTCACCT 120 GATCCTGCTA GAAACGTTGT CAGTCTGCTT GTGGCTTCCC TCCTTGATTG ACTCACGCTG 180 TGTGATGTCT TGAGAAGTAT CTATCCACTT CATGTGAATG AGCACTCCAA TATCAGCCAA 240 CATCAATCAT TCTTACCTAA AGAATAATAA GAAAAAGTTA ATATAAAAGA CAAGGGTATA 300 AAATAAAGGT TTGAAAATGC TAGTCAACTT CAAAATTTAA AGAGTAAAAA TCCAGAGATA 360 AAGATTGGGG GTAAGTTACA GCATAAAAAA ATAGGAAGAA ACTTCATGGT GGGGGGAAA 420 TCTAAAATTA TTCTTACATA AAATAAGTAG ACACCTGAAT TAGAATGAAA ACTGTATTTT 480 CTTTAAAATG TAAAAGCCTG ACTCTCAGTT TCACCAGTCT GAGCACAAGT TTGACTGCAA 540

	CCCAAAATAT	ACTATCCCTT	ATGTGAAGGT	ATGTGACAAC	GTTGACCTCA	CCAAATGAGT	600
	TTTAACATCA	GCTCTTTTTT.	CATATGAAAG	CACATACCCT	GCTCCCCATT	CAAGTATGTC	660
5	TTCCATTGTC	AGGCAGGCTG	ACCACCTTCA	GCAGGAGTCC	TCCAAGAGTG	CCCAACTCCC	720
	CTTCCCACAG	TACACAACGC	TGTAGTTGTT	GTCCTGCAAT	CCTTTGTATT	TACCTCATTC	780
10	TTTCCCATCT	AAGTCCTCAC	TGAGTTTTAA	AGTTAGGGCT	GGAAAAGCTA	TGCCTTACTG	840
10	GGACAGCAAG	GAACCAATTT	TTTTCTGAGG	GAGAAGACAT	TCACCTTCAC	TATATGCCTG	900
	GCAGGGCCAC	AGTGCACAAA	ACAAAGATCA	GCCTTCATTC	AAGTTCCAGG	TTTTTCTTCC	960
15	TCCCTGAATG	ATTACTGCAA	AGGGTATATG	AAGTAAGAGT	TCCCTGTTGC	ACATGTACCA	1020
	TCCATAAGGG	ATACTATATC	GTTTTGCATT	CTTCCCCCCA	TTCTCCACAT	TGTCCTATCT	1080
20	TAAGTCCAAG	CCCTTTTCAC	TCTCAAAAAA	аааааааа	TATTTTTTC	AGCACTGGTG	1140
20	TTCAAAAGCA	ACGTTTTTAT	CGTTAATCGT	TTACCAGCAA	CTGTTGAGAT	TTCCAGTTGA	1200
	GTCTTAAAAA	TTGCCAATCA	TTATCTAGCA	GCAATGACAG	ATGATTAGGA	GCAGTCAAAT	1260
25	CCTCTGAATT	CTTTCCCTAA	TAGGCAGCCA	TTTGAGAACT	GCACTAGCTG	ACATCACTAA	1320
•	AACATTATCA	GCTAAAGCCA	AAACCAAATA	AAGGCCCAGA	CCAACATCCT	GGCTCTCTAA	1380
30	AACCTGTCCA	AAATCATTAA	GTGAAAOGCA	GTAAATGCAG	GACTGTGGAT	CATGTCACTG	1440
50	CAGCTGACAA	TGATTAACAA	TAGGAGACAT	GCAACCCCCA	TTAAGGTTAA	AAGTCCAAAA	1500
	CTAGTCACAC	GCATCTCTTT	ATTGGGGAAA	AGTGAGACTA	TTATGCATTC	TTGGTAGGTT	1560
35	TGCAACCTTG	CATGAAGAGC	ACCCATTGCA	TTTCTTTCAT	CTTTCAGAAA	GCACCGGTAT	1620
	CTGTTCCAAG	GGCCTAACAG	TACGAAAATA	CATTCTGGCA	TCACACCTCT	GAACCCAAGA	1680
40	CTGTTCTCAT	TAAAAAT	TTTGGTTTGT	AACAAAATTA	TGAAATACAA	TGCAAGCACC	1740
	TCGGTATAGC	ATTATTACTG	AAACCACTTA	ATTCCCAGCT	TTTTGAGTTT	тталалала	1800
	CCCACTGCAC	TAAGATTCAC	AATTCATTGC	TACATACAAA	TTAAAGCTAG	TAAGAACACA	1860
45	CTAACGTCAC	AAGTTTCTCA	TTCTAAAGTG	CAAAAGCCTA	ATCATCTGAA	AGTGAACAGG	1920
	GTAA						1924

55

- (2) INFORMATION FOR SEQ ID NO: 47:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 475 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

TGGTGTGGGG CCCAGAAAMC AAGGGACCAG TGAAAACAMC CCCAGAGACT TGTATCCGCC	60
AGGAAAGCCA TTGCCAMTYC TGAGCCCTTG AAGGGCAAGG AGGGAAACAG TGTTACCAGA	120
GCCCAGTAAG AACTGCTGTC ATGAAGGAGG GGCCACCTTG TAAGAGACAT CATTACTACC	180
AGAACTGTGG TGCCAAATTG CTGGTGTCTC TCTTTGGAGA AACCAACCAG ATACATCTGC	240
TGGAGACCCA GGTGGGCACA GAGAAGGGTG GAGAGAGAAT CTGGGAAGAG AAATGGAGAA	300
TAAGCAGCAC AGTGTTATTC ATTTCTGTAA ATTCCTATGT AGAAGGCTCA GTGTTAGAAA	360
TAAAGITATT CTACTAGITG CAAGITAAGT GITTCTGITT GTTCTGCTTT CCTGITAGCA	420
TAAGTAAACT CCCTTTGGAA CTACACAGGT ATGTCTCTCC TTCAACATGT GTGAA	475
(2) INFORMATION FOR SEQ ID NO: 48:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 346 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:	
AAGGGACAGA GACCTGGATT CAGATCTCAT TTTACAATGA AGACCCCAAT GCAGAAAGTC	60
ATGTCTGAAA TTCTGAGCTT ACTCTTCTGC CTGCTGGGAC CTGCTCTGGA TGAGAGAAGG	120
GAGGAAAAGG ACTAATCAGA GGAGCCAATG AAGTCACTCC ATGAGTTTCC TGAACCCTGC	180
CCAGCTAGAG ATTAACGTYT GACCWTCAAC GTAGGACACT GTGCAGATGG CTACTTGCTG	240
GCGCACATGA AGACCAAAGC CAGGACCAAG CCCCMASCCT GCTWAACACG GCAGARTCTT	300
GCCCAGCCMA CYTCTGTGAR AATCTGCTTC CCTCCACAGC TGACCC	346
(2) INFORMATION FOR SEQ ID NO: 49:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 1366 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:

TAGGTGTCAG CCGCCACCCC CCCCCCATAT GCAGATTTAC TSGGCATGGT AGTGGCCAGC

TTCTAACACA GCTGGTATTT CAAGTCTCCT GGGACCTCAC TCAGGAATGA TACCCCCTCA

GTAGAAGCAG CAGGTGATCT TAACTCCTTT CAAAGAGCAG GCCTGTCTGG GAAGCCATGT

	CCTCAGCAGG	CACAGCAACC	CCTCTGGAAA	TGGATCACAA	ACTCACTTCT	CAGCCAGGCA	240
5	GGCCAAGCTT	CTATTGTAAC	AGTAGGCACA	GTATAGTCGG	ATCATCACAT	CAGCTGGGTT	300
J	TTTGGTTTAG	TCATCTAGAG	TCGTCTGGAC	TAAAGGTCTT	TCAGGTCTCC	TIGCCCIGIG	360
	AGTGCGTGAA	CCTCCCCACC	CGAATTGCCT	CAGTTGTCCT	GAGCCTCATG	TCTCTCCTGG	420
10	TGGTGGGCCA	GGCCCCTGCA	TGGGAAGGGA	GCCTGCTGCG	GGGCAGGCCA	CCTCCCCCTC	480
	CTCACCTATG	CGCAATGANA	GTTATTGAAG	GACTGGTTGT	TGATGTTGGT	GAGCGTATCC	540
15	TTCATGGCCA	GCGCGAAGTC	GCCAGGTCA	GCCAGGTGCT	GCCAGCGCTC	TCTCTCGGAC	600
13	TTGTCTTCCT	GTGCCAGGGG	ACCGTGGAGA	AAGTGTCAGG	GCCGCTCAC	TGCAGCAGCC	660
	TGCTCTGCTG	CCTTCCCTGG	CAGTGTTCTG	CCCCTCCATT	CCCTACAMCT	AGATGTTCAA	720
20	GGCCTTACTT	TTCCTCCCAC	AAAGGAGTCG	CAGCCACGCT	AGCTCTGACT	TGCCACTGTG	780
	ACAAAGTTCA	CGTAGCAGGT	CTAGGCAAAG	ACTGGGCAAT	TGAGCAGAGG	AGACGGACCT	840
25	GTGAGTCTGA	CCRYGAGSCG	GRCCCCTTCA	CCTTGGCTGG	GCTGGTCCTG	GTCCTTAGGT	900
23	TTTGTCAGGT	TGICCTTGTT	TGGATCCCTC	AACTAGGTGA	TAAGCACTGG	AGGGGGATGA	960
	CCCGCCTTGG	ACGTGTTTCT	TTAACCTCAT	ССАТАТААТА	GGCCGTGGG	ATGGTTGTAG	1020
30	AGGTAAAGCA	GGATGATGGT	GTTTTAAGAC	CAGAGCTTGG	GACCAGGGCT	CCTACACCTA	1080
	ATTITCTCTC	CTGGTAGCTG	AACAAAGGTC	TAAATTAGCT	TAACAAAAGA	ACAGGCTGCC	1140
35	GTCAGCCAGA	GTTCTGAAGG	CCATGCTTTC	AGTTTCCCTT	GTTGACAATT	GCTCTCCAGT	1200
33	TCCTATGAAA	GCACAGAGCC	TTAGGGGGCC	TGGCCACAGA	ACACAACCAT	CTTAGGCCTG	1260
	AGCTGTGAAC	AGCAGGGGGT	TGTGTGTCTG	TICIGTITCT	CTGCTTGCCG	AACTTTCTCA	1320
40	ATAAACCCTA	TTTCTTATTT	АТААААААА	ААААААААА	ΑΑΑΑΑ		1366

45 (2) INFORMATION FOR SEQ ID NO: 50:

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1405 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:

55 GCAGTAATTC CTGTTAGCCA CTGCATCCAC CAAAACTAGT TTATTTTTCC CCTCAAATTC 60
ATGATTTTTA CGTCTGTTAC AAAGGGAATT TTGCTGATAG CTCTTTGGGT CCCACTGTTC 120
CATTTTATGC TAATAGATTC CATTCTAGGG CCCAGCCGTC TCTTGACTGA TGGTGTTCCC 180

	TTTAACCCTT	GGCATGTATA	ATAGAATTTT	GGTGAATGAA	AGAACCCAAA	TAGGCCAGAT	240
	AGTCCCCCCA	GGCCCTGATA	TCCATAAAAG	GCTTGGGAAT	GCATTATGTA	ATTGTCCTTA	300
5	GTCTTTTTGT	TGTTTTAGAA	ААААААААСА	AGATGGGCTC	AGATGGATGC	CTACGTAAAA	360
	ATGGTTCCTA	GCTGTGTACT	CATAACTTTT	CTTTGAATTG	AGTAGTGAAA	GGAAGGAGGA	420
10	GGAAAGGAAA	TTAAATGTCC	TTCTAGTATT	CTCTGGACTC	AAGTCTGACA	TATGAGATAA	480
10	TAACCTATAT	TGAAATGCCA	AGAATTGTAT	CTGAAACAAG	AGAACAGTTT	GACACATTTA	540
	TCATGCCTTC	ATATTACATA	TTAACTGAAA	ССААТТААТА	AACATATGAA	ATATCCATTG	600
15	CACAAGGCAA	AGGCACCTAA	ACCTTTTGTT	TCTTTTTCTA	CATAGCAGAA	ATTGATTTT	660
	TTTTTATTTT	TTTAGGGGAA	ССТАТАТААТ	TATGACCCAG	TGATGTCTTT	TGGTGACTTA	720
20	AGCTTATGAA	TTCAGGTTAC	AATTGAGTTG	ATTCTAGATG	GTTACTACCT	TGAAAAGGAT	780
20	GTTGGTGCCT	TATGTGACAC	GAGCCAGAGC	CTGCTGGGGA	ATAAACAAAG	CAGGTTTCAT	840
	GCCAACACCA	ACTCGTAGCT	TTAGTGGGCA	GATGGGGAGT	GGTTCACAGA	CTTCCCAAAA	900
25	TCTCCCCCCT	TTGGGATTTT	CCACACCATC	CCACGTGTGT	TGTTCATTCT	TCCTCTTTTC	960
	ACACTCTTGG	ATGGATWATT	TGRAAATGGT	GRAAWYMMCY	YYKRAATITG	CCCAATAGCC	1020
30	WTGRGCCACC	ATTCTTWATG	ACACCATAAC	CAAATAGTTC	CWTAATGTTG	AAATATTAGA	1080
30	AACCTGTTAC	CAGCCYKSMA	KTWACCCWWA	WITTICCCAT	GTTTGTGGAA	TTGATATTGA	1140
	AATAGCAGGG	CTAAGGAATT	ACTGGCAAGT	TTTAGCCTGT	GGGTAATACC	TTAGGGTTAT	1200
35	TTAAATATTT	GTAATTTTAT	TTAAATGTTC	ATGAATGTTT	GAAAGGAACA	AAATTATCAG	1260
	GGATGGCTCT	TTGCCATGGG	TCTTATTTTC	ACCCTCTTTT	CTGTAAGAAA	AAAGAACAAT	1320
40	GTCTTAATGT	ATTTTTAAAG	TTTTTGGTAT	AGTTTCTAAT	TCCAATTTTA	ATAAAAGTTT	1380
TU	TWTRTAAAAA	АААААААА	AAAAA				1405

50

55

60

(2) INFORMATION FOR SEQ ID NO: 51:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 504 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:

CGGATTTTCT AGGACCCCAA AAAAAAAAA AGGGNAAAAA AAACCCNCAA AACCANCCAA

AACCCCAAAA, AAAAAAAAAA TCCACAAAAA CAAAAAAACT ATAAAAAAGA AAGAATTAAA

120

AACTTTCAGA GAATTACTAT TTACTTTATT AACTTACGGA TTTATTATAT AAATATATAT

180

	TCACCTAGCA	ACATATCTCT	GCCGTCTCTC	CTGCTCTCAT	AATGAAGACA	TAGCCGATTC	240
5	TCTGCCCGGG	CCCCTTGCTG	ATGCTCCTCC	GGGTCTGCGT	CGGGCGTGGG	TCTCTGGGGA	300
	CCCTCCAGAG	GTGGAGGTGG	GCTGATGGCC	TEGETECETE	GTGGTTGATG	GTTTTGCTCC	360
	CCCTACCTTT	TTTTTTTGAG	TTTATTCTGA	TTGATTTTT	TTCTTGGTTT	CTGGATAAAC	420
10	CACCCTCTGG	GGACAGGATA	ATAAAACATG	TAATATTTT	AAGAAGGAAA	ААААААААА	480
	AAAAAACTNG	GGGGGGCCC	CGAA				504

15

20

(2) INFORMATION FOR SEQ ID NO: 52:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 777 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:

	NAAGTATCTT	GGCCAGTTTA	TTACAGAGGA	CGATAAATGA	TTCCATGTGG	ATAGGGCATA	60
30	ACATACAGAG	AATGAGACTA	TGCCAGAAAT	GGGAGGAGGC	ATTTGAAACA	ACATGAGTAT	120
50	CTCAGGGACA	GATGGATTGA	TTCTGCTATT	GGTAGGCCTG	GAAGCAANGG	TCAGAAGTAG	180
	CAAAAAATGG	ATACCAAAAG	CACTATTWGT	CACCCAAGCT	AAGTGGAATA	GCTGGCCCAG	240
35	TAGGAGAAAT	GCAGGTTTTG	СТСТАСАСТА	AGTTCTCCAA	CTCTTGATAA	GCCTCCAAAA	300
	ACAAATGTTA	GGGGAAAAA	ACGCAGCTGG	TTATGAAAAG	ATATATCTCA	ТТТСАТТААА	360
40	AAATCAATGT	CAATGCTGTT	AATAGAATCC	TTTTATCTTC	AGGACAGAGG	CAATGCCCTA	420
40	AACAAACACC	AGCTCAAGAG	CCTCTGATGC	CAACCTAGAG	GGTACCCAAA	CACAAACTTA	480
	GCATAGAGGT	AAGAATCTCT	ATGTCTTTTG	GTGGAGGCAA	AGCCATTTGG	TTGGTACTTC	540
45	ACAGGAACAT	СТТТСТАССА	AGTCTTCATC	ATATGGTATG	TGCCACGAGT	CTCCAGTTGT	600
	TTGCACCACT	GTGTCATAGC	TGAGAATACG	CTGAAAGGTT	AGTTTTGATC	CTGGAAACCT	660
50	ATTTACAATT	GCCAGCTGAT	GTCCCTGCTG	CCACTTAAAA	AAGGCTTGGG	TCTGGCATAG	720
30	GCAGAMAGGC	CTGTGGTCCC	CTCGTGCCGA	TTCTNGGCTC	GAGGCCAATT	NCCTTAT	777

55

(2) INFORMATION FOR SEQ ID NO: 53:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 602 base pairs

60

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53: 5 ATGACTACAG TGTTATACCC TCCAATCTTT GCAGGTGGGC ATGGAACACT GCTTGTATCA 60 120 10 CATGGTTTGG GATGAGCAGG TCAATAGTTT TGAGAGGGAG TTTGTTCCTT TTTTTTTCT 180 CATTATACTC TTAAATIGTT GTCAGTTATC AAACAAACAA ACAGAAAAAT TGTTTGGAAA 240 AACCTTGCAT ACGCCTTTTC TATCAAGTGC TTTAAAATAT AGACTAAATA CACACATCCT 300 15 GCCAGTTTT TCTTACAGTG ACAGTATCCT TACCTGCCAT TTAATATTAG CCTCGTATTT 360 TTCTCACGTA TATTTACCTG TGACTTGTAT TTGTTATTTA AACAGGAAAA AAAACATTCA 420 20 AAAAAAGAAA AATTAACTGT AGCGCTTCAT TATACTATTA TATTATTATT ATTATTGTGA CATTITGGAA TACTGTGGAA GTTTTATCTC TTGCATATAC TTTATACGGA AGTATTACGC 540 CTTAAAAATA CGAAAATAAA TTTTACAAGG TTCCGGTTTT GGTGGTGGAA AGAGTAAATT 600 25 GA 602

30

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 54:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1749 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:

AGTCACTGAC TTGGAGCCGC TCGGGGGAAG TCCCGCCCAG ACAGGCGGTG GGTGGGAATG 60 CCTCACTTCA GTTTGAAGAG GGTCCGGATC CAAAGGGGTT AAAACGAGCG AACCCCGATC 120 CCCGACCACA CTTCCCGCCT CCCTAAAACG CACACCCCGC TAGCCATGGG CAGCCGCGAC 180 CACCTGTTCA AAGTGCTGGT GGTGGGGGAC GCCGCAGTGG GCAAGACGTC GCTGGTGCAG 240 GATTATTCCC AGGACAGCTT CAGCAAACAC TACAAGTCCA CGGTGGGAGT GGATTTTGCT 300 CTGAAGGTTC TCCAGTGGTC TGACTACGAG ATAGTGCGGC TTCAGCTGTG GGATATTGCA 360 GGGCAGGAGC GCTTCACCTC TATGACACGA TTGTATTATC GGGATGCCTC TGCCTGTGTT 420 ATTATGTTTG ACGTTACCAA TGCCACTACC TTCAGCAACA GCCAGAGGTG GAAACAGGAC 480 CTAGACAGCA AGCTCACACT ACCCAATGGA GAGCCGGTGC CCTGCCTGCT CTTGGCCAAC 540 AAGTGTGATC TGTCCCCTTG GGCAGTGAGC CGGGACCAGA TTGACCGGTT CAGTAAAGAG 600

•	

	AACGGTTTCA	CAGGTTGGAC	AGAAACATCA	GTCAAGGAGA	АСАААААТАТ	TAATGAGGCT	660
	ATGAGAGTCC	TCATTGAAAA	GATGATGAGA	AATTCCACAG	AAGATATCAT	GICTTIGTCC	720
5	ACCCAAGGGG	ACTACATCAA	TCTACAAACC	AAGTCCTCCA	GCTGGTCCTG	CTGCTAGTAG	780
	TGTTTGGCTT	ATTTTCCATC	CCAGTTCTGG	GAGGTCTTTT	AAGTCTCTTC	CCTTTGGTTG	840
10	CCCACCTGAC	CATTTTATTA	AGTACATTTG	AATTGTCTCC	TGACTACTGT	CCAGTAAGGA	900
10	GGCCCATTG	TCACTTAGAA	AAGACACCTG	GAACCCATGT	GCATTTCTGC	ATCTCCTGGA	960
	TTAGCCTTTC	ACATGTTGCT	GRCTCACATT	AGTGCCAGTT	AGTGCCTTCG	GTGTAAGATC	1020
15	TTCTCATCAG	CCCTCAATTT	GTGATCCGGA	ATTTTGTGAG	AAGGATTAGA	AATCAGCACC	1080
	TGCGTTTTAG	AGATCATAAT	TCTCACCTAC	TTCTGAGCTT	ATTTTTCCAT	TTGATATTCA	1140
20	TTGATATCAT	GACTTCCAAT	TGAGAGGAAA	ATGAGATCAA	ATGTCATTTC	CCAAATTTCT	1200
20	TGTAGGCCGT	TGTTTCAGAT	TCTTTCTGTC	TIGGAATGTA	AACATCTGAT	TCTGGAATGC	1260
	AGAAGGAGGG	GTCTGGGCAT	CTGTGGATTT	TIGGCTACTA	GAAGTGTCCC	AGAAGTCACT	1320
25	GTATTTTTGA	AACTTCTAAC	GTCATAATTA	AGTTTCTCTT	GTCTTGGCAT	CAAGAATAGT	1380
	CAAGTTTTT	GGCCGGGCAT	GGTGGCTCAT	GCCKGTAATC	CCAGCACTTG	GGGAGGCCAA	1440
30	GGCAGGCGGA	TCACATGAGG	CCAGGAATTC	GAGACCAACC	TGGTCAGCAT	GGCAAAACCC	1500
30	CGTCTCTACT	AAAAGTACAA	AAATTAGCCA	GGCGTGATGG	CACGTGTCTG	TAATCCCAGC	1560
	TACTCTGGAG	ACTGAGGTGG	GAGAATCCCT	TGAGACTGGG	AGGCAGAGGT	TGCAGTGAAC	1620
35	CGAGATCATG	CCACCGCACT	TCAGCCTGGG	TGACAGAGAA	GGACTCCGTC	TCAAAAAAAA	1680
	АААААААА	AAAACTCGAG	eeeeeccce	GTACCCAAAT	CGCCSTGATA	GTGATCGTAW	1740
40	ACAATCNAA						1749
1 0							

(2) INFORMATION FOR SEQ ID NO: 55:

45

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1896 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:

AAAGAGATGG GCTCTTTATT TTCTCGAAAA ACCAATTTGG AGTTACTCAT TTTTCCATAA 60

CATTAAATTT CTTACAGTGA ACTACATATT GTCCATAAGT GCTTCATCAG GACTCATCGC 120

CCTCCTGTCT ACTGGCTCCA AATAGACCAT GTCAGCTTCA CCCCTGGCT TTGTGTCTAT 180

60 GGGTGGCCTG TCGTATATGG AAAAGTAGCA GGGTGGTCAG GGTGGGAGAC ACAAGATGTT 240

	TTTATAGTCT	AGAGCCTTTA	AAAAACCCAG	CAGAATGTAA	TTCAGTATTT	GTTTATTGGC	300
5	TGTTTTTTGA	CAGATIGITG	AAATTAAATG	AATTGAAAGG	GAAACTCAGA	GTACTAGGAC	360
J	GTTTATTAAA	AGGAAAAAA	TGTCTTGCAA	TGTGCTGTAA	TCACAAGAGG	AGAAAATAAC	420
	TIGTTICCTT	GATCTGTCAG	AGGTCACAGT	AACCTGGGCC	GAGCTGTTAT	TATTTATTAT	480
10	ATAATAGTAG	TAGGAAGTTA	ATAACTGGTT	CTCTGTGTTC	CAAGCACAAT	ATTACAACTT	540
	CTTTTGAACC	GTAAATATCA	GAATGAATCC	TCTTCCCAGG	GGATTGAACA	GAAGCTTAAT	600
15	GTTTACAAGT	GTTTGAATTT	GTGATCTGAA	ATAACACAAA	АТТАААААСА	TGATTTCTCT	660
13	AATTTTCCAA	CTAGAGGAAG	AGAAACTTGT	GGAAAAGTTC	TTTTTTTTC	TTTTTTTTT	720
	CTTAAAGAAG	GGCAGCCAAG	GTAGTAACCT	AAAAATAGTG	CCCAGGCATA	TGAGAGTTGT	780
20	CCTACGAGGT	TAAAGAACAC	ACTGTTCCAC	TGTATGGCTT	TGGCCCTGAG	TGGCCAGGGA	840
	GGTCAACTIG	ACCCTGCCAT	GTTGGTTTGA	CTTACTAAGA	CACAGGAATC	ATTGTTTTCC	900
25	TTGACCAGGG	TCTCACACCC	TGGAGGAATG	TTAAGTAAGA	GAAAGAACCT	CTTTCCTGAA	960
23	TATTGACATG	TAAAAGACCA	AAGTAATTT	TCTGAACTTC	TGCAATTCTG	AGAACTCTCC	1020
	AAGGAATTTA	CAGTGATTT	AGTGCTTGTC	AGCATTTTTC	CATGAGGACT	TTCATACATT	1080
30	TGACTCTTTA	GTTCACAGGT	TCCCATTGAT	TGTGAGCAAG	ATATTTATCT	CTTTAGCCCT	1140
	TGGGGATCCA	GCTGAGAGCA	ATCTCTTGCA	TTTTTTTACC	CGTGTATGTA	CAGATATCAT	1200
35	TICTIGTGTA	TGCCATGACT	TGAAAAAGTT	TGGGAAGCTC	TTTAGCAATA	TCAGCTAAAA	1260
55	GGATATGAAA	TCACAGGTGA	TAGCAGTTGT	CATTCAGTAA	TTTCCTACAA	GCAGCACCCC	1320
	AAAGGAAATA	TAGTCCTAAT	CTTTACTATC	CACTICTAAA	TTTAATGTGA	ATTTCATACA	1380
40	TGTTATTAGT	TGTTTTCTTT	TATTTTAATA	TTATTAAAAA	CATCGGGAGT	TTAACTTCCA	1440
	CTTCCATGCT	ATCGGATGTG	TTGGGCTCCA	TGCAAGAACT	TOGAAGAAAA	ACAGGCAGGA	1500
45	ATGCATTTGC	ATAATGACCC	AGATCATCAT	TTTCTGCAAC	TGAGAATTAT	ATTICATCAT	1560
	TGCTTCTAGA	AGTCTGCAAT	TCTTTACTTT	TCTTTGGTGC	ATTATTATCT	AGGTGCCATC	1620
	ACTGGATAAT	GTGGAGTGAC	TAGAGAAGTC	AYATATCACT	GTAAGGTACA	GTTAGGGGTA	1680
50	ACACTTTAGA	GGTTTATTAT	тттаааааа	CTTTTCTTGA	ACTCCTGGGC	CAACATGGGT	1740
	GAAACCCCGT	CTTCTTACTT	AAAAATACCC	AAAATTAGGC	CAGCGCGTG	GATGGGTGGG	1800
55	GTGCCTGTTA	ATCTTCAGCT	ACTINGGGGA	GGGCTTGAAG	CCAGGGAGGA	ACTGCCCTGG	1860
55	ANCCCCGGGG	NGGGCCAGNA	GGTTTGCCAG	TTGAGT			1896

(2) INFORMATION FOR SEQ ID NO: 56:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1753 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:

10 TCTTTTAAA ATAGACATTT GTGGGGCTCA CACAATATAT GAAATAGTAC CCTCTAAAAA 60 AGAGAAAAA AAAATCAGGC GGTCAAACTT AGAGCAACAT TGTCTTATTA AAGCATAGTT 120 15 TATTTCACTA GAAAAAATTT AATATCAAGG ACTATTACAT ACTTCATTAC TAGGAAGTTC 180 TTTTTAAAAT GACACTTAAA ACAATCACTG AAAACTTGAT CCACATCACA CCCTGTTTAT 240 TTTCCTTAAA CATCTTGGAA GCCTAAGCTT CTGAGAATCA TGTGGCAAGT GTGATGGGCA 300 20 GTAAAATACC AGAGAAGATG TTTAGTAGCA ATTAAAGGCT GTTTGCACCT TTAAGGACCA 360 GCTGGGCTGT AGTGATTCCT GGGGCCAGAG TGGCATTATG TTTTTACAAA ATAATGACAT 420 25 ATGTCACATG TTTGCATGTT TGTTTGCTTG TTGAATTTTT GAACAGCCAG TTGACCAATC 480 ATAGAAAGTA TTACTTTCTT TCATATGGTT TTTGGTTCAC TGGCTTAAGA GGTTTCTCAG 540 AATATCTATG GCCACAGCAG CATACCAGTT TCCATCCTAA TAGGAATGAA ATTAATTTTG 600 30 TATCTACTGA TAACAGAATC TGGGTCACAT GAAAAAAAAT CATTTTATCC GTCTTTTAAG 660 TATATGTTTA AAATAATAAT TTATGTGTCT GCATATTGCA GAACAGCTCT GAGAGCAACA 720 35 GTTTCCCATT AACTCTTTCT GACCAATAGT GCTGGCACCG TTGCTTCCTC TTTGGGAAGA 780 GGAAAGGGTG TGTGAACATG GCTAACAATC TTCAAATACC CAAATTGTGA TAGCATAAAT 840 AAAGTATITA TITTATGCCT CAGTATATTA TTATTTAATT TTTTAGGTAA TGCCTATCTC 900 40 TIGGICTATT AAGGAAAGAA GCAATCAGTA GAGAATTCAG GATAGITTTG TITAAATTCT 960 1020 TGCAGATTAC ATGTTTTTAC AGTGGCCTGC TATTGAGGAA AGGTATTCTT CYATACAACT 45 TGTTTTAACC TTTGAGAACA TTGACAGAAA TTATGCAATG GTTTGTTGAG ATACGGACTT 1080 GATGGTGCTG TTTAATCAGT TTGCTTCCAA AGTGGCCTAC TCAAGAGGCC CTAAGACTGG 1140 TAGAAATTAA AAGGATTTCA AAAACTTTCT ATTCCTTTCT TAAACCTACC AGCAAACTAG 1200 50 GATTGTGATA GCAATGAATG GTATGATGAA GAAAGTTTGA CCAAATTTGT TTTTTTGTTG 1260 TTGTTGTTGT TTTGAATTTG AAATCATTCT TATTCCCTTT AAGAATGTTT ATGTATGAGT 1320 55 GTGAAGATGC TAGCGAACCT ATGCTCAGAT ATTCATCGTA AGTCTCCCTT CACCTGTTAC 1380 AGAGTTTCAG ATCCGTCACT GATAGTATGT ATTTCTTTAG TAAGAATGTG TTAAAATTAC 1440 AATGATCTTT TAAAAAGATG ATGCAGTTCT GTATTTATTG TGCTGTGTCT GGTCCTAAGT 1500 60

	GGAGCCAATT	AAACAAGTTT	CATATGTATT	TTTCCAGTGT	TGAATCTCAC	ACACTGTACT	1560
	TTGAAAATTT	CCTTCCATCC	TGAATAACGA	ATAGAAGAGG	CCATATATAT	TGCCTCCTTA	1620
5	TCCTTGAGAT	TTCACTACCT	TTATGTTAAA	AGTTGTGTAT	AATTGTTAAA	ATCTGTGAAA	1680
	GAATAAAAAG	TGGATTTAAA	ттаааааааа	ааааааааа	ааааааааа	АААААААА	1740
10	AAAAAAAAGG	GGG					1753

(2) INFORMATION FOR SEQ ID NO: 57:

15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1220 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

20

25

30

35

40

45

50

55

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:

GCGGAAGTTA CTGCAGCCGC GGTGTTGTGC TGTGGGGAAG GGAGAAGGAT TTGTAAACCC 60 CGGAGCGAGG TTCTGCTTAC CCGAGGCCGC TGCTGTGCGG AGACCCCCGG GTGAAGCCAC 120 CGTCATCATG TCTGACCAGG AGGCAAAACC TTCAACTGAG GACTTGGGGG ATAAGAAGGA 180 AGGTGAATAT ATTAAACTCA AAGTCATTGG ACAGGATAGC AGTGAGATTC ACTTCAAAGT 240 GAAAATGACA ACACATCTCA AGAAACTCAA AGAATCATAC TGTCAAAGAC AGGGTGTTCC 300 AATGAATTCA CTCAGGTTTC TCTTTGAGGG TCAGAGAATT GCTGATAATC ATACTCCAAA 360 AGAACTGGGA ATGGAGGAAG AAGATGTGAT TGAAGTTTAT CAGGAACAAA CGGGGGGTCA 420 TYCAACAGTT TAGATATTCT TTTTATTTTT TTTCTTTTCC CYCAATCCTT TTTTATTTTT 480 AAAAATAGTT CTTTTGTAAT GTGGTGTTCA AAACGGAATT GAAAACTGGC ACCCCATCTC 540 TTTGAAACAT CTGGTAATTT GAATTCTAGT GCTCATTATT CATTATTGTT TGTTTTCATT 600 GTGCTGATTT TTGGTGATCA AGCCTCAGTC CCCTTCATAT TACCCTCTCC TTTTTAAAAA 660 TTACGTGTGC ACAGAGAGGT CACCTTTTTC AGGACATTGC ATTTTCAGGC TTGTGGTGAT 720 AAATAAGATC GACCAATGCA AGTGTTCATA ATGACTTTCC AATTGGCCCT GATGTTCTAG 780 CATGTGATTA CTTCACTCCT GGACTGTGAC TTTCAGTGGG AGATGGAAGT TTTTCAGAGA 840 ACTGAACTGT GGAAAAATGA CCTTTCCTTA ACTTGAAGCT ACTTTTAAAA TTTGAGGGTC 900 TGGACCAAAA GAAGAGGAAT ATCAGGTTGA AGTCAAGATG ACAGATAAGG TGAGAGTAAT 960 GACTAACTCC AAAGATGGCT TCACTGAAGA AAAGGCATTT TAAGATTTTT TAAAAATCTT 1020 GTCAGAAGAT CCCAGAAAAG TTCTAATTTT CATTAGCAAT TAATAAAGCT ATACATGCAG 1080 AAATGAATAC AACAGAACAC TGCTCTTTTT GATTTTATTT GTACTTTTTG GCCTGGGATA 1140

TGGGTTTTAA	ATGGACATTG	TCTGTACCAG	CTTCATTAAA	ATAAACAATA	TTTGTAAAAA	1200
TCAWAAAAA	АААААААА					1220

(2) INFORMATION FOR SEQ ID NO: 58:

10

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1049 base pairs(B) TYPE: nucleic acid

5 (D) TOPOLOGY: linear

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:

(C) STRANDEDNESS: double

20	TCGCGCCTGC	AGACACAGCA	TCTACTCAGC	GTGGGTCACC	TCTGTGAACA	TCACTGACTG	60
	CAAGCCTCCC	TCAATTTCTG	GTGCAGCCCA	TCAGGGACCC	ACAGCGCCTG	GGAGGATGGT	120
	GCGGATCTTG	GCCAATGGGG	AAATCGTGCA	GGACGACGAC	CCCCGAGTGA	GGACCACTAC	180
25	CCAGCCACCA	AGAGGTAGCA	TTCCTCGACA	GAGCTTCTTC	AATAGGGGCC	ATGGTGCTCC	240
	CCCAGGGGGT	CCIGGCCCCC	GCCAGCAGCA	GGCAGGTGCC	AGGCTGGGTG	CTGCTCAGTC	300
30	CCCCTTCAAT	GACCTCAACC	GGCAGCTGGT	GAACATGGGC	TTTCCGCAGT	GGCATCTCGG	360
50	CAACCATGCT	GTGGAGCCGG	TGACCTCCAT	CCTGCTCCTC	TTCCTGCTCA	TGATGCTTGG	420
	TGTTCGTGGC	CTCCTCCTGG	TTGGCCTTGT	CTACCTGGTG	TCCCACCTGA	GICAGCGGTG	480
35	ACCTCTGAGG	GCTGATAGGG	GTGGGTTTGT	TGAGAGGGAC	TTGCTGGGCC	TTGGTGTGAG	540
	AGCAGGCATA	TTTGGAGGGG	ATCTGGTGGT	GCCTTGAAGG	TATGATCAGA	GAGGGGACCA	600
40	CAGGTGTGTG	TTTCCCCTTT	GTGTTAAGCG	TGAGGCAGAG	GGAGACGTTA	GTCCCAGCAT	660
	TTCCCAAAGT	GTGGGTGGGT	CCGTTGGTTC	CCGAGATACT	TTTAGGTGGT	ATGGGGCCTG	720
	CATTAAGTGG	CACAAAATCA	GAGCAAGAAA	GCGATGCCCT	TCCCAATTCT	CTCAATCCTT	780
45	TTATGCCGAG	AAGATCTCAG	CTGGATGCCA	ACATGTTCCG	ATGCCTGTGG	AAGACATGCC	840
	GACGTCTCCT	CTGCCTAGGG	AGCAGGACTT	GGGCTTAGGG	CAGGTGGAAA	AAATTCCAGA	900
50	CTTTTTTAGC	ACTGTTTTTG	TTTTAATGGT	ATATTTTTAT	TGGCTACTTT	ATTGTTTAGG	960
50	ACAAGTGGTA	GTGGCATTCT	ATTTATTGTG	ACCTTTTCAA	TAAATAGATT	TAAGTAAAAA	1020
	АААААААА	AAAACTCGAG	GGGGGGCCC				1049

55

(2) INFORMATION FOR SEQ ID NO: 59:

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1776 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:

	AAAGAGGATG	TCMAGCTAGA	GGTCCCCGAT	GGCTGGTCGG	ATGGGAAGCA	CAAGGCTGAG	60
10	GGACTGGATT	GTAAAGGCAC	TAAGTCGTTC	TGCGGTGAGA	ATCAGACATG	GGGGACCTCT	120
	AGCTTCACAT	ССТСТТТССТ	TGCAGSTCTG	GACATCCTGA	GCCCAAGTCC	CCCACACTCA	180
15	GTGCAGTGAT	GAGTGCGGAA	GTGAAGGTGA	CAGGGCAGAA	CCAGGAGCAA	TTTCTGCTCC	240
15	TAGCCAAGTC	GGCCAAGGGG	GCAGCGCTGG	CCACACTCAT	CCATCAGGTG	CTGGAGGCCC	300
	CTGGTGTCTA	CGTGTTTGGA	GAACTGCTGG	ACATGCCCAA	TGTTAGAGAG	CTGGCTGAGA	360
20	GTGACTTTGC	CTCTACCTTC	CGGCTGCTCA	CAGTGTTTGC	TTATGGGACA	TACGCTGACT	420
	ACTTAGCTGA	AGCCCGGAAT	CTTCCTCCAC	TAACAGAGGC	TCAGAAGAAT	AAGCTTCGAC	480
25	ACCTCTCAGT	TGTCACCCTG	GCTGCTAAAG	TAAAGTGTAT	CCCATATGCA	CTCTTCCTCC	540
	AGGCTCTTGC	CCTGCGTAAT	GTGCGGCAGC	TGGAAGACCT	TGTGATTGAG	GCTGTGTATG	600
	CTGACGTGCT	TCGTGGCTCC	CTGGACCAGC	GCAACCAGCG	GCTCGAGGTT	GACTACAGCA	660
30	TCGGGCGGGA	CATCCAGCGC	CAGGACCTCA	GTGCCATTGC	CCGAACCCTK	AANAAAAACC	720
	ATTAAAGTTA	CGACGCCAGC	AGCAGCCGCA	GCCACATCTC	AGGACCCTGA	GCAACACCTG	780
35	ACTGAGCTGA	GGGAACCAGC	TCCTGGCACC	AACCAGCGCC	ASCCAGCAAG	AAAGCCTCAA	840
	AGGGCAAGGG	GCTCCGAGGG	ANCGCCAAGA	TTTGGTCCAA	GTCGAATTGA	AAGRACTGTC	900
	GTTTCCTCCC	TGGGGATGTG	GGGTCCCAGC	TECCTECCTE	CCTCTTAGGA	GTCCTCAGAG	960
40	AGCCTTCTGT	GCCCCTGGCC	AGCTGATAAT	CCTAGGTTCA	TGACCCTTCA	CCTCCCCTAA	1020
	CCCCAAACAT	AGATCACACC	TTCTCTAGGG	AGGAGKCAAA	TGTAGGTCAT	GTTTTTGTTG	1080
45	GTACTITCTG	TTTTTTGTGA	CTTCATGTGT	TCCATTGCTC	CCCGCTGCCA	TGCTCTCTCC	1140
	CTTGTTTCCT	TAAGAGCTCA	GCATCTGTCC	CTGTTCATTA	CATGTCATTG	AGTAGGTGGG	1200
	TAGCCCTGAT	GGGGTCGCT	CIGICIGGAG	CATAACCCAC	AGGCGTTTTT	TCTGCCACCC	1260
50	CATCCCTGCA	TGCCTGATCC	CCAGTTCCTA	TACCCTACCC	CTGACCTATT	GAGCAGCCTC	1320
	TGAAGAGCCA	TAGGGCCCCC	ACCTTTACTC	ACACCCTGAG	AATTCTGGGA	GCCAGTCTGC	1380
55	CATGCCAGGA	GTCACTGGAC	ATGTTCATCC	TAGAATCCTG	TCACACTACA	GTCATTTCTT	1440
23	TTCCTCTCTC	TGGCCCTTGG	GTCCTGGGAA	TGCTGCTGCT	TCAACCCCAG	AGCCTAAGAA	1500
	TOGCAGCCGT	TTCTTAACAT	GTTGAGAGAT	GATTCTTTCT	TGGCCCTGGC	CATCTCGGGA	1560
60	AGCTTGATGG	CAATCCTGGA	AGGGTTTAAT	CTCCTTTTGT	GAGTTTGGTG	GGGAAGGGAA	1620

	GGGTATATAG ATTGTATTAA AAAAAAAAAG GTATATATGC ATATATCTAT ATATAATATG	1680						
5	ACGCAGAAAT AAATCTATGA GAAATCTATC TACAAAMWAA AAAAAAAAA AAAAAAAAA	1740						
J	AGGAATTCGA TNICAAGCTT ATCGATACCG TCNACC	1776						
10								
	(2) INFORMATION FOR SEQ ID NO: 60:							
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 443 base pairs							
15	(B) TYPE: nucleic acid (C) STRANDEDNESS: double							
	(D) TOPOLOGY: linear							
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:							
20	ACAGATAAAT AAATAAATAA TAAATTAAAT TAAATAAAAA ATCTGAGCTA ATCTGAATAA	60						
•	ATTGAGAGAT TTCACATGAA AGCCAGGATT TCTGGCTTCC CAGGAACAGT CAGAAGAGCT	120						
25	AGCTAGCAAC ACTGGTCTGC TTGGCTACCT TCTTTGGAAC AACATGAAAT CTAGCTCCCT	180						
	TTTTTTTTT TTTTTGGCCC ACTICATCCA TICACATGAC CTGCCTGGCC TCTGCAGGTA	240						
30	AGTGAGTATG CAACAAAAAT GTAGCACAGG TFTTGTCGCT GAACTACGTG GTTTCAGGTC	300						
	CAGCTCTGCC ACTTGCTAGC ATGACCTCGT GCCGAATTCC NGCACGAAGT TTTTTTTTTT	360						
	TTTTTCAGTG CTCCAGTCCC CCTATTGGAG AATCCTGCCC CCCCCTGGGA CAGAATGTTC	420						
35	ACCCTGGCCC CGCGANTCCC TGA	443						
10	(2) INFORMATION FOR SEO ID NO: 61:							
	(i) SECULEAGE CHARACTERISTICS.							
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2888 base pairs							
15	(B) TYPE: nucleic acid (C) STRANDEDNESS: double							
	(D) TOPOLOGY: linear							
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:							
50	TTAATGTTGT CAATAACCAC CAGGCCAAAC AGAATTTATA TGACCTGGAT GAAGATGATG	60						
	ATGGTATAGC TICCGTTCCT ACTAAACAGA TGAAGTTIGC AGCCTCAGGC GNCTTTCTCC	120						
55	ACCACATGGC TGGGCTAAGC AGTTCCAAGC TTTCCATGTC CAAGGCCCTC CCTCTCACCA	180						
	AAGTGGTTCA GAATGATGCA TACACAGCTC CTGCTCTCCC TTCCTCTATT CGAACAAAAG	240						
	CCTTGACCAA CATGTCCCGG ACACTGGTGA ACAAGGAAGA ACCCCCCAAA GAGCTGCCAG	300						
50	CTGCTGAGCC TGTTCTCAGC CCATTGGAAG GCACCAAGAT GACTGTGAAT AATCTGCACC	360						

	CTCGAGTCAC	TGAGGAGGAC	ATTGTTGAGC	TTTTCTGTGT	GTGTGGGGCC	CTCAAGCGAG	420
5	CTCGACTGGT	CCATCCTGGG	GTAGCGGAGG	TGGTGTTTGT	GAAAAAGGAC	GATGCCATCA	480
J	CCGCATATAA	GAAGTACAAC	AACCGGTGTC	TGGACGGGCA	GCCGATGAAG	TGCAACCTTC	540
	ACATGAATGG	GAATGTTATC	ACCTCAGACC	AGCCCATCCT	GCTGCGGCTG	AGTGACAGCC	600
10	CATCAATGAA	AAAGGAGAGC	GAGCTGCCTC	GCAGGGTGAA	CTCTGCCTCC	TCCTCCAACC	660
	CCCCTGCYGA	AGTGGACCCT	GACACCATCC	TGAAGGCACT	CTTCAAGTCC	TCAGGGGCCT	720
15	CTKTGACCAC	GCAGCCCACA	GAATTCAAAA	TCAAGCTTTG	AGCAGGGGAG	TGAGGCAGCC	780
13	AGAAGTGGGG	GCAGAGGAGG	GTGGCTCTGT	TTCCCCAAGG	CAAAGCTTAT	GACCAATGGG	840
	CCATCGGACT	GGAGACCCCT	GATTGTGGGA	AGGGTTGCCA	GGGATAAAGA	GCTTCCTCAC	900
20	TGGATGGGAC	CCCCCTTTCT	CTCTTCTCTT	CTCCCTGTG	CTCTTCTCTC	TACGTTAACG	960
	TTTCCTGTAG	TATGTTTCTT	CATCTCATCG	CCAAGGTAGG	CTTGTGTTTT	TCAGTGTGTG	1020
25	CCTCCCCGAG	CCTCAGCCCC	AAGCTGATTT	CTTATCTGGA	AATGGTACAC	TGAATTCTCT	1080
23	GGGTGGCTTT	CTTGTGGCCC	CATGGGATGC	AGCGTGGGGG	CTGTCTGAAG	GACCCTGCTT	1140
	TTTCCAGGGG	CCGAGGGGCT	GCCTTTCCTT	TGTGTGTATT	AAGCTTTTCA	AACAATGGAG	1200
30	GGGATGGAGA	GCCCTGGTGT	CCTGACGGGA	GCCAGGTCGG	CCTGAGAGCT	GTGCCGCTCC	1260
	TCIGICITGT	CAGTGGAGGT	GCCTGGGTGG	GGAGCAGGTC	TCAGGCCTCT	TGTCCTCTCC	1320
35	CCAGTGGCTC	CAGGCCTCAC	TAGTGGCAAG	GCAGGATGA	GGCTGCACCG	CTGGGAAGAG	1380
55	TCTATCTAAG	YTCTTGGCTT	GGAGTCCCGT	GTCGTCTCCR	CCCAGAGGAA	GTTCTCCAGA	1440
	GTTCACCTTT	CCCTTTTCCT	TGAGTTGTGC	TGAATGCCCC	ACCCCAGCTC	TCTTTCCCTT	1500
40	CTGGGTGTCT	TTGCTGGGAG	GGGGCTGTGT	TGTGAGCCCT	CCCGGTTCTC	ACCTCGCCTG	1560
	GCACTTAACC	ACACCCTGGT	TTTGTGTAGC	CGCCAGCTCT	CTTCTGGTTG	GCCTTTGAA	1620
45	AGGCTCAGCC	TCCCATTGTG	CAGTGCTTGG	CTTTGGAGCT	TATTTGAATG	GAAGAGGTCA	1680
73	GTTTGTTCCT	GGCTCTCCAT	TTCTGGCCTC	AGTTGTCTAC	AGGACAGTGG	TCAGGGATGC	1740
	CTGGAGGCAT	ATATCCAGCT	GCCACCAAGG	GGCACTGTTT	GTTCCCACTT	ATGTGAGTGA	1800
50	CCCCATCCAT	CCATGACCAG	AGGATTATTT	TCCTGCCTTG	GCAGAGGAGG	AGGAGTCAAG	1860
	GGAGCAGGGC	AGCTCTACCA	GGCAAGGTGT	TTCCCCAGCA	TAGGCGCAGA	CAGTTGGGAC	1920
55	GAAACTTCAG	AGCCCAGGCA	GTCCCTGAAT	GACCAGGCCA	GTGTTGTCAC	TGAGTGGTCC	1980
<i>JJ</i>	CCTGCTGGTT	GGGAGTGAAG	AGAATCCAGG	CTGGCAGAGC	TGGAGCCAGT	TGGGGAGCAC	2040
	GGTTCTGGGA	GCTCTGCAAA	ATCAGTAGCA	AGTGCTGGAA	AAGGCACATG	CCGAAGATAC	2100
60	TCAAGAGCTC	CCAAGATITG	CTTGAGGCTA	GCCCAGTGAA	RAAAACCAGA	GACTCATGTT	2160

TCCAGGGGTC	AGTCTGTCAG	GCAGGAAGGA	CCCAGGATTT	GAACCCAGCT	TCAGTGTGCA	2220
GGCTCTGAGG	CTGCCCAGGA	CGGGAAAGTC	CAAGGAAGGG	GCCTGGTGGT	GCTCCACTTG	2280
CAGTTCTTTA	AAGAATGCTG	CTTTTTATTC	TCCTAACCCT	TTCAAGTGGG	TGCAGACTTC	2340
TCGTTAGCAG	CTGGAAGACA	TTCCTCCCAC	ACTITICCCT	TCCTGGCCCA	AGAGAGCATC	2400
CAGAAGGCAG	TAGGACCTGG	TTTTTCAGGT	ACTGGGAGCC	GGGGGCTCAC	TGCTTGCACT	2460
GTGCTTAGGG	TAGGGATGGT	AAATATCCTC	CCTGCATGGC	TTTATCCTCC	CTCTCATCCC	2520
AAAGCAGGTA	TCTTCTGGTT	GTCACAGAGT	TTCATTGAGT	CCAGCTGCAG	CCACGTGGCC	2580
ATCTGGAGCT	GGTGCTATAG	GTGACCATCT	GGTACATTGA	GGGACCTGT	TTGCCTCCTC	2640
CACTCTATAA	GCAGTCATCT	TGGGAGACCG	GGAGGAGAAG	GTGGTGGGCT	AGTCCTGTGT	2700
CCTCCTCCAC	TTCCCATGCC	TCTATGTTAC	CCATCTGTGT	CTCCTGTGCA	GAAGGAGAGG	2760
AAGGGGCATT	AAGAGATGAA	GGGTGATTAT	GTATTACTTA	TCCATTTCTG	AATAAACATT	2820
TGTTATTCCT	АААААААА	ААААААААСТ	CGAGGGGGG	CCCGGWACCC	AWATCGCCSK	2880
AAAGTGAG						2888

35

40

45

50

55

60

5

10

15

20

25

(2) INFORMATION FOR SEQ ID NO: 62:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1851 base pairs(B) TYPE: nucleic acid

b) TipE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:

CACTAGTATA ATTTATAATT ATAACCTATT CTGATTTCTT TTCAAATATT AGGTGTCCTA 60 GTTGCCTATG AAGGTTTGCC ACTTCATCTT GCACTGTTCC CCAAACTTTG GACTGAGCTA 120 TGCCAGACTC AGTCTGCTAT GTCAAAAAAC TGCATCAAGC TTTTGTGTGA AGATCCTGTT 180 TTCGCAGAAT ATATTAAATG TATCCTAATG GATGAAAGAA CTTTTTTAAA CAACAACATT GTCTACACGT TCATGACACA TTTCCTTCTA AAGGTTCAAA GTCAAGTGTT TTCTGAAGCA 300 AACTGTGCCA ATTTGATCAG CACTCTTATT ACAAACTTGA TAAGCCAGTA TCAGAACCTA 360 CAGTCTGATT TCTCCAACCG AGTTGAAATT TCCAAAGCAA GTGCTTCTTT AAATGGGGAC 420 CTGAGGGCAC TCGCTTTGCT CCTGTCAGTA CACACTCCCA AACAGTTAAA CCCAGCTCTA 480 ATTCCAACTC TGCAAGAGCT TTTAAGCAAA TGCAGGACTT GTCTGCAACA GAGAAACTCA 540 CTCCAAGAGC AAGAAGCCAA AGAAAGAAAA ACTAAAGATG ATGAAGGAGC AACTCCCATT 600

1440

1500

1560

1620

5

10

15

20

25

30

	7		285			
AAAAGGCGGC	GTGTTAGCAG	TGATGAGGAG	CACACTGTAG	ACAGCTGCAT	CAGTGACATG	660
AAAACAGAAA	CCAGGGAGGT	CCTGACCCCA	ACGAGCACTT	CTGACAATGA	GACCAGAGAC	720
TCCTCAATTA	TTGATCCAGG	AACTGAGCAA	GATCTTCCTT	CCCCTGAAAA	TAGTICTGTT	780
AAAGAATACC	GAATGGAAGT	TCCATCTTCG	TTTTCAGAAG	ACATGTCAAA	TATCAGGTCA	840
CAGCATGCAG	AAGAACAGTC	CAACAATGGT	AGATATGACG	ATTGTAAAGA	ATTTAAAGAC	900
CTCCACTGTT	CCAAGGATTC	TACCCTAGCC	GAGGAAGAAT	CTGAGTTCCC	TTCTACTTCT	960
ATCTCTGCAG	TTCTGTCTGA	CTTAGCTGAC	TTGAGAAGCT	GTGATGGCCA	AGCTTTGCCC	1020
TCCCAGGACC	CTGAGGTTGC	TTTATCTCTC	AGTTGTGGCC	ATTCCAGAGG	ACTCTTTAGT	1080
CATATGCAGC	AACATGACAT	TTTAGATACC	CTGTGTAGGA	CCATTGAATC	TACAATCCAT	1140
GTCGTCACAA	GGATATCTGG	CAAAGGAAAC	CAAGCTGCTT	CTTGACATTA	GGTGTAGCAT	1200
GTCTACTTTT	AAGTCCCTCA	CCCCCAACCC	CCATGCTGTT	TGTATAAGTT	TTGCTTATTT	1260
GTTTTTGTGC	TTCAGTTTGT	CCAGTGCTCT	CTGCTTGAAT	GGCAAGATAG	ATTTATAGGC	1320

AACAACCACA AGAAATITGA TTCTGTAAAG AATCCTCTTT AGCTGTGGCC TGGCAGTATA

1680
TAAATGGTGC TTTATTTAAC AGAATACCTG TGGAGGAAAT AAAGCACACT TGATGTAAAA

1740
ATAATTGTTT TATTTTTATT GACATGACTG ATTGATTGCT ATTCTGTGCA CTTAATTAAA

1800
CTGATTGTGA TGACTTWAA AAAAAAAAA AAAAAAAAA A

TTAATTCTTG GTCAGGCAGA ACTCCAGATG AAAAAAACTT GCATCTTCAG TATACTTCCT

AAAGGCAAT CAGATAATGG ATATGTTTTA TGTAATTAAG AGTTCACTTT AGTGGCTTTC

ATTTAATATG GCTGTCTGGG AAGAACAGGG TTGCCTAGCC CTGTACAATG TAATTTAAAC

TTACAGCATT TTTACTGTGT ATGATATGGT GTCCTCTGTG CCAGTTTTGT ACCTTATAGA

GGCAGATTGC CTCCGATCGC TGTGGTTCTT ATTATCAAAA TTAAGTTTAC TTGTATACGG

45

(2) INFORMATION FOR SEQ ID NO: 63:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3542 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55

60

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:

TCCAATGCTG ATGAGCGTCT TCGCTGGCAG GCCAGCTCCT TGCCTGCTGA TGACCTTTGC 60

ACAGAAAATG CCATCATGCT GAAACGATTC AATAGGTATC CGCTGATCAT TGACCCCTCT 120

GGACAGGCCA CAGAATTCAT TATGAATGAA TATAAGGWTC GTAAGATCAC ACGGACCAGC 180

GG

⁽²⁾ INFORMATION FOR SEQ ID NO: 64:

PCT/US98

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 883 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:	
10	AGGTGATTIT AATGATAGGT GTCATATATA GGACGGATAA TCTGTTTACA TTCTGTTCTT	60
	CTCGATGCAC TCACAAGCGG GTAACTAGGT GACAAGAAAA CAAAGATCTT ATTCAAAAGA	120
	GGTCTTACAG CAACCCAACG TCTCATCTTC CCATAGTAAA GATGACGGCG CCTTGAGGTA	180
15	AGCTACAGGC AACACCACTT CCGCGTTTCT CTTGCGCCCT GGTCCAAGAT GGCGGATGAA	240
	GCCACGCGAC GTGTTGTGTC TGAGATCCCG GTGCTGAAGA CTAACGCCGG ACCCCGAGAT	300
20	CGTGAGTTGT GGGTGCAGCG ACTGAAGGAG GAATATCAGT CCCTTATCCG GTATGTGGAG	360
	AACAACAAGA ATGCTGACAA CGATTGGTTC CGACTGGAGT CCAACAAGGA AGGAACTCGG	420
	TGGTTTGGAA AATGCTGGTA TATCCATGAC CTCCTGAAAT ATGAGTTTGA CATCGAGTTT	480
25	GACATTCCTA TCACATATCC TACTACTGCC CCAGAAATTG CAGTTCCTGA GCTGGATGGA	540
	AAGACAGCAA AGATGTACAG GGGTGGCAAA ATATGCCTGA CGGATCATTT CAAACCTTIG	600
30	TGGGGCCAGG AATGTGCCCA AATTTGGACT AGCTCATCTC ATGGCTCTGG GGCTGGGTCC	660
30	ATGGSTGGCA GTGGAAATCC CTGATCTGAT TCAGAAGGGC GTCATCCAAC ACAAAGAGAA	720
	ATGCAACCAA TGAAGAATCA AGCCACTGAG GCAGGGCAGA GGGACCTTTG ATAGGCTACG	780
35	ATACTAWITT CCTGTGCATC ACACTTAACT CATCTAACTG TTCCCCGGAC ANCCTCCACT	840
	CTAGTTGTTA CTAAGTANTG CAGTAGCATT NTGGGGAAGA ACA	883
40		
	(2) INFORMATION FOR SEQ ID NO: 65:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1541 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:	
	GGCACGAGGT GGCCTCTACC CTGGGCTCAT CTGGCTACAC AGGGACTCTA AACGCTTCCA	60
	GATTCCCTGG AAACATGCCA CCCGGCATAG CCCTCAACAA GAAGAGGAAA ATACCATTTT	120

TAAGGCCTGG GCTGTAGAGA CAGGGAAGTA CCAGGAAGGG GTGGATGACC CTGACCCAGC

TAAATGGAAG GCCCAGCTGC GCTGTGCTCT CAATAAGAGC AGAGAATTCA ACCTGATGTA

TGATGGCACC AAGGAGGTGC CCATGAACCC AGTGAAGATA TATCAAGTGT GTGACATCCC

	TCAGCCCCAG	GGCTCGATCA	TTAACCCAGG	ATCCACAGGG	TCTGCTCCCT	GGGATGAGAA	360
5	GGATAATGAT	GTGGATGAAG	AAGATGAGGA	AGATGAGCTG	GATCAGTCGC	AGCACCATGT	420
3	TCCCATCCAG	GACACCTTCC	CCTTCCTGAA	CATCAATGGT	TCTCCCATGG	CGCCAGCCAG	480
	TGTGGGCAAT	TGCAGTGTGG	GCAACTGCAG	CCCGGAGGCA	GTGTGGCCCA	AAACTGAACC	540
10	CCTGGAGATG	GAAGTACCCC	AGGCACCTAT	ACAGCCCTTC	TATAGCTCTC	CAGAACTGTG	600
	GATCAGCTCT	CTCCCAATGA	CTGACCTGGA	CATCAAGTTT	CAGTACCGTG	GGAAGGAGTA	660
15	CGGGCAGACC	ATGACCGTGA	GCAACCCTCA	GGGCTGCCGA	CTCTTCTATG	GGGACCTGGG	720
13	TCCCATGCCT	GACCAGGAGG	AGCTCTTTGG	TCCCGTCAGN	CTGGAGCAGG	TCAAATTCCC	780
	AGGTCCTGAG	CATATTACCA	ATGAGAAGCA	GAAGCTGTTC	ACTAGCAAGC	TGCTGGACGT	840
20	CATGGACAGA	GGACTGATCC	TGGAGGTCAG	CGGTCATGCC	ATTTATGCCA	TCAGGCTGTG	900
	CCAGTGCAAG	GTGTACTGGT	CTGGGCCATG	TGCCCCATCA	CTTGTTGCTC	CCAACCTGAT	960
25	TGAGAGACAA	AAGAAGGTCA	AGCTATTITG	TCTGGAAACA	TTCCTTAGCG	ATCTCATTGC	1020
	CCACCAGAAA	GGACAGATAG	AGAAGCAGCC	ACCGTTTGAG	ATCTACTTAT	GCTTTGGGGA	1080
	AGAATGGCCA	GATGGGAAAC	CATTGGAAAG	GAAACTCATC	TTGGTTCAGG	TCATTCCAGT	1140
30	AGTGGCTCGG	ATGATCTACG	AGATGTTTTC	TGGTGATTTC	ACACGATCCT	TTGATAGTGG	1200
	CAGTGTCCGC	CTGCAGATCT	CAACCCCAGA	CATCAAGGAT	AACATCGTTG	CTCAGCTGAA	1260
35	GCAGCTGTAC	CGCATCCTTC	AAACCCAGGA	GAGCTGGCAG	CCCATGCAGC	CCACCCCCAG	1320
	CATGCAACTG	CCCCCTGCCC	TGCCTCCCCA	GTAATTGTGA	ATGCCATCTT	CTTCCTTCTC	1380
	TTTTTTATAA	TATTGTACAT	ATGGATTTTT	TTATTGTTTA	GATTTAACCA	GCTTTTAAAT	1440
40	CTCTGTTTTC	TGTGACAGTG	TTAGAAGTTT	GTGATTCTCC	AAATATGCCT	AGATTTAAAG	1500
	CTGATTTAAT	TTATGGAAAA	AAAAAAAA	АААААААА	A		1541

(2) INFORMATION FOR SEQ ID NO: 66:

(i) SEQUENCE CHARACTERISTICS:
50 (A) LENGTH: 732 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:

AGAAAATGAA TGTTAGAAGG TGCCTGCCGA GGCGGGACAG AGTGTTTGCT CGCGCTGGAG 60

AAGGCTCTGC TCAGCCCTGA GAGTCCCTTC CTGCCCCACC GATACTGGCA CTTTAAAAAG 120

	GAAGCTGACC	GCACAGTGTC	CAGACGAATT	GGCCCCCAGA	AGATGGGGAG	TTCTGTCCTG	180
	CCCTTCTGTG	TCTGCGTGAC	CTCACCCAGC	CTAGGAGGGA	GGTGCATTCA	GGGTAGATTT	240
5	GCCTCTCATT	CAAAGTTCTG	GGCTTTGGG	CGGAAAACAG	CCACCTTTCG	CGCTGTTGGG	300
	GAGACTCCTC	CAGACCAGGA	ACCCCAGAAG	GAGACAGAGC	CTGCCACATC	CTCCCACGCC	360
10	AGGCCCTGGG	CCAGGGTGAT	TGGACTGAGA	ATTTGGCCAC	AACCAAATTG	ATGCTGGCTG	420
10	GAACCAGAGG	CCAGAAAGCC	TOGCCTTGTC	CCCATGTGGG	AGCCCTGTCC	TCAGCCCTCT	480
	TGTCCCCTTG	AGCTCAGTGA	ATTCCCACCA	GGTGCCCACA	GCTCCTGGAC	TTCAAATTCT	540
15	ATATATTGAG	AGAGTTGGAG	AGTATATCAG	AGATATTTT	GGAAAGGAGT	TGGTCTATGC	600
	AATGTCAGTT	TGGAATCTTC	TTGAAAGTTT	aatgitttta	TTAGGAGATT	TAAAGAAAAT	660
20	AAAGGTCTAC	AATATCAAAA	АААААААА	ааааааааа	ааааааааа	АААААААА	720
20	ааааааааа	AA					732

30

(2) INFORMATION FOR SEQ ID NO: 67:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 629 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:

35 TTAAGGAATT CGGCMCGATC CCGGCAAGTA ACATGACTAA AAAGAAGCGG GAGAATCTGG 60 GCGTCGCTCT AGAGATCGAT GGGCTAGAGG AGAAGCTGTC CCAGTGTCGG AGAGACCTGG 120 40 AGGCCGTGAA CTCCAGACTC CACAGCCGGG AGCTGAGCCC AGAGGCCAGG AGGTCCCTGG 180 AGAAGGAGAA AAACAGCCTA ATGAACAAAG CCTCCAACTA CGAGAAGGAA CTGAAGTTTC 240 TTCGGCAAGA GAACCCGAAG AACATGCTGC TCTCTGTGGC CATCTTTATC CTCCTGACGC 300 45 TCGTCTATGC CTACTGGACC ATGTGAGCCT GGCACTTCCC CACAACCAGC ACAGGCTTCC 360 ACTTGGCCCC TTGGTCAGGA TCAAGCAGGC ACTTCAAGCC TCAATAGGAC CAAGGTGCTG 420 50 GGGTGTTCCC CTCCCAACCT AGTGTTCAAG CATGGCTTCC TGGCGGCCCA GGCCTTGCCT 480 CCCTGGCCTG CTGGGGGGTT CCGGGTCTCC AGAAGGACAT GGTGCTGGTC CCTCCCTTAG 540 CCCAAGGGAG AGGCAATAAA GAACACAAAG CTGAAAAAAA AAAAAAAAA AACTCGTAGG 600 55 GGGGCCCGT ACCCAATCGC CCTNTCGTG 629

(2) INFORMATION FOR SEQ ID NO: 68:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1751 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:

10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:						
10	CTGCTAGCCG GCCGGCGCAG GCTGCCGAGC GGGTGAGCGC GCAGGCCAGG CCAAAGCCCT	60					
	GGTACCCGCG CGGTGCGGGC CTCAGTCTGC GGCCATGGGG GCGTCCGCGC GGCTGCTGCG	120					
15	AGCGGTGATC ATGGGGGCCC CGGGCTCGGG CAAGGGCACC GTGTCGTCGC GCATCACTAC	180					
	ACACTTCGAG CTGAAGCACC TCTCCAGCGG GGACCTGCTC CGGGACAACA TGCTGCGGGG	240					
20	CACAGAAATT GGCGTGTTAG CCAAGGCTTT CATTGACCAA GGGAAACTCA TCCCAGATGA	300					
20	TGTCATGACT CGGCTGGCCC TTCATGAGCT GAAAAATCTC ACCCAGTATA GCTGGCTGTT	360					
	GGATGGTTTT CCAAGGACAC TTCCACAGGC AGAAGCCCTA GATAGAGCTT ATCAGATCGA	420					
25	CACAGTGATT AACCTGAATG TOCCCTTTGA GGTCATTAAA CAACGCCTTA CTGCTCGCTG	480					
	GATTCATCCC GCCAGTGGCC GAGTCTATAA CATTGAATTC AACCCTCCCA AAACTGTGGG	540					
30	CATTGATGAC CTGACTGGGG AGCCTCTCAT TCAGCGTGAG GATGATAAAC CAGAGACGGT	600					
50	TATCAAGAGA CTAAAGGCTT ATGAAGACCA AACAAAGCCA GTCCTGGAAT ATTACCAGAA	660					
	AAAAGGGGTG CTGGAAACAT TCTCCGGAAC AGAAACCAAC AAGATTTGGC CCTATGTATA	720					
35	TGCTTTCCTA CAAACTAAAG TTCCACAAAG AAGCCAGAAA GCTTCAGTTA CTCCATGAGG	780					
	AGAAATGTGT GTAACTATTA ATAGTAAGAT GGGCAAACCT CCTAGTCCTT GCATTTAGAA	840					
40	GCTGCTTTTC CTAAGACTTC TAGTATGTAT GAATTCTTTG AAAATTATAT TACTTTTATT	900					
40	TCTACTGATT TTATTTTGGA TACTAAGGAT GTGCCAAATG ATTCGGATAC TAAGATGCAT	960					
	CGTTTGAAAT CATCTAGTGT GTTGTATGCA GTTATCCTCA AAAACATCAG CGATGTCTGA	1020					
45	ACCTITAAAA CATCTGITAG AGCAAAATTA AAAGAGCATT TGGTAGTAAT CTAACTITTT	1080					
	GTTCAGTTAA TAAGTGGTTG ATAAAGTTTC CATATTTTTC TGGAAAAGTT AAAAAAAGTT	1140					
50	ACATGTCATT TGGAGAAAAT ACGTAATCAG AAATTTGTGC ATAGATTGAT GCCAAAAAAG	1200					
30	ACATTTCCAG CATTGTGGAA CATGGTGAGA CACTATATAA AATTCCAGAA AGAAAGCAAC	1260					
	TOGATTTACA GATTTATTGT GAGACACAAA TTCACTGCTG CCTTTACACT AAGAAATGTA	1320					
55	TATGTTAACC ATATATGCTG TATTTATTTT GTCGTTAAGC ATACTTTCAG TTTACTCAGA	1380					
	ATTTTCAATT TOCTATAAAG ATGTATCAAT TAGCATATAG AAAAATATTA CTTTAAGATG	1440					
60	ACTTGTTTCC TTTGAAAATA CCTGTGTACT GAGGGTTATG ATTTGTGTCA AAAATTGACA	1500					

	P
	r

	TAAGTGCTTT TACAAGCACC AAAGTTGAAT GAATTTTCAA CAAAATGTAA TTAAAGTCTA	1560
	TGTTTTCAGT TATGACTCAG GTTAAGAAAT GTGTTTTAGG ATCTACTTGC TGGTTTTTCT	1620
5	TTTTGATCCA AATGTGTGAT CTGCCCTGAT AAATAACAAG TTATNGTACC ATCTCCCCCG	1680
	CCAATAAAAA AAAAAAAAA AAAAAAAAAC TCGAGGGGG GCCCGGTACC CAATTCTCCG	1740
10	NAATAGGNAG T	1751
10		
15	(2) INFORMATION FOR SEQ ID NO: 69:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 508 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:	
25	GGCACGAGAT TATGTATTAA AATGTTTTTG AATTGTGAAA TATTAGAATA TIGTTACTAT	60
	TTGACCCAAC TCAAAATCTC CATGGGAAAA TACCTGTCGA TACCCACAGT ATTGTTGAAA	120
	ATAATCAGAT GCAGTATCAC AGCTGTGTCA GACTCTAGTA CCAGTTGGGC AATCAAGGCA	180
30	CAGCTAAAAA TTGAAAACAA AGATCTGGAC AACAAAACAG CCAAAGGTGG GGGTCAAGAA	240
	GCTCTGACGI GTACCTAGCT GTAGAATGCT ATGCACACGT GCCAGGTGTA GTGTGCATAT	300
35	CCAGGAAAAA CTGCAGAGAG CCCCAGTCTT CACCTCTGGT TGACCATGAG CTCTGTGTAA	360
	GCAGGAAGTG AAGGCTAAGG CAGATTTAAG CTCTGAAAGC ATTCCACAAC ATACACACAA	420
	ATCGTGCAAA GCATTAAGGA AATCTTGTTA CTGCTAAGTG TTGCTGACCC AGGAACAACT	480
40	CCTACTCAGC TGGACTTAAA AATAAAAA	508
45		
43	(2) INFORMATION FOR SEQ ID NO: 70:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 245 base pairs	٠
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:	
55	TACATAGAGC AAAGAGAAAT TTCCAGAATT TCTARAATTC TGGAAAGAGA ATTTTCCTGA	60
	GATTGCAGAT TTGCTTGTGT CCTCAGGTGA TGATGAGGGC TGTTTTCCCC TGTTGTCCTT	120
60	TCCTCACACT CATGCTTCCT CTCCTAGAGT GTCTGGTTGG CATGATCATG TGCTACCTAG	180

360

420

480

55

60

	GCATTICTIT CACTGATACA AGGAAAACTG CAGGGTTAAA AAAAAAAAA AAAAAAAAA	240
	NCNCG	245
5		
	(2) INFORMATION FOR SEQ ID NO: 71:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 361 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:	
	ATGITCCTCA TGAGGATGCA CTTGTGCTTC TGCAAGTATT GCTGCAGCTT CATAGTGACT	60
20	CCCACCAGCA CCAGCAATAC AGCTAGCTAC CTGTGGCCTT GGATCTCAGC CAGCATGGCT	120
	GGGAGAGGGA GCAGCTGGGC ATGTACCCTA AATGCTGTTA CCAGGGAAGG ACTCCCAGAG	180
25	TGAAGACAAG TAGGGACTTC CTGCAGAGGT GGTACATGTG CTCTCTGTAT CCATACTTTT	240
	TTTTTTTTT TTTTGAGATA GAGTTTCACC CTTGTTGCCC TGGCTGGAGT GCAATGGTGC	300
	GATCTCAGCT CACTGCAACC TCTCTGCCTC CCGGGTTCAA GTGATTCTCC TGCCTCAGCC	360
30	T	361
35	(2) INFORMATION FOR SEQ ID NO: 72:	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 713 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:	
45	AGGATCACAC AATAGAGAAC ACTGTAGTAA CATTTCGGTC TGCTCACAAG ACCCAGAACA	60
	TIGATCAGIT TITGITGIIG GITTATTATT TITCIGITAA AAAATIGIGA AAAGITIGIT	120
50	TTAGCTAGAT GATATTTTAA TAGCTGCGAG TGCTTTGGAA CTATAAAGAT GTCACTACTT	180
	AACACACATA CCTTATGTTT TGTTTTGTTT TGTTTTACAC TCAGTATAAA TCAGGAGAAG	240

TTAGCCAACC ATCTAGCATT TAGAATCCTC TTTTTTATTG TCTTCTAAGG ATATGGATGT

TCCCATAACA GCAACAAAA AGCAACAAAA ACATTTCATA AATATCACTT GATAGACTGT

AAGCACCTGC TTAACTTTGT GTCCCAAATA TTTAGTGTGT ATATATATAT ATATATATAC

ACACACAC ACATATATAT TCAACAAATA AAGCAAAATA TAACATGCAT TTCACATTTT

55 (2) INFORMATION FOR SEQ ID NO: 74:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4602 base pairs

(B) TYPE: nucleic acid

60 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74:

5	GCGAGGGGGC	GKGGGGAGCA	GCGCCGARGC	CCCCCCTCC	GCCTCCGCCG	CCTAGGACTA	60
	GGGGTGGGG	GACGGACAAG	CCCCGATGCC	GGGGGAKACG	GAAGAGCCGA	GACCCCCGGA	120
10	GCAGCAGGAC	CAGGAAGGGG	GAGAGGCGGC	CAAGGCGGCT	CCGGAGGACC	CGCAACAACG	180
10	GCCCCCTGAG	GCGGTCGCGG	CGGCGCCTGC	AGGGACCACT	AGCAGCCGCG	TGCTGAGGGG	240
	AGGTCGGGAC	CGAGGCCGGG	CCGCTGCGRC	CGCCGCGCMG	CAGCTGTGTC	CCGCCGGAGA	300
15	AGGCCGAGTA	TCCCCGCCGG	CGAGGAGCAG	CCCCAGCGCC	AGGCCTCCCG	ACGTCCCCGG	360
	GCAGCAGCCC	AGGCCGCGAA	GTCCCCGTCT	CCAGTTCAGG	GCAAGAAGAG	TCCGCGACTC	420
20	CTATGCATAG	AAAAAGTAAC	AACTGATAAA	GATCCCAAGG	AAGAAAAAGA	GGAAGAAGAC	480
20	GATTCTGCCC	TCCCTCAGGA	AGTTTCCATT	GCTGCATCTA	GACCTAGCCG	CCCCTCCCCT	540
	AGTAGTAGGA	CATCTGTTTC	TCGCCATCGT	GATACAGAGA	ACACCCGAAG	CTCTCGGTCC	600
25	AAGACCGGTT	CATTGCAGCT	CATTTGCAAG	TCAGAACCAA	ATACAGACCA	ACTTGATTAT	660
	GATGTTGGAG	AAGAGCATCA	GTCTCCAGGT	GGCATTAGTA	GTGAAGAGGA	AGAGGAGGAG	720
30	GAAGAAGAGA	TGTTAATCAG	TGAAGAGGAG	ATACCATTCA	AAGATGATCC	AAGAGATGAG	780
50	ACCTACAAAC	CCCACTTAGA	AAGGGAAACC	CCAAAGCCAC	GGAGAAAATC	AGGGAAGGTA	840
	AAAGAAGAGA	AGGAGAAGAA	GGAAATTAAA	GTGGAAGTAG	AGGTGGAGGT	GAAAGAAGAG	900
35	GAGAATGAAA	TTAGAGAGGA	TGAGGAACCT	CCAAGGAAGA	GAGGAAGAAG	ACGAAAAGAT	960
	GACAAAAGTC	CACGTTTACC	CAAAAGGAGA	AAAAAGCCTC	CAATCCAGTA	TGTCCGTTGT	1020
40	GAGATGGAAG	GATGTGGAAC	TGTCCTTGCC	CATCCTCGCT	ATTTGCAGCA	CCACATTAAA	1080
	TACCAGCATT	TGCTGAAGAA	GAAATATGTA	TGTCCCCATC	CCTCCTGTGG	ACGACTCTTC	1140
	AGGCTTCAGA	AGCAACTTCT	GCGACATGCC	AAACATCATA	CAGATCAAAG	GGATTATATC	1200
45	TGTGAATATT	GTGCTCGGGC	CTTCAAGAGT	TCCCACAATC	TGGCAGTGCA	CCGGATGATT	1260
	CACACTGGCG	AGAAGCATTA	CAATGTGAGA	TCTGTGGATT	TACTTGTCGA	CAAAAGCCAT	1320
50	CTCTTAATTG	GCACATGAAG	AAACATGATG	CAGACTCCTT	CTACCAGTTT	TCTTGCAATA	1380
	TCTGTGGCAA	AAAATTTGAG	AAGAAGGACA	GCGTAGTGGC	ACACAAGGCA	AAAAGCCACC	1440
	CTGAGGTGCT	GATTGCAGAA	GCTCTGGCTG	CCAATGCAGG	CGCCCTCATC	ACCAGCACAG	1500
55	ATATCTTGGG	CACTAACCCA	GAGTCCCTGA	CGCAGCCTTC	AGATGGTCAG	GGTCTTCCTC	1560
	TTCTTCCTGA	GCCCTTGGGA	AACTCAACCT	CTGGAGAGTG	CCTACTGTTA	GAAGCTGAAG	1620
60	GGATGTCAAA	GTCATACTGC	AGTGGGACGG	AACGGGTGAG	CCTGATGGCT	GATGGGAAGA	1680

	TTTTTGTCAC	ACTTATCCTT	TGTCTCCGTA	AATTTCATTT	GCAGTGGTTA	GTCATCAGAT	3540
	ATTTTAGCCA	CCTACACAAA	AGCAAACTGC	ATTTTTAAAA	ATCTTTCTGA	GATGGGAGAA	3600
5	AATGTATTCT	ССТТТССТАТ	ACCGCTCTCC	СААСААААА	ACAACTAGTT	AGTTCTACTA	3660
	ATTAGAAACT	TGCTGTACTT	TTTCTTTTCT	TTTAGGGGTC	AAGGACCCTC	TTTATAGCTA	3720
10	CCATTTGCCT	ACAATAAATT	ATTGCAGCAG	TTTGCAATAC	TAAAATATTT	TTTATAGACT	3780
10	TTATATTTTT	CCTTTTGATA	AAGGGATGCT	GCATAGTAGA	GTTGGTGTAA	TTAAACTATC	3840
	TCAGCCGTTT	CCCTGCTTTC	CCTTCTGCTC	CATATGCCTC	ATTGTCCTTC	CAGGGAGCTC	3900
15	TTTTAATCTT	AAAGTTCTAC	ATTTCATGCT	CTTAGTCAAA	TTCTGTTACC	TTTTTAATAA	3960
	CTCTTCCCAC	TGCATATTTC	CATCTTGAAT	TGGTGGTTCT	AAATTCTGAA	ACTGTAGTTG	4020
20	AGATACAGCT	ATTTAATATT	TCTGGGAGAT	GTGCATCCCT	сттстттстс	GTTGCCCAAG	4080
20	GTTGTTTTGC	GTAACTGAGA	CTCCTTGATA	TGCTTCAGAG	AATTTAGGCA	AACACTGGCC	4140
	ATGGCCGTGG	GAGTACTGGG	AGTAAAATAA	AAATATCGAG	GTATAGACTA	GCATCCACAT	4200
25	AGAGCACTTG	AACCTCCTTT	GTACCTGTTT	GGGGAAAAAG	TATAATGAGT	GTACTACCAA	4260
	TCTAACTAAG	ATTATTATAG	TCTGGTTGTT	TGAAATACCA	тттттстс	CTTTTGTGTT	4320
30	TTTCCCACTT	TCCAATGTAC	TCAAGAAAAT	TGAACAAATG	TAATGGATCA	АТТТААААТА	4380
30	TTTTATTTCT	TAAAAGCCTT	TTTTGCCTGT	TGTAATGTGC	AGGACCCTTC	TCCTTTCATG	4440
	GGAGAGACAG	GTAGTTACCT	GAATATAGGT	TGAAAAGGTT	atgtaaaag	AAATTATAAT	4500
35	AAAAGGGATA	CTTTGCTTTT	CAAATCTTTG	ТТТТСТСТТА	TTCTAGGTAA	GGCATATTAA	4560
	ТАТАААТАА	GTAAAGAAGA	AAAATAAAAG	TIGICTICAT	GG		4602

45

(2) INFORMATION FOR SEQ ID NO: 75:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1255 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:

CGCGCCCCGG GCCGGCGGT TTCTCTAACA AATAAACAGA ACCCGCACTG CCCAGGCGAG 60

CGTTGCCACT TTCAAAGTGG TCCCCTGGGG GAGCTCAGCC TCATCCTGAT GATGCTGCCA 120

AGGCGCACTT TTTATTTTTA TTTTATTTTT ATTTTTTTT TAGCATCCTT TTGGGGCTTC 180

ACTCTCAGAG CCAGTTTTTA AGGGACACCA GAGCCGCAGC CTGCTCTGAT TCTATGGCTT 240

60 GGTTGTTACT ATAAGAGTAA TTGCCTAACT TGATTTTTCA TCTCTTTAAC CAAACTTGTG 300

360

420

55

60

	GCCAAAAGAT	ATTTGACCGT	TTCCAAAATT	CAGATTCTGC	CTCTGCGGAT	AAATATTTGC	360
5	CACGAATGAG	TAACTCCTGT	CACCACTCTG	AAGGTCCAGA	CAGAAGGTTT	TGACACATTC	420
	TTAGCACTGA	ACTCCTCTGT	GATCTAGGAT	GATCTGTTCC	CCCTCTGGAT	GAACATCCTC	480
	TGATGATCAA	GGCTCCCAGC	AGGCTACTTT	GAAGGGAACA	ATCAGATGCA	AAAGCTCTTG	540
10	GGTGTTTATT	ТААААТАСТА	GTGTCACTTT	CTGAGTACCC	GCCGCTTCAC	AGGCTGAGTC	600
	CAGGCCTGTG	TGCTTTGTAG	AGCCAGCTGC	TTGCTCACAG	CCACATTTCC	ATTTGCATCA	660
15	TTACTGCCTT	CACCTGCATA	GTCACTCTTT	TGATGCTGGG	GAACCAAAAT	GGTGATGATA	720
	TATAGACTTT	ATGTATAGCC	ACAGTTCATC	CCCAACCCTA	GTCTTCGAAA	TGTTAATATT	780
	TGATAAATCT	AGAAAATGCA	TTCATACAAT	TACAGAATTC	AAATATTGCA	AAAGGATGTG	840
20	TGTCTTTCTC	CCCGAGCTCC	CCTGTTCCCC	TTCATTGAAA	ACCACCACGG	TGCCATCTCT	900
	TGTGTATGCA	GGGCTATGCA	CCTGCAGGCA	CCTCTCTATC	CACTCCCCGC	TTGTGTTTAC	960
25	ACAAGCTGTG	GGGTGTTACG	CATGCCTGCT	TTTTTCACTT	AATAATACAG	CTTGGAGAGA	1020
	TTTTTGTATC	ACATTATAAA	TCCCACTCGC	TCTTTTTGAT	GGCCACATAA	TAACTACTGC	1080
	ATAATATGGA	TACGCCTTAT	TTGATTTAAC	TAGTTCCCTA	ATGATGGACT	TTTAAGTTGT	1140
30	TTCCTTTTTT	TTTCTTTTTT	GCTACTGCAA	ACGATGCTAT	AATAAATGTC	CTTATCAAAA	1200
	АААААААА	АААААААА	AAAAAANCCC	NGGGGGGGG	CCCCGGGAAC	NCAAT	1255
35							
	(2) INFORMA	TION FOR SE	Q ID NO: 76	:			
‡ 0	(i)	(B) TYPI (C) STRA	HARACTERISTI FTH: 475 bas E: nucleic a ANDEDNESS: O DLOGY: line	se pairs acid double			
15	(xi)	SEQUENCE I	DESCRIPTION:	SEQ ID NO:	76:		
	GGCACGAGAG	AAATGTTTGA	TICTCTTTCC	TATTTTAAGG	GATCTTCTCT	CTTGTTGATG	. 60
50	TTGAAAACTT	ACCTTAGTGA	AGATGTGTTT	CAACATGCTG	TTGTCCTTTA	CCTGCATAAT	120
<i>,</i> 0	CACAGCTATG	CATCTATTCA	AAGTGATGAT	CTGTGGGATA	GTTTTAATGA	GGTCACAAAC	180
	CAAACACTAG	ATGTAAAGAG	AATGATGAAA	ACCTGGACCC	TGCAGAAAGG	ATTTCCTTTA	240

GTGACTGTTC AAAAGAAAGG AAAGGAACTT TTTATACAAC AAGAGAGATT CTTTTTAAAT

ATGAAGCCTG AAATTCAGCC TTCAGATACA AGGTACATGC CCTCTTTCTT TTCATGCCAT

CTCTTTTGCA CTCTCAGGTG GAAATATTTT GAAGTGTTTT ATAATCATAA GTTCTTGTGA

420

480

	AACCTAACAA GATTATCCCT TCCTAAGAAT ACTTAACCTT CCTACCAAAT TAAAA	475
	•	
5	(2) INFORMATION FOR SEQ ID NO: 77:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 465 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	٠
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:	
13	TTCTCTCTCC TCTTCGACTG CACCGCACTC GCGCGTGACC CTGACTCCCC CTAGTCAGCT	60
	CAGCGGTGCT GCCATGGCGT GGCGGCGGCG CGAACCRGCG TCGGGGCTCG CGGCGTGTTG	120
20	GCTCTGGCGT TGCTCGCCCT GGCCCTGTGC GTGCCCGGGG CCCGGGGCCG GGCTCTCGAG	180
	TGGTTCTCGG CCGTGGTAAA CATCGAGTAC GTGGACCCGC AGACCAACCT GACGGTGTGG	240
25	AGCGTCTCGG AGAGTGGCCG CTTCGGCGAC AGCTCGCCCA AGGAGGGCGC GCATGGCCTG	300
25	GTGGGCGTCC CGTGGGCGCC CGGCGGAGAM CTCGARGGCT KCGCGCCCCGA CACGCGCTTC	360
	TTCGTGCCCG AGCCCGGCGG CCGAGGGGCC GCGCCCTGGG TCGCCCTGGT GGTCGTGGGG	420
30	GCTGCACCTT TCAAGGACAA AGTGCTGGTG GCGGCGCNGA ANGAA	465
35	(2) INFORMATION FOR SEQ ID NO: 78:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1907 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:	
45	ACATGCAGCC CAACTACAGA TTCTTATGGA ATTCCTCAAG GTTGCAAGAA GAAATAAGAG	60
	AGAGCAACTG GAACAGATCC AGAAGGAGCT AAGTGTTTTG GAAGAGGATA TTAAGAGAGT	120
50	GGAAGAAATG AGTGGCTTAT ACTCTCCTGT CAGTGAGGAT AGCACAGTGC CTCAATTTGA	180
50	AGCTCCTTCT CCATCACACA GTAGTATTAT TGATTCCACA GAATACAGCC AACCTCCAGG	240
	TTTCAGTGGC AGTTCTCAGA CAAAGAAACA GCCTTGGTAT AATAGCACGT TAGCATCAAG	300

55 ACGAAAACGA CTTACTGCTC ATTTTGAAGA CTTGGAGCAG TGTTACTTTT CTACAAGGAT

60

GTCTCGTATC TCAGATGACA GTCGAACTGC AAGCCAGTTG GATGAATTTC AGGAATGCTT

GTCCAAGTTT ACTCGATATA ATTCAGTACG ACCTTTAGCC ACATTGTCAT ATGCTAGTGA

55

WO 98/39448

(2) INFORMATION FOR SEQ ID NO: 79:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1168 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:

	GCTGGGGTGT	CCCCKCSGCC	ACCATCGTCA	TCGCTTACTT	GATGAAGCAC	ACTCGGATGA	60
5	CCCATGACTG	ATGCTTATAA	ATTIGTCAAA	GGCAAACGAC	CAATTATCTC	CCCAAACCTT	120
J	AACTTCATGG	GGCAGTTGCT	AGAGTTCGAG	GAAGACCTAA	ACAACGGTGT	GACACCGAGA	180
	ATCCTTACAC	CAAAGCTGAT	GGGCGTGGAG	ACGGTTGTGT	GACAATGGTC	TGGATGGAAA	240
10	GGATTGCTGC	TCTCCATTAG	GAGACAATGA	GGAAGGAGGA	TGGATTCTGG	TTTTTTTTCT	300
	TTCTTTTTTT	TTTTGTAGTT	GGGAGTAAGT	TTGTGAATGG	AAACAAACTT	GTTTAAACAC	360
15	TTTATTTTTA	ACAAGTGTAA	GAAGACTATA	ACTTTTGATG	CCATTGAGAT	TCACCTCCCA	420
10	CAAACTGACA	AATTAAGGAG	GTTAAAGAAG	TAATTTTTTT	AAGCCAACAA	ТААААТАТА	480
	ATACAACTTG	TTTCTCCCCC	TTTTCCTTTT	AAGCTATTTG	TAGAGTTTAT	GACTAAATAG	540
20	TCTGTGCAGG	TTCATAGACC	GAAGATACTA	CACACTTTAA	ACCAATTAAA	AAGAACCAAA	600
	AGTAAATAGA	AAAGACATTG	AATCACCAAG	GCCTGGGATC	AACCTGGGCT	GTCCACACAG	660
25	AAAACAAAAA	CCCAACCAAA	CCAAGCCCTG	TTGTGCTCAC	TGGTGCAAAG	AGAAGATCAG	720
	GGCAGCTTAA	GTGGTCTAAG	RATCCTTCAG	GCATTCTTTA	AGGAGAAAAA	GGATACCTTT	780
	GATTTTGTGT	GTTTCATGCT	CTGGATTTTT	TTTTTTTTC	CTTCTCTGGG	TTTAAGAGAT	840
30	TTTTTTTGAA	ATAGTGAGGA	ACTGACCATT	ATATGCCTTC	ACTGGCTTCT	TGTGCAATAA	900
	TATGATGTTT	TAAGTGTGCA	AACAAGTTAG	AGCTGGCAGC	TGAATGATAG	ACAAATAGTG	960
35	CAAATTTGCC	AGCTTGGAGA	TAGAAAGGAA	TTCAACAATA	TATCAAATAC	TTTCCTTCCC	1020
	ACCTTTTTCC	TTTTTTTTT	TTTTTTCTGA	TTTGATTCTG	GTTACAGTGC	CATAAACCTT	1080
	GTTACATATG	TATATCAGAA	TGTAAGAAAA	AAAAATTTAT	TAAAAATAT	TTTTCGCAAA	1140
40	AAAAAANNA	AAAAACTCGA	GGGGGGCC				1168
45	(2) INFORMA	ATION FOR SE	Q ID NO: 80):			

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1285 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:

55 AGAAAATCAC ATCCTAACAA AGAAGTCTGT CTAAGACAGT ACATCTCCTG TTGAACTTGC 60 ATCTTTCCAC AGGACTITCT GTTTTTAGGG ATGAGACTAT TCTCTGCTTC ATCAAGGAAA 120 GAGAAATGTT CAGGGTTGTA GGGATGGCAC ACTTATTAGT TCTGCCTGTC TGAAAGGTTC 180 60

10

15

20

25

30

35

CTGCAGGACA	GTTTGGTCAG	AGCTGCAATT	CTTAGTCCAT	GGTCTAATGC	TTGAGTATCT	240
CTTCTTTCCC	TTTCCTGTCT	CAGGAATCAG	CTGAGAATTC	ATTCGATTGT	CATGCCTCTA	300
GCCCCTTACT	GTGATTTGTT	GGTTGCACTT	TCATTTGCTT	TAGTTCTAGA	ATCACCTGTT	360
GACTCCTCAG	ACTTCACCTA	ACTITIGGAAA	CTCTCTTTTG	GAGGCTTCTC	ATTTCCCCCT	420
AATTCTGTGC	TGCCTGAGCC	CTAGAATTTT	CCCACCAACG	AATTATTCCA	GGTAGATCCT	480
AAGTTGCTGG	ATCTAGTTGA	TATTTAAACA	ATATCTAGTT	GATATTTCTC	ATTCAGTTGG	540
ATCCAGAAAC	CAGTATCTCT	NAAAAACAAC	CTCTCATACC	TTGTGGACCT	AATTTTGTGT	600
GCGTGTGTGT	GTGCGCGCAT	ATGTATATAG	ACAGGCACAT	CTTTTTTACT	TTTGTAAAAG	660
CTTATGCCTC	TTTGGTATCT	ATATCTGTGA	AAGTTTTAAT	GATCTGCCAT	AATGTCTTGG	720
GGACCTTTGT	CTTCTGTGTA	AATGGTACTA	GAGAAAACAC	CTATATTATG	AGTCAATCTA	780
GTTGGTTTTA	TTCGACATGA	AGGAAATTTC	CAGATAACAA	CACTAACAAA	CTCTCCCTTG	840
ACTAGGGGGA	CAAAGAAAAG	CAAAACTGAC	CATAAAAAAC	AATTACCTGG	TGAGAAGTTG	900
CATAAACAGA	ATTAGGTAGT	ATATTGAAGA	CAGCATCATT	AAACAGITAT	GITGITCICC	960
TTGCAAAAAA	CATGTACTGA	CTTCCCGTTG	AGTAATGCCA	AGTTGTTTTT	ТТТАТТАТАА	1020
AACTTGCCCT	TCATTACATG	TTTCAAAGTG	GTGTGGTGGG	CCAAAATATT	GAAATGATGG	1080
AACTGACTGA	TAAAGCTGTA	CAAATAAGCA	GTGTGCCTAA	CAAGCAACAC	AGTAATGTTG	1140
ACATGCTTAA	TTCACAAATG	CTAATTTCAT	TATAAATTGT	TTTGCTAAAA	TACACTITGA	1200
AACTATTTT	CTGTATTCCA	AGAGCTGAGA	TCTTAGATIT	TATGTAGTAT	TAAGTGAAAA	1260
AATACGAAAA	ТААТАААСАТ	TGAAG				1285

40

45

(2) INFORMATION FOR SEQ ID NO: 81:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1290 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:

TCTCCAGCCC CAATTTCTAC GCGCACCGGA AGACGGAGGT CCTCTTTCCT TGCCTAACGC 60

AGCCATGGCT CGTGGTCCCA AGAAGCATCT GAAGCGGGTG GCAGCTCCAA AGCATTGGAT 120

GCTGGATAAA TTGACCGGTG TGTTTGCTCC TCGTCCATCC ACCGGTCCCC ACAAGTTGAG 180

AGAGTGTCTC CCCCTCATCA TTTTCCTGAG GAACAGACTT AAGTATGCCC TGACAGGAGA 240

TGAAGTAAAG AAGATTTGCA TGCAGCGGTT CATTAAAATC GATGGCAAGG TCCGAACTGA 300

	TATAACCTAC	CCTGCTGGAT	TCATGGATGT	CATCAGCATT	GACAAGACGG	GAGAGAATTT	360
5	CCGTCTGATC	TATGACACCA	AGGGTCGCTT	TGCTGTACAT	CGTATTACAC	CTGAGGAGGC	420
,	CAAGTACAAG	TTGTGCAAAG	TGAGAAAGAT	CTTTGTGGGC	ACAAAAGGAA	TCCCTCATCT	480
	GGTGACTCAT	GATGCCCGCA	CCATCCGCTA	CCCCGATCCC	CTCATCAAGG	TGAATGATAC	540
10	CATTCAGATT	GATTTAGAGA	CTGGCAAGAT	TACTGATTTC	ATCAAGTTCC	ATTCACCCAG	600
	CCAGGTGGTC	TCGTCACCTC	AGAGGCTCCG	CAGACTCCTG	CCCAGGCCAG	GACTGAGGCA	660
15	AGCCTCAAGG	CACTTCTAGG	ACCTGCCTCT	TCTCACCAAG	ATGAACTCAC	TEGTTTCTTE	720
13	GCAGCTACTG	CTTTTCCTCT	GTGCCACCCA	CTTTGGGGAG	CCATTAGAAA	AGGTGGCCTC	780
	TGTGGGGAAT	TCTAGACCCA	CAGGCCAGCA	GCTAGAATCC	CTGGGCCTCC	TGGCCCCSGG	840
20	GGAGCAGAGC	CTGCCGTGCA	CCGAGAGGAA	GCCAGCTGCT	ACTGCCAGGC	TGAGCCGTCG	900
	GGGACCTCG	CTGTCCCCGC	CCCCGAGAG	CTCCGGGAGC	CCCCAGCAGC	CGGCCTGTC	960
25	CGCCCCCCAC	AGCCGCCAGA	TCCCCGCACC	CCAGGGCGCG	GIGCIGGIGC	AGCGGGAGAA	1020
23	GGACCTGCCG	AACTACAACT	GGAACTCCTT	CGGCCTGCGC	TTCGGCAAGC	GGGAGGCGGC	1080
	ACCAGGGAAC	CACGGCAGAA	GCGCTGGGCG	GGGCTGAGGG	CGCAGGTGCG	GGCAGTGAA	1140
30	CTTCAGACCC	CAAAGGAGTC	AGAGCATGCG	GGGCGGGGC	GGGGGGGGG	GACGTAGGGC	1200
	TAAGGGAGGG	GGCGCTGGAG	CTTCCAACCC	GAGGCAATAA	AAGAAATGTT	GCGTAACTCA	1260
35	АААААААА	AAAAAAAANC	TCGCGGGGG				1290

(2) INFORMATION FOR SEQ ID NO: 82:

40 (i) SEQUENCE CHARACTERISTICS:

45

50

55

60

(A) LENGTH: 684 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:

TTTATTGTAT TCTGTAACTA TAGAACTTCT ATTTWATTCT TTTTTGGACT TGCTAAGTTG 60

TCTTTWATGG TTTTWAGTTC CATGCTGAAG TTTTCAGTAT TGACTTATCC CCTTGAACAT 120

GAGTTGTTTT ATAGACTCTR ATGATTCAAA AATCTTACAT CTTTTGGTAG TCTCTTTCAT 180

TTGTYCACTG TTTCTGTTGA TTCTWACTCA TGGTATTTTA ATTCTTCGTT WITTTTTTTC 240

TGTTWAGAWA CATTCTTTGA AAAATAATTT GGAGGAATAT TTGATTCTTA TGAACAAGGC 300

ATTACTCACC AGAGAAGATT TTTTTGTTYT ACCARGTGCC TARGAATGCT AACAGTCTGG 360

	GAMCACATAG	AMCACCAGGT	GATGAGACAA	TCCTGGGART	CCTGTTTTAC	TTTGGSCCAT	420
	CTTTTCTCCC	AACCCTGTGG	GAATARTCAT	YCATATCCTA	RCTGCAGGCT	ARAAGGTGGT	480
5	TTATCAGAGC	CCAACTTCGA	GGGCTCTGGG	CTTTAGCTAC	TGTCACCCCA	TCATAACTGA	540
	GCTTCATGGA	TIGATICTCT	TTTTATCTTT	CAGATTTTCT	TTTAAAAATC	TTTGTTTTTT	600
10	TTTTTCTTCC	GAAAGATTCC	CCCAACATTA	CCATTCCCCA	CCTTCCGTTG	AATTTTTTTG	660
10	GCTCTCATTT	TGAATTITTC	AAGA				684

20

25

30

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 83:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2024 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:

CTGCAGGAAT TCGGCACAGC TGCGCTGGAG GCTTCATCTT TGCCGCCGCT GCCGTCGCCT 60 -TCCTGGGATT GGAGTCTCGA GCTTTCTTCG TTCGTTCGYC GGCGGGTTCG CGCCCTTCTC 120 GCGCCTCGGG GCTGCGAGGC TGGGGAAGGG GTTGGAGGGG GCTGTTGATC GCCGCGTTTA 180 ACTIGCCCTC GGGGCGGCCA TGTCGGCCGG CGAGGTCGAG CGCCTAGTGT CGGAGCTGAG 240 CGCCGGGACC GGAGGGGATG AGGAGGAAGA GTGGCTCTAT GGCGATGAAA ATGAAGTTGA 300 AAGGCCAGAA GAAGAAAATG CCAGTGCTAA TCCTCCATCT GGAATTGAAG ATGAAACTGC 360 TGAAAATGGT GTACCAAAAC CGAAAGTGAC TGAGACCGAA GATGATAGTG ATAGTGACAG 420 CGATGATGAT GAAGATGATG TTCATGTCAC TATAGGAGAC ATTAAAACGG GAGCACCACA 480 GTATGGGAGT TATGGTACAG CACCTGTAAA TCTTAACATC AAGACAGGGG GAAGAGTTTA 540 TOGAACTACA GGGACAAAAG TCAAAGGAGT AGACCTTGAT GCACCTGGAA GCATTAATGG 600 AGTTCCACTC TTAGAGGTAG ATTTGGATTC TTTTGAAGAT AAACCATGGC GTAAACCTGG 660 TGCTGATCTT TCTGATTATT TTAATTATGG GTTTAATGAA GATACCTGGA AAGCTTACTG 720 TGAAAAACAA AAGAGGATAC GAATGGGACT TGAAGTTATA CCAGTAACCT CTACTACAAA 780 TAAAATTACG GTACAGCAGG GAAGAACTGG AAACTCAGAG AAAGAAACTG CCCTTCCATC 840 TACAAAAGCT GAGTTTACTT CTCCTCCTTC TTTGTTCAAG ACTGGGCTTC CACCGAGCAG 900 GAGATTACCT GGGGCAATTG ATGTTATCGG TCAGACTATA ACTATCAGCC GAGTAGAAGG 960 CAGGCGACGG GCAAATGAGA ACAGCAACAT ACAGGTCCTT TCTGAAAGAT CTGCTACTGA 1020 AGTAGACAAC AATTITAGCA AACCACCTCC GTTTTTCCCT CCAGGAGCTC CTCCCACTCA 1080

	CCTTCCACCT	CCTCCATTTC	TTCCACCTCC	TCCGACTGTC	AGCACTGCTC	CACCTCTGAT	1140
5	TCCACCACCG	GGTTTTCCTC	CTCCACCAGG	CGCTCCACCT	CCATCTCTTA	TACCAACAAT	1200
•	AGAAAGTGGA	CATTCCTCTG	GTTATGATAG	TCGTTCTGCA	CGTGCATTTC	CATATGGCAA	1260
	TGTTGCCTTT	CCCCATCTTC	CIGGITCIGC	TCCTTCGTGG	CCTAGTCTTG	TGGACACCAG	1320
10	CAAGCAGTGG	GACTATTATG	CCAGAAGAGA	GAAAGACCGA	GATAGAGAGA	GAGACAGAGA	1380
	CAGAGAGCGA	GACCGTGATC	GGGACAGAGA	AAGAGAACGC	ACCAGAGAGA	GAGAGAGGGA	1440
15	GCGTGATCAC	AGTCCTACAC	CAAGTGTTTT	CAACAGCGAT	GAAGAACGAT	ACAGATACAG	1500
15	GGAATATGCA	GAAAGAGGTT	ATGAGCGTCA	CAGAGCAAGT	CGAGAAAAAG	AAGAACGACA	1560
	TAGAGAAAGA	CGACACAGGG	AGAAAGAGGA	AACCAGACAT	AAGTCTTCTC	GAAGTAATAG	1620
20	TAGACGTCGC	CATGAAAGTG	AAGAAGGAGA	TAGTCACAGG	AGACACAAAC	ACAAAAAATC	1680
	TAAAAGAAGC	AAAGAAGGAA	AAGAAGCGGG	CAGTGAGCCT	GCCCTGAAC	AGGAGAGCAC	1740
25	CGAAGCTACA	CCTGCAGAAT	AGGCATGGTT	TIGGCCTITT	GTGTATATTA	GTACCAGAAG	1800
23	TAGATACTAT	AAATCTTGTT	ATTITTCTGG	ATAATGTTTA	AGAAATTTAC	CTTAAATCTT	1,860
	GTTCTGTTTG	TTAGTATGAA	AAGTTAACTT	TTTTTCCAAA	ATAAAAGAGT	GAATTTTTCA	1920
30	TGTTAAGTTA	AAAATCTTTG	TCTTGTACTA	TTTCAAAAAT	AAAAAGACAG	CAATGACTTT	1980
	ATATCCAAAA	АААААААА	АААААААА	AAAAAAGGGC	eccc		2024

40

50

60

(2) INFORMATION FOR SEQ ID NO: 84:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 931 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:

CGCGCCMATA GCCGGACGGG GATCTGAGCT GGCAGGATGA ATGTGGGGGT GGCACACAGC 60 GAAGTAAACC CCAACACCCG AGTGATGAAT AGCCGAGGCA TCTGGCTGGC CTACATCATC 120 TTGGTAGGAT TGCTGCATAT GGTTCTACTC AGCATCCCCT TCTTCAGCAT TCCTGTTGTC 180 TGGACCCTGA CCAACGTCAT CCATAACCTG GCTACGTATG TCTTCCTTCA TACGGTGAAA 240 55 GOGACACCCT TTGAGACTCC TGACCAAGGA AAGGCTCGGC TACTGACACA CTGGGAGCAA 300 ATGGACTATG GGCTCCAGTT TACCTCTTCC CGCAAGTTCC TCAGCATCTC TCCTATTGTG 360 CTCTATCTCC TGGCCAGCTT CTATACCAAG TATGATGCTG CGCACTTCCT CATCAACACA 420

	306	
	GCCTCATTGC TAAGTGTACT GCTGCCGAAG TTGCCCCCAGT TCCATGGGGT TCGTGTCT	TT 480
	GGCATCAACA AATACTGAGG GATGGGTTTT GGGACAGCTC CATGGGCATG GGGAAGGC	CAC 540
5	TGAAACAGAG GACTATAAAA CATCCTTCTC TTATTCTCCA TACTGTCTTC TACACCTT	TA 600
	AAGCCTGAGA ACTATACAAC CTTTCCCAGA CTCCCAAGAA GAGAAGAGAT TGGCAAAT	rgg 660
10	GGCTCCTGGG CCCAGTCCTG CTAGTGGCAA GTTTCTTTGA ATCAGGAAGG CAGGTGAG	GT 720
	AAGGGCCAAA TCACTCTCCT CCATAGCAGG AAGCCATTTG GGCAGCTCCT TTGGTGAT	TA 780
	CATCTTTCCA TATCTTTTAC ACTTACCACC TTCCAGCTCT GTTTTGCTGT GTATTTTT	CT 840
15	TACAATAATT TTTTTCAGCT ATAGCTGCAG TTTAATCAGG ATGGGTAGAG AGCTGTCC	TC 900
	ATAAGGCTGG GGGTGGGAAG ATGGAATACT G	931
20		
	(2) INFORMATION FOR SEQ ID NO: 85:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 825 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:	

35

40

45

50

55

60

CGGGGCCGGC GGGTCTTCA GGGTACCGGG CTGGTTACAG CAGCTCTACC CCTCACGACG 60 CAAACATGGC AGCGCAGAAG GACCAGCAGA AAGATGCCGA GGCGGAAGGG CTGAGCGGCA 120 CGACCCTGCT GCCGAAGCTG ATTCCCTCCG GTGCAGGCCG GGAGTGGCTG GAGCGGCGCC 180 GCGCGACCAT CCGGCCCTGG AGCACCTTCG TGGACCAGCA GCGCTTCTCA CGGCCCCGCA 240 ACCTGGGAGA GCTGTGCCAG CGCCTCGTAC GCAACGTGGA GTACTACCAG AGCAACTATG 300 TGTTCGTGTT CCTGGGCCTC ATCCTGTACT GTGTGGTGAC GTCCCCTATG TTGCTGGTGG 360 CTCTGGCTGT CTTTTCGGC GCCTGTTACA TTCTCTATCT GCGCACCTTG GAGTCCAAGC 420 TTGTGCTCTT TGGCCGAGAG GTGAGCCCAG CGCATCAGTA TGCTCTGGCT GGAGGCATCT 480 CCTTCCCCTT CTTCTGGCTG GCTGGTGCGG GCTCGGCCGT CTTCTGGGTG CTGGGAGCCA 540 CCCTGGTGGT CATCGGCTCC CACGCTGCCT TCCACCAGAT TGAGGCTGTG GACGGGAGG 600 AGCTGCAGAT GGAACCCGTG TGAGGTGTCT TCTGGGACCT GCCGGCCTCC CGGGCCAGCT 660 GCCCCACCCC TGCCCATGCC TGTCCTGCAC GGCTCTGCTG CTCGGGCCCA CAGCGCCGTC 720 CCATCACAAG CCCGGGAGG GATCCCGCCT TTGAAAATAA AGCTGTTATG GGTGTCATTC 780 AGGAAAAAA AAAAAAAGG GGGCCCCTC TAGGGGTCAA AGTTA 825

(2) INFORMATION FOR SEQ ID NO: 86:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1238 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86:

	CATGTAAAAG	GATGAAATGT	GACTTCTGGT	GTTTTTTTAT	TTCTATGGAG	GGACTTTCTG	60
15	GGGACGGTTT	CTGGCTCTCA	GGCTCTGAGA	AGCTGCAGTT	TATGAGTGGC	TCTGTGTGTG	120
	CTGCCACCTA	CTGGAGAAGC	CATAAGCTGC	AGCTTTAGGA	AAAGGGAACC	CGGGGCAGAG	180
20	TGTGGGGAAG	TGGGATGGCA	GCATGGCAGG	GCTTTGGAAA	ATGAGAGGTG	AGAGTKTKTC	240
20	CAGGAAGGGT	GTAAGGAGAG	GATGGATCCT	GATACATGGA	TTCAGGATCA	TTAGGGTCCT	300
	GTCTGGGACA	CTGGCCTTCC	TGCTTACCTG	CTCTTTCCTT	CCTCCTTGGT	CGGAGGAGGG	360
25	GCTGGCTCAC	TGCTCTGGCT	TCATTTTCCA	GAGCTGCCTG	CTGCAGTCAC	ACTTAGGTCA	420
	TCTTCTCTCA	CTTTTCTCCT	TTTGCCGATT	AGTGGACGTG	ACAGAGATGT	GAATGGGGCA	480
30	GGGATGTCCT	TTGATGGCAT	CAAGACTTTA	CCTTCTCCTC	CGCTGTGTCC	CAGCTCTGAT	540
30	TTCAGTTGCA	GCCGTGATGG	AMAGTTNGCA	TGGAAGCTGA	GACTCTCACT	GACAGTGAAA	600
	CCCTCAAATG	AACACAATCC	CTCCTTTCCT	GCCAAGGATC	CTTGTAGGGT	NCCCCCAGCT	660
35	TCCCCACTTT	TTTTCTGTGT	CCTGACAAAG	AAACACAGAG	TAACTTGATT	GCCCTGTGAC	720
	CTGGCCAGTT	GCATTTCCCC	TGCAGGCTTG	AGCCCAAGCC	AGAGCCTTGA	AAAGGTATTC	780
40	AGGTTGTTGC	CCAAAACACT	GAAAAAAACT	GCCCTGGCCC	TGAACCAAAT	ACCTTGAACC	840
40	CTCGTAAACT	CCATACCCTG	ACCCCCTTGT	TTTGGATATA	CCCAGGTAGA	ACAACTCTCT	900
	CTCACTGTCT	GTTGTGAGGA	TACGCTGTAG	CCCACTCATT	AAGTACATTC	тсстаатааа	960
45	TGCTTTGGAC	TGATCACCCT	GCCAGTCTTT	TGTCTTGGGC	AATCTATACT	TTTNCTCAGA	1020
	GGTTCCCAAG	GCCTACTGAA	GGGACTTAAC	АТАСТСТТАА	TGGCTTTCCT	CTCTCTTGTT	1080
50	TTACCTTATG	CCCTCACTTC	CTGAGTTAAC	СТСССАААТА	CAGGATTCAC	CTGTACCCAA	1140
50	GCCCTTAGCT	TCAAGAATAC	AGGATCACCT	GTACCCAAGC	CCTTAGCTCA	AGCTCTGCTT	1200
	TGGAAGAACC	CAAACTAAGA	CAGTGCTCCT	GGTGCCCT			1238

55

- (2) INFORMATION FOR SEQ ID NO: 87:
- 60
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1460 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87:

	ATTGCCTTCT GGTCCCTGGT GAG	CACTGGGG	TCATCCTTCA	TCCCCGGAGA	GCATTTCTGG	60
10	CTGCTCCTCC TGACCCGGGG CCT	TGGTGGGG	GTCGGGGAGG	CCAGTTATTC	CACCATCGCG	120
	CCCACTCTCA TTGCCGACCT CTT	TTGTGGCC	GACCAGCGCG	ACCGGATGCT	CAGCATCTTC	180
15	TACTITICCA TICCGGTGGG CAC	GTGGTCTG	GGCTACATTG	CAGGCTCCAA	AGTGAAGGAT	240
13	ATGGCTGGAG ACTGGCACTG GGC	CTCTGAGG	GTGACACCGG	GTCTAGGAGT	GCTGGCCGTT	300
	CTGCTGCTGT TCCTGGTAGT GCC	GGGAGCCG	CCAAGGGGAG	CCGTGGAGCG	CCACTCAGAT	360
20	TTGCCACCCC TGAACCCCAC CTC	CCTCCTCC	GCAGATCTGA	GGCTCTGGC	AAGAAATCCT	420
	AGTTTCGTCC TGTCTTCCCT GGC	GCTTCACT	GCTGTGGCCT	TTGTCACGGG	CTCCCTGGCT	480
25	CTGTGGGCTC CGGCATTCCT GCT	ICCGTTCC	CGCGTGGTCC	TTGGGGAGAC	CCCACCCTGC	540
23	CTTCCCGGAG ACTCCTGCTC TTC	CCTCTGAC .	AGTCTCATCT	TTGGACTCAT	CACCTGCCTG	600
	ACCGGAGTCC TGGGTGTGGG CCT	roggreng	GAGATCAGCC	GCCGGCTCCG	CCACTCCAAC	660
30	CCCCGGGCTG ATCCCCTGGT CTG	GTGCCACT	GCCTCCTGG	GCTCTGCACC	CTTCCTCTTC	720
	CTGTCCCTTG CCTGCGCCCG TGG	GTAGCATC (GTGGCCACTT	ATATTTTCAT	CTTCATTGGA	780
35	GAGACCCTCC TGTCCATGAA CTC	GGCCATC (GTGGCCGACA	TTCTGCTGTA	CGTGGTGATC	840
	CCTACCCGAC GCTCCACCGC CGA	AGGCCTTC	CAGATCGTGC	TGTCCCACCT	CCTCCCTCAT	900
	GCTGGGAGCC CCTACCTCAT TGG	SCCTGATC '	TCTGACCGCC	TGCGCCGGAA	CTGGCCCCCC	960
40	TCCTTCTTGT CCGAGTTCCG GGC	CTCTGCAG (TTCTCGCTCA	TGCTCTGCGC	GTTTGTTGGG	1020
	GCACTGGGGG GCGCACTTCC TGG	GCACCGC	CATCTTCATT	GAGGCCGACC	cccccccccc	1080
45	ACAGCTGCAC GTGCAGGGCC TGC	CTGCACGA .	AGCAGGGTCC	ACAGACGACC	GGATTGTGGT	1140
	GCCCCAGCGG GGCCGCTCCA CCC	CGCGTGCC	CGTGGCCAGT	GTGCTCATCT	GGAGAGGCTG	1200
	CCGCTCACCT ACCTGCACAT CTG	GCCACAGC (TGGCCCTGGG	CCCACCCCAC	GAAGGGCCTG	1260
50	GGCCTAAACC CCTTGGCCTG GCC	CCAGCTTC	CAGAGGGACC	CIGGGCCGIG	TGCCAGCTCC	1320
	CAGACACTAC ATGGGTAGCT CAG	GGGGAGGA	GGTGGGGGTC	CAGGAGGGG	ATCCCTCTCC	1380
55	AACAGGGCA GCCCCAAGGG CTC	CGGTGCTA	TTTGTAACGG	GATTAAAATT	TGTAGCCAGA	1440
55	AAAAAAAA AAAAAAAAA					1460

(2) INFORMATION FOR SEQ ID NO: 88:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1395 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:

10	(XI) SEQUENCE	DESCRIPTION	I: SEQ ID NO	: 88:		
10	CAGGTGCAAA GTGGGAAGT	TGAGTCCTCA	GTCTTGGGCT	ATTCGGCCAC	GTGCCTGCCG	60
	GACATGGGAC GCTGGAGGG	CAGCAGCGTG	GAGTCCTGGC	CTTTTGCGTC	CACGGGTGGG	120
15	AAATTGGCCA TTGCCACGG	GGGAACTGGG	ACTCAGGCTG	ccccccccc	GTTTCTCATC	180
	CGTCCACCGG AYTCGTGGG	GCTCGCACTG	GCGCTGATGT	AGTTTCCTGA	CCTCTGACCC	240
20	GTATTGTCTC CAGATTAAA	GTACGACATT	TGGAGGCCCC	AGCGAGAAAC	GTCACCGGGA	300
20	GAAACGTCAC CGGGCGAGAG	GCGKCCCGCT	GTGTGCTCCC	CCGGAAGGAC	AGCCAGCTTG	360
	TAGGGGGGAG TGCCACCTG	TTAAAAAAA I	TCCAGGTCCC	CAAAGGGTGA	CCGTCTTCCG	420
25	GAGACAGCGG ATCGACTACC	ATGTGGGTGC	CCACAAAAAT	TYCACCTYTG	AGTCCTCAAC	480
	TGCTGACCCC GGGGTÇAGT	CCAGAGAGAA	GGACTCCCTC	CTGCTTGGAA	GAGACCTCAC	540
30	ACCGTCATCA CGATGCCAAC	GGCTCTGAAG	GTGGATGGCA	TTCCTGCGTG	GATTCATCAC	600
50	TCCCGCATCA AAAAGGCCAA	CRGAGCCCAA	CTAGAAACAT	GGCTCCCCAG	GGCTGGGTCA	660
	GGCCCCTTAA AACTGCACCT	· AAGTTGGGTG	AAGCCATTAG	ATTAATTCTT	TTTCTTAATT	720
35	TTGTAAAACA ATGCATAGCT	TCTGTCAACT	TATGTATCTT	AAGACTCAAT	ATAACCCCCT	780
	TGTTATAACT GAGGGAATCA	ATGATTTGAT	TCCCCAAAAA	CACAAGTGGG	GAATGTAGTG	840
40	TCCAACCTGG TTTTTACTAA	CCCTGTTTTT	AGACTYTCCC	TTTCCTTTAA	TCACTCAGCC	900
70	TIGTTICCAC CTGAATTGAC	TCTCCCTTAG	CTAAGAGCGC	CAGATGGACT	CCATCTTGGC	960
	TCTTTCNACT GGCAGCCGCT	TCCTYCAAGG	ACTTAACTTG	TGCAAGCTGA	CTCCCAGCAC	1020
45	ATCCAAGAAT GCAATTAACT	GATAAGATAC	TGTGGCAAGC	TATATCCGCA	GTTCCCAGGA	1080
	ATTCGTCCAA TTGATTACAC	CCMAAAGCCC	CGCGTCTATC	ACCTTGTAAT	AATCTTAAAG	1140
50	CCCCTGCACC TGGAACTAT	AACGTTCCTG	TAACCATTTA	TCCTTTTAAC	TTTTTTGCCT	1200
50	ACTITATITC TGTAAAATT	TTTTAACTAG	ACCCCCCTC	TCCTTTCTAA	ACCAAAGTAT	1260
	AAAAGCAAAT CTAGCCCCT	CTTCAGGCCG	AGAGAATTTC	GAGCGTTAGC	CGTCTCTTGG	1320
55	CCACCAGCTA AATAAACGGA	TTCTTCATGT	GTAAAAAAA	ААААААААА	CTCGGAGGGG	1380
	GGCCCGGTA CCCAA					1395

(2) INFORMATION FOR SEQ ID NO: 89:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1186 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:

	GGCACGAGCC	GGCAAGCCGA	GCTAGGGTGA	AAACTGGGGG	CGCACCAGGA	TGTNNGACAG	60
15	AAAAGCAGAA	GATGAGACTC	TGTTCATTCA	CTTTTCCTAG	GCCCATCCTG	TGGTCATCTT	120
	TCCCCCTCCC	ATCATACCTC	CTCCTTCCTG	GAGCCTCTGC	CGGCTTGGCT	GTAATGGTGG	180
	CACTTACCTG	GATATTTCAG	TGGGAGGATG	AAAGGCGAGA	CTCACCCTAC	GCGGTGGGAC	240
20	AGATGGGGAG	AGGAAAAAGG	CAGAGATGGC	CAGGAGAGGG	GTGCAGGACA	AACCAGAGAG	300
	GTTGGGTCAG	GGGAAAAGGG	TGGGGAGAAA	GAGGGGTGCA	GCCCTGCAG	GCCGGTTAGC	360
25	CAGCAGCTGC	GCCTCCCCG	GCCCTTGGC	ATCCAACTTC	GCAGACAGGG	TACCAGCCTC	420
23	CTGGTGTGTA	TCATAGGATT	TGTTCACATA	GTGTTATGCA	TGATCTTCGT	AAGGTTAAGA	480
	AGCCGTGGTG	GTGCACCATG	ACATCCAACC	ССТАТАТАТА	AAGATAAATA	ТАТАТАТАТА	540
30	TGTATGTAAA	TTATGGCACG	AGAAATTATA	GCACTGAGGG	CCCTGCTGCC	CTGCTGGACC	600
	AAGCAAAACT	AAGCCTTTTG	GTTTGGGTAT	TATGTTTCGT	TTTGTTATTT	GTTTGTTTTT	660
35	GTGGCTTGTC	TTATGTCGTG	ATAGCACAAG	TGCCAGTCGG	ATTGCTCTGT	ATTACAGAAT	720
55	AGIGTTTTTA	ATTCATCAAT	GTTCTAGTTA	ATGTCTACCT	CAGCACCTCC	TCTTAGCCTA	780
	ATTTTAGGAG	GTTGCCCAAT	TTTGTTTCTT	CAATITTACT	GGTTACTTTT	TTGTACAAAT	840
40	CAATCTCTTT	CTCTCTTTCT	CTCCTCCCCA	CCTCTCACCC	TTGCCCTCTC	CATCTCCCTC	900
	TCCCGCCCTC	cccrccrccc	TCTGGCTCCC	CGTCTCATTT	CTGTCCACTC	CATTCTCTCT	960
45	CCCTCTCTCC	TGCCTCCTGC	TGCCCCCTCC	CCAGCCCACT	TCCCCGAGTT	GTGCTTGCCG	1020
43	CTCCTTATCT	GTTCTAGTTC	CGAAGCAGTT	TCACTCGAAG	TTGTGCAGTC	CTGGTTGCAG	1080
	CTTTCCGCAT	CTGCCTTCGT	TTCGTGTAGA	TTGACGCGTT	TCTTTGTAAT	TTCAGTGTTT	1140
50	CTGACAAGAT	AAAAAATT	AAAAAGGAAA	ааааааааа	ААААА		1186

55 (2) INFORMATION FOR SEQ ID NO: 90:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1821 base pairs

(B) TYPE: nucleic acid

60 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90:

5	AAAACATGCT TTCAGGGCGT CCCCTATGTA TTCGGGGGGC CCACGGACAC TCAGGCTGGA	60
	KATCCGTCCT CACTGCGCTC AAGATGGCCT CAGCAGACAC CAGTTACCCA GCTGAAAGTC	120
10	ACAATCCCTC CCAGAAGTCT CCCAACACTA GTGCTGACCA GAGGTGGGGC TCTCAGGCTA	180
10	GGAGTTTCAC ACACAATGAC AGGCTGCTGG GGGACATTGC AGGACCCCTT TTCCTYTCCT	240
	CTCCATGCTA GAAGCCAGCC CTAGGMAGCT GCAGTTACTC CCTGTGACTC AGCAGCAGGC	300
15	TGATTCAACA CAGCTGCCCA CACAAAGCCA GTGGTAATAC ATCTGTTTAC CTTTCCCTAT	360
	CACCCAGACA CAAGCCCCTT TCCCAGGTCA AACCACAGGC CGATGCATCT CCAGTTTGAC	420
20	AGTCAAATCA CTACTTCCAT TGCTACTTTA GATCAGCCAA AGTGGTGACT GCTGCAGTGT	480
20	GTGGCTATCC CTACAAGGCC CACCCAAGGG ATGCCCCAAAG CCCAACCTTC TCCAGGGCTG	540
	CAGCAGNAGC AACCCCACCA GCCTAAGTCC AGCAGAGGAC CTCCCACCCA ATGTCTTGTT	600
25	CTAATTAGAA GGGGAAGTTA GCCACAGAAA ATCAACTTAT CTATAATTAC AAAATTCTCT	660
	TGACTCACCT TAAAGTTCCT ATTGACATCT ACTGCTTTTA AACCTATTTG AAAACTCTGA	720
30	TACTAAAACA AATGACACTC TAAGAAAGTT TGGGAGCCCC ATGCTGAGAA CCATTTCTGT	780
50	GCAGTGAGGA TGTTTCCAGA AGCTACTTAC CTACATGTGA ATGTGCCATT TTCTTTCCTT	840
	TTGTAGAGAA AATCCCCTTT ACTTTTTGGA ACAGTAATGG CAGCTTCTAG TACAGCCATT	900
35	ACAGTITCAT ATGAGAAAAA TTAAGAATAA CTATAAAATT GTTAAAATAT CCAATAATGG	960
	ATAATGATGG CCAGAAGATT TAACATACAA AGTAATTCTC AATGTAAAGC TATTCAGCTC	1020
40	TICCAGGITG AATGCCCIGT AACCCACCCT GACCTICCAC ATCATCTICA AAAAGCAGTT	1080
40	TOTOTGTTCC CCATGATTCT CCTATAAGGT AACTCTTTAG TCCTCCATTT AGCACATTTT	1140
	AAATCCTCCA AAGAATAAGT ATCATGTGAT TATTTTAGCT TTACAAAAAA AAAGTTGAAT	1200
45	GGCGTTTTAT TTTCATGGCC TATAAGCAGG TACCTTAGTA GGGCAGATAT AGGAAAAACA	1260
	AATTAGAGCA AAACAAATCC TCTACAAATC CAAGGCAGGA AAAGTGGTGG CAGAGTGACT	1320
50	CATTCTCCTG TCCCTCCCAT CAGGTCAAAT CAGGAGGCTG CAGTGAATGC CTGTTCTTTG	1380
50	AATGTGTAGC AGTTGTTCCT GTAACTCTTT AAAACTTGGC TATAGGCTGT TTAGCACAGT	1440
	ACAGATTAAA GATACAGTTA CGTAAACAGC AAAGTAATTT TATAGTGCTT CATCCATTTA	1500
55	TCATGCTTTG GTTTGCTAAT TTTTTCACAT ACCTTTTTCT ATCACAGTCT GTTGCTTTTG	1560
	TACACATTTC TCATATTGGG GTTCGACAGG TAAACACAAA CTGCTATTTC AGTAGAAAAA	1620
60	GTTATTGTTA TGGAATATTA AACCCAATAA ATTGTATAAA GGGTAAAAAA AAAAAAAAA	1680

	AAAAAAAAAA AAAAAAAAA AAAAAAATTC CTGCGGCCG CANGCTTTTT CCCTTTGGGT	1740
	GAGGGGTTAT TTTNGGCTTG GGCACTGGGC CCTTCGTTTT TACAACGTCG TGANGGGGGG	1800
5	AACCCGGGGG GGGTTTCCCCC C	1821
10	(2) INFORMATION FOR SEQ ID NO: 91:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 862 base pairs (B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:	
20	TGCCCTTTTT CCCACCGATT CGGGGCNTGG TGAAGGTGGG AGATGTGAAC TCCAATTAAG	60
	GGACTGGAGA GAGGTGAAGA ATTTTGCAGG TGGGAGATTT GGATTTGAAT GTGGACTTGT	120
25	AAATGACTTG ACCTTGCCAT CTGTGTTCAA GGTCACGGTT TGCTGTGGGG TTCCTGGGAG	180
	AGCTTACTCA CCCCGGAGTC TTTTCTTTCT CTTGCTCCAA GAAGAGCCCT GTTGGTGCTT	240
	TACCACCGCT TOGAGTCTCC CGAGGACACA AACAGGCAGA GAGGGACGTG TAGGGAGAGT	300
30	TCTTTCCTGT TTTCTGTGCT TTCCTTTTTA CAGGACTCCC GGAAGGCCAC TCATGGCCAT	360
	GCCAGGAGCT TTCTCAGAAA CAGTCATAAA CGATCTCTTG AGTCTCTTC TTGTCCTCCC	420
35	AGCTGAGCTT TCTTATTCCA CCCTTTCTGG TGTCTATAGG AATGCATGAG AAGACCCTGG	480
	GACGTTTTTC TGCTCTCTTC TGGCCCTCCA TGGAGCCATG GGCCTCGGCC TCGGCGGCTC	540
	CTCACCCTCA CAATTTATTT CCTCCTCCCG TGCCAGCCCT TCTTTTGTGT CTGAAACCGG	600
40	TTTTAAAATG TGACTCTCCC AGAGAAGAAG CCGCTGGCTG TATGAAACTT GACGGCGCTT	660
	TTGTAAGGTG CCACCCCCAA ACTTTAAGGT AGCTAAACCA ATTTTTAAAA GATTCAATGG	720
45	CTTGTTCATC CTCCAGATGT AGCTATTGAT GTACACTTCG CAACGGAGTG TCTGAAATTG	780
	TOGTOGTCCT GATTTATAGG ATTTCATAAT TAAAATGTCT GCTGAATAAA AAAAAAAAA	840
	AAAAACTCGA GGGGGCCCG GT	862
50		
	(2) INFORMATION FOR CEO ID NO. 02	
E E	(2) INFORMATION FOR SEQ ID NO: 92:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 696 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	

(D) TOPOLOGY: linear

60

PCT
rc1.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:

	CTGAGGCGAG	TGAAGTGGAC	TCTGAGGGCT	ACCGCTACCG	CCACTGCTGC	GGCAGGGGCG	60
5	TGGAGGCAG	AGGGCCGCGG	AGGCCGCAGT	TGCAAACATG	GCTCAGAGCA	GAGACGCCG	120
	AAACCCGTTC	GCCGAGCCCA	GCGAGCTTGA	CAACCCCTTT	CAGGACCCAG	CTGTGATCCA	180
10	GCACCGACCC	AGCCGGCAGT	ATGCCACGCT	TGACGTCTAC	AACCCTTTTG	AGACCCGGGA	240
10	GCCACCACCA	GCCTATGAGC	CTCCAGCCCC	TGCCCCATTG	CCTCCACCCT	CAGCTCCCTC	300
	CTTGCAGCCC	TCGAGAAAGC	TCAGCCCCAC	AGAACCTAAG	AACTATGGCT	CATACAGCAC	360
15	TCAGGCCTCA	GCTGCAGCAG	CCACAGCTGA	GCTGCTGAAG	AAACAGGAGG	AGCTCAACCG	420
	GAAGGCAGAG	GAGTTGGACC	GAAGGAGCGA	GAGCTGCAGC	ATGCTGCCCT	GGGRGGCACA	480
20	GCTACTCGAC	AGAACAATIG	GCCCCCTCTA	CCTTCTTTTT	GTCCAGTTCA	GCCCTGCTTT	540
20	TTCCAGGACA	TCTCCATGGA	GATCCCCCAA	GAATTTCAGA	AGACTGTATC	CACCATGTAC	600
	TACCTCTGGA	TGTGCAGCAC	GSTGGNICTT	CTCCTGAAYT	TCMTCGSCTG	CCTGGCCAGT	660
25	TCTGTGTGGA	AACCAACAAT	GGCGAGGCTT	TGGGTT			696

30 (2) INFORMATION FOR SEQ ID NO: 93:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1886 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:

40	CAGGCCACTG	ACCCTTCTTT	GCGAGGGATG	CAGGAGGTCC	TACAGAGAAA	GGCGCTTCTT	60
	GCATKTCAGA	GGCCCACAG	CCTGTCACCC	ACAGATCACC	AAGCAGCTTT	CTACCTGGCT	120
45	CTGCAGCTTG	CCATCTCCAG	ACAGATCCCA	GAGGCTCTGG	GGTATGTCCG	CCAAGCTCTT	180
43	CAGCTTCAAG	GTGACGATGC	CAACTCCCTG	CACCTCCTTG	CCCTCCTGCT	GTCAGCACAG	240
	AAGCATTACC	ATGACGCTCT	GAACATCATC	GACATGGCCC	TGAGTGAATA	CCCAGAAAAT	300
50	TTCATACTAC	TGTTTTCCAA	AGTGAAGTTG	CAGTCACTCT	GCCGAGGCCC	GGACGARGCA	360
	CTGCTGACTT	GTAAGCACAT	GCTGCAGATA	TGGAAATCCT	GCTACAACCT	CACCAACCCC	420
55	AGTGATTCTG	GACGTGGGAG	CAGCCTCTTA	GATAGAACCA	TTGCTGACAG	ACGACAGCTT	480
33	ААТАСААТТА	CTTTGCCAGA	CTTCAGCGAT	CCCGAGACAG	GCTCCGTCCA	TGCCACATCG	540
	GTAGCAGCCT	CAAGAGTGGA	GCAGGCACTG	TCGGAAGTGG	CTTCGTCTCT	GCAGAGCATG	600
60	CCCCTAAGCA	GGGCCCGCTG	CACCCCTGGA	TGACGCTGGC	ACAGATCTGG	CTCCATGCAG	660

	CTGAAGTCTA	TATCGGCATC	GGGAAGCCTG	CAGAAGCCAC	AGCCTGTACC	CAAGAAGCTG	720
5	CCAACCTCTT	CCCAATGTCC	CACAATGTCC	TCTACATGCG	CGGCCAGATT	GCTGAGCTCC	780
J	GGGGAAGCAT	GGACGAGGCG	CCCCCCTCCT	ATGAAGAGGC	CTTAGCCANT	CAGCCCCACC	840
	CACGTGAAGA	GCATGCAGCG	ACTTGGCCCT	GATCCTTCAC	CAGYTAGGCC	GYTACAGTYT	900
10	GGCGGAGAAG	ATCCTCCGGG	ACGCGGTGCA	GGTGAACTCG	ACAGCCCACG	AGGTCTGGAA	960
	CGGGCTGGGC	GAGGTCCTCC	AAGCTCAGGG	CAACGATGCG	GCGGCTACGG	AGTGCTTCCT	1020
15	GACAGCCTTG	GAGCTGGAGG	CCAGCAGCCC	CCCCTCCCC	TTCACCATCA	TCCCCCCCCT	1080
13	GCTCTGAGCA	GCCCCTGCC	AGCCTCACCT	GCCGCTCAGC	CTNCAGAGGC	CCTGCCGGGC	1140
	ACCAGGGCTT	GTGCCATCGC	CCCAAGGGGA	TGAATCTGCC	GCACTGAGGC	CAGGGACGAG	1200
20	TGTTCAGTGG	GCCACAGTGA	ACCAACCAAA	CCAACCCCGA	ATCATCGCTC	TCGCCATGTG	1260
	CGTTTCTCTT	GTITTTTTTG	CCAGCCCAAT	GGTAGTTTCT	GAACCTATTG	ACATTGTTCA	1320
25	AAATGGATCA	TGTGCCATAT	TTTGTTAGTT	GACATCTGAG	TTTTCAGTAA	AATGATTATG	1380
23	GAATTAATCA	GCAAATGTAG	AAGAATATAT	TCAAAGTTAA	AATTCAGTGG	CAGCACAGAT	1440
	TATTTTTATC	AGAGCTGTAA	AGAAAACAAC	TGTCCTTTTC	TCCCCACCAC	CCCTCCTGCC	1500
30	CCACTTTGGC	CCAGAAACCA	AATGTGAACT	TCCTGTCTCC	CACCTCAGCA	CTAGTCCATG	1560
	CCAGGACACC	AGCTGACAAT	TTCTTGGTTT	TACTGTCAAT	AATTGTACCA	TGTGATCAAT	1620
35	TACTGTCCTC	ACTTAGAACA	AAGCCTGAGT	CCGAGAATAT	TTATATTTTA	CCAATATATG	1680
	CCTGTTACAA	GAGAAGGAAA	TATGAGTTAT	TTAAGTTTAA	CTTTTTTATG	TGAATTCAGA	1740
	GTTTATTTAT	CGAGGGAAAT	ATGTACAAAG	AAGCTTCAAA	TGGAATATTT	ACCGACATTC	1800
40	CTTATACATG	ACAGACACTT	GGCTACATGG	GAAGATGATG	ттаатаатаа	AATGATTITT	1860
	AAATGGAAAA	ааааааааа	AAAAN				1886

45

(2) INFORMATION FOR SEQ ID NO: 94:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1774 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:

CTCAGCTACC GTATACAGTA GGACATAACC CCATTTCACA TGCACTACAC TGAGACTTGC 60

CTCCTCTCCC CCCACATTGA AGATGTTCTT TTTTCATAAC TATATACTAT TCCATTGCAT

	GAATATTCTG	TAATITATTT	AATCCCCTAT	GGATTGATAA	TTAGGTTCAT	TATAGATAGA	180
	AGTGTAATTA	ACATTCCTGT	ACATGTATTT	TGCTACTTGT	GTGGGTATTT	CTGTAGGATG	240
5	AATAACTAGA	AATTTATTGG	ATCAGGTTTC	ACATTIGCAG	TTTTGAAAAC	TACTACCAAA	300
	AAGATTTCAC	CAATTTACAA	CTCCATCATT	AGTAAGAATG	CCTGTTTGCC	TATAGTCTGC	360
10	CAACCCTGAA	ТССТТААААА	TTTTTGCCAA	TCTGGTAGGC	AAAATTTCTT	TCTTTTCTTT	420
•	GAATATTAAT	GAGGAGGAAC	ATCTTTTCAT	GTTTCTTGGC	CATTTGCATT	TCCTATTATG	480
	AATTGCTTTT	GCCCATTTTC	СТТТТТТАА	TTATGAAAGT	CTAATGACTA	CCTTCTCATT	540
15	GTATAAAAA	CACAGTTCTT	TGAATAGAGA	GACCCTTTTC	TCCAATGCTA	CCAATCACAT	. 600
	TCCACTTACC	ACAGITTAAC	ATACATCCTC	TAGTCACCTT	TCCGTACGAA	TATACATACA	660
20	CATAAAAACA	CTTTTTACAT	AAATAGGATC	TCATATTCTG	TAGCTTTTTA	AAATTTTGGT	720
20	СТСАААААА	GATAACAGGT	CTTTAAATTT	CTTTAATGGT	TGAATATGAT	ТАААТАСТАТ	780
	GAAAATGCCA	TTATTTATTC	CCTTAATTTT	TTTCCTCTCG	CTATTACATT	GCCAAAGTAA	840
25	ACATCCTATT	CAGATGTCTT	TGTGCATGTG	TGTGAATATT	TCTTTAGTCT	GGAGTCCAGT	900
	AAGGTGGATT	TTTGGATCAA	AGGGTTTGTT	CTCTGTCCAC	CTTCAGTCTT	CCCAAAGGCC	960
30	TTCATAACTG	TATTTTCACC	AAGTGTATGG	AGAATGTTCA	TTTCCCCATA	TAACCATACC	1020
50	TACACTTGAT	AGTTTTTATC	TGTTGGGCGA	AAAAGAACCT	TTTCTTATTT	TGCATTTCCC	1080
	TGATTATAAA	AAAAAATGGT	GAGATTGGGG	TTATTTTCAT	GTTTATTGGC	CATTTATAGT	1140
35	TTACTGTGGA	TIGTTIGTAT	CCCTTACCTG	CTTTCTATTG	GCTTATGTGT	GGATATATTG	1200
	TTTTTATTTG	TTCAGCATCT	CCTTCCCCAT	CTTCTGGTAA	CACAACCTTT	ATTTATTTGT	1260
40	GGGGAACCTA	TTCCCTGTGG	CTTAGGTGAG	CATGTGACCA	GCCTGCCCT	CCTGAGTCCC	1320
,,	ACAGCTTCCT	AGCCACAGTG	ATAAAAGAAT	GGTATATAA	CTTAAGCCAG	GCTAAGGAAA	1380
	GCCCTTAACA	GAACTTCTGC	TGGAACTACT	GGAAAGAAGG	CTTTATGGAG	ATCCCAGGAA	1440
45	CCAAGGACCA	TGTAAGCCTG	AATTTGTGCC	ATGTGGAGAG	AGTCTGTCTG	AGGAGAAACT	1500
	CGGATGCTAG	CAGAAATGGA	AAGAGAACTA	AGTTCTGATG	TCATTTTTCT	GGAGGCCCTA	1560
50	GATCCAGCTG	TGCCTAAAGC	CTGCCCTACT	CCGGACTTTA	AAGTTTTGTG	AGCCAATAAA	1620
50	GTCCCTTTCT	TGTTTAAGAT	AATTGAATTG	AGTTTCTGTT	CTGATTAATA	TAGGTTATTT	1680
	GTATTTTCTT	ATTGATTTGT	AGAAAACCTT	TGTAATTTTA	AATTCTAGAC	TTTATGCACT	1740
55	ATATAAGTTA	ATAAAATTAG	CATGGCCTTC	CATG			1774

^{60 (2)} INFORMATION FOR SEQ ID NO: 95:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2503 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:

GGGTTCAGTT CCAACCATGG TCAGAGGTGG CACATCTGCT CAGCCATCTC ATTITACAGC TAACGCTGAT CTCCAGCTCC AGCGATGGAA CCCACTACAG AGGAGGTGGG GCCCCTGTGT 40 CAAAGAGGCC GAGGGCAGC AAGGCCAGMC AGGGCACCTG TGACTTCTTA GTACAAGATT GTCTGTCCTT CAGGACTTCC AAGGCTCCCA AAGACTCCCT AAACCATGCA GCTCATTGTC ACACCAATTC CTGCTTTAAT TAATGGATCT GAGCAAATCT TCCTCTAGCT TCAGGAGGGT GGGGAGGGAG TGATTGCTGT CATGGGCCA GACTTCCAGG CTGATTTGCC AAATGCCAAA ATGAAACCTA GCAAAGAACT TACGGCAACA AACGAGGACA TTAAAAGAGC GAGCACCTCA 50 GTGTCTCTGG GGACATGGTT AAGGAGCTTC CACTCAGCCC ACCATAGTGA GTGGGCCGCC ATAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGACTCAAC AAAGACAGGA CACATGGGT ACAAAGACAA GGCTTGACTG CTTCAAAGCT TCCCTGGACC TGAAGCCAGA CAGGGCAGAG GCGTCCGCTG ACAAAATCACT CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC					-			
AACCCTGATT TCCTGCTTCT CCTTTTCATG AGTGTTCCTG TGGTCTCTGC ACCTCCTTTC TGTCCCCCGG CAGAGGGCAG TAGAGATGGC GGGCCCAAGG CCTCRGTGGC GCGACCAGCT GCTGTTCATG AGCATCATAG TCCTCGTGAT TGTGGTCATC TGCCTGATGT TATACGCTCT 20 TCTCTGGGAG GCTGGCAACC TCACTGACCT GCCCAACCTG AGAATCGGCT TCTATAACTT CTGCCTGTGG AATGAGGACA CCAGCACCCT ACAGTGTCAC CAGTTCCCTG AGCTGGAAGC CCTGGGGGTG CCTCGGGTTG GCCTGGGCCT GGCCAGCCTT GGCGTGTACG GGTCCCTGGT CCTCACCCTC TTTGCCCCCC AGCCTCTCCT CCTAGCCCAG TGCAACAKTG ATGAGAGAGC GTGGCGGCTG GCAGTGGGCT TCCTGGCTGT KTCCTCTGTG CTGCTGGCAG GCGCCCTGGG 30 CCTCTTCCTC TCCTATGTGT GGAATGGGTC ARGCTCTCC TCCCGGGGCC TGGGTTTCTA GCTCTGGGCA GCGCCCAGSC CTTACTCATC CTCTTGCTTA TAGCCATGGC TGTGTTCCCT CTGAGGGCTG AGAGGGCTGA GAGCAAGCTT GAGAGCTGCT AAAGGCTTAC GTGATTGCAA GGGTTCAGTT CCCACCATGG TCAGAGGTGG CACATCTGCT CAGCCATCTC ATTTTACAGC TAACGCTGAT CTCCAGCTCC AGCGATGGAA CCCACTACAG AGGAGGTGGG GCCCCTGTGT 40 CAAAGAGGCC GAGGGCAGC AAGGGCAGCA AGGGCACCTG TGACTTCTTA GTACAAGATT GTCTGTCCTT CAGGACTCC AGCGATGGAA CCCACTACAG AGGAGGTGGG GCCCCTGTGT 45 GGGGAGGGAG TGATTGCTC AAGGCTCCCA AAGACTCCCT AAACCATGCA GCTCATTGTC ACACCAATTC CTGCTTTAAT TAATGGATCT GAGCAAATCT TCCTCTAGCT TCAGGAGGGT ACACCAATTC CTGCTTTAAT TAATGGATCT GAGCAAATCT TCCTCTAGCT AAATCCAAA ATGAAACCTA GCAAAGAACT TACGGCAACA AACGAGGAC TTAAAAGAGC GAGCACCTCA ATGAAACCTA GCAAAGAACT TACGGCAACA AACGAGGAC TTAAAAGAGC GAGCACCTCA ATAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGGCCGCC ATAAGCCAAT CACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGGCCGCCC ATAAGCCAAT CACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGGCCGCCC ATAAGCCAAC ACTTGGACT CAAACCCCCAGA GGTCCAGGAG TGATCTCTGA GTGGACCTCAA AAAGACAAGA CACATGGGT ACAAAGACAA ACGATGACG CTCCATGATGA GACCCTGGAC AAAAGACAGA CACATGGGGT ACAAAGACAA GGCTTGACTG CTCCATGATGA GACCCTGGAC GACTCCAAAT CCTCCCTGTG AACAGGACA GACGGTTGCC CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCCCTGTG AACAGGACTG GACGCTTGCC CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCCCTGTG AACAGGACTG GACGGTTGCC CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCCCTGTG AACAGGACTG GACGGTTGCC CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCCCTGTG AACAGGA	10	GGCACGAGCG	AAGGCAAGGG	GGCACCAGCT	CAGGACTGCA	TCTGCCTGCC	ATTTCCCTTC	60
TOTCCCCCGG CAGAGGGCAG TAGAGATGGC CGGCCCAAGG CCTCRGTGGC GCGACCAGCT GCTGTTCATG AGCATCATAG TCCTCGTGAT TGTGGTCATC TGCCTGATGT TATAGGCTCT TCTCTGGGAG GCTGGCAACC TCACTGACCT GCCCAACCTG AGAATCGGCT TCTATAACTT CTGCCTGTGG AATGAGGACA CCAGCACCCT ACAGTGTCAC CAGTTCCCTG AGCTGGAAGC CCTGGGGGTG CCTCGGGTTG GCCTGGGCCT GGCCAGGCTT GGCGTGTACG GGTCCCTGGT CCTCACCCTC TTTGCCCCCC AGCCTCTCCT CCTAGCCCAG TGCAACAKTG ATGAGAGAGC GTGGCGSCTG GCAGTGGGCT TCCTGGCTGT KTCCTCTGTG CTGCTGGCAG GCGGCCTGGG 30 CCTCTTCCTC TCCTATGTGT GGAATGGGTC ARGCTCTCCC TCCCGGGGCC TGGGTTTCTA GCTCTGGGCA GCGCCCAGGC CTTACTCATC CTCTTGCTTA TAGCCATGGC TGTGTTCCCT CTGAGGGCTG AGAGGGCTGA GAGCAAGCTT GAGAGCTGCT AAAGGCTTAC GTGATTGCAA GGGTTCAGTT CCAACCATGG TCAGAGGTGG CACATCTGCT CAGCCATCTC ATTTTACAGC TAACGCTGAT CTCCAGCTCC AGCGATGGAA CCCACTACAG AGGAGGTGGG GCCCCTGTGT 40 CAAAGAGGCC GAGGGGCAGC AAGGGCAGMC AGGGCACCTG TGACTTCTTA GTACAAGATT GTCTGTCCTT CAGGACTTCC AAGGCTCCCA AAGACTCCCT AAACCATGCA GCTCATTGTC ACACCAATTC CTGCTTTAAT TAATGGATCT GAGCAAATCT TCCTCTAGCT TCAGGAGGGT GGGGAGGGAG TGATTGCTGT CATCGGGCCA GACTTCCAGG CTGATTTGCC AAATCCCAAA ATGAAACCTA GCAAAGAACT TACGGCACAA AACGAGGACA TTAAAAGAGC GAGCACCTCA ATAAGCCATC ACTGGAACTC CACCCCAGA GGTCCAGGGG TGATCTCTGA GTGGGCCGCC ATAAGCCATC ACTGGAACTC CACCCCCAGA GGTCCAGGGG TGATCTCTGA GTGGGCCGCC ATAAGCCATC ACTGGAACTC CACCCCCAGA GGTCCAGGGG TGATCTCTGA GTGGGCCGCC AAAAGACAGGA CACATGGGT ACAAAGACAA GGCTTGACGC ACCATAGGGA GTGGGCCGCC AAAAGACAGA CACATGGGGT ACAAAGACAA GGCTTGACGC CACCATAGGGA GTGGGCCGCC AAAAGACAGGA CACATGGGGT ACAAAGAACAA GGCTTGACGC CACCATAGAGA GACCCTGGAC GACTCCAAAT CCTCCCTGTG AACAGGACAA GGCTTGACGC CACCATAGAGA GACCCTCGACC AAAAGACAGAA CACATGGGGT ACAAAGAACAAA GGCTTGACGC CACCATAGAGA GACCCTGGAG GACTCCAAAT CCTCCCTGTG AACAAGACAAA GGCTTGACGC CACCATAGAGA GACCCTGGAG GACTCCAAAT CCTCCCTGTG AACAAGACAAA GGCTTGACGC CACCATAGAGA GACCCTGGAG GACTCCAAAT CCTCCCTGTG AACAAGACAAA CGCTTGCCC CACCATAGAGAA CACCTCGGAG GACTCCAAAT CCTCCCTGTG AACAAGGACTG GACCGTTGAACCT CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCCCTGTG AACAGGACTG GACGCTTGCCCT ACAAAACAAA		CACTCCTCCT	TTCTGGAGTC	TGACATTAGA	AAGCCAGCGA	GAAGGAAGAT	TCAAACAACC	120
TOTOCCCCCG CAGAGGGCAG TAGAGATGGC CGGCCCAAGG CCTCRGTGGC GCGACCAGCT GCTGTTCATG AGCATCATAG TCCTCGTGAT TGTGGTCATC TGCCTGATGT TATACGCTCT 20 TCTCTGGGAG GCTGGCAACC TCACTGACCT GCCCAACCTG AGAATCGGCT TCTATAACTT CTGCCTGTGG AATGAGGACA CCAGCACCCT ACAGTGTCAC CAGTTCCCTG AGCTGGAAGC CCTGGGGGTG CCTCGGGTTG GCCTGGGCCT GGCCAGGCTT GGCGTGTACG GGTCCCTGGT CCTCACCCTC TTTGCCCCCC AGCCTCTCCT CCTAGCCCAG TGCAACAKTG ATGAGAGAGC GTGGCGGGTG GCAGTGGGCT TCCTGGCTGT KTCCTCTGTG CTGCTGGCAG GCGCCCTGGG 30 CCTCTTCCTC TCCTATGTGT GGAATGGGTC ARGCTCTCCC TCCCGGGGCC TGGGTTTCTA GCTCTGGGCA GCGCCCAGGC CTTACTCATC CTCTTGCTTA TAGCCATGCC TGTGTTCCCT CTGAGGGCTG AGAGGGCTGA GAGCAACCTT GAGAGCTGCT AAAGGCTTAC GTGATTCCAA GGGTTCAGTT CCCAACCATGG TCAGAGGTGG CACATCTGCT CAGCCATCTC ATTTTACAGC TAACGCTGAT CTCCAGCTCC AGCGATGGAA CCCACTACAG AGGAGGTGGG GCCCCTGTGT 40 CAAAGAGGCC GAGGGGCAGC AAGGCCAGAC AGGGCACCTG TGACTTCTTA GTACAAGATT GTCTGTCCTT CAGGACTTCC AAGGCTCCCA AAGACTCCCT AAACCATGCA GCTCATTGTC 45 GGGAAGGGGA TGATTGCTGT CATGGGGCCA GACTTCCAGG CTGATTTGCC AAATGCCAAA ATGAAACCTA CCTCGTTTAAT TAATGGATCT GAGCAAATCT TCCTCTAGCT TCAGGAGGGT 50 GTGTCTCTGG GGACATGGT AAGGACTTC CACTCAGCC ACCATAGTGA GTGGGCCCCC ATAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGGGCCCCC ATAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGGGCCCCC ATAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGGCCCCCC AAAAGACAGGA CACATGGGT ACAAAGACAA ACGAGGAC TTAAAAGACT TCCCTGGACC AAAAGACAGA CACATGGGT ACAAAGACAA GGCTTGACTG CTTCAAAGCT TCCCTGGACC AAAAGACAGA CACATGGGT ACAAAGACAA GGCTTGACTG CTTCAAAACAAA CCCTTGGAC AAAAGACAGA CACATGGGT ACAAAGACAA GGCTTGACTG CTCCAAGACAAA CCCCTGGAG GACTCCAAAT CCTCCCTGTG AACAGGACTG GACGGTTGCC CACCATAGTGA GACCCTGGAG GACTCCAAAT CCTCCCTGTG AACAGGACTG GACGGTTGCC CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCCCTGTG AACAGGACTG GACGGTTGCC CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCCCTGTG AACAGGACTG GACGGTTGCC CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCCCTGTG AACAGGACTG GACGGTTGCC CACCAAACAAA CCCCTCGAGG GACTCCAAAT CCTCCCTGTG AACAGGACTG GACGCTTGCC CCCCCTGAGACAAACAAA CCCTCGCACC	15	AACCCTGATT	TCCTGCTTCT	CCTTTTCATG	AGTGTTCCTG	TGGTCTCTGC	ACCTCCTTTC	. 180
Teteteggag getegeaace teactgacet geceaacetg agaategget tetataactt ctgectiggg aatgaggaca ceageacett acagtgeteae eagitecetg agetegaage ceteggggig ecteggitg geetiggeet gecaggett gegitstaeg getecetiggt ceteacete titgececee agecteteet ectageceag tecaacakte atgagagage giggegstig geagtgget teetiggetg keetiggie etgetiggeag gegeetiggg 30 cetetteete teetatigitg gaatgggie argeteeteet teetiggeag gegeetiggg getetiggea gegeetigg gaatgggie argeteeteet teetiggee tiggitteta getetiggea gegeetigg gaatgggie argeteeteet teetiggee tiggitteta getetiggea gegeetigg gaagaggie argeteeteet talgeetige tiggitteeta ctgagggee agagggetga gaagaagett gaagagetget aalgeetige gegetiteet ctgagggeet agagggetga gaagaagett gaagagtget aalgeetige gegetiteet attitaeage talgeggat etgetiget eagaggetga eelaatggig cacatetget eagaggtigg geceetigtit 40 caaagaggee gaagaggeage aalgeggaga agaggeetigg geceetigtit 41 caaagaggee gaagaggeage aalgegeagae aagacteet talgegtiet talgetitetta gtacaagatt gtetigteett eagagettee aalgegeegeage agacteeta aalgeatgee geceetigtit 42 acaccaatte etgetttaat talgegatet gageaaatet teetitaget teaggaggit in acaccaatte etgetttaat talgegeegea gactteege etgattigee aalgegeege ataaagacta gegaataget aalgegeegea gactteegagae tigatteega giggeegee ataaageeaga eagacategt aalgegeetig eacataggae talteetigg giggeegee aalgaacaga eacatgggit acaaagacaa geetigaetig etteaaaget teetiggaet aalgaacaga eacatgggit acaaagacaa geetigaetig etteaaaget teetiggaet figaaccaga eagaggaaga geetiggig gacggtigg eacaaacaaa egetiggaeg aalgaacaga eacatgggit acaaagacaa geetiggee eacaaacaaa egetiggaeg aalgaaccaga eagaggaaga geetiggit gacggtigg eacaaacaaa egetiggaeg gacteeaaat ectegetigg aacaagactig gacggtigge eacaaacaaa egetiggaeg aalgaaccaga eagaggaega geetiggit gacggtigge eacaaacaaa egetiggaeg aalgaaccaga eagaggaega gacgteegagaegaegaegaegaegaegaegaegaegaegaegae	15	TGTCCCCCGG	CAGAGGGCAG	TAGAGATGGC	CGGCCCAAGG	CCTCRGTGGC	GCGACCAGCT	240
CTGCCTGTGG ANTGAGGACA CCAGCACCCT ACAGTGTCAC CAGTTCCCTG AGCTGGAAGC CCTGGGGGTG CCTCGGGTTG GCCTGGGCCT GGCCAGGCTT GGCGTGTACG GGTCCCTGGT CCTCACCCTC TTTGCCCCCC AGCCTCTCCT CCTAGCCCAG TGCAACAKTG ATGAGAGAGC GTGGCGGCTG GCAGTGGGCT TCCTGGCTGT KTCCTCTGTG CTGCTGGCAG GCGCCCTGGG 30 CCTCTTCCTC TCCTATGTGT GGAATGGGTC ARGCTCTCCC TCCCGGGGCC TGGGTTTCTA GCTCTGGGCA GCGCCCAGSC CTTACTCATC CTCTTGCTTA TAGCCATGGC TGTGTTCCCT CTGAGGGCTG AGAGGGCTGA GAGCAAGCTT GAGAGCTGCT AAAGGCTTAC GTGATTGCAA GGGTTCAGTT CCAACCATGG TCAGAGGTGG CACACTCTGCT CAGCCATCTC ATTTTACAGC TAACGCTGAT CTCCAGCTCC AGCGATGGAA CCCACTACAG AGGAGGTGGG GCCCCTGTGT 40 CAAAGAGGCC GAGGGGCAGC AAGGGCAGCA AGGGCACCTG TGACTTCTTA GTACAAGATT GTCTGTCCTT CAGGACTTCC AAGGCTCCCA AAGACCTCCT AAACCATGCA GCTCATTGTC ACACCAATTC CTGCTTTAAT TAATGGATCT GAGCAAAATCT TCCTCTAGCT TCAGGAGGGT ATGAAACCTA GCAAAGAACT TACGGCACCA GACTTCCAGG CTGATTTGCC AAATGCCAAA ATGAAACCTA GCAAAGAACT TACGGCACA AACGAGGGAC TTAAAAGAGC GAGCACCTCA 50 GTGTCTCTCG GGACATGGTT AAGGAGCTTC CACTCAGCC ACCATAGTGA GTGGCCCGCC ATAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTAG GTGACTCAAC AAAGACAGGA CACATGGGT ACAAAGACAA GGCTTGACTG CTTCAAAGCT TCCCTGGACC CAAAGACCAGA CACGGCAGAG GCGTCCGCTG ACAAATCACT CCCATGATGA GACCCTCGAG GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC		GCTGTTCATG	AGCATCATAG	TCCTCGTGAT	TGTGGTCATC	TGCCTGATGT	TATACGCTCT	300
CCTGGGGGTG CCTCGGGTTG GCCTGGGCCT GGCCAGGCTT GGCGTGTACG GGTCCCTGGT CCTCACCCCT TTTGCCCCCC AGCCTCTCCT CCTAGCCCAG TGCAACAKTG ATGAGAGAGC GTGGCGSCTG GCAGTGGGCT TCCTGGCTGT KTCCTCTGTG CTGCTGGCAG GCGGCCTGGG 30 CCTCTTCCTC TCCTATGTGT GGAATGGGTC ARGCTCTCCC TCCCGGGGCC TGGGTTTCTA GCTCTGGGCA GCGCCCAGSC CTTACTCATC CTCTTGCTTA TAGCCATGGC TGTGTTCCCT CTGAGGGCTG AGAGGGCTGA GAGCAAGCTT GAGAGGTGCT AAAGGCTTAC GTGATTGCAA GGGTTCAGTT CCAACCATGG TCAGAGGTGG CACATCTGCT CAGCCATCTC ATTTTACAGC TAACGCTGAT CTCCAGCTCC AGCGATGGAA CCCACTCACAG AGGAGGTGGG GCCCCTGTGT 40 CAAAGAGGCC GAGGGCAGC AAGGCCAGMC AGGGCACCTG TGACTTCTTA GTACAAGATT GTCTGTCCTT CAGGACTTCC AAGGCTCCCA AAGACTCCCT AAACCATGCA GCTCATTGTC ACACCAATTC CTGCTTTAAT TAATGGATCT GAGCAAATCT TCCTCTAGCT TCAGGAGGGT GGGGGAGGGAG TGATTGCTGT CATGGGGCCA GACTTCCAGG CTGATTTGCC AAATGCCAAA ATGAAACCTA GCAAAGAACT TACGGCAACA AACGAGGACA TTAAAAGAGC GAGCACCTCA 50 GTGTCTCTCG GGACATGGTT AAGGAGCTTC CACTCAGCC ACCATAGTGA GTGGGCCGCC ATAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTAG GTGACTCAAC AAAGACAGGA CACATGGGT ACAAAGACAA GGCTTGACTG CTTCAAAGCT TCCCTGGACC TGAAGCCAGA CAGGGCAGAG GCGTCCGCTG ACAAATCACT CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCCCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC GACTCCAAAT CCTCCCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC	20	TCTCTGGGAG	GCTGGCAACC	TCACTGACCT	GCCCAACCTG	AGAATCGGCT	TCTATAACTT	360
CCTCACCCTC TTTGCCCCCC AGCCTCTCCT CCTAGCCCAG TGCAACAKTG ATGAGAGAGC GTGGCGSCTG GCAGTGGGCT TCCTGGCTGT KTCCTCTGTG CTGCTGGCAG GCGCCTGGG CCTCTTCCTC TCCTATGTGT GGAATGGGTC ARGCTCTCCC TCCCGGGGCC TGGGTTTCTA GCTCTGGGCA GCGCCCAGSC CTTACTCATC CTCTTGCTTA TAGCCATGGC TGTGTTCCCT CTGAGGGCTG AGAGGGCTGA GAGCAAGCTT GAGAGGTGCT AAAGGCTTAC GTGATTGCAA GGGTTCAGTT CCCAACCATGG TCAGAGGTGG CACATCTGCT CAGCCATCTC ATTTTACAGC TAACGCTGAT CTCCAGCTCC AGCGATGGAA CCCACTACAG AGGAGGTGGG GCCCCTGTGT 40 CAAAGAGGCC GAGGGCAGC AAGGCCACAC AGGCCACTTC TGACTTCTTA GTACAAGATT GTCTGTCCTT CAGGACTTCC AAGGCTCCCA AAGACTCCCT AAACCATGCA GCTCATTGTC ACACCAATTC CTGCTTTAAT TAATGGATCT GAGCAAATCT TCCTCTAGCT TCAGGAGGGT ATGAAACCTA GCAAAGAACT TACGGCACAC AACGAGGACA TTAAAAGAGC GAGCACCTCA ATGAAACCTA GCAAAGAACT TACGGCAACA AACGAGGACA TTAAAAGAGC GAGCACCTCA TAAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGGCCCGCC ATAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGGCCCGCC ATAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGACTCAAC AAAGACAGGA CACATGGGT ACAAAGACAA GGCTTGACTG CTTCAAAAGCT TCCCTGGACC GACTCCAAAT CCTCGCTGTG ACAAAGACAA GGCTTGCG CACAAACAAA CGCTGCCACC GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC		CTGCCTGTGG	AATGAGGACA	CCAGCACCCT	ACAGTGTCAC	CAGTTCCCTG	AGCTGGAAGC	420
CCTCACCCTC TITGCCCCCC AGCCITCTCT CCTAGCCCAG TGCAACAKTG ATGAGAGAGC GTGGCGSCTG GCAGTGGCCT TCCTGGCTGT KTCCTCTGTG CTGCTGGCAG GCGCCCTGGG 30 CCTCTTCCTC TCCTATGTGT GGAATGGGTC ARGCTCTCCC TCCCGGGGCC TGGGTTTCTA GCTCTGGGCA GCGCCCAGSC CTTACTCATC CTCTTGCTTA TAGCCATGGC TGTGTTCCCT CTGAGGGCTG AGAGGGCTGA GAGCAAGCTT GAGAGGTGCT AAAGCCTTAC GTGATTGCAA GGGTTCAGTT CCAACCATGG TCAGAGGTGG CACATCTGCT CAGCCATCTC ATTTTACAGC TAACGCTGAT CTCCAGCTCC AGCGATGGAA CCCACTACAG AGGAGGTGGG GCCCCTGTGT 40 CAAAGAGGCC GAGGGGCAGC AAGGGCAGKC AGGGCACCTG TGACTTCTTA GTACAAGATT GTCTGTCCTT CAGGACTTCC AAGGCTCCCA AAGACTCCCT AAACCATGCA GCTCATTGTC 1 ACACCAATTC CTGCTTTAAT TAATGGATCT GAGCAAATCT TCCTCTAGCT TCAGGAGGGT 1 ATGAAACCTA GCAAAGAACT TACGGCCACA AACGAGGACA TTAAAAGAGC GAGCACCTCA 1 TAAGGCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTG GTGACTCAAC 1 AAAGACAGGA CACTGGGGT ACAAAGACAA GGCTTGACTG CTTCAAAGCT TCCCTGGACC 1 AAAGACAGGA CACATGGGT ACAAAGACAA GGCTTGACTG CTTCAAAGCT TCCCTGGACC 1 TGAAGCCAGA CACGGCAGG GCGTCCCCTG ACAAACCAC CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC	25	CCTGGGGGTG	CCTCGGGTTG	CCTCCCCT	GGCCAGGCTT	GCCTCTACG	GGTCCCTGGT	480
CCTCTTCCTC TCCTATGTGT GGAATGGGTC ARGCTCTCCC TCCCGGGGCC TGGGTTTCTA GCTCTGGGCA GCGCCCAGSC CTTACTCATC CTCTTGCTTA TAGCCATGGC TGTGTTCCCT CTGAGGGCTG AGAGGGCTGA GAGCAAGCTT GAGAGCTGCT AAAGGCTTAC GTGATTGCAA GGGTTCAGTT CCAACCATGG TCAGAGGTGG CACATCTGCT CAGCCATCTC ATTTTACAGC TAACGCTGAT CTCCAGCTCC AGCGATGGAA CCCACTACAG AGGAGGTGGG GCCCCTGTGT 40 CAAAGAGGCC GAGGGCAGC AAGGCCAGMC AGGCCACCTG TGACTTCTTA GTACAAGATT GTCTGTCCTT CAGGACTTCC AAGGCTCCCA AAGACTCCCT AAACCATGCA GCTCATTGTC 1. ACACCAATTC CTGCTTTAAT TAATGGATCT GAGCAAATCT TCCTCTAGCT TCAGGAGGGT 45 GGGGAGGGA TGATTGCTGT CATGGGGCCA GACTTCCAGG CTGATTTGCC AAATGCCAAA ATGAAACCTA GCAAAGAACT TACGGCAACA AACGAGGACA TTAAAAGAGC GAGCACCTCA 50 GTGTCTCTGG GGACATGGTT AAGGAGCTTC CACTCAGCCC ACCATAGTGA GTGGGCCGCC ATAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGACTCAAC 55 AAAGACAGGA CACATGGGT ACAAAGACAA GGCTTGACTG CTTCAAAGCT TCCCTGGACC TGAAGCCAGA CACGCCAGAG GCGTCCCCTG ACAAATCACT CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC 1. GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC	23	CCTCACCCTC	TTTGCCCCCCC	AGCCTCTCCT	CCTAGCCCAG	TGCAACAKTG	ATGAGAGAGC	540
GCTCTGGGCA GCGCCCAGSC CTTACTCATC CTCTTGCTTA TAGCCATGGC TGTGTTCCCT CTGAGGGCTG AGAGGGCTGA GAGCAAGCTT GAGAGCTGCT AAAGGCTTAC GTGATTGCAA GGGTTCAGTT CCAACCATGG TCAGAGGTGG CACATCTGCT CAGCCATCTC ATTTTACAGC TAACGCTGAT CTCCAGCTCC AGCGATGGAA CCCACTACAG AGGAGGTGGG GCCCCTGTGT 40 CAAAGAGGCC GAGGGCAGC AAGGGCAGMC AGGGCACCTG TGACTTCTTA GTACAAGATT GTCTGTCCTT CAGGACTTCC AAGGCTCCCA AAGACTCCCT AAACCATGCA GCTCATTGTC ACACCAATTC CTGCTTTAAT TAATGGATCT GAGCAAATCT TCCTCTAGCT TCAGGAGGGT GGGGAGGGAG TGATTGCTGT CATGGGGCCA GACTTCCAGG CTGATTTGCC AAATGCCAAA ATGAAACCTA GCAAAGAACT TACGGCAACA AACGAGGACA TTAAAAGAGC GAGCACCTCA 50 GTGTCTCTGG GGACATGGTT AAGGAGCTTC CACTCAGCCC ACCATAGTGA GTGGGCCGCC ATAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGACTCAAC 51 AAAGACAGGA CACATGGGGT ACAAAGACAA GGCTTGACTG CTTCAAAGCT TCCCTGGACC TGAAGCCAGA CAGGGCAGAG GCGTCCGCTG ACAAATCACT CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCCCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC GACTCCAAAT CCTCCCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC		GTGGCGSCTG	GCAGTGGGCT	TCCTGGCTGT	KTCCTCTGTG	CTGCTGGCAG	GCGCCTGGG	600
CTGAGGGCTG AGAGGGCTGA GAGCAAGCTT GAGAGCTGCT AAAGGCTTAC GTGATTGCAA GGGTTCAGTT CCAACCATGG TCAGAGGTGG CACATCTGCT CAGCCATCTC ATTTTACAGC TAACGCTGAT CTCCAGCTCC AGCGATGGAA CCCACTACAG AGGAGGTGGG GCCCCTGTGT 40 CAAAGAGGCC GAGGGCAGC AAGGCCAGMC AGGGCACCTG TGACTTCTTA GTACAAGATT GTCTGTCCTT CAGGACTTCC AAGGCTCCCA AAGACTCCCT AAACCATGCA GCTCATTGTC 1 ACACCAATTC CTGCTTTAAT TAATGGATCT GAGCAAATCT TCCTCTAGCT TCAGGAGGGT 1 GGGGAGGGAG TGATTGCTGT CATGGGGCCA GACTTCCAGG CTGATTTGCC AAATGCCAAA 1 ATGAAACCTA GCAAAGAACT TACGGCAACA AACGAGGACA TTAAAAGAGC GAGCACCTCA 1 50 GTGTCTCTGG GGACATGGTT AAGGAGCTTC CACTCAGCCC ACCATAGTGA GTGGGCCGCC 1 ATAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGACTCAAC 1 51 AAAGACAGGA CACATGGGGT ACAAAGACAA GGCTTGACTG CTTCAAAGCT TCCCTGGACC 1 GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC 1 GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC 1 GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC 1 CACACCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC 1 GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC 1 CACACCAAATCACT CCCCCACCACCACCACAAACAAAA CGCTGCCACC 1 CACACCAAATCACT CCCCCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC 1 CACACCAAATCACT CCCCCCACCACAC GACGGTTGCG CACAAACAAA CGCTGCCACC 1 CACACCAAATCACT CCCCCTGCTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC 1 CACACCAAACAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC 1 CACACCAAATCACT CCCCCCACAC GACGGTTGCG CACAAACAAAA CGCTGCCACC 1 CACACCAAACAAACAAA CCCCCCACCCCAC	30	CCTCTTCCTC	TCCTATGTGT	GGAATGGGTC	ARGCTCTCCC	TCCCGGGGCC	TGGGTTTCTA	660
GGGTTCAGTT CCAACCATGG TCAGAGGTGG CACATCTGCT CAGCCATCTC ATTITACAGC TAACGCTGAT CTCCAGCTCC AGCGATGGAA CCCACTACAG AGGAGGTGGG GCCCCTGTGT 40 CAAAGAGGCC GAGGGGCAGC AAGGGCAGMC AGGGCACCTG TGACTTCTTA GTACAAGATT GTCTGTCCTT CAGGACTTCC AAGGCTCCCA AAGACTCCCT AAACCATGCA GCTCATTGTC 1 ACACCAATTC CTGCTTTAAT TAATGGATCT GAGCAAATCT TCCTCTAGCT TCAGGAGGGT GGGGAGGGAG TGATTGCTGT CATGGGCCCA GACTTCCAGG CTGATTTGCC AAATGCCAAA ATGAAACCTA GCAAAGAACT TACGGCAACA AACGAGGACA TTAAAAGAGC GAGCACCTCA 50 GTGTCTCTGG GGACATGGTT AAGGAGCTTC CACTCAGCCC ACCATAGTGA GTGGCCGCC ATAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGACTCAAC 1 AAAGACAGGA CACATGGGT ACAAAGACAA GGCTTGACTG CTTCAAAAGCT TCCCTGGACC TGAAGCCAGA CAGGGCAGAG GCGTCCGCTG ACAAAATCACT CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC 1 GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC 1 GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC		GCTCTGGGCA	GCGCCCAGSC	CTTACTCATC	CTCTTGCTTA	TAGCCATGGC	TGTGTTCCCT	720
GGGTTCAGTT CCAACCATGG TCAGAGGTGG CACATCTGCT CAGCCATCTC ATTITACAGC TAACGCTGAT CTCCAGCTCC AGCGATGGAA CCCACTACAG AGGAGGTGGG GCCCCTGTGT 40 CAAAGAGGCC GAGGGCAGC AAGGGCAGMC AGGGCACCTG TGACTTCTTA GTACAAGATT GTCTGTCCTT CAGGACTTCC AAGGCTCCCA AAGACTCCCT AAACCATGCA GCTCATTGTC 1 ACACCAATTC CTGCTTTAAT TAATGGATCT GAGCAAATCT TCCTCTAGCT TCAGGAGGGT 1 GGGGAGGGAG TGATTGCTGT CATGGGGCCA GACTTCCAGG CTGATTTGCC AAATGCCAAA ATGAAACCTA GCAAAGAACT TACGGCAACA AACGAGGACA TTAAAAGAGC GAGCACCTCA 50 GTGTCTCTGG GGACATGGTT AAGGAGCTTC CACTCAGCCC ACCATAGTGA GTGGCCCGCC ATAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGACTCAAC 55 AAAGACAGGA CACATGGGT ACAAAGACAA GGCTTGACTG CTTCAAAAGCT TCCCTGGACC 1 GAAGCCAGA CAGGGCAGAG GCGTCCGCTG ACAAAATCACT CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC 1 GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC 1 GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC	35	CTGAGGGCTG	AGAGGGCTGA	GAGCAAGCTT	GAGAGCTGCT	AAAGGCTTAC	GTGATTGCAA	780
40 CAAAGAGGCC GAGGGGCAGC AAGGGCAGMC AGGGCACCTG TGACTTCTTA GTACAAGATT GTCTGTCCTT CAGGACTTCC AAGGCTCCCA AAGACTCCCT AAACCATGCA GCTCATTGTC 45 ACACCAATTC CTGCTTTAAT TAATGGATCT GAGCAAATCT TCCTCTAGCT TCAGGAGGGT GGGGAGGGAG TGATTGCTGT CATGGGGCCA GACTTCCAGG CTGATTTGCC AAATGCCAAA ATGAAACCTA GCAAAGAACT TACGGCAACA AACGAGGACA TTAAAAGAGC GAGCACCTCA 50 GTGTCTCTGG GGACATGGTT AAGGAGCTTC CACTCAGCCC ACCATAGTGA GTGGGCCGCC ATAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGACTCAAC AAAGACAGGA CACATGGGT ACAAAGACAA GGCTTGACTG CTTCAAAAGCT TCCCTGGACC TGAAGCCAGA CAGGGCAGAG GCGTCCGCTG ACAAATCACT CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC		GGGTTCAGTT	CCAACCATGG	TCAGAGGTGG	CACATCTGCT	CAGCCATCTC	ATTTTACAGC	840
GTCTGTCCTT CAGGACTTCC AAGGCTCCCA AAGACTCCCT AAACCATGCA GCTCATTGTC ACACCAATTC CTGCTTTAAT TAATGGATCT GAGCAAATCT TCCTCTAGCT TCAGGAGGGT GGGGAGGGAG TGATTGCTGT CATGGGGCCA GACTTCCAGG CTGATTTGCC AAATGCCAAA ATGAAACCTA GCAAAGAACT TACGGCAACA AACGAGGACA TTAAAAGAGC GAGCACCTCA 50 GTGTCTCTGG GGACATGGTT AAGGAGCTTC CACTCAGCCC ACCATAGTGA GTGGGCCGCC ATAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGACTCAAC AAAGACAGGA CACATGGGT ACAAAGACAA GGCTTGACTG CTTCAAAGCT TCCCTGGACC TGAAGCCAGA CAGGGCAGAG GCGTCCGCTG ACAAATCACT CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC 10 11 12 13 14 15 15 16 17 17 18 18 18 18 18 18 18 18		TAACGCTGAT	CTCCAGCTCC	AGCGATGGAA	CCCACTACAG	AGGAGGTGGG	GCCCCTGTGT	900
ACACCAATTC CTGCTTTAAT TAATGGATCT GAGCAAATCT TCCTCTAGCT TCAGGAGGGT GGGGAGGGAG TGATTGCTGT CATGGGGCCA GACTTCCAGG CTGATTTGCC AAATGCCAAA ATGAAACCTA GCAAAGAACT TACGGCAACA AACGAGGACA TTAAAAGAGC GAGCACCTCA 50 GTGTCTCTGG GGACATGGTT AAGGAGCTTC CACTCAGCCC ACCATAGTGA GTGGGCCGCC ATAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGACTCAAC AAAGACAGGA CACATGGGT ACAAAGACAA GGCTTGACTG CTTCAAAGCT TCCCTGGACC TGAAGCCAGA CAGGGCAGAG GCGTCCGCTG ACAAATCACT CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC	40	CAAAGAGGCC	GAGGGGCAGC	AAGGGCAGMC	AGGGCACCTG	TGACTTCTTA	GTACAAGATT	960
GGGGAGGGAG TGATTGCTGT CATGGGGCCA GACTTCCAGG CTGATTTGCC AAATGCCAAA ATGAAACCTA GCAAAGAACT TACGGCAACA AACGAGGACA TTAAAAGAGC GAGCACCTCA 50 GTGTCTCTGG GGACATGGTT AAGGAGCTTC CACTCAGCCC ACCATAGTGA GTGGGCCGCC ATAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGACTCAAC AAAGACAGGA CACATGGGT ACAAAGACAA GGCTTGACTG CTTCAAAGCT TCCCTGGACC TGAAGCCAGA CAGGGCAGAG GCGTCCGCTG ACAAATCACT CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC		GTCTGTCCTT	CAGGACTTCC	AAGGCTCCCA	AAGACTCCCT	AAACCATGCA	GCTCATTGTC	10 20
GGGGAGGAG TGATTGCTGT CATGGGGCCA GACTTCCAGG CTGATTTGCC AAATGCCAAA ATGAAACCTA GCAAAGAACT TACGGCAACA AACGAGGACA TTAAAAGAGC GAGCACCTCA 50 GTGTCTCTGG GGACATGGTT AAGGAGCTTC CACTCAGCCC ACCATAGTGA GTGGGCCGCC ATAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGACTCAAC AAAGACAGGA CACATGGGT ACAAAGACAA GGCTTGACTG CTTCAAAGCT TCCCTGGACC TGAAGCCAGA CAGGGCAGAG GCGTCCGCTG ACAAATCACT CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC	45	ACACCAATTC	CTGCTTTAAT	TAATGGATCT	GAGCAAATCT	TCCTCTAGCT	TCAGGAGGGT	1080
50 GTGTCTCTGG GGACATGGTT AAGGAGCTTC CACTCAGCCC ACCATAGTGA GTGGGCCGCC ATAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGACTCAAC AAAGACAGGA CACATGGGGT ACAAAGACAA GGCTTGACTG CTTCAAAGCT TCCCTGGACC TGAAGCCAGA CAGGGCAGAG GCGTCCGCTG ACAAATCACT CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC		GGGGAGGGAG	TGATTGCTGT	CATGGGGCCA	GACTTCCAGG	CTGATTTGCC	AAATGCCAAA	1140
ATAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGACTCAAC AAAGACAGGA CACATGGGT ACAAAGACAA GGCTTGACTG CTTCAAAGCT TCCCTGGACC TGAAGCCAGA CAGGGCAGAG GCGTCCGCTG ACAAATCACT CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC		ATGAAACCTA	GCAAAGAACT	TACGGCAACA	AACGAGGACA	TTAAAAGAGC	GAGCACCTCA	1200
AAAGACAGGA CACATGGGGT ACAAAGACAA GGCTTGACTG CTTCAAAGCT TCCCTGGACC TGAAGCCAGA CAGGGCAGAG GCGTCCGCTG ACAAATCACT CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC 1	50	GTGTCTCTGG	GGACATGGTT	AAGGAGCTTC	CACTCAGCCC	ACCATAGTGA	GTGGGCCGCC	1260
TGAAGCCAGA CAGGCAGAG GCGTCCGCTG ACAAATCACT CCCATGATGA GACCCTGGAG GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC 1		ATAAGCCATC	ACTGGAACTC	CAACCCCAGA	GGTCCAGGAG	TGATCTCTGA	GTGACTCAAC	1320
TGAAGCCAGA CAGGGCAGAG GCGTCCGCTG ACAAATCACT CCCATGATGA GACCCTGGAG 1 GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC 1	55	AAAGACAGGA	CACATGGGGT	ACAAAGACAA	GGCTTGACTG	CTTCAAAGCT	TCCCTGGACC	1380
40	33	TGAAGCCAGA	CAGGGCAGAG	GCGTCCGCTG	ACAAATCACT	CCCATGATGA	GACCCTGGAG	1440
60 CTCCACTTCC CAACCCAGAA CTTGGAAAGA CATTAGCACA ACTTACGCAT TGGGGAATTG		GACTCCAAAT	CCTCGCTGTG	AACAGGACTG	GACGGTTGCG	CACAAACAAA	CGCTGCCACC	1500
	60	CTCCACTTCC	CAACCCAGAA	CTTGGAAAGA	CATTAGCACA	ACTTACGCAT	TGGGGAATTG	1560

	TGTGTATTTT	CTAGCACTTG	TGTATTGGAA	AACCTGTATG	GCAGTGATTT	ATTCATATAT	1620
5	TCCTGTCCAA	AGCCACACTG	AAAACAGAGG	CAGAGACATG	TACTCTGGTG	TGATCTCTTG	1680
_	TCCTCAGTGT	CTCTTCTGGG	CTCCTGTCCC	TCTTGCTTTA	TAGCTAGCTG	CCCGGGGACC	1740
	AAGGTACAGG	TGAAAGCAAG	GTAGCAGCTT	GCGGGAGGAG	GCCTGTCTGG	CTTACCAGTC	1800
10	TATACACTGT	GGCCTCAACC	TCCCAGACAG	GGCAGAGAAC	TGTGGGCAGC	TCGTTTGCTT	1860
	TCTAGGCTGG	CTGGAGAGGT	GGGAGCTCAT	TGATAGACTC	ATGATGGAAA	CTATTTTTGA	1920
15	AACAGGCTTC	CTCCTTCAGG	AGAGATCATG	CGGACTAAAC	TGTAGCAATT	CCAGTGCACC	1980
15	TGGCAGTGAT	CCTTTTCTTT	GCAAAGTACT	GTCTCTTTGG	TTCCAGTAAG	TTGGACCACC	2040
	ACATGACATY	ATTTTCCCTG	GAACCTGGTC	ACTGACTAAC	ACAGACAATT	GGGACTCCAG	2100
20	AGCCTCAAGA	GCCAGGAGAG	GGCACAGTAC	ATACAGAGGG	AGTCAAATGG	GATCTCATTT	2160
	TGAGTCCTGC	CTTCCGCACA	CTCAGAACGG	CANCCCCAAG	GCCCGGAGTG	TCCAGGGCTT	2220
25	CTGGCCTGAG	GTGAATCTGC	CAGGCCCAAG	AAGGCACAAA	GGTAGGAGCA	CAGAGAGCCC	2280
	CATTCCCACA	GGCGGKCGGC	CCAGCAGCAC	CAGTGGAAGC	TCAGCTGTCC	TCCAGCTGCT	2340
	CTCGGCAGAC	AGTTCAGTGC	ACAGTTTATG	CCCTAGCTGA	AAAAGATCTC	CCGGACGTAT	2400
30	TTCAGCACAT	CCTCTTCCTC	CTCCTCCTCA	GGGCTCCTGC	TACAGGCAGA	GCTGGAACCC	2460
	CCCGGCCTCT	GGGAAGGGCT	GAGGCCTGGA	GYCAGTGCCT	GTC		2503

40

50

55

60

(2) INFORMATION FOR SEQ ID NO: 96:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2801 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96:

CTGGAAAGCC GAGGGTAGCC GAGCGGGGG GGCGCTCTGG AGCGGCGGGT GCTCGGGCTG 60

CCGTCCGCTC CGCCAGAAGC ACCGAGCAGC CGAGCCGGGG CCCGCCGCCC TCCTCCTCCA 120

TGAGGCCCGA GTGAGGCGCG GCGCTATAG CCGACCCGCG GCGCCTTCCC CCCGCGTCCT 180

ATCGCGAGCG CACGACMAGC GGCCCTGGA GGAGGAGGCG GAGGAGGAGG AGCATGTCGG 240

ACGGTTTCGA TCGGGCCCCA GGTGCTGGTC GGGGCCGGAR CCGGGGCCTG GGCCGCGGAG 300

GGGGCGGGCC TRAGGGCGCC GGTTTYCCGA AMGGARCGGR GCCTGCTGAG CGGRCGCGGC 360

ACCAGCCGCC GCAACCCAAA GCCCCGGGCT TYCTGCARCC AMCGCCGCTG CGCCARCCCA 420

	GGACGACCCC	GCCGCCAGGG	GCCCAGTGCG	AGGTCCCCGC	CAGCCCCCAG	CGGCCTTCCC	480
	ccccccccc	GCTCCCAGAG	CAAACGAGGC	CCCTGAGAGC	TCCACCTAGT	TCACAGGATA	540
5	AAATCCCACA	GCAGAACTCG	GAGTCAGCAA	TGGCTAAGCC	CCAGGTGGTT	GTAGCTCCTG	600
	TATTAATGTC	TAAGCTGTCT	GTGAATGCCC	CTGAATTTTA	CCCTTCAGGT	TATTCTTCCA	660
10	GTTACACAGA	ATCCTATGAG	GATGGTTGTG	AGGATTATCC	TACTCTATCA	GAATATGTTC	720
10	AGGATTTTT	GAATCATCTT	ACAGAGCAGC	CTGGCAGTTT	TGAAACTGAA	ATTGAACAGT	780
	TTGCAGAGAC	CCTGAATGGT	TGTGTTACAA	CAGATGATGC	TTTGCAAGAA	CTTGTGGAAC	840
15	TCATCTATCA	ACAGGCCACA	TCTATCCCAA	ATTTCTCTTA	TATGGGAGCT	CGCCTGTGTA	900
	ATTACCTGTC	CCATCATCTG	ACAATTAGCC	CACAGAGTGG	CAACTTCCGC	CAATTGCTAC	960
20	TTCAAAGATG	TCGGACTGAA	TATGAAGTTA	AAGATCAAGC	TGCAAAAGGG	GATGAAGTTA	1020
20	CTCGAAAACG	ATTTCATGCA	TTTGTACTCT	TTCTGGGAGA	ACTITATCTT	AACCTGGAGA	1080
	TCAAGGGAAC	AAATGGACAG	GTTACAAGAG	CAGATATTCT	TCAGGTTGGT	CTTCGAGAAT	1140
25	TGCTGAATGC	CCTGTTTTCT	AATCCTATGG	ATGACAATTT	AATTTGTGCA	GTAAAATTGT	1200
	TAAAGTTGAC	AGGATCAGTT	TTGGAAGATG	CTTGGAAGGA	AAAAGGAAAG	ATGGATATGG	1260
30	AAGAAATTAT	TCAGAGAATT	GAAAACGTTG	TCCTAGATGC	AAACTGCAGT	AGAGATGTAA	1320
30	AACAGATGCT	CTTGAAGCTT	GTAGAACTCC	GGTCAAGTAA	CTGGGGCAGA	GTCCATGCAA	1380
	CTTCAACATA	TAGAGAAGCA	ACACCAGAAA	ATGATCCTAA	CTACTTTATG	AATGAACCAA	1440
35	CATTTTATAC	ATCTGATGGT	GTTCCTTTCA	CTGCAGCTGA	TCCAGATTAC	CAAGAGAAAT	1500
	ACCAAGAATT	ACTTGAAAGA	GAGGACTTTT	TTCCAGATTA	TGAAGAAAAT	GGAACAGATT	1560
40	TATCCGGGGC	TGGTGATCCA	TACTTGGATG	ATATTGATGA	TGAGATGGAC	CCAGAGATAG	1620
	AAGAAGCTTA	TGAAAAGTTT	TGTTTGGAAT	CAGAGCGTAA	GCGAAAACAG	TAAAGTTAAA	1680
	TTTCAGCATA	TCAGTTTTAT	AAAGCAGTTT	AGGTATGGTG	ATTTAGCAGA	ACACAAGAGA	1740
45	GCAAGAAAAT	GTGTCACATC	TATACCAAAT	TRAGGATGTT	GAGTTATGTT	ACTAATGTAT	1800
	GCAACTTTAA	TTTTGTTTAA	CACTATCTGC	CAAAATAAAC	TTTATTCCCT	ATAACTTAAA	1860
50	ATGTGTATAT	АТАТАТАТА	GTTTATTATG	TACAGTTAAT	TCTACTGTTT	TGGCTGCAAT	1920
	AAAATCGATT	TTGAAATAAA	TGAAATGTTG	AAAATTTTGC	TAGTTGGTTA	GATGCTTATC	1980
	CTTTAAATTC	TACTTTTCTT	GAGGGGAAAA	AGTCTTCGTC	TGGAAATACA	TATTACTGCA	2040
55	AAAATGTAGC	ATCCTTTTTT	AGGTAGGAGT	ATTATAGCTT	YCATTTTAGT	TKGACATTTA	2100
	GTGTCCCAAT	GAATTGAATT	TCAAATATGA	ATCATAATCT	TGAAAATCTT	TAGCACTAAA	2160
60	GTCTTGGGAA	TATATCAACA	ACTGATTTAC	ATATGCAGAT	GCTATTTGNA	TACCAAGGC	2220

	TTTTTAAATG	TCATGGGGG	GAAAAACCCA	ACTTGGTGGA	ACTCCCAGCT	AAACAACCAA	2280
	GACTTCACTG	GAAGATTTAT	TCCAATTCTA	GGAATTGTTC	TTTTTTTTT	TTATTTTTC	2340
5	AACTGRCTAA	CTTCATTACC	TTAAAGCCTA	GAACATTATT	CTGCTTTATT	TATATGGCTT	2400
	TCTCACTTTT	ATTTTGTAGC	AKGGGTTGCA	TCGACTTTTT	TACTAGAGAA	TTTTACTAGA	2460
10	TATTTGTCAT	TCAAGTTTTC	ATCTGCTTTA	TAATTGATAC	ACCTTGAGGG	TCACTTITCT	2520
10	AATACTTTTA	CTATAATGTG	GTACCACCTC	AGCCCTAATA	AATAATATTT	TTACCTAATG	2580
	TCAAATCTTT	TTCCAGCTAA	CTAAAAACTG	TGTACAAAAG	GATTGCTTGT	AAATATGCAT	2640
15	GTAAATAGTT	CTGTTAATAA	CCCACTGTTT	TACATTTGGT	ACATCTGTGT	CTGCTAATAC	2700
	AGTTAGCTTT	CTCACTTTTC	TGCTTGTTTG	TTCAGTCTGA	АТТААААТТА	GACTTTGAAA	2760
20	ATAAAGCTTA	АААААААА	АААААААА	AAAAACTCGA	G		2801

(2) INFORMATION FOR SEQ ID NO: 97:

(i) SEQUENCE CHARACTERISTICS:

25

30

35

40

45

50

55

60

(A) LENGTH: 1631 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:

ATGGAGCCAA AGACAATCAC TGATGCTTTG GCTTCTAGTA TAATTAAGAG TGTGCTGCCT 60 AATTITICTIC CATACAATGT CATGCTCTAC AGTGATGCTC CAGTGAGTGA ACTGTCCCTC 120 GAGCTGCTTC TGCTTCAGGT TGTCTTGCCA GCATTACTCG AACAGGGACA CACGAGGCAG 180 TGGCTGAAGG GGCTGGTGCG AGCGTGGACT GTGACCGCCG GATACTTGCT GGATCTTCAT 240 TCTTATTTAT TGGGAGACCA GGAAGAAAAT GAAAACAGTG CAAATCAACA AGTTAACAAT 300 AATCAGCATG CTCGAAATAA CAACGCTATT CCTGTGGTGG GAGAAGGCCT TCATGCAGCC 360 CACCAAGCCA TACTCCAGCA GGGAGGGCCT GTTGGYTTTC AGCYTTACCG CCGACCTTTA 420 AATTITCCAC TCAGGATATT TCTGTTGATT GTCTTCATGT GTATAACATT ACTGATTGCC 480 AGCCTCATCT GCCTTACTTT ACCAGTATTT GCTGGCCGTT GGTTAATGTC GTTTTGGACG 540 GGGACTGCCA AAATCCATGA GCTCTACACA GCTGCTTGTG GTCTCTATGT TTGCTGGCTA 600 ACCATAAGGG CTGTGACGGT GATGGTGGCA TGGATGCCTC AGGGACGCAG AGTGATCTTC 660 CAGAAGGTTA AAGAGTGGTC TCTCATGATC ATGAAGACTT TGATAGTTGC GGTGCTGTTG 720 GCTGGAGTTG TCCCTCTCCT TCTGGGGCTC CTGTTTGAGC TGGTCATTGT GGCTCCCCTG 780 AGGGTTCCCT TGGATCAGAC TCCTCTTTTT TATCCATGGC AGGACTGGGC ACTTGGAGTC 840

504

	CIGCAIGCCA AAAICATIGC AGCTATAACA TIGAIGGGIC CICAGIGGIG GIIGAAAACI	900
5	GTAATTGAAC AGGTTTACGC AAATGGCATC CGGAACATTG ACCTTCACTA TATTGTTCGT	960
_	AAACTGGCAG CTCCCGTGAT CTCTGTGCTG TTGCTTTCCC TGTGTGTACC TTATGTCATA	1020
	GCTTCTGGTG TTGTTCCTTT ACTAGGTGTT ACTGCGGAAA TGCAAAACTT AGTCCATCGG	1080
10	CGGATTTATC CATTTTTACT GATGGTCGTG GTATTGATGG CAATTTTGTC CTTCCAAGTC	1140
	CGCCAGTTTA AGCGCCTTTA TGAACATATT AAAAATGACA AGTACCTTGT GGGTCAACGA	1200
15	CTCGTGAACT ACGAACGGAA ATCTGGCAAA CAAGGCTCAT CTCCACCACC TCCACAGTCA	1260
15	TCCCAAGAAT AAAGTAGTTG TCTCAACAAC TTGACCTTCC CCTTTACATG TCCTTTTTTG	1320
	TGGACTTCTC TCTTTGGAGA TTTTTCCCAG TGATCTCTCA GCGTTGTTTT TAAGTTAAAT	1380
20	GTATTTGACT TGTGTTCTCA GCATTCAGAG AGCAGCGGTG TAAGATTCTG CTGTTCTCCC	1440
	TGGATCTTCT GACATTACTG CTGTCTGAGA TTTGTATATG TGTAAATACA AGTTCCTTGA	1500
25	TACCCTAAAA CCTTGGATTA AACAGAATGT GCATTGTACA TCTTTAAACA AAATGTATAT	1560
25	TAATTTATTA AATCTAGTTG TCACTTTAAA AAAAAAAAA AAAAAACTCG AGGGGGCCC	1620
	GGTACCCAAA T	1631
30		
	(2) THEODERICAN FOR GEO VE NO. 00	
35	(2) INFORMATION FOR SEQ ID NO: 98:	
<i>J</i> J	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 504 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
40	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:	
4.5	CCGAGCTGGG CGAGAAGTAG GGGAGGGCAC GAGCCGCCGC GGTGGCGGTT GCTATCGCTT	60
45	CGCAGAACCT ACTCAGGCAG CCAGCTGAGA AGAGTTGAGG GAAAGTGCTG CTGCTGGGTC	120
	TGCAGACGCG ATGGATAACG TGCAGCCGAA AATAAAACAT CGCCCCTTCT GCTTCAGTGT	180
50	GAAAGGCCAC GTGAAGATGC TGCGGCTGGA TATTATCAAC TCACTGGTAA CAACAGTATT	240
	CATGCTCATC GTATCTGTGT TOGCACTGAT ACCAGAAACC ACAACATTGA CAGTTGGTGG	300
	ACCCCTTCTTTTT CCACTTCTTCA CACCACTTATIC CTCCTTCTTCACCACCACTTCTTCTCACCACCACTTCTTC	360
	AGGGTGTTT GCACTTGTGA CAGCAGTATG CTGTCTTGCC GACGGGGCCC TTATTTACCG	360

AGTTTTGTAA TTTTATATTA CTTTTTAGTT TGATACTAAG TATTAAACAT ATTTCTGTAT

ТСТТССАААА АААААААА АААА

60

10

(2)	INFORMATION	FOR	SEO	TD	NO.	aa.
12/	THE CHARLETON	LOK	JEQ	ıυ	MO:	<i></i> :

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1416 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:

15	GGCACGAGGG	AGGGAGCCCT	CTCCGTTGGG	TGACTCTTGT	GIGCCCTTTA	GACAGGCTGG	. 60
••	CCTGCCGGTT	CCACAGGGTA	CAGTTAGGAC	TTGAGTCTTT	CTTTTTCTGT	TTTGAGTTGG	120
	TGAGTGAGTG	ATAGGGTAAC	ATGGGCCTTC	AGGATGACCC	CTTGGAACTG	TGCCGAGTTC	180
20	CTTAAATCTC	AGCTGGGATC	CTGGACCTGG	GAGGCCCCTG	TGAGGGCCAG	CTCTGGAAAA	240
	ACCTGGGAGT	TGATGCCGGA	GCTGTGGAAG	AACTCTGCTC	GAGGGCAGGG	TGCCCTGGAA	300
25	CACTGGTAGT	TCTGGGGCTG	GGAGGGAGAG	GGGCTCCGGC	TITCTCTGAA	ATGAACACTG	360
	CTCTTCAGCA	GTTCAAGTAC	TTGTTCTCAA	AACATTTTCT	AATTGATTGG	TAGGTTTTCA	420
	TAAGCATTGT	TTCTTTAAGG	CATGGAAAGG	GAAGAATGCT	CAAGCAAGTC	ATGTTTGTTT	480
30	TCAGTGGGAT	GGGCCCGCGT	TCTCACTGCT	GGGGGCTTCC	CCTTCATGTG	GCACCTTTGT	540
	GCAGGGGCCA	CCAGGCAGAC	TCTTCCCACC	TTCTCCCACT	GAAGCACCAA	GGGGCTTGGA	600
35	ACCGTAATTT	GGCTAATCAG	AGGCATTTTT	TTTGTCCTAG	TATCTTTCAC	ACTTGTCCAA	660
	CCGTCTTATT	TTTTTAAAAG	TTCTGTTGCT	TGTATTAACA	CGAAACTAGA	GAGAAATAGT	720
	TTCTGAAGCC	AGTTTATTGT	GAAGATCCCC	AAGGGGAGGT	TCGGTAGAGA	AAAATAGTAA	780
40	GCTGGTTTAG	AAACTGACGA	GGGCAAACAG	CCAGGACGCA	TTGGAGAGGA	ATTTGCCAAA	840
	GATCTACCCT	GAGATAACGC	CTGTCCAGTG	TCTTCACCAC	GTGAATAACC	AGCGCTCCAA	900
45	AGTGTTTTTC	TGCTTTGAAA	AAAAAATTC	CACAAGCTTT	TAAAGGTGCA	TTTAAGAATC	960
	CATGTGACTT	TAGAATGGAA	CTGCCGGCCC	TGGCAACTGT	CACGTGTGCT	AGAAGGTTCG	1020
	ATGCCTCTGG	AATGCATGTG	ATACTCATCT	CCATTITGIT	TCCTTGATTG	CATTTTTGTT	1080
50	CTTTTAGCAG	ATCTGTCCCT	GTGGGTGGTG	TCTAAGAAGT	CGGACACCTT	GCTTTTTGTG	1140
	TTAGATTGAG	CTGGGCAGCT	GCAATCAGCT	TCTTTATATG	CAAATTAGGC	ACGACCCATC	1200
55	TGTGGTTCCT	GGTTGGTGGC	TAATGAAGTG	AGGGGAGGGA	GGGATGTCAC	CCCAAAAGTA	1260
	GGCCCTCCCA	TIGGCTTIGG	CCAGGCCAGA	CACTTCACAT	CGTTTACATG	GTTCTGTGTA	1320
	ATTTTAAAGT	TTATGTGTAT	AAAGCGAAGC	TGTTTCTGTG	AAACTGTATA	TTTTGTAAAT	1380
60	AAATATATTG	CTACTTGAAA	АААААААА	ААААА			1416

5 (2) INFORMATION FOR SEQ ID NO: 100:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2847 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:

	(A1) BEQUEECE BESCRIFTION: BEQ ID NO. 100.	
15	GGCTAGGACA ATTTTGGTGC TTTACCTATC TCTGCAAAGA CTGGAGAATT TGGCATACCA	60
	TTAATTACAA CCACCAATCA TATCCAACAA AAGTACCCTA AAAGAAGGAC CAGTGGCCAC	120
20	TCTCGAAAAA ATTTAAGTAT CAGAAGATTA AAAAGATTTT AGGATTTGGA AGCTTGTATT	180
	GTCTTTCCCC AATAATCATT GTTTGATCTC CAAATAGTAG CCTTATATTA GCAATRGACA	240
	GATCATTGGT TCTCCATATC TGATCATATG TTACTACTTT GGAATCAGTA TTTGGGCAAA	300
25	TTCAAGCATT TATGCAGTGG ATATAAATGG AAATATAAAA ATATTTGCCA ACCTGTCTCA	360
	GTAACTTATC ATATCTCTGT GNATCCTCAA GGAAAGCACT TTTGCTTTTA CTTAGAAAGC	420
30	GTTTCAGATT TGCTTTATAG ACTCCTGCTG TCTTCAGTAC CTGATAAAAC TTTAACCAGG	480
	GAAGCATTAA ACACAGTGCA GCAGCTTTTG CCCAGGCTTC TAAGTTCCTG CCGGCAGCAT	540
	TTATCAATGT AAGAACTAGG ATGCTTCCTG CAGTGGCACT ACCTTCCCCT AGAGCTGGAG	600
35	CATGCTGCTT GGCCTTAAGC CCCAGCATGA TGAGGCTTCC CTCCTGCCAG GTCAGTAAAA	660
	GITAGAGAGC TCAGAATTGG GTCTTGCCTG GGTGCAGGTG GCAGGGTTTG CTGAAACCCC	720
40	TAAAGAGAAG TCACCAAGGG AGGCAGGTAA TGAATGTTTC CAGAATCAGT CKGATACTCA	780
	TAGCAATTTC TOGCTATCTT TCAAATGTTG AATTTCTGGA TGCTGAGAGG GACTTTGATT	840
	TGATATCATT AAATCCAGGA CAGTCCCAAG AAGTGCTTGG AGTCTCGGCT CTGACAGCCC	900
45	AAGAAGGGAA ATAACTTGTA TTAAGGAACA ACTATGAGCC AGGCCCTGAG CTGTCTCTTA	960
	GATAATAAAA CAGATGGGGA GTGGAAGAGT CATTTGCTTC AAGTTATACA GCTAGGAAAT	1020
50	ACTCAAGCCA AATCTTGAAC GCAGCTCCCC CTAATTCTGT GGACAGGCAC TTTGTACCAC	1080
	ACACCATGGT CCACCTAAAA ACAGAAGGAT AAAAAGACTT CAGGTTTTCC CACTGTGTGC	1140
	TGACCATCCC AATTTATGAA TCTTCTTCAA AATGACATTT CACAGTTATA GTTAGGGCTC	1200
55	AGAAATGGCA TTGAGGTAGC CTTATTTCTC CCCTTTAGCA GATGCTTTAA GTACACATTG	1260
	CTGACTIGAG CCCACCCCCA GGAGTTAGGA GAACATTTCC TTTTTCATGC CATCTTCCAT	1320
60	AAATAAGGTG TITCTTGGCC TICAAAGATA TAGAACTTTG CAGCAGTAGT AAAAGTGAAG	1380

	GCTCTTCTGC	TCTCTACTCA	ACTITATITG	AAAATGTCTG	CAGCTTCACT	CCTGTAGAAA	1440
	AGGAAATCTT	CATATTTTAG	TAAACTTAGC	CGCCAGTGTA	CTCTGTGAGG	ATGTGGCAAT	1500
5	TCAAAGTCCA	GTGAATCTGG	CTCTCTTACT	GATTCCTGGT	TTTAGTGTGT	GTGTCGGGG	1560
	AGTGTGTACC	ТАТАТАТАА	GGACAAGTGT	GATATGTGTG	TATATGTATA	TACATACATA	1620
10	CATGTCCACA	CACACACACA	CAATATTTGA	GAGCTAAGGA	AAACTCAAAG	CAGCCCCTTC	1680
10	ATTATCTTGC	GTACTACTTC	AAAGATTICT	GTCAGCCCTA	ATTACAAGTG	TCACCATATA	1740
	GTTGGGGCTT	AGGTACTTGC	TTACAGGAAG	AGCAATTCCC	TAGCAAAGGT	CATTAGCTCC	1800
15	TAAGGCACTG	AGTCAAAGTG	ACAGCCCTGA	AGGAAATTGC	ACTCCAGCCC	TCCTCCAGGA	1860
	TGTCTAATAA	GATGGGAAAC	TTGGATGCCC	AGCCATTTTG	GTGACCTGAG	AGTCTAACTA	1920
20	CTCCAGTTAG	ACCTAAGGGC	ACAAATGCAG	AATTCATGAC	CTTGTAGTTG	TGGCAGGGTC	1980
20	TAGGAAGTCC	TCTCTCCCCA	AGTAGAAAAT	ATTCTCTTGC	CATTCCTGAA	ATTCCACATT	2040
	CATATAATGG	CTGTGCAATA	CATGCTTCTC	AATAAGAAAA	TTAACTGCAT	GTTTACTGTG	2100
25	TGCTGATCAC	ATCAGATTTT	TATGTTTAAA	AAAATCTCAT	TATGGNTTGA	GTCCAGCCCA	2160
	GCTCTAAGAG	AAAAAGAAGG	CCCATATGGG	AGACTTCAGT	CTCATTATTA	TTGCCTTTAT	2220
30	CCAGCAGTGC	TTATRAAGCC	CCCTACCCTG	TCCCATTCCA	GAAACCATAA	GACTCAGGCA	2280
	GTTCTTGATT	CTGGAGGCCT	GCCTGGTAAG	ATAAGATAGT	ATAATTTGGA	ACTGAGAACA	2340
	TACCAGAAAC	AGCAGAACGA	GGGCCAGAGC	AGAAAAATGA	AAATAAGTGG	AGACACTTAT	2400
35	GGATACATTG	GTGCAAAAAA	AGCCACGGGS	CCCATACTGG	GCTTGATATG	ACTTTGAGGG	2460
	GACAGCAGAT	TAATACTTAA	TGAGGGTTAA	ACCTGACCAG	TCTTTCTACA	GTGACAGGCC	2520
40	ACACTGCATG	AATGGGGAGA	ACCAATGAAT	CCATTGTCCT	CTGCCTATTT	TCCTGTGCAC	2580
	AGTCACATTC	CCTCCTTAGG	AATCTTCCCC	TTCCACCCTT	TACATTAAAC	AAGGGAACAC	2640
	TGAATCTTTC	AAGGGAATTA	CACGTTTGGG	TTAATGTTTC	AGTATATCAT	TTTCATACTG	2700
45	ТАААТТАТТТ	TGTAAGAGAG	ATTTACTGCT	ATCCCAGGAT	GTTCGGACTT	GGTGCCCCTG	2760
	TGCATTTGGA	ААТСААТААА	CTATTACTGG	AAATGCCAAA	ааааааааа	AAAAAAAAN	2820
50	NAAAAAACTC	GAGGGGGCC	CGTACCC				2847

(2) INFORMATION FOR SEQ ID NO: 101:

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1394 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:

5	GAGATTGGTG	GAGGAGAGTA	AATAATCTAG	AGGCAAGAGT	TCAGTGAGGG	CCAAGGGGGA	60
J	CCCCCAGAAA	AAGGTATGGA	GCTAACTCAT	CTCTTTTACA	AGGGGTGGCC	ATGACTTACT	120
	GTTGCAAAGT	ACTCAGTGTA	TATTTAATGT	TGATTGTTGA	ATTTTAGTTA	CGAGAGGGAA	180
10	GAACAATTIT	ACTICTGICC	TTATTTCACT	TGCTGAAAAG	CTGTGGGACA	AAATGTATGG	240
	AATAGACAAG	GCCACTITCT	TTGTGATTTC	TGCTTTTCAT	GCATATTATT	TTATTTACCC	300
15	ATAATTTCCA	AGAGGTTTGG	CGTTCCGCTC	TCCTGCTTTT	TTCTTTCATC	CACCCCTTTC	360
13	CTITTTTTGG	AAGGGGTTA	TATATGAGAG	TTCATTGAAG	AAGTCCAGTG	AGGCTGAAGT	420
	AAAGGGGCAA	GATAGGGCAG	TTAACTAAAG	AGCACTITAT	TTCTTTGAAG	CCTTTCTAAG	480
20	AAAGAAATGG	GGGTGCGAGT	GGCTTGAATC	TCCCATGATG	TTGGAGGGCA	CTTAGTGGGG	540
	TTGAAGTATG	ACATAATATT	TCCCATTGGG	GAAAGGAGAA	TTTCTCTTAG	AGGGTGGCAA	600
25	AATGCCTTTG	CCCAGTGTCC	CTATTTTAGG	CATCTTTTCC	TICCTTATIC	CTTCCAGTCA	660
23	GGGTGTGTCC	TATACAAAAC	TTCCCATCAG	TTCTCCTCAA	TATTCCCCAT	TTGTAAATGA	720
	TCACTTCTCT	TTTCTAAACC	CTTTCCTGT	TCAGATCCAT	ACAGGATTTG	CAAGGGTAGG	780
30	ATCATACATG	CAAATGCCCC	TTGTTCATCT	GTGTCTTCTG	CAAACTAGTC	TCATGAAGAA	840
	TTCTGGCGTG	CAGCAGGGTA	GCTGAAGTTT	GGGTCTGGGA	CTGGAGATTG	GCCATTAGGC	900
35	NTCNCTGAGA	TTCCAGCTCC	CTTCCACCAA	GCCCAGTCTT	GCTACGTGGC	ACAGGGCAAA	960
55	CCTGACTCCC	TTTGGGCCTC	AGITTCCCCT	CCCCTTCATG	AAATGAAAAG	AATACTACTT	1020
	TTTCTTGTTG	GTCTAGCATT	GCTGGACACA	AAGTGTAGTC	ATTATTGTTG	TATTGGGTGA	1080
40	TGTGTGCAAA	ACTGCAGAAG	CTCACTGCCT	ATAAGAGGAA	ATAAGAGAGA	AAGTGGAGGA	1140
	GAGGGACAAA	AGGAGTAATT	ATTTGGTATA	GATCCACCCA	TCCCAACCTT	TCTCTCCTCA	1200
45	GTCCCTGCTC	CTCATGTTTC	TGGTTTGGTG	AGTCCTTTGT	GCCACCACCC	ATAATGCTTT	1260
.5	GCATTGCTGC	ATCCTGGGAA	GGGGGTATAT	GGTCTCACAA	GTTGTTGTCA	TIGTITITIT	1320
	GCATGCTTTC	ттаатааааа	ааааааааа	ATGTTTANAG	тттатстта	АААААААА	1380
50	ААААААААА	ACCC					1394

- 55 (2) INFORMATION FOR SEQ ID NO: 102:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 794 base pairs
 - (B) TYPE: nucleic acid
- 60 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102:

5	GGMRCGAGGC	GGAGTAAAGG	GACTTGAGCG	AGCCAGTTGC	CGGATTATTC	TATTTCCCCT	60
	CCCTCTCTCC	CGCCCCGTAT	CTCTTTTCAC	CCTTCTCCCA	CCCTCGCTCG	CGTACCATGG	120
10	CGGAGCGTCG	GCGGCCACTC	AGTCCCATTC	CATCTCCTCG	TCGTCCTTCG	GAGCCGAGCC	180
10	GTCCGCGCCC	GCCGCCGCG	GGAGCCCAGG	AGCCTGCCCC	GCCCTGGGGA	CGAAGAGCTG	240
	CAGCTCCTCC	TGTGCGGTGC	ACGATCTGAT	TTTCTGGAGA	GATGTGAAGA	AGACTGGGTT	300
15	TGTCTTTGGA	CACGCTGATC	ATGCTGCTTT	CCCTGGCAGC	TTTCAGTGTC	ATCARTGTGG	360
	GTTTCTTAMC	TCATCCTGGC	TCTTCTCTCT	GTCACCATCA	RCTTCAGGAT	CTACAAGTCC	420
20	GTCATCCAAG	CTGTWCAGAA	RTCAGAARAA	GGCCATCCAW	TCCAAAGCCT	ACCTGGACGT	480
20	AGACATTACT	CTGTCCTCAG	AAGCTTTCCA	TAATTACATG	AATGCTGCCA	TGGTGCACAT	540
	CAACAGGGCC	CTGAAACTCA	TTATTCGTCT	CTTTCTGGTA	GAAGATCTGG	TTGACTCCTT	600
25	GAAGCTGGCT	GTCTTCATGT	GGCTGATGAC	CTATGTTGGT	GCTGTTTTTA	ACGGAATCAC	660
	CCTTCTAATT	CTTGCTGAAC	TGCTCATTTT	CAGTGTCCCG	ATTGTCTATG	AGAAGTACAA	720
30	GACCCAGATT	GATCACTATG	TTGGCATCGC	CCGAGATCAG	ACCAAGTCAA	TTGTTGAAAA	780
-0	GATCCCAAGC	AAAA					794

35

40

(2) INFORMATION FOR SEQ ID NO: 103:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1544 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:

45 TTTGCTTGCT AGTCTGAACC AAAGAGTTGT TTGGGCATTT GCTGTGTTGG CCATTTCTGG 60 AGCAAGAGGG TCTTCTTCCT CCTTCCCCCA GCCAGCCAGC TGTCCTGGGG CCAGGCTTTC 50 CTGGGTGGAA AGAAGTATAC CTTTCCCTGG GGCCCTAGGA TAGCAAAGTG AGCCATAGTG 180 GGCCAGGCTG CCCTCCATGC TGGGCCCCAG CCCAGGTCTG CACTCGCCTG GATCACCTTC 240 TTTGAGCCTT AGCCATCTCC TGTCAGGTAG GAATGAACTT GCCAGCCTTC AGGYTCGTTC 55 AGCTATGACC ATCTGTGCGG TCAGGGTACA CTCAGCTCTC CTCCCCAACT CCAGCAGCCT 360 TTAAGAAGTG TCCCTTTGGC GCCCCCTGGA GGCAGAGCAC TGAGCTGGAC CCTGGGTAGA 60 CTCCCACAGG GAGGACGGAG CTGGCCTCAG GAGTGGGACA CCCAGACTTG GCAGGGCCTT 480

	CAAGAGGCCT	GTGTGGGGGC	CCCAGGAATC	CTTAGCTGAA	GCGGGGAGAC	TCACTCTCCA	540
5	TCTCAGGAAA	TTCTAGCCCT	TGCCCTCAGG	GAGCCACGGT	TGAGGGTGAG	GCCCAACACC	600
,	TGCCTTAGGG	CCCTGGGTGG	GCAAGTCTGG	GCCCTGGGGT	AGGGAGGGAG	ACTCAGGCCC	660
	ACACTTGGGT	ATTTTCTAAT	TTCAGACAAA	CACACACTCA	GCGCGCACTC	ACTGATTCCT	720
10	ACACATTGCC	AAGATTTCAC	ACATGTGACC	AGGGGCCACC	AAAGTCCCTG	TGACCTTTGT	780
	GACTAGGATC	CTAATTTCTC	TATTTTCTCC	TGGGTGCCTG	GGTCTGTGTC	ACCTGGGGCA	840
15	GTGTGGATAA	TGTTTAGTTC	TGTGACACTG	TTTTTTGGGG	GTGGCACCTG	GTTCTCCGAT .	900
13	GCCTGGGCTG	GTGTCAGGCC	CAGGACTGTA	GTGCTGGGAG	CAGTAAAGCT	CAGCTCTGTG	960
	TAATGAGTGA	TGCTATGGCT	TGCTCGTGTC	TTATGATCCA	ATCCTTTTCT	ACATCAGCCC	1020
20	TIGITITIGIT	TTATGGCTAG	TCTTATCTGG	CCTGGTTATT	TCCTTGCGGG	GAGGAGAGGG	1080
	TTTGCTAATC	TGCTCCCAGC	CCAACCTATT	ACCACCCCAC	CTCGCTGGGA	CCTACTGCTC	1140
25	GGGAGGCAGC	AGACAGGGAG	CCACCAGCAG	TGGCTTCCTG	GCCCTGTGCT	GGGGGTGGGG	1200
23	GGAAGCTGGG	GGCACATGTG	GCCCTTGCCT	TCTGAGCAGC	TCCCAGTGCC	AGGGCTTTGA	1260
	GACTTTCCCA	CATGATAAAA	GAAAAGGGAG	GTACAGAAGT	TCCAATTCCC	TTTTTATTTT	1320
30	GCTGGTTGGT	ATCTGTAAAT	GTTTAATAAA	TATCTGAGCA	TGTATCTATC	AACGCCAAGA	1380
	ATTTCAAAGT	CTCCTTCAAC	AATATGAGGC	TTTTAGGATG	TTTATATTCC	TTCATCCCTC	1440
35	TTGTTTCCCA	GGTTTTGCAG	GGAAAAAAG	TCTGGAATTA	TAGATACAGC	TTATTATTAA	1500
JJ	ATTTGTTCTT	GCATAAAAA	ааааааааа	AACNCNNGGG	GGGG		1544

45

(2) INFORMATION FOR SEQ ID NO: 104:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 871 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 104:

ACCCACGCGT CCGNCTTGTC CACCCGGGGG CGTGGGAGTG AGGTACCAGA TTCAGCCCAT 60
TTGGCCCCGA CGCCTCTGTT CTCGGAATCC GGGTGCTGCG GATTGAGGTC CCGGTTCCTA 120
55 AGGTGGGTCG CTGTCCACCC GGGGGCGTGG GAGTGAGGTA CCAGATTCAG CCCATTTGGC 180
CCCGACGCCT CTGTTCTCGG AATCCGGGTG CTGCGGATTG AGGTCCCGGT TCCTAACGGA 240
CTGCAAGATG GAGGAAGGCG GGAACCTAGG AGGCCTGATT AAGATGGTCC ATCTACTGGT 300

	CTTGTCAGGT	GCCTGGGGCA	TGCAAATGTG	GGTGACCTTC	GTCTCAGGCT	TTCCTGCTTT	360	
	TCCGAAGCCT	TCCCCGACAT	ACCTTCGGAC	TAGTGCAGAG	CAAACTCTTC	CCCTTCTACT	420	
5	TCCACATCTC	CATGGGCTGT	GCCTTCATCA	ACCTCTGCAT	CTTGGCTTCA	CAGCATGCTT	480	
	GGGCTCAGCT	CACATTCTGG	GAGGCCAGCC	AGCTTTACCT	GCTGTTCCTG	AGCCTTACGC	540	
10	TOGCCACTGT	CAACGCCCGC	TGGCTGGAAC	CCCGCACCAC	AGCTGCCATG	TGGGCCCTGC	600	
	AAACCGTGGG /	AGAAGGAGCG	AGGCCTGGGT	GGGGAGGTAC	CAGGCAGCCA	ACAGGTTCCC	660	
	GATCCITAAC	GCCAGNTGCG	AGAGAAGGAC	CCCAAGTACA	CTCCTCTCCG	CCAGAATTTC	720	
15	TTCCGCTACC /	ATGGGCTGTC	CTCTCTTTGC	AATCTGGGCT	GCGTCCTGAG	CAATGGGCTC	780	
	TGTCTCGCTG (GCCTTGCCCT	GGAAATAAGG	AGCCTCTAGC	ATGGGCCCTG	CATGCTAATA	840	
20	AATGCTTCTT (CAGAAAAAA	ААААААААА	Α			871	
	(2) INFORMATION FOR SEO ID NO: 105:							
25	(i)	SEQUENCE CH	iaracteristi	CS:				

(A) LENGTH: 404 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

30 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:

	GGCACGAGTT	ATAGCATGGC	ATTCATACTT	TIGITTIATT	GCCTCATGAC	TTTTTTGAGT	60
	TTAGAACAAA	ACAGTGCAAC	CGTAGAGCCT	TCTTCCCATG	AAATTTTGCA	TCTGCTCCAA	120
	AACTGCTTTG	AGTTACTCAG	AACTTCAACC	TCCCAATGCA	CTGAAGGCAT	TCCTTGTCAA	180
1	AGATACCAGA	ATGGGTTACA	CATTTAACCT	GGCAAACATT	GAAGAACTCT	TAATGTTTTC	240
	TTTTTAATAA	GAATGACGCC	CCACTTTGGG	GACTAAAATT	GTGCTATTGC	CGAGAAGCAG	300
	TCTAAAATTT	ATTTTTTAA	AAAGAGAAAC	TGCCCCATTA	TTTTGGTGGG	GTTGGTTTTT	360
	AATTINTAAT	NIGAAAAATT	TTTTTGGGGT	TTTTGGGGCC	ATGG		404

50

55

35

40

45

(2) INFORMATION FOR SEQ ID NO: 106:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1542 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:

60

	GTCAGACAGG	TGGAGCCGCC	GGGGCAGGAG	TCTCAAAGAG	CCAGGCTCCA	GGAGAGGAAG	60
	GGCTCTRCGA	GAGGAGAGAG	GAGAGCGCTG	GAGAGGAGAG	GCTGGAGAGT	CCTTAGCCAG	120
5	GATGGAGGCT	GTTGŢGAACT	TGTACCAAGA	GGTGATGAAG	CACGCAGATC	CCCGGATCCA	180
	GGGCTACCCT	CTGATGGGGT	CCCCCTTGCT	AATGACCTCC	ATTCTCCTGA	CCTACGTGTA	240
10	CTTCGTTCTC	TCACTTGGGC	CTCGCATCAT	GGCTAATCGG	AAGCCCTTCC	AGCTCCGTGG	300
10	CTTCATGATT	GTCTACAACT	TCTCACTGGT	GGCACTCTCC	CTCTACATTG	TCTATGAGTT	360
•	CCTGATGTCG	GGCTGGCTGA	GCACCTATAC	CTGGCGCTGT	GACCCTGTGG	ACTATTCCAA	420
15	CAGCCCTGAG	GCACTTAGGA	TGGTTCGGGT	GCCTGCCTC	TTCCTCTTCT	CCAAGTTCAT	480
	TGAGCTGATG	GACACAGTGA	TCTTTATTCT	CCGAAAGAAA	GACGGGCAGG	TGACCTTCCT	540
20	ACATGICTIC	CATCACTCTG	TGCTTCCCTG	GAGCTGGTGG	TGGGGGGTAA	AGATTGCCCC	600
20	GGGAGGAATG	GGCTCTTTCC	ATGCCATGAT	AAACTCTTCC	GTGCATGTCA	TAATGTACCT	660
	GTACTACGGA	TTATCTGCCT	TTGGCCCTGT	GGCACAACCC	TACCTTTGGT	GGAAAAAGCA	720
25	CATGACAGCC	ATTCAGCTGA	TCCAGTTIGT	CCTGGTCTCA	CIGCACATCT	CCCAGTACTA	780
	CTTTATGTCC	AGCTGTAACT	ACCAGTACCC	AGTCATTATT	CACCTCATCT	GGATGTATGG	840
30	CACCATCTTC	TTCATGCTGT	TCTCCAACTT	CTGGTATCAC	TCTTATACCA	AGGGCAAGCG	900
	GCTGCCCCGT	GCACTTCAGC	AAAATGGAGC	TCCAGGTATT	GCCAAGGTCA	AGGCCAACTG	960
	AGAAGCATGG	CCTAGATAGG	CGCCCACCTA	AGTGCCTCAG	GACTGCACCT	TAGGGCAGTG	1020
35	TCCGTCAGTG	CCCTCTCCAC	CTACACCTGT	GACCAAGGCT	TATGTGGTCA	GGACTGAGCA	1080
	GGGGACTGGC	CCTCCCCTCC	CCACAGCTGC	TCTACAGGGA	CCACGGCTTT	GGTTCCTCAC	1140
40	CCACTTCCCC	CGGGCAGCTC	CAGGGATGTG	GCCTCATTGC	TGTCTGCCAC	TCCAGAGCTG	1200
	GGGGCTAAAA	GGGCTGTACA	GTTATTTCCC	CCTCCCTGCC	TTAAAACTTG	GGAGAGGAGC	1260
	ACTCAGGGCT	GGCCCCACAA	AGGGTCTCGT	GCCTTTTTC	CTCACACAGA	AGAGGTCAGC	1320
45	AATAATGTCA	CTGTGGACCC	AGTCTCACTC	CTCCACCCCA	CACACTGAAG	CAGTAGCTTC	1380
	TGGGCCAAAG	GTCAGGGTGG	CCCCCCCCT	GGGAATACAG	CCTCTCGACG	CTGCTTACTC	1440
50	AACTTGTGTC	ТТААТТАААА	GTGACAGAGG	AAACCANAAA	AAAAAAAA	AAAAACTCGA	1500
-	GGGGGGCCCG	TACCCAAATC	GCCGGTATGA	TCGTAAACAA	TC		1542

60

(2) INFORMATION FOR SEQ ID NO: 107:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2327 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107:

5 GGTAGCTCAN TGCAGTGAAA TAGTCTTACT GGAAACAAAG CCCTTTATCA AGAATAATTA 60 ACTOTTCCCT TUTCTTTTTG GAGAGGTGCT TTGTTTCTGA TCGGACCATT TCACTGCAGC 120 10 AAGCAACACA GTATTCTRAG CAGAAGATCG GGACTTGAGG CCATGTTGCG GAGGGCCAGT 180 RACATTATCT GGACTCTGGA GTGTGAGGAA TATGGACTCC ACTCTTCACT ATATTCACAR 240 CGATTCAGAC TTGAGCAACA ATAGCAGTTT TAGCCCTGAT GAGGAAAGGA GAACTAAAGT 300 15 ACAAGATGTT GTACCTCAGG CGTTGTTAGA TCAGTATTTA TCTATGACTG ACCCTTCTCG TGCACAGACG GTTGACACTG AAATTGCTAA GCACTGTGCA TATAGCCTCC CTGGTGTGGC 420 20 CTTGACACTC GGAAGACAGA ATTGGCACTG CCTGAGAGAG ACGTATGRGA CTYTGGCCTC 480 AGACATGCAG TGGAAAGTTC GACGGAACTC TAGCATTCTC CATCCACGRG CTTGCAGTTA 540 TTCTTGGAGA TCAATTGACA GCTGCAGATC TGGTTCCAAT TTTTAATGGA TTTTTAAAAG 600 25 ACCTCGATGA AGTCAGGATA GGTGTTCTTA AACACTTGCA TGATTTTCTG AAGCTTCTTC 660 ATATTGACAA AAGAAGAGAA TATCTTTATC AACTTCAGGA GTTTTTGGTG ACAGATAATA 720 30 GTAGAAATTG GCGGTTTCGA GCTGAACTGG CTGAACAGCT GATTTTACTT CTAGAGTTAT 780 ATAGTCCCAG AGATGTTTAT GACTATTTAC GTCCCATTGC TCTGAATCTG TGTGCAGACA 840 AAGTTTCTTC TGTTCGTTGG ATTTCCTACA AGTTGGTCAG CGAGATGGTG AAGAAGCTGC 900 35 ACGCGGCAAC ACCACCAACG TTCGGAGTGG ACCTCATCAA TGAGCTTGTG GAGAACTTTG 960 GCAGATGTCC CAAGTGGTCT GGTCGGCAAG CCTTTGTCTT TGTCTGCCAG ACTGTCATTG 1020 40 AGGATGACTG CCTTCCCATG GACCAGTTTG CTGTGCATCT CATGCCGCAT CTGCTAACCT 1080 TAGCAAATGA CAGGGTTCCT AACGTGCGAG TGCTGCTTGC AAAGACATTA AGACAAACTC 1140 TACTAGAAAA AGACTATTTC TTGGCCTCTG CCAGCTGCCA CCAGGAGGCT GTGGAGCAGA 1200 45 CCATCATGGC TCTTCAGATG GACCGTGACA GCGATGTCAA GTATTTTGCA AGCATCCACC 1260 CTGCCAGTAC CAAAATCTCC GAAGATGCCA TGAGCACAGC GTCCTCAACC TACTAGAAGG 1320 50 CTTGAATCTC GGTGTCTTTC CTGCTTCCAT GAGAGCCGAG GTTCAGTGGG CATTCGCCAC 1380 GCATGTGACC TGGGATAGCT TTCGGGGGAG GAGAGACCTT CCTCTCCTGC GGACTTCATT 1440 GCAGGTGCAA GTTGCCTACA CCCAATACCA GGGATTTCAA GAGTCAAGAG AAAGTACAGT 1500 55 AAACACTATT ATCTTATCTT GACTITAAKG KKWAWKMMWW KCTCAGMSRA TTATAMTTSW 1560 CWMMRARGSM WYMAAWSCTK SWGCTCYWCC KSRSTGRMKG MMRCTCTAGA AYTRGYRGAK 1620 60 CMYYYKSGCT KMWGGAAKKS GGCASGAGCC AGAGACCTGC ATTGCTTTCT CCTGGTTTTA 1680

	TTTAACAATC	GACAAATGAA	ATTCTTACAG	CCTGAAGGCA	GACGTGTGCC	CAGATGTGAA	174
5	AGAGACCTTC	AGTATCAGCC	CTAACTCTTC	TCTCCCAGGA	AGGACTTGCT	GGGCTCTGTG	1800
3	GCCAGCTGTC	CAGCCCAGCC	CTGTGTGTGA	ATCGTTTGTG	ACGTGTGCAA	ATGGGAAAGG	1860
	AGGGGTTTTT	ACATCTCCTA	AAGGACCTGA	TGCCAACACA	AGTAGGATIG	ACTTAAACTC	1920
10	TTAAGCGCAG	CATATTGCTG	TACACATTTA	CAGAATGGTT	GCTGAGTGTC	TGTGTCTGAT	1980
	TTTTTCATGC	TGGTCATGAC	CTGAAGGAAA	TTTATTAGAC	GTATAATGTA	TGTCTGCTGT	2040
15	TTTTAACTTG	ATCATGATCA	GCTCTGAGGT	GCAACTTCTT	CACATACTGT	ACATACCTGT	2100
13	GACCACTCTT	GGGAGTGCTG	CAGTCTTTAA	TCATGCTGTT	TAAACTGTTG	TGGCACAAGT	2160
	TCTCTTGTCC	АААТАААТТ	TATTAATAAG	ATCTATAGAG	AGAGATATAT	ACACTTTTGA	2220
20	TIGTTTTCTA	GATGTCTACC	AATAAATGCA	ATTTGTGACC	TGTAAAAAAA	AAAAAAWAAA	2280
	ACTCGAGGGG	GGCCCGGTAC	CCAAATCGCC	GATATGATCT	AANCATC		2327

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 108:

(i) SEQUENCE CHARACTERISTICS: 30

(A) LENGTH: 1062 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108:

GCCGCCGAG	GCGCAACAGC	CGTTCTGTCA	GCTCTGGGTC	CAACCGGACT	AGCGAANATC	60
TTCCTCATCC	TCATCATCGT	CTTCCTCATC	CCGATCTCGG	TCCAGGTCCC	TCTCCCCCC	120
ACACAAGAGG	TGGCGAAGGT	CCAGCTGTAG	TTCCTCTGGA	CGTTCTCGAA	GATGCTCTTC	180
CTCTTCTTCG	TCATCATCTT	CCTCTTCGTC	TTCCTCATCC	TCATCATCCA	GTTCTCGAAG	240
CCGCTCACGA	ATCCCCATCC	CCCCGCCGGA	GRAAGTGACA	GGAGGCGGCG	GTACAGCTCT	300
TATCGTTCAC	ATGACCATTA	CCAAAGGCAA	AGAGTGCTAC	AAAAGGAGCG	TGCAATAGAA	360
GAAAGAAGGG	TGGTCTTCAT	TGGAAAGATA	CCTGGCCGCA	TGACTCGATC	AGAGCTGAAA	420
CAGAGGTTCT	CCGTTTTTGG	AGAGATTGAG	GAGTGCACCA	TCCACTTCCG	TGTCCAAGGG	480
GACAACTACG	GCTTCGTCAC	TTATCGCTAT	GCTGAGGAGG	CATTTGCAGC	CATTGAGAGT	540
GGCCACAAGC	TGCGGCAGGC	AGATGAGCAG	CCCTTTGATC	TCTGCTTTGG	GGGCCGAAGG	600
SWGTNCTGCA	AGAGGAGCTA	TTCTGATCTT	GACTCCAACC	GGGAAGACTT	TGACCCAGCA	660
CCTGTAAAGA	GCAAATTTGA	TTCTCTTGAC	TTTGACACAT	TGTTGAAACA	GGCCCAGAAG	720

	AACCTCAGGA	GGTAACCTTG	GCCCTTCCC	TGCTATCCTT	TTTCTCCTTT	GGAGGTGCCC	780
	AACCTCCTCC	ACCCCCTTCC	CCTACTCTAG	GGGAGAGAGC	TGCTAGTGAG	ATGACTGTTT	840
5	TATAAAGAAA	TGGAAAAAG	TGAAATAAAA	AATATGTTGA	ATCAGATTTT	TTAAAAGGGG	900
	TATTTGTTTT	TTTATAACAG	GTATTGAAAC	AAGTTAACTT	GCATTCCTAT	GTAAGATAGG	960
10	AGGGCTGAG	GGGATCCCCA	GTGTTTGGAA	CATAAGTCAC	TATGCAGACT	AATAAACATC	1020
10	AACTAGAGAG	NAAAAAAAA	АААААААА	АТТТАААААА	CT		1062

20

(2) INFORMATION FOR SEQ ID NO: 109:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2539 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109:

25 GAGAGACTCA CACTTCTTTT CCATTATCAC TGACGATGTA GTGGACATAG CAGGGGAAGA 60 GCACCTACCT GTGTTGGTGA GGTTTGTTGA TGAATCTCAT AACCTAAGAG AGGAATTTAT 120 30 AGGCTTCCTG CCTTATGAAG CCGATGCAGA AATTTTGGCT GTGAAATTTC ACACTATGAT 180 AACTGAGAAG TGGGGATTAA ATATGGAGTA TTGTCGTGGC CAGGCTTACA TTGWCTCTAG TGGATTTTCT TCCAAAATGA AAGTTGTTGC TTCTAGACTT TYAAGMKMRA TWKCCCCMAK 300 35 YWAWCKGAAC AMAMKCTGSW CYTCCWSYGC SKTRRMKRYC GYKSTATRRC WARWKSAKYM 360 CCYGKKMIGS RRGTAWYTSK TGCAYKAGGG AACAATTGAG GAAGTTTGTT CTTTTTTCCA 420 40 TCGATCACCA CAACTGCTTT TAGAACTTGA CAACGTAATT TCTGTTCTTT TTCAGAACAG 480 TAAAGAAAGG GGTAAAGAAC TGAAGGAAAT CTGCCATTCT CAGTGGACAG GCAGGCATGA 540 TGCTTTTGAA ATTTTAGTGG AACTCCTGCA AGCACTTGTT TTATGTTTAG ATGGTATAAA 600 45 TAGTGACACA AATATTAGAT GGAATAACTA TATAGCTGGC CGAGCATTTG TACTCTGAGT 720 GCAGTGTCAG ATTITGATTT CATTGTTACT ATTGTTGTTC TTAAAAATGT CCTATCTTTT 50 ACAAGAGCCT TTGGGAAAAA CYYCMAGGGG CAAACCTCTG ATGTCTTCTT TGCKKMMSRT 780 ARMITITGAY ATRMARYACT RIMITKSAYTY AAYGRWGTGA CWSGAWAATA TIRAASTYTA 840 900 TACAATKAAT YWTRRYTTSM KRMAGMYAAT CCGAAAYTGT GGMAAMYAAA CTTGATATTC 55 AAATGAAACT CCCTGGGAAA TTCCGCAGAG CTCACCAGGG TAACTTGGAA TCTCAGCTAA CCTCTGAGAG TTACTATAAA GAAACCCTAA GTGTCCCAAC AGTGGAGCAC ATTATTCAGG 1020 60 AACTTAAAGA TATATTCTCA GAACAGCACC TCAAAGCTCT TAAATGCTTA TCTCTGGTAC 1080

	CCTCAGTCAT	GGGACAACTC	AAATTCAATA	CGTCGGAGGA	ACACCATGCT	GACATGTATA	1140
5	GAAGTGACTT	ACCCAATCCT	GACACGCTGT	CAGCTGAGCT	TCATTGTTGG	AGAATCAAAT	1200
J	GGAAACACAG	GGGGAAAGAT	ATAGAGCTTC	CGTCCACCAT	CTATGAAGCC	CTCCACCTGC	1260
	CTGACATCAA	GTTTTTTCCT	AATGTGTATG	CATTGCTGAA	GGTCCTGTGT	ATTCTTCCTG	1320
10	TGATGAAGGT	TGAGAATGAG	CGGTATGAAA	ATGGACGAAA	GCGTCTTAAA	GCATATTIGA	1380
	GGAACACTTT	GACAGACCAA	AGGTCAAGTA	ACTTGGCTTT	GCTTAACATA	AATTITGATA	1440
1.5	TAAAACACGA	CCTGGATTTA	ATGGTGGACA	САТАТАТТАА	ACTCTATACR	AKTAMGTCAG .	1500
15	MGCTYYCTAC	AKAYRAYTCM	SWAWMTGTGG	AAARYWSSTA	MGMSWGCWKK	TAMMRRTMCG	1560
	GMWWTYYYMK	RKTYGAYMYW	YGCGWMCGAG	AAAAAGCCGT	AAGGTGTATG	TAGACCACTT	1620
20	ААТСАСТААА	TATCTTTGCC	TATAGGACTC	CATTGAATAC	ATTAGCCATT	GATAATCTAC	1680
	СТСТТТАААТ	GCCCCTGTT	TGAACTCTCA	AGCTTTGAAG	ACCTACCTGT	TCTTCCAGAA	1740
25	GAGAACGTTG	AAAGTGCCAT	GTTTCCTTTT	GCGTGATCTC	TGTTGATGGC	ACTCTGGAAT	1800
25	TGTTTCCAGT	TTAAKTCATT	TTAGACATAG	САТТТАТТАТ	CACTGTGGAT	CTCTACTTGT	1860
	TGGGTGTTAT	GAATTCTTTG	AAGAATATAT	TTTGAAGAGG	TGTGGGAGGA	AGGAATACAT	1920
30	тттатаааат	GTTGTAGTGA	AGCCCACAAT	TGACCTTKGA	CTAATAGGAG	TTTTAAGTAT	1980
	GTTAAAAATC	TATACTGGAC	AGTTACAAGA	AATTACCGGA	GAAAAGCTTG	TGAGCTCACC	2040
35	AAACAAGGAT	TTCAGTGTAG	ATITTGTCTT	TCTTGAACTT	AAAGAAACAA	ATGACAAAGT	2100
33	TTGAATGGAA	AAGCCTGCTG	TTGTTCCACA	TCTCGTTGCT	GTTTACATTC	CTTTGTGGAG	2160
	CCTACATCTT	CCTAAGCTTT	TTAGCAGGTA	TATGTTGAAC	ACTICTGTTT	CATGGTTGAG	2220
40	ACAGAATCAG	AGGCCATGGA	TACTGACAAC	TGATTTGTCT	GTTTTTTTC	TCTGTCTTTT	2280
	TCCATGACTC	TTATATACTG	CCTCATCTTG	ATTTATAAGC	AAAACCTGGA	AAACCTACAA	2340
15	AATAAGTGTT	GTGGTTTATC	TAGAAAAATA	TGGAAAATAT	TGCTGTTATT	TTTGGTGAAG	2400
45	ААААТСААТТ	TTGTATAGTT	TATTTCAATC	ТАААТАААТ	GTGAATTTTG	TTWWATTAAA	2460
	AATTWGGSAC	AAABTBGHGG	GGGDTCCAAA	CHTWVTCGHG	KAAMITCTCT	WAARMATYTK	2520
50	ATAAACMSCT	TCACAATTC					2539

55 (2) INFORMATION FOR SEQ ID NO: 110:

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1751 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 110:

5	AGCATGAAGC CGATGGCCGT GGTGGCCAGT ACCGTCCTGG GCCTGGTGCA AAACATGCGT	60
	GCGTTTGGCG GGATCCTGGT GGTGGTCTAC TACGTATTTG CCATCATTGG GATCAACTTG	120
10	TTTAGAGGCG TCATTGTGGC TCTTCCTGGA AACAGCAGCC TGGCCCCTGC CAATGGCTCG	180
10	GCGCCCTGTG GGAGCTTCGA GCAGCTGGAG TACTGGGCCA ACAACTTCGA TGACTTTGCG	240
	GCTGCCCTGG TCACTCTGTG GAACTTGATG GTGGTGAACA ACTGGCAGGT GTTTCTGGAT	300
15	GCATATCGGC GCTACTCAGG CCCGTGGTCC AAGATCTATT TTGTATTGTG GTGGCTGGTG	360
	TCGTCTGTCA TCTGGGTCAA CCTGTTTCTG GCCCTGATTC TGGAGAACTT CCTTCACAAG	420
20	TOGGACCCCC GCAGCCACCT GCAGCCCCTT GCTGGGACCC CAGAGGCCAC CTACCAGATG	480
	ACTGTGGAGC TCCTGTTCAG GGATATTCTG GAGGAGCCCG GGGAGGATGA GCTCACAGAG	540
	AGGCTGAGCC AGCACCCGCA CCTGTGGCTG TGCAGGTGAC GTCCGGGCTG CCATCCCAGC	600
25	AGGGCCGCA GGAGAGAGAG GCTCGCCTAA CACAGGTGCC CATCATGGAA GAGGCGCCA	660
	TGCTGTGGCC AGCCAGGCAG GAAGAGACCT TTCCTCTGAC GGACCACTAA GCTGGGGACA	720
30	GGAACCAAGT CCTTTGCGTG TGGCCCAACA ACCATCTACA GAACAGCTGC TGGTGCTTCA	780
	GGGAGGCGCC GTGCCCTCCG CTTTCTTTTA TAGCTGCTTC AGTGAGAATT CCCTCGTCGA	840
	CTCCACAGGG ACCTTTCAGA CAAAAATGCA AGAAGCAGCG GCCTCCCCTG TCCCCTGCAG	900
35	CTTCGGTGGT GCCTTTGCTG CCGGCAGCCC TTGGGGACCA CAGGCCTGAC CAGGCCTGC	960
	ACAGGTTAAC CGTGAGTCTG TCTCATCTAT TCACAGCTGG GAATGATACT AATACCTCCG	1020
40	ATTTTAGCCC AGCACCACAG GGTACGTTCC AGTTTTTCTC TCTTTCCATA GCTGTAAGGC	1080
	CCTTTCTGGG AATGGTTCTC ATTCTCCTTA ATCTATTATT GGGTCAGTTT TCCTGCATGT	1140
	CCCCAGCCTC CCATCACTGC CACCCACTCC CCACAGAGAT GCCCTGCTCA TCCGACTGGG	1200
45	GCTTTGACTC CCACACTGTG TACCCCTCTT GTGTGGACGC CCTGCTGCCA AAACCTTCAG	1260
	CAAACAGCTT TCCAAATGGA AGTTGTCACT GTCAGGCCTT TACAATCAGC AACAGCAAAA	1320
50	TCTACATGCT GCTGAGGGTC CTGCCTCATT AAGATGCAAT AAATATGTAA GTACATAAAA	1380
	ACAGCAATAG AAGAAACGTA ATGCTTTATT CTCAAATATG ATGTCTACAT AGAAAAGCCA	1440
	AAATTATTAA GAATAGTAAG AATTCACCCA GCACTTTGGG AGGCCGAGGC GGGTGGATCA	1500
55	TGAGGTCAGG AGATCGAGAC CATCCTGGCT AACAGGGTGA AACCCCGTCT CTACTAAAAA	1560
	TACAAAAAAT TGGCCGGGG CAGTGGCGGG CGCCTGTGGT CCCAGCTACT GGGGAGGCTG	1620
60	AGGCAGGAGA ATGGCGTGAA CCCGGGAAGC GGAGCTTGCA GTGAGCCGAG ATTGCGCCAC	1680

5

WO 98/39448

ΑΑΑΑΑΑΑΑΑ Α

(2) INFORMATION FOR SEQ ID NO: 111:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1117 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15

20

25

30

35

40

45

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111:

AATGTTGTGG TGGTAGCATT TGGGTTAATT CTRATTATAG AGTCTCTTGG AGAGCAATGT 60 CCATAAACTA ATCCCAAACA ACATTGTCTT TTTRATGTTG TAGTGAACAG CAGAGAATTT 120 CAAAGGACCT TGCTAATATC TGTAAGACGG CAGCTACAGC AGGCATCATT GGCTGGGTGT 180 ATGGGGGAAT ACCAGCTTTT ATTCATGCTA AACAACAATA CATTGAGCAG AGCCAGGCAG 240 AAATTTATCA TAACCGGTTT GATGCTGTGC AATCTGCACA TCGTGCTGCC ACACGAGGCT 300 TCATTCGTTA TGGCTGCGC TGGGGTTGGA GAACTGCAGT GTTTGTGACT ATATTCAACA 360 CAGTGAACAC TAGTCTGAAT GTATACCGAA ATAAAGATGC CTTAAGCCAT TTTGTAATTG 420 CAGGAGCTGT CACGGGAAGT CTTTTTAGGA TAAACGTAGG CCTGCGTGGC CTGGTGGCTG 480 GTGGCATAAT TGGAGCCTTG CTGGGCACTC CTGTAGGAGG CCTGCTGATG GCATTTCAGA 540 AGTACTCTGG TGAGACTGTT CAGGAAAGAA AACAGAAGGA TCGAAAGGCA CTCCATGAGC 600 TAAAACTGGA AGAGTGGAAA GGCAGACTAC AAGTTACTGA GCACCTCCCT GAGAAAATTG 660 AAAGTAGTTT ACAGGAAGAT GAACCTGAGA ATGATGCTAA GAAAATTGAA GCACTGCTAA 720 ACCTTCCTAG AAACCCTTCA GTAATAGATA AACAAGACAA GGACTGAAAG TGCTCTGAAC 780 TTGAAACTCA CTGGAGAGCT GAAGGGAGCT GCCATGTCCG ATGAATGCCA ACAGACAGGC 840 CACTCTTTGG TCAGCCTGCT GACAAATTTA AGTGCTGGTA CCTGTGGTGG CAGTGGCTTG 900 CTCTTGTCTT TTTCTTTTCT TTTTAACTAA GAATGGGGCT GTTGTACTCT CACTTTACTT 960 ATCCTTAAAT TTAAATACAT ACTTATGTTT GTATTAATCT ATCAATATAT GCATACATGA 1020 ATATATCCAC CCACCTAGAT TTTAAGCAGT AAATAAAACA TTTCGCAAAA GATTAAAGTT 1080 **GAATTTTACA GTTAAAAAAA ААААААААА АААААА** 1117

55

⁽²⁾ INFORMATION FOR SEQ ID NO: 112:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1313 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112:

10	GGCAGAGGTT	TTCTTATATT	TTAAGTAAAT	TTAAAGTGGC	TATCAGAATA	TTTATTCTTG	60
10	TTTGAGACTA	CCAACATAAC	TACGTGTTGA	AGGTGCTTCA	CAGAGAATAT	ATTGCCTTTA	120
	ATGTGAAATA	ATTTTCACCA	ATGTTGCTAA	СТТТААТААА	GTATAAAATT	TGTAGAATAT	180
15	TCAGTTAAGT	AGTTGGTAAC	CCTTTTCTAT	TTTAGTAAAA	CTTAATGCAT	GTTTACTTTT	240
	TTTTGAAAGA	TGCAGACAAT	CTCTTTGAAC	ATGAATTGGG	GGCTCTCAAT	ATGGCTGCAT	300
20	TACTACGAAA	AGAAGAAAGA	GCAAGTCTTC	TTAGTAATCT	TGGCCCATGT	TGTAAGGCGT	360
20	TGTGCTTCAG	ACGGGATTCT	GCAATTCGAA	AGCAGCTTGT	TAAAAATGAG	AAGGGCACCA	420
	TAAAACAAGC	TTACACGAGT	GCTCCAATGG	TAGACAATGA	ATTACTTCGA	TIGAGTCTIC	480
25	GGTTATTTAA	GCGGAAGACT	ACTTGCCATG	CTCCAGGACA	TGAAAAGACT	GAAGATAATA	540
	AACTTTCACA	GTCCAGTATC	CAACAGGAAC	TGTGTGTGTC	TTAAGACCGA	AGTTACAATA	600
30	TGGTATTTT	GGTACTGTCT	TCCTTCAGCA	GTGCATATTC	TTTTGCAAAG	TTCTTTGGTT	660
50	TGACAAGCAT	TAGTGACAAA	GGCAGAAAAG	ATTTATCAGC	CATGCTAAAA	GAGTGAAGAA	720
	TTTTGATCTT	TAGAGACACT	AGTTTTGGCC	AACTTAAGAT	TTTACGTTAA	TTTTTACATA	780
35	GTATTTGACA	CTCATGCAAA	ATAATGTGAA	AACATCTAGA	TTTAGTAGTT	TATTCTGCGC	840
	CTTTTGTTAA	AACTGAAGAT	TTTGGAAAAT	GGTTGTCACT	GCTCTTCCAG	CCTATGAATA	900
40	TTTTTGTGAA	ATGGAACCAT	GGATTTATGT	CTGGATCATC	CATACAGAAC	CAACAATTTT	960
	ATTCAAAAAC	AATGTGTTCA	TCAAAGTAAT	TGCTCACATT	GTGCAGTACT	ATGTTGTACA	1020
	GACCACGTGA	AAGGGAATGC	TGGTCTAGCT	GCCTGCTAT	GTTTATAGGC	GAATTTCAGC	1080
45	AGAAGGAAGC	CAAAATAGTT	TTTTCCTTTT	GAAAGTTTTT	TAAAAATTAT	TTCATGGGTC	1140
	тттттттаа	TTAATATGTG	TGCATTGTTA	CAATGTATGT	TGGGATGTCT	TTTGACCCTA	1200
50	AATGCTTTTT	TTGTTATCAG	AGATTGTGTA	CTATTTTTAT	ТТТТААТААА	TGTATCTTCC	1260
50	СТТТТМАААА	АААААААА	АААААААА	ааааааааа	ааааааааа	AAA	1313

55

(2) INFORMATION FOR SEQ ID NO: 113:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1654 base pairs

60 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 113:

5	(MI) DEQUERCE DESCRIPTION. SEQ ID NO. 115.	
,	ACAGGGACAG AATACTTTCT TTCCTTCCTT CAAGTACAAG AAGGCTTTCT CTACCATTTG	60
	CGTCTACACT TTATTTTAAA AGCTATCCTT TTCTAGTAGT ATTTTATCAT GGCAATGGCA	120
10	TGATGACAAC AACAGTCTTT CATTACAGAC TGAAGGGAAG CATGTCCTTA CTTAAAATAG	180
	TTCTGCTACT TTCCCTCCTA TTATAAGGAA ATTTTACAGA TTCTAAAAAT ACCTTAATTT	240
15	TICTITGATT TITATTITAC CAAGTCACAA ATGTCTITTT GATGTTITGA GAATTGTTCT	300
13	CATAGAATCA CAAATACTGA CATTTCATTA GATGATTATT TTCCTAGAAT CCCCAAAGAG	360
	CAGTÓGCAGT CCATOGCTTG GTTGAAGCTA GAAATTTTCC TGCCCCTGGT GACCTGGTAA	420
20	GCCTCCTGCT CGGAACCGTG TGAGTGGGTG AGGAAGATGA GAGATGGTCA GATGGAAGAG	480
	AGRAATACAT GAACTGCTCT GGCCTCTCTG GTTCTGTTCT	540
25	GCAGCGGANA TNGACTGACT TCACATGCTC AGCTTTCTCA GCCTTTTGTT TATTTTGTTG	600
23	TCCTTAGATT TCCCTGTTGT AAAAGGGGCA AGAAAAGTAA CTCATCATCT CTAACACACC	660
	ATGGCAGCTT AGCCAGGTAG TCTTAGTGGT GGTGTTTAGG CATAAGATAT GCTGATCATC	720
30	AGTCTCAGGC CACAGTTTCC TTCACTAATC GTCCAGCTTG AGTGTTCTGT TCTCTTCCTG	780
	CCCATTTCCT TGAACCTCCT GCTCTAGCCT TGGCGGAGGG AGAGTGCTAT TTGCTTTTGT	840
35	TCTCCCTCTG TCTTAGGAAA AGCCATCTTT AATATAGTTC TTCACCACTG TTGGGGTTGT	900
	TITGTGATIT TTTTTTCTT CCGAAGAACT CCTGGTTGTT ATTGGATTTT GTATTTTAAT	960
	ACAAATTATT GAATTTTATA AGCTTGTACA CAATATTTAA TTAGTGTGAA AGGAAACAAA	1020
40	GAATGCAGGA AAAATAATTT AATATCAACC TCAGTTGACA AGGTGCTCAG ATTATTCAAT	1080
	TCGGGATCCT CCTTTTGTTA GGTTTTTGAG ACAACCCTAG ACCTAAACTG TGTCACAGAC	1140
45	TTCTGAATGT TTAGGCAGTG CTAGTAATTT CCTCGTAATG ATTCTGTTAT TACTTTCCTA	1200
	TTCTTTATTC CTCTTTCTTC TGAAGATTAA TGAAGTTGAA AATTGAGGTG GATAAATACA	1260
	AAAAGGTAGT GTGATAGTAT AAGTATCTAA GTGCAGATGA AAGTGTGTTA TATACATCCA	1320
50	TICAAAATTA TGCAAGTTAG TAATTACTCA GGGTTAACTA AATTACTTTA ATATGCTGIT	1380
	GAAYCTACTC TGTTCCTTGG CTAGAAAAAA TTATAAACAG GACTTTGTAG TTTGGGAAGC	1440
55	CAAATTGATA ATATTCTATG TTCTAAAAGT TGGGCTATAC ATAAATTATT AAGAAATATG	1500
	GATTTTTATT CCCAGGATAT GGTGTTCATT TTATGATATT ACGCAGGATG ATGTATTGAG	1560
	TAAAATCAGT TTTGTAAATA TGTAAATATG TCATAAATAA ACAATGCTTT GACTTATTTC	1620
60	CAAAAAAAA AAAAAATAAA NTTCGAGGGG GGGC	1654

~							
5	121	INFORMATION	EVOD	CE/A	TD	NO.	111.
J	141	THUCKUMITON	rur	SEU	TD.	INO:	114:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1171 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114:

15	GGCAAACTTT	CCCCCAANGC	TTCGAAACTT	GCAAGCCGAA	ACCTTGAATC	GTTAAAAGTT	60
	GGGTTGCGNC	GCCCCTCG	CCCGAAGAAG	CGCAATTGGC	GTTCCGCGAA	CCTTGGCCCT	120
20	CAACGGCTCG	GCAGCCAGCC	ATGTCCTGCA	CCCAGGACAG	CGCCCTGGG	CTACAAGGAC	180
20	CTGGMCCTCA	TCTTCCTGCG	CCGACCTGCG	CGGGGTAAGG	GGWAGTTTCA	GACTGTGAAG	240
	GACGTCGTGC	TGGACTGCCT	GTTGGACTTC	TTACCCGAGG	GGGTGAACAA	AGAGAAGATC	300
25	ACACCACTCA	CGCTCAAGGA	AGCTTATGTG	CAGAAAATGG	TTAAAGTGTG	CAATGACTCT	360
	GACCGATGGA	GTCTTATATC	CCTGTCAAAC	AACAGTGGCA	AAAATGTGGA	ACTGAAATTT	420
30	GTGGATTCCC	TCCGGAGGCA	GTTTGAATTC	AGTGTAGATT	CTTTTCAAAT	CAAATTAGAC	480
50	TCTCTTCTGC	TCTTTTATGA	ATGTTCAGAG	AACCCAATGA	CTGAGACATT	TCACCCCACA	540
	ATAATCGGGG	AGAGCGTCTA	TGGCGATTTC	CAGGAAGCCT	TTGATCACCT	TTGTAACAAG	600
35	ATCATTGCCA	CCAGGAACCC	AGAGGAAATC	CGAGGGGGAG	GCCTGCTTAA	GTACTGCAAC	660
	CTCTTGGTGA	GGGGCTTTAG	GCCCGCCTCT	GATGAAATCA	AGACCCTTCA	AAGGTATATG	720
40	TGTTCCAGGT	TTTTCATCGA	CTTCTCAGAC	ATTGGAGAGC	AGCAGAGAAA	ACTGGAGTCC	780
10	TATTTGCAGA	ACCACTTTGT	GGGAATTGGA	AGACCGCAAG	TATGAGTATC	TCATGACCCT	840
	TCATGGAGTG	GTAAATGAGA	GCACAGTGTG	CCTGATGGGA	CATGAAAGAA	GACAGACTTT	900
45	AAACCTTATC	ACCATGCTGG	CTATCCGGGT	GTTAGCTGAC	CAAAATGTCA	TTCCTAATGT	960
	GGCTAATGTC	ACTIGCTATT	ACCAGCCAGC	CCCCTATGTA	GCAGATGCCA	ACTITAGCAA	1020
50	TTACTACATT	GCACAGGTTC	AGCCAGTATT	CACGTGCCAG	CAACAGACCT	ACTCCACTTG	1080
<i>5</i> 0	GCTACCCTGC	AATTAAGAAT	CATTTAAAAA	TGTCCTGTGG	GGAAGCCATT	TCAGACAAGA	1140
	CAGGAGAGAA	АААААААА	АААААААА	A			1171

55

(2) INFORMATION FOR SEQ ID NO: 115:

60

(i) SEQUENCE CHARACTERISTICS:

300

5	(A) LENGTH: 842 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
3	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115:	
	GGTCTGCGCC GGAAGTGCAT GAGCTGCCGA TGTGGTGCTT AGTGATTGCG GTTTCGGTCG	60
10	CTCTCCCGTG TTTCCCGGGC TGGGTATTTG CCTCGCACCA TGGCGCCCAA GGGCAAAGTG	120
	GGCACGAGAG GGAAGAAGCA GATATTTGAA GAGAACAGAG AGACTCTGAA GTTCTACCTG	180
15	CGGATCATAC TGGGGGCCAA TGCCATTTAC TGCCTTGTGA CGTTGGTCTT CTTTTACTCA	240
13	TCTGCCTCAT TTTGGGCCTG GTTGGCCCTG GGCTTTAGTC TGGCAGTGTA TGGGGCCAGC	300
	TACCACTCTA TGAGCTCGAT GGCACGAGCA GCGTTCTCTG AGGATGGGGC CCTGATGGAT	360
20	GGTGGCATGG ACCTCAACAT GGAGCAGGGC ATGGCAGAGC ACCTTAAGGA TGTGATCCTA	420
	CTGACAGCCA TCGTGCAGGT GCTCAGCTGC TTCTCTCTCT ATGTCTGGTC CTTCTGGCTT	480
25	CTGGCTCCAG GCCGGCCCT TTACCTCCTG TGGGTGAATG TGCTGGGCCC CTGGTTCACT	540
	GCAGACAGTG GCACCCCAGC ACCAGAGCAC AATGAGAAAC GGCAGCGCCG ACAGGAGCGG	600`
	CGGCAGATGA AGCGGTTATA GCCATTGACA TTGTGGCCAC AGGCCACTGG CCCTGGGTGG	660
30	CTCTGTCAGG GTGCACAGCC CCTCATGCCT GGAGCAATGA GGGTCTAGTC CAGGGGCCAA	720
	AAGCAGTCTG AGGTATTGGG TATACTTATA CTCTATAGGG TCGTTGAATA AATGGCTTAG	780
35	AATGTGAAAA AAAAAAAAAA AAAAAACTCG AGGGGGGCCC GGTACCCAAT TTCNCCTANA	840
,,	AT	842
‡ 0	(2) INFORMATION FOR SEQ ID NO: 116:	
4 5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1640 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116:	
50	GGCACGAGGC GGCGGCAGCG GTCGCGGCGGC CGCCCCCCG CGGCAGCCGT TCCCTTTCCC	60
	GTCGGGGAGC GCGGGGYCGG GGCCCAGGGG ACCCCGGGCC ACGGAGAGAGCG GGAAGAGGAT	120
55	CONTROCCO COCCEDENCE COCCEDENCE CONTROL CONTRO	100

AAGTGCTGGC AAGAGCGATG TCTACTACTT CAGTCCAAGT GGTAAGAAGT TCAGAAGCAA

GCCTCAGTTG GCAAGGTACC TGGGAAATAC TGTTGATCTC AGCAGTTTTG ACTTCAGAAC

60

	TGGAAAGATG	ATGCCTAGTA	AATTACAGAA	GAACAAACAG	AGACTGCGAA	ACGATCCTCT	360
	CAATCAAAAT	AAGGGTAAAC	CAGACTTGAA	ATACAACATT	GCCAATTAGA	CAAACAGCAT	420
5	CAATTTTCAA	ACAACCGGTA	ACCCAAAGTC	ACAAATCATC	СТАСТААТАА	AGTGAAATCA	480
	GACCCACAAC	GAATGAATGA	ACAGCCACGT	CAGCTTTTCT	GGGAGAAGAG	GCTACAAGGA	540
10	CTTTAGTGCA	TCAGATGTAA	CAGAACAAAT	TATAAAAACC	ATGGAACTAC	CCAAAGGTCT	600
10	TCAAGGAGTT	GGTCCAGTAG	CAATGATGAG	ACCCTTTTAT	CTGCTGTTGC	CAGTGCTTTG	660
	CACACAAGCT	CTGCGCCAAT	CACAGGGCAA	GTCTCCGCTG	CTGTGGAAAA	GAACCTGCTG	720
15	TTTGGCTTAA	CACATCTCAA	CCCCTCTGCA	AAGCTTTTAT	TGTCACAGAT	GAAGACTCAG	780
	GAAACAGAAG	AGCGAGTACA	GCAAGTACGC	AAGAAATTGG	AAGAAGCACT	GATGGCAGAC	840
20	ATCTTGTCGC	GAGCTGCTGA	TACAGAAGAG	ATGGATATTG	AAATGGACAG	TGGAGATGAA	900
20	GCCTAAGAAT	ATGATCAGGT	AACTTTCGAC	CGACTTTCCC	CAAGAGAAAA	TTCCTAGGAA	960
	ATTGAACAAA	AATGTTTCCA	CIGGCTITIG	CCTGTAAGAA	AAAAAATGTA	CCCGAGCACA	1020
25	TAGAGCTTTT	TAATAGCACT	AACCAATGCC	TTTTTAGATG	TATTTTTGAT	GTATATATCT	1080
	ATTATTCAAA	AAATCATGTT	TATTTTGAGT	CCTAGGACTT	AAAATTAGTC	TTTTGTAATA	1140
30	TCAAGCAGGA	CCCTAAGATG	AAGCTGAGCT	TTTGATGCCA	GGTGCAATCT	ACTGGAAATG	1200
	TAGCACTTAC	GTAAAACATT	TGTTTCCCCC	ACAGTTTTAA	TAAGAACAGA	TCAGGAATTC	1260
	TAAATAAATT	TCCCAGTTAA	AGATTATTGT	GACTTCACTG	TATATAAACA	TATTTTTATA	1320
35	CTTTATTGAA	AGGGGACACC	TGTACATTCT	TCCATCGTCA	CTGTAAAGAC	AAATAAATGA	1380
	TTATATTCCA	CAGAAAAAA	WAAAAAAAW	MWSTYGARRR	GSRGCMCRSW	AYMMARWWCC	1440
40	CCWMRTWRGS	MKTCSTMTKA	YTTACATTCA	ACTCTGATCC	CGGGGCCTTA	GGTTTGACAT	1500
	GGGAGGTGGG	AGGAAGATAG	CGCATATATT	TGCAGTATGA	ACTATTGCCT	CTGGGACGTT	1560
	GTGAGGAATT	GTGCTTTCAC	CAGAATTICT	AAGGATTTCT	GGCTTAAATA	TCACCTAGCC	1620
45	TGTGGTAATT	TTTTTTCCCT					1640

50 (2) INFORMATION FOR SEQ ID NO: 117:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 952 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117:

60 TGAATTTAGN AAACACTTTG GAAAACTCAT AACCTCATCA GAAACTGCCT TTAGCCACAC

	GAAGAGTGCA	AAGACTTTGT	GGACAAAATT	GGCCAGTTTC	AGAAAATAGT	TGGTGGTTTA	540
	ATTGAGCTTG	TTGATCAACT	TGCAAAAGAA	GCAGAAAATG	AAAAGATGAA	GGCCATCGGT	600
5	GCTCGGAACT	TGCTCAAATC	TATAGCAAAG	CAGAGAGAAG	CTCAACAGCA	GCAACTTCAA	660
	GCCCTAATAG	CAGAAAAGAA	AATGCAGCTA	GAAAGGTATC	GGGTTGAATA	TGAAGCTTTG	720
10	TGTAAAGTAG	AAGCAGAACA	AAATGAATTT	ATTGACCAAT	TTATTTTCA	GAAATGAACT	780
10	GAAAATTTCG	CTTTTATAGT	AGGAAGGCAA	ААСАААААА	AGCCTCTCAA	ААССААААА	840
	ACCTCTGTAG	CATTCCAGCG	GCTTGACCAA	TGACCTATGT	CACAAGAGGT	GGCGTGTAAG	900
15	GAATGCAGCC	CCCTGAAGAC	AGCACTACAA	GTCTGGGGGA	GCCAGTTTTA	ACATCAGTGC	960
	ACAGCTGCTG	CTGGTGGCCC	TGCAGTGTAC	GTTCTCACCT	CTTATGCTTA	GTTGGAACTA	1020
20	AGCAGTTIGT	AAACTTTCAT	CCTTTTTTT	GTAAATTCAC	AAAGCTTTGG	AAGGAGAAGC	1080
20	AATAAATTTT	TGTTTTCAAA	TGGCTTGATG	TACCTTTTT	CCTGTTGCTC	TTGAAATATG	1140
	TTTAACTCCT	CATGAGAGAA	CCCTGGATTC	TCTATCCCCT	AGTCCACAAA	ACAAACCAGG	1200
25	CAGTGGTCAG	CAGCTACCTT	TNATTTGGAT	CACACACGTG	AGTCAGACAG	TACCAC	1256

30 (2) INFORMATION FOR SEQ ID NO: 119:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1143 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119:

40	GCCGTAGCA GCCGGGCTGG TCCTGCTGCG AGCCGGCGGC CCGGAGTGGG GCGCCGCAT	60
	GTACCTTCCA CATTGAGTAT TCAGAAAGAA GTGATCTGAA CTCTGACCAT TCTTTATGGA	120
45	TACATTAAGT CAAATATAAG AGTCTGACTA CTTGACACAC TGGCTCGAGC AAACATGAAC	180
43	GTTGGAGTTG CCCACAGTGA AGTGAATCCA AATACCCGTG TCATGAACAG CCGGGGTATG	240
	TOGCTGACAT ATGCATTGGG AGTTGGCTTG CTTCATATTG TCTTACTCAG CATTCCCTTC	300
50	TTCAGTGTTC CTGTTGCTTG GACTTTAACA AATATTATAC ATAATCTGGG GATGTACGTA	360
	TTTTTGCATG CAGTGAAAGG AACACCTTTC GAAACTCCTG ACCAGGGTAA AGCAAGGCTC	420
55	CTAACTCATT GGGAACAACT GGACTATGGA GTACAGTTTA CATCTTCACG GAAGTTTTTC	480
33	ACAATTTCTC CAATAATTCT ATATTTTCTG GCAAGTTTCT ATACGAAGTA TGATCCAACT	540
	CACTICATCC TAAACACAGC TICTCTCCTG AGTGTACTAA TICCCAAAAT GCCACAACTA	600
60	CATGGIGITC GGATCTITGG AATTAATAAG TATTGAAATG TTTTGAAACT GAAAAAAAA	660

	TCCTGACCTT	CTAGATGAGT	ААСАААААА	TGAAATAAGT	TCTTGGAAAT	TAAGCCATTT	120
5	ATTTTAATTT	GCTATTTTT	TCAATGTTCT	AGGTATCTTT	AAATTTGTTA	TTGTGGAATC	180
,	ATTTTCCTGC	CAGATACCTT	TATCAAAATT	ATTOGCCTCA	TGAGAGCTGA	AGTAAGTCAG	240
	CTTTTTGGTG	AACTTTAGTG	GACTTCTGTG	AGATTGTAGT	TGTACTTTGT	АТСТСТАААТ	300
10	CTAAAGATAG	тттттаааа	CTCCCAAAGA	AAATCTGCTC	TCCTTTCTGA	TCTAAAAACT	360
	CATCTTTGGG	GTAAAGAGTT	AAGTGTCCAA	AGGTTGTCAC	AGTTCATGAG	GTCAGAGGGA	420
15	GCTAGCCTGG	CACCTGGACT	CTGCCCATCC	ACAGCTGACA	GATTCCAACA	GAAGTGTATT	480
13	TAAATTCTCC	AGTAGACAAT	GCTGGGTAAG	GGAGGGGGTA	GGCTGGGTT	ATTAAGATAC	540
	AGGCTGCTGT	ATTTTACATT	CCTTCTCCCC	GAAGGGGAGC	CTGGAGAAAA	CAAAGTCACT	600
20	ATTCCCTTTT	TTGAAACAGG	ттааааааа	ATTTTTTGTT	CAGTAAAAAT	GGTAGAGAAT	660
	TCCAATGTCC	CTAGCCACAA	GGGACCAGTT	CCACTGAGAA	GTGAACAGTG	GGAACTCAAA	720
25	ATTTCAGAAA	CATTGGGGGA	AGGGAAAATT	GCTTTCTCT	TAATTGGCAG	ATGTTCCAGT	780
2.5	GGGGSGGGG	GCTCTCTTT	TTGTTGGGAT	GTGTTATGTT	GTATGTACGC	ATATATGGAC	840
	CGGAGTCTGC	TGAGTTTATA	AGGTTCCAAA	AATATGGTAA	AATCTTGGTT	TTTGTTAATT	900
30	татстсаата	AAAGCCCACT	GGRACTCCAA	ааааааааа	AAAAAAAAGA	NN	952

35 (2) INFORMATION FOR SEQ ID NO: 118:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1256 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118:

45 GACGTCATAG GTAAACAGGC TCTGTATCCG TGGCAGCGGC CGTGGCAGGC TGGCTGGGTA CCGGCTGTCG CTGACCCAGG AGAAGCTGCC TGTCTACATC AGCCTGGGCT GCAGCGCGCT 120 180 GCCGCCGCGG GGCCGCCAGC TGAACTATGT GCTCTTCAGG GCGGGCACCG TGTTGCATTC 50 ATCTTTGTAC CCCCAGCATC TAGCAGTGTT GGCATGTAGT AGGCACTCAA GAAATGTGTG 240 300 TTGAATGAAC GATGCCTGTG ACAAGCAAGC GGACTTTATT CTTTCCTGAC CCTTGCTCCT 55 ATGACACACC TCCTCCTGAC TGCCACTGTC ACTCCTTCAG AGCAGAACTC CTCTAGGGAA CCTGGATGGG AAACAGCCAT GGCCAAGGAC ATCCTGGGTG AAGCAGGGCT ACACTTTGAT 420 GAACTGAACA AGCTGAGGGT GTTGGACCCA GAGGTTACCC AGCAGACCAT AGAGCTGAAG

40

	TTTACAGCTA	CTGAATITCT	TATAAGGAAG	GAGTGGTTAG	TAAACTGCAC	TGTTTCTSTG	720
5	ATAATGTGAA	ATGAGAAGTA	TTTACATTGG	AGGGCCAATG	GCTGGTCCTT	CAAGTGCTGT	780
,	TTTGAAGTGC	AGATTTCCAT	TAAATGATGC	CTCTGTTTAA	TACACCTGGT	ACATTTCTGA	840
	AGAGGGGCTT	TATAAGCAGG	CTGGGCAGGC	CCAGCTTATA	AGTTAAAGGG	CATCACAGTG	900
10	AGGGTGTAGT	AGATAAATTC	AAGGAAATAA	GAGATTTGTA	AGAAACTAGG	ACCAGCTTAA	960
	CTTATAATGA	ATGGGCATTG	TGTTAAGAAA	AGAACATTTC	CAGTCATTCA	GCTGTGGTTA	1020
15	TTTAAAGCAG	ACTTACATGT	AAACCGGAAT	ССТСТСТАТА	CAAGTTTATT	AAAGATTATT	1080
13	TTTATTACCG	ТАААААААА	АААААААА	аааааааааа	ааааааааа	AAAAAAAA	1140
	GAN						1143

(2) INFORMATION FOR SEQ ID NO: 120:

25 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1782 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30

35

40

45

50

55

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120:

CAGGCCCCGG CCCCCACCC ACGTCTGCGT TGCTGCCCCG CCTGGGCCRG GCCCCAAAGG 60 CAAGGACAAA GCAGCTGTCA GGGAACCTCC GCCGGAGTCG AATTTACGTG CAGCTGCCGG 120 CAACCACAGG TTCCAAGATG GTTTGCGGGG GCTTCGCGTG TTCCAAGAAC TGCCTGTGCG 180 CCCTCAACCT GCTTTACACC TTGGTTAGTC TGCTGCTAAT TGGAATTGCT GCGTGGGGCA 240 TTGGCTTCGG GCTGATTTCC AGTCTCCGAG TGGTCGGCGT GGTCATTGCA GTGGGCATCT 300 TCTTGTTCCT GATTGCTTTA GTGGGTCTGA TTGGAGCTGT AAAACATCAT CAGGTGTTGC 360 TATTYTTTA TATGATTATT CTGTTACTTG TATTTATTGT TCAGTTTTCT GTATCTTGCG 420 CTTGTTTAGC CCTGAACCAG GAGCAACAGG GTCAGCTTCT GGAGGTTGGT TGGAACAATA 480 CGGCAAGTGC TCGAAATGAC ATCCAGAGAA ATCTAAACTG CTGTGGGTTC CGAAGTGTTA 540 ACCCAAATGA CACCTGTCTG GCTAGCTGTG TTAAAAGTGA CCACTCGTGC TCGCCATGTG CTCCAATCAT AGGAGAATAT GCTGGAGAGG TTTTGAGATT TGTTGGTGGC ATTGGCCTGT 660 TCTTCAGTTT TACAGAGATC CTGGGTGTTT GGCTGACCTA CAGATACAGG AACCAGAAAG 720 ACCCCCGCGC RAATCCTAGT GCATTCCTTT GATGAGAAAA CAAGGAAGAT TTCCTTTCGT 780 ATTATGATCT TGTTCACTTT CTGTAATTTT CTGTTAAGCT CCATTTGCCA GTTTAAGGAA 840

	GGAAACACTA	TCTGGAAAAG	TACCTTATTG	ATAGTGGAAT	TATATATTT	TACTCTATGT	900
	TTCTCTACAT	GTTTTTTTCT	TICCGTTGCT	GAAAAATATT	TGAAACTTGT	GGTCTCTGAA	960
5	GCTCGGTGGC	ACCTGGGAAT	TTACTGTATT	CATTGTCGGG	CACTGTCCAC	TCTCCCCTTT	1020
	CTTAGCATTT	TTACCTGCAG	AAAAACTTTG	TATGGTACCA	CICICITICCI	TATATGGTGA	1080
10	ATCTGAACGT	ACATCTCACT	GGTATAATTA	TATGTAGCAC	TGTGCTGTGT	AGATAGTTCC	1140
10	TACTGGAAAA	AGAGTGGRAA	тттаттаааа	TCAGAAAGTA	TGAGATCCTG	TTATGTTAAG	1200
	GGAAATCCAA	ATTCCCAATT	TTTTTTGGTC	TTTTTAGGAA	AGATGTGTTG	TGGTAAAAAG	1260
15	TGTTAGTATA	AAAATGATAA	TIWACTKGTA	GTCTTTTATG	ATWACACCAA	TGTATTCTAG	1320
	AAATAGTTAT	GYCYTAGGAA	ATTGTGGTTT	AATTTTTGAC	TTTTACAGGT	AAGTGCAAAG	1380
20	GAGAAGTGGT	TTCATGAAAT	GTTCTAATGT	ATAATAACAT	TTACCTTCAG	CCTCCATCAG	1440
20	AATGGAACGA	GTTTTGAGTA	ATCAGGAAGT	АТАТСТАТАТ	GATCTTGATA	TTGTTTTATA	1500
	ATAATTTGAA	GTCTAAAAGA	CTGCATTTTT	AAACAAGTTA	GTATTAATGC	GTTGGCCCAC	1560
25	GTAGCAAAAA	GATATTTGAT	TATCTTAAAA	ATTGTTAAAT	ACCGTTTTCA	TGAAAGTTCT	1620
	CAGTATTGTA	ACAGCAACTT	GTYAAACCTA	AGCATATTTG	AATATGATCT	CCCATAATTT	1680
30	GAAATTGAAA	TCGTATTGTG	TOGCTCTGTA	TATTCTGTTA	AAATTAAAA	GGACAGAAAC	1740
50	CTTTCTTTGT	GTATGCATGT	TTGAATTAAA	AGAAAGTAAT	GG		1782

40

(2) INFORMATION FOR SEQ ID NO: 121:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 610 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 121:

45 GTTGGCTGCA GATTTGTGGT GCGTTCTGAG CCGTCTGTCC TGCGCCAAGA TGCTTCAAAG 60 TATTATTAAA AACATATGGA TCCCCATGAA GCCCTACTAC ACCAAAGTTT ACCAGGAGAT 120 50 TTGGATAGGA ATGGGGCTGA TGGGCTTCAT CGTTTATAAA ATCCGGGCTG CTGATAAAAG AAGTAAGGCT TTGAAAGCTT CAGCGCCTGC TCCTGGTCAT CACAACCAGA TTTACTTGGA 240 GTACATGTGA AAGAAAACGT CAGTCTGCCT GTAAATTTCA GCAAGCCGTG TTAGATGGGG 300 55 AGCGTGGAAC GTCACTGTAC ACTTGTATAA GTACCGTTTA CTTCATGGCA TGAATAAATG 360 GATCTGTGAG ATGCACTGCT ACCTGGTACT GCTTTCAGTG TGTTCCCCCT CAGCCCTCCG 420 60 GCGTGTCAGG CATACTCTGA GTAGATAATT TGTCATGCAG CGCATGCAAT CAGAATCTCA 480

	CIGAGCCACC CAICATTOTG AAATAATTAC CICAGTIGTA CAGGACTIGG IGAICAGGAT	540
5	CCAGGCACTC ACTTGTATTC TACTGCTCAA TAAACGTTTA TTAAACTTGA AAAAAAAAA	600
J	аааааааа	610
10	(2) INFORMATION FOR SEQ ID NO: 122:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 526 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 122:	
20	GGTACGCCTG CAGGTACCGG TCCGGAATTC CGGGTCGCCC ACGCGTCNGG CCACGCGTCC	60
	ACCCACGCGT CCGSCCACGC GTCGGAGCCG AGCCGGACTG GTCAGGATGA TCACGGACGT	120
25	GCAGCTCGCC ATCTTCGCCA ACATGCTGGG CGTGTCGCTC TTCTTGCTTG TCGTTCTCTA	180
	TCACTACGTG GCCGTCAACA ATCCCAAGAA GCAGGAATGA AAGTGGCGCT TTCTCCGCCC	240
30	CAGGGTTCCA GGACATAGTC TGAGGCAAGA TGGAGGGTAT GAGGGGCCTT CACACTTCAC	300
50	TTCATCCCTT CTACCCATCA CAACATACAA AGCAACTACA CCTGGATTTT TCCAAACAAC	360
	TTTTATTTCC TCAGAGTCTT CCTTAATCCT ATGGAACAAG AAGCTGCCAC TGAATAGGGC	420
35	CCAGTATAGG GGCTTGCTTT TCTACTCCCT CCCCCCAATA TAAAAATATA GACTTTTTAA	480
	AAAAAAAAA AAAAANTTCG NGGGGGGSCC GGTACCCATC CCCCTA	526
40		
	(2) INFORMATION FOR SEQ ID NO: 123:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2081 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123:	
	TGTACCGGTC CGGAAATTCC CGGGTCGACC CACGTCGTCS GGGGAACATG GCGGCTKCGG	60
55	AGCCGGCGGT CCTTGCGCTC CCCAACAGCG GCGCCGGGGG CGCGGGGGG CCGTCGGGCA	120
JJ	CAGTCCCGGT GCTCTTCTGT TTCTCAGTCT TCGCGCGACC CTCGTCGGTG CCACACGGG	180
	CGGGCTACGA GCTGCTCATC CAGAAGTTCC TCAGCCTGTA CGGCGACCAG ATCGACATGC	240
60	ACCCCADATE CONCORCOS CONCORCOS COACONOS COACONOCOS CARONACOS CARONACOS CARONACOS CARONACOS CARONACOS COACONACOS COACONACONACOS COACONACOS COACONACONACOS COACONACOS COACONACOR COACONACO COACONACO COACONACONACONACONACONACONACONACONACONAC	300

	AGGGCTTCGC	GGTRAGCGAG	CGCTGCAAGG	TGCGCCTCGT	GCCGYTGCAG	ATCCAGCTCA	360
5	CTACCCTGGG	AAATCTTACA	CCTTCAAGCA	CTGTGTTTTT	CTGCTGTGAT	ATGCAGGAAA	420
J	GGTTCAGACC	AGCCATCAAG	TATTTTGGGG	ATATTATTAG	CGTGGGACAG	AGATTGTTGC	480
	AAGGGGCCCG	GATTTTAGGA	ATTCCTGTTA	TTGTAACAGA	ACAATACCCT	AAAGGTCTTG	540
10	GGAGCACGGT	TCAAGAAATT	GATTTAACAG	GTGTAAAACT	GGTACTTCCA	AAGACCAAGT	600
	TTTCAATGGT	ATTACCAGAA	GTAGAAGCGG	CATTAGCAGA	GATTCCCGGA	GTCAGGAGTG	660
15	TTGTATTATT	TGGAGTAGAA	ACTCATGTGT	GCATCCAACA	AACTGCCCTG	GAGCTAGTTG	720
13	GCCGAGGAGT	CGAGGTTCAC	ATTGTTGCTG	ATGCCACCTC	ATCAAGAAGC	ATGATGGACA	780
	GGATGTTTGC	CCTCGAGCGT	CTCGCTCRAR	CCGCGATCAT	AGTGACCACG	AGTGAGGCTG	840
20	TTCTGCTTCA	GCTGGTAGCT	GATAAGGACC	ATCCAAAATT	CAAGGAAATT	CAGAATCTAA	900
	TTAAGGCGAG	TGCTCCAGAG	TCGGGTCTGC	TTTCCAAAGT	ATAGGACATT	TGAAGAACTG	960
25	GTATGCTACT	CACTGGTGAA	GGACAGTCAG	GTGAAGGACT	GTAAGCCCAC	ACAAGCTCTT	1020
	CTTATCTCTA	CTAGAATTAA	AATGTTAAGT	CAAAAACGGC	TCCTTTTTTG	CGCCTCCTAG	1080
	TGAAACTTAA	CCAGCTAGAC	CATTTGAGTA	CCAGCATTTA	GTTACAAACG	TCAAAGGCTT	1140
30	CCGCTGCTGC	TTACCTTCCT	TTTTTGTTAA	TGTGCTTTTA	TTTATTAAAA	AAAATTACAA	1200
	TGAAGATGCC	TGTTTTGTCT	CTACTGTGTA	CTCTGATCGT	ATCTTTCCAA	AGTGCAGACT	1260
35	CTIGTGAAGT	TTTCTTAAAT	TGTTCACTTT	AAAGAAAATG	ACGTACCAAC	AATGATTTGG	1320
	CTTTTATATT	ACTGTAAGAT	GTTATAATGT	TAATGTGGAT	GTAGTGCTTT	TACTTTACAG	1380
	ATTGATTGGA	ATAAGATTAT	TGCATATGAA	TTTACCCACA	GGACTCTGAA	TCATGTTACC	1440
40	CACTCCCCTC	ACAATGTTGT	CCACTTAGTG	AGTTGCATTG	ATCTATCCGT	ACCAAATGAT	1500
	GTTGAATAAT	TACATATCTT	TCTTGACTAT	ACTGATTTCT	TATTTTGGTC	ACTATTACTA	1560
45	AATCTCTGTT	AATATTCTCT	CTTTTAACTG	AAAAGGGATG	GGATAGAAGG	GTTTGCAATG	1620
	CCATATTATT	GGTGGAGGGC	TGTTTTAACA	TCTTTGAAGT	ATGGCTTGCT	GAATATCTTT	1680
	ACCAACATCT	TGAATATATA	TTCTAGTGTC	CACAAGATTT	AGCAAAAAGA	TAAAGCTTGG	1740
50	GTGGAATATC	ATTTTAAAAT	GTTCATGTTC	TGTTCTATAT	TTTCTTCACC	TACTCTCCAA	1800
	ATATTGTAAT	GCAAAAAGTC	TCAGTAATGA	TTTGGTAGTA	TTAATTTIGT	GGTCATTGTT	1860
55	TCTCTTCGAT	AAATTTATTT	TCATTAAATA	CTTRTTAGAG	GGTTTTGAAA	TGTTTTTCAA	1920
55	ATATGTGAAA	TGTGAAACTG	CTGTCTTTTA	TATTAAAGTA	ATTAAAGAAA	ATGTATTGTG	1980
	ATTGAAATTA	TTTTGNCCTC	CACAAGATGG	CTCTATGAGT	ATTCTTCCAG	GGATTCTAAT	2040
60	ATTTATTTAA	GGTNATAAAA	TCTTGACATT	TATAATCTTT	С		2081

5 (2) INFORMATION FOR SEQ ID NO: 124:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1717 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124:

15	CCCCGGCGGA G	CTGGACCCG	CGGTGGGCTA	GGGCAGGC	CGGAGCCGCG	GCGGCGGAGC	60
	TGTGGATCCT T	CATGATGAG	AGATTTGGGG	ACACTTCTCT	CTCCTGTGTG	TAGTTGATAG	120
20	TTTGGTGGTG A	AGAGATGGC	TGACAGTGTC	AAAACCTTTC	TCCAGGACCT	TGCCAGAGGA	180
20	ATCAAAGACT C	CATCTGGG	TATTTGTACC	ATCTCAAAGC	TAGATGCTCG	AATCCAGCAA	240
	AAGAGAGAGG A	GCAGCGTCG	AAGAAGGCCA	AGTAGTGTCT	TGGCACAGAG	AAGAGCCCAG	300
25	AGTATAGAGC G	GAAGCAAGA	GAGTGAGCCA	CGTATTGTTA	GTAGAATTT	CCAGTGTTGT	360
	GCTTGGAATG G	TGGAGTGTT	CTGGTTCAGT	CTCCTCTTGT	TTTATCGAGT	ATTTATTCCT	420
30	GTGCTTCAGT C	CGTAACAGC	CCGAATTATC	GGTGACCCAT	CACTACATGG	AGATGTTTGG	480
50	TCGTGGCTGG A	ATTCTTCCT	CACGTCAATT	TTCAGTGCTC	TTTGGGTGCT	CCCCTTGTTT	540
	GTGCTTAGCA A	AGTGGTGAA	TGCCATTTGG	TTTCAGGATA	TAGCTGACCT	GGCATTTGAG	600
35	GTATCAGGGA G	GAAGCCTCA	CCCATTCCCT	AGTGTCAGCA	AAATAATTGC	TGACATGCTC	660
	TTCAACCITT T	'GCTGCAGGC	TCTTTTCCTC	ATTCAGGGAA	TGTTTGTGAG	TCTCTTTCCC	720
40	ATCCATCTTG T	CGGTCAGCT	GGTTAGTCTC	CTGCATATGT	CCCTTCTCTA	CTCACTGTAC	780
••	TGCTTTGAAT A	ACCTTCCTT	CAATAAAGGA	ATTGAAATGC	ACCAGCGGTT	GTCTAACATA	840
	GAAAGGAATT G	GCCTTACTA	CTTTGGGTTT	GCTTTGCCCT	TGGCTTTTCT	CACAGCAATG	900
45	CAGTCCTCAT A	TATTATCAG	TOGCTGCCTT	TTCTCTATCC	TCTTTCCTTT	ATTCATTATC	960
	AGCGCCAATG A	AGCAAAGAC	CCCTGGCAAA	GCRTATCTCT	TCCAGTTGCG	CCTCTTCTCC	1020
50	TIGGIGGICT I	CTTAAGCAA	CAGACTCTTC	CACAAGACAG	TCTACCTGCA	CTCGCCCTG	1080
50	AGCAGCTCTA C	TTCTGCAGA	GAAGTTCCCT	TCACCGCATC	CGTCGCCTGC	CAAACTGAAG	1140
	GCTACTGCAG G	TCACTGAGT	TGCCTGCCAT	CCAAAGGGGA	TGGGCGGGAT	TGGAAGAAGC	1200
55	TGTGGCAGCT C	CTTTTCCCTG	TTCACCTCCC	GCCTGCCAGG	GAAGGCAGGA	CCCGCTCTGC	1260
	CAAGGCCCT C	TGCGTATTC	CCTTCTCTCT	GAGGAATTGA	AATTTTTGTC	TCTGGTGCAC	1320
60	GTAAGGCAGA A	ATGTTCCCTG	ACACCAGTGT	GTGGATTTT	AACATCACCG	TGAGTCTGAA	1380

PCT/US98/04493

(A) LENGTH: 431 base pairs

60

WO 98/39448

WO 98/39448

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126:

GOCACAGCCC AGGGCCTTGA AGCCAGCTGG CCCTGGAGAG GGGCTGCTGT GCCAGCTTGG 60 GGAGGGTCTG GGATGGGGCT GCCCCTGATG GCCCTGATGT GGAGTACCTT GCCAGCATCT 120 GCTGGGGTGA ACTITATTT AGCCCTTCCC TIGTTGCTCT TATGGAAGAA CAGAGGAGGG 180 GTGGGCAGGT CAGTGATGTC AGCAGTGGAG TGATTCCCAG CACAGCGGCT TCTGGGAAGA 240 GGGCATGGAG GCATTTCTTT CAGGGAAATG GTCCATNATT TCAGCCAGAA GGCATTGCAT 300 TAAGTTAAGT CCNGGACTTT TGTGGCCCAG CTCTGTGTTA TTAAGGGCCC TTGGCGAAGA 360 CTTCAAGGAG GGGGCAAAAN GACCTTTAAG TTTTTAGGTT TAACACAGGG AACCCNCAAA 420 GGGTTATTTT G 431

348

25

30

35

40

45

50

55

60

10

15

20

(2) INFORMATION FOR SEQ ID NO: 127:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3752 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 127:

60 NGGCACGAGG AGAGTCACCT GGACTCAGAA CTAGAGATAT CCAATGACCC AGACAAAATT AAACTTCAGC TTTCTAAGCA TAAGGAGTTT CAGAAGACTC TTGGTGGCAA GCAGCCTGTG 120 TATGATACCA CAATTAGAAC TGGCAGAGCA CTGAAAGAAA AGACTTTGCT TCCCGAAGAT 180 ASTCAGAAAC TTGACAATTT CCTAGGAGAA GTCAGAGACA AATGGGATAC TGTTTGTGGC 240 AAGTCTGTGG AGCGGCAGCA CAAGTTGGAG GAAGCCCTGC TCTTTTCGGG TCAGTTCATG 300 GATGCTTTGC AGGCATTGGT TGACTGGTTA TACAAGGTGG AGCCACAGCT GGCTGAGGAC 360 CAGCCCGTGC ACGGGGGACC TTGACCTCGT CATGAACCTC ATGGATGCAC ACAAGGTTTT CCAGAAGGAA CTGGNGAAAG CGAACAGGAA CCGTTCAGGT CCTGAAGCGG TCAGGCCGAG 480 AGCTGATTGA GAATAGTCGA GATGACACCA CTTGGGTAAA AGGACAGCTC CAGGAACTGA 540 GCACTCGCTG GGACACTGTC TGTAAACTCT CTGTTTCCAA ACAAAGCCGG CTTGAGCAGG 600 CCTTAAAACA AGCGGAAGTG TTTCGAGACA CAGTCCACAT GCTGTTGGAG TGGCTTTCTG 660 AAGCAGAGCA AACGCTTCGC TTTCGGGGAG CACTTCCTGG ATGACACAGA GGCCCTGCAG 720 780 TCTCTCATTG ACACCCATAA GGAATTCATG AAGAAAGTAG AAGAAAAGCG AGTGGACGTT

	AACTCAGCAG	TAGCCATGGG	AGAAGTCATC	CIGGCIGICT	GCCACCCCGA	TTGCATCACA	840
5	ACCATCAAAC	ACTGGATCAC	CATCATCCGA	GCTCGCTTCG	AGGAGGTCCT	GACATGGGCT	900
_	AAGCAGCACC	AGCAGCGTCT	TGAAACGGCC	TTGTCAGAAC	TGGTGGCTAA	TGCTGAGCTC	960
	CTGGAAGAAC	TTCTGGCATG	GATCCAGTGG	GCTGAGACCA	CCCTCATTCA	GCGGGATCAG	1020
10	GAGCCAATCC	CGCAGAACAT	TGACCGAGTT	AAAGCCCTTA	TCGCTGAGCA	TCAGACATTT	1080
	ATGGAGGAGA	TGACTCGCAA	ACAGCCTGAC	GTGGACCGGG	TCACCAAGAC	ATACAAAAGG	1140
15	AAAAACATAG	AGCCTACTCA	CGCGCCTTTC	ATAGAGAAAT	CCCGCAGCGG	AGGCAGGAAA	1200
	TCCCTAAGTC	AGCCAACCCC	TCCTCCCATG	CCAATCCTTT	CACAGTCTGA	AGCAAAAAAC	1260
	CCACGGATCA	ACCAGCTTTC	TGCCCGCTGG	CAGCAGGTGT	GGCTGTTAGC	ACTGGAGCGG	1320
20	CAAAGGAAAC	TGAATGATGC	CTTGGATCGG	CTGGAGGAGT	TGAAAGAATT	TGCCAACTTT	1380
	GACTTTGATG	TCTGGAGGAA	AAAGTATATG	CGTTGGATGA	ATCACAAAAA	GTCTCGAGTG	1440
25	ATGGATTTCT	TCCGGCGCAT	TGATAAGGAC	CAGGATGGGA	AGATAACACG	TCAGGAGTTT	1500
23	ATCGATGGCA	TTTTAGCATC	CAAGTTCCCC	ACCACCAAGT	TAGAGATGAC	TGCTGTGGCT	1560
	GACATTTTCG	ACCGAGATGG	GGATGGTTAC	ATTGATTATT	ATGAATTTGT	GGCTGCTCTT	1620
30	CATCCCAACA	AGGATGCGTA	TCGACCAACA	ACCGATGCAG	ATAAAATCGA	AGATGAGGTT	1680
	ACAAGACAAG	TGGCTCAGTG	CAAATGTGCA	AAAAGGTTTC	AGGTGGAGCA	GATCGGAGAG	1740
35	AATAAATACC	GGTTCTTCCT	CGGCAATCAG	TTTGGGGATT	CTCAGCAGTT	GCGGCTGGTC	1800
	CGTATTCTGC	GCAACCGTGA	TGGTTCGCGT	TGGTGGAGGA	TGGATGGCCT	TGGATGAATT	1860
	TTTAGTGAAA	AATGATCCCT	GCCGAGCACG	AGGTAGAACT	AACATTGAAC	TTAGAGAGAA	1920
40	ATTCATCCTA	CCAGAGGGAG	CATCCCAGGG	AATGACCCCC	TTCCGCTCAC	GGGTCGAAG	1980
	GTCCAAACCA	TCTTCCCGGG	CAGCTTCCCC	TACTCGTTCC	AGCTCCAGTG	CTAGTCAGAG	2040
45	TAACCACAGC	TGTACATCCA	TGCCATCTTC	TCCAGCCACC	CCAGCCAGTG	GAACCAAGGT	2100
43	TATCCCATCA	TCAGGTAGCA	AGTTGAAACG	ACCAACACCA	ACTITICATI	CTAGTCGGAC	2160
	ATCCCTTGCT	GGTGATACCA	GCAATNAGTT	CTTCCCCGGC	CTCCACAGGT	GCCAAAACTA	2220
50	ATCGGGCAGA	CCCTAAAAAG	TCTGCCAGTC	GCCCTGGGAG	TCGGGCTGGG	AGTCGAGCCG	2280
	GGAGTCGAGC	CAGCAGCCGG	CGAGGAAGTG	ACGCTTCTGA	CTTTGACCTC	TTAGAGACGC	2340
55	ATTGCTTGTT	CCGACACTTC	AGAAAGCAGC	GCTGCAGGGG	GCCAAGGCAA	CTCCAGGAGA	2400
55	GGGCTAAACA	AACCTTCCAA	AATCCCAACC	ATGTCTAAGA	AGACCACCAC	TGCCTCCCCC	2460
	AGGACTCCAG	GTCCCAAGCG	ATAACACTGT	CTAAGCACCC	CCAAGCCACT	ATCCACTTTG	2520
60	AATCCTGCTC	CATACATTGG	GTGTATATTT	ATTCTGAACG	GGAGAAGTTA	TATTGTTAAA	2580

٠	AGTGTAAAAG	AATAATTGTG	TTATGAAGCT	GCCTTATTTT	TTTTCTTTTT	GTAAGTTACT	2640
5	ATTTTCATGT	GAATATTTAT	GTAGATAAAA	TTTGCCTCCT	GGTAACCCTG	TAATGGATGG	2700
3	GGCCCAGAAA	TGAAATATTT	GAGAAAAACA	AGTGAAAAGG	TCAAGATACA	AATGTGTATT	2760
	АААААААА	AAGCCTATTA	ATAGGGTTTC	TGCGCGGTGC	AGGGTTGTAA	ACCTGCTTTA	2820
10	TCTTTTAGGA	TTATTCCTAA	ATGCATCTTC	TTTATAAACT	TGACTTGCTA	TCTCAGCAAG	2880
	ATAAATTATA	ТТАААААААТ	AAGAATCCTG	CAGTGTTTAA	GGAACTCTTT	TTTTGTAAAT	2940
15	CACGGACACC	TCAATTAGCA	AGAACTGAGG	GGAGGGCTTT	TTCCATTGTT	TAATGTTTTG	3000
13	TGATTTTTAG	CTAAAGAGAG	GGAACCTCAT	CTAAGTAACA	TTTGCACATG	ATACAGCAAA	3060
	AGGAGTTCAT	TGCAATACTG	TCTTTGGATA	TIGITICAGT	ACTGGGTGTT	TAAAGGACAA	3120
20	ATAGCTGCTA	GAATTCAGGG	GTAAATGTAA	GTGTTCAGAA	AACGTCAGAA	CATTTGGGGT	3180
	TTTAAACTGA	TTTGTTGCTC	CCTATCCAGC	CTAGACACCA	GTAACTCTTG	TGTTCACCAG	3240
25	GACCCAGACC	CTTGGCAAGG	GATAGGCTCG	TTGGTGACAT	TGTGAATTTC	AGATTTGTTT	3300
23	TATCCACTIT	TTTTGCTATT	TATTTAAATG	GTCGATCAAC	TTCCCACAAA	CTGAGGAATG	3360
	AATTCCACGA	SCCTGTTCTG	AAAATGTGGA	CGTAAGACAA	ACACGTGCTC	GTCCTTTAAT	3420
30	GGAGTTCACC	AGCACACTTG	TTAACCAGTC	CTGTTTGCTT	TCGTCTTTTT	TTGTGCGTAA	3480
	TAAAGTCAAC	TGACCAAGTG	ACCATGAAAA	GGGGCTGTCT	GGGGCTCCTG	TTTTTAGCT	3540
35	GCTGTTCTTC	AGCTCCGACC	ATGTTGCTGT	GTGATTATCT	CAATTGGTTT	TAATTGAGGC	3600
,	AGAAACTGAA	GCTCTACCAA	TGAACTGTTT	AGAAACAAGA	CACACTTITG	TATTAAAATT	3660
•	GCTTGCAGTA	АСААААААА	ааааааааа	ааааааааа	AAACTCGAGG	GGGCCCGGT	3720
40	ACCCAATTCG	CCGTATATGA	TCGTAAACAA	TC			3752

45 (2) INFORMATION FOR SEQ ID NO: 128:

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1144 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 128:

55 TGACCCTCTG CCTGCCGGGC TCAGTGCTGG ACGCTTTCTG TTTTGTCGCA GTCGGTCCTC 60
GGTAACACCA GCGGCCTGTG GTCCACCACT CCATTCAGCA GCTCCATTTG GTCCAGCAAC 120
CTTAGCAGCG CCTTCCCTTC ACCACTCCAG CAAACACGCT GGCAAGCATC GGCCTCATGG 180

	GCACAGAAAA	CTCCCCTGCT	CCTCACGCTC	CCTCCACCTC	CAGTCCAGCT	GACGACTTGG	240
	GACAGACCTA	CAACCCGTGG	CGGATATGGA	GCCCCACGAT	TGGAAGAAGA	AGCTCGGACC	300
5	CTTGGTCTAA	TTCGCACTTT	CCTCACGAGA	АТТАААТТАА	GCAAAAAACA	AACAAACATA	360
	GIGGGCCCIC	GTCTAGATCA	TGATGTGCCA	GTTTCTGAGA	CATCTTTTTA	AGGCTCTTAC	420
10	TGCAGCTCCC	CTCCCCACCC	TCCTCTTCTT	TGCAAAACAG	ACCCAAGCAG	GGCAGGCTCA	480
10	GACCACTCGC	TTCTTTCAGA	TCTTTCTTGC	aattatgata	ACATGAGATT	TGCTGTTGTG	540
	CTTTTAGAGA	AAAGTCTGGA	CTCAGCCACA	AACTCTAATA	AGACCTGTAC	ATCTGAGAAC	600
15	CTTTCCCGTT	ACTGCGTTTT	CACCACCTGT	CTTCCCCATG	СТТТАТТТАТ	CTGTATGAAC	660
	ACAGATITGA	CATTACAGCT	AAGGAAATAA	TTTGAGTTGA	TTCAGAAATC	CTGGCATGTG	720
20	ACAATTTTGT	TAAATTACCA	AGTTTGGTTT	ттаатааттт	СТСААТАТТА	TGCGCCAAGA	780
20	TCTAATTTTA	AAACIGTATG	AGGACTTTGT	GCTGAAAATA	GAGTATTTT	TTAAAGTAAG	840
	GCTGTCTTGG	TTTAAAAGCA	GATTACAGAA	ATGTAAGTCA	ACTTAAGAAC	RGTGAATGAA	900
25	TGTAAAAACA	TTCAGTYGAG	ACCATATGCA	TTTTCTGTGC	TGTTTGTACT	TGAGGTATGT	960
	AACATTTGTA	TACCTGAACT	TATTTTAAAG	ATGAACTGAA	ATGCACATAG	CCAAGTCTTG	1020
30	AGATACAAGA	TTGAATGTGT	ATTTCTTAAA	AATACAACTT	TGTGTTGTAC	TTTGAAATAA	1080
50	ATGATGCTTT	TTTCAAAAAA	ааааааааа	AAAAAAAAC	TCGAGGGGGG	GCCCGGTACC	1140
	CAAT						1144

(2) INFORMATION FOR SEQ ID NO: 129:

40

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1830 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 129:

GCATGCAGAG GAGCACCCTG AGCGTGTYCC TGGAGCAGGC GGCCATSTTG GCACGGAGCC 60 50 ACGGGTTGCT GCCCAAGTGC ATCATGCAGG CCACGGACAT CATGCGGAAC AGGGCCCAAG 120 GGTGGAGATT CTGGCCAAAA ACCTGCGAGT CAAGGACCAG ATGCCCCAGG GTGCTCCGCG 180 240 CCTCTACCGC CTCTGCCAGC CGCCGGTGGA TGGGGACCTC TGAACACCCA AATGCCCCAC 55 GCTGGGCCGC GGCCTCTGGA GCTGGGATTT GGGAGGACAC AGCAGGCAGC GCTGGCCTTC 300 TCCAGGGATG GCCCAANGCT TCCGCARCCG CCCGTTCCGG GACCTGCCCA GCGTCCTCCC 360 60 TGCCTCCTTC CGGGACAAGC CTGGCCACCC TCGCTGTGAT GACGAGCTGG CTGATTGGCC 420

	CTGGGCCGGC	CCATTCTTCA	CACGCCTGCC	AGAAGCTGGA	GGGGTGCTGG	AGACCCATAG	480
5	ACCTGATGGG	AGCAGCTGGT	GCCTGGCCTT	CGGCTCCTGC	GTCCCCAGAA	CCCAAGGGAA	540
	CGTCATGGAG	GCCACATGGG	GCCACCCGGC	TCCCTCGGGA	TGGCTCCGCT	GCACTTTTGA	600
	AACCCCGGTT	TCCTTCAACG	TCCACATTCC	AGGTGACCAC	ACGTGTCTCC	TCCTCCTCAT	660
10	CTTAGCTTCC	AGGTTCACCC	TAACCCTGTA	CTAACCTGCT	TGGTGGACTT	GGAAAAGACT	720
	TGGCTCTGTC	GGGAAAGGAG	AGACGGGGCC	TCCATCACGC	CTGTTACCAG	AGGATCCCCG	780
15	AGAGCCACAC	CAGCTCTGGA	CATCACCGCC	CCTGGAACTG	GGCCACCAG	CCCTGGGCAC	840
	GAGATTTGCT	CTGACTITAT	TTATATGGCA	TGAAATCTCT	GGTTTATTTT	GGGATTTTTT	900
	GTTGTTGGTG	TTGTCAAAGT	TTGTTTTTTC	TAAAGTTGTG	TGATTATATA	TTTGACATTT	960
20	TACATTTCAA	AGAAAGGTAT	GTTGTCTAAC	AGGGGACCAA	CAGAAGGTAG	TATTGACAAC	1020
	TGTTCCTGCT	тстасталал	AAAAAAGAGC	ACAAAAGAAA	AACTAAATTA	TTGAAAAATT	1080
25	AAAAAATGTC	ATTGTTTCCT	GTTTGTTAAT	ATTAGGGTTG	TAAGGTGTCG	TTTTGAGGTA	1140
	TCGACTGTGA	TTCCTTCCCC	CACCCTCCAT	TCTCCAGCGG	TTGGCCGGTG	TTAGAACTCG	1200
	CTCTCTTTGA	GTGACTGGCT	ACAAGGGCCT	GAGAGGTGGC	CAGCCAGGGT	TGGAGCTGGA	1260
30	GGGGATGGAG	CCCCACCTGA	GGTGCCGTGT	CACACGGGTT	AGAGGGTCAC	TGGGAAACAC	1320
	CGGGCGGTGG	CTTCTGTGAT	TTATTTTCTT	GATGGTAACT	TCTCAGAGCA	GGGCRATTGG	1380
35	GACATCACCA	GCCAGAGCAC	AGGAAGCCAC	CCTGCCTGCT	GGGGAGGAGG	GACCCACACA	1440
	AGCCCCCTCG	GCAGTTTGTC	CCCCCAGCTT	CGGTATGCCT	TCAGGGAAAG	GTCACAGCTG	1500
	GGGAGGAAGC	GGGGGGACGC	CTGTCACCCC	TGGCAGGTGG	TGAGTTCAGG	TGGGGGCTCC	1560
40	CTGCTKCCCC	CAGGCCTGGG	AGCTTGAAGC	CCTCCCGGCA	TCTGGCATCC	GAGCCTCCCG	1620
	CCCTCCAGGG	TGCGCTTCCC	TCTCTTGCCG	CAGCATACAC	GAGGGCAGGC	AGTGGCCTTG	1680
45	TCACTGTATC	TTGCATCAGA	GACAAAGGAG	GACCCGCTTT	AGCCCTGCTG	CGGGAAATGG	1740
	GGGATGGCCC	AGGGCCAGCG	CATTGTGCAC	TGGTTTACTT	TAAAATGTAC	AGATTCTTCT	1800
	CGTTAAATTC	TTGATAGATT	TTTATTATT				1830

(2) INFORMATION FOR SEQ ID NO: 130:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1864 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60

50

		·-					
	GCCCCCCCG	ATGGCGACCC	CAGCCTCGGC	CCCAGACACA	CGGGCTCTGG	TGGCAGACTT	60
5	TGTAGGTTAT	AAGCTGAGGC	AGAAGGGTTA	TGTCTGTGGA	GCTGGCCCCG	GGGAGGCCC	120
	AGCAGCTGAC	CCGCTGCACC	AAGCCATGCG	GGCAGCKGGA	GATGAGTTCG	AGACCCGCTT	180
10	CCGGCGCACC	TTCTCTGATC	TGGCGGCTCA	GCTGCATGTG	ACCCCAGGCT	CAGCCCAACA	240
10	ACGCTTCACC	CAGGTCTCCG	ATGAACTTTT	TCAAGGGGGC	CCCAACTGGG	GCCGCCTTGT	300
	AGCCTTCTTT	GTCTTTGGGG	CTGCACTGTG	TGCTGAGAGT	GTCAACAAGG	AGATGGAACC	360
15	ACTGGTGGGA	CAAGTGCAGG	AGTGGATGGT	GCCTACCTG	GAGACGCGGC	TGGCTGACTG	420
	GATCCACAGC	AGTGGGGGCT	GGTTATCCCA	GATCACTGAA	GCTGAGATGG	CTGATGAAGT	480
20	AATTTGCAGT	GAAATTTTAA	GCGACTGTGA	CTCTGCTGCA	AGTTCCCCAG	ATCTTGAGGA	540
	GCTGGAAGCT	ATCAAAGCTC	GAGTCAGGGA	GATGGAGGAA	GAAGCTGAGA	AGCTAAAGGA	600
	GCTACAGAAC	GAGGTAGAGA	AGCAGATGAA	TATGAGTCCA	CCTCCAGGCA	ATGCTGGCCC	660
25	GGTGATCATG	TCCATTGAGG	AGAAGATGGA	GGCTGATGCC	CGTTCCATCT	ATGTTGGCAA	720
	TGTGGACTAT	GGTGCAACAG	CAGAAGAGCT	GGAAGCTCAC	TITCATGGCT	GTGGTTCAGT	780
30	CAACCGTGTT	ACCATACTGT	GTGACAAATT	TAGTGGCCAT	CCCAAAGGGT	TTGCGTATAT	840
	AGAGTTCTCA	GACAAAGAGT	CAGTGAGGAC	TTCCTTGGCC	TTAGATGAGT	CCCTATTTAG	900
	AGGAAGGCAA	ATCAAGGTGA	TCCCAAAACG	AACCAACAGA	CCAGGCATCA	GCACAACAGA	960
35	CCGGGGTTTT	CCACGAGCCC	GCTACCGCGC	CCGGACCACC	AACTACAACA	GCTCCCGCTC	1020
	TCGATTCTAC	AGTGGTTTTA	ACAGCAGGCC	CCGGGGTCGC	GTCTACAGGG	GCCGGGCTAG	1080
40	AGCGACATCA	TGGTATTCCC	СТТАСТАААА	AAAGTGTGTA	TTAGGAGGAG	AGAGAGGAAA	1140
	AAAAGAGGAA	AGAAGGAAAA	AAAAAAGAAT	таааааааа	ААААААААА	ACAGAAGWIG	1200
	MCCTTGATGG	АААААААТА	ТТТТТТАДАА	AAAAGATATA	CTGTGGAAGG	GGGGAGAATC	1260
45	ССАТААСТАА	CTGCTGAGGA	GGGACCTGCT	TTGGGGAGTA	GGGGAAGGCC	CAGGGARTGG	1320
	GGCAGGGGGC	TGCTTATTCA	CTCTGGGGAT	TCGCCATGGA	CACGTCTCAA	CTGCGCAACT	1380
50	GCTTGCCCAT	GTTTCCCTGC	CCCACCCCAC	CCCTCTTCTC	CGGCTCCCTG	CCCCTCCAGA	1440
	TTGCCTGGTG	ATCTATTTG	TITCCTITTG	TGTTTCTTTT	TCTGTTTTGA	GTGTCTTTCT	1500
	TTGCAGGTTT	CTGTAGCCGG	AAGATCTCCG	TTCCGCTCCC	AGCGGCTCCA	GTGTAAATTC	1560
55	CCCTTCCCCC	TGGGGAAATG	CACTACCTTG	TTTTGGGGGG	TTTAGGGGTG	ттттсттт	1620
	TCAGTTGTTT	TGTTTTTTG	TTTTTTTTTTTT	TTTCCTTTGC	CTTTTTTCCC	TTTTATTTGG	1680
60	AGGGAATGGG	AGGAAGTGGG	AACAGGGAGG	TGGGAGGTGG	ATTTTGTTTA	TTTTTTTAGC	1740

15

20

25

30

35

40

45

50

55

60

TCATTTCC	AG GGG1	GGGAAT	AATTTTTTTAA	TATGTGTCAT	GAATAAAGTT	GTTTTTGAAA	1800
акаааааа	AA AAA	АААААА	ААААААА	ааааааааа	ааааааааа	ААААААААА	1860
AAAA							1864

10 (2) INFORMATION FOR SEQ ID NO: 131:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2041 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEO ID NO: 131:

GGCACGAGCG CCCGGCAGGG CCCTGGACCC GCGCGGCTCC CGGGGATGGT GAGCAAGGCG 60 CTGCTGCGCC TCGTGTCTGC CGTCAACCGC AGGAGGATGA AGCTGCTGCT GGGCATCGCC 120 TTGCTGGCCT ACGTCGCCTC TGTTTGGGGC AACTTCGTTA ATATGAGGTC TATCCAGGAA 180 AATGGTGAAC TAAAAATTGA AAGCAAGATT GAAGAGATGG TTGAACCACT AAGAGAGAAA 240 ATCAGAGATT TAGAAAAAAG CTTTACCCAG AAATACCCAC CAGTAAAGTT TTTATCAGAA 300 AAGGATCGGA AAAGAATTTT GATAACAGGA GGCGCAGGGT TCGTGGGCTC CCATCTAACT 360 GACAAACTCA TGATGGACGG CCACGAGGTG ACCGTGGTGG ACAATTTCTT CACGGGCAGG 420 AAGAGAAACG TOGAGCACTG GATCGGACAT GAGAACTTCG AGTTGATTAA CCACGACGTG 480 TOGAGCCCCT CTACATCGAG GTTGACCAGA TATACCATCT GGCATCTCCA GCCTCCCCTC 540 CAAACTACAT GTATAATCCT ATCAAGACAT TAAAGACCAA TACGATTGGG ACATTAAACA 600 TGTTGGGGCT GGCAAAACGA GTCGGTGCCC GTCTGCTCCT GGCCTCCACA TCGGAGGTGT 660 ATGGAGATCC TGAAGTCCAC CCTCAAAGTG AGGATTACTG GGGCCACGTG AATCCAATAG 720 GACCTCGGGC CTGCTACGAT GAAGGCAAAC GTGTTGCAGA GACCATGTGC TATGCCTACA 780 TGAAGCAGGA AGGCGTGGAA GTGCGAGTGG CCAGAATCTT CAACACCTTT GGGCCACGCA 840 TGCACATGAA CGATGGGCGA GTAGTCAGCA ACTTCATCCT GCAGGCGCTC CAGGGGGAGC 900 CACTCACGGT ATACGGATCC GGGTCTCAGA CAAGGGCGTT CCAGTACGTC AGCGATCTAG 960 TGAATGGCCT CGTGGCTCTC ATGAACAGCA ACGTCAGCAG CCCGGTCAAC CTGGGGAACC 1020 CAGAAGAACA CACAATCCTA GAATTTGCTC AGTTAATTAA AAACCTTGTT GGTAGCGGAA 1080 1140 AAAAAGCAAA GCTGATGCTG GGGTGGGAGC CCGTGGTCCC GCTGGAGGAA GGTTTAAACA 1200 AAGCAATTCA CTACTTCCGT AAAGAACTCG AGTACCAGGC AAATAATCAG TACATCCCCA 1260

	AACCAAAGCC	TGCCAGAATA	AAGAAAGGAC	GGACTCGCCA	CAGCTGAACT	CCTCACTTTT	1320
5	AGGACACAAG	ACTACCATTG	TACACTTGAT	GGGATGTATT	TTTGGCTTTT	TTTTGTTGTC	1380
J	GTTTAAAGAA	AGACTTTAAC	AGGTGTCATG	AAGAACAAAC	TGGAATTICA	TTCTGAAGCT	1440
	TGCTTTAATG	AAATGGATGT	GCCTAAAAGC	TCCCCTCAAA	AAACTGCAGA	TTTTGCCTTG	1500
10	CACTITITIGA	ATCTCTCTTT	TTATGTAAAA	TAGCGTAGAT	GCATCTCTGC	GTATTTTCAA	1560
	GTTTTTTTAT	CTTGCTGTGA	GAGCATATGT	TGTGACTGTC	GTTGACAGTT	TTATTTACTG	1620
15	GTTTCTTTGT	GAAGCTGAAA	AGGAACATTA	AGCGGGACAA	AAAATGCCGA	TTTTATTTAT	1680
15	AAAAGTGGGT	ACTTAATAAA	TGAGTCGTTA	TACTATGCAT	AAAGAAAAT	CCTAGCAGTA	1740
	TTGTCAGGTG	GTGGTGCGCC	GGCATTGATT	TTAGGGCAGA	TAAAAGAATT	CTGTGTGAGA	1800
20	GCTTTATGTT	TCTCTTTTAA	TTCAGAGTTT	TTCCAAGGTC	TACTTTTGAG	TTGCAAACTT	1860
	GACTTTGAAA	TATTCCTGTT	GGTCATGATC	AAGGATATTT	GAAATCACTA	CTGTGTTTTG	1920
25	CTGCGTATCT	GGGGCGGGGG	CAGGTTGGGG	GGCACAAAGT	TAACATATTC	TTGGTTAACC	1980
	ATGGTTAAAT	ATGCTATTTT	ААТАААТАТ	TGAAACTCAC	САААААААА	АААААААА	2040
	A						2041
30							
	(2) INFORMA	ATION FOR SE	Q ID NO: 13	12:			
35	(i)	SEQUENCE CE	HARACTERIST	ICS:			

45

50

55

60

(A) LENGTH: 2012 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132:

TACCAAGCTG CAAGAATCTA CTATATCATG GCAGAAGAAG TAGAGTGGGA CTATTGCCCT 60 GACCGGAGCT GGGAACGGGA ATGGCACAAC CAGTCTGAGA AGGACAGTTA TGGTTACATT 120 TTCCTGAGCA ACAAGGATGG GCTCCTGGGT TCCAGATACA AGAAAGCTGT ATTCAGGGAA 180 TACACTGATG GTACATTCAG GNTCCCTCGG CCAAGGACTG GACCAGAAGA ACACTTGGGA 240 ATCTTGGGTC CACTTATCAA AGGTGAAGTT GGTGATATCC TGACTGTGGT ATTCAAGAAT 300 AATGCCAGCC GCCCTACTC TGTGCATGCT CATGGAGTGC TAGAATCTAC TACTGTCTGG CCACTGGCTG CTGAGCCTGG TGAGGTGGTC ACTTATCAGT GGAACATCCC AGAGAGGTCT 420 GGCCCTGGGC CAATGACTCT GCTTGTGTTT CCTGGATCTA TTATTCTGCA GTGGATCCCA 480 TCAAGGACAT GTATAGTGGC CTGGTGGGGC CCTTGGCTAT CTGCCAAAAG GGCATCCTGG 540

	NAGCCCCATG	GAGGACGGAN	TGACATGGAT	CGGGAATTTG	CATTGTTGTT	CTTGATTTTT	600
	GATGAAAATA	AGTCTTGGTA	TTTGGAGGAA	AATGTGGCAA	CCCATGGGTC	CCAGGATCCA	660
5	GGCAGTATTA	ACCTACAGGA	TGAAACTTTC	TTGGAGAGCA	ATAAAATGCA	TGCAATCAAT	720
	GGGAAACTCT	ATGCCAACCT	TAGGGGTCTT	ACCATGTACC	AAGGAGAACG	AGTGGCCTGG	780
10	TACATGCTGG	CCATGGGCCA	AGATGTGGAT	CTACACACCA	TCCACTTTCA	TGCAGAGAGC	840
10	TTCCTCTATC	GGAATGGCGA	GAACTACCGG	GCAGATGTGG	TGGATCTGTT	CCCAGGGACT	900
	TTTGAGGTTG	TGGAGATGGT	GGCCAGCAAC	CCTGGGACAT	GGCTGATGCA	CTGCCATGTG	960
15	ACTGACCATG	TCCATGCTGG	CATGGAGACC	CTCTTCACTG	TTTTTTCTCG	AACAGAACAC	1020
	TTAAGCCCTC	TCACCGTCAT	CACCAAAGAG	ACTGAAAAAG	CAGTGCCCCC	CAGAGACATT	1080
20	GAAGAAGGCA	ATGTGAAGAT	GCTGGGCATG	CAGATCCCCA	TAAAGAATGT	TGAGATGCTG	1140
	GCCTCTGTTT	TGGTTGCCAT	TAGTGTCACC	CITCIGCICG	TTGTTCTGGC	TCTTGGTGGA	1200
	GTGGTTTGGT	ACCAACATCG	ACAGAGAAAG	CTACGACGCA	ATAGGAGGTC	CATCCTGGAT	1260
25	GACAGCTTCA	AGCTTCTGTC	TTTCAAACAG	TAACATCTGG	AGCCTGGAGA	TATCCTCAGG	1320
	AAGCACATCT	GTAGTGCACT	CCCAGCAGGC	CATGGACTAG	TCACTAACCC	CACACTCAAA	1380
30	GGGGCATGGG	TGGTGGAGAA	GCAGAAGGAG	CAATCAAGCT	TATCTGGATA	TTTCTTTCTT	1440
	TATTTATTTT	ACATGGAAAT	AATATGATTT	CACTTTTTCT	TTAGTTTCTT	TGCTCTACGT	1500
	GGGCACCTGG	CACTAAGGGA	GTACCTTATT	ATCCTACATC	GCAAATTTCA	ACAGCTACAT	1560
35	TATATTTCCT	TCTGACACTT	GGAAGGTATT	GAAATTTCTA	GAAATGTATC	CTTCTCACAA	1620
	AGTAGAGACC	AAGAGAAAAA	CTCATTGATT	GGGTTTCTAC	TTCTTTCAAG	GACTCAGGAA	1680
40	ATTTCACTTT	GAACTGAGGC	CAAGTGAGCT	GTTAAGATAA	CCCACACTTA	AACTAAAGGC	1740
	TAAGAATATA	GGCTTGATGG	GAAATTGAAG	GTAGGCTGAG	TATTGGGAAT	CCAAATTGAA	1800
	TTTTGATTCT	CCTTGGCAGT	GAACTACTTT	GAAGAAGTGG	TCAATGGGTT	GTTGCTGCCA	1860
45	TGAGCATGTA	CAACCTCTGG	AGCTAGAAGC	TCCTCAGGAA	AGCCAGTTCT	CCAAGTTCTT	1920
	AACCTGTGGC	ACTGAAAGGA	ATGTTGAGTT	ACCTCTTCAT	GTTTTAGACA	GCAAACCCTA	1980
50	TCCATTAAAG	TACTTGTTAG	AACACTGAAA	AA			2012

(2) INFORMATION FOR SEQ ID NO: 133:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1669 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 133:

5	GAGCAGTATT	TTAACCAACT	TGTATTACAG	ATGTTACAGT	TCATGTTAGG	AAGTCAGAAA	60
J	AGACTTTGTT	TGTCTTTGTT	CTGCTGATGT	GAGTCATGTT	TTGTGGGGTC	TTCCATGGCA	120
	CATTTACCTG	TTGCTCCGTC	CAGATGTTGA	GGGCCAGTCT	AGGCTGACAC	ATCCTACCCG	180
10	AGGACAAGCC	TGTTCTCCAT	TTCTTCACTC	TCCCCTCCCC	ATATAGCAAC	TCTCCCAGGT	240
	TTAGATTACC	GTTTTCGACG	ACAGATTAAC	CAAAAATGCC	CCACACAGGT	TTTATTACTG	300
15	ттататаста	TACTTTTAAC	AGTACAGACC	СТАААТТТТА	TTATTTGTTG	CTCCCCCAAT	360
13	CTGATACCAA	ATGTTTAAAG	TTGTTTGAAA	TCCAAACATG	GTAGTGTTCA	TGGGTAAATA	420
	TTTTCTAGGC	TATGTAAGAG	TTAGCAGCCC	ATAGCATAGA	AGTAATCAAG	TAGCATCTGA	480
20	GACTGTTGGA	GGCACTAGGG	CCTCTCTGGG	CCTAACAGCC	TCACTTCCCC	AGCCTCACCT	540
•	TGCTGTCCTC	TGACACTGCC	ATCAGGGCTG	TTAGTGGCAC	CIGTATGAGG	CCAAGTGTGC	600
25	GTCCAGGGGA	ACAGCACAGG	TTAATGCGTC	TCCCTAGAAC	TCATGAAGTC	AGTTTAATTC	660
23	ATGCATGAAC	ATGAGTTCAT	TTTATGTTTT	ATATAGCTTT	CITAGACATA	CCAAACCATC	720
	ATTCATAAAT	CAGATAAATT	ATTCAGITTT	TGTGTTTAGA	AAGCTAAGTA	TGTGTAGCTG	780
30	GAAACAAAAA	TGAGCGTGTT	TTCTCTCCTG	TTAATCTAGA	GTGTGCAGTT	ACACATGTGT	840
	GGATAATTTC	ATGTTCCAGG	GCCCTTGGC	ATCTCCCATG	GACTGATTCC	CAGGAAGAAA	900
35	AGCCCAAAGG	GAAACCCACG	ATTCCTTTCG	AGTAGATGTG	GGAAAGAGCC	CATTGGAGGA	960
33	TATGAGGTCC	TGTGAAATTC	AGTTGTGTGT	GIGGCICCIT	GTTAGCAGTC	ATGTTGACAT	1020
	GGTGTTAGGA	GGCTCCCCAT	CCACCCTTTA	CATGATGTAG	GGACCAGTGT	CTTGTGAGAT	1080
40	TAACCTTGGG	ACACAGTGGG	TTAGCCTGGA	GAAAATGAGA	GCCCTGCCT	GGACCCAGGG	1140
	AGAGGAGCCA	GTGACACAGG	CAGAGCGGTG	CAGCCCTCCT	TCCCTTCCAT	TTGGAGGAGG	1200
45	TGGTGCCAGG	AGCCTGCCCG	CTTACCTCTG	CTGAAGCATA	AGTGGACTTT	GCTTTTGGGG	1260
43	CTTATCTCTG	ATACATGCTG	GAGCCCTGCC	TCTCCACTGC	TAGATGGAAC	CTGGAATCTC	1320
	TCATCTACCT	CTTAGTCTGT	CAGTTTCTAC	GTGTGAGAAG	CAAGCTTGTG	GCCAGTGTC	1380
50	CTTGTACATG	CTGTAGCACT	таааааатаа	TTCCAGGGTT	CCCTGGAAAA	CCAGTCCCAG	1440
	GGTTCCTATG	ATCTGTAGTT	TCTACCTGGA	TTATAACTGG	TTTTGGGTAC	CTGAATTTTG	1500
55	ATTGGTTAGC	СТТААТТАТА	GTCTGGCGTG	ATCATGTAGA	ATCTTTTCTG	GTGAACAGAT	1560
55	CATAAAGTTC	TATCAAGGAG	TTCTATCAAG	GCATCCATGT	CACTGCTGCT	ATGCTGGTTA	1620
	CAACTTGAGA	TTTTTTGAAAT	AAAAAATTTG	TCATAAAAA	аааааааа		1669

(2) INFORMATION FOR SEQ ID NO: 134:

5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1565 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 134:

	CACTTTTGCT	ATATAACCTA	AGTGATAACC	CTCTTTTAGT	TACCTGCCAA	ACTCTGGNCT	60
15	TGGTTTATAT	TGCAGTTAAC	ACAGTTACAA	AGCTGTAATG	GIGICTITIT	TTCCTTTGTA	120
	ACGGAATGTG	TAAATCAAAG	TATATACATT	GTGTGGTGTT	CCTCTTTCTG	GAGTTTCATG	180
20	AGGATTTACA	CATGGCATTC	AGTGTTCTGT	ATAGATCTGC	CTACCTTTGT	GAATTCATCT	240
20	GTTAACCCCT	CTTCCTTTGA	GAGAGCACCG	GCGATGGTGG	TTAACTCCTT	GIGTITICIC	300
	TCTCTCCTAC	TGGTTATTCT	TGAATTAAGC	ACAGACTCGT	CAGCTCGGTT	GCTTTATCAT	360
25	GAATAATGTG	TGTGACCTTG	CAGTTCTTCC	ACAGTTCAGC	AAACAAGTGC	TAGCTTCACT	420
	GACCAAAAAT	TAAGGAAGGA	AAACACAGTT	TTTAAAACGA	TCCATCTTTT	AACAGCCGAA	480
30	ACCGATGTGT	CTATGGTGCT	GCACCTTGCT	GTTGTACTTC	TGAAATCAGA	CGTGTGTGAA	540
50	CGATCATTIC	TGACTTAACC	GTGAGATGCT	CACGAGTACC	CITCCIGITG	TTTTGTTAGC	600
	ATTGAAATCG	AGACTATTTA	TTTGGAATAT	ATACAACAGT	GTTTTTCCAC	TGTATTTCAT	660
35	TTGCAAAAGT	TGAGAACTGC	TTTCTCTACC	TTTTGCAAAA	TAATTGATAT	TCCATATTGG	720
	ATTCTCAAAG	ACTTCGATAT	GGTGAACCTA	TTAAACCTAG	AAATTGTATT	CATCCTTTCA	780
40	TGACTGTGGC	CTGAGTTCCC	CAGCCCCTCT	CCTCCTTTT	TTTAGATGAG	ATTTAGCACA	840
	CTCTCAGTTA	TTTAAACATG	CAACATTTCT	TGAGTATGTA	TGTTGAGGCC	ATCTGAGCTC	900
	ATAGCTGATT	CAGTAACCAG	TTTCATGCTG	TGTCATTCAC	ACTCACTACT	TAATACTGCC	960
45	ATGGTGAAAA	TGTGGAGGAA	AAATGTATCC	ATGTGTGTCT	GGGAAGCATA	TACACTTGTA	1020
	САТТІТТТАА	TACTCTGATT	CTGTAACATT	TCTGAGTTTT	GTTTTGTTTT	ACAGNAAAAA	1080
50	AAAAAAAGT	GATAAAGCAA	TCAGAAGACC	AAGAGGTTTA	CTATTGATGC	TTAGGGTCGT	1140
50	CTGACCTTGG	CTGGCCAATA	GACCTACACG	GCCAAATTAA	TTTACGAGAG	TAATAATTT	1200
	TCAAAAGCCA	ATTTTTTTC	TGTATTTTCT	GTATGAAACT	GCCAATATCA	TGAATAGAAA	1260
55	GGGAGAACCA	TAAAGGAGAA	AGAACGTGAT	GTTCTGTTAT	GTTCATGTAA	ACCTAAAGAA	1320
	ACAGTGTGGA	GGCAGGCGCG	ATCAGCCGAA	CTCTAGGGAC	TTGGTGTTGC	TTGGAAGGCA	1380
60	TCCATACCTG	CATTTTGCAT	TCTTCGTATG	TAATCATATT	GCCAAAGACA	AACTATTTCA	1440

15

CTCGA						1565
CTTCCAGTTG	СААТАААААТ	TACTGAGTTG	CATCAATTGA	AGAAAAAAA	ААААААААА	1560
TCATTTATTG	TAAATAACAC	TTTTCCCCAG	ACCTACCATA	AAGTTTCTGT	GATGTATTGT	1500

10 (2) INFORMATION FOR SEQ ID NO: 135:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2007 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135:

20	TCTAAAAGCC	CCCTTATACC	CCACTTTGTG	CAGCAAAGAT	CCCCGTGCAG	GTCACAGCCT	60
	GATTTGTGGC	CAGGCTGGAC	AAATTCCTGA	GGCACAACTT	GGCTTCAGTT	CAGATTTCAA	120
25	GCTGTGTTGG	TGTTGGGACC	AGCAGAAGGC	AAACGTCCAG	CCAACACACA	GGACTGTAAG	180
23	AGGACTCTGA	GCTACGTGCC	CTGTGAAGAC	CCCCAGGCTT	TGTCATAGGA	GGTCGTTCAG	240
	CTTCCCCAAA	GTCAGAGGTG	ATTTGATTTG	GGGAAGACTG	AATATTCACA	CCTAAGTCGT	300
30	GAGCATATCC	TGAGTTTTAC	TTCCTTATGG	CTTGCCCTCC	AAGTTCTCTC	TCTCATACAC	360
	ACACACACCC	TTGCTCCAGA	ATCACCAGAC	ACCTCCATGG	CTCCAGCTAT	GGGAACAGCT	420
35	GCATTGGGGC	TGCCTTTCTG	TTTGGCTTAG	GAACTTCTGT	GCTTCTTGTG	GCTCCACTCG	480
55	CGAGGCAGCT	CGGAGGTGTG	GACTCCGATT	GGGCTGCAGG	CAGCTCTGGG	ACGGCACAGG	540
	GCGGGCGCTC	TGATCAGCTC	GTGTAAAACA	CACCGTCTTC	TTGGCCTCCT	GGCAGTTCTT	600
40	TCTGCGAATA	GTCCTCTCCC	TGGCCAGTTG	AATGGGGGAA	GCTGCTGGCA	CAGGAAGGAG	660
	AGGCGATCCC	GGCTGAGGCT	TAGGAAATTG	CTGGAGCCGG	CTCCAAGCAG	ATAATTCACT	720
45	GGGGAGGTTT	TCAGAGTCAA	ACATCATTCT	CCTCTKTTC	GGGCCAGGT	GTGTCACACA	780
15	AGCATCTCAA	AGTCAAAAGC	CATCTGGGGC	TGCTGCTTCT	CTTTCTCAGG	CTCTGGGGAA	840
	AGGAATCTCC	CTCTCCTCTC	ACTIGATICC	AAGTGTGGTT	GAATTGTCTG	GAGCACTGGG	900
50	ACTITITIC	TCTTTTCCTT	GATGGACCAA	CAGTGCAAAT	GCAATCTCGC	CATTTAACTT	960
	TCAGGTCGAT	TTCCTTTCCT	GATCAGACAT	CTTTGTGCCC	CCTTTAGGAA	GGAAAAGAAT	1020
55	ACACCTACGA	TGTGCCAGGC	ACTGTGTTAG	GCGCTTTTAT	ATAGATCCTC	GTTAGGATGA	1080
55	GACTAAGGGA	TGAGGACATC	тстттатааа	AGGCCCCTAA	GTAATGGATA	AACAGAAACA	1140
	CTTAGAGGTG	AGAAGGTCTG	TCTTCAAGAT	CCAAGGTAAG	ATTGCCTTCA	GTCTGATGTT	1200
60	TGTTCTCAAG	GACTTATCCC	СТАСААТАТТ	CTCCCACTCC	ATACTTCTCC	TTCTACCCCA	1260

PCT/US98/04493

480

540

600

WO 98/39448

55

60

ACATTTAAAT TTGAGAAGGT GACAACTGGC TCTTTTCCAG TCTTCCTTCA TGTCAGTTTT

CTGATAGACC ACTATTGGCA AACAGTATCT GTCAACTACC AAATGTGTAA AATTTTCTGT

ATTTCACTTT GTCTTATTTG TAAATAGTGA ACTAAAACTT TTGGCAGATC AGCAACATTT

GCTGAGCCTG TTTTTTAAGC TAATGTGTAT TCTTACTAAT GTTCCTATCA AGAATGGATT 660 TGTAATATAT GCTGTCTATT TCTAATGTTC ACATTCATAT TTTGAGGTTC TATCTTATTT 720 5 TAATAGAGAA CAGACTICTC AAAAAATCTT CAGAAGCAGC TTATTATTGA AATATCGAAA 780 TATTGAAATA AACCCGGTGG GTTAGATTAC TCATCTGTCC ACCAAGTGGG ACATTTGCAT 840 GGACTGGGG CTTAAAGGAC TTAGAAGAGA CCTGTAAGTA AATCCTGAAA ATGAGCCAAT 900 10 CCCCACTIGA ATGGTTACTG GAGTAAACCC ACCTTTACCA CCCCAATTAC AGCACCCGAG 960 1020 15 CAAAATGTGT GTTCTACACT GTTACAGGCT TCTCTTTTGT TIGATTAAAG ATTTTAGTCC 1080 TACTTTTGTA TGGACACATT AGAATATTCA GAGACCAAAA TAGAAGAATT TGCTGTTAGA 1140 TATTITICAG AAGTCAGCAG ATTIGTCGCA AATCATITAT TIGCCTTTTT AAAAATTCAT 1200 20 TTAAGCAGTT CAGAGAGTAG ACTACTCAGA AAATTATTTC ACGTAATTGT CTAAGAGGTC 1260 AATATTTTT AATGCATATT GAATCAAATA A 1291

25

(2) INFORMATION FOR SEQ ID NO: 137:

30 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1906 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

35

40

45

50

55

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137:

GGCACGAGGA CCTACTTTG TAACAGACCA TGGTTGTGTC CAAGGTAAAA CCACAGTGAT 60 ATTITIGGAT GCTTIGTCTG CAATCTTGAC TTGTTTTTGC AGTATCATTA TTCAGACTTC 120 AAATIGIGAA TCTTTTAAAC ATCTTGATAA TTTGTTGTTG AGAGCTGTTC ATTCTAAAAT 180 GTAATGAAAT TCAGTCTAGT TCTGCTGATA AAGATCATCA GTTTTGAAAG GTTACTGATT 240 TTCCTCTTCC CTCTTAGTTT TTTACCCAAT ATATGGAGAA GAGTAATGGT CAATCTTAAC 300 ATTTTGTTTT AATTGTTTAA TAAAGCTGCT GGGCAGTGGT GCAGCATTCC TACCTAGTGT 360 CATAAAAGCA AAATACTTAC ATAGCTTTCT TAAAATATAG GAATGACATT ACATTTTTAG 420 GAGAAAGTAA GTTGCTTTGC ACCGCCTACT TAATTCCTTT CCATATATTG TGATACAAAC 480 TTTTGAATAT GGAATCTTAC TATTTGAATA GAAATGTGTA TGTATAATAT ACATACATAC 540 ATAAGCATAT ATGTGTGTGT GTGTGTGTAT ATATATATAT ATGCATGCTG TGAAACTTGA CTACACAACA TAAATCACTT TTTAAATTCC AGGAACGGGT AGTCTGACAC GGTGATTATC 660 CTTTTGAGGC TGAATCCGTT ATTAACTTGT TATTTAGGTT TTACTCCCAG TAGCAAGGGA 720

	TTCTAAGTTA	GTTGCACTTA	CATGATTATT	GTGATTTAAA	ACTAAGAATA	AAGGCTGCAT	780
5	TTTCAAAGAT	AAATTGGAAT	TGCTGTTGGT	GAAATAACAA	CCAAAATACT	GAATCTGATG	840
J	TACATACAGG	TTTCTACAGG	AAGAGATGGT	ATAATTTACA	ATTTGGAGAT	TTAATAACCA	900
	GGGCTACCCA	GAAAAAGTGA	CTTGATAACA	TGGTACCAAT	AAGTAAGGGA	TGCTCTCTCG	960
10	GTTTGCTTTT	GCCACTTTCA	AGATTTTAAC	TTCTCAGGTT	ATTAATCAAA	ATTATTGTAT	1020
	AAGTTAGCCA	ATAGAATTTT	TAGGTTAAAA	CAACAGATGG	GGGGTTTGTG	GAGTGTTTAA	1080
15	TGTCATGGGC	ATTTTTAGTA	GCATAGACCC	TTTGTTCTGC	ATTTGAATGT	TICGTATATT	1140
13	TTTGTTTCAC	AGITAATCTT	CCCTCCCCAA	GTTTGCTATT	CAAATCAACT	GCCTGAATGA	1200
	CATTICTAGT	AGTCTGATGT	ATTTTTCTGA	GGAATAGTTT	GTGATTCCAA	TGCAGGTGTC	1260
20	TTCATTACCA	TTACCTCTAC	ACTGCAGAAG	AAGCAAAACT	CCTTTATTAG	AATTACTGCA	1320
	CATGTGTATG	GGGAAAATAG	TTCTGAAAGG	CTAGAATGAT	ACAAGTGAGC	AAAAGTTGGT	1380
25	CAGCTTGGCT	ATGGAGTGGT	GGCAATAATC	TCTAAACATT	CCAAAAGACC	ATGAGCTGAA	1440
23	CCTAAACICC	CTTGGGAATC	TGGAACAAAG	GAATATGAAA	ATTGCCATTT	GAAAACTGAC	1500
	CAGCTAATCT	GGACCTCAGA	GATAGATCAG	CCAGTGGCCC	AAAGCCATTT	CAAGTACAGA	1560
30	AATTATAGAG	ACTACAGCTA	AATAAATTTG	AACATTAAAT	ATAATTTTAC	CACTITITGT	1620
	CTTTATAAGC	ATATTTGTAA	ACTCAGAACT	GAGCAGAAGT	GACTITACTT	TCTCAAGTTT	1680
35	GATACTGAGT	TGACTGTTCC	CTTATCCCTC	ACCCTTCCCC	TTCCCTTTCC	TAAGGCAATA	1740
50	GTGCACAACT	TAGGTTATTT	TTGCTTCCGA	ATTTGAATGA	AAAACTTAAT	GCCATGGATT	1800
	TTTTTCTTTT	GCAAGACACC	TGTTTATCAT	CTTGTTTAAA	TGTAAATGTC	CCCTTATGCT	1860
40	TTTGAAATAA	ATTTCCTTTT	GTAAAAAAAA	ааааааааа	аааааа		1906

45 (2) INFORMATION FOR SEQ ID NO: 138:

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1935 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 138:

55 TCTGAACTAA TGCTAACAGA TCCCCCTGAG GGATTCTTGA TGGGCTGAGC AGCTGGCTGG 60
AGCTAGTACT GACTGACATT CATTGTGATG AGGGCAGCTT TCTGGTACAG GATTCTAAGC 120
TCTATGTTTT ATATACATTT TCATCTGTAC TTGCACCTCA CTTTACACAA GAGGAAACTA 180

	TGCAAAGTTA	GCTGGATCGC	TCAAGGTCAC	TTAGGTAAGT	TGGCAAGTCC	ATGCTTCCCA	240
	CTCAGCTCCT	CAGGTCAGCA	AGTCTACTTC	TCTGCCTATT	TTGTATACTC	TCTTTAATAT	300
5	GTGCCTAGCT	TTGGAAAGTC	TAGAATGGGT	CCCTGGTGCY	TTTTTACTTT	GAAGAAATCA	360
	GTTTCTGCCT	CTTTTTGGAA	AAGAAAACAA	AGTGCAATTG	TTTTTTACTG	GAAAGTTACC	420
10	CAATAGCATG	AGGTGAACAG	GACGTAGTTN	AGGCCTTCCT	GTAAACAGAA	AATCATATCA	480
10	AAACACTATC	TTCCCATCTG	TTTCTCAATG	CCTGCTACTT	CTTGTAGATA	TTTCATTTCA	540
	GGAGAGCAGC	AGTTAAACCC	GTGGATTTTG	TAGTTAGGAA	CCTGGGKTCA	AACCCTCTTC	600
15	CACTAATIGG	CTATGTCTCT	GGACAAGTTT	TTTTTTTTT	ттттттаа	ACCCTTTCTG	660
	AACTTTCACT	TTCTATGTCT	ACCTCAAAGA	ATTGTTGTGA	GGCTTGAGAT	AATGCATTTG	720
20	TAAAGGGTCT	GCCAGATAGG	AAGATGCTAG	TTATGGATTT	ACAAGGTTGT	TAAGGCTGTA	780
	AGAGTCTAAA	ACCTACAGTG	AATCACAATG	CATTTACCCC	CACTGACTTG	GACATAAGTG	840
	AAAACTAGCC	AGAAGTCTCT	TTTTCAAATT	ACTTACAGGT	TATTCAATAT	AAAATTTTTG	900
25	TAATGGATAA	TCTTATTTAT	СТАААСТААА	GCTTCCTGTT	TATACACACT	CCTGTTATTC	960
	TGGGATAAGA	TAAATGACCA	CAGTACCTTA	ATTTCTAGGT	GGGTGCCTGT	GATGGTTCAT	1020
30	TGTAGGTAAG	GACATTITCT	YTTTTTCAGC	AGCTGTGTAG	GTCCAGAGCC	TCTGGGAGAG	1080
50	GAGGGGGGTA	GCATGCACCC	AGCAGGGGAC	TGAACTGGGA	AACTCAAGGT	TCTTTTTACT	1140
	GTGGGGTAGT	GAGCTGCCTT	TCTGTGATCG	GTTTCCCTAG	GGATGTTGCT	GTTCCCCTCC	1200
35	TTGCTATTCG	CAGCTACATA	CAACGTGGCC	AACCCCAGTA	GGCTGATCCT	ATATATGATC	1260
	AGTGCTGGTG	CTGACTCTCA	ATAGCCCCAC	CCAAGCTGGC	TATAGGTTTA	CAGATACATT	1320
40	AATTAGGCAA	ССТААААТАТ	TGATGCTGGT	GTTGGTGTGA	CATAATGCTA	TGGCCAGAAC	1380
	TGAAACTTAG	AGTTATAATT	CATGTATTAG	GGTTCTCCAG	AGGGACAGAA	TTAGTAGGAT	1440
	ATATGTATAT	ATGAAAGGGA	GGTTATTAGG	GAGAACTGGC	TCCCACAGTT	AGAAGGCGAA	1500
45	GTCGCACAAT	AGGCCGTCTG	CAAGCTGGGT	TAGAGAGAAG	CCAGTAGTGG	CTCAGCCTGA	1560
	GTTCAAAAAC	CTCAAAACTG	GGGAAGCTGA	CAGTGCAGCC	AGCCTTCAGT	CTGTGGCCAA	1620
50	AGGCCAAGAG	CCCCTGGCAA	CCAACCCACT	GGTGCAAGTC	CTAGATTCCA	AAGGCTGAAG	1680
	AACCTGGAGT	CTGATGTCCA	AGAGCAGGAA	GAGTGGAAGA	AAGCCAGAAG	ACTCAGCAAA	1740
	CAAGGTAGAC	AGTGTCTACC	ACCAYAGTGG	CCATACCAAA	GAGGCTACCG	ATTCCTTCCT	1800
55	GCTACCTGGA	TCCCTGAAGT	TGCCCTGGTC	TCTGCACCTT	CTAAACCTAG	TTCTTAAGAG	1860
	CTTTCCATTA	CATGAGCTGT	CTCAAAGCCC	TCCAATWAAT	TCTCAGTGTA	AGYTTCAAAA	1920
60	ААААААА	AAAAA					1935

(2) INFORMATION FOR SEQ ID NO: 139:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1446 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 139:

15	NGCCCCCTTG	GCACAAGTCA	GATGAAGCAC	CTTCTCCCGG	GGAGGCCCTC	AMCTICCAGA	. 60
13	GAGGACAGAC	ACAGATTTCC	TGCTGGGGGA	GGGAGGAGTC	CACGCATCCT	GATGCTGCCT	120
	GGAAGCTTAT	TTTCCCGTGG	CCAGGATGCA	TTTCTCTGAG	TGGAAACAGG	TTCTTGCATG	180
20	TGGATGTGTG	TTTCCCCAGG	CAGACGCCC	CTCTYTTCCC	AGCACTTCCC	TGCCTCCCCC	240
	AGGCCTCAGG	CCAGCACCCA	GTTCCTCCTC	ACATGGCAGG	TGAGCACAGA	CTTCTAGTTG	300
25	GCAGGAGCTG	AGGAGGGTGA	ACAAACCCCG	AGGGAGGCCC	GCCCTTGCT	CCCGAGTTGG	360
23	GGGGAGGGG	TGTGGCAACG	TGCCCCCCCC	AGAGGCCACG	CATGTTTGAC	CAAAGCCCTC	420
	ATTGTGGTCC	GAGGACAGCC	TTTTCCCCAG	GCCTCARAGC	ATTGCTCATC	CGTGCCAAAC	480
30	TGGGTAGGTG	GATTTGAGCG	GAAAGACTCC	CAAAATGTGC	CAAGAATTTC	CCRGTCCCAG	540
	GCAGGGCAGG	GGAAACTAAG	GGCAAGCAGG	ATACAGGGCG	AGGGATGTGG	CAGGTGAGGG	600
35	GGCTCCCGCC	TGTGCCCCTT	CTCCTCACCA	TGTCTCCCCC	ACCCTGCCTC	AGTICTCCGT	660
33	TCCCCTTCAT	CTCCGTCCCC	CTCTTTGAAG	CTGTCCCCAT	CTCAGTGTCA	GACCAGCCTT	720
	CTCCTCAKCT	GACCACCCTC	CTCTGACCSA	CGCCCCCTCC	TTGTCTGAAA	AAAGGAGCCT	780
40	TGAATGGTGG	AGGGAGGCAG	TGGGGAGAAA	GGTCTCACCG	GACAGGTTGG	GAGAATGAGG	840
	TCAGCGGTGC	TGGGGAACAG	ATGGAGGGG	CAGTGGGGAC	AGGGCTTGGG	CAGACACCAG	900
45	CAGGAATAAT	TTGAAATGTG	TGAGGTGACT	CCCCGGAGGC	CTTGGGCTTG	GGCATTTGGG	960
43	AAAAGAATGA	TGTCTGGAAG	GGCTTAAGGG	ACACAGTGGA	CGAGGGGAGA	GTCCTCATCT	1020
	GCTGGCATTT	TGTGGGGTGT	TAGTGCCAAA	CTTGAATAGG	GCCTGCGGTG	CTGTCTTCCA	1080
50	CTGACACCCA	AATCCAGAAT	CCCTGGTCTT	GAGTCCCCAG	AACTTTGCCT	CTTGACTGTC	1140
	CCTTCTCTTC	CTACCTCCAT	CCATGGAAAA	TTAGTTATTT	TCTGATCCTT	TCCCCTGCCT	1200
55	GGTCTAGCTC	CTCTCCAAAC	AGCCATGCCC	TCCAAATGCT	AGAGACCTGG	GCCCTGAACC	1260
33	CTGTAGACAG	ATGCCCTCAG	AATTGGGGCA	TGGGAGGGG	GSTGGGGGAC	CCCATGATTC	1320
	AGCCACGGAC	TCCAATGCCC	AGCTCCTCTC	CCCAAAACAA	TCCCGACAAT	CCCTTATCCC	1380
60	TACCCCAACC	CTTTGCGGCT	CTGTACACAT	TTTTAAACCT	GGCAAAAGAT	GAAGAGAATA	1440

TTGTAA 1446

5

10

20

25

30

35

40

45

50

(2) INFORMATION FOR SEQ ID NO: 140:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1109 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 140:

	(X1) SEQUENCE I	DESCRIPTION	: SEQ ID NO	: 140:		
	TTTTTTTT	TTTGATATGA	AATTGTCTTT	CTCCATTGCA	GAAATAAGCT	AGGGAAACAC	60
	TAACCCAAAA	ACTITCTGTA	GAGCTGTTCC	TTTGGAGGCA	GCATCACTTA	TTGGCAGTAA	120
	AGACTCAGTA	TAAAAGCACC	AGCATCCCTA	CTTGGGTGAT	GGGGATTAAT	TTTATAGCAT	180
	TCCATTTTCC	TAGTGCCACA	TGTGAAATTG	GATTTTGATG	ATCTTAATCT	ATATTCTACC	240
	СТТАТААТАА	AAGATCAAAA	GATATATCTC	CTATGAACAG	ATTGGAGATA	GGAGATGAAA	300
	AGTTGGGAGG	ATGTCTTTAT	TCTAATGTGA	GGGTAGGGAA	AATGTGGATA	ACATTACTGG	360
	GGTGARGGAG	GCATTGTTCT	TTAGTTGGAG	TICTCATITT	TATTCTCCAG	TACTGACTTG	420
	TGGGGAAAGC	ATACTTTTTC	ACTGCCAGGT	ACTGAATGCA	GAGGCTCAGT	GAAGTATATA	480
	TGTGGGAAGT	GCATGCATTT	CGTTTATTAG	CAAACATAGC	TGGATTAAGA	CAAAGTTGTT	540
	GGTTTGGAAA	GGGGTTAAAG	CCTTAAGTGA	ACAAATCTAG	CTAACAGTGA	ATGAACTAGG	600
	ТААТАТААСТ	TGCATATTTT	TAATTTCCTT	TGGTTAAAGG	TCCCCCATAC	TTCTCTGTTC	660
	GGAGACATGA	GAAGTATGAT	TACTTCAGTG	TTAGTTTTCT	TAATTTTTTT	TTTCCCCTAT	720
	TIGICCCTIG	TCACTTTGTT	GCAAGCTAGA	AATCTGTGGG	TTATACATAG	GGCAGCTCTT	780
	TGTGAAAGTG	GTTTATTCCA	CTGGAGAAAG	GGGATTGAAA	ATCAGTTAGA	ACCAATGTAT	840
	TTCTTGCCCC	ACGGAACACT	ATTCCTATAA	GATAGCTGAA	AGAAGCTGCT	GTGAGGAGCT	900
	CAGCTCCAAA	CACAGGATCA	GCACCTTGTA	TAGGAATTCC	CATGAATTAT	GACTTCTCAT	960
ı	TCTGTTTTAT	CAGAGTGCAT	ATATGTCCTA	CTTCAGGAAA	AGTAAAACAG	TCATTTACGA	1020
	AAGAAAGTCA	ATCTGTATCC	TAAGCATTTT	AATAAAAAGT	ТААААСАААА	AATTAAAAGG	1080
	GACACTCGAG	GGGGGCCCG	AAACCCAAT				1109

55

(2) INFORMATION FOR SEQ ID NO: 141:

60 (i) SEQUENCE CHARACTERISTICS:

PCT/US98/04493

5	(A) LENGTH: 497 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
J	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 141:	
	TAGGACTAAC TTAAATTCTT TTATTCATCT TTTATTTATT AAAAAATTTT ATTTCTTTGA	60
10	ATTITICCTGT AATTICCTTA RGCTCTTCTA TAAAATGTTA TATTCATGTG AACCATACCT	120
	CATTATCCTT AACATTTACT CTCAAAAAGC TITTTATTTT TATTTTTTTTG AAGGTAGTIT	180
15	TTCTGTGTGT ACTCTGTAAC ATGATTTTGC TTTCAAATCA TTGTTGTGCC CCCATACAAA	240
••	ATGCCTTTTA TTTTTGAGGA TCGTGGACTT TTTAGTATGG CATGAGTGTG CTAAAAGCCA	300
	GATATCTTTC CACATTCACT GGTGGCTTTG ACACCTAGTT TTTAATCTCC CATCCTTACT	360
20	TTAAACCCTG ACAGTGCAGT CCTCAGTCAG GGCCAGGACC GGGCTGAGGC CCTTTGTGGA	420
	GATGCTGCAC CACCAGCAGA AGGCTGAGAC CTGGTTACCT GTACCTGTTC ACTTGTAATA	480
25	AAAAGAATTA TCTAAAA	497
30	(2) INFORMATION FOR SEQ ID NO: 142:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 269 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
35	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142:	
40	ATGAGGCAGA GGCAAGCTGC CTGCCAACCC CCTCCCTCAA GGAATGGCCT TGCCCAGGAA	60
	TGCCCACCAC ACATACCCTC TTCTTTTTT CTAGTCAAAC TCTTGTTTAT TCCTTGGCTT	120
	GCCTCCCTCC TITCCTCCCC TCTCAACCTT TTACTTCTGG TTTCTATTTC ATGGGATTTG	180
45	GGGTTGAAGT TAAACTTACA ACAGTGCCGC CAACACCAAG TCTTGCAGGA AAAAAATACA	240
	AAGAAATTTA ACAAAAAAAA AAAAAAAAA	269
50	•	
	(2) INFORMATION FOR SEQ ID NO: 143:	
	(i) SEQUENCE CHARACTERISTICS:	
55	(A) LENGTH: 1269 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 143:	

	TTGATTGACT	ATGGTCTCTC	CGGCTACCAG	GAAGAGTCTG	CCGAAGTGAA	GGCCATGGAC	60
5	TTCATCACCT	CCACAGCCAT	CCTGCCCCTG	CTGTTCGGCT	GCCTGGGCGT	CTTCGGCCTC	120
,	TTCCGGCTGC	TGCAGTGGGT	GCGCGGGAAG	GCCTACCTGC	GGAATGCTGT	GGTGGTGATC	180
	ACAGGCGCCA	CCTCAGGGCT	GGGCAAAGAA	TGTGCAAAAG	TCTTCTATGC	TGCGGGTGCT	240
10	AAACTGGTGC	TCTGTGGCCG	GAATGGTGGG	GCCCTAGAAG	AGCTCATCAG	AGAACTCACC	300
	GCTTCTCATG	CCACCAAGGT	GCAGACACAC	AAGCCTTACT	TGGTGACCTT	CGACCTCACA	360
15	GACTCTGGGG	CCATAGTTGC	AGCAGCAGCT	GAGATCCTGC	AGTGCTTTGG	CTATGTCGAC	420
13	ATACTTGTCA	ACAATGCTGG	GATCAGCTAC	CGTGGTACCA	TCATGGACAC	CACAGTGGAT	480
	GTGGACAAGA	GGCTCATGGA	GACAAACTAC	TTTGGCCCAG	TTGCTCTAAC	GAAAGCACTC	540
20	CTGCCCTCCA	TGATCAAGAG	GAGGCAAGGC	CACATTGTCG	CCATCAGCAG	CATCCAGGGC	600
	AAGATGAGCA	TICCTTTTCG	ATCAGCATAT	GCAGCCTCCA	AGCACGCAAC	CCAGGCTTTC	660
25	TTTGACTGTC	TGCGTGCCGA	GATGGAACAG	TATGAAATTG	AGGTGACCGT	CATCAGCCCC	720
25	GGCTACATCC	ACACCAACCT	CTCTGTAAAT	GCCATCACCG	CGGATGGATC	TAGGTATGGA	780
	GTTATGGACA	CCACCACAGC	CCAGGCCGA	AGCCCTGTGG	AGGTGGCCCA	GGATGTTCTT	840
30	GCTGCTGTGG	GGAAGAAGAA	GAAAGATGTG	ATCCTGGCTG	ACTTACTGCC	TTCCTTGGCT	900
	GTTTATCTTC	GAACTCTGGC	TCCTGGGCTC	TTCTTCAGCC	TCATGCCTCC	AGGGCCAGAA	960
35	AAGAGCGGAA	ATCCAAGAAC	TCCTAGTACT	CTGACCAGCC	AGGGCCAGGG	CAGAGAAGCA	1020
33	GCACTCTTAG	GCTTGCTTAC	TCTACAAGGG	ACAGTTGCAT	TTGTTGAGAC	TTTAATGGAG	1080
	ATTTGTCTCA	CAAGTGGGAA	AGACTGAAGA	AACACATCTC	GTGCAGATCT	GCTGGCAGAG	1140
40	GACAATCAAA	AACGACAACA	AGCTTCTTCC	CAGGGTGAGG	GGAAACACTT	AAGGAATAAA	1200
	TATGGAGCTG	GGGTTTAACA	сталаласта	GAAATAAACA	TCTCAAACAG	ТААААААА	1260
45	AAAAAAAAC						1269

(2) INFORMATION FOR SEQ ID NO: 144:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1944 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144:

AAAAGGCAAA CTATAGGATA ACACAGAGCC CTTTTTGAAA ATAAATTGGC ATTGGAGTGT

50

55

	TTTACCCTCT	AGCTGTTTTA	CTTAGAATGT	AACATATGCT	GCCTACCCAC	CTCAAAATGT	120
	CTGTACTGCA	AGAGGGCCCT	GGCCTCTGC	TTTCCATATT	CACGTTTGGC	CAGAGTTGTA	180
5	GTCCCAAAGA	AGAGCATGGG	TGGCAGATGG	TAGGGAATTG	AACTGGCCTG	TGCAATGGGC	240
	ATGGAGCACA	AGGGGTCACA	GCATGCCTCC	TGCCTTACCG	TGGCAGTACG	GAGACAGTCC	300
10	AGAACATGGT	CTTCTTGCCA	CGGGGTGTTG	TTGTCTCTGG	TGGTGCTGCA	TGTCTGTGGC	360
10	TCACCTTTAT	TCTTGAAACT	GAGGTTTACC	TGGATCTGGC	TACTGAGGCT	AGAGCCCACA	420
	GCAGAATGGG	GTTGGGCCTG	TGGCCCCCAA	ACTAGGGGGT	GTGGGTTCAT	CACAGTGTTG	480
15	CCTTTTGTCT	CCTAAAGATA	GGGATCTACT	TTTGAAGGGA	ATTGTTCCTC	CCAAATAAAT	540
	TTGCTTTACC	TIGGICCITT	CTTTTGTGCC	AGTATTCAAG	TGGTATAGCT	CTGAGCAGGG	600
20	TCACATTTGG	CCAAACCTGA	CACTGTCTTG	CTGCATTCTC	CTTTGGCAAA	CATCAGGGTC	660
20	AGAATTCAGG	ATAGCCCTTC	CTAGGGCACT	GGACTTTCTG	GCATGGGGGC	TGTGTTTGCA	720
	CAAGTTATTT	TCATGTTACC	TGGAGAGTGT	CCAGAGGCTG	CTCTGAGGCT	GAGGTGTGTT	780
25	CCCCCTTGCC	TGGTTCCAGC	TGTCAGAGGG	ATACCATCCT	AGGGTCTGGG	AATCCAAGGC	840
	CACGAGACTC	CTTGGTTTGT	GGTCCGAGAT	CCTGTACTAA	GGAGGGTCTG	GCCAGAGGAA	900
30	CAGACCAGCT	TTTGCACAAT	GAAGCGCAAG	GGAACAAGTG	GTTTGCCTGG	TGTCCTACCT	960
50	GTCCTGAACC	TGGTCCTGTG	GGCCATTGAA	AAGTTAGATC	TGTGATCTCT	CCCCTTTTTC	1020
	TGGCTTTGTT	CAATGCTTCC	ACTCTAGGGC	AGGCAGAGCA	GTCTATACTC	TCCCAAGCCT	1080
35	GCTTGACCTC	CAAGTAGAGC	TGATACAGAG	ATCTGTGAAT	ATTGTGATAG	AAATTCTTTG	1140
	GTATTCATAC	ATTTCAGCTG	CAAGTCAGCA	ATTTCCCAGG	TACCATGTAA	GCTATAAAAC	1200
40	AGTCATTCTT	AAAGACAGAG	GATAGCTGTG	ACTCATGGGA	TCATGAGGTC	CATGGCTGGT	1260
	TGCAGGTTCC	CITITICCIT	CCTCAGGTTT	TGTCTCTTCC	TGTGTTGTCC	CCAGCAAGGG	1320
	AGAGACTGTG	GGGTGGATTG	GGAGAACAGA	TTAGGAGTAT	AGCAAATGAA	CCCAGAATGG	1380
45	AACAGTGGGG	AGCTAACTGT	GAATGAGGAG	AGTACCTGCT	GCAGGACCTG	GAGGTCAGGT	1440
	GTGAATGCTG	TATTGGCACA	GGGAATAAAT	ATCCTGGCGT	CTGGAGCCTT	CACCTCTCCG	1500
50	TCAAGTCCTT	CCTGTGATAC	TGCCATGGCA	CAGGATCTGA	GTTGCAGCTC	TGCACCCTAA	1560
	ATCACACCCT	GGCATTGTC	TGGGCTGCAG	GGCTGCCAGG	TTCTGTACTT	GTGTCCAGCT	1620
	GTGGCCCTGG	ATGCTGGAGC	TGGAGGGTTT	TCTGTGCTCA	GACTGTAGCC	TGTAGCTCTT	1680
55	GGCCTGTGTA	GAGCCCCCTC	CTGTGCCCTC	ACTGGCTGTC	GTTTGTTAAC	ATCATCAGGA	1740
	AGATGGGAAA	GGTCAGGCAG	AATTTTTCTG	CCCTACAAAG	GGTGGAAGAG	AAAGGACACA	1800
60	GTATTTTCAT	GAATTTACCA	TATATCTTTG	TTTTTCTTCA	ACGAAAAAGT	TAATTGAGGC	1860

AAAAAAAAA AAAAAAAAA AAAAAAAAA AAAG 1944

5

(2) INFORMATION FOR SEQ ID NO: 145:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1021 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15

20

25

30

35

40

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 145:

TCGACCCACG CGTCCGGGGT GCGCAACGGG GAGTTCCGGC TGGAGACCCG TGCTCTGGGC 60 CGGCGCCTTC ACCATGGCCT CGGCAGAGCT GGACTACACC ATCGAGATCC CGGATCAGCC 120 CTGCTGGAGC CAGAAGAACA GCCCCAGCCC AGGTGGGAAG GAGGCAGAAA CTCGGCAGCC 180 TGTGGTGATT CTYTTGGGCT GGGGTGGCTG CAAGGACAAG AACCTTGCCA AGTACAGTGC 240 CATCTACCAC AAAAGGGGCT GCATCGTAAT CCGATACACA GCCCCGTGGC ACATGGTCTT 300 CTTCTCCGAG TCACTGGGTA TCCCTTCACT TCGTGTTTTG GCCCAGAAGC TGCTCGAGCT 360 GCTCTTTGAT TATGAGATTG AGAAGGAGCC CCTGCTCTTC CATGTCTTCA GCAACGGTGG 420 CGTCATGCTG TACCGCTACG TGCTGGAGCT CCTGCAGACC CGTCGCTTCT GCCGCCTGCG TGTGGTGGC ACCATCTTTG ACAGCGCTCC TGGTGACAGC AACCTGGTAG GGGCTCTGCG 540 GCCCTGGCA GCCATCCTGG AGCGCCGGGC CGCCATGCTG CGCCTGTTGC TGCTGGTGGC 600 CTTTGCCCTG GTGGTCGTCC TGTTCCACGT CCTGCTTGCT CCCATCACAG CCNTCTTCCA 660 CACCCACTTC TATGACAGGC TACAGGACGC GGGCTCTCGC TGGCCCGAGC TCTACCTCTA 720 CTCGAGGCCT GACGAAGTAG TCCTGGCCAG AGACATAGAA CGCATGGTGG AGGCACGCCT 780 GGCACGCCGG GTCCTGCCGC GTTCTGTGGA TTTCGTGTCA TCTGCACACG TCAGCCACCT 840 CCGTGACTAC CCTACTTACT ACACAAGCCT CTGTGTCGAC TTCATGCGCA ACTGCGTCCG CTGCTGAGGC CATTGCTCCA TCTCACCTCT GCTCCAGAAA TAAATGCCTG ACACCTCCCC 960 ACAAAAAAA AAAAAAAAA ACTCGAGGGG GGGCCCGGTA CCCAATTCGC CCTATAAAGG 1020 Т 1021

55

60

50

(2) INFORMATION FOR SEQ ID NO: 146:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1285 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 146:

GGCACGAGGA GGGCCACGGC AGCCATCGCG CTTTGCAGTT CGGTCTCCTG GTGTACGGCC 60 AACGCCAAGT AGGGGATTGC GTTCCCTCCA GTCGCAGACC CTATCAGATT TGGATATGTC 120 10 CTICATATTT GATTGGATTT ACAGTGGTTT CAGCAGTGTG CTACAGTTTT TAGGATTATA 180 TAAGAAAACT GGTAAACTGG TATTTCTTGG ATTGGATAAT GCAGGAAAAA CAACATTGCT 240 15 ACACATGCTA AAAGATGACA GACTTGGACA ACATGTCCCA ACATTACATC CCACTTCCGA 300 AGAACTGACC ATTGCTGGCA TGACGTTTAC AACTTTTGAT CTGGGTGGAC ATGTTCAAGC 360 TCGAAGAGTG TGGAAAAACT ACCTTCCTGC TATCAATGGC ATTGTATTTC TGGTGGATTG 420 20 TGCAGACCAC GAAAGGCTGT TAGAGTCAAA AGAAGAACTT GATTCACTAA TGACAGATGA 480 AACCATTGCT AATGTGCCTA TACTGATTCT TGGGAATAAG ATCGACAGAC CTGAAGCCAT 540 25 CAGTGAAGAG AGGTTGCGAG AGATGTTTGG TTTATATGGT CAGACAACAG GAAAGGGGAG 600 TATATCTCTG AAAGAACTGA ATGCCCGACC CTTAGAAGTT TTCATGTGTA GTGTGCTCAA 660 AAGACAAGGT TACGGAGAAG GCTTCCGCTG GATGGCACAG TACATTGATT AACACAAACT 720 30 CACATTGGTT CCAGGTCTCA ACGTTCAGGC TTACTCAGAG ATTTGATTGC TCAACATGCA 780 TAACTIGAAT TCAATAGACT TTTGCTGGTT ATAAAACAGA TGTTTTTTAG ATTATTAATA 840 35 TTAAATCAAC TTAATTTGAA TGAGAATTGA AAACTGATTC AAGTAAGTTT GAGTATCACA 900 ATGTTAGCTT TCTAATTCCA TAAAAGTACT TGGTTTTTAC AGTTTATAAT CTGACATCAC 960 CCCAGCGCCA TTTGTAAAGA GCAACTTTCC AGCAGTACAT TTGAAGCACT TTTTAACAAC 1020 40 ATGAAACTAT AAACCATATT TAAAAGCTCA TCATGTTAAA TTTTTTATGT ACTTTTCTGG 1080 AACTAGTTTT TAAATTTTAG ATTATATGTC CACCTATCKT AAGTGTACAG TTAATAATTA 1140 45 1200 GCTTATTCAA TGATTGCATG ATGCCTTACA GTTTTCAATA ACTTTTTTTC TTATGCAAAC GTCATGCAAT AAAACAAACT CTAATGTTTG GCAAAAAAAA AAAAAAAAA NTCGAGGGG 1260 GGCCCGTACC CAATTCGCCC TAAAG 1285

(2) INFORMATION FOR SEQ ID NO: 147:

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1386 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 147:

5	GGCACGAGGT	GGCGCAGGGG	TCAGTGGTTC	TCTCGGGTCT	CGGGACAGGT	GAGCACCCTG	60
	ATGAAGGCCA	CGGTCCTGAT	GCGGCACCTG	GGCGGGTGCA	GGAGATCGTG	GCCCCCTCC	120
	GCAAGGGCGS	CGGAGACCGG	TTACAGGTGA	TTTCTGATTT	TRACATGACC	TTGAGCAGGT	180
10	TTGCATATAA	TGGAAAGCGA	TGCCCTTCTT	CTTACAATAT	TCTGGATAAT	AGCAAGATCA	240
	TCAGTGAGGA	GTGTCGGAAA	GAGCTCACAG	CGCTCCTTCA	CCACTATTAC	CCAATTGAGA	300
15	TCGACCCACA	CCGGACCGTC	AAGGAGAAGC	TACCTCATAT	GGTGGAATGG	TGGACCAAAG	360
13	CGCACAATCT	CCTATGTCAG	CAGAAGATTC	AGAAGTTTCA	GATAGCCCAG	GTGGTTAGAG	420
	AGTCCAATGC	AATGCTCAGG	GAGGGATATA	AGACCTTCTT	CAACACACTC	TACCATAACA	480
20	ACATTCCCCT	TITCATCTTT	TCTGCGGGCA	TTGGTGATAT	CCTGGAAGAA	ATTATCCGAC	540
	AGATGAAAGT	GTTCCACCCC	AACATCCACA	TCGTGTCTAA	CTACATGGAT	TTTAATGAAG	600
25	ATGGTTTTCT	CCAGGGATTT	AAGGGCCAGC	TGATACACAC	ATACAACAAG	AACAGCTCTG	660
	TGTGTGAGAA	CTSTGGTTAC	TTCCAGCAAC	TTGAGGGCAA	AACCAATGTC	ATCCTGCTGG	720
	GAGACTCTAT	CGGGGACCTC	ACCATGGCCG	ATGGGGTTCC	TGGTGTGCAG	AACATTCTCA	780
30	AAATTGGCTT	CCTGAATGAC	AAGGTGGAGG	AGCGGCGGGA	NCGCTACATG	GACTCCTATG	840
	ACATCGTGCT	GGAGAAGGAC	GAGACTCTGG	ATGTGGTCAA	CGGGCTACTG	CAGCACATCC	900
35	TGTGCCAGGG	GGTCCAGCTG	GAGATGCAAG	GCCCCTGAAG	GCGCAGGCTN	CCAGNCCGCC	960
	TGCAGGCCGT	GGTGAGGAGG	GCCCCTCCC	CAGAGTCTGC	TCCCCCGTGA	ACACAGAGCA	1020
	GANGCCAGGG	TGGCCAGCAG	TEGETEGETC	CTTCCGCGCC	CCTCCGTCCT	CCTTTCCCTG	1080
40	AGCACCTTCA	TCACCAGAGG	CTTGAAGGAA	CCCCGCCATG	TGGCAGGGCA	CAGGCACTGT	1140
	TCCTGGTGAA	CCTTGGACCA	CAGCATGTCA	GTGCTCTAGG	GATTGTCTAC	TCCAGGGATT	1200
45	TTCTTCAAAA	TTTTTAAACA	TGGGAAGTTC	AAACAAATAT	AATGTGTGAA	ACAGATCAAA	1260
	ATTTTTAAAA	TGAAAAAAAA	GCTGCTCTGA	TTCAGGGGAT	GIGGGICGGG	GTAGAACCTG	1320
	GACCTCTTGG	CCTGGGGGCA	CATGGGATGC	TTCTAGGAAC	ACAGTTTGAG	AACCACCAAA	1380
50	ААААА						1386

55 (2) INFORMATION FOR SEQ ID NO: 148:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2098 base pairs

(B) TYPE: nucleic acid

60 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 148:

5	AGCCCTTCTC C	CCCCCCCTTG	GGACTCTGAC	ATCTTAAGGC	TGCACGGTCG	TGTCCTTGTC	60
	TGGGTGAGGC C	CATGTCTGTG	ATCCAAGGTT	CCTGGAACTG	ACACAGGAAG	GGGCTGTGAA	120
10	CCCTAAGTGG G	STGTMATCTC	CTCCRACCGA	GGCTTCTMAC	CCTGGAGATG	GCAGTTACTC	180
10	CTGGCCATGG T	MTGCTGAGCA	TGGGCAGACC	AGTGGAGGCC	ACCCTACTGT	GITATCTGCG	240
	CCTTCRATGA A	AGTGAGACCC	TTGGGGAGAA	CGGGCTGTGG	ATGAAGGAGT	GGACTGCAGC	300
15	CTTGGCCTAG C	CACTGGGCT	GGGATCTTCT	GGGTCATGTG	ACTGTGTATC	CAGGAGCAGA	360
	AACTTGTATT C	TICAGGATIC	AGGATCTACC	CAGCACCAAA	GATGTATTT	CAGGAGAACA	420
20	GACCTAGAAA T	CGGCCTGTC	TGGCATTTCA	GAGTCAGGCA	AAGCAGGCAG	GGCCAGGGAG	480
20	CTTCTGTGGG T	CTACACAAG	AAGGTTCCTG	TGAGGGCTAT	CAGTTGTTGC	CTTCTAGCTT	540
	GCTGGTAACT T	TGGCGCCTC	CGCCAAGCCC	TGCCAGACTC	CCCTGGCTGT	GATGGCATTC	600
25	TGTGCCATCC T	CCTTCTCC	CCAGCCTCTG	CAGGATGCCC	TCCCTACCCA	MCTYTYCCTG	660
	GCCTTCCCT C	FICCACTGGG	CTGGATTCAT	GTTCAAACCA	CTGGACTGGC	AGGGCAACGA	720
30	CTTCTTCCCA C	CTCAAGATG	AGGTCCTCGC	CCCCTTGTCT	TGGCATAAAA	ACACCTTTAA	780
30	AGCATGAGCC A	ATGTGCTTCT	TIGCCCITCT	CTGTCCTGTT	CCAATCTTCT	GCCTCCCAGT	840
	CACTCCCTGG G	GACTATGGG	ATCACTGTCC	CCCCACCTGT	GTGGCCACAC	CATGTGTCCT	900
35	GTCAATCCAG A	ACTGCCTCT	GAGCTCCAGG	CTGACCACAG	ATCAGCCACA	GCCTGATGCC	960
	TGCAGCCCCA C	TTTGCTCAC	CCTTCCCCTC	CCCTCCTCCT	TCCTTCCACA	CAGCAAGCCT	1020
40	ACCTITYTCC A	ATCCATGCTC	ACCATAGCCC	CCTTCCTTGT	GACCTGGACC	CTCCATTGTA	1080
	CCTGGCTGAG A	ACTGTCAGCC	TCCTGGAGGA	GTGGGGTCCA	CCTTCTTCTT	GCCCTATGCA	1140
	GTGCAAGCTT C	CACTTCTCAC	CCAGCAAGGT	TGACTCATCT	GCCTCCATGT	CTCTGGGGCT	1200
45	TIGCIGIIGC (CCTGAAACCT	AGCTGGGCTG	GTCTTGCTCC	CAGCTTGCTT	CCCCCTCCTC	1260
	GGATGTCCCT T	PTGCAGGCCC	CTGTCGTTCC	TCCGGCACCA	GTGTCCTTGG	CTGCCATGGC	1320
50	AAGCTCATCA (GGGCTTGTA	CCCTGGTCAC	CAAGCATGGT	AGCAGCTGCC	TGCATTGTAT	1380
	CTCCATCTGG T	CACTGCAGG	TGCCAACCCT	TCATCCCCA	TGTTTTCCTG	GCCATGGAG	1440
	GGCTGACCTC (CGTTTCTCGG	GAATGTGGCT	GAGCTGTGGT	AACCAGCTAC	ACCCCAGGTG	1500
55	CTCTTTCCAT (GCIGGIGCCT	GCTCATCTTG	CTGATGCAAA	CTAGGAAGTT	AGGCTGCATC	1560
	TCGGAGTGGC T	PTTCGCTGGA	GAGGTGCTTT	GCTGTCTCTC	AGACTCAGTC	ACTGTGTTCC	1620
60	CTCCCCGCCT (CTCTTATCTC	CATGGCTGTT	TGCAGCTCTC	CCAGGTACTT	TGGGGTCTGA	1680

GCTG	GAATTC	CTTTGTGGTT	TGCTCTTCTG	CTTCTCACTC	TTGTATTAAG	AAGGATTCCA	1740
CAAA	GGGAGA	GTGGCATCCC	TGCTGCTGCT	GTGCCAGACC	AGAGTTTCCT	GAGGGCCCT	1800
GACC	CTAACC	CTCCAGCTCA	GCCCTGTACA	CCTGACCCTG	TAAATGAGTG	GGGTTTGCTG	1860
ACTG	TAATCC	CTGACACCAG	TAAAACCAAA	AGGACTCTTG	GGGGCTCAGT	GTGAGAGCCA	1920
GGGT	TACCTA	CTCTGCCAAG	TGAGGACAAA	CTGCTAGGCT	GTATCCCATA	ATTTCAGGAT	1980
GAGA	AACATT	AACAATAAAA	ATTTGTAGTA	AACATAACCT	CATGANGACT	АААААААА	2040
AAAA	ACTYGG	GGGGGGCCC	GTAACCCATT	GGGCCCTTNG	GGGGGGNGTT	ттаааатт	2098

10

5

(2) INFORMATION FOR SEQ ID NO: 149:

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1847 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 149:

	TCGACCCACG	CGTCCGAACT	GAGGCGGCGG	CGGGAGCCGG	TTGGKGTCTG	GTCTTCGCGT	60
30	ceecceece	GACCAGACGC	TGCCCCCGGC	GCGGGGAGAA	GATGGTGCCK	AGCGGCCTCG	120
	GGCCCGCCAC	GCGCCGCCAC	GAGTGAGCCC	AGCGCGACCG	CGGCCGTCCG	CCGAGCAGCT	180
35	GCCCGGCTG	GCCCCGGGGC	GCGCANTGCC	cecceeece	GGGTGGAGCT	GATCAGAATA	240
<i>JJ</i>	ATGTTCAGCA	TCAACCCCCT	GGAGAACCTG	AAGGTGTACA	TCAGCAGTCG	GCCTCCCCTG	300
	GTGGTCTTCA	TGATCAGCGT	AANGCCCATG	GCCATAGCTT	TCCTGACCCT	GGGCTACTTC	360
40	TTCAAAATCA	AGGAGATTAA	ATCCCCAGAA	ATGGCAGAGG	ATTGGAATAC	TTTTCTGCTA	420
	CGGTTCAATG	ATTTGGACTT	GTGTGTATCA	GAGAATGAAA	CCCTCAAGCA	TCTCACAAAC	480
45	GACACCACAA	CTCCGGAAAG	TACAATGACC	AGCGGGCAGG	CCCGAGCTTC	CACCCAGTCC	540
73	CCCCAGGCCC	TGGAGGACTC	GGCCCCGTG	AATATCTCAG	TCTCAATCAC	CCTAACCCTG	600
	GACCCACTGA	AACCCTTCGG	AGGGTATTCC	CGCAACGTCA	CCCATCTGTA	CTCAACCATC	660
50	TTAGGGCATC	AGATTGGACT	TTCAGGCAGG	GAAGCCCACG	AGGAGATAAA	CATCACCTTC	720
	ACCCTGCCTA	CAGCGTGGAG	CTCAGATGAC	TGCGCCCTCC	ACGGTCACTG	TGAGCAGGTG	780
55	GTATTCACAG	CCTGCATGAC	CCTCACGGCC	AGCCCTGGGG	TGTTCCCCGT	CACTGTACAG	840
33	CCACCGCACT	GIGITCCTGA	CACGTACAGC	AACGCCACGC	TCTGGTACAA	GATCTTCACA	900
	ACTGCCAGAG	ATGCCAACAC	AAAATACGCC	CAAGATTACA	ATCCTTTCTG	GTGTTATAAG	960
60	GGGGCCATTG	GAAAAGTCTA	TCATGCTTTA	AATCCCAAGC	TTACAGTGAT	TGTTCCAGAT	1020

	GATGACCGTT	CATTAATAAA	TTTGCATCTC	ATGCACACCA	GTTACTTCCT	CTTTGTGATG	1080
5	GTGATAACAA	тсттттсста	TGCTGTTATC	AAGGGCAGAC	CTAGCAAATT	GCGTCAGAGC	1140
5	AATCCTGAAT	TTTGTCCCGA	GAAGGTGGCT	TTGGCTGAAG	CCTAATICCA	CAGCTCCTTG	1200
	TTTTTTGAGA	GAGACTGAGA	GAACCATAAT	CCTTGCCTGC	TGAACCCAGC	CTGGGCCTGG	1260
10	ATGCTCTGTG	AATACATTAT	CTTGCGATGT	TGGGTTATTC	CAGCCAAAGA	CATTTCAAGT	1320
	GCCTGTAACT	GATTTGTACA	AAATATTATA	AATCTATTCA	GAAATTGGTC	CAATAATGCA	1380
15	CGTGCTTTGC	CCTGGGTACA	GCCAGAGCCC	TTCAACCCCA	CCTTGGACTT	GAGGACCTAC	1440
15	CTGATGGGAC	GTTTCCACGT	GTCTCTAGAG	AAGGATTCCT	GGATCTAGCT	GGTCACGACG	1500
	ATGTTTTCAC	CAAGGTCACA	GGAGCATTGC	GTCGCTGATG	GGGTTGAAGT	TIGGITIGGT	1560
20	TCTTGTTTCA	GCCCAATATG	TAGAGAACAT	TTGAAACAGT	CTGCACCTTT	GATACGGTAT	1620
	TGCATTTCCA	AAGCCACCAA	TCCATTTTGT	GGATTTTATG	TGTCTGTGGC	ТТААТААТСА	1680
25	TAGTAACAAC	AATAATACCT	TTTTCTCCAT	TTTGCTTGCA	GGAAACATAC	CTTAAGTTTT	1740
23	TTTTGTTTTG	TTTTTGTTTT	TTTGTTTTT	GTTTTCCTTT	ATGAAGAAAA	AATAAAATAG	1800
	TCACATTTTA	ATACTACCAA	AAAATGGACA	AAAAAAGTCG	AGGGGGG		1847

(2) INFORMATION FOR SEQ ID NO: 150:

35 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1569 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150:

GACGCTGACG AGAGAAGGCC TCTTCCTTGA GGGTTGGTGC TGTGTTGCAG TGACCGTGGC 60 45 GGATTACGCC AACTCGGATC CGGCGGTCGT GAGGTCTGGA CGAGTCAAGA AAGCCGTAGC 120 CAACGCTGTT CAGCAGGAAG TAAAATCTCT TTGTGGCTTG GAAGCCTCTC AGGTTCCTGC 180 AGAGGAAGCT CTTTCTGGGG CTGGTGAGCC CTGTGACATC ATCGACAGCA GTGATGAGAT 240 50 GGATGCCCAG GAGGAAAGCA TCCATGAGAG AACTGTCTCC AGAAAAAAGA AAAGCAAGAG 300 ACACAAAGAA GAACTOGACG GOGCTGGAGG AGAAGAGTAT CCCATGGATA TTTGGCTATT 360 55 GCTGGCCTCC TATATCCGTC CTGAGGACAT TGTGAATTTT TCCCTGATTT GTAAGAATGC CTGGACTGTC ACTTGCACTG CTGCCTTTTG GACCAGGTTG TACCGAAGCA CTACACGCTG 480 GATGCTTCCC TGCCTTTGCG TCTGCGACCA GAGTCAATGG AGAAGCTGCG CTGTCTCCGG 60

	GCTTGTGTGA	TCCGATCTCT	GTACCATATG	TATGAGCCAT	TTGCTGCTCG	AATCTCCAAG	600
	AATCCAGCCA	TTCCAGAAAG	CACCCCAGC	ACATTAAAGA	ATTCCAAATG	CTTACTTTTC	660
5	TGGTGCAGAA	AGATTGTTGG	GAACAGACAG	GAACCAATGT	GGGAATTCAA	CTTCAAGTTC	720
	AAAAAACAGT	CCCCTAGGTT	AAAGAGCAAG	TGTACAGGAG	GATTGCAGCC	TCCCGTTCAG	780
10	TACGAAGATG	TTCATACCAA	TCCAGACCAG	GACTGCTGCC	TACTGCAGGT	CACCACCCTC	840
10	AATTTCATCT	TTATTCCGAT	TGTCATGGGA	ATGATATTTA	CTCTGTTTAC	TATCAATGTG	900
	AGCACGGACA	TGCGGCATCA	TCGAGTGAGA	CTGGTGTTCC	AAGATTCCCC	TGTCCATGGT	960
15	GGTCGGAAAC	TGCGCAGTGA	ACAGGGTGTG	CAAGTCATCC	TGGACCCAGT	GCACAGCGTT	1020
	CGCTCTTTG	ACTGGTGGCA	TCCTCAGTAC	CCATTCTCCC	TGAGAGCGTA	GTTACTGCTT	1080
20	CCCATCCCTT	GGGGGCAGCC	TCGAGTGTAG	TCCATTAGTA	ATCAGATTCC	AGTTTGGACA	1140
20	CCCTCCCTCC	ATTGTATATC	TCGTTAGTAA	TGTACATGCT	CITCAGGTTC	TAGGGCTCCT	1200
	GTTAGGGGAG	GGAGAAATGT	TGAATCAAGA	GGGAAAACAA	CTACTATGAT	ТТАТАААСАТ	1260
25	ATTITAATGT	AAAAATTTGC	ATTTAAAAGG	AGTGGCCCTG	TTTTCTGTGT	TAAAACCCCA	1320
	TTTGGTGCTA	TTGAGTTTGT	TCTTTATTCT	TTTATCCCAG	TGAAAATTGT	TGATCTTGCT	1380
30	GTAGGGAAAA	ATTAAACTCT	TTGAATCTCC	AAACAAGGAA	GTTTCAGCAT	TCCCTTATGG	1440
50	ATCAGAGGAA	CCTTAGAGGC	CTGAAATTGT	TGCTTCCAGT	TTAGCTGCCC	CTCAAATTCA	1500
	AGTGAATATT	TTCCCTTCTC	CCTTTACCCT	TCTCCAGAAA	TAAAGCAGGT	GACAGGGTTT	1560
35	CAGAATCTT						1569

40 (2) INFORMATION FOR SEQ ID NO: 151:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1540 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151:

50	CCCACGCGTC	CGGAAGGATT	GACCAGTTAA	CCAACATCTT	AGCCCCCATG	GCTGTTGGCC	60
55	AGATTATGAC	ATTTGGCTCC	CCAGTCATCG	CCTCTCCCTT	TATTTCGGGA	TGGAACTTGG	120
	TATCCATGTG	CGTGGAGTAC	GTCCTGCTCT	GGAAGGTTTA	CCAGAAAACC	CCAGCTCTAG	180
	CTGTGAAAGC	TGGTCTTAAA	GAAGAGGAAA	CTGAATTGAA	ACAGCTGAAT	TTACACAAAG	240
	ATACTGAGCC	AAAACCCCTG	GAGGGAACTC	ATCTAATGGG	TGTGAAAGAC	TCTAACATCC	300
60	ATGAGCTTGA	ACATGAGCAA	GAGCCTACTT	GTGCCTCCCA	GATGGCTGAG	CCCTTCCGTA	360

	CCTTCCGAGA	TGGATGGGTC	TCCTACTACA	ACCAGCCTGT	GTTTCTGGCT	GGCATGGGTC	420
5	TIGCTITICCT	TTATATGACT	GTCCTGGGCT	TTGACTGCAT	CACCACAGGG	TACGCCTACA	480
J	CTCAGGGACT	GAGTGGGTTC	CATCCTCAGT	ATTTTGATGG	GAGCATCAGC	TATAACTGGA	540
	ATAATGGGAA	CTGTAGCTTT	TACTTGGCTA	CGTCGAAAAT	GTGGTTTGGT	TCGGCAGGTC	600
10	TGATCTCAGG	ATTGGCACAG	CTTTCCTGTT	TGATCTTGTG	TGTGATCTCT	GTATTCATGC	660
	CTGGAAGCCC	CCTGGACTTG	TCCGTTTCTC	CTTTTGAAGA	TATCCGATCA	AGGTTCATTC	720
15	AAGGAGAGTC	AATTACACCT	ACCAAGATAC	CTGAAATTAC	AACTGAAATA	TACATGTCTA	. 780
15	ATGGGTCTAA	TTCTGCTAAT	ATTGTCCCGG	AGACAAGTCC	TGAATCTGTG	CCCATAATCT	840
	CTGTCAGTCT	GCTGTTTGCA	GGCGTCATTG	CTGCTAGAAT	CGGTCTTTGG	TCCTTTGATT	900
20	TAACTGTGAC	ACAGTTGCTG	CAAGAAAATG	TAATTGAATC	TGAAAGAGGC	ATTATAAATG	960
	GTGTACAGAA	CTCCATGAAC	TATCTTCTTG	ATCTTCTGCA	TTTCATCATG	GTCATCCTGG	1020
25	CTCCAAATCC	TGAAGCTTTT	GGCTTGCTCG	TATTGATTTC	AGTCTCCTTT	GTGGCAATGG	1080
43	GCCACATTAT	GTATTTCCGA	TTTGCCCAAA	ATACTCTGGG	AAACAAGCTC	TTTGCTTGCG	1140
	GTCCTGATGC	AAAAGAAGTT	AGGAAGGAAA	ATCAAGCAAA	TACATCTGTT	GTTTGAGACA	1200
30	GTTTAACTGT	TGCTATCCTG	TTACTAGATT	ATATAGAGCA	CATGTGCTTA	TTTTGTACTG	1260
	CAGAATTCCA	ATAAATGGCT	CCCTCTTTTC	CTCTGTTTTT	ACCACAGCTG	TGCCTTGAGA	1320
35	ACTAAAAGCT	GTTTAGGAAA	CCTAAGTCAG	CAGAAATTAA	CTGGATTAAT	TTCCCTTATG	1380
33	TTGAGGGCCA	TGGRAAAAA	ATTGGGAAAA	GGAAAAACTC	AGTTTTAAAT	ACGGGAGACT	1440
	ATAATGGATA	ACACTGRATT	CCCCTATTTC	TCATGAGTAG	ATACAATCTT	ACGTAAAAGA	1500
40	GTGGTTAGTC	ACGTGAATTC	AGTTATCATT	TGACAGATTC			1540

45 (2) INFORMATION FOR SEQ ID NO: 152:

50

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1719 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 152:

55 TACTTATGAG GTCAATTGGA AATAAGAACA CCATTTTACT GGGTCTAGGA TTTCAAATAT 60
TACAGTTGGC ATGGTATGGC TTTGGTTCAG AACCTTGGAT GATGTGGGCT GCTGGGGCAG 120
TAGCAGCCAT GTCTAGCATC ACCTTTCCTG CTGTCAGTGC ACTTGTTTCA CGAACTGCTG 180

	ATGCTĢATCA	ACAGGGTGTC	GTTCAAGGAA	TGATAACAGG	AATTCGAGGA	TTATGCAATG	240
	GTCTGGGACC	GCCCTCTAT	GGATTCATTT	TCTACATATT	CCATGTGGAA	CTTAAAGAAC	300
5	TGCCAATAAC	AGGAACAGAC	TTGGGAACAA	ACACAAGCCC	TCAGCACCAC	TTTGAACAGA	360
	ATTCCATCAT	CCCTGGCCCT	CCCTTCCTAT	TTGGAGCCTG	TTCAGTACTG	CTGGCTCTGC	420
10	TIGTIGCCTT	GTTTATTCCG	GAACATACCA	ATTTAAGCTT	AAGGTCCAGC	AGTTGGAGAA	480
	AGCACTGTGG	CAGTCACAGC	CATCCTCATA	ATACACAAGC	GCCAGGAGAG	GCCAAAGAAC	540
	CTTTACTCCA	GGACACAAAT	GTGTGACGAC	TGAAATCAGG	AAGATTTITC	TATCAGCACC	600
15	CAGGTCTTAG	TTTTCACCTC	TAGTTCTGGA	TGTACATTCC	ATTTCCATCC	ACAGTGTACT	. 660
	TTAAGATTGT	CTTAAGAAAT	GTATCTGCAT	GAACTCCGTG	GGAACTAAAG	GAAGTGGGAA	720
20	CTTAGAACCA	GACAGTTTTC	CAAAGATGTT	ACAATTTCTT	TTGAAAAACC	TTTTGTTTAT	780
20	TAGCACCAAT	TTCTYGCCAC	TAAGCTATTT	GTTTTATTAT	ACATCCTTTA	АТТАААААСТ	840
	ATATATGTAA	CTTCTTAGAT	ATTAGCAAAT	GTCTCTGCTA	CCATTTCCTT	AAGGTGTTGA	900
25	GCTTTAACTC	TATGCTGACT	CAGTGAGACA	CAGTAGGTAG	TATGGTTGTG	GACCTATTTG	960
	TTTTAACATT	GTAAAATTTT	GAGTCAGATT	TTAATATTGT	AAAATCTTGG	GTCAAATAAT	1020
30	TCAAAGCCTT	AATGCAGATG	CACTAAAACA	AAGAAATGGT	AAATGAATTG	TTTGCATTTA	1080
30	АААААААА	CTCTTAAGAA	AACTGTACTA	AATCTGAATC	ATCTTTTGAG	CTTGTTTGCA	1140
	GTACTTTTAA	ACATTATTCA	CTACTGTTTT	TGAAGTGAGA	AAGTATCAGC	CATTTAGCAT	1200
35	TTAAGTTGGG	GTATTTAGAG	CCTGTAATCT	AAATGCTGGC	TCAAATTTAT	TCCCCAGCTA	1260
	CTTCTTATAC	CACTATTCTT	TTAATGTTTG	САТААТСАТА	AGCACCTCAA	CACTTGAATA	1320
40	САТААТСТАА	АААТТАТАТА	GTAAAGCTGG	TAGCCTTGAA	AATGTCAGTG	TGATATCTAT	1380
40	TATGTAGATA	AATATATATA	GTGGCCTTTC	AGGACTGTCA	CAGTAACACT	TTATTTACAG	1440
	AGCTAATGTT	TGTCCTAAAT	TTTCAGGACC	CTAGAGGAGA	GCTTTATACA	ATTACCGATG	1500
45	TGAATTICTC	TAAAGTGTAT	ATTTTTGTGT	CCAGTTATAT	татттааааа	AGTGTTACTT	1560
	TGTAAAAATT	GTATATAAAG	AACTGTATAG	TTTACACTGT	TTTCATCTTG	TGTGTGGTTA	1620
50	TTGCTTAATG	CTTTTTAAAC	TTGGAACACT	CACTATGGTT	AAATAAGGTC	TTAAAAGAAA	1680
50	TGTAAATATT	ҮТСТТААТА А	AGTTAAATAT	TTTAATGAT			1719

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 863 base pairs

60 (B) TYPE: nucleic acid

⁽²⁾ INFORMATION FOR SEQ ID NO: 153:

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

	•	
5	(xi) SEQUENCE DESCRIPTION: 'SEQ ID NO: 153:	
J	GGCACGAGGG AAGCCGGGAC GATGTCCGCA TGACAACCGA CGTTGGAGTT TGGAGGTGCT	60
	TGCCTTAGAG CAAGGGAAAC AGCTCTCATT CAAAGGAACT AGAAGCCTCT CCCTCAGTGG	120
10	TAGGGAGACA GCCAGGAGCG GTTTTCTGGG AACTGTGGGA TGTGCCCTTG GGGGCCCGAG	180
	AAAACAGAAG GAAGATGCTC CAGACCAGTA ACTACAGCCT GGTGCTCTCT CTGCAGTTCC	240
15	TGCTGCTGTC CTATGACCTC TTTGTCAATT CCTTCTCAGA ACTGCTCCAA AAGACTCCTG	300
13	TCATCCAGCT TGTGCTCTTC ATCATCCAGG ATATTGCAGT CCTCTTCAAC ATCATCATCA	360
	TTTTCCTCAT GTTCTTCAAC ACCTTCGTCT TCCAGGCTGG CCTGGTCAAC CTCCTATTCC	420
20	ATAAGTTCAA AGGGACCATC ATCCTGACAG CTGTGTACTT TGCCCTCAGC ATCTCCCTTC	480
	ATGTCTGGGT CATGAACTTA CGCTGGAAAA ACTCCAACAG CTTCATATGG ACAGATGGAC	540
25	TTCAAATGCT GTTTGTATTC CAGAGACTAG CAGCAGTGTT GTACTGCTAC TTCTATAAAC	600
23	GGACAGCCGT AAGACTAGGC GATCCTCACT TCTACCAGGA CTCTTTGTGG CTGCGCAAGG	660
	AGTTCATGCA AGTTCGAAGG TGACCTCTTG TCACACTGAT GGATACTTTT CCTTCCTGGA	720
30	TAGRAGGCCA CATTTGCTGC TTTGCAGGGG AGAGTTGGGC CCTATGCATG GGGCAAAACA	780
	GGTGGGATTT TCCAAGGGAA GGGTTCAGAA TTAGGCNIGT TGTTTCAGCC ATTTCCAAGG	840
35	AAGGGGAAGG GTTTCCCTNC CCT	863
55		
	(2) INFORMATION FOR SEQ ID NO: 154:	
40	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1101 base pairs (B) TYPE: nucleic acid	
45	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 154:	
	AACAGCAAAA AAGAATGATT TCTTCTGAAA TTGTGGAACA TGAGGATTCA AGTTTTTATT	60
50	TIGITACTAG GTGCTGGAGG AACATCCCAG TICACAAAGC CCCCATCTCT TCCTCTGGAG	120
	CCAGAGCCTG CGGTGGAATC AAGTCCAACT GAAACATCAG AACAAATAAG AGAGAAATAA	180
55	GAATAGAATG AATGACCCCA AAATARGGTT TTCTTGGGCG AGGATGTGCT GGATTAGGAA	240
	AGGTGACATG ACACAGGCAG AGCAGAGTGG CACCCACCAC AGAATACAGT GTGTGTTATT	300
	ACGAGGAGCC AGCAGTTGAG CCTAAGGTCC TTCTACCTAC CTGGTATTGG CATTTGAGGT	360

	CGGAAACCCT	CTACTGCCCC	ATAAGCCAGG	AAAAGTGAAA	AGAGAACACA	GTTCCTTTAA	420
	GAACTGGCAG	CAAGGCTTGA	GGCCTTATGT	ATGTAGCTGA	GTCAGCAAGG	TACATGATGC	480
5	TGTCTGCTTT	CAAAAGGACT	TTTCTCTCCT	AGCTGACTGA	стссттсстт	AGTTCAAGGA	540
	ACAGCTGAGA	CAGACCTCTG	CTGAGTAGCT	CTGTGATGAC	AAAGCCTTGG	TTTAACTGAG	600
10	GTGATCCTCA	GGTTGTGAGG	TTTATTAGTC	CCCAAGGCAA	ACACAAATAT	TAGATTAATA	660
10	ATCCAACTIT	AATAGTATAC	ATTTAAAAGA	АААААААСАА	AAGCCCTGGA	AGNTTGAGGC	720
	CAAGCCTGCT	GAGTATTGCA	GCTGCATTTG	CCCAAAGGGA	ATCCAGAACA	AGTCCCTCCC	780
15	TGTATTTTGT	TCTTGAGAGG	GGTCAGTCTA	GAAGCTAGAT	CCTATCAGGA	TGAGGAGCAG	840
	CAGCCCAGGG	CTTGTCTGGA	TCAGCACCAA	CGATTTTAAA	GAAAAAAGGA	AGAGTTTCTT	900
20	AGATGAGTAA	TTGTTATTGA	AGATAGTCAG	TGATAACCAC	TGACCAGATG	CTATCAATAC	960
20	ACTATGTGTC	CTTTTTAGAA	TAAAGATTAC	ATATCATCAT	TCCTTTGGGG	AAAATTGTTA	1020
	TTCAGGTATA	AAAACAAGAG	АТТАТААТАА	AAAATWAAAA	GAACCCTAAA	Алалалалас	1080
25	CTCGTGCCGA	ATTCCCTGCA	G				1101

30 (2) INFORMATION FOR SEQ ID NO: 155:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2031 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(C) SIKANDEDNESS: COUDIE

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 155:

40 CAATTAACCC GTTTGAGGCC TAGGTTGTTT GGCAAGCCCC NGGCCTAAAG TTTTAATTCG 60 GCAGAGCCAA GGGCCTGAAA GGAAGGGAAA GGGGAGGGTA GCGGGAGGGT AGCAGGTGAG 120 TTCCTAGGGC TGGAAGGTTT AGCAGCAGCC TGGTGCAGTG CCCTGTCATC AAGACAAACC 180 45 CACGGTCCTC CTGGGTGCCT ACCAAGCTTG GTTTGTACAA AAGCAAGGTG GGAGTCTATT 240 TTTGTACATG AGATACATCA CACTTACCTG TGGGCCAGTA TTGTGAAGTG AGTCTGAGTT 300 50 GTTTACACTG ATGCCTTCCC TGCCCACCAC AAATTGTGTA CATAGTCTTC AGAATGATAC 360 CACCCCTTTC CCCAGCTCCC AACCAAGAGC TGGTTCTAGG CCTGTGTTAT ATGTCATATT 420 TAGCGTTTTT ATATATGACC TTTGATTTCT GTTGTTTGTA TTTTAGCACA GTGTATGCAC 480 55 CTTCATTTAA ATACATCTGT GTGCATACAG ATACGCATAT ATGTGTGTGC GTATGCATAT 540 ATCTCTCATC TGTAGTTTCC AAGAGTTCAG CTGAAGCAGA TGGAGTCCTG CAGCCCAGGA 600 60 GACACCCTGC ATCCCTGCTA ATAGTGTTTG CCACAAGTAT TAGTGAGTCT TCCTTATTAA

	TATTTTCATT	TCAGAAGACT	GAAGCAAAGC	TGATAGTGTT	TGCTGTTTCT	TTGGCAGCTA	720
5	AGTGAGGGTC	TTGGGATGAC	TTGCTGTGTT	CCTCAAGCTG	CACTITIGGG	CCATCTCTGC	780
,	AGTATTAAGC	CCCCTTTTTG	CTTGGTGGTA	CTCTGTCTGT	GCCTGTGTGT	GTGTGTGATA	840
	GTCACTCTTG	CATGGCTTCC	ATGTCTGGTT	TGTGGCATTT	GGGGATAAGT	GCTGAACCAG	900
10	AGCATTTGCA	GTTTGTTTGA	GCCTCGTTG	CCAATGATAG	ATCACTCCTG	TTGACCTGGT	960
	ATGTCTGCTT	GCTTGCTGCT	TTTCCTTGCT	TTCTCTTGGA	AGAGGAAAGG	ACTCTGGTCA	1020
15	GGCCCAGGCT	GAGTGAGATG	AGCTGCAGCT	GGCTCATGGC	CTTCTTAGAG	CAGAGAGAGG	1080
15	AGTATGTCAT	TTTACTAAGT	TCCTAAACAA	ACATTTATGC	AGGCAACACT	CCTTGCAGAT	1140
	CCAGAAACTG	AGGCACAATA	GGGTTATGAC	TTCCTCAAGA	ATATGTAGCT	GCTAGGGGGT	1200
20	AAATCAAGGC	ATCACAATTT	CTGTTCAGCG	GGCAGGAATA	GGCTGTGAAT	TGCTAGCACT	1260
	TTTTTTTTAA	GCAATTACTT	TTTGACTTGT	TCCTCTGAAA	GTGCAAGAGG	CGTACACCTT	1320
25	TCCCAAATGT	AGACTAGAAT	CTGCAGGATG	CCACCCACTG	TATAGTTCTG	CTTTCCCAGA	1380
23	GAGGAAGAAC	TTTTAGAAAC	CAAATGATCT	TAATTGTTAT	TGCCCACCCC	TGGCTTTTCC	1440
	GGGTAGAAAA	TTCACAGTAG	GAATGATTGT	TAAGAGAGAG	TGCTTGGAAC	CATGGGTTAA	1500
30	CAGGAAAGGC	TACCTAACTT	CACATATCTG	CAACCAGAGC	AGCCACCAAG	CATTACTTAG	1560
	CAGCAGGAAA	ATGATTGTAT	TTGAGTTCCT	GTGTGTCCAA	AACTGAGGCA	CCATGTTCTT	1620
35	TGAAAACATG	CCACCTCAAG	GCTGGGCGCG	GTGGCTCACA	CCTGTTAATC	CCAGCACTTT	1680
	GGGAGGCCGA	GGCGGGCGGA	TCACCGGAGT	CGGGGAGTTT	GAGACCAGCC	TGGACCAACA	1740
	TGGGAGAAAC	CCCATCTCTA	ССТАААААТА	CAAAATTAGC	CCCCCCTCCT	GGCATGCGCC	1800
40	TATAATCTCA	GCTACTTGGG	AGGGYTGAGG	CAGGRGAATT	GCTTGAACCC	RGGANGGCGG	1860
	AGGTTTGCGG	TTGAGTTGAG	GATCGTGCCA	TTGCACTTCC	GGGCCTTGGG	GCAACAACAG	1920
45	CAAAAAYTCC	GTCTTCAAMW	MRTGCCGAAT	TCGATATCAA	GCTTATCGAT	ACCGTCGACC	1980
	TCGAGGGGGG	GCCCGGTACC	CAATTCGCCC	TATAGNGATC	GTATTACAAT	С	2031

55

- (2) INFORMATION FOR SEQ ID NO: 156:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1981 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 156:

60

	CCTGCACCCT	GAGCCCTTCA	CCCCTCCGAG	TTCCCCCCAG	GTTGGCTTCC	TTCGATTCCT	60
	TTTCTTGGTA	TCAACGTTTG	ATTGGAAGAA	CAACCCCCTC	TTTGTCAACC	TCAATAATGA	120
5	GCTCACTGTG	GAGGAGCAGC	TCGGGCACAG	CTCMCCGTYA	TGGTCATTGT	TACCCCCAA	180
	GACCGCAAAA	ACTCTGTGTG	GACACAGGAT	GGACCCTCAG	CCCAGATCCT	GCAGCAGCTT	240
10	GTGGTCCTGG	CAGCTGAAGC	CCTGCCCATG	TTAGAGAAGC	AGCTCATGGA	TCCCCGGGGA	300
10	CCTGGGGACA	TCAGGACAGT	GTTCCGGCCG	CCCTTGGACA	TTTACGACGT	GCTGATTCGC	360
	CIGTYTCCTC	GCCATATCCC	GCGGCACCGC	AGGCTTGTGG	ACTOGCCAGY	TGCCTCCTTC	420
15	TGCCGGGGCC	TGCTCAGCCA	GCCGGGGCCC	TCATCCCTGA	TGCCCGTGCT	GGGTNATGAT	480
	CCTNCTCAGC	TCTATCTGAC	GCAGCTCAGG	GAGGCCTTTG	GGGATCTGGC	CCTTTTCTTC	540
20	TATGACCAGC	ATGGTGGAGA	GGTGATTGGT	GTCCTCTGGA	AGCCCACCAG	CTTCCAGCCG	600
20	CAGCCCTTCA	AGGCCTCCAG	CACAAAGGGG	CGCATGGTGA	TGTCTCGAGG	TGGGGAGCTA	660
	GTAATGGTGC	CCAATGTTGA	AGCAATCCTG	GAGGACTTTG	CTGTGCTGGG	TGAAGGCCTG	720
25	GTGCAGACTG	TGGAGGCCCG	AAGTGAGAGG	TGGACTGTGT	GATCCCAGCT	CTGGAGCAAG	780
	CTGTAGACGG	ACAGCAGGAC	ATTGGACCTC	TAGAGCAAGA	TGTCAGTAGG	ATGACCTCCA	840
30	CCCTCCTTGG	ACATGAATCC	TCCATGGAGG	GCCTGCTGGC	TGAACATGCT	GAATCATCTC	900
30	CAACAAAACC	CAGCCCCAAC	TTTCTCTCTG	ATGCTCCAGC	ATTGGGGCAG	GGGCATGGTG	960
	GCCCATGTAG	TCTCCTGGGC	CTCACCATCC	CAGAAGAGGA	GTGGGAGCCA	GCTCAGAGAA	1020
35	GGAACTGAAC	CCAGGAGATC	CATCCACCTA	TTAGCCCTGG	GCCTGGACCT	CCCTGCGATT	1080
	TCCCACTCCT	TTCTTAGTCT	TCTTCCAGAA	ACAGAGAAGG	GGATGTGTGC	CTGGGAGAGG	1140
40	CTCTGTCTCC	TTCCTGCTGC	CAGGACCTGT	GCCTAGACTT	AGCATGCCCT	TCACTGCAGT	1200
10	GTCAGGCCTT	TAGATGGGAC	CCAGCGAAAA	TGTGGCCCTT	CTGAGTCACA	TCACCGACAC	1260
	TGAGCAGTGG	AAAGGGGCTA	TATGTGTATG	AATAGACCAC	ATTGAAGGAG	CACAATGCCC	1320
45	TCCTGTGTTG	ATGCCACTTC	CCAGGGTGGA	GACAGTGGAA	AAGAACCGAG	GACAGGAAAG	1380
	GATTGGGTAG	GTGAAGGGGT	CAGGGGACTG	GTAGTCACCC	AATCTTGGAG	AGGTGCAAAA	1440
50	AGCACTGGGG	GCTACCCGTT	AGCTGCATCT	GCCCTGGCTG	TTTGCCCGTT	CATGTCACAA	1500
30	ACTGCCACTA	CTATGTACCT	GCAGTGGGGT	TGCAGAGATG	GGGGAGACTC	AAGTCTTACT	1560
	CCCCAGGAGC	TCCCAGGGCC	CAAGGAGGAG	AATGCTGCCT	CCTTTCAGTC	TGGTCTACAC	1620
55	CCACTITCIG	GTAGCCTCTC	TGCTTCCTGT	AATTCTGGCT	GTTTTTCCAG	ACTCAGCTCA	1680
	AATAGTGCCC	CTCCTTAAGC	CCATCCCTCG	CCCCAGCCT	GAGGTGATCT	TTCCCTCCTC	1740
60	TGAACTATTA	GAGCAGTTAC	TGTCTGTTCA	GTTCGTTTGG	CAGGCACACA	CAGTGGCATA	1800
00							

	A						1981
5	ATCTGGGCAA	MAGAGAGACC	CCATCTCTTT	ТАААТАААА	GTTAAATTGC	ТТААААААА	1980
	CTIGTAATCC	CAACACTTAG	GGAGTMAGGR	GAATCACTTG	ASCYCAGGAG	TYCTAGACCA	1920
	AATTCTATTG	TTTTGAACTC	TGATTTAAAA	TTAAATTGCA	GCTGGGCGTG	GTGGCTCATG	1860

15

25

30

35

40

45

50

(2) INFORMATION FOR SEQ ID NO: 157:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 915 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 157:

GAATTCGGCA CGAGCGCGCC CATGGCGCTC CTGCTTTCGG TGCTGCGTGT ACTGCTGGGC 60 GGCTTCTTCG CGCTCGTGGG GTTGGCCAAG CTCTCGGAGG AGATCTCGGC TCCAGTTTCG 120 GAGCGGATGA ATGCCCTGTT CGTGCAGTTT GCTGAGGTGT TCCCGCTGAA GGTATTTGGC 180 TACCAGCCAG ATCCCCTGAA CTACCAAATA GCTGTGGGCT TTCTGGAACT GCTGGCTGGG 240 TTGCTGCTGG TCATGGGCCC ACCGATGCTG CAAGAGATCA GTAACTTGTT CTTGATTCTG 300 CTCATGATGG GGGCTATCTT CACCTTGGCA GCTCTGAAAG AGTCACTAAG CACCTGTATC 360 CCAGCCATTG TCTGCCTGGG GTTCCTGCTG CTGCTGAATG TCGGCCAGCT CTTAGCCCAG 420 ACTAAGAAGG TGGTCAGACC CACTAGGAAG AAGACTCTAA GTACATTCAA GGAATCCTGG 480 AAGTAGAGCA TCTCTGTCTC TTTATGCCAT GCAGCTGTCA CAGCAGGAAC ATGGTAGAAC 540 ACAGAGTCTA TCATCTTGTT ACCAGTATAA TATCCAGGGT CAGCCAGTGT TGAAAGAGAC 600 ATTITGTCTA CCTGGCACTG CTTTCTCTTT TTAGCTTTAC TACTCTTTTG TGAGGAGTAC 660 720 TTTAAATCAA CCAAAATTCT GATGCCCCAA ATAACCACTT TTAATGCCTT GGTGTAAGTA 780 TACCTCTGAA CTTTTTTCTG TGCCTTTAAA CAGATATATA TTTTTTTTWA ATGAAAATAA 840 AACCATATAT CCTATTTTAT TTCCTCCTTT TAAAACCTTA TAAACTATAA MAAAAAAAA 900 AAAAAAAAA CTCGA 915

55

(2) INFORMATION FOR SEQ ID NO: 158:

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 2117 base pairs

60

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 158:

	AGAGCGAAGC	GAGGGTGGCG	CGGGTCCGGG	CATGAAGCTG	eccecccc	TGCTGGGCCT	60
10	GCTGCTGCTG	GCGCCGTCCG	TGGTGCAGGC	GGTGGAGCCC	ATCAGCCTGG	GACTGGCCCT	120
10	GGCCGGCGTC	CTCACCGGCT	ACATCTACCC	GCGTCTCTAC	TGCCTCTTCG	CCGAGTCCTG	180
	CGGGCAGAAG	CGGAGCCTTA	GCCGGGAGGC	ACTGCAGAAG	GATCTGGACG	ACAACCTCTT	240
15	TGGACAGCAT	CTTGCAAAGA	AAATCATCTT	AAATGCCGTG	TTTGGTTTCA	TAAACAACCC '	300
	AAAGCCCAAG	AAACCTCTCA	CGCTCTCCCT	GCACGGGTGG	ACAGGCACCG	GCAAAAATTT	360
20	CGTCAGCAAG	ATCATCGCAG	AGAATATITA	CGAGGGTGGT	CTGAACAGTG	ACTATGTCCA	420
20	CCTGTTTGTG	GCCACATTGC	ACTITICCACA	TGCTTCAAAC	ATCACCTTGT	ACAAGGATCA	480
	GTTACAGTTG	TGGATTCGAG	GCAACGTGAG	TGCCTGTGCG	AGGTCCATCT	TCATATTTGA	540
25	TGAAATGGAT	AAGATGCATG	CAGGCCTCAT	AGATGCCATC	AAGCCTTTCC	TCGACTATTA	600
	TGACCTGGTG	GATGGGGTCT	CCTACCAGAA	AGCCATGTTC	ATATTTCTCA	GCAATGCTGG	660
30	AGCAGAAAGG	ATCACAGATG	TGGCTTTGGA	TTTCTGGAGG	AGTGGAAAGC	AGAGGGAAGA	720
20	CATCAAGCTC	AAAGACATTG	AACACGCGTT	GICTGTGTCG	GTTTTCAATA	ACAAGAACAG	780
	TOGCTTCTGG	CACAGCAGCT	TAATTGACCG	GAACCTCATT	GATTATTTTG	TTCCCTTCCT	840
35	CCCCTGGAA	TACAAACACC	TAAAAATGTG	TATCCGAGTG	GAAATGCAGT	CCCGAGGCTA	900
	TGAAATTGAT	GAAGACATTG	TAAGCAGAGT	GGCTGAGGAG	ATGACATTTT	TCCCCAAAGA	960
40	GGAGAGAGTT	TTCTCAGATA	AAGGCTGCAA	AACGGTGTTC	ACCAAGTTAG	ATTATTACTA	1020
	CGATGATTGA	CAGTCATGAT	TGGCAGCCGG	AGTCACTGCC	TGGAGTTGGA	AAAGAAACAA	1080
	CACTCAGTCC	TTCCACACTT	CCACCCCCAG	CTCCTTTCCC	TGGAAGAGGA	ATCCAGTGAA	1140
45	TGTTCCTGTT	TGATGTGACA	GGAATTCTCC	CTGGCATTGT	TTCCACCCCC	TGGTGCCTGC	1200
	AGGCCACCCA	GGGACCACGG	GCGAGGACGT	GAAGCCTCCC	GAACACGCAC	AGAAGGAAGG	1260
50	AGCCAGCTCC	CAGCCCACTC	ATCGCAGGGC	TCATGATTTT	TTACAAATTA	TGTTTTAATT	1320
	CCAAGTGTTT	CTGTTTCAAG	GAAGGATGAA	TAAGTTTTAT	TGAAAATGTG	GTAACTTTAT	1380
	TTAAAATGAT	TTTTAACATT	ATGAGAGACT	GCTCAGATTC	TAAGTTGTTG	GCCTTGTGTG	1440
55	TGTGTTTTTT	TTTAAGTTCT	CATCATTATT	ACATAGACTG	TGATGTATCT	TTACTGGAAA	1500
	TGAGCCCAAG	CACACATGCA	TGGCATTTGT	TCCACAGGAG	GCATCCCTG	GGGATGTGGC	1560
60	TGGAGCATGA	GCCAGCTCTG	TCCCAGGATG	GTCCCAGCGG	ATGCTGCCAG	GGGCAKTGAA	1620

	GIGTTTAGGT	GAAGGACAAG	TAGGTAAGAG	GACGCCTTCA	GGCACCACAG	ATAAGCCTGA	1680
	AACAGCCTCT	CCAAGGGTTT	TCACCTTAGC	AACAATGGGA	GCTGTGGGAG	TGATTTTGGC	1740
5	CACACTGTCA	ACATTTGTTA	GAACCAGTCT	TTTGAAAGAA	AAGTATTTCC	AACTTGTCAC	1800
	TTGCCAGTCA	CTCCGTTTTG	CAAAAGGTGG	CCCTTCACTG	TCCATTCCAA	ATAGCCCACA	1860
10	CGIGCICICI	GCTGGATTCT	AAATTATGTG	AATTTTGCCA	TATTAAATCT	TCCTCATTTA	1920
10	TACTATTATT	TGTTACGTTC	AATCAGAATC	CCCGAAACCT	CCTATAAAGC	TTAGCTGCCC	1980
	CTTCTGAGGA	TGCTGAGAAC	GGTGTCTTTC	TTTATAAATG	CAAATGGCTA	CCGTTTTACA	2040
15	ATAAAATTT	GCATGTGCAA	ааааааааа	АААААААА	AAAATCCCGG	GGGGGGGCCG	2100
	GTAACCAATT	TGNCCCC					2117

25

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 159:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2395 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 159:

TGTTCCTTAA TCCCTTTTCT AAAAAGGGGG GAAAATCCGG ATGGATTTTA GGGATTGGTC 60 TGGTGTCAGC TGTGTTTTAT TGCACACCTA AATCCTGATT ATAGGCTTTT CATTTCTCCG 120 CAAAGCCTTT ATTTTGGCAG TTAAGCCAAA TGTGTTTTCC AGAAAGTTAG TTATTTTCTC 180 CTCTTTCTTT CCTCTCTTTT CCCGTCTGAC CCCAAACGTT ATTGTCCAAA 240 CATGACTGGA CAGCAGCTTT TGTTTCTTGA CCCTGTAATA TGACAGTCTG CTAATATTGA 300 CAGAAGGTGC AGTTTTTGGG TTATAGTCGT GATTTTCGCT AATCAATCAT ATTAGCAGGA AAAAAAAKGA CTTGTTTCTG TTGTACTTGA GTCTTAAGAA AAAGTGGCCC ATAGTTTAGT 420 GGACAATTTC CAAAGGCTTT AGTACCACCT GTATTTCAAA ATGGGGGACC CAAACTCCCG 480 GAAGAAACAA GCTCTGAACA GACTACGTGC TCAGCTTAGA AAGAAAAAAG AATCTCTAGC 540 TGACCAGTTT GACTTCAAGA TGTATATTGC CTTTGTATTC AAGGAGAAGA AGAAAAAGTC 600 AGCACTITIT GAAGTGTCTG AGGTTATACC AGTCATGACA AATAATTATG AAGAAAATAT 660 CCTGAAAGGT GTGCGAGATT CCAGCTATTC CTTGGAAAGT TCCCTAGAGC TTTTACAGAA 720 GGATGTGGTA CAGCTCCATG CTCCTCGATA TCAGTCTATG AGAAGGGATG TAATTGGCTG 780 TACTCAGGAG ATGGATTTCA TTCTTTGGCC TCGGAATGAT ATTGAAAAAA TCGTCTGTCT 840 CCTGTTTCT AGGTGGAAAG AATCTGATGA GCCTTTTAGG CCTGTTCAGG CAAATTTGAG 900

	TTTCATCATG	GTGACTATGA	AAAACAGTTT	CTGCATGTAC	TGAGCCGCAA	GGACAAGACT	960
5	GGAATCGTTG	TCAACAATCC	TAACCAGTCA	GTGTTTCTCT	TCATTGACAG	ACAGCACTTG	1020
J	CAGACTCCAA	AAAACAAAGC	TACAATCTTC	AAGTTATGCA	GCATCTGCCT	CTACCTGCCA	1080
	CAGGAACAGC	TCACCCACTG	GGGCAGTTGG	CACCATAGAG	GRICACCICC	GTCCTTATAT	1140
10	GCCAGAGTAG	AGTACTGACC	AGCAAAATGG	AGAAGATCAG	AGAATGCAGC	AGCAGTTTTT	1200
	TTTCTTGTTT	TCTTACCACT	TTATTCTTTC	AGAGTTTAAA	GAAAATGGAC	TCATGCACAG	1260
15	AACACTATGC	ATTTTGAAAC	TIGITCATCC	TGGATTTTTT	TAAATCATTT	TTATCTCAGA	1320
••	ACTTAAACAA	AAATTAGATG	TCGTGCACGG	ACTGTGTGAA	AGAAGATGCT	TTGCATATTT	1380
	GCTGCACTGC	ATCAGTATCT	TACTAAAAAT	GTGAAATGAA	AGGACTATTG	TACACTGAAA	1440
20	TGCTTAAATG	TATCTGAAAG	CACAAGGTGA	TACTCATTTT	TATGGTCTTC	CCATTTGTGC	1500
	TGGTTTTTGC	CTCTTTGACA	TCTGTCATCA	GTATTTAGAG	GGTGAGAAGT	GAATGTAACA	1560
25	GGTATAAATA	ACATTTTTAA	AAACAATAAC	TTTGCTATAA	TCACAGTTGT	TCCAGAGCAC	1620
	TGTCAGATAC	ATTCTAATGA	CCAGAACTGG	тттааааааа	GAAAATACAA	CCATGGGAAA	1680
	GAAATCTTAA	ATGAAAAACG	CATCTCATTG	TAGGCATTTT	TGCCTCATAT	TTTACTGGGC	1740
30	CATGTTTGTT	TCCTGGTACT	CATGTATTTT	TTTTTTCCAG	ATCTCTTTCC	CCAAGTTGCT	1800
	ATTGTAAGAG	TATTCTGCTG	CGTGTGGATG	CAGTTATACA	CATTAAAGCA	GATCTGGAGT	1860
35	CTGAAGTAGC	TATAAAGCAG	СТАТААААСА	GAAATACATG	CATAGCTGCA	GAAACCATGA	1920
	TAGGTAGAGG	ACTTTTCTTT	TGGTTTTGTT	TTGTTTTGTT	TIGITITGIT	TTTGGTTTTA	1980
	CAGAGAAGAG	ATTTTTATTA	CAAAGAAAAA	AATTCCAGTG	AATTGTGCAG	AAATGCTGGT	2040
40	TTTTACACCA	TCCTAAAGAA	AAACTTTACA	AGGGTGTTTT	GGAGTAGAAA	AAAGGTTATA	2100
	AAGTTGGAAT	CTTAAATTGT	AAAATTAACC	ATTGAGTGTC	AAAGTTCTAA	AAGCAGAACT	2160
45	CATITIGIGC	AATGAACATA	AGGAAAGACT	ACTGTATAGG	TTTTTTTTT	TTCTCCTTTT	2220
	AAATGAAGAA	AAGCTTTGCT	TAAGGGTTGC	ATACTTTTAT	TGGAGTAAAT	CTGAATGATC	2280
	CTACTCCTTT	GGAGTAAAAC	TAGTGCTTAC	CAGTTTCCAA	TTGTATTTAG	CTTCTGGTTG	2340
50	GAATTTGAAA	AAAAAAGAAA	AAAAGAAAAA	GAAAACCTAA	ATAAAATAGG	TGAAA	2395

55 (2) INFORMATION FOR SEQ ID NO: 160:

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2120 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 160:

5	CCCCGGATAC	CGCCTGACGT	AGTGCCAATC	ACACCTCTCG	CCTCTCGGCG	CCTCGGAGGC	60
	TAATGAGGAC	GCCTGGCGAA	ACGCAGTAAC	GGATTTCCGG	GTGGACCTTC	GCTTTACGGC	120
10	TCGTGAGTTC	TTCCGCCCAA	CCCAGAGGAA	GCGGGAGAGC	AGTTTACGAC	AGCGCCGGTC	180
10	GTGTTTACGG	cecceccec	TGCGCGCGCA	TGTTTCCTCT	TTTCCTGGTT	TCTCAAGAGT	240
	GCTGCTGCTA	ACGCGGTCCC	CGGCACGCAC	CATCTGTTGC	CATCCCGGCC	GGCCGAGGCA	300
15	TTGCAGATTT	TGGAAGATGG	CAAAGTTCAT	GACACCCGTG	ATCCAGGACA	ACCCCTCAGG	360
	CTGGGGTCCC	TGTGCGGTTC	CCGAGCAGTT	TCGGGATATG	CCCTACCAGC	CGTTCAGCAA	420
20	AGGAGATCGG	CTAGGAAAGG	TTGCAGACTG	GACAGGAGCC	ACATACCAAG	ATAAGAGGTA	480
20	CACAAATAAG	TACTCCTCTC	AGTTTGGTGG	TGGAAGTCAA	TATGCTTATT	TCCATGAGGA	540
	GGATGAAAGT	AGCTTCCAGC	TGGTGGATAC	AGCGCGCACA	CAGAAGACGG	CCTACCAGCG	600
25	GAATCGAATG	AGATTTGCCC	AGAGGAACCT	CCGCAGAGAC	AAAGATCGTC	GGAACATGTT	660
	GCAGTTCAAC	CTGCAGATCC	TGCCTAAGAG	TGCCAAACAG	AAAGAGAGAG	AACGCATTCG	720
30	ACTGCAGAAA	AAGTTCCAGA	AACAATTTGG	GGTTAGGCAG	AAATGGGATC	AGAAATCACA	780
	GAAACCCCGA	GACTCTTCAG	TTGAAGTTCG	TAGTGATTGG	GAAGTGAAAG	AGGAAATGGA	840
	TTTTCCTCAG	TTGATGAAGA	TGCGCTACTT	GGAAGTATCA	GAGCCACAGG	ACATTGAGTG	900
35	TTGTGGGGCC	CTAGAATACT	ACGACAAAGC	CTTTGACCGC	ATCACCACGA	GGAGTGAGAA	960
	GCCACTGCGG	ASATNCAAGC	GCATCTTCCA	CACTGTCACC	ACCACAGACG	ACCCTGTCAT	1020
40	CCGCAAGCTG	GCAAAAACTC	AGGGGAATGT	GTTTGCCACT	GATGCCATCC	TGGCCACGCT	1080
	GATGAGCTGT	ACCCGCTCAG	TGTATTCCTG	GGATATTGTC	GTCCAGAGAG	TTGGGTCCAA	1140
	ACTOTTCTTT	GACAAGAGAG	ACAACTCTGA	CTTTGACCTC	CTGACAGTGA	GTGAGACTGC	1200
45	CAATGAGCCC	CCTCAAGATG	AAGGTAATTC	CTTCAATTCA	CCCCGCAACC	TGGCCATGGA	1260
	GGCAACCTAC	ATCAACCACA	ATTTCTCCCA	GCAGTGCTTG	AGAATGGGGA	AGGAAAGATA	1320
50	CAACTTCCCC	AACCCAAACC	CGTTTGTGGA	GGACGACATG	GATAAGAATG	AAATCGCCTC	1380
	TGTTGCGTAC	CGTTACCGCA	GTGGNAAGCT	TGGAGATGAT	ATTGACCTTA	TTGTCCGTTG	1440
	TGAGCACGAT	GGCGTCATGA	CTGGAGCCAA	CGGGGAAGTG	TCCTTCATCA	ACATCAAGAC	1500
55	ACTCAATGAG	TGGGATTCCA	GGCACTGTAA	TGGCGTTGAC	TGGCGTCAGA	AGCTGGACTC	1560
	TCAGCGAGGG	GCTGTCATTG	CCACGGAGCT	GAAGAACAAC	AGCTACAAGT	TGGCCCGGTG	1620
60	GACCTGCTGT	GCTTTGCTGG	CTGGATCTGA	GTACCTCAAG	CTTGGTTATG	TGTCTCGGTA	1680

	CCACGTGAAA	GACTCCTCAC	GCCACGTCAT	CCTAGGCACC	CAGCAGTTCA	AGCCTAATGA	1740
	GTTTGCCAGC	CAGATCAACC	TGAGCGTGGA	GAATGCCTGG	GGCATTTTAC	GCTGCGTCAT	1800
5	TGACATCTGC	ATGAAGCTGG	AGGAGGGCAA	ATACCTCATC	CTCAAGGACC	CCAACAAGCA	1860
	GGTCATCCGT	GTCTACAGCC	TCCCTGATGG	CACCTTCAGC	TCTGATGAAG	ATGAGGAGGA	1920
10	AGAGGAGGAG	GAAGAAGAGG	AAGAAGAAGA	GGAAGAAACT	TAAACCAGTG	ATGTGGAGCT	1980
10	GGAGTTTGTC	CTTCCACCGA	GACTACGAGG	GCCTTTGATG	CTTAGTGGAA	TGTGTGTCTA	2040
	ACTTGCTCTC	TGACATTTAG	CAGATGAAAT	ААААТАТАТА	TCTGTTAGT	CTTAAAAAAA	2100
15	ааааааааа	AAAAAAAAN				•	2120

20 (2) INFORMATION FOR SEQ ID NO: 161:

25

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 900 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 161:

30 GGAAGCTGAA GTCCTTCCAG ACCAGGGACA ACCAGGGCAT TCTCTATGAA GCTGCACCCA 60 CCTCCACCCT CACCTGTRAC TCAGGACCAC AGAAGCAAAA GTTCTCACTC AAACTGGATG 120 CCAAGGATGG GCGCTTGTTC AATGAGCAGA ACTTCTTCCA GCGGGCCGCC AAGCCTCTGC 180 35 AAGTCAACAA GTGGAAGAAG CTGTACTCGA CCCCACTGCT GGCCATCCCT ACCTGCATGG 240 GTTTCGGTGT TCACCAGGAC AAATACAGGT TCTTGGTGTT ACCCAGCCTG GGGAGGAGCC 300 40 TTCAGTCGGC CCTGGATGTC AGCCCAAAGC ATGTGCTGTG CAGAGAGGTC TGTGCTGCAG 360 GTGGCCTGCC GGCTGCTGGA TGCCCTGGAG TTCCTCCATG AGAATGAGTA TGTTCATGGA 420 AATGTGACAG CTGAAAATAT CTTTGTGGAT CCAGAGGACC AGAGTCAGGT GACTTTGGCA 480 45 GGCTATGGCT TCGCNTTCCG CTATTGCCCA AGTGGCAAAC ACGTGGCCTA CGTGGAAGGC 540 AGCAGGAGCC CTCACGAGGG GGACCTTGAG TTCATTAGCA TGGACCTGCA CAAGGGATGC 600 50 GGGCCCTCCC GCCGCRGCGA CCTCCAGAGC CTGGGCTACT GCATGCTGAA GTGGCTCTAC 660 GGGTTTCTGC CATGGACAAA TTGCCTTCCC AAMAMTGAGG ACATCATGAA GCAAAAACAG 720 AAGTTTGTTG ATAAGCCGGG GCCCTTCGTG GGACCCTGCG GTCACTGGAT CAGGCCCTCA 780 55 GAGACCCTGC AGAAGTACCT GAAGGTGGTG ATGGCCCTCA CGTATGAGGA GAAGCCGCCC 840 900 TACGCCATGC TGAGGAACAA CCTAGAAGCT TTGCTGCAGG ATCTGCGTGT GTCTCCATAT

1	21	INFORMATION	TOO TO	CEC	TD	110	167
۱	41	TIVEORUMITON	rur	SEU	LD	NO:	104

5	(i)	SEQUENC	E CHARAC	TERIS	TICS:	
		(A)	LENGTH:	1003	base	pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

10

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 162:

	GGCACGAGAT	GAGGGGCACC	CAGTGCTTCT	AGGGCAGGCT	CCCTCCTCCT	CCCCTAGGTA	60
15	TCAGCCTCTC	TTACTGTACT	CTCCGGGAAT	GTTAACCTTT	CTATTTTCAG	CCTGTGCCAC	120
	CTGTCTAGGC	AAGCTGGCTT	CCCCATTGGC	CCCTGTGGGT	CCACAGCAGC	GTGGCTGCCC	180
20	CCCAGGGCCA	CCGCTTCTTT	CTTGATCCTC	TTTCCTTAAC	AGTGACTTGG	GCTTGAGTCT	240
20	GGCAAGGAAC	CTTGCTTTTA	GCTTCACCAC	CAAGGAGAGA	GGTTGACATG	ACCTCCCCGC	300
	CCCCTCACCA	AGGCTGGGAA	CAGAGGGGAT	GTGGTGAGAG	CCAGGTTCCT	CTGGCCCTCT	360
25	CCAGGGTGTT	TTCCACTAGT	CACTACTGTC	TTCTCCTTGT	AGCTAATCAA	TCAATATTCT	420
	TCCCTTGCCT	GTGGGCAGTG	GAGAGGCTGC	TGGGTGTACG	CTGCACCTGC	CCACTGAGTT	480
30	GGGGAAAGAG	GATAATCAGT	GAGCACTGTT	CTGCTCAGAG	CTCCTGATCT	ACCCCACCCC	540
30	CTAGGATCCA	GGACTGGGTC	AAAGCTGCAT	GAAACCAGGC	CCTGGCAGCA	AACCTGGGAA	600
	TGGCTGGAGG	TGGGAGAGAA	CCTGAACTTC	TCTTTCCCTC	TCCCTCCTCC	AACATTACTG	660
35	GAACTCTATC	CTGTTAGGAT	CTTCTGAGCT	TGTTTCCCTG	CTGGGTGGGA	CAGAGGACAA	720
	AGGAGAAGGG	AGGGTCTAGA	AGAGGCAGCC	CTTCTTTGTC	CTCTGGGGTA	AATGAGCTTG	780
40	ACCTAGAGTA	AATGGAGAGA	CCAAAAGCCT	CTGATTTTTA	ATTTCCATAA	AATGTTAGAA	840
10	GTATATATAT	ACATATATAT	ATTTCTTTAA	ATTTTTGAGT	CTTTGATATG	TCTAAAAATC	900
	CATTCCCTCT	GCCCTGAAGC	CTGAGTGAGA	CACATGAAGA	AAACTGTGTT	TCATTTAAAG	960
45	ስጥን ተሞኮል ስጥምል	A ATTCATTCA A	ממממצידיים	********	227		1003

50 (2) INFORMATION FOR SEQ ID NO: 163:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2196 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 163:

60 AAGAAGCGGC ACACGGATGT GCAGTTCTAC ACAGAAGTGG GAGAGATAAC CACGGACTTG

	GGGAAACATC	AGCATATGCA	TGACCGAGAT	GACCTCTATG	CTGAGCAGAT	GGAACGAGAA	120
5	ATGAGGCACA	AACTGAAAAC	AGCCTTTAAA	AATTTCATTG	AGAAAGTAGA	GGCTCTAACT	180
3	AAGGAGGAAC	TGGAATTTGA	AGTGCCTTTT	AGGGACTTGG	GATTTAACGG	AGCTCCCTAT	240
	AGGAGTACCT	GCCTCCTTCA	GCCCACTAGT	AGTGCGCTGG	TAAATGCTAC	GGAATGGCCA	300
10	CCTTTTGTGG	TGACATTGGA	TGAGGTAGAG	CTGATCCACT	TTRAGCGGGT	CCAGTTTCAC	360
	CTGAAGAACT	TTGATATGGT	AATCGTCTAC	AAGGACTACA	GCAAGAAAGT	GACCATGATC	420
15	AACGCCATTC	CTGTAGCCTC	TCTTGACCCC	ATCAAGGAAT	GGTTGAATTC	CTGCGACCTG	. 480
15	AAATACACAG	AAGGAGTACA	GTCCCTCAAC	TGGACTAAAA	TCATGAAGAC	CATTGTTGAT	540
	GACCCTGAGG	GCTTCTTCGA	ACAAGGTGGC	TGGTCTTTCC	TGGAGCCTGA	GGGTGAGGGG	600
20	AGTGATGCTG	AAGAAGGGGA	TTCAGAGTCT	GAAATTGAAG	ATGAGACTTT	TAATCCTTCA	660
	GAAGATGACT	ATGAAGAGGA	AGAGGAGGAC	AGTGATGAAG	ATTATTCATC	AGAAGCAGAA	720
25	GAGTCAGACT	ATTCTAAGGA	GTCATTGGGT	AGTGAAGAAG	AGAGTGGAAA	GGATTGGGAT	780
	GAACTGGAGG	AAGAAGCCCG	AAAAGCGGAC	CGAGAAAGTC	GTTACGAGGA	AGAAGAAGAA	840
	CAAAGTCGAA	GTATGAGCCG	GAAGAGGAAG	GCATCTGTGC	ACAGTTCGGG	CCGTGGCTCT	900
30	AACCGTGGTT	CCAGACACAG	CTCTGCACCC	CCCAAGAAAA	AGAGGAAGTA	ACTTCTGAAC	960
	TTTGGCCCTG	AGCTCCATTC	TTCCTCCAGC	CAACCCCTGA	AAATTTTACA	TGACATAGAA	1020
35	ACTGTATTTT	TCCTTTCGTT	TTCATTTGAA	GTTTTGCCAT	TTGTGTTTAT	GGGTTTAGGG	1080
	GGCCATTTGT	GTGGACCAAT	CTACTCGGGG	AATTCCAGGC	CCACCAGGAC	ACGTGCCAAT	1140
	GCCCCATTC	AGATGGCAAG	GGAGGAGGTG	TTCTTGAAGA	CAGGAGGAGG	CTCCCGCTGT	1200
40	TAATAAATAT	TGTTTCATTC	TTCTCTCTTC	CTGTCACCTT	CTGCCAAGAC	ATTGATGGCT	1260
	TCTGACATCT	TATTTGGTGT	CTCAAAGCTG	TATTTCCAAG	ACAGTGGTAC	AAGGTGACCC	1320
45	TTAATTACCC	GTATCATGGT	TCTTGACCAG	CACATTCAAT	CCTCCAACCT	ACCCTACTGC	1380
,-	CATGACCTTC	CGCACATCTC	TAAGTTTTAT	CTTTGCAATA	CTCAAGGTTC	TCGGAAATTT	1440
	GCTAATGGTT	GTGATAAACC	ATACAGCTTG	AGCCAGTGAG	GCAGATTGGG	CTGGTGCCTT	1500
50	CGTCTGAGTT	TICCIGCTIT	CCTGCCTCGT	GCAGATTCTG	AGGTATATCT	GCTGCCTTGG	1560
	AAGACATAAG	AAGCAGTGAT	ACTCCCTGGC	TCGGTTATTT	TCTCCATACA	ATGCACACAT	1620
55	GGTACAATGA	TAGAAGGCAA	AATTGCCACT	GTCTTCTTTT	TTTTCTCATA	TATCTAAGGA	1680
55	AGATATATCA	GGTTGTGCCT	CATGTACCGC	TTCTAGTGAA	ATGTAGAGGA	AGGCTCAAAG	-1740
	GAGTCAACAT	TTAGATCTGG	AAGGGACAAG	TCATGCCTTG	GCCTAGAAT	ACCCTGATGA	1800
60	GAAAAGAGAA	GAGGAAGGGA	GGCCATATCT	ACAACANCAN	CCTCTCGGCA	CTGCTGCTCC	1860

	TTATTTTAAC	TTIGTCTTGC	ATTGTCCTGT	ATTTATCACA	GTTTCTGTTG	AACAGCTTTT	1920
5	CAAGTATTTG	GGGAGTTTAT	CTTGCCATCC	TCCCCTTCTG	GTTCTCTGCA	CCCACCTGTC	1980
5	CCACTGCAGT	TCCTTCCGTG	CTCTGTGACT	TTAAGAGAAG	AAGGGGGGAG	GGGTCCCGGA	2040
	TTTTATGTTT	GTTTGTTTTT	TCTCCTTAGC	AGTAGGACTT	GATATTTTCA	ATTTTGGAAG	2100
10	AACTAAAAGA	TGAATAAACT	GGGTTTTTTT	TGPTGTTTGT	TTTTGTAAAA	АААААААА	2160
	ааааааааа	ааааааааа	ааааааааа	ААААА			2196

20

30

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 164:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1945 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 164:

GCACAGAGTC GGGCGGACGG ACAGGGAGAG GAGGAGAGGG GGTCTGCGCG CGGCCGCTAC 60 CCAGAAGCCA GCGGACGGCA GCACGGAGTG GGCTGTCCCC GAGCCCAGCC CCGAGCGAGC 120 CCCCCCCC CCCCGMAGG ACGCGCCTYC CAGCCAGCCC GACTYCTAGG AGGAGGGGAG 180 GCGGGAAAGC AGCTCAAGCC TCACCCACCG CCCTGCCCCC AGCCCCGCCA CTCCCAGGCT 240 CCTCGGGACT CGGCGGGTCC TCCTGGGAGT CTCGGAGGGG ACCGGCTGTG CAGACGCCAT 300 GGAGTTGGTG CTGGTCTTCC TCTGCAGCCT GCTGGCCCCC ATGGTCCTGG CCAGTGCAGC 360 TGAAAAGGAG AAGGAAATGG ACCCTTTTCA TTATGATTAC CAGACCCTGA GGATTGGGGG 420 ACTGGTGTTC GCTGTGGTCC TCTTCTCGGT TGGGATCCTC CTTATCCTAA GTCGCAGGTG 480 CAAGTGCAGT TTCAATCAGA AGCCCCGGGC CCCAGGAGAT GAGGAAGCCC AGGTGGAGAA 540 CCTCATCACC GCCAATGCAA CAGAGCCCCA GAAAGCAGAG AACTGAAGTG CAGCCATCAG 600 GTGGAAGCCT CTGGAACCTG AGGCGGCTGC TTGAACCTTT GGATGCAAAT GTCGATGCTT 660 AAGAAAACCG GCCACTTCAG CAACAGCCCT TTCCCCAGGA GAAGCCAAGA ACTTGTGTGT 720 CCCCCACCCT ATCCCCTCTA ACACCATTCC TCCACCTGAT GATGCAACTA ACACTTGCCT 780 CCCCACTGCA GCCTGCGGTC CTGCCCACCT CCCGTGATGT GTGTGTGTGT 840 GTGACTGTGT GTGTTTGCTA ACTGTGGTCT TTGTGGCTAC TTGTTTGTGG ATGGTATTGT 900 GTTTGTTAGT GAACTGTGGA CTCGCTTTCC CAGGCAGGGG CTGAGCCACA TGGCCATCTG 960 CTCCTCCCTG CCCCCGTGGC CCTCCATCAC CTTCTGCTCC TAGGAGGCTG CTTGTTGCCC 1020

	GAGACCAGCC	CCCTCCCCTG	ATTTAGGGAT	GCGTAGGGTA	AGAGCACGGG	CAGTGGTCTT	1080
	CAGTCGTCTT	GGGACCTGGG	AAGGTTTGCA	GCACTTTGTC	ATCATTCTTC	ATGGACTCCT	1140
5	TTCACTCCTT	TAACAAAAAC	CTTGCTTCCT	TATCCCACCT	GATCCCAGTC	TGAAGGTCTC	1200
	TTAGCAACTG	GAGATACAAA	GCAAGGAGCT	GGTGAGCCCA	GCGTTGACGT	CAGGCAGGCT	1260
10	ATGCCCTTCC	GTGGTTAATT	TCTTCCCAGG	GGCTTCCACG	AGGAGTCCCC	ATCTGCCCCG	1320
10	CCCCTTCACA	GAGCGCCCGG	GGATTCCAGG	CCCAGGGCTT	CTACTCTGCC	CCTGGGGAAT	1380
	GTGTCCCCTG	CATATCTTCT	CAGCAATAAC	TCCATGGGCT	CTGGGACCCT	ACCCCTTCCA	1440
15	ACCTTCCCTG	CTTCTGAGAC	TTCAATCTAC	AGCCCAGCTC	ATCCAGATGC	AGACTACAGT	1500
	CCCTGCAATT	GGGTCTCTGG	CAGGCAATAG	TTGAAGGACT	CCTGTTCCGT	TGGGGCCAGC	1560
20	ACACCGGGAT	GGATGGAGGG	AGAGCAGAGG	CCTTTGCTTC	TCTGCCTACG	TCCCCTTAGA	1620
20	TGGGCAGCAG	AGGCAACTCC	CGCATCCTTT	CCTCTCCCTG	TCRGTGGTCA	GAGCGGTGAG	1680
	CGAGGTGGGT	TGGAGACTCA	GCAGGCTCCG	TGCAGCCCTT	GGGAACAGTG	AGAGGTTGAA	1740
25	GGTCATAACG	AGAGTGGGAA	CTCAACCCAG	ATCCCGCCCC	TCCTGTCCTC	TGTGTTCCCG	1800
	CGGAAACCAA	CCAAACCGTG	CGCTGTGACC	CATTGCTGTT	CTCTGTATCG	TGATCTATCC	1860
30	TCAACAACAA	CAGAAAAAAG	GAATAAAATA	TCCTTTGTTT	CCTAGTGAAA	ААААААААА	1920
30	АААААААА	ааааааааа	CTCGA				1945

40

(2) INFORMATION FOR SEQ ID NO: 165:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2933 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 165:

45 GGGTCGACCC ACGCGTCCGG CAGCCGTCGT TTGAGTCGTT GCTGCCGCTG CCCCCTCCCG 60 GATCAGGAGC CAGTGTATAC CGCCCGCCCA CCGCCTTGGT GCCGCTAGAG GAAACGAGAA 120 50 GGAGGCCGCC TGCGGTTTGT CGCCGCAGCT CGCCCMCYGY CYGGRAGAGC CGAGCCCCGG CCCAGTCGGT CGCYTGCCAC CSCTCGTAGC CGTTACCCGC GGGCCGCCAC AGCCGCCGGC 240 CGGGAGAGGC GCGCCCATG GCYTCTGGAG CCGATTCAAA AGGTGATGAC CTATCAACAG 55 CCATTCTCAA ACAGAAGAAC CGTCCCAATC GGTTAATTGT TGATGAAGCC ATCAATGAGG 360 ACAACAGTGT GGTGTCCTTG TCCCAGCCCA AGATGGATGA ATTGCAGTTG TTCCGAGGTG 420 60 ACACAGTGTT GCTGAAAGGA AAGAAGAGAC GAGAAGCTGT TTGCATCGTC CTTTCTGATG 480

	ATACTIGITC	TGATGAGAAG	ATTCGGATGA	ATAGAGTTGT	TCGGAATAAC	CITCGIGIAC	540
5	GCCTAGGGGA	TGTCATCAGC	ATCCAGCCAT	GCCCTGATGT	GAAGTACGGC	AAACGTATCC	600
J	ATGTGCTGCC	CATTGATGAC	ACAGTGGAAG	GCATTACTGG	TAATCTCTTC	GAGGTATACC	660
	TTAAGCCGTA	CTTCCTGGAA	GCGTATCGAC	CCATCCGGAA	AGGAGACATT	TTTCTTGTCC	720
10	GTGGTGGGAT	GCGTGCTGTG	GAGTTCAAAG	TGGTGGAAAC	AGATCCTAGC	CCTTATTGCA	780
	TIGTIGCTCC	AGACACAGTG	ATCCACTGCG	AAGGGGAGCC	TATCAAACGA	GAGGATGAGG	840
15	AAGAGTCCTT	GAATGAAGTA	GGGTATGATG	ACATTGGTGG	CTGCAGGAAG	CAGCTAGCTC	900
13	AGATAAAGGA	GATGGTGGAA	CTGCCCCTGA	GACATCCTGC	CCTCTTTAAG	GCAATTGGTG	960
	TGAAGCCTCC	TAGAGGAATC	CTGCTTTACG	GACCTCCTGG	AACAGGAAAG	ACCCTGATTG	1020
20	CTCGAGCTGT	AGCAAATGAG	ACTGGAGCCT	TCTTCTTCTT	GATCAATGGT	CCTGAGATCA	1080
	TGAGCAAATT	GGCTGGTGAG	TCTGAGAGCA	ACCTTCGTAA	AGCCTTTGAG	GAGGCTGAGA	1140
25	AGAATGCTCC	TGCCATCATC	TTCATTGATG	AGCTAGATGC	CATCGCTCCC	AAAAGAGAGA	1200
23	AAACTCATGG	CGAGGTGGAG	CGGCGCATTG	TATCACAGTT	GTTGACCCTC	ATGGATGGCC	1260
	TAAAGCAGAG	GGCACATGTG	ATTGTTATGG	CAGCAACCAA	CAGACCCAAC	AGCATTGACC	1320
30	CAGCTCTACG	GCGATTTGGT	CGCTTTGACA	GGGAGGTAGA	TATTGGAATT	CCTGATGCTA	1380
	CAGGACGCTT	AGAGATTCTT	CAGATCCATA	CCAAGAACAT	GAAGCTGGCA	GATGATGTGG	1440
35	ACCTGGAACA	GTAGCCAATG	AGACTCACGG	GCATGTGGGT	GCTGACTTAG	CAGCCCTGTG	1500
	CTCAGAGGCT	GCTCTGCAAG	CCATCCGCAA	GAAGATGGAT	CTCATTGACC	TAGAGGATGA	1560
	GACCATTGAT	GCCGAGGTCA	TGAACTCTCT	AGCAGTTACT	ATGGATGACT	TCCGGTGGGC	1620
40	CTTGAGCCAG	AGTAACCCAT	CAGCACTGCG	GGAAACCGTG	GTAGAGGTGC	CACAGGTAAC	1680
	CTGGGAAGAC	ATCGGGGGCC	TAGAGGATGT	CAAACGTGAG	CTACAGGAGC	TGGTCCAGTA	1740
45	TCCTGTGGAG	CACCCAGACA	AATTCCTGAA	GTTTGGCATG	ACACCTICCA	AGGGAGTTCT	1800
	GTTCTATGGA	CCTCCTGGCT	GTGGGAAAAC	TTTGTTGGCC	AAAGCCATTG	CTAATGAATG	1860
	CCAGGCCAAC	TTCATCTCCA	TCAAGGGTCC	TGAGCTGCTC	ACCATGTGGT	TTGGGGAGTC	1920
50	TGAGGCCAAT	GTCAGAGAAA	TCTTTGACAA	GGCCCGCCAA	GCTGCCCCCT	GTGTGCTATT	1980
	CTTTGATGAG	CTGGATTCGA	TTGCCAAGGC	TCGTGGAGGT	AACATTGGAG	ATGGTGGTGG	2040
55	GGCTGCTGAC	CGAGTCATCA	ACCAGATCCT	GACAGAAATG	GATGGCATGT	CCACAAAAAA	2100
	AAATGTGTTC	ATCATTGGCG	CTACCAACCG	GCCTGACATC	ATTGATCCTG	CCATCCTCAG	2160
	ACCTGGCCGT	CTTGATCAGC	TCATCTACAT	CCCACTTCCT	GATGAGAAGT	CCCGTGTTGC	2220
60	CATCCTCAAG	GCTAACCTGC	GCAAGTCCCC	AGTTGCCAAG	GATGTGGACT	TGGAGTTCCT	2280

	GGCTAAAATG	ACTAATGGCT	TCTCTGGAGC	TGACCTGACA	GAGATTTĠCC	AGCGTGCTTG	2340
5	CAAGCTGGCC	ATCCGTGAAT	CCATCGAGAG	TGAGATTAGG	CGAGAACGAG	AGAGGCAGAC	2400
	AAACCCATCA	GCCATGGAGG	TAGAAGAGGA	TGATCCAGTG	CCTGAGATCC	GTCGAGATCA	2460
	CTTTGAAGAA	GCCATGCGCT	TTGCGCGCCG	TTCTGTCAGT	GACAATGACA	TTCGGAAGTA	2520
10	TGAGATGTTT	GCCCAGACCC	TTCAGCAGAG	TCGGGGCTTT	GGCAGCTTCA	GATTCCCTTC	2580
	AGGGAACCAG	GGTGGAGCTG	GCCCCAGTCA	GGGCAGTGGA	GGCGGCACAG	GTGGCAGTGT	2640
15	ATACACAGAA	GACAATGATG	ATGACCTGTA	TGGCTAAGTG	GTGGTGGCCA	GCGTGCAGTG	2700
	AGCTGGCCTG	CCTGGACCTT	GTTCCCTGGG	GGTGGGGGCG	CTTGCCCAGG	AGAGGGACCA	2760
	GGGTGCGCC	CACAGCCTGC	TCCATTCTCC	AGTCTGAACA	GTTCAGCTAC	AGTCTGACTC	2820
20	TGGACAGGGG	GTTTCTGTTG	CAAAAATACA	AAACAAAAGC	GATAAAATAA	AAGCGATTTT	2880
	CATTTGGTAA	ааааааааа	ТААААААА	cccccccccc	GCCCGAACCA	TTT	2933

30

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 166:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2243 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 166:

TCGGAGAGCC	GGCGGGCGNG	CGCCTCTCGG	CCAGGAAGCG	CCTCTTGGAC	GCGTGTNACC	60
GATGCCCAGA	AGTGGCCTTG	GCTGGGGAT	CACCATAGCT	TTTCTAGCTA	CGCTGATCAC	120
GCAGTTTCTC	GTGTATAATG	GTGTCTATCA	GTATACATCC	CCAGATTTCC	TCTATATTCG	180
TTCTTGGCTC	CCTTGTATAT	TTTTCTCAGG	AGGCGTCACG	GTGGGGAACA	TAGGACGACA	240
GTTAGCTATG	GGTGTTCCTG	AAAAGCCCCA	TAGTGATTGA	GTCTTCAAAA	CCACCGATTC	300
TGAGAGCAAG	GAAGATTTTG	GAAGAAAATC	TGACTGTGGA	TTATGACAAA	GATTATCTTT	360
TTTCTTAAGT	AATCTATTTA	GATCGGGCTG	ACTGTACAAA	TGACTCCTGG	AAAAAACTCT	420
TCACCTAGTC	TAGAATAGGG	AGGTGGAGAA	TGATGACTTA	CCCTGAAGTC	TTCCCTTGAC	480
TGCCCGCACT	GGCGCCTGTC	TGTGCCCTGG	AGCATTCTGC	CCAGGCTACG	TGGGTTCAGG	540
CAGGTGGCAG	CTTCCCAAGT	ATTCGATTTC	ATTCATGTGA	TTAAAACAAG	TTGCCATATT	600
TCAAAGCCTT	GAACTAAGAC	TCAATTACCA	ACCCGCAGTT	TTGTGTCAGT	GCCCAAAGGA	660
GGTAGGTTGA	TGGTGCTTAA	CAAACATGAA	GTATGGTGTA	ATAGGAATAA	TATTTATCCA	720

	AAAGATTTTT	AAAAATAGGG	CTGTGTTTAA	AAAAAAAAAC	AAAACARGAA	AAGCAGCAGT	780
	GATTATAGAG	AGGTCACACT	CTAAGTGGGG	TCCCCCCCTG	GCCACGCTTC	ACGGTCACGC	840
· 5	TCGTCCGTCC	TGCAGTGGCG	TGTTTACATG	GTCACACGTG	TGTGTATCAC	CAGTGGGTCA	900
	ACTGCTTGTC	ATTCCTCCCG	TGGCAGTTTG	TGTAGACAAT	CTTACTGAGC	AAAAGGCAAT	960
10	GAAAAGTCTT	GGTTCCCACA	CTGCGATATA	TTGGAATTTT	CACCTCAGTT	TATGAAGTIT	1020
	ATTTCGAAAT	CCATAGTCAT	CTAAGAATGA	ATACCTGTCT	GCCATGTATT	TCAATCTTAG	1080
	TGAGCCAAAA	TIGITIGITT	GTTACTACAG	AATAGAGATG	ACTGTTTTTT	GCCACAGCCC	1140
15	TATGGRATTT	GCAATCTGTG	ATTGCCTTGT	AAAAAGGAGA	GTGCATATGG	CACTGCATTA	1200
	AACGTGTGGT	GTTTCTAGTC	AATGATATTG	GTGAGCACAA	TGTATTCATT	TAATGGCATA	1260
20	GACCATACCA	GACCTAATTT	GCAAGTATTG	GGTCTTAAAC	TTCAAGTGCA	ATGTATATGA	1320
	AAACCAATCT	GAGCCTTGTA	TCTCTTAAAT	ATTTATTTT	TTTAACGTGT	GAGATGTTCG	1380
	AGAGAAGGTT	CTCCATTCAT	TTCAGTGCTG	CCTGGAGGAA	ACTCGGCAAT	GATTTCTTTC	1440
25	AGTTGTGAAG	TTCCTTTCGT	GTTACACCCT	CCACTGAACC	CTCAACCTTC	GAAATACTCC	1500
	AGTTTTGTGG	GTTTGGTCAT	TTTTACTTAT	AAATTTACCT	TTTTGTATTT	TGCAATTTAC	1560
30	ATGTGTTTGG	TTTGTTTTAA	ATTCTGTGAA	AGTGGCTTGA	TTAAAAGACT	CCTTTTAAAT	1620
	GGAAGCCACC	AGTCAGCAGA	ATGGAAGCTT	AGAGGAACTT	GCCTGTGAGC	GCTGGTCTTT	1680
	GTGTTTGGTT	TTGTGATGTA	ACGATCTTTG	CTGGGGTTTT	TIGCTITGIT	TTGAGGGAAA	1740
35	TGTCTTGGAG	TAAATTTTAA	GTTCCTGGAG	TTAATTTGTT	TTACAGGAAT	TTTGTTTTT	1800
	AAAAAAATAG	GATCATTCTG	AACTTTGGAA	TGACCCCCTT	ATATATTTC	TGAAAATGAA	1860
40	AACAGTTACA	TGAAAAAAT	TTCCAATGAA	GATGTCAGCA	TTTTATGAAA	AACCAGAAGT	1920
	TATTAGATGA	AAGCAGCGAG	TGAATCTTTA	AAACAGACTT	GATCACGCAC	ACACAATAAG	1980
	TCTTTCTCTC	CGAAACCGGA	AGTAAATCTA	TATCTGTTAG	AAATAATGTA	GCCAAAAGAA	2040
45	TGTAAATTTG	AGGATTTTTT	TGCCAATAGT	TTATAGAAAA	TATATGAACC	AAAGTGATTT	2100
	GAGTTTGTAA	AAATGTAAAA	TAGTATGAAC	AAAATTTGCA	CTCTACCAGA	TTTGAACATC	2160
50	TAGTGAGGTT	CACATTCATA	CTAAGTTTTC	AACATTGTGT	TCTTTTTGCA	TTCATTTTTT	2220
	ACTITTATTA	AAGGTTCAAA	ACC				2243

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1816 base pairs

60 (B) TYPE: nucleic acid

⁽²⁾ INFORMATION FOR SEQ ID NO: 167:

(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 167:

5 GGTGGGNAGC TTTNAATTTC CCCTTACWGG GGCGCTNTAA GGGGAAACCT TCCCGGAATT 60 TTCGGGTCGA CCCACGCGTC CGGCCAGCCT AGGAGAAGAA GTTCGTAGTC CCAGAGGTGA 120 10 GCCAGGAGGC GCCAGTTTCT GCCGGGTGAG GGCGGAGCTG AAGTGACAGC GGAGGCGGAA 180 GCAACGGTCG GTGGGGCGGA GAAGGGGGCT GGCCCCAGGA GGAGGAGGAA ACCCTTCCGA 240 GAAAACAGCA ACAAGCTGAG CTGCTGTGAC AGAGGGGAAC AAGATGGCGG CGCCGAAGGG 300 15 GAGCCTCTGG GTGAGGACCC AACTGGGGCT CCCGCCGCTG CTGCTGCTGA CCATGGCCTT 360 GGCCGGAGGT TCGGGGACCG CTTCGGCTGA AGCATTTGAC TCGGTCTTGG GTGATACGGC 420 20 GTCTTGCCAC CGGGCCTGTC AGTTGACCTA CCCCTTGCAC ACCTACCCTA AGGAAGAAGA 480 GTTGTACGCA TGTCAGAGAG GTTGCAGGCT GTTTTCAATT TGTCAGTTTG TGGATGATGG 540 AATTGACTTA AATCGAACTA AATTGGAATG TGAATCTGCA TGTACAGAAG CATATTCCCA 600 25 ATCTGATGAG CAATATGCTT GCCATCTTGG KTGCCAGAAT CAGCTGCCAT TCGCTGAACT 660 GAGACAAGAA CAACTTATGT CCCTGATGCC AAAAATGCAC CTACTCTTTC CTCTAACTCT 720 30 GGTGAGGTCA TTCTGGAGTG ACATGATGGA CTCCGCACAG AGCTTCATAA CCTCTTCATG 780 GACTITITAT CTTCAAGCCG ATGACGGAAA AATAGTTATA TTCCRGTCTA AGCCCAGRAA 840 TCCCAGGTAC GCACCACATT TGGAGCCAGG AGCCCTACCA AATTTGRGRG RAWCMTCTCT 900 35 AAGCAAAATG TCCNICAKMI CGSMAATGAG AAATTCACAA GCGCACAGGA ATTTTCTTGA 960 AGATOGAGAA AGTGATGGCT TTTTAAGATG CCTCTCTCTT AACTCTGGGT GGATTTTAAC 1020 40 TACAACTCTT GTCCTCTCGG TGATGGTATT GCTTTGGATT TGTTGTGCAA CTTGTTGCTA 1080 CACGCTGTTG GACGCAGTAT AGTTTCCCTC TGAGAAGCTG AGTATCTATG GTGACTTGGA 1140 GTTTATGAAT GAACAAAAGC TAAACAGATA TCCAGCTTCT TCTCTTGTGG TTGTTAGATC 1200 45 TAAAACTGAA GATCATGAAG AAGCAGGGCC TCTACCTACA AAAGTGAATC TTGCTCATTC 1260 TGAAATTTAA GCATTTTTCT TTTAAAAGAC AAGTGTAATA GACATCTAAA ATTCCACTCC 1320 50 TCATAGAGCT TTTAAAATGG TTTCATTGGA TATAGGCCTT AAGAAATCAC TATAAAATGC 1380 1440 GCCCGTTACC AAKTCGCCCT ATWGTGADTB GTATIMTTAT TTTACTAATA TCTGTAGCTA 1500 55 TITTGITTIT KGCTTKGGTT ATKGTTTTTY TCCCTTYTCT WAGCTATRAG CTGATCATKG 1560 CYSCITCICA CCTCCTGCCA TGATACTGTC AGTTACCTTA GTTAACAAGC TGAATATTTA 1620 60 GTAGAAATGA TGCTTCTGCT CAGGAATGGC CCACAAATCT GTAATTTGAA ATTTAGCAGG 1680

AAATGACCTT TAATGACACT ACATTTTCAG GAACTGAAAT CATTAAAATT TTATTTGAAT 1740

5	AATTATGTGC TGAAAAAAAA AAAAAAAAA AMWMRARASK RRWWACTCGA GGGGGGCCCC	1800
J	GGTACCCNAT TCGCCG	1816
10	(2) INFORMATION FOR SEQ ID NO: 168:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 945 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 168:	
20	AGAAACCGTT GATGGGACTG AGAAACCAGA GTTAAAACCT CTTTGGAGCT TCTGAGGACT	60
	CAGCTGGAAC CAACGGGCAC AGTTGGCAAC ACCATCAACT TCTCCCAAGC AGAGAAACCC	120
25	GAACCCACCA ACCAGGGGCA GGATAGCCTG AAGAAACATC TACACGCAGA AATCAAAGTT	180
	ATTGGGACTA TCCAGATCTT GTGTGGCATG ATGGTATTGA GCTTGGGGAT CATTTTGGCA	240
30	TCTGCTTCCT TCTCTCCAAA TTTTACCCAA GTGACTTCTA CACTGTTGAA CTCTGCTTAC	300
50	CCATTCATAG GACCCTTTTT TTTTATCATC TCTGGCTCTC TATCAATCGC CACAGAGAAA	360
	AGGTTRACCA AGCTTTTGGT GCATAGCAGC CTGGTTGGAA GCATTCTGAG TGCTCTGTCT	420
35	GCCCTGGTGG GTTTCATTAT CCTGTCTGTC AAACAGGCCA CCTTAAATCC TGCCTCACTG	480
	CAGTGTGAGT TGGACAAAAA TAATATACCA ACAAGAAGIT ATGTTTCTTA CTTTTATCAT	540
40	GATTCACTTT ATACCACOGA CTGCTATACA GCCAAAGCCA GTCTGGCTGG AWCTCTCTCT	600
40	CTGATGCTGA TTTGCACTCT GCTGGAATTC TGCCTAGCTG TGCTCACTGC TGTGCTGCGG	660
	TGGAAACAGG CTTACTCTGA CTTCCCTGGG AGTGTACTTT TCCTGCCTCA CAGTTACATT	720
45	GGTAATTCTG GCATGTCCTC AAAAATGACT CATGACTGTG GATATGAAGA ACTATTGACT	780
	TCTTAAGAAA AAAGGGAGAA ATATTAATCA GAAAGTTGAT TCTTATGATA ATATGGAAAA	840
50	GTTAACCATT ATAGAAAAGC AAAGCTTGAG TTTCCTAAAT GTAAGCTTTT AAAGTAATGA	900
50	ACATTAAAAA AAACCATTAT TTCACTGTCA TTTAAAGATA ATGTG	945
55		

(2) INFORMATION FOR SEQ ID NO: 169:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 902 base pairs

60

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 169: 5 GGCAGAGCCA CAGGAAGGAT GAGGAAGACC AGGCTCTGGG GGCTGCTGTG GATGCTCTTT 60 GTCTCAGAAC TCCGAGCTGC AACTAAATTA ACTGAGGAAA AGTATGAACT GAAAGAGGGG 120 10 CAGACCCTGG ATGTGAAATG TGACTACACG CTAGAGAAGT TTGCCAGCAG CCAGAAAGCT 180 TGGCAGATAA TAAGGGACGG AGAGATGCCC AAGACCCTGG CATGCACAGA GAGGCCTTCA 240 AAGAATTCCC ATCCAGTCCA AGTGGGGAGG ATCATACTAG AAGACTACCA TGATCATGGT 300 15 TTACTGCGCG TCCGAATGGT CAACCTTCAA GTGGAAGATT CTCGACTGTA TCAGTGTGTG 360 ATCTACCAGC CTCCCAAGGA GCCTCACATG CTGTTCGATC GCATCCGCTT GGTGGTGACC 420 20 AAGGGTTTTT CAGGGACCCC TGGCTCCAAT GAGAATTCTA CCCAGAATGT GTATAAGATT 480 CCTCCTACCA CCACTAAGGC CTTGTGCCCA CTCTATACCA GCCCCAGAAC TGTGACCCAA 540 GCTCCACCCA AGTCAACTGC CGATGTCTCC ACTCCTGACT CTGAAATCAA CCTTACAAAT 600 25 GTGACAGATA TCATCAGGGT TCCGGTGTTC AACATTGTCA TTCTCCTGGC TGGTGGATTC 660 CTGAGTAAGA GCCTGGTCTT CTCTGTCCTG TTTGCTGTCA CGCTGAGGTC ATTTGTACCC 720 30 TAGGCCCACG AACCCACGAG AATGTCCTCT GACTTCCAGC CACATCCATC TGGCAGTTGT 780 GCCAAGGGAG GAGGGAGGAG GTAAAAGGCA GGGAGTTAAT AACATGAATT AAATCTGTAA 840 TCACCRGCTA AAAAAAAAA AAAAAAAACN CGANCCTNGG TTTTCAGCTC CATCAGCTCC 900 35 TТ 902 40 (2) INFORMATION FOR SEQ ID NO: 170: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1883 base pairs 45 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 170: 50 60 AGAAAACAAC TGAAAAACCA CATTTTTCTA CATACAGCTG GGGAGGTAGC TGAGAACTTG GCACTGCGCA CACATACTAG GTTGAAAGAG AGTTGAGGAA ACCAGAAGGC CAAGTGGATC 120 55 TGCTGGCAAA CCCTGAACCT GTCTCCTGCG CTTGCTCTAC AGTTCTGAAG TTGAAAATCC 180 TTTTCATGCC TAGCATCTGC TTGAGTTATA AACCCCAAGG CAGCCATGTC ATAGACTAGT 240 GTTTACTCTT GTTTTGACTT TGTTTTAATG CTTCCTAAGA CCCAAGTGCC TCCTGCTGTT 300

	TCCTCCTTTG	TGGTAGCCTC	TGGCCATCTG	GGACCTCAAT	CCCCAGCTTT	CCCACTTTCA	360
	GCAGTCCTTT	GCTCTCTTTG	CTTCTACCTC	AAATAGCCCC	AGGAGTGGGC	TTTAGTCTCC	420
5	AATATGGAGC	ATYTCAAGCT	TCTCCTGGGG	GATGGGGATT	GGGATGGGCA	GAATCTGTTT	480
	TGGWTCTCCG	GGTTATTTCC	AGTGGGTGTA	AAAGCAGAGC	TGGGCCTTTC	CCTCTCTTAT	540
10	CCCTGAGGGT	GGGTAAGAAG	GACTGTATCT	ACACCTGTTC	TTCCCTACCT	TCTCTTTTGT	600
10	TAGGGAGGCC	TCATTCTAAG	TTCCTCAAGA	GAGTCCTTGG	CTTAAAGCTG	TAGCAAGGGT	660
	GTGCTAGGTG	GGGGATTTGG	AGCAAAACCG	TCGAGTAGGC	ATGATACTGG	TATGGAGTGG	720
15	GCCTGCAAAA	TCAGACAGAA	ATGGCTTGAG	AAGCCGCAGG	GGAGCATGCC	TGTCTCTCAG	780
	TGATAGAGTA	TGGGAGGGAC	CTCCCTAGCT	TGGAAAATGA	GAATTGAAGG	GGTTATGAAC	840
20	AAATAGGATG	CCTAGTTGAG	GATGTTCCCA	AAGTTTTGTC	CAATCTTATC	ATTAGTAGAT	900
20	TTTATAAGCC	ACAGAGACAA	ACCAGAAACG	GAATAATGTT	ACTTTGGATG	СТТТАТТТТТ	960
	TTGTTCTAGG	TGTGGCTTTG	TACATGCAGA	AGAATGCTAT	ATGCTGCACA	TTTTGCCTTT	1020
25	AAAGTCTTAC	GACTTTCCCC	ATTTTAGTCT	AATGGGAAGA	TACAGATGTG	CAAGTCTGCT	1080
	TTTTTGTTTT	TTGTTATTAT	TTTTTTTTT	TIGCICIGIG	TTATGGACAT	TTTCAGACAT	1140
30	GCACAGAAGT	GGAGAGGATG	GTCCTTGGAC	CCCATGTGTC	CATCACCTAG	CTGCATCACT	1200
	TATCAGCTAT	GGTCAACCTG	GTTTCATCTG	TATCTCTCTC	TTTTCACCTG	TATTGTTTAT	1260
	TGAAAATCCA	AGACACTATG	CCAATGCAAC	CGTGACTACT	TTGGGAGATT	GGTAGTCTCT	1320
35	TTTGATGGTG	ATAGTGATGG	GGTGCACTAT	CATAATCACA	TCAGGTCTGC	TTTTTGCTTT	1380
	TAATGTTAAC	TAATGAAGTT	CCAGAGATGG	GCCTTAGAAA	TGTGTTTTAA	GAATTAACAA	1440
40	GGAGTCTCAA	AAAGAAATGA	GAGGGATGCT	TCCTTTCCCC	TTGCATCTAC	AAAACAAGAG	1500
	AGAGACTGTT	CTGTTGTAAA	ACTCTTTCAA	AAATTCTGAT	ATGGTAAGGT	ACTIGAGACC	1560
	CTTCACCAGA	ATGTCAATCT	TTTTTTCTGT	GTAACATGGA	AACTTGTGTG	ACCATTAGCA	1620
45	TTGTTATCAG	CTTGTACTGG	TCTCATAACT	CTGGTTTTGG	AAGAATAATT	TGGAAATTGT	1680
	TGCTGTGTTC	TGTGAAAATA	ACCTCCCCAA	AATAATTAGT	AACTGGTTGT	TCTACTTGGT	1740
50	AATTTGACAC	CCTGTTAATA	ACGCAATTAT	TTCTGTGTTC	TTAAACAGTA	TAAATAGTTG	1800
	TAAGTTTGCA	TGCATGATGG	AAAATAAAA	ACCTGTATCT	CTGTTAAAAA	АААААААА	1860
	ааааааааа	ааааааааа	AAA				1883

- (2) INFORMATION FOR SEQ ID NO: 171:
- 60 (i) SEQUENCE CHARACTERISTICS:

. 5

(A) LENGTH: 2100 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(2, 1010)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 171:

	TACTTTTAGA	TTTACTGCCT	TCAAAAAGTG	CCTATTCTGA	GCAACATAAA	CGTTATTCCT	60
10	TACATATGTA	TGTACACACG	GTACCCAGAG	TCGTACTGTG	GCAGCCTTCA	AAAACATACC	120
	ATCAGAAAGA	GTAGGTGCTG	AGATAAGGNA	ACTITICCCAA	ATGNAAGAAA	GTCACTCACT	180
15	TCCAATATCC	CCTCTTCAAG	CGGCTACCGT	GRAASGGGCT	GCAAACACAT	TCCCTGAGCA	240
1,5	TCCCTTGCTG	ATACAGCTTC	TTTATATTTA	TATCCTACTG	GATGGTAGCA	TATTGCTAAG	300
	GTTTCCTGTA	CTCTGCTTCA	AGGGAATGTA	AGYTTTATGG	CATTGAAACA	TTTAGGAAAA	360
20	AAAAAGATGT	TTAAGAGAAT	TAATAGAGCC	GTÁGTCTGTA	TTAGGATGTG	TGTCATATGT	420
	GTGTTCTATA	AACTAAGCAT	COCTGGGTTT	AGAGTGTTAA	AGTGTCAGCA	CATTCCTTCT	480
25	CCTTTTGTCT	CTCAGGCTAA	CATGAGAGAA	AATAGAAAAG	TCTTGGCTGT	GGGGATTGGA	540
23	AGCTCAGGGG	GCCAAATGTC	CTTGCCAGAT	CCTTAGAGCA	TTACTTTGAC	TCCTAAAAAT	600
,	AGTAGTGTAT	GTTATTTGAT	GGCTTTTGTT	TCCATAGTTC	CATCACTGAC	AAAACTGTCA	660
30	ATACTGTTGA	TGGAGCAGCA	GCATAGCCTA	GAGTGATGCA	TTCTTACCCA	GAGGTGGCAA	720
	TAGGAGAGGG	TCCATGTAAA	TAGGACGAGG	TAGACAGTGC	ATGATTGTAG	GAGAAGGGTT	780
35	GAAGGGAGGA	CATGATTCCA	AAAAAGATCG	TTCTCAATGT	GTCGTCTGAC	TCAACCAGCT	840
33	GGCAGATTAC	ACTTGCCAAG	TCGTTCCCTT	TCCTTCTAAG	TCAGTTGGCT	CCATATTCAC	900
	TTGAATATGC	CTCTGTTTGG	GCAAAGCAAG	ATACCTCCAC	TTAACCTTTA	TCCAAGGAAG	960
40	CTCTTGGTGT	ccicrrogrc	ATAAAGTTGT	CTCCTACCTA	ACCCAGTTTT	ACCAAATGGA	1020
	AGTAAAAGGG	GACAAACTAT	GGAAGATGGA	CTCCATGCCA	TTGCAGTCAG	CCACCATTCT	1080
45	CTTTTCCATA	TAAGGAGCCC	CATTACATAA	GCTACGGGTG	AGGTTGGAAC	AGCTATGTTT	1140
13	CATAATTTCA	AGAGTGTGAC	CACCCTGCTC	TAGTCATCAT	CATTGGATGA	ATCCAGTTGA	1200
	CTCTTTGGCA	AAAGGGTGAT	ACTITICACT	AAAAATGCCT	ACTCTTCCTG	TTGATGTTCC	1260
50	TTTTCTGTTT	TTACCTTGTC	CAATTTCCAC	ACTAGTCATT	TTTTTTTTT	TTTAGAGGAT	1320
	CAGATTTTAG	CGCTGGAAAA	TGAGTTCAAA	AATTTCAGTG	TAATGTCATA	AGGATGTTGG	1380
55	GATACAGAGA	TTTTTTTTT	CCTTGGAAAC	AAATGGACTG	GGAAGAAACA	CAGCATGGCT	1440
	TTGCTCTGAG	TTTCAATCTG	ATGATTATGA	CCATGGAAGA	TAGTCTTATG	TAAAGGTTAA	1500
	ATGGTGTTTA	CAAGTGGATA	GATAAGGCGG	AGATGGTGAG	AAGCCGGGTT	TTCTCTATGC	1560
60	TAAATGTGTC	TACTAAGAGC	AGCACTTCCT	ACTAGCTAAG	CACAATCATA	GCCCCACCGT	1620

	GATGAGCTGC	TAGTCTGAAT	AACATTCCCT	GACTTAGGGA	AAGGCACACA	AAAACATATA	1680
5	AAGAATATGT	CTATTTTCAT	ATGTGTGATA	CTGACAGAGC	CATGGTATTC	СТААААТАТА	1740
3	GGTTTCTCTT	TTTTCTTGTA	TTCTTAGCAA	ATTGCATTTA	TTCACTACAT	TACAAACCAT	1800
	CACTGATGTA	TCCAAAATAG	CACACATAGT	TCAGTATGAA	AATAAGAGAA	TAAAATCTGT	1860
10	TATAAGCAAG	TGATTTAGGT	ATTTTCTTTT	GTGTTTATGC	ATTATCTGAC	ТАТАТТААА	1920
	CCTGTTTTTC	TATTTACCTT	CTATCAGTTT	TCTCTACCAA	TTATGTTTTT	TCAATGCTCT	1980
15	ATAAGAATGA	ATATGGAAAT	TATATTTCTT	TTTTCTGTAA	AAGAGTTGCA	ACTACTTTAT	2040
13	TATATTTAGA	аатссаатаа	ACTTCTTATT	АСАТТТАААА	ааааааааа	AAAACTCGAA	2100

25

30

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 172:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1930 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 172:

CCTTTGANTG TGGTCCCGGG TGCNGATTGG CAGCGCCTCC GCCGCGGCTC GTGGTTGTCC 60 CGCCATGGCA CTGTCGCGGG GGCTGCCCCG GGAGCTGGCT GAGGCGGTGG CCGGGGGCCG 120 GGTGCTGGTG GTGGGGGGGG GCGGCATCGG CTGCGAGCTC CTCAAGAATC TCGTGCTCAC 180 CGGTTTCTCC CACATCGACC TGATTGATCT GGATACTATT GATGTAAGCA ACCTCAACAG 240 ACAGTTTTTG TTTCAAAAGA AACATGTTGG AAGATCAAAG GCACAGGTTG CCAAGGAAAG 300 TGTACTGCAG TTTTACCCGA AAGCTAATAT CGTTGCCTAC CATGACAGCA TCATGAACCC 360 TGACTATAAT GTGGAATTTT TCCGACAGTT TATACTGGTT ATGAATGCTT TAGATAACAG 420 AGCTGCCCGA AACCATGTTA ATAGAATGTG CCTGGCAGCT GATGTTCCTC TTATTGAAAG 480 TGGAACAGCT GGGTATCTTG GACAAGTAAC TACTATCAAA AAGGGTGTGA CCGAGTGTTA 540 TGAGTGTCAT CCTAAGCCGA CCCAGAGAAC CTTTCCTGGC TGTACAATTC GTAACACACC 600 TTCAGAACCT ATACATTGCA TCGTTTGGGC AAAGTACTTG TTCAACCAGT TGTTTGGGGA 660 AGAAGATGCT GATCAAGAAG TATCTCCTGA CAGAGCTGAC CCTGAAGCTG CCTGGGAACC 720 AACGGAAGCC GAAGCCAGAG CTAGAGCATC TAATGAAGAT GGTGACATTA AACGTATTTC 780 TACTAAGGAA TGGGCTAAAT CAACTGGATA TGATCCAGTT AAACTTTTTA CCAAGCTTTT 840 TAAAGATGAC ATCAGGTATC TGTTGACAAT GGACAAACTA TGGCGGAAAA GGAAACCTCC 900

	AGTTCCGTTG	GACTGGGCTG	AAGTACAAAG	TCAAGGAGAA	GAAACGAATG	CATCAGATCA	960
	ACAGAATGAA	CCCCAGTTAG	GCCTGAAAGA	CCAGCAGGTT	CTAGATGTAA	AGAGCTATGC	1020
5	ACGTCTTTTT	TCAAAGAGCA	TCGAGACTTT	GAGAGTTCAT	TTAGCAGAAA	AGGGGGATGG	1080
•	AGCTGAGCTC	ATATGGGATA	AGGATGACCC	ATCTGCAATG	GATTTTGTCA	CCTCTGCTGC	1140
10	AAACCTCAGG	ATGCATATTT	TCAGTATGAA	TATGAAGAGT	AGATTTGATA	TCAAATCAAT	1200
10	GGCAGGGAAC	ATTATTCCTG	CTATTGCTAC	TACTAATGCA	GTAATTGCTG	GGTTGATAGT	1260
	ATTGGAAGGA	TTGAAGATTT	TATCAGGAAA	AATAGACCAG	TGCAGAACAA	TTTTTTGAA	1320
15	TAAACAACCA	AACCCAAGAA	AGAAGCTTCT	TGTGCCTTGT	GCACTGGATC	CTCCCAACCC	1380
	CAATTGTTAT	GTATGTGCCA	GCAAGCCAGA	GGTGACTGTG	CGGCTGAATG	TCCATAAAGT	1440
20	GACTGTTCTC	ACCTTACAAG	ACAAGATAGT	GAAAGAAAAA	TTTGCTATGG	TAGCACCAGA	1500
20	TGTCCAAATT	GAAGATGGGA	AAGGAACAAT	ССТААТАТСТ	TCCGAAGAGG	GAGAGACGGA	1560
	AGCTAATAAT	CACAAGAAGT	TGTCAGAATT	TGGAATTAGA	AATGGCAGCC	GGCTTCAAGC	1620
25	AGATGACTTC	CTCCAGGACT	ATACTTTATT	GATCAACATC	CTTCATAGTG	AAGACCTAGG	1680
	AAAGGACGTT	GAATTTGAAG	TIGTIGGIGA	TGCCCCGGAA	AAAGTGGGGS	CCAAACAAGC	1740
20	TGAAGATGCT	GCCAAAAGCA	TAACCAATGG	GCAGTGATGA	TGGGAGCTTC	AGCCCTCCAC	1800
30	CTYCACAGCT	TCAAGGAGGC	AAGATGGACG	TYTCYCATAG	TTGATYCGGR	TGAAGAAGRT	1860
	тстссаатаа	TTGCCCGACG	TTCATTGAAG	GAAGGAGGAG	GAGGCCCGCC	AAGAGGGGAA	1920
35	TTTAGGNITG	•					1930

40 (2) INFORMATION FOR SEQ ID NO: 173:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1509 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 173:

50	GCCCCTGGCC TCTGGGCTGA GGCTTGCTAG GGACTCGGGG TGGCTCTAAG GGGCAGGGAT	60
55	AGGGCTGGGG AGCGCCGGCC TGTGGCCCTG ACCAGCCCCT TCTCGTGCRG GTTCCACCCC	120
	GATGCAGGTG GTCACGTGCT TGACGCGGGA CAGCTACCTG ACGCACTGCT TCCTCCAGCA	180
	CCTCATGGTC GTGCTGTCCT CTCTGGAACG CACGCCCTCG CCGGAGCCTG TTGACAAGGA	240
	CTTCTACTCC GAGTTTGGGA ACAAGACCAC AGGGAAGATG GAGAACTACG AGCTGATCCA	300
60	CTCTAGTCGC GTCAAGTTTA CCTACCCCAG TGAGGAGGAG ATTGGGGACC TGACGTTCAC	360

	TGTGGCCCAA	AAGATGGCTG	AGCCAGAGAA	GGCCCCAGCC	CTCAGCATCC	TGCTGTACGT	420
5	GCAGGCCTTC	CAGGTGGGCA	TGCCACCCC	TGGGTGCTGC	AGGGCCCCC	TGCGCCCCAA	480
3	GACACTCCTG	CTCACCAGCT	CCGAGATCTT	CCTCCTGGAT	GACGACTGTG	TCCACTACCC	540
	ACTGCCCGAG	TTTGCCAAAG	AGCCGCCGCA	GAGAGACAGG	TACCGGCTGG	ACGATGGCCG	600
10	CCGCGTCCGG	GACCTGGACC	GAGTGCTCAT	GGGCTACCAG	ACCTACCCGC	AGCCCTCACC	660
	CTCGTCTTCG	ATGACGTGCA	AGGTCATGAC	CTCATGGGCA	GTGTCACCCT	GGACCACTTT	720
15	GGGGAGGTGC	CAGGTGGCCC	GGCTAGAGCC	AGCCAGGGCC	GTGAAGTCCA	GTGGCAGGTG	780
13	TTTGTCCCCA	GTGCTGAGAG	CAGAGAGAAG	CTCATCTCGC	TGTTGGCTCG	CCAGTGGGAG	840
	GCCCTGTGTG	GCCGTGAGCT	GCCTGTCGAG	CTCACCGGCT	AGCCCAGGCC	ACAGCCAGCC	900
20	TGTCGTGTCC	AGCCTGACGC	CTACTGGGGC	AGGGCAGCAG	GCTTTTGTGT	TCTCTAAAAA	960
	TGTTTTATCC	TCCCTTTGGT	ACCTTAATTT	GACTGTCCTC	GCAGAGAATG	TGAACATGTG	1020
25	TGTGTGTTGT	GTTAATTCTT	TCTCATGTTG	GGAGTGAGAA	TGCCGGGCCC	CTCAGGGCTG	1080
23	TCGGTGTGCT	GTCAGCCTCC	CACAGGTGGT	ACAGCCGTGC	ACACCAGTGT	CGTGTCTGCT	1140
	GTTGTGGGAC	CGTTGTTAAC	ACGTGACACT	GTGGGTCTGA	CTTTCTCTTC	TACACGTCCT	1200
30	TTCCTGAAGT	GTCGAGTCCA	GTCCTTTGTT	GCTGTTGCTG	TTGCTGTTGC	TGTTGCTGTT	1260
	GGCATCTTGC	TGCTAATCCT	GAGGCTGGTA	GCAGAATGCA	CATTGGAAGC	TCCCACCCCA	1320
35	TATTGTTCTT	CAAAGTGGAG	GTCTCCCCTG	ATCCAGACAA	GTGGGAGAGC	CCGTGGGGGC	1380
33	AGGGGACCTG	GAGCTGCCAG	CACCAAGCGT	GATTCCTGCT	GCCTGTATTC	тстаттссаа	1440
	TAAAGCAGAG	TTTGACACCG	тсаааааааа	АААААААА	АААААААА	ATTNCTGCGG	1500
40	CCTCAAGGG						1509

45 (2) INFORMATION FOR SEQ ID NO: 174:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3173 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 174:

55 TCGACCCCAS GCGTCCGTGC TTTTCCACAG AAGGTTAGAC CCTGAAAGAG ATGGCTCAGC 60
ACCACCTATG GATCTTGCTC CTTTGCCTGC AAACCTGGCC GGAAGCAGCT GGAAAAGACT 120
CAGAAATCTT CACAGTGAAT GGGATTCTGG GAGAGTCAGT CACTTTCCCT GTAAATATCC 180

60

	AAGAACCACG	GCAAGTTAAA	ATCATTGCTT	GGACTTCTAA	AACATCTGTT	GCTTATGTAA	240
	CACCAGGAGA	CTCAGAAACA	GCACCCGTAG	TTACTGTGAC	CCACAGAAAT	TATTATGAAC	300
5	GGATACATGC	CTTAGGTCCG	AACTACAATC	TGGTCATTAG	CGATCTGAGG	ATGGAAGACG	360
	CAGGAGACTA	CAAAGCAGAC	ATAAATACAC	AGGCTGATCC	CTACACCACC	ACCAAGCGCT	420
10	ACAACCTGCA	AATCTATCGT	CGGCTTGGGA	AACCAAAAAT	TACACAGAGT	TTAATGGCAT	480
••	CTGTGAACAG	CACCTGTAAT	GTCACACTGA	CATGCTCTGT	AGAGAAAGAA	GAAAAGAATG	540
	TGACATACAA	TTGGAGTCCC	CTGGGAGAAG	AGGGTAATGT	CCTTCAAATC	TTCCAGACTC	600
15	CTGAGGACCA	AGAGCTGACT	TACACGTGTA	CAGCCCAGAA	CCCTGTCAGC	AACAATTCTG	660
	ACTCCATCTC	TGCCCGGCAG	CTCTGTGCAG	ACATCGCAAT	GGGCTTCCGT	ACTCACCACA	720
20	CCGGGTTGCT	GAGCGTGCTG	GCTATGTTCT	TTCTGCTTGT	TCTCATTCTG	TCTTCAGTGT	780
20	TTTTGTTCCG	TTTGTTCAAG	AGAAGACAAG	ATGCTGCCTC	AAAGAAAACC	ATATACACAT	840
	ATATCATGGC	TTCAAGGAAC	ACCCAGCCAG	CAGAGTCCAG	AATCTATGAT	GAAATCCTGC	900
25	AGTCCAAGGT	GCTTCCCTCC	AAGGAAGAGC	CAGTGAACAC	AGTTTATTCC	GAAGTGCAGT	960
	TTGCTGATAA	GATGGGGAAA	GCCAGCACAC	AGGACAGTAA	ACCTCCTGGG	ACTTCAAGCT	1020
30	ATGAAATTGT	GATCTAGGCT	GCTGGGCTGA	ATTCTCCCTC	TGGAAACTGA	GTTACAACCA	1080
	CCAATACTGG	CAGGTTCCCT	GGATCCAGAT	CITCTCTGCC	CAACTCTTAC	TGGGAGATTG	1140
	CAAACTGCCA	CATCTCAGCC	TGTAAGCAAA	GCAGGAAACC	TTCTGCTGGG	CATAGCTTGT	1200
35	GCCTAAATGG	ACAAATGGAT	GCATACCCTT	CCTGAAATGA	CTCCCTTCTG	AATGAATGAC	1260
	AAAGCAGGTT	ACCTAGTATA	GTTTTCCCAA	ACTTCTTCCC	ATCATAGCAC	ATGTAGAAAA	1320
40	TAATATTTT	ATGGCACACT	GGGATAAACA	AGCAAGATTG	CTCACTTCTG	GAAGCTGCAT	1380
	ATGACTAGAG	GCCTCTTGTG	ACTGGAGGTA	ACAACCCTGC	CCAGTAACTG	TGGGAGAAGG	1440
	GGATCAATAT	TTTGCACACC	TGTAATAGGC	CATGGCACAC	CAGCCAAGAT	GCTCTGCTCA	1500
45	CAGTCAGTAT	GTGTGAAGAT	CCCTGGTGCG	TGGCCTTCAC	CACGCATCTT	GAGCAAATTA	1560
	GGAAAATGTA	CCCTTCGCTT	GAGGCAGATG	CAGCCCTTCC	CCCGAGTGCA	TGGCTTGGAG	1620
50	AGCAGAATGT	GGGCTGCATA	TAAGCACACT	CATCCCTTTG	TCTGGGAATC	TTTGTGCAGG	1680
	GCATAACAGG	CTTAGTAAGT	CCAAACACAG	ATGACAGTGC	TGTGTGGGTC	TCTGTCAGAG	1740
	TIGTGGCTCT	CAGCCATGTA	GACACACTCT	CCAAATGGAG	TGTTGGAAAA	TGTTCTTTCT	1800
55	GCAGGGTCTA	GAGACTGCTG	GGACACTTTT	CTTGGAGTGC	TACTTCAGAA	GCCTTATAGG	1860
	ATTITCTITC	TGGCCAAGAT	TTCCTTCTGT	ATCACTCCAA	GCAGCCTCAG	CAGAAGAAGC	1920
60	AGCCATGCCC	AGTATTCCCA	СТСТССАААА	GGAACTGACC	AGCTTATATT	TCTCACACTT	1980

	CTGGGGAACT	GGGTATAATC	CAACCATCAA	AATAGAAGAC	CTTGCAAGAA	GCAGAGTCAT	2040
	TCTCCAGAAG	GAACTTGGGA	GATGATGGTG	CAGATGATGA	AACTGGGTTC	ATCCCAGTTC	2100
5	CAAAGACTCA	GAGAACTAGA	GTTTAAGCTG	AGGCAGAGTG	CCGCCACCCT	GGCATGCCCC	2160
	ACAAACAGAT	CACCAGCCAG	CTTACACAGG	CATTAACTCT	CCTCAATGAG	GAAGAATCAT	2220
10	TCACAACTGA	GCAAGACATT	CATATGATCA	TTTAAGGAAG	TGTTTCCCTT	ATGTGTTAGC	2280
10	AAGTATAATC	GGCTAACTCC	TAAATCCCAA	TGAATAGTCC	TAGGCTGGAC	AGCAATGGGC	2340
	TGCAATTAGG	CAGATAAAGA	CATCAGTCCC	AGTAAATGAA	TCCATAGACT	CATCTAGCAC	2400
15	CAACTACCAT	TAGCACTATG	TTAGGAGCTG	CAAGGCCCCA	AAGTAGAAGA	TGTGCATAAT	2460
	GTCTGCTCTT	GTGTAGCTCA	GGAGACAATT	CCAGCACAGA	CACTACAGTT	AACGCTGAAC	2520
20	TGCAGCTGCA	AGTAATAGCA	TGAACAGTCA	GAAAAATACC	TTATGAGGG	GCAGGGCTGA	2580
20	AGCTGGGCCT	TGAAGGATGG	ATGAAATTTG	GATAGAGAAT	GAGGAAGACA	GAGGGCCTCC	2640
	AAGTGAGAGA	AGCATGAAAA	ATGAGCAGGG	GCCTGGATCA	GTGGGGTGTA	TTCAGAGCAC	2700
25	CTCTCCAGAT	GCACCATGCA	TGCTCACAGT	CCCTTGCCTA	TGTGTGGCAG	AGTGTCCCAG	2760
	CCAGATGTGT	GCCCCCACCC	CATGTCCATT	TACATGTCCT	TCAATGCCCA	CCTCAAAAGG	2820
30	TACCTCTTCT	GTAAAGCTTT	CCCTGGTATC	AGGAATCAAA	ATTAATCAGG	GATCTTTTCA	2880
	CACTGCTGTT	TITTCCTCTT	TGGTCCTTCT	ATCACTAAAA	CTCATCTCAT	TCAGCCTTAC	2940
	AGCATAACTA	ATTATTTGTT	TTCCTCACTA	CATTGTACAT	GTGGGAATTA	CAGATAAACG	3000
35	GAAGCCKGCT	GGGTGGTGG	CTCACGCCTG	TAATCCCAAC	ACTTTGGGAG	GCCAAGGCAG	3060
	GCGGATCACC	TGAGGTCAGG	ARTTCGAGAT	TARTCTGGCC	AACATGGTGA	AACCCCATNT	3120
40	NTACTAAAAA	TACGAAATTA	GCCAGGTGTG	GTGGCACACA	TCTGTAGTCC	CAG	3173

(2) INFORMATION FOR SEQ ID NO: 175:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 991 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 175:

AAATTCGGCA CAGCTGAGAG GAGACACAAG GAGCAGCCCG CAAGCACCAA GTGAGAGGCA 60

TGAAGTTACA GTGTGTTTCC CTTTGGCTCC TGGGTACAAT ACTGATATTG TGCTCAGTAG 120

ACAACCACGG TCTCAGGAGA TGTCTGATTT CCACAGACAT GCACCATATA GAAGAGAGTT 180

TCCAAGAAAT CAAAAGAGCC ATCCAAGCTA AGGACACCTT CCCAAATGTC ACTATCCTGT 240

	CCACATTGGA	GACTCTGCAG	ATCATTAAGC	CCTTAGATGT	CTCCTCCCTC	ACCAAGAACC	300
5	TCCTGGCGTT	CTACGTGGAC	AGGGTGTTCA	AGGATCATCA	GGAGCCAAAC	CCCAAAATCT	360
5	TGAGAAAAAT	CAGCAGCATT	GCCAACTCTT	TCCTCTACAT	GCAGAAAACT	CTGCGGCAAT	420
	GTCAGGAACA	GAGGCAGTGT	CACTGCAGGC	AGGAAGCCAC	CAATGCCACC	AGAGTCATCC	480
10	ATGACAACTA	TGATCAGCTG	GAGGTCCACG	CTGCTGCCAT	TAAATCCCTG	GGAGAGCTCG	540
	ACGTCTTTCT	AGCCTGGATT	AATAAGAATC	ATGAAGTAAT	GICCICAGCT	TGATGACAAG	600
15	GAACCTGTAT	AGTGATCCAG	GGATGAACAC	CCCCTGTGCG	GTTTACTGTG	GGAGACAGCC	660
	CACCTTGAAG	GGGAAGGAGA	TGGGGAAGGC	CCCTTGCAGC	TGAAAGTCCC	ACTGGCTGGC	720
	CTCAGGCTGT	CTTATTCCGC	TTGAAAATAG	CCAAAAAGTC	TACTGTGGTA	TTTGTAATAA	780
20	ACTCTATCTG	CTGAAAGGGC	CTGCAGGCCA	TCCTGGGAGT	AAAGGGCTGC	CTTCCCATCT	840
	AATTTATTGT	GAAGTCATAT	AGTCCATGTC	TGTGATGTGA	GCCAAGTGAT	ATCCTGTAGT	900
25	ACACATTGTA	CTGAGTGGTT	TTTCTGAATA	AATTCCATAT	TTTACCTAAA	АААААААА	960
	AAAAACTCGA	GGGGGGCCC	GTACCCAATT	т			991

35

(2) INFORMATION FOR SEQ ID NO: 176:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1290 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

40

45

50

55

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 176:

ACAGCCCTCT TOGGAGCCTG AGCCCGGCTC TCCTCACTCA CCTCAACCCC CAGGCGGCCC 60 CTCCACAGGG CCCCTCTCCT GCCTGGACGG CTCTGCTGGT CTCCCCGTCC CCTGGAGAAG 120 AACAAGGCCA TOGGTCGGCC CCTGCTGCTG CCCCTRCTGC YCCTGCTGCW GCCGCCAGCA 180 TTTCTGCAGC CTRGTGGCTC CACAGGATCT GGTCCAAGCT ACCTTTATGG GGTCACTCAA 240 CCAAAACACC TCTCAGCCTC CATGGGTGGC TCTGTGGAAA TCCCCTTCTC CTTCTATTAC 300 CCCTGGGAGT TAGCCAYAGY TCCCRACGTG AGAATATCCT GGAGACGGGG CCACTTCCAC 360 GGCAGTCCT TCTACAGCAC AAGGCCGCCT TCCATTCACA AGGATTATGT GAACCGGCTC 420 TTTCTGAACT GGACAGAGGG TCAGGAGAGC GGCTTCCTCA GGATCTCAAA CCTGCGGAAG GAGGACCAGT CTGTGTATTT CTGCCGAGTC GAGCTGGACA CCCGGAGATC AGGGAGGCAG 540 CAGTTGCAGT CCATCAAGGG GACCAAACTC ACCATCACCC AGGCTGTCAC AACCACCACC 600

	ACCTGGAGGC	CCAGCAGCAC	AACCACCATA	GCCGGCCTCA	GGTCACAGA	AAGCAAAGGG	660
	CACTCAGAAT	CATGGCACCT	AAGTCTGGAC	ACTGCCATCA	GGGTTGCATT	GCTGTCGCT	720
5	GTGCTCAAAA	CTGTCATTTT	GGGACTGCTG	TGCCTCCTCC	TCTGTGGTGG	AGGAGAAGGA	780
	AAGGTAGCAG	GGCGCCAAGC	AGTGACTTCT	GACCAACAGA	GTGTGGGGAG	AAGGGATGTG	840
10	TATTAGCCCC	GGAGGACGTG	ATGTGAGACC	CGCTTGTGAG	TCCTCCACAC	TCGTTCCCCA	900
10	TTGGCAAGAT	ACATGGAGAG	CACCCTGAGG	ACCTTTAAAA	GGCAAAGCCG	CAAGGCAGAA	960
	GGAGGCTGGG	TCCCTGAATC	ACCGACTGGA	GGAGAGTTAC	CTACAAGAGC	CTTCATCCAG	1020
15	GAGCATCCAC	ACTGCAATGA	TATAGGAATG	AGGTCTGAAC	TCCACTGAAT	TAAACCACTG	1080
	GCATTTGGGG	GCTGTTYATT	ATAGCAGTGC	AAAGAGTTCC	TTTATCCTCC	CCAAGGATGG	1140
20	AAAATACAAT	TTATTTTGCT	TACCATACAC	CCCTTTTCTC	CTCGTCCACA	TTTTCCAATC	1200
20	TGTATGGTGG	CTGTCTTCTA	TGGCAGAAGG	TTTTGGGGAA	TAAATAGCGT	GANATGNINC	1260
	TGACTNAAAA	АААААААА	AAAAACTCGA				1290

(2) INFORMATION FOR SEQ ID NO: 177:

30 (i) SE

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2290 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35

40

45

50

55

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 177:

TGGGGCCCCT TTTGGATGCT	CTGGGTGTTT	TTGCCAAGAG	TTACAGGATG	TCAAGTGTGG	60
GGAGCTCAGC ACCCTTGCTG	TGGACCAGTG	AAGGCTGTTC	CAGACCAGGT	GCTTCCAGAC	120
ATTTCCAGGC TCCAGGAGAG	AGGCTGGGAG	CCCCCACAGA	AAGCACAGGA	AAATGCAAAA	180
AAAAAACAGT CTTTTTTTT	TTTTTGCTTT	TTATTATGAA	AACAAAACAA	ATGCCCCAGG	240
AGAAGGGTCC ATGATTACCA	GAAACATCAA	AGAGTACTTT	CTACCATTTT	TATTCTGTTG	300
TGTTGAGGCC AGCATTGCAA	TAAACAAGCT	AAACTACTTA	CATTGGACTC	ATTTTCAGTA	360
ACTGACATTT ACAGGAATAT	ACTAGAAACG	GCACTAAAAA	GTTTAAGAAA	AGTTACGGTA	420
AACTTGCATG CACATCATAC	AGAAAAGTAA	САТТТТАААТ	ATAAAAAAGA	AAAACTTCCT	480
GGAAGCATTA TGCCAGTATT	AAGGAACAGT	GCTACTCTGG	ATGTGACAAA	TTCTGTATGT	540
GGGTGTTACT CTTTCCCAAA	AGACTGTCAG	AGGCGTGAGT	GCTGCAAAAG	AACAACAACA	600
AAAACAAACA CACAAAAAAA	TGTGTCTTAC	AGTTTGTAAG	CAAGATGACA	CTGCCCAACA	660
CAAAGAGGGG TCTGGAGTTC	AGTTCACGCC	CGAAGCCTGC	CCCCTCGGCC	TCCAGGGGTC	720

	ATTCAGAGTG	TTCTCAAATC	CAATTCCGAC	ACACGACTTG	TCACTACTCC	TCTCCCCTTG	780
5	AAAAAAGCAT	GTTAGAAGCT	GCCCTACAGG	TCTCAGCAGT	GGGACAATCT	AATTGAATCA	840
J	CCGCAGCCTT	CTAATACAGA	AGAAACGGAC	GTGACTGTCA	CCCTCAGCCC	GCCAGCAAGG	900
	GCGCTGAGGA	AGTCATTAAT	CCTTCGAAAC	TCTGAAAAGA	AACCAGTGTT	GAAGTCTGGA	960
10	CAGAAAGCCT	TAAAAAAGTG	ACAGCACCAA	TGCAGCTGCT	CAGTGTACCC	NCCGTGGGCT	1020
	GTCAGGGTCA	GTGGCTTCTT	TCTAGATGAA	AGGAGCAGAG	CCGAGCCGAC	GCCACCGTCA	1080
15	CAGAGAACCA	GCCGAGAAGG	AAAGGCCCCA	CGATGCTCCC	TGTGCGCTGC	CCCCACAGCC	1140
	GCCGCTCCC	CCGACGCCTC	ACACAGGCAG	CACCTCACTG	CCCTGTGGCT	GGAGGGGCAT	1200
	TGCAAGGAGC	GCCCCCAGC	CCCAGGCACC	CCCGGCTTAG	GGTGTACGTA	TCACCCAGCC	1260
20	CTGTGCTGGC	AGCACGTTAC	CAACCAGCCT	GCGTGAAGAC	CTGTCAACTG	TCGTGTGTGA	1320
	ATTCCTTAAA	TTCGGTTTAA	ATAGTCCATT	AAAGATCTGT	TTAGAAAATA	CCTTTGAAAA	1380
25	CGAGGGTAAC	тттаааааат	GGAAACTTTC	AAATCCATTT	ATATTTTTAT	ТАТАААСААА	1440
	ACTTAATTAA	AAGTTTAACA	AACTGGCTGA	AAACTCACCA	AGTGTCAGAC	TCACCAGCAA	1500
	TAAAAATTT	GATAATTTAC	CAGCATCTCC	TCATCAGAGT	TCCCTCTCCA	GTAAGGGTAT	1560
30	ACCTACATCT	GTAAGGGTCA	GTGGACTCTG	AATCAATTTT	ATGGTTGTTT	TAAAATCACC	1620
	GTGTATTAGG	ATACTAATGA	TAGTCCCTAT	ATCCATCCAG	AAATGCTGGC	AGAAAGCACT	1680
35	GGCCACCATA	CAGGACAGAC	CACACCACAG	CTCCATACCC	AGCGTCTGCC	TGGAGGCTCC	1740
	CCCACGCTGA	GGTCCGGGAG	AATGCCTGGT	TTCAGTCATT	TCCGGACTAA	CTGTGACAAC	1800
	GCGTGAGCAG	GGAGCACCGT	GCGAGTCTCC	GGGAGGGAAT	CCTCCTGGGG	CCCAGAGACT	1860
40	CCTCCACCCC	TGGGGAGGGC	AGACAGGCTC	GGGARGGCCT	GGCCAGGCCA	CTGGAGGCTG	1920
	GCAGGGAGCA	GGCATGTCCA	CCCGCAAGCC	TGGGAGGCTA	ACTCTGGCAT	TCCTGGCCGG	1980
45	AGCCGCCATG	CTCATTGGTG	GGCCAGTTTG	GGACATCCCC	GTACTCAAAG	ACCATATGGC	2040
	AGCCTCTGGG	AAAACAAAAC	CAAAACATCA	ССТТСТАТТА	AACTCTGTAT	ATTATTATTT	2100
	TTTACAATAG	AAAGTTAAAA	ATCAAGACTT	AGATTTACTA	TACATTTTTT	CTCTCAGATT	2160
50	ACAAAGTTTA	TATTATAA	CTGGGGTTCC	CTAAATTGAT	ТТСТТТТААА	ACAGTCTTAA	2220
	AGAGACCAGA	AGTGAATACA	AAAGAACTAA	АСААААТААА	AAATTAGAAT	GTGCTGTAGC	2280
55	TGAAAGCTGT						2290

⁽²⁾ INFORMATION FOR SEQ ID NO: 178:

600

	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 549 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
5	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 178:	
10	GGCACGAGCC ATGCCTGGCC TCTCCTTGAT TCTTACAGTC ACTTTGTTGG CTGTTTCTGA	60
	CTCAGCAGCT ACCTGCATTG TGGCCAAAGG ATGACCTATT CCTTCTCAGG AGGGCAAAAA	120
	TGTGGAATAG TGTCTGTCCA TGCCTCTCCT CATGGGCTAC CACCTCTGCC ACCGTGGTTA	180
15	ATCAGTAACA ACCAGGAGAG AAGCTGCTGG AACTGACCTC TGGGAACTCC CTGGGATGGT	240
	TTGGTGCAGG AATGTAGTAG GCATACACGT GGTTGCGTGG ATCTGGGCCC TCCTGATGTG	300
20	AGTAGAGAGG TAAAAGGCCA CCATCTCCTT GACCTCTGGG GAACTCATCC ACAAAGAAGA	360
	TGTTTCCAAG ATGCTTCTGA AGATTGCCTA AAAATAGCCG GTTTCCACCC CCGTGAATGC	420
	ATCCATTCTA GAATGCTCCT TCACCAGGAC CAGAGAACTG ATTTACAGAA GTGACATGAA	480
25	AACATTCCAT CCCAGAATTT GCAGTAGCTC AAATTAAGTT TCTAGCTATT AAAAAGAAAA	540
	AAAAAAA	549
30		
	(2) INFORMATION FOR SEQ ID NO: 179:	
35	(i) SEQUENCE CHARACTERISTICS:	
33	(A) LENGTH: 1509 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 179:	
	GGCACGAGGG CTCATTCATT CCGCGCCGGG CCTGCCAGAC ACCTGCGCCC TTCTGCAGCC	60
	GCCCGCCGCA TCCGCCGCCG CAGCCCCCAG CATGTCGGGC CCAGACGTCG AGACGCCGTC	120
45	CGCCATCCAG ATCTGCCGGA TCATGCGGCC AGATGATGCC AACGTGGCCG GCAATGTCCA	180
	CGGGGGGACC ATCCTGAAGA TGATCGAGGA GGCAGGCGCC ATCATCAGCA CCCGGCATTG	240
50	CAACAGCCAG AACGGGGAGC GCTGTGTGGC CGCCCTGGCT CGTGTCGAGC GCACCGACTT	300
	CCTGTCTCCC ATGTGCATCG GTGAGGTGGC GCATGTCAGC GCGGAGATCA CCTACACCTC	360
55	CCTGTCTCCC ATGTGCATCG GTGAGGTGGC GCATGTCAGC GCGGAGATCA CCTACACCTC CAAGCACTCT GTGGAGGTGC AGGTCAACGT GATGTCCGAA AACATCCTCA CAGGTGCCAA	360 420

GGTCCTCGAG GTGCCTCCTG TTGTGTATTC CCGGCANGAG CAGGAGGAGG AGGGCCGGAA

GCGGTATGAA GCCCAGAAGC TGGAGCGCAT GGAGACCAAG TGGAGGAACG GGGACATCGT

35

40

50

AGAAAAAAN

(2) INFORMATION FOR SEO ID NO: 180:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1316 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 180:

> AGCTGTATCA TAGGAAAGAT GGCCACACCG GCGGTACCAG TAAGTGCTCC TCCGGCCACG 60 CCAACCCCAG TCCCGGCGC GGCCCCAGCC TCAGTTCCAG CGCCAACGCC AGCACCGGCT 120 GCGGCTCCGG TTCCCGCTGC GGCTCCAGCC TGCATCCTCA GACCCTGCGG CAGCAGCGGC 180 TGCAACTGCG GCTCCTGGCC AGACCCCGGC CTCAGCGCAA MTCCAGCGCA GACCCCAGCG 240 CCCGCTCTGC CTGGTCCTGC TCTTCCAGGG CCCTTCCCCG GCGGCCGCGT GGTCAGGCTG 300 CACCCAGTCA TTTTGGCCTC CATTGTGGAC AGCTACGAGA GACGCAACGA GGGTGCTGCC 360 CGAGTTATCG GGACCCTGTT GGGAACTGTC GACAAACACT CAGTGGAGGT CACCAATTGC 420

60

	TTTTCAGTGC	CGCACAATGA	GTCAGAAGAT	GAAGTGGCTG	TTGACATGGA	ATTTGCTAAG	480
	AATATGTATG	AACTGCATAA	AAAAGTTTCT	CCAAATGAGC	TCATCCTGGG	CTGGTACGCT	540
5	ACGGGCCATG	ACATCACAGA	GCACTCTGTG	CTGNATCCAT	GAGTACTACA	GCCGAGAGGC	600
	CCCCAACCCC	ATCCACCTCA	CTGTGGACAC	AAGTCTCCAG	AACGGCCGCA	TGAGCATCAA	660
10	AGCCTACGTC	AGCACTITAA	TGGGAGTCCC	TGGGAGGACC	ATGGGAGTGA	TGTTCACGCC	720
10	TCTGACAGTG	AAATACGCGT	ACTACGACAC	TGAACGCATC	GGAGTTGACC	TGATCATGAA	780
	GACCTGCTTT	AGCCCCAACA	GAGTGATTCG	ACTCTCAAGT	GACTTGCAGC	AAGTAGGAGG	840
15	GGCATCAGCT	CGCATCCAGG	ATGCCCTGAG	TACAGTGTTG	CAATATGCAG	AGGATGTACT	900
	GTCTGGAAAG	GTGTCAGCTG	ACAATACTGT	GGCCGCTTC	CTGATGAGCC	TGGTTAACCA	960
20	AGTACCGAAA	ATAGTTCCCG	ATGACTTTGA	GACCATGCTC	AACAGCAACA	TCAATGACCT	1020
20	TTTGATGGTG	ACCTACCTGG	CCAACCTCAC	ACAGTCACAG	ATTGCACTCA	ATGAAAAACT	1080
	TGTAAACCTG	TGAATGGACC	CCAAGCAGTA	CACTTGCTGG	TCTAGGTATT	AACCCCAGGA	1140
25	CTCAGAAGTG	AAGGAGAAAT	GGGTTTTTTG	TGGTCTTGAG	TCACACTGAG	ATAGTCAGTT	1200
	GTGTGTGACT	CTAATAAACG	GAGCCTACCT	TTTGTAAATT	АААААААА	AAAAAAACCN	1260
30	SGRGGGGGG	CCCGGTCCCA	TTSSCCCTTT	NGTAATTCGT	NTTACAATCC	CCNGGC	1316

(2) INFORMATION FOR SEQ ID NO: 181:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 777 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

40 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 181:

GGCATGWKCA GACATGACTT CTATTGCCAG GCTGGTCAAG TGGCAGGGTC ATGAGGGAGA 60 45 CATCGATAAG GGTGCTCCTT ATGCTCCCTG CTCTGGAATC CACCAGCGGG CTATCTGCGT 120 TTATGGGGCT GGGGACTAGA ATTGGATGCT TCAAAACCAT CACCTGTTGG CCAACAAGTT 180 50 TGACCCAAAG GTAGATGATA ATGCTCTTCA GTGCTTAGAA GAATACCTAC GTTATAAGGG 240 CCATTCTATT GGGACCTGAA CTTTGAAGAC CACAMTATTG AAGAGGCGTT GCTTACCYGT TGGGGGCCAA GAGGCATGTT ACCAAACATG GYYCARGAAM YTTGGYKGGG AMCARKKKKG 360 55 GKKGGGARRM CMRGGGYTTG SCAAWITCSK KGGCMWCCYT TTAGGGTAAR RRGGGCKGTW 420 ATTAGATTGT GGGTAAAGTA GGATCTTTTG CCCTTGCAAA TTTGCTGCCT GGGTGAATGY 480 60 TGCTTGTTCC TTCTCMACCC CTAACCCTAG TAGTTCCTCC ACTAACTTTC TCACTAAGTG 540

	AGAATGAGAA CTGCTGTGAT AGGGAGGAGTG AAGGAGGGAT ATGTGGTAGA GCACTTGATT	600
5	TCAGTTGAAT GCCTGCTGGT AGCTTTTCCA TTCTGTGGAG CTGCCGTTCC TAATAATTCC	660
	AGGTTTGGTA GCGTGGAGGA GAACTTTGAT GGAAAGAGAA CCTTCCCTTC	720
	ACTTAAAAAT AAATAGCTCC TGATTCAAAG TAAAAAAAAA AAAAAAAAA AAAAAAAA	777
10		
	(2) INFORMATION FOR SEQ ID NO: 182:	
15 20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 791 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 182:	
	GGCACAGATA ACTATGTACA TGTATTCCTT AAATGTTTTT TTAAGTTTTA TATTCTTGGC	60
25	ACTOGTCTTC AAATGTGTAC ATGTGTGCCA GGGAGCAAAT GCCTTCTTGT TTCTGAAATT	120
	GGTCTTTTAG ACTGTTCTTT TTTCCCATCT TCTCACCTCC TGCCCCTCCT TCAGGGTACT	180
30	TCCGTGGCCA GAACCCCTCC AGGTCAGAGG CAGAAGAGAA GCCTCATGGG TCACAGCAGC	240
	AGATGTCGCC TCGAGATCTA TTCATTTGGT TTTCGCTTGA ATTTTCTGRA TGGTTTACTT	300
	GATCYTGGGA AAGANATATC TTGCCAGGAA AAATGATAGN CCTTGACAAT GTTGAATGAT	360
35	CCTGCACCAC CTTGAAAGAC ATTTCTAATA TGGTTTGTCA GGCAAAGTGG TTAGTAGTCA	420
	TTTGTGGCCT GAGGTAGAAG TCCTCAGAAA TCAGCAGACT TCACTGATAA AATGCTGACT	480
ю	TGCCCCTGGA CTGGGCTCTG TGAGAGTGGC CTTCTGCACT GTGCACAGTA GGTGTGAACA	540
	CACCACACCT ACAGGGACCA CGTGGTGGGC TGTGGACTAG CGGCCAAGCT CCCTGCAGGC	600
	CCACTAATAG AATTCAGCTT TTAGCATGGG CTGTTTCATA CTGTTCTGAT GAAACTGATT	660
15	TGGTTTCTTT CCTCCATACC CCTTCTGCAT TTCAGTGTTT TTGTTTAGTT TTCCTGGTTT	720
	TTAATTATAA CTACAAAATA AAATCTTTAG GCTATTCACC TTAGCTTAGT AAAAAAAAA	780
50	AAAAAAACT C	791
55	(2) INFORMATION FOR SEQ ID NO: 183:	
	(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH: 1405 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 183:

5	AAATTGATTA	ACAGCTTGAA	AGAAGGCTCT	GGTTTTGAAG	GCCTAGATAG	CAGCACTGCC	60
2	AGTAGCATGG	AGCTGGAAGA	ACTTCGGCAT	GAGAAAGAGA	TGCAGAGGGA	GGAAATACAG	120
	AAGCTGATGG	GCCAGATACA	TCAGCTCAGA	TCCGAATTAC	AGGATATGGA	GGCACAGCAA	180
10	GTTAATGAAG	CAGAATCAGC	AAGAGAACAG	TTACAGGWTC	TGCATGACCA	AATAGCTGGG	240
	CAGAAAGCAT	CCAAACAAGA	ACTAGAGACA	GAACTGGAGC	GACTGAAGCA	GGAGTTCCAC	300
15	TATATAGAAG	AAGATCTTTA	TCGAACAAAG	AACACATTGC	AAAGCAGAAT	TAAAGATCGA	360
10	GACGAAGAAA	TTCAAAAACT	CAGGAATCAG	CTTACCAATA	AAACTTTAAG	CAATAGCAGT	420
	CAGTCTGAGT	TAGAAAATCG	ACTCCATCAG	CTAACAGAGA	CTCTCATCCA	GAAACAGACC	480
20	ATGCTGGAGA	GTCTCAGCAC	AGAAAAGAAC	TCCCTGGTCT	TTCAACTGGA	GCGCCTCGAA	540
	CAGCAGATGA	ACTCCGCCTC	TGGAAGTAGT	AGTAATGGGT	CTTCGATTAA	TATGTCTGGA	600
25	ATTGACAATG	GTGAAGGCAC	TCGTCTGCGA	AATGTTCCTG	TICTTITTAA	TGACACAGAA	660
	ACTAATCTGG	CAGGAATGTA	CGGAAAAGTT	CGCAAAGCTG	CTAGTTCAAT	TGATCAGTTT	720
	AGTATTCGCC	TGGGAATTTT	TCTCCGAAGA	TACCCCATAG	CGCGAGTTTT	TGTAATTATA	780
30	TATATGGCTT	TGCTTCACCT	CTGGGTCATG	ATTGTTCTGT	TGACTTACAC	ACCAGAAATG	840
	CACCACGACC	AACCATATGG	CAAATGAACC	AAGCCCAGTT	GTTGCAGTGA	TTGGTTGTCT	900
35	TTTTCTAGAC	TTGGGATCTG	CAAGAAGGCC	AATTGCCTAA	AATTTCTGAG	AACAGTGCAC	960
	AAGATTATTT	TATCACTACA	ACCTTTTAAC	TTTTTAAGTT	ATTGTACAAG	TATTCTACCT	1020
	AAATCTTCCA	ATTTCCTTTA	AATGGTAAGA	GTTTCTAAAA	CAGACAATAA	TTTAACAAGC	1080
40	TCAGCTCTGC	TTTATCTGAG	TTTAGTGGTC	СТААТАТАТА	TGTAGAGAAA	GATGGTGGGG	1140
	TTGTTCACCT	CTGTACAGAC	CATCTGTATG	TTAGGTGACA	TTGATTATGG	GTTATAATCA	1200
45	GGGAAACTAA	TTGTATTTAG	TGACAAAAAT	AAAAAGTTTT	TTTTTTATAA	TTCAGTCTGC	1260
	TTTTGGATTT	TCATATATTT	AACTTTGCAA	AAAGATTTAC	TTTGTACATG	TTACAGGCTT	1320
	GATTGGTGTA	AATCTTTTTA	TAAATACATA	AATAAAAGNA	AAATATGCAT	TTTTCTTTTC	1380
50	ТАААААААА	ааааааааа	CTCGA				1405

55 (2) INFORMATION FOR SEQ ID NO: 184:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1596 base pairs

(B) TYPE: nucleic acid

60 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 184:

5	GTCATGCAGT	GCGCCGGAGA	ACTGTGCTCT	TTGAGGCCGA	CGCTAGGGGC	CCGGAAGGGA	60
	AACTGCGAGG	CGAAGGTGAC	CGGGGACCGA	GCATTTCAGA	TCTGCTCGGT	AGACCTGGTG	120
10	CACCACCACC	ATGTTGGCTG	CAAGGCTGGT	GTGTCTCCGG	ACACTACCTT	CTAGGGTTTT	180
10	CCACCCAGCT	TTCACCAAGG	CCTCCCCTGT	TGTGAAGAAT	TCCATCACGA	AGAATCAATG	240
	GCTGTTAACA	CCTAGCAGGG	AATATGCCAC	CAAAACAAGA	ATTGGGATCC	GCCTTGGGAG	300
15	AACTGGCCAA	GAACTCAAAG	AGGCAGCATT	GGAACCATCG	ATGGAAAAA	ТАТТТААААТ	360
	TGATCAGATG	GGAAGATGGT	TTGTTGCTGG	AGGGGCTGCT	GTTGGTCTTG	GAGCATTGTG	420
20	CTACTATGGC	TTGGGACTGT	CTAATGAGAT	TGGAGCTATT	GAAAAGGCTG	TAATTTGGCC	480
20	TCAGTATGTC	AAGGATAGAA	TTCATTCCAC	CTATATGTAC	TTAGCAGGGA	GTATTGGTTT	540
	AACAGCTTTG	TCTGCCATAG	CAATCAGCAG	AACGCCTGTT	CTCATGAACT	TCATGATGAG	600
25	AGGCTCTTGG	GTGACAATTG	GTGTGACCTT	TGCAGCCATG	GTTGGAGCTG	GAATGCTGGT	660
	ACGATCAATA	CCATATGACC	AGAGCCCAGG	CCCAAAGCAT	CTTGCTTGGT	TGCTACATTC	720
30	TGGTGTGATG	GGTGCAGTGG	TOGCTCCTCT	GACAATATTA	GGGGTCCTC	TTCTCATCAG	780
50	AGCTGCATGG	TACACAGCTG	GCATTGTGGG	AGGCCTCTCC	ACTGTGGCCA	TGTGTGCGCC	840
	CAGTGAAAAG	TTTCTGAACA	TGGGTGCACC	CCTGGGAGTG	GCCTGGGTC	TCGTCTTTGT	900
35	GTCCTCATTG	GGATCTATGT	TTCTTCCACC	TACCACCGTG	GCTGGTGCCA	CTCTTTACTC	960
	AGTGGCAATG	TACGGTGGAT	TAGTTCTTTT	CAGCATGTTC	CTTCTGTATG	ATACCCAGAA	1020
40	AGTAATCAAG	CGTGCAGAAG	TATCACCAAT	GTATGGAGTT	CAAAAATATG	ATCCCATTAA	1080
40	CTCGATGCTG	AGTATCTACA	TOGATACATT	AAATATATTT	ATGCGAGTTG	CAACTATGCT	1140
	GGCAACTGGA	GGCAACAGAA	AGAAATGAAG	TGACTCAGCT	TCTGGCTTCT	CTGCTACATC	1200
45	AAATATCTTG	TTTAATGGGG	CAGATATGCA	TTAAATAGTT	TGTACAAGCA	GCTTTCGTTG	1260
	AAGTTTAGAA	GATAAGAAAC	ATGTCATCAT	ATTTAAATGT	TCCGGTAATG	TGATGCCTCA	1320
50	GGTCTGCCTT	TTTTTCTGGA	GAATAAATGC	AGTAATCCTC	TCCCAAATAA	GCACACACAT	1380
50	TTTCAATTCT	CATGTTTGAG	TGATTTTAAA	ATGTTTTGGT	GAATGTGAAA	ACTAAAGTTT	1440
	GTGTCATGAG	AATGTAAGTC	TITITICIAC	TTTAAAATTT	AGTAGGTTCA	CTGAGTAACT	1500
55	AAAATTTAGC	AAACCTGTGT	TTGCATATTT	TTTKGGAGTG	CAGMMTAWTG	TAATTARAGC	1560
	ATTCCAGTAA	NAGTGTWTTT	AAAGTTGNTC	TATATN			1596

(2) INFORMATION FOR SEQ ID NO: 185:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2293 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 185:

	(and and announced the same same same same same same same sam	
	GCGCAGAGCC CGYACGAGCA GGACGACGAC GACAAGGGCG ACTCCAAGGA AACGCGGCTG	60
15	ACCCTGATGG AGGAAGTGCT CCTGCTGGGC CTCAAGGACC GCGARGGTTA CACATCATTT	120
13	TGGAATGACT GTATATCATC TGGATTACGT GGCTGTATGT TAATTGAATT AGCATTGAGA	180
	GGAAGGTTAC AACTAGAGGC TTGTGGAATG AGACGTAAAA GTCTATTAAC AAGAAAGGTA	240
20	ATCTGTAAGT CAGATGCTCC AACAGGGGAT GTTCTTCTTG ATGAAGCTCT GAAGCATGTT	300
	AAGGAAACTC AGCCTCCAGA AACGGTCCAG AACTGGATTG AATTACTTAG TGGTGAGACA	360
25	TGGAATCCAT TAAAATTGCA TTATCAGTTA AGAAATGTAC GGGAACGATT AGCTAAAAAC	420
2.3	CTGGTGGAAA AGGGTGTATT GACAACAGAG AAACAGAACT TCCTACTTTT TGACATGACA	480
	ACACATCCCC TCACCAATAA CAACATTAAG CAGCGCCTCA TCAAGAAAGT ACAGGAAGCC	540
30	GTTCTTGACA AATGGGTGAA TGACCCTCAC CGCATGGACA GGCGCTTGCT GGCCCTCATT	600
	TACCTGGCTC ATGCCTCGGA CGTCCTGGAG AATGCTTTTG CTCCTCTTCT GGACGAGCAG	660
35	TATGATTTGG CTACCAAGAG AGTGCGGCAG CTTCTCGACT TAGACCCTGA AGTGGAATGT	720
55	CTGAAGGCCA ACACCAATGA GGTTCTGTGG GCGGTGGTGG CGGCGTTCAC CAAGTAACTC	780
	TGCTCGGGGT GAACCATTCT CCTTTCTCTC AAGTAAACCA GTAGTTTTTC TTCTGTTGAC	840
40	TTCTGGTTTT CTGTAATTTG TACTTTCCCA CACTATAATT GGCTTCTGTT TTACAAAATG	900
	GTGGGTGGCT TTTTCTTTTT TGTACGTGTA CAGGATTCTG CTGGTACGAG AGGCCTTCCT	960
45	CTITCTGTTT TTAAAAAAAG TTTTACTGCC ATATTGGCAT TCCATTCCCT GTTGCCATCC	1020
43	TCACTGTTAC CTGTTTTGGG TTTCTGGTCT ACTTTGACTT TCAAAGTACC TCCAGCCTCC	1080
	TCATACGCAC AGCTTTTGGA TGACCTCAGC TTGAGTTTCT CCATATGTGC ATGTACATCT	1140
50	AGCATTCTGC CTACAGTTCA GACAGAAGTC ACAAAAAGGC CTTCAACTCA CCAAAGGTAA	1200
	ATATCTGTAT CTATTAGGAC ATTTTTTACA TAGACTTCAG TTGAGATGTA TACTTAGCAA	1260
55	AATTATTTT AAATTGAAAC AGCACAGTAA ATACTTAATA TAAAATGTCC CTTGGATTTT	1320
23	GCTTCCCATG TAAATCTATT GTATTATTAC ACTTGTTATA ATTTTAACTA TAAAGGTCCA	1380
	ATTOTITICAC AGAGCCAGTT TGGGATGGGC TGCATTCCAT TTATGCTGTA TATAGTTTGA	1440
60	ATTATATATA AATTACCCCT TCTTCTGGCC ACCCCTGCTC CCATCTTAGT ATTTTGCAAG	1500

60

	ATCTAATCAG TTGTACACCT GGTGCCCCTC GCTTGCTTCA ATCATGGTTA TTTGATGGCA	1560
5	AAATCGACCT CTTGTCGCTG AAGGAGAGA AAAAGATGTG TGTCTGATTG GTCCTGGGAT	1620
	TTTTTGAGCT GTGCCATTTA TGGTACTCTT TGCCTATGCA TCCCCTTTTT AGATTTTTTT	1680
	TAAATTTTAT CTTACTGTTT TTATAATTTC TATTGGGAAG AGGCTTGTGA CCAGTACCAA	1740
10	TCTTGAGTTT CTTTTTCTGT CCACAAGTAA ATTAATATCT GCTCTGAAAT GTCATTTATC	1800
	TACTCACACA TTCTTGGGGA AAAAAATCAA ATGTCAGTCC TAGCAGATGT TGCATGTAAA	1860
15	TTGGTAGCAA GTAATGATTA CAACCCAGAG GATTAAGAAT TTTGTAACAG AAAGCTCTAT	1920
	GTTTTAATTT TTTATATACA ATTAGGATAA TTAGCATTGT CAGACTATAA ACCTTTGCTT	1980
	TTTAAAGTTT ATTTTTACTA TTTCTTTATC ACTTTATTGT ATCATCACCA TTGGTTTCAT	2040
20	AATGTAAATA CTATATGTTG AACAAATTAA ATGTCAAAAT TITITATTAC CATAGTCCAT	2100
	GTTAATAGTG GGGCTTTCAG GTGTTTAGAG ATTTTTTTTG TTGTTGTTAA CATTCATTGC	2160
25	AAAAGTACTA GATGGTGTAT AACTCTAGAG TTGAATTTTA AGGGATTCCC TAATATGTAT	2220
23	ACTATCTTT TATCTGAAGT AATAAATAAA CAATGATCTT GAAAGTGCCY RAAAMAAAA	2280
	AAA AAAAAAAA	2293
30		
30		
	(2) INFORMATION FOR SEQ ID NO: 186:	
30	(i) SEQUENCE CHARACTERISTICS:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1212 base pairs (B) TYPE: nucleic acid	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1212 base pairs	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1212 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1212 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	60
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1212 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186:	60 120
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1212 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186: GGCACGAGGC GAGCCGCCGC ACCGTACGCT GGGACGTGTG GTTTCAGCTC GTGCGCCTCC	
35 40 45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1212 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186: GGCACGAGGC GAGCCGCGC ACCGTACGCT GGGACGTGTG GTTTCAGCTC GTGCGCCTCC CCGTGGGTTT GCGACGTTTA GCGACTATTG CGCCTGCGCC ACGCCGGCTG CGAGACTGGG	120
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1212 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186: GGCACGAGGC GAGCCGGCGC ACCGTACGCT GGGACGTGTG GTTTCAGCTC GTGCGCCTCC CCGTGGGTTT GCGACGTTTA GCGACTATTG CGCCTGCGCC ACGCCGGCTG CGAGACTGGG GCCGTGGCTG CTGGTCCCGG GTGATGCTAG GCGGCTCCCT GGGCTCCAGG CTGTTGCGGG	120 180
35 40 45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1212 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186: GCCACGAGGC GAGCCGCGC ACCGTACGCT GGGACGTGTG GTTTCAGCTC GTGCGCCTCC CCGTGGGTTT GCGACGTTTA GCGACTATTG CGCCTGCGCC ACGCCGGCTG CGAGACTGGG GCCGTGGCTG CTGGTCCCGG GTGATGCTAG GCGGCTCCCT GGGCTCCAGG CTGTTGCGGG GTGTAGGTGG GAGTCACGGA CGGTTCGGGG CCCGAGGTGT CCGCGAAGGT GGCGCACATG	120 180 240
35 40 45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1212 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186: GGCACGAGGC GAGCCGGCGC ACCGTACGCT GGGACGTGTG GTTTCAGCTC GTGCGCCTCC CCGTGGGTTT GCGACGTTTA GCGACTATTG CGCCTGCGCC ACGCCGGCTG CGAGACTGGG GCCGTGGCTG CTGGTCCCGG GTGATGCTAG GCGGCTCCCT GGGCTCCAGG CTGTTGCGGG GTGTAGGTGG GAGTCACGGA CGGTTCGGGG CCCGAGGTGT CCGCGAAGGT GGCGCACATG GGCGGCAGGG GAGAGCATGG CTCAGCGGAT GGTCTGGGTG GACCTGGAGA TGACAGGATT	120 180 240 300

TACAATTACA TTGCAGCAGG CAGAGTATGA ATTTCTGTCC TTTGTACGAC AGCAGACTCC

	TCCAGGGCTC	TGTCCACTTG	CAGGAAATTC	AGTTCATGAA	GATAAGAAGT	TTCTTGACAA	600
	ATACATGCCC	CAGTTCATGA	AACATCTTCA	TTATAGAATA	ATTGATGTGA	GCACTGTTAA	660
5	AGAACTGTGC	AGACGCTGGT	ATCCAGAAGA	ATATGAATTT	GCACCAAAGA	AGGCTGCTTC	720
	TCATAGGGCA	CTTGATGACA	TTAGTGAAAG	CATCAAAGAG	CTTCAGTTTT	ACCGAAATAA	780
10	CATCTTCAAG	AAAAAAATAG	ATGAAAAGAA	GAGGAAAATT	ATAGAAAATG	GGGAAAATGA	840
	GAAGACCGTG	AGTTGATGCC	AGTTATCATG	CTGCCACTAC	ATCGTTATCT	GGAGGCAACT	900
	TCTGGTGGTT	TTTTTTTCTC	ACGCTGATGG	CTTGGCAGAG	CACCTTCGGT	TAACTTGCAT	960
15	CTCCAGATTG	ATTACTCAAG	CAGACAGCAC	ACGAAATACT	ATTTTTCTCC	TAATATGCTG	1020
	TTTCCATTAT	GACACAGCAG	CICCTTIGTA	AGTACCAGGT	CATGICCATC	CCTTGGTACA	1080
20	TATATGCATT	TGCTTTTAAA	CCATTTCTTT	TGTTTAAATA	aataaataag	TAAATAAAGC	1140
	TAGTTCTATT	GAAATGCAAA	АААААААА	АААААААА	ааааааааа	АААААААА	1200
	АААААААА	AN					1212

(2) INFORMATION FOR SEQ ID NO: 187:

30

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1605 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35

40

45

50

55

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 187:

GCTTCCGGAA GTTGCTTTTG TCCAAACATC CGGGCTTCTC CTTTTTGTGT TCCGGCCGAT 60 CCCACCTCTC CTCGACCCTG GACGTCTACC TTCCGGAGGC CCACATCTTG CCCACTCCGC 120 GCGCGGGGCT AGCGCGGGTT TCAGCGACGG GAGCCCTCAA GGGACATGGC AACTACAGCG 180 GCGCCGGCGG GCGCGCCCG AAATGGAGCT GGCCCGGAAT GGGGAGGGTT CGAAGAAAAC 240 ATCCAGGGG GAGGCTCAGC TGTGATTGAC ATGGAGAACA TGGATGATAC CTCAGGCTCT 300 AGCTTCGAGG ATATGGGTGA GCTGCATCAG CGCCTGCGCG AGGAAGAAGT AGACGCTGAT 360 GCAGCTGATG CAGCTGCTGC TGAAGAGGAG GATGGAGAGT TCCTGGGCAT GAAGGGCTTT 420 AAGGGACAGC TGAGCCGGCA GGTGGCAGAT CAGATGTGGC AGGCTGGGAA AAGACAAGCC 480 TCCAGGGCCT TCAGCTTGTA CGCCAACATC GACATCCTCA GACCCTACTT TGATGTGGAG 540 CCTGCTCAGG TGCGAACAGG GCTCCTGGAG TCCATGATCC CTATCAAGAT GGTCAACTTC 600 CCCCAGAAAA TTGCAGGTGA ACTCTATGGA CCTCTCATGC TGGTCTTCAC TCTGGTTGCT 660 ATCCTACTCC ATGGGATGAA GACGTCTGAC ACTATTATCC GGGAGGGCAC CCTGATGGGC 720

	ACAGCCATTG	GCÁCCTGCTT	CGGCTACTGG	CTGGGAGTCT	CATCCTTCAT	TTACTTCCTT	780
5	GCCTACCTGT	GCAACGCCCA	GATCACCATG	CTGCAGATGT	TGGCACTGCT	GGGCTATGGC	840
•	CTCTTTGGGC	ATTGCATTGT	CCTGTTCATC	ACCTATAATA	TCCACCTCCA	CGCCCTCTTC	900
	TACCTCTTCT	GCCTGTTGGT	GGGTGGACTG	TCCACACTGC	GCATGGTAGC	AGTGTTGGTG	960
10	TCTCGGACCG	TGGGCCCCAC	ACAGCGGCTG	CTCCTCTGTG	GCACCCTGGC	TGCCCTACAC	1020
	ATGCTCTTCC	TGCTCTATCT	GCATTITGCC	TACCACAAAG	TGGTAGAGGG	GATCCTGGAC	1080
15	ACACTGGAGG	GCCCCAACAT	CCCGCCCATC	CAGAGGGTCC	CCAGAGACAT	CCCTGCCATG	1140
	CTCCCTGCTG	CTCGGCTTCC	CACCACCGTC	CTCAACGCCA	CAGCCAAAGC	TGTTGCGGTG	1200
	ACCCTGCAGT	CACACTGACC	CCACCTGAAA	TTCTTGGCCA	GICCICITIC	CCGCAGCTGC	1260
20	AGAGAGGAGG	AAGACTATTA	AAGGACAGTC	CTGATGACAT	GTTTCGTAGA	TGGGGTTTGC	1320
	AGCTGCCACT	GAGCTGTAGC	TGCGTAAGTA	CCTCCTTGAT	GCNTGTCGGC	ACTTCTGAAA	1380
25	GGCACAAGGC	CAAGAACTCC	TGGCCAGGAC	TGCAAGGCTC	TGCAGCCAAT	GCAGAAAATG	1440
	GGTCAGCTCC	TTTGAGAACC	CCTCCCCACC	TACCCCTTCC	TTCCTCTTTA	TCTCTCCCAC	1500
	ATTGTCTTGC	TAAATATAGA	CTTGGTAATT	AAAATGTTGA	TTGAAGTCTG	GAAAAAAAA	1560
30	АААААААА	ааааааааа	ааааааааа	AAAAAAAAC	TCGAG		1605

35 (2) INFORMATION FOR SEQ ID NO: 188:

40

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1516 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 188:

45 ATTCGCCATG AGGGGGTCAC GTGGTGGCTG GGCCGGGGAA ATGGCGGCTT CAGGAGAGAG 60 CGGGACTICA GGCGGCGGAG GCAGCACCGA GGAAGCATTT ATGACCTICT ACAGTGAGGT 120 GAAACAAATA GAGAAGAGA ACTCCGTTCT AACTTCGAAA AATCAGATTG AAAGACTGAC 180 50 CCGTCCTGGT TCCTCTTACT TCAATTTGAA CCCATTTGAG GITCTTCAGA TAGATCCTGA 240 AGTTACAGAT GAAGAAATAA AAAAGAGGTT TCGGCAGTTA TCCATCTTGG TGCATCCTGA 300 55 CAAAAATCAA GATGATGCTG ACAGAGCACA AAAGGCTTTT GAAGCTGTGG ACAAAGCTTA 360 CAAGTTGCTA CTGGATCAGG AGCAAAAGAA GAGGGCCCTG GATGTAATTC AGGCAGGAAA 420 AGAATACGTG GAACACACTG TGAAAGAGCG AAAAAAACAA TTAAAGAAGG AAGGAAAACC 480 60

	TACAATTGTA	GAGGAGGATG	ATCCTGAGCT	GTTCAAACAA	GCTGTATATA	AACAGACAAT	540
	GAAACTCTTT	GCAGAGCTGG	AAATTAAAAG	GAAAGAGAGA	GAAGCCAAAG	AGATGCATGA	600
5	AAGGAAACGA	CAAAGGGAAG	AAGAGATTGA	AGCTCAAGAA	AAAGCCAAAC	GGGAAAGAGA	660
	GTGGCAGAAA	AACTTTGAGG	AAAGTCGAGA	TGGTCGTGTG	GACAGCTGGC	GAAACTTCCA	720
10	AGCCAATACG	AAGGGGAAGA	AAGAGAAGAA	AAATCGGACC	TTCCTGAGAC	CACCGAAAGT	780
10	AAAAATGGAG	CAACGTGAGT	GACCGCCCAA	GGTCACAGGC	ACAGAACCTT	TCCCCTGCTA	840
	TCTCCCTTCC	TGCTTCGAAG	GACTCATTCT	TTCCTCCCAC	TTCCACCCCA	ACATAGAGTA	900
15	GTATTTGCTT	TTTAGTCCAT	TTTGTTTTCA	ATACGATTTA	ATATCGATCA	GAGTAATTCT	960
	TTTGTACATT	GAAATGAGGG	GCTTGGTTTA	AAAAAAGACC	TTTCCCTCTC	CCTGCCCCTA	1020
20	GAACAACCAG	TATTAGAAGG	TGCCACCATT	GCTGCTGCCT	TCTCTTCCCA	CAGCCTGTAA	1080
20	CTCAGTGTTT	TGTACTTCAC	TGAATTGTGA	TGGTTAGAAA	CTTCGTGGAT	AGTTTGTGGA	1140
	AATCATCCAA	TTAAACATAC	TGCTTAAAAC	AGTGTTGCTG	TGACTTCAGA	GACAAGCCTG	1200
25	GAAGGGGCAC	CTTAGGAAGC	CCCTTCGCTT	CAGTTGCTCG	CTTCTGGGTG	TGCTCCCTTC	1260
	GAAGGCCCAG	ATAAGACAGG	GAACACTTGT	GAGCACACAG	AGCAGCATCT	GATGCCCTGT	1320
30	GGTGTTTGGC	ATGTGCCCCC	TGTCTACTGA	CCAATCAGTG	TGGCATGAGG	CCCACGCCAC	1380
30	CCAAACCTTT	CACTTTCCAA	AGAGCTAGCC	GTCCTCCACC	CAGTACCATG	TCCTAGCCTG	1440
	TCTGCATTTG	TTAGTGGTAA	TATTCTTTAT	GTATAATAAA	TTTTTATACC	СААААААА	1500
35	ааааааааа	ACTCGA					1516

40 (2) INFORMATION FOR SEQ ID NO: 189:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 681 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 189:

50 GCTCCCATGT TGCTGGCTGT CCGTACATCA CCCTGTCCCC TGCAGGAGGG GGCTACAGGC 60

CATCTCCCTC CTGTAGGCCT CTGACTCCCC TCCACTTTTG GGCCCTCAGC TTATCTCGGG 120

CAGGGGACCA TTGCAGCATC CTCCCCTCCT CNGGACTCAA GGTGCTGAGG TATAAGCCCT 180

GGGCCCCAGA TCCCTGRTKA CACCTTCCTG GAGAAGACTC TCAAAAGTGA CTGTATATTT 240

GAGTTCACCA GCAATAACTC CCCACACTCG AAGCAGGTCC AAACCCMAGG ATCCCAGGGT 300

60 CCTTGGGCTC TGTGGCACTG TCTTCCCAAG ATCCTTCCTG TTGCACAATG GGAAACCTAA 360

	GAGGAAAAAG	ACAGGGGCCT	GCTTGCCCAG	CCATGCGAGG	GATTCCATGC	CCACCTGCCC	420
5	TCTGYCTGCC	TCGCTGGAAT	GTGGGCCCCT	GCTCCCCGTC	AGGTTGTGCT	GTCTCTGACC	480
J	TATGTTTACA	TCCCCGAGGG	GTTTCTGCCT	CCTCCCCACC	CAGGTCAGGG	TGTGGTCCAG	540
	CAGCTTGCTG	TGGGGTGCTG	ACATGTGTCA	CCACTGCCCC	CCTTGCCCCC	GGGGGGTCA	600
10	TGGTCTCCTC	CTGGATGCTG	CTCCTTGAAT	YTTTTTYTT	GAWAAACCYT	TTAMAATTAA	660
	ААААААААА	AAAAAACTCG	A				681

15

20

60

(2) INFORMATION FOR SEQ ID NO: 190:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1014 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 190:

GCCTCAAGCC ACGCATATGA TAATTTTCTG GAACATTCAA ATTCAGTGTT TCTACAGCCA 60 GITAGTCTAC AAACCATTGC AGCAGCACCA TCAAACCAGA GTCTGCCACT TTTTGTCATC 120 30 GCTGGATGAT TGCTGGGCAA AGGTGGCCTT TTAGAGCTCT TAAAAAGCCCA CAAAAAGGCT 180 ATTCGTAGAG CCACAGTCAA CACATTTGGT TATATTGCAA AGGCCATTGG CCTCATGATG 240 35 TATTGGCTAC ACTTCTGAAC AACCTCAAAG TTCAAGAAAG GCAGAACAGA GTTTGTACCA 300 CTGTAGCAAT AGCTATTGTT GCAGAAACAT GTTCACCCTT TACAGTACTC CCTGCCTTAA 360 TGAATGAATA CAGAGTTCCT GAACTGAATG TTCAAAATGG AGTGTTAAAA TCGCTTTCCT 420 40 TCTTGTTTGA ATATATTGGT GAAATGGGAA AAGACTACAT TTATGCCGTA ACACCGTTAC 480 TTGAAGATGC TTTAATGGAT AGAGACCTTG TACACAGACA GACGGCTAGT GCAGTGGTAC 540 45 AGCACATGTC ACTTGGGGTT TATGGATTTG GTTGTGAAGA TTCGCTGAAT CACTTGTTGA 600 ACTATGTATG GCCCAATGTR TTTGAGACAT CTCCTCATGT AATTCAGGCA GTTATGGGAG 660 CCCTAGAGGG CCTGAGAGTT GCTATTGGAC CATGTAGAAT GTTGCAATAT TGTTTACAGG 720 50 GTCTGTTTCA CCCAGCCCGG AAAGTCAGAG ATGTATATTG GAAAATTTAC AACTCCATCT 780 ACATTGGTTC CCAGGACGCT CTCATAGCAC ATTACCCAAG AATCTACCAA CGATGATAAG 840 55 RACACCTATA TTCGTTATGA ACTTGACTAT ATCTTATAAT TTTATTGTTW ATTTKGTGKT 900 TAATGCACAS TACTTCACAC CTTAAACTTG CTTTGATTTG GTGATGTAAA CTTTTAAACA 960

TTGCAGATCA GTGTAGGACT GGTCCATAGG GGAAGAGCTA GGAANTCCAT AGGC

(2) INFORMATION FOR SEQ ID NO: 191:

(i) SEQUENCE CHARACTERISTICS:

5

10

(A) LENGTH: 2779 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 191:

TCGCAGCAGG GTGTGTCCAG ATGGTCAGTC TCTGGTGGCT AGCCTGTCCT GACAGGGGAG 60 15 AGTTAAGCTC CCGYTCTCCA CCGTGCCGGC TGGCCAGGTG GGCTGAGGGT GACCGAGAGA 120 CCAGAACCTG CTTGCTGGAG CTTAGTGCTC AGAGCTGGGG AGGGAGGTTC CGCCGCTCCT 180 20 CTGCTGTCAG CGCCGGCAGC CCCTCCCGGC TTCACTTCCT CCCGCAGCCC CTGCTACTGA 240 GAAGCTCCGG GATCCCAGCA GCCGCCACGC CCTGGCCTCA GCCTGCGGGG CTCCAGTCAG 300 GCCAACACCG ACGCGCANTG GGAGGAAGAC AGGACCCTTG ACATCTCCAT CTGCACAGAG 360 25 GTCCTGGCTG GACCGAGCAG CCTCCTCCTC CTAGGATGAC CTCACCCTCC AGCTCTCCAG 420 TTTTCAGGTT GGAGACATTA GATGGAGGCC AAGAAGATGG CTCTGAGGCG GACAGAGGAA 480 30 AGCTGGATTT TGGGAGCGGG CTGCCTCCCA TGGAGTCACA GTTCCAGGGC GAGGACCGGA 540 AATTCGCCCC TCAGATAAGA GTCAACCTCA ACTACCGAAA GGGAACAGGT GCCAGTCAGC 600 CGGATCCAAA CCGATTTGAC CGAGATCGGC TCTTCAATGC GGTCTCCCGG GGTGTCCCCG 660 35 AGGATCTGGC TGGACTTCCA GAGTACCTGA GCAAGACCAG CAAGTACCTC ACCGACTCGG 720 AATACACAGA GGGCTCCACA GGTAAGACGT GCCTGATGAA GGCTGTGCTG AACCTTAAGG 780 40 ACGGGGTCAA TGCCTGCATT CTGCCACTGC TGCAGATCGA CCGGGACTCT GGCAATCCTC 840 AGCCCCTGGT AAATGCCCAG TGCACAGATG ACTATTACCG AGGCCACAGC GCTCTGCACA 900 TCGCCATTGA GAAGAGGAGW CTGCAGTGTG TGAAGCTCCT GGTGGAGAAT GGGGCCAATG 960 45 TGCATGCCCG GGTCTGCGGC GCTTCTTCCA GAAGGGCCAA GGGACTTGCT TTTATTTCGG 1020 TGAGCTACCC CTCTYTTTGG CCGCTTGCAC CAAGCAGTGG GATGTGGTAA GCTACCTCCT 1080 50 GGAGAACCCA CACCAGCCCG CCAGCCTGCA GGCACTGACT CCCAGGGCAA CACAGTCCTG 1140 CATGCCCTAG TGATGATCTC GGACAACTCA GCTGAGAACA TTGCACTGGT GACCAGCATG 1200 TATGATGGGC TCCTCCAAGC TGGGGCCCGC CTCTGCCCTA CCGTGCAGCT TGAGGACATC 1260 55 CGCAACCTGC AGGATCTCAC GCCTCTGAAG CTGGCCGCCA AGGAGGGCAA GATCGAGATT 1320 TTCAGGCACA TCCTGCAGCG GGAGTTTTCA GGACTGAGCC ACCTTTCCCG AAAGTTCACC 1380 60 GAGTGGTGCT ATGGGCCTGT CCGGGTGTCG CTGTATGACC TGGCTTCTGT GGACAGCTGT 1440

	GAGGAGAACT	CAGTGCTGGA	GATCATTGCC	TTTCATTGCA	AGAGCCCGCA	CCGACACCGA	1500
5	ATGGTCGTTT	TGGAGCCCCT	GAACAAACTG	CTGCAGGCGA	AATGGGATCT	GCTCATCCCC	1560
J	AAGTTCTTCT	TAAACTTCCT	GTGTAATCTG	ATCTACATGT	TCATCTTCAC	CCCTCTTCCC	1620
	TACCATCAGC	CTACCCTGAA	GAAGCAGGCC	GCCCTCACC	TGAAAGCGGA	GGTTGGAAAC	1680
10	TCCATGCTGC	TGACGGCCA	CATCCTTATC	CTGCTAGGGG	GGATCTACCT	CCTCGTGGGC	1740
	CAGCTGTGGT	ACTICIGGG	GCGCCACGTG	TTCATCTGGA	TCTCGTTCAT	AGACAGCTAC	1800
15	TTTGAAATCC	TCTTCCTGTT	CCARGCCCTG	CTCACAGTGG	TGTCCCARGT	GCTGTGTTTC	1860
15	CTGGSCATCG	AGTGGTACCT	GCCCCTGCTT	GTGTCTGCGC	TGGTGCTGGG	CTGGCTGAAC	1920
	CTGCTTTACT	ATACACGTGG	CTTCCAGCAC	ACAGGCATCT	ACAGTGTCAT	GATCCAGAAG	1980
20	CCCTGGTGAG	CCTGAGCCAG	GANIVITOGCG	CCCCGAAGCT	CCTACAGGCC	CCAATGCCAC	2040
	AGAGTCAGTG	CAGCCCATGG	AGGGACAGGA	KGACGAKGGC	AACGGGGCCC	AGTACAGGGG	2100
25	TATCCTGGAA	GCCTCCTTGG	AGCTCTTCAA	ATTCACCATC	GGCATGGGCG	AGCTGGCCTT	2160
23	CCAGGARCAG	CTGCACTTCC	GCGGCATGGT	GCTGCTGCTG	CTGCTGGSCT	ACGTGCTGCT	2220
	CACCTACATC	CTGCTGCTCA	ACATGCTCAT	CGCCCTCATG	AGCGAGACCG	TCAACAGTGT	2280
30	CGCCACTGAC	AGCTGGAGCA	TCTGGAAGCT	GCAGAAAGCC	ATCTCTGTCC	TGGAGATGGA	2340
	GAATGGCTAT	TGGTGGTGCA	GGAAGAAGCA	GCGGGCAGGT	GTGATGCTGA	CCGTTGGCAC	2400
35	TAAGCCAGAT	GCAGCCCSG	ATGAGCGCTG	GTGCTTCAGG	GTGGAGGAGG	TGAACTGGGC	2460
	TTCATGGGAG	CAGACGCTGC	CTACGCTGTG	TGAGGACCCG	TCAGGGGCAG	GTGTCCCTCG	2520
	AACTCTCGAG	AACCCTGTCC	TOGCTTCCCC	TCCCAAGGAG	GATGAGGATG	GIGCCTCTGA	2580
40	GGAAAACTAT	GTGCCCGTCC	AGCTCCTCCA	GTCCAACTGA	TGGCCCAGAT	GCAGCAGGAG	2640
	GCCAGAGGAC	AGAGCAGAGG	ATCTTTCCAA	CCACATCTGC	TGGCTCTGGG	GTCCCAGTGA	2700
45	ATTCTGGTGG	САААТАТАТА	TTTTCACTAA	СТСАААААА	AAAAAAAA	AAAAAAAA	2760
15	ААААААААА	AAAAAAGGC					2779

55

- (2) INFORMATION FOR SEQ ID NO: 192:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1923 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 192:

	ACCCGCTCCG CT	CCCCTCCG	CTCGGCCCCG	CGCCGCCCGT	CAACATGATC	CGCTGCGGCC	60
	TGGCCTGCGA GC	GCTGCCGC	TGGATCCTGC	CCCTGCTCCT	ACTCAGCGCC	ATCGCCTTCG	120
5	ACATCATCGC GC	TGGCCGGC	CCCCCTCCT	TGCAGTCTAG	CGACCACGGC	CAGACGTCCT	180
	CGCTGTGGTG GA	AATGCTCC	CAAGAGGGCG	GCGGCAGCGG	GTCCTACGAG	GAGGGCTGTC	240
10	AGAGCCTCAT GG	AGTACGCG	TGGGGTAGAG	CAGCGGCTGC	CATGCTCTTC	TGTGGCTTCA	300
10	TCATCCTGGT GA	TCTGTTTC	ATCCTCTCCT	TCTTCGCCCT	CTGTGGACCC	CAGATGCTTG	360
	TCTTCCTGAG AG	TGATTGGA	GCTCTCCTTG	CCTTGGCTGC	TGTGTTCCAG	ATCATCTCCC	420
15	TGGTAATTTA CC	CCGTGAAG	TACACCCAGA	CCTTCACCCT	TCATGCCAAC	CSTGCTGTCA	480
	CTTACATCTA TA	ACTGGGCC	TACGGCTTTG	GGTGGGCAGC	CACGATTATC	CTGATYGGCT	540
20	GTGCCTTCTT CT	TCTGCTGC	CTCCCCAACT	ACGAAGATGA	CCTTCTGGGC	AATGCCAAGC	600
20	CCAGGTACTT CT	ACACATCT	GCCTAACTTG	GGAATGAATG	TGGGAGAAAA	TCGCTGCTGC	660
	TGAGATGGAC TC	CAGAAGAA	GAAACTGTTT	CTCCAGGCGA	CTTTGAACCC	ATTTTTTGGC	720
25	AGTGTTCATA TT	АТТАААСТ	AGTCAAAAAT	GCTAAAATAA	TTTGGGAGAA	AATATTTTT	780
	AAGTAGTGTT AT	AGTTTCAT	GTTTATCTTT	TATTATGTTT	TGTGAAGTTG	TGTCTTTTCA	840
30	CTAATTACCT AT	ACTATGCC	AATATTTCCT	TATATCTATC	CATAACATTT	ATACTACATT	900
	TGTAAGAGAA TA	TGCACGTG	AAACTTAACA	CTTTATAAGG	TAAAAATGAG	GTTTCCAAGA	960
	TTTAATAATC TG	ATCAAGTT	CTTGTTATTT	CCAAATAGAA	TGGACTCGGT	CTGTTAAGGG	1020
35	CTAAGGAGAA GA	GGAAGATA .	AGGTTAAAAG	TTGTTAATGA	CCAAACATTC	TAAAAGAAAT	1080
	GCAAAAAAA AG	TTTATTTT	CAAGCCTTCG	AACTATTTAA	GGAAAGCAAA	ATCATTTCCT	1140
40	AAATGCATAT CA	TTTGTGAG	AATTTCTCAT	TAATATCCTG	AATCATTCAT	TTCAGCTAAG	, 1200
	GCTTCATGTT GA	CTCGATAT	GTCATCTAGG	AAAGTACTAT	TTCATGGTCC	AAACCTGTTG	1260
	CCATAGTTGG TA	AGGCTTTC	CTTTAAGTGT	GAAATATTTA	GATGAAATTT	TCTCTTTTAA	1320
45	AGTTCTTTAT AG	GGTTAGGG	TGTGGGAAAA	TGCTATATTA	ATAAATCTGT	AGTGTTTTGT	1380
	GTTTATATGT TC	AGAACCAG	AGTAGACTGG	ATTGAAAGAT	GGACTGGGTC	ТААТТТАТСА	1440
50	TGACTGATAG AT	CTGGTTAA	GTTGTGTAGT	AAAGCATTAG	GAGGGTCATT	CTTGTCACAA	1500
	AAGTGCCACT AA	AACAGCCT	CAGGAGAATA	AATGACTTGC	тттстааат	CTCAGGTTTA	1560
	TCTGGGCTCT AT	CATATAGA	CAGGCTTCTG	ATAGTTTGCA	ACTGTAAGCA	GAAACCTACA	1620
55	TATAGTTAAA AT	CCTGGTCT	TTCTTGGTAA	ACAGATTTTA	AATGTCTGAT	ATAAAACATG	1680
	CCACAGGAGA AT	TCGGGGAT	TTGAGTTTCT	CTGAATAGCA	TATATATGAT	GCATCGGATA	1740
60	GGTCATTATG AT	TTTTTACC	ATTTCGACTT	ACATAATGAA	AACCAATTCA	TTTTAAATAT	1800

15

ATT						1923
CCAATAAACC	AGGTATTCTA	АААААААА	AAAAAAACTN	GAGGGGGGC	CCGGTACCCA	1920
CAGATTATTA	TTTTGTAAGT	TGTGGAAAAA	GCTAATTGTA	GTTTTCATTA	TGAAGTTTTC	1860

10 (2) INFORMATION FOR SEQ ID NO: 193:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2346 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 193:

20	AGGCTCAGGG	GGACACTCTC	AAAATTACAC	AGCTTTTAAC	AGGTGGCAGA	ATTGGGGTTC	60
	AGACCCAGAT	CTGGGTTCAA	GTCACTCATG	GTGTGATTGC	GGCATTCCTT	CCCGCATCTG	120
25	GGCCTTGCCA	тстстстстс	CGAGTGGACA	TGGAGAGGAC	GGGGGCCCAG	CAGCTGGATG	180
23	GCTGCAGGGG	ATCAAGTCTT	CTCTGGGGCT	GGGCACGTAN	AAGAGCATGT	GGCTGGTGGA	240
	CGGCATGCCT	GGCTCCTCAC	CTGGCAGTCT	GCCTGCCCTG	CTAACCGGCT	GTCTCTTGTT	300
30	CCCCTAGTGC	CCTCGGCTAG	CATGACCCGC	CTGATGCGWT	SCCGCACAGC	CTCTGGTTCC	360
	AGCGTCATTC	TCTGGATGGC	ACCCGCAGCC	GCTCCCACAC	CAGCGAGGGC	ACCCGAAGCC	420
35	GCTCCCACAC	CAGCGAGGGC	ACCCGCAGCC	GCTCGCACAC	CAGCGAGGGG	GCCCACCTGG	480
	ACATCACCCC	CAACTCGGGT	GCTGCTGGGA	ACAGNGCCGG	GCCCAAGTCC	ATGGAGGTCT	540
	CCTGCTAGGC	GGCCTGCCCA	GCTGCCGCCC	CCGGACTCTG	ATCTCTGTAG	TGGCCCCCTC	600
40	CTCCCCGGCC	CCTTTTCGCC	CCCTGCCTGC	CATACTGCGC	CTAACTCGGT	ATTAATCCAA	660
•	AGCTTATTTT	GTAAGAGTGA	GCTCTGGTGG	AGACAAATGA	GGTCTATTAC	GTGGGTGCCC	720
45	TCTCCAAAGG	CGGGGTGGCG	GTGGACCAAA	GGAAGGAAGC	AAGCATCTCC	GCATCGCATC	780
	CTCTTCCATT	AACCAGTGGC	CGGTTGCCAC	TCTCCTCCCC	TCCCTCAGAG	ACACCAAACT	840
	GCCAAAAACA	AGACGCGTAC	AGCACACACT	TCACAAAGCC	AAGCCTAGGC	CGCCCTGAGC	900
50	ATCCTGGTTC	AAACGGGTGC	CTGGTCAGAA	GCCAGCCGC	CCACTTCCCG	TTTCCTCTTT	960
	AACTGAGGAG	AAGCTGATCC	AGTTTCCGGA	AACAAAATCC	TTTTCTCATT	TGGGGAGGG	1020
55	GGTAATAGTG	ACATGCAGGC	ACCTCTTTTA	AACAGGCAAA	ACAGGAAGGG	GGAAAAGGTG	1080
33	GGATTCATGT	CGAGGCTAGA	GGCATTTGGA	ACAACAAATC	TACGTAGTTA	ACTTGAAGAA	1140
	ACCGATTTT	AAAGTTGGTG	CATCTAGAAA	GCTTTGAATG	CAGAAGCAAA	CAAGCTTGAT	1200
60	TTTTCTAGCA	TCCTCTTAAT	GTGCAGCAAA	AGCAGGCRAC	AAAATCTCCT	GGCTTTACAG	1260

	ACAAAAATAT	TTCAGCAAAC	GTTGGGCATC	ATGGTTTTTG	AAGGCTTTAG	TTCTGCTTTC	1320
5	TGCCTCTCCT	CCACAGCCCC	AACCTCCCAC	CCCTGATACA	TGAGCCAGTG	ATTATTCTTG	1380
J	TTCAGGGAGA	AGATCATITA	GATTTGTTTT	GCATTCCTTA	GAATGGAGGG	CAACATTCCA	1440
	CAGCTGCCCT	GGCTGTGATG	AGTGTCCTTG	CAGGGGCCGG	AGTAGGAGCA	CTGGGGTGGG	1500
10	GGCGGAATTG	GGGTTACTCG	ATGTAAGGGA	TTCCTTGTTG	TTCTCTTGAG	ATCCAGTGCA	1560
	GTTGTGATTT	CTGTGGATCC	CAGCTTGGTT	CCAGGAATTT	TGTGTGATTG	GCTTAAATCC	1620
15	AGTTTTCAAT	CTTCGACAGC	TGGGCTGGAA	CGTGAACTCA	GTAGCTGAAC	CTGTCTGACC	1680
13	CGGTCACGTT	CTTGGATCCT	CAGAACTCTT	TGCTCTTGTC	GGGCTGGGGG	TGGGAACTCA	1740
	CCTCGGGAGC	GGTGGCTGAG	AAAATGTAAG	GATTCTGGAA	TACATATTCC	ATGGGACTTT	1800
20	CCTTCCCTCT	CCTGCTTCCT	CTTTTCCTGC	TCCCTAACCT	TTCGCCGAAT	GGGCAGCAC	1860
	CACTGACGTT	TCTGGGGGGC	CAGTGCGGCT	GCCAGGTTCC	TGTACTACTG	CCTTGTACTT	1920
25	TTCATTTTGG	CTCACCGTGG	ATTTTCTCAT	AGGAAGTTTG	GTCAGAGTGA	ATTGAATATT	1980
23	GTAAGTCAGC	CACTGGGACC	CGAGGATTTC	TOGGACCCCG	CAGTTGGGAG	GAGGAAGTAG	2040
	TCCAGCCTTC	CAGGTGGCGT	GAGAGGCAAT	GACTCGTTAC	CTGCCGCCCA	TCACCTTGGA	2100
30	GCCTTCCCT	GCCTTGAGT	AGAAAAGTCG	GGGATCGGG	CAAGAGAGGC	TGAGTACGGA	2160
	TGGGAAACTA	TTGTGCACAA	GTCTTTCCAG	AGGAGTTTCT	TAATGAGATA	TTTGTATTTA	2220
35	TTTCCAGACC	AATAAATTTG	TAACTTTGCA	АААААААА	АААААААА	ААААААААА	2280
55	АААААААА	AAAAAAACT	CGAGGGGGGC	CCGTACCCAA	TTCGCCGTAT	ATGATCGTAA	2340
	ACAATC						2346
40							

(2) INFORMATION FOR SEQ ID NO: 194:

45 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3054 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

50

55

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 194:

TATCTGAACC ACCCTTTATT CTACATATGA TAGGCAGCAC TGAAATATCC TAACCCCCTA 60 AGCTCMAGGT GCCCTGTGGN ACGAGCAACT GGACTATAGC AGGCCTGGGC TCTGTCTTCC 120 TGGTCATAGG CTCACTCTTT CCCCCAAATC TTCCTCTGGA GCTTTGCAGC CAAGGTGCTA 180 240 AAAGGAATAG GTAGGAGACC TCTTCTATCT AATCCTTAAA AGCATAATGT TGAACATTCA

	TTCAACAGCT	GATGCCCTAT	AACCCCTGCC	TGGATTTCTT	CCTATTAGGC	TATAAGAAGT	300
	AGCAAGATCT	ТТАСАТААТТ	CAGAGTGGTT	TCATTGCCTT	CCTACCCTCT	CTAATGGCCC	360
5	CTCCATTTAT	TTGACTAAAG	CATCACACAG	TGGCACTAGC	ATTATACCAA	GAGTATGAGA	420
	AATACAGTGC	TTTATGGCTC	TAACATTACT	GCCTTCAGTA	TCAAGGCTGC	CTGGAGAAAG	480
10	GATGGCAGCC	TCAGGGCTTC	CTTATGTCCT	CCACCACAAG	AGCTCCTTGA	TGAAGGTCAT	540
10	CTTTTTCCCC	TATCCTGTTC	TTCCCCTCCC	CGCTCCTAAT	GGTACGTGGG	TACCCAGGCT	600
	CCTTCTTCCC	CTAGGTAGTG	GGGACCAAGT	TCATTACCTC	CCTATCAGTT	CTAGCATAGT	660
15	AAACTACGGT	ACCAGTGTTA	GTGGGAAGAG	CTGGGTTTTC	CTAGTATACC	CACTGCATCC	720
	TACTCCTACC	TGGTCAACCC	GCTGCTTCCA	GGTATGGGAC	CTGCTAAGTG	TGGAATTACC	780
20	TGATAAGGGA	GAGGGAAATA	CAAGGAGGC	CTCTGGTGTT	CCTGGCCTCA	GCCAGCTGCC	840
20	CACAAGCCAT	AAACCAATAA	AACAAGAATA	CTGAGTCAGT	TTTTTATCTG	GCTTCTCTTC	900
	ATTCCCACTG	CACTTGGTGC	TGCTTTGGCT	GACTGGGAAC	ACCCCATAAC	TACAGAGTCT	960
25	GACAGGAAGA	CTGGAGACTG	TCCACTTCTA	GCTCGGAACT	TACTGTGTAA	ATAAACTTIC	1020
	AGAACTGCTA	CCATGAAGTG	AAAATGCCAC	ATTTTGCTTT	ATAATTTCTA	CCCATGTTGG	1080
30	GAAAAACTGG	CTTTTTCCCA	GCCCTTTCCA	GGGCATAAAA	CTCAACCCCT	TCGATAGCAA	1140
50	GTCCCATCAG	CCTATTATTT	TTTTAAAGAA	AACTTGCACT	TGTTTTTCTT	TTTACAGTTA	1200
	CTTCCTTCCT	GCCCCAAAAT	TATAAACTCT	AAGTGTAAAA	AAAAGTCTTA	ACAACAGCTT	1260
35	CTTGCTTGTA	AAAATATGTA	TTATACATCT	GTATTTITAA	ATTCTGCTCC	TGAAAAATGA	1320
	CTGTCCCATT	CTCCACTCAC	TGCATTTGGG	GCCTTTCCCA	TTGGTCTGCA	TGTCTTTTAT	1380
40	CATTGCAGGC	CAGTGGACAG	AGGGAGAAGG	GAGAACAGGG	GTCGCCAACA	CTTGTGTTGC	1440
	TTTCTGACTG	ATCCTGAACA	AGAAAGAGTA	ACACTGAGGC	GCTCGCTCCC	ATGCACAACT	1500
	CTCCAAAACA	CTTATCCTCC	TGCAAGAGTG	GGCTTTCCAG	GCTCTTTACT	GGGAAGCAGT	1560
45	TAAGCCCCCT	CCTCACCCCT	TCCTTTTTTC	TTTCTTTACT	CCTTTGGCTT	CAAAGGATTT	1620
	TGGAAAAGAA	ACAATATGCT	TTACACTCAT	TTTCAATTTC	TAAATTTGCA	GGGGATACTG	1680
50	AAAAATACGG	CAGGTGGCCT	AAGGCTGCTG	TAAAGTTGAG	GGGAGAGGAA	ATCTTAAGAT	1740
50	TACAAGATAA	AAAACGAATC	СССТАААСАА	AAAGAACAAT	AGAACTGGTC	TTCCATTTTG	1800
	CCACCTTTCC	TGTTCATGAC	AGCTACTAAC	CTGGAGACAG	TAACATTTCA	TTAACCAAAG	1860
55	AAAGTGGGTC	ACCTGACCTC	TGAAGAGCTG	AGTACTCAGG	CCACTCCAAT	CACCCTACAA	1920
	GATGCCAAGG	AGGTCCCAGG	AAGTCCAGCT	CCTTAAACTG	ACGCTAGNCA	ATAAACCTGG	1980
60	GCAAGTGAGG	CAAGAGAAAT	GAGGAAGAAT	CCATCTGTGA	GGTGACAGGC	AAGGATGAAA	2040

	GACAAAGAAG	GAAAAGAGTA	TCAAAGGCAG	AAAGGAGATC	ATTTAGTTGG	GTCTGAAAGG	2100
	AAAAGTCTTT	GCTATCCGAC	ATGTACTGCT	AGTACCTGTA	AGCATTTTAG	GTCCCAGAAT	2160
5	GGAAAAAAA	ATCAGCTATT	GGTAATATAA	TAATGTCCTT	TCCCTGGAGT	CAGTTTTTT	2220
	AAAAAGTTAA	CTCTTAGTTT	TTACTTGTTT	ААТТСТАААА	GAGAAGGGAG	CTGAGGCCAT	2280
10	TCCCTGTAGG	AGTAAAGATA	AAAGGATAGG	AAAAGATTCA	AAGCTCTAAT	AGAGTCACAG	2340
10	CTTTCCCAGG	ТАТААААССТ	AAAATTAAGA	AGTACAATAA	GCAGAGGTGG	AAAATGATCT	2400
	AGTTCCTGAT	AGCTACCCAC	AGAGCAAGTG	АТТТАТАААТ	TTGAAATCCA	AACTACTTTC	2460
15	TTAATATCAC	TTTGGTCTCC	ATTTTTCCCA	GGACAGGAAA	TATGTCCCCC	CCTAACTTTC	2520
	ттосттсааа	AATTAAAATC	CAGCATCCCA	AGATCATTCT	ACAAGTAATT	TTGCACAGAC	2580
20	ATCTCCTCAC	CCCAGTGCCT	GTCTGGAGCT	CACCCAAGGT	CACCAAACAA	CTTGGTTGTG	2640
20	AACCNAACTG	CCTTAACCTT	CTGGGGGAGG	GGGATTAGCT	AGACTAGGAG	ACCAGAAGTG	2700
	AATGGGAAAG	GGTGAGGACT	TCACAATGTT	GGCCTGTCAG	AGCTTGATTA	GAAGCCAAGA	2760
25	CAGTGGCAGC	AAAGGAAGAC	TTGGCCCAGG	AAAAACCTGT	GCGTTGTGCT	AATTTCTGTC	2820
	CAGAAAATAG	GGTGGACAGA	AGCTTGTGGG	GTGCATGGAG	GAATTGGGAC	CTGGTTATGT	2880
30	TGTTATTCTC	GGACTGTGAA	TTTTGGTGAT	GTAAAACAGA	ATATTCTGTA	AACCTAATGT	2940
30	CTGTATAAAT	AATGAGCGTT	AACACAGTAA	AATATTCAAT	AAGAAGTCAA	ААААААААА	3000
	AAAAAACTCG	AGGGGGGCC	CGGTACCCAA	TTTNCCAAAT	AGAGATNGTA	TTAC	3054
35							

(2) INFORMATION FOR SEQ ID NO: 195:

40 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 907 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 195:

GGCAGAGCTC GTGGCCGNAA CTTTTTCTGC TCCTGGCTGC CACCTACTGG CTGGCCGCGG 60 50 CCCTGGCCTG GGCCTGCACC AGCCTGCGNG CGGGCTCCCA CAGCAGCCCC CTTCCAAGCA 120 180 GCGTCCCCAC ACCGCGCACC TTCTGCGGGA ACGTGCTCGC CGTGCCGGGG ACCATATGGA COGAAGGCTT TGTGCTCACC TACAAGCTGG GTGAGCAGGG TGCCAGCAGC CTGTTGATCC 240 55 TCTTGGCTCC TGCTGGAGCA CGAGCGGCGT TTCTGCTCCC GAGTTGGGAC TGTGGAATGG TGTGGGTGCT GTGGTCTGCT CCATCGCTGG CTCCTCCCTG GGTGGGACCT TGCTGGCCAA 360 60 GCACTGGAAA CTGCTGCCTC TGTGAGGTCG GTGCTGCGCT TCCGCCTCGG GGGCCTAGCC 420

	TGTCAGACTG	CCTTGGTCTT	CCACCTTGGA	CACCCTGGGG	GCCAGCATGG	ACGCTGGCAC	480
5	AATCTTGAGA	GGGTCAGCCT	TGCTGAGCCT	ATGTCTGCAG	CACTTCTTGG	GARGCCTGGT	540
	CACCACAGTC	ACCTICACTG	GGAATGATGC	GCTGCAGCCA	GCTGGCCCCC	AGGGCCTTGC	600
	AGGCCACACA	CTACAGCCTT	CTGGCCACGC	TGGAGCTGCT	GGGGAAGCTG	CTGCTGGGCA	660
10	CTYTGGSCGG	AGGGCCTGGC	TGATGGGTTG	GGGCCACATC	CCTGCTTCTT	GCTCCTGCTC	720
	ATCCTCTCTG	CCTTTCCCGT	TCTGTACCTG	GACCTAGCAC	CCAGCACCTT	TCTCTGAGCT	780
15	GAGTGGCTGG	AGTGGTCAAT	AAAGCCACAT	GIGCCIGIGG	CCCAAAAAA	AAAAAAAAA	840
	АААААААА	AAAAAAACTG	GAGGGGGGC	CCGGTACCCA	AATCGCCGGA	TATGATCGTA	900
	AACAATC						907

(2) INFORMATION FOR SEQ ID NO: 196:

25 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1290 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30

35

40

45

50

55

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 196:

GGCACGAGGA GGGACAGGGA (GTGGGCAAGG	GGAAGAAGCA	GCTTATTTGA	CTAACCAGCC	60
CCTCTGTGGT CCACCAGCGT	CTTGGCTTGG	TGGGAGGGCT	CTCAATCAGC	AGGCCCCAG	120
KAGGGCAAGA AGAAGTGGGG	CAAAGCCTGG	CGCTCGGCCG	CCCTCCCCCC	AGCTTTGCMA	180
TCTGGAGCCA CGCCTCCTCC A	AGGCCATGCT	CCTTGAACTT	GGAAATGTCA	ACCGGAGCCC	240
TTAACACCAG CCCTCCAGCA	TCTAATAGAC	TTGAATCTAC	TCTAAACGAA	TATTTAATCC	300
AACCTCAACT ACATTGTAGC	TCAGTCCAAC	GACTAACCCT	GAAATGGGGG	TGTTCCAGCC	360
TTCAGCGAGA TGGCCAAGCG	GTCCCCTGGG	GGCTGTGGCA	GCGGGCTTAT	CCTTCTCTGT	420
TGCCAACCTT GCCGTCCGAC	CTCCTCCGCC	CCCATGCGGT	GACCCCGTCC	GTGTCTGTGT	480
CTGTCCATAC GTGTGAGTCC	AGCTAAAAAG	ACAAAACAGA	ACCCGTGGGC	CCAGCTCGGA	540
AGGTGCGTGG AGAAGGCTCC	GACGTCTCCG	AAGTGCAGCC	CTTGGGATGG	CATTCCGTTG	600
TGTGCCTTAT TCCTGGAGAA	TCTGTATACG	GCTCGCCTAT	AAGAAATATA	GCCTCTTCAT	660
GCTGTATTAA AAGGACTTTT	AAAAGCAAAA	ааааааааа	AAAAACTCGA	GGGGGGCCC	720
GGTACCCAAT TCGCCCAATA	GTGAGTCGTA	TTACAATTCA	CTGGGCCGTC	STTTTAACAA	780
CGTCGTGAAC TGGGAAAACC	CTGGCGTTTA	CCCAACTTAA	TCGCCTTGCA	GCACATCCCC	840

	CTTTCGCCAG	CTGGCGTTAA	TAGCGAAAAA	NGCCCGCACC	CGAATCGCCC	TTCCCAACAG	900
	TTTGCGCAGC	CCTGAATGGC	GAAATGGCAA	ATTGTAAGCG	TTTAATATTT	TKKTTAAAAT	960
5	TCCNCGTTWA	AMPTTTTGTT	TAAATCARCT	CAATTTTTT	AACCCAATAA	GSCCGAAATC	1020
	CGGCAAATCC	ССҮТТАТТАА	TTCCAAAAAA	ATAAACCSAA	AAWGGGTTTG	AATTTTTTKT	1080
10	TTCCCCAYTT	TTGGAAACAA	AWTYCCCCCT	TTTTAAAAAA	GTTGGAACCC	CCAMCCYTCC	1140
10	AAAGGGGAAA	AAACSYTTTT	YTGGGGGGNA	ANGGGGCCCC	CNTACTTTNA	ACAYCCCCC	1200
	CCAAWCAATT	TTTTTGGGGG	GTCCCNAAAG	GTCCCCCTAA	AANCTTTTTT	CGGAACCCNA	1260
15	AGGGGANCCC	СССАТТТААА	ATTTTNGGTN				1290

20 (2) INFORMATION FOR SEO ID NO: 197:

25

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1020 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 197:

30 GGTGTGCCTG GATGGTCGTG TAGGTGAGTT TTACCAAGGA TTATGGTAAC AAATGAGTGA 60 GACCTCTATG GAGAAAATAT TGAAGNNCAT TAAAGAAGAC CTCATANTAG GAGAGAATGT 120 SCITIGGAGG ATTIGIATIG AGCITTIACA GIATICATIT TICAACICAA GGCAATGGCT 180 35 TTCTACACCA ACTCTAATCC ATAAACGGGT CTTATGACAT CTATGAAGTA GTAGCAAGAC 240 ATGCTTAGTG TGTATTTCTC TCTTTGAGAC ACTGTAATTT CTACCAGAAA TTTCCAGAGC 300 40 ATTATGTAGG TAGAAAAAA TGCAAGCAAG CTGTTAAAGA TCTTGGATCC CATTATATAG 360 TATGTATAGC TGAAATCTGT AATTCAATCA CTTTTTCTCT TTTATCCTCT AACCAAAAA 420 TTGTTTAATT TTGCATCCCA AATGTTTTTA ATCTTTGTAT ATTTTTTAAA AAYCCTTTTC 480 45 TCCTCATCAT TGCCTTTTTT GTGGTTGTAA ATAGACTTAC TTGCACTTTG AAGATGAGTT 540 ACTCCTTGTC ATCTTACAAA TATGTGATAT GGTAATTTTC ATAACAGATG TCAGTTTTGA 600 50 ACCAAGAATT GGTGATTTGT TTATAAGAAA AAAACTGGCT TCATTTCTGT GAAATTGCTC 660 TTTGAAAATT TCTTTTTACA CGTGTAAGCC AACTGAGATA CCGTGATGGT GTTGATTTCT 720 TTCAATGATG CTTACCATCT ATTTTAGCCA CTGAGCCTTT TATTATTTGT CTATTTGTAA 55 AGTITATITG TCTTAACTCA TITAATAAAT ATACTGTTTA TCTGTTTCTG AATGGGGACT 840 GAACTTITTG GATATTGATA TIGATTTGAA AATATTTTGG AATTTTTCT ACTIGAAATT 60 TTAGAAATCT AATKGAAAAT TCTATAATGT ACTGAAAGTA WGGTTGTGTA CAGTGAKCAC 960

	TCTCTAATAA TATGATGNCT TGCCCTAAAN GAGGNGGGAC ATGTCCCACT TTCCACCACG	1020
5		
	(2) INFORMATION FOR SEQ ID NO: 198:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 524 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 198:	
	AATTCCCGAA GCTGAGGGTT GTGTGCCNTC GGGCGAGCCA AGTCTTTTGA CCGGACCCTT	60
20	CCCGGCGCAG AAGANCTGAA GTTGATTTGA GAGCCTGTKT TTGGGGTTRA GCCGAGCTGC	120
20	TGCGGGCTTY GTCGCCGGCC AGGACACAAG YTACTTGCAA CGGGGCGGCG CCTGGCTTAT	180
	GATGIFICCTC AACCCAGGGG CGGCCTCTGC CCTCTACTCG TGCCAGGCCC ACTTGCCAGG	240
25	CAGGAGCCCT CCCCAAGCCT TCAGGGCTGC TCGGAGTCAC CTGTTGGAAT GGACTAAAAG	300
	GACCCTTGTG TGGGAACAGG TGCTCCAAAC ACCCTGCTGC TGGCTGCCAG GCAGGCCCTC	360
30	TGGAAGGGAA GGGCAGGAC TCATCAGGAC CTCCCTGGAC CCTGCAGGGC AGGCAGTTGG	420
	CCCGAGCCCA AGCATTTGGC TCTGCTTGCC CCAAGGGGAC AGGAAGCCTC TTGGGCCTCT	480
	TCCCTTCCTG GACAAGGCCC CCTGCCTTTG CCTCACATAA ACTG	524
35		
	(2) INFORMATION FOR SEQ ID NO: 199:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 332 base pairs	
45	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
73	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 199:	
	GTGATACAAG GAAGGGTGAT CATCATCTGT CACCATGCAA TTCCTGCTCA CAGCCTTTCT	60
50	GTTGGTGCCA CTTCTGGCTC TTTGTGATGT CCCCATATCC CTAGGCTTCT CCCCCTCCTA	120
	GAAGGCTTC TIGATAGATI AGAAAATAAG AATGAGTGAC ATTTCCTATG TGCATATAAG	180
	AAGGAGCCAC AAGACATGTC TITTAAATAA AAGGACAGTG TCCATCCTTT TAGCTGCCGA	240

ATAGAACCTT GGTCTCATCC TCCTGGAGCT AGGSCTTAAA ACAGCTTCTG TGTTTCTSAT

TKGTCTCART GTTTTGCCAA GGTTTTATTC GG

540

600

660

55

60

	(2) INFORMATION FOR SEQ ID NO: 200:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 376 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 200:	
	CCAGGGAAGC CCCARGCCTG TCCTGAATTG ACATCAGTGC TTCCCTGAAC TGCCTCCCCC	6
15	ACCCCTGGGC ATTATCCCAG GAAACTTATG TTTTCTAGAA GCTAAGCAGC TGCTGGGACT	12
	CAGGGACTGG TGCAGGTAGG CTGAGTCGCA GCTCAGTCCT AGAAGGTCTC TGAAGATCTG	18
20	GACTGAGGAC CYTGCTACTC CCCAAGCCAG AGCCCATCAG CCAGGCCTGC TGTGAGCCAC	24
20	CTGCCTGTGG AGTGCTGAGC TCAACCAAAG GCTGGCAAGC TCTGGGCCTC ATTTAAGGGA	30
	TTCTGATGAG CCGATGGGCC CTGGAGGCAG CCCATTAAAG CATCTGGCTC GTTTTTGGAA	36
25	AAAAAAAAA AAAAAG	37
20		
30	(2) INFORMATION FOR SEQ ID NO: 201:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1192 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
35	(A) LENGTH: 1192 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
35 40	(A) LENGTH: 1192 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	6
	(A) LENGTH: 1192 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 201:	6 12
	(A) LENGTH: 1192 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 201: CCCAGTATAT TICTATAACA TITATITTAG TGAACTTATA ATGITTCTIT GTATTAAATT	
10	(A) LENGTH: 1192 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 201: CCCAGTATAT TTCTATAACA TTTATTTTAG TGAACTTATA ATGTTTCTTT GTATTAAATT ATTAGATTAT ATCTTTAGAT AATATTGTTA CTNAATTAGT AGGTAATATA TATTTTATTC	12
10	(A) LENGTH: 1192 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 201: CCCAGTATAT TTCTATAACA TTTATTTTAG TGAACTTATA ATGTTTCTTT GTATTAAATT ATTAGATTAT ATCTTTAGAT AATATTGTTA CTNAATTAGT AGGTAATATA TATTTTATTC AAAAATAAAT TGTGCATCTA ATGTCTACCA ATTAATGTAC TTGTAGATGT ATCTTATCTT	12
10	(A) LENGTH: 1192 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 201: CCCAGTATAT TTCTATAACA TTTATTTTAG TGAACTTATA ATGTTTCTTT GTATTAAATT ATTAGATTAT ATCTTTAGAT AATATTGTTA CTNAATTAGT AGGTAATATA TATTTTATTC AAAAATAAAT TGTGCATCTA ATGTCTACCA ATTAATGTAC TTGTAGATGT ATCTTATCTT	12 18 24
‡0 ‡5	(A) LENGTH: 1192 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 201: CCCAGTATAT TTCTATAACA TTTATTTTAG TGAACTTATA ATGTTTCTTT GTATTAAATT ATTAGATTAT ATCTTTAGAT AATATTGTTA CTNAATTAGT AGGTAATATA TATTTTATTC AAAAATAAAT TGTGCATCTA ATGTCTACCA ATTAATGTAC TTGTAGATGT ATCTTATCTT	12 18 24 30

KTGAGTTGTT TATTTGTTCT TCACTTTGTT TTACACTGTA WITTCTGAGT TTATGGGTGT

CTGTGAATTA AAAAGGAAAA GTRGAAATAA GTAAAACTCA GGTTGAAGGA AATATACATA

AATAAGATAA AGCTGACCTG TAGATATARR CAGGTTATAA RAGCTTAGAG TTGTCTAAGT

TGRGTGCAAA KTTTCCTCTG ATCTTTCTGA TGCCGARACA AAAAAGGCAG TCATGTTTGT

	WATGTGATTG GAATGGAACC CGARAAGAGA GCAYGCTGTG TTCTTGGGGA CAGGAAAGCT	720
5	TGYGTGCACC AAGTCTKAAC CACCACCTTC ATGGGACATA GRTTATGTGC TGGAACATAT	780
J	TTCACACCGG CCTGGCAGTA AACACTTGTA GTGTTGTGCA GTGGAAACGG TCATCTTCCG	840
	CTAAAGCACG GCGTGTTGTG CAGCGGAAAT GGTCATCTGC TGCTAAAACA CAGCTTCCAT	900
10	CGTAATGTAT GCTCCTTACT CAAAGAGTGT GGTCCCAAAC AGCCTTTGGG AGGTCCTCCT	960
	TGATTCATGG ATGAAACCTG GAACATCTTG AGGACTGAGT TAACCATAGG TCCTTAAATA	1020
15	ACTOTOCACA COTTTTTCTT AGTTTATCTC TACATGCAGG GTGTGCAGCA GCCTGTTCAA	1080
13	AGTCATATTT TCTGGGAAAT ATTTCCAGTG TTTATTTGCA CTTTAGCCCA CTCTGTGTAG	1140
	CCTTATTTCT TCTAAACTCA CCATTAATCT GAATAATAGT CAAATTTAGG GG	1192
20		
	(2) INFORMATION FOR SEQ ID NO: 202:	
	(2) INFORMATION FOR SEQ ID NO: 202:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 589 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 202:	
	ATCTTGGGCT ATCTTTGACA GGGGATTCTT GCAAGTTGAT GCTTTCTACA AGTGAATATA	60
35	GTCAGTCCCC AAAGATGGAG AGCTTGAGTT CTCACAGAAT TGATGAAGAT GGAGAAAACA	120
	CACAGATTGA GGATACGGAA CCCATGTCTC CAGTTCTCAA TTCTAAATTT GTTCCTGCTG	180
40	AAAATGATAG TATCCTGATG AATCCAGCAC AGGATGGTGA AGTACAACTG AGTCAGAATG	240
40	ATGACAAAAC AAAGGGAGAT GATACAGACA CCMGGGATGA CATTAGTATT TTAGCCACTG	300
	GTTGCAAGGG CAGAGAAGAA ACGGTAGCAG AAGATGTTTG TATTGATCTC ACTTGTGATT	360
45	COGGGAGTCA GGCAGTTCCG TCACCAGCTA CTCGATCTGA GGCACTTTCT AGTGTGTTAG	420
	ATCAGGAGGA AGCTATGGAA ATTAAAGAAC ACCATCCAGA GGAGGGGTCT TCAGGGTCTG	480
50	AGGTGGAAGA AATCCCTGAG ACACCTTGTG AAAGTCAAGG AGAGGAACTC AAAGAAGAAA	540
J-0		

55

60

(2) INFORMATION FOR SEQ ID NO: 203:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 847 base pairs

ATATGGAGAG TGTTCCGTTG CACCTTTCTC TGACTGAAAC TCAGTCCCA

(B) TYPE: nucleic acid

(C)	STRANDEDNESS:	double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 203: 5 GGCACGAGCG CAAGCTGCTG GCCGCCATCA ACGCGTTCCG CCAGGTGCGG CTGAAACACC 60 GGAAGCTCCG GGAACAAGTG AACTCCATGG TGGACATCTC CAAGATGCAC ATGATCCTGT 120 10 ATGACCTGCA GCAGAATCTG AGCAGCTCAC ACCGGGCCCT GGAGAAACAG ATTGACACGC 180 TGGCGGGGAA GCTGGATGCC CTGACTGAGC TGCTTAGCAC TGCCCTGGGG CCGAGCAGCT 240 TCCAGAACCC AGCCAGCAGT CCAAGTAGCT GGACCCACGA GGAGGAACCA GGCTACTTTC 300 15 CCCAGTACTG AGTGGTGGAC ATCGTCTCTG CCACTCCTGA CCAGCCTGAA CAAAGCACCT 360 CAAGTGCAAG GACCAAAGGG GGCCTGGCTT GGATGGGTTG GCTTGCTGAT GGCTGCTGGA 420 20 GGGGACGCTG GCTAAAGTGG GGAGGCCTTG GCCCACCTGA GGCCCCAGGT GGGAACATGG 480 TCACCCCCAC TCTGCATACC CTCATCAAAA ACACTCTCAC TATGCTGCTA TGGACGACCT 540 CCAGCTCTCA GTTACAAGTG CAGGCGACTG GAGGCAGGAC TCTTGGGTCC CTGGGAAAGA 600 25 GGGTACTAGG GGCCCGGATC CAGGATTCTG GGAGGCTTCA GTTACCGCTG GCCGAGCTGA 660 AGAACTGGGT ATGAGGCTGG GGCGGGGCTG GAGGTGGCGC CCCCTGGTGG GACAACAAAG 720 30 AGGACACCAT TTTTCCAGAG CTGCAGAGAG CACCTGGTGG GGAGGAAGAA GTGTAACTCA 780 CCAGCCTCTG CTCTTATCTT TGTAATAAAT GTTAAAGCCA GAAAAAAAA AAAAAAAAA 840 AAAAAA 847 35

(2) INFORMATION FOR SEQ ID NO: 204:

40

45

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 852 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 204:

ACAAACATAC TCGCAGGAAG GAGTCTCATG CTGCCCGCAG CATCAGCGCA ACNCNTGGCC 60
GCCATCAACG CGTTCCGCCA GGTGCGGCTG AAACACCGGA AGCTCCGGGA ACAAGTGAAC 120
TCCATGGTGG ACATCTCCAA GATGCACATG ATCCTGTATG ACCTGCAGCA GAATCTGAGC 180
AGCTCACACC GGGCCCTGGA GAAACAGATT GACACGCTGG CGGGGAAGCT GGATGCCCTG 240
ACTGAGCTGC TTAGCACTGC CCTGGGGCCG AGGCAGCTTC CAGAACCCAG CCAGCAGTCC 300
AAGTAGCTGG ACCCACGNAG GAGGAACCAG GCTACTTTCC CCAGTACTGA GGTGGTGGAC 360

ATNOCTOTOT TGCCACTOON TGNACCCAGO COTGAACAAA GCACCTCAAG TGCAAGGACO 420 AAAGGGGCC CTGGCTTGGA GTGGGTTGGC TTGCTGATGG CTGCTGGAGG GGACGCTGGC 480 5 TAAAGTGGGK AGGCCTTGGC CCACCTGAGG CCCCAGGTGG GAACATGGTC ACCCCCACTC 540 TGCATACCCT CATCAAAAAC ACTCTCACTA TGCTGCTATG GACGACCTCC AGCTCTCAGT TACAAGTGCA GGCGACTGGA GGCAGGACTC CTGGGTCCCT GGGAAAGAGG GTACTAGGGG 660 10 CCCGGATCCA GGATTCTGGG AGGCTTCAGT TACCGCTGGC CGAGCTGAAG AACTGGGTAT 720 GAGGCTGGGG CGGGGCYGGA GGTGGCGCCC CCTGGTGGGA CAACAAAGAG GACACCATTT 780 15 TTCCAGAGCT GCAGAGAGCA CCTGGTGGGG AGGAAGAAGT GTAACTCACC AGCCTCTGCT 840 CTTATCTTTG TA 852

20

25

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 205:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1354 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 205:

GATTCGGCAC GAGGCTTGCT GGAGCAGGAG AAGTCTCTRG CCGGCTGGGC ACTGGTGCTG 60 GCASGARCTG GCATTGGACT CATGCTGCTG CATGCAGAGA TGCTGTGGTT CGGGGGGTGC 120 TCGGCTGTCA ATGCCACTGG GCACCTTTCA GACACACTTT GGCTGATCCC CATCACATTC 180 CTGACCATCG GCTATGGTGA CGTGGTGCCG GGCACCATGT GGGGCAAGAT CGTYTGCCTG 240 TGCACTGGAG TCATGGGTGT CTGCTGCACA GCCCTGCTGG TGGCCGTGGT GGCCCGGAAG 300 CTGGAGTTTA ACAAGGCAGA GAAGCACGTG CACAACTTCA TGATGGATAT CCAGTATACC 360 AAAGAGATGA AGGAGTCCGC TGCCCGAGTG CTACAAGAAG CCTGGATGTT CTACAAACAT ACTCGCAGGA AGGAGTCTCA TGCTGCCCGC AGGCATCAGC GCAANCTGCT GGCCGCCATC 480 AACGCGTTCC GCCAGGTGCG GCTGAAACAC CGGAAGCTCC GGGAACAAGT GAACTCCATG 540 GTGGACATCT CCAAGATGCA CATGATCCTG TATGACCTGC AGCAGAATCT GAGCAGCTCA 600 660 CACCGGGCCC TGGAGAAACA GATTGACACG CTGGCGGGGA AGCTGGATGC CCTGACTGAG CTGCTTAGCA CTGCCCTGGG GCCGAGGCAG CTTCCAGAAC CCAGCCAGCA GTCCAAGTAG CTGGACCCAC GAGGAGGAAC CAGGCTACTT TCCCCAGTAC TGAGGTGGTG GACATCGTCT 780 CTGCCACTCC TGANCCCAGC CCTGAACAAA GCACCTCAAG TGCAAGGACC AAAGGGGGCC 840 CTGGCTTGGA GTGGGTTGGC TTGCTGATGG CTGCTGGAGG GGACGCTGGC TAAAGTGGGK 900

AGGCCTTGGC CCACCTGAGG CCCCAGGTGG GAACATGGTC ACCCCCACTC TGCATACCCT 960 CATCAAAAAC ACTCTCACTA TGCTGCTATG GACGACCTCC AGCTCTCAGT TACAAGTGCA 1020 5 GGCGACTGGA GGCAGGACTC YTGGGTCCCT GGGAAAGAGG GYACTAGGGG CCCGGATCCA 1080 GGATTCTGGG AGGCTTCAGT TACCGCTGGC CGAGCTGAAG AACTGGGTAT GAGGCTGGGG 1140 10 CGGGGCTGGA GGTGGCGCC CCTGGTGGGA CAACAAAGAG GACACCATTT TTCCAGAGCT 1200 GCAGAGAGCA CCTGGTGGGG AGGAAGAAGT GTAACTCACC AGCCTCTGCT CTTATCTTTG 1260 1320 15 AGACCCAATC TCCCTATAGT AAGNCGCCNN ANAN 1354

20

25

(2) INFORMATION FOR SEQ ID NO: 206:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1378 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30

35

40

45

50

55

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 206:

TCCCCAGGTG CACAGCCAGG GCCCTCCTGT CTGCAGGAGA ATTCACAGCT GGTGTGGGAC 60 TCAGCCCCTA GNCCATTCAA AGCCTTAATG TTGTAATCAT ATCTTACGTG TTGAAGACCT 120 GACTGGAGAA ACAAAATGTG CAATAACGYG AATTTTATCT TAGAGATCTG TGCAGCCTAT 180 TTCTGTCACA AAAGTTATAT TGTCTAATAA GAGAAGTCTT AATGGCCTCT GTGAATAATG 240 TAACTCCAGT TACACGGTGA CTTTTAATAG CATACAGTGA TTTGATGAAA GGACGTCAAA 300 CAATGTGGCG ATGTCGTGGA AAGTTATCTT TCCCGCTCTT TGCTGTGGTC ATTGTGTCTT 360 GCAGAAAGGA TGGCCCTGAT GCAGCAGCAG CGCCAGCTGT ANATAAAAA TAATTCACAC 420 TATCAGACTA GCAAGGCACT AGAACTGGAA AAGACCACAG AAAACAAAGA ATCCAACCCT 480 TTCATCTTAC AGGTGAACAA ACTGTGATGA TGCACATGTA TGTGTTTTGT AAGCTGTGAG 540 CACCGTAACA AAATGTAAAT TTGCCATTAT TAGGAAGTGC TGGTGGCAGT GAAGAAGCAC 600 CCAGGCCACT TGACTCCCAG TCTGGTGCCC TGTCTACACC AGACAACACA GGAGCTGGGT 660 CAGATTCCCC TCAGCTGCTT AACAAAGTTC CTCGAACAGA AAGTGCTTAC AAAGCTGCCT 720 TCTCGGATAC TGAAAGGTCG AGTTTTCTGA ACTGCACTGA TTTTATTGCA GTTGAAAAAA 780 AAAAAAAGCT ATTCCAAAGA TTTCAAGCTG TTCTGAGACA TCTTCTGATG GCTTTACTTC 840 CTGAGAGGCA ATGTTTTTAC TTTATGCATA ATTCATTGTT GCCAAGGAAT AAAGTGAAGA 900

AACAGCACCT TITAATATAT AGGTCTCTCT GGAAGAGACC TAAATTAGAA AGAGAAAACT 960 1020 5 TGAGAATAAG TTACACACAA TGGCCACAGC AGTTTGTCTT TAATAGTATA GTGCCTATAC 1080 TCATGTAATC GGTTACTCAC TACTGCCTTT AAAAAAAAA ACCAGCATAT TTATTGAAAA 1140 CATGAGACAG GATTATAGTG CCTTAACCGA TATATTTTGT GACTTAAAAA ATACATTTAA 1200 10 AACTGCTCTT CTGCTCTAGT ACCATGCTTA GTGCAAATGA TTATTTCTAT GTACAACTGA 1260 TGCTTGTTCT TATTTTAATA AATTTATCAG AGTGAAAAAA AAAAAAAAA AAAAAAAAA 1320 15 1378

20 (2) INFORMATION FOR SEQ ID NO: 207:

25

30

35

40

45

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1166 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 207:

AANCCACTGC ANTITAAACC CCCTCCCCTC CAAGAAAGTT CACAACCGGC CATGGATGAC 60 CCTCATITTA GATGGGCCNC AATATTTAAG ATGGACTGRG GMCCCCARAG ACTGACCCTT 120 GAAAGGGGGA CTCAGAAGAA AGATCCTTGA CATTGCCMAA CATGCTGGGC TTGTCCAACA 180 CAGTGATGCG GCTCATCGAG AARCGGGCTT TCCMAGGACA AGTACTTTAT GATAGGTGGG 240 ATGCTGCTGA CCTGTGTGGT CATGTTCCTC GTGGTGCAGT ACCTGACATG AGCCAGCCAC 300 GCTCAGTGGC TGAACAGCAT TCCCACAGCC TGCAAGTGTG TGTGTGTGT AAAGAGAGAG 360 GGGGCCCAGA GGCCGCCTTT TGAAATGTTT GCCTGTCTGA ACTGTGAAGA CACTTGGGAG 420 TGATTGTGGT CTAATTTCCA ACCTGCTCTG TTTTCTGTGA CATCTTGGAG GGGAGCTAG 480 TGCCAMCACC ATGCGCGGTG CTTAGGAAAT GAAAGAAGTC CCGGGTCTGT CTCTCTCACT 540 CTCGCTCTCA MTGGGGGAGG GAAAGAATGG CTTTGGTGGC TTTGTTCACA CAGCTGATGC 600 GTGSCCTGGG AAGGTGTCCA CAGTGAGCCC TGTGTGCAGG ACTGTCCACN ACGGTTCACA 660 720 GAAAGAGGCY TTTTCTCACA GCCATTATAT TAAATAGTAG GTCGATTCAC ATCYTCGTGC 780 TCCTGGCCAC CCTCCCCTGT GCCTCAGTGA CATGTAGATG ACTGACTGCC AATACTTGTC 840 ACCATTCCCT GGAAGCAGCT ACCTAGGGGA AACAAGATGT AGTGCTATTG CCGATAACAA 900 GTAAGATTTT CCACACTACA GCTGGGTGTT TCTCTTTTCT AAAGTGAGGC CAGTGTTATT 960

	TCCCGGGAGT GTTCAGTCTT GACCCTAGTC ACTGATTTTT TCTAGTTGTT AATAGAGTGG	1020
5	TTGGGCTTTT AAGGTTCAGA GACTGTGGGC TTGGGCACCT GCGCCCAGGG STTTTGTGGG	1080
3	GGCCTTTGCC CCTTAGRAAA GTAGCTTTTA GGGGCAAAGA TTTGTTGATT TTCCCCATTA	1140
	CAGTCTTCAG CTCNAGGGTT TTAAAA	1166
10		
	(2) INFORMATION FOR SEQ ID NO: 208:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 697 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(wi) CECUTACE DESCRIPTION, GEO TO NO. 200	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 208:	
	TACTTCTAGG ATTATAAGGA ATTAACATTG AGATGACATT TCCATTTGAG AAGGAAAATA	60
25	GTTGCTTTCA GTGCCTTTTA TTTGATTCCT GGAGAGAGCA GACTCGCACS AACATTCAAC	120
	CCCAGCGCTG ATATGACAGT AATCCTCAGA GGCAGAGCCC AGCACAAAAC AGCAATGCTA	180
30	GAAAGTTACA ATTGGAAAGT TTCCTGCCAG CTTCGGGAAT GACACTGCAA AGCTGATGCC	240
	AGAAACTGCC AGRGTAATTC TCCTCATTAC TGCTCTACCC ACCCACTTTC AGCTCCCCAA	300
	ATTAACTAGT GCAGTTGACT AATTCTCTTT ACCTTTATCA TTTARGGTGA RGCATTGCAC	360
35	AAAAACTCTC GACTITGCCA TATAAGGGCT GTGGTTCTCT GTGGTCCCCT GGATAAGAGG	420
	CATCACCATT ATCTGGAAAC ATGCAGTAAA TGCAGATTNT TCATCTTCTC CCCAGACCTC	480
40	CTGAGTTAGA AATTCACAAG TTCTCCAGGT GATCTCATAC ATGCTAAAGT TTGAGAACCA	540
	TTGAGTAAAG TTAATGCATT AAGAAGAGAT TAGATAGGGA TGGTGGCGTA TCTTCCTACA	600
	GTTTCCCTGT TAACAAGAAA GTCAGAGGTC AGTTGATCAG ACATTAGATT ATTTATTGCT	660
45	AAAACTAAAA AAAATTAAAA AAAACTGGAG GGGGGCC	697
50		
30	(2) INFORMATION FOR SEQ ID NO: 209:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 932 base pairs	
	(B) TYPE: nucleic acid	
55	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 209:	

60 CGTGAGTCAC CTCTCTATAG TGGGCGTGGC CGAGGCCCGG GTGACCCTGC CGAAGCCTCC

	GCTGCCAGAA	ACCATGITCA	AGGTAATTAA	AAGGTCCGTG	GGGCCAGCCA	GCCTGAGCTT	120
5	GCTCACCTTC	AAAGTCTATG	CAGCACCAAA	AAAGGACTCA	CCTCCCAAAA	ATTCCGTGAA	180
J	GGTTGATGAG	CTTTCACTCT	ACTCAGTTCC	TGAGGGTCAA	TCGAAGTATG	TGGAGGAGGC	240
	AAGGAGCCAG	CTTGAAGAAA	GCATCTCACA	GCTCCGACAC	TATTGCGAGC	CATACACAAC	300
10	CTGGTGTCAG	GAAACGTACT	CCCAAACTAA	GCCCAAGATG	CAAAGTTTOG	TTCAATGGG	360
	GTTAGACAGC	TATGACTATC	TCCAAAATGC	ACCTCCTGGA	TTTTTCCGA	GACTTGGTGT	420
15	TATTGGTTTT	GCTGGCCTTA	TTGGACTCCT	TTTGGCTAGA	GGTTCAAAAA	TAAAGAAGCT	480
13	AGTGTATCCG	CCTGGTTTCA	TGGGATTAGC	TGCCTCCCTC	TATTATCCAC	AACAAGCCAT	540
	CGTGTTTGCC	CAGGTCAGTG	GGGAGAGATT	ATATGACTGG	GGTTTACGAG	GATATATAGT	600
20	CATAGAAGAT	TTGTGGAAGG	AGAACTTTCA	AAAGCCAGGA	AATGTGAAGA	ATTCACCTGG	660
	AACTAAGTAG	AAAACTYCAT	GYTCTGCCAT	CTTAATCAGT	TATRGGTAAA	CATTGGAAAC	720
25	TCCATAGAAT	AAATCAGTAT	TTCTACAGAA	AAATGGCATA	GAAGTCAGTA	TTGAATGTAT	780
23	TAAATTGGCT	TTCTTCTTCA	GGAAAAACTA	GACCAGACCT	CIGITATCIT	CTGTGAAATC	840
	ATCCTACAAG	CAAACTAACC	TGGAATCCCT	TCACCTAGAG	ATAATGTACA	AGCCTTAGAA	900
30	CTCCTCATTC	TCATGTTGCT	ATTTATGTAC	CT			932

35 (2) INFORMATION FOR SEQ ID NO: 210:

40

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 661 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 210:

45	GTCATTCTTT	AAATAAAAGC	TTTCCTGTTT	AAAGCTTTTC	AAAGGAGCAG	ACCACCTTGA	60
	AGATTCCCCC	TAGGGTTGAT	ATGTGTCTAA	TTCATTTTAT	АААААТТАТТ	CTTGTCTTCA	120
50	TTTTAAAGCT	TTGGCTATAT	AGTCAGAAAT	GTCCTAAATA	ACAAACTATT	TTGTATTTAA	180
50	TTTAGGGAAG	ACTAAAGGGA	AGAAAATGA	AAACTCAGTC	TTTATGTAAG	CTCCAAGGAT	240
	ATTAGGGCTT	AAAGGGCTTT	TCTAGTTTTA	TGAGAATTTG	TACTACTGAT	TTTTATATAT	300
55	TCCTGTTTT	GAGATGAACA	GATCTCTGGG	GAAATTGTTG	AGTTACAATG	GCATTTCACT	360
	GTGATCCCTC	TCAAGCTCAG	ATCAGTTCTA	TAACCCAATG	ACAACCTGTC	TCTTTGGTTT	420
60	ACTGTCCTGT	GAAATGTCAG	CTCAAGTITC	CCAGAAGTCG	TGTGTTTATG	ATGAGTCAGA	480

	GTGCTTTTCC TCGGTGGGAC AGTTGCTGGC CCTCTTAATT TTGGTGTATG TGCTTCCAAG	540
	TATCTAAACC TCCAGTCTGA TCTGTATATG CTATCCTAAC TGTTAATTGT ATTATTGATT	600
5	ATGTTGATTA TCTTGCTTGA AGGTTCATAC TTTTCAATTT GATAGAAATA AAGTTTTTTT	660
	с	661
10		
10		
	(2) INFORMATION FOR SEQ ID NO: 211:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 592 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 211:	
	GAAACTGACA TIGTTAAACA CACTAAAACA GAAGTACTTA CCTCTTGAAG ATTTAATATA	60
25	TAATGGTTGA CATGATACAT GTACATGAAT GGAATGACCA GATGCTTATG GTCTACATTT	120
	TCCTTTATCC TGTTAGTATT ACCTTCCTTA ATCTTTGTTC CTTAACATGC TAAATTCCTC	180
	TTCAGTGTTT ATTITCTAGT GACAGAATGC TAACATTTCT TACACCCTGG CAGAAGGGAG	240
30	AGAAATGTGT TTTGGGGTGG GTAACTAAAT TTTTGAGTGA AATATCATAA GATGAGAATG	300
	GAAAGAGGGA GACACAAAGA GTTATAACAA AAAAACAATG GTTTTTTTAG CCATTTGACT	360
35	GGCTCTTTAA ATAGTCTACA AGACATTCAC GTTNAACATC ACTTTTAGTG AAATAAAATG	420
55	TGCCATACTA GTATGTGCTT CAAAAGGGCA AATGTGCTTT AGTGCCCTAA GGCTAAATTT	480
	TGGTCATTTG ACATCAGAGA TGTTGTAAGT ATTGCACTTA ATACGCACCT ATTTCTCAAT	540
40	AGTGNTATTT TTTTGGCTAG CATTINCTTT ACCACTAACC TTGTTGGATA GC	592
45	(2)	
43	(2) INFORMATION FOR SEQ ID NO: 212:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 938 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 212:	
55	TGGAGTGGCT TTCCAGCTGA ATGAATCCTA TGTCTCGCGT GCAGGTGGTT GGTTTTCAAT	60
	GITCITSCTA ATTITUTCC TATTGGCTCT TGGGAGTTIN CTTTGTTTGC TCCTGTGTTT	120
60	GCCCAGCTTT AATAAAACCA GGCGCAAACA AAAACCATAG CATTCTGAAA CAATAGGGGG	180

	CCCACATTGG ACCCAGTATG TCAC	TTTAAT GGACTTCAAG	AAAAAATCTG	AATGGGAAAA	240
	TGACACTAGG AATGTATACT CCAC	ACATTT TATGCCATAT	AATGGTGTGT	TTTCTTAATT	300
5	TTGTTTCTTG TGGCGAAATG TGGC	TTTCAA ATTAAAATGM	CCTTTTCTTC	TTKGAAACTT	360
	TTTGTTTKGA CTKGTATAAT TAAG	GGTTTG GAAAGATTCA	TAATIMIGAG	AGAGGTTTGC	420
10	AACCAGGAGA TACAAAGAAG TCTC	AGTAGT AATCTTGTTC	ATGTGCTTTT	ACAGCCAGCT	480
10	ACATITAAGR ATGTATTAGT TACA	GAAATT ATATGTCTGT	GTATGTGTCT	СТАСТСААТА	540
	AAGTACATGC CTCCACATAA TGCG	GTGCTG TCCATCTCGG	CAAATACTGG	CCAAGTCCCT	600
15	TTATGACAGG CACACAGAAA CCAT	AGCATG GTCTGGCTTT	CAGAAAATGC	CTCTCATCTT	660
	TCCTGGAACC TTATTTTGCT AAAT	GTCTGT TTTCTTGTGA	TTTGTTGTAC	CTCACAGCAC	720
20	CATTGTGACC ATGGTGATGC CTCA	ITTGCA TGATATGTAC	CTTGTGTTTA	ATGTGAAATA	780
20	CATTITCATT GAAGAGTCTG ATGA	CTTGCT AGCGTTTTAT	TTTTTCTGTA	AGCTCAATGT	840
	GCTGAAACCA AACCAGGCTT TTAA	AAACCT GTGTAGAAGA	AAACCAAAAA	ATCCTGTGTG	900
25	GGTGTCCTTT CCCTGTCAAA CTCA	ITAAAA ATTCCTIT			938
30	(2) INFORMATION FOR SEQ ID	NO: 213:			
	(i) SEQUENCE CHARAC	TERISTICS:			
		1079 base pairs			
35	(C) STRANDEL	NESS: double			
	(D) TOPOLOGY	: linear			
	(xi) SEQUENCE DESCR	IPTION: SEQ ID NO	: 213:		
40	AGCCTGCCGG GAGAGTGGTG GCAT	CTRARA GGCTGGTCGT	GGACTGTGGT	TGGGGGAGGT	60
	GGGAGCTGTT TTAACCGTGT GCCC	CCTCTC CTGTGCCKGC	GTGGGCATCC	CCCGGGGCAG	120
45	TGGAACGCGG GCGCTCCTCC AGCT	TCCGAG TCCAGCCAGC	CTGGGCGCGG	GCCCCCCC	180
	CGAGACACCC GAGGAGTCCG TTCC	TCCCTG GTTACGTGGA	CTGTGGAGCT	GGTCTCTTGT	240
	GGCTCAGCGC CGTGCGGAGG TTGA	AGCGTA CCTGCGGAGG	TCGCACCAGG	GGCGTGAGGA	300
50	GGAGGAGGAA GGGCATGAGC CGAG	CTTGAG GAATCCGTGY	TCCAAACTCT	ACACTCAAGG	360

RTGCMCTGCG CAACTCTGGT GGCGATGGGC TGGGGCAGAT GTCCTTGGAG TTCTACCAGA

AGAAGAAGTC TCGCTGGCCA TTCTCAGACG AGTGCATCCC ATGGGAAGTG TGGACGGTCA

AGGTGCATGT GGTAGCCCTG GCCACGGAGC AGGAGCGGCA GATCTGCCGG GAGAAGGTGG

GTGAGAAACT CTGCGAGAAG ATCATCAACA TCGTGGAGGT GATGAATCGG CATGAGTACT

TGCCCAAGAT GCCCACACAG TCGGAGGTGG ATAACGTGTT TGACACAGGC TTGCGGGACG

	TGCAGCCCTA	CCTGTACAAG	ATCTCCTTCC	AGATCACTGA	TGCCCTGGGC	ACCTCAGTCA	720
5	CCACCACCAT	GCGCAGGCTC	ATCAAAGACA	CCCTTGCCCT	CTGAGCGTCG	CTGGATCTCT	780
J	GGGAGCTCCT	TGATGGCTCC	CAGACCTTGG	CTTTTGGGAA	TTGCACTTTT	GGGCCTTTGG	840
	GCTCTGGAAC	CTGCTCTGGG	TCATTGGTGA	GACTTGGAAG	GGGCAGCCCC	CCCTCCCTTC	900
10	TTGGTTTTGT	GGTTGCCAGC	CTCAGGTCAT	CCTTTTAATC	TTTGCTGACG	GTTCAGTCCT	960
	GCCTCTACTG	TCTCTCCATA	GCCCTGGTGG	CCTCCCCCTT	CTTTCTCCAC	TGTACAGAAG	1020
15	AGCCACCACT	GGGATGGGGA	ATAAAGTTGA	GAACATGAGT	TTGGGCTGAA	AAAAAAA A .	1079

(2) INFORMATION FOR SEQ ID NO: 214:

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3791 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

25

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 214:

30	TGAAGCAGGC	GCTCTTGGCT	CGGCGCGCCC	CGCTGCAATC	CGTGGAGGAA	cececcecce	60
50	AGCCACCATC	ATGCCTGGGC	ACTTACAGGA	AGGCTTCGGC	TGCGTGGTCA	CCAACCGATT	120
	CGACCAGTTA	TTTGACGACG	AATCGGACCC	CTTCGAGGTG	CTGAAGGCAG	CAGAGAACAA	180
35	GAAAAAAGAA	ccccccccc	GCGGCGTTGG	CCCCCTCCC	GCCAAGAGCG	CATCAGGGCC	240
	GCGGCCCAGA	CCAACTCCAA	CGCGGCAGGC	AAACAGCTGC	GCAAGGAGTC	CCAGAAAGAC	300
40	CGCAAGAACC	CGCTGCCCCC	CAGCGTTGGC	GTGGTTGACA	AGAAAGAGGA	GACGCAGCCG	360
40	CCCGTGGCGC	TTTAAGAAAG	AAGGAATAAG	ACGAGTTGGA	AGAAGACCTG	ATCAACAACT	420
	TCAGGGTGAA	GGGAAAATAA	TTGATAGAAG	ACCAGAAAGG	CGACCACCTC	GTGAACGAAG	480
45	ATTCGAAAAG	CCACTTGAAG	AAAAGGGTGA	AGGAGGCGAA	TTTTCAGTTG	ATAGACCGAT	540
	TATTGACCGA	CCTATTCGAG	GTCGTGGTGG	TCTTGGAAGA	GGTCGAGGGG	GCCGTGGACG	600
50	TGGAATGGGC	CGAGGAGATG	GATTTGATTC	TCGTGGCAAA	CGTGAATTTG	ATAGGCATAG	660
30	TGGAAGTGAT	AGATCTTCTT	TTTCACATTA	CAGTGGCCTG	AAGCACGAGG	ACAAACGTGG	720
	AGGTAGCGGA	TCTCACAACT	GGGGAACTGT	CAAAGACGAA	TTAACTGACT	TGGATCAATC	780
55	AAATGTGACT	GAGGAAACAC	CTGAAGGTGA	AGAACATCAT	CCAGTGGCAG	ACACTGAAAA	840
	TAAGGAGAAT	GAAGTTGAAG	AGGTAAAAGA	GGAGGGTCCA	AAAGAGATGA	CTTTGGATGA	900
60	GTGGAAGGCT	АТТСААААТА	AGGACCGGCC	AAAAGTAGAA	TTTAATATCC	GAAAACCAAA	960

TGAAGGTGCT GATGGGCAGT GGAAGAAGGG ATTTGTTCTT CATAAATCAA AGAGTGAAGA 1020 GGCTCATGCT GAAGATTCGG TTATGGACCA TCATTTCCGG AAGCCAGCAA ATGATATAAC 1080 5 GTCTCAGCTG GAGATCAATT TTGGAGACCT TGGCCGCCCA GGACGTGGCG GCAGGGGAGG 1140 ACGAGGTGGA CGTGGGCGTG GTGGGCGCCC AAACCGTGGC AGCAGGACCG ACAAGTCAAG 1200 TGCTTCTGCT CCTGATGTGG ATGACCCAGA GGCATTCCCA GCTCTGGCTT AACTGGATGC 1260 10 CATAAGACAA CCCTGGTTCC TTTGTGAACC CTTCTGTTCA AAGCTTTTGC ATGCTTAAGG 1320 ATTCCAAACG ACTAAGAAAT TAAAAAAAAA AAGACTGTCA TTCATACCAT TCACACCTAA 1380 15 AGACTGAATT TTATCTGTTT TAAAAATGAA CTTCTCCCGC TACACAGAAG TAACAAATAT 1440 GGTAGTCAGT TTTGTATTTA GAAATGTATT GGTAGCAGGG ATGTTTTCAT AATTTTCAGA 1500 GATTATGCAT TCTTCATGAA TACTTTTGTA TTGCTGCTTG CAAATATGCA TTTCCAAACT 1560 20 TGAAATATAG GTGTGAACAG TGTGTACCAG TTTAAAGCTT TCACTTCATT TGTGTTTTTT 1620 AATTAAGGAT TTAGAAGTTC CCCCAATTAC AAACTGGTTT TAAATATTGG ACATACTGGT 1680 25 TTTAATACCT GCTTTGCATA TTCACACATG GTCAACTGGG ACATGTTAAA CTTTGATTTG 1740 TCAAATTTTA TGCTGTGGG AATACTAACT ATATGTATTT TAACTTAGTT TTAATATTTT 1800 CATTTTTGGG GAAAAATCTT TTTTCACTTC TCATGATAGC TGTTATATAT ATATGCTAAA 1860 30 TCTTTATATA CAGAAATATC AGTACTTGAA CAAATTCAAA GCACATTTGG TTTATTAACC 1920 CTTGCTCCTT GCATGGCTCA TTAGGTTCAA ATTATAACTG ATTTACATTT TCAGCTATAT 1980 35 TTACTTTTA AATGCTTGAG TTTCCCATTT TAAAATCTAA ACTAGACATC TTAATTGGTG 2040 AAAGTTGTTT AAACTACTTA TTGTTGGTAG GCACATCGTG TCAAGTGAAG TAGTTTTATA 2100 GGTATGGGTT TTTTCTCCCC CTTCACCAGG GTGGGTGGAA TAAGTTGATT TGGCCAATGT 2160 40 GTAATATTTA AACTGTTCTG TAAAATAAGT GTCTGGCCAT TTGGTATGAT TTCTGTGTGT 2220 GAAAGGTCCC AAAATCAAAA TGGTACATCC ATAATCAGCC ACCATTTAAC CCTTCCTTGT 2280 45 TCTAAAACAA AAACCAAAGG GCGCTGGTTG GTAGGGTGAG GTGGGGGAGT ATTTTAATTT 2340 TTGGAATTTG GGAAGCAGAC AGCTTTACTT TGTAAGGTTG GAACAGCAGC ACTATACATG 2400 AAATATAAAC CAAAAACCTT TACTGTTTCT AAATTTCCTA GATTGCTATT ATTTGGTTGT 2460 50 AAGTTGAGTA TTCCACAGAA AGTGGTAATT ATCTCTTCTC TCTTCCTCCA TTAGAAAATT 2520 AGGTAAATAA TGGATTCCTA TAATGGGAGC ATCACCACTT ATTAAAACAC ACATAGAATG 2580 55 ATGAATTAAA AAAGTTTTCT AGGATTGTCT TTTATTCTGC CACATTTATT GATAAACAGT 2640 GAAGGAATIT TTAAAAAATT TITAAGAATT GITTGTCACG TCATITTTAG AAATGTTCTA 2700 CCTGTATATG GTAATGTCCA GTTTTAAAAA TATTGGACAT CTTCAATCTT AAACATTTCT 2760 60

	ATTTAGCTGA	TTGGTTCTCA	CATATACTTC	TAAAAGAAAC	TTTTATGTTA	TAAGAGTTAC	2820
	TTTTTGGATA	AGATTTATTA	ATCTCAGTTA	CCTACTATTC	TGACATTITA	GGAAGGAGGT	2880
5	AATTGTTTT	AATGATGGAT	AAACTTGTGC	TGGTGTTTTG	GATCTTATGA	TGCTGAGCAT	2940
	GTTCTGCACT	GGTGCTAATG	тстаататаа	TTTTATATTT	ACACACATAC	GTGCTACCCA	3000
10	GAGATTAATT	TAGTCCATAT	GAACTATTGA	CCCATTGTTC	ATTGAGACAG	CAACATACGC	3060
10	ACTCCTAAAT	CAGTGTGTTT	AGACTTTTCA	AGTATCTAAC	TCATTTCCAA	ACATGTACCA	3120
	TGTTTTATAA	ACCTCTTGAT	TTCCAGCAAC	ATACTATAGA	AAACACCTGC	TACTCAAAAC	3180
15	ACAACTTCTC	AGTGTCATCC	ATTGCTGTCG	TGAGAGACAA	CATAGCAATA	TCTGGTATGT	3240
	TGCAAGCTTT	CAAGATAGCC	TGAACTTAAA	AAGTTGGTGC	ATTAGTTGTA	TCTGATGGAT	3300
20	ATAAATTTGC	CTCCTAGITC	ACTITIGIGIC	AAGAGCTAAA	ACTGTGAACC	TAACTTTCTC	3360
20	TTATTGGTGG	GTAATAACTG	AAAATAAAGA	TTTATTTCA	TGCTCACTTC	TTAAAAGTCA	3420
	ТАААААСААТ	CAAATAGGRT	CATGTTTATT	GTCATGTGTT	TCCTGGKTTC	TGACCTGTGT	3480
25	GCACACCCCT	GTGTGTTTAT	AATTTTTAAA	TTGAATTITA	TATGGGGTTT	TTATTTGCTA	3540
	AAAACCAGGC	TGTTGAATCA	CATTTGGGAA	GGGTACTTAT	CTTAATGACT	AATGACTTAA	3600
30	TTGGGAAAGT	TGAATTCTTG	ТААААТАСАА	AATCCAAGGA	CTTCTTGGGA	ТТТААТСТАА	3660
50	TTGTCACTTC	NTTAGGCAGA	TNCACTITIT	TGGATAATGG	AAAGTTAAGC	ATACCGAATG	3720
	CTACTTTTGG	TTGACAAACG	GGCCTAATAG	TCCGGGGGGA	AATCCCTAAC	NGGTAAGGNT	3780
35	CCCAAGTATG	G					3791

40 (2) INFORMATION FOR SEQ ID NO: 215:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1334 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 215:

50	CAGTECTCCC TCCTGCTCGG GCCCTGCGG CCCCGGGCGT CGCCATGACC AGTGAGCTGG	60
55	ACATCTTCGT GGGGAACAGA CCCTTATCGA CGAGGACGTG TATCGCCTCT GGCTCGATGG	120
	TTACTCGGTG ACCGACGCGG TGGCCCTGCG GGTGCGCTCG GGAATCCTGG AGCAGACTGG	180
	CGCCACGGCA GCGGTGCTNC AGAGCGACAC CATGGACCAT TACCGCACCT TCCACATGCT	240
	CGAGCOGCTG CTGCATGCGC CGCCCAAGCT ACTGCACCAG YTCATCTTCC AGATTCCGCC	300
60	CTCCCGGCAG GCACTACTCA TCGAGAGGTA CTATGCCTTT RATGAGGCCT TTGTTCGGGA	360

	GGTGCTGGGC	AAGAAGCTGT	CCAAAGGCAC	CAAGAAAGAC	CTGGATGACA	TCAGCACCAA	420
5	AACAGGCATC	ACCCTCAAGA	GCTGCCGGAG	ACAGTTTGAC	AACTTTAAAC	GGGTCTTCAA	480
,	GGTGGTAGAG	GAAATGCGGG	CCTCCCTGGT	GGACAATATT	CAGCAACACT	TCCTCCTCTC	540
	TGACCGGTTG	GCCAGGGACT	ATGCAGCCAT	CGTCTTCTTT	GCTAACAACC	GCTTTGAGAC	600
10	AGGGAAGAAA	AAACTGCAGT	ATCTGAGCTT	CGGTGACTTT	GCCTTCTGCG	CTGAGCTCAT	660
	GATCCAAAAC	TGGACCCTTG	GAGCCGTCGA	CTCACAGATG	GATGACATGG	ACATGGACTT	720
15	AGACAAGGAA	TTTCTCCAGG	ACTTGAAGGA	GCTCAAGGTG	CTAGTGGCTG	ACAAGGACCT	780
15	TCTGGACCTG	CACAAGAGCC	TGGTGTGCAC	TGCTCTCCGG	GGAAAGCTGG	GCGTCTTCTC	840
	TGAGATGGAA	GCCAACTTCA	AGAACCTGTC	CCGGGGGCTG	GTGAACGTGG	CCGCCAAGCT	900
20	GACCCACAAT	AAAGATGTCA	GAGACCTGTT	TGTGGACCTC	GTGGAGAAGT	TTGTGGAACC	960
	CTGCCGCTCC	GACCACTGGC	CACTCAGCGA	CCTCCCCTTC	TTCCTGAATC	AGTATTCAGC	1020
25	GTCTGTCCAC	TCCCTCGATG	GCTTCCGACA	CCAGGCCTCT	GGGACCGCTA	CATGGGCACC	1080
	CTCCGCGGCT	GCCTCCTGCG	CCTGTATCAT	GACTGAGGTG	CCTCCCAACG	CTCCGCCCAC	1140
	GCTGACAATA	AAGTTGCTCT	GAGTTTGGAG	ACTGGTCCTC	GCTCCGGGGA	GCAAGTGGGG	1200
30	GGCGTGCAGA	TGTGCCTGTG	TCTGTCTCTG	AGCACCTGGT	GTCCGTGTAC	AAGGATGGAT	1260
	GTGTNCNGTG	GCTCCTTGGG	AACTGAGACA	TATCTCAGGG	AATGGTGTCT	GTGCTCAGCC	1320
35	CATCCACCAG	AAGA					1334

(2) INFORMATION FOR SEQ ID NO: 216:

40

45

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1511 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 216:

GTGGCGGGGA TGCTGCGAGG GGGTCTCCTG CCCCAGGCGG GCCGGCTGCC TACCCTCCAG 60

ACTGTCCGCT ATGGCTCCAA GGCTGTTACC CGCCACCGTC GTGTGATGCA CTTTCAGCGG 120

CAGAAGCTGA TGGCTGTGAC TGAATATATC CCCCCGAAAC CAGCCATCCA CCCATCATGC 180

CTGCCATCTC CTCCCAGCCC CCCACAGGAG GAGATAGGCC TCATCAGGCT TCTCCGCCGG 240

GAGATAGCAG CAGTTTTCCA GGACAACCGA ATGATAGCCG TCTGCCAGAA TGTGGCTCTG 300

AGTGCAGAGG ACAAGCTTCT TATGCGACAC CAGCTGCGGA AACACAAGAT CCTGATGAAG 360

444

	RTCTTCCCCA ACCAGGTCCT GAAGCCCTTC CTGGAGGATT CCAAGTACCA AAATCTGCTG	420
	CCCCTTTTTG TGGGGCACAA CATGCTGCTG GTCAGTGAAG AGCCCAAGGT CAAGGAGATG	480
5	GTACGGATCT TAAGGACTGT GCCATTCCTG CCGCTGCTAG GTGGCTGCAT TGATGACACC	540
	ATCCTCAGCA GGCAGGGCTT TATCAACTAC TCCAAGCTCC CCAGCCTGCC CCTGGTGCAG	600
10	GGGGAGCTTG TAGGAGGCCT CACCTGCCTC ACAGCCCAGA CCCACTCCCT GCTCCAGCAC	660
10	CAGCCCCTCC AGCTGACCAC CCTGTTGGAC CAGTACATCA GAGAGCAACG CGAGAAGGAT	720
	TCTGTCATGT CGGCCAATGG GAAGCCAGAT CCTGACACTG TTCCGGACTC GTAGCCAGCC	780
15	TGTTTAGCCA GCCCTGCGCA TAAATACACT CTGCGTTATT GGCTGTGCTC TCCTCAATGG	840
	GACATGTGGA AGAACTTGGG GTCGGGGAGT GTGTTTGTCA CTTGGTTTTC ACTAGTAATG	900
20	ATATTGTCAG GTATAGGGCC ACTTGGAGAT GCAGAGGATT CCATTTCAGA TGTCAGTCAC	960
20	CGGCTTCGTC CTTAGTTTTC CCAACTTGGG ACGTGATAGG AGCAAAGTCT CTCCATTCTC	1020
	CAGGTCCAAG GCAGAGATCC TGAAAAGATA GGGCTATTGT CCCCTGCCTC CTTGGTCACT	1080
25	GCCTCTTGCT GCACGGGCTC CTGAGCCACC CCCTTGGGGC ACAACCTGCC ACTGCCACAG	1140
	TAGCTCAACC AAGCAGTTGT GCTGAGAATG GCACCTGGTG AGAGCCTGCT GTGTGCCAGG	1200
30	CTTTGTGCTG AGIGCTGTAC ATGTATTAGT TCCTTTACTG CTGACCACAT TGTACCCATT	1260
	TCACAGAGAA GGAGCAGAGA AATTAAGTGG CTTGCTCAAG GTCATGCAGT TAGTAAGTGG	1320
	CAGAACAGGG ACTTGAACCA AGCCCTCTGC TCTGAAGACC GCGTCCTGAA TTTCTTCACT	1380
35	AGAGCTTCCT CATCAGGTTA CCCAGAAGTG GGTCCCATCC ACCATCCAGG TGTGCTTGGA	1440
	TGTTAGTTCT CCACCCTCGA GGTGTACGCT GTGAAAAGTT TGGGAGCACT GCTTTATAAT	1500
40	AAAATGAAAT A	1511
	(2) INFORMATION FOR SEQ ID NO: 217:	
45	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 642 base pairs(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 217:

AGGCCTTACT TITCCTCCCA CAAAGGAGTC GCAGCCACGC TAGCTCTGAC TTGCCACTGT 60
GACAAAGTTC ACGTAGCAGG TCTAGGCAAA GACTGGGCAA TTGAGCAGAG GAGACGGACC 120
TGTGAGTCTG ACCRYGAGSC GGRCCCCTTC ACCTTGGCTG GGCTGGTCCT GGTCCTTAGG 180

TTTTGTCAGG TTGTCCTTGT TTGGATCCCT CAACTAGGTG ATAAGCACTG GAGGGGGATG 240

445

	ACCCGCCTTG GACGTGTTTC TTTAACCTCA TCCATATAAT AGGGCCGTGG GATGGTTGTA	300
5	GAGGTAAAGC AGGATGATGG TGTTTTAAGA CCAGAGCTTG GGACCAGGGC TCCTACACCT	360
J	AATTTTCTCT CCTGGTAGCT GAACAAAGGT CTAAATTAGC TTAACAAAAG AACAGGCTGC	420
	CGTCAGCCAG AGTTCTGAAG GCCATGCTTT CAGTTTCCCT TGTTGACAAT TGCTCTCCAG	480
10	TTCCTATGAA AGCACAGAGC CTTAGGGGGC CTGGCCACAG AACACAACCA TCTTAGGCCT	540
	GAGCTGTGAA CAGCAGGGG TTGTGTGTCT GTTCTGTTTC TCTGCTTGCC GAACTTTCTC	600
15	AATAAACCCT ATTTCTTATT TTATATTTAC GINGGIGCTG GG	642
20	(2) INFORMATION FOR SEQ ID NO: 218: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1241 base pairs (B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 218:	
30	GGTCCCACTG TTCCATTITA TOCTAATAGA TTCCATTCTA GGGCCCAGCC GTCTCTTGAC	60
	TGATGGTGTT CCCTTTAACC CTTGGCATGT ATAATAGAAT TTTGGTGAAT GAAAGAACCC	120
	AAATAGGCCA GATAGTCCCC CCAGGCCCTG ATATCCATAA AAGGCTTGGG AATGCATTAT	180
35	GTAATTGTCC TTAGTCTTTT TGTTGTTTTA GAAAAAAAA ACAAGATGGG CTCAGATGGA	240
	TGCCTACGTA AAAATGGTTC CTAGCTGTGT ACTCATAACT TTTCTTTGAA TTGAGTAGTG	300
40	AAAGGAAGGA GGAGGAAAGG AAATTAAATG TCCTTCTAGT ATTCTCTGGA CTCAAGTCTG	360
	ACATATGRGA TAATAACCTA TATTGAAATG CCAAGAATTG TATCTGAAAC AAGRGAACAG	420
	TITIGACACAT TTATCATGCC TTCATATTAC ATATTAACTG AAACCAATTA ATAAACATAT	480
45	GAAATATCCA TTGCACAAGG CAAAGGCACC TAAACCTTTT GTTTCTTTTT CTACATAGCA	540
	GAAATTGATT TTTTTTTAT TTTTTTAGGG GAACCTATAT AATTATGACC CAGTGATGTC	600
50	TTTTGGTGAC TTAAGCTTAT GAATTCAGGT TACAATTGAG TTGATTCTAG ATGGTTACTA	660
50	CCTTGAAAAG GATGTTGGTG CCTTATGTGA CACGAGCCAG AGCCTGCTGG GAATAAACAA	720
	AGCAGATTCA TOCCAACACC AACTCGTAGC TTTAGTGGCA GATGGGAGTG GTCACAGACT	780
55	CCCAAAATGT GGGGCTTTGG ATTTCCACAC CATCCCACGT GTGTGTCATC TTCCTCTTTC	840
	ACACTCTTGA TGATAATTTG AAAATGRTGA AATCACCTCT GAATTTGCCT ATAGCATGAG	900

CACATTCTTA TGACAACATA ACAAATAGTT CATAATGTGA ATATTAGAAA CTGTTACAGC

60

446

	CTGCAGTTAC	CATAATTITC	CATGITIGIG	GAATTGATAT	TGAAATAGCA	GGGCTAAGGA	1020
	ATTACTGGCA	AGTTTTAGCC	TGTGGGTAAT	ACCTTAGGGT	TATTTAAATA	TTTGTAATTT	1080
5	TATTTAAATG	TTCATGAATG	TTTGAAAGGA	ACAAAATTAT	CAGGGATGGC	TCTTTGCCAT	1140
	GGGTCTTATT	TTCACCCTCT	TTTCTGTAAG	AAAAAAGAAC	AATGICTTAA	TGTATTTTTA	1200
10	AAGTTTTTGG	TATAGTTTCT	AATTCCAATT	TTAATAAAAG	T		1241

15 (i) SEQUENCE CHARACTERISTICS:

(2) INFORMATION FOR SEQ ID NO: 219:

(A) LENGTH: 1080 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

20 (D) TOPOLOGY: linear

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 219:

TGTTTATGTG ACCTAAAACA TACACACATG CACACACACA TACATATCCA TTCATTCATT 60 25 CATTCAAGTG GTGTTTCCAG TGTCTGTGTG TCACTGTTTA TGCAGTTTCC ATTTCCCAGT 120 GAATTATGAG TGGAGGGCAA CTTTTCTAAC CAGATTGTCT TTTCAGAACA AAGACCKGGG 180 30 RATTGAGGAA GAGTTTGGAA AGAGGGAGAG GCAAGGAAAG AGAGCTTTAA ATTGAAAGGT 240 TAATTTCCTA AGAGGAACCT GGGCTGAATG ACTACAGTGT TATACCCTCC AATCTTTGCA 300 360 GGTGGGCATG GAACACTGCT TGTATCACTC TGTGCACGGT ATAAATCCAT ATATCCACAA 35 AAACACACAT CCATCCATCA ACATATACAT GGTTTGGGAT GAGCAGGTCA ATAGTTTTGA 420 GAGGGAGTTT GTTCCTTTTT TTTTCTCATT ATACTCTTAA ATTGTTGTCA GTTATCAAAC 480 40 AAACAAACAG AAAAATTGTT TGGGAAAAAC CTTGCATACG CCTTTTCTAT CMAGTGCTTT 540 600 AAAATATAGA CTAAATACAC ACATCCTGCC AGTTTTTTCT TACAGTGACA GTATCCTTAC CTGCCATTTA ATATTAGCCT CGTATTTTC TCACGTATAT TTACCTGTGA CTTGTATTTG 660 45 TTATTTAAAC AGGAAAAAA ACATTCAAAA AAAGAAAAAT TAACTGTAGC GCTTCATTAT 720 780 ACTATTATAT TATTATTATT ATTGTGACAT TTTGGAATAC TGTGAAGTTT TATCTCTTGC 50 ATATACTITA TACGGAAGTA TTACGCCTTA AAAATACGAA AATAAATTTT ACAAGGTTTC 840 TGTTTGTGT GGAAGAGTAA TTGATGTTGC TAAGAATGAT GTTTGTTTTT TTGGGGTTTT 900 TGTTGTTTTT TTTTTAAATG TTACCAGCAC TTTTTTTGTA AGTTTCACTT TCCGAGGTAT 960 55 1020 1080 AAACCNCGGG GGGGCCCGG TCCCATTGGN CCCAAGGGGG CGGTTACGGG GTCACGGCCG

(2)	INFORMATION	FOR	SEO	ID	NO:	220:

5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1258 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 220: TGAATTGAGG GCTTAAAGAT AAACATATGG GRTTGGAGTT GTGTGTCCAT AGGGTTTCAC 60 15 TGCCTATITG ATTTGAGTTT ATCCCTATTA ATTTTTTACA GTGAAATTTT ATTAAAGTAT 120 AATGTACATA TATTITCAGT GGATTITGCT CTGAAGGTTC TCCAGTGGTC TGACTACGAG 180 ATAGTGCGGC TTCAGCTGTG GGATATTGCA GGGCAGGAGC GCTTCACCTC TATGACACGA 240 20 TIGITATTATC GGGATGCCTC TGCCTGTGTT ATTATGTTTG ACGTTACCAA TGCCACTACC 300 TTCAGCAACA GCCAGAGGTG GAAACAGGAC CTAGACAGCA AGCTCACACT ACCCAATGGA 360 25 GAGCCGGTGC CCTGCCTGCT CTTGGCCAAC AAGTGTGATC TGTCCCCTTG GGCAGTGAGC 420 CGGGASCAGA TTGACCGGTT CAGTAAAGAG AACGGTTTCA CAGGTTGGAC AGAAACATCA 480 GTCAAGGAGA ACAAAAATAT TAATGAGGCT ATGAGAGTCC TCATTGAAAA GATGATGAGA 540 30 AATTCCACAG AAGATATCAT GTCTTTGTCC ACCCAAGGGG ACTACATCAA TCTACAAACC 600 AAGTCCTCCA GCTGGTCCTG CTGCTAGTAG TGTTTGGYTT ATTTTCCATC CCAGTTCTGG 660 35 GAGGTCTTTT AAGTCTCTTC CCTTTGGTTG CCCACCTGAC MATTTTATTA AGTACATTTG 720 AATTGTCTCC TGACTACTGT CCAGTAAGGA GGCCCATTGT CACTTAGAAA AGACACCTGG 780 AACCCAKGTG CATTTCTGCA TCTCCTGGAT TAGCCTTTSA CATGTTGCTG RCTCACATTA 840 40 GTGCCAGTTA GTGCCTTCGG TGTAAGATCT TCTCATCAGC CCTCAATTTG TGATCCGGAA 900 TTTTGTGAGA AGGATKAGAA ATCAGCACCT GCGTTTTAGA GATCATAATT CTCACCTACT 960 45 TCTGAGCTTA TTTTTCCATT TGATATTCAT TGATATCATG ACTTCCAATT GAGAGGAAAA 1020 TGAGATCAAA TGTCATTTCC CAAATTTCTT GTAGGCCGTT GTTTCAGATT CTTTCTGTCT 1080 TGGAATGTAA ACATCTGATT CTGGAATGCA GAAGGAGGG TCTGGGCATC TGTGGATTTT 1140 50 TGGCTACTAG AAGTGTCCCA GAAGTCACTG TATTTTTGAA ACTTCTAACG TCATAATTAA 1200 CTTTCTCTTG TCTTGGGCAT CAAGANTAGT TCCAATTTTT TGGGCCGGGG CAGGGTGG 1258

(2) INFORMATION FOR SEQ ID NO: 221:

60 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1693 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 221:

	CACAATATAT	GAAATAGTAC	ССТСТАВАВА	AGAGAAAAA	AAAATCAGGC	GGTCAAACTT	60
10	AGAGCAACAT	TGTCTTATTA	AAGCATAGTT	TATTTCACTA	GAAAAAATTT	AATATCAAGG	120
	ACTATTACAT	ACTTCATTAC	TAGGAAGTTC	TTTTTAAAAT	GACACTTAAA	ACAATCACTG	180
	AAAACTTGAT	CCACATCACA	CCCTGTTTAT	TTTCCTTAAA	CATCTTGGAA	GCCTAAGCTT	240
15	CTGAGAATCA	TGTGGCAAGT	GTGATGGGCA	GTAAAATACC	AGAGAAGATG	TTTAGTAGCA	300
	ATTAAAGGCT	GTTTGCACCT	TTAAGGACCA	GCTGGGCTGT	AGTGATTCCT	GGGGCCAGAG	360
20	TGGCATTATG	ттттасааа	ATAATGACAT	ATGTCACATG	TTTGCATGTT	TGTTTGCTTG	420
	TTGAATTTTT	GAACAGCCAG	TTGACCAATC	ATAGAAAGTA	TTACTTTCTT	TCATATGGTT	480
25	TTTGGTTCAC	TGGCTTAAGA	GGTTTCTCAG	AATATCTATG	GCCACAGCAG	CATACCAGTT	540
25	TCCATCCTAA	TAGGAATGAA	ATTAATTIG	TATCTACTGA	TAACAGAATC	TGGGTCACAT	600
	GAAAAAAAT	CATTTTATCC	GTCTTTTAAG	TATATGTTTA	AAATAATAAT	TTATGTGTCT	660
30	GCATATTGCA	GAACAGCTCT	GAGAGCAACA	GTTTCCCATT	AACTCTTTCT	GACCAATAGT	720
	GCTGGCACCG	TTGCTTCCTC	TTTGGGAAGA	GGAAAGGGTG	TGTGAACATG	GCTAACAATC	780
35	TTCAAATACC	CAAATTGTGA	TAGCATAAAT	AAAGTATTTA	TTTTATGCCT	CAGTATATTA	840
33	TTATTTAATT	TTTTAGGTAA	TGCCTATCTC	TTGGTCTATT	AAGGAAAGAA	GCAATCAGTA	900
	GAGAATTCAG	GATAGTTTTG	TTTAAATTCT	TGCAGATTAC	ATGTTTTTAC	AGTGGCCTGC	960
40	TATTGAGGAA	AGGTATTCTT	CYATACAACT	TGTTTTAACC	TTTGAGAACA	TTGACAGAAA	1020
	TTATGCAATG	GTTTGTTGAG	ATACGGACTT	GATGGTGCTG	TTTAATCAGT	TIGCTTCCAA	1080
45	AGTGGCCTAC	TCAAGAGGCC	CTAAGACTGG	TAGAAATTAA	AAGGATTTCA	AAAACTTTCT	1140
	ATTCCTTTCT	TAAACCTACC	AGCAAACTAG	GATTGTGATA	GCAATGAATG	GTATGATGAA	1200
	GAAAGTTTGA	CCAAATTTGT	TTTTTTGTTG	TIGITGTTGT	TTTGAATTTG	AAATCATTCT	1260
50	TATTCCCTTT	AAGAATGTTT	ATGTATGAGT	GTGAAGATGC	TAGCGAACCT	ATGCTCAGAT	1320
	ATTCATCGTA	AGTCTCCCTT	CACCTGTTAC	AGAGTTTCAG	ATCGGTCACT	GATAGTATGT	1380
55	ATTTCTTTAG	TAAGAATGTG	TTAAAATTAC	AATGATCTTT	TAAAAAGATG	ATGCAGTTCT	1440
	GTATTTATTG	TGCTGTGTCT	GGTCCTAAGT	GGAGCCAATT	AAACAAGTTT	CATATGTATT	1500
	TTTCCAGTGT	TGAATCTCAC	ACACTGTACT	TTGAAAATTT	CCTTCCATCC	TGAATAACGA	1560
60	ATAGAAGAGG	ССАТАТАТАТ	TGCCTCCTTA	TCCTTGAGAT	TTCACTACCT	TTATGTTAAA	1620

449

	AGPIGIGIAT	AATIGITAAA	ATCTGTGAAA	GAATAAAAAG	TGGATTTAAA	ТУАЛААААА	1680
5	ааааааааа	AAA					1693

(2) INFORMATION FOR SEQ ID NO: 222:

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1196 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 222:

	•						
20	ACGCGTGGGT	CGACCCACGC	GTCCGCGACN	TGGCGTGGTG	GGGAAGGGAG	AAGGATTTGT	60
20	AAACCCCGGA	GCGAGGTTCT	GCTTACCCGA	GCCCCTCCT	GTGCGGAGAC	CCCCGGGTGA	120
	AGCCACCGTC	ATCATGTCTG	ACCAGGAGGC	AAAACCTTCA	ACTGAGGACT	TGGGGGATAA	180
25	GAAGGAAGGT	GAATATATTA	AACTCAAAGT	CATTGGACAG	GATAGCAGTG	AGATTCACTT	240
	CAAAGTGAAA	ATGACAACAC	ATCTCAAGAA	ACTCAAAGAA	TCATACTGTC	AAAGACAGGG	300
30	TGTTCCAATG	AATTCACTCA	GGTTTCTCTT	TGAGGGTCAG	AGAATTGCTG	ATAATCATAC	360
50	TCCAAAAGAA	CTGGGAATGG	AGGAAGAAGA	TGTGATTGAA	GTTTATCAGG	AACAAACGGG	420
	GGGTCATTCA	ACAGTTTAGA	TATTCTTTT	ATTTTTTTTC	TTTTCCCTCA	ATCCTTTTTT	480
35	ATTTTTAAAA	ATAGTTCTTT	TGTAATGTGG	TGTTCAAAAC	GGAATTGAAA	ACTGGCACCC	540
	CATCTCTTTG	AAACATCTGG	TAATTTGAAT	TCTAGTGCTC	ATTATTCATT	ATTGTTTGTT	600
40	TTCATTGTGC	TGATTTTTGG	TGATCAAGCC	TCAGTCCCCT	TCATATTACC	CICTCCITIT	660
	TAAAAATTAC	GTGTGCACAG	AGAGGTCACC	TTTTTCAGGA	CATTGCATTT	TCAGGCTTGT	720
	GGTGATAAAT	AAGATCGACC	AATGCAAGTG	TTCATAATGA	CTTTCCAATT	GGCCCTGATG	780
45	TTCTAGCATG	TGATTACTTC	ACTCCTGGAC	TGTGACTTTC	AGTGGGAGAT	GGAAGTTTTT	840
	CAGAGAACTG	AACTGTGGAA	AAATGACCTT	TCCTTAACTT	GAAGCTACTT	TTAAAATTTG	900
50	AGGGTCTGGA	CCAAAAGAAG	AGGAATATCA	GGTTGAAGTC	AAGATGACAG	ATAAGGTGAG	. 960
50	AGTAATGACT	AACTCCAAAG	ATGGCTTCAC	TGAAGAAAAG	GCATTTTAAG	AAATTTTTTAAA	1020
	AATCTTGTCA	GAAGATCCCA	GAAAAGTTCT	AATTTTCATT	AGCAATTAAT	AAAGCTATAC	1080
55	ATGCAGAAAT	GAATACAACA	GAACACTGCT	CTTTTTGATT	TTATTTGTAC	TTTTTGGCCT	1140
	GGGATATGGG	TTTTAAATGG	ACATTGTCTG	TACCAGCTTC	АТТААААТАА	ACAATA	1196

450

(2) INFORMATION FOR SEQ ID NO: 223:

(i) SEQUENCE CHARACTERISTICS: 5

(A) LENGTH: 1791 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 223:

	TCAGGGAGGT GGC	CAGGAAAG	GCTTGGAACA	GCTGCCGGAG	TGACGGAGCG	GCGGCCCCGC	60
15	CCGGTTGCGC TGG	SAGGTCGA	AGCTTCCAGG	TAGCGGCCCG	CAGAGCCTGA	CCCAGGCTCT	120
••	GGACATCCTG AGC	CCAAGTC	CCCCACACTC	AGTGCAGTGA	TGAGTGCGGA	AGTGAAGGTG	180
	ACAGGGCAGA ACC	CAGGAGCA	ATTTCTGCTC	CTAGCCAAGT	CGGCCAAGGG	GGCAGCGCTG	240
20	GCCACACTCA TCC	ATCAGGT	GCTGGAGGCC	CCTGGTGTCT	ACGIGITIGG	AGAACTGCTG	300
	GACATGCCCA ATG	TTAGAGA	GCTGGCTGAG	AGTGACTTTG	CCTCTACCTT	CCGGCTGCTC	360
25	ACAGTGTTTG CTT	ATGGGAC	ATACGCTGAC	TACTTAGCIG	AAGCCCGGAA	TCTTCCTCCA	420
	CTAACAGAGG CTC	AGAAGAA	TAAGCTTCGA	CACCTCTCAG	TTGTCACCCT	GGCTGCTAAA	480
	GTAAAGTGTA TCC	CATATGC	ACTOTTCCTG	GAGGTCTTGC	CCTGCGTAAT	GTGCGGCAGC	540
30	TGGAAGACCT TGT	GATTGAG	GCTGTGTATG	CTGACGTGCT	TCGTGGCTCC	CTGGACCAGC	600
	GCAACCAGCG GCT	CGACGTT	GACTACAGCA	TCGGGCGGGA	CATCCAGCGC	CAGGACCTCA	660
35	GTGCCATTGC CCG	AACCCTG	CAGGAATGGT	CTCTCCCCTC	TRAGGTCGTG	CTGTCAGGCA	720
	TTGAGGAGCA GGT	GAGCCGT	GCCAACCAAC	ACAAGGAGCA	GCAGCTGGGC	CTGAAGCAGC	780
	AGATTGAGAG TGA	GGTTGCC	AACCTTAAAA	AAACCATTAA	AGTTACGACG	GCAGCAGCAG	840
40	CCGCAGCCAC ATC	TCAGGAC	CCTGAGCAAC	ACCTGACTGA	GCTGAGGGAA	CCAGCTCCTG	900
	GCACCAACCA GCG	CCASCCA	GCAAGAAAGC	CTCAAAGGGC	AAGGGGCTCC	GAGGGAGCGC	960
45	CAAGATTTGG TCC	AAGTCGA	ATTGAAAGRA	CIGICGITIC	CTCCCTGGGG	ATGTGGGGTC	1020
,-	CCAGCTGCCT GCC	TGCCTCT	TAGGAGTCCT	CAGAGAGCCT	TCTGTGCCCC	TGGCCAGCTG	1080
	ATAATCCTAG GTT	CATGACC	CTTCACCTCC	CCTAACCCCA	AACATAGATC	ACACCTTCTC	1140
50	TAGGGAGGAG KCA	AATGTAG	GTCATGTTTT	TGTTGGTACT	TTCTGTTTT	TGTGACTTCA	1200
	TGTGTTCCAT TGC	TCCCCGC	TGCCATGCTC	TCTCCCTTGT	TTCCTTAAGA	GCTCAGCATC	1260
55	TGTCCCTGTT CAT	TACATGT	CATTGAGTAG	GTGGGTAGCC	CTGATGGGGG	TCGCTCTGTC	1320
35	TGGAGCATAA CCC	CACAGGCG	TTTTTCTGC	CACCCCATCC	CTGCATGCCT	GATCCCCAGT	1380
	TCCTATACCC TAC	CCCTGAC	CTATTGAGCA	GCCTCTGAAG	AGCCATAGGG	CCCCCACCTT	1440
60	TACTCACACC CTG	AGAATTC	TGGGAGCCAG	TCTGCCATGC	CAGGAGTCAC	TGGACATGTT	1500

451

	CATCCTAGAA TCCTGTCACA CTACAGTCAT TTCTTTTCCT CTCTCTGGCC CTTGGGTCCT	1560
5	GGGAATGCTG CTGCTTCAAC CCCAGAGCCT AAGAATGGCA GCCGTTTCTT AACATGTTGA	1620
J	GAGATGATTC TITCTTGGCC CTGGCCATCT CGGGAAGCTT GATGGCAATC CTGGAAGGGT	1680
	TTAATCTCCT TTTGTGAGTT TGGTGGGGAA GGGAAGGGTA TATAGATTGT ATTAAAAAAA	1740
10	AAAAGGTATA TATOCATATA TCTATATATA ATATGACGCA GAAATAAATC T	1791
15	(2) INFORMATION FOR SEQ ID NO: 224:	
	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 2517 base pairs (B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 224:	
25	(X1) SEQUENCE DESCRIPTION: SEQ ID NO: 224: ACACTAGTGG ATCCAAAGAA TTCGGCACAG CGGCACAGCA TTGTTGAGCT TTTCTGTGTG	60
25		60 120
	ACACTAGTGG ATCCAAAGAA TTCGGCACAG CGGCACAGCA TTGTTGAGCT TTTCTGTGTG	
25 30	ACACTAGTGG ATCCAAAGAA TTCGGCACAG CGGCACAGCA TTGTTGAGCT TTTCTGTGTG TGTGGGGCCC TCAAGCGAGC TCGACTGGTC CATCCTGGGG TAGCGASGTG GTGTTTGTGA	120
	ACACTAGTGG ATCCAAAGAA TTCGGCACAG CGGCACAGCA TTGTTGAGCT TTTCTGTGTG TGTGGGGCCC TCAAGCGAGC TCGACTGGTC CATCCTGGGG TAGCGASGTG GTGTTTGTGA AAAAGGACGA TGCCATCACC GCATAYAAGA AGTACAACAA CCGGTGTCTG GACGGGCAGC	120 180
	ACACTAGTGG ATCCAAAGAA TTCGGCACAG CGGCACAGCA TTGTTGAGCT TTTCTGTGTG TGTGGGGCCC TCAAGCGAGC TCGACTGGTC CATCCTGGGG TAGCGASGTG GTGTTTGTGA AAAAGGACGA TGCCATCACC GCATAYAAGA AGTACAACAA CCGGTGTCTG GACGGGCAGC CGATGAAGTG CAACCTTCAC ATGAATGGGA ATGTTATCAC CTCAGACCAG CCCATCCTGC	120 180 240
30	ACACTAGTGG ATCCAAAGAA TTCGGCACAG CGGCACAGCA TTGTTGAGCT TTTCTGTGTG TGTGGGGCCC TCAAGCGAGC TCGACTGGTC CATCCTGGGG TAGCGASGTG GTGTTTGTGA AAAAGGACGA TGCCATCACC GCATAYAAGA AGTACAACAA CCGGTGTCTG GACGGGCAGC CGATGAAGTG CAACCTTCAC ATGAATGGGA ATGTTATCAC CTCAGACCAG CCCATCCTGC TGCGGCTGAG TGACAGCCCA TCAATGAAAA AGGAGAGCGA GCTGCCTCGC AGGGTGAACT	120 180 240 300
30	ACACTAGTGG ATCCAAAGAA TTCGGCACAG CGGCACAGCA TTGTTGAGCT TTTCTGTGTG TGTGGGGCCC TCAAGCGAGC TCGACTGGTC CATCCTGGGG TAGCGASGTG GTGTTTGTGA AAAAGGACGA TGCCATCACC GCATAYAAGA AGTACAACAA CCGGTGTCTG GACGGGCAGC CGATGAAGTG CAACCTTCAC ATGAATGGGA ATGTTATCAC CTCAGACCAG CCCATCCTGC TGCGGCTGAG TGACAGCCCA TCAATGAAAA ÄGGAGAGCGA GCTGCCTCGC AGGGTGAACT CTGCCTCCTC CTCCAACCCC CCTGCCGAAG TGGACCCTGA CACCATCCTG AAGGCACTCT	120 180 240 300 360
30	ACACTAGTGG ATCCAAAGAA TTCGGCACAG CGGCACAGCA TTGTTGAGCT TTTCTGTGTG TGTGGGGCCC TCAAGCGAGC TCGACTGGTC CATCCTGGGG TAGCGASGTG GTGTTTGTGA AAAAGGACGA TGCCATCACC GCATAYAAGA AGTACAACAA CCGGTGTCTG GACGGGCAGC CGATGAAGTG CAACCTTCAC ATGAATGGGA ATGTTATCAC CTCAGACCAG CCCATCCTGC TGCGGCTGAG TGACAGCCCA TCAATGAAAA AGGAGAGCGA GCTGCCTCGC AGGGTGAACT CTGCCTCCTC CTCCAACCCC CCTGCCGAAG TGGACCCTGA CACCATCCTG AAGGCACTCT TCAAGTCCTC AGGGGCCTCT KTGACCACGC AGCCCACAGA WITCAAAATC AAGCTTTGAG	120 180 240 300 360 420

TGTGTTTTTM AGTGTGTGCC TCCCCGAGCC TCAGCCCCAA GCTGATTTCT TATCTGGAAA 720

TGGTACACTG AATTCTCTGG GTGGCTTTCT TGTGGCCCCA TGGGATGCAG CGTGGGGGCT 780

GTCTGAAGGA CCCTGCTTTT TCCAGGGGCC GAGGGGCTGC CTTTCCTTTG TGTGTATTAA 840

GCTTTTCAAA CAATGGAGGG GATGGAGGC CCTGGTGTCC TGACGGGAGC CAGGTCGGCC 900

55 TGAGAGCTGT GCCGCTCCTC TGTCTTGTCA GTGGAGGTGC CTGGGTGGGG AGCAGGTCTC 960

CTTCTCTCTA CGTTAACGTT TCCTGTAGTA TGTTTCTTCA TCTCATCGCC AAGGTAGGCT

660

45

60

AGGCCTCTTG TCCTCTCCCC AGTGGCTCCA GGCCTCACTA GTGGCAAGGG CAGGATGAGG 1020

	CAGAGGAAGT	TCTCCAGAGT	TCACCTTTCC	CTTTTCCTTG	AGTTGTGCTG	AATGCCCCAC	1140
	CCCAGCTCTC	TTTCCCTTCT	GGTGTCTTT	GCTGGGAGGG	GCTGTGTTG	TGAGCCCTCC	1200
5	CGGTTCTCAC	CTCGCCTGGC	ACTTAACCAC	ACCCTGGTTT	TGTGTAGCCG	CCAGCTCTCT	1260
	TCTGGTTGGG	CCTTTGAAAG	GCTCAGCCTC	CCATTGTGCA	GTGCTTGGGT	TTGGAGCTTA	1320
10	TTTGAATGGA	AGAGGTCAGT	TTGTTCCTGG	CTCTCCATTT	CTGGCCTCAG	TTGTCTACAG	1380
10	GACAGTGGTC	AGGGATGCCT	GGAGGCATAT	ATCCAGCTGC	CACCAAGGGG	CACTGTTTGT	1440
	TCCCACTTAT	GTGAGTGACC	CCATCCATCC	ATGACCAGAG	GATTATTTTC	CTGCCTTGGC	1500
15	AGAGGAGGAG	GAGTCAAGGG	AGCAGGGCAG	CTCTACCAGG	CAAGGTGTTT	CCCCAGCATA	1560
	GGCGCAGACA	GTTGGGACGA	AACTTCAGAG	CCCAGGCAGT	CCCTGAATGA	CCAGGCCAGT	1620
20	GTTGTCACTG	AGTGGTCCCC	TGCTGGTTGG	GAGTGAAGAG	AATCCAGGCT	GGCAGAGCTG	1680
20	GAGCCAGTTG	GGGAGCACGG	TTCTGGGAGC	TCTGCAAAAT	CAGTAGCAAG	TGCTGGAAAA	1740
	GGCACATGCC	GAAGATACTC	AAGAGCTCCC	AAGATTTGCT	TGAGGCTAGC	CCAGTGAAAA	1800
25	AAACCAGAGA	CTCATGTTTC	CAGGGGTCAG	TCTGTCAGGC	AGGAAGGACC	CAGGATTIGA	1860
	ACCCAGCTTC	AGTGTGCAGG	CTCTGAGGCT	GCCCAGGACG	GGAAAGTCCA	AGGAAGGGC	1920
30	CTGGTGGTGC	TCCACTTGCA	GTTCTTTAAA	GAATGCTGCT	TTTTATTCTC	CTAACCCTTT	1980
50	CAAGTGGGTG	CAGACTTCTC	GTTAGCAGCT	GGAAGACATT	CCTCCCACAC	TTTTCCCTTC	2040
	CTGGCCCAAG	AGAGCATCCA	GAAGGCAGTA	GGACCTGGTT	TTTCAGGTAC	TGGGAGCCGG	2100
35	GGGCTCACTG	CTTGCACTGT	GCTTAGGGTA	GGGATGGTAA	ATATCCTCCC	TGCATGGCTT	2160
	TATCCTCCCT	CTCATCCCAA	AGCAGGTATC	TTCTGGTTGT	CACAGAGTTT	CATTGAGTCC	2220
40	AGCTGCAGCC	ACGTGGCCAT	CTGGAGCTGG	TGCTATAGGT	GACCATCTGG	TACATTGAGG	2280
	GGACCIGTTT	GCCTCCTCCA	CTCTATAAGC	AGTCATCTTG	GGAGACCGGG	AGGAGAAGGT	2340
	GGTGGGCTAG	TCCTGTGTCC	TCCTCCACTT	CCCATGCCTC	TATGTTACCC	ATCTGTGTCT	2400
45	CCTGTGCAGA	AGGAGAGGAA	GGGGCATTAA	GAGATGAAGG	GTGATTATGT	ATTACTTATC	2460
	CATTTCTGAA	TAAACATTTG	TTATTCCTAA	АААААААА	AAAAAACTCG	AGGGGGG	2517

55

(2) INFORMATION FOR SEQ ID NO: 225:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2424 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 225:

	TTGTANCTAA	TCGAGGATTG	ATTCTAATGA	CAGAGTCTTT	CAACACTTTG	CACATGATGT	60
5	ATCACGAAGC	TACAGCTTGC	CATGTGACTG	GAGATTTAGT	AGAACTTCTG	TCAATATTTC	120
_	TTTCGGTTTT	GAAGTCTACA	CGCCCTTATC	TTCAGAGAAA	AGATGTGAAA	CAAGCATTAA	180
	TCCAGTGGCA	GGAGCGAATT	GAATTTGCCC	ATAAACTGTT	AACTCTTCTT	AATTCCTATA	240
10	GTCCTCCAGA	ACTTAGAAAT	GCCTGTATAG	ATGTCCTCAA	GGAACTTGTA	CTTTTGAGTC	300
	CCCATGATTT	TYTTCATACT	CTGGTTCCCT	TTCTACAACA	CAACCATTGT	ACTTACCATC	360
15	ACAGTAATAT	ACCAATGTCT	CTTGGACCTT	ATTTCCCTTG	TCRAGAAAAT	ATCAAGCTAA	420
••	TAGGAGGGAA	AAGCAATATT	CGGCCTCCGC	GCCCTGAACT	CAATATGTGC	CTCTTGCCCA	480
	CAATGGTGGA	AACCAGTAAG	GGCAAAGATG	ACGTTTATGA	TCGTATGCTG	CTAGACTACT	540
20	TCTTTTCTTA	TCATCAGTTC	ATCCATCTAT	TATGCCGAGT	TGCAATCAAC	TGTGAAAAAT	600
	TTACTGAAAC	ATTAGTTAAG	CTGAGTGTCC	TAGTTGCCTA	TGAAGGTTTG	CCACTTCATC	660
25	TTGCACTGTT	CCCCAAACTT	TGGACTGAGC	TATGCCAGAC	TCAGTCTGCT	ATGTCAAAAA	720
20	ACTGCATCAA	GCTTTTGTGT	GAAGATCCTG	TTTTCGCAGA	АТАТАТТААА	TGTATCCTAA	780
	TGGATGAAAG	AACTTTTTTA	AACAACAACA	TTGTCTACAC	GTTCATGACA	CATTICCTIC	840
30	TAAAGGTTCA	AAGTCAAGTG	TTTTCTGAAG	CAAACTGTGC	CAATTTGATC	AGCACTCTTA	900
	TTACAAACTT	GATAAGCCAG	TATCAGAACC	TACAGTCTGA	TTTCTCCAAC	CGAGTTGAAA	960
35	TTTCCAAAGC	AAGTGCTTCT	TTAAATGGGG	ACCTGAGGGC	ACTCGCTTTG	CTCCTGTCAG	1020
	TACACACTCC	CAAACAGTTA	AACCCAGCTC	TAATTCCAAC	TCTGCAAGAG	CTTTTAAGCA	1080
	AATGCAGGAC	TTGTCTGCAA	CAGAGAAACT	CACTCCAAGA	GCAAGAAGCC	AAAGAAAGAA	1140
40	AAACTAAAGA	TGATGAAGGA	GCAACTCCCA	TTAAAAGGCG	GCGTGTTAGC	AGTGATGAGG	1200
	AGCACACTGT	AGACAGCTGC	ATCAGTGACA	TGAAAACAGA	AACCAGGGAG	GTCCTGACCC	1260
45	CAACGAGCAC	TTCTGACAAT	GAGACCAGAG	ACTCCTCAAT	TATTGATCCA	GGAACTGAGC	1320
,-	AAGATCTTCC	TTCCCCTGAA	AATAGTTCTG	TTAAAGAATA	CCGAATGGAA	GTTCCATCTT	1380
	CGTTTTCAGA	AGACATGTCA	AATATCAGGT	CACAGCATGC	AGAAGAACAG	TCCAACAATG	1440
50	GTAGATATGA	CGATTGTAAA	GAATTTAAAG	ACCTCCACTG	TTCCAAGGAT	TCTACCCTAG	1500
	CCGAGGAAGA	ATCTGAGTTC	CCTTCTACTT	CTATCTCTGC	AGTTCTGTCT	GACTTAGCTG	1560
55	ACTTGAGAAG	CTGTGATGGC	CAAGCTTTGC	CCTCCCAGGA	CCCTGAGGTT	GCTTTATCTC	1620
<i>JJ</i>	TCAGTTGTGG	CCATTCCAGA	GGACTCTTTA	GICATATGCA	GCAACATGAC	ATTTTAGATA	1680
	CCCTGTGTAG	GACCATTGAA	TCTACAATCC	ATGTCGTCAC	AAGGGATATC	TGGCAAAGGA	1740
60	AACCAAGCTG	CTTCTTGACA	TTAGGTGTAG	CATGTCTACT	TTTAAGTCCC	TCACCCCAA	1800

454

	CCCCCATGCT GTTTGTATAA GTTTTGCTTA TTTGTTTTTG TGCTTCAGTT TGTCCAGTGC	1860
5	TCTCTGCTTG AATGGCAAGA TAGATITATA GGCTTAATTC TTGGTCAGGC AGAACTCCAG	1920
3	ATGAAAAAA CTTGCATCTT CAGTATACTT CCTAAAGGGC AATCAGATAA TGGATATGTT	1980
	TTATGTAATT AAGAGTTCAC TTTAGTGGCT TTCATTTAAT ATGGCTGTCT GGGAAGAACA	2040
10	GGGTTGCCTA GCCCTGTACA ATGTAATTTA AACTTACAGC ATTTTTACTG TGTATGATAT	2100
	GGTGTCCTCT GTGCCAGTTT TGTACCTTAT AGAGGCAGAT TGCCTCCGAT CGCTGTGGTT	2160
15	CTTATTATCA AAATTAAGTT TACTTGTATA CGGAACAACC ACAAGAAATT TGATTCTGTA	2220
	AAGAATCCTC TTTAGCTGTG GCCTGGCAGT ATATAAATGG TGCTTTATTT AACAGAATAC	2280
	CTGTGGAGGA AATAAAGCAC ACTTGATGTA AAAATAATTG TTTTATTTTT ATTGACATGA	2340
20	CTGATTGATT GCTATTCTGT GCACTNAATT AAACTGATTG TGATGACTTA AAAAAAAAA	2400
	AAAA AAAAAAAA AAAAAAAAA	2424
25		
	(2) INFORMATION FOR SEQ ID NO: 226:	
30	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1080 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
25	(D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 226:	
	ATATAGGACG GATAATCTGT TTACATTCTG TTCTTCTCGA TGCACTCACA AGCGGGTAAC	60
40	TAGGTGACAA GAAAACAAAG ATCTTATTCA AAAGAGGTCT TACAGCAACC CAACGTCTCA	120
	TCTTCCCATA GTAAAGATGA CGGCGCCTTG AGGTAAGCTA CAGGCAACAC CACTTCCGCG	180
. ~	TITCTCTTGC GCCCTGGTCC AAGATGGCGG ATGAAGCCAC GCGACGTGTT GTGTCTGAGA	240
45	TCCCGGTGCT GAAGACTAAC GCCGGACCCC GAGATCGTGA GTTGTGGGTG CAGCGACTGA	300

50 GCTTCCGACT GGAGTCCAAC AAGGAAGGAA CTCGGTGGTT TGGAAAATGC TGGTATATCC 420
ATGACCTCCT GAAATATGAG TITGACATCG AGTTTGACAT TCCTATCACA TATCCTACTA 480
CTGCCCCAGA AATTGCAGTT CCTGAGCTGG ATGGAAAGAC AGCAAAGATG TACAGGGGTG 540
55 GCAAAATATG CCTGACGGAT CATTTCAAAC CTTTGTGGGC CAGGAATGTG CCCAAATTTG 600
GACTAGCTCA TCTCATGGCT CTGGGGCTGG GTCCATGGCT GGCAGTGGAA ATCCCTGATC 660

AGGAGGAATA TCAGTCCCTT ATCCGGTATG TGGAGAACAA CAAGAATGCT GACAACGATT

360

TGATTCAGAA GGGCGTCATC CAACACAAAG AGAAATGCAA CCAATGAAGA ATCAAGCCAC 720 60

WO 98/39448		PCT/US98/04493
	455	•

	TGAGGCAGGG	CAGAGGGACC	TTTGATAGGC	TACGATACTA	TTTTCCTGTG	CATCACACTT	780
	AACTCATCTA	ACTGCTTCCC	CGGACACCCT	CCACCTCTAG	TTGTTACTAA	GTAGCTGCAG	840
5	TAGGCATTGC	TGGGGAAGAA	ACAAACACAC	ACCAAACAGT	ACTGCTACTT	AGTTTCTAAG	900
	GCTGCACAGG	GAAGGGAAAG	ACTGGGCTTT	GGACAATCTA	GAGGTAATTT	ATATCCGCCC	960
10	CCAGGTGGAG	CAACATGCGA	TTCTGGAGGC	ACGGGGGTAA	CTGAAAGTGA	GTACATATAG	1020
10	TCTTTCTGGT	TTCTGGAGAT	AACCCATCAA	TAAAAGCTGC	TTCCTCTGGG	TAAAAAAAAG	1080

30

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 227:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1336 base pairs

20 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 227:

TTGCATTCAC AATTACTGGG AGGCAGCAG GGGCAGTTGC ATGCTGGGGG TGGCTGCATG 60 GSCTGCCASC TCTCCTGGGT TTGAAGGATG CGGTACASCT GCTTCAGCTG AGCAACGATG 120 TTATCCTTGA TGTCTGGGGT TGAGATCTGC AGGCGGACAC TGCCACTATC AAAGGATCGT 180 GTGAAATCAC CAGAAAACAT CTCGTAGATC ATCCGAGCCA CTACTGGAAT GACCTGAACC 240 AAGATGAGTT TCCTTTCCAA TGGTTTCCCA TCTGGCCATT CTTCCCCAAA GCATAAGTAG 300 ATCTCAAACG GTGGCTGCTT CTCTATCTGT CCTTTCTGGT GGGCAATGAG ATCGCTAAGG 360 AATGTTTCCA GACAAAATAG CTTGACCTTC TTTTGTCTCT CAATCAGGTT GGGAGCAACA 420 AGTGATGGGG CACATGGCCC AGACCAGTAC ACCTTGCACT GGCACAGYCT GATGGCATAA 480 ATGGCATGAC CGCTGACCTC CAGGATCAGT CCTCTGTCCA TGACGTCCAG CAGCTTGCTA 540 GTGAACAGCT TCTGCTTCTC ATTGGTAATA TGCTCAGGAC CTGGGAATTT GACCTGCTCC 600 AGNOTGACGG GACCAAAGAG CTCCTCCTGG TCAGGCATGG GACCCAGGTC CCCATAGAAG 660 AGTCGGCAGC CCTGAGGGTT GCTCACGGTC ATGGTCCTGC CCGTACTCCT TCCCACGGTA 720 CTGAAACTTG ATGTCCAGGT CAGTCATTGG GAGAGAGCTG ATCCACAGTT CTGGAGAGCT 780 ATAGAAGGRC TGTATAGGTG CCTGGGGWAC TTCCATCTCC AGGGGTTCAG TTTTGGGCCA 840 CACTGCCTCC GGSCTGCAGT TGCCCACACT GCAATTGCCC ACACTGGCTG GCGCCATGGG 900 AGAACCATTG ATGTTCAGGA AGGGGAAGGT GTCCTGGATG GGAACATGGT GCTGCGACTG 960 ATCCAGCTCA TCTTCCTCAT CTTCTTCATC CACATCATTA TCCTTCTCAT CCCAGGGAGC 1020 AGACCCTGTG GATCCTGGGT TAATGATCGA SCCCTGGGGC TGAGGGATGT CACACACTTG 1080

	ATATATCTTC ACTGGGTTCA TGGGCACCTC CCTTGGTGCC ATCCATACAT CCAGGTTGAA	1140
5	TTCTCTCCTC TTATTGAGAG CACAGCGCAG CTGGGCCTTC CATTTAGCTG GGTCAGGGTC	1200
3	ATCCACCCCT TCCTGGTACT TCCCTGTCTC TACAGCCCAG GCCTTAAAAA TGGTATTTTC	1260
	CTCTTCTTGT TGAGGGCTAT GCCGGGTGGC ATGTTTCCAG GGAATCTGGA AGCGTTTAGA	1320
10	GTCCCTGTGT AGCCAG	1336
15	(2) INFORMATION FOR SEQ ID NO: 228:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2043 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 228:	
25	TCAGCTGGTC CCTTCCTTGT GTCCTGGGGG ACCTGCTGGC GGCCTCTTCC TGGGAGCCAT	60
	GACCTCAGAC CCCACCCACA CTCCAGATCG AGACCCCTGC CTCCCCCCGG CAAATGTCCT	120
30	CCCGCTGCCT TGCAGCCTGC ACTTTGCACA TGCTCACCCC CAGCACAGTC CCACTGGCCC	180
	CTCAMCTCCC CTTCCCTGAG CTCCTTCCCA AGGACTCCTG GTCACTGCCT GCTGTGCAKT	240
	CAGAGGCCCA GGGTCCAGCA GCCCGGSGGG AACGGGTGCT GCCTSTTCCT CCAGTTAGCT	300
35	CCAGYTCAGG TCTGAGACCC GTGYTGAGTA AAGGTCTGAG CAMCGACCGT GCCCTCTGCC	360
	CAGGGCTGGG TCCTGAGCAG CTGGTTTTCC TGCAGGAAGG TTGGAGCAAG CAAAGTCCTT	420
10	CTCTGCCCTC AGGGTCAGCT GCCCAGACTG GGGCGGATGC AGAGAGGCAG GTGGGCTGTG	480
	GCTGGACTGG TCCGGAGCTG GCTTCCTTAC CAGAAAAGCC TCAGCCTTCC TCTGGAAGCA	540
	TCCCCCGTTC TGGGCAAGGG GGAAGGGCTC CTTTAAGGGG TGTGCTTTCC CAGTGGGGAG	600
15	CAGTCTGGCC CTGCCCCCTA CTAAAGCCTC TGCTCTCAGC ACTTTCCCCC AAGTCCTTGT	660
	AACTIGCTIG AAGGTGGGTT CTGGCTGCCA GCCAGTCCCT GGACAAACTC TCCTGCCCCT	720
50	TTTAAATTIC ACTCATTTIG TATAAACCCA GCAGGCTGGT GTTTACTTAG CCCTGTAGCT	780
	TTTTTCATTT TTTCTTTCCG TCTTTCTTCT TGAGTTCACG GTTCAATATT GCCTCCTCGC	840
	CCTGGTGAGG GGAGGTGCTG CTTTTCTGCC CCACCTGCCG GCTGGTTCCA GCAGCGCTGG	900
55	NGCCCAGCTG GGGGGCCGGG ATGGGGGGCTT CTCTCTCTGG GAGGGGTGCA GGTGCCCTCC	960
	CCAGGCTGGG AGGGTTCCTT CCCTAGCTCC CCATCTGCCC CCGCTGGTGA GAGTTGGGCT	1020
	TCTTGGTCTT GGAACTCCCT GGCATTGGGA ACAGAGCATT TCCAGCATTT GTTGTTG	1080

WO 98/39448 PCT/US98/04493 457

	TITTACTCAC CTAACCCTTA GAAAATGAAT GTTAGAAGGT GCCTGCCGAG GCGGGACAGA	1140
	GTGTTTGCTC GCGCTGGAGA AGGCTCTGCT CAGCCCTGAG AGTCCCTTCC TGCCCCACCG	1200
5	ATACTGGCAC TTTAAAAAGG AAGCTGACCG CACAGTGTCC AGACGAATTG GCCCCCAGAA	1260
	GATGGGGAGT TCTGTCCTGC CCTTCTGTGT CTGCGTGACC TCACCCAGCC TAGGAGGGAG	1320
10	GTGCATTCAG GGTAGATTTG CCTCTCATTC AAAGTTCTGG GGCTTTGGGY GGAAAACAGC	1380
10	CAGCTTTGGC GCTGTTGGGG AGACTCCTCC AGACCAGGAA CCCCAGAAGG AGACAGAGCC	1440
	TGCCACATCC TCCCACGCCA GGCCCTGGGC CAGGGTGATT GGACTGAGAA TTTGGCCACA	1500
15	ACCAAATTGA TGCTGGCTGG AACCAGAGGC CAGAAAGCCT GGCCTTGTCC CCATGTGGGA	1560
	GCCCTGTCCT CAGCCCTCTT GTCCCCTTGA GCTCAGTGAA TTCCCACCAG GTGCCCACAG	1620
20	CTCCTGGACT TCAAATTCTA TATATTGAGA GAGTTGGAGA GTATATCAGA GATATTTTTG	1680
20	GAAAGGAGTT GGTCTATGCA ATGTCAGTTT GGAATCTTCT TGAAAGTTTA ATGTTTTTAT	1740
	TAGGAGATTT AAAGAAAATA AAGGTCTACA ATATCTTTAG GTTTTTTTTT TTTCCTGTTT	1800
25	ACCGCACAAA CTGACCACAT GGCATGTCTA TCAGGATGGA GGGTGTCCAT GTTCTCTCT	1860
	GTCTTTAGGG AGGTGATAAG GAGATGGSCG RAGGGGTGTT TTTTTCTTTG ACTCCCCTCC	1920
30	TTTCTAACAG AATGTTGCCA CCACTGCTTG AGTGGGCTGT GTTTGTTCCT CTGTCCCAGC	1980
20	TTCTGTTGTA GAAAATAACA TTGTTAGGGG AACTCAGGCT AGTGTCAGCG TCTTGGTTTG	2040
	GGG	2043
35		
	(2) INFORMATION FOR SEQ ID NO: 229:	
40	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 540 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 229:	
	TAAAAAGAAG CGGGAGAATC TGGGCGTCGC TCTAGAGATC GATGGGCTAG AGGAGAAGCT	60
50	GTCCCAGTGT CGGAGAGACC TGGAGGCCGT GAACTCCAGA CTCCACAGCC GGGAGCTGAG	120
	CCCAGAGGCC AGGAGGTCCC TGGAGAAGGA GAAAAACAGC CTAATGAACA AAGCCTCCAA	180
	CTACGAGAAG GAACTGAAGT TTCTTCGGCA AGAGAACCGG AAGAACATGC TGCTCTCTGT	240
55	GGCCATCTTT ATCCTCCTGA CGCTCGTCTA TGCCTACTGG ACCATGTGAG CCTGGCACTT	300
	CCCCACAACC AGCACAGGCT TCCACTTGGC CCCTTGGTCA GGATCAAGCA GGCACTTCAA	360
60	GCCTCAATAG GACCAAGGTG CTGGGGTGTT CCCCTCCAA CCTAGTGTTC AAGCATGGCT	420

	TCCTGGCGGC CCAGGCCTTG CCTCCCTGGC CTGCTGGGGG GTTCCGGGTC TCCAGAAGGA	480
5	CATGGTGCTG GTCCCTCCCT TAGCCCAAGG GAGAGGCAWT AAAGACACAA AGCTGGAAAT	540
10	(2) INFORMATION FOR SEQ ID NO: 230:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 448 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230:	
20	AATTGTGAAA TATTAGAATA TTGTTACTAT TTGACCCAAC TCAAAATCTC CATGGGAAAA	60
20	TACCTGTCGA TACCCACAGT ATTGTTGAAA ATAATCAGAT GCAGTATCAC AGCTGTGTCA	120
	GACTCTAGTA CCAGTTGGGC AATCAAGGCA CAGCTAAAAA TTGAAAACAA AGATCTGGAC	180
25	AACAAAACAG CCAAAGGTGG GGGTCAAGAA GCTCTGACGT GTACCTAGCT GTAGAATGCT	240
	ATGCACACGT GCCAGGTGTA GTGTGCATAT CCAGGAAAAA CTGCAGAGAG CCCCAGTCTT	300
30	CAMCTCTGGT TGACCATGAG CTCTGTGTAA GCAGGAAGTG AAGGCTAAGG CAGATTTAAG	360
50	CTCTGAAAGC ATTCCACAAC ATACACACAA ATCGTGCAAA GCATTAAGGA AATCTTGTTA	420
	CTGCTAAGTG TTGCTGACCC AGGAACAA	448
35		
	(2) INFORMATION FOR SEQ ID NO: 231:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 407 base pairs (B) TYPE: nucleic acid	
45	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 231:	
	GTATGCTGCC CCAAACCAAT ATGTGTGGCT GCCTTTWACC TGACTTCTCC AACATGTAGC	60
50	CCCAAGAGGA GGCCTCTAGA CTRAGGGAGG GGCTGGTGAC CCAGGTGTGG TGGGGCTGCA	120
	TGARACTACC AGAGAGACAG ACATTCTGGA ACTCACCCTG GGGGATCCAG TGGATCTGCC	180
55	TATGGTCTGG TCCACCCCAG ACCTGTGAGA TGTTCCTCAT GAGGATGCAC TTGTGCTTCT	240
	GCAAGTATTG CTGCAGCTTC ATAGTGACTC CCACCAGCAC CAGCAATACA GYTAGCTACC	300
	TGTGGCCTTG GATCTCAGCC AGCATGGCTG GGAGAGGGAG CARCTGGGCA TGTACCCTAA	360
60	ATGCTGTTAC CAGGGAAGGA CTCCCAGAGT GAAGACAAGT AGGGACT	407

3	(2) INFORMATION FOR SEQ ID NO: 232:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 830 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 232:	
15	GTATTIGATT TCAGGCTGCT AAATGGGCTC ATTTAGCATT CATTCCTTGA TGTAGACATT	6
	AAAAAAAAA CTGAATAGCA TTCTTTCCAG GNTAACTAAT AAAGCAGACA TGCTAAGCCT	12
20	ATAAATACAT CAGCACTGCA GCACACGTTT AAGGTTGCCA CGGACAAGGA TCACACAATA	180
20	GAGAACACTG TAGTTCGGTC TGCTCACAAG ACCCAGAACA TTGATCAGTT TTTGTTGTTG	240
	GTTTATTATT TITCTGTTAA AAAATTGTGA AAAGTTTGTT TTAGCTAGAT GATATTTTAA	300
25	TAGCTGCGAG TGCTTTGGAA CTATAAAGAT GTCACTACTT AACACACATA CCTTATGTTT	360
	TGTTTTGTTT TGTTTTACAC TCAGTATAAA TCAGGAGAAG TTAGCCAACC ATCTAGCATT	420
30	TAGAATCCTC TTTTTTATTG TCTTCTAAGG ATATGGATGT TCCCATAACA GCAACAAAAC	480
50	AGCAACAAAA ACATTTCATA AATATCACTT GATAGACTGT AAGCACCTGC TTAACTTTGT	540
	GINCCAAATA TITAGIGIGI ATATATATAT ATATATACAC ACACACACA ATATATAT	600
35	AACAAATAAA GCAAAATATA ACATGCATTT CACATTTTGT CTTTCCCTGT TACGATTTTA	660
	ATAGCAGAAC TGTATGACAA GTTTAGGTGA TCCTAGCATA TGTTAAATTC AAATTAATGT	720
40	AAAACAGATT AACAACAACA AAGAAACTGT CTATTTGAGT GAAGTCATGC TTTCTATTAT	780
10	AATAACTIGG CTTCGGTTAT CCATCAAATG CACACTTATA CTGTTATCTG	830
4 5	(2) INFORMATION FOR SEQ ID NO: 233:	
50	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 932 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 233:	
,,	CCAGAAGAAA GACCAATCTA GAATATGGAA CTCTAATCAC TTCTAGTATT TCAACTTCCT	60
	AGCAGAAATG AACTTGGCCC TAGACCTAGG GGATAAGCAA TGTTCTTTAT GTAGCCAATG	120
50	CTACGGAAAC AAAAGAGGTG AAAGAGACCC TTTTTTTATA CTTAATGTAC ATATATTGAC	180

460

	TTTTTGAGCA	AGAATGCCAG	AAATAGCCTT	CATTTCTACC	CTGCAAAATA	ATCCAGATCT	240
5	GCTTTCTAAA	ATGRANTCAG	TTTCTAAAGT	GAAACATGCA	ATATTTATGC	TCTGACTGAC	300
,	TCCTGAATTG	GARGAGGAAG	RACTTCTGTT	TACAGAAAAC	YGTATTGTTA	TATATGTCAG	360
	GCTGTGTATT	GTGACTATCA	GCATTCTGGT	GCAAATGAAC	TTTTCTCCAT	CATCGACTGT	420
10	GGAAAATTGA	TACTTTTAAA	GCATATTCTT	CTATGAGCAC	AGGTCCTCCT	AGTGAAACTT	480
	AATTTGACAA	AGGGTGTCAT	ATGCTTTCCT	AACCTGAWTT	GTATTAACAT	TCACAGAGCC	540
15	TACATTTTCT	CATTAGGGTT	RTGATGCTCA	GTATCTTTCC	AAGTGCCAGG	CAGRGCTTNC	600
13	CTTTTCTGAT	CAAACATACC	ATTTTTTGTA	TTTCACAACT	ATAGACAGTC	ACTTCTGCAG	660
	TCCCAATTTA	AAAATGCAGA	ACTGCTTTAT	CCAAGAATGC	TGAAAAATAC	TGTTCTATCC	720
20	AGGTTTCCTA	ААСТАТАААА	GCAGATTTTG	CTTTTGTTTG	TTAATCATAG	GCATGGCCGA	780
	GCATTGTGGA	TTAGCCTGAG	GCTTAAAATC	AGATGCATGT	CTGGTAAGAT	GACCACTGTC	840
25	TCACTATCAA	GAGCCTGCAG	AGCCATTTTC	CAGACCTGTG	ATTGCCCAGA	ACACATAGTC	900
2 3	CCCACGTTTC	TAATTTGGAG	САААТСТААА	AG			932
				•			

30

35

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 234:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2786 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 234: 40

TTAGCAGGGT GAGCTGTTAA AACAGCACAC ATCTCTCATC CCCTCTTCCT TTATTCCCCC 60 120 CTGGGTTTCA GAAAGGAAGG ATATATGGGG ACCACCTCCC CCTTCTTTGA TCCCAGCATC 180 TCAGTCCCCC TCCCAACCCT CCATATGGCT CTCAATGGTG CTCACTTGCT TGGAAGCAGG CTCCCAATAG GGAGGGGSCT GCCCTCTACA GTCTCTTTGA CTGTAAGACA GGGCTCTGTA 240 TCAGTGAGAC GATGAGAAAA GTCCCAGGCT AATGGCAGAA ATTTGCACTT TGAACATGTG 300 TGTTTTTGTG TTGTGGAACC TGAGATTCCT TATTTATTAA CAGGAAGTCT GATTTTTTT 360 420 TTTTOGAGTC TTTGTTGCTA TATTTTGTGG GGCTGGGAGA GAGAGATTAG ATTATTTTGA 480 CATGGGATCC CTTCCATAAC AGGTACTTTG AAGGCAAGAC ATAGGGTTGA AGAAGCACAA CCAGCCTCTG AAATCATAGC TCTCCAGTGG CTTTTAAAGA AAGCTGGTCC TCAGCACTAA 540 600 CAAAATCACT ACAATAGCCT AGTGCTTTTT TGGAAGCCTT TTTAGGGAAG AATGTTAGGT

	TCATGGTAAC	TAGTATGCTC	TTTGAGATTT	TTACAGTGTT	GAAACTTAAG	AATTTTGAGA	660
	GGCTGAGGAG	GGTTGTTCAG	AATCTAAATT	ACAGATAGAT	GATTGTTTCT	TGTGAATTTG	720
5	TTTCTTTTCC	TTTTTTTTTG	TCCCTACCAT	TTCCTTACAT	TTCCCTTGGG	GCCCATCTCT	780
	GGCTCCTTGC	TTTTTGTTTC	TIGCTTIGCT	TTATCAGTTC	ATTCCAGCTC	CCTGTTAGTG	840
10	AAGGACACTG	CTGTTAGTGA	AGGAACAAAG	TCTATGAGTC	СТААААТТТТ	AAGTCAAAGA	900
10	AAACTGCTCT	GTTTCCCCTT	TAGTAACACT	TCTGAAGAGG	AAAAACTTCA	ATAGCCAAAG	960
	TTAATAATCC	ТАТАТААТАА	TTGCTTTGGC	TTTCACCTAA	AATTCTGGGC	ATCACAATTT	1020
15	CCTTGGGATA	GAGGTTGTGT	TGGGGAATAG	ATTGCTTATT	CCTCTTCACT	GGAGAGAAAA	1080
	GGTAGTGTTT	TTGTACAAGG	TCATACCGCC	AGAAGCCCCA	AATCCTATTT	TGGCTCATCT	1140
20	TCAGGTAAAG	AGTAATTCCT	ATCCTGTGTG	CCTCAGAAGC	TAGAATCGAA	GGCTTACCCT	1200
20	ATTCATTGTT	TATTGTCAGA	AATGCATGAT	GGCTCTTGGA	AAGAATGACG	TTTTGCTGGA	1260
	АААААААА	AGAACAGTTT	GTGTTTCACA	AACATGGCTT	ATCAATTTTT	TCAAAGAATT	1320
25	стттттссс	AAAAAGAGGA	GTAACAAAAT	GTCATTTCTG	AAAGAGGCTT	ACTITATACC	1380
	AACTAGTGTC	AGCATTTGGG	ATGCCAGGGA	ACAGAGAGTG	AGACACCTAC	AATCACCAGT	1440
30	CTCAAATGCG	CTATTGTTTC	TTTTCAGAGT	GTTGCAGATT	TGCCATTTCT	CCATAATATG	1500
50	GGGATAGAAA	ATGGAATAAA	GATAGAAGGG	ATGTAGAATA	TGCTTTCCTG	CCAACATGGT	1560
	TTGGAGTCGA	CTTTGGTATA	TTGACTAGAT	TTGAAAATAC	AAGATTGATT	AGATGAATCT	1620
35	ACAAAAAAGT	TGTCCTCCTC	TCAGGTCCCT	TTTACACTTT	TTGACTAACT	AGCATCTATA	1680
	TTCCACACTT	AGCTTTTTTG	TCACACTTAT	CCTTTGTCTC	CGTAAATTTC	ATTTGCAGTG	1740
40	GTTAGTCATC	AGATATTTTA	GCCACCTACA	CAAAAGCAAA	CTGCATTTTT	AAAAATCTTT	1800
	CTGAGATGGG	AGAAAATGTA	TTCTCCTTTC	CTATACCGCT	CTCCCAACAA	AAAAACAACT	1860
	AGTTAGTTCT	ACTAATTAGA	AACTTGCTGT	ACTITITCTT	TTCTTTTAGG	GGTCAAGGAC	1920
45	CCTCTTTATA	GCTACCATTT	GCCTACAATA	AATTATTGCA	GCAGTTTGCA	ATACTAAAAT	1980
	ATTTTTTATA	GACTTTATAT	TTTTCCTTTT	GATAAAGGGA	TGCTGCATAG	TAGACTTCCT	2040
50	GTAATTAAAC	TATCTCAGCC	GTTTCCCTGC	TTTCCCTTCT	GCTCCATATG	CCTCATTGTC	2100
50	CTTCCAGGGA	GCTCTTTTAA	TCTTAAAGTT	CTACATTTCA	TGCTCTTAGT	CAAATTCTGT	2160
	TACCTTTTTA	ATAACTCTTC	CCACTGCATA	TTTCCATCTT	GAATTGGTGG	TTCTAAATTC	2220
55	TGAAACTGTA	GTTGAGATAC	AGCTATTTAA	TATTTCTGGG	AGATGTGCAT	CCCTCTTCTT	2280
	KGTGGTTGCC	CAAGGTTGTT	TTGCGTAACT	GAGACTCCTT	GATATGCTTC	AGAGAATTTA	2340
60	GGCAAACACT	GGCCATGGCC	GTGGGAGTAC	TGGGAGTAAA	АТААААТАТ	CGAGGTATAG	2400

	ACTAGCATCC ACATAGAGCA CITGAACCTC CTTTGTACCT GTTTGGGGAA AAAGTATAAT	2460
	GAGTGTACTA CCAATCTAAC TAAGATTATT ATAGTCTGGT TGTTTGAAAT ACCATTTTTT	2520
5	TCTCCTTTTG TGTTTTTCCC ACTTTCCAAT GTACTCAAGA AAATTGAACA AATGTAATGG	2580
	ATCAATTTAA AATATTTTAT TICTTAAAAG CCTTITTTGC CIGTIGTAAT GIGCAGGACC	2640
10	CTTCTCCTTT CATGGGAGAG ACAGGTAGTT ACCTGAATAT AGGTTGAAAA GGTTATGTAA	2700
	AAAGAAATTA TAATAAAAGG GATACTTTGC TTTTCAAATC TTTGTTTTCT CTTATTCTAG	2760
	GTAAGGCATA TTAAAAATAA ATATGT	2786
15		
	(2) INFORMATION FOR SEQ ID NO: 235:	
20	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 458 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
25	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 235:	
	GGGTGCAGGA ATTCGGCACG AGAGAATGTT TGATTTTCTT TCCTATTTTA AGGATCTTCT	60
30	CTCTTGTTGA TGTTGAAAAC TTACCTTAGT GAAGATGTGT TTCAACATGC TGTTGTCCTT	120
	TACCTGCATA ATCACAGCTA TGCATCTATT CAAAGTGATG ATCTGTGGGA TAGTTTTAAT	180
35	GAGGTCACAA ACCAAACACT AGATGTAAAG AGAATGATGA AAACCTGGAC CCTGCAGAAA	240
	GGATTTCCTT TAGTGACTGT TCAAAAGAAA GGAAAGGAAC TTTTTATACA ACAAGAGAGA	300
	TTCTTTTTAA ATATGAAGCC TGAAATTCAG CCTTCAGATA CAAGGTACAT GCCCTCTTTC	360
40	TTTTCATGCC ATCTCTTTG CACTCTCAGG TGGAAATATT TTTAAGTGTT TTATAATCAT	420
	AAGTTCTTGT GAAACCTAAC AAGATTATCC CTTCCTAA	458
45		
	(2) INFORMATION FOR SEQ ID NO: 236:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 591 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55		
,,	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 236:	
	AGGATGAAGA GGAAATTATC TCTTGGATTG CTCTCCAGGA AATCCTTCTC TATACTTTAA	60
60	AAGCTCTTGT TCTTTTCTAG GARTCCAATG TGCTGATTGC TGCTAACAGT CAGGGTACAA	120

463 TTAAGGTGCT AGAATTGGTA TGAAGGGTTA ACTCAAGTCA AATTGTACTT GATCCTGCTG 180 AAATACATCT GCAGCTGACA ATGAGAGARG AAACAGAAAA TGTCATGTGA TGTCTCTCCC 240 5 CAAAGTCATC ATGGGTTTTG GATTTGTTTT GAATATTTTT TCTTTTTTTC TTKTCCCTCC 300 TTTATGAGCC TTTGGGACAT TGGGAATACC CAGCCAACTC TCCACCATCA ATGTAACTCC 360 ATGGACATTG CTGCTCTTGG TGGTGTTATC TAATTTTTGT GATAGGGAAA CAAATTCTTT 420 10 TGAATAAAAA TAAATAACWA AACAATAAAA GTTTATTGAG CCACAGTTGA GCTTGGAAAG 480 TTTTTGTCAA ATGCNGCAAG AGATAACTCT TTTTANGAAG TAGCATATGT GAACTATAAT 540 15 GTAACAGTGA ATAATTTGTA AAGTTCGTAT TTCCCAACCT CTTTGGGAAT T 591 20 (2) INFORMATION FOR SEQ ID NO: 237: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1286 base pairs (B) TYPE: nucleic acid 25 (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 237: 30 TCTTTTAAG GTACAGCAGG GAAGAACTGG AAACTCAGAG AAAGAAACTG CCCTTCCATC 60 TACAAAAGCT GAGTTTACTT CTCCTCCTTC TTTGTTCAAG ACTGGGCTTC CACCGAGCAG 120 GAGATTACCT GGGGCAATTG ATGTTATCGG TCAGACTATA ACTATCAGCC GAGTAGAAGG 180 35 CAGGCGACGG GCAAATGAGA ACAGCAACAT ACAGGTCCTT TCTGAAAGAT CTGCTACTGA 240 AGTAGACAAC AATTITTAGCA AACCACCTCC GTTTTTCCCT CCAGGAGCTC CTCCCACTCA 300 40 CCTTCCACCT CCTCCATTTC TTCCACCTCC TCCGACTGTC AGCACTGCTC CACCTCTGAT 360 TCCACCACCG GGTTTTCCTC CTCCACCAGG CGCTCCACCT CCATCTCTTA TACCAACAAT 420 AGAAAGTGGA CATTCCTCTG GTTATGATAG TSGTTCTGCA CGTGCATTTC CATATGGCAA 480 45 TGCGATGAAG AACGATACAG ATACAGGGAA TATGCAGAAA GAGGTTATGA GCGTCACAGA 540 GCAAGTCGAG AAAANGAAGA ACGACATAGA GAAAGACGAC ACAGGGAGAA AGAGGAAACC 600 50 AGACATAAGT CTTCTCGAAG TAATAGTAGA CGTCGCCATG AAAGTGAAGA AGGAGATAGT 660 CACAGGAGAC ACAAACACAA AAAATCTAAA AGAAGCAAAG AAGGAAAAGA AGCGGGCAGT 720 GAGCCTGCCC CTGAACAGGA GAGCACCGAA GCTACACCTG CAGAATAGGC ATGGTTTTGG 780 55 CCITITGTGT ATAITAGTAC CAGAAGTAGA TACTATAAAT CTTGTTATTT TTCTGGATAA 840 TGTTTAAGAA ATTTACCTTA AATCTTGTTC TGTTTGTTAG TATGAAAAGT TAACTTTTTT 900

TCCAAAATAA AAGAGTGAAT TTTTCATGTT AAGTTAAAAA TCTTTGTCTT GTACTATTTC

960

464

	AAAAATAAAA AGACAGCAAT GACTTTATAT CCAAGAAAGG AATGTGAATG AGTCACTTAA	1020
5	CAGGGAATCT AAAGAGCTGT GTTAGCTGTG TACATACACA GATTATCTGA GAAAAGGTCA	1080
J	AGGGTTCCAC TTGGGCCACA GTTTTTTGT TAATCAAACA CCACTCTCTT AAGRGGCTGC	1140
	ATCACAAARG GCAACCAARG GGCCCCTCTT ARGGCTTTGA GGATTAAAAC TAGTCTTTAT	1200
10	CCATTACTGC TGTGGACACT CTTGGCTTRG TATWITTAGG GGGGNTCCTT ACCTTTTTTT	1260
	GGTTTTCCNC ACCTTTTTGG TTGGGC	1286
15		
	(2) INFORMATION FOR SEQ ID NO: 238:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 734 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 238:	
	ATGGCAGCGC AGAAGGACCA GCAGAAAGAT GCCGAGGCGG AAGGGCTGAG CGGCACGACC	60
30	CTGCTGCCGA AGCTGATTCC CTCCGGTGCA GGCCGGGAGT GGCTGGAGCG GCGCCGCGCG	120
	ACCATCCGGC CCTGGAGCAC CTTCGTGGAC CAGCAGCGCT TCTCACGGCC CCGCAACCTG	180
	GGAGAGCTGT GCCAGCGCCT CGTACGCAAC GTGGAGTACT ACCAGAGCAA CTATGTGTTC	240
35	GTGTTCCTGG GCCTCATCCT GTACTGTGTG GTGACGTCCC CTATGTTGCT GGTGGCTCTG	300
	GCTGTCTTTT TCGGCGCCTG TTAACATTCT CTATCTGCGC ACCTTGGAGT CCAAGCTTGT	360
40	CCTCTTTGGC CGAAAGGTGA GCCCAGCGCA TCATATGCTC TGGCTGGAGG CATCTCCTTC	420
	CCCTTCTTCT GGCTGGCTGG TGCGGGCTCG GCCGTCTTCT GGGTGCTGGG AGCCACCCTG	480
	GTGGTCATCG GCTCCCACGC TGCCTTCCAC CAGATTGAGG CTGTGGACGG GGAGGAGCTG	540
45	CAGATGGAAC CCGTGTGAGG TGTCTTCTGG GACCTGCCGG CCTCCCGGGC CAGCTGCCCC	600
	ACCCCTGCCC ATGCCTGTCC TGCACGGTCT GCTGCTCGGG CCCACAGCGC CGTCCCATCA	660
50	CAAGCCCGGG GAGGGATCCC GCCTTTGAAA ATAAAGCTGT TATGGGTGTC ATTCAAAAAA	720
	AAAAAAAAA AAAA	734
55		

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 809 base pairs

60

(B) TYPE: nucleic acid

⁽²⁾ INFORMATION FOR SEQ ID NO: 239:

465

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 239: 5 CGGGGTCTTC AGGGTACCGG GCTGGTTACA GCAGCTCTAC CCCTCACGAC GCARACATGG 60 CAGCGCAGAA GGACCAGCAG AAAGATGCCG AGGCGGAAGG GCTGAGCGGC ACGACCCTGC 120 10 TGCCGAAGCT GATTCCCTCC GGTGCAGGCC GGGAGTGGCT GGAGCGGCGC CGCGCGACCA 180 TCCGGCCCTG GAGCACCTTC GTGGACCAGC AGCGCTTCTC ACGGCCCCGC AACCTGGGAG 240 AGCTGTGCCA GCGCCTCGTA CGCAACGTGG AGTACTACCA GAGCAACTAT GTGTTCGTGT 300 15 TCCTGGGCCT CATCCTGTAC TGTGTGGTGA CGTCCCCTAT GTTGCTGGTG GCTCTGGCTG 360 TCTTTTCGG CGCCTGTTAC ATTCTCTATC TGCGCACCTT GGAGTCCAAG CTTGTGCTCT 420 20 TTGGCCGAGA GGTGAGCCCA GCGCATCAGT ATGCTCTGGC TGGAGGCATC TCCTTCCCCT TCTTCTGGCT GGCTGGTGCG GGCTCGGCCG TCTTCTGGGT GCTGGGAGCC ACCCTGGTGG 540 TCATCGCTC CCACGCTGCC TTCCACCAGA TTGAGGCTGT GGACGGGGAG GAGCTGCAGA 600 25 TGGAACCCGT GTGAGGTGTC TTCTGGGACC TGCCGGCCTC CCGGGCCAGC TGCCCCACCC 660 CTGCCCATGC CTGTCCTGCA CGGCTCTGCT GCTCGGGCCC ACAGCGCCGT CCCATCACAA 720 30 GCCCGGGGG GGATCCCGCC TTTGAAAATA AAGCTGTTAT GGGTGTCATT CAGGAAAAAA 780 ΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ 809 35 (2) INFORMATION FOR SEQ ID NO: 240: (i) SEQUENCE CHARACTERISTICS: 40 (A) LENGTH: 2201 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 240: TCGACCCACG CGTCCGGCAA CATGGCGGCT GCCGTGGTGC AGCGCCCGGG CTGAGCGACA 60 GCAAGTGCAG CGGGCTCCTA CCCCGGGTGA GGGGTGGCCT CCGCGTGGGA TCGTGCCCTC 120 50 TTCAGCCCGC TCCTGTCCCC GACATCACGT GTATTCCGCA CGTCCCCTCC GCGCTGTGTG 180 TCTACTGAGA CGGGGAGGCG TGACAGGGCC CGGGTCCCTT CTCAGTGGTG CTCTGTGCTT 240 55 CAGGGCAAGC TCCCCGTCTC CGGGCGCACT TCCCTCGCCT GTGTTCGGTC CATCCTCCTT 300 TCTCCAGCCT CCTCCCCTCG CAGGCGGATG AMCCGGACGA CGGGCCAGTG CCTGGCACCC 360 CGGGGTTGCC ARGGTCCAMG GGGAACCCGA AGTCCGAGGA GCCCGARGTC CCGAACCAGG 60

	ARGGGCTGCA	GCGCATCAMC	GGCCTGTCTC	CCGGCCGTTC	GGCTCTCATA	GIGGCGGIGC	480
	TGTGCTACAT	CAATCTCCTG	AACTACATGG	ACCGCTTCAC	CGTGGCTGGC	GTCCTTCCCG	540
5	ACATCGAGCA	GTTCTTCAAC	ATCGGGGACA	GTAGCTCTGG	GCTCATCCAG	ACCGTGTTCA	600
	TCTCCAGTTA	CATGGTGTTG	GCACCTGTGT	TTGGCTACCT	GGGTGACAGG	TACAATCGGA	660
10	AGTATCTCAT	GTGCGGGGGC	ATTGCCTTCT	GCTCCCTGGT	GACACTGGGG	TCATCCTTCA	720
10	TCCCCGGAGA	GCATTICTGG	CTGCTCCTCC	TGACCCGGG	CCTCGTGGGG	GTCGGGGAGG	780
	CCAGTTATTC	CACCATCGCG	CCCACTCTCA	TTGCCGACCT	CTTTCTCCCC	GACCAGCGGA	840
15	CCGGATGCTC	AGCATCTTCT	ACTITGCCAT	TCCGGTGGGC	AGTGGTCTGG	GCTACATTGC	900
	AGGCTCCAAA	GTGAAGGATA	TGGCTGGAGA	CTGGCACTGG	GCTCTGAGGG	TGACACCGGG	960
20	TCTAGGAGTG	GTGGCCGTTC	TGCTGCTGTT	CCTGGTAGTG	CGGGAGCCGC	CAAGGGGAGC	1020
20	CGTGGAGCGC	CACTCAGATT	TGCCACCCCT	GAACCCCACC	TCGTGGTGGG	CAGATCTGAG	1080
	GGCTCTGGCA	AGAAATCCTA	GTTTCGTCCT	GTCTTCCCTG	GGCTTCACTG	CTGTGGCCTT	1140
25	TGTCACGGGC	TCCCTGGCTC	TGTGGGCTCC	GGCATTCCTG	CIGCGITCCC	GCGTGGTCCT	1200
	TGGGGAGACC	CCACCCTGCC	TTCCCGGAGA	CTCCTGCTCT	TCCTCTGACA	GTCTCATCTT	1260
30	TGGACTCATC	ACCTGCCTGA	CCGGAGTCCT	GGGTGTGGGC	CTGGGTGTGG	AGATCAGCCG	1320
50	CCGGCTCCGC	CACTCCAACC	CCCGGGCTGA	TCCCCTGGTC	TGTGCCACTG	GCCTCCTGGG	1380
	CTCTGCACCC	TTCCTCTTCC	TGTCCCTTGC	CTGCGCCCGT	GGTAGCATCG	TGGCCACTTA	1440
35	TATTTTMATC	TTCATTGGAG	AGACCCTCCT	GTCCATGAAC	TGGGCCATCG	TGGCCGACAT	1500
	TCTGCTGTAC	GTGGTGATCC	CTACCCGACG	CTCCACCGCC	GAGGCCTTCC	AGATCGTGCT	1560
40	GTCCCACCTG	CTGGGTGATG	CTGGGAGCCC	CTACCTCATT	GCCTGATCT	CTGACCGCCT	1620
,,,	GCGCCGGAAC	TGGCCCCCCT	CCTTCTTGTC	CGAGTTCCGG	GCTCTGCAGT	TCTCGCTCAT	1680
	GCTCTGCGCG	TTTGTTGGGG	CACTGGGCGG	CGCACTTTCC	TGGGCACCGC	CATCTTCATT	1740
45	GAGGCCGACC	GCCGGCGGGC	ACAGCTGCAC	GTGCAGGGCC	TGCTGCACGA	AGCAGGGTCC	1800
	ACAGACGACC	CGATTCTCCT	GCCCCAGCGG	GGCCGCTCCA	CCCGCGTGCC	CGTGGCCAGT	1860
50	GTGCTCATCT	GAGARGCTGC	CGCTCACCTA	CCTGCACATC	TGCCACAGCT	GCCCTGGGC	1920
30	CCACCCCACG	AAGGCCTGG	GCCTAACCCC	TTGGCCTGGC	CCAGCTTCCA	GAGGGACCCT	1980
	GGGCCGTGTG	CCAGCTCCCA	GACACTACMT	GGGTAGCTCA	GGGGAGGAGG	TGGGGTCCA	2040
55	GGAGGGGGAT	CCCTCTCCAC	AGGGCAGCC	CCAAGGGCTC	GGTGCTATTT	GTAACGGAAT	2100
	AAAATTTGTA	GCCAGACCCC	AGGTGCCTGC	TCTCGTCTTT	CTCTGGGTGG	CCTCTGATCT	2160
60	TGCACCCCGT	CTTCACCCCA	GGGCTCCTGA	AGACTGTGGG	т		2201

(2) INFORMATION FOR SEQ ID NO: 241:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1661 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double(D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 241:

15	GTCCTTCCCG	ACATCGAGCA	GTTCTTCAAC	ATCGGGGACA	GTAGCTCTGG	GCTCATCCAG	60
15	ACCGTGTTCA	TCTCCAGTTA	CATGGTGTTG	GCACCTGTGT	TTGGCTACCT	GGGTGACAGG	120
	TACAATCGGA	AGTATCTCAT	GTGCGGGGGC	ATTGCCTTCT	GGTCCCTGGT	GACACTGGGG	180
20	TCATSCTTCA	TCCCCGGAGA	GCATTTCTGG	CIGCICCICC	TGACCCGGG	CCTGGTGGGG	240
	GTCGGGGAGG	CCAGTTATTC	CACCATCGCG	CCCACTCTCA	TTGCCGACCT	CTTTGTGGCC	300
25	GACCAGCGGA	SCGGATGCTC	AGCATCTTCT	ACTTIGCCAT	TCCGGTGGGC	ÁGTGGTCTGG	360
	GCTACATTGC	AGGCTCCAAA	GTGAAGGATA	TGGCTGGAGA	CTGGCACTGG	GCTCTGAGGG	420
	TGACACCGGG	TCTAGGAGTG	GTGGCCGTTC	TGCTGCTGTT	CCTGGTAGTG	CGGGAGCCGC	480
30	CAAGGGGAGC	CGTGGAGCGC	CACTCAGATT	TGCCACCCCT	GAACCCCACC	TCGTGGTGGG	540
	CAGATYTGAG	GGCTCTGGCA	AGAAATCCTA	GTTTCGTCCT	GTCTTCCCTG	GGCTTCACTG	600
35	CTGTGGCCTT	TGTCACGGGC	TCCCTGGCTC	TGTGGGCTCC	GGCATTCCTG	CTGCGTTCCC	660
	GCGTGGTCCT	TGGGGAGACC	CCACCCTGCC	TTCCCGGAGA	CTCCTGCTCT	TCCTCTGACA	720
	GTCTCATCTT	TGGACTCATC	ACCTGCCTGA	CCGGAGTCCT	GGCTGTGGGC	CTGGGTGTGG	780
40	AGATCAGCCG	CCGGYTCCGC	CACTCCAACC	CCCGGGCTGA	TCCCCTGGTC	TGTGCCACTG	840
	GCCTCCTGGG	CTCTGCACCC	TTCCTCTTCC	TGTCCCTTGC	CTCCCCCCCT	GGTAGCATCG	900
45	TGGCCACTTA	TATTTTCATC	TTCATTGGAG	AGACCCTCCT	GTCCATGAAC	TGGGCCATCG	960
	TGGCCGACAT	TCTGCTGTAC	GTGGTGATCC	CTACCCGACG	CTCCACCGCC	GAGGCCTTCC	1020
	AGATCGTGCT	GTCCCACCTG	CTGGGTGATG	CTGGGAGCCC	CTACCTCATT	GGCCTGATCT	1080
50	CTGACCGCCT	GCGCCGGAAC	TGGCCCCCCT	CCTTCTTGTC	CGAGTTCCGG	GCTCTGCAGT	1140
	TCTCGCTCAT	GCTCTGCGCG	TTTGTTGGGG	CACTGGGCGG	CGCACTTTCC	TGGGCACCGN	1200
55	CATCTTCATT	GAGGCCGACC	ecceccecc	ACAGCTGCAC	GTGCAGGGCC	TGCTGCACGA	1260
55	AGCAGGGTCC	ACAGACGACC	GGATTGTGGT	GCCCCAGCGG	GGCCGCTCCA	CCCGCGTGCC	1320
	CGTGGCCAGT	GTGCTCATCT	GAGAGGCTGC	CGCTCACCTA	CCTGCACATC	TGCCACAGCT	1380
60	KGCCCTGGGC	CCACCCCACG	AAGGCCTGG	GCCTAACCCC	TTGGCCTGGC	CCAGCTTCCA	1440

WO 98/39448	PCT/US98/04493
-------------	----------------

GAGGGACCCT GGGCCGTGTG CCAGCTCCCA GACACTACMT GGGTAGCTCA GGGGAGGAGG 1500 TGGGGGTCCA GGAGGGGGAT CCCTCTCCAC AGGGGNCACC CCAAGGGCTC GGTGCTATTT 1560 5 GTAACGGAAT AAAATTTGTA GCCAGACCCC AGGTGCCTGC TCTCGTCTTT CTCTGGGTGG 1620 CCTCTGATCT TGCACCCCGT CTTCACCCCA GGGCTCCTGA A 1661 10 (2) INFORMATION FOR SEO ID NO: 242: 15 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1146 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 242: NGACAGAAAA GCAGAAGATG AGACTCTGTT CATTCACTTT TCCTAGGCCC ATCCTGTGGT 60 25 CATCTITICCC CCTCCCATCA TACCTCCTCC TTCCTGGAGC CTCTGCCGGC TTGGCTGTAA 120 TOGTOGCACT TACCTGGATA TTTCAGTGGG AGGATGAAAG GCGAGACTCA CCCTACGCGG 180 TOGGACAGAT GGGGAGAGGA AAAAGGCAGA GATNGCCAGG AGAGGGGTGC AGGACAAACC 240 30 AGAGAGGTTG GGTCAGGGGA AAAGTGTNGG GAGAAAGTGG GGTGCAGGCC CTGCAGGCCG 300 GTTTAGCCAG CAGCTGCGGC CTCCCCGGGC CCTTGGCATC CAACTTCGCA GACAGGGTAC 360 35 CAGCCTCCTG GTGTGTATCA TAGGATTTGT TCACATAGTG TTATGCATGA TCTTCGTAAG 420 GTTAAGAAGC CGTCGTCGTG CACCATGACA TCCAACCCGT ATATATAAAG ATAAATATAT 480 ATATATATGT ATGTAAATTA TAGCACTGAG GGCCCTGCTG CCCTGCTGGA CCAAGCAAAA 540 40 CTAAGCCTTT TGGTTTGGGT ATTATGTTTC GTTTTGTTAT TTGTTTGTTT TTGTGGCTTG 600 TCTTATGTCG TGATAGCACA AGTGCCAGTC GGATTGCTCT GTATTACAGA ATAGTGTTTT 660 45 TAATTCATCA ATGTTCTAGT TAATGTCTAC CTCAGCACCT CCTCTTAGCC TAATTTTAGG 720 AGGITGCCCA ATTITGTITC TICAATTITA CIGGITACIT TITIGIACAA ATCAATCICT 780 TTCTCTCTT CTCTCCC CACCTCTCAC CCTTGCCCTC TCCATCTCCC TCTCCCGCCC 840 50 TCCCCTCCTC CCTCTGGCTC CCCGTCTCAT TTCTGTCCAC TCCATTCTCT CTCCCTCTCT 900 CCTGCCTCCT GCTGCCCCCT CCCCAGCCCA CTTSCCCGAG TYGTGCTTGC CGCTCCTTAT 960 55 CTGTTCTAGT TCCGAAGCAG TTTCACTCGA AGTTGTGCAG TCCTGGTTGC AGCTTTCCGC 1020 ATCTGCCTTC GTTTCGTGTA GATTGACGCG TTTCTTTGTA ATTTCAGTGT TTCTGACAAG 1080 1140

469

CAATTG 1146

5

10

(2) INFORMATION FOR SEQ ID NO: 243:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1350 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 243:

15 AACCCACGGC TGCTGCGGCA GGGCGTGGAG GGCAGAGGGC CGCGGAGGCG CAGTTGCAAA 60 CATGGCTCAG AGCAGAGACG GCGGAAACCC GTTCGCCGAG CCCAGCGAGC TTGACAACCC 120 20 CTTTCAGCCA CCACCAGCCT ATGAGCCTCC AGCCCCTGCC CCATTGCCTC CACCCTCAGC 180 TCCCTCCTTG CAGCCCTCGA GAAAGCTCAG CCCCACAGAA CCTAAGAACT ATGGCTCATA 240 008 25 CAACCGGAAG GCAGAGGAGT TGGACCGAAG GAGNCGAGAG CTGCAGCATG CTGCCCTGGG 360 RGGCACAGCT ACTCGACAGA ACAATTGGCC CCCTCTACCT TCTTTTTGTC CAGTTCAGCC 420 30 CTGCTTTTC CAGGACATCT CCATGGAGAT CCCCCAAGAA TTTCAGAAGA CTGTATCCAC 480 CATGTACTAC CTCTGGATGT GCAGCACGST GGCTCTTCTC CTGAACTTCC TCGCCTGCCT 540 GGCCAGCTTC TGTGTGGAAA CCAACAATGG CGCAGGCTTT GGGCTTTCTA TCCTCTGGGT 600 35 CCTCCTTTTC ACTCCCTGCT CCTTTGTCTG CTGGTACCGC CCCATGTATA AGGCTTTCCG 660 GAGTGACAGT TCATTCAATT TCTTCGTTTT CTTCTTCATT TTCTTCGTCC AGGATGTGCT 720 40 CTTTGTCCTC CAGGCCATTG GTATCCCAGG TTGGGGATTC AGTGGCTGGA TCTCTGCTCT 780 GGTGGTGCCG AAGGCAACAC AGCAGTATCC GTGCTCATGC TGCTGGTCGC CCTGCTCTTC 840 ACTGGCATTG CTGTGCTAGG AATTGTCATG CTGAAACGGA TCCACTCCTT ATACCGCCGC 900 45 ACAGGTGCCA GCTTTCAGAA GGCCCAGCAA GAATTTGCTG CTGGTGTCTT CTCCAACCCT 960 GCGGTGCGAA CCGCARCTTG CCAATGCAGC CGCTGGGGCT GCTGAAAATG CCTTCCGGGC 1020 50 CCCGTGACCC CTGACTGGGA TGCCCTGGCC CTGCTACTTG AGGGAGCTGA CTTAGCTCCC 1080 GTCCCTAAGG TCTCTGGGAC TTGGAGAGAC ATCACTAACT GATGGCTCCT CCGTAGTGCT 1140 CCCAATCCTA TGGCCATGAC TGCTGAACCT GACAGGCGTG TGGGGAGTTC ACTGTGACCT 1200 55 AGTCCCCCCA TCAGGCCACA CTGCTGCCAC CTCTCACACG CCCCAACCCA GCTTCCCTCT 1260 GCTGTGCCAC GGCTGTTGCT TCGGTTATTT AAATAAAAAG AAAGTGGAAC TGGAAAAAAA 1320 60 AAAAAAAAA AAAAAAAAAG GGGGGNCCNC 1350

5	(2)	INFORMATION	FOR	SEO	TD	NO.	244.
,	121	TIAL OLUMIT TOM	LOW	SEU	TD	NO:	Z44:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1529 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 244:

	(MI) ODGODICH BESCHILLTON. SEQ ID NO. 244.	
15	TCCCAGAGGC CGGGGGTTC CAGCTCTGCC TGTAGCAGAG CCCTGAGGAG GAGGAGGAAG	60
	AGGATGTGCT GAAATACGTC CGGGAGATCT TTTTCAGCTA GGGCATAAAC TGTGCACTGA	120
20	ACTIGITCTGCC GAGAGCAGCT GGAGGACAGC TGAGCTTCCA CTGGTGCTGC TGGGCCGMCC	180
20	GCCTGTGGGA ATGGGGCTCT CTGTGCTCCT ACCTTTGTGC CTTCTTGGGC CTGGCAGATT	240
	CACCTCAGGC CAGAAGCCCC TGGACACTCC GGGCCTTGGG GTGCCGTTCT GAGTGTGCGG	⁻ ,300
25	AAGGCAGGAC TCAAAATGAG ATCCCATTTG ACTCCCTCTG TATGTACTGT GCCCTCTCCT	360
	GGCTCTTGAG GCTCTGGAGT CCCAATTGTC TGTGTTAGTC AGTGACCAGG TTCCAGGGAA	420
30	AATRATGTCA TGTGGTGGTC CAACTTACTG GAACCAAAGA GACAGTACTT TGCAAAGAAA	480
	AGGATCACTG CCAGGTGCAC TGGAATTGCT ACAGTTTAGT CCGCATGATC TCTCCTGAAG	540
	GAGGAAGCCT GTTTCAAAAA TAGTTTCCAT CATGAGTCTA TCAATGAGCT CCCACCTCTC	600
35	CAGCCAGCCT AGAAAGCAAA CGAGCTGCCC ACAGTTCTCT GCCCTGTCTG GGAGGTTGAG	660
	GCCACAGTGT ATAGACTGGT AAGCCAGACA GGCCTCCTCC CGCAAGCTGC TACCTTGCTT	720
40	TCACCTGTAC CTTGGTCCCC GGGCAGCTAG CTATAAAGCA AGAGGGACAG GAGCCCAGAA	780
	GAGACACTGA GGACAAGAGA TCACACCAGA GTACATGTCT CTGCCTCTGT TTTCAGTGTG	840
	GCTTTGGACA GGAATATATG AATAAATCAC TGCCATACAG GTTTTCCAAT ACACAAGTGC	900
45	TAGAAAATAC ACACAATTCC CCAATGCGTA AGTTGTGCTA ATGTCTTTCC AAGTTCTGGG	960
	TTGGGAAGTG GAGGGTGGCA GCGTTTGTTT GTGCGCAACC GTCCAGTCCT GTTCACAGCG	1020
50	AGGATTIGGA GTCCTCCAGG GTCTCATCAT GGGAGTGATT TGTCAGCGGA CGCCTCTGCC	1080
	CTGTCTGGCT TCAGGTCCAG GGAAGCTTTG AAGCAGTCAA GCCTTGTCTT TGTACCCCAT	1140
	GTGTCCTGTC TTTGTTGAGT CACTCAGAGA TCACTCCTGG ACCTCTGGGG TTGGAGTTCC	1200
55	AGTGATGGCT TATGGCGGCC CACTCACTAT GGTGGGCTGA GTGGAAGCTC CTTAACCATG	1260
	TCCCCAGAGA CACTGAGGTG CTCGCTCTTT TAATGTCCTC GTTTGTTGCC GTAAGTTCTT	1320
60	TGCTAGGTTT CATTTTGGCA TTTGGCAAAT CAGCCTGGAA GTCTGGCCCC ATGACAGCAA	1380

471

	TCACTCCCTC	CCCACCCTCC	TGAAGCTAGA	GGAAGATTIG	Cicagaicca	TTAATTAAAG	1440
	CAGGAATIGG	TGTGACAATG	AGCTGCATGG	TTTAGGGAGT	CTTTGGGAGC	CTTGGAAGTC	1500
5	CTGAAGGACA	AACAATCTTG	TACTAAGAA				1529

10 (2) INFORMATION FOR SEQ ID NO: 245:

15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1537 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 245:

20	GTGCGAGGTC	CCCGCCAGCC	CCCAGCGGCC	TTCCCGGCCC	GGGCGCTCC	CAGAGCAAAC	60
	GAGGCCCCTG	AGAGCTCCAC	CTAGTTCACA	GGATAAAATC	CCACAGCAGA	ACTCGGAGTC	120
25	AGCAATGGCT	AAGCCCCAGG	TGGTTGTAGC	TCCTGTATTA	ATGTCTAAGC	TGTCTGTGAA	180
-5	TGCCCCTGAA	TITTACCCTT	CAGGTTATTC	TTCCAGTTAC	ACAGAATCCT	ATGAGGATGG	240
	TTGTGAGGAT	TATCCTACTC	TATCAGAATA	TGTTCAGGAT	TTTTTGAATC	ATCTTACAGA	300
30	GCAGCCTGGC	AGTTTTGAAA	CTGAAATTGA	ACAGTTTGCA	GAGACCCTGA	ATGGTTGTGT	360
	TACAACAGAT	GATGCTTTGC	AAGAACTTGT	GGAACTCATC	TATCAACAGG	CCACATCTAT	420
35	CCCAAATTTC	TCTTATATGG	GAGCTCGCCT	GTGTAATTAC	CTGTCCCATC	ATCTGACAAT	480
	TAGCCCACAG	AGTGGCAACT	TCCGCCAATT	GCTACTTCAA	AGATGTCGGA	CTGAATATGA	540
	AGTTAAAGAT	CAAGCTGCAA	AAGGGGATGA	AGTTACTCGA	AAACGATTTC	ATGCATTTGT	600
Ю	ACTCTTTCTG	GGAGAACTTT	ATCTTAACCT	GGAGATCAAG	GGAACAAATG	GACAGGTTAC	660
	AAGAGCAGAT	ATTCTTCAGG	TIGGICTICG	AGAATTGCTG	AATGCCCTGT	TTTCTAATCC	720
15	TATGGATGAC	AATTTAATTT	GTGCAGTAAA	ATTGTTAAAG	TTGACAGGAT	CAGTTTTGGA	780
	AGATGCTTGG	AAGGAAAAAG	GAAAGATGGA	TATGGAAGAA	ATTATTCAGA	GAATTGAAAA	840
	CGTTGTCCTA	GATGCAAACT	GCAGTAGAGA	TGTAAAACAG	ATGCTCTTGA	AGCTTGTAGA	900
50	ACTCCGGTCA	AGTAACTGGG	GCAGAGTCCA	TGCAACTTCA	ACATATAGAG	AAGCAACACC	960
	AGAAAATGAT	CCTAACTACT	TTATGAATGA	ACCAACATTT	TATACATCTG	ATGGTGTTCC	1020
55	TTTCACTGCA	GCTGATCCAG	ATTACCAAGA	GAAATACCAA	GAATTACTTG	AAAGAGAGGA	1080
,,,	CTTTTTTCCA	GATTATGAAG	AAAATGGAAC	AGATTTATCC	GGGGCTGGTG	ATCCATACTT	1140
	GGATGATATT	GATGATGAGA	TGGACCCAGA	GATAGAAGAA	GCTTATGAAA	AGTTTTGTTT	1200
60	GGAATCAGAG	CGTAAGCGAA	AACAGTAAAG	TTAAATTTCA	GCATATCAGT	TTTATAAAGC	1260

	AGTTTAGGTA TGGTGATTTA GCAGAACACA AGAGAGCAAG AAAATGTGTC ACATCTATAC	1320
5	CAAATTRAGG ATGTTGAGTT ATGTTACTAA TGTATGCAAC TTTAATTTTG TTTAACACTA	1380
,	TCTGCCAAAA TAAACTTTAT TCCCTATAAC TTAAAATGTG TATATATATA TAATAGTTTA	1440
	TTATGTACAG TTAATTCTAC TGTTTTGGCT GCAATAAAAT CGATTTTGAA ATAAAWRAAA	1500
10	AAAAAAAAA AAGGGNGGCC GCTCTAGAGG ANCCAAG	1537
15	(2) INFORMATION FOR SEQ ID NO: 246:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 506 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 246:	
25	TGCAGGATTT GGCCAGGACC CSCCGCGGTG GCGGTTGCTA TCGCTTCGCA GAACCTACTC	60
	AGGCAGCCAG CTGAGAAGAG TTGAGGGAAA GTGCTGCTGC TGGGTCTGCA GACGCGATGG	120
30	ATAACGTGCA GCCGAAAATA AAACATCGCC CCTTCTGCTT CAGTGTGAAA GGCCACGTGA	180
ou	AGATGCTGCG GCTGGATATT ATCAACTCAC TGGTAACAAC AGTATTCATG CTCATCGTAT	240
	CTGTGTTGGC ACTGATACCA GAAACCACAA CATTGACAGT TGGTGGAGGG GTGTTTGCAC	300
35	TTGTGACAGC AGTATGCTGT CTTGCCGACG GGGCCCTTAT TTACCGGAAG CTTCTGTTCA	360
	ATCCCAGCGG TCCTTACCAG AAAAAGCCTG TGCATGAAAA AAAAGAAGTT TTGTAATTTT	420
10	ATATTACTIT TTAGTTTGAT ACTAAGTATT AAACATATTT CTGKATTATT CCAAAAAAA	480
	AAAAAAAAA AAAAAAAATT TOGTOG	506
1 5	(2) INFORMATION FOR SEQ ID NO: 247:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1348 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 247:	
,,,	GTCTTTCTTT TNCTGTTTTG AGTTGGTGAG TGAGTGAATA GGGTAACATG GGCCTTCAGG	60
	ATGACCCCTT GGAACTGTGC CGAGTTCCTT AAATCTCAGC TGGGATCCTG GACCTGGGAG	120
50	GCCCCTGTGA GGGCCAGCTC TGGAAAAACC TGGGAGTTGA TGCCGGAGGY TGGGAAGAAC	180

473

240

180

	TCTGCTCGAG GGCAGGGTGC CCTGGAACAC TGGTAGTTCT GGGGCTGGGA GGGAGAGGGG	240
5	CTCCGGCTTT CTCTGAAATG AACACTGCTC TTCAGCAGTT CAAGTACTTG TTCTCAAAAC	300
	ATTITCTAAT TGATTGGTAG GTTTTCATAA GCATTGTTTC TTTAAGGCAT GGAAAGGGAA	360
	GAATGCTCAA GCAAGTCATG TTTGTTTTCA GTGGGATGGG CCCGCGTTCT CACTGCTGGG	420
10	GGCTTCCCCT TGCATGTGGC ACCTTTGTGC AGGGCCACCA GGCAGACTCT TCCCACCTTC	480
	TCCCACTGAA GCACCAAGGG GCTTGAACCG TAATTTGGCT AATCAGAGGC ATTTTTTTTTG	540
15	TCCTAGTATC TTTCACACTT GTCCAACCGT CTTATTTTTT TAAAAGTTCT GTTGCTTGTA	600
15	TTAACACGAA ACTAGAGAGA AATAGTTTCT GAAGCCAGTT TATTGTGAAG ATCCCCAAGG	660
	GGAGGTTCGG TAGAGAAAA TAGTAAGCTG GTTTAGAAAC TGACGAGGGC AAACAGCCAG	720
20	GACGCATTGG AGAGGAATTT GCCAAAGATC TACCCTGAGA TAACGCCTGT CCAGTGTCTT	780
	CACCACGTGA ATAACCAGCG CTCCAAAGTG TTTTTCTGCT TTGAAAAAAA AAATTCCACA	840
25	AGCTTTTAAA GGTGCATTTA AGAATCCATG TGACTTTAGA ATGGAACTGC CGGCCCTGGC	900
23	AACTGTCACG TGTGCTAGAA GGTTCGATGC CTCTGGAATG CATGTGATAC TCATCTCCAT	960
	TITGTITCCT TGATTGCATT TITGTTCTTT TAGCAGATCT GTCCCTGTGG GTGGTGTCTA	1020
30	AGAAGTCGGA CACCTTGGTT TTTGTGTTAG ATTGAGCTGG GCAGCTGCAA TCAGCTTCTT	1080
	TATATGCAAA TTAGGCACGA CCCATCTGTG GTTCCCTGGT TGGTGGCTAA TGAAGTGAGG	1140
35	GGAGGGAGGG ATGTCACCCC AAAAGTAGGC CCTCCCATTG GCTTTGGCCA GGCCAGACAC	1200
55	TTCACATCGT TTACATGGTT CTGTGTAATT TTAAAGTTTA TGTGTATAAA GCGAAGCTGT	1260
	TTCTGTGAAA CTGTATATTT TGTAAATAAA TATATTGCTA CTTTGAGAWR AAAAAAAAAA	1320
40	AAAAACTCGA GGGGGGCCCG GTACCCAA	1348
45	(2) INFORMATION FOR SEQ ID NO: 248:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1766 base pairs (B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 248:	
55	GTGCCGAATC GGCAGAGCGG CACGAGCGGC CACGAGAGCA GGCGGAGTAA AGGGACTTGA	60
	GCGAGCCAGT TGCCGGATTA TTCTATTTCC CCTCCCTCTC TCCCGCCCCG TATCTCTTTT	120

CACCCTTCTC CCACCCTCGC TCGCGTASCA TGGCGGAGCG TCGGCGGCCA CTCAGTCCCA

	TTCCATCTCC	TCGTCGTCCT	TCGGAGCCGA	GCCGTCCGCG	ccccccccc	GCGGGAGCCC	240
	AGGAGCCTGC	CCCGCCCTGG	GGACGAAGAG	CTGCAGCTCC	TCCTGTGCGG	TGCACGATCT	300
5	GATTTTCTGG	AGAGATGTGA	AGAAGACTGG	GTTTGTCTTT	GGCACCACGC	TGATCATGCT	360
	GCTTTCCCTG	GCAGCTTTCA	GTGTCATCAG	TGTGGTTTCT	TACCTCATCC	TGGCTCTTCT	420
10	CTCTGTCACC	ATCAGCTTCA	GGATCTACAA	GTCCGTCATC	CAAGCTGTAC	AGAAGTCAGA	480
	AGAAGGCCAT	CCATTCAAAG	CCTACCTGGA	CGTAGACATT	ACTCTGTCCT	CAGAAGCTTT	540
	CCATAATTAC	ATGAATGCTG	CCATGGTGCA	CATCAACAGG	GCCCTGAAAC	TCATTATTCG	600
15	TCTCTTTCTG	GTAGAAGATC	TGGTTGACTC	CTTGAAGCTG	GCTGTCTTCA	TGTGGCTGAT	660
	GACCTATGTT	GGTGCTGTTT	TTAACGGAAT	CACCCTTCTA	ATTCTTGCTG	AACTGCTCAT	720
20	TTTCAGTGTC	CCGATTGTCT	ATGAGAAGTA	CAAGACCCAG	ATTGATCACT	ATGTTGGCAT	780
	CGCCCGAGAT	CAGACCAAGT	CAATTGTTGA	AAAGATCCAA	GCAAAACTCC	CTGGAATCGC	840
	CAAAAAAAAG	GCAGAATAAG	TACATGGAAA	CCAGAAATGC	AACAGTTACT	AAAACACCAT	900
25	TTAATAGTTA	TAACGTCGTT	ACTTGTACTA	TGAAGGAAAA	TACTCAGTGT	CAGCTTGAGC	960
	CTGCATTCCA	AGCTTTTTT	TTAATTTGGT	GITTICICCC	ATCCTTTCCC	TTTAACCCTC	1020
30	AGTATCAAGC	ACAAAAATTG	ATGGACTGAT	AAAAGAACTA	TCTTAGAACT	CAGAAGAAGA	1080
	AAGAATCAAA	TTCATAGGAT	AAGTCAATAC	CTTAATGGTG	GTAGAGCCTT	TACCTGTAGC	1140
	TTGAAAGGGG	AAAGATTGGA	GGTAAGAGAG	AAAATGAAAG	AACACCTCTG	GCTCCTTCTG	1200
35	TCCAGTTTTC	AGCACTAGTC	TTACTCAGCT	ATCCATTATA	GTTTTGCCCT	TAAGAAGTCA	1260
	TGATTAACTT	ATGAAAAAAT	TATTTGGGGA	CAGGAGTGTG	ATACCTTCCT	TGGTTTTTTT	1320
40	TTGCAGCCCT	CAAATCCTAT	СТТССТСССС	CACAATGTGA	GCAGCTACCC	CTGATACTCC	1380
	TTTTCTTTAA	TGATTTAACT	ATCAACTTGA	TAAATAACTT	ATAGGTGATA	GTGATAATTC	1440
	CTGATTCCAA	GAATGCCATC	TGATAAAAA	GAATAGAAAT	GGAAAGTGGG	ACTGAGAGGG	1500
45	AGTCAGCAGG	CATGCTGCGG	TGGCGGTCAC	TCCCTCTGCC	ACTATCCCCA	GGGAAGGAAA	1560
	RGCTCCGCCA	TTTGGGAAAG	TGGTTTCTAC	GTCACTGGAC	ACCGGTTCTG	AGCATTAGTT	1620
50	TGAGAACTCG	TTCCCGAATG	TGCTTTCCTC	CCTCTCCCCT	GCCCACCTCA	AGTTTAATAA	1680
	ATAAGGTTGT	ACTITICITA	СТАТААААТА	АААААААА	AACTCGAGGG	GGCCCGGTA	1740
	CCCAAATCGC	CGGATATGAT	CGTAAA				1766

(2) INFORMATION FOR SEQ ID NO: 249:

60 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2664 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 249:

	AGTGTCCTCG	GAGCAGGCGG	AGTAAAGGGA	CTTGAGCGAG	CCAGTTGCCG	GATTATTCTA	60
10	TTTCCCCTCC	CTCTCTCCCG	CCCCGTATCT	CTTTTCACCC	TTCTCCCACC	CTCGCTCGCG	120
	TASCATGGCG	GAGCGTCGGC	GCCACTCAG	TCCCATTCCA	TCTCCTCGTC	GTCCTTCGGA	180
15	GCCGAGCCGT	ccccccccc	CGGCGGGG	AGCCCAGGAG	CCTGCCCCGC	CCTGGGGACG	240
13	AAGAGCTGCA	GCTCCTCCTG	TGCGGTGCAC	GATCTGATTT	TCTGGAGAGA	TGTGAAGAAG	300
	ACTGGGTTTG	TCTTTGGCAC	CACGCTGATC	ATGCTGCTTT	CCCTGGCAGC	TTTCAGTGTC	360
20	ATCAGTGTGG	TTTCTTACCT	CATCCTGGCT	CTTCTCTCTG	TCACCATCAG	CTTCAGGATC	420
	TACAAGTCCG	TCATCCAAGC	TGTACAGAAG	TCAGAAGAAG	GCCATCCATT	CAAAGCCTAC	480
25	CTGGACGTAG	ACATTACTCT	GTCCTCAGAA	GCTTTCCATA	ATTACATGAA	TGCTGCCATG	540
23	GTGCACATCA	ACAGGGCCCT	GAAACTCATT	ATTCGTCTCT	TTCTGGTAGA	AGATCTGGTT	600
	GACTCCTTGA	AGCTGGCTGT	CTTCATGTGG	CTGATGACCT	ATGTTGGTGC	TGTTTTTAAC	660
30	GGAATCACCC	TTCTAATICT	TGCTGAACTG	CTCATTTTCA	GTGTCCCGAT	TGTCTATGAG	720
	AAGTACAAGA	CCCAGATTGA	TCACTATGTT	GGCATCGCCC	GAGATCAGAC	CAAGTCAATT	780
35	GTTGAAAAGA	TCCAAGCAAA	ACTCCCTGGA	ATCGCCAAAA	AAAAGGCAGA	ATAAGTACAT	840
33	GGAAACCAGA	AATGCAACAG	TTACTAAAAC	ACCATTTAAT	AGTTATAACG	TCGTTACTTG	900
	TACTATGAAG	GAAAATACTC	AGTGTCAGCT	TGAGCCTGCA	TTCCAAGCTT	TAATTTTTTT	960
40	TTGGTGTTTT	CTCCCATCCT	TTCCCTTTAA	CCCTCAGTAT	CAAGCACAAA	AATTGATGGA	1020
	CTGATAAAAG	AACTATCTTA	GAACTCAGAA	GAAGAAAGAA	TCAAATTCAT	AGGATAAGTC	1080
45	AATACCTTAA	TGGTGGTAGA	GCCTTTACCT	GTAGCTTGAA	AGGGGAAAGA	TTGGAGGTAA	1140
43	GAGAGAAAAT	GAAAGAACAC	CTCTGGGTCC	TTCTGTCCAG	TTTTCAGCAC	TAGTCTTACT	1200
	CAGCTATCCA	TTATAGTTTT	GCCCTTAAGA	AGTCATGATT	AACTTATGAA	AAAATTATTT	1260
50	GGGGACAGGA	GTGTGATACC	TTCCTTGGTT	TTTTTTTGCA	GCCCTCAAAT	CCTATCTTCC	1320
	TGCCCCACAA	TGTGAGCAGC	TACCCCTGAT	ACTCCTTTTC	TTTAATGATT	таастатсаа	1380
55	СТТСАТАААТ	AACTTATAGG	TGATAGTGAT	AATTCCTGAT	TCCAAGAATG	CCATCTGATA	1440
55	AAAAAGAATA	GAAATGGAAA	GTGGGACTGA	GAGGGAGTCA	GCAGGCATGC	TGCGGTGGCG	1500
	GTCACTCCCT	CTGCCACTAT	CCCCAGGGAA	GGAAARGCTC	CGCCATTTGG	GAAAGTGGTT	1560
60	TCTACGTCAC	TGGACACCGG	TTCTGAGCAT	TAGTTTGAGA	ACTCGTTCCC	GAATGTGCTT	1620

	TCCTCCCTCT CCCCTGCCCA CCTCAAGTTT AATAAATAAG GTTGTACTTT TCTTACTATA	1680
5	AAATAAATGT CTGTAACTGC TGTGCACTGC TGTAAACTTG TTAGAGAAAA AAATAACCTG	1740
3	CATGTGGGCT CCTCAGTTAT TGAGTTTTTG TGATCCTATC TCAGTCTGGG GGGGAACATT	1800
	CTCAAGAGGT GAAATACAGA AAGCCTTTTT TTCTTGATCT TTTCCCGAGA TTCAAATCTC	1860
10	CGATTCCCAT TIGGGGCAA GTTTTTTTCT TCACCTTCAA TATGAGAATT CAGCGAACTT	1920
	GAAAGAAAAA TCATCTGTGA GTTCCTTCAG GTTCTCACTC ATAGTCATGA TCCTTCAGAG	1980
15	GGAATATGCA CTGGCGAGTT TAAAGTAAGG GCTATGATAT TTGATGGTCC CAAAGTACGG	2040
13	CAGCTGCAAA AAGTAGTGGA AGGAAATTGT CTACGTGTCT TGGAAAAATT AGTTAGGAAT	2100
	TTGGATGGT AAAAGGTACC CTTGCCTTAC TCCATCTTAT TTTCTTAGCC CCCTTTGAGT	2160
20	GTTTTAACTG GTTTCATGTC CTAGTAGGAA GTGCATTCTC CATCCTCATC CTCTGCCCTC	2220
	CCAGGAAGTC AGTGATTGTC TTTTTGGGCT TCCCCTCCAA AGGACCTTCT GCAGTGGAAG	2280
25	TGCCACATCC AGTTCTTTC TTTTGTTGCT GCTGTGTTTA GATAATTGAA GAGATCTTTG	2340
25	TGCCACACAG GATTTTTTT TTTTTTAAGA AAAACCTATA GATGAAAAAT TACTAATGAA	2400
	ACTGTGTGTA CGTGTCTGTG CGTGCAACAT AAAAATACAG TAGCACCTAA GGAGCTTGAA	2460
30	TCTTGGTTCC TGTAAAATTT CAAATTGATG TGGTATTAAT AAAAAAAAAA	2520
	AAAAAAAAA AAAAGGCGG CCGCTCTAGA GGATCCAAGC TTACGTACGC GTGCATGCGA	2580
35	CGTCCATAGC TCTTTCTATA GGGGTCCCCC AAATTCCATT CANCGGGCCG TCGGTTTTAN	2640
33	AAAGGTCGTG ANTGGGGGAA ANCC	2664
40		
	(2) INFORMATION FOR SEQ ID NO: 250:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 865 base pairs	
45	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 250:	
50	CGTGGGAGTG AGGTACCAGA TTCAGCCCAT TTGGCCCCGA CGCCTCTKTT CTCGGAATCC	60
	GGGTGCTGCG GATTGAGGTC CCGGTTCCTA ACGGTGGGAT CGGTGTCCTC GGGATGAGAT	120
55	TTGGCGTTTC CTCGGGGCTT TGGTGGGATC GGTGTCCTCA GGATGAGATT TAGGGTTTCC	180
	TCGGGGCTTT CGGGATCTTC ACCTAATATC CGGACTGCAA GATGGAGGAA GGCGGGAACC	240
	TAGGAGGCCT GATTAARATG GTCCATCTAC TGGTCTTGTC AGGTGCCTGG GGCATGCAAA	300

	TGTGGGTGAC CTTCGTCTCA GGCTTCCTGC TTTTCCGAAG CCTTCCCCGA CATACCTTCG	360
	GACTAGTGCA GAGCAAACTC TTCCCCTTCT ACTTCCACAT CTCCATGGGC TGTGCCTTCA	420
5	TCAACCTCTG CATCTTGGCT TCACAGCATG CTTGGGCTCA GCTCACATTC TGGGAGGCCA	480
	GCCAGCTITA CCTGCTGTTC CTGAGCCTTA CGCTGGCCAC TGTCAACGCC CGCTGGCTGG	540
10	AACCCCGCAC CACAGCTGCC ATGTGGGCCC TGCAAACCGT GGAGAAGGAG CGAGGCCTGG	600
10	GTGGGGAGGT ACCAGGCAGC CACCAGGGTC CCGATCCCTA CCGCCAGCTG CGAGAGAAGG	660
	ACCCCAAGTA CAGTGCTCTC CGCCAGAATT TCTTCCGCTA CCATGGGCTG TCCTCTCTTT	720
15	GCAATCTGGG CTGCGTCCTG AGCAATGGGC TCTGTCTCGC TGGCCTTGCC CTGGAAATAA	780
	GGAGCCTCTA GCATGGCCCC TGCATGCTAA TAAATGCTTC TTCAGAAAAA AAAAAAAAAA	840
20	AAACTCGAGG GGGGCCCGGT ACCCA	865
20		
25	(2) INFORMATION FOR SEQ ID NO: 251:	ė
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2082 base pairs (B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 251:	
35	TGGGGGGGN AATGGGTGTC TGGCTCANGG ATTGCCNAAT CTGGAAATTC TCCATAACTT	60
55	GCTAGCTTGT TTTTTTTTT TTTTTTTACA CCCCCCGCC CCACCCCCGG ACTTGCACAA	120
	TGTTCAATGA TCTCAGCAGA GTTCTTCATG TGAAACGTTG ATCACCTTTG AAGCCTGCAT	180
40	CATTCACATA TITTITCTIC TICTICCCCT TCAGTTCATG AACTGGTGTT CATTTTCTGT	240
	GTGTGTGTGT GTTTATTTT GTTTGGATTT TTTTTTTT	300
45	GTGTTGCCCA CCTTTTTTCC AACCTCCACC CTCACTCCTT CTCAACCCAT CTCTTCCGAG	360
	ATGAAAGAAA AAAAAAAGCA AAGTITITTT TICTICTCCT GAGTICTICA TGTGAGATIG	420
	AGCTTGCAAA GGAAAAAAA ATGTGAAATG TTATAGACTT GCAGCGTGCC GAGTTCCATC	480
50	GGGTTTTTTT TTTAGCATTG TTATGCTAAA ATAGAGAAAA AAATGCTCAT GAACCTTCCA	540
	CAATCAAGCC TGCATCAACC TTCTGGGTGT GACTTGTGAG TTTTGGCCTT GTGATGCCAA	600
55	ATCTGAGAGT TTAGTCTGCC ATTAAAAAAA CTCATTCTCA TCTCATGCAT TATTATGCTT	660
	GCTACTTTGT CTTAGCAACA ATGAACTATA ACTGTTTCAA AGACTTTATG GAAAAGAGAC	720
	ATTATATTAA TAAAAAAAA AAGCCTGCAT GCTGGACATG TATGGTATAA TTATTTTTTC	780
60	CTTTTTTTT CCTTTCGCT TCGAAATCGA CCTTCGAAGA CTTATAGCAT GCCATTCATA	840

	CTTTTGTTTT ATTGCCTCAT GACTTTTTTG AGTTTAGAAC AAAACAGTGC AACCGTAGAG	900
5	CCTTCTTCCC ATGAAATTTT GCATCTGCTC CAAAACTGCT TTGAGTTACT CAGAACTTCA	960
J	ACCTCCCAAT GCACTGAAGG CATTCCTTGT GCAAAGATAC CAGAATGGGT TACACATTTA	1020
	ACCTGGCAAA CATTGAAGAA CTCTTRATGT TTTCTTTTTA ATAAGAATGA CGCCCCACTT	1080
10	TGGGGACTAA AATTGTGCTA TTGCCGAGAA GCAGTCTAAA ATTTATTTTT TAAAAAGAGA	1140
	AACTGCCCCA TTATTTTTGG TITGTTTTAT TTTTATTTTA TATTTTTTGG CTTTTGGTCA	1200
15	TTGTCAAATG TGGAATGCTC TGGGTTTCTA GTATATAATT TAATTCTAGT TTTTATAATC	1260
	TGTTAGCCCA GTTAAAATGT ATGCTACAGA TAAAGGAATG TTATAGATAA ATTTGAAAGA	1320
	GTTAGGTCTG TTTAGCTGTA GATTTTTTAA ACGATTGATG CACTAAATTG TTTACTATTG	1380
20	TGATGTTAAG GGGGGTAGAG TTTGCAAGGG GACTGTTTAA AAAAAGTAGC TTATACAGCA	1440
	TGTGCTTGCA ACTTAAATAT AAGTTGGGTA TGTGTAGTCT TTGCTATACC ACTGACTGTA	1500
25	TTGAAAACCA AAGTATTAAG AGGGGAAACG CCCCTGTTTA TATCTGTAGG GGTATTTTAC	1560
2.5	ATTCAAAAAT GTATGTTTTT TTTTCTTTTC AAAATTAAAG TATTTGGGAC TGAATTGCAC	1620
	TAAGATATAA CCTGCAAGCA TATAATACAA AAAAAAATTG CAAAACTGTT TAGAACGCTA	1680
30	ATAAAATITA TGCAGTTATA AAAATGGCAT TACTGCACAG TTTTAAGATG ATGCAGATTT	1740
	TTTTACAGTT GTATTGTGGT GCAGAACTGG ATTTTCTGTA ACTTAAAAAA AAATCCACAG	1800
35	TTTTAAAGGC AATAATCAGT AAATGTTATT TTCAGGGACT GACATCCTGT CTTTAAAAAG	1860
33	AAATGAAAAG TAAATCTTAC CACAATAAAT ATAAAAAAAT CITGTCAGTT ACTTTTCTTT	1920
	TACATATTTT GCTGTGCAAA ATTGTTTTAT ATCTTGAGTT ACTAACTAAC CACGCGTGTT	1980
40	GTTCCTATGT GCTTTTCTTT CATTTCAAT TCTGGTTATA TCAAGAAAAG AATAATCTAC	2040
	AATAATAAAC GGCATTTTTT TTTGAAAAAA AAAAAAAAAA	2082
45	,	
	(2) INFORMATION FOR SEQ ID NO: 252:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 1482 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
55	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 252:	- د
	CAGGCAGGCT GGCCCCGGGG ACTTCTCTCT GGCCCTGCTC CCTCCGAGCG CTCCGCCGTT	60
60	GCCCGCCTGG CCCCTACGGA GTCCTTAGCC AGGATGGAGG CTGTTGTGAA CTTGTACCAA	120

PCT/US98/04493

WO 98/39448

GAGGTGATGA AGCACGCAGA TCCCCGGATC CAGGGCTACC CTCTGATGGG GTCCCCCTTG 180 CTAATGACCT CCATTCTCCT GACCTACGTG TACTTCGTTC TCTCACTTGG GCCTCGCATC 240 5 ATGGCTAATC GGAAGCCCTT CCAGCTCCGT GGCTTCATGA TTGTCTACAA CTTCTCACTG 300 GTGGCACTCT CCCTCTACAT TGTCTATGAG TTCCTGATGT CGGGCTGGCT GAGCACCTAT 360 ACCTGGCGCT GTGACCCTGT GGACTATTCC AACAGCCCTG AGGCACTTAG GATGGTTCGG 420 10 GTGGCCTGGC TCTTCCTCTT CTCCAAGTTC ATTGAGCTGA TGGACACAGT GATCTTTATT 480 CTCCGAAAGA AAGACGGCCA GGTGACCTTC CTACATGTCT TCCATCACTC TGTGCTTCCC 540 15 600 ATAAACTCTT CCGTGCATGT CATAATGTAC CTGTACTACG GATTATCTGC CTTTGGCCCT 660 GTGGCACAAC CCTACCTTTG GTGGAAAAAG CACATGACAG CCATTCAGCT GATCCAGTTT 720 20 GTCCTGGTCT CACTGCACAT CTCCCAGTAC TACTTTATGT CCAGCTGTAA CTACCAGTAC 780 CCAGTCATTA TTCACCTCAT CTGGATGTAT GGCACCATCT TCTTCATGCT GTTCTCCAAC 25 TTCTGGTATC ACTCTTATAC CAAGGGCAAG CGGCTGCCCC GTGCACTTCA GCAAAATGGA 900 GCTCCAGGTA TTGCCAAGGT CAAGGCCAAC TGAGAAGCAT GGCCTAGATA GGCGCCCACC 960 TAAGTGCCTC AGGACTGCAC CTTAGGGCAG TGTCCGTCAG TGCCCTCTCC ACCTACACCT 1020 30 GTGACCAAGG CTTATGTGGT CAGGACTGAG CAGGGGACTG GCCCTCCCCT CCCCACAGCT 1080 GCTCTACAGG GACCACGGCT TTGGTTCCTC ACCCACTTCC CCCGGCCAGC TCCAGGGATG 1140 35 TGGCCTCATT GCTGTCTGCC ACTCCAGAGC TGGGGGCTAA AAGGGCTGTA CAGTTATTTC 1200 CCCCTCCCTG CCTTAAAACT TGGGAGAGGA GCACTCAGGG CTGGCCCCAC AAAGGGTCTC 1260 GTGGCCTTTT TCCTCACACA GAAGAGGTCA GCAATAATGT CACTGTGGAC CCAGTCTCAC 1320 40 TCCTCCACCC CACACACTGA AGCAGTAGCT TCTGGGCCAA AGGTCAGGGT GGGCGGGGCC 1380 CTGGGAATAC AGCCTGTGGA GGCTGCTTAC TCAACTTGTG TCTTAATTAA AAGTGACAGA 1440 45 GGAAACCAAA AAAAAAAAA AAAAACTCGA GGGGGCCCG TA 1482

50 (2) INFORMATION FOR SEQ ID NO: 253:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 834 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 253:

60 GGCACGAGGG CCGTTGCCCG CCTGGCCCCT ACGGAGTCCT TAGCCAGGAT GGAGGCTGTT 60

480

	GTGAACTTGT ACCAAGAGGT GATGAAGCAC GCAGATCCCC GGATCCAGGG CTACCCTCTG	120
5	ATGGGGTCCC CCTTGCTAAT GACCTCCATT CTCCTGACCT ACGTGTACTT CGTTCTCTCA	180
J	CTTGGGCCTC GCATCATGGC TAATCGGAAG CCCTTCCAGC TCCGTGGCTT CATGATTGTC	240
	TACAACTTCT CACTGGTGGC ACTCTCCCTC TACATTGTCT ATGAGTTCCT GATGTCGGGC	300
10	TGGCTGAGCA CCTATACCTG GCGCTGTGAC CCTCAGGACT GCACCTTAGG GCAGTGTCCG	360
	TCAGTGCCCT CTCCAMCTAC ACCTGTGACC AAGGCTTATG TGGTCAGGAC TGAGCAGGGG	420
15	ACTGGCCCTC CCCTCCCCAC AGCTGCTCTA CAGGGACCAC GGCTTTGGTT CCTCACCCAC	480
13	TTCCCCCGGG CAGCTCCAGG GATGTGGCCT CATTGCTGTC TGCCACTCCA GAGCTGGGGG	540
	CTAAAAGGGC TGTACAGTTA TITCCCCCTC CCTGCCTTAA AACTTGGGAG AGGAGCACTC	600
20	AGGGCTGGCC CCACAAAGGG TCTCGTGGCC TTTTTCCTCA CACAGAAGAG GTCAGCAATA	660
	ATGTCACTGT GGACCCAGTC TCACTCCTCC ACCCCACACA CTGAAGCAGT AGCTTCTGGG	720
25	CCAAAGGTCA GGGTGGGCGG GGGCCTGGGA ATACAGCCTG TGGAGGCTGC TTACTCAACT	780
23	TGTGTCTTAA TTAAAAGTGA CAGAGGAAAC CACGAAAAAA AAAAAAAAA AAAA	834
30 35	(2) INFORMATION FOR SEQ ID NO: 254: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1508 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 254: TTGAACTTTT AAAATTTTAG ATCAGCAAAC TCTAAGATCC TAGAATGGAA GCTGTTCCTC	60
	ATTITCTCCAT GCTCACCCTC CCAGGTCAGC GAGATGGTGA AGAAGCTGCA CGCGGCAACA	120
45	CCACCAACGT TCGGAGTGGA CCTCATCAAT GAGCTTGTGG AGAACTTTGG CAGATGTCCC	180
	AAGTEGTCTG GTCGGCAAGC CTTTGTCTTT GTCTGCCAGA CTGTCATTGA GGATGACTGC	240
	CTTCCCATGG ACCAGTITICC TGTGCATCTC ATGCCGCATC TGCTAACCTT AGCAAATGAC	300
50	AGGSTTCCTA ACGTGCGAGT GCTGCTTGCA AAGACATTAA GACAAACTCT ACTAGAAAAA	360
	GACTATTICT TOGCCTCTGC CAGCTGCCAC CAGGAGGCTG TOGAGCAGAC CATCATGGCT	420
		-
55	CTTCAGATGG ACCGTGACAG CGATGTCAAG TATTTTGCAA GCATCCACCC TGCCAGTACC	480

GTGTCTTTCC TGCTTCCATG AGAGCCGAGG TTCAGTGGGC ATTCGCCACG CATGTGACCT

60

481

	GGGATAGCTT	TCGGGGGAGG	AGAGACCTTC	CTCTCCTGCG	GACTTCATTG	CAGGTGCAAG	660
	TTGCCTACAC	CCAATACCAG	GGATTTCAAG	AGTCAAGAGA	AAGTACAGTA	AACACTATTA	720
5	TCTTATCTTG	ACTITAAGGG	GAAATAATTT	CTCAGAGGAT	TATAATTGTC	ACCGAAGCCT	780
	TAAATCCTTC	TGTCTTCCTG	ACTGAATGAA	ACTTGAATTG	GCAGAGCATT	TTCCTTATGG	840
10	AAGGGATGAG	ATTCCCAGAG	ACCTGCATTG	CTTTCTCCTG	GTTTTATTTA	ACAATCGACA	900
10	AATGAAATTC	TTACAGCCTG	AAGGCAGACG	TGTGCCCAGA	TGTGAAAGAG	ACCTTCAGTA	960
	TCAGCCCTAA	CTCTTCTCTC	CCAGGAAGGA	CTTCCTCGGC	TCTGTGGCCA	GCTGTCCAGC	1020
15	CCAGCCCTGT	GTGTGAATCG	TTTGTGACGT	GTGCAAATGG	GAAAGGAGGG	GTTTTTACAT	1080
	CTCCTAAAGG	ACCTGATGCC	AACACAAGTA	GGATTGACTT	AAACTCTTAA	GCGCAGCATA	1140
20	TTGCTGTACA	CATTTACAGA	ATGGTTGCTG	ACTGTCTGTG	TCTGATTTTT	TCATGCTGGT	1200
20	CATGACCTGA	AGGAAATTTA	TTAGACGTAT	AATGTATGTC	TGGTGTTTTT	AACTTGATCA	1260
	TGATCAGCTC	TGAGGTGCAA	CTTCTTCACA	TACTGTACAT	ACCTGTGACC	ACTCTTGGGA	1320
25	GTGCTGCAGT	CTTTAATCAT	GCTGTTTAAA	CTGTTGTGGC	ACAAGTTCTC	TTGTCCAAAT	1380
	AAAATTTATT	AATAAGATCT	ATAGAGAGAG	ATATATACAC	TTTTGATTGT	TTTCTAGATG	1440
30	TCTACCAATA	AATGCAATTT	GTGACCTGTA	AAAAAATT	NTAAAAAAAC	TCGAGGGGG	1500
<i>3</i> 0	CCCGGTAC						1508

35

(2) INFORMATION FOR SEQ ID NO: 255:

(i) SEQUENCE CHARACTERISTICS:

40

(A) LENGTH: 2514 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 255:

(D) TOPOLOGY: linear

45

50

55

60

GAGAGACTCA CACTTCTTTT CCATTATCAC TGACGATGTA GTGGACATAG CAGGGGAAGA 60 GCACCTACCT GTGTTGGTGA GGTTTGTTGA TGAATCTCAT AACCTAAGAG AGGAATTTAT 120 AGGCTTCCTG CCTTATGAAG CCGATGCAGA AATTTTGGCT GTGAAATTTC ACACTATGAT 180 AACTGAGAAG TGGGGATTAA ATATGGAGTA TTGTCGTGGC CAGGCTTACA TTGWCTCTAG 240 TGGATTTTCT TCCAAAATGA AAGTTGTTGC TTCTAGACTT TTAGAGAAAT ATCCCCAAGC 300 TATCTACACA CTCTGCTCTT CCTGTGCCTT AAATATGTGG TTGGCAAAAT CAGTACCTGT 360 TATGGGAGTA TCTGTTGCAT TAGGAACAAT TGAGGAAGTT TGTTCTTTTT TCCATCGATC 420 ACCACAACTG CTTTTAGAAC TTGACAACGT AATTTCTGTT CTTTTTCAGA ACAGTAAAGA 480

	AAGGGGTAAA GAACTGAAGG AAATCTGCCA TTCTCAGTGG ACAGGCAGGC ATGATGCTTT	540
5	TGAAATTTTA GTGGAACTCC TGCAAGCACT TGTTTTATGT TTAGATGGTA TAAATAGTGA	600
J	CACAAATATT AGATGGAATA ACTATATAGC TGGCCGAGCA TTTGTACTCT GCAGTGCAGT	660
	GTCAGATTIT GATTICATIG TIACTATIGI TGITCTIAAA AATGICCTAT CITTIACAAG	720
10	AGCCTTTGGG AAAAACCTCC AGGGGCAAAC CTCTGATGTC TTCTTTGCGG CCGGTAGCTT	780
	GACTGCAGTA CTGCATTCAC TCAACGAAGT GATTGGAAAA TATTGAAGTT TATCATGAAT	840
15	TTTGGTTTGA GGAAGCCACA AATTTGGCAA CCAAACTTGA TATTCAAATG AAACTCCCTG	900
13	GGAAATTCCG CAGAGCTCAC CAGGGTAACT TGGAATCTCA GCTAACCTCT GAGAGTTACT	960
	ATAAAGAAAC CCTAAGTGTC CCAACAGTGG AGCACATTAT TCAGGAACTT AAAGATATAT	1020
20	TCTCAGAACA GCACCTCAAA GCTCTTAAAT GCTTATCTCT GGTACCCTCA GTCATGGGAC	1080
	AACTCAAATT CAATACGTCG GAGGAACACC ATGCTGACAT GTATAGAAGT GACTTACCCA	1140
25	ATCCTGACAC GCTGTCAGCT GAGCTTCATT GTTGGAGAAT CAAATGGAAA CACAGGGGGA	1200
23	AAGATATAGA GCTTCCGTCC ACCATCTATG AAGCCCTCCA CCTGCCTGAC ATCAAGTTTT	1260
	TICCTAATGT GTATGCATTG CTGAAGGTCC TGTGTATTCT TCCTGTGATG AAGGTTGAGA	1320
30	ATGAGCGGTA TGAAAATGGA CGAAAGCGTC TTAAAGCATA TTTGAGGAAC ACTTTGACAG	1380
	ACCAAAGGTC AAGTAACTTG GCTTTGCTTA ACATAAATTT TGATATAAAA CACGACCTGG	1440
35	ATTTAATGGT GGACACATAT ATTAAACTCT ATACAAGTAA GTCAGAGCTT CCTACAGATA	1500
	ATTCCGAAAC TGTGGAAAAT ACCTAAGAGA CTTTTAAAAA TAGGCTTTCT TATATTTGAT	1560
	ATTTGGAAGA AAAAGCCGTA AGTGTATGTA GACCACTTAA TCACTAAATA TCTTTGCCTA	1620
40	TAGGACTCCA TTGAATACAT TAGCCATTGA TAATCTACCT GTTTAAATGG CCCCTGTTTG	1680
	AACTCTCAAG CTTTGAAGAC CTACCTGTTC TTCCAGAAGA GAACGTTGAA AGTGCCATGT	1740
45	TTCCTTTTGC GTGATCTCTG TTGATGGCAC TCTGGAATTG TTTCAGTTAA GTCATTTTAG	1800
	ACATAGCATT TATTATCACT GTGGATCTCT ACTTGTTGGG TGTTATGAAT TCTTTGAAGA	1860
	AATATATTTT GAAGAGGTGT GGGAGGAAGG AATACATTTT ATAAAATGTT GTAGTGAAGC	1920
50	CCACAATIGA CCTTIGACTA ATAGGAGITT TAAGTATGIT AAAAATCTAT ACTGGACAGT	1980
	TACAAGAAAT TACCGGAGAA AAGCTTGTGA GCTCACCAAA CAAGGATTTC AGTGTAGATT	2040
55	TIGICTITICT TGAACITAAA GAAACAAATG ACAAAGITTG AATGGAAAAG CCTGCTGTTG	2100
33	TTCCACATCT CGTTGCTGTT TACATTCCTT TGTGGAGCCT ACATCTTCCT AAGCTTTTTA	2160
	GCAGGTATAT GTTGAACACT TCTGTTTCAT GGTTGAGACA GAATCAGAGG CCATGGATAC	2220
60	TGACAACTGA TTTGTCTGTT TTTTTTCTCT GTCTTTTTCC ATGACTCTTA TATACTGCCT	2280

CATCTTGATT TATAAGCAAA ACCTGGAAAA CCTACAAAAT AAGTGTTGTG GTTTATCTAG 2340 AAAAATATGG AAAATATTGC TGTTATFTTT GGTGAAGAAA ATCAATTTTG TATAGTTTAT 2400 5 TTCAATCTAA ATAAAATGTG AATTTTGTTT AAAGCTTAGG CACATTATTT TTTGTGGGGT 2460 CAAAACATTC TTGTGTAAAT TCTCTTAAAC ATTTGATAAA CAGCTTCACA ATTC 2514 10 (2) INFORMATION FOR SEQ ID NO: 256: 15 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2357 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 256: CTGCCTTATG AAGCCGATGC AGAAATTTTG GCTGTGAAAT TTCACACTAT GATAACTGAG 60 25 AAGTGGGGAT TAAATATGGA GTATTGTCGT GGCCAGGCTT ACATTGTCTC TAGTGGATTT 120 TCTTCCAAAA TGAAAGTTGT TGCTTCTAGA CTTTTAGAGA AATATCCCCA AGCTATCTAC 180 ACACTCTGCT CTTCCTGTGC CTTAAATATG TGGTTGGCAA AATCAGTACC TGTTATGGGA 240 30 GTATCTGTTG CATTAGGAAC AATTGAGGAA GTTTGTTCTT TTTTCCATCG ATCACCACAA 300 CTGCTTTTAG AACTTGACAA CGTAATTYCT GTTCTTTTTC AGAACAGTAA AGAAAGGGGT 360 35 AAAGAACTGA AGGAAATCTG CCATTCTCAG TGGACAGGCA GGCATGATGC TITTGAAATT 420 TTAGTGGAAC TCCTGCAAGC ACTTGTTTTA TGTTTAGATG GTATAAATAG TGACACAAAT 480 ATTAGATGGA ATAACTATAT AGCTGGCCGA GCATTTGTAC TCTGCAGTGC AGTGTCAGAT 540 40 TTTGATTTCA TTGTTACTAT TGTTGTTCTT AAAAATGTCC TATCTTTTAC AAGAGCCTTT 600 GGGAAAAACC TCCAGGGGCA AACCTCTGAT GTCTTCTTTG CGGCCGGTAG CTTGACTGCA 660 45 GTACTGCATT CACTCAACGA AGTGANTGGA AAATATTGAA GTTTATCATG AATTTTGGTT 720 TGAGGAAGCC ACAAATTTGG CAACCAAACT TGATATTCAA ATGAAACTCC CTGGGAAATT 780 CCGCAGAGCT CACCAGGGTA ACTTGGAATC TCAGCTAACC TCTGAGAGTT ACTATAAAGA 840 50 AACCCTAAGT GTCCCAACAG TGGAGCACAT TATTCAGGAA CTTAAAGATA TATTCTCAGA 900 ACAGCACCTC AAAGCTCTTA AATGCTTATC TCTGGTACCC TCAGTCATGG GACAACTCAA 960 55 ATTCAATACG TCGGAGGAAC ACCATGCTGA CATGTATAGA AGTGACTTAC CCAATCCTGA 1020 CACGCTGTCA GCTGAGCTTC ATTGTTGGAG AATCAAATGG AAACACAGGG GGAAAGATAT 1080 AGAGCTTCCG TCCACCATCT ATGAAGCCCT CCACCTGCCT GACATCAAGT TTTTTCCTAA 1140

WO 98/39448

/39448	<u> </u>					PCT/US98/04493
			484			
TGTGTATGCA	TTGCTGAAGG	TCCTGTGTAT	TCTTCCTGTG	ATGAAGGTTG	AGAATGA	GCG 1200
GTATGAAAAT	GGACGAAAGC	GTCTTAAAGC	ATATTTGAGG	AACACTTTGA	CAGACCA	AAG 1260
GTCAAGTAAC	TIGGCTTIGC	TTAACATAAA	TTTTGATATA	AAACACGACC	TGGATTT	AAT 1320
GGTGGACACA	TATATTAAAC	TCTATACAAG	TAAGTCAGAG	CTTCCTACAG	ATAATTC	CGA 1380
AACTGTGGAA	AATACCTAAG	AGACTTTTAA	AAATAGGCTT	TCTTATATTT	GATATTTC	3GA 1440
AGAAAAAGCC	GTAAGTGTAT	GTAGACCACT	TAATCACTAA	ATATCTTTGC	CTATAGGA	ACT 1500
CCATTGAATA	CATTAGCCAT	TGATAATCTA	CCTGTTTAAA	TGGCCCCTGT	TTGAACTC	TC 1560
AAGCTTTGAA	GACCTACCTG	TTCTTCCAGA	AGAGAACGTT	GAAAGTGCCA	TGTTTCCT	PTT 1620
TGCGTGATCT	CTGTTGATGG	CACTCTGGAA	TTGTTTCAGT	TAAGTCATTT	TAGACATA	AGC 1680
ATTTATTATC	ACTGTGGATC	TCTACTTGTT	GGGTGTTATG	AATTCTTTGA	AGAAATAT	TAT 1740
TTTGAAGAGG	TGTGGGAGGA	AGGAATACAT	TTTATAAAAT	GTTGTAGTGA	AGCCCACA	AAT 1800
TGACCTTTGA	CTAATAGGAG	TTTTAAGTAT	GTTAAAAATC	TATACTGGAC	AGTTACAA	AGA 1860
AATTACCGGA	GAAAAGCTTG	TGAGCTCACC	AAACAAGGAT	TTCAGTGTAG	ATTTTGTC	TT 1920
TCTTGAACTT	AAAGAAACAA	ATGACAAAGT	TIGAATGGAA	AAGCCTGCTG	TTGTTCCA	ACA 1980
TCTCGTTGCT	GTTTACATTC	CTTTGTGGAG	CCTACATCTT	CCTAAGCTTT	TTAGCAGG	TA 2040
TATGTTGAAC	ACTICIGITT	CATGGTTGAG	ACAGAATCAG	AGGCCATGGA	TACTGACA	AC 2100
TGATTTGTCT	GTTTTTTTTC	TCTGTCTTTT	TCCATGACTC	TTATATACTG	CCTCATCI	TG 2160
ATTTATAAGC	AAAACCTGGA	AAACCTACAA	AATAAGTGTT	GTGGTTTATC	TAGAAAAA	ATA 2220
TGGAAAATAT	TGCTGTTATT	TTTGGTGAAG	AAAATCAATT	TTGTATAGTT	TATTTCAA	ATC 2280
ТАААТААААТ	GTGAATTTTG	TTTAAAGCTT	AGGCACATTA	TTTTTGTGG	GGTCAAAA	ACA 2340
TTCTTGTGTA	AATTCTC					2357
						•
			•			
(2) INFORMA	TION FOR SE	Q ID NO: 25	57:			
(i)	SEQUENCE CH					
		GTH: 689 ba E: nucleic :	_			
	1-1 11E1					

(2) INF

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 257:

ACTITICTGGT GCAAAAAGAT GTTCAAGCCT TATTTTATAC TTGCCTGCCC CTTTCTCTTT CATTTATTGG AGTGAGCTGC AGCTCTAAGA AGACCTGTTC TTTTGAATGG AGAGTAGCAT CAGGAACCAG GATGTGGGTG CGAGGCGTGC TCCTGGCTGT TGCAGATTGC TGCACCCGGG

AGCTCTTAGT GGACAGAGCT AGAGGATATG TGCACGTACT TCCATCTCTC TCTCTGTCTC 240 CGATTTTAGC CCAGCACCAC AGGGTACGTT CCAGTTTTTC TCTCTTTCCA TAGCTGTAAG 300 5 GCCCTTTCTG GGAATGGTTC TCATTCTCCT TAATCTATTA TIGGGTCAGT TTTCCTGCAT 360 GTCCCCAGCC TCCCATCACT GCCACCCACT CCCCACAGAG ATGCCCTGCT CATCCGACTG 420 10 GGGCTTTGAC TCCCACACTG TGTACCCCTC TTGTGTGGAC GCCCTGCTGC CAAAACCTTC 480 AGCAAACAGC TTTCCAAATG GAAGTTGTCA CTGTCARGGS CTTTACAATC AGCAACAGCA 540 AAATCTACAT GCTGCTGAGG GTCCTGCCTC ATTAAGATGC AATAAATATG TAAGTACATA 600 15 AAAACAGCAA TAGAAGAAAC GTAATGCTTT ATTCTCAAAT ATGNATGTCT ACATAGAAAA 660 GCCAAAATTA TTAAGAATAG TAAGGAATT 689 20 (2) INFORMATION FOR SEQ ID NO: 258: 25 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2377 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 258: TCGACCCACG CGTCCGCCGA TGTGATGATT CCTGCGTATT CCAAGAACCG GGCCTATGCC 60 35 ATCTTCTTCA TAGTCTTCAC TGTGATAGGG GACGCCCCCG GCGCTGTGCT ATCCTGTGCC 120 GGCCACCCTT GCGTTGGTTT TGCTGCTGTA CTGGTGGCGC CCCTGACCGT GGCTGTCTCC 180 TCTTGAAGGA AGCCTGTTTC TGATGAACCT GCTGACAGCC ATCATCTACA GTCAGTTCCG 240 40 GGGCTACCTG ATGAAATCTC TCCAGACCTC GCTGTTTCGG AGGCGGGTGG GAACCCGGCT 300 GCCTTTGAAG TCCTATCCTC CATGGTGGGG GAGGGAGGAG CCTTCCCTCA GGCAGTTGGG 360 45 GTGAAGCCCC AGAACTIGCT GCAGGTGCTT CAGAAGGTCC AGCTGGACAG CTCCCACAGA 420 CAGGCCATGA TGGAGAAGGT GCGTTCCTAT GGCAGTGTTC TGCTCTCAGC TGAGGAGTTT 480 CAGAAGCTCT TCAACGAGCT TGACAGAAGT GTGGTTAAAG AGCACCCGCC GAGGCCCGAG 540 50 TACCAGTCTC CGTTTCTGCA GAGCGNCCCA GTTCCTCTTC GGCCACTNAC TACTTTGACT 600 ACCTOGGGAA CCTCATCGCC CTGGCAAACC TGGTGTCCAT TTGCGTGTTC CTGGTGCTGG 660 55 ATGCAGATGT TGCTGCCTGC TGAGCGTGAT GACTTCATCC TGGGGGGTCT CAACTGCGTC 720 TTCATTGTGT ACTACCTGTT GGAGATGCTG GCTCAAGGTC TTTTGCCCTG GGGCCTGCGA 780 RGGTACYKKT CCTAACCCCA RCAAMGTGTT TTGAACGGGC TCCTCAMCGT TTGTCCTGGC 840

	TGGWWKKGSM	GATCTCAACT	CTGGCTGTGT	ACCGATTGCC	ACACCCAGGC	TGGAGGCCGG	900
	ANATGGTGGG	CCTGCTGTCG	CTGTGGGACA	TGACCCGCAT	ACTGAACATG	CTCATCGTGT	960
5	TCCGCTTCCT	GCGTATCATC	CCCAGCATGA	AGCCGATGGC	CGTGGTGGCC	AGTACCGTCC	1020
	TGGGCCTGGT	GCAAAACATG	CGTGCGTTTG	GCGGGATCCT	GGTGGTGGTC	TACTACGTAT	1080
10	TTGCCATCAT	TGGGATCAAC	TTGTTTAGAG	GCGTCATTGT	GGCTCTTCCT	GGAAACAGCA	1140
••	GCCTGGCCCC	TGCCAATAGG	TCGGCGCCCT	GTGGGAGCTT	CGAGCAGCTG	GAGTACTGGG	1200
	CCAACAACTT	CGATGACTTT	GCGGCTGCCC	TGGTCACTCT	GTGGAACTTG	ATGGTGGTGA	1260
15	ACAACTGGCA	CGTGTTTCTG	GATGCATATC	GGCGCTACTA	AGGCCCGTGG	TCCAAGATCT	1320
	ATTTTGTATT	GTGGTGGCTG	GTGTCGTCTG	TCATCTGGGT	CAACCTGTTT	CTGGCCCTGA	1380
20	TTCTGGAGAA	CTTCCTTCAC	AAGTGGGACC	CCCGCAGCCA	CCTGCAGCCC	CTTGCTGGGA	1440
	CCCCAGAGGC	CACCTACCAG	ATGACTGTGG	AGCTCCTGTT	CAGGGATATT	CTGGAGGAGC	1500
	CCGGGGAGGA	TGAGCTCACA	GAGAGGCTGA	GCCAGCACCC	GCACCTGTGG	CTGTGCAGGT	1560
25	GACGTCCGGG	TCTGCCATCC	CAGCAGGGGC	GGCAGGAGAG	AGAGGCTGGC	ATAACACAGG	1620
	TGCCCATCAT	GGAAGAGGCG	GCCATGCTGT	GGCCAGCCAG	GCAGGAAGAG	ACCTTTCCTC	1680
30	TGACGGACCA	CTAAGCTGGG	GACAGGAACC	AAGTCCTTTG	CGTGTGGCCC	AACAACCATT	1740
	TACAGAACAG	CTGCTGCTGC	TTCAGGGAGG	CGCCCTGCCC	TCCGCTTTCT	TTTATAGCTG	1800
	CTTCAGTGAG	AATTCCCTTG	TCGACTCCAC	AGGGACCTTT	CAGACAAAAA	TGCAAGAAGC	1860
35	AGCGGCCTCC	CCTGTCCCCT	GCAGCTTCCG	TGGTGCCTTT	GCTGCCGGCA	GCCCTTGGGG	1920
	ACCACAGGCC	TGACCAGGGC	CTGCACAGGT	TAACCGTCAG	ACTTCCGGGG	CATTCAGCTG	1980
40	GGAATGATAC	TAATACCTCC	GATTTTAGCC	CAGCACCACA	GGGTACGTTC	CAGTTTTTAT	2040
	TTCTTTCCAT	AGCTGTAAGG	CCCTTTCTGG	GAATGGTTAT	CATTCTCCTT	AATCTATTAT	2100
	TGGGTCAGTT	TTCCTGCATG	TCCCCAGCCT	CCCATCACTG	CCACCCACTC	CCCACAGAGA	2160
45	TGCCCTGCTC	ATCCGACTGG	GGCTTTGACT	CCCACACTGT	GTACCCCTCT	TGTGTGGACG	2220
	CCCTGCTGCC	AAAACCTTCA	GCAAACAGCT	TTCCAAATGG	AAGTTGTCAC	TGTCAGGGCC	2280
50	TTTACAATCA	GCAACAGCAA	AATCTACATG	CTGCTGAGGG	TCCTGCCTCA	TTAAGATGCA	2340
	ልጥል ል ልጥልጥረ ጥ	ΔΑ ΩΨ Α CΑΨΑΑ	αααααααα	αααααα			2377

- (2) INFORMATION FOR SEQ ID NO: 259:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1193 base pairs

60

(B) TYPE: nucleic acid

487

(C)	STRANDEDNESS: doub	le
(D)	MODOLOGY, linear	

5	(XI) SEQUENCE	DESCRIPTION	: SEQ ID NO	: 259:		
J	TCTGNTCGCC	GTCGCCCCGC	CCCTGGCCTT	TGCCCGGTCG	GGCGGGACTT	CCTGTGTCGT	60
	ATTTCCAAGG	ACTCCAAAGC	GAGGCCGGGG	ACTGAAGGTG	TGGGTGTCGA	GCCCTCTGGC	120
10	AGAGGGTTAA	CCTGGGTCAA	ATGCACGGAT	TCTCACCTCG	TACAGTTACG	CTCTCCCGCG	180
	GCACGTCCGC	GAGGMYTTGA	AGTCCTGAGC	GCTCAAGTTT	GTCCGTAGTC	GAGAGAAGGC	240
15	CATGGAGGTG	CCGCCACCGG	CACCGCGGAG	CTTTCTCTGT	AGAGCATTGT	GCCTATTTCC	300
	CCGAGTCTTT	GCTGCCGAAG	CTGTGACTGC	CGATTCGGAA	GTCCTTGAGG	AGCGTCAGAA	360
	GCGGCTTCCC	TACGTCCCAG	AGCCCTATTA	CCCGGAATCT	GGATGGGACC	GCCTCCGGGA	420
20	GCTGTTTGGC	AAAGACACAG	TGAACACTAG	TCTGAATGTA	TACCGAAATA	AAGATGCCTT	480
	AAGCCATTTT	GTAATTGCAG	GAGCTGTCAC	GGGAAGTCTT	TTTAGGATAA	ACGTAGGCCT	540
25	GCGTGGCTGG	TESCTESTES	CATAATTGGA	GCCTTGCTGG	GCACTCCTGT	AGGAGGCCTG	600
	CTGATGGCAT	TTCAGAAGTA	CTCTGGTGAG	ACTGTTCAGG	AAAGAAAACA	GAAGGATCGA	660
	AAGGCACTCC	ATGAGCTAAA	ACTGGAAGAG	TGGAAAGGCA	GACTACAAGT	TACTGAGCAC	720
30	CTCCCTGAGA	AAATTGAAAG	TAGTTTACAG	GAAGATGAAC	CTGAGAATGA	TGCTAAGAAA	780
	ATTGAAGCAC	TGCTAAACCT	TCCTAGAAAC	CCTTCAGTAA	TAGATAAACA	AGACAAGGAC	840
35	TGAAAGTGCT	CTGAACTTGA	AACTCACTGG	AGAGCTGAAG	GGAGCTGCCA	TGTCCGATGA	900
,,	ATGCCAACAG	ACAGGCCACT	CTTTGGTCAG	CCTGCTGACA	AATTTAAGTG	CTGGTACCTG	960
	TGGTGGCAGT	GGCTTGCTCT	TGTCTTTTTC	TTTTCTTTTT	AACTAAGAAT	GGGGCTGTTG	1020
10	TACTCTCACT	TTACTTATCC	TTAAATTTAA	ATACATACTT	ATGTTTGTAT	TAATCTATCA	1080
	ATATATGCAT	ACATGAATAT	ATCCACCCAC	CTAGATTTTA	AGCAGTAAAT	AAAACATTTC	1140
1 5	GCAAAAGATT	AAAGTTGAAT	TTTACAGTTA	ааааааааа	ааааааааа	AAA	1193

(2) INFORMATION FOR SEQ ID NO: 260:

50
(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1262 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

55 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 260:

GAAAAACCCA AAGATGCAGA CAATCTCTTT GAACATGAAT TGGGGGCTCT CAATATGGCT

PCT/US98/04493 WO 98/39448

488

	GCATTACTAC	GAAAAGAAGA	AAGAGCAAGT	CTTCTTAGTA	ATCTTGGCCC	ATGTTGTAAG	120
	GCGTTGTGCT	TCAGACGGGA	TTCTGCAATT	CGAAAGCAGC	TTGTTAAAAA	TGAGAAGGC	180
5	ACCATAAAAC	AAGCTTACAC	GAGTSCTCCA	ATGGTAGACA	ATGAATTACT	TCGATTGAGT	240
	CTTCGGTTAT	TTAAGCGGAA	GACTACTTGC	CATGCTCCAG	GACATGAAAA	GACTGAAGAT	300
10	AATAAACTTT	CACAGTCCAG	TATCCAACAG	GAACTGTGTG	TGTCTTAAGA	CCGAAGTTCA	360
10	ATATGGTATT	TTTGGTACTG	TCTTCCTTCA	GCAGTGCATA	TTCTTTTGCA	AAGTTCTTTG	420
	GTTTGACAAG	CATTAGTGAC	AAAGGCAGAA	AAGATTTATC	AGCCATGCTA	AAAGAGTGAA	480
15	GAATTTTGAT	CTTTAGAGAC	ACTAGTTTTG	GCCAACTTAA	GATTTTACGT	TAATTTTTAC	540
	ATAGTATTTG	ACACTCATGC	AAAATAATGT	GAAAACATCT	AGATTTAGTA	GTTTATTCTG	600
20	CGCCTTTTGT	TAAAACTGAA	GATTTTGGAA	AATGGTTGTC	ACTGCTCTTC	CAGCCTATGA	660
20	ATATTTTTGT	GAAATGGAAC	CATGGATTTA	TGTCTGGATC	ATCCATACAG	AACCAACAAT	720
	TTTATTCAAA	AACAATGTGT	TCATCAAAGT	AATTGCTCAC	ATTGTGCAGT	ACTATGTTGT	780
25	ACAGACCACG	TGAAAGGGAA	TGCTGGTCTA	GCTGGCGTGG	TATGTTTATA	GGCGAATTTC	840
	AGCAGAAGGA	AGCCAAAATA	GTTTTTTCCT	TTTGAAAGTT	TTTTAAAAAT	TATTTCATGG	900
20	GICTITITT	TAATTAATAT	GTGTGCATTG	TTACAATGTA	TGTTGGATGT	CTTTTGACCC	960
30	TAAATGCTTT	TTTTGTTATC	AGAGATTGTG	TACTATTITT	ATTTTTAATA	AATGTATCTT	1020
	CCCTTTCCTT	GTTTTAGATT	TACTTTGCTC	TTCGTTAATC	TTATTCCTGA	TGATCTAGAA	1080
35	CATTAGTCAT	CAACATTACA	TGTTTCATGC	TTCAGATATT	TTACTGCTTG	TGTCCTTATT	1140
	GTTGGACAGC	TTTAAACAGA	GTTGATGGTA	СТТСАААТАТ	AGCTCATTGA	TACTTAAGGG	1200
40	CANCTTCCTT	GGGATGTGGG	CTTTTTGGAA	GGAAAAAAT	TNCCCCAAAG	GCAAATCCCA	1260
40	GT						1262
45							
		ATION FOR SI	-				
50	(i)	SEQUENCE CI	HARACTERIST: GTH: 1179 b				
50			E: nucleic ANDEDNESS:				

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 261: 55

GGCAAACTTT CCCCCAANGC TTCGAAACTT GCAAGCCGAA ACCTTGAATC GTTAAAAGTT GGGTTGCGNC GGCGCCCTGG CCCGAAGAAG CGCAATTGGC GTTCCGCGAA CGTTGGCCCT 120 60 CAACGGCTCG GCAGCCAGCC ATGTCCTGCA CCCAGGACAG CGGCCCTGGG CTACAAGGAC 180

489

	CTGGACCTCA	TCTTCCTGCG	CCGACCTGCG	CGGGGAAGGG	GAGTITCAGA	CTGTGAAGGA	240
5	CGTCGTGCTG	GACTGCCTGT	TGGACTTCTT	ACCCGAGGGG	GTGAACAAAG	AGAAGATCAC	300
3	ACCACTCACG	CTCAAGGAAG	CTTATGTGCA	GAAAATGGTT	AAAGTGTGCA	ATGACTCTGA	360
	CCGATGGAGT	CTTATATCCC	TGTCAAACAA	CAGTGGCAAA	AATGTGGAAC	TGAAATTTGT	420
10	GGATTCCCTC	CGGAGGCAGT	TTGAATTCAG	TGTAGATTCT	TTTCAAATCA	AATTAGACTC	480
	TCTTCTGCTC	TTTTATGAAT	GTTCAGAGAA	CCCAATGACT	GAGACATTTC	ACCCCACAAT	540
15	AATCGGGGAG	AGCGTCTATG	GCGATTICCA	GGAAGCCTTT	GATCACCTTT	GTAACAAGAT	600
13	CATTGCCACC	AGGAACCCAG	AGGAAATCCG	AGGGGGAGGC	CTGCTTAAGT	ACTGCAACCT	660
	CTTGGTGAGG	GGCTTTAGGC	CCGCCTCTGA	TGAAATCAAG	ACCCTTCAAA	GGTATATGTG	720
20	TTCCAGGTTT	TTCATCGACT	TCTCAGACAT	TGGAGAGCAG	CAGAGAAAAC	TGGAGTCCTA	780
	TTTGCAGAAC	CACTITIGIGG	GATTGGAAGA	CCGCAAGTAT	GAGTATCTCA	TGACCCTTCA	840
25	TGGAGTGGTA	AATGAGAGCA	CAGTGTGCCT	GATGGGACAT	GAAAGAAGAC	AGACTTTAAA	900
	CCTTATCACC	ATGCTGGCTA	TCCGGGTGTT	AGCTGACCAA	AATGTCATTC	CTAATGTGGC	960
	TAATGTCACT	TGCTATTACC	AGCCAGCCCC	CTATGTAGCA	GATGCCAACT	TTAGCAATTA	1020
30	CTACATTGCA	CAGGTTCAGC	CAGTATTCAC	GTGCCAGCAA	CAGACCTACT	CCACTTGGCT	1080
	ACCCTGCAAT	TAAGAATCAT	TTAAAAATGT	CCTGTGGGGA	AGCCATTTCA	GACAAGACAG	1140
35	GAGAGAAAA	ААААААААА	АААААААА	AAAAAGAGC			1179

(2) INFORMATION FOR SEQ ID NO: 262:

(i) SEQUENCE CHARACTERISTICS:

40

45

(A) LENGTH: 1162 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 262:

GGCAAACTTT CCCCCAANGC TTCGAAACTT GCAAGCCGAA ACCTTGAATC GTTAAAAGTT 60
GGGTTGCGNC GGCGCCCTGG CCCGAAGAAG CGCAATTGGC GTTCCGCGAA CGTTGGCCCT 120
CAACGGCTCG GCAGCCAGCC ATGTCCTGCA CCCAGGACAG CGGCCCTGGG CTACAAGGAC 180
CTGGACCTCA TCTTCCTGCG CCGACCTGCG CGGGGAAGGG GAGTTTCAGA CTGTGAAGGA 240
CGTCGTGCTG GACTGCCTGT TGGACTTCTT ACCCGAGGGG GTGAACAAAG AGAAGATCAC 300
ACCACTCACG CTCAAGGAAG CTTATGTGCA GAAAATCGTT AAAGTGTGCA ATGACTCTGA 360

490

	CCGATGGAGT	CTTATATCCC	TGTCAAACAA	CAGTGGCAAA	AATGTGGAAC	TGAAATTTGT	420
	GGATTCCCTC	CGGAGGCAGT	TTGAATTCAG	TGTAGATTCT	TTTCAAATCA	AATTAGACTC	480
5	TCTTCTGCTC	TTTTATGAAT	GTTCAGAGAA	CCCAATGACT	GAGACATTTC	ACCCCACAAT	540
	AATCGGGGAG	AGCGTCTATG	GCGATTICCA	GGAAGCCTTT	GATCACCTTT	GTAACAAGAT	600
10	CATTGCCACC	AGGAACCCAG	AGGAAATCCG	AGGGGGAGGC	CTGCTTAAGT	ACTGCAACCT	660
10	CTTGGTGAGG	GCCTTTAGGC	CCGCCTCTGA	TGAAATCAAG	ACCCTTCAAA	GGTATATGTG	720
	TTCCAGGTTT	TTCATCGACT	TCTCAGACAT	TGGAGAGCAG	CAGAGAAAAC	TGGAGTCCTA	780
15	TTTGCAGAAC	CACTITIGIGG	GATTGGAAGA	CCGCAAGTAT	GAGTATCTCA	TGACCCTTCA	840
	TGGAGTGGTA	AATGAGAGCA	CAGTGTGCCT	GATGGGACAT	GAAAGAAGAC	AGACTTTAAA	900
20	CCTTATCACC	ATGCTGGCTA	TCCGGGTGTT	AGCTGACCAA	AATGTCATTC	CTAATGTGGC	960
20	TAATGTCACT	TGCTATTACC	AGCCAGCCCC	CTATGTAGCA	GATGCCAACT	TTAGCAATTA	1020
	CTACATTGCA	CAGGTTCAGC	CAGTATTCAC	GTGCCAGCAA	CAGACCTACT	CCACTTGGCT	1080
25	ACCCTGCAAT	TAAGAATCAT	TTAAAAATGT	CCTGTGGGGA	AGCCATTTCA	GACAAGACAG	1140
	GAGAGAAAAA	NAANGAAAAG	AG				1162

30

35

(2) INFORMATION FOR SEQ ID NO: 263:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 735 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(C) STRANDEDNESS: double(D) TOPOLOGY: linear

40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 263:

	CGGGCTGGGT	ATTTGCCTCG	CACCATGGCG	CCCAAGGGCA	AAGTGGGCAC	GAGAGGGAAG	60
45	AAGCAGATAT	TTGAAGAGAA	CAGAGAGACT	CTGAAGTTCT	ACCTGCGGAT	CATACTGGGG	120
43	GCCAATGCCA	TTTACTGCCT	TGTGACGTTG	GTCTTCTTTT	ACTCATCTGC	CTCATTTTGG	180
	GCCTGGTTGG	CCTTGGGCTT	TAGTCTGGCA	GTGTATGGGG	CCAGCTACCA	CTCTATGAGC	240
50	TCGATGGCAC	GAGCAGCGTT	CTTCTGAGGA	TGGGGCCCTG	ATGGATGGTG	GCACGAGCTC	300
	AACATGGAGC	AGGGCATGGC	AGAGCACCTT	AAGGATGTGA	TCCTACTGAC	AGCCATCGTG	360
55	CAGGTGCTCA	GCTGCTTCTC	TCTCTATGTC	TGGTCCTTCT	GGCTTCTGGC	TCCAGGCCGG	420
JJ	GCCCTTTACC	TCCTGTGGGT	GAATGTGCTG	GCCCCTGGT	TCACTGCAGA	CAGTGGCACC	480
	CCAGCACCAG	AGCACAATGA	GAAACGGCAG	CGCCGACAGG	AGCGGCGGCA	GATGAAGCGG	540
60	TTATAGCCAT	TGACATTGTG	GCCACAGGCC	ACTGGCCCTG	GGTGGCTCTG	TCAGGGTGCA	600

	CAGCCCCTCA TGCCTGGAGC AATGAGGGTC TAGTCCAGGG GCCAAAAGCA GTCTGAGGTA	660
5	TTGGGTATAC TTATACTCTA TAGGGTCGTT GAATAAATGG CTTAGAATGT GAAAAAAAA	720
,	AAAAAAAA ATTTT	735
10	(2) INFORMATION FOR SEQ ID NO: 264:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 783 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 264:	
-0	AAGTGCATGA GCTGCCGATG TGGTGCTTAG TGATTGCGGT TTCGGTCGCT CTCCCGTGTT	60
	TCCCGGGCTG GGTATTTGCC TCGCACCATG GCGCCCAAGG GCAAAGTGGG CACGAGAGGG	120
25	AAGAAGCAGA TATTTGAAGA GAACAGAGAG ACTCTGAAGT TCTACCTGCG GATCATACTG	180
	GGGCCAATG CCATTTACTG CCTTGTGACG TTGGTCTTCT TTTACTCATC TGCCTCATTT	240
30	TGGGCCTGGT TGGCCTGGGC TTTAGTCTGG CAGTGTATGG GGCCAGCTAC CACTCTATGA	300
	GCTCGATGGC ACGAGCAGCG TTCTCTGAGG ATGGGGCCCT GATGGATGGT GGCATGGACC	360
	TCAACATGGA GCAGGCCATG GCAGAGTGAG TGTCCCCCAC CGCCAGCCCA GGCACCTTAA	420
35	GGATGTGATC CTACTGACAG CCATCGTGCA GGTGCTCAGC TGCTTCTCTC TCTATGTCTG	480
	GTCCTTCTGG CTTCTGGCTC CAGGCCGGGC CCTTTACCTC CTGTGGGTGA ATGTGCTGGG	540
10	CCCCTGGTTC ACTGCAGAĆA GTGGCACCCC AGCACCAGAG CACAATGAGA AACGGCAGCG	600
	CCGACAGGAG CGGCGGCAGA TGAAGCGGTT ATAGCCATTG ACGATTTKGC SACNRGCCAC	660
	TOGCCCTGGG TGGCTCTGTC AGGGTGCACA GCCCCTCATG CCTGGAGCAA TGAGGGTCTA	720
15	GTCCAGGGGC CAAAAGCAGT CTGAGGTATT GGGTATACTT ATACTCTATA GGGTCGTTGA	780
	ATA	783
50		
	(2) INFORMATION FOR SEQ ID NO: 265:	
55	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1638 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 265:

	GGCACGAGGC	GGCGGCAGCG	GTGGCGGCGG	CCCCCCCCC	CGGGAGCCGT	NCCCTTTCCC	60
5	GTCGGGGAGC	GCGGGGYCGG	GGYCCAGGGG	ANCCCGGGMC	ACGGAGAGCG	GGAAGAGGAT	120
,	GGATTGCCCG	GCCCTCCCCC	CCGGATGGAA	GAAGGAGGAA	GTGATCCGAA	AATCTGGGCT	180
	AAGTGCTGGC	AAGAGCGATG	TCTACTACTT	CAGTCCAAGT	GGTAAGAAGT	TCAGAAGCAA	240
10	GCCTCAGTTG	GCAAGGTACC	TGGGAAATAC	TGTTGATCTC	AGCAGTTTTG	ACTTCAGAAC	300
	TOGAAAGATG	ATGCCTAGTA	AATTACAGAA	GAACAAACAG	AGACTGCGAA	ACGATCCTCT	360
15	CAATCAAAAT	AAGGGTAAAC	CAGACTTGAA	TACAACATTG	CCAATTAGAC	AAACAGCATC	420
	AATTTTCAAA	CAACCGGTAA	CCAAAGTCAC	AAATCATCCT	AGTAATAAAG	TGAAATCAGA	480
	CCCACAACGA	ATGAATGAAC	AGCCACGTCA	GCTTTTCTGG	GAGAAGAGGC	TACAAGGACT	540
20	TAGTGCATCA	GATGTAACAG	AACAAATTAT	AAAAACCATG	GAACTACCCA	AAGGTCTTCA	600
	AGGAGTTGGT	CCAGGTAGCA	ATGATGAGAC	CCTTTTATCT	GCTGTTGCCA	GTGCTTTGCA	660
25	CACAAGCTCT	GCGCCAATCA	CAGGGCAAGT	CTCCGCTGCT	GTGGAAAAGA	ACCCTGCTGT	720
23	TTGGCTTAAC	ACATCTCAAC	CCCTCTGCAA	AGCTTTTATT	GTCACAGATG	AAGACATCAG	780
	GAAACAGGAA	GAGCGAGTAC	AGCAAGTACG	CAAGAAATTG	GAAGAAGCAC	TGATGGCAGA	840
30	CATCTTGTCG	CGAGCTGCTG	ATACAGAAGA	GATGGATATT	GAAATGGACA	GTGGAGATGA	900
	AGCCTAAGAA	TATGATCAGG	TAACTTTCGA	CCGACTTTCC	CCAAGAGAAA	ATTCCTAGAA	960
35	ATTGAACAAA	AATGTTTCCA	CIGGCTTTTG	CCTGTAAGAA	алаааатста	CCCGAGCACA	1020
55	TAGAGCTTTT	TAATAGCACT	AACCAATGCC	TTTTTAGATG	TATTITICAT	GTATATATCT	1080
	ATTATTCAAA	AAATCATGTT	TATTITGAGT	CCTAGGACTT	AAAATTAGTC	TTTTGTAATA	1140
40	TCAAGCAGGA	CCCTAAGATG	AAGCTGAGCT	TTTGATGCCA	GGTGCAATCT	ACTGGAAATG	1200
	TAGCACTTAC	GTAAAACATT	TGTTTCCCCC	ACAGTTTTAA	TAAGAACAGA	TCAGGAATTC	1260
45	тааатааатт	TCCCAGTTAA	AGATTATIGT	GACTTCACTG	ТАТАТАААСА	TATTTTTATA	1320
43	CTTTATTGAA	AGGGGACACC	TGTACATTCT	TCCATCRTCA	CTGTAAAGAC	AAATAAATGA	1380
	TTATATTCAC	AGACTGATTG	GAATTCTTTC	TGTTGAAAAG	CACACACAAT	AAAGAACCCC	1440
50	TCGTTAGCCT	TCCTCTGATT	TACATTCAAC	TCTGATCCCG	GGCCTTAGG	TTTGACATGG	1500
	GAGGTGGGAG	GAAGATAGCG	CATATATTTG	CAGTATGAAC	TATTGCCTCT	GGGACGTTGT	1560
55	GAGGAATTGT	GCTTTCACCA	GAATTTCTAA	GGATTTCTGG	СТТАААТАТС	ACCTAGCCTG	1620
<i></i>	TGGTAATTTT	TTTTCCCT					1638

493

(2) INFORMATION FOR SEQ ID NO: 266:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1455 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 266:

10 CGTGCGTACT GCCATGCAGG TACCGGGTCC GGAATTCCCA GGGTCGACCC ACGCGTCCGC 60 TCAGITGGCA AGGTACCTGG GAAATACTGT TGATCTCAGC AGTTTTGACT TCAGAACTGG 120 15 AAAGATGATG CCTAGTAAAT TACAGAAGAA CAAACAGAGA CTGCGAAACG ATCCTCTCAA 180 TCAAAATAAG GGTAAACCAG ACTTGAATAC AACATTGCCA ATTAGACAAA CAGCATCAAT 240 TITICAAACAA CCGGTAACCA AAGTCACAAA TCATCCTAGT AATAAAGTGA AATCAGACCC 300 20 ACAACGAATG AATGAACAGC CACGTCAGCT TTTCTGGGAG AAGAGGCTAC AAGGACTTAG 360 TGCATCAGAT GTAACAGAAC AAATTATAAA AACCATGGAA CTACCCAAAG GTCTTCAAGG 420 25 AGTTGGTCCA GGTAGCAATG ATGAGACCCT TTTATCTGCT GTTGCCAGTG CTTTGCACAC 480 AAGCTCTGCG CCAATCACAG GGCAAGTCTC CGCTGCTGTG GAAAAGAACC CTGCTGTTTG 540 GCTTAACACA TCTCAACCCC TCTGCAAAGC TTTTATTGTC ACAGATGAAG ACATCAGGAA 30 ACAGGAAGAG CGAGTACAGC AAGTACGCAA GAAATTGGAA GAAGCACTGA TGGCAGACAT 660 CTTGTCGCGA GCTGCTGATA CAGAAGAGAT GGATATTGAA ATGGACAGTG GAGATGAAGC 35 CTAAGAATAT GATCAGGTAA CTTTCGACCG ACTTTCCCCA AGAGAAAATT CCTAGAAATT 780 GAACAAAAAT GTTTCCACTG GCTTTTGCCT GTAAGAAAAA AAATGTACCC GAGCACATAG 840 AGCTITITIAA TAGCACTAAC CAATGCCTTT TTAGATGTAT TTTTGATGTA TATATCTATT 900 40 ATTCAAAAAA TCATGTTTAT TTTGAGTCCT AGGACTTAAA ATTAGTCTTT TGTAATATCA 960 AGCAGGACCC TAAGATGAAG CTGAGCTTTT GATGCCAGGT GCAATCTACT GGAAATGTAG 1020 45 CACTTACGTA AAACATTTGT TTCCCCCACA GTTTTAATAA GAACAGATCA GGAATTCTAA 1080 ATAAATTICC CAGTTAAAGA TTATTGTGAC TTCACTGTAT ATAAACATAT TTTTATACTT 1140 TATTGAAAGG GGACACCTGT ACATTCTTCC ATCRTCACTG TAAAGACAAA TAAATGATTA 1200 50 TATTCACAGA CTGATTGGAA TTCTTTCTGT TGAAAAGCAC ACACAATAAA GAACCCCTCG 1260 TTAGCCTTCC TCTGATTTAC ATTCAACTCT GATCCCGGG CCTTAGGTTT GACATGGGAG 1320 55 1380 GTGGGAGGAA GATAGCGCAT ATATTTGCAG TATGAACTAT TGCCTCTGGG ACGTTGTGAG GAATTGTGCT TTCACCAGAA TTTCTAAGGA TTTCTGGCTT AAATATCACC TAGCCTGTGG 1440 1455 TAATTTTTT TCCCT

5	(2) INFORMATION FOR SEQ ID NO: 267:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1086 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
10	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 267:	
15	CGCCTGCAGT ACCGGTCCGG AATTCCCGGG TCGACCCACG CGTCGCTGAC CCAGGAGAAG	60
	CTGCCTGTCT ACATCAGCCT GGGCTGCAGC GCGCTGCCGC CGCGGGGCCG GCAGCTGAAC	120
	TATGTGCTCT TCAGGGCGGG CACCGTGTTG CATTCATCTT TGTACCCCCA GCATCTAGCA	180
20	GTGTTGGCAT GTAGTAGGCA CTCAAGAAAT GTGTGTTGAA TGAACGATGC CTGTGACAAG	240
	CAAGCGGACT TTATTCTTTC CTGACCCTTG CTCCTATGAC ACACCTCCTC CTGACTGCCA	300
25	CTGTCACTCC TTCAGAGCAG AACTCCTCTA GGGAACCTGG ATGGGAAACA GCCATGGCCA	360
23	AGGACATCCT GGGTGAAGCA GGGCTACACT TTGATGAACT GAACAAGCTG AGGGTGTTGG	420
	ACCCAGAGGT TACCCAGCAG ACCATAGAGC TGAAGGAAGA GTGCAAAGAC TTTGTGGACA	480
30	AAATTGGCCA GTTTCAGAAA ATAGTTGGTG GTTTAATTGA GCTTGTTGAT CAACTTGCAA	540
	AAGAAGCAGA AAATGAAAAG ATGAAGGCCA TCGGTGCTCG GAACTTGCTC AAATCTATAG	600
35	CAAAGCAGAG AGAAGCTCAA CAGCAGCAAC TTCAAGCCCT AATAGCAGAA AAGAAAATGC	660
	AGCTAGAAAG GTATCGGGTT GAATATGAAG CTTTGTGTAA AGTAGAAGCA GAACAAAATG	720
	AATTTATTGA CCAATTTATT TTTCAGAAAT GAACTGAAAA TTTCGCTTTT ATAGTAGGAA	780
40	GGCAAAACAA AAAAAAGCCT CTCAAAACCA AAAAAACCTC TGTAGCATTC CAGCGGCTTG	840
	ACCAATGACC TATGTCACAA GAGGTGGCGT GTAAGGAATG CAGCCCCCTG AAGACAGCAC	900
45	TACAAGTCTG GGGGAGCCAG TTTTAACATC AGTGCACAGC TGCTGCTGGT GGCCCTGCAG	960
	TGTACGTTCT CACCICTTAT GCTTAGTTGG AACTAAGCAG TTTGTAAACT TTCATCCTTT	1020
	TTTTTGTAAA TTCACAAAGC TTTGGAAGGA GARGCAATAA ATTTTTGKTT TCNAAATGGC	1080
50	TTGATG	1086

55 (2) INFORMATION FOR SEQ ID NO: 268:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1003 base pairs

(B) TYPE: nucleic acid

60 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 268:

5	GGCACGGGAG	CAGCCGGGCT	GGTCCTGCTG	CGAGCCGGCG	GCCCGGAGTG	GGGCGGCGGA	60
	GCAAACATGA	ACGTTGGAGT	TGCCCACAGT	GAAGTGAATC	CAAATACCCG	TGTCATGAAC	120
10	AGCCGGGGTA	TGTGGCTGAC	ATATGCATTG	GGAGTTGGCT	TGCTTCATAT	TGTCTTACTC	180
10	AGCATTCCCT	TCTTCAGTGT	TCCTGTTGCT	TGGACTTTAA	CAAATATTAT	ACATAATCTG	240
	GGGATGTACG	TATTTTTGCA	TGCAGTGAAA	GGAACACCTT	TCGAAACTCC	TGACCAGGGT	300
15	AAAAGCAAGG	CTCCTAACTC	ATTOGGAACA	ACTGGACTAT	GGAGTACAGT	TTACATCTTC	360
•	ACGGAAGTTT	TTCACAATTT	CTCCAATAAT	TCTATATTTT	CTGGCAAGTT	TCTATACGAA	420
20	GTATGATCCA	ACTCACTTCA	TCCTAAACAC	AGCTTCTCTC	CTGAGTGTAC	TAATTCCCAA	480
20	AATGCCACAA	CTACATGGTG	TTCGGATCTT	TGGAATTAAT	AAGTATTGAA	ATGTTTTGAA	540
	ACTGAAAAAA	AATTTTACAG	CTACTGAATT	TCTTATAAGG	AAGGAGTGGT	TAGTAAACTG	600
25	CACTGTTTCT	CTGATAATGT	GAAATGAGAA	GTATTTACAT	TGGAGGCCA	ATGGCTGGTC	660
	CTTCAAGTGC	TGTTTTGAAG	TGCAGATTTC	CATTAAATGA	TGCCTCTGTT	TAATACACCT	720
30	GGTACATTTC	TGAAGAGGG	CTTTATAAGC	AGGCTGGGCA	GCCCACCTT	ATAAGTTAAA	780
30	GGGCATCACA	GTGAGGGTGT	AGTAGATAAA	TTCAAGGAAA	TAAGAGATTT	GTAAGAAACT	840
	AGGACCAGCT	ТААСТТАТАА	TGAATGGGCA	TTGTGTTAAG	AAAAGAACAT	TTCCAGTCAT	900
35	TCAGCTGTGG	TTATTTAAAG	CAGACTTACA	TGTAAACCGG	AATCCTCTCT	ATACAAGTIT	960
	ATTAAAGATT	ATTTTTTA	CCGTAAAAAA	АААААААА	AAA		1003

40

45

(2) INFORMATION FOR SEQ ID NO: 269:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1234 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 269:

	ATCAGCATCT	ACAAGTAGCA	TATTTTGGAT	GCTCTTTCTC	TGCTACTTCA	AAGTAACTAG	60
55	GAAAAAATAA	TCCTCGCAAC	ACAGGTACCT	TGTCATGTCA	GAATTGGGGG	TGTTAGGTTG	120
55	CCAGTTGTAT	CAGTGTTGAT	TCATTTCATT	ACTTCCTACA	GAGCAAACAT	GAACGTTGGA	180
	GTTGCCCACA	GTGAAGTGAA	TCCAAATACC	CGTGTCATGA	ACAGCCGGGG	TATGTGGCTG	240
60	ACATATGCAT	TGGGAGTTGG	CTTGCTTCAT	ATTGTCTTAC	TCAGCATTCC	CTTCTTCAGT	300

	GTTCCTGTTG CTTGGACTTT AACAAATATT ATACATAATC TGGGGATGTA CGTATTTTTG	360
5	CATGCAGTGA AAGGAACACC TTTCGAAACT CCTGACCAGG GTAAAGCAAG GCTCCTAACT	420
J	CATTGGGAAC AACTGGACTA TGGAGTACAG TTTACATCTT CACGGAAGTT TTTCACAATT	480
	TCTCCAATAA TTCTATATTT TCTGGCAAGT TTCTATACGA AGTATGATCC AACTCACTTC	540
10	ATCCTAAACA CAGCTTCTCT CCTGAGTGTA CTAATTCCCA AAATGCCACA ACTACATGGT	600
	GTTCGGATCT TTGGAATTAA TAAGTATTGA AATGTTTTGA AACTGAAAAA AAATTTTACA	660
15	GCTACTGAAT TTCTTATAAG GAAGGAGTGG TTAGTAAACT GCACTGTTTC TSTGATAATG	720
J	TGAAATGAGA AGTATTTACA TTGGAGGGCC AATGGCTGGT CCTTCAAGTG CTGTTTTGAA	780
	GTGCAGATTT CCATTAAATG ATGCCTCTGT TTAATACACC TGGTACATTT CTGAAGAGGG	840
20	GCTTTATAAG CARGCTGGGC AGGCCCAGCT TATAAGTTAA AGGGCATCAC AGTGAGGGTG	900
	TAGTAGATAA ATTCAAGGAA ATAAGAGATT TGTAAGAAAC TAGGACCAGC TTAACTTATA	960
25	ATGAATGGC ATTGTGTTAA GAAAAGAACA TTTCCAGTCA TTCAGCTGTG GTTATTTAAA	1020
	GCAGACTTAC ATGTAAACCG GAATCCTCTC TATACAAGTT TATTAAAGAT TATTTTTATT	1080
	ACCRTACATA TTTCKCTTGT TTTATGTAAG YGGATGTATA TCCTCTTGTT TTATACAAGC	1140
80	CAGTTCCCAC TTATGAGGGT ACTTTTTTGG TTTTGCTGGG CTTAATATTG TGTATTGGTC	1200
	AATGAGGCCA TTTTTACANT TATTAACGTT ACAG	1234
35		
,,,	(2) INFORMATION FOR SEQ ID NO: 270:	
	-	
0	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 574 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 270:	
	NGAGGTGCGT TCTGAGCCGT CTGTCCTGCG CCAAGATGCT TCAAAGTATT ATTAAAAACA	60
50	TATGGATCCC CATGAAGCCC TACTACACCA AAGTTTACCA GGAGATTTOG ATAGGAATGG	120
,0	GGCTGATGGG CTTCATCGTT TATAAAATCC GGGCTGCTGA TAAAAGAAGT AAGGCTTTGA	180
	AAGCTTCAGC GCCTGCTCCT GGTCATCACT AACCAGATTT ACTTGGAGTA CATGTGAAAG	240
55	AAAACGTCAG TCTGCCTGTA AATTTCAGCA AGCCGTGTTA GATGGGGAGC GTGGAACGTC	300
	ACTGTACACT TGTATAAGTA CCGTTTACTT CATGGCATGA ATAAATGGAT CTGTGAGATG	360
	CACTGCTACC TGGTACTGCT TTCAGTGTGT TCCCCCTCAG CCCTCCGGCG TGTCAGGCAT	420

497

	ACTCTGAGTA	GATAATTTGT	CATGCAGCGC	ATGCAATCAG	AATCTCACTG	AGCCACCCAT	480
	CATTGTGAAA	TAATTACCTC	AGTTGTACAG	GACTTGGTGA	TCAGGATCCA	GGCACTCACT	540
5	TGTATTCTAC	TGCTCAATAA	ACGITTATTA	AACT			574

10 (2) INFORMATION FOR SEQ ID NO: 271:

15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1731 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 271:

	(3.2	, proorier i	DESCRIPTION	. 320 10 110	. 2/1.		
20	GCTGCAAGGT	GCGCCTCGTG	CCGCTGCAGA	TCCAGCTCAC	TACCCTGGGA	AATCTTACAC	[^] 60
	CTTCAAGCAC	TGIGITTITC	TGCTGTGATA	TGCAGGAAAG	GTTCAGACCA	GCCATCAAGT	120
25	ATTTTGGGGA	TATTATTAGC	GTGGGACAGA	GATTGTTGCA	AGGGGCCCGG	ATTTTAGGAA	180
	TTCCTGTTAT	TGTAACAGAA	CAATACCCTA	AAGGTCTTGG	GAGCACGGTT	CAAGAAATTG	240
	ATTTAACAGG	TGTAAAACTG	GTACTTCCAA	AGACCAAGTT	TTCAATGGTA	TTACCAGAAG	300
30	TAGAAGCGGC	ATTAGCAGAG	ATTCCCGGAG	TCAGGAGTGT	TGTATTATTT	GGAGTAGAAA	360
	CTCATGTGTG	CATCCAACAA	ACTGCCCTGG	AGCTAGTTGG	CCGAGGAGTC	GAGGTTCACA	420
35	TTGTTGCTGA	TGCCACCTCA	TCAAGAAGCA	TGATGGACAG	GATGTTTGCC	CTCGAGCGTC	480
	TCGCTCRARC	CNGGGATCAT	AGTGACCACG	AGTGNAGGCT	GTTCTGCTTC	AGCTGGTAGC	540
	TGATAAGGAC	CATCCAAAAT	TCAAGGAAAT	TCAGAATCTA	ATTAAGGCGA	GTGCTCCAGA	600
40	GTCGGGTCTG	CTTTCCAAAG	TATAGGACAT	TTGAAGAACT	GGTATGCTAC	TCACTGGTGA	660
	AGGACAGTCA	GGTGAAGGAC	TGTAAGCCCA	CACAAGCTCT	TCTTATCTCT	ACTAGAATTA	720
45	AAATGTTAAG	TCAAAAACGG	CICCITITIT	GCGCCTCCTA	GIGAACITAA	CCAGCTAGAC	780
	CATTTGAGTA	CCAGCATTTA	GTTACAAACG	TCAAAGGCTT	CCGGTGCTGC	TTACCTTCCT	840
	TTTTTGTTAA	TGTGCTTTTA	TTTATTAAAA	AAAATTACAA	TGAAGATGCC	TGTTTTGTCT	900
50	CTACTGTGTA	CTCTGATCGT	ATCTTTCCAA	AGTGCAGACT	CTTGTGAAGT	TTTCTTAAAT	960
	TGTTCACTTT	AAAGAAAATG	ACGTACCAAC	AATGATTIGG	CTTTTATATT	ACTGTAAGAT	1020
55	GTTATAATGT	TAATGTGGAT	GTAGTGCTTT	TACTTTACAG	ATTGATTGGA	ATAAGATTAT	1080
55	TGCATATGAA	TTTACCCACA	GGACTCTGAA	TCATGTTACC	CACTCCCCTC	ACAATGTTGT	1140
	CCACTTAGTG	AGTTGCATTG	ATCTATCCGT	ACCAAATGAT	GTTGAATAAT	TACATATCTT	1200
60	TCTKGACTAT	ACTGATTTCT	TATTTTGGTC	АСТАТТАСТА	AATCTCTGTT	AATATTCTCT	1260

498

TGTTTTAACA TCTTTGAAGT ATGGCTTGCT GAATATCTTT ACCAACATCT TGAATATATA	1380
TTCTAGTGTC CACAAGATTT AGCAAAAAGA TAAAGCTTGG GTGGAATATC ATTTTAAAAT	1440
GTTCATGTTC TGTTCTATAT TTTCTTCACC TACTCTCCAA ATATTGTAAT GCAAAAAGTC	1500
TCAGTAATGA TTTGGTAGTA TTAATTTTGT GGTCATTGTT TCTCTTCGAT AAATTTATTT	1560
TCATTAAATA CTTRTTAGAG GGTTTTGAAA TGTTTTTCAA ATATGTGAAA TGTGAAACTG	1620
CTGTCTTTTA TATTAAAGTA ATTAAAGAAA ATGTATTGTG ATTGAAATTA TTTTGNCCTC	1680
CACAAGATGG CTCTATGAGT ATTCTTCCAG GGATTCTAAT ATTTATTTAA G	1731
(0)	
-	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1320 base pairs	•
-	
(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
(B) TYPE: nucleic acid	
(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	60
(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 272:	60 120
(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 272: CTGCTTAGGA AGAGAAGGTC AGAGTTCGCG GGGGCAGAGG CATTCTTGCC GCTGGCCCAG	
(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 272: CTGCTTAGGA AGAGAAGGTC AGAGTTCGCG GGGGCAGAGG CATTCTTGCC GCTGGCCCAG TCACTATGTA GTGGAGGGGC AGACACCCTC CCGCAAATTC TGGAAGGTTC TTAGTCTCGA	120
(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 272: CTGCTTAGGA AGAGAAGGTC AGAGTTCGCG GGGGCAGAGG CATTCTTGCC GCTGGCCCAG TCACTATGTA GTGGAGGGGC AGACACCCTC CCGCAAATTC TGGAAGGTTC TTAGTCTCGA CTAGGGCAGT AGCCCAGGAC TCCTAGTCGC CGGCTTCAGG TCACTGCCGG CTGAACGGAG	120 180
(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 272: CTGCTTAGGA AGAGAAGGTC AGAGTTCGCG GGGGCAGAGG CATTCTTGCC GCTGGCCCAG TCACTATGTA GTGGAGGGGC AGACACCCTC CCGCAAATTC TGGAAGGTTC TTAGTCTCGA CTAGGGCAGT AGCCCAGGAC TCCTAGTCGC CGGCTTCAGG TCACTGCCGG CTGAACGGAG CTGCCGTCGC CATGTTTGGC TGCTTGGTGG CGGGGAGGCT GGTGCAAACA GCTGCACAGC	120 180 240
(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 272: CTGCTTAGGA AGAGAAGGTC AGAGTTCGCG GGGGCAGAGG CATTCTTGCC GCTGGCCCAG TCACTATGTA GTGGAGGGGC AGACACCCTC CCGCAAATTC TGGAAGGTTC TTAGTCTCGA CTAGGGCAGT AGCCCAGGAC TCCTAGTCGC CGGCTTCAGG TCACTGCCGG CTGAACGAG CTGCCGTCGC CATGTTTGGC TGCTTGGTGG CGGGGAGGCT GGTGCAAACA GCTGCACAGC AAGTGGCAGA GGATAAATTT GTTTTTGACT TACCTGATTA TGAAAGTATC AACCATGTTG	120 180 240 300
(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 272: CTGCTTAGGA AGAGAAGGTC AGAGTTCGCG GGGGCAGAGG CATTCTTGCC GCTGGCCCAG TCACTATGTA GTGGAGGGGC AGACACCCTC CCGCAAATTC TGGAAGGTTC TTAGTCTCGA CTAGGGCAGT AGCCCAGGAC TCCTAGTCGC CGGCTTCAGG TCACTGCCGG CTGAACGGAG CTGCCGTCGC CATGTTTGGC TGCTTGGTGG CGGGGAGGCT GGTGCAAACA GCTGCACAGC AAGTGGCAGA GGATAAATTT GTTTTTGACT TACCTGATTA TGAAAGTATC AACCATGTTG TGGTTTTTAT GCTGGGAACA ATCCCATTTC CTGAGGGAAT GGGAGGATCT GTCTACTTTT	120 180 240 300 360
(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 272: CTGCTTAGGA AGAGAAGGTC AGAGTTCGCG GGGGCAGAGG CATTCTTGCC GCTGGCCCAG TCACTATGTA GTGGAGGGGC AGACACCCTC CCGCAAATTC TGGAAGGTTC TTAGTCTCGA CTAGGGCAGT AGCCCAGGAC TCCTAGTCGC CGGCTTCAGG TCACTGCCGG CTGAACGGAG CTGCCGTCGC CATGTTTGGC TGCTTGGTGG CGGGGAGGCT GGTGCAAACA GCTGCACAGC AAGTGGCAGA GGATAAATTT GTTTTTGACT TACCTGATTA TGAAAGTATC AACCATGTTG TGGTTTTTAT GCTGGGAACA ATCCCATTTC CTGAGGGAAT GGGAGGATCT GTCTACTTTT CTTATCCTGA TTCAAATGGA ATGCCAGTAT GGMAACTCCT AGGATTTGTC ACGAATGGGA	120 180 240 300 360 420
(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 272: CTGCTTAGGA AGAGAAGGTC AGAGTTCGCG GGGGCAGAGG CATTCTTGCC GCTGGCCCAG TCACTATGTA GTGGAGGGGC AGACACCCTC CCGCAAATTC TGGAAGGTTC TTAGTCTCGA CTAGGGCAGT AGCCCAGGAC TCCTAGTCGC CGGCTTCAGG TCACTGCCGG CTGAACGGAG CTGCCGTCGC CATGTTTGGC TGCTTGGTGG CGGGGAGGCT GGTGCAAACA GCTGCACAGC AAGTGGCAGA GGATAAATTT GTTTTTGACT TACCTGATTA TGAAAGTATC AACCATGTTG TGGTTTTTAT GCTGGGAACA ATCCCATTTC CTGAGGGAAT GGGAGGATCT GTCTACTTTT CTTATCCTGA TTCAAATGGA ATGCCAGTAT GGMAACTCCT AGGATTTGTC ACGAATGGGA AGCCAAGTGC CATCTTCAAA ATTTCAGGTC TTAAATCTGG AGAAGGAAGC CAACATCCTT	120 180 240 300 360 420 480
(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 272: CTGCTTAGGA AGAGAAGGTC AGAGTTCGCG GGGGCAGAGG CATTCTTGCC GCTGGCCCAG TCACTATGTA GTGGAGGGGC AGACACCCTC CCGCAAATTC TGGAAGGTTC TTAGTCTCGA CTAGGGCAGT AGCCCAGGAC TCCTAGTCGC CGGCTTCAGG TCACTGCCGG CTGAACGGAG CTGCCGTCGC CATGTTTGGC TGCTTGGTGG CGGGGAGGCT GGTGCAAACA GCTGCACAGC AAGTGGCAGA GGATAAATTT GTTTTTGACT TACCTGATTA TGAAAGTATC AACCATGTTG TGGTTTTTAT GCTGGGAACA ATCCCATTTC CTGAGGGAAT GGGAGGATCT GTCTACTTTT CTTATCCTGA TTCAAATGGA ATCCCAGTAT GGMAACTCCT AGGATTTGTC ACGAATGGGA AGCCAAGTGC CATCTTCAAA ATTTCAGGTC TTAAATCTGG AGAAGGAAGC CAACATCCTT TTGGAGCCAT GAATATTGTC CGAACTCCAT CTGTTGCTCA GATTGGAATT TCAGTGGAAT	120 180 240 300 360 420 480 540
	TTCTAGTGTC CACAAGATTI AGCAAAAAGA TAAAGCTTGG GTGGAATATC ATTITAAAAT GTTCATGTTC TGTTCTATAT TTTCTTCACC TACTCTCCAA ATATTGTAAT GCAAAAAGTC TCAGTAATGA TTTGGTAGTA TTAATTTTGT GGTCATTGTT TCTCTTCGAT AAATTTATTT TCATTAAATA CTTRTTAGAG GGTTTTGAAA TGTTTTTCAA ATATGTGAAA TGTGAAACTG CTGTCTTTTA TATTAAAGTA ATTAAAGAAA ATGTATTGTG ATTGAAATTA TTTTGNCCTC CACAAGATGG CTCTATGAGT ATTCTTCCAG GGATTCTAAT ATTTATTTAA G (2) INFORMATION FOR SEQ ID NO: 272: (i) SEQUENCE CHARACTERISTICS:

TTCTGCAAAT GGTATGAGGC ATNITCTGTC TCCAATATTA AGGCTTTTTA TAACTGAATA

TCTATTTTGT CTATGAATAT ATTCCTTTTT TGACATTTAA ACATATTCTT TTATTGTGAA

CATCAGCACT GCATGCCATT AAAGTATGTA CTATAGAGAT CTGATGAGAA ACAGTTCTTA

780

840

900

55

499

	CCCTAAATAT TITGTTATAT TGTCGCCATT ATGAATTTAT AAAGACAGGA AAATATAGTT	960
	GCCTATGTTT TAGGGACCAC TATTAAAGCT TATAAATATT TGTGTATTTT CATTTAGAAG	1020
5	TACCATCTAT GAGAGTAGTT TATACTGCAC TGTGTACATG AATGGCTAAT GAATCTATTT	1080
	TCCAACTITC CCGTGTFTTA TAGATATTTC TTTTCACTIT GAGTATCCTA GAGATGGGAG	1140
10	GATGCCTAGG AAGAGTTTGT TGAGAAGTGG TACCATGGTG TAGCATGGGA GAGCATTGGG	1200
10	AATGCACTAG GTTTGAATTT GGCATAATGG TAGCTATGTG ACCCTGAGCA AATTTCTCTC	1260
	ATCTGCTCAT CTGANGAATG AGGAAATAGG AGTGAATTTG ATNITTCCTA GGTCCNICTA	1320
15		
20	(2) INFORMATION FOR SEQ ID NO: 273: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 515 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
23 .	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 273:	
	CCCTGGAGAG GGGCTGCTGT GCCAGCTTGG GGAGGGTCTG GGATGGGGCT GCCCCTGATG	60
30	GCCCTGATGT GGAGTACCTT GCCAGCATCT GCTGGGGTGA ACTITATTTT AGCCCTTCCC	120
	TTGTTGYTCT TATGAAGAAC AGAGGAGGGG TGGGCAGGTC AGTGATGTCA GCAGTGAGTA	180
35	TTCCCAGCAC AGCGGCTCTG GAAGAGGCAT GAGGCATTTC TTTCAGGAAA TGRTCATTAT	240
	TCAGCCAGAA GGCATTCATT AAGTAAGTCC TGACTTTGTG CCCAGCTCTG TGTTATAGGC	300
	CCTTGGCGAG ACTCAGGAGG GGCARAGGAC GCTAGKTTKT AGWTAACACG GAACCTCARA	360
40	GGWTATATGG TCCAAGAAGA CCCGGGGGGG GTGAAAACCC TGTGGACTAA TGCTCACGGG	420
	AGCCCGAGGT CACACTITGA CTITGCTACC ATGGGCTGTG TCTANGNACG TATATATGCT	480
45	GCGTAATTAT TACAGAGGCA GTCCATGTGC ATTGT	515
50	(2) INFORMATION FOR SEQ ID NO: 274:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2995 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
55	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 274:	
	TGACACCCAT AAGGAATTCA TGAAGAAAGT AGAAGAAAAG CGAGTGGACG TTAACTCAGC	60

TGACACCCAT AAGGAATTCA TGAAGAAAGT AGAAGAAAAG CGAGTGGACG TTAACTCAGC 60

	AGTAGCCATG	GGAGAAGTCA	TCCTGGCTGT	CTGCCACCCC	GATTGCATCA	CAACCATCAA	120
	ACACTGGATC	ACCATCATCC	GAGCTCGCTT	CGAGGAGGTC	CTGACATGGG	CTAAGCAGCA	180
5	CCAGCAGCGT	CTTGAAACGG	CCTTGTCAGA	ACTGGTGGCT	AATGCTGAGC	TCCTGGAAGA	240
	ACTTCTGGCA	TGGATCCAGT	GGGCTGAGAC	CACCCTCATT	CAGCGGGATC	AGGAGCCAAT	300
	CCCGCAGAAC	ATTGACCGAG	TTAAAGCCCT	TATCGCTGAG	CATCAGACAT	TTATGGAGGA	360
10	GATGACTCGC	AAACAGCCTG	ACGTGGACCG	GGTCACCAAG	АСАТАСАААА	GGAAAAACAT	420
	AGAGCCTACT	CACGCGCCTT	TCATAGAGAA	ATCCCGCAGC	GGAGGCAGGA	AATCCCTAAG	480
15	TCAGCCAACC	CCTCCTCCCA	TGCCAATCCT	TTCACAGTCT	GAAGCAAAAA	ACCCACGGAT	540
	CAACCAGCTT	TCTGCCCGCT	GGCAGCAGGT	GTGGCTGTTA	GCACTGGAGC	GGCAAAGGAA	600
	ACTGAATGAT	GCCTTGGATC	GGCTGGAGGA	CTTGAAAGAA	TTTGCCAACT	TTGACTTTGA	660
20	TGTCTGGAGG	AAAAAGTATA	TGCGTTGGAT	GAATCACAAA	AAGTCTCGAG	TGATGGATTT	720
	CTTCCGGCGC	ATTGATAAGG	ACCAGGATGG	GAAGATAACA	CGTCAGGAGT	TTATCGATGG	780
25	CATTTTAGCA	TCCAAGTTCC	CCACCACCAA	GTTAGAGATG	ACTGCTGTGG	CTGACATTTT	840
	CGACCGAGAT	GGGGATGGTT	ACATIGATTA	TTATGAATTT	GIGGCIGCIC	TTCATCCCAA	900
20	CAAGGATGCG	TATCGACCAA	CAACCGATGC	AGATAAAATC	GAAGATGAGG	TTACAAGACA	960
30	AGTGGCTCAG	TGCAAATGTG	CAAAAAGGTT	TCAGGTGGAG	CAGATCGGAG	AGAATAAATA	1020
	CCGGTTCTTC	CTCGGCAATC	AGTTTGGGGA	TTCTCAGCAG	TIGCGGCTGG	TCCGTATTCT	1080
35	GCGCAACCGT	GATGGTTCGC	GTTGGTGGAG	GATGGATGGC	CTTGGATGAA	TTTTTAGTGA	1140
	AAAATGATCC	CTGCCGAGCA	CGAGGTAGAA	CTAACATTGA	ACTTAGAGAG	AAATTCATCC	1200
40	TACCAGAGGG	AGCATCCCAG	GGAATGACCC	CCTTCCGCTC	ACGGGGTCGA	AGGTCCAAAC	1260
40	CATCTTCCCG	GGCAGCTTCC	CCTACTCGTT	CCAGCTCCAG	TGCTAGTCAG	AGTAACCACA	1320
	GCTGTACATC	CATGCCATCT	TCTCCAGCCA	CCCCAGCCAG	TGGAACCAAG	GTTATCCCAT	1380
45	CATCAGGTAG	CAAGTTGAAA	CGACCAACAC	CAACTTTTCA	TTCTAGTCGG	ACATCCCTTG	1440
	CTGGTGATAC	CAGCAATTAG	TTCTTCCCCG	GCCTCCACAG	GTGCCAAAAC	TAATCGGGCA	1500
50	GACCCTAAAA	AGTCTGCCAG	TCGCCCTGGG	AGTCGGGCTG	GGAGTCGAGC	CGGGAGTCGA	1560
50	GCCAGCAGCC	GGCGAGGAAG	TGACGCTTCT	GACTTTGACC	TCTTAGAGAC	GCATTGCTTG	1620
	TTCCGACACT	TCAGAAAGCA	GCGCTGCAGG	GGGCCAAGGC	AACTCCAGGA	GAGGGCTAAA	1680
55	CAAACCTTCC	AAAATCCCAA	CCATGTCTAA	GAAGACCACC	ACTGCCTCCC	CCAGGACTCC	1740
	AGGTCCCAAG	CGATAACACT	GTCTAAGCAC	CCCCAAGCCA	CTATCCACTT	TGAATCCTGC	1800
60	TCCATACATT	GGGTGTATAT	TTATTCTGAA	CGGGAGAAGT	TATATTGTTA	AAAGTGTAAA	1860

501

	AGAATAATTG	TGTTATGAAG	CTGCCTTATT	TTTTTTCTTT	TTGTAAGTTA	CTATTTTCAT	1920
	GTGAATATTT	ATGTAGATAA	AATTTGCCTC	CTGGTAACCC	TGTAATGGAT	GGGGCCCAGA	1980
5	AATGAAATAT	TTGAGAAAAA	CAAGTGAAAA	GGTCAAGATA	CAAATGTGTA	ттаааааааа	2040
	AAAAGCCTAT	TAATAGGGTT	TCTGCGCGGT	GCAGGGTTGT	AAACCTGCTT	TATCTTTTAG	2100
10	GATTATTCCT	AAATGCATCT	тстттатааа	CTTGACTTGC	TATCTCAGCA	AGATAAATTA	2160
	ТАТТАААААА	ATAAGAATCC	TGCAGTGTTT	AAGGAACTCT	TTTTTTGTAA	ATCACGGACA	2220
	CCTCAATTAG	CAAGAACTGA	GGGGAGGGCT	TTTTCCATTG	TTTAATGTTT	TGTGATTTTT	2280
15	AGCTAAAGAG	AGGGAACCTC	ATCTAAGTAA	CATTTGCACA	TGGATACAGC	AAAAGGAGTŤ	2340
	CATTGCAATA	CTGTCTTTGG	ATATIGTTTC	AGTACTGGGT	GTTTAAAGGA	CAAATAGCTG	2400
20	CTAGAATTCA	GGGGTAAATG	TAAGTGTTCA	GAAAACGTCA	GAACATTIGG	GGTTTTAAAC	2460
20	TGATTIGTIG	CTCCCTATCC	AGCCTAGACA	CCAGTAACTC	TTGTGTTCAC	CAGGACCCAG	2520
	ACCCTTGGCA	AGGGATAGGC	TCGTTGGTGA	CATTGTGAAT	TTCAGATTTG	TTTTATCCAC	2580
25	TTTTTTTGCT	ATTTATTTAA	ATGGTCGATC	AACTTCCCAC	AAACTGAGGA	ATGAATTCCA	2640
	CGAGCCTGTT	CTGAAAATGT	GGACGTAAGA	CAAACACGTG	стестестт	AATGGAGTTC	2700
30	ACCAGCACAC	TTGTTAACCA	GICCIGITIG	CTTTCGTCTT	TTTTTGTGCG	TAATAAAGTC	2760
50	AACTGACCAA	GTGACCATGA	AAAGGGGCTG	TCTGGGGCTC	CIGITITITA	GCTGCTGTTC	2820
	TTCAGCTCCG	ACCATGTTGC	TGTGTGATTA	TCTCAATTGG	TTTTAATTGA	GGCAGAAACT	2880
35	GAAGCTCTAC	CAATGAACTG	TTTAGAAACA	AGACACACTT	AAATTATƏTT	ATTGCTTGCA	2940
	GTAACAAAAA	ААААААААА	АААААААА	AAAAAACTCG	AGGGGGGCCC	GGTAC	2995
40							
	(2) INFORM	ATION FOR SE	20 ID NO: 27	75 •			
			_				
45	(i)	(B) TYP	HARACTERISTI GTH: 1990 ba E: nucleic a ANDEDNESS: O DLOGY: line	ase pairs acid double			
50	(xi) SEQUENCE I	DESCRIPTION	: SEQ ID NO	: 275:		
	GGGACCCGCG	CGSCTCCCGG	GGATGGTGAG	CAAGGCGCTG	CTGCNWCGTG	TCTGCCGTCA	60
55	ACCGCAGAGG	ATGAAGCTGC	TGCTGGGCAT	CCCCTTCCTG	GCCTACGTCG	CCTCTGTTTG	120
<i>JJ</i>	CCCCAACTTC	GTTAATATGA	GGTCTATCCA	GGAAAATGGT	GAACTAAAAA	TTGAAAGCAA	180
	GATTGAAGAG	ATGGTTGAAC	CACTAAGAGA	GAAAATCAGA	GATTTAGAAA	AAAGCTTTAC	240

CCAGAAATAC CCACCAGTAA AGTTTTTATC AGAAAAGGAT CGGAAAAGAA TTTTGAWTAA

60

	CAGGAGGCGC	AGKGTTCGTG	GGCTCCCATC	TKAACTGACA	AACTCATGAT	GGACGCCAC	360
5	GAGGTGACCG	TGGTGGACAA	TTTCTTCACG	GGCAGGAAGA	GAAACGTGGA	GCACTGGATC	420
	GGACATGAGA	ACTTCGAGTT	GATTAACCAC	GACGTGTGGG	AGCCCCTCTA	CATCGAGGTT	480
	GACCAGATAT	ACCATCTGGC	ATCTCCAGCC	TCCCCTCCAA	ACTACATGTA	TAATCCTATC	540
10	AAGACATTAA	AGACCAATAC	GATTGGGACA	TTAAACATGT	TGGGGCTGGC	AAAACGAGTC	600
	GGTGCCCGTC	TGCTCCTGGC	CTCCACATCG	GAGGTGTATG	GAGATCCTGA	AGTCCACCCT	660
15	CAAAGTGAGG	ATTACTGGGG	CCACGTGAAT	CCAATAGGAC	CTCGGGCCTG	CTACGATGAA	720
15	GGCAAACGTG	TTGCAGAGAC	CATGTGCTAT	GCCTACATGA	AGCAGGAAGG	CGTGGAAGTG	780
	CGAGTGGCCA	GAATCTTCAA	CACCTTTGGG	CCACGCATGC	ACATGAACGA	TGGGCGAGTA	840
20	GTCAGCAACT	TCATCCTGCA	GGCGCTCCAG	GGGGAGCCAC	TCACGGTATA	CGGATCCGGG	900
	TCTCAGACAA	GGGCGTTCCA	GTACGTCAGC	GATCTAGTGA	ATGGCCTCGT	GGCTCTCATG	960
25	AACAGCAACG	TCAGCAGCCC	GGTCAACCTG	GGGAACCCAG	AAGAACACAC	AATCCTAGAA	1020
	TTTGCTCAGT	ТААТТАААА	CCTTGTTGGT	AGCGGAAGTG	AAATTCAGIT	TCTCTCCGAA	1080
	GCCCAGGATG	ACCCACAGAA	AAGAAAACCA	GACATCAAAA	AAGCAAAGCT	GATGCTGGGG	1140
30	TGGGAGCCCG	TGGTCCCGCT	GGAGGAAGGT	TTAAACAAAG	CAATTCACTA	CTTCCGTAAA	1200
	GAACTCGAGT	ACCAGGCAAA	TAATCAGTAC	ATCCCCAAAC	CAAAGCCTGC	CAGAATAAAG	1260
35	AAAGGACGGA	CTCGCCACAG	CTGAACTCCT	CACTTTTAGG	ACACAAGACT	ACCATTGTAC	1320
	ACTTGATGGG	ATGTATTTTT	GCTTTTTT	TGTTGTCGTT	TAAAGAAAGA	CTTTAACAGG	1380
	TGTCATGAAG	AACAAACTGG	AATTTCATTC	TGAAGCTTGC	TTTAATGAAA	TGGATGTGCC	1440
40	TAAAAGCTCC	CCTCAAAAAA	CTGCAGATTT	TGCCTTGCAC	TTTTTGAATC	TCTCTTTTTA	1500
	TGTAAAATAG	CGTAGATGCA	TCTCTGCGTA	TTTTCAAGTT	TTTTTATCTT	GCTGTGAGAG	1560
45	CATATGTTGT	GACTGTCGTT	GACAGTTTTA	TTTACTGGTT	TCTTTGTGAA	GCTGAAAAGG	1620
	AACATTAAGC	GGGACAAAAA	ATGCCGATTT	ТАТТТАТААА	AGTGGGTACT	TAATAAATGA	1680
	GTCGTTATAC	TATGCATAAA	GAAAAAYCCT	AGCAGTATTG	TCAGGTGGTG	GLCCCCCCCC	1740
50	ATTGATTTTA	GGCAGATAA	AAGAATTCTG	TGTGAGAGCT	TTATGTTTCT	CTTTTAATTC	1800
	AGAGTTTTTC	CAAGGTCTAC	TTTTGAGTTG	CAAACTTGAC	TTTGAAATAT	TCCTGTTGGT	1860
55	CATGATCAAG	GATATTTGAA	ATCACTACTG	TGTTTTGCTG	CCTATCTCCC	GCGGGGGCAG	1920
	GTTGGGGGGC	ACAAAGTTAA	CATATTCTTG	GTTAACCATG	GITAAATATG	CTATTTTAAT	1980
	AAAATATTGA						1990

(2) INFORMATION FOR SEQ ID NO: 276:

(i

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2436 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 276:

	(XI) SEQUENCE	DESCRIPTION	: SEQ ID NO	: 2/6:		
	AACTTCGCTT	AGCTCTCCAG	GGTNAAACGG	GTGAGNCCTT	AAAAACAGAA	GAGAACAAGA	60
15	TTTAAAGTCC	GTTGCATTGA	АААТААСААА	CAATATCAAT	GTTTTAATCA	AGGATCTCTT	120
	CCACATTCCT	CCTTCTTATA	AGAGCACAGT	AACACTATCC	TGGAAACCTG	TACAAAAGGT	180
20	TGAGATTGGG	CAAAAGAGAG	CCAGTGAAGA	TACAACTTCA	GGTTCACCAC	CCAAGAAATC	240
	TTCAGCAGGA	CCAAAAAGAG	ATGCCAGGCA	GATTTATAAC	CCTCCCAGTG	GGAAATATAG	300
	CAGCAATTTG	GGCAACTTTA	ATTATGAGCA	GAGAGGAGCC	TTCAGGGGAA	GTAGAGGTGG	360
25	CCGAGGTTGG	GGCACACGAG	GAAATCGTAG	TCGGGGAAGA	CTCTACTGAA	TAAGACATCA	420
	GCATTCTTCA	GCATTGTCAT	GAGCTTAATA	TACTTAAATT	CTACTACTCA	TTGGATTGCC	480
30	GGGGATGTCC	CTTTAAACAG	ACTGCTGCCT	TCAGCTAAAA	ACTTAATGTT	CTTTATACCT	540
	TTGTATGTAT	GACCTACTTT	TGTAACAGAC	CATOGTTGTG	TCCAAGGTAA	AACCACAGTG	600
	ATATTTTTGG	ATGCTTTGTC	TGCAATCTTG	ACTIGITITI	GCAGTATCAT	TATTCAGACT	660
35	TCAAATTGTG	AATCTTTTAA	ACATCTTGAT	AATTTGTTGT	TGAGAGCTGT	TCATTCTAAA	720
	ATGTAATGAA	ATTCAGTCTA	GTTCTGCTGA	TAAAGATCAT	CAGTTTTGAA	AGGTTACTGA	780
40	TTTTCCTCTT	CCCTCTTAGT	TTTTTACCCA	ATATATGGAG	AAGAGTAATG	GTCAATCTTA	840
	ACATTTTGTT	TTAATTGTTT	AATAAAGCTG	CTGGGCAGTG	GTGCAGCATT	CCTACCTAGT	900
	GTCATAAAAG	CAAAATACTT	ACATAGCTTT	CTTAAAATAT	AGGAATGACA	TTACATTTTT	960
45	AGGAGAAAGT	AAGTTGCTTT	GCACCGCCTA	CTTAATTCTT	TTCCATATAT	TGTGATACAA	1020
	ACTTTTGAAT	ATGGAATCTT	ACTATTTGAA	TAGAAATGTG	TATGTATAAT	ATACATACAT	1080
50	ACATAAGCAT	ATATGTGTGT	GIGTGTGTGT	ATATATAT	ATATGCATGC	TGTGAAACTT	1140
	GACTACACAA	CATAAATCAC	TTTTAAATT	CCAGGAACGG	GTAGTCTGAC	ACGGTGATTA	1200
	TCCTTTTGAG	GCTGAATCCG	TTATTAACTT	GTTATTTAGG	TTTTTACTCC	CAGTAGCAAG	1260
55	GGATTCTAAG	TTAGTTGCAC	TTACATGATT	ATTGTTATTT	AAAACTAAGA	ATAAAGGCTG	1320
	CATTTTCAAA	GATAAATTGG	AATTGCTGTT	GGTGAAATAA	CAACCAAAAT	ACTGAATCTG	1380
60	ATGTACATAC	AGGITTCTAC	AGGAAGAGAT	GGTATAATTT	ACAATTTGGA	GATTTAATAA	1440

WO 98/39448 PCT/US98/04493

504

	CCAGGCTAC CCAGAAAAAG TGACTTGATA ACATGGTACC AATAAGTAAG GGATGCTCTC	1500
	TCGGTTTGCT TTTGCCACTT TCAAGATTTT AACTTCTCAG GTTATTAATC AAAATTATTG	1560
5	TATAAGTTAG CCAATAGAAT TTTTAGGTTA AAACAACAGA TGGGGGGTTT GTGGAGTGTT	1620
	TAATGTCATG GGCATTTTTA GTAGCATAGA CCCTTTGTTC TGCATTTGAA TGTTTCGTAT	1680
10	ATTITITIT CACAGITAAT CITCCCTCCC CAAGITTGCT ATTCAAATCA ACTGCCTGAA	1740
10	TGACATTTCT AGTAGTCTGA TGTATTTTTC TGAGGAATAG TTTGTGATTC CAATGCAGGT	1800
	GTCTTCATTA CCATTACCTC TACACTGCAG AAGAAGCAAA ACTCCTTTAT TAGAATTACT	1860
15	GCACATGTGT ATGGGGAAAA TAGTTCTGAA AGGCTAGAAT GATACAAGTG AGCAAAAGTT	1920
	GGTCAGCTTG GCTATGGAGT GGTGGCAATA ATCTCTAAAC ATTCCAAAAG ACCATGAGCT	1980
20	GAACCTAAAC TCCCTTGGAA TCTGAACAAA GGAATATAAA ATTGCCATTT GAAAACTGAC	2040
20	CASCTAATCT GGACCTCAGA GATAGATCAG CCAGTGGCCC AAAGCCATTT CAAGTACAGA	2100
	AATTATAGAG ACTACAGCTA AATAAATTTG AACATTAAAT ATAATTTTAC CACTTTTTGT	2160
25	CTTTATAAGC ATATTTGTAA ACTCAGAACT GAGCAGAAGT GACTTTACTT TCTCAAGTTT	2220
	GATACTGAGT TGACTGTTCC CTTATCCCTC ACCCTTCCCC TTCCCTTTCC TAAGGCAATA	2280
30	GTGCACAACT TAGGTTATTT TTGCTTCCGA ATTTGAATGA AAAACTTAAT GCCATGGATT	2340
30	TTTTTCTTTT GCAAGACACC TGTTTATCAT CTTGTTTAAA TGTAAATGTC CCCTTATGCT	2400
	TITGAAATAA ATTTCCTITT GTAATITTAA AAAAAA	2436
35		
	(2) INFORMATION FOR CEA ID NO. 277.	
40	(2) INFORMATION FOR SEQ ID NO: 277:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 782 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 277:	
	GCCACTGACT TCTCCCACCC TTCTGTCTCC CCCATAATAG TTTATTTGGT TGGTCTGGAC	60
50	TCACTTGTGG CCTTTRATTA AATTCCTAAG GGGCCTGAAG AAGACATTTC TACTGCAGAG	120
	GGTTAGAGGC ACTTGAGCAA GGCCCCCACA TCCCAACTCT GGGAGTTGTG GTGGGAGGAG	180
55	GCACTTCTGG GGGATAGGAC CAGACAAGAT AACAGGAGCT CACATGGNAA GCAGAAGCTG	240
<i>JJ</i>	TGACAAGTTT AGTAGTCCCA AAATGGGTTA TATCCCTTCC CCCTTTACAT CAGAATCTTG	300
	TGAAATGGGA AAACAACAGA AGGAGGGGAT CAAAGATAGC TGATCTCACA TGCTTCCCAG	360
60	GCAGGGCARA GGTGGGAGTC AAACCCGGGT GACAGGTGGG TGGAGAGCCC TGTTTGAGGT	420

	TGTGGCTGAT	CCCTCTCTGG	TATTAGTTTT	TCCCCTGGGA	GCAGGAAGCC	CTAGGAAGAG	480
5	GGGACTGCAG	GGTCCCCRGG	GGATCTTTCC	TCCCTCCCCT	GCATGAGGCA	GAGGCAAGCT	540
3	GCCTGCCAAC	ссстссстс	AAGGAATGGC	CTTGCCCAGG	AATGCCCACC	ACACATACCC	600
	TCTTCTTTTT	TTCTAGTCAA	ACTCTTGTTT	ATTCCTTGGC	TTGCCTCCCT	CCTTCCTCCC	660
10	CTCTCAACCT	TTACTTCTGA	TTTCTATTIC	ATGGAATTTG	GGATTGAAGT	ТАААСТАСАА	720
	CAGTGCCGCC	AACACCAAGT	CTTGCAGGAA	ААТААТАСАА	AGAAATTTAA	САААААААА	780
1.5	AA				•		782
13							

(2) INFORMATION FOR SEQ ID NO: 278:

20

25

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 961 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 278:

GAGTTCCGGC TGGAGACCCG TGCTCTGGGC CGGCGCCTTC ACCATGGCCT CGGCAGAGCT 30 GGACTACACC ATCGAGATCC CGGATCAGCC CTGCTGGAGC CAGAAGAACA GCCCCAGCCC 120 AGGTGGGAAG GAGGCAGAAA CTCGGCAGCC TGTGGTGATT CTYTTGGGCT GGGGTGGCTG 180 35 CAAGGACAAG AACCTTGCCA AGTACAGTGC CATCTACCAC AAAAGGGGCT GCATCGTAAT 240 CCGATACACA GCCCCGTGGC ACATGGTCTT CTTCTCCGAG TCACTGGGTA TCCCTTCACT 300 360 TOGTGTTTTG GCCCAGAAGC TGCTCGAGCT GCTCTTTGAT TATGAGATTG AGAAGGAGCC 40 CCTGCTCTTC CATGTCTTCA GCAACGGTGG CGTCATGCTG TACCGCTACG TGCTGGAGCT 420 CCTGCAGACC CGTCGCTTCT GCCGCCTGCG TGTGGTGGGC ACCATCTTTG ACAGCGCTCC 480 45 TOGTGACAGC AACCTGGTAG GGGCTCTGCG GGCCCTGGCA GCCATCCTGG AGCGCCGGGC 600 CGCCATGCTG CGCCTGTTGC TGCTGGTGGC CTTTGCCCTG GTGGTCGTCC TGTTCCACGT CCTGCTTGCT CCCATCACAG CCCTCTTCCA CACCCACTTC TATGACAGGC TACAGGACGC 50 GGGCTCTCGC TGGCCCGAGC TCTACCTCTA YTCGAGGGCT GACGAAGTAG TCCTGGCCAG 720 780 AGACATAGAA CGCATGGTGG AGGCACGCCT GGCACGCCGG GTCCTGGCGC GTTCTGTGGA TTTCGTGTCA TCTGCACACG TCAGCCACCT CCGTGACTAC CCTACTTACT ACACAAGCCT 55 840 CTGTGTCGAC TTCATGCGCA ACTGCGTCCG CTGCTGAGGC CATTGCTCCA TCTCAMCTCT 900 GCTCCAGAAA TAAATGCCTG ACAMCTCCCC ACAAAAAAAA AAAAAAAAA ACTCGAGGGG 960

G

961

5

10

15

20

25

30

35

40

45

50

55

(2) INFORMATION FOR SEQ ID NO: 279:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1228 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 279:

CGCGCTTTGC AGTTCGGTCT CCTGGTGTAC GGCCAACGCC AAGTAGGGGA TTGCGTTCCC 60 TCCAGTCGCA GCCCTATCAG ATTTGGATAT GTCCTTCATA TTTGATTGGA TTTACAGTGG 120 TTTCAGCAGT GTGCTACAGT TTTTAGGATT ATATAAGAAA ACTGGTAAAC TGGTATTTCT 180 TGGATTGGAT AATGCAGGAA AAACAACATT GCTACACATG CTAAAAGATG ACAGACTTGG 240 ACAACATGTC CCAACATTAC ATCCCACTTC CGAAGAACTG ACCATTGCTG GCATGACGTT 300 TACAACTTT GATCTGGGTG GACATGTTCA AGCTCGAAGA GTGTGGAAAA ACTACCTTCC 360 TGCTATCAAT GGCATTGTAT TTCTGGTGGA TTGTGCAGAC CACGAAAGGC TGTTAGAGTC 420 AAAAGAAGAA CTTGATTCAC TAATGACAGA TGAAACCATT GCTAATGTGC CTATACTGAT 480 TCTTGGGAAT AAGATCGACA GACCTGAAGC CATCAGTGAA GAGAGGTTGC GAGAGATGTT 540 TGGTTTATAT GGTCAGACAA CAGGAAAGGG GAGTATATCT CTGAAAGAAC TGAATGCCCG 600 ACCCTTAGAA GTTTTCATGT GTAGTGTGCT CAAAAGACAA GGTTACGGAG AAGGCTTCCG 660 CTGGATGGCA CAGTACATTG ATTAACACAA ACTCACATTG GTTCCAGGTC TCAACGTTCA 720 GGCTTACTCA GAGATTTGAT TGCTCAACAT GCATAACTTG AATTCAATAG ACTTTTGCTG 780 GTTATAAAAC AGATGTTTTT TAGATTATTA ATATTAAATC AACTTAATTT GAATGAGAAT 840 TGAAAACTGA TTCAAGTAAG TTTGAGTATC ACAATGTTAG CTTTCTAATT CCATAAAAGT 900 ACTTGGTTTT TACAGTTTAT AATCTGACAT CACCCCAGCG CCATTTGTAA AGAGCAACTT 960 TCCAGCAGTA CATTIGAAGC ACTITITAAC AACATGAAAC TATAAACCAT ATITAAAAGC 1020 TCATCATGTT AAATTTTTTA TGTACTTTC TGGAACTAGT TTTTAAATTT TAGATTATAT 1080 GTCCACCTAT CKTAAGTGTA CAGTTAATAA TTAGCTTATT CAATGATTGC ATGATGCCTT 1140 ACAGTTTTCA ATAACTTTTT TTCTTATGCA AACGTCATGC AATAAAACAA ACTCTAATGT 1200 1228 TTGGCAAAAA AAAAAAAAA AAANTCGA

10

(2) INFORMATION FOR SEQ ID NO: 280:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1327 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 280:

10	TCTCGGGTCT	CGGGACAGGT	GAGCACCCTG	ATGAAGGCCA	CGGTCCTGAT	GCGGCACCTG	60
	GGCGGGTGCA	GGAGATCGTG	GCCCCTCC	GCAAGGCGS	CGGAGACCGG	TTACAGGTGA	120
15	TTTCTGATTT	TRACATGACC	TTGAGCAGGT	ттосататаа	TGGAAAGCGA	TGCCCTTCTT	180
	CTTACAATAT	TCTGGATAAT	AGCAAGATCA	TCAGTGAGGA	GTGTCGGAAA	GAGCTCACAG	240
20	CGCTCCTTCA	CCACTATTAC	CCAATTGAGA	TCGACCCACA	CCGGACCGTC	AAGGAGAAGC	300
20	TACCTCATAT	GGTGGAATGG	TGGACCAAAG	CGCACAATCT	CCTATGTCAG	CAGAAGATTC	360
	AGAAGTTTCA	GATAGCCCAG	GTGGTTAGAG	AGTCCAATGC	AATGCTCAGG	GAGGGATATA	420
25	AGACCTTCTT	CAACACACTC	TACCATAACA	ACATTCCCCT	TTTCATCTTT	TCTGCGGGCA	480
	TTGGTGATAT	CCTGGAAGAA	ATTATCCGAC	AGATGAAAGT	GTTCCACCCC	AACATCCACA	- 540
30	TCGTGTCTAA	CTACATGGAT	TTTAATGAAG	ATGGTTTTCT	CCAGGGATTT	AAGGGCCAGC	600
50	TGATACACAC	ATACAACAAG	AACAGCTCTG	TGTGTGAGAA	CTGTGGTTAC	TTCCAGCAAC	660
	TTGAGGGCAA	AACCAATGTC	ATCCTGCTGG	GAGACTCTAT	CGGGGACCTC	ACCATGGCCG	720
35	ATGGGGTTCC	TGGTGTGCAG	AACATTCTCA	AAATTGGCTT	CCTGAATGAC	AAGGTGGAGG	780
	AGCGGCGGGA	NCGCTAACAT	GGACTCCTAT	GACATCGTGC	TGGAGAAGGA	CGAGACTCTG	840
40	GATGTGGTCA	ACGGGCTACT	GCAGCACATC	CTGTGCÇNAG	GGGGTCCAGC	TGGAGATGCA	900
	AGGCCCCTGA	AGGCGCAGGC	TCCNAAGKCC	SCTGCAGGCC	GTGGTGAGGA	GGGGCGCCTC	960
	CCCAGAGTCT	GCTCCCCCGT	GAACACAGAG	CAGAGCCAGG	GTGGCCAGCA	CTCCCTCCCT	1020
45	CCTTCCGCGC	CCCTCCGTCC	TCCTTTCCCT	GAGCACCTTC	ATCACCAGAG	GCTTGAAGGA	1080
	ACCCCGCCAT	GTGGCAGGGC	ACAGGCACTG	TTCCTGGTGA	ACCTTGGACC	ACAGCATGTC	1140
50	AGTGCTCTAG	GGATTGTCTA	CTCCAGGGAT	TTTCTTCAAA	ATTTTTAAAC	ATGGGAAGTT	1200
50	САААСАААТА	TAATGTGTGA	AACAGATCAA	AATTTTTAAA	ATGAAAAAA	AGCTGCTCTG	1260
	ATTCAGGGGA	TGTGGGTCGG	GGTAGAACCT	GGACCTCTTG	CCTCCCCC	ACATGGGATG	1320
55	CTTCTAG						1327

^{60 (2)} INFORMATION FOR SEQ ID NO: 281:

60

_	
	1

508

5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 799 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 281:	
10	TCACCCTGCC TACAGCGTGG AGCTCAGATG ACTGCGCCCT CCACGGTCAC TGTGAGCAGG	60
	TOGTATTCAC AGCCTGCATG ACCCTCACGG CCAGCCCTGG GGTGTTCCCC GTCACTGTGT	120
15	GGCTTTGGCT GAAGCCTAAT TCCACAGCTC CTTGTTTTTT GAGAGAGACT GAGAGAACCA	180
13	TAATCCTTGC CTGCTGAACC CAGCCTGGGC CTGGATGCTC TGTGAATACA TTATCTTGCG	240
	ATGTTGGGTT ATTCCAGCCA AAGACATTTC AAGTGCCTGT AACTGATTTG TACATATTTA	300
20	TAAAAATCTA TTCAGAAATT GGTCCAATAA TGCACGTGCT TTGCCCTGGG TACAGCCAGA	360
	GCCCTTCAAC CCCACCTTGG ACTTGAGGAC CTACCTGATG GGACGTTTCC ACGTGTCTCT	420
25	AGAGAAGGAT TCCTGGATCT AGCTGGTCAC GACGATGTTT TCACCAAGGT CACAGGAGCA	480
4.5	TTGCGTCGCT GATGGGGTTG AAGTTTGGTT TGGTTCTTGT TTCAGCCCAA TATGTAGAGA	540
	ACATTIGAAA CAGTCIGCAC CTTTGATACG GTATTGCATT TCCAAAGCCA CCAATCCATT	600
30	TIGTGGATIT TATGTGTCTG TGGCTTAATA ATCATAGTAA CAACAATAAT ACCTTTTTCT	660
	CCATTTIGCT TGCAGGAAAC ATACCTTAAG TTTTTTTTGT TTTGTTTTTGT	720
35	TITTGTTTIC CTTTATGAAG AAAAAATAAA ATAGTCACAT TTTTAATACY AAAAAATGGA	780
<i>JJ</i>	CAAAAAAGT CGAGGGGG	799
40	(2) INFORMATION FOR SEQ ID NO: 282:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2196 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 282:	
30	AAAGACTCTA ACATCCATGA GCTTGAACAT GAGCAAGAGC CTACTTGTGC CKSCCAGATG	60
	GCTGAGCCCT TCCGTACCTT CCGAGATGGA TGGGTCTCCT ACTACAACCA GCCTGTGTTT	120
55	CTGGCTGGCA TGGGTCTTGC TTTCCTTTAT ATGACTGTCC TGGGCTFTGA CTGCATCACC	180
	ACAGGGTACG CCTACACTCA GGGACTGAGT GGTTCCATCC TCAGTATTTT GATGGGAGCA	240

TCAGCTATAA CTGGAATAAT GGGAACTGTA GCTTTTACTT GGCTACGTCG AAAATGTGGT

TAATCCTTTG	CTTCATCTTT	CTACAGTATG	ACATAATGAT	TIGCTATGIT	GTAAAATCTT	2160
			•			•
TGTAAAAAAT	TTCTATATAA	AATATTTGAA	ACTTAA			2196

5

(2) INFORMATION FOR SEQ ID NO: 283:

10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1185 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

15

30

35

40

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 283:

GCAGTTAAGG CTTCTGATAA GGAAAGAGAG TCTGAACAGA GCACACACAT CTGGAGCTCC 60 20 AGGAGTGGGG GATGCAGCAT CAGATTCCAT CTTGAATTTC TGCTAAAATA CTTTGTACTC 120 ATAATGGATC TCAACAAAGA TCTGTATTTC ATCTGTGGCT CCATCTTCCC TCTGGGTCAA 180 GTAGATGTTA AGCTGGACCT TGGCACGCCT CTTAACATGA AGAGATCTAG CTAGACAGAC 240 25 AGACTCCCCC ATTTATGGGA ACAAGAATTC AATTTATTCT CTATTTATAA AACATTTTTT 300 TAAAGTGCCT TGGGTATAAA AATCTAAATG TCTGCGGTGT GATCAGTCAG GAGCACGTAA 360 CTATCACTCT TCGCATCCTT TGGTCACTGG GAGATCCTTT GGGGGCTGGG AGGTCCTTCT GTCCCAGGCT AAAGGAAAAG CTTCACAAGG GTAAGAGCCA CAGAACCCTC GGCAAGAAAG 480 GCCGGTCAGG GAGAATGAAT GGTACAGAGA GGAAAGGAAG GAAAGGGGGT GGAACAGAGG 540 TAGAAGGCAA GGAAGGGATG CCGCACTGGA GACCGATGGG GACACTCTAA TTGTGCAAGA 600 GGGAGGATCT TCCTTCTTGA ATGCTGAACA CAGCTAGTCT GAACCTTCCT TGGAAAGTCC 660 AGCTGTTTGC CCATGCATAG GGCCAACTCT CCCTGCAAAG CAGCAAATGT GGCTTCTATC 720 AGGAAGGAAA AGTATCCATC AGTGTGACAA GAGGTCACCT TCGAACTTGC ATGAACTCCT 780 TGCGCAGCCA CAAAGAGTCC TGGTAGAAGT GAGGATCGCC TAGTCTTACG GCTGTCCGTT 840 TATAGAAGTA GCAGTACAAC ACTGCTGCTA GTCTCTGGAA TACAAACAGC ATTTGAAGTC 900 CATCTGTCCA TATGAAGCTG TTGGAGTTTT TCCAGCGTAA GTTCATGACC CAGACATGAA 50 GGGAGATGCT GAGGGCAAAG TACACAGCTG TCAGGATGAT GGTCCCTTTG AACTTATGGA 1020 ATAGGAGGTT GACCAGGCCA GCCTGGAAGA CGAAGGTGTT GAAGAACATG AGGAAAATGA 1080 TGATGATGTT GAAGAGGACT GCAATATCCT GGATGCACTG AGGGAGAGGY TTCTAGTTCC 1140 55 TTTGAATGAG AGCTGTTTCC CTTGCTCTAA GGCAAGCACC TCCAA 1185

(2) INFORMATION FOR SEQ ID NO: 284:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1634 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 284:

10	-	-	•				
10	AGGGAAAGGG	GAGGGTAGCG	GGAGGGTAGC	AGGTGAGTTC	CTAGGGCTGG	AAGGTTTAGC	60
	AGCAGCCTGG	TGCAGTGCCC	TGTCATCAAG	ACAAACCCAC	GGTCCTMCTG	GGTGCCTACC	120
15	AAGCTTGGTT	TGTACAAAAG	CAAGGTGGGA	GTCTATTTT	GTACATGAGA	TACATCACAC	180
	TTACCTGTGG	GCCAGTATTG	TGAAGTGAGT	CTGAGTTGTT	TACACTGATG	CCTTCCCTGC	240
20	CCACCACAAA	TTGTGTACAT	AGTCTTCAGA	TGATACCACC	CCTTTCCCCA	GCTCCCAACC	300
20	AAGAGCTGGT	TCTAGGCCTG	TGTTATATGT	CATATTTAGC	STTTTTATAT	ATGACCTTTG	360
	ATTTCTGTTG	TTTGTATTTT	AGCACAGTGT	ATGCACCTTC	ATTTAAATAC	ATCTGTGTGC	420
25	ATACAGATAC	GCATATATGT	GTGTGCGTAT	GCATATATCT	CTCATCTGTA	GTTTCCAAGA	480
	GTTCAGCTGA	AGCAGATGGA	GTCCTGCAGC	CCAGGAGACA	CCCTGCATCC	CTGCTAATAG	540
30	TGTTTGCCAC	AAGTATTAGT	GAGTCTTCCT	TATTAATATT	TTCATTTCAG	AAGACTGAAG	600
30	CAAAGCTGAT	AGTGTTTGCT	GTTTCTTTGG	CAGCTAAGTG	AGGGTCTTGG	GATGACTTGC	660
	TGTGTTCCTC	AAGCTGCACT	TTGGGGCCAT	CTCTGCAGTA	TTAGCCCCCT	TTTTGCTTGG	720
35	TGGTACTCTG	TCTGTGCCTG	TGTGTGTGTG	TGATAGTCAC	TCTTGCATGG	CTTCCATGTC	780
	TGGTTTGTGG	CATTTGGGGA	TAAGGTGCTG	AAGCCAGAGC	ATTTGCAGTT	TGTTTGAGGC	840
40	CTCGTTGCCA	ATGATAGATC	ACTCCTGTTG	ACCTGGTATG	TCTGCTTGCT	TGCTGCTTTT	900
40	CCTTGCTTTC	TCTTGGAAGA	GGAAAGGACT	CTGGTCAGGC	CCAGGCTGAG	TGAGATGAGC	960
	TGCAGCTGGC	TCATGGCCTT	CTTAGAGCAG	AGAGAGGAGT	ATGTCATTTT	ACTAAGTTCC	1020
45	таласаласа	TTTATGCAGG	CAACACTCCT	TGCAGATCCA	GAAACTGAGG	CACAATAGGG	1080
	TTATGACTTG	CTCAAGAATA	TGTAGCTGCT	AGGGGGTAAA	TCAAGGCATC	ACAATTTCTG	1140
50	TTCAGCGGGC	AGGAATAGGC	TGTGAATTGC	TAGCACTTIT	TTTTTTTAAG	CAATTACTTT	1200
50	TTGACTTGTT	CCTCTGAAAG	TGCAAGAGGC	GTACACCTTT	CCCAAATGTA	GACTAGAATC	1260
	TGCAGGATGC	CACCCACTGT	ATAGTTCTGC	TTTCCCAGAG	AGGAAGAACT	TTTAGAAACC	1320
55	AAATGATCTT	AATTGTTATT	GCCCACCCCT	GGCTTTTCCG	CGTAGAAAAT	TCACAGTAGG	1380
	AATGATTGTT	AAGAGAGAGT	GCTTGGAACC	ATGGGTTAAC	AGGAAAGGCT	ACCTAACTTC	1440
60	ACATATCTGC	AACCAGAGCA	GCCACCAAGC	ATTACTTAGC	AGCAGGAAAA	TGATTGTATT	1500
ou							

5	KTTCACCGGG	GGTC					1634
	CTGGGCGCGG	TGGCTCACAC	CTGTAATCCC	AGCAYTTTGG	GGAGGCCSAG	GCCGGGGCGG	1620
	TGAGTTCCTG	TGTGTCCAAA	ACTGAGGCAC	CATGTTCTTT	GAAAACATGC	CACCTCAAGG	1560

10 (2) INFORMATION FOR SEQ ID NO: 285:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1795 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 285:

	,	,					
20	TTCCCCCCAG	GTTGGCTTCC	TTCGATTCCT	TTTCTTGGTA	TCAACGTTTG	ATTGGAAGAA	60
	CAACCCCCTC	TTTGTCAACC	TCAATAATGA	GCTCACTGTG	GAGGAGCAGC	TCGGGCACAG	120
25	CTCMCCGTYA	TGGTCATTGT	TACCCCCCAA	GACCGCAAAA	ACTCTGTGTG	GACACAGGAT	180
	GGACCCTCAG	CCCAGATCCT	GCAGCAGCTT	CTCCTCC	CAGCTGAAGC	CCTGCCCATG	240
	TTAGAGAAGC	AGCTCATGGA	TCCCCGGGGA	CCTGGGGACA	TCAGGACAGT	GTTCCGGCCG	300
30	CCCTTGGACA	TTTACGACGT	GCTGATTCGC	CTGTYTCCTC	GCCATATCCC	GCGGCACCGC	360
	AGGCTTGTGG	ACTCGCCAGY	TGCCTCCTTC	TGCCGGGGCC	TGCTCAGCCA	GCCGGGGCCC	420
35	TCATCCCTGA	TGCCCGTGCT	GGGTNATGAT	CCTNCTCAGC	TCTATCTGAC	GCAGCTCAGG	480
55	GAGGCCTTTG	GGGATCTGGC	CCTTTTCTTC	TATGACCAGC	ATGGTGGAGA	GGTGATTGGT	540
	GTCCTCTGGA	AGCCCACCAG	CTTCCAGCCG	CAGCCCTTCA	AGGCCTCCAG	CACAAAGGGG	600
40	CGCATGGTGA	TGTCTCGAGG	TGGGGAGCTA	GTAATGGTGC	CCAATGTTGA	AGCAATCCTG	660
	GAGGACTTTG	CTGTGCTGGG	TGAAGGCCTG	GTGCAGACTG	TGGAGGCCCG	AAGTGAGAGG	720
45	TGGACTGTGT	GATCCCAGCT	CTGGAGCAAG	CTGTAGACGG	ACAGCAGGAC	ATTGGACCTC	780
15	TAGAGCAAGA	TGTCAGTAGG	ATGACCTCCA	CCCTCCTTGG	ACATGAATCC	TCCATGGAGG	840
	GCCTGCTGGC	TGAACATGCT	GAATCATCTC	CAACAAAACC	CAGCCCCAAC	TTTCTCTCTG	900
50	ATGCTCCAGC	ATTGGGGCAG	GGGCATGGTG	GCCCATGTAG	TCTCCTGGGC	CTCACCATCC	960
	CAGAAGAGGA	GTGGGAGCCA	GCTCAGAGAA	GGAACTGAAC	CCAGGAGATC	CATCCACCTA	1020
55	TTAGCCCTGG	GCCTGGACCT	CCCTGCGATT	TCCCACTCCT	TTCTTAGTCT	TCTTCCAGAA	1080
33	ACAGAGAAGG	GGATGTGTGC	CTGGGAGAGG	CTCTGTCTCC	TICCIGCIGC	CAGGACCTGT	1140
	GCCTAGACTT	AGCATGCCCT	TCACTGCAGT	GTCAGGCCTT	TAGATGGGAC	CCAGCGAAAA	1200
60	TGTGGCCCTT	CTGAGTCACA	TCACCGACAC	TGAGCAGTGG	AAAGGGGCTA	TATGTGTATG	1260

720

780

840

55

60

	AATAGACCAC ATTGAAGGAG CACAATGCCC TCCTGTGTTG ATGCCACTTC CCAGGGTGGA	1320
5	GACAGTGGAA AAGAACCGAG GACAGGAAAG GATTGGGTAG GTGAAGGGGT CAGGGGACTG	1380
J	GTAGTCACCC AATCTTGGAG AGGTGCAAAA AGCACTGGGG GCTACCCGTT AGCTGCATCT	1440
	GCCCTGGCTG TTTGCCCGTT CATGTCACAA ACTGCCACTA CTATGTACCT GCAGTGGGGT	1500
10	TGCAGAGATG GGGGAGACTC AAGTCTTACT CCCCAGGAGC TCCCAGGGCC CAAGGAGGAG	1560
	AATGCTGCCT CCTTTCAGTC TGGTCTACAC CCACTTTCTG GTAGCCTCTC TGCTTCCTGT	1620
15	AATTCTGGCT GTTTTTCCAG ACTCAGCTCA AATAGTGCCC CTCCTTAAGC CCATCCCTCG	1680
	CCCCCAGCCT GAGGTGATCT TTCCCTCCTC TGAACTATTA GAGCAGTTAC TGTCTGTTCA	1740
	GTICGTTIGG CAGGCACACA CAGTGGCATA AATTCTATTG TTTIGAACTC TGATT	1795
20		
	(2) INFORMATION FOR SEO ID NO: 286:	
	15, 25, 25, 25, 25, 25, 25, 25, 25, 25, 2	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 858 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 286:	
	TCTGCTTTCG GTGCTGCGTG TACTGCTGGG CGGCTTCTTC GCGCTCGTGG GGTTGGCCAA	60
35	GCTCTCGGAG GAGATCTCGG CTCCAGTTTC GGAGCGGATG AATGCCCTGT TCGTGCAGTT	120
	TGCTGAGGTG TTCCCGCTGA AGGTATTTGG CTACCAGCCA GATCCCCTGA ACTACCAAAT	180
ю	AGCTGTGGGC TTTCTGGAAC TGCTGGCTGG GTTGCTGCTG GTCATGGGCC CACCGATGCT	240
	GCAAGAGATC AGTAACTTGT TCTTGATTCT GCTCATGATG GGGGCTATCT TCACCTTGGC	
		300
	AGCTCTGAAA GAGTCACTAA GCACCTGTAT CCCAGCCATT GTCTGCCTGG GGTTCCTGCT	360
15		
15	AGCTCTGAAA GAGTCACTAA GCACCTGTAT CCCAGCCATT GTCTGCCTGG GGTTCCTGCT	360
15 50	AGCTCTGAAA GAGTCACTAA GCACCTGTAT CCCAGCCATT GTCTGCCTGG GGTTCCTGCT GCTGCTGAAT GTCGGCCAGC TCTTAGCCCA GACTAAGAAG GTGGTCAGAC CCACTAGGAA	360 420

TTTAGCTITA CTACTCTTTT GTGAGGAGTA CATGTTATGC ATATTAACAT TCCTCATGTC

ATATGAAAAT ACAAAATAAG CAGAAAAGAA ATTTAAATCA ACCAAAATTC TGATGCCCCA

ANTAACCACT TTTAATGCCT TGGTGTAAGT ATACCTCTGA ACTTTTTTCT GTGCCTTTAA

ACAGATATAT ATTTTTTT AATGAAAATA AAACCATATA TCCTATTTTA TTTCCTCCTT

TTAAAACCTT ATAAACTA

858

5

(2) INFORMATION FOR SEO ID NO: 287:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 915 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 287:

GAATTCGGCA CGAGCGCGGC CATGGCGCTC CTGCTTTCGG TGCTGCGTGT ACTGCTGGGC 60 GGCTTCTTCG CGCTCGTGGG GTTGGCCAAG CTCTCGGAGG AGATCTCGGC TCCAGTTTCG 20 GAGCGGATGA ATGCCCTGTT CGTGCAGTTT GCTGAGGTGT TCCCGCTGAA GGTATTTGGC 180 TACCAGCCAG ATCCCCTGAA CTACCAAATA GCTGTGGGCT TTCTGGAACT GCTGGCTGGG 240 TTGCTGCTGG TCATGGGCCC ACCGATGCTG CAAGAGATCA GTAACTTGTT CTTGATTCTG 300 25 CTCATGATGG GGGCTATCTT CACCTTGGCA GCTCTGAAAG AGTCACTAAG CACCTGTATC 360 CCAGCCATTG TCTGCCTGGG GTTCCTGCTG CTGCTGAATG TCGGCCAGCT CTTAGCCCAG 420 30 ACTAAGAAGG TGGTCAGACC CACTAGGAAG AAGACTCTAA GTACATTCAA GGAATCCTGG 480 AAGTAGAGCA TCTCTGTCTC TTTATGCCAT GCAGCTGTCA CAGCAGGAAC ATGGTAGAAC 540 ACAGAGTCTA TCATCTTGTT ACCAGTATAA TATCCAGGGT CAGCCAGTGT TGAAAGAGAC 600 35 ATTTIGTCTA CCTGGCACTG CTTTCTCTTT TTAGCTTTAC TACTCTTTTG TGAGGAGTAC 660 720 40 TTTAAATCAA CCAAAATTCT GATGCCCCAA ATAACCACTT TTAATGCCTT GGTGTAAGTA 780 TACCTCTGAA CTTTTTTCTG TGCCTTTAAA CAGATATATA TTTTTTTTWA ATGAAAATAA 840 AACCATATAT CCTATTTAT TTCCTCCTTT TAAAACCTTA TAAACTATAA MAAAAAAAA 900 45 AAAAAAAAA CTCGA 915

50

55

(2) INFORMATION FOR SEQ ID NO: 288:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1517 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 288:

60

	CCTTGTGGCA	ACTAGTGGGT	CCCCCGGGCT	GCAGNAATTC	GGGCAGTGGT	TCTGNGTCTG	60
	AAGATACTCT	GAGTTCCTCT	GAGAGATCCA	AAGGCTCCGG	GAGCAGACCC	CCAACCCCCA	120
5	AAAGCAGCCC	TCAGAAGACC	AGGAAGAGCC	CTCAGGTGAC	CAGGGGTAGC	CCTCAGAAGA	180
	CCAGCTGTAG	CCCTCAGAAG	ACCAGGCAGA	GCCCTCAGAC	GCTGAAGCGG	AGCCGAGTGA	240
10	CCACCTCACT	TGAAGCTTTG	CCCACAGGAC	AGTGCTGACA	GACAAGAGTG	GGCGACAGTG	300
10	GAAGCTGAAG	TCCTTCCAGA	CCAGGGACAA	CCAGGGCATT	CTCTATGAAG	CTGCACCCAC	360
	CTCCACCCTC	ACCTGTGACT	CAGGACCACA	GAAGCAAAAG	TTCTCACTCA	AACTGGATGC	420
15	CAAGGATGGG	CGCTTGTTCA	ATGAGCAGAA	CTTCTTCCAG	CGGGCCGCCA	AGCCTCTGCA	480
	AGTCAACAAG	TGGAAGAAGC	TGTACTCGAC	CCCACTGCTG	GCCATCCCTA	CCTGCATGGG	540
20	TTTCGGTGTT	CACCAGGACA	AATACAGGTT	CTTGGTGTTA	CCCAGCCTGG	GGAGGAGCCT	600
20	TCAGTCGGCC	CTGGATGTCA	GCCCAAAGCA	TGTGCTGTGC	AGAGAGGTCT	GTGCTGCAGG	660
	TGGCCTGCCG	GCTGCTGGAT	GCCCTGGAGT	TCCTCCATGA	GAATGAGTAT	GTTCATGGAA	720
25	ATGTGACAGC	TGAAAATATC	TTTGTGGATC	CAGAGGACCA	GAGTCAGGTG	ACTTTGGCAG	780
	GCTATGGCTT	CGCNTTCCGC	TATTGCCCAA	GTGGCAAACA	CGTGGCCTAC	GTGGAAGGCA	840
30	GCAGGAGCCY	TCACGAGGGG	GACCTTGAGT	TTCATTAGCA	TGGACCTGCA	CAAGGGATGC	900
50	GGGCCCTCCC	GCCGCRGYGA	CCTCCAGAGC	CTGGGYTAMT	GCATGCTGAA	GTGGYTCTAM	960
	GGGTTTCTGC	CATGGACAAA	TIGCCTICCA	AMAMTGAGGA	CATCATGAAG	CAAAAACAGA	1020
35	AGTTGCCTTG	GGATTCATTT	TAATGTAAGC	TKGACTTTGT	CATGCCAGAA	ACAAGGCTCG	1080
	GTCACCGTCA	GCAGTTTGCA	GTTTTCCACC	TCCWCCCAGT	TCCTCCGTGT	GGTTGACCCA	1140
40	GATATCTCCG	TTATGCAGCC	GCCTCCGGGG	GACCACCTCC	CTCCCTTTGA	GTCAGCCACA	1200
	GACAGCCTAC	TTGACGGCCC	CGCTGGCCCC	CACATTCCAC	TGAACTGTGC	GGATGCCACA	1260
	GTGACCCCCT	CTCAGGCACA	GCATGACCTC	CTGAAGTCGA	GCCTGCTTGC	TTTGAACCTA	1320
45	CCAGTTAAAA	TCTCCTCAAA	ATGTTTGGAT	ACCGCCCATT	GGCCCCTCAC	AGCCACGAGC	1380
	TCCCTGACCA	GTGTGCGTGT	GTGTGTGTGT	GTGTGTCTGT	GTGTGTGCTT	GGGACGGGTG	1440
50	GGGAGGTCAC	CTTTGGGTGT	GCGGTGTGCC	CCCAGGACCT	GTAAGTAATA	AAATCTTTAT	1500
	ттссаааааа	ΑΑΑΑΑΑ					1517

- (2) INFORMATION FOR SEQ ID NO: 289:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3865 base pairs
 (B) TYPE: nucleic acid
- 60

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 289:

5 TGGAGGGGG GAGCTTCCTT GAGCAGTGGG CCCAGGCCTG GCCCTCCACA CTTCATTCTC 60 TGACCTTTCT CTCTCCTCAT TTCGGTGCAT GTCCTTTCTG CAGCTGCCTT TCAGCACAGG 120 10 TGGTTCCACT GGGGCAGCT AACGCTGAGT GACAAGGATG GGAAGCCACA GGTGCATTTT 180 ACTCAAGTCT TCTCTAGTCA ATGAGGGGCA CCCAGTGCTT CTAGGGCAGG CTGGGTGGTG 240 GICCCCTAGG TATCAGCCTC TCTTACTGTA CTCTCCGGGA ATGTTAACCT TTCTATTTTC 300 15 AGCCTGTGCC ACCTGTCTAG GCAAGCTGGC TTCCCCATTG GCCCCTGTGG GTCCACAGCA 360 GCGTGGCTSC CCCCCAGGC CACCGCTTCT TTCTTGATCC TCTTTCCTTA ACAGTGACTT 420 20 GGGCTTGAGT CTGGCAAGGA ACCTTGCTTT TAGCTTCACC ACCAAGGAGA GAGGTTGACA 480 TGACCTCCCC GCCCCTCAC CAAGGCTGGG AACAGAGGGG ATGTGGTGAG AGCCAGGTTC 540 CTCTGGCCCT CTCCAGGGTG TTTTCCACTA GTCACTACTG TCTTCTCCTT GTAGCTAATC 600 25 AATCAATATT CTTCCCTTGC CTGTGGGCAG TNGGAGAGTG CTGCTGGGTG TACGCTGCAC 660 CTGCCCACTG AGTTGGGGAA AGAGGATAAT CAGTGAGCAC TGTTCTGCTC AGAGCTCCTG 720 30 780 ATCTACCCA CCCCTAGGA TCCAGGACTG GGTCAAAGCT GCATGAAACC AGGCCCTGGC 840 AGCAACCCTG GGAATGGCTG GAGGTGGGAG AGAACCTGAC TTCTCTTTCC CTCTCCCTCC TCCAACATTA CTGGAACTCT ATCCTGTTAG GATCTTCTGA GCTTGTTTCC CTGCTGGGTG 900 35 960 GGACAGAGGA CAAAGGAGAA GGGAGGGTCT AGAAGAGGCA GCCCTTCTTT GTCCTCTGGG GTAAATGAGC TTGACCTAGA GTAAATGGAG AGACCAAAAG CCTCTGATTT TTAATTTCCA 40 TAAAATGTTA GAAGTATATA TATACATATA TATATTTCTT TAAATTTTTG AGTCTTTGAT 1080 ATGTCTAAAA ATCCATTCCC TCTGCCCTGA AGCCTGAGTG AGACACATGA AGAAAACTGT 1140 GTTTCATTTA AAGATGTTAA TTAAATGATT GAAACTTGGC TGTGGCTACT GCTTCTTAAT 1200 45 GTTGGGGGA CAGGGCAGTG GTCTGGGCCC ACATTTAGAA GGGAAAATGT TTTGCCTGCT 1260 GCACACATTG GACCCAAGTA TGGGCCTCTT CTGCCTAGTA CTGCCAAAGG GACTGTTAAG 50 GTGTCTTGTC CATCTTCTAC CCCCCACCCC CCATTACGGG TAAAGGRAAC CCCAGACTAG 1380 GTGAGGGGCC AGCAGCTGCC TCACATTGTG TTCTCTCCTG AGATGGTCCA GCTCACATCC 1440 AGACACCTTG TTCAGACATT TTATTTGAAT TTATGACAGT GATGGGGATT TGACTGAGAT 1500 55 GCCTTATGGA GAAGTACCCC ACCCTCTATG AAGACAGAAT CACTCTCTGC CATTCATTCT 1560 GCCTGATGCT AACAACACGC AGCTGATTTA GGGAGTGTCC CAGCCTAGCT GGATCAAGGG 1620 60 1680

AAATTCCAGG AGCCCTGGG CAGGCCCTGG NCCCCAGTGC CAAGCCTCAG AGTAAGCAGA

	CATAGTAACT	GACTCGGAGT	TCTAGAAGTT	CCCATGGGGC	TTTCATGTTA	TCCAGGTATG	3540
5	CGTGGAGGTC	CGCAAACAGA	ATTGTTACCT	CACACCCTGC	CTTTAAGAAG	TCTGCAATCT	3600
,	TTGACATGGG	CACAAAGTAA	GCCACATGTG	GTTTGCCCGT	GGTTGCCGTT	CCCCAGTAAA	3660
	TTTTAAGTTC	CCCCTCCTTC	AGTATCTCCT	TCAGCTICTC	TTCCCCCAGA	ACCTCCTGCA	3720
10	GGTTCCGGGT	GATAAGGTGC	AGTTTCTCTT	CAGGGCTGGG	AGCGTCCCCC	ATGGTCCGCT	3780
	ACCCCTGCTT	CCCCCCCTCA	GCCCGGCACC	AGAGCCCCTT	CCTGGGTCAC	CGTCGCCGCC	3840
15	GCGTGCCGGG	AACTGTCACG	CGAGT				3865

(2) INFORMATION FOR SEQ ID NO: 290:

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1910 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

25

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 290:

AGGGAGAGGA GGAGAGGGGG TCTGCGCGCG GCCGCTACCC AGAAGCCAGC GGACGGCAGC

ACGGAGTGGG CTGTCCCCGA GCCCAGCCCC GAGCGAGCCC CCCCCCGCC CCCCMAGGAC 120 GCGCCTYCCA GCCAGCCCGA CTCCTAGGAG GAGGGGAGGC GGGAAAGCAG CTCAAGCCTC 180 35 ACCCACCGCC CTGCCCCCAG CCCCGCCACT CCCAGGCTCC TCGGGACTCG GCGGGTCCTC 240 CTGGGAGTCT CGGAGGGGAC CGNCTGTGCA GACGCCATGG AGTTGGTGCT GGTCTTCCTC 300 TGCAGCCTGC TGGCCCCCAT GGTCCTGGCC AGTGCAGCTG AAAAGGAGAA GGAAATGGAC 360 40 CCTTTCATT ATGATTACCA GACCCTGAGG ATTGGGGGAC TGGTGTTCGC TGTGGTCCTC 420 TTCTCGGTTG GGATCCTCCT TATCCTAAGT CGCAGGTGCA AGTGCAGTTT CAATCAGAAG 480 45 CCCCGGGCCC CAGGAGATGA GGAAGCCCAG GTGGAGAACC TCATCACCGC CAATGCAACA 540 GAGCCCCAGA AAGCAGAGAA CTGAAGTGCA GCCATCAGGT GGAAGCCTCT GGAACCTGAG 600 GCGGCTGCTT GAACCTTTGG ATGCAAATGT CGATGCTTAA GAAAACCGGC CACTTCAGCA 660 50 ACAGCCCTTT CCCCAGGAGA AGCCAAGAAC TTGTGTGTCC CCCACCCTAT CCCCTCTAAC 720 ACCATTCCTC CACCTGATGA TGCAACTAAC ACTTGCCTCC CCACTGCAGC CTGCGGTCCT 780 55 GCCCACCTCC CGTGATGTGT GTGTGTGTGT GTGTGTGTGT GACTGTGTGT GTTTGCTAAC 840 TGTGGTCTTT GTGGCTACTT GTTTGTGGAT GGTATTGTGT TTGTTAGTGA ACTGTGGACT 900 CGCTTTCCCA GGCAGGGGCT GAGCCACATG GCCATCTGCT CCTCCCTGCC CCCGTGGCCC 960 60

	TCCATCACCT	TCTGCTCCTA	GGAGGCTGCT	TGTTGCCCGA	GACCAGCCCC	CTCCCCTGAT	1020
	TTAGGGATGC	GTAGGGTAAG	AGCACGGGCA	GTGGTCTTCA	GTCGTCTTGG	GACCTGGGAA	1080
5	GGTTTGCAGC	ACTITICICAT	CATTCTTCAT	GGACTCCTTT	CACTCCTTTA	ACAAAAACCT	1140
	TGCTTCCTTA	TCCCACCTGA	TCCCAGTCTG	AAGGTCTCTT	AGCAACTGGA	GATACAAAGC	1200
10	AAGGAGCTGG	TGAGCCCAGC	GTTGACGTCA	GGCAGGCTAT	GCCCTTCCGT	GGTTAATTTC	1260
10	TTCCCAGGGG	CTTCCACGAG	GAGTCCCCAT	CTGCCCCGCC	CCTTCACAGA	GCGCCCGGGG	1320
	ATTCCAGGCC	CAGGGCTTCT	ACTCTGCCCC	TGGGGAATGT	GTCCCCTGCA	TATCTTCTCA	1380
15	GCAATAACTC	CATGGGCTCT	GGGACCCTAC	CCCTTCCAAC	CTTCCCTGCT	TCTGAGACTT	1440
	CAATCTACAG	CCCAGCTCAT	CCAGATGCAG	ACTACAGTCC	CTGCAATTGG	GTCTCTGGCA	1500
20	GGCAATAGTT	GAAGGACTCC	TGTTCCGTTG	GGGCCAGCAC	ACCGGGATGG	ATGGAGGGAG	1560
20	AGCAGAGGCC	TTTGCTTCTC	TGCCTACGTC	CCCTTAGATG	GGCAGCAGAG	GCAACTCCCG	1620
	CATCCTTTGC	TCTGCCTGTC	GGTGGTCAGA	GCGGTGAGCG	AGGTGGGTTG	GAGACTCAGC	1680
25	AGGCTCCGTG	CAGCCCTTGG	GAACAGTGAG	AGGTTGAAGG	TCATAACGAG	AGTGGGAACT	1740
	CAACCCAGAT	CCCGCCCCTC	CTCTCTCTG	TCTTCCCGCG	GAAACCAACC	AAACCGTGCG	1800
30	CTGTGACCCA	TIGCIGITCT	CTGTATCGTG	ATCTATCCTC	AACAACAACA	GAAAAAAGGA	1860
50	ATAAAATATC	СТТТСТТТСМ	ТААААААА	ааааааааа	AGGGGGGGG		1910

(2) INFORMATION FOR SEQ ID NO: 291:

(i) SEQUENCE CHARACTERISTICS:

40

(A) LENGTH: 3276 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 291:

GCGACCGTCG TTTGAGTCGT CGCTGCCGCT GCCGCTGCCA CTGCCACTGC CACCTCGCGG 60 ATCAGGAGCC AGCGTTGTTC GCCCGACGCC TCGCTGCCGG TGGGAGGAAG CGAGAGGGAA 50 GCCGCTTGCG GGTTTGTCGC CGCTGCTCGC CCACCGCCTG GAAGAGCCGA GCCCCGGCCC 180 AGTCGGTCGC TTGCCACCGC TCGTAGCCGT TACCCGCGGG CCGCCACAGC CGCCGGCCGG 240 GAGAGGCGCG CGCCATGGCT TCTGGAGCCG ATTCAAAAGG TGATGACCTA TCAACAGCCA 300 55 TTCTCAAACA GAAGAACCGT CCCAATCGGT TAATTGTTGA TGAAGCCATC AATGAGGACA 360 ACAGTGTGGT GTCCTTGTCC CAGCCCAAGA TGGATGAATT GCAGTTGTTC CGAGGTGACA 420 60 CAGTGTTGCT GAAAGGAAAG AAGAGACGAG AAGCTGTTTG CATCGTCCTT TCTGATGATA 480

	TAAAATGACT	AATGGCTTCT	CTGGAGCTGA	CCTGACAGAG	ATTTGCCAGC	GTGCTTGCAA	2340
5	GCTGGCCATC	CGTGAATCCA	TCGAGAGTGA	GATTAGGCGA	GAACGAGAGA	GGCAGACAAA	2400
3	CCCATCAGCC	ATGGAGGTAG	AAGAGGATGA	TCCAGTGCCT	GAGATCCGTC	GAGATCACTT	2460
	TGAAGAAGCC	ATGCGCTTTG	CCCCCCTTC	TGTCAGTGAC	AATGACATTC	GGAAGTATGA	2520
10	GATGTTTGCC	CAGACCCTTC	AGCAGAGTCG	GGCTTTGGC	AGCTTCAGAT	TCCCTTCAGG	2580
	GAACCAGGGT	GGAGCTGGCC	CCAGTCAGGG	CAGTGGAGGC	GCACAGGTG	GCAGTGTATA	2640
15	CACAGAAGAC	AATGATGATG	ACCTGTATGG	CTAAGTGGTG	GTGGCCAGCG	TGCAGTGAGC	2700
13	TGGCCTGCCT	GGACCTTGTT	CCCTGGGGGT	GGGGGCGCTT	GCCCAGGAGA	GGGACCAGGG	2760
	GTGCGCCCAC	AGCCTGCTCC	ATTCTCCAGT	CTGAACAGTT	CAGCTACAGT	CTGACTCTGG	2820
20	ACAGGGGGTT	TCTGTTGCAA	AAATACAAAA	CAAAAGCGAT	AAAATAAAAG	CGATTTTCAT	2880
	TTGGTAGGCG	GAGAGTGAAT	TACCAACAGG	GAATTGGGCC	TTGGGCTATG	CCATTTCTGT	2940
25	TGTAGTTTGG	GGCAGTGCAG	GGGACCTGTG	TGGGGTGTGA	ACCAAGGCAC	TACTGCCACC	3000
20	TGCCACAGTA	AAGCATCTGC	ACTTGACTCA	ATGCTGCCCG	AGCCCTCCCT	TCCCCCTATC	3060
	CAACCTGGGT	AGGTGGGTAG	GGGCCACAGT	TGCTGGATGT	TTATATAGAG	AGTAGGTTGA	3120
30	TTTATTTTAC	ATGCTTTTGA	GTTAATGTTG	GAAAACTAAT	CACAAGCAGT	TTCTAAACCA	3180
	AAAAATGACA	TGTTGTAAAA	GGACAATAAA	CGTTGGGTCN	AAATGGGWRA	АААААААА	3240
35	AAAAAAGGGG	GGCCCCTCTA	AAGNNCCANN	CTTCGT			3276
							,
40	(2) INFORMA	ATION FOR SE	EQ ID NO: 29	92:			
	(i)	-	HARACTERIST				
			GTH: 1695 b	-			
		(B) TYP	E: nucleic	acid			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 292:

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

TTGCAATGGT TGAATTCCCC TCCTCACGCC AGCCTAGGAG AAGAAGTTCG TAGTCCCAGA 60

GGTGAGGCAG GAGGCGGCAG TTTCTGGCGG GTGAGGGCGG AGCTGAAGTG ACAGCGGAGG 120

CGGAAGCAAC GGTCGGTGGG GCGGAGAAGG GGGCTGGCCC CAGGAGGAGG AGGAAACCCT 180

TCCGAGAAAA CAGCAACAAG CTGAGCTGCT GTGACAGAGG GGAACAAGAT GGCGGCGCG 240

AAGGGAGCCT CTGGGTGAGG ACCCAACTGG GGCTCCCGCC GCTGCTGCTG CTGACCATGG 300

CCTTGGCCGG AGGTTCGGGG ACCGCTTCGG CTGAAGCATT TGACTCGGTC TTGGGTGATA 360

	CGGCGTCTTG	CCACCGGGCC	TGTCAGTTGA	CCTACCCCTT	GCACACCTAC	CCTAAGGAAG	420
	AGGAGTTGTA	CGCATGTCAG	AGAGGTTGCA	GGCTGTTTTC	AATTTGTCAG	TTTGTGGATG	480
5	ATGGAATTGA	CTTAAATCGA	ACTAAATTGG	AATGTGAATC	TGCATGTACA	GAAGCATATT	540
	CCCAATCTGA	TGAGCAATAT	GCTTGCCATC	TTGGTTGCCA	GAATCAGCTG	CCATTCGCTG	600
10	AACTGAGACA	AGAACAACTT	ATGTCCCTGA	TGCCAAAAAT	GCACCTACTC	ТТТССТСТАА	660
10	CTCTGGTGAG	GTCATTCTGG	AGTGACATGA	TGGACTCCGC	ACAGAGCTTC	ATAACCTCTT	720
	CATGGACTTT	TTATCTTCAA	GCCGATGACG	GAAAAATAGT	TATATTCCAG	TCTAAGCCAG	780
15	AAATCCAGTA	CGCACCACAT	TTGGAGCAGG	AGCCTACAAA	TTTGAGAGAA	TCATCTCTAA	840
	GCAAAATGTC	CTATCTGCAA	ATGAGAAATT	CACAAGCGCA	CAGGAATTTT	CTTGAAGATG	900
20	GAGAAAGTGA	TGGCTTTTTA	AGATGCCTCT	CTCTTAACTC	TGGGTGGATT	ТТААСТАСАА	960
20	CTCTTGTCCT	CTCGGTGATG	GTATTGCTTT	GGATTTGTTG	TGCAACTGTT	GCTACAGCTG	1020
	TGGAGCAGTA	TGTTCCCTCT	GAGAAGCTGA	GTATCTATGG	TGACTTGGAG	TTTATGAATG	1080
25	AACAAAAGCT	AAACAGATAT	CCAGCTTCTT	CTCTTGTGGT	TGTTAGATCT	AAAACTGAAG	1140
	ATCATGAAGA	AGCAGGGCCT	CTACCTACAA	AAGTGAATCT	TGCTCATTCT	GAAATTTAAG	1200
30	CATTTTCTT	TTAAAAGACA	agtgtaatag	ACATCTAAAA	TTCCACTCCT	CATAGAGCTT	1260
50	TTAAAATGGT	TTCATTGGAT	ATAGGCCTTA	AGAAATCACT	ATAAAATGCA	AATAAAGTTA	1320
	CTCAAATCTG	TGAAGACTGT	ATTTGCTATA	ACTTTATTGG	TATTGTTTTT	GTAGTAATTT	1380
35	AAGAGGTGGA	TGTTTGGGAT	тстаттатта	TTTTACTAAT	ATCTGTAGCT	ATTTTGTTTT	1440
	TIGCTITIGGT	TATTGTTTTT	TTCCCTTTTC	TTAGCTATGA	GCTGATCATT	GCTCCTTCTC	1500
40	ACCTCCTGCC	ATGATACTGT	CAGTTACCTT	AGTTAACAAG	CTGAATATTT	AGTAGAAATG	1560
	ATGCTTCTGC	TCAGGAATGG	CCCACAAATC	TGTAATTTGA	AATTTAGCAG	GAAATGACCT	1620
	TTAATGACAC	TACATTTTCA	GGAACTGAAA	TCATTAAAAT	TTTATTIGAA	TAATTAAAA	1680
45	АААААААА	AANCT					1695

50 (2) INFORMATION FOR SEQ ID NO: 293:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1501 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 293:

60 CACTITICAGE AGTECTITIGE TETETITIGET TETACETEAA ATAGECECCAG GAGTEGGETT

	TAGTCTCCAA	TATGGAGCAT	CTCAAGCTTC	TCCTGGGGGA	TGGGGATTGG	GATGGGCAGA	120
5	ATCTGTTTTG	GWTCTCCGGG	TTATTTCCAG	TGGGTGTAAA	AGCAGAGCTG	GGCCTTTCCC	180
	TCTCTTATCC	CTGAGGGTGG	GTAAGAAGGA	CTGTATCTAC	ACCTGTTCTT	CCCTACCTTC	240
	TCTTTTGTTA	GGGAGGCCTC	ATTCTAAGTT	CCTCAAGAGA	GTCCTTGGCT	TAAAGCTGTA	300
10	GCAAGGGTGT	GCTAGGTGGG	GGATTTGGAG	CAAAACCGTC	GAGTAGGCAT	GATACTGGTA	360
	TGGAGTGGGC	CTGCAAAATC	AGACAGAAAT	GGCTTGAGAA	GCCGCAGGGG	AGCATGCCTG	420
15	TCTCTCAGTG	ATAGAGTATG	GGAGGGACCT	CCCTAGCTTG	GAAAATGAGA	ATTGAAGGG	480
	TTATGAACAA	ATAGGATGCC	TAGTTGAGGA	TGTTCCCAAA	GTTTTGTCCA	ATCTTATCAT	540
	TAGTAGATTT	TATAAGCCAC	AGAGACAAAC	CAGAAACGGA	ATAATGTTAC	TTTGGATGCT	600
20	TTATTTTTT	GTTCTAGGTG	TGGCTTTGTA	CATGCAGAAG	AATGCTATAT	GCTGCACATT	660
	TTGCCTTTAA	AGTCTTACGA	CTTTCCCCAT	TTTAGTCTAA	TGGGAAGATA	CAGATGTGCA	720
25	AGTCTGCTTT	TTTGTTTTT	GTTATTATTT	TTTTTTTTTT	CCTCTGTGTT	ATGGACATTT	780
	TCAGACATGC	ACAGAAGTGG	AGAGGATGGT	CCTTGGACCC	MATGTGTCCA	TCACCTAGCT	840
	GCATCACTTA	TCAGCTATGG	TCAACCTGGT	TTCATCTGTA	TCTCTCTCTT	TTCACCTGTA	900
30	TIGTITATIG	AAAATCCAAG	ACACTATGCC	AATGCAACCG	TGACTACTTT	GGGAGATTGG	960
	TAGTCTCTTT	TGATGGTGAT	AGTGATGGGG	TGCACTATCA	TAATCACATC	AGGICTGCTT	1020
35	TTTGCTTTTA	ATGTTAACTA	ATGAAGTTCC	AGAGATGGGC	CTTAGAAATG	TGTTTTAAGA	1080
	ATTAACAAGG	AGTCTCAAAA	AGAAATGAGA	GGGATGCTTC	CTTTNCCCTT	GCATCTACAA	1140
	AACMAGAGAG	AGACTGTTCT	GTTGTAAAAC	TCTTTCAAAA	ATTCTGATAT	GGTAAGGTAC	1200
40	TTGAGACCCT	TCACCAGAAT	GTCAATCTTT	TTTTCTGTGT	AACATGGAAA	CTTGTGTGAC	1260
	CATTAGCATT	GTTATCAGCT	TGTACTGGTC	TCATAACTCT	GGTTTTGGAA	GAATAATTTG	1320
45	GAAATTGTTG	CTGTGTTCTG	TGAAAATAAC	CTCCCCAAAA	TAATTAGTAA	CIGGIIGIIC	1380
	TACTTGGTAA	TTTGACACCC	TGTTAATAAC	GCAATTATTT	CTGTGTTCTT	AAACAGTATA	1440
	AATAGTTGTA	AGTTTGCATG	CATGATGGAA	AAATAAAAAC	CTGTATCTCT	GTTAAAAAAA	1500
50	A						1501

55 (2) INFORMATION FOR SEQ ID NO: 294:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2683 base pairs

(B) TYPE: nucleic acid

60 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 294:

		-					
5	TGANTGTGGT	CCCGGGTGCN	GATTGGCAGN	GCCTCCGCCG	CGGCTCGTGG	TTGTCCCGCC	60
	ATGGCACTGT	CGCGGGGGCT	GCCCCGGGAG	CTGGCTGAGG	CGGTGGCCGG	GGGCCGGGTR	120
10	CTGGTGGTGG	ccccccccc	CATCGGCTGC	GAGCTCCTCA	AGAATCTCGT	GCTCACCGGT	180
10	TTCTCCCACA	TCGACCTGAT	TGATCTGGAT	ACTATTGATG	TAAGCAACCT	CAACAGACAG	240
	TTTTTGTTTC	AAAAGAAACA	TGTTGGAAGA	TCAAAGGCAC	AGGTTGCCAA	GGAAAGTGTA	300
15	CTGCAGTTTT	ACCOGAAAGC	TAATATCGTT	GCCTACCATG	ACAGCATCAT	GAACCCTGAC	360
	TATAATGTGG	AATTTTTCCG	ACAGTTTATA	CTGGTTATGA	ATGCTTTAGA	TAACAGAGCT	420
20	GCCCGAAACC	ATGTTAATAG	AATGTGCCTG	GCAGCTGATG	TTCCTCTTAT	TGAAAGTGGA	480
20	ACAGCTGGGT	ATCTTGGACA	AGTAACTACT	ATCAAAAAGG	GTGTGACCGA	GTGTTATGAG	540
	TGTCATCCTA	AGCCGACCCA	GAGAACCTTT	CCTGGCTGTA	CAATTCGTAA	CACACCTTCA	600
25	GAACCTATAC	ATTGCATCGT	TTGGGCAAAG	TACTTGTTCA	ACCAGTTGTT	TGGGGAAGAA	660
	GATGCTGATC	AAGAAGTATC	TCCTGACAGA	GCTGACCCTG	AAGCTGCCTG	GGAACCAACG	720
30	GAAGCCGAAG	CCAGAGCTAG	AGCATCTAAT	GAAGATGGTG	ACATTAAACG	TATTTCTACT	780
50	AAGGAATGGG	CTAAATCAAC	TGGATATGAT	CCAGTTNAAA	CTTTTTACCA	AGCTTTTTAA	840
	AGATGACATC	AGGTATCTGT	TGACAATGGA	CAAACTATGG	CGGAAAAGGA	AACCTCCAKT	900
35	TCCGTTGGAC	TGGGCTGAAG	TACAAAGTCA	AGGAGAAGAA	ACGAATGCAT	CAGATCAACA	960
	GAATGAACCC	CAGTTAGGCC	TGAAAGACCA	GCAGGTTCTA	GATGTAAAGA	GCTATGCACG	1020
40	TCTTTTTTCA	AAGAGCATCG	AGACTTTGAG	AGTTCATTTA	GCAGAAAAGG	GGGATGGAGC	1080
,,,	TGAGCTCATA	TGGGATAAGG	ATGACCCATC	TGCAATGGAT	TTTGTCACCT	CTGCTGCAAA	1140
	CCTCAGGATG	CATATTTTCA	GTATGAATAT	GAAGAGTAGA	TTTGATATCA	AATCAATGGC	1200
45	AGGGAACATT	ATTCCTGCTA	TTGCTACTAC	TAATGCAGTA	ATTGCTGGGT	TGATAGTATT	1260
	GGAAGGATTG	AAGATTTTAT	CAGGAAAAAT	AGACCAGTGC	AGAACAATTT	TTTTGAATAA	1320
50	ACAACCAAAC	CCAAGAAAGA	AGCTTCTTGT	GCCTTGTGCA	CIGGATCCTC	CCAACCCCAA	1380
30	TTGTTATGTA	TGTGCCAGCA	AGCCAGAGGT	GACTGTGCGG	CTGAATGTCC	ATAAAGTGAC	1440
	TGTTCTCACC	TTACAAGACA	AGATAGTGAA	AGAAAATTT	GCTATGGTAG	CACCAGATGT	1500
55	CCAAATTGAA	GATOGGAAAG	GAACAATCCT	AATATCTTCC	GAAGAGGGAG	AGACGGAAGC	1560
	TAATAATCAC	AAGAAGTTGT	CAGAATTTGG	AATTAGAAAT	GGCAGCCGGC	TTCAAGCAGA	1620
60	TGACTTCCTC	CAGGACTATA	CTTTATTGAT	CAACATCCTT	CATAGTGAAG	ACCTAGGAAA	1680

	GGACGTTGAA	TTTGAAGTTG	TTGGTGATGC	CCCGGAAAAA	GTGGGGSCCA	AACAAGCTGA	1740
	AGATGCTGCC	AAAAGCATAA	CCAATGGGCA	GTGATGATGG	AGCTCAGCCC	TCCACCTCCA	1800
5	CAGCTCAAGA	GCAAGATGAC	GTTCTCATAG	TTGATTCGGA	TGAAGAAGAT	TCTTCAAATA	1860
	ATGCCGACGT	CATGAAGAAG	AGAGAAGCCG	CAAGAGGAAA	TTAGATGAGA	AAGAGAATCT	1920
10	CAGTGCAAAG	AGGTCACGTA	TAGAACAGAA	GGAAGAGCTT	GATGATGTCA	TAGCATTAGA	1980
10	TTGAACAGAA	ATGCCTCTAA	ACAGAACCCT	CTTACTATTT	AGTTTATCTG	GGCAGAACCA	2040
	GATTGTTATG	TCCTTTGTTC	CAAAGGGAAA	AAATTGACAG	CAGTGACTTG	AAAATGATTC	2100
15	TGCTCCCTTT	GAAAGCATTC	ATTTTGCTAG	AACTGTTAGA	CACATTGCAG	TATGCTGTAT	2160
	TGAAAGTAGG	AATATAGITT	TAAAAACCCT	TTGAACAAAG	TGTGTGCATA	ACCAGTCATG	2220
20	AGATAAAACA	ACACAATGCA	TGTTGCCTTT	TTAATGTAAA	TACCCTTAGG	TATCATTAAT	2280
20	AGTTTCAAAA	TATTGTGGTT	TAGTAAAGTT	GATACCTGGT	татааататт	ATGCCTTTAT	2340
	TTTTGGCTAG	AAGAAGAATT	ATTTTTAGCC	TAGATCTAAC	CATTTTCATA	CTCTTAACTG	2400
25	ATTGAAACAG	ATTCAAAGAA	GTATCGAGTG	CTATGCATTG	AAACTTGTTT	TTAAATGITA	2460
	GATGGCACTA	TGTATATTAA	TGTAAAACAA	TGTTAATTTA	CTCAAGTTTT	CAGTITGTAC	2520
30	CGCCTGGTAT	GTCTGTGTAA	GAAGCCAATT	TTTGTGTATT	GTTACAGTTT	CAGGTTATTT	2580
30	ATATTCGATG	TTTTGTAAAA	CTCAAATAAC	GACTATACTT	ATGGACCAAA	TAAATGCCAY	2640
	TGCATTCTKG	TKAAAAAAAN	NACAGAAAAA	ааааааааса	AGA		2683
35							
	(2) INFORM	ATION FOR SE	20 ID NO. 20	15 .			
	(Z) INFORM	ATTON FOR SI	3Ö TD MO: 7;	73:			

40 (i) SEQUENCE CHARACTERISTICS:

45

(A) LENGTH: 1454 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 295:

	GGACTCGGGG T	PGGCTCTAAG	GGGCAGGGAT	AGGGCTGGGG	AGCGCCGGCC	TGTGGCCCTG	60
50	ACCAGCCCCT T	CTCGTGCAG	GTTCCACCCC	GATGCAGGTG	GTCACGTGCT	TGACGCGGGA	120
	CAGCTACCTG A	ACGCACTGCT	TCCTCCAGCA	CCTCATGGTC	GIGCIGICCI	CTCTGGAACG	180
55	CACGCCCTCG C	CCGGAGCCTG	TTGACAAGGA	CTTCTACTCC	GAGTTTGGGA	ACAAGACCAC	240
55	AGGGAAGATG C	GAGAACTACG	AGCTGATCCA	CTCTAGTCGC	GTCAAGTTTA	CCTACCCCAG	300
	TGAGGAGGAG A	ATTGGGGACC	TGACGTTCAC	TGTGGCCCAA	AAGATGGCTG	AGCCAGAGAA	360
60	GGCCCCAGCC C	TCAGCATCC	TGCTGTACGT	GCAGGCCTTC	CAGGTGGGCA	TGCCACCCCC	420

	TEGETECTEC	AGGGGCCCCC	TGCGCCCCAA	GACACTCCTG	CTCACCAGCT	CCGAGATCTT	480
5	CCTCCTGGAT	GAGGACTGTG	TCCACTACCC	ACTGCCCGAG	TTTGCCAAAG	AGCCGCCGCA	540
3	GAGAGACAGG	TACCGGCTGG	ACGATGGCCG	CCCCCICCCC	GACCTGGACC	GAGTGCTCAT	600
	GGGCTACCAG	ACCTACCCGC	AGCCCTCACC	CICCIYIICG	ATGACGTGCA	AGGTCATGAC	660
10	CTCATGGGCA	GTGTCACCCT	GGACCACTTT	GGGGAGGTGC	CAGGTGGCCC	GGCTAGAGCC	720
	AGCCAGGGCC	GTGAAGTCCA	GTGGCAGGTG	TTTGTCCCCA	GTGCTGAGAG	CAGAGAGAAG	780
15	CTCATCTCGC	TGTTGGCTCG	CCAGTGGGAG	GCCCTGTGTG	GCCTGAGCTG	CCTGTCGAGC	840
13	TCACCGGCTA	GCCCAGGCCA	CAGCCAGCCT	GTCGTGTCCA	GCCTGACGCC	TACTGGGGCA	900
	GGGCAGCAGG	CTTTTGTGTT	СТСТАААААТ	GTTTTATCCT	CCCTTTGGTA	CCTTAATTTG	960
20	ACTGTCCTCG	CAGAAATGTG	AACATGTGTG	TGTGTTGTGT	TAATTCTTTC	TCATGTTGGG	1020
	AGTGAGAATG	CCGGGCCCCT	CAGGGCTGTT	CGGTGTGCTG	TCAGCCTCCC	ACAGGTGGTA	1080
25	CAGCCGTGCA	CACCAGTGTC	GTGTCTGCTG	TTGTGGGACC	GTTGTTAACA	CGTGACACTG	1140
	TGGGTCTGAC	TTTYTCTTCT	ACACGTCCTT	TCCTGAAGTG	TCGAGTCCAG	TCCTTTGTTG	1200
	CTGTTGCTGT	TGCTGTTGCT	GITGCTGTTG	GCATCTTGCT	GCTAATCCTG	AGGCTGGTAG	1260
30	CAGAATGCAC	ATTGGAAGCT	CCCACCCCAT	ATTGTTCTTC	AAAGTGGAGG	TCTCCCCTGA	1320
	TCCAGACAAG	TGGGAGAGCC	CGTGGGGGCA	GGGGACCTGG	AGCTGCCAGC	ACCAAGCGTG	1380
35	ATTCCTGCTG	CCTGTATTCT	CTATTCCAAT	AAAGCAGAGT	TTGACACCGW	ААААААААМ	1440
	аалааааааа	AACN					1454

45

(2) INFORMATION FOR SEQ ID NO: 296:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 828 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 296:

ACCCTGGCAT GCCCCACAAA CAGATCACCA GCCAGCTTAC ACAGGCATTA ACTCTCCTCA 60
ATGAGGAAGA ATCATTCACA ACTGAGCAAG ACATTCATAT GATCATTTAA GGAAGTGTTT 120

55 CCCTTATGTG TTAGCAAGTA TAATCGGCTA ACTCCTAAAT CCCAATGAAT AGTCCTAGGC 180
TGGACAGCAA TGGGCTGCAA TTAGGCAGAT AAAGACATCA GTCCCAGTAA ATGAATCCAT 240

AGACTCATCT AGCACCAACT ACCATTAGCA CTATGTTAGG AGCTGCAAGG CCCCAAAGTA 300

	GAAGATGTGC	ATAATGTCTG	CTCTTGTGTA	GCTCAGGAGA	CAATTCCAGC	ACAGACACTA	360
	CAGTTAACGC	TGAACTGCAG	CTGCAAGTAA	TAGCAWGAAC	AGTCAGAAAA	ATACCTTATG	420
5	AGGGGGCAGG	GCTGAAGCTG	GGCCTTGAAG	GATGGATGAA	ATTTGGATAG	AGAATGAGGA	480
	AGACAGAGGG	NCTCCAAGTG	AGAGAAGCAT	GAAAAATGAG	CARGGGCCTG	GATCAGTGGG	540
10	GTGTATTCAG	AGCACCTYTC	CAGATGCACC	ATGCATGCTC	ACAGTCCCTT	GCCTATGTGT	600
10	GGCAGAGTGT	CCCAGCCAGA	TGTGTGCCCC	CACCCCATGT	CCATTTACAT	GTCCTTCAAT	660
	GCCCACCTCA	AAAGGYACYT	CTTCTGTAAA	GCTTTCCCTK	GGTATCAGGA	АТСААААТТА	720
15	ATCAGGGATC	TTTTCACACT	GCTGTTTTTT	CCTCTTTGGT	CCTTCTATCA	CTAAAACTCA	780
	TCTCATTCAG	CCTTACAGCA	TAACTAATTA	TITGITITCC	TCACTACA		828

20

25

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 297:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2416 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 297:

TCAATTTCCA TTAACTCAGA TCAGCCATTG TGATTCACCA TTTGTCAGGC TCTCAGGTTT AACAAAACCT ACTATCACCA TCATCCTTCA ACAGCCACAG TCTGAATTGA GCCAACATTT 120 TTTTTTCTTT GAGAAAGAAG TGGACTGGGG CACAACTTTT AGTCTGAGGG GAGCTAGTGG 180 AAATCTAGAC AATAGAAGTC ATCGATAGCA GCTTTTCCTC AAATGTGTGA CTCCTCAGGG 240 300 GCTAAACTGC TCTTAGCTTA GAATTATGCT TTACTAGAGA TCTAGCAGAT AAGTGGGTTA ATCACTACCA TCCTGTAACT AGTTATATAG CTTCCAGACA TGAGGGAGAC ATCAAACAGG 360 GATGGAAGCA ACCCCAAGGA TATGCAAGAA GGGCATGATG AACCCCCTTC CCTCTGGCAG 420 GAGAACAAGG CCAACCAAGG GACAGACTGG AAAGCACTTA GATGTTTAAG GAGGAGAAAG 480 GGGAAGCTTT GACCAGTCCT TGCCTTTTGC CAAGTTCAGC CAGTTCTCCG CTGCTTGCAA 540 600 CCTCTAGCGC AGTAACATTT GCAGAATTGC AGATTTTCCC CCAGATACTA GGAGGAAAGG GACTTTGGGG GGTGGGGAAG GGGTCGTGGT GTTTTAAAAG CATAAGTTAC CTGTTTGCAC 660 720 TGTTTTAAGA TAGGAAAAAA AAATAGTGGG CAAGGTGAAC ATCAGACGTA AATTTGTGTG TTTTTATTT GTCATGCTCT TGAAAATGTT TGACCATTTG TAGTATACAC AGTGAAACTT 780 GATTCTCTGT TGCATAAAAC ACTATATTT TTTGGAAATG TTACTGTCCA AAAGCCTCTT 840 CCCTCCCTTT CCTTTTCCTA TGTACTTCCT TCATACTTGC TTTACTGATC AGCCAGGCAA 900

	TAGCCATCCA	AGAGCTAGAG	CATGAAACAG	GGCCCTTTCC	AAGTAGGCTC	TGGGTGTCCT	960
5	AAGCCAGCGT	GTGCCCTCTG	GTTTAGTGAG	TGTAATAGAG	TCCCTGGCAC	CTTTCTTTGC	1020
J	AAATGAGGCT	AACAGACCAG	ACTGCAGCAA	GTTATCAGAT	TCCTCAATCA	GATGCACTAG	1080
	GAGTGAGGAG	CCCAGGGATG	GAGGGGGTTC	CTGAAGTATT	GCAGTTGGCT	GTAGTAGCTG	1140
10	AGTTCTTTTC	CATGTTACCG	AAACTGTAGC	CAGTTACAGT	TTACTCAGGA	AAACGGTAGA	1200
	TCAATTCAGC	CATGGTAGTG	CTGGTTGGCA	GGGATTGGTA	ACGGAGAGAA	CTGCTCATCA	1260
15	GCCAAAACTC	AAGCCTTGCC	TTTTAGGAGG	CCACCAGCAG	AGGGACTTGG	TCCTCCTTGT	1320
13	CTGGTACTTG	TGTACATGCC	GGTGACCTGA	GGACTCCACT	CACACTGGCG	AGCAAAAAGG	1380
	GAGCAGTGAT	TCTCTTTTCT	CTCCCCACCC	CCTGCCCTTT	GTTACCAACA	CCAGTTTCCC	1440
20	AGGGGGTACA	TGAGTTTCTG	AATTTTTAAA	AAATGTTTT	GGTTTGGTTT	TTCTGGGGAC	1500
	TGATAAGTGC	TTTAAGCAAT	GTCCATACCC	CGTCAAGACT	CCCAGCTTAG	TCATTTTCTT	1560
25	GTATTTTCT	GTTCACAGTA	TTTGTGTGTG	TGCTTGTTTT	GGCAGCTCAT	TTTGGCTGTA	1620
L 3	TTATATATTG	AGTGATGAAT	TGATCCTCTT	TTTTCCCTAA	GGGATATGAA	TIGTTITICT	1680
	TGTGTTATAT	TCTGCTTGTG	AATAGCTGGA	GCAAACCTGG	GGCTGACACG	CGTAAGSTAG	1740
30	GGCTGCAAAR	CGAGAAGAGA	GCCGGTGGAG	TGTACTTGTC	CCTGACAGGC	TGACCTACCT	1800
	GAGTCTCTGA	GCTTTTCAGT	CCAAATCTTT	GCAAGGCTCA	AAATGCCACA	GAACCTCTCC	1860
35	TCTTCTCCCC	ACTCCCCATG	GCAGGGACCG	GACCATCCCT	ACATGCAACA	TGCTGTTCCT	1920
	CCAGCCCCTC	CCATTGCCAT	GGCAAAACAG	GTACCTTTGG	GCCATGGGGG	CATTACATGG	1980
	GATGCTTGTG	TAATCGACCA	CCTAGCCTTC	TCTCTCCCCT	CCCGTCCTCC	CCCAGAATCA	2040
40	CTTCCTAGGA	CACCCGAGCT	GCTTGCCCAG	GGTCCTGTTT	CCCTGCTAAC	TCCAGAGAAG	2100
	CATCCCAGGG	CTTTGTGACA	GTCTCTAATT	CCCTTCCCTT	CTCGTTAAGA	ATCATATTGT	2160
45	ATAGTAGCTT	TCAGACCATA	CAGTATTCAT	TGGGTTACTC	СТАТТАТТАТ	CAAGTAGCTG	2220
	GAATTGTGAA	GGTCGGAGTA	GTTAGATCTT	TAGCTTTTAT	TCCTTATTTT	TTTGTATTAC	2280
	TCTCCATGTG	TATAAATTAT	TGATCATGTT	GCTGGCTTTT	ATAAACTCTA	AGCGAAGGAG	2340
50	GAGCACTGCC	TCAGCCTTTG	CACATGGTAA	TGAAGCACTG	TTTTTAAATA	AAAGRGRGAA	2400
	MCMCCAAAAA	AAAAAA					2416

- (2) INFORMATION FOR SEQ ID NO: 298:
 - (i) SEQUENCE CHARACTERISTICS:

60 (A) LENGTH: 545 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5 (xi) SEQUENCE DESCRIPTION: SEO ID NO: 298: GAATTCGGCA CGAGCCATGC YTGGCCTCTC CTTGATTCTT ACAGTCACTT TGTTGGCTGT TTCTGACTCA GCAGCTACCT GCATTGTGGC CAAAGGATGA CCTATTCCTT CTCAGGAGGG 120 10 CAAAAATGTG GAATAGTGTC TGTCCATGCC TCTCCTCATG GGCTACCACC TCTGCCACCG 180 TGGTTAATCA GTAACAACCA GGAGAGAAGC TGCTGGAACT GACCTCTGGG AACTCCCTGG 240 15 ATGGTTTGGT GCAGGAATGT AGTAGGCATA CACGTGGTTG CGTGGATCTG GGCCCTCCTG 300 ATGTGAGTAG AGAGGTAAAA GGSCACCATC TCCTTGACCT YTGGGGAACT CATCCACAAA 360 GAAGATGTTT CCAAGATGCT TCTGAAGATT GSCTAAAAAT AGCCGGTTTC CACCCCGTG 420 20 AATGCATCCA TTCTAGAATG CTCCTTCACC AGGACCAGAG AACTGATTTA CAGAAGTGAC 480 ATGAAAACAT TCCATCCCAG AATTIGCANT ACCTCAAATT NAATTICTAC CTATTAAAAA 540 25 NAAAA 545

30 (2) INFORMATION FOR SEQ ID NO: 299:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1530 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 299:

40 GGCTCTGCTG GGCATCATAC TTGTCACTGG GTAAACAGTT TGCCCACTTA CCGCAGATGA 60 AGCTGCTTGC CAGGGCTCTC CGGCTCTGTG AGTTTGGGAG GCAGGCATCT TCCAGGAGGC 120 TGGTGGCTGG CCAGGGATGT GTGGGGCCCC GGCGAGGGTG CTGCGCTCCC GTCCAGGTGG 180 45 TTGGGCCCAG GGCTGATCTC CCACCCTGTG GAGCCTGCAT TACTGGAAGG ATCATGCGGC 240 CAGATGATGC CAACGTGGCC GGCAATGTCC ACGGGGGGAC CATCCTGAAG ATGATCGAGG 300 50 AGGCAGGCGC CATCATCAGC ACCCGGCATT GCAACAGCCA GAACGGGGAG CGCTGTGTGG 360 CCGCCCTGGC TCGTGTCGAG CGCACCGACT TCCTGTCTCC CATGTGCATC GGTGAGGTGG 420 CGCATGTCAG CGCGGAGATC ACCTACACCT CCAAGCACTC TGTGGAGGTG CAGGTCAACG 480 55 TGATGTCCGA AAACATCCTC ACAGGTGCCA AAAAGCTGAC CAATAAGGCC ACCCTGTGGT 540 ATGTGCCCCT GTCGCTGAAG AATGTGGACA AGGTCCTCGA GGTGCCTCCT GTTGTGTATT 600 60 CCCGGCANGA GCAGGAGGAG GAGGGCCGGA AGCGGTATGA AGCCCAGAAG CTGGAGCGCA 660

	TGGAGACCAA	GTGGAGGAAC	GGGGACATCG	TCCAGCCAGT	CCTCAACCCA	GAGCCGAACA	720
5	CTGTCAGCTA	CAGCCAGTCC	AGCTTGATCC	ACCTGGTGGG	GCCTTCAGAC	TGCACCCTGC	780
5	ACGGCTTTGT	GCACGGAGGT	GTGACCATGA	AGCTCATGGA	TGAGGTCGCC	GGGATCGTGG	840
	CTGCACGCCA	CTGCAAGACC	AACATCGTCA	CAGCTTCCGT	GGACGCCATT	AATTTTCATG	900
10	ACAAGATCAG	AAAAGGCTGC	GTCATCACCA	TCTCGGGACG	CATGACCTTC	ACGAGCAATA	960
	AGTCCATGGA	GATCGAGGTG	TIGGTGGACG	CCGACCCTGT	TGTGGACAGC	TCTCAGAAGC	1020
15	GCTACCGGGC	CGCCAGTGCC	TTCTTCACCT	ACGTGTCGCT	GAGCCAGGAA	GCCAGGTCGC	1080
13	TGCCTGTGCC	CCAGCTGGTG	CCCGAGACCG	AGGACGAGAA	GAAGCGCTTT	GAGGAAGGCA	1140
	AAGGGCGGTA	CCTGCAGATG	AAGGCGAAGC	GACAGGGCCA	CGCGGAGCCT	CAGCCCTAGA	1200
20	стесстесте	CTGCCACTGG	TGCCTCGAGT	AGCCATGGCA	ACGGCCCAG	TGTCCAGTCA	1260
	CTTAGAAGTT	CCCCCTTGG	CCAAAAACCC	AATTCACATT	GAGAGCTGGT	GTTGTCTGAA	1320
25	GTTTTCGTAT	CACAGTGTTA	ACCIGIACIC	TCTCCTGCAA	ACCTACACAC	CAAAGCTTTA	1380
23	TTTATATCAT	TCCAGTATCA	ATGCTACACA	GTGTTGTCCC	GAGCGCCGGG	AGGCGTTGGG	1440
	CAGAAACCCT	CGGGAATGCT	TCCGAGCACG	CTGTAGGGTA	TGGGAAGAAC	CCAGCACCAC	1500
30	TMATAAAGCT	GNIGCTIGGC	TGGGGAAGNA				1530

35 (2) INFORMATION FOR SEQ ID NO: 300:

40

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 997 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 300:

45 AGGTAGTGAG AGACACATTA CACCTAACCA ACAAGAAGAA GGATCCTCCC CCTTATAATT 60 TAACTATGTT TACAGGGAAT GCGTACATTG TGGCTTCCCG AGNATTTCGT CCAACATGTT 120 TTGAAGAACC CTAAATCCCA ACAACTGATT GAATGGGTAA AAGACACTTA TAGCCCAGAT 180 50 GAACACCTCT GGGCCACCCT TCAGCGTGCA CGGTGGATGC CTGGCTCTGT TCCCAACCAC 240 CCCAAGTACG ACATCTTCAG ACATGACTTC TATTGCCAGG CTGGTCAAGT GGCAGGGTCA 300 55 TGAGGGAGAC ATCGATAAGG GTGCTCCTTA TGCTCCCTGC TCTGGAATCC ACCAGCGGGC 360 TATCTCCGTT TATCCGCCTG GGGACTTGAA TTGGATGCTT CAAAACCATC ACCTGTTGGC 420 CAACAAGTTT GACCCAAAGG TAGATGATAA TGCTCTTCAG TGCTTAGAAG AATACCTACG 480 60

	TTATAAGGCC	ATCTATGGGA	CTGAACTTTG	AGACACACTA	TGAGAGCGTT	GCTACCTGTG	540
	GGGCAAGAGC	ATGTACAAAC	ATGCTCAGAA	CTTGCTGGGA	CAGTGTGGGT	GGGAGACCAG	600
5	GGCTTTGCAA	TTCGTGGCAT	CCTTTAGGAT	AAGAGGGCTG	MTATTAGATT	GTGGGTAAGT	660
	AGATCTTTTG	CCTTGCAAAT	TGCTGCCTGG	GTGRATGCTG	CTIGITCICT	CACCCCTAAC	720
10	CCTAGTAGTT	CCTCCACTAA	CTTTCTCACT	AAGTGAGAAT	GAGAACTGCT	GTGATAGGGA	780
	GAGTGAAGGA	GGGATATGTG	GTAGAGCACT	TGATTTCAGT	TGAATGCCTG	CTGGTAGCTT	840
	TTCCATTCTG	TGGAGCTGCC	GTTCCTAATA	ATTCCAGGTT	TGGTAGCGTG	GAGGAGAACT	900
15	TTGATGGAAA	GAGAACCTTC	CCTTCTGTAC	TGTTAACTTA	ААААТАААТА	GCTCCTGATT	960
	CAAAGTAAGG	AAAAARAAAA	AAAGAAAAA	AACTCGA			997

25

(2) INFORMATION FOR SEQ ID NO: 301:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2345 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 301:

TTGAGGCCGA CGCTAGGGGC CCGGAAGRAA ACTGCGAGGC GAAGGTGACC GGGGACCGAG 60 CATTICAGAT CIGCICGGTA GACCIGGIGC ACCACCACCA IGTIGGCIGC AAGGCIGGIG 120 35 TGTCTCCGGA CACTACCTTC TAGGGTTTTC CACCCAGCTT TCACCAAGGC CTCCCCTGTT 180 GTGAAGAATT CCATCACGAA GAATCAATGG CTGTTAACAC CTAGCAGGGA ATATGCCACC 40 AAAACAAGAA TTGGGATCCG GCGTGGGAGA ACTGGCCAAG AACTCAAAGA GGCAGCATTG 300 GAACCATCGA TGGAAAAAAT ATTTAAAATT GATCAGATGG GAAGATGGTT TGTTGCTGGA 360 GGGGCTGCTG TTGGTCTTGG AGCATTGTGC TACTATGGCT TGGGACTGTC TAATGAGATT 420 45 GGAGCTATTG AAAAGGCTGT AATTTGGCCT CAGTATGTCA AGGATAGAAT TCATTCCACC 480 TATATGTACT TAGCAGGGAG TATTGGTTTA ACAGCTTTGT CTGCCATAGC AATCAGCAGA 540 50 ACGCCTGTTC TCATGAACTT CATGATGAGA GGCTCTTGGG TGACAATTGG TGTGACCTTT 600 GCAGCCATGG TTGGAGCTGG AATGCTGGTA CGATCAATAC CATATGACCA GAGCCCAGGC 660 CCAAAGCATC TTGCTTGGTT GCTACATTCT GGTGTGATGG GTGCAGTGGT GGCTCCTCTG 720 55 ACAATATTAG GGGGTCCTCT TCTCATCAGA GCTGCATGGT ACACAGCTGG CATTGTGGGA 780 GGCCTCTCCA CTGTGGCCAT GTGTGCGCCC AGTGAAAAGT TTCTGAACAT GGGTGCACCC 840 60 CTGGGAGTGG GCCTGGGTCT CGTCTTTGTG TCCTCATTGG GATCTATGTT TCTTCCACCT 900

	ACCACCGTGG	CTGGTGCCAC	TCTTTACTCA	GTGGCAATGT	ACGGTGGATT	AGTICTTIC	960
5	AGCATGTTCC	TTCTGTATGA	TACCCAGAAA	GTAATCAAGC	GTGCAGAAGT	ATCACCAATG	1020
J	TATGGAGTTC	AAAAATATGA	TCCCATTAAC	TCGATGCTGA	GTATCTACAT	GGATACATTA	1080
	AATATATTTA	TGCGAGTTGC	AACTATGCTG	GCAACTGGAG	GCAACAGAAA	GAAATGAAGT	1140
10	GACTCAGCTT	CTGGCTTCTC	TGCTACATCA	AATATCTTGT	TTAATGGGGC	AGATATGCAT	1200
	TAAATAGTTT	GTACAAGCAG	CTITCGTTGA	AGTTTAGAAG	ATAAGAAACA	TGTCATCATA	1260
15	TTTAAATGTT	CCGGTAATGT	GATGCCTCAG	GTCTGCCTTT	TTTTCTGGAG	AATAAATGCA	1320
13	GTAATCCTCT	CCCAAATAAG	CACACACATT	TTCAATTCTC	ATGTTTGAGT	GATTTTAAAA	1380
	TGTTTTGGTG	AATGTGAAAA	CTAAAGTTTG	TGTCATGAGA	ATGTAAGTCT	TTTTTCTACT	1440
20	TTAAAATTTA	GTAGGTTCAC	TGAGTAACTA	AAATTTAGCA	AACCTGTGTT	TGCATATTTT	1500
	TTTGGAGTGC	AGAATATTGT	AATTAATGTC	ATAAGTGATT	TGGAGCTTTG	GTAAAGGGAC	1560
25	CAGAGAGAAG	GAGTCACCTG	CAGTCTTTTG	TTTTTTTAAA	TACTTAGAAC	TTAGCACTTG	1620
	TGTTATTGAT	TAGTGAGGAG	CCAGTAAGAA	ACATCTGGGT	ATTTGGAAAC	AAGTGGTCAT	1680
	TGTTACATTC	ATCTGCTGAA	CTTAACAAAA	CTGTTCATCC	TGAAACAGGC	ACAGGTGATG	1740
30	CATTCTCCTG	CTGTTGCTTC	TCAGTGCTCT	CTTTCCAATA	TAGATGTGGT	CATGTTTGAC	1800
	TTGTACAGAA	TGTTAATCAT	ACAGAGAATC	CTTGATGGAA	TTATATATGT	GTGTTTTACT	1860
35	TTTGAATGTT	ACAAAAGGAA	ATAACTTTAA	AACTATTCTC	AAGAGAAAAT	ATTCAAAGCA	1920
	TGAAATATGT	TGCTTTTTCC	AGAATACAAA	CAGTATACTC	ATGATTGCTA	AGTGTTTTTT	1980
	TATTTTTGCA	TATTTATTGA	ACTGTCTAAT	TGAATACAGC	TTGCTCTTGT	CACCTCTTCA	2040
40	AGCTTTCAAG	CCTTTATAGA	AAAGCTTCTT	TGTGGCTTAC	ACTGGAAATT	ATGAAAGCAG	2100
	TTTTTCTCCT	AAGACTTTTG	GTTTCTCGCA	TIGCCTCTCA	GACTAAGCAC	TAAAAAGCAA	2160
45						TAATGAGGAA	2220
	AATGCTTCAT	TAGTTTCCCC	TAGCAGACTT	TTACTTCTCT	TACACTGCTA	CACCATTACT	2280
	TTCTTGAGAC	ATTTGTAAGT	CCTTTGATAC	AGAAGAGTTA	TATTTAGGAG	GNCTTTAATG	2340
50	AAGGG						2349

(2) INFORMATION FOR SEQ ID NO: 302:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2369 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 302:

(D) TOPOLOGY: linear

5	TTTTTTTTT	TTTTTTTTT	TTTTTNCAAG	ATCATTGTTT	ATTTATTACT	TCAGATAAAA	60
	AGATAGTATA	CATATTAGGG	AATCCCTTAA	AATTCAACTC	TAGAGTTATA	CACCATCTAG	120
10	TACTTTTGCA	ATGAATGTTA	ACAACAACAA	AAAAAATCTC	TAAACACCTG	AAAGCCCCAC	180
10	TATTAACATG	GACTATGGTA	ттааааатт	TTGACATTTA	ATTTGTTCAA	CATATAGTAT	240
	TTACATTATG	AAACCAATGG	TGATGATACA	ATAAAGTGAT	AAAGAAATAG	ТАААААТААА	300
15	CTTTAAAAAG	CAAAGGTTTA	TAGTCTGACA	ATGCTAATTA	TCCTAATTGT	ATATAAAAAA	360
	ттаааасата	GAGCTTTCTG	TTACAAAATT	CTTAATCCTC	TGGGTTGTAA	TCATTACTTG	420
20	CTACCAATTT	ACATGCAACA	TCTGCTAGGA	CTGACATTTG	ATTTTTTCC	CCAAGAATGT	480
20	GTGAGTAGAT	AAATGACATT	TCAGAGCAGA	ТАТТААТТТА	CTTGTGGACA	GAAAAAGAAA	540
	CTCAAGATTG	GTACTGGTCA	CAAGCCTCTT	CCCAATAGAA	АТТАТАААА	CAGTAAGATA	600
25	AAATTTAAAA	AAAATCTAAA	AAGGGGATGC	ATAGGCAAAG	AGTACCATAA	ATGGCACAGC	660
	TCAAAAAATC	CCAGGACCAA	TCAGACACAC	ATCTTTTCTC	TCTCCTTCAG	CGACAAGAGG	720
30	TCGATTTTGC	САТСАААТАА	CCATGATTGA	AGCAAGCGAG	GGGCACCAGG	TGTACAACTG	780
50	ATTAGATCTT	GCAAAATACT	AAGATGGGAG	CAGGGGTGGC	CAGAAGAAGG	GGTAATTTAT	840
	ATATAATTCA	AACTATATAC	AGCATAAATG	GAATGCAGCC	CATCCCAAAC	TGGCTCTGTG	900
35	AAACAATTGG	ACCTTTATAG	TTAAAATTAT	AACAAGTGTA	ATAATACAAT	AGATTTACAT	960
	GGGAAGCAAA	ATCCAAGGGA	CATTTTATAT	TAAGTATTTA	CIGIGCICIT	TCAATTTAAA	1020
40	AATAATTTTG	CTAAGTATAC	ATCTCAACTG	AAGICTATGT	AAAAAATGTC	CTAATAGATA	1080
••	CAGATATTTA	CCTTTGGTGA	GTTGAAGGCC	TTTTTGTGAC	TTCTGTCTGA	ACTGTAGGCA	1140
	GAATGCTAGA	TGTACATGCA	CATATGGAGA	AACTCAAGCT	GAGGTCATCC	AAAAGCTGTG	1200
45	CGTATGAGGA	GCTGGAGGT	ACTTTGAAAG	TCAAAGTAGA	CCAGAAACCC	AAAACAGGTA	1260
	ACAGTGAGGA	TGGCAACAGG	GAATGGAATG	CCAATATGGC	AGTAAAACTT	AAAATTITIT	1320
50	CAGAAAGAGG	AAGGCCTCTC	GTACCAGCAG	AATCCTGTAC	ACGTACAAAA	AAGAAAAAGC	1380
	CACCCACCAT	TTTGTAAAAC	AGAAGCCAAT	TATAGTGTGG	GAAAGTACAA	ATTACAGAAA	1440
	ACCAGAAGTC	AACAGAAGAA	AAACTACTGG	TTTACTTGAG	AGAAAGGAGA	ATGGTTCACC	1500
55	CCGAGCAGAG	TTACTTGGTG	AACGCCGCCA	CCACCGCCCA	CAGAACCTCA	TIGGIGITGG	1560
	CCTTCAGACA	TTCCACTTCA	GGGTCTAAGT	CGAGAARNTG	CCGCACTCTC	TTGGTAGCCA	1620
60	AATCATACTG	CTCGTCCAGA	AGAGGAGCAA	AAGCATTCTC	CAGGACGTCC	GAGGCATGAG	1680

720

60

•	

	CCAGGTAAAT GAGGGCCAGC AAGCGCCTGT CCATGCGGTG AGGGTCATTC ACCCATTTGT	1740
	CAAGAACGGC TTCCTGTACT TTCTTGATGA GGCGCTGCTT AATGTTGTTA TTGGTGAGGG	1800
5	GATGTGTTGT CATGTCAAAA AGTAGGAAGT TCTGTTTCTC TGTTGTCAAT ACACCCTTTT	1860
	CCACCAGGTT TITAGCTAAT CGTTCCCGTA CATTTCTTAA CTGATAATGC AATTTTAATG	1920
10	GATTCCATGT CTCACCACTA AGTAATTCAA TCCAGTTCTG GACCGTTTCT GGAGGCTGAG	1980
10	TTTCCTTAAC ATGCTTCAGA GCTTCATCAA GAAGAACATC CCCTGTTGGA GCATCTGACT	2040
	TACAGATTAC CUTTCTTGTT AATAGACTTT TACGTCTCAT TCCACAAGCC TCTAGTTGTA	2100
15	ACCTTCCTCT CAATGCTAAT TCAATTAACA TACAGCCACG TAATCCAGAT GATATACAGT	2160
	CATTCCAAAA TGATGTGTAA ACCTTCGCGG TCCTTGAGGC CCAGCAGGAG CACTTCCTCC	2220
20	ATCAGGGTCA GCCGCGTTTC CTTGGAGTCG CCCTTGTCGT CGTCGTCCTG CTCGTCGCGG	2280
20	CGGCTCTGCG CGTCGTCCTC GCTGCTAGCC GCGCCGCCGC CCGCCGCCCG CTCCTTGTCG	2340
	GCGGCGTTGC GGGGGCCTC GGTGCGCCG	2369
25		
	(2) INFORMATION FOR SEO ID NO: 303:	
	(D) 2.12 0.02 21 101 101 DDg 1D 110. 303.	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1181 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30 35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1181 base pairs (B) TYPE: nucleic acid (C) STRANDELNESS: double	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1181 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	60
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1181 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 303:	60 120
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1181 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 303: GGGACGTGTG GTTTCAGCTC GTGCGCCTCC CCGTGGGTTT GCGACGTTTA GCGACTATTG	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1181 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 303: GGGACGTGTG GTTTCAGCTC GTGGGCCTCC CCGTGGGTTT GCGACGTTTA GCGACTATTG CGCCTGCGCC ACGCCGGCTG CGAGACTGGG GCCGTGGYTG CTGGTCCCGG GTGATGCTAG	120
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1181 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 303: GGGACGTGTG GTTTCAGGTC GTGGGCCTCC CCGTGGGTTT GCGACGTTTA GCGACTATTG CGCCTGCGCC ACGCCGGCTG CGAGACTGGG GCCGTGGYTG CTGGTCCCGG GTGATGCTAG GCGGCTCCCT GGGCTCCAGG CTGTTGCGGG GTGTAGGTGG GAGTCACGGA CGGTTCGGGG GCGGCTCCCT GGGCTCCAGG CTGTTGCGGG GTGTAGGTGG GAGTCACGGA CGGTTCGGGG	120 180
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1181 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 303: GGGACGTGTG GTTTCAGCTC GTGCGCCTCC CCGTGGGTTT GCGACGTTTA GCGACTATTG CGCCTGCGCC ACGCCGGCTG CGAGACTGGG GCCGTGGYTG CTGGTCCCGG GTGATGCTAG GCGGCTCCCT GGGCTCCAGG CTGTTGCGGG GTGTAGGTGG GAGTCACGGA CGGTTCGGGG CCCGAGGTGT CCGCGAAGGT GGCGCACATG GGCGGCAGGG GAGAGCATGG CTCAGCGGAT	120 180 240
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1181 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 303: GGGACGTGTG GTTTCAGCTC GTGCGCCTCC CCGTGGGTTT GCGACGTTTA GCGACTATTG CGCCTGCGCC ACGCCGGCTG CGAGACTGGG GCCGTGGYTG CTGGTCCCGG GTGATGCTAG GCGGCTCCCT GGGCTCCAGG CTGTTGCGGG GTGTAGGTGG GAGTCACGGA CGGTTCGGGG CCCGAGGTGT CCGCGAAGGT GGCGCACATG GGCGCAGGG GAGAGCATGG CTCAGCGGAT GGTCTGGGTG GACCTGGAGA TGACAGGATT GGACATTGAG AAGGACCAGA TTATTGAGAT	120 180 240 300
35 40 45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1181 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 303: GGGACGTGTG GTTTCAGCTC GTGCGCCTCC CCGTGGGTTT GCGACGTTTA GCGACTATTG CGCCTGCGCC ACGCCGGCTG CGAGACTGGG GCCGTGGYTG CTGGTCCCGG GTGATGCTAG GCGGCTCCCT GGGCTCCAGG CTGTTGCGGG GTGTAGGTGG GAGTCACGGA CGGTTCGGGG CCCGAGGTGT CCGCGAAGGT GGCGCACATG GGCGGCAGGG GAGAGCATGG CTCAGCGGAT GGTCTGGGTG GACCTGGAGA TGACAGGATT GGACATTGAG AAGGACCAGA TTATTGAGAT GGCCTGTCTG ATAACTGACT CTGATCTCAA CATTTTGGCT GAAGGTCCTA ACCTGATTAT	120 180 240 300 360
35 40 45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1181 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 303: GGGACGTGTG GTTTCAGCTC GTGGGCCTCC CCGTGGGTTT GCGACGTTTA GCGACTATTG CGCCTGCGCC ACGCCGGCTG CGAGACTGGG GCCGTGGYTG CTGGTCCCGG GTGATGCTAG GCGGCTCCCT GGGCTCCAGG CTGTTGCGGG GTGTAGGTGG GAGTCACGGA CGGTTCGGGG CCCGAGGTGT CCGCGAAGGT GGCGCACATG GGCGGCAGGG GAGAGCATGG CTCAGCGGAT GGTCTGGGTG GACCTGGAGA TGACAGGATT GGACATTGAG AAGGACCAGA TTATTGAGAT GGCCTGTCTG ATAACTGACT CTGATCTCAA CATTTTGGCT GAAGGTCCTA ACCTGATTAT AAAACAACCA GATGAGTTGC TGGACAGCAT GTCAGATTGG TGTAAGGAGC ATCACGGGAA	120 180 240 300 360 420

TTATAGAATA ATTGATGTGA GCACTGTTAA AGAACTGTGC AGACGCTGGT ATCCAGAAGA

ATATGAATIT GCACCAAAGA AGGCTGCTTC TCATAGGGCA CTTGATGACA TTAGTGAAAG

	CATCAAAGAG	CTTCAGTTTT	ACCGAAATAA	CATCTTCAAG	AAAAAAATAG	ATGAAAAGAA	780
5	GAGGAAAATT	ATAGAAAATG	GGGAAAATGA	GAAGACCGTG	AGTTGATGCC	AGTTATCATG	840
3	CTGCCACTAC	ATCGTTATCT	GGAGGCAACT	TCTGGTGGTT	TTTTTTCTC	ACGCTGATGG	900
	CTTGGCAGAG	CMCTTCGGTT	AACTTGCATC	TCCAGATTGA	TTACTCAAGC	AGACAGCACA	960
10	CGAAATACTA	TTTTTCTCCT	AATATGCTGT	TTCCATTATG	ACACAGCAGC	TCCTTTGTAA	1020
	GTACCAGGTC	ATGTCCATCC	CTTGGTACAT	ATATGCATTT	GCTTTTAAAC	CATTTCTTTT	1080
15	GTTTAAATAA	ATAAATAAGT	AAATAAAGCT	AGTTCTATTG	AAATGCAAAA	АААААААА	1140
1.5	ааааааааа	ааааааааа	алалалала	ааааааааа	N		1181

25

30

(2) INFORMATION FOR SEQ ID NO: 304:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1537 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 304:

CTTTTTGTGT TCCGGCCGAT CCCACCTCTC CTCGACCCTG GACGTCTACC TTCCGGAGGC 60 CCACATCTTG CCCACTCCGC GCGCGGGCT AGCGCGGGTT TCAGCGACGG GAGCCCTCAA 35 GGGACATGGC AACTACAGCG GCGCCGGCGG GCGCGCCCG AANATGGAGC TGGCCCGGAA 180 TGGGGAGGT TCGAAGAAAA CATCCAGGC GGAGGCTCAG CTGTGATTGA CATGGAGAAC ATGGATGATA CCTCAGGCTC TAGCTTCGAG GATATGGGTG AGCTGCATCA GCGCCTGCGC 300 40 GAGGAAGAAG TAGACGCTGA TGCAGCTGAT GCAGCTGCTG CTGAAGAGGA GGATGGAGAG 360 TTCCTGGGCA TGAAGGGCTT TAAGGGACAG CTGAGCCGGC AGGTGGCAGA TCAGATGTGG 420 45 CAGGCTGGGA AAAGACAAGC CTCCAGGGCC TTCAGCTTGT ACGCCAACAT CGACATCCTC 480 AGACCCTACT TTGATGTGGA GCCTGCTCAG GTGCGAACAG GGCTCCTGGA GTCCATGATC 540 CCTATCAAGA TGGTCAACTT CCCCCAGAAA ATTGCAGGTG AACTCTATGG ACCTCTCATG 600 50 CTGGTCTTCA CTCTGGTTGC TATCCTACTC CATGGGATGA AGACGTCTGA CACTATTATC CGGGAGGGCA CCCTGATGGG CACAGCCATT GGCACCTGCT TCGGCTACTG GCTGGGAGTC 720 55 TCATCCTTCA TTTACTTCCT TGCCTACCTG TGCAACGCCC AGATCACCAT GCTGCAGATG 780 840 ATCCACCTCC ACGCCCTCTT CTACCTCTTC TGGCTGTTGG TGGGTGGACT GTCCACACTG 900 60

	CGCATGGTAG	CAGTGTTGGT	GTCTCGGACC	GIGGGCCCCA	CACAGCGGCT	GCTCCTCTGT	960
	GGCACCCTGG	CTGCCCTACA	CATGCTCTTC	CTGCTCTATC	TGCATTTTGC	CTACCACAAA	1020
5	GTGNTAGAGG	GGATCCTGGA	CACACTGGAG	GCCCCAACA	TCCCGCCCAT	CCAGAGGGTC	1080
	CCCAGAGACA	TCCCTGCCAT	GCTCCCTGCT	GCTCGGCTTC	CCACCACCGT	CCTCAACGCC	1140
10	ACAGCCAAAG	CTGTTGCGGT	GACCCTGCAG	TCACACTGAC	CCCACCTGAA	ATTCTTGGCC	1200
10	AGTCCTCTTT	CCCGCAGCTG	CAGAGAGGAG	GAAGACTATT	AAAGGACAGT	CCTGATGACA	1260
	TGTTTCGTAG	ATGGGGTTTG	CAGCTGCCAC	TGAGCTGTAG	CTGCGTAAGT	ACCTCCTTGN	1320
15	AGCTGTCGGC	ACTTCTGAAA	GCACAAGGCC	AAGAACTCCT	GGCCAGGACT	GCAAGGCTCT	1380
•	GCAGCCAATG	CAGAAAATGG	GTCAGCTCCT	TTGAGAACCC	CTCCCCACCT	ACCCCTTCCT	1440
20	TCCTCTTTAT	CTCTCCCACA	TIGICTIGCT	AAATATAGAC	TIGGTAATTA	АААААААА	1500
~	ааааааааа	ааааааааа	AAAAAAGGGG	GGNCCCC			1537

30

(2) INFORMATION FOR SEQ ID NO: 305:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1493 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 305:

35 TGCATGCCAA AACCAATGCC TGCCAAACAA AATCTTAGAC ATCCCAATAT AATATGTTAG 60 TTATATTTCT ATTCACATCA TTATTGAAAA TACCCAGCTC AGTGCCTGGC TTAATAAATG 120 40 TTTAATTCCC TTACCTACTC TTGCTCTATT TTTTTATTTG AAATGGAGAT GAGCAAAATA 180 ACACATTCAT GGCTGAAGCA ATTTTTTGGA CATTTCTTGT TACCAAAAGA TCTATAATCA 240 GGATGATCCT GAGCTGTTCA AACAAGCTGT ATATAAACAG ACAATGAAAC TCTTTGCAGA 300 45 GCTGGAAATT AAAAGGAAAG AGAGAGAAGC CAAAGAGATG CATGAAAGGA AACGACAAAG 360 GGAAGAAGAG ATTGAAGCTC AAGAAAAAGC CAAACGGGAA AGAGAGTGGC AGAAAAACTT 420 50 TGAGGAAAGT CGAGATGGTC GTGTGGACAG CTGGCGAAAC TTCCAAGCCA ATACGAAGGG 480 GAAGAAAGAG AAGAAAAATC GGACCTTCCT GAGACCACCG AAAGTAAAAA TGGAGCAACG 540 TGAGTGACCG CCCAAGGTCA CAGGCACAGA ACCTTTCCCC TGCTATCTCC CTTCCTGCTT 600 55 CGAAGGACTC ATTCTTTCCT CCCACTTCCA CCCCAACATA GAGTAGTATT TGCTTTTTAG 660 TCCATTTTGT TITCAATACG ATTTAATATC GATCAGAGTA ATTCTTTTGT ACATTGAAAT 720 60 780 GAGGGGCTTG GTTTAAAAAA AGACCTTTCC CTCTCCCTGC CCCTAGAACA ACCAGTATTA

	GAAGGTGCCA	CCATTGGTGC	TGCCTTCTCT	TCCCACAGCC	TGTAACTCAG	TGTTTTGTAC	840
5	TTCACTGAAT	TGTGATGGTT	AGAAACTTCG	TGGATAGTTT	GTGGAAATCA	TCCAATTAAA	900
3	CATACTGCTT	AAAACAGTGT	TGCTGTGACT	TCAGAGACAA	GCCTGGAAGG	GGCACCTTAG	960
	GAAGCCCCTT	CGCTTCAGTT	GCTCGCTTCT	GGGTGTGCTC	CCTTCGAAGG	CCCAGATAAG	1020
10	ACAGGGAACA	CTTGTGAGCA	CACAGAGCAG	CATCTGATGC	CCTGTGGTGT	TTGGCATGTG	1080
	CCCCCTGTCT	ACTGACCAAT	CAGTGTGGCA	TGAGGCCCAC	GCCACCCAAA	CCTTTCACTT	1140
15	TCCAAAGAGC	TAGCCGTCCT	CCACCCAGTA	CCATGTCCTA	GCCTGTCTGC	ATTIGTTAGT	1200
15	GGTAATATTC	TTTATGTATA	ATAAATTTT	ATACCCAAGC	CATTGATGTA	CTTTTCCTTG	1260
	TACTCTCCCT	TGTGGGTCCC	TIGICIGGCT	TGGCTGAACC	CCAAAATGCT	TTGGGGTTGG	1320
20	ACAGACCTGG	CTGAACCTTA	GTTTCTTCAT	CTATGAAATG	GGAATATGAA	TTACTGCAGC	1380
	AGCTTTTAGG	GCAGATTTGC	CATGGCATAT	ACAAGGTAAC	TACCATAGTG	CTCCTTGGGT	1440
25	ATTGCCAATA	TCCTATTATT	TCTGTGTAAA	ATGAAGATAC	TGATTGTTTT	GAG	1493

(2) INFORMATION FOR SEQ ID NO: 306:

30

40

45

50

. 55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 577 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

35 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 306:

AATTCGGCAG AGGNATTATA TACACTATAC TGGCATTTAC TGTTTCACCC AGCCCGGAAA 60 GTCAGAGATG TATATTGGAA AATTTACAAC TCCATCTACA TTGGTTCCCA GGACGCTCTC 120 ATAGCACATT ACCCAAGAAT CTACAACGAT GATAAGAACA CCTATATTCG TTATGAACTT 180 GACTATATCT TATAATTTTA TIGTTTATTT TGTGTTTAAT GCACAGCTAC TTCACACCTT 240 300 AAACTTGCTT TGATTTGGTG ATGTAAACTT TTAAACATTG CAGATCAGTG TAGAACTGGT CATAGAGGAA GAGCTAGAAA TCCAGTAGCA TGATTTTTAA ATAACCTGTC TTTGTTTTTG 360 ATGTTAAACA GTAAATGCCA GTAGTGACCA AGAACACAGT GATTATATAC ACTATACTGG 420 AGGGATTICA TITTITAATIC ATCTITATGA AGATTIAGAA CICATICCIT GIGITTAAAG 480 GGAATGTITA ATTGAGAAAT AAACATTTGT GWACAAAATG YTAAAAAAAA AAAAAAAAAA 540 577 АААААААА ААААААААА АААААААА ААСТСGA

(2) INFORMATION FOR SEQ ID NO: 307:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2860 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10	(xi)) SEQUENCE I	DESCRIPTION	: SEQ ID NO	: 307:		
	GTGTNGACCG	CTCTCNCAAT	ATGGCTCCCC	CGGGCTGGCA	GRWRKTCRGT	CWCKRGTGGC	60
1.5	TAGCCTGTCC	TGACAGOGGA	GAGTTAAGCT	CCCGTTCTCC	ACCGTGCCGG	CTGGCCAGGT	120
15	GGGCTGAGGG	TGACCGAGAG	ACCAGAACCT	GCTTGCTGGA	GCTTAGTGCT	CAGAGCTGGG	180
	GAGGGAGGTT	CCGCCGCTCC	TCTGCTGTCA	GCGCCGGCAG	CCCCTCCCGG	CTTCACTTCC	240
20	TCCCGCAGCC	CCTGCTACTG	AGAAGCTCCG	GGATCCCAGC	AGCCGCCACG	CCCTGGCCTC	300
	AGCCTGCGGG	GCTTCCAGTC	AGGCCAACAC	CGACGCGCAC	TGGGGAGGAA	GACAGGACCC	360
25	TTGACATCTC	CATCTGCACA	GAGGTCCTGG	CTGGAACCGA	GCAGCCTCCT	CCTCCTAGGA	420
23	TGACCTCACC	CICCAGCICT	CCAGTTTTCA	GGTTGGAGAC	ATTAGATGGA	GGCCAAGAAG	480
	ATGGCTCTGA	GGCGGACAGA	GGAAAGCTGG	ATTTTGGGAG	CCCCCTCCCT	CCCATGGAGT	540
30	CACAGTTCCA	GGGCGAGGAC	CGGAAATTCG	CCCCTTCAGA	TAAGAGTCAA	CCTCCAACTA	600
	CCGAAAGGGA	ACAGGTGCCA	GTCAGCCGGA	TCCAAACCGA	TTTGACCGAG	ATCGGCTCTT	660
35	CAATGCGGTC	TCCCGGGGTG	TCCCCGAGGA	TCTGGCTGGA	CTTCCAGAGT	ACCTGAGCAA	720
	GACCAGCAAG	TACCTCACCG	ACTTCGGAAA	TACACAGAGG	GCTCCACAGG	TAAGACGGCC	780
	TGATGAAGGC	TGTGCTGAAA	CCTTAAGGAC	GGGGTCAATG	CCTGCATTCT	GCCACTGCTG	840
40	CAGATCGACC	GGGACTCTGG	CAATCCTCAG	CCCCTGGTAA	ATGCCCAGTG	CACAGATGAC	900
	TATTACCGAG	GCCACAGCGC	TCTGCACATC	GCCATTGAGA	AAGAGGAGTC	TGCAGTGTGT	960
45	GAAGCTCCTG	GTGGAGAATG	GGCCAATGT	GCATGCCCGG	GTCTGCGGCG	ACTTCTTCCA	1020
	GAAGGGCCAA	GGGACTTGCT	TTTATTTCGG	TGAGCTACCC	CICTCTTIGG	CCGCTTGCAC	1080
	CAAGCAGTGG	GATGTGGTAA	GCTACCTCCT	GGAGAACCCA	CACCAGCCCG	CCAGCCTGCA	1140
50	GGCCACTGAC	TCCCAGGGCA	ACACAGTCCT	GCATGCCCTA	GTGGATGATC	TCGGACAACT	1200
	CAGCTGAGAA	CATTGCACTG	GTGACCAGCA	TGTATGATGG	GCTCCTCCAA	GCTKGGGSCC	1260
55	SCCYTCTGCC	CTACCGTGCA	GCTTGAGGAC	ATCCGCAACC	TGCAGGATCT	CACGCCTCTG	1320
	AAGCTGGCCG	CCAAGGAGGG	CAAGATCGAG	ATTTTCAGGC	ACATCCTGCA	GCGGGAGTTT	1380
	TCAGGACTGA	GCCACCTTTC	CCGAAAGTTC	ACCGAGTGGT	GCTATGGGCC	TGTCCGGGTG	1440
60	TCGCTGTATG	ACCTGGCTTC	TGTGGACAGC	TGTGAGGAGA	ACTCAGTGCT	GGAGATCATT	1500

	GCCTTTCATT	GCAAGAGCCC	GCACCGACAC	CGAATGGTCG	TTTTGGAGCC	CCTGAACAAA	1560
5	CTGCTGCAGG	CGAAATGGGA	TCTGCTCATC	CCCAAGTTCT	TCTTAAACTT	CCTGTGTAAT	1620
J	CTGATCTACA	TGTTCATCTT	CACCGCTGTT	GCCTACCATC	AGCCTACCCT	GAAGAAGCAG	1680
	GCCGCCCCTC	ACCTGAAAGC	GGAGGTTGGA	AACTCCATGC	TGCTGACGGG	CCACATCCTT	1740
10	ATCCTGCTAG	GGGGGATCTA	CCTCCTCGTG	GGGCCAGCTG	TGGTACTTCT	GGCGGCGCCA	1800
	CGTGTTCATC	TGGATCTCGT	TCATAGACAG	CTACTTTGGA	AATCCTCTTC	CTGTTCCAGG	1860
15	CCCTGCTTCA	CAGTGGTGTC	CCAGGTGCTG	TGTTTCCTGG	GCCATCGAGT	GGTACCTGCC	1920
15	CCTCCTTCTG	TCTGCGCTGG	TGGCTGGGCT	GGCTGAACCT	GCTTTACTAA	TACACGTGGC	1980
	GTTCCAGCAC	ACAGGCAGTC	TACAGTTTCA	TGWTCCCTGA	AGCCCTGGTG	AGCCTGAGCC	2040
20	AGGAGGCTTG	GCGCCCCGAA	GCTCCTACAG	GCCCCAATGC	CACAGAGTCA	GTGCAGCCCA	2100
	TGGAGGGACA	GGAGGACGAG	GGCAACGGGG	CCCAGTACAG	GGGTATCCTG	GAAGCCTCCT	2160
25	TGGAGCTCTT	CAAATTCACC	ATCGGCATGG	GCGAGCTGGC	CTTCCAGGAG	CAGCTGCACT	2220
23	TCCGCGCCAT	GGTGCTGCTG	CTGCTGCTGG	CCTACGTGCT	GCTCACCTAC	ATCCTGCTGC	2280
	TCAACATGCT	CATCGCCCTC	ATGAAGCGAA	CCTCACACTG	TCGCCACTGA	CAGCTGGAGC	2340
30	ATCTGGAAGC	TGCAGAAAGC	CATCTCTGTC	CTGGAGATGG	AGAATGGCTA	TTGGTGGTGC	2400
	AGGAAAAAGC	AGCGGGCAGG	TGTGATGCTG	ACCGTTGGCA	CTAAGCCCAG	ATGGCAGCCC	2460
35	CGATGAGCGC	TOGTGCTTCA	GGCTGGAGGA	GGTGAACTGG	GCTTCATGGG	GAGCAGACGC	2520
33	TGCCTACGCT	GTGTGAGGAC	CCGTCAGGGG	CAGGTGTCCC	TCGAACTCTC	GAGAACCCTG	2580
	TCCTGGCTTC	CCCTCCCAAG	GAGGATGAGG	ATGGTGCCTC	TGAGGAAAAC	TATGTGCCCG	2640
40	TCCAGCTCCT	CCAGTCCAAC	TGATGGCCCA	GATGCAGCAG	GAGGCCAGAG	GACAGAGCAG	2700
	AGGATCTTTC	CAACCACATC	TGCTGGCTCT	GGGGTCCCAG	TGAATTCTGG	TGGCAAATAT	2760
45	ATATTTTCAC	таастсаааа	ааааааааа	АААААААА	AAAAVGAGGG	GGGCCCGKT	2820
•5	ASCCAAWITC	GCCCTATAAG	TGAGTGCCWA	ТТАССАТААА			2860

55

(2) INFORMATION FOR SEQ ID NO: 308:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 876 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 308:

	CTGCTTGTGT	CTGCGCTGGT	GCTGGGCTGG	CTGAACCTGC	TTTACTATAC	ACGTGGCTTC	60
	CAGCACACAG	GCATCTACAG	TGTCATGATC	CAGAAGCCCT	GGTGAGCCTG	AGCCAGGANN	120
5	TTGGCGCCCC	GAAGCTCCTA	CAGGCCCCAA	TGCCACAGAG	TCAGTGCAGC	CCATGGAGGG	180
	ACAGGAGGAC	GAGGGCAACG	GGCCCAGTA	CAGGGGTATC	CTGGAAGCCT	CCTTGGAGCT	240
10	CTTCAAATTC	ACCATCGGCA	TGGGCGAGCT	GGCCTTCCAG	GAGCAGCTGC	ACTTCCGCGG	300
10	CATGGTGCTG	CTGCTGCTGC	TGGCCTACGT	GCTGCTCACC	TACATCCTGC	TGCTCAACAT	360
	GCTCATCGCC	CTCATGNAGC	GAGACCGWCA	ACAGTGTCGC	CACTGACAGC	TGGAGCATCT	420
15	GGAAGCTGCA	GAAAGCCATC	TCTGTCCTGG	AGATGGAGAA	TGGCTATTGG	TGGTGCAGGA	480
	AGAAGCAGCG	GGCAGGTGTG	ATGCTGACCG	TTGGCACTAA	GCCAGATGGC	AGCCCCGATG	540
20	AGCGCTGGTG	CTTCAGGGTG	GAGGAGGTGA	ACTGGGCTTC	ATGGGAGCAG	ACGCTGCCTA	600
20	CGCTGTGTGA	GGACCCGTCA	GGGGCAGGTG	TCCCTCGAAC	TCTCGAGAAC	CCTGTCCTGG	660
	CTTCCCCTCC	CAAGGAGGAT	GACGATCCTC	CCTCTGAGGA	AAACTATGTG	CCCGTCCAGC	720
25	TCCTCCAGTC	CAACTGATGG	CCCAGATGCA	GCAGGAGGCC	AGAGGACAGA	GCAGAGGATC	780
	TTTCCAACCA	CATCTGCTGG	CTCTGGGGTC	CCAGTGAATT	CTGGTGGCAA	АТАТАТАТТ	840

(2) INFORMATION FOR SEQ ID NO: 309:

TCACTAAMWM AAAAAAAAA AAAAAAAAA ACTCGA

35
(i) SEQUENCE CHARACTERISTICS:

30

(A) LENGTH: 2025 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

40 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 309:

45	CATGACCCGC	CTGATGCGAT	CCCGCACAGC	CTCTGGTTCC	AGCGTCACTT	CTCTGGATGG	60
43	CACCCGCAGC	CGCTCCCACA	CCAGCGAGGG	CACCCGAAGC	CGCTCCCACA	CCAGCGAGGG	120
	CACCCGCAGC	CGCTCGCACA	CCAGCGAGGG	GCCCACCTG	GACATCACCC	CCAACTCGGG	180
50	TOCTOCTOGG	AACASGCCGG	GCCCAAGTCC	ATGGAGGTCT	CCTGCTAGGC	GGCCTGCCCA	240
	GCTGCCGCCC	CCGGACTCTG	ATCTCTGTAG	TGGCCCCCTC	CTCCCCGGCC	CCTTTTCGCC	300
55	CCCTGCCTGC	CATACTGCGC	CTAACTCGGT	ATTAATCCAA	AGCTTATTTT	GTAAGAGTGA	360
33	GCTCTGGTGG	AGACAAATGA	GGTCTATTAC	GIGGGIGCCC	TCTCCAAAGG	CGGGGTGGCG	420
	GTGGACCAAA	GGAAGGAAGC	AAGCATCTCC	GCATCGCATC	CTCTTCCATT	AACCAGTGGC	480
60	CGGTTGCCAC	TCTCCTCCCC	TCCCTCAGAG	ACACCAAACT	GCCAAAAACA	AGACGCGTAC	540

	AGCACACACT	TCACAAAGCC	AAGCCTAGGC	CGCCCTGAGC	ATCCTGGTTC	AAACGGGTGC	600
5	CTGGTCAGAA	GCCAGCCGC	CCACTTCCCG	TTTCCTCTTT	AACTGAGGAG	AAGCTGATCC	660
3	AGTTTCCGGA	AACAAAATCC	TTTTCTCATT	TGGGGAGGGG	GGTAATAGTG	ACATGCAGGC	720
	ACCTCTTTTA	AACAGGCAAA	ACAGGAAGGG	GGAAAAGGTG	GGATTCATGT	CGAGGCTAGA	780
10	GGCATTTGGA	ACAACAAATC	TACGTAGTTA	ACTTGAAGAA	ACCGATTTTT	AAAGTTGGTG	840
	CATCTAGAAA	GCTTTGAATG	CAGAAGCAAA	CAAGCTTGAT	TTTTCTAGCA	TCCTCTTAAT	900
15	GTGCAGCAAA	AGCAGGCRAC	AAAATCTCCT	GGCTTTACAG	АСААААТАТ	TTCAGCAAAC	960
13	GTTGGGCATC	ATCCTTTTTG	AAGGCTTTAG	TICIGCTTIC	TGCCTCTCCT	CCACAGCCCC	1020
	AACCTCCCAC	CCCTGATACA	TGAGCCAGTG	ATTATTCTTG	TTCAGGGAGA	AGATCATTTA	1080
20	GATTTGTTTT	GCATTCCTTA	GAATGGAGGG	CAACATICCA	CAGCTGCCCT	GCTCTGATG	1140
	AGTGTCCTTG	CAGGGGCCGG	AGTAGGAGCA	CTGGGGTGGG	GGCGGAATTG	GGGTTACTCG	1200
25	ATGTAAGGGA	TICCITGITG	TTGTGTTGAG	ATCCAGTGCA	GTTGTGATTT	CTGTGGATCC	1260
23	CAGCTTGGTT	CCAGGAATTT	TGTGTGATTG	GCTTAAATCC	AGTTTTCAAT	CTTCGACAGC	1320
	TGGGCTGGAA	CGTGAACTCA	GTAGCTGAAC	CTGTCTGACC	CGGTCACGTT	CTTGGATCCT	1380
30	CAGAACTCTT	TGCTCTTGTC	GGGGTGGGGG	TGGGAACTCA	CGTGGGGAGC	GGTGGCTGAG	1440
	AAAATGTAAG	GATTCTGGAA	TACATATTCC	ATGGGACTTT	CCTTCCCTCT	CCTGCTTCCT	1500
35	CTTTTCCTGC	TCCCTAACCT	TTCGCCGAAT	GGGGCAGCAC	CACTGACGTT	TCTGGGCGGC	1560
55	CAGTGCGGCT	GCCAGGTTCC	TGTACTACTG	CCTTGTACTT	TTCATTTTGG	CTCACCGTGG	1620
	ATTTTCTCAT	AGGAAGTTTG	GTCAGAGTGA	ATTGAATATT	GTAAGTCAGC	CACTGGGACC	1680
40	CGAGGATTTC	TGGGACCCCG	CAGTTGGGAG	GAGGAAGTAG	TCCAGCCTTC	CAGGTGGCGT	1740
	GAGAGGCAAT	GACTCGTTAC	CTGCCGCCCA	TCACCTTGGA	GCCTTCCCT	GCCTTGAGT	1800
45	AGAAAAGTCG	GGGATCGGGG	CAAGAGAGGC	TGAGTACGGA	TGGGAAACTA	TTGTGCACAA	1860
,,,	GTCTTTCCAG	AGGAGTTTCT	TAATGAGATA	TTTGTATTTA	TTTCCAGACC	AATAAATTTG	1920
	TAACTTTGCA	АААААААА	AAAAAAAA	АААААААА	ааааааааа	AAAAAAACTC	1980
50	GAGGGGGCC	CGTACCCAAT	TCGCCGTATA	TGATCGTAAA	CAATC		2025

55 (2) INFORMATION FOR SEQ ID NO: 310:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3026 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 310:

5	TAGGCAGCAC	TGAAATATCC	TAACCCCCTA	AGCTCCAGGT	GCCCTGTGGN	ACGAGCAACT	60
	GGACTATAGC	AGGCTGGGC	TCTGTCTTCC	TGGTCATAGG	CICACTCTT	CCCCCAAATC	120
10	TTCCTCTGGA	GCTTTGCAGC	CAAGGTGCTA	AAAGGAATAG	GTAGGAGACC	TCTTCTATCT	180
10	AATCCTTAAA	AGCATAATGT	TGAACATTCA	TTCAACAGCT	GATGCCCTAT	AACCCCTGCC	240
	TGGATTTCTT	CCTATTAGGC	TATAAGAAGT	AGCAAGATCT	TTACATAATT	CAGAGTGGTT	300
15	TCATTGCCTT	CCTACCCTCT	CTAATGGCCC	CTCCATTTAT	TTGACTAAAG	CATCACACAG	360
	TGGCACTAGC	ATTATACCAA	GAGTATGAGA	AATACAGTGC	TTTATGGCTC	TAACATTACT	420
20	GCCTTCAGTA	TCAAGGCTGC	CTGGAGAAAG	GATGGCAGCC	TCAGGGCTTC	CITATGTCCT	480
20	CCACCACAAG	AGCTCCTTGA	TGAAGGTCAT	CTTTTTCCCC	TATCCTGTTC	TTCCCCTCCC	540
	CGCTCCTAAT	GGTACGTGGG	TACCCAGGCT	CCTTCTTCCC	CTAGGTAGTG	GGGACCAAGT	600
25	TCATTACCTC	CCTATCAGTT	CTAGCATAGT	AAACTACGGT	ACCAGTGTTA	GTGGGAAGAG	660
	CIGGGITITC	CTAGTATACC	CACTGCATCC	TACTCCTACC	TGGTCAACCC	GCTGCTTCCA	720
30	GGTATGGGAC	CTGCTAAGTG	TGGAATTACC	TGATAAGGGA	GAGGGAAATA	CAAGGAGGC	780
	CTCTGGTGTT	CCTGGCCTCA	GCCAGCTGCC	CACAAGCCAT	AAACCAATAA	AACAAGAATA	840
	CTGAGTCAGT	TTTTTATCTG	GGTTCTCTTC	ATTCCCACTG	CACTTGGTGC	TGCTTTGGCT	900
35	GACTGGGAAC	ACCCCATAAC	TACAGAGTCT	GACAGGAAGA	CTGGAGACTG	TCCACTTCTA	960
	GCTCGGAACT	TACTGTGTAA	ATAAACTTTC	AGAACTGCTA	CCATGAAGTG	AAAATGCCAC	1020
40	ATTTTGCTTT	ATAATTTCTA	CCCATGTTGG	GAAAAACTGG	CITTITICCCA	GCCCTTTCCA	1080
	GGGCATAAAA	CTCAACCCCT	TCGATAGCAA	GTCCCATCAG	CCTATTATTT	TTTTAAAGAA	1140
	AACTTGCACT	TGTTTTTCTT	TTTACAGTTA	CTTCCTTCCT	GCCCCAAAAT	TATAAACTCT	1200
45	AAGTGTAAAA	AAAAGTCTTA	ACAACAGCTT	CTTGCTTGTA	AAAATATGTA	TTATACATCT	1260
	GTATTTTTAA	ATTCTGCTCC	TGAAAAATGA	CTGTCCCATT	CTCCACTCAC	TGCATTTGGG	1320
50	GCCTTTCCCA	TTGGTCTGCA	TGTCTTTTAT	CATTGCAGGC	CAGTGGACAG	AGGGAGAAGG	1380
	GAGAACAGGG	GTCGCCAACA	CTTGTGTTGC	TTTCTGACTG	ATCCTGAACA	AGAAAGAGTA	1440
	ACACTGAGGC	GCTCGCTCCC	ATGCACAACT	CTCCAAAACA	CTTATCCTCC	TGCAAGAGTG	1500
55	GGCTTTCCAG	GGTCTTTACT	GGGAAGCAGT	TAAGCCCCCT	CCTCACCCCT	TCCTTTTTTC	1560
	ТТТСТТТАСТ	CCTTTGGCTT	CAAAGGATTT	TGGAAAAGAA	ACAATATGCT	TTACACTCAT	1620
60	TTTCAATTTC	тааатттсса	GGGGATACTG	AAAAATACGG	CAGGTGGCCT	AAGGCTGCTG	1680

	TAAAGTTGAG	GGGAGAGGAA	ATCTTAAGAT	TACAAGATAA	AAAACGAATC	CCCTAAACAA	1740
	AAAGAACAAT	AGAACTGGTC	TTCCATTTTG	CCACCTTTCC	TGTTCATGAC	AGCTACTAAC	1800
5	CTGGAGACAG	TAACATTTCA	TTAACCAAAG	AAAGTGGGTC	ACCTGACCTC	TGAAGAGCTG	1860
	AGTACTCAGG	CCACTCCAAT	CACCCTACAA	GATGCCAAGG	AGGTCCCAGG	AAGTCCAGCT	1920
10	CCTTAAACTG	ACGCTAGNMA	ATAAACCTGG	GCAAGTGAGG	CAAGAGAAAT	GAGGAAGAAT	1980
10	CCATCTGTGA	GGTGAYAGGC	AAGGATGAAA	GACAAAGAAG	GAAAAGAGTA	TCAAAGGCAG	2040
	AAAGGAGATC	ATTTAGTTGG	GTCTGAAAGG	AAAAGTCTTT	GCTATCCGAC	ATGTACTGCT	2100
15	AGTACCTGTA	AGCATTTTAG	GTCCCAGAAT	GGAAAAAAA	ATCAGCTATT	GGTAATATAA	2160
	TAATGTCCTT	TCCCTGGAGT	CAGTTTTTT	AAAAAGTTAA	CTCTTAGTTT	TTACTTGTTT	2220
20	ААТТСТАААА	GAGAAGGGAG	CTGAGGCCAT	TCCCTGTAGG	AGTAAAGATA	AAAGGATAGG	2280
20	AAAAGATTCA	AAGCTCTAAT	AGAGTCACAG	CTTTCCCAGG	TATAAAACCT	AAAATTAAGA	2340
	AGTACAATAA	GCAGAGGTGG	AAAATGATCT	AGTTCCTGAT	AGCTACCCAC	AGAGCAAGTG	2400
25	ATTTATAAAT	TTGAAATCCA	AACTACTTTC	TTAATATCAC	TTTGGTCTCC	ATTTTTCCCA	2460
	GGACAGGAAA	TATGTCCCCC	CCTAACTTTC	TTGCTTCAAA	AATTAAAATC	CAGCATCCCA	2520
30	AGATCATTCT	ACAAGTAATT	TTGCACAGAC	ATCTCCTCAC	CCCAGTGCCT	GTCTGGAGCT	2580
50	CACCCAAGGT	CANCCAAACA	ACTTGGTTGT	GAACCCAACT	GCCTTAACCT	TCTGGGGGAG	2640
	GGGGATTAGC	TAGACTAGGA	GACCCAGAAG	TGAATGGGAA	AGGGTGAGGA	CTTCACAATG	2700
35	TTGGCCTGTC	AGAGCTTGAT	TAGAAGCCAA	GACAGTGGCA	GCAAAGGAAG	ACTTGGCCCA	2760
	GGAAAAACCT	GTGGGTTGTG	CTAATTICTG	TCCAGAAAAT	AGGGTGGACA	GAAGCTTGTG	2820
40	GGGTGCATGG	AGGAATTGGG	ACCTGGTTAT	GTTGTTATTC	TCGGACTGTG	AATTTTGGTG	2880
	ATGTAAAACA	GAATATTCTG	TAAACCTAAT	GICTGTATAA	ATAATGAGCG	TTAACACAGT	2940
	AAAATATTCA	ATAAGAAGTC	АААААААА	AAAAAAAACT	CGAGGGGGG	CCCGGTACCC	3000
45	AATTINCCAA	ATAGAGATNG	TATTAC				3026

50 (2) INFORMATION FOR SEQ ID NO: 311:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 712 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 311:

60 GCAGGCTTTG TGCTCACCTA CAAGCTGGGT GAGCAGGCTG CCAGCAGCCT GTTTCCTCTT

	CTCCTGCTGG	ACCACGCCGT	TTCTGCTCCC	GAGTTGGGAC	TGTGGAATGG	TCTCCCTCCT	120
5	GTGGTCTGCT	CCATCGCTGG	CTCCTCCCTG	GGTGGGACCT	TGCTGGCCAA	GCACTGGAAA	180
3	CIGCIGCCIC	TGTTGARGTC	GGTGCTGCGC	TTCCGCCTCG	GGGCCTAGC	CTGTCAGACT	240
	GCCTTGGTCT	TCCACCTGGA	CACCCTGGGG	GCCAGCATGG	ACGCTGGCAC	AATCTTGAGA	300
10	GGGTCAGCCT	TGCTGAGCCT	ATGTCTGCAG	CACTTCTTGG	GAGGCCTGGT	CACCACAGTC	360
	ACCTTCACTG	GGATGATGCG	CTGCAGCCAG	CTGGCCCCCA	GGCCTGCAG	GCCACACACT	420
15	ACAGCCTTCT	GGCCACGCTG	GAGCTGCTGG	GGAAGCTGCT	GCTGGGCACT	CTGCGGAGGC	480
•	CTGGCTGATG	GGTTGGGGCC	ACATCCCTGC	TTCTTGCTCC	TGCTCATCCT	CTCTGCCTTT	540
	CCCGTTCTGT	ACCTGGACCT	AGCACCCAGC	ACCTTTCTCT	GAGCTGAGTG	GCTGGAGTGG	600
20	TCAATAAAGC	CACATGTGCC	TGTGGCCCAA	АААААААА	AAAAAAAA	АААААААА	660
	AACTGGAGGG	GGGGCCCGGT	ACCCAAATCG	CCGGATATGA	TCGTAAACAA	TC	712

30

(2) INFORMATION FOR SEQ ID NO: 312:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1289 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 312:

CAAAATTTCA GAACTTTCAG GAGGGCAAGA GAATATCAAA CAAAGATTTC TGGAAGTATT TTGCCAACCT TCTGGTTGAG CTGCAAGAAA ATATTTATGG TGAGAACTTT TCTGTTTCCC 120 40 GTTATTGGGT TTTTGGTTGG TTTTTGTTTG TTTTTTACTA TGCTTTGGTC TGTAAAAATA 180 TGCAACTGAA CTACATTCAG AAGGAAATAT TGTCTACATA GAATATTATA TGAAGTTGGT 240 45 ACATAATTCT GATGAGGAAA AAAAATCTTT GCAATTCTTT AAGCCATATT GTTGTTTTTC 300 TGTGTTGTTT TCCCTGGATG AAAATATCAG TATTAAGTAG ACAGCATATT ATTCAAGTGT 360 TTAGACTTAT TAATATGTTC TTGTCCTGTA TTTATACATA TGTGTATTTT GGAAAGTATT 420 50 GCCTTTTTTA AGGGAAGCTA TAATTCGATA CATAGTGAAA AAGGGAATGG TGACCCCTTT 480 540 GTGCCTCTTC CACTGAGGAT AACAAACAGC ATTGTAATCC ATTCTCTTGC ACCTTCTTCT 55 TCTTATCTTG TTATTACGGT TTTATTAATT TTGTAGAGGG ACAGGGAGTG GGCAAGGGGA 600 AGAAGCAGCT TATTTGACTA ACCAGCCCCT CTGTGGTCCA CCAGCGTCTT GGCTTGGTGG 660 GAGGGCTCTC AATCAGCAGG GCCCCAGGAG GGAAGAAGAA GTGGGGCAAA GCCTGGCCTC 720 60

	GCCGCTCGGG AGCTTTGCCA TCTGAGCCAC GCCTCCTCCA GGCCATGCTC CTTGAACTTG	780
	GAAATGTCAA CCGGAGCCCT TACACCAGCC CTCCAGCATC TAATAGACTT GAATCTACTC	840
5	TAAACGAATA TITAATCCAA CCTCACTACA TTGTAGCTCA GTCCAACGAC TAACCCTGAA	900
	ATGGGGGTGT TCCAGCCTTC AGCGAGATGG CCAAGCGGTC CCCTGGGGGC TGTGGCAGCG	960
10	GGCTTATCCT TCTCTGTTGC CAACCTTGCC GTCCGACCTC CTCCGCCCCC ATGCGGTGAC	1020
	CCCGTCCGTG TCTGTGTCTG TCCATACGTG TGAGTCCAGC TAAAAAGACA AAACAGAACC	1080
	CGTGGGCCCA GCTCGGAAGG TGCGTGGAGA AGGCTCCGAC GTCTCCGAAG TGCAGCCCTT	1140
15	GGGATGGCAT TCCGTTGTGT GCCTTATTCC TGGAGAATCT GTATACGGCT CGCCTATAGA	1200
	AATATAGCCT CTTCATGCTG TATTAAAAGG ACTTTTAAAA GCAAAAAAAA AAAAAAAAA	1260
20	CTTGAGGGGG GGNCCGGTAC CCAATTNTC	1289
	(2) INFORMATION FOR SEQ ID NO: 313:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 22 amino acids (B) TYPE: amino acid	
30	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 313:	
	Met Phe Leu Ile Phe Val Tyr Phe Leu Lys Ile Leu Phe Ser Ser Ser	
	Met Phe Leu Ile Phe Val Tyr Phe Leu Lys Ile Leu Phe Ser Ser Ser 1 5 10 15	
35		
35	1 5 10 15 Leu Pro Phe Leu Trp Leu	
35 40	1 5 10 15 Leu Pro Phe Leu Trp Leu	
	1 5 10 15 Leu Pro Phe Leu Trp Leu 20 (2) INFORMATION FOR SEQ ID NO: 314: (i) SEQUENCE CHARACTERISTICS:	
40	1 5 10 15 Leu Pro Phe Leu Trp Leu 20 (2) INFORMATION FOR SEQ ID NO: 314:	
	1 5 10 15 Leu Pro Phe Leu Trp Leu 20 (2) INFORMATION FOR SEQ ID NO: 314: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 128 amino acids	
40	1 5 10 15 Leu Pro Phe Leu Trp Leu 20 (2) INFORMATION FOR SEQ ID NO: 314: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 128 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 314: Met Met Phe Leu Thr Gln Gly Gly Pro Leu Pro Ser Thr Arg Ala Arg	
40	1 5 10 15 Leu Pro Phe Leu Trp Leu 20 (2) INFORMATION FOR SEQ ID NO: 314: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 128 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 314:	
40 45	1 5 10 15 Leu Pro Phe Leu Trp Leu 20 (2) INFORMATION FOR SEQ ID NO: 314: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 128 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 314: Met Met Phe Leu Thr Gln Gly Gly Pro Leu Pro Ser Thr Arg Ala Arg	
40 45 50	Leu Pro Phe Leu Trp Leu 20 (2) INFORMATION FOR SEQ ID NO: 314: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 128 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 314: Met Met Phe Leu Thr Gln Gly Gly Pro Leu Pro Ser Thr Arg Ala Arg 1 5 10 15 Pro Thr Cys Gln Ala Gly Ala Leu Pro Lys Pro Ser Gly Leu Leu Gly 20 25 30 Val Thr Cys Trp Asn Gly Leu Lys Gly Pro Leu Cys Gly Asn Arg Cys	
40 45	Leu Pro Phe Leu Trp Leu 20 (2) INFORMATION FOR SEQ ID NO: 314: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 128 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 314: Met Met Phe Leu Thr Gln Gly Gly Pro Leu Pro Ser Thr Arg Ala Arg 1 5 10 15 Pro Thr Cys Gln Ala Gly Ala Leu Pro Lys Pro Ser Gly Leu Leu Gly 20 25 30	

Arg Gly Arg Thr His Gln Asp Leu Pro Gly Pro Leu Gln Gly Arg Gln

	65					70					75					80
E	Leu	Gly	Pro	Glu	Pro 85	Lys	His	Leu	Ala	Leu 90	Leu	Pro	Pro	Arg	Gly 95	Gln
5	Glu	Ala	Ser	Trp 100	Ala	Ser	Ser	Leu	Pro 105	Gly	Gln	Gly	Pro	Leu 110	Pro	Leu
10	Pro	His	Ile 115	Asn	Cys	Thr	Val	Phe 120	Ser	Leu	Lys	Ala	Ser 125	Phe	Ile	Lys
15	(2)	INF	orma'	TION	FOR	SEQ	ID 1	NO: I	315:							
20				(A) L B) T D) T	ENGI YPE : OPOL	H: 2 ami OGY:	ERIS 8 am no a lin	ino cid ear	acid		: 31	5:			
25	Met		Phe	Leu	Leu 5	Thr	Ala	Phe	Leu	Leu 10	Val	Pro	Leu	Leu	Ala 15	Leu
30	Cys	Asp	Val	Pro 20		Ser	Leu	Gly	Phe 25		Pro	Ser				
35	(2)	INF	(i)	SEQU	ENCE (A) I (B) ' (D) '	CHI LENG PYPE POPO:	ARACT TH: (: am: LOGY	NO: TERIS 64 ar ino a : li	TICS mino acid near	S: acio): 31	16:			
40		: Ası				Sei		g Lev			Ser			Phe	• V al	
45	Lei	ı Glı	n Try	Phe 20		e Val	l Ile	e Sei	His 25		ı Let	ı Ser	. Leu	Ser 30		Ser
			3!	5				s Cys 40)				45	5		
50	Ph	e Se		a Me	t Gly	y Gl	u Se. 5	r Cy: 5	s Va	l Gly	y Gli	u Arg		а Туз	r Xaa	a Phe

- (2) INFORMATION FOR SEQ ID NO: 317:
- 60 (i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 21 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 317:	
J	Met Pro Leu Ile Asn Leu Leu Leu Leu Tyr Tyr Val Pro Asn Gly Gl 1 5 10 15	У
10	Lys Gln Asp Lys Lys 20	
15	(2) INFORMATION FOR SEQ ID NO: 318:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 39 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 318:	
	Met Gly Arg His Leu Val Leu Val Met Phe Ile Thr Thr Ser Leu His	5
25	Ser Gly Thr Pro Val Pro Glu Asn Val Ile Cys Gly Val Thr Lys Gl 20 25 30	Y
30	Pro Gln Gly Lys Lys Lys 35	
	(2) INFORMATION FOR SEQ ID NO: 319:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 amino acids (B) TYPE: amino acid	
	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 319:	
40	Met Leu Trp Trp Ser Arg Asp Tyr Thr Met Val Phe Leu Leu Phe Th 1 5 10 15	r
45	Met Val Phe Thr Gly Asp Leu Val Ile Arg Gly Arg Thr Glu Leu Se 20 25 30	r
	Leu	
50		
	(2) INFORMATION FOR SEQ ID NO: 320:	
55	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 88 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 320: 	
60	Met Val Om Cor Ser Leu Cur App Ilo Cly Cly Ile Ilo Thy Pro Ph	_

WO 98/39448

	1			5					10					15	
E	Ile Va	l Phe	Arg 20	Leu	Arg	Glu	Val	Trp 25	Gln	Ala	Leu	Pro	Leu 30	Ile	Leu
5	Phe Al	a Val 35		Gly	Leu	Leu	Ala 40	Ala	Gly	Val	Thr	Leu 45	Leu	Leu	Pro
10	Glu Th	r Lys 0	Gly	Val	Ala	Leu 55	Pro	Glu	Thr	Met	Lys 60	Asp	Ala	Glu	Asn
	Leu Gl 65	y A rg	Lys	Ala	Lys 70	Pro	Lys	Glu	Asn	Thr 75	Ile	Tyr	Leu	Lys	Val 80
15	Gln Th	r Ser	Glu	Pro 85	Ser	Gly	Thr								
20	(2) IN	FORMA	TION	FOR	SEQ	ID I	NO: 3	321:							
		(i)	SEQU)	ENCE A) L						s					
25		(xi)		B) T D) T UENC	OPOL	OGY:	lin	ear	EQ I	D NO	: 32	1:			
30	Met Gl	n Pro	Gly	Ala 5	Gly	Val	Leu	Val	Leu 10	Gly	Leu	Leu	Leu	Pro 15	Pro
30	Pro Gl	n Ser	Pro 20	Ser	Leu	Ser									
35	(2) IN	IFORMA	TION	FOR	SEQ	ID 1	NO: (322:							
		(i)	SEQU	ENCE						s					
40		(xi)		(B) I (D) I (UENC	OPOL	OGY:	lin	ear	EQ I	D NO	: 32	2:			
45	Met Th	ır Phe	Thr	Leu 5	Gly	Asp	Ser	Gln	Val	Leu	Leu	Ile	Asn	Leu 15	Phe
	Pro Se	er Met	Pro		Gly	Ser	Cys	Ala 25	Arg	Pro					
50															
	(2) II	IFORM#	TION	FOR	SEQ	ID	NO:	323:							
55		,(i)		ENCE (A) I (B) 1 (D) 1	ENGT	TH: 6	54 an ino a	nino acid		ls					
60	Met C) SE(-									His	Thr	Ser

VO 98/39448		٠.	
		549	
1	5	10	15

Ser Leu Leu Asn Pro Arg His Leu Pro Ser Ile Pro Ala Met Phe Pro 25 5

Val Ser Ser Gly Cys Phe Gln Glu Gln Glu Met Asn Lys Ser Leu 40

Val Ser Cys Leu Phe Val Leu His Phe Val Leu His Cys Ile Phe Xaa 10 55

15

20

30

45

(2) INFORMATION FOR SEQ ID NO: 324:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 196 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 324:

25 Met Leu Ser Thr Ser Glu Tyr Ser Gln Ser Pro Lys Met Glu Ser Leu 10

Ser Ser His Arg Ile Asp Glu Asp Glu Asn Thr Gln Ile Glu Asp 20 25

Thr Glu Pro Met Ser Pro Val Leu Asn Ser Lys Phe Val Pro Ala Glu 40

Asn Asp Ser Ile Leu Met Asn Pro Ala Gln Asp Gly Glu Val Gln Leu 35

Ser Gln Asn Asp Asp Lys Thr Lys Gly Asp Asp Thr Asp Thr Arg Asp

40 Asp Ile Ser Ile Leu Ala Thr Gly Cys Lys Gly Arg Glu Glu Thr Val 90

Ala Glu Glu Val Cys Ile Asp Leu Thr Cys Asp Ser Gly Ser Gln Ala 105

Val Pro Ser Pro Ala Thr Arg Ser Glu Ala Leu Ser Ser Val Leu Asp 120

Gln Glu Glu Ala Met Glu Ile Lys Glu His His Pro Glu Glu Gly Ser 50 135

Ser Gly Ser Glu Val Glu Glu Ile Pro Glu Thr Pro Cys Glu Ser Gln 150 155

55 Gly Glu Glu Leu Lys Glu Glu Asn Met Glu Ser Val Pro Leu His Leu 170

Ser Leu Thr Glu Thr Gln Ser Gln Gly Leu Cys Leu Arg Arg His Pro 185

Lys Lys Lys Lys 195

5	(2)	INFO	ORMAT	rion	FOR	SEQ	ID I	NO: 3	325 :							
0			(i) : (xi)	(A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	52 a no a lin	mino cid ear	aci		: 32	5:			
5	Met 1	Gly	Gly	Asp	Leu 5	Val	Leu	Gly	Leu	Gly 10	Ala	Leu	Arg	Arg	Arg 15	Lys
	Arg	Leu	Leu	Glu 20	Gln	Glu	Lys	Ser	Leu 25	Ala	Gly	Trp	Ala	Leu 30	Val	Lev
20	Ala	Xaa	Xaa 35	Gly	Ile	Gly	Leu	Met 40	Val	Leu	His	Ala	Glu 45	Met	Leu	Tr
25	Phe	Gly 50	Gly	Cys	Ser	Ala	Val 55	Asn	Ala	Thr	Gly	His 60	Leu	Ser	Asp	Thr
	Leu 65	Trp	Leu	Ile	Pro	Ile 70	Thr	Phe	Leu	Thr	Ile 75	Gly	Tyr	Gly	Asp	Va] 80
30	Val	Pro	Gly	Thr	Met 85	Trp	Gly	Lys	Ile	Val 90	Cys	Leu	Cys	Thr	Gly 95	Va]
	Met	Gly	Val	Cys 100	Cys	Thr	Ala	Leu	Leu 105	Val	Ala	Val	Val	Ala 110	Arg	Lys
35	Leu	Glu	Phe 115	Asn	Lys	Ala	Glu	Lys 120	His	Val	His	Asn	Phe 125	Met	Met	Asp
10	Ile	Gln 130	Tyr	Thr	Lys	Glu	Met 135	Lys	Glu	Ser	Ala	Ala 140	Arg	Val	Leu	Glr
ro	Glu 145	Ala	Trp	Met	Phe	Туг 150	Lys	His	Thr	Arg	Arg 155	Lys	Glu	Ser	His	Ala 160
15	Ala	Arg	Xaa	His	Gln 165	Arg	Xaa	Leu	Leu	Ala 170	Ala	Ile	Asn	Ala	Phe 175	Arg
	Gln	Val	Arg	Leu 180	Lys	His	Arg	Lys	Leu 185	Arg	Glu	Gln	Val	Asn 190	Ser	Met
50	Val	Asp	Ile 195	Ser	Lys	Met	His	Met 200	Ile	Leu	Tyr	Asp	Leu 205	Gln	Gln	Ası
	Leu	Ser 210	Ser	Ser	His	Arg	Ala 215	Leu	Glu	Lys	Gln	Ile 220	Asp	Thr	Leu	Ala
55	Gly 225	_	Leu	Asp	Ala	Leu 230	Thr	Glu	Leu	Leu	Ser 235	Thr	Ala	Leu	Gly	Pr.
50	Arg	Gln	Leu	Pro	Glu 245		Ser	Gln	Gln	Ser 250	Lys	Xaa				

5	(2)	INF	ORMA'	TION	FOR	SEQ	ID	NO:	326:							
J			(i)	(A) L B) T	ENGT YPE:	H: 6 ami		ino cid	: acid	s					
10			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: 5	EQ I	D NO	: 32	6:			
	Met 1	Trp	Arg	Cys	Arg 5	Gly	Lys	Leu	Ser	Phe 10	Pro	Leu	Phe	Ala	Val 15	Va]
15	Ile	Val	Ser	Cys 20	Arg	Lys	Asp	Gly	Pro 25	Asp	Ala	Ala	Ala	Ala 30	Pro	Alā
20	Val	Ile	Lys 35	Asn	Asn	Ser	His	туr 40	Gln	Thr	Ser	Lys	Ala 45	Leu	Glu	Leu
	Glu	Lys 50	Thr	Thr	Glu	Asn	Lys 55	Glu	Ser	Asn	Pro	Phe 60	Ile	Leu	Gln	Val
25	Asn 65	Lys	Leu	Хаа												
30	(2)	INF	ORMA	SEQU	ENCE	CHA	RACT	ERIS	rics	: acid	s					
				(B) T	YPE:	ami	no a lin	cid							
35			(xi)	SEQ						EQ II	D NO	: 32	7:			
	Met 1		Glu	Gly	Lys 5	Asn	Gly	Phe	Gly	Gly 10	Phe	Val	His	Thr	Ala 15	Asp
40	Ala	Cys	Trp	Glu 20	Gly	Val	His	Ser	Glu 25	Pro	Val	Cys	Arg	Thr 30	Val	His
45	Thr	Val	His 35	Thr	Cys	His	His	Gln 40	Ala	Phe	Leu	Val	Leu 45	Ile	Gly	Trp
	Ser	Lys 50	Ser	Gly	Lys	Glu	Arg 55	Lys	Glu	Ala	Phe	Leu 60	Thr	Ala	Ile	Ile
50	Leu 65	Asn	Ser	Arg	Ser	Ile 70	His	Ile	Ser	Cys	Ser 75	Trp	Pro	Pro	Ser	Pro 80
	Val	Pro	Gln	Xaa												
55																
	(2)	INF	ORMA	TION	FOR	SEQ	ID 1	NO:	328:							
60			(i)	SEQU (: acid	s					

	(B) TYPE: amino acid(D) TOPOLOGY: linear(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 328:	
5	Met Leu Leu Ile Asn Leu Leu Trp Leu Val Thr Met Ile Lys Ser Val 1 5 10 15	a]
10	Ile Asn Asn Ile Ile Leu Phe Leu Lys Lys Ser Leu Phe Ph 20 25 30	he
10	Ile Asp Ser Val 35	
15	(2) INFORMATION FOR SEQ ID NO: 329:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 63 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 329:	
25	Met Thr Phe Pro Phe Glu Lys Lys Ile Val Ala Phe Ser Ala Phe Ty 1 5 10 15	רק
	Leu Ile Pro Gly Glu Ser Arg Leu Ala Pro Thr Phe Asn Pro Ser Al 20 25 30	La
30	Asp Met Thr Val Ile Leu Arg Gly Arg Ala Gln His Lys Thr Ala Me 35 40 45	≥t
35	Leu Glu Ser Tyr Asn Trp Lys Val Ser Cys Gln Leu Arg Glu Xaa 50 55 60	
40	(2) INFORMATION FOR SEQ ID NO: 330:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 330:	
	Met His Ser Lys Gly Ser Ser Leu Leu Leu Phe Leu Pro Gln Leu I 1 5 10 15	le
50	Leu Ile Leu Pro Val Cys Ala His Leu His Glu Glu Leu Asn Cys C 20 25 30	y:
	Phe His Arg 35	
55		
	(2) INFORMATION FOR SEQ ID NO: 331:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 23 amino acids

WO 98/39448

(B)	TYPE:	amino	acid
(D)	TOPOLO	XXY: 1	inear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 331:

5 Met Gly Ala Leu Val Leu Leu Cys Leu Leu Val Gly Val Gln Gln 1 5 10 15

Ser Gly Ser Val Trp Asp Ser 20

10

(2) INFORMATION FOR SEQ ID NO: 332:

15 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 40 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 332:

20

Met Gln Ser Ala Glu Ile Leu Ser Trp Thr Asp Val Leu His Asp Phe 1 5 10 15

Leu Phe Ser Leu Phe Leu Trp Pro Ala Phe Glu Asp Arg Ala Leu Leu 25 20 25 30

Ile Phe Thr Leu Asn Gln Ile Val 35 40

30

35

(2) INFORMATION FOR SEQ ID NO: 333:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 111 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 333:
- 40 Met Gln Ser Leu Val Gln Trp Gly Leu Asp Ser Tyr Asp Tyr Leu Gln 1 5 10 15

Asn Ala Pro Pro Gly Phe Phe Pro Arg Leu Gly Val Ile Gly Phe Ala $20 \hspace{1cm} 25 \hspace{1cm} 30$

Gly Leu Ile Gly Leu Leu Leu Ala Arg Gly Ser Lys Ile Lys Lys Leu
35 40 45

Val Tyr Pro Pro Gly Phe Met Gly Leu Ala Ala Ser Leu Tyr Tyr Pro 50 50 55 60

Gln Gln Ala Ile Val Phe Ala Gln Val Ser Gly Glu Arg Leu Tyr Asp 65 70 75 80

55 Trp Gly Leu Arg Gly Tyr Ile Val Ile Glu Asp Leu Trp Lys Glu Asn

Phe Gln Lys Pro Gly Asn Val Lys Asn Ser Pro Gly Thr Lys Xaa 100 105 110

	(2)	INF	ORMA'	TION	FOR	SEQ	I DI	NO:	334:							
5			(i)	(A) L B) T	ENGT YPE:	H: 1 ami	ERIS .06 a no a	mino cid		ds					
10			(xi)	SEQ						EQ I	D NO	: 33	4 :			
••	Met 1		Pro	Ser	Leu 5	Leu	Leu	Leu	Ala	Pro 10	Leu	Cys	Ser	Leu	Glu 15	Ala
15	Val	Leu	Ser	Ser 20	Pro	Leu	Glu	Lys	Gln 25	Суз	Gln	Leu	Pro	Gly 30	Ile	Phe
	Cys	Gln	Leu 35	Gln	Leu	Pro	Cys	Pro 40	Leu	Leu	Leu	Ser	Ala 45	Gln	Leu	Leu
20	Lys	Gly 50	Ile	Val	Xaa	Pro	Arg 55	Cys	Pro	Ala	Ser	Leu 60	Pro	Gln	Pro	Pro
25	His 65	Pro	Ala	Pro	Ser	Trp 70	His	Leu	Pro	Leu	His 75	Cys	Thr	Glu	Arg	Xaa 80
	Pro	His	His	Leu	Pro 85	Leu	Gln	Gly	Gly	Ser 90	Ser	Asn	Met	Glu	Glu 95	Xaa
30	Asn	Tyr	Arg	Gly 100	Tyr	Xaa	Asp	Ala	Gln 105	Leu						
35	(2)	INF	ORMA	SEQUI))	ENCE A) L B) T	CHA ENGT YPE:	RACT H: 5 ami	ERIS O am no a	TICS ino cid		s					
40			(xi)	SEQ				lin PTIO		EQ I	D NO	: 33	5:			
	Met 1	Thr	Thr	Cys	Leu 5	Phe	Gly	Leu	Leu	Ser 10	Cys	Glu	Met	Ser	Ala 15	Gln
45	Val	Ser	Gln	Lys 20	Ser	Cys	Val	Tyr	Asp 25	Glu	Ser	Glu	Cys	Phe 30	Ser	Ser
50	Val	Gly	Gln 35	Leu	Leu	Ala	Leu	Leu 40	Ile	Leu	Val	Tyr	Val 45	Leu	Pro	Ser
	Ile	Хаа 50														
55	(2)	INF	ORMA'	TION	FOR	SEQ	ID 1	NO: 1	336:							
			(i)	SEQU							la.					
60								.no a		acio	ت					

(B) TYPE: amino acid

			(xi)			OPOL				EQ I	D NO	: 33	6:			
5	Met 1	Leu	Trp	Lys	Cys 5	Ser	Gln	Asn	Ile	Ala 10	Arg	Cys	Leu	Leu	Leu 15	Leu
	Leu	Ala	Leu	Val 20	Glu	Ile	Lys	Leu	Glu 25	Asp	Leu	Gln	Ser	Gln 30	Leu	His
10	Pro	Thr	Trp 35	Lys	Ser	Ile	Pro	Gly 40	Pro	Ser	Pro	Arg	Asn 45	Gln	His	Arg
15																
	(2)	INF	ORMAT	rion	FOR	SEQ	ID I	10 : 3	337:							
20			(i) :	(.	A) L B) T		H: 4 ami	1 am no a	ino d		s					
25			(xi)	SEQ	JENC:	Ë DES	SCRI:	PTIO	N: S1	EQ II	ON C	: 33	7:			
	Met 1	Leu	Ile	Pro	Leu 5	Gln	Cys	Leu	Phe	Ser 10	Ser	Asp	Arg	Met	Leu 15	Thr
30	Phe	Leu	Thr	Pro 20	Trp	Gln	Lys	Gly	Glu 25	Lys	Cys	Val	Leu	Gly 30	Trp	Val
	Thr	Lys	Phe 35	Leu	Ser	Glu	Ile	Ser 40	Xaa							
35																
	(2)	INF	ORMAT	rion	FOR	SEQ	ID N	10: 3	38:							
40			(i) : (xi)	() ()	A) L B) T D) T	ENGT YPE : OPOL	H: 7 amii OGY:	6 am no a lin	ino a cid ear	acid		: 33	8 :			
45	Met		Phe							-				αíτ	Tle	Ive
	1				5	wa	273	200	1116	10	a) C U	****	Cys	116	15	ພ າ ອ
50	Gly	Leu	Glu	Arg 20	Phe	Ile	Ile	Leu	Arg 25	Glu	Val	Cys	Asn	Gln 30	Glu	Ile
	Gln	Arg	Ser 35	Leu	Ser	Ser	Asn	Leu 40	Val	His	Val	Leu	Leu 45	Gln	Pro	Ala

Thr Phe Lys Asp Val Leu Val Thr Glu Ile Ile Cys Leu Cys Met Cys

Leu Tyr Ser Ile Lys Tyr Met Pro Pro Gln Lys Lys 65 70 75

50 55

60

	(2) INFORMATION FOR SEQ ID NO: 339:
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 339:
10	Lys Val Tyr Ile Phe Leu Ile Phe Met Val Leu Ile Leu Pro Ser Leu 1 5 10 15
15	Gly Leu Thr Arg Tyr Met Pro Pro Xaa Ser Xaa Leu Asn Ser Glu 20 25 30
	(2) INFORMATION FOR SEQ ID NO: 340:
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 340:
	Met Ala Lys Ile Ser Pro Phe Glu Val Val Lys Arg Thr Ser Val Pro 1 5 10 15
30	Val Leu Val Gly Leu Val Ile Val Ile Val Ala Thr Glu Leu Met Val 20 25 30
	Pro Gly Thr Ala Ala Ala Val Thr Gly Lys 35 40
35	
	(2) INFORMATION FOR SEQ ID NO: 341:
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 341:
45	Met Arg Leu Phe Phe Ile Gly Phe Leu Leu Phe Ser Phe Gly Leu 1 5 10 15
50	Leu Arg Gln Pro Ser Leu Ser Ala Glu His 20 25
	(2) INFORMATION FOR SEQ ID NO: 342:
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 amino acids (B) TYPE: amino acid
60	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 342:

											557					
	Met 1	Val	Phe	Ser	Val 5	Ser	Ser	Ala	Leu	Ala 10	Leu	Leu	Leu	Met	Leu 15	Leu
5	Arg	Ser	Ser	Asp 20	Leu	Ala	Lys	Lys	Thr 25	Glu						
10	(2)		ORMA			_										
15			(xi)	(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	57 a no a lin	mino cid ear	aci		: 34	3:			
	Met 1		Leu	Ī						-				Pro	Phe 15	Ser
20	Asp	Glu	Суз	Ile 20	Pro	Trp	Glu	Val	Trp 25	Thr	Val	Lys	Val	His 30	Val	Val
25	Ala	Leu	Ala 35	Thr	Glu	Gln	Glu	Arg 40	Gln	Ile	Cys	Arg	Glu 45	Lys	Val	Gly
	Glu	Lys 50	Leu	Cys	Glu	Lys	Ile 55	Ile	Asn	Ile	Val	Glu 60	Val	Met	Asn	Arg
30	His 65	Glu	Tyr	Leu	Pro	Lys 70	Met	Pro	Thr	Gln	Ser 75	Glu	Val	Asp	Asn	Val 80
	Phe	Asp	Thr	Gly	Leu 85	Arg	Asp	Val	Gln	Pro 90	Tyr	Leu	Tyr	Lys	11e 95	Ser
35	Phe	Gln	Ile	Thr 100	Asp	Ala	Leu	Gly	Thr 105	Ser	Val	Thr	Thr	Thr 110	Met	Arg
40			Ile 115					120			_		125			
	Ser	Ser 130	Leu	Met	Ala	Pro	Arg 135	Pro	Trp	Leu	Leu	Gly 140	Ile	Ala	Leu	Leu
45	Gly 145	Leu	Trp	Ala	Leu	Glu 150	Pro	Ala	Leu	Gly	His 155	Trp	Xaa			

(2) INFORMATION FOR SEQ ID NO: 344:

50

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 520 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- 55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 344:

Met Phe Leu Leu Pro Leu Pro Ala Ala Gly Arg Val Val Arg Arg 1 5 10 15

60 Leu Ala Val Arg Arg Phe Gly Ser Arg Ser Leu Ser Thr Ala Asp Met

20 25 30

5	Thr	Lys	Gly 35	Leu	Val	Leu	Gly	Ile 40	Tyr	Ser	Lys	Glu	Lys 45	Glu	Asp	Asj
3	Val	Pro 50	Gln	Phe	Thr	Ser	Ala 55	Gly	Glu	Asn	Phe	Asp 60	Lys	Leu	Leu	Ala
10	Gly 65	Lys	Leu	Arg	Glu	Thr 70	Leu	Asn	Ile	Ser	Gly 75	Pro	Pro	Leu	Lys	Ala 80
	Gly	Lys	Thr	Arg	Thr 85	Phe	Tyr	Gly	Leu	His 90	Gln	Asp	Phe	Pro	Ser 95	Va:
15	Val	Leu	Val	Gly 100	Leu	Gly	Lys	Lys	Ala 105	Ala	Gly	Ile	Asp	Glu 110	Gln	Glı
20	Asn	Trp	His 115	Glu	Gly	Lys	Glu	Asn 120	Ile	Arg	Ala	Ala	Val 125	Ala	Ala	Gly
	Cys	Arg 130	Gln	Ile	Gln	Asp	Leu 135	Glu	Leu	Ser	Ser	Val 140	Glu	Val	Asp	Pro
25	Cys 145	Gly	Asp	Ala	Gln	Ala 150	Ala	Ala	Glu	Gly	Ala 155	Val	Leu	Gly	Leu	туг 160
	Glu	Tyr	Asp	Asp	Leu 165	Lys	Gln	Lys	Lys	Lys 170	Met	Ala	Val	Ser	Ala 175	Lys
30	Leu	Tyr	Gly	Ser 180	Gly	Asp	Gln	Glu	Ala 185	Trp	Gln	Lys	Gly	Val 190	Leu	Phe
35	Ala	Ser	Gly 195	Gln	Asn	Leu	Ala	Arg 200	Gln	Leu	Met	Glu	Thr 205	Pro	Ala	Asr
	Glu	Met 210	Thr	Pro	Thr	Arg	Phe 215	Ala	Glu	Ile	Ile	Glu 220	Lys	Asn	Leu	Lys
10	Ser 225	Ala	Ser	Ser	Lys	Thr 230	Glu	Val	His	Ile	Arg 235	Pro	Lys	Ser	Trp	11e 240
	Glu	Glu	Gln	Ala	Met 245	Gly	Ser	Phe	Leu	Ser 250	Val	Ala	Lys	Gly	Ser 255	Ası
1 5	Glu	Pro	Pro	Val 260	Phe	Leu	Glu	Ile	Ніs 265	Tyr	Lys	Gly	Ser	Pro 270	Asn	Ala
50	Asn	Glu	Pro 275	Pro	Leu	Val	Phe	Val 280	Gly	Lys	Gly	Ile	Thr 285	Phe	Asp	Sei
,,	Gly	Gly 290	Ile	Ser	Ile	Lys	Ala 295	Ser	Ala	Asn	Met	Asp 300	Leu	Met	Arg	Ala
55	Asp 305	Met	Gly	Gly	Ala	Ala 310	Thr	Ile	Суз	Ser	Ala 315	Ile	Val	Ser	Ala	Ala 32
	Lys	Leu	Asn	Leu	Pro 325	Ile	Asn	Ile	Ile	Gly 330	Leu	Ala	Pro	Leu	Cys 335	Gl
50	Asn	Met	Pro	Ser	Gly	Lys	Ala	Asn	Lys	Pro	Gly	Asp	Val	Val	Arg	Ala

			•								337					
				340					345					350		
5	Lys	Asn	Gly 355	Lys	Thr	Ile	Gln	Val 360	Asp	Asn	Thr	Asp	Ala 365	Glu	Gly	Arg
3	Leu	Ile 370	Leu	Ala	Asp	Ala	Leu 375	Cys	Tyr	Ala	His	Thr 380	Phe	Asn	Pro	Lys
10	Xaa 385	Ile	Leu	Asn	Ala	Ala 390	Thr	Leu	Thr	Gly	Ala 395	Met	Asp	Val	Ala	Leu 400
	Gly	Ser	Gly	Ala	Thr 405	Gly	Val	Phe	Thr	Asn 410	Ser	Ser	Trp	Leu	Trp 415	Asn
15	Lys	Leu	Phe	Glu 420	Ala	Ser	Ile	Glu	Thr 425	Gly	Asp	Arg	Val	Trp 430	Arg	Met
20	Pro	Leu	Phe 435	Glu	His	Tyr	Thr	Arg 440	Gln	Val	Val	Asp	Cys 445	Gln	Leu	Ala
	Asp	Val 450	Asn	Asn	Ile	Gly	Lys 4 55	Tyr	Arg	Ser	Ala	Gly 460	Ala	Cys	Thr	Ala
25	Ala 465	Ala	Phe	Leu	Lys	Glu 470	Phe	Val	Thr	His	Pro 475	Lys	Trp	Ala	His	Leu 480
	Asp	Ile	Ala	Gly	Val 485	Met	Thr	Asn	Lys	Asp 490	Glu	Val	Pro	Tyr	Leu 495	Arg
30	Lys	Gly	Met	Thr 500	Gly	Arg	Pro	Thr	Arg 505	Thr	Leu	Ile	Glu	Phe 510	Leu	Leu
35	Arg	Phe	Ser 515	Gln	Asp	Asn	Ala	Xaa 520								
	(2)	INFO	ORMA!	rion	FOR	SEQ	ID 1	NO: 3	145:							
40			(i) :	(A) L B) T	CHAI ENGT YPE: OPOL	H: 3 ami	9 am no a	ino . cid		s					
45			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ II	O NO	: 34!	5:			
	Thr 1	Ile	Leu	Phe	Leu 5	Phe	Leu	Gln	Leu	Ser 10	Ala	Leu	Arg	Leu	Ile 15	Val
	Gly	Lys	Asp	Ser	Ile	Asp	Ile	Asp	Ile	Ser	Ser	Arg	Arg	Arg	Glu	Asp

(2) INFORMATION FOR SEQ ID NO: 346:

20

Gln Ser Leu Arg Leu Asn Ala 35

50

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 234 amino acids

(B)	TYPE: amin	no acid
(D)	TOPOLOGY:	linear

			(xi)			E DE				EQ I	D NO	: 34	6:			
5	Met 1	Thr	Ser	Glu	Leu 5	Asp	Ile	Phe	Val	Gly 10	Asn	Thr	Thr	Leu	Ile 15	Asp
10	Glu	Asp	Val	Тут 20	Arg	Leu	Trp	Leu	Asp 25	Gly	Tyr	Ser	Val	Thr 30	Asp	Ala
10	Val	Ala	Leu 35	Arg	Val	Arg	Ser	Gly 40	Ile	Leu	Glu	Gln	Thr 45	Gly	Ala	Thr
15	Ala	Ala 50	Val	Leu	Gln	Ser	Asp 55	Thr	Met	Asp	His	Тут 60	Arg	Thr	Phe	His
	Met 65	Leu	Glu	Arg	Leu	Leu 70	His	Ala	Pro	Pro	Lys 75	Leu	Leu	His	Gln	Leu 80
20	Ile	Phe	Gln	Ile	Pro 85	Pro	Ser	Arg	Gln	Ala 90	Leu	Leu	Ile	Glu	Arg 95	Tyr
25	Tyr	Ala	Phe	Asp 100	Glu	Ala	Phe	Val	Arg 105	Glu	Val	Leu	Gly	Lys 110	Lys	Leu
	Ser	Lys	Gly 115	Thr	Lys	Lys	Asp	Leu 120	Asp	Asp	Ile	Ser	Thr 125	Lys	Thr	Gly
30	Ile	Thr 130	Leu	Lys	Ser	Cys	Arg 135	Arg	Gln	Phe	Asp	Asn 140	Phe	Lys	Arg	Val
	Phe 145	Lys	Val	Val	Glu	Glu 150	Met	Arg	Gly	Ser	Leu 155	Val	Asp	Asn	Ile	Gln 160
35	Gln	His	Phe	Leu	Leu 165	Ser	Asp	Arg	Leu	Ala 170	Arg	Asp	Tyr	Ala	Ala 175	Ile
40	Val	Phe	Phe	Ala 180	Asn	Asn	Arg	Phe	Glu 185	Thr	Gly	Lys	Lys	Lys 190	Leu	Gln
	Туг	Leu	Ser 195	Phe	Gly	Asp	Phe	Ala 200	Phe	Cys	Ala	Glu	Leu 205	Met	Ile	Gln
45	Asn	Trp 210	Thr	Leu	Gly	Pro	Val 215	Asp	Ser	Gln	Met	Asp 220	Asp	Met	Asp	Met
	Asp 225	Leu	Asp	Arg	Asn	Phe 230	Ser	Arg	Thr	Xaa						
50	(2)	INFO	ORMA	rion	FOR	SEQ	ID N	10: 3	347:							
55				SEQU	ENCE	CHA	RACTI	ERIS	rics	: aci	ds					
						YPE:					_					

(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 347:

Met Ala Ala Ala Val Ala Gly Met Leu Arg Gly Gly Leu Leu Pro Gln

	1				5					10					15	
5	Ala	Gly	Arg	Leu 20	Pro	Thr	Leu	Gln	Thr 25	Val	Arg	Tyr	Gly	Ser 30	Lys	Ala
3	Val	Thr	Arg 35	His	Arg	Arg	Val	Met 40	His	Phe	Gln	Arg	Gln 45	Lys	Leu	Met
10	Ala	V al	Thr	Glu	Тут	Ile	Pro 55	Pro	Lys	Pro	Ala	Ile 60	His	Pro	Ser	Cys
	Leu 65	Pro	Ser	Pro	Pro	Ser 70	Pro	Pro	Gln	Glu	Glu 75	Ile	Gly	Leu	Ile	Arg 80
15	Leu	Leu	Arg	Arg	Glu 85	Ile	Ala	Ala	Val	Phe 90	Gln	Asp	Asn	Arg	Met 95	Ile
20	Ala	Val	Cys	Gln 100	Asn	Val	Ala	Leu	Ser 105	Ala	Glu	Asp	Lys	Leu 110	Leu	Ile
	Ala	Thr	Pro 115	Ala	Ala	Glu	Thr	Gln 120	Asp	Pro	Asp	Glu	Gly 125	Leu	Pro	Gln
25	Pro	Gly 130	Pro	Glu	Ser	Pro	Ser 135	Trp	Arg	Ile	Pro	Ser 140	Thr	Lys	Ile	Cys
	Cys 145	Pro	Phe	Leu	Trp	Gly 150	Thr	Thr	Cys	Суѕ	Trp 155	Ser	Val	Lys	Ser	Pro 160
30	Arg	Ser	Arg	Arg	Trp 165	Tyr	Gly	Ser	Xaa							
35	(2)	INF	ORMA			_				:						
40			(xi)	(B) T D) T	YPE: OPOL	ami OGY:	no a lin	cid ear	acid EQ I		: 34	8:			
45	Met 1	Lys	Arg	Ser	Phe 5	Leu	Leu	Pro	Leu	Leu 10	Leu	Val	Gly	Phe	Leu 15	Asp
	Thr	Ala	His	Leu 20	Ile	Leu	Leu	Glu	Thr 25	Leu	Ser	Val	Cys	Leu 30	Trp	Leu
50	Pro	Ser	Leu 35	Ile	Asp	Ser	Arg	Cys 40	Val	Met	Ser					
55	(2)	INF	ORMA	SEQU)	ENCE	CHA ENGI	RACT H: 7	ERIS '8 am	TICS ino	: acid	ls					
60			(xi)		D) I					EQ I	D NO	: 34	9:			

						•										
	Met 1	Lys	Glu	Gly	Pro 5	Pro	Cys	Lys	Arg	His 10	His	Tyr	Tyr	Gln	Asn 15	Суѕ
5	Gly	Ala	Lys	Leu 20	Leu	Val	Ser	Leu	Phe 25	Gly	Glu	Thr	Asn	Gln 30	Ile	His
10	Leu	Leu	Glu 35	Thr	Gln	Val	Gly	Thr 40	Glu	Lys	Gly	Gly	Glu 45	Arg	Ile	Trp
20	Glu	Glu 50	Lys	Trp	Arg	Ile	Ser 55	Ser	Thr	Val	Leu	Phe 60	Ile	Ser	Val	Asn
15	Ser 65	Tyr	Val	Glu	Gly	Ser 70	Val	Leu	Glu	Ile	Lys 75	Leu	Phe	Tyr		
20	(2)		ORMA	SEQU	ENCE	СНА	RACT	ERIS	rics							
25			(xi)	(B) T D) T	YPE: OPOL	H: 2 ami: OGY: SCRI	no a	cid ear			: 35(0:			
	Met 1	Ser	Glu	Ile	Leu 5	Ser	Leu	Leu	Phe	Cys 10	Leu	Leu	Gly	Pro	Ala 15	Leu
30	Asp	Glu	Arg	Arg 20	Glu	Glu	Lys	Asp								
35	(2)	INFO	ORMA!	rion	FOR	SEQ	ID 1	10: 3	851:							
40			(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	74 a no a lin	mino cid ear	aci		: 35:	1:			
45	Met 1	Ser	Ser	Ala	Gly 5	Thr	Ala	Thr	Pro	Leu 10	Glu	Met	Asp	His	Lys 15	Leu
43	Thr	Ser	Gln	Pro 20	Gly	Arg	Pro	Ser	Phe 25	Tyr	Cys	Asn	Ser	Arg 30	His	Ser
50	Ile	Val	Gly 35	Ser	Ser	His	Gln	Leu 40	Gly	Phe	Trp	Phe	Ser 45	His	Leu	Glu
	Ser	Ser 50	Gly	Leu	Lys	Val	Phe 55	Gln	Val	Ser	Leu	Pro 60	Cys	Glu	Cys	Val
55	Asn 65	Leu	Pro	Thr	Arg	Ile 70	Ala	Ser	Val	Val	Leu 75	Ser	Leu	Met	Ser	Leu 80
60	Leu	Val	Val	Gly	Gln 85	Ala	Pro	Ala	Trp	Glu 90	Gly	Ser	Leu	Leu	Arg 95	Gly

	Arg	Pro	Ala	Gly 100	Gly	Ala	His	Leu	Cys 105	Ala	Met	Xaa	Val	Ile 110	Glu	Gly
5	Leu	Val	Val 115	Asp	Val	Gly	Glu	Arg 120	Ile	Leu	His	Gly	Gln 125	Arg	Glu	Va:
	Gly	Gln 130	Val	Ser	Gln	Val	Leu 135	Pro	Ala	Leu	Ser	Leu 140	Gly	Leu	Val	Phe
10	Leu 145	Cys	Gln	Gly	Thr	Val 150	Glu	Lys	Val	Ser	Gly 155	Ala	Ala	His	Cys	Ser 160
15	Ser	Leu	Leu	Cys	Суs 165	Leu	Pro	Trp	Gln	Cys 170	Ser	Gly	Gly	Gly	Phe 175	Pro
	Thr	Xaa	Arg	Cys 180	Ser	Arg	Pro	Tyr	Phe 185	Ser	Ser	His	Lys	Gly 190	Val	Ala
20	Ala	Thr	Leu 195	Ala	Leu	Thr	Cys	His 200	Cys	Asp	Lys	Val	His 205	Val	Ala	Gly
	Leu	Gly 210	Lys	Asp	Trp	Ala	11e 215	Glu	Gln	Arg	Arg	Arg 220	Thr	Cys	Glu	Sei
25	Asp 225	Xaa	Glu	Xaa	Xaa	Pro 230	Phe	Thr	Leu	Ala	Gly 235	Leu	Val	Leu	Val	Le: 240
30	Arg	Phe	Суѕ	Gln	Val 245	Val	Leu	Val	Trp	Ile 250	Pro	Gln	Leu	Gly	Asp 255	Lys
	His	Trp	Arg	Gly 260	Met	Thr	Arg	Leu	Gly 265	Arg	Val	Ser	Leu	Thr 270	Ser	Ser
35	Ile	Xaa														
40	(2)	INFO			FOR ENCE					:						
				(A) L B) T	ENGT	H: 4	7 am	ino		s					
45			(xi)		D) T					EQ II	D NO	: 35	2:			
	Met 1	Ile	Phe	Thr	Ser 5	Val	Thr	Lys	Gly	Ile 10	Leu	Leu	Ile	Ala	Leu 15	Tr
50	Val	Pro	Leu	Phe 20	His	Phe	Met	Leu	Ile 25	Asp	Ser	Ile	Leu	Gly 30	Pro	Se
55	Arg	Leu	Leu 35	Thr	Asp	Gly	Val	Pro 40	Phe	Asn	Pro	Trp	His 45	Val	Xaa	
	(2)	INF	ORMA'	rion	FOR	SEQ	ID	NO:	353:							
60			(i)	SEQU	ENCE	СНА	RACT	ERIS	TICS	:						

			(mi)	(B) T D) T	YPE: OPOL	H: 3 ami OGY:	no a lin	cid ear			25	2			
5	Met 1	Lys		SEQ	UENC	e de	SCRI	PTIO	NI: S.	EQ I	D NO	: 35	3:			
10	(2)	TANG	0.50343.C	TTOM.	EOD	or o	TD 1	20 -	DE 4 .							
	(2)		ORMA:			_				:						
15			(xi)	(B) T D) T	YPE: OPOL	H: 5 ami: OGY: SCRI	no a lin	cid ear			: 35	4:			
20	Met 1	Ser	Ile	Ser	Gly 5	Thr	Asp	Gly	Leu	Ile 10	Leu	Leu	Leu	Val	Gly 15	Let
	Glu	Ala	Xaa	Val 20	Arg	Ser	Ser	Lys	Lys 25	Trp	Ile	Pro	Lys	Ala 30	Leu	Xaa
25	Val	Thr	Gln 35	Ala	Lys	Trp	Asn	Ser 40	Trp	Pro	Ser	Arg	Arg 45	Asn	Ala	Gly
30	Phe	Ala 50	Leu	His												
	(2)	INFO	ORMA!	rion	FOR	SEQ	ID N	10: 3	355 :							
35			(i) :	(A) L B) T	ENGT YPE :	H: 1 ami	32 a no a	mino cid		ds					
40			(xi)				OGY: SCRI			EQ I	D NO	: 35	5:			
40	Met 1	Glu	His	Суз	Leu 5	Tyr	His	Ser	Val	His 10	Gly	Ile	Asn	Pro	Туг 15	110
45	His	Lys	Asn	Thr 20	His	Pro	Ser	Ile	Asn 25	Ile	Tyr	Met	Val	Trp 30	Asp	Gl
	Gln	Val	Asn 35	Ser	Phe	Glu	Arg	Glu 40	Phe	Val	Pro	Phe	Phe 45	Phe	Leu	110
50	Ile	Leu 50	Leu	Asn	Cys	Cys	Gln 55	Leu	Ser	Asn	Lys	Gln 60	Thr	Glu	Lys	Le
55	Phe 65	Gly	Lys	Thr	Leu	His 70	Thr	Pro	Phe	Leu	Ser 75	Ser	Ala	Leu	Lys	Ту 8
	Arg	Leu	Asn	Thr	His 85	Ile	Leu	Pro	Val	Phe 90	Ser	Tyr	Ser	Asp	Ser 95	11
60	Leu	Thr	Cys	His 100	Leu	Ile	Leu	Ala	Ser 105	Tyr	Phe	Ser	His	Val	Tyr	Le

Pro Val Thr Cys Ile Cys Tyr Leu Asn Arg Lys Lys Asn Ile Gln Lys

120

115

5	Lys	Lys 130	Asn	Xaa												
10	(2)		ORMAT													
15			(xi)	(. (.	A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	04 a no a lin	mino cid ear	aci		: 35	6:			
20	Met 1	Gly	Ser	Arg	Asp 5	His	Leu	Phe	Lys	Val 10	Leu	Val	Val	Gly	Asp 15	Ala
20	Ala	Val	Gly	Lys 20	Thr	Ser	Leu	Val	Gln 25	Asp	Tyr	Ser	Gln	Asp 30	Ser	Phe
25	Ser	Lys	His 35	Tyr	Lys	Ser	Thr	Val 40	Gly	Val	Asp	Phe	Ala 45	Leu	Lys	Val
	Leu	Gln 50	Trp	Ser	Asp	Tyr	Glu 55	Ile	Val	Arg	Leu	Gln 60	Leu	Trp	Asp	Ile
30	Ala 65	Gly	Gln	Glu	Arg	Phe 70	Thr	Ser	Met	Thr	Arg 75	Leu	Tyr	Tyr	Arg	Asp 80
25	Ala	Ser	Ala	Cys	Val 85	Ile	Met	Phe	Asp	Val 90	Thr	Asn	Ala	Thr	Thr 95	Phe
35	Ser	Asn	Ser	Gln 100	Arg	Trp	Lys	Gln	Asp 105	Leu	Asp	Ser	Lys	Leu 110	Thr	Leu
40	Pro	Asn	Gly 115	Glu	Pro	Val	Pro	Cys 120	Leu	Leu	Leu	Ala	Asn 125	Lys	Суѕ	Asp
	Leu	Ser 130	Pro	Trp	Ala	Val	Ser 135	Arg	Asp	Gln	Ile	Asp 140	Arg	Phe	Ser	Lys
45	Glu 145	Asn	Gly	Phe	Thr	Gly 150	Trp	Thr	Glu	Thr	Ser 155	Val	Lys	Glu	Asn	Lys 160
	Asn	Ile	Asn	Glu	Ala 165	Met	Arg	Val	Leu	Ile 170	Glu	Lys	Met	Met	Arg 175	Asr
50	Ser	Thr	Glu	Asp 180	Ile	Met	Ser	Leu	Ser 185		Gln	Gly	Asp	Tyr 190	Ile	Asr
55	Leu	Gln	Thr 195	Lys	Ser	Ser	Ser	Trp 200	Ser	Cys	Cys	Xaa				

(2) INFORMATION FOR SEQ ID NO: 357:

5				(A) L B) T D) T	CHA ENGT YPE: OPOL E DE	H: 4 ami OGY:	7 am no a lin	ino cid ear	acid		: 35	7:			
	Met 1	Ile	Ser	Leu	Ile 5	Phe	Gln	Leu	Glu	Glu 10	Glu	Lys	Leu	Val	Glu 15	Lys
10	Phe	Phe	Phe	Phe 20	Leu	Phe	Phe	Phe	Leu 25	Lys	Lys	Gly	Ser	Gln 30	Gly	Ser
15	Asn	Leu	Lys 35	Ile	Val	Pro	Arg	His 40	Met	Arg	Val	Val	Leu 45	Arg	Gly	
	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	v 0: :	358:							
20			(i)	(A) L B) T	CHAI ENGT YPE: OPOL	H: 7 ami	3 am no a	ino cid		s					
25				_		E DE				_						
	Met 1	Thr	Tyr	Val	Thr 5	Cys	Leu	His	Val	Cys 10	Leu	Leu	Val	Glu	Phe 15	Leu
30	Asn	Ser	Gln	Leu 20	Thr	Asn	His	Arg	Lys 25	Tyr	тут	Phe	Leu	Ser 30	Tyr	Gly
	Phe	Trp	Phe 35	Thr	Gly	Leu	Arg	Gly 40	Phe	Ser	Glu	Tyr	Leu 45	Trp	Pro	Gln
35	Gln	His 50	Thr	Ser	Phe	His	Pro 55	Asn	Arg	Asn	Glu	Ile 60	Asn	Phe	Val	Ser
40	Thr 65	Asp	Asn	Arg	Ile	Trp 70	Val	Thr	Xaa							
	(2)	INF	ORMA	rion	FOR	SEQ	ID I	10 : 3	359:							
45			(i) :	(A) L B) T	CHAI ENGT YPE:	H: 1 ami	02 a no a	mino cid		ds					
50			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: 5	EQ I	D NO	: 35	9:			
	Met 1	Ser	Asp	Gln	Glu 5	Ala	Lys	Pro	Ser	Thr 10	Glu	Asp	Leu	Gly	Asp 15	Lys
55	Lys	Glu	Gly	Glu 20	Туг	Ile	Lys	Leu	Lys 25	Val	Ile	Gly	Gln	Asp 30	Ser	Ser
	Glu	Ile	His	Phe	Lys	Val	Lys	Met	Thr	Thr	His	Leu	Lys	Lys	Leu	Lys

Glu Ser Tyr Cys Gln Arg Gln Gly Val Pro Met Asn Ser Leu Arg Phe

		50					55					60				
5	Leu 65	Phe	Glu	Gly	Gln	Arg 70	Ile	Ala	Asp	Asn	His 75	Thr	Pro	Lys	Glu	Leu 80
3	Gly	Met	Glu	Glu	Glu 85	Asp	Val	Ile	Glu	Val 90	Tyr	Gln	Glu	Gln	Thr 95	Gly
10	Gly	His	Ser	Thr 100	Val	Xaa										
15	(2)		ORMAT	SEQUI	ENCE A) L	CHAI ENGT	RACTI H: 4	ERIS.	rics ino	: acid	s					
20			(xi)					lin PTIO		EQ II	D NO	: 36	0:			
	Met 1	Gly	Phe	Pro	Gln 5	Trp	His	Leu	Gly	Asn 10	His	Ala	Val	Glu	Pro 15	Val
25	Thr	Ser	Ile	Leu 20	Leu	Leu	Phe	Leu	Leu 25	Met	Met	Leu	Gly	Val 30	Arg	Gly
30	Leu	Leu	Leu 35	Val	Gly	Leu	Val	Tyr 40	Leu	Val	Ser	His	Leu 45	Ser	Gln	Arg
35	(2)		ORMA!													
40			(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	79 ai no a lin	mino cid ear	aci		: 36	1:			
45	Met 1	Ser	Ala	Glu	Val 5	Lys	Val	Thr	Gly	Gln 10	Asn	Gln	Glu	Gln	Phe 15	Leu
	Leu	Leu	Ala	Lys 20	Ser	Ala	Lys	Gly	Ala 25	Ala	Leu	Ala	Thr	Leu 30	Ile	His
50	Gln	Val	Leu 35	Glu	Ala	Pro	Gly	Val 40	Tyr	Val	Phe	Gly	Glu 45	Leu	Leu	Asp
55	Met	Pro 50	Asn	Val	Arg	Glu	Leu 55	Ala	Glu	Ser	Asp	Phe 60	Ala	Ser	Thr	Phe
7.5	Arg 65		Leu	Thr	Val	Phe	Ala	Tyr	Gly	Thr	Tyr 75	Ala	Asp	Tyr	Leu	Ala

Glu Ala Arg Asn Leu Pro Pro Leu Thr Glu Ala Gln Lys Asn Lys Leu 85 90 95

	Arg His Leu Ser Val Val Thr Leu Ala Ala Lys Val Lys Cys Ile Pr 100 105 110	0
5	Tyr Ala Val Leu Leu Glu Ala Leu Ala Leu Arg Asn Val Arg Gln Le 115 120 125	u
10	Glu Asp Leu Val Ile Glu Ala Val Tyr Ala Asp Val Leu Arg Gly Se 130 135 140	r
10	Leu Asp Gln Arg Asn Gln Arg Leu Glu Val Asp Tyr Ser Ile Gly Arg 145 150 155 160	
15	Asp Ile Gln Arg Gln Asp Leu Ser Ala Ile Ala Arg Thr Leu Xaa Ly: 165 170 175	5
	Asn His Xaa	
20		
	(2) INFORMATION FOR SEQ ID NO: 362:	
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 25 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 362:	
30	Met Lys Ser Ser Ser Leu Phe Phe Phe Phe Leu Ala His Phe Ile His 1 5 10 15	3
35	Ser His Asp Leu Pro Gly Leu Cys Arg 20 25	
	(2) INFORMATION FOR SEQ ID NO: 363:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 224 amino acids (B) TYPE: amino acid	
4.5	(D) TOPOLOGY: linear(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 363:	
45	Met Lys Phe Ala Ala Ser Gly Xaa Phe Leu His His Met Ala Gly Let 1 5 10 15	1
50	Ser Ser Ser Lys Leu Ser Met Ser Lys Ala Leu Pro Leu Thr Lys Va. 20 25 30	1
	Val Gln Asn Asp Ala Tyr Thr Ala Pro Ala Leu Pro Ser Ser Ile Ar 35 40 45	g
55	Thr Lys Ala Leu Thr Asn Met Ser Arg Thr Leu Val Asn Lys Glu Gl 50 55 60	u
	Pro Pro Lys Glu Leu Pro Ala Ala Glu Pro Val Leu Ser Pro Leu Gl 65 70 75 8	

	Uly	Thr	Lys	Met	Thr 85	Val	Asn	Asn	Leu	His 90	Pro	Arg	Val	Thr	Glu 95	Glu
5	Asp	Ile	Val	Glu 100	Leu	Phe	Cys	Val	Cys 105	Gly	Ala	Leu	Lys	Arg 110	Ala	Arg
	Leu	Val	His 115	Pro	Gly	Val	Ala	Glu 120	Val	Val	Phe	Val	Lys 125	Lys	Asp	Asp
10	Ala	Ile 130	Thr	Ala	Туг	Lys	Lys 135	Туг	Asn	Asn	Arg	Cys 140	Leu	Asp	Gly	Gln
15	Pro 145	Met	Lys	Cys	Asn	Leu 150	His	Met	Asn	Gly	Asn 155	Val	Ile	Thr	Ser	Asp 160
	Gln	Pro	Ile	Leu	Leu 165	Arg	Leu	Ser	Asp	Ser 170	Pro	Ser	Met	Lys	Lys 175	Glu
20	Ser	Glu	Leu	Pro 180	Arg	Arg	Val	Asn	Ser 185	Ala	Ser	Ser	Ser	Asn 190	Pro	Pro
	Ala	Glu	Val 195	Asp	Pro	Asp	Thr	Ile 200	Leu	Lys	Ala	Leu	Phe 205	Lys	Ser	Ser
25	Gly	Ala 210	Ser	Xaa	Thr	Thr	Gln 215	Pro	Thr	Glu	Phe	Lys 220	Ile	Lys	Leu	Xaa
30																
	(2)	INFO	ORMA'	NOI?	FOR	SEQ	ID N	IO: 3	864:							
35	(2)			SEQUI ()	ENCE A) L B) T	CHAI ENGT YPE:	RACTI H: 3	ERIST 49 au no ac	rICS: mino cid	: aci	ds					
35 40	(2)		(i) :	SEQUI ()	ENCE A) L B) T D) T	CHAI ENGT YPE: OPOL	RACTI H: 3 ami: OGY:	ERIST 49 au no ao line	rics: mino cid ear	aci		: 364	1 :			
			(i) : (xi)	SEQUI () ()	ENCE A) L B) T D) T UENCI	CHAI ENGT YPE: OPOL E DE:	RACTI H: 3 ami: OGY: SCRI	ERIST 49 am no am lind PTION	rics mino cid ear V: SI	acio	ON O			Val	Phe 15	Ala
	Met 1	Ser	(i) : (xi) Lys	SEQUI () () () SEQI	ENCE A) L B) T D) T UENCE Cys 5	CHAI ENGT YPE: OPOL E DE:	RACTI H: 3 ami: OGY: SCRII	ERIST 49 am no am lind PTION Leu	rics mino cid ear N: SI	acio EQ II Cys 10	O NO Glu	Asp	Pro		15	
40	Met 1 Glu	Ser	(i) : (xi) Lys Ile	SEQUI () () SEQI Asn	ENCE A) L B) T D) T UENCE Cys 5 Cys	CHAN ENGT: YPE: OPOL E DE: Ile	RACTI H: 3 ami: OGY: SCRII Lys Lys	ERISTA 49 among am	rics mino cid ear N: SI Leu Asp 25	acio EQ II Cys 10 Glu	O NO Glu Arg	Asp Thr	Pro Phe	Leu 30	15 Asn	Asn
40	Met 1 Glu Asn	Ser Tyr Ile	(i) (xi) Lys Ile Val 35	SEQUI () () SEQUI Asn Lys 20	ENCE A) L B) T D) T Cys Cys Cys Thr	CHAI ENGT YPE: OPOL E DE: Ile	RACTH H: 3 ami: OGY: SCRII Lys Leu	ERISTA 49 at a line at a line the the the the the the the the the th	rics mino cid ear V: SI Leu Asp 25	acio EQ II Cys 10 Glu Phe	O NO Glu Arg Leu	Asp Thr Leu	Pro Phe Lys 45	Leu 30 Val	15 Asn Gln	Asn Ser
40 45 50	Met 1 Glu Asn	Ser Tyr Ile Val 50	(i) (xi) Lys Ile Val 35	() () () () SEQU Asn Lys 20	ENCE A) L B) T D) T U Cys 5 Cys Thr	CHAIRENGT YPE: OPOLL E DE: Ile Ile	RACTI H: 3 ami: OGY: SCRII Lys Leu Met	ERIS: 49 au no au linn PTIOI Leu Met Thr 40 Cys	rics mino cid ear N: SI Leu Asp 25	acid EQ II Cys 10 Glu Phe	O NO Glu Arg Leu Leu	Asp Thr Leu Ile 60	Pro Phe Lys 45 Ser	Leu 30 Val Thr	15 Asn Gln Leu	Asn Ser Ile
40 45	Met 1 Glu Asn Gln Thr 65	Ser Tyr Ile Val 50 Asn	(i) : (xi) Lys Ile Val 35 Phe	SEQUI (() (() (() SEQI Asn Lys 20 Tyr	ENCE A) L B) T D) T UENCI Cys 5 Cys Thr Glu Ser	CHAIRMENGT. YPE: OPPOLL Ile Ile Phe Ala Gln 70	RACTI H: 3 ami: OGY: SCRII Lys Leu Met Asn 55	ERISTA 49 au no au linn PTION Leu Met Thr 40 Cys	rics mino cid ear N: SI Leu Asp 25 His Ala	acid EQ II Cys 10 Glu Phe Asn	O NO Glu Arg Leu Leu Gln 75	Asp Thr Leu Ile 60 Ser	Pro Phe Lys 45 Ser Asp	Leu 30 Val Thr	15 Asn Gln Leu Ser	Asn Ser Ile Asn 80

|--|

	Ala	Leu	Ile 115	Pro	Thr	Leu	Gln	Glu 120	Leu	Leu	Ser	Lys	Cys 125	Arg	Thr	Cys
5	Leu	Gln 130	Gln	Arg	Asn	Ser	Leu 135	Gln	Glu	Gln	Glu	Ala 140	Lys	Glu	Arg	Lys
10	Thr 145	Lys	Asp	Asp	Glu	Gly 150	Ala	Thr	Pro	Ile	Lys 155	Arg	Arg	Arg	Val	Ser 160
	Ser	Asp	Glu	Glu	His 165	Thr	Val	Asp	Ser	Cys 170	Ile	Ser	Asp	Met	Lys 175	Thr
15	Glu	Thr	Arg	Glu 180	Val	Leu	Thr	Pro	Thr 185	Ser	Thr	Ser	Asp	Asn 190	Glu	Thr
	Arg	Asp	Ser 195	Ser	Ile	Ile	Asp	Pro 200	Gly	Thr	Glu	Gln	Asp 205	Leu	Pro	Ser
20	Pro	Glu 210	Asn	Ser	Ser	Val	Lys 215	Glu	Tyr	Arg	Met	Glu 220	Val	Pro	Ser	Ser
25	Phe 225	Ser	G l u	Asp	Met	Ser 230	Asn	Ile	Arg	Ser	Gln 235	His	Ala	Glu	Glu	Gln 240
	Ser	Asn	Asn	Gly	Arg 245	Tyr	Asp	Asp	Cys	Lys 250	Glu	Phe	Lys	Asp	Leu 255	His
30	Cys	Ser	Lys	Asp 260	Ser	Thr	Leu	Ala	Glu 265	Glu	Glu	Ser	Glu	Phe 270	Pro	Ser
	Thr	Ser	11e 275	Ser	Ala	Val	Leu	Ser 280	Asp	Leu	Ala	Asp	Leu 285	Arg	Ser	Cys
35	Asp	Gly 290	Gln	Ala	Leu	Pro	Ser 295	Gln	Asp	Pro	Glu	Val 300	Ala	Leu	Ser	Leu
40	Ser 305	Cys	Gly	His	Ser	Arg 310	Gly	Leu	Phe	Ser	His 315	Met	Gln	Gln	His	Asp 320
	Ile	Leu	Asp	Thr	Leu 325	Cys	Arg	Thr	Ile	Glu 330	Ser	Thr	Ile	His	Val 335	Val
45	Thr	Arg	Ile	Ser 340	Gly	Lys	Gly	Asn	Gln 345	Ala	Ala	Ser	Xaa			
	(2)	INFO	ORMA!	rion	FOR	SEQ	ID N	vo: 3	865:							
50			(i)					ERIS' 67 a			ds					
				(B) T	YPE:	ami	no a lin	cid		_					
55			(xi)	-						EQ I	D NO	: 36	5:			
	Met 1	Leu	His	Gln	Asp 5	His	Ile	Thr	Phe	Ala 10	Met	Leu	Leu	Ala	Arg 15	Ile
60	Lys	Leu	Lys	Gly	Thr	Val	Gly	Glu	Pro	Thr	Tyr	Asp	Ala	Glu	Phe	Gln

									25					20		
				20					25					30		
5	His	Phe	Leu 35	Arg	Gly	Asn	Glu	Ile 40	Val	Leu	Ser	Ala	Gly 45	Ser	Thr	Pro
	Arg	Ile 50	Gln	Gly	Leu	Thr	Val 55	Glu	Gln	Ala	Glu	Ala 60	Val	Val	Arg	Leu
10	Ser 65	Cys	Leu	Pro	Ala	Phe 70	Lys	Asp	Leu	Ile	Ala 75	Lys	Val	Gln	Ala	Asp 80
	Glu	Gln	Phe	Gly	Ile 85	Trp	Leu	Asp	Ser	Ser 90	Ser	Pro	Glu	Gln	Thr 95	Val
15	Pro	Tyr	Leu	Trp 100	Ser	Glu	Glu	Thr	Pro 105	Ala	Thr	Pro	Ile	Gly 110	Gln	Ala
20	Ile	His	Arg 115	Leu	Leu	Leu	Ile	Gln 120	Ala	Phe	Arg	Pro	Asp 125	Arg	Leu	Leu
20	Ala	Met 130	Ala	His	Met	Phe	Val 135	Ser	Thr	Asn	Leu	Gly 140	Glu	Ser	Phe	Met
25	Ser 145	Ile	Met	Glu	Gln	Pro 150	Leu	Asp	Leu	Thr	His 155	Ile	Val	Xaa	Thr	Glu 160
	Val	Lys	Pro	Asn	Thr 165	Pro	Val	Leu	Met	Cys 170	Ser	Val	Pro	Gly	Туг 175	Asp
30	Ala	Ser	Gly	His 180	Val	Glu	Asp	Leu	Ala 185	Ala	Glu	Gln	Asn	Thr 190	Gln	Ile
35	Thr	Ser	Ile 195	Ala	Ile	Gly	Ser	Ala 200	Glu	Gly	Phe	Asn	Gln 205	Ala	Asp	Lys
55	Ala	11e 210	Asn	Thr	Ala	Val	Lys 215	Ser	Gly	Arg	Trp	Val 220	Met	Leu	Lys	Asn
40	Val 225	His	Leu	Ala	Pro	Gly 230	Trp	Leu	Met	Gln	Leu 235	Glu	Lys	Lys	Leu	His 240
	Ser	Leu	Gln	Pro	His 245	Ala	Cys	Phe	Arg	Leu 250	Phe	Leu	Thr	Met	Glu 255	Ile
45	Asn	Pro	Lys	Val 260	Pro	Val	Asn	Leu	Leu 265	Arg	Ala	Gly	Arg	Ile 270	Phe	Val
50	Phe	Glu	Pro 275	Pro	Pro	Gly	Xaa	Lys 280	Ala	Asn	Met	Leu	Arg 285	Thr	Phe	Ser
50	Ser	11e 290	Pro	Val	Ser	Arg	Ile 295	Cys	Lys	Ser	Pro	Asn 300	Glu	Arg	Ala	Arg
55	Leu 305	Tyr	Phe	Leu	Leu	Ala 310	Trp	Phe	His	Ala	Ile 315	Ile	Gln	Glu	Arg	Leu 320
	Arg	Тут	Ala	Pro	Leu	_	Trp	Ser	Lys	Lys		Glu	Phe	Gly	Glu	

Asp Leu Arg Ser Xaa Cys Asp Thr Val Asp Thr Trp Leu Asp Asp Thr

				340					345					350		
5	Ala	Lys	Gly 355	Arg	Gln	Asn	Ile	Ser 360	Pro	Asp	Lys	Ile	Pro 365	Trp	Ser	Ala
,	Leu	Lys 370	Thr	Leu	Met	Ala	Gln 375	Ser	Ile	Tyr	Gly	Gly 380	Arg	Val	Asp	Asn
10	Glu 385	Phe	Asp	Gln	Arg	Leu 390	Leu	Asn	Thr	Phe	Leu 395	Glu	Arg	Leu	Phe	Thr 400
	Thr	Arg	Ser	Phe	Asp 405	Ser	Glu	Phe	Lys	Leu 410	Ala	Cys	Lys	Val	Asp 415	Gly
15	His	Lys	Asp	Ile 420	Gln	Met	Pro	Asp	Gly 425	Met	Gln	Ala	Arg	Gly 430	Val	Cys
20	Ala	Val	Gly 435	Gly	Val	Ala	Pro	Arg 440	His	Pro	Asp	Ala	Leu 445	Leu	Ala	Gly
	Pro	Ala 450	Gln	Gln	Arg	Arg	Glu 455	Ser	Pro	Pro	Tyr	His 460	Thr	Gly	Cys	Gly
25	His 465	Asp	Gln													
30	(2)	INF	ORMA!	NOIT	FOR	SEQ	ID 1	10 : 3	366:							
			(i)	SEQU!)						: aci	ds					
				(B) T	YPE:	ami	no a	cid							
35			(xi)	SEQ				lin PTIO		EQ II	ON O	: 36	6:			
	Met 1	Ala	Asp	Glu	Ala 5	Thr	Arg	Arg	Val	Val 10	Ser	Glu	Ile	Pro	Val 15	Leu
40	Lys	Thr	Asn	Ala 20	Gly	Pro	Arg	Asp	Arg 25	Glu	Leu	Trp	Val	Gln 30	Arg	Leu
45	Lys	Glu	Glu 35	_	Gln	Ser		Ile 40		Tyr		Glu		Asn	Lys	Asn
	Ala	Asp 50		Asp	Trp	Phe	Arg 55	Leu	Glu	Ser	Asn	Lys 60	Glu	Gly	Thr	Arg
50	Trp 65	Phe	Gly	Lys	Cys	Trp 70		Ile	His	Asp	Leu 75		Lys	Tyr	Glu	Phe 80
	Asp	Ile	Glu	Phe	Asp 85		Pro	Ile	Thr	Туr 90	Pro	Thr	Thr	Ala	Pro 95	Glu

Ile Ala Val Pro Glu Leu Asp Gly Lys Thr Ala Lys Met Tyr Arg Gly

Gly Lys Ile-Cys Leu Thr Asp His Phe Lys Pro Leu Trp Gly Gln Glu \$115\$ \$120\$ \$125\$

	Cys	Ala 130		Ile	Trp	Thr	Ser 135	Ser	Ser	His	Gly	Ser 140	Gly	Ala	Gly	Ser
5	Met 145	Xaa	Gly	Ser	Gly	Asn 150	Pro	Xaa								
10	(2)	INF		(ENCE A) L B) T	CHAI ENGT YPE:	RACT H: 3 ami	ERI <i>S</i>	TICS mino cid	: aci	ds					
15			(xi)	SEQ	-					EQ I	ON C	: 36	7:			
	Met 1	Tyr	Asp	Gly	Thr 5	Lys	Glu	Val	Pro	Met 10	Asn	Pro	Val	Lys	Ile 15	Tyr
20	Gln	Val	Cys	Asp 20	Ile	Pro	Gln	Pro	Gln 25	Gly	Ser	Ile	Ile	Asn 30	Pro	Gly
25	Ser	Thr	Gly 35	Ser	Ala	Pro	Trp	Asp 40	Glu	Lys	Asp	Asn	Asp 45	Val	Asp	Glu
	Glu	Asp 50	Glu	Glu	Asp	Glu	Leu 55	Asp	Gln	Ser	Gln	His 60	His	Val	Pro	Ile
30	Gln 65	Asp	Thr	Phe	Pro	Phe 70	Leu	Asn	Ile	Asn	Gly 75	Ser	Pro	Met	Ala	Pro 80
	Ala	Ser	Val	Gly	Asn 85	Cys	Ser	Val	Gly	Asn 90	Cys	Ser	Pro	Glu	Ala 95	Val
35	Trp	Pro	Lys	Thr 100	Glu	Pro	Leu	Glu	Met 105	Glu	Val	Pro	Gln	Ala 110	Pro	Ile
40	Gln	Pro	Phe 115	Tyr	Ser	Ser	Pro	Glu 120	Leu	Ттр	Ile	Ser	Ser 125	Leu	Pro	Met
	Thr	Asp 130	Leu	Asp	Ile	Lys	Phe 135	Gln	Tyr	Arg	Gly	Lys 140	Glu	Туr	Gly	Gln
45	Thr 145	Met	Thr	Val	Ser	Asn 150	Pro	Gln	Gly	Cys	Arg 155	Leu	Phe	Tyr	Gly	Asp 160
	Leu	Gly	Pro	Met	Pro 165	Asp	Gln	Glu	Glu	Leu 170	Phe	Gly	Pro	Val	Xaa 175	Leu
50	Glu	Gln	Val	Lys 180	Phe	Pro	Gly	Pro	Glu 185	His	Ile	Thr	Asn	Glu 190	Lys	Gln

Lys Leu Phe Thr Ser Lys Leu Leu Asp Val Met Asp Arg Gly Leu Ile

Leu Glu Val Ser Gly His Ala Ile Tyr Ala Ile Arg Leu Cys Gln Cys

Lys Val Tyr Trp Ser Gly Pro Cys Ala Pro Ser Leu Val Ala Pro Asn

220

235

195 200

210 215

230

55

	Leu	Ile	Glu	Arg	Gln 245	Lys	Lys	Val	Lys	Leu 250	Phe	Cys	Leu	Glu	Thr 255	Phe
5	Leu	Ser	Asp	Leu 260	Ile	Ala	His	Gln	Lys 265	Gly	Gln	Ile	Glu	Lys 270	Gln	Pro
10	Pro	Phe	G1u 275	Ile	Tyr	Leu	Cys	Phe 280	Gly	Glu	Glu	Trp	Pro 285	Asp	Gly	Lys
	Pro	Leu 290	Glu	Arg	Lys	Leu	Ile 295	Leu	Val	Gln	Val	Ile 300	Pro	Val	Val	Ala
15	Arg 305	Met	Ile	Tyr	Glu	Met 310	Phe	Ser	Gly	Asp	Phe 315	Thr	Arg	Ser	Phe	Asp 320
	Ser	Gly	Ser	Val	Arg 325	Leu	Gln	Ile	Ser	Thr 330	Pro	Asp	Ile	Lys	Asp 335	Asn
20	Ile	Val	Ala	Gln 340	Leu	Lys	Gln	Leu	Tyr 345	Arg	Ile	Leu	Gln	Thr 350	Gln	Glu
25	Ser	Trp	Gln 355	Pro	Met	Gln	Pro	Thr 360	Pro	Ser	Met	Gln	Leu 365	Pro	Pro	Ala
	Leu	Pro 370	Pro	Gln	Xaa											
30	(2)	INFO	ORMA!	rion	FOR	SEQ	ID 1	1 0: 3	368:							
			(i) :	_	ENCE A) L						_					
35				(B) T D) T	YPE:	ami	no a	cid	aciu	5					
			(xi)							EQ II	D NO	: 36	B:			
10	Met 1	Gly	Ser	Ser	Val 5	Leu	Pro	Phe	Cys	Val 10	Cys	Val	Thr	Ser	Pro 15	Ser
	Leu	Gly	Gly	Arg 20	Cys	Ile	Gln	Gly	Arg 25	Phe	Ala	Ser	His	Ser 30	Lys	Ph∈
1 5	Trp	Gly	Phe 35	Gly	Arg	Lys	Thr	Ala 40	Ser	Phe	Gly	Ala	Val 45	Gly	Glu	Thr

Pro Pro Asp Gln Glu Pro Gln Lys Glu Thr Glu Pro Ala Thr Ser Ser

His Ala Arg Pro Trp Ala Arg Val Ile Gly Leu Arg Ile Trp Pro Gln 65 70 75 80

60

Pro Asn Xaa 55

(2) INFORMATION FOR SEQ ID NO: 369:

55

60

40

45

50

55

60

		575	
JENCE	CHARACTERISTICS:		

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 369:	
	Met Leu Leu Ser Val Ala Ile Phe Ile Leu Leu Thr Leu Val Tyr Ala 1 5 10 15	3
10	Tyr Trp Thr Met Xaa 20	
15	(2) INFORMATION FOR SEQ ID NO: 370:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 227 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 370: 	
25	Met Gly Ala Ser Ala Arg Leu Leu Arg Ala Val Ile Met Gly Ala Pro 1 5 10 15)
23	Gly Ser Gly Lys Gly Thr Val Ser Ser Arg Ile Thr Thr His Phe Glu 20 25 30	1
30	Leu Lys His Leu Ser Ser Gly Asp Leu Leu Arg Asp Asn Met Leu Arg 35 40 45	j
	Gly Thr Glu Ile Gly Val Leu Ala Lys Ala Phe Ile Asp Gln Gly Lys 50 55 60	;

Leu Ile Pro Asp Asp Val Met Thr Arg Leu Ala Leu His Glu Leu Lys

Asn Leu Thr Gln Tyr Ser Trp Leu Leu Asp Gly Phe Pro Arg Thr Leu 90

Pro Gln Ala Glu Ala Leu Asp Arg Ala Tyr Gln Ile Asp Thr Val Ile 105

Asn Leu Asn Val Pro Phe Glu Val Ile Lys Gln Arg Leu Thr Ala Arg

Trp Ile His Pro Ala Ser Gly Arg Val Tyr Asn Ile Glu Phe Asn Pro

Pro Lys Thr Val Gly Ile Asp Asp Leu Thr Gly Glu Pro Leu Ile Gln

Arg Glu Asp Asp Lys Pro Glu Thr Val Ile Lys Arg Leu Lys Ala Tyr 170

Glu Asp Gln Thr Lys Pro Val Leu Glu Tyr Tyr Gln Lys Lys Gly Val 185

Leu Glu Thr Phe Ser Gly Thr Glu Thr Asn Lys Ile Trp Pro Tyr Val

200

140

120

135

Tyr Ala Phe Leu Gln Thr Lys Val Pro Gln Arg Ser Gln Lys Ala Ser 210 215 220

576

5 Val Thr Pro 225

- 10 (2) INFORMATION FOR SEQ ID NO: 371:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 79 amino acids
 - (B) TYPE: amino acid
- 15 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 371:

Met Phe Leu Asn Cys Glu Ile Leu Glu Tyr Cys Tyr Tyr Leu Thr Gln
1 5 10 15

20

Leu Lys Ile Ser Met Gly Lys Tyr Leu Ser Ile Pro Thr Val Leu Leu $20 \hspace{1cm} 25 \hspace{1cm} 30$

Lys Ile Ile Arg Cys Ser Ile Thr Ala Val Ser Asp Ser Ser Thr Ser 25 35 40 45

Trp Ala Ile Lys Ala Gln Leu Lys Ile Glu Asn Lys Asp Leu Asp Asn 50 55 60

- 30 Lys Thr Ala Lys Gly Gly Gly Gln Glu Ala Leu Thr Cys Thr Xaa 65 70 75
- 35 (2) INFORMATION FOR SEQ ID NO: 372:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 51 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 372:

Met Arg Ala Val Phe Pro Cys Cys Pro Phe Leu Thr Leu Met Leu Pro

45

40

Leu Leu Glu Cys Leu Val Gly Met Ile Met Cys Tyr Leu Gly Ile Ser $20 \\ 25 \\ 30$

Phe Thr Asp Thr Arg Lys Thr Ala Gly Leu Lys Lys Lys Lys Lys 50 35 40 45

Lys Xaa Xaa 50

- (2) INFORMATION FOR SEQ ID NO: 373:
- (i) SEQUENCE CHARACTERISTICS: 60 (A) LENGTH: 61 amino acids

- 577

			(xi)	(D) T	OPOL	ami OGY: SCRI	lin		EQ I	D NO	: 37	3:			
.5	Met 1	Phe	Leu	Met	Arg 5	Met	His	Leu	Cys	Phe 10	Cys	Lys	Tyr	Cys	Cys 15	Ser
10	Phe	·Ile	Val	Thr 20	Pro	Thr	Ser	Thr	Ser 25	Asn	Thr	Ala	Ser	Туг 30	Leu	Trp
10	Pro	Trp	Ile 35	Ser	Ala	Ser	Met	Ala 40	Gly	Arg	Gly	Ser	Ser 45	Trp	Ala	Cys
15	Thr	Leu 50	Asn	Ala	Val	Thr	Arg 55	Glu	Gly	Leu	Pro	Glu 60	Хаа			
20	(2)	INF	ORMAT	SEQU	ENCE	CHA	RACTI	ERIS			s					
25			(xi)	(D) T	OPOL	ami OGY: SCRI	lin	ear	EQ II	D N O	: 37	4:			
	Met 1	Ser	Leu	Leu	Asn 5	Thr	His	Thr	Leu	Cys 10	Phe	Val	Leu	Phe	Cys 15	Phe
30	Thr	Leu	Ser	Ile 20	Asn	Gln	Glu	Lys	Leu 25	Ala	Asn	His	Leu	Ala 30	Phe	Arg
35	Ile	Leu	Phe 35	Phe	Ile	Val	Phe	Xaa 40								
40	(2)	INF	ORMA:	SEQU)	ENCE A) L	CHAI	RACTI	ERIS 4 am	TICS ino		s					
45			(xi)				OGY: SCRI		ear N: S	EQ II	D NO	: 37	5:			
	Met 1	Cys	Ser	Gly	Gln 5	Ser	Gln	Val	Trp	Lys 10	Met	Ala	Leu	Gln	Ala 15	Leu
50	Asp	Ser	Glu	Thr 20	Val	Val	Ile	Leu	Pro 25	Asp	Met	His	Leu	Ile 30	Leu	Ser
	Leu	Arg	Leu 35	Ile	His	Asn	Ala	Arg 40	Pro	Cys	Leu	Xaa				
55																
	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	VO: 1	376:							

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 203 amino acids

190

578

			(xi)		D) T	OPOL	OGY:	no a lin PTIO	ear	EQ I	d NO	: 37	6:			
5	Met 1	Leu	Ile	Ser	Glu 5	Glu	Glu	Ile	Pro	Phe 10	Lys	Asp	Asp	Pro	Arg 15	Asp
10	Glu	Thr	Tyr	Lys 20	Pro	His	Leu	Glu	Arg 25	Glu	Thr	Pro	Lys	Pro 30	Arg	Arg
10	Lys	Ser	Gly 35	Lys	Val	Lys	Glu	Glu 40	Lys	Glu	Lys	Lys	Glu 45	Ile	Lys	Val
15	Glu	Val 50	Glu	Val	Glu	Val	Lys 55	Glu	Glu	Glu	Asn	Glu 60	Ile	Arg	Glu	Asp .
	Glu 65	Glu	Pro	Pro	Arg	Lys 70	Arg	Gly	Arg	Arg	Arg 75	Lys	Asp	Asp	Lys	Ser 80
20	Pro	Arg	Leu	Pro	Lys 85	Arg	Arg	Lys	Lys	Pro 90	Pro	Ile	Gln	Tyr	Val 95	Arg
25	Cys	Glu	Met	Glu 100	Gly	Cys	Gly	Thr	Val 105	Leu	Ala	His	Pro	Arg 110	Tyr	Leu
43	Gln	His	His 115	Ile	Lys	Tyr	Gln	His 120	Leu	Leu	Lys	Lys	Lys 125	Tyr	Val	Cys
30	Pro	His 130	Pro	Ser	Cys	Gly	Arg 135	Leu	Phe	Arg	Leu	G1n 140	Lys	Gln	Leu	Leu
	Arg 145	His	Ala	Lys	His	His 150	Thr	Asp	Gln	Arg	Asp 155	Tyr	Ile	Cys	Glu	Туг 160
35	Cys	Ala	Arg	Ala	Phe 165	Lys	Ser	Ser	His	Asn 170	Leu	Ala	Val	His	Arg 175	Met ·
	Ile	His	Thr	Gly	Glu	Lys	His	Tyr	Asn	Val	Arg	Ser	Val	Asp	Leu	Leu

45

50

40

(2) INFORMATION FOR SEQ ID NO: 377:

180

195

(i) SEQUENCE CHARACTERISTICS:

Val Asp Lys Arg His Leu Leu Ile Gly Thr Xaa

(A) LENGTH: 29 amino acids

185

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 377:

Met Leu Pro Arg Arg Thr Phe Tyr Phe Tyr Phe Ile Phe Ile Phe 55

Leu Ala Ser Phe Trp Gly Phe Thr Leu Arg Ala Ser Phe 20 25

	(2)	INF	ORMA	TION	FOR	SEQ	ID I	NO:	378:							
5				(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	36 a no a lin	ear	aci		27	•			
10	Met 1	Phe							N: S Lys	_				Leu	Leu 15	Met
	Leu	Lys	Thr	Tyr 20	Leu	Ser	Glu	Asp	Va1 25	Phe	Gln	His	Ala	Val 30	Val	Leu
15	Tyr	Leu	His 35	Asn	His	Ser	Tyr	Ala 40	Ser	Ile	Gln	Ser	Asp 45	Asp	Leu	Trp
20	Asp	Ser 50	Phe	Asn	Glu	Val	Thr 55	Asn	Gln	Thr	Leu	Asp 60	Val	Lys	Arg	Met
	Met 65	Lys	Thr	Trp	Thr	Leu 70	Gln	Lys	Gly	Phe	Pro 75	Leu	Val	Thr	Val	Gln 80
25	Lys	Lys	Gly	Lys	Glu 85	Leu	Phe	Ile	Gln	Gln 90	Glu	Arg	Phe	Phe	Leu 95	Asn
30	Met	Lys	Pro	Glu 100	Ile	Gln	Pro	Ser	Asp 105	Thr	Arg	Tyr	Met	Pro 110	Ser	Phe
	Phe	Ser	Cys 115	His	Leu	Phe	Cys	Thr 120	Leu	Arg	Ттр	Lys	Туг 125	Phe	Glu	Val
35	Phe	Туг 130	Asn	His	Lys	Phe	Leu 135	Xaa								
40	(2)	INF	ORMA	SEQUI	ENCE A) L	CHA	RACT H: 4	ERIS	rics ino		s					
45			(xi)			OPOL E DE			ear N: S	EQ II	D NO	: 37	9:			
	Met 1	Ala	Trp	Arg	Arg 5	Arg	Glu	Pro	Ala	Ser 10	Gly	Leu	Ala	Ala	Cys 15	Trp
50	Leu	Trp	Arg	Cys 20	Ser	Pro	Trp	Pro	Cys 25	Ala	Cys	Pro	Gly	Pro 30	Gly	Ala
55	Gly	Leu	Ser 35	Ser	Gly	Ser	Arg	Pro 40	Trp							
	(2)	INF	ORMA	TION	FOR	SEQ	ID i	NO: :	380:							
60			(i)	SEQU	ENCE	CHA	RACT	ERIS	TICS	:						

WO 98/39448

580

(A) LENGTH: 468 amino acids

(B) TYPE: amino acid

			(xi)		JENCI					EQ II	ON C	: 38	0:			
5	Met 1	Glu	Phe	Leu	Lys 5	Val	Ala	Arg	Arg	Asn 10	Lys	Arg	Glu	Gln	Leu 15	Glu
10	Gln	Ile	Gln	Lys 20	Glu	Leu	Ser	Val	Leu 25	Glu	Glu	Asp	Ile	Lys 30	Arg	Val
	Glu	Glu	Met 35	Ser	Gly	Leu	Tyr	Ser 40	Pro	Val	Ser	Glu	Asp 45	Ser	Thr	Val
15	Pro	Gln 50	Phe	Glu	Ala	Pro	Ser 55	Pro	Ser	His	Ser	Ser 60	Ile	Ile	Asp	Ser
20	Thr 65	Glu	Tyr	Ser	Gln	Pro 70	Pro	Gly	Phe	Ser	Gly 75	Ser	Ser	Gln	Thr	Lys 80
20	Lys	Gln	Pro	Trp	Туг 85	Asn	Ser	Thr	Leu	Ala 90	Ser	Arg	Arg	Lys	Arg 95	Leu
25	Thr	Ala	His	Phe 100	Glu	Asp	Leu	Glu	Gln 105	Cys	Tyr	Phe	Ser	Thr 110	Arg	Met
	Ser	Arg	Ile 115	Ser	Asp	Asp	Ser	Arg 120	Thr	Ala	Ser	Gln	Leu 125	Asp	Glu	Phe
30	Gln	Glu 130	Cys	Leu	Ser	Lys	Phe 135	Thr	Arg	Туг	Asn	Ser 140	Val	Arg	Pro	Leu
35	Ala 145	Thr	Leu	Ser	Тут	Ala 150	Ser	Asp	Leu	Tyr	Asn 155	Gly	Ser	Ser	Ile	Val 160
	Ser	Ser	Ile	Glu	Phe 165	Asp	Arg	Asp	Cys	Asp 170	Tyr	Phe	Ala	Ile	Ala 175	Gly
40	Val	Thr	Lys	Lys 180	Ile	Lys	Val	Tyr	Glu 185	Tyr	Asp	Thr	Val	Ile 190	Gln	Asp
	Ala	Val	Asp 195	Ile	His	Tyr	Pro	Glu 200	Asn	Glu	Met	Thr	Суs 205	Asn	Ser	Lys
45	Ile	Ser 210	Суѕ	Ile	Ser	Trp	Ser 215	Ser	Tyr	His	Lys	Asn 220	Leu	Leu	Ala	Ser
50	Ser 225	Asp	Tyr	Glu	Gly	Thr 230	Val	Ile	Leu	Trp	Asp 235	Gly	Phe	Thr	Gly	Gln 240
	Arg	Ser	Lys	Val	Tyr 245	Gln	Glu	His	Glu	Lys 250	Arg	Cys	Trp	Ser	Val 255	Asp
55	Phe	Asn	Leu	Met 260		Pro	Lys	Leu	Leu 265		Ser	Gly	Ser	Asp 270	Asp	Ala
	Lys	Val	Lys 275		Trp	Ser	Thr	Asn 280		Asp	Asn	Ser	Val 285		Ser	Ile
60	Glu	Ala	Lys	Ala	Asn	Val	Cys	Cys	Val	Lys	Phe	Ser	Pro	Ser	Ser	Arg

		290					295					300				
5	Tyr 305	His	Leu	Ala	Phe	Gly 310	Cys	Ala	Asp	His	Cys 315	Val	His	Tyr	Tyr	Asp 320
3	Leu	Arg	Asn	Thr	Lys 325	Gln	Pro	Ile	Met	Val 330	Phe	Lys	Gly	His	Arg 335	Lys
10	Ala	Val	Ser	Tyr 340	Ala	Lys	Phe	Val	Ser 345	Gly	Glu	Glu	Ile	Val 350	Ser	Ala
	Ser	Thr	Asp 355	Ser	Gln	Leu	Lys	Leu 360	Trp	Asn	Val	Gly	Lys 365	Pro	Tyr	Cys
15	Leu	Arg 370	Ser	Phe	Lys	Gly	His 375	Ile	Asn	Glu	Lys	Asn 380	Phe	Val	Gly	Leu
20	Ala 385	Ser	Asn	Gly	Asp	Tyr 390	lle	Ala	Cys	Gly	Ser 395	Glu	Asn	Asn	Ser	Leu 400
20	Tyr	Leu	Тут	Tyr	Lys 405	Gly	Leu	Ser	Lys	Thr 410	Leu	Leu	Thr	Phe	Lys 415	Phe
25	Asp	Thr	Val	Lys 420	Ser	Val	Leu	Asp	Lys 425	Asp	Arg	Lys	Glu	Asp 430	Asp	Thr
	Asn	Glu	Phe 435	Val	Ser	Ala	Val	Cys 440	Trp	Arg	Ala	Leu	Pro 445	Asp	Gly	Glu
30	Ser	Asn 450	Val	Leu	Ile	Ala	Ala 455	Asn	Ser	Gln	Gly	Thr 460	Ile	Lys	Val	Leu
35	Glu 465	Leu	Val	Xaa												
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO : 3	381:							
40			(i)	(A) L B) T	ENGI YPE:	RACT H: 2 ami	9 am no a	ino cid		s					
45			(xi)				OGY: SCRI			EQ I	D NO	: 38	1:			
	Met 1	_	Lys	Glu	Asp 5	_	Phe	Trp	Phe	Phe 10	Phe	Phe	Leu	Phe	Phe 15	Phe
50	Val	Val	Gly	Ser 20	_	Phe	Val	Asn	Gly 25		Lys	Leu	Val			
55	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	382:							
			(i)		(A) I	LENG	RACT TH: 2 : ami	9 an	nino		ls					
60			(xi)				LOGY :			SEQ I	D NO): 38	2:			

	Met 1	Pro	Leu	Ala	Pro 5	Тут	Cys	Asp	Leu	Leu 10	Val	Ala	Leu	Ser	Phe 15	Ala
5	Leu	Val	Leu	Glu 20	Ser	Pro	Val	Asp	Ser 25	Ser	Asp	Phe	Thr			
10	(2)		ORMA!													
15			(i) (xi)	(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	38 a no a lin	mino cid ear	aci		: 38	3:			
20	Met 1	Asn	Ser	Leu	Val 5	Ser	Trp	Gln	Leu	Leu 10	Leu	Phe	Leu	Cys	Ala 15	Thr
	His	Phe	Gly	Glu 20	Pro	Leu	Glu	Lys	Val 25	Ala	Ser	Val	Gly	Asn 30	Ser	Arg
25	Pro	Thr	Gly 35	Gln	Gln	Leu	Glu	Ser 40	Leu	Gly	Leu	Leu	Ala 45	Pro	Gly	Glu
	Gln	Ser 50	Leu	Pro	Cys	Thr	Glu 55	Arg	Lys	Pro	Ala	Ala 60	Thr	Ala	Arg	Leu
30	Ser 65	Arg	Arg	Gly	Thr	Ser 70	Leu	Ser	Pro	Pro	Pro 75	Glu	Ser	Ser	Gly	Ser 80
35	Pro	Gln	Gln	Pro	Gly 85	Leu	Ser	Ala	Pro	His 90	Ser	Arg	Gln	Ile	Pro 95	Ala
	Pro	Gln	Gly	Ala 100	Val	Leu	Val	Gln	Arg 105	Glu	Lys	Asp	Leu	Pro 110	Asn	Туг
40	Asn	Trp	Asn 115	Ser	Phe	Gly	Leu	Arg 120	Phe	Gly	Lys	Arg	Glu 125	Ala	Ala	Pro
	Gly	Asn 130	His	Gly	Arg	Ser	Ala 135	Gly	Arg	Gly						
45																
	(2)	INF	ORMA!													
50				(A) L B) T D) T	ENGT YPE: OPOL	RACT H: 7 ami OGY: SCRI	4 am no a lin	ino cid ear	acid		. 38	4 ·			
55	Met 1			_						~				His	Leu 15	Leu

Val Val Ser Phe Ile Cys Xaa Leu Phe Leu Leu Ile Leu Thr His Gly $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm}$

	Ile	Leu	Ile 35	Leu	Arg	Xaa	Phe	Phe 40	Ser	Val	Xaa	Xaa	His 45	Ser	Leu	Lys
5	Asn	Asn 50	Leu	Glu	Glu	Туг	Leu 55	Ile	Leu	Met	Asn	Lys 60	Ala	Leu	Leu	Thr
	Arg 65		Asp	Phe	Phe	Val 70	Leu	Pro	Xaa	Ala						
10																
	(2)	INFO	ORMA	rion	FOR	SEQ	ID 1	NO: 3	385:							
15			(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 5 ami OGY:	21 a no a lin	mino cid ear	aci		: 38	5:			
20	Met 1	Ser	Ala	Gly	Glu 5	Val	Glu	Arg	Leu	Val 10	Ser	Glu	Leu	Ser	Gly 15	Gly
25	Thr	Gly	Gly	Asp 20	Glu	Glu	Glu	Glu	Trp 25	Leu	Tyr	Gly	Asp	Glu 30	Asn	Glu
	Val	Glu	Arg 35	Pro	Glu	Glu	Glu	Asn 40	Ala	Ser	Ala	Asn	Pro 45	Pro	Ser	Gly
30	Ile	Glu 50	Asp	Glu	Thr	Ala	Glu 55	Asn	Gly	Val	Pro	Lys 60	Pro	Lys	Val	Thr
	Glu 65	Thr	Glu	Asp	Asp	Ser 70	Asp	Ser	Asp	Ser	Asp 75	Asp	Asp	Glu	Asp	Asp 80
35	Val	His	Val	Thr	Ile 85	Gly	Asp	Ile	Lys	Thr 90	Gly	Ala	Pro	Gln	Тут 95	Gly
40	Ser	Tyr	Gly	Thr 100	Ala	Pro	Val	Asn	Leu 105	Asn	Ile	Lys	Thr	Gly 110	Gly	Arg
	Val	Tyr	Gly 115	Thr	Thr	Gly	Thr	Lys 120	Val	Lys	Gly	Val	Asp 125	Leu	Asp	Ala
45	Pro	Gly 130	Ser	Ile	Asn	Gly	Val 135	Pro	Leu	Leu	Glu	Val 140	Asp	Leu	Asp	Ser
	Phe 145	Glu	Asp	Lys	Pro	Trp 150		Lys	Pro	Gly	Ala 155	Asp	Leu	Ser	Asp	Tyr 160
50	Phe	Asn	Tyr	Gly	Phe 165	Asn	Glu	Asp	Thr	Trp 170	Lys	Ala	Tyr	Cys	Glu 175	Lys
55	Gln	Lys	Arg	11e 180	Arg	Met	Gly	Leu	Glu 185	Val	Ile	Pro	Val	Thr 190	Ser	Thr
	Thr	Asn	Lys 195	Ile	Thr	Val	Gln	Gln 200		Arg	Thr	Gly	Asn 205	Ser	Glu	Lys

Glu Thr Ala Leu Pro Ser Thr Lys Ala Glu Phe Thr Ser Pro Pro Ser

210 215 220

	Leu 225	Phe	Lys	Thr	Gly	Leu 230	Pro	Pro	Ser	Arg	Arg 235	Leu	Pro	Gly	Ala	Ile 240
5	Asp	Val	Ile	Gly	Gln 245	Thr	Ile	Thr	Ile	Ser 250	Arg	Val	Glu	Gly	Arg 255	Arg
10	Arg	Ala	Asn	Glu 260	Asn	Ser	Asn	Ile	Gln 265	Val	Leu	Ser	Glu	Arg 270	Ser	Ala
	Thr	Glu	Val 275	Asp	Asn	Asn	Phe	Ser 280	Lys	Pro	Pro	Pro	Phe 285	Phe	Pro	Pro
15	Gly	Ala 290	Pro	Pro	Thr	His	Leu 295	Pro	Pro	Pro	Pro	Phe 300	Leu	Pro	Pro	Pro
	Pro 305	Thr	Val	Ser	Thr	Ala 310	Pro	Pro	Leu	Ile	Pro 315	Pro	Pro	Gly	Phe	Pro 320
20	Pro	Pro	Pro	Gly	Ala 325	Pro	Pro	Pro	Ser	Leu 330	Ile	Pro	Thr	lle	Glu 335	Ser
25	Gly	His	Ser	Ser 340	Gly	Tyr	Asp	Ser	Arg 345	Ser	Ala	Arg	Ala	Phe 350	Pro	Tyr
	Gly	Asn	Val 355	Ala	Phe	Pro	His	Leu 360	Pro	Gly	Ser	Ala	Pro 365	Ser	Trp	Pro
30	Ser	Leu 370	Val	Asp	Thr	Ser	Lys 375	Gln	Trp	Asp	Tyr	Туг 380	Ala	Arg	Arg	Glu
	Lys 385	Asp	Arg	Asp	Arg	Glu 390	Arg	Asp	Arg	Asp	Arg 395	Glu	Arg	Asp	Arg	Asp 400
35	Arg	Asp	Arg	Glu	Arg 405	Glu	Arg	Thr	Arg	Glu 410	Arg	Glu	Arg	Glu	Arg 415	Asp
40	His	Ser	Pro	Thr 420	Pro	Ser	Val	Phe	Asn 425	Ser	Asp	Glu	Glu	Arg 430	Tyr	Arg
	Tyr	Arg	Glu 435	Tyr	Ala	Glu	Arg	Gly 440	Тут	Glu	Arg	His	Arg 445	Ala	Ser	Arg
45	Glu	Lys 450	Glu	Glu	Arg	His	Arg 455	Glu	Arg	Arg	His	Arg 460 _.	Glu	Lys	Glu	Glu
	Thr 465	Arg	His	Lys	Ser	Ser 470	Arg	Ser	Asn	Ser	Arg 475	Arg	Arg	His	Glu	Ser 480
50	Glu	Glu	Gly	Asp	Ser 485	His	Arg	Arg	His	Lys 490	His	Lys	Lys	Ser	Lys 495	Arg
55	Ser	Lys	Glu	Gly 500	Lys	Glu	Ala	Gly	Ser 505	Glu	Pro	Ala	Pro	Glu 510	Gln	Glu
•	Ser	Thr	Glu 515	Ala	Thr	Pro	Ala	Glu 520	Xaa							

	(2)	INF	ORMA	TION	FOR	SEQ	ID 1	NO:	386:							
5				(A) L B) T D) T	ENGT YPE : OPOL	H: 1 ami OGY:	37 a no a lin		aci		: 38	6:			
10	Met 1	Asn	Ser	Arg	Gly 5	Ile	Ттр	Leu	Ala	Tyr 10	Ile	Ile	Leu	Val	Gly 15	Le
	Leu	His	Met	Val 20	Leu	Leu	Ser	Ile	Pro 25	Phe	Phe	Ser	Ile	Pro 30	Val	Va
15	Trp	Thr	Leu 35	Thr	Asn	Val	Ile	His 40	Asn	Leu	Ala	Thr	Tyr 45	Val	Phe	Lei
20	His	Thr 50	Val	Lys	Gly	Thr	Pro 55	Phe	Glu	Thr	Pro	Asp 60	Gln	Gly	Lys	Ala
20	Arg 65	Leu	Leu	Thr	His	Trp 70	Glu	Gln	Met	Asp	Tyr 75	Gly	Leu	Gln	Phe	Th:
25	Ser	Ser	Arg	Lys	Phe 85	Leu	Ser	Ile	Ser	Pro 90	Ile	Val	Leu	Туг	Leu 95	Lei
	Ala	Ser	Phe	Туг 100	Thr	Lys	Тут	Asp	Ala 105	Ala	His	Phe	Leu	Ile 110	Asn	Thi
30	Ala	Ser	Leu 115	Leu	Ser	Val	Leu	Leu 120	Pro	Lys	Leu	Pro	Gln 125	Phe	His	Gly
35	Val	Arg 130	Val	Phe	Gly	Ile	Asn 135	Lys	Tyr							
	(2)	INFO	ORMA!	rion	FOR	SEQ	ID I	10: 3	387:							
10			(i)	(A) L B) T		H: 1 ami	86 a no a			ds					
4 5				SEQ	UENC	E DE	SCRI	PTIO	N: S							
	Met 1	Ala	Ala	Gln	Lys 5	Asp	Gln	Gln	Lys	Asp 10	Ala	Glu	Ala	Glu	Gly 15	Le
50	Ser	Gly	Thr	Thr 20	Leu	Leu	Pro	Lys	Leu 25	Ile	Pro	Ser	Gly	Ala 30	Gly	Ar

55 Val Asp Gln Gln Arg Phe Ser Arg Pro Arg Asn Leu Gly Glu Leu Cys 50 55 60

Gln Arg Leu Val Arg Asn Val Glu Tyr Tyr Gln Ser Asn Tyr Val Phe 65 70 75 80

Glu Trp Leu Glu Arg Arg Arg Ala Thr Ile Arg Pro Trp Ser Thr Phe \$35\$ \$40\$ \$45\$

60

	Val	Phe	Leu	Gly	Leu 85	Ile	Leu	Tyr	Cys	Val 90	Val	Thr	Ser	Pro	Met 95	Leu
5	Leu	Val	Ala	Leu 100	Ala	Val	Phe	Phe	Gly 105	Ala	Cys	Туг		Leu 110	Tyr	Leu
	Arg	Thr	Leu 115	Glu	Ser	Lys	Leu	Val 120	Leu	Phe	Gly	Arg	Glu 125	Val	Ser	Pro
10	Ala	His 130	Gln	Tyr	Ala	Leu	Ala 135	Gly	Gly	Ile	Ser	Phe 140	Pro	Phe	Phe	Trp
15	Leu 145	Ala	Gly	Ala	Gly	Ser 150	Ala	Val	Phe	Trp	Val 155	Leu	Gly	Ala	Thr	Leu 160
•0	Val	Val	Ile	Gly	Ser 165	His	Ala	Ala	Phe	His 170	Gln	Ile	Glu	Ala	Val 175	Asp
20	Gly	Glu	Glu	Leu 180	Gln	Met	Glu	Pro	Val 185	Xaa						
	(2)	TNIE	ORMAT	PT ()NI	EOD	CEO.	TD N	m. :	000.							
25	(2)		(i) :	SEQU	ENCE	CHA	RACT	ERIS.	rics							
					A) L B) T					cias						
30			(xi)		D) T UENC					EQ II	ON C	: 38	8:			
	Met 1															
35																
	(2)	INFO	ORMAT	rion	FOR	SEQ	ID N	10 : 3	889:							
40			(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	99 a no a lin	mino cid ear	aci						
			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ II	D NO	: 38	9:			
45	Met 1	Leu	Ser	Ile	Phe 5	Tyr	Phe	Ala	Ile	Pro 10	Val	Gly	Ser	Gly	Leu 15	Gly
50	Tyr	Ile	Ala	Gly 20	Ser	Lys	Val	Lys	Asp 25	Met	Ala	Gly	Asp	Trp 30	His	Trp
50	Ala	Leu	Arg 35	Val	Thr	Pro	Gly	Leu 40	Gly	Val	Val	Ala	Val 45	Leu	Leu	Leu
	Phe	Leu	Val	Val	Arg	Glu	Pro	Pro	Arg	Gly	Ala	Val	Glu	Arg	His	Ser

55

Asp Leu Pro Pro Leu Asn Pro Thr Ser Trp Trp Ala Asp Leu Arg Ala 65 70 75 80

Leu Ala Arg Asn Pro Ser Phe Val Leu Ser Ser Leu Gly Phe Thr Ala

					85					90					95	
5	Val	Ala	Phe	Val 100	Thr	Gly	Ser	Leu	Ala 105	Leu	Trp	Ala	Pro	Ala 110	Phe	Leu
J	Leu	Arg	Ser 115	Arg	Val	Val	Leu	Gly 120	Glu	Thr	Pro	Pro	Cys 125	Leu	Pro	Gly
10	Asp	Ser 130	Cys	Ser	Ser	Ser	Asp 135	Ser	Leu	Ile	Phe	Gly 140	Leu	Ile	Thr	Cys
	Leu 145	Thr	Gly	Val	Leu	Gly 150	Val	Gly	Leu	Gly	Val 155	Glu	Ile	Ser	Arg	Arg 160
15	Leu	Arg	His	Ser	Asn 165	Pro	Arg	Ala	Asp	Pro 170	Leu	Val	Суѕ	Ala	Thr 175	Gly
20	Leu	Leu	Gly	Ser 180	Ala	Pro	Phe	Leu	Phe 185	Leu	Ser	Leu	Ala	Cys 190	Ala	Arg
20	Gly	Ser	Ile 195	Val	Ala	Thr	Tyr	Ile 200	Phe	Ile	Phe	Ile	Gly 205	Glu	Thr	Leu
25	Leu	Ser 210	Met	Asn	Trp	Ala	11e 215	Val	Ala	Asp	Ile	Leu 220	Leu	Tyr	Val	Val
	Ile 225	Pro	Thr	Arg	Arg	Ser 230	Thr	Ala	Glu	Ala	Phe 235	Gln	Ile	Val	Leu	Ser 240
30	His	Leu	Leu	Gly	Asp 245	Ala	Gly	Ser	Pro	Tyr 250	Leu	Ile	Gly	Leu	Ile 255	Ser
35	Asp	Arg	Leu	Arg 260	Arg	Asn	Trp	Pro	Pro 265	Ser	Phe	Leu	Ser	Glu 270	Phe	Arg
	Ala	Leu	Gln 275	Phe	Ser	Leu	Met	Leu 280	Суѕ	Ala	Phe	Val	Gly 285	Ala	Leu	Gly
40	Gly	Ala 290	Leu	Pro	Gly	His	Arg 295	His	Leu	His	Xaa					
45	(2)	INFO	ORMAT	rion	FOR	SEQ	ID I	1 0: 3	390:							
			(i) :	(.	A) L B) T	ENGT YPE:	H: 4 ami	9 am no a	ino cid	: acid	s					
50			(xi)	SEQ				lin PTIO		EQ II	D NO	: 39	0:			
	Met 1	Gly	Pro	Gln	Gly 5	Trp	Val	Arg	Pro	Leu 10	Lys	Thr	Ala	Pro	Lys 15	Leu
55	Gly	Glu	Ala	Ile 20	Arg	Leu	Ile	Leu	Phe 25	Leu	Asn	Phe	Val	Lys 30	Gln	Cys

Ile Ala Ser Val Asn Leu Cys Ile Leu Arg Leu Asn Ile Thr Pro Leu 35 40 45

Leu

5																
_	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 3	391:							
10				(A) L B) T D) T	ENGT YPE: OPOL	ami OGY:	l am no a lin	ino cid ear	: acid EQ I		: 39	1:			
15	Met 1	-	Val	Asn	Tyr 5	Gly	Thr	Arg	Asn	Туг 10	Ser	Thr	Glu	Gly	Pro 15	Ala
	Ala	Leu	Leu	Asp 20	Gln	Ala	Lys	Leu	Ser 25	Leu	Leu	Val	Trp	Val 30	Leu	Cy:
20	Phe	Val	Leu 35	Leu	Phe	Val	Cys	Phe 40	Cys	Gly	Leu	Ser	Туг 45	Val	Val	Ile
25	Ala	Gln 50	Val	Pro	Val	Gly	Leu 55	Leu	Cys	Ile	Thr	Glu 60	Xaa			
	(2)	INF	ORMA!	rion	FOR	SEQ	ID 1	NO: 3	392:							
30			(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 7 ami: OGY:	9 am no a lin	ino cid ear	acid		- 20	2			
35			(X1)	SEQ	UENC:	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 39	2:			
	Met 1	Leu	Trp	Phe	Ala 5	Asn	Phe	Phe	Thr	Туr 10	Leu	Phe	Leu	Ser	Gln 15	Sei
40	Val	Ala	Phe	Val 20	His	Ile	Ser	His	Ile 25	Gly	Val	Arg	Gln	Val 30	Asn	Thi
	Asn	Cys	Tyr 35	Phe	Ser	Arg	Lys	Ser 40	Tyr	Суѕ	Tyr	Gly	Ile 45	Leu	Asn	Pro
45	Ile	Asn 50	Cys	Ile	Lys	Gly	Lys 55	Lys	Lys	Lys	Lys	Lys 60	Lys	Lys	Lys	Lys
50	Lys 65	Lys	Lys	Lys	Ile	Pro 70	Ala	Gly	Arg	Xaa	Leu 75	Phe	Pro	Phe	Gly	
	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO:	393:							
55			(i)	(A) L B) T	ENGT	RACT H: 3 ami OGY:	6 am no a	ino cid	: acid	ls					
			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 39	3:			

	Met 1	Pro	Gly	Ala	Phe 5	Ser	Glu	Thr	Val	Ile 10	Asn	Asp	Leu	Leu	Ser 15	Leu
5	Phe	Leu	Val	Leu 20	Pro	Ala	Glu	Leu	Ser 25	Tyr	Ser	Thr	Leu	Ser 30	Gly	Val
	Tyr	Arg	Asn 35	Ala												
10																
	(2)	INF	ORMA	rion	FOR	SEQ	ID 1	10: 3	394 :							
15	٠			() ()	A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	80 a no a lin	mino cid ear	aci		. 20.	4.			
			(xi)	SEQ	JENC	e de:	SCRI.	PITO	N: SI	FQ 11	טא נ	: 394	4:			
20	Met 1	Ala	Gln	Ser	Arg 5	Asp	Gly	Gly	Asn	Pro 10	Phe	Ala	Glu	Pro	Ser 15	Glu
25	Leu	Asp	Asn	Pro 20	Phe	Gln	Asp	Pro	Ala 25	Val	Ile	Gln	His	Arg 30	Pro	Ser
20	Arg	Gln	Tyr 35	Ala	Thr	Leu	Asp	Val 40	Tyr	Asn	Pro	Phe	Glu 45	Thr	Arg	Glu
30	Pro	Pro 50	Pro	Ala	Туг	Glu	Pro 55	Pro	Ala	Pro	Ala	Pro 60	Leu	Pro	Pro	Pro
	Ser 65	Ala	Pro	Ser	Leu	Gln 70	Pro	Ser	Arg	Lys	Leu 75	Ser	Pro	Thr	Glu	Pro 80
35	Lys	Asn	Tyr	Gly	Ser 85	Тут	Ser	Thr	Gln	Ala 90	Ser	Ala	Ala	Ala	Ala 95	Thr
40	Ala	Glu	Leu	Leu 100	Lys	Lys	Gln	Glu	Glu 105	Leu	Asn	Arg	Lys	Ala 110	Glu	Glu
10	Leu	Asp	Arg 115	Arg	Ser	Glu	Ser	Cys 120	Ser	Met	Leu	Pro	Trp 125	Xaa	Ala	Gln
45	Leu	Leu 130	Asp	Arg	Thr	Ile	Gly 135	Pro	Leu	Tyr	Leu	Leu 140	Phe	Val	Gln	Phe
	Ser 145	Pro	Ala	Phe	Ser	Arg 150	Thr	Ser	Pro	Trp	Arg 155	Ser	Pro	Lys	Asn	Phe 160
50	Arg	Arg	Leu	Tyr	Pro 165	Pro	Cys	Thr	Thr	Ser 170	Gly	Суз	Ala	Ala	Arg 175	Trp

(2) INFORMATION FOR SEQ ID NO: 395:

Xaa Phe Ser Xaa 180

55

60 (i) SEQUENCE CHARACTERISTICS:

5			(xi)	(в) т D) т	ENGT YPE: OPOL E DE:	ami OGY:	no a lin	cid ear			: 39	5:			
	Met 1	Pro	Thr	Pro	Cys 5	Thr	Ser	Leu	Pro	Ser 10	Cys	Cys	Gln	His	Arg 15	Ser
10	Ile	Thr	Met	Thr 20	Leu								•			
15	(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	1 0: 3	396:							
			(i)	(A) L B) T	ENGT YPE:	H: 6	0 am no a	ino cid		s					
20			(xi)	SEQ		OPOL E DE:				EQ I	D NO	: 39	6 :			
	Met 1	Pro	Leu	Phe	Ile 5	Pro	Leu	Ile	Phe	Phe 10	Leu	Ser	Leu	Leu	His 15	Cys
25	Gln	Ser	Lys	His 20	Pro	Ile	Gln	Met	Ser 25	Leu	Cys	Met	Cys	Val 30	Asn	Ile
20	Ser	Leu	Val 35	Trp	Ser	Pro	Val	Arg 40	Trp	Ile	Phe	Gly	Ser 45	Lys	Gly	Leu
30	Phe	Ser 50		His	Leu	Gln	Ser 55	Ser	Gln	Arg	Pro	Ser 60				
35	(2)	INF	ORMA'	rion	FOR	SEO	ID N	10: 3	397 :							
	,,,,			SEQUI		_				:						
40				(в) т	ENGT YPE : OPOL	ami	no a	cid	aci	ds					
			(xi)	SEQ						EQ I	D NO	: 39	7:			
45	Met 1	Ala	Gly	Pro	Arg 5	Pro	Xaa	Trp	Arg	Asp 10	Gln	Leu	Leu	Phe	Met 15	Ser
	Ile	Ile	Val	Leu 20	Val	Ile	Val	Val	Ile 25	Cys	Leu	Met	Leu	Тут 30	Ala	Leu
50	Leu	Trp	Glu 35	Ala	Gly	Asn	Leu	Thr 40	Asp	Leu	Pro	Asn	Leu 45	Arg	Ile	Gly
55	Phe	Туг 50		Phe	Cys	Leu	Trp 55	Asn	Glu	Asp	Thr	Ser 60	Thr	Leu	Gln	Cys
• •																

His Gln Phe Pro Glu Leu Glu Ala Leu Gly Val Pro Arg Val Gly Leu 65 70 75 80

Gly Leu Ala Arg Leu Gly Val Tyr Gly Ser Leu Val Leu Thr Leu Phe 85 90 95

	Ala	Pro	Gln	Pro 100	Leu	Leu	Leu	Ala	Gln 105	Суѕ	Asn	Xaa	Asp	Glu 110	Arg	Al
5	Trp	Arg	Leu 115	Ala	Val	Gly	Phe	Leu 120	Ala	Val	Ser	Ser	Val 125	Leu	Leu	Al
10	Gly	Gly 130	Leu	Gly	Leu	Phe	Leu 135	Ser	Tyr	Val	Trp	Asn 140	Gly	Ser	Xaa	Se
	Pro 145	Ser	Arg	Gly	Leu	Gly 150	Phe	Xaa								
15	(2)	INF	ORMAT	rion	FOR	SEQ	ID 1	NO: (398:							
20			(i) : (xi)	(A) L B) T D) T	ENGT YPE: OPOL	H: 4 ami OGY:	80 a no a lin	mino cid ear	aci		: 39	8:			
25	Met 1	Ser	Asp	Gly	Phe 5	Asp	Arg	Ala	Pro	Gly 10	Ala	Gly	Arg	Gly	Arg 15	Хаа
	Arg	Gly	Leu	Gly 20	Arg	Gly	Gly	Gly	Gly 25	Pro	Xaa	Gly	Gly	Gly 30	Phe	Pro
30	Хаа	Gly	Xaa 35	Xaa	Pro	Ala	Glu	Arg 40	Xaa	Arg	His	Gln	Pro 45	Pro	Gln	Pro
35	Lys	Ala 50	Pro	Gly	Phe	Leu	Gln 55	Pro	Xaa	Pro	Leu	Arg 60	Gln	Pro	Arg	Thi
	Thr 65	Pro	Pro	Pro	Gly	Ala 70	Gln	Cys	Glu	Val	Pro 75	Ala	Ser	Pro	Gln	Arg 80
40	Pro	Ser	Arg	Pro	Gly 85	Ala	Leu	Pro	Glu	Gln 90	Thr	Arg	Pro	Leu	Arg 95	Ala
4.5	Pro	Pro	Ser	Ser 100	Gln	Asp	Lys	Ile	Pro 105	Gln	Gln	Asn	Ser	Glu 110	Ser	Ala
45	Met		Lys 115		Gln	Val		Val 120		Pro	Val		Met 125	Ser	Lys	Let
50	Ser	Val 130	Asn	Ala	Pro	Glu	Phe 135	Tyr	Pro	Ser	Gly	Tyr 140	Ser	Ser	Ser	Ty:
	Thr 145	Glu	Ser	Tyr	Glu	Asp 150	Gly	Cys	Glu	Asp	Тут 155	Pro	Thr	Leu	Ser	G1:
55	Туг	Val	Gln	Asp	Phe 165	Leu	Asn	His	Leu	Thr 170	Glu	Gln	Pro	Gly	Ser 175	Ph
	Glu	Thr	Glu	Ile 180	Glu	Gln	Phe	Ala	Glu 185	Thr	Leu	Asn	Gly	Cys 190	Val	Th
60	Thr	Asp	Asp	Ala	Leu	Gln	Glu	Leu	Val	Glu	Leu	Ile	Tyr	Gln	Gln	Al

			195		·			200					205			
5	Thr	Ser 210	Ile	Pro	Asn	Phe	Ser 215	Тут	Met	Gly	Ala	Arg 220	Leu	Cys	Asn	Tyr
-	Leu 225	Ser	His	His	Leu	Thr 230	Ile	Ser	Pro	Gln	Ser 235	Gly	Asn	Phe	Arg	Gln 240
10	Leu	Leu	Leu	Gln	Arg 245	Cys	Arg	Thr	Glu	Тут 250	Glu	Val	Lys	Asp	Gln 255	Ala
	Ala	Lys	Gly	Asp 260	Glu	Val	Thr	Arg	Lys 265	Arg	Phe	His	Ala	Phe 270	Val	Leu
15	Phe	Leu	Gly 275	Glu	Leu	Туг	Leu	Asn 280	Leu	Glu	Ile	Lys	Gly 285	Thr	Asn	Gly
20	Gln	Val 290	Thr	Arg	Ala	Asp	11e 295	Leu	Gln	Val	Gly	Leu 300	Arg	Glu	Leu	Leu
20	Asn 305	Ala	Leu	Phe	Ser	Asn 310	Pro	Met	Asp	Asp	Asn 315	Leu	Ile	Cys	Ala	Val 320
25	Lys	Leu	Leu	Lys	Leu 325	Thr	Gly	Ser	Val	Leu 330	Glu	Asp	Ala	Trp	Lys 335	Glu
	Lys	Gly	Lys	Met 340	Asp	Met	Glu	Glu	Ile 345		Gln	Arg	Ile	Glu 350	Asn	Val
30	Val	Leu	Asp 355	Ala	Asn	Суз	Ser	Arg 360	Asp	Val	Lys	Gln	Met 365	Leu	Leu	Lys
35	Leu	Val 370	Glu	Leu	Arg	Ser	Ser 375	Asn	Trp	Gly	Arg	Val 380	His	Ala	Thr	Ser
55	Thr 385	Tyr	Arg	Glu	Ala	Thr 390	Pro	Glu	Asn	Asp	Pro 395	Asn	Tyr	Phe	Met	Asn 400
40	Glu	Pro	Thr	Phe	Туг 405	Thr	Ser	Asp	Gly	Val 410	Pro	Phe	Thr	Ala	Ala 415	Asp
	Pro	Asp	Tyr	Gln 420	Glu	Lys	Tyr	Gln	Glu 425	Leu	Leu	Glu	Arg	Glu 430	Asp	Phe
45	Phe	Pro	Asp 435	тут	Glu	Glu	Asn	Gly 440	Thr	Asp	Leu	Ser	Gly 445	Ala	Gly	Asp
50	Pro	Tyr 450	Leu	Asp	Asp	Ile	Asp 455	Asp	Glu	Met	Asp	Pro 460	Glu	Ile	Glu	Glu

Ala Tyr Glu Lys Phe Cys Leu Glu Ser Glu Arg Lys Arg Lys Gln Xaa 465 470 475 480

55

(2) INFORMATION FOR SEQ ID NO: 399:

(i) SEQUENCE CHARACTERIST	TCC

(A) LENGTH: 423 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 399: Met Glu Pro Lys Thr Ile Thr Asp Ala Leu Ala Ser Ser Ile Ile Lys 10 10 Ser Val Leu Pro Asn Phe Leu Pro Tyr Asn Val Met Leu Tyr Ser Asp Ala Pro Val Ser Glu Leu Ser Leu Glu Leu Leu Leu Gln Val Val 40 15 Leu Pro Ala Leu Leu Glu Gln Gly His Thr Arg Gln Trp Leu Lys Gly Leu Val Arg Ala Trp Thr Val Thr Ala Gly Tyr Leu Leu Asp Leu His 20 Ser Tyr Leu Leu Gly Asp Gln Glu Glu Asn Glu Asn Ser Ala Asn Gln 90 25 Gln Val Asn Asn Asn Gln His Ala Arg Asn Asn Asn Ala Ile Pro Val 105 Val Gly Glu Gly Leu His Ala Ala His Gln Ala Ile Leu Gln Gly 120 30 Gly Pro Val Gly Phe Gln Xaa Tyr Arg Arg Pro Leu Asn Phe Pro Leu Arg Ile Phe Leu Leu Ile Val Phe Met Cys Ile Thr Leu Leu Ile Ala 35 150 155 Ser Leu Ile Cys Leu Thr Leu Pro Val Phe Ala Gly Arg Trp Leu Met 40 Ser Phe Trp Thr Gly Thr Ala Lys Ile His Glu Leu Tyr Thr Ala Ala 185 Cys Gly Leu Tyr Val Cys Trp Leu Thr Ile Arg Ala Val Thr Val Met 200 45 Val Ala Trp Met Pro Gln Gly Arg Arg Val Ile Phe Gln Lys Val Lys 215 Glu Trp Ser Leu Met Ile Met Lys Thr Leu Ile Val Ala Val Leu Leu 50 235 230 Ala Gly Val Val Pro Leu Leu Leu Gly Leu Leu Phe Glu Leu Val Ile 55 Val Ala Pro Leu Arg Val Pro Leu Asp Gln Thr Pro Leu Phe Tyr Pro 265 Trp Gln Asp Trp Ala Leu Gly Val Leu His Ala Lys Ile Ile Ala Ala

280

285

275

•

Ile Thr Leu Met Gly Pro Gln Trp Trp Leu Lys Thr Val Ile Glu Gln 290 295 300

- Val Tyr Ala Asn Gly Ile Arg Asn Ile Asp Leu His Tyr Ile Val Arg 5 305 310 315 320
 - Lys Leu Ala Ala Pro Val Ile Ser Val Leu Leu Leu Ser Leu Cys Val 325 330 335
- 10~ Pro Tyr Val Ile Ala Ser Gly Val Val Pro Leu Leu Gly Val Thr Ala 340~ 345~ 350~
 - Glu Met Gln Asn Leu Val His Arg Arg Ile Tyr Pro Phe Leu Leu Met 355 360 365
- Val Val Val Leu Met Ala Ile Leu Ser Phe Gln Val Arg Gln Phe Lys
- Arg Leu Tyr Glu His Ile Lys Asn Asp Lys Tyr Leu Val Gly Gln Arg 20 385 390 395 400
 - Leu Val Asn Tyr Glu Arg Lys Ser Gly Lys Gln Gly Ser Ser Pro Pro 405 410 415
- 25 Pro Pro Gln Ser Ser Gln Glu 420
- 30 (2) INFORMATION FOR SEQ ID NO: 400:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 78 amino acids
 - (B) TYPE: amino acid
- 35 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 400:
 - Met Leu Arg Leu Asp Ile Ile Asn Ser Leu Val Thr Thr Val Phe Met
 1 5 10 15
- 40
 Leu Ile Val Ser Val Leu Ala Leu Ile Pro Glu Thr Thr Thr Leu Thr
 20 25 30
- Val Gly Gly Val Phe Ala Leu Val Thr Ala Val Cys Cys Leu Ala 45 35 40 45
 - Asp Gly Ala Leu Ile Tyr Arg Lys Leu Leu Phe Asn Pro Ser Gly Pro 50 55 60
- 50 Tyr Gln Lys Lys Pro Val His Glu Lys Lys Glu Val Leu Xaa 65 70 75
- 55 (2) INFORMATION FOR SEQ ID NO: 401:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 74 amino acids
 - (B) TYPE: amino acid
- 60 (D) TOPOLOGY: linear

(xi)	SEQUENCE	E DESCRIPTI	ON: SE	Q ID N	10: 401:

Met Leu Lys Gln Val Met Phe Val Phe Ser Gly Met Gly Pro Arg Ser 1 5 10 15

1

His Cys Trp Gly Leu Pro Leu His Val Ala Pro Leu Cys Arg Gly His $20 \hspace{1cm} 25 \hspace{1cm} 30$

Gln Ala Asp Ser Ser His Leu Leu Pro Leu Lys His Gln Gly Ala Trp $10 \hspace{1cm} 35 \hspace{1cm} 40 \hspace{1cm} 45$

Asn Arg Asn Leu Ala Asn Gln Arg His Phe Phe Cys Pro Ser Ile Phe 50 55 60

His Thr Cys Pro Thr Val Leu Phe Phe Xaa 65 70

- 20 (2) INFORMATION FOR SEQ ID NO: 402:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 402:

Ala Arg Thr IIe Leu Val Leu Tyr Leu Ser Leu Gln Arg Leu Glu Asn 1 5 10 15

30

25

5

Leu Ala Tyr His

35

40

- (2) INFORMATION FOR SEQ ID NO: 403:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 87 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 403:

Met Pro Leu Pro Ser Val Pro Ile Leu Gly Ile Phe Ser Phe Leu Ile 45 1 5 10 15

Pro Ser Ser Gln Gly Val Ser Tyr Thr Lys Leu Pro Ile Ser Ser Pro 20 25 30

50 Gln Tyr Ser Pro Phe Val Asn Asp His Phe Ser Phe Leu Asn Pro Phe 35 40 45

Pro Val Gln Ile His Thr Gly Phe Ala Arg Val Gly Ser Tyr Met Gln $50 \\ 55 \\ 60$

Met Pro Leu Val His Leu Cys Leu Leu Gln Thr Ser Leu Met Lys Asn
65 70 75 80

Ser Gly Val Gln Gln Gly Ser 60 85

(2) INFORMATION FOR SEQ ID NO: 404: 5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 92 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 404: Met Asn Ala Ala Met Val His Ile Asn Arg Ala Leu Lys Leu Ile Ile 10 15 Arg Leu Phe Leu Val Glu Asp Leu Val Asp Ser Leu Lys Leu Ala Val 25 Phe Met Trp Leu Met Thr Tyr Val Gly Ala Val Phe Asn Gly Ile Thr 20 Leu Leu Ile Leu Ala Glu Leu Leu Ile Phe Ser Val Pro Ile Val Tyr 55 Glu Lys Tyr Lys Thr Gln Ile Asp His Tyr Val Gly Ile Ala Arg Asp 25 Gln Thr Lys Ser Ile Val Glu Lys Ile Pro Ser Lys 85 30 (2) INFORMATION FOR SEQ ID NO: 405: (i) SEQUENCE CHARACTERISTICS: 35 (A) LENGTH: 21 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 405: 40 Met Ala Cys Ser Cys Leu Met Ile Gln Ser Phe Ser Thr Ser Ala Leu 10 Val Leu Phe Tyr Gly 20 45 (2) INFORMATION FOR SEQ ID NO: 406: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 174 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 406: 55 Met Glu Glu Gly Gly Asn Leu Gly Gly Leu Ile Lys Met Val His Leu Leu Val Leu Ser Gly Ala Trp Gly Met Gln Met Trp Val Thr Phe Val 60

	Ser	Gly	Phe 35	Pro	Ala	Phe	Pro	Lys 40	Pro	Ser	Pro	Thr	Tyr 45	Leu	Arg	Thr
5	Ser	Ala 50	Glu	Gln	Thr	Leu	Pro 55	Leu	Leu	Leu	Pro	His 60	Leu	His	Gly	Leu
10	Cys 65	Leu	His	Gln	Pro	Leu 70	His	Leu	Gly	Phe	Thr 75	Ala	Cys	Leu	Gly	Ser 80
	Ala	His	Ile	Leu	Gly 85	Gly	Gln	Pro	Ala	Leu 90	Pro	Ala	Val	Pro	Glu 95	Pro
15	Tyr	Ala	Gly	His 100	Cys	Gln	Arg	Pro	Leu 105	Ala	Gly	Thr	Pro	His 110	His	Ser
	Cys	His	Val 115	Gly	Pro	Ala	Asn	Arg 120	Gly	Arg	Arg	Ser	Glu 125	Ala	Trp	Val
20	Gly	Arg 130	Tyr	Gln	Ala	Ala	Asn 135	Arg	Phe	Pro	Ile	Leu 140	Asn	Ala	Xaa	Cys
25	Glu 145	Arg	Arg	Thr	Pro	Ser 150	Thr	Val	Leu	Ser	Ala 155	Arg	Ile	Ser	Ser	Ala 160
	Thr	Met	Gly	Cys	Pro 165	Leu	Phe	Ala	Ile	Trp 170	Ala	Ala	Ser	Xaa		
30	(2)	INFO	ORMA!	rion	FOR	SEQ	ID 1	NO: 4	107 :							
			(3)	SEQU.	FNCF	СНУ	פאריתיו	FRTC	יזרפ							
			,	_						acid	s					
35			(vi)	(B) T D) T	YPE: OPOL	ami OGY:	no a lin	cid ear			. 40'	7.			
			\AI,	SEQ	UEAVC.	e ne	SCRI.	P110	N: 3.	EQ II	O NO	. 40	<i>,</i> :			
40	Met 1	Ala	Phe	Ile	Leu 5	Leu	Phe	Tyr	Cys	Leu 10	Met	Thr	Phe	Leu	Ser 15	Leu
	Glu	Gln	Asn	Ser 20	Ala	Thr	Val	Glu	Pro 25	Ser	Ser	His	Glu	Ile 30	Leu	His
45	Leu	Leu	Gln 35	Asn	Cys	Phe	Glu	Leu 40	Leu	Arg	Thr	Ser	Thr 45	Ser	Gln	Cys
50	Thr	Glu 50	Gly	Ile	Pro	Суѕ	Gln 55	Arg	Тут	Gln	Asn	Gly 60	Leu	His	Ile	Хаа
50																
55	(2)	INF	ORMA	TION	FOR	SEQ	ID 1	NO: 4	408 :							
			(i)	SEQU	ENCE	СНА	RACT	ERIS	TICS	:						
	•		•							aci	ds					
60				(B) T	YPE:	ami	no a	cid							

(B) TYPE: amino acid

(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 408:

5	Met 1	Glu	Ala	Val	Val 5	Asn	Leu	Тут	Gln	Glu 10	Val	Met	Lys	His	Ala 15	Asp
	Pro	Arg	Ile	Gln 20	Gly	Туг	Pro	Leu	Met 25	Gly	Ser	Pro	Leu	Leu 30	Met	Thr
10	Ser	Ile	Leu 35	Leu	Thr	Тут	Val	Tyr 40	Phe	Val	Leu	Ser	Leu 45	Gly	Pro	Arg
15	Ile	Met 50	Ala	Asn	Arg	Lys	Pro 55	Phe	Gln	Leu	Arg	Gly 60	Phe	Met	Ile	Val
15	Tyr 65	Asn	Phe	Ser	Leu	Val 70	Ala	Leu	Ser	Leu	Туг 75	Ile	Val	Tyr	Glu	Phe 80
20	Leu	Met	Ser	Gly	Ттр 85	Leu	Ser	Thr	Tyr	Thr 90	Trp	Arg	Cys	Asp	Pro 95	Val
	Asp	Tyr	Ser	Asn 100	Ser	Pro	Glu	Ala	Leu 105	Arg	Met	Val	Arg	Val 110	Ala	Trp
25	Leu	Phe	Leu 115	Phe	Ser	Lys	Phe	Ile 120	Glu	Leu	Met	Asp	Thr 125	Val	Ile	Phe
30	Ile	Leu 130	Arg	Lys	Lys	Asp	Gly 135	Gln	Val	Thr	Phe	Leu 140	His	Val	Phe	His
50	His 145	Ser	Val	Leu	Pro	Trp 150	Ser	Trp	Trp	Trp	Gly 155	Val	Lys	Ile	Ala	Pro 160
35	Gly	Gly	Met	Gly	Ser 165	Phe	His	Ala	Met	Ile 170	Asn	Ser	Ser	Val	His 175	Val
	Ile	Met	Tyr	Leu 180	Tyr	Tyr	Gly	Leu	Ser 185	Ala	Phe	Gly	Pro	Val 190	Ala	Gln
40	Pro	Tyr	Leu 195	_	Trp	Lys	Lys	His 200	Met	Thr	Ala	Ile	Gln 205	Leu	Ile	Gln
45	Phe	Val 210	Leu	Val	Ser	Leu	His 215	Ile	Ser	Gln	Tyr	Туг 220	Phe	Met	Ser	Ser
,5	Cys 225	Asn	Тут	Gln	Tyr	Pro 230	Val	Ile	Ile	His	Leu 235	Ile	Trp	Met	Tyr	Gly 240
50	Thr	Ile	Phe	Phe	Met 245	Leu	Phe	Ser	Asn	Phe 250	Trp	Tyr	His	Ser	Тут 255	Thr
	Lys	Gly	Lys	Arg 260	Leu	Pro	Arg	Ala	Leu 265	Gln	Gln	Asn	Gly	Ala 270	Pro	Gly
55	Ile	Ala	Lys 275	Val	Lys	Ala	Asn	Xaa 280								

60 (2) information for SEQ ID NO: 409:

			(i)			ENGT	н: 2	84 a	mino	: aci	ds					
5			(xi)	SEQ	D) T UENC					EQ I	D NO	: 40	9:			
10	Met 1	Xaa	Leu	Trp	Pro 5	Gln	Thr	Cys	Ser	Gly 10	Lys	Phe	Asp	Gly	Thr 15	Let
	Ala	Phe	Ser	Ile 20	His	Xaa	Leu	Ala	Val 25	Ile	Leu	Gly	Asp	Gln 30	Leu	Thi
15	Ala	Ala	Asp 35	Leu	Val	Pro	Ile	Phe 40	Asn	Gly	Phe	Leu	Lys 45	Asp	Leu	Asp
	Ğlu	Val 50	Arg	Ile	Gly	Val	Leu 55	Lys	His	Leu	His	Asp 60	Phe	Leu	Lys	Lev
20	Leu 65	His	Ile	Asp	Lys	Arg 70	Arg	Glu	Tyr	Leu	Туг 75	Gln	Leu	Gln	Glu	Phe 80
25	Leu	Val	Thr	Asp	Asn 85	Ser	Arg	Asn	Trp	Arg 90	Phe	Arg	Ala	Glu	Leu 95	Ala
	Glu	Gln	Leu	11e 100	Leu	Leu	Leu	Glu	Leu 105	Tyr	Ser	Pro	Arg	Asp 110	Val	Тут
30	Asp	Туr	Leu 115	Arg	Pro	Ile	Ala	Leu 120	Asn	Leu	Cys	Ala	Asp 125	Lys	Val	Ser
	Ser	Val 130	Arg	Trp	Ile	Ser	Tyr 135	Lys	Leu	Val	Ser	Glu 140	Met	Val	Lys	Lys
35	Leu 145	His	Ala	Ala	Thr	Pro 150	Pro	Thr	Phe	Gly	Val 155	Asp	Leu	Ile	Asn	Glu 160
10	Leu	Val	Glu	Asn	Phe 165	Gly	Arg	Cys	Pro	Lys 170	Trp	Ser	Gly	Arg	Gln 175	Ala
	Phe	Val	Phe	Val 180	Cys	Gln	Thr	Val	Ile 185	Glu	Asp	Asp	Cys	Leu 190	Pro	Met
15	Asp	Gln	Phe 195	Ala	Val	His	Leu	Met 200	Pro	His	Leu	Leu	Thr 205	Leu	Ala	Asr
	Asp	Arg 210	Val	Pro	Asn	Val	Arg 215	Val	Leu	Leu	Ala	Lys 220	Thr	Leu	Arg	Glr
50	Thr 225	Leu	Leu	Glu	Lys	Asp 230	Tyr	Phe	Leu	Ala	Ser 235	Ala	Ser	Суѕ	His	G1r 240
55	Glu	Ala	Val	Glu	Gln 245	Thr	Ile	Met	Ala	Leu 250	Gln	Met	Asp	Arg	Asp 255	Sei
-	Asp	Val	Lys	Туг 260	Phe	Ala	Ser	Ile	His 265	Pro	Ala	Ser	Thr	Lys 270	Ile	Sei

Glu Asp Ala Met Ser Thr Ala Ser Ser Thr Tyr Xaa

5	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 4	410:							
J			(i)		A) L	ENGT	н: 1	ERIS 87 a no a	mino		đs					
10			(xi)		D) T	OPOL	OGY :	lin	ear	EQ I	D NO	: 41	0:			
	Met 1	Leu	Phe	Leu	Phe 5	Phe	Val	Ile	Ile	Phe 10	Leu	Phe	Val	Phe	Leu 15	Ile
15	Leu	Ile	Ile	Gln 20	Phe	Ser	Lys	Pro	Leu 25	Thr	Asn	Pro	His	Pro 30	Pro	Ala
20	Gly	Xaa	Ser 35	Asp	Arg	Arg	Arg	Arg 40	тут	Ser	Ser	Tyr	Arg 45	Ser	His	Asp
20	His	Тут 50	Gln	Arg	Gln	Arg	Val 55	Leu	Gln	Lys	Glu	Arg 60	Ala	Ile	Glu	Glu
25	Arg 65	Arg	Val	Val	Phe	Ile 70	Gly	Lys	Ile	Pro	Gly 75	Arg	Met	Thr	Arg	Ser 80
	Glu	Leu	Lys	Gln	Arg 85	Phe	Ser	Val	Phe	Gly 90	Glu	Ile	Glu	Glu	Cys 95	Thr
30	Ile	His	Phe	Arg 100	Val	Gln	Gly	Asp	Asn 105	Tyr	Gly	Phe	Val	Thr 110	Tyr	Arg
35	Tyr	Ala	Glu 115	Glu	Ala	Phe	Ala	Ala 120	Ile	Glu	Ser	Gly	His 125	Lys	Leu	Arg
55	Gln	Ala 130	Asp	Glu	Gln	Pro	Phe 135	Asp	Leu	Cys	Phe	Gly 140	Gly	Arg	Arg	Xaa
40	Xaa 145	Cys	Lys	Arg	Ser	тут 150	Ser	Asp	Leu	Asp	Ser 155	Asn	Arg	Glu	Asp	Phe 160
	Asp	Pro	Ala	Pro	Val 165	Lys	Ser	Lys	Phe	Asp 170	Ser	Leu	Asp	Phe	Asp 175	Thr
45	Leu	Leu	Lys	Gln 180	Ala	Gln	Lys	Asn	Leu 185	Arg	Arg					

50 (2) INFORMATION FOR SEQ ID NO: 411:

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 237 amino acids

(B) TYPE: amino acid(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 411:

Met Lys Leu Pro Gly Lys Phe Arg Arg Ala His Gln Gly Asn Leu Glu
1 5 10 15

•	

	Ser	Gln	Leu	Thr 20	Ser	Glu	Ser	Tyr	Туг 25		Glu	Thr	Leu	Ser 30	Val	Pro
5	Thr	Val	Glu 35	His	Ile	Ile	Gln	G1u 40	Leu	Lys	Asp	Ile	Phe 45	Ser	Glu	Gln
	His	Leu 50	Lys	Ala	Leu	Lys	Cys 55	Leu	Ser	Leu	Val	Pro 60	Ser	Val	Met	Gly
10	Gln 65	Leu	Lys	Phe	Asn	Thr 70	Ser	Glu	Glu	His	His 75	Ala	Asp	Met	Tyr	Arg 80
15	Ser	Asp	Leu	Pro	Asn 85	Pro	Asp	Thr	Leu	Ser 90	Ala	Glu	Leu	His	Cys 95	Trp
15	Arg	Ile	Lys	Trp 100	Lys	His	Arg	Gly	Lys 105	Asp	Ile	Glu	Leu	Pro 110	Ser	Thr
20	Ile	Tyr	Glu 115	Ala	Leu	His	Leu	Pro 120	Asp	Ile	Lys	Phe	Phe 125	Pro	Asn	Val
	Tyr	Ala 130	Leu	Leu	Lys	Val	Leu 135	Cys	Ile	Leu	Pro	Val 140	Met	Lys	Val	Glu
25	Asn 145	Glu	Arg	Тут	Glu	Asn 150	Gly	Arg	Lys	Arg	Leu 155	Lys	Ala	Tyr	Leu	Arg 160
30	Asn	Thr	Leu	Thr	Asp 165	Gln	Arg	Ser	Ser	Asn 170	Leu	Ala	Leu	Leu	Asn 175	Ile
	Asn	Phe	Asp	Ile 180	Lys	His	Asp	Ļeu	Asp 185	Leu	Met	Val	Asp	Thr 190	Tyr	Ile
35	Lys	Leu	Туг 195	Thr	Xaa	Xaa	Ser	Xaa 200	Leu	Xaa	Thr	Xaa	Xaa 205	Ser	Xaa	Xaa
	Val	Glu 210	Xaa	Xaa	Xaa	Xaa	Xaa 215	Xaa	Xaa	Xaa	Xaa	Gly 220	Xaa	Xaa	Xaa	Xaa
40	Asp 225	Xaa	Xaa	Xaa	Arg	Glu 230	Lys	Ala	Val	Arg	Cys 235	Met	Xaa			
45	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	io: 4	12:							
			(i) S	(.	A) L	engti	i: 1	ERIST 92 ar no ao	nino		ds					
50			(xi)	(1	D) T	OPOL	CGY:	line	ear	EQ II	ONO:	: 412	2:			
55	Met 1	Lys	Pro	Met	Ala 5	Val	Val	Ala	Ser	Thr 10	Val	Leu	Gly	Leu	Val 15	Gln
JJ	Asn	Met	Arg	Ala 20	Phe	Gly	Gly	Ile	Leu 25	Val	Val	Val	Tyr	Tyr 30	Val	Phe
60	Ala	Ile	Ile 35	Gly	Ile	Asn	Leu	Phe 40	Arg	Gly	Val	Ile	Val 45	Ala	Leu	Pro

	Gly	Asn 50	Ser	Ser	Leu	Ala	Pro 55	Ala	Asn	Gly	Ser	Ala 60	Pro	Cys	Gly	Sei
5	Phe 65	Glu	Gln	Leu	Glu	Tyr 70	Trp	Ala	Asn	Asn	Phe 75	Asp	Asp	Phe	Ala	Ala 80
10	Ala	Leu	Val	Thr	Leu 85	Trp	Asn	Leu	Met	Val 90	Val	Asn	Asn	Trp	Gln 95	Va]
	Phe	Leu	Asp	Ala 100	Tyr	Arg	Arg	Tyr	Ser 105	Gly	Pro	Trp	Ser	Lys 110	Ile	Тут
15	Phe	Val	Leu 115	Trp	Trp	Leu	Val	Ser 120	Ser	Val	Ile	Trp	Val 125	Asn	Leu	Pḥ∈
	Leu	Ala 130	Leu	Ile	Leu	Glu	Asn 135	Phe	Leu	His	Lys	Trp 140	Asp	Pro	Arg	Ser
20	His 145	Leu	Gln	Pro	Leu	Ala 150	Gly	Thr	Pro	Glu	Ala 155	Thr	Tyr	Gln	Met	Thr 160
25	Val	Glu	Leu	Leu	Phe 165	Arg	Asp	Ile	Leu	Glu 170	Glu	Pro	Gly	Glu	Asp 175	Glu
	Leu	Thr	Glu	Arg 180	Leu	Ser	Gln	His	Pro 185	His	Leu	Trp	Leu	Cys 190	Arg	Xaa
30																
	(2)	INFO	ORMAT	CION	FOR	SEQ	ID N	IO: 4	13:							
35			(i) S	(.	A) L	ENGT	RACTI H: 2	l am	ino a		3					
40			(xi)	(1	D) TY	OPOL	ami OGY: SCRII	line	ear	Q II	ONO:	: 413	3:			
	Asn 1	Val	Val	Val	Val 5	Ala	Phe	Gly	Leu	Ile 10	Leu	Ile	Ile	Glu	Ser 15	Leu
45	Gly	Glu	Gln	Cys 20	Pro _.											
50	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	IO: 4	14:							
5.5			(i) S	(.	A) L	ENGT	RACTI H: 5 amin	l am	ino a		s					
55			(xi)				OGY: SCRII			3Q II	O NO	: 414	4:			
60	Met 1	Asn	Trp	Gly	Leu 5	Ser	Ile	Trp	Leu	His 10	Tyr	Tyr	Glu	Lys	Lys 15	Lys

	Glu	Gln	Val		Leu	Val	Ile	Leu		His	Val	Val	Arg	Arg	Cys	Ala
				20					25					30		
5	Ser	Asp	Gly 35	Ile	Leu	Gln	Phe	Glu 40	Ser	Ser	Leu	Leu	Lys 45	Met	Arg	Arg
	Ala	Pro 50	Хаа													
10																
	(2)	INF	ORMA	rion	FOR	SEQ	ID I	NO: 4	115:							
15			(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 3 ami OGY:	ERIS 2 am no a lin PTIO	ino cid ear	acid		: 41	5 :			٠
20	Met 1	Leu	Ile	Ile	Ser 5	Leu	Arg	Pro	Gln	Phe 10	Pro	Ser	Leu	Ile	Val 15	Gln
25	Leu	Glu	Cys	Ser 20	Val	Leu	Phe	Leu	Pro 25	Ile	Ser	Leu	Asn	Leu 30	Leu	Leu
30	(2)		ORMAT							-						
35			(xi)	()	A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	63 an no a lin	mino cid ear	aci		: 410	6 :			
40	Met 1	Val	Lys	Val	Cys 5	Asn	Asp	Ser	Asp	Arg 10	Trp	Ser	Leu	Ile	Ser 15	Leu
	Ser	Asn	Asn	Ser 20	Gly	Lys	Asn	Val	Glu 25	Leu	Lys	Phe	Val	Asp 30	Ser	Leu
45	Arg	Arg	Gln 35	Phe	Glu	Phe	Ser	Val 40	Asp	Ser	Phe	Gln	Ile 45	Lys	Leu	Asp
50	Ser	Leu 50	Leu	Leu	Phe	Tyr	Glu 55	Cys	Ser	Glu	Asn	Pro 60	Met	Thr	Glu	Thr
50	Phe 65	His	Pro	Thr	Ile	Ile 70	Gly	Glu	Ser	Val	Туг 75	Gly	Asp	Phe	Gln	Glu 80
55	Ala	Phe	Asp	His	Leu 85	Сув	Asn	Lys	Ile	Ile 90	Ala	Thr	Arg	Asn	Pro 95	Glu
	Glu	Ile	Arg	Gly 100	Gly	Gly	Leu	Leu	Lys 105	Туг	Cys	Asn	Leu	Leu 110	Val	Arg
60	Gly	Phe	Arg	Pro	Ala	Ser	Asp	Glu	Ile	Lys	Thr	Leu	Gln	Arg	Tyr	Met

604	

			115					120					125			
5	Cys	Ser 130		Phe	Phe	Ile	Asp 135		Ser	Asp	Ile	Gly 140		Gln	Gln	Arg
-	Lys 145		Glu	Ser	Туг	Leu 150	Gln	Asn	His	Phe	Val 155		Ile	Gly	Arg	Pro 160
10	Gln	Val	Xaa													
15	(2)	INF	ORMA'	TION	FOR	SEQ	ID 1	NO:	417:							
			(i)		ENCE A) L						ds					
20				(B) T D) T	OPOL	OGY:	lin	ear							
20					UENC											
	Met 1	Ala	Pro	Lys	Gly 5	Lys	Val	Gly	Thr	Arg 10	Gly	Lys	Lys	Gln	Ile 15	Phe
25	Glu	Glu	Asn	Arg 20	Glu	Thr	Leu	Lys	Phe 25	Tyr	Leu	Arg	Ile	Ile 30	Leu	Gly
30	Ala	Asn	Ala 35	Ile	Тут	Cys	Leu	Val 40	Thr	Leu	Val	Phe	Phe 45	Tyr	Ser	Ser
30	Ala	Ser 50	Phe	Trp	Ala	Trp	Leu 55	Ala	Leu	Gly	Phe	Ser 60	Leu	Ala	Val	Tyr
35	G l y 65	Ala	Ser	Туr	His	Ser 70	Met	Ser	Ser	Met	Ala 75	Arg	Ala	Ala	Phe	Ser 80
	Glu	Asp	Gly	Ala	Leu 85	Met	Asp	Gly	Gly	Met 90	Asp	Leu	Asn	Met	Glu 95	Gln
40	Gly	Met	Ala	Glu 100	His	Leu	Lys	Asp	Val 105	Ile	Leu	Leu	Thr	Ala 110	Ile	Val
45	Gln	Val	Leu 115	Ser	Cys	Phe	Ser	Leu 120	Tyr	Val	Trp	Ser	Phe 125	Trp	Leu	Leu
	Ala	Pro 130	Gly	Arg	Ala	Leu	Tyr 135	Leu	Leu	Trp	Val	Asn 140	Val	Leu	Gly	Pro
50	Trp 145	Phe	Thr	Ala	Asp	Ser 150	Gly	Thr	Pro	Ala	Pro 155	Glu	His	Asn	Glu	Lys 160
	Arg	Gln	Arg	Arg	Gln 165	Glu	Arg	Arg	Gln	Met 170	Lys	Arg	Leu	Xaa		
55																
	(2)	TMEC	тамяс	MOT	FOR	CEO	TD N	10. 4	19.							

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 50 amino acids

	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 418:
5	Met Glu Leu Pro Lys Gly Leu Gln Gly Val Gly Pro Val Ala Met Met 1 5 10 15
10	Arg Pro Phe Tyr Leu Leu Leu Pro Val Leu Cys Thr Gln Ala Leu Arg 20 25 30
70	Gln Ser Gln Gly Lys Ser Pro Leu Leu Trp Lys Arg Thr Cys Cys Leu 35 40 45
15	Ala Xaa 50
	(2) INFORMATION FOR SEQ ID NO: 419:
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 120 amino acids
25	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 419:
	Met Leu Gly Lys Gly Gly Gly Arg Ala Gly Leu Leu Arg Tyr Arg Leu 1 5 10 15
30	Leu Tyr Phe Thr Leu Val Val Gly Glu Gly Glu Pro Gly Glu Asn Lys 20 25 30
35	Val Thr Ile Pro Phe Phe Glu Thr Gly Lys Lys Ile Ile Phe Cys Ser 35 40 45
33	Val Lys Met Val Glu Asn Ser Asn Val Pro Ser His Lys Gly Pro Val 50 55 60
40	Pro Leu Arg Ser Glu Gln Trp Glu Leu Lys Ile Ser Glu Thr Leu Gly 65 70 75 80
	Glu Gly Lys Ile Gly Phe Leu Leu Ile Gly Arg Cys Ser Ser Gly Xaa 85 90 95
45	Gly Gly Leu Cys Phe Cys Trp Asp Val Leu Cys Cys Met Tyr Ala Tyr 100 105 110
50	Met Asp Arg Ser Leu Leu Ser Leu 115 120
	(2) INFORMATION FOR SEQ ID NO: 420:
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 159 amino acids

(B) TYPE: amino acid
(D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 420:

	Met	Thr	His	Leu	Leu 5	Leu	Thr	Ala	Thr	Val 10	Thr	Pro	Ser	Glu	Gln 15	Asn
5	Ser	Ser	Arg	Glu 20	Pro	Gly	Trp	Glu	Thr 25	Ala	Met	Ala	Lys	Asp 30	Ile	Leu
	Gly	Glu	Ala 35	Gly	Leu	His	Phe	Asp 40	Glu	Leu	Asn	Lys	Leu 45	Arg	Val	Leu
10	Asp	Pro 50	Glu	Val	Thr	Gln	Gln 55	Thr	Ile	Glu	Leu	Lys 60	Glu	Glu	Cys	Lys
15	Asp 65	Phe	Val	Asp	Lys	Ile 70	Gly	Gln	Phe	Gln	Lys 75	Ile	Val	Gly	Gly	80 Feu
13	Ile	Glu	Leu	Val	Asp 85	Gln	Leu	Ala	Lys	Glu 90	Ala	Glu	Asn	Glu	Lys 95	Met
20	Lys	Ala	Ile	G1y 100	Ala	Arg	Asn	Leu	Leu 105	Lys	Ser	Ile	Ala	Lys 110	Gln	Arg
	Glu	Ala	Gln 115	Gln	Gln	Gln	Leu	Gln 120	Ala	Leu	Ile	Ala	Glu 125	Lys	Lys	Met
25	Gln	Leu 130	Glu	Arg	Tyr	Arg	Val 135	Glu	Tyr	Glu	Ala	Leu 140	Cys	Lys	Val	Glu
30	Ala 145	Glu	Gln	Asn	Glu	Phe 150	Ile	Asp	Gln	Phe	11e 155	Phe	Gln	Lys	Xaa	
	(2)	INFO	ORMA!	rion	FOR	SEQ	ID N	Ю: 4	121:							
35																
			(i)	(A) LI B) T	ENGT YPE:	H: 1 ami	54 au no a	mino cid		ds					
				()	A) Li B) T	ENGT YPE: OPOLA	H: 1 ami CGY:	54 an no ao lino	mino cid ear	aci		: 42	l:			
40	Met 1		(xi)	() ()	A) LI B) T D) TV JENCI	ENGT YPE: OPOLA E DES	H: 1 amin OGY: SCRII	54 anno ao lino PTION	mino cid ear N: SI	acio	O NO			Thr	Arg 15	Val
	1	Asn	(xi) Val	() () SEQU	A) LA B) T D) T JENCE Val 5	ENGTI YPE: OPOLA E DES Ala	H: 1 amin OGY: SCRII His	54 am no am lind PTION	mino cid ear N: SI Glu	acio EQ II Val 10	O NO Asn	Pro	Asn		15	
40	1 Met	Asn Asn	(xi) Val Ser	() () SEQU Gly	A) LI B) T D) T V S ENCE Val Gly	ENGTI YPE: OPOLA E DES Ala Met	H: 19 amin OGY: SCRIN His	54 amo amo amo lino PTION Ser Leu	mino cid ear N: SI Glu Thr 25	acio Q II Val 10 Tyr	O NO Asn Ala	Pro Leu	Asn Gly	Val 30	15 Gly	Leu
40	1 Met Leu	Asn Asn His	(xi) Val Ser Ile 35	Gly Arg	A) Li B) T D) T Val S Gly Leu	ENGTH YPE: OPOLA E DES Ala Met	H: 1 amin OGY: SCRII His Trp	54 am no am lind PTION Ser Leu Ile 40	mino cid ear N: SI Glu Thr 25	acio EQ II Val 10 Tyr	O NO Asn Ala Phe	Pro Leu Ser	Asn Gly Val 45	Val 30 Pro	15 Gly Val	Leu Ala
40 45 50	1 Met Leu Trp	Asn Asn His	(xi) Val Ser Ile 35 Leu	Gly Arg 20 Val	A) LI B) T D) T Val 5 Gly Leu	ENGTH YPPE: DPOIN E DES Ala Met Leu	H: 1: amin OGY: SCRII His Trp Ser Ile 55	54 amo	mino cid ear N: SI Glu Thr 25 Pro	acio Val 10 Tyr Phe	O NO Asn Ala Phe	Pro Leu Ser Met 60	Asn Gly Val 45 Tyr	Val 30 Pro Val	15 Gly Val Phe	Leu Ala Leu
40 45	Met Leu Trp His 65	Asn His Thr 50 Ala	(xi) Val Ser Ile 35 Leu Val	() () () SEQU Gly Arg 20 Val	A) LE B) T D) TV JENCE Val 5 Gly Leu Asn	ENGTHYPE: DPOLATE DES Ala Met Leu Ile Thr 70	H: 1 amir OGY: SCRII His Trp Ser Ile 55	54 amo	mino cid ear N: SI Glu Thr 25 Pro Asn	acid Val 10 Tyr Phe Leu	D NO Asn Ala Phe Gly Pro 75	Pro Leu Ser Met 60 Asp	Asn Gly Val 45 Tyr	Val 30 Pro Val Gly	15 Gly Val Phe Lys	Leu Ala Leu Ala 80

	Ala	Ser	Phe 115		Thr	Lys	Tyr	Asp 120		Thr	His	Phe	Ile 125		Asn	Th
5	Ala	Ser 130		Leu	Ser	Val	Leu 135		Pro	Lys	Met	Pro 140		Leu	His	G1
10	Val 145		Ile	Phe	Gly	Ile 150	Asn	Lys	Tyr	Xaa						
15 20	(2)		(i)	SEQU)))	FOR ENCE A) L B) T D) T UENC	CHA ENGT YPE:	RACT H: 2 ami OGY:	ERIS 04 a no a lin	TICS mino cid ear	aci		: 42	2:			٠
20	Met 1	Val	Cys	Gly	Gly 5	Phe	Ala	Суѕ	Ser	Lys 10	Asn	Cys	Leu	Cys	Ala 15	Let
25	Asn	Leu	Leu	Туг 20	Thr	Leu	Val	Ser	Leu 25	Leu	Leu	Ile	Gly	Ile 30	Ala	Ala
	Trp	Gly	Ile 35	Gly	Phe	Gly	Leu	Ile 40	Ser	Ser	Leu	Arg	Val 45	Val	Gly	Va]
30	Val	Ile 50	Ala	Val	Gly	Ile	Phe 55	Leu	Phe	Leu	Ile	Ala 60	Leu	Val	Gly	Let
35	65				Lys	70					75					80
					Val 85					90					95	
40				100	Gln				105					110		
45			115		Ser			120					125			
45		130			Ser		135					140				
50	145				His	150					155					160
					Val 165					170					175	
55				180	Ile				185				Arg	Туг 190	Arg	Asr
	Gln	Lys	Asp 195	Pro	Arg	Ala	Asn	Pro 200	Ser	Ala	Phe	Leu				

	(2)	INF	ORMA'	MOIT	FOR	SEQ	ID I	NO: 4	423 :							
5				(A) I B) T D) T	CHA ENGT YPE: OPOL E DE	H: 6 ami OGY:	7 am no a lin	ino cid ear	acid		: 42	3:			
10	Met 1	Leu	Gln	Ser	Ile 5	Ile	Lys	Asn	Ile	Trp 10	Ile	Pro	Met	Lys	Pro 15	Ty:
15	Tyr	Thr	Lys	Val 20	Tyr	Gln	Glu	Ile	Trp 25	Ile	Gly	Met	Gly	Leu 30	Met	Gl
	Phe	Ile	Val 35	Tyr	Lys	Ile	Arg	Ala 40	Ala	Asp	Lys	Arg	Ser 45	Lys	Ala	Lei
20	Lys	Ala 50	Ser	Ala	Pro	Ala	Pro 55	Gly	His	His	Asn	Gln 60	Ile	Тут	Leu	Gl
	Tyr 65	Met	Xaa													
25																
30	(2)	INF	ORMAT	SEQUI ()	ENCE A) L B) T	SEQ CHAI ENGT: YPE: OPOL	RACTI H: 2 ami:	ERIST 5 am no a	rICS ino d		5					
35	Met	Leu	(xi)			E DE: Leu								His	Tyr	Va]
	1				5					10					15	
40	Ala	Val	Asn	Asn 20	Pro	Lys	Lys	Gln	Glu 25							
4.5	(2)	INF	ORMAT	rion	FOR	SEQ	ID 1	io: 4	125 :							
45			(i) :	(A) L B) T	CHAI ENGT YPE: OPOL	H: 2 ami	99 ar no a	mino cid		ds					
50			(xi)			E DE				EQ II	OM C	: 42	5:			
	Met 1	Ala	Ala	Хаа	Glu 5	Pro	Ala	Val	Leu	Ala 10	Leu	Pro	Asn	Ser	Gly 15	Ala
	Gly	Gly	Ala	Glv	Ala	Pro	Ser	Gly	mb~	17-1	Does	*** 1	T 011	Dho	A.0	Phe

Ser Val Phe Ala Arg Pro Ser Ser Val Pro His Gly Ala Gly Tyr Glu

Leu Leu Ile Gln Lys Phe Leu Ser Leu Tyr Gly Asp Gln Ile Asp Met

40

35

		50	1				55					60				
5	His 65		Lys	Phe	Val	Val 70		Leu	Phe	Ala	Glu 75	Glu	Trp	Gly	Gln	Tyr 80
	Val	Asp	Leu	Pro	Lys 85	Gly	Phe	Ala	Val	Ser 90	Glu	Arg	Cys	Lys	Val 95	Arg
10	Leu	Val	Pro	Leu 100	Gln	Ile	Gln	Leu	Thr 105	Thr	Leu	Gly	Asn	Leu 110	Thr	Pro
	Ser	Ser	Thr 115	Val	Phe	Phe	Cys	Cys 120	Asp	Met	Gln	Glu	Arg 125	Phe	Arg	Pro
15	Ala	Ile 130	Lys	Тут	Phe	Gly	Asp 135	Ile	Ile	Ser	Val	Gly 140	Gln	Arg	Leu	Leu
20	Gln 145	Gly	Ala	Arg	Ile	Leu 150	Gly	Ile	Pro	Val	Ile 155	Val	Thr	Glu	Gln	Tyr 160
	Pro	Lys	Gly	Leu	Gly 165	Ser	Thr	Val	Gln	Glu 170	Ile	Asp	Leu	Thr	Gly 175	Val
25	Lys	Leu	Val	Leu 180	Pro	Lys	Thr	Lys	Phe 185	Ser	Met	Val	Leu	Pro 190	Glu	Val
	Glu	Ala	Ala 195	Leu	Ala	Glu	Ile	Pro 200	Gly	Val	Arg	Ser	Val 205	Val	Leu	Phe
30	Gly	Val 210	Glu	Thr	His	Val	Cys 215	Ile	Gln	Gln	Thr	Ala 220	Leu	Glu	Leu	Val
35	Gly 225	Arg	Gly	Val	Glu	Val 230	His	Ile	Val	Ala	Asp 235	Ala	Thr	Ser	Ser	Arg 240
	Ser	Met	Met	Asp	Arg 245	Met	Phe	Ala	Leu	Glu 250	Arg	Leu	Ala	Xaa	Xaa 255	Gly
40	Ile	Ile	Val	Thr 260	Thr	Ser	Glu	Ala	Val 265	Leu	Leu	Gln	Leu	Val 270	Ala	Asp
	Lys	Asp	His 275	Pro	Lys	Phe		Glu 280	Ile	Gln	Asn	Leu	Ile 285	Lys	Ala	Ser
45	Ala	Pro 290	Glu	Ser	Gly		Leu 295	Ser	Lys	Val	Xaa					
50	(2)		RMAT													
		((i) S			CHAR NGTH					5					

(B) TYPE: amino acid

(D) TOPOLOGY: linear

Met Arg Asp Leu Gly Thr Leu Leu Ser Pro Val Cys Ser $1 \hspace{1cm} 5 \hspace{1cm} 10$

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 426:

55

	(2)	TIVE	ORMA	LION	FOR	SEQ	י ענ	NO:	427:							
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 198 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear															
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 427:															
10	Met 1	Phe	Gly	Cys	Leu 5	Val	Ala	Gly	Arg	Leu 10	Val	Gln	Thr	Ala	Ala 15	Gln
15	Gln	Val	Ala	Glu 20	Asp	Lys	Phe	Val	Phe 25	Asp	Leu	Pro	Asp	Тут 30	Glu	Ser
	Ile	Asn	His 35	Val	Val	Val	Phe	Met 40	Leu	Gly	Thr	Ile	Pro 45	Phe	Pro	Glu
20	Gly	Met 50	Gly	Gly	Ser	Val	Тут 55	Phe	Ser	Tyr	Pro	Asp 60	Ser	Asn	Gly	Met
25	Pro 65	Val	Trp	Gln	Leu	Leu 70	Gly	Phe	Val	Thr	Asn 75	Gly	Lys	Pro	Ser	Ala 80
	Ile	Phe	Lys	Ile	Ser 85	Gly	Leu	Lys	Ser	Gly 90	Glu	Gly	Ser	Gln	His 95	Pro
30	Phe	Gly	Ala	Met 100	Asn	Ile	Val	Arg	Thr 105	Pro	Ser	Val	Ala	Gln 110	Ile	Gly
	Ile	Ser	Val 115	Glu	Leu	Leu	Asp	Ser 120	Met	Ala	Gln	Gln	Thr 125	Pro	Val	Gly
35	Asn	Ala 130	Ala	Val	Ser	Ser	Val 135	Asp	Ser	Phe	Thr	Gln 140	Phe	Thr	Gln	Lys
40	Met 145	Leu	Asp	Asn	Phe	Тут 150	Asn	Phe	Ala	Ser	Ser 155	Phe	Ala	Val	Ser	Gln 160
	Ala	Gln	Met	Thr	Pro 165	Ser	Pro	Ser	Glu	Met 170	Phe	Ile	Pro	Ala	Asn 175	Val
45	Val	Leu	Lys	Trp 180	Тут	Glu	Asn	Phe	Gln 185	Arg	Arg	Leu	Ala	Gln 190	Asn	Pro
	Xaa		Trp 195	Xaa	Thr	Xaa										
50																
	(2)	INF	ORMAT	rion	FOR	SEQ	ID I	1 0: 4	128:							
55			(i) :	(A) L B) T	ENGT YPE:	H: 4 ami	ERIS 7 am no a lin	ino cid		s					
			(xi)					PTIO		EQ II	D NO	: 42	8:			
60	Met	Gly	Leu	Pro	Leu	Met	Ala	Leu	Met	Trp	Ser	Thr	Leu	Pro	Ala	Ser

	1				5					10					15	
5	Ala	Gly	Val	Asn 20	Phe	Ile	Leu	Ala	Leu 25		Leu	Leu	Leu	Leu 30	Trp	Lys
	Asn	Arg	Gly 35	Gly	Val	Gly	Arg	Ser 40	Val	Met	Ser	Ala	Val 45	Glu	Xaa	
10	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	N O: 4	429 :							
15				(A) L B) T D) T	ENGT YPE: OPOL	H: 3 ami OGY:	70 a no a lin	mino cid ear	aci		: 42	9:			
20	Met 1	Lys	Lys	Val	Glu 5	Glu	Lys	Arg	Val	Asp 10	Val	Asn	Ser	Ala	Val 15	Ala
	Met	Gly	Glu	Val 20	Ile	Leu	Ala	Val	Cys 25	His	Pro	Asp	Cys	Ile 30	Thr	Thr
25	Ile	Lys	His 35	Trp	Ile	Thr	Ile	Ile 40	Arg	Ala	Arg	Phe	Glu 45	Glu	Val	Leu
30	Thr	Trp 50	Ala	Lys	Gln	His	Gln 55	Gln	Arg	Leu	Glu	Thr 60	Ala	Leu	Ser	Glu
	Leu 65	Val	Ala	Asn	Ala	Glu 70	Leu	Leu	Glu	Glu	Leu 75	Leu	Ala	Trp	Ile	Gln 80
35	Trp	Ala	Glu	Thr	Thr 85	Leu	Ile	Gln	Arg	Asp 90	Gln	Glu	Pro	Ile	Pro 95	Gln
	Asn	Ile	Asp	Arg 100	Val	Lys	Ala	Leu	Ile 105	Ala	Glu	His	Gln	Thr 110	Phe	Met
40	Glu	Glu	Met 115	Thr	Arg	Lys	Gln	Pro 120	Asp	Val	Asp	Arg	Val 125	Thr	Lys	Thr
45	Tyr	Lys 130	Arg	Lys	Asn	Ile	Glu 135	Pro	Thr	His	Ala	Pro 140	Phe	Ile	Glu	Lys
	Ser 145	Arg	Ser	Gly	Gly	Arg 150	Lys	Ser	Leu	Ser	Gln 155	Pro	Thr	Pro	Pro	Pro 160
50	Met	Pro	Ile	Leu	Ser 165	Gln	Ser	Glu	Ala	Lys 170	Asn	Pro	Arg	Ile	Asn 175	Gln
	Leu	Ser	Ala	Arg 180	Trp	Gln	Gln	Val	Trp 185	Leu	Leu	Ala	Leu	Glu 190	Arg	Gln
55	Arg	Lys	Leu 195	Asn	Asp	Ala	Leu	Asp 200	Arg	Leu	Glu	Glu	Leu 205	Lys	Glu	Phe
60	Ala	Asn 210	Phe	Asp	Phe	Asp	Val 215	Trp	Arg	Lys	Lys	Туг 220	Met	Arg	Trp	Met

•	

	Asn 225	His	Lys	Lys	Ser	Arg 230	Val	Met	Asp	Phe	Phe 235	Arg	Arg	Ile	Asp	Lys 240
5	Asp	Gln	Asp	Gly	Lys 245	Ile	Thr	Arg	Gln	Glu 250	Phe	Ile	Asp	Gly	Ile 255	Leu
	Ala	Ser	Lys	Phe 260	Pro	Thr	Thr	Lys	Leu 265	Glu	Met	Thr	Ala	Val 270	Ala	Asp
10	Ile	Phe	Asp 275	Arg	Asp	Gly	Asp	Gly 280	Tyr	Ile	Asp	туг	Tyr 285	Glu	Phe	Val
15	Ala	Ala 290	Leu	His	Pro	Asn	Lys 295	Asp	Ala	Tyr	Arg	Pro 300	Thr	Thr	Asp	Ala
	Asp 305	Lys	Ile	Glu	Asp	Glu 310	Val	Thr	Arg	Gln	Val 315	Ala	Gln	Cys	Lys	Cys 320
20	Ala	Lys	Arg	Phe	Gln 325	Val	Glu	Gln	Ile	Gly 330	Glu	Asn	Lys	Tyr	Arg 335	Phe
	Phe	Leu	Gly	Asn 340	Gln	Phe	Gly	Asp	Ser 345	Gln	Gln	Leu	Arg	Leu 350	Val	Arg
25	Ile	Leu	Arg 355	Asn	Arg	Asp	Gly	Ser 360	Arg	Trp	Trp	Arg	Met 365	Asp	Gly	Leu
30	Gly	Xaa 370														
	(2)	INFO	ORMAT	MOI	FOR	SEQ	ID 1	NO: 4	130:							
35			(i) !	()	A) LI B) T	ENGT YPE:	H: 3 ami	ERIST 0 am no ao line	ino a		5					
10			(xi)	SEQU	JENCI	E DES	SCRI	PTIO	N: SI	_						
	Met 1	Asn	Val	Lys	Thr 5	Phe	Ser	Xaa	Asp	His 10	Met	His	Phe	Leu	Cys 15	Cys
15	Leu	Tyr	Leu	Arg 20	Тут	Val	Thr	Phe	Val 25	Tyr	Leu	Asn	Leu	Phe 30		
50	(2)	INFO	ORMAT	rion	FOR	SEQ	ID 1	Ю: 4	31:							
			(i) :	C	A) L B) T	ENGT YPE:	H: 2 ami	ERIST 4 am no ac line	ino a		5					
55			(xi)							ŒQ II	ONO	433	1 :			
	Met 1	Glu	Pro	His	Leu 5	Arg	Cys	Arg	Val	Thr 10	Arg	Val	Arg	Gly	Ser 15	Leu
50	Glv	Agn	Thr	Glv	Ara	Ψm	Len	T.Ou								

5	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	432:							
10				(A) I B) T D) T	ENGT YPE: OPOL	H: 5 ami OGY:	ERIS 3 am no a lin PTIO	ino cid ear	acid		: 43	2:			
15	Met 1	His	Tyr	Leu	Val 5	Leu	Gly	Gly	Leu	Gly 10	Val	Phe	Leu	Phe	Phe 15	Ser
13	Cys	Phe	Val	Phe 20	Leu	Phe	Phe	Xaa	Phe 25	Ser	Phe	Ala	Phe	Phe 30	Pro	Phe
20	Tyr	Leu	Glu 35	Gly	Met	Gly	Gly	Ser 40	Gly	Asn	Arg	Glu	Val 45	Gly	Gly	Gly
	Phe	Cys 50	Leu	Phe	Phe											
25																
	(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	NO: 4	133:							
30			(i)	(A) L	ENGT		ERIS' 76 a	mino		ds					
				{	D) T	OPOL		lin	ear				_			
n.e.				SEQ	D) T	OPOL E DE	OGY: SCRI	lin PTIO	ear N: S	_						
35	Met 1			SEQ	D) T	OPOL E DE	OGY: SCRI	lin	ear N: S	_				Asn	Arg 15	Arg
35 40	1	Val	Ser	(SEQI	D) T UENC Ala 5	OPOL E DE Leu	OGY: SCRI Leu	lin PTIO	ear N: Si Leu	Val 10	Ser	Ala	Val		15	
	1 Arg	Val Met	Ser	Lys Leu 20	D) T UENC Ala 5 Leu	OPOL E DE Leu Leu	OGY: SCRI Leu Gly	lin PTIO	ear N: Si Leu Ala 25	Val 10 Leu	Ser Leu	Ala Ala	Val Tyr	Val 30	15 Ala	Ser
	1 Arg Val	Val Met	Ser Lys Gly 35	Lys Leu 20 Asn	D) T UENC Ala 5 Leu Phe	OPOL E DE Leu Leu Val	OGY: SCRI Leu Gly Asn	lin PTION Arg Ile Met	ear N: Si Leu Ala 25 Arg	Val 10 Leu Ser	Ser Leu Ile	Ala Ala Gln	Val Tyr Glu 45	Val 30 Asn	15 Ala Gly	Ser Glu
40	Arg Val Leu	Val Met Trp Lys 50	Ser Lys Gly 35 Ile	Lys Leu 20 Asn	D) T UENC Ala 5 Leu Phe	OPOL E DE Leu Leu Val	OGY: SCRI Leu Gly Asn Ile 55	lin PTIO Arg Ile Met 40	ear N: Si Leu Ala 25 Arg Glu	Val 10 Leu Ser	Ser Leu Ile Val	Ala Ala Gln Glu 60	Val Tyr Glu 45 Pro	Val 30 Asn Leu	15 Ala Gly Arg	Ser Glu Glu
40	Arg Val Leu Lys 65	Val Met Trp Lys 50	Ser Lys Gly 35 Ile	(SEQUE Lys Leu 20 Asn Glu Asp	D) TUENC	OPOLL E DE Leu Leu Val Lys Glu 70	OGY: SCRI Leu Gly Asn Ile 55 Lys	lin PTION Arg Ile Met 40 Glu	ear N: Si Leu Ala 25 Arg Glu Phe	Val 10 Leu Ser Met	Ser Leu Ile Val Gln 75	Ala Ala Gln Glu 60 Lys	Val Tyr Glu 45 Pro	Val 30 Asn Leu Pro	15 Ala Gly Arg Pro	Ser Glu Glu Val 80
40 45 50	Arg Val Leu Lys 65 Lys	Val Met Trp Lys 50 Ile	Lys Gly 35 Ile Arg	Lys Leu 20 Asn Glu Asp	D) TUENC: Ala 5 Leu Phe Ser Leu Glu 85	OPOL E DE Leu Leu Val Lys Glu 70 Lys	OGY: SCRI Leu Gly Asn Ile 55 Lys	linn PTIOI Arg Ile Met 40 Glu	ear N: SI Leu Ala 25 Arg Glu Phe	Val 10 Leu Ser Met Thr	Ser Leu Ile Val Gln 75	Ala Ala Glu 60 Lys Leu	Val Tyr Glu 45 Pro Tyr	Val 30 Asn Leu Pro	Ala Gly Arg Pro Gly 95	Ser Glu Glu Val 80 Gly
40 45	Arg Val Leu Lys 65 Lys Ala	Val Met Trp Lys 50 Ile Phe	Ser Lys Gly 35 Ile Arg Leu Phe	Lys Lys Leu 20 Asn Glu Asp Ser Val 100	D) TOUENCE Ala 5 Leu Phe Ser Leu Glu 85 Gly	OPOL E DE Leu Leu Val Lys Glu 70 Lys	OGY: SCRI Leu Gly Asn Ile 55 Lys Asp	lin PTIO Arg Ile Met 40 Glu Ser	ear N: SI Leu Ala 25 Arg Glu Phe Lys Thr 105	Val 10 Leu Ser Met Thr Arg 90	Ser Leu Ile Val Gln 75 Ile Lys	Ala Ala Gln Glu 60 Lys Leu Leu	Val Tyr Glu 45 Pro Tyr Ile	Val 30 Asn Leu Pro Thr Met 110	15 Ala Gly Arg Pro Gly 95 Asp	Ser Glu Glu Val 80 Gly

	145		Ser	Pro	Ser	150		Arg	Leu	Thr	Arg 155		Thr	Ile	Trp	His 160
5	Leu	Gln	Pro	Pro	Leu 165		Thr	Thr	Cys	Ile 170		Leu	Ser	Arg	His 175	Xaa
10		-														
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:	434:							
15			(i)	(A) I B) T	CHA ENGT YPE: OPOL	H: 7 ami	7 ал .no a	ino cid		s					•
20			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 43	4 :			
	Met 1	Leu	Arg	Cys	Trp 5	Pro	Leu	Phe	Trp	Leu 10	Pro	Leu	Val	Ser	Pro 15	Ph∈
25	Cys	Ser	Leu	Phe 20	Trp	Leu	Leu	Val	Glu 25	Trp	Phe	Gly	Thr	Asn 30	Ile	Asp
	Arg	Glu	Ser 35	Tyr	Asp	Ala	Ile	Gly 40	Gly	Pro	Ser	Trp	Met 45	Thr	Ala	Ser
30	Ser	Phe 50	Cys	Leu	Ser	Asn	Ser 55	Asn	Ile	Trp	Ser	Leu 60	Glu	Ile	Ser	Ser
35	Gly 65	Ser	Thr	Ser	Val	Val 70	His	Ser	Gln	Gln	Ala 75	Met	Asp			
	(2)	INF	ORMA!	NOI	FOR	SEQ	ID I	VO: 4	135:							
40			(i) :	(A) L B) T	CHAI ENGT YPE: OPOL	H: 3 ami	2 am no a	ino . cid		s					
45			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: SI	EQ II	O NO	: 43!	5:			
	Met 1	Arg	Ser	Суѕ	Glu 5	Ile	Gln	Leu	Cys	Val 10	Trp	Leu	Leu	Val	Ser 15	Ser
50	His	Val	Asp	Met 20	Val	Leu	Gly	Gly	Ser 25	Pro	Ser	Thr	Leu	Туr 30	Met	Met

- (2) INFORMATION FOR SEQ ID NO: 436:
- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 30 amino acids

			(xi)		D) 1	TYPE: TOPOL TE DE	OGY:	lir	near	EQ I	D NO): 4 3	6:			
5	Met 1		Val	Asn	Ser 5		Cys	Phe	Leu	Ser 10	Leu	Leu	Leu	Val	Ile 15	Le
10	Glu	Leu	Ser	Thr 20	Asp	Ser	Ser	Ala	Arg 25	Leu	Leu	Tyr	His	Glu 30		
	(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	NO:	437:							
15			(i)	(A) L B) T		H: 6 ami	9 am no a	ino cid		s					٠
20	Var			SEQ												
	met 1	Asp	Lys	GIN	Lys 5	HIS	Leu	Glu	Val	Arg 10	Arg	Ser	Val	Phe	Lys 15	Ile
25	Gln	Gly	Lys	Ile 20	Ala	Phe	Ser	Leu	Met 25	Phe	Val	Leu	Lys	Asp 30	Leu	Ser
	Pro	Thr	Ile 35	Phe	Ser	His	Ser	Ile 40	Leu	Leu	Leu	Leu	Pro 45	His	His	Va]
30	Leu	Pro 50	Cys	Thr	Pro	Gln	Met 55	Val	Arg	Gly	Val	Thr 60	Gln	Val	Leu	Arg
35	Glu 65	Phe	Gly	Asp	Gln											
	(2)	INF	ORMAT	NOI	FOR	SEQ	ID 1	ю: 4	138 :							
40			(i) :	()	A) L B) T		H: 1 ami	9 am no a	ino a		5					
45			(xi)	SEQ						EQ II	ON O	: 43	B :			
	Met 1	Pro	Leu	Cys	Phe 5	Phe	Ser	Phe	Leu	Cys 10	Cys	Trp	Val	Leu	Val 15	Ph∈
50	Lys	Leu	Ile													

(2) INFORMATION FOR SEQ ID NO: 439:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 43 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 439:

Met Lys Phe Ser Leu Val Leu Leu Ile Lys Ile Ile Ser Phe Glu Arg 5 10 5 Leu Leu Ile Phe Leu Phe Pro Leu Ser Phe Leu Pro Asn Ile Trp Arg 25 Arg Val Met Val Asn Leu Asn Ile Leu Phe Xaa 40 10 (2) INFORMATION FOR SEQ ID NO: 440: 15 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 440: 20 Met Leu Leu Phe Pro Ser Leu Leu Phe Ala Ala Thr Tyr Asn Val Ala 10 5 Asn Pro Ser Arg Leu Ile Leu Tyr Met Ile Ser Ala Gly Ala Asp Ser 25 20 25 Gln 30 (2) INFORMATION FOR SEQ ID NO: 441: (i) SEQUENCE CHARACTERISTICS: 35 (A) LENGTH: 53 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 441: 40 Met Trp Gln Val Arg Gly Leu Pro Pro Val Pro Leu Leu Thr Met Ser Pro Pro Pro Cys Leu Ser Ser Pro Phe Pro Phe Ile Ser Val Pro 25 45 Leu Phe Glu Ala Val Pro Ile Ser Val Ser Asp Gln Pro Ser Pro Xaa 35 40 45 Leu Thr Thr Leu Leu 50 50 (2) INFORMATION FOR SEO ID NO: 442: 55 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 64 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 442:

	Met		e Thr	Ser	Val 5		ı Val	. Phe	Leu	116		Phe	Phe	e Pr	o Tyr 1	
5	Ser	Let	ı Val	Thr 20		Leu	Gln	Ala	Arg 25		Leu	Trp	Va]	30		s Arg
10	Ala	Ala	Leu 35		Glu	Ser	Gly	Leu 40		His	Trp	Arg	Lys 45		/ Ile	e Glu
	Asn	Glr 50	Leu)	Glu	Pro	Met	Tyr 55		Leu	Pro	His	Gly 60		Let	ı Phe	: Leu
15																
20	(2)	INF	'ORMA'	rion	FOR	SEQ	ID 1	NO: 4	14 3:							
			(i)	(,	A) L B) T	ENGT YPE:	H: 3 ami	4 am no a	ino cid		s					
25			(xi)	SEQ				lin PTIO		EQ I	D NO	: 44	3:			
	Met 1	Leu	Tyr	Ser	Cys 5	Glu	Pro	Tyr	Leu	Ile 10	Ile	Leu	Asn	Ile	Tyr 15	Ser
30	Gln	Lys	Ala	Phe 20	Tyr	Phe	туг	Phe	Phe 25	Glu	Gly	Ser	Phe	Ser 30	Val	Cys
35	Thr	Leu														
	(2)	INF	ORMAT	NOI	FOR	SEQ	ID N	ю: 4	44:							
40			(i) 5	(<i>I</i>	A) LI 3) TY	INGT (PE:	H: 8: ami	ami	ino a		5					
45			(xi)					line		Q II	NO:	444	i :			
15	Met 1	Arg	Gln	Arg	Gln 5	Ala	Ala	Cys	Gln	Pro 10	Pro	Pro	Ser	Arg	Asn 15	Gly
50	Leu	Ala	Gln	G1u 20	Cys	Pro	Pro	His	Ile 25	Pro	Ser	Ser	Phe	Phe 30	Leu	Val
	Lys	Leu	Leu 35	Phe	Ile	Pro	Trp	Leu 40	Ala	Ser	Leu	Leu	Ser 45	Ser	Pro	Leu
55	Asn	Leu	Leu	Leu :	Leu '	Val	Ser	Ile	Ser	Trp	Asp	Leu	Gly	Leu	Lys	Leu

50 55 60

60

Asn Leu Gln Gln Cys Arg Gln His Gln Val Leu Gln Glu Lys Asn Thr 65 70 75 80

Lys Lys Phe Asn Lys Lys Lys Lys Lys 85

J	(2)	INF	ORMA'	TION	FOR	SEQ	ID	NO:	445:							
10				(A) L B) T D) T	ENGT YPE: OPOL	H: 3 ami OGY:	50 a no a lin	mino cid ear	aci		: 44	5:			
15	Met 1	Asp	Phe	Ile	Thr 5	Ser	Thr	Ala	Ile	Leu 10	Pro	Leu	Leu	Phe	Gly 15	Cys
	Leu	Gly	Val	Phe 20	Gly	Leu	Phe	Arg	Leu 25	Leu	Gln	Trp	Val	Arg 30	Gly	Lys
20	Ala	Tyr	Leu 35	Arg	Asn	Ala	Val	Val 40	Val	Ile	Thr	Gly	Ala 45	Thr	Ser	Gly
25	Leu	Gly 50	Lys	Glu	Cys	Ala	Lys 55	Val	Phe	Tyr	Ala	Ala 60	Gly	Ala	Lys	Leu
-,	Val 65	Leu	Cys	Gly	Arg	Asn 70	Gly	Gly	Ala	Leu	Glu 75	Glu	Leu	Ile	Arg	Glu 80
30	Leu	Thr	Ala	Ser	His 85	Ala	Thr	Lys	Val	Gln 90	Thr	His	Lys	Pro	Туг 95	Leu
	Val	Thr	Phe	Asp 100	Leu	Thr	Asp	Ser	Gly 105	Ala	Ile	Val	Ala	Ala 110	Ala	Ala
35	Glu	Ile	Leu 115	Gln	Cys	Phe	Gly	Туг 120	Val	Asp	Ile	Leu	Val 125	Asn	Asn	Ala
10	Gly	Ile 130	Ser	туг	Arg	Gly	Thr 135	Ile	Met.	Asp	Thr	Thr 140	Val	Asp	Val	Asp
	Lys 145	Arg	Val	Met	Glu	Thr 150	Asn	Тух	Phe	Gly	Pro 155	Val	Ala	Leu	Thr	Lys 160
15	Ala	Leu	Leu	Pro	Ser 165	Met	Ile	Lys	Arg	Arg 170	Gln	Gly	His	Ile	Val 175	Ala
	Ile	Ser	Ser	Ile 180	Gln	Gly	Lys	Met	Ser 185	Ile	Pro	Phe	Arg	Ser 190	Ala	Tyr
50	Ala	Ala	Ser 195	Lys	His	Ala	Thr	Gln 200	Ala	Phe	Phe	Asp	Cys 205	Leu	Arg	Ala
55	Glu	Met 210	Glu	Gln	Tyr	Glu	Ile 215	Glu	Val	Thr	Val	Ile 220	Ser	Pro	Gly	Tyr
כנ	Ile 225	His	Thr	Asn	Leu	Ser 230	Val	Asn	Ala	Ile	Thr 235	Ala	Asp	Gly	Ser	Arg 240
50	Tyr	Gly	Val	Met	Asp 245	Thr	Thr	Thr	Ala	Gln 250	Gly	Arg	Ser	Pro	Val 255	Glu

50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 447:

> Met Ala Ser Ala Glu Leu Asp Tyr Thr Ile Glu Ile Pro Asp Gln Pro 10

55 Cys Trp Ser Gln Lys Asn Ser Pro Ser Pro Gly Gly Lys Glu Ala Glu

Thr Arg Gln Pro Val Val Ile Leu Leu Gly Trp Gly Gly Cys Lys Asp 40

Lys	Asn	Leu	Ala	Lys	Tyr	Ser	Ala	Ile	Tyr	His	Lys	Arg	Gly	Cys	Ile
	50					55					60				

- Val Ile Arg Tyr Thr Ala Pro Trp His Met Val Phe Phe Ser Glu Ser 5 65 70 75 80
 - Leu Gly Ile Pro Ser Leu Arg Val Leu Ala Gln Lys Leu Leu Glu Leu 85 90 95
- 10 Leu Phe Asp Tyr Glu Ile Glu Lys Glu Pro Leu Leu Phe His Val Phe
 100 105 110
- Ser Asn Gly Gly Val Met Leu Tyr Arg Tyr Val Leu Glu Leu Gln 115 120 125 15
- Thr Arg Arg Phe Cys Arg Leu Arg Val Val Gly Thr Ile Phe Asp Ser
- Ala Pro Gly Asp Ser Asn Leu Val Gly Ala Leu Arg Ala Leu Ala Ala 20 145 150 150 160
 - Ile Leu Glu Arg Arg Ala Ala Met Leu Arg Leu Leu Leu Leu Val Ala 165 170 175
- Ala Xaa Phe His Thr His Phe Tyr Asp Arg Leu Gln Asp Ala Gly Ser $195 \hspace{1.5cm} 200 \hspace{1.5cm} 205$ 30
 - Arg Trp Pro Glu Leu Tyr Leu Tyr Ser Arg Ala Asp Glu Val Val Leu 210 215 220
- Ala Arg Asp Ile Glu Arg Met Val Glu Ala Arg Leu Ala Arg Arg Val 35 225 230 235 240
 - Leu Ala Arg Ser Val Asp Phe Val Ser Ser Ala His Val Ser His Leu 245 250 255
- 40 Arg Asp Tyr Pro Thr Tyr Tyr Thr Ser Leu Cys Val Asp Phe Met Arg 260 265 270
 - Asn Cys Val Arg Cys Xaa 275

45

(2) INFORMATION FOR SEQ ID NO: 448:

- 50 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 199 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 448:
- Met Ser Phe Ile Phe Asp Trp Ile Tyr Ser Gly Phe Ser Ser Val Leu
- Gln Phe Leu Gly Leu Tyr Lys Lys Thr Gly Lys Leu Val Phe Leu Gly 60 20 25 30

	Leu	Asp	Asn 35	Ala	Gly	Lys	Thr	Thr 40	Leu	Leu	His	Met	Leu 45		Asp	As
5	Arg	Leu 50	Gly	Gln	His	Val	Pro 55	Thr	Leu	His	Pro	Thr 60	Ser	Glu	Glu	Le
10	Thr 65		Ala	Gly	Met	Thr 70		Thr	Thr	Phe	Asp 75	Leu	Gly	Gly	His	Va 8
	Gln	Ala	Arg	Arg	Val 85	Trp	Lys	Asn	Tyr	Leu 90	Pro	Ala	Ile	Asn	Gly 95	11
15	Val	Phe	Leu	Val 100	Asp	Cys	Ala	Asp	His 105	Glu	Arg	Leu	Leu	Glu 110	Ser	Ly
	Glu	Glu	Leu 115	Asp	Ser	Leu	Met	Thr 120	Asp	Glu	Thr	Ile	Ala 125	Asn	Val	Pro
20	Ile	Leu 130	Ile	Leu	Gly	Asn	Lys 135	Ile	Asp	Arg	Pro	Glu 140	Ala	Ile	Ser	Glı
25	Glu 145	Arg	Leu	Arg	Glu	Met 150	Phe	Gly	Leu	Tyr	Gly 155	Gln	Thr	Thr	Gly	Ly:
	Gly	Ser	Ile	Ser	Leu 165	Lys	Glu	Leu	-Asn	Ala 170	Arg	Pro	Leu	Glu	Val 175	Phe
30	Met	Cys	Ser	Val 180	Leu	Lys	Arg	Gln	Gly 185	Tyr	Gly	Glu	Gly	Phe 190	Arg	Tr
	Met	Ala	Gln 195	Tyr	Ile	Asp	Xaa									
35	(2)	INFO	ORMAG	rion	FOR	SEO	א מד	in. 4	149.							
40	,-,		(i) :	SEQUI () ()	ENCE A) L B) T D) T	CHAI ENGT YPE: OPOL	RACTI H: 2: ami: OGY:	ERIS 58 au no ac line	FICS mino cid ear	aci		: 44	9 :			
45	Met 1	Thr	Leu	Ser	Arg 5	Phe	Ala	Tyr	Asn	Gly 10	Lys	Arg	Cys	Pro	Ser 15	Sei
50	Tyr	Asn	Ile	Leu 20	Asp	Asn	Ser	Lys	Ile 25	Ile	Ser	Glu	Glu	Cys 30	Arg	Lys
30	Glu	Leu	Thr 35	Ala	Leu	Leu	His	His 40	туг	Tyr	Pro	Ile	Glu 45	Ile	Asp	Pro
55	His	Arg 50	Thr	Val	Lys	Glu	Lys 55	Leu	Pro	His	Met	Val 60	Glu	Trp	Trp	Thi
	Lys 65	Ala	His	Asn	Leu	Leu 70	Cys	Gln	Gln	Lys	Ile 75	Gln	Lys	Phe	Gln	11e

Ala Gln Val Val Arg Glu Ser Asn Ala Met Leu Arg Glu Gly Tyr Lys

Leu Thr Leu Pro Leu Pro Ser Ser Phe Leu Pro His Ser Lys Pro Thr 65 70 75 80

					85					90					95	
5	Thr	Phe	Phe	Asn 100	Thr	Leu	Тух	His	Asn 105	Asn	Ile	Pro	Leu	Phe 110	Ile	Ph
	Ser	Ala	Gly 115	Ile	Gly	Asp	Ile	Leu 120	Glu	Glu	Ile	Ile	Arg 125	Gln	Met	Ly
10	Val	Phe 130	His	Pro	Asn	Ile	His 135	Ile	Val	Ser	Asn	Туr 140	Met	Asp	Phe	Ası
	Glu 145	Asp	Gly	Phe	Leu	Gln 150	Gly	Phe	Lys	Gly	Gln 155	Leu	Ile	His	Thr	Тут 160
15	Asn	Lys	Asn	Ser	Ser 165	Val	Cys	Glu	Asn	Xaa 170	Gly	Tyr	Phe	Gln	Gln 175	Let
20	Glu	Gly	Lys	Thr 180	Asn	Val	Ile	Leu	Leu 185	Gly	Asp	Ser	Ile	Gly 190	Asp	Leu
20	Thr	Met	Ala 195	Asp	Gly	Val	Pro	Gly 200	Val	Gln	Asn	Ile	Leu 205	Lys	Ile	Gly
25	Phe	Leu 210	Asn	Asp	Lys	Val	Glu 215	Glu	Arg	Arg	Xaa	Arg 220	Tyr	Met	Asp	Ser
	Tyr 225	Asp	Ile	Val	Leu	Glu 230	Lys	Asp	Glu	Thr	Leu 235	Asp	Val	Val	Asn	Gly 240
30	Leu	Leu	Gln	His	Ile 245	Leu	Cys	Gln	Gly	Val 250	Gln	Leu	Glu	Met	Gln 255	Gly
	Pro	Xaa														
35																
	(2)	INFO	RMAI	NOI	FOR	SEQ	ID N	IO: 4	50 :							
40			(i) S	(1	A) LI B) T	ENGT YPE:	H: 8' ami	ERIST	ino a		5					
45			(xi)					line TION		EQ II	O NO	: 450):			
.5	Met 1	Ser	His	Val	Leu 5	Leu	Cys	Pro	Ser	Leu 10	Ser	Cys	Ser	Asn	Leu 15	Leu
50	Pro	Pro	Ser	His 20	Ser	Leu	Gly	Thr	Met 25	Gly	Ser	Leu	Ser	Pro 30	His	Leu
	Cys	Gly	His 35	Thr	Met	Cys	Pro	Val 40	Asn	Pro	Glu	Leu	Pro 45	Leu	Ser	Ser
55	Arg	Leu 50	Thr	Thr	Asp	Gln	Pro 55	Gln	Pro	Asp	Ala	Cys 60	Ser	Pro	Thr	Leu

Phe Xaa His Pro Cys Ser Pro 85

5	(2)	INF	ORMA	TION	FOR	SEO	ID:	NO:	45 1 :							
10			(i)	SEQU ((ENCE A) L B) T D) T	CHA ENGI YPE: OPOL	RACT H: 3 ami OGY:	ERIS 15 a no a lin	TICS mino cid ear	: aci EQ I		: 45	1:			
15	Met 1	Phe	Ser	Ile	Asn 5	Pro	Leu	Glu	Asn	Leu 10	Lys	Val	Тут	Ile	Ser 15	Ser
	Arg	Pro	Pro	Leu 20	Val	Val	Phe	Met	Ile 25	Ser	Val	Xaa	Pro	Met 30	Ala	Ile
20	Ala	Phe	Leu 35	Thr	Leu	Gly	Тут	Phe 40	Phe	Lys	Ile	Lys	Glu 45	Ile	Lys	Ser
25	Pro	Glu 50	Met	Ala	Glu	Asp	Trp 55	Asn	Thr	Phe	Leu	Leu 60	Arg	Phe	Asn	Asp
23	Leu 65	Asp	Leu	Cys	Val	Ser 70	Glu	Asn	Glu	Thr	Leu 75	Lys	His	Leu	Thr	Asn 80
30	Asp	Thr	Thr	Thr	Pro 85	Glu	Ser	Thr	Met	Thr 90	Ser	Gly	Gln	Ala	Arg 95	Ala
	Ser	Thr	Gln	Ser 100	Pro	Gln	Ala	Leu	Glu 105	Asp	Ser	Gly	Pro	Val 110	Asn	Ile
35	Ser	Val	Ser 115	Ile	Thr	Leu	Thr	Leu 120	Asp	Pro	Leu	Lys	Pro 125	Phe	Gly	Gly
40	Tyr	Ser 130	Arg	Asn	Val	Thr	His 135	Leu	Tyr	Ser	Thr	Ile 140	Leu	Gly	His	Gln
40	Ile 145	Gly	Leu	Ser	Gly	Arg 150	Glu	Ala	His	Glu	Glu 155	Ile	Asn	Ile	Thr	Phe 160
45	Thr	Leu	Pro	Thr	Ala 165	Trp	Ser	Ser	Asp	Asp 170	Cys	Ala	Leu	His	Gly 175	His
	Cys	Glu	Gln	Val 180	Val	Phe	Thr	Ala	Cys 185	Met	Thr	Leu	Thr	Ala 190	Ser	Pro
50	Gly	Val	Phe 195	Pro	Val	Thr	Val	Gln 200	Pro	Pro	His	Cys	Val 205	Pro	Asp	Thr
55	Tyr	Ser 210	Asn	Ala	Thr	Leu	Trp 215	Tyr	Lys	Ile	Phe	Thr 220	Thr	Ala	Arg	Asp
JJ	Ala 225	Asn	Thr	Lys	Tyr	Ala 230	Gln	Asp	Tyr	Asn	Pro 235	Phe	Trp	Cys	Тут	Lys 240

Gly Ala Ile Gly Lys Val Tyr His Ala Leu Asn Pro Lys Leu Thr Val 245 250 255

	Il€	. Val	Pro	Asp 260	Asp	Asp	Arg	Ser	Leu 265	Ile	Asn	Leu	His	Leu 270	Met	His
5	Thr	Ser	Tyr 275	Phe	Leu	Phe	Val	Met 280	Val	Ile	Thr	Met	Phe 285	Cys	Tyr	Ala
10	Val	Ile 290	Lys	Gly	Arg	Pro	Ser 295	Lys	Leu	Arg	Ģln	Ser 300	Asn	Pro	Glu	Phe
	Cys 305		Glu	Lys	Val	Ala 310	Leu	Ala	Glu	Ala	Хаа 315					
15	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: 4	452:							
20				C	A) L B) T D) T	ENGT YPE: OPOL	H: 5 ami OGY:	2 am no a lin	ino cid ear	acid		: 45:	2:			
25	Met 1		Gly	Leu	Ser 5	Leu	Ala	Leu	Leu	Pro 10	Phe	Gly	Pro	Gly	Cys 15	Thr
	Glu	Ala	Leu	His 20	Ala	Gly	Cys	Phe	Pro 25	Ala	Phe	Ala	Ser	Ala 30	Thr	Arg
30	Val	Asn	Gly 35	Glu	Ala	Ala	Leu	Ser 40	Pro	Gly	Leu	Cys	Asp 45	Pro	Ile	Ser
35	Val	Pro 50	Tyr	Val												
40	(2)		ORMAT	SEQUI	ENCE A) LI B) T	CHAI ENGT YPE :	RACTI H: 3: ami:	ERIST 83 au no ao	rICS: mino cid		ds					
45	15		(xi)	SEQU		E DES	SCRII	PTIO	N: Si							
	1		Val		5					10					15	
50			Ile	20					25					30		
	Leu	Leu	Trp 35	Lys	Val	Tyr	Gln	Lys 40	Thr	Pro	Ala	Leu	Ala 45	Val	Lys	Ala
55	Gly	Leu 50	Lys	Glu	Glu	Glu	Thr 55	Glu	Leu	Lys	Gln	Leu 60	Asn	Leu	His	Lys
60	Asp 65	Thr	Glu	Pro	Lys	Pro 70	Leu	Glu	Gly	Thr	His 75	Leu	Met	Gly	Val	Lys 80

	Asp	Ser	Asn	Ile	His 85	Glu	Leu	Glu	His	Glu 90	Gln	Glu	Pro	Thr	Суз 95	Ala
5	Ser	Gln	Met	Ala 100	Glu	Pro	Phe	Arg	Thr 105	Phe	Arg	Asp	Gly	Trp 110	Val	Ser
	Тут	Tyr	Asn 115	Gln	Pro	Val	Phe	Leu 120	Ala	Gly	Met	Gly	Leu 125	Ala	Phe	Leu
10	Tyr	Met 130	Thr	Val	Leu	Gly	Phe 135	Asp	Суз	Ile	Thr	Thr 140	Gly	Тут	Ala	Tyr
15	Thr 145	Gln	Gly	Leu	Ser	Gly 150	Phe	His	Pro	Gln	Tyr 155	Phe	Asp	Gly	Ser	Ile 160
	Ser	Tyr	Asn	Trp	Asn 165	Asn	Gly	Asn	Cys	Ser 170	Phe	Tyr	Leu	Ala	Thr 175	Ser
20	Lys	Met	Trp	Phe 180	Gly	Ser	Ala	Gly	Leu 185	Ile	Ser	Gly	Leu	Ala 190	Gln	Leu
	Ser	Cys	Leu 195	Ile	Leu	Cys	Val	Ile 200	Ser	Val	Phe	Met	Pro 205	Gly	Ser	Pro
25	Leu	Asp 210	Leu	Ser	Val	Ser	Pro 215	Phe	Glu	Asp	Ile	Arg 220	Ser	Arg	Phe	Ile
30	Gln 225	Gly	Glu	Ser	Ile	Thr 230	Pro	Thr	Lys	Ile	Pro 235	Glu	Ile	Thr	Thr	Glu 240
	Ile	Tyr	Met	Ser	Asn 245	Gly	Ser	Asn	Ser	Ala 250	Asn	Ile	Val	Pro	Glu 255	Thr
35	Ser	Pro	Glu	Ser 260	Val	Pro	Ile	Ile	Ser 265	Val	Ser	Leu	Leu	Phe 270	Ala	Gly
	Val	Ile	Ala 275	Ala	Arg	Ile	Gly	Leu 280	Trp	Ser	Phe	Asp	Leu 285	Thr	Val	Thr
10	Gln	Leu 290	Leu	Gln	Glu	Asn	Val 295	Ile	Glu	Ser	Glu	Arg 300	Gly	Ile	Ile	Asn
15	G1y 305	Val	Gln	Asn	Ser	Met 310	Asn	Тут	Leu	Leu	Asp 315	Leu	Leu	His	Phe	11e 320
	Met	Val	Ile	Leu	Ala 325	Pro	Asn	Pro	Glu	Ala 330	Phe	Gly	Leu	Leu	Val 335	Leu
50	Ile	Ser	Val	Ser 340	Phe	Val	Ala	Met	Gly 345	His	Ile	Met	Tyr	Phe 350	Arg	Phe
	Ala	Gln	Asn 355	Thr	Leu	Gly	Asn	Lys 360	Leu	Phe	Ala	Cys	Gly 365	Pro	Asp	Ala
55	Lys	Glu 370	Val	Arg	Lys	Glu	Asn 375	Gln	Ala	Asn	Thr	Ser 380	Val	Val	Xaa	

60 (2) INFORMATION FOR SEQ ID NO: 454:

5			(i)	(A) L B) T	engt Ype:	H: 1 ami	no a	mino cid	: aci	ds					
J			(xi)					lin PTIO		EQ I	D NO	: 45	4:			
10	Met 1	Arg	Ser	Ile	Gly 5	Asn	Lys	Asn	Thr	Ile 10	Leu	Leu	Gly	Leu	Gly 15	Phe
10	Gln	Ile	Leu	Gln 20	Leu	Ala	Trp	Tyr	Gly 25	Phe	Gly	Ser	Glu	Pro 30	Trp	Met
15	Met	Trp	Ala 35	Ala	Gly	Ala	Val	Ala 40	Ala	Met	Ser	Ser	Ile 45	Thr	Phe	Pro
	Ala	Val 50	Ser	Ala	Leu	Val	Ser 55	Arg	Thr	Ala	Asp	Ala 60	Asp	Gln	Gln	Gly
20	Val 65	Val	Gln	Gly	Met	Ile 70	Thr	Gly	Ile	Arg	Gly 75	Leu	Cys	Asn	Gly	Leu 80
25	Gly	Pro	Ala	Leu	Tyr 85	Gly	Phe	Ile	Phe	Туг 90	Ile	Phe	His	Val	Glu 95	Leu
	Lys	Glu	Leu	Pro 100	Ile	Thr	Gly	Thr	Asp 105	Leu	Gly	Thr	Asn	Thr 110	Ser	Pro
30	Gln	His	His 115	Phe	Glu	Gln	Asn	Ser 120	Ile	Ile	Pro	Gly	Pro 125	Pro	Phe	Leu
	Phe	Gly 130	Ala	Cys	Ser	Val	Leu 135	Leu	Ala	Leu	Leu	Val 140	Ala	Leu	Phe	Ile
35	Pro 145	Glu	His	Thr	Asn	Leu 150	Ser	Leu	Arg	Ser	Ser 155	Ser	Trp	Arg	Lys	His 160
40	Cys	Gly	Ser	His	Ser 165	His	Pro	His	Asn	Thr 170	Gln	Ala	Pro	Gly	Glu 175	Ala
	Lys	Glu	Pro	Leu 180	Leu	Gln	Asp	Thr	Asn 185	Val						
45	(2)	INF	ORMA	rion	FOR	SEQ	ID I	NO: 4	155 :							
50			(i) :	(A) L	ENGT	H: 1	ERIS 63 a	mino	: aci	ds					
			(xi)	(D) T	OPOL	OGY:	lin	ear	EQ I	D NO	: 45	5:			
55	Met 1	Leu	Gln	Thr	Ser 5	Asn	Tyr	Ser	Leu	Val 10	Leu	Ser	Leu	Gln	Phe 15	Leu

Leu Leu Ser Tyr Asp Leu Phe Val Asn Ser Phe Ser Glu Leu Leu Gln

 $60\,$ $\,$ Lys Thr Pro Val Ile Gln Leu Val Leu Phe Ile Ile Gln Asp Ile Ala

4	

			35					40					45			
5	Val	Leu 50	Phe	Asn	Ile	Ile	Ile 55	Ile	Phe	Leu	Met	Phe 60	Phe	Asn	Thr	Phe
J	Val 65	Phe	Gln	Ala	Gly	Leu 70	Val	Asn	Leu	Leu	Phe 75	His	Lys	Phe	Lys	Gly 80
10	Thr	Ile	Ile	Leu	Thr 85	Ala	Val	Tyr	Phe	Ala 90	Leu	Ser	Ile	Ser	Leu 95	His
	Val	Trp	Val	Met 100	Asn	Leu	Arg	Trp	Lys 105	Asn	Ser	Asn	Ser	Phe 110	Ile	Trp
15	Thr	Asp	Gly 115	Leu	Gln	Met	Leu	Phe 120	Val	Phe	Gln	Arg	Leu 125	Ala	Ala	Val
20	Leu	Tyr 130	Cys	Tyr	Phe	Tyr	Lys 135	Arg	Thr	Ala	Val	Arg 140	Leu	Gly	Asp	Pro
20	His 1 4 5	Phe	туг	Gln	Asp	Ser 150	Leu	Trp	Leu	Arg	Lys 155	Glu	Phe	Met	Gln	Val 160
25	Arg	Arg	Хаа													
	(2)	TAIRC	DWA.	TON.	EOB	CEO	TD 1	to	156.							
30	(2)			'ION SEQUI												
						ENGT YPE:				acid	5					
35																
55			(xi)			OPOLA E DES				EQ II	ONO:	: 456	5:			
33	Met 1			SEQU	JENCI	E DES	SCRI	PTION	1: SI	EQ II Leu 10				Gly	Thr 15	Ser
40	1	Arg	Ile	SEQI Gln	JENCI Val 5	Phe	Ile	PTION Leu	l: SI Leu	Leu	Gly	Ala	Gly		15	
	1 Gln	Arg Phe	Ile Thr	SEQU Gln Lys 20	Val 5 Pro	E DES Phe Pro	Ile Ser	PTION Leu Leu	Leu Pro 25	Leu 10	Gly Glu	Ala Pro	Gly Glu	Pro 30	15	
40	1 Gln Glu	Arg Phe Ser	Thr Ser 35	SEQU Gln Lys 20	Val 5 Pro Thr	Phe Pro Glu	Ile Ser Thr	Leu Leu Ser 40	leu Pro 25 Glu	Leu 10 Leu	Gly Glu	Ala Pro	Gly Glu Glu	Pro 30	15	
40	1 Gln Glu	Arg Phe Ser	Thr Ser 35	SEQUENT SEQUEN	Val 5 Pro Thr	E DES Phe Pro Glu SEQ CHAR	Ile Ser Thr	Leu Leu Ser 40	Pro 25 Glu	Leu 10 Leu Gln	Gly Glu Ile	Ala Pro	Gly Glu Glu	Pro 30	15	
40 45 50	1 Gln Glu	Arg Phe Ser	Thr Ser 35	SEQUENT SEQUENCES SEQUENCE	Val 5 Pro Thr FOR ENCE ENCE ENCE ENCE ENCE ENCE ENCE ENC	E DES Phe Pro Glu SEQ CHAR ENGTH	Ile Ser Thr ID N RACTHH: 1 amin OGY:	Leu Leu Ser 40 CC: 4 ERIST	Pro 25 Glu 57: FICS: mino cid ear	Leu 10 Leu Gln	Glu Glu Ile	Ala Pro Arg	Glu Glu 45	Pro 30	15	
40 45	Glu (2)	Arg Phe Ser	Thr Ser 35	SEQUE CONTROL CONTR	Val 5 Pro Thr FOR ENCE ENCE ENCE ENCE ENCE ENCE ENCE ENCE	Phe Pro Glu SEQ CHAR ENGTY YPE: DPOLG	Ile Ser Thr ID N RACTH H: 1 amin OGY: SCRIN	Leu Leu Ser 40 C: 4 IO: 4 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Pro 25 Glu 57: Sinino cid ear N: Si	Leu 10 Leu Gln	Gly Glu Ile	Ala Pro Arg	Glu Glu 45	Pro 30 Lys	15 Ala	Val

	Thr	Asp	Thr 35	His	Ile	Cys	Val	Cys 40	Val	Cys	Ile	Tyr	Leu 45	Ser	Ser	Val
5	Val	Ser 50	Lys	Ser	Ser	Ala	Glu 55	Ala	Asp	Gly	Val	Leu 60	Gln	Pro	Arg	Arg
10	His 65	Pro	Ala	Ser	Leu	Leu 70	Ile	Val	Phe	Ala	Thr 75	Ser	Ile	Ser	Glu	Ser 80
10	Ser	Leu	Leu	Ile	Phe 85	Ser	Phe	Gln	Lys	Thr 90	Glu	Ala	Lys	Leu	Ile 95	Val
15	Phe	Ala	Val	Ser 100	Leu	Ala	Ala	Lys	Xaa 105							
	(2)	INFO	ORMAT	rion	FOR	SEQ	ID 1	NO: 4	158:							
20			(i) :							: acid	s					
25				(B) T	YPE:	ami	no a	cid							
25			(xi)													
	Met 1	Leu	Pro	Pro	Phe 5	Ser	Leu	Val	Tyr	Thr 10	His	Phe	Leu	Val	Ala 15	Ser
30	Leu	Leu	Pro	Val 20	Ile	Leu	Ala	Val	Phe 25	Pro	Asp	Ser	Ala	Gln 30	Ile	Val
35	Pro	Leu	Leu 35	Lys	Pro	Ile	Pro	Arg 40	Pro	Gln	Pro	Glu	Val 45	Ile	Phe	Pro
	Ser	Ser 50	Glu	Leu	Leu	Glu	Gln 55	Leu	Leu	Ser	Val	Gln 60	Phe	Val	Trp	Gln
40	Ala 65	His	Thr	Val	Ala	Xaa 70										
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	10:4	59:							
45			(i) S							: acid	l s					
50			(xi)	(1)T (C	OPOLO	CGY:	no ad line	ear	5Q 1 1	O NO:	: 459) :			
	Met 1		Leu											Gly	Phe 15	Phe
55	Ala	Leu	Val	Gly 20	Leu	Ala	Lys	Leu	Ser 25	Glu	Glu	Ile	Ser	Ala 30	Pro	Val
	Ser	Glu	Arg 35	Met	Asn	Ala	Leu	Phe 40	Val	Gln	Phe	Ala	Glu 45	Val	Phe	Pro
<i></i>													20			

	Leu	Lys 50		Phe	Gly	Tyr	Gln 55	Pro	Asp	Pro	Leu	Asn 60		Gln	Ile	Ala
:	Val 5 65		Phe	Leu	Glu	Leu 70		Ala	Gly	Leu	Leu 75	Leu	Val	Met	Gly	Pro 80
	Pro	Met	Leu	Gln	Glu 85	Ile	Ser	Asn	Leu	Phe 90	Leu	Ile	Leu	Leu	Met 95	Met
• 10) Gly	Ala	Ile	Phe 100	Thr	Leu	Ala	Ala	Leu 105	Lys	Glu	Ser	Leu	Ser 110	Thr	Суя
1:		Pro	Ala 115	Ile	Val	Cys	Leu	Gly 120	Phe	Leu	Leu	Leu	Leu 125	Asn	Val	Gly
	Gln	Leu 130	Leu	Ala	Gln	Thr	Lys 135	Lys	Val	Val	Arg	Pro 140	Thr	Arg	Lys	Lys
20	Thr) 145	Leu	Ser	Thr	Phe	Lys 150	Glu	Ser	Trp	Lys	Xaa 155					
25		INFO		SEQUI	ENCE A) L	CHAI ENGT	RACTI H: 3	ERIST	rics mino	: aci	ds					
30)		(xi)					line PTION		EQ II	ОИС	: 460):			
	Met 1	Lys	Leu	Gly	Arg 5	Ala	Val	Leu	Gly	Leu 10	Leu	Leu	Leu	Ala	Pro 15	Ser
35	Val	Val	Gln	Ala 20	Val	Glu	Pro	Ile	Ser 25	Leu	Gly	Leu	Ala	Leu 30	Ala	Gly
40		Leu	Thr 35	Gly	Tyr	Ile	Tyr	Pro 40	Arg	Leu	Tyr	Cys	Leu 45	Phe	Ala	Glu
	Cys	Суs 50	Gly	Gln	Lys	Arg	Ser 55	Leu	Ser	Arg	Glu	Ala 60	Leu	Gln	Lys	Asp
45	Leu 65	Asp	Asp	Asn	Leu	Phe 70				Leu			Lys		Ile	
		Ala	Val	Phe	Gly 85	Phe	İle	Asn	Asn	Pro 90	Lys	Pro	Lys	Lys	Pro 95	Leu
50) Thr	Leu	Ser	Leu 100	His	Gly	Trp	Thr	Gly 105	Thr	Gly	Lys	Asn	Phe 110	Val	Ser
55		Ile	Ile 115	Ala	Glu	Asn	Ile	Туг 120	Glu	Gly	Gly	Leu	Asn 125	Ser	Asp	Tyr
	Val	His 130	Leu	Phe	Val	Ala	Thr 135	Leu	His	Phe	Pro	His 140	Ala	Ser	Asn	Ile
60	Thr 145	Leu	Tyr	Lys	Asp	Gln 150	Leu	Gln	Leu	Trp	Ile 155	Arg	Gly	Asn	Val	Ser 160

	Ala	Cys	Ala	Arg	Ser 165	Ile	Phe	Ile	Phe	Asp 170	Glu	Met	Asp	Lys	Met 175	His
5	Ala	Gly	Leu	Ile 180	Asp	Ala	lle	Lys	Pro 185	Phe	Leu	Asp	Tyr	Tyr 190	Asp	Leu
10	Val	Asp	Gly 195	Val	Ser	Tyr	Gln	Lys 200	Ala	Met	Phe	Ile	Phe 205	Leu	Ser	Asn
	Ala	Gly 210	Ala	Glu	Arg	Ile	Thr 215	Asp	Val	Ala	Leu	Asp 220	Phe	Trp	Arg	Ser
15	Gly 225	Lys	Gln	Arg	Glu	Asp 230	Ile	Lys	Leu	Lys	Asp 235	Ile	Glu	His	Ala	Leu 240
	Ser	Val	Ser	Val	Phe 245	Asn	Asn	Lys	Asn	Ser 250	Gly	Phe	Trp	His	Ser 255	Ser
20	Leu	Ile	Asp	Arg 260	Asn	Leu	Ile	Asp	Tyr 265	Phe	Val	Pro	Phe	Leu 270	Pro	Leu
25	Glu	Tyr	Lys 275	His	Leu	Lys	Met	Суs 280	Ile	Arg	Val	Glu	Met 285	Gln	Ser	Arg
23	Gly	Туг 290	Glu	Ile	Asp	Glu	Asp 295	Ile	Val	Ser	Arg	Val 300	Ala	Glu	Glu	Met
30	Thr 305	Phe	Phe	Pro	Lys	Glu 310	Glu	Arg	Val	Phe	Ser 315	Asp	Lys	Gly	Cys	Lys 320
	Thr	Val	Phe	Thr	Lys 325	Leu	Asp	Tyr	Tyr	Tyr 330	Asp	Asp				
35	(0)															
	(2)	INF	ORMAT	PION	FOR	SEQ	ID I	VO: 4	161:							
40			(i) :	(A) L B) T D) T	ENGT YPE : OPOL	H: 5 ami OGY:	ami no a lin	no a cid ear	cids		: 46	1:			
45	Met 1	Leu	Lys	Cys	Ile 5											
50	(2)	INF	orma:	rion	FOR	SEQ	ID I	NO: 4	162 :							
			(i)		ENCE A) L B) T	ENGT	н: 1	4 am	ino		s					
55			(xi)	SEQ	D) T UENC					EQ I	D NO	: 46	2:			
60	Met 1		Leu	Thr	Leu 5	Leu	Ser	Val	Val	Ser 10	Thr	Met	Ala	Ser		

	(2)	INF	ORMA'	TION	FOR	SEQ	ID	NO:	463:							
5			(i)	(A) I B) T	ENGT YPE:	H: 2 ami	ERIS 85 a no a lin	mino cid		ds					
10			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 46	3:			
	Met 1	Lys	Leu	His	Pro 5	Pro	Pro	Pro	Ser	Pro 10	Val	Thr	Gln	Asp	His 15	Arg
15	Ser	Lys	Ser	Ser 20	His	Ser	Asn	Trp	Met 25	Pro	Arg	Met	Gly	Ala 30	Cys	Ser
	Met	Ser	Arg 35	Thr	Ser	Ser	Ser	Gly 40	Pro	Pro	Ser	Leu	Cys 45	Lys	Ser	Thr
20	Ser	Gly 50	Arg	Ser	Cys	Thr	Arg 55	Pro	His	Суѕ	Trp	Pro 60	Ser	Leu	Pro	Ala
25	Trp 65	Val	Ser	Val	Phe	Thr 70	Arg	Thr	Asn	Thr	Gly 75	Ser	Trp	Суѕ	Tyr	Pro 80
	Ala	Trp	Gly	Gly	Ala 85	Phe	Ser	Arg	Pro	Trp 90	Met	Ser	Ala	Gln	Ser 95	Met
30	Cys	Cys	Ala	Glu 100	Arg	Ser	Val	Leu	Gln 105	Val	Ala	Cys	Arg	Leu 110	Leu	Asp
	Ala	Leu	Glu 115	Phe	Leu	His	Glu	Asn 120	Glu	Tyr	Val	His	Gly 125	Asn	Val	Thr
35	Ala	Glu 130	Asn	Ile	Phe	Val	Asp 135	Pro	Glu	Asp	Gln	Ser 140	Gln	Val	Thr	Leu
40	Ala 145	Gly	Tyr	Gly	Phe	Ala 150	Phe	Arg	Tyr	Cys	Pro 155	Ser	Gly	Lys	His	Val 160
	Ala	Туr	Val	Glu	Gly 165	Ser	Arg	Ser	Pro	His 170	Glu	Gly	Asp	Leu	Glu 175	Phe
45	Ile	Ser	Met	Asp 180	Leu	His	Lys	Gly	Суs 185	Gly	Pro	Ser	Arg	Arg 190	Xaa	Asp
	Leu	Gln	Ser 195	Leu	Gly	Tyr	Cys	Met 200	Leu	Lys	Trp	Leu	Туг 205	Gly	Phe	Leu
50	Pro	Trp 210	Thr	Asn	Cys	Leu	Pro 215	Xaa	Xaa	Glu	Asp	11e 220	Met	Lys	Gln	Lys
55	Gln 225	Lys	Phe	Val	Asp	Lys 230	Pro	Gly	Pro	Phe	Val 235	Gly	Pro	Суѕ	Gly	His 240

Trp Ile Arg Pro Ser Glu Thr Leu Gln Lys Tyr Leu Lys Val Val Met $245 \hspace{1cm} 250 \hspace{1cm} 255 \hspace{1cm}$

Ala Leu Thr Tyr Glu Glu Lys Pro Pro Tyr Ala Met Leu Arg Asn Asn

260 265 270

	Leu	Glu	Ala 275	Leu	Leu	Gln	Asp	Leu 280	Arg	Val	Ser	Pro	Tyr 285			
5																
	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO:	464:							
10				(A) L B) T D) T	ENGT YPE: OPOL	H: 8 ami OGY:	0 aπ no a lin	ino cid ear	acid		: 46	4:			
15	Met 1	Thr	Ser	Pro	Pro 5	Pro	His	Gln	Gly	Trp 10	Glu	Gln	Arg	Gly	Cys 15	Gly
20	Glu	Ser	Gln	Val 20	Pro	Leu	Ala	Leu	Ser 25	Arg	Val	Phe	Ser	Thr 30	Ser	His
	Tyr	Cys	Leu 35	Leu	Leu	Val	Ala	Asn 40	Gln	Ser	Ile	Phe	Phe 45	Pro	Суз	Leu
25	Trp	Ala 50	Val	Glu	Arg	Leu	Leu 55	Gly	Val	Arg	Cys	Thr 60	Cys	Pro	Leu	Ser
	Trp 65	Gly	Lys	Arg	Ile	Ile 70	Ser	Glu	His	Cys	Ser 75	Ala	Gln	Ser	Ser	Хаа 80
30	(2)	INF	ORMA!	rion	FOR	SEQ	ID N	VO: 4	165:							
10				C	A) L B) T D) T	ENGT YPE: OPOL	H: 4 ami: OGY:	7 am no a lin	ino cid ear	acid		: 46	5:			
15	Met 1	His	Thr	Trp	Tyr 5	Asn	Asp	Arg	Arg	Gln 10	Asn	Cys	His	Cys	Leu 15	Leu
15	Phe	Phe	Leu	Ile 20	Tyr	Leu	Arg	Lys	Ile 25	Tyr	Gln	Val	Val	Pro 30	His	Val
50	Pro	Leu	Leu 35	Val	Lys	Cys	Arg	Gly 40	Arg	Leu	Lys	Gly	Val 45	Asn	Ile	
55	(2)	INF		rion Seou		_										
50				(A) L B) T D) T	ENGT YPE: OPOL	H: 9 ami OGY:	6 am no a lin	ino cid ear	acid		. AC	c.			
-0			(YT)	SEQ	-۱۷۱۰	- 12	OCKT.	LITO.	W: 3	لليت	טוז ט	. 40	u:			

	1		i beu	val	5		Pne	e rec	cys	10		Leu	ı Ala	Pro	15	vai
5	Leu	ı Ala	Ser	Ala 20		Glu	Lys	Glu	Lys 25		Met	Asp	Pro	Phe 30		Tyr
10	Asp	Тут	Gln 35		Leu	Arg	Ile	Gly 40		Leu	Val	Phe	Ala 45		Val	Leu
10	Phe	Ser 50		Gly	Ile	Leu	Leu 55		Leu	Ser	Arg	Arg 60		Lys	Cys	Ser
15	Phe 65		Gln	Lys	Pro	Arg 70	Ala	Pro	Gly	Asp	Glu 75		Ala	Gln	Val	Glu 80
	Asn	Leu	Ile	Thr	Ala 85	Asn	Ala	Thr	Glu	Pro 90	Gln	Lys	Ala	Glu	Asn 95	Xaa
20																
25	(2)	INF	ORMA:	rion Sequ												
20				(A) L B) T	ENGT YPE:	H: 3 ami	99 a no a	mino cid		ds					
30			(xi)		D) TN UENCI					EQ I	D NO	: 46	7:			
35	Met 1	Ala	Ser	Gly	Ala 5	Asp	Ser	Lys	Gly	Asp 10	Asp	Leu	Ser	Thr	Ala 15	Ile
	Leu	Lys	Gln	Lys 20	Asn	Arg	Pro	Asn	Arg 25	Leu	Ile	Val	Asp	Glu 30	Ala	Ile
40	Asn	Glu	Asp 35	Asn	Ser	Val	Val	Ser 40	Leu	Ser	Gln	Pro	Lys 45	Met	Asp	Glu
	Leu	Gln 50	Leu	Phe	Arg	Gly	Asp 55	Thr	Val	Leu	Leu	Lys 60	Gly	Lys	Lys	Arg
45	Arg 65	Glu	Ala	Val	Cys	Ile 70	Val	Leu	Ser	Asp	Asp 75	Thr	Cys	Ser	Asp	Glu 80
50	Lys	Ile	Arg	Met	Asn 85	Arg	Val	Val	Arg	Asn 90	Asn	Leu	Arg	Val	Arg 95	Leu
50	Gly	Asp	Val	Ile 100	Ser	Ile	Gln	Pro	Cys 105	Pro	Asp	Val	Lys	Туг 110	Gly	Lys
55	Arg	Ile	Ніs 115	Val	Leu	Pro	Ile	Asp 120	Asp	Thr	Val	Glu	Gly 125	Ile	Thr	Gly
	Asn	Leu 130	Phe	Glu	Val	Туг	Leu 135	Lys	Pro	Tyr	Phe	Leu 140	Glu	Ala	Tyr	Arg
60	Pro	Ile	Arg	Lys	Gly	Asp	Ile	Phe	Leu	Val	Ara	Glv	Glv	Met	Ara	Ala

	145					150					155					160
5	Val	Glu	Phe	Lys	Val 165	Val	Glu	Thr	Asp	Pro 170	Ser	Pro	Туг	Cys	Ile 175	Val
,	Ala	Pro	Asp	Thr 180	Val	Ile	His	Cys	Glu 185	Gly	Glu	Pro	Ile	Lys 190	Arg	Glu
10	Asp	Glu	Glu 195	Glu	Ser	Leu	Asn	Glu 200	Val	Gly	Tyr	Asp	Asp 205	Ile	Gly	Gly
	Cys	Arg 210	Lys	Gln	Leu	Ala	Gln 215	Ile	Lys	Glu	Met	Val 220	Glu	Leu	Pro	Leu
15	Arg 225	His	Pro	Ala	Leu	Phe 230	Lys	Ala	Ile	Gly	Val 235	Lys	Pro	Pro	Arg	Gly 240
20	Ile	Leu	Leu	Tyr	Gly 245	Pro	Pro	Gly	Thr	Gly 250	Lys	Thr	Leu	Ile	Ala 255	Arg
	Ala	Val	Ala	Asn 260	Glu	Thr	Gly	Ala	Phe 265	Phe	Phe	Leu	Ile	Asn 270	Gly	Pro
25	Glu	Ile	Met 275	Ser	Lys	Leu	Ala	Gly 280	Glu	Ser	Glu	Ser	Asn 285	Leu	Arg	Lys
	Ala	Phe 290	Glu	Glu	Ala	Glu	Lys 295	Asn	Ala	Pro	Ala	Ile 300	Ile	Phe	Ile	Asp
30	Glu 305	Leu	Asp	Ala	Ile	Ala 310	Pro	Lys	Arg	Glu	Lys 315	Thr	His	Gly	Glu	Val 320
35	Glu	Arg	Arg	Ile	Val 325	Ser	Gln	Leu	Leu	Thr 330	Leu	Met	Asp	Gly	Leu 335	Lys
	Gln	Arg	Ala	His 340	Val	Ile	Val	Met	Ala 345	Ala	Thr	Asn	Arg	Pro 350	Asn	Ser
40	Ile	Asp	Pro 355	Ala	Leu	Arg	Arg	Phe 360	Gly	Arg	Phe	Asp	Arg 365	Glu	Val	Asp
	Ile	Gly 370	Ile	Pro	Asp	Ala	Thr 375	Gly	Arg	Leu	Glu	Ile 380	Leu	Gln	Ile	His
45	Thr 385	Lys	Asn	Met	Lys	Leu 390	Ala	Asp	Asp	Val	Asp 395	Leu	Glu	Gln	Xaa	
50	(2)	INFO	ORMAT			_			68:			•				

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1 amino acids
- (B) TYPE: amino acid
- 55 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 468:

Leu

(2)	INFORMATION	FOR	SEQ	ID	NO:	469:

5			(i)	(A) L	ENGT	ዝ: 2	73 a	mino	: aci	ds					
10			(xi)	(D) T	OPOL	OGY:	no a lin PTIO	ear	EQ I	D NO	: 46	9:			
10	Met 1	Ala	Ala	Pro	Lys 5	Gly	Ser	Leu	Trp	Val 10	Arg	Thr	Gln	Leu	Gly 15	Leu
15	Pro	Pro	Leu	Leu 20	Leu	Leu	Thr	Met	Ala 25	Leu	Ala	Gly	Gly	Ser 30	Gly	Thr
	Ala	Ser	Ala 35	Glu	Ala	Phe	Asp	Ser 40	Val	Leu	Gly	Asp	Thr 45	Ala	Ser	Суѕ
20	His	Arg 50	Ala	Cys	Gln	Leu	Thr 55	Tyr	Pro	Leu	His	Thr 60	Tyr	Pro	Lys	Glu
25	Glu 65	Glu	Leu	Tyr	Ala	Cys 70	Gln	Arg	Gly	Cys	Arg 75	Leu	Phe	Ser	Ile	Cys 80
	Gln	Phe	Val	Asp	Asp 85	Gly	Ile	Asp	Leu	Asn 90	Arg	Thr	Lys	Leu	Glu 95	Cys
30	Glu	Ser	Ala	Суs 100	Thr	Glu	Ala	Tyr	Ser 105	Gln	Ser	Asp	Glu	Gln 110	Tyr	Ala
	Cys	His	Leu 115	Gly	Cys	Gln	Asn	Gln 120	Leu	Pro	Phe	Ala	Glu 125	Leu	Arg	Gln
35	Glu	Gln 130	Leu	Met	Ser	Leu	Met 135	Pro	Lys	Met	His	Leu 140	Leu	Phe	Pro	Leu
40	Thr 145	Leu	Val	Arg	Ser	Phe 150	Trp	Ser	Asp	Met	Met 155	Asp	Ser	Ala	Gln	Ser 160
	Phe	Ile	Thr	Ser	Ser 165	Trp	Thr	Phe	Tyr	Leu 170	Gln	Ala	Asp	Asp	Gly 175	Lys
45	Ile	Val	Ile	Phe 180	Xaa	Ser	Lys	Pro	Arg 185	Asn	Pro	Arg	Tyr	Ala 190	Pro	His
	Leu	Glu	Pro 195	Gly	Ala	Leu	Pro	Asn 200	Leu	Хаа	Xaa	Xaa	Ser 205	Leu	Ser	Lys
50	Met	Ser 210	Xaa	Xaa	Ser	Xaa	Met 215	Arg	Asn	Ser	Gln	Ala 220	His	Arg	Asn	Phe
55	Leu 225	Glu	Asp	Gly	Glu	Ser 230	Asp	Gly	Phe	Leu	Arg 235	Cys	Leu	Ser	Leu	Asn 240
	Ser	Gly	Trp	Ile	Leu 245	Thr	Thr	Thr	Leu	Val 250	Leu	Ser	Val	Met	Val 255	Leu
60	Leu	Trp	Ile	Cys 260	Cys	Ala	Thr	Cys	Cys 265	Tyr	Thr	Leu	Leu	Asp 270	Ala	Val

Xaa

5

10

20

35

i	(2)	INFORMATION	FOD	CEO.	TD	NO.	470
1	12;	THEORIGITON	ruk	SEU	111	NO:	44 / U :

(i)	SEQUENCE	CHARACTERISTICS:
-----	----------	------------------

(A) LENGTH: 192 amino acids

(B) TYPE: amino acid(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 470:

15 Met Met Val Leu Ser Leu Gly Ile Ile Leu Ala Ser Ala Ser Phe Ser 1 5 10 15

Pro Asn Phe Thr Gln Val Thr Ser Thr Leu Leu Asn Ser Ala Tyr Pro
20 25 30

Phe Ile Gly Pro Phe Phe Phe Ile Ile Ser Gly Ser Leu Ser Ile Ala 35 40 45

Thr Glu Lys Arg Leu Thr Lys Leu Leu Val His Ser Ser Leu Val Gly 25 50 55 60

Ser Ile Leu Ser Ala Leu Ser Ala Leu Val Gly Phe Ile Ile Leu Ser 65 70 75 80

 $30\,$ Val Lys Gln Ala Thr Leu Asn Pro Ala Ser Leu Gln Cys Glu Leu Asp $85\,$ 90 95

Lys Asn Asn Ile Pro Thr Arg Ser Tyr Val Ser Tyr Phe Tyr His Asp $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Ser Leu Tyr Thr Thr Asp Cys Tyr Thr Ala Lys Ala Ser Leu Ala Gly

Xaa Leu Ser Leu Met Leu Ile Cys Thr Leu Leu Glu Phe Cys Leu Ala 40 130 135 140

Val Leu Thr Ala Val Leu Arg Trp Lys Gln Ala Tyr Ser Asp Phe Pro 145 150 155 160

Gly Ser Val Leu Phe Leu Pro His Ser Tyr Ile Gly Asn Ser Gly Met 165 170 175

Ser Ser Lys Met Thr His Asp Cys Gly Tyr Glu Glu Leu Leu Thr Ser \$180\$ \$185\$ \$190\$

55

(2) INFORMATION FOR SEQ ID NO: 471:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 234 amino acids

60 (B) TYPE: amino acid

	(D) TO	POLOGY: linea	r			
(xi)	SEQUENCE	DESCRIPTION:	SEO	ID	NO:	471:

Met Arg Lys Thr Arg Leu Trp Gly Leu Leu Trp Met Leu Phe Val Ser 5 Glu Leu Arg Ala Ala Thr Lys Leu Thr Glu Glu Lys Tyr Glu Leu Lys 25 10 Glu Gly Gln Thr Leu Asp Val Lys Cys Asp Tyr Thr Leu Glu Lys Phe Ala Ser Ser Gln Lys Ala Trp Gln Ile Ile Arg Asp Gly Glu Met Pro 15 Lys Thr Leu Ala Cys Thr Glu Arg Pro Ser Lys Asn Ser His Pro Val Gln Val Gly Arg Ile Ile Leu Glu Asp Tyr His Asp His Gly Leu Leu 20 90 Arg Val Arg Met Val Asn Leu Gln Val Glu Asp Ser Gly Leu Tyr Gln 105 25 Cys Val Ile Tyr Gln Pro Pro Lys Glu Pro His Met Leu Phe Asp Arg 120 Ile Arg Leu Val Val Thr Lys Gly Phe Ser Gly Thr Pro Gly Ser Asn 130 135 30 Glu Asn Ser Thr Gln Asn Val Tyr Lys Ile Pro Pro Thr Thr Thr Lys 150 Ala Leu Cys Pro Leu Tyr Thr Ser Pro Arg Thr Val Thr Gln Ala Pro 35 170 Pro Lys Ser Thr Ala Asp Val Ser Thr Pro Asp Ser Glu Ile Asn Leu 185 40 Thr Asn Val Thr Asp Ile Ile Arg Val Pro Val Phe Asn Ile Val Ile 195 200 Leu Leu Ala Gly Gly Phe Leu Ser Lys Ser Leu Val Phe Ser Val Leu 215 220 45 Phe Ala Val Thr Leu Arg Ser Phe Val Pro 230 (2) INFORMATION FOR SEQ ID NO: 472:

50

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 105 amino acids
- (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 472:
- Met Leu His Ile Leu Pro Leu Lys Ser Tyr Asp Phe Pro His Phe Ser 60 1 5 10

•	

	Let	ı Met	: Gly	Arg 20	Tyr	Arg	Cys	Ala	Ser 25	Leu	Leu	Phe	Cys	Phe 30	Leu	Leu
5	Leu	Phe	Phe 35	Phe	Phe	Cys	Ser	Val 40	Leu	Trp	Thr	Phe	Ser 45	Asp	Met	His
10	Arg	Ser 50	Gly	Glu	Asp	Gly	Pro 55	Trp	Thr	Pro	Cys	Val 60	His	His	Leu	Ala
	Ala 65		Leu	Ile	Ser	Тут 70	Gly	Gln	Pro	Gly	Phe 75	Ile	Суѕ	Ile	Ser	Leu 80
15	Phe	Ser	Pro	Val	Leu 85	Phe	Ile	Glu	Asn	Pro 90	Arg	His	Tyr	Ala	Asn 95	Ala
	Thr	Val	Thr	Thr 100	Leu	Gly	Asp	Trp	Хаа 105							
20																
	(2)	INF	ORMAT	rion	FOR	SEQ	ID N	Ю: 4	73:							
25			(i) : (xi)	() ()	A) L B) T D) T	ENGT YPE: OPOL	H: 3: ami: OGY:	2 am no a line	ino a cid ear	acid		47:	3:			
30	Met 1		Phe	Leu	Lys 5	Tyr	Arg	Phe	Leu	Phe 10	Phe	Leu	Val	Phe	Leu 15	Ala
35	Asn	Cys	Ile	Tyr 20	Ser	Leu	His	Tyr	Lys 25	Pro	Ser	Leu	Met	Tyr 30	Pro	Lys
40	(2)		ORMAT			_										
45			(i) s	() (1 (1	A) LI B) T C) T(ENGTI PE: OPOLO	H: 5° amir OGY:	71 ar no ac line	nino cid ear	acio		474	l:			
50	Met 1	Ala	Leu	Ser	Arg 5	Gly	Leu	Pro	Arg	Glu 10	Leu	Ala	Glu	Ala	Val 15	Ala
	Gly	Gly	Arg	Val 20	Leu	Val	Val	Gly	Ala 25	Gly	Gly	Ile	Gly	Cys 30	Glu	Leu
55	Leu	Lys	Asn 35	Leu	Val	Leu	Thr	Gly 40	Phe	Ser	His	Ile	Asp 45	Leu	Ile	Asp
60	Leu	Asp 50	Thr	Ile	Asp	Val	Ser 55	Asn	Leu	Asn	Arg	Gln 60	Phe	Leu	Phe	Gln

	Ly:	S Ly:	s His	s Val	Gly	Arg 70		Lys	S Ala	a Glr	75 Val		Lys	s Glu	sei	va]
5	Lei	ı Glı	n Phe	Э Туг	Pro 85	Lys	Ala	Asr	ılle	90		Туг	His	: Asp	Ser 95	
	Met	Ası	Pro	Asp 100	Tyr	Asn	Val	Glu	Phe 105	Phe	Arg	Gln	Phe	: Ile 110		ı Val
10	Met	: Asr	115	Leu	Asp	Asn	Arg	Ala 120		Arg	Asn	His	Val 125		Arg	Met
15	Cys	130	Ala	Ala	Asp	Val	Pro 135		Ile	Glu	Ser	Gly 140	Thr	Ala	Gly	Tyr
	Leu 145	Gly	Gln	Val	Thr	Thr 150	Ile	Lys	Lys	Gly	Val 155	Thr	Glu	Cys	Tyr	Glu 160
20	Cys	His	Pro	Lys	Pro 165	Thr	Gln	Arg	Thr	Phe 170	Pro	Gly	Cys	Thr	11e 175	Arg
	Asn	Thr	Pro	Ser 180	Glu	Pro	Ile	His	Cys 185	Ile	Val	Trp	Ala	Lys 190	Tyr	Leu
25	Phe	Asn	Gln 195	Leu	Phe	Gly	Glu	Glu 200	Asp	Ala	Asp	Gln	G1u 205	Val	Ser	Pro
30		210					215			Glu		220				
	Arg 225	Ala	Arg	Ala	Ser	Asn 230	Glu	Asp	Gly	Asp	Ile 235	Lys	Arg	Ile	Ser	Thr 240
35	Lys	Glu	Trp	Ala	Lys 245	Ser	Thr	Gly	Tyr	Asp 250	Pro	Val	Lys	Leu	Phe 255	Thr
40	Lys	Leu	Phe	Lys 260	Asp	Asp	Ile	Arg	Туг 265	Leu	Leu	Thr	Met	Asp 270	Lys	Leu
40			275					280		Leu			285			
45		290					295			Asp		300				
	Leu 305	Gly	Leu	Lys		Gln 310	Gln	Val	Leu	Asp	Val 315	Lys	Ser	Tyr	Ala	Arg 320
50					325					Arg 330					335	
	Gly	Asp	Gly	Ala 340	Glu	Leu	Ile	Trp	Asp 345	Lys	Asp	Asp	Pro	Ser 350	Ala	Met
55	Asp	Phe	Val 355	Thr	Ser .	Ala		Asn 360	Leu	Arg	Met		Ile 365	Phe	Ser	Met
60	Asn	Met 370	Lys	Ser	Arg		Asp 375	Ile	Lys	Ser		Ala 380	Gly	Asn	Ile	Ile

1	
•	

	Pro 385		a Ile	Ala	. Thr	Thr 390		Ala	Val	Ile	Ala 395	Gly	Leu	ılle	Val	Let 400
5	Glu	Gly	/ Leu	Lys	Ile 405		Ser	Gly	Lys	11e 410	Asp	Gln	Cys	Arg	Thr 415	
	Phe	Leu	ı Asn	Lys 420		Pro	Asn	Pro	Arg 425		Lys	Leu	Leu	Val 430		Cys
10	Ala	Leu	Asp 435	Pro	Pro	Asn	Pro	Asn 440	Cys	Tyr	Val	Cys	Ala 445		Lys	Pro
15	Glu	Val 450	Thr	Val	Arg	Leu	Asn 455	Val	His	Lys	Val	Thr 460	Val	Leu	Thr	Leu
15	Gln 465		Lys	Ile	Val	Lys 470	Glu	Lys	Phe	Ala	Met 475	Val	Ala	Pro	Asp	Val 480
20	Gln	Ile	Glu	Asp	Gly 485	Lys	Gly	Thr	Ile	Leu 490	Ile	Ser	Ser	Glu	Glu 495	Gly
	Glu	Thr	Glu	Ala 500	Asn	Asn	His	Lys	Lys 505	Leu	Ser	Glu	Phe	Gly 510	Ile	Arg
25	Asn	Gly	Ser 515	Arg	Leu	Gln	Ala	Asp 520	Asp	Phe	Leu	Gln	Asp 525	Tyr	Thr	Leu
30	Leu	Ile 530	Asn	Ile	Leu	His	Ser 535	Glu	Asp	Leu	Gly	Lys 540	Asp	Val	Glu	Phe
	Glu 545	Val	Val	Gly	Asp	Ala 550	Pro	Glu	Lys	Val	Gly 555	Xaa	Lys	Gln	Ala	Glu 560
35	Asp	Ala	Ala	Lys	Ser 565	lle	Thr	Asn	Gly	Gln 570	Xaa					
40	(2)		ORMA1	SEQUI		CHAI ENGT	RACTI H: 3:	ERIS 12 au	rics: mino		l s					
45			(xi)	(1	D) TY	OPOL	OGY:	lin	ear	EQ II	NO:	475	5:			
	Met 1	Gln	Val	Val	Thr 5	Cys	Leu	Thr	Arg	Asp 10	Ser	Tyr	Leu	Thr	His 15	Cys
50	Phe	Leu	Gln	His 20	Leu	Met	Val	Val	Leu 25	Ser	Ser	Leu	Glu	Arg 30	Thr	Pro
55	Ser	Pro	Glu 35	Pro	Val	qzA	Lys	Asp 40	Phe	Туг	Ser	Glu	Phe 45	Gly	Asn	Lys
	Thr	Thr 50	Gly	Lys	Met	Glu	Asn 55	Tyr	Glu	Leu	Ile	His 60	Ser	Ser	Arg	Val
60	Lys 65	Phe	Thr	Tyr	Pro	Ser 70	Glu	Glu	Glu	Ile	Gly 75	Asp	Leu	Thr	Phe	Thr 80

17	
-	
4	

	Val	Ala	Gln	Lys	Met 85	Ala	Glu	Pro	Glu	Lys 90	Ala	Pro	Ala	Leu	Ser 95	Ile
5	Leu	Leu	Tyr	Val 100	Gln	Ala	Phe	Gln	Val 105	Gly	Met	Pro	Pro	Pro 110	Gly	Cys
10	Cys	Arg	Gly 115	Pro	Leu	Arg	Pro	Lys 120	Thr	Leu	Leu	Leu	Thr 125	Ser	Ser	Glu
	Ile	Phe 130	Leu	Leu	Asp	Glu	Asp 135	Cys	Val	His	Tyr	Pro 140	Leu	Pro	Glu	Phe
15	Ala 145	Lys	Glu	Pro	Pro	Gln 150	Arg	Asp	Arg	Tyr	Arg 155	Leu	Asp	Asp	Gly	Arg 160
	Arg	Val	Arg	Asp	Leu 165	Asp	Arg	Val	Leu	Met 170	Gly	туг	Gln	Thr	Туг 175	Pro
20	Gln	Pro	Ser	Pro 180	Ser	Ser	Ser	Met	Thr 185	Cys	Lys	Val	Met	Thr 190	Ser	Trp
25	Ala	Val	Ser 195	Pro	Trp	Thr	Thr	Leu 200	Gly	Arg	Cys	Gln	Val 205	Ala	Arg	Leu
	Glu	Pro 210	Ala	Arg	Ala	Val	Lys 215	Ser	Ser	Gly	Arg	Cys 220	Leu	Ser	Pro	Val
30	Leu 225	Arg	Ala	Glu	Arg	Ser 230	Ser	Ser	Arg	Cys	Trp 235	Leu	Ala	Ser	Gly	Arg 240
	Pro	Cys	Val	Ala	Val 245	Ser	Cys	Leu	Ser	Ser 250	Ser	Pro	Ala	Ser	Pro 255	Gly
35	His	Ser	Gln	Pro 260	Val	Val	Ser	Ser	Leu 265	Thr	Pro	Thr	Gly	Ala 270	Gly	Gln
40	Gln	Ala	Phe 275	Val	Phe	Ser	Lys	Asn 280	Val	Leu	Ser	Ser	Leu 285	Trp	Tyr	Leu
	Asn	Leu 290	Thr	Val	Leu	Ala	Glu 295	Asn	Val	Asn	Met	Cys 300	Val	Cys	Cys	Val
45	Asn 305	Ser	Phe	Ser	Cys	Trp 310	Glu	Xaa								
	(2)	INFO	ORMAT	TION	FOR	SEQ	ID N	10: 4	176:							
50			(i) :							: aci	ds					
55			(xi)	C	D) T	OPOL	OGY:	no a lin	ear	FO TI	n NO	. 47	٤.			
	Met 1	Ala								-				Gln	Thr 15	Trp
60		Glu	Ala	Ala	_	Lys	Asp	Ser	Glu		Phe	Thr	Val	Asn		Ile

				20					25					30		
5	Leu	Gly	Glu 35	Ser	Val	Thr	Phe	Pro 40	Val	Asn	Ile	Gln	Glu 45	Pro	Arg	Glr
J	Val	Lys 50	Ile	Ile	Ala	Trp	Thr 55	Ser	Lys	Thr	Ser	Val 60	Ala	Tyr	Val	Thr
10	Pro 65	Gly	Asp	Ser	Glu	Thr 70	Ala	Pro	Val	Val	Thr 75	Val	Thr	His	Arg	Asr 80
	Tyr	Tyr	Glu	Arg	Ile 85	His	Ala	Leu	Gly	Pro 90	Asn	Tyr	Asn	Leu	Val 95	Ile
15	Ser	Asp	Leu	Arg 100	Met	Glu	Asp	Ala	Gly 105	Asp	Tyr	Lys	Ala	Asp 110	Ile	Asn
20	Thr	Gln	Ala 115	Asp	Pro	Tyr	Thr	Thr 120	Thr	Lys	Arg	Tyr	Asn 125	Leu	Gln	Ile
	Tyr	Arg 130	Arg	Leu	Gly	Lys	Pro 135	Lys	Ile	Thr	Gln	Ser 140	Leu	Met	Ala	Ser
25	Val 145	Asn	Ser	Thr	Cys	Asn 150	Val	Thr	Leu	Thr	Cys 155	Ser	Val	Glu	Lys	Glu 160
	Glu	Lys	Asn	Val	Thr 165	Туr	Asn	Trp	Ser	Pro 170	Leu	Gly	Glu	Glu	Gly 175	Asn
30	Val	Leu	Gln	Ile 180	Phe	Gln	Thr	Pro	Glu 185	Asp	Gln	Glu	Leu	Thr 190	Tyr	Thr
35	Cys	Thr	Ala 195	Gln	Asn	Pro	Val	Ser 200	Asn	Asn	Ser	Asp	Ser 205	Ile	Ser	Ala
	Arg	Gln 210	Leu	Cys	Ala	Asp	11e 215	Ala	Met	Gly	Phe	Arg 220	Thr	His	His	Thr
40	Gly 225	Leu	Leu	Ser	Val	Leu 230	Ala	Met	Phe	Phe	Leu 235	Leu	Val	Leu	Ile	Leu 240
	Ser	Ser	Val	Phe	Leu 245	Phe	Arg	Leu	Phe	Lys 250	Arg	Arg	Gln	Asp	Ala 255	Ala
45	Ser	Lys	Lys	Thr 260	Ile	Туг	Thr	Tyr	Ile 265	Met	Ala	Ser	Arg	Asn 270	Thr	Gln
50	Pro	Ala	Glu 275	Ser	Arg	Ile	Tyr	Asp 280	Glu	Ile	Leu	Gln	Ser 285	Lys	Val	Leu
50	Pro	Ser 290	Lys	Glu	Glu	Pro	Val 295	Asn	Thr	Val	Tyr	Ser 300	Glu	Val	Gln	Phe
55	Ala 305	Asp	Lys	Met	Gly	Lys 310	Ala	Ser	Thr	Gln	Asp 315	Ser	Lys	Pro	Pro	Gly 320

Thr Ser Ser Tyr Glu Ile Val Ile Xaa 325

	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	477 :							
5				((A) I B) T D) T	CHA ENGI YPE: OPOL E DE	H: 1 ami OGY:	.78 a .no a .lin	mino cid ear	aci		: 47	7:			
10	Met 1	Lys	Leu	Gln	Cys 5	Val	Ser	Leu	Trp	Leu 10	Leu	Gly	Thr	Ile	Leu 15	Ile
15	Leu	Cys	Ser	Val 20	Asp	Asn	His	Gly	Leu 25	Arg	Arg	Cys	Leu	Ile 30	Ser	Thr
	Asp	Met	His 35	His	Ile	Glu	Glu	Ser 40	Phe	Gln	Glu	Ile	Lys 45	Arg	Ala	Ile
20	Gln	Ala 50	Lys	Asp	Thr	Phe	Pro 55	Asn	Val	Thr	Ile	Leu 60	Ser	Thr	Leu	Glu
	Thr 65	Leu	Gln	Ile	Ile	Lys 70	Pro	Leu	Asp	Val	Cys 75	Cys	Val	Thr	Lys	Asn 80
25	Leu	Leu	Ala	Phe	Tyr 85	Val	Asp	Arg	Val	Phe 90	Lys	Asp	His	Gln	Glu 95	Pro
30	Asn	Pro	Lys	Ile 100	Leu	Arg	Lys	Ile	Ser 105	Ser	Ile	Ala	Asn	Ser 110	Phe	Leu
	Tyr	Met	Gln 115	Lys	Thr	Leu	Arg	Gln 120	Cys	Gln	Glu	Gln	Arg 125	Gln	Cys	His
35	Cys	Arg 130	Gln	Glu	Ala	Thr	Asn 135	Ala	Thr	Arg	Val	Ile 140	His	Asp	Asn	Туг
	Asp 145	Gln	Leu	Glu	Val	His 150	Ala	Ala	Ala	Ile	Lys 155	Ser	Leu	Gly	Glu	Leu 160
40	Asp	Val	Phe	Leu	Ala 165	Trp	Ile	Asn	Lys	Asn 170	His	Glu	Val	Met	Ser 175	Ser
4 5	Ala	Xaa														
	(2)	INFO	ORMAT	MOI	FOR	SEQ	ID I	VO: 4	178:							
50			(i) :	(. (:	A) L B) T	CHAI ENGT YPE: OPOL	H: 5 ami	2 am no a	ino cid		S					

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 478:

Asp Thr Ala Ile Arg Val Ala Leu Ala Val Ala Val Leu Lys Thr Val 1 5 10 15

Ile Leu Gly Leu Leu Cys Leu Leu Cys Gly Gly Gly Glu Gly Lys $20 \\ 25 \\ 30$

55

	Val	Ala	Gly 35	Arg	Gln	Ala	Val	Thr 40	Ser	Asp	Gln	Gln	Ser 45	Val	Gly	Arg
5	Arg	Asp 50	Val	Tyr												
10	(2)	INFO	ORMAT	rion	FOR	SEQ	ID I	NO: 4	179 :							
15				(A) L B) T D) T	ENGT YPE: OPOL	H: 6 ami OGY:	2 am no a lin	ino cid ear	acid			_			
	Met.		(X1)							EQ II				Tvr	Tvr	Glu
20	1	02	-,-	-,,	5		200	•	• • • •	10				-7-	15	-
	Asn	Lys	Thr	Asn 20	Ala	Pro	Gly	Glu	Gly 25	Ser	Met	Ile	Thr	Arg 30	Asn	Ile
25	Lys	Glu	Tyr 35	Phe	Leu	Pro	Phe	Leu 40	Phe	Суз	Cys	Val	Glu 45	Ala	Ser	Ile
	Ala	Ile 50	Asn	Lys	Leu	Asn	Tyr 55	Leu	His	Trp	Thr	His 60	Phe	Gln		
30																
	(2)	INF	ORMA	rion	FOR	SEQ	ID N	10: 4	180:							
35			(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami: OGY:	7 am no a lin	ino cid ear	: acid EQ I		. 19	n -			
40	Met		Gly											Ala	Val	Ser
	1	_			5					10					15	
45	Asp	Ser	Ala	A1a 20	Thr	Cys	Ile	Val	25	Lys	Gly					
	(2)	INF	ORMA!	rion	FOR	SEQ	ID i	NO: 4	181:							
50			(i)	(A) L B) T	ENGT YPE:	H: 3 ami	39 a no a	mino cid	: aci	ds					
55			(xi)			OPOL E DE				EQ I	D NO	: 48	1:			
	Met 1		Gly	Pro	Asp 5	Val	Glu	Thr	Pro	Ser 10	Ala	Ile	Gln	Ile	Cys 15	Arg
60	Ile	Met	Arg	Pro 20	Asp	Asp	Ala	Asn	Val 25	Ala	Gly	Asn	Val	His	Gly	Gly

·	Thr	Ile	Leu 35	Lys	Met	Ile	Glu	Glu 40	Ala	Gly	Ala	Ile	Ile 45	Ser	Thr	Ar
5	His	Cys 50	Asn	Ser	Gln	Asn	Gly 55	Glu	Arg	Cys	Val	Ala 60	Ala	Leu	Ala	Ar
10	Val 65	Glu	Arg	Thr	Asp	Phe 70	Leu	Ser	Pro	Met	Cys 75	Ile	Gly	Glu	Val	Ala 80
	His	Val	Ser	Ala	Glu 85	Ile	Thr	Tyr	Thr	Ser 90	Lys	His	Ser	Val	Glu 95	Va:
15	Gln	Val	Asn	Val 100	Met	Ser	Glu	Asn	Ile 105	Leu	Thr	Gly	Ala	Lys 110	Lys	Let
	Thr	Asn	Lys 115	Ala	Thr	Leu	Trp	Туг 120	Val	Pro	Leu	Ser	Leu 125	Lys	Asn	Val
20	Asp	Lys 130	Val	Leu	Glu	Val	Pro 135	Pro	Val	Val	Tyr	Ser 140	Arg	Xaa	Glu	Glr
25	Glu 145	Glu	Glu	Gly	Arg	Lys 150	Arg	Tyr	Glu	Ala	Gln 155	Lys	Leu	Glu	Arg	Met 160
	Glu	Thr	Lys	Trp	Arg 165	Asn	Gly	Asp	Ile	Val 170	Gln	Pro	Val	Leu	Asn 175	Pro
30				180					185					190	Leu	
			195					200					205		Val	
35	Met	Lys 210	Leu	Met	Asp	Glu	Val 215	Ala	Gly	Ile	Val	Ala 220	Ala	Arg	His	Cys
40	Lys 225	Thr	Asn	Ile	Val	Thr 230	Ala	Ser	Val	Asp	Ala 235	Ile	Asn	Phe	His	Asp 240
	Lys	Ile	Arg	Lys	Gly 245	Cys	Val	Ile	Thr	11e 250	Ser	Gly	Arg	Met	Thr 255	Ph∈
45				260					265					270	Asp	
			275					280					285		Phe	
50	Thr	Туг 290	Val	Ser	Leu	Ser	Gln 295	Glu	Gly	Arg	Ser	Leu 300	Pro	Val	Pro	Glr
55	305					310					315				Gly	320
	Gly	Arg	Tyr	Leu	Gln 325	Met	Lys	Ala	Lys	Xaa 330	Gln	Gly	His	Ala	Xaa 335	Xaa

Gln Pro Xaa

5	(2) INFORMATION FOR SEQ ID NO: 482:
3	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 482:
	Met Leu Asn Ser Asn Ile Asn Asp Leu Leu Met Val Thr Tyr Leu Ala 1 5 10 15
15	Asn Leu Thr Gln Ser Gln Ile Ala Leu Asn Glu Lys Leu Val Asn Leu 20 25 30
20	
	(2) INFORMATION FOR SEQ ID NO: 483:
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 48 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 483:
30	Met Arg Glu Thr Ser Ile Arg Val Leu Leu Met Leu Pro Ala Leu Glu
	1 5 10 15
35	Ser Thr Ser Gly Leu Ser Ala Phe Met Gly Leu Gly Thr Arg Ile Gly 20 25 30
40	Cys Phe Lys Thr Ile Thr Cys Trp Pro Thr Ser Leu Thr Gln Arg Xaa 35 40 45
45	(2) INFORMATION FOR SEQ ID NO: 484:
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 484:
	Met Tyr Met Tyr Ser Leu Asn Val Phe Leu Ser Phe Ile Phe Leu Ala
55	1 5 10 15 Leu Val Phe Lys Cys Val His Val Cys Gln Gly Ala Asn Ala Phe Leu 20 25 30
60	Phe Leu Lys Leu Val Phe 35

5	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:	485:							
			(i)	(A) L B) T	ENGT YPE:	H: 6 ami	ERIS 1 am no a	ino cid		ls					
10			(xi)					lin PTIO		EQ I	D NO	: 48	5:			
	Met 1	Gly	Leu	Arg	Leu 5	Ile	Cys	Leu	Glu	Leu 10	Thr	Met	Val	Lys	Ala 15	Leu
15	Val	Суѕ	Glu	Met 20	Phe	Leu	Phe	Phe	Leu 25	Met	Thr	Gln	Lys	Leu 30	Ile	Trp
20	Gln	Glu	Cys 35	Thr	Glu	Lys	Phe	Ala 40	Lys	Leu	Leu	Val	Gln 45	Leu	Ile	Ser
	Leu	Val 50	Phe	Ala	Trp	Glu	Phe 55	Phe	Ser	Glu	Asp	Thr 60	Pro			
25	(2)	INFO	ORMA!	rion	FOR	SEQ	ID I	WO: 4	186 :							
30			(i) .	(,		ENGT	н: 3	ERIS 46 a	mino		ds					
			(xi)				OGY:	lin PTIO	ear	EQ II	D NO	: 48	6:			
35	Met 1			SEQ	UENCI	E DE:	OGY: SCRI	lin PTIO	ear N: S	-				Ser	Arg 15	Val
35	1	Leu	Ala	SEQ1	VENCI Arg 5	E DE:	OGY: SCRII Val	lin PTIO	ear N: Si Leu	Arg 10	Thr	Leu	Pro	Ser Asn 30	15	
35 40	1 Phe	Leu His	Ala Pro	SEQUALA Ala 20	Arg 5 Phe	E DE: Leu Thr	OGY: SCRII Val Lys	lin PTIO Cys Ala	ear N: Si Leu Ser 25	Arg 10 Pro	Thr Val	Leu Val	Pro Lys	Asn	15 Ser	Ile
40	Phe Thr	Leu His Lys	Ala Pro Asn 35	SEQUALA Ala 20 Gln	Arg 5 Phe Trp	E DE: Leu Thr	OGY: SCRII Val Lys Leu	lin PTIO Cys Ala Thr 40	ear N: SI Leu Ser 25 Pro	Arg 10 Pro	Thr Val Arg	Leu Val Glu	Pro Lys Tyr 45	Asn 30	15 Ser Thr	Ile Lys
	1 Phe Thr	Leu His Lys Arg 50	Ala Pro Asn 35	Ala Ala 20 Gln	Arg 5 Phe Trp	E DE: Leu Thr Leu	OGY: SCRII Val Lys Leu Arg 55	lin PTIO Cys Ala Thr 40	ear N: SI Leu Ser 25 Pro	Arg 10 Pro Ser	Thr Val Arg Gly	Leu Val Glu Gln 60	Pro Lys Tyr 45 Glu	Asn 30 Ala	15 Ser Thr	Ile Lys Glu
40	1 Phe Thr Thr Ala 65	Leu His Lys Arg 50	Ala Pro Asn 35 Ile	SEQUALA Ala 20 Gln Gly Glu	Arg 5 Phe Trp Ile	E DE: Leu Thr Leu Arg	OGY: SCRI Val Lys Leu Arg 55 Met	lin PTIO Cys Ala Thr 40 Gly	ear N: Si Leu Ser 25 Pro Arg	Arg 10 Pro Ser Thr	Thr Val Arg Gly Phe	Leu Val Glu Gln 60 Lys	Pro Lys Tyr 45 Glu	Asn 30 Ala Leu	15 Ser Thr Lys Gln	Ile Lys Glu Met 80
40 45	Phe Thr Thr Ala 65 Gly	Leu His Lys Arg 50 Ala	Ala Pro Asn 35 Ile Leu Trp	SEQQ Ala Ala 20 Gln Gly Glu	Arg 5 Phe Trp Ile Pro Val 85	E DE: Leu Thr Leu Arg Ser 70	OGY: SCRII Val Lys Leu Arg 55 Met	lin PTION Cys Ala Thr 40 Gly	ear N: SI Leu Ser 25 Pro Arg Lys	Arg 10 Pro Ser Thr Ile Ala 90	Thr Val Arg Gly Phe 75 Val	Leu Val Glu Gln 60 Lys	Pro Lys Tyr 45 Glu Ile	Asn 30 Ala Leu Asp	15 Ser Thr Lys Gln Ala 95	Ile Lys Glu Met 80 Leu
40 45	Phe Thr Thr Ala 65 Gly Cys	Leu His Lys Arg 50 Ala Arg	Ala Pro Asn 35 Ile Leu Trp	SEQUALA Ala 20 Gln Gly Glu Phe Gly 100	JENCI Arg 5 Phe Trp Ile Pro Val 85 Leu	E DE: Leu Thr Leu Arg Ser 70 Ala	OGY: SCRI Val Lys Leu Arg 55 Met Gly Leu	lin PTION Cys Ala Thr 40 Gly Glu Gly Ser	ear N: SI Leu Ser 25 Pro Arg Lys Ala Asn 105	Arg 10 Pro Ser Thr Ile Ala 90 Glu	Thr Val Arg Gly Phe 75 Val	Leu Val Glu Gln 60 Lys Gly	Pro Lys Tyr 45 Glu Ile Leu Ala	Asn 30 Ala Leu Asp Gly	15 Ser Thr Lys Gln Ala 95 Glu	Ile Lys Glu Met 80 Leu

60

	Ile 145	Ser	Arg	Thr	Pro	Val 150	Leu	Met	Asn	Phe	Met 155	Met	Arg	Gly	Ser	Tr ₁
5	Val	Thr	Ile	Gly	Val 165	Thr	Phe	Ala	Ala	Met 170	Val	Gly	Ala	Gly	Met 175	Lei
	Val	Arg	Ser	11e 180	Pro	Tyr	Asp	Gln	Ser 185	Pro	Gly	Pro	Lys	His 190	Leu	Ala
10	Trp	Leu	Leu 195	His	Ser	Gly	Val	Met 200	Gly	Ala	Val	Val	Ala 205	Pro	Leu	Thi
15	Ile	Leu 210	Gly	Gly	Pro	Leu	Leu 215	Ile	Arg	Ala	Ala	Trp 220	Tyr	Thr	Ala	Gly
	11e 225	Val	Gly	Gly	Leu	Ser 230	Thr	Val	Ala	Met	Cys 235	Ala	Pro	Ser	Glu	Ly: 240
20	Phe	Leu	Asn	Met	Gly 245	Ala	Pro	Leu	Gly	Val 250	Gly	Leu	Gly	Leu	Val 255	Phe
	Val	Ser	Ser	Leu 260	Gly	Ser	Met	Phe	Leu 265	Pro	Pro	Thr	Thr	Val 270	Ala	Gly
25	Ala	Thr	Leu 275	Tyr	Ser	Val	Ala	Met 280	Tyr	Gly	Gly	Leu	Val 285	Leu	Phe	Sei
30	Met	Phe 290	Leu	Leu	Tyr	Asp	Thr 295	Gln	Lys	Val	Ile	Lys 300	Arg	Ala	Glu	Va.
	Ser 305	Pro	Met	Туг	Gly	Val 310	Gln	Lys	Tyr	Asp	Pro 315	Ile	Asn	Ser	Met	Let 320
35	Ser	Ile	Tyr	Met	Asp 325	Thr	Leu	Asn	Ile	Phe 330	Met	Arg	Val	Ala	Thr 335	Me
	Leu	Ala	Thr	Gly 340	Gly	Asn	Arg	Lys	Lys 345	Xaa						
40	(2)	TNE	ימאסר	rtOM	EOB	SEO	י חז	vin. 4	197 •							
	(2)	1.01				CHA				:						
45				(в) т D) т	ENGT YPE: OPOL	ami OGY:	no a lin	cid ear							
			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 48	7:			
50	Met 1	Glu	Glu	Val	Leu 5	Leu	Leu	Gly	Leu	Lys 10	Asp	Arg	Glu	Gly	Туг 15	Th
	Ser	Phe	Trp	Asn 20	Asp	Cys	Ile	Ser	Ser 25	Gly	Leu	Arg	Gly	Cys 30	Met	Le

Ile Glu Leu Ala Leu Arg Gly Arg Leu Gl
n Leu Glu Ala Cys Gly Met 35 $\,$ 40 $\,$ 45

Arg Arg Lys Ser Leu Leu Thr Arg Lys Val Ile Cys Lys Ser Asp Ala 50 $$\rm 55$$ 60

	Pro 65	Thr	Gly	Asp	Val	Leu 70	Leu	Asp	Glu	Ala	Leu 75	Lys	His	Val	Lys	Glu 80
5	Thr	Gln	Pro	Pro	Glu 85	Thr	Val	Gln	Asn	Trp 90	Ile	Glu	Leu	Leu	Ser 95	Gly
10	Glu	Thr	Trp	Asn 100	Pro	Leu	Lys	Leu	His 105	Tyr	Gln	Leu	Arg	Asn 110	Val	Arg
10	Glu	Arg	Leu 115	Ala	Lys	Asn	Leu	Val 120	Glu	Lys	Gly	Val	Leu 125	Thr	Thr	Glu
15	Lys	Gln 130	Asn	Phe	Leu	Leu	Phe 135	Asp	Met	Thr	Thr	His 140	Pro	Leu	Thr	Asr
	Asn 145	Asn	Ile	Lys	Gln	Arg 150	Leu	Ile	Lys	Lys	Val 155	Gln	Glu	Ala	Val	Let 160
20	Asp	Lys	Trp	Val	Asn 165	Asp	Pro	His	Arg	Met 170	Asp	Arg	Arg	Leu	Leu 175	Ala
25	Leu	Ile	Tyr	Leu 180	Ala	His	Ala	Ser	Asp 185	Val	Leu	Glu	Asn	Ala 190	Phe	Ala
	Pro	Leu	Leu 195	Asp	Glu	Gln	Tyr	Asp 200	Leu	Ala :	Thr	Lys	Arg 205	Val	Arg	Glr
30	Leu	Leu 210	Asp	Leu	Asp	Pro	Glu 215	Val	Glu	Суѕ	Leu	Lys 220	Ala	Asn	Thr	Asr
	Glu 225	Val	Leu	Trp	Ala	Val 230	Val	Ala	Ala	Phe	Thr 235	Lys	Xaa			
35																
	(2)		ORMAT													
40			(i) :	0	A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	00 a no a lin	mino cid ear	aci						
			(xi)	SEQ	JENC	E DE:	SCRI	PTIO	N: SI	EQ II	OM C	: 481	3:			
45	Met 1	Ala	Gln	Arg	Met 5		_	Val	-	Leu 10	Glu	Met	Thr	Gly	Leu 15	Asp
50	Ile	Glu	Lys	Asp 20	Gln	Ile	Ile	Glu	Met 25	Ala	Cys	Leu	Ile	Thr 30	Asp	Ser
	Asp	Leu	Asn 35	Ile	Leu	Ala	Glu	Gly 40	Pro	Asn	Leu	Ile	Ile 45	Lys	Gln	Pro
55	Asp	Glu 50	Leu	Leu	Asp	Ser	Met 55	Ser	Asp	Trp	Cys	Lys 60	Glu	His	His	Gly
	Lys 65	Ser	Gly	Leu	Thr	Lys 70	Ala	Val	Lys	Glu	Ser 75	Thr	Ile	Thr	Leu	Glr 80
60	Gln	Ala	Glu	Tyr	Glu	Phe	Leu	Ser	Phe	Val	Arg	Gln	Gln	Thr	Pro	Pro

WO 98/39448

650

85 Gly Leu Cys Pro Leu Ala Gly Asn Ser Val His Glu Asp Lys Lys Phe 105 5 Leu Asp Lys Tyr Met Pro Gln Phe Met Lys His Leu His Tyr Arg Ile 120 Ile Asp Val Ser Thr Val Lys Glu Leu Cys Arg Arg Trp Tyr Pro Glu 10 135 Glu Tyr Glu Phe Ala Pro Lys Lys Ala Ala Ser His Arg Ala Leu Asp 150 155 15 Asp Ile Ser Glu Ser Ile Lys Glu Leu Gln Phe Tyr Arg Asn Asn Ile Phe Lys Lys Ile Asp Glu Lys Lys Arg Lys Ile Ile Glu Asn Gly 185 20 Glu Asn Glu Lys Thr Val Ser Xaa 195 25 (2) INFORMATION FOR SEQ ID NO: 489: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 351 amino acids 30 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 489: Met Ala Thr Thr Ala Ala Pro Ala Gly Gly Ala Arg Asn Gly Ala Gly 35 5 10 Pro Glu Trp Gly Gly Phe Glu Glu Asn Ile Gln Gly Gly Gly Ser Ala 40 Val Ile Asp Met Glu Asn Met Asp Asp Thr Ser Gly Ser Ser Phe Glu 40 Asp Met Gly Glu Leu His Gln Arg Leu Arg Glu Glu Glu Val Asp Ala 55 45 Asp Ala Ala Asp Ala Ala Ala Glu Glu Glu Asp Gly Glu Phe Leu Gly Met Lys Gly Phe Lys Gly Gln Leu Ser Arg Gln Val Ala Asp Gln 50 90 Met Trp Gln Ala Gly Lys Arg Gln Ala Ser Arg Ala Phe Ser Leu Tyr 105 55 Ala Asn Ile Asp Ile Leu Arg Pro Tyr Phe Asp Val Glu Pro Ala Gln 115 120 Val Arg Thr Gly Leu Leu Glu Ser Met Ile Pro Ile Lys Met Val Asn 135 140 60

	Phe 145	Pro	Gln	Lys	Ile	Ala 150	Gly	Glu	Leu	Tyr	Gly 155	Pro	Leu	Met	Leu	Val 160
5	Phe	Thr	Leu	Val	Ala 165	Ile	Leu	Leu	His	Gly 170	Met	Lys	Thr	Ser	Asp 175	Thr
	Ile	Ile	Arg	Glu 180	Gly	Thr	Leu	Met	Gly 185	Thr	Ala	Ile	Gly	Thr 190	Cys	Phe
10	Gly	Tyr	Trp 195	Leu	Gly	Val	Ser	Ser 200	Phe	Ile	Tyr	Phe	Leu 205	Ala	Tyr	Leu
15	Cys	Asn 210	Ala	Gln	Ile	Thr	Met 215	Leu	Gln	Met	Leu	Ala 220	Leu	Leu	Gly	Tyr
13	Gly 225	Leu	Phe	Gly	His	Cys 230	lle	Val	Leu	Phe	11e 235	Thr	Tyr	Asn	Ile	His 240
20	Leu	His	Ala	Leu	Phe 245	Tyr	Leu	Phe	Trp	Leu 250	Leu	Val	Gly	Gly	Leu 255	Ser
	Thr	Leu	Arg	Met 260	Val.	Ala	Val	Leu	Val 265	Ser	Arg	Thr	Val	Gly 270	Pro	Thr
25	Gln	Arg	Leu 275	Leu	Leu	Cys	Gly	Thr 280	Leu	Ala	Ala	Leu	His 285	Met	Leu	Phe
30	Leu	Leu 290	Tyr	Leu	His	Phe	Ala 295	Tyr	His	Lys	Val	Val 300	Glu	Gly	Ile	Leu
30	Asp 305	Thr	Leu	Glu	Gly	Pro 310	Asn	Ile	Pro	Pro	Ile 315	Gln	Arg	Val	Pro	Arg 320
35	Asp	Ile	Pro	Ala	Met 325	Leu	Pro	Ala	Ala	Arg 330	Leu	Pro	Thr	Thr	Val 335	Leu
	Asn	Ala	Thr	Ala 340	Lys	Ala	Val	Ala	Val 345	Thr	Leu	Gln	Ser	His 350	Хаа	
40																
	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: 4	190:							
45				(ENCE A) L B) T D) T UENC	ENGT YPE : OPOL	H: 2 ami OGY:	65 a no a lin	mino cid ear	aci		. 49	٥.			
50	Met	Arq												Ala	Ser	Gly
	1		1		5	3	1	F		10	-				15	•
55	Glu	Ser	Gly	Thr 20		Gly	Gly	Gly	Gly 25		Thr	Glu	Glu	Ala 30	Phe	Met
	Thr	Phe	Tyr 35		Glu	Val	Lys	Gln 40		Glu	Lys	Arg	Asp 45		Val	Leu

Thr Ser Lys Asn Gln Ile Glu Arg Leu Thr Arg Pro Gly Ser Ser Tyr 50 55 60

	Phe 65	Asn	Leu	Asn	Pro	Phe 70	Glu	Val	Leu	Gln	11e 75	Asp	Pro	Glu	Val	Thr 80
5	Asp	Glu	Ğ1u	Ile	Lys 85	Lys	Arg	Phe	Arg	Gln 90	Leu	Ser	Ile	Leu	Val 95	His
10	Pro	Asp	Lys	Asn 100	Gln	Asp	Asp	Ala	Asp 105	Arg	Ala	Gln	Lys	Ala 110	Phe	Glu
10	Ala	Val	Asp 115	Lys	Ala	Туг	Lys	Leu 120	Leu	Leu	Asp	Gln	Glu 125	Gln	Lys	Lys
15	Arg	Ala 130	Leu	Asp	Val	Ile	Gln 135	Ala	Gly	Lys	Glu	Туг 140	Val	Glu	His	Thr
	Val 145	Lys	Glu	Arg	Lys	Lys 150	Gln	Leu	Lys	Lys	Glu 155	Gly	Lys	Pro	Thr	Ile 160
20	Val	Glu	Glu	Asp	Asp 165	Pro	Glu	Leu	Phe	Lys 170	Gln	Ala	Val	Tyr	Lys 175	Gln
25	Thr	Met	Lys	Leu 180	Phe	Ala	Glu	Leu	Glu 185	Ile	Lys	Arg	Lys	Glu 190	Arg	Glu
4 3	Ala	Lys	Glu 195	Met	His	Glu	Arg	Lys 200	Arg	Gln	Arg	Glu	Glu 205	Glu	Ile	Glu
30	Ala	Gln 210	Glu	Lys	Ala	Lys	Arg 215	Glu	Arg	Glu	Trp	Gln 220	Lys	Asn	Phe	Glu
	Glu 225	Ser	Arg	Asp	Gly	Arg 230	Val	Asp	Ser	Ттр	Arg 235	Asn	Phe	Gln	Ala	Asn 240
35	Thr	Lys	Gly	Lys	Lys 245	Glu	Lys	Lys	Asn	Arg 250	Thr	Phe	Leu	Arg	Pro 255	Pro
40	Lys	Val	Lys	Met 260	Glu	Gln	Arg	Glu	Xaa 265							
	(2)	INFO	ORMA!	rion	FOR	SEQ	ID I	NO: 4	1 91 :							
45			(i)	(ENCE A) L B) T D) T	ENGT YPE:	H: 2 ami	5 am no a	ino cid		s					
50			(xi)	SEQ	-					EQ I	D NO	: 49	1:			
50	Asp 1		Met	Pro	Thr 5	Cys	Pro	Leu	Xaa	Ala 10	Ser	Leu	Glu	Cys	Gly 15	Pro
55	Leu	Leu	Pro	Val 20	_	Leu	Cys	Cys	Leu 25							

(2) Information for SEQ 1D NO: 492: $60\,$

			(i) :		A) L	CHAI ENGT: YPE:	H: 1	59 a	mino		ds					
5			(xi)	SEQI		OPOL E DE:				EQ I	D NO	: 49	2 :			
	Met 1	Asn	Glu	Tyr	Arg 5	Val	Pro	Glu	Leu	Asn 10	Val	Gln	Asn	Gly	Val 15	Leu
10	Lys	Ser	Leu	Ser 20	Phe	Leu	Phe	Glu	Tyr 25	Ile	Gly	Glu	Met	Gly 30	Lys	Asp
15	Tyr	Ile	Tyr 35	Ala	Val	Thr	Pro	Leu 40	Leu	Glu	Asp	Ala	Leu 45	Met	Asp	Arg
	Asp	Leu 50	Val	His	Arg	Gln	Thr 55	Ala	Ser	Ala	Val	Val 60	Gln	His	Met	Ser
20	Leu 65	Gly	Val	Tyr	Gly	Phe 70	Gly	Cys	Glu	Asp	Ser 75	Leu	Asn	His	Leu	Leu 80
	Asn	Тут	Val	Trp	Pro 85	Asn	Val	Phe	Glu	Thr 90	Ser	Pro	His	Val	Ile 95	Gln
25	Ala	Val	Met	Gly 100	Ala	Leu	Glu	Gly	Leu 105	Arg	Val	Ala	Ile	Gly 110	Pro	Cys
30	Arg	Met	Leu 115	Gln	Tyr	Cys	Leu	Gln 120	Gly	Leu	Phe	His	Pro 125	Ala	Arg	Lys
	Val	Arg 130		Val	Туr	Trp	Lys 135	Ile	Tyr	Asn	Ser	Ile 140	Tyr	Ile	Gly	Ser
35	Gln 145	Asp	Ala	Leu	Ile	Ala 150	His	Tyr	Pro	Arg	Ile 155	Tyr	Gln	Arg	Xaa	
40	(2)	INFO	ORMAT	rion	FOR	SEQ	ID 1	VO: 4	193 :							
			(i) :		A) L	CHAI ENGT: YPE:	H: 2	79 au	mino		ds					
45			(xi)	SEQI		OPOL E DES				EQ II	ON C	: 49	3:			
	Met 1	Ile	Ser	Asp	Asn 5	Ser	Ala	Glu	Asn	Ile 10	Ala	Leu	Val	Thr	Ser 15	Met
50	Tyr	Asp	Gly	Leu 20	Leu	Gln	Ala	Gly	Ala 25	Arg	Leu	Cys	Pro	Thr 30	Val	Gln

Leu Glu Asp Ile Arg Asn Leu Gln Asp Leu Thr Pro Leu Lys Leu Ala

Ala Lys Glu Gly Lys Ile Glu Ile Phe Arg His Ile Leu Gln Arg Glu

Phe Ser Gly Leu Ser His Leu Ser Arg Lys Phe Thr Glu Trp Cys Tyr 65 70 75 80

55

35

55

	Gly	Pro	Val	Arg	Val 85	Ser	Leu	Tyr	Asp	Leu 90	Ala	Ser	Val	Asp	Ser 95	Cys
5	Glu	Glu	Asn	Ser 100	Val	Leu	Glu	Ile	Ile 105	Ala	Phe	His	Cys	Lys 110	Ser	Pro
10	His	Arg	His 115	Arg	Met	Val	Val	Leu 120	Glu	Pro	Leu	Asn	Lys 125	Leu	Leu	Gln
10	Ala	Lys 130	Trp	Asp	Leu	Leu	Ile 135	Pro	Lys	Phe	Phe	Leu 140	Asn	Phe	Leu	Суз
15	Asn 145	Leu	Ile	Tyr	Met	Phe 150	Ile	Phe	Thr	Ala	Val 155	Ala	Tyr	His	Gln	Pro 160
	Thr	Leu	Lys	Lys	Gln 165	Ala	Ala	Pro	His	Leu 170	Lys	Ala	Glu	Val	Gly 175	Asn
20	Ser	Met	Leu	Leu 180	Thr	Gly	His	Ile	Leu 185	Ile	Leu	Leu	Gly	Gly 190	Ile	Tyr
25	Leu	Leu	Val 195	Gly	Gln	Leu	Trp	Tyr 200	Phe	Trp	Arg	Arg	His 205	Val	Phe	Ile
23	Trp	Ile 210	Ser	Phe	Ile	Asp	Ser 215	Tyr	Phe	Glu	Ile	Leu 220	Phe	Leu	Phe	Gln
30	Ala 225		Leu	Thr	Val	Val 230	Ser	Gln	Val	Leu	Cys 235	Phe	Leu	Xaa	Ile	Glu 240
	Trp	Tyr	Leu	Pro	Leu 245	Leu	Val	Ser	Ala	Leu 250	Val	Leu	Gly	Trp	Leu 255	Asn
35	Leu	Leu	Tyr	Туг 260	Thr	Arg	Gly	Phe	Gln 265	His	Thr	Gly	Ile	Tyr 270	Ser	Val
40	Met	Ile	Gln 275	Lys	Pro	Trp	Xaa									
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:	494:							
45			(i)	(ENGT YPE:	H: 1 ami	93 a no a	mino cid	: aci	ds					
50			(xi)							EQ I	D NO	: 49	4 :			
50	Met 1	Ile	Arg	Cys	Gly 5	Leu	Ala	Cys	Glu	Arg 10	Cys	Arg	Trp	Ile	Leu 15	Pro
55	Leu	Leu	Leu	Leu 20	Ser	Ala	Ile	Ala	Phe 25	Asp	Ile	Ile	Ala	Leu 30	Ala	Gly
	Arg	Gly	Trp 35	Leu	Gln	Ser	Ser	Asp 40	His	Gly	Gln	Thr	Ser 45	Ser	Leu	Trp
60	Trp	Lys	Cys	Ser	Gln	Glu	Gly	Gly	Gly	Ser	Gly	Ser	Tyr	Glu	Glu	Gly

		50					55					60				
5	Cys 65	Gln	Ser	Leu	Met	Glu 70	Tyr	Ala	Trp	Gly	Arg 75	Ala	Ala	Ala	Ala	Met 80
,	Leu	Phe	Cys	Gly	Phe 85	Ile	lle	Leu	Val	Ile 90	Cys	Phe	Ile	Leu	Ser 95	Phe
10	Phe	Ala	Leu	Cys 100	Gly	Pro	Gln	Met	Leu 105	Val	Phe	Leu	Arg	Val 110	Ile	Gly
	Gly	Leu	Leu 115	Ala	Leu	Ala	Ala	Val 120	Phe	Gln	Ile	Ile	Ser 125	Leu	Val	Ile
15	Tyr	Pro 130	Val	Lys	Тут	Thr	Gln 135	Thr	Phe	Thr	Leu	His 140	Ala	Asn	Xaa	Ala
20	Val 145		Tyr	Ile	Tyr	Asn 150	Trp	Ala	Tyr	Gly	Phe 155	Gly	Trp	Ala	Ala	Thr 160
	Ile	Ile	Leu	Ile	Gly 165	Cys	Ala	Phe	Phe	Phe 170	Cys	Cys	Leu	Pro	Asn 175	Tyr
25	Glu	Asp	Asp	Leu 180	Leu	Gly	Asn	Ala	Lys 185	Pro	Arg	Tyr	Phe	Туг 190	Thr	Ser
	Ala															
30																
	(2)	INF	ORMA!	TION	FOR	SEQ	ID I	NO: 4	195 :							
35			(i) .	(ENCE A) L B) T D) T	ENGT YPE:	H: 2 ami	05 a no a	mino cid		ds					
			(xi)		UENC					EQ I	D NO	: 49	5:			
40	Met 1	Ala	Ala	Gly	Asp 5	Gln	Val	Phe	Ser	Gly 10	Ala	Gly	His	Val	Хаа 15	Glu
45	His	Val	Ala	Gly 20	Gly	Arg	His	Ala	Trp 25	Leu	Leu	Thr	Trp	Gln 30	Ser	Ala
	Cys	Pro	Ala 35	Asn	Arg	Leu	Ser	Leu 40	Val	Pro	Leu	Val	Pro 45	Ser	Ala	Ser
50	Met	Thr 50	Arg	Leu	Met	Arg	Xaa 55	Arg	Thr	Ala	Ser	Gly 60	Ser	Ser	Val	Ile
	Leu 65	Trp	Met	Ala	Pro	Ala 70	Ala	Ala	Pro	Thr	Pro 75	Ala	Arg	Ala	Pro	Glu 80
55	Ala	Ala	Pro	Thr	Pro 85	Ala	Arg	Ala	Pro	Ala 90	Ala	Ala	Arg	Thr	Pro 95	Ala
	3	03	Dro	Thr		mb~	Cox	D		670			7	.		m>

	Xaa	Pro	Gly 115	Pro	Ser	Pro	Trp	Arg 120	Ser	Pro	Ala	Arg	Arg 125	Pro	Ala	Gln
5	Leu	Pro 130		Pro	Asp	Ser	Asp 135	Leu	Cys	Ser	Gly	Pro 140	Leu	Leu	Pro	Gly
	Pro 145	Phe	Ser	Pro	Pro	Ala 150	Cys	His	Thr	Ala	Pro 155	Asn	Ser	Val	Leu	11e 160
10	Gln	Ser	Leu	Phe	Cys 165	Lys	Ser	Glu	Leu	Trp 170	Trp	Arg	Gln	Met	A rg 175	Ser
15	Ile	Thr	Trp	Val 180	Pro	Ser	Pro	Lys	Ala 185	Gly	Trp	Arg	Trp	Thr 190	Lys	Gly
	Arg	Lys	Gln 195	Ala	Ser	Pro	His	Arg 200	Ile	Leu	Phe	His	Xaa 205			
20	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 4	4 96:							
			(i)	SEQU												
25						ENGT YPE :				aci	ds					
			(xi)	SEQ		OPOL E DE				EQ I	D NO	: 49	6:			
30	Met 1	Ala	Leu	Thr	Leu 5	Leu	Pro	Ser	Val	Ser 10	Arg	Leu	Pro	Gly	Glu 15	Arg
	Met	Ala	Ala	Ser 20	Gly	Leu	Pro	Тут	Val 25	Leu	His	His	Lys	Ser 30	Ser	Leu
35	Met	Lys	Val 35	Ile	Phe	Phe	Pro	Tyr 40	Pro	Val	Leu	Pro	Leu 45	Pro	Ala	Pro
40	Asn	Gly 50	Thr	Trp	Val	Pro	Arg 55	Leu	Val	Leu	Gly	Leu 60	Gly	Ser	Gly	Asp
	Gln 65	Val	His	Tyr	Leu	Pro 70	Ile	Ser	Ser	Ser	Ile 75	Val	Asn	Tyr	Gly	Thr 80
45	Ser	Val	Ser	Gly	Lys 85		Trp			۵۸	Val	Tyr	Pro	Leu	His 95	Pro
	Thr	Pro	Thr	Trp 100	Ser	Thr	Arg	Cys	Phe 105	Gln	Val	Trp	Asp	Leu 110	Leu	Ser
50	Val	Glu	Leu 115	Pro	Asp	Lys	Gly	Glu 120	Gly	Asn	Thr	Arg	Arg 125	Ala	Ser	Gly
55	Val	Pro 130	Gly	Leu	Ser	Gln	Leu 135	Pro	Thr	Ser	His	Lys 140	Pro	Ile	Lys	Gln
	Glu	Tyr	Xaa													

WO 98/39448

(2)	INFORMATION	FOR	SEO	ΤD	NO:	497:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 64 amino acids

657

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 497:

Met Val Trp Val Leu Trp Ser Ala Pro Ser Leu Ala Pro Pro Trp Val 10 1 5 10 15

Gly Pro Cys Trp Pro Ser Thr Gly Asn Cys Cys Leu Cys Glu Val Gly
20 25 30

15 Ala Ala Leu Pro Pro Arg Gly Pro Ser Leu Ser Asp Cys Leu Gly Leu 35 40 45

Pro Pro Trp Thr Pro Trp Gly Pro Ala Trp Thr Leu Ala Gln Ser Xaa 50 55 60

20

25

30

5

(2) INFORMATION FOR SEQ ID NO: 498:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 94 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 498:

Met Ser Thr Gly Ala Leu Asn Thr Ser Pro Pro Ala Ser Asn Arg Leu 35 10 15

Glu Ser Thr Leu Asn Glu Tyr Leu Ile Gln Pro Gln Leu His Cys Ser 20 25 30

40 Ser Val Gln Arg Leu Thr Leu Lys Trp Gly Cys Ser Ser Leu Gln Arg

Asp Gly Gln Ala Val Pro Trp Gly Leu Trp Gln Arg Ala Tyr Pro Ser 50 60

Leu Leu Pro Thr Leu Pro Ser Asp Leu Leu Arg Pro His Ala Val Thr
65 70 75 80

Pro Ser Val Ser Val Ser Val His Thr Cys Glu Ser Ser Xaa 85 90

(2) INFORMATION FOR SEQ ID NO: 499:

55

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 22 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 499:

WO 98/39448

60

Met Phe Leu Ile Phe Val Tyr Phe Leu Lys Xaa Leu Phe Ser Ser Ser 1 5 10 Leu Pro Phe Leu Trp Leu 20 10 (2) INFORMATION FOR SEQ ID NO: 500: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 amino acids (B) TYPE: amino acid 15 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 500: Arg Gly Gly Leu Cys Pro Leu Leu Val Pro Gly Pro Leu Ala Arg Gln 20 Glu Pro Ser Pro Ser Leu Gln Gly Cys Ser Glu Ser Pro Val Gly Met 20 25 Asp 25 (2) INFORMATION FOR SEQ ID NO: 501: 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 501: Met Gln Phe Leu Leu Thr Ala Phe Leu Leu Val Pro Leu Leu Ala Leu 5 40 Cys Asp Val Pro Ile Ser Leu Gly Phe Ser Pro Ser 20 45 (2) INFORMATION FOR SEQ ID NO: 502: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid 50 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 502: Pro Gly Lys Pro Gln Ala Cys Pro Glu Leu Thr Ser Val Leu Pro 5 10 55 (2) INFORMATION FOR SEQ ID NO: 503:

(i) SEQUENCE CHARACTERISTICS:

5	(A) LENGTH: 19 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 503:
3	Asn Lys Ser Leu Xaa Ser Cys Leu Phe Val Leu His Phe Val Leu His 1 5 10 15
10	Cys Xaa Phe
15	(2) INFORMATION FOR SEQ ID NO: 504: (i) SEQUENCE CHARACTERISTICS:
20	(A) LENGTH: 29 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 504:
	Met Glu Lys Thr His Arg Leu Arg Ile Arg Asn Pro Cys Leu Gln Phe 1 5 10 15
25	Ser Ile Leu Asn Leu Phe Leu Leu Lys Met Ile Val Ser 20 25
30	(2) INFORMATION FOR SEQ ID NO: 505:
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 75 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 505:
40	Met Val Asp Ile Ser Lys Met His Met Ile Leu Tyr Asp Leu Gln Gln 1 5 10 15
	Asn Leu Ser Ser Ser His Arg Ala Leu Glu Lys Gln Ile Asp Thr Let 20 25 30
45	Ala Gly Lys Leu Asp Ala Leu Thr Glu Leu Leu Ser Thr Ala Leu Gly 35 40 45
	Pro Ser Ser Phe Gln Asn Pro Ala Ser Ser Pro Ser Ser Trp Thr His
50	Glu Glu Glu Pro Gly Tyr Phe Pro Gln Tyr Xaa 65 70 75
55	(2) INFORMATION FOR SEQ ID NO: 506:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 amino acids
60	(B) TYPE: amino acid (D) TOPOLOGY: linear

WO 98/39448

(xi)	SEQUENCE	DESCRIPTION:	SEO	TD	NO:	506:

660

Leu Pro Leu Ala Glu Leu Lys Asn Trp Val 1 5 10

5

ı	1)	INFORMATION	EOD	CEO.	TD	MO.	ENT.
١	4	1 TIME OUTSTITON	rur	SEC	\mathbf{L}	NO:	JU1:

10 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 207 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 507:

15

30

Met Leu Trp Phe Gly Gly Cys Ser Ala Val Asn Ala Thr Gly His Leu

1 5 10 15

Ser Asp Thr Leu Trp Leu Ile Pro Ile Thr Phe Leu Thr Ile Gly Tyr 20 25 30

Gly Asp Val Val Pro Gly Thr Met Trp Gly Lys Ile Val Cys Leu Cys 35 40 45

25 Thr Gly Val Met Gly Val Cys Cys Thr Ala Leu Leu Val Ala Val Val 50 55 60

Ala Arg Lys Leu Glu Phe Asn Lys Ala Glu Lys His Val His Asn Phe 65 70 75 80

Met Met Asp Ile Gln Tyr Thr Lys Glu Met Lys Glu Ser Ala Ala Arg 85 90 95

Val Leu Gln Glu Ala Trp Met Phe Tyr Lys His Thr Arg Arg Lys Glu 35 100 105 110

Ser His Ala Ala Arg Arg His Gln Arg Xaa Leu Leu Ala Ala Ile Asn 115 120 125

40 Ala Phe Arg Gln Val Arg Leu Lys His Arg Lys Leu Arg Glu Gln Val 130 135 140

Asn Ser Met Val Asp Ile Ser Lys Met His Met Ile Leu Tyr Asp Leu 145 150 155 160

Gln Gln Asn Leu Ser Ser Ser His Arg Ala Leu Glu Lys Gln Ile Asp 165 170 175

Thr Leu Ala Gly Lys Leu Asp Ala Leu Thr Glu Leu Leu Ser Thr Ala 50 180 185 190

Leu Gly Pro Arg Gln Leu Pro Glu Pro Ser Gln Gln Ser Lys Xaa 195 200 205

55

45

(2) INFORMATION FOR SEQ ID NO: 508:

(i) SEQUENCE CHARACTERISTICS:

60 (A) LENGTH: 36 amino acids

	(B) TYPE: amino acid														
	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 508:														
5	Met Trp Arg Cys Arg Gly Lys Leu Ser Phe Pro Leu Phe Ala Val Val 1 5 10 15														
10	Ile Val Ser Cys Arg Lys Asp Gly Pro Asp Ala Ala Ala Ala Pro Ala 20 25 30														
	Val Xaa Lys Lys 35														
15	(2) INFORMATION FOR SEQ ID NO: 509:														
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 509: 														
25	Met Ala Leu Val Ala Leu Phe Thr Gln Leu Met Arg Xaa Leu Gly Arg 1 5 10 15														
	Cys Pro Gln														
30															
	(2) INFORMATION FOR SEQ ID NO: 510: (i) SEQUENCE CHARACTERISTICS:														
35	(A) LENGTH: 32 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 510:														
40	Met Thr Phe Pro Phe Glu Lys Glu Asn Ser Cys Phe Gln Cys Leu Leu 1 5 10 15														
45	Phe Asp Ser Trp Arg Glu Gln Thr Arg Thr Asn Ile Gln Pro Gln Arg 20 25 30														
50	(2) TITODIATION DEC COS TO UD 521														
	(2) INFORMATION FOR SEQ ID NO: 511:														
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear														

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 511:

60

Met His Leu Leu Asp Phe Phe Arg Asp Leu Val Leu Leu Val Leu Leu 1 1 5 10 15

Ala Leu Leu Asp Ser Phe Trp Leu Glu Val Gln Lys 20 25 5 (2) INFORMATION FOR SEQ ID NO: 512: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 26 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 512: 15 Met Cys Leu Ile His Phe Ile Lys Ile Ile Leu Val Phe Ile Leu Lys 1 5 10 Leu Trp Leu Tyr Ser Gln Lys Cys Pro Lys 20 20 (2) INFORMATION FOR SEQ ID NO: 513: 25 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 513: 30 Met Ile His Val His Glu Trp Asn Asp Gln Met Leu Met Val Tyr Ile Phe Leu Tyr Pro Val Ser Ile Thr Phe Leu Asn Leu Cys Ser Leu Thr 35 25 Cys 40 (2) INFORMATION FOR SEQ ID NO: 514: (i) SEQUENCE CHARACTERISTICS: 45 (A) LENGTH: 47 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 514: 50 Leu Asn Glu Ser Tyr Val Ser Arg Ala Gly Gly Trp Phe Ser Met Phe Xaa Leu Ile Phe Phe Leu Leu Ala Leu Gly Ser Xaa Leu Cys Leu Leu 25 55 Leu Cys Leu Pro Ser Phe Asn Lys Thr Arg Arg Lys Gln Lys Pro

40

60

	(2) INFORMATION FOR SEQ ID NO: 515:
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 515:
10	Ser Ser Lys Thr Pro Leu Pro Ser Glu Arg Arg Trp Ile Ser Gly Ser 1 5 10 15
-	Ser Leu Met Ala Pro Arg Pro Trp Leu Leu Gly Ile Ala Leu Leu Gly 20 25 30
15	Leu Trp Ala Leu Glu Pro Ala Leu Gly His Trp 35 40
20	(2) INFORMATION FOR SEQ ID NO: 516:
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 516:
30	Leu Asn Trp 1
	(2) INFORMATION FOR SEQ ID NO: 517:
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 174 amino acids (B) TYPE: amino acid
40	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 517:
40	Phe Ala Phe Cys Ala Glu Leu Met Ile Gln Asn Trp Thr Leu Gly Ala 1 5 10 15
45	Val Asp Ser Gln Met Asp Asp Met Asp Met Asp Leu Asp Lys Glu Pho 20 25 30
	Leu Gln Asp Leu Lys Glu Leu Lys Val Leu Val Ala Asp Lys Asp Leu 35 40 45
50	Leu Asp Leu His Lys Ser Leu Val Cys Thr Ala Leu Arg Gly Lys Leu 50 55 60
55	Gly Val Phe Ser Glu Met Glu Ala Asn Phe Lys Asn Leu Ser Arg Gl 65 70 75 8

Leu Val Asn Val Ala Ala Lys Leu Thr His Asn Lys Asp Val Arg Asp

Leu Phe Val Asp Leu Val Glu Lys Phe Val Glu Pro Cys Arg Ser Asp 100 105 110

90

85

	His Trp Pro Leu Ser Asp Val Arg Phe Phe Leu Asn Gln Tyr Ser Ala 115 120 125
5	Ser Val His Ser Leu Asp Gly Phe Arg His Gln Ala Ser Gly Thr Ala 130 135 140
10	Thr Trp Ala Pro Ser Ala Ala Ala Ser Cys Ala Cys Ile Met Thr Glu 145 150 155 160
10	Val Pro Pro Asn Ala Pro Pro Thr Leu Thr Ile Lys Leu Leu 165 170
15	(2) INFORMATION FOR SEQ ID NO: 518:
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 43 amino acids(B) TYPE: amino acid
	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 518:
25	Met Trp Lys Asn Leu Gly Ser Gly Ser Val Phe Val Thr Trp Phe Ser 1 5 10 15
	Leu Val Met Ile Leu Ser Gly Ile Gly Pro Leu Gly Asp Ala Glu Asp 20 25 30
30	Ser Ile Ser Asp Val Ser His Arg Leu Arg Pro 35 40
35	(2) INFORMATION FOR SEQ ID NO: 519:
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 519:
45	Phe Gln Phe Pro Leu Leu Thr Ile Ala Leu Gln Phe Leu 1 5 10
	(2) INFORMATION FOR SEQ ID NO: 520:
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids (B) TYPE: amino acid
55	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 520: Met His Tor Val Ilo Val Lou Sor Lou Bhe Val Val Leu Glu Lys Lys
	Met His Tyr Val Ile Val Leu Ser Leu Phe Val Val Leu Glu Lys Lys 1 5 10 15
60	Asn Lys Met Gly Ser Asp Gly Cys Leu Arg Lys Asn Gly Ser 20 25 30

5	(2) INFORMATION FOR SEQ ID NO: 521:
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 47 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 521:
10	
	Met Ser Arg Ser Ile Val Leu Arg Gly Ser Leu Phe Leu Phe Phe Ser 1 5 10 15
15	His Tyr Thr Leu Lys Leu Leu Ser Val Ile Lys Gln Thr Asn Arg Lys 20 25 30
20	Ile Val Trp Glu Lys Pro Cys Ile Arg Leu Phe Tyr Xaa Val Leu 35 40 45
2.5	(2) INFORMATION FOR SEQ ID NO: 522:
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 26 amino acids(B) TYPE: amino acid
	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 522:
30	Met Pro Leu Pro Val Leu Leu Cys Leu Thr Leu Pro Met Pro Leu Pro
	Met 110 Deu 110 var Deu Deu Cys Deu 1111 Deu 110 Met 110 Deu 110
	1 5 10 15
35	
	1 5 10 15 Ser Ala Thr Ala Arg Gly Gly Asn Arg Thr
35 40	1 5 10 15 Ser Ala Thr Ala Arg Gly Gly Asn Arg Thr 20 25 (2) INFORMATION FOR SEQ ID NO: 523:
	1 5 10 15 Ser Ala Thr Ala Arg Gly Gly Asn Arg Thr 20 25 (2) INFORMATION FOR SEQ ID NO: 523: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 58 amino acids
40	1 5 10 15 Ser Ala Thr Ala Arg Gly Gly Asn Arg Thr 20 25 (2) INFORMATION FOR SEQ ID NO: 523: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 58 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
	1 5 10 15 Ser Ala Thr Ala Arg Gly Gly Asn Arg Thr 20 25 (2) INFORMATION FOR SEQ ID NO: 523: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 58 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 523:
40	1 5 10 15 Ser Ala Thr Ala Arg Gly Gly Asn Arg Thr 20 25 (2) INFORMATION FOR SEQ ID NO: 523: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 58 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
40	1 5 10 15 Ser Ala Thr Ala Arg Gly Gly Asn Arg Thr 20 25 (2) INFORMATION FOR SEQ ID NO: 523: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 58 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 523: Ser Ser Ile Pro Val Ser Ile Leu Ile Gly Met Lys Leu Ile Leu Tyr
40	Ser Ala Thr Ala Arg Gly Gly Asn Arg Thr 20 25 (2) INFORMATION FOR SEQ ID NO: 523: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 58 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 523: Ser Ser Ile Pro Val Ser Ile Leu Ile Gly Met Lys Leu Ile Leu Tyr 1 5 10 15 Leu Leu Ile Thr Glu Ser Gly Ser His Glu Lys Lys Ser Phe Tyr Pro

	(2) INFORMATION FOR SEQ ID NO: 524:
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 524:
10	Asn Arg Thr Leu Leu Phe Leu Ile Leu Phe Val Leu Phe Gly Leu Gly 1 5 10 15
	Tyr Gly Phe
15	
	(2) INFORMATION FOR SEQ ID NO: 525:
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 525:
25	Met Phe Leu Leu Val Leu Ser Val Phe Cys Asp Phe Met Cys Ser Ile 1 5 10 15
30	Ala Pro Arg Cys His Ala Leu Ser Leu Val Ser Leu Arg Ala Gln His 20 25 30
50	Leu Ser Leu Phe Ile Thr Cys His 35 40
35	(2) INFORMATION FOR SEQ ID NO: 526:
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 57 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 526:
45	Met Leu Leu Phe Ile Leu Leu Thr Leu Ser Ser Gly Cys Arg Leu Leu 1 5 10 15
	Val Ser Ser Trp Lys Thr Phe Leu Pro His Phe Ser Leu Pro Gly Pro 20 25 30
50	Arg Glu His Pro Glu Gly Ser Arg Thr Trp Phe Phe Arg Tyr Trp Glu 35 40 45
55	Pro Gly Ala His Cys Leu His Cys Ala 50 55
	(2) INFORMATION FOR SEQ ID NO: 527:
60	(i) SEQUENCE CHARACTERISTICS:

5			(xi)	()	B) T	YPE: OPOL	ami: OGY:	no a	cid ear	acid		: 52 ⁻	7:			
3	Ala 1	Arg	Leu	Leu	Leu 5	Phe	Leu	Ser	Ser	Val 10	His	Pro	Ser	Ile	Met 15	Pro
10	Ser	Cys	Asn	Gln 20	Leu											
15	(2)					_		10: 9								
20				(A) L B) T D) T	ENGT YPE: OPOL	H: 3 ami OGY:	no a lin	ino cid ear	acid		50	0.			
20			(XI)	SEQ	UENC.	E DE	SCRI	Prio	N: S.	EQ I	D NO	: 52	8:			
	Met 1	Ser	Leu	Thr	Ser 5	Ser	Leu	Thr	Phe	Leu 10	Ser	His	Ile	Leu	Leu 15	Leu
25	Pro	Gln	Lys	Leu 20	Gln	Phe	Leu	Ser	Trp 25	Met	Glu	Arg	Gln	Gln 30	Arg	Cys
	Thr	Gly		Ala	Lys	Tyr	Ala									
30			35													
	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	No: !	529:							
35				SEQU))	ENCE A) L B) T	CHA ENGT YPE:	RACT H: 1 ami	ERIS	PICS mino cid	: aci	ds					
40			(xi)							EQ I	D NO	: 52	9:			
40	Met 1	Val	Leu	Arg	Leu 5	Ile	Gln	Leu	Ile	Phe 10	Leu	Ile	Phe	Phe	Ile 15	His
45	Ile	Ile		Leu 20						Arg				Ser 30	Trp	Val
	Asn	Asp	Arg 35	Xaa	Leu	Gly	Leu	Arg 40	Asp	Val	Thr	His	Leu 45	Ile	Tyr	Leu
50	His	Trp 50	Val	His	Gly	His	Leu 55	Pro	Trp	Суз	His	Pro 60	Tyr	Ile	Gln	Val
	Glu	Phe	Ser	Ala	Leu	Ile 70	Glu	Ser	Thr	Ala	Gln 75	Leu	Gly	Leu	Pro	Phe 80
55	65															
55		Trp	Val	Arg	Val 85		His	Pro	Phe	Leu 90	Val	Leu	Pro	Cys	Leu 95	

Pro Gly Gly Met Phe Pro Gly Asn Leu Glu Ala Phe Arg Val Pro Val 5 10 (2) INFORMATION FOR SEQ ID NO: 530: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 82 amino acids (B) TYPE: amino acid 15 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 530: Met Gly Ser Ser Val Leu Pro Phe Cys Val Cys Val Thr Ser Pro Ser 20 Leu Gly Gly Arg Cys Ile Gln Gly Arg Phe Ala Ser His Ser Lys Phe 25 20 Trp Gly Phe Gly Xaa Lys Thr Ala Ser Phe Gly Ala Val Gly Glu Thr 25 40 Pro Pro Asp Gln Glu Pro Gln Lys Glu Thr Glu Pro Ala Thr Ser Ser 30 His Ala Arg Pro Trp Ala Arg Val Ile Gly Leu Arg Ile Trp Pro Gln Pro Asn 35 (2) INFORMATION FOR SEQ ID NO: 531: 40 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 531: 45 Met Leu Leu Ser Val Ala Ile Phe Ile Leu Leu Thr Leu Val Tyr Ala 10 Tyr Trp Thr Met 50 (2) INFORMATION FOR SEQ ID NO: 532: 55 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 75 amino acids (B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 532:

(2) INFORMATION FOR SEQ ID NO: 535:

	Asn 1		Glu	Ile	Leu 5	Glu	Tyr	Cys	туг	Туг 10	Leu	Thr	Gln	Leu	Lys 15	Ile
5	Ser	Met	Gly	Lys 20	Тут	Leu	Ser	Ile	Pro 25	Thr	Val	Leu	Leu	Lys 30	Ile	Ile
10	Arg	Cys	Ser 35	Ile	Thr	Ala	Val	Ser 40	Asp	Ser	Ser	Thr	Ser 45	Ттр	Ala	Ile
	Lys	Ala 50	Gln	Leu	Lys	Ile	Glu 55	Asn	Lys	Asp	Leu	Asp 60	Asn	Lys	Thr	Ala
15	Lys 65		Gly	Gly	Gln	Glu 70	Ala	Leu	Thr	Cys	Thr 75					
20	(2)	INF	ORMA'	SEQU)	ENCE A) L	CHA ENGT	RACT H: 6	ERIS	TICS ino	: acid	s					
25			(xi)	(B) T D) T UENC	OPOL	OGY:	lin	ear	EQ I	D NO	: 53	3:			
	Met 1		e Leu	Met	Arg 5	Met	His	Leu	Cys	Phe 10	Cys	Lys	Tyr	Cys	Cys 15	Ser
30	Phe	: Ile	Val	Thr 20	Pro	Thr	Ser	Thr	Ser 25	Asn	Thr	Xaa	Ser	Tyr 30	Leu	Trţ
35			Ile 35					40					Xaa 45	Trp	Ala	·Cys
40	1111	50	Asn	ATA	vai	Thr	55	GIU	GIY	Leu	PIO	60				
40	(2)	INF	ORMA!													
45			(i) (xi)	(A) L B) T D) T	ENGT YPE: OPOL	H: 3 ami OGY:	9 am no a lin	ino d cid ear	acid		: 53	4:			
50	Met 1	Ser	Leu	Leu	Asn 5	Thr	His	Thr	Leu	Cys 10	Phe	Val	Leu	Phe	Cys 15	Phe
	Thr	Leu	Ser	Ile 20	Asn	Gln	Glu	Lys	Leu 25	Ala	Asn	His	Leu	Ala 30	Phe	Arg
55	Ile	Leu	Phe 35	Phe	Ile	Val	Phe									

	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 2 amino acids
_	(B) TYPE: amino acid
5	(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 535:
	Met Leu
	1
10	•
	(2) INFORMATION FOR SEQ ID NO: 536:
15	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 36 amino acids
	(B) TYPE: amino acid
	(D) TOPOLOGY: linear
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 536:
-0	Met Asp Gln Phe Lys Ile Phe Tyr Phe Leu Lys Ala Phe Phe Ala Cys
	1 5 10 15
	Cys Asn Val Gln Asp Pro Ser Pro Phe Met Gly Glu Thr Gly Ser Tyr
25	20 25 30
	In her The Ohe
	Leu Asn Ile Gly 35
	33
30	
	(2) INFORMATION FOR SEQ ID NO: 537:
25	(i) SEQUENCE CHARACTERISTICS:
35	(A) LENGTH: 14 amino acids
	(B) TYPE: amino acid (D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 537:
	The suggestion amount received to her suggestion of the
40	Met Phe Asp Phe Leu Ser Tyr Phe Lys Asp Leu Leu Ser Cys
	1 5 10
45	(0) TITOTHORNOLOGIC TO TO TO TO TO
40	(2) INFORMATION FOR SEQ ID NO: 538:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 18 amino acids
	(B) TYPE: amino acid
50	(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 538:
	Met Gly Phe Gly Phe Val Leu Asn Ile Phe Ser Phe Phe Leu Xaa Pro
55	1 5 10 15
55	1 5 10 15 Pro Leu

	(2) INFORMATION FOR SEQ ID NO: 539:														
5	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 539:														
10	Leu Leu Trp Thr Leu Leu Ala Xaa Tyr Xaa 1 5 10														
15	(2) INFORMATION FOR SEQ ID NO: 540: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 108 amino acids (B) TYPE: amino acid														
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 540:														
	Met Ala Ala Gln Lys Asp Gln Gln Lys Asp Ala Glu Ala Glu Gly Leu 1 5 10 15														
25	Ser Gly Thr Thr Leu Leu Pro Lys Leu Ile Pro Ser Gly Ala Gly Arg 20 25 30														
30	Glu Trp Leu Glu Arg Arg Arg Ala Thr Ile Arg Pro Trp Ser Thr Phe 35 40 45														
	Val Asp Gln Gln Arg Phe Ser Arg Pro Arg Asn Leu Gly Glu Leu Cys 50 55 60														
35	Gln Arg Leu Val Arg Asn Val Glu Tyr Tyr Gln Ser Asn Tyr Val Phe 65 70 75 80														
	Val Phe Leu Gly Leu Ile Leu Tyr Cys Val Val Thr Ser Pro Met Leu 85 90 95														
40	Leu Val Ala Leu Ala Val Phe Phe Gly Ala Cys Xaa 100 105														
45	(2) INFORMATION FOR SEQ ID NO: 541:														
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 106 amino acids														
50	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 541:														
55	Phe Val Phe Leu Gly Leu Ile Leu Tyr Cys Val Val Thr Ser Pro Met 1 5 10 15														
,,	Leu Leu Val Ala Leu Ala Val Phe Phe Gly Ala Cys Tyr Ile Leu Tyr 20 25 30														

Leu Arg Thr Leu Glu Ser Lys Leu Val Leu Phe Gly Arg Glu Val Ser

. Pro Ala His Gln Tyr Ala Leu Ala Gly Gly Ile Ser Phe Pro Phe Phe 50 55 60

672

5 Trp Leu Ala Gly Ala Gly Ser Ala Val Phe Trp Val Leu Gly Ala Thr 65 70 75 80

Leu Val Val Ile Gly Ser His Ala Ala Phe His Gln Ile Glu Ala Val 85 90 95

10

Asp Gly Glu Glu Leu Gln Met Glu Pro Val 100 105

15

- (2) INFORMATION FOR SEQ ID NO: 542:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 136 amino acids

20

- (B) TYPE: amino acid(D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 542:
- Met Asp Arg Phe Thr Val Ala Gly Val Leu Pro Asp Ile Glu Gln Phe 25 1 5 10 15

Phe Asn Ile Gly Asp Ser Ser Ser Gly Leu Ile Gln Thr Val Phe Ile 20 25 30

- 30 Ser Ser Tyr Met Val Leu Ala Pro Val Phe Gly Tyr Leu Gly Asp Arg 35 40 45
 - Tyr Asn Arg Lys Tyr Leu Met Cys Gly Gly Ile Ala Phe Trp Ser Leu 50 55 60

35

Val Thr Leu Gly Ser Ser Phe Ile Pro Gly Glu His Phe Trp Leu Leu 65 70 75 80

- Leu Leu Thr Arg Gly Leu Val Gly Val Gly Glu Ala Ser Tyr Ser Thr 40 85 90 95
 - Ile Ala Pro Thr Leu Ile Ala Asp Leu Phe Val Ala Asp Gln Arg Thr 100 105 110
- 45 Gly Cys Ser Ala Ser Ser Thr Leu Pro Phe Arg Trp Ala Val Val Trp 115 120 125

Ala Thr Leu Gln Ala Pro Lys Xaa 130 135

50

- (2) INFORMATION FOR SEQ ID NO: 543:
- 55 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 424 amino acids
 - (B) TYPE: amino acid(D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 543:

	Met 1	Ala	Gly	Asp	Trp 5	His	Trp	Ala	Leu	Arg 10	Val	Thr	Pro	Gly	Leu 15	Gly
5	Val	Val	Ala	Val 20	Leu	Leu	Leu	Phe	Leu 25	Val	Val	Arg	Glu	Pro 30	Pro	Arg
	Gly	Ala	Val 35	Glu	Arg	His	Ser	Asp 40	Leu	Pro	Pro	Leu	Asn 45	Pro	Thr	Ser
10	Trp	Trp 50	Ala	Asp	Leu	Arg	Ala 55	Leu	Ala	Arg	Asn	Pro 60	Ser	Phe	Val	Leu
15	Ser 65	Ser	Leu	Gly	Phe	Thr 70	Ala	Val	Ala	Phe	Val 75	Thr	Gly	Ser	Leu	Ala 80
13	Leu	Trp	Ala	Pro	Ala 85	Phe	Leu	Leu	Arg	Ser 90	Arg	Val	Val	Leu	Gly 95	Glu
20	Thr	Pro	Pro	Cys 100		Pro	Gly	Asp	Ser 105	Cys	Ser	Ser	Ser	Asp 110	Ser	Leu
	Ile	Phe	Gly 115	Leu	Ile	Thr	Cys	Leu 120	Thr	Gly	Val	Leu	Gly 125	Val	Gly	Leu
25	Gly	Val 130		Ile	Ser	Arg	Arg 135	Xaa	Arg	His	Ser	Asn 140	Pro	Arg	Ala	Asp
30	Pro 145		Val	Cys	Ala	Thr 150	Gly	Leu	Leu	Gly	Ser 155	Ala	Pro	Phe	Leu	Phe 160
	Leu	Ser	Leu	Ala	Cys 165		Arg	Gly	Ser	Ile 170	Val	Ala	Thr	Tyr	Ile 175	Phe
35	Ile	Phe	Ile	Gly 180		Thr	Leu	Leu	Ser 185	Met	Asn	Trp	Ala	Ile 190	Val	Ala
	Asp	Ile	Leu 195		Tyr	Val	Val	11e 200	Pro	Thr	Arg	Arg	Ser 205	Thr	Ala	Glu
40	Ala	Phe 210		Ile	Val	Leu	Ser 215	His	Leu	Leu	Gly	Asp 220	Ala	Gly	Ser	Pro
45	Тут 225		Ile	Gly	Leu	11e 230	Ser	Asp	Arg	Leu	Arg 235	_	Asn	Trp	Pro	Pro 240
	Ser	Phe	Leu	Ser	Glu 245		Arg	Ala	Leu	Gln 250	Phe	Ser	Leu	Met	Leu 255	Cys
50	Ala	Phe	Val	Gly 260		Leu	Gly	Gly	Ala 265	Leu	Ser	Trp	Ala	Pro 270	Xaa	Ser
	Ser	Leu	Arg 275		Thr	Ala	Gly	Gly 280	His	Ser	Cys	Thr	Cys 285	Arg	Ala	Cys
55	Суѕ	Thr 290	_	Gln	Gly	Pro	Gln 295	Thr	Thr	Gly	Leu	Trp 300	_	Pro	Ser	Gly
60	Ala 305		Pro	Pro	Ala	Cys 310	Pro	Trp	Pro	Val	Cys 315		Ser	Glu	Arg	Leu 320

	Pro	Leu	Thr	Tyr	Leu 325	His	Ile	Cys	His	Ser 330	Xaa	Pro	Ттр	Ala	His 335	Pro
5	Thr	Lys	Gly	Leu 340	Gly	Leu	Thr	Pro	Trp 345	Pro	Gly	Pro	Ala	Ser 350	Arg	Gly
	Thr	Leu	Gly 355	Arg	Val	Pro	Ala	Pro 360	Arg	His	Тут	Xaa	Gly 365	Ser	Ser	Glλ
10	Glu	Glu 370	Val	Gly	Val	Gln	Glu 375	Gly	Asp	Pro	Ser	Pro 380	Gln	Gly	Xaa	Pro
15	Gln 385	Gly	Leu	Gly	Ala	Ile 390	Cys	Asn	Gly	Ile	Lys 395	Phe	Val	Ala	Arg	Pro 400
IJ	Gln	Val	Pro	Ala	Leu 405	Val	Phe	Leu	Trp	Val 410	Ala	Ser	Asp	Leu	Ala 415	Pro
20	Arg	Leu	His	Pro 420	Arg	Ala	Pro	Glu								
25	(2)	INF	ORMA:	rion SEQU						:						
						ENGT YPE:				acid	s					
30			(xi)		D) T	OPOL	OGY:	lin	ear	FO T	ח או	. 54	4 -			
	Wat	D) a		-						_				•	٥	
	1	Pne	Arg	Pne	va1 5	iie	cys	Leu	Pne	10	пр	Leu	vai	Leu	15	Arc
35	Asp	Ser	Thr	Ser 20	Ala	Ser	Arg	Ile	Ala 25	Leu	Tyr	Tyr	Arg	Ile 30	Val	Ph∈
10	Leu	Ile	His 35	Gln	Cys	Ser	Ser									
	(2)	INFO	ORMAT	rion	FOR	SEQ	ID I	NO: 5	545:							
15			(i) :	(A) L B) T	CHAI ENGT YPE: OPOL	H: 5 ami	8 am no a	ino cid		s					
50			(xi)							EQ II	D NO	: 54	5:			
	Met 1	Leu	Pro	Ттр	Xaa 5	Ala	Gln	Leu	Leu	Asp 10	Arg	Thr	Ile	Gly	Pro 15	Leu
55	Tyr	Leu	Leu	Phe 20	Val	Gln	Phe	Ser	Pro 25	Ala	Phe	Ser	Arg	Thr 30	Ser	Pro
	Trp	Arg	Ser 35	Pro	Lys	Asn	Phe	Arg 40	Arg	Leu	Тут	Pro	Pro 45	Cys	Thr	Thr

Ser Gly Cys Ala Ala Arg Trp Leu Phe Ser

		50					55									
5	(2) I	NFO	RMAT	OION	FOR	SEQ	ID N	10: 5	46:							
10				() ()	A) LI B) T D) T	ENGT YPE: OPOL	H: 3: ami: OGY:	no a	ino a cid ear	: acid: EQ II		: 54	6 :			
15	Met G	Sly	Leu	Ser	Val 5	Leu	Leu	Pro	Leu	Cys 10	Leu	Leu	Gly	Pro	Gly 15	Arg
13	Phe T	hr	Ser	Gly 20	Gln	Lys	Pro	Leu	Asp 25	Thr	Pro	Gly	Leu	Gly 30	Val	Pro
20	Phe															
25	(2) 1			SEQU)	ENCE A) L	CHA ENGT	RACT H: 3	ERIS	TICS mino	: aci	ds					
30		,	(xi)		•			lin PTIO		EQ I	D NO	: 54	7:			
	Met A	la	Lys	Pro	Gln 5	Val	Val	Val	Ala	Pro 10	Val	Leu	Met	Ser	Lys 15	Leu
35	Ser V	/al	Asn	Ala 20	Pro	Glu	Phe	Tyr	Pro 25	Ser	Gly	Tyr	Ser	Ser 30	Ser	Туг
40	Thr G	lu	Ser 35	Tyr	Glu	Asp	Gly	Cys 40	Glu	Asp	Tyr	Pro	Thr 45	Leu	Ser	Glu
10	Tyr V	7al 50	Gln	Asp	Phe	Leu	Asn 55	His	Leu	Thr	Glu	Gln 60	Pro	Gly	Ser	Ph∈
45	Glu T 65	hr	Glu	Ile	Glu	Gln 70	Phe	Ala	Glu	Thr	Leu 75	Asn	Gly	Cys	Val	Thr 80
	Thr A	Asp	Asp	Ala	Leu 85	Gln	Glu	Leu	Val	Glu 90	Leu	Ile	Tyr	Gln	Gln 95	Ala
50	Thr S	Ser	Ile	Pro 100	Asn	Phe	Ser	Tyr	Met 105	Gly	Ala	Arg	Leu	Cys 110	Asn	Тут
55	Leu S	er	His 115	His	Leu	Thr	Ile	Ser 120	Pro	Gln	Ser	Gly	Asn 125	Phe	Arg	Gln

Leu Leu Gln Arg Cys Arg Thr Glu Tyr Glu Val Lys Asp Gln Ala

Ala Lys Gly Asp Glu Val Thr Arg Lys Arg Phe His Ala Phe Val Leu

	Phe	Leu	Gly	Glu	Leu 165	Tyr	Leu	Asn	Leu	Glu 170	Ile	Lys	Gly	Thr	Asn 175	Gly
5	Gln	Val	Thr	Arg 180	Ala	Asp	Ile	Leu	Gln 185	Val	Gly	Leu	Arg	Glu 190	Leu	Leu
10	Asn	Ala	Leu 195	Phe	Ser	Asn	Pro	Met 200	Asp	Asp	Asn	Leu	11e 205	Cys	Ala	Val
10	Lys	Leu 210	Leu	Lys	Leu	Thr	Gly 215	Ser	Val	Leu	Glu	Asp 220	Ala	Trp	Lys	Glu
15	Lys 225	Gly	Lys	Met	Asp	Met 230	Glu	Glu	Ile	Ile	Gln 235	Arg	Ile	Glu	Asn	Val 240
	Val	Leu	Asp	Ala	Asn 245	Cys	Ser	Arg	Asp	Val 250	Lys	Gln	Met	Leu	Leu 255	Lys
20	Leu	Val	Glu	Leu 260	Arg	Ser	Ser	Asn	Trp 265	Gly	Arg	Val	His	Ala 270	Thr	Ser
25	Thr	Tyr	Arg 275	Glu	Ala	Thr	Pro	Glu 280	Asn	Asp	Pro	Asn	Тут 285	Phe	Met	Asn
23	Glu	Pro 290	Thr	Phe	Tyr	Thr	Ser 295	Asp	Gly	Val	Pro	Phe 300	Thr	Ala	Ala	Asp
30	Pro 305	Asp	Tyr	Gln	Glu	Lys 310	Tyr	Gln	Glu	Leu	Leu 315	Glu	Arg	Glu	Asp	Phe 320
	Phe	Pro	Asp	Tyr	Glu 325	Glu	Asn	Gly	Thr	Asp 330	Leu	Ser	Gly	Ala	Gly 335	Asp
35	Pro	Tyr	Leu	Asp 340	Asp	Ile	Asp	Asp	Glu 345	Met	Asp	Pro	Glu	Ile 350	Glu	Glu
40	Ala	Туг	Glu 355	Lys	Phe	Cys	Leu	Glu 360	Ser	Glu	Arg	Lys	Arg 365	Lys	Gln	
	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: !	548:							
45			(i) :	(ENCE A) L B) T D) T	ENGT YPE:	H: 7 ami	7 am no a	ino cid		s					
50			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: 5	EQ I	D NO	: 54	8:			
50	Met 1	Leu	Arg	Leu	Asp 5	Ile	Ile	Asn	Ser	Leu 10	Val	Thr	Thr	Val	Phe 15	Met
55	Leu	Ile	Val	Ser 20	Val	Leu	Ala	Leu	Ile 25	Pro	Glu	Thr	Thr	Thr 30	Leu	Thr
	Val	Gly	Gly 35	Gly	Val	Phe	Ala	Leu 40	Val	Thr	Ala	Val	Cys 45	Cys	Leu	Ala
60	Asp	Gly	Ala	Leu	Ile	Tyr	Arg	Lys	Leu	Leu	Phe	Asn	Pro	Ser	Gly	Pro

	5	50			55					60				
5	Tyr G1 65	n Lys	Lys Pro	Val 70	His	Glu	Lys	Lys	Glu 75	Val	Leu			
	(2) IN	IFORMA'	rion for	SEQ	ID :	NO:	549:							
10			(B)	LENGI IYPE : IOPOI	TH: 4 : ami .OGY:	no a lin	ino cid ear	acid		: 54	9:			
15	Met Le	eu Lys	Gln Val		Phe	Val	Phe	Ser 10	Gly	Met	Gly	Pro	Arg 15	Ser
20	His C	/s Trp	Gly Let 20	ı Pro	Leu	Ala	Cys 25	Gly	Thr	Phe	Val	Gln 30	Gly	His
25	Gln Al	la Asp 35	Ser Ser	His	Leu	Leu 40	Pro	Leu	Lys	His	Gln 45	Gly	Ala	
25	(2) II	iforma	TION FOR	R SEQ	ID	NO:	550:							
30			(B)	LENGT TYPE : TOPOI	TH: 1 ami OGY:	.68 a .no a lin	mino cid ear	aci		: 55	0:			
35	Met Le	eu Leu	Ser Le		Ala	Phe	Ser	Val 10	Ile	Ser	Val	Val	Ser 15	Tyr
40			Ala Leu 20				25					30		_
	ser va	35	Gln Ala	val	GIII	40	ser	GIU	GIU	GIA	45	Pro	Pne	Lys
45	Ala Ty	r Leu 50	Asp Val	Asp				Ser				Phe	His	Asn
	Tyr Me 65	et Asn	Ala Ala	Met 70	Val	His	Ile	Asn	Arg 75	Ala	Leu	Lys	Leu	Ile 80
50	Ile Ar	g Leu	Phe Leu 85		Glu	Asp	Leu	Val 90	Asp	Ser	Leu	Lys	Leu 95	Ala
55	Val Ph	e Met	Trp Leu 100	Met	Thr	Tyr	Val 105	Gly	Ala	Val	Phe	Asn 110	Gly	Ile
	Thr Le	u Leu 115	Ile Leu	Ala	Glu	Leu 120	Leu	Ile	Phe	Ser	Val 125	Pro	Ile	Val
60	Tyr Gl		Tyr Lys	Thr	Gln 135	Ile	Asp	His	Tyr	Val 140	Gly	Ile	Ala	Arg

	Asp Gln Thr Lys Ser Ile Val Glu Lys Ile Gln Ala Lys Leu Pro Gly 145 150 155 160
5	Ile Ala Lys Lys Ala Glu Xaa 165
10	(2) INFORMATION FOR SEQ ID NO: 551:
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 124 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 551:
20	Ser Val Pro Phe His Leu Leu Val Val Leu Arg Ser Arg Ala Val Arg 1 5 10 15
	Ala Arg Arg Arg Glu Pro Arg Ser Leu Pro Arg Pro Gly Asp Glu 20 25 30
25	Glu Leu Gln Leu Leu Cys Gly Ala Arg Ser Asp Phe Leu Glu Arg 35 40 45
	Cys Glu Glu Asp Trp Val Cys Leu Trp His His Ala Asp His Ala Ala 50 55 60
30	Phe Pro Gly Ser Phe Gln Cys His Gln Cys Gly Phe Leu Pro His Pro 65 70 75 80
35	Gly Ser Ser Leu Cys His His Gln Leu Gln Asp Leu Gln Val Arg His 85 90 95
55	Pro Ser Cys Thr Glu Val Arg Arg Pro Ser Ile Gln Ser Leu Pro 100 105 110
40	Gly Arg Arg His Tyr Ser Val Leu Arg Ser Phe Pro 115 120
45	(2) INFORMATION FOR SEQ ID NO: 552: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 177 amino acids
50	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 552:
	Met Val His Leu Leu Val Leu Ser Gly Ala Trp Gly Met Gln Met Trp 1 5 10 15
55	Val Thr Phe Val Ser Gly Phe Leu Leu Phe Arg Ser Leu Pro Arg His 20 25 30
60	Thr Phe Gly Leu Val Gln Ser Lys Leu Phe Pro Phe Tyr Phe His Ile 35 40 45

Ser	Met	Gly	Cys	Ala	Phe	Ile	Asn	Leu	Cys	Ile	Leu	Ala	Ser	Gln	His
	50					55					60				

Ala Trp Ala Gln Leu Thr Phe Trp Glu Ala Ser Gln Leu Tyr Leu Leu 5 65 70 75 80

Phe Leu Ser Leu Thr Leu Ala Thr Val Asn Ala Arg Trp Leu Glu Pro 85 90 95

- 10 Arg Thr Thr Ala Ala Met Trp Ala Leu Gln Thr Val Glu Lys Glu Arg
 - Gly Leu Gly Glu Val Pro Gly Ser His Gln Gly Pro Asp Pro Tyr 115 120 125

Arg Gln Leu Arg Glu Lys Asp Pro Lys Tyr Ser Ala Leu Arg Gln Asn
130 135 140

Phe Phe Arg Tyr His Gly Leu Ser Ser Leu Cys Asn Leu Gly Cys Val 20 - 145 - 150 - 155 - 160

Leu Ser Asn Gly Leu Cys Leu Ala Gly Leu Ala Leu Glu Ile Arg Ser 165 170 175

25 Leu

30 (2) INFORMATION FOR SEQ ID NO: 553:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 72 amino acids
 - (B) TYPE: amino acid
- (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 553:

Met Ala Phe Ile Leu Leu Phe Tyr Cys Leu Met Thr Phe Leu Ser Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

40

35

Glu Gln Asn Ser Ala Thr Val Glu Pro Ser Ser His Glu Ile Leu His 20 25 30

Leu Leu Gln Asn Cys Phe Glu Leu Leu Arg Thr Ser Thr Ser Gln Cys 45 35 40 45

Thr Glu Gly Ile Pro Cys Ala Lys Ile Pro Glu Trp Val Thr His Leu
50 55 60

- 50 Thr Trp Gln Thr Leu Lys Asn Ser 65 70
- 55 (2) INFORMATION FOR SEQ ID NO: 554:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 45 amino acids
 - (B) TYPE: amino acid
- 60 (D) TOPOLOGY: linear

xi)	SEOUENCE	DESCRIPTION:	SEO	ID	NO:	554:

Val Leu Arg Ile Ile Cys Leu Trp Pro Cys Gly Thr Thr Leu Pro Leu 1 5 10 15

680

Val Glu Lys Ala His Asp Ser His Ser Ala Asp Pro Val Cys Pro Gly 20 25 30

Leu Thr Ala His Leu Pro Val Leu Leu Tyr Val Gln Leu 10 35 40 45

(2) INFORMATION FOR SEQ ID NO: 555:

15

30

60

5

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 251 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 555:

Met Lys His Ala Asp Pro Arg Ile Gln Gly Tyr Pro Leu Met Gly Ser 1 5 10 15

- 25 Pro Leu Leu Met Thr Ser Ile Leu Leu Thr Tyr Val Tyr Phe Val Leu 20 25 30
 - Ser Leu Gly Pro Arg Ile Met Ala Asn Arg Lys Pro Phe Gln Leu Arg 35 40 45
 - Gly Phe Met Ile Val Tyr Asn Phe Ser Leu Val Ala Leu Ser Leu Tyr 50 55 60
- Ile Val Tyr Glu Phe Leu Met Ser Gly Trp Leu Ser Thr Tyr Thr Trp 35 65 70 75 80
 - Arg Cys Asp Pro Gln Asp Cys Thr Leu Gly Gln Cys Pro Ser Val Pro 85 90 95
- 40 Ser Pro Xaa Thr Pro Val Thr Lys Ala Tyr Val Val Arg Thr Glu Gln 100 105 110
- Gly Thr Gly Pro Pro Leu Pro Thr Ala Ala Leu Gln Gly Pro Arg Leu 115 120 125
 - Trp Phe Leu Thr His Phe Pro Arg Ala Ala Pro Gly Met Trp Pro His 130 135 140
- Cys Cys Leu Pro Leu Gln Ser Trp Gly Leu Lys Gly Leu Tyr Ser Tyr 50 145 150 155 160
 - Phe Pro Leu Pro Ala Leu Lys Leu Gly Arg Gly Ala Leu Arg Ala Gly 165 170 175
- 55 Pro Thr Lys Gly Leu Val Ala Phe Phe Leu Thr Gln Lys Arg Ser Ala 180 185 190
 - Ile Met Ser Leu Trp Thr Gln Ser His Ser Ser Thr Pro His Thr Glu 195 200 205

	Ala Val 2 210	Ala Ser	Gly Pro	Lys Val 215	Arg Val	Gly Gly 220	Gly Leu	Gly Ile
5	Gln Pro V 225	Val Glu .	Ala Ala 230	Tyr Ser	Thr Cys	Val Leu 235	Ile Lys	Ser Asp 240
	Arg Gly A		Glu Lys 245	Lys Lys	Lys Lys 250	Lys		
10								
	(2) INFO	RMATION	FOR SEQ	ID NO: 5	556:			
15		() (E) (I)	A) LENGT B) TYPE: D) TOPOL	amino a OGY: lin	ino acid cid		6:	
20	Gly Leu	Ala Gly	Leu Cys	Gly Gln	Leu Ser	Ser Pro	Ala Leu	Cys Val
	1		5		10			15
	Asn Arg	Leu			,			
25								
	(2) INFO	RMATION	FOR SEQ	ID NO: 9	557:			
30	. (RACTERIS		_		
		(E	B) TYPE:	amino a		đs		
35	ť			OGY: lin SCRIPTIO	ear N: SEQ I	D NO: 55	7:	
55	Met Ile 1	Thr Glu	Lys Trp 5	Gly Leu	Asn Met 10	Glu Tyr	Cys Arg	Gly Gln 15
40	Ala Tyr :	Ile Xaa 20	Ser Ser	Gly Phe	Ser Ser 25	Lys Met	Lys Val	Val Ala
	Ser Arg 1	Leu Leu 35	Glu Lys	Tyr Pro 40	Gln Ala	Ile Tyr	Thr Leu 45	Cys Ser
45	Ser Cys 1	Ala Leu .	Asn Met	Trp Leu 55	Ala Lys	Ser Val 60	Pro Val	Met Gly
50	Val Ser V 65	Val Ala	Leu Gly 70	Thr Ile	Glu Glu	Val Cys 75	Ser Phe	Phe His 80
50	Arg Ser 1	Pro Gln :	Leu Leu 85	Leu Glu	Leu Asp 90	Asn Val	Ile Ser	Val Leu 95
55	Phe Gln A	Asn Ser 1	Lys Glu	Arg Gly	Lys Glu 105	Leu Lys	Glu Ile 110	Cys His
	Ser Gln 1	Prp Thr (Gly Arg	His Asp 120	Ala Phe	Glu Ile	Leu Val 125	Glu Leu
60	I au Clm ?	. 1 a . 1 au . 1		· · · · · · · · · · · · · · · · · · ·	1 01	T1	C 1	Mbw Non

		130					135					140				
5	Ile 145	Arg	Trp	Asn	Asn	Туг 150	Ile	Ala	Gly	Arg	Ala 155	Phe	Val	Leu	Cys	Ser 160
J	Ala	Val	Ser	Asp	Phe 165	Asp	Phe	Ile	Val	Thr 170	Ile	Val	Val	Leu	Lys 175	Asn
10	Val	Leu	Ser	Phe 180	Thr	Arg	Ala	Phe	Gly 185	Lys	Asn	Leu	Gln	Gly 190	Gln	Thr
	Ser	Asp	Val 195	Phe	Phe	Ala	Ala	Gly 200	Ser	Leu	Thr	Ala	Val 205	Leu	His	Ser
15	Leu	Asn 210	Glu	Val	Ile	Gly	Lys 215	Tyr	Xaa							
20	(2)	INF	ORMA	rion	FOR	SEQ	ID 1	۱O: <u>د</u>	558:							
			(i)	_				ERIS			-					
25				(B) T	YPE:	ami	z am no a lin	cid	acro	5					
23			(xi)					PTIO		EQ I	D NO	: 55	8:			
30	Leu 1		Lys	Val	Leu 5	Cys	Ile	Leu	Pro	Val 10	Met	Lys	Val	Glu	Asn 15	Glu
30	Arg	Tyr	Glu	Asn 20	Gly	Arg	Lys	Arg	Leu 25	Lys	Ala	Tyr	Leu	Arg 30	Asn	Thr
35	Leu	Thr	Asp 35	Gln	Arg	Ser	Ser	Asn 40	Leu	Ala	Leu	Leu	Asn 45	Ile	Asn	Phe
	Asp	Ile 50	Lys	His	Asp	Leu	Asp 55	Leu	Met	Val	Asp	Thr 60	Тут	Ile	Lys	Leu
40	Туг 65	Thr	Ser	Lys	Ser	Glu 70	Leu	Pro	Thr	Asp	Asn 75	Ser	Glu	Thr	Val	Glu 80
	Asn	Thr														
45																
	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID N	Ю: 5	559:							
50			(i) :	SEQUI	ENCE	CHAI	RACTI	ERIST	rics	•						
				(в) т	YPE:	ami	5 am no a	cid	acid	s					
~~			(xi)					line PTIO		EQ II	ON C	: 55	9:			
55	Met 1	Val	Leu	Ile	Leu 5	Leu	Asn	Leu	Leu	Leu 10	Gly	Gln	Phe	Ser	Cys 15	Met
60	Ser	Pro	Ala	Ser 20	His	His	Cys	His	Pro 25	Leu	Pro	Thr	Glu	Met 30	Pro	Cys

	Ser	Ser	Asp 35	Trp	Gly	Phe	Asp	Ser 40	His	Thr	Val	Tyr	Pro 45	Ser	Cys	Val
5	Asp	Ala 50	Leu	Leu	Pro	Lys	Pro 55	Ser	Ala	Asn	Ser	Phe 60	Pro	Asn	Gly	Ser
10	Cys 65	His	Cys	Gln	Gly	Leu 70	Tyr	Asn	Gln	Gln	Gln 75	Gln	Asn	Leu	His	Ala 80
10	Ala	Glu	Gly	Pro	Ala 85	Ser	Leu	Arg	Cys	Asn 90	Lys	Tyr	Val	Ser	Thr 95	
15	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: !	560:							
20				(B) T D) T	ENGT YPE : OPOL	H: 5 ami OGY:	4 am no a lin	ino cid ear	: acid EQ I		: 56	0:			
25	Met 1	Ile	Pro	Ala	Тут 5	Ser	Lys	Asn	Arg	Ala 10	Tyr	Ala	Ile	Phe	Phe 15	Ile
	Val	Phe	Thr	Val 20	Ile	Gly	Asp	Ala	Pro 25	Gly	Ala	Val	Leu	Ser 30	Cys	Ala
30	Gly	His	Pro 35	Cys	Val	Gly	Phe	Ala 40	Ala	Val	Leu	Val	Ala 45	Pro	Leu	Thr
35	Val	Ala 50	Val	Ser	Ser	Xaa										
40	(2)			SEQU (FOR ENCE A) L B) T D) T	CHA ENGT YPE:	RACT H: 1	ERIS 08 a no a	TICS mino cid	: aci	ds					
45	Met 1									Ser 10				Arg	Ala 15	Lev
50	Cys	Leu	Phe	Pro 20	Arg	Val	Phe	Ala	Ala 25	Glu	Ala	Val	Thr	Ala 30		Ser
	Glu	Val	Leu 35	Glu	Glu	Arg	Gln	Lys 40	Arg	Leu	Pro	Tyr	Val 45	Pro	Glu	Pro
55	Tyr	Tyr 50	Pro	Glu	Ser	Gly	Trp 55	Asp	Arg	Leu	Arg	Glu 60	Leu	Phe	Gly	Lys
60	Asp 65	Thr	Val	Asn	Thr	Ser 70	Leu	Asn	Val	тут	Arg 75	Asn	Lys	Asp	Ala	Leu 80

WO 98/39448

Ser His Phe Val Ile Ala Gly Ala Val Thr Gly Ser Leu Phe Arg Ile 85 90 95

684

Asn Val Gly Leu Arg Gly Trp Trp Leu Val Ala Xaa 5 100 105

(2) INFORMATION FOR SEQ ID NO: 562:

10

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 50 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 562:

Met Asn Trp Gly Leu Ser Ile Trp Leu His Tyr Tyr Glu Lys Lys $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

20 Glu Gln Val Phe Leu Val Ile Leu Ala His Val Val Arg Arg Cys Ala 20 25 30

Ser Asp Gly Ile Leu Gln Phe Glu Ser Ser Leu Leu Lys Met Arg Arg 35 40 45

25

Ala Pro 50

30

35

50

- (2) INFORMATION FOR SEQ ID NO: 563:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 253 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 563:
- Met Val Lys Val Cys Asn Asp Ser Asp Arg Trp Ser Leu Ile Ser Leu 40 1 5 10 15

Ser Asn Asn Ser Gly Lys Asn Val Glu Leu Lys Phe Val Asp Ser Leu 20 25 30

- 45 Arg Arg Gln Phe Glu Phe Ser Val Asp Ser Phe Gln Ile Lys Leu Asp 35 40 45
 - Ser Leu Leu Phe Tyr Glu Cys Ser Glu Asn Pro Met Thr Glu Thr 50 55 60

Phe His Pro Thr Ile Ile Gly Glu Ser Val Tyr Gly Asp Phe Gln Glu 65 70 75 80

- Ala Phe Asp His Leu Cys Asn Lys Ile Ile Ala Thr Arg Asn Pro Glu 85 90 95
 - Glu Ile Arg Gly Gly Leu Leu Lys Tyr Cys Asn Leu Leu Val Arg 100 105 110
- 60 Gly Phe Arg Pro Ala Ser Asp Glu Ile Lys Thr Leu Gln Arg Tyr Met

			115					120					125			
5	Cys S	Ser 130	Arg	Phe	Phe	Ile	Asp 135	Phe	Ser	Asp	Ile	Gly 140	Glu	Gln	Gln	Arg
J	Ļys I 145	Leu	Glu	Ser	Tyr	Leu 150	Gln	Asn	His	Phe	Val 155	Gly	Leu	Glu	Asp	A rg 160
10	Lys 1	ſyr	Glu	Туг	Leu 165	Met	Thr	Leu	His	Gly 170	Val	Val	Asn	Glu	Ser 175	Thr
	Val (Cys	Leu	Met 180	Gly	His	Glu	Arg	Arg 185	Gln	Thr	Leu	Asn	Leu 190	Ile	Thr
15	Met I	Leu	Ala 195	Ile	Arg	Val	Leu	Ala 200	Asp	Gln	Asn	Val	Ile 205	Pro	Asn	Val
20	Ala A	Asn 210	Val	Thr	Cys	Tyr	Туг 215	Gln	Pro	Ala	Pro	Tyr 220	Val	Ala	Asp	Ala
20	Asn 1 225	Phe	Ser	Asn	Tyr	Тут 230	Ile	Ala	Gln	Val	Gln 235	Pro	Val	Phe	Thr	Cys 240
25	Gln (Gln	Gln	Thr	Туг 245	Ser	Thr	Trp	Leu	Pro 250	Cys	Asn	Xaa			
30	(2)				FOR ENCE											
			(1)	(A) I B) I	ENGT YPE:	H: 1 ami	.8 am .no a	ino cid		is					
35			(xi)		D) I UENC					EQ I	D NO	: 56	4:			
	Met :	Ser	Phe	Leu	Met 5	Trp	Leu	Met	Ser	Leu 10	Ala	Ile	Thr	Ser	Gln 15	Pro
40	Pro l	Met														
45	(2)	INFO	ORMA'	rion	FOR	SEQ	ID 1	NO:	565:							
50				(ENCE A) L B) T D) T UENC	ENGT YPE: OPOL	H: 8 ami OGY:	no a no a lin	ino cid ear	acid		: 56	5:			
	Met i	Ala	Pro	Lys	Gly 5	Lys	Val	Gly	Thr	Arg 10	Gly	Lys	Lys	Gln	Ile 15	
55	Glu (Glu	Asn	Arg 20	Glu	Thr	Leu	Lys	Phe 25	Tyr	Leu	Arg	Ile	Ile 30	Leu	Gly

	Ala	Ser 50	Phe	Trp	Ala	Trp	Leu 55	Ala	Leu	Gly	Phe	Ser 60	Leu	Ala	Val	Туг
5	Gly 65	Ala	Ser	Tyr	His	Ser 70	Met	Ser	Ser	Met	Ala 75	Arg	Ala	Ala	Phe	Phe 80
10																
	(2)	TNF	ORMA'	PTON	FOR	SEO	ID 1	ا ۱ ، ۱۵ ا	566.							
15	127		(i)	SEQUI	ENCE A) L B) T D) T	CHA ENGT YPE: OPOL	RACT H: 7 ami OGY: SCRI	ERIS 3 am no a lin	TICS ino cid ear	acid		: 56	6 :			
20	นเล	Leu					Leu			_				Val	ī en	Cor
	1	Dea	гуу	voh	5	116	Leu	beu	1111	10	116	Val	GIII	vai	15	Set
25	Cys	Phe	Ser	Leu 20	Tyr	Val	Trp	Ser	Phe 25	Trp	Leu	Leu	Ala	Pro 30	Gly	Arg
	Ala	Leu	Туг 35	Leu	Leu	Trp	Val	Asn 40	Val	Leu	Gly	Pro	Trp 45	Phe	Thr	Ala
30	Asp	Ser 50	Gly	Thr	Pro	Ala	Pro 55	Glu	His	Asn	Glu	Lys 60	Arg	Gln	Arg	Arg
35	Gln 65	Glu	Arg	Arg	Gln	Met 70	Lys	Arg	Leu							
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: !	567:							
40			(i)	(A) L B) T	ENGT YPE :	RACT H: 2 ami OGY:	63 a no a	mino cid		ds					
45			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 56	7:			
	Met 1	Asp	Cys	Pro	Ala 5	Leu	Pro	Pro	Gly	Trp 10	Lys	Lys	Glu	Glu	Val 15	Ile
50	Arg	Lys	Ser	Gly 20	Leu	Ser	Ala	Gly	Lys 25	Ser	Asp	Val	Tyr	Туг 30	Phe	Ser
	Pro	Ser	Gly 35	Lys	Lys	Phe	Arg	Ser 40	Lys	Pro	Gln	Leu	Ala 45	Arg	Tyr	Leu
55	Gly	Asn 50	Thr	Val	Asp	Leu	Ser 55	Ser	Phe	Asp	Phe	Arg 60	Thr	Gly	Lys	Met
60	Met 65	Pro	Ser	Lys	Leu	Gln 70	Lys	Asn	Lys	Gln	Arg 75	Leu	Arg	Asn	Asp	Pro 80

Leu	Asn	Gln	Asn	Lys	Gly	Lys	Pro	Asp	Leu	Asn	Thr	Thr	Leu	Pro	Ile
				85					90					95	

- Arg Gln Thr Ala Ser Ile Phe Lys Gln Pro Val Thr Lys Val Thr Asn 5 100 105 110 .
 - His Pro Ser Asn Lys Val Lys Ser Asp Pro Gln Arg Met Asn Glu Gln 115 120 125
- 10 Pro Arg Gln Leu Phe Trp Glu Lys Arg Leu Gln Gly Leu Ser Ala Ser
 - Asp Val Thr Glu Gln Ile Ile Lys Thr Met Glu Leu Pro Lys Gly Leu 145 150 155 160
- Gln Gly Val Gly Pro Gly Ser Asn Asp Glu Thr Leu Leu Ser Ala Val
- Ala Ser Ala Leu His Thr Ser Ser Ala Pro Ile Thr Gly Gln Val Ser 20 180 185 190
 - Ala Ala Val Glu Lys Asn Pro Ala Val Trp Leu Asn Thr Ser Gln Pro 195 200 205
- Glu Arg Val Gln Gln Val Arg Lys Lys Leu Glu Glu Ala Leu Met Ala 225 230 235 240 30
 - Asp Ile Leu Ser Arg Ala Ala Asp Thr Glu Glu Met Asp Ile Glu Met
 245 250 255
- Asp Ser Gly Asp Glu Ala Xaa 260

- (2) INFORMATION FOR SEQ ID NO: 568:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 70 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 568:
 - Met Met Arg Pro Phe Tyr Leu Leu Leu Pro Val Leu Cys Thr Gln Ala 1 5 10 15
- 50 Leu Arg Gln Ser Gln Gly Lys Ser Pro Leu Leu Trp Lys Arg Thr Leu 20 25 30
- Leu Phe Gly Leu Thr His Leu Asn Pro Ser Ala Lys Leu Leu Ser \$35\$ \$40\$ \$45\$
 - Gln Met Lys Thr Ser Gly Asn Arg Lys Ser Glu Tyr Ser Lys Tyr Ala 50 55 60
- Arg Asn Trp Lys Lys His 60 65 70

(2) INFORMATION FOR SEQ ID NO: 569: 5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 569: Met Pro Val Thr Ser Lys Arg Thr Leu Phe Phe Pro Asp Pro Cys Ser 15 Tyr Asp Thr Pro Pro Pro Asp Cys His Cys His Ser Phe Arg Ala Glu 25 Leu Leu 20 (2) INFORMATION FOR SEQ ID NO: 570: 25 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 104 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 570: 30 Met Asn Ser Arg Gly Met Trp Leu Thr Tyr Ala Leu Gly Val Gly Leu 10 Leu His Ile Val Leu Leu Ser Ile Pro Phe Phe Ser Val Pro Val Ala 35 25 Trp Thr Leu Thr Asn Ile Ile His Asn Leu Gly Met Tyr Val Phe Leu 40 40 His Ala Val Lys Gly Thr Pro Phe Glu Thr Pro Asp Gln Gly Lys Ser 55 Lys Ala Pro Asn Ser Leu Gly Thr Thr Gly Leu Trp Ser Thr Val Tyr 45 Ile Phe Thr Glu Val Phe His Asn Phe Ser Asn Asn Ser Ile Phe Ser 90 Gly Lys Phe Leu Tyr Glu Val Xaa 50 100 (2) INFORMATION FOR SEQ ID NO: 571: 55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 132 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 571:

Met Trp Leu Thr Tyr Ala Leu Gly Val Gly Leu Leu His Ile Val Leu 1 5 10 15

689

5 Leu Ser Ile Pro Phe Phe Ser Val Pro Val Ala Trp Thr Leu Thr Asn 20 25 30

Ile Ile His Asn Leu Gly Met Tyr Val Phe Leu His Ala Val Lys Gly
35 40 45

10

Thr Pro Phe Glu Thr Pro Asp Gln Gly Lys Ala Arg Leu Leu Thr His 50 55 60

Trp Glu Gln Leu Asp Tyr Gly Val Gln Phe Thr Ser Ser Arg Lys Phe 15 65 70 75 80

Phe Thr Ile Ser Pro Ile Ile Leu Tyr Phe Leu Ala Ser Phe Tyr Thr 85 90 95

20 Lys Tyr Asp Pro Thr His Phe Ile Leu Asn Thr Ala Ser Leu Leu Ser 100 105 110

Val Leu Ile Pro Lys Met Pro Gln Leu His Gly Val Arg Ile Phe Gly
115 120 125

25

Ile Asn Lys Tyr 130

30

- (2) INFORMATION FOR SEQ ID NO: 572:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 32 amino acids
- 35 (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 572:

Met Asn Lys Trp Ile Cys Glu Met His Cys Tyr Leu Val Leu Leu Ser 40 1 5 10 15

Val Cys Ser Pro Ser Ala Leu Arg Arg Val Arg His Thr Leu Ser Arg 20 25 30

45

- 50 (2) INFORMATION FOR SEQ ID NO: 573:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 amino acids
 - (B) TYPE: amino acid
- 55 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 573:

Met Pro Val Leu Ser Leu Leu Cys Thr Leu Ile Val Ser Phe Gln Ser 1 5 10 15

Ala Asp Ser Cys Glu Val Phe Leu Asn Cys Ser Leu 20 25

5 (2) INFORMATION FOR SEQ ID NO: 574: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 amino acids 10 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 574: Met Lys Val Ser Thr Met Leu Trp Phe Leu Cys Trp Glu Gln Ser His 15 Phe Leu Arg Glu Trp Glu Asp Leu Ser Thr Phe Leu Ile Leu Ile Gln 20 25 20 Met Glu Cys Gln Tyr Gly Asn Ser 35 25 (2) INFORMATION FOR SEQ ID NO: 575: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids (B) TYPE: amino acid 30 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 575: Met Gly Leu Pro Leu Met Ala Leu Met Trp Ser Thr Leu Pro Ala Ser 10 35 Ala Gly Val Asn Phe Ile Leu Ala Leu Pro Leu Leu Xaa Leu 20 25 40 (2) INFORMATION FOR SEQ ID NO: 576: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 amino acids 45 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 576:

Met Lys Arg Gly Cys Leu Gly Leu Leu Phe Phe Ser Cys Cys Ser Ser

25

Ala Pro Thr Met Leu Leu Cys Asp Tyr Leu Asn Trp Phe

55

50

(2) INFORMATION FOR SEQ ID NO: 577:

5

(i) SEQUENCE CHARACTERISTICS:

20

60 (A) LENGTH: 92 amino acids

3)	TYPE:	amino	acid	
•				

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 577:

5 Met Lys Leu Leu Gly Ile Ala Leu Leu Ala Tyr Val Ala Ser Val Trp Gly Asn Phe Val Asn Met Arg Ser Ile Gln Glu Asn Gly Glu Leu

25

10

Lys Ile Glu Ser Lys Ile Glu Glu Met Val Glu Pro Leu Arg Glu Lys

Ile Arg Asp Leu Glu Lys Ser Phe Thr Gln Lys Tyr Pro Pro Val Lys 15

Phe Leu Ser Glu Lys Asp Arg Lys Arg Ile Leu Xaa Asn Arg Arg Arg 70 75

20 Xaa Val Arg Gly Leu Pro Ser Xaa Leu Thr Asn Ser

25 (2) INFORMATION FOR SEQ ID NO: 578:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 42 amino acids
- (B) TYPE: amino acid

30

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 578:

Met Lys Phe Ser Leu Val Leu Leu Ile Lys Ile Ile Ser Phe Glu Arg

35

Leu Leu Ile Phe Leu Phe Pro Leu Ser Phe Leu Pro Asn Ile Trp Arg 25

Arg Val Met Val Asn Leu Asn Ile Leu Phe 40 35 40

(2) INFORMATION FOR SEQ ID NO: 579:

45

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 70 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 579:

Leu Ala Gln Glu Cys Pro Pro His Ile Pro Ser Ser Phe Phe Leu Val

55 Lys Leu Leu Phe Ile Pro Trp Leu Ala Ser Leu Leu Pro Pro Leu Ser 20 25

Thr Phe Thr Ser Asp Phe Tyr Phe Met Glu Phe Gly Ile Glu Val Lys 40

WO 98/39448

Leu	Gln	Gln	Cys	Arg	Gln	His	Gln	Val	Leu	Gln	Glu	Lys	Asn	Thr	Lys
	50					55					60				

692

Lys Phe Asn Lys Lys Lys 5 65 70

(2) INFORMATION FOR SEQ ID NO: 580:

10

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 110 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 580:

Met Leu Arg Leu Leu Leu Val Ala Phe Ala Leu Val Val Val Leu 1 5 10 15

20 Phe His Val Leu Leu Ala Pro Ile Thr Ala Leu Phe His Thr His Phe 20 25 30

Tyr Asp Arg Leu Gln Asp Ala Gly Ser Arg Trp Pro Glu Leu Tyr Leu 35 40 45

25

Tyr Ser Arg Ala Asp Glu Val Val Leu Ala Arg Asp Ile Glu Arg Met 50 55 60

Val Glu Ala Arg Leu Ala Arg Arg Val Leu Ala Arg Ser Val Asp Phe 30 - 65 - 70 - 75 - 80

Val Ser Ser Ala His Val Ser His Leu Arg Asp Tyr Pro Thr Tyr Tyr 85 90 95

- Thr Ser Leu Cys Val Asp Phe Met Arg Asn Cys Val Arg Cys 100 105 110
- 40 (2) INFORMATION FOR SEQ ID NO: 581:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 581:

Met Phe Lys Leu Glu Glu Cys Gly Lys Thr Thr Phe Leu Leu Ser Met

1 5 10 15

50

45

Ala Leu Tyr Phe Trp Trp Ile Val Gln Thr Thr Lys Gly Cys 20 25 30

55

- (2) INFORMATION FOR SEQ ID NO: 582:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 71 amino acids

60 (B) TYPE: amino acid

	(D) TO	POLOGY:	linear	r			
(xi)	SEQUENCE	DESCRIP	TION:	SEQ	ID	NO:	582:

Met Glu Ser Asp Ala Leu Leu Leu Thr Ile Phe Trp Ile Ile Ala Arg 5 1 10 15

Ser Ser Val Arg Ser Val Gly Lys Ser Ser Gln Arg Ser Phe Thr Thr $20 \\ 25 \\ 30$

10 Ile Thr Gln Leu Arg Ser Thr His Thr Gly Pro Ser Arg Arg Ser Tyr 35 40 45

Leu Ile Trp Trp Asn Gly Gly Pro Lys Arg Thr Ile Ser Tyr Val Ser 50 55 60

15

Arg Arg Phe Arg Ser Phe Arg 65 70

20

25

- (2) INFORMATION FOR SEQ ID NO: 583:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 47 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 583:
- Val Gly Leu Phe Gln Pro Lys Thr Phe Gln Val Pro Val Thr Asp Leu 30 1 5 10 15

Tyr Ile Phe Ile Lys Ile Tyr Ser Glu Ile Gly Pro Ile Met His Val

- 35 Leu Cys Pro Gly Tyr Ser Gln Ser Pro Ser Thr Pro Pro Trp Thr 35 40 45
- 40 (2) INFORMATION FOR SEQ ID NO: 584:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 39 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 584:

Met Trp Phe Gly Ser Asp Arg Ser Asp Leu Arg Ile Gly Thr Ala Phe
1 5 10 15

Leu Phe Asp Leu Val Cys Asp Leu Cys Ile His Ala Trp Lys Pro Pro

Gly Leu Val Arg Phe Ser Phe 55 35

(2) INFORMATION FOR SEQ ID NO: 585:

60

45

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 19 amino acids	
	(B) TYPE: amino acid (D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 585:	
,	(M2) DESCRIPTION. DBQ ID NO. 303.	
	Met Leu Asn Thr Ala Ser Leu Asn Leu Pro Trp Lys Val Gln Leu Phe	,
	1 5 10 15	
10	Ala His Ala	
	·	
15	(2) THEODMARION FOR CEO TO NO. FOC.	
13	(2) INFORMATION FOR SEQ ID NO: 586:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 23 amino acids	
	(B) TYPE: amino acid	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 586:	
	Met Ser Ala Cys Leu Leu Leu Phe Leu Ala Phe Ser Trp Lys Arg Lys	i
25	1 5 10 15	
25		
	Gly Leu Trp Ser Gly Pro Gly 20	
	20	
30		
	(2) INFORMATION FOR SEQ ID NO: 587:	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 69 amino acids	
35	(A) LEWSTH: 69 amino acids (B) TYPE: amino acid	
35	(A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
35	(A) LEWSTH: 69 amino acids (B) TYPE: amino acid	
35	(A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
35 40	(A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587:	
	(A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587: Met Leu Pro Pro Phe Ser Leu Val Tyr Thr His Phe Leu Val Ala Ser	
	(A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587: Met Leu Pro Pro Phe Ser Leu Val Tyr Thr His Phe Leu Val Ala Ser	
	(A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587: Met Leu Pro Pro Phe Ser Leu Val Tyr Thr His Phe Leu Val Ala Ser 1 5 10 15	
40	(A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587: Met Leu Pro Pro Phe Ser Leu Val Tyr Thr His Phe Leu Val Ala Ser 1 5 10 15 Leu Leu Pro Val Ile Leu Ala Val Phe Pro Asp Ser Ala Gln Ile Val 20 25 30	•
	(A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587: Met Leu Pro Pro Phe Ser Leu Val Tyr Thr His Phe Leu Val Ala Ser 1 5 10 15 Leu Leu Pro Val Ile Leu Ala Val Phe Pro Asp Ser Ala Gln Ile Val 20 25 30 Pro Leu Leu Lys Pro Ile Pro Arg Pro Gln Pro Glu Val Ile Phe Pro	•
40	(A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587: Met Leu Pro Pro Phe Ser Leu Val Tyr Thr His Phe Leu Val Ala Ser 1 5 10 15 Leu Leu Pro Val Ile Leu Ala Val Phe Pro Asp Ser Ala Gln Ile Val 20 25 30	•
40	(A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587: Met Leu Pro Pro Phe Ser Leu Val Tyr Thr His Phe Leu Val Ala Ser 1 5 10 15 Leu Leu Pro Val Ile Leu Ala Val Phe Pro Asp Ser Ala Gln Ile Val 20 25 30 Pro Leu Leu Lys Pro Ile Pro Arg Pro Gln Pro Glu Val Ile Phe Pro 35 40 45	
40	(A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587: Met Leu Pro Pro Phe Ser Leu Val Tyr Thr His Phe Leu Val Ala Ser 1 5 10 15 Leu Leu Pro Val Ile Leu Ala Val Phe Pro Asp Ser Ala Gln Ile Val 20 25 30 Pro Leu Leu Lys Pro Ile Pro Arg Pro Gln Pro Glu Val Ile Phe Pro	
40	(A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587: Met Leu Pro Pro Phe Ser Leu Val Tyr Thr His Phe Leu Val Ala Ser 1 5 10 15 Leu Leu Pro Val Ile Leu Ala Val Phe Pro Asp Ser Ala Gln Ile Val 20 25 30 Pro Leu Leu Lys Pro Ile Pro Arg Pro Gln Pro Glu Val Ile Phe Pro 35 40 45 Ser Ser Glu Leu Leu Glu Gln Leu Leu Ser Val Gln Phe Val Trp Gln	
40	(A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587: Met Leu Pro Pro Phe Ser Leu Val Tyr Thr His Phe Leu Val Ala Ser 1 5 10 15 Leu Leu Pro Val Ile Leu Ala Val Phe Pro Asp Ser Ala Gln Ile Val 20 25 30 Pro Leu Leu Lys Pro Ile Pro Arg Pro Gln Pro Glu Val Ile Phe Pro 35 40 45 Ser Ser Glu Leu Leu Glu Gln Leu Leu Ser Val Gln Phe Val Trp Gln	
40	(A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587: Met Leu Pro Pro Phe Ser Leu Val Tyr Thr His Phe Leu Val Ala Ser 1 5 10 15 Leu Leu Pro Val Ile Leu Ala Val Phe Pro Asp Ser Ala Gln Ile Val 20 25 30 Pro Leu Leu Lys Pro Ile Pro Arg Pro Gln Pro Glu Val Ile Phe Pro 35 40 45 Ser Ser Glu Leu Leu Glu Gln Leu Leu Ser Val Gln Phe Val Trp Gln 50 55 60	
40	(A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587: Met Leu Pro Pro Phe Ser Leu Val Tyr Thr His Phe Leu Val Ala Ser 1 5 10 15 Leu Leu Pro Val Ile Leu Ala Val Phe Pro Asp Ser Ala Gln Ile Val 20 25 30 Pro Leu Leu Lys Pro Ile Pro Arg Pro Gln Pro Glu Val Ile Phe Pro 35 40 45 Ser Ser Glu Leu Leu Glu Gln Leu Leu Ser Val Gln Phe Val Trp Gln 50 55 60 Ala His Thr Val Ala	
40 45 50	(A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587: Met Leu Pro Pro Phe Ser Leu Val Tyr Thr His Phe Leu Val Ala Ser 1 5 10 15 Leu Leu Pro Val Ile Leu Ala Val Phe Pro Asp Ser Ala Gln Ile Val 20 25 30 Pro Leu Leu Lys Pro Ile Pro Arg Pro Gln Pro Glu Val Ile Phe Pro 35 40 45 Ser Ser Glu Leu Leu Glu Gln Leu Leu Ser Val Gln Phe Val Trp Gln 50 55 60 Ala His Thr Val Ala	
40	(A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587: Met Leu Pro Pro Phe Ser Leu Val Tyr Thr His Phe Leu Val Ala Ser 1 5 10 15 Leu Leu Pro Val Ile Leu Ala Val Phe Pro Asp Ser Ala Gln Ile Val 20 25 30 Pro Leu Leu Lys Pro Ile Pro Arg Pro Gln Pro Glu Val Ile Phe Pro 35 40 45 Ser Ser Glu Leu Leu Glu Gln Leu Leu Ser Val Gln Phe Val Trp Gln 50 55 60 Ala His Thr Val Ala 65	
40 45 50	(A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587: Met Leu Pro Pro Phe Ser Leu Val Tyr Thr His Phe Leu Val Ala Ser 1 5 10 15 Leu Leu Pro Val Ile Leu Ala Val Phe Pro Asp Ser Ala Gln Ile Val 20 25 30 Pro Leu Leu Lys Pro Ile Pro Arg Pro Gln Pro Glu Val Ile Phe Pro 35 40 45 Ser Ser Glu Leu Leu Glu Gln Leu Leu Ser Val Gln Phe Val Trp Gln 50 55 60 Ala His Thr Val Ala	
40 45 50	(A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587: Met Leu Pro Pro Phe Ser Leu Val Tyr Thr His Phe Leu Val Ala Ser 1 5 10 15 Leu Leu Pro Val Ile Leu Ala Val Phe Pro Asp Ser Ala Gln Ile Val 20 25 30 Pro Leu Leu Lys Pro Ile Pro Arg Pro Gln Pro Glu Val Ile Phe Pro 35 40 45 Ser Ser Glu Leu Leu Glu Gln Leu Leu Ser Val Gln Phe Val Trp Gln 50 55 60 Ala His Thr Val Ala 65	
40 45 50	(A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587: Met Leu Pro Pro Phe Ser Leu Val Tyr Thr His Phe Leu Val Ala Ser 1 5 10 15 Leu Leu Pro Val Ile Leu Ala Val Phe Pro Asp Ser Ala Gln Ile Val 20 25 30 Pro Leu Leu Lys Pro Ile Pro Arg Pro Gln Pro Glu Val Ile Phe Pro 35 40 45 Ser Ser Glu Leu Leu Glu Gln Leu Leu Ser Val Gln Phe Val Trp Gln 50 55 60 Ala His Thr Val Ala 65	

(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 588:

Met Gly Pro Pro Met Leu Gln Glu Ile Ser Asn Leu Phe Leu Ile Leu Leu Met Met Gly Ala Ile Phe Thr Leu Ala Ala Leu Lys Glu Ser Leu 20 25 10 Ser Thr Cys Ile Pro Ala Ile Val Cys Leu Gly Phe Leu Leu Leu Leu Asn Val Gly Gln Leu Leu Ala Gln Thr Lys Lys Val Val Arg Pro Thr 55 15 Arg Lys Lys Thr Leu Ser Thr Phe Lys Glu Ser Trp Lys 70 20 (2) INFORMATION FOR SEQ ID NO: 589: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 155 amino acids 25 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 589: Met Ala Leu Leu Ser Val Leu Arg Val Leu Leu Gly Gly Phe Phe 30 Ala Leu Val Gly Leu Ala Lys Leu Ser Glu Glu Ile Ser Ala Pro Val 35 Ser Glu Arg Met Asn Ala Leu Phe Val Gln Phe Ala Glu Val Phe Pro 40 Leu Lys Val Phe Gly Tyr Gln Pro Asp Pro Leu Asn Tyr Gln Ile Ala 40 Val Gly Phe Leu Glu Leu Leu Ala Gly Leu Leu Leu Val Met Gly Pro Pro Met Leu Gln Glu Ile Ser Asn Leu Phe Leu Ile Leu Leu Met Met 45 Gly Ala Ile Phe Thr Leu Ala Ala Leu Lys Glu Ser Leu Ser Thr Cys 105 50 Ile Pro Ala Ile Val Cys Leu Gly Phe Leu Leu Leu Leu Asn Val Gly 120 Gln Leu Leu Ala Gln Thr Lys Lys Val Val Arg Pro Thr Arg Lys Lys 135 55 Thr Leu Ser Thr Phe Lys Glu Ser Trp Lys Xaa

150

	(2)	INFO	ORMAT	rion	FOR	SEQ	ID N	10 : 5	590:							
5				(A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	4 am no a lin	ino cid ear	acid		: 59	0:			
10	Met 1	Pro	Glu	Thr	Arg 5	Leu	Gly	His	Arg	Gln 10	Gln	Phe	Ala	Val	Phe 15	Hi
	Leu	Xaa	Pro	Val 20	Pro	Pro	Cys	Gly								
15																
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: !	591:							
20				(A) L B) T D) T	ENGT YPE : OPOL	H: 3 ami OGY:	8 am no a lin	ino cid ear	acid						
			(X1)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 59	1:			
25	Met 1		Thr	Phe	Leu 5	Phe	Ser	Ala	Cys	Ala 10	Thr	Cys	Leu	Gly	Lys 15	Le
	Ala	Ser	Pro	Leu 20	Ala	Pro	Val	Gly	Pro 25	Gln	Gln	Arg	Gly	Xaa 30	Pro	Pr
30	Gly	Pro	Pro 35	Leu	Leu	Ser										
35																
	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO: !	592:							
40				(A) L B) T D) T	ENGT YPE : OPOL	H: 6 ami OGY:	9 am no a lin	ino cid ear	acid		: 59	2:			
	Met													Cly	Gly	10
45	1	nap	FIG	FIIC	5	ıyı	ASP	ıyı	GIII	10	Leu	Arg	116	GIÀ	15	De
	Val	Phe	Ala	Val 20	Val	Leu	Phe	Ser	Val 25	Gly	Ile	Leu	Leu	Ile 30	Leu	Se
50	Arg	Arg	Cys 35	Lys	Cys	Ser	Phe	Asn 40	Gln	Lys	Pro	Arg	Ala 45	Pro	Gly	As
55	Glu	Glu 50	Ala	Gln	Val	Glu	Asn 55	Leu	Ile	Thr	Ala	Asn 60	Ala	Thr	Glu	Pr
,,	Gln 65	Lys	Ala	Glu	Asn											

60

(2) INFORMATION FOR SEQ ID NO: 593:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 308 amino acids
- (B) TYPE: amino acid

		(xi)	SEQ	D) T UENC					EQ I	D NO	: 59	3:			
10	Asn Le	eu Arg	Val	Arg 5	Leu	Gly	Asp	Val	lle 10	Ser	Ile	Gln	Pro	Cys 15	Pro
	Asp Va	al Lys	Tyr 20	Gly	Lys	Arg	Ile	His 25	Val	Leu	Pro	Ile	Asp 30	Asp	Thr
15	Val G	lu Gly 35		Thr	Gly	Asn	Leu 40	Phe	Glu	Val	Tyr	Leu 45	Lys	Pro	Tyr
20	Phe Le	eu Glu 50	Ala	Tyr	Arg	Pro 55	Ile	Arg	Lys	Gly	Asp 60	Ile	Phe	Leu	Val
	Arg G	ly Gly	Met	Arg	Ala 70	Val	Glu	Phe	Lys	Val 75	Val	Glu	Thr	Asp	Pro 80
25	Ser P	ro Tyr	Cys	Ile 85	Val	Ala	Pro	Asp	Thr 90	Val	Ile	His	Cys	Glu 95	Gly
	Glu Pı	co Ile	Lys 100	Arg	Glu	Asp	Glu	Glu 105	Glu	Ser	Leu	Asn	Glu 110	Val	Gly
30	Tyr As	sp Asp 115		Gly	Gly	Cys	Arg 120	Lys	Gln	Leu	Ala	Gln 125	Ile	Lys	Glu
35	Met Va	al Glu 30	Leu	Pro	Leu	Arg 135	His	Pro	Ala	Leu	Phe 140	Lys	Ala	Ile	Gly
	Val Ly 145	ys Pro	Pro	Arg	Gly 150	Ile	Leu	Leu	Tyr	Gly 155	Pro	Pro	Gly	Thr	Gly 160
40	Lys Th	ır Leu	Ile	Ala 165	Arg	Ala	Val	Ala	Asn 170	Glu	Thr	Gly	Ala	Phe 175	Phe
	Phe Le	eu Ile	Asn 180	Gly	Pro	Glu	Ile	Met 185	Ser	Lys	Leu	Ala	Gly 190	Glu	Ser
45	Glu Se	er Asn 195	Leu	Arg	Lys	Ala	Phe 200	Glu	Glu	Ala	Glu	Lys 205	Asn	Ala	Pro
50	Ala II 21		Phe	Ile	Asp	Glu 215	Leu	Asp	Ala	Ile	Ala 220	Pro	Lys	Arg	Glu
	Lys Th	r His	Gly	Glu	Val 230	Glu	Arg	Arg	Ile	Val 235	Ser	Gln	Leu	Leu	Thr 240
55	Leu Me	et Asp	Gly	Leu 245	Lys	Gln	Arg	Ala	His 250	Val	Ile	Val	Met	Ala 255	Ala
	Thr As	n Arg	Pro 260	Asn	Ser	Ile	Asp	Pro 265	Ala	Leu	Arg	Arg	Phe 270	Gly	Arg

Phe Asp Arg Glu Val Asp Ile Gly Ile Pro Asp Ala Thr Gly Arg Leu

		275		280		285			
5	Glu Ile 290	Leu Gln I	le His Th		Met Lys	Leu Ala 300	Asp	Asp	Va]
J	Asp Leu 305	Glu Gln							
10	(2) INF	ORMATION F	OR SEQ ID	NO: 594:					
15		(A (B (D	NCE CHARAC) LENGTH:) TYPE: am) TOPOLOGY ENCE DESCR	22 amino ino acid : linear	acids	: 594:			
20	Met Gln	lle Lys I	eu Leu Ly: 5	s Ser Val	Lys Thr 10	Val Phe	Ala	Ile 15	Thi
	Leu Leu	Val Leu F 20	he Leu						
25									
	(2) INF	ORMATION F	OR SEQ ID	NO: 595:					
30		(A (B (D	NCE CHARAC LENGTH: TYPE: am TOPOLOGY ENCE DESCR	24 amino ino acid : linear	acids	::595:			
35	Met Phe	Pro Lys F	Phe Cys Pro 5	o Ile Leu	Ser Leu 10	Val Asp	Phe	Ile 15	Ser
40	His Arg	Asp Lys F 20	ro Glu Thi	c Glu					
	(2) INF	ORMATION F	OR SEQ ID	NO: 596:					
45		(B)	CE CHARACT LENGTH: TYPE: am TOPOLOGY	24 amino ino acid					
50		(xi) SEQUE	NCE DESCR	IPTION: S	EQ ID NO	: 596:			
	Met Leu 1	Ile Glu C	ys Ala Trp 5	Gln Leu	Met Phe 10	Leu Leu	Leu	Lys 15	Val
55	Glu Gln	Leu Gly I 20	le Leu Asp) Lys					
60	(2) INF	ORMATION F	OR SEQ ID	NO: 597:					

	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 1 amino acids
	(B) TYPE: amino acid
5	(D) TOPOLOGY: linear
J	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 597:
	Met
	1
	-
10	
	(2) INFORMATION FOR SEQ ID NO: 598:
	(i) SEQUENCE CHARACTERISTICS:
15	(A) LENGTH: 8 amino acids
	(B) TYPE: amino acid
	(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 598:
20	Mot Ove Tie Met Com Nie I w. Hei
20	Met Cys Ile Met Ser Ala Leu Val 1 5
	1 3
25	(2) INFORMATION FOR SEQ ID NO: 599:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 25 amino acids
20	(B) TYPE: amino acid
30	(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 599:
	Met Phe Leu Val Trp Phe Phe Trp Gly Leu Ile Ser Ala Leu Ser Asn
	1 5 10 15
35	- 3 10 23
	Val His Thr Pro Ser Arg Leu Pro Ala
	20 25
40	
40	
	(2) INFORMATION FOR SEQ ID NO: 600:
	(i) SEQUENCE CHARACTERISTICS:
45	(A) LENGTH: 27 amino acids
73	(B) TYPE: amino acid
	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 600:
	(XI) SEQUENCE DESCRIPTION. SEQ ID NO. 600:
	Met Xaa Gly Leu Ser Leu Ile Leu Thr Val Thr Leu Leu Ala Val Ser
50	1 5 10 15
	Asp Ser Ala Ala Thr Cys Ile Val Ala Lys Gly
	20 25
55	
	(0)
•	(2) INFORMATION FOR SEQ ID NO: 601:
	(;) CEMIENCE CUNDACTEDICATICC.
60	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 61 amino acids
	1737 AMOUNT OF MILLIO MCTUD

20

45

700

	(B) TYPE:	amino acid	
	(D) TOPOLO	OGY: linear	
(xi)	SEQUENCE DES	SCRIPTION: SEQ ID NO: 60	1:
Met Trp Thr	Arg Ser Ser	Arg Cys Leu Leu Leu Cys	Ile Pro Gly Xaa
1	5	10	15

1 5 10 15

Ser Arg Arg Arg Ala Gly Ser Gly Met Lys Pro Arg Ser Trp Ser 20 25 30

10 Ala Trp Arg Pro Ser Gly Gly Thr Gly Thr Ser Ser Ser Gln Ser Ser 35 40 45

Thr Gln Ser Arg Thr Leu Ser Ala Thr Ala Ser Pro Ala 15 50 55 60

- (2) INFORMATION FOR SEQ ID NO: 602:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 602:

Met Arg Glu Thr Ser Ile Arg Val Leu Leu Met Leu Pro Ala Leu Glu
1 5 10 15

- 30 Ser Thr Ser Gly Leu Ser Ala Phe Met Gly Leu Gly Thr 20 25
- 35 (2) INFORMATION FOR SEQ ID NO: 603:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 69 amino acids
 - (B) TYPE: amino acid
- 40 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 603:

Met Pro Pro Lys Gln Glu Leu Gly Ser Gly Val Gly Glu Leu Ala Lys
1 5 10 15

Asn Ser Lys Arg Gln His Trp Asn His Arg Trp Lys Lys Tyr Leu Lys
20 25 30

Leu Glu His Cys Ala Thr Met Ala Trp Asp Cys Leu Met Arg Leu Glu 50 55 60

- 55 Leu Leu Lys Arg Leu 65
- 60 (2) INFORMATION FOR SEQ ID NO: 604:

	· · · · · · · · · · · · · · · · · · ·
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 604:
10	Lys Ile Val Tyr Ile Leu Gly Asn Pro Leu Lys Phe Asn Ser Arg Val 1 5 10 15 Ile His His Leu Val Leu Leu Gln 20
15	(2) INFORMATION FOR SEQ ID NO: 605:
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 605:
25	Met Asn Leu His Gln Arg Arg Leu Leu Leu Ile Gly His Leu Met Thr 1 5 10 15
	Leu Val Lys Ala Ser Lys Ser Phe Ser Phe Thr Glu Ile Thr Ser Ser 20 25 30
30	Arg Lys Lys 35
35	(2) INFORMATION FOR SEQ ID NO: 606:
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 130 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 606:
45	Leu Leu Gly Tyr Gly Leu Phe Gly His Cys Ile Val Leu Phe Ile Thr 1 5 10 15
	Tyr Asn Ile His Leu His Ala Leu Phe Tyr Leu Phe Trp Leu Leu Val 20 25 30
50	Gly Gly Leu Ser Thr Leu Arg Met Val Ala Val Leu Val Ser Arg Thr 35 40 45
	Val Gly Pro Thr Gln Arg Leu Leu Cys Gly Thr Leu Ala Ala Leu 50 60
55	His Met Leu Phe Leu Leu Tyr Leu His Phe Ala Tyr His Lys Val Xaa 65 . 70 . 75 . 80
60	Glu Gly Ile Leu Asp Thr Leu Glu Gly Pro Asn Ile Pro Pro Ile Gln 85 90 95

WO 98/39448

Arg Val Pro Arg Asp Ile Pro Ala Met Leu Pro Ala Ala Arg Leu Pro 100 105 110

702

Thr Thr Val Leu Asn Ala Thr Ala Lys Ala Val Ala Val Thr Leu Gln 5 115 120 125

Ser His ·

10

- (2) INFORMATION FOR SEQ ID NO: 607:
- (i) SEQUENCE CHARACTERISTICS:
- 15 (A) LENGTH: 23 amino acids
 - (B) TYPE: amino acid
 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 607:
- 20 Met Leu Val Ile Phe Leu Phe Thr Ser Leu Leu Lys Ile Pro Ser Ser 1 5 10 15

Val Pro Gly Leu Ile Asn Val 20

25

- (2) INFORMATION FOR SEQ ID NO: 608:
- 30 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 608:

35
Glu Leu Asp Tyr Ile Leu
1 5

40

45

- (2) INFORMATION FOR SEQ ID NO: 609:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 232 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 609:
- - Pro Asp Arg Gly Glu Leu Ser Ser Arg Ser Pro Pro Cys Arg Leu Ala 20 25 30
- 55 Arg Trp Ala Glu Gly Asp Arg Glu Thr Arg Thr Cys Leu Leu Glu Leu 35 40 45
 - Ser Ala Gln Ser Trp Gly Gly Arg Phe Arg Arg Ser Ser Ala Val Ser 50 55 60

	Ala 65	Gly	Ser	Pro	Ser	Arg 70	Leu	His	Phe	Leu	Pro 75	Gln	Pro	Leu	Leu	Leu 80
5	Arg	Ser	Ser	Gly	Ile 85	Pro	Ala	Ala	Ala	Thr 90	Pro	Trp	Pro	Gln	Pro 95	Ala
	Gly	Leu	Pro	Val 100	Arg	Pro	Thr	Pro	Thr 105	Arg	Thr	Gly	Glu	Glu 110	Asp	Arg
10	Thr	Leu	Asp 115	Ile	Ser	Ile	Cys	Thr 120	Glu	Val	Leu	Ala	Gly 125	Thr	Glu	Glr
15	Pro	Pro 130		Pro	Arg	Met	Thr 135	Ser	Pro	Ser	Ser	Ser 140	Pro	Val	Phe	Arg
13	Leu 145	Glu	Thr	Leu	Asp	Gly 150	Gly	Gln	Glu	Asp	Gly 155	Ser	Glu	Ala	Asp	Arg 160
20	Gly	Lys	Leu	Asp	Phe 165	Gly	Ser	Gly	Leu	Pro 170	Pro	Met	Glu	Ser	Gln 175	Phe
	Gln	Gly	Glu	Asp 180	Arg	Lys	Phe	Ala	Pro 185	Ser	Asp	Lys	Ser	Gln 190	Pro	Pro
25	Thr	Thr	Glu 195	-	Glu	Gln	Val	Pro 200	Val	Ser	Arg	Ile	Gln 205	Thr	Asp	Let
30	Thr	Glu 210		Gly	Ser	Ser	Met 215	Arg	Ser	Pro	Gly	Val 220	Ser	Pro	Arg	Ile
30	Trp 225	Leu	Asp	Phe	Gln	Ser 230	Thr	Хаа								
35	(2)	INF	ORMA	TION	FOR	SEQ	ID I	NO:	510:							
40				(A) I B) T D) T	ENGI YPE : OPOL	H: 3 ami OGY:	4 am no a lin	ino cid ear	acid		·: 61	0:			
45	Met 1	Val	Leu	Leu	Leu 5	Leu	Leu	Ala	Tyr	Val 10	Leu	Leu	Thr	Tyr	Ile 15	Leu
	Leu	Leu	Asn	Met 20	Leu	Ile	Ala	Leu	Меt 25	Xaa	Arg	Asp	Arg	Gln 30	Gln	Cys
50	Arg	His														
55	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: (511:							
			(i)	SEQU)	ENCE A) L						s					
60					B) T D) T											

(D) TOPOLOGY: linear

WO 98/39448

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 611: Met Val Phe Glu Gly Phe Ser Ser Ala Phe Cys Leu Ser Ser Thr Ala 5 10 5 Pro Thr Ser His Pro 20 10 (2) INFORMATION FOR SEQ ID NO: 612: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids 15 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 612: Gly Lys Lys Asn Gln Leu Leu Val Ile 20 5 (2) INFORMATION FOR SEQ ID NO: 613: 25 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 613: Met Val Trp Val Leu Trp Ser Ala Pro Ser Leu Ala Pro Pro Trp Val 1 5 10 15 35 Gly Pro Cys Trp Pro Ser Thr Gly Asn Cys Cys Leu Cys 20 40 (2) INFORMATION FOR SEQ ID NO: 614: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids (B) TYPE: amino acid 45 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 614: Met Ala Lys Arg Ser Pro Gly Gly Cys Gly Ser Gly Leu Ile Leu Leu 50 Cys Cys Gln Pro Cys Arg Pro Thr Ser Ser Ala Pro Met Arg 20 25 30 55 (2) INFORMATION FOR SEQ ID NO: 615: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 113 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 615:

705

Ile Thr Ile Ala Ile Gln Met Ile Cys Leu Val Asn Xaa Glu Leu Tyr 5 10

Pro Thr Phe Val Arg Asn Xaa Gly Val Met Val Cys Ser Ser Leu Cys

10 Asp Ile Gly Gly Ile Ile Thr Pro Phe Ile Val Phe Arg Leu Arg Glu

Val Trp Gln Ala Leu Pro Leu Ile Leu Phe Ala Val Leu Gly Leu Leu 55 60

15

Ala Ala Gly Val Thr Leu Leu Leu Pro Glu Thr Lys Gly Val Ala Leu

Pro Glu Thr Met Lys Asp Ala Glu Asn Leu Gly Arg Lys Ala Lys Pro 20 90

Lys Glu Asn Thr Ile Tyr Leu Lys Val Gln Thr Ser Glu Pro Ser Gly 105

25 Thr

30 (2) INFORMATION FOR SEQ ID NO: 616:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18 amino acids

(B) TYPE: amino acid

35 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 616:

Thr Met Lys Asp Ala Glu Asn Leu Gly Arg Lys Ala Lys Pro Lys Glu 10

40

Asn Thr

45

(2) INFORMATION FOR SEQ ID NO: 617:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 21 amino acids

50 (B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 617:

Pro Arg Val Arg Asn Ser Pro Glu Asp Leu Gly Leu Ser Leu Thr Gly 55 10

Asp Ser Cys Lys Leu

(2)	INFORMATION	FOR	SEQ	ID	NO:	618:
-----	-------------	-----	-----	----	-----	------

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 52 amino acids

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 618:
- 10 Gln Ala Asp Asp Leu Gln Ala Thr Val Ala Ala Leu Cys Val Leu Arg

Gly Gly Gly Pro Trp Ala Gly Ser Trp Leu Ser Pro Lys Thr Pro Gly

706

Ala Met Gly Gly Asp Leu Val Leu Gly Leu Gly Ala Leu Arg Arg

Lys Arg Leu Leu 20 50

15

25

- (2) INFORMATION FOR SEQ ID NO: 619:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 232 amino acids
 - (B) TYPE: amino acid
- (D) TOPOLOGY: linear 30
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 619:

Glu Gln Glu Lys Ser Leu Ala Gly Trp Ala Leu Val Leu Ala Xaa Xaa 10

- 35 Gly Ile Gly Leu Met Val Leu His Ala Glu Met Leu Trp Phe Gly Gly 25
- Cys Ser Ala Val Asn Ala Thr Gly His Leu Ser Asp Thr Leu Trp Leu 40
 - Ile Pro Ile Thr Phe Leu Thr Ile Gly Tyr Gly Asp Val Val Pro Gly
- Thr Met Trp Gly Lys Ile Val Cys Leu Cys Thr Gly Val Met Gly Val 45 70
 - Cys Cys Thr Ala Leu Leu Val Ala Val Val Ala Arg Lys Leu Glu Phe
- 50 Asn Lys Ala Glu Lys His Val His Asn Phe Met Met Asp Ile Gln Tyr
- Thr Lys Glu Met Lys Glu Ser Ala Ala Arg Val Leu Gln Glu Ala Trp 120 55
 - Met Phe Tyr Lys His Thr Arg Arg Lys Glu Ser His Ala Ala Arg Xaa 135
- His Gln Arg Xaa Leu Leu Ala Ala Ile Asn Ala Phe Arg Gln Val Arg 60 150 155 160

	Leu	Lys	His	Arg	Lys 165	Leu	Arg	Glu	Gln	Val 170	Asn	Ser	Met	Val	Asp 175	Ile
5	Ser	Lys	Met	His 180	Met	Ile	Leu	Tyr	Asp 185	Leu	Gln	Gln	Asn	Leu 190	Ser	Ser
10	Ser	His	Arg 195	Ala	Leu	Glu	Lys	Gln 200	Ile	Asp	Thr	Leu	Ala 205	Gly	Lys	Leu
	Asp	Ala 210	Leu	Thr	Glu	Leu	Leu 215	Ser	Thr	Ala	Leu	Gly 220	Pro	Arg	Gln	Leu
15	Pro 225		Pro	Ser	Gln	Gln 230	Ser	Lys								
20	(2)	INF		SEQU)	ENCE A) L	SEQ CHA ENGT YPE:	RACT H: 3	ERIS	TICS ino		s					
25			(xi)	(D) T	OPOL E DE	OGY:	lin	ear	EQ I	D NO	: 62	0:			
	Tyr 1	Gln	Ala	His	His 5	Val	Ser	Arg	Asn	Lys 10	Arg	Gly	Gln	Val	Val 15	Gly
30	Thr	Arg	Gly	Gly 20	Phe	Arg	Gly	Cys	Thr 25	Val	Trp	Leu	Thr	Gly 30	Leu	Ser
35	Gly	Ala	Gly 35	Lys												
40	(2)					SEQ										
40			(1)	(A) L B) T	CHAI ENGT YPE: OPOL	H: 5 ami	7 am no a	ino cid		s					
45	I.e.i					E DE:				-				21-	Ser	T 011
	1				5					10					15	
50	Asn	Trp	His	Met 20	Lys	Lys	His	Asp	Ala 25	Asp	Ser	Phe	Tyr	Gln 30	Phe	Ser
	Cys	Asn	Ile 35	Cys	Gly	Lys	Lys	Phe 40	Glu	Lys	Lys	Asp	Ser 45	Val	Val	Ala
55	His	Lys 50	Ala	Lys	Ser	His	Pro 55	Glu	Val							

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 622:
10	Ile Thr Ser Thr Asp Ile Leu Gly Thr Asn Pro Glu Ser Leu Thr Gln 1 5 10 15 Pro Ser Asp
15	(2) INFORMATION FOR SEQ ID NO: 623:
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 623:
25	Asn Ser Thr Ser Gly Glu Cys Leu Leu Leu Glu Ala Glu Gly Met Ser 1 5 10 15
	Lys Ser Tyr
30	
	(2) INFORMATION FOR SEQ ID NO: 624:
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 51 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 624:
40	Cys Ser Gly Thr Glu Arg Val Ser Leu Met Ala Asp Gly Lys Ile Phe 1 5 10 15
	Val Gly Ser Gly Ser Ser Gly Gly Thr Glu Gly Leu Val Met Asn Ser
45	Asp Ile Leu Gly Ala Thr Thr Glu Val Leu Ile Glu Asp Ser Asp Ser 35 40 45
50	Ala Gly Pro 50
55	(2) INFORMATION FOR SEQ ID NO: 625:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 amino acids (B) TYPE: amino acid
60	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 625:

	Ile Gln Tyr Val Arg Cys Glu Met Glu Gly Cys Gly Thr Val Leu Ala 1 5 10 15
5	His Pro Arg Tyr Leu Gln His His Ile Lys Tyr Gln His Leu Leu Lys 20 25 30
10	Lys Lys Tyr Val Cys Pro His Pro Ser Cys Gly Arg Leu Phe Arg Leu 35 40 45
	Gln Lys Gln Leu Leu Arg His Ala Lys His His Thr 50 55 60
15	(2) INFORMATION FOR SEQ ID NO: 626:
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 626:
25	Asp Gln Arg Asp Tyr Ile Cys Glu Tyr Cys Ala Arg Ala Phe Lys Ser 1 5 10 15
	Ser His Asn Leu Ala Val His Arg Met Ile His Thr Gly Glu Lys 20 25 30
30	
	(2) INFORMATION FOR SEQ ID NO: 627:
	(2) INPORTATION FOR SEQ ID NO. 027:
35	(i) SEQUENCE CHARACTERISTICS:
33	(A) LENGTH: 25 amino acids (B) TYPE: amino acid
	(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 627:
40	Arg Ser Ser Arg Ser Lys Thr Gly Ser Leu Gln Leu Ile Cys Lys Ser 1 5 10 15
	Glu Pro Asn Thr Asp Gln Leu Asp Tyr
45	20 25
	(2) INFORMATION FOR SEQ ID NO: 628:
50	(i) SEQUENCE CHARACTERISTICS:
50	(A) LENGTH: 183 amino acids (B) TYPE: amino acid
	(D) TOPOLOGY: linear
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 628:
	Leu Gln Cys Glu Ile Cys Gly Phe Thr Cys Arg Gln Lys Ala Ser Leu 1 5 10 15
	Asn Trp His Met Lys Lys His Asp Ala Asp Ser Phe Tyr Gln Phe Ser
60	20 25 30

	Cys	Asn	Ile 35	Cys	Gly	Lys	Lys	Phe 40	Glu	Lys	Lys	Asp	Ser 45	Val	Val	Ala
5	His	Lys 50	Ala	Lys	Ser	His	Pro 55	Glu	Val	Xaa	Ile	Thr 60	Ser	Thr	Asp	Ile
10	Leu 65	Gly	Thr	Asn	Pro	Glu 70	Ser	Leu	Thr	Gln	Pro 75	Ser	Asp	Xaa	Asn	Ser 80
10	Thr	Ser	Gly	Glu	Cys 85	Leu	Leu	Leu	Glu	Ala 90	Glu	Gly	Met	Ser	Lys 95	Ser
15	Tyr	Xaa	Cys	Ser 100	Gly	Thr	Glu	Arg	Val 105	Ser	Leu	Met	Ala	Asp 110	Gly	Lys
	Ile	Phe	Val 115	Gly	Ser	Gly	Ser	Ser 120	Gly	Gly	Thr	Glu	Gly 125	Leu	Val	Met
20	Asn	Ser 130	Asp	Ile	Leu	Gly	Ala 135	Thr	Thr	Glu	Val	Leu 140	Ile	Glu	Asp	Ser
25	Asp 145		Ala	Gly	Pro	Xaa 150	Gln	Arg	Asp	Tyr	Ile 155	Cys	Glu	Tyr	Cys	Ala 160
	Arg	Ala	Phe	Lys	Ser 165	Ser	His	Asn	Leu	Ala 170	Val	His	Arg	Met	Ile 175	His
30	Thr	Gly	Glu	Lys 180	His	Tyr	Xaa									
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	1 0: (629:							
35			(i)		A) L	ENGT	н: 6	0 am	ino		s					
40			(xi)		D) T	YPE: OPOL E DE	OGY:	lin	ear	EQ I	D NO	: 62	9:			
	Gln 1	Тут	Val	Arg	Cys 5	Glu	Met	Glu	Gly	Cys 10	Gly	Thr	Val	Leu	Ala 15	His
45	Pro	Arg	Tyr	Leu 20	Gln	His	His	Ile	Lys 25	Tyr	Gln	His	Leu	Leu 30	Lys	Lys
50	Lys	Tyr	Val 35	Cys	Pro	His	Pro	Ser 40	Cys	Gly	Arg	Leu	Phe 45	Arg	Leu	Gln
50	Lys	Gln 50	Leu	Leu	Arg	His	Ala 55	Lys	His	His	Thr	Asp 60				
55	(2)	INFO	ORMAT	rion	FOR	SEQ	ID N	10: (530:							
			(i) :	SEQUI												
60						ENGT YPE:				acid	S					

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 630:

Pro Phe Lys Asp Asp Pro Arg Asp Glu Thr Tyr Lys Pro His Leu Glu 5 1 5 10 15

Arg Glu Thr Pro Lys Pro Arg Arg Lys Ser Gly
20 25

10

15

- (2) INFORMATION FOR SEQ ID NO: 631:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 110 amino acids

(B) TYPE: amino acid (D) TOPOLOGY: linear

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 631:
- 20 Glu Met Phe Asp Ser Leu Ser Tyr Phe Lys Gly Ser Ser Leu Leu Leu lu 1 5 10 15

Met Leu Lys Thr Tyr Leu Ser Glu Asp Val Phe Gln His Ala Val Val 20 25 30

25
Leu Tyr Leu His Asn His Ser Tyr Ala Ser Ile Gln Ser Asp Asp Leu
35
40
45

Trp Asp Ser Phe Asn Glu Val Thr Asn Gln Thr Leu Asp Val Lys Arg 30 50 55 60

Met Met Lys Thr Trp Thr Leu Gln Lys Gly Phe Pro Leu Val Thr Val

35 Gln Lys Lys Gly Lys Glu Leu Phe Ile Gln Gln Glu Arg Phe Phe Leu 85 90 95

Asn Met Lys Pro Glu Ile Gln Pro Ser Asp Thr Arg Tyr Met 100 105 110

(2) INFORMATION FOR SEQ ID NO: 632:

45 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 24 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 632:

Leu Glu Lys Val Ala Ser Val Gly Asn Ser Arg Pro Thr Gly Gln Gln $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Glu Ser Leu Gly Leu Leu Ala 55 20

(2) INFORMATION FOR SEQ ID NO: 633:

60

40


```
(i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 18 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
 5
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 633:
      Val His Arg Glu Glu Ala Ser Cys Tyr Cys Gln Ala Glu Pro Ser Gly
                       5
                                10
10
      Asp Leu
15
      (2) INFORMATION FOR SEQ ID NO: 634:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 22 amino acids
                    (B) TYPE: amino acid
20
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 634:
      Arg Pro Ala Leu Arg Gln Ala Gly Gly Gly Thr Arg Glu Pro Arg Gln
                       5
                                         10
25
      Lys Arg Trp Ala Gly Leu
                  20
30
      (2) INFORMATION FOR SEQ ID NO: 635:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 12 amino acids
35
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 635:
      Ala Val Asn Phe Arg Pro Gln Arg Ser Gln Ser Met
40
                       5
     (2) INFORMATION FOR SEQ ID NO: 636:
45
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 37 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
50
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 636:
     Met Ile Thr Asp Val Gln Leu Ala Ile Phe Ala Asn Met Leu Gly Val
55
     Ser Leu Phe Leu Leu Val Val Leu Tyr His Tyr Val Ala Val Asn Asn
                                                 30
     Pro Lys Lys Gln Glu
              35
60
```


(2) INFORMATION FOR SEQ ID NO: 637:

5	5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 342 amino acids (B) TYPE: amino acid															
					D) T											
10			(xi)		UENC					EQ II	ОИО	: 63′	7:			
	Glu 1	Glu	Met	Ala	Asp 5	Ser	Val	Lys	Thr	Phe 10	Leu	Gln	Asp	Leu	Ala 15	Arg
15	Gly	Ile	Lys	Asp 20	Ser	Ile	Trp	Gly	Ile 25	Cys	Thr	Ile	Ser	Lys 30	Leu	Asp
	Ala	Arg	Ile 35	Gln	Gln	Lys	Arg	Glu 40	Glu	Gln	Arg	Arg	Arg 45	Arg	Ala	Ser
20	Ser	Val 50	Leu	Ala	Gln	Arg	Arg 55	Ala	Gln	Ser	Ile	Glu 60	Arg	Lys	Gln	Glu
25	Ser 65	Glu	Pro	Arg	Ile	Val 70	Ser	Arg	Ile	Phe	Gln 75	Cys	Cys	Ala	Trp	Asn 80
	Gly	Gly	Val	Phe	Trp 85	Phe	Ser	Leu	Leu	Leu 90	Phe	Tyr	Arg	Val	Phe 95	Ile
30	Pro	Val	Leu	Gln 100	Ser	Val	Thr	Ala	Arg 105	Ile	Ile	Gly	Asp	Pro 110	Ser	Leu
	His	Gly	Asp 115	Val	Trp	Ser	Trp	Leu 120	Glu	Phe	Phe	Leu	Thr 125	Ser	Ile	Phe
35	Ser	Ala 130	Leu	Ттр	Val	Leu	Pro 135	Leu	Phe	Val	Leu	Ser 140	Lys	Val	Val	Asn
40	Ala 145	Ile	Trp	Phe	Gln	Asp 150	Ile	Ala	Asp	Leu	Ala 155	Phe	Glu	Val	Ser	Gly 160
	Arg	Lys	Pro	His	Pro 165	Phe	Pro	Ser	Val	Ser 170	Lys	Ile	Ile	Ala	Asp 175	Met
45	Leu	Phe	Asn	Leu 180	Leu	Leu	Gln	Ala	Leu 185	Phe	Leu	Ile	Gln	Gly 190	Met	Phe
	Val	Ser	Leu 195	Phe	Pro	Ile	His	Leu 200	Val	Gly	Gln	Leu	Val 205	Ser	Leu	Leu
50	His	Met 210	Ser	Leu	Leu	Tyr	Ser 215	Leu	Tyr	Cys	Phe	Glu 220	Tyr	Arg	Trp	Phe
55	Asn 225	Lys	Gly	Ile	Glu	Met 230	His	Gln	Arg	Leu	Ser 235	Asn	Ile	Glu	Arg	Asn 240
	Trp	Pro	туг	Tyr	Phe 245	Gly	Phe	Gly	Leu	Pro 250	Leu	Ala	Phe	Leu	Thr 255	Ala
60	Met	Gln	Ser	Ser 260	Tyr	Ile	Ile	Ser	Gly 265	Cys	Leu	Phe	Ser	Ile 270	Leu	Phe

	Pro	Leu	Phe 275	Ile	Ile	Ser	Ala	Asn 280	Glu	Ala	Lys	Thr	Pro 285	Gly	Lys	Ala
5	Tyr	Leu 290	Phe	Gln	Leu	Arg	Leu 295	Phe	Ser	Leu	Val	Val 300	Phe	Leu	Ser	Asn
10	Arg 305	Leu	Phe	His	Lys	Thr 310	Val	Тут	Leu	Gln	Ser 315	Ala	Leu	Ser	Ser	Ser 320
	Thr	Ser	Ala	Glu	Lys 325	Phe	Pro	Ser	Pro	His 330	Pro	Ser	Pro	Ala	Lys 335	Leu
15	Lys	Ala	Thr	Ala 340	Gly	His										
20	(2)	INF			FOR ENCE					:						
25			(xi)	(A) L B) T D) T UENC	YPE: OPOL	ami OGY:	no a lin	cid ear			: 63	8:			
	Met 1	Ala	Lys	Phe	Met 5	Thr	Pro	Val	Ile	Gln 10	Asp	Asn	Pro	Ser	Gly 15	Trp
30	Gly	Pro	Cys	Ala 20	Val	Pro	Glu	Gln	Phe 25	Arg	Asp	Met	Pro	Tyr 30	Gln	Pro
35	Phe	Ser	Lys 35	Gly	Asp	Arg	Leu	Gly 40	Lys	Val	Ala	Asp	Trp 45	Thr	Gly	Ala
	Thr	Туr 50	Gln	Asp	Lys	Arg	Tyr 55	Thr	Asn	Lys	Tyr	Ser 60	Ser	Gln	Phe	Gly
40	Gly 65	Gly	Ser	Gln	Tyr	Ala 70	Tyr	Phe	His	Glu	Glu 75	Asp	Glu	Ser	Ser	Phe 80
	Gln	Leu	Val	Asp	Thr 85	Ala	Arg	Thr	Gln	Lys 90	Thr	Ala	Tyr	Gln	Arg 95	Asn
45	Arg	Met	_	Phe 100	Ala	Gln	Arg		Leu 105	_	Arg	Asp	-	Asp 110	Arg	Arg
50	Asn	Met	Leu 115	Gln	Phe	Asn	Leu	Gln 120	Ile	Leu	Pro	Lys	Ser 125	Ala	Lys	Gln
	Lys	Glu 130	Arg	Glu	Arg	Ile	Arg 135	Leu	Gln	Lys	Lys	Phe 140	Gln	Lys	Gln	Phe
55	Gly 145	Val	Arg	Gln	Lys	Trp 150	Asp	Gln	Lys	Ser	Gln 155	Lys	Pro	Arg	Asp	Ser 160
	Ser	Val	Glu	Val	Arg 165	Ser	Asp	Trp	Glu	Val 170	Lys	Glu	Glu	Met	Asp 175	Phe
60	Pro	Gln	Leu	Met	Lys	Met	Arg	Tyr	Leu	Glu	Val	Ser	Glu	Pro	Gln	Asp

WO 98/39448

		180	185		190
5	Ile Glu Cys 195		a Leu Glu Tyr 200	Tyr Asp Lys Ala 205	Phe Asp Arg
J	Ile Thr Thr 210	Arg Ser Glu	ı Lys Pro Leu 215	Arg Xaa Xaa Lys 220	Arg Ile Phe
10	His Thr Val 225	Thr Thr Thr 230	- •	Val Ile Arg Lys 235	Leu Ala Lys 240
	Thr Gln Gly	Asn Val Phe 245	e Ala Thr Asp	Ala Ile Leu Ala 250	Thr Leu Met 255
15	Ser Cys Thr	Arg Ser Val	l Tyr Ser Trp 265	Asp Ile Val Val	Gln Arg Val 270
20	Gly Ser Lys 275		e Asp Lys Arg 280	Asp Asn Ser Asp 285	-
	Leu Thr Val 290	Ser Glu Th	r Ala Asn Glu 295	Pro Pro Gln Asp 300	Glu Gly Asn
25	Ser Phe Asn 305	Ser Pro Arg		Met Glu Ala Thr 315	Tyr Ile Asn 320
	His Asn Phe	Ser Gln Gli 325	n Cys Leu Arg	Met Gly Lys Glu 330	Arg Tyr Asn 335
30	Phe Pro Asn	Pro Asn Pro 340	o Phe Val Glu 345	Asp Asp Met Asp	Lys Asn Glu 350
35	Ile Ala Ser 355		r Arg Tyr Arg 360	Ser Gly Lys Leu 365	
	Ile Asp Leu 370	Ile Val Ar	g Cys Glu His 375	Asp Gly Val Met 380	Thr Gly Ala
40	Asn Gly Glu 385	Val Ser Pho 39		Lys Thr Leu Asn 395	Glu Trp Asp 400
	_	405		Arg Gln Lys Leu 410	415
45	Arg Gly Ala	Val Ile Ala 420	a Thr Glu Leu 425	Lys Asn Asn Ser	Tyr Lys Leu 430
50	Ala Arg Trp 435		s Ala Leu Leu 440	Ala Gly Ser Glu 445	Tyr Leu Lys
	Leu Gly Tyr 450	Val Ser Arg	y Tyr His Val 455	Lys Asp Ser Ser 460	Arg His Val
55	Ile Leu Gly 465	Thr Gln Gli 470	-	Asn Glu Phe Ala 475	Ser Gln Ile 480
	Asn Leu Ser	Val Glu Ası 485	n Ala Trp Gly	Ile Leu Arg Cys 490	Val Ile Asp 495
60	Ile Cys Met	Lys Leu Gl	ı Glu Gly Lys	Tyr Leu Ile Leu	Lys Asp Pro

•

WO 98/39448

				500					505					510		
5	Asn	Lys	Gln 515	Val	Ile	Arg	Val	Tyr 520	Ser	Leu	Pro	Asp	Gly 525	Thr	Phe	Ser
3	Ser															
10	(2)	INF						NO: (
15				((A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	ERIS 94 a no a lin PTIO	mino cid ear	aci		: 63	9:			
20	Lys 1	Lys	Arg	His	Thr 5	Asp	Val	Gln	Phe	Туг 10	Thr	Glu	Val	Gly	Glu 15	Ile
	Thr	Thr	Asp	Leu 20	Gly	Lys	His	Gln	His 25	Met	His	Asp	Arg	Asp 30	Asp	Leu
25	Tyr	Ala	Glu 35	Gln	Met	Glu	Arg	Glu 40	Met	Arg	His	Lys	Leu 45	Lys	Thr	Ala
30	Phe	Lys 50		Phe	Ile	Glu	Lys 55	Val	Glu	Ala	Leu	Thr 60	Lys	Glu	Glu	Leu
	65					70		Asp			75					80
35					85			Pro		90					95	
40				100				Val	105					110		
40			115					His 120					125			
45	•	130					135	Lys				140				
	145					150		Lys			155					160
50					165			Ser		170					175	
: E			Val	Asp 180	Asp	Pro	Glu	Gly	Phe 185	Phe	Glu	Gln	Gly	Gly 190	Trp	Ser
55	Phe	Leu														

60 (2) INFORMATION FOR SEQ ID NO: 640:

WO 98/39448

			(i)	SEQU	ENCE	CHA	RACI	ERIS	TICS	:						
				((A) I	ENG	rH: 7	0 an	nino	acid	ls					
~				((B) 1	YPE:	: ami	no a	cid							
5							LOGY :									
			(xi)	SEQ	UENC	E DE	ESCRI	PTIC	N: S	EQ I	D NO): 64	0:			
	Arg 1		Gly	Leu	Gly 5		Gly	Ile	Thr	Ile		Phe	Leu	Ala	Thr 15	Le
10	Ile	Thr	Gln	Phe 20		Val	Tyr	Asn	Gly 25		Туr	Gln	Tyr	Thr 30		Pr
15	Asp	Phe	Leu 35		Ile	Arg	Ser	Trp	Leu	Pro	Cys	Ile	Phe 45		Ser	Gl
	Gly	Val		Val	Gly	Asn	Ile 55	Gly	Arg	Gln	Leu	Ala		Gly	Val	Pr
20	Glu 65	_	Pro	His	Ser	Asp 70										
25	(2)	7577	00141	m+011	man	~~~										
43	(2)	TWF	ORMA	TTON	FOR	SEQ	ID	NO:	641:							
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 101 amino acids (B) TYPE: amino acid															
30				(D) 1	OPOL	OGY:	lin	ear							
			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 64	1:			
35	Val 1	Thr	Gln	Pro	Lys 5	His	Leu	Ser	Ala	Ser 10	Met	Gly	Gly	Ser	Val	Gl
	Ile	Pro	Phe	Ser 20	Phe	Tyr	Tyr	Pro	Trp 25	Glu	Leu	Ala	Xaa	Xaa 30	Pro	Ха
40	Val	Arg	Ile 35	Ser	Trp	Arg	Arg	Gly 40	His	Phe	His	Gly	Gln 45	Ser	Phe	Ty:
	Ser	Thr 50	Arg	Pro	Pro	Ser	Ile 55	His	Lys	Asp	Tyr	Val 60	Asn	Arg	Leu	Pho
45	Leu 65	Asn	Trp	Thr	Glu	Gly 70	Gln	Glu	Ser	Gly	Phe 75	Leu	Arg	Ile	Ser	Ası 80
	Leu	Ara	Lvs	Glu	Asp	Gln	Ser	t/a l	ጥሎ	Dha	Ove	۸	Ual	Cl.	1 011	λαν

55

50

- (2) INFORMATION FOR SEQ ID NO: 642:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 233 amino acids

60 (B) TYPE: amino acid

Thr Arg Arg Ser Gly 100

(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 642:

718

Met Glu Ala Gln Gln Val Asn Glu Ala Glu Ser Ala Arg Glu Gln Leu 5 Gln Xaa Leu His Asp Gln Ile Ala Gly Gln Lys Ala Ser Lys Gln Glu 25 10 Leu Glu Thr Glu Leu Glu Arg Leu Lys Gln Glu Phe His Tyr Ile Glu Glu Asp Leu Tyr Arg Thr Lys Asn Thr Leu Gln Ser Arg Ile Lys Asp 55 15 Arg Asp Glu Glu Ile Gln Lys Leu Arg Asn Gln Leu Thr Asn Lys Thr Leu Ser Asn Ser Ser Gln Ser Glu Leu Glu Asn Arg Leu His Gln Leu 20 90 Thr Glu Thr Leu Ile Gln Lys Gln Thr Met Leu Glu Ser Leu Ser Thr 100 105 25 Glu Lys Asn Ser Leu Val Phe Gln Leu Glu Arg Leu Glu Gln Gln Met Asn Ser Ala Ser Gly Ser Ser Ser Asn Gly Ser Ser Ile Asn Met Ser 135 30 Gly Ile Asp Asn Gly Glu Gly Thr Arg Leu Arg Asn Val Pro Val Leu 150 155 Phe Asn Asp Thr Glu Thr Asn Leu Ala Gly Met Tyr Gly Lys Val Arg 35 165 170 Lys Ala Ala Ser Ser Ile Asp Gln Phe Ser Ile Arg Leu Gly Ile Phe 185 40 Leu Arg Arg Tyr Pro Ile Ala Arg Val Phe Val Ile Ile Tyr Met Ala 200 Leu Leu His Leu Trp Val Met Ile Val Leu Leu Thr Tyr Thr Pro Glu 215 45 Met His His Asp Gln Pro Tyr Gly Lys 225 230 50 (2) INFORMATION FOR SEQ ID NO: 643: (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 43 amino acids
- 55 (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 643:
- Ile Arg His Glu Gln His Pro Asn Phe Ser Leu Glu Met His Ser Lys 60 5 10

	Gly	Ser	Ser	Leu 20	Leu	Leu	Phe	Leu	Pro 25	Gln	Leu	Ile	Leu	Ile 30	Leu	Pro
5	Val	Cys	Ala 35	His	Leu	His	Glu	Glu 40	Leu	Asn	Cys					
10	(2)	INFO	ORMA'	rion	FOR	SEQ	ID 1	NO: 6	544 :							
15			(i) (xi)	(A) L B) T D) T	ENGT YPE: OPOL	H: 6 ami OGY:	3 am no a lin	ino cid ear	acid		: 64	4:			
20	Ser 1	Phe	Phe	Ile	Ser 5	Glu	Glu	Lys	Gly	His 10	Leu	Leu	Leu	Gln	Ala 15	Gl
20	Arg	His	Pro	Trp 20	Val	Ala	Gly	Ala	Leu 25	Val	Gly	Val	Ser	Gly 30	Gly	Let
25	Thr	Leu	Thr 35	Thr	Cys	Ser	Gly	Pro 40	Thr	Glu	Lys	Pro	Ala 45	Thr	Lys	Ası
	Tyr	Phe 50	Leu	Lys	Arg	Leu	Leu 55	Gln	Glu	Met	His	Ile 60	Arg	Ala	Asn	
30																

A. The indications made below relate to the microorganism referred on page 116 , line N/A						
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet					
Name of depositary institution American Type Culture Col	lection					
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	ry) .					
Date of deposit February 26, 1997	Accession Number 97897					
C. ADDITIONAL INDICATIONS (leave blank if not applicable	le) This information is continued on an additional sheet					
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)						
·						
E. SEPARATE FURNISHING OF INDICATIONS (leave						
The indications listed below will be submitted to the International I Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession					
For receiving Office use only	For International Bureau use only					
This sheet was received with the international application	This sheet was received by the International Bureau on:					
Authorized officer Susan White PCT International Division	Authorized officer					

A. The indications made below relate to the microorganism referred on page 116 , line N/A	•				
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet				
Name of depositary institution American Type Culture Col	lection				
Address of depositary institution (including postal code and count	n)				
12301 Parklawn Drive Rockville, Maryland 20852 United States of America					
Date of deposit May 15, 1997	Accession Number 209043				
C. ADDITIONAL INDICATIONS (leave blank if not applicable	ole) This information is continued on an additional sheet				
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)				
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)				
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")					
For receiving Office use only	For International Bureau use only				
This sheet was received with the international application	This sheet was received by the International Bureau on:				
Authorized officer Susan White PCT International Division	Authorized officer				

A. The indications made below relate to the microorganism referr on page 119 , line N/A							
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet						
Name of depositary institution American Type Culture Collection							
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	n) .						
Date of deposit September 4, 1997	Accession Number 209235						
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	This information is continued on an additional sheet						
D. DESIGNATED STATES FOR WHICH INDICATION	D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (If the indications are not for all designated States)						
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)							
The indications listed below will be submitted to the International I Number of Deposit")	Bureau latet (specify the general nature of the indications, e.g., "Accession						
For receiving Office use only	For International Bureau use only						
This sheet was received with the international application Authorized officer	This sheet was received by the International Bureau on:						
Susan White PCT International Division	Authorized officer						

723

A. The indications made below relate to the microorganism referred to in the description on page 122 , line N/A							
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet						
Name of depositary institution American Type Culture Collection							
Address of depositary institution (including postal code and count	ry) ·						
12301 Parklawn Drive Rockville, Maryland 20852 United States of America							
Date of deposit February 26, 1997	Accession Number 97898						
C. ADDITIONAL INDICATIONS (leave blank if not applicable	tle) This information is continued on an additional sheet						
D. DESIGNATED STATES FOR WHICH INDICATION	15 ARE MADE (I) the indications are not for all designated states)						
·							
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)						
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")							
For receiving Office use only	For International Bureau use only						
This sheet was received with the international application	This sheet was received by the International Bureau on:						
Authorized officer Susan White PCT International Division	Authorized officer						

A. The indications made below relate to the microorganism referm on page 122 , line N/A	-				
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet				
Name of depositary institution American Type Culture Col	lection				
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	n) .				
Date of deposit May 15, 1997	Accession Number 209044				
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	ole) This information is continued on an additional sheet				
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)				
E. SEPARATE FURNISHING OF INDICATIONS (leave					
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")					
For receiving Office use only	For International Bureau use only				
This sheet was received with the international application	This sheet was received by the International Bureau on:				
Authorized officer Susan White PCT International Division	Authorized officer				

A. The indications made below relate to the microorganism referred to in the description on page 126 , line N/A					
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet				
Name of depositary institution American Type Culture Col	lection				
Address of depositary institution (including postal code and count	ייי)				
12301 Parklawn Drive Rockville, Maryland 20852 United States of America					
Date of deposit February 26, 1997	Accession Number 97899				
C. ADDITIONAL INDICATIONS (leave blank if not applicab	This information is continued on an additional sheet				
·					
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)				
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)				
The indications listed below will be submitted to the International I Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession .				
For receiving Office use only	For International Bureau use only				
This sheet was received with the international application	This sheet was received by the International Bureau on:				
Authorized officer Susan White PCT International Division	Authorized officer				

A. The indications made below relate to the microorganism referron on page 126 , line N/A						
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet					
Name of depositary institution American Type Culture Collection						
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	n)					
Date of deposit May 15, 1997	Accession Number 209045					
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	This information is continued on an additional sheet					
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)						
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)					
The indications listed below will be submitted to the International I Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession					
For receiving Office use only	For International Bureau use only					
This sheet was received with the international application	This sheet was received by the International Bureau on:					
Authorized officer Susan White POT International Division	Authorized officer					

A. The indications made below relate to the microorganism refer on page 130 , line N/A	•					
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet					
Name of depositary institution American Type Culture Collection						
Address of depositary institution (including postal code and coun 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	try)					
Date of deposit April 28, 1997	Accession Number 209011					
C. ADDITIONAL INDICATIONS (leave blank if not applicate	ble) This information is continued on an additional sheet					
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)						
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)						
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")						
For receiving Office use only	For International Bureau use only					
This sheet was received with the international application Authorized officer	This sheet was received by the International Bureau on:					
Susan White PCT International Division	Authorized officer					

A. The indications made below relate to the microorganism refers on page 131 , line N/A	•					
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet					
Name of depositary institution American Type Culture Collection						
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	(יאי					
Date of deposit February 26, 1997	Accession Number 97900					
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	ole) This information is continued on an additional sheet					
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)						
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)						
The indications listed below will be submitted to the International language of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession					
For receiving Office use only	For International Bureau use only					
This sheet was received with the international application Authorized officer	This sheet was received by the International Bureau on:					
Susan White PCT International Division	Authorized officer					

A. The indicati on page	ions made below relate to the microorganism 137 , line	referred to in the description N/A					
B. IDENTIFI	CATION OF DEPOSIT	Further deposits are identified on an additional sheet					
Name of deposi	Name of depositary institution American Type Culture Collection						
12301 Parklav	ryland 20852	country)					
Date of deposit	February 26, 1997	Accession Number 97901					
C. ADDITIO	NAL INDICATIONS (leave blank if not ap	oplicable) This information is continued on an additional sheet					
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)							
F SEPADAT	E ELIDNICHING OF INDICATIONS						
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable) The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")							
	For receiving Office use only	For International Bureau use only					
Authorized officer	Susan White PCT International Division	This sheet was received by the International Bureau on: Authorized officer					
Form PCT/RO/134	(July 1992)						

A. The indications made below relate to the microorganism refer on page 131 , line N/A						
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet					
Name of depositary institution American Type Culture Collection						
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	try) ·					
Date of deposit May 15, 1997	Accession Number 209046					
C. ADDITIONAL INDICATIONS (leave blank if not applicate	ble) This information is continued on an additional sheet					
D. DESIGNATED STATES FOR WHICH INDICATIO	NS ARE MADE (if the indications are not for all designated States)					
E CEDADATE ELIDNICHING OF INDICATIONS &						
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable) The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")						
For receiving Office use only	For International Bureau use only					
This sheet was received with the international application	This sheet was received by the International Bureau on:					
Authorized officer Susan White PCT International Division	Authorized officer					

A. The indications made below relate to the microorganism referr on page 137 , line N/A		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary institution American Type Culture Col	llection	
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	'ry)	
Date of deposit May 15, 1997	Accession Number 209047	
C. ADDITIONAL INDICATIONS (leave blank if not applicate	ble) This information is continued on an additional sheet	
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)	
E. SEPARATE FURNISHING OF INDICATIONS (leave		
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")		
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application	This sheet was received by the International Bureau on:	
Authorized officer Susan White PCT International Division	Authorized officer	

A. The indications made below relate to the microorganism referred to in the description on page 137 , line N/A		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary institution American Type Culture Collection		
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	n)	
Date of deposit May 22, 1997	Accession Number 209076	
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	ole) This information is continued on an additional sheet	
-		
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)	
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)		
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")		
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application	This sheet was received by the International Bureau on:	
Authorized officer Susan White PCT International Division	Authorized officer	

A. The indications made below relate to the microorganism referred to in the description on page 140 . line N/A		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary institution American Type Culture Collection		
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	ילין) .	
Date of deposit August 21, 1997	Accession Number 209215	
C. ADDITIONAL INDICATIONS (leave blank if not applicate	ble) This information is continued on an additional sheet	
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)		
E. SEPARATE FURNISHING OF INDICATIONS (leave		
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")		
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application	This sheet was received by the International Bureau on:	
Authorized officer Susan White PCT International Division	Authorized officer	

A. The indications made below relate to the microorganism referred to in the description on page 160 , line N/A		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary institution American Type Culture Collection		
Address of depositary institution (including postal code and country 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	(vr)	
Date of deposit February 26, 1997	Accession Number 97904	
C. ADDITIONAL INDICATIONS (leave blank if not applicab	le) This information is continued on an additional sheet	
	·	
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)	
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)		
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")		
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application	This sheet was received by the International Bureau on:	
Authorized officer Susan White PCT International Division	Authorized officer	

A. The indications made below relate to the microorganism referred to in the description on page 154 , line N/A	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Col	lection
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	· · (ער
Date of deposit July 3, 1997	Accession Number 209139
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	le) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)	
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")	
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susan White PCT International Division	Authorized officer

A. The indications made below relate to the microorganism referred to in the description on page 153, line N/A			
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet		
Name of depositary institution American Type Culture Collection			
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	n)		
Date of deposit May 15, 1997	Accession Number 209049		
C. ADDITIONAL INDICATIONS (leave blank if not applicab	This information is continued on an additional sheet		
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)			
E. SEPARATE FURNISHING OF INDICATIONS (leave	E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)		
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")			
For receiving Office use only	For International Bureau use only		
This sheet was received with the international application	This sheet was received by the International Bureau on:		
Authorized officer Susan White PCT International Division	Authorized officer		

A. The indications made below relate to the microorganism referred to in the description on page 153 , line N/A		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary institution American Type Culture Collection		
Address of depositary institution (including postal code and coun 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	itry)	
Date of deposit February 26, 1997	Accession Number 97903	
C. ADDITIONAL INDICATIONS (leave blank if not application)	table) This information is continued on an additional sheet	
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)		
	71 O AND WIND IN the multimons are not for all designated states)	
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)		
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")		
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application	This sheet was received by the International Bureau on:	
Authorized officer Susan White PCT International Division	Authorized officer	

A. The indications made below relate to the microorganism referr on page 142 , line N/A	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Col	llection
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	· ·
Date of deposit June 12, 1997	Accession Number 209119
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	ble) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATIO	NS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave	
The indications listed below will be submitted to the International I Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susan White PCT International Division	Authorized officer

A. The indications made below relate to the microorganism referred to in the description on page 146 , line N/A	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Coll	lection
Address of depositary institution (including postal code and country 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	7)
Date of deposit February 26, 1997	Accession Number 97902
C. ADDITIONAL INDICATIONS (leave blank if not applicab	This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARF MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")	
For receiving Office use only	For International Bureau use only
Authorized officer Susari White PCT International Division	This sheet was received by the International Bureau on: Authorized officer

A. The indications made below relate to the microorganism referred to in the description on page 146 , line N/A	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Collection	
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	try)
Date of deposit May 15, 1997	Accession Number 209048
C. ADDITIONAL INDICATIONS (leave blank if not applical	ble) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATIO	NS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit") .:	
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susan White PCT International Division	Authorized officer

A. The indications made below relate to the microorganism referred to in the description on page 160 , line N/A		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary institution American Type Culture Co	ollection	
Address of depositary institution (including postal code and counting 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	ntry)	
Date of deposit May 15, 1997	Accession Number 209050	
C. ADDITIONAL INDICATIONS (leave blank if not applications)	able) This information is continued on an additional sheet	
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)		
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable) The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications. e.g "Accession Number of Deposit")		
For receiving Office use onlyFor International Bureau use only		
This sheet was received with the international application	This sheet was received by the International Bureau on:	
Authorized officer Susan White PCT International Division	Authorized officer	

A. The indications made below relate to the microorganism referred to in the description on page 142 , line N/A	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution	
Address of depositary institution (including postal code and country 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	y)
Date of deposit February 12, 1998	Accession Number 209627
C. ADDITIONAL INDICATIONS (leave blank if not applicable	(e) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave	
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")	
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susan White PCT International Division	Authorized officer

What Is Claimed Is:

5

15

20

25

- 1. An isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence at least 95% identical to a sequence selected from the group consisting of:
- (a) a polynucleotide fragment of SEQ ID NO:X or a polynucleotide fragment of the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (b) a polynucleotide encoding a polypeptide fragment of SEQ ID NO:Y or a
 polypeptide fragment encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
 - (c) a polynucleotide encoding a polypeptide domain of SEQ ID NO:Y or a polypeptide domain encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
 - (d) a polynucleotide encoding a polypeptide epitope of SEQ ID NO:Y or a polypeptide epitope encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
 - (e) a polynucleotide encoding a polypeptide of SEQ ID NO:Y or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X, having biological activity;
 - (f) a polynucleotide which is a variant of SEQ ID NO:X;
 - (g) a polynucleotide which is an allelic variant of SEQ ID NO:X;
 - (h) a polynucleotide which encodes a species homologue of the SEQ ID NO:Y;
 - (i) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(h), wherein said polynucleotide does not hybridize under stringent conditions to a nucleic acid molecule having a nucleotide sequence of only A residues or of only T residues.
- The isolated nucleic acid molecule of claim 1, wherein the
 polynucleotide fragment comprises a nucleotide sequence encoding a secreted protein.
 - 3. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises a nucleotide sequence encoding the sequence identified as SEQ ID NO:Y or the polypeptide encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.

4. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises the entire nucleotide sequence of SEQ ID NO:X or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.

- 5. The isolated nucleic acid molecule of claim 2, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.
- 10 6. The isolated nucleic acid molecule of claim 3, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the Nterminus.
- 7. A recombinant vector comprising the isolated nucleic acid molecule of claim 1.
 - 8. A method of making a recombinant host cell comprising the isolated nucleic acid molecule of claim 1.
- 9. A recombinant host cell produced by the method of claim 8.
 - 10. The recombinant host cell of claim 9 comprising vector sequences.
- 11. An isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence selected from the group consisting of:
 - (a) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - (b) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z, having biological activity;
- 30 (c) a polypeptide domain of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - (d) a polypeptide epitope of SEQ ID NO: Y or the encoded sequence included in ATCC Deposit No:Z;
- (e) a secreted form of SEQ ID NO:Y or the encoded sequence included inATCC Deposit No:Z;
 - (f) a full length protein of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;

10

20

- (g) a variant of SEQ ID NO:Y;
- (h) an allelic variant of SEQ ID NO:Y; or
- (i) a species homologue of the SEQ ID NO:Y.
- The isolated polypeptide of claim 11, wherein the secreted form or the
 full length protein comprises sequential amino acid deletions from either the C-terminus or the N-terminus.
 - 13. An isolated antibody that binds specifically to the isolated polypeptide of claim 11.
- 14. A recombinant host cell that expresses the isolated polypeptide of claim 11.
 - 15. A method of making an isolated polypeptide comprising:
- (a) culturing the recombinant host cell of claim 14 under conditions such that said polypeptide is expressed; and
 - (b) recovering said polypeptide.
 - 16. The polypeptide produced by claim 15.
 - 17. A method for preventing, treating, or ameliorating a medical condition, comprising administering to a mammalian subject a therapeutically effective amount of the polypeptide of claim 11 or the polypucleotide of claim 1.
- 25 18. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:
 - (a) determining the presence or absence of a mutation in the polynucleotide of claim 1; and
- (b) diagnosing a pathological condition or a susceptibility to a pathologicalcondition based on the presence or absence of said mutation.
 - 19. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:
 - (a) determining the presence or amount of expression of the polypeptide of claim 11 in a biological sample; and
 - (b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or amount of expression of the polypeptide.

- PCT
- 20. A method for identifying a binding partner to the polypeptide of claim 11 comprising:
 - (a) contacting the polypeptide of claim 11 with a binding partner; and
- 5 (b) determining whether the binding partner effects an activity of the polypeptide.
 - 21. The gene corresponding to the cDNA sequence of SEQ ID NO:Y.
- 10 22. A method of identifying an activity in a biological assay, wherein the method comprises:
 - (a) expressing SEQ ID NO:X in a cell;
 - (b) isolating the supernatant;
 - (c) detecting an activity in a biological assay; and
- 15 (d) identifying the protein in the supernatant having the activity.
 - 23. The product produced by the method of claim 22.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.