Функан. ДЗ 11.

ПРОХОРОВ ЮРИЙ, 776

Задача 1

Дан оператор Вольтерра $A \in \mathcal{L}(\mathbb{L}_2[0,1])$:

$$(Ax)(t) = \int_{0}^{t} x(s) \, ds$$

Найти спектр и резольвенту оператора AA^* .

Решение:

1. Покажем, что оператор Вольтерра компактен.

Для этого покажем, что он является пределом некоторой последовательности компактных операторов $\{A_n\}$. Так как пространство компактных операторов замкнуто в $\mathcal{L}(H)$, то и оператор A будет компактным.

Построим последовательность $\{A_n\}$.

• Представим оператор A в следующем виде:

$$(Ax)(t) = \int_{0}^{1} K(t,s)x(s) ds, \qquad K(t,s) = \begin{cases} 1, & s \le t \\ 0, & s > t \end{cases}$$

Сразу отметим, что для оператора, записанного в таком виде, справедлива оценка:

$$||A|| \le ||K||_2$$

Докажем е
е. Для любого $x \in \mathbb{L}_2[0,1]$ выполнено

$$\|Ax\|_{2}^{2} = \int_{0}^{1} \left| \int_{0}^{1} K(t,s)x(s) \, ds \right|^{2} d = \int_{0}^{1} \left| \left\langle K(t,s), x(s) \right\rangle \right|^{2} dt \leq \left/ \begin{array}{c} \text{неравенство} \\ \text{Коши-Буняковского} \end{array} \right/ \leq \\ \leq \int_{0}^{1} \left[\int_{0}^{1} \left| K(t,s) \right|^{2} ds \cdot \int_{0}^{1} \left| x(s) \right|^{2} ds \right] dt = \int_{0}^{1} \left| x(s) \right|^{2} ds \cdot \int_{0}^{1} \int_{0}^{1} \left| K(t,s) \right|^{2} ds \, dt = \\ = \|x\|_{2}^{2} \cdot \|K\|_{2}^{2}$$

Отсюда получаем, что $||A|| \le ||K||_2$

• Из теории рядов Фурье известно, что система

$$E = \left\{ \sin(\pi pt) \cdot \sin(\pi qs) \right\}_{p,q=1}^{\infty} = \left\{ f_k \right\}_{k=1}^{\infty}$$

образует ортогональный базис в пространстве $\mathbb{L}_2([0,1]^2)$.

Разложим функцию $K(t,s) \in \mathbb{L}_2 \big([0,1]^2 \big)$ по этому базису и рассмотрим частичные суммы

$$K = \sum_{n=1}^{\infty} \alpha_k f_k, \qquad S_n(t,s) = \sum_{k=1}^{n} \alpha_k f_k(t,s)$$

Имеем из определения базиса

$$||S_n - K||_2 \xrightarrow{n \to \infty} 0$$

Введем операторы $A_n: \mathbb{L}_2[0,1] \to \mathbb{L}_2[0,1]$:

$$(A_n x)(t) = \int_0^1 S_n(t, s) x(s) ds$$

Их ограниченность следует из оценки $||A_n|| \le ||S_n||_2 < +\infty$.

Тогда оператор $A_n - A$ имеет вид

$$((A_n - A)x)(t) = \int_{0}^{1} [S_n(t, s) - K(t, s)]x(s) ds,$$

поэтому справедлива оценка

$$||A_n - A|| \le ||S_n - K||_2 \xrightarrow{n \to \infty} 0,$$

то есть $A_n \xrightarrow{n \to \infty} A$.

• Покажем, что операторы A_n являются компактными.

Покажем, что образ оператора A_n конечномерен. Отсюда будет следовать компактность.

Для любого $x \in \mathbb{L}_2[0,1]$ имеем

$$(A_n x)(t) = \sum_{k=1}^n \alpha_k \int_0^1 f_k(t, s) x(s) \, ds = \sum_{k=1}^n \alpha_k \int_0^1 \sin(\pi q_k s) x(s) \, ds \cdot \sin(\pi p_k t) =$$

$$= \sum_{k=1}^n \beta_k \sin(\pi p_k t) \in \operatorname{Lin} \left\{ \sin(\pi p_k t) \right\}_{k=1}^n$$

Значит, $\operatorname{Im} A_n \subset \operatorname{Lin} \big\{ \sin(\pi p_k t) \big\}_{k=1}^n$, то есть $\dim \operatorname{Im} A_n \leq n$.

2. Найдем сопряженный оператор A^* .

По определению для гильбертового пространства.

$$\langle Ax,y\rangle = \int\limits_0^1 \left(\int\limits_0^t x(s)\,ds\right) \overline{y(t)}\,dt = \bigg/ \begin{array}{c} \text{меняем порядок} \\ \text{интегрирования} \\ \text{(т. Фубини-Тонелли)} \end{array} \bigg/ = \int\limits_0^1 \int\limits_s^1 x(s) \overline{y(t)}\,dt\,ds = \\ = \int\limits_0^1 x(s) \overline{\int\limits_s^1 y(t)\,dt}\,ds = \langle x,A^*y\rangle$$

Отсюда находим, что сопряженный оператор имеет вид

$$(A^*y)(s) = \int_{0}^{1} y(t) dt$$

Так как компактность A эквивалентна компактности A^* , то оператор A^* тоже компактен.

- 3. Теперь рассмотрим оператор AA^* . Отметим его свойства:
 - \bullet оператор AA^* имеет вид

$$(AA^*x)(t) = \int_0^t \int_s^1 x(\xi) d\xi ds$$

- \bullet AA^* компактен как композиция компактных операторов (над банаховым пространством).
- AA* самосопряжен:

$$(AA^*)^* = A^{**}A^* = \left/ \begin{array}{c} A^{**} = A, \text{ т.к.} \\ \mathbb{L}_2[0,1] \text{ рефлексивно} \end{array} \right/ = AA^*$$

• AA^* неотрицателен: для любого $x \in \mathbb{L}_2[0,1]$:

$$\langle AA^*x, x \rangle = \langle A^*x, A^*x \rangle = ||A^*x||^2 \ge 0$$

По теореме о спектре компактного оператора,

$$\sigma(AA^*) = \sigma_p(AA^*) \cup \{\text{возможно}, 0\}$$

Из самосопряженности и неотрицательности следует, что

$$\sigma(AA^*) \subset [0, +\infty)$$

- 4. Найдем точечный спектр $\sigma_p(AA^*)$.
 - $\lambda > 0$.

Ищем нетривиальное решение интегрального уравнения:

$$\int\limits_0^t\int\limits_s^1x(\xi)\,d\xi\,ds=\lambda x(t),\qquad$$
для п.в. $t\in[0,1]$

Так как для любой $x(\xi)$ интеграл в левой части является непрерывной функцией от t, то и правая часть должна быть непрерывной. Поэтому данное уравнение имеет только непрерывные решения.

Так как для любой непрерывной $x(\xi)$ интеграл в левой части является дважды непрерывно дифференцируемой функцией, то и правая часть тоже. Аналогичными рассуждениями получаем, что $x(t) \in C^{\infty}[0,1]$.

Из исходного равенства следует, что x(0) = 0. Дифференцируем его:

$$\int_{t}^{1} x(\xi) d\xi = \lambda x'(t)$$

Отсюда следует, что x'(1) = 0. Дифференцируем еще раз и получаем краевую задачу:

$$\begin{cases} x''(t) = -\frac{1}{\lambda}x(t), & 0 < t < 1 \\ x(0) = 0, & \\ x'(1) = 0 & \end{cases}$$

Общее решение:

$$x(t) = C_1 \cos \frac{t}{\sqrt{\lambda}} + C_2 \sin \frac{t}{\sqrt{\lambda}}$$

Из граничных условий находим, что $C_1=0$ и

$$x'(1) = \frac{C_2}{\sqrt{\lambda}}\cos\frac{1}{\sqrt{\lambda}} = 0 \qquad \xrightarrow{C_2 \neq 0} \qquad \frac{1}{\sqrt{\lambda}} = -\frac{\pi}{2} + \pi n \qquad \Longrightarrow \qquad \lambda_n = \frac{1}{\left(-\frac{\pi}{2} + \pi n\right)^2}, \quad n \in \mathbb{N}$$

 $\bullet \ \lambda = 0.$

Допустим, $0 \in \sigma_p(AA^*)$, т.е. существует $x \neq 0$, такой, что

$$AA^*x = 0$$
 \Longrightarrow $A^*x \in \operatorname{Ker} A = \left/\begin{array}{c} \operatorname{теоремa} \\ \Phi \operatorname{редгольмa} \end{array}\right/ = \left(\operatorname{Im} A^*\right)^{\perp}$

C другой стороны, $A^*x \in \operatorname{Im} A^*$, поэтому $A^*x = 0$.

$$A^*x = 0$$
 \Longrightarrow $x \in \operatorname{Ker} A^* = \left/\begin{array}{c} \operatorname{теорема} \\ \Phi \operatorname{редгольма} \end{array}\right/ = \left(\operatorname{Im} A\right)^{\perp}$

Рассмотрим подпространство $E = A(CL_2[0,1]) \subset \text{Im } A$. Так как E состоит из непрерывно дифференцируемых функций z(t) на [0,1] с z(0)=0, то E плотно в $\mathbb{L}_2[0,1]$. Поэтому

$$[E] = \mathbb{L}_2[0,1] \qquad \Longrightarrow \qquad \left(\operatorname{Im} A\right)^{\perp} \subset E^{\perp} = \left(\mathbb{L}_2[0,1]\right)^{\perp} = \{0\}$$

Значит, $x \in (\operatorname{Im} A)^{\perp} = \{0\}$, то есть x = 0 — противоречие.

Итак, точечный спектр имеет вид

$$\sigma_p(AA^*) = \left\{ \frac{1}{(-\frac{\pi}{2} + \pi n)^2} \mid n \in \mathbb{N} \right\}$$

5. Исследуем принадлежность $\lambda = 0$ спектру AA^* .

По теореме о спектре компактного оператора, $\sigma(AA^*)$ не имеет предельных точек, кроме, быть может, точки 0. Ранее мы доказали, что точечный спектр счетен, поэтому из компактности множества $\sigma(AA^*)$ следует, что предельная точка существует. Ею может быть только $\lambda=0$. Поэтому $0\in\sigma(AA^*)$.

Исследуем, какой части спектра принадлежит $\lambda = 0$. Найдем $[\operatorname{Im}(AA^*)]$. Рассмотрим множество $CL_2[0,1] \subset \mathbb{L}_2[0,1]$. Легко видеть, что

$$AA^*(CL_2[0,1]) = \{z(t) \in C^2[0,1] \mid z(0) = 0, \ z'(1) = 0\} \subset Im(AA^*)$$

Это множество является плотным в $\mathbb{L}_2[0,1]$, поэтому, беря замыкание от обоих частей равенства выше, получаем $\mathbb{L}_2[0,1] = [\operatorname{Im}(AA^*)]$, что означает, что $0 \in \sigma_c(AA^*)$.

Итак, **спектр** оператора AA^* :

$$\sigma(AA^*) = \left\{ \frac{1}{(-\frac{\pi}{2} + \pi n)^2} \mid n \in \mathbb{N} \right\} \cup \{0\}$$

6. Найдем **резольвенту** оператора AA^* :

$$R_{AA^*}(\lambda): \rho(AA^*) \longrightarrow \mathcal{L}(\mathbb{L}_2[0,1]),$$

где резольвентное множество $\rho(AA^*) = \mathbb{C} \setminus \sigma(AA^*)$.

Хотим найти для любого $y \in \mathbb{L}_2[0,1]$ его образ x:

$$x = R_{AA^*}(\lambda)y = (AA^* - \lambda I)^{-1}y \qquad \Longleftrightarrow \qquad (AA^* - \lambda I)x = y$$

Решаем интегральное уравнение при $\lambda \notin \sigma(AA^*)$:

$$\int_{0}^{t} \int_{s}^{1} x(\xi) d\xi ds - \lambda x(t) \stackrel{\text{\tiny I.B.}}{=} y(t)$$

Решим его для достаточно гладкой функции $y(t) \in C^2[0,1]$. Такое множество функций плотно в $\mathbb{L}_2[0,1]$, поэтому из непрерывности оператора $(AA^* - \lambda I)^{-1}$ мы найдем его значения на всем $\mathbb{L}_2[0,1]$.

Аналогично тому, как мы искали точечный спектр, тут получается, что решение интегрального уравнения должно быть дважды непрерывно дифференцируемым.

Дифференцирование этого уравнения приводит к краевой задаче

$$\begin{cases} -x(t) - \lambda x''(t) = y''(t) \\ -\lambda x(0) = y(0) \\ -\lambda x'(1) = y'(1) \end{cases} \iff \begin{cases} x''(t) + \frac{1}{\lambda}x(t) = -\frac{1}{\lambda}y''(t) \\ x(0) = -\frac{1}{\lambda}y(0) \\ x'(1) = -\frac{1}{\lambda}y'(1) \end{cases}$$

Е
е решение и есть значение резольвенты. Решим ее, например, для $\lambda>0$. Решение однородного уравнения:

$$x(t) = A\cos\frac{t}{\sqrt{\lambda}} + B\sin\frac{t}{\sqrt{\lambda}}$$

Частное решение находим вариацией постоянных. Решаем систему

$$\begin{cases} A'(t)\cos\frac{t}{\sqrt{\lambda}} + B'(t)\sin\frac{t}{\sqrt{\lambda}} = 0\\ A'(t)\left(-\frac{1}{\sqrt{\lambda}}\right)\sin\frac{t}{\sqrt{\lambda}} + B'(t)\frac{1}{\sqrt{\lambda}}\cos\frac{t}{\sqrt{\lambda}} = -\frac{1}{\lambda}y''(t) \end{cases}$$

Отсюда находим

$$A'(t) = \frac{1}{\sqrt{\lambda}}y''(t)\sin\frac{t}{\sqrt{\lambda}}, \qquad B'(t) = -\frac{1}{\sqrt{\lambda}}y''(t)\cos\frac{t}{\sqrt{\lambda}}$$

Интегрируя и подставляя в x(t), получаем общее решение:

$$x(t) = \frac{1}{\sqrt{\lambda}} \int_{0}^{t} y''(s) \sin \frac{s-t}{\sqrt{\lambda}} ds + A \cos \frac{t}{\sqrt{\lambda}} + B \sin \frac{t}{\sqrt{\lambda}}$$

Подставляя граничные условия, находим A, B.

Из-за громоздкости выражений я не стал их выписывать.

В случае $\lambda < 0$ фундаментальными решениями являются экспоненты, поэтому будет примерно то же самое, но через гиперболические синусы и косинусы. В случае $\lambda \notin \mathbb{R}$ непонятно, как решать данное дифференциальное уравнение.

Задача §11.5(б)

Пусть H — гильбертово пространство, $A \in \mathcal{L}(H)$ — самосопряженный оператор. Доказать, что

$$||A|| = \sup_{\substack{||x||=1\\||y||=1}} |\langle Ax, y \rangle|$$

Решение:

• В одну сторону имеем

$$\sup_{\substack{\|x\|=1\\\|y\|=1}} \left| \langle Ax,y \rangle \right| \leq \left/ \begin{array}{c} \text{неравенство} \\ \text{Коши-Буняковского} \end{array} \right/ \leq \sup_{\substack{\|x\|=1\\\|y\|=1}} \|Ax\| \cdot \|y\| = \sup_{\|x\|=1} \|Ax\| = \|A\|$$

• В обратную сторону:

$$\sup_{\substack{\|x\|=1\\\|y\|=1}} \left| \langle Ax, y \rangle \right| \ge \sup_{\|x\|=1} \left| \langle Ax, x \rangle \right| = M$$

Поэтому достаточно показать, что $M \ge ||A||$.

Докажем, что для любых $y,z\in H,\ \|y\|=\|z\|=1,$ выполнено $\mathrm{Re}\langle Ay,z\rangle\leq M.$

Вычислим выражение

$$\left\langle A(y+z),y+z\right\rangle -\left\langle A(y-z),y-z\right\rangle =2\langle Ay,z\rangle +2\langle Az,y\rangle = \left/\text{самосопряжениность}\right/=\\ =2\langle Ay,z\rangle +2\overline{\langle Ay,z\rangle} =4\operatorname{Re}\langle Ay,z\rangle$$

Поэтому можно сделать оценку

$$\begin{split} 4\operatorname{Re}\langle Ay,z\rangle & \leq \left|\left\langle A(y+z),y+z\right\rangle\right| + \left|\left\langle A(y-z),y-z\right\rangle\right| = \\ & = \|y+z\|^2 \left|\left\langle A\frac{y+z}{\|y+z\|},\frac{y+z}{\|y+z\|}\right\rangle\right| + \|y-z\|^2 \left|\left\langle A\frac{y-z}{\|y-z\|},\frac{y-z}{\|y-z\|}\right\rangle\right| \leq \\ & \leq \|\|y+z\|^2 M + \|y-z\|^2 M = \left/\begin{array}{c} \text{правило} \\ \text{параллелограма} \end{array}\right/ = 2M \left(\|y\|^2 + \|z\|^2\right) = 4M \end{split}$$

Тогда для произвольного вектора $y \in H, ||y|| = 1$ имеем

$$\begin{split} \|Ay\| &= \left/ \begin{array}{l} \text{ т. Рисса-Фреше} + \\ \text{ т. Хана-Банаха} \right. \left. \left. \right. \right. = \sup_{\|z\|=1} \left| \langle Ay,z \rangle \right| = \sup_{\|z\|=1} \underbrace{e^{-i\varphi} \langle Ay,z \rangle}_{\text{действ.}} = \\ &= \sup_{\|z\|=1} \mathrm{Re} \langle Ay,e^{i\varphi}z \rangle \leq M \end{split}$$

Отсюда получаем, что $||A|| \le M$.

Задача §11.7

Пусть H — гильбертово пространство, $A \in \mathcal{L}(H)$ — самосопряженный неотрицательный оператор. Доказать, что $\exists (I+A)^{-1}$.

Решение:

Решим двумя способами:

- 1. Оператор A самосопряжен и неотрицателен, поэтому его спектр $\sigma(A) \subset [0, +\infty)$. Значит, $-1 \in \rho(A)$, что означает, что оператор A (-1)I = A + I непрерывно обратим.
- 2. Покажем, что I+A ограничен снизу, что необходимо и достаточно для его непрерывной обратимости.

$$\|(I+A)x\|^2 = \langle x + Ax, x + Ax \rangle = \|x\|^2 + \langle x, Ax \rangle + \langle Ax, x \rangle + \|Ax\|^2 = \Big/$$
 самосопряженнность $\Big/ = \|x\|^2 + 2\langle Ax, x \rangle + \|Ax\|^2 \ge \Big/$ неотрицательность $\Big/ \ge \|x\|^2 + 0 + 0 = \|x\|^2$

To есть I + A ограничен снизу:

$$||(I+A)x|| \ge ||x||, \quad \forall x \in H$$