## COVID19 Global Tracker

## May 18, 2025

```
[27]: # Step 1: Data Collection, Data Loading & Exploration
      import pandas as pd
      import matplotlib.pyplot as plt
      import seaborn as sns
      import plotly.express as px
      import pandas as pd
      # Show plots inside the notebook
      %matplotlib inline
      # Load the dataset
      df = pd.read_csv("owid-covid-data.csv")
      # Display shape and column names
      print("Shape:", df.shape)
      print("Columns:", df.columns.tolist())
      # Preview the dataset
      df.head()
      # Step 2: Data overview and missing values
      df.info()
      df.describe()
      df.isnull().sum()
      # Step 3: Data Cleaning
      # Filter selected countries and make a copy to avoid SettingWithCopyWarning
      countries = ['Kenya', 'United States', 'India']
      df_filtered = df[df['location'].isin(countries)].copy()
      # Convert date to datetime format
      df_filtered['date'] = pd.to_datetime(df_filtered['date'])
      # Fill missing values for selected columns
```

```
cols_to_fill = ['total_cases', 'total_deaths', 'new_cases', 'new_deaths', __
 df_filtered[cols_to_fill] = df_filtered[cols_to_fill].fillna(0)
# Step 4: Exploratory Data Analysis EDA
#- i. Total cases over time
plt.figure(figsize=(12,6))
for country in countries:
   country_data = df_filtered[df_filtered['location'] == country]
   plt.plot(country_data['date'], country_data['total_cases'], label=country)
plt.title("Total COVID-19 Cases Over Time")
plt.xlabel("Date")
plt.ylabel("Total Cases")
plt.legend()
plt.show()
#Step 6: Optional: Build a Choropleth Map
# Drop rows with missing iso_code or total_cases
df = df[['location', 'iso_code', 'date', 'total_cases']]
df = df.dropna(subset=['iso_code', 'total_cases'])
# Convert date to datetime
df['date'] = pd.to_datetime(df['date'])
# Get the latest date available in the dataset
latest_date = df['date'].max()
print("Latest Date in Dataset:", latest_date)
# Filter for the latest data only
latest_df = df[df['date'] == latest_date]
# Remove aggregates like 'World', 'Africa', etc. (optional but recommended)
latest_df = latest_df[latest_df['iso_code'].str.len() == 3]
# Plot Choropleth Map
fig = px.choropleth(
   latest_df,
   locations="iso code",
   color="total_cases",
   hover_name="location",
   color_continuous_scale="Reds",
   title=f"Total COVID-19 Cases by Country as of {latest_date.date()}",
   projection="natural earth"
)
fig.show()
```

```
# ii. Total deaths over time
plt.figure(figsize=(12,6))
for country in countries:
    country_data = df_filtered[df_filtered['location'] == country]
   plt.plot(country_data['date'], country_data['total_deaths'], label=country)
plt.title("Total COVID-19 Deaths Over Time")
plt.xlabel("Date")
plt.ylabel("Total Deaths")
plt.legend()
plt.show()
# iii. Daily new cases
plt.figure(figsize=(12,6))
for country in countries:
    country_data = df_filtered[df_filtered['location'] == country]
   plt.plot(country_data['date'], country_data['new_cases'], label=country)
plt.title("Daily New COVID-19 Cases")
plt.xlabel("Date")
plt.ylabel("New Cases")
plt.legend()
plt.show()
# iv. Death rate per time
# Calculate death rate
df_filtered['death_rate'] = df_filtered['total_deaths'] /__

→df_filtered['total_cases']
df_filtered['death_rate'] = df_filtered['death_rate'].fillna(0) # Handle NaNs
# Plot death rate over time
plt.figure(figsize=(12,6))
for country in countries:
    country_data = df_filtered[df_filtered['location'] == country]
   plt.plot(country_data['date'], country_data['death_rate'], label=country)
plt.title("COVID-19 Death Rate Over Time")
plt.xlabel("Date")
plt.ylabel("Death Rate")
plt.legend()
plt.show()
# v. People vaccinated per time
#Check if available
print(df_filtered.columns)
# Column is available
if 'people_vaccinated_per_hundred' in df_filtered.columns:
```

```
plt.figure(figsize=(12,6))
    for country in countries:
        country_data = df_filtered[df_filtered['location'] == country]
        plt.plot(country_data['date'],__
  →country_data['people_vaccinated_per_hundred'], label=country)
    plt.title("Percentage of People Vaccinated Over Time")
    plt.xlabel("Date")
    plt.ylabel("% Vaccinated")
    plt.legend()
    plt.show()
# Step 5: Visualizing Vaccination Progress
plt.figure(figsize=(12,6))
for country in countries:
    country_data = df_filtered[df_filtered['location'] == country]
    plt.plot(country_data['date'], country_data['total_vaccinations'],__
 →label=country)
plt.title("Total Vaccinations Over Time")
plt.xlabel("Date")
plt.ylabel("Total Vaccinations")
plt.legend()
plt.show()
# Step 6: Insights & Reporting
Shape: (429435, 67)
Columns: ['iso_code', 'continent', 'location', 'date', 'total_cases',
'new_cases', 'new_cases_smoothed', 'total_deaths', 'new_deaths',
'new_deaths_smoothed', 'total_cases_per_million', 'new_cases_per_million',
'new_cases_smoothed_per_million', 'total_deaths_per_million',
```

```
'new_deaths_per_million', 'new_deaths_smoothed_per_million',
'reproduction_rate', 'icu_patients', 'icu_patients_per_million',
'hosp_patients', 'hosp_patients_per_million', 'weekly_icu_admissions',
'weekly_icu_admissions_per_million', 'weekly_hosp_admissions',
'weekly_hosp_admissions_per_million', 'total_tests', 'new_tests',
'total_tests_per_thousand', 'new_tests_per_thousand', 'new_tests_smoothed',
'new_tests_smoothed_per_thousand', 'positive_rate', 'tests_per_case',
'tests_units', 'total_vaccinations', 'people_vaccinated',
'people_fully_vaccinated', 'total_boosters', 'new_vaccinations',
'new_vaccinations_smoothed', 'total_vaccinations_per_hundred',
'people_vaccinated_per_hundred', 'people_fully_vaccinated_per_hundred',
'total boosters per hundred', 'new vaccinations smoothed per million',
'new_people_vaccinated_smoothed', 'new_people_vaccinated_smoothed_per_hundred',
'stringency_index', 'population_density', 'median_age', 'aged_65_older',
'aged_70_older', 'gdp_per_capita', 'extreme_poverty', 'cardiovasc_death_rate',
'diabetes_prevalence', 'female_smokers', 'male_smokers',
'handwashing_facilities', 'hospital_beds_per_thousand', 'life_expectancy',
```

'human\_development\_index', 'population', 'excess\_mortality\_cumulative\_absolute',

'excess\_mortality\_cumulative', 'excess\_mortality',

'excess\_mortality\_cumulative\_per\_million']

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 429435 entries, 0 to 429434

Data columns (total 67 columns):

| Dava | COLUMNID (COUGL OF COLUMNID).                |                 |         |
|------|----------------------------------------------|-----------------|---------|
| #    | Column                                       | Non-Null Count  | Dtype   |
| 0    | iso_code                                     | 429435 non-null | object  |
| 1    | continent                                    | 402910 non-null | •       |
| 2    | location                                     | 429435 non-null | · ·     |
| 3    | date                                         | 429435 non-null | object  |
| 4    | total_cases                                  | 411804 non-null | float64 |
| 5    | new_cases                                    | 410159 non-null |         |
| 6    | new_cases_smoothed                           | 408929 non-null |         |
| 7    | total_deaths                                 | 411804 non-null | float64 |
| 8    | new_deaths                                   | 410608 non-null | float64 |
| 9    | new_deaths_smoothed                          | 409378 non-null | float64 |
| 10   | total_cases_per_million                      | 411804 non-null | float64 |
| 11   | new_cases_per_million                        | 410159 non-null | float64 |
| 12   | new_cases_smoothed_per_million               | 408929 non-null | float64 |
| 13   | total_deaths_per_million                     | 411804 non-null | float64 |
| 14   | new_deaths_per_million                       | 410608 non-null | float64 |
| 15   | new_deaths_smoothed_per_million              | 409378 non-null | float64 |
| 16   | reproduction_rate                            | 184817 non-null | float64 |
| 17   | icu_patients                                 | 39116 non-null  | float64 |
| 18   | icu_patients_per_million                     | 39116 non-null  | float64 |
| 19   | hosp_patients                                | 40656 non-null  | float64 |
| 20   | hosp_patients_per_million                    | 40656 non-null  | float64 |
| 21   | weekly_icu_admissions                        | 10993 non-null  | float64 |
| 22   | <pre>weekly_icu_admissions_per_million</pre> | 10993 non-null  | float64 |
| 23   | weekly_hosp_admissions                       | 24497 non-null  | float64 |
| 24   | weekly_hosp_admissions_per_million           | 24497 non-null  | float64 |
| 25   | total_tests                                  | 79387 non-null  | float64 |
| 26   | new_tests                                    | 75403 non-null  | float64 |
| 27   | total_tests_per_thousand                     | 79387 non-null  | float64 |
| 28   | new_tests_per_thousand                       | 75403 non-null  | float64 |
| 29   | new_tests_smoothed                           | 103965 non-null |         |
| 30   | new_tests_smoothed_per_thousand              | 103965 non-null | float64 |
| 31   | positive_rate                                | 95927 non-null  | float64 |
| 32   | tests_per_case                               | 94348 non-null  | float64 |
| 33   | tests_units                                  | 106788 non-null | object  |
| 34   | total_vaccinations                           | 85417 non-null  | float64 |
| 35   | people_vaccinated                            | 81132 non-null  | float64 |
| 36   | people_fully_vaccinated                      | 78061 non-null  | float64 |
| 37   | total_boosters                               | 53600 non-null  | float64 |
| 38   | new_vaccinations                             | 70971 non-null  | float64 |
| 39   | new_vaccinations_smoothed                    | 195029 non-null | float64 |
|      |                                              |                 |         |

| 40                                      | total_vaccinations_per_hundred                 | 85417 non-null  | float64 |  |  |
|-----------------------------------------|------------------------------------------------|-----------------|---------|--|--|
| 41                                      | <pre>people_vaccinated_per_hundred</pre>       | 81132 non-null  | float64 |  |  |
| 42                                      | <pre>people_fully_vaccinated_per_hundred</pre> | 78061 non-null  | float64 |  |  |
| 43                                      | total_boosters_per_hundred                     | 53600 non-null  | float64 |  |  |
| 44                                      | new_vaccinations_smoothed_per_million          | 195029 non-null | float64 |  |  |
| 45                                      | new_people_vaccinated_smoothed                 | 192177 non-null | float64 |  |  |
| 46                                      | new_people_vaccinated_smoothed_per_hundred     | 192177 non-null | float64 |  |  |
| 47                                      | stringency_index                               | 196190 non-null | float64 |  |  |
| 48                                      | population_density                             | 360492 non-null | float64 |  |  |
| 49                                      | median_age                                     | 334663 non-null | float64 |  |  |
| 50                                      | aged_65_older                                  | 323270 non-null | float64 |  |  |
| 51                                      | aged_70_older                                  | 331315 non-null | float64 |  |  |
| 52                                      | gdp_per_capita                                 | 328292 non-null | float64 |  |  |
| 53                                      | extreme_poverty                                | 211996 non-null | float64 |  |  |
| 54                                      | cardiovasc_death_rate                          | 328865 non-null | float64 |  |  |
| 55                                      | diabetes_prevalence                            | 345911 non-null | float64 |  |  |
| 56                                      | female_smokers                                 | 247165 non-null | float64 |  |  |
| 57                                      | male_smokers                                   | 243817 non-null | float64 |  |  |
| 58                                      | handwashing_facilities                         | 161741 non-null | float64 |  |  |
| 59                                      | hospital_beds_per_thousand                     | 290689 non-null | float64 |  |  |
| 60                                      | life_expectancy                                | 390299 non-null | float64 |  |  |
| 61                                      | human_development_index                        | 319127 non-null | float64 |  |  |
| 62                                      | population                                     | 429435 non-null | int64   |  |  |
| 63                                      | excess_mortality_cumulative_absolute           | 13411 non-null  | float64 |  |  |
| 64                                      | excess_mortality_cumulative                    | 13411 non-null  | float64 |  |  |
| 65                                      | excess_mortality                               | 13411 non-null  | float64 |  |  |
| 66                                      | excess_mortality_cumulative_per_million        | 13411 non-null  | float64 |  |  |
| types: float64(61), int64(1), object(5) |                                                |                 |         |  |  |

dtypes: float64(61), int64(1), object(5)

memory usage: 219.5+ MB



Latest Date in Dataset: 2024-08-04 00:00:00

Total COVID-19 Cases by Country as of 2024-08-04









```
'hosp_patients_per_million', 'weekly_icu_admissions',
 'weekly_icu_admissions_per_million', 'weekly_hosp_admissions',
 'weekly_hosp_admissions_per_million', 'total_tests', 'new_tests',
 'total_tests_per_thousand', 'new_tests_per_thousand',
 'new tests smoothed', 'new tests smoothed per thousand',
 'positive_rate', 'tests_per_case', 'tests_units', 'total_vaccinations',
 'people vaccinated', 'people fully vaccinated', 'total boosters',
 'new_vaccinations', 'new_vaccinations_smoothed',
 'total vaccinations per hundred', 'people vaccinated per hundred',
 'people_fully_vaccinated_per_hundred', 'total_boosters_per_hundred',
 'new_vaccinations_smoothed_per_million',
 'new_people_vaccinated_smoothed',
 'new_people_vaccinated_smoothed_per_hundred', 'stringency_index',
 'population density', 'median_age', 'aged_65_older', 'aged_70_older',
 'gdp_per_capita', 'extreme_poverty', 'cardiovasc_death_rate',
 'diabetes_prevalence', 'female_smokers', 'male_smokers',
 'handwashing_facilities', 'hospital_beds_per_thousand',
 'life_expectancy', 'human_development_index', 'population',
 'excess_mortality_cumulative_absolute', 'excess_mortality_cumulative',
 'excess mortality', 'excess mortality cumulative per million',
 'death rate'],
dtype='object')
```





Step 6: Key Insights from COVID-19 Data Analysis

United States had the highest total cases and vaccinations Over the observed period, the US consistently reported the highest number of total COVID-19 cases and vaccinations compared to Kenya and India.

India achieved the highest vaccination growth rate Although the US had higher total numbers, India's vaccination rollout showed rapid growth over time, reflecting strong national efforts.

Kenya reported the lowest total cases but had a higher death rate Despite fewer total cases, Kenya's death rate (deaths as a percentage of confirmed cases) was higher, possibly due to limited testing and healthcare resources.

New daily cases varied significantly over time All three countries experienced multiple waves of COVID-19 infections. The US and India had very sharp increases in new daily cases during specific periods, while Kenya had fewer fluctuations.

Death rate trends highlight health system disparities The higher death rate in Kenya suggests differences in healthcare access or underreporting of mild cases. Meanwhile, India showed the lowest death rate due to widespread testing and younger population demographics.

This project compared COVID-19 data from Kenya, the USA, and India. It analyzed total cases, deaths, and vaccinations over time. Results showed that countries responded differently, with varying outcomes based on healthcare systems, population, and policies. These insights can help improve future health planning.

[]: