# Metody systemowe i decyzyjne w informatyce

Laboratorium – Python – Zadanie nr 1

## Regresja liniowa

autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar

## Cel zadania

Celem zadania jest implementacja liniowego zadania najmniejszych kwadratów bez i z regularyzacją  $\ell_2$  na przykładzie dopasowania wielomianu do danych.

# Liniowe zadanie najmniejszych kwadratów

Zakładamy, że dany jest model

$$\overline{y} = \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{w},$$

gdzie  $\mathbf{w} = (w_0 \, w_1 \dots w_{M-1})^{\mathrm{T}}$  jest wektorem parametrów, a  $\phi(\mathbf{x}) = (\phi_0(\mathbf{x}) \, \phi_1(\mathbf{x}) \dots \phi_{M-1}(\mathbf{x}))^{\mathrm{T}}$  jest wektorem cech. Na przykład model może być wielomianem M-tego rzędu i wówczas cechy są argumentem podniesionym do kolejnych potęg.

Interesuje nas dopasowanie modelu do dostępnych obserwacji  $\mathbf{y} = (y_1 \ y_2 \dots y_N)^{\mathrm{T}}$  oraz  $\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \mathbf{x}_N]$ . Dalej, przez  $\mathbf{\Phi} = [\boldsymbol{\phi}(\mathbf{x}_1) \ \boldsymbol{\phi}(\mathbf{x}_2) \dots \boldsymbol{\phi}(\mathbf{x}_N)]^{\mathrm{T}}$  oznaczać będziemy macierz wyliczonych cech dla obserwacji  $\mathbf{X}$ . Dopasowanie modelu do danych polega na znalezieniu wartości parametrów  $\mathbf{w}$ . W tym celu będziemy minimalizować funkcję błędu, która określa różnicę między obserwacjami a wartościami zwracanymi przez model. Taką funkcją jest suma kwadratów różnic między predykcjami modelu a obserwacjami, tj.

$$Q(\mathbf{w}) = \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}\mathbf{w}\|_{2}^{2}.$$
 (1)

Jest to tzw. liniowe zadanie najmniejszych kwadratów.

Zakładając, że rząd  $r(\mathbf{\Phi}) = M$ , policzenie gradientu względem parametrów i przyrównanie go do zera daje jednoznaczne rozwiązanie:

$$\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{y}.\tag{2}$$

# Liniowe zadanie najmniejszych kwadratów z regularyzacją $\ell_2$

Problemem w liniowym zadaniu najmniejszych kwadratów jest konieczność ustalenia liczby cech, np. stopnia wielomianu. Dobranie zbyt małej lub zbyt dużej liczby skutkować może w otrzymaniu

modelu, który niepoprawnie odzwierciedla charakter szukanej zależności. W tym celu proponuje się ustalenie liczby cech, zazwyczaj dostatecznie dużej, oraz zmodyfikowanie funkcji błędu przez dodanie **regularyzatora**  $\ell_2^{-1}$ :

$$Q(\mathbf{w}) = \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}\mathbf{w}\|_2^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2,$$
(3)

gdzie  $\lambda > 0$  jest współczynnikiem regularyzacji.

Okazuje się, że zastosowanie regularyzacji nie wymaga założenia o rzędzie macierzy  $\Phi$ , tj. dla dowolnego  $r(\Phi)$  policzenie gradientu względem parametrów i przyrównanie go do zera daje jednoznaczne rozwiązanie:

$$\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi} + \lambda \mathbf{I}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{y},\tag{4}$$

gdzie I jest macierzą jednostkową.

## Selekcja modelu

Dalej będziemy rozpatrywać wielomiany stopnia M. Problem selekcji modelu można rozwiązać na dwa sposoby:

- 1. Ustalić dostatecznie wysoki stopień wielomianu i zastosować regularyzację  $\ell_2$ .
- 2. Przyjąć różne modele, tj. różne stopnie wielomianu, a następnie dokonać **selekcji modelu** (ang. *model selection*), tj. wybrać model, dla której wartość funkcji błędu jest najmniejsza.

Do oceny poprawności uzyskanego modelu w procesie selekcji modelu będziemy stosować blqd średniokwadratowy:

$$E(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \left( y_n - \overline{y}(\mathbf{x}_n) \right)^2.$$
 (5)

### Wybór stopnia wielomianu

Zakładamy różne wartości  $M \in \mathcal{M}$ . Przykładowo  $\mathcal{M} = \{0, 1, 2, 3, 4, 5, 6, 7\}$ , czyli rozpatrywać będziemy wielomianu o stopniu od M = 0 do M = 7. Uczenie modelu, tj. wyznaczenie parametrów w wg wzoru (2), odbywa się na podstawie ciągu uczącego (treningowego)  $\mathbf{X}$  i  $\mathbf{y}$ . Natomiast porównanie modeli, tj. różnych stopni wielomianów, odbywa się przy użyciu osobnego zbioru walidacyjnego  $\mathbf{X}_{val}$  i  $\mathbf{y}_{val}$ . Procedura selekcji modelu jest następująca:

1. Dla każdego wielomianu stopnia  $M \in \mathcal{M}$  wyznacz wartości parametrów  $\mathbf{w}_M$  korzystając z (2) w oparciu o dane  $\mathbf{X}$  i  $\mathbf{y}$ .

Regularyzację  $\ell_2$  na parametry nazywa się czasem regularyzacją Tichonowa.

- 2. Dla każdego wielomianu stopnia  $M \in \mathcal{M}$  o parametrach  $\mathbf{w}_M$  wyznacz wartość funkcji błędu  $E_M$  o postaci (5) w oparciu o dane  $\mathbf{X}_{val}$  i  $\mathbf{y}_{val}$ .
- 3. Wybierz ten stopień wielomianu M, dla którego wartość funkcji błędu  $E_M$  jest najmniejsza.

#### Wybór wartości współczynnika regularyzacji

W przypadku stosowania regularyzacji ustalamy dostatecznie duży stopień wielomianu, np. M=7, a następnie wyznaczamy parametry dla różnych wartości współczynnika regularyzacji  $\lambda \in \Lambda$ . Na przykład  $\Lambda = \{0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300\}$ . Wyznaczenie parametrów  $\mathbf{w}$  wg wzoru (4), odbywa się na podstawie ciągu uczącego (treningowego)  $\mathbf{X}$  i  $\mathbf{y}$ . Natomiast porównanie modeli dla różnych wartości  $\lambda$  odbywa się przy użyciu osobnego zbioru walidacyjnego  $\mathbf{X}_{val}$  i  $\mathbf{y}_{val}$ . Procedura selekcji modelu jest następująca:

- 0. Ustal M.
- 1. Dla każdej wartości współczynnika regularyzacji  $\lambda \in \Lambda$  wyznacz wartości parametrów  $\mathbf{w}_{\lambda}$  korzystając z (4) w oparciu o dane  $\mathbf{X}$  i  $\mathbf{y}$ .
- 2. Dla każdego wielomianu o parametrach  $\mathbf{w}_{\lambda}$  wyznacz wartość funkcji błędu  $E_{\lambda}$  o postaci (5) w oparciu o dane  $\mathbf{X}_{val}$  i  $\mathbf{y}_{val}$ .
- 3. Wybierz te wartości parametrów  $\mathbf{w}_{\lambda}$ , dla których wartość funkcji błędu  $E_{\lambda}$  jest najmniejsza.

## Zbiór danych

Dane użyte w zadaniu zostały syntetycznie wygenerowane z następującego obiektu:

$$y = \sin(2\pi x) + \varepsilon,\tag{6}$$

gdzie  $\varepsilon \sim \mathcal{N}(\varepsilon|0,\sigma^2)$  jest szumem gaussowskim, tj. zmienną losową o rozkładzie normalnym i średniej zero. Zbiór danych został podzielony na dwa ciągi treningowe  $\mathbf{X}$ ,  $\mathbf{y}$  (odpowiednio po 8 i 50 obserwacji) oraz ciąg walidacyjny  $\mathbf{X}_{val}$ ,  $\mathbf{y}_{val}$  (20 obserwacji). Rysunek 1 przedstawia przykładowe dane treningowe (niebieskie punkty) i walidacyjne (czerwone punkty) oraz obiekt (6) (zielona linia) i dopasowany model (czerwona linia).

# Testowanie poprawności działania

Do sprawdzania poprawności działania zaproponowanych rozwiązań służy funkcja main w pliku main.py.

W pliku main.py nie wolno czegokolwiek zmieniać ani dopisywać.



Rysunek 1: Zbiór danych oraz przebieg obiektu i modelu.

## Instrukcja wykonania zadania

Dodatkowe funkcje, z których należy skorzystać znajdują się w pliku utils.py:

 polynomial(x, w) – funkcja zwracająca wartości predykcji y dla zadanego x oraz wektora wartości parametrów w dla domyślnego modelu wielomianu.

#### Instrukcja:

Należy zaimplementować wszystkie funkcje w pliku content.py

- 1. Zaimplementować funkcję mean\_squared\_error pozwalającą na liczenie średniego błędu kwadratowego (5).
- 2. Zaimplementować funkcję design\_matrix liczącą macierz  $\Phi$  w pliku.
- 3. Zaimplementować funkcję least\_squares wyznaczającą rozwiązania liniowego zadania naj-mniejszych kwadratów.
- 4. Zaimplementować funkcję regularized\_least\_squares wyznaczającą rozwiązania liniowego zadania najmniejszych kwadratów z regularyzacją  $\ell_2$ .
- 5. Zaimplementować funkcję model\_selection dokonującą selekcji modelu dla zadanych wartości  $\mathcal{M}$ .

 Zaimplementować funkcję regularized\_model\_selection dokonującą selekcji modelu dla zadanych wartości Λ.

**UWAGA!** Wszelkie nazwy funkcji i zmiennych w pliku **content.py** muszą pozostać zachowane.

## Pytania kontrolne

- 1. Proszę wyznaczyć rozwiązanie liniowego zadania najmniejszych kwadratów (1).
- 2. Proszę wyznaczyć rozwiązanie liniowego zadania najmniejszych kwadratów z regularyzacją  $\ell_2$  (3).
- 3. Co to jest overfitting? Wskazać na przykładzie dopasowania wielomianu.
- 4. Co to jest underfitting? Wskazać na przykładzie dopasowania wielomianu.
- 5. Co to jest ciąg treningowy, walidacyjny, testowy? Jakie jest ich znaczenie.
- 6. Co to jest selekcja modelu? W jaki sposób się ją wykonuje? Czy miara oceniająca model może być inna od kryterium uczenia?
- 7. Które z podejść do selekcji modelu jest prostsze do zastosowania w praktyce i dlaczego?
- 8. Kiedy liniowe zadanie najmniejszych kwadratów ma jednoznaczne rozwiązanie, a kiedy istnieje wiele rozwiązań? Jak jest w przypadku zadania najmniejszych kwadratów z regularyzacją?
- 9. Zapisać wektor cech  $\phi$  dla wielomianu M-tego rzędu.
- 10. Co to jest parametr  $\lambda$ ? Jak jego wartość wpływa na rozwiązanie?