This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLAWK (WARTO)

Patent Abstracts f Japan

PUBLICATION NUMBER

02052452

PUBLICATION DATE

22-02-90

APPLICATION DATE

17-08-88

APPLICATION NUMBER

63204129

APPLICANT:

SHIN ETSU HANDOTAI CO LTD;

INVENTOR:

OKI YOSHI;

INT.CL.

H01L 21/76

TITLE

MANUFACTURE OF DIELECTRIC

ISOLATION SUBSTRATE

ABSTRACT :

PURPOSE To restrain an abnormality by reduction of a separation oxide film from being caused and to prevent breakdown strength from becoming defective and a defective wiring part from being produced by a method wherein a first polycrystalline silicon layer is formed on the separation oxide film by a low-temperature and low-pressure chemical vapor growth method and a second polycrystalline silicon layer is formed by a high-temperature and normal-pressure chemical vapor growth method.

CONSTITUTION: A first polycrystalline silicon layer 20 is grown on a separation oxide film 12 by using SiH₄ by a low-pressure chemical vapor growth method. A second polycrystalline silicon layer 14 is grown, on the first polycrystalline silicon layer 20, to be a thickness which is nearly the same as that of a semiconductor substrate. The polycrystalline silicon layer 14 is formed by using SiH₄ + H₂ while its temperature is raised to 1150 to 1230°C. Then, the substrate 2 is polished from a bottom face 2b, and is removed flatwise down to a position 16 indicated by a one-dotted chain line; single-crystal silicon island regions 2d which have been separated to be island-shaped are formed; a dielectric separation substrate 2' is formed. Fundamental elements are formed in these separated single-crystal silicon island regions 2d. Also the side of a main surface 2a of the semiconductor substrate 2 is polished and removed flatwise down to a position 10 indicated by a one-dotted chain line.

COPYRIGHT: (C)1990,JPO&Japio

THIS PACE BLANK USPICE

⑱ 日本国特許庁(JP)

10 特許出願公開

◎ 公 開 特 許 公 報 (A) 平2-52452

௵Int.Cl.⁵

識別記号

庁内整理番号

個公開 平成2年(1990)2月22日

H 01 L 21/76

D

7638-5 F

審査請求 未請求 請求項の数 2 (全5頁)

図発明の名称 誘電体分離基板の製造方法

②特 顧 昭63-204129

②出 顧 昭63(1988)8月17日

⑩発明者 片山 正健

群馬県安中市磯部2丁目13番1号 信越半導体株式会社半

導体研究所內

群馬県安中市磯部2丁目13番1号 信越半導体株式会社半

導体研究所內

⑫発 明 者 大 木

群馬県安中市磯部2丁目13番1号 信越半導体株式会社半

導体研究所内

⑪出 顧 人 信越半導体株式会社

東京都千代田区丸の内1丁目4番2号

砂代 理 人 弁理士 石原 配二

明 細 書

- 1. 発明の名称 誘電体分離基板の製造方法
- 2. 特許請求の範囲

(2) 該第1の多結晶シリコン層が温度600~800℃、圧力0.1~1.0丁orrの条件で行われる低温波圧化学気相成長法により形成され、その厚さが0.5~3μmであることを特徴とする
静状項(I) 記載の誘電体分配基板の製造方法。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、誘電体酸化膜によって分離された単結晶島領域を有する集積回路用基板の製造方法の改良に関し、按誘電体酸化膜における異常の発生を完全に抑制することができるようにした誘電体分離基板の製造方法に関する。

(従来の技術)

従来、半導体集積回路装置における個々の素子の分離については、比較的工程が簡単で且つ制御の容易な拡散層によるpn接合分離が広く行われているが、pn接合部における分離容量が大きの、集積回路の高周被特性に悪影響を与え、回路の動作速度が遅くなるという欠点があり、他の提案として誘電体層で分離する誘電体絶縁分離方式がある。この方式は、寄生容量や分離耐圧の点では理想的な分離法である。

次に、第1図(a)~(n)に基づいて従来の代表的な 誘電体絶縁分離基板の製造方法について説明する 。 (100)の面方位をもつ単結晶シリコンの半 選体基板2 (第1図(a))の研磨表面(同図の上側

特開平2-52452(2)

)にSb又はA:又はP等のN・ドーパント4を 埋込み拡散させる (第1図(b))。 さらに該半導体 基板2の外面に、例えば熱酸化法により酸化膜(SIO。)5を被買形成する。核半導体基版2の 主表面2 a の酸化酸6をホトエッチングにより所 望の分離パターンに従って選択的に除去して窓8 を開く(第1図位)。 按窓 8 を通して半導体基板 2の表面が選択エッチングされ、断面 V 字形の分 魁溝10が、第1図(e)に示す如く、形成される。 その後、全面に分魁酸化膜12を再び形成する(第1図(1)。 数分離酸化膜 12の上に多結晶シリ コン暦14を500μm程度(半導体基板と同程 皮の厚さ)に成長させる。次に、該半導体基板2 の底面2bから研磨し、第1図回に一点領線で示 す位置16、すなわち少なくとも上記分駁消10 底部の酸化膜 1.2 が一部露出又は除去される、ま で平面的に除去し、島状に分離された単結晶シリ コン島領域2 dを形成し、誘電体分離基板2 が 形成される (第1図の)。この分離された単結晶 シリコン島領域2dに基本素子が形成される。な

お、彼半導体基板2の主表面2a例も研磨されー 点領線で示す位置18まで平面的に除去される。

上記酸化膜12は、例えばスチーム中1200 でで5時間加熱し、厚さ2μmに成長せしめられ、また多結晶シリコンは成長温度1100~12 00でで通常のエピタキシャル成長炉で高速度成 長が行われる。多結晶シリコンの成長は、単結晶 成長を必要としないので、経済上の要請から出来 るだけ早い方がよいが、しばしばその成長条件に よってはソリを増大するのでこの抑制のために成 長条件の調整が必要となる。

多結晶シリコン折出は、その採用する温度に制限があり、あまり低温に過ぎると、例えば800 で以下であると、折出するシリコンが無定形となり、殺密なシリコン層の形成が難しく、また高温倒はソリの低波には好節合であるが1280でを超えると、成長炉に支降が生じる。従って、通常1000でから1250で位が選択される。また、反応雰囲気は水素を主体とするのでの象化膜12

がしばしば水素還元され、変質したり、或いはシ リコンに還元されたりする。

また、反応の初期には水鉄雰囲気のみで高温に 加熱され、上記酸化膜12の表面の浄化が行われ るが、このときは上記の好ましくない現象が顕著 である。一般に、多結晶シリコン折出工程の初期 には、シリコンの折出によって表面が被覆される 前に酸化膜12が水素ガスの作用を受けるためで ある

先行技術文献には、このような好ましくない点についての解決法は提案されていない。 誘電体分離 基板に関する一般文献として、特公昭 4 9 - 4 4 7 9 5 号及び特公昭 5 3 - 2 9 5 8 5 号を挙げる。

(発明が解決しようとする課題)

前述した従来の誘電体分類基板の製造方法では、しばしば部分的に該酸化膜が消失し、このためこの上に折出された多結品シリコンとの間の絶疑性が維持出来なかったり、上記酸化膜が変質するために、その耐絶縁性が低下し、渦波電流の原因

となったりすることがあって、良好な誘電体絶縁 分離基板の製造に困難があった。また、この現象 に付随して、その近傍の半導体島の単結晶のの りでは製造工程自身の熱サイクル、或いはそのの 集積回路装置製造工程の熱サイクルにおいてもの なるの発生のために結晶性の劣化が起き、この 常箇所が分離符の底部またはその近傍に発生した 場合、背面の研磨除去工程中またはその後の 理で、相関れる単結晶島の隣接領域が部分的に剝 駆除去され、好ましくない陥没となる場合がある

本発明は、かかる分離酸化膜の異常発生を完全 に抑制し、これに起因する半導体集積回路装置に おける耐圧不良、配線不良、その他の不良を皆無 とすることを可能にした誘電体分離基板の製造方 法を提供することを目的とする。

(課題を解決するための手段)

本発明は、前記従来法の諸欠点を解決するため に改良された絶縁分離集積回路装置用基板の製造 方法に関するもので、半導体基板の主要面に分離

特開平2-52452(3)

バターンに従って分別為を形成する工程と、 該半 連体基板の主要面に分別額を形成する工程と、 該分別額を形成する上に多結品シリコン層を所でまた。 でさに形成する工程と、 該半導体基板の底を ないでは、 該半導体基板の底を ないにでは、 ないではないになるようにはなる 大程とよりなる景質体分類基板の製造方法による では、 なり類酸化膜上に第1の多結晶シリコンに は対理化学気相成長法による第2の多結晶シリコン層を形成するようにしたものである。

接第1の多結晶シリコン層は、温度600~8 00℃、圧力0、1~1.0 Torrの条件で低 温波圧化学気相成長したものであって、その厚さ は0.5~3μmであることが好ましい。

半導体基板の上に成長された熱酸化膜は、通常 1~5 μmの間で形成されるが、例えば 2 μmで あっても、通常の常圧高温化学成長条件では、 しばしば熱酸化膜が反応雰辺気の水素ガスにより変質され、場合によっては除去されることも起こり うる。

る誘電体酸化膜の選元が優先し、多結晶シリコン がこれを覆うに至らない間に相当の誘電体酸化膜 の変質を惹起する。

ハロゲン化合物として四塩化珪素、トリクロロシランを用いる場合には、多結晶シリコンの析出とともに割生するハロゲン化水素、例えば塩化水素が誘電体酸化膜の変質層を選択的に攻撃し、半導体基板の最終的に半導体 島領域となるべき誘電体酸化膜に隣接する単結晶 部を選択的に化学腐食除去することもあり得る。

この理由は、常圧高温化学気相反応に際しては 、分離酸化膜を有する半導体基板は、例えばエビ タキシャル成長用の反応器内で1000℃~12 50℃に加熱されてシリコンの高速折出、例えば 2 μm/m!n以上が行われる。多結晶の折出反 応の開始に際して、1000~1250℃位の単 に水素ガス雰囲気中での加熱処理が10~30分 行われる。この理由は、核エピタキシャル成長反 応器の内部の高温還元清浄化とともに、主たる目 的として誘電体酸化膜を有する分離滞付の半導体 基板上の好ましくない不純物を除去するために行 われている。このときに温度が高い程、また時間 が長い程その効果が顕著であるが、逆効果として 、誘電体酸化膜が水素によって選元されて、SI Oとして揮発したり、或いはシリコン元素になっ て、その誘電体としての分離機能を失ってしまう 。また、かかる高温水素気流中の半導体基板の熱 処理を短時間行えば10分以下としても、多結晶 シリコン折出の初期には、反応室の空間がシリコ ン化合物で所定の濃度にならない間は、水素によ

生塩化水素が選択的に腐食した場合には、後の多 結晶シリコンがこの部分を充塡せずにポイドのま まで残ることもある。

このような誘電体酸化膜の変質がおきたものは、たまたまその箇所が背面の研磨の際に露出されたときには、誘電体分離基板の半導体島領域の跨接部分にまたがる陥役として現れることもある。この陥役は半導体集積回路素子の形成及び結線に不利となることは勿論であるが、半導体島領域の多結晶から受けた熱サイクルの歪みによって剝離脱落することによって起こる場合もある。

第3図は従来法で作られた誘電体分離基板2° 上のそれぞれの単結晶シリコン島領域2dのなかに、半導体素子を形成した工程途中の誘電体験化膜の変質による陥役部分Xを示すパターニングされた誘電体分離基板2°の一部を示す平面図である。第4図は第3図の断面図である。

本発明によれば、低温減圧化学気相成長法により、0.5~3 μ m のシリコンを第1の多結晶シリコン層として、誘電体酸化膜の上に成長させる

待開平2-52452(4)

が、この条件では上記酸化膜は還元されることな く、そのまま保存され、多結晶層のみがこの酸化 膜の上に折出される。

このようにして出来た多結晶層は、後の常圧高温多結晶の折出に際し、水素ガスの侵入を防止し、酸化膜が水素により還元されることを防ぐので、誘電体分魁益板はその誘電体分魁性能を設計通りに保持することができる。

また、かかる多結品層は、特に被圧下で形成されることによって、成長層が非常に緻密であり、 また層の厚さの制御性に優れており、その他の方 法で作られる多結品層に比較して優れている。

低温減圧による多結晶折出は、その折出速度が 考しく低いので、第2の多結晶を形成する方法と しては非経済的である。この方法による第1の多 結晶層の厚さは、下限として 0.3 μ m でも充分 効果をあげうるが、股厚が変動することもあり得 るので実用としては 0.5 μ m を下限とするのが よい。また、厚すぎると、長時間になるので経済 的でない。低温減圧多結晶シリコンは、その成長 の組織や結晶粒の大きさ、結晶性で高温常圧のそれと異なるので、勿論影張係数についても差があり、あまり厚いと好ましくない。

(宴路例)

以下に本発明の一実施例を第2図(a)~(i)に基づいて税明する。

第2図(a)~(f)は、第1図(a)~(f)で説明した従来 方法と同じであるので、再度の説明は省略する。 また、第2図において第1図と同一又は類似の構 成は同一の符号で示す。

第2図図は本発明方法の特徴点を示すもので、 分離酸化膜12との密着性を向上させるため、また均一粒径の第2多結晶シリコン層14を形成する せるために第1多結晶シリコン層20を形成する ものである。この第1多結晶シリコン層20を形成する 方法としては、例えば波圧化学気相成長法 を用いればよい。波圧化学気相成長法の条件は、 例えばSiH。(モノシラン)を用い、650℃ 、0.3Torrで、膜厚1.0~1.5μmの 第1多結晶シリコン層を成長させる。

この類1多結晶シリコン暦20の上に第2多結晶シリコン暦14を500μm程度(半導体基板と同程度の厚さ)に成長させる。この第2多結晶シリコン暦14の形成方法は、S1HCℓ。(トリクロルシラン)+H:を用い、1150~1230でまで昇温する。

この第2多結晶シリコン暦14の成長反応初期において、分離酸化膜は第1多結晶シリコンで被 渡されているため H。 遠元されず、所定の厚みを 保持できることがわかった。

なお、第1多結晶シリコン層 2 0 が薄い場合(例えば、 0.5μ m以下)、H。が第1多結晶シリコン層中を粒界拡散して、局部的に分離酸化膜を選元するので好ましくない。本発明を効果的とするためには、第1多結晶シリコン層は 0.5μ m以上を必要とする。

次に、第2図的及び(1)に示す如く、第1図的及びのに示した従来方法と同様に、該半導体基版2の底面2 bから研磨し、第2図的に一点領線で示す位置16まで平面的に除去し、島状に分離され

た単結晶シリコン島領域2dを形成し、誘電体分離基板2゚が形成される(第2図(i))。この分離された単結晶シリコン島領域2dに基本素子が形成される。なお、該半導体基板2の主変面2a 倒も研磨され一点鎖線で示す位置18まで平面的に除去される。

(発明の効果)

以上述べた如く、本発明によれば、分離酸化膜の異常を完全に抑制し、当初の目的とする耐圧性能を有し、かつ配線不良の発生のない優れた誘電体分離基板を提供することができる。

4. 図面の簡単な説明

第1図(a) ~ いは従来の誘電体分離基板の製造方法を示す断面図的説明図、第2図(a) ~ (i) は本発明による誘電体分離基板の製造方法を示す断面図的説明図、第3図は従来法による誘電体分離基板の部分平面図及び第4図は第3図の断面図である。

2.····半導体基板、2 · ····誘電体分離基板、4 ····· ドーパント、6 ····酸化膜、8 ·····窓、10 ····分解溝

特開平2-52452(5)

、12……分離酸化膜、14……多結晶シリコン層、 第2多結晶シリコン層、20……第1多結晶シリコ ン層。

特許出願人 信越半導体株式会社

代理人弁理士 石 原 師

THIS PAGE BLANK WEFTON