Problem C: Perfect Powers

Filename: perfect
Timelimit: 1 second

Arup loves integers that can be expressed as x^y where x and y are positive integers with x > 1 and y > 1. Specifically, we call $z = x^y$ a perfect power with base x, if both x and y are integers greater than 1. Note that the base of a perfect power need not be unique. For example $81 = 3^4 = 9^2$, thus 81 is a perfect power with base 3 and base 9. Help Arup determine whether or not an integer is a perfect power with a particular base.

Input

The first line will contain a single positive integer, c, ($c \le 50$), specifying the number of input cases.

Each input case will consist of two space separated integers, b ($2 \le b \le 1000$), and z ($2 \le z \le 10^6$), each on a line by itself.

Output

For each input case, output "YES" if **z** is a perfect power with base **b** with an exponent greater than 1 and "NO", otherwise on a line by itself.

Samples

Input	Output
4 2 8 100 1000 8 4096 5 5	YES NO YES NO