

T.E. (Comp.) (Semester - V) (Revised Course) Examination, Nov./Dec. 2015 COMPUTER HARDWARE DESIGN

Duration: 3 Hours Total Marks: 100

Instructions: i) Answer five questions, atleast one full question from each Module.

ii) Make suitable assumptions, wherever necessary.

MODULE-I

- 1. a) Explain the single address and branch instruction format of RIC. b) Consider AR register of 3 bits. Assume only one control signal is 1 at a time: 8 AR = Set when CSL 1 = 1 AR = Cleared when CSL 2 = 1 AR ← BR when CSL 3 = 1 Draw the logic block diagram for the above problem. c) With the help of neat diagram, explain the two approaches to intersystem bus wiring. 6 a) Write short notes on : 1) Direct access storage Sequential access storage. 6
 - b) Construct a control realization for the following AHPL steps:

1)
$$z = x \lor A$$
;
 $\rightarrow (a, \overline{a} \land b, \overline{a} \land \overline{b})/(2, 3, 4)$

2)
$$A \leftarrow X$$
; \rightarrow (1)

3)
$$A \leftarrow X[1:3], X[0];$$

 $\rightarrow (4)$

4)
$$A \leftarrow A[1:3], A[0];$$

 $\rightarrow (1)$

c) Describe in brief any four building blocks used in hardware circuit.

MODULE-II

- 3. a) Write combinational logic unit description of an I bit incrementer.
 - b) Draw the flow chart for fetch sequence of a 16 bit instruction and explain.
 - c) Given that u = (1, 1, 1, 0); v = (1, 0, 0, 1); w = (1, 0, 1)

$$N = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}, \quad x = 4, \quad a = 2$$

Compute:

- i) u⊕v
- ii) v/N
- iii) x < a
- iv) u, v.
- 4. a) With the help of a neat flowchart explain the steps involved in the compilation of data network.
 - b) Write the AHPL steps for fetch and Address Cycles in the design of control unit for RIC.
 - c) Write the sequence of AHPL steps required to implement shift/Rotate instruction.

MODULE - III

- 5. a) With a neat block diagram explain the organization of microprogrammable RIC.
 - b) Write combinational logic unit description for the generate and propagate section of full Adder circuit.
 - c) Explain the hardware organization of floating point coprocessor.

4

7

8

5

6

8

6

6.	a)	With a neat diagram explain carry look ahead principle.	7
	b)	Draw the flow chart for signed multiplication.	7
	c) .	Explain the following with reference to micro programmable RIC: 1) Addressing modes 2) Format for transfer Micro instruction.	6
		MODULE-IV	
7.	a)	What are masks? List the masks used in NMOS fabrication process.	6
		Explain the working of a MOS inverter with NMOS depletion type transistor as load. Draw the transfer characteristics.	8
	c)	Explain the structure and operation of the MOS transistor.	6
8.	a)	Explain the steps in IC fabrication.	8
,	b)	Differentiate between enhancement and depletion a type MOSFET.	4
	c)	Design CMOS logic gates for :	8
		1) $F = \overline{(A \cdot B) + (C \cdot D)}$	
		2) $F = (A \cdot B \cdot C) + D$.	