Convergence of densities for the stochastic heat equation

David Nualart

Department of Mathematics Kansas University

AMS Fall 2021 Southeastern Sectional Meeting Special session on Stochastic Analysis and Applications November 21, 2021

Stochastic heat equation

Consider the stochastic heat equation

$$\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2} + \sigma(u) \frac{\partial^2 W}{\partial t \partial x}, \quad x \in \mathbb{R}, \ t \ge 0,$$

with initial condition $u_0(x) = 1$.

- $\frac{\partial^2 W}{\partial t \partial x}$ is a space-time white noise.
- σ is a Lipschitz function such that $\sigma(1) \neq 0$.

Stochastic heat equation

Consider the stochastic heat equation

$$\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2} + \sigma(u) \frac{\partial^2 W}{\partial t \partial x}, \quad x \in \mathbb{R}, \ t \ge 0,$$

with initial condition $u_0(x) = 1$.

- $\frac{\partial^2 W}{\partial t \partial x}$ is a space-time white noise.
- σ is a Lipschitz function such that $\sigma(1) \neq 0$.

Stochastic heat equation

Consider the stochastic heat equation

$$\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2} + \sigma(u) \frac{\partial^2 W}{\partial t \partial x}, \quad x \in \mathbb{R}, \ t \ge 0,$$

with initial condition $u_0(x) = 1$.

- $\frac{\partial^2 W}{\partial t \partial x}$ is a space-time white noise.
- σ is a Lipschitz function such that $\sigma(1) \neq 0$.

Mild solution

Theorem (Walsh '86)

There is a unique mild solution, which is an adapted random field u such that for all $p \ge 2$,

$$\sup_{x\in\mathbb{R}}\sup_{0\leq t\leq T}\mathbb{E}[|u(t,x)|^p]<\infty,$$

and u satisfies the integral equation:

$$u(t,x) = 1 + \int_0^t \int_{\mathbb{R}} p_{t-s}(x-y) \sigma(u(s,y)) W(ds,dy),$$

where
$$p_t(x) = \frac{1}{\sqrt{2\pi t}} \exp(-x^2/2t)$$
.

Remark: Fix t > 0. The process $x \mapsto u(t, x)$ is stationary.

• We are interested in the asymptotic behavior as $R \to \infty$ of the randon variable

$$\int_{-R}^{R} u(t,x) dx$$

The mean is given by

$$\mathbb{E}\left(\int_{-R}^{R}u(t,x)dx\right)=2R.$$

We put

$$F_{R,t} := \int_{-R}^{R} u(t,x) dx - 2R$$

$$= \int_{0}^{t} \int_{\mathbb{R}} \left(\int_{-R}^{R} p_{t-s}(x-y) dx \right) \sigma(u(s,y)) W(ds,dy).$$

Remark: Fix t > 0. The process $x \mapsto u(t, x)$ is stationary.

We are interested in the asymptotic behavior as $R \to \infty$ of the random variable

$$\int_{-R}^{R} u(t,x) dx$$

$$\mathbb{E}\left(\int_{-R}^{R} u(t,x)dx\right) = 2R.$$

$$F_{R,t} := \int_{-R}^{R} u(t,x)dx - 2R$$

$$= \int_{0}^{t} \int_{\mathbb{R}} \left(\int_{-R}^{R} p_{t-s}(x-y)dx \right) \sigma(u(s,y))W(ds,dy).$$

Remark: Fix t > 0. The process $x \mapsto u(t, x)$ is stationary.

• We are interested in the asymptotic behavior as $R \to \infty$ of the random variable

$$\int_{-R}^{R} u(t,x) dx$$

The mean is given by

$$\mathbb{E}\left(\int_{-R}^{R}u(t,x)dx\right)=2R.$$

We put

$$F_{R,t} := \int_{-R}^{R} u(t,x)dx - 2R$$

$$= \int_{0}^{t} \int_{\mathbb{R}} \left(\int_{-R}^{R} p_{t-s}(x-y)dx \right) \sigma(u(s,y))W(ds,dy).$$

Remark: Fix t > 0. The process $x \mapsto u(t, x)$ is stationary.

• We are interested in the asymptotic behavior as $R \to \infty$ of the random variable

$$\int_{-R}^{R} u(t,x) dx$$

The mean is given by

$$\mathbb{E}\left(\int_{-R}^{R}u(t,x)dx\right)=2R.$$

We put

$$F_{R,t} := \int_{-R}^{R} u(t,x) dx - 2R$$

$$= \int_{0}^{t} \int_{\mathbb{R}} \left(\int_{-R}^{R} p_{t-s}(x-y) dx \right) \sigma(u(s,y)) W(ds,dy).$$

Computation of the variance of $F_{R,t}$

• Using the isometry property of the stochastic integral we obtain:

$$\operatorname{Var}(F_{R,t}) := \int_0^t \int_{\mathbb{R}} \left(\int_{-R}^R p_{t-s}(x-y) dx \right)^2 \mathbb{E}[\sigma(u(s,y))^2] dy ds$$

$$= \int_0^t \xi(s) \int_{\mathbb{R}} \left(\int_{-R}^R p_{t-s}(x-y) dx \right)^2 dy ds$$

$$= \int_0^t \xi(s) \int_{[-R,R]^2} p_{2(t-s)}(x-x') dx dx' ds$$

$$\approx 2R \int_0^t \xi(s) ds,$$

as $R \to \infty$, with $\xi(s) = \mathbb{E}[\sigma(u(s, y))^2]$.

Functional CLT

Theorem (Huang-N.-Viitasaari '20)

Set $\xi(s) = \mathbb{E}[\sigma(u(s,y))^2]$ for any $s \ge 0$. Then

$$\left(\frac{1}{\sqrt{R}}\left(\int_{-R}^{R}u(t,x)dx-2R\right)\right)_{t\in[0,T]}\xrightarrow{\mathcal{L}}\left(\int_{0}^{t}\sqrt{2\xi(s)}dB_{s}\right)_{t\in[0,T]},$$

as R tends to infinity, where B is a Brownian motion and the convergence is in the space of continuous functions C([0,T]).

Quantitative CLT

 The total variation distance between two random variables F and G is defined by

$$d_{TV}(F,G) = \sup_{B \in \mathcal{B}(\mathbb{R})} |P(F \in B) - P(G \in B)|.$$

Theorem (Huang-N.-Viitasaari '20)

Let $Z \sim N(0,1)$ and fix t > 0. Then there exists a constant c(t), depending on t, such that

$$d_{TV}\left(\frac{F_{R,t}}{\sqrt{\operatorname{Var}(F_{R,t})}},Z\right) \leq \frac{c(t)}{\sqrt{R}}.$$

where $Z \sim N(0, 1)$.

 The proof is based on a combination of Malliavin calculus and Stein's method for normal approximations.

Quantitative CLT

 The total variation distance between two random variables F and G is defined by

$$d_{TV}(F,G) = \sup_{B \in \mathcal{B}(\mathbb{R})} |P(F \in B) - P(G \in B)|.$$

Theorem (Huang-N.-Viitasaari '20)

Let $Z \sim N(0,1)$ and fix t>0. Then there exists a constant c(t), depending on t, such that

$$d_{TV}\left(\frac{F_{R,t}}{\sqrt{\operatorname{Var}(F_{R,t})}},Z\right)\leq \frac{c(t)}{\sqrt{R}},$$

where $Z \sim N(0, 1)$.

 The proof is based on a combination of Malliavin calculus and Stein's method for normal approximations.

Quantitative CLT

 The total variation distance between two random variables F and G is defined by

$$d_{TV}(F,G) = \sup_{B \in \mathcal{B}(\mathbb{R})} |P(F \in B) - P(G \in B)|.$$

Theorem (Huang-N.-Viitasaari '20)

Let $Z \sim N(0,1)$ and fix t>0. Then there exists a constant c(t), depending on t, such that

$$d_{TV}\left(\frac{F_{R,t}}{\sqrt{\operatorname{Var}(F_{R,t})}},Z\right)\leq \frac{c(t)}{\sqrt{R}},$$

where $Z \sim N(0, 1)$.

 The proof is based on a combination of Malliavin calculus and Stein's method for normal approximations.

Malliavin Calculus

ullet ${\cal S}$ is the space of random variables of the form

$$F = f(W(h_1), \ldots, W(h_n)),$$

where $h_i \in \mathfrak{H} = L^2(\mathbb{R}_+ \times \mathbb{R})$ and $f \in C_b^{\infty}(\mathbb{R}^n)$.

• If $F \in S$ we define its *derivative* by

$$D_{s,y}F = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(W(h_1), \dots, W(h_n))h_i(s,y).$$

DF is a random variable with values in \mathfrak{H} .

• Sobolev spaces: For $p \ge 1$, $\mathbb{D}^{k,p} \subset L^p(\Omega; \mathfrak{H})$ is the closure of \mathcal{S} with respect to the norm

$$\|DF\|_{k,p} = \sum_{j=0}^k \left(\mathbb{E}(\|D^j F\|_{\mathfrak{H}\otimes j}^p) \right)^{1/p}$$

Malliavin Calculus

ullet S is the space of random variables of the form

$$F = f(W(h_1), \ldots, W(h_n)),$$

where $h_i \in \mathfrak{H} = L^2(\mathbb{R}_+ \times \mathbb{R})$ and $f \in C_b^{\infty}(\mathbb{R}^n)$.

• If $F \in \mathcal{S}$ we define its *derivative* by

$$D_{s,y}F = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(W(h_1),\ldots,W(h_n))h_i(s,y).$$

DF is a random variable with values in \mathfrak{H} .

• Sobolev spaces: For $p \ge 1$, $\mathbb{D}^{k,p} \subset L^p(\Omega; \mathfrak{H})$ is the closure of \mathcal{S} with respect to the norm

$$\|DF\|_{k,p} = \sum_{j=0}^k \left(\mathbb{E}(\|D^j F\|_{\mathfrak{H}^{\otimes j}}^p) \right)^{1/p}.$$

Malliavin Calculus

S is the space of random variables of the form

$$F = f(W(h_1), \ldots, W(h_n)),$$

where $h_i \in \mathfrak{H} = L^2(\mathbb{R}_+ \times \mathbb{R})$ and $f \in C_b^{\infty}(\mathbb{R}^n)$.

• If $F \in \mathcal{S}$ we define its *derivative* by

$$D_{s,y}F = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(W(h_1), \ldots, W(h_n))h_i(s,y).$$

DF is a random variable with values in \mathfrak{H} .

• Sobolev spaces: For $p \ge 1$, $\mathbb{D}^{k,p} \subset L^p(\Omega; \mathfrak{H})$ is the closure of \mathcal{S} with respect to the norm

$$||DF||_{k,p} = \sum_{j=0}^{k} \left(\mathbb{E}(||D^{j}F||_{\mathfrak{H}^{0})}^{p} \right)^{1/p}.$$

• The adjoint of D is the *divergence* operator δ defined by the duality relationship

$$\mathbb{E}(\langle \mathit{DF}, \mathsf{v} \rangle_{\mathfrak{H}}) = \mathbb{E}(\mathsf{F}\delta(\mathsf{v}))$$

for any $F \in \mathbb{D}^{1,2}$ and $v \in \mathrm{Dom}\delta \subset L^2(\Omega;\mathfrak{H})$.

 If v ∈ L²(Ω × ℝ₊ × ℝ) is a square integrable adapted random field, then v belongs to the domain of δ and δ(v) coincides with the Itô-Walsh integral of v:

$$\delta(v) = \int_{\mathbb{R}_+ imes \mathbb{R}} v(s, y) W(ds, dy).$$

• The adjoint of D is the *divergence* operator δ defined by the duality relationship

$$\mathbb{E}(\langle DF, v \rangle_{\mathfrak{H}}) = \mathbb{E}(F\delta(v))$$

for any $F \in \mathbb{D}^{1,2}$ and $v \in \text{Dom}\delta \subset L^2(\Omega;\mathfrak{H})$.

• If $v \in L^2(\Omega \times \mathbb{R}_+ \times \mathbb{R})$ is a square integrable adapted random field, then v belongs to the domain of δ and $\delta(v)$ coincides with the Itô-Walsh integral of v:

$$\delta(v) = \int_{\mathbb{R}_+ \times \mathbb{R}} v(s, y) W(ds, dy).$$

Malliavin-Stein method

Let $W = \{W(h), h \in \mathfrak{H}\}$ be an isonormal Gaussian process defined on (Ω, \mathcal{F}, P) , where \mathcal{F} is generated by W.

Theorem (Nourdin-Peccati '08)

Suppose that $F \in \mathbb{D}^{1,2}$ satisfies $\mathbb{E}[F^2] = 1$ and $F = \delta(v)$, where v belongs to $\mathrm{Dom}\delta$. Then,

$$d_{TV}(F,Z) \leq 2\sqrt{\operatorname{Var}(D_{v}F)},$$

where Z is N(0,1) and we use the notation $D_v F = \langle DF, v \rangle_{\mathfrak{H}}$.

Remark: Because

$$\mathbb{E}[D_{v}F] = \mathbb{E}[F\delta(v)] = \mathbb{E}[F^{2}] = 1$$

we have

$$Var(D_{\nu}F) = \mathbb{E}[|1 - D_{\nu}F|^2].$$

Malliavin-Stein method

Let $W = \{W(h), h \in \mathfrak{H}\}$ be an isonormal Gaussian process defined on (Ω, \mathcal{F}, P) , where \mathcal{F} is generated by W.

Theorem (Nourdin-Peccati '08)

Suppose that $F \in \mathbb{D}^{1,2}$ satisfies $\mathbb{E}[F^2] = 1$ and $F = \delta(v)$, where v belongs to $\mathrm{Dom}\delta$. Then,

$$d_{TV}(F,Z) \leq 2\sqrt{\operatorname{Var}(D_{v}F)},$$

where Z is N(0,1) and we use the notation $D_v F = \langle DF, v \rangle_{\mathfrak{H}}$.

Remark: Because

$$\mathbb{E}[D_{v}F] = \mathbb{E}[F\delta(v)] = \mathbb{E}[F^{2}] = 1$$

we have

$$\operatorname{Var}(D_{\nu}F) = \mathbb{E}[|1 - D_{\nu}F|^2].$$

Proof of the estimate $d_{TV}\left(\frac{F_{R,t}}{\sqrt{\text{Var}(F_{R,t})}}, Z\right) \leq c(t)R^{-1/2}$:

We have

$$F_{R,t} = \int_{-R}^{R} [u(t,x) - 1] dx$$

$$= \int_{0}^{t} \int_{\mathbb{R}} \sigma(u(s,y)) \left(\int_{-R}^{R} p_{t-s}(x-y) dx \right) W(ds,dy).$$

Thus.

$$F_{R,t} = \delta(v_{R,t}),$$

where, for s < t

$$v_{R,t}(s,y) = \sigma(u(s,y)) \int_{-R}^{R} p_{t-s}(x-y) dx.$$

Proof of the estimate $d_{TV}\left(\frac{F_{R,t}}{\sqrt{\text{Var}(F_{R,t})}}, Z\right) \leq c(t)R^{-1/2}$:

We have

$$F_{R,t} = \int_{-R}^{R} [u(t,x) - 1] dx$$

$$= \int_{0}^{t} \int_{\mathbb{R}} \sigma(u(s,y)) \left(\int_{-R}^{R} p_{t-s}(x-y) dx \right) W(ds,dy).$$

Thus,

$$F_{R,t} = \delta(v_{R,t}),$$

where, for $s \le t$

$$v_{R,t}(s,y) = \sigma(u(s,y)) \int_{-R}^{R} p_{t-s}(x-y) dx.$$

Therefore,

$$d_{TV}\left(\frac{F_{R,t}}{\sqrt{\operatorname{Var}(F_{R,t})}},Z\right) \leq \frac{2}{\operatorname{Var}(F_{R,t})}\sqrt{\operatorname{Var}(\langle DF_{R,t}, v_{R,t}\rangle_{\mathfrak{H}})}.$$

Then, it suffices to show that

$$\operatorname{Var}(\langle \mathit{DF}_{R,t}, \mathit{v}_{R,t} \rangle_{\mathfrak{H}}) \leq c(t)R.$$

12/21

Therefore,

$$d_{TV}\left(\frac{F_{R,t}}{\sqrt{\operatorname{Var}(F_{R,t})}},Z\right) \leq \frac{2}{\operatorname{Var}(F_{R,t})}\sqrt{\operatorname{Var}(\langle DF_{R,t}, v_{R,t}\rangle_{\mathfrak{H}})}.$$

Then, it suffices to show that

$$\operatorname{Var}(\langle DF_{R,t}, v_{R,t} \rangle_{\mathfrak{H}}) \leq c(t)R.$$

Two basic ingredients:

1. Poincaré inequality: For all $F, G \in \mathbb{D}^{1,2}$,

$$|\mathrm{Cov}(F,G)| \leq \int_0^\infty \int_{\mathbb{R}} \|D_{s,y}F\|_2 \|D_{s,y}G\|_2 dyds.$$

2. Estimate on the *p*-norm of derivative of the solution:

$$|D_{s,y}u(t,x)||_p \leq Cp_{t-s}(x-y),$$

where C depends on p, t and σ .

This inequality follows from:

$$\begin{aligned} D_{s,y}u(t,x) &= p_{t-s}(x-y)\sigma(u(s,y)) \\ &+ \int_s^t \int_{\mathbb{R}} p_{t-r}(x-z)\sigma'(u(r,z))D_{s,y}u(r,z)W(dr,dz). \end{aligned}$$

Two basic ingredients:

1. Poincaré inequality: For all $F, G \in \mathbb{D}^{1,2}$,

$$|\mathrm{Cov}(F,G)| \leq \int_0^\infty \int_{\mathbb{R}} \|D_{s,y}F\|_2 \|D_{s,y}G\|_2 dyds.$$

2. Estimate on the *p*-norm of derivative of the solution:

$$||D_{s,y}u(t,x)||_{\rho} \leq C\rho_{t-s}(x-y),$$

where C depends on p, t and σ .

This inequality follows from:

$$\begin{aligned} D_{s,y}u(t,x) &= p_{t-s}(x-y)\sigma(u(s,y)) \\ &+ \int_s^t \int_{\mathbb{R}} p_{t-r}(x-z)\sigma'(u(r,z))D_{s,y}u(r,z)W(dr,dz). \end{aligned}$$

Two basic ingredients:

1. Poincaré inequality: For all $F, G \in \mathbb{D}^{1,2}$,

$$|\mathrm{Cov}(F,G)| \leq \int_0^\infty \int_{\mathbb{R}} \|D_{s,y}F\|_2 \|D_{s,y}G\|_2 dyds.$$

2. Estimate on the *p*-norm of derivative of the solution:

$$||D_{s,y}u(t,x)||_{\rho} \leq C\rho_{t-s}(x-y),$$

where C depends on p, t and σ .

This inequality follows from:

$$\begin{aligned} D_{s,y}u(t,x) &= p_{t-s}(x-y)\sigma(u(s,y)) \\ &+ \int_{s}^{t} \int_{\mathbb{R}} p_{t-r}(x-z)\sigma'(u(r,z))D_{s,y}u(r,z)W(dr,dz). \end{aligned}$$

Convergence of densities

• The total variation distance is equivalent to L^1 norm of the densities:

$$d_{TV}(F,Z) = \int_{\mathbb{R}} |p_F(x) - \phi(x)| dx,$$

where ϕ is the density of the law N(0, 1).

Uniform convergence, however, requires stronger hypotheses.

Theorem (N.-Kuzgun '21)

Let $v \in \mathbb{D}^{1,6}(\mathfrak{H})$ and $F = \delta(v) \in \mathbb{D}^{2,6}$ with $\mathbb{E}[F^2] = 1$ and $(D_v F)^{-1} \in L^4(\Omega)$. Then, F admits a density $p_F(x)$ that satisfies

$$\sup_{x \in \mathbb{R}} |p_F(x) - \phi(x)| \le (\|F\|_4 \|(D_v F)^{-1}\|_4 + 2) \sqrt{\operatorname{Var}(D_v F)} + \|(D_v F)^{-1}\|_4^2 \|D_v(D_v F)\|_2.$$

A different version of this inequality was obtained in Hu-Lu-N. '13.

Convergence of densities

• The total variation distance is equivalent to L^1 norm of the densities:

$$d_{TV}(F,Z) = \int_{\mathbb{R}} |p_F(x) - \phi(x)| dx,$$

where ϕ is the density of the law N(0, 1).

Uniform convergence, however, requires stronger hypotheses.

Theorem (N.-Kuzgun '21)

Let $v \in \mathbb{D}^{1,6}(\mathfrak{H})$ and $F = \delta(v) \in \mathbb{D}^{2,6}$ with $\mathbb{E}[F^2] = 1$ and $(D_v F)^{-1} \in L^4(\Omega)$. Then, F admits a density $p_F(x)$ that satisfies

$$\sup_{x \in \mathbb{R}} |p_F(x) - \phi(x)| \le (\|F\|_4 \|(D_v F)^{-1}\|_4 + 2) \sqrt{\operatorname{Var}(D_v F)} + \|(D_v F)^{-1}\|_4^2 \|D_v(D_v F)\|_2.$$

A different version of this inequality was obtained in Hu-Lu-N. '13.

14/21

Convergence of densities

• The total variation distance is equivalent to L^1 norm of the densities:

$$d_{TV}(F,Z) = \int_{\mathbb{R}} |p_F(x) - \phi(x)| dx,$$

where ϕ is the density of the law N(0, 1).

Uniform convergence, however, requires stronger hypotheses.

Theorem (N.-Kuzgun '21)

Let $v \in \mathbb{D}^{1,6}(\mathfrak{H})$ and $F = \delta(v) \in \mathbb{D}^{2,6}$ with $\mathbb{E}[F^2] = 1$ and $(D_v F)^{-1} \in L^4(\Omega)$. Then, F admits a density $p_F(x)$ that satisfies

$$\sup_{x \in \mathbb{R}} |p_F(x) - \phi(x)| \le (\|F\|_4 \|(D_v F)^{-1}\|_4 + 2) \sqrt{\operatorname{Var}(D_v F)} + \|(D_v F)^{-1}\|_4^2 \|D_v(D_v F)\|_2.$$

• A different version of this inequality was obtained in Hu-Lu-N. '13.

Sketch of the proof:

(i) Density formula:

$$\rho_F(x) = \mathbb{E}\left[\mathbf{1}_{\{F>x\}}\delta\left(\frac{v}{D_vF}\right)\right].$$

(ii) We have

$$\delta\left(\frac{v}{D_v F}\right) = \frac{F}{D_v F} - D_v((D_v F)^{-1}).$$

Therefore.

$$p_{F}(x) = \mathbb{E}\left[\mathbf{1}_{\{F>x\}} \frac{F}{D_{v}F}\right] - \mathbb{E}[\mathbf{1}_{\{F>x\}} D_{v}((D_{v}F)^{-1})]$$

$$= \mathbb{E}[\mathbf{1}_{\{F>x\}}F] + \mathbb{E}[\mathbf{1}_{\{F>x\}}F((D_{v}F)^{-1} - 1)]$$

$$- \mathbb{E}[\mathbf{1}_{\{F>x\}} D_{v}((D_{v}F)^{-1})].$$

Sketch of the proof:

(i) Density formula:

$$\rho_F(x) = \mathbb{E}\left[\mathbf{1}_{\{F>x\}}\delta\left(\frac{v}{D_vF}\right)\right].$$

(ii) We have

$$\delta\left(\frac{v}{D_vF}\right) = \frac{F}{D_vF} - D_v((D_vF)^{-1}).$$

Therefore.

$$p_{F}(x) = \mathbb{E}\left[\mathbf{1}_{\{F>x\}} \frac{F}{D_{V}F}\right] - \mathbb{E}[\mathbf{1}_{\{F>x\}} D_{V}((D_{V}F)^{-1})]$$

$$= \mathbb{E}[\mathbf{1}_{\{F>x\}}F] + \mathbb{E}[\mathbf{1}_{\{F>x\}}F((D_{V}F)^{-1} - 1)]$$

$$- \mathbb{E}[\mathbf{1}_{\{F>x\}} D_{V}((D_{V}F)^{-1})].$$

Sketch of the proof:

(i) Density formula:

$$\rho_F(x) = \mathbb{E}\left[\mathbf{1}_{\{F>x\}}\delta\left(\frac{v}{D_vF}\right)\right].$$

(ii) We have

$$\delta\left(\frac{v}{D_vF}\right) = \frac{F}{D_vF} - D_v((D_vF)^{-1}).$$

Therefore,

$$p_{F}(x) = \mathbb{E}\left[\mathbf{1}_{\{F>x\}} \frac{F}{D_{v}F}\right] - \mathbb{E}[\mathbf{1}_{\{F>x\}} D_{v}((D_{v}F)^{-1})]$$

$$= \mathbb{E}[\mathbf{1}_{\{F>x\}}F] + \mathbb{E}[\mathbf{1}_{\{F>x\}}F((D_{v}F)^{-1} - 1)]$$

$$- \mathbb{E}[\mathbf{1}_{\{F>x\}} D_{v}((D_{v}F)^{-1})].$$

(iii) We easily have the estimates

$$\mathbb{E}[|F((D_{\nu}F)^{-1}-1)|] \leq \|F\|_4 \|(D_{\nu}F)^{-1}\|_4 \sqrt{\text{Var}(D_{\nu}F)}$$

and

$$\mathbb{E}[|D_{\nu}((D_{\nu}F)^{-1})|] \leq \|(D_{\nu}F)^{-1}\|_{4}^{2}\|D_{\nu}(D_{\nu}F)\|_{2}.$$

16/21

(iii) Taking into account that

$$\phi(\mathbf{x}) = \mathbb{E}[\mathbf{1}_{\{Z > x\}} Z],$$

where $Z \sim N(0, 1)$, it suffices to show the estimate

$$\left|\mathbb{E}[\mathbf{1}_{\{F>x\}}F] - \mathbb{E}[\mathbf{1}_{\{Z>x\}}Z]\right| \leq C\sqrt{\operatorname{Var}(D_{\nu}F)},$$

which can be done by Stein's method and Malliavin calculus.

Application to the stochastic heat equation:

Theorem (Kuzgun-N. '21)

Let $\{u(t,x), t \geq 0, x \in \mathbb{R}\}$ be the solution to the stochastic heat equation. Assume:

- (i) $\sigma \in C^2(\mathbb{R})$, σ' is bounded and $|\sigma''(x)| \leq C(1 + |x|^m)$ for some m > 0.
- (ii) For some q > 10 and t > 0, $\mathbb{E}[|\sigma(u(t,0))|^{-q}] < \infty$.

Then,

$$\sup_{\mathbf{x}\in\mathbb{R}}\left|p_{F_{R,t}/\sqrt{\operatorname{Var}(F_{R,t})}}-\phi(\mathbf{x})\right|\leq\frac{c(t)}{\sqrt{R}}.$$

• Condition (ii) is satisfied if σ is bounded below or if $\sigma(x) = x$.

Application to the stochastic heat equation:

Theorem (Kuzgun-N. '21)

Let $\{u(t,x), t \geq 0, x \in \mathbb{R}\}$ be the solution to the stochastic heat equation. Assume:

- (i) $\sigma \in C^2(\mathbb{R})$, σ' is bounded and $|\sigma''(x)| \leq C(1+|x|^m)$ for some m > 0.
- (ii) For some q > 10 and t > 0, $\mathbb{E}[|\sigma(u(t,0))|^{-q}] < \infty$.

Then,

$$\sup_{x \in \mathbb{R}} \left| p_{F_{R,t}/\sqrt{\operatorname{Var}(F_{R,t})}} - \phi(x) \right| \leq \frac{c(t)}{\sqrt{R}}.$$

• Condition (ii) is satisfied if σ is bounded below or if $\sigma(x) = x$.

18/21

Estimate of the p-norm of the second derivative:

Proposition

Suppose $0 \le r < s < t \le T$. Then,

$$||D_{r,z}D_{s,y}u(t,x)||_{p} \leq Cp_{t-s}(x-y)p_{s-r}(y-z) + Cp_{t-s}(x-y)\frac{p_{t-r}(y-z) + p_{t-r}(x-y) + \mathbf{1}_{\{|x-y| \geq |y-z|\}}}{(r-s)^{1/4}}.$$

• In the case $\sigma(x) = x$, the estimate

$$||D_{r,z}D_{s,y}u(t,x)||_{p} \leq Cp_{t-s}(x-y)p_{s-r}(y-z)$$

was obtained by Chen-Khoshnevisan-N.-Pu '21.

Delta initial condition

Suppose $u(0,x) = \delta_0(x)$ and $\sigma(u) = u$. The mild solution is

$$u(t,x) = p_t(x) + \int_0^t \int_{\mathbb{R}} p_{t-s}(x-y)u(s,y)W(ds,dy).$$

- For any fixed t > 0, the process $\left\{ \frac{u(t,x)}{\rho_t(x)}, x \in \mathbb{R} \right\}$ is stationary (Amir-Corwin-Quastel '11).
- We set

$$G_{R,t} = \int_{-R}^{R} \frac{u(t,x)}{p_t(x)} dx - 2R$$

Delta initial condition

Suppose $u(0,x) = \delta_0(x)$ and $\sigma(u) = u$. The mild solution is

$$u(t,x) = \rho_t(x) + \int_0^t \int_{\mathbb{R}} \rho_{t-s}(x-y)u(s,y)W(ds,dy).$$

- For any fixed t > 0, the process $\left\{ \frac{u(t,x)}{\rho_t(x)}, x \in \mathbb{R} \right\}$ is stationary (Amir-Corwin-Quastel '11).
- We set

$$G_{R,t} = \int_{-R}^{R} \frac{u(t,x)}{p_t(x)} dx - 2R.$$

Delta initial condition

Suppose $u(0,x) = \delta_0(x)$ and $\sigma(u) = u$. The mild solution is

$$u(t,x) = \rho_t(x) + \int_0^t \int_{\mathbb{R}} \rho_{t-s}(x-y)u(s,y)W(ds,dy).$$

- For any fixed t > 0, the process $\left\{ \frac{u(t,x)}{\rho_t(x)}, x \in \mathbb{R} \right\}$ is stationary (Amir-Corwin-Quastel '11).
- We set

$$G_{R,t} = \int_{-R}^{R} \frac{u(t,x)}{p_t(x)} dx - 2R.$$

1. (Chen-Khoshnevisan-N.-Pu '21) As $R \to \infty$,

$$\left\{ (R \log R)^{-1/2} G_{R,t} \right\}_{t \in [0,T]} \stackrel{\mathcal{L}}{\longrightarrow} 2B,$$

where B is a Brownian motion.

2. (Chen-Khoshnevisan-N.-Pu '21) There exists a constant c(t), such that

$$d_{TV}\left(rac{G_{R,t}}{\sqrt{\operatorname{Var}(F_{R,t})}},Z
ight) \leq c(t)\sqrt{rac{\log R}{R}},$$

where Z has law N(0,1).

3. (Kuzgun-N. '21) Fix $\gamma > \frac{19}{2}$. Then

$$\sup_{x \in \mathbb{R}} |p_{G_{R,t}/\sqrt{\operatorname{Var}(G_{R,t})}} - \phi(x)| \le \frac{c(t)(\log R)^{\gamma}}{\sqrt{R}}$$

1. (Chen-Khoshnevisan-N.-Pu '21) As $R \to \infty$,

$$\left\{(R\log R)^{-1/2}G_{R,t}\right\}_{t\in[0,T]}\stackrel{\mathcal{L}}{\longrightarrow} 2B,$$

where B is a Brownian motion.

2. (Chen-Khoshnevisan-N.-Pu '21) There exists a constant c(t), such that

$$d_{TV}\left(\frac{G_{R,t}}{\sqrt{\operatorname{Var}(F_{R,t})}},Z\right) \leq c(t)\sqrt{\frac{\log R}{R}},$$

where Z has law N(0,1).

3. (Kuzgun-N. '21) Fix $\gamma > \frac{19}{2}$. Then

$$\sup_{x \in \mathbb{R}} |p_{G_{R,t}/\sqrt{\operatorname{Var}(G_{R,t})}} - \phi(x)| \le \frac{c(t)(\log R)^{\gamma}}{\sqrt{R}}$$

1. (Chen-Khoshnevisan-N.-Pu '21) As $R \to \infty$,

$$\left\{ (R \log R)^{-1/2} G_{R,t} \right\}_{t \in [0,T]} \stackrel{\mathcal{L}}{\longrightarrow} 2B,$$

where B is a Brownian motion.

2. (Chen-Khoshnevisan-N.-Pu '21) There exists a constant c(t), such that

$$d_{TV}\left(\frac{G_{R,t}}{\sqrt{\operatorname{Var}(F_{R,t})}},Z\right) \leq c(t)\sqrt{\frac{\log R}{R}},$$

where Z has law N(0,1).

3. (Kuzgun-N. '21) Fix $\gamma > \frac{19}{2}$. Then

$$\sup_{\mathbf{x} \in \mathbb{R}} |p_{G_{R,t}/\sqrt{\operatorname{Var}(G_{R,t})}} - \phi(\mathbf{x})| \leq \frac{c(t)(\log R)^{\gamma}}{\sqrt{R}}.$$