Unit:-2 Problem Solving and Representation of Knowledge

Problem Solving agents: yeal-Based

They are goal-based agents.

One of the goal -> to messimize

performance measures 19/2 performance measures. Goal formation Problem formulation Search Problem formulation is the process of deciding what actions and state to consider given a goal. The perocess of looking for sequence of actions that leads an agent to the goal is known as Search: search Algorithm takes a problem as input and returns soln having sequence of sections. Problem tormulation: Initial state - the starting state Action Transition model - description of action results Path cost - Is croal?

Path cost - The fun returns heuristic

value used to estimate the performance Problem Formulation of Vacuum Cleaner woold. 2×2² = 8 States : (total)

9 Initial state: Any state from the available states 3 Actions: Shift left, shift right, such the dirt 4 Transition model: Path Cost: 1 Path Cost : 1 # 8- Puzzle Problem (Problem Formulation 1 2 3 4 5 6 7 8 S 8- Puzzle Problem States: 81

Initial: All possible state with no rqueen in same row, when or diagonal Actions: Morning queen to different col in its row Transitional model: stage change when queen is moved to new position broad Test: check no two queen can attack each other. Path cost: No. of steps to reach solution.

The same	Root Finding Problem
1)	States: Biff. values of a
2	Initial state i- selection of x
3	Actions: Adjusting the guess for a based
	on finding method.
47	Transitional model: How the value of 20 is
	updated.
57	Groal Test: Root is found.
6)	Path cost: No of iterations on stips to
	reach the noot.
-	
	Robot Navigation
,	Robot Navigation States:
:	Initial states: Starting position of robot
	in environment.
3	Actions: The movements that robot can
	make.
4	Transition model: How robot's state change
	upon actions.
5	Groal Test: thecking if robot has reached its
	destination,
	Path cost; Cumulative cost to reach goal.
Samuel of	
₽	Searching for Solution
Lance of	Searching for Solution Solution? (Sequence of actions)
-	Select Initial state
91 8	
-	Apply action & generate new state thick for goal & repeat
Wood o	return solution

	Date: / /
	(6) Root node/ current node
	Check Iscroal ()
	Action = Expand (0)
-	
	2 3
	The second of their pulse pay , and .
-	Completeness (Is the sol guaranteed?) Optimality (Optimal sol ?) Time Complexity
-	Optimality (Optimal Soln?)
-	Time Complexity.
*	Space Compleseify
	Searching for Soln (Search strategies)
	Blind Search Heuristic Search
	- Breadth First Search - A * Algo
	- Depth First Search - bruedy BFS.
*	Blind Search: It is also known as uninformed
	It traverse the search space until goal node
	It traverse the search space until goal node
	is found.
14	
*	Heuristic: Also known as informed search
	strate gies.
	Search Process takes place by traversing search
1	Search Process takes place by traversing search space with applied rules! information.
1	

Breadth- First Dearch (BFS) Strategy - Search all nodes eschanded at given depth before any node at neset level-Concept -Complete? - Yes with finite branch (b)

Space - Keep every node in memory

optimal? - Yes (If cost = 1) Path: B-E-B-F-GI-C-A A-B-C-D-E-F-G Strategy: Search all nodes expanded at given depth before any node at despest. Concept : FILO Complete? : XNO with infinite branch (b) space - : Keep every node in nemory optimal ?: Mo (9f cost = 1) Depth Limited Search (DLS) DLS is DFS with a depth limit L Nodes at depth limit are treated as

lecures

depth limit? (how to decide)

Performance?

Incomplete if L<d. Non Optimal if L>d Time & Space <= DFS. ID-OFS (Iterative Déepening DFS) Same as BFS Bidirectional Search sub graph I => It performs two search simultaneously one from the initial state to the goal state, the other from goal to initial state It stops searching when either search reaches a state i.e in middle of the other state. It provides complete 9 optimal sol it both searches are BFS. Informed Search strategies h(n) heuristic Greedy Best'- First Search

Total Path cost = 418 (140 + 80 + 97 + 101) Informed Search (heuristic search) Torqueedy Best First Search (f(n) = h(n))

+> A* - Search (A* - algo)

f(n) = h(n) + g(n) Wumpus world Problem C114)4 man | 333 (3) Les wampus # - Treasure & Agent (1,1) (2,1) (3,1) (4,1) 33. Breeze - Stench PEAS & Solution : $(1,1) \rightarrow (2,1)$ (211) -> (111) 3) (1,1) -) (1,2) 4) (1,2) -) (2,2)Step:-1 Move to block [2,1] where agent smells breeze indicating adjacent block might have pit: have pit Step:2 Agent moves back to [1,1]
8 tep:3 Agent moves to [1,2] where agent
Jeels stench indicating adjacent block might have wumps Step: 4 Agent notices the difference in blocks [2,1] and [1,2] and notices block [2,2] is safe Step:5 Agent has now two opts either [3,2]

Logic :-Syntase - (ulell formed sentence)
Semantics - meaning of sentences
model - possible world (logically mathematical
logical entailment -If a sentence & is true in model m we say that m satisfies & or m is a model of & · Logical entailment: Logical entailment b/n sentences is the idea that a sentence follows logically from another sentence. sentence & entails the sentence B. Logical Inference is the process of deriving new sentences from the old one. => Sound Inferience algorithms derive enty sintences that are entailed, complete algorithms derive all sentences that are * Propositional Togic: