

Тема 1. 2.

Исследование и моделирование неслучайной составляющей временного ряда

Структура курса

Тема 1. Введения в анализ одномерных временных рядов

- 1.1. Временной ряд: основные понятия, определения, характеристики. Простейшие примеры стационарных и нестационарных временных рядов (белый шум, временной ряд с линейным трендом, случайное блуждание, случайным блужданием с дрейфом) и их характеристики. Основные составляющие временного ряда.
- 1.2. Исследование и моделирование неслучайной составляющей временного ряда: основные типы трендов (детерминированный и стохастический); проверка наличия тренда во временных рядах; методы выделения тренда.

Генезис наблюдений, образующих ВР

4 типа факторов (Айвазян):

- (А) Долговременные
- (Б) Сезонные
- (В) Циклические
- (Г) Случайные

$$Y_{t} = \chi(A) f_{mp}(t) + \chi(B) \varphi(t) + \chi(B) \psi(t) + \varepsilon_{t}$$

Неслучайная составляющая ВР

$$Y_{t} = \chi(A) f_{mp}(t) + \chi(B) \varphi(t) + \chi(B) \psi(t) + \varepsilon_{t}$$

Задача начального этапа анализа ВР:

- 1. Выявление неслучайной составляющей
- 2. Аппроксимация

Анализ и моделирование трендовой составляющей

$$Y_{t} = \chi(A) f_{mp}(t) + \chi(B) \varphi(t) + \chi(B) \psi(t) + \varepsilon_{t}$$

Под *трендом* понимают изменение, определяющее общее направление развития, основную тенденцию временного ряда. Это систематическая составляющая долговременного действия.

- -Детерминированные тренды
- Стохастические тренды

Анализ и моделирование трендовой составляющей

$$Y_{t} = \chi(A)f_{mp}(t) + \chi(B)\varphi(t) + \chi(B)\psi(t) + \varepsilon_{t}$$

-Детерминированные тренды

- Стохастические тренды

Clive W. J. Granger and P. Newbold Spurious regressions in econometrics //Journal of Econometrics, 1974, vol. 2, issue 2, pages 111-120

Nelson, Charles R. and Charles I. Plosser (1982) Trends and random walks in macroeconomic time series: Some evidence and implications // Journal of Monetary Economics, 10, 139-162.

Стохастические тренды

Clive W. J. Granger and P. Newbold Spurious regressions in econometrics //Journal of Econometrics, 1974, vol. 2, issue 2, pages 111-120

First TS Example.do

Стохастические тренды

					pwco	orr Yd1 Yd	12 Yd3 Yd4 Y	rd5 yd6 y d7	Yd8 Yd9	Yd10, si	g	
						Yd	1 Yd2	Yd3	Yd4	Yd5	Yd6	Yd7
					Yd1	1.000	0					
					Yd2	-0.452 0.000						
					Yd3	-0.433 0.000		1.0000				
pwcorr Y1 Y2	2 Y3 Y4 Y5	Y6 Y7 Y8 Y	Y9 Y10, s	ig	Yd4	-0.362 0.000		0.8440 0.0000	1.0000			
	Y1	Y2	Y3	Y4	Yd5	-0.505		0.9047	0.9277	1.0000		
Y1	1.0000					0.000	0.0000	0.0000	0.0000			
Y2	0.1537 0.1267	1.0000			Yd6	-0.424 0.000		0.7411 0.0000	0.7127 0.0000	0.8464 0.0000	1.0000	
Y3	-0.6742 0.0000	-0.3150 0.0014	1.0000		Yd7	-0.274 0.005		0.7754 0.0000	0.8788 0.0000	0.8643 0.0000	0.8078 0.0000	1.0000
Y4	-0.4395 0.0000	-0.2712 0.0064	0.4944 0.0000	1.0000								
Y5	-0.7970 0.0000	-0.1264 0.2102	0.7509 0.0000	0.7184 0.0000	1.0000							
Y6	-0.1298 0.1981	0.4542 0.0000	0.0118 0.9073	-0.0595 0.5564	0.2520 0.0114	1.0000						
Y7	-0.1540 0.1261	-0.0383 0.7049	0.2637 0.0080	0.5906 0.0000	0.4711 0.0000	0.3905 0.0001	1.0000					

Стохастические тренды

Spurious regressions

req Y1 Y2 Y3

reg ir i	2 13					
Source	55	df	MS		Number of obs	
Model Residual	1395.10078 1648.22882	2 97	697.550391 16.9920497	_	Prob > F R-squared Adj R-squared	= 0.0000 = 0.4584
Total	3043.3296	99	30.740703	L	Root MSE	= 4.1221
Y1	Coef.	Std. E	Err. t	P> t	[95% Conf.	Interval]
Y2 Y3 _cons	2100813 8630177 -4.159776	. 25411 . 09779 . 7214	989 -8.8	0.000	7144374 -1.057121 -5.59167	.2942748 668914 -2.727883

Детерминированные тренды

Детерминированные тренды могут быть описаны с помощью функции времени. Все кривые роста делят на 3 класса:

- 1. Монотонный характер, отсутствие пределов роста (класс полиномов)
- 2. Имеет предел роста (модифицированная экспонента)
- 3. S-образные кривые (логистическая кривая)

http://demoscope.ru/weekly/2011/0463/barom02.php

Внебрачная рождаемость в некоторых постсоветских странах

Проверка гипотезы случайности выборки (randomness test)

Присутствует ли тренд? Является ли выборка случайной?

 $\mathbf{H_0}$: $\mathbf{E}(\mathbf{y_t}) = \boldsymbol{\mu} = \mathbf{const}$ (о случайности ряда, об отсутствии тренда)

 H_1 : E $(y_t)\neq const$

Непараметрические критерии:

- критерий серий, основанный на медиане выборки;
- метод Фостера-Стюарта;
- критерий «восходящих» и «нисходящих» серий и др

(Носко)

Критерий серий (Runs test)

Swed and Eisenhart (1943)

Идея: Пусть M — медиана распределения F, тогда зн-я y_1 , ..., y_n не должны «слишком долго» задерживаться по одну сторону от M.

1. Ранжируем исходный ряд y_t по возрастанию.

Находим медиану:

$$Me = med(y_1, ...y_n) = \begin{cases} y_{n+1/2} & , n-четно \\ \frac{1}{2} \left(y_{n/2} + y_{n/2+1} \right), n-нечетно \end{cases}$$

2. Определяем серии - последовательность «+» и «-»

по правилу:

$$n_i = \begin{cases} +, & y_t > Me, t = \overline{1, n} \\ -, & y_t < Me, t = \overline{1, n} \end{cases}$$

Серия – это последовательность подряд идущих плюсов и подряд идущих минусов.

Критерий серий (Runs test):

Критерий серий, основанный на медиане

- 3. r(n) -число серий в совокупности n_i .
- τ (n)- протяженность самой длинной серии.
- 4. Приближенное правило: (Айвазян)

$$r(n) > \left[\frac{1}{2} \left(n + 2 - 1.96 \sqrt{n - 1} \right) \right]$$

 $\tau(n) < \left[1.43 \ln(n + 1) \right]$

$$\tau(n) < [1,43\ln(n+1)]$$

Пример: Изменения курса акций промышленной компании в течение месяца

t	y _t	$y_t^{ }$	t	\mathbf{y}_{t}	$\mathbf{y}_{\mathrm{t}}^{ }$	t	\mathbf{y}_{t}	y _t	
1 2 3 4 5 6	509 507 508 509 518 515	507 508 509 509 510 511	7 8 9 10 11 12 13 14	517 524 526	512 514 515 516 517 518 518 519	15 16 17 18 19 20	514 510 516 518 524 521	519 520 521 524 524 526	() (+ + +)

Дуброва

Критерий серий (Runs test)

Swed and Eisenhart (1943)

15

$$\mu_r = \frac{2n_0n_1}{N} + 1, \quad N = n_0 + n_1$$

$$\sigma_r^2 = \frac{2n_0n_1(2n_0n_1 - N)}{N^2(N-1)}$$

$$\hat{z} = \frac{r - \mu_r}{\sigma_r} \sim N(0,1)$$

r – число серий

 n_0 — число наблюдений, меньших медианы,

 n_1 — число наблюдений, больших медианы,

$$N=n_0+n_1$$

Наличие детерминированного тренда: пример

Индекс МосБиржи

Наличие тренда

Результаты теста?

Анализ структурных сдвигов

Структурный сдвиг - неожиданное изменение во временном ряду. Может приводить к изменениям в параметрах модели регрессии, ошибкам прогнозирования и недостоверности модели.

- Графический анализ

Анализ структурных сдвигов

Влияние демографической политики государства

Коэффициент суммарной рождаемости и нетто-коэффициент воспроизводства населения в Китае

Анализ структурных сдвигов:

влияние антиалкогольной кампании

1985 - начало Горбачевской антиалкогольной кампании:

1991 - распад СССР и ослабление контроля за производством и распространением алкоголя;

2000 (Белоруссия) - принята первая программа борьбы с алкоголизмом, рассчитанная на 2001-2005 гг.

2005 (Россия) - принят федеральный закон, регламентирующий производство и продажу алкогольной продукции;

2006 (Белоруссия) - принята вторая программа борьбы с алкоголизмом, рассчитанная на 2006-2010 гг

2011 (Белоруссия) - принята третья программа борьбы с алкоголизмом, рассчитанная на 2011-2015 гг.

Стандартизованный коэффициент смертности от причин, связанных с потреблением алкоголя, мужчины в возрасте 20-64 лет

Grigoriev, P., & Andreev, E. M. (2015). The huge reduction in adult male mortality in Belarus and Russia: is it attributable to anti-alcohol measures? PLoS One, 10(9), e0138021 http://demoscope.ru/weekly/2016/0679/digest01.php

Анализ структурных сдвигов: не всегда скачки

Как меры политики влияют на потребление табака в Австралии?

Fig. 1. Monthly smoking prevalence among Australian adults, January 2001 to June 2011

- -увеличение налогов на табачные изделия,
- усиление законов о запрете курения,
- повышенная интенсивность ежемесячных трансляций по телевидению кампаний в СМИ по борьбе против табака и рекламы фармацевтической компании, предлагающей никотинзаместительную терапию (НЗТ),
- -обязательное размещение на пачках сигарет графических предупреждений о вреде курения.

Smokers per 100 respondents.

 $\underline{https://www.who.int/bulletin/volumes/92/6/13-118448.pdf?ua=1}$

Средняя распространенность курения снизилась с 23,6% (в январе 2001 г.) до 17,3% (в июне 2011 г.).

Анализ структурных сдвигов: несколько структурных сдвигов

Анализ структурных сдвигов

- Графический анализ
- -Тест на структурное изменение
- -Tect Yoy(Chow breakpoint test, Chow test)
- -тест CUSUM (Харвея-Коллера (Harvey-Coller)

Анализ стационарности с учетом структурных сдвигов.

- Тест Эндрюса-Зивота (Zivot, Andrews, 1992).
- -Тест на несколько структурных сдвигов (Clemente, Montanes, Reyes, 1998)
- -Tecт Kapetanios (2005) до 5 структурных сдвигов

Kapetanios, G. (2005). Unit-root testing against the alternative hypothesis of up to m structural breaks. Journal of Time Series Analysis, 26(1), 123-133.

Анализ структурных сдвигов

Тест Чоу на структурное изменение (Chow breakpoint test)

2021

$$y_t = x_t^T b + \mathcal{E}_t$$
 Дата сдвига $y_t = x_t^T b_1 + \mathcal{E}_t, t \in S_1$ Дата сдвига $y_t = x_t^T b_2 + \mathcal{E}_t, t \in S_2$ $d_t = \begin{cases} 1, t \in S_1 \\ 0, t \in S_2 \end{cases} \rightarrow y_t = x_t^T (d_t b_1 + (1 - d_t) b_2) + \mathcal{E}_t$

$$F = \frac{(ESS_R - ESS_1 - ESS_2)/k}{(ESS_1 + ESS_2)/(T - 2k)} \sim F(k, T - 2k)$$

ESS-сумма квадратов остатков,

k – количество оцениваемых параметров модели,

Т – длина ВР

Типы структурных сдвигов: Stata

Тест Чоу на структурное изменение (Chow breakpoint test)

Tест Чоу: Stata

chowreg tr t, dum(10) type(1)

Source	SS	df	MS	Number	of obs =	100
				F(2, 97	') =	61359.69
Model	121039.538	2	60519.7692	Prob >	F =	0.0000
Residual	95.6722167	97	.986311513	R-squar	ed =	0.9992
				· Adj R-s	quared =	0.9992
Total	121135.211	99	1223.58799	Root MS	E =	.99313
	<u> </u>					
tr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
t	1.203102	.0040269	298.77	0.000	1.19511	1.211094
DØ	.3961573	.3874649	1.02	0.309 -	.3728534	1.165168
_cons	9.509317	.3148359	30.20	0.000	8.884455	10.13418

$$(1) D0 = 0$$

$$F(1, 97) = 1.05$$

 $Prob > F = 0.3091$

Ho: no Structural Change

- N1: 1st Period Obs = 10

- N2: 2nd Period Obs = 90

- Chow Test = 1.0454 P-Value > F(1 , 97) 0.3091

Tecт Чоу: Stata

chowreg tr t, dum(30) type(1)

	Source	SS	df	MS	Number of obs	=	100
-					F(2, 97)	=	5138.98
	Model	9716.7776	2	4858.3888	Prob > F	=	0.0000
	Residual	91.7037498	97	.945399482	R-squared	=	0.9907
-					Adj R-squared	=	0.9905
	Total	9808.48135	99	99.0755691	Root MSE	=	.97232
		•					

_	tr1	Coef.	Std. Err.	t P> t		[95% Conf. Interval]		
	t	.2153505	.005538	38.89	0.000	.2043591	.226342	
	DØ	9.097784	.3488463	26.08	0.000	8.405421	9.790148	
	_cons	1911343	.1971846	-0.97	0.335	5824911	.2002226	

Ho: no Structural Change

- N1: 1st Period Obs = 30

- N2: 2nd Period Obs = **70**

- Chow Test = 680.1473 P-Value > F(1, 97) 0.0000

Анализ структурных сдвигов (stata 14)

Тесты на структурное изменение

- -Test for structural breaks with known break dates
- -Test for a structural break with an unknown break date
- -Wald and likelihood-ratio tests
- Robust to heteroskedasticity
- Cumulative sum (CUSUM) test for multiple breaks

https://www.stata.com/features/overview/structural-breaks/

Моделирование структурных сдвигов

-Фиктивные переменные

Пример: Айвазян С.А., Бродский Б.Е. и др. Макроэконометрическое моделирование экономик России и Армении // ПЭ. 2013. №3

- Передаточные функции (transfer function) (Enders)

Пример: Clarke, H. D., W. Mishler and P. Whiteley. 1990. "Recapturing the Falklands: Models of Conservative Popularity, 1979-83." *British Journal of Political Science* 20:63-82.

Моделирование структурных сдвигов: фиктивные переменные

• Фиктивная переменная

$$d = \begin{cases} 0, & t < t^* \\ 1, & t \ge t^* \end{cases}$$

$$\hat{y}_t = b_0 + b_1 t + \gamma d$$

• Перекрестная дамми-переменная: d*t

$$\hat{y}_t = b_0 + b_1 t + \gamma dt$$

Eсли d=1, меняется коэффициент при t

Моделирование структурных сдвигов: пример

$$d = \begin{cases} 0, & t < \text{май } 2019 \\ 1, & t \ge \text{май } 2019 \end{cases}$$

$$\hat{y}_t = b_0 + b_1 t + \gamma_1 d + \gamma_2 dt$$

Индекс МосБиржи

Зачем нужна перекрестная дамми-переменная?

Source	SS	df	MS
Model Residual	4922879.12 787980.273		1640959.71 3164.57941
Total	5710859.39	252	22662.1405

=	253
=	518.54
=	0.0000
=	0.8620
=	0.8604
=	56.255
	= = =

IMOEX	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
t D0	1.269665 172.1014	.0962891 46.22868	13.19 3.72	0.000	1.08002 81.05232	1.45931 263.1505
Dx_t	2996196	.2376733	-1.26	0.209	767726	.1684868
_cons	2350.404	8.93649	263.01	0.000	2332.804	2368.005

Анализ и моделирование структурных сдвигов: пример

банковские вклады юридических и физических лиц в иностранной валюте и драгоценных металлах (млн.руб.)

Точки структурного сдвига:

2014m10,

2015m1,

2015m8

Тест Чоу для каждой точки:

Тест Чоу	Точка структурного сдвига	Результат	Знач.	Вывод
(1)	2015 m1	R ² = 0.88 Есть структурный сдвиг типа 1	0.000	T II
(2)	2015 m1	R ² = 0.76 Есть структурный сдвиг типа 2 Незначима переменная t1	0.001	Тест Чоу для всех моделей показал наличие структурных сдвигов соответствующих типов в точке 2015 m1. Наилучшие результаты дала модель со скачком и изменением угла наклона, что можно было предположить на
(3)	2015 m1	R ² = 0.932 Есть структурный сдвиг типа 3	0.000	основании графика зависимой переменной.

Наилучшие результаты показала модель, в которой предполагалось, что структурный сдвиг произошел в момент времени 2015m8 – ее объясняющая способность составила 93,4 %.

Анализ и моделирование структурных сдвигов: пример

2021

$$d = \begin{cases} 0, & t < 43 \\ 1, & t \ge 43 \end{cases}$$

$$\hat{y}_t = b_0 + b_1 t + \gamma_1 d + \gamma_2 dt$$

банковские вклады юридических и физических лиц в иностранной валюте и драгоценных металлах (млн.руб.)

Source	SS	df	MS
Model Residual	184826268 12508595.5	3 80	61608756.1 156357.444
Total	197334864	83	2377528.48

Number o	f obs	=	8.4
F(3,	80)	=	394.03
Prob > F		=	0.0000
R-square	d	=	0.936
Adj R-sq	uared	=	0.9342
Root MSE		-	395.42

у1	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
t	-22.82867	5.219193	-4.37	0.000	-33,21519	-12.44214
t43	-5762.289	361.1826	-15.95	0.000	-6481.065	-5043.513
tt43	99.9003	7.131044	14.01	0.000	85.70907	114.0915
_cons	21608.74	3591.336	6.02	0.000	14461.76	28755.73

Анализ остатков?

Моделирование структурных сдвигов: фиктивные переменные

Пример: Айвазян С.А., Бродский Б.Е. и др. Макроэконометрическое моделирование экономик России и Армении // ПЭ. 2013. №3

Рис. 3. Квартальная динамика ВВП Армении в период 1-й квартал 2000 г. — 4-й квартал 2011 г.

$$D\ln(GDP_t) = -0.011 - 0.312 R\ln(GDP_{t-1}) + 0.174 mu_t - 0.111 \cdot i2009 p2_t,$$

где $mu_t = M2_t / M2_{t-1} - 1$ — темп роста денежного агрегата M2; i2009p2 — фиктивная переменная (индикатор 2-го квартала 2009 года), отражающая влияние мирового финансового кризиса на динамику ВВП РА.

Методы выделения неслучайной составляющей: Как выделить трендовую составляющую?

аналитические

Предположение: известен общий вид неслучайной составляющей

$$y_t = f(t) + \mathcal{E}_t,$$

$$f(t) = \theta_0 + \theta_1 t$$

 $m{Heoбxodumo}$ найти $m{ heta}_1, m{ heta}_0$ для параметров $m{ heta}_1, m{ heta}_0$

Реализация: модели регрессии

алгоритмические

Общий аналитический вид функции неизвестен, на «выходе» - алгоритм расчета оценки $\hat{f}(t)$ для искомой функции f(t) в точке t.

Реализация:

методы скользящего среднего

Выделение трендовой составляющей:

основные подходы

1. Скользящие средние

(разных типов: простые, взвешенные и т.д) 400

См. Дуброва Т.А. Статистические методы прогнозирования 2003

http://www.twirpx.com/file/18580/

Сглаживание :скользящие средние (СС)

Примеры.

1. Простая СС
$$\hat{y}_t = \frac{1}{3}(y_{t-1} + y_t + y_{t+1})$$
 (по 3-м точкам)

Для устранения сезонных колебаний часто требуется использовать 4- и 12-членные скользящие средние.

$$\hat{y}_{t} = \frac{\frac{1}{2} y_{t-2} + y_{t-1} + y_{t} + y_{t+1} + \frac{1}{2} y_{t+2}}{4}$$

$$\hat{y}_{t} = \frac{\frac{1}{2} y_{t-6} + y_{t-5} + \dots + y_{t} + \dots + y_{t+5} + \frac{1}{2} y_{t+6}}{12}$$

2. Взвешенная СС

$$\hat{y}_{t} = \frac{1}{35} \left[-3y_{t-2} + 12y_{t-1} + 17y_{t} + 12y_{t+1} - 3y_{t+2} \right]$$

(по 5-ти точкам, аппроксимация полиномом 2-го порядка)

Выделение трендовой составляющей:

основные подходы

Gretl: Добавить – Фиктивную переменную для периода

тест с константой включая сезонные фиктивные переменные модель: $(1-L)y = b0 + (a-1)*y(-1) + \ldots + e$ коэф. автокорреляции 1-го порядка для е: 0,019 оценка для (a-1): -0,00924108 тестовая статистика: $tau_c(1) = -0,705617$ асимпт. p-значение 0,8436

Регрессия расширенного теста Дики-Фуллера МНК, использованы наблюдения 1949:03-1960:12 (T = 142) Зависимая переменная: d_g

	Коэффициент	Ст. ошибка	t-статистика	Р-значение	
const	37,5225	6,70374	5,597	1,27e-07	***
g 1	-0,00924108	0,0130965	-0,7056	0,8436	
dg 1	0,188766	0,0870947	2,167	0,0321	**
dm1	-33,3151	9,03628	-3,687	0,0003	***
dm2	-44,4442	8,10237	-5,485	2,12e-07	***
dm3	1,09000	7,50030	0,1453	0,8847	
dm4	-44,7475	9,29879	-4,812	4,13e-06	***
dm5	-29,7223	7,60609	-3,908	0,0002	***
dm6	3,92624	7,86946	0,4989	0,6187	
dm7	-2,49487	9,57433	-0,2606	0,7948	
dm8	-42,0135	9,60322	-4,375	2,49e-05	***
dm9	-82,8976	7,79895	-10,63	2,65e-019	***
dm10	-61,3745	7,31233	-8,393	7,56e-014	***
dm11	-62,0449	7,13996	-8,690	1,48e-014	***

2. оценивание регрессии для ряда на сезонные фиктивные переменные:

-Остатки от оцененной регрессии - очищенный ряд.

Выделение трендовой составляющей:

основные подходы

3. Использование фильтров – фильтр Ходрика-Прескотта

$$HP_{\lambda}(L) = \frac{1}{1 + \lambda \Delta^{2} (1 - L^{-1})^{2}}, \lambda > 0$$

 λ =100 – годовые данные λ =1600 – квартальные данные λ =14400 – месячные данные

сглаженный ряд

Hodrick, Robert; Prescott, Edward C. (1997). "Postwar U.S. Business Cycles: An Empirical Investigation". Journal of Money, Credit, and Banking. 29 (1): 1-16.

Выделение трендовой составляющей:

основные подходы

4. U.S. Census Bureau's EuroSTAT

X-12-ARIMA TRAMO

(Time Series Regression with ARIMA Noise, Missing Observations and Outliers)

Сезонность: усреднение по четному числу точек

- Для устранения *сезонных* колебаний часто требуется использовать 4- и 12-членные скользящие средние.
- При четном числе уровней принято первое и последнее наблюдение на активном участке брать с половинными весами

Пример

$$\hat{y}_{t} = \frac{\frac{1}{2}y_{t-2} + y_{t-1} + y_{t} + y_{t+1} + \frac{1}{2}y_{t+2}}{4}$$

$$\hat{y}_{t} = \frac{\frac{1}{2}y_{t-6} + y_{t-5} + \dots + y_{t} + \dots + y_{t+5} + \frac{1}{2}y_{t+6}}{12}$$

Взвешенная СС: пример расчета коэффициентов

• Общая идея подхода: уменьшение дисперсии, сглаживание

• Алгоритм

$$y_t : \mu \to \sigma^2$$

$$(y_1 + y_2 + \dots + y_k)/k : \quad \mu \to \sigma^2/k$$

$$\hat{f}(t) = \sum_{k=-m}^{m} w_k y_{t+k}$$

• Определение весовых коэффициентов, теорема Вейерштрасса «любая гладкая функция при самых общих допущениях может быть локально (т.е. в ограниченном интервале изменения ее аргумента t) представлена алгебраическим полиномом подходящей степени»

Сглаживание по простой скользящей средней (Moving Average (MA))

$$1.f(t) = a_0 + a_1 t$$

- 2. Задаем интервал сглаживания и берем первые (2m+1) членов BP: t=1,2,...,(2m+1); t=m+1 средняя точка отрезка
- 3. Преобразование времени: $t' = t (m+1) \rightarrow t' = -m, -(m-1)..., 0,..., (m-1), m$

Figure 1.4 Maximum temperature data and its moving average. Top left: original data, top right: moving average with k = 5, bottom left: k = 17, bottom right: k = 29.

Genshiro Kitagawa

4. MHK

$$\sum_{t'=-m}^{m} (y_{t'} - a_0 - a_1 t')^2 \to \min_{a_0, a_1}$$

$$\hat{f}(t) = \hat{y}_t = \frac{1}{2m+1} \sum_{k=-m}^{m} y_{t+k}$$

Сглаживание с помощью взвешенной скользящей средней

$$1.f(t) = a_0 + a_1 t + a_2 t^2$$

Взвешенная скользящая средняя (Weighted Moving Average WMA)

2. Задаем интервал сглаживания (k=5 точек)

3. МНК
$$\sum_{t'=-2}^{2} \left(y_{t'} - a_0 - a_1 t' - a_2 (t')^2 \right)^2 \to \min_{a_0, a_1, a_2}$$

$$\hat{f}(t) = \hat{a}_0 + \hat{a}_1 t' + \hat{a}_2 t'^2 \Big|_{t'=0} = \hat{a}_0 = \frac{1}{35} \left[-3y_{-2} + 12y_{-1} + 17y_0 + 12y_1 - 3y_2 \right]$$
 Символическая запись:
$$\frac{1}{35} \left[-3,12,17 \right]$$

Свойства весовых коэффициентов:

- 1) Симметричность относительно центрального уровня.
- 2) Сумма весов с учетом общего множителя, вынесенного за скобки, равна единице.

Примеры таблиц весовых коэффициентов

Весовые коэффициенты при сглаживании по полиномам второго и третьего порядка

Длина интервала Сглаживания	Весовые коэффициенты	
5	$\frac{1}{35}[-3,+12,+17]$	
7	$\frac{1}{21}[-2, +3, +6, +7]$	
9	$\frac{1}{231}$ [-21,+14,+39,+54,+ 59]	
11	$\frac{1}{429}$ [-36, +9, +44, +69, +84, + 89]	
13	$\frac{1}{143} \left[-11,0,+9,+16,+21,+24,+25 \right]$	

Сглаживание по параболе 2-го порядка по 7-членной взвешенной скользящей средней:

$$\hat{y}_i = \frac{1}{21} \cdot (-2y_{t-3} + 3y_{t-2} + 6y_{t-1} + 7y_t + 6y_{t+1} + 3y_{t+2} - 2y_{t-3})$$

Весовые коэффициенты

Второй и третий порядок

[5]
$$\frac{1}{35}$$
 [-3, 12, 17],

[7]
$$\frac{1}{2!}$$
 [-2, 3, 6, 7],

[9]
$$\frac{1}{231}$$
 [-21, 14, 39, 54, **59**],

[11]
$$\frac{1}{429}$$
 [-36, 9, 44, 69, 84, 89],

[13]
$$\frac{1}{143}$$
 [-11, 0, 9, 16, 21, 24, 25],

[15]
$$\frac{1}{1105}$$
 [-78, -13, 42, 87, 122, 147, 162, 167],

[17]
$$\frac{1}{323}$$
 [-21, -6, 7, 18, 27, 34, 29, 42, 43],

[19]
$$\frac{1}{2261}$$
 [-136, -51, 24, 89, 144, 189, 224, 249, 264, 269],

[21]
$$\frac{1}{3059}$$
 [-171, -76, 9, 84, 149, 204, 249, 284, 309, 324, 329].

Кендалл, Стюарт, с.509

Задание

Пусть длина интервала сглаживания k=7, локальное поведение сглаженного временного ряда внутри каждого активного участка описывается с помощью *полинома 2-го и 3-го порядка*.

Вывести значения весовых коэффициентов для 7-членной взвешенной скользящей средней

$$\hat{y}_i = \frac{1}{21} \cdot (-2y_{t-3} + 3y_{t-2} + 6y_{t-1} + 7y_t + 6y_{t+1} + 3y_{t+2} - 2y_{t-3})$$

<u>Показать</u>, что значения весовых коэффициентов для 7-членной взвешенной скользящей средней для полиномов 2-го и 3-го порядка не будут отличаться. Почему?

Определение сглаженных значений в краевых точках

определения т первых и т последних потерянных уровней анализируемого ВР используют расчетные значения, полученные с помощью аппроксимирующих полиномов той же степени, что и для сглаживания остальных членов ряда.

Пример:
$$\hat{f}(t) = \hat{a}_0 + \hat{a}_1 t' + \hat{a}_2 t'^2 \Big|_{t'=1}$$

$$\hat{f}(t) = \hat{a}_0 + \hat{a}_1 t' + \hat{a}_2 t'^2 \Big|_{t'=-1}$$

Влияние скользящего усреднения на остаточную компоненту

Эффект Слуцкого-Юла (1927): Ряд скользящих средних может содержать циклические компоненты, отсутствующие в исходном

ряде.

Док-во: См.Айвазян

Евгений Евгеньевич **Слуцкий** (1880-1948)

Эксперимент Слуцкого:

http://www.minneapolisfed.org/publications_papers/pub_display.cfm?id=4348

Е.Е.Слуцкий. Сложение случайных величин как источник циклических процессов// Вопросы конъюктуры.1927

Yule G. On a method of investigating periodicities in disturbed series, with special reference to Wolfer's sunspot numbers. Phil., 1927.

2021

Восстановление пропущенных наблюдений в середине выборки

use http://www.stata-press.com/data/r13/sales1, clear tssmooth exponential sm1=sales, parms(.7) forecast(3) generate sales2=sales if t!=28 tssmooth exponential sm3=sales2, parms(.7) forecast(3)

exponential coefficient = 0.7000 sum-of-squared residuals = 6842.4 root mean squared error = 11.817 . list t sales2 sm3 if t>25 & t<31

	t	sales2	sm3
26.	26	1011.5	1007.5
27.	27	1028.3	1010.3
28.	28		1022.9
29.	29	1028.4	1022.9
30.	30	1054.8	1026.75

$$S_{29} = \alpha S_{28} + (1 - \alpha)S_{28} = S_{28}$$

Приложения скользящего среднего

- 1. Метод выделения тренда.
- 2. В техническом анализе, в качестве самостоятельного технического индикатора либо в составе других инструментов.
- 3. В технике, в качестве фильтра (используется для обработки сигналов и изображений, системах автоматического управления и для других прикладных целей).

Стратегия форекс - RSI Profit Taking

