

Fig. 1a

Fig. 1b

Fig. 2a

Fig. 2b

Fig. 3

Fig. 5

Table 1. Cherry: effects of the ethylene inhibitor, 1-MCP, on vitrified curling of leaves, leaf senescence and abscission, and shoot-tip necrosis after 16 days.

Parameter	Low diffusive ventilation	Low diffusive ventilation + 1 - MCP
% normal leaves **	3.4 ± 1.3 a	66.7 ± 2.5 b
% curled leaves *	63.8 ± 4.7 a	24.9 ± 2.6 b
% senesced leaves, incl. yellow or abscinded**	24.1 ± 4.0 a	7.7 ± 1.6 ^b
% abscinded leaves**	11.0 ± 2.5 a	1.7 ± 1.3 b
% unopened leaves**	8.7 ± 3.2 a	$0.7 \pm 0.7 b$
% dead shoot tips	40.7 ± 12.9 a	5.6 ± 3.8 b

^a significantly different from ^b within a row; *= T-test: (p = <0.001); ** = Mann-Whitney Rank Sum Test (p = <0.001 to 0.043). Means = S.E.; n = 18 plants per treatment.