

الامتحان الوطني الموحد للبكالوريا الدورة الاستدراكية 2011 الموضوع

9	المعامل	الرياضيات RS25	الماءة	
4	ماة الإنجاز	ضية ₍ أ) و (ب) (الترجمة الفرنسية)	الشعب(ة) او المصلح المصلح	

- La durée de l'épreuve est de 4 heures.
- L'épreuve comporte cinq exercices tous indépendants deux à deux.
- Les exercices peuvent être traités selon l'ordre choisi par le candidat.
 - -Le premier exercice se rapporte aux structures algébriques.
 - Le deuxième exercice se rapporte à l'arithmétique.
 - -Le troisième exercice se rapporte aux nombres complexes.
 - Le quatrième exercice se rapporte à l'analyse.
 - Le cinquième exercice se rapporte à l'analyse.

Les calculatrices non programmables sont autorisées

0.5

RS25

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية **١٦٥٥** – الموضوع – مادة: الرياضيات - شعبة العلوم الامتحان الرياضية (أ) و (ب) (الترجمة الفرنسية)

Premier exercice:(3.5 points)

Pour tout x et y de l'intervalle I =]0,1[on pose : $x * y = \frac{xy}{xy + (1-x)(1-y)}$

- 0.5 1-a)Montrer que * est une loi de composition interne dans I
- 0.5 b) Montrer que la loi * est commutative et associative.
- 0.5 c) Montrer que (I,*) admet un élément neutre que l'on déterminera.
- 0.5 2-Montrer que (I,*) est un groupe commutatif.
 - 3-On considère les deux ensembles $H = \left\{ 2^n / n \in \square \right\}$ et $K = \left\{ \frac{1}{1+2^n} / n \in \square \right\}$
- 0.5 a)Montrer que H est un sous-groupe de (\square_{+}^{*},\times)
- 0.5 b) On considère l'application : $\varphi : H \to I$

$$x \to \frac{1}{1+x}$$

montrer que φ est un homomorphisme de (H,\times) vers(I,*)

c)En déduire que K est un sous-groupe de (I,*)

Deuxième exercice :(2.5points)

Soit x un nombre entier naturel tel que : $10^x \equiv 2$ [19]

- 0.25 | 1- a) vérifier que : $10^{x+1} \equiv 1$ [19]
- 0.5 b) Montrer que : $10^{18} \equiv 1 [19]$
 - 2- Soit d le plus grand diviseur commun des deux nombres 18 et x+1
- 0.75 a) Montrer que : $10^d \equiv 1$ [19]
- 0.5 b) Montrer que : d = 18
- 0.5 c)En déduire que : x = 17 [18]

Troisième exercice :(4 points)

Première partie : On considère dans l'ensemble ☐ l'équation :

(E)
$$z^3 - (1+2i)z^2 + 3(1+i)z - 10(1+i) = 0$$

- 0.5 1-Vérifier que -2i est une solution de l'équation (E)
- 0.5 2-Déterminer les deux nombres complexes α et β tels que :

$$(\forall z \in \Box)$$
 $z^3 - (1+2i)z^2 + 3(1+i)z - 10(1+i) = (z+2i)(z^2 + \alpha z + \beta)$

- 0.5 3-a) Déterminer les deux racines carrées du nombre 5-12i
- 0.5 b) Résoudre dans \square l'équation (E)

Deuxième partie : Le plan complexe étant rapporté à un repère orthonormé direct.

On considère les points A et B et C d'affixes respectifs a=-1+3i et b=-2i et c=2+i

0.5 | 1-Montrer que le triangle ABC est rectangle et isocèle en C

الصفحة 3 4	الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية ١٦٥٠ - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)		
	2-On considère la rotation R_1 de centre B et dont une mesure de l'angle est $\frac{\pi}{3}$ et la rotation R_2 de		
	centre A et dont une mesure de l'angle est $\left(-\frac{2\pi}{3}\right)$. Soit M un point du plan complexe d'affixe z et		
	M_1 son image par la rotation R_1 et M_2 son image par la rotation R_2 .		
0.5	a) Vérifier que l'expression complexe de la rotation R_1 est : $z' = \left(\frac{1+i\sqrt{3}}{2}\right)z - \sqrt{3} - i$		
0.5	b) Déterminer z_2 l'affixe de M_2 en fonction de z		
0.5	c) En déduire que I , le milieu du segment $[M_1M_2]$, est un point fixe.		
	Quatrième exercice:(6 points)		
	Soit f la fonction numérique définie sur $]0,+\infty[$ par $f(x)=x+\ln x$		
	et(C) sa courbe représentative dans le plan muni d'un repère orthonormé ($O; \vec{i}, \vec{j}$)		
	(On prendra $\ \vec{i}\ = \ \vec{j}\ = 1cm$)		
1	1- calculer les limites suivantes : $\lim_{x \to +\infty} f(x)$; $\lim_{x \to 0^+} f(x)$; $\lim_{x \to +\infty} \frac{f(x)}{x}$ et $\lim_{x \to +\infty} (f(x) - x)$		
0.25	2-a) Dresser le tableau de variations de la fonction f		
0 .75	b) Montrer que f est une bijection de l'intervalle $]0,+\infty[$ vers un intervalle J que l'on déterminera		
	puis dresser le tableau de variation de la bijection réciproque f^{-1}		
0 .75	3) Calculer $f(1)$ et $f(e)$ puis construire (C) et (C') la courbe représentative de f^{-1} dans le même		
	$rep ightharpoonup (O; \vec{i}, \vec{j})$		
0 .5	4- a) Calculer l'intégrale $\int_{1}^{e+1} f^{-1}(x) dx$ (on posera : $t = f^{-1}(x)$)		
0 .5	b) En déduire l'aire du domaine plan limité par (C') et les droites d'équations : $x = 1$;		
	x = e + 1 et $y = x$		
	5- Pour tout entier naturel non nul n , on considère l'équation : (E_n) $x + ln x = n$		
0.25	a) Montrer que l'équation (E_n) admet une solution unique \mathcal{X}_n .		

b) Déterminer la valeur de x_1 puis montrer que : $\lim_{n\to +\infty} x_n = +\infty$

b) Montrer que : $(\forall n \in \square^*)$ $n - \ln(n) \le x_n$

c) Calculer $\lim_{n \to +\infty} \frac{x_n - n}{n}$ et $\lim_{n \to +\infty} \frac{x_n}{n - \ln(n)}$

6-a) Montrer que : $(\forall n \in \square^*)$ $f(x_n) \le f(n)$ en déduire que : $(\forall n \in \square^*)$ $x_n \le n$

0.5

0.5

0.5

0.5

الصفحة
4

0.5

0.5

0.5

0.75

RS25

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية **١٦٥٠** – الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

Cinquième exercice : (4 points)

Soit n un entier naturel non nul et f_n la fonction numérique définie sur \square par :

$$f_n(x) = -1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n}$$

- 0.5 | 1-Montrer que pour $n \ge 2$ il existe un réel unique α_n de l'intervalle]0,1[tel que : $f_n(\alpha_n) = 0$
 - 2-Montrer que la suite $(\alpha_n)_{n\geq 2}$ est strictement décroissante en déduire qu'elle est convergente.

(On pose :
$$\ell = \lim_{n \to +\infty} \alpha_n$$
)

0.5 3-a) Vérifier que pour
$$t \neq 1$$
 on a : $1 + t + t^2 \dots + t^{n-1} = \frac{1}{1-t} - \frac{t^n}{1-t}$

b) En déduire que :
$$\alpha_n + \frac{\alpha_n^2}{2} + \dots + \frac{\alpha_n^n}{n} = -\ln(1-\alpha_n) - \int_0^{\alpha_n} \frac{t^n}{1-t} dt$$

4-a) Montrer que :
$$(\forall n \ge 2)$$
 $1 + ln(1 - \alpha_n) = -\int_0^{\alpha_n} \frac{t^n}{1 - t} dt$

b) Montrer que :
$$(\forall n \ge 2)$$
 $0 \le \int_0^{\alpha_n} \frac{t^n}{1-t} dt \le \frac{1}{(n+1)(1-\alpha_n)}$

c) En déduire que : $\ell = 1 - e^{-1}$

FIN