Human in the Loop Virtual Machine Management on Comet

Gregor von Laszewski laszewski@gmail.com

Fugang Wang, Geoffrey C. Fox, Shawn Strande, Christopher Irving, Trevor Cooper, Dmitry Mishin, Michael L. Norman

SDCS & Indiana University

Comet is supported by NSF grant: ACI \#1341698 Gateways to Discovery: Cyberinfrastructure for the Long Tail of Science.

What is Comet

- Target the long tail of science
- Focuses primarily on small and modest scale computing jobs,
- Those that require specialized software environments that are not found on traditional clusters.
- Science gateways
- Use Virtual Clusters (VCs) by leveraging existing batch queue, e.g. not
 OpenStack
- Near-bare metal performing computing resources
- Interactive experience as part of a human-in-the-loop management and usage strategy.

Hardware

- 2.76 Pflop/s peak; 48,784 CPU cores; 288 NVIDIA GPUs; 247 TB total memory; 634 TB total flash memory
- Standard Compute Nodes (1944 total)
- Intel Xeon E5-2680v3 2.5 GHz dual socket, 12 cores/socket; 320 GB flash memory; 120 GB/s memory bandwidth
- **GPU Nodes** (72 total)
 - 36 K80 nodes: 2 NVIDIA K80 GPUs per node; dual socket, 12 cores/socket; 128 GB DDR4 DRAM;
 120GB/s memory bandwidth; 320 GB flash memory
 - 36 P100 nodes: 4 NVIDIA P100 GPUs; dual socket, 14 cores/socket; 128 GB DDR4 DRAM; 150GB/s memory bandwidth; 400 GB flash memory
- Large-memory Nodes (4 total)
- 1.5 TB total memory; 4 sockets, 16 cores/socket; 2.2 GHz
- Interconnect: Hybrid Fat-Tree topology; <u>56 Gb/s</u> (bidirectional) link bandwidth; <u>1.03-1.97 μs MPI latency</u>
- 7.6 PB Lustre-based Parallel File System
- Access to Data Oasis
- High-performance virtualization

Virtual Clusters on Comet

- Focus is on giving user a cluster of virtual machines
- Performance is close to bare metal
- Utilizes Infiniband
- Users decide how many of the allocated virtual machines they like to use
- build into accounting and monitoring system of comet

User Support for Virtual Clusters

Project Consultation

- Is the project suitable for VC's on comet?
- Is there enough expertise available <= this has been an issue
- Is there enough time to do the project?
- Are there alternatives that should be used instead?
- Is special support needed?

Account Management

- Well defined account management project
- Proven
- Integration with XSEDE
- But
 - using of YubiKeys for access to management node
- Integration of user consultation

VCs on Comet

- User gets a virtual cluster
- management through frontend
- Users get n cluster nodes (dependent on need).
- cluster nodes can be user or not
- VCs are all managed by queueing system invisible to the user
- Can use all of the clusters backend services and performance

Virtual Cluster Monitoring

- XSEDE monitoring
- XDMoD integration available
- Special Monitoring
- relatively low wait time

Virtual Cluster Applications

Name	Description
LIGO	Cluster that integrates in OSG for detection of gravity waves
PRAGMA	Virtual Clusters for Environmental Science
OSG	Portal to VC Resources
Benchmark	Benchmarking petaflop HPC algorithms weather, CFD, and others
BigData	VC for evaluation for NIST
Darknets	Virtual Clusters for the analysis of darknets
THMC	3D Thermal-Hydrologic-Mechanical-Chemical
Performance	tools to capture and analyze memory activities in applications
LIDAR	high resolution topography data
Biology	Genomic data analysis software stack
Astrophysics	HPC-specific workflows for simulating events necessary for precision astrophysical measurements
CMS	resources to process 800 Million simulated proton proton collisions in the CMS detector
Lifemapper	a high-throughput species distribution (range) modeling system and the main computational platform
Education	Campus champion clusters for universities

Jupyter Integration

Cloudmesh can easily be integrated into jupyter

The command shell is readily accessible via an API call

Simple API

Super simple API that allows integration with jupyter notebooks very easily

```
In [1]: from cloudmesh.compute.vm.Provider import Provider
In [2]: provider = Provider(name="chameleon")
In [3]: flavors = provider.flavors()
In [4]: flavors[0]['name']
Out[4]: 'm1.tiny'
In [5]: provider.Print(flavors)
                            VCPUS
                                    RAM
                                             Disk
          Name
          m1.tiny
                                    512
          m1.small
                                    2048
                                             20
          m1.medium
                                    4096
                                             40
          m1.large
                                    8192
                                             80
          m1.xlarge
                                    16384
                                             160
          storage.medium
                                    4096
                                             2048
          m1.xxlarge
                                    32768
                                             160
          m1.xxxlarge
                            16
                                             160
                                    32768
```

Scientific Impact metrics

- We can alanyls your organizations scientific impact metrics based on publications
- We have a unique metric that can compare your peer groups based on publication venues

• This is different from just i-ndex

We have done this for

- o XSEDE
- NCAR
- Blue Waters
- We could do this based on
 - Department
 - Research group
 - Researcher

Lessons Learned

- Advantages: Software
 - Superb software, integrates well with existing clusters, including cloudmesh
 - Good user support, easy to get access and use a VC
 - Backend does not have have "create my comet cluster elsewhere" (not part of funded project)
- Issues: Users
 - User knowledge to be a system admin managing the cluster is limited
 - Knowledge, manpower, staff retention at organizations or projects
- Issues: Shifting Community Interest
 - Community wanted to learn OpenStack
 - Shift from VMs to containers

References

- Cloudmesh: http://github.org/cloudmesh
- Cloudmesh Comet Plugin: https://cloudmesh.github.io/cloudmesh-comet/
- VC user guide:
 - https://cloudmesh.github.io/cloudmesh-comet/comet.html//comet-userguide
- VC CLI reference documentation:
 - https://cloudmesh.github.io/cloudmesh-comet/command_comet.html#comet-command