Logică EXAMEN - 20.01.2021

Rândul 4

Subiectul 1. a) Să se determine $f^{-1}(f(X))$ şi $f(f^{-1}(Y))$, unde $f:\{1,2,3,4,5,6,7,8\} \rightarrow \{a,b,c,d\}, X=\{2,5\}, Y=\{b,d\}$ şi

χ	1	2	3	4	5	6	7	8
f(x)	а	d	а	d	b	а	а	d

b) Fie $f: X \to Y$ o funcție, $A_i \subseteq X$ și $B_i \subseteq Y$, $i \in I$. Să se arate că avem $f(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f(A_i)$. Să se precizeze toate tautologiile care au fost folosite în demonstrație.

Subiectul 2. a) Partiții și relații de echivalență (definiții).

Fie ρ și σ două relații de echivalență pe mulțimea A. Să se demonstreze că:

- b) $\rho \cap \sigma$ este relație de echivalență.
- c) $\rho \cup \sigma$ în general nu este relație de echivalență.

Subiectul 3. Latice și latice completă:

- a) definiții.
- b) Să se dea un exemplu de latice completă și un exemplu de latice care nu este completă (cu justificări).
- c) Presupunem ca orice submulțime a mulțimii ordonate (A, \leq) are supremum. Să se arate că este latice completă.

Subjectul 4. Multimea numerelor naturale:

- a) Definiție și axiomele lui Peano (enunț).
- b) Definițiile operațiilor și a relației de ordine în \mathbb{N} .
- c) Teorema împărțirii cu rest în N (enunț și demonstrație).

Logic EXAM -20.01.2021

Row 4

Question 1. a) Find $f^{-1}(f(X))$ and $f(f^{-1}(Y))$, where $f:\{1,2,3,4,5,6,7,8\} \rightarrow \{a,b,c,d\}, X=\{2,5\}, Y=\{b,d\}$ and

χ	1	2	3	4	5	6	7	8
f(x)	a	d	a	d	b	a	a	d

b) Let $f: X \to Y$ be a function, and let $A_i \subseteq X$ and $B_i \subseteq Y$ for all $i \in I$. Prove that $f(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f(A_i)$. State separately all the tautologies which have been used in the proof.

Question 2. a) Partitions and equivalence relations (definitions).

Let ρ and σ be equivalence relations on the set A. Prove that:

- b) $\rho \cap \sigma$ is an equivalence relation.
- c) $\rho \cup \sigma$ is not an equivalence relation in general.

Question 3. Lattice and complete lattice:

- a) definitions.
- b) Give an example of a complete lattice and an example of a lattice which is not complete (justify your answer).
- c) Assume that any subset of the ordered set (A, \leq) has supremum. Prove that (A, \leq) is a complete lattice.

Question 4. The set of natural numbers:

- a) Definition and the Peano axioms (statement).
- b) Definitions of the operations and of the order relation on \mathbb{N} .
- c) The division theorem in \mathbb{N} (statement and proof).