Санкт-Петербургский Политехнический Университет им. Петра Великого

Институт прикладной математики и механики Кафедра прикладной математики

ЛАБОРАТОРНАЯ РАБОТА №5 ЭМИССИОННАЯ ТОМОГРАФИЯ ПЛАЗМЫ. РЕШЕНИЕ ИСЛАУ

4 КУРС, ГРУППА 3630102/60201

Студент Д. А. Плаксин

Преподаватель Баженов А. Н.

Содержание

1.	Список иллюстраций	3
2.	Постановка задачи	4
3.	Теория	4
4.	Реализация	4
5.	Результаты 5.1. Решение МНК 5.2. Функция tolsolvty 5.3. Оценка числа обусловленности интервальной матрицы A 5.4. Оценка вариабельности IVE	4 5 5 8 8
6.	Обсуждение	8
7.	Список литературы	9
8.	Приложения	9

1 Список иллюстраций

1	Гистограмма собственных чисел матрицы A^tA	5
2	График первой попытки решения	6
3	График решения с расширенным интервалом	6
4	График полученного решения от i	7
5	Гистограмма решения, полученного с помощь tolsolvty	7
6	Значение числа обусловленности при изменении числа итераций	8
7	Значение числа обусловленности при изменении радиуса элементов	8

2 Постановка задачи

Считать данные правой части – значения детектора Решить полученную в лабораторной 4 СЛАУ различными способами:

1. $x = (A^t A)^{-1} A^t b$

2. используя функцию tolsolvty

[4]

3 Теория

Для построение ИСЛАУ представим правую часть уравнения Ax=b как интервал $Ax=[\underline{b},\overline{b}]$

Рассматриваются показатели детектора во временные интервалы с "текущий" – K до "текущий" + K

 \underline{b} – минимум b в некотором окне радуиса K

 \bar{b} – максимум b в некотором окне радиуса K

Матрицу А оставляем исходной

Функция tolsolvty возвращает:

- tolmax значение максимума распознающего функционала
- argmax доставляющий его вектор значений аргумента, который лежит в допусковом множестве решений при $tolmax \ge 0$, (остальные возвращаемые значения нас сейчас не интересуют)

Если tolmax < 0, то допусковое множество решений интервальной линейной системы пусто.

Тогда ослабим условия. Для этого расширим интервал $[\underline{b}, \overline{b}]$ так, чтобы допусковое решение было не пусто.

$$b = b - \Delta b$$

$$\overline{b} = \overline{b} + \Delta b$$

Для получения решения достаточно взять $\Delta b = |tolmax|$

4 Реализация

Все задания были выполнены на языке программирования Matlab в среде разработки MATLABR2014b

Данные о расположении и параметрах детектора взяты пособия к лабораторной работе [6]

Значения детектора записаны в файле, полученном от преподавателя

Функция tolsolvty [4]

Для вычисления числа обусловленности интервальной матрицы используется функция HeurMinCond, полученная от преподавателя

5 Результаты

Рассматривается набор данных 37000, временной интервал 000162, матрица A размерности 256×174

Число обусловленности матрицы $A: cond(A) = 8.2719 \cdot 10^{31}$

Число обусловленности матрицы $A^t A : cond(A^t A) = 5.2939 \cdot 10^{35}$

5.1 Решение МНК

Первый способ решения:

$$x = (A^t A)^{-1} A^t b$$

Так как матрица A сильно разрежена, собственные числа квадратной матрицы A^tA сконцентрированы около нуля.

Рис. 1: Гистограмма собственных чисел матрицы A^tA

Всего 23 собственных числа больше 0.2 В качестве решения Matlab'ом получен вектор, состоящий из NaN (т.к. число обусловленности столь большое надежда на нахождение обратной матрицы почти отсутствует)

5.2 Функция tolsolvty

Для нахождения интервала b выбрано "окно"с радиусом K = 1.

При первой попытке нахождения решения было получено значение tolmax = -16.0667.

Так как tolmax < 0, то допусковое множество решений интервальной системы пусто.

Рис. 2: График первой попытки решения

Теперь выберем Δb = 16.0667, тем самым расширив границы b.

Для второй попытки нахождения решения получаем, что tolmax = 0, следовательно допусковое множество решений интервальной линейной системы непусто.

Рис. 3: График решения с расширенным интервалом

Полученное решение:

Рис. 4: График полученного решения от i

5.3 Оценка числа обусловленности интервальной матрицы A

В качестве оценки радиуса элементов матрицы возьмём 10% от их величины.

Выбор именно 10% обусловлен тем, что точность знания сепаратрисы, по которой построена матрицы около 10%.

Тогда оценка числа обусловленности интервальной матрицы A равна 6.2114e+31 Рассмотрим значения оценки числа обусловленности для разного количества повторений про постоянном радиусе элементов 10%

Рис. 6: Значение числа обусловленности при изменении числа итераций

```
rad = 0.1 : HeurMinCond(A, 10) = 6.595030997534693e+31
rad = 0.1 : HeurMinCond(A, 20) = 5.666081210988658e+31
rad = 0.1 : HeurMinCond(A, 30) = 5.402263022831222e+31
rad = 0.1 : HeurMinCond(A, 40) = 5.284609263907637e+31
rad = 0.1 : HeurMinCond(A, 50) = 5.900367211873665e+31
rad = 0.1 : HeurMinCond(A, 60) = 5.165786281829939e+31
rad = 0.1 : HeurMinCond(A, 70) = 5.237570064608348e+31
rad = 0.1 : HeurMinCond(A, 80) = 5.09626718190901e+31
rad = 0.1 : HeurMinCond(A, 90) = 4.780679134726027e+31
rad = 0.1 : HeurMinCond(A, 100) = 5.256962346985742e+31
rad = 0.1 : HeurMinCond(A, 1000) = 4.295294384566447e+31
```

Рассмотрим значения оценки числа обусловленности для разных радиусов элементов A при постоянном числе итераций равным 100.

Рис. 7: Значение числа обусловленности при изменении радиуса элементов

```
rad = 0.1 : HeurMinCond(A, 100) = 4.30910776866434e+31
rad = 0.15 : HeurMinCond(A, 100) = 5.574673584792059e+31
rad = 0.2 : HeurMinCond(A, 100) = 5.676402349805232e+31
rad = 0.25 : HeurMinCond(A, 100) = 5.067168740298085e+31
rad = 0.3 : HeurMinCond(A, 100) = 5.179667387108424e+31
rad = 0.35 : HeurMinCond(A, 100) = 3.994031690403123e+31
rad = 0.4 : HeurMinCond(A, 100) = 5.177939716913563e+31
rad = 0.45 : HeurMinCond(A, 100) = 5.269911045127477e+31
rad = 0.5 : HeurMinCond(A, 100) = 5.249783143127363e+31
```

5.4 Оценка вариабельности *IVE*

$$IVE(A,b) = \sqrt{n} \max_{\mathbb{R}^n} Tol \cdot \left(\min_{A \in \mathbf{A}} cond_2 A \right) \cdot \frac{\|arg \max_{\mathbb{R}^n} Tol\|_2}{\|\hat{\mathbf{b}}\|_2}$$

6 Обсуждение

На сечениях 14, 15, 16 плоскость сечения Н меньше самой левой точки сепаратрисы, следовательно, область получается двусвязной. В случае двусвязной области считаем, что луч упирается в центральную ось токамака, и учитываем только левую (ближайшую к детектору) область.

СЛАУ представляет собой матрицу $256 \times N$, где N – это количество элементов разбиения. Каждая строка матрицы отвечает за свой луч, притом коэффициенты для каждого элемента разбиения — сумма длин хорд.

7 Список литературы

- [1] Документация по Матлаб: https://www.mathworks.com/help/
- [2] Код функции g file extractor 1t: https://cloud.mail.ru/public/5o3T/4G4dD71hL
- [3] Пособие к Лабораторным работам https://cloud.mail.ru/public/4ra6/5wwqBzMBC/LabPractics.pdf
- [4] Код функции tolsolvty http://www.nsc.ru/interval/Programing/MCodes/
- [5] Пособие к Лабораторным работам «Построение матриц СЛАУ» https://vk.com/doc38035266 528474113?hash=8c9ddc720dfadef7b6&dl=48b180ef19a7dc0f33
- [6] Выпуская квалификационная работа бакалавра «Исследование разрешимости обратных задач с помощью распознающего функционала» https://cloud.mail.ru/public/4ra6/5wwqBzMBC/2019%20%D0%97%D0%B0%D1%82%D1%8B%D0%BB%D0%B
- [7] О мере вариабельности оценки параметров в статистике интервальных данных» http://www-sbras.nsc.ru/interval/shary/Papers/SShary-VariabMeasure-JCT.pdf

8 Приложения

Koд отчёта: https://github.com/MisterProper9000/computing-complex/blob/Lab-5(interval-linear-sy/Lab_5(interval_linear_system)/texReport/lab4.tex

Код лаборатрной: https://github.com/MisterProper9000/computing-complex/blob/
Lab-5(interval-linear-system)/Lab_5(interval_linear_system)