Klausur zur Linearen Algebra

2021 / 22

(Dozent: Hellmich)

Hilfsmittel: Taschenrechner ohne grafikfähiges Display.

Zeit: 120 Min.

Gesamtpunktzahl: 100

Bei den Lösungen werden Begründungen erwartet. Es ist keinesfalls ausreichend, wenn Sie nur Ergebnisse angeben.

Aufgabe 1 (zusammen 40 P)

1. Zeigen Sie:

i. Für alle
$$n \in \mathbb{N}$$
 gilt: $5 \mid n^5 - n$. (5 P)

ii. Für alle
$$n \in \mathbb{N}$$
 gilt: $\sum_{k=1}^{n} \frac{2}{\sqrt{2k-1}} \geqslant \sqrt{2n+1}$. (8 P)

iii. Für alle
$$n \in \mathbb{N}$$
 gilt: $\sum_{k=1}^{n} \frac{k^2}{2^k} = 6 - \frac{n^2 + 4n + 6}{2^n}$. (8 P)

2. Bestimmen Sie die Polarform der Zahl
$$z \coloneqq 4 + 2i + \frac{2}{5} \cdot \frac{2 - i}{1 - \frac{2i + 3}{2 + i}}$$
 (5 P)

3. Verschlüsseln Sie mit
$$S_o = [e, n] := [317, 943]$$
 die Nachricht $M := 409$. (7 P)

$$x^3 + 6x^2 + 3x + 2 = 0$$
.

Geben Sie die Normalform der Gleichung und ihre Diskriminante an.

Hinweis: Aufgabe 1.i. kann auch ohne Induktion gelöst werden. Bei Aufgabe 1.iii. ist es keine schlechte Idee, sich die Aussage für n+1 mal aufzuschreiben.

Aufgabe 2 (zusammen 35 P)

1. Gegeben sind die beiden Ursprungsebenen E und F, mit den zugehörigen Normalenvektoren $[-6, \sqrt{3}, 3]^{t}$ bzw. $[6, \sqrt{3}, 3]^{t}$.

Geben Sie E und F an.

Bestimmen Sie den Winkel, den diese Ebenen miteinander einschließen.

Zeigen Sie: $\mathbf{x} \coloneqq [2, 0, 4]^{\mathsf{t}} \in \mathsf{E}$.

Bestimmen Sie die Schnittgerade g von E und F.

Ergänzen Sie den Richtungsvektor von g auf folgende Weise zu einer positiv orientierten Orthonormalbasis $\mathcal{B} := \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$: \mathbf{b}_3 ist parallel zum Richtungsvektor von g und \mathbf{b}_1 liegt in der x_1x_2 -Ebene. Überprüfen Sie ihr Ergebnis.

Stellen Sie den Vektor x in dieser Basis dar. (20 P)

2. Drehen Sie den Vektor x um den Winkel $\frac{\pi}{3}$ um die Achse mit der Richtung $[0, -\sqrt{3}, 1]^{t}$. Kontrollieren Sie, daß x und der gedrehte Vektor x' dieselbe Länge haben. (10 P)

3. Berechnen Sie den Winkel zwischen x und x'. Erklären Sie Ihr Ergebnis anhand einer Skizze.

Zeigen Sie:
$$x' \in F$$
. (5 P)

Zeigen Sie, daß die Menge $\mathcal{B} := \{b_1, b_2, b_3, b_4, b_5\}$ der Spaltenvektoren der Matrix

$$B \coloneqq [\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4, \mathbf{b}_5] \coloneqq \begin{bmatrix} 1 & 3 & -4 & 0 & 5 \\ 4 & 14 & -19 & 1 & 18 \\ 8 & 28 & -36 & 1 & 38 \\ -3 & -9 & 12 & 1 & -14 \\ 2 & 10 & -12 & 3 & 11 \end{bmatrix}$$

linear unabhängig ist.

Was bedeutet das für die Matrix B?

Stellen Sie den Vektor $\mathbf{y} \coloneqq [20, 83, 168, -54, 62]^{\mathsf{t}}$ in der Basis \mathcal{B} dar.

Berechnen Sie die Determinante der 4×4-Matrix

$$C \coloneqq \begin{bmatrix} 3i & -3i & -1-2i & 6+11i \\ 2i & -3i & -14-2i & 1+10i \\ 0 & i & 6 & -i \\ -i & i & 4 & -2-5i \end{bmatrix}.$$

Lösungen

Aufgabe 1

$$(5 + 8 + 8 + 5 + 7 + 7 P = 40 P)$$

1.i. Die Behauptung läßt sich am besten direkt zeigen: Nach dem kleinen Satz von FERMAT gilt $\mathfrak{n}^5 =_5 \mathfrak{n}$ und daher $\mathfrak{n}^5 - \mathfrak{n} =_5 \mathfrak{n} - \mathfrak{n} = 0$, denn $5 \in \mathbb{P}$. Das ist äquivalent zu $5 \mid \mathfrak{n}^5 - \mathfrak{n}$.

Alternativ (der lange Weg über Induktion):

Der Induktionsanfang ist die wahre Aussage $5 \mid 1^5 - 1$, denn 5 ist ein Teiler von $0: 0 = 0 \cdot 5$.

 $n \rightarrow n + 1$:

$$(n+1)^5 - (n+1) = \sum_{k=0}^{5} {5 \choose k} n^k - n - 1 = n^5 - n + 5n^4 + 10n^3 + 10n^2 + 5n =_5 0,$$

denn laut Induktionsvoraussetzung gilt $5 \mid n^5 - n$, also $n^5 - n =_5 0$. Außerdem $5n^4 + 10n^3 + 10n^2 + 5n =_5 0$. +1 Das zeigt die Behauptung für n + 1. (5 P)

1.ii. Der Induktionsanfang für n=1 ist die Aussage $\sum_{k=1}^{1} \frac{2}{\sqrt{2k-1}} = 2 = \sqrt{4} \geqslant \sqrt{3} = \sqrt{2+1}$, die -1 offensichtlich wahr ist.

Der Induktionsschritt $n \to n+1$: Die Induktionsvoraussetzung IV: $\sum_{k=1}^{n} \frac{2}{\sqrt{2k-1}} \geqslant \sqrt{2n+1}$. Damit folgt

$$\sum_{k=1}^{n+1} \frac{2}{\sqrt{2k-1}} = \sum_{k=1}^{n} \frac{2}{\sqrt{2k-1}} + \frac{2}{\sqrt{2n+1}} \stackrel{\text{IV}}{\geqslant} \sqrt{2n+1} + \frac{2}{\sqrt{2n+1}} = \frac{\sqrt{2n+1}^2 + 2}{\sqrt{2n+1}} = \frac{2n+3}{\sqrt{2n+1}}$$

$$\geqslant \frac{2n+3}{\sqrt{2n+3}} = \sqrt{2n+3}.$$

Das zeigt die Aussage für n + 1.

(8 P)

+1

+1

1.iii. Zu zeigen ist
$$\sum_{k=1}^{n} \frac{k^2}{2^k} = 6 - \frac{n^2 + 4n + 6}{2^n}$$
. (IV)

Der Induktionsanfang für n=1 ist die offensichtlich wahre Aussage $6-\frac{11}{2}=\frac{1}{2}=\sum_{k=1}^{1}\frac{k^2}{2^k}$.

 $n \rightarrow n + 1$:

$$\sum_{k=1}^{n+1} \frac{k^2}{2^k} = 6 - \frac{(n+1)^2 + 4n + 4 + 6}{2^{n+1}} = 6 - \frac{n^2 + 2n + 1 + 4n + 4 + 6}{2^{n+1}} = 6 - \frac{n^2 + 6n + 11}{2^{n+1}} \text{ ist aus der IV}$$

abzuleiten:

$$\begin{split} \sum_{k=1}^{n+1} \frac{k^2}{2^k} &= \sum_{k=1}^n \frac{k^2}{2^k} + \frac{(n+1)^2}{2^{n+1}} \overset{\text{IV}}{=} 6 - \frac{n^2 + 4n + 6}{2^n} + \frac{n^2 + 2n + 1}{2^{n+1}} \\ &= 6 - \frac{2n^2 + 8n + 12 - n^2 - 2n - 1}{2^{n+1}} = 6 - \frac{n^2 + 6n + 11}{2^{n+1}}. \end{split}$$

Das beweist die Aussage für n + 1.

(8 P)

2.
$$z = 4 + 2i + \frac{2}{5} \cdot \frac{2 - i}{1 - \frac{2i + 3}{2 + i}} = 4 + 2i + \frac{2}{5} \cdot \frac{(2 - i)(2 + i)}{2 + i - 2i - 3} = 4 + 2i - \frac{2}{5} \cdot \frac{5}{1 + i}$$
$$= 4 + 2i - 2 \cdot \frac{1 - i}{2} = 3 + 3i.$$

Die Polardarstellung $z=3\sqrt{2}\,\mathrm{e}^{\mathrm{i}\,\phi}$ erhalten wir mittels $\phi=\tan^{-1}(1)=\frac{\pi}{4}$: $z=3\sqrt{2}\,\mathrm{e}^{\mathrm{i}\,\frac{\pi}{4}}$. (5 P) $_{+1}$

3. Die Nachricht M = 409 mit $S_o = [e, n] = [317, 943]$ verschlüsseln: (7 P)

$$C =_{n} 409^{317} = 409 \cdot (409^{2})^{158}$$

$$=_{n} 409 \cdot 370^{158} = 409 \cdot (370^{2})^{79}$$

$$=_{n} 409 \cdot 165^{79} = 409 \cdot 165 \cdot (165^{2})^{39}$$

$$=_{n} 409 \cdot 165 \cdot 821^{39} = 409 \cdot 165 \cdot 821 \cdot (821^{2})^{19}$$

$$=_{n} 163 \cdot 739^{19} = 163 \cdot 739 \cdot (739^{2})^{9}$$

$$=_{n} 163 \cdot 739 \cdot 124^{9} = 163 \cdot 739 \cdot 124 \cdot (124^{2})^{4}$$

$$=_{n} 491 \cdot 288^{4} = 491 \cdot (288^{2})^{2}$$

$$=_{n} 491 \cdot 903^{2} =_{n} 491 \cdot 657 =_{n} 81.$$

4. Die kubische Gleichung $x^3+bx^2+cx+d=x^3+6x^2+3x+2=0$ wird durch die Substitution $x=y-\frac{b}{3}=y-2$ auf die Normalform $y^3+py+q=0$ gebracht. Dabei ist $p=c-\frac{1}{3}b^2=3-\frac{36}{3}=-9$ und $q=\frac{2}{27}b^3-\frac{1}{3}bc+d=\frac{2\cdot6^3}{27}-\frac{18}{3}+2=1-6+2=12$. Die Normalform lautet daher $y^3-9y+12=0$. $+\Delta=(\frac{p}{3})^3+(\frac{q}{2})^2=-27+36=9>0$ zeigt, daß es nur eine reelle Lösung gibt, nämlich:

$$\mathbf{x}_{1} \coloneqq \sqrt[3]{\sqrt{\Delta} - \frac{\mathsf{q}}{2}} - \sqrt[3]{\sqrt{\Delta} + \frac{\mathsf{q}}{2}} - 2 = \sqrt[3]{3 - 6} - \sqrt[3]{3 + 6} - 2 = -\left(\sqrt[3]{3} + \sqrt[3]{9} + 2\right) \approx -5.5223. \tag{7 P} \quad +4$$

Aufgabe 2 (20 + 10 + 5 P = 35 P)

 $\textbf{1.} \ \ \mathsf{E} = \big\{ \ [x_1, x_2, x_3]^{\mathsf{t}} \in \mathbb{R}^3 \ \big| \ -6x_1 + \sqrt{3}x_2 + 3x_3 = 0 \ \big\}, \ \mathsf{F} = \big\{ \ [x_1, x_2, x_3]^{\mathsf{t}} \in \mathbb{R}^3 \ \big| \ 6x_1 + \sqrt{3}x_2 + 3x_3 = 0 \ \big\},$ mit den Normalenvektoren $\mathbf{n}_\mathsf{E} \coloneqq [-6, \sqrt{3}, 3]^{\mathsf{t}} \ \text{und} \ \mathbf{n}_\mathsf{F} \coloneqq [6, \sqrt{3}, 3]^{\mathsf{t}}.$

Der Schnittwinkel
$$\alpha = \cos^{-1}\left(\frac{|\langle \mathbf{n}_E \mid \mathbf{n}_f \rangle|}{\|\mathbf{n}_E \| \|\mathbf{n}_F \|}\right) = \cos^{-1}\left(\frac{|-36+3+9|}{36+3+9}\right) = \cos^{-1}\left(\frac{1}{2}\right) = 60^{\circ}.$$

Der Vektor $\mathbf{x}=[-2,0,4]^{\mathsf{t}}$ gehört zu E, denn $-6\mathbf{x}_1+\sqrt{3}\mathbf{x}_2+3\mathbf{x}_3=-6\cdot(-2)+3\cdot 4=0$ zeigt, daß er die Ebenengleichung von E erfüllt.

Den Richtungsvektor \mathbf{n}_g von $g = E \cap F$ erhalten wir jetzt einfach über das Kreuzprodukt $\mathbf{n}_E \times \mathbf{n}_F$:

$$\begin{bmatrix} -6 & 6 \\ \sqrt{3} & \sqrt{3} \\ 3 & 3 \\ -6 & 6 \\ \sqrt{3} & \sqrt{3} \end{bmatrix} : \begin{bmatrix} 3\sqrt{3} & -3\sqrt{3} \\ 18 & +18 \\ -6\sqrt{3} & -6\sqrt{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 36 \\ -12\sqrt{3} \end{bmatrix} \sim \begin{bmatrix} 0 \\ 3 \\ -\sqrt{3} \end{bmatrix} \sim \begin{bmatrix} 0 \\ \sqrt{3} \\ -1 \end{bmatrix} \rightleftharpoons \mathbf{n}_{g}.$$

+1

+2

+1

 $\text{ Damit kennen wir } g = \{ \ s \cdot \mathbf{n}_g \mid s \in \mathbb{R} \ \} = \big\{ \ [0, \sqrt{3} \ s, -s]^t \ \big| \ s \in \mathbb{R} \ \big\}.$

Für die Orthonormalbasis $\mathcal{B}=\{\mathbf{b}_1,\mathbf{b}_2,\mathbf{b}_3\}$ wählen wir $\mathbf{b}_3\coloneqq \frac{1}{2}[0,\sqrt{3},-1]^{\mathsf{t}}.$ $\mathbf{b}_1=[b_1,b_2,0]^{\mathsf{t}}$ soll in der x_1x_2 -Ebene liegen: Daher muß $0=\langle \mathbf{b}_1\,|\,\mathbf{b}_3\rangle=\sqrt{3}\,b_2$, also $b_2=0$ gelten. Damit können wir für \mathbf{b}_1 einfach $\mathbf{b}_1:=\mathbf{e}_1=[1,0,0]^{\mathsf{t}}.$ Dann ist $\mathbf{b}_2:=\mathbf{b}_3\times\mathbf{b}_1=\frac{1}{2}[0,1,\sqrt{3}]^{\mathsf{t}}$ und folglich

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 0\\1\\\sqrt{3} \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 0\\-\sqrt{3}\\1 \end{bmatrix} \right\}, \qquad \mathbf{B} \coloneqq \frac{1}{2} \begin{bmatrix} 2 & 0 & 0\\0 & 1 & -\sqrt{3}\\0 & \sqrt{3} & 1 \end{bmatrix}.$$

$$\det(\mathbf{B}) = \frac{1}{2^3} \det \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & -\sqrt{3} \\ 0 & \sqrt{3} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 = \frac{1}{8}(2+0+0-0+6-0) = 1 > 0 \end{bmatrix}$$

J. Hellmich 3. April 2022 4

zeigt die positive Orientierung von $\mathfrak{B}.$ B^t ist die Transformationsmatrix für die Basisdarstellung bzgl. $\mathfrak{B}:$

$$\mathbf{x}_{\mathrm{B}} \coloneqq \mathrm{B}^{\mathrm{t}} \mathbf{x} = \frac{1}{2} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & \sqrt{3} \\ 0 & -\sqrt{3} & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 2\sqrt{3} \\ 2 \end{bmatrix}_{\mathrm{B}}.$$

Die Darstellung von \mathbf{x} in der Basis \mathcal{B} lautet daher $\mathbf{x} = 2\mathbf{b}_1 + 2\sqrt{3}\mathbf{b}_2 + 2\mathbf{b}_3$. (20 P

2. Die Drehachse hat den Richtungsvektor \mathbf{b}_3 . Den gedrehten Vektor \mathbf{x}' erhalten wir jetzt wie folgt:

$$\mathbf{x}' = BD_{3,\frac{\pi}{3}}B^{t}\mathbf{x} = BD_{3,\frac{\pi}{3}}\mathbf{x}_{\mathcal{B}} = B\begin{bmatrix} \cos(\frac{\pi}{3}) & -\sin(\frac{\pi}{3}) & 0\\ \sin(\frac{\pi}{3}) & \cos(\frac{\pi}{3}) & 0\\ 0 & 0 & 1 \end{bmatrix}_{\mathcal{B}} \begin{bmatrix} 2\\ 2\sqrt{3}\\ 2\end{bmatrix}_{\mathcal{B}}$$

$$= B\begin{bmatrix} 1 & -\sqrt{3} & 0\\ \sqrt{3} & 1 & 0\\ 0 & 0 & 2 \end{bmatrix}_{\mathcal{B}} \begin{bmatrix} 1\\ \sqrt{3}\\ 1 \end{bmatrix}_{\mathcal{B}} = \frac{1}{2} \begin{bmatrix} 2 & 0 & 0\\ 0 & 1 & -\sqrt{3}\\ 0 & \sqrt{3} & 1 \end{bmatrix} \begin{bmatrix} -2\\ 2\sqrt{3}\\ 2\end{bmatrix}_{\mathcal{B}} = \frac{1}{2} \begin{bmatrix} -4\\ 0\\ 8 \end{bmatrix} = \begin{bmatrix} -2\\ 0\\ 4 \end{bmatrix}.$$

Die Länge von \mathbf{x} : $\|\mathbf{x}\| = \sqrt{4+16} = 2\sqrt{5} = \sqrt{(-2)^2 + 16} = \|\mathbf{x}'\|$, wie erwartet. (10 P) +1

Der Winkel zwischen x und x' ist $\cos^{-1}\left(\frac{\langle x \mid x'\rangle}{\|x\|\|x'\|}\right) = \cos^{-1}\left(\frac{16-4}{16+4}\right) = \cos^{-1}\left(\frac{3}{5}\right) \approx 53.13^\circ$ und nicht etwa 60° , wie man meinen könnte. Das liegt daran, daß x und x' auf dem Kegelmantel eines Kegels liegen, dessen Symmetrieachse parallel zu \mathbf{b}_3 ist und dessen Spitze sich im Ursprung 0 befindet. Schneidet man diesen Kegel senkrecht zur Kegelachse in Höhe von x bzw. x', so erhält man einen Schnittkreis, auf dem x um 60° bis zu x' gedreht wurde. Der Winkel zwischen den (Orts)Vektoren x und x' dagegen ist normalerweise kleiner (außer, wenn x senkrecht auf der Drehachse stehen sollte). $x' \in F$ folgt einfach aus $-2 \cdot 6 + 4 \cdot 3 = 0$, d. h. x' erfüllt die Ebenengleichung von F.

Aufgabe 3 (15 P)

Wir müssen versuchen, das inhomogene lineare Gleichungssystem $y_1b_1 + y_2b_2 + y_3b_3 + y_4b_4 + y_5b_5 = y$ für die Koeffizienten $y_1,...,y_5$ der Basisentwicklung von y in der Basis $\mathcal{B} = \{b_1,b_2,b_3,b_4,b_5\}$ zu lösen. Dabei entscheiden wir auch gleich, ob es sich bei \mathcal{B} überhaupt um eine Basis handelt:

	y_1	y_2	y_3	y_4	y ₅		
I	1	3	-4	0	5	20	
II	4	14	-19	1	18	83	II - 4I
III	8	28	-36	1	38	168	III - 8I
IV	-3	- 9	12	1	-14	-54	IV + 3I
V	2	10	-12	3	11	62	V-2I
I	1	3	-4	0	5	20	2I - 3II
II	0	2	-3	1	-2	3	
III	0	4	-4	1	-2	8	III - 2II
IV	0	0	0	1	1	6	
V	0	4	-4	3	1	22	V-2II
I	2	0	1	-3	16	31	2I - III
II	0	2	-3	1	-2	3	2 II + 3 III
III	0	0	2	-1	2	2	
IV	0	0	0	1	1	6	
V	0	0	2	1	5	16	V — III
I	4	0	0	-5	30	60	I + 5 IV
II	0	4	0	-1	2	12	II + IV
III	0	0	2	-1	2	2	III + IV
IV	0	0	0	1	1	6	
V	0	0	0	2	3	14	V-2 IV
I	4	0	0	0	35	90	I - 35 V
II	0	4	0	0	3	18	II - 3V
III	0	0	2	0	3	8	III - 3V
IV	0	0	0	1	1	6	IV – V
V	0	0	0	0	1	2	
I	4	0	0	0	0	20	
II	0	4	0	0	0	12	
III	0	0	2	0	0	2	
IV	0	0	0	1	0	4	
V	0	0	0	0	1	2	

Das zeigt einerseits, daß die Spaltenvektoren von B linear unabhängig sind, denn das GAUSS-Verfahren erzeugt eine vollbesetzte Diagonale für die Matrix B. Das bedeutet, daß B injektiv, als quadratische Matrix daher auch surjektiv und folglich invertierbar ist. Andererseits kann man die Koeffizienten der Basisentwicklung jetzt einfach ablesen:

$$y_1 = 5$$
, $y_2 = 3$, $y_3 = 1$, $y_4 = 4$, $y_5 = 2$, also $y = 5b_1 + 3b_2 + b_3 + 4b_4 + 2b_5$.

+9

+2

+1

J. Hellmich 3. April 2022 6

Aufgabe 4 (10 P)

$$\det(C) = \det \begin{bmatrix} 3i & -3i & -1-2i & 6+11i \\ 2i & -3i & -14-2i & 1+10i \\ 0 & i & 6 & -i \\ -i & i & 4 & -2-5i \end{bmatrix}$$

berechnen wir mit dem Determinantenschema:

I	3 i	-3 i	-1 - 2i	6 + 11 i	I + 3 IV	
II	2 i	-3i	-14-2i	$1+10\mathrm{i}$	II + 2IV	
III	0	i	6	-i		
IV	-i	i	4	-2-5i		
I	0	0	11 - 2i	−4 i		
II	0	-i	-6-2i	-3		
III	0	i	6	-i		
IV	-i	i	4	-2-5i		
I		0	11 - 2i	-4 i		i
II		-i	-6-2i	-3	II + III	
III		i	6	-i		
I		0	11 - 2i	-4 i		
II		0	-2i	-3-i		
III		i	6	-i		
I			11-2i	$-4\mathrm{i}$		i
II			$-2\mathrm{i}$	-3-i		

Daher ist

$$\begin{split} \det(C) &= i^2 \det \begin{bmatrix} 11 - 2i & -4i \\ -2i & -3 - i \end{bmatrix} = - \big[(2i - 11)(3 + i) - 8i^2 \big] \\ &= - (-2 - 33 - 11i + 6i) - 8 = 27 + 5i. \end{split}$$