Section 5.3

Properties of Fourier Series

Properties of (CT) Fourier Series

$$x(t) \stackrel{ ext{CTFS}}{\longleftrightarrow} a_k \quad ext{ and } \quad y(t) \stackrel{ ext{CTFS}}{\longleftrightarrow} b_k$$

Property	Time Domain	Fourier Domain
Linearity	$\alpha x(t) + \beta y(t)$	$\alpha a_k + \beta b_k$
Translation	$x(t-t_0)$	$e^{-jk(2\pi/T)t_0}a_k$
Modulation	$e^{jM(2\pi/T)t}x(t)$	a_{k-M}
Reflection	x(-t)	a_{-k}
Conjugation	$x^*(t)$	a_{-k}^*
Periodic Convolution	$x \circledast y(t)$	Ta_kb_k
Multiplication	x(t)y(t)	$\sum_{n=-\infty}^{\infty} a_n b_{k-n}$

Property	
Parseval's Relation	$\frac{1}{T} \int_{T} x(t) ^{2} dt = \sum_{k=-\infty}^{\infty} a_{k} ^{2}$
Even Symmetry	x is even $\Leftrightarrow a$ is even
Odd Symmetry	x is odd $\Leftrightarrow a$ is odd
Real / Conjugate Symmetry	x is real $\Leftrightarrow a$ is conjugate symmetric

Linearity

Let x and y be two periodic functions with the same period. If $x(t) \stackrel{\text{CTFS}}{\longleftrightarrow} a_k$ and $v(t) \stackrel{\text{CTFS}}{\longleftrightarrow} b_k$, then

$$\alpha x(t) + \beta y(t) \stackrel{\text{CTFS}}{\longleftrightarrow} \alpha a_k + \beta b_k,$$

where α and β are complex constants.

That is, a linear combination of functions produces the same linear combination of their Fourier series coefficients.

Let x denote a periodic function with period T and the corresponding frequency $\omega_0 = 2\pi/T$. If $x(t) \stackrel{\text{CTFS}}{\longleftrightarrow} c_k$, then

$$x(t-t_0) \stackrel{\text{CTFS}}{\longleftrightarrow} e^{-jk\omega_0t_0} c_k = e^{-jk(2\pi/T)t_0} c_k,$$

where t_0 is a real constant.

In other words, time shifting a periodic function changes the argument (but not magnitude) of its Fourier series coefficients.

Let x denote a periodic function with period T and the corresponding frequency $\omega_0 = 2\pi/T$. If $x(t) \stackrel{\text{CTFS}}{\longleftrightarrow} c_k$, then

$$e^{jM(2\pi/T)t}x(t) = e^{jM\omega_0t}x(t) \stackrel{\text{CTFS}}{\longleftrightarrow} c_{k-M},$$

where M is an integer constant.

In other words, multiplying a periodic function by $e^{jM\omega_0t}$ shifts the Fourier-series coefficient sequence.

Let x denote a periodic function with period T and the corresponding frequency $\omega_0 = 2\pi/T$. If $x(t) \stackrel{\text{CTFS}}{\longleftrightarrow} c_k$, then

$$x(-t) \stackrel{\mathtt{CTFS}}{\longleftrightarrow} c_{-k}.$$

That is, time reversal of a function results in a time reversal of its Fourier series coefficients.

For a T-periodic function x with Fourier series coefficient sequence c, the following property holds:

$$x^*(t) \stackrel{\text{\tiny CTFS}}{\longleftrightarrow} c_{-k}^*$$

In other words, conjugating a function has the effect of time reversing and conjugating the Fourier series coefficient sequence.

Let x and y be two periodic functions with the same period T. If $x(t) \stackrel{\text{CTFS}}{\longleftrightarrow} a_k$ and $y(t) \stackrel{\text{CTFS}}{\longleftrightarrow} b_k$, then

$$x \circledast y(t) \stackrel{\mathtt{CTFS}}{\longleftrightarrow} Ta_k b_k.$$

In other words, periodic convolution of two functions corresponds to the multiplication (up to a scale factor) of their Fourier-series coefficient sequences.

Let x and y be two periodic functions with the same period. If $x(t) \stackrel{\text{CTFS}}{\longleftrightarrow} a_k$ and $v(t) \stackrel{\text{CTFS}}{\longleftrightarrow} b_k$, then

$$x(t)y(t) \stackrel{\text{CTFS}}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} a_n b_{k-n}$$

- As we shall see later, the above summation is the DT convolution of a and b.
- In other words, the multiplication of two periodic functions corresponds to the DT convolution of their corresponding Fourier-series coefficient sequences.

A function x and its Fourier series coefficient sequence a satisfy the following relationship:

$$\frac{1}{T} \int_{T} |x(t)|^{2} dt = \sum_{k=-\infty}^{\infty} |a_{k}|^{2}.$$

- The above relationship is simply stating that the amount of energy in x (i.e., $\frac{1}{T} \int_T |x(t)|^2 dt$) and the amount of energy in the Fourier series coefficient sequence a (i.e., $\sum_{k=-\infty}^{\infty} |a_k|^2$) are equal.
- In other words, the transformation between a function and its Fourier series coefficient sequence preserves energy.

Even and Odd Symmetry

For a periodic function x with Fourier series coefficient sequence c, the following properties hold:

$$x$$
 is even $\Leftrightarrow c$ is even; and x is odd $\Leftrightarrow c$ is odd.

In other words, the even/odd symmetry properties of x and c always match.

Real Functions

A function x is real if and only if its Fourier series coefficient sequence c satisfies

$$c_k = c_{-k}^*$$
 for all k

(i.e., c is conjugate symmetric).

- Thus, for a real-valued function, the negative-indexed Fourier series coefficients are *redundant*, as they are completely determined by the nonnegative-indexed coefficients.
- From properties of complex numbers, one can show that $c_k = c_{-k}^*$ is equivalent to

$$|c_k| = |c_{-k}|$$
 and $\arg c_k = -\arg c_{-k}$

(i.e., $|c_k|$ is even and $\arg c_k$ is odd).

Note that x being real does **not** necessarily imply that c is real.

Trigonometric Forms of a Fourier Series

- Consider the periodic function x with the Fourier series coefficients c_k .
- If x is real, then its Fourier series can be rewritten in two other forms. known as the combined trigonometric and trigonometric forms.
- The combined trigonometric form of a Fourier series has the appearance

$$x(t) = c_0 + 2\sum_{k=1}^{\infty} |c_k| \cos(k\omega_0 t + \theta_k),$$

where $\theta_k = \arg c_k$.

The **trigonometric form** of a Fourier series has the appearance

$$x(t) = c_0 + \sum_{k=1}^{\infty} \left[\alpha_k \cos(k\omega_0 t) + \beta_k \sin(k\omega_0 t) \right],$$

where $\alpha_k = 2 \operatorname{Re} c_k$ and $\beta_k = -2 \operatorname{Im} c_k$.

Note that the trigonometric forms contain only *real* quantities.

Other Properties of Fourier Series

- For a T-periodic function x with Fourier-series coefficient sequence c, the following properties hold:
 - \mathbf{I} c_0 is the average value of x over a single period T;
 - \mathbf{z} x is real and even \Leftrightarrow c is real and even; and
 - 3 x is real and odd $\Leftrightarrow c$ is purely imaginary and odd.

Section 5.4

Fourier Series and Frequency Spectra

A New Perspective on Functions: The Frequency Domain

- The Fourier series provides us with an entirely new way to view functions.
- Instead of viewing a function as having information distributed with respect to *time* (i.e., a function whose domain is time), we view a function as having information distributed with respect to *frequency* (i.e., a function whose domain is frequency).
- This so called frequency-domain perspective is of fundamental importance in engineering.
- Many engineering problems can be solved much more easily using the frequency domain than the time domain.
- The Fourier series coefficients of a function x provide a means to quantify how much information x has at different frequencies.
- The distribution of information in a function over different frequencies is referred to as the *frequency spectrum* of the function.

Motivating Example

Consider the real 1-periodic function *x* having the Fourier series representation

$$\begin{split} x(t) &= -\frac{j}{10}e^{-j14\pi t} - \frac{2j}{10}e^{-j10\pi t} - \frac{4j}{10}e^{-j6\pi t} - \frac{13j}{10}e^{-j2\pi t} \\ &+ \frac{13j}{10}e^{j2\pi t} + \frac{4j}{10}e^{j6\pi t} + \frac{2j}{10}e^{j10\pi t} + \frac{j}{10}e^{j14\pi t}. \end{split}$$

A plot of x is shown below.

- The terms that make the most dominant contribution to the overall sum are the ones with the largest magnitude coefficients.
- To illustrate this, we consider the problem of determining the best approximation of x that keeps only 4 of the 8 terms in the Fourier series.

Motivating Example (Continued)

Approximation using the 4 terms with the largest magnitude coefficients

Approximation using the 4 terms with the smallest magnitude nonzero coefficients

Fourier Series and Frequency Spectra

To gain further insight into the role played by the Fourier series coefficients c_k in the context of the frequency spectrum of the function x, it is helpful to write the Fourier series with the c_k expressed in **polar form** as follows:

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} |c_k| e^{j(k\omega_0 t + \arg c_k)}.$$

- \blacksquare Clearly, the kth term in the summation corresponds to a complex sinusoid with fundamental frequency $k\omega_0$ that has been amplitude scaled by a factor of $|c_k|$ and *time shifted* by an amount that depends on $\arg c_k$.
- For a given k, the *larger* $|c_k|$ is, the larger is the amplitude of its corresponding complex sinusoid $e^{jk\omega_0t}$, and therefore the *larger the contribution* the kth term (which is associated with frequency $k\omega_0$) will make to the overall summation.
- In this way, we can use $|c_k|$ as a *measure* of how much information a function x has at the frequency $k\omega_0$.

Fourier Series and Frequency Spectra (Continued)

- **The Fourier series coefficients** c_k are referred to as the **frequency spectrum** of x.
- The magnitudes $|c_k|$ of the Fourier series coefficients are referred to as the magnitude spectrum of x.
- The arguments $\arg c_k$ of the Fourier series coefficients are referred to as the phase spectrum of x.
- Normally, the spectrum of a function is plotted against frequency $k\omega_0$ instead of k.
- Since the Fourier series only has frequency components at integer multiples of the fundamental frequency, the frequency spectrum is **discrete** in the independent variable (i.e., frequency).
- Due to the general appearance of frequency-spectrum plot (i.e., a number of vertical lines at various frequencies), we refer to such spectra as line spectra.

013-2020 Michael D. Adams

Frequency Spectra of Real Functions

Recall that, for a real function x, the Fourier series coefficient sequence c satisfies

$$c_k = c_{-k}^*$$

(i.e., c is *conjugate symmetric*), which is equivalent to

$$|c_k| = |c_{-k}|$$
 and $\arg c_k = -\arg c_{-k}$.

- Since $|c_k| = |c_{-k}|$, the magnitude spectrum of a real function is always even.
- Similarly, since $\arg c_k = -\arg c_{-k}$, the phase spectrum of a real function is always *odd*.
- Due to the symmetry in the frequency spectra of real functions, we typically *ignore negative frequencies* when dealing with such functions.
- In the case of functions that are complex but not real, frequency spectra do not possess the above symmetry, and negative frequencies become important.

Section 5.5

Fourier Series and LTI Systems

Frequency Response

- Recall that a LTI system \mathcal{H} with impulse response h is such that $\mathcal{H}\lbrace e^{st}\rbrace(t)=H_{1}(s)e^{st}$, where $H_{1}(s)=\int_{-\infty}^{\infty}h(t)e^{-st}dt$. (That is, complex exponentials are *eigenfunctions* of LTI systems.)
- Since a complex sinusoid is a special case of a complex exponential, we can reuse the above result for the special case of complex sinusoids.
- For a LTI system \mathcal{H} with impulse response h,

$$\mathcal{H}\lbrace e^{j\omega t}\rbrace(t)=H(\omega)e^{j\omega t},$$

where ω is a real constant and

$$H(\mathbf{\omega}) = \int_{-\infty}^{\infty} h(t)e^{-j\mathbf{\omega}t}dt.$$

- That is, $e^{j\omega t}$ is an eigenfunction of a LTI system and $H(\omega)$ is the corresponding eigenvalue.
- We refer to H as the <u>frequency response</u> of the system \mathcal{H} .

Fourier Series and LTI Systems

- Consider a LTI system with input x, output y, and frequency response H.
- Suppose that the *T*-periodic input *x* is expressed as the Fourier series

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}, \quad \text{where } \omega_0 = \frac{2\pi}{T}.$$

Using our knowledge about the *eigenfunctions* of LTI systems, we can conclude

$$y(t) = \sum_{k=-\infty}^{\infty} c_k H(k\omega_0) e^{jk\omega_0 t}.$$

- Thus, if the input x to a LTI system is a Fourier series, the output y is also a Fourier series. More specifically, if $x(t) \stackrel{\text{CTFS}}{\longleftrightarrow} c_k$ then $y(t) \stackrel{\text{CTFS}}{\longleftrightarrow} H(k\omega_0)c_{\ell}$.
- The above formula can be used to determine the output of a LTI system from its input in a way that does not require convolution.

Filtering

- In many applications, we want to *modify the spectrum* of a function by either amplifying or attenuating certain frequency components.
- This process of modifying the frequency spectrum of a function is called filtering.
- A system that performs a filtering operation is called a filter.
- Many types of filters exist.
- Frequency selective filters pass some frequencies with little or no distortion, while significantly attenuating other frequencies.
- Several basic types of frequency-selective filters include: lowpass, highpass, and bandpass.