# Hw<sub>2</sub>

### Runcheng Liu 2018010316 3/15/2021

#### 1

In LDA, suppose that we model each class density as multivariate Gaussian,

$$f_k(x) = \frac{1}{(2\pi)^{p/2} |\Sigma_k|^{1/2}} \exp\left\{-\frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k)\right\}$$

In comparing two classes k and l, it is sufficient to look at the log-ratio,

$$\log \frac{P(k \mid x)}{P(l \mid x)} = \log \frac{f_k(x)\pi_k}{f_l(x)\pi_l}$$

LDA arises in the speacial case when we assume that the classes have a common covariance matrix  $\Sigma_k = \Sigma$ , for any k, thus,

$$\log \frac{P(k \mid x)}{P(l \mid x)} = \log \frac{f_k(x)\pi_k}{f_l(x)\pi_l}$$

$$= \log \frac{\pi_k}{\pi_l} - \frac{1}{2}(\mu_k + \mu_l)^T \Sigma^{-1} (\mu_k - \mu_l) + x^T \Sigma^{-1} (\mu_k - \mu_l)$$

$$= \left(\log \pi_k + x^T \Sigma^{-1} \mu_k - \frac{1}{2}\mu_k \Sigma^{-1} \mu_k\right) - \left(\log \pi_l + x^T \Sigma^{-1} \mu_l - \frac{1}{2}\mu_l \Sigma^{-1} \mu_l\right)$$

$$= \delta_k - \delta_l$$

Thus,  $\log P(k \mid x) = \delta_k$ ,  $\log P(l \mid x) = \delta_l$ , so,

$$\hat{y}(x) = \operatorname{argmax}_{k} P(k \mid x)$$

$$= \operatorname{argmax}_{k} \log P(k \mid x)$$

$$= \operatorname{argmax}_{k} \delta_{k}(x)$$

#### 2.1

From LDA, we know that LDA rule classifies to class 2 if,

$$\log \frac{P(2\mid x)}{P(1\mid x)} > 1$$

That is,

$$\log \frac{\hat{\pi}_2}{\hat{\pi}_1} - \frac{1}{2} (\hat{\mu}_2 + \hat{\mu}_1) \Sigma^{-1} (\hat{\mu}_2 - \hat{\mu}_1) + x^{\mathsf{T}} \Sigma^{-1} (\hat{\mu}_2 - \hat{\mu}_1) > 0$$

Where  $\hat{\pi}_2 = N_2/N$ ,  $\pi_1 = N_1/N$ , thus, the LDA rule classifies to class 2 if,

$$x^{\mathsf{T}} \Sigma^{-1} (\hat{\mu_2} - \hat{\mu_1}) > \frac{1}{2} (\hat{\mu_2} + \hat{\mu_1}) \Sigma^{-1} (\hat{\mu_2} - \hat{\mu_1}) - \log \frac{N_2}{N_1}$$

and class 1 otherwise.

#### 2.2

Let  $U_i \in \mathbb{R}^n$  be the class indicator vector of class i, and  $U = U_1 + U_2$  be the vector with all entries equal to 1. In this problem, the vector of labels becomes  $Y = (-N/N_1)U_1 + (N/N_2)U_2$ . And the least square criterion  $RSS(\beta_0, \beta)$ ,

$$RSS(\beta_0, \beta) = \sum_{i=1}^{N} (y_i - \beta_0 - x_i^{\mathsf{T}} \beta) = (Y - \beta_0 U - X \beta)^{\mathsf{T}} (Y - \beta_0 U - X \beta)$$

Where X is a  $N \times p$  matrix. To obtain the minimization of RSS, take the derivative of  $RSS(\beta_0, \beta)$  with respect to  $\beta_0$  and  $\beta$ , and set them to 0,

$$\nabla_{\beta}RSS = -2X^{\mathsf{T}}Y + 2\beta_0X^{\mathsf{T}}U + 2X^{\mathsf{T}}X\beta = 0$$

and

$$\nabla_{\beta_0} RSS = -2U^{\mathsf{T}} Y + 2\beta_0 U^{\mathsf{T}} U + 2U^{\mathsf{T}} X \beta = -2U^{\mathsf{T}} Y + 2N\beta_0 + 2U^{\mathsf{T}} X \beta = 0$$

From the second equation, we obtain that

$$\hat{\beta_0} = \frac{1}{N} U^{\dagger} (Y - X\beta)$$

Take this into the first equation, we obtain that

$$(-\frac{1}{N}X^{\mathsf{T}}UU^{\mathsf{T}}X + X^{\mathsf{T}}X)\hat{\beta} = X^{\mathsf{T}}Y - \frac{1}{N}X^{\mathsf{T}}UU^{\mathsf{T}}Y$$

And we have that  $X^{\mathsf{T}}U_i = N_i \hat{\mu}_i$  for i = 1, 2. so for the left-hand side,

$$(-\frac{1}{N}X^{\mathsf{T}}UU^{\mathsf{T}}X + X^{\mathsf{T}}X)\hat{\beta} = \left(-\frac{1}{N}\left(N_{1}^{2}\hat{\mu}_{1}\hat{\mu}_{1}^{\mathsf{T}} + N_{1}N_{2}\hat{\mu}_{1}\hat{\mu}_{2}^{\mathsf{T}} + N_{1}N_{2}\hat{\mu}_{2}\hat{\mu}_{1}^{\mathsf{T}} + N_{2}^{2}\hat{\mu}_{2}\hat{\mu}_{1}^{\mathsf{T}} + N_{2}^{2}\hat{\mu}_{2}\hat{\mu}_{2}^{\mathsf{T}}\right) + X^{\mathsf{T}}X\right)\hat{\beta}$$

And the estimate of the covariance matrix used in LDA is given by:

$$(N-2)\hat{\Sigma} = \sum_{i:y_i = -N/N_1} (x_i - \hat{\mu_1})(x_i - \hat{\mu_1})^{\mathsf{T}} + \sum_{i:y_i = N/N_2} (x_i - \hat{\mu_2})(x_i - \hat{\mu_2})^{\mathsf{T}}$$
$$= X^{\mathsf{T}}X - N_1 \hat{\mu_1} \hat{\mu_1}^{\mathsf{T}} - N_2 \hat{\mu_2} \hat{\mu_2}^{\mathsf{T}}$$

And denote  $\hat{\Sigma}_B = \frac{N_1 N_2}{N^2} \left(\hat{\mu}_2 - \hat{\mu}_1\right) \left(\hat{\mu}_2 - \hat{\mu}_1\right)^T$ , thus, the L.H.S. is equal to:

$$((N-2)\hat{\Sigma} + N\Sigma_B)\hat{\beta}$$

And the R.H.S. is:

$$\begin{split} X^{\intercal}Y - \frac{1}{N}U^{\intercal}Y &= X^{\intercal}(-\frac{N}{N_{1}}U_{1} + \frac{N}{N_{2}}U_{2}) - \left(N_{1}\hat{\mu}_{1} + N_{2}\hat{\mu}_{2}\right)\left(-\frac{N}{N_{1}}N_{1} + \frac{N}{N_{2}}N_{2}\right) \\ &= X^{\intercal}(-\frac{N}{N_{1}}U_{1} + \frac{N}{N_{2}}U_{2}) \\ &= N(\hat{\mu}_{2}^{\wedge} - \hat{\mu}_{1}^{\wedge}) \end{split}$$

So the equation is equal to:

$$\left[ (N-2)\hat{\Sigma} + N\hat{\Sigma}_B \right] \hat{\beta} = N \left( \hat{\mu}_2 - \hat{\mu}_1 \right),$$

Where  $\hat{\Sigma}_B = \frac{N_1 N_2}{N^2} (\hat{\mu}_2 - \hat{\mu}_1) (\hat{\mu}_2 - \hat{\mu}_1)^T$ .

## 2.3

And let a real number  $\lambda = (\hat{\mu}_2 - \hat{\mu}_1)^{\mathsf{T}} \hat{\beta}$ , then

$$\hat{\Sigma}_B \hat{\beta} = \frac{N_1 N_2}{N^2} (\hat{\mu}_2 - \hat{\mu}_1) (\hat{\mu}_2 - \hat{\mu}_1)^{\mathsf{T}} \hat{\beta} = \frac{N_1 N_2}{N^2} (\hat{\mu}_2 - \hat{\mu}_1) \lambda$$

Hence,  $\hat{\Sigma}_B\hat{\beta}$  is in the direction of  $(\hat{\mu}_2-\hat{\mu}_1)$ , and from the equation,

$$\begin{split} (N-2)\hat{\Sigma}\hat{\beta} &= N(\hat{\mu}_2 - \hat{\mu}_1) - N\hat{\Sigma}_B\hat{\beta} \\ &= \left(N - \frac{N_1N_2}{N}\lambda\right)\left(\hat{\mu}_2 - \hat{\mu}_1\right) \end{split}$$

Thus,

$$\hat{\beta} \propto \hat{\Sigma}^{-1} \left( \hat{\mu}_2 - \hat{\mu}_1 \right)$$

Therefore the least-squares regression coefficient is identical to the LDA coefficient, up to a scalar multiple.

## 3.1

Use KNN classifier, and plot 5-fold cross-validation accuracy, here is the code

```
from random import seed
from random import randrange
from csv import reader
from math import sqrt
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
# Load a CSV file
def load csv(filename):
   dataset = list()
   with open(filename, 'r') as file:
        csv_reader = reader(file)
        for row in csv reader:
            if not row:
                continue
            dataset.append(row)
   return dataset
# Convert string column to float
def str_column_to_float(dataset, column):
    for row in dataset:
        row[column] = float(row[column].strip())
# Convert string column to integer
def str column to int(dataset, column):
    for row in dataset:
        # print(row[column])
        row[column] = int(row[column].strip())
        # print(row)
# Find the min and max values for each column
def dataset minmax(dataset):
   minmax = list()
    for i in range(len(dataset[0]) - 1):
        col_values = [row[i] for row in dataset]
        value min = min(col values)
        value max = max(col values)
        minmax.append([value_min, value_max])
   return minmax
# Rescale dataset columns to the range 0-1
def normalize dataset(dataset, minmax):
   new = []
    for row in dataset:
        for i in range(len(row) - 1):
            row[i] = (row[i] - minmax[i][0]) / (minmax[i][1] - minmax[i][0])
   new.append(row)
```

```
# Split a dataset into k folds
def cross validation split(dataset, n folds):
    dataset split = list()
    dataset_copy = list(dataset)
    fold_size = int(len(dataset) / n_folds)
    for _ in range(n_folds):
        fold = list()
        while len(fold) < fold_size:</pre>
            index = randrange(len(dataset_copy))
            fold.append(dataset_copy.pop(index))
        dataset split.append(fold)
    return dataset_split
# Calculate accuracy percentage
def accuracy_metric(actual, predicted):
   correct = 0
    for i in range(len(actual)):
        if actual[i] == predicted[i]:
            correct += 1
    return correct / float(len(actual)) * 100.0
# Evaluate an algorithm using a cross validation split
def evaluate algorithm(dataset, algorithm, n folds, *args):
    folds = cross_validation_split(dataset, n_folds)
    scores = list()
    for fold in folds:
        train set = list(folds)
        train set.remove(fold)
        train set = sum(train set, [])
        test set = list()
        for row in fold:
            row copy = list(row)
            test set.append(row copy)
            row copy[-1] = None
        predicted = algorithm(train set, test set, *args)
        actual = [row[-1] for row in fold]
        accuracy = accuracy_metric(actual, predicted)
        scores.append(accuracy)
   return scores
# Calculate the Euclidean distance between two vectors
def euclidean distance(row1, row2):
   distance = 0.0
    for i in range(len(row1) - 1):
        distance += (row1[i] - row2[i]) ** 2
   return sqrt(distance)
```

```
# Locate the most similar neighbors
def get_neighbors(train, test_row, num_neighbors):
   distances = list()
    for train_row in train:
        dist = euclidean distance(test row, train row)
        distances.append((train row, dist))
    distances.sort(key=lambda tup: tup[1])
    neighbors = list()
    for i in range(num_neighbors):
        neighbors.append(distances[i][0])
   return neighbors
# Make a prediction with neighbors by max
def predict classification max(train, test row, num neighbors):
    neighbors = get_neighbors(train, test_row, num_neighbors)
    output_values = [row[-1] for row in neighbors]
   prediction = max(set(output_values), key=output_values.count)
    return prediction
# Make a prediction with neighbors by average
def predict classification average(train, test row, num neighbors):
    neighbors = get neighbors(train, test row, num neighbors)
    output values = [row[-1] for row in neighbors]
   prediction = round(sum(output_values) / len(output_values))
    return prediction
# kNN Algorithm
def k nearest neighbors(train, test, num neighbors):
    predictions = list()
    for row in test:
        output = predict classification max(train, row, num neighbors)
        predictions.append(output)
   return (predictions)
# Test the kNN on the wine dataset
seed(1)
filename = 'winequality-red.csv'
dataset = load csv(filename)
dataset = dataset[1:1600]
# Remove the delimiter
for i in range(len(dataset)):
   dataset[i] = dataset[i][0].split(';')
# Convert predicor column into float
for i in range(len(dataset[0]) - 1):
   str column to float(dataset, i)
# convert class column to integers
str column to int(dataset, len(dataset[0]) - 1)
```

```
# Normalization
normalize_dataset(dataset=dataset, minmax=dataset_minmax(dataset=dataset))
# evaluate algorithm
acc = []
n_folds = 5
L = 20
for num_neighbors in range(L):
    print("K =", num_neighbors + 1)
    \verb|scores| = evaluate\_algorithm(dataset, k\_nearest\_neighbors, n\_folds, num\_neighbors + 1|
)
    print('Scores: %s' % scores)
    print('Mean Accuracy: %.3f%%' % (sum(scores) / float(len(scores))))
    acc.append((sum(scores) / float(len(scores))))
x = np.arange(1, L + 1, 1)
fig, ax = plt.subplots()
ax.plot(x, acc)
ax.set(xlabel='k', ylabel='acc/percent',
       title='knn_max')
ax.set_xticks([i + 1 for i in range(L)])
fig.savefig("acc_knn_max.png")
```

The result is,



So from the plot, we can see that at k=1, accuracy is at maximum, but it is kind of over-fitting. When k=1 you estimate your probability based on a single sample: your closest neighbor. This is very sensitive to all sort of distortions like noise, outliers, mislabelling of data, and so on. By using a higher value for k, you tend to be more robust against those distortions. So the optimal k value should be at 4, which is at the local maximum.

## 3.2

Use kNN regression by taking the average of the levels of the nearest neighbors and rounding it to the nearest level, just change the predict\_classification\_max() functions to predict\_classification\_average(), other functions are the same,

```
# Make a prediction with neighbors by average

def predict_classification_average(train, test_row, num_neighbors):
    neighbors = get_neighbors(train, test_row, num_neighbors)
    output_values = [row[-1] for row in neighbors]
    prediction = round(sum(output_values) / len(output_values))
    return prediction
```

The result is,



Accuracy of knn with average

After using the average, we can see that the local maximum is at k = 15. Compared to the previous one k = 4, this k is larger, so the model should be more robust than the previous.