Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика, искусственный интеллект и системы управления»

Кафедра «Системы обработки информации и управления»

Отчет по лабораторной работе №6

по дисциплине «Методы машинного обучения»

Обучение на основе DQN (тема работы)

ИСПОЛНИТЕЛЬ: Пасатюк А.Д. группа ИУ5-23М

ПРЕПОДАВАТЕЛЬ: Гапанюк Ю.А.

Москва, 2023

Цель работы

Ознакомление с базовыми методами обучения с подкреплением на основе глубоких Q-сетей.

Задание

- На основе рассмотренных на лекции примеров реализуйте алгоритм DQN.
- В качестве среды можно использовать классические среды (в этом случае используется полносвязная архитектура нейронной сети).

Выполнение

Реализуем алгоритм DQN для среды Toy Text / CliffWalking-v0.

Код программы:

```
import gym
import math
import random
import matplotlib
import matplotlib.pyplot as plt
from collections import namedtuple, deque
from itertools import count
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
# Название среды
CONST ENV NAME = 'Acrobot-v1'
# Использование GPU
CONST DEVICE = torch.device("cuda" if torch.cuda.is available() else "cpu")
# Элемент ReplayMemory в форме именованного кортежа
Transition = namedtuple('Transition',
                        ('state', 'action', 'next state', 'reward'))
# Реализация техники Replay Memory
class ReplayMemory(object):
         init (self, capacity):
        self.memory = deque([], maxlen=capacity)
    def push(self, *args):
        Сохранение данных в ReplayMemory
        self.memory.append(Transition(*args))
    def sample(self, batch size):
        Выборка случайных элементов размера batch size
```

```
111
        return random.sample(self.memory, batch size)
    def __len__(self):
        return len(self.memory)
class DQN Model(nn.Module):
         _init__(self, n_observations, n_actions):
        Инициализация топологии нейронной сети
        super(DQN Model, self). init ()
        self.layer1 = nn.Linear(n observations, 128)
        self.layer2 = nn.Linear(128, 128)
        self.layer3 = nn.Linear(128, n actions)
    def forward(self, x):
       Прямой проход
        Вызывается для одного элемента, чтобы определить следующее действие
       Или для batch'a во время процедуры оптимизации
        111
       x = F.relu(self.layer1(x))
        x = F.relu(self.layer2(x))
       return self.layer3(x)
class DQN Agent:
    def init (self, env,
                BATCH SIZE=128,
                 GAMMA=0.99,
                 EPS START=0.9,
                 EPS END=0.05,
                 EPS DECAY=1000,
                 TAU=0.005,
                 LR=1e-4
                 ):
        # Среда
        self.env = env
        # Размерности Q-модели
        self.n_actions = env.action_space.n
        state, _ = self.env.reset()
        self.n observations = len(state)
        # Коэффициенты
        self.BATCH SIZE = BATCH SIZE
        self.GAMMA = GAMMA
        self.EPS START = EPS START
        self.EPS END = EPS END
        self.EPS_DECAY = EPS DECAY
        self.TAU = TAU
        self.LR = LR
        # Модели
        # Основная модель
        self.policy net = DQN Model(self.n observations,
self.n actions).to(CONST DEVICE)
       # Вспомогательная модель, используется для стабилизации алгоритма
        # Обновление контролируется гиперпараметром ТАИ
        # Используется подход Double DQN
        self.target net = DQN Model(self.n observations,
self.n actions).to(CONST DEVICE)
        self.target net.load state dict(self.policy net.state dict())
```

```
# Оптимизатор
        self.optimizer = optim.AdamW(self.policy net.parameters(),
lr=self.LR, amsgrad=True)
        # Replay Memory
        self.memory = ReplayMemory(10000)
        # Количество шагов
        self.steps done = 0
        # Длительность эпизодов
        self.episode durations = []
    def select action(self, state):
        Выбор действия
        sample = random.random()
        eps = self.EPS END + (self.EPS START - self.EPS END) * \
              math.exp(-1. * self.steps done / self.EPS DECAY)
        self.steps done += 1
        if sample > eps:
            with torch.no grad():
                # Если вероятность больше ерѕ
                # то выбирается действие, соответствующее максимальному Q-
значению
                # t.max(1) возвращает максимальное значение колонки для
каждой строки
                # [1] возвращает индекс максимального элемента
                return self.policy net(state).max(1)[1].view(1, 1)
        else:
            # Если вероятность меньше ерз
            # то выбирается случайное действие
            return torch.tensor([[self.env.action space.sample()]],
device=CONST DEVICE, dtype=torch.long)
    def plot durations(self, show result=False):
        plt.figure(1)
        durations t = torch.tensor(self.episode durations, dtype=torch.float)
        if show result:
           plt.title('Pesymerar')
        else:
            plt.clf()
            plt.title('Обучение...')
        plt.xlabel('Эπизод')
        plt.ylabel('Количество шагов в эпизоде')
        plt.plot(durations t.numpy())
       plt.pause(0.01) # пауза
    def optimize model(self):
        Оптимизация модели
        if len(self.memory) < self.BATCH SIZE:</pre>
            return
        transitions = self.memory.sample(self.BATCH SIZE)
        # Транспонирование batch'a
        # (https://stackoverflow.com/a/19343/3343043)
        # Конвертация batch-массива из Transition
        # в Transition batch-массивов.
       batch = Transition(*zip(*transitions))
        # Вычисление маски нефинальных состояний и конкатенация элементов
batch'a
        non final mask = torch.tensor(tuple(map(lambda s: s is not None,
                                                 batch.next state)),
device=CONST DEVICE, dtype=torch.bool)
```

```
non final next states = torch.cat([s for s in batch.next state
                                           if s is not None])
        state batch = torch.cat(batch.state)
        action batch = torch.cat(batch.action)
        reward batch = torch.cat(batch.reward)
        # Вычисление Q(s t, a)
        state action values = self.policy net(state batch).gather(1,
action batch)
        \# Вычисление V(s\ \{t+1\}) для всех следующих состояний
        next state values = torch.zeros(self.BATCH SIZE, device=CONST DEVICE)
        with torch.no grad():
           next_state_values[non_final mask] =
self.target net(non final next states).max(1)[0]
        # Вычисление ожидаемых значений Q
        expected state action values = (next state values * self.GAMMA) +
reward batch
        # Вычисление Huber loss
        criterion = nn.SmoothL1Loss()
        loss = criterion(state action values,
expected state action values.unsqueeze(1))
        # Оптимизация модели
        self.optimizer.zero grad()
        loss.backward()
        # gradient clipping
        torch.nn.utils.clip grad value (self.policy net.parameters(), 100)
        self.optimizer.step()
    def play agent(self):
        Проигрывание сессии для обученного агента
        env2 = gym.make(CONST ENV NAME, render mode='human')
        state = env2.reset()[0]
        state = torch.tensor(state, dtype=torch.float32,
device=CONST DEVICE).unsqueeze(0)
       done = False
       res = []
        while not done:
            action = self.select action(state)
            action = action.item()
            observation, reward, terminated, truncated, = env2.step(action)
            env2.render()
            res.append((action, reward))
            if terminated:
               next state = None
               next_state = torch.tensor(observation, dtype=torch.float32,
device=CONST DEVICE) .unsqueeze(0)
            state = next_state
            if terminated or truncated:
                done = True
        print('Данные об эпизоде: ', res)
    def learn(self):
```

```
Обучение агента
        1 1 1
        if torch.cuda.is available():
            num episodes = 600
            num episodes = 50
        for i episode in range(num episodes):
            # Инициализация среды
            state, info = self.env.reset()
            state = torch.tensor(state, dtype=torch.float32,
device=CONST DEVICE).unsqueeze(0)
            for t in count():
                action = self.select action(state)
                observation, reward, terminated, truncated, =
self.env.step(action.item())
                reward = torch.tensor([reward], device=CONST DEVICE)
                done = terminated or truncated
                if terminated:
                    next state = None
                else:
                    next state = torch.tensor(observation,
dtype=torch.float32, device=CONST DEVICE).unsqueeze(0)
                # Сохранение данных в Replay Memory
                self.memory.push(state, action, next state, reward)
                # Переход к следующему состоянию
                state = next state
                # Выполнение одного шага оптимизации модели
                self.optimize model()
                # Обновление весов target-сети
                \# \ \theta' \leftarrow \tau \ \theta + (1 - \tau) \theta'
                target net state dict = self.target net.state dict()
                policy net state dict = self.policy net.state dict()
                for key in policy net state dict:
                    target net state dict[key] = policy net state dict[key] *
self.TAU + target_net_state_dict[key] * (
                                 1 - self.TAU)
                self.target net.load state dict(target net state dict)
                if done:
                    self.episode durations.append(t + 1)
                    self.plot durations()
                    break
def main():
    env = gym.make(CONST ENV NAME)
    agent = DQN Agent(env)
    agent.learn()
    agent.play agent()
if __name__ == '__main__':
   main()
```

Результат работы программы:

```
Данные об эпизоде: [(1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0)
   1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (2, -1.0), (1, -1.0), (1, -1.0)
   1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0
   1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (2, -1.0), (1, -1.0), (1, -1.0)
   1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0
   1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (2, -1.0), (1, -1.0), (1, -1.0)
   1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0
   1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0
   1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0
   1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0
   1.0), (1, -1.0), (1, -1.0), (1, -1.0), (0, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0
   1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0
   1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0
   1.0), (1, -1.0), (1, -1.0), (2, -1.0), (2, -1.0), (2, -1.0), (2, -1.0), (2, -1.0), (1, -1.0), (0, -1.0)
   1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (2, -1.0)
   1.0), (2, -1.0), (2, -1.0), (2, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (0, -1.0), (0, -1.0), (2, -1.0)
 1.0), (2, -1.0), (2, -1.0), (1, -1.0), (1, -1.0), (2, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (1, -1.0)
   1.0), (1, -1.0), (1, -1.0), (1, -1.0), (2, -1.0), (2, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0
   1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0
   1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (2, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0)
   1.0), (1, -1.0), (0, -1.0), (2, -1.0), (2, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (0, -1.0), (0, -1.0)
   1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (1, -1.0), (1, -1.0)
   1.0), (1, -1.0), (1, -1.0), (1, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0
   1.0), (0, -1.0), (0, -1.0), (0, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0), (1, -1.0
   1.0), (0, 0.0)]
```


pygame window

Меняем параметры: num episodes = 100, LR=5e-5

Данные об эпизоде: [(0,-1.0),(0,-1.0

1.0), (1, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (0, -1.0), (2, -1

X

