Část I

Definice

Definice 0.1 (Množinová funkce)

Buď X množina a $\mathcal{P}(X)$ její potenční množina, tj. $\mathcal{P}(X) := \{A | A \subset X\}$. Nechť $\mathcal{A} \subset \mathcal{P}(X)$. Pak zobrazení $\tau : \mathcal{A} \to \mathbb{R}^*$ se nazývá množinová funkce.

Definice 0.2 (σ -algebra a algebra)

Systém $\mathcal{A} \subset \mathcal{P}(X)$ nazveme σ -algebra na X, jestliže

- $\emptyset \in \mathcal{A}$;
- $A \in \mathcal{A} \implies A^c := X \setminus A \in \mathcal{A}$;
- $A_i \in \mathcal{A} \ \forall i \in \mathbb{N} \implies \bigcup_{i \in \mathbb{N}} A_i \in \mathcal{A}$.

Jestliže nahradíme třetí podmínku za $A,B\in\mathcal{A}\implies A\cup B\in\mathbb{A}$, pak se systém \mathcal{A} nazývá algebra.

Definice 0.3 (σS)

Je-li $\mathcal{S} \subset \mathcal{P}(X)$ libovolný množinový systém, pak nejmenší σ-algebru obsahující systém \mathcal{S} označíme $\sigma \mathcal{S}$. (Existence vyplývá z věty o průniku σ-algeber.)

Definice 0.4 (Generátor σ -algebry)

Je-li $\mathcal{S} \subset \mathcal{P}(X)$ a $\mathcal{A} = \sigma \mathcal{S}$, pak \mathcal{S} nazveme generátor σ -algebry \mathcal{A} (také říkáme, že \mathcal{A} je generováno systémem \mathcal{S}).

Definice 0.5 (Borelovská σ -algebra)

Je-li (X, ϱ) metrický prostor a \mathcal{G} systém všech otevřených podmnožin X, pak $\mathcal{B}(X) := \partial \mathcal{G}$ se nazývá borelovská σ -algebra na X.

Definice 0.6 (Měřitelný prostor a měřitelná množina)

Je-li \mathcal{A} σ-algebra na X, pak dvojice (X, \mathcal{A}) se nazývá měřitelný prostor. Množiny $A \in \mathcal{A}$ se nazývají \mathcal{A} -měřitelné (krátce měřitelné, pokud nehrozí nedorozumění).

Definice 0.7 (Míra, prostor s mírou)

Buď (X,\mathcal{A}) měřitelný prostor. Zobrazení $\mu:\mathcal{A}\to [0,+\infty]$ splňující

$$(M1) \ \mu(\emptyset) = 0;$$

(M2) jestliže $A_i \in \mathcal{A}, i \in \mathbb{N}$, jsou po dvou disjunktní, pak $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$,

se nazývá míra. (M2 se také nazývá spočetná/sigma aditivita)

Trojice (X, \mathcal{A}, μ) se nazývá prostor s mírou.

Definice 0.8 (Nulová množina, úplný prostor, zúplnění)

Buď (X, \mathcal{A}, μ) prostor s mírou. Řekneme, že množina $N \subset X$ je nulová množina, jestliže existuje $A \in \mathcal{A}$ tak, že $N \subset \mathcal{A}$ a $\mu(A) = 0$. Symbolem \mathcal{N} označíme systém všech nulových množin.

Řekneme, že prostor (X, \mathcal{A}, μ) je úplný, pokud $\mathcal{N} \subset \mathcal{A}$. σ -algebru $\mathcal{A}_0 := \sigma(\mathcal{A} \cup \mathcal{N})$ nazveme zúplněním σ -algebry \mathcal{A} vzhledem k míře μ .

Definice 0.9 (Borelovská, konečná, pravděpodobnostní a σ -konečná míra)

Buď (X, \mathcal{A}, μ) prostor s mírou. Řekneme, že míra μ je:

- borelovská, je-li X metrický prostor a $\mathcal{A} = \mathcal{B}(X)$;
- konečná, je-li $\mu(X) < +\infty$;
- pravděpodobnostní, je-li $\mu(X) = 1$;
- σ -konečná, existují-li množiny $X_i \in \mathcal{A}, i \in \mathbb{N},$ tak, že $\mu(X_i) < +\infty, \forall i \in \mathbb{N},$ a $X = \bigcup_{i \in \mathbb{N}} X_i$.

Definice 0.10 (Lebesgueova míra)

Zúplněné míry $\lambda^n_{\mathcal{B}}$ nazveme Lebesgueovou mírou v \mathbb{R}^n a označíme $\lambda^n.$

 $(\lambda_{\mathcal{B}}^n$ je borelovská míra na \mathbb{R}^n taková, že $\lambda_{\mathcal{B}}^n([a_1,b_1]\times\ldots\times[a_n,b_n])=(b_1-a_1)\cdot\ldots\cdot(b_n-a_n).)$

Definice 0.11 (Vzor systému)

At X, Y jsou množiny, $f: X \to Y$ zobrazení a $\mathcal{S} \subset \mathcal{P}(Y)$. Pak $f^{-1}(\mathcal{S}) := \{f^{-1}(S) | S \in \mathcal{S}\}.$

Definice 0.12 (Měřitelné zobrazení, borelovsky měřitelné zobrazení)

Nechť (X, \mathcal{A}) a (Y, \mathcal{M}) jsou měřitelné prostory. Zobrazení $f: X \to Y$ nazýváme měřitelné (vzhledem k \mathcal{A} a \mathcal{M}), jestliže $f^{-1}(\mathcal{M}) \subset \mathcal{A}$. Pak píšeme $f: (X, \mathcal{A}) \to (Y, \mathcal{M})$.

Je-li některý z prostorů X,Y metrický prostor, pak za příslušnou σ -algebru bereme borelovskou σ -algebru (pokud není řečeno jinak). Měřitelné zobrazení mezi dvěma metrickými prostory se nazývá borelovsky měřitelné (stručně borelovské).

Definice 0.13 (Jednoduchá funkce)

Funkce $s: X \to [0, +\infty)$ se nazývá jednoduchá, jestliže s(X) je konečná množina.

Pak platí $s = \sum_{\alpha \in s(x)} \alpha \cdot \chi_{\{s=\alpha\}}$. Součet na pravé straně této rovnosti nazýváme kanonickým tvarem jednoduché funkce s.

Definice 0.14 (Lebesgueův integrál)

Buď (X, \mathcal{A}, μ) prostor s mírou.

• Je-li $s:(X,\mathcal{A})\to [0,+\infty)$ jednoduchá měřitelná funkce, zapíšeme ji v kanonickém tvaru $s=\sum_{j=1}^k \alpha_j \chi_{E_j}$, pro $E_j:=\{x\in X|s(x)=\alpha_j\}$, a definujeme

$$\int_X s d\mu = \int_X s(x) d\mu(x) := \sum_{j=1}^k \alpha_j \mu(E_j).$$

• Je-li $f:(X,\mathcal{A})\to [0,+\infty]$ měřitelná funkce, pak definujeme

$$\int_X f d\mu := \sup \left\{ \int_X s d\mu | 0 \le s \le f, s \text{ jednoduchá, měřitelná} \right\}.$$

• Je-li $f:(X,\mathcal{A})\to\mathbb{R}^*$, pak definujeme

$$\int_{X} f d\mu := \int_{X} f^{+} d\mu - \int_{X} f^{-} d\mu,$$

má-li rozdíl smysl.

Definice 0.15 (Skoro všude)

Buď (X, \mathcal{A}, μ) prostor s mírou a V(x) vlastnost, kterou bod x může, ale nemusí mít. Je-li $E \in \mathcal{A}$, pak výrok V(x) platí μ -s. v. na E znamená:

$$\exists N \in \mathcal{A} \cap \mathcal{N}, N \subset E \ \forall x \in E \setminus N : V(x).$$

Je-li E=X, pak místo μ -s. v. na E píšeme pouze μ -s. v. Pokud nehrozí nedorozumění, o jakou míru se jedná, tak píšeme pouze s. v. místo μ -s. v.

Definice 0.16 (Měřitelná funkce)

Buď (X, \mathcal{A}, μ) prostor s mírou. Řekneme, že funkce f definovaná na množině $D \in \mathcal{A}$ s hodnotami v \mathbb{R}^* je měřitelná na X, jestliže $\mu(D^c) = 0$ a \forall otevřenou množinu $G \subset \mathbb{R}^*$ platí $f^{-1}(G) \cap D \in \mathcal{A}$.

Pro měřitelnou funkci f pak definujeme

$$\int_X f d\mu := \int_X \tilde{f} d\mu, \qquad \tilde{f}(x) := \begin{cases} f(x), & \forall x \in D, \\ 0, & \forall x \in D^c. \end{cases}$$

Definice 0.17 (\mathcal{L}^* a \mathcal{L}^1)

Je-li (X, \mathcal{A}, μ) prostor s mírou, pak označujeme

$$\mathcal{L}^*(\mu) := \left\{ f | (X, \mathcal{A}) \to \mathbb{R}^*, f \text{ je měřitelná na } X, \exists \int_X f d\mu \right\},$$

$$\mathcal{L}^1(\mu) := \left\{ f \in \mathcal{L}^*(\mu) | \int_Y |f| d\mu < +\infty \right\}.$$

Definice 0.18 (Dynkinův systém (d-systém))

Systém $\mathcal{D} \subset \mathcal{P}(X)$ se nazývá d-systém (nebo Dynkinův systém) na X, jestliže

- $\emptyset \in \mathcal{D}$;
- $D \in \mathcal{D} \implies D^c \in \mathcal{D}$:
- $D_n \in \mathcal{D}, \forall n \in \mathbb{N}, D_n \cap D_m = \emptyset \text{ pro } n \neq m \implies \bigcup_{n \in \mathbb{N}} D_n \in \mathcal{D}.$

Definice 0.19 (π -systém)

Je-li systém $\mathcal{S} \subset \mathcal{P}(X)$ uzavřen na konečné průniky (neboli $\forall S, T \in \mathcal{S} : S \cap T \in \mathcal{S}$), pak systém \mathcal{S} nazveme π -systém.

Definice 0.20 (Měřitelný obdélník, součinová σ -algebra, řezy)

Je-li $A \in \mathcal{A}, B \in \mathcal{B}$, pak množinu $A \times B \subset X \times Y$ nazveme měřitelným obdélníkem. Systém všech měřitelných obdélníků označíme symbolem \mathcal{O} .

Součinová σ -algebra $\mathcal{A} \otimes \mathcal{B}$ na prostoru $X \times Y$ je dána předpisem

$$A \otimes B := \sigma \mathcal{O}.$$

Pro $E \in \mathcal{A} \otimes \mathcal{B}$ a $x \in X$, $y \in Y$ definujeme řezy E_x , E^y množiny E předpisy

$$E_x := \{ y \in Y | [x, y] \in E \}, \qquad E^y := \{ x \in X | [x, y] \in E \}.$$

Definice 0.21 (C^1 -difeomorfismus)

Buď $G\subset\mathbb{R}^n$ otevřená množina. Zobrazení $\varphi:G\to\mathbb{R}^m$ se nazývá difeomorfismus, je-li prosté, třídy C^1 na G a $\forall x\in G:J\varphi(x)\neq 0$.

Definice 0.22 (Absolutní spojitost měr)

Necht μ , ν jsou míry na (X, \mathcal{A}) . Řekneme, že míra ν je absolutně spojitá vzhledem k míře μ (a značíme $\nu \ll \mu$), jestliže

$$\forall A \in \mathcal{A} : \mu(A) = 0 \implies \nu(A) = 0.$$

Definice 0.23 ((Radonova-Nikodymova) hustota / derivace míry)

Funkce fz Radonovy-Nikodymovy věty se nazývá (Radonova-Nikodymova) hustota nebo derivace míry ν vzhledem k míře μ a vztah

$$\nu(A) = \int_{A} f d\mu \qquad \forall A \in \mathcal{A}$$

se někdy zapisuje ve tvaru $d\nu = f d\mu$ nebo také $f = \frac{d\nu}{d\mu}$.

Definice 0.24 ((Vzájemně) singulární míry)

Řekneme, že míry μ , ν na měřitelném prostoru (X, \mathcal{A}) jsou vzájemně singulární (a píšeme $\mu \perp \nu$), jestliže

$$\exists S \in \mathcal{A} : \mu(S) = 0 \land \nu(X \setminus S) = 0.$$

Definice 0.25 (Distribuční funkce)

Buď μ konečná borelovská míra na \mathbb{R} . Pak funkci

$$F_{\mu}(x) := \mu((-\infty, x)), \qquad x \in \mathbb{R},$$

nazýváme distribuční funkcí míry μ .

Definice 0.26 (Lebesgueův-Stieltjesův integrál)

Je-li F distribuční funkce konečné borelovské míry μ a $A\subset \mathcal{R}$ borelovská množina, pak

$$\int_A f dF := \int_A f d\mu, \qquad \text{(má-li pravá strana smysl)}.$$

Definice 0.27 (Konvergence podle míry)

Buď (X, \mathcal{A}, μ) prostor s mírou a $f, f_n, n \in \mathbb{N}$, měřitelné funkce na X. Řekneme, že funkce f_n konvergují k funkci f podle míry μ (značení $f_n \stackrel{\mu}{\to} f$), jestliže

$$\forall \varepsilon > 0 : \lim_{n \to \infty} \mu(\{x \in X \mid |f_n(x) - f(x)| \ge \varepsilon\}) = 0.$$

Část II

Tvrzení

Věta 0.1 (O průniku σ -algeber)

Nechť A_{α} , $\alpha \in I$, jsou σ -algebry na X (kde I je libovolná indexová množina). Pak $\bigcap_{\alpha \in I} A_{\alpha}$ je σ -algebra na X.

 $D\mathring{u}kaz$

Triviální, přenechán čtenáři.

Důsledek

Je-li $\mathcal{S} \subset \mathcal{P}(X)$ libovolný množinový systém, pak existuje nejmenší σ -algebra $\sigma \mathcal{S}$ obsahující systém \mathcal{S} .

Důkaz

$$\sigma \mathcal{S} := \bigcap \left\{ \mathcal{A} \subset \mathcal{P}(X) \middle| \mathcal{S} \subset \mathcal{A} \lambda \mathcal{A} \text{ je } \sigma\text{-algebra} \right\}.$$

Věta 0.2 (Vlastnosti míry)

 $Bud(X, A, \mu)$ prostor s mírou. Pak

1.
$$A, B \in \mathcal{A}, A \cap B = \emptyset \implies \mu(A \cup B) = \mu(A) + \mu(B);$$

2.
$$A, B \in \mathcal{A}, A \subset B \implies \mu(A) \leq \mu(B);$$

3.
$$A_i \in \mathcal{A}, i \in \mathbb{N} \implies \mu(\bigcup_i A_i) \leq \sum_i \mu(A_i), \text{ (subaditivita miry)};$$

4.
$$A_1 \subset A_2 \subset \ldots \implies \mu(A_i) \nearrow \mu(\bigcup A_i);$$

5.
$$A_1 \supset A_2 \supset \dots, \mu(A_1) < +\infty \implies \mu(A_i) \searrow \mu(\bigcap_i A_i)$$
.

Důkaz

Ad 1.:
$$A, B \in \mathcal{A}, A \cap B = \emptyset, A, B \in \mathcal{A} \implies$$

$$\implies A \cup B = A \cup B \cup \emptyset \cup \emptyset \cup \ldots \implies$$

$$\implies \mu(A \cup B) = \mu(A) + \mu(B) + \mu(\emptyset) + \mu(\emptyset) + \dots = \mu(A) + \mu(B)$$

Ad 2.: $A, B \in \mathcal{A}, A \subset B \implies$

$$\implies B = A \cup B \setminus A \implies \mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A).$$

Ad 3.: $A_i \in \mathcal{A} \forall i \in \mathbb{N}$:

$$\bigcup_{i=1}^{\infty} A_i = A_1 \cup (A_2 \setminus A_1) \cup (A_3 \setminus (A_1 \cup A_2)) \cup \dots \Longrightarrow$$

$$\implies \mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \mu(A_1) + \mu(A_2 \setminus A_1) + \ldots \le \mu(A_1) + \mu(A_2) + \ldots$$

Ad 4.: $A_1 \subset A_2 \subset ..., A_i \in \mathcal{A} \forall i \in \mathbb{N}$

$$\implies A_k = \bigcup_{i=1}^k A_i = A_1 \cup (A_2 \setminus A_1) \cup (A_3 \setminus A_2) \cup \ldots \cup (A_k \setminus A_{k-1}) \forall k \in \mathbb{N}, k \ge 2,$$

$$\bigcup_{i=1}^{\infty} A_i = A_1 \cup (A_2 \setminus A_1) \cup \dots \implies$$

$$\implies \mu(A_k) = \mu(A_1) + \sum_{i=2}^k \mu(A_i \setminus A_{i-1}) \forall k \in \mathbb{N}, k \ge 2,$$

$$\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right) = \mu(A_{1}) + \sum_{i=2}^{\infty} \mu(A_{i} \setminus A_{i-1}).$$

Z toho plyne $\mu(A_k) \nearrow \mu(\bigcup_{i=1}^{\infty} A_i)$.

Ad 5. $A_1 \supset A_2 \supset \ldots$, $A_i \in \mathcal{A} \forall i \in \mathbb{N}$, $\mu(A_1) < +\infty$. Položíme $B_i = A_1 \setminus A_i \forall i \in \mathbb{N}$. Pak na posloupnost B_i aplikujeme 4.:

$$\mu(A_1) - \mu(A_i) \nearrow \mu(A_1) - \mu\left(\bigcup_{i=1}^{\infty} A_i\right) \implies -\mu(A_i) \nearrow \mu\left(\bigcap_{i=1}^{\infty} A_i\right) \implies \mu(A_i) \searrow \mu\left(\bigcap_{i=1}^{\infty} A_i\right).$$

Věta 0.3 (Zúplnění míry)

 $Bud(X, A, \mu)$ prostor s mírou. Pak platí

- 1. $A_0 = \{R \subset X | \exists A, B \in A \land A \subset E \subset B \land \mu(B \setminus A) = 0\}.$
- 2. Míru μ lze jednoznačně rozšířit na \mathcal{A}_0 (rozšířenou míru označíme μ_0).
- 3. Prostor $(X, \mathcal{A}_0, \mu_0)$ je úplný.

Důkaz TODO?

Věta 0.4 (O míře $\lambda_{\mathcal{B}}^n$)

Existuje právě jedna borelovská míra $\lambda^n_{\mathcal{B}}$ na \mathbb{R}^n taková, že

$$\lambda_{\mathcal{B}}^{n}([a_1,b_1]\times\ldots\times[a_n,b_n])=(b_1-a_1)\times\ldots\times(b_n-a_n),$$

 $jestli\check{z}e - \infty < a_i < b_i < +\infty, \ \forall i \in [n].$

 $D\mathring{u}kaz$

V TMI2.

Věta 0.5 (O zobrazení $f: X \to Y$)

Nechť $X,\ Y$ jsou množiny a $f:X\to Y$ zobrazení. Pak platí:

- 1. Je-li \mathcal{M} σ -algebra na Y, pak $f^{-1}(\mathcal{M})$ je σ -algebra na X.
- 2. Je-li $S \subset \mathcal{P}(Y)$, pak $\sigma(f^{-1}(S)) = f^{-1}(\sigma S)$.

 $D\mathring{u}kaz$

Bez důkazu?

Dusledek

Jsou-li (X, \mathcal{A}) , (Y, \mathcal{M}) měřitelné prostory a $\mathcal{S} \subset \mathcal{M}$ generátor \mathcal{M} , pak $f: X \to Y$ je měřitelné $\Leftrightarrow f^{-1}(\mathcal{S}) \subset \mathcal{A}$.

Důsledek

Je-li X, \mathcal{A} měřitelný prostor a Y metrický prostor, pak $f: X \to Y$ je měřitelné právě tehdy, když $f^{-1}(G) \in \mathcal{A}$ pro všechny otevřené množiny $G \subset Y$.

Důsledek

Každé spojité zobrazení f mezi metrickými prostory je borelovsky měřitelné.

Věta 0.6 (Generátory $\mathcal{B}^n := \mathcal{B}(\mathbb{R}^n)$)

Borelovská σ -algebra B^n je generována:

- otevřenými intervaly $(a_1, b_1) \times \ldots \times (a_n, b_n)$, $kde -\infty < a_i < b_i < +\infty$, $i \in [n]$;
- systémem $S := \{(-\infty, a_1) \times \ldots \times (-\infty, a_n) | a_i \in \mathbb{R} \ \forall i \in [n] \}.$

 $D\mathring{u}kaz$

Bez důkazu?

Věta 0.7 (O měřitelných zobrazeních)

1. Jsou-li $f:(X,\mathcal{A})\to\mathbb{R}^n$ a $g:(X,\mathcal{A})\to\mathbb{R}^m$ měřitelné zobrazení, pak $(f,g):(X,\mathcal{A})\to\mathbb{R}^{n+m}$ je měřitelné zobrazení.

- 2. Jsou-li $f, g: (X, A) \to \mathbb{R}^n$ měřitelná zobrazení, pak $f \pm g$ je měřitelné zobrazení.
- 3. Jsou-li $f, g: (X, A) \to \mathbb{R}$ měřitelné funkce, pak také funkce $f \cdot g$, $\max \{f, g\}$, $\min \{f, g\}$ jsou měřitelné.

 $D\mathring{u}kaz$

Bez důkazu?

Věta 0.8 (O měřitelných funkcích)

Bud'(X, A) měřitelný prostor. Pak platí:

- 1. $f:(X,\mathcal{A})\to\mathbb{R}$ je měřitelná funkce $\Leftrightarrow f^{-1}((-\infty,a))\in\mathcal{A}$ $\forall ain\mathbb{R}$.
- 2. $f:(X,\mathcal{A})\to\mathbb{R}^*$ je měřitelná funkce $\Leftrightarrow f^{-1}(\langle -\infty,a\rangle)\in\mathcal{A}$ $\forall ain\mathbb{R}$.

 $D\mathring{u}kaz$

Bez důkazu.

Důsledek

Necht $f, g: (X, A) \to \mathbb{R}^*$ jsou měřitelné funkce. Pak:

- 1. Množiny $\{x \in X | f(x) < g(x)\}, \{x \in X | f(x) \le g(x)\}, \{x \in X | f(x) = g(x)\}$ jsou měřitelné.
- 2. $\max\{f,g\}$, $\min\{f,g\}$ jsou měřitelné funkce. (Speciálně funkce $f^+=\max\{f,0\}$ a $f^-=\min\{f,0\}$ jsou měřitelné.)

Věta 0.9 (O měřitelných funkcích podruhé)

Jsou-li funkce $f_n:(X,\mathcal{A})\to\mathbb{R}^*$, $n\in\mathbb{N}$, měřitelné, pak i funkce $\sup_{n\in\mathbb{N}}f_n$, $\inf_{n\in\mathbb{N}}f_n$, $\lim\sup_{n\to\infty}f_n$ a $\liminf_{n\to\infty}f_n$ měřitelné.

Speciálně bodová limita posloupnosti měřitelných funkcí je měřitelná funkce.

 $D\mathring{u}kaz$

Bez důkazu?

Věta 0.10 (O nezáporné měřitelné funkci)

Nechť $f:(X,\mathcal{A})\to\langle 0,+\infty\rangle$ je měřitelná funkce. Pak existují jednoduché nezáporné měřitelné funkce s_n na X, $n\in\mathbb{N}$, tak, že

$$\forall x \in X : s_n(x) \nearrow f(x).$$

Je-li navíc funkce f omezená, pak $s_n \rightrightarrows f$ na X.

 $D\mathring{u}kaz$

TODO!!!

Věta 0.11 (Levi)

Je-li (X, \mathcal{A}, μ) prostor s mírou a f_n , $n \in \mathbb{N}$ jsou nezáporné měřitelné funkce na X splňující $f_n \nearrow f$, pak $\int_X f_n d\mu \nearrow \int_X f d\mu$.

 $D\mathring{u}kaz$

TODO?

Věta 0.12 (Fatouovo lemma)

Je-li (X, \mathcal{A}, μ) prostor s mírou a f_n , $n \in \mathbb{N}$, jsou nezáporné měřitelné funkce na X, pak

$$\int_X (\liminf_{n \to \infty} f_n) d\mu \le \liminf_{n \to \infty} \int_X f_n d\mu.$$

 $D\mathring{u}kaz$

Buď

$$g_n(x) := \inf \{ f_k(x) | k \ge n \}, x \in X, n \in \mathbb{N}.$$

Pak g_n jsou měřitelné a platí

$$g_n \nearrow g := \lim_{n \to \infty} g_n := \liminf_{n \to \infty} f_n.$$

Podle Leviho věty $\int_X g_n d\mu \nearrow \int_X g d\mu$. Protože $g_n \leq f_n \forall n \in \mathbb{N}$, tak $\int_X g_n d\mu \leq \int_X f_n d\mu \forall n \in \mathbb{N}$. Z uvedeného limitním přechodem dostaneme

$$\liminf_{n \to \infty} \int_X g_n d\mu \le \liminf_{n \to \infty} \int_X f_n d\mu.$$

Pravá strana je rovna

$$\lim_{n\to\infty} \int_X g_n d\mu = \int_X g d\mu = \int_X \liminf_{n\to\infty} f_n d\mu.$$

Lemma 0.13

Je-li (X, \mathcal{A}, μ) prostor s mírou a f, g jsou měřitelné funkce na X splňující f = g skoro všude, pak $\int_X f d\mu = \int_X g d\mu$, má-li jedna strana rovnosti smysl.

 $D\mathring{u}kaz$

Bez důkazu?

Věta 0.14 (Linearita integrálu)

Jestliže $f, g \in \mathcal{L}^*(\mu)$ a $\lambda \in \mathbb{R}$, pak

$$\int_X (\lambda f) d\mu = \lambda \int_X f d\mu,$$

$$\int_X (f+g) d\mu = \int_X f d\mu + \int_X g d\mu, \qquad \text{m\'a-li prav\'a strana smysl.}$$

 $D\mathring{u}kaz$

Bez důkazu?

Důsledek (Linearity a Leviho)

Je-li (X, \mathcal{A}, μ) prostor s mírou a $f_n, n \in \mathbb{N}$, jsou nezáporné měřitelné funkce na X, pak

$$\int_X \left(\sum_{n=1}^\infty f_n\right) d\mu = \sum_{n=1}^\infty \int_X f_n d\mu.$$

 $D\mathring{u}kaz$

Z předchozí věty máme

$$\int_{X} \left(\sum_{n=1}^{k} f_n \right) d\mu = \sum_{n=1}^{k} \int_{X} f_n d\mu \qquad \forall k \in \mathbb{N}.$$

Odtud limitním přechodem pro $k \to +\infty$ pomocí Leviho věty dostaneme dané tvrzení.

Věta 0.15 (Zobecněná Leviho věta)

Je-li (X, \mathcal{A}, μ) prostor s mírou a f_n , $n \in \mathbb{N}$, měřitelné funkce na X splňující $f_n \nearrow f$ a $\int_X f_1 d\mu > -\infty$, pak

$$\int_X f_n d\mu \nearrow \int_X f d\mu.$$

 $D\mathring{u}kaz$

BÚNO $\int_X f_1 < +\infty$, jinak vztah plyne z monotonie integrálu. Buď $g_n := f_n - f_1$, $n \in \mathbb{N}$, $g := f - f_1$. Pak $g_n \geq 0$, $g_n \nearrow g$ a z Leviho věty dostaneme $\int_X g_n d\mu \nearrow \int_X g d\mu$. Odtud pak, s využitím aditivity integrálu z předpředchozí věty, plyne $\int_X f_n d\mu = \int_X f d\mu$.

Důsledek

Totéž platí pro obrácená znamínka.

Věta 0.16 (Lebesgueova)

Nechť (X, \mathcal{A}, μ) je prostor s mírou a f, $f_n, n \in \mathbb{N}$, jsou měřitelné funkce na X splňující $f_n \to f$ skoro všude. jestliže existuje funkce $g \in \mathcal{L}^1(\mu)$ tak, že $|f_n| \leq g$ skoro všude $\forall n \in \mathbb{N}$, pak $f \in \mathcal{L}^1(\mu)$ a $\int_X f_n d\mu \implies \int_X f d\mu$.

 $D\mathring{u}kaz$

TODO!!!

Dusledek

Nechť (X, \mathcal{A}, μ) je prostor s mírou a $f_n, n \in \mathbb{N}$, jsou měřitelné funkce na X takové, že $\sum_{n=1}^{\infty} f_n$ konverguje skoro všude. Jestliže existuje funkce $g \in \mathcal{L}^1(\mu)$ tak, že $\left|\sum_{n=1}^k f_n\right| \leq g$ skoro všude $\forall k \in \mathbb{N}$, pak $\sum_{n=1}^{\infty} f_n \in \mathcal{L}^1(\mu)$ a $\int_X \left(\sum_{n=1}^{\infty} f_n\right) d\mu = \sum_{n=1}^{\infty} \int_X f_n d\mu$.

 $D\mathring{u}kaz$

Aplikujeme předchozí větu na posloupnost částečných součtů $\sum_{n=1}^{\infty} f_n$.

Věta 0.17 (Další vlastnosti integrálů a měřitelných funkcí)

 $Bud'(X, \mathcal{A}, \mu)$ prostor s mírou.

- Jestliže f je nezáporná měřitelná funkce na X a $\int_X f d\mu = 0$, pak f = 0 skoro všude.
- Je-li $f \in \mathcal{L}^1(\mu)$ a $\int_E f d\mu = 0 \ \forall E \in \mathcal{A}$, pak f = 0 skoro všude.
- Je-li f měřitelná funkce na X, pak

$$\int_X f d\mu \in \mathbb{R} \Leftrightarrow \int_X |f| d\mu \in \mathbb{R}.$$

- Je-li $f \in \mathcal{L}^1(\mu)$, pak $\left| \int_X f d\mu \right| \leq \int_X |f| d\mu$.
- Je-li $f \in \mathcal{L}^1(\mu)$, pak f je konečná skoro všude.

Důkaz

Bez důkazu?

Věta 0.18 (Vztah Riemannova a Lebesgueova integrálu)

Nechť $-\infty < a < b < +\infty$ a $f: \langle a,b \rangle \to \mathbb{R}$. Jestliže $(R) \int_a^b f$ existuje, pak $\int_a^b f d\lambda^1 \in \mathbb{R}$ a platí

$$(R)\int_{a}^{b} f = \int_{a}^{b} f d\lambda^{1}.$$

Důkaz

Bez důkazu?

Věta 0.19 (Vztah Newtonova a Lebesgueova integrálu)

Nechť $-\infty \leq a < b \leq +\infty$ a $f:(a,b) \to \mathbb{R}$ je spojitá a nezáporná funkce. Pak $(N) \int_a^b f$ existuje právě tehdy, $když \int_a^b f d\lambda^1 \in \mathbb{R}$.

 $V \ takov\'em \ p\'r\'ipad\'e \ nav\'ic \ (N) \int_a^b = \int_a^b f d\lambda^1.$

 $D\mathring{u}kaz$

Bez důkazu?

Věta 0.20 (O limitě integrálu závislém na parametru)

Buď (X, \mathcal{A}, μ) prostor s mírou, (T, ϱ) metrický prostor, $M \subset T$, $t_0 \in M'$ a $f: X \times T \to \mathbb{R}$. Nechť platí: • Pro μ -skoro všechna $x \in X$ existuje

$$\lim_{t \to t_0, t \in M} f(x, t) =: \varphi(x).$$

- $\forall t \in M \setminus \{t_0\}$ je funkce $f(\cdot, t)$ μ -měřitelná.
- Existuje funkce $g \in \mathcal{L}^1(\mu)$ tak, že $|f(x,t)| \leq g(x)$ pro μ -skoro všechna $x \in X$ a $\forall t \in M \setminus \{t_0\}$.

Pak $\varphi \in \mathcal{L}^1(\mu)$ a $\lim_{t \to t_0, t \in M} \int_X f(x, t) d\mu = \int_X \varphi(x) d\mu$.

□ Důkaz

K ověření rovnosti integrálů dle Heineho věty stačí dokázat: Je-li $t_n \in M \setminus \{t_0\}, n \in \mathbb{N}, t_n \to t_0$, pak $\int_X f(x, t_n) d\mu \to \int_X \varphi(x) d\mu$:

Z první podmínky máme $f(x,t_n)$ pro μ -skoro všechna $x\in X$. Dále platí (z druhé podmínky) $|f(x,t_n)|\leq g(x)$ pro μ -skoro všechna $x\in X$ a $\forall n\in \mathbb{N}$.

Tedy rovnost integrálů (a také existence integrálu) plyne z Lebesgueovy věty, položíme-li v ní $f_n(x) := f(x, t_n) \forall n \in \mathbb{N}$.

Věta 0.21 (O spojitosti integrálu závislém na parametru)

 $Bud(X, \mathcal{A}, \mu)$ prostor s mírou, (T, ϱ) metrický prostor, $M \subset T$ a $f: X \times T \to \mathbb{R}$. Nechť platí:

- Pro μ -skoro všechna $x \in X$ je funkce $f(x, \cdot)$ spojitá na M.
- $\forall t \in M \text{ je funkce } f(\cdot, t) \text{ μ-měřiteln\'a}.$
- Existuje funkce $g \in \mathcal{L}^1(\mu)$ tak, že $|f(x,t)| \leq g(x)$ pro μ -skoro všechna $x \in X$ a $\forall t \in M$.

Pak funkce $F(t) := \int_X f(x,t) d\mu$, $t \in M$, je spojitá na M.

Důkaz

Dle Heineho věty stačí dokázat: Je-li $t_0 \in M \cap M'$, pak $\lim_{t \to t_0, t \in M} F(t) = F(t_0)$, tj. $\lim_{t \to t_0, t \in M} \int_X f(x, t) d\mu = \int_X f(x, t_0) d\mu$. To ale plyne z předchozí věty.

Věta 0.22 (O derivaci integrálu podle parametru)

Buď (X, \mathcal{A}, μ) prostor s mírou, $I \subset \mathbb{R}$ otevřený interval a $f: X \times I \to \mathbb{R}$. Nechť platí:

- $\forall t \in I \text{ je funkce } f(\cdot, t) \text{ } \mu\text{-měřitelná}.$
- $\exists N \in \mathcal{A}, \ \mu(N) = 0, \ tak, \ \check{z}e \ \forall x \in X \setminus N \ a \ \forall t \in I \ existuje \ konečná \ derivace \ \frac{\partial f}{\partial t}(x,t).$

- Integrál $F(t) := \int_X f(x,t) d\mu$ konverguje alespoň pro jednu hodnotu $t \in I$.
- $\exists g \in \mathcal{L}^1(\mu) \ tak, \ \check{z}e \ \forall x \in X \setminus \mathbb{N} \ a \ \forall t \in I \ plati \ \left| \frac{\partial f}{\partial t}(x,t) \right| \leq g(x).$

 $Pak \ \forall t \in I \ integrál \ F(t) \ konverguje \ a \ platí$

$$F'(t) = \int_X \frac{\partial f}{\partial t}(x, t) d\mu \qquad \forall t \in I.$$

 $D\mathring{u}kaz$

Je-li $t,\,t+h\in I,$ pak $\forall x\in X\setminus N$ dle Lagrangeovy věty dle druhé a čtvrté podmínky platí

$$|f(x,t + h) - f(x,t)| = \left| h \cdot \frac{\partial f}{\partial t}(x,t + \Theta h) \right| \le |h| \cdot g(x),$$

kde $\Theta \in (0,1)$. Speciálně, je-li $t \in I$ a t_0 onen bod, pro který integrál F(t) konverguje, pak

$$|f(x,t)| \le |f(x,t_0)| + |t - t_0| \cdot g(x) \forall x \in X \setminus N,$$

odkud plyne, že integrál F(t) konverguje $\forall t \in I$.

Dále, je-li $t, t + h \in I, h \neq 0$, pak

$$\frac{1}{h}(F(t+h)-F(t)) = \int_X \frac{f(x,t+h)-f(x,t)}{h} d\mu.$$

Protože z nerovnosti výše je

$$\left| \frac{f(x,t+h) - f(x,t)}{h} \right| = \left| \frac{\partial f}{\partial t}(x,t+\Theta h) \right| \le g(x) \forall x \in X \setminus N, \forall t,t+h \in I, h \ne 0,$$

tedy

$$\lim_{h\to 0}\int_X \frac{f(x,t+h)-f(x,t)}{h}d\mu = \int_X \left(\lim_{h\to 0} \frac{f(x,t+h)-f(x,t)}{h}\right)d\mu = \int_X \frac{\partial f}{\partial t}(x,t)d\mu.$$

Věta 0.23 (O průniku d-systémů)

Nechť \mathcal{D}_{α} , $\alpha \in I$, jsou d-systémy na X (I je libovolná indexová množina). Pak $\bigcap_{\alpha \in I} \mathcal{D}_{\alpha}$ je d-systém na X.

 $D\mathring{u}kaz$

Je triviální a přenechán čtenáři.

Důsledek

Je-li $\mathcal{S} \subset \mathcal{P}(X)$ libovolný množinový systém, pak existuje nejmenší d-systém $d\mathcal{S}$ na X obsahující systém \mathcal{S} .

Důkaz

$$d\mathcal{S} := \bigcap \{ \mathcal{D} \subset \mathcal{P}(X) | \mathcal{S} \subset \mathcal{D} \wedge \mathcal{D} \text{ je d-systém} \}.$$

Věta 0.24 (O rovnosti $dS = \sigma S$)

Je-li $S \subset \mathcal{P}(X)$ π -systém, pak $dS = \sigma S$.

 $D\mathring{u}kaz$

Z následujících dvou tvrzení. Protože $\mathcal{S} \subset \mathcal{P}(X)$ je π -systém, tak je $d\mathcal{S}$ π -systém. Protože $d\mathcal{S}$ je také d-systém, tak $d\mathcal{S}$ je σ -algebra na X, která obsahuje \mathcal{S} . Proto $\sigma\mathcal{S} \subset d\mathcal{S}$, nebot $\sigma\mathcal{S}$ je nejmenší σ -algebra obsahující \mathcal{S} . Opačná implikace tj. $d\mathcal{S} \subset \sigma\mathcal{S}$ platí triviálně. Tedy $d\mathcal{S} = \sigma\mathcal{S}$.

Tvrzení 0.25

Je-li d-systém \mathcal{D} na X π -systém, pak \mathcal{D} je σ -algebra na X.

 $D\mathring{u}kaz$

Je třeba ověřit, že platí $A_k \in \mathcal{D} \ \forall k \in \mathbb{N} \implies \bigcup_{k=1}^{\infty} A_k \in \mathcal{D}$. To provedeme v několika krocích:

Platí $A \setminus B \in \mathcal{D}$, je-li $A, B \in \mathcal{D}$, nebot $A \setminus B = A \setminus (A \cap B)$ a přitom $A \cap B \subset A$, tedy $A \setminus B \in \mathcal{D}$.

Platí $A \cup B \in \mathcal{D}$, je-li $A, B \in \mathcal{D}$, neboť $A \cup B = (A \setminus B) \cup B$ a přitom $(A \setminus B) \cap B = \emptyset$, tedy $A \cup B \in \mathcal{D}$.

Je-li $n \in \mathbb{N}$ a $A_1, \dots, A_n \in \mathcal{D}$, pak $\bigcup_{i=1}^n A_i \in \mathcal{D}$ (indukcí s využitím předchozího odstavce).

Nechť tedy $A_k \in \mathcal{D} \forall k \in \mathbb{N}$. Položíme-li $A_0 := \emptyset \in \mathcal{D}$, pak

$$\bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{\infty} \left(\left(\bigcup_{i=0}^k A_i \right) \setminus \left(\bigcup_{i=1}^{k-1} A_i \right) \right) = \bigcup_{k=1}^{\infty} \tilde{A}_k,$$

kde $\tilde{A}_k := \left(\bigcup_{i=0}^k A_i\right) \setminus \left(\bigcup_{i=0}^{k-1} A_i\right) \forall k \in \mathbb{N}$. Protože $\bigcup_{i=0}^k A_i \in \mathcal{D} \forall k \in \mathbb{N}_0$, tak $\tilde{A}_k \in \mathcal{D} \forall k \in \mathbb{N}$. Navíc $\tilde{A}_k \cap \tilde{A}_m = \emptyset$ pro $k \neq m, k, m \in \mathbb{N}$. Tedy $\bigcup_{k=1}^{\infty} \tilde{A}_k \in \mathcal{D}$, tj. $\bigcup_{k=1}^{\infty} A_k \in \mathcal{D}$.

Tvrzení 0.26

Je-li d-systém \mathcal{D} na X π -systémem, pak \mathcal{D} je σ -algebra na X.

 $D\mathring{u}kaz$

TODO!!!

Věta 0.27 (O jednoznačnosti míry)

Nechť $S \subset \mathcal{P}(X)$ je π -systém a μ , ν jsou dvě míry na σS splňující $\mu(S) = \nu(S) \forall S \in S$. Jestliže existují množiny $X_n \in S$, $n \in \mathbb{N}$, tak, že $X_n \nearrow X$ a $\mu(X_n) < +\infty \forall n \in \mathbb{N}$, pak $\mu = \nu$ na σS .

 $D\mathring{u}kaz$

TODO!!!

Věta 0.28 (O součinové σ-algebře $A \otimes B$)

Je-li $E \in \mathcal{A} \otimes \mathcal{B}$, pak

- $\forall x \in X : E_x \in \mathcal{B}, \forall y \in Y : E^y \in \mathcal{A};$
- Funkce $x \mapsto \nu(E_x)$ je měřitelná na (X, \mathcal{A}) , funkce $y \mapsto \mu(E^y)$ je měřitelná na (Y, B).

Je-li funkce $f: (X \times Y, \mathcal{A} \otimes \mathcal{B}) \to \mathbb{R}^*$ měřitelná, pak $\forall x \in X$ je funkce $f_x: y \mapsto f(x,y)$ měřitelná na (Y, B) a $\forall y \in Y$ je funkce $f^y: x \mapsto f(x,y)$ měřitelná na (X, \mathcal{A}) .

 $D\mathring{u}kaz$

TODO!!!

Věta 0.29 (Existence a jednoznačnost součinové míry)

Existuje právě jedna míra $\mu \otimes \nu$ na $\mathcal{A} \otimes \mathcal{B}$ (tzv. součinová míra) splňující

$$(\mu \otimes \nu)(A \times B) = \mu(A) \cdot \nu(B) \qquad \forall A \in \mathcal{A} \ \forall B \in \mathcal{B}.$$

Pro tuto míru platí

$$E \in \mathcal{A} \otimes \mathcal{B} \implies (\mu \otimes \nu)(E) = \int_X \nu(E_x) d\mu(x).$$

 $D\mathring{u}kaz$

TODO!!!

Věta 0.30 (Fubini)

Pro každou funkci $f \in \mathcal{L}^*(\mu \otimes \nu)$ platí

- Funkce $x \mapsto \int_Y f(x,y) d\nu(y)$ je měřitelná na X;
- Funkce $y \mapsto \int_X f(x,y) d\nu(x)$ je měřitelná na Y;
- $\int_{X\otimes Y} f(x,y)d(\mu\otimes\nu) = \int_X \left(\int_Y f(x,y)d\nu(y)\right)d\mu(x) = \int_Y \left(\int_X f(x,y)d\mu(x)\right)d\nu(y).$

Důkaz TODO!!!

Věta 0.31 (Fubiniova věta pro zúplněnou součinovou míru)

Nechť (X, \mathcal{A}, μ) a (Y, B, ν) jsou prostory s úplnými σ -konečnými mírami. Je-li $f \in \mathcal{L}^*(\mu \overset{0}{\times} \nu)$, pak

- Funkce $f_y: x \mapsto f(x,y)$ je měřitelná na X pro ν -skoro všechna $y \in Y$ a funkce $f_x: y \mapsto f(x,y)$ je měřitelná na Y pro μ -skoro všechna $y \in Y$;
- Funkce $x\mapsto \int_Y f(x,y)d\nu(y)$ je měřitelná na X a funkce $y\mapsto \int_X f(x,y)d\nu(x)$ je měřitelná na Y;
- $\int_{X\otimes Y} f(x,y) d(\mu \overset{0}{\otimes} \nu) = \int_{X} \left(\int_{Y} f(x,y) d\nu(y) \right) d\mu(x) = \int_{Y} \left(\int_{X} f(x,y) d\mu(x) \right) d\nu(y).$

 $D\mathring{u}kaz$

Důkaz se nestíhal, pouze bylo zmíněno, že se použije předchozí věta a následující 2 Lemmata. $\hfill\Box$

Lemma 0.32

Nechť $(Z, \mathcal{C}, \varrho)$ je prostor s mírou a $(Z, \mathcal{C}_0, \varrho_0)$ jeho zúplnění. Je-li funkce $f: (Z, \mathcal{C}_0) \to \mathbb{R}^*$ ϱ_0 měřitelná, pak existuje ϱ -měřitelná funkce $g: (Z, \mathcal{C}) \to \mathbb{R}^*$ tak, že f = g ϱ -skoro všude na X.

 $D\mathring{u}kaz$

Bez důkazu.

Lemma 0.33

Nechť (X, \mathcal{A}, μ) a (Y, \mathcal{B}, ν) jsou prostory s úplnými σ -konečnými mírami. Nechť h je $\mu \overset{\circ}{\otimes} \nu$ měřitelná funkce na $X \times U$ a h = 0 $\mu \overset{\circ}{\otimes} \nu$ -skoro všude na $X \times Y$. Potom pro μ -skoro všechna $x \in X$ platí h(x, y) = 0 pro ν -skoro všechna $y \in Y$. Speciálně, funkce h_x je měřitelná na (Y, \mathcal{B}, ν) pro μ -skoro všechna $x \in X$. (Obdobně pro h^y).

 $D\mathring{u}kaz$

Bez důkazu.

Věta 0.34 (O míře $\lambda^p \otimes \lambda^q$)

Je-li $p, q \in \mathbb{N}$, pak:

$$\mathcal{B}(\mathbb{R}^{p+q}) = \mathcal{B}(\mathbb{R}^p) \otimes \mathcal{B}(\mathbb{R}^q), \qquad (tj. \ \lambda_{\mathcal{B}}^{p+q} = \lambda_{\mathcal{B}}^p \otimes \lambda_{\mathcal{B}}^q)$$

$$\lambda^{p+q} = \lambda^p \overset{0}{\otimes} \lambda^q.$$

 $D\mathring{u}kaz$

Bez důkazu.

Věta 0.35 (Fubiniova věta v \mathbb{R}^{p+q})

Je-li $s, q \in \mathbb{N}$ a $f \in \mathcal{L}^*(\lambda^{p+q})$, pak

$$\int_{\mathbb{R}^{p+q}} f d\lambda^{p+q} = \int_{\mathbb{R}^p} \left(\int_{\mathbb{R}^q} f(x,y) d\lambda^q(y) \right) d\lambda^p(x) = \int_{\mathbb{R}^q} \left(\int_{\mathbb{R}^p} f(x,y) d\lambda^p(x) \right) d\lambda^q(y).$$

Důkaz

Bez důkazu, ale lehký důsledek předchozí věty a Fubiniovy věty.

Definice 0.28 (Značení)

Je-li $p,q\in\mathbb{N},\,x\in\mathbb{R}^p,\,y\in\mathbb{R}^q,$ pak definujeme projekce předpisem

$$\pi_1(x,y) := x, \qquad \pi_2(x,y) := y.$$

Důsledek

Nechť $p, q \in \mathbb{N}$, $A \in \mathcal{B}_0^{p+q} := (\mathcal{B}(\mathbb{R}^{p+q}))_0$. Jestliže $f \in \mathcal{L}^*(\lambda^{p+q})$ a množiny $\pi_1 A, \pi_2 A$ jsou měřitelná, pak

$$\int_A f d\lambda^{p+q} = \int_{\pi_1 A} \left(\int_{A_x} f(x,y) d\lambda^q(y) \right) d\lambda^p(x) = \int_{\pi_2 A} \left(\int_{A^y} f(x,y) d\lambda^p(x) \right) d\lambda^q(y).$$

Lemma 0.36

Lebesgueova míra λ^n je translačně invariantní, tzn.

$$\lambda^n(B+r) = \lambda^n(B) \qquad \forall B \in \mathcal{B}_0^n \ \forall r \in \mathbb{R}^n.$$

 $D\mathring{u}kaz$

Dané tvrzení plyne z věty o jednoznačnosti míry, neboť míry λ^n a $\mu(B) := \lambda^n(B+z) \ \forall B \in \mathcal{B}_0^n$ a pro libovolné pevné $r \in \mathbb{R}^n$ se shodují na systému \mathcal{B}_0^n .

Věta 0.37 (O obrazu míry)

Nechť (X, \mathcal{A}, μ) je prostor s mírou a (Y, \mathcal{B}) je měřitelný prostor. Je-li $\varphi : (X, \mathcal{A}) \to (Y, \mathcal{B})$ měřitelné zobrazení, pak množinová funkce daná předpisem

$$(\varphi(\mu))(B) := \mu(\varphi^{-1}(B)) \quad \forall B \in \mathcal{B}$$

je míra na (Y,\mathcal{B}) (tzn. obraz míry μ při zobrazení φ) a pro každou měřitelnou funkci f na Y platí

$$\int_Y f d\varphi(\mu) = \int_X (f \circ \varphi) d\mu,$$

pokud alespoň jedna strana má smysl.

 $D\mathring{u}kaz$

TODO!!!

Věta 0.38

 $Bud'L: \mathbb{R}^n \to \mathbb{R}^n$ invertibilní lineární zobrazení

- $Je-li \ \nu(A) := \lambda^n(L(A)) \ \forall A \in \mathcal{B}^n := \mathcal{B}(\mathbb{R}^n), \ pak \ \nu \ je \ m\'er \ a \ plat\'e \ \nu = |\det L| \cdot \lambda^n.$
- $Je-li\ \mu(A) := |\det L|\lambda_{\mathcal{B}}^n(A)\ \forall A \in \mathcal{B}^n,\ pak\ L(\mu) = \lambda_{\mathcal{B}}^n\ a\ pro\ f \in \mathcal{L}^*(\lambda_{\mathcal{B}}^n)\ plati$

$$\int_{\mathbb{R}^n} f d\lambda^n = \int_{\mathbb{R}^n} (f \circ L) |\det L| d\lambda^n.$$

 $D\mathring{u}kaz$

TODO!!!

Lemma 0.39

 $BudT: \mathbb{R}^n \to \mathbb{R}^n$ Lipschitzovské zobrazení. Je-li $A \subset \mathbb{R}^n$ lebesgueovsky měřitelná množina, pak také T(A) je lebesgueovsky měřitelná množina.

 $D\mathring{u}kaz$

Vynechán.

Věta 0.40

 $Je-li\ L: \mathbb{R}^n \to \mathbb{R}^n \ invertibiln'i\ lineárn'i\ zobrazen'i,\ pak$

$$\int_{\mathbb{R}^n} f d\lambda^n = \int_{\mathbb{R}^n} (f \circ L) |\det L| d\lambda^n,$$

má-li jedna strana smysl.

 $D\mathring{u}kaz$

Bez důkazu, ale jednoduše vyplývá z předchozího lemmatu a věty.

Věta 0.41 (O substituci)

Buď $G \subset \mathbb{R}^n$ otevřená množina a $\varphi: G \to \mathbb{R}^n$ difeomorfismus. Jestliže $f: \varphi(G) \to \mathbb{R}$ je lebesgueovsky měřitelná funkce, pak

$$\int_G f(\varphi(x))|J\varphi(x)|dx = \int_{\varphi(G)} f(y)dy,$$

má-li jedna strana rovnosti smysl.

 $D\mathring{u}kaz$

Bude v TMI2.

Dusledek

Je-li navíc $M\subset \varphi(G)$ lebesgue
ovsky měřitelná množina, pak

$$\int_{\varphi^{-1}(M)} f(\varphi(x)) |J\varphi(x)| dx = \int_M f(y) dy.$$

Lemma 0.42

$$\lambda^n(\mathbb{R}^{n-1}) = 0.$$

 $D\mathring{u}kaz$

Množina \mathbb{R}^{n-1} je λ^n -měřitelná, neboť je uzavřená v \mathbb{R}^n . Dále platí $\mathbb{R}^{n-1} \subset \bigcup_{k=1}^{\infty} I_{k,\varepsilon}$, kde $\varepsilon > 0$ a

$$I_{k,\varepsilon} := (-k,k)^{n-1} \times \left(\frac{-\varepsilon}{(2k)^{n-1}} \cdot \frac{1}{2^k}, \frac{\varepsilon}{(2k)^{n-1}} \cdot \frac{1}{2^k} \right) \qquad \forall k \in \mathbb{N},$$

a tedy

$$\lambda^n(\mathbb{R}^{n-1}) \le \sum_{k=1}^{\infty} \lambda^n(I_{k,\varepsilon}) = \sum_{k=1}^{\infty} (2k)^{n-1} \cdot \frac{2\varepsilon}{(2k)^{n-1}} \frac{1}{2^k} = \sum_{k=1}^{\infty} \frac{\varepsilon}{2^{k-1}} = 2\varepsilon.$$

Protože $\varepsilon>0$ bylo libovolné, tak $\lambda^n(\mathbb{R}^{n-1})=0.$

TODO!!! (Důkazy)

Lemma 0.43 (O míře s hustotou f)

 $Bud(X, A, \mu)$ prostor s mírou a f nezáporná měřitelná funkce na X. Definujeme-li

$$\nu(A) := \int_A f d\mu \qquad \forall A \in \mathcal{A},$$

pak ν je míra na \mathcal{A} a pro měřitelnou funkci $g:(X,\mathcal{A})\to\langle 0,+\infty\rangle$ platí

$$\int_X g d\nu = \int_X g f d\mu.$$

Důkaz TODO!!!

Věta 0.44 (Charakterizace faktu $\nu \ll \mu$ pro konečné míry)

Nechť μ , ν jsou konečné míry na (X, A). Pak $\nu \ll \mu$ právě tehdy, když

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall A \in \mathcal{A} : \mu(A) < \delta \implies \nu(A) < \varepsilon.$$

Důkaz TODO!!!

Věta 0.45 (Radonova-Nikodymova)

Jsou-li μ , ν σ -konečné míry na (X, \mathcal{A}) splňující $\mu \ll \nu$, pak existuje nezáporná měřitelná funkce f na X tak, že

$$\nu(A) = \int_A f d\mu \qquad \forall A \in \mathcal{A}.$$

Důkaz TODO!!!

Lemma 0.46 (Radonova-Nikodymova věta – baby verze)

Jestliže μ , ν jsou konečné míry na (X, \mathcal{A}) takové, že $\nu(A) \leq \mu(A) \ \forall A \in \mathcal{A}$, pak existuje měřitelná funkce f na X splňující $0 \leq f \leq 1$ μ -skoro všude a

$$\nu(A) = \int_A f d\mu \qquad \forall A \in \mathcal{A}.$$

– *Důkaz* TODO!!!

Věta 0.47 (Lebesgueův rozklad míry)

Buď μ míra na (X,d) a ν σ -konečná míra na (X,\mathcal{A}) . Pak existuje rozklad $\nu=\nu_a+\nu_s$ na σ -konečné míry ν_a a ν_s takový, že $\nu_a\ll\mu$, $\nu_s\perp\mu$, přičemž míry ν_a a ν_s jsou určeny jednoznačně.

Důkaz TODO!!!

Lemma 0.48 (O distribuční funkci)

Distribuční funkce F_{μ} splňuje:

- F_{μ} je neklesající;
- $F_{\mu}(-\infty) := \lim_{x \to -\infty} F_{\mu}(x) = 0, \ F_{\mu}(+\infty) := \lim_{x \to +\infty} F_{\mu} < \infty;$
- F_μ je zprava spojitá.

Důkaz TODO!!!

Věta 0.49 (O Lebesgueově-Stieltjosově míře)

 $Je ext{-li }F:\mathbb{R} o \mathbb{R} ext{ funkce splňující}$

- F je neklesající;
- $F_{\mu}(-\infty) := \lim_{x \to -\infty} F_{\mu}(x) = 0, \ F_{\mu}(+\infty) := \lim_{x \to +\infty} F_{\mu} < \infty;$
- F_μ je zprava spojitá.

pak existuje právě jedna konečná borelovská míra na \mathbb{R} (tzn. Lebesgueova-Stieltjesova míra příslušná funkci F) taková, že $F_{\mu} = F$.

 $D\mathring{u}kaz$

Bude v TMI2.

Věta 0.50 (Per partes pro L-S integrál)

Jestliže F, G jsou distribuční funkce $a - \infty < a < b < + \infty$, pak

$$F(b)G(b) - F(a)G(a) = \int_{\langle a,b\rangle} F(x)dG(x) + \int_{\langle a,b\rangle} G(x)dF(x).$$

Důkaz TODO!!!

Lemma 0.51 (O $\mu \ll \lambda^1$)

Nechť μ je konečná borelovská míra na \mathbb{R} . Jestliže $F_{\mu} \in C^{1}(\mathbb{R})$, pak $\mu \ll \lambda^{1}$ a $\frac{d\mu}{d\lambda^{1}} = F'_{\mu}$. (Tj. platí $\mu(A) = \int_{A} F'_{\mu} d\lambda^{1} \ \forall A \in \mathcal{B}(\mathbb{R})$.)

 $D\mathring{u}kaz$

Nechť \mathcal{S} je systém, který se skládá z \emptyset a všech intervalů (a,b), kde $-\infty < a < b < +\infty$. Pak \mathcal{S} je π -systém. Buď ν míra daná předpisem

$$\nu(A) := \int_A F'_{\mu} d\lambda^1 \qquad \forall A \in \mathcal{B}(\mathbb{R}).$$

Pak $\mu = \nu$ na \mathcal{S} , nebot

$$\mu(\emptyset) = 0 = \nu(\emptyset),$$

$$\mu((a,b)) = F_{\mu}(b) - F_{\mu}(a) = \int_{a}^{b} F'_{\mu}(x) dx = \int_{(a,b)} F'_{\mu} d\lambda^{1} = \nu((a,b)),$$

je-li $-\infty < a < b < +\infty$.

Dále platí $X_n := (-n, n) \in \mathcal{S}, X_n \nearrow X := \mathbb{R}, \mu(X_n) < +\infty \forall n \in \mathbb{N}$. Proto, dle věty o jednoznačnosti míry platí $\mu = \nu$ na $\sigma \mathcal{S} = \mathcal{B}(\mathbb{R})$. Tedy

$$\mu(A) = \nu(A) = \int_A F'_{\mu} d\lambda^1 \ \forall A \in \mathcal{B}(\mathbb{R}),$$

tj. $\frac{d\mu}{d\lambda^1} = F'_{\mu}$.

Lemma 0.52 (Čebyševova nerovnost)

Je-li $1 \le p < +\infty$, $f \in L^p(\mu)$ a $c \in (0, +\infty)$, pak

$$\mu(\{x \in X \mid |f(x)| \ge c\}) \le \left(\frac{||f||_p}{c}\right)^p.$$

Důkaz

$$\mu(\overbrace{\{x\in X\mid |f()x|\geq c\}}^{M:=}) = \int_{M} 1d\mu \leq \int_{M} \left(\frac{|f|}{c}\right)^{p} d\mu \leq \int_{X} \left(\frac{|f|}{c}\right)^{p} d\mu = \left(\frac{||f||_{p}}{c}\right)^{p}.$$

Věta 0.53 (Vztah mezi konvergencí v $L^p(\mu)$ a konvergencí podle míry)

Je-li $1 \le p \le +\infty$ a $f, f_n \in L^p(\mu)$ $(\forall n \in \mathbb{N})$, pak

$$f_n \stackrel{L^p(\mu)}{\to} f \implies f_n \stackrel{\mu}{\to} f.$$

 \Box $D\mathring{u}kaz$

Je-li $p \in (1, +\infty)$, pak implikace plyne z Čebyševovy nerovnosti. Jinak předpokládejme $f_n \stackrel{L^p(\mu)}{\to} f$ a $\varepsilon > 0$, pak

$$\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, n \ge n_0 : ||f_n - f||_{\infty} < \varepsilon,$$

a tedy $\mu(\lbrace x \in X \mid |f_n(x) - f(x)| \geq \varepsilon \rbrace) = 0 \ \forall n \in \mathbb{N}, \ n \geq n_0. \text{ Proto } f_n \xrightarrow{\mu} f.$

Věta 0.54 (1. vztah mezi konvergencí podle míry a konvergencí skoro všude)

Jestliže (X, \mathcal{A}, μ) je prostor s mírou a $f_n \stackrel{\mu}{\to} f$, pak existuje vybraná podposloupnost $\{f_{n_k}\}_{k \in \mathbb{N}}$ tak, že $f_{n_k} \to f$ μ -skoro všude.

Důkaz

TODO!!!

Důsledek

Je-li $1 \le p \le +\infty$ a $f_n \stackrel{L^p(\mu)}{\to} f$, pak

 $\exists \left\{ f_{n_k} \right\}_{k \in \mathbb{N}} : f_{n_k} \to f \mu\text{-skoro všude}.$

 $D\mathring{u}kaz$

Přímý důsledek předchozích dvou vět.

Věta 0.55 (2. vztah mezi konvergencí podle míry a konvergencí skoro všude)

Jestliže (X, \mathcal{A}, μ) je prostor s konečnou mírou a $f_n \to f$ μ -skoro všude, pak $f_n \stackrel{\mu}{\to} f$.

 $D\mathring{u}kaz$

_TODO!!!

Věta 0.56 (Jegorov)

Jestliže (X, \mathcal{A}, μ) je prostor s konečnou mírou, $\varepsilon > 0$ a f, $f_n, n \in \mathbb{N}$, jsou měřitelné funkce splňující $f_n \to f$ μ -skoro všude, pak

$$\exists B \in \mathcal{A}, \mu(B^c) < \varepsilon : f_n \Longrightarrow f \ na \ B.$$

$D\mathring{u}kaz$	
TODO!!!	