Tic-Tac-Toe like a Pro

Vortrag zum Thema Spielbäume

Joschka Heinrich

Proseminar Theoretische Informatik Fakultät Informatik, TU Dresden 15.02.2018

Tic-Tac-Toe like a Bro

Vortrag zum Thema Spielbäume

Joschka Heinrich

Proseminar Theoretische Informatik Fakultät Informatik, TU Dresden 15.02.2018 Unsere Fragestellung
Motivation

Wie wähle ich in einem Spiel den günstigsten Zug?

Agenda

Tic-Tac-Toe like a Pro

Donald Michies "Menace"

Motivation

 $_{\rm -}$ Donald Michies, 2003 $^{
m 1}$

Donald Michies "Menace"

Motivation

_ Menace, 1963 ²

_ formale Betrachtung von **Spielen** verstehen

- _ formale Betrachtung von **Spielen** verstehen
- _ Minmax-Algorithmus nachvollziehen können

- _ formale Betrachtung von **Spielen** verstehen
- _ Minmax-Algorithmus nachvollziehen können
- _ gute und schlechte **Heuristiken** unterscheiden und anwenden können

- _ formale Betrachtung von **Spielen** verstehen
- _ Minmax-Algorithmus nachvollziehen können
- _ gute und schlechte **Heuristiken** unterscheiden und anwenden können
- _ Vorteile der Alpha-Beta-Kürzung verstehen

Terminologie

Spiel, Konfiguration, Spielbaum

Zufall und Information

Terminologie

_ zwei Spieler: Max und Min

Terminologie

_ zwei Spieler: Max und Min

_ Nullsummenspiel

- _ zwei Spieler: Max und Min
- _ Nullsummenspiel
- $\underline{\hspace{0.1in}} K$ Menge aller zulässigen Konfigurationen

- _ zwei Spieler: Max und Min
- _ Nullsummenspiel
- $\ _\ K$ Menge aller zulässigen Konfigurationen
- $_ \ \operatorname{Spiel} S \coloneqq (R, k_0, F)$

- _ zwei Spieler: Max und Min
- _ Nullsummenspiel
- $\underline{\hspace{0.1in}}$ K Menge aller **zulässigen Konfigurationen**
- $_ \ \operatorname{Spiel} S \coloneqq (R, k_0, F)$
 - $_\ R$ Menge legaler Spielzüge

- _ zwei Spieler: Max und Min
- _ Nullsummenspiel
- $oldsymbol{L}$ K Menge aller zulässigen Konfigurationen
- $_ \operatorname{Spiel} S := (R, k_0, F)$
 - _ R Menge legaler Spielzüge
 - $\ \underline{\quad}\ k_0\in K\quad \text{Anfangskonfiguration}$

- _ zwei Spieler: Max und Min
- Nullsummenspiel
- $oldsymbol{L}$ K Menge aller zulässigen Konfigurationen
- $_ \operatorname{Spiel} S := (R, k_0, F)$
 - $_$ R Menge legaler Spielzüge
 - $\underline{} k_0 \in K$ Anfangskonfiguration

Terminologie

 $\underline{} R:K^2,\ r$ legal

- $\underline{\hspace{0.1in}}$ $R:K^{2},\;r$ legal
 - $\underline{\hspace{0.5cm}}$ wenn v=r(u), dann heißt v **Kindkonfiguration** von u (bezüglich r)
 - $_$ analog: u **Elternkonfiguration** von v (bezüglich r)

- $R:K^2, r$ legal
 - $\underline{}$ wenn v=r(u), dann heißt v **Kindkonfiguration** von u (bezüglich r)
 - $_$ analog: u **Elternkonfiguration** von v (bezüglich r)
- $\underline{\quad} R_k \coloneqq \{r \in R \mid r \text{ anwendbar auf } k\}$

- $\underline{} R:K^2,\ r$ legal
 - $\underline{\hspace{0.5cm}}$ wenn v=r(u), dann heißt v **Kindkonfiguration** von u (bezüglich r)
 - $_$ analog: u **Elternkonfiguration** von v (bezüglich r)
- $R_k := \{r \in R \mid r \text{ anwendbar auf } k\}$
- $\underline{ } \quad \text{Menge der Kindkonfigurationen } N(k) \coloneqq \{r(k) \mid r \in R_k\} \subseteq K$

- $\underline{\hspace{0.1cm}} R:K^2,\ r$ legal
 - $\underline{\hspace{0.5cm}}$ wenn v=r(u), dann heißt v **Kindkonfiguration** von u (bezüglich r)
 - $_$ analog: u **Elternkonfiguration** von v (bezüglich r)
- $\underline{\quad} R_k \coloneqq \{r \in R \mid r \text{ anwendbar auf } k\}$
- $\underline{\quad} \text{ Menge der Kindkonfigurationen } N(k) \coloneqq \{r(k) \mid r \in R_k\} \subseteq K$
 - $_\ N(k_f)=\varnothing,\ k_f\in F$

- $\underline{\hspace{0.1cm}} R:K^2,\ r$ legal
 - $\underline{\hspace{0.5cm}}$ wenn v=r(u), dann heißt v **Kindkonfiguration** von u (bezüglich r)
 - $_$ analog: u **Elternkonfiguration** von v (bezüglich r)
- $\underline{\quad} R_k \coloneqq \{r \in R \mid r \text{ anwendbar auf } k\}$
- $\underline{\quad} \text{ Menge der Kindkonfigurationen } N(k) \coloneqq \{r(k) \mid r \in R_k\} \subseteq K$
 - $_\ N(k_f)=\varnothing,\ k_f\in F$
- $_K$ induktiv über Kindkonfiguration definierbar:

- $\underline{\hspace{0.1cm}} R:K^2,\ r$ legal
 - $\underline{}$ wenn v=r(u), dann heißt v **Kindkonfiguration** von u (bezüglich r)
 - $_$ analog: u **Elternkonfiguration** von v (bezüglich r)
- $\underline{\quad} R_k \coloneqq \{r \in R \mid r \text{ anwendbar auf } k\}$
- $\underline{\quad} \text{ Menge der Kindkonfigurationen } N(k) \coloneqq \{r(k) \mid r \in R_k\} \subseteq K$
 - $N(k_f) = \varnothing, \ k_f \in F$
- _ K induktiv über Kindkonfiguration definierbar:
 - (1) $k_0 \in K$
 - (2) $\forall k \in K : N(k) \subset K$

mögliche, legale und anwendbare Spielzüge

Terminologie

 $\underline{ } \ \, \operatorname{\mathbf{Spielbaum}} \ \, \operatorname{ist} \ \, \operatorname{gerichteter} \ \, \operatorname{\mathbf{Graph}} \ \, G_S \coloneqq (V,E)$

- $\underline{ \quad } \text{ Spielbaum ist gerichteter Graph } G_S \coloneqq (V,E)$
 - $_ \ \, {\rm Knoten} \,\, V = K$

- **_ Spielbaum** ist gerichteter Graph $G_S \coloneqq (V, E)$
 - $_ \ \, \mathsf{Knoten} \,\, V = K$
 - _ Kanten $E = \bigcup_{u \in K} \{(u,v) \mid v \in N(u)\}$

- **_ Spielbaum** ist gerichteter Graph $G_S \coloneqq (V, E)$
 - $_$ Knoten V=K
 - $_ \ \, \mathrm{Kanten} \; E = \bigcup_{u \in K} \{(u,v) \mid v \in N(u)\}$
- G_S ist Baum mit Wurzel k_0 , Blättern F

Terminologie

- **_ Spielbaum** ist gerichteter Graph $G_S \coloneqq (V, E)$
 - $_$ Knoten V=K
 - $_ \ \, \mathrm{Kanten} \; E = \bigcup_{u \in K} \{(u,v) \mid v \in N(u)\}$
- $\underline{\hspace{0.1in}} G_{S}$ ist Baum mit Wurzel k_{0} , Blättern F
- $_$ Spielverlauf mit l Zügen ist Pfad p subsequenter Kindkonfigurationen

$$_\ p=(k_0,k_1,\ldots,k_l)$$

_ zu große Komplexität

Tic-Tac-Toe-Spielbaum der Tiefe 2

Minmax

Geschichte, Algorithmus, Komplexität

Geschichte des Minmax-Algorithmus

Minmax

- _ populär als Suchalgorithmus für Spielstrategie in Schachprogrammen
- 1912 erstmals von Ernst Zermelo erwähnt
- __ 1940er: Bedeutung von Minmax betont (Shannon, Turing)

_ Claude Shannon, 1963³

_ Alan Turing, 1928 ⁴

Voraussetzungen für den Algorithmus

Minmax

_ zwei Typen von Knoten

Voraussetzungen für den Algorithmus Minmax

- _ zwei Typen von Knoten
 - _ Max ist am Zug: Max-Knoten △
 - _ Min ist am Zug: Min-Knoten ∇
 - _ Min/Max alternierend in jedem Halbzug

Voraussetzungen für den Algorithmus

Minmax

_ zwei Typen von Knoten

- _ Max ist am Zug: Max-Knoten
- _ Min ist am Zug: **Min-Knoten** ▽
- _ Min/Max alternierend in jedem Halbzug
- _ jedem Knoten im Baum wird ein Minmax-Wert zugeordnet
 - _ entspricht Max' Nutzen dieser Konfiguration

Voraussetzungen für den Algorithmus

→ **Tiefensuche** (*depth first*)

Minmax

_ zwei Typen von Knoten _ Max ist am Zug: Max-Knoten \triangle _ Min ist am Zug: Min-Knoten ∇ _ Min/Max alternierend in jedem Halbzug _ jedem Knoten im Baum wird ein Minmax-Wert zugeordnet _ entspricht Max' Nutzen dieser Konfiguration _ Minmax-Wert des Knotens k ergibt sich aus Minmax-Werten der Kinder N(k)

Voraussetzungen für den Algorithmus

Minmax

zwei Typen von Knoten Max ist am Zug: Max-Knoten Min ist am Zug: Min-Knoten Min/Max alternierend in jedem Halbzug jedem Knoten im Baum wird ein Minmax-Wert zugeordnet entspricht Max' Nutzen dieser Konfiguration Minmax-Wert des Knotens k ergibt sich aus Minmax-Werten der Kinder N(k)→ **Tiefensuche** (depth first) Gewinnfunktion $q: F \to \mathbb{N}$, die Endkonfigurationen bewertet (aus Sicht von Max)

Der Minmax-Algorithmus

$$Minmax(u) = \left\{ \begin{array}{ll} g(k) & \text{wenn } k \in F \\ max_{v \in N(u)}Minmax(v) & \text{wenn Max in } u \text{ am Zug} \\ min_{v \in N(u)}Minmax(v) & \text{wenn Min in } u \text{ am Zug} \end{array} \right.$$

Der Minmax-Algorithmus

$$Minmax(u) = \left\{ \begin{array}{ll} g(k) & \text{wenn } k \in F \\ max_{v \in N(u)}Minmax(v) & \text{wenn Max in } u \text{ am Zug} \\ min_{v \in N(u)}Minmax(v) & \text{wenn Min in } u \text{ am Zug} \end{array} \right.$$

- _ Max-Knoten: Max wählt besten Zug
 - → höchsten Wert annehmen
- _ Min-Knoten: bester Zug für Min ist schlechtester für Max
 - ightarrow kleinsten Wert für Max annehmen

Minmax bei Tic-Tac-Toe

Minmax bei Tic-Tac-Toe

Abstrakter Minmax-Bäume

Komplexität Minmax

- $\underline{\hspace{0.1cm}}$ m $\underline{\hspace{0.1cm}}$ $\underline{\hspace{0.1cm}}$
- $_\ b \quad \text{Verzweigungsgrad}$

Komplexität

- $\underline{\hspace{0.1cm}}$ m maximale Tiefe des Spielbaumes
- $_\ b$ Verzweigungsgrad
- $_$ Zeitkomplexität: $\mathcal{O}(b^m)$
- _ Speicherkomplexität: $\mathcal{O}(bm)$, bzw. $\mathcal{O}(m)$

Unvollständige Echtzeitentscheidungen

Heuristik, Expansionskriterium

Verbesserung Minmax

Unvollständige Echtzeitentscheidung

 $\underline{}$ neu: **Kriterium**, wann Knoten expandiert werden soll

Verbesserung Minmax

- _ neu: Kriterium, wann Knoten expandiert werden soll
- _ Heuristik, um nicht-Endkonfiguration zu bewerten

Verbesserung Minmax

- _ neu: Kriterium, wann Knoten expandiert werden soll
- **Heuristik**, um nicht-Endkonfiguration zu bewerten
- _ Stärke des Agenten hängt ab von:
 - (a) Bewertung des Nutzens einer Knotenexpansion
 - (b) Genauigkeit der Heuristik

- $\underline{\ \ }$ Heuristik schätzt Nutzen für Spieler in bestimmter Konfiguration
 - $_$ vergleichbar mit A^* -Suche

- _ Heuristik schätzt Nutzen für Spieler in bestimmter Konfiguration
 - $_$ vergleichbar mit A^* -Suche
- _ aus Merkmalen der Konfiguration zusammengesetzt

- _ Heuristik schätzt Nutzen für Spieler in bestimmter Konfiguration
 - $_$ vergleichbar mit A^* -Suche
- _ aus Merkmalen der Konfiguration zusammengesetzt
- _ Anforderungen:
 - _ muss gleiche Ordnung wie Gewinnfunktion erzeugen

- _ Heuristik schätzt Nutzen für Spieler in bestimmter Konfiguration
 - $_$ vergleichbar mit A^* -Suche
- _ aus Merkmalen der Konfiguration zusammengesetzt
- _ Anforderungen:
 - _ muss gleiche Ordnung wie Gewinnfunktion erzeugen
 - _ muss effizient sein

- Heuristik schätzt Nutzen für Spieler in bestimmter Konfiguration
 - $_$ vergleichbar mit A^* -Suche
- _ aus Merkmalen der Konfiguration zusammengesetzt
- _ Anforderungen:
 - _ muss gleiche Ordnung wie Gewinnfunktion erzeugen
 - muss effizient sein
 - _ muss für nicht-Endkonfigurationen Wert nahe der tatsächlichen Chance liefern

Eine Heuristik für TicTacToe

$$\begin{tabular}{ll} $_f(k) = A_X(k) - A_O(k)$ \\ $_A_{X/O}(k)$, Wie viele Möglichkeiten zur Verfollständigung von Linien gibt es?" \end{tabular}$$

Noch einmal Tic-Tac-Toe

Terminologie

Noch einmal Tic-Tac-Toe

Terminologie

Noch einmal Tic-Tac-Toe

Terminologie

Expansionskriterium

- _ trivial: immer terminieren, wenn Endkonfiguration erreicht ist
- _ Metaschluss: Wann lohnt es sich, eine Berechnung anzustellen?
- Beispiele
 - feste Tiefe $\it l$
 - _ Ruhesuche: Bewertung ändert sich nicht mehr stark

lpha,etaGeschichte, Algorithmus, Komplexität

Geschichte der Alpha-Beta-Kürzung (auch α - β -Pruning, -Suche)

- _ Optimierung von Minmax
- _ 1956 in Dartmouth vorgestellt (McCarthy)

_ John McCarthy, 1967 5

- 1961 erstmals in Schachprogramm eingesetzt
- _ 1975 verfeinert (Knuth, Moore)

_ Donald E. Knuth, 2005 6

 α, β

_ einen Alpha- und einen Beta-Wert für jeden Knoten

- _ einen Alpha- und einen Beta-Wert für jeden Knoten
- $\underline{}$ untere Schranke α für Maxknoten
 - $_$ bisher größte Bewertung im Pfad zu k

- _ einen Alpha- und einen Beta-Wert für jeden Knoten
- $\underline{\hspace{0.1in}}$ untere Schranke α für Maxknoten
 - $_$ bisher größte Bewertung im Pfad zu k
- $_$ obere Schranke β für Minknoten
 - $_$ bisher kleinste Bewertung im Pfad zu k

- _ einen Alpha- und einen Beta-Wert für jeden Knoten
- **untere Schranke** α für Maxknoten
 - $_$ bisher größte Bewertung im Pfad zu k
- $_$ obere Schranke eta für Minknoten
 - $_$ bisher kleinste Bewertung im Pfad zu k
- α und β werden nach jeder untersuchten Konfiguration aktualisiert
 - _ initial $\alpha = -\infty$, $\beta = +\infty$
 - $oldsymbol{eta}$ lpha wird an einem Max-Knoten maximiert
 - $_$ β wird an einem Min-Knoten minimiert

Kürzung

 α, β

_ Kürzung der Kindknoten,

d.h. die Rekursion vor Erreichen der Endkonfiguration terminiert

Kürzung

- Kürzung der Kindknoten,
 - d.h. die Rekursion vor Erreichen der Endkonfiguration terminiert
- an Max-Knoten lpha-Cut
 - _ es wird der größte Wert unter den Kindern gesucht
 - $_$ sobald eta eines Kindes $\le lpha$

Kürzung

- _ Kürzung der Kindknoten,
 - d.h. die Rekursion vor Erreichen der Endkonfiguration terminiert
- $_$ an Max-Knoten lpha-Cut
 - _ es wird der größte Wert unter den Kindern gesucht
 - $_$ sobald eta eines Kindes $\le lpha$
- $\underline{\hspace{0.1cm}}$ an Min-Knoten β -Cut
 - es wird der kleinste Wert unter den Kindern gesucht
 - $_$ sobald α eines Kindes $\geq \beta$

 $\begin{array}{l} \text{Ein } \alpha,\beta \text{ Beispiel} \\ \alpha,\beta \end{array}$

 $\begin{array}{l} \text{Ein } \alpha,\beta \text{ Beispiel} \\ \alpha,\beta \end{array}$

 $\begin{array}{l} \text{Ein } \alpha,\beta \text{ Beispiel} \\ \alpha,\beta \end{array}$

$\begin{array}{l} \text{Ein } \alpha,\beta \text{ Beispiel} \\ \alpha,\beta \end{array}$

 $\begin{array}{l} \text{Ein } \alpha,\beta \text{ Beispiel} \\ \alpha,\beta \end{array}$

 $\begin{array}{l} \text{Ein } \alpha,\beta \text{ Beispiel} \\ \alpha,\beta \end{array}$

Komplexität

 α, β

- _ Minmax: $\mathcal{O}(b^m)$
- _ Alpha-Beta-Kürzung: $\mathcal{O}(b^{\frac{m}{2}})$
 - _ bei optimaler Sortierung (**Zugreihenfolge**)
 - _ theoretisches Limit, wenn immer sofort gekürzt werden kann
 - $_$ bei zufälliger Sortierung der Knoten: $\mathcal{O}(b^{\frac{3}{4}m})$

Ausblick

Zugreihenfolge

Zugreihenfolge

Ausblick

- vorsortieren und Killerzüge finden ("Killerzugheuristik")
- _ dynamisch: zuerst Züge probieren, die vorher gut waren
 - $_$ Situationen können wieder auftreten o Hashtabelle anlegen

Verbesserung mit iterativer Tiefensuche Ausblick

_ Suchtiefe mit jedem Durchlauf erhöhen

Verbesserung mit iterativer Tiefensuche Ausblick

- _ Suchtiefe mit jedem Durchlauf erhöhen
- _ hilft bei Wahl einer günstigen Zugreihenfolge
- _ nutzt begrenzte Zeit best möglich aus

Rückblick

zur Motivation

- _ formale Betrachtung von **Spielen** verstehen
- _ Minmax-Algorithmus nachvollziehen können
- _ gute und schlechte **Heuristiken** unterscheiden und anwenden können
- _ Vorteile der Alpha-Beta-Kürzung verstehen

joschka.heinrich@tu-dresden.de

B40E 67C7 FF62 C860 7854 A778 6FB9 666F 1147 A401

https://github.com/foobar0112/tic

Sachquellen

Anhang

- _ Klüppelholz: "Entwurfs- und Analysemethoden für Algorithmen Skript zur Vorlesung SS 2016"
- Russel, Norvig: "Künstliche Intelligenz Ein moderner Ansatz", 3., aktualisierte Auflage, 2012
- _ http://chalkdustmagazine.com/features/
 menace-machine-educable-noughts-crosses-engine
- _ https://de.wikipedia.org/wiki/Tic-Tac-Toe
- _ https://en.wikipedia.org/wiki/Tic-tac-toe
- _ https://de.wikipedia.org/wiki/Minimax-Algorithmus
- _ https://en.wikipedia.org/wiki/Minimax
- _ https://de.wikipedia.org/wiki/Alpha-Beta-Suche
- _ https://en.wikipedia.org/wiki/Alpha-beta_pruning

Bildquellen

Anhang

[1] Donald Michies http://www.aiai.ed.ac.uk/~dm/donald-michie-2003.jpg [2] Menace http://images.slideplayer.nl/9/2257151/slides/slide_6.jpg [3] Claude Shannon https://upload.wikimedia.org/wikipedia/commons/9/99/ClaudeShannon MF03807.jpg [4] Alan Turing https://upload.wikimedia.org/wikipedia/commons/a/a1/Alan Turing Aged 16.jpg [5] John McCarthy http://images.computerhistory.org/fellows/2-4a.stanford_university.mccarthy-john.c1967. 1062302006.stanford_university.src.jpg [6] Donald E. Knuth https://upload.wikimedia.org/wikipedia/commons/4/4f/KnuthAtOpenContentAlliance.jpg

$\textbf{Suchbaum} \not\equiv \textbf{Spielbaum}$

Anhang

- $oldsymbol{\underline{\ }}$ Suchbaum ist gerichteter Graph (V,E,l,w), Baum
 - _ Tiefe $l \in \mathbb{N}_{>0}$
 - $oldsymbol{\bot}$ Knoten entsprechen Pfaden der maximalen Länge l, ausgehend von w im Spielbaum
 - _ Kanten entsprechen anwendbarem Zug

Min spielt nicht optimal Anhang

- _ Minmax ist nur beste Strategie, wenn Min-Spieler auch optimal spielt
- _ wenn nicht: dann noch besser für Max
- _ aber: es gibt ggf. noch bessere Strategien

Spiel mit mehr als 2 Spielern

Anhang

- _ nicht Min-/Max-Halbzüge, sondern A,B,C,...-Züge
- _ nicht ein Minmax-Wert sondern Vektor mit Max-Werte jedes Spielers
- _ Warum kein Vektor bei 2 Spielern?
 - $_$ \to Nullsummenspiel: Gewinn des einen ist Verlust des anderen
- _ Problem: Spielstrategie mit Allianzen

Nicht-Nullsummenspiel Anhang

_ jeder Spieler hat eigene Nutzenfunktion (die allgemein bekannt ist)

Spiele mit Zufall Anhang

- _ dritter Typ Knoten: Zufallsknoten
- _ Erwartungswert statt Minmax-Wert pro Knoten