## **Numerical Optimization**

**Instructor: Sung Chan Jun** 

Week #3: September 11, 2023 (Monday Class)

### **Course Syllabus (Tentative)**

| Calendar             | Description                        | Remarks                                |
|----------------------|------------------------------------|----------------------------------------|
| 1 <sup>st</sup> week | Introduction of optimization       |                                        |
| 2 <sup>nd</sup> week | Univariate Optimization            |                                        |
| 3 <sup>rd</sup> week | Univariate Optimization            |                                        |
| 4 <sup>th</sup> week | Unconstrained Optimization         |                                        |
| 5 <sup>th</sup> week | Unconstrained Optimization         |                                        |
| 6 <sup>th</sup> week | Constrained Optimization, No Class | Oct. 2 (Temporary National<br>Holiday) |
| 7 <sup>th</sup> week | Constrained Optimization, No Class | Oct. 9 (National Holiday)              |
| 8 <sup>th</sup> week | Constrained Optimization, Midterm  | Oct. 18 (Midterm)                      |

### **Announcements**

- Teaching Assistant (TA)
  - Dr. Cheolki Im (Al Graduate School)
    - Post-doc at Biocomputing Lab
    - E-mail: chim@gm.gist.ac.kr
    - Phone: 2266 (internal)
    - Office: DASAN Bldg. Room 505



- Optimality Condition: Unconstrained Univariate
  - (Generalization of optimal conditions) Assume objective univariate function f(x) is at least <u>n times continuously differentiable</u>.

Let 
$$f'(x^*) = f''(x^*) = ... = f^{(n-1)}(x^*) = 0 \& f^{(n)}(x^*) \neq 0$$
. Then

- If  $f^{(n)}(x^*) > 0$  and n even,  $x^*$  is a local minimum.
- Multivariate Calculus
  - Differentiation of function  $z = f(x, y) : R^2 \rightarrow R^1$ 
    - Partial differentiation (in general)

$$\partial f(x, y)/\partial x = \lim_{h_x \to 0} [f(x + h_x, y) - f(x, y)]/h_x$$

$$\partial f(x, y)/\partial y = \lim_{h_y \to 0} [f(x, y + h_y) - f(x, y)]/h_y$$

- Multivariate Calculus
  - Differentiation of vector valued function

$$F: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by  $F(x, y) = (f_1(x, y), f_2(x, y))$ 

- Partial differentiation :  $D_xF(x, y) = (\partial f_1(x, y)/\partial x \partial f_2(x, y)/\partial x)^T$
- Derivative matrix DF

$$\lim_{\mathbf{h} = (h_x \ h_y) \to \mathbf{0}} \left\| F(x + h_x, y + h_y) - F(x, y) - DF(x, y) (h_x \ h_y)^T \right\| / \left\| (h_x \ h_y) \right\| = 0$$

- Multivariate Calculus
  - Gradient (grad f,  $\nabla f$ ): Let  $f(\mathbf{x})$  be a scalar valued function  $R^n \to R$ .

■ 
$$\nabla f(\mathbf{x}) = \nabla f(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n) = (\partial f/\partial \mathbf{x}_1 \ \partial f/\partial \mathbf{x}_2 \ ... \ \partial f/\partial \mathbf{x}_n)^T$$

- Physical meaning: steepest increasing direction
- Divergence (div F,  $\nabla \cdot F$ ): Let  $F = (f_1, f_2, ..., f_n) : \mathbb{R}^n \to \mathbb{R}^n$

■ 
$$\nabla \cdot \mathbf{F} = \partial \mathbf{f}_1 / \partial \mathbf{x}_1 + \partial \mathbf{f}_2 / \partial \mathbf{x}_2 + \dots + \partial \mathbf{f}_n / \partial \mathbf{x}_n$$

- Physical meaning: rate of volume change per unit volume
- 2<sup>nd</sup> derivative for multivariate  $f(\mathbf{x}) = f(x_1, x_2)$ :  $R^2 \rightarrow R$

- Optimality Conditions: Unconstrained Multivariate
  - Assume objective function f(x) is at least twice-continuously differentiable.
    - (NC) Necessary condition for a local minimum
      - 1.  $grad(f(\mathbf{x})) = 0$
      - 2. H(x) ("hessian")  $\geq 0$  i.e H(x) is positive semi-definite.
    - (SC) Sufficient condition for a local minimum
      - 1.  $grad(f(\mathbf{x})) = 0$
      - 2. H(x) > 0 i.e H(x) is positive definite.
    - A symmetric real matrix **A** (n  $\times$  n)
      - is said to be positive definite if  $\mathbf{z}^T \mathbf{A} \mathbf{z} > 0$  (strictly positive) for every non-zero vector  $\mathbf{z}$  of real numbers.

Univariate Optimization

### Minimize f(x) on $x \in R$

Conventional strategy

Due to optimality conditions,

#### Optimality conditions for univariate problem

Necessary condition for a local minimum

$$f'(x^*) = 0 \& f''(x^*) \ge 0$$

Sufficient condition for a local minimum

$$f'(x^*) = 0 \& f''(x^*) > 0$$

- first seek points x with f'(x) = 0 (stationary points).
- then check the sign of f"(x) at those points.
- How to find zero of f'(x)?  $\Rightarrow$  root finding
  - Conventional techniques for root finding
    - Method of bisection, Newton's method
    - Secant method, Regula falsi method

Univariate Optimization: Root Finding - Method of Bisection

- Interval [a, b] is given such that f(a)f(b) < 0.</p>
- Step 1. compute f(x) at the midpoint x = (a + b)/2
- Step 2. if f(x) = 0 or (b a) < TOL, then terminate.

if 
$$f(x)f(a) < 0$$
, then  $b := x$ ,

else 
$$a: = x$$
.

Step 3. Go to Step 1.

Midpoint is one idea. Other strategies may be applicable in a similar manner.

- Randomly chosen interior point
- Any interior point
- Guaranteed to converge to zero; too slow (convergence rate ½)
- The sequence  $\{x_k\}$  converges with order r to  $x^*$ .
  - $\exists$  a constant c > 0 and integer N such that  $\|X_{k+1} X^*\| \le c \|X_k X^*\|^r$ 
    - r = 1, linear convergence; r = 2, quadratic convergence; r > 1,
       superlinear convergence

- Univariate Optimization: Root-finding Methods
  - Newton's method
    - Approximate f(x) by tangent line at the given point.
    - $x_{k+1} = x_k f(x_k)/f'(x_k)$
    - Very fast converging (r = 2); convergence depending on initial guess; not working when  $f'(x_k)$  is small; derivative is required
  - Secant method (method of linear interpolation)
    - Computing f'(x) is very expensive and impossible to compute in some cases.
    - Approximating tangent line by straight line passing two recent iterates
    - $\mathbf{x}_{k+1} = \mathbf{x}_k [(\mathbf{x}_k \mathbf{x}_{k-1})/(f(\mathbf{x}_k) f(\mathbf{x}_{k-1}))]f(\mathbf{x}_k)$
    - rapid convergent (roughly rate r = 1.6180); divergent if straight line approximation is extrapolation

- Univariate Optimization : Root-finding Methods
  - More Consideration on Secant Methods
    - How to approximate tangent line
      - There are many ways to do it
      - Two point approximation

• 
$$f'(x_n) \approx (f(x_n) - f(x_{n-1}))/(x_n - x_{n-1}); \ f'(x_n) \approx (f(x_n) - f(x_{n-2}))/(x_n - x_{n-2})$$

Three point approximation

• 
$$f'(x_n) \approx \alpha(f(x_n) - f(x_{n-1}))/(x_n - x_{n-1}) + (1-\alpha)(f(x_n) - f(x_{n-2}))/(x_n - x_{n-2})$$

- Richardson's extrapolation: all points on axis are even spaced, that is, h
  is fixed
  - 3-point approximation, 4-point approximation
  - 6-point approximation

- Univariate Optimization: Root-finding Methods
  - Regular falsi method (method of false position)
    - Consider the given interval  $I_k = [a, b]$  such that f(a)f(b) < 0.
    - Apply a secant method with two initial points a & b. Find a point  $x_{k+1}$  intersecting with x-axis and a secant.
    - Choose updated interval as follows:
      - $I_{k+1} = [a, x_{k+1}]$ , if f(a) and  $f(x_{k+1})$  have different signs, or  $I_{k+1} = [x_{k+1}, b]$ , otherwise
    - Keep doing in the same manner until termination criterion is satisfied.



- Univariate Optimization : Root-finding Methods
  - Principles of root-finding methods
    - Method of bisection : bracketing, that is, interval is used.
    - Newton's method : straight line is used.
    - Secant method : straight line is used.
    - Regula falsi method : straight line and bracketing are used.
  - Why are straight lines mainly used in root finding techniques?
    - Straight line (1<sup>st</sup> order polynomial) is the simplest shape in approximation.
    - Finding root (intersecting point with x-axis) of straight line is very easy.
  - How about other approaches in place of a straight line?
    - More complex shape may be applicable in the same context.
    - Curve (2<sup>nd</sup> order or higher order polynomial) may be possible.

- Univariate Optimization : Root-finding Methods
  - More advanced root-finding approaches
    - Higher order polynomial approximation
      - Higher order polynomials (quadratic, cubic...) are used for approximation of original function f(x).
        - That would be much rapidly convergent.
        - Seeking the zero point of it is more difficult than a straight line.
    - Rational function approximation (rational interpolation)
      - Approximate f(x) by rational function of the form  $f_{rat}(x) = \frac{x-c}{d_0 + d_1x + d_2x^2}$ 
        - $d_0$ ,  $d_1$ ,  $d_2$ , c are chosen so that the function value and derivatives of  $f_{rat}(x)$  agree with those of f(x) at two points.
      - This approximation is easy to find zero point, which is just 'c'.

### **Univariate Optimization**

Minimize f(x) on  $x \in R$ 

- When f(x) is differentiable
  - Univariate optimization comes to

finding root problem: f'(x) = 0.

- When f(x) is not differentiable
  - How can we solve the optimization problem?
    - Consider methods using function evaluations only

# **Univariate Optimization:** Unimodality

- Unimodality
  - f(x) is unimodal in [a, b] if there exists a unique x\*∈ [a, b] such that for any x₁, x₂ ∈ [a, b] and x₁ < x₂,</li>
    - If  $x_2 < x^*$  then  $f(x_1) > f(x_2)$

• If  $x_1 > x^*$  then  $f(x_1) < f(x_2)$ 





 If f is unimodal in the given interval, it exists a strong local minimum in it.

# **Univariate Optimization:** Unimodality

• When unimodal f(x) is evaluated at two interior points  $x_1$  and  $x_2$   $(x_1 < x_2)$  for given interval [a, b], then





### **Univariate Optimization:** Unimodality

- Let f be unimodal and  $x^* \in [a, b]$  be minimum.
  - By elimination step, (letting  $[a_0, b_0] = [a, b]$ )
    - 1<sup>st</sup> step: choose interior points  $\alpha_1$ ,  $\beta_1$  in  $[a_0, b_0]$  such that  $\alpha_1 < \beta_1$

```
x^* \in [a_0, \beta_1] \subset [a_0, b_0] when f(\alpha_1) < f(\beta_1)
x^* \in [\alpha_1, b_0] \subset [a_0, b_0] when f(\alpha_1) > f(\beta_1)
```

 $x^* \in \text{smaller interval } [a_1, b_1]$ 

 $2^{nd}$  step : choose interior points  $\alpha_2$ ,  $\beta_2$  in  $[a_1, b_1]$  such that  $\alpha_2 < \beta_2$ 

```
x^* \in [a_1, \beta_2] \subset [a_1, b_1] \subset [a_0, b_0] when f(\alpha_2) < f(\beta_2)
                                                                                                 x^* \in \text{smaller interval } [a_2, b_2]
x^* \in [\alpha_2, b_1] \subset [a_1, b_1] \subset [a_0, b_0] when f(\alpha_2) > f(\beta_2)
```

- 3<sup>rd</sup> step ...

 $x^* \in \text{smaller interval } [a_3, b_3]$ 

 $x^* \in \text{smaller interval } [a_n, b_n]$ 

# Univariate Optimization: Unimodality

- Let f be unimodal and  $x^* \in [a, b]$  be minimum.
  - By elimination step, (letting [a<sub>0</sub>, b<sub>0</sub>] = [a, b])
    - So finally, we got the following bracket method:

$$[a_0, b_0] \supset [a_1, b_1] \supset [a_2, b_2] \supset [a_3, b_3] \supset \dots \supset [a_n, b_n] \supset \dots$$
 sufficiently sufficiently reduced reduced

 Whether or not this bracket method successfully works (that is, eventually it approaches the solution) depends on how to choose interior points.

# **Univariate Optimization:** Unimodality

Assume f(x) is unimodal.

- To efficiently reduce the interval of uncertainty by elimination step, we should choose two interior points every iteration.
- How to find two interior points?
  - Definitely, there are many ways to choose them
  - Two efficient ways to consider
    - Fibonacci search
    - Golden section search

### **Sequence of Numbers**

Look at the following number sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55

• What should be the next number?

### **Fibonacci Numbers**

Integer sequences generated by the following recurrence relation

$$\begin{cases}
F_0 = F_1 = 1 \\
F_k = F_{k-1} + F_{k-2}
\end{cases}$$

• Thus, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ....





Pascal's triangle

Fibonacci search on [a, b]

- **S1**. Assume N function evaluations are possible.
- **S2**. Generate Fibonacci numbers  $\{F_0, F_1, F_2, ..., F_N\}$  such that  $F_0 = F_1 = 1$ ,  $F_k = F_{k-1} + F_{k-2}$ .
- **S3**. Choose two interior points  $x_1$  and  $x_2$  ( $x_1 \le x_2$ , let L := b a) as follows:

$$x_1 = a + F_{N-2}/F_N * L = a F_{N-1}/F_N + b F_{N-2}/F_N$$
  
 $x_2 = b - F_{N-2}/F_N * L = a F_{N-2}/F_N + b F_{N-1}/F_N$ 



Internally dividing points of [a, b]

 $x_1 = \text{ratio } F_{N-2} : F_{N-1}$   $x_2 = \text{ratio } F_{N-1} : F_{N-2}$ 

**S4**. Compute  $f(x_1)$  &  $f(x_2)$ . A new reduced interval  $[a_{new}, b_{new}]$  is generated by elimination step.

**S5**. Set 
$$N := N - 1$$
,  $a := a_{new}$ ,  $b := b_{new}$ .

**S6**. Go to **S1** and repeat this until N = 1.

Example

Minimize |x - 0.3| on [0, 1] using Fibonacci search with N=5 function evaluations.

• N = 5, [a, b] = [0, 1], L = b - a = 1,  $\{F_0, F_1, F_2, F_3, F_4, F_5\} = \{1, 1, 2, 3, 5, 8\}$ 

#### 1st iteration

$$\int x_1 = a + F_{N-2} / F_N * L = F_3 / F_5 = 3/8$$

- $x_2=b-F_{N-2}/F_N*L=1-F_3/F_5=5/8$
- $f(x_1)=f(3/8)=0.075$ ,  $f(x_2)=f(5/8)=0.325$
- interval of uncertainty (reduced interval) : [0, 5/8],

N=4

#### 2<sup>nd</sup> iteration

• 
$$x_1 = F_2 / F_4 * 5 / 8 = 1 / 4$$

$$\left( -x_2 = 5/8 - F_2/F_4 * 5/8 = 3/8 \right)$$

- $f(x_1)=f(1/4)=0.05$ ,  $f(x_2)=f(3/8)=0.075$
- interval of uncertainty: [0, 3/8], N=3

#### 3<sup>rd</sup> iteration

- $x_1 = F_1/F_3 * 3/8 = 1/8$
- $x_2 = 3/8 F_1/F_3 * 3/8 = 1/4$
- $f(x_1)=f(1/8)=0.175$ ,  $f(x_2)=f(1/4)=0.05$
- interval of uncertainty is [1/8, 3/8], N=2

#### 4<sup>nd</sup> iteration

- $x_1 = 1/8 + F_0/F_2 * 1/4 = 1/4$
- $x_2=3/8-F_0/F_2*1/4=1/4$  (modified1/4+ $\delta$ )
- $f(x_1)=f(1/4)=0.05$ ,  $f(x_2)=f(1/4+\delta)=0.05-\delta$
- interval of uncertainty is [1/4, 3/8], N=1

- Due to Fibonacci sequences, every step requires just one more function evaluation except for the first step.
  - For  $[a, b] = [0, F_N]$  and  $L = F_N$ ,



- Final interval of uncertainty (N evaluations) :  $1/F_N*(b-a)$ 
  - If tolerance of error  $\varepsilon$  is given, we can estimate N:
    - When  $1/F_N^*(b-a) < \varepsilon$ , find the smallest N such that  $F_N > (b-a)/\varepsilon$ .
- Cons
  - Require to store the Fibonacci numbers
  - Is not easy to apply for the case when termination criterion requires.

- Problem : Consider Minimize |x 0.65| on [0, 1].
  - Use Fibonacci search with N = 8 function evaluations and give the interval of uncertainty.
  - Infer how the length of interval of uncertainty is behaved.

### **Golden Section Ratio**

- Two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities.
- Other names
  - golden mean ,extreme and mean ratio, medial section, divine proportion,
  - divine section, golden proportion, golden cut, golden number







## **Univariate Optimization: Golden Section Search**

- Golden section search
  - Two interior points on [0, 1] are chosen as

 $\tau$  and  $1-\tau$  such that  $\tau > 1-\tau$ .

- By elimination step, we can get the reduced interval of length  $\tau$ .
- Keeping N times in this way, the final interval of uncertainty is length of  $\tau^N$ .
- How to determine  $\tau$ ?
  - Golden section ratio (τ)

• 
$$\tau = d/(c+d) = c/d$$

$$\tau = d/(c+d) = c/d$$

$$\tau = \frac{-1 + \sqrt{5}}{2} \approx 0.6180$$

Distribution of this lecture note is prohibited without instructor's permission.

## **Univariate Optimization:**Golden Section Search

Golden section search is a limiting case of Fibonacci search.

$$\lim_{k\to\infty}\frac{F_{k-1}}{F_k}=\tau$$

- It keeps good property of Fibonacci search
  - it requires just one additional function evaluation every step after 1<sup>st</sup> step.



## **Univariate Optimization: Golden Section Search**

- Final interval of uncertainty (length of interval)
  - $\tau^{N-1*}(b-a)$ , for N function evaluations
- It is easy to answer how many function evaluation is needed to yield the given accuracy (tolerance of error  $\varepsilon$ ).
  - If  $\epsilon$  is given as acceptable error bound, then  $\tau^{N-1*}(b-a) \leq \epsilon$  should be satisfied. Finally, at least N ( $\geq 1 + \log [\epsilon/(b-a)]/\log \tau$ ) steps are required.

# **Univariate Optimization: Search Algorithms**

#### Fibonacci Search

- Use Fibonacci Sequences.
- Pros

Every step requires one function evaluation only.

- Cons
- ✓ Require to store the Fibonacci numbers.
- ✓ not easy to apply for the case when termination criterion requires.
- Final length of interval

1/F<sub>N</sub>\*(b—a) (after N function evaluations)

#### **Golden Section Search**

- Use Golden Section Ratio.
- Pros
- ✓ Every step requires one function evaluation only.
- ✓ Easily estimate how many iterations are needed to get the given accuracy.
- Final length of interval

 $\tau^{N-1*}(b-a)$  (after N function evaluations)

This is a limiting case of Fibonacci search. F

$$\lim_{k\to\infty}\frac{F_{k-1}}{F_k}=\tau$$

# **Univariate Optimization: Seeking bound**

- How to find initial interval [a, b] for a unimodal function f(x)?
  - One of possible ideas
  - **S1**. Set randomly initial point  $x_0$ , step size  $d_0 > 0$
  - **S2**. Evaluate  $f_{-}:=f(x_0-d_0)$ ,  $f_0:=f(x_0)$ ,  $f_+:=f(x_0+d_0)$

**S3**. If 
$$f_{-} \ge f_{0} \ge f_{+}$$
, then set  $d:=d_{0}$ ,  $x_{-1}:=x_{0}-d_{0}$ ,  $x_{1}:=x_{0}+d_{0}$ 

If 
$$f_1 \le f_0 \le f_+$$
, then set d:=-d<sub>0</sub>,  $x_{-1}$ := $x_0$ +d<sub>0</sub>,  $x_1$ := $x_0$ -d<sub>0</sub>

If 
$$f_{-} \ge f_{0} \le f_{+}$$
, then set [a, b]:=[ $x_{0}-d_{0}, x_{0}+d_{0}$ ] and stop.

**S4**. For k=1,2,... 
$$x_{k+1} = x_k + 2^k d$$
.

Many ideas exist

- If  $f(x_{k+1}) \ge f(x_k) \& d > 0$ , then set [a, b]:= $[x_{k-1}, x_{k+1}]$  and stop.
- If  $f(x_{k+1}) \ge f(x_k) \& d < 0$ , then set [a, b]:= $[x_{k+1}, x_{k-1}]$  and stop.

### **Univariate Optimization**

#### Minimize f(x) on $x \in R$

- When f(x) is not differentiable
  - Consider methods using function evaluations only
    - Fibonacci Search, Golden Section Search
  - What other methods?
- When f(x) is differentiable
  - Univariate optimization comes to finding root problem : f'(x) = 0.
    - Method of Bisection, Newton's, Secant, Regular falsi
  - What other methods?

# **Univariate Optimization:** Interpolation methods

- Assume f(x) is unimodal and twice continuously differentiable on [a, b].
  - Newton's method
    - Let f be twice continuously differentiable.
    - f ≈ quadratic interpolation function f<sup>^</sup>
    - By Taylor's expansion, with  $f(x_k)$ ,  $f'(x_k)$  and  $f''(x_k)$

$$f'(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2$$

• Find its minimum and call it  $x_{k+1}$ , then

$$X_{k+1} = X_k - f'(X_k)/f''(X_k)$$

# **Univariate Optimization:** Interpolation methods

Newton's Method in Optimization



1-dimensional problem

2-dimensional problem

# **Univariate Optimization:**Interpolation Methods

- Assume f(x) is unimodal and continuous on [a, b].
  - Quadratic Interpolation without derivatives
    - Set interval to [a, b] and midpoint c:=(a+b)/2.
    - Evaluate f at three points : (a, f(a)), (b, f(b)), (c, f(c)).
    - $f \approx$  quadratic function passing through three points, find its minimum x:

$$x = \frac{f(a)(b^2 - c^2) + f(b)(c^2 - a^2) + f(c)(a^2 - b^2)}{2[f(a)(b-c) + f(b)(c-a) + f(c)(a-b)]}$$

Update the interval and do the same way again.

# **Univariate Optimization:**Safeguarded methods

- Assume f(x) is unimodal on [a, b]
  - Mixed method (reliable + rapid)
    - Reliable and guaranteed method
      - Fibonacci search
      - Golden Section search
    - Rapidly convergent method
      - Quadratic interpolation, and etc.