

AD A 039967

12
J

**AN EXTENDED PREDICTION MODEL FOR
AIRPLANE BRAKING DISTANCE AND A
SPECIFICATION FOR A TOTAL BRAKING
PREDICTION SYSTEM**

Volume II

M. K. Wahi, S. M. Warren, H. H. Straub
Boeing Commercial Airplane Company
P. O. Box 3707, Seattle, Washington 98124

March 1977

**Technical Report ASD-TR-77-6, Volume II
Combat Traction II, Phase II (Extended)
Final Report Tasks II and III
August 1975 - December 1976**

Approved for public release; distribution unlimited.

**AERONAUTICAL SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
Wright-Patterson Air Force Base, Ohio 45433**

AD NO.
DDC FILE COPY

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been prepared by the Boeing Commercial Aircraft Company, Renton, Washington, under USAF Contract F33657-74-C-0129 for the Deputy for Engineering, Aeronautical Systems Division, Wright-Patterson AFB, Ohio.

This report has been reviewed and cleared for open publication and/or public release by the appropriate Office of Public Information (OI) in accordance with AFR 190-13 and DOD 5230.9. There is no objection to unlimited distribution to the public at large or by the Defense Documentation Center (DDC) to the National Technical Information Service (NTIS).

This report has been reviewed and approved for publication.

DAVID B. TREMBLAY

DAVID B. TREMBLAY
Technical Expert

FOR THE COMMANDER

John F. Andrews
JOHN F. ANDREWS, Lt Col, USAF
Chief, Flight Equipment Division
Directorate of Flight Systems Engineering
Deputy for Engineering

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER ASD/TR-77-6 Vol II	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER 9
4. TITLE (and subtitle) An Extended Prediction Model for Airplane Braking Distance and a Specification for a Total Braking Prediction System, Volume II.		5. DATE OF REPORT & PERIOD COVERED Final/Aug 1975-Dec 1976
6. AUTHOR(s) M. K. Wahl, S. M. Warren, H. H. Straub		7. CONTRACT OR GRANT NUMBER(s) F33657-74-C-0129 (Extended)
8. PERFORMING ORGANIZATION NAME AND ADDRESS The Boeing Commercial Airplane Company Renton, Washington		9. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 021A9363
10. CONTROLLING OFFICE NAME AND ADDRESS Aeronautical Systems Division (AEAA) Air Force Systems Command Wright-Patterson AFB, OH 45433		11. REPORT DATE Mar 1977
12. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 176
		14. SECURITY CLASS. (of this report) Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release, distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) <i>DRAFT</i> <i>MAY 27 1977</i>		
18. SUPPLEMENTARY NOTES <i>402 126</i>		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Combat Traction Antiskid Simulator Total Braking Prediction System Verification Test Program		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report details the results from the sensitivity study portion of the Combat Traction II, Phase II (Extended) Program and also contains the calculations resulting from prediction equation formulation for the B-52, KC-135 and F-111 airplanes. The objectives, results and recommendations of this effort are contained in ASD Technical Report ASD-TR-77-6, Volume I.		

PREFACE

This report was prepared by M. K. Wahl, S. M. Warren, and H. H. Straub of the Boeing Commercial Airplane Company under a USAF Contract F33657-74-C-0129 (extended). The program was divided into three tasks. Task I involved the formulation of a tire correlation model, a test outline to validate the model, establishment of a friction prediction subsystem specification criteria and evaluation of existing ground vehicles. The work completed under Task I of this contract was performed from May 1975 to December 1975 and all aspects of that work are described in a separate report , ASD-TR-77-7.

Task II involved a sensitivity analysis of airplane braking distance by using the Boeing Brake Control Simulator for the USAF B-52, KC-135 and F-111 airplanes to validate the general prediction model developed in the previously contracted effort. Task III objectives were to establish compatibility between Task II and Task I subsystems and to recommend a test program to verify the effectiveness and reliability of this Total Braking Prediction System (TBPS). The present volume I of this report describes the hardware and antiskid systems used on the brake control simulator as well as the test conditions and parameters used in developing data required for the dimensional analysis. The work described herein was performed from August 1975 to December 1976.

The authors are indebted to Messers N. S. Attri, and A. J. P. Lloyd for their guidance and technical contribution as respective program managers at various stages of the contract.

The authors are also indebted to Messers W. B. Tracy ASD/ENFEM, D. B. Tremblay ASD/ENFE, 1st. Col. R. Kennah, ASD/AEAA and Maj. R. Cauley, AFCEC/EMR of the USAF for their program support.

ACCESSION NO.	
RTB	Wahl, S. M.
DIG	807 362-4
EXAMINER/CODE	
JUSTIFICATION	
BY	
DISTRIBUTION/AVAILABILITY CODES	
DIR.	AVAIL. 362-4 SPECIAL
A	

PREVIOUS PAGE BLANK NOT FILMED

TABLE OF CONTENTS

	Page
I. INTRODUCTION	1
II. BASIC BRAKE CONTROL HYDRAULIC SYSTEM	1
III. B-52H BRAKE CONTROL SYSTEM DESCRIPTION AND SYSTEM CHARACTERISTICS	2
1. System Description	2
a. Antiskid Control System	2
b. Locked-Wheel and Touchdown Protection	9
c. Brake Hydraulic System	9
d. Brakes	9
2. Braking System Characteristics	10
3. Simulation and Testing of B-52 Skid Detector	10
IV. KC-135 BRAKE CONTROL SYSTEM DESCRIPTION AND SYSTEM CHARACTERISTICS	23
1. System Description	23
a. Wheel Speed Transducer	23
b. Antiskid Control System	23
c. Touchdown and Locked-Wheel Protection	30
d. Brake Hydraulic System	30
e. Brakes	32
2. Braking System Characteristics	32
V. F-111 BRAKE CONTROL SYSTEM DESCRIPTION AND SYSTEM CHARACTERISTICS	39
1. System Description	39
a. Wheel Speed Transducer	39
b. Antiskid Control System	39
c. Touchdown and Locked-Wheel Protection	39
d. Brake Hydraulic System	46
e. Brakes	46
2. Braking System Characteristics	48
VI. REGION OF ANTISKID SYSTEM OPERATION ON MU-SLIP CURVE	55
1. B-52H Mark I	55
2. KC-135 Mark II	55
3. F-111 Goodyear System	55

PRECEDING PAGE BLANK NOT FILMED

TABLE OF CONTENTS (Concluded)

	Page
VII. DETAILED SENSITIVITY STUDY TEST PROCEDURE AND SEQUENCE	57
1. Test Procedure	57
a. Stability Studies	57
b. Performance Studies	57
1. Touchdown Dynamics	58
2. Stabilized Landing	58
3. Mu Steps	58
4. Wet Runway	58
c. Hydraulic System Studies	58
1. Hydraulic System Response	58
2. Antiskid Valve Characteristics	59
3. Hydraulic System Pressure-Volume Characteristics	59
2. Test Sequence	59
VIII. PERFORMANCE INDICES	61
IX. STABILITY TEST RESULTS	77
1. Strut Damping	77
X. TEST NOTES	80
1. Torque Limited Braking	80
2. Low Friction Operation - F-111	80
3. Strut Stability - F-111	80
4. Pressure Application	80
5. Baseline Data Variation - KC-135	82
XI. PARAMETER RATINGS	84
XII. CALCULATION OF PI TERMS	89
XIII. ARRANGEMENT OF PI TERMS	103
XIV. FORMULATION OF MODEL PREDICTION EQUATIONS AND MODEL-TO SIMULATOR CORRELATION CALCULATIONS	128
XV. WET-RUNWAY ANALYSIS CALCULATIONS	142

LIST OF TABLES

No.		Page
1	B-52H Brake Hydraulic System Mockup	5
2	B-52H Brake Hydraulic System Mockup Components	6
3	B-52H Step Response Data	12
4	B-52H Skid Detector Parameters	16
5	KC-135 Brake Hydraulic System Mockup	26
6	KC-135 Brake Hydraulic System Mockup Components	27
7	KC-135 Frequency Response Data	35
8	KC-135 Step Response Data	36
9	F-111 Brake Hydraulic System Mockup	42
10	F-111 Brake Hydraulic System Mockup Components	43
11	F-111 Frequency Response Data	51
12	F-111 Step Response Data	52
13	Test Sequence	60
14	B-52 Baseline Braking Data	62
15	B-52 Sensitivity Study Data	63
16	KC-135 Baseline Braking Data	67
17	KC-135 Sensitivity Study Data	68
18	F-111 Baseline Braking Data	72
19	F-111 Sensitivity Study Data	73
20	Stability Test Conditions	78
21	Stability Test Results	79
22	Torque Limited Cases	81
23	Summary of Parameter Ratings	85
24	B-52H Parameter Ratings	86
25	KC-135 Parameter Ratings	87
26	F-111 Parameter Ratings	88
27	Baseline Values Used in Airplane Simulation and Prediction Model	90
28	Parametric Study Data	91
29	Simulator Braking Distance Results	93
30	B-52 Pi Determination	94
31	KC-135 Pi Determination	97
32	F-111 Pi Determination	100
33	B-52 Pi Arrangement	104
34	KC-135 Pi Arrangement	112
35	F-111 Pi Arrangement	120
36	B-52 Model-To-Simulator Correlation	129
37	KC-135 Model-To-Simulator Correlation	134
38	F-111 Model-To-Simulator Correlation	138
39	Simulator Braking Distance Results - Wet Runways	143
40	B-52 Pi Determination - Wet Runways	144
41	KC-135 Pi Determination - Wet Runways	146
42	F-111 Pi Determination - Wet Runways	148
43	B-52 Pi Arrangement - Wet Runways	150

LIST OF TABLES (Concluded)

	Page
44	KC-135 Pi Arrangement - Wet Runways
45	F-111 Pi Arrangement - Wet Runways
46	B-52 Model-To-Simulator Correlation - Wet Runways
47	KC-135 Model-To-Simulator Correlation - Wet Runways
48	F-111 Model-To-Simulator Correlation - Wet Runways

LIST OF ILLUSTRATIONS

No.	Page
1 B-52H Brake Hydraulic System Mockup	3
2 B-52H Brake Hydraulic System Schematic	4
3 B-52H Locked Wheel and Skid Detector	7
4 B-52H Antiskid System Block Diagram	8
5 B-52 Brake Hydraulic System Step Response	11
6 B-52H Brake Pressure - Volume Characteristic	13
7 B-52 Skid Detector Schematic	14
8 B-52H Skid Detector Block Diagram	15
9 B-52H Skid Detector Test Trace	18
10 B-52 Skid Detector Delay Time Versus Deceleration	19
11 B-52 Skid Detector Contact Time	20
12 B-52 Completed Skid Detector Simulation	21
13 B-52 Locked Wheel Protection Commutator Simulation	22
14 KC-135 Brake Hydraulic System Mockup	24
15 KC-135 Brake Hydraulic System Schematic	25
16 KC-135 Wheel Speed Transducer	28
17 KC-135 Antiskid System Block Diagram	29
18 KC-135 Antiskid Valve Schematic	31
19 KC-135 Brake Hydraulic System Frequency Response	33
20 KC-135 Brake Hydraulic System Step Response	34
21 KC-135 Antiskid Valve Pressure-Current Characteristics	37
22 KC-135 Brake Pressure-Volume Characteristic	38
23 F-111A Brake Hydraulic System Mockup	40
24 F-111 Brake Hydraulic System Schematic	41
25 F-111 Wheel Speed Transducer	44
26 F-111 Antiskid System Block Diagram	45
27 F-111 Pilot Metering Valve and Antiskid Valve Assembly Schematic	47
28 F-111 Brake Hydraulic System Frequency Response	49
29 F-111 Brake Hydraulic System Step Response	50
30 F-111 Antiskid Valve Pressure-Current Characteristic	53
31 F-111 Brake Pressure-Volume Characteristic	54
32 Definition of Operating Regions on Mu-Slip Curve	56
33 Variable KC-135 Valve Response	83

SECTION I INTRODUCTION

This volume describes the hardware and antiskid systems used on the brake control simulator plus the test conditions and parameters used in developing data for the dimensional analysis in the study.

SECTION II BASIC BRAKE CONTROL HYDRAULIC SYSTEM

The hydraulic portion of the brake control simulator employed standard aircraft hydraulic system components. The actual hydraulic configuration of each of the three aircraft was mocked up. The major components common to most of the aircraft braking system are:

- Antiskid valve
- Pilot metering valve
- Brakes
- Accumulator
- Tubing

To generate the proper hydraulic system response, line lengths and diameters, valve locations, and restrictions were implemented as specified by the technical documents for each airplane. The brake hydraulic system of each aircraft is activated by a pilot input to the pilot metering valve. As the pilot applies force to the brake pedals pressure is metered to the antiskid valve and brake.

The main function of the antiskid valve is to modulate the brake pressure based on an electrical signal from a control box. To maintain the proper pressure and flow characteristics through the antiskid valve and pilot metering valve, actual aircraft brakes were used. This ensured that the correct pressure-volume relationship existed during system operation. Because the system pressure is modulated by the antiskid valve, large demands can be placed on the hydraulic supply. To partially eliminate the resulting supply pressure fluctuations, an accumulator is placed in the system supply line.

SECTION III

B-52H BRAKE CONTROL SYSTEM DESCRIPTION AND SYSTEM CHARACTERISTICS

The B-52 Brake Control System consists of skid and locked wheel detectors, control shields, a hydraulic system and brakes. The control system is designed to automatically release and reapply the brakes in response to signals generated by the detector and control shield.

The hydraulic system mockup used in the B-52 sensitivity tests is shown in Figure 1. The mockup represents one quarter of a B-52's brake system. Each of the four systems has its own hydraulic supply and control shield. Each system operates independently, but all are actuated by a single pilot command. Figure 2 is a system schematic identifying the mockup components. Table 1, in conjunction with Figure 2, defines the significant hydraulic system information. Table 2 details the specific hardware used in the mockup.

1. SYSTEM DESCRIPTION

A. ANTISKID CONTROL SYSTEM

The B-52 Mark I antiskid control system consists of three components; the skid and locked wheel detector, the control shield, and the solenoid valve. The detector is an electro-mechanical device, providing logic signals to the control shield. The shield is a power conditioner containing a series of relays. The relays interpret the logic signals from the detector and apply an electrical signal to the hydraulic solenoid valve, to dump or apply metered brake pressure.

The detector shown in Figure 3 is the heart of the antiskid system. Its function in the system is to signal wheel decelerations above a preset value. The device is mounted in the axle and is driven by wheel hubcap rotation. The skid sensing portion of the detector consists of an inertia flywheel and an overload-release clutch. When wheel deceleration exceeds a predetermined rate, the flywheel's inertia causes the springloaded clutch to release. The overload torque decelerates the flywheel at a rate which is much smaller than the wheel lock-up deceleration rate. This causes a set of electrical points to move into contact, thereby completing the skid circuit to the control shield. The shield in turn provides an electrical signal to the anti-skid solenoid valve resulting in a release of brake pressure.

As the wheel accelerates back to synchronous speed, the contacts in the detector open, removing the signal from the antiskid solenoid valve. Thus, the pilot's metered pressure is again applied to the brake, allowing the skid cycle to repeat.

The antiskid control system, as described above, is represented by the functional block diagram of Figure 4.

The second function of the detector is to provide locked-wheel protection for the paired wheel in a lock-wheel set. A commutating switch simply senses the existence of wheel speed. This switch allows completion of the skid circuit during a locked-wheel condition.

Figure 1.—B-52H Brake Hydraulic System Mockup

Figure 2.—B-52H Brake Hydraulic System Schematic

Table 1.—B-52H Brake Hydraulic System Mockup

DESCRIPTION	LINE NUMBER	LINE SIZE	LINE LENGTH (INCHES)
ACCUMULATOR LINE	1	8S35	21
SUPPLY LINE	2	8S35	17
METERED PRESSURE LINE	3	8A35	92
A-BRAKE PRESSURE LINE	4	6A35	10
	5	6A35	24
	6	6S28	30
	7	8S35	13.5
	8	3/8" Hose	50
	9	6S28	21
A-RELIEF PRESSURE LINE	10	6A35	15
B-BRAKE PRESSURE LINE	11	6A35	10
	12	6A35	14
	13	6S28	29
	14	8S35	13.5
	15	3/8" Hose	50
	16	6535	17
B-RELIEF PRESSURE LINE	17	6A35	22
METERED PRESSURE RETURN LINE	18	8A35	As necessary
BRAKE PRESSURE RETURN LINE	19	6A35	
RELIEF PRESSURE RETURN LINE	20	8A35	
COMMON PRESSURE RETURN LINE	21	8A35	
COMMON PRESSURE RETURN LINE	22	8A35	

Table 2.—B-52H Brake Hydraulic System Mockup Components

ITEM	NATIONAL STOCK NUMBER	QUANTITY
CONTROL SHIELD	1630-00-621-0657	1
SKID AND LOCKED WHEEL DETECTOR	1630-00-650-0788	1
PILOT METERING VALVE (MECHANICAL ACTUATION)	1650-00-332-5721LE	1
DUAL ANTISKID VALVE	1630-00-620-4452	1
RESTRICTOR		1
FUSE	1650-00-839-7856	2
CHECK VALVE	4820-00-698-3314	2
RELIEF VALVE	4820-00-529-4180	1
BRAKE SWIVEL ASSEMBLY	1650-00-306-9778	2
ACCUMULATOR	1650-00-898-9839	1
BRAKE ASSEMBLY	1630-00-777-6698	2

Figure 3.—B-52H Locked Wheel and Skid Detector

Figure 4.—B-52H Antiskid System Block Diagram

B. LOCKED-WHEEL AND TOUCHDOWN PROTECTION

The two wheels of each gear are connected as a pair to provide locked-wheel protection. The locked-wheel protection is activated when one wheel of a pair reaches a velocity of at least 36 rpm. A locked-wheel signal is provided when one wheel of the pair locks or fails to spin-up. The rotating wheel then supplies a brake release signal, allowing the wheel to spin-up to synchronous speed. However, should both wheels of a locked wheel pair stop rotating no protection is provided.

Touchdown protection is provided by squat switch logic. In the air the switch is closed completing a skid circuit resulting in a brake release signal to the antiskid valve.

C. BRAKE HYDRAULIC SYSTEM

The B-52 brake hydraulic system is composed of four similar subsystems. Each subsystem supplies the two brakes on a gear with brake pressure. The description to follow is typical of each subsystem, however, differences are also explained.

Each hydraulic subsystem consists of a pilot metering valve, a dual antiskid (solenoid) valve, an accumulator, restrictors, fuses and the associated tubing. Hydraulic pressure at 3000 psi enters the pilot metering valve. The valve designed to control pressure, meters hydraulic pressure to the antiskid valve in direct proportion to the force applied to the valve. The input force is controlled by the pilot. The two forward metering valves are mechanically actuated by a cable and linkage arrangement from the flight deck. The two aft metering valves are hydraulically slaved to the left forward metering valve.

The output pressure of the metering valves is limited to 700psi by restricting the input force. Pressure from the metering valve enters a dual antiskid valve and is ultimately routed to the brakes through a restrictor and fuse.

The B-52 antiskid valve is an electrically operated solenoid valve. Its function in the brake system is to modulate brake pressure. The valve is spring loaded and biased open to supply pressure in the unenergized state. In this condition the brake is pressurized. When energized by a skid signal the supply to brake port is closed and the brake to return port is opened. In this condition, brake pressure is reduced to return pressure resulting in a brake release.

The accumulator located on the supply pressure side of the pilot metering valve serves a dual purpose in the system. First, it helps to maintain pressure at a constant level by absorbing fluctuations in supply pressure. The accumulator also allows limited brake application in the event of a hydraulic supply system failure.

D. BRAKES

The B-52 brake is a multiple disc design with 4 rotors. The brakes used during this study were overhauled Bendix units.

2. BRAKING SYSTEM CHARACTERISTICS

Preliminary to the sensitivity study, various system and component characteristics were measured. The dynamic response of the B-52 brake hydraulic system is shown in Figure 5. This figure is a representative step response curve for the system. At time equal zero, a step change in brake pressure is commanded, the time history of brake pressure is then recorded. The signal for step response was applied to the antiskid valve while the maximum pressure level was controlled with the metering valve. A compilation of the step response data is shown in Table 3.

Due to the on-off characteristic of the B-52 antiskid valve, frequency response and pressure-current characteristics were not run.

The pressure-volume characteristic of the standard B-52 brake is shown in Figure 6.

3. SIMULATION AND TESTING OF B-52 SKID DETECTOR

The B-52 Mark I skid and locked-wheel detector is an active dynamic component in the anti-skid system with time dependent behavior. This required that its operational characteristics be included to assure proper antiskid system performance. Equipment and instrumentation restrictions dictated that the detector be simulated on an analog computer.

The detector provides the brake control system with a signal which results in step changes in commanded brake pressure. The inherent delay times and duration of the pressure command are unique characteristics of the device and must be duplicated for proper brake control system response.

The skid detector is shown schematically in Figure 7. The major components simulated are a rotor, clutch and flywheel. The rotor is mechanically connected to the wheel-tire assembly, and provides the input to which the clutch and flywheel react. A spring connecting the rotor and clutch acts to center the clutch during synchronous operation. The clutch and rotor can rotate relative to one another until the rotor impacts a clutch travel limit which is simulated with a stiff spring.

During synchronous operation, the rotor, clutch and flywheel all rotate at the same speed. At the initiation of a skid the rotor angular velocity decreases, resulting in relative motion between rotor and clutch until the travel limit is impacted. Then the inertia forces of the flywheel overload the clutch and cause the flywheel to slip around the clutch. This slipping action is an indication of a continuing skid, holding the electrical contacts closed. When the wheel recovers from the skid, the rotor speeds up, causing relative motion between rotor and clutch, opening the electrical contacts. As the opposite travel stop is impacted, the clutch is forced to move with the rotor, causing an overload in the opposite direction, until the flywheel speed matches that of the rotor.

A block diagram of the skid detector is shown in Figure 8 and defines the skid detector's dynamic characteristics. The values of the parameters used in the skid detector simulation were determined from engineering drawings of the device and laboratory test results and are shown in Table 4.

Figure 5.—B-52 Brake Hydraulic System Step Response

*Table 3.—B-52H Step Response Data
(Dynamic Response of Left Brake)*

TEST CONDITION	METERED PRESSURE (psi)	DELAY RESPONSE TIME (SEC)	RESPONSE TIME TO 80% OF PRESSURE CHANGE	OVERSHOOT OF STEP CHANGE	PERCENT PRESSURE INCREASE	PERCENT PRESSURE DECREASE
TEST CONDITION	METERED PRESSURE (psi)	PRESSURE INCREASE	PRESSURE (SEC) PRESSURE DECREASE	PRESSURE DECREASE	PRESSURE INCREASE	PRESSURE DECREASE
STANDARD HYDRAULIC CONFIGURATION						
LEFT SOLENOID (ALONE)	750 to 780	.46	.020	.565	.070	49.0
	600 to 630	.485	.020	.52	.075	56.9
	350 to 380	.730	.020	.76	.070	78.9
LEFT & RIGHT SOLENOIDS (TOGETHER)	750 to 780	.52	.025	.56	.145	90.2
	600 to 630	.59	.020	.63	.135	89.0
	350 to 380	.915	.030	.945	.130	132.9

Figure 6.—8-52H Brake Pressure - Volume Characteristic

Figure 7-B-52 Skid Detector Schematic

Figure 8.—B-52H Skid Detector Block Diagram

Table 4.—B-52H Skid Detector Parameters

PARAMETER	DEFINITION	UNITS	VALUE
C	Rotor-Clutch Damping Coefficient	lbf-ft-sec	6.82×10^{-4}
K	Rotor-Clutch Spring Coefficient	lbf-ft	4.15×10^{-4}
K_1, K_2	Skid Stop-Spring Coefficient	lbf-ft	6.49×10^{-2}
I_c	Clutch Inertia	lbf-ft-sec^2	1.097×10^{-6}
I_f	Flywheel Inertia	lbf-ft-sec^2	3.25×10^{-4}
T	Clutch Overload Release Torque	ft-lbf	2.156×10^{-2}
θ_1	Skid Stop Rotation Angle	Radians	.4363
θ_2	Recovery Stop Rotation Angle	Radians	.2269

To make the skid detector simulation absolutely correct, the overload release torque should be a function of position difference rather than speed difference. Due to computer limitations this aspect was compromised, however, the dynamic response of the detectors was not effected significantly.

In order to "tune" the skid detector simulation, actual hardware performance laboratory tests were conducted by connecting the detector to a high response hydraulic motor. Skid signal delay and contact times were measured as a function of initial rotor speed and deceleration rates. A typical test trace is shown in Figure 9. Test results indicated the skid signal delay time is inversely related to rotor deceleration rate, as shown on Figure 10. Only a very slight dependence of delay time (less than 7%) on initial rotor velocity was noted over the test range. As shown on Figure 11, the contact time is directly dependent on initial rotor speed. Analog computer simulation results for a series of similar skid detector tests are also shown in Figure 10 and 11. Good agreement between test and simulation results can be noted.

In addition to the analog simulation of the skid detector dynamics, two electronic circuits were required to complete the detector simulation. Figure 12 depicts the circuit used to simulate the skid detector's point contact during a skid cycle. When a skid occurs, the output of the analog simulation is a high voltage which turns transistor Q1 on. Point A is grounded, completing the detector's skid circuit.

To provide locked-wheel protection, the detector's wheel speed commutator was simulated. A schematic of the resulting circuit is given in Figure 13. As shown, wheel speed from the analog computer is used to drive a voltage control oscillator (VCO) at the appropriate frequency. The output of the VCO in turn causes transistor Q2 to turn on and off simulating the commutator's action. The trim pot is used to provide adjustment of the commutator's pulse width (see Figure 13).

Figure 9.—B-52H Skid Detector Test Trace

B-52H SKID DETECTOR
PART #40-193A

○ AVERAGED DATA
□ COMPUTER DATA

Figure 10.—B-52 Skid Detector Delay Time Vs. Deceleration

Figure 11.—B-52 Skid Detector Contact Time

Figure 12.—B-52 Completed Skid Detector Simulation

Figure 13.—B-52 Locked Wheel Protection Commutator Simulation

SECTION IV

KC-135 BRAKE CONTROL SYSTEM DESCRIPTION AND SYSTEM CHARACTERISTICS

The KC-135 sensitivity studies were conducted with the Mark II Antiskid System modification. The initial KC-135 brake system was a Mark I on-off system, while the Mark II is a modulating pressure system. Figure 14 shows the KC-135 brake hydraulic system mockup used for these tests. The mockup represents the brake hydraulics associated with one main landing gear or one-half of the brake system. Figure 15 is a schematic of the mockup and can be used to identify individual hydraulic components. In addition, this figure, along with Table 5, details the hydraulic configuration. Table 6 is included to identify the components used in the mockup.

1. SYSTEM DESCRIPTION

A WHEEL SPEED TRANSDUCER

The KC-135 wheel speed transducer consists of a rotor and a coil assembly as shown in Figure 16. A transducer is mounted in the axle of each braked wheel with the rotor attached to the wheel by a hubcap. Rotation of the rotor produces a transducer output current with frequency proportional to wheel speed. The transducer's basic operation is as follows. Current is supplied to the coil assembly which creates a magnetic field. The rotor turns within this magnetic field. Teeth on the rotor cut through the magnetic field inducing an alternating current on the coil current. This alternating current is fed into the antiskid brake control box providing wheel speed information.

B. ANTISKID CONTROL SYSTEM

The sensitivity study of the KC-135 was conducted with a Mark II antiskid control system. The Mark II is a product of the Hydro-Aire Division of the Crane Company. A simplified block diagram of the system is presented in Figure 17.

The Mark II antiskid system requires active wheel speed information which is supplied by an A. C. wheel speed transducer located in each wheel. The A. C. signal with frequency proportional to wheel speed is received by the antiskid control box's squaring circuit. The squaring circuit converts the sinusoidal wheel speed to a square wave with frequency proportional to wheel speed. The velocity amplifier converts this signal to a D. C. voltage. The magnitude of the D. C. voltage is a measure of actual wheel speed. The D. C. wheel speed is differentiated in the deceleration amplifier to produce instantaneous wheel deceleration and compared to a fixed threshold. When the derived deceleration exceeds the threshold, a brake release signal is initiated. The duration and magnitude of the brake release is dependent upon the amount by which the threshold is exceeded. In addition to this control, a pressure bias modulation (PBM) circuit provides extended control after the wheel has recovered from a skid. The PBM is basically a capacitor circuit, during a skid the capacitor is charged to a level proportional to the duration and magnitude of the skid. After the wheel has recovered from a skid, the capacitor discharges ramping pressure on. To ensure that the same brake pressure is not reapplied after a skid, the PBM is charged to a higher level than it had prior to the skid.

Figure 14.—KC-135 Brake Hydraulic System Mockup

Figure 15.—KC-135 Brake Hydraulic System Schematic

Table 5.—KC-135 Brake Hydraulic System Mockup

DESCRIPTION	LINE NUMBER	LINE SIZE	LINE LENGTH (Inches)
ACCUMULATOR LINE	1	6S35	60
SUPPLY PRESSURE LINE	2	8S49	60
	3	6S35	60
METERED PRESSURE LINE	4	8S49	60
PORT 1 BRAKE PRESSURE LINE	5	8S49	11
	6	8S49	16
	7	8S49	170
	8	1/2 in.hose	81
BRAKE #1 PRESSURE LINE	9	6S35	63
BRAKE #2 PRESSURE LINE	10	3/8 in.hose	24
PORT 2 BRAKE PRESSURE LINE	11	8S49	15
	12	8S49	159
	13	1/2 in.hose	81
BRAKE #3 PRESSURE LINE	14	6S35	63
BRAKE #4 PRESSURE LINE	15	3/8 in.hose	24
PILOT METERING VALVE RETURN	16	8A35	AS REQUIRED
ANTISKID VALVE RETURN	17	8A35	AS REQUIRED

Table 6.—KC-135 Brake /Hydraulic System Mockup Components

ITEM	NATIONAL STOCK NUMBER	QUANTITY
SKID CONTROL BOX	1630-00-918-0340	1
SKID DETECTOR	1630-00-918-0339	1
PILOT METERING VALVE	1630-00-610-7199	1
DUAL ANTISKID VALVE	1630-00-908-9999	1
FUSE	1650-00-672-8013	2
DEBOOST VALVE	1650-00-570-8397	2
ACCUMULATOR	1650-00-584-9343	1
BRAKE ASSEMBLY	1630-00-058-5242	4

Figure 16.—KC-135 Wheel Speed Transducer

Figure 17.—KC-135 Antiskid System Block Diagram

The signals from the PBM and deceleration amplifier provide the input to the valve driver. The valve driver provides current to the antiskid valve in relationship to input voltage.

C. TOUCHDOWN AND LOCKED-WHEEL PROTECTION

Locked-wheel protection in the Mark II antiskid system consists of an arming circuit and a detection circuit. The four inboard wheels are combined to form one locked-wheel set, the remaining four outboard wheels form another locked-wheel set. The system is armed when either of the locked-wheel sets are rotating faster than 20 knots. If a wheel speed drops below 15 knots after the system is armed, a signal is then produced to completely remove brake pressure. Locked-wheel protection exists as long as at least one wheel in the set is rotating above 20 knots. If all four wheels in a set lock simultaneously no locked-wheel protection exists.

Squat switch logic arms the system in the air to provide touchdown protection.

D. BRAKE HYDRAULIC SYSTEM

The KC-135 brake hydraulic system as pictures in Figure 14 and 15 consists of the following major components: an accumulator, a pilot metering valve, an antiskid valve, two deboost valves, and four brakes. During normal operation the pilot metering valve is supplied 3000 psi hydraulic pressure from the utility pressure system. The accumulator in the supply line serves two functions. Under normal conditions the accumulator decreases fluctuations in supply pressure due to large flow demands; in case of hydraulic power loss or shutdown the accumulator supplies limited hydraulic pressure to the brake system.

The pilot metering valve is a pressure control valve with output pressure proportional to the force applied to the valve's actuator levers. The pilot controls the force through a mechanical brake pedal and cable linkage. The function of the pilot metering valve in the brake system is to control the maximum pressure available to the antiskid valve. Output pressure from the metering valve enters a dual antiskid valve. From each of the two antiskid valve output ports, pressure is routed through a deboost valve to two brakes.

The dual antiskid valve is an electro-hydraulic pressure control valve. It has two individual hydraulic circuits, each of which is controlled by a separate current input. Figure 18 is a schematic of the valve, however, only one hydraulic circuit is shown. The valve contains two stages. The first stage is designed to convert the electrical signal from the skid control box into a hydraulic signal. A torque motor, nozzles and flapper make up the first stage. The application of current to the torque motor causes the flapper to move from the neutral position (maximum pressure). Movement creates a pressure imbalance in the hydraulic bridge formed by the nozzles. This differential pressure is applied to the second stage spool. The resulting hydraulic force imbalance causes the spool to move allowing brake pressure to change. As the output (brake) pressure changes, hydraulic feedback causes the forces on the spool to approach equilibrium. When a force balance occurs, both the spool position and brake pressure are in equilibrium. Thus, modulation of the electrical signal results in a modulation of brake pressure.

Figure 18.—KC-135 Antiskid Valve Schematic (Shown Deenergized)

The deboost valve between the antiskid valve and brake simply reduces the line pressure. The pressure ratio (output antiskid valve pressure to brake pressure) for the KC-135 is 3.11 to 1.

As noted previously a single antiskid valve output supplies pressure to two brakes. The KC-135 has a four wheel truck type gear. A forward and aft brake on each side of the truck are paired to receive a common antiskid pressure.

E. BRAKES

The Mark II antiskid system modification of the KC-135 incorporates a 5 rotor disk type brake. Modulation of brake pressures causes compression or relaxation of the brake stack resulting in controlled braking action.

2. BRAKING SYSTEM CHARACTERISTICS

Various characteristics of the KC-135's brake hydraulic system were measured during the sensitivity study. The dynamic response of the hydraulic system is pictured in Figures 19 and 20. Figure 19 is a representative plot of frequency response, while Figure 20 is a typical step response. Tables 7 and 8 are a compilation of the dynamic response data resulting from the sensitivity study.

The Mark II antiskid valve used on the KC-135 is a pressure control valve. Figure 21 is a plot of the valve's pressure-current characteristic. The effect of varying the metered pressure is depicted by the three different curves. The pressure-volume characteristic of the five rotor KC-135 brake is shown in Figure 22.

Figure 19.—KC-135 Brake Hydraulic System Frequency Response

Figure 20.—KC-135 Brake Hydraulic Step Response

Table 7.—KC-135 Frequency Response Data

TEST CONDITION	TEST PRESSURE (psi)	RESONANCE POINT FREQUENCY OR -3db FREQUENCY (Hz)	GAIN AT RESONANCE OR -3db (db)	PHASE ANGLE AT RESONANCE OR -3db (degrees)	FREQUENCY AT 90° PHASE ANGLE (Hz)
STANDARD	HYDRAULIC CONFIGURATION				
PORT #1	640 ± 200	9	4	96	8.6
	340 ± 200	8.8	-3	158	5.6
PORT #2	640 ± 200	9.2	5	110	8.3
	340 ± 200	5.5	2	86	5.7

VALVE SERIAL NUMBER 1228

Table 8.-KC-135 Step Response Data

TEST CONDITION	PRESSURE STEP CHANGE (psi)	DELAY RESPONSE TIME (SEC)	RESPONSE TIME TO 80% OF PRESS. CHANGE (SEC)		PERCENTAGE PRESSURE OVERRUSH OF STEP CHANGE	
			PRESSURE INCREASE	PRESSURE DECREASE	PRESSURE INCREASE	PRESSURE DECREASE
STANDARD HYDRAULIC CONFIGURATION (RIGHT BRAKES)	0 - 965	.122	.025	.132	.057	22.3
	0 - 870	.135	.012	.147	.052	19.5
	0 - 460	.175	.020	.237	.215	4.3
	120 - 965	.027	.025	.042	.050	63.3
	120 - 870	.025	.015	.042	.042	65.3
						5.3
STANDARD HYDRAULIC CONFIGURATION (LEFT BRAKES)	0 - 965	.127	.025	.142	.057	24.4
	0 - 870	.140	.015	.157	.050	19.5
	0 - 460	.155	.015	.200	.182	8.6
	120 - 965	.025	.015	.042	.037	63.3
	120 - 870	.032	.015	.048	.037	65.3
						5.3

Figure 21.—KC-135 Antiskid Valve Pressure-Current Characteristics

Figure 22.—KC-135 Brake Pressure-Volume Characteristic

SECTION V

F-111 BRAKE CONTROL SYSTEM DESCRIPTION AND SYSTEM CHARACTERISTICS

The sensitivity study of the F-111 made use of the brake hydraulic system mockup, pictured in Figure 23. The mockup, using actual hardware, duplicates the entire brake hydraulic system of the aircraft. The hydraulic system schematic, Figure 24, identifies the pertinent system components. This figure along with Table 9, defines the significant dimensions and tubing materials used in the mockup. Table 10 is included to detail the actual aircraft hardware used in the mockup and simulator.

I. SYSTEM DESCRIPTION

A. WHEEL SPEED TRANSDUCER

The F-111 wheel speed transducer provides instantaneous wheel speed information to the skid control box. The transducer, as pictured in Figure 25, is a D. C. voltage generator producing a signal proportional to wheel speed. The device is completely self-contained and is mounted in the axle. The armature of the generator is attached to the wheel and rotates with it. The basic parts of the transducer as shown in Figure 25 are a permanent magnet, armature, commutator, and brush assembly. Rotation of the commutator in the magnet field induces an electrical signal proportional to wheel speed.

B. ANTISKID CONTROL SYSTEM

The brake control system employed on the F-111 is manufactured by the Goodyear Tire and Rubber Company. The basic control elements of the system are represented in the block diagram of Figure 26. The wheel speed transducers mounted in each wheel provide instantaneous wheel speed information to the control box. During normal antiskid operation the transducer provides wheel deceleration information. This is accomplished within the deceleration detector, where the wheel speed is differentiated to produce deceleration. This deceleration is then compared with a threshold. When the deceleration threshold is exceeded a signal is applied to the valve driver. The signal from the driver is proportional to the output of the comparator, plus any signal from the pressure bias circuit. The valve driver output is applied to the antiskid valve, and a modulator circuit. The modulator, coupled with the pressure bias circuit, provides an extension of the original control signal after the wheel has recovered from a skid. The modulator charges to a level proportional to the frequency, magnitude and duration of skid signals. After recovery of the wheel from a skid, the modulator discharges. When applied to the valve driver through the pressure bias circuit, the modulator signal ensures that a lower brake pressure is applied after a skid. In addition, as the modulator discharges, brake pressure is ramped on. The modulator signal is also applied to the deceleration threshold, automatically adjusting it to meet the existing braking condition.

C. TOUCHDOWN AND LOCKED WHEEL PROTECTION

Touchdown protection is provided on the F-111 to prevent application of brake pressure prior to main gear touchdown. A squat switch is used to provide a logic signal to the antiskid circuit.

Figure 23.—F-111A Brake Hydraulic System Mockup

Figure 24.—F-111 Brake Hydraulic System Schematic

Table 9.—F-111 Brake Hydraulic System Mockup

DESCRIPTION	LINE NUMBER	LINE SIZE	LINE LENGTH (IN)
SUPPLY PRESSURE LINE	1	4S20	30
ACCUMULATOR #1 LINE	2	4S20	50
ACCUMULATOR #2 LINE	3	4S20	30
VENT LINE	4	8S28	35 Not on mock-up
HAND PUMP PRESSURE	5	4S20	78 Not on mock-up
BRAKE PRESSURE LINE	6	4S20	192 Typical 4 places
	7	1/4" hose	60 Typical 4 places
RETURN PRESSURE LINE	8	8A28	50

Table 10.—F-111 Brake Hydraulic System Mockup Components

ITEM	PART NUMBER	QUANTITY
SKID CONTROL BOX	1630-00-050-7726	1
SKID DETECTOR	6115-00-939-3245 LE	1
VALVE ASSEMBLY		
PILOT METERING VALVE	1630-00-925-3156	1
ANTISKID VALVE	1630-00-949-7849	2
ACCUMULATOR	1650-00-880-3176	2
BRAKE ASSEMBLY	1630-00-082-7955	2

Figure 25.—F-111 Wheel Speed Transducer

Figure 26.—F-111 Antiskid System Block Diagram

Prior to airplane touchdown the circuit supplies a dump command to the antiskid valve which prevents metered pressure from entering the brakes. A wheel speed signal above 20 knots will over-ride touchdown protection.

Locked wheel protection is provided by comparing the wheel speed signals from the F-111's main gear wheels. In the event one wheel speed drops below 20 knots, the locked wheel protection logic supplies a brake release signal to the antiskid valve of the low speed wheel. If the wheel does not spin up after 1.35 seconds (approximate) the antiskid system is automatically de-energized.

D. BRAKE HYDRAULIC SYSTEM

The F-111 brake hydraulic system is composed of two accumulators, a pilot metering valve, two antiskid valves, hydraulic tubing and brakes. Hydraulic pressure at 3000 psi is supplied to the metering valve by the utility hydraulic system during normal operation. In emergency and power off braking situations the two hydraulic accumulators provide pressure for braking.

The brake hydraulic system is a dual-normal design, two independent hydraulic circuits supply pressure to each brake. This design, along with a directional control requirement, results in a need for four pilot metering valves. Each metering valve controls pressure to one hydraulic circuit. The metering valve is a pressure control valve, its output is directly proportional to the force applied to the valve's actuator lever. The force is controlled by the pilot from the cockpit through conventional brake pedals mechanically linked to the metering valve actuator. Pressure from the meter valve enters an antiskid valve and is then routed to the brake.

The antiskid valve is an electrically operated pressure control valve and is shown schematically in Figure 27. The purpose of the valve is to modulate the brake pressure eliminating deep wheel skids. The antiskid valve receives its electrical control signal from the skid control box. As seen in Figure 27, the valve's basic components are a linear force motor, a first stage spool and sleeve and two second stage spools and sleeves. The valve's basic operation is as follows. An electrical signal is applied to the linear force motor, generating an imbalance of forces on the first stage spool. First stage control pressure will change until the pressure force equals the motor force. The resulting control pressure is applied to the second stage, causing a force imbalance on the spool. The second stage output pressure will change until it balances the force due to the first stage control pressure. Second stage pressure is directed to the brakes. Modulation of the electrical signal to the first stage ultimately results in brake pressure modulation.

The pilot metering valve and antiskid valves on the F-111 have been integrated into one assembly. The essential hydraulic circuits of the unit are shown in Figure 27.

E. BRAKES

The F-111A has two main wheel brakes per aircraft. The brakes are a multiple disk-type assembly, each consisting of rotors, stators, pressure plate, hydraulic housing and pressure pistons. The housing contains two independent pressure chambers, with each chamber actuating one-half the pressure pistons. When brake pressure is applied, the pressure pistons force

Figure 27.—Pilot Metering Valve and Antiskid Valve Assembly Schematic
(Primary Hydraulic Circuits)

the pressure plate, rotors and stators into contact. This action creates a friction force which decelerates the wheel. Removal of pressure releases the brake allowing the wheel to free roll.

2. BRAKING SYSTEM CHARACTERISTICS

During the testing of the F-111, the characteristics of the brake hydraulic system and individual components were measured. The dynamic response of the hydraulic system is shown in Figures 28 and 29. Figure 28 is a typical system frequency response plot, while Figure 29 is a representative step response plot. Tables 11 and 12 compile the dynamic response results from various test conditions.

The pressure-current characteristic of the F-111 antiskid valve is shown in Figure 30. The effect of varying metered pressures is also depicted.

The pressure-volume curve of the F-111 brake is shown in Figure 31. The P-V characteristic was measured by externally connecting the two individual hydraulic chambers together. Consequently, the volume of both chambers were combined.

Figure 28.—F-111 Brake Hydraulic S

Figure 28.—F-111 Brake Hydraulic System Frequency Response

Figure 29.—F-111 Brake Hydraulic System Step Response

Table 11.—F-111 Frequency Response Data

TEST CONDITION	TEST PRESSURE -psi-	RESONANT POINT FREQUENCY OR -3db FREQUENCY (H_z)	GAIN AT RESONANCE OR -3db POINT (db)	PHASE ANGLE AT RESONANCE OR -3db (degrees)	FREQUENCY AT 90° PHASE ANGLE (H_z)
STANDARD HYDRAULIC CONFIGURATION					
ANTISKID VALVE #MAY 68-1342	550 ± 120	6.4	+1.0	122	4.7
	550 ± 200	5.4	+.5	90	5.4
	1100 ± 120	7.3	+4.5	97	7.0
	1100 ± 200	7.4	4.2	85	7.7
 ANTISKID VALVE #AUG 67-72-E					
	550 ± 120	6.2	+3.5	88	6.3
	550 ± 200	5.5	+2.5	75	6.1
	1100 ± 120	6.3	+6.0	90	6.3
	1100 ± 200	6.7	+5.0	85	6.9

Table 12.—F-111 Step Response Data

TEST CONDITION	PRESSURE STEP CHANGE (PSI)	DELAY RESPONSE TIME (SEC)		RESPONSE TIME TO 80% OF PRESSURE CHANGE		PERCENTAGE PRESSURE OVERSHOOT OF STEP CHANGE	
		PRESSURE INCREASE	PRESSURE DECREASE	PRESSURE INCREASE	PRESSURE DECREASE	PRESSURE INCREASE	PRESSURE DECREASE
STANDARD HYDRAULIC CONFIGURATION							
ANTISKID VALVE #AUG 68-1342	0-1650	.078	.016	.114	.057	16.4	0
	0-1490	*.047	.013	.120	.065	18.8	0
	0-825	*.088	.012	.143	.260	23.6	0
	330-1490	.022	.012	.052	.042	20.7	3.4
	330-1650	.017	.017	.055	.045	18.2	4.5
 ANTISKID VALVE #AUG 67-72-E							
	0-1650	*.080	.012	.107	.055	28.5	0
	0-1490	*.080	.012	.107	.060	38.9	0
	0-825	*.095	.012	.132	.225	46.7	0
	330-1490	.025	.012	.057	.040	44.8	6.0
	330-1650	.017	.012	.060	.042	38.6	5.3

* TIME TO 120 PSI

Figure 30.—F-111 Antiskid Valve Pressure - Current Characteristic

Figure 31.—F-111 Brake Pressure - Volume Characteristic

SECTION VI

REGION OF ANTISKID SYSTEM OPERATION ON MU-SLIP CURVE

The purpose of an antiskid system is to maximize the braking effort and at the same time prevent tire skidding. The actual level of braking attained is a direct result of the antiskid system design and implementation. During the sensitivity studies, an effort was made to measure how effective each antiskid system was at maximizing braking. To determine the level of operation, an oscilloscope was used to plot ground friction (μ) versus wheel slip. The ideal antiskid system should operate at the peak of the mu-slip curve, maximizing friction and limiting slip. Actual systems operate over a region of slip and at friction levels lower than maximum. Early antiskid systems tend to operate over a wide range of slip, which results in a very low friction level. Present systems are designed to operate over a smaller slip region near the peak friction value.

The actual region of mu-slip operation is described for each antiskid system in the following paragraphs. Regions I, II, III, and IV, as depicted in Figure 32, will be used to define the operational characteristics of each system.

1. B-52H MARK I

The B-52H brake system is torque limited when ground friction is greater than .4 and/or the aircraft's landing weight is above 250,000 pounds. Under these conditions, the wheel operates on the front side of the mu-slip curve (Region I). As available ground mu drops or aircraft weight is lowered (torque limiting does not occur) skid activity will occur with the antiskid system operating in region I at high speed. Deeper skids occur as the aircraft slows (cycling from region I into regions II and III) until full wheel lockups (Region IV) occur at about 40 knots. From this point on, the wheel simply cycles between 0 and 100% slip (region I to IV).

2. KC-135 MARK II

The KC-135 Mark II antiskid system operates in regions II and III at all values of peak mu. During high speed operation, the system cycles in region II only. As the aircraft slows deeper skids occur with the system cycling into region III. As the antiskid system initiates brake releases, the wheel recovers from the high slip condition by cycling up the back side of the curve into region II.

3. F-111 GOODYEAR SYSTEM

The Goodyear antiskid system found on the F-111, allows the wheel to operate primarily in regions I and II at all peak available mu levels. However, as the aircraft slows the skid depth increases extending system operation into regions III and IV.

Figure 32.—Definition of Operating Regions
on μ -Slip Curve

SECTION VII

DETAILED SENSITIVITY STUDY TEST PROCEDURE AND SEQUENCE

1. TEST PROCEDURE

The sensitivity study of the braking segment consisted of nine separate system tests. The tests were implemented as the system parameters were varied, one at a time, to determine the sensitivity of aircraft performance to each parameter. The tests can be divided into three categories

- Stability studies
- Performance studies
- Hydraulic system studies.

The tests performed in each of these categories are outlined below.

A. STABILITY STUDIES (Test 1)

System stability is directly related to stopping performance in that severe instability will result in loss of braking and can present a serious safety hazard. In this study, the ability of a brake control system to contribute to the stability of the landing gear was evaluated. The stability margin of the system was determined by finding the damping required for stability.

The purpose of the test was to determine the contribution of the brake control system to landing gear oscillations. During a run, the brake torque was caused to peak from its nominal value to its maximum value numerous times during a stop. The timing was varied so that the steps would occur during all operational modes of the control system. The strut displacement was monitored to determine the influence of the control system on strut stability. Two gear frequencies were evaluated to cover the expected range of natural frequencies for the system. Gear damping was varied to find the point where the system becomes unstable.

The gear frequencies were changed by altering gear mass or gear compliance. The ability of the system to dampen gear oscillations for two different compliances and masses was assessed.

B. PERFORMANCE STUDIES

The brake system was evaluated under four different conditions chosen to provide a measure of its performance capability. These include airplane touchdown dynamics, stabilized landing, step mu change, and wet runway. Of the four tests, three fall into the general category of system adaptability to typical operating conditions. Icy or wet patches on an otherwise dry runway were simulated by the step mu test. Typical load changes encountered during high sink rate landings were simulated. Mu changes with speed as encountered on a wet runway were evaluated. The other condition covers the general category of stabilized performance.

1. Touchdown Dynamics (Test 2)

The purpose was to determine transient response upon touchdown. The test was initiated by applying the aircraft brakes at a speed V_A . During the run from speed V_A to V_B , vertical ground force was varied in a manner to simulate a typical touchdown load profile of the airplane being tested. The vertical ground force was restored to its full value when the braked-vehicle speed reached a value of V_B . Full pilot metered pressure was available during this and other runs, unless specifically mentioned otherwise.

2. Stabilized Landing (Test 3)

The purpose of these tests was to measure brake system efficiency under a stabilized braked condition. The tests determined a baseline performance for each system.

During the tests, the vehicle was braked at a preselected braked speed V_A . Braking was continued until the vehicle was brought to a full stop. During these tests, the peak available ground mu was held at a constant value throughout the entire run. This value was varied from one run to another to cover the entire range of available ground mu (0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6).

3. Mu Steps (Test 4)

The purpose of this test was to measure brake system adaptability under adverse runway conditions. The test was designed to simulate sudden changes of available ground mu resulting from water puddles, icy patches, or the presence of tar strips.

The braking run proceeded for the first few seconds with a high available mu. Then the first of several mu step changes occurred. Each consisted of a pulse width of 750 milliseconds dropping the mu to 0.15. After each pulse, the mu was restored to its high value for 5 seconds. Thus, during the test, the system was subjected to several step changes so that its operation under a variety of conditions could be observed.

4. Wet Runway (Test 5)

The purpose of this test was to study system performance under adverse runway conditions. During the test, the value of peak available ground mu was made to vary from a low value at high speed to a high value at low speed. This relationship is representative of the available ground mu normally encountered on a wet runway. The value of mu at high speed was modified in some cases to allow the wheel ample ground friction to spin up the wheel.

C. HYDRAULIC SYSTEM STUDIES

1. Hydraulic System Response (Test 6 and 7)

Frequency response and step response tests were run on the brake hydraulic system. Frequency response tests were run over the frequency range of 0.5 to 50 Hz and at amplitudes of ± 100 psi and ± 200 psi. This test was conducted at mean pressure levels of 33% and 66% of supply pressure.

The step response curves consisted of the following steps indicated in percentage of supply pressure:

<u>From</u>	<u>To</u>
0	50
0	90
100	20
100	0
90	20

The input to both tests was valve current, and the output was the pressure at the brake.

2. Antiskid Valve Characteristics (Test 8)

Static pressure versus current curves were also run on the servo valve for each airplane at metered pressure levels of 33%, 66%, and 100% of supply.

3. Hydraulic System Pressure – Volume Characteristics (Test 9)

Pressure-volume characteristics were measured for each brake.

2. TEST SEQUENCE

The sequence of the tests is given in Table 13.

Table 13.—Test Sequence

CONDITION	TEST	VARIABLE CHANGES
AIRPLANE		
BASELINE AIRPLANE	1 - 9	---
1a - 1d	3,5	W, Iyy, V_I
1e - 1h	3,5	W, Iyy
2A & 2b	3,5	Iyy, L_A, L_B
3a - 3f	3,5	V_I
4a - 4e	3,5	C_L, C_D
4f - 4i	3,5	FEO, KE
5a & 5b	3,5	PILOT'S METERED PRESSURE
RUNWAY AND ENVIRONMENTAL SYSTEM		
1a - 1f	3,5	V_{wind}
2a & 2b	3,5	RHO
LANDING GEAR SYSTEM		
1a - 1d	3,5	$\mu - \sigma$ SHAPE

SECTION VIII

PERFORMANCE INDICES

Tables 14 through 19 contain the numerical values of the performance indices for all of the aircraft tested. Listed for each test condition is the available friction (μ_u), airplane braking distance (X_A), perfect braking distance (X_p), and braking distance efficiency (η_s).

Table 14.—B-52 Baseline Braking Data

TEST CONDITION	μ_u	x_p	x_a	η_s
TEST #2 TOUCHDOWN DYNAMICS	.6 .5 .4 .3 .2 .1 .05	618 720 867 1100 1527 2594 4214	1858 1864 1905 2105 4062 6024 8219	33.3 38.6 45.5 52.3 37.6 43.1 51.3
TEST #3 STABILIZED STOPS	.6 .55 .5 .45 .4 .35 .3 .25 .2 .15 .1 .05	571 619 675 743 825 929 1063 1242 1497 1887 2574 4209	1779 1766 1754 1762 1775 1748 1852 3904 4434 5694 7830	32.1 35.1 38.5 42.2 46.5 53.1 57.4 38.3 42.6 45.2 53.8
TEST #4 MU-STEP		720	1953	36.9
TEST #5 WET-RUNWAY		1985	3434	57.8

Table 15.—B-52 Sensitivity Test Data

Condition	Description	M ₀	V _A	V _D	S
1a thru 1d	Test Conditions Not Consistent with Normal b S. Operation				
				1. SYS NOT RUN	
				SEE TEST NOTES	
1e	Maximum Landing Weight without V _I Stabilized Landing	0.6 0.4 0.2 0.1	2622 2798 2184 6784	576 842 1573 2610	204 301 365 414
	Wet Runway			4226	2265
1f	High Landing Weight without V _I Stabilized Landing	0.6 0.4 0.2 0.1	2278 2288 2562 4136	574 836 1541 2710	232 365 516 442
	Wet Runway			7804	2143
1g	Low Landing Weight without V _I Stabilized Landing	0.6 0.4 0.2 0.1	1517 1519 3564 5150	565 817 1461 2476	375 558 410 481
	Wet Runway			3263	1875
1h	Minimum Landing Weight Without V _I Stabilized Landing	0.6 0.4 0.2 0.1	1266 1475 3216 4613	560 805 1415 2353	454 547 440 510
	Wet Runway			3018	1746
1i	Forward Center of Gravity Stabilized Landing	0.5 0.4 0.2 0.1	1154 1810 3710 5527	571 825 1497 2574	318 456 397 460
	Wet Runway			3434	1986
1j	Aft Center of Gravity Stabilized Landing	0.6 0.4 0.2 0.1	1756 1780 3188 3621	571 825 1497 2574	318 461 395 458
	Wet Runway			3368	1986
3a	Brake Application Speed = 5 Km Stabilized Landing	0.6 0.4 0.2 0.1	1916 1934 4030 5816	636 813 1634 2774	331 472 406 472
	Wet Runway			3384	2168
3b	Brake Application Speed = 10 Km Stabilized Landing	0.6 0.4 0.2 0.1	2116 2105 4254 6108	701 .005 1778 2971	332 476 418 487
	Wet Runway			3802	2528
3c	Brake Application Speed = 20 Km Stabilized Landing	0.6 0.4 0.2 0.1	2418 2470 4808 6390	843 1193 2067 3361	349 483 459 524
	Wet Runway			4168	2635

Table 15.—B-52 Sensitivity Data (Continued)

Condition	Description	μ	t_A	t_p	t_s
3d	Brake Application Speed + 30 kn Stabilized Landing	0.6	2155	254	361
		0.4	2866	1592	456
		0.2	4855	2557	456
		0.1	6870	3738	346
			4350	2957	630
	Wet Runway				
		0.6	1633	511	512
		0.4	1625	741	457
		0.2	3466	1360	392
		0.1	5112	2374	464
3e	Brake Application Speed - 5 kn Stabilized Landing				
		0.6	1487	453	311
		0.4	1460	660	452
		0.2	3320	1224	371
		0.1	4967	2171	457
	Wet Runway				
		0.6	1487	453	311
		0.4	1460	660	452
		0.2	3320	1224	371
3f	Brake Application Speed - 10 kn Stabilized Landing	0.6	1487	453	311
		0.4	1460	660	452
		0.2	3320	1224	371
		0.1	4967	2171	457
	Wet Runway				
		0.6	1853	677	363
		0.4	2164	977	452
		0.2	4400	1770	402
4a	No Spoilers Stabilized Landing	0.1	6640	3049	453
		0.6	1853	677	363
		0.4	2164	977	452
	Wet Runway	0.2	4400	1770	402
		0.1	6640	3049	453
		0.6	4130	2419	386
4b	80% Effective Spoilers Stabilized Landing				
		0.6	1786	589	330
		0.4	1712	851	480
		0.2	3840	1545	392
		0.1	5076	2695	468
	Wet Runway				
		0.6	3367	2045	513
		0.4	3300	2741	472
		0.2	3635	2142	503
4c	60% Effective Spoilers Stabilized Landing				
		0.6	1780	608	342
		0.4	1796	818	488
		0.2	4025	1592	400
		0.1	5806	2741	472
	Wet Runway				
		0.6	3635	2142	503
		0.4	3635	2142	503
		0.2	3796	2226	586
4d	40% Effective Spoilers Stabilized Landing				
		0.6	1518	629	346
		0.4	1838	508	494
		0.2	4146	1646	557
		0.1	6036	2835	470
	Wet Runway				
		0.6	3796	2226	586
		0.4	3830	2319	590
		0.2	3930	2519	590
4e	20% Effective Spoilers Stabilized Landing				
		0.6	1835	652	353
		0.4	1907	741	493
		0.2	4284	1705	398
		0.1	6204	2937	473
	Wet Runway				
		0.6	5830	2519	590
		0.4	5830	2519	590
		0.2	5930	2719	590
4f	120% Engine Idle Thrust Stabilized Landing				
		0.6	1735	515	320
		0.4	1784	833	467
		0.2	4055	1523	315
		0.1	6143	2636	432
	Wet Runway				
		0.6	3598	2047	549
		0.4	3637	2047	549
		0.2	3796	2226	586
4g	110% Engine Idle Thrust Stabilized Landing				
		0.6	1770	573	324
		0.4	1771	829	468
		0.2	3900	1510	387
		0.1	5751	2614	465
	Wet Runway				
		0.6	5477	2021	581
		0.4	5477	2021	581
		0.2	5637	2226	586

Table 15.—B-52 Sensitivity Data (Continued)

Condition	Description	μ	λ_A	λ_P	γ_S
4h	90% Engine Idle Thrust Stabilized Landing	0.6	1724	369	35.0
		0.4	1725	821	47.7
		0.2	3115	1484	40.0
		0.1	5280	2655	48.0
	Wet Runway		3386	1919	58.9
4i	80% Engine Idle Thrust: Stabilized Landing	0.6	1715	367	35.1
		0.4	1726	817	47.4
		0.2	3180	1471	41.1
		0.1	5082	2488	49.2
	Wet Runway		3274	1947	59.9
5a	75% of Full Metered Pressure Stabilized Landing	0.6			
		0.4	TEST NOT RUN		
		0.2			
		0.1			
	Wet Runway				
5b	50% of Full Metered Pressure Stabilized Landing	0.6			
		0.4	TEST NOT RUN		
		0.2			
		0.1			
	Wet Runway				
1e	5 knot Wind Stabilized Landing	0.6	1445	510	32.9
		0.4	1553	789	47.3
		0.2	3305	1515	40.0
		0.1	4725	2251	47.8
	Wet Runway		3010	1734	57.6
1b	10 Knot Wind Stabilized Landing	0.6	1348	449	35.3
		0.4	1347	646	48.0
		0.2	2172	1156	41.7
		0.1	3199	1530	51.3
	Wet Runway		2515	1884	59.4
1c	15 knot Wind Stabilized Landing	0.6	1161	382	38.0
		0.4	1163	563	48.3
		0.2	2334	1001	42.9
		0.1	3468	1670	55.0
	Wet Runway		2127	1247	59.6
1d	20 knot Wind Stabilized Landing	0.6	954	240	34.2
		0.4	985	484	45.4
		0.2	1950	860	44.1
		0.1	2675	1420	54.8
	Wet Runway		1788	1071	58.9
1e	-5 knot Wind Stabilized Landing	0.6	2021	642	31.6
		0.4	2038	926	48.6
		0.2	4315	1682	59.2
		0.1	6306	2942	46.0
	Wet Runway		3556	2295	58.4
1f	-10 knot Wind Stabilized Landing	0.6	2297	714	31.1
		0.4	2291	1035	49.2
		0.2	4915	1893	58.1
		0.1	7332	3324	44.0
	Wet Runway		4363	2881	56.9

Table 15.—B-52 Sensitivity Data (Concluded)

Table 16.—KC-135 Baseline Braking Data

TEST CONDITION	μ_u	x_p	x_a	η_s
TEST #2 TOUCHDOWN DYNAMICS	.6	1367	1631	83.8
	.55	1461	1839	79.4
	.5	1571	1974	79.6
		1701	2137	79.6
	.45	1859	2345	79.3
	.35	2057	2624	78.4
	.3	2310	3074	75.1
	.25	2644	3912	67.6
	.2	3111	5120	60.8
	.15	3817	6926	55.1
TEST #3 STABILIZED STOPS	.1	5030	10135	49.6
	.05	7793	---	---
	.6	1317	1552	84.9
		1411	1703	82.9
		1522	1893	80.4
	.45	1655	2064	80.2
	.4	1816	2283	79.5
	.35	2016	2569	78.5
	.3	2272	3040	74.7
	.25	2612	3884	67.3
	.2	3086	5108	60.4
TEST #4 MU-STEP	.15	3800	7082	53.7
	.1	5021	10885	46.1
TEST #5 WET-RUNWAY	.05	7789	---	---
		1625	2260	71.9
TEST #5 WET-RUNWAY		4132	6205	66.6

Table 17.—KC-135 Sensitivity Test Data

Condition	Description	μ	X_A	t_p	t_s
4	Maximum Landing Weight With VI Stabilized Landing				
		0.6	4098	2148	625
		0.4	4110	2991	718
		0.2	6329	4975	786
		0.1	12959	1989	617
			5303	6861	738
5	High Landing Weight With VI Stabilized Landing				
		0.6	2476	1745	705
		0.4	2746	2899	874
		0.2	5161	4059	700
		0.1	11663	6532	560
			7177	5510	715
6	Low Landing Weight With VI Stabilized Landing				
		0.6	1310	1016	776
		0.4	1925	1403	729
		0.2	4561	2400	526
		0.1	9327	3946	414
			4791	3128	493
7	Minimum Landing Weight With VI Stabilized Landing				
		0.6	1182	693	749
		0.4	1789	1239	650
		0.2	4886	2120	483
		0.1	10689	5309	325
			4920	2760	611
8	Maximum Landing Weight Without VI Stabilized Landing				
		0.6	2280	1524	578
		0.4	2374	1855	783
		0.2	4188	3292	786
		0.1	5988	3629	664
			7117	4888	687
9	High Landing Weight Without VI Stabilized Landing				
		0.6	1823	1322	724
		0.4	2176	1842	847
		0.2	4961	3209	704
		0.1	10211	5373	526
			6654	4893	684
10	Low Landing weight Without VI Stabilized Landing				
		0.6	1648	1312	786
		0.4	2451	1785	754
		0.2	5362	2851	550
		0.1	10441	4667	447
			5788	3745	681
11	Minimum Landing Weight Without VI Stabilized Landing				
		0.6	1062	1308	708
		0.4	2088	1766	674
		0.2	5510	2876	521
		0.1	10736	4484	578
			5357	3366	661
12	Forward Center of Gravity Stabilized Landing				
		0.6	1605	1343	847
		0.4	2402	1816	781
		0.2	5345	3178	556
		0.1	10442	5153	455
			6007	4177	653
13	Aft Center of Gravity Stabilized Landing				
		0.6	1438	1270	862
		0.4	2205	1792	795
		0.2	4970	2889	601
		0.1	9363	4880	510
			5765	3984	691

Table 17.—KC-135 Sensitivity Data (Continued)

Condition	Description	μ	x_A	x_D	t_s
3a	Brake Application Speed + 5 Kn. Stabilized Landing	0.6	1669	1423	85.3
		0.4	2456	1553	80.2
		0.2	3518	3268	61.8
		0.1	11153	5267	47.5
			6467	4368	67.5
	Wet Runway	0.6	1780	1553	85.6
		0.4	2889	2694	80.9
		0.2	5119	3492	61.1
		0.1	1515	5586	48.3
			6740	4586	68.0
3b	Brake Application Speed + 10 Kn. Stabilized Landing	0.6	2024	1763	87.1
		0.4	2920	2386	81.7
		0.2	5346	5505	61.5
		0.1	12203	6000	49.8
			7272	4582	68.5
	Wet Runway	0.6	2521	2006	86.4
		0.4	3282	2630	82.0
		0.2	6749	4317	64.0
		0.1	16037	6953	50.6
			7734	5552	69.7
3c	Brake Application Speed + 20 Kn. Stabilized Landing	0.6	1441	1215	84.5
		0.4	2127	1682	79.1
		0.2	4759	2686	60.6
		0.1	10314	4750	46.1
			4008	3313	65.1
	Wet Runway	0.6	1532	1116	83.8
		0.4	1987	1552	78.1
		0.2	4516	2686	59.3
		0.1	9505	4477	45.2
			5719	3672	64.2
4a	No Spoilers Stabilized Landing	0.6	2149	1763	82.0
		0.4	3550	2428	68.8
		0.2	7920	4127	54.9
		0.1	14484	6749	46.6
			8604	4684	54.6
	Wet Runway	0.6	1628	1282	84.3
		0.4	2411	1906	75.0
		0.2	3453	3239	58.4
		0.1	11114	5277	47.5
			6524	4294	65.8
4b	80% Effective Spoilers Stabilized Landing	0.6	1755	1456	83.9
		0.4	2819	2007	77.0
		0.2	6150	3413	53.7
		0.1	19114	8967	46.7
			6531	4570	66.6
	Wet Runway	0.6	1829	1542	84.5
		0.4	2767	2125	76.8
		0.2	6542	3614	56.2
		0.1	11853	5901	49.8
			7277	4888	67.2
4c	60% Effective Spoilers Stabilized Landing	0.6	1755	1456	83.9
		0.4	2819	2007	77.0
		0.2	6150	3413	53.7
		0.1	19114	8967	46.7
			6531	4570	66.6
	Wet Runway	0.6	1829	1542	84.5
		0.4	2767	2125	76.8
		0.2	6542	3614	56.2
		0.1	11853	5901	49.8
			7277	4888	67.2
4d	40% Effective Spoilers Stabilized Landing	0.6	1829	1542	84.5
		0.4	2767	2125	76.8
		0.2	6542	3614	56.2
		0.1	11853	5901	49.8
			7277	4888	67.2
	Wet Runway	0.6	1829	1542	84.5
		0.4	2767	2125	76.8
		0.2	6542	3614	56.2
		0.1	11853	5901	49.8
			7277	4888	67.2

Table 17.—KC-135 Sensitivity Data (Continued)

Condition	Description	μ	x_A	x_p	γ_s
4e	20% Effective Spoilers Stabilized Landing	0.6	1076	1442	83.1
		0.4	2000	2263	79.4
		0.2	4833	3848	86.3
		0.1	19352	6259	46.4
			8284	9368	65.0
4f	120% Engine Idle Thrust Stabilized Landing	0.6	1868	1826	84.6
		0.4	2202	1832	79.6
		0.2	5174	3135	60.6
		0.1	12221	3186	92.2
			6497	4241	65.3
4g	110% Engine Idle Thrust Stabilized Landing	0.6	1870	1322	84.2
		0.4	2313	1826	79.7
		0.2	5612	3110	86.4
		0.1	11545	3087	44.1
			6298	4206	66.0
4h	90% Engine Idle Thrust Stabilized Landing	0.6	1818	1313	83.4
		0.4	2285	1807	79.1
		0.2	5249	3062	88.3
		0.1	10623	4986	46.6
			6148	4086	66.6
4i	80% Engine Idle Thrust Stabilized Landing	0.6	1543	1303	84.8
		0.4	2246	1797	80.1
		0.2	4880	3038	62.3
		0.1	10503	4883	47.3
			5973	4053	67.3
5a	75% of Full Metered Pressure Stabilized Landing	0.6	1698	1867	80.5
		0.4	2353	1859	77.7
		0.2	5340	3111	88.0
		0.1	*	5030	*
			6818	4132	68.4
5b	50% of Full Metered Pressure Stabilized Landing	0.6	2177	1867	62.6
		0.4	2298	1859	80.3
		0.2	5387	3111	87.8
		0.1	*	5080	7.3
			6848	4132	68.1
1a	5 Knot Wind Stabilized Landing	0.6	1463	1213	88.0
		0.4	2115	1671	79.0
		0.2	4873	2826	88.0
		0.1	9372	4924	48.6
			5683	3749	66.0
1b	10 Knot Wind Stabilized Landing	0.6	1366	1112	81.4
		0.4	1974	1827	77.4
		0.2	4901	2572	81.1
		0.1	8257	4109	49.8
			4960	3363	67.3
1c	15 Knot Wind Stabilized Landing	0.6	1294	1015	88.0
		0.4	1798	1880	77.3
		0.2	3081	2523	85.7
		0.1	7154	3681	51.6
			4478	3012	67.3

*Braking Distance greater than Computer Limit (10,000 feet).

Table 17.—KC-135 Sensitivity Data (Concluded)

Condition	Description	μ	x_A	x_p	x_s
1d	20 Knot Wind Stabilized Landing	0.6	1150	921	79.7
		0.4	1635	1260	77.1
		0.2	2841	2101	79.3
		0.1	6203	3399	63.2
			3971	2694	67.9
	Wet Runway	0.6	1661	1324	84.4
		0.4	2421	1929	79.3
		0.2	3800	3297	86.8
		0.1	10225	6417	44.9
			6812	4494	63.0
1e	-5 Knot Wind Stabilized Landing	0.6	1661	1324	84.4
		0.4	2421	1929	79.3
		0.2	3800	3297	86.8
		0.1	10225	6417	44.9
			6812	4494	63.0
	Wet Runway	0.6	1821	1349	89.1
		0.4	2649	2139	80.7
		0.2	4364	3663	87.6
		0.1	10498	6041	44.8
			7766	5021	64.7
1f	-10 Knot Wind Stabilized Landing	0.6	1821	1349	89.1
		0.4	2649	2139	80.7
		0.2	4364	3663	87.6
		0.1	10498	6041	44.8
			7766	5021	64.7
	Wet Runway	0.6	1535	1326	86.2
		0.4	2829	1848	79.3
		0.2	5314	3221	80.6
		0.1	12397	5410	43.4
			7216	4367	63.3
1g	Hot Day - High Altitude Stabilized Landing	0.6	1535	1326	86.2
		0.4	2829	1848	79.3
		0.2	5314	3221	80.6
		0.1	12397	5410	43.4
			7216	4367	63.3
	Wet Runway	0.6	1537	1303	84.9
		0.4	2808	1772	80.9
		0.2	4662	2913	62.5
		0.1	9472	4363	48.2
			5270	3100	70.1
1h	Flat $v = \alpha$ Peak Stabilized Landing	0.6	1645	1367	84.6
		0.4	2608	1899	89.9
		0.2	4869	3111	62.6
		0.1	9487	5080	51.9
			608	4132	68.3
	Wet Runway	0.6	1491	1367	81.1
		0.4	2118	1899	87.7
		0.2	4986	3111	63.4
		0.1	10161	5030	49.0
			6239	4132	66.2
1i	Low Tire Heating Stabilized Landing	0.6	1491	1367	81.1
		0.4	2118	1899	87.7
		0.2	4986	3111	63.4
		0.1	10161	5030	49.0
			6239	4132	66.2
	Wet Runway	0.6	1529	1367	88.8
		0.4	2295	1899	82.4
		0.2	5351	3111	58.4
		0.1	9578	5030	50.4
			6217	4132	66.2
1j	Tire Inflation Pressure 80% of Nominal: Stabilized Landing	0.6	1658	1367	88.4
		0.4	2470	1899	75.3
		0.2	5070	3111	61.4
		0.1	10327	5030	48.7
			6080	4132	66.4
	Wet Runway	0.6	1658	1367	88.4
		0.4	2470	1899	75.3
		0.2	5070	3111	61.4
		0.1	10327	5030	48.7
			6080	4132	66.4

Table 18.—F-111 Baseline Braking Data

TEST CONDITION	μ	x_p	x_a	η_s
TEST #2 TOUCHDOWN DYNAMICS	.6	1642	2192	74.9
	.55	1751	2358	74.3
	.5	1879	2648	71.0
	.45	2034	2925	69.5
	.4	2223	3349	66.4
	.35	2457	3893	63.1
	.3	2762	4885	56.5
	.25	3170	6099	52.0
	.2	3740	7958	47.0
	.15	4621	9555	48.5
TEST #3 STABILIZED STOPS	.1*	---	---	---
	.05*	---	---	---
	.6	1574	2111	74.6
	.55	1684	2304	73.1
	.5	1812	2556	70.9
	.45	1967	2861	68.8
	.4	2156	3300	65.3
	.35	2392	3909	61.2
	.3	2696	4857	55.5
	.25	3102	6315	49.1
TEST #4 MU-STEP	.2	3677	7966	46.2
	.15	4550	10054	45.3
	.1*	---	---	---
	.05*	---	---	---
		1955	2850	68.6
TEST #5 WET-RUNWAY		3528	6652	53.0

*See F-111 Test Note.

Table 19.—F-111 Sensitivity Data

Condition	Description	μ	x_A	x_p	n_s
1a	Maximum Landing Weight With VI Stabilized Landing				
		0.6	2814	2217	77.1
		0.4	3137	2023	80.9
		0.2	3002	3112	63.2
		0.15	11931	6300	93.6
			1332	4969	67.8
	Wet Runway				
		0.6	2252	1693	84.1
		0.4	3343	2699	75.1
		0.2	3061	4353	54.6
1b	High Landing Weight With VI Stabilized Landing				
		0.6	2252	1693	84.1
		0.4	3343	2699	75.1
		0.2	3061	4353	54.6
		0.15	10180	3428	80.9
			6806	4280	62.8
	Wet Runway				
		0.6	1880	1493	75.4
		0.4	3137	1992	63.3
		0.2	7308	3408	46.7
1c	Low Landing Weight With VI Stabilized Landing				
		0.6	1880	1493	75.4
		0.4	3137	1992	63.3
		0.2	7308	3408	46.7
		0.15	8810	4280	47.9
			5882	3285	34.4
	Wet Runway				
		0.6	1528	1388	69.4
		0.4	3074	1837	59.7
		0.2	7084	3182	44.8
1d	Minimum Landing Weight With VI Stabilized Landing				
		0.6	1528	1388	69.4
		0.4	3074	1837	59.7
		0.2	7084	3182	44.8
		0.15	8129	3819	48.2
			3880	2992	30.0
	Wet Runway				
		0.6	1880	1493	75.4
		0.4	3137	2200	75.4
		0.2	6755	3848	66.9
1e	Maximum Landing Weight Without VI Stabilized Landing				
		0.6	1880	1493	75.4
		0.4	3137	2200	75.4
		0.2	6755	3848	66.9
		0.15	9708	4828	49.7
			6012	3151	62.4
	Wet Runway				
		0.6	1875	1485	84.4
		0.4	3080	2181	72.0
		0.2	7802	3773	51.7
1f	High Landing Weight Without VI Stabilized Landing				
		0.6	1875	1485	84.4
		0.4	3080	2181	72.0
		0.2	7802	3773	51.7
		0.15	8064	4706	47.7
			6078	3496	60.2
	Wet Runway				
		0.6	2131	1810	75.7
		0.4	3337	2146	64.2
		0.2	7693	3638	47.5
1g	Low Landing Weight Without VI Stabilized Landing				
		0.6	2131	1810	75.7
		0.4	3337	2146	64.2
		0.2	7693	3638	47.5
		0.15	9489	4481	47.5
			6268	3480	55.5
	Wet Runway				
		0.6	2213	1866	70.8
		0.4	3304	2181	60.8
		0.2	7812	3988	45.9
1h	Minimum Landing Weight Without VI Stabilized Landing				
		0.6	2213	1866	70.8
		0.4	3304	2181	60.8
		0.2	7812	3988	45.9
		0.15	8001	4488	50.2
			6812	3411	52.4
	Wet Runway				
		0.6	2421	1734	71.6
		0.4	3891	2346	60.8
		0.2	9123	4004	45.4
1i	Forward Center of Gravity Stabilized Landing				
		0.6	10336	4544	47.8
		0.4	8018	3832	47.8
		0.2	2421	1734	71.6
		0.15	10336	4544	47.8
			6812	3411	52.4
	Wet Runway				
		0.6	126	1904	75.9
		0.4	3130	2063	60.9
		0.2	7873	3830	44.8
1j	Aft Center of Gravity Stabilized Landing				
		0.6	8762	4381	44.8
		0.4	6518	3404	52.2
		0.2	7873	3830	44.8
		0.15	8762	4381	44.8
			6812	3411	52.2
	Wet Runway				
		0.6	126	1904	75.9
		0.4	3130	2063	60.9
		0.2	7873	3830	44.8

Table 19.—F-111 Sensitivity Data (Continued)

Condition	Description	μ	x_A	x_p	n_s
3a	Brake Application Speed + 5 Kn. Stabilized Landing	0.6	2294	1691	73.0
		0.4	3348	2307	68.0
		0.2	8597	5902	46.5
		0.15	4814		
			7104	5758	52.9
	Wet Runway				
		0.6	2336	1611	75.6
		0.4	3763	2461	69.3
		0.2	8716	5128	47.0
		0.15	10524	5072	46.2
			7157	5874	55.7
3b	Brake Application Speed + 10 Kn. Stabilized Landing	0.6	2467	2060	77.2
		0.4	4170	2778	66.6
		0.2	8443	4983	48.9
		0.15	11289	5588	48.5
			7657	4407	57.6
	Wet Runway				
		0.6	2900	2321	77.6
		0.4	4616	3106	67.5
		0.2	8814	5041	51.1
		0.15	11930	6099	50.9
			8081	4561	58.6
3d	Brake Application Speed + 30 Kn. Stabilized Landing	0.6	2980	2321	77.6
		0.4	4616	3106	67.5
		0.2	8814	5041	51.1
		0.15	11930	6099	50.9
			8081	4561	58.6
	Wet Runway				
		0.6	1981	1461	73.4
		0.4	3098	2008	64.9
		0.2	9578	5884	45.6
		0.15	8611	4297	44.7
			6198	3828	53.6
3e	Brake Application Speed - 5 Kn. Stabilized Landing	0.6	1948	1381	73.2
		0.4	2889	1864	63.6
		0.2	7315	3232	44.2
		0.15	8158	4639	44.2
			5898	3107	53.2
	Wet Runway				
		0.6	3060	2144	70.1
		0.4	4919	2944	59.8
		0.2	11234	5049	44.7
		0.15	13617	6307	45.6
			*	5015	*
4a	No Spoilers Stabilized Landing	0.6	2467	1748	74.4
		0.4	3707	2365	64.7
		0.2	8763	4102	46.8
		0.15	11286	5082	45.1
			7142	3982	52.8
	Wet Runway				
		0.6	2900	1748	74.4
		0.4	4616	2365	64.7
		0.2	8814	4102	46.8
		0.15	11930	5082	45.1
4c	60% Effective Spoilers Stabilized Landing	0.6	2467	1748	74.4
		0.4	3707	2365	64.7
		0.2	8763	4102	46.8
		0.15	11286	5082	45.1
			7142	3982	52.8
	Wet Runway				
		0.6	2943	1898	75.1
		0.4	4050	2848	62.9
		0.2	9782	4367	44.8
		0.15	12020	5427	45.1
			1930	4261	53.3
4d	40% Effective Spoilers Stabilized Landing	0.6	2467	1748	74.4
		0.4	3707	2365	64.7
		0.2	8763	4102	46.8
		0.15	11286	5082	45.1
			7142	3982	52.8
	Wet Runway				
		0.6	2900	1898	75.1
		0.4	4616	2848	62.9
		0.2	8814	4367	44.8
		0.15	11930	5427	45.1

*Brake Control System would not function

Table 19.—F-111 Sensitivity Data (Continued)

Condition	Description	μ	x_A	x_p	r_s
47	20% Effective Spoilers Stabilized Landing	0.6 0.4 0.2 0.15	2771 4364 10411 12060	1987 2137 4681 5824	71.7 62.2 49.0 43.3
	at Runway		8720	4899	52.7
48	120% Engine Idle Thrust Stabilized Landing	0.6 0.4 0.2 0.15	2154 3245 8286 10886	1987 2180 3148 4667	74.4 66.2 45.2 43.0
	Wet Runway		6625	3404	54.4
49	10% Engine Idle Thrust Stabilized Landing	0.6 0.4 0.2 0.15	2135 3246 8044 10644	1981 2168 3712 4610	75.0 66.8 46.1 43.9
	Wet Runway		6785	3573	52.7
50	90% Engine Idle Thrust Stabilized Landing	0.6 0.4 0.2 0.15	2100 3204 7672 9522	1968 2144 3642 4502	74.7 66.9 47.5 45.4
	Wet Runway		6605	3503	53.1
51	80% Engine Idle Thrust Stabilized Landing	0.6 0.4 0.2 0.15	2069 3149 7088 9301	1962 2132 3608 4445	75.5 67.7 47.1 45.1
	Wet Runway		6940	3467	50.1
52	75% of Full Metered Pressure Stabilized Landing	0.6 0.4 0.2 0.15	1851 3055 7162 9109	1974 2156 3677 4535	83.0 70.6 51.3 50.0
	Wet Runway		5850	3538	60.3
53	50% of Full Metered Pressure Stabilized Landing	0.6 0.4 0.2 0.15	2181 2547 6288 8489	1914 2156 3677 4535	72.0 64.6 58.5 53.7
	Wet Runway		3221	3528	67.6
54	5 Knot Wind Stabilized Landing	0.6 0.4 0.2 0.15	1932 2964 6007 8928	1464 2001 3391 4705	75.8 67.4 49.9 47.0
	Wet Runway		3642	3237	57.4
55	10 Knot Wind Stabilized Landing	0.6 0.4 0.2 0.15	1780 2146 6183 8003	1946 1836 3105 3621	75.3 66.9 50.2 47.7
	Wet Runway		5046	2946	58.2
56	15 Knot Wind Stabilized Landing	0.6 0.4 0.2 0.15	1659 2346 6617 7112	1252 1678 2829 3463	74.3 67.9 50.3 48.8
	Wet Runway		4644	2670	57.5

Table 19.—F-111 Sensitivity Data (Concluded)

Condition	Description	μ	r_A	r_p	r_s
1c	20 knot wind Stabilized Landing Wet Runway	0.6	1933	1124	73.3
		0.4	2353	1529	65.5
		0.2	3027	2560	50.9
		0.15	6221	5133	50.4
			4186	2407	51.5
1e	-5 Knot Wind Stabilized Landing Wet Runway	0.6	2279	1717	75.3
		0.4	2882	2354	69.7
		0.2	3045	4026	44.4
		0.15	11716	4957	42.7
			7775	3862	49.7
1f	-10 Knot Wind Stabilized Landing Wet Runway	0.6	2419	1891	76.5
		0.4	3868	2540	63.5
		0.2	3463	4362	46.1
		0.15	12920	5426	42.0
			8304	4191	50.5
2a	Hot Day - High Altitude Stabilized Landing Wet Runway	0.6	2168	1594	78.4
		0.4	2576	2206	69.3
		0.2	3317	3649	46.3
		0.15	11081	4817	43.0
			7059	3149	53.1
2b	Cold Day - Sea Level Stabilized Landing Wet Runway	0.6	2040	1947	79.1
		0.4	3149	2090	66.4
		0.2	7161	3438	48.1
		0.15	8806	4222	47.0
			5741	3152	51.3
1g	Flat $\omega = \omega$ Peak Stabilized Landing Wet Runway	0.6	1933	1574	80.6
		0.4	3017	2156	71.5
		0.2	6489	3677	56.7
		0.15	8495	4555	55.9
			5674	3528	62.2
1h	Low Tire Heating Stabilized Landing Wet Runway	0.6	2014	1574	78.2
		0.4	3059	2156	69.6
		0.2	6606	3677	55.7
		0.15	8834	4555	51.4
			5824	3528	60.6
1i	Tire Inflation Pressure 80% of Nominal. Stabilized Landing Wet Runway	0.6	2164	1574	72.7
		0.4	3422	2156	63.0
		0.2	7193	3677	51.1
		0.15	8923	4555	51.0
			5360	3528	52.2
1j	Tire Inflation Pressure 120% of Nominal. Stabilized Landing Wet Runway	0.6	2224	1574	70.6
		0.4	3717	2156	60.0
		0.2	3427	3677	39.0
		0.15	10347	4555	44.0
			7817	3528	45.1

SECTION IX STABILITY TEST RESULTS

1. STRUT DAMPING

In addition to the performance studies, stability studies were conducted to evaluate the tendency of a skid control system to contribute to the stability of the landing gear. These tests were designed to measure system ability to provide damping to the strut motion or, conversely, its tendency to couple in the oscillation, thereby causing divergence.

The fore-aft damping in the landing gear model was varied until the point of divergent gear oscillation was reached. The damping ratio was then determined at this point. By comparing the damping ratio of the baseline airplane to the damping ratio resulting from a parameter changes a qualitative statement may be made about the effect such a change would have on gear stability and stopping performance.

The damping ratio is a measure of how fast strut oscillations are attenuated. To determine the damping ratio a step torque input was made to the strut model. The resulting strut displacement was monitored as a function of time. The damping ratio was then calculated from

$$\xi = \frac{\ln \frac{A_0}{A(t)}}{2\pi n} \times 100\%$$

where:

ξ = damping ratio (in percent)

n = number of full strut oscillations

A_0 = strut amplitude at time zero

$A(t)$ = strut amplitude after n strut oscillations.

The stability test conditions and results are listed in Tables 20 and 21 respectively for each aircraft.

Table 20.—Stability Test Conditions

TEST CONDITION	F-111				KC-135				B-52			
	ω	MS	KS	ω	MS	KS	ω	MS	KS	ω	MS	KS
BASELINE	21.84	19.97	376,000	17.75	40.9	508,200	13.84	62.17	470,400			
MAXIMUM STRUT FREQUENCY VARYING MASS	28	12.15	376,000	22.0	26.6	508,200	TESTS NOT RUN*					
MINIMUM STRUT FREQUENCY VARYING MASS	10	95.24	376,000	12.0	89.4	508,200						
MAXIMUM STRUT FREQUENCY VARYING STIFFNESS	28	19.97	618,100	22.0	40.9	781,500						
MINIMUM STRUT FREQUENCY VARYING STIFFNESS	10	19.97	78,840	12.0	40.9	232,500						

* B-52:1 HAS A FIRST GENERATION ANTIKID SYSTEM WHICH IN NO WAY CONTRIBUTES TO SYSTEM STABILITY
 ω GEAR NATURAL FREQUENCY IN HERTZ
 MS STRUT MASS $lb\cdot sec^2/ft$
 KS STRUT STIFFNESS $lb\cdot ft/ft$

Table 21.—Stability Test Results

TEST CONDITION	DAMPING RATIO ** %		
	F-111	KC-135	B-52
BASELINE	5.76	0.67	TESTS NOT RUN
NOMINAL BASELINE DAMPING RATIO % USED FOR SENSITIVITY ANALYSIS	10.99	9.96	
MAXIMUM STRUT FREQUENCY VARYING MASS	0.34	0.70	
MINIMUM STRUT FREQUENCY VARYING MASS	*	0.71	
MAXIMUM STRUT FREQUENCY VARYING STIFFNESS	-0.413	-0.068	
MINIMUM STRUT FREQUENCY VARYING STIFFNESS	*	1.59	

**MINIMUM DAMPING RATIO IN PERCENT REQUIRED FOR SYSTEM STABILITY.

* SEE F-111 TEST NOTES

SECTION X TEST NOTES

1. TORQUE LIMITED BRAKING

Torque limiting of the brake occurs when the available torque due to ground force is greater than the available brake torque. Under this condition, the wheel will not skid, but will decelerate at the same rate as the airplane. During such operation the antiskid system is inactive and no longer controls the wheel; full metered pressure is applied to the brake.

Torque limiting most often occurs on high mu runways with heavy gross weight airplanes. During this sensitivity study, torque limiting occurred in numerous test conditions. Table 22 lists those conditions for which torque limiting occurred during some portion of the braking run.

2. LOW FRICTION OPERATION - F-111

During the testing of the F-111, it was found that antiskid system operation was sporadic on runways with a coefficient of friction lower than .15. On such runways, the wheels would go into an immediate and deep skid. The system would only allow the wheel to partially recover before reapplying pressure, resulting in another skid. Such skid cycling would occur for several seconds before the antiskid system would automatically deenergize. In an effort to determine if the antiskid box was functioning properly, a number of tests were performed as specified in T. C. IF-111A-2-9-1, Section 6-1, Operational Checkout of Skid Control System. No malfunction of the box could be detected. As a result a lower mu limit of .15 instead of 0.05 was used during sensitivity testing to insure a uniform data base.

3. STRUT STABILITY F-111

During the strut stability testing, it was found that with frequencies below 16 Hertz the antiskid system operation was unstable. Testing revealed that strut oscillations were viewed as successive skids causing unnecessary reductions in brake pressure. Immediately after a skid, pressure was reapplied to a high level resulting in another skid. In this mode of operation, the strut would continue to oscillate undamped at about 10 to 11 hertz.

4. PRESSURE APPLICATION

The maximum metered pressure level on the B-52, B-52A, and F-111 is controlled by a force limiting mechanism. At the time of testing, these mechanisms were unavailable. A similar mechanism which would allow the simulation of pilot brake pedal action (i.e., ramping on of brake pressure) was devised. However, a repeatable maximum metered pressure level could not be obtained. As a result it was necessary to eliminate the pilot action feature and start with high metered pressure. This method tended to cause an unusually deep skid at the start of each test run.

Table 22.--Torque Limited Cases (Tests 1a-1d only)

TEST CONDITION	TORQUE LIMITED RUNS (MU)*		
	F-111	KC-135	B-52
BASELINE	*	*	.23 thru .6
1a MAXIMUM LANDING WEIGHT	.4, thru .6	.4, thru .6	.15 thru .6
1b HIGH INTERMEDIATE LANDING WEIGHT	.6	.6	.2, thru .6
1c LOW INTERMEDIATE LANDING WEIGHT	*	*	.4, thru .6
1d MINIMUM LANDING WEIGHT	*	*	.35 thru .6

* NORMAL ANTI SKID SYSTEM ACTIVITY

5. BASELINE DATA VARIATION - KC-135

During the sensitivity testing of the KC-135, variations in the baseline braking distance were noted. Normal simulator braking distance repeatability is about 1%. The KC-135 however, exhibited an average distance variation of about $\pm 4.5\%$. Extensive testing revealed that the antiskid valve pressure - current characteristic changed with operating history, as shown in Figure 33. The changing shape of the curve effects system response and ultimately braking distance.

Figure 33.—Variable KC-135 Valve Response

SECTION XI PARAMETER RATINGS

The following tables present the baseline braking distance percentages for frictional values of 0.6, 0.4, 0.2, and 0.1. Also shown in the parameter rating index (PRI) for all test conditions. Table 23 summarizes the percentages for all aircraft studied and lists the composite PRI. Tables 24 through 26 contain individual PRI values for the B-52, KC-135 and F-111.

Table 23.—Summary of Parameter Ratings

TEST CONDITION	BASELINE BRAKING DISTANCE (DRY - STABILIZED LANDINGS)												PRI		
	Mu = 0.6			0.4			0.2			0.15		0.1			
	B-52	KC-135	F-111	B-52	KC-135	F-111	B-52	KC-135	F-111	B-52	KC-135	B-52	KC-135		
1a. Maximum Weight with VI	*	264	136	*	180	113	*	124	102	113	*	98	43.88		
1b. High Weight with VI	*	160	107	*	120	107	*	113	101	107	*	107	15.25		
1c. Low Weight with VI	*	54	94	*	84	95	*	89	92	89	*	88	10.63		
1d. Minimum Weight with VI	*	76	91	*	78	93	*	86	89	81	*	98	13.50		
1e. Maximum Weight without VI	158	148	91	158	104	88	71	82	85	97	119	92	23.42		
1f. High Weight without VI	128	118	89	129	95	92	77	89	92	98	108	94	13.08		
1g. Low Weight without VI	85	70	101	86	66	101	91	105	96	94	90	96	6.75		
1h. Minimum Weight without VI	70	130	105	83	97	106	82	84	98	88	81	96	13.50		
2a. Forward Center of Gravity	101	104	115	102	105	118	97	105	116	103	98	56	6.50		
2b. Aft Center of Gravity	171	175	94	101	97	95	97	97	99	97	99	88	3.67		
3a. Brakes on Speed +5 kts.	108	108	107	109	107	108	103	104	105	—	103	102	5.82		
3b. Brakes on Speed +10 kts.	119	115	113	119	113	114	109	112	110	105	107	106	11.83		
3c. Brakes on Speed +20 kts.	136	130	126	130	128	126	115	124	119	112	112	112	23.25		
3d. Brakes on Speed +30 kts.	155	150	142	161	144	140	124	132	124	119	120	120	35.92		
3e. Brakes on Speed -5 kts.	92	93	54	92	93	94	89	93	95	96	90	95	7.00		
3f. Brakes on Speed -10 kts.	82	86	87	82	87	89	85	88	92	91	87	91	2.75		
4a. No Spoilers	104	130	145	122	155	149	113	147	142	137	117	133	33.50		
4b. ±0° Effective Spoilers	100	105	07	100	106	105	101	107	105	107	100	102	3.75		
4c. 60° Effective Spoilers	101	112	111	101	113	112	103	120	110	112	102	109	8.83		
4d. 40° Effective Spoilers	102	118	120	104	121	123	106	128	122	120	106	109	14.92		
4e. ±20° Effective Spoilers	.03	127	131	107	131	133	110	134	131	128	109	125	22.42		
4f. ±20° Engine Idle Thrust	101	101	101	01	101	01	104	101	104	104	108	108	112	3.58	
4g. ±10° Engine Idle Thrust	59	71	101	100	101	98	100	108	101	106	101	106	2.00		
4h. ±0° Engine Idle Thrust	97	151	95	97	100	97	95	103	96	99	93	98	2.75		
4i. ±0° Engine Idle Thrust	56	59	98	97	98	95	92	96	89	93	89	95	5.25		
5a. 75% Full Metered Pressure	●	109	88	●	105	93	●	105	90	91	●	+	8.14		
5b. 50% Full Metered Pressure	●	140	74	●	101	77	●	105	75	84	●	+	15.71		
1a. 5 Knot Wind	87	94	91	88	93	90	85	95	85	89	83	86	11.17		
1b. 10 Knot Wind	76	88	85	76	86	83	71	88	78	80	67	76	20.50		
1c. 15 Knot Wind	65	79	78	66	79	77	60	76	71	71	55	66	29.75		
1d. 20 Knot Wind	56	14	75	55	72	71	50	69	63	62	46	57	37.67		
1e. ±5 Knot Wind	114	106	108	115	106	109	111	114	114	117	112	110	11.53		
1f. -10 Knot Wind	129	117	115	129	116	117	127	125	119	129	132	124	23.33		
2a. Hot Day	104	99	103	105	102	102	110	104	104	110	110	114	5.75		
2b. Cold Day	92	99	98	93	97	95	81	91	90	88	85	87	8.17		
1a. Flat ± Slip Peak	99	93	111	99	91	91	94	97	81	84	86	89	8.58		
1b. Low Tire Heating	99	96	95	99	93	94	95	96	86	88	87	93	6.58		
1c. ±0° Tire Inflation Pressure	100	99	100	124	99	104	98	104	90	89	91	92	6.33		
1d. ±20° Tire Inflation Pressure	100	107	105	100	108	113	101	99	118	103	104	95	5.42		

*Test condition not consistent with B-52 operational procedures.

●Test not run

-Brake Control System would not function.

—Braking distance greater than computer limit

Table 24.—B-52H Parameter Ratings

RANK	TEST CONDITION	DESCRIPTION	PARAMETER RATING INDEX
1	1d	+20 KNOT WIND	48.25
2	1a	MAXIMUM LANDING WEIGHT	41.00
3	3d	BRAKE APPLICATION SPEED +30 KNOTS	40.00
4	1c	+15 KNOT WIND	38.50
5	1f	-10 KNOT WIND	29.50
6	1b	+10 KNOT WIND	27.50
7	3c	BRAKE APPLICATION SPEED + 20 KNOTS	25.50
8	1b	HIGH INTERMEDIATE LANDING WEIGHT	22.00
9	1d	MINIMUM LANDING WEIGHT	21.00
10	1f	BRAKE APPLICATION SPEED -10 KNOTS	16.00
11	1a	+5 KNOT WIND	14.25
12	4a	NO SPOILERS	14.00
13	3b	BRAKE APPLICATION SPEED +10 KNOTS	13.50
14	1e	-5 KNOT WIND	13.00
15	1c	LOW INTERMEDIATE LANDING WEIGHT	12.00
16	2b	COLD DAY	10.75
17	3e	BRAKE APPLICATION SPEED -5 KNOTS	9.25
18	1c	TIRE INFLATION PRESSURE 80% OF NORMAL	8.75
19	2a	HOT DAY	7.50
20	4e	20% EFFECTIVE SPOILERS	7.25
21	4i	80% ENGINE IDLE THRUST	6.30
22	3a	BRAKE APPLICATION SPEED +5 KNOTS	5.75
23	1a	FLAT MU-SLIP PEAK	5.50
24	1b	LOW TIRE HEATING	5.00
25	4d	40% EFFECTIVE SPOILERS	4.50
	4h	90% ENGINE IDLE THRUST	4.50
27	4f	120% ENGINE IDLE THRUST	3.50
28	2a	FORWARD CENTER OF GRAVITY	2.00
29	4c	60% EFFECTIVE SPOILERS	1.75
	2b	AFT CENTER OF GRAVITY	1.50
31	1d	TIRE INFLATION PRESSURE 120% OF NORMAL	1.25
32	4g	110% ENGINE IDLE THRUST	.50
33	4b	80% EFFECTIVE SPOILERS	.25

Table 25.—KC-135 Parameter Ratings

RANK	TEST CONDITION	DESCRIPTION	PARAMETER RATING INDEX
1	1a	MAXIMUM LANDING WEIGHT W/VI	71.75
2	4a	NO SPOILERS	43.25
3	3d	BRAKE APPLICATION SPEED + 30 KNOTS	36.50
4	1d	+ 20 KNOT WIND	32.00
5	4e	20% EFFECTIVE SPOILERS	29.25
6	1c	+15 KNOT WIND	25.00
7	1b	HIGH INTERMEDIATE LANDING WEIGHT W/VI	25.00
8	3c	BRAKE APPLICATION SPEED + 20 KNOTS	23.50
9	1f	-10 KNOT WIND	20.50
10	1e	MAXIMUM LANDING WEIGHT W/O VI	19.50
11	4d	40% EFFECTIVE SPOILERS	19.00
12	1d	MINIMUM LANDING WEIGHT W/VI	15.50
13	1b	+ 10 KNOT WIND	15.50
14	5b	50% OF FULL METERED PRESSURE	15.33
15	1c	LOW INTERMEDIATE LANDING WEIGHT W/VI	13.75
16	4c	60% EFFECTIVE SPOILERS	13.50
17	1h	MINIMUM LANDING WEIGHT W/O VI	13.25
18	3f	BRAKE APPLICATION SPEED - 10 KNOTS	12.00
19	3b	BRAKE APPLICATION SPEED + 10 KNOTS	11.50
20	1f	HIGH INTERMEDIATE LANDING WEIGHT W/O VI	10.00
21	1e	-5 KNOT WIND	9.00
22	1a	+5 KNOT WIND	8.00
23	1a	FLAT MU-.SLIP PEAK	7.50
24	2b	COLD DAY	6.50
25	3e	BRAKE APPLICATION SPEED - 5 KNOTS	6.50
26	5a	75% OF FULL METERED PRESSURE	6.33
27	2b	AFT CENTER OF GRAVITY	5.75
28	1b	LOW TIRE HEATING	5.50
29	2a	HOT DAY	5.25
	1d	TIRE INFLATION PRESSURE 120% OF NORMAL	5.25
	3a	BRAKE APPLICATION SPEED + 5 KNOTS	5.25
	1g	LOW INTERMEDIATE WEIGHT W/O VI	5.25
33	4b	80% EFFECTIVE SPOILERS	5.00
34	2a	FORWARD CENTER OF GRAVITY	4.50
35	4g	110% ENGINE IDLE THRUST	4.00
36	4f	120% ENGINE IDLE THRUST	3.75
37	1c	TIRE INFLATION PRESSURE 80% OF NORMAL	3.50
38	4i	80% ENGINE IDLE THRUST	3.00
39	4h	90% ENGINE IDLE THRUST	1.50

Table 26.—F-111 Parameter Ratings

RANK	TEST CONDITION	DESCRIPTION	PARAMETER RATING INDEX
1	4a	NO SPOILERS	43.25
2	1d	20 KNOT WIND	32.75
3	3d	BRAKE APPLICATION SPEED + 30 KNOTS	31.25
4	4e	20% EFFECTIVE SPOILERS	30.75
5	1c	15 KNOT WIND	25.75
6	4d	40% EFFECTIVE SPOILERS	21.25
7	3c	BRAKE APPLICATION SPEED + 20 KNOTS	20.75
8	1f	-10 KNOT WIND	20.00
9	1b	10 KNOT WIND	18.50
10	1a	MAXIMUM LANDING WEIGHT W/VI	16.00
	5b	50% OF FULL METERED PRESSURE	16.00
2	2a	FORWARD CENTER OF GRAVITY	13.00
13	1a	FLAT MU-SLIP PEAK	12.75
14	1e	-5 KNOT WIND	12.00
15	1d	MINIMUM LANDING WEIGHT W/VI	11.50
16	4c	60% EFFECTIVE SPOILERS	11.25
	1a	5 KNOT WIND	11.25
18	3b	BRAKE APPLICATION SPEED + 10 KNOTS	10.50
19	3f	BRAKE APPLICATION SPEED - 10 KNOTS	10.25
20	1d	TIRE INFLATION PRESSURE 120% OF NORMAL	9.75
	1e	MAXIMUM LANDING WEIGHT W/VI	9.75
22	5a	75% OF FULL METERED PRESSURE	9.50
23	1b	LOW TIRE HEATING	9.25
24	1c	LOW INTERMEDIATE WEIGHT W/VI.	7.50
25	2b	COLD DAY	7.25
	1f	HIGH INTERMEDIATE WEIGHT W/O VI	7.25
27	1c	TIRE INFLATION PRESSURE 80% OF NORMAL	6.75
28	3a	BRAKE APPLICATION SPEED + 5 KNOTS	6.67
29	1h	MINIMUM LANDING WEIGHT W/O VI.	6.25
	4i	80% ENGINE IDLE THRUST	6.25
31	4b	80% EFFECTIVE SPOILERS	6.00
32	1b	HIGH INTERMEDIATE WEIGHT W/VI	5.50
33	3e	BRAKE APPLICATION SPEED - 5 KNOTS	5.25
34	2a	HOT DAY	4.75
35	2b	AFT CENTER OF GRAVITY	3.75
36	4f	120% ENGINE IDLE THRUST	3.50
37	1g	LOW INTERMEDIATE WEIGHT W/O VI	3.00
38	4g	110% ENGINE IDLE THRUST	2.50
39	4h	90% ENGINE IDLE THRUST	2.25

SECTION XII CALCULATION OF PI TERMS

Tables 27, 28, and 29 contain information needed to calculate various pi terms. The data consists of baseline values as well as values used in the brake system simulation parametric study. Tables 30 through 32 show the actual calculation steps to obtain pi terms for each condition and all airplane models. The calculations for π_1 , π_2 , and π_3 are straightforward. For π_4 calculations, the term F_e was obtained using the following relationship:

$$F_e = F_{eo} + \frac{KE}{2} (v + v_{stop})$$

where:

F_{eo} = engine idle thrust at zero velocity

KE = change of idle thrust with velocity

v_{stop} = velocity at which stopping distance calculation was stopped on the simulator.

Table 27.—Baseline Values Used in Airplane Simulation and Prediction Model

Airplane Parameter		Airplane		
Symbol	Units	B-52	KC-135	F-111
C_D	---	.321	.202	.237
C_L	---	.305	.310	.280
F_{eo}	lbf	4800	2400	904
KE	lbf-sec/ft lb-sec ² /ft ⁴	-10.65 .00238	-5.825 .00238	-1.258 .00238
V	fps	152	209	219.8
V_{stop}	fps	24	24	24
W	lbf	290000	185000	57000

Table 28.-Parametric Study Data

Test Condition and Parameter Changed	Airplane Model		
	B-52	KC-135	F-111
Airplane Parameters			
1a Maximum Landing Weight WA VI $I_{YY} \times 10^{-6}$	450000 [1] 8.16	300000 267.3 4.927	80000 261.5 .225
1b High Landing Weight WA VI $I_{YY} \times 10^{-6}$	370000 [1] 6.87	242500 240.8 4.344	68500 241.5 .217
1c Low Landing Weight WA VI $I_{YY} \times 10^{-6}$	245000 [1] 4.87	142500 183.3 3.330	52900 211.0 .205
1d Minimum Landing Weight WA VI $I_{YY} \times 10^{-6}$	200000 [1] 4.14	125000 171.7 3.153	48800 202.3 .202
3a Brake Application Speed + 5 Knots VI	160.4	217.4	228.2
3b Brake Application Speed + 10 Knots VI	168.9	225.9	236.7
3c Brake Application Speed + 20 Knots VI	185.8	242.8	253.6
3d Brake Application Speed + 30 Knots VI	202.7	259.7	270.5
3e Brake Application Speed - 5 Knots VI	143.6	200.6	211.4
3f Brake Application Speed - 10 Knots VI	135.2	192.1	202.9

[1] Equivalent value calculated using Appendix B , Volume I

Table 28.—Parametric Study Data (Concluded)

Test Condition and Parameter Changed	Airplane Model		
	B-52	KC-135	F-111
Airplane Parameters			
4a No Spoilers			
CL	.1.0	.360	.1.05
CD	.257	.131	.144
4b 80% Effective Spoilers			
CL	.444	.420	.434
CD	.3082	.1878	.2184
4c 60% Effective Spoilers			
CL	.583	.530	.588
CD	.2954	.1736	.1998
4d 40% Effective Spoilers			
CL	.722	.640	.742
CD	.2826	.1594	.1812
4e 20% Effective Spoilers			
CL	.361	.750	.896
CD	.2698	.1452	.1626
4f 120% Engine Idle Thrust			
FEO	5760	2880	1085
KE	-8.52	-4.26	-1.006
4g 110% Engine Idle Thrust			
FEO	5280	2640	994
KE	-9.59	-4.793	-1.132
4h 90% Engine Idle Thrust			
FEO	4320	2160	814
KE	-11.72	-5.858	-1.384
4i 80% Engine Idle Thrust			
FEO	3840	1920	723
KE	-12.78	-6.39	-1.51
2a Hot Day			
RHO	.00189	.00189	.00189
2b Cold Day			
RHO	.00309	.00309	.00309

Table 29.—Simulator Braking Distance Results (Distance in Feet)

CONDITION	B-52				KC-135				F-111			
	0.6	0.4	0.2	0.1	0.6	0.4	0.2	0.1	0.6	0.4	0.2	0.1
AVAILABLE MU	1779*	1775	3904	5694	1552	2283	5108	10885	2111	3300	7966	10054
BASELINE	1786	1772	3940	5676	1628	2411	5453	11114	2251	3458	8329	10807
80% SP	1780	1798	4025	5806	1735	2579	6130	11916	2352	3707	8763	11296
60% SP	1818	1838	4146	6036	1829	2767	6542	11853	2543	4050	9752	12020
40% SP	1835	1902	4284	6204	1976	3000	6833	13552	2771	4384	10411	12868
NO SP	1853	2164	4400	6640	2142	3530	7520	14484	3060	4919	11334	13817
MAX WT	2822*	2798	2784	6784	4095	4110	6329	12939	2874	3737	8092	11331
HIGH WT	2278	2288	2989	6136	2476	2746	5787	11669	2252	3543	8501	10870
LOW WT	1517	1519	3564	5150	1310	1925	4561	9527	1980	3137	7305	8910
MIN WT	1246	1473	3216	4613	1182	1789	4386	-	1928	3076	7084	8129
V _B + 5 Km	1916	1934	4030	5875	1669	2436	5318	11139	2254	3548	8397	-
V _B + 10	2116	2109	4254	6105	1790	2589	5719	11515	2396	3769	8776	10526
V _B + 20	2418	2470	4508	6390	2024	2920	6346	12203	2667	4170	9449	11299
V _B + 30	2755	2866	4855	6850	2321	3282	6749	13037	2990	4616	9874	11990
V _B - 5	1633	1625	3466	5112	1441	2127	4759	10314	1991	3095	7575	9611
V _B - 10	1457	1460	3300	4967	1332	1987	4518	9909	1845	2929	7315	9139
120% Fe	1795	1784	4059	6143	1568	2302	5174	12221	2184	3343	8286	10856
110% Fe	1770	1771	3900	5751	1570	2314	5512	11545	2138	3246	8044	10644
90% Fe	1724	1723	3715	5280	1574	2285	5249	10625	2100	3204	7672	9922
80% Fe	1715	1726	3580	5082	1543	2246	4880	10303	2069	3149	7058	9301
Hot Day	1852	1852	4279	6281	1538	2329	5314	12392	2156	3376	8317	11031
Cold Day	1628	1650	3413	4835	1537	2208	4662	9472	2060	3149	7137	8806

* Torque Limited Braking

Table 30.—B-52 Pi Determination

CONDITION	V	$\pi_2 = .60$	$\pi_2 = .55$	$\pi_2 = .50$	$\pi_2 = .45$	$\pi_2 = .40$	$\pi_2 = .35$
		S	Sg/V^2	S	Sg/V^2	S	Sg/V^2
FPS	π_1	FT	π_1	FT	π_1	FT	π_1
	152	1779	2.477	1766	2.459	1754	2.442
Baseline	$\pi_2 = .30$	$\pi_2 = .28$	$\pi_2 = .27$	$\pi_2 = .26$	$\pi_2 = .25$	$\pi_2 = .23$	
	S	Sg/V^2	S	Sg/V^2	S	Sg/V^2	S
FT	π_1	FT	π_1	FT	π_1	FT	π_1
	1852	2.579	2200	3.063	2354	3.278	2641
$\pi_2 = .225$	$\pi_2 = .22$	$\pi_2 = .20$	$\pi_2 = .175$	$\pi_2 = .150$	$\pi_2 = .125$		
	S	Sg/V^2	S	Sg/V^2	S	Sg/V^2	S
FT	π_1	FT	π_1	FT	π_1	FT	π_1
	3637	5.064	3733	5.198	3904	5.436	4245
$\pi_2 = .10$	$\pi_2 = .09$	$\pi_2 = .08$	$\pi_2 = .07$	$\pi_2 = .06$	$\pi_2 = .05$		
	S	Sg/V^2	S	Sg/V^2	S	Sg/V^2	S
FT	π_1	FT	π_1	FT	π_1	FT	π_1
	5694	7.929	5992	8.344	6305	8.780	6786

B Table 30.-B-52 Pi Determination (Continued)

CONDITION	V	C_L	C_D	C_L/C_D	$\pi_2 = .6$		$\pi_2 = .4$		$\pi_2 = .2$		$\pi_2 = .1$	
					S	Sg/V^2	S	Sg/V^2	S	Sg/V^2	S	Sg/V^2
FPS	--	--	π_2	FT	π_1	FT	π_1	FT	π_1	FT	π_1	FT
Baseline	152	.305	.321	0.950	1779	2.477	1775	2.472	3904	5.436	5694	7.929
80% Spoilers	152	.444	.308	1.441	1786	2.487	1772	2.467	3940	5.486	5676	7.904
60% Spoilers	152	.583	.295	1.974	1805	2.513	1798	2.504	4.025	5.605	5806	8.085
40% Spoilers	152	.722	.283	2.555	1818	2.532	1838	2.559	4146	5.773	6036	8.404
20% Spoilers	152	.861	.270	3.191	1836	2.555	1907	2.655	4284	5.965	6204	8.639
No Spoilers	152	1.00	.257	3.891	1853	2.580	2164	3.013	4400	6.127	6640	9.246

Table 30.-B-52 Pi Determination (Concluded)

CONDITION	V	Feo	Fe	$\frac{\rho V_6}{F_{eg}^2}$	$\pi_2 = .6$		$\pi_2 = .4$		$\pi_2 = .2$		$\pi_2 = .1$	
	S	Sg/V^2	S	Sg/V^2	S	Sg/V^2	S	Sg/V^2	S	Sg/V^2	S	Sg/V^2
	FPS	Lb_f	Lb_f	π_4	FT	π_1	FT	π_1	FT	π_1	FT	π_1
BASELINE	152	4800	3863	7341	1779	2.477	1775	2.472	3904	5.436	5694	7.929
MAX WT	► 1	4800	3586	46217	2822	2.182	2798	2.239	2784	3.880	6784	5.684
HIGH WT	► 1	4800	3724	19638	2278	2.313	2288	2.368	2989	4.166	6136	6.520
LOW WT	► 1	4800	3940	3926	1517	2.585	1519	2.551	3564	5.917	5150	8.502
MIN WT	► 1	4800	4018	1962	1246	2.652	1473	2.053	3216	6.476	4613	9.172
$V_B + 5$	160.4	4800	3818	10257	1916	2.396	1934	2.418	4030	5.039	5875	7.346
$V_B + 10$	168.9	4800	3773	14149	2116	2.386	2109	2.378	4254	4.798	6105	6.885
$V_B + 20$	185.8	4800	3683	25687	2418	2.253	2470	2.302	4508	4.201	6390	5.955
$V_B + 30$	202.7	4800	3693	44392	2755	2.157	2866	2.244	4855	3.802	6850	5.364
$V_B - 5$	143.6	4800	3908	5160	1633	2.548	1625	2.535	3466	5.408	5112	7.976
$V_B - 10$	135.2	4800	3952	3553	1457	2.564	1460	2.570	3300	5.808	4967	8.742
120% Fe	152	5760	5010	5660	1795	2.500	1784	2.484	4059	5.652	6142	8.554
110% Fe	152	5280	4436	6393	1770	2.465	1771	2.466	3900	5.431	5751	8.008
90% Fe	152	4320	3289	8623	1724	2.401	1723	2.399	3715	5.173	5280	7.325
80% Fe	152	3840	2715	10444	1715	2.388	1726	2.403	3580	4.985	5082	7.077
HOT DAY	152	4800	3863	5830	1857	2.586	1857	2.586	4279	5.958	6281	8.746
COLD DAY	152	4800	3863	9532	1628	2.267	1650	2.298	3413	4.753	4835	6.733

► Calculate using Appendix B, Volume I.

Table 31.-KC-135 Pi Determination

	$\pi_2 = .60$	$\pi_2 = .55$	$\pi_2 = .50$	$\pi_2 = .45$	$\pi_2 = .40$	$\pi_2 = .35$
CONDITION	S	Sg/V^2	S	Sg/V^2	S	Sg/V^2
FPS	π_1	FT	π_1	FT	π_1	FT
Baseline	209	1552	1.143	1703	1.254	1893
	$\pi_2 = .325$	$\pi_2 = .30$	$\pi_2 = .275$	$\pi_2 = .25$	$\pi_2 = .20$	$\pi_2 = .15$
	S	Sg/V^2	S	Sg/V^2	S	Sg/V^2
	π_1	FT	π_1	FT	π_1	FT
	2788	2.053	3040	2.239	3431	2.527
	$\pi_2 = .125$	$\pi_2 = .10$	$\pi_2 = .066$	$\pi_2 = .054$	$\pi_2 = .037$	
	S	Sg/V^2	S	Sg/V^2	S	Sg/V^2
	π_1	FT	π_1	FT	π_1	FT
	8604	6.337	10885	8.017	6205	4.570

Table 31.—KC-135 Pi Determination (Continued)

CONDITION	V	C_L	C_D	CL/CD	$\pi_2 = .6$	$\pi_2 = .4$	$\pi_2 = .2$	$\pi_2 = .1$
					S	Sg/V^2	S	Sg/V^2
FPS	--	--	π_3	FT	π_1	FT	π_1	FT
BASELINE	209	0.310	0.202	1.535	1.143	2283	1.681	5108
80% Spoilers	209	0.420	0.188	2.236	1.199	2411	1.776	5452
60% Spoilers	209	0.530	0.174	3.053	1.735	1.278	2579	1.899
40% Spoilers	209	0.640	0.159	4.015	1829	1.347	2767	2.038
20% Spoilers	209	0.750	0.145	5.165	1976	1.455	3000	2.210
No Spoilers	209	0.860	0.131	6.565	2149	1.583	3530	2.600

Table 31.—KC-135 Pi Determination (Concluded)

CONDITION	V	Feo	Fe	$\frac{\rho V_6}{F_{eg}^2}$	$\pi_2 = .6$		$\pi_2 = .4$		$\pi_2 = .2$		$\pi_2 = .1$	
					S	Sg/V^2	S	Sg/V^2	S	Sg/V^2	S	Sg/V^2
	FP	Lb_f	Lb_f	π_4	FT	π_1	FT	π_1	FT	π_1	FT	π_1
Baseline	209.0	2400	1780	107688	1552	1.143	2283	1.681	5108	3.762	10885	8.017
Max. Wt.	267.3	2400	1624	516319	4095	3.016	4110	3.026	6329	2.850	12939	5.826
High Wt.	240.8	2400	1695	254483	2476	1.823	2746	1.524	5787	3.211	11669	6.474
Low Wt.	183.3	2400	1878	47193	1310	1.254	1925	1.843	4561	4.367	9527	9.122
Min Wt.	171.7	2400	1879	31357	1182	1.290	1789	1.952	4386	4.786	---	---
$V_B + 5$	217.4	2400	1757	138146	1669	1.136	2436	1.658	5318	3.620	11139	7.582
$V_B + 10$	225.9	2400	1735	176161	1790	1.128	2589	1.632	5719	3.606	11515	7.260
$V_B + 20$	242.8	2400	1690	278816	2024	1.105	2920	1.594	6346	3.463	12203	6.660
$V_B + 30$	259.7	2400	1645	428923	2321	1.107	3282	1.566	6749	3.219	13037	6.219
$V_B - 5$	200.6	2400	1802	83.48	1441	1.152	2127	1.701	4759	3.805	10314	8.246
$V_B - 10$	192.1	2400	1825	63330	1332	1.161	1987	1.732	4518	3.939	9909	8.639
120% Fe	209.0	2880	2384	80398	1568	1.155	2302	1.695	5174	3.811	12221	9.001
110% Fe	209.0	2640	2082	92066	1570	1.156	2313	1.704	5512	4.060	11545	8.503
90% Fe	209.0	2160	1478	129706	1575	1.160	2285	1.683	5249	3.866	10625	7.826
80% Fe	209.0	1920	1176	163024	1543	1.136	2246	1.654	4880	3.594	10303	7.588
Hot Day	209.0	2400	1780	85517	1538	1.133	2329	1.715	5314	3.914	12397	9.131
Cold Day	209.0	2400	1780	139813	1537	1.132	2208	1.626	4662	3.434	9472	6.976

Table 32.—F.111 Pi Determination

	$\pi_2 = .60$	$\pi_2 = .55$	$\pi_2 = .50$	$\pi_2 = .45$	$\pi_2 = .40$	$\pi_2 = .35$
CONDITION	S	Sg/V^2	S	Sg/V^2	S	Sg/V^2
FPS	FT	π_1	FT	π_1	FT	π_1
Baseline	219.8	2111	1.406	2304	1.534	2556
	$\pi_2 = .30$	$\pi_2 = .275$	$\pi_2 = .260$	$\pi_2 = .250$	$\pi_2 = .240$	$\pi_2 = .230$
	S	Sg/V^2	S	Sg/V^2	S	Sg/V^2
	FT	π_1	FT	π_1	FT	π_1
4857	3.234	5399	3.595	5780	3.849	6315
	$\pi_2 = .220$	$\pi_2 = .210$	$\pi_2 = .200$	$\pi_2 = .190$	$\pi_2 = .175$	$\pi_2 = .150$
	S	Sg/V^2	S	Sg/V^2	S	Sg/V^2
	FT	π_1	FT	π_1	FT	π_1
7027	4.679	7342	4.889	7966	5.305	8116

Table 32.-F-111 Pi Determination (Continued)

CONDITION	V	C_L	C_D	C_L/C_D	$\pi_2 = .6$	$\pi_2 = .4$	$\pi_2 = .2$	$\pi_2 = .15$
					S	Sg/V^2	S	Sg/V^2
FPS	--	--	π_3	FT	π_1	FT	π_1	FT
Baseline	219.8	.280	.237	1.181	2111	1.406	3300	2.198
80% Spoilers	219.8	.434	.218	1.987	2251	1.499	3458	2.303
60% Spoilers	219.8	.583	.200	2.943	2352	1.566	3707	2.469
40% Spoilers	219.8	.742	.181	4.095	2543	1.693	4050	2.697
20% Spoilers	219.8	.896	.163	5.510	2771	1.845	4384	2.919
No Spoilers	219.8	1.050	.144	7.292	3060	2.038	4919	3.276

Table 32.—F-111 Pi Determination (Concluded)

CONDITION	V	Feo	Fe	$\frac{c}{Feg} \sqrt{6}$	$\pi_2 = .6$		$\pi_2 = .4$		$\pi_2 = .2$		$\pi_2 = .15$				
					S	Sg/V^2	S	Sg/V^2	S	Sg/V^2	S	Sg/V^2			
					FPS	Lb_f	Lb_f	π_1	FT	π_1	FT	π_1			
Baseline	219.8	904	751	345422	2111				1.406	3300	2.198	7966	5.305	10054	6.695
Max. Wt.	1 ▶	904	---	2 ▶	2874	TL	1.914	3737	TL	2.489	8092	4.623	11331	6.474	
High Wt.	1 ▶	904	---	2 ▶	2252	TL	1.500	3543	2.118	8051	5.116	10780	6.851		
Low Wt.	1 ▶	904	756	2 ▶	1980		1.417	3137		2.246	7305	5.935	8910	7.239	
Min Wt.	1 ▶	904	758	2 ▶	1928		1.434	3076		2.287	7084	5.994	8129	8.540	
$V_B + 5$	228.2	904	745	435657	2254		1.393	3548		2.192	8397	5.188	Not Run	---	
$V_B + 10$	236.7	904	740	546471	2396		1.376	3769		2.164	8776	5.039	10526	6.044	
$V_B + 20$	253.6	904	729	838604	2667		1.334	4170	0.086	9449	4.727	11299	5.652		
$V_B + 30$	270.5	904	719	1250662	2990		1.315	4616		2.030	9874	4.341	11990	5.272	
$V_B - 5$	211.4	904	756	271498	1991		1.433	3095		2.228	7575	5.453	9611	6.919	
$V_B - 10$	202.9	904	761	210751	1845		1.442	2929		2.289	7315	5.716	9139	7.142	
120% Fe	219.8	1085	962	269430	2184		1.454	3343		2.226	8286	5.518	10856	7.229	
110% Fe	219.8	994	856	302907	2138		1.424	3246		2.162	8044	5.357	10644	7.088	
90% Fe	219.8	814	645	401820	2100		1.398	3204		2.134	7672	5.109	9922	6.607	
80% Fe	219.8	723	539	481120	2069		1.378	3149		2.097	7058	4.700	9301	6.194	
Hot Day	219.8	904	751	274305	2165		1.442	3376		2.248	8317	5.538	11031	7.346	
Cold Day	219.3	904	751	448468	2060		1.372	3149		2.097	7187	4.786	8806	5.864	

1 ▶ Calculated using procedure of Appendix B, Volume I

2 ▶ Calculated using 1 ▶ value.

TL Torque Limited

SECTION XIII ARRANGEMENT OF PI TERMS

The experimental data converted to nondimensional pi terms must be arranged so that all of the pi terms containing independent variables, except one, remain constant. The remaining term is then varied to establish a relationship between it and π_1 , the term containing the dependent variable. This procedure is repeated for each of the independently variable pi terms in the function. Tables 33 through 35 show the arrangement for each of the three airplanes. Each group of two pages is a complete data set with four sets per table, to show the data at 0.6μ , 0.4μ , 0.2μ , and 0.1μ (0.15μ for F-111) conditions.

Table 33.-B-52 Pi Arrangement

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		CONDITION
$(\bar{\pi}_2)$	$(\bar{\pi}_1)$	$(\bar{\pi}_3)$	$(\bar{\pi}_4)$	
.60	2.477	0.94	7341	BASELINE
.55	2.459			
.50	2.442			
.45	2.454			
.40	2.472			
.35	2.434			
.30	2.579			
.25	---			
.20	---			
.15	---			
.10	---			
.05	---			

$(\bar{\pi}_3)$	$(\bar{\pi}_1)$	$(\bar{\pi}_2)$	$(\bar{\pi}_4)$	CONDITION
0.950	2.477	0.60	7341	BASELINE
1.441	2.487			80% SPOILERS
1.974	2.513			60% SPOILERS
2.555	2.532			40% SPOILERS
3.191	2.555			20% SPOILERS
3.981	2.580			NO SPOILERS

Table 33.—B-52 Pi Arrangement (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		
(π_4)	(π_1)	$\bar{\pi}_2$	$\bar{\pi}_3$	CONDITION
7341	2.477	0.60	0.94	BASELINE
46217	2.182			MAX WT
19638	2.313			HIGH WT
3926	2.585			LOW WT
1962	2.658			MIN WT
10257	2.396			$V_B + 5$
14149	2.386			$V_B + 10$
25687	2.253			$V_B + 20$
44392	2.157			$V_B + 30$
5160	2.548			$V_B - 5$
3553	2.564			$V_B - 10$
5660	2.500			120% Fe
6393	2.465			110% Fe
8623	2.401			90% Fe
10444	2.388			80% Fe
5830	2.585			HOT DAY
9532	2.267			COLD DAY

Table 33.-B-52 Pi Arrangement (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		CONDITION
		($\bar{\pi}_3$)	($\bar{\pi}_4$)	
(π_2)	(π_1)			
.60	2.477	0.95	7341	BASELINE
.55	2.459			
.50	2.442			
.45	2.454			
.40	2.472			
.35	2.434			
.30	2.579			
-	-			
-	-			
-	-			
-	-			
-	-			

(π_3)	(π_1)	($\bar{\pi}_2$)	($\bar{\pi}_4$)	CONDITION
0.950	2.472	0.40	7341	BASELINE
1.441	2.467			80% SPOILERS
1.974	2.504			60% SPOILERS
2.555	2.559			40% SPOILERS
3.191	2.655			20% SPOILERS
3.891	3.013			NO SPOILERS

Table 33.-B-52 Pi Arrangement (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		
(π_4)	(π_1)	$\bar{\pi}_2$	$\bar{\pi}_3$	CONDITION
7341	2.472	0.40	0.95	BASELINE
46217	2.239			MAX WT
19638	2.368			HIGH WT
3926	2.551			LOW WT
1962	2.053			MIN WT
10257	2.718			$V_B + 5$
14149	2.378			$V_B + 10$
25687	2.302			$V_B + 20$
44392	2.244			$V_B + 30$
5160	2.535			$V_B - 5$
3553	2.570			$V_B - 10$
5660	2.484			120% Fe
6393	2.466			110% Fe
8623	2.399			90% Fe
10444	2.403			80% Fe
5830	2.586			HOT DAY
9532	2.298			COLD DAY

Table 33.-B-52 Pi Arrangement (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		CONDITION
$(\bar{\pi}_2)$	$(\bar{\pi}_1)$	$(\bar{\pi}_3)$	$(\bar{\pi}_4)$	
-	---	0.95	7341	BASELINE
.225	5.064			
.200	5.436			
.175	5.911			
.150	6.174			
.125	6.784			
.10	7.929			
.09	8.344			
.08	8.780			
.07	9.449			
.06	10.030			
.05	10.903			

$(\bar{\pi}_3)$	$(\bar{\pi}_1)$	$(\bar{\pi}_2)$	$(\bar{\pi}_4)$	CONDITION
0.950	5.436	0.20	7341	BASELINE
1.441	5.486			80% SPOILERS
1.974	5.605			60% SPOILERS
2.555	5.773			40% SPOILERS
3.191	5.965			20% SPOILERS
3.891	6.127			NO SPOILERS

Table 33.-B-52 P_1 Arrangement (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		
(π_4)	(π_1)	$\bar{\pi}_2$	$\bar{\pi}_3$	CONDITION
7341	5.436	0.20	0.95	BASELINE
46217	3.880			MAX WT
19638	4.166			HIGH WT
3926	5.917			LOW WT
1962	6.476			MIN WT
10257	5.039			$V_B + 5$
14149	4.798			$V_B + 10$
25687	4.201			$V_B + 20$
44392	3.802			$V_B + 30$
5160	5.408			$V_B - 5$
3553	5.808			$V_B - 10$
5660	5.652			120% Fe
6393	5.431			110% Fe
8623	5.173			90% Fe
10444	4.985			80% Fe
5830	5.958			HOT DAY
9532	4.753			COLD DAY

Table 33.—B-52 Pi Arrangement (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		CONDITION
$(\bar{\pi}_2)$	$(\bar{\pi}_1)$	$(\bar{\pi}_3)$	$(\bar{\pi}_4)$	
---	---	0.95	7341	BASELINE
.225	5.064			
.200	5.436			
.175	5.911			
.150	6.174			
.125	6.784			
.10	7.929			
.09	8.344			
.08	8.480			
.07	9.449			
.06	10.030			
.05	10.903			

$(\bar{\pi}_3)$	$(\bar{\pi}_1)$	$(\bar{\pi}_2)$	$(\bar{\pi}_4)$	CONDITION
0.950	7.929	0.10	7341	BASELINE
1.441	7.904			80% SPOILERS
1.974	8.085			60% SPOILERS
2.555	8.405			40% SPOILERS
3.191	8.639			20% SPOILERS
3.891	9.246			NO SPOILERS

Table 33.-B-52 Pi Arrangement (Concluded)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		
(π_4)	(π_1)	$\bar{\pi}_2$	$\bar{\pi}_3$	CONDITION
7341	7.929	0.10	0.95	BASELINE
46217	5.681			MAX WT
19638	6.520			HIGH WT
3926	8.502			LOW WT
1962	9.172			MIN WT
10257	7.346			$V_B + 5$
14149	6.885			$V_B + 10$
25687	5.955			$V_B + 20$
44392	5.364			$V_B + 30$
5160	7.976			$V_B - 5$
3553	8.742			$V_B - 10$
5660	8.554			120% Fe
6393	8.008			110% Fe
8623	7.352			90% Fe
10444	7.077			80% Fe
5830	8.746			HOT DAY
9532	6.733			COLD DAY

Table 34.—KC-135 Pi Arrangement

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		CONDITION
$(\bar{\pi}_2)$	$(\bar{\pi}_1)$	$(\bar{\pi}_3)$	$(\bar{\pi}_4)$	
.60	1.143	1.535	107688	BASLINE
.55	1.254			
.50	1.394			
.45	1.520			
.40	1.681			
.35	1.892			
.325	2.053			
.30	2.239			
.20	---			
.15	---			
.10	---			
.05	---			

$(\bar{\pi}_3)$	$(\bar{\pi}_1)$	$(\bar{\pi}_2)$	$(\bar{\pi}_4)$	CONDITION
1.535	1.143	.6	107688	BASLINE
2.236	1.199			80% SPOILERS
3.053	1.278			60% SPOILERS
4.015	1.347			40% SPOILERS
5.165	1.455			20% SPOILERS
6.565	1.583			NO SPOILERS

Table 34.—KC-135 Pi Arrangement (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		
(π_4)	(π_1)	$\bar{\pi}_2$	$\bar{\pi}_3$	CONDITION
107688	1.143	.6	1.535	BASELINE
516319	3.016			MAX WT
264483	1.823			HIGH WT
47193	1.254			LOW WT
31357	1.290			MIN WT
138146	1.136			$V_B + 5$
176161	1.128			$V_B + 10$
278816	1.105			$V_B + 20$
428923	1.107			$V_B + 30$
83148	1.152			$V_B - 5$
63330	1.161			$V_B - 10$
80398	1.155			120% Fe
92066	1.156			110% Fe
129706	1.160			90% Fe
163024	1.136			80% Fe
85517	1.133			HOT DAY
139813	1.132			COLD DAY

Table 34.—KC-135 Pi Arrangement (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		CONDITION
		$(\bar{\pi}_3)$	$(\bar{\pi}_4)$	
.60	1.143	1.535	107688	BASELINE
.55	1.254			
.50	1.394			
.45	1.520			
.40	1.681			
.35	1.892			
.325	2.053			
.30	2.239			
.20	---			
.15	---			
.10	---			
.05	---			

$(\bar{\pi}_3)$	$(\bar{\pi}_1)$	$(\bar{\pi}_2)$	$(\bar{\pi}_4)$	CONDITION
1.535	1.681	0.4	107688	BASELINE
2.236	1.776			80% SPOILERS
3.053	1.899			60% SPOILERS
4.015	2.038			40% SPOILERS
5.165	2.210			20% SPOILERS
6.565	2.600			NO SPOILERS

Table 34.-KC-135 Pi Arrangement (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		
(π_4)	(π_1)	$\bar{\pi}_2$	$\bar{\pi}_3$	CONDITION
107688	1.581	0.4	1.535	BASELINE
516319	3.025			MAX WT
264483	1.524			HIGH WT
47193	1.843			LOW WT
31357	1.952			MIN WT
138146	1.658			$V_B + 5$
176161	1.632			$V_B + 10$
278816	1.594			$V_B + 20$
428923	1.566			$V_B + 30$
83148	1.701			$V_B - 5$
63330	1.732			$V_B - 10$
80398	1.695			120% Fe
92066	1.704			110% Fe
129706	1.683			90% Fe
163024	1.654			80% Fe
85517	1.715			HOT DAY
139813	1.626			COLD DAY

Table 34.—KC-135 Pi Arrangement (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		CONDITION
		$(\bar{\pi}_3)$	$(\bar{\pi}_4)$	
.60	---	1.535	107688	BASELINE
.55	---			
.50	---			
.45	---			
.40	---			
.35	---			
.275	2.527			
.25	2.861			
.20	3.762			
.15	5.216			
.125	6.337			
.10	8.017			

$(\bar{\pi}_3)$	$(\bar{\pi}_1)$	$(\bar{\pi}_2)$	$(\bar{\pi}_4)$	CONDITION
1.535	3.762	0.2	107688	BASELINE
2.236	4.016			80% SPOILERS
3.053	4.515			60% SPOILERS
4.015	4.818			40% SPOILERS
5.165	5.033			20% SPOILERS
6.565	5.539			NO SPOILERS

Table 34.—KC-135 Pi Arrangement (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT	CONDITION	
(π_4)	(π_1)	$\bar{\pi}_2$	$\bar{\pi}_3$	
107688	3.762	0.2	1.535	BASELINE
516319	2.850			MAX WT
264483	3.211			HIGH WT
47193	4.367			LOW WT
31357	4.786			MIN WT
138146	3.620			$V_B + 5$
176161	3.606			$V_B + 10$
278816	3.463			$V_B + 20$
428923	3.219			$V_B + 30$
83148	3.805			$V_B - 5$
63330	3.939			$V_B - 10$
80398	3.811			120% Fe
92066	4.060			110% Fe
129706	3.866			90% Fe
163024	3.594			80% Fe
85517	3.914			HOT DAY
139813	3.434			COLD DAY

Table 34.-KC-135 Pi Arrangement (Continued)

INDEPENDENT π TERM (π_2)	DEPENDENT π TERM (π_1)	π TERMS HELD CONSTANT		CONDITION
		($\bar{\pi}_3$)	($\bar{\pi}_4$)	
.60	---	1.535	107688	BASELINE
.55	---			
.50	---			
.45	---			
.40	---			
.35	---			
.275	2.527			
.25	2.861			
.20	3.762			
.15	5.216			
.125	6.337			
.10	8.017			

(π_3)	(π_1)	($\bar{\pi}_2$)	($\bar{\pi}_4$)	CONDITION
1.535	8.017	0.1	107688	BASELINE
2.236	8.186			80% SPOILERS
3.053	8.776			60% SPOILERS
4.015	8.730			40% SPOILERS
6.165	9.981			20% SPOILERS
6.565	10.668			NO SPOILERS

Table 34.—KC-135 Pi Arrangement (Concluded)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		
(π_4)	(π_1)	$\bar{\pi}_2$	$\bar{\pi}_3$	CONDITION
107688	8.017	0.1	1.535	BASELINE
516319	5.826			MAX WT
264483	6.474			HIGH WT
47193	9.122			LOW WT
31357	---			MIN WT
138146	7.582			$V_B + 5$
176161	7.260			$V_B + 10$
278816	6.660			$V_B + 20$
428923	6.219			$V_B + 30$
83148	8.246			$V_B - 5$
63330	8.639			$V_B - 10$
80398	9.001			120% Fe
92066	8.503			110% Fe
129706	7.826			90% Fe
163024	7.588			80% Fe
85517	9.131			HOT DAY
139813	6.976			COLD DAY

Table 35.—F-111 Pi Arrangement

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		CONDITION
$(\bar{\pi}_2)$	$(\bar{\pi}_1)$	$(\bar{\pi}_3)$	$(\bar{\pi}_4)$	
.60	1.406	1.181	345422	BASELINE
.55	1.534			
.50	1.702			
.45	1.905			
.40	2.198			
.35	2.603			
.30	---			
.25	---			
.20	---			
.15	---			
.10	---			
.05	---			

$(\bar{\pi}_3)$	$(\bar{\pi}_1)$	$(\bar{\pi}_2)$	$(\bar{\pi}_4)$	CONDITION
1.181	1.406	0.6	345422	BASELINE
1.987	1.499			80% SPOILERS
2.943	1.566			60% SPOILERS
4.095	1.693			40% SPOILERS
5.510	1.845			20% SPOILERS
7.292	2.038			NO SPOILERS

Table 35.-F-111 Pi Arrangement (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		
(π_4)	(π_1)	$\bar{\pi}_2$	$\bar{\pi}_3$	CONDITION
345422	1.406	0.6	1.181	BASELINE
-	1.914 TL			MAX WT
-	1.500 TL			HIGH WT
276293	1.417			LOW WT
245635	1.434			MIN WT
435657	1.393			$V_B + 5$
546471	1.376			$V_B + 10$
838604	1.334			$V_B + 20$
1250622	1.315			$V_B + 30$
271498	1.433			$V_B - 5$
210751	1.442			$V_B - 10$
269430	1.454			120% Fe
302907	1.424			110% Fe
401820	1.398			90% Fe
481120	1.378			80% Fe
274305	1.442			HOT DAY
448468	1.372			COLD DAY

TL = Torque Limited

Table 35.—F-111 Pi Arrangement (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		CONDITION
$(\bar{\pi}_2)$	$(\bar{\pi}_1)$	$(\bar{\pi}_3)$	$(\bar{\pi}_4)$	
.60	1.406	1.181	345422	BASELINE
.55	1.534			
.50	1.702			
.45	1.905			
.40	2.198			
.35	2.603			
.30	---			
.25	----			
.20	---			
.15	---			
.10	---			
.05	---			

$(\bar{\pi}_3)$	$(\bar{\pi}_1)$	$(\bar{\pi}_2)$	$(\bar{\pi}_4)$	CONDITION
1.181	2.198	0.4	345422	BASELINE
1.987	2.303			80% SPOILERS
2.943	2.469			60% SPOILERS
4.095	2.697			40% SPOILERS
5.510	2.919			20% SPOILERS
7.292	3.276			NO SPOILERS

Table 35.—F-111 Pi Arrangement (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		
(π_4)	(π_1)	$\bar{\pi}_2$	$\bar{\pi}_3$	CONDITION
345422	2.198	0.4	1.181	BASELINE
	2.489 TL			MAX WT
482585	2.118			HIGH WT
276293	2.246			LOW WT
245635	2.287			MIN WT
435657	2.192			$V_B + 5$
546471	2.164			$V_B + 10$
838604	2.086			$V_B + 20$
1250662	2.030			$V_B + 30$
271498	2.228			$V_B - 5$
210751	2.289			$V_B - 10$
269430	2.226			120% Fe
302907	2.162			110% Fe
401820	2.134			90% Fe
481120	2.097			80% Fe
274305	2.248			HOT DAY
448468	2.097			COLD DAY

TL = Torque Limited

Table 35.—F-111 Pi Arrangement (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		CONDITION
		($\bar{\pi}_3$)	($\bar{\pi}_4$)	
(π_2)	(π_1)			
.300	3.234	1.181	345422	BASELINE
.275	3.595			
.260	3.849			
.250	4.205			
.240	4.237			
.230	4.457			
.220	4.679			
.210	4.889			
.200	5.305			
.190	5.405			
.175	5.827			
.150	6.695			

(π_3)	(π_1)	($\bar{\pi}_2$)	($\bar{\pi}_4$)	CONDITION
1.181	5.305	.2	345422	BASELINE
1.987	5.546			80% SPOILERS
2.943	5.835			60% SPOILERS
4.095	6.494			40% SPOILERS
5.510	6.933			20% SPOILERS
7.292	7.548			NO SPOILERS

Table 35.—F-111 Pi Arrangement (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		
(π_4)	(π_1)	$\bar{\pi}_2$	$\bar{\pi}_3$	CONDITION
345422	5.305	.2	1.181	BASELINE
555118	4.623			MAX WT
399186	5.116			HIGH WT
186981	5.935			LOW WT
164990	5.994			MIN WT
435657	5.188			$V_B + 5$
546471	5.039			$V_B + 10$
838604	4.727			$V_B + 20$
1250662	4.341			$V_B + 30$
271498	5.453			$V_B - 5$
210751	5.716			$V_B - 10$
269430	5.518			120% Fe
302907	5.357			110% Fe
401820	5.109			90% Fe
481120	4.700			80% Fe
274305	5.538			HOT DAY
448468	4.786			COLD DAY

Table 35.-F-111 Pi Arrangement (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		CONDITION
$(\bar{\pi}_2)$	$(\bar{\pi}_1)$	$(\bar{\pi}_3)$	$(\bar{\pi}_4)$	
.300	3.234	1.181	345422	BASELINE
.275	3.595			
.260	3.849			
.250	4.205			
.240	4.237			
.230	4.457			
.220	4.679			
.210	4.889			
.200	5.305			
.190	5.405			
.175	5.827			
.150	6.695			

$(\bar{\pi}_3)$	$(\bar{\pi}_1)$	$(\bar{\pi}_2)$	$(\bar{\pi}_4)$	CONDITION
1.181	6.695	.15	345422	BASELINE
1.987	7.197			80° SPOILERS
2.943	7.522			60° SPOILERS
4.095	8.004			40° SPOILERS
5.510	8.569			20° SPOILERS
7.292	9.201			0° SPOILERS

Table 35.—F-111 Pi Arrangement (Concluded)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		
(π_4)	(π_1)	$\bar{\pi}_2$	$\bar{\pi}_3$	CONDITION
345422	6.695	.15	1.181	BASELINE
555118	6.474			MAX WT
399186	6.851			HIGH WT
186981	7.239			LOW WT
164990	8.540			MIN WT
435657	---			$V_B + 5$
546471	6.044			$V_B + 10$
838604	5.652			$V_B + 20$
1250662	5.272			$V_B + 30$
271498	6.919			$V_B - 5$
210751	7.142			$V_B - 10$
269430	7.229			120% Fe
302907	7.088			110% Fe
401820	6.607			90% Fe
481120	6.194			80% Fe
274305	7.346			HOT DAY
448468	5.864			COLD DAY

SECTION XIV

FORMULATION OF MODEL PREDICTION EQUATIONS AND MODEL-TO-SIMULATOR CORRELATION CALCULATIONS

After the conditions have been met for the function to be a product, a prediction equation is formed by multiplying all component equations and the constant term C. That is:

$$(\pi_1) = C f_1 (\pi_2, \bar{\pi}_3, \bar{\pi}_4) f_2 (\bar{\pi}_2, \pi_3, \bar{\pi}_4) f_3 (\bar{\pi}_2, \bar{\pi}_3, \pi_4)$$

Therefore, for the B-52 airplane at $\bar{\pi}_2 = 0.6$: -

$$(\pi_1) = 0.16561 \times 2.3931(\pi_2)^{-0.04007} 2.4772(\pi_3)^{[.03021-.01786\%SP]} \\ 4.4966(\pi_4)^{[9.05\Delta\rho-.06803]}$$

or:

$$(\pi_1) = 4.4138(\pi_2)^{-0.04007} (\pi_3)^{[.03021-.01786\%SP]} (\pi_4)^{[9.05\Delta\rho-.06803]} \quad (1)$$

For the B-52 at $\bar{\pi}_2 = 0.4$: -

$$(\pi_1) = 0.16272 \times 2.3931(\pi_2)^{-0.04007} 2.4815(\pi_3)^{[.1285-.2227\%SP]} 4.0297(\pi_4)^{[8.48\Delta\rho-.0554]}$$

or:

$$(\pi_1) = 3.8935(\pi_2)^{-0.04007} (\pi_3)^{[.1285-.2227\%SP]} (\pi_4)^{[8.48\Delta\rho-.0554]} \quad (2)$$

and so on.

This process was repeated for the other airplanes and corresponding prediction equations were obtained. The prediction equations were then used to calculate prediction stopping distance (π term) and compared with actual stopping distance (π term) for correlation. The difference between the two was converted to a percentage error based on the actual stopping distance (π term). Tables 36 through 38 illustrate this correlation comparison.

Table 36.-B-52 Model-To-Simulator Correlation

0.6 μ						
DATA FOR $\bar{\pi}_2 = 0.6$			DATA FOR $\bar{\pi}_2 = 0.4$			$\mu = 0.6^*$
PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	CONDITION
2.457	2.477	.81	2.497	2.472	-1.04	BASELINE
2.473	2.487	.56	2.514	2.467	-1.87	80% SP
2.492	2.513	.87	2.532	2.564	-1.14	60% SP
2.513	2.532	.75	2.554	2.559	.22	40% SP
2.536	2.555	.75	2.577	2.655	2.94	20% SP
2.562	2.580	.72	2.604	3.013	13.6	NO SP
2.168	2.182	.62	2.220	2.239	.86	MAX WT
2.298	2.313	.65	2.345	2.368	.97	HIGH WT
2.564	2.585	.82	2.598	2.551	-1.83	LOW WT
2.688	2.658	-1.12	---	---	---	MIN WT
2.402	2.396	-.25	2.441	2.418	-.94	$V_B + 5 \text{ Kn}$
2.350	2.386	1.53	2.388	2.378	-.42	$V_B + 10$
2.256	2.253	-.14	2.293	2.302	.37	$V_B + 20$
2.174	2.157	-.78	2.210	2.244	1.54	$V_B + 30$
2.517	2.548	1.21	2.558	2.535	-.90	$V_B - 5$
2.582	2.564	-.67	2.624	2.570	-2.11	$V_B - 10$
2.501	2.500	-.06	2.542	2.484	-2.33	120% Fe
2.480	2.465	-.64	2.521	2.466	-2.23	110% Fe
2.430	2.401	-1.24	2.470	2.399	-2.96	90% Fe
2.399	2.388	-.45	2.438	2.403	-1.45	80% Fe
2.557	2.586	1.10	2.599	2.586	-0.50	HOT DAY
2.244	2.267	1.00	2.280	2.298	0.78	COLD DAY

* Value of μ for data set used to arrive at the prediction equation shown.

Table 36.—B-52 Model-To-Simulator Correlation (Continued)

0.4 μ						$\mu = 0.4^*$
DATA FOR $\bar{\pi}_2 = 0.4$			DATA FOR $\bar{\pi}_2 = 0.6$			
PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	CONDITION
2.479	2.472	-.29	2.439	2.477	.54	BASELINE
2.423	2.467	1.82	2.383	2.487	4.16	80% SP
2.458	2.504	1.81	2.419	2.513	3.77	60% SP
2.560	2.559	-.02	2.518	2.532	0.52	40% SP
2.719	2.655	-2.41	2.675	2.555	-4.70	20% SP
2.938	3.013	2.51	2.890	2.580	-12.0 *	NO SP
2.252	2.239	-.58	2.202	2.182	-.95	MAX WT
2.355	2.368	.55	2.309	2.313	.16	HIGH WT
2.560	2.551	-.34	2.525	2.585	2.34	LOW WT
---	---	---	2.624	2.658	1.30	MIN WT
2.433	2.418	-.62	2.394	2.396	.08	$V_B + 5 \text{ Kn}$
2.390	2.378	-.50	2.352	2.386	1.46	$V_B + 10$
2.313	2.302	-.47	2.275	2.253	-.97	$V_B + 20$
2.244	2.244	.02	2.207	2.157	-2.32	$V_B + 30$
2.528	2.535	.29	2.487	2.548	2.39	$V_B - 5$
2.581	2.570	-.42	2.539	2.564	1.00	$V_B - 10$
2.515	2.484	-1.24	2.474	2.500	1.02	120% Fe
2.498	2.466	-1.29	2.457	2.465	.29	110% Fe
2.457	2.399	-2.40	2.417	2.401	-.68	90% Fe
2.431	2.403	-1.14	2.392	2.388	-.14	80% Fe
2.603	2.586	-0.64	2.560	2.586	1.00	HOT DAY
2.312	2.298	-0.60	2.275	2.267	0.35	COLD DAY

Table 36.—B-52 Model-To-Simulator Correlation (Continued)

0.23 _w						
$(\pi_1) = .90063(\pi_2)^{-2.2504}(\pi_3)^{.13006} - .07741 \times SP (\pi_4)^{17.7540} - .18364$						
DATA FOR $\bar{\pi}_2 = 0.0$			DATA FOR $\bar{\pi}_2 = 0.23$			Wet Runway
PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	CONDITION
			4.785	4.782	-.07	BASELINE
			4.919	4.967	.97	80% SP
			5.079	5.062	-.33	60% SF
			5.265	5.286	.39	40% SP
			5.480	5.472	-.14	20% SP
			5.725	5.751	.45	NO SP
			3.530	3.468	-1.78	MAX WT
			4.071	3.996	-1.87	HIGH WT
			5.295	5.426	2.41	LOW WT
			5.862	5.995	2.22	MIN WT
			4.499	4.482	-.39	$V_B + 5 Kn$
			4.240	4.288	1.11	$V_B + 10$
			3.799	3.884	2.19	$V_B + 20$
			3.435	3.563	3.58	$V_B + 30$
			5.106	4.958	-2.98	$V_B - 5$
			5.469	5.328	-2.66	$V_B - 10$
			5.020	5.010	-.19	120% Fe
			4.909	4.842	-1.38	110% Fe
			4.645	4.673	.60	90% Fe
			4.484	4.559	1.64	80% Fe
			5.415	5.438	0.42	HOT DAY
			4.088	4.126	0.42	COLD DAY

Table 36.-B-52 Model-To-Simulator Correlation (Continued)

0.2 μ						$\mu = 0.2$
DATA FOR $\bar{\pi}_2 = 0.2$			DATA FOR $\bar{\pi}_2 = 0.1$			
PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	CONDITION
5.299	5.436	2.52	7.581	7.929	4.38	BASELINE
5.373	5.486	2.07	7.686	7.904	2.75	80% SP
5.484	5.605	2.15	7.845	8.085	2.96	60% SP
5.627	5.773	2.53	8.050	8.405	4.22	40% SP
5.800	5.965	2.77	8.297	8.639	3.95	20% SP
6.002	6.127	2.03	8.587	9.246	7.13*	NO SP
---	---	---	5.678	5.681	0.06	MAX WT
---	---	---	6.504	6.520	0.25	HIGH WT
5.852	5.917	1.10	8.345	8.502	1.84	LOW WT
6.523	6.476	-0.73	9.266	9.172	-1.02	MIN WT
4.986	5.039	1.05	7.133	7.346	2.90	$V_B + 5 Kn$
4.703	4.798	1.98	6.728	6.885	2.29	$V_B + 10$
4.219	4.201	-0.42	6.035	5.955	-1.35	$V_B + 20$
3.819	3.802	-0.46	5.463	5.364	-1.86	$V_B + 30$
5.651	5.408	-4.50	8.084	7.976	-1.36	$V_B - 5$
6.048	5.808	-4.12	8.652	8.742	1.03	$V_B - 10$
5.556	5.652	1.69	7.949	8.554	7.08*	120% Fe
5.435	5.431	-0.07	7.775	8.008	2.92	110% Fe
5.146	5.173	0.52	7.362	7.352	-0.13	90% Fe
4.970	4.985	0.30	7.110	7.077	-0.47	80% Fe
5.829	5.958	2.16	8.339	8.746	4.65	HOT DAY
4.660	4.753	1.96	6.667	7.633	0.98	COLD DAY

Table 36.—B-52 Model-To-Simulator Correlation (Concluded)

.1μ						
DATA FOR $\bar{\pi}_2 = 0.1$			DATA FOR $\bar{\pi}_2 = 0.2$			$\mu = 0.1^*$
PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	CONDITION
7.744	7.929	2.33	5.413	5.436	0.42	BASELINE
7.740	7.904	2.07	5.410	5.486	1.38	80% SP
7.891	8.085	2.40	5.516	5.605	1.59	60% SP
8.157	8.405	2.95	5.702	5.773	1.23	40% SP
8.527	8.639	1.29	5.961	5.965	0.08	20% SP
8.999	9.246	2.68	6.290	6.127	-2.66	NO SP
5.672	5.681	0.17	---	---	---	MAX WT
6.565	6.520	-0.69	---	---	---	HIGH WT
8.589	8.502	-1.02	6.024	6.917	-1.81	LOW WT
9.614	9.172	-4.81	6.772	6.476	-4.56	MIN WT
7.253	7.346	1.28	5.070	5.039	-0.60	$V_B + 5 \text{ Kn}$
6.809	6.885	1.10	4.760	4.798	0.79	$V_B + 10$
6.057	5.955	-1.72	4.234	4.201	-0.78	$V_B + 20$
5.441	5.364	-1.44	3.803	3.802	-0.05	$V_B + 30$
8.299	7.976	-4.05	5.801	5.408	-7.28*	$V_B - 5$
8.929	8.742	-2.13	6.241	5.808	-7.46*	$V_B - 10$
8.150	8.554	4.73	5.697	5.652	-0.79	120% Fe
7.957	8.008	0.64	5.562	5.431	-2.42	110% Fe
7.504	7.352	-2.06	5.245	5.173	-1.39	90% Fe
7.227	7.077	-2.12	5.052	4.985	-1.34	80% Fe
8.699	8.746	0.53	6.081	5.958	2.06	HOT DAY
6.644	6.733	1.33	4.644	4.753	2.29	COLD DAY

Table 37.—KC-135 Model-To-Simulator Correlation

0.6*						
DATAFOR $\bar{\pi}_2 = 0.6$			DATAFOR $\bar{\pi}_2 = 0.4$			$\mu = 0.6^*$
PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	CONDITION
1.152	1.143	-.77	1.688	1.681	-.36	BASELINE
1.209	1.199	-.80	1.771	1.776	.27	80% SP
1.279	1.278	-.07	1.874	1.899	1.36	60% SP
1.364	1.347	-1.26	1.999	2.038	1.94	40% SP
1.467	1.455	-.79	2.149	2.210	2.73	20% SP
1.591	1.583	-.54	2.332	2.600	10.32*	NO SP
---	---	---	---	---	---	MAX WT
---	---	---	1.607	1.524	-5.51*	HIGH WT
1.204	1.254	3.98	1.765	1.843	4.26	LOW WT
1.231	1.290	4.53	1.804	1.952	7.59*	MIN WT
1.136	1.136	-.03	1.665	1.658	-.41	$V_B + 5 \text{ Kn}$
1.122	1.128	.61	1.643	1.632	-.67	$V_B + 10$
1.094	1.105	.95	1.603	1.594	-.59	$V_B + 20$
1.069	1.107	3.46	1.566	1.566	-.02	$V_B + 30$
1.168	1.152	-1.39	1.711	1.701	-.64	$V_B - 5$
1.185	1.161	-2.08	1.737	1.732	-.26	$V_B - 10$
1.170	1.155	-1.33	1.715	1.695	-1.12	120% Fe
1.162	1.156	-.46	1.702	1.704	.09	110% Fe
1.140	1.160	1.70	1.671	1.683	.73	90% Fe
1.125	1.136	.90	1.650	1.654	.25	80% Fe
1.166	1.133	-2.96	1.709	1.715	.38	HOT DAY
1.136	1.132	-.32	1.664	1.626	-2.32	COLD DAY

Table 37.—KC-135 Model-To-Simulator Correlation (Continued)

0.4 _{μ}						
$\bar{\pi}_2 = 0.4$			$\bar{\pi}_2 = 0.6$			$\mu = 0.4$
PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	
1.693	1.681	-.67	1.155	1.143	-1.07	BASELINE
1.761	1.776	.84	1.202	1.199	-.23	80% SP
1.877	1.899	1.16	1.281	1.278	-.28	60% SP
2.043	2.038	-.27	1.395	1.347	-3.53	40% SP
2.266	2.210	-2.55	1.547	1.455	-6.27*	20% SP
2.559	2.600	1.68	1.747	1.583	-10.35*	NO SP
---	---	---	---	---	---	MAX WT
1.572	1.524	-3.19	---	---	---	HIGH WT
1.812	1.843	1.71	1.237	1.254	1.42	LOW WT
1.874	1.952	4.03	1.279	1.290	.86	MIN WT
1.658	1.658	-.01	1.132	1.136	.37	V _B + 5 Kn
1.626	1.632	.41	1.110	1.128	1.68	V _B + 10
1.565	1.594	1.77	1.068	1.105	3.28	V _B + 20
1.511	1.566	3.50	1.031	1.107	6.86*	V _B + 30
1.729	1.701	-1.68	1.180	1.162	-2.44	V _B - 5
1.768	1.732	-2.08	1.207	1.161	-3.93	V _B - 10
1.734	1.695	-2.27	1.183	1.155	-2.48	120% Fe
1.715	1.704	-.65	1.170	1.156	-1.21	110% Fe
1.667	1.683	.94	1.138	1.160	1.91	90% Fe
1.636	1.654	1.10	1.117	1.136	1.75	80% Fe
1.725	1.715	-.57	1.177	1.133	-3.95	HOT DAY
1.657	1.626	-1.88	1.131	1.132	.11	COLD DAY

Table 37.—KC-135 Model-To-Simulator Correlation (Continued)

0.2						
$\bar{\pi}_2 =$			$\bar{\pi}_2 = 0.2$			
PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	CONDITION
			3.801	3.762	-1.04	BASELINE
			4.164	4.016	-3.69	80% SP
			4.509	4.515	.13	60% SP
			4.854	4.818	-.73	40% SP
			5.210	5.033	-3.53	20% SP
			5.591	5.539	-.95	NO SP
			2.995	2.850	-5.09	MAX WT
			3.316	3.211	-3.26	HIGH WT
			4.309	4.367	1.33	LOW WT
			4.586	4.786	4.19	MIN WT
			3.660	3.620	-1.10	$V_B + 5 K_n$
			3.527	3.606	2.18	$V_B + 10$
			3.289	3.463	5.03	$V_B + 20$
			3.081	3.219	4.31	$V_B + 30$
			3.954	3.805	-3.91	$V_B - 5$
			4.121	3.939	-4.62	$V_B - 10$
			3.974	3.811	-4.28	120% Fe
			3.893	4.060	4.11	110% Fe
			3.695	3.866	4.42	90% Fe
			3.569	3.594	.71	80% Fe
			4.013	3.914	2.53	HOT DAY
			3.546	3.434	3.26	COLD DAY

Table 37.—KC-135 Model-To-Simulator Correlation (Concluded)

0.1						
$\bar{\pi}_2 =$			$\bar{\pi}_2 = 0.1$			
PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	CONDITION
			8.071	8.017	-.67	BASELINE
			8.238	8.186	-.64	80% SP
			8.591	8.776	2.11	60% SP
			9.116	8.730	-4.43	40% SP
			9.825	9.981	1.57	20% SP
			10.745	10.668	-.72	NO SP
			5.891	5.826	-1.10	MAX WT
			6.738	6.474	-4.07	HIGH WT
			9.525	9.122	-4.42	LOW WT
	---	---	---	---	---	MIN WT
			7.677	7.582	-1.25	$V_B + 5 \text{ Kn}$
			7.311	7.260	-.71	$V_B + 10$
			6.667	6.660	-.11	$V_B + 20$
			6.114	6.219	1.68	$V_B + 30$
			8.501	8.246	-3.09	$V_B - 5$
			8.979	8.639	-3.94	$V_B - 10$
			8.559	9.001	4.91	120% Fe
			8.329	8.503	2.05	110% Fe
			7.775	7.826	.65	90% Fe
			7.426	7.588	2.14	80% Fe
			9.069	9.131	0.68	HOT DAY
			6.885	6.976	1.32	COLD DAY

Table 38.—F-111 Model-To-Simulator Correlation

0.6						
$\bar{\pi}_2 =$			$\bar{\pi}_2 = 0.6$			
PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	CONDITION
1.404	1.406	.15	2.229	2.198	-1.45	BASELINE
1.474	1.499	1.65	2.342	2.303	-1.69	80% SP
1.568	1.566	-.11	2.490	2.469	-.88	60% SP
1.687	1.693	.38	2.680	2.697	.65	40% SP
1.836	1.845	.49	2.916	2.919	.10	20% SP
2.023	2.038	.73	3.213	3.276	1.91	NO SP
---	---	---	---	---	---	MAX WT
---	---	---	2.186	2.118	-3.24	HIGH WT
1.422	1.417	-.34	2.259	2.246	-.59	LOW WT
1.432	1.434	.12	2.274	2.287	.57	MIN WT
1.385	1.393	.56	2.199	2.192	-.34	$V_B + 5 \text{ Kn}$
1.367	1.376	.68	2.170	2.164	-.29	$V_B + 10$
1.333	1.334	.10	2.117	2.086	-1.48	$V_B + 20$
1.302	1.315	.97	2.068	2.030	-1.88	$V_B + 30$
1.424	1.433	.68	2.261	2.228	-1.48	$V_B - 5$
1.445	1.442	-.20	2.295	2.289	-.25	$V_B - 10$
1.424	1.454	2.07	2.262	2.226	-1.61	120% Fe
1.414	1.424	.65	2.247	2.162	-3.93	110% Fe
1.391	1.398	.51	2.210	2.134	-3.57	90% Fe
1.377	1.378	.08	2.187	2.097	-4.28	80% Fe
1.423	1.442	1.32	2.260	2.248	-.51	HOT DAY
1.382	1.372	-.77	2.196	2.097	-4.71	COLD DAY

Table 38.—F-111 Model-To-Simulator Correlation (Continued)

0.4						
$\bar{\pi}_2 =$			$\bar{\pi}_2 = 0.4$			
PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	CONDITION
2.198	2.198	0.0	1.384	1.406	1.55	BASELINE
2.315	2.303	-.52	1.457	1.499	2.77	80% SP
2.474	2.469	-.23	1.558	1.566	.53	60% SP
2.681	2.697	.60	1.688	1.693	.33	40% SP
2.943	2.919	-.82	1.853	1.845	-.42	20% SP
3.276	3.276	0.0	2.063	2.038	-1.22	NO SP
---	---	---	---	---	---	MAX WT
2.149	2.118	-1.48	---	---	---	HIGH WT
2.232	2.246	.62	1.405	1.417	.87	LOW WT
2.249	2.287	1.66	1.416	1.434	1.22	MIN WT
2.164	2.192	1.27	1.362	1.393	2.16	$V_B + 5 \kappa_n$
2.131	2.164	1.52	1.342	1.376	2.47	$V_B + 10$
2.071	2.086	.74	1.304	1.334	2.29	$V_B + 20$
2.015	2.030	.71	1.269	1.315	3.49	$V_B + 30$
2.234	2.228	-.27	1.407	1.433	1.86	$V_B - 5$
2.273	2.289	.71	1.431	1.442	.76	$V_B - 10$
2.235	2.226	-.41	1.407	1.454	3.23	120% Fe
2.218	2.162	-2.60	1.396	1.424	1.93	110% Fe
2.176	2.134	-1.98	1.370	1.398	2.04	90% Fe
2.150	2.097	-2.51	1.353	1.378	1.77	80% Fe
2.288	2.248	.69	1.406	1.442	2.50	HOT DAY
2.160	2.097	-3.00	1.360	1.372	.87	COLD DAY

Table 38--F-111 Model-To-Simulator Correlation (Continued)

0.20						
$\bar{\pi}_2 =$			$\bar{\pi}_2 = .020$			
PREDICTED ($\bar{\pi}_1$)	ACTUAL ($\bar{\pi}_1$)	% ERROR	PREDICTED ($\bar{\pi}_1$)	ACTUAL ($\bar{\pi}_1$)	% ERROR	CONDITION
	5.205	5.305	1.88	BASELINE		
	5.487	5.546	1.08	80% SP		
	5.840	5.835	-.07	60% SP		
	6.277	6.494	3.34	40% SP		
	6.816	6.933	1.69	20% SP		
	7.481	7.548	.88	NO SP		
	4.813	4.623	-4.11	MAX WT		
	5.082	5.116	.67	HIGH WT		
	5.759	5.935	2.96	LOW WT		
	5.879	5.994	1.92	MIN WT		
	5.009	5.188	3.43	$V_B + 5 \text{ Kn}$		
	4.826	5.039	4.24	$V_B + 10$		
	4.497	4.727	4.86	$V_B + 20$		
	4.203	4.511	3.05	$V_B + 30$		
	5.415	5.453	.69	$V_B - 5$		
	5.646	5.706	1.23	$V_B - 10$		
	5.422	5.518	1.73	120% Fe		
	5.319	5.357	.71	110% Fe		
	5.077	5.109	.63	90% Fe		
	4.928	4.700	-4.85	80% Fe		
	5.406	5.538	2.39	HOT DAY		
	4.986	4.786	-4.17	COLD DAY		

Table 38.—F-111 Model-To-Simulator Correlation (Concluded)

.15						
$\bar{\pi}_2 =$			$\bar{\pi}_2 =$			
PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	CONDITION
			6.780	6.695	-1.26	BASELINE
			7.195	7.197	.03	80% SP
			7.626	7.522	-1.37	60% SP
			8.102	8.004	-1.22	40% SP
			8.643	8.569	-.87	20% SP
			9.272	9.201	-.77	NO SP
			6.226	6.474	3.83	MAX WT
			6.606	6.851	3.58	HIGH WT
			7.570	7.239	-4.58	LOW WT
			8.726	8.540	-2.13	MIN WT
	---	---	---	---	---	$V_B + 5 \text{ Kn}$
			6.243	6.044	-3.29	$V_B + 10$
			5.781	5.652	-2.27	$V_B + 20$
			5.378	5.272	-2.01	$V_B + 30$
			7.079	6.919	-2.32	$V_B - 5$
			7.409	7.142	-3.74	$V_B - 10$
			7.089	7.229	1.94	120% Fe
			6.941	7.088	2.07	110% Fe
			6.598	6.607	.14	90% Fe
			6.388	6.194	-3.13	80% Fe
			7.372	7.346	0.35	HOT DAY
			5.895	5.864	0.53	COLD DAY

SECTION XV

WET-RUNWAY ANALYSIS CALCULATIONS

The procedure followed in Sections XIII, XIII, and XIV was repeated for the data analysis of wet runway conditions and prediction equations were obtained as before. However, a velocity-dependent mu value was converted into a constant peak available mu value (independent of velocity) by using previous π_1 versus π_2 component equations, for example, equations 11, 21, and 31 in ASD-TR-77-6, Volume I, Section IX. Tables 39 through 48 illustrate the steps involved.

Table 39.—Simulator Braking Distance Results - Wet Runways (Distances in Feet)

CONDITION	B-52	KC-135	F-111								
AVAILABLE MU	.05 to .5 .05 to .4 .05 to .3 .05 to .5 .05 to .4 .05 to .3 .05 to .5 .05 to .4 .05 to .3 .05 to .4 .05 to .3 .05 to .4 .05 to .3										
BASELINE	3434	4178	7922	6205	6788	7756	6652	7049	8020		
80% SP	3567	---	---	6524	---	---	7169	---	---		
60% SP	3635	4317	5070	6859	7675	8468	7542	8030	9124		
40% SP	3796	---	---	7277	---	---	7990	---	---		
20% SP	3930	4722	5327	8254	8862	9968	8720	9381	10473		
NO SP	4130	4955	5729	8604	9952	11046	---	10281	11869		
MAX WT	4226	4745	5261	---	9926	11182	7332	7919	8807		
HIGH WT	3804	---	---	7677	---	---	6806	---	---		
LOW WT	3263	---	---	4791	---	---	6982	---	---		
MIN WT	3015	3481	3924	4520	4072	4854	5990	6402	7319		
$V_B + 5 K$	3584	4266	4934	6467	6967	7871	7104	7134	8201		
$V_B + 10$	3802	4464	5171	6740	7225	8066	7137	7416	8633		
$V_B + 20$	4168	4884	5527	7272	8048	9233	7657	7963	9177		
$V_B + 30$	4550	---	---	7734	---	---	8092	---	---		
$V_B - 5$	3178	---	---	6008	6369	7330	6198	6675	7763		
$V_B - 10$	3027	3265	4091	5719	6140	7085	5838	6414	7430		
120% Fe	3598	4329	4910	6497	7353	8465	6625	7189	8286		
110% Fe	3477	---	---	6298	---	---	6783	---	---		
90% Fe	3356	---	---	6148	---	---	6603	---	---		
80% Fe	3274	3825	4520	5975	6697	7628	5969	6679	7724		
HOT DAY	3905	4721	5465	7216	8029	8750	7059	7667	8745		
COLD DAY	2963	3538	4009	5278	5762	6623	5741	6234	7192		

Table 40.—B-52 Pi Determination—Wet Runways

CONDITION	V	C_L	C_D	CL/CD	$\pi_2 = .23$	$\pi_2 = .175$	$\pi_2 = .127$		
					S	Sg/V^2	S	Sg/V^2	
FPS	--	--	π_3	FT	π_1	FT	π_1	FT	π_1
Baseline	152	.305	.321	0.950	3434	4.782	4178	5.818	4422
80% Spoilers	152	.444	.368	1.441	3567	4.967	---	---	---
60% Spoilers	152	.583	.295	1.974	3635	5.062	4137	6.011	5070
40% Spoilers	152	.722	.283	2.555	3796	5.286	---	---	---
20% Spoilers	152	.861	.270	3.191	3930	5.472	4722	6.575	5327
No Spoilers	152	1.000	.257	3.891	4130	5.751	4955	6.900	5729

Table 40.-B-52 Pi Determination—Wet Runways (Concluded)

CONDITION	V	Fe ₀	Fe	$\frac{cV_6}{Feg^2}$	$\pi_2 = .23$		$\pi_2 = .175$		$\pi_2 = .127$	
					S	Sg/V^2	S	Sg/V^2	S	Sg/V^2
					FPS	L _{b_i}	L _{b_f}	" ₄	FT	" ₁
Baseline	152.0	4800	3863	7341	3434	4.782	4178	5.818	4922	6.854
Max Wt	198.0	4800	3617	38297	4226	3.468	4745	3.926	5261	4.388
High Wt	175.0	4800	3740	17658	3804	3.995	---	---	---	---
Low Wt	139.1	4800	3931	4237	3263	5.426	---	---	---	---
Min Wt	127.2	4800	3995	2438	3015	5.995	3481	6.976	3924	7.827
V _B + 5	160.4	4800	3818	10257	3584	4.482	4266	5.334	4934	6.170
V _B + 10	168.9	4800	3773	14149	3802	4.288	4464	5.034	5171	5.832
V _B + 20	185.8	4800	3683	25687	4168	3.884	4884	4.552	5527	5.151
V _B + 30	202.7	4800	3593	44392	4550	3.563	---	---	---	---
V _B - 5	143.6	5800	3908	5160	3178	4.958	---	---	---	---
V _B - 10	135.2	4800	3952	3553	3027	5.328	3625	6.380	4091	4.200
120% Fe	152.0	5760	5010	5660	3598	5.010	4329	6.028	4910	6.837
110% Fe	152.0	5280	4436	6393	3477	4.842	---	---	---	---
90% Fe	152.0	4320	3289	8623	3356	4.673	---	---	---	---
80% Fe	152.0	3840	2715	10444	3274	4.559	3825	5.326	4520	6.294
Hot Day	152.0	4800	3863	5830	3905	5.438	4721	6.574	5465	7.610
Cold Day	152.0	4800	3863	9532	2963	4.126	3538	4.927	4009	5.582

Table 41.—KC-135 Pi Determination—Wet Runways

Condition	V	C_L	C_D	CL/CD	$\pi_2 = .166$		$\pi_2 = .154$		$\pi_2 = .137$	
					FT	π_1	FT	π_1	FT	π_1
FPS	-	-	π_3							
Baseline	209	0.310	0.202	1.535	6205	4.570	6788	5.000	7756	5.712
80% Spoilers	209	0.420	0.188	2.236	6524	4.805	---	---	---	---
60% Spoilers	209	0.530	0.174	3.063	6859	5.052	7675	5.653	8468	6.237
40% Spoilers	209	0.640	0.159	4.015	7277	5.360	---	---	---	---
20% Spoilers	209	0.750	0.145	5.165	8254	6.079	8862	6.527	9968	7.342
No Spoilers	209	0.860	0.131	6.555	8604	6.337	9952	7.330	11046	8.136

Table 41.—KC-135 Pi Determination—Wet Runways (Concluded)

Condition	V	Fe ₀	Fe	ρV_6 F_{eg}^2	$\pi_2 = .166$		$\pi_2 = .154$		$\pi_2 = .137$	
					S	$Sg/\sqrt{2}$	S	$Sg/\sqrt{2}$	S	$Sg/\sqrt{2}$
	FPS	L _b _f	L _B _f	π_4	FT	π_1	FT	π_1	Ft	π_1
Baseline	209.0	2400	1780	107688	6205	4.750	6788	5.000	7756	5.712
Max Wt	267.3	2400	1624	516319	---	---	9926	4.469	111825	5.035
High Wt	240.8	2400	1695	264483	7677	4.259	---	---	---	---
Low Wt	163.3	2400	1640	47193	4791	4.588	---	---	---	---
Min Wt	171.7 155.4	2400	1879 1922	31357 16846	4520	4.933	4072	5.425	4854	6.467
$V_B + 5$	217.4	2400	1757	138146	6467	4.402	6967	4.742	7871	5.358
$V_B + 10$	225.9	2400	1735	176161	6740	4.249	7225	4.555	8066	5.085
$V_B + 20$	242.8	2400	1690	248816	7272	3.969	8048	4.392	9233	5.039
$V_B + 30$	259.7	2400	1645	428923	7734	3.689	---	---	---	---
$V_B - 5$	200.6	2400	1802	82148	6008	4.803	6369	4.092	7330	5.860
$V_B - 10$	192.1	2400	1825	63330	5719	4.986	6140	5.353	7085	6.177
120% Fe	209.0	2880	2384	80398	6497	4.785	7353	5.420	8465	6.240
110% Fe	209.0	2640	2082	92066	6298	4.639	---	---	---	---
90% Fe	209.0	2160	1478	129706	6148	4.528	---	---	---	---
80% Fe	209.0	1920	1176	163024	5975	4.401	6697	4.932	7628	5.618
Hot Day	209.0	2400	1780	85517	7192	4.297	8029	5.914	8750	6.445
Cold Day	209.0	2400	1780	139813	5333	3.928	5762	4.244	6623	4.878

Table 42.—F-111 Pi Determination—Wet Runways

Condition	V	C_L	C_D	C_L/CD	$\pi_2 = .231$		$\pi_2 = .218$		$\pi_2 = .193$	
					FT	π_3	FT	π_1	FT	π_1
Baseline	219.8	.280	.237	1.181	6652	4.430	7049	4.694	8020	5.341
80% Spoilers	219.8	.434	.218	1.987	.7169	4.774	---	---	---	---
60% Spoilers	219.8	.588	.200	2.943	7542	5.022	8030	5.347	9124	6.076
40% Spoilers	219.8	.742	.181	4.095	7990	5.321	---	---	---	---
20% Spoilers	219.8	.896	.163	5.510	8720	5.807	9381	6.247	10473	6.974
No Spoilers	219.8	1.050	.144	7.292	---	---	10281	5.846	11869	7.904

Table 42.—F-111 Pi Determination—Wet Runways (Concluded)

Condition	V	Fe _o	Fe	$\frac{\rho V g}{F e g^2}$	$\pi_2 = .231$		$\pi_2 = .218$		$\pi_2 = .193$	
					S	Sg/V^2	S	Sg/V^2	S	Sg/V^2
	FPS	L _b _f	L _b _f	π_4	FT	π_1	FT	π_1	FT	π_1
Baseline	219.8	904	761	345422	6652	4.430	7094	4.694	8020	5.341
Max Wt	237.3	904	740	555118	7332	4.189	7919	4.505	8807	5.032
High Wt	2250	904	747	399186	6806	4.325	---	---	---	---
Low Wt	199.0	904	764	186981	5982	4.860	---	---	---	---
Min Wt	195.0	904	766	164990	5990	5.068	6402	5.417	7319	6.192
$V_B + 5$	228.2	904	745	435657	7104	4.389	7134	4.407	8201	5.067
$V_B + 10$	236.7	904	740	546471	7137	4.098	7416	4.258	8633	4.957
$V_B + 20$	253.6	904	729	838604	7657	3.830	7963	3.983	9177	4.591
$V_B + 30$	270.5	904	719	1250662	8092	3.558	---	---	---	---
$V_B - 5$	211.4	904	756	271498	4.462	6675	4.805	7763	5.589	
$V_B - 10$	202.9	904	761	210751	5838	4.562	6414	5.012	7430	5.806
120% Fe	219.8	1085	962	269430	6625	4.412	7189	4.787	8286	5.518
110% Fe	219.8	994	856	302906	6783	4.517	---	---	---	---
90% Fe	219.8	814	645	401820	6603	4.397	---	---	---	---
80% Fe	219.8	723	539	481120	5969	3.975	6679	4.448	7724	5.144
Hot Day	219.8	904	751	274305	7059	4.701	7667	5.106	8745	5.823
Cold Day	219.8	904	751	448468	5741	3.823	6234	4.151	7192	4.789

Table 43.—B-52 Pi Arrangement—Wet Runways

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		CONDITION
$(\bar{\pi}_2)$	$(\bar{\pi}_1)$	$(\bar{\pi}_3)$	$(\bar{\pi}_4)$	
.280	3.068	.95	.7341	BASELINE
.270	3.278			
.260	3.678			
.230	4.782			
.225	5.064			
.22	5.198			
-	-			
-	-			
-	-			
-	-			
-	-			
-	-			

$(\bar{\pi}_3)$	$(\bar{\pi}_1)$	$(\bar{\pi}_2)$	$(\bar{\pi}_4)$	CONDITION
0.950	4.782	.23	.7341	BASELINE
1.441	4.967			80% SPOILERS
1.974	5.062			60% SPOILERS
2.555	5.286			40% SPOILERS
3.191	5.472			20% SPOILERS
3.891	5.751			NO SPOILERS

Table 43.-B-52 Pi Arrangement—Wet Runways (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		
(π_4)	(π_1)	$\bar{\pi}_2$	$\bar{\pi}_3$	CONDITION
7341	4.782	0.23	0.95	BASELINE
38297	3.468			MAX WT
17658	3.996			HIGH WT
4237	5.426			LOW WT
2438	5.995			MIN WT
10257	4.482			$V_B + 5$
14149	4.288			$V_B + 10$
25687	3.884			$V_B + 20$
44392	3.563			$V_B + 30$
5160	4.958			$V_B - 5$
3553	5.328			$V_B - 10$
5660	5.010			120% Fe
6393	4.842			110% Fe
8623	4.673			90% Fe
10444	4.559			80% Fe
5830	5.438			HOT DAY
9532	4.126			COLD DAY

Table 43.-B-52 Pi Arrangement—Wet Runways (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		CONDITION
(π_2)	(π_1)	$(\bar{\pi}_3)$	$(\bar{\pi}_4)$	
.225	5.064	.95	.7341	BASELINE
.200	5.436			
.175	5.818			
.150	6.174			
.127	6.854			
.100	7.929			
.090	8.344			
.080	8.780			
.070	9.449			
.06	10.030			
.05	10.903			
---	---			

(π_3)	(π_1)	$(\bar{\pi}_2)$	$(\bar{\pi}_4)$	CONDITION
0.950	5.818	.175	.7341	BASELINE
---	---			
1.974	6.011			80% SPOILERS
---	---			
3.191	6.575			60% SPOILERS
3.891	6.900			40% SPOILERS
				20% SPOILERS
				40 SPOILERS

Table 43.--B-52 Pi Arrangement—Wet Runways (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		
(π_4)	(π_1)	$\bar{\pi}_2$	$\bar{\pi}_3$	CONDITION
7341	5.818	.175	.95	BASELINE
37334	3.926			MAX WT
---	---			HIGH WT
---	---			LOW WT
2380	6.976			MIN WT
10257	5.334			$V_B + 5$
14149	5.034			$V_B + 10$
25687	4.552			$V_B + 20$
---	---			$V_B + 30$
---	---			$V_B - 5$
3553	6.380			$V_B - 10$
5660	6.028			120% Fe
---	---			110% Fe
---	---			90% Fe
10444	5.326			80% Fe
5830	6.574			HOT DAY
9532	4.927			COLD DAY

Table 43.-B-52 PI Arrangement—Wet Runways (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		CONDITION
$(\bar{\pi}_2)$	$(\bar{\pi}_1)$	$(\bar{\pi}_3)$	$(\bar{\pi}_4)$	
.225	5.064	.95	7341	BASELINE
.200	5.436			
.175	5.818			
.150	6.174			
.127	6.854			
.100	7.929			
.090	8.344			
.080	8.780			
.070	9.449			
.060	10.030			
.050	10.903			
---	---			

$(\bar{\pi}_3)$	$(\bar{\pi}_1)$	$(\bar{\pi}_2)$	$(\bar{\pi}_4)$	CONDITION
.95	6.854	.127	7341	BASELINE
---	---			80% SPOILERS
1.974	7.060			60% SPOILERS
---	---			40% SPOILERS
3.191	7.418			20% SPOILERS
3.891	7.978			NO SPOILERS

Table 13.-B-52 Pi Arrangement—Wet Runways (Concluded)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		
(π_4)	(π_1)	π_2	π_3	CONDITION
7341	5.854	.127	.95	BASELINE
37334	4.388			MAX WT
---	---			HIGH WT
---	---			LOW WT
2380	7.827			MIN WT
10257	6.170			$V_B + 5$
14149	5.832			$V_B + 10$
25687	5.151			$V_B + 20$
---	---			$V_B + 30$
---	---			$V_B - 5$
3553	7.200			$V_B - 10$
5660	6.837			120% Fe
---	---			110% Fe
---	---			90% Fe
10444	6.294			80% Fe
5830	7.610			HOT DAY
9532	5.582			COLD DAY

Table 44. - KC-135 Pi Arrangement - Wet Runways

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		CONDITION
$(\bar{\pi}_2)$	$(\bar{\pi}_1)$	$(\bar{\pi}_3)$	$(\bar{\pi}_4)$	
.60	---	1.535	107688	BASELINE
.55	---			
.50	---			
.166	4.570			
.275	2.527			
.250	2.861			
.200	3.782			
.150	5.216			
.125	6.337			
.100	8.017			
.137	5.712			
.154	5.000			

$(\bar{\pi}_3)$	$(\bar{\pi}_1)$	$(\bar{\pi}_2)$	$(\bar{\pi}_4)$	CONDITION
1.535	4.570	1.66	.107688	BASELINE
2.236	4.805			80% SPOILERS
3.053	5.052			60% SPOILERS
4.015	5.360			40% SPOILERS
5.165	6.079			20% SPOILERS
6.565	6.337			NO SPOILERS

Table 44.—KC-135 Pi Arrangement—Wet Runways (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		
(π_4)	(π_1)	$\bar{\pi}_2$	$\bar{\pi}_3$	CONDITION
107688	4,570	.166	1.535	BASELINE
516319	- -			MAX WT
264483	4.259			HIGH WT
47193	4.588			LOW WT
31357	4.933			MIN WT
138146	4.402			$V_B + 5$
176161	4.249			$V_B + 10$
278816	3.969			$V_B + 20$
428923	3.689			$V_B + 30$
83148	4.803			$V_B - 5$
63330	4.896			$V_B - 10$
80398	4.785			120% Fe
92066	4.639			110% Fe
129706	4.528			90% Fe
163024	4.401			80% Fe
85517	5.297			HOT DAY
139813	3.928			COLD DAY

Table 44.—KC-135 PI Arrangement—Wet Runways (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		CONDITION
$(\bar{\pi}_2)$	$(\bar{\pi}_1)$	$(\bar{\pi}_3)$	$(\bar{\pi}_4)$	
.60	--	1.535	.107688	BASELINE
.55	--			
.50	--			
.154	5.000			
.275	2.527			
.250	2.861			
.200	3.762			
.150	5.216			
.125	6.337			
.100	8.017			
.137	5.712			
.166	4.570			

$(\bar{\pi}_3)$	$(\bar{\pi}_1)$	$(\bar{\pi}_2)$	$(\bar{\pi}_4)$	CONDITION
1.535	5.000	.154	.107688	BASELINE
--	--			80% SPOILERS
3.053	5.653			60% SPOILERS
--	--			40% SPOILERS
5.165	6.527			20% SPOILERS
6.565	7.330			NO SPOILERS

Table 44.—KC-135 Pi Arrangement—Wet Runways (Continued)

INDEPENDENT π TERM (π_4)	DEPENDENT π TERM (π_1)	π TERMS HELD CONSTANT		
		π_2	π_3	CONDITION
107688	5.000	.154	1.535	BASELINE
516319	4.469			MAX WT
--	--			HIGH WT
--	--			LOW WT
16846	5.425			MIN WT
138146	4.742			$V_B + 5$
176161	4.555			$V_B + 10$
278816	4.392			$V_B + 20$
--	--			$V_B + 30$
83148	5.092			$V_B - 5$
63330	5.353			$V_B - 10$
80398	5.420			120% Fe
--	--			110% Fe
--	--			90% Fe
163105	4.932			80% Fe
85517	5.914			HOT DAY
139813	4.244			COLD DAY

Table 44.—KC-135 PI Arrangement—Wet Runways (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		CONDITION
$(\bar{\pi}_2)$	$(\bar{\pi}_1)$	$(\bar{\pi}_3)$	$(\bar{\pi}_4)$	
.60	--	1.535	.107683	BASELINE
.55	--			
.50	--			
.137	5.712			
.275	2.527			
.250	2.861			
.200	3.762			
.150	5.216			
.125	6.337			
.100	8.017			
.154	5.000			
.166	4.570			

$(\bar{\pi}_3)$	$(\bar{\pi}_1)$	$(\bar{\pi}_2)$	$(\bar{\pi}_4)$	CONDITION
1.535	5.712	.137	.107688	BASELINE
1.535	5.712			80% SPOILERS
--	--			60% SPOILERS
3.053	6.237			40% SPOILERS
--	--			20% SPOILERS
6.565	8.136			NO SPOILERS

Table 44.-KC-135 Pi Arrangement—Wet Runways (Concluded)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		
(π_4)	(π_1)	$\bar{\pi}_2$	$\bar{\pi}_3$	CONDITION
107688	5.712	.137	1.535	BASELINE
516319	5.035			MAX WT
--	--			HIGH WT
--	--			LOW WT
16846	6.467			MIN WT
138146	5.358			$V_B + 5$
176161	5.085			$V_B + 10$
278816	5.039			$V_B + 20$
--	--			$V_B + 30$
83148	5.860			$V_B - 5$
63330	6.177			$V_B - 10$
80398	6.240			120% Fe
--	--			110% Fe
--	--			90% Fe
163024	5.618			80% Fe
85517	6.445			HOT DAY
139813	4.878			COLD DAY

Table 45.-F-111 PI Arrangement--Wet Runways

INDEPENDENT π TERM (π_2)	DEPENDENT π TERM (π_1)	π TERMS HELD CONSTANT		CONDITION BASELINE
		$(\bar{\pi}_3)$	$(\bar{\pi}_4)$	
.300	3.234	1.181	345422	
.275	3.595			
.200	3.849			
.250	4.205			
.240	4.237			
.230	4.457			
.220	4.679			
.210	4.889			
.200	5.305			
.190	5.405			
.175	5.827			
.150	6.695			

$(\bar{\pi}_3)$	(π_1)	$(\bar{\pi}_2)$	$(\bar{\pi}_4)$	CONDITION
1.181	4.430	.231	345422	BASELINE
1.987	4.744			80% SPOILERS
2.943	5.022			60% SPOILERS
4.095	5.321			40% SPOILERS
5.510	5.807			20% SPOILERS
7.292	- -			NO SPOILERS

Table 45.—F-111 Pi Arrangement—Wet Runways (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		
(π_4)	(π_1)	π_2	π_3	CONDITION
345422	4.430	.231	1.181	BASELINE
555118	4.189			MAX WT
399186	4.325			HIGH WT
186981	4.860			LOW WT
164990	5.068			MIN WT
435657	4.389			$V_B + 5$
546471	4.098			$V_B + 10$
838604	3.830			$V_B + 20$
1250662	3.558			$V_B + 30$
271498	4.462			$V_B - 5$
210751	4.562			$V_B - 10$
269430	4.412			120% Fe
302907	4.517			110% Fe
401820	4.397			90% Fe
481120	3.975			80% Fe
274305	4.701			HOT DAY
448468	3.823			COLD DAY

Table 45.-F-111 Pi Arrangement—Wet Runways (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		CONDITION
$(\bar{\pi}_2)$	$(\bar{\pi}_1)$	$(\bar{\pi}_3)$	$(\bar{\pi}_4)$	
.300	3.234	1.181	345422	BASELINE
.275	3.595			
.260	3.849			
.250	4.205			
.240	4.337			
.230	4.457			
.220	4.679			
.210	4.889			
.200	5.305			
.190	5.405			
.175	5.827			
.150	6.695			

$(\bar{\pi}_3)$	$(\bar{\pi}_1)$	$(\bar{\pi}_2)$	$(\bar{\pi}_4)$	CONDITION
1.181	4.694	.218	345422	BASELINE
1.987	--			80% SPOILERS
2.943	5.347			60% SPOILERS
4.095	--			40% SPOILERS
5.510	6.247			20% SPOILERS
7.292	6.846			NO SPOILERS

Table 45.-F-111 Pi Arrangement—Wet Runways (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		
(π_4)	(π_1)	$\bar{\pi}_2$	$\bar{\pi}_3$	CONDITION
345422	4.694	218	1.181	BASELINE
555118	4.505			MAX WT
399186	--			HIGH WT
186981	--			LOW WT
164990	5.417			MIN WT
435657	4.407			$V_B + 5$
546471	4.258			$V_B + 10$
838604	3.983			$V_B + 20$
1250662	--			$V_B + 30$
271498	4.805			$V_B - 5$
210751	5.012			$V_B - 10$
269430	4.787			120% Fe
302907	--			110% Fe
401820	--			90% Fe
481120	4.448			80% Fe
274305	5.106			HOT DAY
448468	4.151			COLD DAY

Table 45.—F-111 Pi Arrangement—Wet Runways (Continued)

INDEPENDENT π TERM	DEPENDENT π TERM	TERMS HELD CONSTANT		CONDITION
$(\bar{\pi}_2)$	$(\bar{\pi}_1)$	$(\bar{\pi}_3)$	$(\bar{\pi}_4)$	
.300	3.234	1.181	345422	BASELINE
.275	3.595			
.260	3.849			
.250	4.205			
.240	4.237			
.230	4.457			
.220	4.679			
.210	4.889			
.200	5.305			
.190	5.405			
.175	5.827			
.150	6.695			

$(\bar{\pi}_3)$	$(\bar{\pi}_1)$	$(\bar{\pi}_2)$	$(\bar{\pi}_4)$	CONDITION
1.181	5.341	.193	345422	BASELINE
1.987	--			80% SPOILERS
2.943	6.076			60% SPOILERS
4.095	--			40% SPOILERS
5.510	6.974			20% SPOILERS
7.292	7.904			NO SPOILERS

Table 45.—F-111 Pi Arrangement—Wet Runways (Concluded)

INDEPENDENT π TERM	DEPENDENT π TERM	π TERMS HELD CONSTANT		
(π_4)	(π_1)	$\bar{\pi}_2$	$\bar{\pi}_3$	CONDITION
345422	5.341	.193	1.181	BASELINE
555118	5.032			MAX WT
399186	--			HIGH WT
186981	--			LOW WT
164990	6.192			MIN WT
435657	5.067			$V_B + 5$
546471	4.957			$V_B + 10$
838604	4.591			$V_B + 20$
1250662	--			$V_B + 30$
271498	5.589			$V_B - 5$
210751	5.806			$V_B - 10$
269430	5.518			120% Fe
302907	--			110% Fe
401820	--			90% Fe
481120	5.144			80% Fe
274305	5.823			HOT DAY
448468	4.789			COLD DA

Table 46.—B-52 Model-To-Simulator Correlation—Wet Runways

.175						
$\bar{\pi}_2 =$			$\bar{\pi}_2 =$			
PREDICTED ($\bar{\pi}_1$)	ACTUAL ($\bar{\pi}_1$)	% ERROR	PREDICTED ($\bar{\pi}_1$)	ACTUAL ($\bar{\pi}_1$)	% ERROR	CONDITION
5.657	5.818	2.76	6.673	6.854	2.64	BASELINE
--	--	--	--	--	--	80% SP
5.862	6.011	2.49	6.914	7.060	2.07	60% SP
--	--	--	--	--	--	40% SP
6.371	6.575	3.10	7.516	7.418	-1.32	20% SP
6.728	6.900	2.48	7.936	7.978	0.52	NO SP
4.092	7.926	-4.25	4.852	4.388	-10.57*	MAX WT
--	--	--	--	--	--	HIGH WT
--	--	--	--	--	--	LOW WT
7.080	6.976	-1.48	8.327	7.827	-6.39*	MIN WT
5.293	5.334	0.78	6.243	6.170	-1.19*	$V_B + 5 \text{ Kn}$
4.964	5.034	1.39	5.856	5.832	.42	$V_B + 10$
4.409	4.552	3.14	5.200	5.151	.96	$V_B + 20$
--	--	--	--	--	--	$V_B + 30$
--	--	--	--	--	--	$V_B - 5$
6.537	6.380	-2.45	7.710	7.200	7.08*	$V_B - 10$
5.958	6.028	1.16	7.028	6.837	-2.79	120% Fe
--	--	--	--	--	--	110% Fe
--	--	--	--	--	--	90% Fe
5.274	5.326	0.98	6.221	6.294	1.16	80% Fe
6.437	6.574	2.08	7.593	7.610	0.22	HOT DAY
4.727	4.927	4.05	5.577	5.582	0.09	COLD DAY

Table 46.-B-52 Model-To-Simulator Correlation—Wet Runways (Concluded)

.127						
$(\pi_1) = 13.42178 (\pi_2) - .5188 (\pi_3) + .10492 - .12427 \Delta p \cdot .197884 (\pi_4)$						
$\bar{\pi}_2 =$			$\bar{\pi}_2 =$			
PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	CONDITION
6.733	6.854	1.76	5.708	5.818	1.88	BASELINE
--	--	--	--	--	--	80% SP
6.867	7.060	2.74	5.821	6.011	3.16	60% SP
--	--	--	--	--	--	40% SP
7.381	7.418	0.49	6.258	6.575	4.83	20% SP
7.757	7.978	2.76	6.576	6.900	4.69	NO SP
4.905	4.388	-11.78*	4.137	3.926	-5.40*	MAX WT
--	--	--	--	--	--	HIGH WT
--	--	--	--	--	--	LOW WT
8.391	7.827	-7.20*	7.134	6.976	-2.26	MIN WT
6.002	6.170	-2.14	5.343	5.334	.15	$V_B + 5 \text{ Kn}$
5.913	5.837	-1.40	5.013	5.034	.42	$V_B + 10$
5.255	5.151	-2.02	4.455	4.552	2.12	$V_B + 20$
--	--	--	--	--	--	$V_B + 30$
--	--	--	--	--	--	$V_B - 5$
7.773	7.200	-7.95*	6.590	6.380	-3.28	$V_B - 10$
7.089	6.837	-3.68	6.010	6.028	.31	120% Fe
--	--	--	--	--	--	110% Fe
--	--	--	--	--	--	90% Fe
6.280	6.294	0.23	5.324	5.326	.05	80% Fe
7.699	7.610	-1.17	6.524	6.574	.76	HOT DAY
5.575	5.582	0.13	4.724	4.927	4.12	COLD DAY

Table 47.—KC-135 Model-To-Simulator Correlation—Wet Runways

$(\pi_1) = 1.9123 (\pi_2) - 1.1410 (\pi_3)$							$1995 \cdot 1225\%SP (\pi_4)$							$18\Delta\vartheta - 106286$							
$\bar{\pi}_2 = .166$			$\bar{\pi}_2 = .154$			$\bar{\pi}_2 = .137$			$\bar{\pi}_2 = .137$			$\bar{\pi}_2 = .137$			$\bar{\pi}_2 = .137$			$\bar{\pi}_2 = .137$			
PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	
4.476	4.570	2.06	4.894	5.000	2.11	5.591	5.712	2.13	-	-	-	-	-	-	-	-	-	-	-	2.13	BASELINE
4.699	4.805	2.20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	80% SP
4.985	5.052	1.33	5.451	5.653	3.58	6.226	6.237	0.17	-	-	-	-	-	-	-	-	-	-	-	-	60% SP
5.339	5.360	.39	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	40% SP
5.773	6.079	5.04	6.312	6.527	3.30	7.210	7.342	1.79	-	-	-	-	-	-	-	-	-	-	-	-	20% SP
6.304	6.337	.52	6.893	7.330	5.96*	7.874	8.136	3.21	-	-	-	-	-	-	-	-	-	-	-	-	NO SP
-	-	-	4.143	4.469	.30*	4.733	5.035	6.00*	-	-	-	-	-	-	-	-	-	-	-	-	MAX WT
4.068	4.259	4.49	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	HIGH WT
4.886	4.588	-6.51*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LOW WT
5.103	4.933	-3.46	5.961	5.425	-9.88*	6.809	6.467	-5.30	-	-	-	-	-	-	-	-	-	-	-	-	MIN WT
4.359	4.402	.98	4.766	4.742	-0.50	5.445	5.358	-1.62	-	-	-	-	-	-	-	-	-	-	-	-	V_B + 5 Kn
4.258	4.249	.03	4.645	4.555	-1.97	5.306	5.085	-4.34	-	-	-	-	-	-	-	-	-	-	-	-	V_B + 10
4.046	3.969	-1.94	4.424	4.392	-0.72	5.053	5.039	-0.29	-	-	-	-	-	-	-	-	-	-	-	-	V_B + 20
3.865	3.689	-4.75	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	V_B + 30
4.601	4.803	4.22	5.031	5.092	1.21	5.747	5.860	1.94	-	-	-	-	-	-	-	-	-	-	-	-	120% F_E
4.736	4.986	5.01	5.173	5.353	3.26	5.915	6.177	4.231	-	-	-	-	-	-	-	-	-	-	-	-	110% F_E
4.617	4.785	3.51	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	90% F_E
4.551	4.639	1.88	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	80% F_E
4.388	4.528	3.09	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	HOT DAY
4.283	4.401	2.67	4.683	4.932	5.06	5.350	5.618	4.78	-	-	-	-	-	-	-	-	-	-	-	-	COLD DAY
5.071	5.297	4.27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
3.742	3.928	4.73	.154	4.244	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Table 47.—KC-135 Model-To-Simulator Correlation—Wet Runways (Continued) ,

$\bar{\pi}_2 = .154$		$\bar{\pi}_2 = .2161$		$\bar{\pi}_2 = .1412*\text{SP}$		$\bar{\pi}_2 = .2161 - .1412*\text{SP}$		$\bar{\pi}_2 = .2161 - .1412*\text{SP}$	
$(\bar{\pi}_1) = 1.2841 (\bar{\pi}_2)$		$-1.410 (\bar{\pi}_3)$		$(\bar{\pi}_4)$		$(\bar{\pi}_4)$		$(\bar{\pi}_4)$	
PREDICTED $(\bar{\pi}_1)$	ACTUAL $(\bar{\pi}_1)$	% ERROR	PREDICTED $(\bar{\pi}_1)$	ACTUAL $(\bar{\pi}_1)$	% ERROR	PREDICTED $(\bar{\pi}_1)$	ACTUAL $(\bar{\pi}_1)$	PREDICTED $(\bar{\pi}_1)$	% ERROR
4.909	5.000	1.81	5.603	5.712	1.83	4.490	4.570	1.76	BASELINE
-	-	-	-	-	-	4.724	4.805	1.68	80% SP
5.505	5.653	2.61	6.289	6.237	-0.83	5.035	5.052	0.34	60% SP
-	-	-	-	-	-	5.428	5.360	-1.28	40% SP
6.472	6.527	0.84	7.394	7.342	-0.71	5.919	6.079	2.63	20% SP
7.140	7.330	2.59	8.156	8.136	-0.25	6.530	6.337	-3.04	NO SP
4.388	4.469	-1.82	5.013	5.035	0.44	-	-	-	MAX WT
-	-	-	-	-	-	4.210	4.259	1.16	HIGH WT
-	-	-	-	-	-	4.763	4.588	-3.82	LOW WT
5.606	5.425	-3.34	6.404	6.467	0.96	4.904	4.933	0.58	MIN WT
4.822	4.712	-1.68	5.509	5.358	-2.82	4.410	4.402	-0.18	$V_B + 5 \text{ Km}$
4.739	4.555	-4.24	5.414	5.085	-6.46*	4.334	4.249	-2.00	$V_B + 10$
4.586	4.392	-4.41	5.239	5.039	-3.97	4.194	3.969	-5.68*	$V_B + 20$
-	-	-	-	-	-	4.067	4.689	-10.23*	$V_B + 30$
5.001	5.092	1.79	5.713	5.860	2.52	4.573	4.803	4.79	$V_B - 5$
5.099	5.353	4.74	5.825	6.177	5.69*	4.663	4.986	6.47*	$V_B - 10$
-	-	-	-	-	-	4.585	4.785	4.19	120% Fe
-	-	-	-	-	-	4.540	4.639	2.12	110% Fe
4.765	4.932	3.39	5.444	5.618	3.10	4.358	4.528	2.16	90% Fe
5.584	5.914	5.58					4.401	0.96	80% Fe
4.020	4.244	5.28	.137				5.297		HOT DAY
							3.928		COLD DAY

Table 47.—KC-135 Model-To-Simulator Correlation—Wet Runways (Concluded)

$\bar{\pi}_2 = .137$						$\bar{\pi}_2 = .137$					
PREDICTED ($\bar{\pi}_1$)	ACTUAL ($\bar{\pi}_1$)	% ERROR	PREDICTED ($\bar{\pi}_1$)	ACTUAL ($\bar{\pi}_1$)	% ERROR	PREDICTED ($\bar{\pi}_1$)	ACTUAL ($\bar{\pi}_1$)	% ERROR	PREDICTED ($\bar{\pi}_1$)	ACTUAL ($\bar{\pi}_1$)	% ERROR
5.592	5.712	2.10	4.896	5.000	2.08	4.477	4.570	2.03	4.805	3.63	80% SP
- -	- -	- -	- -	- -	-	4.630	-	-	-	-	BASELINE
6.111	6.237	2.02	5.349	5.653	5.37	4.892	5.052	3.16	5.261	5.360	60% SP
- -	- -	- -	- -	- -	-	-	-	-	-	-	40% SP
7.181	7.342	2.19	6.286	6.527	3.69	5.749	6.079	5.44*	6.381	6.337	20% SP
7.7971	8.136	2.03	6.977	7.330	4.81	-	-	-	-	-	NO SP
4.872	5.035	3.23	4.265	4.469	4.57	-	-	-	-	-	MAX WT
- -	- -	- -	- -	- -	-	4.137	4.259	2.88	4.137	4.259	HIGH WT
- -	- -	- -	- -	- -	-	-	-	-	-	-	LOW WT
6.584	6.467	-1.81	5.763	5.425	-624	4.990	4.933	-1.17	4.118	3.969	MIN WT
5.471	5.358	-2.12	4.789	4.742	-0.99	4.380	4.402	.50	4.380	4.402	V _B + 5 Kd
5.355	5.085	-5.32	4.688	4.555	-2.92	4.287	4.249	-.90	4.287	4.249	V _B + 10
5.14;	5.039	-2.08	4.503	4.392	-2.51	4.118	3.969	-3.76	4.118	3.969	V _B + 20
- -	- -	- -	- -	- -	-	3.965	3.689	-7.46*	3.965	3.689	V _B + 30
5.721	5.860	2.37	5.008	5.09?	1.65	4.580	4.803	4.65	4.580	4.803	V _B - 5
5.860	6.177	5.13	5.130	5.353	4.17	4.691	4.986	5.91*	4.691	4.986	V _B - 10
- -	- -	- -	- -	- -	-	4.594	4.785	4.00	4.594	4.785	120% Fe
- -	- -	- -	- -	- -	-	4.539	4.639	2.14	4.539	4.639	110% Fe
- -	- -	- -	- -	- -	-	4.405	4.528	2.73	4.405	4.528	90% Fe
5.392	5.618	4.024	4.720	4.932	4.31	4.317	4.401	1.91	4.317	4.401	80% Fe
6.282	6.445	2.53	-	-	-	-	-	-	-	-	HOT DAY
4.708	4.878	3.48	-	-	-	-	-	-	-	-	COLD DAY

.137

Table 48.—F-111 Model-To-Simulator Correlation—Wet Runways

$\bar{\pi}_2 = .231$		$\bar{\pi}_2 = .231$		$\bar{\pi}_2 = .231$	
PREDICTED ($\bar{\pi}_1$)	ACTUAL ($\bar{\pi}_1$)	% ERROR	PREDICTED ($\bar{\pi}_1$)	ACTUAL ($\bar{\pi}_1$)	% ERROR
4.388	4.430	.94	4.663	4.694	.66
4.665	4.774	2.28	--	--	--
4.964	5.022	1.16	5.275	5	1.36
5.303	5.321	.33	--	--	--
5.697	5.807	1.38	6.054	6.247	3.08
--	--	--	6.549	6.846	4.34
4.066	4.199	2.93	4.312	4.505	4.29
4.287	4.325	.87	--	--	--
4.843	4.860	.35	--	--	--
4.941	5.068	2.50	5.251	5.417	3.06
4.228	4.389	3.67	4.492	4.497	-1.93
4.077	4.098	.53	4.332	4.258	-1.73
3.806	3.830	.65	4.044	3.983	-1.52
3.568	3.558	-.28	--	--	--
4.561	4.462	-2.23	4.847	4.805	-.87
4.751	4.562	-4.13	5.048	5.012	-.71
4.567 1	4.412	-3.52	4.853	4.787	-1.37
4.482	4.517	.78	--	--	--
4.283	4.397	2.60	--	--	--
4.161	3.975	-4.68	4.421	4.448	.59
4.726	4.701	.53	5.022	5.106	1.64
3.860	3.823	.98	4.102	4.151	1.18

PREDICTED CTL ($\bar{\pi}_1$)	ACTUAL ($\bar{\pi}_1$)	% ERROR	PREDICTED CTL ($\bar{\pi}_1$)	ACTUAL ($\bar{\pi}_1$)	% ERROR	CONDITION
5.299	5.341	.79				BASELINE
5.994	6.076	1.35				80% SP
--	--	--				60% SP
--	--	--				40% SP
6.974	6.974	1.36				20% SP
7.904	5.84	5.84				NO SP
5.032	2.42	2.42				MAX WT
						HIGH WT
						LOW WT
						MIN WT
						VB + 5 KN
						VB + 10
						VB + 20
						VB + 30
						VB - 5
						VB - 10
						110% FE
						90% FE
						120% FE
						80% FE
						HOT DAY
						COLD DAY

Table 48—F-111 Model-To-Simulator Correlation—Wet Runways (Continued)

$\pi_2 =$							$\bar{\pi}_2 =$								
PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	CONDITION
.218	(π_1) = 9.3019	(π_2) -1.0490	(π_3) .1976-.1046%SP	(π_4) 7.75%P -1.1804											
4.679	4.694	.33	4.403	4.430	.60	5.316	5.341	0.45							
- -	- -	- -	4.688	4.774	1.80	- -	- -	- -							
5.329	5.347	.35	5.015	5.022	.16	5.055	6.076	0.34							
- -	- -	- -	5.400	5.321	-1.49	- -	- -	- -							
6.228	6.247	.30	5.861	5.807	-.94	7.077	6.974	-1.48							
6.822	6.846	.35	- -	- -	- -	7.751	7.904	1.92							
4.285	4.505	4.89	4.042	4.189	3.51	4.880	5.032	3.01							
- -	- -	- -	4.290	4.325	.82	- -	- -	- -							
- -	- -	- -	4.918	4.860	-1.21	- -	- -	- -							
5.346	5.417	1.30	5.031	5.068	.73	6.074	6.192	1.90							
4.487	4.407	-1.80	4.222	4.339	3.79	5.098	5.067	-0.63							
4.307	4.258	-1.14	4.053	4.098	1.10	4.894	4.957	1.27							
3.987	3.983	-.09	3.752	3.830	2.05	4.530	4.591	1.32							
- -	- -	- -	3.490	3.558	1.92	- -	- -	- -							
4.886	4.805	-1.69	4.598	4.462	-3.06	5.552	5.589	0.64							
5.115	5.012	-2.05	4.813	4.552	-5.50*	5.812	5.806	-0.10							
4.893	4.787	-2.21	4.605	4.412	-4.37	5.560	5.518	-0.77							
- -	- -	- -	4.508	4.517	.19	- -	- -	- -							
- -	- -	- -	4.80	4.397	2.56	- -	- -	- -							
4.907	4.448	.91	4.147	3.975	-4.34	5.008	5.144	2.64							
5.115	5.106	.18	4.814	4.701	2.40	5.812	5.823	0.19							
4.155	4.151	.09	3.903	3.823	2.25	4.721	4.789	1.42	COLD DAY						

Table 48.-F-111 Model-To-Simulator Correlation—Wet Runways (Concluded)

$\pi_2 = 193_{\text{u}}$		$\bar{\pi}_2 =$		$\bar{\pi}_2 = 193_{\text{u}}$		$\bar{\pi}_2 = 193_{\text{u}}$	
PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)	% ERROR	PREDICTED (π_1)	ACTUAL (π_1)
5.342	5.341	- .02	4.424	4.430	.13	4.701	4.694
-	-	-	4.665	4.714	2.28	-	-
6.009	5.01b	1.09	4.977	5.022	.90	5.289	5.347
-	-	-	5.370	5.321	-.93	-	-
7.076	6.574	-1.47	5.861	5.807	-.93	6.228	6.247
7.817	7.574	-2.14	-	-	-	6.846	-0.48
8.898	5.632	-2.65	4.051	4.139	3.16	4.301	4.505
-	-	-	4.303	4.325	.38	-	-
-	-	-	4.349	4.860	-1.84	-	-
6.114	6.122	-1.27	2.163	5.068	.09	5.381	5.417
5.126	5.267	-1.06	2.240	4.389	3.38	4.506	4.407
4.912	4.957	.90	4.068	4.098	.73	4.323	4.258
4.543	4.591	1.05	3.762	3.830	1.78	3.998	3.983
-	-	-	3.496	3.558	1.74	-	-
5.582	5.58	-1.11	4.623	4.462	-3.61	4.913	4.805
5.847	5.806	-.69	4.342	4.162	-6.13*	5.145	5.012
5.590	5.518	-1.31	4.629	4.412	-4.94	4.920	4.787
-	-	-	4.531	4.511	-.32	-	-
-	-	-	4.323	4.397	2.13	-	-
5.028	5.144	2.26	4.144	3.375	-4.76	4.425	4.448
5.811	5.823	0.26	4.812	4.701	2.36	5.113	5.106
4.781	4.789	2.17	3.961	3.823	3.58	4.207	4.151