

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

PCT

WELTOORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICH NACH DEM VERTRÄG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 5 : A61M 39/02	A1	(11) Internationale Veröffentlichungsnummer: WO 93/00129 (43) Internationales Veröffentlichungsdatum: 7. Januar 1993 (07.01.93)
(21) Internationales Aktenzeichen: PCT/EP92/01352 (22) Internationales Anmeldedatum: 15. Juni 1992 (15.06.92) (30) Prioritätsdaten: P 41 20 425.5 20. Juni 1991 (20.06.91) DE P 42 11 045.9 2. April 1992 (02.04.92) DE (71)(72) Anmelder und Erfinder: MILOŠEVIC, Zeljko [YU/DE]; Kidlerstraße 4, D-8000 München 70 (DE). (72) Erfinder; und (75) Erfinder/Anmelder (nur für US) : MILOŠEVIC, Renate [YU/DE]; Kidlerstraße 4, D-8000 München 70 (DE).	(74) Anwalt: LEINWEBER + ZIMMERMANN; Rosenthal 7, D-8000 München 2 (DE). (81) Bestimmungsstaaten: JP, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LU, MC, NL, SE). Veröffentlicht Mit internationalem Recherchenbericht Mit geänderten Ansprüchen	

(54) Title: IMPLANTABLE PORT

(54) Bezeichnung: IMPLANTIERBARER PORT

(57) Abstract

In an implantable port (1) with a catheter (28) connected thereto, the connection between the inside (6) of the port (1) and the tip of the catheter (28) connected thereto is closed by a valve (32; 10, 17, 18) which, when the port (1) is punctured, is opened either solely by the pressure of the injection medium or by mechanical contact with a puncturing canula. To prevent thrombosis and blockages of the port system, the valve is arranged in the port system at such a point that the tip of the catheter (28) used for introduction into the vessel to be catheterised is open and contains no valve parts.

(57) Zusammenfassung

Bei einem implantierbaren Port (1) mit daran angeschlossenem Katheter (28) ist die Verbindung zwischen dem Innenraum (6) des Port (1) und der Spitze des daran angeschlossenen Katheters (28) durch ein Ventil (32; 10, 17, 18) geschlossen, welches beim Punktieren des Port (1) entweder allein durch den Druck des Injektionsmittels oder durch mechanische Berührung mit einer Punktionskanüle geöffnet wird. Zur Vermeidung von Verstopfungen des Portsystens und zur Verhinderung von Thrombosierungen ist das Ventil in dem Portsysten an einer derartigen Stelle angeordnet, daß jedenfalls die zur Einführung in das zu katherisierende Gefäß dienende Spitze des Katheters (28) offen ausmündet und keinerlei Ventileile enthält.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	FI	Finnland	MN	Mongolei
AU	Australien	FR	Frankreich	MR	Mauritanien
BB	Barbados	GA	Gabon	MW	Malawi
BE	Belgien	GB	Vereinigtes Königreich	NL	Niederlande
BF	Burkina Faso	GN	Guinea	NO	Norwegen
BG	Bulgarien	GR	Griechenland	PL	Polen
BJ	Benin	HU	Ungarn	RO	Rumänien
BR	Brasilien	IE	Irländ	RU	Russische Föderation
CA	Kanada	IT	Italien	SD	Sudan
CF	Zentrale Afrikanische Republik	JP	Japan	SE	Schweden
CG	Kongo	KP	Demokratische Volksrepublik Korea	SN	Senegal
CH	Schweiz	KR	Republik Korea	SU	Soviet Union
CI	Côte d'Ivoire	LI	Liechtenstein	TD	Tschad
CM	Kamerun	LK	Sri Lanka	TG	Togo
CS	Tschechoslowakei	LU	Luxemburg	US	Vereinigte Staaten von Amerika
DE*	Deutschland	MC	Monaco		
DK	Dänemark	MG	Madagaskar		
ES	Spanien	ML	Mali		

1.

1

5

10

15

IMPLANTIERBARER PORT

20

Die Erfindung bezieht sich auf einen implantierbaren Port mit einem geschlossenen Hohlkörper, dessen seinen Innenraum begrenzende Wandung einen von einer punktierbaren, elastischen Membran gebildeten Wandungsbereich und einen in den Innenraum mündenden Anschluß für einen Katheter aufweist, dessen dem Anschluß abgewandte Spitze zur Einführung in ein zu katherisierendes Gefäß dient, und mit einem in seinem unbetätigten Zustand geschlossenen Ventil als Absperrorgan des Wegs vom Portinnenraum zur Katheterspitze.

Derartige Ports dienen als langfristige Körperzugangssysteme für eine Dauertherapie, bei der über eine lange Zeit hinweg Punktationen, Injektionen oder Infusionen durchzuführen sind. Der Port wird zu diesem Zweck subkutan implantiert und der mit seinem einen Ende an die Anschlußöffnung angeschlos-

1 sene Katheter mit seiner diesem Ende entgegengesetzten Spitze
körperintern zu derjenigen Stelle geführt, zu der der Zugang
erforderlich ist. Beispielsweise kann die Spitze des Kathete-
ters in eine Arterie, eine Vene oder in den Epidural- bzw.
5 Intrathekalraum gelegt sein. Auch kann der Katheter mit sei-
ner Spitze an einen Okkluder angeschlossen sein, der an einem
Blutgefäß angeordnet ist und bei Druckmittelbeaufschlagung
dieses Blutgefäß drosselt oder verschließt. Die Anwendungsbe-
reiche der Ports erstrecken sich also insbesondere über die
10 Chemotherapie bei der Krebsbehandlung, die Therapie arteriel-
ler Verschlußkrankheiten, die Schmerzbehandlung und die Be-
reitstellung schnell zu punktierender Gefäßzugänge bei Not-
fallpatienten.

15 Nach subkutaner Implantation des Port kann sein Innen-
raum mittels einer Punktionskanüle durch die elastische
Membran und die darüberliegende Haut hindurch punktiert wer-
den, so daß einerseits Stoffe in das an die Katheterspitze
angeschlossene Gefäß injiziert und andererseits auch Körper-
20 flüssigkeiten, insbesondere Blut, aus dem angeschlossenen
Gefäß entnommen werden können. Allerdings besteht die Schwie-
rigkeit, daß insbesondere bei oder nach einem Punktionsvor-
gang Körperflüssigkeit, insbesondere Blut, in den Katheter
eindringen und zu einer Verstopfung des Katheters führen
25 kann. Neben Gesundheitsrisiken, die durch im Katheter liegen-
gebliebene Körperflüssigkeiten verursacht sind, kommt es
hierdurch insbesondere zu Verstopfungen des Katheters. Diese
Schwierigkeiten können auch durch häufige Spülungen des Port-
systems nicht ausgeschlossen werden.

30 Bei bekannten Kathetern der eingangs genannten Art
sollen diese Schwierigkeiten durch das den Katheter normaler-
weise verschließende Ventil vermieden werden, das nur beim
Punktionsvorgang durch den über die Punktionskanüle ausge-
35 übten Druck geöffnet wird. Dabei ist das Ventil unmittelbar

1 an der zur Einführung in das zu katheterisierende Gefäß dienenden Katheterspitze angeordnet.

Bei einer derartigen Ausführungsform ist die Spitze
5 des den Katheter bildenden Schlauches geschlossen und der Schlauch mit seitlichen, axialen Schlitzen versehen, die infolge der Elastizität des Schlauchmaterials geschlossen sind und sich nur öffnen, wenn das zu injizierende Mittel unter Druck mittels der Punktionskanüle vom Innenraum des Port her
10 zugeführt wird. In einer anderen Ausführungsform ist das Ventil in die an ihrem Ende offen ausgebildete Spitze des Katheterschlauchs eingesetzt und öffnet sich bei Druckausübung in axialer Richtung des Katheterschlauchs. Soll das Ventil an der Katheterspitze auch zur Entnahme von Körperflüssigkeit
15 geeignet sein, dann hat es hierfür am Ventilkörper seitliche Klappen, die sich nur bei Unterdruck öffnen. Diese Klappen können also durch Spülflüssigkeit nicht erreicht werden, da sie nur die Katheterspitze außen umspülende Körperflüssigkeit durchlassen.

20 Da bei allen bekannten Ausführungsformen das Ventil unmittelbar an der zur Einführung in das Gefäß dienenden Spitze angeordnet ist und daher im Gebrauch des Port innerhalb des Gefäßes liegt, ist es ständig mit der Körperflüssigkeit, insbesondere dem venösen oder dem arteriellen Blut,
25 beaufschlagt, so daß es daran zu Anlagerungen kommen kann. Auch kann beim Punktieren ein Eindringen der Körperflüssigkeit in das Ventil nicht sicher ausgeschlossen werden. Wegen seiner Anordnung an der Katheterspitze kann das Ventil auch
30 nicht durch in den Port injizierte Spülflüssigkeit gereinigt werden. Die bekannten Ventile an der Katheterspitze sind dadurch selbst wieder gegen Verstopfung anfällig. Insbesondere hat es sich gezeigt, daß bei derartigen Ventilen in arteriellen Gefäßen schon innerhalb von sechs Monaten die Verstopfungswahrscheinlichkeit 50 % beträgt. Bei in venöse Gefäße eingeführten Ventilen ist die Verstopfungswahrscheinlichkeit
35

1 etwas kleiner, jedoch keinesfalls vernachlässigbar. Darüber
hinaus ist es besonders ungünstig, daß sich am Katheter im
Bereich dieser Ventile mit großer Wahrscheinlichkeit stets
ein Thrombus bildet, was die Gefahr von Mikroembolien her-
vorruft. Sofern schließlich ein solches Ventil wegen nicht-
behebbarer Fehlfunktion ausgetauscht werden muß, ist stets
5 ein größerer operativer Eingriff an der Anschlußstelle des
Katheters am Gefäß, meist also im Bauchraum, erforderlich.

10 Der Erfindung liegt die Aufgabe zugrunde, einen implantierbaren Port der eingangs genannten Art zu schaffen, dessen Funktionsfähigkeit für lange Zeit gesichert ist und bei dem überdies das Thromboserisiko erheblich herabgesetzt ist.

15 Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß das Ventil in einem Abstand von der zur Einführung in das zu katheterisierende Gefäß dienenden Spitze angeordnet ist.

Bei der Erfindung ist also die zur Einführung in das zu katheterisierende Gefäß dienende Spalte völlig offen und frei von sich öffnenden und schließenden Hindernissen in der in das Gefäß einzusetzenden Spalte des Katheters. Wegen dieser strömungsdynamisch günstigen Verhältnisse in dem im Gefäß liegenden Bereich des Katheters kommt es dort zu keinen Störungen und/oder Anlagerungen; insbesondere von Blut, wodurch eine Thrombusgefahr ausgeschlossen wird. Da durch das in einem Abstand von der Spalte angeordnete Ventil ein sicherer Verschluß des Katheters gewährleistet ist, bleibt dennoch auch nach dem Punktionsvorgang zwischen der frei endenden 20 Spalte des Katheters und dem in einem Abstand davon angeordneten Ventil eine völlig stabile Flüssigkeitssäule des injizierten Mittels liegen, so daß kein Blut in den Katheter zurückfließen kann. Auch die Bildung von Gaseinschlüssen, insbesondere Luft, im Bereich der Spalte des Katheters ist 25 30 35

1 sicher ausgeschlossen, da die stabile Flüssigkeitssäule vollständig bis an die offene Mündung der Spitze des Katheters heranreicht.

5 Infolge seiner Funktionssicherheit kann auch der zeitliche Abstand zwischen Spülungen erheblich vergrößert werden. Ein weiterer Vorteil der Anordnung des Ventils an einer von der zur Einführung dienenden Spitze abgerückten Stelle des Systems besteht darin, daß im Falle einer Fehlfunktion nicht 10 an der Anschlußstelle zwischen Katheter und Gefäß operativ eingegriffen werden muß, sondern der Eingriff im Lagebereich des Ventils selbst zu erfolgen hat, welcher zweckmäßigerweise an einer gut zugänglichen Stelle gewählt wird..

15 Diese Vorteile des erfindungsgemäßen Port werden also schon mit Ausführungsformen erreicht, bei denen das Ventil im Katheter angeordnet ist. Es muß nur sichergestellt sein, daß das Ventil so weit gegenüber der Spitze zurückgesetzt ist, daß es jedenfalls außerhalb des zu katherisierenden Gefäßes 20 liegt.

Dabei erweist es sich jedoch als besonders vorteilhaft, wenn das Ventil nahe an dem Anschluß angeordnet ist. Da der Hohlkörper des Port an einer gut zugänglichen Stelle des Körpers subkutan implantiert wird, ist dann auch das nahe dem am Wandungsbereich des Hohlkörpers vorgesehenen Anschluß angeordnete Ventil gut zugänglich und kann ohne größere Eingriffe, ggf. gemeinsam mit dem Hohlkörper, ausgetauscht werden. Das wird noch erleichtert, wenn das Ventil in einem steckbaren Adapter angeordnet ist.

30 Eine besonders vorteilhafte Ausführungsform besteht darin, daß das Ventil in dem Anschluß angeordnet ist. Bei dieser Ausführungsform bilden also das Ventil und der Hohlkörper eine Einheit. Insbesondere kann dabei das Ventil innerhalb der Wandung angeordnet sein, die an dieser Stelle von

1 dem Anschluß zur Herstellung der Verbindung zwischen dem
Innenraum und dem außen anzuschließenden Katheter kanalartig
durchbrochen ist.

5 Eine andere besonders zweckmäßige Ausführungsform be-
steht darin, daß das Ventil im Innenraum angeordnet ist. Die
Unterbringung des Ventils im Innenraum des Hohlkörpers kann
ohne nennenswerte Vergrößerung des Port erfolgen. Der Kathe-
ter erstreckt sich dann vom Anschluß aus frei bis zu seiner
10 offenen Spitze, ohne daß im Katheter selbst oder im Bereich
seines Anschlusses an den Hohlkörper irgendwelche Strömungs-
hindernisse vorhanden sind.

Bei den vorstehend beschriebenen Ausführungsformen wird
15 das in seinem nichtbetätigten Zustand selbstschließende Ven-
til durch den auf das Ventil einwirkenden Druck des bei der
Punktion mittels der Punktionskanüle zugeführten Mittels ge-
öffnet. Diese Ausführungsformen sind also insbesondere für
Anwendungen geeignet, bei denen der Port an ein arterielles
20 Gefäß angeschlossen wird, wie es beispielsweise bei der
regionalen Chemotherapie der Leber oder der intraarteriellen
Prostaglandintherapie über die Arteria femoralis communis der
Fall ist. Bei diesen therapeutischen Anwendungen wird jeweils
nur ein Mittel über das Portsysteem in das Gefäß injiziert,
25 während ein Ansaugen zum Zwecke der Entnahme von Körperflüs-
sigkeit über das Portsysteem nicht nötig ist. Dagegen ist bei
sog. venösen Portsystemen, bei denen der Katheter an ein
venöses Gefäß angeschlossen ist, sowohl ein Injizieren von
therapeutischen Mitteln als auch eine Blutentnahme aus dem
30 Gefäß mittels des Port in Betracht zu ziehen. Hierbei ist es
also wünschenswert, das Ventil nicht nur beim Injizieren zu
öffnen, sondern auch zum Zwecke des Ansaugens von beispiels-
weise Blut. In dieser Hinsicht ist daher im Rahmen der Er-
findung vorgesehen, daß das Ventil ein in Gegenüberstellung
35 zur Membran angeordnetes Betätigungsselement zur Überführung
in seine Öffnungsstellung aufweist.

1 Bei dieser Ausführungsform ist es also möglich, beim
Punktieren der elastischen Membran die Punktionskanüle an dem
in Gegenüberstellung zur Membran angeordneten Betätigungs-
element in Anlage zu bringen und durch diesen Kontakt das
5 Betätigungs element in eine der Öffnungsstellung des Ventils
entsprechende Stellung zu überführen. Damit kann das Ventil
völlig unabhängig von den Druckverhältnissen im Portsyste m
und dem daran angeschlossenen Gefäß auch mittels der Punkt-
10 tionsnadel mechanisch in seine Öffnungsstellung verbracht
werden, so daß insbesondere eine Blutabnahme ebenfalls mög-
lich ist. Diese Möglichkeit der mechanischen Öffnung des
Ventils besteht zusätzlich zu der rein druckbedingten Öff-
nungsmöglichkeit, weil im Falle des Injizierens der in dem
Hohlkörper aufgebaute Druck auch unabhängig von einer mecha-
15 nischen Berührung auf das Betätigungs element einwirkt und da-
durch die Öffnung des Ventils herbeiführt.

20 Eine in diesem Zusammenhang besonders zweckmäßige Aus-
führungsform besteht darin, daß das Betätigungs element eine
zur Membran weisende Plattform aufweist. Die Plattform, die
sich zweckmäßigerweise längs der gesamten von der Membran
eingenommenen Fläche erstreckt, stellt sicher, daß die Punktionskanüle unabhängig von ihrer Einstichstelle und ihrem
Einstichwinkel sicher auftrifft und somit unter allen Um-
25 ständen die Betätigungs bewegung der Punktionskanüle auf das
Betätigungs element des Ventils überträgt. Da die Plattform
bei ihrer Betätigungs bewegung entgegen der Verschließkraft
des Ventils zurückweicht, wird die Punktionskanüle bei ihrem
Auftreffen weich abgebremst, so daß Beschädigungen der Kanü-
30 lenspitze verhindert werden. Dies ist insbesondere für einen
verletzungsfreien Rückzug der Punktionskanüle aus der elasti-
schen Membran von Vorteil. Die Lebensdauer der elastischen
Membran und damit des Port insgesamt wird dadurch weiter er-
höht.

1 Bei allen bisherigen Ausführungsformen war lediglich
ein Ventil vorhanden, das durch Druckbeaufschlagung in Rich-
tung auf den Port geschlossen ist und durch die Punktions-
kanüle mechanisch oder durch den Überdruck des durch die
5 Punktionskanüle eingeführten Injektionsmittels geöffnet wird.
Gemäß einer weiteren Ausgestaltung wird zu diesem durch Über-
druck zu öffnenden Ventil ein durch Unterdruck zu öffnendes
Ventil parallelgeschaltet. Besonders zweckmäßig ist dies,
wenn beide Ventile in unmittelbarer räumlicher Nachbarschaft
10 in ein und derselben Strömungsleitung angeordnet sind. Das
zusätzliche Ventil dient einerseits zur Entnahme von Körper-
flüssigkeit, da es in Gegenrichtung zum Injektionsventil öff-
net. Andererseits hat dieses Ventil aber einen entscheidenden
Vorteil für die Reinigung des Gesamtventils und zur Vermei-
15 dung der weiter oben angeführten Nachteile. Denn nunmehr kann
Spülflüssigkeit injiziert und durch das Injektionsventil in
den gemeinsamen Hohlraum beider Ventile eingedrückt, sofort
anschließend aber durch das Zapfventil wieder zurückgesaugt
werden. Durch mehrmaliges Wiederholen dieses Vorgangs wird
20 also nach einer Blutentnahme über den Port der gesamte Ven-
tilkörper durch den wiederholten Druck- und Ansaugvorgang mit
Spülflüssigkeit gereinigt, so daß die Ventile für eine prak-
tisch unbegrenzte Verweildauer im implantierten Port bzw. als
Teil des Katheters verbleiben können.

25 Weitere Merkmale, Einzelheiten und Vorteile der Er-
findung ergeben sich aus der folgenden Beschreibung und der
Zeichnung, auf die bezüglich einer erfindungswesentlichen
Offenbarung aller im Text nicht erwähnten Einzelheiten aus-
30 drücklich hingewiesen wird. Es zeigen:

Fig. 1 eine erste Ausführungsform eines Port in per-
spektivischer, teilweise aufgeschnittener An-
sicht,

35

Fig. 2 einen Schnitt durch den Port von Fig. 1,

1 Fig. 3 eine der Fig. 2 entsprechende Schnittansicht
des Port beim Punktieren,

5 Fig. 4 eine der Darstellung von Fig. 2 entsprechende
Schnittansicht einer leicht abgewandelten zweiten Ausführungsform,

10 Fig. 5 eine der Darstellung von Fig. 2 entsprechende
Schnittansicht einer leicht abgewandelten dritten Ausführungsform,

15 Fig. 6 eine der Darstellung von Fig. 2 entsprechende
Schnittansicht einer etwas stärker abgewandelten vierten Ausführungsform,

Fig. 7 eine der Darstellung von Fig. 2 entsprechende
Schnittansicht einer fünften Ausführungsform,

20 Fig. 8 eine der Darstellung von Fig. 2 entsprechende
Schnittansicht einer stark abgewandelten sechsten Ausführungsform,

25 Fig. 9 eine der Darstellung von Fig. 2 entsprechende
Schnittansicht einer gegenüber Fig. 8 weiter
abgewandelten siebten Ausführungsform, und

Fig. 10 einen Adapter mit zwei sich in Gegenrichtung
öffnenden Ventilen.

30 Wie aus Fig. 1 bis 9 ersichtlich ist, weist in allen
dargestellten Ausführungsformen ein implantierbarer Port 1
einen axialsymmetrischen Hohlkörper 2 auf, dessen Symmetrie-
achse in Fig. 2 bis 8 mit A bezeichnet ist. Der in Fig. 1 bis
9 untere, sich quer zur Symmetriearchse A erstreckende Wan-
dungsbereich 3 und der sich von dort aus in der Richtung der
Symmetriearchse A erstreckende seitliche Wandungsbereich 4 des

1 Hohlkörpers 2 sind beispielsweise aus einem Kunststoffmaterial hergestellt, während der dem unteren Wandungsbereich 3 gegenüberliegende, sich quer zur Symmetriearchse A erstreckende obere Wandungsbereich 5 durch eine Membran aus einem 5 punktierbaren, elastischen Werkstoff, beispielsweise Silikon, gebildet ist.

Für einen dichten Abschluß des von dem Hohlkörper 2 umschlossenen Innenraumes 6 an der Verbindungsstelle zwischen 10 dem seitlichen Wandungsbereich 4 und der Membran 5 ist letztere an ihrem Rand in eine an der Innenseite des seitlichen Wandungsbereichs 4 umlaufende Ringnut 7 eingespannt. Die axiale Abmessung der Ringnut 7 ist deutlich kleiner gewählt als die axiale Dicke der Membran 5 im uneingespannten 15 Zustand, so daß sich die Membran 5 zur mittleren Symmetriearchse A hin axial deutlich verdickt. Beispielsweise beträgt die axiale Dicke der Membran 5 im Bereich der sie einspannenden Ringnut 7 6 mm, während die Dicke zum Zentrum der Membran hin auf 9 mm ansteigt. Hierdurch wird nicht nur die Dichtheit 20 im Bereich der Ringnut sichergestellt, sondern in der Membran 5 eine derartige elastische Vorspannung hervorgerufen, daß Durchstiche einer Punktionskanüle nach ihrer Entfernung aus der Membran 5 nicht nur aufgrund der elastischen Materialwahl, sondern zusätzlich durch diese Vorspannung abgedichtet 25 werden.

Der untere Wandungsbereich 3 ist bei allen in Fig. 1 bis 9 dargestellten Ausführungsformen an seiner Außenseite ebenflächig ausgebildet und an seinem gegenüber dem die Membran 30 5 aufweisenden oberen Bereich radial verbreiterten Rand mit Befestigungslöchern 8 versehen. Der Port 1 wird mit seinem unteren Wandungsbereich 3 zum Körper hin weisend subkutan implantiert und beispielsweise durch nicht resorbierbares chirurgisches Nahtmaterial mit Hilfe der Befestigungslöcher 8 35 fixiert. In dieser Lage wird die Membran 5 von der Körperhaut

1 abgedeckt und kann durch diese hindurch mittels einer in Fig.
3 dargestellten Punktionskanüle 9 durchstochen werden.

5 Ein bei den Ausführungsbeispielen von Fig. 1 bis 6 in
dem Hohlkörper 1 vorgesehenes Ventil weist einen Kolben 10
auf, dessen beide Stirnseiten 11 bzw. 12 sich radial, also
quer zur Symmetriearchse A, erstrecken. Ferner ist bei den
Ausführungsbeispielen von Fig. 2 bis 6 in dem Kolben 10 von
10 seiner unteren Stirnseite 12 her eine zur Symmetriearchse A
koaxiale Ringnut 13 ausgebildet, die mit einem dazu komple-
mentären Ringsteg 14, der an der Innenseite des unteren Wan-
dungsbereichs 3 ausgebildet ist, gleitend in Eingriff steht,
wodurch der Kolben 10 frei von Verkippungen oder radialen Ab-
weichungen längs der Richtung der Symmetriearchse A beweglich
15 geführt ist.

Der Kolben 10 ist in axialer Richtung auf die Membran 5
hin durch ein elastisches Element belastet, das in den in
Fig. 1 bis 6 dargestellten Ausführungsformen durch eine sich
20 mittig und axial erstreckende Schraubenfeder 15 gebildet ist.
Diese ist in ihrem oberen Bereich in einer an der unteren
Stirnseite 12 des Kolbens 10 offenen mittigen Bohrung 16 ge-
führt, an deren oberer geschlossener Stirnseite das obere
Ende der Schraubenfeder 15 abgestützt ist. Das dazu entgegen-
25 gesetzte untere Ende der Schraubenfeder 15 stützt sich an dem
unteren Wandungsbereich 3 ab.

In der Zeichnung nicht näher dargestellte Abwandlungen
für die Führung des Kolbens 10 gegenüber dem Hohlkörper 2 und
30 die Abstützung und Führung der Schraubenfeder 15 bestehen
beispielsweise darin, die Schraubenfeder 15 alternativ auf
einem an der sie abstützenden Stirnseite 12 des Kolbens 10
ausgebildeten Dorn oder in einer in dem unteren Wandungsbe-
reich 3 ausgebildeten Ausnehmung zu führen. Ferner könnte
35 statt dessen ein an der unteren Stirnseite 12 des Kolbens 10
ausgebildeter Dorn in einem an dem unteren Wandungsbereich 3

1 ausgebildeten zylindrischen Vorsprung gleitverschieblich geführt sein, wobei dann die Schraubenfeder 15 auf dem Außenmantel des zylindrischen Vorsprungs geführt sein könnte.

5 Bei den in Fig. 1 bis 6 dargestellten Ausführungsformen ist der Kolben 10 in der Form eines zur Membran 5 hin konvergierenden Kegelstumpfes ausgebildet. Die sich zwischen der oberen und der unteren Stirnseite 11 bzw. 12 erstreckende Mantelfläche des Kolbens 10 bildet eine Dichtfläche 17, die 10 durch die axiale Beaufschlagung des Kolbens 10 mittels der Schraubenfeder 15 an dem im Innenraum 6 zur Bildung einer Gegendichtfläche 18 komplementär konisch ausgebildeten seitlichen Wandungsbereich 4 dichtend in Anlage gehalten wird. Hierdurch ist der an die Membran 5 angrenzende Bereich 19 des 15 Innenraums 6 durch den dichtenden Sitz zwischen der Dichtfläche 17 des Kolbens 10 und der Gegendichtfläche 18 des Wandungsbereichs 4 gegenüber einer in dem seitlichen Wandungsbereich 4 vorgesehenen Öffnung eines Anschlusses 20, die nahe dem unteren Wandungsbereich 3 in den Innenraum 6 mündet, 20 abgesperrt, da der Anschluß 20 in der in den Fig. 2, 4 und 5 dargestellten dichtenden Stellung des Kolbens 10 unterhalb der unteren Stirnseite 12 des Kolbens 10 liegt.

Während in Fig. 2, 3 und 6 die Mantellinie der kegelstumpfförmigen Dichtfläche 17 sowie auch der dazu komplementären Gegendichtfläche 18 geradlinig ist, ist in der abgewandelten Ausführungsform von Fig. 4 die Mantellinie der Dichtfläche 17 konkav und die der Gegendichtfläche 18 dazu komplementär konvex gekrümmt. Umgekehrt zeigt Fig. 5 eine dahingehende Abwandlung, daß die Mantellinie der Dichtfläche 17 konvex und die der Gegendichtfläche 18 dazu komplementär konkav gekrümmt ist.

Bei der Ausführungsform von Fig. 6 steht der Kolben 10 35 mit einem von seiner unteren Stirnseite 12 ausgehenden zylindrischen Mantelbereich 21, einem daran anschließenden kegel-

1 stumpfförmigen Mantelbereich 22, einer daran anschließenden
radialen Schulterfläche 23 und einem sich daran anschließenden
weiteren zylindrischen Mantelbereich 24 kleineren Durch-
messers mit der zur Form dieser Mantelbereiche komplementär
5 geformten Innenseite des seitlichen Wandungsbereichs 4 in Be-
rührung. Die eigentlichen Dichtflächen sind dabei durch die
radiale Schulterfläche 23 und die dazu komplementäre Gegen-
fläche 25 des seitlichen Wandungsbereichs 4 gebildet, zwi-
schen denen eine radial ringförmig umlaufende elastische
10 Dichtung 26 angeordnet ist. Die Öffnung des Anschlusses 20
mündet dabei in dem komplementären kegelstumpfförmigen Man-
telbereich 27 des seitlichen Wandungsbereichs 4 in den In-
nenraum und liegt damit näher bei der Membran 5, als es bei
den in Fig. 1 bis 5 und 7 dargestellten Ausführungsformen der
15 Fall ist. Doch befindet sich auch hier die als Dichtfläche
wirkende radiale Schulterfläche 23, die komplementäre Gegen-
fläche 25 und die dazwischen angeordnete Dichtung 26 zwischen
der Öffnung des Anschlusses 20 und dem an die Membran 5
angrenzenden Bereich 19 des Innenraums 6, so daß die Verbin-
20 dung zwischen der Öffnung des Anschlusses 20 und der Membran
5 in der in Fig. 6 dargestellten Normalstellung des Kolbens
10 unterbrochen ist.

In Abweichung von den in Fig. 1 bis 6 dargestellten
25 Ausführungsformen ist bei der im übrigen damit vergleichbaren
Ausführungsform von Fig. 7 statt des beweglichen Kolbens 10
eine gegenüber dem seitlichen Wandungsbereich 4 unverrückbar
festgelegte flache radiale Platte 10' vorgesehen, die den an
die Membran 5 angrenzenden Bereich 19 des Innenraums 6 von
30 dem an den Anschluß 20 angrenzenden Bereich des Innenraums 6
dichtend trennt. Die untere Stirnseite 12' der Platte 10'
liegt dabei dem unteren Wandungsbereich 3 in einem axialen
Abstand gegenüber, während die obere Stirnseite 11' in einem
35 Abstand von der Membran 5 angeordnet ist. In einer mittigen
Öffnung der Platte 10' ist ein konischer Ventilkörper 34 mit
einer sich zur Membran 5 hin verjüngenden, die Dichtfläche 17

1 bildenden Mantelfläche angeordnet, während die Gegendicht-
flächen 18 durch die Mantelfläche der Öffnung in der Platte
10' gebildet ist. Vergleichbar mit den Ausführungsformen von
Fig. 1 bis 6 ist in dem Ventilkörper 34 von seiner zum unteren
5 Wandungsbereich 3 weisenden Stirnseite her eine Bohrung
16 ausgebildet, in der sich eine den Ventilkörper 34 in
Richtung auf die Membran 5 beaufschlagende Schraubenfeder 15
abstützt. Das andere Ende der Schraubenfeder 15 ist an dem
unteren Wandungsbereich 3 abgestützt. An das verjüngte Ende
10 des Ventilkörpers 34 schließt sich ein axialer Verbindungsbe-
reich 31 an, der an seinem zur Membran 5 weisenden Ende eine
damit zusammenhängende radiale Plattform 30 aufweist, die
gegenüber dem Wandungsbereich 4 ein geringes radiales Spiel
aufweist und im übrigen etwa die gesamte radiale Fläche der
15 Membran 5 einnimmt.

Bei den in Fig. 1 bis 6 dargestellten Ausführungsformen bildet also der Kolben 10 durch das Zusammenwirken seiner Dichtfläche 17 mit der Gegendichtfläche 18 des seitlichen Wandungsbereichs 4 ein den an die Membran 5 angrenzenden Bereich 19 des Innenraums 6 von der Anschlußöffnung 20 trennendes Ventil. Davon abweichend ist bei der Ausführungsform von Fig. 7 das den Bereich 19 von der Anschlußöffnung 20 trennende Ventil durch den mit der Platte 10' zusammenwirkenden Ventilkörper 34 gebildet, dessen kegelmantelförmige Dichtfläche 17 dichtend mit der dazu komplementären Gegendichtfläche 18 der Platte 11' zusammenwirkt. Dagegen ist bei den Ausführungsformen von Fig. 8 und 9 das Ventil 32 in dem Anschluß 20 bzw. in dem an den Anschluß 20 angeschlossenen Bereich eines Katheters 28 nahe außerhalb des Port 1 angeordnet. Im einzelnen ist bei der Ausführungsform von Fig. 8 die den seitlichen Wandungsbereich 4 durchsetzende Öffnung 33 des Anschlusses 20 vom Innenraum 6 zum Außenraum des Port 1 hin konisch erweitert, wobei in dieser konischen Erweiterung ein dazu komplementär geformter konischer Ventilkörper 34 gelagert ist. Der Ventilkörper 34 ist mittels einer seinen

1 Schließdruck bestimmenden Schraubenfeder 35 von seiner konisch erweiterten Stirnseite her in die konisch erweiterte Öffnung 33 vorgespannt, so daß das Ventil 32 durch die Schraubenfeder 35 in seiner Schließstellung gehalten wird.

5 Ähnlich ist in Fig. 9 die konisch erweiterte Öffnung 33 mit dem von der Schraubenfeder 35 in Schließstellung gehaltenen Ventilkörper 34 in einem von dem Port 1 getrennten Zwischenstück 36 angeordnet, welches nahe dem Port 1 in den an den Anschluß 20 angeschlossenen Katheter 28 eingefügt ist.

10

Bei allen Ausführungsformen dient der Anschluß 20 zur Verbindung mit dem in der Zeichnung schematisch angedeuteten Katheter 28, dessen der Anschlußöffnung 20 abgewandte Spitze beispielsweise an ein venöses oder arterielles Gefäß angeschlossen oder mit einem nicht dargestellten Okkluder verbunden ist. Derartige Okkluder werden an einem Blutgefäß angeordnet und bewirken bei Zuführung eines Druckmittels durch den Katheter 28 eine Drosselung oder einen Verschluß des Blutdurchflusses. Auf diese Weise werden z. B. temporäre Desarterialisationen der Aorta hepatica zur Krebstherapie ausgeführt. Beim Anschluß der Spitze des Katheters 28 an ein Blutgefäß dient der Port 1 zur Zuführung von Mitteln für die Chemotherapie und im Falle venöser Gefäße alternativ auch zur Blutentnahme.

25

Der Punktionsvorgang, durch den die für die Druckmittelbeaufschlagung des Okkluders oder für die Injektion in oder die Entnahme aus einem Gefäß oder für sonstige Zwecke notwendige Verbindung zwischen dem Katheter 28 und der Punktionskanüle 9 hergestellt wird, ist für die in Fig. 1 bis 7 dargestellten Ausführungsformen anhand des Beispiels von Fig. 3 dargestellt. Nachdem die Kanüle 9 die Membran 5 durchstochen hat, gelangt die Kanülenspitze 29 unabhängig von dem Einstichwinkel an der oberen Stirnseite 11 des Kolbens 10 oder der Plattform 30 wegen der federnden Lagerung des Kolbens 10 bzw. des Ventilkörpers 34 weich in Anlage und gestat-

1 tet eine weiche Verschiebung des Kolbens 10 entgegen der
Kraft der Schraubenfeder 15 in der Richtung der Symmetrie-
achse A. Da die axial dünne Plattform 30 in sich nachgiebig
ist, ermöglicht die mit der Plattform 30 ausgestattete Aus-
führungsform ein besonders weiches Auftreffen der Kanülen-
spitze 29.

Hierdurch wird die Dichtfläche 17 von der Gegendicht-
fläche 18 bzw. in Fig. 6 die radiale Schulter 23, die bei-
spielsweise die Dichtung 26 trägt, von der Gegenfläche 25 ab-
gehoben und die Verbindung zwischen der Anschlußöffnung 20
und dem an die Membran 5 angrenzenden Bereich 19 des Innen-
raums 6 freigegeben. Durch die Punktionskanüle 9 hindurch
kann also sowohl Luft oder Flüssigkeit in den Katheter 28
15 injiziert als auch aus dem Katheter 28 entnommen werden.
Nach dem Rückzug der Injektionskanüle 9 aus der Membran 5
wird das Ventil durch die Kraft der Schraubenfeder 15 wieder
geschlossen. Die Membran 5 ist dann von den in dem Katheter
28 herrschenden Druckverhältnissen völlig abgekoppelt und
damit belastungsfrei. Auch nach sehr vielen Einstichen, die
schließlich trotz der eingangs erwähnten Vorspannung der Mem-
bran 5 zu Ermüdungen führen können, ist daher die Dichtheit
des Port 1 sichergestellt.

25 In den in Fig. 1 bis 6 dargestellten Ausführungsformen
wirkt also der Kolben 10 gleichzeitig als Verschlußkörper und
Betätigungsglied des Ventils, während bei der Ausführungsform
von Fig. 7 das Betätigungsglied durch die Plattform 30 und
den sie mit dem Ventilkörper betätigungsmäßig koppelnden Ver-
30 bindungsbereich 31 gebildet ist. Statt dessen könnte inner-
halb der Membran 5 im Durchstichsbereich der Punktionskanüle
9 lediglich ein mit der Kanülen spitze 29 in Berührung gelan-
gendes Betätigungs glied angeordnet sein, dessen Bewegung als
Öffnungsbewegung auf ein in dem Hohlkörper 2 getrennt ange-
35 ordnetes Ventil übertragen wird.

1 Der vorstehend beschriebene Punktionsvorgang beruht
also auf einer mechanischen Berührung zwischen der Punktions-
kanüle 9 und dem Kolben 10 bzw. der als Betätigungsglied die-
nenden Plattform 30. Durch diese Handhabung kann also unab-
5 hängig von den Druckverhältnissen das Ventil stets geöffnet
werden, insbesondere im Falle des Anschlusses des Katheters
28 an ein venöses System nach Öffnen des Ventils durch An-
saugen Blut entnommen werden. Falls eine derartige Entnahme
nicht beabsichtigt ist, bedarf es jedoch der Berührung mit
10 der Kanülen spitze 29 nicht. Vielmehr genügt bereits der
Druck des durch die Punktionskanüle 9 zugeführten Injektions-
mittels, um den Kolben 10 bzw. den Ventilkörper 34 in seine
Öffnungsstellung zu verschieben. Auf einer derartigen Druck-
betätigung durch das zugeführte Injektionsmittel beruhen die
15 in Fig. 8 und 9 dargestellte sechste und siebte Ausführungs-
form. Wie aus Fig. 8 und 9 ersichtlich ist, wirkt der durch
das mit der Punktionskanüle 9 zugeführte Injektionsmittel in
dem Innenraum 6 des Port 1 sich aufbauende Druck entgegen der
Kraft der Feder 35 auf den Ventilkörper 34 im Sinne einer
20 Verschiebung des Ventilkörpers 34 in die Öffnungsstellung
ein. Damit wird bei den Ausführungsformen von Fig. 8 und 9
die Verbindung zwischen dem Innenraum 6 und der Spitze des
Katheters 28 allein durch Druckausübung hergestellt, während
die Ausführungsformen von Fig. 1 bis 7 die Ventilbetätigung
25 sowohl durch mechanische Berührung mit der Punktionskanüle 9
als auch allein durch Druckausübung ermöglichen.

Fig. 10 zeigt einen Adapter 37, der beispielsweise nach
Art des Ventils 32 in Fig. 9 in den Katheter 28 eingefügt
30 werden kann. Es ist klar, daß der Adapter 37 bei manchen Aus-
führungsformen zweckmäßig auch unmittelbar am Hohlkörper 2
des implantierten Ports 1 angeordnet wird. Schließlich ist
ebenfalls klar, daß das im folgenden erläuterte besondere
Ventil nach Fig. 10 aus zwei in Gegenrichtung öffnenden und

1 in unmittelbarer räumlicher Nachbarschaft nebeneinander angeordneten Ventilen auch im Innenraum 6 des Hohlkörpers 2 des Ports angeordnet sein kann.

5 In einer Aufweitung 38 des Adapters 37 bildet sich ein Hohlraum, dessen Volumen durch entsprechende Formgebung möglichst klein gehalten wird. Im Zentrum der Aufweitung 38 sitzt ein Zentralkörper 39, der auf die gezeigte Weise die Ventilsitze bildet. Man erkennt wieder das Ventil 32. Dieses
10 öffnet sich auf die oben beschriebene Weise selbsttätig, wenn durch ein in dem Port 1 injiziertes Injektionsmittel ein Überdruck auf seiner in Fig. 10 linken Seite erzeugt wird. Das Injektionsmittel kann so auf die bereits erläuterte Weise zur Katheterspitze weitergeleitet werden.

15 Das Ventil 32 ist wieder mit einem kegelstumpfförmigen Ventilkörper versehen und hat auf seiner Rückseite ein Sackloch, in dem die das Ventil geschlossen haltende Schraubenfeder 15 einendig gelagert ist, deren anderes Ende auf einem 20 Führungszapfen 40 sitzt, der achsparallel von einem der beiden den Adapter 37 bildenden Halbkörper in die Aufweitung 38 vorsteht.

25 Zur Verbesserung der Dichtwirkung weist der kegelstumpfförmige Ventilkörper in seinem Mantel eine diesem angepaßte zusätzliche Gummidichtung auf. Diese ergibt entweder die höhere Dichtwirkung oder erlaubt bei gleicher Dichtwirkung eine Fertigung mit geringeren Präzisionsanforderungen.

30 Entscheidende Neuerung ist aber hier, daß zu dem Ventil 32 ein Zapfventil 42 in unmittelbarer räumlicher Nachbarschaft im gleichen Strömungsraum parallel angeordnet ist, das sich in Gegenrichtung öffnet. Es liegt auf der Hand, daß die Öffnungsdrücke von Ventil 32 und Zapfventil 42 durch entsprechende Auswahl der sie beaufschlagenden Federn oder deren entsprechende Vorspannung je nach Bedarf frei gewählt werden
35

1 können. Das Zapfventil 42 ist, wie die Fig. 10 klar zeigt, im
übrigen ebenso aufgebaut wie das Ventil 32, durch das die In-
jektionsflüssigkeit eingedrückt wird. Es ist im Zentralkörper
39 des Adapters 37 lediglich in Gegenrichtung angeordnet.

5

Das Zapfventil 42 erlaubt die Entnahme von in Fig. 10
rechts von den beiden Ventilen anstehender Körperflüssigkeit
mit Hilfe eines Unterdrucks, der im Innenraum 6 des Ports 1
mit Hilfe einer Punktionskanüle 9 erzeugt wird. Aus der Figur
10 ist klar zu erkennen, daß der das Zapfventil 42 öffnende Un-
terdruck das Ventil 32 erst recht in seinen Ventilsitz drückt
und geschlossen hält, während umgekehrt der das Ventil 32
öffnende Injektionsdruck das Zapfventil 42 in seinen Ventil-
sitz drückt und geschlossen hält.

15

Von besonderer Bedeutung ist aber die nunmehr eröffnete
Möglichkeit der Reinigung der Ventilanordnung nach der Ent-
nahme von Körperflüssigkeit. Denn nunmehr kann ein Spülmittel
(Heparin-Kochsalzlösung) durch das Ventil 32 eingedrückt,
durch das Zapfventil 42 aber auch wieder abgesaugt werden.
Geschieht dies mehrere Male, so wird natürlich der gesamte
Innenraum des Adapters 37 einschließlich aller Flächen der
Ventile 32 und 42 vollständig gereinigt, was bei den bisheri-
gen Ventilen an der Katheterspitze so nicht möglich war. Es
liegt auf der Hand, daß der Adapter 37 mit der Ventilanord-
nung unabhängig von der Port-Konstruktion verwendet werden
kann, also auch mit anderen Port-Konstruktionen, als sie in
den Fig. 1 bis 9 gezeigt sind.

30

Die vorstehend beschriebenen Ausführungsbeispiele
machen deutlich, daß es auf die Form des Ventils im einzelnen
nicht ankommt. Jedes andere Ventil, das sich im Innenraum 6
des Port, in dem Anschluß 20, in dem Katheter 28 oder in dem
Adapter 37 anordnen läßt und die vorstehend beschriebenen
Schließ- und Öffnungsfunktionen aufweist, könnte ebensogut
verwendet werden.

1

Verzeichnis der Bezugszeichen

5

- 1 implantierbarer Port
- 2 Hohlkörper
- 3 unterer Wandungsbereich
- 4 seitlicher Wandungsbereich
- 5 oberer Wandungsbereich, Membran
- 6 Innenraum
- 7 Ringnut

10

- 8 Befestigungslöcher
- 9 Punktionskanüle

10'

- Platte

11,11',12,12'

- Stirnseiten

15

- 13 Ringnut
- 14 Ringsteg
- 15 Schraubenfeder
- 16 Bohrung
- 17 Dichtfläche

20

- 18 Gegendichtfläche
- 19 Bereich
- 20 Anschluß
- 21 zylindrischer Mantelbereich
- 22 kegelstumpfförmiger Mantelbereich

25

- 23 radiale Schulterfläche
- 24 weiterer zylindrischer Mantelbereich
- 25 Gegenfläche

30

- 26 Dichtung
- 27 komplementärer kegelstumpfförmiger Mantelbe-
- reich

35

- 28 Katheter
- 29 Kanülen spitze
- 30 Plattform
- 31 Verbindungsbereich
- 32 Ventil
- 33 Öffnung

21

- 1 34 Ventilkörper
- 35 Schraubenfeder
- 36 Zwischenstück
- 37 Adapter
- 5 38 Aufweitung
- 39 Zentralkörper
- 40 Führungszapfen
- 41 Gummidichtung
- 42 Zapfventil

10

15

20

25

30

35

1

Patentansprüche

1. Implantierbarer Port mit einem geschlossenen Hohlkörper, dessen seinen Innenraum begrenzende Wandung einen von einer punktierbaren, elastischen Membran gebildeten Wandungsbereich und einen in den Innenraum mündenden Anschluß für einen Katheter aufweist, dessen dem Anschluß abgewandte Spitze zur Einführung in ein zu katherisierendes Gefäß dient, und mit einem in seinem unbetätigten Zustand geschlossenen Ventil als Absperrrorgan des Wegs vom Portinnenraum zur Katheterspitze, dadurch gekennzeichnet, daß das Ventil (10, 17, 18; 32, 42) in einem Abstand von der zur Einführung in das zu katherisierende Gefäß dienenden Spalte angeordnet ist.
- 15 2. Port nach Anspruch 1, dadurch gekennzeichnet, daß das Ventil (32, 42) im Katheter (28) angeordnet ist.
- 20 3. Port nach Anspruch 2, dadurch gekennzeichnet, daß das Ventil (32, 42) nahe an dem Anschluß (20) angeordnet ist.
- 25 4. Port nach Anspruch 1, dadurch gekennzeichnet, daß das Ventil (32, 42) in dem Anschluß (20) angeordnet ist.
- 30 5. Port nach Anspruch 1, dadurch gekennzeichnet, daß das Ventil (10, 17, 18; 32, 42) im Innenraum (6) des Ports angeordnet ist.
- 35 6. Port nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß das Ventil (32, 42) durch Druckeinwirkung des mittels der die Membran durchstechenden Punktionskanüle (9) eingeführten Injektionsmittels in seine Offenstellung überführbar ist.
7. Port nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß das Ventil (10, 17, 18) durch mechanische

1 Druckeinwirkung mittels der die Membran durchstechenden Punk-
tionskanüle (9) in seine Offenstellung überführbar ist.

5 8. Port nach Anspruch 7, dadurch gekennzeichnet, daß
das Ventil (10, 17, 18) ein in Gegenüberstellung zur Membran
(5) angeordnetes Betätigungslement (11; 30, 31) zur Überfüh-
rung in seine Öffnungsstellung aufweist.

10 9. Port nach Anspruch 8, dadurch gekennzeichnet, daß
das Betätigungslement (31) eine zur Membran (5) weisende
Plattform (30) aufweist.

15 10. Port nach einem der Ansprüche 1 bis 5, dadurch ge-
kennzeichnet, daß zu dem durch Überdruck zu öffnenden Ventil
(32) ein durch Unterdruck zu öffnendes Ventil (42) parallel-
geschaltet ist.

20 11. Port nach Anspruch 10, dadurch gekennzeichnet, daß
beide Ventile (32, 42) in unmittelbarer räumlicher Nachbar-
schaft in ein und derselben Strömungsleitung angeordnet sind.

12. Port nach Anspruch 11, dadurch gekennzeichnet, daß
beide Ventile (32, 42) in einem lösbarer Adapter (37) ange-
ordnet sind.

25 13. Port nach einem der Ansprüche 1 bis 12, dadurch
gekennzeichnet, daß das Ventil (10, 17, 18; 32) einen mit
einer Dichtfläche (17) versehenen beweglichen Kolben (10)
aufweist, der zur Trennung der Verbindung zwischen dem an die
30 Membran (5) angrenzenden Bereich (19) des Innenraums (6) und
Katheterspitze durch ein elastisches Element (15) in Richtung
auf die Membran (5) gegen eine zu der Dichtfläche (17) kom-
plementäre Gegendichtfläche (z. B. 18) gespannt ist.

35 14. Port nach Anspruch 13, dadurch gekennzeichnet, daß
der Kolben (10) eine die Dichtfläche (17) bildende, konver-

24

1 gierende Mantelfläche aufweist und die dazu komplementäre Gegendichtfläche (18) durch die Wandung (4) des Hohlkörpers (2) bzw. des Ventilsitzes im Katheter bzw. im Adapter (37) gebildet ist.

5

15. Port nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, daß zwischen der Dichtfläche (23) und der Gegendichtfläche (25) eine am Kolben (10) oder der Wandung (4) angeordnete elastische Dichtung (26) vorgesehen ist.

10

16. Port nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, daß das elastische Element durch eine Schraubenfeder (15) gebildet ist.

15

17. Port nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, daß der Kolben (10) in seiner Bewegungsrichtung durch einen gegenseitigen gleitenden Eingriff zwischen einer Ausnehmung (13) und einem dazu komplementären Vorsprung (14) geführt ist.

20

25

30

35

GEÄNDERTE ANSPRÜCHE

[beim Internationalen Büro am 9. Dezember 1992 (09.12.92) eingegangen;
ursprüngliche Ansprüche 1-17
durch geänderten Ansprüche 1 und 2 ersetzt (1 Seite)]

1. Implantierbarer Port mit einem geschlossenen Hohlkörper, dessen seinen Innenraum begrenzende Wandung einen von einer punktierbaren, elastischen Membran gebildeten Wandungsbereich und einen in den Innenraum mündenden Anschluß für einen Katheter aufweist, dessen dem Anschluß abgewandte Spitze zur Einführung in ein zu katheterisierendes Gefäß dient, und mit einem in seinem unbetätigten Zustand geschlossenen Ventil als Absperrorgan des Wegs vom Portinnenraum zur Katheterspitze, wobei das Ventil in Abstand von der zur Einführung in das zu katheterisierende Gefäß dienenden Spitze angeordnet ist, gekennzeichnet durch ein Doppelventil aus einem durch Überdruck zu öffnenden Ventil (32) und einem hierzu parallelgeschalteten, durch Unterdruck zu öffnenden Ventil (42), wobei beide Ventile (32, 42) in unmittelbarer räumlicher Nachbarschaft in ein und derselben Strömungsleitung angeordnet, der selben Druckeinwirkung des mittels der die Membran durchstechenden Punktionskanüle (9) eingeführten Injektionsmittels ausgesetzt sind und in einem Adapter (37) untergebracht sind, der einerseits an den Portinnenraum, andererseits an den Katheter angeschlossen ist.

2. Port nach Anspruch 1, dadurch gekennzeichnet, daß der Adapter (37) lösbar zwischen Port (1) und Katheter (28) angeordnet ist.

2/4

ERSATZBLATT

3/4

ERSATZBLATT

4 / 4

ERSATZBLATT

THIS PAGE BLANK (USPTO)