Lurie Networks with Robust Convergent Dynamics

Carl Richardson^{1,2}, Matthew Turner¹, Steve Gunn¹

University of Southampton¹ The Alan Turing Institute²

The Alan Turing Institute

Motivation I

Many dynamical systems exhibit some form of convergence. These include convergence to unique or non-unique equilibrium points and limit cycles. The examples below (from left to right) illustrate:

- how three agents converge to the same opinion
- the evolution of three neurons in a Hopfield network
- autocatalytic chemical reactions (e.g., of a Rössler system)

Motivation II

Of course, the brain is also a dynamical system formed of interacting neural circuits implementing a myriad of functions. Some of which leverage convergent (attractor) dynamics for:

- learning
- memory storage
- de-noising representations
- processing information over extended periods

Research Questions

- 1. Does encoding convergence as an inductive bias lead to more robust models of dynamical systems?
- 2. Inspired by the brain, can convergence be harnessed to develop a general and robust ML model?

Outline

- 1. Propose the Lurie network as a unifying recurrent model
- 2. Derive constraints on its weights to ensure convergence
- 3. Parametrise the weights so these constraints are unconditionally satisfied
- 4. Empirical results

Lurie Network

- 1. Propose the Lurie network as a unifying recurrent model
- 2. Derive constraints on its weights to ensure convergence
- 3. Parametrise the weights so these constraints are unconditionally satisfied
- 4. Empirical results