المادة: الرياضيات الشهادة: الثانوية العامة الفرع: علوم الحياة نموذج رقم ٣-ـ المدّة: ساعتان

الهيئة الأكاديمية المشتركة قسم: الرياضيات

نموذج مسابقة (يراعى تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٠-٢٠١٧ وحتى صدور المناهج المطوّرة)

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

I- (4 points)

Dans l'espace rapporté à un repère orthonormé $(O; \vec{i}, \vec{j}, \vec{k})$, on considère le point A(2,2,0) et la droite

(d) d'équations paramétriques: (d):
$$\begin{cases} x = -t + 1 \\ y = 3 \\ z = -t \end{cases}$$
, avec t un réel.

Soit (P) le plan déterminé par A et(d).

- 1) Montrer qu'une équation du plan (P) déterminé par A et (d) est x + y z 4 = 0.
- 2) Soit (Q) le plan contenant (d) et perpendiculaire à (P). Ecrire une équation du plan (Q).
- 3) Considérons, dans le plan (Q), le cercle (C) de centre B (-3, 0, 2) et de rayon R=3 $\sqrt{3}$.
 - a- Montrer que (C) est tangent à (d).
 - **b-** Trouver les coordonnées de E point de tangence entre (d) et (C).
- 4) Montrer que le point L (-6,-3,5) est le symétrique du point E par rapport à B.
- 5) Soit F (1, 3, 0) un point de (d) et M un point variable de la droite (Δ) tangente à (C)au point L.

Calculer l'aire du triangle MEF.

II- (4 points)

Un sac U contient des boules blanches et des boules noires.

40% des boules sont blanches et les autres, noires.

20% des boules blanches et 30% des boules noires portent le nombre 0.

Un autre sac V contient 5 boules numérotées 0 et 5 boules numérotées -1.

Partie A

Une boule est tirée au hasard de U

On considère l'évènement:

E: "La boule tirée est numérotée 0."

- **1)** Prouver que P(E) = 0.26.
- 2) Sachant que la boule tirée ne porte pas 0, calculer la probabilité pour que la boule soit blanche.

Partie B

Dans ce qui suit, on considère le jeu suivant :

On tire une boule de U.

- Si la boule tirée porte le nombre 0, on la remet dans V puis on tire au hasard et simultanément deux boules de V.
- Sinon, la boule est extraite du jeu et une boule sera tirée au hasard de V.

Soit X la variable aléatoire qui désigne la somme des points obtenus à la fin du jeu.

- **a-** Vérifier que les valeurs possibles de X sont -2, -1, 0.
- **b-** Vérifier que $P(X=0) = \frac{97}{220}$ et déterminer la loi de probabilité de X.

III- (4 points)

Dans le plan complexe muni d'un repère orthonormé direct (0; \vec{u} , \vec{v}), on considère les points A et B d'affixes respectives $a = -4\sqrt{3} - 4i$ et $b = -4\sqrt{3} + 4i$.

- 1) Déterminer la nature du triangle OAB.
- 2) Soit C le point d'affixe $c = \sqrt{3} + i$ et D le point tel que OC = OD et $(\overrightarrow{OC}, \overrightarrow{OD}) = \frac{\pi}{3}(2\pi)$. Déterminer l'affixe de D.
- 3) Soit G le point d'affixe $g = -4\sqrt{3} + 6i$.
 - a- Montrer que OBGD est un parallélogramme.
 - **b-** Vérifier que : $\frac{c-g}{a-g} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$.
 - **c-** Déduire une mesure, en radians, de l'angle $(\overrightarrow{GA}, \overrightarrow{GC})$ et la valeur du rapport $\frac{GC}{GA}$.
 - **d-** Quelle est la nature du triangle AGC?

IV- (8 points)

Partie A

Soit g la fonction définie, sur \mathbb{R} , par $g(x) = (1-x)e^{-x} + 1$;.

- 1) Calculer $\lim g(x)$ quand $x \to -\infty$ et $x \to +\infty$.
- 2) a) Dresser le tableau de variations de g.
 - **b**) Déduire que g(x) > 0 pour tout x réel.

Partie B

On considère l'équation différentielle (E): y'' + 2y' + y = x + 2.

1)

- a) Vérifier que u(x) = x est une solution particulière de (E).
- **b**) On suppose que y = z + u. Écrire une équation différentielle (E') vérifiée par z, puis résoudre (E').
- c) En déduire y=f(x) la solution générale de (E).
- **d**) Soit (C) la courbe représentative de f dans un repère orthonormé. Déterminer f dans le cas où (C) est tangente en O à la droite y = 2x.
- 2) Dans ce qui suit, on suppose que $f(x) = xe^{-x} + x$ définie sur \mathbb{R} .
 - a) Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$.
 - **b**) Montrer que la droite (d) d'équation y = x est une asymptote à (C).
 - c) Étudier la position de (C) par rapport à (d).

4)

- a) Vérifier que f'(x) = g(x) et dresser le tableau de variations de f.
- **b**) Etudier la concavité de (C) et vérifier qu'elle admet un point d'inflexion dont on déterminera les coordonnées.
- c) Déterminer le point E de (C) où la tangente (T) à (C) est parallèle à (d).
- **d)** Tracer (d), (T) et (C).
- 5) Considérons la fonction h définie par $h(x)=\ln (y_E f(x))$.
 - a) Déterminer le domaine de définition de f.
 - **b**) Dresser le tableau de variation de h.
- 6) Calculer l'aire A, du domaine limité par (C), (d), et les deux droites d'équations (x = 1) et (x = 1).

المادة: الرياضيات الشهادة: الثانوية العامة الفرع: علوم الحياة نموذج رقم -٣-المدة: ساعتان

الهيئة الأكاديميّة المشتركة قسم: الرياضيات

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٧-٢٠١٧ وحتى صدور المناهج المطوّرة)

Question I		
1	(P) = (A, (d)) : x + y - z - 4 = 0.	0.5
2	(Q) contient (d) et perpendiculaire à (P) donc	0.5
	$\overrightarrow{BM} \cdot (\overrightarrow{u_d} \times \overrightarrow{N_p}) = 0 \ (Q) \ : x - 2y - z + 5 = 0 \ .$	0.3
3.a	$d(B,(d)) = 3 \sqrt{3} = R$. (d) est tangente à (C).	0.75
	$\overrightarrow{BE}.\overrightarrow{v_d} = 0$ avec	
3.b	\overrightarrow{BE} (-t+4,3,-t-2) et $\overrightarrow{v_d}$ (-1,0,-1).	0.5
	Donc $t = 1$ et $E(0,3,-1)$.	
4	B milieu de [EL].	0.5
	(Δ) passe par L et parallèle à (d).Donc d(M,(d)) = d(L,(d)) = d(L,(P)) = 6 $\sqrt{3}$	
5	Aire du triangle MEF = $\frac{EL \times EF}{2} = 3\sqrt{6} u^2$	1.25

	Question II	note	
	Part A		
1	$P(E) = P(W \cap E) + P(B \cap E) = 0.08 + 0.18 = 0.26$	1	
2	$P(W/\overline{E}) = \frac{P(W \cap \overline{E})}{P(\overline{E})} = \frac{P(\overline{E}/W) \times P(W)}{P(\overline{E})} = \frac{0.32}{0.74} = 0.432$	0.75	
	Part B		
1	donc $X = \{0,-1,-2\}$	0,75	
2			
	$P(X=0) = 0.26 \frac{C_6^2}{C_{11}^2} + 0.74 \frac{C_5^1}{C_{10}^1} = \frac{97}{220}$ $P(X=-1) = 0.26 \frac{6 \times 5}{C_{11}^2} + 0.74 \frac{5}{10} = \frac{563}{1100}$ $P(X=-2) = 0.26 \frac{C_5^2}{C_{11}^2} = \frac{13}{275}$	1.5	
	Question III		
1)	$OA = a = -4\sqrt{3} - 4i = 8$ $OB = b = -4\sqrt{3} + 4i = 8$ AB = b - a = 8i = 8 Donc OAB est un triangle équilatéral.	0.5	
2)	$\begin{aligned} &OC = OD, donc \mid z_D \mid = \mid z_C \mid = \mid \sqrt{3} + i \mid = 2 \\ &(\overrightarrow{OC}, \overrightarrow{OD}) = arg\left(\frac{z_D}{z_C}\right) = arg(z_D) - arg(z_C) = arg(z_D) - \frac{\pi}{6} = \frac{\pi}{3}, alors arg(z_D) = \frac{\pi}{2} \\ &z_D = \mid z_D \mid \times e^{iarg(z_D)} = 2i \end{aligned}$	1	

3.a	$\begin{split} z_{\overrightarrow{OB}} &= z_B = b = -4\sqrt{3} + 4i \\ z_{\overrightarrow{DG}} &= z_G - z_D = g - z_D = -4\sqrt{3} + 6i - 2i = -4\sqrt{3} + 4i \\ z_{\overrightarrow{OB}} &= z_{\overrightarrow{DG}}; \text{ alors OBGD est un parallélogramme.} \end{split}$	0.5
3.b	$\frac{c-g}{a-g} = \frac{\sqrt{3} + i - (-4\sqrt{3} + 6i)}{-4\sqrt{3} - 4i - (-4\sqrt{3} + 6i)} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$	0.5
3.c	$(\overrightarrow{GA}, \overrightarrow{GC}) = \arg\left(\frac{c-g}{a-g}\right) = \arg\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = \frac{\pi}{3}(2\pi)$ $\frac{GC}{GA} = \left \frac{c-g}{a-g}\right = \left \frac{1}{2} + \frac{\sqrt{3}}{2}i\right = 1$	0.5 0.5
3.d	AGC est un triangle équilatéral, isocèle avec un angle de 60°.	0.5

Partie A 1	0.5 0.5 0.25 0.5 0.5 0.5
$x \to +\infty, g(x) \to 1.$ $g'(x) = -e^{x} - e^{-x} (1-x) = e^{-x} (x-2).$ $x \to -\infty \qquad 2 \qquad +\infty$ $g'(x) \qquad - \qquad 0 \qquad + \qquad 1$ $g(x) \qquad +\infty \qquad 1$ 2.b Min $(g(x))$ est positif donc $g(x)$ est positive pour tout réel x . $\frac{Partie B}{1.a} \qquad u' = 1 \text{ et } u'' = 0 , u = x \text{ solution de (E).}$ $y = z + u . \qquad z'' + u'' + 2z' + 2u' + z + u = x + 2$ $1.b \qquad z'' + z' + z = 0 . \qquad r^{2} + r + 1 = 0 ; r = -1 \text{ donc } z = (C_{1}x + C_{2}) e^{-x} \text{ avec } C_{1} \text{ et } C_{2} \text{ constantes }.$ $1.c \qquad y = z + u = x + (C_{1}x + C_{2}) e^{-x} = f(x) \text{ avec } C_{1} \text{ et } C_{2} \text{ constantes }.$ $1.d \qquad f(0) = 0 \text{ et } f'(0) = 2 \text{ donc } f(x) = xe^{-x} + x .$ $2.a \qquad x \to -\infty, f(x) \to -\infty \\ x \to +\infty, f(x) \to +\infty$	0.5 0.25 0.5 0.5
2.a $g'(x) = -e^{x} - e^{-x} (1-x) = e^{-x} (x-2)$. $x = -\infty$ 2 $+\infty$ g'(x)	0.5 0.25 0.5 0.5
2.a $\frac{x}{g'(x)} = \frac{-\infty}{2} + \frac{2}{e}$ 2.b Min (g(x)) est positif donc g(x) est positive pour tout réel x. Partie B 1.a $u' = 1$ et $u'' = 0$, $u = x$ solution de (E). y = z + u. $z'' + u'' + 2z' + 2u' + z + u = x + 21.b z'' + z' + z = 0. z'' + z' + z = 0. z'' + z' + z = 0. z'' + z + z + z = 0. z'' + z + z + z = 0. z'' + z + z + z = 0. z'' + z + z + z = 0. z'' + z + z + z = 0. z'' + z + z + z = 0. z'' + z + z + z = 0. z'' + z + z + z + z = 0. z'' + z + z + z + z + z = 0. z'' + z + z + z + z + z + z + z + z + z $	0.25 0.25 0.5
2.b Min (g(x)) est positif donc g(x) est positive pour tout réel x. Partie B 1.a u' = 1 et u'' = 0, u = x solution de (E). y = z + u. z'' + u'' + 2z' + 2u' + z + u = x + 2 1.b z'' + z' + z = 0. r^2 + r + 1 = 0; r = -1 donc z = (C_1x + C_2) e^{-x} avec C_1 et C_2 constantes. 1.c y = z + u = x + (C_1x + C_2) e^{-x} = f(x) avec C_1 et C_2 constantes. 1.d $f(0) = 0$ et $f'(0) = 2$ donc $f(x) = xe^{-x} + x$. 2.a $x \to -\infty, f(x) \to -\infty$ $x \to +\infty, f(x) \to +\infty$	0.25 0.25 0.5
2.b Min (g(x)) est positif donc g(x) est positive pour tout réel x. Partie B 1.a u' = 1 et u'' = 0, u = x solution de (E). y = z + u. z'' + u'' + 2z' + 2u' + z + u = x + 2 1.b z'' + z' + z = 0. r^2 + r + 1 = 0; r = -1 donc z = (C_1x + C_2) e^{-x} avec C_1 et C_2 constantes. 1.c $y = z + u = x + (C_1x + C_2) e^{-x} = f(x)$ avec C_1 et C_2 constantes. 1.d $f(0) = 0$ et $f'(0) = 2$ donc $f(x) = xe^{-x} + x$. 2.a $x \to -\infty, f(x) \to -\infty$ $x \to +\infty, f(x) \to +\infty$	0.25 0.25 0.5
2.b Min (g(x)) est positif donc g(x) est positive pour tout réel x. Partie B 1.a u' = 1 et u'' = 0, u = x solution de (E). y = z + u. z'' + u'' + 2z' + 2u' + z + u = x + 2 1.b z'' + z' + z = 0. $r^2 + r + 1 = 0$; $r = -1$ donc $z = (C_1x + C_2)e^{-x}$ avec C_1 et C_2 constantes. 1.c $y = z + u = x + (C_1x + C_2)e^{-x} = f(x)$ avec C_1 et C_2 constantes. 1.d $f(0) = 0$ et $f'(0) = 2$ donc $f(x) = xe^{-x} + x$. 2.a $x \to -\infty, f(x) \to -\infty$ $x \to +\infty, f(x) \to +\infty$	0.25 0.25 0.5
2.b Min (g(x)) est positif donc g(x) est positive pour tout réel x. Partie B 1.a u' = 1 et u'' = 0, u = x solution de (E). y = z + u. z'' + u'' + 2z' + 2u' + z + u = x + 2 z'' + z' + z = 0. r^2 + r + 1 = 0; r = -1 donc z = (C_1x + C_2) e^{-x} avec C_1 et C_2 constantes. 1.c y = z + u = x + (C_1x + C_2) e^{-x} = f(x) avec C_1 et C_2 constantes. 1.d $f(0) = 0$ et $f'(0) = 2$ donc $f(x) = xe^{-x} + x$. 2.a $x \to -\infty, f(x) \to -\infty$ $x \to +\infty, f(x) \to +\infty$	0.25 0.5 0.5
2.b Min (g(x)) est positif donc g(x) est positive pour tout réel x. Partie B 1.a u' = 1 et u'' = 0, u = x solution de (E). y = z + u. z'' + u'' + 2z' + 2u' + z + u = x + 2 z'' + z' + z = 0. r^2 + r + 1 = 0; r = -1 donc z = (C_1x + C_2) e^{-x} avec C_1 et C_2 constantes. 1.c y = z + u = x + (C_1x + C_2) e^{-x} = f(x) avec C_1 et C_2 constantes. 1.d $f(0) = 0$ et $f'(0) = 2$ donc $f(x) = xe^{-x} + x$. 2.a $x \to -\infty, f(x) \to -\infty$ $x \to +\infty, f(x) \to +\infty$	0.25 0.5 0.5
Partie B 1.a	0.25 0.5 0.5
1.a u' = 1 et u'' = 0, u = x solution de (E). y = z + u . z'' + u'' + 2z' + 2u' + z + u = x + 2 2'' + z' + z = 0. r² + r + 1 = 0; r = -1 donc z = ($C_1x + C_2$) e^{-x} avec C_1 et C_2 constantes. 1.c y = z + u = x + ($C_1x + C_2$) e^{-x} = f(x) avec C_1 et C_2 constantes. 1.d f(0)= 0 et f'(0) = 2 donc f(x) = $xe^{-x} + x$. 2.a $x \to -\infty, f(x) \to -\infty$ $x \to +\infty, f(x) \to +\infty$	0.5
1.b $y = z + u$. $z'' + u'' + 2z' + 2u' + z + u = x + 2$ z'' + z' + z = 0. $r^2 + r + 1 = 0$; $r = -1$ donc $z = (C_1x + C_2) e^{-x}$ avec C_1 et C_2 constantes. 1.c $y = z + u = x + (C_1x + C_2) e^{-x} = f(x)$ avec C_1 et C_2 constantes. 1.d $f(0) = 0$ et $f'(0) = 2$ donc $f(x) = xe^{-x} + x$. 2.a $x \to -\infty, f(x) \to -\infty$ $x \to +\infty, f(x) \to +\infty$	0.5
1.b $z'' + z' + z = 0$. $r^2 + r + 1 = 0$; $r = -1$ donc $z = (C_1x + C_2) e^{-x}$ avec C_1 et C_2 constantes. 1.c $y = z + u = x + (C_1x + C_2) e^{-x} = f(x)$ avec C_1 et C_2 constantes. 1.d $f(0) = 0$ et $f'(0) = 2$ donc $f(x) = xe^{-x} + x$. 2.a $x \to -\infty, f(x) \to -\infty$ $x \to +\infty, f(x) \to +\infty$	0.5
$r^{2} + r + 1 = 0 \; ; \; r = -1 \; donc \; z = (C_{1}x + C_{2}) \; e^{-x} \; avec \; C_{1} \; et \; C_{2} \; constantes \; .$ $1.c y = z + u = x + (C_{1}x + C_{2}) \; e^{-x} = f(x) \; avec \; C_{1} \; et \; C_{2} \; constantes \; .$ $1.d f(0) = 0 \; et \; f'(0) = 2 \; donc \; f(x) = xe^{-x} + x \; .$ $2.a x \to -\infty, f(x) \to -\infty \\ x \to +\infty, f(x) \to +\infty$	_
1.c $y = z + u = x + (C_1x + C_2) e^{-x} = f(x) \text{ avec } C_1 \text{ et } C_2 \text{ constantes }.$ 1.d $f(0) = 0 \text{ et } f'(0) = 2 \text{ donc } f(x) = xe^{-x} + x .$ 2.a $x \to -\infty, f(x) \to -\infty$ $x \to +\infty, f(x) \to +\infty$	_
1.d $f(0)=0$ et f'(0) = 2 donc $f(x) = xe^{-x} + x$. 2.a $x \to -\infty, f(x) \to -\infty$ $x \to +\infty, f(x) \to +\infty$	0.5
2.a $x \to -\infty, f(x) \to -\infty$ $x \to +\infty, f(x) \to +\infty$	
$2.a \qquad x \to +\infty, f(x) \to +\infty$	
$x \to +\infty, f(x) \to +\infty$	0.5
2.b $\lim_{x \to +\infty} [f(x) - x] = \lim_{x \to +\infty} \frac{x}{e^x} = 0 \text{ alors (d) est une asymptote à (C).}$	
	0.5
$f(x) - x = x e^{-x}.$	
$x - \infty$ 0 $+ \infty$	
2.c $ f(x) - x - 0 + $	0.5
position (C) au-dessous de (d) (C) au-dessus de (d).	
Pour x=0 (C) \cap (d) = $O(0,0)$.	
3.a	
f '(x) = $e^{-x}(1-x) + 1 = g(x) > 0$.	
<u>x -∞ +∞</u>	0.25
f'(x) +	
f(x)	

	f''(x) = g'(x).		
3.b	X	-∞ 2 +∞	
	f ''(x)	- 0 +	0.5
	concavité	concave vers le bas concave vers le haut	0.5
		I (2; $2 + \frac{2}{e^2}$) point d'inflexion	
3.c	f'(x) = 1;g(x) e^{-x} (1-x) + 1 = x = 1 E(1, 1	1	0.25
3.d	3 -2 -1		0.75
4.a	$h(x) = \ln (y_E - y_E - f(x) > 0;$	f (x)). f (x) < y _E donc x < 1. Par la suite $D_h =]-\infty$, 1 [.	0.5
4.b	$h'(x) = \frac{-f'(x)}{y_E - f}$ $\frac{x}{h'(x)}$ $h(x) + \infty$	$\frac{x}{(x)}$ $\frac{1}{-}$ $-$ $-\infty$	0.5
5	Aire = $\int_{-1}^{0} (x - \frac{1}{2})^{-1}$ une integration	$f(x)$) $dx + \int_0^1 (f(x) - x) dx = \int_{-1}^0 (-xe^{-x}) dx + \int_0^1 (xe^{-x}) dx$. On utilise par parties.	0.75