Dynamic Personalised Recommendations

Data and Algorithms

About Me

https://www.linkedin.com/in/yxtay/ https://github.com/yxtay/

Tay Yu Xuan

Data Scientist, RecSys, Traveloka

Previously, Data Scientist, Lazada

Experience in Public Service, Ecommerce, Travel

Work with problems in language, recommendations

BSc Statistics, National University of Singapore

Agenda

Why Recommendations

Use cases

RecSys Architecture

Smart Adaptive Recommendations

Similarity Model

Affinity Model

Personalised Recommendations

Implementation

Conclusion

Why Recommendations?

Assists Discovery and Decision

Long tail: pareto principle

Promote discovery of niche products

Personalisation Promotes Satisfaction

Increase customer satisfaction by **recommending relevant products**

Real-time personalisation further encourages user interaction

Use cases

Item Similarity Recommendations

Customers Who Bought This Item Also Bought

Understanding Social Networks: Theories. > Charles Kadushin

**** (8)

Paperback

\$16.09 Prime

Social Network Analysis: Methods and

> Stanley Wasserman

常常常(14)

Paperback

\$47.81 \Prime

Social Network Analysis: History, Theory and ... > Christina Prell

南南南京 (7) Paperback

\$42.40 IPrime

Social Network Analysis

> John Scott Paperback

\$39.48 Prime

Exponential Randor Models for Social ...

Dean Lusher

食食食食食(4)

Paperback

\$31.49 \Prime

http://dataaspirant.com/2015/01/24/recommendation-engine-part-1/

Personalised Recommendations

http://dataaspirant.com/2015/01/24/recommendation-engine-part-1/

RecSys Architecture

Simplified Overview

Smart Adaptive Recommendations (SAR)

Model Overview

https://github.com/microsoft/recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

Characteristics

Based on item similarity and recency

Collaborative filtering on implicit feedback

Real-time personalisation

Works on **new users**

Cold start problem for items

Serves both item similarity and personalised recommendations

Similarity Model

Model Overview

https://github.com/microsoft/recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

Co-Occurrence Matrix

Count distinct users that have interacted both items i and j within a predefined period (e.g. 1 week)

Co-Occurrence Matrix

User interaction data

user	item	time
user_1	item_1	X
user_1	item_2	У
user_1	item_3	Z

Self-join by user

Filter by duration between events			
Group by item_i, item_j			
Count distinct user			

user	item_i	time_i	item_j	time_j
user_1	item_1	X	item_2	у
user_1	item_1	x	item_3	Z
user_1	item_2	у	item_1	X

item_i	item_j	count
item_1	item_2	#
item_1	item_3	##
item_2	item_3	###

Matrix Factorisation

Matrix Factorisation

$$L = \sum_{u,i \in S} (r_{ui} - \mathbf{x}_u^\intercal \cdot \mathbf{y}_i)^2 + \lambda_x \sum_u \|\mathbf{x}_u\|^2 + \lambda_y \sum_u \|\mathbf{y}_i\|^2$$

Alternating least squares

Stochastic gradient descent

GloVe

$$J = \sum_{i,j=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij}\right)^2$$

Item Similarity Matrix

Cosine similarity on embeddings

Assumption: similar items are more likely to be **viewed close together** by **many users**

Can be precomputed in batch

Can be used directly to serve item similarity recommendations

Affinity Model

Model Overview

https://github.com/microsoft/recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

Item Affinity

User interactions data

user	item	time	event
user_1	item_1	X	view
user_1	item_2	У	purchase
user_1	item_3	Z	add-to-cart

user	item	time weight	event weight	affinity score
user_1	item_1	0.9	1.0	0.9
user_1	item_2	0.6	3.0	1.8
user_1	item_3	0.5	2.0	1.0

Takes into **type** and **recency** of interaction

$$a_{ui} = w_{ei} \ 2^{-\frac{t_0 - t_i}{T}}$$

Item Affinity Vector

Assumption: user have preferences on **items recently interacted** with

Used to derive candidate items for recommendations

Computed in real-time

 a_{ui}

Personalised Recommendations

Model Overview

https://github.com/microsoft/recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

Relevancy Scoring

Personalised Recommendations

High scores: Very similar to many recent items

Assumption: items similar to last interacted items are

relevant to user

Computed in real-time

$$r_{uj} = \sum_{i} a_{ui} \ s_{ij}$$

Implementation

Challenges

Real-time recommendations

- Accessible live tracking of user interaction logs
- Efficient computation of item similarity and relevance scores

Improvements

Algorithm is generic to apply to any kind of products

Improvements can be made to component models separately

Specific user-item relevance scoring can be added to improve the recommendations

Conclusion

Dynamic Personalised Recommendations

Conceptually straightforward recommendation algorithm

Basic data requirements

Useful baseline for real-time recommendations

Challenge is mostly in engineering

The End, Questions?

Data Team is hiring! https://www.traveloka.com/en-sg/careers

- **Data Scientist**, RecSys & Experimentation teams
- **Data Engineer**, Data team
- **Software Engineer,** Data & RecSys teams
- **DevOps Engineer,** Data team
- **Technical Product Manager,** Data team

References

- https://azure.microsoft.com/en-us/blog/building-recommender-systems-with-azure-machine-le arning-service/
- https://github.com/microsoft/recommenders/blob/master/notebooks/02_model/sar_deep_div e.ipynb
- https://github.com/microsoft/Product-Recommendations/blob/master/doc/sar.md
- https://medium.com/recombee-blog/machine-learning-for-recommender-systems-part-1-algorithms-evaluation-and-cold-start-6f696683d0ed
- https://medium.com/recombee-blog/machine-learning-for-recommender-systems-part-2-deep-recommendation-sequence-prediction-automl-f134bc79d66b
- https://towardsdatascience.com/collaborative-embeddings-for-lipstick-recommendations-98ec
 cfa816bd