NJM4558/4559

The NJM4558/4559 integrated circuit are a dual high-gain operational amplifier internally compensated and constru -cted on a single silicon chip using an advanced epitaxial process.

Combining the features of the NJM741 with the close parameter matching and tracking of a dual device on a mono -lithic chip results in unique performance characteristics. Excellent channel separation allow the use of the dual device in single NJM741 operational amplifier applications providing density. It is especially well suited for applications in di -fferential-in, differential-out as well as in potentiometric amplifiers and where gain and phase matched channels are ma -ndatory. ■ Package Outline

Absolute Maximum Ratings (Ta=25°C)

Operating Temperature Range

	•	
Supply Voltage	V ⁺ /V ⁻	$\pm 18V$
Differential Input Voltage	V_{ID}	±30V
Input Voltage (note)	V_{I}	±15V
Power Dissipation	P _D (D-Type)	500mW
	(M,E-Type)	300mW
	(L-Type)	800mw

Storage Temperature Range $T_{\rm stg}$ (note) For supply voltage less than $\pm 15V$, the absolute maximum

input voltage is equal to the supply voltage.

T_{op}

 $-20\sim +75^{\circ}C$ -40~+125°C

NJM4558E NJM4559E

NJM4559D

NJM4558L NJM4559L

■ Electrical Characteristics ($Ta=25^{\circ}C$, $V^{+}/V^{-}=\pm15V$)

. Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Input Offset Voltage	V _{IO}	R _s ≤10kΩ	_	0.5	6	mV
Input Offset Current	I _{IO}		-	5	200	nΑ
Input Bias Current	I _B		_	50	500	nΑ
Input Resistance	R _{IN}		0.3	5	_	МΩ
Large Signal Voltage Gain	A _V :	$R_L \ge 2k\Omega$, $V_O = \pm 10V$	86	100	<u> </u>	dB
Maximum Output Voltage Swing 1	V _{OM1}	R _{1.} ≥10kΩ	±12	±14	_	V
Maximum Output Voltage Swing 2	V_{OM2}	R _L ≥2kΩ	±10	±13	—	v
Input Common Mode Voltage Range	V _{ICM}		±12	±14		v
Common Mode Rejection Ratio	CMR	R _S ≤10kΩ	70	90	-	dB
Supply Voltage Rejection Ratio	SVR	R _S ≦10kΩ	76.5	90	- —	dB
Supply Current	I _{cc}		-	3.5	5.7	mA
Slew Rate						
NJM4558	SR		-	1	<u> </u>	V/μs
NJM4559	SR		_	2	—	V/μs
Equivalent Input Noise Voltage	V _{NI}	RIAA, $R_s = 1k\Omega$, 30kHz LPF	<u> </u>	1.4	_	μVrm

■ Connection Diagram

Equivalent Circuit (1/2 Shown)

PIN FUNCTION

- 1. A OUTPUT
- A-INPUT 3 . A+INPUT 4 . V-
- 5. B+INPUT
- . B-INPUT B OUTPUT

New Japan Radio Co., Ltd. 2-98

2

■ Typical Characteristics

Input Bias Current vs. Ambient

Maximum Output Voltage Swing vs. Load Resistance

Maximum Output Voltage Swing vs. Supply Voltage

Equivalent Input Noise Voltage vs. Frequency

Open Loop Voltage Gain vs. Frequency

Maximum Output Voltage Swing vs. Frequency

New Japan Radio Co., Ltd.

2-99