Quantum Internet Back before Aug. 6, 1991

Ben Wu, Chase Wallace, Yusheng Zhao

November 30, 2020

- 1 Why Quantum Internet?
- 2 Cavity QED: Quick and Dirty
- 3 Application: Reversable Single-Photon Generation on Demand
- 4 DLCZ protocol
- 5 Conclusion: Challenges and Outlooks

Applications: Broadly Speaking [1]

•000000

Components:

- Quantum Node
- Quantum Channel
- Quantum Repeater (WiFi Extender)
- Switch

Advantages of a Quantum Channel [2]

- A Quantum Channel provides an exponential increase in computational dimension
 - lacksquare $k2^n$ to 2^{kn} when we connect k n-bit quantum nodes
- Helps to alleviate scaling and error-correlation problems
 - Simulation of evolution of quantum many-body systems
 - "Spin-Spin" interaction of atoms simulated by a quantum channel
 - Percolation problem

Percolation sidenote

• I.e., can the liquid flow from the top of a cube to the bottom? When the cube has a Swiss cheese like internal structure but some of the paths are blocked with probability p^1 .

¹Percolation Theory from Wikipedia

Focus of This Presentation: Quantum Channels

- Transmission of photons
- Use of atoms to store quantum states
- Coupling of a single photon and an atom w/ help of cavity QED (Quantum Electrodynamics)
- Photon-photon interaction cross-sections are tiny, i.e., very unlikely to occur
- Quantum Information processing with atomic ensembles

- Interaction between light and matter should be easily tunable
- Done through an interaction Hamiltonian $\langle H_{int}(t) \rangle \approx \hbar \chi(t)$
- Physical processes that controls $\chi(t)$ need to be robust in the face of imperfections (by adibatic transfer)
- Mistakes can be efficiently detected and fixed (with quantum error correction)

■ Mathematically : $\chi >> \kappa >> \gamma$

Example [2]

Fabry-Perot cavity

Terms² [2]

- V_m : mode volume, approximately the volume of resonator, defines spatial confinement. Debated definition
- Quality factor: roughly defines how long the light lives in the cavity
- $\vec{\epsilon}$: polarization vector
- $\vec{\mu_0}$: transition dipole moment: how strong does the atom feel a EM wave with certain polarization?

$$g = \sqrt{\frac{|\vec{\epsilon} \cdot \vec{\mu_0}|^2 \omega_C}{2\hbar \epsilon_0 V_m}}$$

- \bullet γ : atomic decay rate to modes other than the cavity mode
- $\blacksquare \kappa$: decay rate of cavity mode
- $n_0 \approx \gamma^2/g^2$: photons required to saturate the intracavity atom
- $N_0 \approx \kappa \gamma/q^2$: number of atoms required to have an appreciable effect on intracavity field

²Mode Volume and Quality Factor

Illustration

- Requires $(N_0, n_0) \ll 1$
- Could be achieved in the microwave domain with a Rydberg atom and a high Q superconducting cavity
- In the optical domain: uses a high-finesse optical resonator, and atomic transitions with large $\vec{\mu_0}$ ³
- **B**etter confinement of the atoms will also help by reducing V_m

Progress

- OK, it's a diagress, watch yourself if interested
- Basically explains why we want a single photon to be sent
- Classically, we send a bunch of them to represent a classical bit
- Video. watch it!

Illustration

- Mathematically $|a\rangle |0\rangle \leftrightarrow |b\rangle |1\rangle$
- Notation is $|\psi_{atom}\rangle |\phi_{Fock}\rangle$
- Dark State $|D\rangle = cos\theta |a\rangle |0\rangle + sin\theta |b\rangle |1\rangle$
- $\cos \theta = \left[1 + \frac{\Omega(t)^2}{a^2}\right]^{-1/2}$
- Need to modify $\Omega(t)$ adibatically, to coherently map the atomic state to the photon's state (and vice versa)
- Intermediate transition $|b\rangle \rightarrow |e\rangle$ stongly coupled to a mode of optical cavity of energy $\hbar q$

Importance

- Could serve as Quantum Memory
- Optical field as a superposition of 0 and 1Fock state sent through fiber
- Use the control field $\Omega(t)$ to store the superposition information into the atoms

- Allows the control field to have different polarization over time
- May entangle the state of atom with the polarization state of a flying photon, p_1
- p_1 is not emitted by the atom, just entangling it with the atom. However, could have came from the emission process of another atom, thus having the state info of that atom.
- **Apply** another control field to disentangle the atom with p_1 and emit another photon p_2 which is in turn entangled with p_1
- % No pics :(, the source file does not allow access, darn

- Protocol to distribute coherence and entanglement in the discrete variable regime.
- $|\phi_{a,1}\rangle = |0_a\rangle |0_1\rangle + e^{i\beta}\sqrt{p} |1_a\rangle |1_1\rangle + \mathcal{O}(p)$
- Note: the sharing of this 'spin up' property gives entanglement amongst all N_a qubits

- Combine the two ensembles of entangled atoms
- $|\Psi_{L,R}\rangle =$ $\frac{1}{\sqrt{2}}[|0_a\rangle_L|1_a\rangle_R \pm$ $e^{i\eta_1} |1_a\rangle_L |0_a\rangle_R$
- Resilient to important sources of imperfections and loses in propagation and detection
- Creation of entanglement through measurement

- Network of quantum nodes need not and should not be bipartite.
- How to create entanglement among N quantum nodes?
- How do we verify and quantify and entanglement between N parties?
- Is "does it work for a certain algorithm" a good criterium?

Outlooks

New developments in how to make quantum channels and other parts more robust

Challenges

- Quantification of entanglement between many entities
- Concurrence, negativity, and entropy of entanglement

References I

Stephanie Wehner, David Elkouss, and Ronald Hanson.

Quantum internet: A vision for the road ahead.

Science (80-.)., 362(6412), 2018.

H. J. Kimble.

The quantum internet.

Nature, 453(7198):1023–1030, 2008.