Exercises

(p.15) In exercises 5-8, let $\mathbf{u} = [-1, 3, -2], \mathbf{v} = [4, 0, -1],$ and $\mathbf{w} = [-3, -1, -2].$ Compute the indicated vector.

- 5. 3u 2v
- 6. $\mathbf{u} + 2(\mathbf{v} 4\mathbf{w})$
- 7. u + v w
- 8. $4(3\mathbf{u} + 2\mathbf{v} 5\mathbf{w})$

(p.16) In Exercises 21-30, find all scalars c, if any exist, such that the given statement is true. Try to do some of these problems without using pencil and paper.

- 21. The vector [2,6] is parallel to the vector [c,-3].
- 22. The vector $[c^2, -4]$ is parallel to the vector [1, -2].
- 23. The vector [c, -c, 4] is parallel to the vector [-2, 2, 20].
- 24. The vector $[c^2, c^3, c^4]$ is parallel to the vector [1, -2, 4] with same direction.

(p.31) In Exercises 1-17, let $\mathbf{u}=[-1,3,4], \mathbf{v}=[2,1,-1],$ and $\mathbf{w}=[-2,-1,3].$ Find the indicated quantity.

- 1. $\| \mathbf{u} \|$
- 3. $\|{\bf u} + {\bf v}\|$
- 5. $\|3\mathbf{u} \mathbf{v} + w\mathbf{w}\|$
- 7. The unit vector parallel to **u**, having the same direction
- 11. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w})$
- 12. The angle between \mathbf{u} and \mathbf{v}
- 14. The value of x such that [x, -3, 5] is perpendicular to **u**
- 16. A nonzero vector perpendicular to both \mathbf{u} and \mathbf{v}
- 17. A nonzero vector perpendicular to both \mathbf{u} and \mathbf{w}

(p.31) In Exercises 25-30, classify the vectors as parallel, perpendicular, or neither. If they are parallel, state whether they have the same direction or opposite direction.

- 25. [-1, 4] and [8, 2]
- 26. [-2, -1] and [5, 2]
- 27. [3, 2, 1] and [-9, -6, -3]

- 31. The **distance** between points (v_1, \ldots, v_n) and (w_1, \ldots, w_n) in \mathbb{R}^n is the norm $\|\mathbf{v} \mathbf{w}\|$, where $\mathbf{u} = [v_1, \dots, v_n]$ and $\mathbf{w} = [w_1, \dots, w_n]$. Why is this a reasonable definition of distance?
- (p.31) In Exercises 32-35, use the definition given in Exercise 31 to find the indicated distance.
 - 33. The distance from [2, -1, 3] to [4, 1, -2] in \mathbb{R}^3
 - 35. The distance from [-1, 2, 1, 4, 7, -3] to [2, 1, -3, 5, 4, 5] in \mathbb{R}^6
- (p.33) Answer the followings.
- 43. For vectors \mathbf{v} and \mathbf{w} in \mathbb{R}^n , prove that $\mathbf{v} \mathbf{w}$ and $\mathbf{v} + \mathbf{w}$ are perpendicular if and only if $\|\mathbf{v}\| = \|\mathbf{w}\|$.
- 44. For vectors \mathbf{u} , \mathbf{v} and \mathbf{w} in \mathbb{R}^n and for scalars r and s, prove that if \mathbf{w} is perpendicular to both \mathbf{u} and **v** then **w** is perpendicular to $r\mathbf{u} + s\mathbf{v}$.
- (p.46) In Exercises 1-17, let A, B, C, D, E and F be

$$\left[\begin{array}{ccc} -2 & 1 & 3 \\ 4 & 0 & -1 \end{array}\right], \quad \left[\begin{array}{ccc} 4 & 1 & -2 \\ 5 & -1 & 3 \end{array}\right], \quad \left[\begin{array}{ccc} 2 & -1 \\ 0 & 6 \\ -3 & 2 \end{array}\right], \quad \left[\begin{array}{ccc} -4 & 2 \\ 3 & 5 \\ -1 & -3 \end{array}\right], \quad \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right], \quad \left[\begin{array}{ccc} 0 & 0 & -1 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{array}\right],$$

respectively. Compute the indicated quantity, if it is defined.

- 3. A + B
- 7. *AB*
- 9. (2A)(5C)
- 11. A^2
- 15. $(A^T)A$
- 17. E^2 and E^7
- 18. F^2 and F^7
- (p.47) Answer the followings.
 - 19. For the vectors $\mathbf{x} = [-2, 3, -1]^T$ and $\mathbf{y} = [4, -1, 3]^T$, compute the matrix products $\mathbf{x}^T \mathbf{y}$ and $\mathbf{y} \mathbf{x}^T$.
- 20. Fill in the missing entries in the 4×4 matrix $\begin{bmatrix} 1 & -1 & & \\ & 4 & & 8 \\ 2 & -7 & -1 & \\ & & 6 & 3 \end{bmatrix}$ so that the matrix is symmetric.
- 21. Mark each of the following True or False. The statements involve matrices A, B, and C that are assumed to have appropriate size.

a.
$$A = B \Rightarrow AC = BC$$

b.
$$AC = BC \Rightarrow A = B$$

- c. $AB = O \Rightarrow A = O$ or B = O
- d. $A + C = B + C \Rightarrow A + B$
- e. $A^2 = I \Rightarrow A = \pm I$
- f. $B = A^2$ and A is $n \times n$ symmetric $\Rightarrow b_{ii} \ge 0, \ \forall i \le n$
- g. AB = C, and A and B are square $\Rightarrow C$ is square
- h. AB = C and C is a column vector $\Rightarrow B$ is a column vector
- i. $A^2 = I \Rightarrow A^n = I, \ \forall n \ge 2$
- j. $A^2 = I \Rightarrow A^n = I, \forall \text{ even } n > 2$
- 23. Let A be an $m \times n$ matrix and let **b** and **c** be column vectors with n components. Express the dot product $(A\mathbf{b}) \cdot (A\mathbf{c})$ as a product of matrices.
- (p.47) Answer the followings.
 - 35. If B is an $m \times n$ matrix and if $B = A^T$, find the size of A, AA^T and A^TA .
 - 36. Let \mathbf{v} and \mathbf{w} be column vectors in \mathbb{R}^n . What is the size of $\mathbf{v}\mathbf{w}^T$? What relationships hold between $\mathbf{v}\mathbf{w}^T$ and $\mathbf{w}\mathbf{v}^T$?
 - 38. Prove that, if A is a square matrix, then the matrix $A + A^T$ is symmetric.
 - 39. Prove that, if A is a matrix, then the matrix AA^T is symmetric.
 - 41. Let A and B be $m \times n$ matrices, \mathbf{e}_j be the $n \times 1$ vector whose jth element is 1 and the others are 0. Answer the followings.
 - (a) Show that Ae_j is the jth column vector of A.
 - (b) Prove that, if $A\mathbf{x} = \mathbf{0}$ for all \mathbf{x} , then A = O. [Hint: Use part (a)].
 - (c) Prove that, if $A\mathbf{x} = B\mathbf{x}$ for all \mathbf{x} , then A = B. [Hint: Use part (b)]
- (p.48) Answer the followings.
 - 42. Let A and B be square matrices. Is $(A + B)^2 = A^2 + B^2 + 2AB$? If so, prove it; if not, give a counter example and state under what conditions the equation is true.
 - 43. Let A and B be square matrices. Is $(A B)(A + B) = A^2 B^2$? If so, prove it; if not, give a counter example and state under what conditions the equation is true.
 - 44. A square matrix C is **skew symmetric** if $C^T = -C$. Prove that every square matrix A can be written uniquely as A = B + C where B is symmetric and C is skew symmetric.
 - 45. Find all values of r for which A commutes with B, where $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & r \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.
 - 46. Find all values of r for which A commutes with B, where $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.
- (p.68) In Exercises 1-6, reduce the matrix to (a) row-echelon form, and (b) reduced row-echelon form. Answers to (a) are not unique, so your answer may differ from the one at the back of the text.

3

$$1. \left[\begin{array}{rrr} 2 & 1 & 4 \\ 1 & 3 & 2 \\ 3 & -1 & 6 \end{array} \right]$$

$$4. \left[\begin{array}{cccc} 0 & 0 & 3 & -2 \\ 0 & 0 & 1 & 2 \\ 1 & 3 & 2 & -4 \end{array} \right]$$

(pp.68-69) In Exercises 7-12, describe all solutions of a linear system whose corresponding augmented matrix can be row-reduced to the given matrix. If requested, also give the indicated particular solution, if it exist.

7.
$$\begin{bmatrix} 1 & -1 & 2 & 3 \\ 0 & 1 & 4 & 2 \end{bmatrix}$$
, solution with $x_3 = 2$

11.
$$\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 & -5 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

12.
$$\begin{bmatrix}
1 & -1 & 2 & 0 & 3 & 1 \\
0 & 0 & 0 & 1 & 4 & 2 \\
0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

(p.69) In Exercises 13-20, find all solutions of the given linear system, using the Gauss method with back substitution.

13.
$$2x - y = 8$$

 $6x - 5y = 32$

17.
$$x_1 - 2x_2 = 3$$

 $3x_1 - x_2 = 14$
 $x_1 - 7x_2 = -2$

20.
$$x_1 - 3x_2 + 2x_3 - x_4 = 8$$

 $3x_1 - 7x_2 + x_4 = 0$

(p.69) In Exercises 21-24, find all solutions of the linear system, using the Gauss-Jordan method.

21.
$$3x_1 - 2x_2 = -8$$

 $4x_1 + 5x_2 = -3$

24.
$$x_1 + 2x_2 - 3x_3 + x_4 = 2$$

 $3x_1 + 6x_2 - 8x_3 - 2x_4 = 1$

(p.69) In Exercises 25-28, determine whether the vector \mathbf{b} is in the span of the vectors \mathbf{v}_i .

25.
$$\mathbf{b} = \begin{bmatrix} 3 \\ 5 \\ 3 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 0 \\ 2 \\ 4 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 4 \\ -2 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -3 \\ -1 \\ 5 \end{bmatrix}$$

28.
$$\mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 3 \\ 7 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 3 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -3 \\ -2 \\ -8 \\ -9 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 4 \end{bmatrix}, \mathbf{v}_4 = \begin{bmatrix} 2 \\ 4 \\ 0 \\ 0 \end{bmatrix}$$

(pp.69-70) Answer the followings.

- 29. Mark each of the following True or False.
 - (a) Every linear system with the same number of equations as unknowns has a unique solution.
 - (b) Every linear system with the same number of equations as unknowns has at least one solution.
 - (c) A linear system with more equations than unknowns may have an infinite number of solutions.
 - (d) A linear system with fewer equations than unknowns may have no solution.
 - (e) Every matrix is row equivalent to a unique matrix in row-echelon form.
 - (f) Every matrix is row equivalent to a unique matrix in reduced row-echelon form.
 - (g) If $[A|\mathbf{b}]$ and $[B|\mathbf{c}]$ are row-equivalent partitioned matrices, the linear systems $A\mathbf{x} = \mathbf{b}$ and $B\mathbf{x} = \mathbf{c}$ have the same solution set.
 - (h) A linear system with a square coefficient matrix A has a unique solution if and only if A is row equivalent to the identity matrix.
 - (i) A linear system with coefficient matrix A has an infinite number of solutions if and only if A can be row-reduced to an echelon matrix that includes some column containing no pivot.
 - (j) A consistent linear system with coefficient matrix A has an infinite number of solutions if and only if A can be row-reduced to an echelon matrix that includes some column containing no pivot.
- 38. Determine all values of the b_i that make the linear system

$$x_1 + 2x_2 = b_1$$
$$3x_1 + 6x_2 = b_2$$

consistent.

- 39. Determine all values b_1 and b_2 such that $\mathbf{b} = [b_1, b_2]$ is a linear combination of $\mathbf{v}_1 = [1, 3]$ and $\mathbf{v}_2 = [5, -1]$.
- 41. Determine all values b_1 , b_2 , and b_3 such that $\mathbf{b} = [b_1, b_2, b_3]$ lies in the span of $\mathbf{v}_1 = [1, 1, 0]$, $\mathbf{v}_2 = [3, -1, 4]$, and $\mathbf{v}_3 = [-1, 2, -3]$.
- 42. Find an elementary matrix E such that

$$E\left[\begin{array}{cccc} 1 & 3 & 1 & 4 \\ 0 & 1 & 2 & 1 \\ 3 & 4 & 5 & 1 \end{array}\right] = \left[\begin{array}{ccccc} 1 & 3 & 1 & 4 \\ 0 & 1 & 2 & 1 \\ 0 & -5 & 2 & -11 \end{array}\right].$$

(p.84) In Exercises 1-8, (a) find the inverse of the square matrix, if it exists, and (b) express each invertible matrix as a product of elementary matrices.

5

$$1. \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right]$$

$$3. \left[\begin{array}{cc} 3 & 6 \\ 4 & 8 \end{array} \right]$$

$$7. \left[\begin{array}{rrr} 2 & 1 & 4 \\ 3 & 2 & 5 \\ 0 & -1 & 1 \end{array} \right]$$

(pp.84-86) Answer the followings.

9. Find the inverse of the matrix, if it exists.

$$\left[\begin{array}{cccccc} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 5 \end{array}\right]$$

11. Determine whether the span of the column vectors of the given matrix is \mathbb{R}^4 .

$$\begin{bmatrix}
1 & 0 & 1 & -1 \\
0 & -1 & -3 & 4 \\
1 & 0 & -1 & -2 \\
-3 & 0 & 0 & -1
\end{bmatrix}$$

13. Answer the followings.

(a) Show that the matrix $A = \begin{bmatrix} 2 & -3 \\ 5 & -7 \end{bmatrix}$ is invertible, and find its inverse.

(b) Use the result in (a) to find the solution of the system of equations

$$2x_1 - 3x_2 = 4$$
, $5x_1 - 7x_2 = -3$.

17. Let $A^{-1} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 3 & 1 \\ 4 & 1 & 2 \end{bmatrix}$. If possible, find a matrix C such that $ACA = \begin{bmatrix} 2 & 1 & 3 \\ -1 & 2 & 2 \\ 2 & 1 & 4 \end{bmatrix}$.

21. Find all numbers r such that $\begin{bmatrix} 2 & 4 & 2 \\ 1 & r & 3 \\ 1 & 1 & 2 \end{bmatrix}$ is invertible.

22. Let A and B be two $m \times n$ matrices. Show that A and B are row equivalent if and only if there exists an invertible $m \times m$ matrix C such that CA = B.

23. Mark each of the following True or False. The statements involve matrices A, B, and C, which are assumed to be of appropriate size.

6

(a) If AC = BC and C is invertible, then A = B.

(b) If AB = O and B is invertible, then A = O.

(c) If AB = C and two of the matrices are invertible, then so is the third.

(d) If AB = C and two of the matrices are singular, then so is the third.

(e) If A^2 is invertible, then A^3 is invertible.

- (f) If A^3 is invertible, then A^2 is invertible.
- (g) Every invertible matrix is an elementary matrix.
- (h) If A and B are invertible matrices, then so is A + B, and $(A + B)^{-1} = A^{-1} + B^{-1}$.
- (i) If A and B are invertible, then so is AB, and $(AB)^{-1} = A^{-1}B^{-1}$.
- 24. Show that, if A is an invertible $n \times n$ matrix, then A^T is invertible. Describe $(A^T)^{-1}$ in terms of A^{-1} .
- 25. Answer the followings.
 - (a) If A is invertible, is $A + A^T$ always invertible?
 - (b) If A is invertible, is A + A always invertible?
- 26. Let A be a matrix such that A^2 is invertible. Prove that A is invertible.
- 27. Let A and B be $n \times n$ matrices with A invertible.
 - (a) Show that AX = B has the unique solution $X = A^{-1}B$.
 - (b) Show that $X = A^{-1}B$ can be found by the following row reduction:

$$[A|B] \sim [I|X].$$

That is, if the matrix A is reduced to the identity matrix I, then the matrix B will be reduced to $A^{-1}B$.

- 29. An $n \times n$ matrix A nilpotent if $A^r = O$ (the $n \times n$ zero matrix) for some positive r.
 - (a) Give an example of a nonzero nilpotent 2×2 matrix.
 - (b) Show that, if A is an invertible $n \times n$ matrix, then A is not nilpotent.
- 30. A square matrix A is said to be idempotent if $A^2 = A$.
 - (a) Give an example of an idempotent matrix other than O and I.
 - (b) Show that, if a matrix A is both idempotent and invertible, then A = I.
- (p.99) In Exercises 1-10, determine whether the indicated subset is a subspace of the given Euclidean space \mathbb{R}^n .
 - 1. $\{[r, -r] | r \in R\}$ in \mathbb{R}^2
 - 3. $\{[n,m]|n,m \text{ are interges}\}$ in \mathbb{R}^2
 - 5. $\{[x, y, z] | x, y, z \in \mathbb{R}, x, y > 0\}$ in \mathbb{R}^3
 - 6. $\{[x, y, z] | x, y, z \in \mathbb{R}, z = 3x + 2\}$ in \mathbb{R}^3
 - 9. $\{[2x_1, 3x_2, 4x_3, 5x_4] | x_i \in \mathbb{R}, i \leq 4\}$ in \mathbb{R}^4
- (p.99) Answer the followings.
 - 11. Prove that the line y = mx is a subspace of \mathbb{R}^2 .
 - 12. Let a, b and c be scalars such that $abc \neq 0$. Prove that the plane ax + by + cz = 0 is a subspace of \mathbb{R}^3 .

- 14. Prove that every subspace of \mathbb{R}^n contains the zero vector.
- 15. Is the zero vector a basis for the subspace $\{0\}$ of \mathbb{R}^n ? why or why not?

(pp.99–100) In Exercises 16-21, find a basis for the solution set of the given homogeneous linear system.

16.
$$x - y = 2x - 2y = 0$$

17.
$$3x_1 + x_2 + x_3 = 6x_1 + 2x_2 + 2x_3 = -9x_1 - 3x_2 - 3x_3 = 0$$

19.
$$2x_1 + x_2 + x_3 + x_4 = x_1 - 6x_2 = x_3 = 3x_1 - 5x_2 + 2x_3 + x_4 = 5x_1 - 4x_2 + 3x_3 + 2x_4 = 0$$

(pp.100–101) In Exercises 22-30, determine whether the set of vectors is a basis for the subspace of \mathbb{R}^n that the vectors span.

23.
$$\{[-1,3,1],[2,1,4]\}$$
 in \mathbb{R}^2

27. The set of row vectors of the matrix
$$\begin{bmatrix} 2 & -6 & 1 \\ 1 & -3 & 4 \end{bmatrix}$$
 in \mathbb{R}^3

28. The set of column vectors of the matrix in Exercise 27 in \mathbb{R}^2

(pp.100–101) Answer the followings.

31. Find a bassi for the null space of the matrix
$$\begin{bmatrix} 2 & 3 & 1 \\ 5 & 2 & 1 \\ 1 & 7 & 2 \\ 6 & -2 & 0 \end{bmatrix}$$

35. Solve the linear system,
$$2x_1 - x_2 + 3x_3 + 3 = 4x_1 + 2x_2 - x_4 - 1 = 0$$

38. Mark each of the following True or False

- (a) A linear system with fewer equations than unknowns has an infinite number of solutions.
- (b) A consistent linear system with fewer equations than unknowns has an infinite number of solutions.
- (c) If a square linear system $A\mathbf{x} = \mathbf{b}$ has a solution for every choice of column vector \mathbf{b} , then the solution is unique for each \mathbf{b} .
- (d) If a square linear system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution then $A\mathbf{x} = \mathbf{b}$ has a unique solution for every column vector \mathbf{b} with the appropriate number of components.
- (e) If a linear system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution, then $A\mathbf{x} = \mathbf{b}$ has a unique solution for every column vector \mathbf{b} with the appropriate number of components.
- (f) The sum of two solution vectors of any linear system is also a solution vector of the system.
- (g) the sum of two solution vectors of any homogeneous linear system is also a solution vector of the system.
- (h) A scalar multiple of a solution vector of any homogenous linear system is also a solution vector of the system.
- (i) Every line in \mathbb{R}^2 is a subspace of \mathbb{R}^2 generated by a single vector.
- (j) Every line through the origin in \mathbb{R}^2 is a subspace of \mathbb{R}^2 generated by a single vector.

- 45. Let $\mathbf{v_1}, \mathbf{v_2}$ be vectors in \mathbb{R}^n . Prove the following set equalities by showing that each of the spans is contained in the other.
 - (a) $sp(\mathbf{v}_1, \mathbf{v}_2) = sp(\mathbf{v}_1, 2\mathbf{v}_1 + \mathbf{v}_2)$
 - (b) $sp(\mathbf{v}_1, \mathbf{v}_2) = sp(\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_1 \mathbf{v}_2)$
- 47. Let W_1 and W_2 be two subspaces of \mathbb{R}^n . Prove that their intersection $W_1 \cap W_2$ is also a subspace.
- (p.185) Theorem 3.1 (Elementary Properties of Vector Spaces) Every vector space V has the following properties:
 - 1. The vector **0** is the unique vector **x** satisfying the equation $\mathbf{x} + \mathbf{v} = \mathbf{v}$ for all vectors **v** in V.
 - 2. For each vector \mathbf{v} in V, the vector $-\mathbf{v}$ is the unique vector \mathbf{y} satisfying $\mathbf{v} + \mathbf{x} = \mathbf{0}$.
 - 3. If $\mathbf{u} + \mathbf{v} = \mathbf{u} + \mathbf{w}$ for vectors \mathbf{u}, \mathbf{v} and \mathbf{w} in V, then $\mathbf{v} = \mathbf{w}$.
 - 4. $0\mathbf{v} = \mathbf{0}$ for all vectors in V.
 - 5. $r\mathbf{0} = \mathbf{0}$ for all scalars r in \mathbb{R} .
 - 6. $(-r)\mathbf{v} = r(-\mathbf{v}) = -(r\mathbf{v})$ for all scalars r in \mathbb{R} and vectors in V.
- (p.189) In Exercises 1-8, decide whether or not the given set, together with the indicated operations of addition and scalar multiplication, is a (real) vector space.
 - 1. The set \mathbb{R}^2 , with the usual addition but with scalar multiplication defined by r[x,y] = [ry,rx].
 - 3. The set \mathbb{R}^2 , with the usual scalar multiplication but with addition defined by $[x,y] \oplus [r,s] = [y+s,x+r]$.
 - 5. The set of all 2×2 matrices, with the usual addition but with scalar multiplication defined by rA = O, the 2×2 zero matrix.
- (p.189) In Exercises 9-16, determine whether the given set is closed under the usual operations of addition and scalar multiplication, and is a (real) vector space.
 - 9. The set of all upper-triangular $n \times n$ matrices.
 - 11. The set of all 2×2 matrices of the form $\begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix}, a, b \in \mathbb{R}$.
- (pp.201–202) Let P be the vector space of all polynomials with coefficients in \mathbb{R} . Answer the followings.
 - 1. Determine whether the set of all polynomials of degree greater than 3 together with the zero polynomial is a subspace of P.
 - 11. Prove whether $\{x^2-1, x^2+1, 4x, 2x-3\}$ in P is dependent or independent.
 - 25. Mark each of the following True or False.
 - (a) The set consisting of the zero vector is a subspace for every vector space.

- (b) Every vector space has at least two distinct subspaces.
- (c) Every vector space with a nonzero vector has at least two distinct subspaces.
- (d) If $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ is a subset of a vector space V, then $\mathbf{v}_i \in sp(\mathbf{v}_1,\ldots,\mathbf{v}_n)$ for all i from 1 to n.
- (e) If $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a subset of a vector space V, then $\mathbf{v}_i + \mathbf{v}_j \in sp(\mathbf{v}_1, \dots, \mathbf{v}_n)$ for all i and j from 1 to n.
- (f) If $\mathbf{u} + \mathbf{v}$ lies in a subspace W of a vector space V, then both \mathbf{u} and \mathbf{v} lie in W.
- (g) Two subspaces of a vector space V may have empty intersection.
- (h) If S is independent, each vector in V can be expressed uniquely as a linear combination of vectors in S.
- (i) If S is independent and generates V, each vector in V can be expressed uniquely as a linear combination of vectors in S.
- (j) If each vector in V can be expressed uniquely as a linear combination of vectors in S, then S is an independent set.

(p.203) Answer the followings.

- 29. Let V be a vector space with basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. Prove that $\{\mathbf{v}_1, \mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3\}$ is also a basis for V.
- 30. Let V be a vector space with basis $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$, and let $W = sp(\mathbf{v}_3, \mathbf{v}_4, \dots, \mathbf{v}_n)$. If $\mathbf{w} = r_1\mathbf{v}_1 + r_2\mathbf{v}_3$ is in W, show that $\mathbf{w} = \mathbf{0}$.
- 31. Let V be a vector space with basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. Prove that the vectors $\mathbf{w}_1 = \mathbf{v}_1 + \mathbf{v}_2, \mathbf{w}_2 = \mathbf{v}_2 + \mathbf{v}_3$ and $\mathbf{w}_3 = \mathbf{v}_1 \mathbf{v}_3$ do not generate V.
- 33. Let V be a vector space with basis $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$, and let $\mathbf{w} = t_1\mathbf{v}_1 + \dots + t_k\mathbf{v}_k$, with $k \neq 0$. Prove that $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{k-1}, \mathbf{w}, \mathbf{v}_{k+1}, \dots, \mathbf{v}_n\}$ is a basis for V.

(pp.347–348) Answer the followings.

- 5. Find an orthonormal basis for the plane 2x + 3y + z = 0.
- 6. Find an orthonormal basis for the subspace $W = \{[x_1, \ldots, x_4] | x_1 = x_2 + 2x_3, x_4 = -x_2 + x_3\}$ of \mathbb{R}^4 .
- 7. Find an orthonormal basis for the subspace sp([0,1,0],[1,1,1]) of \mathbb{R}^3 .
- 8. Find an orthonormal basis for the subspace sp([1,1,0],[-1,2,1]) of \mathbb{R}^3 .
- 21. Find an orthonormal basis for the subspace sp([2,1,1],[1,-1,2]) that contains $(1/\sqrt{6})[2,1,1]$.