

# ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

ENGENHARIA DA COMPUTAÇÃO - UFC/SOBRAL

Prof. Wendley S. Silva

Slides adaptados de Joniel Bastos

## CONCEITOS BÁSICOS DE UM COMPUTADOR

QUAL A NECESSIDADE DE UM COMPUTADOR?

## ARQUITETURA BÁSICA – COMPONENTES BÁSICOS



#### **Hardware**

- Toda parte física do computador
  - Componentes eletrônicos
    - Processador, memória, placas controladoras, dispositivos de armazenamento
  - Periféricos de Entrada e Saída

#### **Software**

- Constituído pelos programas que permitem atender às necessidades do usuário
  - Sistema operacional, aplicativos

### ELEMENTOS DE HARDWARE

ELEMENTOS QUE COMPÕEM O HARDWARE DO COMPUTADOR



#### EXEMPLO DE UM COMPUTADOR COMERCIAL

- Computador com processador i7 de 3,3 GHz
- 8 Gb de memória RAM
- Disco rígido de 500 Gb
- Leitor de Blu-Ray
- Monitor de 23"Full HD (1920 x 1080)
- Teclado padrão ABNT2
- Mouse sem fio
- Caixas de som de 8W RMS
- Leitor de cartão embutido e 06 entradas USB
- Microsoft Windows 10 (64 bits)
- Microsoft Works
- Microsoft Ofice 2016 (30 dias)





- A arquitetura de hardware da maioria dos computadores atuais
  - É inspirada na proposta de Von Neumann
  - Informação representada utilizando apenas dois estados: ligado/desligado, ativo/inativo, zero/um
  - Programas e dados armazenados na memória
  - Todo processamento realizado utilizando lógica binária





- Unidade Central de Processamento (UCP)
  - Cérebro do computador
  - Processador do computador
  - Na CPU são executadas as instruções
    - o Instrução: comando que define integralmente uma operação a ser executada
    - o Programa: instruções ordenadas logicamente.
  - Comanda os periféricos por meio de comandos diretos ou de interfaces
  - Memória central → informação a ser processada com alta eficiência



#### UNIVERSIDADE FEDERAL DO CEARÁ

- Exemplos de processadores
  - **AMD:** Athlon, Duron, Sempron, Phenom, Opterom, Ryzen etc.
  - Intel: Pentium, Dual Core, Celeron, i3, i5, i7, Xeon etc.







- Unidade de Controle (UC)
  - Controla o fluxo das operações na UCP
  - Coordena a entrada e saída de dados internos e/ou obtidos dos periféricos
- Unidade Lógica Aritmética (ULA)
  - Realiza todas as operações lógicas e aritméticas da UCP
- Memória Central
  - Armazena resultados temporários e para controle de informações



### PROCESSADOR (CPU)

- Frequência de Operação:
  - Relacionada com a velocidade de execução das operações
  - Medida em Hertz: Megahertz ou Gigahertz

| m    | odelo    | ano  | freqüência<br>(MHz) | barramento<br>(bits) | transistores |
|------|----------|------|---------------------|----------------------|--------------|
|      | 1004     | 1971 | 0,74                | 4                    | 2.250        |
|      | 6800     | 1975 | 1,0                 | 8                    | 6.800        |
|      | 3080     | 1975 | 2-3                 | 8                    | 4.500        |
| 1    | 3086     | 1978 | 5-12                | 16                   | 29.000       |
| 8    | 0286     | 1982 | 8-25                | 16                   | 134.000      |
| 80   | 486DX    | 1990 | 33-50               | 32                   | 1.200.000    |
| Pe   | ntium    | 1993 | 60-100              | 32                   | 3.100.000    |
| Per  | ntium II | 1997 | 233-333             | 32                   | 7.500.000    |
| Pen  | tium III | 2000 | 550-1000            | 32                   | 28.000.000   |
| Per  | ntium 4  | 2001 | 1400-2800           | 32                   | 42.000.000   |
| Pent | ium 4 HT | 2003 | 3000                | 32                   | 55.000.000   |
| Cor  | e 2 Duo  | 2006 | 2800                | 64                   | 291.000.000  |



### PROCESSADOR (CPU)

 A geração atual de sistemas computacionais é marcada por várias evoluções que ocorrem cada vez de maneira mais rápida

| Processador    | Ano de Lançamento | Qtd. De Transistores     |
|----------------|-------------------|--------------------------|
| Pentium III    | 1999              | 9.500.000                |
| Pentium IV     | 2000              | 42.000.000               |
| Família Core   | 2006              | 291.000.000 (Core 2 Duo) |
| Família Core i | 2009              | 1.400.000.000 (Core i7)  |



## DISPOSITIVOS DE ENTRADA E SAÍDA (E/S)

- Transferência de dados
- Conectados ao processador e memória
- Barramento de comunicação
- Periféricos
  - Vias de comunicação da UCP com o mundo exterior
  - Dispositivos de entrada: teclado, mouse, scanner, microfone, etc.
  - Dispositivos de saída: monitor, impressora, caixa de som, etc.
  - Dispositivos de entrada e saída: memória, disco rígido, touch screen, etc.

## **MEMÓRIA**



- Periférico de entrada e saída para armazenamento e recuperação de dados.
- Normalmente dividida em:
  - Memória principal
  - Memória secundária



#### MEMÓRIA PRINCIPAL

- Armazena e recupera dados com extrema velocidade
- Troca de dados efciente com outros dispositivos
- Dois tipos comuns: Random Access Memory (RAM) e Read-Only Memory (ROM)
  - Random Access Memory (RAM) Memória de Acesso Aleatório
    - Não-persistente → se falta energia elétrica seu conteúdo é apagado
    - Considerada normalmente como "a memória" do computador (computador com 4 Gigabytes de
    - memória)
    - Armazenar dados em processamento.
    - Armazenar a sequência lógica de passos a ser executada para processar os dados (programa).
  - Read-Only Memory (ROM) Memória Somente para Leitura
    - Persistente → guarda normalmente dados cruciais de configuração do computador



#### MEMÓRIA SECUNDÁRIA

- Caracterizada por dispositivos/unidades de entrada e saída para armazenamento e recuperação de dados em massa
  - Unidades de disco, disco rígido, ou Hard Disk (HD)
  - Unidades de disco fexível, disquete, floppy disk (em desuso)
  - Cartões de memória (flash)
  - Pen-drives com acesso via Universal Serial Bus (USB)
  - Unidades de leitura e gravação de CDs, DVDs e/ou discos Blu-Ray









Placa mãe ASUS P68 H61M-A



Placa mãe ASUS Rampage III

































## UNIDADES MÉTRICAS

| Ехр.  | Explícito                               | Prefixo | Ехр.             | Explícito                     | Prefixo |
|-------|-----------------------------------------|---------|------------------|-------------------------------|---------|
| 10-3  | 0,001                                   | mili    | 10³              | 1.000                         | kilo    |
| 10-8  | 0,000001                                | micro   | 10 <sup>6</sup>  | 1.000.000                     | mega    |
| 10-9  | 0,00000001                              | nano    | 10º              | 1.000.000.000                 | giga    |
| 10-12 | 0,00000000001                           | pico    | 1012             | 1.000.000.000.000             | tera    |
| 10-15 | 0,0000000000001                         | femto   | 1015             | 1.000.000.000.000             | peta    |
| 10-18 | 0,0000000000000001                      | ato     | 10 <sup>18</sup> | 1.000.000.000.000.000         | еха     |
| 10-21 | 0,000000000000000000001                 | zepto   | 1021             | 1.000.000.000.000.000.000     | zeta    |
| 10-24 | 0,0000000000000000000000000000000000000 | iocto   | 1024             | 1.000.000.000.000.000.000.000 | iota    |



## TAMANHO DA MEMÓRIA

- Unidades de medida
  - Quilobyte (KB) = 10<sup>3</sup> bytes
  - Megabyte (MB) =  $10^6$  bytes
  - Gigabyte (GB) =  $10^9$  bytes
  - Terabyte (TB) =  $10^{12}$  bytes
  - Petabyte (PB) = 10<sup>15</sup> bytes
     Quantidade medida em bytes (B).



## ELEMENTOS DE SOFTWARES

ELEMENTOS QUE COMPÕEM O SOFTWARE DO COMPUTADOR



#### EXEMPLO DE UM COMPUTADOR COMERCIAL

- Computador com processador i7 de 3,3 GHz
- 8 Gb de memória RAM
- Disco rígido de 500 Gb
- Leitor de Blu-Ray
- Monitor de 23"Full HD (1920 x 1080)
- Teclado padrão ABNT2
- Mouse sem fio
- Caixas de som de 8W RMS
- Leitor de cartão embutido e 06 entradas USB
- Microsoft Windows 10 (64 bits)
- Microsoft Works
- Microsoft Ofice 2016 (30 dias)





#### TIPOS DE SOFTWARE

- Software é todo e qualquer programa processado por um computador para executar uma tarefa
- Um programa é um conjunto de instruções (comandos) e dados que são processados por uma máquina (computador digital) para cumprir uma dada tarefa
- O software é normalmente organizado em camadas
  - Camadas baixas → programas que interagem diretamente com o hardware
  - Camadas intermediárias → interface entre o hardware e camadas mais altas
  - Camadas altas → programas que interagem diretamente com o usuário



#### TIPOS DE SOFTWARE

#### Basic Input/Output System (BIOS)

- Armazenado em ROM integrada à placa-mãe do computador
- Programas residentes que controlam/supervisionam operações básicas
- Após ligar o computador, passa o controle para o Sistema Operacional (SO)
- · Responsável pelo suporte básico de acesso ao hardware, e início do sistema operacional





#### Sistema Operacional (SO)

- Armazenado normalmente em disco
- Rege o acesso do usuário e programas aos recursos do computador
- Windows, OS X, Linux, etc

#### Software aplicativo

- Normalmente condicionado pelo SO
- Realiza atividades específcas
- Navegador, editor de texto, cliente de e-mail, etc.



## EXECUÇÃO DE UM SOFTWARE





Dados adicionais podem ser fornecidos pelo usuário.

> (intel) Core™ i7

 Os programas são carregados para a memória principal. O processador acessa as informações contidas na memória.





 O resultado do processamento é gravado em disco rígido.



 O resultado do processamento é armazenado na memória.



 O resultado do processamento é exibido no monitor.

## **LINGUAGENS**

COMO OCORRE A COMUNICAÇÃO DE USUÁRIOS COM O HARDWARE?



## LINGUAGEM DE MÁQUINA

Um processador executa instruções apenas utilizando linguagem de máquina (em binário)



Cada instrução é composta por comando e operando

| comando | operando |
|---------|----------|
| 1000    | 11101001 |

 A linguagem de máquina é a mais rápida, pois as instruções são enviadas como impulsos elétricos diretamente ao dispositivo



#### LINGUAGEM DE MONTAGEM

 São as linguagens de programação que utilizam palavras ou abreviações simples para definir as instruções para o processador

| comando | operando | significado   |
|---------|----------|---------------|
| LD      | A        | load A        |
| MPY     | 5        | multiply by 5 |
| STO     | В        | store in B    |

Antes de serem executadas, as instruções são traduzidas para a linguagem de máquina



#### LINGUAGEM DE ALTO NÍVEL

 São as linguagens de programação que permitem escrever programas usando um vocabulário semelhante à maneira natural de expressar um problema que se deseja resolver

read(A); 
$$B = A + 5$$
;

- A escolha da linguagem depende do propósito:
  - Científica: FORTRAN, PASCAL, C/C++
  - Internet: Java, Python, Ruby

# ORGANIZAÇÃO DE DADOS EM SISTEMAS OPERACIONAIS

ORGANIZAÇÃO DE UM SO



#### LINGUAGEM DE ALTO NÍVEL

 São as linguagens de programação que permitem escrever programas usando um vocabulário semelhante à maneira natural de expressar um problema que se deseja resolver

read(A);
$$B = A + 5;$$

- A escolha da linguagem depende do propósito:
  - Científica: FORTRAN, PASCAL, C/C++
  - Internet: Java, Python, Ruby



#### SISTEMA OPERACIONAL

 O Sistema Operacional (SO) é um programa especial que controla a execução de programas aplicativos e age como uma interface entre o programa e o hardware do computador



Visão típica da organização de um SO

## ORGANIZAÇÃO DE DADOS EM SISTEMAS OPERACIONAIS



- Os SOs (como Windows e Linux) realizam normalmente a interação entre usuário e computador, por meio de programas
- Os SOs empregam modelos padronizado para organizar e acessar informações hierarquicamente em um computador

## ORGANIZAÇÃO DE DADOS EM SISTEMAS OPERACIONAIS



- Geralmente, as informações são armazenadas em:
  - Unidades (diretório raiz)
    - Normalmente associadas a discos rígidos
    - o Identificados por letras no Windows (e.g., A:, C:); identificadores por barra / no Linux
  - Pastas (diretórios)
    - Subdivisão criada em uma unidade para organizar dados correlacionados
    - Identificadas por um nome (e.g., Documentos, Imagens)
  - Arquivos
    - o Conjunto de informações armazenado em uma pasta
    - o Identificados por um nome e uma extensão (facultativa no Linux) (e.g., Monografa.doc)

## ORGANIZAÇÃO DA INFORMAÇÃO EM SISTEMAS OPERACIONAIS



- Os arquivos são acessados através de um endereço hierárquico especificando
  - Unidade  $\rightarrow$  pasta  $\rightarrow$  subpasta  $\rightarrow ... \rightarrow$  subpasta  $\rightarrow$  nome.extensão
- No Windows, o arquivo Monografia.doc, contido na pasta Documentos da unidade C: possui o endereço:
  - C:\Documentos\Monografia.doc

## ORGANIZAÇÃO DA INFORMAÇÃO EM SISTEMAS OPERACIONAIS



- As extensões são usadas para identificar o tipo de arquivo
  - .txt: arquivo texto
  - .doc: documento (binário)
  - .bmp: imagem bitmap
  - .exe: programa executável
  - avi: arquivo de vídeo
  - wav: arquivo de áudio
  - .mp3: arquivo de áudio compactado
  - .h: arquivo de cabeçalho em C
  - .c: programa fonte em C
  - .hpp: arquivo de cabeçalho em C++
  - .cpp: programa fonte em C++

## ORGANIZAÇÃO DA INFORMAÇÃO EM SISTEMAS OPERACIONAIS



- Os arquivos são acessados através de um endereço hierárquico especificando
  - RAIZ ( / )  $\rightarrow$  pasta  $\rightarrow$  subpasta  $\rightarrow ... \rightarrow$  subpasta  $\rightarrow$  nome.extensão
- No Linux, o arquivo Monografia.odt, contido na pasta Documentos do diretório home de um usuário possui o endereço:
  - /home/usuario/Documentos/Monografia.odt
- As extensões são usadas para identificar o tipo de arquivo, mas para o Linux isso não faz muita diferença



#### REFERÊNCIAS

- TANENBAUM, A. S. Organização Estruturada de Computadores. Editora LTC, 5 ed, Rio de Janeiro, 2007.
- STALLINGS, W. Arquitetura e Organização de Computadores. Editora Prentice Hall, 5 edição, 2002.