Probability Density Function Estimation: Theory and Mathematics CPE 486/586

Instructor: Rahul Bhadani

Sept 14, 2025

Contents

1	Introduction and Problem Formulation					
	1.1	Proble	m Statement	3		
	1.2	Mathe	matical Framework	3		
2	Data Structure and Sampling Considerations					
	2.1	Tempo	oral Structure	3		
	2.2	Station	narity Assumptions	4		
3	Para	ametric	PDF Estimation	4		
	3.1	Normal Distribution Model		4		
		3.1.1	Parameter Estimation using Maximum Likelihood	4		
	3.2	3.2 Other Parametric Distributions		5		
		3.2.1	Beta Distribution (for bounded temperature ranges)	5		
		3.2.2	Gamma Distribution (for positive temperatures in Kelvin)	5		
	3.3 Goodness-of-Fit Testing		ess-of-Fit Testing	5		
		3.3.1	Kolmogorov-Smirnov Test	5		
		3.3.2	Anderson-Darling Test	5		

4	Non-Parametric PDF Estimation											
	4.1	Kernel Density Estimation (KDE)										
		4.1.1	Common Kernel Functions	. 6								
	4.2	Bandwidth Selection										
		4.2.1	Silverman's Rule of Thumb	. 6								
		4.2.2	Cross-Validation Bandwidth	. 6								
	4.3	Histogr	gram-Based Estimation	. 7								
		4.3.1	Basic Histogram	. 7								
		4.3.2	Optimal Bin Width (Sturges' Rule)	. 7								
		4.3.3	Freedman-Diaconis Rule	. 7								
5	Tim	Time-Varying PDF Models 7										
	5.1	Conditi	tional PDF Estimation	. 7								
		5.1.1	Kernel Regression Approach	. 7								
	5.2 Functional Data Analysis											
		5.2.1	Fourier Representation	. 8								
6	Model Selection and Validation 8											
	6.1	Informa	ation Criteria	. 8								
		6.1.1	Akaike Information Criterion	. 8								
		6.1.2	Bayesian Information Criterion	. 8								
	6.2	Cross-\	Validation	. 8								
		6.2.1	K-Fold Cross-Validation	. 8								
	6.3	Bootst	trap Confidence Intervals	. 8								
		6.3.1	Bootstrap Procedure	. 8								
7	Practical Considerations 9											
	7.1	Sample	e Size Requirements	. 9								
	7.2	Boundary Effects										
	7.3	Computational Complexity										

8	Implementation Algorithm						
	8.1	8.1 General Workflow		ç			
	8.2	.2 Error Metrics					
		8.2.1	Mean Integrated Squared Error	10			
		8.2.2	Pointwise Mean Squared Error	10			

1 Introduction and Problem Formulation

1.1 Problem Statement

Given a time series of room temperature measurements X_1, X_2, \ldots, X_n collected every 5 minutes from 9 AM to 9 PM, we want to estimate the probability density function f(x) that describes the distribution of temperature values.

1.2 Mathematical Framework

Let X be a continuous random variable representing room temperature. The probability density function f(x) satisfies:

$$f(x) \ge 0 \text{ for all } x \tag{1}$$

$$\int_{-\infty}^{\infty} f(x)dx = 1 \tag{2}$$

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx \tag{3}$$

Our goal is to estimate f(x) from the observed sample $\{x_1, x_2, \dots, x_n\}$.

2 Data Structure and Sampling Considerations

2.1 Temporal Structure

With measurements every 5 minutes from 9 AM to 9 PM:

- Time points: $t_i = 9:00 + 5i$ minutes, i = 0, 1, ..., 143
- Daily sample size: n = 144 observations
- For k days of data: N = 144k total observations

2.2 Stationarity Assumptions

The basic PDF estimation assumes that observations are independent and identically distributed (i.i.d.). However, room temperature data may exhibit:

- ullet Temporal dependence: X(t) may be correlated with X(t-1)
- **Diurnal patterns**: f(x|t) may vary with time of day
- Non-stationarity: Distribution parameters may change over time

However, in the most simplest case, we will assume i.i.d.

3 Parametric PDF Estimation

3.1 Normal Distribution Model

If we assume $X \sim N(\mu, \sigma^2)$, the PDF is:

$$f(x;\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \tag{4}$$

3.1.1 Parameter Estimation using Maximum Likelihood

The likelihood function for n observations is:

$$L(\mu, \sigma^2) = \prod_{i=1}^n f(x_i; \mu, \sigma^2)$$
 (5)

The log-likelihood is:

$$\ell(\mu, \sigma^2) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$
 (6)

Maximum Likelihood Estimators:

$$\hat{\mu} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{7}$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 \tag{8}$$

3.2 Other Parametric Distributions

3.2.1 Beta Distribution (for bounded temperature ranges)

$$f(x;\alpha,\beta) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)} \text{ for } x \in [0,1]$$

$$\tag{9}$$

After rescaling temperature to [0,1] using: $x' = \frac{x - x_{\min}}{x_{\max} - x_{\min}}$

3.2.2 Gamma Distribution (for positive temperatures in Kelvin)

$$f(x;\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} \text{ for } x > 0$$
 (10)

3.3 Goodness-of-Fit Testing

3.3.1 Kolmogorov-Smirnov Test

Test statistic:

$$D_n = \sup_{x} |F_n(x) - F_0(x)| \tag{11}$$

Where $F_n(x)$ is the empirical CDF and $F_0(x)$ is the theoretical CDF.

3.3.2 Anderson-Darling Test

$$A = -n - \sum_{i=1}^{n} \frac{2i - 1}{n} \left[\ln F(x_{(i)}) + \ln \left(1 - F(x_{(n+1-i)}) \right) \right]$$
 (12)

Source: https://www.statsref.com/HTML/anderson-darling.html

4 Non-Parametric PDF Estimation

4.1 Kernel Density Estimation (KDE)

The kernel density estimator is:

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right) \tag{13}$$

Where:

- K(u) is the kernel function
- *h* is the bandwidth parameter
- *n* is the sample size

<u>Source:</u> Chapter 4, Harrou, Fouzi, Abdelhafid Zeroual, Mohamad Mazen Hittawe, and Ying Sun. Road traffic modeling and management: Using statistical monitoring and deep learning. Elsevier, 2021.

4.1.1 Common Kernel Functions

Gaussian Kernel:

$$K(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) \tag{14}$$

Epanechnikov Kernel (optimal):

$$K(u) = \frac{3}{4}(1 - u^2) \text{ for } |u| \le 1, \text{ 0 otherwise}$$
 (15)

Uniform Kernel:

$$K(u) = \frac{1}{2}$$
 for $|u| \le 1$, 0 otherwise (16)

4.2 Bandwidth Selection

4.2.1 Silverman's Rule of Thumb

$$h = 0.9 \times \min(\hat{\sigma}, IQR/1.34) \times n^{-1/5}$$
 (17)

Where IQR is the interquartile range.

4.2.2 Cross-Validation Bandwidth

Minimize the integrated squared error:

$$ISE(h) = \int [\hat{f}(x) - f(x)]^2 dx \tag{18}$$

Practical Cross-Validation:

$$h^* = \arg\min \sum_{i=1}^{n} \int [\hat{f}_{-i}(x) - \delta(x - x_i)]^2 dx$$
 (19)

Where $\hat{f}_{-i}(x)$ is the KDE excluding observation x_i .

4.3 Histogram-Based Estimation

4.3.1 Basic Histogram

$$\hat{f}(x) = \frac{n_j}{n \times \Lambda x} \text{ for } x \in [x_j, x_{j+1})$$
(20)

Where n_i is the count in bin j and Δx is the bin width.

4.3.2 Optimal Bin Width (Sturges' Rule)

Number of bins: $k = \lceil 1 + \log_2(n) \rceil$

Bin width: $\Delta x = \frac{x_{\text{max}} - x_{\text{min}}}{k}$

4.3.3 Freedman-Diaconis Rule

$$\Delta x = 2 \times IQR \times n^{-1/3} \tag{21}$$

5 Time-Varying PDF Models

5.1 Conditional PDF Estimation

For non-stationary data, estimate f(x|t):

5.1.1 Kernel Regression Approach

$$\hat{f}(x|t) = \sum_{i=1}^{n} w_i(t) K\left(\frac{x - x_i}{h}\right)$$
(22)

Where $w_i(t)$ are time-dependent weights:

$$w_i(t) = \frac{W\left(\frac{t-t_i}{b}\right)}{\sum_{j=1}^n W\left(\frac{t-t_j}{b}\right)}$$
(23)

5.2 Functional Data Analysis

Model temperature as a function T(t) and estimate the distribution of functional parameters.

5.2.1 Fourier Representation

$$T(t) = \mu(t) + \sum_{k=1}^{K} [a_k \cos(2\pi kt/P) + b_k \sin(2\pi kt/P)] + \varepsilon(t)$$
 (24)

Where P = 12 hours is the period.

6 Model Selection and Validation

6.1 Information Criteria

6.1.1 Akaike Information Criterion

$$AIC = -2\ell(\hat{\theta}) + 2p \tag{25}$$

6.1.2 Bayesian Information Criterion

$$BIC = -2\ell(\hat{\theta}) + p\ln(n) \tag{26}$$

Where p is the number of parameters.

6.2 Cross-Validation

6.2.1 K-Fold Cross-Validation

- 1. Divide data into *K* folds
- 2. For each fold k, estimate $\hat{f}_{-k}(x)$ using remaining data
- 3. Evaluate log-likelihood on fold k: $\mathsf{LL}_k = \sum_{i \in k} \ln(\hat{f}_{-k}(x_i))$
- 4. Average: $\mathsf{CV}\text{-}\mathsf{LL} = \frac{1}{K}\sum_{k=1}^K \mathsf{LL}_k$

6.3 Bootstrap Confidence Intervals

6.3.1 Bootstrap Procedure

- 1. Resample with replacement: $X^* = \{x_1^*, x_2^*, \dots, x_n^*\}$
- 2. Compute $\hat{f}^*(x)$

- 3. Repeat B times
- 4. Construct pointwise confidence intervals from bootstrap distribution

7 Practical Considerations

7.1 Sample Size Requirements

For reliable PDF estimation:

- Parametric: $n \ge 30$ typically sufficient
- Non-parametric KDE: $n \ge 100$ recommended
- Complex time-varying models: $n \ge 1000$ may be needed

7.2 Boundary Effects

Room temperatures are bounded (e.g., 15-30°C). Use:

- Boundary kernels for KDE
- Transformed variables
- Reflection methods

7.3 Computational Complexity

- Histogram: O(n)
- KDE: $O(n^2)$ for evaluation at n points
- Parametric MLE: O(n) per iteration

8 Implementation Algorithm

8.1 General Workflow

Listing 1: General Workflow for PDF Estimation

```
1. Data Preprocessing:
      - Remove outliers (|x - median| > 3xMAD)
2
      - Check for temporal patterns
      - Test for stationarity
  2. Model Selection:
      - Fit parametric candidates
      - Compute non-parametric estimates
      - Use cross-validation for comparison
10
  3. Parameter Estimation:
11
      - If parametric: MLE or method of moments
12
      - If KDE: optimize bandwidth
13
      - If histogram: optimize bin width
14
15
  4. Validation:
16
      - Goodness-of-fit tests
17
      - Cross-validation
18
      - Bootstrap confidence intervals
20
  5. Final Estimation:
21
      - Select best model
22
      - Provide uncertainty quantification
23
```

8.2 Error Metrics

8.2.1 Mean Integrated Squared Error

$$MISE = E\left[\int (\hat{f}(x) - f(x))^2 dx\right]$$
 (27)

8.2.2 Pointwise Mean Squared Error

$$MSE(x) = E[(\hat{f}(x) - f(x))^2] = Bias^2(x) + Variance(x)$$
(28)