Lecture 11: Probability inequalities

What we need to do

Markov's inequality

Theorem: Let Y be a non-negative random variable, and suppose that $\mathbb{E}[Y]$ exists. Then for any t > 0,

$$P(Y \ge t) \le \frac{\mathbb{E}[Y]}{t}$$

Chebyshev's inequality

Theorem: Let Y be a random variable, and let $\mu = \mathbb{E}[Y]$ and $\sigma^2 = Var(Y)$. Then

$$P(|Y - \mu| \ge t) \le \frac{\sigma^2}{t^2}$$

With your neighbor, apply Markov's inequality to prove Chebyshev's inequality.

Cauchy-Schwarz inequality

Theorem: For any two random variables X and Y,

$$|\mathbb{E}[XY]| \le \mathbb{E}|XY| \le (\mathbb{E}[X^2])^{1/2} (\mathbb{E}[Y^2])^{1/2}$$

Example: The *correlation* between X and Y is defined by

$$\varrho(X,Y) = \frac{\text{Cov}(X,Y)}{\sqrt{\overline{\text{Var}(X)}}\sqrt{\overline{\text{Var}(Y)}}}$$

Using the Cauchy-Schwarz inequality, we can show that $-1 \le \varrho(X, Y) \le 1$.