# **Instructions for IGM App**

## REQUIREMENTS

- 1. **Matlab** (version R2023a or better)
- 2. CobraToolbox ([Installation

Guide] https://opencobra.github.io/cobratoolbox/stable/installation.html)

- 3. **Gurobi solver** (version 11.0.3 or better, free academic)
- 4. **Genome scale metabolic model** ([Download from BiGG Models] <a href="http://bigg.ucsd.edu/">http://bigg.ucsd.edu/</a> and iML1515 can be downloaded from <a href="http://bigg.ucsd.edu/models/iML1515">http://bigg.ucsd.edu/models/iML1515</a> )
- 5. Gene expression data file
- 6. Uptake rates data file

### \*\*\*Notes

- Files in 4, 5, and 6 are in the same directory.
- The first column of the gene expression file must contain **gene symbols/names** used in the genome-scale metabolic model.
- The first column of the uptake rates file must contain **reaction IDs** used in the model.
- The first row in both files must contain the condition names, and these names should match between files.

## **Installation of IGM App**

- 1. Download the **IGMAPP** installer from GitHub.
- 2. Open MATLAB and go to the APPS tab.



- 3. Click **Install App**, select the **IGMAPP** installer you downloaded from GitHub, and press **Open**.
- 4. Click Install to install IGMAPP.



5. **IGMAPP** will now appear in the **APPS** tab.



#### **How to Run IGM**

- 1. Type initCobraToolbox in the MATLAB command window and run it.
- 2. Open IGMAPP.
- 3. Click **Current Directory** to check the current working directory. If this is not your working directory, click **Choose Directory** and select the desired folder.
- 4. Select the **genome-scale metabolic model file**, then click **Read Model**. Wait until the status changes to Finished and the lamp turns green.



5. Select the **gene expression table file**, then click **Read Table**. Wait until the status changes to Finished and the lamp turns green. You can verify your data in the displayed table.



6. Select the **uptake rates table file**, then click **Read Table**. Wait until the status changes to Finished and the lamp turns green. You can verify your data in the displayed table.



## 7. Select **optional inputs**:

- a. Select the conditions for calculation in IGM (more than one condition).
- b. Select the normalization method.
- c. Select the method for calculating IGM.



- 8. Click **Run IGM Model** and wait until the status changes to Finished and the lamp turns green.
- 9. **(Optional)** To save the flux results, enter a file name (e.g., filename.csv) and click Save Results. The output file will be saved in the selected directory.

## **Visualization using IGM Framework**

1. After running the IGM model, you can visualize the results by selecting two conditions for flux change analysis. In the plot settings, you can filter flux values within a specified range (between the upper and lower bounds of the fluxes), then select the number of top-changing fluxes to display. Click **Plot** to generate the visualization.

| Visualization of Flux Change Analysis |      |                      |      |                   |    |
|---------------------------------------|------|----------------------|------|-------------------|----|
| Control Condition                     | RF ▼ | Filter (upper bound) | 100  | Top change fluxes | 10 |
| Threat Condition                      | RF ▼ | Filter (Lower bound) | -100 |                   |    |
|                                       |      | Plot                 |      |                   |    |

### 2. The visualization includes:

- a. A table of relative flux changes (you can save this table by entering Filename.csv and clicking **Save Table**).
- b. A horizontal bar plot of the top-changing reaction fluxes.
- c. A scatter plot of fluxes between the two selected conditions.



- 3. You can change the conditions, adjust parameters, or check the **Flux Name** box to display flux labels in the scatter plot. After making adjustments, click **Plot** again to update the visualization automatically.
- 4. To save the visualization image, enter a file name (e.g., imagename.png) and click **Save**Image.