# Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ»

Кафедра интеллектуальных информационных технологий

# Отчет по лабораторной работе №1 по курсу «МРЗвИС» на тему: «Реализация модели решения задач на конвейерной архитектуре»

Выполнили студенты: Плявго Д. А. группа 821701 Макарчук Е. В.

Проверил: Крачковский Д. Я.

МИНСК 2020

# Цель:

Реализовать и исследовать модель решения на конвейерной архитектуре задачи вычисления попарного произведения (деления) компонентов двух векторов чисел.

# Вариант задания:

**Вариант 4:** Алгоритм вычисления произведения пары 4-разрядных чисел умножением со старших разрядов со сдвигом частичной суммы влево;

# Выполнение задания:

**1.** Схема работы конвейера для числа входных элементов, равного четырём:

| Такт | Этапы          |                |                |                |
|------|----------------|----------------|----------------|----------------|
|      | 1              | 2              | 3              | 4              |
| 1    | 1 разряд a1*b1 |                |                |                |
| 2    | 1 разряд a2*b2 | 2 разряд a1*b1 |                |                |
| 3    | 1 разряд a3*b3 | 2 разряд a2*b2 | 3 разряд a1*b1 |                |
| 4    | 1 разряд a4*b4 | 2 разряд a3*b3 | 3 разряд a2*b2 | 4 разряд a1*b1 |
| 5    |                | 2 разряд a4*b4 | 3 разряд a3*b3 | 4 разряд a2*b2 |
| 6    |                |                | 3 разряд a4*b4 | 4 разряд a3*b3 |
| 7    |                |                |                | 4 разряд a4*b4 |

Таблица 1. Схема работы конвейера

## **Такт 1:**

(I) Вычисляется умножение первых разрядов первой пары чисел

## **Такт 2:**

- (I) Вычисляется умножение первых разрядов второй пары чисел
- (II) Вычисляется умножение вторых разрядов первой пары чисел

#### Такт 3:

- (I) Вычисляется умножение первых разрядов третьей пары чисел
- (II) Вычисляется умножение вторых разрядов второй пары чисел
- (III) Вычисляется умножение третьих разрядов первой пары чисел

## **Такт 4:**

- (I) Вычисляется умножение первых разрядов четвертой пары чисел
- (II) Вычисляется умножение вторых разрядов третьей пары чисел
- (III) Вычисляется умножение третьих разрядов второй пары чисел
- (IV) Вычисляется умножение четвертых разрядов первой пары чисел

## Такт 5:

- (I) Вычисляется умножение вторых разрядов четвертой пары чисел
- (II) Вычисляется умножение третьих разрядов третьей пары чисел
- (III) Вычисляется умножение четвертых разрядов второй пары чисел

## Такт 6:

- (I) Вычисляется умножение третьих разрядов четвертой пары чисел
- (II) Вычисляется умножение четвертых разрядов третьей пары чисел

## **Такт 7:**

(I) Вычисляется умножение четвертых разрядов четвертой пары чисел

## Примечание:

Перевод чисел из десятичной системы счисления в десятичную и обратно вычисляется автоматически.

# 2. Исходные данные:

- **m** количество чисел в векторе, количество умножаемых пар (не является фиксированной величиной, в данном случае равно 4);
- **p = 4** разрядность чисел;
- **n = 4** количество этапов конвейера;
- **r = m** ранг задачи (количество объектов, которые в процессе решения задачи могли бы обрабатываться параллельно);
- $t_i = 1$  количество тактов для одного этапа конвейера;
- 4 пары чисел: <8, 9>, <9, 14>, <10, 11>, <11, 13>.



Рисунок 1. Результат работы программы

# 3. Построение графиков:

Асимптота - прямая, к которой график заданной функции приближается сколько угодно близко, но не пересекает ee.

На следующем графике асимптота Ky = 4, можно увидеть, как график растет к этому значению, но сможет достичь этого значения только при  $r \to \infty$ .





На следующем графике асимптота e=1, можно увидеть, как график растет к этому значению, но сможет достичь этого значения только при  $r\to\infty$ .





# 4. Ответы на вопросы:

# 1 Bonpoc:

Проверить, что модель создана верно: программа работает правильно.

## Ответ:

Проверка правильности работы программы:

## Вывод:

Программа работает верно.

# 2 Bonpoc:

Объяснить на графиках точки перегиба и асимптоты.

## Ответ:

Асимптоты означают, что рост производительности конвейера ограничен и зависит от количества процессорных элементов и объектов.

# <u> 3 Bonpoc:</u>

Спрогнозировать, как изменится вид графиков при изменении параметров модели; если модель позволяет, то проверить на ней правильность ответа.

## Ответ:

Если увеличивается ранг задачи r, то коэффициент ускорения и эффективность увеличиваются. Если увеличивается количество этапов конвейера n, то коэффициент ускорения увеличивается, а эффективность уменьшается.

# 4 Bonpoc:

Каково соотношение между параметрами **n, r, m, р** модели сбалансированного конвейера?

## Ответ:

- **m** количество чисел в векторе, количество умножаемых пар (не является фиксированной величиной, в данном случае равно 4);
- **p = 4** разрядность чисел;
- **n = 4** количество этапов конвейера;

• **r** = **m** – ранг задачи (количество объектов, которые в процессе решения задачи могли бы обрабатываться параллельно);

# <u> 5 Дано:</u>

Пусть имеется некоторая характеристика h (эффективность е или ускорение Ку) и для неё выполняется:

a. 
$$h(n_1; r_1) = h(n_2; r_2);$$

b. 
$$n_1 > n_2$$
.

Каким будет соотношение между  $r_1$  и  $r_2$ ?

#### Ответ:

$$\begin{split} &e(n_1;r_1)=e(n_2;r_2)\;;\,e=\frac{\mathrm{K}\mathrm{y}}{n}=\frac{T_1}{T_n*n}\;;n\in N\\ &\frac{r_1*n_1}{(n_1+r_1-1)*n_1}=\frac{r_2*n_2}{(n_2+r_2-1)*n_2};\\ &r_1n_2+r_1r_2-r_1=r_2n_1+r_1r_2-r_2;\\ &r_1(n_2-1)=r_2(n_1-1);\\ &\frac{r_2}{r_1}=\frac{n_2-1}{n_1-1}. \end{split}$$

Из равенства выше следует:  $r_1 > r_2$ .

# <u> 6 Дано:</u>

- а. несбалансированный конвейер (заданы конкретные значения: n, t<sub>i</sub> времена выполнения обработки на этапах конвейера);
- b. e₀ некоторое фиксированное значение эффективности.

# Определить:

Значение  $r_0$ , при котором выполняется  $e(n; r_0) > e_0$ .

## Ответ:

Так как в результате построения графика получилась гипербола, большему значению х соответствует меньшее значение у. Значит, чтобы значение е было больше  $e_0$ , величина r должна находиться в интервале  $r \in (0; r_0)$ .

# 7 Bonpoc:

Для несбалансированного конвейера (использовать исходные данные предыдущего вопроса) определить  $\lim_{r \to \infty} (e(n; r))$ .

#### Ответ:

Предел эффективности при  $r \to \infty$  равен 0.

# <u> 8 Дано:</u>

Несбалансированный конвейер (использовать исходные данные предыдущего вопроса).

## Bonpoc:

Каким образом можно перестроить данный конвейер, чтобы для заданного  $r_0$  выполнялось  $e(n; r_0) > e_0$ ?

## Ответ:

Изменить структуру конвейера так, чтобы число r принадлежало интервалу  $r \in (0; r_0)$ .

# <u> 9 Дано:</u>

Несбалансированный конвейер (использовать исходные данные предыдущего вопроса) и значение минимального кванта времени  $t_0$  (условной временной единицы).

# Bonpoc:

Каким образом нужно перестроить данный конвейер, чтобы получить максимально быстрый конвейер?

## Ответ:

Необходимо разделить его на столько этапов, чтобы время каждого этапа было равно.

# Вывод:

В результате выполнения лабораторной работы была реализована модель сбалансированного конвейера для вычисления произведения пары 4-разрядных чисел умножением со старших разрядов со сдвигом частичной суммы влево. Реализованная модель была проверена на работоспособность и правильность получаемых результатов. Данная модель позволяет ускорить процесс вычисления результата. Были исследованы числовые характеристики конвейерной архитектуры, а именно коэффициент ускорения и эффективность при решении поставленной задачи.