```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.compose import ColumnTransformer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler
from sklearn.svm import SVC, LinearSVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics
from sklearn import preprocessing
```

Loading the Dataset

First we load the dataset and find out the number of columns, rows, NULL values, etc.

```
df = pd.read_csv('churn_modelling.csv')
df.info()
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 10000 entries, 0 to 9999
    Data columns (total 14 columns):
     # Column
                        Non-Null Count Dtype
     0 RowNumber
                        10000 non-null int64
         CustomerId
                        10000 non-null int64
         Surname
                       10000 non-null object
         Surname
CreditScore
                         10000 non-null int64
        Geography 10000 non-null object
                         10000 non-null int64
         Age
                       10000 non-null int64
         Tenure
                        10000 non-null float64
        Balance
         NumOfProducts 10000 non-null int64
     10 HasCrCard
                         10000 non-null int64
     11 IsActiveMember 10000 non-null int64
     12 EstimatedSalary 10000 non-null float64
                         10000 non-null int64
    dtypes: float64(2), int64(9), object(3)
    memory usage: 1.1+ MB
```

df.head()

₹		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Esti
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	
	4)

New interactive sheet

Cleaning

Next steps:

```
df.drop(columns=['RowNumber', 'CustomerId', 'Surname'], inplace=True)
df.isna().sum()
```

View recommended plots

Generate code with df

df.describe()

		CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
	mean	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
	std	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
	min	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
	25%	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
	50%	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
	75%	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
	max	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

Separating the features and the labels

```
X=df.iloc[:, :df.shape[1]-1].values  #Independent Variables
y=df.iloc[:, -1].values  #Dependent Variable
X.shape, y.shape
  ((10000, 10), (10000,))
```

Encoding categorical (string based) data.

Split the countries into respective dimensions. Converting the string features into their own dimensions.

Dimensionality reduction. A 0 on two countries means that the country has to be the one variable which wasn't included

```
X = X[:,1:]
X.shape (10000, 11)
```

Splitting the Dataset

Training and Test Set

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
```

Normalize the train and test data

```
['CreditScore','Age','Tenure','Balance','NumOfProducts','EstimatedSalary']
sc=StandardScaler()
 X_{\texttt{train}[:,np.array([2,4,5,6,7,10])]} = sc.fit_{\texttt{transform}(X_{\texttt{train}[:,np.array([2,4,5,6,7,10])])}} 
X_{\text{test}}[:,np.array([2,4,5,6,7,10])] = sc.transform(X_{\text{test}}[:,np.array([2,4,5,6,7,10])])
sc=StandardScaler()
X_train = sc.fit_transform(X_train)
X_{\text{test}} = \text{sc.transform}(X_{\text{test}})
X_train
→ array([[-0.5698444 , 1.74309049, 0.16958176, ..., 0.64259497,
               -1.03227043, 1.10643166],
              [ 1.75486502, -0.57369368, -2.30455945, ..., 0.64259497,
                0.9687384 , -0.74866447],
             [-0.5698444 , -0.57369368, -1.19119591, ..., 0.64259497, -1.03227043, 1.48533467],
              [-0.5698444 , -0.57369368, 0.9015152 , ..., 0.64259497,
               -1.03227043, 1.41231994],
             [-0.5698444 , 1.74309049, -0.62420521, ..., 0.64259497, 0.9687384 , 0.84432121],
              [ 1.75486502, -0.57369368, -0.28401079, ..., 0.64259497,
               -1.03227043, 0.32472465]])
```

Initialize & build the model

```
INPUT = Number columns (Independet ) HIDDEN - AF HIDDEN -AF . . . N OUTPUT (1,2) -Sigmoid

from tensorflow.keras.models import Sequential

# Initializing the ANN
classifier = Sequential()

from tensorflow.keras.layers import Dense

# The amount of nodes (dimensions) in hidden layer should be the average of input and output layers, in this case 6.

# This adds the input layer (by specifying input dimension) AND the first hidden layer (units)
classifier.add(Dense(activation = 'relu', input_dim = 11, units=256, kernel_initializer='uniform'))
```

/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argumen super().__init__(activity_regularizer=activity_regularizer, **kwargs)

```
# Adding the hidden layer
classifier.add(Dense(activation = 'relu', units=512, kernel_initializer='uniform'))
classifier.add(Dense(activation = 'relu', units=256, kernel_initializer='uniform'))
classifier.add(Dense(activation = 'relu', units=128, kernel_initializer='uniform'))

# Adding the output layer
# Notice that we do not need to specify input dim.
# we have an output of 1 node, which is the the desired dimensions of our output (stay with the bank or not)
# We use the sigmoid because we want probability outcomes
classifier.add(Dense(activation = 'sigmoid', units=1, kernel_initializer='uniform'))

# Create optimizer with default learning rate
# sgd_optimizer = tf.keras.optimizers.SGD()
# Compile the model
classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
```

classifier.summary()

→ Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 256)	3,072
dense_1 (Dense)	(None, 512)	131,584
dense_2 (Dense)	(None, 256)	131,328
dense_3 (Dense)	(None, 128)	32,896
dense_4 (Dense)	(None, 1)	129

```
Total params: 299,009 (1.14 MB)
Trainable params: 299,009 (1.14 MB)

Non-trainable params: 0 (0 00 R)

classifier.fit(
    X_train, y_train,
    validation_data=(X_test,y_test),
    epochs=20,
    batch_size=32
)
```

```
→ Epoch 1/20
    250/250
                               - 4s 9ms/step - accuracy: 0.7998 - loss: 0.4757 - val_accuracy: 0.8500 - val_loss: 0.3747
    Epoch 2/20
    250/250
                               - 2s 8ms/step - accuracy: 0.8476 - loss: 0.3693 - val_accuracy: 0.8585 - val_loss: 0.3537
    Epoch 3/20
    250/250
                                - 4s 13ms/step - accuracy: 0.8585 - loss: 0.3455 - val_accuracy: 0.8605 - val_loss: 0.3418
    Epoch 4/20
    250/250
                                - 2s 8ms/step - accuracy: 0.8597 - loss: 0.3438 - val_accuracy: 0.8660 - val_loss: 0.3360
    Epoch 5/20
    250/250
                                - 3s 9ms/step - accuracy: 0.8626 - loss: 0.3355 - val_accuracy: 0.8675 - val_loss: 0.3397
    Epoch 6/20
    250/250
                                - 2s 8ms/step - accuracy: 0.8625 - loss: 0.3375 - val_accuracy: 0.8505 - val_loss: 0.3506
    Epoch 7/20
    250/250
                                - 2s 7ms/step - accuracy: 0.8605 - loss: 0.3407 - val_accuracy: 0.8605 - val_loss: 0.3379
    Epoch 8/20
    250/250
                               – 3s 10ms/step - accuracy: 0.8565 - loss: 0.3308 - val_accuracy: 0.8660 - val_loss: 0.3420
    Epoch 9/20
    250/250
                                - 5s 8ms/step - accuracy: 0.8687 - loss: 0.3196 - val_accuracy: 0.8595 - val_loss: 0.3446
    Epoch 10/20
    250/250
                                - 2s 8ms/step - accuracy: 0.8683 - loss: 0.3183 - val_accuracy: 0.8600 - val_loss: 0.3394
    Epoch 11/20
    250/250
                               - 2s 8ms/step - accuracy: 0.8723 - loss: 0.3121 - val_accuracy: 0.8590 - val_loss: 0.3411
    Epoch 12/20
    250/250
                                - 3s 8ms/step - accuracy: 0.8793 - loss: 0.3070 - val_accuracy: 0.8600 - val_loss: 0.3690
    Epoch 13/20
                                - 3s 12ms/step - accuracy: 0.8772 - loss: 0.3069 - val_accuracy: 0.8630 - val_loss: 0.3303
    250/250
    Epoch 14/20
                                - 4s 8ms/step - accuracy: 0.8758 - loss: 0.3108 - val_accuracy: 0.8530 - val_loss: 0.3652
    250/250
    Epoch 15/20
    250/250
                                - 3s 8ms/step - accuracy: 0.8822 - loss: 0.2981 - val_accuracy: 0.8555 - val_loss: 0.3535
    Epoch 16/20
                                - 3s 8ms/step - accuracy: 0.8794 - loss: 0.2998 - val_accuracy: 0.8605 - val_loss: 0.3591
    250/250
```

Predict the results using 0.5 as a threshold

```
y_pred = classifier.predict(X_test)
y_pred
→ 63/63 -
                             — 0s 3ms/step
     array([[0.38601685],
            [0.2562771],
            [0.05166654],
            [0.01091674],
            [0.2623498],
            [0.15966687]], dtype=float32)
# To use the confusion Matrix, we need to convert the probabilities that a customer will leave the bank into the form true or false.
# So we will use the cutoff value 0.5 to indicate whether they are likely to exit or not.
y_pred = (y_pred > 0.5)
y_pred
→ array([[False],
            [False],
            [False],
            [False],
            [False],
            [False]])
```

Print the Accuracy score and confusion matrix

→		precision	recall	f1-score	support
	0 1	0.88 0.71	0.95 0.51	0.91 0.60	1595 405
accur macro weighted	acy avg	0.80 0.85	0.73 0.86	0.86 0.76 0.85	2000 2000 2000

₹ 85.95 % of testing data was classified correctly