Выпуклость и гладкость. Градиентный спуск Методы оптимизации

Александр Безносиков

Московский физико-технический институт

14 сентября 2023

Рассмотрим безусловную задачу:

$$\min_{x \in \mathbb{R}^d} f(x).$$

Рассмотрим безусловную задачу:

$$\min_{x \in \mathbb{R}^d} f(x)$$
.

Локальный минимум

Точка x^* называется локальным минимумом функции f на \mathbb{R}^d , если существует r>0 такое, что для любого $y\in B_2^d(r,x^*)=\{y\in\mathbb{R}^d\mid \|y-x^*\|_2\le r\}$ следует, что $f(x^*)\le f(y)$.

Рассмотрим безусловную задачу:

$$\min_{x \in \mathbb{R}^d} f(x)$$
.

Локальный минимум

Точка x^* называется локальным минимумом функции f на \mathbb{R}^d , если существует r>0 такое, что для любого

$$y \in B_2^d(r, x^*) = \{y \in \mathbb{R}^d \mid \|y - x^*\|_2 \le r\}$$
 следует, что $f(x^*) \le f(y)$.

Глобальный минимум

Точка x^* называется глобальным минимумом функции f на \mathbb{R}^d , если для любого $y \in \mathbb{R}^d$ следует, что $f(x^*) \leq f(y)$.

Рассмотрим безусловную задачу:

$$\min_{x \in \mathbb{R}^d} f(x)$$

Локальный минимум

Точка x^* называется локальным минимумом функции f на \mathbb{R}^d , если существует r>0 такое, что для любого $y\in B_2^d(r,x^*)\stackrel{\triangle}{=} \{y\in\mathbb{R}^d\mid \|y-x^*\|_2\leq r\}$ следует, что $f(x^*)\leq f(y)$.

Глобальный минимум

Точка x^* называется глобальным минимумом функции f на \mathbb{R}^d , если для любого $y \in \mathbb{R}^d$ следует, что $f(x^*) \leq f(y)$.

Определение можно обобщить и до локального/глобального минимума на множестве \mathcal{X} , т.е. для задачи вида $\min_{x \in \mathcal{X}} f(x)$. Для этого надо брать $y \in B_2^d(r, x^*) \cup \mathcal{X}$ и $y \in \mathcal{X}$ в соответствующих определениях.

Теорема об условии оптимальности локального минимума

Пусть x^* – локальный минимумом функции f на \mathbb{R}^d , тогда если f дифференцируема, то $\nabla f(x^*) = 0$.

Доказательство

Пойдем от противного и предположим $\nabla f(x^*) \neq 0$. Разложим в ряд в окрестности локального минимума:

$$f(x) = f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + o(||x - x^*||_2),$$

где
$$\lim_{X \to X^*} \frac{o(\|x - x^*\|_2)}{\|x - x^*\|_2} = 0.$$

Доказательство

Пойдем от противного и предположим $\nabla f(x^*) \neq 0$. Разложим в ряд в окрестности локального минимума:

$$f(x) = f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + o(||x - x^*||_2),$$

где $\lim_{X\to X^*} \frac{o(\|x-x^*\|_2)}{\|x-x^*\|_2} = 0.$

Рассмотрим $\tilde{x} = x^* - \lambda \nabla f(x^*)$. Цель: выбрать λ , чтобы \tilde{x} попал в нужную окрестность из определения локального минимума.

Доказательство

Пойдем от противного и предположим $\nabla f(x^*) \neq 0$. Разложим в ряд в окрестности локального минимума:

$$f(x) = f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + o(||x - x^*||_2),$$

где $\lim_{X\to X^*} \frac{o(\|x-x^*\|_2)}{\|x-x^*\|_2} = 0.$

Рассмотрим $\tilde{x} = x^* - \lambda \nabla f(x^*)$. Цель: выбрать λ , чтобы \tilde{x} попал в нужную окрестность из определения локального минимума. Понятно, что такое λ можно найти.

Доказательство

Пойдем от противного и предположим $\nabla f(x^*) \neq 0$. Разложим в ряд в окрестности локального минимума:

$$f(x) = f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + o(||x - x^*||_2),$$

где $\lim_{X\to X^*} \frac{o(\|x-x^*\|_2)}{\|x-x^*\|_2} = 0.$

Рассмотрим $\tilde{x} = x^* - \lambda \nabla f(x^*)$. Цель: выбрать λ , чтобы \tilde{x} попал в нужную окрестность из определения локального минимума. Понятно, что такое λ можно найти. Тогда с одной стороны:

$$f(\tilde{x}) \geq f(x^*),$$
 и

Доказательство

Пойдем от противного и предположим $\nabla f(x^*) \neq 0$. Разложим в ряд в окрестности локального минимума:

$$f(x) = f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + o(||x - x^*||_2),$$

где
$$\lim_{X\to X^*} \frac{o(\|x-x^*\|_2)}{\|x-x^*\|_2} = 0.$$

Рассмотрим $\tilde{x} = x^* - \lambda \nabla f(x^*)$. Цель: выбрать λ , чтобы \tilde{x} попал в нужную окрестность из определения локального минимума. Понятно, что такое λ можно найти. Тогда с одной стороны:

$$f(\tilde{x}) \geq f(x^*),$$
 и

$$f(\tilde{x}) = f(x^*) + \langle \nabla f(x^*), \tilde{x} - x^* \rangle + o(||\tilde{x} - x^*||_2)$$

= $f(x^*) - \lambda ||\nabla f(x^*)||_2^2 + o(\lambda ||\nabla f(x^*)||_2)$

Доказательство

Набросим еще одно ограничение на "малость" λ . Пусть теперь еще выполнено, что $|o(\lambda||\nabla f(x^*)||_2)| \leq \frac{\lambda}{2} ||\nabla f(x^*)||_2^2$. Тогда для подобранного $\lambda > 0$

$$f(\tilde{x}) \leq f(x^*) - \frac{\lambda}{2} \|\nabla f(x^*)\|^2$$

Пришли к противоречию, что x^* – локальный минимум.

Локальный и глобальный минимум

- Наша цель глобальный минимум (или точка близкая к нему в некотором смысле).
- На прошлой лекции стало понятно, что без дополнительных предположений искать глобальный минимум бессмысленно.

Выпуклость: определение

Определение выпуклой функции

Пусть дана непрерывно дифференцируемая на \mathbb{R}^d функция $f: \mathbb{R}^d \to \mathbb{R}$. Будем говорить, что она является выпуклой, если для любых $x,y \in \mathbb{R}^d$ выполнено

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle.$$

Выпуклость: определение

Определение выпуклой функции

Пусть дана непрерывно дифференцируемая на \mathbb{R}^d функция $f: \mathbb{R}^d \to \mathbb{R}$. Будем говорить, что она является выпуклой, если для любых $x,y \in \mathbb{R}^d$ выполнено

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle.$$

На 4 семинаре будет еще одно определение (эквивалентное в случае дифференцируемых функций).

Определение выпуклой функции

Будем говорить, что она является выпуклой, если для любых $x,y\in\mathbb{R}^d$ и для любого $\lambda\in[0;1]$ выполнено

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Выпуклость

Ограничение снизу на поведение.

Сильная выпуклость: определение

Определение μ -сильно выпуклой функции

Пусть дана непрерывно дифференцируемая на \mathbb{R}^d функция $f: \mathbb{R}^d \to \mathbb{R}$. Будем говорить, что она является μ -сильно выпуклой $(\mu > 0)$, если для любых $x, y \in \mathbb{R}^d$ выполнено

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||x - y||_2^2.$$

Сильная выпуклость: определение

Определение μ -сильно выпуклой функции

Пусть дана непрерывно дифференцируемая на \mathbb{R}^d функция $f: \mathbb{R}^d \to \mathbb{R}$. Будем говорить, что она является μ -сильно выпуклой $(\mu > 0)$, если для любых $x, y \in \mathbb{R}^d$ выполнено

$$f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||x - y||_2^2.$$

Определение выпуклой функции

Будем говорить, что она является выпуклой, если для любых $x,y\in\mathbb{R}^d$ и для любого $\lambda\in[0;1]$ выполнено

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) - \lambda(1 - \lambda)\frac{\mu}{2}||x - y||_2^2$$

Сильная выпуклость

Более сильное ограничение снизу на поведение.

Теорема об условии оптимальности безусловной выпуклой задачи

Пусть дана выпуклая непрерывно дифференцируемая на \mathbb{R}^d функция $f: \mathbb{R}^d \to R$. Если для некоторой точки $x^* \in \mathbb{R}^d$ верно, что $\nabla f(x^*)$, то x^* – глобальный минимум f на всем \mathbb{R}^d .

Теорема об условии оптимальности безусловной выпуклой задачи

Пусть дана выпуклая непрерывно дифференцируемая на \mathbb{R}^d функция $f: \mathbb{R}^d \to R$. Если для некоторой точки $x^* \in \mathbb{R}^d$ верно, что $\nabla f(x^*)$, то x^* – глобальный минимум f на всем \mathbb{R}^d .

Доказательство

Запишем определение выпуклости:

$$f(x) \geq f(x^*) + \langle \nabla f(x^*), x - x^* \rangle = f(x^*).$$

Теорема об условии оптимальности безусловной выпуклой задачи

Пусть дана выпуклая непрерывно дифференцируемая на \mathbb{R}^d функция $f: \mathbb{R}^d \to R$. Если для некоторой точки $x^* \in \mathbb{R}^d$ верно, что $\nabla f(x^*)$, то x^* – глобальный минимум f на всем \mathbb{R}^d .

Доказательство

Запишем определение выпуклости:

$$f(x) \ge f(x^*) + \langle \nabla f(x^*), x - x^* \rangle = f(x^*).$$

В обратную сторону уже доказывали выше для произвольных функций.

Выпуклое множество: определение

Определение выпуклого множества

Множество \mathcal{X} называется выпуклым, если для любых $x,y\in\mathcal{X}$ и для любого $\lambda\in[0;1]$ следует, что

$$\lambda x + (1 - \lambda)y \in \mathcal{X}$$
.

Выпуклое множество: определение

Определение выпуклого множества

Множество \mathcal{X} называется выпуклым, если для любых $x,y\in\mathcal{X}$ и для любого $\lambda\in[0;1]$ следует, что

$$\lambda x + (1 - \lambda)y \in \mathcal{X}$$
.

Смысл: вместе с любыми двумя точками множества в множество входит и отрезок с концами в этих точках. Подробнее на 3 семинаре.

Выпуклое множество: пример

Вопрос: какие множества здесь выпуклые?

Выпуклое множество: пример

Вопрос: какие множества здесь выпуклые? 1 и 3

Выпуклое множество: пример

Вопрос: какие множества здесь выпуклые? 1 и 3

Вопрос: понятие выпуклости функции можно обобщить на множество \mathcal{X} (необязательно \mathbb{R}^d), но важно, чтобы множество \mathcal{X} было

выпуклым. Зачем?

Теорема об условии оптимальности условной выпуклой задачи

Пусть дана выпуклая непрерывно дифференцируемая на \mathbb{R}^d функция $f: \mathbb{R}^d \to R$ и выпуклое множество \mathcal{X} . Тогда $x^* \in \mathcal{X}$ — минимум f на \mathcal{X} тогда и только тогда, когда для всех $x \in \mathcal{X}$ выполнено

$$\langle \nabla f(x^*), x - x^* \rangle \geq 0.$$

Теорема об условии оптимальности условной выпуклой задачи

Пусть дана выпуклая непрерывно дифференцируемая на \mathbb{R}^d функция $f: \mathbb{R}^d \to R$ и выпуклое множество \mathcal{X} . Тогда $x^* \in \mathcal{X}$ — минимум f на \mathcal{X} тогда и только тогда, когда для всех $x \in \mathcal{X}$ выполнено

$$\langle \nabla f(x^*), x - x^* \rangle \geq 0.$$

Доказательство в пособии и через 2 лекции. Сегодня пока не пригодится.

Условие оптимальности: суть

Теорема о минимумах выпуклых функций

Рассмотрим задачу

$$\min_{x \in \mathcal{X}} f(x),$$

где f – выпуклая, \mathcal{X} - выпуклое. Тогда всякий локальный минимум f на \mathcal{X} является и глобальным.

Доказательство

Пусть x^* – локальный минимум. Рассмотрим точку вида

$$x_{\lambda} = \lambda x^* + (1 - \lambda)x$$

где x – произвольная точка из \mathcal{X} .

Доказательство

Пусть x^* – локальный минимум. Рассмотрим точку вида

$$x_{\lambda} = \lambda x^* + (1 - \lambda)x,$$

где x – произвольная точка из \mathcal{X} . Вопрос: что можно сказать про x_{λ}^{r} ?

Доказательство

Пусть x^* – локальный минимум. Рассмотрим точку вида

$$x_{\lambda}^{\bullet} = \lambda x^* + (1 - \lambda)x,$$

где x – произвольная точка из \mathcal{X} . Вопрос: что можно сказать про x_{λ}^* ? $x_{\lambda}^* \in \mathcal{X}$ в силу выпуклости \mathcal{X} .

Доказательство

Пусть x^* – локальный минимум. Рассмотрим точку вида

$$x_{\lambda} = \lambda x^* + (1 - \lambda)x,$$

где x – произвольная точка из \mathcal{X} . Вопрос: что можно сказать про x_{λ}^* ? $x_{\lambda}^* \in \mathcal{X}$ в силу выпуклости \mathcal{X} . Подберем $\lambda > 0$ достаточно малым, что x_{λ} попадает в окрестность, где x^* локальный минимум.

Доказательство

Пусть x^* – локальный минимум. Рассмотрим точку вида

$$x_{\lambda} = \lambda x^* + (1 - \lambda)x,$$

где x – произвольная точка из \mathcal{X} . Вопрос: что можно сказать про x_{λ}^* ? $x_{\lambda}^* \in \mathcal{X}$ в силу выпуклости \mathcal{X} . Подберем $\lambda > 0$ достаточно малым, что x_{λ} попадает в окрестность, где x^* локальный минимум. Тогда уже по выпуклости f

$$f(x^*) \leq f(x_{\lambda}) \leq \lambda f(x) + (1-\lambda)f(x^*).$$

Доказательство

Пусть x^* – локальный минимум. Рассмотрим точку вида

$$x_{\lambda} = \lambda x^* + (1 - \lambda)x,$$

где x – произвольная точка из \mathcal{X} . Вопрос: что можно сказать про x_{λ}^* ? $x_{\lambda}^* \in \mathcal{X}$ в силу выпуклости \mathcal{X} . Подберем $\lambda > 0$ достаточно малым, что x_{λ} попадает в окрестность, где x^* локальный минимум. Тогда уже по выпуклости f

$$f(x^*) \leq f(x_{\lambda}) \leq \lambda f(x) + (1-\lambda)f(x^*).$$

Вопрос: что получили?

Доказательство

Пусть x^* – локальный минимум. Рассмотрим точку вида

$$x_{\lambda} = \lambda x^* + (1 - \lambda)x,$$

где x – произвольная точка из \mathcal{X} . Вопрос: что можно сказать про x_{λ}^* ? $x_{\lambda}^* \in \mathcal{X}$ в силу выпуклости \mathcal{X} . Подберем $\lambda > 0$ достаточно малым, что x_{λ} попадает в окрестность, где x^* локальный минимум. Тогда уже по выпуклости f

$$f(x^*) \leq f(x_{\lambda}) \leq \lambda f(x) + (1 - \lambda)f(x^*).$$

Вопрос: что получили? $f(x) \ge f(x^*)$. В силу произвольности $x \in \mathcal{X}$ минимум из локального превратился в глобальный.

Теорема о минимумах выпуклых функций

Рассмотрим задачу

$$\min_{x \in \mathcal{X}} f(x),$$

где f – выпуклая, \mathcal{X} - выпуклое. Тогда множество точек минимума \mathcal{X}^* выпукло.

Доказательство

Пустое множество и множество из 1 точки выпуклы.

Доказательство

Пустое множество и множество из 1 точки выпуклы. Пусть теперь $x_1^*, x_2^* \in \mathcal{X}^*$. Рассмотрим $\underline{x_\lambda^* = \lambda x_1^* + (1-\lambda)x_2^*},$ где $\lambda \in [0;1].$ $x_\lambda^* \in \mathcal{X}$ в силу выпуклости \mathcal{X} .

Доказательство

Пустое множество и множество из 1 точки выпуклы. Пусть теперь $x_1^*, x_2^* \in \mathcal{X}^*$. Рассмотрим $x_\lambda^* = \lambda x_1^* + (1-\lambda)x_2^*$, где $\lambda \in [0;1]$. $x_\lambda^* \in \mathcal{X}$ в силу выпуклости \mathcal{X} .

В силу выпуклости функции f:

$$f^* \leq f(x_\lambda^*) \leq \lambda f(x_1^*) + (1-\lambda)f(x_2^*) = f^*.$$

Доказательство

Пустое множество и множество из 1 точки выпуклы. Пусть теперь $x_1^*, x_2^* \in \mathcal{X}^*$. Рассмотрим $x_\lambda^* = \lambda x_1^* + (1-\lambda)x_2^*$, где $\lambda \in [0;1]$. $x_\lambda^* \in \mathcal{X}$ в силу выпуклости \mathcal{X} .

В силу выпуклости функции f:

$$f^* \leq f(x_{\lambda}^*) \leq \lambda f(x_1^*) + (1-\lambda)f(x_2^*) = f^*.$$

Откуда $f(x_{\lambda}^*) = f^*$, а значит $x^* \in \mathcal{X}^*$.

Теорема о минимумах выпуклых функций

Рассмотрим задачу

$$\min_{x \in \mathcal{X}} f(x),$$

где f — cильно выпуклая, \mathcal{X} – выпуклое. Тогда множество точек минимума \mathcal{X}^* может состоять только из одного элемента.

Доказательство

От противного: пусть есть $x_1^* \neq x_2^* \in \mathcal{X}^*$. Рассмотрим $x_\lambda^* = \lambda x_1^* + (1-\lambda)x_2^*$, где $\lambda \in (0;1)$. Опять же $x_\lambda^* \in \mathcal{X}$ в силу выпуклости \mathcal{X}^* .

Доказательство

От противного: пусть есть $x_1^* \neq x_2^* \in \mathcal{X}^*$. Рассмотрим $x_\lambda^* = \lambda x_1^* + (1-\lambda)x_2^*$, где $\lambda \in (0;1)$. Опять же $x_\lambda^* \in \mathcal{X}$ в силу выпуклости \mathcal{X}^* .

Но теперь в силу сильной выпуклости функции f:

$$f^* \leq f(x_{\lambda}^*) \leq \lambda f(x_1^*) + (1 - \lambda) f(x_2^*) - \lambda (1 - \lambda) \frac{\mu}{2} ||x_1^* - x_2^*||_2^2$$

$$= f^* - \lambda (1 - \lambda) \frac{\mu}{2} ||x_1^* - x_2^*||_2^2.$$

Доказательство

От противного: пусть есть $x_1^* \neq x_2^* \in \mathcal{X}^*$. Рассмотрим $x_\lambda^* = \lambda x_1^* + (1-\lambda)x_2^*$, где $\lambda \in (0;1)$. Опять же $x_\lambda^* \in \mathcal{X}$ в силу выпуклости \mathcal{X}^* .

Но теперь в силу сильной выпуклости функции f:

$$f^* \leq f(x_{\lambda}^*) \leq \lambda f(x_1^*) + (1 - \lambda) f(x_2^*) - \lambda (1 - \lambda) \frac{\mu}{2} ||x_1^* - x_2^*||_2^2$$
$$= f^* - \lambda (1 - \lambda) \frac{\mu}{2} ||x_1^* - x_2^*||_2^2.$$

Последнее слагаемое < 0 в силу выбора $x_1^* \neq x_2^*$ и $\lambda \in (0;1)$. Противеречие.

Теорема о минимумах выпуклых функций

Рассмотрим задачу

$$\min_{x \in \mathcal{X}} f(x),$$

где f — cильно выпуклая, \mathcal{X} - выпуклое. Тогда множество точек минимума \mathcal{X}^* может состоять только из одного элемента.

 На самом деле для сильно выпуклой функции можно доказать, что решение строго единственное (т.е. добавить к предыдущей теореме существование). Это следует из того, что мы снизу всегда подперты параболой. Смотри док-во в конспекте.

Сильная выпуклость: больше фактов

Теорема об еще одном эквивалентном определении сильной выпуклости

Пусть функция $f: \mathbb{R}^d \to \mathbb{R}$ непрерывно дифференцируема на \mathbb{R}^d . Тогда функция f является μ -сильно выпуклой тогда и только тогда, когда для любых $x,y \in \mathbb{R}^d$ выполнено

$$\langle \nabla f(x) - \nabla f(x), x - y \rangle \geq 0.$$

Сильная выпуклость: больше фактов

Теорема об еще одном эквивалентном определении сильной выпуклости

Пусть функция $f: \mathbb{R}^d \to \mathbb{R}$ непрерывно дифференцируема на \mathbb{R}^d . Тогда функция f является μ -сильно выпуклой тогда и только тогда, когда для любых $x,y \in \mathbb{R}^d$ выполнено

$$\langle \nabla f(x) - \nabla f(x), x - y \rangle \ge 0$$

Теорема о критерии сильной выпуклости

Пусть функция $f: \mathbb{R}^d \to \mathbb{R}$ дважды непрерывно дифференцируема на \mathbb{R}^d . Тогда функция f является μ -сильно выпуклой тогда и только тогда, когда для любого $x \in \mathbb{R}^d$ выполнено

$$\nabla^2 f(x) \geq \mu I$$
.

Сильная выпуклость: больше фактов

Теорема об еще одном эквивалентном определении сильной выпуклости

Пусть функция $f: \mathbb{R}^d \to \mathbb{R}$ непрерывно дифференцируема на \mathbb{R}^d . Тогда функция f является μ -сильно выпуклой тогда и только тогда, когда для любых $x,y \in \mathbb{R}^d$ выполнено

$$\langle \nabla f(x) - \nabla f(x), x - y \rangle \ge 0.$$

Теорема о критерии сильной выпуклости

Пусть функция $f: \mathbb{R}^d \to \mathbb{R}$ дважды непрерывно дифференцируема на \mathbb{R}^d . Тогда функция f является μ -сильно выпуклой тогда и только тогда, когда для любого $x \in \mathbb{R}^d$ выполнено

$$\nabla^2 f(x) \ge \mu I$$
.

Оба факта доказаны в пособии. Второй пригодится для ДЗ.

Гладкость: определение

Определение *L*-гладкой функции

Пусть дана непрерывно дифференцируемая на \mathcal{R} функция $f: \mathcal{R} \to \mathbb{R}$. Будем говорить, что данная функция имеет L-Липшицев градиент (говорить, что она является L-гладкой), если для любых $x, y \in \mathcal{R}$ выполнено

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2.$$

Гладкость: определение

Определение *L*-гладкой функции

Пусть дана непрерывно дифференцируемая на \mathcal{X} функция $f: \mathcal{X} \to \mathbb{R}$. Будем говорить, что данная функция имеет L-Липшицев градиент (говорить, что она является L-гладкой), если для любых $x,y\in\mathcal{X}$ выполнено

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2.$$

Определение L-гладкости можно писать и в не евклидовой норме. Поэтому формально в предыдущем определении можно указывать, что имеется в виду L-гладкость в терминах $\|\cdot\|_2$.

Теорема (свойство L - гладкой функции)

Пусть дана L - гладкая функция $f:\mathcal{X}\to\mathbb{R}$. Тогда для любых $x,y\in\mathcal{X}$ выполнено

$$|f(y)-f(x)-\langle \nabla f(x),y-x\rangle|\leq \frac{L}{2}||x-y||_2^2.$$

Доказательство

Начнем с формулы Ньютона-Лейбница
$$f(y) - f(x) = \int_{0}^{1} \langle \nabla f(x + \tau(y - x)), y - x \rangle d\tau$$

$$= \langle \nabla f(x), y - x \rangle + \int_{0}^{1} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

$$= \langle \nabla f(x), y - x \rangle + \int_{0}^{1} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

$$= \langle \nabla f(x), y - x \rangle + \int_{0}^{1} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

$$= \langle \nabla f(x), y - x \rangle + \int_{0}^{1} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

$$= \langle \nabla f(x), y - x \rangle + \int_{0}^{1} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

$$= \langle \nabla f(x), y - x \rangle + \int_{0}^{1} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

$$= \langle \nabla f(x), y - x \rangle + \int_{0}^{1} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

$$= \langle \nabla f(x), y - x \rangle + \int_{0}^{1} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

$$= \langle \nabla f(x), y - x \rangle + \int_{0}^{1} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

$$= \langle \nabla f(x), y - x \rangle + \int_{0}^{1} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

$$= \langle \nabla f(x), y - x \rangle + \int_{0}^{1} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

$$= \langle \nabla f(x), y - x \rangle + \int_{0}^{1} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

$$= \langle \nabla f(x), y - x \rangle + \int_{0}^{1} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

$$= \langle \nabla f(x), y - x \rangle + \int_{0}^{1} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

$$= \langle \nabla f(x), y - x \rangle + \int_{0}^{1} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

$$= \langle \nabla f(x), y - x \rangle + \int_{0}^{1} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

$$= \langle \nabla f(x), y - x \rangle + \int_{0}^{1} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

Доказательство

Начнем с формулы Ньютона-Лейбница

Тогда
$$f(y) - f(x) = \int_{0}^{1} \langle \nabla f(x + \tau(y - x)), y - x \rangle d\tau$$

$$= \langle \nabla f(x), y - x \rangle + \int_{0}^{1} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

$$|f(y) - f(x)| - \langle \nabla f(x), y - x \rangle | = \int_{0}^{1} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

$$\leq \int_{0}^{1} |\langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle| d\tau$$

Доказательство

$$|f(y) - f(x) - \langle \nabla f(x), y - x \rangle| \le \int_{0}^{\tau} |\langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle| d\tau$$

Доказательство

Применим КБШ:

$$|f(y)-f(x)-\langle \nabla f(x),y-x\rangle| \leq \int\limits_0^\tau |\langle \nabla f(x+\tau(y-x))-\nabla f(x),y-x\rangle|d\tau$$

$$\leq \int_{0}^{1} \|\nabla f(x + \tau(y - x)) - \nabla f(x)\|_{2} \|y - x\|_{2}$$

Далее определение L-гладкости:

еделение
$$L$$
-гладкости. $|f(y)-f(x)-\langle \nabla f(x),y-x\rangle|\leq L\|y-x\|_2^2\int\limits_0^1 au d au$ $=rac{L}{2}\|x-y\|_2^2$

Теорема (свойства L - гладкой выпуклой функции)

Пусть дана L - гладкая выпуклая функция $f:\mathcal{X}\to\mathbb{R}$. Тогда для любых $x,y\in\mathcal{X}$ выполнено

$$0 \le f(y) - f(x) - \langle \nabla f(x), y - x \rangle \le \frac{L}{2} ||x - y||_2^2$$

И

$$f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|_2^2 \le f(y).$$

Теорема (свойства L - гладкой выпуклой функции)

Пусть дана L - гладкая выпуклая функция $f:\mathcal{X}\to\mathbb{R}$. Тогда для любых $x,y\in\mathcal{X}$ выполнено

$$0 \le f(y) - f(x) - \langle \nabla f(x), y - x \rangle \le \frac{L}{2} ||x - y||_2^2$$

И

$$f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|_2^2 \le f(y).$$

Доказательство

Доказательство первого факта следует из выпуклости и предыдущего свойства гладкости: подмодульное выражение справедливо из-за выпуклости.

Доказательство

Рассмотрим функцию $\phi(y) = f(y) - (\nabla f(x), y)$. Вопрос: является ли она L_{ϕ} -гладкой? выпуклой?

$$\begin{aligned} & \|\nabla \varphi(g_{1}) - \nabla \varphi(g_{2})\|_{2} \leq & \nabla f(x) \\ & = \|\nabla f(g_{1}) - \nabla f(g_{2})\|_{2} \leq & \nabla f(x) + \nabla f(x)\|_{2}^{2} \\ & = \|\nabla f(g_{1}) - \nabla f(g_{2})\|_{2} \leq & \angle f\|g_{1} - g_{2}\|_{2} \end{aligned}$$

Доказательство

Рассмотрим функцию $\phi(y) = f(y) - \langle \nabla f(x), y \rangle$. Вопрос: является ли она L_{ϕ} -гладкой? выпуклой? Да на оба вопроса и $L_{\phi} = L$ (проверка по определению).

Доказательство

Рассмотрим функцию $\phi(y) = f(y) - \langle \nabla f(x), y \rangle$. Вопрос: является ли она L_{ϕ} -гладкой? выпуклой? Да на оба вопроса и $L_{\phi} = L$ (проверка по определению). Также можно заметить, что $y^* = x$ – минимум.

Bonpoc: почему? $\nabla \mathcal{P}(g^*) = \nabla f(g^*) - \nabla f(x) = 0$

Доказательство

Рассмотрим функцию $\phi(y) = f(y) - \langle \nabla f(x), y \rangle$. Вопрос: является ли она L_{ϕ} -гладкой? выпуклой? Да на оба вопроса и $L_{\phi} = L$ (проверка по определению). Также можно заметить, что $y^* = x$ – минимум.

Вопрос: почему? $\nabla \phi(y^*) = \nabla \phi(x) = 0$. Воспользуемся первым

пунктом теоремы: $f(y) - f(x) - \langle \nabla f(x), y - x \rangle \leq \frac{L}{2} ||x - y||_2^2$ с

$$(y) = y - \frac{1}{L} \nabla \phi(y), (x) = y, f = \phi$$
). Тогда

$$\phi\left(y - \frac{1}{L}\nabla\phi(y)\right) - \phi(y) - \left\langle\nabla\phi(y), -\frac{1}{L}\nabla\phi(y)\right\rangle \le \frac{1}{2L}\|\nabla\phi(y)\|_{2}^{2}$$

После небольшой перестановки:

$$\phi\left(y-\frac{1}{L}\nabla\phi(y)\right)\leq\phi(y)\left(-\frac{1}{2L}\|\nabla\phi(y)\|_{2}^{2}\right)$$

Доказательство

Тогда получаем, зная, что $y^* = x$ – минимум:

$$\phi(x) = \phi(y^*) \le \phi\left(y - \frac{1}{L}\nabla\phi(y)\right) \le \phi(y) - \frac{1}{2L}\|\nabla\phi(y)\|_2^2$$

Доказательство

Тогда получаем, зная, что $y^* = x$ – минимум:

$$\phi(x) = \phi(y^*) \le \phi\left(y - \frac{1}{L}\nabla\phi(y)\right) \le \phi(y) - \frac{1}{2L}\|\nabla\phi(y)\|_2^2$$

Подставляя ϕ :

$$f(x) - \langle \nabla f(x), x \rangle \le f(y) - \langle \nabla f(x), y \rangle - \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|_2^2$$

Доказательство

Тогда получаем, зная, что $y^* = x$ – минимум:

$$\phi(x) = \phi(y^*) \le \phi\left(y - \frac{1}{L}\nabla\phi(y)\right) \le \phi(y) - \frac{1}{2L}\|\nabla\phi(y)\|_2^2$$

Подставляя ϕ :

$$f(x) - \langle \nabla f(x), x \rangle \le f(y) - \langle \nabla f(x), y \rangle - \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|_2^2$$

Осталось переставить:

$$f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|_2^2 \le f(y)$$

Доказательство

Тогда получаем, зная, что $y^* = x$ – минимум:

$$\phi(x) = \phi(y^*) \le \phi\left(y - \frac{1}{L}\nabla\phi(y)\right) \le \phi(y) - \frac{1}{2L}\|\nabla\phi(y)\|_2^2$$

Подставляя ϕ :

$$f(x) - \langle \nabla f(x), x \rangle \le f(y) - \langle \nabla f(x), y \rangle - \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|_2^2$$

Осталось переставить:

$$f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|_2^2 \le f(y)$$

Вопрос: а пользовались вообще здесь выпуклость?

Доказательство

Тогда получаем, зная, что $y^* = x$ – минимум:

$$\phi(x) = \phi(y^*) \le \phi\left(y - \frac{1}{L}\nabla\phi(y)\right) \le \phi(y) - \frac{1}{2L}\|\nabla\phi(y)\|_2^2$$

Подставляя ϕ :

$$f(x) - \langle \nabla f(x), x \rangle \le f(y) - \langle \nabla f(x), y \rangle - \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|_2^2$$

Осталось переставить:

$$f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|_2^2 \le f(y)$$

Bonpoc: а пользовались вообще здесь выпуклость? да, $\nabla(y^*) = 0 \implies y^*$ – минимум.

Гладкость: физический смысл

Ограничение сверху на поведение (рост) – растет не слишком быстро.

Гладкость: физический смысл

Градиентный спуск

• Задача: найти решение безусловной оптимизации:

$$\min_{x \in \mathbb{R}^d} f(x). \tag{1}$$

Алгоритм 1 Градиентный спуск

Вход: размеры шага $\{\gamma_k\}>0$, стартовая точка $x^0\in\mathbb{R}^d$, количество итераций K

1: **for**
$$k = 0, 1, ..., K - 1$$
 do

2: Вычислить
$$\nabla f(x^k)$$

3: $x^{k+1} = x^k - \gamma_k \nabla f(x^k)$

4: end for

Выход: x^K

Пример

Вопрос: куда направлен градиент в точке x_1 ?

Пример

Вопрос: куда направлен градиент в точке x_1 ? направление роста

Зачем нужен шаг?

Доказательство

Знаем, что для сильно выпуклых функций решение уникально, попытаемся оценить, как меняется расстояние до него. Подставим итерацию:

$$||x^{k+1} - x^*||_2^2 = ||x^k - \gamma_k \nabla f(x^k) - x^*||_2^2$$

$$= ||x^k - x^*||_2^2 - 2\gamma_k \langle \nabla f(x^k), x^k - x^* \rangle + \gamma_k^2 ||\nabla f(x^k)||_2^2$$

$$- \langle \langle \nabla f(x^k) - \nabla f(x^k), x^k - x^* \rangle + \langle \langle \nabla f(x^k) - \nabla f(x^k) \rangle + \langle \langle \nabla f(x^k) - \nabla f(x^k) \rangle \rangle$$

$$\leq - \langle \nabla f(x^k) - \nabla f(x^k), x^k - x^* \rangle + \langle \nabla f(x^k) - \nabla f(x^k) \rangle \rangle$$

$$\leq - \langle \nabla f(x^k) - \nabla f(x^k), x^k - x^* \rangle + \langle \nabla f(x^k) - \nabla f(x^k) \rangle \rangle$$

Доказательство

Знаем, что для сильно выпуклых функций решение уникально, попытаемся оценить, как меняется расстояние до него. Подставим итерацию:

$$||x^{k+1} - x^*||_2^2 = ||x^k - \gamma_k \nabla f(x^k) - x^*||_2^2$$

$$= ||x^k - x^*||_2^2 - 2\gamma_k \langle \nabla f(x^k), x^k - x^* \rangle + \gamma_k^2 ||\nabla f(x^k)||_2^2$$

Вопрос: что дальше?

Доказательство

Знаем, что для сильно выпуклых функций решение уникально, попытаемся оценить, как меняется расстояние до него. Подставим итерацию:

$$||x^{k+1} - x^*||_2^2 = ||x^k - \gamma_k \nabla f(x^k) - x^*||_2^2$$

$$= ||x^k - x^*||_2^2 - 2\gamma_k \langle \nabla f(x^k), x^k - x^* \rangle + \gamma_k^2 ||\nabla f(x^k)||_2^2$$

Вопрос: что дальше? Вспоминаем, что у нас есть гладкость $\|\nabla f(x) + \nabla f(y)\|_2^2 \le L^2 \|x - y\|_2^2$ и сильная выпуклость в виде $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu \|x - y\|_2^2$.

Доказательство

Знаем, что для сильно выпуклых функций решение уникально, попытаемся оценить, как меняется расстояние до него. Подставим итерацию:

$$||x^{k+1} - x^*||_2^2 = ||x^k - \gamma_k \nabla f(x^k) - x^*||_2^2$$

$$= ||x^k - x^*||_2^2 - 2\gamma_k \langle \nabla f(x^k), x^k - x^* \rangle + \gamma_k^2 ||\nabla f(x^k)||_2^2$$

Вопрос: что дальше? Вспоминаем, что у нас есть гладкость $\|\nabla f(x) + \nabla f(y)\|_2^2 \le L^2 \|x - y\|_2^2$ и сильная выпуклость в виде $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu \|x - y\|_2^2$. Достаточно только вспомнить условие оптимальности $\nabla f(x^*) = 0$.

Доказательство

Знаем, что для сильно выпуклых функций решение уникально, попытаемся оценить, как меняется расстояние до него. Подставим итерацию:

$$||x^{k+1} - x^*||_2^2 = ||x^k - \gamma_k \nabla f(x^k) - x^*||_2^2$$

$$= ||x^k - x^*||_2^2 - 2\gamma_k \langle \nabla f(x^k), x^k - x^* \rangle + \gamma_k^2 ||\nabla f(x^k)||_2^2$$

Вопрос: что дальше? Вспоминаем, что у нас есть гладкость $\|\nabla f(x) + \nabla f(y)\|_2^2 \le L^2 \|x - y\|_2^2$ и сильная выпуклость в виде $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu \|x - y\|_2^2$. Достаточно только вспомнить условие оптимальности $\nabla f(x^*) = 0$.

$$||x^{k+1} - x^*||_2^2 = ||x^k - x^*||_2^2 - 2\gamma_k \langle \nabla f(x^k) - \nabla f(x^*), x^k - x^* \rangle$$
$$+ \gamma_k^2 ||\nabla f(x^k) - \nabla f(x^*)||_2^2$$

Доказательство

Гладкость $\|\nabla f(x) + \nabla f(y)\|_2^2 \le L^2 \|x - y\|_2^2$ и сильная выпуклость в виде $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu \|x - y\|_2^2$:

$$||x^{k+1} - x^*||_2^2 = ||x^k - x^*||_2^2 - 2\gamma_k \langle \nabla f(x^k) - \nabla f(x^*), x^k - x^* \rangle + \gamma_k^2 ||\nabla f(x^k) - \nabla f(x^*)||_2^2 \leq ||x^k - x^*||_2^2 - 2\gamma_k \mu ||x^k - x^*||_2^2 + \gamma_k^2 L^2 ||x^k - x^*||_2^2 = (1 - 2\gamma_k \mu + \gamma_k^2 L^2) ||x^k - x^*||_2^2$$

Доказательство

Гладкость $\|\nabla f(x) + \nabla f(y)\|_2^2 \le L^2 \|x - y\|_2^2$ и сильная выпуклость в виде $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu \|x - y\|_2^2$:

$$||x^{k+1} - x^*||_2^2 = ||x^k - x^*||_2^2 - 2\gamma_k \langle \nabla f(x^k) - \nabla f(x^*), x^k - x^* \rangle$$

$$+ \gamma_k^2 ||\nabla f(x^k) - \nabla f(x^*)||_2^2$$

$$\leq ||x^k - x^*||_2^2 - 2\gamma_k \mu ||x^k - x^*||_2^2 + \gamma_k^2 L^2 ||x^k - x^*||_2^2$$

$$= (1 - 2\gamma_k \mu + \gamma_k^2 L^2) ||x^k - x^*||_2^2$$

Вопрос: а что мы хотим теперь?

Доказательство

Гладкость $\|\nabla f(x) + \nabla f(y)\|_2^2 \le L^2 \|x - y\|_2^2$ и сильная выпуклость в виде $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu \|x - y\|_2^2$:

$$||x^{k+1} - x^*||_2^2 = ||x^k - x^*||_2^2 - 2\gamma_k \langle \nabla f(x^k) - \nabla f(x^*), x^k - x^* \rangle$$

$$+ \gamma_k^2 ||\nabla f(x^k) - \nabla f(x^*)||_2^2$$

$$\leq ||x^k - x^*||_2^2 - 2\gamma_k \mu ||x^k - x^*||_2^2 + \gamma_k^2 L^2 ||x^k - x^*||_2^2$$

$$= (1 - 2\gamma_k \mu + \gamma_k^2 L^2) ||x^k - x^*||_2^2$$

Вопрос: а что мы хотим теперь? $(1-2\gamma_k\mu+2\gamma_k^2L^2)<1$. Как подобрать?

Доказательство

Гладкость $\|\nabla f(x) + \nabla f(y)\|_2^2 \le L^2 \|x - y\|_2^2$ и сильная выпуклость в виде $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu \|x - y\|_2^2$:

$$||x^{k+1} - x^*||_2^2 = ||x^k - x^*||_2^2 - 2\gamma_k \langle \nabla f(x^k) - \nabla f(x^*), x^k - x^* \rangle$$

$$+ \gamma_k^2 ||\nabla f(x^k) - \nabla f(x^*)||_2^2$$

$$\leq ||x^k - x^*||_2^2 - 2\gamma_k \mu ||x^k - x^*||_2^2 + \gamma_k^2 L^2 ||x^k - x^*||_2^2$$

$$= (1 - 2\gamma_k \mu + \gamma_k^2 L^2) ||x^k - x^*||_2^2$$

Вопрос: а что мы хотим теперь? $(1-2\gamma_k\mu+\gamma_k^2L^2)<1$. Как подобрать? arg min $_{\gamma_k}(1-2\gamma_k\mu+\gamma_k^2L^2)$?

Доказательство

Гладкость $\|\nabla f(x) + \nabla f(y)\|_2^2 \le L^2 \|x - y\|_2^2$ и сильная выпуклость в виде $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu \|x - y\|_2^2$:

$$||x^{k+1} - x^*||_2^2 = ||x^k - x^*||_2^2 - 2\gamma_k \langle \nabla f(x^k) - \nabla f(x^*), x^k - x^* \rangle$$

$$+ \gamma_k^2 ||\nabla f(x^k) - \nabla f(x^*)||_2^2$$

$$\leq ||x^k - x^*||_2^2 - 2\gamma_k \mu ||x^k - x^*||_2^2 + \gamma_k^2 L^2 ||x^k - x^*||_2^2$$

$$= (1 - 2\gamma_k \mu + \gamma_k^2 L^2) ||x^k - x^*||_2^2 = (1 - \frac{M^2}{L^2})$$

Вопрос: а что мы хотим теперь? $(1-2\gamma_k\mu+\gamma_k^2L^2)<1$. Как подобрать? arg $\min_{\gamma_k}(1-2\gamma_k\mu+\gamma_k^2L^2)$? $\gamma_k=\frac{\mu}{L^2}$ и $(1-2\gamma_k\mu+\gamma_k^2L^2)=(1-\frac{\mu^2}{L^2})$.

Доказательство

Итого:

$$||x^{k+1} - x^*||_2^2 \le \left(1 - \frac{\mu^2}{L^2}\right) ||x^k - x^*||_2^2$$

$$\le \left(1 - \frac{\mu^2}{L^2}\right) ||x^{k-1} - x^*||_2^2$$

$$\le \left(1 - \frac{\mu^2}{L^2}\right) ||x^{k-1} - x^*||_2^2$$

Доказательство

Итого:

$$||x^{k+1} - x^*||_2^2 \le \left(1 - \frac{\mu^2}{L^2}\right) ||x^k - x^*||_2^2$$

Запустим рекурсию:

$$||x^k - x^*||_2^2 \le \left(1 - \frac{\mu^2}{L^2}\right)^k ||x^0 - x^*||_2^2$$

Доказательство

Итого:

$$||x^{k+1} - x^*||_2^2 \le \left(1 - \frac{\mu^2}{L^2}\right) ||x^k - x^*||_2^2$$

Запустим рекурсию:

$$||x^k - x^*||_2^2 \le \left(1 - \frac{\mu^2}{L^2}\right)^k ||x^0 - x^*||_2^2$$

Вопрос: какая это скорость сходимости?

Доказательство

Итого:

$$||x^{k+1} - x^*||_2^2 \le \left(1 - \frac{\mu^2}{L^2}\right) ||x^k - x^*||_2^2$$

Запустим рекурсию:

$$||x^k - x^*||_2^2 \le \left(1 - \frac{\mu^2}{L^2}\right)^k ||x^0 - x^*||_2^2$$

Вопрос: какая это скорость сходимости? Линейная.

Доказательство

Итого:

$$||x^{k+1} - x^*||_2^2 \le \left(1 - \frac{\mu^2}{L^2}\right) ||x^k - x^*||_2^2$$

Запустим рекурсию:

$$||x^k - x^*||_2^2 \le \left(1 - \frac{\mu^2}{L^2}\right)^k ||x^0 - x^*||_2^2 \le \varepsilon$$

Вопрос: какая это скорость сходимости? Линейная. А как получить оценку на число итераций?

Доказательство

Итого:

$$||x^{k+1} - x^*||_2^2 \le \left(1 - \frac{\mu^2}{L^2}\right) ||x^k - x^*||_2^2$$

Запустим рекурсию:

$$||x^k - x^*||_2^2 \le \left(1 - \frac{\mu^2}{L^2}\right)^k ||x^0 - x^*||_2^2$$

Вопрос: какая это скорость сходимости? Линейная. А как получить

оценку на число итераций? (Здесь просто нужно вспомнить
$$\sqrt{-}$$
 хер ($-$ хер ($-$ хер) $\sqrt{-}$ хер ($-$ хер) $-$ х

Доказательство

С предыдущего слайда:

$$||x^k - x^*||_2^2 \le \exp\left(-\frac{\mu^2}{L^2} \cdot k\right) ||x^0 - x^*||_2^2$$

Доказательство

С предыдущего слайда:

$$||x^k - x^*||_2^2 \le \exp\left(-\frac{\mu^2}{L^2} \cdot k\right) ||x^0 - x^*||_2^2$$

Мы хотим, чтобы гарантированно

$$||x^k - x^*||_2^2 \le \exp\left(-\frac{\mu^2}{L^2} \cdot k\right) ||x^0 - x^*||_2^2 \le \varepsilon^2$$

Тогда логарифируем и получаем

$$k \ge \frac{L^2}{\mu^2} \log \left(\frac{\|x^0 - x^*\|_2^2}{\varepsilon^2} \right)$$

Доказательство

С предыдущего слайда:

$$||x^k - x^*||_2^2 \le \exp\left(-\frac{\mu^2}{L^2} \cdot k\right) ||x^0 - x^*||_2^2$$

Мы хотим, чтобы гарантированно

$$||x^k - x^*||_2^2 \le \exp\left(-\frac{\mu^2}{L^2} \cdot k\right) ||x^0 - x^*||_2^2 \le \varepsilon^2$$

Тогда логарифируем и получаем

$$k \ge \frac{L^2}{\mu^2} \log \left(\frac{\|x^0 - x^*\|_2^2}{\varepsilon^2} \right)$$

Итого: Not great, not terrible – можно лучше. Пример того, как в получении верхних оценок можно «загрубить».

Доказательство

Стартуем аналогично:

$$||x^{k+1} - x^*||_2^2 = ||x^k - \gamma_k \nabla f(x^k) - x^*||_2^2$$

$$= ||x^k - x^*||_2^2 - 2\gamma_k \langle \nabla f(x^k), x^k - x^* \rangle + \gamma_k^2 ||\nabla f(x^k)||_2^2$$

$$= ||x^k - x^*||_2^2 - 2\gamma_k \langle \nabla f(x^k), x^k - x^* \rangle$$

$$+ \gamma_k^2 ||\nabla f(x^k) - \nabla f(x^*)||_2^2$$

$$\leq \gamma_k^2 \cdot 2 \perp (f(x^k) - f(x^*))$$

$$\leq \gamma_k^2 \cdot 2 \perp (f(x^k) - f(x^k))$$

$$\leq \gamma_k^2 \cdot 2 \perp (f(x^k) - f(x^k))$$

Доказательство

Стартуем аналогично:

$$||x^{k+1} - x^*||_2^2 = ||x^k - \gamma_k \nabla f(x^k) - x^*||_2^2$$

$$= ||x^k - x^*||_2^2 - 2\gamma_k \langle \nabla f(x^k), x^k - x^* \rangle + \gamma_k^2 ||\nabla f(x^k)||_2^2$$

$$= ||x^k - x^*||_2^2 - 2\gamma_k \langle \nabla f(x^k), x^k - x^* \rangle$$

$$+ \gamma_k^2 ||\nabla f(x^k) - \nabla f(x^*)||_2^2$$

Но сделаем тоньше. Сильная выпуклость в виде:

$$-\langle \nabla f(x), x - y \rangle \le \frac{\mu}{2} ||x - y||_2^2 + f(x) - f(y)$$
:

Доказательство

Стартуем аналогично:

$$||x^{k+1} - x^*||_2^2 = ||x^k - \gamma_k \nabla f(x^k) - x^*||_2^2$$

$$= ||x^k - x^*||_2^2 - 2\gamma_k \langle \nabla f(x^k), x^k - x^* \rangle + \gamma_k^2 ||\nabla f(x^k)||_2^2$$

$$= ||x^k - x^*||_2^2 - 2\gamma_k \langle \nabla f(x^k), x^k - x^* \rangle$$

$$+ \gamma_k^2 ||\nabla f(x^k) - \nabla f(x^*)||_2^2$$

Но сделаем тоньше. Сильная выпуклость в виде:

$$-\langle \nabla f(x), x - y \rangle \leq \frac{\mu}{2} ||x - y||_2^2 + f(x) - f(y)$$
:

$$||x^{k+1} - x^*||_2^2 \le ||x^k - x^*||_2^2 - 2\gamma_k \left(\frac{\mu}{2}||x^k - x^*||_2^2 + f(x^k) - f(x^*)\right) + \gamma_k^2 ||\nabla f(x^k) - \nabla f(x^*)||_2^2$$

Доказательство

Дальше гладкость, но в виде:

$$\|\nabla f(x^k) - \nabla f(x^*)\|_2^2 \le 2L (f(x^k) - f(x^*))$$
. Вопрос: все ли верно в этом свойстве?

Доказательство

Дальше гладкость, но в виде:

 $\|\nabla f(x^k) - \nabla f(x^*)\|_2^2 \le 2L (f(x^k) - f(x^*))$. **Вопрос:** все ли верно в этом свойстве? Да, использовано, что $\nabla f(x^*) = 0$. Получаем

$$||x^{k+1} - x^*||_2^2 \le ||x^k - x^*||_2^2 - 2\gamma_k \left(\frac{\mu}{2}||x^k - x^*||_2^2 + f(x^k) - f(x^*)\right) + 2\gamma_k^2 L(f(x^k) - f(x^*))$$

$$= (1 - \gamma_k \mu)||x^k - x^*||_2^2 + 2\gamma_k (\gamma_k L - 1)(f(x^k) - f(x^*))$$

Доказательство

Дальше гладкость, но в виде:

 $\|\nabla f(x^k) - \nabla f(x^*)\|_2^2 \le 2L(f(x^k) - f(x^*))$. Вопрос: все ли верно в этом свойстве? Да, использовано, что $\nabla f(x^*) = 0$. Получаем

$$||x^{k+1} - x^*||_2^2 \le ||x^k - x^*||_2^2 - 2\gamma_k \left(\frac{\mu}{2}||x^k - x^*||_2^2 + f(x^k) - f(x^*)\right)$$

$$+ 2\gamma_k^2 L(f(x^k) - f(x^*))$$

$$= (1 - \gamma_k \mu) ||x^k - x^*||_2^2 + 2\gamma_k (\gamma_k L - 1)(f(x^k) - f(x^*))$$

Доказательство

Дальше гладкость, но в виде:

 $\|\nabla f(x^k) - \nabla f(x^*)\|_2^2 \le 2L (f(x^k) - f(x^*))$. **Вопрос:** все ли верно в этом свойстве? Да, использовано, что $\nabla f(x^*) = 0$. Получаем

$$||x^{k+1} - x^*||_2^2 \le ||x^k - x^*||_2^2 - 2\gamma_k \left(\frac{\mu}{2}||x^k - x^*||_2^2 + f(x^k) - f(x^*)\right)$$

$$+ 2\gamma_k^2 L(f(x^k) - f(x^*))$$

$$= (1 - \gamma_k \mu)||x^k - x^*||_2^2 + 2\gamma_k (\gamma_k L - 1)(f(x^k) - f(x^*))$$

Вопрос: что осталось? $(\gamma_k L - 1) \le 1$. А значит $\gamma_k \le \frac{1}{L}$.

$$||x^{k+1} - x^*||_2^2 \le (1 - \gamma_k \mu) ||x^k - x^*||_2^2$$

Доказательство

С предыдущего слайда:

$$||x^{k+1} - x^*||_2^2 \le (1 - \gamma_k \mu) ||x^k - x^*||_2^2$$

Запускаем рекурсию:

$$||x^k - x^*||_2^2 \le \prod_{i=0}^{k-1} (1 - \gamma_i \mu) ||x^0 - x^*||_2^2$$

C постоянным щагом $\gamma_k = \gamma = \frac{1}{L}$:

$$||x^k - x^*||_2^2 \le \left(1 - \frac{\mu}{L}\right)^k ||x^0 - x^*||_2^2$$

Теорема сходимость градиентного спуска для L-гладких и μ -сильно выпуклых функций

Пусть задача задача безусловной оптимизации (1) с L-гладкой, μ -сильно выпуклой целевой функцией f решается с помощью градиентного спуска. Тогда справедлива следующая оценка сходимости

$$||x^k - x^*||_2^2 \le \left(1 - \frac{\mu}{L}\right)^k ||x^0 - x^*||_2^2.$$

Более того, чтобы добиться точности ε по аргументу, необходимо

$$k = O\left(\frac{L}{\mu}\log\frac{|x^0 - x^*||_2}{\varepsilon^{\frac{1}{\mu}}}\right) = \tilde{O}\left(\frac{L}{\mu}\right)$$
 итераций.

Мы будем использовать O-нотацию, чтобы "убирать" численные фактор и \tilde{O} -нотацию, чтобы убирать еще и \log -факторы.

Немного интуиции доказательства

Немного интуиции доказательства

Шагаем, исходя из свойств верхней границы (L) – чтобы гарантированно не "улететь", и перемещаемся в худшем случае, исходя из свойств нижней границы (μ) .

Сходимость

	μ -сильно выпуклая	выпуклая	невыпуклая
<i>L</i> -гладкая	$O\left(\frac{L}{\mu}\log\frac{\ x^0-x^*\ _2}{\varepsilon}\right)$	$O\left(\frac{L\ x^0-x^*\ _2^2}{\varepsilon}\right)$	$O\left(\frac{L(f(x^0)-f^*)}{\varepsilon^2}\right)$
М-липшецева	$O\left(\frac{M^2}{\mu^2 \varepsilon}\right)$	$Q\left(\frac{M^2\ x^0-x^*\ _2^2}{\varepsilon^2}\right)$	1 лекция

- В сильно выпуклом случае по аргументу: $\|x x^*\|_2 \le \varepsilon$, В выпуклом случае по функции (решение x^* может быть не
- В выпуклом случае по функции (решение x^* может быть не единственно): $f(x) f^* \le \varepsilon$,
- В невыпуклом случае (сходимость к какой-то стационарной точке): $\|\nabla f(x)\|_2 \le \varepsilon$.

Сходимость

	μ -сильно выпуклая	выпуклая	невыпуклая
<i>L</i> -гладкая	$O\left(\frac{L}{\mu}\log\frac{\ x^0-x^*\ _2}{\varepsilon}\right)$	$O\left(\frac{L\ x^0-x^*\ _2^2}{\varepsilon}\right)$	$O\left(\frac{L(f(x^0)-f^*)}{\varepsilon^2}\right)$
М-липшецева	$O\left(\frac{M^2}{\mu^2 \varepsilon}\right)$	$O\left(\frac{M^2\ x^0-x^*\ _2^2}{\varepsilon^2}\right)$	1 лекция

- В сильно выпуклом случае по аргументу: $\|x x^*\|_2 \le \varepsilon$,
- В выпуклом случае по функции (решение x^* может быть не единственно): $f(x) f^* \le \varepsilon$,
- В невыпуклом случае (сходимость к какой-то стационарной точке): $\|\nabla f(x)\|_2 \le \varepsilon$.
- Градиентный спуск оптимален (вопрос: что это значит?) в негладком случае, а также в гладком невыпуклом.
- Наш анализ градиентного спуска в сильно выпуклом случае неулучшаем с точностью до численных множителей.
- В гладком выпуклом и сильно выпуклом случаях возможны улучшения, но для этого нужен другой метод (3 лекция).

Уже получали

$$||x^{k+1} - x^*||_2^2 \le ||x^k - x^*||_2^2 - 2\gamma_k \left(\frac{\mu}{2}||x^k - x^*||_2^2 + f(x^k) - f(x^*)\right) + \gamma_k^2 ||\nabla f(x^k)||_2^2$$

$$\le ||x^k - x^*||_2^2 - 2\gamma_k \left(f(x^k) - f(x^*)\right) + \gamma_k^2 ||\nabla f(x^k)||_2^2$$

Уже получали

$$||x^{k+1} - x^*||_2^2 \le ||x^k - x^*||_2^2 - 2\gamma_k \left(\frac{\mu}{2}||x^k - x^*||_2^2 + f(x^k) - f(x^*)\right) + \gamma_k^2 ||\nabla f(x^k)||_2^2$$

$$\le ||x^k - x^*||_2^2 - 2\gamma_k \left(f(x^k) - f(x^*)\right) + \gamma_k^2 ||\nabla f(x^k)||_2^2$$

Вопрос: как можно подобрать γ_k оптимально в этой ситуации?

Уже получали

$$||x^{k+1} - x^*||_2^2 \le ||x^k - x^*||_2^2 - 2\gamma_k \left(\frac{\mu}{2}||x^k - x^*||_2^2 + f(x^k) - f(x^*)\right) + \gamma_k^2 ||\nabla f(x^k)||_2^2$$

$$\le ||x^k - x^*||_2^2 - 2\gamma_k \left(f(x^k) - f(x^*)\right) + \gamma_k^2 ||\nabla f(x^k)||_2^2$$

Вопрос: как можно подобрать γ_k оптимально в этой ситуации? arg $\min_{\gamma_k} \left(-2\gamma_k \left(f(x^k) - f(x^*) \right) + \gamma_k^2 \|\nabla f(x^k)\|_2^2 \right) ?$

Уже получали

$$||x^{k+1} - x^*||_2^2 \le ||x^k - x^*||_2^2 - 2\gamma_k \left(\frac{\mu}{2}||x^k - x^*||_2^2 + f(x^k) - f(x^*)\right) + \gamma_k^2 ||\nabla f(x^k)||_2^2$$

$$\le ||x^k - x^*||_2^2 - 2\gamma_k \left(f(x^k) - f(x^*)\right) + \gamma_k^2 ||\nabla f(x^k)||_2^2$$

Вопрос: как можно подобрать γ_k оптимально в этой ситуации? arg $\min_{\gamma_k} \left(-2\gamma_k \left(f(x^k) - f(x^*) \right) + \gamma_k^2 \|\nabla f(x^k)\|_2^2 \right) ?$

$$\gamma_k = \frac{f(x^k) - f(x^*)}{\|\nabla f(x^k)\|_2^2}$$

Вопрос: какие видите проблемы?

Уже получали

$$||x^{k+1} - x^*||_2^2 \le ||x^k - x^*||_2^2 - 2\gamma_k \left(\frac{\mu}{2}||x^k - x^*||_2^2 + f(x^k) - f(x^*)\right) + \gamma_k^2 ||\nabla f(x^k)||_2^2$$

$$\le ||x^k - x^*||_2^2 - 2\gamma_k \left(f(x^k) - f(x^*)\right) + \gamma_k^2 ||\nabla f(x^k)||_2^2$$

Вопрос: как можно подобрать γ_k оптимально в этой ситуации? arg $\min_{\gamma_k} \left(-2\gamma_k \left(f(x^k) - f(x^*) \right) + \gamma_k^2 \|\nabla f(x^k)\|_2^2 \right) ?$

$$\gamma_k = \frac{f(x^k) - f(x^*)}{\|\nabla f(x^k)\|_2^2}$$

Вопрос: какие видите проблемы? $f(x^*)$ – иногда известно, а иногда можно оценить.

• Шаг Поляка-Шора:

$$\gamma_k = rac{f(x^k) - f(x^*)}{lpha \|\nabla f(x^k)\|_2^2}, \quad lpha \geq 1 \quad ext{(надо подбирать)}$$

Шаг Поляка-Шора:

$$\gamma_k = rac{f(x^k) - f(x^*)}{lpha \|\nabla f(x^k)\|_2^2}, \quad lpha \geq 1 \quad ext{(надо подбирать)}$$

• Наискорейший спуск:

$$\gamma_k = \arg\min_{\gamma} f(x^k - \gamma \nabla f(x^k))$$

Шаг Поляка-Шора:

$$\gamma_k = rac{f(x^k) - f(x^*)}{lpha \|\nabla f(x^k)\|_2^2}, \quad lpha \geq 1 \quad ext{(надо подбирать)}$$

• Наискорейший спуск:

$$\gamma_k = \arg\min_{\gamma} f(x^k - \gamma \nabla f(x^k))$$

Вопрос: как решать?

• Шаг Поляка-Шора:

$$\gamma_k = rac{f(x^k) - f(x^*)}{lpha \|\nabla f(x^k)\|_2^2}, \quad lpha \geq 1 \quad ext{(надо подбирать)}$$

• Наискорейший спуск:

$$\gamma_k = \arg\min_{\gamma} f(x^k - \gamma \nabla f(x^k))$$

Вопрос: как решать? Иногда есть явная формула, а так нужно решать одномерную задачу.

• Шаг Поляка-Шора:

$$\gamma_k = rac{f(x^k) - f(x^*)}{lpha \|\nabla f(x^k)\|_2^2}, \quad lpha \geq 1 \quad ext{(надо подбирать)}$$

• Наискорейший спуск:

$$\gamma_k = \arg\min_{\gamma} f(x^k - \gamma \nabla f(x^k))$$

Вопрос: как решать? Иногда есть явная формула, а так нужно решать одномерную задачу.

- Правила Армихо, Вульфа и Гольдстейна (на 8 семинаре).
- Адаптивный подбор, например, онлайн оценка локальной константы L (на 8 семинаре).

