Limites

Limites de campos escalares

Sea $f:D_f\subset\mathbb{R} o\mathbb{R}$ y sea $ar{x}_0$ un punto de acumulación de D_f

Diremos que el número $l \in \mathbb{R}$ es el limite de f cuando \bar{x} tiende a \bar{x}_0

Propiedades

Sean $f:D_f\subset\mathbb{R} o\mathbb{R}$ y $g:D_g\subset\mathbb{R} o\mathbb{R}$, $ar{x}_0$ pto de acumulación de D_f y D_g

$$Y \lim_{\bar{x} \to \bar{x}_0} f(\bar{x}) = l_1, \lim_{\bar{x} \to \bar{x}_0} g(\bar{x}) = l_2$$

1.
$$\lim_{\bar{x} \to \bar{x}_0} [f(\bar{x}) + g(\bar{x})] = l_1 + l_2$$

$$\lim_{\bar{x} \to \bar{x}_0} k f(\bar{x}) = k \cdot l_1$$

$$\lim_{\bar{x}\to\bar{x}_0} [f(\bar{x})\cdot g(\bar{x})] = l_1\cdot l_2$$

4.
$$\lim_{\bar{x}\to\bar{x}_0} \left[\frac{f(\bar{x})}{g(\bar{x})}\right] = \frac{l_1}{l_2}$$

1 y 2 también aplican para campos vectoriales.

Funciones acotadas e infinitesimos

Si f(x, y) = h(x, y)g(x, y) y h es una función acotada en un $E^*(x_0, y_0)$ y g es un infinitésimo en (x_0, y_0) entonces:

$$\lim_{\bar{x} \to \bar{x}_0} f(x, y) = \lim_{\bar{x} \to \bar{x}_0} h(x, y) g(x, y) = 0$$

1 de 3 28/4/2022 00:39

Funciones acotadas

$$f_1(x, y) = \frac{x^2}{x^2 + y^2}$$

$$f_2(x, y) = \frac{x}{\sqrt{x^2 + y^2}}$$

$$f_3(x, y) = \frac{y}{\sqrt{x^2 + y^2}}$$

$$f_4(x, y) = \frac{|x|}{\sqrt{x^2 + y^2}}$$

$$f_5(x, y) = \frac{|y|}{\sqrt{x^2 + y^2}}$$

Limite importante

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = 0 \Rightarrow \lim_{(x,y)\to(x_0,y_0)} \frac{\sin[f(x,y)]}{f(x,y)} = 1$$

Limites sucesivos o reiterados

$$l_{12} = \lim_{y \to y_0} \lim_{x \to x_0} f(x, y) = 0$$

$$l_{21} = \lim_{x \to x_0} \lim_{y \to y_0} f(x, y) = 0$$

Si $\exists l, \exists l_{12}, \exists l_{21}$ entonces $l = l_{12} = l_{21}$

Nos interesa el corolario: Si $l_{12} \neq l_{21} \Rightarrow \not\equiv l$

Propiedad

Si $f(x,y) \to l_1$ cuando $(x,y) \to (x_0,y_0)$ por una curva c_1 y $f(x,y) \to l_2$ cuando $(x,y) \to (x_0,y_0)$ por una curva c_2 siendo

$$l_1 \neq l_2 \Rightarrow \mathcal{I}\lim_{(x,y)\to(x_0,y_0)} f(x,y)$$

También podemos aproximarnos por una familia de rectas. Se los llama limites radiales $y-y_0=m(x-x_0)$ y si el resultado del limite depende de m entonces no existe el limite doble.

2 de 3 28/4/2022 00:39

Continuidad de una función en un punto

Sea $f:D_f\subset\mathbb{R}^n o\mathbb{R}$ y $ar{x}_0$ pto de acumulación del dominio D_f

f es continua en $\bar{x}_0 \Leftrightarrow \lim_{\bar{x} \to \bar{x}_0} f(\bar{x}) = f(\bar{x}_0)$

f es continua en un conjunto si es continua en cada punto del conjunto.

 $f:D_f\subset\mathbb{R}^n\to\mathbb{R}$, $g:D_g\subset\mathbb{R}^n\to\mathbb{R}$ dos campos escalares continuos en \bar{x}_0 entonces:

- 1. f + g es continua en \bar{x}_0
- 2. $f \cdot g$ es continua en \bar{x}_0
- 3. $\frac{f}{g}$ es continua $g(\bar{x}_0) \neq 0$

Las funciones polinomicas son continuas, con dominios adecuados la composición de funciones continuas es continua.

Clasifciacion de discontinuidades

Si existe el limite pero no es igual a la imagen entonces la discontinuidad es evitable

Si no existe el limite entonces la discontinuidad es esencial

3 de 3 28/4/2022 00:39