RISC-V Instruction Formats

Author: Steven Ho

Great Idea #1: Levels of Representation/Interpretation

Agenda

- Stored-Program Concept
- R-Format
- I-Format
- S-Format
- SB-Format
- U-Format
- UJ-Format

Big Idea: Stored-Program Concept

INSTRUCTIONS ARE DATA

- programs can be stored in memory as numbers
- Before: a number can mean anything
- Now: make convention for interpreting numbers as instructions

Introduction to Machine Language Author: Steven Ho

Instructions as Numbers

By convention, RISCV instructions are each
 1 word = 4 bytes = 32 bits

31

- Divide the 32 bits of an instruction into "fields"
 - regular field sizes → simpler hardware
 - will need some variation....
- Define 6 types of instruction formats:
 - R-Format I-Format S-Format U-FormatSB-Format UJ-Format

The 6 Instruction Formats

- R-Format: instructions using 3 register inputs
- I-Format: instructions with immediates, loads
 - -addi, lw, jalr, slli
- S-Format: store instructions: sw, sb
- SB-Format: branch instructions: beq, bge
- U-Format: instructions with upper immediates
 - lui, auipcupper immediate is 20-bits
- UJ-Format: jump instructions: jal

The 6 Instruction Formats

	31	27	26	25	24	20	19	15	14	12	11	7	6	0
R	funct7			rs2 rs1		funct3		rd		Opcode				
I	imm[11:0]					rs1 fu			funct3 rd		Opcode			
S	imm[11:5]			rs	2	rs1		funct3		imm[4:0]		opco	ode	
SB	imm[12 10:5]		rs	2	rs1		funct3		imm[4:1 11]		opco	ode		
\mathbf{U}	imm[31:12]									rc	1	opco	ode	
UJ	imm[20 10:1 11 19:				12]				rc	l	opco	ode		

Agenda

- Stored-Program Concept
- R-Format
- I-Format
- S-Format
- SB-Format
- U-Format
- UJ-Format

R-Format Instructions (1/3)

• Define "fields" of the following number of bits each: 7 + 5 + 5 + 3 + 5 + 7 = 32

Each field has a name:

- Each field is viewed as its own <u>unsigned int</u>
 - 5-bit fields can represent any number 0-31,
 while 7-bit fields can represent any number 0-128,
 etc.

R-Format Instructions (2/3)

funct7 rs2 rs1 funct3 rd opcode

- opcode (7): partially specifies operation
 - e.g. R-types have opcode = 0b0110011,SB (branch) types have opcode = 0b1100011
- funct7+funct3 (10): combined with opcode, these two fields describe what operation to perform
- How many R-format instructions can we encode?
 - with opcode fixed at 0b0110011, just funct varies: $(2^7) \times (2^3) = (2^{10}) = 1024$

R-Format Instructions (3/3)

- rs1 (5): 1st operand ("source register 1")
- rs2 (5): 2nd operand (second source register)
- rd (5): "destination register" receives the result of computation
- Recall: RISCV has 32 registers
 - A 5 bit field can represent exactly $2^5 = 32$ things (interpret as the register numbers **x0-x31**)

Reading from the Green Sheet

add t0 t1 t2

RV64I BASE INTEGER INSTRUCTIONS, in alphabetical order

MNEMONIC FMT NAME

add

sub

31

DESCRIPTION (in Verilog)

add, addw R ADD (Word)

R[rd] = R[rs1] + R[rs2]

OPCODES IN NUMERICAL ORDER BY OPCODEMNEMONICFMTOPCODEFUNCT3FUNCT7 OR IMM HEXADECIMALsdS010001101123/3

S 0100011 011 23/3
R 0110011 000 0000000 33/0/00
R 0110011 000 0100000 33/0/28

R-Format Example

• RISCV Instruction: add x5, x6, x7

hex representation: $0 \times 0073 02B3$

decimal representation: 7,537,331

Called a Machine Language Instruction

All RV32 R-format instructions

	- Agra - A	<u> </u>	<u> </u>	-		-
0000000	rs2	rs1	111	rd	0110011	
0000000	rs2	rs1	110	rd	0110011	
0100000	rs2	rs1	101	rd	0110011	
0000000	rs2	rs1	101	rd	0110011	
0000000	rs2	rs1	100	rd	0110011	
0000000	rs2	rs1	011	rd	0110011	
0000000	rs2	rs1	010	rd	0110011	
0000000	rs2	rs1	001	rd	0110011	
0100000	rs2	rs1	000	rd	0110011	
0000000	rs2	rs1	000	rd	0110011	
		Les .				

Different encoding in funct7 + funct3 selects different operations

ADD

SUB

SLL

SLT

SLTU

XOR

SRL

SRA

OR

AND

Agenda

- Stored-Program Concept
- R-Format
- I-Format
- S-Format
- SB-Format
- U-Format
- UJ-Format

I-Format Instructions (1/4)

- What about instructions with immediates?
 - 5-bit field too small for most immediates
- Ideally, RISCV would have only one instruction format (for simplicity)
 - Unfortunately here we need to compromise
- Define new instruction format that is mostly consistent with R-Format
 - First notice that, if instruction has immediate,
 then it uses at most 2 registers (1 src, 1 dst)

I-Format Instructions (2/4)

• Define "fields" of the following number of bits each: 12 + 5 + 3 + 5 + 7 = 32 bits

• Field names:

• **Key Concept:** Only **imm** field is different from R-format: rs2 and funct7 replaced by 12-bit signed immediate, **imm** [11:0]

I-Format Instructions (3/4)

imm[11:0] rs1 func3 rd opcode

- opcode (7): uniquely specifies the instruction
- rs1 (5): specifies a register operand
- rd (5): specifies destination register that receives result of computation

I-Format Instructions (4/4)

- immediate (12): 12 bit number
 - All computations done in words, so 12-bit immediate must be extended to 32 bits
 - always sign-extended to 32-bits before use in an arithmetic operation
- Can represent 2¹² different immediates
 - imm[11:0] can hold values in range [-2¹¹,+2¹¹)

I-Format Example (1/2)

addi x15, x1, -50

OPCODES IN MNEMONIC	NUMER FMT	OPCODE	ER BY O			MM HEXADECIMAL
fence.i addi slli	I I I	0001111 0010011 0010011		001	0000000	13/0 13/1/00
rd	= X	15 /				
rs1	= X	1				
3 <u>1</u>						0
	-					
im	m[11:	:0]	rs1	func3	rd	opcode

I-Format Example (2/2)

• RISCV Instruction: addi x15, x1, -50

Field representation (binary):

decimal representation: 4,242,573,203

All RISCV I-Type Arithmetic Instructions

	•					
imm[11	:0]	rs1	000	rd	0010011	ADI
imm[11	:0]	rs1	010	rd	0010011	SLT
imm[11	:0]	rs1	011	rd	0010011	SLT
imm[11	:0]	rs1	100	rd	0010011	XOF
imm[11	imm[11:0]			rd	0010011	ORI
imm[11	:0]	rs1	111	rd	0010011	ANI
0000000	shamt	rs1	001	rd	0010011	SLL
0000000	shamt	rs1	101	rd	0010011	SRL
① 000000	shamt_	rs1	101	rd	0010011	SRA
*	1		1	-		-

DI \mathbf{IU} RIDI

One of the higher-order immediate bits is used to distinguish "shift right logical" (SRLI) from "shift right arithmetic" (SRAI)

"Shift-by-immediate" instructions only use lower 5 bits of the immediate value for shift amount (can only shift by 0-31 bit positions)

Agenda

- Stored-Program Concept
- R-Format
- I-Format (Load)
- S-Format
- SB-Format
- U-Format
- UJ-Format

Load Instructions are also I-Type

imm[11:0] rs1 func3 rd opcode

offset[11:0] base width dst LOAD

- The 12-bit signed immediate is added to the base address in register rs1 to form the memory address
 - This is very similar to the add-immediate operation but used to create address, not to create final result
- Value loaded from memory is stored in rd

I-Format Load Example

• $1w \times 14$, $8(\times 2)$

3	1				C
	imm[11:0]	rs1	func3	rd	opcode
	offset[11:0]	base	width	dst	LOAD
	00000001000	00010	010	01111	0000011
	imm=+8	rs1=2	LW	rd=14	LOAD

All RV32 Load Instructions

imm[11:0]	rs1	000	rd	0000011	
imm[11:0]	rs1	001	rd	0000011	
imm[11:0]	rs1	010	rd	0000011	
imm[11:0]	rs1	100	rd	0000011	
imm[11:0]	rs1	101	rd	0000011	
5	1				\neg

LB LH LW LBU LHU

funct3 field encodes size and signedness of load data

- LBU is "load unsigned byte"
- LH is "load halfword", which loads 16 bits (2 bytes) and sign-extends to fill destination 32-bit register
- LHU is "load unsigned halfword", which zero-extends 16 bits to fill destination 32-bit register
- There is no LWU in RV32, because there is no sign/zero extension needed when copying 32 bits from a memory location into a 32-bit register

Agenda

- Stored-Program Concept
- R-Format
- I-Format
- S-Format
- SB-Format
- U-Format
- UJ-Format

S-Format Used for Stores

- Store needs to read two registers, rs1 for base memory address, and rs2 for data to be stored, as well as need immediate offset!
- Can't have both rs2 and immediate in same place as other instructions!
- Note: stores don't write a value to the register file, no rd!
- RISC-V design decision is **move low 5 bits of immediate** to where rd field was in other instructions keep rs1/rs2 fields in same place
- register names more critical than immediate bits in hardware design

31						l	0
imm[11:	5]	rs2	rs1	func3	imm[4:0]	opcode	

S-Format Example

sw x14, 8(x2)

All RV32 Store Instructions

Ì	imm[11:5]	rs2	rs1	000	imm[4:0]	0100011	SB
	imm[11:5]	rs2	rs1	001	imm[4:0]	0100011	SH
	imm[11:5]	rs2	rs1	010	imm[4:0]	0100011	SW

Agenda

- Stored-Program Concept
- R-Format
- I-Format
- S-Format
- SB-Format
- U-Format
- UJ-Format

Branching Instructions

- beq, bne, bge, blt
 - Need to specify an address to go to
 - Also take two registers to compare
 - Doesn't write into a register (similar to stores)
- How to encode label, i.e., where to branch to?

Branching Instruction Usage

- Branches typically used for loops (if-else, while, for)
 - Loops are generally small (< 50 instructions)
- Recall: Instructions stored in a localized area of memory (Code/Text)
 - Largest branch distance limited by size of code
 - Address of current instruction stored in the program counter (PC)

PC-Relative Addressing

- PC-Relative Addressing: Use the immediate field as a two's complement offset to PC
 - Branches generally change the PC by a small amount
 - Can specify $\pm 2^{11}$ addresses from the PC

 Why not use byte address offset from PC as the immediate?

Branching Reach

- Recall: RISCV uses 32-bit addresses, and memory is byte-addressed
- Instructions are "word-aligned": Address is always a multiple of 4 (in bytes)
- PC ALWAYS points to an instruction
 - PC is typed as a pointer to a word
 - can do C-like pointer arithmetic
- Let immediate specify #words instead of #bytes
 - Instead of specifying $\pm 2^{11}$ bytes from the PC, we will now specify $\pm 2^{11}$ words = $\pm 2^{13}$ byte addresses around PC

Branch Calculation

• If we don't take the branch:

$$PC = PC+4 = next instruction$$

If we do take the branch:

```
PC = PC + (immediate*4)
```

Observations:

 immediate is number of instructions to move (remember, specifies words) either forward (+) or backwards (-)

RISC-V Feature, n×16-bit instructions

- Extensions to RISC-V base ISA support 16-bit compressed instructions and also variable-length instructions that are multiples of 16-bits in length
- 16-bit = half-word
- To enable this, RISC-V scales the branch offset to be half-words even when there are no 16-bit instructions
- Reduces branch reach by half and means that ½ of possible targets will be errors on RISC-V processors that only support 32-bit instructions (as used in this class)
- RISC-V conditional branches can only reach \pm 2¹⁰ × 32-bit instructions either side of PC

RISC-V B-Format for Branches

- B-format is mostly same as S-Format, with two register sources (rs1/rs2) and a 12-bit immediate
- But now immediate represents values -2¹² to +2¹²-2 in 2-byte increments
- The 12 immediate bits encode even 13-bit signed byte offsets (lowest bit of offset is always zero, so no need to store it)

Branch Example (1/2)

RISCV Code:

```
Loop: beq x19,x10,End add x18,x18,x10 addi x19,x19,-1 j Loop
End: <target instr>
```

Start counting from instruction AFTER the branch

- Branch offset = 4×32-bit instructions = 16 bytes
- (Branch with offset of 0, branches to itself)

Branch Example (1/2)

Branch Example (1/2)

RISC-V Immediate Encoding

Why is it so confusing?!?!

Upper bits sign-extended from inst[31] always

	-			_					· ·
			Instruc	ction F	Encodings,	inst[31:0]	1		
31	30 25	5 24 21	20 19	19	15 14 12	2 11 8	7	6 0	A
f	funct7	rs2		rs1	funct3	ro	d	opcode	R-type
	imm[1]	1:0]		rs1	funct3	ro	d	opcode] I-type
	500 CO 200 CO 400 CO 40			200000000	DOUGHTOOM LONG SON	6677022		A CONTRACTOR OF COURSE	
im	nm[11:5]	rs2		rs1	funct3	imm	[4:0]	opcode] S-type
imm[12]	imm[10:5]	rs2		rs1	funct3	imm[4:1]	imm[11]	opcode	B-type
111111[12]	111111[10.0]	102		101	Tuncoo	mmi[4.1]	mm[11]	Opcode] D-type
		<u>32-</u> '	bit imme	<u>diates</u>	produced, i	mm[31:0]			
31	30	20 19	12	11	10 5	5 4	1 0		
	j	inst[31] —			inst[30:25]	$[0] \mathrm{inst}[24:2]$	$[21] \mid \operatorname{inst}[2]$	[0] I-imn	mediate
						2	-7		44
	j	inst[31] —			inst[30:25]	[0] inst[11:8]	8 inst[7	[] S-imr	mediate
	• 4 [4	0.1]		• [7]	100.05	1 111	01 0		1. 7
	$-\inf[3$	31] —		inst[7]	mst[30:25]	[0] inst[11:8	8] 0	B-1m	mediate
					Only bit 7	7 of instruc	ction char	iges role	in ₄₆

immediate between S and B

All RISC-V Branch Instructions

imm[12 10:5]	rs2	rs1	000	imm[4:1 11]	1100011	I
imm[12 10:5]	rs2	rs1	001	imm[4:1 11]	1100011	☐ I
imm[12 10:5]	rs2	rs1	100	imm[4:1 11]	1100011	I
imm[12 10:5]	rs2	rs1	101	imm[4:1 11]	1100011	I
imm[12 10:5]	rs2	rs1	110	imm[4:1 11]	1100011	I
imm[12 10:5]	rs2	rs1	111	imm[4:1 11]	1100011	I

BEQ BNE BLT BGE BLTU BGEU

Questions on PC-addressing

- Does the value in branch immediate field change if we move the code?
 - If moving individual lines of code, then yes
 - If moving all of code, then no (why?)
- What do we do if destination is $> 2^{10}$ instructions away from branch?
 - Other instructions save us:

```
beq x10,x0,far bne x10,x0,next \rightarrow j far next: # next instr
```

Agenda

- Stored-Program Concept
- R-Format
- I-Format
- S-Format
- SB-Format
- U-Format
- UJ-Format

Dealing With Large Immediates

- How do we deal with 32-bit immediates?
 - Our I-type instructions only give us 12 bits
- **Solution:** Need a new instruction format for dealing with the rest of the 20 bits.
- This instruction should deal with:
 - a destination register to put the 20 bits into
 - the immediate of 20 bits
 - the instruction opcode

U-Format for "Upper Immediate" instructions

- Has 20-bit immediate in upper 20 bits of 32-bit instruction word
- One destination register, rd
- Used for two instructions
 - LUI Load Upper Immediate
 - AUIPC Add Upper Immediate to PC

LUI to create long immediates

- lui writes the upper 20 bits of the destination with the immediate value, and clears the lower 12 bits
- Together with an addi to set low 12 bits, can create any 32-bit value in a register using two instructions (lui/addi).

```
lui x10, 0x87654 # x10 = 0x87654000 addi x10, x10, 0x321 # x10 = 0x87654321
```

Corner Case

How to set 0xDEADBEEF?

```
lui x10, 0xDEADB \# x10 = 0xDEADB000 addi x10, x10,0xEEF \# x10 = 0xDEADAEEF
```

addi 12-bit immediate is always sign-extended!

- if top bit of the 12-bit immediate is a 1, it will subtract -1 from upper 20 bits

Solution

How to set 0xDEADBEEF?

```
lui x10, 0xDEADC \# x10 = 0xDEADC000 addi x10, x10,0xEEF \# x10 = 0xDEADBEEF
```

Pre-increment value placed in upper 20 bits, if sign bit will be set on immediate in lower 12 bits.

Assembler pseudo-op handles all of this:

li x10, 0xDEADBEEF # Creates two instructions

AUIPC

- Adds upper immediate value to PC and places result in destination register
- Used for PC-relative addressing

- Label: auipc x10, 0
 - Puts address of label into ×10

Agenda

- Stored-Program Concept
- R-Format
- I-Format
- S-Format
- SB-Format
- U-Format
- UJ-Format

UJ-Format Instructions (1/3)

- For branches, we assumed that we won't want to branch too far, so we can specify a change in the PC
- For general jumps (jal), we may jump to anywhere in code memory
 - Ideally, we would specify a 32-bit memory address to jump to
 - Unfortunately, we can't fit both a 7-bit opcode
 and a 32-bit address into a single 32-bit word
 - Also, when linking we must write to an rd register

UJ-Format Instructions (2/3)

- jal saves PC+4 in register rd (the return address)
- Set PC = PC + offset (PC-relative jump)
- Target somewhere within ±2¹⁹ locations, 2 bytes apart
- ±2¹⁸ 32-bit instructions
- Reminder: "j" jump is a pseudo-instruction—the assembler will instead use jal but sets rd=x0 to discard return address
- Immediate encoding optimized similarly to branch instruction to reduce hardware cost

UJ-Format Instructions (2/3)

- # j pseudo-instruction
- j Label = jal x0, Label # Discard return address 18
- # Call function within 2 instructions of PC
- jal ra, FuncName
- Why is the immediate so funky?
 - Similar reasoning as for branch immediates

jalr Instruction (I-Format)

- jalr rd, rs1, offset
- Writes PC+4 to rd (return address)
- Sets PC = rs1 + offset
- Uses same immediates as arithmetic & loads
 - no multiplication by 2 bytes

Uses of jalr

```
imm[11:0] rs1 func3 rd opcode

offset base 0 dest JALR
```

```
# ret and jr psuedo-instructions
ret = jr ra = jalr x0, ra, 0
# Call function at any 32-bit absolute address
lui x1, <hi 20 bits>
jalr ra, x1, <lo 12 bits>
# Jump PC-relative with 32-bit offset
auipc x1, <hi 20 bits>
jalr x0, x1, <lo 12 bits>
```

Summary of RISC-V Instruction Formats

31	30	25 2	24 21	1 53	20	19		15	14	12	11	8	,	7	6	0	
	funct7		r	s2			rs1		funct	3		rd	l		opc	ode	R-type
		20)3.	2000					(2)							20	45	
	im	m[11:	0]				rs1		funct	3		rd	L		opc	ode	I-type
	-																
i	mm[11:5]		r	s2			rs1		funct	3		imm[[4:0]		opc	ode	S-type
[· Fa	1 . [40	~1 T		-						0 1		[[4.4]			
imm[1:	$[2] \mid \text{imm}[10]$:5]	r	s2			rs1		funct	3	imm	$\lfloor 4:1 \rfloor$	imn	n[11]	opc	ode	B-type
_			• [0	1 1	0]							Letterster	1		Anne policensor	1	TT .
×.			imm[3	1:1	2]							rd	L		opc	ode	U-type
:[0/	11 :	[10.	1]		[11]	_		[10	.10]							- 1 -	T 4
imm[20]	ım اِر	m[10:	1]	ım	m[11]		imn	1[19	:12]			rd	L		opc	ode	J-type

Summary

- The Stored Program concept is very powerful
 - Instructions can be treated and manipulated the same way as data in both hardware and software
- RISCV Machine Language Instructions:

	imm[31:12]			rd	0110111	LUI	
	imm[31:12]			rd	0010111	AUIPO	
imr	n[20 10:1 11 1	9:12]		rd	1101111	1 JAL	
imm[11:0)]	rs1	000	rd	1100111	JALR	
imm[12 10:5]	rs2	rs1	000	imm[4:1 11]	1100011	BEQ	
imm[12 10:5]	rs2	rs1	001	imm[4:1 11]	1100011	BNE	
imm[12 10:5]	rs2	rs1	100	imm[4:1 11]	1100011	BLT	
imm[12 10:5]	rs2	rs1	101	imm[4:1 11]	1100011	BGE	
imm[12 10:5]	rs2	rs1	110	imm[4:1 11]	1100011	BLTU	
imm[12 10:5]	rs2	rs1	111	imm[4:1 11]	1100011	BGEU	
imm[11:0)]	rs1	000	rd	0000011	LB	
imm[11:0)]	rs1	001	rd	0000011	LH	
imm[11:0	0]	rs1	010	rd	0000011	LW	
imm[11:0)]	rs1	100	rd	0000011	LBU	
imm[11:0	0]	rs1	101	rd	0000011	LHU	
imm[11:5]	rs2	rs1	000	imm[4:0]	0100011	SB	
imm[11:5]	rs2	rs1	001	imm[4:0]	0100011	SH	
imm[11:5]	rs2	rs1	010	imm[4:0]	0100011	SW	
imm[11:0	0]	rs1	000	rd	0010011	ADDI	
imm[11:0)	rs1	010	rd	0010011	SLTI	
imm[11:0	oj .	rs1	011	rd	0010011	SLTIU	
imm[11:0		rs1	100	rd	0010011	XORI	
imm[11:0		rs1	110	rd	0010011	ORI	
imm[11:0	0	rs1	111	rd	0010011	ANDI	

SLLI	0010011	rd	001	rs1	shamt	0000000
SRLI	0010011	rd	101	rs1	shamt	0000000
SRAI	0010011	$^{\mathrm{rd}}$	101	rs1	shamt	0100000
ADD	0110011	rd	000	rs1	rs2	0000000
SUB	0110011	rd	000	rs1	rs2	0100000
SLL	0110011	rd	001	rs1	rs2	0000000
SLT	0110011	$^{\mathrm{rd}}$	010	rs1	rs2	0000000
SLTU	0110011	rd	011	rs1	rs2	0000000
XOR	0110011	rd	100	rs1	rs2	0000000
SRL	0110011	rd	101	rs1	rs2	0000000
SRA	0110011	rd	101	rs1	rs2	0100000
OR	0110011	rd	110	rs1	rs2	0000000
AND	0110011	rd	111	rs1	rs2	0000000