Rapidly Exploring Random Trees

SECTION 3.3

Example of RRT growth in 2D Space

RRT Procedure

- Add start node to tree
- Repeat n times
 - o Generate a random configuration, x
 - o If x is in freespace using the CollisionCheck function
 Find y, the closest node in the tree to the random configuration
 If (Dist (x, y) > delta) Check if x is too far from y
 Find a configuration, z, that is along the path from x to y such that Dist(z,y) <= delta</p>
 x = z;
 If (LocalPlanner (x,y)) Check if you can get from x to y
 Add x to the tree with y as its parent

RRT Extension Procedure – Initial tree

RRT Extension Procedure

RRT Extension Procedure

RRT Extension Procedure – Graph after extension

RRT Planning using 2 trees

RRT 2 tree procedure

- While not done
 - o Extend Tree A by adding a new node, x
 - o Find the closest node in Tree B to x, y
 - o If (LocalPlanner(x,y)) Check if you can bridge the 2 trees Add edge between x and y.

This completes a route between the root of Tree A and the root of Tree B. Return this route

Else

Swap Tree A and Tree B

