LICENCE DE PHYSIQUE, FIP

Mathématiques pour physiciens : TD n°3

Singularités et intégration des fonctions analytiques

Emmanuel Baudin & Francesco Zamponi

1 Singularités, points de branchement, coupures

- 1. Déterminer les points de branchement et les coupures des fonctions
 - a) $f(z) = (z+a)^{1/2}$
 - b) $f(z) = (z^2 + 1)^{1/2}$
 - c) $f(z) = z^{1/3}$
 - d) $f(z) = (z^4 81)^{1/2}$

où $a \in \mathbb{C}$.

2. Déterminer la réciproque de la fonction

$$f(z) = \cos z$$

et étudier ses singularités.

3. Résoudre dans \mathbb{C} l'équation

$$\sin z = i$$
.

4. Soit la fonction

$$f(z) = \ln z$$
.

- a) Montrer que toute détermination du logarithme a pour dérivée $\frac{1}{z}$.
- b) On considère maintenant la détermination principale du logarithme : $\forall z \in \mathbb{C} \mathbb{R}^+$

$$\operatorname{Ln}(z) = \operatorname{ln}(|z|) + i \operatorname{arg}(z)$$

où $z=|z|e^{i\theta}$ et $\arg(z)=\theta$ avec $0\leq \theta<2\pi$. En utilisant les conditions de Cauchy-Riemann en coordonnées polaires, montrer que Ln est holomorphe dans l'ouvert $\mathbb{C}-\mathbb{R}^+$. Calculer la dérivée de Ln et retrouver dans ce cas particulier le résultat du point a).

Quelques intégrales sur \mathbb{C} 2

1. En notant γ l'arc de cercle joignant 3 à i $\sqrt{3}$ et d'équation $(x-1)^2+y^2=4$, en tournant dans le sens trigonométrique, calculer

$$\int_{\gamma} \frac{\mathrm{d}z}{z^2}.$$

On cherchera une primitive de $\frac{1}{x^2}$.

2. Considérons, dans \mathbb{C} , les segments $\gamma_1 = [-i, 5i]$ $\gamma_2 = [-i, 2+5i]$, $\gamma_3 = [2+5i, 5i]$ (où le sens de parcours va du premier point du segment vers le second). Définissons maintenant la fonction $f: \mathbb{C} \longrightarrow \mathbb{C}$ par $f(x+iy) = x^2 - 2iy$. Calculer explicitement

$$\int_{\gamma_1} f(z) dz \text{ et } \int_{\gamma_2 \cup \gamma_3} f(z) dz.$$

Conclure.

- 3. Calculer les intégrales suivantes :
 - a) $I_a = \int_{\gamma} (z+1)^2 dz$; γ est le triangle de sommets [-1,1,i] orienté dans le sens antihoraire (trigonométrique).
 - b) $I_b = \int_{\gamma} z\overline{z} dz$; γ est le cercle de centre z = 0 et rayon R = 5, orienté dans le sens

 - c) $I_c = \int_{\gamma} e^{\overline{z}} dz$; γ est le carré de sommets $[0, 1, 1+\mathrm{i}, \mathrm{i}]$ orienté dans le sens anti-horaire. d) $I_d = \int_{\gamma} dz (1+2\overline{z})^2$; γ est le cercle de centre z=0 et rayon R=1, orienté dans le sens anti-horaire.

3 Exercices maison

- 1. Calculer les intégrales suivantes (les courbes sont orientées dans le sens anti-horaire sauf
 - a) $\int_{\gamma} \frac{1}{|z|^2} dz$; γ est defini par $z(t) = \cosh t + i \sinh t$, $t \in (-\infty, \infty)$. Dessiner γ . b) $\int_{\gamma} dz \ z\overline{z}$; γ est le triangle de sommets [0, 1, i].

 - c) $\int_{\gamma} d\overline{z} (z-1)^2$; γ est l'union du demi-cercle |z-1|=1/2, $\mathrm{Im}z>0$ et du segment d'axe réel qui joint ses extrémités.
 - d) $\int_{\gamma} dz \ (z + \overline{z})$; γ est le carré de sommets [0, 1, i + 1, i].
- 2. Determiner les solutions de l'équation

$$e^{z^{-2}} = \alpha$$

pour $\alpha \in \mathbb{C}$. Montrer que si $|\alpha| \neq 0$ le nombre de solutions qui appartiennent au disque $|z| \leq \varepsilon$ est infini pour tout ε . Ceci est un exemple du fait que autour d'une singularité essentielle une fonction f(z) prend toutes les valeurs possibles en \mathbb{C} .

- 3. Déterminer les singularités en z=0 et $z=\infty$ (s'il y en a) des fonctions suivantes :
 - (a) $(z-2)^{-1}$ (b) $(1+z^3)/z^2$ (c) $\sinh(1/z)$ (d) e^z/z^3 (e) $z^{1/2}/(1+z^2)^{1/2}$.