5.1 EIGEN VALUES AND EIGEN VECTORS

Although a transformation $\mathbf{x} \mapsto A\mathbf{x}$ may move vectors in a variety of directions, it often happens that there are special vectors on which the action of A is quite simple.

EXAMPLE 1 Let
$$A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

Although a transformation $\mathbf{x} \mapsto A\mathbf{x}$ may move vectors in a variety of directions, it often happens that there are special vectors on which the action of A is quite simple.

EXAMPLE 1 Let
$$A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

FIGURE 1 Effects of multiplication by A.

An **eigenvector** of an $n \times n$ matrix A is a nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ . A scalar λ is called an **eigenvalue** of A if there is a nontrivial solution \mathbf{x} of $A\mathbf{x} = \lambda \mathbf{x}$; such an \mathbf{x} is called an *eigenvector corresponding to* λ .¹

An **eigenvector** of an $n \times n$ matrix A is a nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ . A scalar λ is called an **eigenvalue** of A if there is a nontrivial solution \mathbf{x} of $A\mathbf{x} = \lambda \mathbf{x}$; such an \mathbf{x} is called an *eigenvector corresponding to* λ .¹

It is easy to determine if a given vector is an eigenvector of a matrix. It is also easy to decide if a specified scalar is an eigenvalue.

EXAMPLE 2 Let $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$. Are \mathbf{u} and \mathbf{v} eigen-

vectors of A?

EXAMPLE 2 Let $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$. Are \mathbf{u} and \mathbf{v} eigenvectors of A?

$$A\mathbf{u} = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ -5 \end{bmatrix} = \begin{bmatrix} -24 \\ 20 \end{bmatrix} = -4 \begin{bmatrix} 6 \\ -5 \end{bmatrix} = -4\mathbf{u}$$
$$A\mathbf{v} = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} -9 \\ 11 \end{bmatrix} \neq \lambda \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

EXAMPLE 3 Show that 7 is an eigenvalue of matrix A in Example 2, and find the corresponding eigenvectors.

$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$

EXAMPLE 3 Show that 7 is an eigenvalue of matrix A in Example 2, and find the corresponding eigenvectors.

$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$

$$A\mathbf{x} = 7\mathbf{x} \qquad A\mathbf{x} - 7\mathbf{x} = \mathbf{0} \qquad (A - 7I)\mathbf{x} = \mathbf{0}$$

$$A - 7I = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} - \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} -6 & 6 \\ 5 & -5 \end{bmatrix}$$

EXAMPLE 3 Show that 7 is an eigenvalue of matrix A in Example 2, and find the corresponding eigenvectors.

$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$

$$A\mathbf{x} = 7\mathbf{x} \qquad A\mathbf{x} - 7\mathbf{x} = \mathbf{0} \qquad (A - 7I)\mathbf{x} = \mathbf{0}$$

$$A - 7I = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} - \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} -6 & 6 \\ 5 & -5 \end{bmatrix}$$

$$\begin{bmatrix} -6 & 6 & 0 \\ 5 & -5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad x_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Thus λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation

$$(A - \lambda I)\mathbf{x} = \mathbf{0}$$

Thus λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation

$$(A - \lambda I)\mathbf{x} = \mathbf{0}$$

has a nontrivial solution. The set of *all* solutions of (3) is just the null space of the matrix $A - \lambda I$. So this set is a *subspace* of \mathbb{R}^n and is called the **eigenspace** of A corresponding to λ . The eigenspace consists of the zero vector and all the eigenvectors corresponding to λ .

FIGURE 2 Eigenspaces for $\lambda = -4$ and $\lambda = 7$.

EXAMPLE 4 Let $A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$. An eigenvalue of A is 2. Find a basis for

the corresponding eigenspace.

EXAMPLE 4 Let $A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$. An eigenvalue of A is 2. Find a basis for

the corresponding eigenspace.

$$A - 2I = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 6 \\ 2 & -1 & 6 \\ 2 & -1 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 & 6 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} 1/2 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}, \left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} \right\}$$

THEOREM 1

The eigenvalues of a triangular matrix are the entries on its main diagonal.

THEOREM 1

The eigenvalues of a triangular matrix are the entries on its main diagonal.

$$A - \lambda I = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$
$$= \begin{bmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ 0 & a_{22} - \lambda & a_{23} \\ 0 & 0 & a_{33} - \lambda \end{bmatrix}$$

Lower triangular??

EXAMPLE 5 Let
$$A = \begin{bmatrix} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 0 & 0 \\ -2 & 1 & 0 \\ 5 & 3 & 4 \end{bmatrix}$. The eigenval-

ues of A are 3, 0, and 2. The eigenvalues of B are 4 and 1.

What does it mean for a matrix A to have an eigenvalue of 0, such as in Example 5?

EXAMPLE 5 Let
$$A = \begin{bmatrix} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 0 & 0 \\ -2 & 1 & 0 \\ 5 & 3 & 4 \end{bmatrix}$. The eigenval-

ues of A are 3, 0, and 2. The eigenvalues of B are 4 and 1.

What does it mean for a matrix A to have an eigenvalue of 0, such as in Example 5?

$$A\mathbf{x} = 0\mathbf{x}$$

Thus 0 is an eigenvalue of A if and only if A is not invertible.

THEOREM 2

If $\mathbf{v}_1, \dots, \mathbf{v}_r$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \dots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is linearly independent.

THEOREM 2

If $\mathbf{v}_1, \dots, \mathbf{v}_r$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \dots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is linearly independent.

Suppose $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is linearly dependent.

$$c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p = \mathbf{v}_{p+1}$$

$$c_1A\mathbf{v}_1 + \dots + c_pA\mathbf{v}_p = A\mathbf{v}_{p+1}$$

$$c_1\lambda_1\mathbf{v}_1 + \dots + c_p\lambda_p\mathbf{v}_p = \lambda_{p+1}\mathbf{v}_{p+1}$$

$$c_1(\lambda_1 - \lambda_{p+1})\mathbf{v}_1 + \dots + c_p(\lambda_p - \lambda_{p+1})\mathbf{v}_p = \mathbf{0}$$

$$\mathbf{x}_{k+1} = A\mathbf{x}_k \quad (k = 0, 1, 2, \ldots)$$

If A is an $n \times n$ matrix, then (8) is a *recursive* description of a sequence $\{\mathbf{x}_k\}$ in \mathbb{R}^n .

$$\mathbf{x}_{k+1} = A\mathbf{x}_k \quad (k = 0, 1, 2, ...)$$

If A is an $n \times n$ matrix, then (8) is a *recursive* description of a sequence $\{\mathbf{x}_k\}$ in \mathbb{R}^n .

The simplest way to build a solution of (8) is to take an eigenvector \mathbf{x}_0 and its corresponding eigenvalue λ and let

$$\mathbf{x}_k = \lambda^k \mathbf{x}_0 \quad (k = 1, 2, \ldots) \tag{9}$$

This sequence is a solution because

$$A\mathbf{x}_k = A(\lambda^k \mathbf{x}_0) = \lambda^k (A\mathbf{x}_0) = \lambda^k (\lambda \mathbf{x}_0) = \lambda^{k+1} \mathbf{x}_0 = \mathbf{x}_{k+1}$$

2. If **x** is an eigenvector of A corresponding to λ , what is A^3 **x**?

2. If **x** is an eigenvector of A corresponding to λ , what is A^3 **x**?

$$A\mathbf{x} = \lambda \mathbf{x}$$

$$A^2$$
x = $A(\lambda$ **x**) = λA **x** = λ^2 **x**

$$A^3$$
x = $A(A^2$ **x**) = $A(\lambda^2$ **x**) = $\lambda^2 A$ **x** = λ^3 **x**

$$A^k \mathbf{x} = \lambda^k \mathbf{x}$$

If A is an $n \times n$ matrix and λ is an eigenvalue of A, show that 2λ is an eigenvalue of 2A.

5.2 CHARACTERISTIC EQUATION

EXAMPLE 1 Find the eigenvalues of $A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$.

EXAMPLE 1 Find the eigenvalues of $A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$.

$$(A - \lambda I)\mathbf{x} = \mathbf{0}$$

$$A - \lambda I = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 3 \\ 3 & -6 - \lambda \end{bmatrix}$$

finding all λ such that the matrix $A - \lambda I$ is *not* invertible determinant is zero

$$det(A - \lambda I) = (2 - \lambda)(-6 - \lambda) - (3)(3)$$
$$= -12 + 6\lambda - 2\lambda + \lambda^2 - 9$$
$$= \lambda^2 + 4\lambda - 21$$
$$= (\lambda - 3)(\lambda + 7)$$

The Invertible Matrix Theorem (continued)

Let A be an $n \times n$ matrix. Then A is invertible if and only if:

- s. The number 0 is *not* an eigenvalue of A.
- t. The determinant of A is not zero.

A scalar λ is an eigenvalue of an $n \times n$ matrix A if and only if λ satisfies the characteristic equation

$$\det(A - \lambda I) = 0$$

EXAMPLE 3 Find the characteristic equation of

$$A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

EXAMPLE 3 Find the characteristic equation of

$$A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Characteristic polynomial of A.

$$\det(A - \lambda I) = \det \begin{bmatrix} 5 - \lambda & -2 & 6 & -1 \\ 0 & 3 - \lambda & -8 & 0 \\ 0 & 0 & 5 - \lambda & 4 \\ 0 & 0 & 0 & 1 - \lambda \end{bmatrix}$$

$$= (5 - \lambda)(3 - \lambda)(5 - \lambda)(1 - \lambda)$$

$$\lambda^4 - 14\lambda^3 + 68\lambda^2 - 130\lambda + 75 = 0$$

eigenvalue 5 is said to have multiplicity 2

EXAMPLE 4 The characteristic polynomial of a 6×6 matrix is $\lambda^6 - 4\lambda^5 - 12\lambda^4$. Find the eigenvalues and their multiplicities.

EXAMPLE 4 The characteristic polynomial of a 6×6 matrix is $\lambda^6 - 4\lambda^5 - 12\lambda^4$. Find the eigenvalues and their multiplicities.

$$\lambda^{6} - 4\lambda^{5} - 12\lambda^{4} = \lambda^{4}(\lambda^{2} - 4\lambda - 12) = \lambda^{4}(\lambda - 6)(\lambda + 2)$$

Because the characteristic equation for an n* n matrix involves an nth-degree polynomial, the equation has exactly n roots, counting multiplicities, provided complex roots are allowed.

Similar matrices

If A and B are n*n matrices, then A is similar to B if there is an invertible matrix P such that

$$P^{-1}AP = B$$
, or, equivalently, $A = PBP^{-1}$

Similar matrices

If A and B are n*n matrices, then A is similar to B if there is an invertible matrix P such that

$$P^{-1}AP = B$$
, or, equivalently, $A = PBP^{-1}$

B is also similar to A, and we say simply that A and B are similar

Changing A into $P^{-1}AP$ is called a **similarity transformation**

Similar matrices

THEOREM 4

If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

Similar matrices

THEOREM 4

If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

PROOF If
$$B = P^{-1}AP$$
, then

$$B - \lambda I = P^{-1}AP - \lambda P^{-1}P = P^{-1}(AP - \lambda P) = P^{-1}(A - \lambda I)P$$

Using the multiplicative property (b) in Theorem 3, we compute

$$det(B - \lambda I) = det[P^{-1}(A - \lambda I)P]$$
$$= det(P^{-1}) \cdot det(A - \lambda I) \cdot det(P)$$

EXAMPLE 5 Let $A = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix}$. Analyze the long-term behavior of the dynam-

ical system defined by $\mathbf{x}_{k+1} = A\mathbf{x}_k$ (k = 0, 1, 2, ...), with $\mathbf{x}_0 = \begin{bmatrix} .6 \\ .4 \end{bmatrix}$.

EXAMPLE 5 Let $A = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix}$. Analyze the long-term behavior of the dynam-

ical system defined by $\mathbf{x}_{k+1} = A\mathbf{x}_k$ (k = 0, 1, 2, ...), with $\mathbf{x}_0 = \begin{bmatrix} .6 \\ .4 \end{bmatrix}$.

$$0 = \det \begin{bmatrix} .95 - \lambda & .03 \\ .05 & .97 - \lambda \end{bmatrix} = (.95 - \lambda)(.97 - \lambda) - (.03)(.05)$$
$$= \lambda^2 - 1.92\lambda + .92$$

$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

EXAMPLE 5 Let $A = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix}$. Analyze the long-term behavior of the dynam-

ical system defined by $\mathbf{x}_{k+1} = A\mathbf{x}_k$ (k = 0, 1, 2, ...), with $\mathbf{x}_0 = \begin{bmatrix} .6 \\ .4 \end{bmatrix}$.

$$0 = \det \begin{bmatrix} .95 - \lambda & .03 \\ .05 & .97 - \lambda \end{bmatrix} = (.95 - \lambda)(.97 - \lambda) - (.03)(.05)$$
$$= \lambda^2 - 1.92\lambda + .92$$

$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

$$\mathbf{x}_0 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2$$

$$\mathbf{x}_0 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2$$

$$\mathbf{x}_1 = A\mathbf{x}_0 = c_1A\mathbf{v}_1 + c_2A\mathbf{v}_2$$
$$= c_1\mathbf{v}_1 + c_2(.92)\mathbf{v}_2$$

$$\mathbf{x}_2 = A\mathbf{x}_1 = c_1A\mathbf{v}_1 + c_2(.92)A\mathbf{v}_2$$

= $c_1\mathbf{v}_1 + c_2(.92)^2\mathbf{v}_2$

$$\mathbf{x}_0 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 \qquad \mathbf{x}_1 = A \mathbf{x}_0 = c_1 A \mathbf{v}_1 + c_2 A \mathbf{v}_2$$
$$= c_1 \mathbf{v}_1 + c_2 (.92) \mathbf{v}_2$$

$$\mathbf{x}_2 = A\mathbf{x}_1 = c_1A\mathbf{v}_1 + c_2(.92)A\mathbf{v}_2$$

= $c_1\mathbf{v}_1 + c_2(.92)^2\mathbf{v}_2$

$$\mathbf{x}_k = c_1 \mathbf{v}_1 + c_2 (.92)^k \mathbf{v}_2 \quad (k = 0, 1, 2, ...)$$

$$\mathbf{x}_k = .125 \begin{bmatrix} 3 \\ 5 \end{bmatrix} + .225 (.92)^k \begin{bmatrix} 1 \\ -1 \end{bmatrix} \qquad \mathbf{x}_k \text{ tends to } \begin{bmatrix} .375 \\ .625 \end{bmatrix} = .125 \mathbf{v}_1$$

Show that if A = QR with Q invertible, then A is similar to $A_1 = RQ$.

DIAGONALIZATION

$$A = PDP^{-1}$$

EXAMPLE 1 If
$$D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$$
,

$$A = PDP^{-1}$$

EXAMPLE 1 If
$$D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$$
,

$$D^2 = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 5^2 & 0 \\ 0 & 3^2 \end{bmatrix}$$

$$D^k = \begin{bmatrix} 5^k & 0 \\ 0 & 3^k \end{bmatrix} \quad \text{for } k \ge 1$$

EXAMPLE 2 Let $A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$. Find a formula for A^k , given that $A = PDP^{-1}$

where

$$P = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \qquad P^{-1} = \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$$

EXAMPLE 2 Let
$$A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$$
. Find a formula for A^k , given that $A = PDP^{-1}$ where
$$P = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \text{ and } D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \quad P^{-1} = \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$$

$$A^2 = (PDP^{-1})(PDP^{-1}) = PD(P^{-1}P)DP^{-1} = PDDP^{-1}$$

$$= PD^2P^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 5^2 & 0 \\ 0 & 3^2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$$

$$A^3 = (PDP^{-1})A^2 = (PDP^{-1})PD^2P^{-1} = PDD^2P^{-1} = PD^3P^{-1}$$

 $A^{k} = PD^{k}P^{-1}$

A square matrix A is said to be **diagonalizable** if A is similar to a diagonal matrix, that is, if $A = PDP^{-1}$ for some invertible matrix P and some diagonal matrix D.

THEOREM 5

The Diagonalization Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

In fact, $A = PDP^{-1}$, with D a diagonal matrix, if and only if the columns of P are n linearly independent eigenvectors of A. In this case, the diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.

THEOREM 5

The Diagonalization Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

In fact, $A = PDP^{-1}$, with D a diagonal matrix, if and only if the columns of P are n linearly independent eigenvectors of A. In this case, the diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.

$$A = PDP^{-1} \qquad AP = PD$$

$$AP = A[\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n] = [A\mathbf{v}_1 \ A\mathbf{v}_2 \ \cdots \ A\mathbf{v}_n]$$

$$PD = P \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 \mathbf{v}_1 & \lambda_2 \mathbf{v}_2 & \cdots & \lambda_n \mathbf{v}_n \end{bmatrix}$$

EXAMPLE 3 Diagonalize the following matrix, if possible.

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

EXAMPLE 3 Diagonalize the following matrix, if possible.

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

$$0 = \det(A - \lambda I) = -\lambda^3 - 3\lambda^2 + 4$$
$$= -(\lambda - 1)(\lambda + 2)^2$$

EXAMPLE 3 Diagonalize the following matrix, if possible.

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

Basis for
$$\lambda = 1$$
: $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$

$$= -(\lambda - 1)(\lambda + 2)^2$$
Basis for $\lambda = 1$: $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$

$$= -(\lambda - 1)(\lambda + 2)^2$$
Basis for $\lambda = -2$: $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{v}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$

EXAMPLE 3 Diagonalize the following matrix, if possible.

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

$$0 = \det(A - \lambda I) = -\lambda^3 - 3\lambda^2 + 4$$
$$= -(\lambda - 1)(\lambda + 2)^2$$

$$P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

Basis for
$$\lambda = 1$$
: $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$
Basis for $\lambda = -2$: $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{v}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

EXAMPLE 4 Diagonalize the following matrix, if possible.

$$A = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

$$0 = \det(A - \lambda I) = -\lambda^3 - 3\lambda^2 + 4 = -(\lambda - 1)(\lambda + 2)^2$$

Basis for
$$\lambda = 1$$
: $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$

Basis for
$$\lambda = -2$$
: $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$

EXAMPLE 5 Determine if the following matrix is diagonalizable.

$$A = \begin{bmatrix} 5 & -8 & 1 \\ 0 & 0 & 7 \\ 0 & 0 & -2 \end{bmatrix}$$

EXAMPLE 5 Determine if the following matrix is diagonalizable.

$$A = \begin{bmatrix} 5 & -8 & 1 \\ 0 & 0 & 7 \\ 0 & 0 & -2 \end{bmatrix}$$

THEOREM 6

An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

THEOREM 7

Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_1, \ldots, \lambda_p$.

- a. For $1 \le k \le p$, the dimension of the eigenspace for λ_k is less than or equal to the multiplicity of the eigenvalue λ_k .
- b. The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n, and this happens if and only if (i) the characteristic polynomial factors completely into linear factors and (ii) the dimension of the eigenspace for each λ_k equals the multiplicity of λ_k .
- c. If A is diagonalizable and \mathcal{B}_k is a basis for the eigenspace corresponding to λ_k for each k, then the total collection of vectors in the sets $\mathcal{B}_1, \ldots, \mathcal{B}_p$ forms an eigenvector basis for \mathbb{R}^n .

5.4. EIGENVECTORS AND LINEAR TRANSFORMATIONS

Matrix of a Linear Transformation

FIGURE 1 A linear transformation from V to W.

Matrix of a Linear Transformation

$$\mathbf{x} = r_1 \mathbf{b}_1 + \cdots + r_n \mathbf{b}_n$$

FIGURE 1 A linear transformation from V to W.

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} r_1 \\ \vdots \\ r_n \end{bmatrix} \qquad T(\mathbf{x}) = T(r_1\mathbf{b}_1 + \dots + r_n\mathbf{b}_n) = r_1T(\mathbf{b}_1) + \dots + r_nT(\mathbf{b}_n)$$

Matrix of a Linear Transformation

$$\mathbf{x} = r_1 \mathbf{b}_1 + \cdots + r_n \mathbf{b}_n$$

FIGURE 1 A linear transformation from V to W.

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} r_1 \\ \vdots \\ r_n \end{bmatrix} \qquad T(\mathbf{x}) = T(r_1\mathbf{b}_1 + \dots + r_n\mathbf{b}_n) = r_1T(\mathbf{b}_1) + \dots + r_nT(\mathbf{b}_n)$$
$$[T(\mathbf{x})]_{\mathcal{C}} = r_1[T(\mathbf{b}_1)]_{\mathcal{C}} + \dots + r_n[T(\mathbf{b}_n)]_{\mathcal{C}}$$

$$[T(\mathbf{x})]_{\mathcal{C}} = M[\mathbf{x}]_{\mathcal{B}}$$
 $M = [[T(\mathbf{b}_1)]_{\mathcal{C}} [T(\mathbf{b}_2)]_{\mathcal{C}} \cdots [T(\mathbf{b}_n)]_{\mathcal{C}}]$

$$[T(\mathbf{x})]_{\mathcal{C}} = M[\mathbf{x}]_{\mathcal{B}}$$

matrix for T relative to the bases B and C

EXAMPLE 1 Suppose $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ is a basis for V and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3\}$ is a basis for W. Let $T: V \to W$ be a linear transformation with the property that

$$T(\mathbf{b}_1) = 3\mathbf{c}_1 - 2\mathbf{c}_2 + 5\mathbf{c}_3$$
 and $T(\mathbf{b}_2) = 4\mathbf{c}_1 + 7\mathbf{c}_2 - \mathbf{c}_3$

Find the matrix M for T relative to \mathcal{B} and \mathcal{C} .

EXAMPLE 1 Suppose $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ is a basis for V and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3\}$ is a basis for W. Let $T: V \to W$ be a linear transformation with the property that

$$T(\mathbf{b}_1) = 3\mathbf{c}_1 - 2\mathbf{c}_2 + 5\mathbf{c}_3$$
 and $T(\mathbf{b}_2) = 4\mathbf{c}_1 + 7\mathbf{c}_2 - \mathbf{c}_3$

Find the matrix M for T relative to \mathcal{B} and \mathcal{C} .

$$\begin{bmatrix} T(\mathbf{b}_1) \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} 3 \\ -2 \\ 5 \end{bmatrix} \text{ and } \begin{bmatrix} T(\mathbf{b}_2) \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} 4 \\ 7 \\ -1 \end{bmatrix}$$

$$M = \begin{bmatrix} 3 & 4 \\ -2 & 7 \\ 5 & -1 \end{bmatrix}$$

Linear Transformations from V into V

matrix for T relative to \mathcal{B} , or simply the \mathcal{B} -matrix for T.

$$[T]_{\mathcal{B}} = [T(\mathbf{b}_1)]_{\mathcal{B}} \cdots [T(\mathbf{b}_n)]_{\mathcal{B}}$$

EXAMPLE 2 The mapping $T: \mathbb{P}_2 \to \mathbb{P}_2$ defined by

$$T(a_0 + a_1t + a_2t^2) = a_1 + 2a_2t$$

- a. Find the \mathcal{B} -matrix for T, when \mathcal{B} is the basis $\{1, t, t^2\}$.
- b. Verify that $[T(\mathbf{p})]_{\mathcal{B}} = [T]_{\mathcal{B}}[\mathbf{p}]_{\mathcal{B}}$ for each \mathbf{p} in \mathbb{P}_2 .

EXAMPLE 2 The mapping $T: \mathbb{P}_2 \to \mathbb{P}_2$ defined by

$$T(a_0 + a_1t + a_2t^2) = a_1 + 2a_2t$$

- a. Find the \mathcal{B} -matrix for T, when \mathcal{B} is the basis $\{1, t, t^2\}$.
- b. Verify that $[T(\mathbf{p})]_{\mathcal{B}} = [T]_{\mathcal{B}}[\mathbf{p}]_{\mathcal{B}}$ for each \mathbf{p} in \mathbb{P}_2 .

$$T(1) = 0 [T(1)]_{\mathcal{B}} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [T(t)]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad [T(t^{2})]_{\mathcal{B}} = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$

$$T(t^{2}) = 2t$$

$$[T]_{\mathcal{B}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

b. For a general $\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2$,

$$[T(\mathbf{p})]_{\mathcal{B}} = [a_1 + 2a_2t]_{\mathcal{B}} = \begin{bmatrix} a_1 \\ 2a_2 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = [T]_{\mathcal{B}} [\mathbf{p}]_{\mathcal{B}}$$

$$P[\mathbf{x}]_{\mathcal{B}} = \mathbf{x}$$
 and $[\mathbf{x}]_{\mathcal{B}} = P^{-1}\mathbf{x}$

THEOREM 8

Diagonal Matrix Representation

Suppose $A = PDP^{-1}$, where D is a diagonal $n \times n$ matrix. If \mathcal{B} is the basis for \mathbb{R}^n formed from the columns of P, then D is the \mathcal{B} -matrix for the transformation $\mathbf{x} \mapsto A\mathbf{x}$.

$$[T]_{\mathcal{B}} = [T(\mathbf{b}_1)]_{\mathcal{B}} \cdots [T(\mathbf{b}_n)]_{\mathcal{B}}]$$

$$= [A\mathbf{b}_1]_{\mathcal{B}} \cdots [A\mathbf{b}_n]_{\mathcal{B}}]$$

$$= [P^{-1}A\mathbf{b}_1 \cdots P^{-1}A\mathbf{b}_n]$$

$$= P^{-1}A[\mathbf{b}_1 \cdots \mathbf{b}_n]$$

$$= P^{-1}AP$$

Similarity of Matrix Representations

The proof of Theorem 8 did not use the information that D was diagonal.

$$A = PCP^{-1}$$

FIGURE 5 Similarity of two matrix representations: $A = PCP^{-1}$.

Find $T(a_0 + a_1t + a_2t^2)$, if T is the linear transformation from \mathbb{P}_2 to \mathbb{P}_2 whose matrix relative to $\mathcal{B} = \{1, t, t^2\}$ is

$$\begin{bmatrix} T \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3 & 4 & 0 \\ 0 & 5 & -1 \\ 1 & -2 & 7 \end{bmatrix}$$

Find $T(a_0 + a_1t + a_2t^2)$, if T is the linear transformation from \mathbb{P}_2 to \mathbb{P}_2 whose matrix relative to $\mathcal{B} = \{1, t, t^2\}$ is

$$\begin{bmatrix} T \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3 & 4 & 0 \\ 0 & 5 & -1 \\ 1 & -2 & 7 \end{bmatrix}$$

Let $\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2$ and compute

$$[T(\mathbf{p})]_{\mathcal{B}} = [T]_{\mathcal{B}}[\mathbf{p}]_{\mathcal{B}} = \begin{bmatrix} 3 & 4 & 0 \\ 0 & 5 & -1 \\ 1 & -2 & 7 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 3a_0 + 4a_1 \\ 5a_1 - a_2 \\ a_0 - 2a_1 + 7a_2 \end{bmatrix}$$

So
$$T(\mathbf{p}) = (3a_0 + 4a_1) + (5a_1 - a_2)t + (a_0 - 2a_1 + 7a_2)t^2$$
.

5.5. COMPLEX EIGENVALUES

a complex scalar λ satisfies $\det(A - \lambda I) = 0$ if and only if there is a nonzero vector \mathbf{x} in \mathbb{C}^n such that $A\mathbf{x} = \lambda \mathbf{x}$. We call λ a (**complex**) **eigenvalue** and \mathbf{x} a (**complex**) **eigenvector** corresponding to λ .

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad \lambda^2 + 1 = 0 \qquad \lambda = i \text{ and } \lambda = -i$$

EXAMPLE 2 Let $A = \begin{bmatrix} .5 & -.6 \\ .75 & 1.1 \end{bmatrix}$. Find the eigenvalues of A, and find a basis for each eigenspace.

$$0 = \det \begin{bmatrix} .5 - \lambda & -.6 \\ .75 & 1.1 - \lambda \end{bmatrix} = (.5 - \lambda)(1.1 - \lambda) - (-.6)(.75) \qquad \lambda = \frac{1}{2}[1.6 \pm \sqrt{(-1.6)^2 - 4}] = .8 \pm .6i$$
$$= \lambda^2 - 1.6\lambda + 1$$

EXAMPLE 2 Let $A = \begin{bmatrix} .5 & -.6 \\ .75 & 1.1 \end{bmatrix}$. Find the eigenvalues of A, and find a basis for each eigenspace.

$$0 = \det \begin{bmatrix} .5 - \lambda & -.6 \\ .75 & 1.1 - \lambda \end{bmatrix} = (.5 - \lambda)(1.1 - \lambda) - (-.6)(.75) \qquad \lambda = \frac{1}{2}[1.6 \pm \sqrt{(-1.6)^2 - 4}] = .8 \pm .6i$$
$$= \lambda^2 - 1.6\lambda + 1$$

$$A - (.8 - .6i)I = \begin{bmatrix} .5 & -.6 \\ .75 & 1.1 \end{bmatrix} - \begin{bmatrix} .8 - .6i & 0 \\ 0 & .8 - .6i \end{bmatrix}$$

$$= \begin{bmatrix} -.3 + .6i & -.6 \\ .75 & .3 + .6i \end{bmatrix}$$

$$(-.3 + .6i)x_1 - .6x_2 = 0$$

$$.75x_1 + (.3 + .6i)x_2 = 0$$

$$\begin{array}{l}
 .75x_1 = (-.3 - .6i)x_2 \\
 x_1 = (-.4 - .8i)x_2
 \end{array}
 \mathbf{v}_1 = \begin{bmatrix} -2 - 4i \\ 5 \end{bmatrix}
 \mathbf{v}_2 = \begin{bmatrix} -2 + 4i \\ 5 \end{bmatrix}$$

$$\mathbf{x}_1 = A\mathbf{x}_0$$

$$\mathbf{x}_2 = A\mathbf{x}_1$$

$$\mathbf{x}_3 = A\mathbf{x}_2,$$

FIGURE 1 Iterates of a point \mathbf{x}_0 under the action of a matrix with a complex eigenvalue.

The complex conjugate of a complex vector \mathbf{x} in \mathbb{C}^n is the vector $\overline{\mathbf{x}}$ in \mathbb{C}^n whose entries are the complex conjugates of the entries in \mathbf{x} . The **real** and **imaginary parts** of a complex vector \mathbf{x} are the vectors $\operatorname{Re} \mathbf{x}$ and $\operatorname{Im} \mathbf{x}$ in \mathbb{R}^n formed from the real and imaginary parts of the entries of \mathbf{x} .

The complex conjugate of a complex vector \mathbf{x} in \mathbb{C}^n is the vector $\overline{\mathbf{x}}$ in \mathbb{C}^n whose entries are the complex conjugates of the entries in \mathbf{x} . The **real** and **imaginary parts** of a complex vector \mathbf{x} are the vectors $\operatorname{Re} \mathbf{x}$ and $\operatorname{Im} \mathbf{x}$ in \mathbb{R}^n formed from the real and imaginary parts of the entries of \mathbf{x} .

EXAMPLE 4 If
$$\mathbf{x} = \begin{bmatrix} 3-i \\ i \\ 2+5i \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} + i \begin{bmatrix} -1 \\ 1 \\ 5 \end{bmatrix}$$
, then

$$\operatorname{Re} \mathbf{x} = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}, \quad \operatorname{Im} \mathbf{x} = \begin{bmatrix} -1 \\ 1 \\ 5 \end{bmatrix}, \quad \text{and} \quad \overline{\mathbf{x}} = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} - i \begin{bmatrix} -1 \\ 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 3+i \\ -i \\ 2-5i \end{bmatrix} \blacksquare$$

The complex conjugate of a complex vector \mathbf{x} in \mathbb{C}^n is the vector $\overline{\mathbf{x}}$ in \mathbb{C}^n whose entries are the complex conjugates of the entries in \mathbf{x} . The **real** and **imaginary parts** of a complex vector \mathbf{x} are the vectors $\operatorname{Re} \mathbf{x}$ and $\operatorname{Im} \mathbf{x}$ in \mathbb{R}^n formed from the real and imaginary parts of the entries of \mathbf{x} .

EXAMPLE 4 If
$$\mathbf{x} = \begin{bmatrix} 3-i \\ i \\ 2+5i \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} + i \begin{bmatrix} -1 \\ 1 \\ 5 \end{bmatrix}$$
, then

$$\operatorname{Re} \mathbf{x} = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}, \quad \operatorname{Im} \mathbf{x} = \begin{bmatrix} -1 \\ 1 \\ 5 \end{bmatrix}, \quad \text{and} \quad \overline{\mathbf{x}} = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} - i \begin{bmatrix} -1 \\ 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 3+i \\ -i \\ 2-5i \end{bmatrix} \blacksquare$$

$$\overline{r}\overline{\mathbf{x}} = \overline{r}\overline{\mathbf{x}}, \quad \overline{B}\overline{\mathbf{x}} = \overline{B}\overline{\mathbf{x}}, \quad \overline{BC} = \overline{B}\overline{C}, \quad \text{and} \quad \overline{rB} = \overline{r}\overline{B}$$

Let A be an $n \times n$ matrix whose entries are real. Then $\overline{A}\overline{\mathbf{x}} = \overline{A}\overline{\mathbf{x}} = A\overline{\mathbf{x}}$. If λ is an eigenvalue of A and \mathbf{x} is a corresponding eigenvector in \mathbb{C}^n , then

$$A\overline{\mathbf{x}} = \overline{A}\mathbf{x} = \overline{\lambda}\mathbf{x} = \overline{\lambda}\overline{\mathbf{x}}$$

Hence $\overline{\lambda}$ is also an eigenvalue of A, with $\overline{\mathbf{x}}$ a corresponding eigenvector.

EXAMPLE 6 If $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, where a and b are real and not both zero, then the eigenvalues of C are $\lambda = a \pm bi$. (See the Practice Problem at the end of this section.) Also, if $r = |\lambda| = \sqrt{a^2 + b^2}$, then

$$C = r \begin{bmatrix} a/r & -b/r \\ b/r & a/r \end{bmatrix} = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}$$

EXAMPLE 6 If $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, where a and b are real and not both zero, then the eigenvalues of C are $\lambda = a \pm bi$. (See the Practice Problem at the end of this section.) Also, if $r = |\lambda| = \sqrt{a^2 + b^2}$, then

$$C = r \begin{bmatrix} a/r & -b/r \\ b/r & a/r \end{bmatrix} = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}$$

$$A = \begin{bmatrix} .5 & -.6 \\ .75 & 1.1 \end{bmatrix}$$

EXAMPLE 7 Let $A = \begin{bmatrix} .5 & -.6 \\ .75 & 1.1 \end{bmatrix}$, $\lambda = .8 - .6i$, and $\mathbf{v}_1 = \begin{bmatrix} -2 - 4i \\ 5 \end{bmatrix}$, as in

Example 2. Also, let P be the 2×2 real matrix

$$P = \begin{bmatrix} \operatorname{Re} \mathbf{v}_1 & \operatorname{Im} \mathbf{v}_1 \end{bmatrix} = \begin{bmatrix} -2 & -4 \\ 5 & 0 \end{bmatrix}$$

$$C = P^{-1}AP$$

EXAMPLE 7 Let $A = \begin{bmatrix} .5 & -.6 \\ .75 & 1.1 \end{bmatrix}$, $\lambda = .8 - .6i$, and $\mathbf{v}_1 = \begin{bmatrix} -2 - 4i \\ 5 \end{bmatrix}$, as in

Example 2. Also, let P be the 2×2 real matrix

$$P = \begin{bmatrix} \operatorname{Re} \mathbf{v}_1 & \operatorname{Im} \mathbf{v}_1 \end{bmatrix} = \begin{bmatrix} -2 & -4 \\ 5 & 0 \end{bmatrix}$$

$$C = P^{-1}AP = \frac{1}{20} \begin{bmatrix} 0 & 4 \\ -5 & -2 \end{bmatrix} \begin{bmatrix} .5 & -.6 \\ .75 & 1.1 \end{bmatrix} \begin{bmatrix} -2 & -4 \\ 5 & 0 \end{bmatrix} = \begin{bmatrix} .8 & -.6 \\ .6 & .8 \end{bmatrix}$$

$$A = PCP^{-1} = P\begin{bmatrix} .8 & -.6 \\ .6 & .8 \end{bmatrix} P^{-1}$$

Pure rotation

FIGURE 4 Rotation due to a complex eigenvalue.

FIGURE 4 Rotation due to a complex eigenvalue.

THEOREM 9

Let A be a real 2×2 matrix with a complex eigenvalue $\lambda = a - bi$ ($b \neq 0$) and an associated eigenvector \mathbf{v} in \mathbb{C}^2 . Then

$$A = PCP^{-1}$$
, where $P = [\operatorname{Re} \mathbf{v} \ \operatorname{Im} \mathbf{v}]$ and $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$

5.8. ITERATIVE ESTIMATE FOR EIGENVALUES

Some applications require only a rough approximation to the largest eigenvalue

Power method

The power method applies to an $n \times n$ matrix A with a **strictly dominant eigenvalue** λ_1 , which means that λ_1 must be larger in absolute value than all the other eigenvalues. In this case, the power method produces a scalar sequence that approaches λ_1 and a vector sequence that approaches a corresponding eigenvector.

Power method

Assume for simplicity that A is diagonalizable and \mathbb{R}^n has a basis of eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$, arranged so their corresponding eigenvalues $\lambda_1, \dots, \lambda_n$ decrease in size, with the strictly dominant eigenvalue first. That is,

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \dots \ge |\lambda_n|$$

Strictly larger (1)

Power method

Assume for simplicity that A is diagonalizable and \mathbb{R}^n has a basis of eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$, arranged so their corresponding eigenvalues $\lambda_1, \dots, \lambda_n$ decrease in size, with the strictly dominant eigenvalue first. That is,

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \dots \ge |\lambda_n|$$

Strictly larger (1)

$$\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$$

$$A^{k}\mathbf{x} = c_{1}(\lambda_{1})^{k}\mathbf{v}_{1} + c_{2}(\lambda_{2})^{k}\mathbf{v}_{2} + \dots + c_{n}(\lambda_{n})^{k}\mathbf{v}_{n} \quad (k = 1, 2, \dots)$$

Power method

Assume for simplicity that A is diagonalizable and \mathbb{R}^n has a basis of eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$, arranged so their corresponding eigenvalues $\lambda_1, \dots, \lambda_n$ decrease in size, with the strictly dominant eigenvalue first. That is,

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \dots \ge |\lambda_n|$$

Strictly larger (1)

$$\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$$

$$A^{k}\mathbf{x} = c_{1}(\lambda_{1})^{k}\mathbf{v}_{1} + c_{2}(\lambda_{2})^{k}\mathbf{v}_{2} + \dots + c_{n}(\lambda_{n})^{k}\mathbf{v}_{n} \quad (k = 1, 2, \dots)$$

$$\frac{1}{(\lambda_1)^k} A^k \mathbf{x} = c_1 \mathbf{v}_1 + c_2 \left(\frac{\lambda_2}{\lambda_1}\right)^k \mathbf{v}_2 + \dots + c_n \left(\frac{\lambda_n}{\lambda_1}\right)^k \mathbf{v}_n \quad (k = 1, 2, \dots)$$

$$(\lambda_1)^{-k} A^k \mathbf{x} \to c_1 \mathbf{v}_1 \quad \text{as } k \to \infty$$

EXAMPLE 1 Let $A = \begin{bmatrix} 1.8 & .8 \\ .2 & 1.2 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$, and $\mathbf{x} = \begin{bmatrix} -.5 \\ 1 \end{bmatrix}$. Then A has eigenvalues 2 and 1, and the eigenspace for $\lambda_1 = 2$ is the line through $\mathbf{0}$ and \mathbf{v}_1 . For $k = 0, \dots, 8$, compute $A^k \mathbf{x}$ and construct the line through $\mathbf{0}$ and $A^k \mathbf{x}$. What happens as k increases?

EXAMPLE 1 Let $A = \begin{bmatrix} 1.8 & .8 \\ .2 & 1.2 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$, and $\mathbf{x} = \begin{bmatrix} -.5 \\ 1 \end{bmatrix}$. Then A has eigenvalues 2 and 1, and the eigenspace for $\lambda_1 = 2$ is the line through $\mathbf{0}$ and \mathbf{v}_1 . For $k = 0, \dots, 8$, compute $A^k \mathbf{x}$ and construct the line through $\mathbf{0}$ and $A^k \mathbf{x}$. What happens as k increases?

TABLE 1 Iterates of a Vector

k	0	1	2	3	4	5	6	7	8
A^k x	$\begin{bmatrix}5 \\ 1 \end{bmatrix}$	$\left[\begin{array}{c}1\\ 1.1 \end{array}\right]$	$\left[\begin{array}{c} .7\\1.3\end{array}\right]$	$\begin{bmatrix} 2.3 \\ 1.7 \end{bmatrix}$	$\left[\begin{array}{c} 5.5\\2.5\end{array}\right]$	$\left[\begin{array}{c} 11.9\\ 4.1 \end{array}\right]$	24.7 7.3	[50.3] 13.7]	101.5 26.5

EXAMPLE 1 Let $A = \begin{bmatrix} 1.8 & .8 \\ .2 & 1.2 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$, and $\mathbf{x} = \begin{bmatrix} -.5 \\ 1 \end{bmatrix}$. Then A has eigenvalues 2 and 1, and the eigenspace for $\lambda_1 = 2$ is the line through $\mathbf{0}$ and \mathbf{v}_1 . For $k = 0, \dots, 8$, compute $A^k \mathbf{x}$ and construct the line through $\mathbf{0}$ and $A^k \mathbf{x}$. What happens as k increases?

FIGURE 1 Directions determined by \mathbf{x} , $A\mathbf{x}$, $A^2\mathbf{x}$, ..., $A^7\mathbf{x}$.

We cannot scale $A^k \mathbf{x}$ in this way because we do not know λ_1 . But we can scale each $A^k \mathbf{x}$ to make its largest entry a 1. It turns out that the resulting sequence $\{\mathbf{x}_k\}$ will converge to a multiple of \mathbf{v}_1 whose largest entry is 1.

We cannot scale $A^k \mathbf{x}$ in this way because we do not know λ_1 . But we can scale each $A^k \mathbf{x}$ to make its largest entry a 1. It turns out that the resulting sequence $\{\mathbf{x}_k\}$ will converge to a multiple of \mathbf{v}_1 whose largest entry is 1.

FIGURE 2 Scaled multiples of \mathbf{x} , $A\mathbf{x}$, $A^2\mathbf{x}$, ..., $A^7\mathbf{x}$.

 \mathbf{x}_k is close to an eigenvector for λ_1 , the vector $A\mathbf{x}_k$ is close to $\lambda_1\mathbf{x}_k$, with each entry in $A\mathbf{x}_k$ approximately λ_1 times the corresponding entry in \mathbf{x}_k . Because the largest entry in \mathbf{x}_k is 1, the largest entry in $A\mathbf{x}_k$ is close to λ_1 .

 \mathbf{x}_k is close to an eigenvector for λ_1 , the vector $A\mathbf{x}_k$ is close to $\lambda_1\mathbf{x}_k$, with each entry in $A\mathbf{x}_k$ approximately λ_1 times the corresponding entry in \mathbf{x}_k . Because the largest entry in \mathbf{x}_k is 1, the largest entry in $A\mathbf{x}_k$ is close to λ_1 .

THE POWER METHOD FOR ESTIMATING A STRICTLY DOMINANT EIGENVALUE

- 1. Select an initial vector \mathbf{x}_0 whose largest entry is 1.
- **2.** For $k = 0, 1, \ldots$,
 - a. Compute $A\mathbf{x}_k$.
 - b. Let μ_k be an entry in $A\mathbf{x}_k$ whose absolute value is as large as possible.
 - c. Compute $\mathbf{x}_{k+1} = (1/\mu_k)A\mathbf{x}_k$.
- 3. For almost all choices of \mathbf{x}_0 , the sequence $\{\mu_k\}$ approaches the dominant eigenvalue, and the sequence $\{\mathbf{x}_k\}$ approaches a corresponding eigenvector.

EXAMPLE 2 Apply the power method to $A = \begin{bmatrix} 6 & 5 \\ 1 & 2 \end{bmatrix}$ with $\mathbf{x}_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Stop when k = 5, and estimate the dominant eigenvalue and a corresponding eigenvector of A.

EXAMPLE 2 Apply the power method to $A = \begin{bmatrix} 6 & 5 \\ 1 & 2 \end{bmatrix}$ with $\mathbf{x}_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Stop when k = 5, and estimate the dominant eigenvalue and a corresponding eigenvector of A.

TABLE 2 The Power Method for Example 2

	1.72								
k	0	1	2	3	4	5			
\mathbf{x}_k	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\left[\begin{array}{c}1\\.4\end{array}\right]$	$\left[\begin{array}{c}1\\.225\end{array}\right]$	$\left[\begin{array}{c}1\\.2035\end{array}\right]$	$\left[\begin{array}{c}1\\.2005\end{array}\right]$	$\left[\begin{array}{c}1\\.20007\end{array}\right]$			
$A\mathbf{x}_k$	$\begin{bmatrix} 5 \\ 2 \end{bmatrix}$	$\left[\begin{array}{c}8\\1.8\end{array}\right]$	$\left[\begin{array}{c} 7.125 \\ 1.450 \end{array} \right]$	$\left[\begin{array}{c} 7.0175\\ 1.4070 \end{array}\right]$	$\left[\begin{array}{c} 7.0025\\ 1.4010 \end{array}\right]$	$\left[\begin{array}{c} 7.00036 \\ 1.40014 \end{array} \right]$			
μ_k	5	8	7.125	7.0175	7.0025	7.00036			

EXAMPLE 2 Apply the power method to $A = \begin{bmatrix} 6 & 5 \\ 1 & 2 \end{bmatrix}$ with $\mathbf{x}_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Stop when k = 5, and estimate the dominant eigenvalue and a corresponding eigenvector of A.

TABLE 2 The Power Method for Example 2

	1.79								
k	0	1	2	3	4	5			
\mathbf{x}_k	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\left[\begin{array}{c}1\\.4\end{array}\right]$	$\left[\begin{array}{c}1\\.225\end{array}\right]$	$\left[\begin{array}{c}1\\.2035\end{array}\right]$	$\left[\begin{array}{c}1\\.2005\end{array}\right]$	$\left[\begin{array}{c}1\\.20007\end{array}\right]$			
$A\mathbf{x}_k$	$\begin{bmatrix} 5 \\ 2 \end{bmatrix}$	$\left[\begin{array}{c}8\\1.8\end{array}\right]$	$\left[\begin{array}{c} 7.125 \\ 1.450 \end{array} \right]$	$\left[\begin{array}{c} 7.0175\\1.4070\end{array}\right]$	$\left[\begin{array}{c} 7.0025\\ 1.4010 \end{array}\right]$	$\left[\begin{array}{c} 7.00036 \\ 1.40014 \end{array} \right]$			
μ_k	5	8	7.125	7.0175	7.0025	7.00036			

$$A\begin{bmatrix} 1 \\ .2 \end{bmatrix} = \begin{bmatrix} 6 & 5 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ .2 \end{bmatrix} = \begin{bmatrix} 7 \\ 1.4 \end{bmatrix} = 7 \begin{bmatrix} 1 \\ .2 \end{bmatrix}$$

Rate of convergence

PAGE RANKING FOR A WEB SEARCH ENGINE

- When a search on the Internet using a search engine, find all the Web pages containing the words of the query.
- massive size of the Web
- some measure to filter out pages less interesting
- Google uses an algorithm for ranking all the Web pages based on link structure of the Web
- Google assigns a high rank to a Web page if it has inlinks from other pages that have a high rank.

- Number of links to and from a page give information about the importance of a page
- \square Web pages ordered from 1 to n, and let i be a particular Web page
- Oi set of pages that i is linked to, outlinks. number of outlinks denoted Ni = |Oi|.
- set of inlinks, denoted li, are the pages that have an outlink to i.

 \Box rank of page i is a weighted sum of the ranks of the pages that have outlinks to i

$$r_i = \sum_{j \in I_i} \frac{r_j}{N_j}$$

 \square rank of page i is a weighted sum of the ranks of the pages that have outlinks to i

$$r_i = \sum_{j \in I_i} \frac{r_j}{N_j}$$

reformulate as an eigenvalue problem for a matrix representing the graph of Internet

$$Q_{ij} = \begin{cases} 1/N_j & \text{if there is a link from } j \text{ to } i, \\ 0 & \text{otherwise.} \end{cases}$$

product of row *I* and the vector *r*

 \Box rank of page i is a weighted sum of the ranks of the pages that have outlinks to i

$$r_i = \sum_{j \in I_i} \frac{r_j}{N_j}$$

reformulate as an eigenvalue problem for a matrix representing the graph of Internet

$$Q_{ij} = \begin{cases} 1/N_j & \text{if there is a link from } j \text{ to } i, \\ 0 & \text{otherwise.} \end{cases}$$

product of row I and the vector r

$$i \begin{pmatrix} * & * & \\ 0 & & \vdots & \\ 0 & * & \cdots & * & * & \cdots \\ & \vdots & & \\ 0 & & * & \end{pmatrix} \leftarrow \text{inlinks}$$

$$\uparrow \\ \text{outlinks}$$

$$r_i = \sum_{j \in I_i} \frac{r_j}{N_j}$$

$$\lambda r = Qr, \qquad \lambda = 1,$$

column-stochastic matrix

nonnegative elements, and the elements of each column sum up to 1

Power Method for Pagerank Computation