Fondamenti di Comunicazioni Elettriche / Telecomunicazioni Probabilità di errore in un collegamento multilivello

Luca De Nardis luca.denardis@uniroma1.it

Sapienza Università di Roma — 15 Ottobre 2024

Esercizio 1

Si consideri un collegamento numerico multilivello in cui una sorgente che genera un flusso binario a velocità f_b è connessa a un codificatore di trasmissione a L livelli con $\rho=0$ e N=1, seguito da un filtro di trasmissione a coseno rialzato con fattore di roll-off γ . Determinare la perdita di prestazioni in funzione di γ e L, misurata dalla diminuzione di SNR, nel caso si decida di utilizzare un filtro di ricezione $H_R(f)$ realizzato originariamente per permettere il passaggio di un segnale s(t) a banda massima, e se ne calcoli il valore nei seguenti casi:

- 1. $L = 2, \gamma = 0;$
- 2. $L = 4, \gamma = 1;$
- 3. L = 8, $\gamma = 0.5$.

Soluzione

La banda massima si ottiene nel caso $L=2,\,\gamma=1,$ ed è data da:

$$B_{MAX} = \frac{f_L}{2} (1 + \gamma) = \frac{f_b}{2log_2 L} (1 + \gamma) = \frac{f_b}{2log_2(2)} (1 + 1) = f_b.$$
 (1)

Poiché la potenza di rumore W_N sarà pari a una costante k moltiplicata per la banda di $H_R(f)$, l' SNR_{MIN} sarà dato da:

$$SNR_{MIN} = \frac{W_R}{kB_{MAX}} = \frac{W_R}{kf_b}. (2)$$

Se $H_R(f)$ fosse invece configurato per tagliare sempre esattamente in f=B, l'SNR sarebbe:

$$SNR = \frac{W_R}{kB} = \frac{W_R}{k\frac{f_b}{2loq_2L}(1+\gamma)} = \frac{W_R}{kf_b} \frac{2log_2L}{(1+\gamma)}.$$
 (3)

La perdita di prestazioni può quindi essere espressa come:

$$\frac{SNR}{SNR_{MIN}} = \frac{W_R}{kf_b} \frac{2log_2L}{(1+\gamma)} \frac{kf_b}{W_R} = \frac{2log_2L}{(1+\gamma)}.$$
 (4)

Il suo valore nei tre casi indicati è quindi pari a:

1.
$$L = 2, \ \gamma = 0 \rightarrow \frac{2log_2(2)}{(1+0)} = 2 \rightarrow 3 \ dB;$$

2.
$$L = 4, \gamma = 1 \rightarrow \frac{2log_2(4)}{(1+1)} = 2 \rightarrow 3 dB;$$

3.
$$L = 8, \ \gamma = 0.5 \quad \rightarrow \quad \frac{2log_2(8)}{(1+0.5)} = 4 \rightarrow 6 \ dB;$$

Esercizio 2

Si consideri un sistema di comunicazione multilivello binario in cui i simboli V_0 e V_1 associati ai bit 0 e 1 sono pari rispettivamente a $V_0 = -2$ V e $V_1 = 2$ V.

- 1. Si determini il valore della varianza del processo di generazione dei simboli $\sigma_{v_k}^2$;
- 2. sapendo che la varianza del processo di rumore a valle del filtro di ricezione è pari a $\sigma_0^2 = 10^{-10}$ V 2 si calcoli l'SNR assumendo la presenza di un canale perfetto, esprimendolo in dB.
- 3. supponendo invece che il canale introduca un'attenuazione di potenza pari ad A, si calcoli il valore di A_{dB} che porta ad ottenere $SNR_{dB}=10$ dB.

Soluzione

1. Si ha:

$$\sigma_{v_k}^2 = E\left[v_k^2\right] - E\left[v_k\right]^2 = \frac{1}{2}V_0^2 + \frac{1}{2}V_1^2 - \left[\frac{1}{2}V_0 + \frac{1}{2}V_1\right]^2 =$$

$$= \frac{1}{2}(-2)^2 + \frac{1}{2}2^2 - \left[\frac{1}{2}(-2) + \frac{1}{2}2\right]^2 = 4V^2.$$
(5)

2. Per definizione:

$$SNR = \frac{\sigma_{v_k}^2}{\sigma_0^2} = \frac{4}{10^{-10}} = 4 \cdot 10^{10} \to SNR_{dB} = 10log_{10} \left(4 \cdot 10^{10} \right) = 106 \text{ dB}.$$
 (6)

3. detto $SNR_{dB}^P=W_{R,dBm}-W_{N,dBm}$ l'SNR ottenuto nel caso di canale perfetto, sappiamo che l'attenuazione A andrà a modificare la potenza ricevuta che passerà da $W_{R,dBm}$ a $W_{R,dBm}'=W_{R,dBm}-A_{dB}$, portando a un nuovo SNR pari a:

$$SNR'_{dB} = W'_{R,dBm} - W_{N,dBm} = W_{R,dBm} - A_{dB} - W_{N,dBm} = SNR_{dB}^{P} - A_{dB}.$$
 (7)

Volendo garantire $SNR'_{dB} = 10$ dB si ha:

$$A_{dB} = SNR_{dB}^P - SNR_{dB}' = 106 - 10 = 96 \text{ dB}.$$
 (8)

Esercizio 3

Si consideri un sistema di trasmissione che utilizza la banda base avente in ingresso una sorgente carattrizzata da una velocità di trasmissione binaria $f_b=360~\mathrm{Mbit/s}$. Il numero di livelli utilizzati è L=8, e il fattore di roll-off utilizzato dal filtro a coseno rialzato in trasmissione è unitario. Si chiede di rispondere ai seguenti quesiti:

- 1. Calcolare la banda *B* del segnale trasmesso.
- 2. Quanto vale l'efficienza spettrale η misurata in bit/s/Hz?
- 3. Se viene introdotta una ridondanza $\rho = 1/3$ qual è il nuovo valore della banda B'?
- 4. Il collegamento in esame presenta un rapporto segnale rumore $SNR_{dB}=24.5$ dB. Qual è la probabilità d'errore P_e (si faccia riferimento alla Figura 1)?
- 5. Per avere una probabilità d'errore $P_e=10^{-8}$ di quanto deve aumentare l'SNR?
- 6. Volendo mantenere la probabilità d'errore $P_e=10^{-8}$, e sapendo che la potenza di rumore è $W_N=-93.2$ dBm, qual è la potenza minima W_R che si deve avere in ricezione?
- 7. Se la potenza trasmessa è $W_T=0.01$ W, quanto vale la massima attenuazione che può essere introdotta dal canale?
- 8. Si supponga che all'attenuazione calcolata nel punto precedente si aggiunga un'attenuazione supplementare di 6 dB. Quanto vale il nuovo SNR?
- 9. Che probabilità d'errore avrà a questo punto il collegamento?

Figure 1: Probabilità d'errore in funzione di y_{dB}^2

Soluzione

1. Si ha:

$$B = \frac{f_L}{2} (1 + \gamma) = \frac{f_b}{2log_2 L} (1 + \gamma) = \frac{360 \cdot 10^6}{2log_2(8)} (1 + 1) = 120 \text{ MHz}$$
(9)

2. Si ha:

$$\eta = \frac{f_b}{B} = \frac{360 \cdot 10^6}{120 \cdot 10^6} = 3. \tag{10}$$

3. In presenza di un parametro di ridondanza $\rho > 0$ il nuovo valore della banda B' è:

$$B' = \frac{f_b}{2log_2L(1-\rho)} (1+\gamma) = \frac{B}{1-\rho} = \frac{120 \cdot 10^6}{2/3} = 180 \text{ MHz}.$$
 (11)

4. Il valore di y_{dB}^2 corrispondente all' SNR_{dB} dato è:

$$y_{dB}^{2} = SNR_{dB} + 1.76 - 10log_{10}\left(L^{2} - 1\right) = 24.5 + 1.76 - 10log_{10}\left(63\right) = 26.26 - 18 = 8.26 \text{ dB. (12)}$$

Dalla curva di probabilità d'errore della Figura 1 si ricava che in corrispondenza a tale valore si ha $P_e=10^{-4}$.

5. Ancora dalla curva di probabilità d'errore della Figura 1 si ricava che $P_e=10^{-8}$ corrisponde a $y_{dB}^{\prime 2}=12$ dB. Si ha quindi:

$$y_{dB}^{\prime 2} = SNR_{dB}^{\prime} + 1.76 - 10log_{10} (L^2 - 1), \tag{13}$$

da cui:

$$SNR'_{dB} = y'^{2}_{dB} - 1.76 + 10log_{10}(L^{2} - 1) = 12 - 1.76 + 18 = 28.24 \text{ dB}.$$
 (14)

La variazione necessaria è quindi di $SNR'_{dB}-SNR_{dB}=28.24-24.5=3.74$ dB.

6. La relazione tra SNR e potenze W_R e W_N è:

$$SNR = \frac{W_R}{W_N} \to SNR_{dB} = W_{R,dBm} - W_{N,dBm}. \tag{15}$$

Si ha quindi:

$$W_{R,dBm} = SNR_{dB} + W_{N,dBm} = 28.24 + (-93.2) = -64.96 \text{ dBm}.$$
 (16)

7. Il legame tra potenza trasmessa W_T e potenza ricevuta W_R è

$$W_R = \frac{W_T}{A} \to W_{T,dBm} = W_{R,dBm} + A_{dB},\tag{17}$$

da cui si ricava:

$$A_{dB} = W_{T,dBm} - W_{R,dBm} = 10log_{10} (0.01 \cdot 10^3) - (-64.96) = 74.96 \text{ dB}.$$
 (18)

8. La nuova attenuazione complessiva è $A'_{dB} = A_{dB} + 6 = 74.96 + 6 = 80.96$ dB. Il nuovo SNR'_{dB} sarà quindi:

$$SNR'_{dB} = W'_{R,dBm} - W_{N,dBm} = W_{T,dBm} - A'_{dB} - W_{N,dBm} = 10 - 80.96 - (-93.2) = 22.24 \text{ dB}.$$
 (19)

9. Il nuovo valore $y_{dB}^{\prime 2}$ corrispondente a SNR_{dB}^{\prime} è:

$$y_{dB}^{\prime 2} = SNR_{dB}^{\prime} + 1.76 - 10log_{10}(L^2 - 1) = 22.24 + 1.76 - 18 = 6 \text{ dB}.$$
 (20)

Dalla Figura 1 si vede che la nuova probabilità d'errore è quindi $P_e' \approx 5 \cdot 10^{-3}$.

Esercizio 4

Si consideri un collegamento numerico multilivello in cui la sorgente emette bit a velocità $f_b=560$ Mb/s. Il filtro di trasmissione è di tipo a coseno rialzato con roll-off $\gamma=0.5$. Si supponga che il codificatore di trasmissione sia progettato in modo che la sua ridondanza sia nulla e che l'efficienza spettrale sia pari a $\eta=4$ bit/s/Hz. si chiede di rispondere ai seguenti quesiti.

- 1. Calcolare la banda del segnale trasmesso;
- 2. Calcolare il numero di livelli *L* utilizzato dal codificatore;
- 3. Calcolare il valore di SNR in ricezione necessario a garantire una $P_e=10^{-5}$, utilizzando la curva universale della probabilità d'errore in Figura 1.
- 4. Supponendo che il canale fisico sia caratterizzato da rumore termico con potenza (nella banda del segnale trasmesso calcolata al quesito 1.) pari a $W_N = -86.5$ dBm, calcolare la potenza trasmessa necessaria a garantire l'SNR calcolato al punto precedente se l'attenuazione di potenza introdotta dal canale è pari a $A_{dB} = 70$ dB;
- 5. A parità di SNR in ricezione, valutare il nuovo valore di P_e se si raddoppia il numero di livelli.

Soluzione

1. L'efficienza spettrale η è definita come:

$$\eta = \frac{f_b}{B},\tag{21}$$

da cui si ottiene:

$$B = \frac{f_b}{\eta} = \frac{560 \cdot 10^6}{4} = 140 \text{ MHz}.$$
 (22)

2. Si ha, avendo $\rho = 0$:

$$B = \frac{f_L}{2} (1 + \gamma) = \frac{f_b}{2log_2 L} (1 + \gamma)$$
(23)

da cui:

$$log_2 L = \frac{f_b}{2B} (1 + \gamma) = \frac{560 \cdot 10^6}{2 \cdot 140 \cdot 10^6} (1 + 0.5) = 2 \cdot 1.5 = 3 \to L = 2^3 = 8.$$
 (24)

3. Dalla curva universale della probabilità d'errore si ricava che per ottenere una $P_e=10^{-5}$ è necessario garantire un $y_{dB}^2=9.54\ dB$. La relazione tra y^2 e SNR è data da:

$$y^2 = \frac{3}{2} \frac{SNR}{L^2 - 1},\tag{25}$$

che in dB è pari a:

$$y_{dB}^2 = SNR_{dB} + 1.76 - 10log_{10} (L^2 - 1)$$
. (26)

Ricavando SNR_{dB} si ottiene:

$$SNR_{dB} = y_{dB}^2 - 1.76 + 10log_{10}(L^2 - 1) = 9.54 - 1.76 + 10log_{10}(63) = 25.8 dB.$$
 (27)

4. In generale, si ha che la relazione tra potenza ricevuta W_R e potenza trasmessa W_T è data da:

$$W_R = \frac{W_T}{A} \to W_T = W_R \cdot A. \tag{28}$$

D'altronde, si ha:

$$SNR = \frac{W_R}{W_N} \to W_R = SNR \cdot W_N,$$
 (29)

che in dB diventa:

$$W_{R,dBm} = SNR_{dB} + W_{N_dBm} = 25.8 - 86.5 = -60.7 \text{ dBm}.$$
 (30)

Riscrivendo in dB anche l'eq.(28) si ha:

$$W_{T,dBm} = W_{R_dBm} + A_{dB} = -60.7 + 70 = 9.3 \text{ dBm},$$
 (31)

che corrisponde a $W_T=8.5~\mathrm{mW}$.

5. Mettiamo in evidenza il ruolo di L nel calcolo di y^2 :

$$y_{dB}^2 = SNR_{dB} + 1.76 - 10log_{10} (L^2 - 1). {(32)}$$

la variazione può quindi essere determinata come:

$$y_{dB}^{2} - y_{dB}^{\prime 2} = -10log_{10} (L^{\prime 2} - 1) + 10log_{10} (L^{2} - 1) =$$

$$= -10log_{10} ((2L)^{2} - 1) + 10log_{10} (L^{2} - 1) \approx -10log_{10} (4) = -6 dB$$
(33)

Il nuovo valore di y^2 è quindi:

$$y_{dB}^{\prime 2} = 9.54 - 6 = 3.54 \ dB \tag{34}$$

a cui corrisponde (sempre in base alla Figura 1) $P_e \approx 10^{-2}$.

Si noti che per mantenere invariato l'SNR sarà necessario ridurre la potenza, visto che a un aumento di L corrisponderà una riduzione di B e quindi della potenza di rumore W_N .