Cristian Pachón García Advisor: Pedro Delicado Useros

January 17, 2019

- 1 Introduction
- 2 Algorithms for MDS with Big Data
- 3 Simulation study
 Design of the simulation
 Results
- 4 Conclusions

1 Introduction

Introduction

•00000

- 2 Algorithms for MDS with Big Data
- 3 Simulation study
 Design of the simulation
 Results
- 4 Conclusion

What is MDS?

- MDS is a statistic tool for reduction of dimensionality, using as input a distance matrix.
- Given a square matrix **D** n × n, the goal of MDS is to obtain a configuration matrix **X** n × q satisfying:
 - Columns are orthogonal.
 - The Euclidean distance between the rows of X is approximately equal to D.
- X can be interpreted as the matrix of q latent variables for the n observations.
- The columns of **X** are called *principal coordinates*.

Introduction 00000

Consider the distance between some cities of Europe, as shown in the following matrix:

	Athens	Barcelona	Brussels	Calais	Cherbourg	
Athens	0	3313	2963	3175	3339	•••
Barcelona	3313	0	1318	1326	1294	
Brussels	2963	1318	0	204	583	
Calais	3175	1326	204	0	460	
Cherbourg	3339	1294	583	460	0	
:	:	:	:	:	:	٠

Table: Distances between European cities (just 5 of them are shown).

Figure: MDS configuration for European cities

Introduction

000000

Simulation study

Figure: (Another) MDS configuration for European cities

Introduction

000000

Procrustes transformation

- Given a MDS configuration, any rotation, reflection or translation is a valid MDS configuration, since they preserve the distance. So, the solution is not unique.
- Procrustes transformation problem:
 - Let A and B be two different MDS configurations for the same set of data. One wants to obtain s, T and t such that

$$\mathbf{A} = s\mathbf{BT} + \mathbf{1t}',$$

where **T** is an orthogonal matrix.

• In Borg and Groenen (2005) are all the details needed to estimate these parameters.

References

2 Algorithms for MDS with Big Data

3 Simulation study
Design of the simulation
Results

4 Conclusion

Figure: Elapsed time to compute MDS.

Figure: Memory consumed to compute the distance matrix.

Three algorithms for MDS with Big Data

- Divide and Conquer MDS:
 - First approach of this thesis.
- Fast MDS:
 - It uses recursive programming.
 - Developed by Tynia, Jinze, Leonard, and Wei (2006).
- MDS based on Gower interpolation:
 - It adds a new set of points to an existing MDS configuration.
 - See Appendix of (Gower and Hand 1995).

Fast MDS

Introduction

Introduction

Output of the algorithms

The three algorithms have the same type of output. It consists on a list of two parameters, which are

- A MDS configuration for the initial dataset.
- The second parameter is a list of eigenvalues.

- 1 Introduction
- 2 Algorithms for MDS with Big Dat
- 3 Simulation study

 Design of the simulation Results
- 4 Conclusion

Simulation study

Given the three algorithms, we would like to explore their performance:

- Performance in terms of results quality: are they able to capture the right data dimensionality?
- Performance in terms of time: are they "fast" enough? Which one is the fastest?

Design of the simulation

- 1 Introduction
- Algorithms for MDS with Big Data
- 3 Simulation study
 Design of the simulation
 Results
- 4 Conclusion

Design of the simulation

- Sample sizes: A total of six sample sizes are used, which are:
 - Small sample sizes: 10^3 , $3 \cdot 10^3$, $5 \cdot 10^3$ and 10^4 .
 - Large sample sizes: 10⁵ and 10⁶.
- Data dimensions: we generate a matrix with two different number of columns: 10 and 100.
- Main dimensions: Postmultiplication by a diagonal matrix:
 - Identity matrix (noisy scenarios).
 - One main dimension with λ : 15.
 - Two main dimensions of the same value λ : 15.
 - Two main dimensions of different values λ : 15, 10.
 - Four main dimensions of the same value λ : 15.
- As a probabilistic model, we use a Normal distribution.
- Given a scenario, it is replicated 100 times.

- **1** Generate the dataset **X** according to the scenario.
- 2 For each algorithm, we do the following steps:
 - Run the algorithm and get MDS configuration for the algorithm (MDS_{alg}).
 - 2 Get the elapsed time to compute MDS configuration and store it.
 - **3** Get eigenvalues and store them.
 - 4 Align MDS_{alg} and X using (Partition) Procrustes.
 - Get the correlation coefficients between the main dimensions of MDS_{alg} and X and store them.

- Performance of results quality:
 - Correlation between the main dimensions of the data and the main dimensions after applying the algorithms. We get the diagonal of the correlation matrix.
 - Eigenvalues as an approximation of the standard deviation of the variables of X.
- Elapsed Time to get the MDS configuration.

2 Algorithms for MDS with Big Dat

3 Simulation study
Design of the simulation
Results

4 Conclusion

Correlation coefficients

Figure: Correlation coefficients between the main dimensions of **X** and the main dimensions of **MDS**_{Div} for a scenario with $n = 10^6$, 100 columns and 4 main dimensions with $\lambda = 15$

Figure: Correlation coefficients between **X** and **MDS**_{Div} for two different *noise* scenarios

Eigenvalues

- Since the original dataset, **X**, is postmultiplied by a diagonal matrix $k \times k$ that contains $\lambda_1, \ldots, \lambda_k$, then $\text{var}(X_i) = \lambda_i^2$ and $\text{sd}(X_i) = \lambda_i$.
- Let ϕ_1, \ldots, ϕ_t be the *eigenvalues* of the MDS configuration such that $\phi_1 > \phi_2 > \cdots > \phi_t$. The first highest *eigenvalues* have to verify $\sqrt{\phi_j} \approx \lambda_j$.
- We compute the bias.

		Div. Conq. MDS		Fast		Gower MDS	
sample_size	n_dim	$\sqrt{\phi}$	\widehat{bias}	$\overline{\sqrt{\phi}}$	\widehat{bias}	$\sqrt{\phi}$	\widehat{bias}
10 ³	10	14.98	-0.02	15.85	0.15	15.05	0.05
10^{3}	100	15.03	0.03	15.01	0.01	15.02	0.02
$3 \cdot 10^3$	10	15.00	-0.00	14.91	-0.09	14.04	-0.06
$3 \cdot 10^3$	100	14.96	-0.04	15.10	0.10	15.04	0.04
$5 \cdot 10^3$	10	14.99	-0.01	14.96	-0.04	14.98	-0.02
$5 \cdot 10^3$	100	14.99	-0.01	15.03	0.03	15.02	0.02
104	10	14.99	-0.01	14.33	-0.67	14.99	-0.01
104	100	14.99	-0.01	15.09	0.09	15.06	0.06
10^{5}	10	14.99	-0.01	15.00	0.00	15.04	0.04
10^{5}	100	14.99	-0.01	15.00	0.00	14.97	-0.03
10^{6}	10	14.98	-0.02	14.86	-0.14	14.98	-0.02
10 ⁶	100	14.99	-0.01	14.90	-0.10	14.90	-0.10

Table: Estimator and $\widehat{\text{bias}}$ for scenarios with one main dimension $\lambda=15$.

Introduction

Time to compute MDS

sample_size	n_dim	mean_divide_conquer	mean_fast	mean_gower
10^{3}	10	0.27	0.14	0.10
10^{3}	100	0.78	0.69	0.28
$3 \cdot 10^{3}$	10	0.78	0.32	0.16
$3 \cdot 10^3$	100	2.50	3.14	0.52
$5 \cdot 10^3$	10	1.37	0.54	0.20
$5 \cdot 10^3$	100	4.25	5.69	0.84
10^{4}	10	2.60	1.81	0.31
10^{4}	100	8.85	11.79	1.37
10^{5}	10	28.10	11.46	2.44
10^{5}	100	106.30	116.46	18.02
10^{6}	10	420.29	106.59	53.15
106	100	2365.46	1070.19	813.15

Table: Mean of elapsed time (in seconds) to compute each algorithm.

- We do an ANOVA test using three factors:
 - The sample size, which has 6 levels.
 - The number of dimensions, which has 2 levels.
 - The algorithm, which has 3 levels.
- Instead of using the *elapsed time* variable, we use its logarithm.

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-1.4058	0.0085	-165.44	< 2 <i>e</i> - 16
algorithmfast	-0.4313	0.0069	-62.17	< 2e - 16
algorithmgower	-1.6926	0.0069	-243.96	< 2e - 16
sample_size3000	0.9473	0.0098	96.54	< 2e - 16
sample_size5000	1.4434	0.0098	147.10	< 2e - 16
sample_size10000	2.1505	0.0098	219.17	< 2e - 16
sample_size1e+05	4.4286	0.0098	451.35	< 2e - 16
sample_size1e+06	7.2782	0.0098	741.78	< 2e - 16
n_dimensions100	1.6910	0.0057	298.51	< 2e - 16

Table: Linear model for response log(elapsed_time).

Figure: Estimated density of elapsed time (in sec.) for each algorithm and scenario with $n=10^3$, 10 columns and $\lambda_i=1$ $i\in\{1,\ldots,10\}$.

Figure: Estimated density of elapsed time (in sec.) for each algorithm and scenario with $n = 10^6$, 100 columns and 4 main dimensions with $\lambda = 15$.

- 1 Introduction
- 2 Algorithms for MDS with Big Dat
- 3 Simulation study
 Design of the simulation
 Results
- 4 Conclusions

Conclusions 000

Conclusions

- The fastest algorithm is MDS based on Gower interpolation.
- Fast MDS is able to obtain a MDS configuration in a reasonable amount of time.
- The best algorithm capturing the variance of the original dataset is Divide and Conquer MDS.
- MDS based on Gower interpolation is the best choice, since it is the fastest algorithm and its results quality are good.
- This algorithm does essentially what classical Statistics advises: when your population is too large, take a sample of it.

- Modify Divide and Conquer in order to use less points for Procrustes.
- Use real datasets with the algorithms.
- Build and R library.

Thank You

36/37

Modern Multidimensional Scaling: Theory and Applications. Springer.

Gower, J. C. and D. J. Hand (1995). *Biplots*, Volume 54. CRC Press.

Tynia, Y., L. Jinze, M. Leonard, and W. Wei (2006). A fast approximation to multidimensional scaling.

Introduction