2/18/12 Quiz Feedback

Coursera Dong-Bang Tsai About Feedback Logout

Probabilistic Graphical Models

Daphne Koller, Kevin Murphy
Winter 2011-2012

Home

Feedback — **Decision Theory**

Quizzes

You achieved a score of 5.00 out of 5.00

Theory Problems

Assignments

Assignment Questions

Video Lectures

Discussion Forums

Course Wiki

Lecture Slides

Course Schedule

Course Logistics

Course Information

Course Staff

Octave Installation

Question 1

Utility Curves. What does the point marked A on the Yaxis correspond to? (Mark all that apply.)

Your Answer	Score	Explanation	
$\ensuremath{ \checkmark } U(\ell)$ where ℓ is a lottery that pays \$0 with probability 0.5 and \$1000 with probability 0.5.	✓	0.25	Yes, this is correct, since the value of the lottery is equivalent to $0.5U(\$0) + 0.5U(\$1000)$.
$ extbf{ extit{ extit{\extit{\extit{ extit{ extit{ extit{ extit{ extit{\tert{\extit{\$	✓	0.25	This is correct, as you can observe from the geometry of the triangles in the figure.

\$500	✓ 0.2	Think about what the plot is showing.
■ <i>U</i> (\$500)	✓ 0.2	A is not on the utility curve.
Total	1.0	00

Question 2

Utility Curves. What does the point marked ${\it B}$ on the ${\it Y}$ axis correspond to? (Mark all that apply.)

Your Answer		Score	Explanation
$U(\ell)$ where ℓ is a lottery that pays \$0 with probability 0.5 and \$1000 with probability 0.5.	✓	0.25	Think about the fact that \boldsymbol{B} lies on the curve.
lacksquare 0.5 U(\$0) + 0.5 U(\$1000)	~	0.25	Think about the fact that B lies on the curve.
\$500	~	0.25	Think about the fact that B lies on the curve.

ightharpoonup U(\$500)	₩	0.25	Yes, this is correct, since point B is on the curve, it represents $U(\$500)$.
Total		1.00	

Question 3

Expected Utility. In the simple influence diagram on the right, with the CPD for M and the utility function V, what is the expected utility of the action f^1 ?

Your Answer		Score	Explanation
2	✓	1.00	This is correct. The expected utility is given by $0.5*(-7) + 0.3*5 + 0.2*20 = 2$.
Total		1.00	

2/18/12 Quiz Feedback

Question 4

*Uninformative Variables. In the influence diagram on the right, what is an appropriate way to have the model account for the fact that if the Test wasn't performed (t^0) , then the survey is uninformative?

Your Answer	Score	Explanation
\bullet Set $P(S M,t^0)$ so that S takes some new value "not performed" with probability 1.	1.00	This is the appropriate action. Assigning S to any other value would not be desirable, as these other values may represent survey results, but we have not actually conducted the survey.
Total	1.00	

2/18/12 Quiz Feedback

Question 5

***Value of Information.** In the influence diagram on the right, when does performing LabTest have value? That is, when would you want to observe the LabTest variable?

Your Answer		Score	Explanation
$ullet$ When there is some lab value l such that $argmax_t\sum_d P(d l)V(d,t) eq argmax_t\sum_d P(d)V(d,t)$	✓	1.00	This is correct. There is no value in information (observing LabTest) unless the information changes a decision (of Treatment in this case).
Total		1.00	

2/18/12