Homework 1 Solutions Statistics 200B Due Jan. 31, 2019

1. Let $X \sim N(0,1)$ and let $Y = e^X$. Find the PDF for Y.

Solution:

Method 1: The CDF of Y is

$$F_Y(y) = P(Y \le y) = P(e^X \le y) = P(X \le \log y) = F_X(\log y) \stackrel{X \sim N(0,1)}{=} \Phi(\log y),$$

where Φ is the CDF of N(0,1).

The PDF of Y can be calculated by taking the first derivative of its CDF.

$$f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{1}{y} f_X(\log y) = \frac{1}{y} \phi(\log y) = \frac{1}{y\sqrt{2\pi}} e^{-(\log y)^2/2},$$

where ϕ is the CDF of N(0,1). $\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.

Method 2: Since $Y = e^X$ and e^x is a monotone function, with $\log x$ as its inverse, we have the PDF of Y as

$$f_Y(y) = f_X(\log y) \left| \frac{d \log y}{dy} \right| \stackrel{X \sim N(0,1)}{=} \phi(\log y) \frac{1}{y} = \frac{1}{y\sqrt{2\pi}} e^{-(\log y)^2/2}.$$

Aside: This is the PDF of the log-normal distribution with $\mu = 0$ and $\sigma^2 = 1$.

2. Let $X \sim Poisson(\lambda)$ and $Y \sim Poisson(\mu)$ and assume that X and Y are independent. Show that the distribution of X given that X + Y = n is $Binomial(n, \pi)$ where $\pi = \lambda/(\lambda + \mu)$.

Solution:

If $X \sim Poisson(\lambda)$ and $Y \sim Poisson(\mu)$, and X and Y are independent, then $X + Y \sim Poisson(\lambda + \mu)$.

Note that ${X = x, X + Y = n} = {X = x, Y = n - x}.$

$$p_{X|X+Y=n}(k) = \frac{P(X=k, X+Y=n)}{P(X+Y=n)} = \frac{P(X=k, Y=n-k)}{P(X+Y=n)}$$

$$= \frac{P(X=k)P(Y=n-k)}{P(X+Y=n)} = \frac{e^{-\lambda} \frac{\lambda^k}{k!} e^{-\mu} \frac{\mu^{(n-k)}}{(n-k)!}}{e^{-(\lambda+\mu)} \frac{(\lambda+\mu)^n}{n!}}.$$
$$= \binom{n}{k} \left(\frac{\lambda}{\lambda+\mu}\right)^k \left(\frac{\mu}{\lambda+\mu}\right)^{n-k}$$

The conditional distribution of X given X+Y=n is a binomial distribution with parameters n and $\pi=\frac{\lambda}{\lambda+\mu}$

- 3. Let X have PDF $f_X(x) = \begin{cases} 1/4 & 0 < x < 1 \\ 3/8 & 3 < x < 5 \\ 0 & \text{otherwise} \end{cases}$
 - (a) Find the CDF of X.
 - (b) Let Y = 1/X. Find the probability density function $f_Y(y)$ for Y. Hint: Consider three cases: $1/5 \le y \le 1/3$, $1/3 \le y \le 1$, and y > 1.

Solution:

(a)
$$F_X(x) = \begin{cases} 1/4x & 0 < x < 1\\ 1/4 & 1 < x < 3\\ 3/8x - 7/8 & 3 < x < 5\\ 0 & \text{otherwise} \end{cases}$$

(b)
$$F_Y(y) = P(Y \le y) = P(1/X \le y) = P(X \ge 1/y) = 1 - P(X \le 1/y)$$

$$F_Y(y) = \begin{cases} 1 - 1/(4y) & y > 1 \\ 15/8 - 3/(8y) & 1/5 < y < 1/3 \\ 3/4 & 1/3 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

$$f_Y(y) = \begin{cases} 1/(4y^2) & y > 1 \\ 3/(8y^2) & 1/5 < y < 1/3 \\ 0 & \text{otherwise} \end{cases}$$

4. Let X and Y have joint density

$$f_{X,Y}(x,y) = \begin{cases} c(x+y) & 0 \le x \le 1 \text{ and } 0 \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$$

- (a) Find c.
- (b) Find $f_{Y|X}(y|x)$.

(c) Find P(Y > 1/2|X = 1).

(d) Find
$$P(Y > 1/2|X < 1/2)$$

Solution:

(a) Since $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$, given the joint density, we have

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = \int_{0}^{1} \int_{0}^{1} c(x+y) dx dy = c.$$

Hence, c = 1.

(b) Find f_X first.

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy = \int_{0}^{1} (x+y)dy = x + \frac{1}{2}.$$

Then

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \begin{cases} \frac{2(x+y)}{2x+1} & 0 \le x \le 1 \text{ and } 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$
.

(c)

$$P(Y > 1/2|X = 1) = \int_{1/2}^{1} f_{Y|X}(y|X = 1)dy = \int_{1/2}^{1} \frac{2}{3}(1+y)dy = \frac{7}{12}.$$

(d)

$$P(Y > 1/2 | X < 1/2) = \frac{P(Y > 1/2, X < 1/2)}{P(X < 1/2)} = \frac{\int_{1/2}^{1} \int_{0}^{1/2} (x+y) dx dy}{\int_{0}^{1/2} (x+1/2) dx} = \frac{2}{3}.$$

5. Let X be a continuous random variable with CDF F. Suppose that P(X > 0) = 1 and that E[X] exists. Show that $E[X] = \int_0^\infty P(X > x) dx$. Hint: Consider integrating by parts. The following fact is helpful: if E[X] exists then $\lim_{x\to\infty} x[1-F(x)] = 0$.

Proof:

$$\int_0^\infty P(X>x)dx = \int_0^\infty [1-F(x)]dx$$
 (Let $u=1-F(x), v=x$)
$$= \int_0^\infty udv = uv\Big|_0^\infty - \int_0^\infty vdu$$

$$= [1-F(x)]x\Big|_0^\infty - \int_0^\infty x[-f(x)]dx$$
 (Use the fact that $\lim_{x\to\infty} x[1-F(x)] = 0$)
$$= 0-0+\int_0^\infty xf(x)dx$$

$$= E[X].$$

Note: The fact that if E[X] exists then $\lim_{x\to\infty} x[1-F(x)] = 0$ can be proved as follows.

Since $E[X] = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{\infty} x f(x) dx$ exists,

$$\lim_{x \to \infty} \int_{x}^{\infty} y f(y) dy = 0.$$

Also, since

$$\int_{T}^{\infty} y f(y) dy \ge \int_{T}^{\infty} x f(y) dy = x[1 - F(x)] \ge 0,$$

we have

$$\lim_{x \to \infty} x[1 - F(x)] = 0.$$

6. Let $X \sim Exponential(\beta)$. (See page 29 of the textbook for the definition.) Find $P(|X - \mu_X| \geq k\sigma_X)$ for k > 1, where μ_X and σ_X denote the mean and standard deviation of the distribution, both equal to β in this case. Calculate an upper bound for this probability using Chebyshev's inequality. Make a plot (a rough sketch is ok) comparing the exact probability to the bound, both as a function of k.

Solution:

Since
$$X \sim \text{Exponential}(\beta)$$
, $f(x) = \frac{1}{\beta}e^{-x/\beta}$, $x > 0$, and $\mu_X = \beta$, $\sigma_X = \beta$.

$$P(|X - \mu_X| \ge k\sigma_X) = P(|X - \beta| \ge k\beta)$$

$$= P(X \ge (k+1)\beta) + P(X \le (1-k)\beta)$$
(Since $k > 1$, $(1-k)\beta < 0$)
$$= \int_{(k+1)\beta}^{\infty} f(x)dx + 0$$

$$= e^{-(k+1)}.$$

By using Chebyshev's inequality,

$$P(|X - \mu_X| \ge k\sigma_X) \le \frac{\sigma_X^2}{(k\sigma_X)^2} = \frac{1}{k^2}.$$

The exact probability and Chebyshev's bound are plotted both as a function of k below.

Figure 1: Problem 6

7. Suppose that P(X = 1) = P(X = -1) = 1/2. Define

$$X_n = \begin{cases} X & \text{with probability } 1 - 1/n \\ e^n & \text{with probability } 1/n \end{cases}$$

Show why X_n does or does not converge to X

- (a) in probability.
- (b) in distribution.
- (c) in quadratic mean.

Solution:

(a) For every $\epsilon > 0$,

$$P(|X_n - X| > \epsilon) = P(X_n = e^n) = \frac{1}{n} \to 0,$$

as $n \to \infty$. So yes, $X_n \stackrel{P}{\to} X$.

(b) From 5.4 Theorem (Page 73), $X_n \stackrel{P}{\to} X$ implies that $X_n \stackrel{D}{\to} X$. So yes.

(c)

$$E[(X_n - X)^2] = E[E[(X_n - X)^2 | X]] = E[0^2 (1 - \frac{1}{n}) + (e^n - X)^2 \frac{1}{n}]$$
$$= \frac{1}{n} E[(e^n - X)^2] = \frac{1}{n} \left[(e^n - 1)^2 \frac{1}{2} + (e^n + 1)^2 \frac{1}{2} \right]$$
$$\to \infty.$$

So $X_n \stackrel{qm}{\nrightarrow} X$.

- 8. Given a sequence of random variables such that X_n converges to μ (μ is a constant) in probability, give one example where:
 - (a) $E(X_n)$ does not converge to μ .
 - (b) $E(X_n \mu)^2$ does not converge to 0.

Solution: Define

$$X_n = \begin{cases} n & \text{with probability } 1/n \\ 0 & \text{with probability } 1 - 1/n \end{cases}$$

Then, X_n converges to 0 in probability but $E(X_n) = 1$ and $E(X_n^2) = n$ does not coverges to 0.