1 Сходимост

1.1 Дефиниции

Нека $\{a_n\}_1^\infty$ е (безкрайна) числова редица.

- 1. $\sum_{n=1}^{\infty} a_n$ се нарича (безкраен) числов ред
- 2. $S_n = \sum_{k=1}^n a_k$ се наричат **частични (парциални) суми** на реда
- 3. Редът $\sum_{n=1}^{\infty} a_n$ се нарича **сходящ**, ако съществува крайната граница $S = \lim_{n \to \infty} S_n$
- 4. в противен случай, редът се нарича разходящ
- 5. S се нарича сума на реда, $S = \sum_{n=1}^{\infty} a_n$

1.2 Примери

- 1. Ако $a_n = 0$ за всяко $n > n_0$, то редът $\sum_{n=1}^{\infty} a_n$ е сходящ.
- 2. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ е сходящ.
- 3. $\sum_{n=1}^{\infty} \sqrt{n}$ е разходящ.
- 4. $\sum_{n=0}^{\infty} q^n$ е сходящ за |q| < 1 $\left(\text{ сума } \frac{1}{1-q} \right)$ и разходящ за $|q| \ge 1$.
- 5. $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$ е сходящ.

1.3 Свойства

- 1. Добавянето (премахването) на краен брой събираеми не влияе на сходимостта ("адитивност").
- 2. Ако $a_n \ge 0$ за всяко n, то S_n е растяща и, когато редът $S = \sum_{n=1}^{\infty} a_n$ е сходящ, $0 \le S_n \le S$ ("позитивност").
- 3. Линейност

Нека
$$\sum_{n=1}^\infty a_n$$
 и $\sum_{n=1}^\infty b_n$ са сходящи. Тогава $\sum_{n=1}^\infty \left(\lambda a_n + \mu b_n\right)$ е сходящ и

$$\sum_{n=1}^{\infty} (\lambda a_n + \mu b_n) = \lambda \sum_{n=1}^{\infty} a_n + \mu \sum_{n=1}^{\infty} b_n.$$

1.4 Необходимо и достатъчно условие на Коши

1. Редът $\sum_{n=1}^{\infty} a_n$ е сходящ тогава и само тогава, когато

за всяко
$$\varepsilon>0$$
 има N такова, че $\left|\sum_{k=n+1}^{n+p}a_k\right|<\varepsilon$ за всяко $n>N$ $(n\in\mathbb{N})$ и всяко $p\in\mathbb{N}$

- 2. Примери: $\sum_{n=1}^{\infty} \frac{1}{n}$ е разходящ; $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ е сходящ.
- 3. Необходимо условие на Коши:

Ако
$$\sum_{n=1}^{\infty} a_n$$
 е сходящ, то $\lim_{n \to \infty} a_n = 0$.

2 Критерии за сходимост

2.1 Критерии за сравнение

2.1.1 Интегрален критерий

• Общо твърдение:

Нека
$$f:[1,+\infty)\to\mathbb{R}$$
 е монотонна. Тогава $\sum_{n=1}^\infty f(n)$ е сходящ $\Leftrightarrow \int\limits_1^{+\infty} f(x)dx$ е сходящ

• Съществен случай:

Нека $f(x) \geq 0$ за всяко $x \in [1, +\infty)$, монотонно намалява и $\lim_{x \to +\infty} f(x) = 0$. Тогава

$$\sum_{n=1}^{\infty} f(n)$$
 е сходящ $\Leftrightarrow \int_{1}^{+\infty} f(x) dx$ е сходящ

• Доказателство:

За
$$x \in [n, n+1]$$
 е изпълнено $f(n+1) \le f(x) \le f(n)$, откъдето $f(n+1) \le \int\limits_{n}^{n+1} f(x) \, dx \le f(n)$. Следователно,

$$\sum_{k=2}^{n+1} f(k) \le \int\limits_{1}^{n+1} f(x) \, dx \le \sum_{k=1}^{n} f(k) \, .$$
 Твърдението следва от нарастването на $F(u) = \int\limits_{1}^{u} f(x) \, dx \, .$

• Примери:

$$1. \qquad \sum_{n=1}^{\infty} \frac{1}{n} \text{ e разходящ}$$

2.
$$\sum_{n=1}^{\infty} \frac{1}{n^p} \text{ е сходящ} \quad \Leftrightarrow \quad p > 1$$

3.
$$\sum_{n=1}^{\infty} \frac{1}{n^p \ln^q (n+1)}$$
 е сходящ $\Leftrightarrow p > 1$ или $p = 1, q > 1$

2.1.2 Критерий за сравнение I (сравняване на големината на събираемите)

Нека $0 \le a_n \le b_n$ за всяко $n > n_0 \ (n \in \mathbb{N})$. Тогава

• Ако
$$\sum_{n=1}^{\infty} b_n$$
 е сходящ, то $\sum_{n=1}^{\infty} a_n$ е сходящ.

- Ако $\sum_{n=1}^{\infty} a_n$ е разходящ, то $\sum_{n=1}^{\infty} b_n$ е разходящ.
- Логически факт: $(\mathcal{A} \Rightarrow \mathcal{B}) \Leftrightarrow (\neg \mathcal{B} \Rightarrow \neg \mathcal{A})$
- Гранична форма:

Нека $0 < a_n$ за всяко $n > n_0$ $(n \in \mathbb{N})$ и $\lim_{n \to \infty} \frac{b_n}{a_n} = L \neq 0$ (число). Тогава

 $\sum_{n=1}^{\infty} b_n$ е сходящ тогава и само тогава, когато $\sum_{n=1}^{\infty} a_n$ е сходящ.

2.1.3 Критерий за сравнение II (сравняване на "скоростта")

Нека $0 < a_n$, $0 < b_n$ и $\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n}$ за всяко $n > n_0 \ (n \in \mathbb{N})$. Тогава

- Ако $\sum_{n=1}^{\infty} b_n$ е сходящ, то $\sum_{n=1}^{\infty} a_n$ е сходящ.
- Ако $\sum_{n=1}^{\infty} a_n$ е разходящ, то $\sum_{n=1}^{\infty} b_n$ е разходящ.

2.2 Критерии за редове с положителни членове

2.2.1 Критерий на Даламбер

Нека $0 < a_n$ за всяко $n \in \mathbb{N}$.

- (ДУ сходимост) Ако има 0 < q < 1, за което $\frac{a_{n+1}}{a_n} \le q$ за всяко $n > n_0$ $(n \in \mathbb{N})$, то $\sum_{n=1}^{\infty} a_n$ е сходящ. Следва от $\frac{a_{n+1}}{a_n} \le \frac{q^{n+1}}{q^n}$.
- (ДУ разходимост) Ако $\frac{a_{n+1}}{a_n} \ge 1$ за всяко $n > n_0 \ (n \in \mathbb{N})$, то $\sum_{n=1}^\infty a_n$ е разходящ. В този случай a_n не клони към 0 . Следва от $a_{n+1} \ge a_n$.
- ullet (гранична форма) Нека съществува $\lim_{n o\infty} rac{a_{n+1}}{a_n} = L$. Тогава ако L<1 , то $\sum_{n=1}^\infty a_n$ е сходящ; ако L>1 , то $\sum_{n=1}^\infty a_n$ е разходящ.
- Примери:
 - 1. $\sum_{n=0}^{\infty} \frac{p^n}{n!}$ е сходящ за всяко $p \ge 0$.

2. $\sum_{n=0}^{\infty} \frac{p^n}{n}$ е сходящ за $0 и разходящ за <math>p \ge 1$

2.2.2 Критерий на Коши

Нека $0 \le a_n$ за всяко $n \in \mathbb{N}$.

- (ДУ сходимост) Ако има 0 < q < 1, за което $\sqrt[n]{a_n} \le q$ за всяко $n > n_0$ $(n \in \mathbb{N})$, то $\sum_{n=1}^{\infty} a_n$ е сходящ. Следва от $0 \le a_n \le q^n$.
- (ДУ разходимост) Ако $\sqrt[n]{a_n} \ge 1$ за всяко $n > n_0$ $(n \in \mathbb{N})$, то $\sum_{n=1}^{\infty} a_n$ е разходящ. В този случай a_n не клони към 0. Достатъчно е да съществува подредица $\{a_{n_k}\}_{k=1}^{\infty}$, за която $\sqrt[n_k]{a_{n_k}} \ge 1$.
- (гранична форма) Нека съществува $\lim_{n\to\infty}\sqrt[n]{a_n}=L$. Тогава ако L<1 , то $\sum_{n=1}^\infty a_n$ е сходящ; ако L>1 , то $\sum_{n=1}^\infty a_n$ е разходящ.

• Примери:

$$1. \qquad \sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^{n^2} \text{ e сходящ.}$$

2.
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2}$$
 е разходящ.

2.2.3 Критерий на Раабе-Дюамел

Нека $0 < a_n$ за всяко $n \in \mathbb{N}$.

- (ДУ сходимост) Ако има 1 < q , за което $n\left(\frac{a_n}{a_{n+1}} 1\right) \ge q$ за всяко $n > n_0 \ (n \in \mathbb{N})$, то $\sum_{n=0}^{\infty} a_n$ е сходящ.
- Схема на доказателството:

$$- \frac{a_{n+1}}{a_n} \le \frac{1}{1 + \frac{q}{n}}$$

$$- \qquad p = \frac{1+q}{2} \,, \ 1$$

$$- \varphi(x) = (x+1)^{p} - (qx+1), \ q = 2p-1$$

$$- \varphi'(0) < 0 \implies \varphi(x) \le 0, \ x \in [0, x_{0}]$$

$$- \frac{a_{n+1}}{a_{n}} \le \frac{1}{1 + \frac{q}{n}} \le \frac{\overline{(n+1)^{p}}}{\frac{1}{n^{p}}}$$

• Схема на друго доказателство:

$$-na_{n} - na_{n+1} \ge qa_{n+1} \text{ sa } n \ge n_{0}$$

$$-na_{n} - (n+1)a_{n+1} \ge (q-1)a_{n+1} \text{ sa } n \ge n_{0}$$

$$-\sum_{n=n_{0}}^{n_{0}+p} (na_{n} - (n+1)a_{n+1}) \ge \sum_{n=n_{0}}^{n_{0}+p} (q-1)a_{n+1} \text{ sa } p \in \mathbb{N}$$

$$-\sum_{n=n_{0}+1}^{n_{0}+p+1} a_{n} \le \frac{n_{0}a_{n_{0}} - (n_{0}+p)a_{n_{0}+p}}{q-1} \le \frac{n_{0}a_{n_{0}}}{q-1}$$

• (ДУ разходимост) Ако $n\left(\frac{a_n}{a_{n+1}}-1\right) \leq 1$ за всяко $n>n_0$ $(n\in\mathbb{N})$, то $\sum_{n=1}^\infty a_n$ е разходящ. Следва от $\frac{a_{n+1}}{a_n}\geq \frac{n}{n+1}=\frac{1}{\frac{1}{2}}$

ullet (гранична форма) Нека съществува $\lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = L$. Тогава

ако
$$L>1$$
 , то $\sum_{n=1}^\infty a_n$ е сходящ; ако $L<1$, то $\sum_{n=1}^\infty a_n$ е разходящ.

- Примери:
 - 1. $\sum_{n=1}^{\infty} \frac{1}{n \cdot 4^n} \cdot \binom{2n}{n}$ е сходящ
 - 2. $\sum_{n=1}^{\infty} \frac{1}{4^n} \cdot \binom{2n}{n}$ е разходящ

2.2.4 Критерий на Гаус

Нека $0 < a_n$ и $\frac{a_n}{a_{n+1}} = \lambda + \frac{\mu}{n} + \frac{c_n}{n^{1+\delta}}$ за всяко $n \in \mathbb{N}$, където $\delta > 0$, а редицата $\{c_n\}_{n=1}^\infty$ е ограничена. Тогава

- ullet при $1 < \lambda$ редът $\sum_{n=1}^{\infty} a_n$ е сходящ
- ullet при $\lambda < 1$ редът $\sum_{n=1}^{\infty} a_n$ е разходящ

- при $\lambda = 1$
 - при $1 < \mu$, редът $\sum_{n=1}^{\infty} a_n$ е сходящ
 - при $\mu \le 1$ редът $\sum_{n=1}^{\infty} a_n$ е разходящ
- Схема на доказателството за случая $\lambda = \mu = 1$:

$$\frac{(n+1)\ln(n+1)}{n\ln n} = \left(1+\frac{1}{n}\right)\left(1+\frac{\ln(n+1)-\ln n}{\ln n}\right) = 1+\frac{1}{n}+\frac{1}{n\ln n}+\frac{B_n}{n^2} \ge \frac{a_n}{a_{n+1}}.$$

• Пример: Редът $\sum_{n=1}^{\infty} Q^{1+\frac{1}{2}+\dots+\frac{1}{n}}$ е сходящ за $0 < Q < \frac{1}{e}$ и разходящ за $Q \ge \frac{1}{e}$.

2.3 Критерии за знакопроменливи редове

2.3.1 Критерий на Абел - Дирихле

1. Нека

- a_n е монотонна и $\lim_{n\to\infty} a_n = 0$;
- сумите $\sum_{k=1}^{n} b_k$ са ограничени.

Тогава редът $\sum_{n=1}^{\infty} a_n b_n$ е сходящ.

- 2. Нека
 - a_n е монотонна и $\lim_{n\to\infty} a_n = L$ (число);
 - ullet редът $\sum_{n=1}^{\infty}b_n$ е сходящ.

Тогава редът $\sum_{n=1}^{\infty} a_n b_n$ е сходящ.

3. Пример: редът $\sum_{n=1}^{\infty} \frac{\sin n}{n}$ е сходящ.

2.3.2 Критерий на Лайбниц

1. Нека $0 \le a_n$ монотонно намалява и $\lim_{n \to \infty} a_n = 0$.

Тогава редът $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ е сходящ.

2. "Независимо" доказателство:

 $S_{2n} \leq S_{2n+2} \leq S_{2n+1} \leq S_{2n-1}, \quad \lim_{n \to \infty} (S_{2n-1} - S_{2n}) = 0.$

3. Примери:

• $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ е сходящ.

- Нека $0 < a_n$ и $\lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} 1 \right) = L > 0$. Тогава $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ е сходящ.
- ullet монотонността е съществена: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n+(-1)^{n-1}}$ е сходящ; $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}+(-1)^{n-1}}$ е разходящ.

3 Абсолютно сходящи редове

3.1 Абсолютна и условна сходимост

з.1.1 Дефиниции

- ullet Редът $\sum_{n=1}^{\infty} a_n$ се нарича **абсолютно сходящ**, ако е сходящ редът $\sum_{n=1}^{\infty} |a_n|$.
 - 1. Ако $\sum_{n=1}^{\infty} a_n$ е абсолютно сходящ, то той е сходящ.
 - 2. Обратното не е вярно.
 - 3. Ако всички събираеми, с изключение на краен брой, са с един и същи знак, то сходимост и абсолютна сходимост съвпадат.
- Редът $\sum_{n=1}^{\infty} a_n$ се нарича **условно сходящ**, ако е сходящ, но не абсолютно сходящ.
 - 1. За условно сходящ ред $\sum_{n=1}^{\infty} a_n$ редовете $\sum_{n=1}^{\infty} a_n^+$ и $\sum_{n=1}^{\infty} a_n^-$ са разходящи $\left(a_n^+ = \max\left(a_n,\,0\right)\,,\;a_n^- = \max\left(-a_n,\,0\right)\,\right)$.

2. Пример: $\sum_{n=1}^{\infty} \binom{p}{n}$ е: разходящ за $p \leq -1$, условно сходящ за $-1 , абсолютно сходящ за <math>0 \leq p$.

3.2 Комутативен закон

з.2.1 Формулировка

Нека редът $\sum_{n=1}^{\infty} a_n$ е абсолютно сходящ.

За всяка пермутация φ на $\mathbb N$ редът $\sum_{n=1}^\infty a_{\varphi(n)}$ е абсолютно сходящ и $\sum_{n=1}^\infty a_{\varphi(n)} = \sum_{n=1}^\infty a_n$.

Пермутация на \mathbb{N} е всяка функция $\varphi:\mathbb{N}\to\mathbb{N}$, дефинирана за всяко $n\in\mathbb{N}$, и удовлетворяваща

- $\varphi(n) \neq \varphi(k)$ sa $n \neq k$
- ullet за всяко $k\in\mathbb{N}$ има $n\in\mathbb{N}$, за което k=arphi(n)

з.2.2 Схема на доказателството

• Нека $a_n \geq 0$ и φ е пермутация на $\mathbb N$.

1. За
$$N = \max_{1 \le k \le n} \varphi(k)$$
 имаме $\sum_{k=1}^n a_{\varphi(k)} \le \sum_{k=1}^N a_k$.

2. За
$$M = \max_{1 \le k \le n} \varphi^{(-1)}(k)$$
 имаме $\sum_{k=1}^{n} a_k \le \sum_{k=1}^{M} a_{\varphi(k)}$.

• В общия случай прилагаме доказаното за редовете $\sum_{n=1}^{\infty} a_n^+$ и $\sum_{n=1}^{\infty} a_n^-$.

з.2.3 Контра примери

•
$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \dots = \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

ullet Нека редът $\sum_{n=1}^{\infty} a_n$ е условно сходящ. Тогава

- за всяко $S \in \mathbb{R}$ има пермутация φ на \mathbb{N} , за която $\sum_{n=1}^\infty a_{\varphi(n)} = S$;
- има пермутация φ на $\mathbb N$, за която всяко реално число е точка на сгъстяване на редицата $S_n = \sum_{k=1}^n a_{\varphi(k)}$.

3.3 Умножаване на редове

з.з.1 Формулировка

- За два реда $\sum_{n=0}^{\infty} a_n$ и $\sum_{n=0}^{\infty} b_n$ дефинираме "ред произведение" $\sum_{n=0}^{\infty} c_n$ чрез $c_n = \sum_{k=0}^n a_k b_{n-k}$.
- ullet Ако $\sum_{n=0}^{\infty} a_n$ и $\sum_{n=0}^{\infty} b_n$ са сходящи, като поне единият е абсолютно сходящ, то $\sum_{n=0}^{\infty} c_n$ е сходящ и

$$\sum_{n=0}^{\infty} c_n = \left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right) .$$

ullet Ако $\sum_{n=0}^{\infty}a_n$ и $\sum_{n=0}^{\infty}b_n$ са абсолютно сходящи, то $\sum_{n=0}^{\infty}c_n$ е абсолютно сходящ и

$$\sum_{n=0}^{\infty} c_n = \left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right) .$$

з.з.2 Схема на доказателство за абсолютно сходящи редове

- Нека $x_n \ge 0$, $y_n \ge 0$ и $z_n = \sum_{k=0}^n x_k y_{n-k}$. Тогава
 - 1. $\sum_{k=0}^{n} z_k \le \left(\sum_{k=0}^{n} x_k\right) \left(\sum_{k=0}^{n} y_k\right)$
 - $2. \qquad \left(\sum_{k=0}^{n} x_k\right) \left(\sum_{k=0}^{n} y_k\right) \le \sum_{k=0}^{2n} z_k$
- В общия случай полагаме $x_n = |a_n|, \ y_n = |b_n|$ и използваме

$$\left| \left(\sum_{k=0}^{n} a_k \right) \left(\sum_{k=0}^{n} b_k \right) - \sum_{k=0}^{n} c_k \right| \le \left(\sum_{k=0}^{n} x_k \right) \left(\sum_{k=0}^{n} y_k \right) - \sum_{k=0}^{n} z_k$$

з.з.з Примери:

1.
$$\left(\sum_{n=0}^{\infty} \frac{x^n}{n!}\right) \left(\sum_{n=0}^{\infty} \frac{y^n}{n!}\right) = \sum_{n=0}^{\infty} \frac{(x+y)^n}{n!}.$$

2.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$$
 е (условно) сходящ; редът "квадрат" $\sum_{n=0}^{\infty} (-1)^n \sum_{k=0}^n \frac{1}{(k+1)(n+1-k)}$ е сходящ.

3.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}} \text{ е (условно) сходящ; редът "квадрат"} \sum_{n=0}^{\infty} (-1)^n \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n+1-k)}} \text{ е разходящ.}$$