

0	The key inputs to computing the attention value for each word are called the query, key, and value.
0	The key inputs to computing the attention value for each word are called the query, knowledge, and vector.
0	The key inputs to computing the attention value for each word are called the quotation, knowledge, and value.
0	The key inputs to computing the attention value for each word are called the quotation, key, and vector.

 $Attention(Q,K,V) = softmax(\tfrac{QK^T}{\sqrt{d_?}})V$

- 0
- (ii)
- O 0
- \bigcirc

⊘ Correct

 ${\bf k}$ is represented by the ? in the representation.

Which of the following statements represents Key (K) as used in the self-attention calculation?			
K = qualities of words given a Q			
K = specific representations of words given a Q			
K = the order of the words in a sentence			
K = interesting questions about the words in a sentence			
∠ [™] Expand			
Incorrect To revise the concept watch the lecture; V = specific representations of words given a Q			
6. $Attention(W_i^Q Q, W_i^K K, W_i^V V)$ What does i represent in this multi-head attention computation?			
What does i represent in this multi-head attention computation?			
What does i represent in this multi-head attention computation?			
What does i represent in this multi-head attention computation? The computed attention weight matrix associated with the order of the words in a sentence			
What does i represent in this multi-head attention computation? The computed attention weight matrix associated with the order of the words in a sentence The computed attention weight matrix associated with specific representations of words given a Q			
What does i represent in this multi-head attention computation? The computed attention weight matrix associated with the order of the words in a sentence The computed attention weight matrix associated with specific representations of words given a Q The computed attention weight matrix associated with the ith "head" (sequence) The computed attention weight matrix associated with the ith "word" in a sentence.			
What does i represent in this multi-head attention computation? The computed attention weight matrix associated with the order of the words in a sentence The computed attention weight matrix associated with specific representations of words given a Q The computed attention weight matrix associated with the i th "head" (sequence) The computed attention weight matrix associated with the i th "word" in a sentence.			
What does i represent in this multi-head attention computation? The computed attention weight matrix associated with the order of the words in a sentence The computed attention weight matrix associated with specific representations of words given a Q The computed attention weight matrix associated with the ith "head" (sequence) The computed attention weight matrix associated with the ith "word" in a sentence.			

5.

7. Following is the architecture within a Transformer Network (without displaying positional encoding and output layers(s)).

What information does the Decoder take from the Encoder for its second block of Multi-Head Attention? (Marked X, pointed by the independent arrow) (Check all that apply)

- __ Q
- \square \vee
- ✓ K
- ✓ Correct

⊗ Incorrect

You didn't select all the correct answers

8. Following is the architecture within a Transformer Network (without displaying positional encoding and output layers(s)).

What does the output of the encoder block contain?

		•	Linear layer followed by a softmax layer.
		\bigcirc	Contextual semantic embedding and positional encoding information
		\bigcirc	Prediction of the next word.
		\bigcirc	Softmax layer followed by a linear layer.
9.	Why is	posi	tional encoding important in the translation process? (Check all that apply)
		~	Position and word order are essential in sentence construction of any language.
		,	✓ Correct
			It helps to locate every word within a sentence.
			It is used in CNN and works well there.
		/	Providing extra information to our model.
			✓ Correct
		`	Confect

What does the output of the encoder block contain?

10. Which of these is a good criterion for a good positionial encoding algorithm?		
The algorithm should be able to generalize to longer sentences.		
It should output a common encoding for each time-step (word's position in a sentence).		
It must be nondeterministic.		
Oistance between any two time-steps should be inconsistent for all sentence lengths.		
∠ [≯] Expand		