PRIME: Novel Processing-in-memory Architecture for Neural Network Computation in ReRAM-based Main Memory

Presented by: Ravi Raju

March 23, 2018

QII Presentation Spring 2018

Overview

Problem Statement and Solution

Background

Architecture and System Design

Evaluations and Results

Discussion

Appendix

Problem Statement and Solution

Problem Statement/Motivation

- 1. Neural Networks
 - Popular for image/speech recognition application
 - High Memory Bandwidth Requirement
- 2. Current Solutions
 - DaDianNao large on-chip eDRAM for high bandwith and data locality
 - TrueNorth SRAM crossbar memory for synapses
- 3. Both solutions suffer from latency of data movement

Proposed Solution: PRIME

- 1. Processing in Memory is a natural solution
 - Inspired by HMC
 - Place compute units in memory to do NN computation
 - Latency of In-memory data communication vs. DRAM memory access

2. PRIME

- ReRAM crossbar array solution
- Dynamically reconfigure between NN accerelation and memory
 - 2.1 Architectural/circuit level support
 - 2.2 Software interface
- 3. Targets large-scale MLP and CNN applications

Key Idea: PRIME

Background

What is ReRAM

Figure 1. (a) Conceptual view of a ReRAM cell; (b) I-V curve of bipolar switching; (c) schematic view of a crossbar architecture.

ReRAM in relation to Neural Nets

Figure 2. (a) An ANN with one input/output layer; (b) using a ReRAM crossbar array for neural computation.

Architecture and System Design

High Level Overview of Architecture

Choosing between NN Computation and Memory Mode

MicroArchitecture of FF SubArray: Decoder

MicroArchitecture of FF SubArray: Col Mux

MicroArchitecture of FF SubArray: SA

System Level Design

- Small-Scale NN: Replication
- Medium-Scale NN: Split-Merge
- Large-Scale NN: Inter-Bank Communication

Figure 7. The software perspective of PRIME: from source code to execution.

Evaluations and Results

Experimental Setup

Table III
THE BENCHMARKS AND TOPOLOGIES.

MlBench		MLP-S	784-500-250-10	
CNN-1	conv5x5-pool-720-70-10	MLP-M	784-1000-500-250-10	
CNN-2	conv7x10-pool-1210-120-10	MLP-L	784-1500-1000-500-10	
VGG-D	conv3x64-conv3x64-pool-conv3x128-conv3x128-pool conv3x256-conv3x256-conv3x256-pool-conv3x512			

 $\begin{tabular}{ll} Table\ IV\\ Configurations\ of\ CPU\ and\ Memory. \end{tabular}$

Processor	4 cores; 3GHz; Out-of-order		
L1 I&D cache	Private; 32KB; 4-way; 2 cycles access;		
L2 cache	Private; 2MB; 8-way; 10 cycles access;		
ReRAM-based Main Memory	16GB ReRAM; 533MHz IO bus; 8 chips/rank; 8 banks/chip; tRCD-tCL-tRP-tWR 22.5-9.8-0.5-41.4 (ns)		

Table V
THE CONFIGURATIONS OF COMPARATIVES.

Description		Data path	Buffer		
pNPU-co	Parallel NPU [17] as co-processor	16×16 multiplier 256-1 adder tree			
pNPU-pim	PIM version of parallel NPU, 3D stacked to each bank				

Performance

Figure 8. The performance speedups (vs. CPU).

Figure 9. The execution time breakdown (vs. pNPU-co).

Energy

Figure 10. The energy saving results (vs. CPU).

Figure 11. The energy breakdown (vs. pNPU-co).

Figure 12. Area Overhead of PRIME.

Discussion

Critique

- 1. PRIME only supports unsigned input vectors
- 2. Tough to support recurrent NNs/LSTMs architectures
- 3. Opportunity to exploit sparsity of NN for energy savings
 - Introduce some logic into pipeline to check how many non-zero weights in crossbar
 - If below some defined threshold, skip the computation

Conclusion

- PRIME is the solution to the data movement and high memory bandwidth problem
- Using ReRAM crossbar accelerates NN computation
- Circuit/microarchitectural changes as well as software interface enables wide spectrum of NN applications
- Very little area overhead and extra processing elements

References

P. Chi, et al. (2016, Sept. 4). PRIME: A Novel
Processing-in-Memory Architecture for Neural Network
Computation in ReRAM-Based Main Memory [Online].
Available: http://ieeexplore.ieee.org/document/
7551380/citations?tabFilter=papers

A. Shafiee, et al. (2016, Aug. 25). *ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars* [Online]. Available:

http://ieeexplore.ieee.org/document/7551379/

Thank you and Questions

Appendix

Precision Issues

- Input precision
- Weight precision
- Output precision
- Multiple low-precision input signals
- Multiple cells to make one high precision weight
- Multiple phases for one computation

Precision Graph

Math for precision

$$R_{\text{full}} = \sum_{i=1}^{2^{P_N}} (\sum_{k=1}^{P_{\text{in}}} I_k^i 2^{k-1} \cdot \sum_{k=1}^{P_w} W_k^i 2^{k-1})$$

$$R_{\text{target}} = R_{\text{full}} \gg (P_{\text{in}} + P_w + P_N - P_o).$$

input:
$$\sum_{k=1}^{P_{\rm in}} I_k^i 2^{k-1} = \sum_{k=1}^{P_{\rm in}/2} (I h_k^i 2^{k-1} \cdot 2^{P_{\rm in}/2} + I l_k^i 2^{k-1}) \tag{4}$$

weight:
$$\sum_{k=1}^{P_w} W_k^i 2^{k-1} = \sum_{k=1}^{P_w/2} (W h_k^i 2^{k-1} \cdot 2^{P_w/2} + W l_k^i 2^{k-1}). \quad (5)$$

Math for precision

$$R_{\text{full}} = \sum_{i=1}^{2^{P_N}} \left\{ 2^{\frac{P_w + P_{\text{in}}}{2}} \cdot \sum_{k=1}^{P_{\text{in}}/2} Ih_k^i 2^{k-1} \sum_{k=1}^{P_w/2} Wh_k^i 2^{k-1} + 2^{\frac{P_w}{2}} \cdot \sum_{k=1}^{P_{\text{in}}/2} Il_k^i 2^{k-1} \sum_{k=1}^{P_w/2} Wh_k^i 2^{k-1} + 2^{\frac{P_w}{2}} \cdot \sum_{k=1}^{P_{\text{in}}/2} Il_k^i 2^{k-1} \sum_{k=1}^{P_w/2} Wl_k^i 2^{k-1} + \sum_{k=1}^{P_{\text{in}}/2} Il_k^i 2^{k-1} \sum_{k=1}^{P_w/2} Wl_k^i 2^{k-1} + \sum_{k=1}^{P_{\text{in}}/2} Il_k^i 2^{k-1} \sum_{k=1}^{P_w/2} Wl_k^i 2^{k-1} \right\}.$$

$$(6)$$

 $R_{\text{full}} = 2^{\frac{P_w + P_{\text{in}}}{2}} \cdot R_{\text{full}}^{\text{HH}} + 2^{\frac{P_w}{2}} \cdot R_{\text{full}}^{\text{HL}} + 2^{\frac{P_{\text{in}}}{2}} \cdot R_{\text{full}}^{\text{LH}} + R_{\text{full}}^{\text{LL}}$

Math for precision

$$R_{tar}^{HH} = P_0 bits of R_{full}^{HH}$$

$$R_{tar}^{HL} = P_0 - (P_{in}/2) bits of R_{full}^{HL}$$

$$R_{tar}^{LH} = P_0 - (P_w/2) bits of R_{full}^{LH}$$

$$R_{tar}^{LL} = P_0 - ((P_{in} - P_w)/2) bits of R_{full}^{LL}$$

$$R_{tar} = R_{tar}^{HH} + R_{tar}^{HL} + R_{tar}^{LH} + R_{tar}^{LL}$$