Sample Solutions

CTU Open Contest 2012

Czech Technical University in Prague

ANDREW THE ANT

Ants – úloha

- Mravenci už nejsou všichni stejní
- ... a opravdová simulace je pomalá

- Co víme z včerejší cvičné úlohy?
 - Kdy spadne mravenec na které straně
 - Kolik spadne doleva a kolik doprava

Ants – myšlenka

- Základní pozorování:
 - Mravenci se nikdy nemůžou "vyměnit"

- Důsledek:
 - Pokud spadne L mravenců doleva, je to těch L, kteří byli už na začátku nejvíc vlevo

Ants – řešení

- Tři mravenci spadnou doleva...
- ... a jsou to první tři zleva

Ants – řešení

- => Jako poslední doleva spadne B
- ... za 13 sekund

A podobně doprava

SOFTWARE BUGS

Bugs

- Stejná úloha jako ve cvičném kole
- ale chceme efektivní řešení

- "Automat"
 - Předpočítat podle hledaného vzoru
 - Na zásobník ukládat, jaké začátky byly nalezeny

Bugs - princip

Ukládáme si "načaté kousky"

1 2

Bugs – princip

Ukládáme si "načaté kousky"

 Pozor na vzorky s částečným opakováním

 Pozor na vzorky s částečným opakováním

 Pozor na vzorky s částečným opakováním

 Pozor na vzorky s částečným opakováním

Bugs – tabulka

- Spočítáme, co dělat, když mám
 - X znaků a přijde C
 - Stačí v kvadratickém čase (1000²)

A B A B A B A B A C A C

CHARLIE THE COCKCHAFER

Cockchafer

- Nalezení nejkratší cesty
 - => Dijkstrův algoritmus

- Záleží ale na tom, kudy přijdu
- Co je stav? ("uzel" při hledání)
 - Začátek úsečky (uzel + natočení)

Cockchafer – postup

GREGORY THE GRASSHOPPER

Grasshopper

- Lze řešit analyticky
- Někdy se chová nevyzpytatelně
 - Zejména pro malé šachovnice (2xN)

- => Prohledávání do šířky
 - 100x100 polí

1	2		2	1	2		
2		0				2	
1	2		2	1	2		
	1	2	1			2	
	2		2		2		
2		2		2			

1	2	3	2	1	2	3	
2	3	0	3		3	2	3
1	2	3	2	1	2	3	
	1	2	1		3	2	3
3	2	3	2	3	2	3	
2	3	2	3	2	3		3
3		3		3		3	

LISA THE LADYBUG

Ladybug – řešení

- Prohledávání stavového prostoru
- Stav zahrnuje
 - Stav v automatu dle diagramu
 - Operátor
 - Hodnota na displeji / v paměti
 - Lze i zvlášť (1000x1000)
 - Nebo jen jedno (dle situace)

MOSQUITO MULTIPLICATION

Mosquito

Co k tomu dodat?

```
for (int i = 0; i < n; ++i) {
  int oldm = m;
  m = p/s;
  p = 1/r;
  l = oldm * e;
}</pre>
```

RHINOCEROS BEETLE

Rhinoceros

- Pracná, ale jinak celkem přímočará
 - Zkoušení všech možností

Doporučuji karty seřadit

SIMON THE SPIDER

Spider – princip

- Minimální kostra grafu
- ... ale 1 hranu odečítáme

- Postupy, které nefungují
 - Kostra a její nejdelší hranu odečíst
 - Nejdelší hranu grafu doplnit na kostru

Spider – protipříklad

Spider – protipříklad

Spider – řešení

Hledáme nejvyšší součet
 hrana mimo kostru + nejdelší hrana
 na příslušné (fundamentální) kružnici

Spider – řešení

- Zkoušet všechny hrany moc pomalé
- Prohledávání do hloubky a zkoušet hrany do počátku

Spider – dodatky

- Pozor na vícenásobné hrany
 - Pro kostru beru nejkratší
 - Dodatečnou pro změnu nejlepší
 - Lze i nejkratší vyměnit za nejdelší mezi stejnými uzly

DOTAZY

Autoři úloh

Josef Cibulka
Jakub Černý
Zdeněk Dvořák
Martin Kačer
Jan Stoklasa

(a tradičně náměty od Radka Pelánka)