Complexity Theory 236313 - Homework Assignment #3

Due January 10, 2023. Submit a single PDF file to the course site December 27, 2022

Question 1. Denote $\mathsf{NL}^k \triangleq \mathsf{NSPACE}\left(\log^k n\right)$ and $\mathsf{DL}^k \triangleq \mathsf{DSPACE}\left(\log^k n\right)$. Let NC^k denote the class of decision problems decidable by poly-size and log-space *uniform* Boolean circuits of depth $O\left(\log^k n\right)$.

- 1. Prove that $NC^k \subseteq DL^k$ for all k.
- 2. Prove that for all k and for all $L \in \mathsf{NL}^k$, there exists a family of circuits of depth $O\left(\log^{2k} n\right)$ and fan-in 2 that decides L. Note that the circuits might not be poly-size or uniform.
- 3. Show that proving that $NL^k \subseteq NC^{2k}$ for all k settles an important open problem in complexity theory. State the open problem and prove your answer.

Question 2. In this question, we will prove that $CON \notin AC^0$ using the fact that $PARITY \notin AC^0$. Given an assignment to x_1, \ldots, x_n , let us define a graph G_1 as follows:

- G_1 will have n+2 vertices, named s, v_1, \ldots, v_n, t .
- We add an edge (s, v_i) iff i is the minimal index for which $x_i = 1$.
- We add an edge (v_i, t) iff j is the maximal index for which $x_i = 1$.
- We add an edge (v_i, v_j) iff: (i) i < j, (ii) $x_i = x_j = 1$, and (iii) $x_\ell = 0$ for all $i < \ell < j$.
- 1. Describe an AC^0 circuit that computes the adjacency matrix $M_1 \in \{0,1\}^{(n+2)\times(n+2)}$ of G_1 given the variables $x_1, \bar{x}_1, \dots, x_n, \bar{x}_n$.
- 2. Describe an AC^0 circuit that computes the adjacency matrix of a graph G_2 that has the same vertices as G_1 , and has an edge between two vertices (u, w) iff there exists a path of length exactly 2 edges between u and w in G_1 .
- 3. Use the aforementioned circuits to prove that PARITY \leq_{AC^0} CON.

Question 3. Let us define the following operator @ on classes of languages: given a class C, we say that $L \in @C$ if there exists some $L' \in C$ such that:

- If $w \in L$ then $\exists_p x \forall_p y : (w, x, y) \in L'$.
- If $w \notin L$ then $\forall_p x \exists_p y : (w, x, y) \notin L'$.
- 1. Prove that $@P \subseteq \Sigma_2^p \cap \Pi_2^p$.
- 2. Prove that $P^{@P} \subseteq @P$.
- 3. Prove that $\mathsf{BPP} \subseteq @\mathsf{P}.$ (**Hint**: recall the proof that $\mathsf{BPP} \subseteq \Sigma_2^p \cap \Pi_2^p.$)

Question 4. Let us define a random oracle A as follows: for every $x \in \Sigma^*$, $x \in A$ with probability $\frac{1}{2}$ (independently of other words). Prove that for all $\varepsilon > 0$, $\mathsf{BPP} \subseteq \mathsf{P}^A$ with probability $1 - \varepsilon$ taken over all random oracles A.

Hint: Number the languages in BPP and take a probabilistic Turing machine with small enough error probability for each one.

Question 5. Prove the following claims:

- 1. $BPP^{BPP} \subseteq BPP$.
- 2. $NP^{BPP} \subseteq BPP^{NP}$.
- 3. If $NP \subseteq BPP$ then NP = RP.
- 4. If $NP \subseteq BPP$ then the Polynomial Hierarchy collapses.

Question 6.

- 1. Let RL' be the complexity class we get when take RL and remove the requirement for polynomial time from its definition. Prove that RL' = NP.
- 2. Let RSPACE be the complexity class we get when take RP and convert the requirement for polynomial time with a requirement for polynomial space. Prove that RSPACE = PSPACE.
- 3. Given a complexity class C that is defined using probabilistic poly-time Turing machines, let us define C^* to be the same class only that we allow poly-time in expectation. Prove or disprove the following claims:
 - (a) $BPP = BPP^*$.
 - (b) $PP = PP^*$.