Note for Bandit Algorithms

Chenmi'en Tan E-mail: chenmientan@outlook.com Actively Updating (Last update: June 19, 2021)

Algorithm 1: Upper Confidence Bound (UCB)

Data: number of arms k and confidence parameter δ

for $t = 1, \ldots, n$ do

Choose the action $A_t \leftarrow \arg\max_{i \in \{1,\dots,k\}} \hat{\mu}_i(t-1) + \sqrt{\frac{2\log(1/\delta)}{T_i(t-1)}}$ Observe the reward and update the upper confidence bound

end

Theorem 1. Suppose that the bandit $\nu \in \mathcal{E}_{SG}^k(\underline{1})$, then with at least the probability $1 - (n + k - 1)\delta$, the pseudo-regret $\overline{R}_n = \sum_{t=1}^n \Delta_{A_t}$ for UCB depends on confidence parameter $\delta \in (0,1]$ is bounded by $(4k-4)\sqrt{2n\log\frac{1}{\delta}} + 2\sum_{i=1}^k \Delta_i$, i.e.,

$$\mathbb{P}(\overline{R}_n \ge (4k - 4)\sqrt{2n\log\frac{1}{\delta}} + 2\sum_{i=1}^k \Delta_i) \le (n + k - 1)\delta$$

Proof. Without loss of the gernerality, assume the first arm is optimal. For any $(u_2, \ldots, u_k) \in \mathbb{N}_+^{k-1}$, define

$$G = \{ \mu_1 < \min_{t \in \{1, \dots, n\}} UCB_1(t, \delta) \} \cap \bigcap_{i=2}^k \{ \hat{\mu}_{iu_i} + \sqrt{\frac{2}{u_i} \log \frac{1}{\delta}} < \mu_1 \}$$

When G occurs, there is $T_i(n) \leq u_i, \forall i = 2, ..., k$. Hence $T_i(n) \geq u_i + 1, \exists i = 2, ..., k$ implies G_i^c . Assume that $u_i, i = 2, ..., k$ are large sufficiently to satisfy

$$\Delta_i - \sqrt{\frac{2}{u_i} \log \frac{1}{\delta}} \ge c\Delta_i, \forall i = 2, \dots, k$$
 (1)

for some $c \in (0,1)$. At this moment we have

$$G^{c} = \{\mu_{1} \geq \min_{t \in \{1, \dots, n\}} UCB_{1}(t, \delta)\} \cup \bigcup_{i=2}^{k} \{\hat{\mu}_{iu_{i}} + \sqrt{\frac{2}{u_{i}}} \log \frac{1}{\delta} \geq \mu_{1}\}$$

$$\subset \{\mu_{1} \geq \min_{s \in \{1, \dots, n\}} \hat{\mu}_{1} + \sqrt{\frac{2}{s}} \log \frac{1}{\delta}\} \cup \bigcup_{i=2}^{k} \{\hat{\mu}_{iu_{i}} - \mu_{i} \geq \Delta_{i} - \sqrt{\frac{2}{u_{i}}} \log \frac{1}{\delta}\}$$

$$\subset \bigcup_{s=1}^{n} \{\mu_{1} \geq \hat{\mu}_{1s} + \sqrt{\frac{2}{s}} \log \frac{1}{\delta}\} \cup \bigcup_{i=2}^{k} \{\hat{\mu}_{iu_{i}} - \mu_{i} \geq c\Delta_{i}\}$$

Hence we can obtain

$$\mathbb{P}(G^c) \le n\delta + \sum_{i=2}^k \exp(-\frac{u_i c^2 \Delta_i^2}{2})$$

which holds under the restriction of (1). Assign c = 1/2 and $u_i, i = 2, ..., k$ to be the minimal feasible value, i.e.,

$$u_i = \lceil \frac{8 \log \frac{1}{\delta}}{\Delta_i^2} \rceil$$

we can obtain

$$\mathbb{P}(\exists i \in \{2, \dots, k\}, T_i \ge u_i + 1)$$

$$\le \mathbb{P}(G^c) \le n\delta + (k - 1) \exp(-\log \frac{1}{\delta}) = (n + k - 1)\delta$$
(2)

Meanwhile, for any real number $\Delta > 0$

$$\mathbb{P}(\exists i \in \{2, \dots, k\}, T_i \ge u_i + 1)$$

$$\ge \mathbb{P}(\overline{R}_n \ge \sum_{i: \Delta_i < \Delta} n\Delta_i + \sum_{i: \Delta_i \ge \Delta} (u_i + 1)\Delta_i)$$

$$\ge \mathbb{P}(\overline{R}_n \ge (k - 1)n\Delta + \sum_{i: \Delta_i \ge \Delta} [(\frac{8\log\frac{1}{\delta}}{\Delta_i^2} + 2)\Delta_i])$$

$$\ge \mathbb{P}(\overline{R}_n \ge (k - 1)(n\Delta + \frac{8\log\frac{1}{\delta}}{\Delta}) + 2\sum_{i=1}^k \Delta_i)$$

By letting $\Delta = \sqrt{8 \log(1/\delta)/n}$, we have

$$\mathbb{P}(\exists i \in \{2, \dots, k\}, T_i \ge u_i + 1)$$

$$\ge \mathbb{P}(\overline{R}_n \ge (4k - 4)\sqrt{2n\log\frac{1}{\delta}} + 2\sum_{i=1}^k \Delta_i)$$
(3)

By combing equation (2) and (3) we obtain the desired conclusion. \Box

Theorem 2. Suppose that RV X satisfies $supp(X) \subset [a, b]$ and X is bounded by B with at least probability $1 - \beta$, i.e.,

$$\mathbb{P}(X \ge B) \le \beta$$

then for any $\alpha \in [\beta, 1)$, the conditional value at risk at level α is bounded by $\frac{\beta}{\alpha}b + (1 - \frac{\beta}{\alpha})B$.

Theorem 3. Suppose that the bandit $\nu \in \mathcal{E}_{SG}^k(1)$ and the suboptimality gap $\Delta_i, i = 1, ..., k$ is bounded by U, then for any $\alpha \in [(n+k-1)\delta, 1)$, the UCB depends on confidence parameter $\delta \in (0,1]$ satisfies that the conditional value at risk for the pseudo-regret $\overline{R}_n = \sum_{t=1}^n \Delta_{A_t}$ at level α is bounded by

$$\frac{(n+k-1)\delta}{\alpha}nU + (1 - \frac{(n+k-1)\delta}{\alpha})[(4k-4)\sqrt{2n\log\frac{1}{\delta}} + 2kU]$$

References