WHAT IS CLAIMED IS:

1	1. A processing core that executes a compare instruction, the				
2	processing core comprising:				
3	a plurality of general-purpose registers comprising a first input operand				
4	register, a second input operand register and an output operand register;				
5	a register file comprising the plurality of general-purpose registers;				
6	comparison logic coupled to the register file, wherein the comparison logic				
7	tests for at least two of the following relationships: less than, equal to, greater than and no				
8	valid relationship;				
9	decode logic which selects the output operand register from the plurality of				
10	general-purpose registers; and				
11	a store path between the comparison logic and the selected output operand				
12	register.				
1	2. The processing core that executes the compare instruction as set				
2	forth in claim 1, wherein a very long instruction word includes a plurality of compare				
3	instructions.				
1	3. The processing core that executes the compare instruction as set				
2	forth in claim 1, wherein decode logic selects the first and second input operand registers				
3	from the plurality of general-purpose registers.				
1	4. The processing core that executes the compare instruction as set				
2	forth in claim 1, wherein the processing core issues a plurality of compare instructions at				
3	one time.				
1	5. The processing core that executes the compare instruction as set				
2	forth in claim 1, further comprising:				
3	a first load path between the first input operand register and comparison				
4	logic; and				
5	a second load path between the second input operand register and				
6	comparison logic.				
1	6. The processing core that executes the compare instruction as set				
2	forth in claim 1, wherein the output operator register stores a value indicating a				

3	relationship between the first and second input operator registers which is at least one of				
4	greater than, l	ess tha	n, equal to and not a number.		
1		7.	The processing core that executes the compare instruction as set		
2	forth in claim	6, whe	erein the not a number value indicates a comparison between the first		
3	and second in	put ope	erands that cannot be made.		
1		8.	The processing core that executes the compare instruction as set		
2	forth in claim 6, wherein the value is an integer.				
1		9.	The processing core that executes the compare instruction as set		
2	forth in claim 1, wherein:				
3		the fir	est input operand register is a double precision floating point data		
4	type;				
5		the se	cond input operand register is a single precision floating point data		
6	type; and				
7		the or	atput operand register is a double precision floating point data type.		
1		10.	The processing core that executes the compare instruction as set		
2	forth in claim	forth in claim 1, further comprising a plurality of processing paths that are coupled to the			
3	register file.				
1		11.	The processing core that executes the compare instruction as set		
2	forth in claim 1, wherein the register file comprises special purpose registers which				
3	cannot store a	n outpı	it operand.		
1		12.	A method for performing a compare operation, the method		
2	comprising steps of:				
3		decod	ing a compare instruction;		
4		config	guring first and second paths between a register file and comparison		
5	logic;				
6		config	guring a third path between the comparison logic and the register file;		
7		compa	aring a first input operand and a second input operand to produce a		
8	result which indicates an absence of at least three mathematical relationships between the				
9	first input operand and the second input operand; and				

10	coupling an output operand to a general-purpose register in the register			
11	file.			
1	13. The method for performing the compare operation as set forth in			
2 .	claim 12, the method further comprising a step of enabling the comparison logic in an			
3	arithmetic logic unit.			
1	14. The method for performing the compare operation as set forth in			
2	claim 12, wherein the configuring steps each comprise a step of addressing a general-			
3 purpose register in the register file.				
1	15. The method for performing the compare operation as set forth in			
2	claim 12, wherein a very long instruction word comprises the compare operation.			
1	16. The method for performing the compare operation as set forth in			
2	claim 12, wherein the comparing step comprises a step of converting a data type of at			
3	least one of the first and second input operands.			
1	17. A method for executing a compare instruction in a processor, the			
2	method comprising steps of:			
3	issuing the compare instruction;			
4	comparing a first input operand and a second input operand to determine a			
5	least two mathematical relationships between the first and second input operands;			
6	determining an output operand indicative of the mathematical			
7	relationships; and			
8	storing the output operand in a general-purpose register of a register file.			
1	18. The method for executing the compare instruction in the processor			
2	as set forth in claim 17, wherein the comparing step comprises:			
3	determining if the first input operand is less than the second input operand			
4	determining if the first input operand is greater than the second input			
5	operand;			
6	determining if the first input operand is equal to the second input operand;			
7	and			
8	determining if there is no valid relationship between the first input operand			
9	and the second input operand.			

• 1

- 1 19. The method for executing the compare instruction in the processor 2 as set forth in claim 17, wherein the compare instruction is a very long instruction word 3 which comprises a plurality of compare instructions which are processed in parallel down 4 separate processing paths.
- 1 20. The method for executing the compare instruction in the processor 2 as set forth in claim 17, wherein the general-purpose register is used to store operators 3 from other types of instructions.