EECS2040 Data Structure Hw #5 (Chapter 6 Graph)

due date 6/6/2021 (Part 1)

by 107061123, 孫元駿

Part 1

1. (10%) Does the multigraph below have an Eulerian walk? If so, find one.

Ans: Yes, it has an Eulerian walk. $0 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 0 \rightarrow 1 \rightarrow 0$

- 2. (10%) For the digraph below obtain
 - (a) The in-degree and out-degree of each vertex

rtex	in-degree	out-degree
0	3	0
1	2	2
2	1	2
3	1	3
4	2	1
5	2	3
	0	2 1 3 1

(b) Its adjacency-matrix

	0	. 1	· 2	3	4	5	
0 1	0	0	0	0	0	0	ָ ן .
1	1	0	0	1	0	0	
>	0	1	0	0	0	1	
>	0	0	1	0	1	1	
4	1	0	0	0	0	0	
, 5 l	. 1	. 1	0	0	. 1	0]

(c) Its adjacency-list representation

(d) Its adjacency-multilist representation

(e) Its strongly connected components

3. (10%) Is the digraph below strongly connected? List all the simple paths.

Ans: Yes, it is strongly connected.

From 0 to 0: $0 \rightarrow 1 \rightarrow 2 \rightarrow 0$ or $0 \rightarrow 3 \rightarrow 2 \rightarrow 0$

From 0 to 1: $0\rightarrow 1$

From 0 to 2: $0 \rightarrow 1 \rightarrow 2$ or $0 \rightarrow 3 \rightarrow 2$

From 0 to 3: $0\rightarrow 3$

From 1 to 0: $1\rightarrow2\rightarrow0$

From 1 to 1: $1 \rightarrow 2 \rightarrow 0 \rightarrow 1$

From 1 to 2: $1\rightarrow 2$

From 1 to 3: $1\rightarrow 2\rightarrow 0\rightarrow 3$

From 2 to 0: $2\rightarrow 0$

From 2 to 1: $2\rightarrow 0\rightarrow 1$

From 2 to 2: $2 \rightarrow 0 \rightarrow 1 \rightarrow 2$ or $2 \rightarrow 0 \rightarrow 3 \rightarrow 2$

From 2 to 3: $2\rightarrow0\rightarrow3$

From 3 to 0: $3\rightarrow2\rightarrow0$

From 3 to 1: $3\rightarrow2\rightarrow0\rightarrow1$

From 3 to 2: $3\rightarrow 2$

From 3 to 3: $3 \rightarrow 2 \rightarrow 0 \rightarrow 3$

4. (10%) Draw the complete undirected graphs on one, two, three, four, and five vertices. Prove that the number of edges in an n-vertex complete graph is n(n-1)/2.

Prove:

Every Vertex connect to all the other vertices except itself, so every vertex have
$$n-1$$
 degree. And have n vertices, so $n(n-1)$ edges but a to b is same as b to a so divide b then get $\frac{n(n-1)}{b}$ edges $\frac{n(n-1)}{b}$ edges

5. (10%) Apply depth-first and breadth-first searches to the complete graph on four vertices. Assume that vertices are numbered 0 to 3, are stored in increasing order in each list in the adjacency-list representation, and both traversals begin at vertex 0. List the vertices in the order they would be visited.

Ans:

DFS: $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$

BFS: $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$

6. (20%) Use ShortestPath (Program 6.8) to obtain, in nondecreasing order, the lengths and the paths of the shortest paths from vertex 0 to all remaining vertices in the graph below.

paths	lengths
0→2	15
$0\rightarrow2\rightarrow3$	19
0→1	20
0→2→5	25
$0\rightarrow1\rightarrow4$	30

7. (10%) Using the directed graph below, explain why ShortestPath (Program 6.8) will not work properly. What is the shortest path between vertices 0 and 6?

Ans: Because there is a negative edge cost in the graph so the ShortestPath will not work. For example, the shortest path from 0 to 1, by ShortedtPath, we will get the length 2, but actually, the shortest path is 1, and the path is $0\rightarrow2\rightarrow1$.

The shortest path from 0 to 6 is $0 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 4 \rightarrow 6$, and the length is 8.

paths	lengths
0→2→1	1
0→2	3
$0\rightarrow2\rightarrow1\rightarrow3$	5
$0 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 4$	6
$0 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 5$	7
$0 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 4 \rightarrow 6$	8

8. (10%) Does the following set of precedence relations (<) define a partial order on the elements 0 through 4? Why?

$$0 < 1$$
; $1 < 3$; $1 < 2$; $2 < 3$; $2 < 4$; $4 < 0$

Ans: No, we get $0 \le 4$ from $0 \le 1 \le 2 \le 3 \le 4$, but $4 \le 0$, then it is not irreflexive, so it is not partial order.

- 9. (10%) For the AOE network shown below,
 - (a) Obtain the early, e(a_i), and late, l(a_i), start times for each activity. Use the forward-backward approach.
 - (b) What is the earliest time the project can finish?
 - (c) Which activities are critical? Fill the table below for answers to (a), (b), and (c).
 - (d) Is there any single activity whose speed-up would result in a reduction of the project finish time?

activity	Early time	Late time	slack	critical
	e(a _i)	l(a _i)		
a_1	0	4	4	X
a ₂	0	0	0	V
a ₃	5	9	4	X
a ₄	6	6	0	V
a 5	6	12	6	X
a 6	12	12	0	V
a ₇	12	15	0	X
a ₈	12	15	3	V
a 9	12	12	0	V
a ₁₀	15	15	0	V
a ₁₁	16	16	0	V
a ₁₂	19	19	0	V
a13	16	19	3	X
a 14	21	21	0	V

Ans:

(b) 23

(d) $a_2 \cdot a_4 \cdot a_{14}$