Docente: Lixon Pérez

Resumen: Vectores

En física, un vector es una magnitud que tiene tanto dirección como magnitud. Los vectores se utilizan para representar cantidades físicas como la velocidad, la aceleración, la fuerza, entre otras. A diferencia de las magnitudes escalares, que solo tienen magnitud (como la temperatura o la masa), los vectores requieren que se especifique una dirección para describir completamente la cantidad.

Propiedades de los Vectores:

- 1. **Magnitud:** Es el tamaño del vector y se calcula como la longitud de la línea que lo representa en un gráfico.
- 2. **Dirección:** Es el ángulo que forma el vector con respecto a un eje de referencia.
- 3. **Componentes:** Un vector puede descomponerse en sus componentes en los ejes x e y; (y en z si trabajamos en 3D). Para un vector v en el plano, sus componentes se calculan como:

$$V_x = V cos(\theta) \ y \ V_y = V sin(\theta)$$

- 4. Adición de Vectores: Los vectores pueden sumarse usando el método gráfico (método del paralelogramo) o analítico (sumando sus componentes).
- 5. **Multiplicación por un Escalar:** Si un vector se multiplica por un escalar, su magnitud cambia, pero la dirección permanece igual (si el escalar es positivo) o se invierte (si el escalar es negativo).
- 6. **Producto Escalar:** Es una operación que da como resultado un escalar y se calcula como:

Docente: Lixon Pérez

$$A \cdot B = AB\cos(\theta)$$

7. **Producto Vectorial:** Es una operación que da como resultado un nuevo vector perpendicular a los vectores originales. Se calcula como:

$$A \times B = ABsen(\theta)$$

donde n es el vector unitario perpendicular al plano formado por A y B.

Ejemplo desarrollado: Adición de vectores.

Dado dos vectores A=5m , $\theta=30^\circ$ y B=7m, $\theta=120^\circ$, sumemos los vectores usando el método de componentes.

- 1. Descomponemos A en sus componentes:
 - $A_x = 5\cos(30^\circ) = 5 \times 0.866 = 4.33 \,\mathrm{m}$
 - $A_y = 5\sin(30^\circ) = 5 \times 0.5 = 2.5 \,\mathrm{m}$
- 2. Descomponemos B en sus componentes:
 - $B_x = 7\cos(120^\circ) = 7 \times (-0.5) = -3.5 \,\mathrm{m}$
 - $B_y = 7\sin(120^\circ) = 7 \times 0.866 = 6.06 \,\mathrm{m}$
- 3. Sumamos los componentes:
 - $R_x = A_x + B_x = 4.33 + (-3.5) = 0.83 \,\mathrm{m}$
 - $R_y = A_y + B_y = 2.5 + 6.06 = 8.56 \,\mathrm{m}$
- 4. Calculamos la magnitud del vector resultante:
 - $R = \sqrt{(R_x^2 + R_y^2)} = \sqrt{(0.83^2 + 8.56^2)} = \sqrt{(0.69 + 73.3)} = \sqrt{73.99} \approx 8.6 \,\mathrm{m}$
- 5. Calculamos la dirección:
 - $\theta = an^{-1}\left(rac{R_y}{R_x}
 ight) = an^{-1}\left(rac{8.56}{0.83}
 ight) pprox 84^\circ$

Docente: Lixon Pérez

El vector resultante R tiene una magnitud de 8.6 m y una dirección de 84°

Ejemplo desarrollado 2: Producto escalar.

Dado A = 4m, $\theta = 45^{\circ}$ y B = 6m, $\theta = 30^{\circ}$ calculemos el producto escalar.

1. Calculamos la magnitud del producto escalar:

$$\mathbf{A} \cdot \mathbf{B} = AB \cos(\theta) = 4 \times 6 \times \cos(45^{\circ} - 30^{\circ}) = 24 \times \cos(15^{\circ}) = 24 \times 0.966 = 23.18 \,\mathrm{m}^2$$

Cuestionario:

- 1. ¿Qué es un vector?
- 2. ¿Cómo se calcula la magnitud de un vector en dos dimensiones?
- 3. ¿Qué representa la dirección de un vector?
- 4. ¿Cómo se descompone un vector en componentes?
- 5. ¿Qué es un producto escalar?
- 6. ¿Cómo se calcula el producto escalar?, provea un ejemplo
- 7. ¿Qué es un producto vectorial?, provea un ejemplo
- 8. ¿Cómo se suma gráficamente dos vectores?
- 9. ¿Qué sucede si multiplicas un vector por un escalar negativo?
- 10. ¿Qué significa que un vector sea perpendicular a otro?