ITCS 532:

8. **NP**-completeness

Rob Egrot

Verifiers

Definition 1 (Verifier)

Given a language L over a finite alphabet Σ , a verifier for L is a modified Turing machine V, where V takes two inputs instead of one (consider the inputs to be separated by a special symbol), and such that

$$x \in L \iff$$
 there is $y \in \Sigma^*$ such that $V(x,y)$ accepts

- ▶ Here *y* is called a *certificate* for *x*.
- A verifier must halt for all inputs.
- We say a verifier for L runs in p-time if it runs in p-time with respect to the length of x for all inputs (x, y).
- ▶ The certificate is like a proposed solution.
- ► The verifier accepts x, which encodes an instance of a decision problem, if and only if there's some proposed solution y that it can check is actually a solution.

Example

Example 2 (Hamiltonian circuits)

- \blacktriangleright An instance of the Hamiltonian circuit problem is a graph G.
- ▶ A certificate for *G* is just a sequence *s* of vertices (in coded form).
- A verifier V for the Hamiltonian circuit problem would accept on input (code(G), code(s)) if and only if s defines a Hamiltonian circuit in G.

Theorem 3

A language has a verifier if and only if it is recursively enumerable.

The Class NP

Definition 4

NP is the class of all decision problems that have a *p*-time verifier.

Note that NP does not stand for non-polynomial.

▶ NP actually stands for non-deterministic polynomial.

► The name comes from an alternative definition of the class NP, which we will see now.

Non-deterministic Turing machines

A non-deterministic Turing machine (NTM) is a Turing machine variant whose transition function δ has the form:

$$\delta: Q \times \Sigma \cup \{:, _\} \rightarrow \wp\Big(Q \times \big(\Sigma \cup \{_, \leftarrow, \rightarrow\}\big)\Big)$$

- That is, δ is now a function that takes as input the state of the machine and the symbol being read by the tape head, and returns a *set* of pairs of new states and tape head actions.
- Obviously it doesn't make sense for a machine to enter a set of states, or write a set of symbols on the tape.
- We interpret the output of δ as a *choice*.
- In a run of an NTM, at every step the machine picks one pair of states and tape head actions from the set of possibilities defined by δ .
- This is why these machines are called non-deterministic.

Non-deterministic Turing machines

- For example, suppose the NTM is in state q and reading symbol σ , and that $\delta(q, \sigma) = \{(q_1, \sigma_1), (q_2, \sigma_2)\}.$
- ► Then the machine can either go into state q_1 and write σ_1 on the tape, or go into state q_2 and write σ_2 on the tape.
- ▶ Given an input I and a non-deterministic Turing machine N, we say N(I) accepts if there is some sequence of δ choices resulting in the accept state.
- We say N(I) rejects if every possible sequence of δ choices results in rejection.
- ▶ If neither of these is true then N(I) is undefined.
- A sequence of δ choices for N(I) that either reaches a halt state or continues forever is called a *run* of N(I).
- If every possible run of N(I) halts for all possible inputs I then we say N is a *decider*.

The Run Time of an NTM

- ► It's not obvious how the run time of an NTM should be defined in general, but for deciders we do so as follows:
 - For an input I the run time of N(I) is defined to be the length of the longest possible run of N(I).
 - ▶ We define the run time of N as a function $f : \mathbb{N} \to \mathbb{N}$ by

```
f(n) = \max\{\text{run time of } N(I) \text{ such that length } I \text{ is } n\}
```

- As usual we use big *O* notation so we can talk about *f* without having to explicitly define it.
- Note that in this definition of run time we use the longest run, even if there's a shorter run that accepts.
- For example, if for some N and some I there are exactly two runs, one which accepts after 2 steps and one which rejects after 10 steps, then the run time of N(I) is 10.

Determinism vs Non-Determinism

The following theorem says NTMs are not more powerful than TMs (if we don't care about run time).

Theorem 5

Let L be a formal language over a finite alphabet. Then D_L (the decision problem associated with L) is solvable by a Turing machine if and only if it is solvable by a non-deterministic Turing machine.

Proof.

- ▶ Clearly every ordinary (i.e. deterministic) Turing machine T is equivalent to a non-deterministic Turing machine T'.
- ▶ Just define δ' by e.g. setting $\delta'(q, \sigma) = \{(q', \sigma')\}$ when $\delta(q, \sigma) = (q', \sigma')$.
- ► The converse is more difficult, but the basic idea is that we can use dovetailing to compute every possible run of an *NTM* using a specially designed standard *TM*.

NTMs and Verifiers

Theorem 6

Let L be a formal language over a finite alphabet. Then L has a p-time verifier if and only if L can be decided by a non-deterministic Turing machine in p-time.

Proof

- ▶ If *L* is a language, we must show that:
 - 1. If L has a p-time verifier V, then we can construct an NTM N_V that decides L in p-time.
 - 2. If there is an NTM N that decides L in p-time, then we can construct a p-time verifier V_N for L.

Has Verifier Implies Decided by NTM

- ► Let *V* be a *p*-time verifier for *L*.
- ▶ V runs in p-time, so there is $n \in \mathbb{N}$ such that V(x, y) must halt within $C|x|^k$ steps whenever $|x| \ge n$.
- ▶ The idea is that we define a non-deterministic Turing machine N_V that, given x, first constructs a string y and then runs V(x,y).
- Implementing this idea is a little tricky, as there are some details we need to be careful with.
- First, note that there are a finite number of strings whose length is less than *n*.
- For each $x \in L$ with |x| < n, define y_x to be a string of minimal length such that $V(x, y_x)$ accepts.
- Since there are a finite number of these y_x elements, define I to be the length of the longest of these.

Has Verifier Implies Decided by NTM

- ▶ We define N_V so that a 'run' of $N_V(x)$ is as follows:
 - 1. Check the length of x.
 - 2. If $|x| \ge n$ then non-deterministically construct y so that $|y| \le C|x|^k$. Otherwise non-deterministically construct y such that $|y| \le I$.
 - 3. Run V(x, y) (this part is deterministic).
- ▶ Consider first the case where $|x| \ge n$.
- If $x \in L$ then there is a certificate y such that V(x, y) accepts within $C|x|^k$ steps.
- The upper bound on the number of steps means that $|y| \le C|x|^k$ too.
- ▶ This means there is an accepting run for $N_V(x)$.
- Alternatively, if $x \notin L$ then V(x, y) rejects for all y, and this is obviously still true if we restrict to y where $|y| \le C|x|^k$.
- Constructing y takes p-time, and running V(x, y) takes p-time.
- ▶ So the longest possible run of $N_V(x)$ is also p-time.

Has Verifier Implies Decided by NTM

- ▶ Consider now the case where |x| < n.
- ▶ Suppose $x \in L$.
- ▶ Then there is y_x with $|y_x| \le I$ and such that $V(x, y_x)$ accepts, so $N_V(x)$ accepts.
- Alternatively, if $x \notin L$ then there is no y such that V(x, y) accepts, so $N_V(x)$ rejects.
- ▶ Combining this with the case where $|x| \ge n$ we see that N_V decides L.
- What is the running time of N_V?
- We don't care about the running time of $N_V(x)$ in the case where |x| < n.
- We have also shown that, for all x with $|x| \ge n$, a run of $N_V(x)$ is polynomially bounded.
- ► Thus N_V runs in p-time as required.

Decided by NTM Implies Has Verifier

- ▶ Given N that decides L in p-time we define a verifier V_N where a string y that is a potential certificate encodes a sequence n_0, n_1, \ldots, n_k of natural numbers.
- Every time N 'makes a choice', we can assign an ordering of the possible alternatives.
- For example, if

$$\delta: (q,\sigma) \mapsto \{(q_0,\sigma_0),(q_1,\sigma_1),(q_2,\sigma_2)\}$$

we can arbitrarily choose an order and assume without loss of generality that $\{(q_0, \sigma_0), (q_1, \sigma_1), (q_2, \sigma_2)\}$ is the ordered sequence $((q_0, \sigma_0), (q_1, \sigma_1), (q_2, \sigma_2))$.

Decided by NTM Implies Has Verifier

- ▶ We define V_N so that $V_N(x, y)$ operates by computing N(x), and such that the 'choices' made by N correspond to the numbers in the sequence n_0, n_1, \ldots, n_k defined by y.
- ▶ If y does not correspond to such a sequence, or if this sequence is incompatible with N(x) in any way, then we define V_N so that $V_N(x, y)$ rejects.
- If there is an accepting run of N(x) then this will correspond to a sequence of 'correct' choices, and thus to a y such that $V_N(x,y)$ accepts.
- Alternatively, if there is no accepting run then $V_N(x, y)$ will reject for all y.

Decided by NTM Implies Has Verifier

- As N runs in p-time there are $C, m, k \in \mathbb{N}$ such that N(x) takes at most $C|x|^k$ steps whenever $|x| \ge m$.
- ▶ Thus *N* makes at most $C|x|^k$ choices when computing N(x).
- Assuming we have picked a sensible encoding scheme, it will be possible to look up the numbers of the choices appropriately in p-time and act accordingly.
- ▶ Thus V_N runs in p-time as required.

Revisiting **NP**

Corollary 7

NP is the class of all decision problems that can be solved by a non-deterministic Turing machine in p-time.

Proof.

- ▶ Remember that we defined NP to be the class of decision problems for which a p-time verifier exists.
- By theorem 6 this is exactly the class of problems solvable in p-time by an NTM.

P vs NP

- ▶ Question: Why is it obvious that $P \subseteq NP$?
- ▶ Is it possible that P = NP?
- ► This is possibly the most important open question in theoretical computer science.
- ► The Clay Mathematics Institute lists it as one of their seven 'Millennium Problems'.
- ► The P vs. NP question symbolizes something of profound practical significance:
- Is it intrinsically harder to find solutions than to verify them?
- ▶ If the answer to this is 'no', i.e. if P = NP, then there could be efficient algorithms for solving all kinds of currently hard problems (including those used in encryption systems).
- ▶ Most computer scientists believe that $P \neq NP$.
- This has turned out to be very hard to prove.
- But there are lots of NP problems that nobody has ever found a p-time algorithm for.

NP-hardness

Definition 8 (NP-hard)

A decision problem B is **NP**-hard if for all decision problems $A \in \mathbf{NP}$ we have $A \leq_p B$.

- Consider the definition above and think about what it means.
- ▶ A problem is NP-hard if every problem in NP reduces to it in polynomial time.
- ▶ Informally, we interpret this as meaning an NP-hard problem is at least as hard as the hardest problems in NP.
- ▶ If we could find a p-time algorithm for solving an NP-hard problem then we would be able to find p-time algorithms for all NP problems.
- ightharpoonup In other words it would show that P = NP.

NP-completeness

- lt's not immediately obvious that **NP**-hard problems exist.
- ▶ But, as we will see shortly, they do, and, moreover, there are even **NP**-hard problems that are also members of **NP**.
- ► This leads us to the following definition.

Definition 9 (NP-complete)

A decision problem is **NP**-complete if it is **NP**-hard and also a member of **NP**.

NP-completeness

- We will give an example of an NP-complete problem soon.
- Once we have one NP-complete problem, however, it becomes much easier to find more, due to the following theorem.

Theorem 10

If B is NP-complete and $C \in NP$, then $B \leq_p C \implies C$ is NP-complete.

Proof.

- ▶ Let $A \in \mathbf{NP}$.
- ▶ We need to show that $A \leq_p C$.
- ▶ But we know $A \leq_p B$ as B is **NP**-complete, and $B \leq_p C$ by assumption, so this follows from transitivity of \leq_p .

PSAT

➤ To define our first NP-complete problem we need some preliminary definitions from propositional logic.

Definition 11 (Boolean formula)

A Boolean formula is a finite string of propositional variables, brackets, and logical symbols from $\{\lor,\land,\lnot\}$ constructed according to the following rules:

- 1. p is a Boolean formula for all propositional variables p.
- 2. If ϕ and ψ are Boolean formulas then $(\phi \lor \psi)$ and $(\phi \land \psi)$ are Boolean formulas.
- 3. If ϕ is a Boolean formula then $\neg \phi$ is a Boolean formula.

PSAT

Definition 12 (Satisfiable)

A Boolean formula ϕ is satisfiable if there is an assignment of 1 or 0 ('true' or 'false') to every propositional variable appearing in ϕ such that ϕ is 'true' in the resulting truth table.

Definition 13 (PSAT)

PSAT is the decision problem that asks if a given Boolean formula is satisfiable.

Theorem 14

PSAT is NP-complete.

Proof sketch

- We will sketch a proof without going too far into the details.
- First we must check that PSAT is in **NP**.
- ▶ By definition, a problem is in **NP** if it has a *p*-time verifier.
- ▶ We can check if a given Boolean formula evaluates to 'true' when given a specific variable assignment in p-time.
- ➤ To do this we can rewrite a Boolean formula into something called reverse Polish notation using the shunting yard algorithm.
- ▶ In reverse Polish notation we can evaluate expressions just by reading them from left to right, which takes linear time.
- Since the shunting yard algorithm runs in linear time too, we can evaluate Boolean formulas for specific values of their propositions in linear time.

- Now we must show every problem in NP reduces to PSAT.
- Let A be a decision problem in **NP**.
- ▶ We know there's an NTM that decides A in p-time.
- We must find a p-time algorithm that takes an instance I of A and turns it into a Boolean formula that is satisfiable if and only if I is a 'yes' instance.
- ► Since all we know about *A* is that it is in **NP** we're going to have to use the NTM that decides *A* in our reduction.
- ▶ Let *N* be an NTM that decides *A*.
- The idea is that we will create a Boolean formula that expresses the idea that N(I) has an accepting run.
- ► This formula will be satisfiable if and only if an accepting run exists. I.e. if and only if *I* is a 'yes' instance.

- ► This idea is quite similar to how we showed the entscheidungsproblem is undecidable.
- ➤ This time we don't have the expressive power of first-order logic to work with.
- For the entscheidungsproblem proof we used predicates to describe the state of the tape at each step in the computation.
- ▶ In propositional logic we don't have predicates, so we have to use propositional variables for the same purpose.
- ▶ But our formula can only use a finite number of propositional variables.
- ▶ This is where the bounded running time of *N* helps us.

- As in the entscheidungsproblem proof, we think of a run of a TM as a two dimensional grid.
- ► The rows of the grid represent the tape at successive steps of the calculation.
- Since N is non-deterministic, N(I) is associated with multiple different runs, and so with multiple different grids.
- Since N runs in p-time, we can suppose that for large n its run time on an input of length n is less than Cn^k .
- Suppose the length of I is n. Then this means that every grid associated with a run of N(I) must fit into $Cn^k \times Cn^k$.
- Cells outside of this range are inaccessible to a machine halting in fewer than Cn^k steps, so we can ignore them.

- Let Q be the set of states of N, and let Σ be its (finite) set of symbols.
- lacktriangle Our Boolean formula ϕ will use the following set of propositional variables:
 - For every $i, j \leq Cn^k$ and every $\sigma \in \Sigma \cup \{:, _\}$ we have $p_{i,j,\sigma}$. This variable is supposed to be 'true' if σ is written on the tape at position i and time j.
 - For every $i, j \leq Cn^k$ and every $q \in Q$ we have $p_{i,j,q}$. This variable is supposed to be 'true' if the machine is in state q and the tape head is at position i at time j.

- ▶ The idea is that ϕ will express the following:
- 1. Every cell in the grid must contain exactly one symbol.
- 2. The first row of the grid corresponds to the input *I*.
- 3. The tape head starts in the right place.
- 4. The machine is in exactly one state at every step.
- 5. The machine starts in the start state.
- 6. The tape head is always somewhere on the tape.
- 7. Every row except the first must represent a configuration of N(I) that follows from the configuration corresponding to the previous row according to some choice defined by the transition function δ of N.
- 8. At some point the machine enters the accept state.

- ▶ It helps to break down the construction of ϕ into parts.
- For example, we can express 1 using

$$\phi_1 = \bigwedge_{0 \leq i,j \leq Cn^k} \left(\left(\bigvee_{\sigma \in \Sigma \cup \{:, \sqcup\}} p_{i,j,\sigma} \right) \land \bigwedge_{\sigma \neq \sigma' \in \Sigma \cup \{:, \sqcup\}} \neg \left(p_{i,j,\sigma} \land p_{i,j,\sigma'} \right) \right)$$

- ▶ The construction of ϕ turns out to take $O(n^{2k})$ steps.
- \blacktriangleright ϕ will be satisfiable if and only if N(I) has an accepting run.
- ▶ I.e. a sequence of δ choices leading to an accept state.

- What about 'short' inputs, such that the run time bound Cn^k does not apply?
- ► There are only a finite number of these, so there's still an upper bound on the size of the 'grids' representing the computations.
- The construction time of ϕ for these short inputs doesn't matter because the definition of p-time only requires polynomial bounding for 'large' input lengths.
- ▶ So we have shown that $A \leq_p PSAT$.

Some Final Comments

- ▶ Using p-time reduction we can use PSAT to show that other problems are NP-complete too.
- ▶ It turns out that lots of interesting combinatorial problems are.
- Important examples include the Hamiltonian circuit and Hamiltonian path problems, the traveling salesman decision problem, the knapsack problem, and many more.
- Finally, there are problems that are NP-hard but not in NP (and so not NP-complete).
- ► The halting problem is one example.
- ▶ It is obviously not in **NP** as it isn't even decidable, but we can show that PSAT reduces to it in *p*-time.
- ▶ So by theorem 10 the halting problem is **NP**-hard.