Example Sheet: Transformers

- 1. Considering a single-phase transformer:
 - a. Draw a B-H curve for a transformer core. Using the diagram explain briefly what is meant by hysteresis loss.
 - b. Draw the equivalent circuit of a transformer referred to the primary side. In your circuit show how the copper and iron losses are represented.
 - c. Explain how you would determine, experimentally, the component values in the equivalent circuit.
 - d. In the design of a transformer explain how you might mitigate against Eddy currents.
- 2. An 800Ω resistance is connected across the secondary winding of a 55V(rms)/220V(rms) transformer with the equivalent circuit parameters shown in Table Q2.
 - a. Draw the equivalent circuit of the transformer Determine the following values of the circuit:
 - b. The output current (I_s)
 - c. The output voltage (V_s)
 - d. The magnetising current (I_M)
 - e. The transformer efficiency (%)

Equivalent Circuit Parameters of the Transformer

r'	2.5.0
R_{1eq}	2.5 Ω
X _{1eq}	6.7 Ω
X _M	2 kΩ
R_C	2kΩ

Table Q2

- 3. A three-phase Δ /Y transformer bank shown in Fig. Q2 is rated 11kV/22kV and delivers 220kVA to a balanced delta connected load at rated voltage. Assuming an ideal transformer:
 - a. Construct a phasor diagram showing all primary phase voltages and secondary line voltages for the three-phase transformer in the question.
 - b. The magnitudes of the primary side phase current.

4. The following results were obtained on a 50 kVA transformer:

Open circuit test – primary voltage, 3300 V; secondary voltage, 400 V; primary power, 400 W.

Short-circuit test – primary voltage, 124 V; primary current, 15.3 A; primary power, 495 W; secondary current, full-load value.

Calculate the efficiencies at full load and at half load for 0.75 power factor.