Earthquake prediction model using Python

Phase 1- Earthquake prediction model using Python

Date	30 September 2023
Team ID	345
Project Name	4123-Earthquake Prediction Model using Python

PROBLEM

The problem is to develop an earthquake prediction model using a Kaggle dataset. The objective is to explore and understand the key features of earthquake data, visualize the data on a world map for a global overview, split the data for training and testing, and build a neural network model to predict earthquake magnitudes based on the given features.

Listening Ideas

Ranaprathap

Incorporate geological data such as fault lines, tectonic plate boundaries, and geological formations into the model. These features can be crucial indicators of seismic activity Consider optimizing the placement of seismic sensors to maximize coverage and accuracy of data collection Analyze historical earthquake data to identify patterns, correlations, and trends that could be used to improve

padmapriya

Utilize data from a network of seismic sensors to provide realtime information about ground motion. This can serve as a valuable input for the prediction model Develop visualizations that allow users to explore seismic data on a world map, providing a global overview of earthquake

Consider including environmental variables like temperature, humidity and atmospheric pressure, which can influence seismic

Raja

Explore advanced deep learning architectures like Long Short-Term Memory (LSTM) networks or Gated Recurrent Units (CRUs) which are well-suited for sequential data like seismic measurements Combine multiple machine learning models (e.g., neural networks, decision trees) into an ensemble to leverage their collective predictive power

Develop a system that provides realtime alerts or warnings to communities based on the model's predictions

Rudhramoorthy

Apply time series analysis techniques to capture temporal patterns and trends in seismic activity. Use this information for making predictions

Investigate if pretrained models from related domains (e.g., geophysics, geology) can be finetuned for earthquake prediction

Implement techniques to estimate the uncertainty associated with predictions, providing a measure of confidence in the model's forecasts

Prioritize ideas

Feasibility

Regardless of their importance, which tasks are more feasible than others? (Cost, time, effort, complexity, etc.)

Ideation Phase Problem Statement

Problems Statements

Problem	l am	I'm trying			Which makes
Statement	(customer)	to l	But	Because	me feel
(PS)		2			
PS-1	Prediction 1	Provide some	Exact time	Complexity of	Worry
		advance		data history	
		warning based			
		magnitude on monitoring			
		on monitoring domain data uncertain			
PS2	Individual 1			It accesses any	anxious
		Execute and May not have		instant of time	
		prepare sufficient time suddenly to prepare		even though	
				the prediction	
				in change	
PS-3	Prediction 2	Avoid false	Sometimes it	Due to the	Worry
		alarms doing	false alarms	complexity of	
		prediction		prediction earthquakes	
				accuracy	
				Execution	
PS-4	Individual 2	Looking for	May become	process	hopeless
		the prediction	dispirited or	F-00000	
		announce	complacent if		
			false alarm		
			occurs		
			frequently		

ProblemStatement 1

ProblemStatement 2

ProblemStatement 3

ProblemStatement 4

Ideation Phase Empathize & Discover

