Lecture 9 3 Feb 2025

Lecture 10 6 Feb 2025

CM 615

Climate change Impacts & Adaptation

Emission scenarios for future climate change

Angshuman Modak Climate Studies, IIT Bombay

Meinshausen et al. (2020). The SSP scenarios and their five socio-economic SSP families. Shown are illustrative temperature levels relative to pre-industrial levels with historical temperatures (front light yellow band), current (2020) temperatures (white block in the middle), and branching of the respective scenarios over the 21st century along the different socio-economic SSP families.

https://climatedata.ca/

SSP	Description	Radiative Forcing (2100)	Example Policy Assumptions	
SSP1 (Sustainability – "Green Road")	Rapid shift to clean energy, global cooperation, and environmental sustainability.	1.9 W/m ²	Net-zero CO ₂ by ~2050 (1.5°C target).	
SSP2 (Middle of the Road)	Business-as-usual development with moderate progress on sustainability.	2.6 W/m ²	Strong mitigation, likely below 2°C.	
SSP3 (Regional Rivalry – "Rocky Road")	Nationalist policies, slow economic growth, and high fossil fuel dependence.	4.5 W/m ²	Intermediate emissions (business-as-usual).	
SSP4 (Inequality – "A Road of Divides")	High inequality, rapid technological progress for elites, and slow global mitigation efforts.	7.0 W/m ²	High emissions, regional conflicts.	
SSP5 (Fossil-Fueled Development – "Taking the Highway")	Strong economic growth, high fossil fuel use, and delayed climate policies.	8.5 W/m ²	Extreme fossil fuel use, no mitigation.	

Concept of emission metrics

The cause-effect chain

Emission metric is a simplified expression that describes the relationship between the emissions (cause) and any of its consequent effect.

It is desirable to link emissions to effects that occur later in the chain as they become more relevant. However, the calculations become more complex and incorporate higher uncertainties.

Prof. Angshuman Modak, IIT Bombay

Class Quiz

- What is radiative forcing?
- Name an emission metric.
- Define GWP.

Global Warming Potential (GWP)

An emission metric representing climate impact by linking emissions to the radiative forcing for a particular pollutant. It is a relative metric that quantifies the climate impact of a pollutant with respect to CO₂:

Definition:

It is defined as the time-integrated radiative forcing over a specific time horizon of an emission pulse of a forcer, divided by the time-integrated radiative forcing over the same time horizon of an emission pulse of CO₂ of equal size (by weight).

Expression:
$$GWP(T)_i = \frac{\int_0^T RF_i(t)dt}{\int_0^T RF_{CO_2}(t)dt} = \frac{\int_0^T a_i c_i(t)dt}{\int_0^T a_{CO_2} c_{CO_2}(t)dt} = \frac{AGWP_i}{AGWP_{CO_2}}$$

```
\begin{split} &T = time\ horizon\ (years)\ ;\\ &i = pollutant;\\ &a = radiative\ forcing\ per\ unit\ increase\ in\ concentration\ of\ the\ pollutant\ (Wm^{-2}\ ppmv^{-1})\ ,\\ &c = time\ decaying\ abundance\ of\ pulses\ of\ the\ pollutant\ (ppmv).\\ &RF = radiative\ forcing\ (W\ m^{-2}\ ) & {}_{Prof.\ Angshuman\ Modak,\ IIT\ Bombay}\\ &AGWP = Absolute\ Global\ Warming\ Potential\ (Joules\ m^{-2}) \end{split}
```

Global Warming Potential (GWP)

- A direct interpretation is that the GWP is an index of the total energy added to the climate system by a component in question relative to that added by CO2. However, the GWP does not lead to equivalence with temperature or other climate variables
- GWP may be somewhat misleading, and 'relative cumulative forcing index' would be more appropriate. It

- For pollutants with shorter lifetimes the numerator decreases at a faster rate as compared to that for long-lived species.
- Thus, at longer time horizons, the metric tends to reduces the emphasis of short-lived climate forcers Prof. Angshuman Modak, IIT Bombay

Estimates of GWP

Analytical calculations

GWP values

Model simulations

By using the mathematical expressions time decaying abundances of pollutants and radiative forcing

By running earth system models with pulse emissions of pollutants

IPCC AR-5

	GWP 20	GWP 100
ВС	2421.1	658.6
ос	-244.1	-66.4
S02	-141.1	-38.4
СО	5.9	1.9
CH4	83.9	28.5
NOx	16.7	-10.8

- A choice of time horizon depend on the type of undesirable changes that are of greatest concern built on knowledge about impacts, thresholds and vulnerability and how this depends on level and rate of change.
- To simply put, GWP-100 for BC = 658.6 means it unit emission of BC will cause 658.6 times the radiative forcing as that of CO₂ over 100 years.

Prof. Angshuman Modak, IIT Bombay

Application of GWP

Besides quantifying climate impacts, a primary application is to convert the emissions of all pollutants into a single unit -> CO_2 - equivalent (CO_2 -e) for direct comparisons of different technologies, sources or scenarios of emissions.

Sector	BC Emission s (Gg/yr)	OC Emissions (Gg/yr)	SO ₂ Emissions (Gg/yr)	CO Emissions (Gg/yr)	CH ₄ Emissions (Gg/yr)	NO _x Emissions (Gg/yr)
Thermal Power Plants	6	20	3643	754	1671	2271
Residential	577	1168	206	38124	2790	801

$$CO_{2-eq} = \sum E_i \times GWP_i$$

Therefore, using GWP-100 values for each of the pollutant

Fuel Type	CO₂ - eq (MT/yr)	
Thermal Power Plants	-113	
Residential	438	

Thus, thermal power plants have a net negative CO₂-eq due to high emissions of SO₂ and NOx.

It means they have a net cooling effect as compared to residential sector offsetting the energy added by other sectors.

Prof. Angshuman Modak, IIT Bombay

Global Temperature change Potential (GTP)

An emission metric representing climate impact by linking emissions to the temperature change for a particular pollutant.

Definition:

It is defined as the temperature response after a certain time horizon of an emission pulse of a forcer, divided by the corresponding temperature response of an emission pulse of CO2 of equal weight.

Expression:

$$GTP(t)_i = \frac{AGTP_i(t)}{AGTP_{CO_2}(t)}$$

$$AGTP(t)_i = \frac{A_i}{C(\tau^{-1} - \alpha_i^{-1})} \left[\exp\left(-\frac{t}{\alpha_i}\right) - \exp\left(-\frac{t}{\tau}\right) \right]^{\frac{5}{20}}$$

t = time (years); i = pollutant;

 $C = \text{heat capacity } (J \text{ K}^{-1} \text{ m}^{-2});$

 α = lifetime of pollutant (years);

 $\tau = \text{time constant} = C \times \lambda;$ (where, $\lambda = \text{climate sensitivity}$, (K (W m⁻²)⁻¹)

A = radiative forcing per unit increase in concentration of the pollutant (W m⁻² ppmv⁻¹)

AGTP = Absolute Global Temperature change Potential (K ppmv⁻¹)

IPCC AR5

Evolution of impacts by species

Temperature response by pollutants after 1 year of emissions.

Table 8.7 | GWP and GTP with and without inclusion of climate—carbon feedbacks (cc fb) in response to emissions of the indicated non-CO₂ gases (climate-carbon feedbacks in response to the reference gas CO₂ are always included).

	Lifetime (years)		GWP ₂₀	GWP ₁₀₀	GTP ₂₀	GTP ₁₀₀
CH ₄ b	12.4a	No cc fb	84	28	67	4
		With cc fb	86	34	70	11
HFC-134a	13.4	No cc fb	3710	1300	3050	201
		With cc fb	3790	1550	3170	530
CFC-11	45.0	No cc fb	6900	4660	6890	2340
		With cc fb	7020	5350	7080	3490
N ₂ O	121.0a	No cc fb	264	265	277	234
		With cc fb	268	298	284	297
CF ₄	50,000.0	No cc fb	4880	6630	5270	8040
•		With cc fb	4950	7350	5400	9560

IPCC AR5