p,	ogram. D I. I	Part A: In	troduction					
	ogram: Bachelor in Science Degree/Honors)	Class: B.Sc. Sem. V	Year: 20)24	Session:2024-2025			
1	Course Code		2.00	-				
2	Course Title	MSC-5 Linear Algebra						
3	Course Type							
4	Course	Discipline Specific Course (DSC)						
-		This Course will enable the students to:						
	Learning	 Understand vector spaces, subspaces, basis, dimension and their properties. Learn about properties of linear transformation and isomorphism theorems. 						
	Outcome							
	(CLO)	Understand the concept of linear transformations.						
		Linderstand the concept of linear transformations.						
5	Credit Value	Understand the concept of Inner product spaces and their properties.						
-		Theory & Tutorial:4						
6	Total Marks	Maximum Marks: 100 (Ext	. 80 + Int.	Minimu	m Passing Marks: 40			

UNIT	Topics	No. of Hours
I	Definition and examples of vector spaces. Subspaces. Sum and direct sum of subspaces. Linear span. Linear dependence, independence and their basic properties. Basis. Finite dimensional vector spaces. Existence theorem for bases. Invariance of the number of elements of a basis set. Dimension. Existence of complementary subspace of a subspace of a finite dimensional vector space. Dimension of sums of subspaces. Quotient space and its dimension.	15
П	Linear transformations and their representation as matrices. The Algebra of linear transformations. The rank nullity theorem. Change of basis. Dual space. Bidual space and natural isomorphism. Adjoint of a linear transformation.	15
III	Eigen values and eigenvectors of a linear transformation. Caley Hamilton theorem. Diagonalisation. Annihilator of a sub space. Bilinear, Quadratic and Hermitian forms.	15
IV	Inner Product Spaces: Cauchy Schwarz inequality. Orthogonal complements. Orthogonal sets and bases. Bessel's inequality for finite dimensional spaces. Gram-Schmidt Orthogonalization process.	15

Text Books, Reference Books, Other Resources

- 1. I. M. Gel'fand (1989). Lectures on Linear Algebra. Dover Publications.
- Kenneth Hoffman & Ray Kunze (2015). Linear Algebra (2nd edition). Prentice-Hall.
- Serge Lang (2005). Introduction to Linear Algebra (2nd edition). Springer India.
- 4. Gilbert Strang (2014). Linear Algebra and its Applications (2ndedition).
- Nathan Jacobson (2009). Basic Algebra I (2nd edition). Dover Publications.
- 6. Nathan Jacobson (2009). Basic Algebra II (2nd edition). Dover Publications.

E-resources: https://onlinecourses.nptel.ac.in

https://epqp.inflibnet.aci.in https://swayam.gov/m

13

3

Six

38

	Part D: Assessment	and Evaluation			
Maximum Marl	nuous Evaluation Methods: ks: nprehensive Evaluation (CCE):	100 Marks	Ltof		
Internal Assessment: Continuous Comprehensive Evaluation(CCE)	Internal Test -02 of 10 Marks each sment: Assignment/Seminar-01 of 10 M cous chensive		Better marks out of two test + obtained marks in Assignment shall be considered against 20 marks		
Semester End Exam (SEE) Paper-Two Section-A&B Section-A: Objective and short answer type question-1x10+3x10 Section-B: Descriptive answer type question Module wise- 10x4 Amendment or Modification shall may be made by course coordinator as per situation.					

Name and signature of convener & member of BOS: