1. 填空题

- (1) 向量 $\alpha = (a_1, a_2)$ 和向量 $\beta = (b_1, b_2)$ 线性相关的充要条件是 。
- (2)已知向量组 $\alpha_1 = (1,2,-1,1)$, $\alpha_2 = (2,0,t,0)$, $\alpha_3 = (0,-4,5,-2)$ 的秩为 2 ,则 t=_____.
- (3) 已知 4维列向量组

$$\alpha_{1} = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 1 \end{pmatrix}, \alpha_{2} = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix}, \alpha_{3} = \begin{pmatrix} 2 \\ 5 \\ -1 \\ 4 \end{pmatrix}, \alpha_{4} = \begin{pmatrix} 1 \\ -1 \\ 3 \\ -1 \end{pmatrix}, \alpha_{5} = \begin{pmatrix} 2 \\ 1 \\ 3 \\ 0 \end{pmatrix}$$

所生成 的向量空间为 V ,则 V 的维数 $\dim V = ($);

- (4) 向量组 $\alpha_1=(1,1,1,1,1,2)$, $\alpha_2=(1,0,2,2,6,6)$, $\alpha_3=(2,3,1,1,-3,0)$, $\alpha_4=(4,5,3,3,-1,4)$ 的秩
- (5) 设向量组

$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ -4 \end{pmatrix} \qquad \alpha_2 = \begin{pmatrix} 2 \\ 3 \\ -4 \\ 1 \end{pmatrix}, \ \alpha_3 = \begin{pmatrix} 2 \\ -5 \\ 8 \\ -3 \end{pmatrix} \alpha_4 = \begin{pmatrix} 5 \\ 26 \\ -9 \\ -12 \end{pmatrix} \alpha_5 = \begin{pmatrix} 3 \\ -4 \\ 1 \\ 2 \end{pmatrix}, \ \text{它的秩是}() , - \land 最$$
 大线性无关组是 ().

2.选择题

- (1) n 维向量 $a_1, a_2, \dots a_s (3 \le s \le n)$ 线性无关的充要条件是 ()
- (A).存在一组不全为零的数 $k_1,k_2,\cdots k_s$,使 $k_1a_1+k_2a_2+\cdots k_sa_s\neq 0$
- (B) $a_1, a_2, \cdots a_s$ 中任意两个向量都线性无关

- (C) $a_1, a_2, \cdots a_s$ 中存在一个向量,它不能用其余向量线性表示
- $(D) a_1, a_2, \cdots a_s$ 任意一个向量都不能用其余向量线性表示
- (2) 已知向量组 a_1, a_2, a_3, a_4 线性无关,则向量组()
- (A) $a_1 + a_2, a_2 + a_3, a_3 + a_4, a_4 + a_1$ 线性无关。
- (B) $a_1 a_2, a_2 a_3, a_3 a_4, a_4 a_1$ 线性无关。
 - (C) $a_1 + a_2, a_2 + a_3, a_3 + a_4, a_4 a_1$ 线性无关。
- (D) $a_1 + a_2, a_2 + a_3, a_3 a_4, a_4 a_1$ 线性无关。
- (3).设 $\alpha_1 = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$, 则三条直线 $a_i x + b_i y + c_i = 0$
- $(i = 1,2,3; a_i^2 + b_i^2 \neq 0)$ 交于一点的充要条件是 ()
- (A). $\alpha_1, \alpha_2, \alpha_3$ 线性相关
- (B) α₁,α₂,α₃线性无关
- (C) $\alpha_1, \alpha_2, \alpha_3$ 线性相关, α_1, α_2 线性无关
- (D) $R(\alpha_1, \alpha_2, \alpha_3) = R(\alpha_1, \alpha_2)$
- (4). 设方阵 A 的行列式|A| = 0,则 A 中 ()
- (A) 必有两列成比例
- (B)必有一列元素为0
- (C)必有一列向量是其余列向量的线性组合。
- (D) 任一列向量是其余列向量的线性组合

(5)若向量 α, β, γ 线性无关, α, β	β,δ线性相关,则()
$(A)~lpha$ 必可由 eta,γ,δ 线性表示	(B) eta 必不可由 $lpha,\gamma,\delta$ 线性表示
(C) δ 必可由 α, β, γ 线性表示	(D) δ 必不可由 $lpha,eta,\gamma$ 线性表示
3.判断对错:	
(1) 初等矩阵都是可逆阵,并且其	其逆阵都是它们本身 ()
(2) 若向量 ^{41;43线性无关,向量}	a₂,a₃线性无关,则 ^a1,a₂也线性无关。()
(3)若向量组 ^{a₁,a₂,····,a₄ 可由另一}	-向量组 $b_1,b_2,\cdots b_s$ 线性表示,则 $r \le s$
(4)设 $lpha_{_1},lpha_{_2},lpha_{_3}$ 线性无关,则 $lpha_{_1}$ +	α_3 , $\alpha_2 - \alpha_1$, $\alpha_2 + \alpha_3$ 线性无关 ()
(5) 若 $\alpha_1, \alpha_2, \cdots \alpha_m$ 线性相关,则	对任意一组不全为零的数 $k_1,k_2\cdots k_m$ 都有
$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_m\alpha_m = 0$	()
4.设向量组 $lpha_1,lpha_2,lpha_3$ 线性无关 ,问: 1	
$llpha_2-lpha_1, mlpha_3-lpha_2, lpha_1-lpha_3$,也线性	臣无天。
5.设向量组 $lpha_{_1},lpha_{_2},lpha_{_3}$ 线性无关 , [句量 $eta_{_1}$ 能由 $lpha_{_1}$, $lpha_{_2}$, $lpha_{_3}$ 线性表示 ,向量 $eta_{_2}$
不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示 . 证明:	向量组 $\alpha_1, \alpha_2, \alpha_3, \beta_1 + \beta_2$ 也线性无关。
$6 . a$ 为何值时,向量组 $lpha_{_1}$ =(1 , 1 , 1 ,	1,2), $\alpha_2 = (2,1,3,2,3)$,
$\alpha_3 = (2, 3, 2, 2, 5), \alpha_4 = (1, 3, -1)$	-1,1,a)线性相关?秩为多少?

并求一个极大无关组。

7. 设 α 是 n 维非零列向量 , $A = E - \alpha \alpha^{T}$, 证明

(1)
$$A^2 = A \Leftrightarrow \alpha^T \alpha = 1$$
. (2) $\alpha^T \alpha = 1$ 时, A 不可逆。