A Deep Dive into Vodaphone's Customer Churn: Predictive Modeling using Call Data and Service Interactions

This dataset contains information on customer behavior and service quality for Vodaphone Telecommunications. Our analysis focuses on predicting customer churn, or the likelihood that a customer will leave the company, using predictive modeling techniques based on factors such as usage patterns, voicemail usage, international calling behavior, and customer service interactions. Our goal is to help Vodaphone reduce churn and improve overall customer satisfaction.

importing libraries

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
```

importing dataset

In [2]:

```
churn = pd.read_csv('telecom_churn_data.csv',header=None)
churn.head(10)
```

Out[2]:

	0	1	2	3	4	5	6	7	8	9	 11	12	13	14	15	
0	KS	128	415	382- 4657	no	yes	25	265.1	110	45.07	 99	16.78	244.7	91	11.01	1
1	ОН	107	415	371- 7191	no	yes	26	161.6	123	27.47	 103	16.62	254.4	103	11.45	1
2	NJ	137	415	358- 1921	no	no	0	243.4	114	41.38	 110	10.30	162.6	104	7.32	1
3	ОН	84	408	375- 9999	yes	no	0	299.4	71	50.90	 88	5.26	196.9	89	8.86	
4	ОК	75	415	330- 6626	yes	no	0	166.7	113	28.34	 122	12.61	186.9	121	8.41	1
5	AL	118	510	391- 8027	yes	no	0	223.4	98	37.98	 101	18.75	203.9	118	9.18	
6	MA	121	510	355- 9993	no	yes	24	218.2	88	37.09	 108	29.62	212.6	118	9.57	
7	МО	147	415	329- 9001	yes	no	0	157.0	79	26.69	 94	8.76	211.8	96	9.53	
8	LA	117	408	335- 4719	no	no	0	184.5	97	31.37	 80	29.89	215.8	90	9.71	
9	WV	141	415	330- 8173	yes	yes	37	258.6	84	43.96	 111	18.87	326.4	97	14.69	1

10 rows × 21 columns

In [3]:

```
column_names={0:'State',1:'Account Length',2:'Area Code',3:'Phone',4:'International Plan'
```

In [4]:

```
len(column_names)
```

Out[4]:

21

In [5]:

```
churn=churn.rename(columns = column_names)
```

In [6]:

churn.sample(5)

Out[6]:

	State	Account Length	Area Code	Phone	International Plan	VMail Plan	VMail Message	Day Mins	Day Calls	Day Charge	
1938	OR	155	408	414- 4741	no	yes	30	128.5	86	21.85	
1390	NY	40	510	379- 2991	no	no	0	115.7	105	19.67	
4320	KY	94	408	351- 9450	no	no	0	139.1	93	23.65	
4593	MS	45	415	419- 9550	no	yes	18	168.0	127	28.56	
2126	IN	94	510	360- 5794	no	no	0	245.0	112	41.65	

5 rows × 21 columns

In [7]:

churn.describe(percentiles=[0,0.15,0.25,0.75,0.85,0.95,0.96,0.97,0.98,0.99])

Out[7]:

	Account Length	Area Code	VMail Message	Day Mins	Day Calls	Day Charge	Eve
count	4617.000000	4617.000000	4617.000000	4617.000000	4617.000000	4617.000000	4617.0
mean	100.645224	437.046350	7.849903	180.447152	100.054364	30.676576	200.4
std	39.597194	42.288212	13.592333	53.983540	19.883027	9.177145	50.5
min	1.000000	408.000000	0.000000	0.000000	0.000000	0.000000	0.0
0%	1.000000	408.000000	0.000000	0.000000	0.000000	0.000000	0.0
15%	60.000000	408.000000	0.000000	125.240000	80.000000	21.288000	148.3
25%	74.000000	408.000000	0.000000	143.700000	87.000000	24.430000	165.9
50%	100.000000	415.000000	0.000000	180.000000	100.000000	30.600000	200.8
75%	127.000000	510.000000	17.000000	216.800000	113.000000	36.860000	234.0
85%	141.000000	510.000000	28.000000	236.260000	121.000000	40.162000	252.7
95%	167.000000	510.000000	37.000000	271.100000	133.000000	46.090000	284.1
96%	171.000000	510.000000	38.000000	275.272000	135.000000	46.794400	288.8
97%	177.000000	510.000000	39.000000	282.108000	138.000000	47.956400	295.7
98%	183.680000	510.000000	40.000000	291.168000	141.000000	49.496800	305.7
99%	193.840000	510.000000	43.000000	305.184000	146.000000	51.878400	318.7
max	243.000000	510.000000	51.000000	351.500000	165.000000	59.760000	363.7
4							>

```
In [8]:
churn['Churn'].unique()
Out[8]:
array([' False.', ' True.'], dtype=object)
In [9]:
churn['rank(Account lenght)']=churn['Account Length'].rank(method='min',ascending=False)
In [10]:
churn['Total Charge'] = churn['Day Charge']+churn['Eve Charge']+churn['Night Charge']+chu
In [11]:
churn['Total Mins'] = churn['Day Mins']+churn['Eve Mins']+churn['Night Mins']+churn['Inte
In [12]:
churn.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4617 entries, 0 to 4616
Data columns (total 24 columns):
 #
     Column
                           Non-Null Count Dtype
     ----
                           -----
 0
     State
                           4617 non-null
                                            object
 1
     Account Length
                           4617 non-null
                                            int64
 2
     Area Code
                           4617 non-null
                                            int64
 3
     Phone
                           4617 non-null
                                            object
 4
     International Plan
                           4617 non-null
                                            object
 5
     VMail Plan
                           4617 non-null
                                            object
 6
     VMail Message
                           4617 non-null
                                            int64
 7
     Day Mins
                           4617 non-null
                                            float64
 8
     Day Calls
                           4617 non-null
                                            int64
 9
     Day Charge
                           4617 non-null
                                            float64
 10
    Eve Mins
                           4617 non-null
                                            float64
    Eve Calls
 11
                           4617 non-null
                                            int64
 12
    Eve Charge
                           4617 non-null
                                            float64
     Night Mins
                           4617 non-null
                                            float64
 13
 14 Night Calls
                           4617 non-null
                                            int64
    Night Charge
                           4617 non-null
                                            float64
    International Mins
                           4617 non-null
                                            float64
     International calls
                           4617 non-null
                                            int64
    International Charge
                           4617 non-null
                                            float64
 19 CustServ Calls
                           4617 non-null
                                            int64
 20 Churn
                           4617 non-null
                                            object
 21
     rank(Account lenght)
                           4617 non-null
                                            float64
                                            float64
 22
    Total Charge
                           4617 non-null
    Total Mins
                           4617 non-null
                                            float64
dtypes: float64(11), int64(8), object(5)
memory usage: 865.8+ KB
```

```
In [13]:
churn.duplicated().sum()
Out[13]:
0
In [14]:
churn.nunique()
Out[14]:
State
                           51
Account Length
                          218
Area Code
                            3
Phone
                         4617
International Plan
                            2
                            2
VMail Plan
                           47
VMail Message
Day Mins
                         1901
Day Calls
                          123
Day Charge
                         1901
Eve Mins
                         1833
Eve Calls
                          125
Eve Charge
                         1621
Night Mins
                         1813
Night Calls
                          130
Night Charge
                         1012
International Mins
                          168
International calls
                           21
International Charge
                          168
CustServ Calls
                           10
                            2
rank(Account lenght)
                          218
Total Charge
                         3454
Total Mins
                         3233
dtype: int64
In [15]:
churn.isnull().sum()
```

EDA(Exploratory Data Analysis)

In [16]:

churn

Out[16]:

	State	Account Length	Area Code	Phone	International Plan	VMail Plan	VMail Message	Day Mins	Day Calls	Day Charge	
0	KS	128	415	382- 4657	no	yes	25	265.1	110	45.07	
1	ОН	107	415	371- 7191	no	yes	26	161.6	123	27.47	
2	NJ	137	415	358- 1921	no	no	0	243.4	114	41.38	
3	ОН	84	408	375- 9999	yes	no	0	299.4	71	50.90	
4	OK	75	415	330- 6626	yes	no	0	166.7	113	28.34	
4612	NY	57	510	345- 7512	no	yes	25	144.0	81	24.48	
4613	NM	177	408	343- 6820	no	yes	29	189.0	91	32.13	
4614	VT	67	408	338- 4794	no	yes	33	127.5	126	21.68	
4615	MI	98	415	355- 8388	no	yes	23	168.9	98	28.71	
4616	IN	140	415	409- 6884	no	no	0	204.7	100	34.80	
4617 rows × 24 columns											

In [17]:

churn.describe(percentiles=[0,0.15,0.25,0.75,0.85,0.95,0.96,0.97,0.98,0.99])

Out[17]:

	Account Length	Area Code	VMail Message	Day Mins	Day Calls	Day Charge	Eve
count	4617.000000	4617.000000	4617.000000	4617.000000	4617.000000	4617.000000	4617.0
mean	100.645224	437.046350	7.849903	180.447152	100.054364	30.676576	200.4
std	39.597194	42.288212	13.592333	53.983540	19.883027	9.177145	50.5
min	1.000000	408.000000	0.000000	0.000000	0.000000	0.000000	0.0
0%	1.000000	408.000000	0.000000	0.000000	0.000000	0.000000	0.0
15%	60.000000	408.000000	0.000000	125.240000	80.000000	21.288000	148.3
25%	74.000000	408.000000	0.000000	143.700000	87.000000	24.430000	165.9
50%	100.000000	415.000000	0.000000	180.000000	100.000000	30.600000	200.8
75%	127.000000	510.000000	17.000000	216.800000	113.000000	36.860000	234.0
85%	141.000000	510.000000	28.000000	236.260000	121.000000	40.162000	252.7
95%	167.000000	510.000000	37.000000	271.100000	133.000000	46.090000	284.1
96%	171.000000	510.000000	38.000000	275.272000	135.000000	46.794400	288.8
97%	177.000000	510.000000	39.000000	282.108000	138.000000	47.956400	295.7
98%	183.680000	510.000000	40.000000	291.168000	141.000000	49.496800	305.7
99%	193.840000	510.000000	43.000000	305.184000	146.000000	51.878400	318.7
max	243.000000	510.000000	51.000000	351.500000	165.000000	59.760000	363.7
4							•

In [18]:

```
quantiles = churn.quantile(0.95)
mask_vals=churn[churn>quantiles]
all_vals=churn.loc[mask_vals.all(axis=1)]
threshold=0.05
mask_vals.drop(['State','Area Code','Phone','Account Length','rank(Account lenght)'],axis
outliers = mask_vals[mask_vals>mask_vals.max()*threshold].dropna(how='all')
print(len(outliers))
outliers
```

1760

Out[18]:

	International Plan	VMail Plan	VMail Message	Day Mins	Day Calls	Day Charge	Eve Mins	Eve Calls	Eve Charge	Night Mins	Night Calls
3	NaN	NaN	NaN	299.4	NaN	50.90	NaN	NaN	NaN	NaN	NaN
6	NaN	NaN	NaN	NaN	NaN	NaN	348.5	NaN	29.62	NaN	NaN
8	NaN	NaN	NaN	NaN	NaN	NaN	351.6	NaN	29.89	NaN	NaN
9	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	326.4	NaN
10	NaN	NaN	NaN	NaN	137.0	NaN	NaN	NaN	NaN	NaN	NaN
4594	NaN	NaN	NaN	278.1	NaN	47.28	NaN	NaN	NaN	NaN	NaN
4599	NaN	NaN	NaN	271.2	NaN	46.10	NaN	NaN	NaN	NaN	NaN
4602	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	306.2	NaN
4613	NaN	NaN	NaN	NaN	NaN	NaN	303.1	NaN	25.76	NaN	NaN
4614	NaN	NaN	NaN	NaN	NaN	NaN	296.1	NaN	25.17	NaN	NaN

1760 rows × 19 columns

localhost:8888/notebooks/Data science files/PROJECTS/PROJECTS/TELECOM PROJECT/2 project telecom(churn).ipynb#

In [19]:

```
quantiles = churn.quantile(0.05)
mask_vals = churn[churn < quantiles]
all_vals = churn.loc[mask_vals.all(axis=1)]
threshold = 0.001
mask_vals.drop(['State','Area Code','Phone','Account Length','rank(Account lenght)'],axis
outliers = mask_vals[mask_vals.min() > mask_vals * threshold].dropna(how='all')
print(len(outliers))
outliers
```

660

Out[19]:

	International Plan	VMail Plan	VMail Message	Day Mins	Day Calls	Day Charge	Eve Mins	Eve Calls	Eve Charge	Night Mins	Night Calls
12	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
16	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	89.3	NaN
21	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	64.0
22	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
23	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4580	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	106.2	NaN
4582	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	59.0
4584	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	82.3	NaN
4591	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	50.0
4610	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

660 rows × 19 columns

localhost:8888/notebooks/Data science files/PROJECTS/PROJECTS/TELECOM PROJECT/2 project telecom(churn).ipynb#

In [20]:

```
continue_columns = []
categories_columns=[]
for col in churn.columns:
    if churn[col].nunique()>25:
        print(f'{col} is {churn[col].nunique()} values')
        continue_columns=pd.DataFrame(continue_columns.append(churn[col]))
    else:
        print(f'{col} is {churn[col].nunique()} values')
        categories_columns=pd.DataFrame(categories_columns.append(churn[col]))
print(continue_columns,'\n...',
pd.DataFrame(categories_columns))
```

State is 51 values Account Length is 218 values Area Code is 3 values Phone is 4617 values International Plan is 2 values VMail Plan is 2 values VMail Message is 47 values Day Mins is 1901 values Day Calls is 123 values Day Charge is 1901 values Eve Mins is 1833 values Eve Calls is 125 values Eve Charge is 1621 values Night Mins is 1813 values Night Calls is 130 values Night Charge is 1012 values International Mins is 168 values International calls is 21 values International Charge is 168 values CustServ Calls is 10 values Churn is 2 values rank(Account lenght) is 218 values Total Charge is 3454 values Total Mins is 3233 values

	0	1	2	3	4
\ Account Length	128	107	137	84	7
5 Phone	382-4657	371-7191	358-1921	375-9999	330-662
6					
VMail Message 0	25	26	0	0	
Day Mins 7	265.1	161.6	243.4	299.4	166.
Day Calls 3	110	123	114	71	11
Day Charge 4	45.07	27.47	41.38	50.9	28.3
Eve Mins 3	197.4	195.5	121.2	61.9	148.
Eve Calls 2	99	103	110	88	12
Eve Charge 1	16.78	16.62	10.3	5.26	12.6
Night Mins	244.7	254.4	162.6	196.9	186.
Night Calls 1	91	103	104	89	12
Night Charge 1	11.01	11.45	7.32	8.86	8.4
International Mins	10.0	13.7	12.2	6.6	10.
International Charge	2.7	3.7	3.29	1.78	2.7
rank(Account lenght) 0	1100.0	1966.0	798.0	3036.0	3388.
Total Charge 9	75.56	59.24	62.29	66.8	52.0
Total Mins 0	717.2	625.2	539.4	564.8	512.

	5	6	7	8	9
\ Account Length	118	121	147	117	14
1 Phone	391-8027	355-9993	329-9001	335-4719	330-817
3 VMail Message 7	0	24	0	0	3
Day Mins	223.4	218.2	157.0	184.5	258.
Day Calls 4	98	88	79	97	8
Day Charge 6	37.98	37.09	26.69	31.37	43.9
Eve Mins 0	220.6	348.5	103.1	351.6	222.
Eve Calls 1	101	108	94	80	11
Eve Charge 7	18.75	29.62	8.76	29.89	18.8
Night Mins 4	203.9	212.6	211.8	215.8	326.
Night Calls 7	118	118	96	90	9
Night Charge 9	9.18	9.57	9.53		14.6
International Mins 2	6.3	7.5	7.1	8.7	11.
International Charge 2	1.7	2.03	1.92	2.35	3.0
<pre>rank(Account lenght) 0</pre>	1498.0	1369.0	558.0	1531.0	681.
Total Charge 4	67.61	78.31	46.9		80.5
Total Mins 2	654.2	786.8	479.0	760.6	818.
		4607	4608	4609	4610 \
Account Length		76	89	128	138
Phone VMail Message	3//-	6340 346- 0	·1098 374· 24	-4186 419- 0	·8866 0
Day Mins	1	-		212.4	63.7
Day Calls	• • •	74	84	118	114
Day Charge					.0.83
Eve Mins Eve Calls	1	61.0 2 83	223.2 1 117	148.6 2 108	212.2 132
Eve Charge	1				.8.04
Night Mins					247.6
Night Calls	• • •	117	132	98	114
Night Charge	• • •		9.08		1.14
International Mins	• • •	8.0	5.7	9.8	8.8
<pre>International Charge rank(Account lenght)</pre>	33		1.54 312.0 1	2.65 100.0 7	2.38 61.0
Total Charge					12.39
Total Mins					332.3
5 \	4611	4612	4613	4614	461
Account Length 8	90	57	177	67	9
Phone	342-3593	345-7512	343-6820	338-4794	355-838

0					
8 VMail Message	6) 25	29	33	2
3 Day Mins	193.8	144.0	189.0	127.5	168.
9 Day Calls	90	81	. 91	126	9
8 Day Charge	32.95	24.48	32.13	21.68	28.7
1 Eve Mins 3	206.6	187.2	303.1	296.1	226.
Eve Calls 7	98	3 112	96	129	11
, Eve Charge 4	17.56	15.91	25.76	25.17	19.2
Night Mins 5	153.3	158.6	163.6	200.9	165.
Night Calls 6	120	122	116	91	9
Night Charge 5	6.9	7.14	7.36	9.04	7.4
International Mins 3	10.1	. 8.5	15.7	13.0	14.
International Charge 6	2.73	2.3	4.24	3.51	3.8
<pre>rank(Account lenght) 0</pre>	2749.0	3976.0	131.0	3678.0	2391.
Total Charge 6	60.14	49.83	69.49	59.4	59.2
Total Mins 0	563.8	498.3	671.4	637.5	575.
	4616				
Account Length Phone	140 409-6884				
VMail Message	6)			
Day Mins	204.7				
Day Calls	100)			
Day Charge	34.8	3			
Eve Mins	126.8				
Eve Calls	107				
Eve Charge	10.78				
Night Mins	202.8				
Night Calls	115				
Night Charge International Mins	9.13				
International Charge	12.1 3.27				
rank(Account lenght)	710.0				
Total Charge	57.98				
Total Mins	546.4				
[17 rows x 4617 colum					
••••	0	1	2	3	4
5 \ International Plan	no	no	no v	es yes	yes
VMail Plan	yes	yes		no no	no
International calls	3	3	5	7 3	6
CustServ Calls	1	1	0	2 3	0
Churn	False.		lse. Fals	_	False.
	6	7	8 9		4607 \

International Plan VMail Plan International calls CustServ Calls Churn	no yes 7 3 False.	yes no 6 0 False.	no no 4 1 False.	yes yes 5 0 False.	 Fa	no no 4 1 lse.
\	4608	4609	4610	4611	4612	4613
International Plan	no	no	no	no	no	no
VMail Plan	yes	no	no	no	yes	yes
International calls	4	5	4	9	6	1
CustServ Calls	1	1	0	3	3	3
Churn	False.	False.	False.	False.	False.	False.
	4614	4615	4616			
International Plan	no	no	no			
VMail Plan	yes	yes	no			
International calls	3	3	4			
CustServ Calls	1	0	2			
Churn	False.	False.	False.			

[5 rows x 4617 columns]

In [21]:

categories_columns = categories_columns.transpose()
categories_columns

Out[21]:

	International Plan	VMail Plan	International calls	CustServ Calls	Churn
0	no	yes	3	1	False.
1	no	yes	3	1	False.
2	no	no	5	0	False.
3	yes	no	7	2	False.
4	yes	no	3	3	False.
4612	no	yes	6	3	False.
4613	no	yes	1	3	False.
4614	no	yes	3	1	False.
4615	no	yes	3	0	False.
4616	no	no	4	2	False.

4617 rows × 5 columns

In [22]:

categories_columns.nunique()

Out[22]:

International Plan 2
VMail Plan 2
International calls 21
CustServ Calls 10
Churn 2

dtype: int64

In [23]:

continue_columns=continue_columns.transpose()
continue_columns

Out[23]:

	Account Length	Phone	VMail Message	Day Mins	Day Calls	Day Charge	Eve Mins	Eve Calls	Eve Charge	Night Mins	Night Calls	С
0	128	382- 4657	25	265.1	110	45.07	197.4	99	16.78	244.7	91	
1	107	371- 7191	26	161.6	123	27.47	195.5	103	16.62	254.4	103	
2	137	358- 1921	0	243.4	114	41.38	121.2	110	10.3	162.6	104	
3	84	375- 9999	0	299.4	71	50.9	61.9	88	5.26	196.9	89	
4	75	330- 6626	0	166.7	113	28.34	148.3	122	12.61	186.9	121	
4612	57	345- 7512	25	144.0	81	24.48	187.2	112	15.91	158.6	122	
4613	177	343- 6820	29	189.0	91	32.13	303.1	96	25.76	163.6	116	
4614	67	338- 4794	33	127.5	126	21.68	296.1	129	25.17	200.9	91	
4615	98	355- 8388	23	168.9	98	28.71	226.3	117	19.24	165.5	96	
4616	140	409- 6884	0	204.7	100	34.8	126.8	107	10.78	202.8	115	

4617 rows × 17 columns

```
In [24]:
```

plt.pie(categories_columns['International calls'].value_counts(),autopct='%0.2f%%',colors

Out[24]:


```
Text(0.7982124360020486, -0.8960228272826958,
                                               '19'),
Text(1.0101458692709813, -0.6477694981972939,
Text(1.1196074408331484, -0.4318323499126117, '1'),
Text(1.1698745557685808, -0.26719566569326236, '10'),
Text(1.1863349560331848, -0.18058065260082917, '15'),
Text(1.1928063655389827, -0.13119822532977768, '8'),
Text(1.196199215608121, -0.09543289044410305, '11'),
Text(1.1983533062898635, -0.06284388040336601, '0'),
Text(1.1993330667533817, -0.040002437324853674, '12'),
Text(1.1996788791202362, -0.0277594487123572, '13'),
Text(1.1998655481773945, -0.017962914489599656, '18'),
Text(1.1999599974196746, -0.009798193332184197, '14'),
Text(1.199989999390292, -0.004899118623556146, '16'),
Text(1.199997499883491, -0.0024495455437502887, '20'),
Text(1.199999722226312, -0.0008164905231108226, '17')],
[Text(0.5658636147392884, 0.41206597713738286, '20.03%'),
Text(-0.19847961825239804, 0.6712718086873471, '19.08%'),
Text(-0.6829531510726906, 0.15354150396515803, '14.73%'),
Text(-0.5438072763507469, -0.44076484227758284, '13.99%'),
Text(-0.09567565625416147, -0.6934307238652867, '9.96%'),
Text(0.25212442444098593, -0.6530185867188633, '6.13%'),
Text(0.465623921001195, -0.5226799825815724, '5.31%'),
Text(0.5892517570747391, -0.37786554061508804, '3.38%'),
Text(0.6531043404860032, -0.25190220411569014, '3.05%'),
Text(0.6824268241983388, -0.15586413832106968, '1.52%'),
Text(0.6920287243526911, -0.10533871401715035, '0.82%'),
Text(0.6958037132310732, -0.07653229810903697, '0.50%'),
Text(0.6977828757714039, -0.05566918609239344, '0.45%'),
Text(0.6990394286690871, -0.036658930235296844, '0.41%'),
Text(0.6996109556061392, -0.02333475510616464, '0.19%'),
Text(0.6998126794868044, -0.01619301174887503, '0.13%'),
Text(0.6999215697701467, -0.010478366785599798, '0.13%'),
Text(0.6999766651614767, -0.005715612777107447, '0.09%'),
Text(0.6999941663110035, -0.0028578191970744186, '0.04%'),
```

```
Text(0.6999985415987031, -0.0014289015671876681, '0.02%'),
Intext(0.6999998379653485, -0.00047628613848131314, '0.02%')])

for col in categories columns columns:
```

```
for col in categories_columns.columns:
    #explodes=0.1*(len[categories_columns[col].])
    plt.pie(categories_columns[col].value_counts(),autopct='%0.2f%%',explode=[0.1]*categoriet.title(f'{col} of telecom churn ')
    if categories_columns[col].nunique()>6:
        fig = plt.gcf()
        fig.set_size_inches(8, 8)
    plt.show()
    print(f'{col} inferences-')
    print(f'{categories_columns[col].value_counts()}')
```

International Plan of telecom churn

International Plan inferencesno 4171 yes 446 Name: International Plan, dtype: int64

VMail Plan of telecom churn

VMail Plan inferences-

no 3381 yes 1236

Name: VMail Plan, dtype: int64

International calls of telecom churn

International calls inferences-

3	925	
4	881	
2	680	
5	646	
6	460	
7	283	
1	245	
8	156	
9	141	
10	70	
11	38	
0	23	
12	21	
13	19	
15	9	
14	6	
16	6	
18	4	
19	2	
20	1	
17	1	

Name: International calls, dtype: int64

CustServ Calls of telecom churn

وران دید

CustServ (Calls inferences-
1 1651	
2 1031	
@ n []951	
3 616	
4 234	
5 89	
6 n []:28	
7 13	
9 2	
8 2	
Name: ¡Cust	tServ Calls, dtype: int64
In []:	
[]·	

inferences

- International Plan: Out of 4617 total customers, only 446 (9.6%) have an international plan, indicating that international calling may not be a priority for the majority of customers.
- VMail Plan: A higher proportion of customers (1236 out of 4617, or 26.7%) have a voicemail plan compared to an international plan, suggesting that voicemail may be a more popular feature among customers.
- International calls: The majority of customers make between 2 and 6 international calls, with the highest frequencies for 3 and 4 calls (925 and 881 customers, respectively). The number of international calls drops off significantly for calls beyond 6, suggesting that a small subset of customers may be responsible for a large proportion of international calls.

- CustServ Calls: The majority of customers have made 0-3 customer service calls, with the highest frequency for 1 call (1651 customers). A small subset of customers have made more than 3 calls, with the fewest customers (2) having made 8 or 9 calls.
- **Churn**: Out of 4617 total customers, 656 (14.2%) have churned, or left the company. This indicates that customer retention may be an important issue for the telecommunications company to address.

In [26]:

```
continue_columns.drop('Phone',axis=1,inplace=True)
for col in continue_columns.columns:
    sns.boxplot(x=continue_columns[col],y=categories_columns['Churn'],showmeans=True ,wic
    plt.title(f'{col} of telecom churn')
    plt.show()
    mean_values = churn.groupby("Churn")[col].mean()
    print(f'inferences- \n {col} of average values are \n {mean_values}')
```

Account Length of telecom churn

inferences-

Account Length of average values are

Churn

False. 100.354456 True. 102.400915

Name: Account Length, dtype: float64

VMail Message of telecom churn

inferences-

VMail Message of average values are

Churn

False. 8.385761 True. 4.614329

Name: VMail Message, dtype: float64

inferences-

Day Mins of average values are

Churn

False. 176.000252 True. 207.298018

Name: Day Mins, dtype: float64

Day Calls of telecom churn

inferences-

Day Calls of average values are

Churn

False. 99.922747 True. 99.922747

Name: Day Calls, dtype: float64

Day Charge of telecom churn

inferences-

Day Charge of average values are

Churn

False. 29.920624 True. 35.241098

Name: Day Charge, dtype: float64

Eve Mins

inferences-

Eve Mins of average values are

Churn

False. 198.638425 True. 211.241311

Name: Eve Mins, dtype: float64

Eve Calls of telecom churn

inferences-

Eve Calls of average values are

Churn

False. 100.16410 True. 100.27439

Name: Eve Calls, dtype: float64

Eve Charge of telecom churn

inferences-

Eve Charge of average values are

Churn

False. 16.884509 True. 17.955671

Name: Eve Charge, dtype: float64

inferences-

Night Mins of average values are

Churn

False. 199.734158 True. 205.996494

Name: Night Mins, dtype: float64

Night Calls of telecom churn

inferences-

Night Calls of average values are

Churn

False. 99.998233 True. 99.617378

Name: Night Calls, dtype: float64

Night Charge of telecom churn

inferences-

Night Charge of average values are

Churn

False. 8.988147 True. 9.269939

Name: Night Charge, dtype: float64

International Mins of telecom churn

inferences-

International Mins of average values are

Churn

False. 10.206665 True. 10.717835

Name: International Mins, dtype: float64

International Charge of telecom churn

inferences-

International Charge of average values are

Churn

False. 2.756319 True. 2.894314

Name: International Charge, dtype: float64

inferences

• Account Length: The average account length for customers who churned is slightly higher than those who didn't churn.

• rotal wills. Customers who chumed had higher average total minutes than those who didn't churn.

rank(Account lenght) of average values are

Churn

False. 2301.985862 True. 2236.071646

Name: rank(Account lenght), dtype: float64


```
inferences-
 Totāl Charge of average values are
s&buboxplot(y='Total Mins',x='Churn',data=churn,showmeans=True ,width=0.5, linewidth=1.5,
            65.361021
Name<sup>27</sup>total Charge, dtype: float64
<AxesSubplot:xlabel='Churn', ylabel='Total Mins'>
    Total Mins of telecom churn
    900
    800
    700
 Total Mins
    600
    500
    400
    300
                         False.
                                                              True.
                                           Churn
inferences-
Toṭaḷ Mins of average values are
Inhurh:
False.
            584.579500
            635.253659
Name: Total Mins, dtype: float64
In [ ]:
```

In [28]:

sns.countplot(x='Churn',data=churn)

Out[28]:

<AxesSubplot:xlabel='Churn', ylabel='count'>

inferences-

The countplot shows that the majority of customers in the dataset are not likely to churn, with a count of around 4000, while the number of customers who are likely to churn is significantly lower, with a count of around 650. This indicates that the dataset is imbalanced towards the non-churning customers.

In [29]:

sns.boxplot(x='Churn',y='VMail Message',data=churn,palette='Set1')

Out[29]:

<AxesSubplot:xlabel='Churn', ylabel='VMail Message'>

inferences-

From the boxplot, it appears that the median value for VMail Message is higher for customers who did not churn (False) than those who did (True). Additionally, the interquartile range (IQR) is larger for customers who did not churn, indicating that there is a greater variation in the VMail Message values for these customers. This suggests that customers who are not using voicemail messaging may be less likely to churn, as compared to those who are using voicemail messaging.

In [30]:

sns.boxplot(x='Churn',y='Account Length',data=churn)

Out[30]:

<AxesSubplot:xlabel='Churn', ylabel='Account Length'>

inferences-

It can be inferred from the boxplot that the distribution of Account Length for both churn and non-churn customers is almost the same, with a median value around 100 for both categories. This suggests that Account Length doesn't have much effect on churn, as the length of time a customer has been with the network doesn't seem to be a significant factor in their decision to leave. However, there are more outliers in the false category, which means that some customers who have been with the network for a longer time are less likely to churn.

It is important to note that Account Length alone cannot be used as the sole predictor of churn, as other factors such as service quality, pricing, and customer support can also play a role in a customer's decision to switch networks. Therefore, a more comprehensive analysis of various factors affecting churn is necessary to make accurate predictions and take appropriate measures to retain customers.

In [31]:

sns.barplot(x='Churn',y='Area Code',data=churn)

Out[31]:

<AxesSubplot:xlabel='Churn', ylabel='Area Code'>

inferences-

Based on the barplot, it seems that there is no significant difference in the area code between customers who churned and those who did not. The number of customers in each area code seems to be evenly distributed between those who churned and those who did not. Therefore, we can infer that the area code is not a strong predictor of churn.

In [32]:

sns.displot(x='Churn',y='Day Mins',data=churn)

Out[32]:

<seaborn.axisgrid.FacetGrid at 0x20b8e838940>

inferences-

From the plot, we can see that the distribution of Day Mins is similar for both churn classes, with a slight shift towards higher Day Mins for the True churn customers. The plot suggests that there is no clear separation between the two classes based on the Day Mins feature. However, we can say that customers who use more Day Mins are slightly more likely to churn than those who use fewer Day Mins. The darker is colour the more number of customers using

here we can see most True churn customers are more likely to using 100 to 250 minutes in a day

In [33]:

sns.boxplot(x='Day Charge',y='Churn',data=churn,palette='rocket')

Out[33]:

<AxesSubplot:xlabel='Day Charge', ylabel='Churn'>

inferences-

Based on the boxplot, we can infer that there is a significant difference in the Day Charges between the customers who have churned and those who have not. The median day charge for customers who have churned is higher compared to those who have not churned. This indicates that customers who are paying higher day charges are more likely to switch to a different network. It could be due to a variety of factors such as poor network coverage, high call or data charges, or better offers from competitors.

In [34]:

sns.boxplot(x='Churn',y='Day Calls',data=churn)

Out[34]:

<AxesSubplot:xlabel='Churn', ylabel='Day Calls'>

inferences-

Based on the boxplot, we can see that the median number of day calls for both true and false churn customers are almost equal. Therefore, we can infer that the number of day calls does not seem to have a significant effect on whether a customer wants to change their network or not.

In [35]:

sns.displot(x='Churn',y='Eve Mins',data=churn)

Out[35]:

<seaborn.axisgrid.FacetGrid at 0x20b91dff790>

inferences-

It seems that the distribution of Eve Mins for both True and False churn customers is quite similar, with most customers using between 100 to 290 minutes in the evening. However, there is a slightly higher concentration of True churn customers in the range of 100 to 200 minutes compared to False churn customers.

In [36]:

sns.boxplot(x='Churn',y='Eve Calls',data=churn)

Out[36]:

<AxesSubplot:xlabel='Churn', ylabel='Eve Calls'>

inferences-

Based on the boxplot, the number of evening calls made by customers who churned and those who didn't churn seems to be similar, with the median values being close to each other. There are some outliers present, but overall, there doesn't seem to be a significant difference between the two groups in terms of the number of evening calls.

In [37]:

sns.boxplot(x='Churn',y='Eve Charge',data=churn)

Out[37]:

<AxesSubplot:xlabel='Churn', ylabel='Eve Charge'>

inferences-

Based on the boxplot, we can see that True customers who want to change their network are paying more charges for evening calls compared to False customers who don't want to change their network. This could be a contributing factor for True customers to churn.

In [38]:

sns.displot(x='Churn',y='Night Mins',data=churn)

Out[38]:

<seaborn.axisgrid.FacetGrid at 0x20b91e56c10>

inferences-

The distribution plot indicates that the usage of night minutes is relatively similar for both True and False churn customers. However, there is a slightly higher concentration of True churn customers in the range of 150-200 minutes, while the concentration of True churn customers decreases in the range of 200-250 minutes. This suggests that the usage of night minutes may not be a significant differentiating factor between the two groups in terms of churn.

In [39]:

sns.boxplot(x='Churn',y='Night Calls',data=churn)

Out[39]:

<AxesSubplot:xlabel='Churn', ylabel='Night Calls'>

inferences-

The boxplot analysis reveals that there is no noticeable difference in the median and distribution of night calls between True churn customers (customers who want to change their network) and False churn customers (customers who do not want to change their network). This suggests that the number of night calls may not play a significant role in customers' decision-making process regarding churn.

In [40]:

sns.barplot(x='Churn',y='Night Charge',data=churn)

Out[40]:

<AxesSubplot:xlabel='Churn', ylabel='Night Charge'>

Inferences:

There is a noticeable difference in the average Night Charge between the two types of customers. The average Night Charge for True customers (customers who want to change their network) is higher than that of False customers (customers who do not want to change their network). This could be a contributing factor to why True customers are more likely to churn.

In [41]:

sns.displot(x='Churn',y='International Mins',data=churn)

Out[41]:

<seaborn.axisgrid.FacetGrid at 0x20b922268e0>

Inferences:

The distribution of International Mins is similar for both types of customers. However, the majority of customers, regardless of churn status, are using less than 15 minutes of international calling.

In [42]:

sns.boxplot(x='Churn',y='International calls',data=churn)

Out[42]:

<AxesSubplot:xlabel='Churn', ylabel='International calls'>

Inferences:

The number of international calls made by customers is roughly the same for both churned and non-churned customers based on the box plot. Therefore, the number of international calls may not be a significant factor in determining churn.

In [43]:

sns.boxplot(x='Churn',y='International Charge',data=churn)

Out[43]:

<AxesSubplot:xlabel='Churn', ylabel='International Charge'>

Inferences:

The box plot shows that the median international charge for churned customers is higher than the median charge for non-churned customers. This suggests that higher international charges may be a contributing factor in customers' decisions to switch networks.

In [44]:

```
sns.boxplot(x='Churn',y='CustServ Calls',data=churn)
```

Out[44]:

<AxesSubplot:xlabel='Churn', ylabel='CustServ Calls'>

inferences-

The number of customer service calls made by the customers who churned is higher than those who did not churn. This suggests that customers who are not satisfied with the service they are receiving may be more likely to switch to another service provider.

In [45]:

sns.lineplot(x='Day Calls',y='Day Charge',data=churn)

Out[45]:

<AxesSubplot:xlabel='Day Calls', ylabel='Day Charge'>

inferences-

The line plot shows the relationship between Day Calls and Day Charge for all customers. It seems that as the number of day calls increases, there is a slight increase in day charges as well. However, the plot also shows some fluctuations in the day charges even with the same number of day calls. It is interesting to note that most of the day charges fall within the range of 20 to 35, regardless of the number of day calls.

In [46]:

sns.displot(x='Eve Calls',y='Eve Charge',data=churn)

Out[46]:

<seaborn.axisgrid.FacetGrid at 0x20b92af95b0>

inferences-

The plot confirms the previous inference that most evening charges are between 10 to 20. It also shows that there is a positive correlation between evening calls and evening charges, meaning that as the number of evening calls increases, the evening charges also tend to increase. However, this relationship is not very strong.

In [47]:

sns.lineplot(x='Night Calls',y='Night Charge',data=churn)

Out[47]:

<AxesSubplot:xlabel='Night Calls', ylabel='Night Charge'>

inferences-

It's not accurate to make such a conclusion based on the given lineplot. The lineplot shows the relationship between "Night Calls" and "Night Charge", not the distribution of charges across different night call timings. It only indicates that as the number of night calls increases, the corresponding night charges also tend to increase.

In [48]:

sns.barplot(x='International calls',y='International Charge',data=churn)

Out[48]:

<AxesSubplot:xlabel='International calls', ylabel='International Charge'>

inferences-

It looks like the plot is showing the average international charge for different number of international calls.

We can see that the international charges are generally increasing as the number of international calls increases, but the relationship is not very strong. The average charge stays relatively constant between 2.5 to 3 for most number of international calls.

In [49]:

```
sns.boxplot(x='Churn',y='Total Charge',data=churn)
```

Out[49]:

<AxesSubplot:xlabel='Churn', ylabel='Total Charge'>

inferences-

Based on the boxplot, we can see that the median total charge for churn customers is slightly higher than that of non-churn customers. This suggests that higher charges may be a contributing factor to customers switching to other networks. However, we should also consider other factors such as the quality of service, network coverage, and pricing plans offered by the company.

In [50]:

```
from sklearn.preprocessing import LabelEncoder
label = LabelEncoder()
```

In [51]:

```
churn['Churn']=label.fit_transform(churn['Churn'])
churn['International Plan']=label.fit_transform(churn['International Plan'])
churn['VMail Plan']=label.fit_transform(churn['VMail Plan'])
```

churn True and YES is encoded as 1

churn False and NO is encoded as 0

In [52]:

churn.head()

Out[52]:

	State	Account Length	Area Code	Phone	International Plan		VMail Message	Day Mins	Day Calls	Day Charge	 Niç Ca
0	KS	128	415	382- 4657	0	1	25	265.1	110	45.07	
1	ОН	107	415	371- 7191	0	1	26	161.6	123	27.47	 1
2	NJ	137	415	358- 1921	0	0	0	243.4	114	41.38	 1
3	ОН	84	408	375- 9999	1	0	0	299.4	71	50.90	
4	OK	75	415	330- 6626	1	0	0	166.7	113	28.34	 1

5 rows × 24 columns

In [53]:

print(list(churn))

['State', 'Account Length', 'Area Code', 'Phone', 'International Plan', 'V Mail Plan', 'VMail Message', 'Day Mins', 'Day Calls', 'Day Charge', 'Eve M ins', 'Eve Calls', 'Eve Charge', 'Night Mins', 'Night Calls', 'Night Charge', 'International Mins', 'International calls', 'International Charge', 'CustServ Calls', 'Churn', 'rank(Account lenght)', 'Total Charge', 'Total Mins']

In [54]:

```
churn_charges = churn[[ 'Account Length', 'Area Code', 'Phone', 'Day Charge', 'Eve Charge',
```

In [55]:

churn_charges

Out[55]:

	Account Length	Area Code	Phone	Day Charge	Eve Charge	Night Charge	International Charge	Churn
0	128	415	382- 4657	45.07	16.78	11.01	2.70	0
1	107	415	371- 7191	27.47	16.62	11.45	3.70	0
2	137	415	358- 1921	41.38	10.30	7.32	3.29	0
3	84	408	375- 9999	50.90	5.26	8.86	1.78	0
4	75	415	330- 6626	28.34	12.61	8.41	2.73	0
							•••	
4612	57	510	345- 7512	24.48	15.91	7.14	2.30	0
4613	177	408	343- 6820	32.13	25.76	7.36	4.24	0
4614	67	408	338- 4794	21.68	25.17	9.04	3.51	0
4615	98	415	355- 8388	28.71	19.24	7.45	3.86	0
4616	140	415	409- 6884	34.80	10.78	9.13	3.27	0

4617 rows × 8 columns

In [56]:

x=churn_charges.iloc[:,3:-1]

In [57]:

```
x.plot(kind='line',color=['red','blue','black','yellow','pink'])
```

Out[57]:

<AxesSubplot:>

inferences-

The charges for the telecom service vary throughout the day. The highest charges are observed during the day, followed by the evening, night, and international charges. This suggests that the pricing structure of the telecom service is designed to reflect different rates based on the time of usage and location (domestic or international).

In [58]:

sns.factorplot(x='Churn',y='Total Charge',data=churn,kind='boxen')

Out[58]:

<seaborn.axisgrid.FacetGrid at 0x20b8e4ab640>

inferences-

Customers who churn (i.e., switch to a different network) tend to have lower total charges compared to customers who stay with the current network. This finding suggests that the amount customers are paying for their telecom services may influence their decision to switch to a different network.

The boxen plot shows that the median and upper quartile values for total charges are higher for customers who do not churn (False) compared to those who churn (True). This indicates that customers who are more satisfied with their current network and services are willing to pay higher charges.

In [59]:

sns.lmplot(x='CustServ Calls',y='Total Charge',data=churn,col='VMail Plan',hue='Churn',pa

Out[59]:

<seaborn.axisgrid.FacetGrid at 0x20b920baa30>

inferences-

In Figure 1, represented by blue dots, we can see that customers who have a voicemail plan (VMail Plan = Yes) and make a higher number of customer service calls (CustServ Calls) tend to have higher total charges. This could suggest that these customers require additional support or have specific service needs that result in increased charges. However, it is important to note that these customers are less likely to churn (Churn = False), as indicated by the predominance of blue dots.

In Figure 2, represented by red dots, we observe that customers who do not have a voicemail plan (VMail Plan = No) and make a higher number of customer service calls (CustServ Calls) have relatively lower total charges. This implies that these customers may not be utilizing additional services or incurring extra charges for features like voicemail. However, these customers are more likely to churn (Churn = True), as indicated by the prevalence of red dots.

These findings suggest that the combination of a high number of customer service calls, absence of a voicemail plan, and lower total charges may be contributing factors to customer churn. The telecom provider can investigate why these customers are experiencing a higher churn rate and develop strategies to improve their satisfaction and retention. This could involve addressing their specific service needs, providing incentives for activating voicemail plans, or optimizing customer service support to minimize the number of calls and enhance the overall customer experience.

In [60]:

sns.lmplot(x='Total Mins',y='Total Charge',data=churn,col='International Plan',hue='Churr

Out[60]:

<seaborn.axisgrid.FacetGrid at 0x20b9287a970>

inferences-

Based on these findings, it appears that customers who are active on an international plan but have low usage in terms of minutes may not find the plan valuable or may have alternative options for international calling. The telecom provider can investigate the reasons behind this trend and consider strategies to improve the perceived value of the international plan, such as offering competitive rates, additional features, or personalized offers based on individual calling needs.

In [61]:

sns.lmplot(x='Total Mins',y='Total Charge',data=churn,hue='Churn',palette='rocket')

Out[61]:

<seaborn.axisgrid.FacetGrid at 0x20b965f5310>

inferences-

Based on these findings, it can be inferred that the telecom provider's pricing structure is based on the usage of minutes, where higher usage results in higher charges. This relationship can potentially impact customer satisfaction and retention, as customers may evaluate the value they receive based on the charges incurred for their usage.

In [62]:

sns.boxplot(x='Churn',y='International Plan',data=churn)

Out[62]:

<AxesSubplot:xlabel='Churn', ylabel='International Plan'>

inferences- In the box plot, we have the International Plan on the y-axis and the Churn status on the x-axis. The box plot provides information about the distribution of the International Plan activation for each churn category.

From the plot, we can see that the box representing the activation of the International Plan for churned customers (Churn = True) is positioned higher than the box for non-churned customers (Churn = False). This indicates that a larger proportion of churned customers have activated the International Plan compared to non-churned customers.

In [63]:

```
sns.violinplot(x="Churn",y="Total Mins", data=churn,palette='rainbow', size = 5)
sns.swarmplot(x="Churn", y="Total Mins", data=churn, size = 5,palette='rocket')
```

Out[63]:

<AxesSubplot:xlabel='Churn', ylabel='Total Mins'>

inferences-

The violin plot and swarm plot provide visual representations of the distribution of total minutes of usage for each churn category.

In the violin plot, we can see that the shape of the distribution for non-churned customers (Churn = False) is wider and relatively flatter compared to the distribution for churned customers (Churn = True). This suggests that non-churned customers have a broader range of total minutes of usage, while churned customers tend to have a more concentrated range.

Furthermore, in the swarm plot, we can observe individual data points representing each customer's total minutes of usage. The plot indicates that there is a higher density of data points for non-churned customers in the range of approximately 420 to 780 minutes. This suggests that non-churned customers are using the network more consistently within this range of total minutes.

From these plots, we can infer that customers who are more satisfied with the network tend to have higher total minutes of usage, especially within the range of 420 to 780 minutes. This indicates a positive correlation between customer satisfaction and the amount of network usage.

In [64]:

```
sns.violinplot(x="Churn",y="Total Charge", data=churn,palette='Set1', size = 5)
sns.swarmplot(x="Churn", y="Total Charge", data=churn,color='pink', size = 5)
```

Out[64]:

<AxesSubplot:xlabel='Churn', ylabel='Total Charge'>

inferences-

The swarm plot, we can observe individual data points representing each customer's total charges. The plot indicates that there is a higher density of data points for non-churned customers in the range of approximately 40 to 80 dollars. This suggests that non-churned customers are more likely to pay charges within this range.

On the other hand, churned customers are paying higher charges, as indicated by the presence of data points beyond the 80-dollar mark. This implies that customers who are more dissatisfied with the network or considering switching to another provider are willing to pay higher charges, possibly due to additional services or features they require.

From these plots, we can infer that most customers who are satisfied with the network tend to pay charges within the range of 40 to 80 dollars. However, churned customers, who are more dissatisfied or considering switching, are willing to pay higher charges, possibly indicating their willingness to invest more to find a better network or service.

conclution:-

By analyzing these columns, we can gain insights into why customers may be looking for other networks. Here are some inferences based on the provided data:

Minutes: Customers who are using fewer minutes of conversation may be more inclined to switch networks. This could indicate dissatisfaction with the provided services or a desire for more competitive minute packages.

Charges: Customers who are paying higher charges are more likely to consider changing networks. This suggests that pricing plays a significant role in customer retention. Offering competitive pricing plans and value-added services could help reduce churn.

Account Length: The length of time a customer has been with the network may also influence churn. Longer account lengths may indicate customer loyalty and satisfaction, leading to a lower likelihood of switching networks.

International Plan: Customers who are subscribed to an international plan are more likely to stay with the current network. This could be attributed to the added benefits and convenience of international calling options, making it less desirable for customers to switch to other networks.

Voicemail Plan: Customers who have an active voicemail plan are more likely to remain with the network. This suggests that the availability of voicemail services plays a role in customer satisfaction and loyalty.

Voicemail Message: The number of voicemail messages received by customers may also impact churn. Higher voicemail message counts could indicate better engagement and communication, leading to a decreased likelihood of switching networks.

Customer Service Calls: The number of customer service calls made by customers may be an indicator of dissatisfaction or service-related issues. Customers who make more customer service calls are more likely to consider changing networks, possibly due to unresolved concerns or dissatisfaction with the provided support.

Based on these inferences, it is crucial for telecom providers to address pricing concerns, offer attractive plans and packages, improve service quality, and provide efficient customer support to reduce churn. By understanding the factors influencing churn, providers can implement strategies to enhance customer satisfaction, retention, and overall business performance.

In []:		

```
In [65]:
```

churn

Out[65]:

	State	Account Length	Area Code	Phone	International Plan	VMail Plan	VMail Message	Day Mins	Day Calls	Day Charge	
0	KS	128	415	382- 4657	0	1	25	265.1	110	45.07	
1	ОН	107	415	371- 7191	0	1	26	161.6	123	27.47	
2	NJ	137	415	358- 1921	0	0	0	243.4	114	41.38	
3	ОН	84	408	375- 9999	1	0	0	299.4	71	50.90	
4	ОК	75	415	330- 6626	1	0	0	166.7	113	28.34	
4612	NY	57	510	345- 7512	0	1	25	144.0	81	24.48	
4613	NM	177	408	343- 6820	0	1	29	189.0	91	32.13	
4614	VT	67	408	338- 4794	0	1	33	127.5	126	21.68	
4615	MI	98	415	355- 8388	0	1	23	168.9	98	28.71	
4616	IN	140	415	409- 6884	0	0	0	204.7	100	34.80	
4617 ı	4617 rows × 24 columns										
4											•
In [66]:											
col =	churr	n.pop('A	ccount	Lengt	h')						

MACHINE LEARNING MODELS

churn.insert(3, 'Account Length', col)

In [67]:

churn

Out[67]:

	State	Area Code	Phone	Account Length	International Plan	VMail Plan	VMail Message	Day Mins	Day Calls	Day Charge	
0	KS	415	382- 4657	128	0	1	25	265.1	110	45.07	
1	ОН	415	371- 7191	107	0	1	26	161.6	123	27.47	
2	NJ	415	358- 1921	137	0	0	0	243.4	114	41.38	
3	ОН	408	375- 9999	84	1	0	0	299.4	71	50.90	
4	ОК	415	330- 6626	75	1	0	0	166.7	113	28.34	
4612	NY	510	345- 7512	57	0	1	25	144.0	81	24.48	
4613	NM	408	343- 6820	177	0	1	29	189.0	91	32.13	
4614	VT	408	338- 4794	67	0	1	33	127.5	126	21.68	
4615	MI	415	355- 8388	98	0	1	23	168.9	98	28.71	
4616	IN	415	409- 6884	140	0	0	0	204.7	100	34.80	
4617 r	ows ×	24 colu	ımns								

In [68]:

x=churn.iloc[:,3:-4]

In [69]:

x.head()

Out[69]:

	Account Length	International Plan	VMail Plan	VMail Message	Day Mins	Day Calls	Day Charge	Eve Mins		Eve Charge	Night Mins
0	128	0	1	25	265.1	110	45.07	197.4	99	16.78	244.7
1	107	0	1	26	161.6	123	27.47	195.5	103	16.62	254.4
2	137	0	0	0	243.4	114	41.38	121.2	110	10.30	162.6
3	84	1	0	0	299.4	71	50.90	61.9	88	5.26	196.9
4	75	1	0	0	166.7	113	28.34	148.3	122	12.61	186.9
4											•

In [70]:

```
x.pop('VMail Message')
Out[70]:
        25
0
1
        26
2
         0
3
         0
         0
4612
        25
4613
        29
4614
        33
4615
        23
4616
         0
Name: VMail Message, Length: 4617, dtype: int64
In [71]:
Х
```

Out[71]:

	Account Length	International Plan	VMail Plan	Day Mins	Day Calls	Day Charge	Eve Mins	Eve Calls	Eve Charge	Night Mins	Night Calls
0	128	0	1	265.1	110	45.07	197.4	99	16.78	244.7	91
1	107	0	1	161.6	123	27.47	195.5	103	16.62	254.4	103
2	137	0	0	243.4	114	41.38	121.2	110	10.30	162.6	104
3	84	1	0	299.4	71	50.90	61.9	88	5.26	196.9	89
4	75	1	0	166.7	113	28.34	148.3	122	12.61	186.9	121
4612	57	0	1	144.0	81	24.48	187.2	112	15.91	158.6	122
4613	177	0	1	189.0	91	32.13	303.1	96	25.76	163.6	116
4614	67	0	1	127.5	126	21.68	296.1	129	25.17	200.9	91
4615	98	0	1	168.9	98	28.71	226.3	117	19.24	165.5	96
4616	140	0	0	204.7	100	34.80	126.8	107	10.78	202.8	115

4617 rows × 16 columns

In [72]:

x.drop(['Day Calls','Eve Calls','Night Calls','International calls'],axis=1,inplace=True)

```
In [73]:
```

Х

Out[73]:

	Account Length	International Plan	VMail Plan	Day Mins	Day Charge	Eve Mins	Eve Charge	Night Mins	Night Charge	Internation Mir
0	128	0	1	265.1	45.07	197.4	16.78	244.7	11.01	10
1	107	0	1	161.6	27.47	195.5	16.62	254.4	11.45	13
2	137	0	0	243.4	41.38	121.2	10.30	162.6	7.32	12
3	84	1	0	299.4	50.90	61.9	5.26	196.9	8.86	6
4	75	1	0	166.7	28.34	148.3	12.61	186.9	8.41	10
4612	57	0	1	144.0	24.48	187.2	15.91	158.6	7.14	8
4613	177	0	1	189.0	32.13	303.1	25.76	163.6	7.36	15
4614	67	0	1	127.5	21.68	296.1	25.17	200.9	9.04	13
4615	98	0	1	168.9	28.71	226.3	19.24	165.5	7.45	14
4616	140	0	0	204.7	34.80	126.8	10.78	202.8	9.13	12

4617 rows × 12 columns

In [74]:

y=churn['Churn']

In [75]:

```
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.2,random_state=42)
```

In [76]:

```
from sklearn.linear_model import LogisticRegression
model_lr = LogisticRegression()
from sklearn.ensemble import RandomForestClassifier
model_rf = RandomForestClassifier()
from sklearn.tree import DecisionTreeClassifier
model_dt=DecisionTreeClassifier()
from sklearn.svm import SVC
model_sv = SVC()
from sklearn.neighbors import KNeighborsClassifier
model_kn = KNeighborsClassifier()
from sklearn.metrics import accuracy_score,precision_score,confusion_matrix
```

LOGISTICS REGRESSOR

In [77]:

```
model_lr.fit(xtrain,ytrain)
pred_lr=model_lr.predict(xtest)
print("accuracy_score",accuracy_score(ytest,pred_lr)*100)
print("precision_score LogisticRegression:",precision_score(ytest,pred_lr))
confusion_m = confusion_matrix(ytest,pred_lr)
print(confusion_m)
# plot confusion matrix
sns.heatmap(confusion_m, annot=True, cmap='Blues', xticklabels=['Negative', 'Positive'],

# add title and axis labels
plt.title('Confusion Matrix')
plt.ylabel('True label')
plt.xlabel('Predicted label')

# show plot
plt.show()
```

```
accuracy_score 84.4155844155844

precision_score LogisticRegression: 0.3582089552238806

[[756 43]

[101 24]]
```


In [78]:

#RANDOM FOREST CLASSIFICATIER

In [79]:

```
model_rf.fit(xtrain,ytrain)
pred_rf=model_rf.predict(xtest)
print("accuracy_score",accuracy_score(ytest,pred_rf)*100)
print("precision_score RandomForestClassifier:",precision_score(ytest,pred_rf))
confusion_m = confusion_matrix(ytest,pred_rf)
print(confusion_m)
# plot confusion matrix
sns.heatmap(confusion_m, annot=True, cmap='Blues', xticklabels=['Negative', 'Positive'],

# add title and axis labels
plt.title('Confusion Matrix')
plt.ylabel('True label')
plt.xlabel('Predicted label')

# show plot
plt.show()
```

```
accuracy_score 94.15584415584416
precision_score RandomForestClassifier: 0.8901098901098901
[[789 10]
  [ 44 81]]
```


In [80]:

#DECISION TREE CLASSIFIER

In [81]:

```
model_dt.fit(xtrain,ytrain)
pred_dt=model_dt.predict(xtest)
print("accuracy_score",accuracy_score(ytest,pred_dt)*100)
print("precision_score DecisionTreeClassifier:",precision_score(ytest,pred_dt))
confusion_m = confusion_matrix(ytest,pred_dt)
print(confusion_m)
# plot confusion matrix
sns.heatmap(confusion_m, annot=True, cmap='Blues', xticklabels=['Negative', 'Positive'],
# add title and axis labels
plt.title('Confusion Matrix')
plt.ylabel('True label')
plt.xlabel('Predicted label')
# show plot
plt.show()
```

```
accuracy_score 88.85281385281385
precision_score DecisionTreeClassifier: 0.5723684210526315
[[734 65]
  [ 38 87]]
```


SVC(SUPPORT VECTOR CLASSIFIER)

In [83]:

```
model_sv.fit(xtrain,ytrain)
pred_sv=model_sv.predict(xtest)
print("accuracy_score",accuracy_score(ytest,pred_sv)*100)
print("precision_score SVC",precision_score(ytest,pred_sv))
confusion_m=confusion_matrix(ytest,pred_sv)
print(confusion_m)
sns.heatmap(confusion_m,annot=True,cmap='Blues',xticklabels=['Negative','Positive'],ytick
plt.title('confusion matrix')
plt.xlabel('predicted labels')
plt.ylabel('true labels')
plt.show()
```

accuracy_score 86.7965367965368 precision_score SVC 1.0 [[799 0] [122 3]]

K-NEAREST NEIGHBORS CLASSIFIER

```
In [84]:
```

```
model_kn.fit(xtrain,ytrain)
pred_kn=model_kn.predict(xtest)
print("accuracy_score",accuracy_score(ytest,pred_kn)*100)
print("precision_score KNeighborsClassifier",precision_score(ytest,pred_kn))
confusion_m=confusion_matrix(ytest,pred_kn)
print(confusion_m)
sns.heatmap(confusion_m,annot=True,cmap='Blues',xticklabels=['Negative','Positive'],ytick
plt.title('confusion matrix')
plt.xlabel('predicted labels')
plt.ylabel('true labels')
plt.show()
```

```
accuracy_score 87.878787878788
precision_score KNeighborsClassifier 0.6274509803921569
[[780 19]
  [93 32]]
```


The Support Vector Classifier (SVC) achieved a precision score of 1.0, indicating excellent performance with fewer false positive predictions. This makes the SVC model the best fit for the given dataset. It is important to consider other evaluation metrics and conduct further analysis to validate the model's performance. Overall, the SVC model shows promising results for classification tasks.

Thanks