Introduction to Number Theory

Contd...

Discrete algorithm are fundamental to number of public key cryptosystem including Diffie-Hellman key exchange and digital signature algorithm.

Exponentiation: $y = a^x \rightarrow \text{Logarithm: } x = \log_a y$

Order of the Group

What is the **order of group** $G = \langle Z_{21} *, \times \rangle$? $|G| = \varphi$ $(21) = \varphi(3) \times \varphi(7) = 2 \times 6 = 12$. There are 12 elements in this group: 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, and 20. All are relatively prime with 21.

Order of an Element

- □ Find the **order of all elements** in $G = \langle Z_{10} *, \times \rangle$.
- This group has only $\varphi(10) = 4$ elements: 1, 3, 7, 9. We can find the order of each element by trial and error.
- a. $1^1 \equiv 1 \mod (10) \rightarrow \text{ord}(1) = 1$.
- □ b. $3^4 \equiv 1 \mod (10) \rightarrow \text{ord}(3) = 4$.
- □ c. $7^4 \equiv 1 \mod (10) \rightarrow \text{ord}(7) = 4$.
- □ d. $9^2 \equiv 1 \mod (10) \rightarrow \text{ord}(9) = 2$.

Euler's Theorem

- $G = \langle Z_8 *, \times \rangle$. aⁱ =x(mod 7). Here φ(8) =4. The elements are 1,3,5,7
- If a is the member of $G = \langle Z_n *, \times \rangle$ then $a^{\phi(n) = 1 \mod n}$ holds when $i = \phi(n)$ "

Finding the orders of elements

$$i = 1$$
 $i = 2$
 $i = 3$
 $i = 4$
 $i = 5$
 $i = 6$
 $i = 7$
 $a = 1$
 $x: 1$
 $a = 3$
 $x: 3$
 $x: 1$
 $x: 3$
 $x: 1$
 $x: 3$
 $x: 1$
 $x: 3$
 $a = 5$
 $x: 5$
 $x: 1$
 $x: 5$
 $x: 1$
 $x: 5$
 $x: 1$
 $x: 5$
 $a = 7$
 $x: 7$
 $x: 1$
 $x: 7$
 $x: 1$
 $x: 7$

Contd...

Primitive Roots In the group $G = \langle Z_n *, \times \rangle$, when the order of an element is the same as $\varphi(n)$, that element is called the primitive root of the group.

Table 9.5 shows the result of $a^i \equiv x \pmod{7}$ for the group $G = \langle Z_7 *, \times \rangle$. In this group, $\varphi(7) = 6$.

Table 9.5 *Example 9.50*

	i = 1	i = 2	i = 3	i = 4	i = 5	i = 6
<i>a</i> = 1	<i>x</i> : 1	<i>x</i> : 1	<i>x</i> : 1	x: 1	<i>x</i> : 1	x: 1
a = 2	<i>x</i> : 2	<i>x</i> : 4	<i>x</i> : 1	<i>x</i> : 2	<i>x</i> : 4	<i>x</i> : 1
a = 3	<i>x</i> : 3	<i>x</i> : 2	<i>x</i> : 6	<i>x</i> : 4	<i>x</i> : 5	<i>x</i> : 1
a = 4	x: 4	<i>x</i> : 2	<i>x</i> : 1	x: 4	<i>x</i> : 2	<i>x</i> : 1
a = 5	<i>x</i> : 5	x: 4	x: 6	<i>x</i> : 2	<i>x</i> : 3	<i>x</i> : 1
<i>a</i> = 6	<i>x</i> : 6	<i>x</i> : 1	<i>x</i> : 6	<i>x</i> : 1	<i>x</i> : 6	<i>x</i> : 1

Primitive root \rightarrow

Primitive root \rightarrow

Note:

- The group $G = \langle \mathbb{Z}_n^*, \times \rangle$ has primitive roots only if n is 2, 4, p^t , or $2p^t$. (p is prime but not 2).
- Examples
 - a. $G = \langle Z_{17} *, \times \rangle$ has primitive roots, 17 is a prime.
- \Box b. $G = \langle Z_{20} *, \times \rangle$ has no primitive roots.
- \Box c. $G = \langle Z_{38} *, \times \rangle$ has primitive roots, $38 = 2 \times 19$ prime.
- d. $G = \langle Z_{50} *, \times \rangle$ has primitive roots, $50 = 2 \times 5^2$ and 5 is a prime.

Note:

- If the group $G = \langle Z_n^*, \times \rangle$ has any primitive root, the number of primitive roots is $\varphi(\varphi(n))$.
- The group $G = \langle Z_{10}^*, \times \rangle$ has two primitive roots because $\varphi(10) = 4$ and $\varphi(\varphi(10)) = 2$. It can be found that the primitive roots are 3 and 7. The following shows how we can create the whole set Z_{10}^* using each primitive root.

$$g = 3 \rightarrow g^1 \mod 10 = 3$$
 $g^2 \mod 10 = 9$ $g^3 \mod 10 = 7$ $g^4 \mod 10 = 1$ $g = 7 \rightarrow g^1 \mod 10 = 7$ $g^2 \mod 10 = 9$ $g^3 \mod 10 = 3$ $g^4 \mod 10 = 1$

- idea of Discrete Logarithm
- Properties of $G = \langle Z_p^*, \times \rangle$:
- Its elements include all integers from 1 to p-1.
- It always has primitive roots.
- The elements can be created using g^x
- The primitive roots can be thought as the base of logarithm.

Discrete logarithm problem

Def: The problem of finding i satisfying the equation $b \equiv a^i \pmod{p}$ given b, p, and $a^i \pmod{p}$ is called the *discrete logarithm problem*. The exponent i is referred to as the discrete logarithm of the number b to the base a(mod p).

The discrete logarithm problem has the same complexity as the factorization problem.