Introduction to key Statistical Concepts

Romain Lafarguette, Ph.D. Amine Raboun, Ph.D.

Quants & IMF External Experts

romainlafarguette.github.io/ amineraboun.github.io/

Singapore Training Institute, 18 April 2023

Resources

This course is based on several free and open-source references available on line

- Rob Hyndman handbook: https://otexts.com/fpp3/
- Christophe Hurlin's slides:

► https://sites.google.com/view/christophe-hurlin/teaching-resources

- At the introductory level: *Basic Econometrics* (2008) by Damodar Gujarati and Dawn Porter's. They have 5 chapters on time series
- A good book on time series analysis for finance: The Econometric Modelling of Financial Time Series (2008), by Terence C. Mills and Raphael N. Markellos
- The main reference is Hamilton, but is difficult to read...: *Time Series Analysis* (1994), by James Hamilton

Outline of the Course

1 Data Concepts

2 Refresher on Probability Theory

3 Statistical Inference

Table of Contents

1 Data Concepts

2 Refresher on Probability Theory

3 Statistical Inference

Overview

Financial econometrics (including time-series econometrics) are based on four main elements:

- A sample of data
- An econometric model, based on a theory or not
- 3 An estimation method to estimate the coefficients of the model
- Inference/testing approach to validate the estimation

Data Types

In econometrics, sets can be mainly distinguished in three types:

- Cross-sectional data
- 2 Time series data
- Panel data

Cross-Sectional Data

Cross-sectional data are the most common type of data encountered in statistics and econometrics.

- Data at the entities level: banks, countries, individuals, households, etc.
- No time dimension: only one "wave" or multiple waves of different entities
- Order of data does not matter: no time structure

Time Series Data

Time series data are very common in financial econometrics and central banking. They entail specific estimation methods to do the **time-dependence**.

- Data for a single entity (person, bank, country, etc.) collected at multiple time periods. Repeated observations of the same variables (interest rate, GDP, prices, etc.)
- Order of data is important!
- The observations are typically not independent over time

Panel/Longitudinal Data

Panel data contain the most information and allow for more complex estimation and analysis.

- Data for multiple entities (individuals, firms, countries, banks, etc.) in which outcomes and characteristics of each entity are observed at multiple points in time
- Combine cross-sectional and time-series information
- Present several advantages with respect to cross-sectional and time series data, depending on the topic at hands

Difference between Cross-Sectional and Panel Data

Source: cdn.scribbr.com/wp-content/uploads//2020/05/x-sectional-vs-long-graphic.png

Population vs. Sample

Definition: Population

A **population** is defined as including all entities (e.g. banks or firms) or all the time periods of the processus that has to be explained

- In most cases, it is impossible to observe the entire statistical population, due to constraints (recording period, cost, etc.)
- A researcher would instead observe a **statistical sample** from the population. He will estimate an econometric model to understand the **properties on the population as a whole**.

Population vs. Sample

 ${\bf Credit:} \ medium.com/analytics\text{-}vidhya$

Data Generating Process

Definition: Data Generating Process

- A Data Generating Process (DGP) is a process in the real world that "generates" the data (or the sample) of interest.
- The process is represented by random variable (see after) X_t ; the observation x_t is one possible realization of X_t
- Given that we observe a set of x_1, \ldots, x_T what can we **infer** about the process X_1, \ldots, X_T that has generated them?
- **1** DGP: "true" model that generated the data x_1, \ldots, x_t
- But we only observe the time series a finite number of times
- **③** However, it is convenient to allow theoretically the number of observations to be **infinite**: $\{X_t\}_{t \in \mathbb{Z}}$. In this case, $\{X_t\}_{t \in \mathbb{Z}}$ is called a discrete time **stochastic process**

DGP, Population and Sample

Source: bookdown.org/cristobalmoya

Example: Data Generating Process

Let us assume that there is a linear relationship between interest rates in two countries (R, R^*) , their forward (F) and their spot exchange rate (S).

$$\frac{F}{S} = \frac{1+R}{1+R^*}$$

This non-arbitrage relationship (CIP) can be used in the foreign exchange market to determine the forward exchange rate

$$\mathbb{E}[F|S = s, R = r, R^* = r^*] = s * \frac{1+r}{1+r^*}$$

This relationship is the **Data Generating Process** for F

The equivalent of population for time series econometrics is the DGP. NB: note that I use R to describe the random variable and r to describe its realization

Econometrics Challenge

The challenge of econometrics is to draw conclusions about a DGP (or population), after observing only one realization $\{x_1, \ldots X_N\}$ of a random sample (the dataset). To this end, we use a statistical - or econometrics - model

Source: statistical machine learning. com/wp-content/uploads/2019/12/SML framework 2. jpg and a statistical machine learning. com/wp-content/uploads/2019/12/SML framework 2. jpg and a statistical machine learning. Com/wp-content/uploads/2019/12/SML framework 2. jpg and a statistical machine learning. Com/wp-content/uploads/2019/12/SML framework 2. jpg and a statistical machine learning. Com/wp-content/uploads/2019/12/SML framework 2. jpg and a statistical machine learning. Com/wp-content/uploads/2019/12/SML framework 2. jpg and a statistical machine learning. Com/wp-content/uploads/2019/12/SML framework 2. jpg and a statistical machine learning. Com/wp-content/uploads/2019/12/SML framework 2. jpg and a statistical machine learning. Com/wp-content/uploads/2019/12/SML framework 2. jpg and a statistical machine learning. Com/wp-content/uploads/2019/12/SML framework 2. jpg and a statistical machine learning and a s

Table of Contents

Data Concepts

2 Refresher on Probability Theory

3 Statistical Inference

Refresher: Random Variables

- Mathematicians are formalizing and modeling randomness via the concept of random variables.
- Pay attention: a random variable is neither random (it is formalized via laws and distributions), not a variable (it is a function)
- A random variable is a function $f : \Omega \mapsto \mathcal{R}$ that assigns to a set of outcome Ω a value, often a real number.
- The probability of an outcome is equal to its **measure** divided by the measure of all possible outcomes
 - ightharpoonup Example: obtaining an even number by rolling a dice: $\{2,4,6\}$
 - Probability to obtain an even number by rolling a dice: $m(\{2,4,6\})/m(\{1,2,3,4,5,6\}) = \frac{1}{2}$ (here, the measure simply "counts" the outcomes with equal weights)

Random Variables: Intuition

Source: Wikipedia

Random Variables: Mapping

Credit: iqss.github.io/prefresher/images/rv.png

Random Variables (II)

- Random variables are the "building block" of statistics:
 - Random variables are characterized by their distribution (generating function, moments, quantiles, etc.)
 - The behavior of two or more random variables can be characterized by their dependence/independence, matrix of variance-covariance, joint distribution, etc.
 - The main theorems in statistics (law of large numbers, central limit theorem, etc.) leverage the properties of random variables

Refresher: Probability Distributions for Continuous Variables

Definition: Probability Distribution

The probability distribution of a random variable describes how the probabilities of the outcomes are distributed. How more likely is one outcome compared to another? Is there more upside risk or downside risk? Etc.

Distributions are equivalently represented by their:

- The probability density function (pdf)
 - The cumulative distribution function (cdf)

The pdf is also necessary to define distributions' moments (see after).

PDF and CDF

- The probability density function (pdf) usually denoted $f_X(x0)$ (remember than X stands for the random variable, while x0 stands for a realization of the random variable) represents the relative likelihood that the random variable X will fall within a small neighborhood of x0 (infinitesimal concept). It is easier to conceptualize the pdf via the cdf
- The cumulative distribution function (cdf) usually denoted $F_X(x0)$ represents the probability that the random variable will be lower than x0. It cumulates the pdf ("all the small neighborhoods") such that:

$$F_X(x0) \equiv \mathbb{P}[X \leqslant x0] = \int_{-infty}^{x0} f_X(h)dh$$

Link between PDF and CDF

Moments: Overview

	Formula	Interpretation
Mean	$\mathbb{E}[X_t] = \mu$	Central tendency
Variance	$\mathbb{V}[X] = \mathbb{E}\left[(X_t - \mu)^2 \right] = \sigma^2$	Dispersion around μ
Skewness	$\mathbb{S}[X] = \mathbb{E}\left[(X_t - \mu)^3\right] = \mathrm{sk}$	Symmetry
Kurtosis	$\mathbb{K}[X] = \mathbb{E}\left[(X_t - \mu)^4\right] = \kappa$	Tail heaviness

Mean, Variance, Kurtosis

Credit: iqss.github.io/prefresher/images/rv.png

Kurtosis: Benchmarking against the Normal Distribution

There are different shapes of kurtosis

Skewness

 ${\bf Credit:} \ iqss. github. io/prefresher/images/rv.png$

Moments: In Practice

- The moments allow to characterize the shape of the returns distribution
- However, the theoretical moments are unobservable and need to be estimated
- Assume that we have a sample $\{x_1,\ldots,x_T\}$ realizations of the sequence of X_t

Table of Contents

1 Data Concepts

2 Refresher on Probability Theory

Statistical Inference

Estimator

Definition: Estimator

An **estimator** is any function $F(x_1, ..., x_t)$ of a sample. Note that any descriptive statistics is an estimator (a simple one)

Example: Sample Mean

The sample mean (or overage) of a sample is an estimator of the (theoretical) mean $\mathbb{E}[X_t] = \mu$.

The estimator is simply: $\hat{\mu}_t \equiv \bar{X}_t = \frac{1}{T} \sum_{t=1}^T x_t$

Example: Variance

Example: Sample Mean

Assume that the observations are drawn from i.i.d random variables.

The sample variance $\hat{\sigma}_T^2 = \frac{1}{T-1} \sum_{t=1}^T (x_t - \bar{x}_t)^2$

Note: the denominator is equal to T-1 as to define a sample variance corrected for the small sample bias.

Sampling Distribution

Fact

An estimator $\hat{\theta}$ is a random variable

Therefore, $\hat{\theta}$ has a (marginal or conditional) **probability distribution**. This sampling distribution is characterized by a probability distribution function (pdf) $f_{\hat{\theta}}(u)$

Definition: Sampling Distributions

The probability distribution of an estimator is called the **sampling** distribution

The sampling distribution is described by its moments, such as expectations, variance, skewness, etc.

Point Estimate

Definition: Estimate

An estimate is the realized value of an estimator (e.g. a number, in a case of a point estimate) that is obtained for a particular value x0. Often noted as $\hat{\theta}(x0)$ for the estimator $\hat{\theta}$

Estimate of a linear regression

- DGP $Y = \alpha + \beta * X + \epsilon$, with joint sample $y1, \ldots, y_T, x1, \ldots, x_T$.
- We have an estimator (for instance an OLS) of $\hat{\alpha}, \hat{\beta}$
- Then, for any value of $X = x_0$, we can simply project the conditional expected estimate $y_0 = \hat{\alpha} + \hat{\beta} * x_o + \hat{\epsilon}$
- If the estimator is unbiased, the fitted residuals $\hat{\epsilon} = y_t \hat{\alpha} \hat{\beta} * x_t$ are centered on **average**: $\mathbb{E}[\hat{\epsilon}] = 0$. This is why the residual disappear from the estimate of the conditional expected estimate in an OLS... but no bias doesn't mean no variance!
- $\epsilon \& \hat{\epsilon}$ are random variables: they determine $\hat{\alpha}, \hat{\beta}$ distributions