Random Sampling of Chemical Space: How to count without counting

Guido von Rudorff, University of Kassel

Learning solved?

$$\hat{H}_{3C}$$
 $\stackrel{\text{CH}_{3}}{\longrightarrow}$ \hat{H} $\stackrel{\text{CH}_{3}}{\longrightarrow}$ Property $\stackrel{\text{CH}_{3}}{\longrightarrow}$ Model $\stackrel{\text{Property}}{\longrightarrow}$

Random Sampling

Allow for data-driven fundamental statements "Most molecules do X", "High X means low Y"

Transferability

More reliable understanding of trends

Lower data bias

More realistic generalisation error

More data efficiency

Maximally spanning coverage

Formal statements

Often require uniform sampling

Measure coverage

Generative methods

Problems

- Total number unknown
- Distribution unknown

Properties of domains?

Speed does not matter: even enumeration is impossible.

Random Sampling

Goal

Sample all molecules (with given constraints) with known probabilities.

Sampling

- Choose weighted random sum formula
- Choose weighted random degree sequence
- Choose weighted random molecular graph

Requirements

- Find all sum formulas and degree sequences
- Sample loop-free multigraphs with given degree sequences uniformly
- Find weights

Solved, Seconds Solved, Seconds^[1]

Starting with enumeration

Counting via enumeration

- SMOG (1996), MOLGEN (1998), ASSEMBLE(2000), OMG (2012), PMG (2013),
 MAYGEN (2021), surge (2022)
- Until about 10-15 atoms

Orderly generation

- Find canonical sorting of (partial) molecular graphs
- Create graphs in canonical order

Counting without enumeration

Goal

Estimate number n of loop-free multigraphs with given degree sequence.

Average Path Length l_G

Sample from random molecule pairs

$$l_G \sim \log n$$

Molecule

Identical up to one bond

Minimum path

Estimating Average Path Length

Pure degree sequence

Every valency exists only once.

$$O=C=O$$

Non-pure estimate

- Assumes that random graphs are almost never symmetric
- All modifications independent
- Combinatorial product

$$N_P(d) = \prod_{v} \prod_{i} {\sum_{j>i} c_j \choose c_i}$$

$$l_G(d) = \left(1 + \left[\sum_i d_i\right]^{-1} \log N_P^L\right) l_G(d_U)$$

Asymptotic Scaling

Average Path Lengths become expensive

- Heuristics become less efficient
- More sampling
- Converging slowly

Asymptotic Scaling [1]

Needs to be calibrated to molecules

$$G = \frac{M!}{(M/2)!2^{M/2}k_1! \cdots k_n!}$$

$$\exp\left(\left(y_1 - \frac{1}{2}\right) \frac{M_2}{M} + \left(x_2 - \frac{1}{2}\right) \frac{M_2^2}{2M^2} + \frac{M_2^4}{4M^5} - \frac{M_2^2 M_3}{2M^4} + \left(x_3 - x_2 + \frac{1}{3}\right) \frac{M_3^2}{2M^3} + (an + b)/M + (cn + d)M + e$$

$$M_r = \sum_{i}^{n} [k_i]_r$$

1 C Greenhill, B McKay, SIAM, 2013.

Examples

10 atoms, CHONF, at least 3 hydrogens and one fluorine

Available conditions in this approach

- Number of atoms
- Atoms per element (and combinations)
- Valences
- Via rejection sampling:
 - Bonds (count and bond orders)
 - Ring presence / membership
 - Stability
 - Substructures
 - ...

Scaling

Space	Valence	Multiplicity	Example
\overline{A}	1	5	F, H, Cl, Br, I
	2	2	O, S
	3	2	N, P
	4	3	C, S, Si
	5	2	N, P
	6	1	\mathbf{S}
В	1	5	F, H, Cl, Br, I
	2	2	O, S
	3	2	N, P
	4	1	\mathbf{C}
	5	1	P

Summary

Thanks
Ali Banjafar
Sarah Engel
Sana Qureshi
Nicolas Grimblat

Randomized | Known distribution: statistical statements

Regions | No one-by-one iteration

Bias reduction | Datasets and predictive power

Seeding | Maximally spanning datasets or Monte-Carlo acceleration

