Linear Regression

Shaurya Singhal Anshu Kumar

Types of Machine Learning

Machine Learning

Supervised

Task driven (Regression / Classification)

Unsupervised

Data driven (Clustering)

Reinforcement

Algorithm learns to react to an environment

Univariate Linear Regression

Univariate linear regression focuses on determining relationship between one independent variable(X) and one dependent variable(Y).

X(CGPA)	Label(Y) (Number of hrs. study)
7.8	6.6
9.4	12
8.8	10
8.3	9.5
7.3	6

Dataset - How univariate data Looks like

Example : - CGPA Vs Hours of Study (Not Attendence)

Dataset Common Terminology

- 1. No. of Samples(m)
- 2. Input Features(n)
- 3. Training set
- 4. Test set
- 5. Hypothesis

Aim and working (Pipeline)

Which line seems right?

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Q - How to find parameters(hypothesis) ?

Q - What is the measure of finding Best line?

Ans - Error Function (How?)

Choice of Error Function

 $\sum |(Y_{pred} - Y_{actual})|$

Non-differentiable at (Ypred == Yactual)

3. $\sum (Y_{pred} - Y_{actual})^2$

Perfect, and this function is Convex in Nature(Helpful)

Goal - Minimizing the Error Function

Gradient Descent

1. An Iterative method to move toward the minimum point(using Gradient).

2. Gradient descent is an optimization algorithm used to minimize some function by iteratively moving in the direction of steepest descent as defined by the negative of the gradient. In machine learning, we use gradient descent to update the parameters of our model.

How we got the formulas of Gradient Descent?

Updation Rule

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
(for $j = 1$ and $j = 0$)

Derivative Derivation

```
repeat until convergence {
\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)
\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}
}
```

Convergence Criteria

- Number of Iteration

- Change in Error

Let's See the code (Working!)

- Visualizing Line(Hypothesis)
- Behaviour of Error Function using no. of iteration, change in error.

- Variation of Learning rate
- Visualizing Convex Function