Exercice 1. m désigne un nombre réel et f est la fonction définie sur $\mathbb R$ par

$$f(x) = \begin{cases} x^2 & \text{si } x \le 0 \\ x + m & \text{si } x > 0 \end{cases}$$

Déterminer la valeur de m pour laquelle la fonction f est continue sur \mathbb{R} .

Exercice 2. Soit f la fonction définie sur l'intervalle $[0; +\infty[$ par $f(x) = x^2 + \sqrt{x}$ Montrer que f est continue sur $[0; +\infty[$.

Exercice 3. La fonction f est définie sur \mathbb{R} par

$$f(x) = \begin{cases} x + 6 & \text{si } x \leq 3 \\ x^2 & \text{si } x > 3 \end{cases}$$

Cette fonction est-elle continue en 3?

Exercice 4.

f est la fonction définie sur \mathbb{R} par $f(x) = x^3 + 4x^2 + 4x$. Démontrer qu'il existe au moins un réel c compris entre -3 et 0 tel que f(c) = -1.

Exercice 5. Démontrer que l'équation $e^{2x+1} = x + 5$ admet au moins une solution dans \mathbb{R} .

Exercice 6.

On admet que l'équation $x^3 - 3x + 1 = 0$ admet une unique solution x_o dans l'intervalle [-1; 1].

L'algorithme ci-contre permet d'obtenir une valeur approchée de x_o à 10^{-n} près où n est un entier naturel.

a-Exécuter cet algorithme pas à pas en complétant le tableau de valeurs lorsqu'on affecte au début la valeur -1 à la variable a, la valeur 1 à la variable b et la valeur 1 à la variable n. Interpréter la valeur de la variable m à la fin de l'exécution de l'algorithme.

b-Coder cet algorithme en langage Python.

Saisir et exécuter le programme obtenu avec n = 4 et interpréter le résultat renvoyé.

Exercice 7.

Soit f la fonction définie sur \mathbb{R} par $f(x) = e^x + x - 2$.

- 1-Tracer la courbe représentative de f dans un repère.
- 2-Démontrer que f est strictement croissante et continue sur \mathbb{R} .
- 3-Démontrer que l'équation f(x) = 0 admet une unique solution α dans \mathbb{R} .
- 4-Déterminer avec la calculatrice un encadrement décimal de α à 10^{-2} près.

Exercice 8.

Soit f la fonction définie sur \mathbb{R} par $f: x \mapsto \mathrm{e}^{3x} + x$. Montrer que, pour tout $k \in [1; 1+\mathrm{e}^3]$, l'équation f(x) = k admet au moins une solution dans [0; 1].

Exercice 10.

Soit la fonction $f:x\mapsto x^3-3x^2-1$ définie sur $\mathbb R$. Quel est le nombre de solutions de l'équation f(x)=4 sur $\mathbb R$?

Exercice 9. Soit f une fonction dont on donne le tableau des variations ci-après.

Montrer que l'équation f(x) = 0 admet une unique solution sur \mathbb{R} .

Exercice 11. (u_n) est la suite définie par $u_0 = 0$ et pour tout entier naturel n, $u_{n+1} = \sqrt{3u_n + 4}$ On admet que la suite (u_n) converge vers un réel $l \ge 0$. Déterminer l.