The same of the sa	Introductory Problems Intro 1: Evaluate the limit or explain why it doesn't exist lim J4+h-2 - f(1/x) h>0 h
***************************************	$h \to 0$ $h(Jh+h+2)$
) $\lim_{h\to 0} \frac{h+h-5}{h+h+2} = \lim_{h\to 0} \frac{1}{\sqrt{5+h+2}} = \frac{1}{\sqrt{5+h+2}}$ E) $\lim_{h\to 0} \frac{f(h)}{h-2} = \frac{1}{\sqrt{5+h+2}} = \frac{1}{\sqrt{5+h+2}}$
	Intro 2: If $z - x^2 \le g(x) \le 2\cos x$ for all x , find $\lim_{x \to 0} g(x)$ There is the squeeze theorem which states that if $f(x) \le g(x) \le h(x)$
	all numbers, and there exists a so that $f(a) = h(a)$, so then $g(a)$ ust be equal to them as well At $x = 0 = 1$, $f(x) = 2 + x^2 = 2 - 0^2 = 2$ $= 1$
9(Since $f(0) = h(0) = 2$, according to squeeze theorem, (a) must equal 2 as well There fore, $\lim_{x\to 0} g(x) = 2$

D Intro 5: Use the definition of derati derivative to calculate 0 $\frac{d}{dx}\left(\frac{x}{x^2+1}\right) = 3 \quad (*)$ By definition, the function f(x) is differentiable at x_0 if the limit $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ exists $(*) - \lim_{x \to 3} \frac{x^2 + 1}{x^2 + 1} - \lim_{x \to 3} \frac{x^2 + 1}{x^2 + 1} - \lim_{x \to 3} \frac{x^2 + 1}{x^2 + 1} = \lim_{x \to 3} \frac{x^2 + 1}{x$ $= \lim_{x \to 3} \left(\frac{x}{x^2 + 1} \right) \left(\frac{1}{x - 3} \right) = \lim_{x \to 3} \left(\frac{10x - 3x^2 - 3}{x^2 + 1} \right) \left(\frac{1}{x - 3} \right)$ $= \lim_{x \to 3} \left(\frac{x^2 + 1}{x^2 + 1} \right) \left(\frac{3x - 1}{x - 3} \right) = \lim_{x \to 3} \left(\frac{3x - 1}{x^2 + 1} \right) = \frac{2}{25}$ This limit exists, so $\frac{d}{dx} \left(\frac{x}{x^2 + 1} \right) = \frac{2}{7.5}$ 2 Intro 6: Calculate the derivative of f(x) = >c 2/3 using only the definition

only the definition $\frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3}$ We have: $\frac{1}{3} - \frac{1}{3} -$ 3 For the derivative to exist $\lim_{x \to \infty} 2^{13} = \frac{1}{2^{13}} = \frac{1}{3} =$

KOKUYO

Thứ Ngày • No.
2) Homework Problems
B E2: Evaluate lim $1 - 1 - 1 \times 1$ I'll clenote that the plus is approaching the number from its right and the subtract is approaching the number from its eft $1 \times 1 \times$

Ngày e E5: How should the function g(x) = x2 sonx be defined on x = 0 so that it is continuous there? Is it then differentiable there To prove that a function is continuous at oc = 200 we have to prove that $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x_0) = f(x_0)$ We have: $\int_{0}^{2\pi} \frac{1}{2\pi} dx = 0$ =) $g(x) = x^{2} sgn(x) = 0$ Note have: $\lim_{x \to 0} g(x) = -0^{2} = 0$ Note have: $\lim_{x \to 0} g(x) = -0^{2} = 0$ 2. Differentiability: g(0) = 0Differentiability: Differentiability: $\lim_{x \to 0^{\pm}} g(x) - g(0) = g(x)$ We have $\lim_{x \to 0^{+}} g(x) - x^{2} = x = 0$ $\lim_{x \to 0^{+}} g(x) - x^{2} = x = 0$ $\lim_{x \to 0^{-}} \chi - \chi = \chi = 0$ $\lim_{x \to 0^{-}} \chi - \chi = \chi = 0$ So $\lim_{x \to 0^{+}} g(x) = \chi = \chi = 0$ $\lim_{x \to 0^{-}} \chi - \chi = \chi = 0$ So $\lim_{x \to 0^{+}} g(x) = \chi = \chi = 0$ $\lim_{x \to 0^{-}} \chi = \chi = 0$ So $\lim_{x \to 0^{+}} g(x) = \chi = \chi = 0$ $\lim_{x \to 0^{-}} \chi = \chi = 0$ So $\lim_{x \to 0^{+}} g(x) = \chi = \chi = 0$ $\lim_{x \to 0^{-}} \chi = \chi = 0$ So $\lim_{x \to 0^{+}} \chi = \chi = 0$ $\lim_{x \to 0^{+}} \chi = \chi = 0$ So $\lim_{x \to 0^{+}} \chi = \chi = 0$ $\lim_{x \to 0^{+}} \chi = \chi = 0$ So $\lim_{x \to 0^{+}} \chi = \chi = 0$ $\lim_{x \to 0^{+}} \chi = \chi = 0$ So $\lim_{x \to 0^{+}} \chi = \chi = 0$ $\lim_{x \to 0^{+}} \chi = \chi = 0$ So $\lim_{x \to 0^{+}} \chi = \chi = 0$

n E6. Calculate the derivative of $f(x) = x^{2/n}$ where n is a positive integer using the definition

of $f(x) = \frac{24n}{x} = \frac{1}{x} = \frac$ $\frac{1}{2} \frac{1}{n} + \frac{1}{2} \frac{1}{n}$