# Classifying Skin Lesions with Simulated Lens Blur

Christina Le and Allison Li

## Introducing the Problem

- Binary image classification task
  - o a melanoma binary classifier with images of skin lesions from the ISIC 2017 challenge
- Features of a skin lesion not immediately visible may be captured and differentiated by a convolutional neural network
- Study effect of blurring on the network's ability to classify skin lesions
- Understand image resolution and quality requirements for accurate diagnosis
  of melanoma.

Class: 0

Table 1: Distribution of Datasets

| Set        | Melanoma | Seborrheic Keratosis or Benign Nevi           |
|------------|----------|-----------------------------------------------|
| Training   | 337      | 1468                                          |
| Validation | 37       | 163                                           |
| Testing    | 117      | 483                                           |
|            |          | *reports the number of images found per class |







Class: 0



## Model



#### Experiments [-90, 90] range **Training Set** for rotation horizontal flip 1800 images vertical flip 2000 images Validation Set **Cross Validation** K = 10Test Set 200 images 600 images

- Models ran with 15-20 epochs depending on the specific experiment
- Measured focal loss and area under the curve (AUC)

## Physical Layer

- Convolution and average pooling added prior to the VGG16 model
- Simulating lower resolution incoherent imaging system with lens blur
- Convolutional kernel is trainable
  - Initialized randomly
  - Non-negative constraint



#### Results

- Learned blur performed better than Gaussian blur
- Class imbalance limitation

Table 2: Test Loss and Test AUC after training

| Experiment     | Kernel Size | Loss                  | AUC                 |
|----------------|-------------|-----------------------|---------------------|
| No blur        | _           | $0.0321 \pm 0.000187$ | $0.815 \pm 0.00939$ |
| Physical Layer | 10          | $0.0321 \pm 0.000186$ | $0.813 \pm 0.00862$ |
| Physical Layer | 25          | $0.0322 \pm 0.000346$ | $0.825 \pm 0.00470$ |
| Physical Layer | 50          | $0.0322 \pm 0.000626$ | $0.823 \pm 0.00358$ |
| Physical Layer | 100         | $0.0320 \pm 0.000165$ | $0.827 \pm 0.00207$ |
| Physical Layer | 200         | $0.0320 \pm 0.000104$ | $0.827 \pm 0.00215$ |
| Gaussian Blur  | 10          | $0.0321 \pm 0.000217$ | $0.813 \pm 0.01064$ |
| Gaussian Blur  | 25          | $0.0321 \pm 0.000268$ | $0.812 \pm 0.00920$ |
| Gaussian Blur  | 50          | $0.0321 \pm 0.000219$ | $0.807 \pm 0.00766$ |
| Gaussian Blur  | 100         | $0.0322 \pm 0.000394$ | $0.807 \pm 0.00428$ |
| Gaussian Blur  | 200         | $0.0324 \pm 0.001076$ | $0.810 \pm 0.00126$ |

#### Wrap-up/Conclusion

- Blur does not significantly impact the model's accuracy or means of classification
- Main limitations were our training data and potentially the model's depth
- Future experiments could include looking into the relationship between our results and segmentation masks, find a dataset with more melanoma images
- Turn this problem into a multi-class classification problem that is able to differentiate between melanoma, benign nevi, and seborrhoeic keratosis

#### **Classification Task** Physical Layer VGG16 Class: 0 Class: 0 Class: 0 Class: 0 Class: 1 Class: 0 Class: 1 Class: 0 Class: 0 into Class 1: Melanoma Class 2: Seborrheic Keratosis or Benign Nevi Results

learned blur

Table 1: Distribution of Datasets

| Set        | Melanoma | Seborrheic Keratosis or Benign Nevi           |
|------------|----------|-----------------------------------------------|
| Training   | 337      | 1468                                          |
| Validation | 37       | 163                                           |
| Testing    | 117      | 483                                           |
|            |          | *reports the number of images found per class |

