

A Generalized Mesh Prediction Framework for Arbitrary Objects

Chih-Chun Yang, Cheng-Yen Hsieh, Ziyi Zhou

Carnegie Mellon University
The Robotics Institute

Open Category Mesh Prediction

We developed a mesh prediction framework capable of handling open category objects:

• Input: a 2D image from either Seen/Unseen categories; Output: predicted 3D mesh

Experiment Setup

Dataset: Objaverse

Dataset	# Objects	# Classes	Object Categories 77K architecture
YCB [5]	77	5	62K characters-creatures
BigBIRD [69]	125	-	26K cars-vehicles
KIT [35]	219	145	18K places-travel
IKEA [43]	219	11	56K cultural-heritage-history 16K people 12K food-drink
Pix3D [71]	395	9	9K fashion-style
GSO [19]	1K	17	4K sports-fitness 2K music
EGAD [51]	2K	-	1K news-politics
PhotoShape [53]	5K	1	52K furniture-home 27K animals-pets
ABO [12]	8K	63	28K nature-plants
3D-Future [22]	10K	34	E1K art abstract
ShapeNet [7]	51K	55	29K electronics-gadgets
Objaverse	818K	21K	47K science-technology 35K weapons-military

Dataset split: randomly choose 15 seen categories and 15 unseen categories

Train: 1) 2D images and 3D annotations of objects in Seen Categories

2) 2D images of objects in Unseen Categories **Evaluation:** 1) 2D images of objects in Seen Categories

2) 2D images of objects in Unseen Categories

Experiments

Quantitate Result

Categories	F1 0.1	F1 0.3	F1 0.5	Chamfer Distance
Seen	85.9427	99.5634	99.9941	0.0102
Unseen	79.1717	99.0235	99.9849	0.0148

Correlation between 2D Representation Space and 3D

We found that objects having similar 3D shapes are close in 2D t-SNE visualization.

Visualization on Validation Set

Seen categories

Unseen categories

Failed Case

Models and code are publicly available

bookcase