Zestaw 19

1. W folderze Debug
19 znajduje się projekt z kodem w języku C. W pliku main.c w niektórych linijkach są komentarze. Two
im zadaniem jest wpisanie wartości odpowiednich zmiennych po wykonaniu konkretnej linii kodu.

Punktacja: 1 pkt za każdą poprawną linijkę, łącznie 7 pkt.

2. W folderze Popraw19 znajduje się kod w języku C, który nie spełnia zasad kompilacji. Popraw kod modyfikując dokładnie 1 linijkę tak, aby się kompilował. Zabronioną operacją jest komentowanie kodu. Do zmodyfikowanych linii zaliczają się zarówno linie istotne ze względu na kompilację jak i te nieistotne (np. dodanie spacji przed operatorem może być operacją nieistotną ze względu na kompilację, ale będzie liczone jako zmodyfikowana linijka).

Punktacja: 7 pkt.

3. Napisz funkcję, która jako argument otrzymuje dodatnią liczbę całkowitą n i zwraca liczbę $\lceil \sqrt[3]{n} \rceil$ (najmniejsza liczba całkowita większa lub równa $\sqrt[3]{n}$). Nie korzystaj z żadnych gotowych funkcji bibliotecznych ani wbudowanych. Stwórz dwa przypadki testowe dla funkcji.

Przypadki testowe:

\overline{n}	wyjście
3	2
5	2
10	3
27	3

Punktacja: 8 pkt.

4. Napisz funkcję, która otrzymuje trzy argumenty: dwa wskaźniki na funkcje o jednym argumencie typu int zwracające wartość typu int oraz wartość n typu int. Funkcja zwraca 1 jeśli jeżeli otrzymane w argumentach funkcje są równe dla wartości dodatnich podzielnych przez 3 i mniejszych niż n są równe i zwraca 0 w przeciwnym wypadku.

Punktacja: 8 pkt.

5. Napisz funkcję rekurencyjną, która dla otrzymanej w argumencie nieujemnej liczby całkowitej n zwraca wartość elementu o indeksie n ciągu zdefiniowanego w następujący sposób

$$a_0 = a_1 = 1$$

$$a_{2n} = a_{2n-2} + 1$$

$$a_{2n+1} = 2 \cdot a_{2n} - 1$$

Stwórz dwa przypadki testowe dla funkcji.

Przypadki testowe:

n	a_n
2	2
3	3
4	3
5	5

 $Punktacja{:}\ 10\ pkt.$

6. Napisz funkcję, która otrzymuje cztery argumenty: dodatnią liczbę całkowitą n, n-elementowe tablice tab1 i tab2 oraz 2 · n-elementową tablicę tab3 o elementach typu float. Funkcja powinna ustawić elementy tak, aby na początku tablicy tab3 powinny się znaleźć elementy tablicy tab2, a po nich elementy będące różnicą poszczególnych elementów tablicy tab1 i tab2. Stwórz dwa przypadki testowe.

Punktacja: 10 pkt.