Mathematical Models of Human Operators Using Artificial Risk Fields

Emily Jensen¹, Maya Luster², Hansol Yoon¹, Brandon Pitts², Sriram Sankaranarayanan¹

¹ University of Colorado Boulder

² Purdue University

Contact: emily.jensen@colorado.edu

Artificial Risk Fields

Goal: Describe a concise model of a human operating a robot in an uncertain environment. We should be able to learn the model given (state, control) pairs.

Problem Formulation: A risk field includes the following:

A set of obstacles to avoid

A set of task specifications (target velocity, time limit)

Start and Goal states

A set of environment states *x*

A set of possible controls *u*

A model of human decision making – P(u|x)

Future Work

- Predict driver situational awareness
- Provide driver interventions based on runtime monitoring
- Develop more nuanced method of tracking velocities
- Apply models to more complex datasets

Driving Task

Participants: 6 total, 3 male + 3 female Mean age 21.33 years

Data Collected: 19 total trials on driving course

Trial length is about 4 minutes

Data sampled at 60 Hz

Objectives: Be safe and stay in lane

Avoid colliding with the 4 obstacles Maintain speed of 45 mph

Driving Risk Field

$$\mathbf{risk}(\mathbf{x}) = \begin{cases} A \cdot \mathbf{dist}(\mathbf{x}, \, \mathrm{centerline})^2 + \\ B \cdot \exp(-\mathbf{dist}(\mathbf{x}, \, \mathrm{obstacle})^2/d_{obs}^2) + \\ C \cdot (v - v_{tgt})^2 \end{cases}$$

Each state is associated with a risk from a variety of factors. We model that drivers will prefer lower risk.

$$\mathtt{cost}(\mathbf{u}) = \begin{cases} D \cdot \mathtt{acceleration}^2 + \\ E \cdot \mathtt{steering\ rate}^2 \end{cases}$$

Each control input is associated with a cost. We model that drivers will prefer lower cost with a more constant range of inputs.

$$\mathbb{P}(\mathbf{u}|\mathbf{x}) \propto \exp(-\mathtt{risk}(\mathbf{x}'(\mathbf{u},\delta)) - \mathtt{cost}(\mathbf{u}))$$

We model drivers as Boltzmann rational; they are exponentially more likely to choose a control input if they think it will lead to lower risk and cost.

Fitting the Model

- Maximize log-likelihood of decision model using convex optimization tools
- Fitting model using parameters A E
- Generated trajectories using 5th and 95th percentile parameter values
- Qualitatively different trajectory and control behavior by changing parameters
- Trajectories are accurate to reference up to 5 seconds later

