第3章 关系数据模型

课程知识结构

本章主要内容

- ■数据模型的概念
- ■关系数据模型的概念
- ■关系数据模型的形式化定义
- ■关系模型的三类完整性规则
- ■关系代数

一、数据模型

- ■使用数据库技术,首先必须把现实世界中的 事物表示为计算机能够处理的数据
- ■模型是对现实世界特征的抽象
 - 如建筑模型、沙盘模型等
- ■数据模型是对现实世界数据特征的抽象
- ■数据模型的定义
 - 描述现实世界实体、实体间联系以及数据语义和一致性约束的模型

1、数据模型的分类

■根据模型应用的不同目的

- 概念数据模型(概念模型)
 - ◆按用户的观点对数据进行建模,强调语义表达功能
 - ◆独立于计算机系统和DBMS
 - ◆主要用于数据库的概念设计
- 结构数据模型(数据模型)
 - ◆按计算机系统的观点对数据进行建模,直接面向数据库的逻辑结构
 - ◆与计算机系统和DBMS相关
 - ◎ 回顾: DBMS支持某种数据模型
 - ◆有严格的形式化定义,以便于在计算机系统中实现

2、数据抽象的层次

3、数据模型的例子

- ■现实世界
 - 客户存款
- ■信息世界
 - 概念模型(E-R模型)

3、数据模型的例子

■ 机器世界

• 数据模型 (关系模型)

customer-id	customer-name	customer-street	customer-city
192-83-7465	Johnson	12 Alma St.	Palo Alto
019-28-3746	Smith	4 North St.	Rye
677-89-9011	Hayes	3 Main St.	Harrison
182-73-6091	Turner	123 Putnam Ave.	Stamford
321-12-3123	Jones	100 Main St.	Harrison
336-66-9999	Lindsay	175 Park Ave.	Pittsfield
019-28-3746	Smith	72 North St.	Rye

(a) The *customer* table

account-number	balance	
A-101	500	
A-215	700	
A-102	400	
A-305	350	
A-201	900	
A-217	750	
A-222	700	
(b) The account table		

customer-id	account-number		
192-83-7465	A-101		
192-83-7465	A-201		
019-28-3746	A-215		
677-89-9011	A-102		
182-73-6091	A-305		
321-12-3123	A-217		
336-66-9999	A-222		
019-28-3746	A-201		
(c) The <i>depositor</i> table			

4、数据模型的三要素

- ■数据结构
 - 现实世界实体及实体间联系的表示和实现
- ■数据操作
 - 数据检索和更新的实现
- ■数据的完整性约束
 - 数据及数据间联系应具有的制约和依赖规则
 - 如: 一个系可有多个学生,一个学生只属于一个系

二、关系模型概论

■ 关系模型

用二维表格结构表示实体集,外码表示实体间联系, 三类完整性规则表示数据约束的数据模型

1、一些术语

■ 属性(Attribute)

二维表格的每一列称为关系的一个属性,列的数目称为度 (degree)

■ 元组(Tuple)

每一行称为关系的一个元组,元组的数目称为势(cardinality)

■域(Domain)

● 一组具有相同数据类型的值的集合。每个属性有一个域

■ 关系(Relation)

• 元组的集合

2、关系、关系模式与关系数据库

- 关系模式(Relation Schema)
 - 关系的逻辑结构和特征的描述
 - 对应于二维表格的表头
 - 通常由属性集和各属性域表示,不关心域时可省略域
 - Student(Name, Age, Class)
- 关系
 - 关系模式的实例,即二维表(元组的集合)
- 关系数据库模式(Relational Database Schema)
 - 关系模式的集合
- 关系数据库: 关系数据库模式的实例

3、关系模式的形式化定义

- 关系模式可以形式化定义为:
 - R (U, D, dom, F)
 - ◆ R为关系模式名,U是一个属性集,D是U中属性的值所来自的域, Dom是属性向域的映射集合,F是属性间的依赖关系
- 例: Student关系模式的定义
 - Student(U,D,dom,F)
 - U={sno,name,age}
 - D={CHAR,INT}
 - Dom={dom(sno)=dom(name)=CHAR,dom(age)=INT}
 - ♦ F={sno→name, sno→age}
- 关系模式通常简写为R(U),或R(A1,A2,...,An)

4、超码、候选码和主码

■ 超码(Super Key)

在关系模式中能唯一标识一个元组的属性集称为关系模式 的超码

■ 候选码(Candidate Key)

- 不含多余属性的超码
- 包含在任何一个候选码中的属性称为主属性(Primary Attribute)
- 不包含在任何一个候选码中的属性称为非主属性(Nonprime Attribute)

■ 主码(Primary Key)

用户选作元组标识的一个候选码称为主码,其余的候选码 称为替换码(Alternate Key)

4、超码、候选码和主码

- Student(Sno, Name, Age, LibraryID)
 - ●超码
 - (sno,name)
 - (libraryID, name) ...
 - 候选码
 - Sno
 - LibraryID
 - 主码
 - ◆若选sno,则sno为主码,libraryID为替换码
 - ◆若选sno,则libraryID 为主码, sno为替换码

5、关系的性质

■一个关系是一个规范化的二维表格

- 属性值不可分解
 - ◆不允许表中有表
- 元组不可重复

学号	课程			
001	数据库			
002	{数据库,C语言}			

- ◆因此一个关系模式至少存在一个候选码
- 没有行序,即元组之间无序
 - ◆ 关系是元组的集合
- 没有列序,即属性之间无序
 - ◆ 关系模式是属性的集合

更新二义性:若001现也 选了C语言,则DBMS在 更新时面临二义性:

- 1.修改第1个元组的课程
- 2.修改第2个元组的学号

6、关系模型的形式化定义

- ■数据结构
 - 关系:数据库中全部数据及数据间联系都以关系 来表示
- ■数据操作
 - 关系运算
 - ◆ 关系代数
 - ◆*关系演算(元组关系演算、域关系演算)
- ■数据的完整性约束
 - 关系模型的三类完整性规则

7、关系模型的三类完整性规则

- ■关系数据库的数据和操作必须遵循的规则
 - 实体完整性(Entity Integrity)
 - 参照完整性(Referential Integrity)
 - 用户自定义完整性(User-Defined Integrity)

(1) 实体完整性

- ■关系模式R的主码不可为空
 - 指组成主码的所有属性均不可取空值

	<u>学号</u>	课程号	成绩
	S001	C001	80
X	S001		90
X			80

(2)参照完整性

■外码(Foreign Key)

- 关系模式R的外码是它的一个属性集FK,满足:
 - ◆ 存在带有候选码CK的关系模式S,且
 - ◆R的任一非空FK值都在S的CK中有一个相同的值
- S称为被参照关系(Referenced Relation), R 称为参照关系(Referential Relation)

R				S	_		
选	学号	课程号	成绩	学 生	学号	姓名	年龄
选课关系	001	002	80	生 关 系	001	John	20
新				不			

(2) 参照完整性

- ■参照关系R的任一个外码值必须
 - 等于被参照关系S中所参照的候选码的某个值
 - 或者为空

专业号 专业名 学科类别 0020 **PHY**

S 学号 专业号 课程号 成绩 姓名 学生关系 选课关系 001 **John** 001 002 80 002

R

(3) 用户自定义完整性

- ■针对某一具体数据的约束条件,反映某一具体应用所涉及的数据必须满足的特殊语义
- ■由应用环境决定

学号	课程号	成绩
001	002	80 🔻

成绩>=0 and 成绩<=100

回顾:关系模型的形式化定义

- ■数据结构
 - 关系:数据库中全部数据及数据间联系都以关系 来表示
- ■数据的完整性约束
 - 关系模型的三类完整性规则:实体完整性、参照 完整性、用户自定义完整性
- ■数据操作
 - 关系运算
 - ◆ 关系代数
 - ◆关系演算(元组关系演算、域关系演算)