On the Instability of Unsupervised Domain Adaptation with ADDA

Kazuki Omi and Toru Tamaki (Nagoya Institute of Technology, Japan)

Nagoya Institute of Technology

Motivation

- Domain adaptation (DA) uses information of source domain S to solve the task of target domain T
 - It is called Unsupervised DA when no labels of T are available
- Adversarial Discriminative Domain Adaptation or ADDA (Tzeng+, CVPR2017) incorporates adversarial losses, but with instability of training
- This work report experimentally the causes of the instability

Adversarial Adaptation

Overview of ADDA

Pre-training source CNN and classifier on S

Training target CNN initialized to source CNN and the discriminator with adversarial loss

Classification of target CNN and classifier on T

Three experiments

Is pre-training stable?

Does the number of epochs for pre-

training affect?

Does the initialization of target CNN affect?

Exp. 3

Results

- Dataset
 - Source domain: SVHN
 - Target domain: MNIST
- **■** Exp. 1
 - Pre-training for 20 times
 - computing average and std of source accuracy
 - Small std
 - pre-training is stable
- **■** Exp. 2
 - Different epochs of pre-training
 - Differences of average target accuracies between 12 and 18 is not statistically significant (t-test, α =0.05)
 - Source accuracy doesn't directly affect target accuracy
- **■** Exp. 3
 - 10 frozen parameters of source CNN. For each, initialize target CNN to train 10 times
 - Target accuracy depends on initialization.
 - Initialization does matter

epochs	target accuracy
12	72.52 ± 5.77
18	67.95 ± 8.23

