

End Semester Back Paper Examination 2022

Name of the Program: B.Tech.

Name of the Course: Engineering.

Mathematics

Semester: II

Course Code. TMA-201

Maximum Marks: 100

Time: 3 Hour's

Note:

(i) All questions are compulsory.

(ii) Answer any two sub questions among a, b, and c in each main question.

(iii) Total marks in each main question are twenty.

(iv) Each question carries 10 marks

Q1	(10 X 2=20 marks)		
(a)	Solve the differential equation $(x+y-10)dx + (x-y-2)dy = 0$.		
(b)	Solve using the Method of variation of parameters $(D^2 + 1)y = \sec x$	CO1	
(c)	Obtain the general solution of $\frac{d^2y}{dx^2} - y = 3e^x - 2e^{2x}$		
Q2	(10 X 2=20 marks)		
(a)	Obtain the general solution of $\frac{1}{dx^2} - y = 3e^{-t} = 2e^{-t}$ (10 X 2=20 marks) Find the Laplace transform of the function $\frac{\cos at - \cos bt}{t}$.	CO2	
(b)	Obtain the inverse Lanlace transform of the		
(c)	Applying Convolution theorem, solve the following initial value problem		
	$y'' + y = \sin 3t$, given $y(0) = 0$, $y'(0) = 0$. (10 X 2=20 marks)		
Q.3	(10 X 2-20 marks)		
(a)	Find the Fourier series for the function $f(x)=x$ in $(0,2\pi)$.		
(b)	Obtain the Fourier series for the function $f(x) = \begin{cases} -k, & -\pi < x < 0 \\ k, & 0 < x < \pi \end{cases}$	CO3	
(c)	Obtain the Half range Fourier cosine series of the following function: $f(x) = x , 0 < x < \pi.$		
Q4	(10 X 2-20 marks)		
(a)	Solve the following partial differential equation:		
	$(D^2 - 2DD' + {D'}^2)z = \sin(x + 2y).$		
6)	Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u, \text{ where } u(x, 0) = 6e^{-3x}.$	CO4	
(c)	A tightly stretched string with fixed end points $x = 0$ and $x = l$ is initially in a position given by $y = y_0 \sin^3 \left(\frac{\pi x}{l}\right)$. If the string is released from this position, find displacement $y(x, t)$.		

Q5	(10 X 2=20 marks)	
(a)	Show that $J_{1/2} = \sqrt{\frac{2}{\pi x}} \sin x$ and $J_{-1/2} = \sqrt{\frac{2}{\pi x}} \cos x$	
(b)	Prove the Rodrigue's formula $P_n(x) = \frac{1}{2^n n!} (x^2 - 1)^n$.	CO5
(c)	Prove that $J_{-n}(x) = (-1)^n J_n(x)$.	