3.1 Extrema on an Interval
Definition of Extrema Let f be defined on an interval I containing c .
1. $f(c)$ is the minimum of f on I when $f(c) < f(x)$ for all x in I .
2. $f(c)$ is the maximum of f on I when $f(c) > f(x)$ for all x in I .
Other terms: Extreme values, Extrema, Absolute Minimum, Absolute Maximum, Global Minimum, Global Maximum
Extreme Value Theorem (EVT)
If f is continuous on a closed interval $[a,b]$ then f has both a maximum and a on the interval.

What do you think happens with a constant function?

If it is not continuous, does it not have extrema?

Definition of Relative Extrema

- 1. If there is an open interval containing c on which f(c) is a maximum of f, then f has a least vector of f(c) and f(c) are a containing f(c) are a containing f(c) and f(c)
- 2. If there is an open interval containing c on which f(c) is a minimum of f, then f has a f(c) leading f(c) at f(c).

Other terms: Relative Maxima, Relative Minima, Local Maximum, Local Minimum

What do you notice about the behavior of the graph at a relative maximum or minimum?

Definition of a Critical Number

Let f be defined at c. If f'(c) = 0 or if f is not differentiable at c, then c is a critical number of f.

**f must be defined at c!

Examples - Value of Derivatives at Relative Extrema

Find the value of the derivative at each of the relative extrema shown on the graph.

Examples – Finding Critical Numbers

Find any critical numbers of the function $f(x) = 3x^4 - 4x^3$

$$f'(x) = 12x^{3} - 12x^{2}$$

 $0 = 12x^{2}(x-1)$
 $x=0$ $x=1$

Find any critical numbers of the function $f(x) = 3x\sqrt{x-5}$

$$f'(x) = (3x)(\frac{1}{2})(x-5)^{-\frac{1}{2}} + 3(x-5)^{\frac{1}{2}}$$

$$f(x) = 3(x-5)^{-\frac{1}{2}} \left[\frac{1}{2}x + x - 5\right]$$

$$f(x) = 3(\frac{2}{3}x - 5) - x = \frac{10}{3}$$
inding extrema on a closed interval

To find the extrema of a continuous function f on a closed interval [a, b].

- Find critical numbers
- Evaluate the function at the critical numbers
- Evaluate the function at the endpoints
- Highest & Max Lowest -> Min

Examples - Finding extrema

Find the extrema of $f(x) = 3x^5 - 7x^4$ on the interval [-1,2].

$$f'(x) = 15x^4 - 28x^3$$

$$0 = x^3 (15x - 38)$$

$$Y = 0 \qquad X = \frac{38}{15}$$

$$X = \frac{38}{15}$$

$$f(\frac{38}{5}) = 3(\frac{9}{5})^{5} - 7(\frac{9}{5})^{6} \approx -17$$

$$f(a) = 3(32) - 7(16) = -16$$
Abs. Min (345, -17) Abs. Max (0,0)

Find the extrema of $f(x) = |x^2 - 4|$ on [-3,4]

$$f(x) = \begin{cases} x^2 - 4 & x^2 - 2 \\ -x^2 + 4 & -2 \le x \le 2 \\ x^2 - 4 & x > 2 \end{cases}$$

$$f'(x) \begin{cases} 2x & x < -2 \\ -2x & -2 \le x \le 2 \end{cases}$$

$$2x & x > 2$$

$$(x-2)(x+2)$$
 \longleftrightarrow

11-11= -7-1=-10

F(0)=0

$$f(-3) = 5$$
 Abs Max
 $f(-2) = 0$ (4,12
 $f(0) = 4$ Abs, Min
 $f(2) = 0$ Abs, Min
 $f(2) = 0$ (-2,0)
 $f(4) = 12$ (-2,0)

(the contract of the contract (-2,0)(2,0)

Abs Max

Find the extrema of $f(x) = \sin 2x + 2\cos x$ on $[0,2\pi]$

$$\beta(x) = \cos(2x) \cdot 2 + 2(-\sin x)$$

 $0 = 2(1 - 2\sin^2 x) - 2\sin x$
 $0 = -4\sin^2 x - 2\sin x + 2$
 $0 = -2(2\sin^2 x + \sin x - 1)$
 $0 = -2(2\sin^2 x + \sin x - 1)$
 $0 = -2(2\sin x - 1)(\sin x + 1)$
 $\sin x = \frac{1}{2}$
 $x = \frac{\pi}{2}$

$$f(0) = \sin 0 + 2\cos 0 = 2$$

 $f(3) = \sin 3 + 2\cos 3 = 35$
 $f(3) = \sin 3 + 2\cos 3 = 35$
 $f(3) = 0$
 $f(3n) = 2$
Alos. Min $(3n - 35)$
Alos. Max $(3n - 35)$