CURSO DE CIÊNCIA DA COMPUTAÇÃO – TCC (X) PRÉ-PROJETO () PROJETO ANO/SEMESTRE: 2020.2

ANÁLISE DO CICLO DA MARCHA DE MEMBROS INFERIORES PARA A IDENTIFICAÇÃO DE PARKINSON UTILIZANDO REDES NEURAIS RECORRENTES

Carlos Henrique Ponciano da Silva

Prof. Aurélio Faustino Hoppe - Orientador

1 INTRODUCÃO

A doença de Parkinson (DP) está definida como um distúrbio neurológico progressivo sendo caracterizado pela degeneração dos neurônios, causando a diminuição da produção de dopamina (neurotransmissor monoaminérgico) e o surgimento de uma série de sintomas ligados, principalmente, a distúrbios motores, tais como: presença de tremor de repouso, rigidez muscular, demora na execução dos movimentos e dificuldade em iniciar movimentos voluntários, além de uma instabilidade postural afetando o ciclo de locomoção (GONÇALVES et al., 2007).

Segundo Gonçalves *et al.* (2007), o diagnóstico ocorre em uma avaliação neurológica sendo analisado pelo menos três de quatro sinais: presença de tremores, rigidez nas pernas, braços e tronco, lentidão e diminuição dos movimentos e instabilidade na postura. Lima *et al.* (2009) descrevem que a marcha do paciente com DP é representada pelos movimentos reduzidos do quadril, joelho e tornozelo ocorrendo uma falta generalizada da extensão nas três articulações além da diminuição de velocidade, tendo como consequência uma redução no comprimento e na altura dos passos afetando a assimetria da marcha. Neste sentido, a Organização Mundial de Saúde (2014) afirma que 1% da população mundial acima dos 65 anos possui a DP e, com o aumento da idade, os números pioram. Já no Brasil, de acordo com o Ministério da Saúde (2014) estima-se que existem mais de 200 mil casos da doença e mais de 1,5 milhão pessoas que estão acompanhando a dura rotina dos pacientes acometidos pela doença.

De acordo com Goular et al. (2005), a avaliação funcional realizada pelo profissional da saúde raramente utiliza instrumentos tecnológicos, sendo que os disponíveis são pouco difundidos em seu meio. Para Sullivan et al. (2010), essa avaliação é abrangente e precisa ser realizada através de análises, sendo a análise observacional da marcha a mais comum dentre os profissionais da área. O método envolve uma avaliação sistemática dos padrões de movimento dos seguintes segmentos do corpo em cada ponto no ciclo da marcha: tornozelo, pé, joelho, quadril, pelve e tronco. O observador precisa determinar se um desvio está presente ou não no ciclo da marcha e anotar em um formulário a ocorrência e o momento do desvio. Sullivan et al. (2010) ainda afirma que é preciso treinamento e prática consideráveis para o desenvolvimento das habilidades de observação e olhar crítico necessário para realizar a análise e avaliação observacional da marcha, necessitando de um certo tempo para a sua conclusão.

Khan et al. (2013) destaca que existem inúmeros tratamentos que utilizam acelerômetros e sensores vestíveis para efetuar a avaliação e verificar a evolução da doença de Parkinson, sendo compostos por eletrogoniômetros e marcadores nas articulações que podem causar um certo desconforto ao paciente consumindo um tempo para instalação e configuração. Um como, por ecxemplo 6, o trabalho de Caparelli et al. (2017) que utiliza marcadores em pontos chaves para realizar a identificação do movimento. Além disso, também existem aplicações biomédicas que necessitam de um hardware específico e de alto custo, tais como: câmeras de infravermelho, eletromiógrafo de alta densidade, planímetro digital, entre outros equipamentos.

Diante deste cenário, este trabalho propõe o desenvolvimento de uma aplicação móvel não invasiva para reconhecimento da DP utilizando Redes Neurais Recorrentes (RNR), tendo como intuito auxiliar na detecção e nas avaliações cinéticos funcionais feitas pelos profissionais da área da saúde.

1.1 OBJETIVOS

O objetivo deste trabalho é criar uma aplicação para dispositivo móvel que seja capaz de identificar a DP analisando o ciclo da marcha humana de membros inferiores.

Os objetivos específicos são:

- a) identificar e extrair características dos movimentos dos membros inferiores:
- b) efetuar o reconhecimento do Parkinson utilizando redes neurais recorrentes;
- c) disponibilizar um aplicativo móvel para acompanhamento das informações extraídas e processadas;
- d) avaliar a possibilidade de adoção da aplicação por profissionais na saúde.

Comentado [MH1]: Observar que há muitas frases longas no texto (perceba que este parágrafo é uma única frase). Isto dificulta a leitura, pois cansa o leitor.

Comentado [MH2]: Será que 15 anos depois essa afirmação continua válida?

Comentado [MH3]: Não deve ser 'tratamento', pois um tratamento vai intervir e não apenas avaliar e verificar a doença.

2 TRABALHOS CORRELATOS

Neste capítulo são apresentados trabalhos com características semelhantes aos principais objetivos do estudo proposto. A seção 2.1 detalha o trabalho de Cho et al. (2009) que construíram uma aplicação para classificar pacientes que possuem a DP por meio de modelos matemáticos. Na seção 2.2 é descrito o trabalho de Caparelli et al. (2017) apontando as técnicas para reconstrução da marcha humana por meio de redes neurais. E, por fim, a seção 2.3 apresenta o trabalho de Khan et al. (2013) que desenvolveram uma solução não invasiva para detecção da DP em ambientes domésticos.

A VISION-BASED ANALYSIS SYSTEM FOR GAIT RECOGNITION IN PATIENTS WITH PARKINSON'S DISEASE

Cho et al. (2009) utilizaram a análise de marcha baseada em imagens para distinguir pacientes com Parkinson em diversas fases da doença, tais como tremor em repouso, rigidez muscular, alterações na postura e no equilíbrio. A partir disso, elaboraram um sistema não invasivo e que não gerasse desconforto ao paciente em sua aplicação.

De acordo com Cho et al. (2009) foram utilizadas técnicas de imagem holística para extrair e reduzir o espaço de recursos aplicando a Principal Component Analysis (PCA) e a Linear Discriminant Analysis (LDA). Inicialmente, os pacientes foram filmados caminhando da esquerda para a direita em um ambiente com fundo escuro e bem iluminado utilizando roupas claras para realçar o contraste com o fundo, conforme mostra a Figura

Figura 1 - Cenário de filmagem

Fonte: Cho et al. (2009).

Cho et al. (2009) subdividiram o modelo proposto em três etapas: pré-processamento, treinamento e reconhecimento. Na etapa de pré-processamento é aplicado uma binarização vertical para extrair os limites superiores e inferiores da silhueta em relação ao ambiente. Em seguida, iniciou-se a etapa de treinamento aplicando as técnicas de PCA e LDA. Por fim, na etapa de reconhecimento, aplicou-se o Minimum Distance Classifier (MDC) para verificar o nível de precisão dos resultados obtidos, estabelecendo se o paciente possui ou não a DP. A Figura 2 demonstra o resultado de cada uma das etapas do modelo.

Fonte: Cho et al. (2009).

A partir da Figura 2 pode-se perceber as distribuições das componentes do PCA (Figura 2 item A) e o coeficiente LDA (Figura 2 item B) ilustrando os valores classificados a partir da silhueta de pacientes normais e com DP. Na Figura 2, os pontos em o vermelho são os pacientes normais e, em verde, pacientes com DP. Cho et al. (2009) descrevem que os coeficientes do PCA de diferentes grupos de vetores de silhueta sofreram várias sobreposições para qualquer direção, tanto para a vertical quanto para a horizontal. Mas, por outro lado, os coeficientes LDA ficaram claramente separadoas e, ainda complementam que, embora tenham apenas mostrado a dispersão usando dois coeficientes, foram adotados 280 durante o treinamento do modelo do LDA.

Cho et al. (2009) realizaram os testes em um cenário com 14 pacientes, sendo sete com Parkinson e sete normais. Em cada teste foram gravados vídeos com duração aproximada de três minutos, sendo separados em 15 frames. A partir deles, foram analisadas as silhuetas humanas durante a caminhada, extraindo características intrínsecas, obtendo uma taxa de acerto acumulada de 90% a partir da avaliação do MDC. Por fim, os autores concluem que a utilização do LDA foi mais eficaz do que a utilização do PCA pois realizou a separação dos pacientes de forma mais precisa. Além disso, destacam como limitações a quantidade de pacientes analisados pois, se tivessem mais pacientes, o índice de precisão de acerto poderia ser maior.

2.2 RECONSTRUÇÃO DE PARÂMETROS BIOMECÂNICOS DA MARCHA POR MEIO DE CICLOGRAMAS E REDES NEURAIS ARTIFICIAIS

Caparelli *et al.* (2017) utilizaram ciclogramas para o desenvolvimento de um método preditivo na cinemática da marcha humana, com base em dados reais coletados durante a execução da tarefa motora. Além disso, tinham como intuito a elaboração de um modelo usando redes neurais para prever futuras posições no fluxo da marcha

Segundo Caparelli *et al.* (2017), adotou-se a convenção internacional para descrever a trajetória dos membros inferiores, utilizando-se de marcadores para calcular a movimentação. Os marcadores foram colocados no lado direito do trocânter maior (quadril), do epicôndilo lateral (joelho) e do maléolo lateral (tornozelo), conforme mostra a Figura 3. Segundo os autores, eles facilitam o processo de extração dos ângulos para serem utilizados como entrada da rede neural.

Figura 3 - Posição dos marcadores no hemicorpo direto

Fonte: Caparelli et al. (2017).

Caparelli et al. (2017) subdividiram o processo em três etapas: extração de dados, treinamento e previsão. Na etapa de extração de dados foram solicitados aos voluntários alguns dados pessoais, como: altura, peso e a idade. Posteriormente, os voluntários andaram sobre uma esteira por três minutos em uma inclinação de cinco graus para extração dos ângulos do quadril e do joelho. Em seguida iniciou-se a etapa de treinamento do modelo em uma rede neural com a arquitetura Feed Forward Multi-Layer Perceptron e com retropropagação do erro através do algoritmo Levenberg-Marquadt. Os pesos iniciais foram gerados aleatoriamente, utilizando-se do Mean Squared Error como avaliador de performance para finalizar o treinamento. Por fim, na etapa de previsão foram analisados os histogramas dos inúmeros dados obtidos pela participação de 40 voluntários, conforme mostra a Figura 4.

Figura 4 – Ciclograma resultante da plotagem dos ângulos do quadril em relação aos do joelho

Fonte: Caparelli et al. (2017).

Segundo Caparelli *et al.* (2017), a Figura 4 representa os valores extraídos durante a etapa de extração de dados, demonstrando a relação do ângulo joelho (eixo Y) com o ângulo do quadril (eixo X) formando a rotação do ciclo da marcha. A partir dos ciclogramas gerados na etapa de previsão, os autores notaram que seria possível prever os próximos ângulos da movimentação.

Caparelli *et al.* (2017) concluíram que o modelo proposto possui grande potencial e que seu uso facilita o processo de análise visto que o ciclo da marcha possui diversas características. Como trabalhos futuros, os autores sugerem uma utilização maior de ciclogramas. Além disso, também apontam a necessidade da realização de testes com mais pacientes e durante um período maior para comprovar a eficiência do modelo/pesquisa.

2.3 MOTION CUE ANALYSIS FOR PARKINSONIAN GAIT RECOGNITION

Khan et al. (2013) desenvolveram um modelo baseado em visão computacional para detecção de comprometimento da marcha em pacientes com DP para ambientes domésticos. Os autores se utilizaram de técnicas de processamento de imagem para extração da silhueta do paciente no qual foi construído um esqueleto computadorizado para extração de sinais de movimento. Inicialmente, os pacientes foram filmados caminhando por um ambiente com o fundo escuro bem iluminado e com roupas claras para realçar o contraste com o fundo, conforme mostra a Figura 5.

Figura 5 – Análise dos movimentos

Fonte: Khan et al. (2013).

Khan et al. (2013) subdividiram o processo em cinco etapas: subtração do fundo, isolamento da silhueta, construção do modelo esquelético, extração dos dados e previsão. Na etapa de subtração do fundo são separados os tons de escuro do fundo do cenário com as cores do paciente. Em seguida, obtém-se a silhueta usando um retângulo delimitador por meio das coordenadas dos vértices. Tendo a silhueta mapeada, inicia-se o processo de construção do modelo usando os valores de altura e a largura, sendo que os segmentos de cabeça, tronco e pernas são estimados dividindo-se o retângulo delimitador nas proporções anatômicas. Com isso, os sinais de movimento são calculados a partir do esqueleto da silhueta. Já a postura é estimada calculando o ângulo de inclinação. E, por fim, a partir dos dados calculados é possível efetuar uma correspondência dos padrões e distinguir se a imagem se trata de um paciente de DP ou normal, como pode ser visto nos gráficos da Figura 6. Nela, pode-se perceber a diferença de quantidade de passos entre um paciente normal (Figura 6 item A) e um paciente com a DP (Figura 6 item B), no qual em um espaço de tempo (frames), o paciente com DP, dáa quatro passos contra apenas um do paciente normal.

Fonte: Khan et al. (2013).

Khan et al. $(2013)_7$ realizaram os testes em três pacientes que apresentavam a DP e quatro normais, obtendo 100% de precisão. No entanto, os autores apontam a necessidade da construção de uma base de dados

maior para aferir a eficácia do algoritmo, assim como, também sugerem a utilizam de diferentes algoritmos de aprendizado de máquina para avaliar <u>a</u> capacidade de pontuar o comprometimento geral da marcha com base nas suas características, como: rigidez muscular, alterações na postura, etc.

3 PROPOSTA

A seguir é apresentada a justificativa para o desenvolvimento desse trabalho, os principais requisitos e a metodologia de desenvolvimento que será utilizada. Também são relacionados os assuntos e as fontes bibliográficas que irão fundamentar o estudo proposto.

3.1 JUSTIFICATIVA

No Quadro 1 é apresentado um comparativo entre os trabalhos correlatos. As linhas representam as características e as colunas os trabalhos.

Quadro 1 - Comparativo entre os trabalhos correlatos

Correlatos Características	Cho et al. (2009)	Caparelli et al. (2017)	Khan et al. (2013)
Patologias de identificação	Parkinson	Doenças que alteram o ciclo da marcha	Parkinson
Objetivo	Identificação	Reconstrução da marcha	Identificação
Característica do método	Não Invasivo	Invasivo	Não Invasivo
Membros de avaliação	Inferiores e Superiores	Inferiores	Inferiores e Superiores
Técnica de análise utilizada	PCA e LDA	Redes Neurais	Processamento de imagem
Número de pacientes avaliados	14	40	7
Taxa de acerto	90%	=	100%
Dispositivo de processamento	Computador	Computador	Celular

Fonte: elaborado pelo autor.

Conforme pode ser observado no Quadro 1, os trabalhos de Cho et al. (2009) e Khan et al. (2013) realizam a identificação da DP por meio dos membros inferiores e superiores, enquanto Caparelli et al. (2017) visam a reconstrução da marcha, para detecções de anomalias, utilizando os membros inferiores. Nenhum dos trabalhos define a idade do público alvo ou estágio da doença, apenas apontam que os participantes dos testes possuíam idades entre 30 a 50 anos.

A ferramenta de Caparelli *et al.* (2017) foi projetada para fazer a identificação do movimento dos membros inferiores a partir de marcadores colocados em pontos chaves do corpo, tornando-se um método invasivo e, ao mesmo tempo, podendo gerar desconforto nos pacientes ao utilizá-los. Já Cho *et al.* (2009) e Khan *et al.* (2013) optaram por técnicas de extração de características para não ser invasivo ao paciente. Além disso, Khan *et al.* (2013) elaboraram uma aplicação móvel para que profissionais ou comunidade tenham a detecção da DP de forma mais rápida, enquanto Cho *et al.* (2009) e Caparelli *et al.* (2017) desenvolveram seus modelos apenas para computadores.

Cho et al. (2009) analisaram a utilização do PCA e do LDA para a detecção da DP e concluíram que o LDA foi mais assertivo na separação dos vetores das silhuetas dos pacientes em relação ao PCA. Já Caparelli et al. (2017) construíram um modelo utilizando redes neurais para a reconstrução e predições dos ângulos no ciclo da marcha_e. Khan et al. (2013); aplicaram várias técnicas de processamento de imagem para extração dos dados durante o ciclo da marcha para, posteriormente, efetuar os cálculos e definir os resultados.

Khan et al. (2013) obtiveram uma taxa de acerto de 100% ao avaliarem apenas sete pacientes. Já Cho et al. (2009) alcançaram 90% de acerto em testes com quatorze pacientes. Diante deste cenário, conclui-se que todos os projetos realizam a identificações de doenças relacionadas a marcha humana, porém nem todos possuem precisão comprovada ou facilidade de uso.

Desta forma, este trabalho mostra-se relevante, pois pretende desenvolver uma aplicação para detectar a DP por meio de técnicas de Redes Neurais Recorrentes (RNR) com entrada de dados em tempo real. Ela será construída em uma infraestrutura de microsserviços com ferramentas de mensagerias para prover aos usuários uma resposta rápida e, ao mesmo tempo, tendo uma disponibilidade móvel para atingir a maioria dos usuários. Além disso, será elaborado uma base de dados para treinamento que conterá imagens/vídeos de pacientes com a DP para

Comentado [MH4]: Tem certeza? O que é introduzido no organismo do paciente?

Comentado [MH5]: Essa conclusão é dos autores ou sua? Não me parece que a colocação de marcadores atinja estes níveis de ação. aferir a precisão da RNR e, consecutivamente, provendo confiabilidade em relação ao seu uso em avaliações funcionais realizadas por profissionais da saúde. Outro ponto positivo é a utilização deste projeto em âmbito acadêmico, no qual a partir dos dados extraídos, poderá auxiliar estudantes e profissionais inexperientes a ter um olhar crítico dos principais pontos a serem avaliados na marcha parkinsoniana. Contudo, acredita-se que a identificação e a avalição da DP será mais rápida e precisa, auxiliando na qualidade e resultados das informações fornecidas para os profissionais e a comunidade envolvida com pacientes acometidos pela DP.

3.2 REQUISITOS PRINCIPAIS DO PROBLEMA A SER TRABALHADO

Os requisitos do trabalho estão divididos em duas partes: requisitos da aplicação móvel e requisitos do módulo de reconhecimento.

A aplicação móvel deverá:

- a) manter o cadastro de pacientes (Requisito Funcional RF);
- b) permitir que o usuário possa capturar ou utilizar vídeos de pacientes a partir de um dispositivo Android (RF):
- c) permitir que o usuário possa acompanhar a evolução do paciente ao longo do tempo (RF);
- d) ser desenvolvido para a plataforma Android (Requisito Não Funcional RNF);
- e) utilizar a linguagem Flutter para o desenvolvimento (RNF);
- f) utilizar o ambiente de desenvolvimento Visual Studio Code (RNF);
- g) utilizar o banco de dados SQLite para persistir os dados offline (RNF).

O módulo de reconhecimento deverá:

- realizar o realce e melhoramento de ruídos, distorções e problemas de iluminação utilizando técnicas de processamento de imagens (RF);
- b) efetuar o reconhecimento da DP a partir dos membros inferiores utilizando redes neurais recorrentes (RF):
- c) aprimorar a RNR a partir de novos vídeos cadastros pelos usuários (RNF);
- d) utilizar as bibliotecas OpenCV para o processamento de imagens e o Tensorflow para a construção da rede neural (RNF);
- utilizar a linguagem Python para desenvolvimento, utilizando a biblioteca Flask para elaborar o servidor REST (RNF);
- f) utilizar um banco de dados No-SQL (RNF);
- g) utilizar a arquitetura de microsserviços (RNF);
- h) utilizar a ferramenta RabbitMQ para troca de mensagens (RNF).

3.3 METODOLOGIA

O trabalho será desenvolvido observando as seguintes etapas:

- a) levantamento bibliográfico: pesquisar trabalhos relacionados e estudar sobre o ciclo da marcha, Parkinson, redes neuras recorrentes e trabalhos correlatos;
- elicitação de requisitos da aplicação móvel: baseando-se nas informações da etapa anterior, reavaliar os requisitos propostos para a aplicação;
- c) especificação: utilizar a ferramenta de diagramação Enterprise Architect (EA) para elaborar os diagramas de caso de uso e de atividades de acordo com a Unified Modeling Language (UML);
- d) implementação: a partir do item (c) implementar a aplicação móvel para a plataforma Android utilizando a linguagem Flutter;
- e) testes da aplicação móvel: elaborar testes para validar a usabilidade da aplicação junto aos profissionais da área da saúde;
 f) coleta e montagem da base de dados: coletar vídeos de pacientes normais e com Parkinson e montar
- uma base de dados obtidas/cedidas junto a projetos já existentes na comunidade acadêmicas; g) preparação das imagens: realizar o realce e melhoramento das imagens utilizando o OpenCV.
- Posteriormente subdividir as imagens em dois grupos: imagens de treinamento e de validação.

 definição da arquitetura da rede neural: definir a arquitetura da rede neural mais aderente ao processo
- de reconhecimento da DP;

 i) desenvolvimento do modelo de reconhecimento do Parkinson: a partir do item (h) realizar a
- desenvolvimento do modelo de reconhecimento do Parkinson: a partir do item (h), realizar a implementação da arquitetura da rede neural utilizando a biblioteca Tensorflow;
- j) testes do modelo de reconhecimento: paralelamente à implementação, realizar testes com base no banco de imagens obtido para verificar a eficiência e assertividade do modelo elaborado utilizando a validação cruzada assim como a comprovação dos resultados junto aos profissionais da saúde.

Comentado [MH6]: Enviar vídeos?

Receber respostas?

Como o módulo de reconhecimento irá aprimorar a RNR se no app não há entrada de dados a respeito da doença ou um feedback a respeito do vídeo?

Comentado [MH7]: Não precisa de autorização do comitê de ética?

Comentado [MH8]: Curiosidade: como distinguir entre pacientes com DP e com problemas ortopédicos?

As etapas serão realizadas nos períodos relacionados no Quadro 2.

Quadro 2 - Cronograma de atividades a serem realizadas

Quadro 2 Cronograma	uc a	UVI	uau	cs a		CIII	rcai	ızaı	aus									
			20	20								20	21					
	01	ut.	no	ov.	de	ez.	ja	n.	fe	v.	m	ar.	ab	or.	maio		ju	n.
etapas / quinzenas	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
levantamento bibliográfico																		
elicitação de requisitos da aplicação móvel																		
especificação																		
implementação																		
testes da aplicação móvel																		
coleta e montagem da base de imagens																		
preparação das imagens																		
definição da arquitetura da rede neural																		
elaboração do modelo de reconhecimento do Parkinson																		
testes do modelo de reconhecimento																		

Fonte: elaborado pelo autor.

4 REVISÃO BIBLIOGRÁFICA

Este capítulo descreve brevemente sobre os assuntos que fundamentarão o estudo a ser realizado: ciclo da marcha, doença de Parkinson e redes neurais recorrentes.

Segundo Vaughan *et al.* (1992), o ciclo da marcha humana possui duas fases essenciais: fase de apoio e fase de balanço. A. a primeira está dividida no apoio duplo e apoio simples. No apoio duplo, as duas pernas encontram-se em no solo, dividindo o peso do corpo igualmente; no apoio simples, apenas uma perna está em contato. Na fase de balanço, essa perna que estava em contato com solo agora está se movimentando, sendo suportada apenas pelo quadril.

Caparelli et al. (2017) afirmam que durante os movimentos do ciclo o joelho apresenta diversas funções: suporte do peso, amortecimento de choque, aumento da passada e movimento do pé durante o balanço. Os seres humanos variam a postura dessa articulação conforme suas necessidades e deficiências sendo que, após o início do apoio, o joelho flete rapidamente durante a fase de resposta a carga, ocorrendo uma contração do quadríceps para estabilizar esse movimento e, quando essa junta se encontra flexionada, atua para reduzir a intensidade do choque.

Souza *et al.* (2011) definem que a DP é uma afecção crônica, degenerativa e progressiva do sistema nervoso central. Ela, que consiste na morte dos neurônios produtores de dopamina da substância negra, causando diminuição das células produtoras de dopamina na via negroestriatal e dos neurônios contendo neuromelanina no tronco cerebral, principalmente na camada ventral da parte compacta da substância negra e do lócus cerúleos. Sendo caracterizado por lsto gera distúrbios motores, disfunções posturais e cognitivaes. Esses referidos comprometimentos manifestam-se inicialmente de forma motora, onde são chamados de sinais cardinais da DP.

Segundo Souza et al. (2011) estes sinais são descritos como:

- rigidez: apresenta-se de forma desigual em sua distribuição, afetando primeiramente os músculos proximais, especialmente ombros e pescoço, progredindo para os músculos da face, membros superiores e inferiores:
- tremor: sintoma inicial da DP, é observado em condições de repouso que diminui ou desaparece com o início de alguma ação, podendo aparecer novamente quando o paciente mantiver uma ação ou postura mais prolongada;
- bradicinesia: resultado da ausência de dopamina no estriado, levando a um desequilíbrio entre os sistemas inibitórios e excitatórios, que leva a uma lentidão dos movimentos, especialmente os automáticos, havendo uma pobreza geral da movimentação e queixa frequente de fraqueza;
- d) postura e equilíbrio: perda de reflexos posturais. Os pacientes assumem uma postura muito característica com a cabeça e o tronco fletidos e tem muita dificuldade de ajustar a postura quando se inclinam ou quando há súbitos deslocamentos do corpo, o que favorece a ocorrência de quedas. Ocorrem também alterações na marcha, que se torna em bloco com características de festinada (passos curtos, rápidos e arrastados, sem a participação dos movimentos dos braços);
- e) cognitivo: dificuldade para concentrar a atenção e lembrar-se de fatos recentes, mas nem todos apresentam significativas alterações da cognição. S. sabe-se, também, que -a -dopamina -é- um importante transmissor relacionado às funções executivas, -aà -cognição—_(atenção,—_memória, julgamento, inteligência) e emoção (PRADO et al., 2008).

Segundo Matsumoto *et al.* (2019), a RNR tem seu objetivo baseado no comportamento do cérebro humano de manter memórias do passado no atual, ou seja, um dado de entrada anterior servir para entendimento de uma nova entrada de dados. A partir disto, pode ser utilizada para lidar com sequências de entradas e saídas que tem relação temporal entre si em um comprimento variável.

Ma (2016) afirma que a RNR pode ter diversas arquiteturas e formas de implementação que interferem nos dados de entrada e no seu funcionamento. A algumas dessas arquiteturas são:

- a) modelo de memória associativa bidirecional: variação do modelo Hopfield que armazena dados associativos em um vetor efetuando a bi-direcionalidade por meio de uma matriz e sua transposição. Possuindo normalmente duas camadas, sendo que, qualquer uma delas pode ser acionada como uma entrada ou como uma saída;
- b) modelo de memória de longo curto prazo: difere-se das redes neurais feedforward pois possuem conexões de feedback, não processando apenas dados unitários (imagens), mas também sequências de dados (fala ou vídeo). Essa arquitetura é composta por um neurônio que tem conhecimento das entradas antigas em um intervalo de tempo e mais três neurônios que regulam o fluxo de informação para dentro e fora da estrutura;
- modelo de estado de eco: variação do modelo Spiking que possui uma camada oculta conectada em múltiplas direções, sendo que, os únicos pesos que são possíveis alterar são os de saída.

REFERÊNCIAS

CAPARELLI, Thiago Bruno *et al.* **Reconstrução de Parâmetros Biomecânicos da Marcha por meio de Ciclogramas e Redes Neurais Artificiais**. 2017. Tese de doutorado na área de concentração Processamento da Informação, Universidade Federal de Uberlândia, Uberlândia. Disponível em:

<https://repositorio.ufu.br/bitstream/123456789/20879/3/Reconstru%C3%A7%C3%A3oPar%C3%A2metrosBiomec%C3%A2nicos.pdf >. Acesso em: 6 ago. 2020.

CHO, Chien-Wen *et al.* A vision-based analysis system for gait recognition in patients with parkinson's disease. 2009. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0957417408006003?via%3Dihub>. Acesso em: 22 ago. 2020.

GONÇALVES, Lucia Hisako Takase *et al.* **Pacientes portadores da doença de Parkinson: significado de suas vivências.** 2007. Disponível em: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-21002007000100011. Acesso em: 26 set 2020

KHAN, Taha *et al.* **Motion cue analysis for parkinsonian gait recognition**. 2013. Disponível em: https://pubmed.ncbi.nlm.nih.gov/23407764/>. Acesso em: 26 set. 2020.

LIMA, Maria do Carmo *et al.* **Doença de Parkinson: alterações funcionais e potencial aplicação do método Pilates**. 2009. Disponível em: https://ggaging.com/details/317/pt-BR. Acesso em: 26 set. 2020.

 $MA, Jianqiang. \textbf{All of Recurrent Neural Networks}. 2016. \ Disponível em: < https://medium.com/@jianqiangma/all-about-recurrent-neural-networks-9e5ae2936f6e>. Acesso em: 8 out. 2020.$

MATSUMOTO, Fernando *et al.* **Redes Neurais | Redes Neurais Recorrentes**. 2019. Disponível em: https://medium.com/turing-talks/turing-talks-26-modelos-de-predi%C3%A7%C3%A3o-redes-neurais-recorrentes-439198e9ecf3>. Acesso em: 8 out. 2020.

PRADO, Ana Lúcia Cervi *et al.* **Análise das manifestações motoras, cognitivas e depressivas em pacientes com doenças de Parkinson**. 2008. Disponível em: https://periodicos.unifesp.br/index.php/neurociencias/article/view/8657/6191. Acesso em: 8 out. 2020.

SOUZA, Cheylla Fabricia *et al.* A Doença de Parkinson e o Processo de Envelhecimento Motor: Uma Revisão de Literatura. 2011. Disponível em:

http://revistaneurociencias.com.br/edicoes/2011/RN1904/revisao%2019%2004/570%20revisao.pdf. Acesso em: 3 out. 2020.

SULLIVAN, Susan et~al. Fisioterapia Avaliação e Tratamento 5° Edição. 2010. p. 349-350.

VAUGHAN, Christopher *et al.* **Dynamics of human gait**. 1992. Disponível em: https://www.semanticscholar.org/paper/Dynamics-of-human-gait-Vaughan-Davis/7dbae8ef886257138624fe82399caae7573fc60b . Acesso em: 26 set. 2020.

ASSINATURAS

(Atenção: todas as folhas devem estar rubricadas)

Assinatura do(a) Aluno(a):	-
Assinatura do(a) Orientador(a):	
Assinatura do(a) Coorientador(a) (se houver):	-
Observações do orientador em relação a itens não atendidos do pré-projeto (se houver):	

FORMULÁRIO DE AVALIAÇÃO – PROFESSOR AVALIADOR

Acadêmico(a): Carlos Henrique Ponciano da Silva	
---	--

Avaliador(a): Marcel Hugo

ASPEC	CTOS	AVALIADOS¹	atende	atende	oarcialmente	não atende
	1.	INTRODUÇÃO	X		-	
		O tema de pesquisa está devidamente contextualizado/delimitado?				
		O problema está claramente formulado?	<u>X</u>			
	1.	OBJETIVOS	X			
		O objetivo principal está claramente definido e é passível de ser alcançado?				
		Os objetivos específicos são coerentes com o objetivo principal?	<u>X</u>			
	2.	TRABALHOS CORRELATOS	<u>X</u>			
		$S\"{a}o~apresentados~trabalhos~correlatos,~bem~como~descritas~as~principais~funcionalidades~e~os~pontos~fortes~e~fracos?$				
	3.	JUSTIFICATIVA	<u>X</u>			
		Foi apresentado e discutido um quadro relacionando os trabalhos correlatos e suas principais funcionalidades com a proposta apresentada?				
		São apresentados argumentos científicos, técnicos ou metodológicos que justificam a proposta?		<u>X</u>		
		São apresentadas as contribuições teóricas, práticas ou sociais que justificam a proposta?	X			
	4.	REQUISITOS PRINCIPAIS DO PROBLEMA A SER TRABALHADO		<u>X</u>		
		Os requisitos funcionais e não funcionais foram claramente descritos?				
	5.	METODOLOGIA	X			
		Foram relacionadas todas as etapas necessárias para o desenvolvimento do TCC?				
SC		Os métodos, recursos e o cronograma estão devidamente apresentados e são compatíveis com a metodologia proposta?	X			
ASPECTOS TÉCNICOS	6.	REVISÃO BIBLIOGRÁFICA (atenção para a diferença de conteúdo entre projeto e préprojeto)	X			
T SC		Os assuntos apresentados são suficientes e têm relação com o tema do TCC?				
ECT		As referências contemplam adequadamente os assuntos abordados (são indicadas obras	<u>X</u>			
ASP		atualizadas e as mais importantes da área)?				
SOS	7.	LINGUAGEM USADA (redação)	<u>X</u>			
OS OLÓGIC		O texto completo é coerente e redigido corretamente em língua portuguesa, usando linguagem formal/científica?				
ASPECTOS METODOLÓGICOS		A exposição do assunto é ordenada (as ideias estão bem encadeadas e a linguagem utilizada é clara)?		X		

$PARECER-PROFESSOR\ AVALIADOR:$

 $^{^1}$ Quando o avaliador marcar algum item como atende parcialmente ou não atende, deve obrigatoriamente indicar os motivos no texto, para que o aluno saiba o porquê da avaliação.

(PRFFNCHFR	APENAS NO	PRO IFTO)

	<u> </u>			
O projeto de TCC ser de	everá ser revisado, isto é, necessita de compl	lemen	entação, se:	
qualquer um dos ite	ens tiver resposta NÃO ATENDE;			
• pelo menos 5 (cinco	o) tiverem resposta ATENDE PARCIALMI	ENTE	TE.	
PARECER: ()	APROVADO	() REPROVADO	
Assinatura:			Data:	

 $^{^1}$ Quando o avaliador marcar algum item como atende parcialmente ou não atende, deve obrigatoriamente indicar os motivos no texto, para que o aluno saiba o porquê da avaliação.

CURSO DE CIÊNCIA DA COMPUTAÇÃO – TCC (X) PRÉ-PROJETO () PROJETO ANO/SEMESTRE: 2020.2

ANÁLISE DO CICLO DA MARCHA DE MEMBROS INFERIORES PARA A IDENTIFICAÇÃO DE PARKINSON UTILIZANDO REDES NEURAIS RECORRENTES

Carlos Henrique Ponciano da Silva

Prof. Aurélio Faustino Hoppe - Orientador

1 INTRODUCÃO

A Ddoença de Parkinson (DP) está definida como um distúrbio neurológico progressivo sendo caracterizado pela degeneração dos neurônios, causando a diminuição da produção de dopamina (neurotransmissor monoaminérgico) e o surgimento de uma série de sintomas ligados, principalmente, a distúrbios motores, tais como: presença de tremor de repouso, rigidez muscular, demora na execução dos movimentos e dificuldade em iniciar movimentos voluntários, além de uma instabilidade postural afetando o ciclo de locomoção (GONÇALVES et al., 2007).

Segundo Gonçalves *et al.* (2007), o diagnóstico ocorre em uma avaliação neurológica sendo analisado pelo menos três de quatro sinais: presença de tremores, rigidez nas pernas, braços e tronco, lentidão e diminuição dos movimentos e instabilidade na postura. Lima *et al.* (2009) descrevem que a marcha do paciente com DP é representada pelos movimentos reduzidos do quadril, joelho e tornozelo ocorrendo uma falta generalizada da extensão nas três articulações além da diminuição de velocidade, tendo como consequência uma redução no comprimento e na altura dos passos afetando a assimetria da marcha. Neste sentido, a Organização Mundial de Saúde (2014) afirma que 1% da população mundial acima dos 65 anos possui a DP e, com o aumento da idade, os números pioram. Já no Brasil, de acordo com o Ministério da Saúde (2014) estima-se que existem mais de 200 mil casos da doença e mais de 1,5 milhão pessoas que estão acompanhando a dura rotina dos pacientes acometidos pela doença.

De acordo com Goular et al. (2005), a avaliação funcional realizada pelo profissional da saúde raramente utiliza instrumentos tecnológicos, sendo que os disponíveis são pouco difundidos em seu meio. Para Sullivan et al. (2010), essa avaliação é abrangente e precisa ser realizada através de análises, sendo a análise observacional da marcha a mais comum dentre os profissionais da área. O método envolve uma avaliação sistemática dos padrões de movimento dos seguintes segmentos do corpo em cada ponto no ciclo da marcha: tornozelo, pé, joelho, quadril, pelve e tronco. O observador precisa determinar se um desvio está presente ou não no ciclo da marcha e anotar em um formulário a ocorrência e o momento do desvio. Sullivan et al. (2010) ainda afirma que é preciso treinamento e prática consideráveis para o desenvolvimento das habilidades de observação e olhar crítico necessário para realizar a análise e avaliação observacional da marcha, necessitando de um certo tempo para a sua conclusão.

Khan et al. (2013) destaca que existem inúmeros tratamentos que utilizam acelerômetros e sensores vestíveis para efetuar a avaliação e verificar a evolução da doença de Parkinson, sendo compostos por eletrogoniômetros e marcadores nas articulações que podem causar um certo desconforto ao paciente consumindo um tempo para instalação e configuração como, por exemplo, o trabalho de Caparelli et al. (2017) que utiliza marcadores em pontos chaves para realizar a identificação do movimento. Além disso, também existem aplicações biomédicas que necessitam de um hardware específico e de alto custo, tais como: câmeras de infravermelho, eletromiógrafo de alta densidade, planímetro digital, entre outros equipamentos.

Diante deste cenário, este trabalho propõe o desenvolvimento de uma aplicação móvel não invasiva para reconhecimento da DP utilizando Redes Neurais Recorrentes (RNR), tendo como intuito auxiliar na detecção e nas avaliações cinéticos funcionais feitas pelos profissionais da área da saúde.

1.1 OBJETIVOS

O objetivo deste trabalho é criar uma aplicação para dispositivo móvel que seja capaz de identificar a DP analisando o ciclo da marcha humana de membros inferiores.

Os objetivos específicos são:

- a) identificar e extrair características dos movimentos dos membros inferiores;
- b) efetuar o reconhecimento da doença deo Parkinson utilizando redes-Redes Nneurais rRecorrentes;
- c) disponibilizar um aplicativo móvel para acompanhamento das informações extraídas e processadas;
- d) avaliar a possibilidade de adoção da aplicação por profissionais na saúde.

Comentado [AS1]: Frase longa. Rever. Não se faz parágrafo com uma única frase.

Comentado [AS2]: Frase longa. Rever.

Comentado [AS3]: Não se faz parágrafo com uma única frase.

2 TRABALHOS CORRELATOS

Neste capítulo são apresentados trabalhos com características semelhantes aos principais objetivos do estudo proposto. A seção 2.1 detalha o trabalho de Cho et al. (2009) que construíram uma aplicação para classificar pacientes que possuem a DP por meio de modelos matemáticos. Na seção 2.2 é descrito o trabalho de Caparelli et al. (2017) apontando as técnicas para reconstrução da marcha humana por meio de redes neurais. E, por fim, a seção 2.3 apresenta o trabalho de Khan et al. (2013) que desenvolveram uma solução não invasiva para detecção da DP em ambientes domésticos.

2.1 A VISION-BASED ANALYSIS SYSTEM FOR GAIT RECOGNITION IN PATIENTS WITH PARKINSON'S DISEASE

Cho et al. (2009) utilizaram a análise de marcha baseada em imagens para distinguir pacientes com Parkinson em diversas fases da doença, tais como tremor em repouso, rigidez muscular, alterações na postura e no equilíbrio. A partir disso, os autores elaboraram um sistema não invasivo e que não gerasse desconforto ao paciente em sua aplicação.

De acordo com Cho *et al.* (2009) foram utilizadas técnicas de imagem holística para extrair e reduzir o espaço de recursos aplicando a *Principal Component Analysis* (PCA) e a *Linear Discriminant Analysis* (LDA). Inicialmente, os pacientes foram filmados caminhando da esquerda para a direita em um ambiente com fundo escuro e bem iluminado utilizando roupas claras para realçar o contraste com o fundo, conforme mostra a Figura

Figura 1 – Cenário de filmagem

Fonte: Cho et al. (2009).

Cho et al. (2009) subdividiram o modelo proposto em três etapas: pré-processamento, treinamento e reconhecimento. Na etapa de pré-processamento é aplicado uma binarização vertical para extrair os limites superiores e inferiores da silhueta em relação ao ambiente. Em seguida, iniciou-se a etapa de treinamento aplicando as técnicas de PCA e LDA. Por fim, na etapa de reconhecimento, aplicou-se o Minimum Distance Classifier (MDC) para verificar o nível de precisão dos resultados obtidos, estabelecendo se o paciente possui ou não a DP. A Figura 2 demonstra o resultado de cada uma das etapas do modelo.

Figura 2 - Resultados do modelo

Fonte: Cho et al. (2009).

A partir da Figura 2 pode-se perceber as distribuições das componentes do PCA (Figura 2 item A) e o coeficiente LDA (Figura 2 item B) ilustrando os valores classificados a partir da silhueta de pacientes normais e com DP. Na Figura 2, o vermelho são os pacientes normais e, em verde, pacientes com DP. Cho *et al.* (2009) descrevem que os coeficientes do PCA de diferentes grupos de vetores de silhueta sofreram várias sobreposições para qualquer direção, tanto para a vertical quanto para a horizontal. Mas, por outro lado, os coeficientes LDA

Comentado [AS4]: Coloque o recurso de referência cruzada para figura/quadro/tabela. Faça isso em todo o texto.

Comentado [AS5]: O que significa?

ficaram claramente separadas e, ainda complementam que, embora tenham apenas mostrado a dispersão usando dois coeficientes, foram adotados 280 durante o treinamento do modelo do LDA.

Cho et al. (2009) realizaram os testes em um cenário com 14 pacientes, sendo sete com Parkinson e sete normais. Em cada teste foram gravados vídeos com duração aproximada de três minutos, sendo separados em 15 frames. A partir deles, foram analisadas as silhuetas humanas durante a caminhada, extraindo características intrínsecas, obtendo uma taxa de acerto acumulada de 90% a partir da avaliação do MDC. Por fim, os autores concluem que a utilização do LDA foi mais eficaz do que a utilização do PCA pois realizou a separação dos pacientes de forma mais precisa. Além disso, destacam como limitações a quantidade de pacientes analisados pois, se tivessem mais pacientes, o índice de precisão de acerto poderia ser maior.

2.2 RECONSTRUÇÃO DE PARÂMETROS BIOMECÂNICOS DA MARCHA POR MEIO DE CICLOGRAMAS E REDES NEURAIS ARTIFICIAIS

Caparelli *et al.* (2017) utilizaram ciclogramas para o desenvolvimento de um método preditivo na cinemática da marcha humana, com base em dados reais coletados durante a execução da tarefa motora. Além disso, tinham como intuito a elaboração de um modelo usando redes neurais para prever futuras posições no fluxo da marcha

Segundo Caparelli *et al.* (2017), adotou-se a convenção internacional para descrever a trajetória dos membros inferiores, utilizando-se de marcadores para calcular a movimentação. Os marcadores foram colocados no lado direito do trocânter maior (quadril), do epicôndilo lateral (joelho) e do maléolo lateral (tornozelo), conforme mostra a Figura 3. Segundo os autores, eles facilitam o processo de extração dos ângulos para serem utilizados como entrada da rede neural artificial.

Figura 3 - Posição dos marcadores no hemicorpo direto

Fonte: Caparelli et al. (2017).

Caparelli et al. (2017) subdividiram o processo em três etapas: extração de dados, treinamento e previsão. Na etapa de extração de dados foram solicitados aos voluntários alguns dados pessoais, como: altura, peso e a idade. Posteriormente, os voluntários andaram sobre uma esteira por três minutos em uma inclinação de cinco graus para extração dos ângulos do quadril e do joelho. Em seguida iniciou-se a etapa de treinamento do modelo em uma rede neural artificial com a arquitetura Feed Forward Multi-Layer Perceptron e com retropropagação do erro através do algoritmo Levenberg-Marquadt. Os pesos iniciais foram gerados aleatoriamente, utilizando-se do Mean Squared Error como avaliador de performance para finalizar o treinamento. Por fim, na etapa de previsão foram analisados os histogramas dos inúmeros dados obtidos pela participação de 40 voluntários, conforme mostra a Figura 4.

Figura 4 - Ciclograma resultante da plotagem dos ângulos do quadril em relação aos do joelho

Fonte: Caparelli et al. (2017).

Comentado [AS6]: O que?

Segundo Caparelli *et al.* (2017), a Figura 4 representa os valores extraídos durante a etapa de extração de dados, demonstrando a relação do ângulo joelho (eixo Y) com o ângulo do quadril (eixo X) formando a rotação do ciclo da marcha. A partir dos ciclogramas gerados na etapa de previsão, os autores notaram que seria possível prever os próximos ângulos da movimentação.

Caparelli *et al.* (2017) concluíram que o modelo proposto possui grande potencial e que seu uso facilita o processo de análise visto que o ciclo da marcha possui diversas características. Como trabalhos futuros, os autores sugerem uma utilização maior de ciclogramas. Além disso, também apontam a necessidade da realização de testes com mais pacientes e durante um período maior para comprovar a eficiência do modelo/pesquisa.

2.3 MOTION CUE ANALYSIS FOR PARKINSONIAN GAIT RECOGNITION

Khan et al. (2013) desenvolveram um modelo baseado em visão computacional para detecção de comprometimento da marcha em pacientes com DP para ambientes domésticos. Os autores se utilizaram de técnicas de processamento de imagem para extração da silhueta do paciente no qual foi construído um esqueleto computadorizado para extração de sinais de movimento. Inicialmente, os pacientes foram filmados caminhando por um ambiente com o fundo escuro bem iluminado e com roupas claras para realçar o contraste com o fundo, conforme mostra a Figura 5.

Figura 5 - Análise dos movimentos

Fonte: Khan et al. (2013).

Khan et al. (2013) subdividiram o processo em cinco etapas: subtração do fundo, isolamento da silhueta, construção do modelo esquelético, extração dos dados e previsão. Na etapa de subtração do fundo são separados os tons de escuro do fundo do cenário com as cores do paciente. Em seguida, obtém-se a silhueta usando um retângulo delimitador por meio das coordenadas dos vértices. Tendo a silhueta mapeada, inicia-se o processo de construção do modelo usando os valores de altura e a largura, sendo que os segmentos de cabeça, tronco e pernas são estimados dividindo-se o retângulo delimitador nas proporções anatômicas. Com isso, os sinais de movimento são calculados a partir do esqueleto da silhueta. Já a postura é estimada calculando o ângulo de inclinação. E, por fim, a partir dos dados calculados é possível efetuar uma correspondência dos padrões e distinguir se a imagem se trata de um paciente de DP ou normal, como pode ser visto nos gráficos da Figura 6. Nela, pode-se perceber a diferença de quantidade de passos entre um paciente normal (Figura 6 item A) e um paciente com a DP (Figura 6 item B), no qual em um espaço de tempo (frames), o paciente com DP, da quatro passos contra apenas um do paciente normal.

Fonte: Khan et al. (2013).

Khan et al. (2013), realizaram os testes em três pacientes que apresentavam a DP e quatro normais, obtendo 100% de precisão. No entanto, os autores apontam a necessidade da construção de uma base de dados

maior para aferir a eficácia do algoritmo, assim como, também sugerem a utilizam de diferentes algoritmos de aprendizado de máquina para avaliar à capacidade de pontuar o comprometimento geral da marcha com base nas suas características, como: rigidez muscular, alterações na postura, etc.

3 PROPOSTA

A seguir é apresentada a justificativa para o desenvolvimento desse trabalho, os principais requisitos e a metodologia de desenvolvimento que será utilizada. Também são relacionados os assuntos e as fontes bibliográficas que irão fundamentar o estudo proposto.

3.1 JUSTIFICATIVA

No Quadro 1 é apresentado um comparativo entre os trabalhos correlatos. As linhas representam as características e as colunas os trabalhos.

Quadro 1 - Comparativo entre os trabalhos correlatos

Correlatos	Cho et al. (2009)	Caparelli et al. (2017)	Khan et al. (2013)
Patologias de identificação	Parkinson	Doenças que alteram o ciclo da marcha	Parkinson
Objetivo	Identificação	Reconstrução da marcha	Identificação
Característica do método	Não Invasivo	Invasivo	Não Invasivo
Membros de avaliação	Inferiores e Superiores	Inferiores	Inferiores e Superiores
Técnica de análise utilizada	PCA e LDA	Redes Neurais	Processamento de imagem
Número de pacientes avaliados	14	40	7
Taxa de acerto	90%	-	100%
Dispositivo de processamento	Computador	Computador	Celular

Fonte: elaborado pelo autor.

Conforme pode ser observado no Quadro 1, os trabalhos de Cho *et al.* (2009) e Khan *et al.* (2013) realizam a identificação da DP por meio dos membros inferiores e superiores, enquanto Caparelli *et al.* (2017) visam a reconstrução da marcha, para detecções de anomalias, utilizando os membros inferiores. Nenhum dos trabalhos define a idade do público alvo ou estágio da doença, apenas apontam que os participantes dos testes possuíam idades entre 30 a 50 anos.

A ferramenta de Caparelli et al. (2017) foi projetada para fazer a identificação do movimento dos membros inferiores a partir de marcadores colocados em pontos chaves do corpo, tornando-se um método invasivo e, ao mesmo tempo, podendo gerar desconforto nos pacientes ao utilizá-los. Já Cho et al. (2009) e Khan et al. (2013) optaram por técnicas de extração de características para não ser invasivo a paciente. Além disso, Khan et al. (2013) elaboraram uma aplicação móvel para que profissionais ou comunidade tenham a detecção da DP de forma mais rápida, enquanto Cho et al. (2009) e Caparelli et al. (2017) desenvolveram seus modelos apenas para computadores.

Cho et al. (2009) analisaram a utilização do PCA e do LDA para a detecção da DP e concluíram que o LDA foi mais assertivo na separação dos vetores das silhuetas dos pacientes em relação ao PCA. Já Caparelli et al. (2017) construíram um modelo utilizando redes neurais para a reconstrução e predições dos ângulos no ciclo da marcha e, Khan et al. (2013), aplicaram várias técnicas de processamento de imagem para extração dos dados durante o ciclo da marcha para, posteriormente, efetuar os cálculos e definir os resultados.

Khan *et al.* (2013) obtiveram uma taxa de acerto de 100% ao avaliarem apenas sete pacientes. Já Cho *et al.* (2009) alcançaram 90% de acerto em testes com quatorze pacientes. Diante deste cenário, conclui-se que todos os projetos realizam a identificações de doenças relacionadas a marcha humana, porém nem todos possuem precisão comprovada ou facilidade de uso.

Desta forma, este trabalho mostra-se relevante, pois pretende desenvolver uma aplicação para detectar a DP por meio de técnicas de Redes Neurais Recorrentes (RNR) com entrada de dados em tempo real. Ela será construída em uma infraestrutura de microsserviços com ferramentas de mensagerias para prover aos usuários uma resposta rápida e, ao mesmo tempo, tendo uma disponibilidade móvel para atingir a maioria dos usuários. Além disso, será elaborado uma base de dados para treinamento que conterá imagens/vídeos de pacientes com a DP para

Comentado [AS7]: Qual a taxa de erro?

aferir a precisão da RNR e, consecutivamente, provendo confiabilidade em relação ao seu uso em avaliações funcionais realizadas por profissionais da saúde. Outro ponto positivo é a utilização deste projeto em âmbito acadêmico, no qual a partir dos dados extraídos, poderá auxiliar estudantes e profissionais inexperientes a ter um olhar crítico dos principais pontos a serem avaliados na marcha parkinsoniana. Contudo, acredita-se que a identificação e a avalição da DP será mais rápida e precisa, auxiliando na qualidade e resultados das informações fornecidas para os profissionais e a comunidade envolvida com pacientes acometidos pela DP.

3.2 REQUISITOS PRINCIPAIS DO PROBLEMA A SER TRABALHADO

Os requisitos do trabalho estão divididos em duas partes: requisitos da aplicação móvel e requisitos do módulo de reconhecimento.

A aplicação móvel deverá:

- a) manter o cadastro de pacientes (Requisito Funcional RF);
- b) permitir que o usuário possa capturar ou utilizar vídeos de pacientes a partir de um dispositivo Android (RF):
- c) permitir que o usuário possa acompanhar a evolução do paciente ao longo do tempo (RF);
- d) ser desenvolvido para a plataforma Android (Requisito Não Funcional RNF);
- e) utilizar a linguagem Flutter para o desenvolvimento (RNF);
- f) utilizar o ambiente de desenvolvimento Visual Studio Code (RNF);
- g) utilizar o banco de dados SQLite para persistir os dados offline (RNF).

O módulo de reconhecimento deverá:

- realizar o realce e melhoramento de ruídos, distorções e problemas de iluminação utilizando técnicas de processamento de imagens (RF);
- efetuar o reconhecimento da DP a partir dos membros inferiores utilizando redes Redes neuras Neurais Recorrentes (RF);
- c) aprimorar a RNR a partir de novos vídeos cadastros pelos usuários (RNF);
- d) utilizar as bibliotecas OpenCV para o processamento de imagens e o Tensorflow para a construção da rede neural artificial (RNF);
- utilizar a linguagem Python para desenvolvimento, utilizando a biblioteca Flask para elaborar o servidor REST (RNF);
- f) utilizar um banco de dados No-SQL (RNF);
- g) utilizar a arquitetura de microsserviços (RNF);
- h) utilizar a ferramenta RabbitMQ para troca de mensagens (RNF).

3.3 METODOLOGIA

O trabalho será desenvolvido observando as seguintes etapas:

- a) levantamento bibliográfico: pesquisar trabalhos relacionados e estudar sobre o ciclo da marcha,
 Parkinson, redes neurais recorrentes e trabalhos correlatos;
- elicitação de requisitos da aplicação móvel: baseando-se nas informações da etapa anterior, reavaliar os requisitos propostos para a aplicação;
- c) especificação: utilizar a ferramenta de diagramação Enterprise Architect (EA) para elaborar os diagramas de caso de uso e de atividades de acordo com a Unified Modeling Language (UML);
- d) implementação: a partir do item (c) implementar a aplicação móvel para a plataforma Android utilizando a linguagem Flutter;
- testes da aplicação móvel: elaborar testes para validar a usabilidade da aplicação junto aos profissionais da área da saúde;
- f) coleta e montagem da base de dados: coletar vídeos de pacientes normais e com Parkinson e montar uma base de dados obtidas/cedidas junto a projetos já existentes na comunidade acadêmicas;
- g) preparação das imagens: realizar o realce e melhoramento das imagens utilizando o OpenCV.
 Posteriormente subdividir as imagens em dois grupos: imagens de treinamento e de validação.
- h) definição da arquitetura da rede neural <u>artificial</u>: definir a arquitetura da rede neural <u>artificial</u> mais aderente ao processo de reconhecimento da DP;
- i) desenvolvimento do modelo de reconhecimento do Parkinson: a partir do item (h), realizar a implementação da arquitetura da rede neural <u>artificial</u> utilizando a biblioteca Tensorflow;
- testes do modelo de reconhecimento: paralelamente a implementação, realizar testes com base no banco de imagens obtido para verificar a eficiência e assertividade do modelo elaborado utilizando a validação cruzada assim como a comprovação dos resultados junto aos profissionais da saúde.

As etapas serão realizadas nos períodos relacionados no Quadro 2.

Quadro 2 - Cronograma de atividades a serem realizadas

	2020 2021																	
	οι	ut.	no	v.	de	ez.	ja	n.	fe	v.	m	ar.	at	or.	ma	aio	ju	n.
etapas / quinzenas	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
levantamento bibliográfico																		
elicitação de requisitos da aplicação móvel																		
especificação																		
implementação																		
testes da aplicação móvel																		
coleta e montagem da base de imagens																		
preparação das imagens																		
definição da arquitetura da rede neural artificial																		
elaboração do modelo de reconhecimento do Parkinson																		
testes do modelo de reconhecimento																		

Fonte: elaborado pelo autor.

4 REVISÃO BIBLIOGRÁFICA

Este capítulo descreve brevemente sobre os assuntos que fundamentarão o estudo a ser realizado: ciclo da marcha, doença de Parkinson e redes neurais recorrentes.

Segundo Vaughan *et al.* (1992), o ciclo da marcha humana possui duas fases essenciais: fase de apoio e fase de balanço, a primeira está dividida no apoio duplo e apoio simples. No apoio duplo, as duas pernas encontram-se em no solo, dividindo o peso do corpo igualmente, no apoio simples, apenas uma perna está em contato. Na fase de balanço, essa perna que estava em contato com solo agora está se movimentando, sendo suportada apenas pelo quadril.

Caparelli et al. (2017) afirmam que durante os movimentos do ciclo o joelho apresenta diversas funções: suporte do peso, amortecimento de choque, aumento da passada e movimento do pé durante o balanço. Os seres humanos variam a postura dessa articulação conforme suas necessidades e deficiências sendo que, após o início do apoio, o joelho flete rapidamente durante a fase de resposta a carga, ocorrendo uma contração do quadríceps para estabilizar esse movimento e, quando essa junta se encontra flexionada, atua para reduzir a intensidade do choque.

Souza et al. (2011) definem que a DP é uma afecção crônica, degenerativa e progressiva do sistema nervoso central, que consiste na morte dos neurônios produtores de dopamina da substância negra, causando diminuição das células produtoras de dopamina na via negroestriatal e dos neurônios contendo neuromelanina no tronco cerebral, principalmente na camada ventral da parte compacta da substância negra e do lócus cerúleos. Sendo caracterizado por distúrbios motores, disfunções posturais e cognitivos. Esses referidos comprometimentos manifestam-se inicialmente de forma motora, onde são chamados de sinais cardinais da DP.

Segundo Souza et al. (2011) estes sinais são descritos como:

- rigidez: apresenta-se de forma desigual em sua distribuição, afetando primeiramente os músculos proximais, especialmente ombros e pescoço, progredindo para os músculos da face, membros superiores e inferiores;
- tremor: sintoma inicial da DP, é observado em condições de repouso que diminui ou desaparece com
 o início de alguma ação, podendo aparecer novamente quando o paciente mantiver uma ação ou
 postura mais prolongada;
- bradicinesia: resultado da ausência de dopamina no estriado, levando a um desequilíbrio entre os sistemas inibitórios e excitatórios, que leva a uma lentidão dos movimentos, especialmente os automáticos, havendo uma pobreza geral da movimentação e queixa frequente de fraqueza;
- d) postura e equilíbrio: perda de reflexos posturais. Os pacientes assumem uma postura muito característica com a cabeça e o tronco fletidos e tem muita dificuldade de ajustar a postura quando se inclinam ou quando há súbitos deslocamentos do corpo, o que favorece a ocorrência de quedas. Ocorrem também alterações na marcha, que se torna em bloco com características de festinada (passos curtos, rápidos e arrastados, sem a participação dos movimentos dos braços;
- e) cognitivo: dificuldade para concentrar a atenção e lembrar-se de fatos recentes, mas nem todos apresentam significativas alterações da cognição, sabe-se, também, que a dopamina é um importante transmissor relacionado às funções executivas, a cognição (atenção, memória, julgamento, inteligência) e emoção (PRADO et al., 2008).

Segundo Matsumoto *et al.* (2019), a RNR tem seu objetivo baseado no comportamento do cérebro humano de manter memórias do passado no atual, ou seja, um dado de entrada anterior servir para entendimento de uma nova entrada de dados. A partir disto, pode ser utilizada para lidar com sequências de entradas e saídas que tem relação temporal entre si em um comprimento variável.

Ma (2016) afirma que a RNR pode ter diversas arquiteturas e formas de implementação que interferem nos dados de entrada e no seu funcionamento, algumas dessas arquiteturas são:

- a) modelo de memória associativa bidirecional: variação do modelo Hopfield que armazena dados associativos em um vetor efetuando a bi direcionalidade por meio de uma matriz e sua transposição.
 Possuindo normalmente duas camadas, sendo que, qualquer uma delas pode ser acionada como uma entrada ou como uma saída;
- b) modelo de memória de longo curto prazo: difere-se das redes neurais feedforward pois possuem conexões de feedback, não processando apenas dados unitários (imagens), mas também sequências de dados (fala ou vídeo). Essa arquitetura é composta por um neurônio que tem conhecimento das entradas antigas em um intervalo de tempo e mais três neurônios que regulam o fluxo de informação para dentro e fora da estrutura;
- modelo de estado de eco: variação do modelo Spiking que possui uma camada oculta conectada em múltiplas direções, sendo que, os únicos pesos que são possíveis alterar são os de saída.

REFERÊNCIAS

CAPARELLI, Thiago Bruno *et al.* **Reconstrução de Parâmetros Biomecânicos da Marcha por meio de Ciclogramas e Redes Neurais Artificiais**. 2017. Tese de doutorado na área de concentração Processamento da Informação, Universidade Federal de Uberlândia, Uberlândia. Disponível em:

https://repositorio.ufu.br/bitstream/123456789/20879/3/Reconstru%C3%A7%C3%A3oPar%C3%A2metrosBiomec%C3%A2nicos.pdf Acesso em: 6 ago. 2020.

CHO, Chien-Wen *et al.* **A vision-based analysis system for gait recognition in patients with parkinson's disease**. 2009. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0957417408006003?via%3Dihub>. Acesso em: 22 agg, 2020

GONÇALVES, Lucia Hisako Takase *et al.* **Pacientes portadores da doença de Parkinson: significado de suas vivências.** 2007. Disponível em: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-21002007000100011. Acesso em: 26 set 2020

GOULART, Fátima *et al.* **Uso de escalas para avaliação da doença de Parkinson em fisioterapia**. 2005. Disponível em: http://www.periodicos.usp.br/fpusp/article/view/76385. Acesso em: 03 out. 2020.

KHAN, Taha *et al.* **Motion cue analysis for parkinsonian gait recognition**. 2013. Disponível em: https://pubmed.ncbi.nlm.nih.gov/23407764/>. Acesso em: 26 set. 2020.

LIMA, Maria do Carmo *et al.* **Doença de Parkinson: alterações funcionais e potencial aplicação do método Pilates**. 2009. Disponível em: https://ggaging.com/details/317/pt-BR. Acesso em: 26 set. 2020.

 $MA, Jianqiang. \label{linear_linear$

MATSUMOTO, Fernando *et al.* **Redes Neurais | Redes Neurais Recorrentes**. 2019. Disponível em: <a href="https://medium.com/turing-talks/turing-talks-26-modelos-de-predi%C3%A7%C3%A3o-redes-neurais-recorrentes-page-18.00mg/medium.com/turing-talks-26-modelos-de-predi%C3%A7%C3%A3o-redes-neurais-recorrentes-page-18.00mg/medium.com/turing-talks-26-modelos-de-predi%C3%A7%C3%A3o-redes-neurais-recorrentes-page-18.00mg/medium.com/turing-talks-26-modelos-de-predi%C3%A7%C3%A3o-redes-neurais-recorrentes-page-18.00mg/medium.com/turing-talks-26-modelos-de-predi%C3%A7%C3%A3o-redes-neurais-recorrentes-page-18.00mg/medium.com/turing-talks-26-modelos-de-predi%C3%A7%C3%A3o-redes-neurais-recorrentes-page-18.00mg/medium.com/turing-talks-26-modelos-de-predi%C3%A7%C3%A3o-redes-neurais-recorrentes-page-18.00mg/medium.com/turing-talks-26-modelos-de-predi%C3%A7%C3%A3o-redes-neurais-recorrentes-page-18.00mg/medium.com/turing-talks-26-modelos-de-predi%C3%A7%C3%A3o-redes-neurais-recorrentes-page-18.00mg/medium.com/turing-talks-26-modelos-de-predi%C3%A7%C3%A3o-redes-neurais-recorrentes-page-18.00mg/medium.com/turing-talks-26-modelos-de-predi%C3%A7%C3%A3o-redes-neurais-recorrentes-page-18.00mg/medium.com/turing-talks-26-modelos-de-predi%C3%A7%C3%A3o-redes-neurais-recorrentes-page-18.00mg/medium.com/turing-talks-26-modelos-de-predi%C3%A7%C3%A3o-redes-neurais-recorrentes-page-18.00mg/medium.com/turing-talks-26-modelos-de-predi%C3%A7%C3%A3o-redes-neurais-recorrentes-page-18.00mg/medium.com/turing-talks-26-modelos-de-predi%C3%A7%C3%A3o-redes-neurais-recorrentes-page-18.00mg/medium.com/turing-talks-26-modelos-de-predi%C3%A7%C3%A3o-redes-neurais-recorrentes-page-18.00mg/medium.com/turing-talks-26-modelos-de-predi%C3%A7%C3%A3o-redes-neurais-recorrentes-page-18.00mg/medium.com/turing-talks-26-modelos-de-predi%C3%A7%C3%A3o-redes-neurais-recorrentes-page-18.00mg/medium.com/turing-talks-26-modelos-de-predi%C3%A3o-redes-neurais-page-18.00mg/medium.com/turing-talks-26-modelos-de-predi%C3%A3o-redes-neurais-page-18.00mg/medium.com/turing-talks-26-modelos-de

PRADO, Ana Lúcia Cervi *et al.* **Análise das manifestações motoras, cognitivas e depressivas em pacientes com doenças de Parkinson**. 2008. Disponível em: https://periodicos.unifesp.br/index.php/neurociencias/article/view/8657/6191. Acesso em: 8 out. 2020.

SOUZA, Cheylla Fabricia *et al.* A Doença de Parkinson e o Processo de Envelhecimento Motor: Uma Revisão de Literatura. 2011. Disponível em:

http://revistaneurociencias.com.br/edicoes/2011/RN1904/revisao%2019%2004/570%20revisao.pdf. Acesso em: 3 out. 2020.

SULLIVAN, Susan et al. Fisioterapia Avaliação e Tratamento 5º Edição. 2010. p. 349 – 350.

VAUGHAN, Christopher *et al.* **Dynamics of human gait**. 1992. Disponível em: https://www.semanticscholar.org/paper/Dynamics-of-human-gait-Vaughan-Davis/7dbae8ef886257138624fe82399caae7573fc60b . Acesso em: 26 set. 2020.

439198e9ecf3>. Acesso em: 8 out. 2020.

Comentado [AS8]: Referência não encontrada no texto

ASSINATURAS

(Atenção: todas as folhas devem estar rubricadas)

Assinatura do(a) Aluno(a):	
Assinatura do(a) Orientador(a):	
Assinatura do(a) Coorientador(a) (se houver):	-
Observações do orientador em relação a itens não atendidos do pré-projeto (se houver):	
Observações do orientador em reiação a nens não atendidos do pre-projeto (se nouver).	

FORMULÁRIO DE AVALIAÇÃO – PROFESSOR TCC I

Acadêmico(a): Carlos Henrique Ponciano da Silva	
Avaliador(a): Andreza Sartori	

		ASPECTOS AVALIADOS ¹	atende	atende parcialmente	não atende
	1.	INTRODUÇÃO O tema de pesquisa está devidamente contextualizado/delimitado?	X		
		O problema está claramente formulado?	х		
	_	1			
SS	2.	OBJETIVOS O objetivo principal está claramente definido e é passível de ser alcançado?	х		
$\tilde{\Sigma}$		Os objetivos específicos são coerentes com o objetivo principal?	х		
	3.	IUSTIFICATIVA	X		
ASPECTOS TÉCNICOS	J.	São apresentados argumentos científicos, técnicos ou metodológicos que justificam a proposta?			
ΙŢ		São apresentadas as contribuições teóricas, práticas ou sociais que justificam a proposta?	х		
Œ	4.	METODOLOGIA	х		
ASI		Foram relacionadas todas as etapas necessárias para o desenvolvimento do TCC?			
		Os métodos, recursos e o cronograma estão devidamente apresentados?	x		
	5.	REVISÃO BIBLIOGRÁFICA (atenção para a diferença de conteúdo entre projeto e pré- projeto) Os assuntos apresentados são suficientes e têm relação com o tema do TCC?	Х		
_	6.	LINGUAGEM USADA (redação)	x		
S	0.	O texto completo é coerente e redigido corretamente em língua portuguesa, usando linguagem formal/científica?	Х		
CICC		A exposição do assunto é ordenada (as ideias estão bem encadeadas e a linguagem utilizada é clara)?	X		
ASPECTOS METODOLÓGICOS	7.	ORGANIZAÇÃO E APRESENTAÇÃO GRÁFICA DO TEXTO A organização e apresentação dos capítulos, seções, subseções e parágrafos estão de acordo com o modelo estabelecido?	х		
Ē	8.	ILUSTRAÇÕES (figuras, quadros, tabelas)	x		
S		As ilustrações são legíveis e obedecem às normas da ABNT?	٨		
TO	9.	REFERÊNCIAS E CITAÇÕES	x		
EC		As referências obedecem às normas da ABNT?			
ASP		As citações obedecem às normas da ABNT?	X		
		Todos os documentos citados foram referenciados e vice-versa, isto é, as citações e referências são consistentes?		x	

PARECER – PROFESSOR DE TCC I OU COORDENADOR DE TCC (PREENCHER APENAS NO PROJETO):

O projeto de TCC será reprovado qualquer um dos itens tiver	resposta NÃ	resposta ATENDE PARCIALMENTE; o	211
		OS tiverem resposta ATENDE PARCIALI () REPROVADO	
Assinatura: Andreza Sartori		Data: 20/10/2020	

 $^{^1}$ Quando o avaliador marcar algum item como atende parcialmente ou não atende, deve obrigatoriamente indicar os motivos no texto, para que o aluno saiba o porquê da avaliação.