The Atiyah-Singer Index Theorem and Almost Complex Spheres

Dhruv Goel Friends Prize 2024

Almost Complex Structures

Index Theory

Spheres

The Atiyah-Singer Index Theorem and Almost Complex Spheres

Dhruv Goel Friends Prize 2024

Harvard University

April 12, 2024

Motivating Question

The Atiyah-Singer Index Theorem and Almost Complex Spheres

Dhruv Goel Friends Prize 2024

Almost

Complex Structures

Structure

Theory

Sphere

 ${\sf Q}.:$ When is a manifold X the underlying space of a complex manifold?

For this, X needs to be

- (1) even-dimensional,
- (2) smooth(able), and
- (3) orientable.

Not sufficient! Need more refined criteria.

Almost Complex Structures

The Atiyah-Singer Index Theorem and Almost Complex Spheres

Friends Prize 2024 Almost

Dhruy Goel

Complex Structures

Index Theory

Spheres

If X is a complex manifold, then its (smooth) tangent bundle $\mathrm{T}X$ has the structure of a complex vector bundle:

$$\mathrm{T}X \cong \mathrm{T}^{1,0}X|_{\mathbb{R}}.$$

Definition

A smooth manifold X is almost complex if its tangent bundle TX is a $\mathbb{C}\text{-VB}$.

This is a nontrivial necessary condition.

Fact: every almost complex manifold is even-dimensional and orientable.

Sufficient when $\dim X = 2$, but not when $\dim X \geq 4$ (e.g. $\mathbb{CP}^2 \# \mathbb{CP}^2 \# \mathbb{CP}^2$).

Spheres I

The Atiyah-Singer Index Theorem and Almost Complex Spheres

Dhruv Goel Friends Prize 2024

Almost Complex Structures

Index Theory

Theory

When does S^n admit an almost complex structure (ACS)?

Well, n has to be even. For small even n, we have

- (1) S^0 ,
- (2) S^2 , because $S^2 \cong \mathbb{CP}^1$ via stereographic projection or $S^2 \subset \mathbb{R}^3 = \operatorname{Im} \mathbb{H}$,
- (3) **not** S^4 (Ehresmann-Hopf, 1949), and
- (4) S^6 , because $S^6 \subset \mathbb{R}^7 = \operatorname{Im} \mathbb{O}$ (Kirchoff, 1947).

What about others?

Theorem (Borel-Serre, 1953)

If $n \neq 0, 2, 6$, then S^n does not admit an ACS (w.r.t. any smooth structure).

A smooth manifold X is **orientable** iff $w_1(X) = 0$.

Definition

A smooth manifold X is said to be **spin** if $w_1(X) = w_2(X) = 0$.

Given a metric on X, this amounts to a lift of SO(X) to a principal $Spin_n$ -bundle, where $Spin_n \to SO_n$ is a double cover (where $n := \dim X$).

When n is even and X is spin, the spin representations \mathcal{S}_n^{\pm} of Spin_n give rise to $\mathbb{C}\text{-VB's}$ on X called **spinor bundles**, often denoted $\mathcal{S}^{\pm}(X)$.

There is a first order differential operator

$$\not \! D^+: \mathcal{S}^+(X) \to \mathcal{S}^-(X)$$

called the Atiyah-Singer-Dirac operator; motivated from physics.

If $E \to X$ is a $\mathbb{C}\text{-VB}$, there is a **twisted Atiyah-Singer-Dirac operator**

$$\emptyset_E^+: \mathcal{S}^+(X) \otimes E \to \mathcal{S}^-(X) \otimes E.$$

This operator is **elliptic**, so that if X is closed, then the kernel and cokernel of $\not \!\! D_E^+$ are finite dimensional, and the **index** of $\not \!\! D_E^+$ is defined as

$$\operatorname{ind} \not\!{\!D}_E^+ = \dim \ker \not\!{\!D}_E^+ - \dim \operatorname{coker} \not\!{\!D}_E^+ \,.$$

The Atiyah-Singer Index Theorem allows us to compute $\operatorname{ind} \not \mathbb{D}_E^+$ using topological information about E and X. Precisely, we have

Theorem (Atiyah-Singer, 1963)

If X is a closed even-dimensional spin manifold and $E \to X$ a $\mathbb{C}\text{-VB}$, then

$$\operatorname{ind} \not \!\! D_E^+ = \int_X \operatorname{ch} E \cdot \hat{\mathsf{A}}(X).$$

In particular, the quantity on the right is an integer.

Spheres II

The Atiyah-Singer Index Theorem and Almost Complex Spheres

Dhruv Goel Friends Prize 2024

Almost Complex Structures

Index Theory

Spheres

Now we are ready to study ACSs on S^{2n} for $n \ge 1$.

Lemma

If
$$E \to S^{2n}$$
 is a \mathbb{C} -VB, $n \ge 1$, then $(n-1)!$ divides $c_n(E) \in H^{2n}(S^{2n}; \mathbb{Z}) \cong \mathbb{Z}$.

Proof Sketch.

Clear for n = 1, so assume $n \ge 2$.

- (1) S^{2n} is a closed spin manifold: $w_i(X) \in H^i(S^{2n}; \mathbb{Z}/2) = 0$ for i = 1, 2.
- (2) By ASIT, ind $\not \! D_E^+ = \int_{S^{2n}} \operatorname{ch} E \cdot \hat{\mathsf{A}}(S^{2n}).$
- (3) S^{2n} is stably parallelizable $\Rightarrow \hat{A}(S^{2n}) = 1$.
- (4) $H^{j}(S^{2n}) = 0$ for $1 \le j \le 2n 1$ gives $\operatorname{ch}_{n} E = \frac{(-1)^{n-1}}{(n-1)!} c_{n}(E)$.
- (5) Therefore, ASIT gives

$$c_n(E) = \pm (n-1)! \cdot \operatorname{ind} \not \!{\mathbb{D}}_E^+.$$

Spheres III

The Ativah-Singer Index Theorem and Almost Complex Spheres

Dhruy Goel Friends Prize 2024

Spheres

We are now ready to prove

Theorem (Borel-Serre, 1953)

If $n \neq 0, 2, 6$, then S^n is not almost complex (w.r.t any smooth structure).

Proof Sketch

- (1) If S^{2n} AC, then by Lemma, $c_n(TS^{2n})$ is divisible by (n-1)!.
- (2) By Chern-Gauss-Bonnet, $c_n(TS^{2n}) = e(TS^{2n}) = \chi(S^{2n}) = 2$.
- (3) Therefore, S^{2n} AC $\Rightarrow (n-1)! \mid 2 \Rightarrow n < 3$.
- (4) Handle S^4 separately: $c_1(E)^2 = 2\chi(X) + 3\sigma(X)$.

Last Remarks

The Atiyah-Singer Index Theorem and Almost Complex Spheres

Friends
Prize 2024
Almost
Complex

Dhruv Goel

Index Theory

Spheres

Other proofs:

- (1) (Borel-Serre, 1953) Using mod p Steenrod power operations, and
- (2) (Kirchoff, 1947) S^n AC $\Rightarrow S^{n+1}$ parallelizable + (Hirzebruch, Kervaire, Bott-Milnor, Adams, 1958) only S^1, S^3, S^7 .

Other applications of the ASIT:

- (1) The \hat{A} -genus of a closed spin manifold X is an integer. It is even if $\dim X \equiv 4 \pmod 8$.
- (2) (Rochlin, 1952) The signature of a closed smooth spin 4-fold is div. by 16.
- (3) (Freedman, 1982) There is a non-smoothable topological 4-fold $X(E_8)$.
- (4) Other non-ACSs: \mathbb{HP}^n (Hirzebruch, 1953; Massey, 1962) and $\#^{2m}\mathbb{CP}^{2n}$.
- (5) Much, much more!

Open problems:

- (1) Does S^6 admit a complex structure?
- (2) $\#^{2m+1}\mathbb{CP}^2$, $m\geq 1$, not AC (Van de Ven, 1966; Enriques-Kodaira 1968). What about $\#^{2m+1}\mathbb{CP}^{2n}$ for $m\geq 1$ and $n\geq 2$?

Thanks!

The Atiyah-Singer Index Theorem and Almost Complex Spheres

Dhruv Goel Friends Prize 2024

Complex Structures

Structure

Spheres

Thank you!