Concept Learning General to Specific ordering

Lecture 2

Outline

- Concept Learning
- Consistent Hypothesis
- Version Space
- List-Then-Eliminate Algorithm
- Find-S Algorithm
- Candidate Elimination Algorithm

Concept

- A concept is a subset of objects or events defined over a larger set e.g we refer to a set of everything as a set of things. Animals are a subset of things, and birds are a subset of animals
- In more technical terms, a concept is a Boolean valued function defined over the larger set

Concept Learning

• Given a set of examples labeled as members or non-members of a concept, concept learning consists of automatically inferring the general definition of this concept.

 In other words, concept learning consists of approximating a Booleanvalued function from training examples of input and output

Example of concept Learning task

```
⇒ Concept: Good Days for Watersports (values: Yes, No)
⇒ Attributes/Features:
      Sky (values: Sunny, Cloudy, Rainy)
      AirTemp (values: Warm, Cold)
      Humidity (values: Normal, High)
      Wind (values: Strong, Weak)
      Water (Warm, Cool)
      Forecast (values: Same, Change)
⇒ Example of a Training Point:
<Sunny, Warm, High, Strong, Warm, Same, Yes>
```

Day	Sky	Airtemp	Humidity	Wind	Water	Forecast	WaterSport
1.	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2.	Sunny	Warm	High	Strong	Warm	Same	Yes
3.	Rainy	Cold	High	Strong	Warm	Change	No
4.	Sunny	Warm	High	Strong	Cool	Change	Yes

Chosen Hypothesis Representation:

Conjunction of constraints on each attribute where:

- "?" means "any value is acceptable"
- "0" means "no value is acceptable"

Example of a hypothesis: <?,Cold,High,?,?,?>
(If the air temperature is cold and the humidity high then it is a good day for water sports)

Concept Learning as Search

• Concept Learning can be viewed as the task of searching through a large space of hypothesis implicitly defined by hypothesis representation.

General and specific ordering

- In each specific concept learning tasks, there exists a hypothesis space H with a set of all possible hypothesis
- Each hypothesis is described by a tuple of constraints on the attributes of the concept. The constraints may be
 - ? Which is a general value
 - Φ which is a specific value
- Convert the collection of hypothesis into a form where they indicate the result of the task from a very specific task to a general task represented as:

$$<\phi,\phi,\phi>$$
 to $,?,?$

Consistent(h, D)
$$\equiv$$
 ($\forall \langle x, c(x) \rangle \in D$) $h(x) = c(x)$)

Consistent(h, D)
$$\equiv$$
 ($\forall \langle x, c(x) \rangle \in D$) $h(x) = c(x)$)

Example	Citations	Size	InLibrary	Price	Editions	Buy
1	Some	Small	No	Affordable	One	No
2	Many	Big	No	Expensive	Many	Yes

$$h1 = (?, ?, No, ?, Many)$$

Consistent(h, D)
$$\equiv$$
 ($\forall \langle x, c(x) \rangle \in D$) $h(x) = c(x)$)

Example	Citations	Size	InLibrary	Price	Editions	Buy
1	Some	Small	No	Affordable	One	No
2	Many	Big	No	Expensive	Many	Yes

$$h1 = (?, ?, No, ?, Many)$$
 - Consistent

Consistent(h, D)
$$\equiv$$
 ($\forall \langle x, c(x) \rangle \in D$) $h(x) = c(x)$)

Example	Citations	Size	InLibrary	Price	Editions	Buy
1	Some	Small	No	Affordable	One	No
2	Many	Big	No	Expensive	Many	Yes

$$h1 = (?, ?, No, ?, Many)$$
 - Consistent

$$h2 = (?, ?, No, ?, ?)$$

Consistent(h, D)
$$\equiv$$
 ($\forall \langle x, c(x) \rangle \in D$) $h(x) = c(x)$)

Example	Citations	Size	InLibrary	Price	Editions	Buy
1	Some	Small	No	Affordable	One	No
2	Many	Big	No	Expensive	Many	Yes

$$h1 = (?, ?, No, ?, Many)$$
 - Consistent

$$h2 = (?, ?, No, ?, ?)$$
 - Not Consistent

Version Space

• The version space $\mathit{VS}_{H,D}$ is the subset of the hypothesis from H consistent with the training example in D

$$VS_{H,D} \equiv \{h \in H \mid Consistent(h, D)\}$$

List-Then-Eliminate Algorithm

Version space as list of hypotheses

- 1. VersionSpace \leftarrow a list containing every hypothesis in H
- 2. For each training example, $\langle x, c(x) \rangle$ Remove from VersionSpace any hypothesis h for which $h(x) \neq c(x)$
- 3. Output the list of hypotheses in *VersionSpace*

List-Then-Eliminate

- F1 -> A, B
- F2 -> X, Y
- Instance Space: (A, X), (A, Y), (B, X), (B, Y) 4 Examples
- Hypothesis Space: (A, X), (A, Y), (A, Ø), (A, ?), (B, X), (B, Y), (B, Ø), (B, ?), (Ø, X), (Ø, Y), (Ø, Ø), (Ø, ?), (?, X), (?, Y), (?, Ø), (?, ?) 16 Hypothesis
- Semantically Distinct Hypothesis: (A, X), (A, Y), (A, ?), (B, X), (B, Y), (B, ?), (?, X),
 (?, Y (?, ?), (ø, ø) 10

List-Then-Eliminate Algorithm

- Version Space: (A, X), (A, Y), (A, ?), (B, X), (B, Y), (B, ?), (?, X), (?, Y) (?, ?), (ø, ø),
- Training Instances

F1	F2	Target
		_

A X Yes

A Y Yes

List-Then-Eliminate Algorithm

- Version Space: (A, X), (A, Y), (A, ?), (B, X), (B, Y), (B, ?), (?, X), (?, Y) (?, ?), (ø, ø),
- Training Instances

```
F1 F2 Target

A X Yes

A Y Yes
```

Consistent Hypothesis are: (A, ?), (?, ?)

Limitations

• The hypothesis space must be finite

Ordering with Example

Let's consider the example as seen in the previous concept learning. Where the target concept to be learnt is the "Days on which the person enjoys WaterSport"

Day	Sky	Airtemp	Humidity	Wind	Water	Forecast	WaterSport
1.	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2.	Sunny	Warm	High	Strong	Warm	Same	Yes
3.	Rainy	Cold	High	Strong	Warm	Change	No
4.	Sunny	Warm	High	Strong	Cool	Change	Yes

Ordering with Example

The possible values of each of these attributes are:

Sky	Sunny, Rainy, Cloudy				
Airtemp	Warm, Cold				
Humidity	Normal, High				
Wind	Strong, Weak				
Water	Warm, Cool				
Forecast	Same, Change				

The function EnjoySport()
which is the concept to be learnt can be denoted as a boolean function as:

C(x) => { Yes, No }

Where C(x) is the EnjoySport values

Applying Find-S Algorithm

The FIND-S Algorithm is used to find the maximally specific hypothesis i.e. the form in which it satisfies all the given hypothesis for the required result.

Note: FIND-S Algorithm only considers positive results / results in favour and ignores negative results.

In the given example, the 4 given hypothesis h1, h2, h3, h4 are denoted by the results on Day 1,2,3 and 4 respectively. For the FIND-S Algorithm only h1,h2 and h4 will be considered because $c(x)=>\{Yes\}$ for these hypothesis.

The FIND-S Algorithm:

- 1. Initialize h to the most specific hypothesis in H (hypothesis space / set of hypothesis given)
 - $h \in \langle \emptyset, \emptyset, \emptyset, \dots, \emptyset, \emptyset, \emptyset \rangle$ is the most specific hypothesis
- 2. For each positive training instance x
 - a. For each attribute constraint of x in h
 - i. If the attribute has the same value as the hypothesis
 - Do nothing
 - ii. Else replace the x by the next general constraint satisfied by x
- 3. Output hypothesis h

```
Lets run through the example and see how the algorithm works h \leftarrow \langle \varnothing, \varnothing, \varnothing, \ldots, \varnothing, \varnothing, \varnothing \rangle is the most specific hypothesis. 
h1 \leftarrow <sunny, warm, normal, strong, warm, same>
Results in:
h \leftarrow \langle sunny, warm, normal, strong, warm, same \rangle
```

```
h ← <sunny, warm, normal, strong, warm, same>
h2 ← <sunny, warm, high, strong, warm, same>
Results in:
h ← <sunny, warm, ?, strong, warm, same>
Because the concepts learns that humidity value
<normal/high> doesn't affect the result of C(x) \Rightarrow \{Yes\} for
EnjoySport()
```

h ← <sunny, warm, ?, strong, warm, same>

h3 ← <rainy, cold, high, strong, warm, same>

Since h3 is a negative result it isn't considered in FIND-S resulting in the h being the same

h ← <sunny, warm, ?, strong, warm, same>

```
h ← <sunny, warm, ?, strong, warm, same>
h4 ← <sunny, warm, high, strong, cool, change>
h4 makes the h value change because water temp and forecast
are different (<cool/warm> and <same/change>) but do not
affect the concept learnt
h \leftarrow \langle sunny, warm, ?, strong, ?, ? \rangle
The training is now complete and the hypothesis on
completion of FIND-S Algorithm is
h ← <sunny, warm, ?, strong, ?, ?>
```

Limitations

- There is no way to determine if the hypothesis is consistent throughout the data.
- Inconsistent training sets can actually mislead the Find-S algorithm, since it ignores the negative examples.
- Find-S algorithm does not provide a backtracking technique to determine the best possible changes that could be done to improve the resulting hypothesis.

Candidate Elimination Algorithm

The candidate elimination algorithm uses version spaces and also considers the negative results unlike the FIND-S Algorithm

- Initialize G to be most general hypothesis in H
- Initialize S to be most specific hypothesis in H
- For each training example d do:
 - o If d is a positive example
 - Remove from G any hypothesis inconsistent with d.
 - · For each hypothesis s in S that is not consistent with d
 - Remove s from S
 - Add to S all minimal generalizations h of s such that
 - h is consistent with d
 - Some member of G is more general than h
 - Remove from S any hypothesis that is more general than another hypothesis in S

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

S₀:

 $\langle\varnothing,\varnothing,\varnothing,\varnothing,\varnothing,\varnothing.\varnothing\rangle$

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

S₀:

 $\langle\varnothing,\varnothing,\varnothing,\varnothing,\varnothing,\varnothing.\varnothing\rangle$

S₁:

(Sunny, Warm, Normal, Strong, Warm, Same)

	Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
	1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
	2	Sunny	Warm	High	Strong	Warm	Same	Yes
	3	Rainy	Cold	High	Strong	Warm	Change	No
	4	Sunny	Warm	High	Strong	Cool	Change	Yes
S ₀ :			(2	0, Ø, Ø, Ø, Ø	5. Ø>			
-0-	_			,,,				
S ₁ :		⟨Sun	ny,Warm, I	Normal, Str	ong, Wa	rm, Sam	e>	

S₂: (Sunny, Warm, ?, Strong, Warm, Same)

 G_0 : G_1 : G_2 : (?, ?, ?, ?, ?, ?)

		Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport	
		1 2 3 4	Sunny Sunny Rainy Sunny	Warm Warm Cold Warm	Normal High High High	Strong Strong Strong Strong	Warm Warm Cool	Same Same Change Change	Yes Yes No Yes	
S ₀ :				(2	s, Ø, Ø, Ø, Ø	. Ø>	-			
S ₁ :			⟨Sun	ny,Warm, I	Normal, Str	ong, Wai	m, Sam	e>		
S ₂ :	S ₃ :		⟨Suni	ny,Warm, ?	, Strong, V	Varm, Sa	me>			
G ₃ :	(Sunny,	?,?,?,?,?	⟨?,٧	Varm,?,?,?	,?\ \ <mark><?</mark>,</mark>	?,Norma	1,?,?,?>	⟨ ? , ? , ? ,	?,Cool,?>	(?,?,?,?,Same)
G _{0:}	G _{1:}	G _{2:}			(?, ?, ?, ?,	?, ?>				

		Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport	
		1 2 3	Sunny Sunny Rainy	Warm Warm Cold	Normal High High	Strong Strong Strong	Warm Warm	Same Same Change	Yes Yes No	
		4	Sunny	Warm	High	Strong	Cool	Change	Yes	
S ₀ :				⟨∅	o, Ø, Ø, Ø, Ø	.Ø>		-		
S ₁ :			⟨Sun	ny,Warm, I	Normal, Str	ong, Wa	rm, Sam	e>		
S ₂ :	S ₃ :	_	⟨Suni	ny,Warm, ?	P, Strong, V	Varm, Sa	me>			
S_4				⟨Sunny, W	/arm, ?, Str	ong, ?, ?	\rangle			
G ₄ :		[⟨Sunny,	?, ?, ?, ?,	?> </td <td>, Warm,</td> <th>?, ?, ?, 1</th> <td>?></td> <td></td> <td></td>	, Warm,	?, ?, ?, 1	?>		
G ₃ :	⟨Sunny	;?,?,?,?,?	⟨?,V	Varm,?,?,?	,?) (<mark>?,</mark>	?,Norma	1,?,?,?>	(?, ?,?,	?,Cool,?>	⟨?,?,?,?,Same⟩
G _{0:}	G _{1:}	G _{2:}			, ?, ?, ?,</td <td>?, ?></td> <th></th> <td></td> <td></td> <td></td>	?, ?>				

Learned Version Space using Candidate Elimination Algorithm

S

(Sunny, Warm, ?, Strong, ?, ?)

G

(Sunny, ?, ?, ?, ?, ?)

(?, Warm, ?, ?, ?, ?)

Learned Version Space using Candidate Elimination Algorithm

s

(Sunny, Warm, ?, Strong, ?, ?)

(Sunny, ?, ?, Strong, ?, ?)

(Sunny, Warm, ?, ?, ?, ?)

⟨?, Warm, ?, Strong, ?, ?⟩

G

(Sunny, ?, ?, ?, ?, ?)

(?, Warm, ?, ?, ?, ?)