Problemas de Enzimologia

Série 1

1. Para a hidrólise da sacarose,

Sacarose +
$$H_2O \longrightarrow Glucose + Frutose$$

obtiveram-se os seguintes resultados

Tempo (min)	[Sacarose] (M)
0	0,5011
30	0,4511
60	0,4038
90	0,3626
130	0,3148
180	0,2674

- a) Determine a constante de velocidade de primeira ordem e o tempo de meia vida da reacção.
- b) Porque razão segue esta reacção uma cinética de primeira ordem?
- c) Quanto tempo levará a hidrolizar 99% da sacarose presente inicialmente?
- d) Quanto tempo levará se a sacarose for o dobro da usada nesta experiência?
- e) Se o volume de solução for 20 mL, quando tempo (aproximadamente) seria necessário para consumir completamente a sacarose ?
- 2. Os dados abaixo foram obtidos para a velocidade de uma reacção com estequiometria $A+B \rightarrow P$ para diferentes concentrações de A e B. Determine a ordem relativamente a A e B e sugira uma explicação possível para a ordem em relação a A.

[A](mM)	10	20	50	100	10	20	50	100
[B](mM)	10	10	10	10	20	20	20	20
v(µmol ⁻¹ s ⁻¹)	0,6	1,0	1,4	1,9	1,3	2,0	2,9	3,9
[A](mM)	10	20	50	100	10	20	50	100
[B](mM)	50	50	50	50	100	100	100	100
$v(\mu mol^{-1}s^{-1})$	3,2	4,4	7,3	9,8	6,3	8,9	14,4	20,3

- 3. Considere a reacção A $\underset{k_{-1}}{\overset{k_1}{\longleftarrow}}$ P
- a) Escreva a equação de velocidade e resolva-a, assumindo [P] = 0 quando t = 0.
- b) Calcule a expressão para o tempo de meia-vida desta reacção.
- c) Qual o tempo de meia-vida quando $k_1 = k_{-1}$? Porquê?

- 4. Verifique se as seguintes afirmações estão correctas em termos das dimensões das grandezas envolvidas:
- a) Num gráfico de v em função de v/[S], o declive é $-1/K_{\rm m}$ e a ordenada na origem é $K_{\rm m}/V_{\rm max}$
- b) Numa reacção bimolecular 2A \rightarrow P, cuja constante de velocidade é k, a concentração de P no instante t é dada por [P] = $[A]_0^2 kt/(1+2[A]_0 kt)$
- c) Um gráfico de $t/\ln([S]_0/[S])$ versus $([S]-[S]_0)/\ln([S]_0/[S])$ para uma reacção catalisada enzimaticamente produz uma linha recta de declive $1/V_{\rm max}$ e ordenada na origem $V_{\rm max}/K_{\rm m}$.