- 1. Prove or disprove the statement "All birds can fly."
- 2. Prove or disprove the claim $(\forall x, y \in \mathcal{R})[(x-y)^2 > 0]$.
- 3. Prove that between any two unequal rationals there is a third rational.
- 4. Explain why proving $\phi \Rightarrow \psi$ and $\psi \Rightarrow \phi$ establishes the truth of $\phi \Leftrightarrow \psi$.
- 5. Explain why proving $\phi \Rightarrow \psi$ and $(\neg \phi) \Rightarrow (\neg \psi)$ establishes the truth of $\phi \Leftrightarrow \psi$.
- Prove that if five investors split a payout of \$2M, at least one investor receives at least \$400,000.
- 7. Prove that $\sqrt{3}$ is irrational.
- 8. Write down the converses of the following conditional statements:
 - (a) If the Dollar falls, the Yuan will rise.
 - (b) If x < y then -y < -x. (For x, y real numbers.)
 - (c) If two triangles are congruent they have the same area.
 - (d) The quadratic equation $ax^2 + bx + c = 0$ has a solution whenever $b^2 \ge 4ac$. (Where a, b, c, x denote real numbers and $a \ne 0$.)
 - (e) Let ABCD be a quadrilateral. If the opposite sides of ABCD are pairwise equal, then the opposite angles are pairwise equal.
 - (f) Let ABCD be a quadrilateral. If all four sides of ABCD are equal, then all four angles are equal.
 - (g) If n is not divisible by 3 then $n^2 + 5$ is divisible by 3. (For n a natural number.)
- 9. Discounting the first example, which of the statements in the previous question are true, for which is the converse true, and which are equivalent? Prove your answers.
- 10. Prove or disprove the statement "An integer n is divisible by 12 if and only if n^3 is divisible by 12."
- 11. Let r, s be irrationals. For each of the following, say whether the given number is necessarily irrational, and prove your answer. (The last one is tricky to do by elementary means. I'll give a solution in Lecture 8, but you should definitely try it first. Give it half an hour of focused thought.)
 - 1. r+3 2. 5r 3. r+s
 - 4. rs 5. \sqrt{r} 6. r^s
- 12. Let m and n be integers. Prove that:
 - (a) If m and n are even, then m+n is even.
 - (b) If m and n are even, then mn is divisible by 4.
 - (c) If m and n are odd, then m+n is even.
 - (d) If one of m, n is even and the other is odd, then m + n is odd.
 - (e) If one of m, n is even and the other is odd, then mn is even.

OPTIONAL PROBLEM

Say whether each of the following is true or false, and support your decision by a proof:

(a) There exist real numbers x and y such that x + y = y.

- (b) $\forall x \exists y (x+y=0)$ (where x,y are real number variables).
- (c) For all integers a, b, c, if a divides bc (no remainder), then either a divides b or a divides c.
- (d) For any real numbers x, y, if x is rational and y is irrational, then x + y is irrational.
- (e) For any real numbers x, y, if x + y is irrational, then at least one of x, y is irrational.
- (f) For any real numbers x, y, if x + y is rational, then at least one of x, y is rational.