A FIRST COURSE IN

ABSTRACT ALGEBRA

A FIRST COURSE

IN

ABSTRACT ALGEBRA

MAT3004 Notebook

Dr. Guang Rao

The Chinese University of Hongkong, Shenzhen

Contents

Ackno	owledgments	V11
Notat	ions	ix
1	Week1	1
1.1	Monday	1
1.1.1	Introduction to Abstract Algebra	1
1.1.2	Group	1
2	Week2	11
2.1	Tuesday	11
2.1.1	Review	11
2.1.2	Cyclic groups	11
3	Week3	17
3.1	Tuesday	17
3.2	Thursday	22
3.2.1	Cyclic Groups	22
3.2.2	Symmetric Groups	25
3.2.3	Dihedral Groups	28
3.2.4	Free Groups	29
4	Week4	31
4.1	Subgroups	31
4.1.1	Cyclic subgroups	32
4.1.2	Direct Products	36

4.1.3	Generating Sets	37
5	Week4	41
5.1	Reviewing	41
5.1.1	Theorem of Lagrange	43
6	Week5	49
6.1	Monday	49
6.1.1	Derived subgroups	52
6.2	Thursday	57
6.2.1	Homomorphisms	57
6.2.2	Classification of cyclic groups	61
6.2.3	Isomorphism Theorems	62
7	Week6	67
7.1	Ring	67
7.1.1	Modular Arithmetic	70
7.1.2	Rings of Polynomials	72
7.1.3	Integral Domains and Fields	73
7.1.4	Field of fractions	78
8	Week7	81
8.1	Field of Fractions	81
8.1.1	Homomorphisms	82
8.2	Thursday	90
8.2.1	Principal Ideal Domainas	90
822	Octient Ring	92

Acknowledgments

This book is from the MAT3004 in fall semester, 2018.

CUHK(SZ)

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i,jHermitian transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i,j A^{H} trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry e_i C(A)the column space of \boldsymbol{A} $\mathcal{R}(\boldsymbol{A})$ the row space of \boldsymbol{A} $\mathcal{N}(\boldsymbol{A})$ the null space of \boldsymbol{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

8.2. Thursday

8.2.1. Principal Ideal Domainas

For a fixed finite set of elements $a_1,...,a_n$ in a commutative ring R, let $\langle a_1,...,a_n \rangle$ denote the subset:

$$\{r_1a_1+\cdots+r_na_n\mid r_i\in R\}$$

Proposition 8.10 The set $\langle a_1, ..., a_n \rangle$ is an ideal of R.

Proof. 1. It forms a group.

2. Given any $\sum_i r_i a_i \in I$, for any $r \in R$, we have

$$r\sum_{i}r_{i}a_{i}=\sum_{i}(rr_{i})a_{i}\in I.$$

Definition 8.9 We call $\langle a_1, \dots, a_n \rangle$ the ideal **generated** by a_1, \dots, a_n . An ideal $\langle a \rangle = \{ar \mid r \in R\}$ generated by one element $a \in R$ is called the **principal ideal**.

Note that $R = \langle 1 \rangle$ and $\{0\} := \langle 0 \rangle$ are both principal ideals.

Theorem 8.3 Every ideal in the ring \mathbb{Z} is a principal ideal.

Proof. w.l.o.g., suppose I contains nonzero element, say a. Then $-1 \in \mathbb{Z}$ implies that $-a \in I$, and therefore I contains at least one positive integer. Suppose I contains a positive integer d that is smaller than any other elements that is positive in I. We claim $I = \langle d \rangle$.

For any $a \in I$, we have a = dp + r for $0 \le r < d$, which implies that r = a - dp lies in I, since I is an ideal, which implies d = 0, i.e., a = dq. Thus $I \subseteq \langle d \rangle$.

On the other hand, we have $dr \in I$ for any $r \in \mathbb{Z}$, i.e., $\langle d \rangle \subseteq \mathbb{Z}$

Proposition 8.11 Given a,b in a commutative ring R. If b=au for some unit $u \in R$, then $\langle a \rangle = \langle b \rangle$. If R is an integral domain and $\langle a \rangle = \langle b \rangle$, then b=au fo some unit $u \in R$.

Proof. For the case b = 0, we imply a = 0 and the result is trivial.

For $b \neq 0$, there exists $u, v \in R$ such that b = au and a = bv. Thus

$$b = buv \implies b(1 - uv) = 0$$

Since R is an integral domain, and $b \neq 0$, we have 1 - uv = 0, which implies uv = 1, o.e., u is a unit.

Definition 8.10 [PID] If R is an integral domain in which every ideal is principal, we say that R is a **principal integral domain**.

We claim that for any field k, the ring of polynomails k[x] is also a PID.

Proposition 8.12 Let R be a commutative ring. For $\forall d, f \in R[x]$ such that the leading coefficient of d is a unit in R, then there exists $q, r \in R[x]$ such that

$$f = qd + r$$
,

with deg r < deg d.

Proof. We prove this theorem by induction.

If $\deg f < \deg d$, take r = f and q = 0

Let $d = \sum_{i=0}^{n} a_i x^i \in R[x]$ be fixed, where a_n is a unit of R. For any given $f = \sum_{i=0}^{m} b_i x^i \in R[x]$, $m \ge n$, suppose the claim holds for any f' with $\deg f' < \deg f$.

Construct $f' = f - a_n^{-1} b_m x^{m-n} d$, thus there exists $q', r' \in R[x]$ with $\deg r' < \deg d$ such that

$$f - a_n^{-1} b_m x^{m-n} d = q' d + r'$$

which implies

$$f = (q' + a_n^{-1}b_m x^{m-n})d + r'$$

Theorem 8.4 Let k be a field, then k[x] is a PID.

Proof. Let I be an ideal of k[x]. Let d be a nonzero polynomial in I with the least leading degree. The existence of this polynomial is because the leading degree of a polynomial is a non-negative integer. I is clear that $\langle d \rangle \subseteq I$. It suffices to show $I \subseteq \langle d \rangle$ For $\forall f \in I$, we have f = qd + r for some $q, r \in k[x]$ such that $\deg(r) < \deg(d)$. Then r = f - qd lines in I. Since d has the least degree, we imply r = 0. Thus f = qd, which implies $f \in \langle d \rangle$. Thus $I \subseteq \langle d \rangle$.

8.2.2. Qotient Ring

Let *R* be a commutative ring. Let *I* be an ideal of *R*. Define a relation \sim on *R* as follows:

$$a \sim b$$
, if $b - a \in I$

Definition 8.11 [Congruent modulo] If $a \sim b$, we say that a is congruent modulo I to b, and write

$$a \equiv b \pmod{I}$$

Proposition 8.13 Congruence modulo *I* is an equivalence relation.

Proof. 1. a - a = 0 ∈ I

- 2. $a b \in I$ implies $b a = (-1)(a b) \in I$
- 3. $a b, b c \in I$ implies $(a b) + (b c) \in I$

Definition 8.12 [Residue] Let R/I be the set of equivalence classes of R w.r.t. the

relation \sim . Each element in R/I has the form

$$\bar{r} = r + I = \{r + a \mid a \in I\}, \qquad r \in R$$

We call \bar{r} as the **residue** of r in R/I. Note that $r \in I$ implies $\bar{r} = \bar{0}$.

Observe that

$$(r+a) + (r'+a') \in (r+r') + I = \overline{r+r'}$$
$$(r+a)(r'+a') \in rr' + I = \overline{rr'}$$

Thus we define binary operation on R/I:

$$\bar{r} + \bar{r'} = \overline{r + r'}$$

$$\bar{r} \cdot \bar{r'} = \overline{rr'}$$

Proposition 8.14 The set R/I equipped with the addition and multiplication defined above, is a **commutative ring**.

Proposition 8.15 The mapping $\pi: R \to R/I$, defined by

$$\pi(r) = \bar{r}, \quad \forall r \in R$$

is a surjective ring homomorphism with the kernel $\ker(\pi) = I$.

Let m be a natural number. The set

$$m\mathbb{Z} = \{mn \mid n \in \mathbb{Z}\}$$

is an ideal of \mathbb{Z} .

Proposition 8.16 The quotient ring $\mathbb{Z}/m\mathbb{Z}$ is isomorphic to \mathbb{Z}_m .

Proof. Define r_m to be the remainder of the division of r by m.

It is clear that $\bar{r} = \bar{r_m}$. We define a mapping $\phi : \mathbb{Z}_m \to \mathbb{Z}/m\mathbb{Z}$:

$$\phi(r) = \bar{r}, \quad \forall r \in \mathbb{Z}_m$$

We claim it is a homomorphism:

- $\phi(1) = \bar{1} = 1_{\mathbb{Z}/m\mathbb{Z}}$
- $\phi(r +_m r') = \overline{r +_m r'} = \overline{(r + r')_m} = \overline{r + r'} = \phi(r) + \phi(r')$
- $\phi(r \cdot_m r') = \phi(r)\phi(r')$

Then we show that ϕ is bijective:

For any \bar{r} in $\mathbb{Z}/m\mathbb{Z}$, we have $\phi(r_m) = \bar{r}$

Suppose $\phi(r) = \overline{r} = 0$ in $\mathbb{Z}/m\mathbb{Z}$, then $r \in m\mathbb{Z}$, which implies r = 0.

Proposition 8.17 Let $\phi : R \to R'$ be a ring homomorphism, then the image of ϕ

$$\operatorname{im} \phi = \{ r' \in R' \mid r' = \phi(r) \text{ for some } r \in R \}$$

is a ring.

Theorem 8.5 — **First Isomorphism Theorem.** Let R be a commutative ring, let ϕ : $R \to R'$ be a ring homomorphism, then

$$R/\ker\phi \cong \operatorname{im}\phi$$

Corollary 8.1 If the ring homomorphism is surjective, $\phi: R \to R'$, then

$$R' \cong R/\ker \phi$$

Example 8.7 For the map $\phi: \mathbb{Z} o \mathbb{Z}_m$ defined by $\phi(n) = n_m$ for $\forall n \in \mathbb{Z}$, it is clear

that ϕ is a surjective ring homomorphism, and $\ker \phi = m\mathbb{Z}$. Thus

$$\mathbb{Z}_m \cong \mathbb{Z}/m\mathbb{Z}$$

question

■ Example 8.8 The ring $\mathbb{Z}[i]/(1+3i)$ is isomorphic to $\mathbb{Z}/10\mathbb{Z}$.

Define a mpap $\phi: \mathbb{Z} \to \mathbb{Z}[i]/(1+3i)$:

$$\phi(n) = \bar{n}$$

Show that $\mathrm{ker}\phi=10\mathbb{Z}$, and therefore

$$\mathbb{Z}/10\mathbb{Z} \cong \mathbb{Z}/10\mathbb{Z}$$

■ Example 8.9 The rings $\mathbb{R}[x]/(x^2+1)$ and \mathbb{C} are isomorphic.

Define a map from $\mathbb{R}[x]$ to \mathbb{C} :

$$\phi(\sum_{k=0}^n a_k x^k) = \sum_{k=0}^n a_k i^k$$

Question: PID of $\mathbb{R}[x]$ implies $\ker \phi = \langle p \rangle$ for some $p \in \mathbb{R}[x]$. Then show that $\ker \phi = \langle x^2 + 1 \rangle$.

By isomorphism theorem, $\mathbb{R}[x]/(x^2+1)\cong\mathbb{C}.$