Lab 2: Validity

Haakon Eidem Haakstad Centre for Educational Measurement University of Oslo

Nov. 15th, 2021.

Before we start

Go to Canvas and download Lab2.RData

Load the data into R: load("Lab2.RData")

Skeleton R-script also found on Canvas (lab2skeletonscript.R).

Today:

- Classical validity-analysis using the multi-trait multi-method approach.
- Examine convergent and discriminant evidence of validity.
- ▶ Whether this approach provides relevant evidence depends on intended interpretations and uses of test-scores.

The multi-trait multi-method (MTMM) matrix:

- Famously presented by Campbell and Fiske (1959).
- Origins in personality (or trait) psychology.
- Involves examining Convergent and Discriminant evidence of validity.
 - Convergence: Scores for <u>same trait</u> measured by <u>different methods</u> should correlate, and correlate sufficiently strongly.
 - Discrimination:
 <u>Different traits</u> measured by the <u>same (or different) method</u> should not correlate more strongly than the above.
- Hence, a method for providing evidence pertaining to the relations to other variables category of the Standards.

Campbell, D. T., & Fiske, D. W. (1959). Convergent and Discriminant Validation by the Multitrait-Multimethod Matrix. *Psychological Bulletin,* 56(2), pp. 81–105. doi: https://doi.org/10.1037/h0046016

The MTMM matrix:

TABLE 1
A Synthetic Multitrait-Multimethod Matrix

		N	lethod	1	·M	lethod 2	!	Method 3			
	Traits	A ₁	B ₁	Cı	A ₂	B ₂	C ₂	A.	В	C ₈	
	A	(.89)									
Method 1	\mathbf{B}_1	.51	(.89)								
	C_1	.38	.37	(.76)							
	Λ_2	.57	22	.09	(.93)						
Method 2	\mathbf{B}_2	.22	.57	.10	.68	(.94)					
	C_2	.11	.11.	.46	.59	.58	(.84)				
	A ₃	.56		-11	.67	.42	.33	(.94)			
Method 3	B_3	.23	58	.12	.43	.66	.34	.67	(.92)		
	C_3	.11	. í í .	.45	.34	.32	58	.58	.60	_(.85	

Note.—The validity diagonals are the three sets of italicized values. The reliability diagonals are the three sets of values in parentheses. Each heterotrait-monomethod triangle is enclosed by a solid line. Each heterotrait-heteromethod triangle is enclosed by a broken line.

MTMM explained (convergence):

TABLE 1
A Synthetic Multitrait-Multimethod Matrix

		N	Method	1	1	Iethod :	2	Method 3		
	Traits	Aı	Bı	C ₁	A ₂	B ₂	C ₂	A ₈	B ₈	C ₈
	Λ_i	(.89)			Reliability coe			een true-sco	res	
Method 1	\mathbf{B}_1	.51	(.89)		and observed- by way of one	scores prod	uced when a			
	$\mathbf{C}_{\mathbf{I}}$.38	.37	(.76)						
						F	Validity coeff leteromethod forrelation be	d, monotrait o	orrelations.	cad by
	Λ_2	.57	.22	.09	(.93)	n n	neans of one with those pro	method shou	ıld correlate	strongly
Method 2	\mathbf{B}_2	.22	.57	.10	.68	(.94)		added using		
		1 .	11	.46	.59	.58	(.84)			
	C_2	1.11		.40	1.07		(.01)			
	C_2	<u>}.11</u>		-10	1:37					
	C ₂	56			.67		33	(.94)		
Method 3		\ <u></u>	.58					(.94)	(.92)	

Note.—The validity diagonals are the three sets of italicized values. The reliability diagonals are the three sets of values in parentheses. Each heterotrait-monomethod triangle is enclosed by a solid line. Each heterotrait-heteromethod triangle is enclosed by a broken line.

MTMM explained (discrimination):

TABLE 1
A Synthetic Multitrait-Multimethod Matrix

		N	Method	1	-1	Method	2	Method 3			
	Traits	A ₁	Bı	C ₁	A ₂	B ₂	C ₂	A ₈	В	C ₈	
	A	(.89)		Between-t	rait, within m	ethod corre	lations (Discr	imination):			
Method 1	\mathbf{B}_1	.51	(.89)	"Heterotra	it-monometh cores on diffe	od" correlat	ion coefficier	nts. Correlatio			
	C_1	.38	.37	(.76)	"Heterotra	it-heterome	en method con thod" correla erent traits n	tion coefficie	ents. Correla	tion	
	A_2	57	22	.09	(.93)						
Method 2	\mathbf{B}_2	.22	.57	. 10	.68	(.94)					
	C_2	.11	.11	.46	.59	.58	(.84)				
	A ₃	.56	.22	.11	.67	.42	.33	(.94)			
Method 3	$\mathbf{B_3}$.23	.58	.12	.43	.66	.34	.67	(.92)		
	C_3	1.11	.11	.45	.34	.32	.58	.58	.60	(.85	

Note.—The validity diagonals are the three sets of italicized values. The reliability diagonals are the three sets of values in parentheses. Each heterotrait-nonmethod triangle is enclosed by a solid line. Each heterotrait-heteromethod triangle is enclosed by a hotomorphism of the property of the prop

C&F's 4 criteria for MTMM validity:

- 1. Validity diagonal values should be:
 - Statistically significant.
 - Sufficiently strong to be interesting.
- Validity diagonal values should be higher than values in heterotrait-heteromethod triangles.
- 3. A variable should correlate higher with different method of measuring the same trait, than with different trait measured with same method.
- 4. The same pattern of trait-interrelationship should be evident in all heterotrait triangles of both the mono-method and heteromethod blocks.

Criteria #1 = Convergent evidence of validity.

Criteria #2-4 = Discriminant evidence of validity.

Task 1

- Analyze Convergent and Discriminant validity-evidence organized in a MTMM matrix.
 - 1. Convergence and Discrimination within methods.
 - 2. Convergence and Discrimination between methods.
- ▶ Data is from MTMM matrices presented in C&F's original article.
- Data is stored in Lab2.RData, available on Canvas.

Data-set:

TABLE 2 Personality Traits of School Children from Kelley's Study (N=311)

			Peer 1	Ratings			Associat	ion Test	
		A ₁	B ₁	Cı	D_1	A ₂	B_2	C_2	D_2
Peer Ratings									
Courtesy	A_1	(.82)							
Honesty	$\mathbf{B_i}$.74	(.80)						
Poise	C_1	.63	.65	(.74)					
School Drive	D_1	.76	.78	.65	(.89)				
Association Test									
Courtesy	$\mathbf{A_2}$.13	.14	.10	.14	(.28)			
Honesty	$\mathbf{B_2}$.06	.12	.16	.08	.27	(.38)		
Poise	C_2	.01	.08	.10	.02	.19	.37	(.42)	
School Drive	$\mathbf{D_2}$.12	.15	.14	.16	.27	.32	.18	(.36)

Data-set:

TABLE 2 Personality Traits of School Children from Kelley's Study (N=311)

		Peer Ratings A ₁ B ₁ C ₁ D ₁ (.82) .74 (.80)			Association Test				
		A ₁	B ₁	Cı	D_1	A ₂	B_2	C_2	D_2
Peer Ratings Courtesy Honesty Poise School Drive	A ₁ B ₁ C ₁ D ₁		(.80) .65 .78	(.74) .65	(.89)"\	/alidity coe	Reliab	ilities	
Association Test Courtesy Honesty Poise School Drive	$\begin{array}{c} A_2 \\ B_2 \\ C_2 \\ D_2 \end{array}$.06 .01 .12	.14 .12 .08 .15	.10 .16 .10	.14 .08 .02 .16	(28) .27 .19 .27	(.38) .37 .32	(.42)	(.36

Data-set:

TABLE 2 Personality Traits of School Children from Kelley's Study (N=311)

			Peer R	Ratings			Associat	tion Test	!
		A ₁	B ₁	Cı	D_1	A ₂	B_2	C ₂	D_2
Peer Ratings					Discr	imination of	Constructs	s within M	ethods.
Courtesy	A_1	(.82)						1	
Honesty	$\mathbf{B_1}$.74	(.80)			Discrimination	on of		
Poise	C_1	.63	.65	(.74)		Constructs a	cross		
School Drive	$\mathbf{D_1}$.76	.78	.65	(.89)	Methods.		- /	
Association Test					V				
Courtesy	A_2	13	.14	.10	.14	(.28)		1	
Honesty	$\mathbf{B_2}$.06	.12	.16	.08	.27	(.38)		
Poise	C ₂	.01	.08	.10	.02	.19	.37	(.42)	
School Drive	D_2	.12	.15	.14	10	.27	.32	.18	(.36

Todays task:

- ▶ **Task 1:** Examine the MTMM matrix. Summarize the evidence.
 - 1. Examine the evidence for convergence and discrimination within the first method.
 - 2. Examine the evidence for the second method.
 - 3. Examine the evidence for convergence and discrimination across methods.

- ▶ **Task 2:** Disattenuate and re-assess. Pick one of the traits.
 - 1. Examine the convergent evidence of the two methods after attenuation.
 - 2. Examine the discriminant evidence within methods following disattenuation.
 - 3. Examine the discriminant evidence across methods following disattenuation.

MTMM example: Convergence and Discrimination of "Poise".

TABLE 2

Personality Traits of School Children from Kelley's Study
(N=311)

			Peer 1	Ratings		Association Test				
		A ₁	B ₁	Cı	D_1	A ₂	B_2	C ₂	D_2	
Peer Ratings										
Courtesy	A_1	(.82)								
Honesty	$\mathbf{B_1}$.74	(.80)							
Poise	C_1	.63	.65	(.74)						
School Drive	D_1	.76	.78	.65	(.89)					
Association Test										
Courtesy	A_2	.13	.14	.10	.14	(.28)				
Honesty	$\mathbf{B_2}$.06	.12	.16	.08	.27	(.38)			
Poise	C_2	.01	.08	.10	.02	.19	.37	(.42)		
School Drive	$\mathbf{D_2}$.12	.15	.14	.16	.27	.32	.18	(.36	

"Disattentuating" correlations

Correlations between scores impacted by reliability ("attenuation"). To get at "true correlation" between traits, correct for attenuation ("disattenuate").

- Let $\rho_{x,y}$ denote true correlation between traits x and y (given perfect reliability).
- $ightharpoonup ... r_{x,y}$ the observed correlation between traits x and y.
- $ightharpoonup ... r_{x.x}$ and $r_{y.y}$ the reliabilities with which x and y are measured (respectively).

An estimate of the "true" correlation between traits x and y can be obtained by:

$$\rho_{x.y} = \frac{r_{x.y}}{\sqrt{r_{x.x}r_{y.y}}}.$$

MTMM example: Disattenuating correlations

TABLE 2

Personality Traits of School Children from Kelley's Study
(N=311)

		Peer Ratings				Association Test				
		A ₁	B ₁	Cı	D_1	A ₂	B_2	C_2	D_2	
Peer Ratings					uation example:					
Courtesy	$\mathbf{A_1}$	(.82)		M1 Scho	ool-Drive <-> M2 0	ourtesy				
Honesty	$\mathbf{B_1}$.74	(.80)			$/ \longrightarrow r_{x,y}$				
Poise	C_1	.63	.65	(.74)		7 rx.x ry	.y			
School Drive	D_1	.76	.78	.65	((.89)	<i>f f</i>				
Association Test										
Courtesy	A_2	.13	.14	.10	(.14)	(.28)				
Honesty	$\mathbf{B_2}$.06	.12	.16	.08	.27	(.38)			
Poise	C ₂	.01	.08	.10	.02	.19	.37	(.42)		
School Drive	D_2	.12	.15	.14	.16	.27	.32	.18	(.36)	