

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 1, 1997

Электронный журнал, per. N П23275 от 07.03.97

http://www.neva.ru/journal e-mail: diff@osipenko.stu.neva.ru

Теория обыкновенных дифференциальных уравнений

БАЗИСЫ НАБЛЮДАЕМЫХ ФУНКЦИЙ В АНАЛИТИЧЕСКИХ ДИНАМИЧЕСКИХ СИСТЕМАХ ¹

Ю.В. Заика

В терминах функциональной зависимости получено описание наблюдаемых функций в нелинейных динамических системах, аналитических по фазовым переменным. При анализе базисности конечного числа интегральных операторов наблюдения развивается аналог принципа двойственности, известного в линейной теории наблюдения и управления. Рассмотрены также вопросы устойчивости базисов, учета структуры возмущений, методы приближений. В основе полученных результатов — теория комплексных аналитических множеств и методы математической теории управления.

§1. Введение

Проблема наблюдения и прогнозирования фазового состояния нелинейных динамических систем по неполной обратной связи имеет и самостоятельное значение, и как один из этапов синтеза систем управления. Идентификация параметров моделей динамических систем по результатам измерений является задачей такого же типа. В общей нелокальной постановке исследование подобных нелинейных обратных задач связано со значительными математическими трудностями. В статье для аналитического

¹Ключевые слова: наблюдаемые динамические системы, сопряженные задачи управления, линейные граничные задачи, аналитические множества.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект 95-01-00355).

по фазовым переменным случая развивается аналог теории двойственности линейных задач наблюдения и управления Р.Калмана -Н.Н.Красовского [1]. Аналитичность позволяет применять результаты теории комплексных аналитических множеств. В качестве восстанавливающих операторов используются интегральные операции обработки информации о движении. С учетом реальных возмущений в каналах связи это приводит к определенной помехоустойчивости алгоритма наблюдения и прогнозирования.

Перейдем к конкретной постановке задачи. Рассмотрим в области $U\subseteq \mathbb{R}^n$ систему наблюдения

$$\dot{x} = f(x), \quad y = g(x), \qquad f: U \to \mathbb{R}^n, \quad g: U \to \mathbb{R}^m,$$
 (1.1)

моделирующую соответственно закон движения и доступную информацию о движении. Вектор -функции f, g предполагаем гладкими, а для основных результатов в статье — вещественными аналитическими в U. Задан отрезок наблюдения [0,T] и область возможных конечных состояний $U_T = \{x(T)\} \subset U$, для которых решения векторного дифференциального уравнения в (1) $x(\cdot; x, T)$ ($x(T; x, T) = x \in U_T$) продолжимы на [0, T]. Задача наблюдения состоит в определении по $y(\cdot; x, T) = g(x(\cdot; x, T))$: $[0,T] \to \mathbb{R}^m$ фазового вектора x = x(T). Речь идет о "континуально многоточечной нелинейной граничной задаче. Запись $y(\cdot; x, T)$ означает, что известная на [0,T] вектор -функция измерений $y(\cdot)$ однозначно определяется искомым неизвестным состоянием x в момент времени T. Предполагается, что задачу необходимо решать систематически. Поэтому нас интересуют операции вычисления по любой возможной реализации $y(\cdot)$ соответствующего x(T) из области U_T . Если используются только значения $y(t), t \in [0, T_*], T_* < T$, то говорят о задаче прогнозирования. Можно ставить задачу и в терминах неизвестных начальных данных $x_0 = x(0) \in U_0$, это непринципиально. Обычно интересуются фазовым состоянием к моменту окончания времени наблюдения. В рамках принятой модели по x(T) (или x(0)) уже можно восстановить численно решение и траекторию движения.

С целью упрощения обозначений и без существенного для дальнейшего изложения ограничения общности можно считать m=1.

Несколько слов о некоторых предшествующих результатах аналитической теории наблюдения. В работе Y.Inoye [2] было показано, что для полиномиальной системы (1.1) (пары (f,g)) при определении x(T) достаточно ограничиться вычислением конечного числа производных $y^{(i)}(t_*)$,

 $t_* \in [0,T]$. Однако необходимое их количество может оказаться сколь угодно большим. "Всего лишь" п-параметрическое семейство $\{y(\cdot;x,T) \, | \, x \in U_T\}$ весьма сложно устроено. Определенное развитие аналитическая теория наблюдения по конечному числу производных и дискретных измерений получила в работах К.Е. Старкова (см. [4,5] и ссылки в них). К.В. Козеренко [5] показано, что для стационарной наблюдаемой вещественной аналитической пары (f,g) без потери информации об искомом x(T) вместо $y(\cdot)$ можно ограничиваться некоторым набором 2n+1 значений $y(t_j)$.

Если на измерение y(t) существенное влияние оказывают различного рода помехи, то предпочтительнее использовать интегральные операции обработки y(t). Основы соответствующего математического аппарата в линейном случае изложены в книге Н.Н. Красовского [1]. Пусть f=Fx, g=Gx, где F, G — матрицы $n\times n$, $m\times n$. Если в сопряженной системе

$$\dot{V}(t) = -F'V(t) + G'k(t), \qquad V(0) = 0, \tag{1.2}$$

построить управление $k(\cdot)$ из условия V(T)=h, то по $y(\cdot)$ вычисляется проекция неизвестного x(T) на вектор h: $h'x(T)=\langle k,y\rangle_{L_2} \ \forall x(T)\in \mathbb{R}^n$. Совокупность всех $h\in \mathbb{R}^n$, для которых по любой возможной $y(\cdot)$ однозначно восстанавливается h'x(T), описывается множеством достижимости $D_T=\{V(T)\}$. В частности (принцип двойственности), линейная пара (f,g)=(F,G) наблюдаема только когда сопряженная система (2) управляема ($D_T=\mathbb{R}^n$).

Этот подход Н.Е. Кириным [6,7] обобщен на нелинейный случай. Построение интегрального оператора восстановления по $y(\cdot)$ значений заданной функции

 $\varphi:U_T\to\mathbb{R}^1$ в форме

$$\varphi(x(T)) = \int_0^T k(\tau, y(\tau)) d\tau \qquad \forall x(T) \in U_T$$
 (1.3)

сводится к задаче управления: в сопряженной системе

$$\frac{\partial v}{\partial t}(t,x) + \frac{\partial v}{\partial x}(t,x) \cdot f(x) = k(t,g(x)), \qquad v(0,x) = 0, \tag{1.4}$$

выбрать $k(\cdot,\cdot)$ из условия $v(T,x)=\varphi(x), x\in U_T$. Необходимые детали в дальнейшем будут уточнены. В линейном случае (f=Fx, g=Gx, k=k'(t)y) получаем v(t,x)=V'(t)x, где V(t) удовлетворяет (1.2). Возникновение уравнения в частных производных естественно, поскольку задача

построения операции наблюдения для области фазового пространства по существу является распределенной. Важно, что уравнение (1.4) линейное и имеется возможность применения более развитых теории управления и численных методов решения линейных граничных задач. Развитию этой схемы и посвящена статья.

§2. Наблюдение и прогнозирование по конечному числу проекций

Остановимся вначале на классе линейных интегральных операторов (1.3):

 $\varphi(x(T)) = \langle k, y \rangle_{L_2}, \ L_2 = L_2([0,T],\mathbb{R}^1), \ m = 1.$ Имея в виду прикладной характер задачи, допустимые весовые функции $k(\cdot)$ обработки измерений $y(\cdot)$ считаем кусочно непрерывными на [0,T]. Функционалы $y(\cdot) \mapsto \langle k,y \rangle$ и сами числа (моменты) $\langle k, y \rangle$ будем называть проекциями. Здесь возникает ряд вопросов. С вычислительной точки зрения важно иметь конечномерное представление $y(\cdot)$. Можно ли подобрать такие $k_1(\cdot), \ldots, k_p(\cdot)$, чтобы сужение информации $y(\cdot)$ до значений конечного числа функционалов $J_i(y(\cdot)) = \langle k_i, y \rangle_{L_2}$ не приведило к потере информации об искомом x(T) (в смысле взаимно однозначного соответствия $y(\cdot) \leftrightarrow (J_1(y(\cdot)), \ldots, J_n(y(\cdot))),$ $x(T) \in U_T$). В случае успеха проблема "запоминания" $y(\cdot)$ сводится к интегрированию в масштабе реального времени по мере поступления измерений y(t), что сравнительно легко осуществляется техническими средствами. Иной акцент вопроса: возможна ли ситуация, когда пара (f,g) наблюдаема (инъективно отображение $x(T) \mapsto y(\cdot)$), но по конечному числу проекций $\langle k_i, y \rangle$ однозначно определять x(T) невозможно ? Здесь $k_i(\cdot)$, $i = \overline{1, p}$, фиксируются одни и те же для всех возможных $y(\cdot)$ ($x(T) \in U_T$). Если указанные наборы $k_i(\cdot)$ существуют, как выбрать по возможности минимальным p? Пусть $k(\cdot)$ фиксирована. Цепочка $x(T) \mapsto y(\cdot) \mapsto \langle k, y \rangle$ порождает функцию $\varphi(x(T)) = \langle k, y \rangle$. Как дать аналитическое описание $\varphi(\cdot)$? Важен и в определенном смысле обратный вопрос. Обычно измеряется часть фазовых координат, требуется лишь восстанавливать оставшиеся или, более общо, значения заданных функций $\varphi(x(T))$. Как для заданной $\varphi(\cdot)$ подобрать $k(\cdot, \cdot)$ чтобы выполнялось (1.3), хотя бы с требуемой точностью?

Исчерпывающие ответы на поставленные вопросы в общем нелинейном случае представляется труднообозримой проблемой. Перейдем к изложению полученных результатов в случае аналитичности по фазовым переменным.

Определение 1. Функцию $\varphi: U_T \to \mathbb{R}^1$ назовем наблюдаемой в $M \subseteq U_T$, если существует функционал Λ из условия $\varphi(x) = \Lambda(y(\cdot; x, T)), x \in M$.

Наблюдаемость φ в M означает, что ее значения $\varphi(x)$ на неизвестном априори x=x(T) однозначно восстанавливаются по доступной информации $y(\cdot;x,T)$, если дополнительно известно включение $x\in M$. Наблюдаемость пары (f,g) эквивалентна наблюдаемости всех координатных функций $\varphi(x)=x_i,\ i=\overline{1,n}$, в области U_T . Когда исследуется наблюдаемость функции φ в M и φ задана лишь на подмножестве \widetilde{M} ($M\subseteq \widetilde{M}\subseteq U_T$), то считаем ее доопределенной в $U_T\setminus \widetilde{M}$ произвольным образом.

Обозначим через $\Phi(M)$ множество всех наблюдаемых в M функций φ . Очевидно, $\Phi(\widetilde{M}) \subseteq \Phi(M)$ при $M \subseteq \widetilde{M}$.

Определение 2. Базисом $\Phi(M)$ назовем такую конечную совокупность $\varphi_i \in \Phi(M), \ i = \overline{1,p}, \$ что имеет место функциональная зависимость

$$\varphi(x) = F_{\varphi}(\varphi_1(x), \dots, \varphi_p(x)) \quad \forall \varphi \in \Phi(M), \quad \forall x \in M.$$

Образно говоря, множество $\Phi(M)$ является нелинейной (функциональной) оболочкой базисных наблюдаемых функций. Вычислив по $y(\cdot; x, T)$ $(x \in M)$ значения $\varphi_1(x), \ldots, \varphi_p(x)$, дополнительной информаци о неизвестном x = x(T) из $y(\cdot)$ уже извлечь невозможно. Наблюдаемость (f,g) в $M \subseteq U_T$ означает взаимно однозначное соответствие $(\varphi_1(x), \ldots, \varphi_p(x)) \leftrightarrow x \in M$. Если последним свойством обладает один из базисов , то это же справедливо и для любого другого (при условии их существования).

Действительно, пусть Λ_i — функционалы, соответствующие базисным $\varphi_i \in \Phi(M)$ согласно определению $1, \{k_i, i \geq 1\}$ — полная в $L_2 = L_2([0,T], \mathbb{R}^1)$ система функций. Тогда $\psi_i \in \Phi(U_T) \subseteq \Phi(M)$, где $\psi_i(x) = \langle k_i, y(\cdot; x, T) \rangle$, $x \in U_T$. По определению базисности $\psi_i(x) = F_{\psi_i}(\varphi_1(x), \dots, \varphi_p(x)) \ \forall i \geq 1$, $\forall x \in M$. Значит, по $\varphi_i(x) = \Lambda_i(y(\cdot; x, T)), i = \overline{1,p}$, числа $\psi_i(x), i \geq 1$, определяются однозначно. В силу полноты $\{k_i, i \geq 1\}$ имеем $(\varphi_1(x), \dots, \varphi_p(x)) \leftrightarrow y(\cdot; x, T), x \in M$, и вместо функций $y(\cdot; x, T)$ можно оперировать p -мерными векторами $(\varphi_1(x), \dots, \varphi_p(x)), x \in M$. Эти же функции $\varphi_i(x)$ образуют базис и $\Phi(\widetilde{M}) \ \forall \widetilde{M} \subseteq M$.

Функционалы Λ_i в определении 1 могут быть различной природы, в частности, $\Lambda_i(y(\cdot)) = y(t_i), \ \Lambda_i(y(\cdot)) = y^{(i)}(t_*)$. Ограничимся пока классом (корректных) линейных интегральных операций обработки измерений $\Lambda(y(\cdot)) = \langle k, y \rangle$. Очевидно, функции $\psi(x) = \langle k, y(\cdot, x; T) \rangle$ наблюдаемы в

любом подмножестве U_T , т.е. $\psi \in \Phi(M) \ \forall M \subseteq U_T, \ \forall k(\cdot)$. При необходимости класс допустимых $k(\cdot)$ можно расширить до L_2 .

Теорема 1. Пусть $\Phi(M)$ — множество всех наблюдаемых в $M \subseteq U_T$ функций и пара (f,g) вещественная аналитическая: $f \in C^{\omega}(U,\mathbb{R}^n)$, $g \in C^{\omega}(U,\mathbb{R}^1)$. Тогда $\forall M$ с компактным замыканием в U_T из произвольной полной в L_2 системы допустимых весовых функций $\{k_i, i \geq 1\}$ можно выделить такие $k_{i_{\nu}}(\cdot)$, что $\varphi_{\nu}: U_T \to \mathbb{R}^1$ $(\varphi_{\nu}(x) = \langle k_{i_{\nu}}, y(\cdot, x, T) \rangle, \nu = \overline{1, p})$ образуют конечный базис $\Phi(M)$.

Доказательство. Определим в области $U_T \times U_T$ вещественные аналитические функции

$$\Delta \psi_i(x^1, x^2) = \psi_i(x^1) - \psi_i(x^2) = \langle k_i, y(\cdot; x^1, T) - y(\cdot; x^2, T) \rangle, \quad x^j \in U_T.$$

В силу леммы Абеля о сходимости степенных рядов можем считать, что $\Delta \psi_i$ заданы и аналитичны в $W = U_T^c \times U_T^c \subseteq \mathbb{C}^{2n}$, где область U_T^c является достаточно малой окрестностью U_T в \mathbb{C}^n . Это аналитическое продолжение можно задать и формулой

$$\Delta \psi_i(z^1, z^2) = \langle k_i, y(\cdot; z^1, T) - y(\cdot; z^2, T) \rangle, \quad z^j \in U_T^c.$$

Смысл записи $y(\cdot;z,T), z\in U^c_T$, сохраняется, поскольку решения $\dot x=f(x)$ можно рассматривать и при комплексных условиях Коши $x(T)=z\in U^c_T\subseteq \mathbb C^n$. Продолжимость таких решений на [0,T] гарантируется, а продолжение f,g в окрестность $U^c\supseteq U$ в $\mathbb C^n$ построить легче — в приложениях обычно компоненты f,g задаются композициями элементарных функций.

Обозначим через Z_i множество нулей функции $\Delta \psi_i$ в W. Тогда общие нули $\Delta \psi_i$ образуют аналитическое подмножество $Z = \cap_{j=1}^{\infty} Z_j$ области W и существуют такие номера i_1, \ldots, i_p , что

$$Z \cap (M \times M) = (\bigcap_{\nu=1}^{p} Z_{i_{\nu}}) \cap (M \times M).$$

Здесь используем терминологию и результат [8, стр. 53]. Из $\Delta \psi_{i_{\nu}}(x^1,x^2)=0,\ \nu=\overline{1,p},\ x^j\in M$ получаем $\Delta \psi_i(x^1,x^2)=0,\ i\geq 1,$ и в силу полноты $\{k_i,i\geq 1\}\ y(\cdot;x^1,T)=y(\cdot;x^2,T).$ Отсюда

$$(\varphi_1(x),\ldots,\varphi_p(x))=(\langle k_{i_1},y\rangle,\ldots,\langle k_{i_p},y\rangle)\leftrightarrow y(\cdot;x,T),\quad x\in M.$$

Окончательно, $\forall \varphi \in \Phi(M)$ имеем $\varphi(x) = \Lambda(y(\cdot; x, T)) = F_{\varphi}(\varphi_1(x), \dots, \varphi_p(x)),$ $x \in M$. Теорема доказана.

Требование полноты $\{k_i, i \geq 1\}$ в L_2 можно ослабить — достаточно $\{\langle k_i, y(\cdot; x, T) \rangle, i \geq 1\} \leftrightarrow y(\cdot; x, T), x \in U_T$ (полноты на $Y = \{y(\cdot) | x(T) \in U_T\}$). Можно учесть и ограничения реализации $k_i(\cdot)$ типа $|k_i(t)| \leq \bar{k} = \text{const}, k_i(\cdot)$ — кусочно постоянны и т.п. Число базисных проекций p зависит не только от f, g, M, но и от удачного выбора системы $\{k_i, i \geq 1\}$.

Проблему поиска базиса можно сформулировать в алгебраических терминах. Рассмотрим в кольце $C^{\omega}(W)$ аналитических в W функций идеал, порожденный $\{\Delta\psi_i, i \geq 1\}$. Элементы этого идеала — конечные линейные комбинации $\Delta\psi_i$ с коэффициентами из $C^{\omega}(W)$. Конечный базис этого идеала, когда он существует, и определяет номера базисных проекций $\langle k_i, y \rangle$ для $M = U_T$ ($\Rightarrow \forall M \subseteq U_T$). В частности, из нетеровости кольца ростков аналитических функций в точке следует [9, стр. 50], что $\forall \bar{x} \in U_T$ существует достаточно малая окрестность

$$P_{\varepsilon} = \{ z \in \mathbb{C}^n \middle| \|z - \bar{x}\| = \max_i |z_i - \bar{x}_i| < \varepsilon \} \subseteq U_T^c \quad (P_{\varepsilon} \cap \mathbb{R}^n \subseteq U_T)$$

и функции $\Delta \psi_{i_1}, \ldots, \Delta \psi_{i_q}$ из условий

$$\Delta \psi_j(z^1, z^2) = \sum_{\nu=1}^q \alpha_{j\nu}(z^1, z^2) \Delta \psi_{i\nu}(z^1, z^2),$$

$$j \ge 1, \quad (z^1, z^2) \in P_{\varepsilon} \times P_{\varepsilon}, \quad \alpha_{j\nu} \in C^{\omega}(P_{\varepsilon} \times P_{\varepsilon}).$$

Тогда

$$(\Delta \psi_{i_{\nu}}(x^1, x^2) = 0, \nu = \overline{1, q}, \quad x^j \in M = P_{\varepsilon} \cap U_T) \Rightarrow$$
$$(\Delta \psi_i(x^1, x^2) = 0, i \ge 1) \Rightarrow y(\cdot; x^1, T) = y(\cdot; x^2, T).$$

Базисом $\Phi(M)$ будут функции $\varphi_{\nu}(x)=\psi_{i_{\nu}}(x)=\langle k_{i_{\nu}},y(\cdot;x,T)\rangle,\ \nu=\overline{1,q},$ поскольку

$$(\varphi_1(x), \dots, \varphi_q(x)) \leftrightarrow y(\cdot; x, T), \quad x \in M = P_{\varepsilon} \cap U_T.$$

Если нет априорных ограничений на структуру весовых функций $(k(\cdot) \in \{k_i, i \geq 1\})$, то результат можно существенно усилить ($M = U_T, p = 2n+1$).

Теорема 2. Пусть $\{k_i, i \geq 1\}$ — произвольная полная в L_2 система непрерывных функций. Существует семейство наборов из 2n+1 функций $\{r_i(\cdot), i = \overline{0,2n}\}$, для которых $\varphi_i(x) = \langle r_i, y(\cdot; x, T) \rangle$, $i = \overline{0,2n}$, образуют базис $\Phi(U_T)$ (и $\Phi(M) \forall M \subseteq U_T$). Каждая $r_j(\cdot)$ представима равномерно сходящимся на [0,T] рядом по элементам $\{k_i, i \geq 1\}$.

Доказательство. Воспользуемся следующим результатом из теории комплексных аналитических множеств [8, стр. 54]. Пусть $\{f_{\alpha}\}_{\alpha\in I}$ — произвольное семейство функций, голоморфных на комплексном n - мерном многообразии Ω . Тогда множество их общих нулей Z есть аналитическое подмножество в Ω , причем существуют функции $g_i \in C^{\omega}(\Omega)$, $i = \overline{0, n}$, общие нули которых тоже совпадают с Z.

Укажем модификацию доказательства этого факта применительно к рассматриваемой задаче. Вначале приведем схему построения g_n . Пусть Ω_i — связные компоненты Ω , не принадлежащие Z, и $a_i \in \Omega_i \setminus Z$ — произвольно выбранные точки. Для каждого i найдется функция f_{α_i} , такая что $f_{\alpha_i}(a_i) \neq 0$. Представим Ω в виде счетного объединения компактов $\cup K_j$ ($K_j \subseteq K_{j+1}$, $\forall K \exists s : K \subset K_s$) и подберем индукцией поj числа c_j так, чтобы

$$\left| c_j f_{\alpha_j}(z) \right| < 2^{-j} \quad \forall z \in K_j, \qquad \left| \sum_{k=1}^j c_k f_{\alpha_k}(a_i) \right| > \frac{1}{2} |c_i f_{\alpha_i}(a_i)| \quad \forall i \le j.$$

$$(2.1)$$

Ряд $\sum c_i f_{\alpha_i}$ равномерно на компактах сходится в Ω к голоморфной функции, которую обозначим g_n . По построению $g_n(a_i) \neq 0 \ \forall i \Rightarrow \dim(Z_{g_n} \cap \Omega_i) < n$, где Z_{g_n} — нули g_n в Ω . Остальные g_{n-1}, \ldots, g_0 строятся в [8] по индукции аналогичным образом: $g_s \Big|_{Z} \equiv 0$ и все неприводимые компоненты размерности $\geq s$ аналитического подмножества $Z_{g_n} \cap \ldots \cap Z_{g_s}$ в Ω принадлежат Z. Множество общих нулей g_0, \ldots, g_n совпадает с Z.

Определим (см. доказательство теоремы 1) аналитические функции

$$\Delta \psi_i : W = U_T^c \times U_T^c \to \mathbb{C}, \quad \Delta \psi_i(z^1, z^2) = \psi_i(z^1) - \psi_i(z^2), \quad i \ge 1,$$

с помощью аналитического продолжения $\psi_i(x)$ из U_T в достаточно малую окрестность $U_T^c \supset U_T$ в \mathbb{C}^n : $\psi_i(z) = \langle k_i, y(\cdot; z, T) \rangle$, $z = x(T) \in U_T^c$. Применим указанные выше построения к семейству $\{\Delta \psi_i, i \geq 1\}$ в области $\Omega = W \subseteq \mathbb{C}^{2n}$. С той лишь разницей, что коэффициенты c_j будем подбирать из условия

$$|c_j \Delta \psi_{\alpha_j}(z^1, z^2)| = |\langle c_j k_{\alpha_j}, y(\cdot; z^1, T) - y(\cdot; z^2, T) \rangle| \le$$

$$||c_j k_{\alpha_j}||_C ||y(\cdot; z^1, T) - y(\cdot; z^2, T)||_{L_1} \le 2^{-j} \quad \forall (z^1, z^2) \in K_j,$$

сохраняя при этом второе определяющее c_j неравенство в (2.1). Эта корректировка обеспечит не только сходимость ряда $\sum c_i \Delta \psi_{\alpha_i}$ в W к аналитической функции, но и ряда $\sum c_i k_{\alpha_i}$ в C[0,T]. Используя такие построения по индукции и обозначая суммы полученных рядов в C[0,T] через r_{2n},\ldots,r_0 ,

приходим к следующему результату. Множество общих нулей функций

$$q_i(z^1, z^2) = \langle r_i, y(\cdot; z^1, T) - y(\cdot; z^2, T) \rangle, \quad i = \overline{0, 2n},$$

в W совпадает с $Z=\cap_{j=1}^\infty Z_j$ (Z_j — нули $\Delta \psi_j$ в W). В силу полноты $\{k_i, i\geq 1\}$ любые $y(\cdot; x^1, T)\neq y(\cdot; x^2, T), \ x^j\in U_T$, имеют различный набор проекций:

$$(\langle r_0, y(\cdot; x^1, T) \rangle, \dots, \langle r_{2n}, y(\cdot; x^1, T) \rangle) \neq (\langle r_0, y(\cdot; x^2, T) \rangle, \dots, \langle r_{2n}, y(\cdot; x^2, T) \rangle).$$

Из $y(\cdot; x, T) \leftrightarrow (\varphi_0(x), \dots, \varphi_{2n}(x))$, $x \in U_T$, $\varphi_i(x) = \langle r_i, y(\cdot; x, T) \rangle$, следует базисность набора φ_i в $\Phi(U_T)$. Удачных наборов $\{r_i, i = \overline{0, 2n}\}$ бесконечно много: имеется определенный произвол в выборе $\{k_i, i \geq 1\}$, a_s, K_j , коэффициенты рядов c_{ν} можно изменять на малых интервалах, сохраняя при этом определяющие их строгие неравенства. Теорема доказана.

Если брать степенные функции $k_i(t) = t^i$, то можно построить $r_j(\cdot)$ вещественными аналитическими в форме степенного ряда на $(\alpha, \beta) \supset [0, T]$. Допустимо использование и разрывных $k_i(\cdot)$. При этом вместо $|\langle \cdot, \cdot \rangle| \leq \|\cdot\|_{C} \|\cdot\|_{L_1}$ следует применить неравенство Коши -Буняковского, что повлечет сходимость рядов для $r_j(\cdot)$ в L_2 .

Наблюдаемость пары (f,g) в $M\subseteq U_T$ $(y(\cdot;x,T)\leftrightarrow x\in M)$ характеризуется тем, что для полной в L_2 (на $Y=\{y(\cdot)\}$) системы $\{k_i,i\geq 1\}$ множество общих нулей функций $\Delta\psi_i(x^1,x^2)$ в $M\times M$ совпадает с диагональю $\{(x,x)\Big|x\in M\}$. Для базисных $r_j(\cdot)$ вектор $x(T)\in M$ однозначно определяется по набору проекций $\mu_i=\langle r_i,y\rangle,\ i=\overline{0,2n}$. Но даже если (f,g) не наблюдаема , поиск базиса $\Phi(M)$ для заданной подобласти $M\subseteq U_T$ имеет важное прикладное значение. В частности, для формирования управления u(x(t)) в регулируемых системах по предыстории измерений на [t-T,t] нет необходимости в промежуточном восстановлении полного фазового вектора x(t), достаточно наблюдения непосредственно функции u(x).

Если какая-либо из базисных весовых $k(\cdot)$ не удовлетворяет заданным ограничениям реализации $|k(t)| \leq \ell = \text{const}$, то вместо нее следует взять $\alpha k(\cdot)$ с достаточно малым множителем α . Такие операции не меняют свойства базисности, здесь важны "проекции на направления".

В заключение параграфа остановимся на некоторых обобщениях. В случае многомерных измерений $g: U \to \mathbb{R}^m, \ m \geq 1$, теоремы 1,2 останутся без существенных изменений. Их можно переформулировать и в терминах задачи прогнозирования: по $y(\cdot)$ ($t \in [0, T_*], T_* < T$) определять $x = x(T) \in U_T$

 $(\varphi(x(T)))$. В стационарных системах в силу теоремы единственности для аналитических функций $y\Big|_{[0,T_*]} \leftrightarrow y\Big|_{[0,T]}$ и прогнозируемость эквивалентна наблюдаемости (вычислительные аспекты пока не затрагиваем). В нестационарном случае $f=f(t,x),\ g=g(t,x),$ когда требования гладкости по t могут быть значительно ослаблены, прогнозируемость влечет наблюдаемость, но не наоборот. Для допустимых весовых функций в интегральных операторах (1.3) следует полагать $k(t,y)=0,\ t>T_*$. В доказательствах по существу использовалась только вещественная аналитичность функций $\langle k,y(\cdot;x,T)\rangle$ по данным Коши $x=x(T)\in U_T$. Для удобства считаем $T_*\leq T$ и тогда наблюдаемости будет соответствовать частный случай прогнозируемости $(T_*=T)$.

Рассмотрим нестационарную систему наблюдения

$$\dot{x} = f(t, x), \quad y = g(t, x), \tag{2.2}$$

заданную в области $\Omega=(t_1,t_2)\times U,\ [0,T]\subset (t_1,t_2)$. Вектор -функции $f,\ g$ предполагаем непрерывными по совокупности переменных в Ω и вещественными аналитическими по x в U при фиксированном $t\in (t_1,t_2)$. Считаем также, что

$$f = f^c \Big|_{\Omega}, \quad g = g^c \Big|_{\Omega}, \quad f^c(t, \cdot) \in C^{\omega}(U^c), \quad g^c(t, \cdot) \in C^{\omega}(U^c),$$
$$f^c \in C((t_1, t_2) \times U^c, \mathbb{C}^n), \quad g^c \in C((t_1, t_2) \times U^c, \mathbb{C}^m),$$

область U^c — окрестность U в \mathbb{C}^n . Это обеспечивает существование, единственность решения задачи Коши и аналитичность по начальным даным [10]. Пусть для подобласти $U_T\subseteq U$ решения $x(\cdot;x,T),\ x=x(T)\in U_T,$ продолжимы на [0,T]. Тогда $\forall k(\cdot)\in L_2^m=L_2([0,T],\mathbb{R}^m)$ функция $\psi(x)=\langle k,y(\cdot;x,T)\rangle_{L_2^m}$ вещественная аналитическая в U_T (и аналитическая в области U_T^c — достаточно малой окрестности U_T в \mathbb{C}^n). Последнее свойство можно принять в качестве исходного основного предположения, сказанное выше — достаточные условия.

Обозначим через $\Phi_*(M)$ множество прогнозируемых в $M\subseteq U_T$ функций:

$$\varphi \in \Phi_*(M) \Leftrightarrow \varphi(x) = \Lambda(y(\cdot; x, T)), \quad x \in M, \quad y : [0, T_*] \to \mathbb{R}^m.$$

Определение 2 базисности остается без изменений. В последующих за ним рассуждениях следует считать $y(\cdot) \in Y_* = \{y : [0, T_*] \to \mathbb{R}^m \middle| x(T) \in U_T\}.$

Класс допустимых весовых $k(\cdot)$ остается прежним — кусочно непрерывные на $[0, T_*]$. При необходимости считаем их доопределенными нулем на $(T_*, T]$.

Теорема 1'-2'. Для нестационарной системы наблюдения (2.2) $\forall M$ с компактным замыканием в U_T из произвольной полной в $L_2^m(0,T_*)$ (на Y_*) системы допустимых вектор -функций $\{k_i,i\geq 1\}$ можно выделить такие $k_{i_{\nu}}(\cdot)$, что функции $\varphi_{\nu}(x)=\langle k_{i_{\nu}},y(\cdot;x,T)\rangle_{L_2^m}$ $(x\in U_T,\nu=\overline{1,p})$ образуют базис $\Phi_*(M)$. Без априорного ограничения $k(\cdot)\in\{k_i,i\geq 1\}$ можно добиться $M=U_T,\,p=2n+1$.

Замечание 1. В теоремах 1, 1'-2' можно считать $M=U_T$, если известно, что U_T ограничена и решения с $x(T)\in \hat{U}$ продолжимы на [0,T]. Подобласть $\hat{U}\subseteq U$ содержит замыкание сl U_T .

Изложенные рзультаты можно рассматривать как конечномерное представление Y (Y_*) в \mathbb{R}^p . Здесь следует иметь в виду, что операторы "вложения" имеют специальный вид (проекции $y(\cdot)$ в L_2^m) и не предполагается локальная невырожденность (1.1), (2.2) (локальная наблюдаемость в U_T по линейному приближению). Образно говоря, "якобиан может вырождаться". В случае (2.2) выход $y(\cdot)$ может быть и недифференцируемой вектор -функцией по t.

§3. Сопряженная задача управления

Результаты §2 позволяют перейти к исследованию интегральных операторов (1.3), не опасаясь "неполной информативности". Вместо операторной связи $\varphi(\cdot)$ и $k(\cdot,\cdot)$ необходимо уравнение, более удобное в конструктивном отношении.

Рассмотрим в области $\Omega = (t_1, t_2) \times U$ нестационарную систему наблюдения (2.2) и пока ослабим аналитические требования: $f, g, f'_x, g'_x \in C(\Omega)$. Поскольку отрезок наблюдения [0, T] и область U_T возможных x(T) фиксированы, то последующие построения достаточно проводить на пучках

$$W = \{(t, x) | t \in [0, T], x \in x(t; U_T, T)\}, \quad W_g = \{(t, y(t)) | t \in [0, T], x(T) \in U_T\}.$$

Выберем в области $Q\supset W_g$ весовую функцию обработки измерений $k(\cdot,\cdot):Q=Q(k)\subset\mathbb{R}^{m+1},\,k,k_y'\in C(Q).$ Тогда функция

$$v(t,x) = \int_0^t k(\tau, y(\tau; x, t)) d\tau$$
 (3.1)

будет класса $C^1(W)$ в силу гладкости решений дифференциальных уравнений по начальным данным $(t_0, x_0) = (t, x) \in W$.

Замечание 2. запись $v \in C^1(W)$ подразумевает, что $v(\cdot, \cdot)$ продолжается в некоторую область $\overline{W} \supset W$ и $v \in C^1(\overline{W})$. В качестве \overline{W} можно взять объединение интегральных кривых (t,x(t)), соответствующих непродолжаемым решениям $x(\cdot;x(T),T)$ $(x(T)\in U_T)$, пока (t,y(t)) находятся в пределах области Q определения $k(\cdot,\cdot)$. Поэтому, если ниже значения t и ограничены отрезком наблюдения [0,T], то с символами производной v_t' в точках (0,x), (T,x) не должно возникать недоразумений. Их можно считать односторонними производными.

Покажем, что $v(\cdot,\cdot)$ является единственным гладким решением уравнения

$$\frac{\partial v}{\partial t}(t,x) + \frac{\partial v}{\partial x}(t,x) \cdot f(t,x) = k(t,g(t,x)), \quad (t,x) \in W,$$
 (3.2)

с нулевыми начальными данными $v(0,x)=0, x \in U_0=x(0;U_T,T).$

Действительно, возьмем произвольную точку $(t,x) \in W$ (t,x) выбираются независимо) и решение $x(\tau)$ с начальными данными x(t)=x $(\tau \in (-\varepsilon,t+\varepsilon),\, \varepsilon=\varepsilon(t,x)>0).$ Тогда, с одной стороны,

$$L_f v(t,x) = \frac{d}{d\tau}\Big|_{\tau=t} v(\tau, x(\tau)) = \frac{\partial v}{\partial t}(t,x) + \frac{\partial v}{\partial x}(t,x) \cdot f(t,x),$$

а с другой (с учетом конкретного представления (3.1)):

$$v(\tau, x(\tau)) = \int_0^{\tau} k(s, y(s; x(\tau), \tau)) ds =$$

$$\int_0^{\tau} k(s, y(s; x(0), 0)) ds = \int_0^{\tau} k(s, y(s; x(t), t)) ds,$$

$$\frac{d}{d\tau} \Big|_{\tau = t} v(\tau, x(\tau)) = k(t, y(t; x, t)) = k(t, g(t, x)).$$

Единственность доказывается от противного. Для разности \bar{v} двух гладких решений получаем (3.2) с нулевой правой частью (уравнение первого интеграла). Значит, $\bar{v}(t,x(t)) \equiv \mathrm{const.}$ Множество W состоит из интегральных кривых на $[0,T], \bar{v}(0,\cdot) = 0$. Поэтому $\bar{v}(t,x) = 0, (t,x) \in W$.

Смысл функции (3.1) и уравнения (3.2) [6,7] состоит в следующем. Если положить в (3.1) t=T, то получим интегральный оператор в правой части (1.3). Если он должен восстанавливать значения $\varphi(x(T))$, то к нулевым начальным данным для уравнения (3.2) добавляется условие $v(T,x)=\varphi(x)$,

 $x \in U_T$. Поэтому (3.2) можно трактовать как уравнение переноса фазовой точки $v(t,\cdot)$ из нуля в φ за время T. В самом общем смысле здесь уместна аналогия с идеями второго метода А.М. Ляпунова в теории устойчивости движения и тесно с ним связанного метода динамического программирования P. Беллмана.

Если $k(\cdot,\cdot)$ $(k,k'_y\in C(Q))$ решает задачу (1.3), то для $v(\cdot,\cdot)$ выполнено (3.2) и краевые условия $v(0,x)=0, x\in U_0=x(0,U_T,T), v(T,x)=\varphi(x), x\in U_T$. Обратно, если $k(\cdot,\cdot)$ решает граничную задачу, то подставляя в (3.2) вместо x любое решение $x(t;x(T),T), x(T)\in U_T$, и интегрируя полученное тождество по t на отрезке [0,T] (слева $\dot{v}(t,x(t))$), получаем (1.3). Итак, задача построения интегральных операторов (1.3) эквивалентна граничной задаче $v(0,\cdot)=0, v(T,\cdot)=\varphi$. Уравнение (3.2) линейно по паре (k,v).

Замечание 3. Уравнение (3.2) достаточно рассматривать лишь на множестве W, состоящем из объединения возможных интегральных кривых $(x(T) \in U_T)$. Но при достаточно адекватном моделировании обычно не возникает проблем с продолжимостью: решения $x(\cdot;x,t)$ с начальными данными $(t,x) \in [0,T] \times \widetilde{U}$ ($U_T \subseteq \widetilde{U} \subseteq U$) продолжимы на [0,t] и возможные фазовые кривые с $x(T) \in U_T$ не покидают известную область \widetilde{U} . Тогда в силу определения (3.1) $v \in C^1([0,T] \times \widetilde{U})$ и уравнение (3.2) можно рассматривать на множестве вида прямого произведения $[0,T] \times \widetilde{U}$, что значительно удобнее. Область Q определения $k(\cdot,\cdot)$ должна содержать $\{(t,g(t,x)) | t \in [0,T], x \in \widetilde{U}\}$.

Замечание 4. Для задачи прогнозирования $k(\cdot,\cdot)$ $(k,k'_y\in C(Q))$ подвергнем усечению $k(t,\cdot)=0,\ t>T_*\in(0,T)$. Кроме того, для линейных k(t,y)=k'(t)y допускаем конечное число разрывов первого рода вектор функции k(t). Непрерывность $v(\cdot,\cdot)$ в (3.1) сохранится , а (3.2) достаточно рассматривать вне конечного числа сечений $t=T_*,\ t=t_j$. Подобные уточнения при расширении множества допустимых $k(\cdot,\cdot)$ будем опускать.

Остановимся подробнее на интерпретации (3.2) как линейной системы управления. Для этого удобно перейти к операторной форме:

$$\dot{V}(t) = -A(t)V(t) + B(t)K(t), \quad V(0) = 0,$$

$$V(t) = v(t, \cdot) : x(t; U_T, T) \to \mathbb{R}^1, \quad A(t)V(t) = \frac{\partial v}{\partial x}(t, \cdot)f(t, \cdot), \qquad (3.3)$$

$$\dot{V}(t) = \frac{\partial v}{\partial t}(t, \cdot), \quad K(t) = k(t, \cdot), \quad B(t)K(t) = k(t, g(t, \cdot)).$$

Если нет проблем с продолжимостью (замечание 3), то (3.3) — линейная система управления "стандартного вида"в фазовом пространстве $C^1(\widetilde{U})$. В противном случае область определения фазового вектора $v(t,\cdot)$ (как функции x) может изменяться при $t\in[0,T]$. Для выполнения (1.3) выбором $K(\cdot)$ следует решить задачу $V(T)=\varphi$ ($x\in U_T, x\in\widetilde{U}$). Таким образом, нас интересует множество достижимости из нуля $D_T=\{V(T)=v(T,\cdot)\}\subseteq C^1(U_T)$. По построению $D_T\subset\Phi(U_T)$. Ограничение типа $|k(t,y)|\leq\bar{k}$ не рассматриваем. В приложениях допустимые фазовые траектории обычно расположены в ограниченной области и при необходимости можно использовать $\ell k(t,y)$ с достаточно малой константой ℓ , деля затем результат интегрирования в (1.3) на ℓ .

Из общирной литературы по обобщениям задач теории управления упомянем для ориентировки лишь монографии [11,12]. В данном случае имеется следующая специфика. Излишне исследовать полную управляемость (или ε - управляемость) бесконечномерной системы (3.3): для наблюдаемости пары (f,g) достаточно наличия в множестве достижимости D_T таких $w_i:U_T\to\mathbb{R}^1,\ i=\overline{1,p},\$ что $(w_1(x),\ldots,w_p(x))\leftrightarrow x\in U_T,\$ т.е. $x=H(w_1(x),\ldots,w_p(x)).$ Если требуется определять только значения заданной функции $\varphi:U_T\to\mathbb{R}^1\ (\varphi(x)=\Lambda(y(\cdot;x,T))),\$ то достаточно установить либо непосредственно включение $\varphi\in D_T,\$ либо функциональную зависимость $\varphi=H_\varphi(w_1,\ldots,w_p)$ в области U_T и применять оператор

$$\varphi(x(T)) = H_{\varphi}\left(\int_0^T k_1(\tau, y(\tau))d\tau, \dots, \int_0^T k_p(\tau, y(\tau))d\tau\right).$$

В линейном случае f=F(t)x, y=G(t)x, k=k'(t)y наблюдаемые проекции h'x(T) ($U_T=\mathbb{R}^n$) описываются множеством $\{h=V(T)\}$ в силу (1.2), т.е. линейной оболочкой \mathcal{L} базисных $V_i(T), i=\overline{1,p}, p\leq n$. Управляемость (1.2) означает $\mathcal{L}=\mathbb{R}^n$, что эквивалентно $(V_i'(T)x,i=\overline{1,n})\leftrightarrow x\in U_T$ (\mathbb{R}^n), p=n. При управлении (3.3) как сопряженной системой к (f,g) нас интересуют "нелинейные проекции" $\varphi(x(T))=v(T,x(T))$ и "полнота"не линейной, а функциональной оболочки наборов элементов множества достижимости. Как линейное пространство D_T бесконечномерно, за исключением вырожденных случаев (например, f — линейна, g — полиномиальна). Можно доказать, что даже если ограничиться линейными k(t,y)=k'(t)y, то D_T конечномерно лишь в случае конечномерности линейной оболочки $\mathcal{L}\{y(\cdot;x,T) | x\in U_T\}$ (и тогда $\dim D_T=\dim \mathcal{L}$).

Приведенные соображения оправдывают для нелинейной задачи наблю-

дения (но линейной задачи управления (3.3)) использование понятия функциональной зависимости вместо линейной.

Определение 3. Базисом множества достижимости $D_T = \{V(T) = v(T,\cdot) : U_T \to \mathbb{R}^1\}$ в $M \subseteq U_T$ назовем такую конечную совокупность $w_i \in D_T, \ i = \overline{1,p}, \ \mathit{что}$

$$w(x) = H_w(w_1(x), \dots, w_p(x)) \quad \forall x \in M, \quad \forall w \in D_T.$$

Сопряженную систему (3.2)((3.3)) считаем управляемой в $M \subseteq U_T$, если базис w_i , $i = \overline{1,p}$, в M существует и $(w_1(x), \ldots, w_p(x)) \leftrightarrow x \in M$ (т.е. функциональная оболочка базисных w_i дает все пространство функций аргумента $x \in M$).

Свойство управляемости в $M \subseteq U_T$ не зависит от выбора базиса D_T в M. Для полной в $L_2^m(0,T)$ системы $\{k_i, i \geq 1\}$ кусочно непрерывных вектор -функций $v_i(T,\cdot) \in D_T$, $v_i(T,x) = \langle k_i, y(\cdot; x,T) \rangle$, "коэффициенты Фурье" $\langle k_i, y \rangle$ однозначно определяются по $w_{\nu}(x)$ в M ($v_i(T,x) = H_i(w_1(x), \ldots, w_p(x))$ $x \in M$) и, следовательно, $(w_1(x), \ldots, w_p(x)) \leftrightarrow y(\cdot; x,T), x \in M$. Базис в M является и базисом в $\widetilde{M} \subset M$.

Результаты §2 приводят к следующему обобщению принципа двойственности в теории управления и наблюдения на нелинейный случай. Рассмотрим сразу нестационарный случай (2.2) и задачу прогнозирования (задаче наблюдения соответствует $T_* = T$). Вернемся к указанным выше предположениям вещественной аналитичности по фазовым переменным в (2.2). Тогда $\forall M$ с компактным замыканием в U_T из произвольной полной в $L_2^m(0,T_*)$ системы кусочно непрерывных вектор -функций $\{k_i,i\geq 1\}$ можно выделить такие $k_{i_{\nu}}(\cdot)$, что функции

$$w_{\nu}(x) = \langle k_{i_{\nu}}, y(\cdot; x, T) \rangle = v_{i_{\nu}}(T, x) \quad (x \in U_T, k_{i_{\nu}}(t) = 0, t > T_*, \nu = \overline{1, p})$$

образуют базис в M множества достижимости D_T $(T_* < T \Rightarrow k(t, \cdot) = 0, t > T_*)$. В условиях замечания 1 это справедливо и при $M = U_T$. Без априорного ограничения $k(\cdot) \in \{k_i, i \geq 1\}$ на $[0, T_*]$ можно указать семейство наборов $\{k_j(\cdot)\}$ $(j = \overline{1, p}, p = 2n + 1)$ из допустимых $k(\cdot)$, для которых соответствующие $w_j = v_j(T, \cdot), j = 1, \ldots, 2n + 1$, образуют базис D_T в $M = U_T$.

В компактной форме получаем следующий итог.

Теорема 3. Множество $\Phi_*(M)$ всех прогнозируемых в M функций описывается как функциональная оболочка $\mathcal{H}(M) = \{H(w_1, \dots, w_p)\}$ ка-

кого -либо базиса w_i , $i=\overline{1,p}$, в M множества достижимости

$$D_T = \{ v(T, \cdot) : U_T \to \mathbb{R}^1 | T_* < T \Rightarrow k(t, \cdot) = 0, t > T_* \}.$$

В частности, можно ограничиться только линейными k(t,y) = k'(t)y и считать $M = U_T$, p = 2n + 1. Сужения элементов $\mathcal{H}(U_T)$ на M образуют $\Phi_*(M)$. Пара (f,g) прогнозируема (наблюдаема при $T_* = T$) в $M \subseteq U_T$ тогда и только тогда, когда сопряженная система (3.2) управляема в M.

Перейдем теперь к исследованию аналитической структуры элементов множества достижимости D_T . В стационарном случае имеется удобное описание $D_T = \{V(T)\}$ в $(1.2): D_T = \mathcal{L}(\mathcal{K})$, где $\mathcal{L}(\mathcal{K})$ — линейная оболочка столбцов матрицы управляемости $\mathcal{K} = (G', F'G', \dots, F'^{n-1}G')$. Попытаемся найти аналог такого описания и для бесконечномерной сопряженной системы (1.4) ((3.3)).

Итак, обратимся к стационарной вещественной аналитической системе наблюдения (f,g) (модель (1.1)). Для упрощения обозначений считаем $m=1,\ T_*=T,$ это в дальнейшем непринципиально. Кроме того, ограничимся линейными k(t,y)=k(t)y. С позиций §2 этого достаточно.

Попытаемся представить элементы

$$D_T = \{ v(T, \cdot) : U_T \to \mathbb{R}^1 \, | \, (f, g) \sim (1.1), \quad k(t, y) = k(t)y \}$$

в форме линейных комбинаций фиксированного конечного числа функций $L^i_f g.$ По определению

$$L_f^0 g(x) = g(x), \quad L_f^{i+1} g(x) = \frac{\partial}{\partial x} (L_f^i g(x)) \cdot f(x), \quad x \in U_T(x \in U).$$

В приложениях обычно компоненты f,g являются суперпозициями элементарных функций — тогда и $L_f^i g$ будут таковыми. В операторных терминах (3.3) производные $L_f^i g = A^i B$ ($A = \frac{\partial(\cdot)}{\partial x} f, B = g, BK(t) = k(t)g$) являются аналогом столбцов матрицы управляемости: для (f,g) = (F,G) имеем $L_f^i g(x) = GF^i x, F'^{j-1} G' - j$ -й столбец \mathcal{K} .

Производные выхода $y^{(i)}(t)$ равны $L^i_f g(x(t))$. Теоретически удобно исследовать систему уравнений $L^i_f g(x) = y^{(i)}(T)$, $i = \overline{0, n-1}$, (можно использовать и любой другой набор производных) с точки зрения однозначной разрешимости относительно x в области U_T . Применение критериев инъективности отображений из $M \subseteq \mathbb{R}^n$ в \mathbb{R}^n приводит к достаточным условиям

наблюдаемости в M. Но дифференцирование измерений достаточное число раз практически неприемлемо. В этом контексте операторы (1.3) корректны: каждая операция интегрирования производится независимо от другой и происходит сглаживание реальных измерений.

Приведем известный результат, который существенно будет использоваться ниже.

Теорема 4 [9, с.44]. Для любого идеала J кольца \mathcal{H}_n ростков в точке $z_0 \in \mathbb{C}^n$ аналитических функций от n комплексных переменных можно указать

- (I) в некоторой открытой окрестности $\mathcal{O} \subseteq \mathbb{C}^n$ точки z_0 конечное множество аналитических функций h_1, \ldots, h_r с ростками в z_0 из J;
- (II) (базис векторов в \mathbb{C}^n и) последовательность ограниченных открытых поликругов $\{P_i, i \geq 1\}$ с центром в z_0 и радиусами, монотонно стремящимися к нулю (замыкание $\operatorname{cl} P_1 \subset \mathcal{O}$);
- (III) числа ϱ_i , $i \geq 1$, со следующим свойством: для каждой аналитической в P_i функции h с ростком $\hat{h} \in J$ существуют такие функции $\alpha_1, \ldots, \alpha_r$, аналитические в P_i , что в P_i

$$h(z) = \sum_{j=1}^{r} \alpha_j(z) h_j(z),$$
 (3.4)

$$\|\alpha_j\|_{P_i} = \sup_{z \in P_i} |\alpha_j| \le \varrho_i \|h\|_{P_i}, \quad j = \overline{1, r}.$$

$$(3.5)$$

Последующие построения носят локальный характер. Фиксируем произвольную точку $\bar{x} \in U_T$ и достаточно малый для дальнейшего куб $\Pi = \{x \in \mathbb{R}^n \Big| \|x - \bar{x}\| = \max_i |x_i - \bar{x}_i| < \delta\} \subset U_T$, с $\Pi \subset U_T$. В силу теоремы единственности для аналитических функций $y\Big|_{[0,T]} \leftrightarrow y\Big|_{[t_1,t_2]}$ ($0 \le t_1 < t_2 \le T$). Поэтому для теоретического анализа наблюдаемости без существенного ограничения общности можно считать отрезок наблюдения таким, что $y(\tau;x,T)$ в $(-\varepsilon,T+\varepsilon)\times\Pi,\,\varepsilon>0$, разлагается в ряд по степеням $(\tau-T)$ и компонент $x-\bar{x}$. Степенные ряды по $x-\bar{x}$ в Π для

$$L_i(x) = L_f^i g(x) = y^{(i)}(T; x, T), \quad w(x) = v(T, x) = \langle k, y(\cdot; x, T) \rangle$$

определяют аналитические функции $L_i^c:P o \mathbb{C},\,w^c:P o \mathbb{C}$:

$$L_i^c \Big|_{\Pi} = L_i \Big|_{\Pi}, \quad w^c \Big|_{\Pi} = w \Big|_{\Pi}, \quad P = \{ z \in \mathbb{C}^n \Big| \|z - \bar{x}\| = \max_i |z_i - \bar{x}_i| < \delta \}.$$

По непрерывности L_i^c, w^c продолжаются на замыкание P (иначе уменьшим δ).

Рассмотрим идеал J в кольце \mathcal{H}_n ростков аналитических функций в точке \bar{x} , порожденный $\{L_i^c: P \to \mathbb{C}, i \geq 0\}$. Элементы J — конечные линейные комбинации ростков \hat{L}_j^c с коэффициентами из \mathcal{H}_n . Пусть окрестности \mathcal{O}_i точки $z_0 = \bar{x}$ (поликруги P_i в подходящем базисе \mathbb{C}^n), базисные функции h_1, \ldots, h_r , константы ϱ_i , $i \geq 1$, выбраны согласно теореме 4.

Фиксируем $s\geq 1,\ p\geq 1$ из условий $\mathrm{cl}\,\mathcal{O}_s\subset P$ и справедливости в \mathcal{O}_s $\forall j\geq p$ представлений

$$L_j^c(z) = \sum_{\nu=0}^{p-1} \beta_{j\nu}(z) L_\nu^c(z), \qquad \|\beta_{j\nu}\|_{\mathcal{O}_s} \le \varrho \|L_j^c\|_{\mathcal{O}_s},$$

$$\beta_{j\nu} \in C^\omega(\mathcal{O}_s, \mathbb{C}), \qquad \nu = \overline{0, p-1}, \quad j \ge p, \quad \varrho > 0.$$
(3.6)

Это возможно, поскольку согласно (3.4) все функции L_j^c в \mathcal{O}_i , $i \geq 1$, являются линейными комбинациями h_1, \ldots, h_r . Последние, в свою очередь, в окрестности \bar{x} представимы комбинациями конечного числа L_{ν}^c по определению идеала J (коэффициенты — аналитические функции). Существование ϱ , независящего от ν и j, следует из оценок (3.5).

Заменим в представлении

$$y(t; x, T) = L_0(x) + (t - T)L_1(x) + (t - T)^2L_2(x)/2 + \dots, \quad t \in (-\varepsilon, T + \varepsilon), x \in \mathcal{O}_s \cap \mathbb{R}^n,$$
 производные $L_j, j \geq p$, линейными комбинациями согласно (3.6) и "соберем

коэффициенты"при L_0, \ldots, L_{p-1} . Получим

$$y(t; x, T) = \sum_{i=0}^{p-1} \gamma_i(t, x) L_i(x), \quad L_i = L_f^i g,$$

$$v(T, x) = \sum_{i=0}^{p-1} \sigma_i(x) L_i(x), \quad \sigma_i(x) = \langle k, \gamma_i(\cdot, x) \rangle,$$

$$x \in \mathcal{O}_s \cap \mathbb{R}^n, \quad t \in (-\varepsilon_0, T + \varepsilon_0), \quad 0 < \varepsilon_0 < \varepsilon.$$
(3.7)

Абсолютная и равномерная сходимость комплексных рядов, обеспечивающая возможность перегруппировки слагаемых и вещественную аналитичность функций $\gamma_i(t,x)$, $\sigma_i(x)$ доказывается с помощью неравенств Коши

$$|L_j^c(z)|/j! \le N/\widetilde{T}^j, \quad z \in P, \quad \widetilde{T} \in (T + \varepsilon_0, T + \varepsilon), \quad N = \text{const},$$

и оценок в \mathcal{O}_s коэффициентов $\beta_{i\nu}$ из (3.6) с $\varrho \neq \varrho(\nu,j)$.

Замечание 5. В классе произвольных аналитических пар (f,g) результат локален: T мало, x — из окрестности $\bar{x} \in U_T, \ p = p(\bar{x})$. Но можно

использовать разложение y(t;x,T) в степенной ряд по $t-t_*, t_* \in [0,T]$. Тогда получится такое же конечное представление, только в правой части у $\gamma_i(t,x), L_i(x)$ вместо x=x(T) будет аргумент $x^*=x(t_*;x,T)$ из окрестности $\bar{x}^*=x(t_*;\bar{x},T),$ а $t\in (t_*-\varepsilon_*,t_*+\varepsilon_*)=I_*$. При этом возможно $I_*\supset [0,T]$ для заранее фиксированного T. В принципиальном плане малость T несущественна. Впрочем, и локального по t представления y(t;x,T) ($y(t;x_*,t_*)$) достаточно для доказательства теоремы 6 с заданным T.

Часто исходная неопределенность в начальных данных x(T) мала и требуется исследовать наблюдаемость в окрестности опорного движения с $x(T) = \bar{x}$. Поэтому сформулируем итог проведенных рассуждений в следующей форме.

Теорема 5. Пусть пара (f,g) вещественная аналитическая в области $U \subseteq \mathbb{R}^n$, отрезок наблюдения [0,T] и область U_T возможных состояний x(T) достаточно малы $(U_T -$ малая окрестность опорной $\bar{x} \in U)$. Тогда в U_T элементы множества достижимости $D_T = \{v(T,\cdot) : U_T \to \mathbb{R}^1 \middle| k(t,y) = k(t)y\}$ имеют представление (3.7), где $\gamma_i(t,x)$ вещественные аналитические в области $(t',t'') \times U_T \supset [0,T] \times U_T$, $\sigma_i(x) - \epsilon U_T (\gamma_i \neq \gamma_i(k(\cdot)))$.

Если в U_T удалось получить выражение какой-либо производной через предыдущие в форме

$$L_r(x) = \sum_{\nu=0}^{r-1} \alpha_{\nu}(x) L_{\nu}(x), \quad \alpha_{\nu} \in \mathbb{C}^{\omega}(U_T),$$

то в (3.7) можно считать p = r. При p > r представления L_{r+1}, \ldots, L_{p-1} через L_0, \ldots, L_{r-1} получаются дифференцированием этого выражения вдоль поля f. При необходимости можно требовать лишь достаточную гладкость коэффициентов α_{ν} .

В отличие от линейного случая, в полученном конечном разложении элементов множества достижимости по "столбцам матрицы управляемости" $A^iB = L_f^i g$ коэффициенты σ_i являются функциями. Если у L_0, \ldots, L_{p-1} имеются два различных общих нуля в U_T , то (f,g) заведомо неполностью наблюдаема в U_T . При m > 1 $\langle k, y \rangle_{L_2^m} = \langle k_1, y_1 \rangle + \ldots + \langle k_m, y_m \rangle$ и представление вида (3.7) останется в силе, только σ_i — строки $(\sigma_{i1}, \ldots, \sigma_{im})$.

Результат обобщает следующие построения. При f = Fx, g = Gx (стационарная линейная задача)

$$y(t; x, T) = G \exp\{F \cdot (t - T)\}x = \sum_{j=0}^{\infty} (t - T)^{j} G F^{j} x / j!.$$

Для $j \geq p, p \geq \operatorname{rank}(G', F'G', \dots, F'^{n-1}G')$, можно последовательно GF^j выразить как линейные комбинации G, GF, \dots, GF^{p-1} . Меняя порядок суммирования (в числителе — степени, в знаменателе — факториалы), получаем $\forall t \in \mathbb{R}^1, \, \forall x \in \mathbb{R}^n$

$$y(t; x, T) = \sum_{j=0}^{p-1} \gamma_j(t) GF^j x = \sum_{j=0}^{p-1} \gamma_j(t) L_j(x),$$
$$v(T, x) = \langle k, y \rangle = \sum_{j=0}^{p-1} \langle k, \gamma_j \rangle L_j(x).$$

Такие коэффициенты $\gamma_i(t)$ обладают свойством

$$\gamma(T) = (\gamma_0(T), \dots, \gamma_{p-1}(T))' = e_1 = (1, 0, \dots, 0)', \quad \dot{\gamma}(T) = e_2, \dots, \gamma^{(p-1)}(T) = e_p,$$
 как и $\gamma_j(t,x)$, построенные в (3.7): $\gamma(T,x) = e_1, \, \partial \gamma/\partial t(T,x) = e_2, \dots$ Впрочем, суммированием рядов заниматься необязательно. Достаточно воспользоваться конечным представлением матричной экспоненты $\exp\{Ft\} = \alpha_0(t)E + \dots + \alpha_{p-1}(t)F^{p-1}$. Здесь (как и при $m>1$) в качестве p можно взять степень характеристического или минимального аннулирующего полинома матрицы F . Поиск $\alpha_j(t)$ сводится к решению линейного однородного скалярного уравнения p -го порядка.

Замечание 6. Если использовать только постоянные коэффициенты, то в общем нелинейном случае разложение по $L_i = L_f^i g$ бесконечно. В указанных выше предположениях $v(T,x) = c_0 + c_1 L_1(x) + c_2 L_2(x) + \dots$, $c_i = \langle k, (\tau - T)^i \rangle / i!$. Таким образом, здесь имеем дело со степенной проблемой моментов. Поэтому в общем случае базисные элементы $A^i B = L_f^i g$ сами не принадлежат D_T , как и $y(t_j;\cdot,T)$ (интерпретация: дифференцирование выхода и дискретные измерения нельзя заменить интегральными операторами). Множество достижимости D_T зависит от T и ограничение $k(t) = 0, t > T_*$, для задачи прогнозирования сужает D_T (в отличие от линейной модели). Все подобные утверждения, включая бесконечномерность D_T , можно проверить уже на простейшем примере наблюдаемой пары $(f,g)=(x^2,x^3)$.

Перейдем теперь к вопросу об устойчивости локального базиса к малым вариациям $k(\cdot)$, что существенно и с вычислительной точки зрения. Для этого установим важное свойство коэффициентов $\gamma_i(t,x)$ в (3.7). Само представление вида (3.7) неединственно — можно формально увеличить p (полагая соответствующие $\gamma_i=0$), изменить γ_i добавлением нетривиальной тождественной нулю комбинации L_j и т.п. Фиксируем в (3.7) именно

те коэффициенты $\gamma_j(t,x)$, которые существуют вследствие теоремы 4 (T, U_T — достаточно малы):

$$\gamma_j(t,x) = (t-T)^j/j! + \sum_{\nu=p}^{\infty} \eta_{\nu j}(x)(t-T)^{\nu}/\nu!, \quad j = \overline{0, p-1},$$
$$\eta_{\nu j}(x) = \operatorname{Re} \beta_{\nu j}(x), \qquad t \in (-\varepsilon_0, T+\varepsilon_0), \quad x \in U_T.$$

Фиксируем произвольную полную в $L_2(0,T)$ систему $\{k_i, i \geq 1\}$. Тогда для $w_i(x) = v_i(T,x) = \langle k_i, y(\cdot; x,T) \rangle, x \in U_T$, получим

$$\begin{pmatrix} w_1(x) \\ w_2(x) \\ \dots \end{pmatrix} = \begin{pmatrix} \langle k_1, \gamma_0 \rangle & \dots & \langle k_1, \gamma_{p-1} \rangle \\ \langle k_2, \gamma_0 \rangle & \dots & \langle k_2, \gamma_{p-1} \rangle \\ \dots & \dots & \dots \end{pmatrix} \begin{pmatrix} L_0(x) \\ \vdots \\ L_{p-1}(x) \end{pmatrix}.$$
(3.8)

Лемма. Среди строк матрицы Γ в (3.8) с элементами $\langle k_i, \gamma_j(\cdot, x) \rangle$ при любом фиксированном $x \in U_T$ можно найти р линейно независимых строк.

Действительно, пусть это не так: $\Gamma \cdot c = 0$, $x = \hat{x} \in U_T$, $c = (c_0, \dots, c_{p-1})' \neq 0$ (нули всегда обозначаем одним символом). Тогда $\langle k_i, c'\gamma \rangle = 0 \ \forall i \geq 1$, $\gamma = (\gamma_0, \dots, \gamma_{p-1})'$. В силу полноты $\{k_i, i \geq 1\}$ имеем $\forall t$

$$c'\gamma(t,\hat{x}) = \sum_{j=0}^{p-1} c_j(t-T)^j/j! + (t-T)^p \sum_{j=0}^{p-1} c_j\eta_{pj}(\hat{x})/p! + \dots = 0.$$

Отсюда все $c_j = 0$. Противоречие.

Результат не изменится, если предварительно уменьшить p, следуя рассуждениям после теоремы 5.

Теорема 6. Пусть пара (f,g) аналитична в U. Фиксируем любую полную в $L_2(0,T)$ систему $\{k_i, i \geq 1\}$ допустимых весовых функций. Если область неопределенности U_T достаточно мала, то можно выделить такие k_{i_1}, \ldots, k_{i_q} , что :

- 1) элементы $w_{i_{\nu}}(x)=v_{i_{\nu}}(T,x)=\langle k_{i_{\nu}},y\rangle \ (x\in U_T,\nu=\overline{1,q})$ образуют базис $D_T\ (\Phi(U_T));$
- 2) базис D_T образуют и $\tilde{w}_{i_{\nu}}(x) = \langle k_{i_{\nu}} + \xi_{i_{\nu}}, y \rangle$ при достаточно малых возмущениях $\|\xi_{i_{\nu}}\|_{L_1} < \tilde{\varepsilon}$.

Доказательство. Считаем U_T окрестностью некоторой опорной $\bar{x} \in U$ (требование малости U_T будет уточняться). Для упрощения выкладок считаем пока T также малым. Рассмотрим идеал \tilde{J} в кольце \mathcal{H}_{2n} ростков

аналитических функций в точке $(\bar{x}, \bar{x}) \in U_T \times U_T$, порожденный множеством $\{\Delta L_i^c: P \times P \to \mathbb{C}, i \geq 0\}$, где $\Delta L_i^c(x^1, x^2) = L_i^c(x^1) - L_i^c(x^2)$. Здесь используем обозначения, введенные при доказательстве теоремы 5. Представления

$$\Delta L_j^c(z^1, z^2) = \sum_{\nu=0}^{q-1} \tilde{\beta}_{j\nu}(z^1, z^2) \Delta L_\nu^c(z^1, z^2), \tag{3.9}$$

$$j \ge q$$
, $\|\tilde{\beta}_{j\nu}\|_{\tilde{\mathcal{O}}_s} \le \tilde{\varrho} \|\Delta_j^c\|_{\tilde{\mathcal{O}}_s}$, $\tilde{\varrho} \ne \tilde{\varrho}(\nu, j)$,

справедливые в некоторой комплексной окрестности $\tilde{\mathcal{O}}_s$ точки (\bar{x}, \bar{x}) в $P \times P$, доказывается аналогично (3.6). Считаем $U_T \times U_T \subset \tilde{\mathcal{O}}_s \cap \mathbb{R}^{2n}$. Точно так же (только удваиваем размерность) приходим к (3.8) с заменой $w_i(x)$ на

$$\Delta w_i(x^1, x^2) = w_i(x^1) - w_i(x^2) = \langle k_i, y(\cdot; x^1, T) - y(\cdot; x^2, T) \rangle,$$

$$L_{\nu}(x)$$
 — на $\Delta L_{\nu}(x^1,x^2) = L_{\nu}(x^1) - L_{\nu}(x^2), p$ — на q . Для этого в

$$\Delta y = y(t; x^1, T) - y(t; x^2, T) = \Delta L_0 + (t - T)\Delta L_1 + (t - T)^2 \Delta L_2 / 2 + \dots$$

следует заменить ΔL_j , $j \geq q$, линейными комбинациями $\Delta L_0, \ldots, \Delta L_{q-1}$ в силу (3.9) и поменять порядок суммирования (что законно в указанных предположениях).

Фиксируем теперь номера i_1, \ldots, i_q линейно независимых в точке (\bar{x}, \bar{x}) строк соответствующей матрицы Γ :

$$(\Delta w_{i_1}, \dots, \Delta w_{i_q}) = (\Delta L_0, \dots, \Delta L_{q-1}) \cdot R,$$

$$(x^1, x^2) \in U_T \times U_T, \quad \det R(\bar{x}, \bar{x}) \neq 0.$$

Элементы матрицы R имеют вид $\langle k_{i_{\nu}}, \gamma_{j}(\cdot, x^{1}, x^{2}) \rangle$ $(j = \overline{0, q-1}, \nu = \overline{1, q})$. Поэтому при достаточно малых допустимых возмущениях $\|\xi_{i_{\nu}}\|_{L_{1}} < \tilde{\varepsilon}$ матрица \tilde{R} с элементами $\langle k_{i_{\nu}} + \xi_{i_{\nu}}, \gamma_{j} \rangle$ останется невырожденной в точке (\bar{x}, \bar{x}) и некоторой ее окрестности $U_{T} \times U_{T}$. Здесь, если необходимо, снова уменьшаем область U_{T} . Окончательно получаем

$$(\Delta \tilde{w}_{i_1}, \dots, \Delta \tilde{w}_{i_q}) = (\Delta L_0, \dots, \Delta L_{q-1}) \cdot \tilde{R}, \qquad \det \tilde{R} \neq 0, \tag{3.10}$$

$$(x^1, x^2) \in U_T \times U_T, \quad \Delta \tilde{w}_{i_{\nu}}(x^1, x^2) = \langle k_{i_{\nu}} + \xi_{i_{\nu}}, \Delta y \rangle, \quad \|\xi_{i_{\nu}}\|_{L_1} < \tilde{\varepsilon}.$$

Из $\Delta \tilde{w}_{i_{\nu}}(x^1,x^2)=0,\ \nu=\overline{1,q},$ следует $\Delta L_j(x^1,x^2)=0,\ j=\overline{0,q-1}.$ Но тогда из (3.9) $\Delta L_j(x^1,x^2)=0,\ j\geq 0,$ т.е. $y(\cdot;x^1,T)=y(\cdot;x^2,T).$ Поэтому

$$(\tilde{w}_{i_1}(x), \dots, \tilde{w}_{i_q}(x)) \leftrightarrow y(\cdot; x, T), \quad x \in U_T.$$

Функции $\tilde{w}_{i_{\nu}}$ образуют базис множества достижимости D_T и множества $\Phi(U_T)$ всех наблюдаемых в U_T функций φ . Это доказывает утверждение для малого T.

Пусть уменьшением окрестности U_T точки $\bar{x} \in U$ не удается добиться сходимости рядов для y(t) по степеням (t-T) на $(t',t'')\supset [0,T]$ при $x(T)\in U_T$. Продолжимость соответствующих решений уравнений движения на [0,T] предполагается по постановке задачи наблюдения. Выберем разбиение $0\leq t_1< t_2<\ldots< t_r\leq T$ так, чтобы для малой U_T степенные ряды

$$y(t; x(T), T) = L_0(x(t_i)) + (t - t_i)L_1(x(t_i)) + (t - t_i)^2L_2(x(t_i))/2 + \dots$$

имели пересекающиеся смежные интервалы сходимости $I_i = (t_i - \varepsilon_i, t_i + \varepsilon_i)$, $\cup I_i \supset [0, T]$. Разбивая интеграл на сумму интегралов по $[s_j, s_{j+1}]$ $(s_0 = 0, s_1 \in I_1 \cap I_2, \ldots, s_r = T)$ и при необходимости снова уменьшая U_T , получим аналог (3.8) $(i \ge 1, x(T) \in U_T)$:

$$w_i(x(T)) = \sum_{j=1}^r \left(\langle k_i, \gamma_{j0}(\cdot, x(t_j)) \rangle_j, \dots, \langle k_i, \gamma_{jp_j-1}(\cdot, x(t_j)) \rangle_j \right) \cdot \left(L_0(x(t_j)), \dots, L_{p_j-1}(x(t_j)) \right)'.$$

Индекс j у $\langle \cdot, \cdot \rangle_j$ означает интегрирование на отрезке $[s_{j-1}, s_j]$. Лемма останется в силе для матрицы Γ при объединенном векторе

$$\left(L_0(x(t_1)),\ldots,L_{p_1-1}(x(t_1)),\ldots,L_0(x(T)),\ldots,L_{p_r-1}(x(T))\right)'$$
:

существует квадратная неособая подматрица $\forall x(T) \in U_T$. Далее повторяем рассуждения для окрестности $U_T \times U_T$ точки (\bar{x}, \bar{x}) , как это делалось выше. Операций возможного уменьшения U_T конечное число $(U_T = U_T(\bar{x}, f, g, \{k_i\}), q \neq q(\{k_i\}), \tilde{\varepsilon} \ll 1)$. Это чисто техническое нагромождение опускаем. Теорема доказана.

Следствие. Если (f,g) к тому же наблюдаема в U_T , то $x(T) \in U_T$ однозначно определяется по q проекциям $\mu_{\nu} = \langle k_{i_{\nu}}, y \rangle$ из системы $v_{i_{\nu}}(T,x) = \mu_{\nu}$, $\nu = \overline{1,q}$. Однозначность останется при малом возмущении $k_{i_{\nu}}(\cdot)$.

Замечание 7. Область U_T можно выбрать независящей от $\{k_i\}$. Но, возможно, прийдется увеличивать число базисных проекций $\langle k, y \rangle$ до $\hat{q} = \hat{q}(\{k_i\})$. Схема рассуждений такова. Для достаточно малых U_T , T покроем

замыкание $U_T \times U_T$ системой ℓ окрестностей, в которых будут выполняться представления вида (3.10). Для объединенного вектора из проекций размерности $\hat{q} = q\ell$ вместо квадратной \tilde{R} получим прямоугольную матрицу \hat{R} , $\mathrm{rank}\hat{R} = q$ в $U_T \times U_T$, $\tilde{\varepsilon} \ll 1$. Нулевое значение вектора слева по-прежнему повлечет $\Delta L_j(x^1, x^2) = 0$, $j = \overline{0, q-1}$, и $y(\cdot; x^1, T) = y(\cdot; x^2, T)$.

По теореме единственности для аналитических функций можно ограничиться рядом для y(t) по степеням $(t-t_*)$ $(t_* \in [0,T], t \in I_* = (t_*-\varepsilon_*, t_*+\varepsilon_*))$ и допустимыми k(t), равными нулю вне $[t^-, t^+] \subset I_*$ (см. замечание 5). Достаточно полноты системы $\{k_i, i \geq 1\}$ в $L_2(t^-, t^+)$ (она будет полной и на Y). При m>1 теорема 6 не изменится, если не считать замену L_2 на L_2^m . Для задачи прогнозирования в теореме 6 полагаем $\{k_i, i \geq 1\}$ полной в $L_2^m(0, T_*)$ (достаточно на Y_*), доопределяя $k_i(t) = 0, t > T_*$. Хотя при таком дополнительном ограничении на допустимые $k(\cdot)$ $D_{*T} \subseteq D_T$, базис D_{*T} будет и базисом D_T . Последнее касается и нестационарной (f,g) в случае аналитичности f,g по совокупности переменных.

В заключение параграфа кратко остановимся на проблеме наблюдения систем с возмущениями. Рассмотрим сопряженную систему (3.2) в $[0,T]\times \widetilde{U}$. Решения $x(\cdot;x,t)$ с начальными данными $(t,x)\in [0,T]\times \widetilde{U}$ продолжимы на [0,t] и возможные фазовые кривые $(x(T)\in U_T\subseteq \widetilde{U})$ не покидают известную область \widetilde{U} (замечание 3). Пусть теперь уравнения движения в (2.2) подвержены неконтролируемым возмущениям:

$$\dot{x} = f(t,x) + \sum_{i=1}^{r} \xi_i(t) h^i(t,x), \quad h^i, h_x^{i'} \in C(\Omega).$$
 (3.11)

Функции $\xi_i(t)$ неизвестны, кусочно непрерывны, $|\xi_i(t)| \leq \bar{\xi} = \text{const.}$ Пусть выбором допустимой $k(\cdot,\cdot)$ в (3.2) решена задача (1.3) $(v(T,x) = \varphi(x), x \in U_T(\widetilde{U}))$ и дополнительно выполнено

$$\frac{\partial v}{\partial x}(t,x) \cdot h^{i}(t,x) = 0, \quad (t,x) \in [0,T] \times \widetilde{U}, \quad i = \overline{1,r}.$$
 (3.12)

Тогда в правой части сопряженной системы (3.2) можно f заменить на правую часть (3.11). Результат формальной подстановки обозначим $(3.2)_{\xi}$. Рассмотрим любое возмущенное решение $x(\cdot;x(T),T,\xi)$ с начальными данными $x(T)\in U_T$, определенное на [0,T] и с фазовой кривой в пределах \widetilde{U} . Подставим его вместо x в $(3.2)_{\xi}$ и проинтегрируем тождество по t на отрезке наблюдения [0,T]:

$$\varphi(x(T)) = \int_0^T k(\tau, y(\tau; x(T), T, \xi)) d\tau, \quad x(T) \in U_T, \quad x(\tau) \in \widetilde{U}.$$

По аналогии с линейным случаем [13] такой оператор назовем оператором идеального наблюдения: весовая функция $k(\cdot,\cdot)$ не зависит от возмущений $\xi = (\xi_1, \dots, \xi_r)'$, их учет проводится только посредством измерений y(t) = g(t, x(t)). Получаем возможность контролировать фиксированную компоненту $\varphi(x(T))$ фазового вектора при неизвестных возмущениях, но с заданной неопределенностью $x(T) \in U_T$. В условиях достаточной продолжимости по t это можно делать периодически.

В операторной форме (3.3) условие (3.12) принимает вид линейных фазовых ограничений P(t)V(t)=0 ($\partial v/\partial x(t,\cdot)H(t,\cdot)=0$, $H=(h^1,\ldots,h^r)$).

Итак, если направления возмущений h^i фиксированы, то получаем задачу управления не только конечным состоянием $v(T,\cdot)=\varphi$, но и градиентом $v'_x(t,\cdot)$. Соблюдение фазовых ограничений непросто. Обеспечив малость PV в подходящей норме, получим малочувствительный к возмущениям интегральный оператор наблюдения.

Обратно. Можно решать невозмущенную задачу и тогда условие (3.12) даст описание инвариантных направлений h^i . Это важная характеристика пары (φ, k) .

§4. Схемы методов приближений

Остановимся вначале на технике степенных рядов. Рассмотрим в $\Omega=(t_1,t_2)\times U$ модель наблюдения (2.2) в указанных предположениях аналитичности по фазовым переменным. Будем строить ряды по отклонениям от некоторого опорного движения, которое считаем нулевым (достигается заменой переменных): $f(t,0)=0,\ g(t,0)=0,\ 0\in U_T\subseteq U.$ Ограничимся пока линейными допустимыми k(t,y)=k'(t)y. В некоторой окрестности нуля Q при $t\in [0,T]$ фукции $v(t,x),\ f(t,x),\ g(t,x)$ разлагаются в степенные ряды по x. Коэффициенты непрерывны на [0,T], гладкость коэффициентов для v(t,x) может нарушаться только в точках разрыва k(t). Сходимость равномерная по $t\in [0,T]$.

Приравняем слева и справа в сопряженной системе (3.2) однородные полиномы по x одинаковой степени (верхний индекс):

$$\frac{\partial v^{(p)}}{\partial t}(t,x) + \sum_{i=1}^{p} \frac{\partial v^{(i)}}{\partial x}(t,x) \cdot f^{(p-i+1)}(t,x) = k'(t)g^{(p)}(t,x), \tag{4.1}$$

$$v^{(p)}(0,x) = 0, \quad x \in Q, \quad t \in [0,T], \quad p \ge 1.$$

Каждому однородному полиному $w^{(p)}(\cdot)$ соответствует единственная симметрическая p-линейная форма $w^{(p)}(\cdot,\ldots,\cdot)$ из условия $w^{(p)}(x)\equiv w^{(p)}(x,\ldots,x)$, $x\in\mathbb{R}^n$. В терминах симметрических полилинейных форм (t — параметр) (4.1) перепишется в виде

$$\frac{\partial v^{(p)}}{\partial t}(t, x, \dots, x) + \sum_{i=1}^{p} \sum_{j=1}^{i} v^{(i)}(t, x, \dots, f^{(p-i+1)}(t, x, \dots, x), \dots, x) = k'(t)g^{(p)}(t, x, \dots, x)$$

В силу симметричности можно приравнять коэффициенты при одинаковых лексикографически упорядоченных мономах $x_{i_1} \cdot \ldots \cdot x_{i_p}$:

$$\dot{V}^{(p)}(t) + \sum_{i=1}^{p} \left(\sum_{j=1}^{i} E \otimes \ldots \otimes F^{(p-i+1)'}(t) \otimes \ldots \otimes E \right) \cdot V^{(i)}(t) = G^{(p)'}(t)k(t).$$
(4.2)

Здесь $t \in [0,T], p \ge 1, \otimes$ — символ прямого (кронекерового, тензорного) [14] произведения матриц, индекс j означает порядковый номер $F^{(p-i+1)'}(t)$ в последовательности i произведений, E — единичная матрица $n \times n$,

$$V^{(s)'}(t)X^{(s)} = v^{(s)}(t, x, \dots, x) = v^{(s)}(t, x), \quad G^{(s)}(t)X^{(s)} = g^{(s)}(t, x, \dots, x) = g^{(s)}(t, x),$$

$$F^{(s)}(t)X^{(s)} = f^{(s)}(t, x, \dots, x) = f^{(s)}(t, x), \quad X^{(s)} = x \otimes \dots \otimes x, \quad X^{(1)} = x.$$

Для объединенного вектора $V = \left(V^{(1)'}, \dots, V^{(p)'}, \dots\right)'$ получаем

$$\dot{V}(t) = -\mathcal{F}'(t)V(t) + \mathcal{G}'(t)k(t), \quad V(0) = 0, \tag{4.3}$$

где первые n строк верхней блочно -треугольной матрицы $\mathcal{F}(t)$ равны $(F^{(1)},F^{(2)},\dots),$ следующие n^2 строк —

$$\left(\mathbf{0}, F^{(1)} \otimes E + E \otimes F^{(1)}, \dots, F^{(p)} \otimes E + E \otimes F^{(p)}, \dots\right), \dots, \quad \mathcal{G} = \left(G^{(1)}, G^{(2)}, \dots\right).$$

Заметим, что в принятых обозначениях (f,g) запишется в виде

$$\dot{X} = \mathcal{F}(t)X, \quad y = \mathcal{G}(t)X, \quad X = \left(x', X^{(2)'}, \dots\right)'.$$
 (4.4)

При домножении (4.3) на X скалярно получим сопряженную систему управления, v(t,x) = V'(t)X. Здесь полная аналогия с (1.1), (1.2) в линейном случае, только в полученных "координатных" представлениях (4.3), (4.4) матрицы \mathcal{F} , \mathcal{G} уже бесконечны. В стационарном случае (при наблюдении в окрестности положения равновесия) блоки $\mathcal{F}'^i\mathcal{G}'$ матрицы управляемости являются коэффициентами $L^i_f g(x) = \mathcal{G} \mathcal{F}^i X$.

Нелинейные $k(\cdot,\cdot)$ ограничим свойствами вещественной аналитичности, k(t,0)=0. Достаточно непрерывности по совокупности переменных и аналитичности по y в окрестности нуля (причем непрерывность по (t,y) сохраняется в $(t_1,t_2)\times P$ для $(t_1,t_2)\supset [0,T]$ и окрестности P нуля в \mathbb{C}^m). Тогда после приравнивания однородных полиномов и перехода к коэффициентам симметрических форм вместо (4.2) получим

$$\dot{V}^{(p)}(t) + \left(\sum_{j=1}^{p} E \otimes \ldots \otimes F^{(1)'}(t) \otimes \ldots \otimes E\right) \cdot V^{(p)}(t) +$$

$$\sum_{q=1}^{p-1} \left(\sum_{j=1}^{q} E \otimes \ldots \otimes F^{(p-q+1)'} \otimes \ldots \otimes E\right) \cdot V^{(q)}(t) -$$

$$G^{(p)'} \cdot k^{(1)}(t) - \left(G^{(2)'} \otimes G^{(1)'} + G^{(1)'} \otimes G^{(2)'}\right) \cdot K^{(2)}(t) - \ldots -$$

$$\sum_{i_1 + \ldots + i_{p-1} = p} G^{(i_1)'} \otimes \ldots \otimes G^{(i_{p-1})'} \cdot K^{(p-1)}(t) = G^{(1)'} \otimes \ldots \otimes G^{(1)'} \cdot K^{(p)}(t),$$

$$K^{(s)'}(t)Y^{(s)} = k^{(s)}(t, y), \quad Y^{(s)} = y \otimes \ldots \otimes y.$$

Поэтому в (4.3) матрица $\mathcal{F}(t)$ не изменится, вместо k(t) будет $K(t) = (k^{(1)'}, K^{(2)'}, \dots)'$ первые m строк \mathcal{G} равны $(G^{(1)}, G^{(2)}, \dots)$, следующие m^2

строк —

$$\left(\mathbf{0}, G^{(1)} \otimes G^{(1)}, G^{(2)} \otimes G^{(1)} + G^{(1)} \otimes G^{(2)}, \dots\right), \dots, V'(t)X = v(t, x).$$

Для приближенных вычислений можно аппроксимировать $\varphi(x)$ ($\varphi(0)=0$) полиномом $\varphi(x)\approx \varphi^{(1)}(x)+\ldots+\varphi^{(r)}(x)=W'_rX_r,\, X_r=(x',\ldots,X^{(r)'})',\,$ и решать конечномерную линейную задачу управления $V_r(T)=(V^{(1)'},\ldots,V^{(r)'})'\approx W_r$ выбором $K_r(t)=\left(k^{(1)'},\ldots,K^{(r)'}\right)'.$ Блочно -треугольная структура матриц в сопряженной системе упрощает задачу и позволяет выписать подсистему для $V_r(t)$, куда не будут входить $V^{(i)},\, K^{(i)},\, i>r.$ Это свойство, к тому же, позволяет решать задачи управления $V^{(j)}(T)\approx W^{(j)},\, j=\overline{1,r},\,$ последовательно. В итоге

$$\varphi(x(T)) \approx \int_0^T k_r(t,y(t)) dt$$
, $k_r(t,y) = K'_r(t)Y_r$, k_r — полином степени r по y .

Разумеется, из-за роста размерности большие r не используются. В приложениях, когда линейное приближение вырождено, можно ограничиться r=2. С примером такого рода (наблюдение параметров движения центра масс летательного аппарата в вертикальной плоскости) можно ознакомиться в [15].

В задаче идеального наблюдения добавятся ограничения $H'_jV(t)=0,$ где H_j строятся по h^j так же, как и матрица ${\mathcal F}$ по f.

Вместо степенных можно использовать и другие базисные функции, ориентируясь на специфику нелинейности f, g. Аналитичность здесь необязательна. Выберем базисные $\psi_1(x), \ldots, \psi_N(x)$ ($x \in \widetilde{U}$ — из замечания 3). Подбираем такие функции $h_j, j = \overline{1, r}$, чтобы $h_j(t, g(t, x))$ достаточно точно приближались по базису:

$$h_j(t, g(t, x)) \approx \sum_{\nu=1}^N b_{j\nu}(t)\psi_{\nu}(x), \quad x \in \widetilde{U}.$$

Аналогично:

$$\varphi(x) \approx \sum_{\nu=1}^{N} d_{\nu} \psi_{\nu}(x), \quad \mathcal{A}\psi_{\nu} = \frac{\partial \psi_{\nu}}{\partial x} f(t, x) \approx \sum_{\nu=1}^{N} a_{\nu\mu}(t) \psi_{\mu}(x).$$

Ищем k, v в форме

$$k(t,y) \approx \sum_{j=1}^{r} k_j(t) h_j(y), \quad v(t,x) \approx \sum_{\nu=1}^{N} v_{\nu}(t) \psi_{\nu}(x).$$

После подстановки в сопряженную систему и приравнивания коэффициентов при $\psi_{\nu}(x)$ получаем конечномерную двухточечную задачу управления

$$\dot{V}(t) = -A'V(t) + B'k(t), \quad V(0) = 0, \quad V(T) \approx d,$$

$$d = \{d_j\}, V = \{v_j\}, k = \{k_j\}, A = \{a_{ij}\}, B = \{b_{ij}\}.$$

Витоге

$$\varphi(x(T)) \approx \int_0^T \sum_{j=1}^r k_j(t) h_j(t, y(t)) dt.$$

Для задачи прогнозирования следует считать $k_j(t) = 0, t > T_*$. В стационарном случае задача упрощается.

На проблему можно посмотреть и с позиций общей теории приближенного решения линейных граничных задач. Возьмем любую гладкую

$$v(t,x): \quad v(0,x) = 0, v(T,x) = \varphi(x), \quad x \in \widetilde{U}$$

(например, $t\varphi(x)/T$). Добавим сумму

$$\alpha_1 v_1(t, x) + \ldots + \alpha_N v_N(t, x), \quad v_i(0, x) = v_i(T, x) = 0 \quad (v_i = t(t - T)\theta_i(t)\psi_i(x)).$$

Аналогично: $k(t,y) = \beta_1 k_1(t,y) + \ldots + \beta_M k_M(t,y)$. Подставляя в сопряженное уравнение (3.2) , получаем невязку $R(t,x;\alpha_1,\ldots,\beta_M)$. Ее нужно минимизировать по параметрам в подходящей норме в $[0,T] \times \widetilde{U}$. В задаче идеального наблюдения следует учесть и невязку в фазовых ограничениях. Линейность по паре (k,v) дает возможность применять классический арсенал проекционных методов, развитый применительно к задачам математической физики [16, 17].

Обычно измеряется часть фазовых координат: $y_i(t) = x_i(t)$, $i = \overline{1,m}$. Формально этого можно добиться заменой или добавлением переменных. В слабых предположениях гладкости в сопряженной системе справа — функция t, x_1, \ldots, x_m и можно перейти к задаче

$$\mathcal{L}v = 0, v(0, \cdot) = 0, v(T, \cdot) = \varphi, \quad (\mathcal{L}v)_i = \frac{\partial}{\partial x_i} \left(\frac{\partial v}{\partial t} + \frac{\partial v}{\partial x} \cdot f\right), i = \overline{m+1, n}.$$

В качестве весовой функции $k(t, y_1, \ldots, y_m)$ в интегральном операторе наблюдения (1.3) будет $L_f v$ (выражение в скобках). В принципиальном плане линейная двухточечная граничная задача не новость. Реализация численных методов с учетом специфики линейного дифференциального оператора второго порядка \mathcal{L} может составить предмет самостоятельных исследований.

Подчеркнем, что исходная задача — нелинейная обратная, а в итоге пришли к прямым методам решения линейного уравнения, хотя и распределенного (следствие построения операций наблюдения для области фазового пространства). Такой переход представляется оправданным.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- [1]. Красовский Н.Н., Теория управления движением, Наука, М., 1968.
- [2]. Inoye Y., On the observability of autonomous nonlinear systems, J. Math. Anal. and Appl. **60** (1977), N 1, 236-247.
- [3]. Старков К.Е., Алгебраический аспект свойства наблюдаемости, Автоматика и телемеханика (1994), N 12, 59-69.
- [4]. Старков К.Е., Условия равномерной наблюдаемости одного класса полиномиальных систем, Автоматика и телемеханика (1996), N 4, 38-45.
- [5]. Козеренко К.В., О числе замеров, ДАН СССР **296** (1987), N 5, 1069-1071.
- [6]. Кирин Н.Е., К теории методов оценивания в динамических системах, Вопросы механики и процессов управления, Изд-во Ленинград. ун-та, Вып.8 (1986), 118-125.
- [7]. Кирин Н.Е., Исраилов И., Оценочные системы в задачах теории управления, Фан, Ташкент, 1990.
- [8]. Чирка Е.М., Комплексные аналитические множества, Наука, М., 1985.
- [9]. Эрве М., Функции многих комплексных переменных, Мир, М., 1965.
- [10]. Коддингтон Э.А., Левинсон Н., Теория обыкновенных дифференциальных уравнений, ИЛ, М., 1958.
- [11]. Curtain R.F., Zwart H., An introduction to infinite dimensional linear systems theory, Springer, 1995.
- [12]. Матвеев А.С., Якубович В.А., Абстрактная теория оптимального управления, Изд-во С.-Петербург. ун-та, 1994.
- [13]. Никольский М.С., *Идеально наблюдаемые системы*, ДАН СССР **191** (1970), N 6, 1224-1227.
- [14]. Ланкастер П., $Teopus \ mampuu$, Наука, М., 1982.
- [15]. Азанов М.В., Заика Ю.В., Росляков А.П., Вычислительные методы решения задач анализа и синтеза в теории оптимального управления, Изд-во МАИ, М., 1989.
- [16]. Михлин С.Г., Вариационные методы в математической физике, Наука, М., 1970.
- [17]. Гавурин М.К. Лекции по методам вычислений, Наука, М., 1971.