BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI– HYDERABAD CAMPUS FIRST SEMESTER (S1) 2024-2025 ME F216 COURSE HANDOUT

25th July 2024

Course No. : ME F216

Course Title : Materials Science and Engineering

Instructor-in-Charge: Dr. Piyush Chandra Verma

Team of Instructors: Dr. Prabakaran Saravanan, Mr. Vicky Lad, Mr. Aditya Nema, Mr. Kandula Uday Kumar Reddy, Mr. Sreejith S, Mr. M Abhinav, Mrs. Nagarani

S, Mr. Suswanth Poluru.

1. Course Description: Introduction, structure of materials (metals, ceramics, and polymers), crystalline structure imperfections, amorphous and semi-crystalline materials, correlation of structure to properties, phase diagrams & phase transformation, solidification, diffusion and heat treatment, mechanical behaviour of material. Composites, advanced-smart materials, and functional materials, criteria for material selection, economic environmental, and societal issues. Experiments related to materials testing and characterization such as tensile, torsion, hardness, impact, non-destructive testing, XRD, SEM, etc.

Prescribed Text Book

T1. Callister William D & R. Balasubramaniam, Materials Science and Engineering, Wiley Student Edition, 7th Edition, 2007.

Reference Books

- R1. George E. Dieter, Mechanical Metallurgy, SI Metric Edition McGraw Hill Book Company, London.
- R2. R. A. Higgins, Applied Physical Metallurgy, Sixth edition, Viva Low priced students edition, New Delhi.
- R3. V. Raghavan, Material Science and Engineering, Fifth Edition, Prentice-Hall of India Private Limited (2004).
- R4. M. F. Ashby, David R H Jones, Engineering Materials I, Elsevier, 3rd edition (2005).
- R5. M. F. Ashby, David R H Jones, Engineering Materials II, Elsevier, 3rd edition (2006).

Course Plan:

Lecture No.	Learning Objectives	Topics to be covered	Chapter in the Text Book
1	Introduction	Course introduction and evaluation scheme, Historical perspective, Why study materials science and engineering?	T1. Ch. 1
2	Identify the different types of atomic bonds in solids and evaluate the effect of bonding on material properties	Bonding forces and energies; Primary and Secondary bonding	T1. Ch. 2

3-4	Distinguish between	Unit cells; Crystal structures:	T1. Ch. 3
3 4	crystalline and amorphous	Metals; Density computations;	& Ch. 4
	materials, Identify the crystal	Crystallographic directions and	c ch. i
	structures and specify the	planes; Crystalline and Amorphous	
	Miller indices, Define	materials; Determination of crystal	
	isotropy and anisotropy	structures using X-ray diffraction	
5-7	Identify the different types of	Point defects in metals	T1. Ch. 5
<i>5</i> ,	defects in crystals,	Dislocations, Surface and Volume	
	Differentiate between the	defects, Microscopic techniques	
	two types of solid solutions	(SEM & TEM), Grain size	
	two types of some sometions	determination (OM), X-ray	
		Photoelectron Spectroscopy (XPS)	
8-9	Describe the atomic	Diffusion mechanisms; Steady-state	T1. Ch. 6
0)	mechanisms of diffusion,	and Non-steady state; Factors	11. 611. 0
	Distinguish between steady-	influencing diffusion	
	state and non-steady-state	imitation guirasion	
	diffusion		
10-13	Identify and interpret one	Definition and basic concepts,	T1. Ch. 7
	component and two	Phase equilibria, Unary and binary	
	component phase diagrams,	phase diagrams, Gibbs phase rule,	
	Use the Gibbs phase rule to	Iron –iron carbide phase diagram,	
	identify the invariant	Development of microstructure in	
	reactions, Sketch and	iron-carbon alloys, Influence of	
	interpret iron-carbon phase	other alloying elements	
	diagram		
14-16	Sketch and interpret the time	The kinetics of solid-state reactions,	T1. Ch. 8
	temperature transformation	Isothermal transformation diagram,	
	diagram and continuous	Continuous cooling transformation	
	cooling transformation	diagrams, Martensite structures and	
	diagram, Design a heat	tempering, Heat treatments, Glass	
	treatment that will produce a	transition temperature.	
	specified microstructure,		
	Explain the mechanism of		
	age hardening		
15-17	Determine the modulus of	Concepts of Stress and strain,	T1. Ch. 9
	elasticity, yield strength and	Elastic deformation, Plastic	
	toughness of various material	deformation, Impact strength &	
	systems, Compute impact	Hardness, Design/Safety factors	
	toughness and hardness		
18-21	Describe how plastic	Dislocations; Slip systems;	T1. Ch. 10
	deformation occurs by	deformation by twinning;	
	movement of dislocations,	strengthening mechanisms;	
	Define slip systems,	recovery, recrystallization & grain	
	Describe and explain various	growth	
	strengthening mechanisms,		
	Differentiate between hot		
22.64	working and cold working		m1 C1 11
22-24	Differentiate between ductile	Fundamentals of fracture: ductile	T1. Ch. 11
	and brittle fracture, Define	and brittle; Principles of fracture	
	fracture toughness,	mechanics; Fatigue: S-N Curve;	
	Distinguish between fatigue	Crack initiation and propagation;	
25.25	and creep.	Generalized creep behaviour	m1 C1 15
25-27	Differentiate between a	Particle-reinforced and fibre-	T1. Ch. 15

	fibre-reinforced and a dispersion-strengthened composite, Determine the longitudinal and transverse elastic modulus of long fibre composite	reinforced composites; Mechanical properties of composites	
28-29	Economic, Environmental and Societal Issues in Materials Science and Engineering	Economic considerations: Component design; Materials; Manufacturing techniques; Recycling issues in MSE	T1. Ch.22

Evaluation Scheme:

No.	Evaluation Component	Duration (min)	Weightage (%)	Date & Time	Nature of Component
1	Mid-semester Exam	90	30		Closed Book
2	Comprehensive Exam	180	35	04 th December 2024 AN	Closed Book
3	Laboratory	120	20		Open Book
4	Tutorial participation*	50	10		Open Book
5	Surprise Classroom Quizzes	20	10		Open Book

^{*} Best 10 out of 12 tutorials will be considered for evaluation.

List of experiments (Weightage:20%)

Section A: Solid Mechanics

- 1. Determine the mechanical properties of steel & Al alloys by conducting uni-axial tensile tests.
- 2. (a) Determine the modulus of rigidity and maximum torsional shear stress by conducting torsion tests.
- (b) Spring stiffness measurement (series and parallel)
- 3. Determine the deflection of a simply supported beam and cantilever beam.
- 4. Determine the buckling load of a column

Section B: Materials Science

- 5. Observe the microstructure of mild steel and determine its grain size by image analysis.
- 6. Determine the hardenability of steel by conducting the Jominy end-quench test.
- 7. (a) Determine the impact toughness of metals at different temperatures using the Izod test.
- (b) Determine energy absorption by conducting a drop weight impact test
- 8. Determine the indentation hardness using Rockwell and Brinell hardness testers.

Section C: Demonstrations

- 10. Differentiate between ductile and brittle fractures using a scanning electron microscope.
- 11. Demonstration of fatigue and creep studies
- 12. Identification of flaws by Non-Destructive Testing methods.

Note:

- 1. Chamber Consultation hour: Friday 5 pm, E218
- 2. **Notices:** All notices concerning this course will be displayed on CMS.
- 3. **Make-up Policy**: Make-up will be granted only to genuine cases. For cases related to illness, proper documentary evidence is essential. Prior permission is necessary if the student is out of station on the test date.
- 4. **Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge ME F216