Graph theory

1 Basic Definition

Topics covered in Exam.

2016-Paper4-16G Handshaking

2016-Paper1-16G Euler's formula, planar graph inequality with girth

2017-Paper3-15H bipartite

- Graph
- Vertices
- Edges
- Order of a graph
- Size of a graph
- Isomorphic

Example. P_n, K_n, C_n, E_n

- Subgraph
- Induced subgraph
- Connected
- Component
- Forest
- Tree

Theorem 1.1. Following equiv:

- (i) Tree
- (ii) Minimal connected
- (iii) Maximal acyclic

Theorem 1.2. Connented iff has spanning tree

Lemma 1.3 (Handshaking lemma). $\sum d(v) = 2e(G)$

- Leaf
- Minimum degree $\delta(G)$
- Maximum degree $\Delta(G)$

Theorem 1.4. Order ≥ 2 , then at least 2 leaves

Corollary 1.5. Tree order n-1

Corollary 1.6. Following equiv:

- (i) Tree
- (ii) Connected of order n size n-1
- (iii) Acyclic of order n size n-1

Theorem 1.7 (Caley). n^{n-2} labelled trees of order n

- r-partite
- Bipartite

Theorem 1.8. Bipartite iff no odd cycles

- Eulerian tour
- Eulerian

Theorem 1.9. Eulerian iff |G| > 1, connected, d(v) even

- Planar
- Plane graph
- Face

Lemma 1.10. d(v) even, then partitioned into cycles

Lemma 1.11. e boundary of two faces iff contained in cycle

Theorem 1.12 (Euler). Connected plane graph, order n, size m, faces f

$$n - m + f = 2$$

- Bridge

Fact. f_i number of faces of length i

$$\sum i f_i = 2m$$

- Girth

Theorem 1.13. G connected, bridgeless, planar graph

$$e(G) \le \frac{g}{g-2}(n-2)$$

G planar graph

$$e(G) \le 3(n-2)$$

- omplete bipartite graph $K_{p,q}$

Theorem 1.14 (Kuratowski). Planar iff not contain subdivision of $K_{3,3}$ or K_5

- dual graph

Fact. Simple if 3-connected

2 Matching and Connectivity

Topics covered in Exam.

2016-Paper4-16G Menger

2017-Paper2-15H $\frac{Hall}{}$

- Matching
- Independent
- 1-factor (1 regular spanning subgraph)
- n-regular

Theorem 2.1 (Hall). G bipartite with vertex classes X, Y

Matching from X to Y iff $|\Gamma(A)| \ge |A|$ for all subsets $A \subset X$

Theorem 2.2 (defect form).

$$|X| - d$$
 independent edges iff $|\Gamma(A)| \ge |A| - d$

Theorem 2.3 (polygamous version). 1 to 2 matching iff $|\Gamma(A)| \geq 2|A|$

- Distinct representatives

Corollary 2.4. Set of distinct representative iff for all subset $S \in [n], |\bigcup_{i \in S} Y_i| \ge |S|$

- K-connected (be careful with K_n)
- Vertex connectivity $\kappa(G)$
- Local connectivity $\kappa(a, b; G)$
- Edge connectivity $\lambda(G), \lambda(a, b; G)$

Fact.

$$\kappa(G) \le \lambda(G) \le \delta(G)$$

- Vertex disjoint (set of paths)

Theorem 2.5 (Menger). $ab \notin E(G)$, then

 $\exists \kappa(a,b;G) \ vertex \ disjoint \ a-b \ paths$

- graph contraction
- contration

Corollary 2.6. $\kappa(G) \geq k, X, Y$ disjoint subsets $|X|, |Y| \geq k$ Then exists set of k completely vertex disjoint X - Y paths

Theorem 2.7 (edge form of Menger). $a, b \in V(G)$, then

 \exists set of $\lambda(a,b;G)$ edge-disjoint a-b paths

- Line graph

Fact. Menger impies Hall

3 Extremal Graph Theory

Topics covered in Exam.

2016-Paper2-15G Turan

2017-Paper1-16H Hamiltonian

- Hamiltonian cycle

Theorem 3.1. $|G| \ge 3$, every pair of non-adjacent vertices $d(x) + d(y) \ge k$ If k < n, G connected, then exists path of length kIf k = n, exist Hamiltonian cycle

Corollary 3.2 (Dirac). |G| = n, $\delta \ge n/2$, then exists Hamiltonian cycle

Theorem 3.3. G order n, no length k path. Then $e(G) \leq \frac{k-1}{2}n$. Equality holds iff k|n, G disjoint copies of K_k

- -ex(n,F)
- r partite Turan graph of order n, $T_r(n)$ with size $t_r(n)$

Theorem 3.4 (Turan). K_{r+1} free, order n, $e(G) \ge t_r(n)$, then $G = T_r(n)$

Proof 1. Induction on n with base case K_r . Remove edges to G' with $t_r(n)$ edges. Delete $\delta(G')$ vertex x. G-x Turan. Put back x. T_{r+1} maximal.

Proof 2. Induction on n with base case K_r . Add edges to maximal. $K_n \subset G'$. Count edges. $G - K_n$ Turan. Put back K_n .

Theorem 3.5 (problem of Zarankiewicz). Bipartite $n \times n$, no $K_{t,t}$

$$z(n,t) \le (t-1)^{1/t}(n-t+1)n^{1-1/t} + (t-1)n = O(n^{2-1/t})$$

Theorem 3.6.

$$z(n,2) \le n/2(1+\sqrt{4n-3})$$
, equality holds for infinitely many n

Theorem 3.7.

$$ex(n, K_{2,2}) \le n/4(1+\sqrt{4n-3})$$

Fact.

(i)
$$ex(n, K_{r+1}) = t_r(n)$$

(ii)
$$ex(n, K_3) = \lfloor \frac{n^2}{4} \rfloor$$

(iii)
$$ex(n, C_5) = t_2(n)$$

(iv)
$$ex(n,F) = |n^2/4| + 2$$

(v)
$$ex(n, P) = t_2(n) + n - 2$$

- $K_r(t)$ complete r-partite graph, $K_r(t) = T_r(rt)$

Lemma 3.8. If $n > n_1(r, t, \epsilon)$, |G| = n, $\delta(G) \ge (1 - 1/r + \epsilon)n$ Then contains $K_{r+1}(t)$

Theorem 3.9 (Erdos-Stone). *n sufficiently large*, $e(G) \ge (1 - 1/r + \epsilon) \binom{n}{2}$, then contains $K_{r+1}(t)$

- chromatic number, $\chi(G)$

Corollary 3.10.

$$\lim_{n\to\infty}\frac{ex(n,F)}{\binom{n}{2}}=1-\frac{1}{\chi(F)-1}$$

4 Colouring

Topics covered in Exam.

2016-Paper3-15G chromatic polynomial

- Vertex colouring
- greedy algorithm

Theorem 4.1.

$$\chi(G) \le 1 + \max_{H} \delta(H)$$

Corollary 4.2. $\chi(G) \leq \Delta(G) + 1$

- Block

Fact. Tree of blocks and bridges

Theorem 4.3 (Brooks). $\chi(G) = \Delta(G) + 1$, then G complete or odd cycle

- clique number, $\omega(G)$
- independence number, $\alpha(G)$

Fact. $\alpha(G) = \omega(\bar{G})$

Fact. $\max \left\{ \omega(G), \frac{|G|}{\alpha(G)} \right\} \le \chi(G)$

- chromatic polynomial, $p_G(x)$ — number of ways to colour vertices of G with colours $1, 2, \ldots, x$

Example.

- (i) complement of K_n , $p_{\bar{K_n}(x)=x^n}$
- (ii) Tree T, $p_T(x) = x(x-1)^{n-1}$
- (iii) complete graph, $p_{K_n}(x)x(x-1)(x-2)\cdots(x-n+1)$

Theorem 4.4. Any $e \in E(G)$, $p_G(x) = p_{G-e}(x) - p_{G/e}(x)$

Fact. $p_G(x) = \prod_C p_C(x)$

Corollary 4.5.

$$p_G(x) = x^n - a_{n-1}x^{n-1} + \dots + (-1)^n a_0$$

where $n = |G|, a_{n-1} = e(G), a_j \ge 0$ for all j, $\min\{j : a_j \ne 0\} = k$ the number of components

Fact. G not specified by $p_G(x)$

- k-edge-colouring
- chromatic index, $\chi'(G)$

Theorem 4.6. Bipartite multigraph, then $\chi'(G) = \Delta(G)$

Fact. fail for non-bipartite graph e.g. K_3

Theorem 4.7 (Vizing). $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$

– list colouring, $\chi_l(G)$

Fact. $\chi_l(G) \geq \chi(G)$

Fact. $\chi_l(G) \leq 1 + \max_H \delta(H)$

Theorem 4.8 (Five Colour Theorem). G planar, then $\chi(G) \leq 5$

Theorem 4.9 (Thomasson). G planar, then $\chi_l(G) \leq 5$

Fact. exist graph with $\chi_l(G) = 5$

Theorem 4.10 (Tait). Four Colour Theorem holds iff $\chi'(G) = 3$ for every cubic bridgeless planar G

4.1 Graph on other surfaces

– Euler characteristic, $E \leq 2$

Fact. simply connected, then n - m + f = E

Example. Orientable surface g handles, E = 2 - g

- -g=1, torus
- -g=2, double torus

Non-orientable surfaces, one for each $E \leq 1$

- -E = 1, projective plane
- -E=0, Klein bottle

Fact. $m \leq 3(n-E)$

Theorem 4.11 (Heawood). characteristic $E \leq 1$, then

$$\chi(G) \le H(E) = \left| \frac{7 + \sqrt{49 - 24E}}{2} \right|$$

5 Ramsey Theory

Topics covered in Exam.

2017-Paper3-15H Ramsey numbers

– Ramsey number, R(s), R(s,t) —— smallest n st if colour edges of K_n red or blue, then exists red K_s or blue K_t

Theorem 5.1 (Ramsey). $R(s,t) \le R(s-1,t) + R(s,t-1)$

Fact.
$$R(s,t) \leq {s+t-2 \choose s-1} < 2^{s+t}$$

Fact. inequality not exact

$$- R_k(s_1, s_2, \ldots, s_k)$$

Theorem 5.2. $R_k(s_1, s_2, \ldots, s_k)$ exists

Fact.
$$R_k(s_1,\ldots,s_k) \leq R_{k-1}(R(s_1,s_2),s_3,\ldots,s_k)$$

Fact.
$$R_k(s_1,\ldots,s_k) \leq R_k(s_1-1,\ldots,s_k) + \cdots + R_k(s_1,\ldots,s_k-1) - k + 2$$

- r-uniform hypergraph

Theorem 5.3 (Ramsey for r-sets). $R^{(r)}(s,t)$ exists

Theorem 5.4 (Infinite Ramsey). k colours $\mathbb{N}^{(r)}$, then exists infinite $M \subset \mathbb{N}$ s.t. $M^{(r)}$ monochromatic

7

- big if
$$|Y| \ge \min Y$$

Theorem 5.5. exists B(s,k,r) s.t. if $n \ge B(s,k,r)$, $\{s,s+1,\ldots,n\}^{(r)}$ k coloured, then exist big set $Y \subset \{s,s+1,\ldots,n\}^{(r)}$ s.t. $Y^{(r)}$ monochromatic

Probabilistic Method 6

Theorem 6.1 (Erdos). $s \ge 3$, then $R(s) \ge 2^{(s-1)/2}$

Theorem 6.2. G has independent set of size at least

$$\sum_{v \in G} \frac{1}{d(v) + 1} \ge \frac{|G|}{d + 1}$$

 $-\mathcal{G}(n,p)$ — space of all $2^{\binom{n}{2}}$ labelled graph

Fact. From 6.1, exists graph with $\omega(G)$ and $\alpha(G)$ at most $2\log_2 n + 1$. Hence, exist G with $\chi(G) \geq 1$ $\frac{n}{2\log_2 n + 1}$

Theorem 6.3 (Erdos). $g \geq 3, k \geq 2$, then exists G with $\chi(G) \geq k$ and girth at least g

Theorem 6.4. $n \ge t \ge 2$, then $z(n,t) > \frac{3}{4}n^{2-2/(t+1)}$

Lemma 6.5. $\mathbb{E}(X_n^2)/\mathbb{E}(X_n)^2 \to 1$ or $Var(X_n)/\mathbb{E}(X_n)^2 \to 0$, then any constant c,

$$\mathbb{P}(|X_n - \mathbb{E}(X_n)| \ge c\mathbb{E}(X_n)) \to 0$$

let c = 1, then

$$\mathbb{P}(X_n=0)\to 0$$

Fact.
$$\mathbb{P}(X=0) \leq \frac{Var(X)}{(\mathbb{E}X)^2}$$

Fact. let $X = \sum_A I_A$, then

$$-\mathbb{E}X^2 = \sum_{A|B} \mathbb{P}(A \cap B) = \sum_{A|B} \mathbb{P}(A)\mathbb{P}(B|A)$$

–
$$Var(X) = \sum_{A,B} \mathbb{P}(A)[\mathbb{P}(B|A) - \mathbb{P}(B)]$$

Theorem 6.6. $\omega(n) \to \infty, G \in (G)(n,p)$

If $p = \frac{\log n - \omega(n)}{n}$, G has isolated vertices a.s.If $p = \frac{\log n + \omega(n)}{n}$, G has no isolated vertices a.s.

- almost surely $\mathbb{P}(A) \to 1$ as $n \to \infty$
- threshold phenomenon

Theorem 6.7. let $\mu(d) = \binom{n}{d} p^{\binom{d}{2}}$, fixed p, then If $\mu(d) \to 0$, $G \in \mathcal{G}(n,p)$ almost certainly not contain K_d If $\mu(d) \to \infty$, $G \in \mathcal{G}(n,p)$ almost certainly contain K_d

Corollary 6.8. $0 fixed, then clique number is <math>(2 + o(1)) \log_{1/p} n$ almost surely

7 Eigenvalue Methods

Topics covered in Exam.

2017-Paper4-16H strongly regular, Petersen graph

- adjacency matrix, A

Fact. A real symmetric

Fact. $(A^d)_{ij}$ number of walks length d from i to j

- diameter, diam(G)

Fact. $\{I, A, A^2, A^{diam(G)}\}\$ linearly independent, so at least diam(G) + 1 distinct eigenvalues

Fact. $\lambda_{\min} = \min_{|x|=1} x^T A x, \lambda_{\max} = \max_{|x|=1} x^T A x$

Fact. H induced subgraph, $\lambda_{\min}(G) \leq \lambda_{\min}(H) \leq \lambda_{\max}(H) \leq \lambda_{\max}(G)$

Fact. bipartite G, then $A = \begin{pmatrix} 0 & * \\ * & 0 \end{pmatrix}$. Also, characteristic polynomial is in t^2

Theorem 7.1. G graph

(i)
$$\delta(G) \leq \lambda_{\max} \leq \Delta(G)$$

(ii)
$$|\lambda| \leq \Delta(G)$$
 for all λ

If G connected, then

- (i) $\lambda_{max} = \Delta(G)$ iff G regular, in this case multiplicity of $\lambda_{max} = 1$
- (ii) $\lambda_{min} = -\Delta(G)$ iff G regular and bipartite, in this case multiplicity of $\lambda_{min} = 1$
 - orientation
 - incidence matrix, B
 - combinatorial Laplacian, $L = BB^T$

Fact. let $D = diag(d(1), \ldots, d(n))$

$$L = D - A = \begin{cases} d(i) & \text{if } i = j \\ -1 & i \to j \text{ or } j \to i \\ 0 & \text{otherwise} \end{cases}$$

Fact. L positive semi-definite

Fact. let eigenvalue be $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_n$ $x^T L x = \sum_{ij \in E(G)} (x_i - x_j)^2$, hence eigenvalue $\mu_1 = 0$

Proposition 7.2. $\mu_2 = \min\{x^T L x / ||x||^2 : x \neq 0, \sum x_i = 0\}$

Theorem 7.3. G graph, $U \subset V(G)$, then at least $\frac{\mu_2|U||V-U|}{|G|}$ edges between U and V-U

9

- Moore graph, d-regular, diameter 2, order $d^2 + 1$
- strongly regular (d, a, b):
 - (i) regular of degree d
 - (ii) every pair of adjacent vertices exactly a common neighbours
 - (iii) every pair of non-adjacent vertices exactly b common neighbours

Fact. Moore graph is (d, 0, 1)

Theorem 7.4. G strongly regular (d, a, b), order n, then

$$\frac{1}{2} \left(n - 1 \pm \frac{(n-1)(b-a) - 2d}{\sqrt{(a-b)^2 + 4(d-b)}} \right) \in \mathbb{N}$$

Theorem 7.5. exist Moore graph only if $d \in \{1, 2, 3, 7, 57\}$