计算机组成原理A

第1/2章 单元测试分析

第1/2单元测试

- 1、至今为止,计算机中的所有信息仍以0、1编码的方式表示,理由是()。
- A. 节约元件 B. 运算速度快 C. **物理器件性能所致** D. 信息处理方便

分析: 编码有几种数字,则物理器件就需要几种稳定的状态与之对应。

- 2、【考研真题】某数采用IEEE754单精度浮点数格式表示为C6400000H,则该数真值为()
 - **A.** -1.5 * 2^13 B. -1.5 * 2^12 C. -0.5*2^13 D. -0.5 * 2^12

分析: 将存储形式转为二进制表示,并根据32位浮点数格式进行分段,得到

1 10001100 100 0000 0000 0000 0000 0000

则 s=1, e =140-127=13, m =1+2⁽⁻¹⁾ 整理后得到真值

- 3、【考研真题】由 3个"1"和5个"0"组成8位二进制补码,能表示的最小整数是()。
 - A. -126

分析: 最小整数,即为能表示的最小负数:符号位使用1个"1";数值部分要使得绝对值 要尽可能大,2个"1"需要放在低位。则补码形式为 10000011,转为原码后求得真值-125

4、在浮点数编码表示中,()在机器数中不出现,而是隐含的。					
A. 阶码	B. 符号	C. 基数	D. 尾数		
分析: 浮点数的存储格式中,包含了符号位、阶码和尾数					
5、浮点加减法运算规	1则中正确的是()	分析:		
A 对阶运算就是把力	对阶——小阶往大阪	对阶——小阶往大阶靠 尾数溢出——右规处理			
B 如果尾数求和运算					
C 尾数右移一位时,	尾数舍入——考虑与 尾数右移,阶码加;				
D 为防止溢出,尾数要舍入处理。			左移,阶码减		
6、 设有一个4级流水浮点加法器每个过程段所需的时间分别为: 70ns、60ns、90ns、80ns,缓冲寄存器的延时为 10ns,则4级流水线的时钟为: ()					
	, , , , , , , , , , , , , , , , , , , ,		T 400		
A. 70ns B. (60ns C. 90ns	D. 80ns	E. 100ns		
分析: 在各功能段时	长不同的情况下,	流水线的同步时钟需	昂选取最慢功能段的时间+缓	評时间	

7、【考研真题	② 在冯诺依曼型机器中,	指令和数据都以二进	制形式存放在存储器中,CPU区分			
它们的依据是()。						
A. 指令	令操作吗的译码结果	B. 指令和数据	的寻址方式			
C. 指令	冷执行的不同阶段	D. 指令和数据	·所在的存储单元			
			。机器在取指令、执行指令的过程 没,进、出存储器的是数据			
8、寄存器内容为11111110,若它表示的真值为-1,则为()。						
A. 原码	B. 反码	C. 补码	D. 移码			
分析: -1的原	码为10000001,转换为点	反码 111111110,补码	111111111,移码 01111111			
9、n位定点整数(有符号)可以表示的最大值是()						
A. 2^n	B. 2^n - 1	C. 2 ^ (n-1)	D. 2^(n-1) -1			
分析:字长为:	n,则数值部分有效位为	n−1位,可以表示的最	大数原码为 0 1…1,进而求得真值			

10、用8片74181和2片74182可以组成()。

- A. 全并行进位的32位ALU
- C. 三级先行进位结构的32位ALU
- B. 二级先行进位结构的32位ALU
- D. 组内先行进位、组间串行进位的16位ALU

分析: 8片74181完成32位运算,排除D

加上2片74182可以构成有图结构,故 选择B

要形成全并行结构,需要3片74182,构成3级结构

简答题: 简述计算机的硬件由几部分组成? 各自的功能是什么?

答题要点: 运算器——算术与逻辑运算; 存储器——存储指令和数据;

控制器——执行指令/协调各部件工作; 总线——连接各个部件的公共通路;

输入、输出设备与适配器——信息转换/与用户交互

计算题1:已知x=11011,y=-10011。假设采用变形补码,字长为8位。请计算x-y,同时指出是否溢出。

计算题2: 已知 x = -0.101001, y = -0.111, 用不恢复余数法求 $q = x \div y$ 。

2. 解
$$OS_f = S_X OS_y = 10 = 0$$
 $OS_f = S_X OS_y = 10 = 0$
 $OS_f = S_X OS$