

8 位 OTP 微控制器 Ver 1.0

免责声明

无锡矽杰微电子有限公司(简称:无锡矽杰微)保留关于该规格书中产品的可靠性、功能和设计方面的改进作进一步说明的权利。由于使用本用户手册中的信息或内容而导致的直接,间接,特别附带结果的损害,无锡矽杰微没有义务负责。本用户手册中提到的其应用仅仅是用来做说明,本公司不保证这些应用没有更深入的测试就能适用。本规格书中提到的软件(如果有),都是依据授权或保密合约所合法提供的,并且只能在这些合约的许可条件下使用或者复制。无锡矽杰微的产品不是专门设计来应用于生命维持的用具,装置或者系统。无锡矽杰微的产品不支持而且禁止在这些方面的应用。本用户手册内容如有变动恕不另作通知,具体更新信息,请参考公司官方网站 www.xjmcu.com。

修改记录说明

版本号	修改说明	备注
V1. 0	发布初稿	

目 录

1.	. 芯片简介	5
	1. 1 功能特性	5
	1. 2 引脚分配	6
	1.3 引脚描述	7
	1.4 系统框图	8
2.	. 存储器结构	9
	2. 1 程序存储区	9
	2.2 数据存储区	9
3.	. 功能描述	10
	3.1 操作寄存器	10
	3.1.1 RPAGE~RO/IAR(间接寻址寄存器)	10
	3.1.2 RPAGE~R1/TCC(定时计数器)	10
	3.1.3 RPAGE~R2/PC(程序计数器)	10
	3.1.4 RPAGE~R3/STATUS(状态寄存器)	11
	3.1.5 RPAGE~R4/RSR(RAM 选择寄存器)	12
	3.1.6 RPAGE~R6/PORT6(P6 数据寄存器)	13
	3.1.7 RPAGE~R8/PWMCON(PWM 控制寄存器)	13
	3.1.8 RPAGE~R9/PRD(PWM 周期寄存器)	14
	3.1.9 RPAGE~RA/DT1(PWM1 占空比寄存器)	14
	3.1.10 RPAGE~RB/DT2(PWM2 占空比寄存器)	14
	3.1.11 RPAGE~RC/DT3(PWM3 占空比寄存器)	14
	3.1.12 RPAGE~RD/ICIECR(输入状态变化中断使能)	15
	3.1.13 RPAGE~RE/CPUCON(CPU 模式控制寄存器)	15
	3.1.14 RPAGE~RF/ISR(中断标志寄存器)	16
	3.2 控制寄存器	17
	3.2.1 CONT(控制寄存器)	17
	3. 2. 2 10PAGE~10C6/P6CR(P6 方向控制寄存器)	18
	3.2.3 OPAGE~ OC9/PHDCR(端口上下拉控制寄存器)	18
	3.2.4 OPAGE~ OCB/PDCR(端口下拉控制寄存器)	18
	3.2.5 IOPAGE~ OCD/PHCR(端口上拉控制寄存器)	19
	3.2.6 OPAGE~ OCE/WDTCR(WDT 使能控制寄存器)	19
	3.2.7 OPAGF~ OCF/ IMR(中断使能控制寄存器)	20
	3.3 中断	21
	3.3.1 中断现场保护	22
	3. 4 复位	23
	3.4.1 复位功能概述	23
	3.4.2 WDT 看门狗复位	23
	3. 4. 3 POR 上电复位	24
	3. 4. 4 LVR 低电压复位	24
	3.5 工作模式	26
	3.5.1 高速模式	27
	3.5.2 低速模式	27

	3.5.3 空闲模式	28
	3.5.4 睡眠模式	28
	3.6 系统时钟	29
	3. 6. 1 内部 RC 振荡器	29
	3. 6. 2 外部晶体/陶瓷振荡器	30
	3. 6. 3 时钟模块应用说明	30
	3.7 1/0 端口	31
	3.7.1 GPIO 内部结构图	31
	3.7.2 端口状态变化唤醒	32
	3.7.3 端口施密特参数	
	3.8 TCC 定时计数器	34
	3. 8. 1 TCC 定时设置说明	35
	3.8.2 TCC 定时计算说明	35
	3.9 PWM 脉宽调制	36
	3.9.1 PWM 内部结构与时序	36
	3.9.2 PWM 周期与占空比	37
	3.9.3 PWM 脉宽调制设置说明	38
	3. 10 重要说明	39
4.	4. OPTION 配置表	40
5.	5. 电气特性	42
	5.1 极限参数	42
	5.2 直流电气特性	42
	5.3 特性曲线图	43
	5. 3. 1 内部低速 RC 振荡器-压频特性曲线	43
	5.3.2 内部低速 RC 振荡器-温频特性曲线	43
	5.3.3 内部 1Mhz RC 振荡器-压频特性曲线	44
	5.3.4 内部 1Mhz RC 振荡器-温频特性曲线	44
	5.3.5 内部 8Mhz RC 振荡器-压频特性曲线	45
	5.3.6 内部 8Mhz RC 振荡器-温频特性曲线	45
6.	6. 封装尺寸	46
	6. 1 8PIN 封装尺寸	46
	6.2 6PIN 封装尺寸	47

1. 芯片简介

1.1 功能特性

CPU 配置

- 1K×14-Bit OTP ROM
- 48×8-Bit SRAM
- 5级堆栈空间
- 8 级可编程电压复位(LVR) 1. 2V, 1. 6V, 1. 8V, 2. 4V 2. 7V, 3. 3V, 3. 6V, 3. 9V
- 工作电流小于 1.2 mA (4MHz/5V)
- 工作电流 20 μA (32KHz/3V)
- 休眠电流小于 1 μA (休眠模式)

1/0 配置

- 1组双向 I0端口: P60~P65
- 6个1/0引脚
- 唤醒端口: P6 口
- 6个可编程上拉 I/0 引脚
- 5个可编程下拉 1/0 引脚
- 端口驱动可增强
- P63 (复位引脚) 可配置上拉和输出
- 外部中断: P60

工作电压

- 工作电压范围:
 - 1.8V~5.5V (0°C−70°C) 2.3V~5.5V (−40°C−85°C) 常温(25°C)工作电压可低至 1.5V
- 工作温度范围:工作温度 -40°C-85°C

工作频率范围

- 外部晶振 HXT, LXT
- 外部晶振内置电容: Disable、7PF、9PF、12.5PF
- 内置 IRC 振荡电路: 8MHz/1MHz/910KHz
- 时钟周期分频选择:20lock, 40lock, 80lock160lock, 320lock

外围模块

- 8Bit 实时时钟/计数器
- 3 路共周期 8Bit 脉宽调制器 PWM

中断源

- TCC 溢出中断
- 外部中断
- 输入端口状态改变产生中断
- T1/PWM 周期溢出中断

特性

- 可编程 WDT 定时器 4.5ms、18ms、72ms、288ms
- 内置 RC 振荡器供电: VDD、LDO 2.1V

封装类型

- XC8P9520-D1P8
- XC8P9520-S0P8
- XC8P9520-S0T23-6

1.2 引脚分配

XC8P9520-8PIN 脚位图

XC8P9520-6PIN 脚位图

1.3 引脚描述

序号	管脚名	1/0	功能描述				
	P60	I/0(上/下拉)	GP10,可编程上下拉、高驱动、端口唤醒				
P60	EXINT	I (SMT)	外部中断输入端口				
	PWM3	0	PWM3 输出				
P61	P61	I/0(上/下拉)	GP10,可编程上下拉、高驱动、端口唤醒				
POI	PWM2	0	PWM2 输出				
	P62	I/0(上/下拉)	GPIO,可编程上下拉、高驱动、端口唤醒				
P62	TCC	I	外部 TCC 信号源输入脚				
	PWM1	0	PWM1 输出				
P63	P63	1/0(上拉)	GPIO,可编程上拉、端口唤醒				
P03	RST	I (SMT)	复位引脚				
P64	P64	I/0(上/下拉)	GP10,可编程上下拉、高驱动、端口唤醒				
P04	0SC0	0	晶振/陶振的时钟输出端				
P65	P65	I/0(上/下拉)	GPIO,可编程上下拉、高驱动、端口唤醒				
P00	0SC1	I	晶振/陶振的时钟输入端				
	VDD		电源				
	VSS		地				

1.4 系统框图

系统电路框图

2. 存储器结构

2.1 程序存储区

程序存储区结构图

2.2 数据存储区

RPAGE\IOPAGE\Bank 数据寄存器区

地址	R 页面寄存器	100 页面寄存器
0x00	RO/IAR(间接地址存储器)	保留
0x01	R1/TCC(定时计数器)	CONT (控制寄存器)
0x02	R2/PC(程序计数器)	保留
0x03	R3/STATUS(状态寄存器)	保留
0x04	R4/RSR(RAM 选择寄存器)	保留
0x05	保留	保留
0x06	R6/P0RT6(P6 数据寄存器)	10C6/P6CR(P6 方向控制寄存器)
0x07	保留	保留
0x08	R8/PWMCON(PWM 控制寄存器)	保留
0x09	R9/PRD(PWM 周期寄存器)	IOC9/PHDCR(端口上下拉控制寄存器)
0x0A	RA/DT1(PWM1 占空比寄存器)	保留
0x0B	RB/DT2(PWM2 占空比寄存器)	IOCB/PDCR(端口下拉控制寄存器)
0x0C	RC/DT3(PWM3 占空比寄存器)	保留
0x0D	RD/ICIECR(输入状态变化中断使能)	IOCD/PHCR(端口上拉控制寄存器)
0x0E	RE/CPUCON(CPU 模式控制寄存器)	IOCE/WDTCR(WDT 使能控制寄存器)
0x0F	RF/ISR(中断标志寄存器)	IOCF/IMR(中断使能控制寄存器)
0x10		
	通用寄存器	
0x3F		

3. 功能描述

3.1 操作寄存器

3.1.1 RPAGE~RO/IAR (间接寻址寄存器)

00H (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
IAR		RIND<7:0>									
读/写				F	२						
复位值)	<						

间接寻址寄存器并不是一个实际存在的寄存器,它的主要功能是作为间接寻址的指针。 任何以 R0 作为指针的指令,实际对应的地址是 R4(RAM 选择寄存器)低 6 位 FSR<5:0>所指 向的数据。

3.1.2 RPAGE~R1/TCC(定时计数器)

01H(R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TCC (R)	TCC<7>	TCC<6>	TCC<5>	TCC<4>	TCC<3>	TCC<2>	TCC<1>	TCC<0>
读/写	R/W							
复位值	0	0	0	0	0	0	0	0

TCC 是一个8Bit 上行计数器,时钟源可选内部时钟/外部时钟,计数溢出可形成中断,TCC可读可写。

TCC 可由 EXINT 引 上的信号边沿或指令周期触发产生加 1 操作(CONT. 4 位定义)。如果 清零 PAB 位(CONT. 3,会有一个预分频器分配给 TCC,当 TCC 寄存器被写入一个值时,预分 频器的值会被清 0。

3.1.3 RPAGE~R2/PC(程序计数器)

02H (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PC	PCL<7>	PCL<6>	PCL<5>	PCL<4>	PCL<3>	PCL<2>	PCL<1>	PCL<0>
读/写	R/W							
复位值	0	0	0	0	0	0	0	0

程序计数器(PC)是用于记录每个指令周期中 CPU 所要处理的指令的指针。在 CPU 运行周期中, PC 将指令指针推进程序存储器, 然后指针自增 1 以进入下一个周期。XC8P9520 拥有一个 10 位宽度的程序计数器 (PC), 其低字节来自可读写的 PCL, 高位 (PC<9:8>) 不可读。

XC8P9520 堆栈是用于记录程序返回的指令指针。当调用子程序时,PC 将指令指针压栈。 待执行返回指令时,堆栈将指令指针送回 PC,继续进行原来的进程。XC8P9520 拥有 5 级堆栈, 该堆栈既不占程序存储空间也不占数据存储空间,并且堆栈指针不能读写。

- (1) 寄存器 PC 和内置 5 级堆栈都是 10 位宽,用于 1K×14Bit ROM 的寻址,XC8P9520 程序存储区映射。
- (2) 一般情况下, PC 自增一; 复位时, PC 的所有位都被清零。
- (3) 指令 "JMP" 允许直接载入低 10 位地址,因此,JMP 指令可以实现当前页面内(1K 范围内)任意位置跳转。指令 "JMP" 直接载入低 10 位地址,同时将 PC +1 压栈,子程序入口地址只要在同一页面内就能够被准确定位。
- (4) 执行"RET"指令时将栈顶数据送到 PC。
- (5) 当设置 PC 查表能力为 1/4K 时(设置 OPTION 选项中查表范围 为 0~256),任何对 PC 的内容进行直接修改的指令都将引起 PC 的第 9、10 位被清零。因此,产生的跳转限于同一页面的前 256 个地址,改变 PC 内容的指令需要 2 个指令周期。

当设置 PC 查表能力为 1K 时,任何对 PC 值进行改写的指令会相应影响 PC 最高两位。因此,产生的跳转可扩充至 1K 范围。

- (6) 发生中断时,程序计数器的值将发生改变,PC 赋值为008。
- (7) 堆栈的工作犹如循环缓冲器,也就是说,压栈 5次之后,第 6次压栈时进栈的数据将覆盖第 1次进栈的数据,而第 7次压栈时进栈的数据将覆盖第 2次进栈的数据,依此类推。

3.1.4 RPAGE~R3/STATUS(状态寄存器)

03H (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
STATUS	RST	GB1	GB0	Т	Р	Z	DC	С
读/写	R	R/W	R/W	R	R	R	R	R
复位值	0	0	0	1	1	Х	Х	Х

Bit<7>: RST-复位类型标志位

0: 其它复位类型

1: 若休眠模式由引脚状态改变唤醒

Bit<6>: GB1-未定义,通用读写位 Bit<5>: GB0-未定义,通用读写位

Bit<4>: T-时间溢出位

0: WDT 溢出

1: 执行 "SLEEP"和 "WDTC"指令或低压复位

Bit<3>: P-掉电标志位

0: 执行 "SLEEP" 指令

1: 上电复位或执行 "WDTC" 指令

影响 T/P 的事件如下表所示:

类型	RST	Т	Р
上电复位	0	1	1
工作模式下按 RESET	0	保持	保持
RESET 唤醒	0	1	0
工作模式下 WDT 溢出	0	0	保持
WDT 溢出唤醒	0	0	0
端口状态变化唤醒	1	1	0
执行 WDTC 指令	保持	1	1
执行 SLEEP 指令	保持	1	0

Bit<2>: Z-零标志位算术或逻辑操作结果为零时置为"1"

0: 当算术或者逻辑运算结果不为 0

1: 当算术或者逻辑运算结果为 0

Bit<1>: DC-辅助进位标志

0: 执行加法运算时, 低四位没有进位产生: /执行减法运算时, 低四位产生借位

1: 执行加法运算时, 低四位有进位产生; /执行减法运算时, 低四位没产生借位

Bit<0>: C-进位标志

0: 执行加法运算时, 高四位没有进位产生; /执行减法运算时, 高四位产生借位

1: 执行加法运算时, 高四位有进位产生; /执行减法运算时, 高四位没产生借位

3.1.5 RPAGE~R4/RSR(RAM 选择寄存器)

04H (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
FSR		_	FSR<5>	FSR<4>	FSR<3>	FSR<2>	FSR<1>	FSR<0>
读/写	R	R	R/W	R/W	R/W	R/W	R/W	R/W
复位值	1	1	Х	Х	Х	Х	Х	Х

FSR<5:0> 在间接寻址方式中用于选择 RAM 寄存器地址(寻址范围: 0X00~0X3F)

FSR 用于配合 RO 实现间接寻址操作。用户可以将某个寄存器对应的地址放进 FSR, 然后通过访问间接寻址寄存器 RO, 此时地址将指向 FSR 中对应地址的寄存器。

3.1.6 RPAGE~R6/PORT6(P6 数据寄存器)

06H (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PORT6	_	_	P65	P64	P63	P62	P61	P60
读/写	R	R	R/W	R/W	R/W	R/W	R/W	R/W
复位值	1	1	1	1	1	1	1	1

端口输入/输出寄存器, P6端口为6位

3.1.7 RPAGE~R8/PWMCON (PWM 控制寄存器)

08H (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
T1	T1EN	PWM3EN	PWM2EN	PWM1EN	T1PTEN	T1PSR<2>	T1PSR<1>	T1PSR<0>
读/写	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

Bit<7>: T1EN -T1/PWM 计数器使能控制

1: 使能

0: 禁止

若设置 PRD 寄存器, T1 计数到 PRD 预设值复位, T1 从 1 开始计数。

Bit<6:4>: PWM3EN~PWM1EN - PWM3~PWM1 使能控制位

1: 使能 (PWM3 (P60), PWM2 (P61), PWM1 (P62), 相应端口设置为输出)

0: 禁止

Bit<3>: T1PTEN -T1 预分频选择控制位

Bit<2:0>: T1PSR2~T1PSR1 分频系数选择位:

T1PTEN	T1PSR<2>	T1PSR<1>	T1PSR<0>	分频比
0	0	0	0	1:1
1	0	0	0	1:2
1	0	0	1	1:4
1	0	1	0	1:8
1	0	1	1	1:16
1	1	0	0	1:32
1	1	0	1	1:64
1	1	1	0	1:128
1	1	1	1	1:256

3.1.8 RPAGE~R9/PRD (PWM 周期寄存器)

09H (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PRD	PRD<7>	PRD<6>	PRD<5>	PRD<4>	PRD<3>	PRD<2>	PRD<1>	PRD<0>
读/写	R/W							
复位值	0	0	0	0	0	0	0	0

Bit<7:0>: PRD<7:0>-PWM 周期八位数据

3.1.9 RPAGE~RA/DT1(PWM1 占空比寄存器)

OAH (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PDC1	DT1<7>	DT1<6>	DT1<5>	DT1<4>	DT1<3>	DT1<2>	DT1<1>	DT1<0>
读/写	R/W							
复位值	0	0	0	0	0	0	0	0

Bit<7:0>: DT1<7:0>-PWM1 占空比八位数据

3.1.10 RPAGE~RB/DT2(PWM2 占空比寄存器)

OBH (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PDC2	DT2<7>	DT2<6>	DT2<5>	DT2<4>	DT2<3>	DT2<2>	DT2<1>	DT2<0>
读/写	R/W							
复位值	0	0	0	0	0	0	0	0

Bit<7:0>: DT2<7:0>-PWM2 占空比八位数据

3. 1. 11 RPAGE~RC/DT3(PWM3 占空比寄存器)

OCH (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PDC3	DT3<7>	DT3<6>	DT3<5>	DT3<4>	DT3<3>	DT3<2>	DT3<1>	DT3<0>
读/写	R/W							
复位值	0	0	0	0	0	0	0	0

Bit<7:0>: DT3<7:0>-PWM3 占空比八位数据

3.1.12 RPAGE~RD/ICIECR(输入状态变化中断使能)

ODH (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ICIECR	IEN<7>	IEN<6>	IEN<5>	IEN<4>	I EN<3>	I EN<2>	I EN<1>	IEN<0>
读/写	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

Bit<7:0>: IEN<7:0>-P6 输入状态变化中断使能控制位

1: 使能

0: 禁止

注意: 仅当 OPTION 选项【P6 端口唤醒】为【独立控制(寄存器为 OxOD)】时有效。

3.1.13 RPAGE~RE/CPUCON(CPU 模式控制寄存器)

OEH (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CPUCON	IPWM1	PWMCKS	TCCCKS	PWMWE	TCCWE	STPHX	CLKMD	IDLE
读/写	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

Bit<7>: IPWM1

1: PWM1 输出取反

0: PWM1 输出无取反

Bit<6>: PWMCKS

1: 选择系统时钟

0: 选择指令周期时钟

Bit<5>: TCCCKS

1: 选择系统时钟

0: 选择指令周期时钟

Bit<4>: PWMWE

1: PWM 唤醒使能, 可唤醒空闲模式

0: PWM 唤醒禁止

Bit<3>: TCCWE

1: TCC 唤醒使能,可唤醒空闲模式,RTC 模式下可唤醒睡眠以及空闲模式

0: TCC 唤醒禁止

RTC 模式下设置 TCCWE=1&RTCS=1 休眠时 LXT 继续工作不会停止, 否则时休眠会停止 LXT。

Bit<2>: STPHX

1: 停止高速时钟,包括 IRC 和晶振振荡器时钟(不包括 RTC 时钟)

:51

XC8P9520 用户手册

0: 高速时钟正常工作

Bit<1>: CLKMD

1: 系统时钟使用低速 RC 振荡器时钟

0: 系统时钟使用高速 IRC 或者晶振振荡器时钟

系统从高速模式进入低速模式时 先设置 CLKMD=1, 后设置 STPHX=1;

系统从低速模式进入高速模式时 先设置 STPHX=0, 后设置 CLKMD=0。

Bit<0>: IDLE

1: 系统执行 SLEP 指令时进入空闲模式,系统时钟正常工作

TCC 和 PWM 在空闲模式下如果选择系统时钟可继续工作,并可唤醒系统。

0: 系统执行 SLEP 指令时进入睡眠模式

3.1.14 RPAGE~RF/ISR(中断标志寄存器)

OFH (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ISR	_	ı	ı	-	T1 IF	EXIF	ICIF	TCIF
读/写	R	R	R	R	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

Bit<7:4>: 未使用

Bit<3>: T1IF -T1/PWM 周期中断标志

Bit<2>: EXIF-外部端口中断标志位

Bit<1>: ICIF-P6 端口状态改变中断标志位

Bit<0>: TCIF-TCC 中断标志位

1:有中断,软件清0

0: 无中断

注意:清除中断标志位时,必须使用 MOV RF, A 操作,不能使用 BTC 和 AND RF, A 指令操作。

3.2 控制寄存器

3.2.1 CONT(控制寄存器)

01H(IOC)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CONT	RTCS	INT	TS	TE	PAB	PSR2	PSR1	PSR0
读/写	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	1	1	1	1	1	1

Bit<7>: RTCS-TCC 信号源选择

1: 选择外部晶振时钟(LXT的4分频)

0: TCC 时钟由 TCCCKS 和 TS 决定, TCCCKS=1 时钟源选择 FOSC, TCCCKS=0 时钟源由 TS 决定

TCC 时钟源优先级 RTCS>TCCCKS>TS

注意: 当 OPTION 选项【RTC】选择【使能】时有效,否则 Bit7 为通用读写位。

Bit<6>: INT-中断使能标志位

0: 由指令或硬件禁止中断

1: 由指令使能中断

Bit<5>: TS-TCC 信号源选择位

0: 内部指令周期时钟

1: 外部输入信号(P62需要设置为输入口)

Bit<4>: TE-TCC 信号边沿选择位

0: TCC 引脚信号发生由低到高变化加 1

1: TCC 引脚信号发生由高到低变化加 1

Bit<3>: PAB-预分频器分配位

0: 预分频器分给 TCC

1: 预分频器分给 WDT

Bit<2:0>: PSR2~PSR0-TCC/WDT 预分频选择控制位:

PSR2	PSR1	PSR0	TCC 分频系数	WDT 分频系数
0	0	0	1:2	1:1
0	0	1	1:4	1:2
0	1	0	1:8	1:4
0	1	1	1:16	1:8
1	0	0	1:32	1:16
1	0	1	1:64	1:32
1	1	0	1:128	1:64
1	1	1	1:256	1:128

3.2.2 IOPAGE~IOC6/P6CR(P6 方向控制寄存器)

06H (10C)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P6CR		_	P6CR<5>	P6CR<4>	P6CR<3>	P6CR<2>	P6CR<1>	P6CR<0>
读/写	R	R	R/W	R/W	R/W	R/W	R/W	R/W
复位值	1	1	1	1	1	1	1	1

Port6 方向控制位

1: 输入

0: 输出

3.2.3 IOPAGE~IOC9/PHDCR(端口上下拉控制寄存器)

09H (10C)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PHDCR	-	_	P6PD<5>	P6PD<4>	-	-	_	_
读/写	R	R	R/W	R/W	R	R	R	R
复位值	1	1	1	1	1	1	1	1

Bit<5:4>: P6<5:4>下拉使能控制

0: 使能

1: 禁止

注意: 当 OPTION 选项【P6 上下拉控制】选择【使能】时有效, 否则全部读为 1。

3.2.4 IOPAGE~IOCB/PDCR(端口下拉控制寄存器)

OBH (10C)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PDCR	_	P6PD<2>	P6PD<1>	P6PD<0>	_	ı	_	
读/写	R	R/W	R/W	R/W	R	R	R	R
复位值	1	1	1	1	1	1	1	1

Bit7: 未定义, 固定为1

Bit<6:4>: P6<2:0>下拉使能控制

0: 使能 1: 禁止

Bit<3:0>: 未定义, 固定为1

3.2.5 IOPAGE~IOCD/PHCR(端口上拉控制寄存器)

ODH (10C)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PHCR		_	P6PH<5>	P6PH<4>	P6PH<3>	P6PH<2>	P6PH<1>	P6PH<0>
读/写	R	R	R/W	R/W	R/W	R/W	R/W	R/W
复位值	1	1	1	1	1	1	1	1

Port6 上拉控制

0: 使能

1: 禁止

注意: 当 OPTION 选项【P6 上下拉控制】选择【使能】时 P63PH 有效,否则 Bit3 读为 1。

3.2.6 IOPAGE~IOCE/WDTCR(WDT 使能控制寄存器)

0EH (10C)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
WDTCR	WDTEN	EIS	ı	-	_	ı	_	
读/写	R/W	R/W	R	R	R	R	R	R
复位值	1	0	1	1	1	1	1	1

Bit<7>: WDTEN-WDT 使能控制

1: 使能

0: 禁止

Bit<6>: EIS-P60 外部中断使能位

1: 使能,在这种情况下,P60 的 I/0 控制位(P1CR 的 Bit0)必须设为"1",管脚的状态可以由 P1 端口读取

0: 禁止, P60 为双向 I/0 管脚, EXINT 通道被屏蔽

Bit<5:0>: 未使用

3.2.7 IOPAGF~IOCF/IMR(中断使能控制寄存器)

0FH(10C)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IMR	-	_	-	-	T11E	EXIE	ICIE	TCIE
读/写	R	R	R	R	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

Bit<7:4>: 未使用

Bit<3>: T1IE-T1 中断使能控制

1: 使能

0: 禁止

Bit<2>: EXIE-外部中断使能控制

1: 使能

0: 禁止

Bit<1>: P6ICIE-P6 端口状态改变中断使能控制

1: 使能

0: 禁止

Bit<0>: TCIE-TCC 溢出中断使能控制

1: 使能

0: 禁止

3.3 中断

XC8P9520 具有 4 个中断源,无论是使用其中那一个中断, 都必须使能总中断, 即 "ENI" 指令。中断向量为固定默认地址 008H。下面分别是每个中断的特性:

中断类型	中断源	使能条件	中断标志
外部	外部中断	ENI + EXIE=1	EXIF
外部	端口输入改变中断	ENI + ICIE=1	ICIF
内部	TCC 溢出中断	ENI + TCIE=1	TCIF
内部	PWM 周期溢出中断	ENI + T1 E=1	T1 IF

RPAGE 的 RF 为中断状态标志寄存器,它们记录了当某个中断产生中断请求后的中断标志位。IOCF 为中断设置寄存器,中断的允许与禁止在这两个寄存器中设置。总中断的允许是通过下 "ENI"指令,相反,总中断的禁止是通过下 "DISI"指令。当一个中断产生时,它的下一条指令的执行将从中断向量地址 008H 处执行。在离开中断服务程序之前相应的中断标志位必须清零,这样才能避免中断的误动作。

中断原理示意图

3.3.1 中断现场保护

在响应中断过程中,强烈建议在程序中使用中断保护,将 ACC、R3、R4 的内容保存起来, 直到离开中断子程序时,将被保存的值再重新载入 ACC、R3、R4,如此是为了避免在执行中 断子程序时,有指令将 ACC、R3、R4 的值改变,导致返回主程序时发生错误。如下图所示:

软件中断现场保护示意图

3.4 复位

3.4.1 复位功能概述

XC8P9520 系统提供 4 种复位方式:

- POR 上电.复位
- RESET 脚输入低电平复位
- WDT 看门狗溢出复位
- LVR 低电压复位

以上任意一种复位发生时,所有的系统寄存器初始化到复位值,程序停止运行,同时程序计数器 PC 清零。复位结束后,系统从向量 0000H 处重新开始运行。

任何一种复位情况都需要一定的响应时间,系统复位机制能够保证 MCU 的可靠复位。不同类型的振荡器,完成复位所需要的时间也不同。因此,VDD 的上升速度和不同振荡器的起振时间都是不固定的。RC 振荡器的起振时间最短,晶体振荡器的起振时间则较长。在用户终端使用的过程中,应注意考虑应用场景对上电复位时间的要求。

3.4.2 WDT 看门狗复位

看门狗复位是系统的一种保护设置。在正常状态下,由程序将看门狗定时器清零。若出错,系统处于未知状态,看门狗定时器溢出,此时系统复位。看门狗复位后,系统重启进入 正常状态。

- 看门狗定时器状态:系统检测看门狗定时器是否溢出,若溢出,则系统复位;
- 系统初始化: 所有的系统寄存器被置为初始化默认值:
- 振荡器开始工作:振荡器开始提供系统时钟;
- 执行程序:上电结束,程序开始运行;

看门狗定时器应用注意事项:

- ◆ 对看门狗清零之前, 检查 I/O 口的状态和 RAM 的内容可增强程序的可靠性;
- ◆ 不能在中断中对看门狗清零,否则无法侦测到主程序跑飞的状况;
- ◆ 程序中应该只在主程序中有一次清看门狗的动作,这种架构能够最大限度的发挥看门狗的保护功能。

3.4.3 POR 上电复位

上电复位与 LVR 操作密切相关。系统上电的过程呈逐渐上升的曲线形式,需要一定时间 才能达到正常电平值。

- 上电:系统检测到电源电压上升并等待其稳定;
- 外部复位(仅限于外部复位引脚使能状态):系统检测外部复位引脚状态。如果不 为高电平、系统保持复位状态直到外部复位引脚释放;
- 系统初始化: 所有的系统寄存器被置为初始值;
- 振荡器开始工作:振荡器开始提供系统时钟;
- 执行程序:上电结束,程序开始运行;

上电复位时间由 OPTION 中的【复位时间】选择决定,如下表所示:

PWRT 与 WDT	复位建立时间
PWRT=WDT	4.5ms(跟随看门狗复位时间)
PWRT=WDT	18ms(跟随看门狗复位时间)
PWRT=WDT	72ms(跟随看门狗复位时间)
PWRT=WDT	288ms (跟随看门狗复位时间)
PWRT≠WDT	140us (独立固定复位时间)

3. 4. 4 LVR 低电压复位

掉电复位针对外部因素引起的系统电压跌落情形(例如,干扰或外部负载的变化),掉 电可能会引起系统工作状态不正常或程序执行错误。

电压跌落可能会进入系统死区。系统死区意味着电源不能满足系统的最小工作电压要求。 上图是一个典型的掉电复位示意图。图中,VDD 受到严重的干扰,电压值降的非常低。虚线

以上区域系统正常工作,在虚线以下的区域内,系统进入未知的工作状态,这个区域称作死区。当 VDD 跌至 V1 时,系统仍处于正常状态;当 VDD 跌至 V2 和 V3 时,系统进入死区,则容易导致出错。以下情况系统可能进入死区:

DC 运用中:

DC 运用中一般都采用电池供电, 当电池电压过低或单片机驱动负载时, 系统电压可能跌落并进入死区。这时, 电源不会进一步下降到 LVR 检测电压, 因此系统维持在死区。

AC 运用中:

系统采用 AC 供电时, DC 电压值受 AC 电源中的噪声影响。当外部负载过高,如驱动马达时,负载动作产生的干扰也影响到 DC 电源。VDD 若由于受到干扰而跌落至最低工作电压以下时,则系统将有可能进入不稳定工作状态。在 AC 运用中,系统上、下电时间都较长。其中,上电时序保护使得系统正常上电,但下电过程却和 DC 运用中情形类似, AC 电源关断后, VDD 电压在缓慢下降的过程中易进入死区。

3.5 工作模式

XC8P9520 可以在 4 种工作模式下以不同的时钟频率工作,这些模式可以控制振荡器的工作、程序的执行以及模拟电路的功能损耗。

- 高速模式:系统时钟选择高速IRC时钟;
- 低速模式:系统时钟选择内部低速时钟;
- 空闲模式:系统时钟正常工作,其他部分进入睡眠(TCC 和 PWM 选择系统时钟可继续工作 并可唤醒系统、RTC 溢出与端口状态变化均可唤醒系统);
- 睡眠模式: 所有功能暂停工作, 系统进入睡眠(RTC 模式可工作), 可端口状态变化唤醒、WDT 溢出唤醒、RTC 溢出唤醒、外部复位引脚输入唤醒;

功能模块	高速模式	低速模式	空闲模式	睡眠模式
IHRC	运行	STPHX 控制	STPHX 控制	停止
ILRC	运行	运行	运行	停止
CPU 指令	执行	执行	停止	停止
TCC	可工作	可工作	可工作	停止
PWM	可工作	可工作	可工作	停止
内部中断	全部有效	全部有效	TCC, PWM 有效	RTC 有效
外部中断	有效	有效	无效	无效
唤醒功能	-	-	P61C, TCC, PWM, RTC, WDT, 外部 RESET	P61C, RTC, WDT, 外 部 RESET
看门狗定时器	WDT 选项控制	WDT 选项控制	WDT 选项控制	WDT 选项控制

3.5.1 高速模式

高速模式是系统高速时钟工作模式,系统时钟源由高速 RC 振荡器提供。程序被执行。上电复位或任意一种复位触发后,系统进入高速模式执行程序。当系统从睡眠模式被唤醒后进入高速模式。高速模式下,高速振荡器正常工作,功耗最大。

- ◆ 程序被执行, 所有的功能都可控制;
- ◆ 系统速率为高速;
- ◆ 高速振荡器和内部低速振荡器都正常工作;
- ◆ 通过 CPU 模式控制寄存器,系统可以从高速模式切换到其它任何一种工作模式;
- ◆ 系统从睡眠模式唤醒后进入高速模式:
- ◆ 低速模式可以切换到高速模式:
- ◆ 从高速模式进入到空闲模式,唤醒后返回到高速模式;

3.5.2 低速模式

低速模式为系统低速时钟工作模式。系统时钟源由内部低速 RC 振荡器提供。低速模式由 CPU 模式控制寄存器的 CLKMD 位控制。当 CLKMD=0 时,系统为高速模式;当 CLKMD=1 时,系统进入低速模式。进入低速模式后,不能自动禁止高速振荡器,必须通过 SPTHX 位来禁止以减少功耗。

- ◆ 程序被执行, 所有的功能都可控制;
- ◆ 系统速率为低速;
- ◆ 内部低速 RC 振荡器正常工作,高速振荡器由 STPHX=1 控制。低速模式下,强烈建议停止高速振荡器:
- ◆ 通过 CPU 模式控制寄存器,低速模式可以切换进入其它的工作模式;
- ◆ 从低速模式进入到睡眠模式,唤醒后返回到低速模式;
- ◆ 高速模式可以切换到低速模式:
- ◆ 从低速模式进入到空闲模式,唤醒后返回到低速模式;

3.5.3 空闲模式

空闲模式是另外的一种理想状态。在睡眠模式下,所有的功能和硬件设备都被禁止,但在空闲模式下,系统时钟保持工作,空闲模式下的功耗大于睡眠模式下的功耗。空闲模式下,不执行程序,但具有唤醒功能的定时器和 PWM 仍正常工作,定时器和 PWM 的时钟源为仍在工作的系统时钟。空闲模式下,有 4 种方式可以将系统唤醒:1、P6 端口状态变化触发;2、TCC定时器唤醒;3、PWM 唤醒;4、RTC定时唤醒。用户可以给定时器或者 PWM 设定固定的周期,系统就在溢出时被唤醒。由 CPU 模式控制寄存器 IDLE 位决定是否进入空闲模式,当 IDLE=1,系统进入空闲模式。

- ◆ 程序停止执行, 所有的功能被禁止;
- ◆ 具有唤醒功能的定时器正常工作;
- ◆ 作为系统时钟源的振荡器正常工作,其它的振荡器工作状态取决于系统工作模式的配置;
- ◆ 由高速模式进入到空闲模式,被唤醒后返回到高速模式;
- ◆ 由低速模式进入到空闲模式,被唤醒后返回到低速模式;
- ◆ 空闲模式下的唤醒方式为 P6 端口状态变化触发唤醒、TCC 定时器溢出和 PWM 周期溢出、RTC 定时唤醒:
- ◆ 空闲模式下 TCC 和 PWM 功能仍然有效;

3.5.4 睡眠模式

睡眠模式是系统的理想状态,不执行程序(RTC 除外),振荡器也停止工作。整个芯片的功耗低于 1uA。睡眠模式可以由 P6 端口状态变化触发唤醒、RTC 溢出唤醒、外部复位引脚输入、WDT 溢出。从高速模式或者低速模式进入睡眠模式,被唤醒后将返回到对应模式。由CPU 模式控制寄存器的 IDLE 位控制是否进入睡眠模式,当 IDLE=0,系统进入睡眠模式。

- ◆ 程序停止执行, 所有的功能被禁止;
- ◆ 所有的振荡器,包括外部高速振荡器、内部高速振荡器和内部低速振荡器都停止工作;
- ◆ 功耗低于 1uA;
- ◆ 由高速模式进入到睡眠模式,被唤醒后返回到高速模式;
- ◆ 由低速模式进入到睡眠模式,被唤醒后返回到低速模式;
- ◆ 睡眠模式的唤醒源为 P6 端口状态变化触发、RTC 溢出唤醒、外部复位引脚输入、WDT 溢出;

3.6 系统时钟

XC8P9520 内部集成了 3 种振荡器,可以通过 OPTION 实现相应配置。具体参看下表:

振荡器类型	说明			
IRC(内置 RC 振荡器)	可以通过 RCM 选择 910K/1M/8M			
LXT(低速晶振)	32. 768K∼400K			
HXT(高速晶振)	400K∼16M			

3. 6. 1 内部 RC 振荡器

XC8P9520 提供内部 RC 模式,频率默认值为 8MHz。

内部 RC 振荡模式包含 8MHz 和 1MHz 两种频率值。通过设置 OPTION 的配置位,可选择 IRC 工作频率,下面是它们的对应关系:

Firc	IRC 频率			
8 M	IRC 频率选为 8MHz			
1 M	IRC 频率选为 1MHz			
910K	IRC 频率选为 910KHz			

XC8P9520 提供了多种分频选择,可以在 OPTION 中选择,适用于更多的场合。如下表:

Clocks	Clocks 分频		
2clock	分频为 2clock		
4clock	分频为 4c lock		
8c lock	分频为 8c lock		
16clock	分频为 16c lock		
32clock	分频为 32clock		

3.6.2 外部晶体/陶瓷振荡器

在大多数应用中,引脚 0SC0 和 0SCI 上可接晶体或陶瓷谐振器来产生振荡,电路图如下,不论是 HXT 还是 LXT 模式都适用,表中为 C1、C2 的推荐值。由于各个 谐振器特性不同,用户应参参照其规格选择 C1、C2 的合适值。

晶体振荡器应用电路

晶体振荡器或陶瓷振荡器的电容选择参考:

振荡器模式	频率模式	频率	C1 (pF)	C2 (pF)
陶瓷振荡器	нхт	455KHz	100-200	100-200
晶体振荡器	LXT	32. 768KHz	5-40	5-40
	НХТ	1 MHz	5-30	5-30
		4 MHz	5-30	5-30

注:以上数据仅供参考,一切以实物测试为准

3.6.3 时钟模块应用说明

- 内部振荡器是最常用的振荡模式,该模式可以省去外接的电路;
- 在使用外部时钟输入时,时钟信号要从 OSCI 输入, OSCO 可以悬空;
- 外界条件不同,各振荡模式的时钟频率可能会有轻微差别,使用时应根据需要合理 选择;

3.7 1/0 端口

XC8P9520 有 1 组双向 I/O 端口, 共 6 个输入, 6 个输出, 大部分 I/O 可以复用为其它功能。

- 6 个可编程上拉 I/0 引脚: P60~P65;
- 5 个可编程下拉 I/O 引脚: P60~P62, P64~P65;
- 6 个可 option 配置驱动增强 I/0 引脚: $P60\sim P65$; (端口驱动增强需在烧录 option 中进行设置)
- 3个可 option 配置二级灌电流驱动增强: P60、P61、P62; (端口驱动增强需在烧录 option中进行设置)
- 6个可编程端口状态变化唤醒 I/0 引脚: P60~P65;

3.7.1 GPIO 内部结构图

以下内部结构图仅供参考理解,并不代表实际电路。

10 控制寄存器/数据寄存器/上拉/下拉结构电路

3.7.2 端口状态变化唤醒

XC8P9520 包含 6 个可编程端口状态变化唤醒 I/O: P60~P65。芯片执行"SLEEP"指令可以进入到睡眠模式。此时,系统时钟停止,所有模块停止工作,WDT(若使能)清 0,但继续运行。端口状态变化唤醒可以通过程序选择继续原有的进程(SLEEP 前执行 DISI)或执行相应的跳转(SLEEP 前执行 ENI),并打开相应的使能控制位,跳转到中断子程序。

端口状态改变查询方式唤醒设置

- 1、PORT6 端口唤醒口设为输入:
- 2、可以根据需要选择唤醒口的内部上拉或下拉;
- 3、使能 PORT 端口状态改变中断;
- 4、使能端口状态改变独立中断及唤醒控制;
- 5、执行 DISI 指令,不进入中断地址口;
- 6、执行"SLEEP"指令,进入睡眠 SLEEP 模式;
- 7、唤醒后, 执行 SLEEP 的下一条指令:

端口状态改变中断方式唤醒设置

- 1、PORT6端口唤醒口设为输入;
- 2、可以根据需要选择唤醒口的内部上下拉;
- 3、使能端口状态改变独立中断及唤醒控制;
- 4、使能 PORT 端口状态改变中断:
- 5、执行"ENI"指令,等待进入中断地址口;
- 6、下指令 "SLEEP", 进入睡眠 SLEEP 模式;
- 7、唤醒后会进入中断地址口,退出中断后,执行 SLEEP 下一条指令;

3.7.3 端口施密特参数

XC8P9520 支持在 option 配置中选择端口的施密特特性, 共包含 4 种端口特性, 表格如下(仅作参考):

端口	SMT	HSMT	HSMT EMT	
P6. 3	0. 56*VDD	0. 2*VDD/0. 77*VDD	0. 2*VDD/0. 35*VDD	0. 54*VDD
P6. 0~P6. 2	0. 25*VDD/0. 51*VDD	0. 2*VDD/0. 77*VDD	0. 2*VDD/0. 35*VDD	0. 54*VDD
P6. 4~P6. 5	0. 25*VDD/0. 51*VDD	0. 2*VDD/0. 77*VDD	0. 36*VDD	0. 54*VDD

以上参数仅做参考,请以目标样机实测数据为准。

3.8 TCC 定时计数器

XC8P9520提供一个 8 位计数器作为TCC和WDT 的预分频器。预分频器在同一时间内仅供TCC或仅供WDT使用,且由CONT 寄存器里的PAB 位来决定预分频器的分配。PSR0 ~PSR2三位决定预分频比。在TCC 模式下每次TCC 被写入一个值,预分频寄存器就被清零。当预分频器分配到WDT模式,当执行"WDTC"或"SLEP"指令时,WDT 和预分频寄存器的值被清零。如果预分频器先分配给TCC 然后分配给WDT,预分频计数器的内容将自动清除,反之亦然。

TCC (R1)是一个8Bit上行计数器,只要有时钟就工作。时钟源既可以是内部系统时钟(上升沿触发),也可以选择外部时钟(由TCC引脚输入,触发沿可选),如果没有分频控制,每个时钟(Fm/Fs)周期(选择内部时钟)或每个外部时钟周期(外部时钟),计数器实现加1。系统提供一个8Bit计数器作为TCC的预分频器。可以通过CONT寄存器设置TCC预分频、触发沿、时钟等。

TCC 计数溢出可以形成中断信号。

在 IDLE 模式下, TCC 中断可以唤醒电路, 唤醒后可以选择进中断或者继续执行原程序, 方法参考端口状态变化唤醒。

TCC/WDT 结构框图

3.8.1 TCC 定时设置说明

- 给 TCC 寄存器赋初始值;
- 设置 CONT 寄存器的值(选择作为计时器或计数器及预分频比);
- 作为计数器使用, 需要在 CONT 寄存器选择 TCC 外部信号为正沿或负沿加 1;
- 若需要执行中断功能,须设置 IOCF 寄存器中的 TCIE(Bit0)为 1,并执行 ENI 指令;
- 中断程序部分将手动保存 ACC、STATUS 及 R4 于堆栈器中,执行 RETI 指令后,再自堆栈中取出,退出中断前要清楚 TCC 中断标志位;

3.8.2 TCC 定时计算说明

TCC 定时功能通过写值到 TCC 寄存器, 给定时器赋初始值, 定时器从初始值位置开始累加, 直至定时器溢出产生中断。

TCC 定时时间计算公式(选择内部指令周期时钟):

TCC 定时时间 = (系统时钟分频/Fosc) × (TCC 分频) × (255 – TCC 初始值)

示例:

系统时钟分频=2clock, Fosc=8 MHz, TCC 分频选择=4 分频, TCC 初始值=155;

$$TCC$$
 定时时间 = $(2/8) \times (4) \times (255 - 155) = 100$ us

TCC 定时时间计算公式(选择外部输入时钟):

TCC 定时时间 = (外部输入时钟) × (TCC 分频) × (255 - TCC 初始值)

示例:

外部输入时钟=1 MHz, TCC 分频选择=4 分频, TCC 初始值=155;

$$TCC$$
 定时时间 = $(1) \times (4) \times (255 - 155) = 400$ us

3.9 PWM 脉宽调制

XC8P9520 提供 3 路共周期的 8 bit PWM 信号,用来产生脉宽调制信号,PWM 输出波形由周期及占空比决定,传输速率为周期倒数。

PWM 带有周期溢出中断, 使能后可跳转到中断。

在 IDLE (空闲模式)下, PWM 在 CPU 模式控制寄存器中选择 PWMCKS=1 并且使能 PWMWE, 可唤醒系统。

3.9.1 PWM 内部结构与时序

以下内部结构图仅供参考理解,并不代表实际电路。

PRD

3 路共周期 PWM 时序说明

3.9.2 PWM 周期与占空比

PWM 提供一个带 8bit 可编程预分频的时钟计数器(T1),作为 PWM 模块的波特率时钟发生器。可通过使能 PWM 控制寄存器中的 T1EN,使能 T1 计数器功能,通过 T1PTEN 及 T1PSR<2:0>控制位,可进行 T1 计数器的预分频设置。

PWM 周期通过写值到 PWM 周期寄存器(PRD),当 T1 计数器的值与 PRD 值相等,在下一个递增周期发生如下事件:

- T1 计数器清零:
- 对应 PWM 输出引脚置高电平:
- 产生 PWM 周期溢出中断(若使能);
- PWM 占空比由 DT1/DT2/DT3 锁存到 PDC/T1 比较寄存器;

PWM 周期计算公式:

PWM 周期 =
$$(PRD + 1) \times (\frac{1}{Fosc}) \times (T1 分频)$$

示例:

PRD=99, Fosc=8 MHz, T1 分频选择=2 分频;

PWM 周期 =
$$(99 + 1) \times (\frac{1}{8}) \times (2) = 25$$
 us

PWM 占空比通过写值到 PWM 占空比寄存器(DT1, DT2, DT3), 当 T1 计数器的值溢出清零时, DT1/DT2/DT3 的值被锁存到 DT/T1 比较寄存器。当 DT/T1 比较寄存器的值与 T1 计数器的值相等时, PWM 输出引脚置为低电平。PDC1, PDC2, PDC3 的值可以在任何时候被写入, 但 DT/T1 比较寄存器的值只有在周期溢出时写入:

PWM 占空比计算公式:

PWM 占空比 = (DT) ×
$$(\frac{1}{Fosc})$$
 × (T1 分频)

示例:

DT=50, Fosc=8 MHz, T1 分频选择=2 分频;

PWM 占空比 =
$$(50) \times \left(\frac{1}{8}\right) \times (2) = 12.5 \text{ us}$$

:5/

XC8P9520 用户手册

3.9.3 PWM 脉宽调制设置说明

- 设置 PWMCON 寄存器,选择相应的定时器为 PWM 模式、定时器的分频比、定时器中断类型(若使能 PWM 中断)、定时器的时钟源等;
- 写 RPAGE-R9 寄存器的值,确定该 PWM 通道的周期;
- 写 DTX 寄存器的值,确定该 PWM 通道的占空比;
- 使能相应定时器;
- 使能或禁止 PWM 对应的定时器中断,并下 "ENI"或 "DISI"指令(如果需要);

3.10 重要说明

- 1. P6 口睡眠前不再需要 MOV P6, P6 操作可直接唤醒;
- 2. 所有唤醒不再需要设置 WDT 硬件使能和软件使能,唤醒后不再需要关闭软件使能,也不再需要设置分频器给 WDT;

◆ TCC RTC 唤醒

- 配置选择使能 RTC 功能:
- CONT 寄存器的 RTCS=1, TCC 时钟自动选择 LXT;
- CPUCON 寄存器的 TCCWE=1 (不需要中断的时候不需要设置 TCIE=1);

◆ TCC 正常下唤醒 IDLE

- CPUCON 寄存器的 IDLE=1, TCCWE=1, TCCCKS=1(不需要中断的时候不需要设置 TCIE=1);
- 执行 SLEP 指令;

◆ TCC 低速模式下唤醒 IDLE

- CPUCON 寄存器的 IDLE=1, TCCWE=1, TCCCKS=1, CLKMD=1, STPHX=1(不需要中断的时候不需要设置 TCIE=1);
- 执行 SLEP 指令;

◆ T1 正常下唤醒 IDLE

- PWMCON 寄存器 T1EN=1;
- 设置周期寄存器 PRD;
- CPUCON 寄存器的 IDLE=1, PWMWE=1, PWMCKS=1(不需要中断的时候不需要设置 T1IE=1);
- 执行 SLEP 指令;

◆ T1 低速模式下唤醒 IDLE

- PWMCON 寄存器 T1EN=1;
- 设置周期寄存器 PRD;
- CPUCON 寄存器的 IDLE=1, PWMWE=1, PWMCKS=1, CLKMD=1, STPHX=1(不需要中断的时候不需要设置 T1IE=1):
- 执行 SLEP 指令;

4. OPTION 配置表

CODE OPTION	选项	功能描述
手门狗	使能	看门狗 WDT 使能
看门狗	禁止	看门狗 WDT 禁止
	2 Clocks	指令周期选择 2 Clocks
	4 Clocks	指令周期选择 4 Clocks
Clocks 分频	8 Clocks	指令周期选择 8 Clocks
	16 Clocks	指令周期选择 16 Clocks
	32 Clocks	指令周期选择 32 Clocks
	IRC 模式	选择内部 RC 振荡方式
振荡模式	HXT 模式	选择高速晶振振荡方式
	LXT 模式	选择低速晶振振荡方式
	8M	IRC 频率选择 8M
IRC 频率	1M	IRC 频率选择 1M
	910KHz	IRC 频率选择 910KHz
	禁止	禁止低压复位
	LVR=1. 2V	低压复位点选择 1. 2V
	LVR=1. 6V	低压复位点选择 1. 6V
	LVR=1. 8V	低压复位点选择 1.8V
低压复位	LVR=2. 4V	低压复位点选择 2. 4V
	LVR=2. 7V	低压复位点选择 2. 7V
	LVR=3. 3V	低压复位点选择 3. 3V
	LVR=3. 6V	低压复位点选择 3. 6V
	LVR=4. 3V	低压复位点选择 4. 3V
代码加密	使能	烧录模式数据加密
109加名	禁止	烧录模式数据不加密
复位端口上拉	使能	使能 P63 端口上拉
友 世့ 山山土地	禁止	禁止 P63 端口上拉
	GPIO	P63 作为通用 I/0 口
P63 端口	GPI	P63 作为输入口
	RST	P63 作为外部复位端口

	PWRT=WDT=4.5ms	复位建立时间=WDT 溢出时间(不分频)= 4.5ms			
	PWRT=WDT=18ms	复位建立时间=WDT 溢出时间(不分频)= 18ms			
	PWRT=WDT=72ms	复位建立时间=WDT 溢出时间(不分频)= 72ms			
	PWRT=WDT=288ms	复位建立时间=WDT 溢出时间(不分频)= 288ms			
复位时间	PWRT=140us, WDT=4.5ms	复位建立时间=140us, WDT 溢出时间(不分频)=4.5ms			
	PWRT=140us, WDT=18ms	复位建立时间=140us, WDT 溢出时间(不分频)=18ms			
	PWRT=140us, WDT=72ms	复位建立时间=140us, WDT 溢出时间(不分频)=72ms			
	PWRT=140us, WDT=288ms	复位建立时间=140us, WDT 溢出时间(不分频)=288ms			
木丰壮国	1/4K	可以在程序空间前 1/4K 查表			
查表范围	1K	可以在程序空间 1K 内查表			
	EMT	端口输入特性为施密特 EMT 特性(详细介绍见 3.7.3)			
는 C 사ギ까	SMT	端口输入特性为施密特 SMT 特性(详细介绍见 3.7.3)			
端口特性	HSMT	端口输入特性为施密特 HSMT 特性(详细介绍见 3. 7. 3)			
	INV	端口输入特性为反相器 INV 特性(详细介绍见 3. 7. 3)			
P6 端口唤醒	独立控制	P6 端口独立控制唤醒(需设置 0x0d 寄存器)			
PO姉口映館	非独立控制	P6 端口非独立控制唤醒			
RTC(选择 IRC	禁止	双时钟功能禁止			
时有效)	使能	双时钟功能使能			
P6 上下拉控制	屏蔽	屏蔽 P65-P64 下拉, P63 上拉			
PO 工 下红生中小	使能	使能 P65-P64 下拉, P63 上拉, 软件可控制			
驱动增强	禁止	端口驱动能力增强禁止			
<i>沙沙</i> 河省	使能	端口驱动能力增强使能			
二级驱动增强	禁止	P60, P61, P62 二级增强灌电流输出禁止			
—纵处纠诣浊	使能	P60, P61, P62 二级增强灌电流输出使能			
	内置电容关闭	晶振脚内置电容关闭			
晶振脚	内置电容 7pf	晶振脚内置电容 7pf			
内置电容选择	内置电容 9pf	晶振脚内置电容 9pf			
	内置电容 12. 5pf	晶振脚内置电容 12. 5pf			
休眠唤醒	兼容老 153 系列	兼容原 153 系列唤醒			
设置	休眠时允许多种唤醒源 同时唤醒	可判断唤醒源类别			

5. 电气特性

5.1 极限参数

工作温度	−40°C~85°C
存储温度	. −65°C~150°C
输入电压 Vss-	0. 3V∼Vdd+0. 5V
输出电压Vss-	0. 3V∼Vdd+0. 5V
工作电压	1. 8V-5. 5V

5.2 直流电气特性

(٧₀=5٧, 工作温度=25℃, 除非另有情况说明)

符号	参数说明	条件	最小	典型	最大	单位
IRC1	IRC1(校正后)	OPTION 选择 8MHz	-	8	-	MHz
IRC2	IRC2(校正后)	OPTION 选择 1MHz	ı	1	-	MHz
I 0H1	输出高电平驱动(除 P63 外)	Ioh=4. 4V	4. 5	5	5. 5	mA
10H2	输出高电平驱动(P63)	Ioh=4. 4V	5. 5	6	6. 5	mA
10H3	输出高电平驱动增强(除 P63)	Ioh=4. 4V	13	14	15	mA
IOL1	10 输出低电平驱动(除 P63)	IoI=0.6V	16	17	18	mA
10L2	10 输出低电平驱动(P63)	IoI=0.6V	13	14	15	mA
10L3	10输出低电平驱动增强(除P63)	IoI=0.6V	25	26	28	mA
10L4	10 输出低电平驱动增强(P63)	IoI=0.6V	19	20	21	mA
10L5	二级驱动增强(P60, P61, P62)	IoI=0.6V	32	33	34	mA
IPH1	上拉电流(除 P63 外)	上拉使能, 输入接地	80	100	130	μ Α
IPH2	上拉电流(P63)	上拉使能, 输入接地	80	120	130	μ Α
IPD	下拉电流(除 P63 外)	下拉使能,输入接 VDD	45	55	80	μ Α
lsb1	关机电流 1	输入接 VDD,输出悬空, WDT 禁用	ı	-	1	μ Α
Isb2	关机电流 2	输入接 VDD,输出悬空, WDT 使能	ı	ı	12	μ Α
Isb3	关机电流 3	RTC 模式,内部电容 12. 5pf	_	_	15	μ Α
lop2	工作电流 1(VDD=5V)	IRC=8MHz 2clock	-	1. 2	1.5	mA
lop2	工作电流 2(VDD=5V)	IRC=1MHz 2clock	-	0. 2	0. 3	mA
LVR	低电压复位电压	选择 LVR 复位点	VIvr-0. 2	VIvr	VIvr+0.2	٧

注:以上参数仅做参考,请以目标样机实测数据为准。

5.3 特性曲线图

本章所列的曲线图仅作设计参考,其中给出的部分数据可能超出了芯片指定的工作范围, 为保证芯片的正常工作,请严格参照电气特性说明。

5.3.1 内部低速 RC 振荡器-压频特性曲线

工作温度在 25℃条件下: (单位 Khz)

5.3.2 内部低速 RC 振荡器-温频特性曲线

工作电压在 5V 条件下: (单位 Khz)

5.3.3 内部 1Mhz RC 振荡器-压频特性曲线

工作温度在 25℃条件下: (单位 Mhz)

5.3.4 内部 1Mhz RC 振荡器-温频特性曲线

工作电压在 5V 条件下: (单位 Mhz)

5.3.5 内部 8Mhz RC 振荡器-压频特性曲线

工作温度在 25℃条件下: (单位 Mhz)

5.3.6 内部 8Mhz RC 振荡器-温频特性曲线

工作电压在 5V 条件下: (单位 Mhz)

6. 封装尺寸

6.1 8PIN 封装尺寸

DIP8

SYMBOL	MILLIMETER			
SIMDUL	MIN	NOM	MAX	
Α	3. 60	3. 80	4. 00	
A1	0. 51	_	-	
A2	3. 10	3. 30	3. 50	
A3	1. 50	1. 60	1. 70	
b	0. 44	_	0. 53	
b1	0. 43	0. 46	0. 48	
B1		1. 52BSC		
С	0. 25	_	0. 31	
с1	0. 24	0. 25	0. 26	
D	9. 05	9. 25	9. 45	
E1	6. 15	6. 35	6. 55	
е	2. 54BSC			
eA	7. 62BSC			
eВ	7. 62	_	9. 50	
еC	0		0. 94	
L	3. 00	_	_	

CVMDOL	MILLIMETER			
SYMBOL	MIN	NOM	MAX	
Α	ı	_	1. 77	
A1	0.08	0. 18	0. 28	
A2	1. 20	1. 40	1. 60	
A3	0. 55	0. 65	0. 75	
b	0. 39	_	0. 48	
b1	0. 38	0. 41	0. 43	
С	0. 21	-	0. 26	
с1	0. 19	0. 20	0. 21	
D	4. 70	4. 90	5. 10	
E	5. 80	6. 00	6. 20	
E1	3. 70	3. 90	4. 10	
е		1. 27BSC		
L	0.50	0. 65	0. 80	
L1	1. 05BSC			
θ	0 – 8°			

6.2 6PIN 封装尺寸

封装规格:

Symbol		mm		Inch		
	MIN	NOM	MAX	MIN	NOR	MAX
A	_	_	1. 35	_	_	0. 053
A1	0. 04	_	0. 15	0. 002	_	0. 006
A2	1. 00	1. 10	1. 20	0. 039	0. 043	0. 047
A3	0. 55	0. 65	0. 75	0. 022	0. 026	0. 030
b	0. 30	_	0. 50	0. 013	_	0. 017
b1	0. 30	0. 40	0. 45	0. 013	0. 016	0. 018
С	0. 08	_	0. 22	0. 006	_	0. 008
c1	0.08	0. 13	0. 20	0. 003	0. 005	0. 08
D	2. 72	2. 92	3. 12	0. 107	0. 115	0. 123
E	2. 60	2. 80	3. 00	0. 102	0. 110	0. 118
E1	1. 40	1. 60	1.80	0. 055	0. 063	0. 071
е	0. 95BSC		0. 037BSC			
L	0. 30	_	0. 60	0. 012	_	0. 024
θ	0	_	8°	0	_	8°