

Quantitative Methods

CFA二级知识框架图

讲师:何 旋

www.pzacademy.com

Framework of CFA II Quantitative Methods

Regression Analysis

Correlation and Regression

Multiple Regression and Issues In Regression Analysis

Time-series Analysis → Time-series Analysis

Probabilistic Approaches

Excerpt From "Probabilistic Approaches: Scenario Analysis, Decision Trees, And Simulations"

Reading 9

CORRELATION AND REGRESSION

Correlation Analysis

Simple Linear Regression

ANOVA Table分析

检验模型

1.建模

$$Y_{i} = b_{0} + b_{1}X_{i} + \varepsilon_{i}, i = 1,...,n$$

- Y_i = *dependent variable*, explained variable, predicted variable
- X_i = *independent variable*, explanatory variable, predicting variable.

Assumption

- A linear relationship exists between X and Y
- X is uncorrelated with the error term.
- The expected value of the error term is zero (i.e., $E(\varepsilon_i)=0$)
- The variance of the error term is constant (homoskedastic)
- The error term is uncorrelated across observations $(E(\varepsilon_i \varepsilon_i)=0 \text{ for all } i\neq j)$
- The error term is normally distributed.

解释:

- An estimated slope coefficient of 2: Y will change two units for every 1 unit change in X.
- Intercept term of 2%: the X is zero, Y is 2%.

$$b_1 = \frac{Cov(X, Y)}{Var(X)}$$

$$b_0 = \overline{Y} - b_1 \overline{X}$$

2. ANOVA Table分析 ★★

	df	SS	MSS
Regression	k=1	RSS	MSR=RSS/k
Error	n-k-1	SSE	MSE=SSE/(n-k-1)
Total	n-1	SST	-

Coefficient
Determination
(R ²)

SEE

计算:
$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

计算: $SEE = \sqrt{\frac{SSE}{n-k-1}} = \sqrt{MSE}$

$$R^2 = r_{y\hat{y}}^2$$
 (多元都成立) $R^2 = r_{xy}^2$ (一元)

解释: R² of 0.90 indicates that the variation of the independent variable explains 90% of the variation in the dependent variable.

性质:

- ✓ The SEE gauges the "fit" of the regression line. The smaller the standard error, the better the fit.
- ✓ The SEE is the standard deviation of the error terms in the regression.

3. 检验模型:回归分析相当于抽样估计

•		Coefficient	Standard deviation	t-statistic	p-value
	Intercept	$\hat{b}_{_{0}}$	$S_{\hat{b}_0}$?	0.18
	Slope	$\hat{b_1}$	$S_{\hat{b}_1}$?	<0.001

参数估计★★

(confidence interval)

Confidence level (置信度)

As SEE rises, $S_{\hat{b}_1}$ also increases

- 假设检验★★
- (significance test)

✓ H₀: b₁=0 (没有特殊说明,题目中假设检验都是检验是否为0)

$$t = \frac{b_i - 0}{s_{\hat{b}_i}} \qquad \text{df=n-2}$$

- ✓ Decision rule: reject H₀ if +t _{critical} <t, or t<- t _{critical}
- Rejection of the null means that the slope coefficient is different from zero

4.预测(Predicted Value of Y)

Point estimate★	$\hat{Y} = \hat{b}_0 + \hat{b}_1 X'$
Confidence interval estimate	$\hat{Y} \pm \left(t_c \cdot s_f\right)$ 7

- ➤ When predicting Y using linear regression model, we encounter two types of uncertainty:
 - Uncertainty in the regression model itself, as reflected in the standard error of estimate;
 - Uncertainty about the estimates of the regression model's *parameter*.

Reading 10

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS

Multiple Regression & Simple Linear Regression

Difference	要点
Interpreting the coefficient	Each slope coefficient is the estimated change in Y for a one unit change in X _i , holding the other independent variables constant.
	单个检验(t-test): H_0 : $b_j=0$ $t=\frac{\hat{b}_j}{s_{\hat{b}_j}}$ df = n-k-1
	联合检验(F-test): The test assesses the effectiveness of the model as a whole in explaining the dependent variable
Significance test ★★	H ₀ : $b_1 = b_2 = b_3 = = b_k = 0$ H _a : at least one $b_j \neq 0$ (j = 1 to k) reject H ₀ : if F (test-statistic) > F _c (critical value) The F-test here is always a <i>one-tailed test</i> Analysts typically <i>do not use ANOVA and F-tests in simple linear regression</i> because the <i>F-</i>
	statistic is the square of the t-statistic for the slope coefficient.

Multiple Regression & Simple Linear Regression (Cont.)

Difference	要点
	解释: R ² of 0.90 indicates that the model, <i>as a whole</i> , explains 90% of the variation in the dependent variable.
R^2	缺点: R ² almost always increases as variables are added to the model, even if the <i>marginal contribution</i> of the new variables is not statistically significant.
**	(计算) Adjusted R ² : adjusted R ² = $1 - \frac{\hat{e}_{\mathbb{C}}}{\hat{e}_{\mathbb{C}}} \frac{n-1}{n-k-1} = \frac{\hat{v}}{\hat{e}_{\mathbb{C}}} \left(1 - R^2\right) \hat{u} - adjusted R^2 = 1 - \frac{SSE}{n-k-1} = \frac{SSE}{n-k-1}$
	$R^2 = r_{Y\hat{Y}}^2$ $R^{2-1} r_{XY}^2$

Multiple Regression Assumption Violations

Heteroskedasticity

Impact	Unconditional: no major problems Conditional: significant problems ✓ Not affect the consistency of parameter estimators ✓ Coefficient estimates are not affected ✓ Standard errors are usually unreliable estimates • too small—>Type I error • too large—>Type II error
Detection	Breusch-Pagen χ^2 test H_0 : <i>No heteroskedasticity</i> $BP = n \times R_{residual}^2$, df=k, one-tailed test
Correction	✓ robust, or White-corrected standard errors✓ generalized least squares

Serial Correlation (Autocorrelation)

Impact	 ✓ Serial correlation is often found in time series data ✓ Not affect the consistency of estimated regression coefficients and coefficient estimates ✓ Positive serial correlation is much more common: Positive serial correlation → coefficient standard errors that are too small → Type I error & F-test unreliable Durbin-Watson test (看下图) → H₀: No serial correlation, DW ≈ 2 × (1-r) Reject H₀, positive serial correlation □ d₁ d₂ 2 4-d₀ Inconclusive correlation ✓ adjusting the coefficient standard errors (e.g., Hansen method): the Hansen method also corrects for conditional heteroskedaticity. ✓ incorporate the time-series nature 		
Detection			
Correction			

Multicollinearity

Impact	 The situation that two or more independent variables are highly (but not perfectly) correlated with each other. Not affect the consistency of regression coefficient estimate Estimates become extremely imprecise and unreliable. Impossible to distinguish the individual impacts of the independent variable
Detection	 t-tests indicate that none of the individual coefficients is significantly different than zero, while the F-test indicates overall significance and the R² is high r_{X1X2} >0.7
Correction	Remove one or more independent variables

Dummy Variables

模型

Qualitative variable: 0 and 1

n categories \rightarrow n-1 dummy variables

例: $EPS_{+} = b_{0} + b_{1}Q_{1+} + b_{2}Q_{2+} + b_{3}Q_{3+} + \varepsilon_{+}$ EPS₊ = a quarterly observation of earnings per share

 Q_{1t} =1 if period t is the first quarter, Q_{1t} =0 otherwise

 Q_{2t} = 1 if period t is the second quarter, Q_{2t} = 0 otherwise

 Q_{3t} = 1 if period t is the third quarter, Q_{3t} = 0 otherwise

Interpreting the coefficients

- b_o: average value of EPS for the fourth quarter
 - Slope coefficient: difference in EPS (on average) between the respective quarter (i.e., quarter 1, 2, or 3) and the omitted quarter. 比如,b₁= EPS₁ – EPS₄

Model Misspecification

① The functional form can be misspecified. Important variables are omitted.

- Variables should be transformed.
- Data is improperly pooled.
- Time series misspecification.
- A lagged Y is used as an X with serially correlated errors.
- A function of the Y is used as an X (forecasting the past).
- Independent variables are measured with error.
- Time-series data: nonstationarity.

Reading 11

TIME-SERIES ANALYSIS

- The data points appear to be *equally* distributed above and below the regression line
- 每期增长量是constant amount

Trend Models

Log-linear trend model: $Ln(y_t) = b_0 + b_1 t + \varepsilon_t$

- If the data plots with a non-linear (curved) shape, then the residuals from a linear trend model will be *persistently positive or negative for a period of time*
- 每期的增长率是constant rate

用DW test检验ε是否有serial correlation

使用trend model

Yes

以AR(1)开始模型的估计

$$AR(P) \rightarrow x_{t} = b_{0} + b_{1}x_{t-1} + b_{2}x_{t-2} + ... + b_{p}x_{t-p} + e_{t}$$

Chain rule of forecasting ★★	$x_{t+1} = b_0 + b_1 x_t \qquad \text{if } $		
Assumption (具体看后面)★★	 ✓ No autocorrelation ✓ No Conditional Heteroskedasticity ✓ Covariance-stationary series 		
检验是否有Seasonality (具体看后面) ★	x_t = b_0 + b_1 x_{t-1} + b_2 x_{t-4} + ϵ_t (检验有无seasonality方法和autocorrelation类似)		
Compare forecasting power	smallest RMSE for out-of-sample →最好 RMSE计算		

AR Model assumption★★

1、No autocorrelation: 针对residual term

Detection	$H_0: \Gamma_{e_t,e_{t-k}} = 0$ No autocorrelation $t - statistics = \frac{\Gamma_{e_t,e_{t-k}}}{1/\sqrt{n}} standard \; error = 1/\sqrt{n}$ Reject $H_0: t > +t_{critical}$, or $t < -t_{critical}$
Correction	Reject H · (add lagged values) $\Lambda R(1) \rightarrow \Lambda R(2)$

	\rightarrow	考试时给的表格				
	2 M/H 12/H H 1/4/L					
	Autocorrelations of the Residual					
Lag Autocorrelation Standard Er				t-Statistic		
	1	-0.1538	0.0528	-2.9142		
	2	0.1097	0.0528	2.0782		
Ì,	. 3	0.0657	0.0528	1.2442		
	4	0.0920	0.0528	1.7434		

检验是否有	J
Seasonal	it

Detection	$H_0: \Gamma_{e_t,e_{t-4}} = 0$ No seasonality Reject $H_0: t > + t_{critical}$, or $t < -t_{critical}$
Correction	add lagged values: $x_{+}=b_{0}+b_{1}x_{+1}+b_{2}x_{+}$

2、No Conditional Heteroskedasticity: 针对residual term (用ARCH)

含义	Heteroskedasticity refers to the situation that the variance of the error term is not constant	
Detection	Test Conditional Heteroskedasticity = Test whether a time series is ARCH(1) $\varepsilon_t^2 = a_0 + a_1 \varepsilon_{t-1}^2 + u_t$ a ₁ is significantly different from 0 \rightarrow Conditional Heteroskedasticity exist	
Correction	Generalized least squares	

3、Covariance-stationary series: 针对 X_t $x_t = b_0 + b_1 x_{t-1} + e_t$

含义 Covariance-stationary

- ① Constant and finite expected value of the time series
- ② Constant and finite variance of the time series
- ③ Constant and finite covariance with leading or lagged values

Mean reversion

Mean-reverting: $\frac{b_0}{1-b_1}$

- $x_t > mean -> x_{t+1} < x_t$
- $x_t < mean -> x_{t+1} > x_t$

Random walk \iff b₁=1 (undefined mean) \iff unit root \iff nonstationary

Simple random walk: $x_t = x_{t-1} + \varepsilon_t$

Random walk with a drift: $x_t=b_0+b_1 x_{t-1}+\epsilon_t (b_0 \neq 0)$

The unit root test of nonstationarity: Dickey-Fuller test (DF test)

 $x_t = b_0 + b_1 x_{t-1} + \varepsilon_t \rightarrow x_t - x_{t-1} = b_0 + g x_{t-1} + \varepsilon_t (g = b_1 - 1)$ $H_0: g = 0$ (has a unit root and is nonstationary); $H_a: g < 0$

Reject $H_0 \rightarrow$ the time series does not have a unit root and is stationary

修正 First differencing

检验

Define y_t as $y_t = x_t - x_{t-1} \rightarrow AR(1)$ model $y_t = b_0 + b_1 y_{t-1} + u_t$

$$Y_{t} = b_{0} + b_{1}X_{t} + \mathcal{C}_{t}$$

 $Y_t = b_0 + b_1 X_t + e_t$ X_t , Y_t # Etime series data

Regression with More Than One Time Series★★

Scenarios		是否可做多元回归
None of the time series has a unit root	V	
At least one time series has a unit root while at le	×	
Each time series has a unit root: whether the time series are cointegrated?	conintegrated	V
	no cointegration	*

Test the cointegration: Dickey-Fuller Engle-Granger test (DF-EG test)

 H_0 : no cointegration H_a : cointegration

- If we cannot reject the null, we cannot use multiple regression
- If we can reject the null, we can use multiple regression

Reading 12

EXCERPT FROM "PROBABILISTIC APPROACHES: SCENARIO ANALYSIS, DECISION TREE, AND SIMULATION"

Overall Assessment				
1. Selective & full risk analysis	 Scenario analysis: Selective risk analysis Decision trees and simulations: full risk analysis Decision trees: a manageable set of possible outcomes. Simulations: probability distributions 			
2. Type of risk	 Scenario analysis and decision trees: discrete outcomes in risky events Scenario analysis: easier to use when risks occur concurrently Decision trees: better suited for sequential risks Simulations: better suited for continuous risks. 			
3. Correlation across risks	 Simulations allow for <i>explicitly</i> modeling these correlations. In scenario analysis, we can deal with correlations <i>subjectively</i> by creating scenarios that allow for them. Correlated risks are <i>difficult to model in decision trees</i>. 			
4. the quality of the information	Simulations work best in cases where there is <i>substantial historical and cross sectional data available</i>			
5. Complement or replacement for risk-adjusted value	 Both decision trees and simulations are approaches that can be used as either complements to or substitutes for risk-adjusted value. Scenario analysis will always be a complement to risk-adjusted value, since it does not look at the full spectrum of possible outcomes. 			

