Строительные блоки алгоритмов

Формат представления алгоритма

- > Название и краткое описание
- > Входные и выходные данные алгоритма
- > Контекст применения алгоритма
- > Реализация алгоритма
- > Анализ алгоритма
- > Вариации алгоритма

Строительные блоки

В языке С++ программы построены на нескольких базовых типах данных:

- › Целые числа (int)
- Учела с плавающей точкой (float)
- > Символы (char)

Тип данных – это множество значений и набор операций с ними.

Операции связаны с типами, а не наоборот.

Структуры данных

В зависимости от реализации (посредством массивов или указателей) структуры данных разбиваются на два типа

- Смежные структуры данных реализованы в виде непрерывных блоков памяти. К ним относятся массивы, матрицы, кучи и хэш-таблицы
- > Связанные структуры данных реализованы в отдельных блоках памяти, связанных вместе с помощью указателей. К этому виду структур данных относятся списки, деревья и списки смежных вершин графов

Массивы

Достоинства массивов:

- Постоянное время доступа при условии наличия индекса.
- Эффективное использование памяти
- Локальность в памяти

Недостаток:

 Размер нельзя изменять в процессе исполнения программы

Решение – динамическое выделение памяти

Указатели и связанные структуры данных

Указатель – это адрес ячейки памяти

Связный список — это набор элементов, причем каждый из них является частью *узла (node),* который также содержит *ссылку (link)* на узел.

Основное преимущество *связных списков* перед *массивами* заключается в возможности эффективного изменения расположения элементов. За эту гибкость приходится жертвовать скоростью доступа к произвольному элементу списка, поскольку единственный способ получения элемента состоит в отслеживании связей от начала списка.

Связные списки

Односвязный список

Двусвязный список

Кольцевой связный список

Операции в связных списках

- > Πουςκ (search)
- > Вставка (insert)
- > У∂аление (delete)

Сравнение связных списков и статических массивов

Преимущества

- Переполнение невозможно, если только не переполнена сама память
- Операции вставки и удаления элементов проще соответствующих операций над массивами
- При работе с большими записями перемещение указателей происходит легче и быстрее, чем перемещение самих записей

Сравнение связных списков и статических массивов

Недостатки

- Необходимо дополнительное место для хранения указателей
- > Нет эффективного произвольного доступа к элементам
- Массивы обладают лучшей локальностью в памяти и более эффективны в использовании кэш-памяти, чем связные списки

Динамическое выделение памяти обеспечивает гибкость в выборе способа и момента использования этого ограниченного ресурса

Примеры рекурсивных объектов

- > Списки. После удаления первого элемента связного списка мы имеем такой же связный список, только меньшего размера. То же самое справедливо для строк, поскольку в результате удаления символов из строки получается более короткая строка
- > *Массивы*. Отделение первых k элементов из массива из n элементов нам дает два массива меньших размеров: (k) + (n-k)

Абстрактные типы данных

Абстрактный тип данных (АТД) — это тип данных (набор значений и совокупность операций для этих значений), доступ к которому осуществляется только через интерфейс. Программу, которая использует АТД, будем называть клиентом, а программу, в которой содержится спецификация этого типа данных — реализацией.

- > Стеки
- > Очереди
- > Словари и т.д.

Процесс численного решения

- > Вычисления с плавающей точкой
- > Вычисления неограниченной точности

Проблемы:

- > Представление чисел конечным количеством значений
- > Ошибки округления
- > Ошибки дискретизации
- > Сравнения
- > Преобразование типов

Вычисления с плавающей точкой

- > Невозможность точного представления: π , е
- Невозможность точного численного представления некоторых результатов (частное от деления или даже умножение)
- 4-х разрядная десятичная арифметика
- $0.8132 \cdot 0.6135 = 0.49889820$
- 0.4988 или 0.4989

Ошибки округления

Представление чисел с плавающей точкой

Тип	Знак, бит	Экспонента, бит	Мантисса, бит
float	1	8	23
double	1	11	52

Пример бинарного представления 3.88f (float)

01000000 01111000 01010001 11101100 (32 бита)

0 – знак положительный (1 бит)

10000000 - экспонента (8 бит) (128 = 2⁷)

Ошибки округления (2)

Представление чисел с плавающей точкой

Тип	Знак, бит	Экспонента, бит	Мантисса, бит
float	1	8	23
double	1	11	52

3.88000011444091796875

Ошибки округления (3)

> Накопление ошибки

 $0.8132 \cdot 0.6135 \cdot 0.2103 = 0.10491829$ (до 8 значащих цифр)

 $0.8132 \cdot 0.6135 = 0.4988$ (ошибка $0.9820 \cdot 10^{-4}$)

 $0.4988 \cdot 0.2103 = 0.1048$ (ошибка $0.9764 \cdot 10^{-4}$)

Накопленная ошибка — 0.1183 ·10⁻³

> Катастрофическая потеря знака

a-b

π Ошибки численных решений

> Ошибки дискретизации Замена непрерывных задач дискретными

> Ошибки сходимости Возможность выполнить конечное число приближений

Сравнение значений с плавающей точкой

if
$$(x == y) \{...\}$$

Можно ли сравнивать числа с плавающей точкой?

Практический пример

$$p_0=(a,b); p_1=(c,d); p_2=(e,f)$$

(c-a)(f-b)-(d-b)(e-a)

- > =0, отрезки коллинеарны;
- > < 0, отрезки повернуты влево
- > > 0, отрезки повернуты вправо

Арифметические ошибки с плавающей точкой

	32-битное значение (float)	64-битное значение (double)
a=1/3	0.33333334	0.33333333333333
b=5/3	1.6666666	1.666666666666666667
c=33	33.0	33.0
d=165	165.0	165.0
e=19	19.0	19.0
f=95	95.0	95.0
(c-a)(f-b)-(d-b)(e-a)	4.8828125E-4	-4.54747350886441E-13

$$y = 5x$$
 $|x - y| < \delta$ $x \approx y, y \approx z, \qquad x \not\approx z$

Специальные значения

Специальное значение	64-битное представление IEEE 754
Положительная бесконечность	0×7ff00000000000000L
Отрицательная бесконечность	0×fff000000000000L
Не число (NaN)	от 0x7ff00000000001L
	до 0x7ffffffffffffL
	и от 0xfff00000000001L
	до 0xfffffffffffffL
Отрицательный нуль	0×80000000000000
Положительный нуль	0×00000000000000