## TESLA

GPU Computing
Past, Present, Future



Ian Buck, GM GPU Computing Software

## History....

Stream Computing on Graphics Hardware



Ian Buck

GPGPU in 2004

#### recent trends





## **GPU** history



|  |        | Product        | Process | Trans | MHz | GFLOPS<br>(MUL) |
|--|--------|----------------|---------|-------|-----|-----------------|
|  | Aug-02 | GeForce FX5800 | 0.13    | 121M  | 500 | 8               |
|  | Jan-03 | GeForce FX5900 | 0.13    | 130M  | 475 | 20              |
|  | Dec-03 | GeForce 6800   | 0.13    | 222M  | 400 | 53              |

#### translating transistors into performance

- 1.8x increase of transistors
- 20% decrease in clock rate
- 6.6x GFLOP speedup



#### Stunning Graphics Realism

#### Lush, Rich Worlds



**Incredible Physics Effects** 

Core of the Definitive Gaming Platform

## Early GPGPU (2002)





Early Raytracing



www.gpgpu.org

- •Ray Tracing on Programmable Graphics Hardware Purcell et al.
- PDEs in Graphics Hardware Strzodka,,Rumpf
- Fast Matrix Multiplies using Graphics Hardware Larsen, McAllister
- •Using Modern Graphics Architectures for General-Purpose Computing: A Framework and Analysis. Thompson *et al.*

### Programming model challenge

- Demonstrate GPU performace
- PHD computer graphics to do this
- Financial companies hiring game programmers

"GPU as a processor"

### **Brook (2003)**



#### C with streams

- streams
  - collection of records requiring similar computation
    - particle positions, voxels, FEM cell, ...

```
Ray r<200>;
float3 velocityfield<100,100,100>;
```

- similar to arrays, but...
  - index operations disallowed: position[i]
  - read/write stream operators:

```
streamRead (positions, p_ptr);
streamWrite (velocityfield, v_ptr
```

### **Building GPU Computing Ecosystem**

- Convince the world to program an entirely new kind of processor
- Tradeoffs between functional vs. performance requirements
- Deliver HPC feature parity
- Seed larger ecosystem with foundational components

#### CUDA: C on the GPU

- A simple, explicit programming language solution
- Extend only where necessary

```
__global__ void KernelFunc(...);
__shared__ int SharedVar;
KernelFunc<<< 500, 128 >>>(...);
```

- Explicit GPU memory allocation
  - cudaMalloc(), cudaFree()
- Memory copy from host to device, etc.
  - cudaMemcpy(), cudaMemcpy2D(), ...

#### CUDA: Threading in Data Parallel

- Threading in a data parallel world
  - Operations drive execution, not data
- Users simply given thread id
  - They decide what thread access which data element
  - One thread = single data element or block or variable or nothing....
  - No need for accessors, views, or built-ins
- Flexibility
  - Not requiring the data layout to force the algorithm
  - Blocking computation for the memory hierarchy (shared)
  - Think about the algorithm, not the data

#### Divergence in Parallel Computing

- Removing divergence pain from parallel programming
- SIMD Pain
  - User required to SIMD-ify
  - User suffers when computation goes divergent
- GPUs: Decouple execution width from programming model
  - Threads can diverge freely
  - Inefficiency only when granularity exceeds native machine width
  - Hardware managed
  - Managing divergence becomes performance optimization
  - Scalable

## **Customizing Solutions**



**Generality** 

## **GPU Computing By the Numbers:**

>350,000,000

Compute Capable GPUs

>1,000,000

Toolkit Downloads

>120,000

Active CUDA Developers

>450

Universities Teaching CUDA

100%

OEMs offer CUDA GPU PCs

#### Developer ecosystem enables the application growth



**NVIDIA** 

**Available** 

## Directives: Simple Hints for the Compiler



Add hints to code

On-ramp to parallel computing

Compiler does heavy lifting of parallelizing code

Works on multicore CPUs & many core GPUs

## 2x in 4 Weeks. Guaranteed.





Free 30 day trial license to PGI Accelerator\*

Tools for quick ramp

www.nvidia.com/2xin4weeks

## OpenACC: Open Programming Standard for Parallel Computing Easy, Fast, Portable









http://www.openacc-standard.org

## The OpenACC™ API QUICK REFERENCE GUIDE

The OpenACC Application Program Interface describes a collection of compiler directives to specify loops and regions of code in standard C, C++ and Fortran to be offloaded from a host CPU to an attached accelerator, providing portability across operating systems, host CPUs and accelerators.

Most OpenACC directives apply to the immediately following structured block or loop; a structured block is a single statement or a compound statement (C or C++) or a sequence of statements (Fortran) with a single entry point at the top and a single exit at the bottom.







**PGI** 

Version 1.0, November 2011

## Building blocks for Exascale



#### **Atomic Ops**

Atomic operations for thread-to-thread communication

#### atom{.space}.op.type d, [a], b; atom{.space}.op.type d, [a], b, c; .space = { .global, .shared }; = { .and, .or, .xor, // .b32 only .cas, .exch, // .b32, .b64 .add, .u32, .s32, .f .inc, .dec, .u32 only // .u32, .s32, .f .type = $\{ .b32, .b64, \}$ .u32, .u64, .s32, .f32 };



#### Dynamic Parallelism



# World's First ARM CPU / CUDA GPU Supercomputer







Exploring energy efficient supercomputer architectures for exascale



http://www.montblanc-project.eu

ARM CPU + GPU Prototype 256 Tegra (ARM) CPUs

+ 256 CUDA GPUs

### **CUDA for ARM Development Kit**

CUDA GPU Tegra ARM CPU



SECO Hardware Development Kit

http://www.secogseven.com/en/item/secocg7-mxm/

#### Research development board

- Quad-core ARM based NVIDIA Tegra 3 processor
- NVIDIA CUDA GPU
- Gigabit Ethernet

CUDA software development kit

Available: 1H 2012