Association rules

- Vấn đề
- Tổng quan về khai phá luật kết hợp
- Association Rules
- FP-tree

Vấn đề: Phân tích bán hàng

Nếu mua BIA, liệu xác suất bao nhiêu % sẽ mua thêm Gà

Mua Sữa, Có mua Bỉm không?

Học sinh mua thước kẻ, liệu có mua them bút không

Vần đề: Tăng doanh thu

Sẽ Xem

Lenovo Thinkpad Pro Docking Station with 135W Power Adapter (40AH0135US)

★★★★ 254 \$229.00

+ \$40.19 shipping

ViewSonic VA2446MH-LED 24 Inch Full HD 1080p LED Monitor with HDMI and VGA Inputs for Home and Office, Black ★★★★☆ 4,602

\$179.99 + \$78.79 shipping

Lenovo ThinkPad USA Ultra Dock With 90W 2 Prong AC Adapter (40A20090US, Retail Packaged)

★★★★☆ 1,906 \$115.00

+ \$45.98 shipping Only 10 left in stock - orde...

Lenovo USA ThinkPad Thunderbolt 3 Dock Gen 2 135W (40AN0135US) Dual UHD 4K Display Capability, 2 HDMI, 2 DP, USB-C, USB 3.1, Black ★★★★ 1,043 19 offers from \$298.98

Samsung Business S24R650FDN SR650 Series 24 inch IPS 1080p 75Hz Computer Monitor for Business with VGA, HDMI, DisplayPort, an... 1,053

\$193.38 + \$111.07 shipping In stock soon.

Mall Son Kem Perfect Diary Màu Lì Tông Màu .

4304.000 **4159.000**

Mall Son kem li Perfect Diary Màu Lì Tông Màu L...

d159.000 - d169.000

Mall Son Satin Perfect Diary lâu trôi vỏ vàng san.

4280.000 **4249.000**

Mall Son Iì Perfect Diary kết cấu màu tốt lâu trôi..

4280.000 **4199.000**

Mall Son Li Perfect Diary Ánh Satin 12 Màu Tùy...

4280.000 **4199.000**

Mall Mascara Chuốt Mi Perfect Diary Lâu Trôi...

₫139.000 - ₫159.000

Khai phá luật kết hợp

- Khai phá luật kế hợp
 - Tìm các mẫu (hàng) xuất hiện nhiều, các liên quan, tương quan, hoặc là các cấu trúc hệ quả trong các tập hợp các mẫu hoặc các đối tượng trong cơ sở dữ liệu (chủ yếu về giao dịch).
- Úng dụng
 - Phân tích bán hàng (theo gói), tiếp thị chéo (tăng doanh thu), thiết kế các mẫu, phân nhóm, phân cụm.

Ví dụ về dữ liệu giao dịch (transaction data)

cardid cookies	fish	orange juice	lemon tea	red wine	peanuts	beer	chocolate milk	bread	vegetable
39808 cookies							chocolate milk	bread	
67362 cookies								bread	
10872	fish			red wine	peanuts	beer			
26748			lemon tea				chocolate milk		
91609									
26630	fish		lemon tea					bread	
62995		orange juice							vegetable
38765				red wine					
28935					peanuts				vegetable
41792	fish								vegetable
59480	fish		lemon tea			beer	chocolate milk	bread	vegetable
60755	fish								vegetable
70998	fish				peanuts		chocolate milk		
80617	fish	orange juice							
61144	fish	orange juice					chocolate milk		vegetable
36405		orange juice		red wine	peanuts				
76567	fish					beer			vegetable
85699	fish								
11357	fish			red wine					
97761 cookies	fish		lemon tea			beer			vegetable
20362	fish				peanuts				
33173 cookies			lemon tea						
69934	fish								
14743			lemon tea	red wine	peanuts	beer	chocolate milk	bread	vegetable
83071 cookies				red wine					
17571				red wine	peanuts		chocolate milk		vegetable
37917 cookies			lemon tea					bread	
11000									

Mục đích

- Cho một dữ liệu về giao dịch, làm thế nào khám phá được các luật kết hợp mà nó thu hút được về mặt thương mại.
- Các luật kết hợp được sử dụng trong lĩnh vực bán lẻ:
 - Đẩy mảnh quảng cáo Sản phẩm
 - ► Thay thế sản phẩm
 - Quản lý dữ liệu thực trạng

Tổng qua về KPLKH

- Quá trình khai phá LKH
 - ▶ DỮ liệu gốc (Raw data)
 - Tiền xử lý dữ liệu
 - Tìm được các mẫu, loại, phần tử (được quan tâm nhiều)
 - Khai phá tìm ra các mối quan hệ giữa chúng (gọi là các luật)
 - Sau đấy xử lý để đưa ra các luật, ứng dụng cho người dùng

Transaction ID	Items Bought
2000	A,B,C
1000	A,C
4000	A,D
5000	B,E,F

A, B, C, D, E, F A ->C (50%, 66.6%)

- Một số khái niệm cơ bản
 - Item (Phần tử, mẫu, loại)
 - Itemset (tập các phần tử)
 - ► Transaction (1 giao dich)
 - Association: Sự kết hợp
 - Association rules: Luật kết hợp
 - Support (độ hỗ trợ)
 - Confidence (độ tin cậy)
 - Frequent itemset (tập phần tử phổ biến thường xuyên)

- Association (sự kết hợp):
 - Các phần tử cùng xuất hiện với nhau trong một hay nhiều giao dịch.
 - Thể hiện mối liên hệ giữa các phần tử/các tập phần tử
- Luật kết hợp: qui tắc kết hợp có điều kiện giữa các tập phần tử.
 - Thể hiện mối liên hệ (có điều kiện) giữa các tập phần tử
 - ► Cho A và B là các tập phần tử, luật kết hợp giữa A và B là A → B.
 - Tính khả năng B xuất hiện trong điều kiện A xuất hiện.

Support, độ hỗ trợ/ủng hộ ("trong bao nhiêu phần trăm dữ liệu thì những điêu ở vế trái và vế phải cùng xảy ra")

Support (I) =	Tổng giao dịch chứa <i>ı</i>
Support(I) —	Tổng giao dịch trong dữ liệu

- Chú ý: I: có thể là một hoặc nhiều items;
- Ví dụ I = A; hoặc I là A và B
- Confidence, độ mạnh ("nếu vế trái xảy ra thì có bao nhiêu khả năng vế phải xảy ra")
- ► Confidence $(X \to Y) = \frac{Support(X \to Y)}{T \circ ng \ giao \ dịch \ chứa \ X}$

Transaction	ID	Items Boug	ght
2000		A,B,C	
1000		A,C	
4000		A,D	
5000		B.E.F	

Transaction ID	Items Bought
2000	A,B,C
1000	A,C
4000	A,D
5000	B,E,F

Luật $A \Rightarrow C$:

Min. support 50%

Min. confidence 50%

Frequent Itemset	Support
{A}	75%
{B}	50%
{C}	50%
{A,C}	50%

Suport (A) = $\frac{3}{4}$ = 0.75 = 75%

Support = support (A \cap C) = 2/4 = $\frac{1}{2}$ = 50%

confidence = support($\{A \cap C\}$)/support($\{A\}$) = 66.6%

Vậy luật C -> A; support và confidence?

Thuật toán Apriori

- Giới thiệu lần đầu tiên bởi Agrawal (1993)
- Đây là một trong những thuật toán được triển khai nhiều nhất về khai phá luật kết hợp
- Được cài đặt cùng nhiều phần mềm khai phá dữ liệu
- Code rất sẵn có

Khai phá: Frequent itemsets

- Tìm một tập các mẫu (loại) itemsets: Sao cho chúng có support là bé nhất.
 - Một tập con của một tập mẫu xuất hiện nhiều (frequent itemset) cũng là một tập mẫu xuất hiện nhiều (frequent itemset).
 - ▶ Ví dụ: Nếu {A,B} là một tập frequent itemsets thì {A} và {B} cũng là những tập itemsets.
 - Lặp lại tìm kiếm các tập mẫu xuất hiện nhiều lặp lại từ 1->k (k-itemset)
- Sử dụng tập mẫu này để tạo các luật kết hợp

Quá trình tạo các itemsets

ABCD

Thuật toán Apriori

- Tạo ra các Ứng viên (itemsets) với kích thước là (i+1) từ một tập các itemsets lớn với size (i)
- Phương pháp sử dụng: Kết hợp các itemsets lớn với kích thước (i+1) nếu chúng cùng với nhau ở trong size (i)
- Đồng thời có thể loại bỏ những ứng viên có các tập con không lớn.

Thuật toán Apriori: Ý tưởng

- 1. C_1 = Itemsets of size one in I;
- Determine all large itemsets of size 1, L₁.
- 3. i = 1;
- 4. Repeat
- 5. i = i + 1;
- 6. $C_i = Apriori-Gen(L_{i-1});$
- Count C_i to determine L_i.
- 8. until no more large itemsets found;

TID	Items
T1	134
T2	2 3 5
T3	1235
T4	2 5
T5	135

Itemset	Support
{1}	3
{2}	3
{3}	4
{4}	1
{5}	4

Example of Apriori

Transaction	Items
t_1	Blouse
t_2	Shoes,Skirt,TShirt
t_3	Jeans, TShirt
t_4	Jeans, Shoes, TShirt
t_5	Jeans, Shorts
t_6	Shoes, TShirt
t_7	Jeans,Skirt
t_8	Jeans, Shoes, Shorts, TShirt
t_9	Jeans
t_{10} Jeans, Shoes, TShirt	
t_{11}	TShirt
t_{12}	Blouse, Jeans, Shoes, Skirt, TShirt
t_{13}	Jeans, Shoes, Shorts, TShirt
t_{14}	${f Shoes, Skirt, TShirt}$
t_{15}	Jeans,TShirt
t_{16}	Skirt,TShirt
t_{17}	Blouse,Jeans,Skirt
t_{18}	Jeans, Shoes, Shorts, TShirt
t_{19}	Jeans
t_{20}	Jeans, Shoes, Shorts, TShirt

Scan	Candidates	Large Itemsets
1	${Blouse}, {Jeans}, {Shoes},$	{Jeans},{Shoes},{Shorts}
	${ m Shorts}, { m Skirt}, { m TShirt}$	$\{Skirt\}, \{Tshirt\}$
2	{Jeans,Shoes},{Jeans,Shorts},{Jeans,Skirt},	{Jeans,Shoes},{Jeans,Shorts},
	{Jeans,TShirt},{Shoes,Shorts},{Shoes,Skirt},	{Jeans,TShirt},{Shoes,Shorts},
	{Shoes,TShirt},{Shorts,Skirt},{Shorts,TShirt},	{Shoes,TShirt},{Shorts,TShirt},
	$\{ Skirt, TShirt \}$	$\{Skirt, TShirt\}$
3	{Jeans,Shoes,Shorts},{Jeans,Shoes,TShirt},	{Jeans,Shoes,Shorts},
	{Jeans,Shorts,TShirt},{Jeans,Skirt,TShirt},	${ m \{Jeans, Shoes, TShirt\}},$
	${f Shoes, Shorts, TShirt}, {f Shoes, Skirt, TShirt},$	$\{ { m Jeans, Shorts, TShirt} \},$
	$\{Shorts, Skirt, TShirt\}$	$\{Shoes, Shorts, TShirt\}$
4	{Jeans,Shoes,Shorts,TShirt}	{Jeans,Shoes,Shorts,TShirt}
5	Ø	Ø
	•	

Thuật toán Apriori: Pseudo code

```
Input:
          //Database of transactions
   I //Items
   L //Large itemsets
   s //Support
   \alpha //Confidence
Output:
          //Association Rules satisfying s and \alpha
ARGen Algorithm:
   R = \emptyset;
   for each l \in L do
       for each x \subset l such that x \neq \emptyset and x \neq l do
           if \frac{support(l)}{support(x)} \geq \alpha then
              R = R \cup \{x \Rightarrow (l-x)\};
```

- Điểm mạnh
 - Sử dụng các itemsets lớn
 - Dễ triển khai song song
 - Dễ triển khai
- Điểm bất lợi
 - Tốn bộ nhớ lưu trữ
 - Chạy scan lại liên tập tập dữ liệu

Cải tiến thuật toán Apriori

- Vấn đề của Apriori:
 - Có tới (k-1) itemsets để tạo các ứng viên k-itemsets
 - Sử dụng Dữ liệu tìm và đếm các counts cho các ứng viên
- Vấn đề về tạo các ứng viên
 - ▶ 10000 1-itemset (itemset đơn lẻ) sẽ tạo ra 10⁷ các ứng viên 2-itemsets
 - Như vậy để khám phá các mẫu với kích thước 100; ví dụ (a1, ...,a100), cần tạo tới 2¹⁰⁰ (xấp xỉ 10³⁰) ứng viên
 - Scan (quét) database quá nhiều lần.

Thuật toán FP-Tree (Frequent Pattern Growth Algorithm)

- Nén một dữ liệu lớn thành một tập nhỏ hơn: → FP-Tree structure
- Phương pháp chia để trị: Chia nhỏ ra để thực hiện
- Tránh được việc tạo các ứng viên

Thuật toán FP-Tree (Frequent Pattern Growth Algorithm)

TID	Items	(Sắp xếp lại) frequ	ent items
100	$\{f, a, c, d, g, i, m, p\}$	$\rightarrow \{f, c, a, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	$\rightarrow \{f, c, a, b, m\}$	
300	$\{b, f, h, j, o\}$	$\{f, b\}$	$min_support = 0.5$
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	$\{a, f, c, e, \overline{l}, p, m, n\}$	$\{f, c, a, m, p\}$	
			{}

Các bước cơ bản:

- 1. Scan DB một lần, tìm ra các 1-itemset (chỉ có một item)
- 2. Sắp xếp các items này theo thứ tự giảm dần
- 3. Scan lại DB và xây dựng FP-tree

Thuật toán FP-Tree (Frequent Pattern Algorithm)

TID	Items
100	$\{f, a, c, d, g, i, m, p\}$
200	$\{a, b, c, f, l, m, o\}$
300	$\{b, f, h, j, o\}$
400	$\{b, c, k, s, p\}$
500	$\{a, f, c, e, l, p, m, n\}$

Scan DB, đếm các single item (mẫu đơn)

Item	Frequency
f	4
a	3
С	4
d	1
g	1
i	1
m	3
р	3
b	3
I	2
0	2
h	1
j	1
k	1
s	1
е	1
n	1

Item	Frequency
f	4
a	3
С	4
d	1
g	1
i	1
m	3
р	3
b	3
I	2
0	2
h	1
j	1
k	1
s	1
е	1
n	1

Với min_sup = 50%.

Item	Frequency
f	4
С	4
a	3
b	3
m	3
р	3

Bước 2:

TID	Items
100	$\{f, a, c, d, g, i, m, p\}$
200	$\{a, b, c, f, l, m, o\}$
300	$\{b, f, h, j, o\}$
400	$\{b, c, k, s, p\}$
500	$\{a, f, c, e, l, p, m, n\}$

Item	Frequency
f	4
С	4
a	3
b	3
m	3
р	3

 Sắp xếp lại và loại bỏ các item
 có < sup_min

```
(Sắp xếp lại) frequent items

{f, c, a, m, p}

{f, c, a, b, m}

{f, b}

{c, b, p}

{f, c, a, m, p}
```

Xây dựng FP-Tree

Tư tưởng: Bắt đầu từ nốt rỗng ∅, xây dựng cây từ DB đã sắp xếp.

```
(Sắp xếp lại) frequent items

{f, c, a, m, p}

{f, c, a, b, m}

{f, b}

{c, b, p}

{f, c, a, m, p}
```


