Question 1

- 1) No, He maximal estropy of a random variable is When it is uniformly distributed.
- 2) $H(Y, X_1) = H(Y) \in H(X_1/Y)$

$$X_1 = 0$$
 $X_2 = 1$
 $X_1 = 1$ $X_2 = 0$
 $X_1 = 0$ $X_2 = 0$
 $X_1 = 1$ $X_2 = 1$

are X, and 7 indep! Yeo. became Xz is uniformely alshibited

(3)
$$H(x_1, x_2) = \frac{1}{4} \log(4) - 4 = 2$$

Yes

Question 2

False ?

1 Yes, Hey ore independent (IIIO)

2) False, Hey are indep.

3) Yes, they are indep.

9) 18mm H(Sn) = H(Sn)

 $=\frac{30}{4} \log(30) \cdot S$

 $+\frac{2}{6}\log(\frac{6}{8})$

 $= \frac{1}{6} \log (30) + \frac{5}{6} \log (\frac{6}{5})$

 $= \frac{1}{5} \log (6.5) + \frac{5}{5} \log (\frac{6}{5})$

 $=\frac{1}{6}\log(6)$

Š) Yu Bonne), p	robal	ollvee	s con	e alu	rego	He	_
	1im	• H	(~2)	exi	sts				
	J>M		H(S,	S _n)				
6	Yeo	, be	ccurl	Src	hichou	y =>	reg	رىھى	· ?

Question 3 1) Palce, the key is repealed! (3) False. OIOMADO XX2010101 111111 20RO 10 010 101101

$$2 \cdot \frac{1}{4} \left(q + 1 - q \right) + \frac{3}{4} \left(q + 1 - q \right) \cdot 2$$

$$= \frac{1}{2} + \frac{6}{4} = \frac{1}{2} + \frac{3}{2} = 2$$

TRUE

$$\rho(k_{i-1}=0) = \frac{3}{4}$$
 $\rho(k_{i-1}=1) = \frac{3}{4}$

$$\rho(4z=1) = \frac{3}{4} \cdot \frac{1}{z} \cdot \frac{1}{4} \cdot \frac{1}{z} = \frac{4}{8} \cdot \frac{1}{8}$$

$$P(Y_3-1) = \frac{S}{8} \cdot \frac{3}{4} + \frac{3}{8} \cdot \frac{1}{4}$$

$$= \frac{1S}{24} \cdot \frac{3}{24} = \frac{16}{24} = \frac{3}{4}$$

$$P(Y_4=1) = \frac{1}{3} \log_3(3) \cdot \frac{3}{4} \log_3(\frac{1}{3}) = \frac{1}{4} \log$$

$$= -\frac{1}{4} + \frac{1}{4} + \frac$$