

Algoritmos Distribuídos

Lynch

Introdução

Autores

Autores

➤ C. Geyer

Local

- ➤ Instituto de Informática
- **>**UFRGS
- ➤ disciplinas:
 - PDP Programação Distribuída e Paralela
- ➤ versão V03 (2010)

Essas transparências são baseadas (principalmente) em

Lynch, N. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1996,

Bibliografia adicional

- Barbosa, V. C. "An Introduction to Distributed Algorithms". MIT Press, 1996.
- Raynal, M. "Distributed algorithms and protocols". Wiley, Chichester, 1992.
- Raynal, M. and Helary, J-M. "Synchronization and Control of Distributed Systems and Programs". Wiley, 1990.
- ➤ Tel, G. "Introduction to Distributed Algorithms". Cambridge University Press, 2000 (second edition).

Bibliografia adicional:

- R. Chow, T. Johnson. Distributed Operating Systems & Algorithms. 1997. Addison Wesley.
 - 2a parte somente sobre algoritmos de SOD
- Coulouris et al. Distributed Systems Concepts and Design. 4 edição.
 - Traduzida pela Bookman
 - preferido em muitos cursos de SD
 - algoritmos expressos em forma textual
- ➤ Andrews, G. Foundations of Multithreaded, Distributed and Parallel Programming. 2000.
- ➤ Tanenbaum, A. Distributed Systems.

Súmula (desses slides)

- > conceitos de algoritmos distribuídos
- características de algoritmos distribuídos
- ➤ aspectos formais
- > modelos formais
 - modelo síncrono
 - modelo assíncrono
 - modelo parcialmente síncrono
- > estrutura do livro

Algoritmos Distribuídos (AD)

- uma grande variedade de algoritmos concorrentes
- ➤ originalmente
 - executados sobre muitos processadores distribuídos por larga área geográfica (redes largas)
- ➤ atualmente (também)
 - redes locais
 - multiprocessadores com memória compartilhada

Algoritmos Distribuídos (AD)

- muitas aplicações
 - Redes de computadores
 - processamento distribuído de informações
 - computação científica
 - controle de processos em tempo-real
 - tolerância a falhas
 - sistemas operacionais distribuídos
 - processamento P2P
 - processamento em grade
 - Suporte a jogos MMOG na Internet
 - Suporte a programas paralelos (execução, ...)

Atividades básicas

- projeto ou concepção (design)
- **>** implementação
- ➤ análise (complexidade, falhas, restrições, ...)

Diferenças entre AD

- ➤ método de IPC (InterProcess Communication)
 - memória compartilhada
 - troca de mensagens ponto-a-ponto
 - difusão de mensagens
 - chamada remota de procedures
- **>**tempo
 - síncrono (totalmente)
 - assíncrono
 - parcialmente síncrono
 - limites de tempo
 - relógios aproximados
- ➤ modelo de falha

Diferenças entre AD (não Lynch)

- ➤ modelo de programa (?)
 - processos de código único (MPI)
 - OO distribuídos
 - módulos (Modula)
 - cliente/servidor (Java RMI, CORBA, ...)
- topologia da rede física
 - árvore
 - mesh (matriz, reticulado)
 - Hipercubo
 - Grafos randômicos (internet, ...)
- Modelo de rede (comunicação)
 - Evolução afeta algoritmos ([Tel 2000]

Diferenças entre AD

- ➤ problema a resolver
 - alocação de recursos
 - comunicação
 - consenso
 - detecção de deadlock
 - outros

Diferenças entre AD (Lynch) e outros modelos como PRAM (= um tipo de Máquina Paralela Abstrata)

- número desconhecido de cpus
- ➤ topologia desconhecida
- entradas independentes em diferentes locais
- vários programas concorrentes
 - iniciando em tempos diferentes
 - a velocidades diferentes
- ➤ não determinismo do processador
- tempos de entrega de mensagens variáveis
- ordem de envio das mensagens desconhecida
- ➤ falhas de comunicação e processadores

Resultados esperados pelo estudo

- **>**Lynch
 - □ limites inferiores (piores) em complexidade
 - Por exemplo, quantidade de mensagens
 - resultados reais (implementações) serão sempre piores?
 - resultados impossíveis
- **≻**Tel
 - Caso médio; uso de distribuição de probabilidades

Framework

- modelo baseado na teoria de autômatos
- ➤não usa
 - linguagens de programação
 - lógica de prova formal

Rigorismo formal

- **>**importante
- ➤ evitar erros (enganos) fáceis
- > problema: usar rigorismo e ser didático

Modelo síncrono

- > + simples para descrever e usar
- componentes executam comandos em tempo uniforme
 - idem PRAM (algoritmos paralelos)
- resultados impossíveis do síncrono podem ser facilmente transportados ao modelo assíncrono
- > freqüentemente
 - impossíveis ou muito ineficientes sobre sistemas reais

Modelo assíncrono

- ➤ algoritmos genéricos, portáveis
- ➤às vezes, não eficiente ou não resolve certo problema
- mais difícil de programar que o síncrono
 - devido não determinismo da ordem de eventos

Modelo parcialmente síncrono

- ➤ restrições nos tempos dos eventos
- ➤ tempo dos comandos não uniforme
- ➤ mais reais
- mais difíceis de programar
- > podem ser eficientes mas não confiáveis

Provas

- ➤ asserções de invariantes
 - uso de indução no número de passos
- **>** simulação
 - relação formal entre 1 par de sistemas
 - um: já provado; outro: a provar

Estrutura modelo assíncrono

- > modelo redes
 - sistemas send/receive (troca de mensagens ponto-a-ponto)
 - sistemas de difusão total (broadcast)
 - sistemas de difusão parcial (multicast)
- ➤ algoritmos básicos
 - eleição de líder em anel
 - eleição de líder em rede arbitrária
 - geração de "spanning tree", difusão, coleta
 - pesquisa em largura, menor caminho
 - mínima "spanning tree"

Estrutura modelo assíncrono

- > sincronizadores
 - técnicas para simplificar algoritmos em rede
- memória compartilhada X rede
 - técnica para simplificar (prova, desenvolvimento) algoritmos em rede
 - transformações nos dois sentidos
- ➤ tempo lógico
 - conceitos, implementação, aplicações
- ➤ fotos globais e propriedades estáveis
 - terminação
 - fotos globais consistentes

Estrutura modelo assíncrono

- ➤ alocação de recursos em rede
 - exclusão mútua
 - alocação geral
- redes com falhas em processos
 - modelo, impossibilidade, detectores, consenso
- > protocolos de comunicação de dados

Limitações do estudo de ADs

- não examina diversos aspectos importantes de um sistema distribuído (SD)
 - por exemplo: aspectos de hw, divisão em camadas e/ou módulos do sw, ...
- não examina diversas propriedades específicas de linguagens e bibliotecas de programação distribuída

Revisão

- > em que tipo de rede os ADs foram inicialmente usados?
- ➤ indique 3 pontos que distinguem os ADs dos algoritmos paralelos clássicos (por exemplo, para a PRAM)?
- porque é importante estudar os ADs?
- quais os 3 modelos de ADs da Lynch?

Revisão

- qual a característica principal do modelo síncrono (MS)?
- quais as principais vantagens do MS?
- quais a principal desvantagem do MS?
- quais os 2 submodelos do modelo assíncrono?
- qual a principal vantagem do MA?
- qual a principal característica do modelo parcialmente síncrono?
- qual a principal vantagem do MPS?
- qual a principal desvantagem do MPS?