p-adic Hodge Theory, MATH 847 Spring 2011

Homework Problems

1. Let I be a directed set and $\{G_i\}_{i\in I}$ an inverse system of finite groups with projection maps $\phi_{ij}: G_i \to G_j$ for all $i, j \in I$ satisfying $j \leq i$. Give each G_i the discrete topology and denote by π the product $\pi := \prod_{i \in I} G_i$ endowed with the product topology. Define

$$G := \varprojlim_{i \in I} G_i := \{(g_i)_{i \in I} \mid \phi_{ij}(g_i) = g_j \text{ for all } j \leq i\} \subseteq \pi$$

- (a) Show that G is a closed subset of π .
- (b) Give G the subspace topology. Show that G is compact and totally disconnected for this topology.
- (c) Prove that the natural projection maps $\phi_i: G \to G_i$ are continuous, and that the (open) subgroups $K_i := \ker \phi_i$ for a basis of open neighborhoods of the identity.
- (d) Show that a subgroup of G is open if and only if it is closed and of finite index.
- 2. Let $I \subseteq \operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ be the inertia subgroup and $W \subseteq I$ the wild inertia subgroup. Show that there is a non-canonical isomorphism of topological groups

$$I/W \simeq \prod_{\ell \neq p} \mathbf{Z}_{\ell}.$$

- 3. Let $\rho: G_{\mathbf{Q}} \to \mathrm{GL}_n(\mathbf{Q}_p)$ be a continuous representation. Show that for all $\ell \neq p$, the image under ρ of any wild inertia group W_ℓ at ℓ is finite. Is the same necessarily true of the image of any I_ℓ ?
- 4. Let F be a finite extension of \mathbf{Q}_{ℓ} , and suppose $\rho: G_F \to \mathrm{GL}_n(\mathbf{Q}_p)$ is a continuous representation. Show that $\overline{F}^{\ker(\rho)}$ is infinitely (wildly) ramified if and only if the image of (wild) inertia under ρ is infinite.
- 5. Do Exercise 1.4.3 in the notes.
- 6. Let K be a p-adic field. Show that the image of the p-adic cyclotomic character $\chi: G_K \to \mathbf{Z}_p^{\times}$ is closed.
- 7. Show that the two definitions of *continuous representation* given in Definition 1.2.1 of the notes really are equivalent.
- 8. Let $\rho: G_{\mathbf{Q}} \to \mathrm{GL}_n(\mathbf{C})$ be a continuous representation.
 - (a) Prove that up to conjugation by an element of $GL_n(\mathbf{C})$, the representation ρ factors through $GL_n(K)$ for some field K of finite degree over \mathbf{Q} . (You may use the fact that any compact, totally disconnected subgroup of $GL_n(\mathbf{C})$ is finite).
 - (b) Prove that we may take K above to be an abelian extension of \mathbf{Q} .
 - (c) For a prime p, is it the case that any continuous $\rho: G_{\mathbf{Q}} \to \mathrm{GL}_n(\mathbf{C}_p)$ must factor through $\mathrm{GL}_n(K)$ for some K/\mathbf{Q}_p of finite degree?

- 9. Let Γ be a profinite group and R a complete discrete valuation ring with fraction field K that is a p-adic field. We suppose that Γ acts on R via continuous automorphisms (and hence also on K). Recall that if V is a finite dimensional vector space over K, an R-lattice in V is a finite free R-submodule Λ of V with the property that $\Lambda \otimes_R K \simeq V$. Show that any V with semilinear Γ action (i.e. $g(\alpha v) = g(\alpha)g(v)$ for all $\alpha \in K$ and $v \in V$) admits a Γ -stable R-lattice Λ as follows:
 - (a) Choose any R-lattice $\Lambda_0 \subseteq V$. By choosing bases, show that $\operatorname{Aut}_R(\Lambda_0)$ is an open subgroup of $\operatorname{Aut}_K(V)$.
 - (b) Conclude that the preimage Γ_0 of $\operatorname{Aut}_R(\Lambda_0)$ in Γ under the representation $\rho:\Gamma\to\operatorname{Aut}_K(V)$ is of finite index in Γ .
 - (c) Letting $\{\gamma_i\}$ be any finite set of coset representatives for Γ/Γ_0 , show that the sum (taken inside V)

$$\Sigma_i \rho(\gamma_i) \Lambda_0$$

is a Γ -stable R-lattice in V.

- 10. Do Exercise 2.5.1 in the notes.
- 11. Let K be a p-adic field and $W \in \operatorname{Rep}_{\mathbf{C}_K}(G_K)$. Define the dual of W by $W^* := \operatorname{Hom}_{\mathbf{C}_K \operatorname{lin}}(W, \mathbf{C}_K)$ with G_K -action given by $g.\varphi(w) := g\varphi(g^{-1}w)$ (i.e. W^* as a \mathbf{C}_K -vector space is the usual \mathbf{C}_K -linear dual of W). Verify that indeed $W^* \in \operatorname{Rep}_{\mathbf{C}_K}(G_K)$ and that $W^{**} \simeq W$ in $\operatorname{Rep}_{\mathbf{C}_K}(G_K)$. Show that W^* is Hodge-Tate if and only if W is. Hint: you may want to use the "concrete" characterization of Hodge-Tate representations given in class.
- 12. It may be helpful to know a little Galois cohomology for this exercise. I recommend looking at Tate's article http://modular.math.washington.edu/Tables/Notes/tate-pcmi.html or Serre's book.

Let $\eta:G_K\to \mathbf{Z}_p^{\times}$ be any continuous character. Fix an extension

$$0 \longrightarrow \mathbf{C}_K(\eta) \longrightarrow W \longrightarrow \mathbf{C}_K \longrightarrow 0 \tag{1}$$

in $\operatorname{Rep}_{\mathbf{C}_K}(G_K)$.

(a) By choosing a \mathbf{C}_K -linear vector space splitting of this exact sequence, show that we may identify W with $\mathbf{C}_K(\eta) \oplus \mathbf{C}_K$ with $g \in G_K$ -acting via

$$g(v, \alpha) = (g.v + g\alpha \cdot \tau(g), g\alpha)$$

where $\tau: G_K \to \mathbf{C}_K(\eta)$ is a function satisfying $\tau(hg) = \eta(g)\tau(h) + \tau(g)$, i.e. τ is a 1-cocycle.

- (b) Prove that τ is continuous, and that making a different choice of splitting alters τ by a coboundary.
- (c) Show that the association $W \leadsto \tau$ induces a bijection between isomorphism classes of extensions of \mathbf{C}_K by $\mathbf{C}_K(\eta)$ and the set $H^1_{\text{cont}}(G_K, \mathbf{C}_K(\eta))$. If you feel energetic, show that this is even an isomorphism of abelian groups, where we add two extensions by taking their Baer sum.
- (d) Deduce from the Ax-Sen-Tate theorem that if $\eta(I_K)$ is infinite, then (1) splits (as an extension in $\operatorname{Rep}_{\mathbf{C}_K}(G_K)!$) and that this splitting is *unique*.

- 13. Let K be a p-adic field and fix $q \in K$ with |q| < 1. Then $q^{\mathbf{Z}} := \{q^n \mid n \in \mathbf{Z}\}$ is a discrete subgroup (lattice) of \overline{K}^{\times} . Consider the quotient $E_q := \overline{K}^{\times}/q^{\mathbf{Z}}$; this abelian group admits a natural structure of G_K -module through the action on \overline{K}^{\times} . For each $r \geq 0$, let $E_q[p^r]$ be the subgroup of E_q consisting of p^r -torsion elements.
 - (a) Let ζ be a primitive p^r -th root of unity and choose a p^r -th root ξ of q in \overline{K}^{\times} . Show that the natural map $i_{\zeta,q}: (\mathbf{Z}/p^r\mathbf{Z})^2 \to E_q[p^r]$ induced by

$$(m,n)\mapsto \xi^n\zeta^m\in \overline{K}^{\times}$$

is an isomorphism of abelian groups. What happens to $\iota_{\zeta,\xi}$ if we change our choices of ζ and ξ ?

- (b) Define $T_p(E_q) := \varprojlim_r E_q[p^r]$ by using the natural multiplication by p maps $E_q[p^{r+1}] \to E_q p^r]$. Show that $T_p(E_q)$ is a free \mathbb{Z}_p -module of rank 2 and gives a continuous 2-dimensional representation $\rho_{E_q} : G_K \to \mathrm{GL}_2(\mathbb{Z}_p)$.
- (c) Set $V_p(E_q) := T_p(E_q) \otimes_{\mathbf{Z}_p} \mathbf{Q}_p$. Using (a), show that the natural maps $\mathbf{Z}/p^r\mathbf{Z} \to (\mathbf{Z}/p^r\mathbf{Z})^2$ and $(\mathbf{Z}/p^r\mathbf{Z})^2 \to \mathbf{Z}/p^r\mathbf{Z}$ given by $m \mapsto (m,0)$ and $(m,n) \mapsto n$ realize $V_p(E_q)$ as an extension of \mathbf{Q}_p by $\mathbf{Q}_p(1)$, i.e. that we have a canonical exact sequence of continuous G_K -modules

$$0 \longrightarrow \mathbf{Q}_p(1) \longrightarrow V_p(E_q) \longrightarrow \mathbf{Q}_p \longrightarrow 0.$$
 (2)

- (d) Prove that $V_p(E_q)$ is Hodge-Tate. Hint: Use Problem (3).
- (e) Prove that (2) is non-split as an extension of representations of G_K , even if we extend scalars to \overline{K} .
- 14. Let K be a p-adic field with finite residue field \mathbf{F}_q . Pick $\alpha \in \mathrm{GL}_n(\mathbf{C}_K)$ and consider the uramified Galois representation defined by

$$G_K \longrightarrow G_{\mathbf{F}_q} \simeq \widehat{\mathbf{Z}} \longrightarrow \mathrm{GL}_n(\mathbf{C}_K)$$

defined by sending $1 \in \hat{\mathbf{Z}}$ to α . Show that this is a continuous representation if and only if all eigenvalues of the matrix α have absolute value 1. Use this to give an example of a continuous, n-dimensional G_K -representation with \mathbf{C}_K coefficients that does not factor through $\mathrm{GL}_n(L)$ for any algebraic extension L/K.

- 15. Let K be a p-adic field containing μ_p and let $\chi: G_K \to \mathbf{Z}_p^{\times}$ be the cyclotomoc character.
 - (a) Show that χ has image in $1 + p\mathbf{Z}_p$.
 - (b) For any $s \in \mathbf{Z}_p$, show that the character χ^s of G_K defined by the composition of χ with the map $1 + p\mathbf{Z}_p \to 1 + p\mathbf{Z}_p$ given by $x \mapsto x^s$ makes sense and is continuous.
 - (c) Prove that χ^s is Hodge-Tate if and only if $s \in \mathbf{Z}$.
- 16. Fix a p-adic field and let η be a nontrivial finite order continuous character $\eta: G_K \to \mathbf{Q}_p^{\times}$.
 - (a) Show that η factors through the natural inclusion $\mathbf{Z}_p^{\times} \hookrightarrow \mathbf{Q}_p^{\times}$.
 - (b) Prove that there are no nonzero G_K -homomorphisms $K \to K(\eta)$.

- (c) Suppose that L/K is finite Galois and the restriction of η to G_L is trivial. Show that there exists a nonzero homomorphism $L \to L(\eta)$ of L-modules with semilinear G_K -action, and hence that these two G_K -modules are isomorphic.
- 17. Do Exercise 3.4.1 in the notes.
- 18. Fix a field E of characteristic p and let (M, φ_M) be an étale φ -module over E. Define M^{\vee} to be the E-linear dual of M and let $\varphi_{M^{\vee}}$ be the map

$$M^{\vee} \longrightarrow (\varphi_E^*(M))^{\vee} \longrightarrow M^{\vee}$$
 (3)

where the first map takes a linear functional ℓ on M to the linear functional on $\varphi_E^*(M) := M \otimes_{E,\varphi_E} E$ given by $m \otimes e \mapsto \varphi_E(\ell(m))e$, and the second map is the E-linear dual of the inverse of the E-linear isomorphism $\varphi_E^*(M) \to M$ given by the linearization of φ_M . Prove that $\varphi_{M^{\vee}}$ is semilinear over φ_E , and that its linearization is an isomorphism. Hint: show that the linearization of first map in (3) is the canonical isomorphism

$$\varphi_E^*(M^{\vee}) = \operatorname{Hom}_E(M, E) \otimes_{E, \varphi} E \simeq \operatorname{Hom}_E(M, E_{\varphi}) \simeq \operatorname{Hom}_{\varphi-\operatorname{sl}}(M, E) \simeq \operatorname{Hom}_E(\varphi_E^*(M), E) = \varphi_E^*(M)^{\vee}$$
 where E_{φ} denotes E as an E -module via φ_E , and $\operatorname{Hom}_{\varphi-\operatorname{sl}}$ is the E -module of φ_E -semilinear E -module homomorphisms.

- 19. Let M be any étale φ -module over $\mathscr{O}_{\mathscr{E}}$. Show that $\mathbf{V}_{\mathscr{E}}(M)$ is continuous as a G_E -representation.
- 20. Let $E = \mathbf{F}_p$, so $G_E \simeq \widehat{\mathbf{Z}}$. Let $\rho : G_E \to \operatorname{Aut}_{\mathbf{F}_p}(V)$ be a continuous representation on a d-dimensional \mathbf{F}_p -vector space V, and let $(M, \varphi_M) = \mathbf{D}_E(V)$ be the associated étale φ -module over E. Since $E = \mathbf{F}_p$, we canonically have $\varphi^*(M) = M$ so that the linearlization φ_M^{lin} of φ_M is an \mathbf{F}_p -linear endomorphism of the d-dimensional \mathbf{F}_p -vector space M. Identifying G_E with \widehat{Z} show that $\det(\rho(1))$ is the inverse of $\det(\varphi_M^{\text{lin}})$.
- 21. Fix a pair $(\mathscr{O}_{\mathscr{E}}, \varphi)$ as in the notes and let (M, φ_M) be a φ -module over $\mathscr{O}_{\mathscr{E}}$; i.e. a finitely generated $\mathscr{O}_{\mathscr{E}}$ -module with a φ -semilinear endomorphism $\varphi_M: M \to M$. Show that φ_M is étale if and only if φ_M mod p is étale. Hint: first show that M and $\varphi^*(M)$ are abstractly isomorphic as \mathscr{O}_E -modules—i.e. that they have the same rank and invariant factors. Conclude that φ_M is an isomorphism if and only if it is surjective, and show that surjectivity may be checked modulo p.
- 22. Let M be a finitely generated module over a complete discrete valuation ring R of characteristic zero with uniformizer p. Suppose that G is a monoid acting on R by ring endomorphisms and on M by semilinear module endomorphisms. Show that for each n, G acts on M/p^nM and that $\lim_{n \to \infty} (M/p^n)^G = M^G$.
- 23. Prove that $\mathbf{V}_{\mathscr{E}}(\mathscr{E}/\mathscr{O}_{\mathscr{E}}) = \mathbf{Q}_p/\mathbf{Z}_p$.
- 24. Do Exercise 3.4.3 in the notes.
- 25. Let $\mathscr{O}_{\mathscr{E}}$ and $\mathscr{O}_{\mathscr{E}'}$ be two complete discrete valuation rings, each with fraction field of characteristic zero and uniformizer p. Let φ and φ' be endomorphisms of \mathscr{E} and \mathscr{E}' which lift the p-power Frobenius map modulo p, and suppose that $f: \mathscr{O}_{\mathscr{E}} \to \mathscr{O}_{\mathscr{E}'}$ is a local homomorphism which intertwines φ and φ' . If the induced map on residue fields $E \to E'$ is finite and purely inseparable, show that the base change map $\Phi M^{\text{\'et}}_{\mathscr{O}_{\mathscr{E}'}} \to \Phi M^{\text{\'et}}_{\mathscr{O}_{\mathscr{E}'}}$ given by sending (M, φ_M) to $(M \otimes_{\mathscr{O}_{\mathscr{E}}} \mathscr{O}_{\mathscr{E}'}, \varphi_M \otimes \varphi)$ is an equivalence of categories.

- 26. Do Exercise 4.5.1 in the notes.
- 27. Let K be a p-adic field and set $B_{\mathrm{dR}}^{\mathrm{naive}} := \mathbf{C}_K((t))$, equipped with the \mathbf{C}_K -semilinear G_K -action defined by $g.t^n := \chi^n(g)t^n$ where $\chi : G_K \to \mathbf{Z}_p^{\times}$ is the p-adic cyclotomic character. Give $B_{\mathrm{dR}}^{\mathrm{naive}}$ the t-adic filtration, so it becomes a filtered \mathbf{C}_K -vector space with semilinear G_K -action. We define

$$D_{\mathrm{dR}}^{\mathrm{naive}} : \mathrm{Rep}_{\mathbf{Q}_p}(G_K) \to \mathrm{Fil}_K$$

by $D_{\mathrm{dR}}^{\mathrm{naive}}(V) := (V \otimes_{\mathbf{Q}_p} B_{\mathrm{dR}}^{\mathrm{naive}})^{G_K}$ with filtration induced by the filtration on $B_{\mathrm{dR}}^{\mathrm{naive}}$, and we call $V \in \mathrm{Rep}_{\mathbf{Q}_p}(G_K)$ "naively de Rham" if $\dim_K D_{\mathrm{dR}}^{\mathrm{naive}}(V) = \dim_{\mathbf{Q}_p}(V)$. Prove that V is naively de Rham if and only if it is Hodge-Tate.

- 28. Let K be a 2-adic field, and consider any choice of $\epsilon = (1, \zeta_2, \zeta_4, \zeta_8, \ldots) \in R_K$, with $\{\zeta_{2^i}\}$ a collection of compatible primitive 2^i th roots of 1 in $\mathcal{O}_{\mathbf{C}_K}$. Show that $[\epsilon] 1 \in W(R)$ is a generator of the principal ideal ker θ . Bonus: Show that the corresponding statement is false for p > 2.
- 29. Do Exercise 4.5.2 in the notes.
- 30. Suppose $V \in \text{Rep}_{\mathbf{Q}_p}(G_K)$ is 1-dimensional. Show that V is Hodge-Tate if and only if it is de Rham (cf. Example 6.3.9 of the notes).
- 31. Prove that the Frobenius automorphism of W(R)[1/p] does not preserve ker θ_K , and so does not naturally extend to B_{dR}^+ .
- 32. Prove $W(R) \cap (\ker \theta_K)^j = (\ker \theta)^j$ for all $j \ge 1$.
- 33. Do Exercise 4.5.3.

The next two problems are taken from Berger's article "An introduction to the theory of p-adic representations".

34. Let K be a p-adic field, fix $q \in K$ with |q| < 1 and set $E_q := \overline{K}^{\times}/q^{\mathbb{Z}}$, considered as a G_K -module through the action on \overline{K}^{\times} . We saw on Assignment 2, problem 4 that $V_p(E_q) := \mathbb{Q}_p \otimes_{\mathbb{Z}_p} \varprojlim_r E_q[p^r]$ is 2-dimensional \mathbb{Q}_p -representation of G_K , and that

$$e := (\epsilon^{(r)})_{r \ge 0}$$
 and $f := (q^{(r)})_{r \ge 0}$

give a basis of $V_p(E_q)$ where $\epsilon^0 = 1$, $\epsilon^{(1)} \neq 1$, $q^{(0)} = q$ and for all $r \geq 1$, we have $(\epsilon^{(r+1)})^p = \epsilon^{(r)}$ and $(q^{(r+1)})^p = q^{(r)}$. Denote by $\underline{\epsilon}$ and \underline{q} the elements of R defined by the p-power compatible sequences $(\epsilon^{(r)})$ and $(q^{(r)})$.

- (a) Show that $g.e = \chi(g)e$ and g.f = f + c(g)e for some $c(g) \in \mathbf{Z}_p$ depending on g.
- (b) Show that the series $\sum_{n\geq 1} (-1)^{n+1} \frac{([\underline{q}]/q-1)^n}{n}$ for $\log(\frac{1}{q}[\underline{q}])$ makes sense and converges in B_{dR}^+ . We define

$$u := \log_p(q) + \log(\frac{1}{q}[\underline{q}]).$$

Morally, $u = \log([q])$.

(c) Let $t = \log([\underline{\epsilon}]) \in B_{dR}$. Show that $g.t = \chi(g)t$ and g.u = u + c(g)t for c(g) as in (1).

- (d) Prove that $V_p(E_q)$ is de Rham. Hint: all you have to show is that the K-vector space $(B_{dR} \otimes_{\mathbf{Q}_p} V_p(E_q))^{G_K}$ has dimension 2. Do this by using u and t to appropriately modify the B_{dR} -basis $1 \otimes e$ and $1 \otimes f$ of $B_{dR} \otimes_{\mathbf{Q}_p} V_p(E_q)$ to be G_K -invariant.
- 35. We can generalize exercise (7). Let V be any extension of \mathbf{Q}_p by $\mathbf{Q}_p(1)$ in $\operatorname{Rep}_{\mathbf{Q}_p}(G_K)$. Prove that V is de Rham as follows:
 - (a) Let $\widehat{K^{\times}}$ be the projective limit $\varprojlim_n (K^{\times}/(K^{\times})^{p^n})$ with transition maps the natural projection maps. Fix a choice $(\epsilon^{(n)})$ of a compatible system of p-power roots of unity in \overline{K} and Consider the map $\delta: \widehat{K^{\times}} \to H^1_{\operatorname{cont}}(G_K, \mathbf{Z}_p(1))$ defined as follows: for $q = q^{(0)}$ in $\widehat{K^{\times}}$, choose a sequence $(q^{(n)})_{n\geq 0}$ in \overline{K} with $(q^{(n+1)})^p = q^{(n)}$ for all n and let $\delta(q)$ be the cocycle c determined by $g(q^{(n)}) = (q^{(n)}) \cdot (\epsilon^{(n)})^{c(g)}$. Show that any two choices of $(q^{(n)})$ give cohomologous cycles, so δ is well-defined.
 - (b) Prove that δ induces an isomorphism $\mathbf{Q}_p \otimes_{\mathbf{Z}_p} \widehat{K^{\times}} \simeq H^1_{\mathrm{cont}}(G_K, \mathbf{Q}_p(1)).$
 - (c) Look over your work on Assignment 2, problem 3 and convince yourself that $H^1_{\text{cont}}(G_K, \mathbf{Q}_p(1))$ classifies isomorphism classes of G_K -extensions of \mathbf{Q}_p by $\mathbf{Q}_p(1)$. Conclude that we can choose a basis $\{e, f\}$ of V such that $g.e = \chi(g)e$ and g.f = f + c(g)e where c(g) is the cocycle corresponding to $q \in \mathbf{Q}_p \otimes \widehat{K}^{\times}$ as above.
 - (d) Defining $u = "\log([\underline{q}])"$ as above, show that we can appropriately modify the basis $\{1 \otimes e, 1 \otimes f\}$ of $B_{dR} \otimes_{\mathbf{Q}_p} V$ so as to be G_K -invariant. Conclude that V is de Rham.
- 36. Let K be a p-adic field. This exercise gives an alternative way of seeing that $D_{dR} : \operatorname{Rep}_{\mathbf{Q}_p}^{dR}(G_K) \to \operatorname{Fil}_K$ is not full.
 - (a) Let $V, V' \in \operatorname{Rep}_{\mathbf{Q}_p}^{\mathrm{dR}}(G_K)$. Prove that $D_{\mathrm{dR}}(V)$ and $D_{\mathrm{dR}}(V')$ are isomorphic in Fil_K if and only if V and V' have the same Hodge-Tate numbers; i.e. if and only if they have the same Hodge-Tate weights and for each Hodge-Tate weight i, the multiplicities $\dim_K \operatorname{gr}^i(D_{\mathrm{dR}}(V))$ and $\dim_K \operatorname{gr}^i(D_{\mathrm{dR}}(V'))$ are equal.
 - (b) Show that there exists a non-split extension of \mathbf{Q}_p by $\mathbf{Q}_p(1)$ in $\operatorname{Rep}_{\mathbf{Q}_p}^{\mathrm{dR}}(G_K)$. Hint: Think back to previous assignments.
 - (c) Show that $D_{\rm dR}$ can not be full.
- 37. Let F be a field. Do one (or more) of the following:
 - (a) For objects D, D' of Fil_F , show that the canonical F-linear isomorphism $D \otimes_F D'^* \simeq \operatorname{Hom}_F(D', D)$ is an isomorphism in Fil_F , where the tensor product is given its usual tensor-product filtration and $\operatorname{Hom}_F(D', D)$ is given the filtration $\operatorname{Fil}^i \operatorname{Hom}_F(D', D) := \operatorname{Hom}_{\operatorname{Fil}_F}(D', D[i])$.
 - (b) Show that the canonical F-linear isomorphisms

$$\det(D^*) \simeq \det(D)^*$$
 and $\det(D \otimes D') \simeq \det(D)^{\dim_F D'} \otimes \det(D')^{\dim_F D}$

are isomorphisms in Fil_F .

(c) Prove that for a short exact sequence in Fil_F

$$0 \longrightarrow D' \longrightarrow D \longrightarrow D'' \longrightarrow 0$$

the canonical F-linear isomorphism $\det(D') \otimes \det(D'') \simeq \det(D)$ is an isomorphism in Fil_F.

38. Let n, m be positive integers and K a p-adic field. Show that if V is any extension

$$0 \longrightarrow \mathbf{Q}_p(n) \longrightarrow V \longrightarrow \mathbf{Q}_p(m) \longrightarrow 0$$

- in $\operatorname{Rep}_{\mathbf{Q}_p}(G_K)$, then V is always Hodge-Tate, and is de Rham if and only if n > m. Hint: Use Corollary 6.3.4 and Examples 6.3.5–6.3.6 in the notes. Make sure you understand Example 6.3.6!
- 39. Do Exercise 7.4.1 in the notes.
- 40. Do Exercise 7.4.2 in the notes.
- 41. Do Exercise 7.4.3 in the notes.
- 42. Do Exercise 7.4.5 in the notes.
- 43. Do Exercise 7.4.7 in the notes.
- 44. Do Exercise 7.4.9 in the notes.
- 45. Let D be a K_0 -vector space with a σ -semilinear endomorphism $\phi: D \to D$. If D has finite K_0 dimension, show that ϕ is injective if and only if it is bijective. Give a counterexample to this with D of infinite dimension.
- 46. Let D be an isocrystal over K_0 . Prove that $t_N(D) = t_N(\det D)$. Hint: first show that if $D(\alpha)$ and $D(\beta)$ are isoclinic of slopes α and β respectively, then $D(\alpha) \otimes_{K_0} D(\beta)$ is isoclinic of slope $\alpha + \beta$. Then work with a basis for D adapted to the isoclinic decomposition of D as guaranteed by Lemma 7.2.7.
- 47. Let D be a filtered (φ, N) -module over K. Prove that D is weakly admissible if and only if D^* is.
- 48. Let $h: M' \to M$ be a bijective morphism in Fil_K . Show that h is an isomorphism in Fil_K if and only if $\det(h): \det(M') \to \det(M)$ is an isomorphism.
- 49. Do Exercise 8.4.1 of the notes.
- 50. Do Exercise 9.4.1 of the notes.
- 51. Do Exercise 9.4.2 of the notes.