· wumber)

Enrollment No. 11+01 82017

End-Term Examination (CBCS)(SUBJECTIVE TYPE)(OffLine) B.Tech ECE, IVth Sem (May, 2025)

Subject Code: BEC 206	
Time :3 Hours	Subject: Electromagnetic Field Theory
Note: Q1 is compute	Maximum Marks :60

Note: Q1 is compulsory. Attempt one question each from the Units I, II, III & IV.

	a) What do you mean buss	(2.5*8=20)		СО Мар	
	a) What do you mean by Magnetic Flux density? b) What do you mean by displacement current? c) Define Laplace's equation and state in		12	CO 3	
	c) Define Laplace's equation and state its general form in Cartes d) Define Laplace's equation and state its general form in Cartes	-	4117	CO 4	
	coordinates cadation and state its general form in Cartes	esian			
	d) Define skin depth. Derive its relation with attenuation constant. e) Discuss magnetic scalar and vector potential.	44	1	CO 2	
	e) Discuss magnetical derive its relation with attenuation constant	-	-		
	e) Discuss magnetic scalar and vector potential. f) State stokes theorem along with attenuation constant.	-	-	CO 2	
	f) State stokes theorem along with its mathematical expression.	-	-	CO 3	
	g) A lossy material has $\mu = 5\mu_0$, $\varepsilon = 2\varepsilon_0$. If at 5 MHz, the phase constant is 10 rad/m, calculate the loss tangent.	-		CO 1 .	
	is 10 rad/m, calculate the loss tangent.	nt		CO 2	
	h) Give Maxwell's equations in differential and integral form. UNIT I	-			
Q2	State Divergence The UNIT I	-		CO 4	
	State Divergence Theorem. Verify the divergence theorem for the hemisphere $d = r^2 a_r + r \sin \theta \cos \phi$ as over the surface of r	+-	CC	Mapping	
	function $A = r^2 a_r + r \sin \theta \cos \phi$ as over the surface of a quarter of a	(10)		CO 1	
Q3	Given boint P (-) 631				
	cylindrical and spherical	(10)			
	cylindrical, and spherical systems. Evaluate A at P in the Cartesian,	(10)	1	01	
	processing systems.				
-	UNITII				
Q4	(a) State the differential form of C		CO M	apping	
	density. Explain its significance.	(10) C		02	
-	(b) Determine electric flux donests D				
25	-5π mC at (4,0,0) and a line charge 3π mC/m along the y-axis.				
4540	(a) Derive the relationship between E and V.				
.	osing boundary conditions prove the	(10)	C	0 2	
1	the electric field remains continuous across the boundary between two dielectric media.				
-					
5 (a	UNIT III				
100	Derive Ampere's law. What are the characteristics of a static magnetic field?	(10)	CO Ma	apping	
11	magnetic field?		CO 3		
1,2	Discuss law of conservation of magnetic flux. Explain why magnetic monopole does not exist.				
D	monopole does not exist.				
to	iscuss Biot Savart's law. From it, derive magnetic field intensity H due	110)			
100	line, surface and volume current distributions.	(10)	CC	13	
-	LINITIV				
(a) Discuss any two applications of transmission lines with suitab		CO		pping	
		(10)	CO	CO 4	
(a)	An air line (loss less) has characteristic impedance of 70 Ω and phase				
COL	stant of 3 rad/m at 100 MHz. Calculate the inductance per meter			The state of	
Sta	te royilling theorem and				
	ression for Poynting theorem.	(10)			