

Comparando médias de 2 grupos Intervalos de Confiança da diferença entre as médias

Felipe Figueiredo

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

de Student

C diferenca

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- A distribuição t de Student
 - A distribuição t de Student
- Intervalo de Confiança da diferença entre duas médias
 - Interpretação
 - Participantes: pareados ou não pareados?
- Aprofundamento
 - Aprofundamento

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

t de Student

C diferença

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- A distribuição t de Student
 - A distribuição t de Student
- 3 Intervalo de Confiança da diferença entre duas médias
 - Interpretação
 - Participantes: pareados ou não pareados?
- Aprofundamento
 - Aprofundamento

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

passada

t de Student

IC diferença 2 médias

Discussão da aula passada

Comparando médias de 2 grupos

> Felipe Figueiredo

aula passada

Discussão da aula

passada

t de Student

IC diferença 2

Aprofundament

Discussão da leitura obrigatória da aula passada

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- A distribuição t de Student
 - A distribuição t de Student
- Intervalo de Confiança da diferença entre duas médias
 - Interpretação
 - Participantes: pareados ou não pareados?
- 4 Aprofundamento
 - Aprofundamento

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

t de Student

A distribuição t de Student

IC diferença 2 médias

Recapitulando

Não vá se perder por aí...

- A distribuição Normal tem dois parâmetros
- Seu formato é absolutamente definido por
 - \(\bar{X}\) = Média (tendência central)
 - $s^2/s = Variância/DP$ (tendência de dispersão)

 \Rightarrow Forma independe do n

Nomenclatura

A Normal Padrão também é chamada de distribuição Z.

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

A distribuição t de Student

IC diferença 2 médias

Recapitulando

Comparando médias de 2 arupos Felipe

Figueiredo

Não vá se perder por aí...

- A distribuição Normal tem dois parâmetros
- Seu formato é absolutamente definido por
 - \(\bar{X}\) = Média (tendência central)
 - $s^2/s = Variancia/DP$ (tendência de dispersão)

 \Rightarrow Forma independe do n

A distribuição t de

Student

Nomenclatura

A Normal Padrão também é chamada de distribuição Z.

Recapitulando

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

A distribuição t de Student

IC diferença 2

Aprofundamen

Vimos que o IC (da média) é composto por 3 componentes

- a média \bar{x} (centro)
- o erro padrão da média SEM (incerteza)
- um tal de t*, que depende de n
- Quando n era grande, utilizamos $t^* \approx 2$
- Mas de onde vem esse t*? Qual seria o valor correto?

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da aula passada

t de Student

A distribuição t de Student

IC diferença 2 médias

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da

t de Student

A distribuição t de Student

IC diferença 2 médias

Comparando médias de 2 grupos Felipe

Figueiredo

Discussão da aula passada

A distribuição t de Student

IC diferença 2

Aprofundament

Student (pseudônimo de W. S. Gossett [1876-1937]¹)

- Distribuição t (baseada na distribuição Normal)
- Melhor se aproxima dos dados de amostras pequenas
- 3º parâmetro graus de liberdade² vinculado ao tamanho da amostra n.

¹trabalhando para a cervejaria Guiness

²df em inglês

Propriedades da distribuição t

- A distribuição tem forma de sino (simétrica, como a Normal)
- Reflete a maior variabilidade inerente às amostras pequenas³
- Formato depende do tamanho da amostra (n)

Isto é

Quanto mais graus de liberdade, mais a distribuição t se parece com a distribuição Normal (Z)

Pense..

O que deve acontecer com menos graus de liberdade?

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

t de Student

A distribuição t de Student

IC diferença 2 médias

 $^{^3}$ graus de liberdade (df) $\approx n$

Propriedades da distribuição t

A distribuição tem forma de sino (simétrica, como a Normal)

- Reflete a maior variabilidade inerente às amostras pequenas³
- Formato depende do tamanho da amostra (n)

Isto é

Quanto mais graus de liberdade, mais a distribuição t se parece com a distribuição Normal (Z)

Pense...

O que deve acontecer com menos graus de liberdade?

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

t de Student

A distribuição t de Student

IC diferença 2 médias

 $^{^3}$ graus de liberdade (df) $\approx n$

Figura: Duas distribuições t de Student, e a Normal padrão

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

A distribuição t de Student

IC diferença 2 médias

IC da média (aula passada)

ICs dos exemplos

- IC do ex. 5.1 (PS de 100 alunos): [120.6, 126.2] mmHg
- IC do ex. 5.2 (PS de 5 alunos): [79.2, 118.8] mmHg

Pense...

Observe os tamanhos dos ICs.

Lembrete

Para o 5.1, usamos $t^* \approx 2$.

Vimos que esta aproximação não era apropriada no 5.2

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

A distribuição t de Student

IC diferença 2 médias

IC da média (aula passada)

ICs dos exemplos

- IC do ex. 5.1 (PS de 100 alunos): [120.6, 126.2] mmHg
- IC do ex. 5.2 (PS de 5 alunos): [79.2, 118.8] mmHg

Pense...

Observe os tamanhos dos ICs.

Lembrete

Para o 5.1, usamos $t^* \approx 2$.

Vimos que esta aproximação não era apropriada no 5.2

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

t de Student
A distribuição t de

IC diferença 2 médias

Alguns valores de t^* , para diferentes graus de liberdade

• $n = 5 (df = 4) \Rightarrow t^* = 2.776$

• $n = 10 (df = 9) \Rightarrow t^* = 2.262$

• $n = 15 (df = 14) \Rightarrow t^* = 2.145$

• $n = 20 (df = 19) \Rightarrow t^* = 2.093$

• $n = 30 (df = 29) \Rightarrow t^* = 2.045$

Pense...

Qual é a relação entre *n* e o tamanho do IC?

$$IC = [\bar{x} - t^*SEM, \ \bar{x} + t^*SEM]$$

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da aula passada

A distribuição t de Student

IC diferença 2 médias

Alguns valores de t^* , para diferentes graus de liberdade

• $n = 5 (df = 4) \Rightarrow t^* = 2.776$

• $n = 10 (df = 9) \Rightarrow t^* = 2.262$

• $n = 15 (df = 14) \Rightarrow t^* = 2.145$

• $n = 20 (df = 19) \Rightarrow t^* = 2.093$

• $n = 30 (df = 29) \Rightarrow t^* = 2.045$

Observe que...

• df = n - 1

• Para *n* grande, $t^* \rightarrow 1.960$

Por isso usamos o valor aproximado 2 no primeiro exemplo.

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

A distribuição t de Student

IC diferença 2 médias

Na prática...

Distribuição Normal - Z

Gostaríamos de poder usar sempre Z como modelo para o formato dos nossos dados experimentais.

Distribuição t de Student

- t é uma aproximação da Normal (Z)
- apropriada para *n* pequeno
- Com n grande (df > 30) ela se confunde com Z.

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

t de Student

A distribuição t de
Student

IC diferença 2 médias

Exercício 4 (cap 5)

Exercício 4 do cap 5

Os níveis séricos de um hormônio (fator Y) foram medidos em 100 mulheres não grávidas, e em 100 mulheres com até 3 meses de gravidez. Os ICs dos valores dos soros em ambos os grupos são:

Grávidas: [105.4, 114.6]

Não grávidas: [90.0, 96.0]

O fator Y médio é diferente em mulheres grávidas e não grávidas?

Requisito

Pelas premissas do IC da média, você tem informações suficientes para calcular/interpretar cada um destes ICs?

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

A distribuição t de Student

IC diferença 2 médias

Exercício 4 (cap 5)

Exercício 4 do cap 5

Os níveis séricos de um hormônio (fator Y) foram medidos em 100 mulheres não grávidas, e em 100 mulheres com até 3 meses de gravidez. Os ICs dos valores dos soros em ambos os grupos são:

Grávidas: [105.4, 114.6]

Não grávidas: [90.0, 96.0]

O fator Y médio é diferente em mulheres grávidas e não grávidas?

Requisito

Pelas premissas do IC da média, você tem informações suficientes para calcular/interpretar cada um destes ICs?

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

A distribuição t de Student

IC diferença 2 médias

Pense

Exercício 5.4

• Não grávidas: [90.0, 96.0]

• Grávidas: [105.4, 114.6]

Observações:

 O SEM informa quão bem você estimou a média de cada grupo

Os ICs não tem sobreposição ⇒ 2 populações diferentes

Pense...

Como comparar estes dois grupos?

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

A distribuição t de Student

IC diferença 2 médias

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- A distribuição t de Student
 - A distribuição t de Student
- Intervalo de Confiança da diferença entre duas médias
 - Interpretação
 - Participantes: pareados ou não pareados?
- Aprofundamento
 - Aprofundamento

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

t de Studen

IC diferença

Interpretação

Participantes: pareados ou não pareados?

Comparações entre 2 médias

 Frequentemente precisamos dividir os dados em dois grupos e comparar as médias.

 Isto pode ser usado para se estudar o efeito de um tratamento em relação a um grupo controle

 ou mesmo para se comparar dois tratamentos diferentes. Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da

de Student

C diferenca

Interpretação

Participantes: pareados ou não

Exercício 4 (cap 5)

Exercício 4 do cap 5

Os níveis séricos de um hormônio (fator Y) foram medidos em 100 mulheres não grávidas, e em 100 mulheres com até 3 meses de gravidez. Os ICs dos valores dos soros em ambos os grupos são:

Grávidas: [105.4, 114.6]

Não grávidas: [90.0, 96.0]

O fator Y médio é diferente em mulheres grávidas e não grávidas?

Requisito

Pelas premissas do IC da média, você tem informações suficientes para calcular/interpretar cada um destes ICs?

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

t de Student

IC diferença

Interpretação
Participantes:

Participantes: pareados ou não pareados?

Exercício 4 (cap 5)

Exercício 4 do cap 5

Os níveis séricos de um hormônio (fator Y) foram medidos em 100 mulheres não grávidas, e em 100 mulheres com até 3 meses de gravidez. Os ICs dos valores dos soros em ambos os grupos são:

Grávidas: [105.4, 114.6]

Não grávidas: [90.0, 96.0]

O fator Y médio é diferente em mulheres grávidas e não grávidas?

Requisito

Pelas premissas do IC da média, você tem informações suficientes para calcular/interpretar cada um destes ICs?

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

t de Student

IC diferença 2

Interpretação Participantes:

Participantes: pareados ou não pareados?

Quais são as variáveis?

- x₁ Hormônio não grávidas
- x₂ Hormônio grávidas (até 3 meses)
- Duas variáveis explícitas

Primeira alternativa

- $oldsymbol{0}$ "Explicar" a "relação" entre o hormônio x_2 e o hormônio x_1
- 2 Comparar x_2 (grupo de interesse) com x_1 (referência)

Esta relação pode ser expressa como

 $x_2 \sim x_1$

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

de Student

C diferença 2

Interpretação

Participantes: pareados ou não pareados?

Uma breve interrupção para mini-pânico

Comparando médias de 2 grupos

Felipe Figueiredo

aula passada

t de Studen

C diferença

Interpretação

Participantes: pareados ou não pareados?

Aprofundament

Suspense dramático...

Uma breve interrupção para mini-pânico

Se você prestou atenção até aqui...

Temos duas variáveis.

Portanto temos duas médias (trivial).

Mas também temos dois SEM!

Esta relação pode ser expressa como

horm. grávidas \sim horm. não grávidas

Mais precisamente

horm. grávid. = horm. não grávid. + Erro₁ + Erro₂

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da aula passada

de Student

C diferença 2

Interpretação Participantes:

pareados ou não pareados?

Uma breve interrupção para mini-pânico

Comparando médias de 2 grupos

> Felipe Figueiredo

aula passada

t de Studen

C diferença

Interpretação

Participantes: pareados ou não pareados?

Aprofundament

Duas médias, e dois erros?

Duas opções

Exercício 5.4

• Não grávidas: [90.0, 96.0]

• Grávidas: [105.4, 114.6]

Difícil

Calcular os dois ICs $(x_1 e x_2)$, e compará-los diretamente

Moleza

Calcular o IC da diferença (x_d) usando o método da aula passada

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

t de Student

C diferença 2

Interpretação

Participantes: pareados ou não

Duas opções

Exercício 5.4

• Não grávidas: [90.0, 96.0]

• Grávidas: [105.4, 114.6]

Difícil

Calcular os dois ICs $(x_1 e x_2)$, e compará-los diretamente

Moleza

Calcular o IC da diferença (x_d) usando o método da aula passada

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

t de Student

C diferença 2

Interpretação

pareados ou não pareados?

Neste caso podemos usar um truque para trocar um problema de 2 variáveis por outro de 1 variável.

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da aula passada

t de Student

C diferença

Interpretação

Participantes:

pareados ou não pareados?

Aprotundamen

2 grupos for dummies ®

Diferença entre 2 médias

- Comparar duas médias $\bar{x_1}$ e $\bar{x_2}$, consideramos a diferença média $\bar{x_d} = \bar{x_2} \bar{x_1}$
- Se $\bar{x_2}$ for maior que $\bar{x_1} \Rightarrow$ diferença média é positiva
- Se $\bar{x_2}$ for menor que $\bar{x_1} \Rightarrow$ a diferença média é negativa

Intuição

Raciocínio: se as médias forem aproximadamente iguais, a diferença média ($\bar{x_d}$) será próxima de zero

Pense em saldo

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

t de Student

nédias

Interpretação
Participantes:

Quais são as variáveis?

- x₁ Hormônio não grávidas
- x₂ Hormônio grávidas (até 3 meses)
- $d = x_2 x_1$ (uma variável)

Segunda alternativa (método da aula passada)

"Explicar" a "relação" entre a diferença d e a referência (**zero**)

Esta relação pode ser expressa como

 $d \sim 0$

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

de Student

IC diferença :

Interpretação

Participantes: pareados ou não pareados?

Quais são as variáveis?

Estratégia proposta

Temos duas variáveis.

Calculamos a diferença entre as médias e aplicamos o método da aula passada – IC de **uma** média.

moleza!

O que falta?

O que falta?

... precisamos do SEM da diferença.

Ou seja...

 $d = 0 + Erro_d$

Comparando médias de 2 grupos

> Felipe Figueiredo

aula passada

de Student

C diferença 2

Interpretação Participantes:

Participantes: pareados ou não pareados?

Quais são as variáveis?

Estratégia proposta

Temos duas variáveis.

Calculamos a diferença entre as médias e aplicamos o método da aula passada – IC de **uma** média.

moleza!

O que falta?

O que falta?

... precisamos do SEM da diferença.

Ou seja...

 $d = 0 + Erro_d$

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

de Student

IC diferença

Interpretação Participantes:

Participantes: pareados ou não pareados?

Aprofundame

Quais são as variáveis?

Estratégia proposta

Temos duas variáveis.

Calculamos a diferença entre as médias e aplicamos o método da aula passada – IC de **uma** média.

moleza!

O que falta?

O que falta?

... precisamos do SEM da diferença.

Ou seja...

d = 0 + Errod

Comparando médias de 2 grupos

> Felipe Figueiredo

ula passada

de Student

C diferença 2

Interpretação
Participantes:
pareados ou não

Aprofundame

profundamento

Uma breve interrupção para mini-pânico

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

t de Student

C diferenca

Interpretação

Participantes: pareados ou não pareados?

Aprofundament

SEM da diferença?

Erro padrão da diferença

- Lembre-se que para cada grupo: $SEM = \frac{s}{\sqrt{n}}$
- Para a diferença entre 2 grupos, "somamos" os SEM
- Mas esta "soma" não é direta!
- É preciso levar em conta o uso do quadrado/raiz quadrada do DP (aula de variabilidade⁴)

$$SE = \sqrt{SEM_1^2 + SEM_2^2}$$

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

de Student

nédias

Interpretação Participantes:

articipantes: areados ou não areados?

Aprofundamento

⁴não podemos somar DPs, mas podemos somar variâncias 🕟 💈 🔗 🔾

De volta à programação normal

Comparando médias de 2 grupos

> Felipe Figueiredo

aula passad

t de Studen

médias Interpretação

Participantes: pareados ou não pareados?

Aprofundament

Estratégia proposta

SEM da diferença.

Premissas

médias de 2 grupos Felipe Figueiredo

Comparando

Discussão da

t de Student

IC diferença

Interpretação

Participantes: pareados ou não

Aprofundament

- As amostras foram selecionadas aleatoriamente das respectivas populações
- As populações são Normais (Gaussianas)
- As duas populações possuem DP idênticos
- Todos os indivíduos de cada grupo vêm da mesma população
- Cada indivíduo é independente de todos os outros

Exercício 4 (cap 5)

Exercício 4 do cap 5

Os níveis séricos de um hormônio (fator Y) foram medidos em 100 mulheres não grávidas, e em 100 mulheres com até 3 meses de gravidez. Os ICs dos valores dos soros em ambos os grupos são:

Grávidas: [105.4, 114.6]

Não grávidas: [90.0, 96.0]

O fator Y médio é diferente em mulheres grávidas e não grávidas?

Requisito

Pelas premissas do IC da média, você tem informações suficientes para calcular/interpretar cada um destes ICs?

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

t de Student

IC diferença

Interpretação

Participantes: pareados ou não pareados?

profundament

Exercício 4 (cap 5)

Exercício 4 do cap 5

Os níveis séricos de um hormônio (fator Y) foram medidos em 100 mulheres não grávidas, e em 100 mulheres com até 3 meses de gravidez. Os ICs dos valores dos soros em ambos os grupos são:

Grávidas: [105.4, 114.6]

Não grávidas: [90.0, 96.0]

O fator Y médio é diferente em mulheres grávidas e não grávidas?

Requisito

Pelas premissas do IC da média, você tem informações suficientes para calcular/interpretar cada um destes ICs?

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

t de Student

C diferença 2

Interpretação
Participantes:

Participantes: pareados ou não pareados?

profundament

Bastidores do exercício 5.4/7.1

Diferenças: Exercício 5.4 (e 7.1)

- Média grávidas: $\bar{x_1} = 110 \text{ unidades/ml}$
- Média não grávidas: $\bar{x_2} = 93$ unidades/ml
- Diferença entre as médias: $\bar{x_d} = 17$ unidades/ml
- SEM da diferença: 2.75 unidades/ml
- $n_1 = 100, n_2 = 100$
- \bullet df = (100 -1) + (100 1) = 198
- $t^* = 1.97$ (valor crítico tabelado)

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da aula passada

t de Student

IC diferença 2

Interpretação
Participantes:

pareados ou não pareados?

Aprofundamento

Solução do exercício 5.4/7.1

Bastidores: Exercício 5.4 (e 7.1)

- Média grávidas: $\bar{x_1} = 110 \text{ unidades/ml}$
- Média não grávidas: $\bar{x_2} = 93$ unidades/ml
- Diferença entre as médias: $\bar{x}_d = 17$ unidades/ml
- SEM da diferenca: 2.75 unidades/ml
- $n_1 = 100, n_2 = 100$
- \bullet df = (100 -1) + (100 1) = 198
- $t^* = 1.97$ (valor crítico tabelado)

Resultado: IC da diferença

[11.6, 22.4] unidades/ml

E o que isso significa?

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da aula passada

t de Student

C diferença

Interpretação
Participantes:

Participantes: pareados ou não pareados?

Aprofundament

Solução

Interpretação

Estamos 95% *confiantes* que a diferença real entre os grupos está entre 11,6 e 22,4.

Conclusão ("nossos dados indicam que...")

o (...) fator Y de uma (...) grávida é (...) 17 unidades/ml maior que uma (...) não grávida (variando entre 11,6 e 22,4 unidades/ml).

Pense..

Preencha as lacunas acima.

Comparando médias de 2 grupos

> Felipe Figueiredo

aula passada

de Student

C diferença 2

Interpretação

Participantes:

pareados ou não pareados?

Aprolundamen

Solução

Interpretação

Estamos 95% *confiantes* que a diferença real entre os grupos está entre 11,6 e 22,4.

Conclusão ("nossos dados indicam que...")

o (...) fator Y de uma (...) grávida é (...) 17 unidades/ml maior que uma (...) não grávida (variando entre 11,6 e 22,4 unidades/ml).

Pense...

Preencha as lacunas acima.

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

de Student

C diferença 2

Interpretação

Participantes:

pareados ou não pareados?

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- A distribuição t de Student
 - A distribuição t de Student
- 3 Intervalo de Confiança da diferença entre duas médias
 - Interpretação
 - Participantes: pareados ou não pareados?
- Aprofundamento
 - Aprofundamento

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

t de Student

IC diferença

Interpretação
Participantes:
pareados ou não
pareados?

Aprofundament

Grupos não pareados x pareados

Grupos não pareados

- Até agora assumimos que os grupos e participantes são independentes
- A única coisa que podemos fazer: comparação global
- ... a média do grupo A × a média do grupo B

Grupos pareados

- Existe um caso importante em que pode-se considerar que eles são dependentes: quando são pareados
- Isto é: cada participante de um grupo tem um correspondente no outro
- ... diferença entre cada par ⇒ média das diferenças

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

de Student

C diferença 2

Interpretação
Participantes:
pareados ou não
pareados?

Aprofundamento

Grupos pareados

Quando faz sentido parear indivíduos de dois grupos?

- Mensurar o mesmo individuo antes e depois do procedimento (baseline x intervenção)
- Recrutamento aos pares, quando o par tem a(o) mesma(o)
 - idade/faixas etária
 - região demográfica
 - diagnóstico
- irmãos, pai/filho
- lateralidade (tratamento = lado E, controle = lado D)

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

de Student

IC diterença médias

Participantes: pareados ou não pareados?

Aprofundament

Exemplo 7.2

Ye e Grantham (1993) estudaram o mecanismo de absorção de fluido em cistos renais removidos de pacientes com doença renal policística. Incubaram os cistos em meio de cultura celular e mediram a diferença de peso em cada cisto (antes e depois da incubação).

Não pareado

- peso médio (todos, antes) = 6.51g (SEM 2.26g)
 - peso médio (todos, depois) = 7.02g (SEM 2.40g)
- 3 IC 95% [-6.48, 7.50

Pareado

- ganho em cada cisto ⇒ depois antes
- 2 ganho médio dos cistos = 0.50g (SEM 0.23g).
- 3 IC 95% [-0.03, 1.04]

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

t de Student

IC diferença

Interpretação
Participantes:
pareados ou não
pareados?

Aprofundamen

Exemplo 7.2

Ye e Grantham (1993) estudaram o mecanismo de absorção de fluido em cistos renais removidos de pacientes com doença renal policística. Incubaram os cistos em meio de cultura celular e mediram a diferença de peso em cada cisto (antes e depois da incubação).

Não pareado

- peso médio (todos, antes) = 6.51g (SEM 2.26g)
- 2 peso médio (todos, depois) = 7.02g (SEM 2.40g)
- 3 IC 95% [-6.48, 7.50]

Pareado

- ganho em cada cisto ⇒ depois antes
- 2 ganho médio dos cistos = 0.50g (SEM 0.23g).
- (3) IC 95% [-0.03, 1.04]

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da aula passada

de Student

IC diferença :

Interpretação
Participantes:
pareados ou não
pareados?

havafı malamanık

Exemplo 7.2

Ye e Grantham (1993) estudaram o mecanismo de absorção de fluido em cistos renais removidos de pacientes com doença renal policística. Incubaram os cistos em meio de cultura celular e mediram a diferença de peso em cada cisto (antes e depois da incubação).

Não pareado

- peso médio (todos, antes) = 6.51g (SEM 2.26g)
- peso médio (todos, depois) = 7.02g (SEM 2.40g)
- 3 IC 95% [-6.48, 7.50

Pareado

- ganho em cada cisto ⇒ depois antes
- 2 ganho médio dos cistos = 0.50g (SEM 0.23g).
- 3 IC 95% [-0.03, 1.04]

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

de Student

C diferença

Interpretação
Participantes:
pareados ou não
pareados?

Aprofundamen

Exemplo 7.2

Ye e Grantham (1993) estudaram o mecanismo de absorção de fluido em cistos renais removidos de pacientes com doença renal policística. Incubaram os cistos em meio de cultura celular e mediram a diferença de peso em cada cisto (antes e depois da incubação).

Não pareado

- peso médio (todos, antes) = 6.51g (SEM 2.26g)
- 2 peso médio (todos, depois) = 7.02g (SEM 2.40g)
- 3 IC 95% [-6.48, 7.50]

Pareado

- ganho em cada cisto ⇒ depois antes
- 2 ganho médio dos cistos = 0.50g (SEM 0.23g).
- IC 95% [-0.03, 1.04]

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

de Student

C diferença 2

Interpretação
Participantes:
pareados ou não
pareados?

.profundament

IPC

Comparando médias de 2 grupos

> Felipe Figueiredo

aula passada

t de Student

IC diferenca :

nterpretação

Participantes: pareados ou não pareados?

profundament

A escolha entre grupos pareados e grupos não pareados é estratégica (planejamento do estudo), e não uma questão de "preferência".

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- A distribuição t de Student
 - A distribuição t de Student
- 3 Intervalo de Confiança da diferença entre duas médias
 - Interpretação
 - Participantes: pareados ou não pareados?
- 4 Aprofundamento
 - Aprofundamento

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

t de Studen

IC diferença

Aprofundamento
Aprofundamento

Aprofundamento

Comparando médias de 2 grupos

> Felipe Figueiredo

Discussão da aula passada

t de Student

C diferença

Aprofundamer Aprofundamento

Leitura recomendada

ICH - E10 Choice of Control Group in Clinical Trials

- Seção 2.1 (Placebo Control)
- Cap. 3 (CHOOSING THE CONCURRENT CONTROL GROUP)

http://www.ich.org (este link é clicável)

Aprofundamento

Leitura obrigatória

Capítulo 5. Seção: A distribuição t

Capítulo 7: Pular as seções

- Cálculo do IC de grupos independentes
- Cálculo do IC de grupos pareados

Exercícios de fixação

Interprete explicitamente todas as suas respostas.

Oap 5: Exercício 4, 5 itens:

• A (IC = [1200.7, 1205.3])

• D (IC =[1201.1, 1204.9]).

• Cap 7: exercícios 1, 2 (IC = [5.271, 10.129]).

Comparando médias de 2 grupos

Felipe Figueiredo

Discussão da aula passada

de Student

C diferença 2 nédias

Aprofundamento

Aprofundamento

4 D > 4 A > 4 E > 4 E > 9 Q P