- 1. 已知 4 阶行列式 D 的第 3 行元素分别是-1,0,2,4,第 4 行元素对应的余子式依次是 5,10,a,4,求 a 的值。
- 解: 因为 $a_{31}A_{41}+a_{32}A_{42}+a_{33}A_{43}+a_{34}A_{44}=0$, 这里 a_{ij} 和 A 分别是第 i 行第 j 列处的元素和该元素的代数余子式, 所以有 $-1\times(-5)+0\times10+2\times(-a)+4\times4=0$, 可得 $a=\frac{21}{2}$

2. 已知矩阵
$$A,B$$
 满足关系 $AB-B=A$, 其中 $B=\begin{pmatrix} 1 & -2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, 求矩阵 A .

解: 因为
$$AB - A = B$$
, 所以 $A(B - E) = B$, $A = B(B - E)^{-1} = \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

3. 设
$$A^*$$
 为 3 阶方阵 A 的伴随矩阵, $|A|=2$, 计算行列式 $|(3A)^{-1}-\frac{1}{2}A^*|$

解:
$$|(3A)^{-1} - \frac{1}{2}A^*| = |\frac{1}{3}A^{-1} - A^{-1}| = |-\frac{2}{3}A^{-1}| = (-\frac{2}{3})^3|A^{-1}| = -\frac{4}{27}$$

4. 如果多项式
$$f(x),g(x)$$
 不全为零,证明: $\frac{f(x)}{(f(x),g(x))}$ 与 $\frac{g(x)}{(f(x),g(x))}$ 互素。

- 5. 证明: x_0 是 f(x) 的 k 重根的充分必要条件是 $f(x_0) = f'(x_0) = \cdots = f^{k-1}(x_0) = 0$ 而 $f^k(x_0) \neq 0$
- 证: **必要性**: 设 x_0 是 f(x) 的 k 重根。那么 x_0 是 f'(x) 的 k-1 重根,,是 $f^{t-1}(x)$ 的 1 重根, 是 f'(x) 的 0 重根, 即不是 $f^*(x)$ 的根

所以
$$f(x_0) = f'(x_0) = \cdots = f^{k-1}(x_0) = 0$$
, 而 $f^k(x_0) \neq 0$.

充分性: 设
$$f(x_0) = f'(x_0) = \cdots = f^{t-1}(x_0) = 0$$
 而 $f'(x_0) \neq 0$. 设 x_0 是 $f(x)$ 的 1 重根 由必要性的证明 $f(x_0) = f'(x_0) = \cdots = f'^{-1}(x_0) = 0$ 而 $f'(x_0) \neq 0$. 从而 $l = k$.

6. 二次型 $f(x_1, x_2, x_3) = (x_1 + x_2)^2 + (x_2 + x_3)^2 - (x_3 - x_1)^2$ 的正贯性指数与负惯性指数依次为 (A)2, 0 (B)1, 1 (C)2, 1 (D)1, 2

解:
$$f(x_1, x_2, x_3) = (x_1 + x_2)^2 + (x_2 + x_3)^2 - (x_3 - x_1)^2 = 2x_2^2 + 2x_1x_2 + 2x_2x_3 + 2x_1x_3$$

所以
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
, 故特征多项式为

$$|\lambda E - A| = \begin{vmatrix} \lambda & -1 & -1 \\ -1 & -2 & -1 \\ -1 & -1 & \lambda \end{vmatrix} = (\lambda + 1)(\lambda - 3)\lambda$$

令上式等于零,故特征值为 -1,3,0,故该二次型的正惯性指数为 1,负惯性指数为 1,故选 B.

- 7. 设 3 阶矩阵 $\mathbf{A} = (\alpha_1, \alpha_2, \alpha_3)$, $B = (\beta_1, \beta_2, \beta_3)$, 若向量组 $\alpha_1, \alpha_2, \alpha_3$ 可以由向量组 β_1, β_2 线性表出,则
 - (A) Ax = 0 的解均为 Bx = 0 的解.
 - (B) $A^T x = 0$ 的解均为 $B^T x = 0$ 的解.
 - (C) Bx = 0 的解均为 Ax = 0 的解.
 - (D) $B^{T}x = 0$ 的解均为 $A^{T}x = 0$ 的解.
- 解: 令 $A = (a_1, a_2, a_3)$, $B = (\beta_1, \beta_2, \beta_3)$, 由题 a_1, a_2, a_3 可由 $\beta_1, \beta_2, \beta_3$ 线性表示,即存在矩阵 A, 使得 BP = A, 则当 $B^T x_0 = 0$ 时, $A^T x_0 = (BP)^T x_0 = p^T B^T x_0 = 0$. 恒成立,即选 D.

8. 已知
$$\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$, 记 $\beta_1 = \alpha_1, \beta_2 = \alpha_2 - k\beta_1, \beta_3 = \alpha_3 - l_1\beta_1 - l_2\beta_2$, 若 $\beta_1, \beta_2, \beta_3$ 两两正交,则 l_1, l_2 依次为

(A)
$$\frac{5}{2}, \frac{1}{2}$$
. (B) $-\frac{5}{2}, \frac{1}{2}$. (C) $\frac{5}{2}, -\frac{1}{2}$. (D) $-\frac{5}{2}, -\frac{1}{2}$.

解: 利用斯密特正交化方法知

$$\beta_{2} = \alpha_{2} - \frac{|\alpha_{2}, \beta_{1}|}{|\beta_{1}, \beta_{1}|} \beta_{1} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

$$\beta_{3} = \alpha_{3} - \frac{|\alpha_{3}, \beta_{1}|}{|\beta_{1}, \beta_{1}|} \beta_{1} - \frac{|\alpha_{3}\beta_{2}|}{|\beta_{2}, \beta_{2}|} \beta_{2}$$
故 $l_{1} = \frac{|\alpha_{3}, \beta_{1}|}{|\beta_{1}, \beta_{1}|} = \frac{5}{2}, l_{2} = \frac{|\alpha_{3}, \beta_{2}|}{|\beta_{2}, \beta_{2}|} = \frac{1}{2},$ 故选A

故
$$C = A_{13} + A_{23} + A_{33} + A_{43}$$
,而计算可得 $C = \begin{bmatrix} -1 & 2 & 1 & 4 \\ 1 & 2 & 1 & 2 \\ 1 & 1 & 1 & 1 \\ 4 & 7 & 1 & 3 \end{bmatrix} = 2$. 所以 $A_{13} + A_{23} + A_{33} + A_{t} = 2$.

解: 按第一列展开得:

$$\begin{vmatrix} a_1 & b_1 & 0 & \cdots & 0 & 0 \\ 0 & a_2 & b_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{s-1} & b_{z-1} \\ b_n & 0 & 0 & \cdots & 0 & a_n \end{vmatrix} = a_1 \begin{vmatrix} a_2 & b_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{n-1} & b_{n-1} \\ 0 & 0 & \cdots & 0 & a_n \end{vmatrix}$$

 + $(-1)^{n+1}b$

$$\begin{vmatrix} b_1 & 0 & \cdots & 0 & 0 \\ a_2 & b_2 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & a_{n-1} & b_{n-1} \end{vmatrix} = a_1a_2 \cdots a_n + (-1)^{n+1}b_1b_2 \cdots b_n$$

$$+ (-1)^{n+1}b \begin{vmatrix} b_1 & 0 & \cdots & 0 & 0 \\ a_2 & b_2 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & a_{n-1} & b_{n-1} \end{vmatrix} = a_1a_2 \cdots a_n + (-1)^{n+1}b_1b_2 \cdots b_n$$

- 11. 已知实多项式 $f(x) = x^4 + 2x^3 x^2 4x 2$, $g(x) = x^4 + x^3 x^2 2x 2$.
 - (1) 求 f(x) 的全部有理根及相应重数.
 - (2) 求 f(x) 与 g(x) 的首一的最大公因式 (f,g).

解: (1) 令
$$x = -1$$
, 有 $f(-1) = 0$, 说明 $x + 1 \mid f(x)$.
可得 $f(x) = (x+1)(x^3 + x^2 - 2x - 2)$, 同样可以验证 $x + 1 \mid x^3 + x^2 - 2x - 2$,
所以 $f(x) = (x+1)^2(x^2 - 2)$, 故 $f(x)$ 有二重有理根 $x = -1$.

(2) 因为

$$g(x) = x^4 - 2x^2 + x^3 - 2x + x^2 - 1 = x^2(x^2 - 2) + x(x^2 - 2) + (x^2 - 2) = (x^2 - 2)(x^2 + x + 1)$$

因为 $((x+1)^2, x^2+x+1)=1$, 所以

$$(f(x), g(x)) = x^2 - 2.$$

12. 设 3 阶复矩阵 $A = \begin{pmatrix} 2 & 3 & 2 \\ 1 & 8 & 2 \\ -2 & -14 & -3 \end{pmatrix}$,定义 C^3 上的线性变换 σ 为: $\sigma(\alpha) = A\alpha$,对任意的 $\alpha \in C^3$.求 σ

的最小多项式以及 Jordan 标准形.

解: 取 C^3 的自然基 e_1, e_2, e_3 ,则有 $\sigma(e_1) = Ae_1, \sigma(e_2) = Ae_2, \sigma(e_3) = Ae_3$,那么 $(\sigma(e_1), \sigma(e_2), \sigma(e_3)) = (e_1, e_2, e_3)A$,所以 σ 在基 e_1, e_2, e_3 下的矩阵是 A. 所以只需求 A 的极小多项式和若当标准形. 先求 $\lambda E - A$ 的初等因子,注意到 $(\lambda E - A)$ 存在二阶行列式

$$\begin{vmatrix} -3 & -2 \\ \lambda - 8 & -2 \end{vmatrix} = 2\lambda - 10, \quad \begin{vmatrix} -1 & \lambda - 8 \\ 2 & 14 \end{vmatrix} = 2 - 2\lambda$$

并且 $(\lambda - 5, 1 - \lambda) = 1$,从而 $(\lambda E - A)$ 的二阶不变因子是 1. 又

$$|\lambda E - A| = (\lambda - 1)(\lambda - 3)^2$$

所以 $(\lambda E - A)$ 的标准形为

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (\lambda - 1)(\lambda - 3)^2 \end{pmatrix}$$

从而 A 的初等因子为 $\lambda - 1, (\lambda - 3)^2$ 故 A 的若当标准形为

$$\begin{pmatrix} 1 & & \\ & 3 & \\ & 1 & 3 \end{pmatrix}$$

其最小多项式

$$m_A(\lambda) = \lambda - 1, (\lambda - 3)^2$$

13. 记 $R[x]_5$ 为次数小于 5 的实多项式全体构成的向量空间,在 $R[x]_5$ 上定义双线性函数如下

$$(f(x),g(x)) = \int_{-1}^{1} f(x)g(x)dx$$

- (1) 证明:上式定义了 $R[x]_5$ 上一个正定的对称双线性函数.
- (2) 用 Gram-Schmidt 方法由 $1, x, x^2, x^3$ 求 $R[x]_5$ 的一个正交向量组.
- (3) 求一个形如 $f(x) = a + bx^2 x^4$ 的多项式, 使它与所有次数低于 4 的实多项式正交.

证明: $(1)\forall f(x), g(x) \in R[x]_5$, 有

$$(f(x), g(x)) = \int_{-1}^{1} f(x)g(x)dx = \int_{-1}^{1} g(x)f(x)dx = (g(x), f(x))$$

其二次型

$$q(f(x)) = (f(x), f(x)) = \int_{-1}^{1} f(x)^{2} dx > 0$$

对任意的 $f(x) \in R[x]_5$ 且 $f(x) \neq 0$ 成立,因而 (f(x), g(x)) 是正定的对称双线性函数.

(2) 利用 Gram-Schmidt 方法和根据内积的运算,容易算出正交向量组,

$$1, x, x^2, -\frac{1}{3}, x^3, -\frac{3}{5}x.$$

(3) 取次数低于 4 的实多项式的一组基 $1, x, x^2, x^3$,只需要 f(x) 与 $1, x, x^2, x^3$ 都正交即可. 注意到 f(x) 是偶函数,所以只要与 $1, x^2$ 正交即可.

$$(1, f(x)) = \int_{-1}^{1} f(x)dx = 2a + \frac{2}{3}b - \frac{2}{5} = 0$$

$$(x^2, f(x)) = \int_{-1}^{1} x^2 f(x) dx = \frac{2}{3}a + \frac{2}{5}b - \frac{2}{7} = 0$$

解得 $a = -\frac{1}{5}, b = \frac{6}{7}$.

- 14. 设 $A, B \in M_n(C)$ 为幂等矩阵,即 $A^2 = A, B^2 = B$.
- (1) 证明: A B 是幂等矩阵当且仅当 AB = BA = B.
- (2) 证明: 若 AB = BA,则 AB 为幂等矩阵.

反之, 若 AB 为幂等矩阵, 是否必有 AB = BA? 试证明或给出反例.

证明: (1) 充分性

A - B 是幂等矩阵,则 $(A - B)^2 = (A - B)$,有

$$(A - B)^2 = A^2 - AB - BA + B^2 = A - B$$

依题意, $A^2 = A, B^2 = B$, 有

$$2B = AB + BA$$

两边左乘以A有

$$2AB = A^2B + ABA = AB + ABA \Rightarrow AB = ABA$$

两边右乘以 A 有

$$2BA = ABA + BA^2 = ABA + BA \Rightarrow BA = ABA$$

从而 B = AB = BA.

必要性的证明是显然的.

(2) 若 AB = BA,则

$$(AB)^2 = ABAB = A(BA)B = A(AB)B = A^2B^2 = AB$$

从而幂等.

取

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},$$

那么

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, (AB)^2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}^2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

从而 AB 是满足幂等的. 但是

$$BA = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \neq AB.$$

15. 设 A_1, \dots, A_m 为 m 个两两可换的互不相同的 n 阶实对称矩阵,且

$$tr(A_i A_j) = \delta_{ij}, 1 \le i, j \le n,$$

这里 tr(A) 表示矩阵 A 的迹,即它的对角元之和,试证明 $m \le n$.

证明: 因为 A_1, A_2, \cdots, A_m 是 m 个两两可换的互不相同的 n 阶实对称矩阵, 所以存在一个 n 阶正交矩阵 P 使得 P^TA_iP 都是对角阵.

记 $P^TA_iP = diag(\lambda_{i1}, \lambda_{i2}, \cdots, \lambda_{in})$,其中 $i = 1, 2, \cdots, m$. 根据题意

$$tr(A_i A_j) = \delta_{ij} = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$$

由 tr 的性质,

$$tr(A_iA_j) = tr(A_iP^TPA_jPP^T) = tr(P^TA_iPP^TA_jP) = \sum_{k=1}^n \lambda_{ik}\lambda_{jk},$$

记 $u_i = (\lambda_{i1}, \lambda_{i2}, \cdots, \lambda_{in})$,则有

$$(u_i, u_j) = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$$

因此 u_1, u_2, \cdots, u_m 是一组标准正交组,从而其个数小于 R^n 的维数,即有

$$m \leq n$$
.