Detecting Shapes in Cluttered Images

CSE 6367 – Computer Vision Vassilis Athitsos University of Texas at Arlington

Objects With Variable Shape Structure

Objects with parts that can:

- Occur an unknown number of times.
 - · Leaves, comb teeth.
- Be not present at all.
 - Leaves, comb teeth, fingers.
- Have alternative appearances.
 - Fingers.

Other Examples

Satellite Imaging

boat pier

parking lot

residential neighborhood

Roadways

highway exits

Other Examples

Medical Imaging

ribs & bronchial tree

Goal: Detection in Cluttered Images

Deformable Models Not Adequate

- Shape Modeling:
 - "Shape deformation" ≠ "structure variation"

Limitations of Fixed-Structure Methods

 A different model is needed for each fixed structure.

Limitations of Fixed-Structure Methods

 Worst case: number of models is exponential to number of object parts.

Overview of Approach

- Hidden Markov Models (HMMs) can *generate* shapes of variable structure.
- HMMs cannot be matched to an image.
 - Image features are not ordered.
 - Many (possibly most) features are clutter.
- Solution: Hidden State Shape Models.

An HMM for Branches of Leaves

- Each box is a state.
- Arrows show legal state transitions.

An HMM for Branches of Leaves

- · Each box is a state.
- For each state there is a probability distribution of shape appearance.

- Choose a legal initial state.
- Choose a shape from the state's shape distribution.

- Choose a legal initial state.
- Choose a shape from the state's shape distribution.

- Choose a legal initial state.
- Choose a shape from the state's shape distribution.

- Choose a legal transition to a next state.
- Choose a shape from the next state's shape distribution.

- Choose a legal transition to a next state.
- Choose a shape from the next state's shape distribution.

- Choose a legal transition to a next state.
- Choose a shape from the next state's shape distribution.

- Choose a legal transition to a next state.
- Choose a shape from the next state's shape distribution.

- Choose a legal transition to a next state.
- Choose a shape from the next state's shape distribution.

- Choose a legal transition to a next state.
- Choose a shape from the next state's shape distribution.

 Choose a shape from the next state's shape distribution.

Can stop when at a legal end state.

An HMM for Handshapes

- Each circle is a state (object part).
- Arrows show legal state transitions.

Matching Observations via DTW

 Given a sequence of shape parts, what is the optimal sequence of corresponding states?

Matching Observations via DTW

 Given a sequence of shape parts, what is the optimal sequence of corresponding states?

Matching Observations via DTW

 The Viterbi algorithm produces a globally optimal answer.

DTW/HMMs Cannot Handle Clutter

clean image, DTW/HMM can ordered → parse the observations

cluttered image, unordered observations

Key Challenges in Clutter

- The observations are not ordered.
- Many (possibly most) observations should not be matched.
- Solution: Hidden State Shape Models (HSSMs).
 - Extending HMMs and the Viterbi algorithm to address clutter.

Inputs

- Shape parts.
- Legal transitions.
- Initial/end states.
- More...

possible leaf locations

possible stem locations

Possible matches for each model state.

possible leaf locations

possible stem locations

oriented edge pixels

- Output: Registration.
 - $((Q_1, O_1), (Q_2, O_2), ..., (Q_T, O_T)).$
 - Sequence of matches. Q_i: model state. : O_i feature.
 - Model states tell us the structure.
 - Features tell us the location.

Q₁: stem

- Output: Registration.
 - $((Q_1, O_1), (Q_2, O_2), ..., (Q_T, O_T)).$
 - Sequence of matches. Q_i: model state. : O_i feature.
 - Model states tell us the structure.
 - Features tell us the location.

Q₂: left leaf

- Output: Registration.
 - $((Q_1, O_1), (Q_2, O_2), ..., (Q_T, O_T)).$
 - Sequence of matches. Q_j: model state. : O_j feature.
 - Model states tell us the structure.
 - Features tell us the location.

Q₃: stem

- Output: Registration.
 - $((Q_1, O_1), (Q_2, O_2), ..., (Q_T, O_T)).$
 - Sequence of matches. Q_i: model state. : O_i feature.
 - Model states tell us the structure.
 - Features tell us the location.

Q₄: right leaf

- Output: Registration.
 - $((Q_1, O_1), (Q_2, O_2), ..., (Q_T, O_T)).$
 - Sequence of matches. Q_j: model state. : O_j feature.
 - Model states tell us the structure.
 - Features tell us the location.

Algorithm Input/Output

• Input: Set of K image features {F₁, F₂, ..., F_K}.

- Output: Registration.
 - $((Q_1, O_1), (Q_2, O_2), ..., (Q_T, O_T)).$
 - Sequence of matches. Q_j: model state. : O_j feature.
 - Model states tell us the structure.
 - Features tell us the location.

some possible registrations

optimal registration

- Number of possible registrations is exponential to number of image features.
 - Evaluating each possible registration is intractable.
- We can find optimal registration in polynomial time (quadratic/linear to the number of features).
 - Using dynamic programming (modified Viterbi).

Evaluating a Registration

- Registration:
 - $-((Q_1, O_1), (Q_2, O_2), (Q_3, O_3), (Q_4, O_4), ..., (Q_T, O_T)).$
- Probability is product of:
 - $-I(Q_1)$: prob. of initial state.
 - $B(Q_j, O_j)$: prob. of feature given model state.
 - $A(Q_j, Q_{j+1})$: prob. of transition from Q_j to Q_{j+1} .
 - $D(Q_j, O_j, Q_{j+1}, O_{j+1})$: prob. of observing O_{j+1} given state = Q_{j+1} , and given previous pair (Q_j, O_j) .
 - Not in HMMs, because there the order is known.

optimal registration

- Dynamic Programming algorithm:
 - Break up problem into smaller, interdependent problems.
- Definition: W(i, j, k) is the optimal registration such that:
 - Registration length is j.
 - $-Q_j = S_i$.
 - $-O_j = F_k$.
- Optimal registration:
 - W(i, j, k) with highest probability, such that
 Q_i is a legal end state.

Suffices to compute all W(i, j, k).

Q₄: right leaf

- W(i, j, k): highest prob. registration such that:
 - Registration length is j.
 - $-Q_{i} = S_{i}$.
 - $-O_{i} = F_{k}$.
- W(i, 1, k) is trivial: only one choice.
 - Registration consists of pairing S_i with F_k.
 - Cost: $I(S_i) + B(S_i, F_k)$:
- W(i, 2, k) is non-trivial: we have choices.
 - Registration: $((Q_1, O_1), (Q_2, O_2))$
 - $Q_2 = S_i, O_2 = F_k.$
 - What we do not know: Q₁, O₁.
 - We can try all possible (Q₁, O₁), not too many.

- W(i, 3, k): even more choices.
 - Registration: $((Q_1, O_1), (Q_2, O_2), (Q_3, O_3))$
 - $Q_3 = S_i, O_3 = F_k.$
 - What we do not know: Q_1 , O_1 , Q_2 , O_2 .
- Here we use dynamic programming.
 - W(i, 3, k) = ((Q₁, O₁), (Q₂, O₂), (Q₃, O₃)) implies that W(i', 2, k') = ((Q₁, O₁), (Q₂, O₂)).
 - If we have computed all W(i, 2, k), the number of choices for W(i, 3, k) is manageable.
- This way we compute W(i, j, k) for all j.
 - The number of choices does no increase with j.

Unknown-scale Problem

What is the length of the optimal registration?

- Probability decreases with registration length.
 - HMMs are biased towards short registrations

Unknown-scale Problem

What is the length of the optimal registration?

- Probability decreases with registration length.
 - HMMs are biased towards short registrations

Handling Unknown Scale

Registration:

 $-((Q_1, O_1), (Q_2, O_2), (Q_3, O_3), (Q_4, O_4), ..., (Q_T, O_T)).$

Probability is product of:

- $-I(Q_1)$: prob. of initial state.
- $B(Q_j, O_j)$: prob. of feature given model state.
- $A(Q_j, Q_{j+1})$: prob. of transition from Q_i to Q_{j+1} .
- D(Q_j, O_j, Q_{j+1}, O_{j+1}): prob. of observing O_{j+1} given state = Q_{j+1}, and given previous pair (Q_j, O_j).

Handling Unknown Scale

- Registration:
 - $-((Q_1, O_1), (Q_2, O_2), (Q_3, O_3), (Q_4, O_4), ..., (Q_T, O_T)).$
- Probability is product of:
 - $-I(Q_1)$: prob. of initial state.
 - B(Q_j, O_j): prob. of feature given model state.
 - $A(Q_j, Q_{j+1})$: prob. of transition from Q_i to Q_{i+1} .
 - D(Q_j, O_j, Q_{j+1}, O_{j+1}): prob. of observing O_{j+1} given state = Q_{j+1}, and given previous pair (Q_j, O_j).

Handling Unknown Scale

- Before: B(Q_i, O_i): prob. of feature given state.
 - Adding a feature decreases registration probability.
- Now: B(Q_i, O_i) is a ratio:

$$P(O_j | Q_j)$$
 $P(O_i | clutter)$

- $-B(Q_j, O_j)$ can be greater or less than 1.
- Adding a feature may increase or decrease registration probability.
- Bias towards short registrations is removed.

- Before: probability depended only on features matched with the model.
 - Fewer features → higher probability.
- The probability function should consider the entire image.
 - Features matched with model.
 - Features assigned to clutter.

- For every feature, does it match better with the model or with clutter?
 - Compute $P(F_k | clutter)$.
- Given a registration R, define:
 - C(R): set of features left out.
 - F: set of all image features.
- Total probability:
 - P(registration) P(C(R) | clutter)).

C(R): gray F: gray/black

- Given a registration R, define:
 - C(R): set of features left out.
 - F: set of all image features.
- Total probability:
 - P(registration) P(C(R) | clutter))

proportional to:

P(registration) P(C(R) | clutter))

P(F | clutter))

C(R): gray F: gray/black

Goal: maximize

P(registration) P(C(R) | clutter))

P(F | clutter))

- Equal to product of:
 - $-I(Q_1)$: prob. of initial state.

$$- B(Q_j, O_j): \frac{P(O_j | Q_j)}{P(O_j | clutter)}$$

- $A(Q_j, Q_{j+1})$: prob. of transition from Q_i to Q_{j+1} .
- D(Q_j, O_j, Q_{j+1}, O_{j+1}): prob. of observing O_j given state = Q_j, and given previous pair (Q_{j+1}, O_{j+1}).

C(R): gray F: gray/black

Experiments

- Datasets:
 - 353 hand images.
 - 100 images of branches.
- Methods.
 - HSSM: known scale.
 - HSSM+CM: unknown scale, with clutter modeling.
 - HSSM+CM+SEG: unknown scale, with clutter modeling + segmental model.
- Time: 8 different orientations.
 - 2-3 minutes per images for HSSM and HSSM+CM.
 - <30 minutes per images for HSSM+CM+SEG.</p>

Results on Hands

	Chamfer	Oriented Chamfer	HSSM
Correct recognition	4%	22%	34%
Correct localization	35%	55%	60%

Chamfer Matching

HSSM

Results on Hands

	HSSM	HSSM+CM	HSSM+CM+SEG
Correct recognition	34%	59%	70%
Correct localization	60%	85%	95%

HSSM

HSSM +CM

Results on Hands

	HSSM	HSSM+CM	HSSM+CM+SEG
Correct recognition	34%	59%	70%
Correct localization	60%	85%	95%

HSSM + CM

HSSM +CM+SEG

Results on Branches

	HSSM
Correct recognition	43%
Correct localization	79%

correct recognition with HSSM

Results on Branches

	HSSM	HSSM+CM	HSSM+CM+SEG
Correct recognition	43%	65%	N/A
Correct localization	79%	98%	N/A

HSSM

HSSM +CM

Recap

- HSSMs model objects of variable shape structure.
- Key advantages:
 - A single variable-shape model, vs. one model for each shape structure (exponential worst-case complexity).
 - Detection can tolerate very large amounts of clutter.
 - Object features can be a very small fraction of all features.
 - Optimal registration length found automatically.
 - Scale dependency between parts is captured using a segmental model.