Semantic Theory 2025: Exercise 8 Key

Question 1

Consider the following sentences:

- i. Susan reads an article.
- ii. <u>The team</u> does not win every match.
- iii. If someone goes to a casino, they will lose money.
- a. Give DRS representations for each of these sentences. $\underline{\text{Underlined}}$ terms can be treated as named entities.

i.

x y

x = susan
article(y)
read(x, y)

ii.

iii.

- b. Determine for each DRS which discourse referents are available for anaphoric reference (i.e. from a subsequent sentence).
 - i. $\{x, y\}$
 - ii. $\{x\}$
 - iii. Ø
- c. Give the truth-conditions for the DRS corresponding to (iii). Use the verifying embeddings to arrive at the model-theoretic interpretation.

The DRS $K=(U_K,C_K)$ is true in a model $M=(U_M,V_M)$ iff there exists $f\colon U_D \nrightarrow U_M$ such that:

- 1. $U_K \subseteq dom(f)$: $U_K = \emptyset$, so this condition is always (trivially) satisfied.
- 2. f verifies K in M: $f \models_M K$

Let $K_1 = (\{x,y\}, \{person(x), casino(y), go-to(x,y)\})$ and $K_2 = (\{z\}, \{z = money, lose(x,z)\})$. Then $f \models_M K$ iff for all $g_1 \supseteq_{U_K} f$ (always trivially true) such that $g_1 \models_M K_1$, there is a $g_2 \supseteq_{\{x,y\}} g_1$ such that $g_2 \models_M K_2$.

- i.e. for every $g_1 \colon U_D \to U_M$ such that:
- 1. $g_1(x) \in V_M(person)$
- 2. $g_1(y) \in V_M(casino)$
- 3. $(g_1(x), g_1(y)) \in V_M(go-to)$

there is some $g_2 \colon U_D \to U_M$ such that:

- 1. $g_2(x) = g_1(x)$ and $g_2(y) = g_1(y)$
- 2. $g_2(z) = V_M(money)$
- 3. $(g_2(x), g_2(z)) \in V_M(lose)$

Question 2

Formulate the $\lambda\text{-DRSs}$ for the following lexical items:

- $\text{a. } every \colon \langle \langle e,t \rangle, \langle e,t \rangle, t \rangle \qquad \quad \lambda P \lambda R. ([x \, | \, \varnothing] + P(x)) \Rightarrow R(x)$
- b. $a: \langle \langle e, t \rangle, \langle e, t \rangle, t \rangle$ $\lambda P \lambda R.[x \mid \varnothing] + P(x) + R(x)$
- c. $have: \langle e, \langle e, t \rangle \rangle$ $\lambda x \lambda y. [\varnothing \, | \, have(x,y)]$