יש לרשום את כל תשע הספרות

האוניברסיטה

כ' באלול תשפ"ד

יש להדביק כאן את מדבקת הנבחן

מס' שאלון - 453

בספטמבר 2024

23

מס' מועד 82

סמסטר 2024ג

20425 / 4

שאלון בחינת גמר

20425 - הסתברות ומבוא לסטטיסטיקה למדעי המחשב

שעות משך בחינה:

> עמודים בשאלון זה 8

מבנה הבחינה:

בבחינה חמש שאלות.

עליכם לענות על ארבע שאלות מתוכן.

כל השאלות זהות במשקלן.

בכל תשובותיכם חשבו את התוצאה הסופית. כמובן, במידת האפשר.

לבחינה מצורפת טבלת ערכים של פונקציית ההתפלגות המצטברת . הנורמלית סטנדרטית ודף נוסחאות

חומר עזר:

מותר מחשבון שאינו אוצר מידע. כל חומר עזר אחר אסור.

בהצלחה !!!

אינכם חייבים

להחזיר את השאלון לאוניברסיטה הפתוחה

שאלה 1 (25 נקודות)

- X=8 ויהי ויהי א משתנה מקרי מעריכי עם הפרמטר א יהי א (9 נקי) א. מצאו את פונקציית הצפיפות של א וזהו את התפלגותו.
- .8 נקי) ב. נתון משתנה מקרי X המתפלג נורמלית עם תוחלת 20 וסטיית תקן 8) יכי נניח שמתקיים השוויון $P\{X < c\} = 4P\{X > c\}$ מהו ערכו של
- את הפר חשבו את . p=0.2 ר=4 : חשבו שלילי עם הפרמטרים מקרי המתפלג בינומי שלילי עם הפרמטרים אחר משתנה מקרי המתפלג בינומי שלילי עם הפרמטרים התוחלת של . $\left(X-10\right)^2$

שאלה 2 (25 נקודות)

דורית אוהבת לאכול חטיפים. בכל יום ובאופן בלתי תלוי בכל יום אחר:

- בהסתברות 0.2 תאכל אפרופו.
- בהסתברות 0.5 תאכל תפוצייפס.
 - בהסתברות 0.4 תאכל דובונים.

:כמו כן ידוע ש

- אם היא תאכל ביום מסוים אפרופו, אז היא בהכרח גם תאכל באותו היום תפוצייפס.
- המאורעות יתאכל תפוצייפסי ויתאכל דובוניםי ביום כלשהו הם מאורעות בלתי-תלויים.
 - בהסתברות 0.1 תאכל את כל 3 החטיפים ביום.
 - (10 נקי) א. מצאו את התפלגות מספר החטיפים שדורית תאכל מחר.
- (5 נקי) ב. אם ביום מסויים דורית לא תאכל אפרופו, מה ההסתברות שבאותו היום היא תאכל דובונים?
- הימים בהם תאכל אפרופו ב- X את מספר הימים בהם תאכל אפרופו (נקי) ג. נתבונן בחטיפים שדורית תאכל במשך 10 ימים. נסמן ב- Y את מספר הימים בהם תאכל תפוצייפס.
- נתבונן במשתנה המקרי $Y\!-\!X$. הסבירו במילים מה המשתנה הזה מייצג בהקשר של נתוני הבעיה. מהי ההתפלגות של משתנה מקרי זה?
 - Y X ל- X מצאו את מקדם המתאם בין X ל- 2

שאלה 3 (25 נקודות)

לאסי יש בארון במטבח שתי מגירות.

במגירה הראשונה יש 10 חבילות במבה ו-10 חבילות ביסלי.

-במגירה השנייה יש 5 חבילות במבה ו- k חבילות ביסלי. שימו לב, כל סעיף עומד בפני עצמו

- (9 נקי) א. אסי בוחר את אחת מהמגירות באקראי ומוציא ממנה 2 חבילות באקראי נסמן את המאורעות:
 - החבילה הראשונה היא חבילת במבה. -A
 - . החבילה השנייה היא חבילת במבה B
- הניחו שההוצאה מתבצעת עם החזרה. האם יש ערך של k עבורו המאורעות A ו- B בלתי-תלויים? אם כן, מצאו ערך זה. אם לא הוכיחו שאין כזה.
- (8 נקי) ב. אסי מוציא <u>עם החזרה</u> 6 חבילות חטיפים <u>מהמגירה הראשונה.</u> המשקל של חבילת במבה הוא 100 גרם והמשקל של חבילת ביסלי הוא 120 גרם. מצאו את התוחלת והשונות של סך משקל חבילות החטיפים שאסי הוציא מהמגירה הראשונה.
- (8 נקי) ג. אסי מוציא <u>עם החזרה</u> חבילות חטיפים מתוך <u>המגירה הראשונה,</u> עד שיהיו לו לפחות חבילת ביסלי אחת. מצאו את התפלגות מספר חבילות החטיפים שיוציא.

שאלה 4 (25 נקודות)

אורך חיי מדף, בימים, של חטיף מסוג צייטוס מתפלג אחיד בקטע (320,400). אין תלות בין אורך חיי מדף של חטיפי צייטוס שונים.

- (8 נקי) א. אם ידגמו 10 חטיפי צייטוס באקראי, ויתברר שאורך חיי המדף של כל אחד מהם נמוך מ- 350 מים, מהי התוחלת ומהי השונות של מספר חטיפי הצייטוס שידגמו עם אורך חיים גבוה מ- 340 ימים!
- (8 נקי) ב. רון ידגום חטיפי צייטוס בזה אחר זה עד אשר יתקבל חטיף שאורך חיו גבוה מ- 390 ימים. מה ההסתברות שידגום לפחות 10 חטיפי צייטוס!
- (9 נקי) ג. אם ידגמו 45 חטיפי צייטוס באקראי, מה בקירוב ההסתברות שאורך חיי המדף הממוצע שלהם יהיה נמוד מ- 355 ימים!

שאלה 5 (25 נקודות)

שלושה חברים הולכים לבית קפה ומזמינים סך הכל 6 קינוחים.

המלצר המבולבל מביא את הקינוחים, אבל לא זוכר איזה חבר הזמין איזה קינוח, ולכן לכל קינוח הוא בוחר באופן אקראי, ובלתי תלוי בקינוחים האחרים, את החבר שיקבל אותו.

:כסמן ב

- . מספר החברים שכל אחד מהם מקבל לפחות קינוח אחד. X
- . מספר החברים שכל אחד מהם מקבל לפחות שני קינוחים. Y

: למשל

- X=3,Y=3 אם כל חבר יקבל שני קינוחים אז \circ
- X=2,Y=1 אם יש חבר שיקבל 5 קינוחים וחבר אחר שיקבל קינוח אחד אז \circ
 - X א. מצאו את ההתפלגות של 6)
 - $P\{X=3,Y=1\}$ ב. מצאו את ב. (4 נקי)
 - Y ו- X ו-
 - E[XY] ג. מצאו את (6 נקי).

בהצלחה!

$\Phi(z)$ ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית,

$$\Phi(z) = P\{Z \le z\} = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \qquad ; \qquad \Phi(-z) = 1 - \Phi(z) \qquad ; \qquad Z \sim N(0,1)$$

$$\Phi(z) \approx \Phi(z_{\rm l}) + \frac{z-z_{\rm l}}{z_2-z_{\rm l}} [\Phi(z_2) - \Phi(z_{\rm l})] \qquad \hbox{$:$}$$
נוסחת האינטרפולציה:

z	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9332	0.9343	0.9337	0.9370	0.9382	0.9594	0.9400	0.9525	0.9429	0.9441
1.7	0.9432	0.9564	0.9474	0.9484	0.9493	0.9599	0.9608	0.9323	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
1.7	0.7713	0.7/17	0.7720	0.7732	0.7730	0.7744	0.7730	0.5750	0.5701	0.5707
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
۶.٦	0.7771	0.7771	0.7771	0.7771	0.7771	0.7771	0.7771	0.7771	0.7771	0.7770

Ф(z)	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
z	0.0	0.126	0.253	0.385	0.524	0.674	0.842	1.036	1.282
$\Phi(z)$	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99
z.	1.341	1.405	1.476	1.555	1.645	1.751	1.881	2.054	2.326

דף נוסחאות לבחינה

הפונקציה יוצרת המומנטים	השונות	התוחלת	פונקציית ההסתברות / פונקציית הצפיפות	ההתפלגות
$(pe^t + 1 - p)^n$	np(1-p)	np	$\binom{n}{i} \cdot p^i \cdot (1-p)^{n-i} , i = 0, 1, \dots, n$	בינומית
$\frac{pe^{t}/(1-(1-p)e^{t})}{t<-\ln(1-p)}$	$(1-p)/p^2$	1/ p	$(1-p)^{i-1} \cdot p$, $i=1,2,$	גיאומטרית
$\exp{\{\lambda(e^t-1)\}}$	λ	λ	$e^{-\lambda} \cdot \lambda^i / i!$, $i = 0,1,$	פואסונית
$\left(\frac{pe^t}{(1-(1-p)e^t)}\right)^r$ $t < -\ln(1-p)$	$(1-p)r/p^2$	r/p	$\binom{i-1}{r-1}(1-p)^{i-r} \cdot p^r$, $i = r, r+1,$	בינומית שלילית
	$\frac{N-n}{N-1}n\frac{m}{N}(1-\frac{m}{N})$	nm/N	$ \binom{m}{i} \binom{N-m}{n-i} / \binom{N}{n} , i = 0, 1, \dots, m $	היפרגיאומטרית
	$(n^2-1)/12$	m+(1+n)/2	$\frac{1}{n}$, $i = m+1, m+2,, m+n$	אחידה בדידה
$(e^{bt}-e^{at})/(tb-ta), t\neq 0$	$(b-a)^2/12$	(a+b)/2	$1/(b-a) , a \le x \le b$	אחידה
$\exp\{\mu t + \sigma^2 t^2/2\}$	σ^2	μ	$(1/\sqrt{2\pi}\sigma)\cdot e^{-(x-\mu)^2/(2\sigma^2)}$, $-\infty < x < \infty$	נורמלית
$\lambda/(\lambda-t)$, $t<\lambda$	$1/\lambda^2$	1/λ	$\lambda e^{-\lambda x}$, $x > 0$	מעריכית
			$\binom{n}{n_1,\dots,n_r} \cdot p_1^{n_1} \cdot \dots \cdot p_r^{n_r} , \sum n_i = n, \sum p_i = 1$	מולטינומית

$$P(A) = P(A \cap B) + P(A \cap B^{C})$$

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j}) + \dots + (-1)^{n+1} P(A_{1} \cap A_{2} \cap \dots \cap A_{n})$$

כלל ההכלה וההפרדה

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

הסתברות מותנית

$$P(A_{1} \cap A_{2} \cap ... \cap A_{n}) = P(A_{1})P(A_{2} \mid A_{1})P(A_{3} \mid A_{1} \cap A_{2}) \cdot ... \cdot P(A_{n} \mid A_{1} \cap A_{2} \cap ... \cap A_{n-1})$$
נוסחת הכפל

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i)$$
 , S אורים ואיחודם הוא $\{B_i\}$

נוסחת ההסתברות השלמה

$$P(B_j \mid A) = \frac{P(A \mid B_j)P(B_j)}{\sum\limits_{i=1}^n P(A \mid B_i)P(B_i)}$$
 , S ארים ואיחודם הוא $\{B_i\}$

תוחלת

נוסחת בייס

$$E[X] = \sum_{x} x p_X(x) = \int x f(x) dx$$

תוחלת של פונקציה של מ"מ

$$Var(X) = E[(X - E[X])^{2}] = E[X^{2}] - (E[X])^{2}$$

 $E[g(X)] = \sum_{x} g(x) p_X(x) = \int g(x) f(x) dx$

שונות

$$E[aX + b] = aE[X] + b$$

תוחלת ושונות של פונקציה לינארית

$$Var(aX + b) = a^2 Var(X)$$

$$P\{X > s + t | X > t\} = P\{X > s\}$$
, $s, t \ge 0$

תכונת חוסר-הזכרון

ההתפלגות המעריכית מקיימת את תכונת חוסר הזכרון

$$E[X | Y = y] = \sum_{x} x p_{X|Y}(x | y) = \int x f_{X|Y}(x | y) dx$$

תוחלת מותנית

$$Var(X | Y = y) = E[X^{2} | Y = y] - (E[X | Y = y])^{2}$$

שונות מותנית

$$E[X] = E[E[X \mid Y]] = \sum_{y} E[X \mid Y = y] p_{Y}(y)$$

נוסחת התוחלת המותנית

$$E[X \cdot g(Y)] = E[g(Y)E[X \mid Y]]$$

$$Var(X) = E[Var(X | Y)] + Var(E[X | Y])$$

נוסחת השונות המותנית

$$E\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} E[X_{i}]$$

תוחלת של סכום משתנים מקריים

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y]$$

שונות משותפת

$$\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cov}(X_{i}, Y_{j})$$

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i < j} \operatorname{Cov}(X_{i}, X_{j})$$

שונות של סכום משתנים מקריים

$$\rho(X,Y) = \text{Cov}(X,Y) / \sqrt{\text{Var}(X)\text{Var}(Y)}$$

מקדם המתאם הלינארי

$$M_X(t) = E[e^{tX}]$$
 ; $M_{aX+b}(t) = e^{bt}M_X(at)$

פונקציה יוצרת מומנטים

$$M_{X_1+\ldots+X_n}(t)=M_{X_1}(t)\cdot\ldots\cdot M_{X_n}(t)$$
 : באשר מיימ ביית מתקיים X_i

תוחלת, שונות ופונקציה יוצרת מומנטים של סכום מקרי

$$E\left[\sum_{i=1}^{N} X_{i}\right] = E[N]E[X_{1}]$$

(כאשר X_i מיימ ביית שייה)

$$\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right) = E[N]\operatorname{Var}(X_{1}) + (E[X_{1}])^{2}\operatorname{Var}(N)$$

$$M_{X_1+\ldots+X_N}(t) = E\left[\left(M_{X_1}(t)\right)^N\right]$$

$$P\{X \geq a\} \leq E[X]/a$$
 , $a > 0$, שלילי X

אי-שוויון מרקוב

$$P\{|X-\mu| \ge a\} \le \sigma^2/a^2$$
 , $a > 0$, $\mu, \sigma^2 < \infty$

אי-שוויון צ'בישב

$$Pigg\{(\sum\limits_{i=1}^n X_i - n\mu)igg/\sqrt{n\sigma^2} \le aigg\} \mathop{
ightarrow}_{n o\infty} \Phi(a) \quad , \quad \mu,\sigma^2 < \infty \ , \$$
משפט הגבול המרכזי אמיימ ביית ושייה א X_i

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \quad ; \quad \sum_{i=0}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6} \quad ; \quad \sum_{i=0}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$\sum_{i=0}^{\infty} \frac{x^{i}}{i!} = e^{x} \quad ; \quad \sum_{i=0}^{n} x^{i} = \frac{1-x^{n+1}}{1-x} \quad ; \quad \sum_{i=0}^{\infty} x^{i} = \frac{1}{1-x} \quad , \quad -1 < x < 1 \quad ; \quad \sum_{i=1}^{\infty} \frac{x^{i}}{i} = -\ln(1-x) \quad , \quad 0 < x < 1$$

$$(x+y)^{n} = \sum_{i=0}^{n} \binom{n}{i} x^{i} y^{n-i}$$

$$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} \ , \quad n \neq -1 \qquad ; \qquad \int \frac{1}{ax+b} dx = \frac{1}{a} \ln(ax+b) \qquad \qquad \underline{ }$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} \qquad ; \qquad \int b^{ax} dx = \frac{1}{a \ln b} b^{ax} \qquad \qquad \int f(x) g'(x) dx = f(x) g(x) - \int f'(x) g(x) dx$$
 חוקי לוגים

 $\log_n a = \log_m a / \log_m n \qquad ; \qquad \log_n (a^b) = b \cdot \log_n a \qquad ; \qquad \log_n (ab) = \log_n a + \log_n b$

<u>רשימת טענות:</u>

- אם A ו- B מאורעות זרים של ניסוי מקרי, אז ההסתברות שבחזרות ב"ת על הניסוי A אם A יתרחש לפני המאורע A היא A יתרחש לפני המאורע
- אם מופעים של מאורע נתון מתרחשים בהתאם לשלוש ההנחות של תהליך פואסון עם קצב λ ליחידת זמן אחת, אז מספר המופעים שמתרחשים ביחידת זמן אחת הוא משתנה מקרי פואסוני עם הפרמטר λ .
 - בלתי- X_n ,... , X_2 , X_1 ואם i=1,2,...,n לכל (n_i,p) לכל (n_i,p) בלתי- בינומי עם הפרמטרים בינומי עם הפרמטרים . $\left(\sum_{i=1}^n n_i,p\right)$ הוא משתנה מקרי בינומי עם הפרמטרים $\sum_{i=1}^n X_i$ הוא משתנה מקרי בינומי עם הפרמטרים
- אם אח א X_i אח אח אח ארי. בלתי-תלויים אח הפרמטרי עם הפרמטרי עם הפרמטרי עם הפרמטרי עם הפרמטרים אח אח אח הוא משתנה מקרי בינומי שלילי עם הפרמטרים החא משתנה מקרי בינומי שלילי עם הפרמטרים ווא $\sum_{i=1}^n X_i$
 - X_n ,... , X_2 , X_1 ואם , i=1,2,...,n לכל λ_i לכל הפרמטר פואסוני עם מקרי פואסוני עם הפרמטר . $\sum_{i=1}^n \lambda_i$ הוא משתנה מקרי פואסוני עם הפרמטר $\sum_{i=1}^n X_i$ הוא משתנה מקרי פואסוני עם הפרמטר .
 - יס מקריים של הייס מקריים עם בלתי-תלויים עם בלתי-תלויים מקריים מקריים מקריים מקריים פורמליים של חn סכום של סכום של הברמטרים בלתי-תלויים בלתי-תלויים בלתי-תלויים בלתי-תלויים בלתי-תלויים מקריים נורמלי עם הפרמטרים בלתי-תלויים בלתי-תלויים בלתי-תלויים מקריים בלתי-תלויים בלתי-תלויים של הפרמטרים בלתי-תלויים בלתי-תלוים בלתי-תלויים בלתי-תלי-תלויים בלתי-תלויים בלתי-תלוים בלתי-תלויים בלתי-תלויים בלתי-תלי
 - אם (n_Y,p) ו- (n_X,p) ו- (n_X,p) אם (n_X,p) אם אם (n_X,p) ו- (n_X,p) אם אז ההתפלגות של המשתנה המקרי המותנה (n_X,p) בהינתן (n_X,p) היא היפרגיאומטרית עם הפרמטרים אז ההתפלגות של המשתנה המקרי המותנה (n_X,p) היא (n_X,p) היא היפרגיאומטרית עם הפרמטרים (n_X,p) היא (n_X,p) ו- (n_X,p) היא (n_X,p) היא (
- אם X ו-X הם משתנים מקריים פואסוניים בלתי-תלויים עם הפרמטרים 1 ו-X, בהתאמה, אז אם X ו-X המשתנה המקרי המותנה X בהינתן X בהינתן X היא בינומית עם הפרמטרים X ו-