Simulátor akciové burzy

Jan Škoda | WOOD & Company Coding Challenge | 19.7.2016

Osobní představení

Jan Škoda, MFF UK – UI a Robotika

Práce

C++ a Python programátor, Linuxový správce, ±freelance vývojář, startup-ista

Záliby

squash, fotografie, vodáctví, Japonsko/ština, technologie, strojové učení, Python, C++11

Cíle a funkcionalita

- Maximální efektivita
 - velký počet otevřených pokynů
 - v Pythonu
 - udržení původního protokolu
 - bez vláken
- Automatické testy a benchmarky
- Přesné neceločíselné ceny
- Ošetření a hlášení chyb klientům
- Instalační setup.py skript

Implementace

- Python 3.5
- Síť: asyncio
- Book a pokyny: heapq a decimal
- Protokol: ujson (volitelně)
- Kód: PEP8, dokumentace, typové anotace

Limit Order Book

- Minimové haldy matching porovnáním kořene
- Mazání pokynů průchodem
- Dotaz na množství podle ceny
 - index pomocí hešovací tabulky

Ceny mohou být neceločíselné

Časová složitost / Výsledky benchmarku

Pokyny nad LOB:

Operace	Složitost
vytvoření pokynu	O(log(n))
matching	O(log(n))
dotaz na množství komodity dle ceny	O(1)
zrušení pokynu	O(n)

- Průměrný případ
- n ~ počet pokynů

- ~ 50 000 otevřených pokynů
- ceny a množství z normálního rozdělení
- pokyny otevírány přes síť pomocí JSON protokolu
- 10 000 pokynů/s

Testy a profilování

- modul unittest
- testují logiku burzy a datové struktury

Hlášení chyb

- Chyby v programu propagovány a ošetřovány pomocí výjimek
- Neošetřené chyby odeslány klientovi a vypsány na standardní chybový výstup

Díky za pozornost!

Jan Škoda | www.janskoda.cz | skoda@jskoda.cz

Python 3.5 Hlášení chyb cProfile Efektivita PEP8 Unittest Benchmark Heapq Asyncio Decimal setup.py