GEL19962: Analyse des signaux 1997 Mini-test 2

Nom: Matricule:

Mercredi le 26 novembre 1997; Durée: 14h40 à 15h20 Aucune documentation permise; aucune calculatrice permise.

Problème 1 (1 point sur 5) Aucun crédit partiel

Encadrez la bonne réponse (vrai ou faux) pour chacun des énoncés suivants.

$$\delta(t) \stackrel{+}{\overset{+}{\smile}} C=1 \stackrel{-}{\overset{-}{\smile}} y(t) \Longrightarrow y(t) = \frac{1}{2}e^{-t/2}U(t)$$

a)

VRAI

FAUX

$$V_{in}(t) \qquad \begin{array}{c} L=2 & R=1 \\ V_{out}(t) & \Longrightarrow & H(j\omega) = \frac{1}{1+4j\omega-2\omega^2} \\ C=2 & & & & \\ \end{array}$$

VRAI

FAUX

$$e^{jt} \qquad + \qquad \qquad y(t) = |H(\omega = 1)|e^{jt}$$

VRAI

FAUX

GEL19962: Analyse des signaux 1997 Mini-test 3

Nom: Matricule:

Problème 2 (1 point sur 5) Aucun crédit partiel

a)

b)

Encadrez la bonne réponse pour les énoncés suivants. (1/2 point)

i) f*g est périodique

VRAI

FAUX

ii) $f \cdot g$ est périodique

VRAI

FAUX

$$x(t) = \text{Rect}(t)$$

$$x(t) - \begin{bmatrix} \text{Filtre} \\ \text{Passe-bas} \\ \text{Idéal} \end{bmatrix} - x_{B}(t) - \begin{bmatrix} \text{Échant.} \\ \omega_{s} = 4B \end{bmatrix} - \begin{bmatrix} \text{Filtre} \\ \text{Passe-bas} \\ \text{Idéal} \end{bmatrix} - y(t)$$

$$H(j\omega) = \text{Rect}(\omega/2B)$$

$$H(j\omega) = \text{Rect}(\omega/2B)$$

Quelle réponse est vrai pour le système donné? (1/2 point)

$$i) \quad y(t) = x(t)$$

iii)
$$y(t) \neq x(t), y(t) \neq x_B(t)$$

ii)
$$y(t) = x_B(t)$$

iv)
$$y(t) = x(t) = x_B(t)$$

GEL19962: Analyse des signaux 1997 Mini-test 3

Nom:	Matricule:

Problème 3 (3 points sur 5)

a) 2 points

Quelles sont les *quatre* régions de *t* pour lesquelles l'expression analytique de la convolution a des équations différentes?

b) **1 point**

Quelle est l'expression analytique de la convolution dans la région -1 < t < 0? (Vous pouvez laisser la réponse sous la forme d'une intégrale.)

GEL19962: Analyse des signaux 1997 Mini-test 3

Nom:	Matricule:
140111.	manioni.

Fonction	Transformée de Fourier
f(t)	$F(\omega)$
F(t)	$2\pi f(-\omega)$
f(t+a)	$e^{ja\omega}F(\omega)$
f(at)	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$
$e^{jbt}f(t)$	$F(\omega - b)$
$t^n f(t)$	$(j)^n \frac{d^n}{d\omega^n} F(\omega)$
$\frac{d^n}{dt^n}f(t)$	$\left(j\omega\right)^nF(\omega)$
$\operatorname{Rect}(t/ au)^{1}$	$ au$ S $a(\omega au/2)$
$\frac{B}{\pi}Sa(tB)$	$\operatorname{Rect}(\omega/2B)$
δ(t)	1
1	$2\pi\delta(\omega)$
$oldsymbol{\mathcal{S}}_{T_0}ig(tig) = \sum_{n=-\infty}^{+\infty} oldsymbol{\mathcal{S}}ig(t-nT_0ig)$	$\omega_0 \sum_{n=-\infty}^{+\infty} \mathcal{S}(\omega - n\omega_0)$
$e^{-eta t}\mathrm{U}(t)$	$\frac{1}{\beta + j\omega}$

¹ Rect (t/τ) = $\begin{cases} 0 & t < -\tau/2 \\ 1 & -\tau/2 < t < \tau/2 \\ 0 & t > -\tau/2 \end{cases}$