

Bölüm 1: Hesaplama ve Hesaplamalı Düşünme

JAVA ile Nesne Yönelimli Programlama

- Bilgisayara talimatlar vermenin bir yoludur.
- Bilgisayarlar programlanarak karmaşık görevleri yerine getirebilirler.
- Problem çözme ve zihinsel yetenekleri geliştirir.
- Programlama dilleri, bilgisayarla iletişim kurmayı sağlayan araçlardır.

- Evlerden iş yerlerine, eğlenceden eğitime kadar her yerde kullanılır.
- Akıllı telefonlar, tabletler, dizüstü bilgisayarlar, ev aletleri, arabalar ...
- Bilgisayarlar hayatımızın vazgeçilmez bir parçası haline gelmiştir.
- İnternet ve dijital teknolojiler sayesinde dünya bir tık uzaklıkta.
- Alışveriş, haberler, iletişim, eğitim: hepsi dijital dünyada.

- Programlama, bilgisayarların istediğimiz görevleri yerine getirmesi için kullanılan bir araçtır.
- Programcılar, bilgisayarları hayatımızın her alanında daha kullanışlı ve verimli hale getirirler.
 - Otomasyon: Akıllı termostatlar, ışıklar ve güvenlik sistemleri.
 - Sağlık: Tıbbi cihazlar ve hastane sistemleri.
 - Eğitim: Online ders platformları ve öğretim yazılımları.

Eski Model - Dünyayı Sorgulama

- Belirli bir hipoteze dayalı olarak veri toplanır.
- Bilim insanları, dünyaya özel bir soru sorar ve buna yönelik veri toplarlar.

Yeni Model - Dünyayı İndirme

- Toplanan veri birçok hipotezi test etmek için kullanılır.
- Bilim insanları, büyük bir veri kümesini indirir ve bu veriyi kullanarak farklı hipotezleri test ederler.

- Bilim, artık büyük verilerle daha yakından ilişkilidir.
- Programlama, bilimsel keşiflerin önemli bir aracıdır.
- Bilimde programlama, verileri anlama ve bilimsel keşifleri hızlandırma yeteneğini artırır.
- Bilim dünyasındaki teknolojik ilerlemelere katkı sağlar.
- Programlama, büyük veri kümesi ile çalışmayı kolaylaştırır.
- Bilim insanları, veriyi analiz etmek ve yeni hipotezleri test etmek için programlama becerilerini kullanır.

Uygulama Örnekleri

Astronomi

 Gözlem ve veri toplama: Yüksek çözünürlükte, yüksek frekansta gökyüzü taramaları (SDSS, LSST, PanSTARRS).

Biyoloji

 Laboratuvar otomasyonu: Yüksek kapasiteli dizileme (high-throughput sequencing).

Deniz Bilimleri

 Yüksek çözünürlüklü modeller: Uygun fiyatlı sensörler, uydu verileri, deniz altı keşifleri.

Hesaplama

- Bilgisayarların temel işlevlerinden biridir.
- Bilgisayarın veya hesaplama cihazının bir görevi gerçekleştirmek için verileri işleme sürecidir.
- Matematiksel işlemler, mantıksal kararlar ve veri işlemeyi içerir.
- Programlama, hesaplamayı daha etkili ve verimli hale getirir.
- İş dünyasında, bilimde ve günlük yaşamda hayati bir rol oynar.
- Veri analizi, simülasyonlar, oyun geliştirme ve daha fazlası için kullanılır.

Hesaplamanın Yapı Taşları

- Matematik: Hesaplama temel olarak matematiksel işlemleri içerir.
 Toplama, çıkarma, çarpma, bölme vb.
- Mantık: Kararlar mantıksal ifadeler değerlendirilerek alınır. (Örnek: "Eğer hava güneşli ise dışarı çık.")
- Hesaplama, verileri alır, işler ve bir sonuç üretir.
- Bu sonuçlar, sorunları çözmek, veri analizi yapmak veya görevleri otomatikleştirmek için kullanılabilir.
- Programlama, bilgisayara hesaplamayı nasıl yapacaklarını anlatır.

Bilgisayar Bilimi Sadece Teknoloji Öğrenmek Değild

- Bilgisayar bilimi, sadece bilgisayarlarla ilgili teknik bilgi değil, aynı zamanda problem çözme becerileriyle ilgili bir disiplindir.
- Bilginin nasıl işlendiği, depolandığı ve iletişim kurduğu hakkında derin bir anlayış gerektirir.
- Sadece teknolojiyle sınırlı değildir. Teknoloji sadece bir araçtır.
- Temel amaç, sorunları çözmek ve bilgiyi daha iyi anlamaktır.
- Bilgisayar bilimi, karmaşık problemleri tanımlama, analiz etme ve etkili çözümler üretme yeteneklerini geliştirir.

- Bilgisayar bilimi, teknolojinin insanlara nasıl yardımcı olabileceği ve toplumsal sorunların çözümüne nasıl katkı sağlayabileceği konularında düşünmeyi teşvik eder.
- Dünyayı daha iyi anlamamıza ve geliştirmemize yardımcı olabilir.
- Teknolojiyi insanlığın hizmetine sunma sorumluluğunu vurgular.
- Sadece teknolojiyle ilgilenenler için değil, problem çözme ve düşünme becerilerini geliştirmek isteyenler için de ilginç bir alandır.
- Tıp, ekonomi, astronomi, biyoloji gibi birçok farklı alanda uygulanabilir.

Bilgisayar Bilimi

- Sadece bilgisayarlarla ilgilenen bir alandır.
- Aynı zamanda mantık, problem çözme ve yaratıcılığa dayalı bir disiplindir.
- Mantığı temel alır. Mantık, verileri değerlendirme ve mantıklı sonuçlar çıkarma yeteneğini içerir.
- Mantık, bilgisayar programlarını yazma sürecinin temelini oluşturur.
- Bilgisayar bilimi, karmaşık problemleri tanımlama ve çözme yeteneği gerektirir. Her problem, mantıklı bir adım sırasıyla çözülür.
- Yaratıcılık, yeni ve yenilikçi çözümlerin doğmasına yol açar.
- Programlama, problem çözme yeteneğini geliştirmeye yardımcı olur.

- İlk bilgisayar olarak kabul edilen Atanasoff-Berry Bilgisayarı (ABC), John Atanasoff ve Clifford Berry tarafından 1930'ların sonlarında geliştirildi.
- Temel mantık devreleri kullanarak dijital hesaplamaları yapabilen elektronik bir bilgisayardı.
- Sayısal (digital) bir sistemdi ve iki haneli ondalık sayıları işleyebiliyordu.
- Belleği, verileri ve komutları saklamak için kullanılan manyetik şeritlerden oluşuyordu.

ilk Program - Ada Lovelace ve Charles Babbage

• İlk program, Ada Lovelace ve Charles Babbage tarafından geliştirilen

Analitik Makine için yazıldı.

 Ada Lovelace, Analitik Makine için bir dizi komut ve hesaplama yöntemi geliştirdi.

İlk programlar

- Genellikle matematiksel hesaplamalarda kullanılıyordu.
- Bilgisayarların ilk kullanımları bilimsel/askeri uygulamalara odaklanıyordu.
- İlk yüksek seviye programlama dili olan Fortran (Formula Translation), IBM tarafından geliştirildi ve 1957'de piyasaya sürüldü.
- Fortran, bilimsel hesaplamalarda yaygın olarak kullanılmıştır.

Bilgisayar

- Bir dizi hesaplama ve talimatı yürüten cihazdır.
- Modern bilgisayarlar elektronik ve dijitaldir, verileri elektronik olarak işlerler.
- Verileri işlemek için matematiksel hesaplamaları ve mantıksal talimatları kullanır.
- Hesaplama ve talimatlar, bilgisayarın bir görevi gerçekleştirmesini sağlar.
- Günümüzdeki bilgisayarlar, elektronik devrelerle çalışan ve sayıları dijital olarak temsil eden cihazlardır.
- İşlemci, bellek, depolama birimi ve giriş/çıkış cihazı gibi bileşenler içerirler.

- Elektronik: Bilgisayarlar, elektrik akımı kullanarak verileri işler.
- Dijital: Verileri sıfırlar (0) ve birler (1) olarak temsil eder.

Algoritma

18

- Adım adım bir problemi çözme prosedürüdür.
- Bir görevi nasıl gerçekleştireceğimizi belirlememize yardımcı olur.
- Bilgisayar programlarının temelini oluşturur.
- Bir problemi mantıklı ve etkili bir şekilde çözmek için kullanılırlar.
- Programlama, algoritmaları kullanarak program oluşturma sürecidir.
- İyi programcı, sorunu çözmek için uygun algoritmayı seçip, uygulayabilir.

- Fixed program computer, belirli bir problemi çözmek için tasarlanmıştır.
- Belirli bir görevi yapmak için önceden tanımlanmış bir programı çalıştırır.
- Kökleri çok eskilere dayanır.
- Örneğin: Abaküs, Antikythera Mekanizması,

Pascaline, Leibniz Tekerleği,

Jacquard'ın Dokuma Tezgahı,

Babbage Fark Motoru,

Hollerith Elektrik Çizelgeleme Sistemi,

Atanasoff-Berry Bilgisayarı (ABC),

Turing Bombası, ...

- Charles Babbage, ilk programlanabilir bilgisayar olan Analitik Makine'yi tasarlamıştır. Ada Lovelace, Analitik Makine için ilk programı yazmıştır.
- Sabit programlı bilgisayarlar,
 - Bilgisayar biliminin temellerini atmışlardır.
 - Teknolojik gelişmelere ilham kaynağı,
 - Modern bilgisayarların öncüleri olmuşlardır.
- Gelişmiş programlanabilir bilgisayarlar hala hayatımızın vazgeçilmez bir parçasıdır.

- Stored program computer, belirli bir problemi çözmek için sabit bir program kullanmak yerine programlarını belleğinde depolayabilen makinelerdir.
- Daha esnek ve genel amaçlı bilgisayarların temelini atmıştır.
- Problemi çözmek için farklı programları çalıştırabilirler.
- Bilgisayarların daha önce çözemediği problemleri ele alabilmesini sağlar.
- Girdi, başka bir makine veya bir makinenin tanımı olabilir.
- Evrensel Turing makineleri, bu tür "makine girdi" 'sini işleyebilir.

Evrensel Turing Makineleri

- Soyut ve genel amaçlı bilgisayardır.
- Bu kavram Alan Turing tarafından geliştirilmiştir.
- Herhangi bir Turing makinesini simüle edebilir, her tür problemi çözebilir.

Modern bilgisayarların evrensel olarak programlanmasını sağlamıştır.

 Depolanan programlı bilgisayarlar ve Evrensel Turing makineleri, bilgisayar teknolojisinin gelişiminde önemli birer dönüm noktasıdır.

Genel Amaçlı Bilgisayar

- Kullanıcıların ihtiyaçlarına göre programlanabilir.
- Geniş bir uygulama yelpazesi için tasarlanmıştır.
- İş, eğitim, eğlence gibi birçok alanda kullanılabilirler.
- Programlar değiştirilerek,
 - farklı görevler için uyarlanabilirler.

- Genel amaçlı bilgisayar, verileri işlemek için işlemci (CPU), bellek ve giriş/çıkış cihazları içerir.
- İşlemci, verileri talimatlara göre işler ve sonuç üretir.
- İş süreçlerini otomatikleştirir,
- Bilimsel hesaplamaları hızlandırır
- İletişimi kolaylaştırır.

- Bilgisayarlar, karmaşık hesaplamaları hızlı bir şekilde gerçekleştirebilirler.
- Bu güç, teknolojik gelişmelere dayalıdır.
- İşlemci hızı, hesaplamaların ne kadar hızlı yapılacağını belirler.
 - Ancak işlemci hızı sınırlıdır.
- Bellek, bilgisayarın verileri saklama kapasitesini temsil eder.
 - Daha fazla bellek, daha karmaşık görevler demek.
 - Ancak, bellek kapasitesi sınırlıdır.

Bilgisayarların Sınırları

- Bilgisayarların veri işleme kapasitesi sınırlıdır.
- Büyük veri kümelerini işlemek için zaman ve kaynak gerekir.
- Bilgisayarlar, sınırlı kaynak olan enerji tüketirler.
- Daha güçlü bilgisayar, daha fazla enerji tüketimi.
- Programcılar, kaynakları etkin kullanarak
 bu sınırları aşmaya çalışırlar.

26

- Teknoloji, insanların yaşamını etkileyen bir güçtür.
- Makineler, teknolojik gelişmenin önemli bir parçasını oluşturur.
- Makineler, işleri hızlı ve verimli bir şekilde yapabilirler.
- Bu güç, endüstriyel devrimden günümüze kadar sürekli artmıştır.
- Her şeye rağmen, inşa edebileceğimiz makinelerin sınırları vardır.
- Bu sınırlar, fiziksel, enerji ve teknolojik kısıtlamalardan kaynaklanır.
- Fiziksel sınırlar, makinelerin boyutunu, ağırlığını ve dayanıklılığını etkiler.
- Bir şeyin ne kadar büyük veya küçük olabileceği fiziksel yasalara bağlıdır.

- Makineler enerjiye ihtiyaç duyarlar ve enerji kaynakları sınırlıdır.
- Daha güçlü makineler, daha fazla enerjiye ihtiyaç duyarlar.
- Teknolojik gelişmeler, makinelerin gücünü artırabilir.
- Yeni malzemeler, tasarım fikirleri ve algoritmalar, sınırları zorlayabilir.
- Sınırları anlamak, daha iyi ve verimli makineler tasarlamayı sağlayabilir.

Evrensel Turing Makineleri

- Bilgisayar biliminin en temel soyut modellerinden biridir.
- Herhangi bir Turing makinesinin işlemlerini simüle edebilir.
- Bant (Tape)
 - İşlem için bir bant kullanılır.
 - Bant, girdi, çıktı ve ara sonuçları saklar.
 - Bant, birbirine bağlı hücrelerden oluşur.
 - Her bir hücreye bir sembol yazılabilir.

Bant Başlığı (Tape Head)

- Bant üzerindeki bir hücreyi işaret eder.
- Aktif hücredeki sembolü okur, yerine yeni bir sembol yazar.
- Bir hücre ileri veya geri hareket eder.

Hücreler ve Semboller

- Bant hücreleri, işlemi yönlendirmek için birer sembol içerir.
- Bir sembol, mevcut durumu ve hangi işlemin yapılacağını belirler.

- Hesaplamaların sınırlarını tanımlar.
- Bu model, hesaplanabilir her şeyi hesaplayabilir.
- 20. yüzyılın en önemli bilimsel sonuçlarından biri olarak kabul edilir.

- 19. yüzyılın ilk yarısında yaşamış İngiliz matematikçi ve yazardır.
- Analitik Makine için algoritma ve program yazmıştır.
- Bilgisayar tarihindeki ilk programcılardan biridir.
- Matematiksel düşünce ve
 - Programlamayı
 - Bilimsel yaklaşımla
 - Birleştirmiştir.

- Charles Babbage 19. yüzyılda yaşamış İngiliz matematikçi ve mucit.
- Analitik Makine'yi tasarlamış ve geliştirmiştir.
- Matematiksel hesaplama yapabilen ve sonuçları saklayabilen bir cihazdı.
- Farklı hesaplamaları yapmak için programlanabilirdi.
- Modern bilgisayarların öncüsüdür.

Colossus Mark 1

- 1944 yılında inşa edilen programlanabilir ilk elektronik dijital bilgisayar.
- Düşmanın iletişimini bozmak için gerekli gizli kodları çözdü.
- Elektronik valfler (vakum tüpleri) kullanıyordu.
- Mekanik cihazlara göre daha hızlı ve esnek.
- Sadece savaş sırasında değil, bilgisayar teknolojisinin ilerlemesine de büyük katkıda bulundu.

ENIAC

- 1946'da ABD'de John Mauchly ve J. Presper Eckert tarafından geliştirildi.
- Genel amaçlı bir elektronik bilgisayardı.
- Farklı işlemleri gerçekleştirebilecek şekilde tasarlanmıştı.
- Mekanik parçalar yerine elektronik valfler (vakum tüpleri) kullanıyordu.
- Bu, daha hızlı ve daha güvenilir bir işlem yapma yeteneği sağladı.
- Büyük ölçekli ve hızlı hesaplamalar için kullanılabiliyordu.
- İlk büyük ölçekli elektronik bilgisayar olarak kabul edilir.

EDVAC

- 1951 yılında ABD'de John von Neumann tarafından geliştirildi.
- ENIAC'tan farklı olarak, ikili sayı sistemi kullanıyordu.
- İkili sistem, yalnızca 0 ve 1'leri kullanarak bilgiyi temsil eder.
- Programları ve verileri bellekte sıralı olarak saklıyordu.
- Bu, daha karmaşık ve esnek programların yazılabilmesini sağladı.
- Komutlar, sıralı olarak çalışırdı, koşullu bir komut atlama yapabiliyordu.
- Von Neumann mimarisi, modern bilgisayarların temelini atmıştır.

Bilgi

- İnsan veya makinelerin dünyayı anlamalarına ve sorunları çözmelerine yardımcı olan bilinçli anlayışı ifade eder.
- Bilgi, çeşitli şekillerde ifade edilebilir.
 - Bildirimsel Bilgi (declarative)
 - Buyurusal Bilgi (imperative)

Bildirimsel Bilgi

- Açıkça ifade edilen bilgi türüdür.
- Doğru veya yanlış olarak doğrulanabilir.
- Aksiyomlar veya tanımlar yoluyla ifade edilebilir.
 - Aksiyomlar, bir şeyin ne olduğunu veya nasıl tanımlandığını belirtir.
- Aynı zamanda gerçeklerin ifadesini içerebilir.
 - Gerçekler, dünya hakkında doğru ve doğrulanabilir ifadelerdir.

Örnek Bir Aksiyom

- "y, x'in kareköküdür, y*y = x ise" açık bir tanımlamayı ifade eder.
- Ancak, karekök hesaplamanın nasıl yapılacağı hakkında bilgi vermez.

Buyurusal Bilgi

- "bir şeyin nasıl yapılacağı" konusunda talimatlar içerir.
- Babylonian yöntemi ile bir sayının karekökü hesaplanabilir.
- Yöntemin Adımları
 - 1. x değerini al.
 - 2. bir başlangıç değeri olan y₀ ile başla.
 - 3. Eğer $y_n^2 \approx x$ ise, işlem sona erer.
 - 4. Değilse, $y_{n+1} = (y_n + x/y_n)/2$ ile yeni bir değer hesapla.
 - 5. Adım (3)'ü tekrarla.
- Başlangıç tahminiyle başlar. Karekökün yaklaşık değeri hesaplanır.
 Adımlar, sonuca daha fazla yaklaşmak için tekrarlanır.

- GCD, iki veya daha fazla sayının en büyük ortak bölenini ifade eder.
- İki sayının GCD'si, bu sayılara tam bölünebilen en büyük pozitif tamsayıdır.
- Bildirimsel Tanım
 - GCD'nin ne olduğunu açıklar.
 - "d, a ve b'nin GCD'si ise, d değeri a = dx ve b = dy eşitliklerini sağlar."
- Buyurusal Tanım: Öklidyen Algoritması
 - İki sayının GCD'sini bulmak için kullanılan bir algoritmadır.
 - Nasıl yapılacağına dair talimatlar içerir.

Algoritmanın Adımları

- 1. İki pozitif tam sayı olan a ve b'yi al (a >= b).
- 2. a'yı b'ye böl ve kalanı R olarak adlandır.
- 3. Eğer R = 0 ise, işlem sona erer.
- 4. Değilse, a'yı b'ye, b'yi de R'ye eşitle.
- 5. Adım (3)'ü tekrarla.

- Bilgisayar bilimi bir bilim dalıdır.
- Gerçekliği anlama, modelleme ve analiz etme amacı güder.
- Soyutlama, problem çözme, ve yaratıcılığı temsil eder.
- Soyutlama, karmaşık bir sistemi veya problemi basitleştirmek için kullanılır.
- Problemleri çözmek için algoritmalar ve kod kullanılır.
- Mantık ve analitik düşünceyle sınırlı değildir.
- Sanat, yaratıcılık ve tasarım da bu alanda büyük bir rol oynar.
 - Örneğin, dijital medya, elektronik müzik, oyunlar, animasyon...

- Bir sorunu çözmek için izlenmesi gereken adımları belirleyen bir tariftir.
- Karmaşık sorunları basitleştirmek ve çözmek için kullanılır.
- Bilgisayar bilimi, temelde algoritmaların çalışma ve analizini içerir.
- Algoritmalar,
 - Adımların belirlenmesi,
 - Mantıklı bir sıra oluşturulması ve
 - Problemi çözme amacı güder.
- İyi tasarlanmış algoritmalar, verimlilik ve doğruluk açısından önemlidir.

Problem Belirleme

- Bir işin başarılı olabilmesi için, sorunun ne olduğu açıkça belirlenmelidir.
- Problem belirleme, bir sorunun doğru bir şekilde tanımlanmasını sağlar.
- Algoritmalar, bu belirlenen problemleri çözmek için kullanılır.
- Problem belirleme,
 - Problemin boyutunun ve
 - Karmaşıklığının anlaşılmasına yardımcı olur.

Problem Belirleme

- Bir programın veya algoritmanın ne yapması gerektiği açıkça tanımlanır.
- Gerekli olan adımlar ve çıktı belirlenir.
- Problem belirlerken, iki bileşen vardır: girdi (input) ve çıktı (output).
 - Girdi, problemin çözülmesi için gereken bilgi veya verileri temsil eder.
 - Çıktı, problemin sonucunu veya istenen bilgiyi temsil eder.

- Örnek problem açıklaması:
 - Problem: Verilen iki sayının toplamını bulma.
 - Girdi: İki sayı, X ve Y.
 - Çıktı: İki sayının toplamı olan bir sayı, Z.
- Eğer X = 5 ve Y = 3 ise, Z = 8 olmalıdır.

- Algoritmalar, kolay anlaşılabilmesi için sözde kod kullanılarak ifade edilir.
- Sözde kod,
 - İnsan diline benzer bir dil kullanır ve
 - Algoritmanın mantığını açıklar.

- Örnek: Toplama İşlemi
 - Problem: İki sayının toplamını hesapla.
 - Algoritma:
 - İlk sayıyı al (A).
 - İkinci sayıyı al (B).
 - A ve B'yi topla.
 - Sonucu çıktı olarak ver.

- Programlama dili yerine konuşma dili kullanılır.
- Adımlar, genellikle numaralandırılmış ve girintili olarak sunulur.
- Çoğu işlem için sabit bir sözdizimi gerekmez.
- Doğal dile kıyasla daha açık ve okunaklıdır.
- İşlemi daha anlaşılır hale getirir.
- Mantık hatalarını tespit etmeyi kolaylaştırır.
- Programcılar arasında işbirliğini kolaylaştırır.
- Algoritma davranışı hakkında mantıklı çıkarlara izin verir.
- Kod yazma aşamasına geçişi kolaylaştırır.

- Algoritmalar, sıralı, koşullu ve döngüsel işlemleri kullanır.
- Bu işlem türleri, her programlama dilinde bulunur.
- Temel programlama becerilerinin bir parçasıdır.
- Algoritmaların temel yapısını oluşturur.
- Karmaşıklığı azaltmak ve işlemleri kontrol etmek için kullanılır.

- Sıralı İşlemler (Sequential Operations)
 - Her işlem bir öncekinden sonra gelir ve sırayla çalışır.
 - Örnek: Verilerin okunması, işlenmesi ve sonuçların üretilmesi.
- Koşullu İşlemler (Conditional Operations)
 - Eğer bir koşul sağlanıyorsa, belirli bir işlem yapılır;
 - Aksi halde başka bir işlem yapılır.
 - Örnek: Bir sayının pozitif veya negatif olduğunu kontrol etme.
- Döngüsel İşlemler (Iterative Operations)
 - Belirli bir koşul karşılanana kadar belirli bir işlemi tekrarlar.
 - Örnek: Bir dizi elemanın tümünün toplanması.

- Programın adım adım sırayla gerçekleştirilen işlemlerini ifade eder.
- Giriş İşlemleri
 - Dış dünyadan veri almak için kullanılır.
 - Örnek: Bir kişinin ağırlığını (w) ve boyunu (h) almak.
- Hesaplama İşlemleri
 - Değişkenlerin değerlerini atamak ve aritmetik işlemler için kullanılır.
 - Örnek: BMI (Vücut Kitle İndeksi) hesaplamak için h / (w * w) işlemi.
- Çıkış İşlemleri
 - Sonuçları dış dünyaya göndermek ve görüntülemek için kullanılır.
 - Örnek: BMI'nin (vücut kitle indeksi) değerini yazdırmak.

- Adım 1: başla
- Adım 2: birinci sayıyı al (a)
- Adım 3: ikinci sayıyı al (b)
- Adım 4: c'yi hesapla (c = a + b)
- Adım 5: c'yi yazdır
- Adım 6: bitir

- Adım 1: başla
- Adım 2: dikdörtgenin tabanını al (b)
- Adım 3: dikdörtgenin yüksekliğini al (h)
- Adım 4: alanı hesapla (alan = b * h)
- Adım 5: alanı yazdır
- Adım 6: bitir

Koşullu İşlemler: Soru Sor ve Alternatif Eylemler Se

- Programın soru sorup, cevaplara göre farklı eylemlerde bulunması.
- "eğer" şart sağlanıyorsa şunu yap, aksi takdirde başka bir şey yap.
 - Eğer x 100'den büyükse, x'i yazdır; aksi takdirde x'e 100 ekle.
- Karmaşık soruları destekler.
 - Eğer x 100'den büyükse ve y 200'e eşitse, o zaman...
- Cevaplar Doğru veya Yanlış olur.
- Programın durumlar arasında geçiş yapmasını sağlar.

- Adım 1: başla
- Adım 2: ilk sayıyı al (f)
- Adım 3: ikinci sayıyı al (s)
- Adım 4: ilk sayı daha büyükse ilk sayıyı yazdır
- Adım 5: aksi takdirde ikinci sayıyı yazdır
- Adım 6: bitir

- Devam koşulu yanlış olana kadar belirli eylemleri tekrar eder.
- Bir işlemi tekrar etmek veya döngü içinde çalışmak için kullanılır.
- Verileri işlemek, listeleri gezmek gibi işlemlerde kullanışlıdır.

- Eğer i değeri 0'dan büyükse, s'yi 1 arttır ve i'yi 1 azalt.
- Bu işlemi, i değeri 0'dan büyük olduğu sürece tekrarla.

```
while i > 0 do
set s to s + 1
set i to i - 1
```

Bir işlemi k değeri n değerinden büyük olana kadar tekrarla.

```
repeat

print k

set k to k + 1

until k > n
```


- Adım 1: başla
- Adım 2: en büyük değer olarak 0 ata
- Adım 3: kontrol edilecek öğe varsa, devam et.
- Adım 3: öğe daha büyükse en büyük değer'i güncelle.
- Adım 4: her döngüde en büyük değer'i yazdır.
- Adım 5: bitir

Koşullu ve Döngülü İşlemler

- Koşullu işlemler, belirli koşullara göre eylemleri kontrol eder.
- Döngülü işlemler, belirli koşullara bağlı olarak eylemleri tekrarlar.
- Programların daha esnek ve güçlü olmasını sağlar.
- Doğru koşullar ve iyi tasarlanmış döngüler, beklenen çıktıyı verir.

Sonsuz döngüler hatalara neden olabilir.

- Bir döngünün iki temel bileşeni vardır:
 - Koşul (Continuation Condition): Ne zaman sona ereceğini belirler.
 - Gövde (Loop Body): Her tekrarda gerçekleştirilen eylemleri içerir.
- Sonsuz Döngü
 - Devam koşulu hiçbir zaman yanlış (false) olmayan döngü türüdür.
- Sonsuz Döngü Hatası
 - Programı çökertecek veya yanıt vermeyen bir duruma getirebilir.

SON