PROJET 3 : ANTICIPEZ LES BESOINS EN CONSOMMATION ÉLECTRIQUE DE BATIMENTS

SOUTENANCE OPENCLASSROOMS, LE XX/04/2022

ERWAN CHESNEAU

PLAN:

- l. Contexte
- II. Nettoyage de la base de données
- III. Tests de prédictions
- IV. Interprétation du modèle sélectionné
- V. Conclusions
- VI. Améliorations à envisager

I. CONTEXTE:

- La ville de Seattle étudie les émissions de GES et la consommation d'énergie des batiments dans un objectif de ville neutre en émissions carbone.
- Un relevé a déjà été réalisé en 2015 et 2016 pour mesurer ces valeurs.
- Cout important de ces relevés
- → La ville voudrait prédire la consommation d'énergie et les émissions de GES des batiments manquants
- → La ville veut connaître l'importance de l'ENERGY STAR Score
- Démarches :
 - Extraire les variables d'intérets dans le jeu de données
 - Calculer de nouvelles variables
 - Tester différents modèles pour évaluer leurs performances
 - Extraire et optimiser le meilleur modèle
 - Conclure sur la faisabilité et la performance escomptée

II. NETTOYAGE : HARMONISATION DES JEUX DE DONNÉES

- 2 jeux de données disponibles : 2015 et 2016
 - Vérifications que les variables des 2 années sont égales
- Liste des variables différentes et actions effectuées :

Variables	Actions
Comment	Equivalent à Comments
GHGEmissionsIntensity	Equivalent à GHGEmissionsIntensity(kgCO2e/ft2)
TotalGHGEmissions	Équivalent à GHGEmissions(MetricTonsCO2e)
Location	Contient les variable : City, State ZipCode, Lattitude Longitude
2010 Census Tracts	Supprimée
Seattle Police Department Micro Community Policing Plan Areas	Supprimée
SPD Beats	Supprimée
City Council Districts	Supprimée

II. NETTOYAGE: CHOIX DES VARIABLES ET NETTOYAGE

- Sélections des variables utiles pour l'étude :
 - <u>Pour caractériser le batiment</u>: BuildingType, PrimaryPropertyType, YearBuilt, NumberofFloors, NumberofBuildings,
 PropertyGFATotal, PropertyGFAParking, PropertyGFABuilding(s), LargestPropertyUseType, LargestPropertyUseType, SecondLargestPropertyUseTypeGFA: ThirdLargestPropertyUseType,
 ThirdLargestPropertyUseTypeGFA
 - <u>Pour caractériser la consommation électrique</u>: Electricity(kWh), Electricity(kBtu), NaturalGas(kBtu), SteamUse(kBtu),
 OtherFuelUse(kBtu)
 - Autres : ENERGYSTARScore, Outlier, DataYear
- Vérifications du type des valeurs
- Cohérence entre les variables :
 - Entre les différents types d'énergie et la consommation totale : si différence > 1% → supprimée
 - Entre la surface totale et la surface de l'immeuble + parking : si différence inférieure à 0 → supprimée

II. NETTOYAGE: FEATURES ENGINEERING

- Création de nouvelles variables à partir des données disponibles
 - Mix énergétique → %électricité, %gaz, %vapeur, %autres
 - Source principale d'énergie → OneHotEncoder sur le plus gros % du mix énergétique
 - Surface occupée par chaque activité → regroupement des variables LargestPropertyUseType et LargestPropertyUseTypeGFA
 - Niveau de outliers → 0 si non outlier, I faible outlier, 2 haut outlier
 - Type d'immeuble → OneHotEncoder
 - Age de l'immeuble → année du relevée année de construction
- Imputation de l'ENERGY STAR Score

II. NETTOYAGE: EXPLORATION

- Taux de complétion : visualisation des variables les mieux renseignées
- Distribution : caractériser la distribution de chaque variable
- Corrélation : identification des variables les plus corrélées aux variables à prédire

III. TEST DE DIFFÉRENTS MODÈLES : CHOIX DES VARIABLES

- Séparation des variables en 4 niveaux :
 - Niveau I:
 - YearBuild
 - MainEnergySource_Electricity(%)', 'MainEnergySource_NaturalGas(%)', 'MainEnergySource_SteamUse(%)'
 - 'Number of Buildings', 'Number of Floors', 'Property GFATotal', 'Property GFAParking', 'Property GFABuilding(s)'
 - Niveau 2 :
 - level I
 - 'Campus', 'Multifamily HR (10+)', 'Multifamily LR (1-4)', 'Multifamily MR (5-9)', 'NonResidential', 'Nonresidential COS', 'SPS-District K-12'
 - 'Data CenterGFA' 'Hospital (General Medical & Surgical)GFA', 'OfficeGFA', 'College/UniversityGFA' 'HotelGFA'
 - Niveau 3 :
 - level 2
 - Electricity(%)', 'NaturalGas(%)', 'SteamUse(%)', 'OtherFuelUse(%)'
 - Niveau « all »: toutes les variables

III. TEST DE DIFFÉRENTS MODÈLES : CHOIX DES MODELES

- modèles linéaire :
 - LinearRegression
 - Ridge Regression
 - Lasso Regression
 - ElasticNet Regression
 - Support vector machine Regression
- KNN
- arbres de décision
- modèles non linéaires :
- Kernel Ridge Regression
- Kernel Support Vector machine
- méthodes ensemblistes :
 - AdaBoost
 - GBoost
 - XGBoost
 - random forest

III. TEST DE DIFFÉRENTS MODÈLES : RESULTATS

- Paramètres :
 - 10 Kfolds, random_state : 42, scoring : neg_mean_absolute_error, différentes normalisations

XGBoost donne les meilleures performances

III. TEST DE DIFFÉRENTS MODÈLES : RESULTATS

• Effet de la normalisation :

Normalisation inutile pour le modèle XGBoost

Optimisation des hyperparamètres

	XGBoost Energie	XGBoost GES
N_estimators	400	300
Max_depth	16	21
Subsample	0.6	0.8
Colsample_bytree	0.8	0.8
Learning_rate	0.1	0.1

Modele	Score Energy (MAE) (level 2)	Score GES (MAE) (level 2)
Baseline	4.577*10 ⁶	98.87
XGBoost non tunné	1.31141*106	35.831
XGBoost tunné	1.0967*106	31.49

- Le modèle optimisé conduit à de meilleurs performances
 - Gain important par rapport à la baseline

Effet de la variable Energy Star Score

Energie

GES

- Permet d'augmenter légèrement la performance du modèle.
- Le gain est similaire à celui obtenu en ajoutant plus de variables
 - → Pas essentiel

Performance sur le jeu de test

	XGBoost Energie	XGBoost GES
Baseline	4.58*106	98.87
Cross validation	8.31*105	19.00
Test set	7.05*10 ⁵	17.47

- L'erreur obtenue est du même ordre de grandeur que lors de la cross validation
- Un facteur 5 est obtenue par rapport à la baseline

Ajouter plus d'observations?

	XGBoost Energie	XGBoost GES
Petit Dataset	8.31*105	19.00
Gros Dataset	1.21*106	25.33

- Etrangement ajouter plus d'observations dégrade la performance...
 - Il faut peut être optimiser à nouveau les hyperparamètres
- La courbe d'apprentissage du jeu de test semble être encore croissante
 - → La performance peut être améliorée en augmentant la taille de la base de données

Effet de l'imputation

	XGBoost Energie	XGBoost GES
Sans ENERGYSTARScore	1.21*106	25.33
Avec ENERGYSTARScore	1.30*106	27.03

- Les performances obtenues avec la variable ENERGYSCORStar avec imputation dégrade les performances
 - L'imputation par la méthode des KNN n'est pas adaptée

V. CONCLUSIONS

- Base de données nettoyée : harmonisée, fusionnée, suppression des valeurs aberrantes...
- Création de nouvelles variables
- Plusieurs modèles testés
 - XGBoost permet d'obtenir les meilleurs performances
- Plusieurs traitements de données testés :
 - Pas d'effet sur le modèle XGBoost.
- L'Energy Star Score permet d'augmenter la performance, mais pas de manière significative
- La prédiction de l'Energy Star Score par la méthode KNN est contre productive

V. AMÉLIORATIONS

- Augmenter la taille de la base de données afin d'obtenir des modèles plus performant
- Identifier et analyser les outliers sur le jeu d'apprentissage
- Aller plus loin de le feature engineering
 - Demander l'expertise des experts du métier

