Cálculo Vetorial

- 1. a) Determine a matriz Jacobiana em $(x, y, z) \in \mathbb{R}^3$ das seguintes funções:
 - $i) f(x, y, z) = (e^y, xyz)$ $ii) f(x, y, z) = xy z^2 \cos y$ $iii) f(x, y, z) = (z^2, e^x \cos y, zx)$
 - b) Utilizando a regra da cadeia, determine as derivadas parciais da função F dada por $F(u,v) = f(u^2,uv,v^3)$ onde f é a função da alínea a)ii) anterior.
- 2. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função diferenciável tal que, para todo o $t \in \mathbb{R}$, f(t,0) = 0 e f(0,t) = t.
 - a) Calcule $\frac{\partial f}{\partial x}(0,0)$ e $\frac{\partial f}{\partial y}(0,0)$ e determine uma equação do plano tangente ao gráfico de f em (0,0).
 - b) Seja $\theta \in \mathbb{R}$ uma constante. Considere a aplicação linear $g: \mathbb{R}^2 \to \mathbb{R}^2$ cuja matriz na base canónica de \mathbb{R}^2 é $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. Determine uma equação do plano tangente ao gráfico de $f \circ g$ em (0,0).
- 3. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função diferenciável tal que, para todo $t \in \mathbb{R}$, $f(3t, t^3) = \operatorname{arctg} t$.
 - a) Mostre que $3\frac{\partial f}{\partial x}(3t,t^3) + 3t^2\frac{\partial f}{\partial y}(3t,t^3) = \frac{1}{1+t^2}$.
 - b) Admitindo que $\frac{\partial f}{\partial y}(3,1) = 2$ calcule $\frac{\partial f}{\partial x}(3,1)$.
 - c) Determine uma equação do plano tangente ao gráfico de f em (3,1) e uma equação da recta tangente à curva de nível de f que passa pelo ponto (3,1).