Aluna(o): Rafael Amauri Diniz Augusto

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS

Instituto de Ciências Exatas e Informática

Curso de Ciência da Computação - Coração Eucarístico

Profa.: Camila Laranjeira - mila.laranjeira@gmail.com Disciplina: Inteligência Artificial / 10 Semestre de 2022

Lista 02 - Lógica Proposicional

Nesta lista você usará os conceitos de lógica proposicional aprendidos em sala de aula. Antes das questões, este documento apresenta a visão geral dos conceitos com base no material <u>Preparatório para o Teste da ANPAD</u>, da professora Cristiane Neri Nobre.

1. Proposições têm sentido completo e podem ser verdadeiras ou falsas. Na lógica proposicional, são representadas por uma letra maiúscula. Exemplos:

Proposição	Símbolo
A árvore tem folhas.	Α
Joana se cortou.	В
Eu vi um macaco na esquina.	С

Não são exemplos de proposição:

- Macaco.
- Que horas são?
- **2. Conectivos.** Para compor fórmulas, podemos ter uma ou mais proposições conectadas por um dos seguintes símbolos
 - não (~, ou ¬), também chamada de negação;
 - e (∧ ou •), também chamada de conjunção;
 - ou (∨ ou +), também chamada de disjunção;
 - 4. →, também chamada de condicional;
 - 5. ↔, também chamada de bicondicional (se e somente se ou ainda bi-implicação);
- **3. Fórmulas.** Quando uma ou mais proposições estão acompanhadas por conectivos, temos a composição de uma fórmula. Exemplos:

Joana não se cortou.	¬В
Eu vi um macaco na esquina ou a árvore tem folhas.	CVA
A árvore tem folhas e eu vi um macaco na esquina.	AΛC
Se a árvore tem folhas, então eu vi um macaco na esquina	$A \rightarrow C$
Eu vi um macaco na esquina se e somente se a árvore tem folhas	$C \leftrightarrow A$

Conectivos possuem ordem de precedência, mas você pode usar parênteses ou colchetes para alterar essa ordem. Para conectivos dentro de vários parênteses, efetua-se primeiro as expressões dentro dos parênteses mais internos.

Ordem de Precedência (esquerda para direita)			
7	٧, ٨	\rightarrow	\leftrightarrow

Nesse sentido, a expressão $A \to B \ V \ C$ é interpretada como $A \to (B \ V \ C)$ a menos que parênteses sejam explicitados, como na expressão diferente $(A \to B) \ V \ C$.

4. Valor-verdade e Tabela-verdade. Toda fórmula e toda proposição possuem um valor-verdade, que pode assumir o valor **Verdadeiro/V/1** ou **Falso/F/0**. Uma ferramenta para avaliar o valor-verdade de uma determinada fórmula é a tabela-verdade, onde avaliamos os possíveis modelos de nosso problema. A seguir temos a tabela-verdade das fórmulas básicas na lógica proposicional.

A	В	~A (o	~B (o	A∧B	A∨B	$A \rightarrow B = (\sim A \lor B)$	$A \leftrightarrow B = (A \rightarrow B) \land$
		contrário de	contrário				(B→A)
		A	de B)				
V	V	F	F	V	V	V	V
V	F	F	V	F	V	F	F
F	V	V	F	F	V	v	F
F	F	V	V	F	F	v	V

Tabela 6 - Tabela verdade para a negação, conjunção, disjunção, condicional e bicondicional para duas proposições.

Chamamos de **modelo** (w) nesse contexto, a associação de valores-verdade às proposições. Caso não se conheça o valor-verdade de uma ou mais proposições, consideramos que existem diferentes possibilidades de modelo para o problema em questão. No exemplo $w = \{A: V, B: F, C: ?\}$ temos dois possíveis modelos:

- $w1 = \{A: V, B: F, C: V\}$
- w2 = {A: V, B: F, C: F}

5. Tautologia, contradição e contingência.

- Tautologia: expressões verdadeiras para todos os possíveis modelos.
- Contradição: expressões falsas para todos os possíveis modelos.
- Contingência: expressões que podem ser verdadeiras em alguns modelos e falsas em outros.

Tautologia

-		
С	Av C	$A \rightarrow (A \lor C)$
V	V	V
F	V	V
V	V	V
F	F	V

Contradição

	A	~A	A ^ ~A
ľ	V	F	F
Ì	F	V	F

Contingência

A	~A	$A \rightarrow \sim A$
V	F	F
F	V	V

6. Regras de Inferência. Para derivar novas proposições a partir de um conhecimento prévio existem regras que nos permitem deduzir conclusões lógicas. Essas regras definem **tautologias**, pois deduzem expressões que são verdadeiras para todos os mundos definidos pelo conhecimento prévio.

Regras de Inferência			
De	Podemos deduzir	Nome/abreviação da regra	
$P \rightarrow Q e P$	Q	Modus ponens	
P → Q e ~Q	~P	Modus tollens	
P e Q	$P \wedge Q$	Conjunção	
P v Q e P v ~Q	P	Simplificação disjuntiva	
P	P v Q	Adição	
$P \to Q e Q \to R$	$P \rightarrow R$	Silogismo hipotético	
P∨Qe~P	Q	Silogismo disjuntivo	

$P \rightarrow Q$	~Q → ~P	
~Q → ~P	$P \rightarrow Q$	Contraposição
P	P∧P	Auto-referência
$P \vee P$	P	
$(P \land Q) \rightarrow R$	$P \rightarrow (Q \rightarrow R)$	Exportação
Pe~P	Q	Inconsistência

Exemplo: a partir das expressões

- Se eu ganhar na Loteria, serei rica
- Eu ganhei na Loteria

Podemos deduzir por Modus Ponens que eu sou rica.

1. Represente as seguintes frases de acordo com a lógica proposicional. Use o mesmo símbolo quando a mesma proposição aparecer em exemplos diferentes.

Frase	Fórmula
Está chovendo ou nevando.	A v B
Está chovendo, mas não está nevando.	A ^ ¬ B
Se está nevando e chovendo, então eu estou com frio.	(A ∧ B) → C
O ônibus para quando alguém quer descer ou subir.	A → (B ∨ C)
Só quando o trem passa a cancela fica abaixada.	$A \! \leftarrow \! B$
Se o trem passa, a cancela fica abaixada.	A → B
Ana e Beto são mecânicos.	А
Ana é mecânica ou enfermeira.	ΑνΒ
Se Ana é mecânica, então ela não é professora.	A → ¬B

2. Seja A: rosas são vermelhas, B: violetas são azuis e C: Açúcar é doce, escreva em português as seguintes fórmulas:

Frase	Fórmula
As violetas não são azuis	¬В
As violetas são azuis ou o Açúcar não é doce	в∨¬С
As violetas não são azuis ou (as rosas são vermelhas se o açúcar é doce)	¬B ∧ (A→C)
O açúcar é doce e (as rosas não são vermelhas se e somente se as violetas são azuis)	C ∧ (¬A ↔ B)

3. Considere o modelo $w = \{P: 0, Q: 1\}$ e calcule o **valor-verdade** das expressões a seguir.

Fórmula	Valor-verdade	Fórmula	Valor-verdade
$P \rightarrow Q$	1	$P \rightarrow \neg \neg P$	1
$\neg P \rightarrow Q$	1	$P \leftrightarrow \neg P$	0
$\neg (P \rightarrow Q)$	0	(P ∨ Q) ∨ (¬P ∧ ¬Q)	1
$\neg P \lor \neg Q \leftrightarrow P \land Q$	0	P V Q V ¬P A ¬Q	0
$(\neg P \ \lor \ \neg Q) \longleftrightarrow (P \ \land \ Q)$	0	$(P \land (P \rightarrow Q)) \rightarrow Q$	1

4. Considerando a sintaxe que vimos em aula, transforme em código as expressões da questão 1.

```
Atom(x)
Not(x)
And(x, y), AndList(x1,x2,...,xn)
Or(x, y), OrList(x1,x2,...,xn)
```

- Xor(x,y)
- Implies(x, y)
- Equiv(x, y)

Frase	Está chovendo ou nevando.				
Código	Or(Atom("Chuva"), Atom("Neve"))				
Frase	Está chovendo, mas não está nevando.				
Código	And(Atom("Chuva"), Not(Atom("Neve")))				
Frase	Se está nevando e chovendo, então eu estou com frio.				
Código	Implies(And(Atom("Chuva), Atom("Neve")), Atom("Frio"))				
Frase	O ônibus para quando alguém quer descer ou subir.				
Código	Implies(Atom("Parar"), Or(Atom("Descer"), Atom("Subir"))				
Frase	Só quando o trem passa a cancela fica abaixada.				
Código	Equiv(Atom("Trem passa"), Atom("Cancela abaixa"))				
Frase	Se o trem passa, a cancela fica abaixada.				
Código	Implies(Atom("Trem passa"), Atom("Cancela abaixa"))				
Frase	Ana e Beto são mecânicos.				
Código	Atom("Ana e Beto são mecânicos")				
Frase	Ana é mecânica ou enfermeira.				
Código	Or(Atom("Mecânica"), Atom("Enfermeira"))				
Frase	Se Ana é mecânica, então ela não é professora.				
Código	Implies(Atom("Mecânica"), Not(Atom("Professora")))				

5. Considere as proposições a seguir e responda: Sócrates está disposto a visitar Platão? Você pode construir uma **tabela-verdade** para te ajudar a chegar na resposta.

Se Platão estiver disposto a visitar Sócrates então Sócrates está disposto a visitar Platão. Se Sócrates estiver disposto a visitar Platão então Platão não está disposto a visitar Sócrates. Se Sócrates não estiver disposto a visitar Platão então Platão está disposto a visitar Sócrates.

Resposta:	Sim.
-----------	------

6. Considere que você está numa realidade onde as pessoas sempre mentem ou sempre dizem a verdade. Você encontra duas pessoas, Fulana e Beltrana. Fulana diz: "Pelo menos uma de nós é mentirosa."

Fulana é a pessoa que sempre mente ou a que sempre diz a verdade? E Beltrana? Justifique.

Resposta:	Fulana fala a verdade e Beltrana mente.				
	Fulana	Beltrana	Proposição		
	Т	Т	F	=> Errado	
	Т	F		=> Correto	
	F	Т		=> Errado	
	F	F	Т	=> Errado	