

CAS Practical Machine Learning Introduction

Unsupervised Learning

Prof. Dr. Jürgen Vogel (juergen.vogel@bfh.ch)

Unsupervised Learning

an algorithm learns from experience \mathbb{E} to solve some tasks \mathbb{T} with performance \mathbb{P} if \mathbb{P} improves with \mathbb{E}

Unsupervised Learning

- tasks T that are solved
 - identifying similar items
 - e.g., recommender systems
 - e.g., collaborative filtering
 - identifying correlated features
 - e.g., dimensionality reduction
 - ► e.g., PCA
 - mapping a sample (based on its features) to some output
 - e.g., clustering = map to a group
 - ▶ e.g., K-Means
- but the model to solve T is inferred from data $\mathbb E$ based on some distinctive features of $\mathbb E$
- the algorithm does not have access to P
- \blacktriangleright the algorithm learns in the sense that more data ${\mathbb E}$ should improve ${\mathbb P}$

Clustering (1)

Clustering

- aim to organize a dataset into groups, i.e., clusters
 - Iris dataset into distinct species
 - customers into target groups
 - news articles into topic groups (e.g., Google News)
 - ...
- ~ unsupervised classification
- based on some similarity measure
 - all instances within a cluster should be similar
 - and instances in different clusters should be dissimilar
- may also produce a description for each cluster discovered
 - i.e., a representative instance, a label, several labels,

Clustering Documents (2)

- may also built a hierarchy (relations) between clusters
- often based on unsupervised machine learning
 - i.e., can run fully automated w/o training
- may need to be fine-tuned via parameters
 - e.g., number of clusters
- tend to be computationally expensive

Clustering via Partitioning

Partitioning Approach

- construct a partition of n instances into a set of K clusters
 - given: a set of instance and the number K
 - find: a partition of K clusters that optimizes the partitioning criterion
 - optimal?
 - intractable for many objective functions
 - in many cases would require full enumeration
 - more practical: heuristic solution

K-Means

Idea

- creates K clusters
- ightharpoonup interpret samples x as real-valued vectors \vec{x}
 - data preparation: numeric data only
- assignment of x to a cluster is based on its distance to the cluster centroids
- ► centroid of a cluster C_i : $\mu(C_i) = \frac{1}{|C_i|} \sum_{\vec{x} \in C_i} \vec{x}$

Algorithm

```
select K random samples {c<sub>1</sub>, c<sub>2</sub>,..., c<sub>K</sub>} as approximation of centroids until termination condition for each sample x_i assign x_i to the cluster C_j such that dist(x_i, c_j) is minimal for each cluster C_j update the approximations of centroids c_j = \mu(C_j)
```

- termination conditions
 - clusters converge (= do not change)
 - fixed number of iterations
 - centroid positions unchanged

K-Means Example for K=2

How Many Clusters K?

- Number of clusters K is given
 - partition n samples into predetermined number of clusters
- 2. Finding the "right" number of clusters is part of the problem
 - partition n samples into appropriate number of clusters
 - often "try and error"
- 3. Use an algorithm to determine *K* automatically
 - define a function to assess the "quality" of all clusters
 - e.g., pairwise distance of all samples within a cluster to measure how homogenous the cluster is
 - increase K until no further quality improvement

Discussion K-Means

Advantages

easy to implement and understand ("white box")

Disadvantages

- assumes that clusters are sphere-shaped
- number of iterations and resulting clusters results depend on seed choice
 - use heuristic rather than random picks
- algorithm may converge on local minima
 - re-run with different seeds
 - post-process resulting clusters
 - > split the n "worst" clusters into 2 (or more) sub-clusters
 - merge 2 close clusters (=centroid are close) into one
- relatively slow
 - updating centroid after each new sample assignment may speed up the process

Cluster Evaluation Metrics (1)

- in case we have a classified data set (gold standard)
 - homogeneity score
 - $ightharpoonup \in [0; 1]$ where 1 means that each computed cluster contains only samples of one gold standard cluster
 - completeness score
 - $ightharpoonup \in [0; 1]$ where 1 means that all samples from a gold standard cluster are assigned to the same computed cluster
 - adjusted rand index (ARI)
 - overlap between the sets of clusters (computed vs. gold standard)
 - overlap = number of common items
 - $ightharpoonup ARI \in [-1; 1]$ where 1 means equality

Cluster Evaluation Metrics (2)

- in case the gold standard is not known
 - sum of squared error (SSE)
 - sum of squared distance of each sample to the centroid of its assigned cluster
 - squared: penalty for samples that are far from the cluster centroid
 - silhouette coefficient
 - per sample: (normalized) average distance of sample to all other points in the same cluster – average distance of sample to all other points in the next nearest cluster
 - overall silhouette coefficient as average
 - $ightharpoonup \in [-1; 1]$ where 1 means dense clusters