Real-Time Operating System Project EDF Implementation Report

Name: Andrew Emeel Kamel

Email: androdod240@gmail.com

Verifying the System Implementation: Method 1: Analytically

using analytical methods:

1- System Hyper-period:

Task	Periodicity		
Button 1 Monitor	50		
Button 2 Monitor	50		
Periodic Transmitter	100		
UART Transmitter	20		
Load 1 Simulation	10		
Load 2 Simulation	100		

Hyperperiod = Least Common Multiplier of all tasksperiodicities Hyperperiod = LCM (50, 50, 100, 20, 10, 100) Hyperperiod = 100

2- CPU Load:

Task	Execution Time	Occurrence During Hyper-period
Button 1 Monitor	18.5 μs	2
Button 2 Monitor	19 µs	2
Periodic Transmitter	19.2 μs	1
UART Transmitter	21.6 μs	5
Load 1 Simulation	5 ms	10
Load 2 Simulation	12 ms	1

Utilization = Total Execution Time During Hyper-period / HyperperiodU=((T1*2)+(T2*2)+T3*1)+(T4*5)+T5*10)+(T6*1) / 100m) * 100% U =((18,5
$$\mu$$
s*2)+(19 μ s*2)+(19.2 μ s*1)+(21,6 μ s*5)+(5 m s*10)+(12 m s*1) / 100 m s)* 100% = 62.22%

3- System Schedulability: Schedulability Analysis (using URM and time demand analysis techniques: (Assuming the given set of tasks are scheduled using a fixed priority rate monotonic scheduler)

Using Rate Monotonic Utilization Bound:

$$U \le n[2 (1/n) - 1]$$
 Urm =n $(2(1/n) - 1) = 6(2(1/6) - 1) = 0.73477$

 $U=\sum$ Ci/Pi = 18.5 μs / 50 ms+19 μs / 50 ms+19.2 μs / 100 ms+ 21.6 μs /20 ms+5 ms /10 ms + 12 ms / 100 ms = 0.62202

Since U < Urm, Therefore System guaranteed Schedulable

Using Time Demand Analysis:

$$w_i(t) = e_i + \sum_{k=1}^{i-1} \left\lceil \frac{t}{p_k} \right\rceil e_k \quad \text{for } 0 < t \le p_i$$

W = Worst response

E = Execution time

P = Periodicity

T = Time instance

Arrange Tasks according to Priority will be: [Task 5, Task 4, Task 1, Task 2, Task 3, Task 6]

Task	Task ID	Periodicity	Execution Time
Button 1 Monitor	Task 1	50	18.5 μs
Button 2 Monitor	Task 2	50	19 μs
Periodic Transmitter	Task 3	100	19.2 μs
UART Transmitter	Task 4	20	21.6 μs
Load 1 Simulation	Task 5	10	5 ms
Load 2 Simulation	Task 6	100	12 ms

For Task 5

(Load 1 Simulation)

$$W(1) = 5 + 0 = 5 \text{ ms} \diamond W(10) = 5 + 0 = 5 \text{ ms}$$

$$W(10) < D = 5 \text{ms} < 10 \text{ ms}$$
, Task 5 is Schedulable

For Task 4 (UART Transmitter)

$$W(1) = 21.6 \mu s + (1/10)*5 ms = 0.522 ms$$

$$W(5) = 21.6 \mu s + (5/10)*5 ms = 2.5216 ms$$

$$W(10) = 21.6 \mu s + (10/10)*5 ms = 5.023 ms$$

$$W(20) = 21.6 \mu s + (20/10)*5 ms = 10.021 ms$$

$$W(20) < D = 10.021 \text{ ms} < 20 \text{ ms}$$
, Task 4 is Schedulable

For Task 1 (Button 1 Monitor)

$$W(1) = 18.5 \ \mu s + (1/10)*5 \ ms + (1/20)*21.6 \ \mu s \ ms = 0.519 \ ms$$

$$W(50) = 18.5 \ \mu s + (50/10)*5 \ ms + (50/20)*21.6 \ \mu s \ ms = 25.0725 \ ms$$

$$W(50) < D = 25.0725 \text{ ms} < D = 25.0915 \text{ ms} < D = 50.2022 \text{ ms}$$
 $< D = 62.2022 \text{ ms}$

Method 2: SIMSO

Using Simso offline simulator, simulate the given set of tasks assuming:

- 1. Calculate Hyper-period
- 2. CPU Load
- 3. Schedulability Analysis

*Tasks Creation

1. Calculate Hyper-period=100ms

2. CPU Load (Simso)

3.Schedulability Analysis: system is Schedulability from Gantt Chart

Method 3:using Keil

1- Calculate the CPU usage time using timer 1 and trace macros

2- Using trace macros and GPIOs, plot the execution of all tasks, tick, and the idle task on the logic analyzer"

As We see the results of the three methods give the same CPU load = 62.7%, which means a successful implementation