Distributions

Distribution	Probability Density Function	$\mathbb{E}(X)$	$\mathbf{Var}(X)$
$X \sim \mathrm{Bi}(n,p)$	$p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$	np	np(1-p)
$N \sim G(p)$	$p_N(n) = (1-p)^n p$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$
$X \sim \operatorname{Pn}(\alpha t)$	$p_X(x) = \frac{e^{-\alpha}(\alpha)^x}{x!}$	α	α
$X \sim \mathrm{U}(m,n)$	$p_X(x) = \frac{1}{n - m + 1}$	$\frac{m+n}{2}$	$\frac{1}{12}((n-m+1)^2-1)$
$X \sim \mathrm{R}(a,b)$	$f_X(x) = \frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{1}{12}(b-a)^2$
$T \sim \exp(\alpha)$	$f_T(t) = \alpha e^{-\alpha t}$, for $t \ge 0$	$\frac{1}{\alpha}$	$\frac{1}{\alpha^2}$
$T \sim \gamma(r, \alpha)$	$f_T(t) = \frac{\alpha^r t^{r-1} e^{-\alpha t}}{\Gamma(r)}, \ t > 0$	$\frac{r}{\alpha}$	$\frac{r}{\alpha^2}$
$X \sim \operatorname{Pareto}(\alpha, \gamma)$	$f_X(x) = \frac{\gamma \alpha^{\gamma}}{x^{\gamma+1}}$, for $\alpha \le x < \infty$	$\frac{\gamma\alpha}{\gamma-1}$, for $\gamma > 1$	$\frac{\gamma \alpha^2}{(\gamma-1)^2(\gamma-2)}$, for $\gamma > 2$
$X \sim N(\mu, \sigma^2)$	$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}, \text{ for } x \in \mathbb{R}$	μ	σ^2
$X \sim \mathrm{C}(m,a)$	$f_X(x) = \frac{1}{\pi} \frac{a}{a^2 + (x - m)^2}$, for $-\infty < x < \infty$	Undefined	Undefined
$Y \sim \text{LN}(\mu, \sigma^2)$	$f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma y} e^{-\frac{(\ln y - \mu)^2}{2\sigma^2}}, \text{ for } y > 0$	$e^{r\mu + \frac{1}{2}r^2\sigma^2}, \ r \ge 0$	$e^{2\mu+\sigma^2}(e^{\sigma^2}-1)$

Confidence Intervals

Estimating Means

For large $r, t_r \longrightarrow N(0,1)$ is a good approximation.

Normal, Single Mean, Known σ

$$\left(\bar{x} \pm c \frac{\sigma}{\sqrt{n}}\right)$$
; with $c = F^{-1}(1 - \frac{\alpha}{2})$ from pivot N(0, 1). Normal, Single Mean, Unknown σ

$$\left(\bar{x} \pm c \frac{s}{\sqrt{n}}\right)$$
; with $c = F^{-1}(1 - \frac{\alpha}{2})$ from pivot t_{n-1} .

Normal, Two Means, Two Known
$$\sigma$$
's $\left(\bar{x}\pm c\frac{s}{\sqrt{n}}\right)$; with $c=\mathrm{F}^{-1}(1-\frac{\alpha}{2})$ from pivot t_{n-1} . Normal, Two Means, Two Known σ 's $\left((\bar{x}-\bar{y})\pm c\sqrt{\frac{\sigma_X^2}{n}+\frac{\sigma_Y^2}{m}}\right)$; with c from pivot N(0,1). Normal, Two Means, Unknown σ 's, Many Samples

 $\left((\bar{x}-\bar{y})\pm c\sqrt{\frac{s_X^2}{n}+\frac{s_Y^2}{m}}\right)$; with c from pivot N(0,1).

Normal, Two Means, Unknown σ 's, Common Variance $\left((\bar{x}-\bar{y})\pm c\cdot s_P\sqrt{\frac{1}{n}+\frac{1}{m}}\right)$; with c from pivot t_{n+m-2} . $s_P=\sqrt{\frac{(n-1)s_X^2+(m-1)s_Y^2}{n+m-2}}$ Normal, Two Means, Unknown σ 's, \neq Variances $\left((\bar{x}-\bar{y})\pm c\sqrt{\frac{s_X^2}{n}+\frac{s_Y^2}{m}}\right)$; with c from pivot t_r . $r=\left(\frac{s_X^2}{n}+\frac{s_Y^2}{m}\right)^2/\left(\frac{s_X^4}{n^2(n-1)}+\frac{s_Y^4}{m^2(m-1)}\right)$ Normal, Paired Samples
For pairs (X,Y_1) let $D_1=X_2=Y_1=X_2$

For pairs (X_i, Y_i) , let $D_i = X_i - Y_i$. $D_i \sim N(\mu_D, \sigma_D^2)$. $\left(\bar{d} \pm c \frac{s_d}{\sqrt{n}}\right)$; with c from pivot t_{n-1} .

Estimating Variance

Normal, Single Variance - estimate of σ^2 not σ ! $\left(\frac{(n-1)s^2}{b}, \frac{(n-1)s^2}{a}\right)$; with a, b from pivot χ^2_{n-1} .

Normal, Two Variances

A confidence interval for the ratio of the variances σ_X^2/σ_Y^2 is $\left(a \cdot \frac{s_x^2}{s_n^2}, b \cdot \frac{s_x^2}{s_u^2}\right)$; with a, b from pivot $\mathbf{F}_{m-1, n-1}$.

Estimating Proportions

Single Proportion

$$\approx \left(\hat{p} \pm c\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$$
; with c from pivot N(0,1).

$$\approx \left(\hat{p_1} - \hat{p_2} \pm c\sqrt{\frac{\hat{p_1}(1-\hat{p_1})}{n} + \frac{\hat{p_2}(1-\hat{p_2})}{n}}\right); c \text{ from pivot } N(0,1).$$

Prediction Intervals

Let X^* be a future realisation of X. If $X \sim N(\mu, \sigma^2), \bar{X} \sim N(\mu, \frac{\sigma^2}{n})$, and $(\bar{X} - X^*) \sim N(\mu, \sigma^2 + \frac{\sigma^2}{n})$. $\left(\bar{x} \pm c\sqrt{s^2 + \frac{s^2}{n}}\right)$ is a prediction interval with c from t_{n-1} . If σ is known, use pivot N(0, 1). If μ is known use χ^2_{n-1} .

Other Formulae

Sample Variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left(\left(\sum_{i=1}^{n} x_{i}^{2} \right) - n\bar{x}^{2} \right)$$