DS 5 : Magnétostatique & Thermochimie Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

01-18	Imagerie par Résonance Magnétique nucléaire ou IRM	18	
01-19	Comportement d'une population de dipôles dans un	19	
	champ magnétique		
01-07	Dipôles magnétiques	7	
1	Voir cours : soit une spire de courant orientée parcourue par un	1	
	courant i , de surface plane S et \vec{n} le vecteur normal à S orienté		
	selon l'orientation de la spire. Alors le moment magnétique associé		
0	à la spire est $\vec{m} = iS\vec{n}$. Et faire un schéma .	1	
3	D'après la définition, $\vec{\mu} = IS\vec{n} = I\left(\pi R^2\right)\vec{e}_z$ faire un schéma , si la sphère est chargée on peut définir un densité	1	
9	de charge ρ en tout point de la sphère. Si la sphère est en rota-	1	
	tion on peut définir une vitesse \vec{v} des porteurs de charge. Donc on		
	peut définir un vecteur densité de courant $\vec{j} = \rho \vec{v}$. On remarque		
	à l'aide du schéma sur lequel on a repéré ρ et \vec{v} , que \vec{j} est ortho-		
	radial par rapport à l'axe de rotation. Donc ils forment des spires		
	perpendiculaires à l'axe de rotation, possédant toutes un moment		
	magnétique selon le même axe.	1	
$\mid 4 \mid$	On utilise la formule $E_p = -\vec{\mu}.\vec{B}$ donc $[E_p] = [\mu].[B]$ donc	1	
	$[\mu] = \frac{[E_p]}{[B]}$ or E_p est homogène à une énergie et s'exprime donc		
	en Joule dans le SI et B est homogène à un champ magnétique		
	donc s'exprime en Tesla. On en déduit que l'unité de μ dans le système SI est J.T $^{-1}$		
5	Systeme of each g . I $E_p = -\vec{\mu}.\vec{B}_0 \text{ avec } \theta \text{ l'angle entre } \vec{\mu} \text{ et } \vec{B}_0, \text{ on a } \vec{\mu}.\vec{B}_0 = \mu B_0 \cos(\theta),$	1	
	donc $E_p = -\mu B_0 \cos(\theta)$. Tracer du graphe de E_p en fonction de		
	θ .		
6	Le système admet une position d'équilibre quand l'énergie poten-	1	
	tielle est maximale ou minimale. Les positions d'équilibre corres-		
	pondent donc d'après le graphe aux deux angles $\theta = 0$ et $\theta = \pi$.		
	Pour $\theta = 0$, $\vec{\mu}$ et B_0 sont alignés de même sens, l'énergie potentielle est minimale et vaut $F_0 = \mu B_0$ il c'acit d'un équilibre etable		
	est minimale et vaut $E_p = -\mu B_0$, il s'agit d'un équilibre stable. Pour $\theta = \pi$, $\vec{\mu}$ et \vec{B}_0 sont de sens opposé, l'énergie potentielle est		
	maximale et vaut $E_n = \pm \mu B_0$, il s'agit d'un équilibre instable		
7	maximale et vaut $E_p = +\mu B_0$, il s'agit d'un équilibre instable. La différence d'énergie vaut $\Delta E_p = E_p (\theta = \pi) - E_p (\theta = 0) = 0$	1	
	$2\mu B_0$. L'application numérique donne $\Delta E_p = 2,9.10^{-26}$ J. En		
	utilisant la conversion 1 eV = 1,602.10 ⁻¹⁹ J, on trouve $\Delta E_p = 1,8.10^{-7}$ eV = 0,18 μ eV		
8	On effectue l'application numérique de l'énergie thermique $E_{th} =$	1	
	on enectue 1 application numerique de 1 energie thermique $E_{th} = k_B T$, on trouve $E = 4, 11.10^{-21}$ J, on convertit en eV avec 1 eV		
	$=1,602.10^{-19}$ J, et on obtient $E_{th}=25,6$ meV. Donc $\Delta E_p \ll E_{th}$		
09-12	Rapports gyromagnétiques	4	
9	Faire un schéma. On remarque que le courant qui traverse la	1	
	boucle de courant est porté par un électron qui traverse une sec-		
	tion toute les périodes de rotation. Donc $i = -\frac{e}{T}$, or il se déplace à		
	la vitesse v donc $v = \frac{2\pi r_B}{T}$. On en déduit $i = -\frac{ev}{2\pi r_B}$. L'électron se		
	déplace dans le sens direct donc le courant est orienté dans le sens		
	donné par la définition $\mu_e = iS$. La surface plane est la surface		
	d'un disque $S = \pi r_B^2$, donc $\mu_e = -\frac{ev}{2\pi r_B} \pi r_B^2 = -\frac{ev r_B}{2}$		

10	Par définition du moment cinétique $\vec{\sigma}\left(O\right) = \overrightarrow{OM} \wedge \vec{p} = r_B \vec{e_r} \wedge mv\vec{t} = mr_B v\vec{e_z}$	1	
11	On a démontré que $\mu_e = -\frac{evr_B}{2}$ et $\sigma_e = mr_B v$, donc $\gamma_e = \frac{\mu_e}{\sigma_e} = -\frac{evr_B}{2mr_B v} = -\frac{e}{2m}$. Donc $\gamma_e = -8, 8.10^{10}$ C.kg ⁻¹ On nous donne les valeurs de $\gamma_p = \frac{\mu_p}{\sigma_p}$ et de $\sigma_p = \frac{\hbar}{2}$. Donc $\gamma_p = -\frac{\hbar}{2}$	1	
12	On nous donne les valeurs de $\gamma_p = \frac{\mu_p}{\sigma_p}$ et de $\sigma_p = \frac{\hbar}{2}$. Donc $\gamma_p = \frac{\hbar}{2}$	1	
	$\frac{2\mu_p}{\hbar}$, d'où $\mu_p = \frac{\gamma_p \hbar}{2}$. Ce qui donne $\mu_p = 1, 4.10^{-26}$ J.T ⁻¹ . On		
	obtient bien la valeur de l'énoncé.		
13-16	Précession d'un dipôle	4	
13	On applique le théorème du moment cinétique au dipôle du proton	1	
	en son centre O. On obtient $\frac{d\vec{\sigma}_O}{dt} = \vec{\Gamma}(O) = \vec{\mu} \wedge \vec{B}_0$. Or $\gamma_p = \frac{\mu_p}{\sigma_p}$,		
	donc $\frac{\mathrm{d}\vec{\mu_p}}{\mathrm{d}t} = -\gamma_p \vec{B_0} \wedge \vec{\mu_p}$ d'où $\vec{\omega_0} = -\gamma_p \vec{B_0}$		
14	$\begin{aligned} &\operatorname{donc} \frac{\operatorname{d}\vec{\mu_p}}{\operatorname{d}t} = -\gamma_p \vec{B}_0 \wedge \vec{\mu_p} \operatorname{d'où} \vec{\omega}_0 = -\gamma_p \vec{B}_0 \\ & \mu^2 = \vec{\mu} ^2 = \vec{\mu}.\vec{\mu} \operatorname{donc} \frac{\operatorname{d}\mu^2}{\operatorname{d}t} = 2\vec{\mu}.\frac{\operatorname{d}\vec{\mu}}{\operatorname{d}t} = 2\vec{\mu}.(\vec{\omega}_0 \wedge \vec{\mu}) = 0. \operatorname{Donc} \vec{\mu}^2 \end{aligned}$	1	
	est une constante, donc $\mu = \vec{\mu} $ est une constante. $\vec{\omega}_0 = -\gamma_p \vec{B}_0$		
	donc $\vec{\omega}_0 \parallel \vec{B}_0$ et $\frac{\mathrm{d}}{\mathrm{d}t} (\vec{\omega}_0 \cdot \vec{\mu}) = \vec{\omega}_0 \cdot \frac{\mathrm{d}\vec{\mu}}{\mathrm{d}t} = \vec{\omega}_0 \cdot (\vec{\omega}_0 \wedge \vec{\mu}) = 0$. Donc la		
	composante de $\vec{\mu}$ dans la direction de \vec{B}_0 est bien constante.		
15	$\frac{\mathrm{d}\vec{\mu_p}}{\mathrm{d}t} = \vec{\omega}_0 \wedge \vec{\mu_p}$ et si on décompose le moment magnétique en une	1	
	composante parallèle à \vec{B}_0 par l'indice $_{\parallel}$ et perpendiculaire par		
	l'indice $_{\perp}$. On a montré aux questions précédentes que la com-		
	posante parallèle est constante et que la norme est constante. On		
	peut simplifier l'équation par $\frac{d\vec{\mu}_{\perp}}{dt} = \vec{\omega}_0 \wedge \vec{\mu}_{\perp}$, à l'aide d'un schéma en 2D avec $\vec{\mu}_{\perp}$ et le couple et d'une analyse dimensionnelle sur		
	ω_0 on justifie que le vecteur $\vec{\mu}_{\perp}$ tourne sur lui même à la vitesse		
	angulaire ω_0 .		
16	Faire un schéma en 3D en conbinant $\vec{\mu}_{\parallel}$, $\vec{\mu}_{\perp}$, $\vec{\omega}_0$ et $\vec{\mu}$. Le dipôle	1	
	effectue un mouvement de précession dans le sens direct autour de		
	$\vec{\omega}_0$ et balaye la surface latérale d'un cône d'axe $\vec{\omega}_0$ et de hauteur		
15.00			
17-20	Précession de l'aimantation	4	
17	Chaque $\vec{\mu}_i$ ont pour direction \vec{B} , donc $\vec{M} = \sum_i \vec{\mu}_i$ a aussi pour	1	
	direction \vec{B} .		
18	$\vec{M} = \sum_i \vec{\mu}_i = NV\vec{\mu}$ avec V le volume total considéré. Donc $M_0 = \sum_i \vec{\mu}_i = NV\vec{\mu}$	1	
10	$NV\mu_p$	1	
19	On doit calculer le nombre d'atome d'hydrogène par unité de volume. La quantité de matière des molécule d'eau est $n(H_2O) =$	1	
	inne. La quantité de mattere des molècule d'est $n(H_2O) = \frac{\rho V}{m}$, donc le nombre d'atome d'hydrogène est $2N_A n(H_2O)$, donc		
	le nombre d'atome d'hydrogène par unité de volume est $N =$		
	$\frac{2N_A n(H_2 O)}{V} = \frac{2\rho N_A}{m} = 6,7.10^{28} \text{ m}^{-3}.$		

20	Si on se place à $\theta = 0$, $B = \frac{\mu_0 M}{2\pi r^3} = \frac{\mu_0 N V \mu_p}{2\pi r^3} = 19 \ \mu T$	1
21-25	Les champ magnétiques	9
21-24	Création d'un champ $ec{B}_1$ « tournant »	4
21	A travers une surface quelconque $\Phi_B = \iint_{M \in S} \vec{B}(M) . d\vec{S}$. Pour une surface fermée par conservation du flux magnétique $\Phi = 0$	1
22	Soit C un contour fermé. Pour toute surface S reposant sur le contour C . $\oint_C \vec{B}.\overrightarrow{\mathrm{d}l} = \mu_0 I_{\mathrm{enlace}}$, avec pour une distribution volumique de courant $I_{\mathrm{enlace}} = \iint_S \vec{j}.\overrightarrow{\mathrm{d}S}$ ou pour une distribution filiforme $I_{\mathrm{enlace}} = \sum_k i_k, i_k$ courant traversant S orienté par S .	1
23	On refait la démo du cours avec un schéma, puis symétrie pour déterminer direction du champ, puis invariance pour déterminer les paramètres, ensuite on choisi un contour rectangulaire dans un plan $(O, \vec{u}_{\Delta}, \vec{e}_r)$, on distingue trois cas et on déduit que le champ est uniforme dans le solénoïde d'expression $\vec{B} = \mu_0 n I \vec{u}_{\Delta}$.	1
24	Principe de superposition, on ajoute le champ créé par les deux bobines $\vec{B}_1 = \mu_0 n I_x \vec{e}_x + \mu_0 n I_y \vec{e}_y = \mu_0 n I_0 \left(\cos\left(\Omega t\right) \vec{e}_x + \cos\left(\Omega t + \frac{\pi}{2}\right) \vec{e}_y\right) = \mu_0 n I_0 \left(\cos\left(\Omega t\right) \vec{e}_x + \sin\left(-\Omega t\right) \vec{e}_y\right)$, donc $\vec{B}_1 = B_1 \vec{u}_{-\Omega t}$, avec $B_1 = \mu_0 n I_0$ et $\vec{u}_{-\Omega t}$ le vecteur unitaire tournant d'angle $-\Omega t$, donc de vitesse angulaire $\omega = -\Omega$.	1
25-25	Création d'un champ permanent intense $ec{B}_0$	2
25	Il faut prendre en compte que I_0 est le courant pour une spire de côté a et qu'il y a $\frac{e}{a}$ spire empilées. On peut donc modéliser $\frac{e}{a}$ solénoïde infini concentrique avec $n=\frac{1}{a}$, et un courant I_0 par spire, donc $B=\frac{e}{a}\mu_0\frac{1}{a}I_0=\frac{\mu_0eI_0}{a^2}$. Donc $I_0=\frac{a^2B}{\mu_0e}=\frac{a^2B}{\mu_0(R_2-R_1)}=16$ A	1
26-28	La RMN pulsée	3
26	On se place dans le référentiel d'axe (O, \vec{B}_0) et tournant à la vitesse de rotation uniforme ω , de manière à considérer tous les champs magnétique \vec{B}_0 et \vec{B}_1 comme statique. On peut utiliser le résultat des questions 13 à 16, mais il faut rajouter le couple due au force d'inertie du référentiel tournant. On obtient $\frac{d\vec{M}}{dt} = \vec{M} \wedge (\omega_0 \vec{e}_z + \omega_1 \vec{u} - \omega \vec{e}_z)$. Donc $\vec{B}_{eff} = \frac{1}{\gamma_p} ((\omega_0 - \omega) \vec{e}_z + \omega_1 \vec{u})$	1
27	si $B_1 \ll B_0$ alors $\omega_1 \ll \omega_0$, par contre en choisissant $\omega = \omega_0$ on peut avoir $\vec{B}_{eff} \parallel \vec{u}$. D'où une rotation de de \vec{M} autour de \vec{u} et une rotation totale de \vec{M} .	1
28	à résonance \vec{M} tourne à la vitesse angulaire ω_1 donc une rotation d'un angle θ dure $t_{\theta} = \frac{\theta}{\omega_1}$.	1
29-38	Propulsion d'une sonde spatiale	11
29-33	Décomposition de l'hydrazine	5
29	L'état standard de référence du diazote est $N_{2(g)}$ à toute température. Donc la réaction de formation est $N_{2(g)} \to N_{2(g)}$ il n'y a pas de transformation au cours de la réaction, l'enthalpie standard est donc nulle.	1

30	En utilisant le résultat de la loi de Hess, $\Delta_r H^{\circ} = 4\Delta_f H^{\circ}_{NH_{3(q)}} +$	1	
	$\Delta_f H_{N_{2(g)}}^{\circ} - 3\Delta_f H_{N_2 H_{4(l)}}^{\circ} = -337 \text{ kJ.mol}^{-1}.$		
31	Comme $\Delta_r H^{\circ} < 0$, la réaction est exothermique	1	
32	On fait un tableau d'avancement. La quantité de matière initiale de l'hydrazine est $n_{N_2H_4} = \frac{m_{N_2H_4}}{M_{N_2H_4}} = \frac{\rho_{N_2H_4}}{M_{N_2H_4}} V_0$. La réaction est	1	
	totale donc l'avancement final est $\xi = \frac{n_{N_2H_4}}{3} = \frac{\rho_{N_2H_4}}{3M_{N_2H_4}}V_0$. La variation d'enthalpie due à la réaction du milieu réactionnel est		
	$\Delta H = \xi \Delta_r H^{\circ} = \frac{\rho_{N_2 H_4} V_0}{3 M_{N_2 H_4}} \Delta_r H^{\circ}$. Donc l'enthalpie libérée (de signe		
	opposée à la convention récepteur usuelle) est $\Delta H_0 = -\Delta H = 3, 5.10^6 \text{ J}$		
33	Pour assurer le positionnement il faut une énergie E , donc $\Delta H = W_u = -E$ et $\Delta H = -\Delta H_0 \frac{V}{V_0}$ donc $V = \frac{E}{\Delta H_0} V_0 = 6,9$ L	1	
34-38	Intérêt des propergols	5	
34	Dans la première équation bilan, les réactifs sont N_2O_4 et CH_6N_2	1	
	et les produits sont $N_{2(g)}$, $CO_{2(g)}$ et $H_2O_{(g)}$, puis on équilibre et on divise par le coefficient stœchiométrique de CH_6N_2 , on ob-		
	tient $CH_6N_2 + \frac{5}{4}N_2O_4 \rightarrow \frac{9}{4}N_2 + 3H_2O + CO_2$. Dans la deuxième		
	equation bilan, les réactifs sont N_2O_4 et $C_2H_8N_2$, et les pro-		
	duits sont N_2 CO_2 et H_2O , puis à nouveau on équilibre et on		
	divise par le coefficient stœchiométrique de $C_2H_8N_2$ et on obtient		
	$C_2H_8N_2 + 2N_2O_4 \rightarrow 3N_2 + 4H_2O + 2CO_2$		
35	m_0 est la masse du mélange donc $m_0 = m_{CH_6N_2} +$	1	
	$m_{N_2O_4} = n_1 M_{CH_6N_2} + \frac{5}{4} n_1 M_{N_2O_4}$ car les quantité de ma-		
	tière des réactifs sont en proportion stœchiométrique donc $n_1 =$		
	$\frac{m_0}{M_{CH_6N_2} + \frac{5}{4} M_{N_2O_4}} = 6,21.10^{-3} \text{ mol}$		
36	D'après l'équation bilan l'avancement est $\xi = n_1$, tous les produits	1	
	sont des gazs donc on ajoute toutes les quantités de matière des		
07	produits $n_{1,gaz} = \frac{9}{4}\xi + 3\xi + \xi = (\frac{9}{4} + 3 + 1) n_1 = 38, 8.10^{-3} \text{ mol.}$	1	
37	On suit le même raisonnement qu'aux deux questions précédentes.		
	On exprime la masse du mélange $m_0 = n_2 M_{C_2 H_8 N_2} + 2n_2 M_{N_2 O_4}$,		
	on en déduit $n_2 = \frac{m_0}{M_{C_2H_8N_2} + 2M_{N_2O_4}} = 4,10.10^{-3}$ mol. On fait un		
	tableau d'avancement, et tous les produits étant gazeux on ajoute		
	leur quantité de matière finale $n_{2,gaz} = (3+4+2) n_2 = 36, 9.10^{-3}$		
20	mol Pour détermainer le mailleur proposed en correspons	1	
38	Pour déterminer le meilleur propergol, on compare $n_{1,gaz}$ et $n_{2,gaz}$. Le rapport $\frac{n_{1,gaz}}{n_{2,gaz}} = 1.05$ donc la monométhylhydrazine constitue	1	
	Le rapport $\frac{n_{1,gaz}}{n_{2,gaz}} = 1,05$ donc la monométhylhydrazine constitue le meilleur propergol.		
	ic memeur propergor.		