# Heterogenes k-CVRP

## Übersicht

#### Metrisches TSP:

- Vollständiger Graph G = (V, E)
- Metr. Abstands funktion  $d: E \to \mathbb{R}$
- Lsgen: Tour  $\tau$  durch ganz V
- **Ziel:** Minimiere  $d(\tau)$

#### Heterogenes k-TSP:

- Vollständiger Graph G = (V, E)
- Metr. Abstands funktion  $d:E\to\mathbb{R}$
- Startpunkt  $s \in V$
- k Fahrzeuge mit Geschw.  $(2^{\lambda_i})_{i=1}^k$
- **Lsgen:** Touren  $(\tau_i)$ , die bei s beginnen und gemeinsam ganz V abdecken
- **Ziel:** Minimiere max  $\frac{d(\tau_i)}{2^{\lambda_i}}$



#### (Metrisches) CVRP:

- Vollständiger Graph G = (V, E)
- Metr. Abstands funktion  $d:E\to\mathbb{R}$
- Startpunkt/Depot  $s \in V$
- Kapazität Q (polynomiell in Eingabe)
- Bedarfe  $(q_v)_{v \in V}, q_v \in \{0, ..., Q\}$
- Lsgen: Route  $(\sigma)$ , die bei s beginn alle Bedarfe erfüllen nie mehr als Q Elemente transportiert
- **Ziel:** Minimiere  $d(\sigma)$

#### Heterogenes k-CVRP:

- Vollständiger Graph G = (V, E)
- Metr. Abstands funktion  $d:E\to\mathbb{R}$
- Startpunkt/Depot  $s \in V$
- einheitliche Kapazität  ${\cal Q}$
- Bedarfe  $(q_v)_{v \in V}, q_v \in \{0, ..., Q\}$
- k Fahrzeuge mit Geschw.  $(2^{\lambda_i})$
- Lsgen: Touren (σ<sub>i</sub>), die bei s beginnen, gemeinsam alle Bedarfe erfüllen, wobei kein Fahrzeug jemals mehr als Q Elemente transportiert
- **Ziel:** Minimiere max  $\frac{d(\sigma_i)}{2^{\lambda_i}}$

[MH85]

### Literatur

- [Coo+11] W.J. Cook u. a. Combinatorial Optimization. Wiley Series in Discrete Mathematics and Optimization. Wiley, 2011. ISBN: 9781118031391. URL: https://books.google.de/books?id=tarLTNwM3gEC.
- [FHK76] G. N. Frederickson, M. S. Hecht und C. E. Kim. "Approximation algorithms for some routing problems". In: Foundations of Computer Science, 1976., 17th Annual Symposium on. 1976, S. 216–227. DOI: 10.1109/SFCS.1976.6.
- [Gø+10] Inge Li Gørtz u. a. "Capacitated Vehicle Routing with Non-Uniform Speeds". In: CoRR abs/1012.1850 (2010). URL: http://arxiv.org/abs/1012.1850.
- [LST90] Jan Karel Lenstra, David B. Shmoys und Éva Tardos. "Approximation algorithms for scheduling unrelated parallel machines". In: *Mathematical Programming* 46.1 (1990), S. 259–271. ISSN: 1436-4646. DOI: 10.1007/BF01585745. URL: http://dx.doi.org/10.1007/BF01585745.
- [MH85] A. H. G. Rinnooy Kan M. Haimovich. "Bounds and Heuristics for Capacitated Routing Problems". In: *Mathematics of Operations Research* 10.4 (1985), S. 527–542. ISSN: 0364765X, 15265471. URL: http://www.jstor.org/stable/3689422.