Ανάλυση Κοινωνικών Δικτύων (Social Network Analysis)

1η Εργαστηριακή Άσκηση (Μέρος Β)

Συμεών Παπαβασιλείου (papavass@mail.ntua.gr) Βασίλειος Καρυώτης (vassilis@netmode.ntua.gr)

28 Νοεμβρίου, 2016

Outline

- Topology generation
- Degree analysis
- Strength analysis weighted graphs
- Path length analysis
- Clustering coefficient (CC) analysis
- Centrality analysis
- Connectivity analysis
- RG models
- Evolutionary growth
- Ego-centralities

Network Types

Πίνακας 1 – Σύνθετα δίκτυα και χαρακτηριστικές παράμετροι

Τύπος Δικτύου	Μοντέλο	Αναγνωριστικό	Παράμετροι
	Πεπερασμένο	REG	Κόμβοι <i>n</i>
Πλέγμα			βαθμός <i>d</i>
Τυναίος γιοάνοςς	Erdos-Renyi	RG (ER)	Κόμβοι Ν
Τυχαίος γράφος			Συνδέσεις Μ
Τυχαίος γράφος	Gilbert	RG (G)	Κόμβοι η,
			Πιθανότητα
			σύνδεσης <i>p</i>
Τυχαίος γεωμετρικός γράφος	Επίπεδος	RGG	Περιοχή L×L
			Κόμβοι <i>n</i>
			Ακτίνα R
Scale-free	Barabasi-Albert	SF (BA)	Κόμβοι <i>n</i>
			Βαθμός αρχικού
			πλέγματος <i>d</i>
Small-world	Watts-Strogatz	SW (WS)	Κόμβοι <i>n</i>
			Βαθμός αρχικού
			πλέγματος <i>d</i>
			Πιθανότητα
			ανασύνδεσης g_p

Network Parameters

Τοπολογία	Παράμετροι	Συνάρτηση	
REG	Kόμβοι $n=1$ x 0		
	βαθμός $d=4$		
		smallw.m	
RG (ER)	Κόμβοι <i>N</i> = 1 x 0		
	συνδέσεις $M=750$		
	-	erdrey.m	
RGG	Περιοχή $L \times L = 1000^2$		
	Kόμβοι $n=1$ x 0	rgg.m	
	Ακτίνα $R=250$	199	
SF (BA)	Kόμβοι $n = 1$ x 0		
	Βαθμός αρχικού		
	πλέγματος $d=4$	pref.m	
SW (WS)	Kόμβοι $n = 1$ x 0		
	Βαθμός αρχικού		
	πλέγματος $d=4$	smallw.m	
	Πιθανότητα ανασύνδεσης		
	$g_p = 0.3$		

Connectivity Analysis

Percentage of connectivity:

```
# connected topologies

# totally generated topologies
```

Connectivity study process:

- 1. Generate topology
- 2. Check if connected
- 3. Repeat
- 4. Compute percentage of connected topologies

Connectivity check:

- function components=FindComponents(adjacencyMatrix,N)
- isconnected.m

Connectivity Analysis Parameters

Πίνακας 3 - Εύρος παραμέτρων για τη μελέτη συνεκτικότητας δικτύου

Τοπολογία	Εύρος Παραμέτρων				
REG		d ∈ [2,10] με βήμα 2			
ER-RG	$n = \{100, 200\}$	Μ ∈[50,500] με βήμα 50			
RG		$p \in [0.1, 0.9]$ με βήμα 0.1			
RGG		$R \in [25, 250]$ με βήμα 25	L = 1000		
BA-SF		$d \in [2,10]$ με βήμα 2			
WS-SW		d ∈ [2,10] με βήμα 2	$g_p \in [0.1, 0.7]$ με βήμα 0.1		

Study of RG Models

- Two popular models:
 - Gilbert G(n,p)
 - Erdos-Renyi *G(N,M)*

• The expected number of edges in G(n, p) is $\binom{n}{2}p$

 Draw and analogy between Gibert model and E-R model

Evolutionary Character of SW

- Watts-Strogatz model
 - Start from an ordered lattice
 - Randomly rewire each edge with prob. p excluding selfconnections and duplicate edges
 - Arbitrary long-range edges maybe added
- Study this evolution

Ego-network & Ego-centrality

- Ego networks: consist of a single actor (ego) together with the actors they are connected to (alters) and all the links among those alters
- Computation of ego-centrality (one actor)
 - Adjacency matric A (of ego network)
 - $A^{2}[1-A], 1$ is matrix of all 1's
 - # of geodesics of length 2 joining i to j
 - Sum of the reciprocal of the entries gives ego betweenness of the actor
 - Has to be halved if it is a graph
 - Repeat for rest of actors
- The calculation of all the ego betweenness scores for a whole network would be one order of magnitude faster than calculating the real betweenness scores

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{A}^{2}[1-\mathbf{A}] = \begin{bmatrix} * & * & * & * & * \\ * & * & * & 2 & 1 \\ * & * & * & * & 1 \\ * & * & * & * & 1 \\ * & * & * & * & * \end{bmatrix}$$