Neural Networks and Autodifferentiation

CMSC 678 UMBC

Recap from last time...

Maximum Entropy (Log-linear) Models

$$p(y \mid x) \propto \exp(\theta^T f(x, y))$$

"model the posterior probabilities of the K classes via linear functions in θ, while at the same time ensuring that they sum to one and remain in [0, 1]" ~ Ch 4.4

Trevor Hastie
Robert Tibshirani
Jerome Friedman

The Elements of
Statistical Learning
Data Mining, Inference, and Prediction

Second Edition

"[The log-linear estimate] is the least biased estimate possible on the given information; i.e., it is maximally noncommittal with regard to missing information." Jaynes, 1957

Normalization for Classification

```
label y
```

```
weight<sub>1</sub> * f<sub>1</sub>(fatally shot, Y)
weight<sub>2</sub> * f<sub>2</sub>(seriously wounded, Y)

weight<sub>2</sub> * f<sub>2</sub>(Shining Path, Y)
```

Connections to Other Techniques

Log-Linear Models

(Multinomial) logistic regression

Softmax regression

Max'imum Entropy models (MaxEnt)

Generalized Linear Models

Discriminative Naïve Bayes

Very shallow (sigmoidal) neural nets

$$y = \sum_{k} \theta_k x_k + b$$

the *response* can be a general (transformed) version of another response

logistic regression
$$\frac{\log p(x=i)}{\log p(x=K)} = \sum_{k} \theta_{k} f(x_{k}, i) + b$$

Log-Likelihood Gradient

Each component k is the difference between:

the total value of feature f_k in the training data

$$\sum_{i} f_k(x_i, y_i)$$

and

the total value the current model p_{θ} thinks it computes for feature f_k $\sum_{i} \mathbb{E}_{y' \sim p} [f(x_i, y')]$

$$\sum_{i} \mathbb{E}_{y' \sim p} [f(x_i, y')]$$

Outline

Neural networks: non-linear classifiers

Learning weights: backpropagation of error

Autodifferentiation (in reverse mode)

Sigmoid

Sigmoid

$$\sigma(v) = \frac{1}{1 + \exp(-sv)}$$

$$\frac{\partial \sigma(v)}{\partial v} = s * \sigma(v) * (1 - \sigma(v))$$

calc practice: verify for yourself

Remember Multi-class Linear Regression/Perceptron?

Linear Regression/Perceptron: A Per-Class View

Logistic Regression/Classification

Logistic Regression/Classification

Q: Why didn't our maxent formulation from last class have multiple weight vectors?

Logistic Regression/Classification

Q: Why didn't our maxent formulation from last class have multiple weight vectors?

A: Implicitly it did. Our formulation was $y \propto \exp(w^T f(x, y))$

Multilayer Perceptron, a.k.a. Feed-Forward Neural Network

Feed-Forward Neural Network

Why Non-Linear?

Feed-Forward

A Neural Network is a Machine Learning System...

A Neural Network is a Machine Learning System...

A Neural Network is a Machine Learning System...

Why "Neural?"

argue from neuroscience perspective

neurons (in the brain) receive input and "fire" when sufficiently excited/activated

Universal Function Approximator

Theorem [Kurt Hornik et al., 1989]: Let F be a continuous function on a bounded subset of D-dimensional space. Then there exists a two-layer network G with finite number of hidden units that approximates F arbitrarily well. For all x in the domain of F, $|F(x) - G(x)| < \varepsilon$

"a two-layer network can approximate any function"

Going from one to two layers dramatically improves the representation power of the network

How Deep Can They Be?

So many choices:

Architecture
of hidden layers
of units per hidden layer

Computational Issues:

Vanishing gradients
Gradients shrink as one moves
away from the output layer
Convergence is slow

Opportunities:

Training deep networks is an active area of research Layer-wise initialization (perhaps using unsupervised data) Engineering: GPUs to train on massive labelled datasets

Some Results: Digit Classification

FIGURE 11.10. Architecture of the five networks used in the ZIP code example.

FIGURE 11.11. Test performance curves, as a function of the number of training epochs, for the five networks of Table 11.1 applied to the ZIP code data.

(similar to MNIST in A2, but not exactly the same)

Tensorflow Playground

http://playground.tensorflow.org

Experiment with small (toy) data neural networks in your browser

Feel free to use this to gain an intuition

tanh Activation

$$\tanh_{s}(x) = \frac{2}{1 + \exp(-2 * s * x)} - 1$$
$$= 2\sigma_{s}(x) - 1$$

Rectifiers Activations

Outline

Neural networks: non-linear classifiers

Learning weights: backpropagation of error

Autodifferentiation (in reverse mode)

Empirical Risk Minimization

Cross entropy loss

$$\ell^{\text{xent}}(\overrightarrow{y^*}, y) = -\sum_{k} \overrightarrow{y^*}[k] \log p(y = k)$$

mean squared error/L2 loss

$$\ell^{L2}(y^*, y) = (y^* - y)^2$$

squared expectation loss

$$\ell^{\text{sq-expt}}(\overrightarrow{y^*}, y) = |\overrightarrow{y^*} - p(y)|_2^2$$

hinge loss

$$\ell^{\text{hinge}}(\overrightarrow{y^*}, y) = \max \left\{ 0, 1 + \max_{j \neq y^*} (y[j] - \overrightarrow{y^*}[j]) \right\}$$

Gradient Descent: Backpropagate the Error

Flavors of Gradient Descent

"Online"

Set t = 0Pick a starting value θ_t Until converged:

for example i in full data:

- 1. Compute loss I on x_i
- 2. Get gradient $g_t = l'(x_i)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{t+1} = \theta_t \rho_t * g_t$
- 5. Set t += 1

done

"Minibatch"

```
Set t = 0

Pick a starting value \theta_t

Until converged:
  get batch B \subset full data
  set g_t = 0

for example(s) i in B:
  1. Compute loss I on x_i

2. Accumulate gradient
  g_t += l'(x_i)

done

Get scaling factor \rho_t

Set \theta_{t+1} = \theta_t - \rho_t * g_t

Set t += 1
```

"Batch"

```
Set t = 0
Pick a starting value \theta_t
Until converged:
```

- 1. Compute loss l on x_i
- 2. Accumulate gradient $g_t += I'(x_i)$

done

Get scaling factor ρ_t Set $\theta_{t+1} = \theta_t - \rho_t * g_t$ Set t += 1

$$y_k = \sigma \left(\beta_k^T \left(\sigma(w_j^T x + b_0) \right)_j \right) \qquad \mathcal{L} = -\sum_k \overrightarrow{y^*}[k] \log y_k$$

$$h: \text{a vector}$$

$$\frac{\partial \mathcal{L}}{\partial \beta_{kj}} = \frac{-1}{y_{y^*}} \frac{\partial y_{y^*}}{\partial \beta_{kj}}$$

$$rac{\partial \mathcal{L}}{\partial w_{jl}}$$

$$y_k = \sigma \left(\beta_k^T \left(\sigma(w_j^T x + b_0) \right)_j \right) \qquad \mathcal{L} = -\sum_k \overrightarrow{y^*}[k] \log y_k$$

$$h: \text{a vector}$$

$$\frac{\partial \mathcal{L}}{\partial \beta_{kj}} = \frac{-1}{y_{y^*}} \frac{\partial y_{y^*}}{\partial \beta_{kj}} = \frac{-\sigma'(\beta_{y^*}^T h)}{\sigma(\beta_{y^*}^T h)} \frac{\partial \beta_{kj}^T h}{\partial \beta_{kj}}$$

$$rac{\partial \mathcal{L}}{\partial w_{il}}$$

$$y_k = \sigma \left(\beta_k^T \left(\sigma(w_j^T x + b_0) \right)_j \right) \qquad \mathcal{L} = -\sum_k \overrightarrow{y^*}[k] \log y_k$$

$$h: \text{a vector}$$

$$\frac{\partial \mathcal{L}}{\partial \beta_{kj}} = \frac{-1}{y_{y^*}} \frac{\partial y_{y^*}}{\partial \beta_{kj}} = \frac{-\sigma'(\beta_{y^*}^T h)}{\sigma(\beta_{y^*}^T h)} \frac{\partial \beta_{kj}^T h}{\partial \beta_{kj}} = \frac{-\sigma'(\beta_{y^*}^T h)}{\sigma(\beta_{y^*}^T h)} \frac{\partial \sum_j \beta_{y^*j} h_j}{\partial \beta_{kj}}$$

$$rac{\partial \mathcal{L}}{\partial w_{il}}$$

$$y_k = \sigma \left(\beta_k^T \left(\sigma(w_j^T x + b_0) \right)_j \right) \qquad \mathcal{L} = -\sum_k \overrightarrow{y^*}[k] \log y_k$$

$$h: \text{a vector}$$

$$\frac{\partial \mathcal{L}}{\partial \beta_{kj}} = \frac{-1}{y_{y^*}} \frac{\partial y_{y^*}}{\partial \beta_{kj}} = \frac{-\sigma'(\beta_{y^*}^T h)}{\sigma(\beta_{y^*}^T h)} \frac{\partial \beta_{kj}^T h}{\partial \beta_{kj}} = \frac{-\sigma'(\beta_{y^*}^T h)}{\sigma(\beta_{y^*}^T h)} \frac{\partial \sum_j \beta_{y^*j} h_j}{\partial \beta_{kj}}$$

$$= \left(1 - \sigma(\beta_{y^*}^T h)\right) h_j$$

$$\frac{\partial \mathcal{L}}{\partial w_{jl}} = \left(1 - \sigma(\beta_{y^*}^T h)\right) (\beta_{y^*j} \sigma'(w_j^T x) x_l)$$

$$y_k = \sigma \left(\beta_k^T \left(\sigma(w_j^T x + b_0) \right)_j \right) \qquad \mathcal{L} = -\sum_k \overrightarrow{y^*}[k] \log y_k$$

$$h: \text{a vector}$$

$$\frac{\partial \mathcal{L}}{\partial \beta_{kj}} = \left(1 - \sigma(\beta_{y^*}^T h)\right) h_j$$

$$\frac{\partial \mathcal{L}}{\partial w_{il}} = \left(1 - \sigma(\beta_{y^*}^T h)\right) \left(\beta_{y^* j} \sigma'(w_j^T x) x_l\right)$$

Debugging can be hard to do!

$$y_k = \sigma \left(\beta_k^T \left(\sigma(w_j^T x + b_0) \right)_j \right)$$
h: a vector

$$\mathcal{L} = -\sum_{k} \overrightarrow{y^*}[k] \log y_k$$

$$\frac{\partial \mathcal{L}}{\partial \beta_{kj}} = \left(1 - \sigma(\beta_{y^*}^T h)\right) h_j$$

$$\frac{\partial \mathcal{L}}{\partial w_{il}} = \left(1 - \sigma(\beta_{y^*}^T h)\right) \left(\beta_{y^* j} \sigma'(w_j^T x) x_l\right)$$

Debugging can be hard to do!

Outline

Neural networks: non-linear classifiers

Learning weights: backpropagation of error

Autodifferentiation (in reverse mode)

Finding Gradients

$$f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)$$

what are the partial derivatives?

Finding Gradients

$$f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)$$

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = 2x_1 + a(x_1 - x_2)^{a-1} - \frac{2x_1}{x_1^2 + x_2^2}$$

Finding Gradients

$$f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)$$

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = 2x_1 + a(x_1 - x_2)^{a-1} - \frac{2x_1}{x_1^2 + x_2^2}$$

$$\frac{\partial f(x_1, x_2)}{\partial x_2} = -a(x_1 - x_2)^{a-1} - \frac{2x_2}{x_1^2 + x_2^2}$$

$$f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)$$

$$z_1 = x_1^2$$

$$z_2 = x_2^2$$

$$z_3 = (x_1 - x_2)$$

$$z_4 = z_3^a$$

$$z_5 = z_1 + z_2$$

$$z_6 = \log z_5$$

$$z_7 = z_1 + z_4 - z_6$$

$$y = z_7$$

$$f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)$$

$$z_1 = x_1^2$$

$$z_2 = x_2^2$$

$$z_3 = (x_1 - x_2)$$

$$z_4 = z_3^a$$

$$z_5 = z_1 + z_2$$

$$z_6 = \log z_5$$

$$z_7 = z_1 + z_4 - z_6$$

$$y = z_7$$

autodiff: a way of finding gradients

mechanistic/procedural

two (standard) modes: forward and

reverse

ML often uses reverse mode

"straight line" program

$$f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)$$

$$z_1 = x_1^2$$

$$z_2 = x_2^2$$

$$z_3 = (x_1 - x_2)$$

$$z_4 = z_3^a$$

$$z_5 = z_1 + z_2$$

$$z_6 = \log z_5$$

$$z_7 = z_1 + z_4 - z_6$$

$$y = z_7$$

"straight line" program

computation graph

$$f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)$$

$$z_1 = x_1^2$$

$$z_2 = x_2^2$$

$$z_3 = (x_1 - x_2)$$

$$z_4 = z_3^a$$

$$z_5 = z_1 + z_2$$

$$z_6 = \log z_5$$

$$z_7 = z_1 + z_4 - z_6$$

$$y = z_7$$

"straight line" program

$$f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)$$

$$z_{1} = x_{1}^{2}$$

$$z_{2} = x_{2}^{2}$$

$$z_{3} = (x_{1} - x_{2})$$

$$z_{4} = z_{3}^{a}$$

$$z_{5} = z_{1} + z_{2}$$

$$z_{6} = \log z_{5}$$

$$z_{7} = z_{1} + z_{4} - z_{6}$$

 $y = z_7$

goals: $\frac{\partial y}{\partial x_1}$ $\frac{\partial y}{\partial x_2}$

$$f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)$$

$$\delta t = \frac{\partial y}{\partial t}$$

$$z_1 = x_1^2$$
 $z_2 = x_2^2$
 $z_3 = (x_1 - x_2)$
 $z_4 = z_3^a$
 $z_5 = z_1 + z_2$

 $z_7 = z_1 + z_4 - z_6$

 $z_6 = \log z_5$

 $y = z_7$

$$f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)$$

$$\delta t = \frac{\partial y}{\partial t}$$

adjoint

$$z_{1} = x_{1}^{2}$$

$$z_{2} = x_{2}^{2}$$

$$z_{3} = (x_{1} - x_{2})$$

$$z_{4} = z_{3}^{a}$$

$$z_{5} = z_{1} + z_{2}$$

 $z_7 = z_1 + z_4 - z_6$

 $z_6 = \log z_5$

 $y = z_7$

$$f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)$$

$$\delta t = \frac{\partial y}{\partial t}$$

$$z_{1} = x_{1}^{2}$$

$$z_{2} = x_{2}^{2}$$

$$z_{3} = (x_{1} - x_{2})$$

$$z_{4} = z_{3}^{a}$$

$$z_{5} = z_{1} + z_{2}$$

$$z_{6} = \log z_{5}$$

$$z_{7} = z_{1} + z_{4} - z_{6}$$

$$y = z_{7}$$

goals: $\frac{\partial y}{\partial x_1}$ $\frac{\partial y}{\partial x_2}$

 z_{1} z_{2} z_{3} z_{4} z_{6} z_{7} y $\delta y = 1$ $\delta z_{7} = \frac{\partial y}{\partial z_{7}} = 1$ $\delta z_{6} = \frac{\partial y}{\partial z_{7}} = \frac{\partial y}{\partial z_{7}} \frac{\partial z_{7}}{\partial z_{7}} = \delta z_{7} * -$

$$f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)$$

$$\delta t = \frac{\partial y}{\partial t}$$

adjoint

$$z_{1} = x_{1}^{2}$$

$$z_{2} = x_{2}^{2}$$

$$z_{3} = (x_{1} - x_{2})$$

$$z_{4} = z_{3}^{a}$$

$$z_{5} = z_{1} + z_{2}$$

$$z_{6} = \log z_{5}$$

$$z_{7} = z_{1} + z_{4} - z_{6}$$

$$y = z_{7}$$

goals:

 Z_1 χ_1 Z_2

 Z_5 *z*₆ $\delta y = 1$ $\delta z_7 = \frac{\partial y}{\partial z_7} = 1$

$$\delta z_6 = \frac{\partial y}{\partial z_6} = \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial z_6} = \delta z_7 * -1$$

$$\delta z_4 = \frac{\partial y}{\partial z_4} = \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial z_4} = \delta z_7 * 1$$

$$f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)$$

$$\delta t = \frac{\partial y}{\partial t}$$

 $\eth y = 1$

 $\eth z_4 = \eth z_7 * 1$

$$z_{1} = x_{1}^{2}$$

$$z_{2} = x_{2}^{2}$$

$$z_{3} = (x_{1} - x_{2})$$

$$z_{4} = z_{3}^{a}$$

$$z_{5} = z_{1} + z_{2}$$

$$z_{6} = \log z_{5}$$

$$z_{7} = z_{1} + z_{4} - z_{6}$$

 $y=z_7$

$$\delta z_5 = \frac{\partial y}{\partial z_5} = \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial z_5} = \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial z_6} \frac{\partial z_6}{\partial z_5}$$

$$f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)$$

$$\delta t = \frac{\partial y}{\partial t}$$

$$z_1 = x_1^2$$

 $z_2 = x_2^2$
 $z_3 = (x_1 - x_2)$
 $z_4 = z_3^a$
 $z_5 = z_1 + z_2$
 $z_6 = \log z_5$
 $z_7 = z_1 + z_4 - z_6$
 $y = z_7$

$$\delta z_5 = \frac{\partial y}{\partial z_5} = \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial z_5} = \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial z_6} \frac{\partial z_6}{\partial z_5} = \delta z_6 * \frac{1}{z_5}$$

$$f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)$$

$$\eth t = \frac{\partial y}{\partial t}$$

adjoint

 $\eth y = 1$

$$z_{1} = x_{1}^{2}$$

$$z_{2} = x_{2}^{2}$$

$$z_{3} = (x_{1} - x_{2})$$

$$z_{4} = z_{3}^{a}$$

$$z_{5} = z_{1} + z_{2}$$

$$z_{6} = \log z_{5}$$

$$z_{7} = z_{1} + z_{4} - z_{6}$$

 $y=z_7$

goals:

 Z_2 $\delta z_7 = \frac{\partial y}{\partial z_7} = 1$

$$\delta z_1 = \frac{\partial y}{\partial z_1} = \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial z_1} + \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial z_6} \frac{\partial z_6}{\partial z_5} \frac{\partial z_5}{\partial z_1}$$

$$\delta z_6 = \delta z_7 * -1$$

$$\delta z_4 = \delta z_7 * 1$$

$$\delta z_5 = \delta z_6 * \frac{1}{z_5}$$

$$f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)$$

$$\delta t = \frac{\partial y}{\partial t}$$

adjoint

 $\eth y = 1$

$$z_1 = x_1^2$$

$$z_2 = x_2^2$$

$$z_3 = (x_1 - x_2)$$

$$z_4 = z_3^a$$

$$z_5 = z_1 + z_2$$

$$z_6 = \log z_5$$

$$z_7 = z_1 + z_4 - z_6$$

$$y = z_7$$

goals:

$$\delta z_1 = \frac{\partial y}{\partial z_1} = \delta z_7 * 1 + \delta z_5 * 1$$

$$\delta z_4 = \delta z_7 * 1$$

$$\delta z_5 = \delta z_6 * \frac{1}{z_5}$$

$$f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)$$

$$\delta t = \frac{\partial y}{\partial t}$$

adjoint

$$z_{1} = x_{1}^{2}$$

$$z_{2} = x_{2}^{2}$$

$$z_{3} = (x_{1} - x_{2})$$

$$z_{4} = z_{3}^{a}$$

$$z_{5} = z_{1} + z_{2}$$

$$z_{6} = \log z_{5}$$

$$z_{7} = z_{1} + z_{4} - z_{6}$$

$$y = z_{7}$$

goals: $\frac{\partial y}{\partial x_1}$ $\frac{\partial y}{\partial x_2}$

 z_1 z_5 z_2 z_4

$$z_{6} \longrightarrow z_{7} \longrightarrow y$$

$$\delta y = 1$$

$$\delta z_{7} = \frac{\partial y}{\partial z_{7}} = 1$$

$$\delta z_{6} = \delta z_{7} * -1$$

$$\delta z_{4} = \delta z_{7} * 1$$

$$\delta z_{5} = \delta z_{6} * \frac{1}{z_{5}}$$

$$\delta z_{1} += \delta z_{7} * 1$$

$$\delta z_{1} += \delta z_{5} * 1$$

$$f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)$$

$$\delta t = \frac{\partial y}{\partial t}$$

adjoint

$$z_{1} = x_{1}^{2}$$

$$z_{2} = x_{2}^{2}$$

$$z_{3} = (x_{1} - x_{2})$$

$$z_{4} = z_{3}^{a}$$

$$z_{5} = z_{1} + z_{2}$$

$$z_{6} = \log z_{5}$$

$$z_{7} = z_{1} + z_{4} - z_{6}$$

$$y = z_{7}$$

goals: $\frac{\partial y}{\partial x_1}$ $\frac{\partial y}{\partial x_2}$

 z_1 z_2 z_3

$$\delta z_2 = \frac{\partial y}{\partial z_2} = \delta z_5 * 1$$

$$z_6$$
 z_7 y

$$\delta y = 1$$

$$\delta z_7 = \frac{\partial y}{\partial z_7} = 1$$

$$\delta z_6 = \delta z_7 * -1$$

$$\delta z_4 = \delta z_7 * 1$$

$$\delta z_5 = \delta z_6 * \frac{1}{z_5}$$

$$\delta z_1 += \delta z_7 * 1$$

$$\delta z_1 += \delta z_7 * 1$$
$$\delta z_1 += \delta z_5 * 1$$

$$f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)$$

$$\delta t = \frac{\partial y}{\partial t}$$

adjoint

$$z_{1} = x_{1}^{2}$$

$$z_{2} = x_{2}^{2}$$

$$z_{3} = (x_{1} - x_{2})$$

$$z_{4} = z_{3}^{a}$$

$$z_{5} = z_{1} + z_{2}$$

$$z_{6} = \log z_{5}$$

$$z_{7} = z_{1} + z_{4} - z_{6}$$

$$y = z_{7}$$

$$\delta z_3 = \frac{\partial y}{\partial 3} = \delta z_4 * a * z_3^{a-1}$$

$$\eth z_1 += \eth z_7 * 1$$

$$\delta z_1 += \delta z_5 * 1$$

$$f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)$$

$$\delta t = \frac{\partial y}{\partial t}$$

adjoint

 $\eth y = 1$

$$z_{1} = x_{1}^{2}$$

$$z_{2} = x_{2}^{2}$$

$$z_{3} = (x_{1} - x_{2})$$

$$z_{4} = z_{3}^{a}$$

$$z_{5} = z_{1} + z_{2}$$

$$z_{6} = \log z_{5}$$

$$z_{7} = z_{1} + z_{4} - z_{6}$$

$$y = z_{7}$$

$$\delta x_1 += \delta z_1 * 2x_1$$

$$\delta x_1 += \delta z_3 * 1$$

$$\delta z_6 = \delta z_7 * -1$$

$$\delta z_4 = \delta z_7 * 1$$

$$\delta z_5 = \delta z_6 * \frac{1}{z_5}$$

$$\delta z_1 += \delta z_7 * 1$$

$$\delta z_1 += \delta z_5 * 1$$

 $\delta z_7 = \frac{\partial y}{\partial z_7} = 1$

$$f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)$$

$$\delta t = \frac{\partial y}{\partial t}$$
adjoint

$$z_{1} = x_{1}^{2}$$

$$z_{2} = x_{2}^{2}$$

$$z_{3} = (x_{1} - x_{2})$$

$$z_{4} = z_{3}^{a}$$

$$z_{5} = z_{1} + z_{2}$$

$$z_{6} = \log z_{5}$$

$$z_{7} = z_{1} + z_{4} - z_{6}$$

$$y = z_{7}$$

$$\delta z_1 += \delta z_7 * 1$$

$$\delta x_1 += \delta z_3 * 1$$

$$\delta z_1 += \delta z_5 * 1$$

$$\delta z_1 += \delta z_5 * 1$$

$$z_1 \qquad z_5 \quad \delta z_5 = \delta z_6 * \frac{1}{z_5}$$

$$\delta z_6 = \delta z_7 * -1 \qquad \delta y = 2$$

$$z_2 \quad \delta z_2 = \delta z_5 * 1 \qquad z_6 \qquad z_7 \qquad y$$

$$\delta z_7 = \frac{\partial y}{\partial z_7} = 1$$

$$\delta z_7 = \frac{\partial y}{\partial z_7} = 1$$

$$\delta z_8 = \delta z_7 * 1$$

$$f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)$$

$$\eth t = \frac{\partial y}{\partial t}$$
adjoint

$$z_{1} = x_{1}^{2}$$

$$z_{2} = x_{2}^{2}$$

$$z_{3} = (x_{1} - x_{2})$$

$$z_{4} = z_{3}^{a}$$

$$z_{5} = z_{1} + z_{2}$$

$$z_{6} = \log z_{5}$$

$$z_{7} = z_{1} + z_{4} - z_{6}$$

$$y = z_{7}$$

 Z_3 $\delta Z_3 = \delta Z_4 * a * Z_3^{a-1}$

autodifferentiation in reverse mode

Autodifferentiation in Reverse Mode

$$f(x_{1}, x_{2}) = x_{1}^{2} + (x_{1} - x_{2})^{a} - \log(x_{1}^{2} + x_{2}^{2})$$

$$z_{1} = x_{1}^{2}$$

$$z_{2} = x_{2}^{2}$$

$$z_{3} = (x_{1} - x_{2})$$

$$z_{4} = z_{3}^{a}$$

$$z_{5} = z_{1} + z_{2}$$

$$z_{6} = \log z_{5}$$

$$z_{7} = z_{1} + z_{4} - z_{6}$$

$$y = z_{7}$$

$$\frac{\partial y}{\partial x_{2}}$$

$$\frac{\partial y}{\partial x_{2}}$$

$$\frac{\partial y}{\partial x_{2}}$$

$$\frac{\partial z_{1} + z_{2}}{\partial z_{2} + z_{2}}$$

$$\frac{\partial z_{1} + z_{2}}{\partial z_{2} + z_{2}}$$

$$\frac{\partial z_{2} + z_{2}}{\partial z_{2} + z_{2}}$$

$$\frac{\partial z_{3} + z_{2}}{\partial z_{4} + z_{2}}$$

$$\frac{\partial z_{4} + z_{2}}{\partial z_{7} + z_{1}}$$

$$\frac{\partial z_{6} + z_{7} + z_{1}}{\partial z_{7} + z_{1}}$$

$$\frac{\partial z_{7} + z_{2}}{\partial z_{7} + z_{1}}$$

$$\frac{\partial z_{7} + z_{7}}{\partial z_{7} + z_{1}}$$

$$\frac{\partial z_{7} + z_{7}}{\partial z_{7} + z_{1}}$$

$$\frac{\partial z_{7} + z_{7}}{\partial z_{7} + z_{1}}$$

$$\frac{\partial z_{8} + z_{7} + z_{1}}{\partial z_{8} + z_{1}}$$

$$\frac{\partial z_{8} + z_{7} + z_{1}}{\partial z_{7} + z_{1}}$$

$$\frac{\partial z_{8} + z_{7} + z_{1}}{\partial z_{7} + z_{1}}$$

$$\frac{\partial z_{8} + z_{7} + z_{1}}{\partial z_{7} + z_{1}}$$

$$\frac{\partial z_{8} + z_{7} + z_{1}}{\partial z_{7} + z_{1}}$$

$$\frac{\partial z_{8} + z_{7} + z_{1}}{\partial z_{7} + z_{1}}$$

$$\frac{\partial z_{8} + z_{7} + z_{1}}{\partial z_{7} + z_{1}}$$

$$\frac{\partial z_{8} + z_{7} + z_{1}}{\partial z_{8} + z_{1}}$$

$$\frac{\partial z_{8} + z_{7} + z_{1}}{\partial z_{8} + z_{1}}$$

$$\frac{\partial z_{8} + z_{1}}{\partial z_{1}}$$

$$\frac{\partial z_{8} + z_{1}}{\partial z_{1}}$$

$$\frac{\partial z_{1} + z_{2}}{\partial z_{2} + z_{2}}$$

$$\frac{\partial z_{2} + z_{2}}{\partial z_{2} + z_{2}}$$

$$\frac{\partial$$

$$x_1 = 2$$

 $x_2 = 1$
 $a = 1$
 $f(x_1 = 2, x_2 = 1) \approx 3.390562$ $\nabla_x = (4.2, -1.4)$ $\nabla_x = (4.2, -1.4)$
by exact gradients by autodiff

$$\nabla_{x}=(4.2,-1.4)$$

 Z_3 $\delta Z_3 = \delta Z_4 * a * Z_3^{a-1}$

by autodiff

by exact gradients

Code Proof of Autodiff

(4.2, -1.4)

```
>> def autodiff(x1,x2,a=1.0):
>> def f(x1, x2):
                                                       z1=x1**2
      return x1**2 + (x1-x2)**1 -
                                                       z2=x2**2
numpy.log(x1**2+x2**2)
                                                       z3=(x1-x2)
                                                       z4=z3**a
                                                       z5=z1+z2
                                                       z6=numpy.log(z5)
                                                       z7=z1+z4-z6
                                                       y=z7
                                                       dy=1
                                                       dz7=dy
                                                       dz6=dz7*-1.0
                                                       dz5=dz6*1.0/z5
                                                       dz4=dz7*1.0
                                                       dz3=dz4*a*z3**(a-1)
                                                       dz2=dz5*1.0
                                                       dz1=dz7*1.0+dz5*1.0
                                                       dx1=dz1*2*x1+dz3*1.0
                                                       dx2=dz2*2*x2+dz3*-1.0
                                                       return dx1, dx2
                                                >> autodiff(2,1)
```

Code Proof of Autodiff

```
>> def autodiff(x1,x2.a=1.0):
>> def f(x1, x2):
                                                       z1=x1**2
      return x1**2 + (x1-x2)**1 -
                                                       z2=x2**2
numpy.log(x1**2+x2**2)
                                                       z3=(x1-x2)
                                                                           forward
                                                       z4=z3**a
                                                                             pass
                                                       z5=z1+z2
                                                       z6=numpy.log(z5)
                                                       z7=z1+z4-z6
                                                       y=z7
                                                       dy=1
                                                       dz7=dy
                                                       dz6=dz7*-1.0
                                                       dz5=dz6*1.0/z5
                                         backward
                                                       dz4=dz7*1.0
                                           pass
                                                       dz3=dz4*a*z3**(a-1)
                                                       dz2=dz5*1.0
                                                       dz1=dz7*1.0+dz5*1.0
                                                       dx1=dz1*2*x1+dz3*1.0
                                                       dx2=dz2*2*x2+dz3*-1.0
                                                       return dx1, dx2
                                                >> autodiff(2,1)
                                                (4.2, -1.4)
```

Outline

Neural networks: nonlinear classifiers

Learning weights: backpropagation of error

Autodifferentiation (in reverse mode)

Gradient Descent: Backpropagate the Error

Set t = 0

Pick a starting value $\boldsymbol{\theta}_t$

Until converged:

for example(s) i:

- 1. Compute loss I on x_i
- 2. Get gradient $g_t = I'(x_i)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{t+1} = \theta_t \rho_t * g_t$
- 5. Set t += 1