### ECE 720 – ESL & Physical Design

### Lecture 13: Partitioning & Placement

W. Rhett Davis NC State University (with lots of slides from A. Richard Newton)

© W. Rhett Davis NC State University Slide 1 ECE 720

#### Announcements

Homework 5 solution posted

Project 2 Due in 1 Week

Homework 6 Due in 2 Weeks

© W. Rhett Davis NC State University Slide 2 ECE 720

# Design Flow











# Partitioning is Placement

 With a good partitioning algorithm, placement can be accomplished with a successive partitioning of regions



© W. Rhett Davis NC State University Slide 4 ECE 720

# Today's Lecture

- Kernighan & Lin (1970)
  - Fiduccia & Mattheyses (1982)
  - Karypis hMETIS (1997)
  - Antreich GORDIAN (1991)

# Partitioning for a Minimal Cut-Set



© W. Rhett Davis NC State University Slide 6 ECE 720

#### Converting a Hypergraph into a Graph

- Early partitioning algorithms worked on graphs
  - » edges between exactly two vertices
- Most netlists are hypergraphs
  - » hyperedges can exist between two or more vertices
- How to convert?
  - Replace each net S<sub>i</sub> with its complete graph.
  - What weight on each edge?
  - For n-pin net, w=2/(n-1) has been used, also w=2/n
  - Best weight is:

$$w = 4/(n^2 \operatorname{-mod}(n, 2))$$

for n=3, w=4/(9-1)=0.5





# Partitioning

Given a graph, G, with n nodes with sizes (weights) w:

$$0 < wi \le p, i = 1, \dots, n$$

with costs on its edges, partition the nodes of G into k, subsets, k > 0, no larger than a given maximim size, p, so as to minimize the total cost of the edges cut.

- ◆ Define : C = (cij), i, j = 1, · · · , n
  as a weighted connectivity matrix describing the edges of G.
- ♦ A *k-way partition* of *G* is a set of non-empty, pairwise-disjoint subsets of *G*,  $v_1,...,v_k$ , such that  $\bigcup_{i=1}^k v_i = G$
- **♦** A partition is said to be admissible if  $|vi| ≤ p, i = 1, \dots, k$
- Problem: Find a minimal-cost permissible partition of G

permissible if 
$$\forall_i \sum_{a \in V_i} w_a \leq P$$

### 2-Way Partitioning (Kernighan & Lin)

- ◆ Consider the set S of 2n vertices, all of equal size for now, with an associated cost matrix C = (cij), i, j = 1, · · · , 2n
- Assume C is symmetric and c<sub>ii</sub>=0∀i
- We want to partition S into two subsets A and B, each with n points, such that the external cost  $T = \sum_{A \times B} C_{ab}$  is minimized
- Start with any arbitrary partition [A,B] of S and try to decrease the initial cost T by a series of interchanges of subsets of A and B
- When no further improvement is possible, the resulting partition [A',B'] is a local minimum and has a fairly high probability of being a global minimum with this scheme



 edge weight = 4/(n²-mod(n,2)) where n=no. of terminals on net

 Annotate this graph with its edge weights

Start w/ partition A = { 1, 2, 4, 5, 6 }B = { 3, 7 }

$$T = \sum_{A \times B} c_{ab} =$$

Assume weights w<sub>AND</sub>, w<sub>OR</sub>=4, w<sub>FF</sub> = 10
 And partition size P = 22
 Is this partition admissible?

$$\sum_{a \in A} w_a =$$

$$\sum\nolimits_{b\in B}w_b=$$

- Find two cells to swap such that gain is maximized
- Exchange 3 for 6

$$T = \sum_{A \times B} c_{ab} =$$

Is this partition admissible?

$$\sum\nolimits_{a\in A}w_a=$$

$$\sum\nolimits_{b\in B}w_b=$$

- Find two cells to swap such that gain is maximized
- Exchange 5

$$T = \sum_{A \times B} c_{ab} =$$
 $\text{pain} =$ 

Is this partition admissible?

$$\sum\nolimits_{a\in A}w_a=$$

$$\sum\nolimits_{b\in B}w_b=$$

- Find two cells to swap such that gain is maximized
- Exchange 4

$$T = \sum_{A \times B} c_{ab} =$$

Is this partition admissible?

$$\sum\nolimits_{a\in A}w_a=$$

$$\sum\nolimits_{b\in B}w_b=$$

### 2-Way Partitioning (Kernighan & Lin)

- ♦ For each  $a \in A$ :
  - $\triangle$  external cost  $E_a = \sum_{v \in B} c_{ay}$  (same for  $E_b$ )
  - $\triangle$  internal cost  $I_a = \sum_{x \in A} c_{ax}$  (same for  $I_b$ )

$$D_z = E_z - I_z \forall z \in S$$

• If  $a \in A$  and  $b \in B$  are interchanged, then the gain:

$$g = D_a + D_b - 2c_{ab}$$

 Proof: If Z is the total cost of connections between A and B, excluding a and b, then:

$$T_{a,b} = Z + E_a + E_b - c_{ab}$$

$$T_{b,a} = Z + I_a + I_b + c_{ab}$$

$$gain = T_{a,b} - T_{b,a} = D_a + D_b - 2c_{ab}$$

### 2-Way Partitioning (Kernighan & Lin)

- (1) Compute all D values in S
- (2) Choose  $a_i$ ,  $b_i$  such that  $g_i = D_{a_i} + D_{b_j} 2c_{a_ib_j}$  is maximized
- (3) Set ai and bi asside and call them ai' and bi'
- (4) Recalculate the D values for all the elements of  $A \{a_i\}, B \{b_i\}$

$$\begin{split} D_{x}^{'} &= D_{x} + 2c_{xa_{i}} - 2c_{xb_{j}}, x \in A - \{a_{i}\} \\ D_{y}^{'} &= D_{y} + 2c_{yb_{j}} - 2c_{ya_{i}}, y \in B - \{b_{j}\} \\ D_{ai}^{'} &= -D_{ai} \\ D_{bj}^{'} &= -D_{bj} \end{split}$$

© W. Rhett Davis NC State University Slide 16 ECE 720

## Example, Revisited

| swap | z                              | 1    | 2  | 3  | 4    | 5  | 6    | 7    |
|------|--------------------------------|------|----|----|------|----|------|------|
|      | Ez                             | 5/4  | 1  | 2  | 1/4  | 1  | 1/4  | 7/4  |
|      | Iz                             | 3/2  | 2  | 0  | 3/2  | 2  | 3/2  | 0    |
|      | $D_z$                          | -1/4 | -1 | 2  | -5/4 | -1 | -5/4 | 7/4  |
| 6,3  | 2c <sub>z</sub> a <sub>i</sub> | 1/2  | 0  | -  | 1/2  | 2  | -    | 1/2  |
|      | 2c <sub>z</sub> b <sub>j</sub> | 2    | 2  | -  | 0    | 0  | -    | 0    |
|      | $D_z$                          | -7/4 | -3 | -2 | -3/4 | 1  | 5/4  | 5/4  |
| 5,-  | 2c <sub>z</sub> a <sub>i</sub> | 0    | 1  | 0  | 1    | -  | 2    | 2    |
|      | $D_z$                          | -7/4 | -2 | -2 | 1/4  | -1 | -3/4 | -3/4 |
| 4,-  | 2c <sub>z</sub> a <sub>i</sub> | 1/2  | 1  | 0  | -    | 1  | 1/2  | 1/2  |
|      | $D_z$                          | -5/4 | -1 | -2 | -1/4 | 0  | -1/4 | -1/4 |

Initial partition

$$\gg$$
 B={3,7}

• Swap  $a_i=6$ ,  $b_j=3$ 

Swap a<sub>i</sub>=5

Swap a<sub>i</sub>=4

$$\gg g=1/4$$

Number of operations is reduced

### 2-Way Partitioning (Kernighan & Lin)

Repeat (2)-(4) on a new pair until all nodes exhausted

$$(a_1',b_1'),(a_2',b_2'),\cdots,(a_n',b_n')$$



◆ If sum to m > 0, some gain, so repeat until sum to m=0

# Today's Lecture

- Kernighan & Lin (1970)
- Fiduccia & Mattheyses (1982)
  - Karypis hMETIS (1997)
  - Antreich GORDIAN (1991)

#### 2-Way Partitioning (Fiduccia & Mattheyses)

- Move one cell at a time from one side of the partition to the other in an attempt to minimize the cutset of the final partition
  - ▲ base cell -- cell to be moved
  - gain g(i) -- no. of nets by which the cutset would decrease if cell i were moved from partition A to partition B (may be negative)
- To prevent thrashing, once a cell is moved it is locked for an entire pass
- Claim is O(n) time

#### 2-Way Partitioning (Fiduccia & Mattheyses)

- Steps:
  - (1) Choose a cell
  - (2) Move it
  - (3) Update the g(i)'s of the neighbors
- O(n) neighbors, each cell recomputed each time neighbor moved, and must recompute for each pin (assume #pins=K.n, Amdahl 470 K~2.7)

$$n_i^2 + n_i^2 + \cdots + n_i^2 = O(\# pins^2) / pass!$$

#### 2-Way Partitioning (Fiduccia & Mattheyses)

- If p(i) = no. of pins on cell i:  $-p(i) < g_i < p(i)$
- Bin-sort cells on gi



Time required to maintain each bucket array O(P)/pass

# Today's Lecture

- Kernighan & Lin (1970)
- Fiduccia & Mattheyses (1982)
- Karypis hMETIS (1997)
  - Antreich GORDIAN (1991)

# Coarsening/Uncoarsening



- To speed up partitioning, a large hypergraph is reduced to a smaller one through "coarsening"
- The reduced hypergraph is then successively partitioned (using KLFM) and "uncoarsened"

Source: Karypis, et al, DAC 1997

# 3 Types of Coarsening

 Different types are used during coarsening process







(a) Edge Coarsening

 In the figure, each circle represents a hyperedge (or multi-terminal net), each vertex represents a cell







(b) Hyperedge Coarsening







(c) Modified Hyperedge Coarsening

Source: Karypis, et al, DAC 1997

 Claims partitions equal in quality to KLFM, but 10-100 times faster

# Today's Lecture

- Kernighan & Lin (1970)
- Fiduccia & Mattheyses (1982)
- Karypis hMETIS (1997)

Antreich - GORDIAN (1991)

#### **GORDIAN**



Fig. 1. Data flow in the placement procedure GORDIAN.

## Basic Approach of GORDIAN

- A System Matrix (C) is defined that includes the squared "rubber-band" lengths of each net
- A Constraint Matrix (A) is defined that gives the current position of each block
- Objective function φ gives total cost of current placement, and is guaranteed to be convex and have a global minimum
- Convex optimization approach can be used to find the optimum
- Constraint Matrix is updated, and we iterate until a good solution is found

LQP: 
$$\min_{x \in \mathfrak{R}^m} \left\{ \phi(x) = \frac{1}{2} x^T C x + d^T x | A^{(l)} x = u^{(l)} \right\}.$$

#### **GORDIAN**



- In 1991, placement with GORDIAN left a large amount of unused area
- Since then, many of these problems have been solved, and this basic formulation is commonly used
  - » Dragon2000 Wang, Yang, & Sarrafzadeh ICCAD 2000
  - » FastPlace Viswanathan & Chu, IEEE Trans. CAD 2005