Corrigé 2 du jeudi 29 septembre 2016

Exercice 1 (* A rendre).

1.) Montrons qu'il existe $x \in \mathbb{R}$ tel $x^2 = 2$.

On pose pour commencer:

$$A = \{ y \in \mathbb{R}, y > 0 : y^2 < 2 \}.$$

L'ensemble A n'est pas vide, car il contient 1. De plus il est majoré par 2. En effet, si $y \le 1$, on a y < 2; si 1 < y, on a $y < y^2 < 2$.

On pose alors $x = \sup A$, ce qui est équivalent à:

1.)
$$\forall y \in A, y \leq x$$
,

2.)
$$\forall \varepsilon > 0, |x - \varepsilon, x| \cap A \neq \emptyset$$
.

Rappelons que le point 1.) assure que x est un majorant de A alors que le point 2.) assure que tout nombre $x - \varepsilon$ plus petit que x n'est pas un majorant de A puisqu'il y a un élément de A plus grand que $x - \varepsilon$. x est donc bien le plus petit majorant de A.

Montrons maintenant que $x^2 = 2$. On montre pour cela que si on suppose que x^2 est différent de 2, on aboutit à une contradiction.

• Supposons $x^2 > 2$. On va contredire le point 2.) en exhibant un $\varepsilon > 0$ tel que l'intersection est vide. On pose $\beta = x - \alpha(x^2 - 2)$, avec $0 \le \alpha$. On a alors:

$$\beta^2 - 2 = x^2 - 2 - 2\alpha x(x^2 - 2) + \alpha^2(x^2 - 2)^2 = (x^2 - 2)[1 - 2\alpha x + \alpha^2(x^2 - 2)],$$

et on a $\beta^2 - 2 > 0$ si $0 \le \alpha < \frac{1}{2x}$.

Ainsi, si on pose

$$\varepsilon = \frac{x^2 - 2}{2x}$$

on a $|x - \varepsilon, x| \cap A = \emptyset$.

• Supposons maintenant que $x^2 < 2$. On cherche $\varepsilon > 0$ tel que $(x + \varepsilon)^2 < 2$, ou encore, de façon équivalente:

$$2\varepsilon x + \varepsilon^2 < 2 - x^2$$
.

Posons $\varepsilon = min \left\{ 1, \frac{2-x^2}{2(2x+1)} \right\}$. Ainsi, on a $2\varepsilon x + \varepsilon^2 \le 2\varepsilon x + \varepsilon = \varepsilon(2x+1) \le \frac{2-x^2}{2} < 2-x^2$, car $0 < \varepsilon \le 1 \Rightarrow 0 < \varepsilon^2 \le \varepsilon$. Ainsi $(x+\varepsilon)^2 < 2$ et donc $(x+\varepsilon) \in A$, ce qui contredit 1.) car on n'a pas $(x+\varepsilon) \le x$.

On conclut finalement que $x^2 = 2$.

2.) Par la densité de \mathbb{Q} dans \mathbb{R} , pour tout n > 0, il existe un rationnel $x_n \in [\sqrt{2} - \frac{1}{n}, \sqrt{2}[$. La suite ainsi construite converge trivialement vers $\sqrt{2}$.

Exercice 2.

Soit
$$x_n = \frac{\sqrt{n^2 + 2}}{2n}$$
, $n = 1, 2, 3, \dots$

(1) Montrons que $\left|x_n - \frac{1}{2}\right| < \frac{1}{2n^2}$.

 $D\acute{e}monstration$: Commençons par montrer l'indication. Pour tout $\delta>0$ on a

$$(\sqrt{1+\delta})^2 = 1+\delta < 1+\delta + \frac{\delta^2}{4} = \left(1+\frac{\delta}{2}\right)^2,$$

et donc, en prenant la racine,

$$\sqrt{1+\delta} < 1 + \frac{\delta}{2}.$$

On a alors:

$$\left| x_n - \frac{1}{2} \right| = \left| \frac{\sqrt{n^2 + 2}}{2n} - \frac{1}{2} \right| = \frac{1}{2} \left| \sqrt{1 + \frac{2}{n^2}} - 1 \right| = \frac{1}{2} \left(\sqrt{1 + \frac{2}{n^2}} - 1 \right)$$

et donc en utilisant l'indication:

$$\left| x_n - \frac{1}{2} \right| = \frac{1}{2} \left(\sqrt{1 + \frac{2}{n^2}} - 1 \right) < \frac{1}{2} \left(1 + \frac{1}{n^2} - 1 \right) = \frac{1}{2n^2}.$$

(2) Soit $\varepsilon>0$ donné. En choisissant $N=N(\varepsilon)>\frac{1}{\sqrt{2\varepsilon}}$ on a par l'étape précédente:

$$\left|x_n - \frac{1}{2}\right| < \frac{1}{2n^2} \le \frac{1}{2N^2} < \varepsilon, \quad \forall n \ge N.$$

Exercice 3.

Montrons que $\lim_{n\to+\infty}\cos(n)$ n'existe pas.

Démonstration : Ab absurdo, supposons que $\lim_{n\to\infty}\cos(n)=\ell\in\mathbb{R}$.

a) Pour $n \ge 0$ on a

$$\underbrace{\cos(n+2)}_{\substack{n \to 0 \\ n \to \infty}} = \underbrace{\cos(n)}_{\substack{n \to 0 \\ n \to \infty}} -2\sin(1)\sin(n+1)$$

et donc

$$\lim_{n \to \infty} \sin(n) = 0.$$

b) Pour $n \ge 0$ on a

$$\underbrace{\sin(n+2)}_{\substack{n\to 0\\ n\to \infty}} = \underbrace{\sin(n)}_{\substack{n\to 0\\ n\to \infty}} + 2\sin(1)\cos(n+1)$$

et on doit donc avoir

$$\lim_{n \to \infty} \cos(n) = 0.$$

Mais comme pour tout $n \in \mathbb{N}$, on a $\sin^2(n) + \cos^2(n) = 1$, en passant à la limite, on a 0 = 1.

D'où la contradiction.

Remarque: On peut montrer que l'ensemble $\{\cos(n), n \in \mathbb{N}\}$ est dense dans [-1, 1].