

Enable Tensor Core Programming in Python with CUTLASS 4.0

Kihiro Bando, Brandon Sun | 2025-03-21

Why CUTLASS?

Enabling innovation for SOL performance

- High-level generators leveraging compilers are popular
 - Hide and automate a lot of details
 - Get excellent performance on common use cases, but...
 - Algorithmic innovations require lower-level abstractions
 - Advanced features like PDL require fine grain control

- With CUTLASS
 - Available on day 0 with full control!
 - Expressive abstractions for performance in all cases
 - Modular and extensible design robust throughout GPU generations

CUTLASS

A set of useful abstractions for productivity and performance at all scopes and scales

- Open source https://github.com/NVIDIA/cutlass
- Presented: GTC'18, GTC'19, GTC'20, GTC'21, GTC'22, GTC'22, GTC'23, GTC'24
- Multiple entry points depending on your needs
- More details this year in Programming Blackwell Tensor Cores with CUTLASS [S72720]

Major pain points with C++

C++ templates and unfortunate consequences

- C++ templates suffer from slow compilation time
 - Front-end too generic for our purposes
 - Prevents fast iteration
 - Prohibits JIT-ting at scale and brute force auto-tuning
- C++ templates are inconvenient
 - Additional mental load when writing compile-time logic
 - Error messages are longer than novels
- The DL space fully embraces the python ecosystem regardless
 - Everybody hates writing binding code
 - Dependency on nvcc
- LLMs are likely better at generating python programs

Do I have to tolerate all of this to use CUTLASS?

Introducing with CUTLASS 4.0 Tensor core programming in Python

CUTLASS in Python

Initial launch to include CuTe

More

Control

This first release makes available a *mature* low-level tensor programming model, giving access to tensor cores with full control.

More to come later...

- make_shape(Int<1>{}, Int<2>{}, $x) \rightarrow (1,2,x)$
- make_layout
- make_identity_tensor
- zipped_divide
- local_tile
- tiled_mma.get_slice
- thr_mma.partition_A
- thr_copy.partition_S

CUTLASS in Python

What do you get?

8kx8kx8k GEMM

Peak Performance!

100-80-JOS % 40-20-

C++

Blazing Fast Compilation Time!

Higher is better

Python

Lower is better

CUTLASS in Python

How will you get started?

```
pip install nvidia-cutlass-dsl
```

```
import cutlass
import cutlass.cute as cute

@cute.kernel
def kernel():
    tidx, _, _ = cutlass.nvvm.thread_idx()
    if tidx == 0:
        cute.print_("Hello world")

@cute.jit
def host():
    kernel(config=cutlass.LaunchConfig(
        grid=(1, 1, 1), block=(32, 1, 1)))

host()
```


python3 hello_world.py

Agenda

- Introduction and Motivations
- The DSL Infrastructure
- Kernel Authoring in Python with CuTe
- Runtime Performance
- Conclusion

Soul of CuTe DSL

Where we start with for CUTLASS Python

- A Python based programming language to program Tensor Cores with CuTe semantics for best possible performance
- Enables kernel authoring in Python rather than just accessing CUTLASS kernels
- Empowered by CuTe abstractions
- Easy integration with popular Python frameworks, like Pytorch
- Model hardware accurately for full control of performance
- Based on MLIR framework to leverage the power of MLIR ecosystem

CUTLASS Python architecture

Tensor Core programming in Python

Writing a kernel in Python

@cute.jit / @cute.kernel

```
template <class ProblemShape, class CtaTiler,
          class TA, class SmemLayoutA, class TmaA,
          class TB, class SmemLayoutB, class TmaB,
          class TC, class CStride, class TiledMma,
          class Alpha, class Beta>
__global__ static
__launch_bounds__(decltype(size(TiledMma{}))::value)
void
gemm_device(ProblemShape shape_MNK, CtaTiler cta_tiler,
            TA const* A, CUTLASS_GRID_CONSTANT TmaA const tma_a,
            TB const* B, CUTLASS_GRID_CONSTANT TmaB const tma_b,
                    * C, CStride dC, TiledMma mma,
            Alpha alpha, Beta beta) {
   • • •
// Kernel Launch
cutlass::Status status = cutlass::launch_kernel_on_cluster(
                                      params, kernel_ptr,
                                      prob_shape, cta_tiler,
                                      A, tmaA,
                                      B, tmaB,
                                      C, dC, tiled_mma,
                                      alpha, beta);
```

```
import cutlass
import cutlass.cute as cute
acute.kernel
def kernel(self, tma_atom_a: cute.CopyAtom, mA_mkl: cute.Tensor,
           tma_atom_b: cute.CopyAtom, mB_nkl: cute.Tensor,
           mC_mnl: cute.Tensor,
           cluster_layout_vmnk: cute.Layout,
           a_smem_layout_staged: cute.Layout,
           b_smem_layout_staged: cute.Layout,
           epilogue_op: cutlass.Constexpr = lambda x: x,
    • • •
acute.jit
def __call__(self, mA: cute.Tensor, mB: cute.Tensor, mC: cute.Tensor,
             epilogue_op=lambda x: x,
    • • •
    # Launch the kernel
    self.kernel(...)
```

Support DLPack protocol

```
import cutlass
import cutlass.cute as cute
from cutlass.cute.runtime import from_dlpack
import torch

@cute.kernel
def jit_kernel(A: cute.Tensor):
    ...

@cute.jit
def jit_func(A: cute.Tensor):
    jit_kernel(
1])    A, config=cutlass.LaunchConfig(grid=[1, 1, 1], block=[1, 1, 1])
```

A_tensor = torch.tensor([0, 0, 0], dtype=torch.int32).cuda()
jit_func(A_tensor)
Or jit_func(from_dlpack(A_tensor).mark_layout_dynamic())

- Take torch.tensor as input seamlessly
- Finer grained control with explicit call

Support DLPack protocol

```
// Create instantiation for device reference gemm kernel
cutlass::reference::device::Gemm<ElementInputA,</pre>
                                  LayoutInputA,
                                  ElementInputB,
                                  LayoutInputB,
                                  ElementOutput,
                                  LayoutOutput,
                                  ElementComputeEpilogue,
                                  ElementComputeEpilogue>
   gemm_device;
// Launch device reference gemm kernel
gemm_device(problem_size,
            alpha,
            tensor_a.device_ref(),
            tensor_b.device_ref(),
            beta,
            tensor_c.device_ref(),
            tensor_ref_d.device_ref());
// Wait for kernels to finish
cudaDeviceSynchronize();
// Copy output data from CUTLASS and reference kernel to host for comparison
tensor_d.sync_host();
tensor_ref_d.sync_host();
// Check if output from CUTLASS kernel and reference kernel are equal or not
bool passed = cutlass::reference::host::TensorEquals(
 tensor_d.host_view(),
  tensor_ref_d.host_view());
std::cout << (passed ? "Passed" : "Failed") << std::endl;</pre>
```

```
ref_c = (torch.einsum("mkl,nkl->mnl", a_ref, b_ref)).cpu()
torch.testing.assert_close(gpu_c, ref_c, atol=tolerance, rtol=1e-05)
```

From static layout to dynamic layout

 cute.Tensor type would have a layout (3:1) that follows the size of input A_tensor

From static layout to dynamic layout

```
acute.kernel
def jit_kernel(A: cute.Tensor, x: cutlass.Int32, y: cutlass.Int32):
    A[x] = y
acute.jit
def jit_func(A: cute.Tensor):
    X = \emptyset
    y = 3
    jit_kernel(
        A, x, y, config=cutlass.LaunchConfig(grid=[1, 1, 1],
                                              block=[1, 1, 1])
A_tensor = torch.tensor([0, 0, 0], dtype=torch.int32).cuda()
jit_func(from_dlpack(A_tensor))
B_{tensor} = torch.tensor([0, 0, 0, 0, 0])
                                          dtype=torch.int32).cuda()
jit_func(from_dlpack(B_tensor))
```

 cute.Tensor type would have a layout (5:1) that follows the size of input B_tensor

- Two sets of JIT functions are compiled:
 - One with cute.Tensor type of layout (3:1)
 - One with cute.Tensor type of layout (5:1)
- Static layout results in distinct codes

From static layout to dynamic layout

```
acute.kernel
def jit_kernel(A: cute.Tensor, x: cutlass.Int32, y: cutlass.Int32):
    A[x] = y
acute.jit
def jit_func(A: cute.Tensor):
    x = \emptyset
    y = 3
    jit_kernel(
        A, x, y, config=cutlass.LaunchConfig(grid=[1, 1, 1],
                                              block=[1, 1, 1])
A_tensor = torch.tensor([0, 0, 0], dtype=torch.int32).cuda()
jit_func(from_dlpack(A_tensor(.mark_layout_dynamic(mode=[0]))
B_tensor = torch.tensor([0, 0, 0, 0, 0], dtype=torch.int32).cuda()
jit_func(B_tensor)
```

 cute.Tensor type would have a dynamic layout (?:1)

- Only one set of JIT functions compiled for both cases
- Use dynamic layout to allow generalized code generation

Integration with LLaMA 8b

Wire up the gate/up/down projection layer with the customized linear module

```
class LlamaMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = nn.Linear(
            self.hidden_size,
            self.intermediate_size,
            bias=config.mlp_bias
        self.up_proj = nn.Linear(
            self.hidden_size,
            self.intermediate_size,
            bias=config.mlp_bias
        self.down_proj = nn.Linear(
            self.intermediate_size,
            self.hidden_size,
            bias=config.mlp_bias
        self.act_fn = ACT2FN[config.hidden_act]
```



```
class LlamaMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = MyCutlassLinear(
            self.hidden_size,
            self.intermediate_size,
            bias=config.mlp_bias
        self.up_proj = MyCutlassLinear(
            self.hidden_size,
            self.intermediate_size,
            bias=config.mlp bias
        self.down_proj = MyCutlassLinear(
            self.intermediate_size,
            self.hidden_size,
            bias=config.mlp_bias
```

Integration with LLaMA 8b

```
class MyCutlassLinear(nn.Module):
   def __init__(self, in_features, out_features, bias=False):
        • • •
        from blackwell.gemm import MyGemmKernel
        self.gemm = MyGemmKernel(
            cutlass.Float16,
            cutlass.Float32,
            cutlass.Float16,
            False,
                            # 2-CTA optimization
            (128, 128),
                             # MMA tile shape
           (2, 1, 1),
                              # cluster shape
            True)
                              # Use TMA
   def forward(self, input, bias=None):
        batch_size, seq_len, hidden_size = input.shape
       try:
           input = input.reshape(batch_size * seq_len, hidden_size)
            output = torch.empty(
                input.size(0), self.out_features, device=input.device,
                                                  dtype=input.dtype)
            • • •
            self.gemm(
                input.detach().contiguous(),
                weight.detach().contiguous(),
                output.contiguous(),
```

stream)

• • •

• Setup the linear module with your customized kernel implemented by CUTLASS Python APIs

- Invoke your kernel for the forward pass
- Leverage implicit from_dlpack conversion

Python to Python code generation: dynamic if

- Pythonic way to write "meta-kernel" that automatically fits for dynamic layout
 - Conditional execution based on dynamic expression

```
@cute.kernel
def jit_kernel(A: cute.Tensor, x: cutlass.Int32, y: cutlass.Int32):
```

```
# Conditional on dynamic value
if x < cute.size(A):
    A[x] = y
else:
    ...</pre>
```

This will be converted to a dynamic if automatically which will be executed at runtime

Python to Python code generation: dynamic loop

- Pythonic way to write "meta-kernel" that automatically fits for dynamic layout
 - Loop on dynamic expression

• • •

jit_func(A_tensor)

```
@cute.kernel
def jit_kernel(A: cute.Tensor, x: cutlass.Int32, y: cutlass.Int32):
    # Loop on dynamic value
    for i in range(cute.size(A)):
        ...
# Loop on dynamic value with loop unrolling
```

for i in range_dynamic(cute.size(A), unroll=1):

Both will be converted to dynamic loop automatically which will be executed at runtime

Compile-time constants as Constexpr

- Pythonic way to write "meta-kernel" that automatically fits for dynamic shape
 - Use Constexpr for constants known at compile-time

```
acute.kernel
def jit_kernel(A: cute.Tensor, x: cutlass.Int32, y: cutlass.Int32 , z: cutlass.Constexpr[int]):
    # Loop on compile-time constant
    for i in range(z):
        A[x + i] = y
                                                                         No conversion for compile-time constants
acute.jit
def jit_func(A: cute.Tensor):
    X = \emptyset
    z = 3
    jit_kernel(
       A, x, y, z, config=cutlass.LaunchConfig(grid=[1, 1, 1], block=[1, 1, 1]))
A_tensor = torch.tensor([0, 0, 0], dtype=torch.int32).cuda()
jit_func(A_tensor)
```

TiledCopy and SMEM layout as kernel parameters

```
using CollectiveOp = cutlass::gemm::collective::CollectiveMma<</pre>
      DispatchPolicy,
      TileShape_MNK,
      ElementA,
      cute::tuple<cutlass::gemm::TagToStrideA_t<GmemLayoutATag>,
                  cutlass::gemm::TagToStrideA_t<GmemLayoutSFATag>>,
      ElementB,
      cute::tuple<cutlass::gemm::TagToStrideB_t<GmemLayoutBTag>,
                  cutlass::gemm::TagToStrideB_t<GmemLayoutSFBTag>>,
      TiledMma,
      GmemTiledCopyA,
      SmemLayoutAtomA,
      void,
      cute::identity,
      GmemTiledCopyB,
      SmemLayoutAtomB,
      void,
      cute::identity
    >;
```



```
@cute.kernel
def kernel(
    self,
    mA: cute.Tensor,
    mB: cute.Tensor,
    mC: cute.Tensor,

    sA_layout: cute.Layout,
    sB_layout: cute.Layout,
    tiled_copy_A: cute.TiledCopy,
    tiled_copy_B: cute.TiledCopy,
    tiled_mma: cute.TiledMma,
    epilogue_op: cutlass.Constexpr = lambda x: x,
):
    ...
```

Data types modeling to generate fast code

Primitive types

- Full support of CUTLASS data types
- One type for all contexts
 - Host/device JIT function
 - Non-JIT context
- Easy type access and conversions with CuTe DSL type
 - torch.dtype
 - numpy.dtype

Compound types

- Tensor
 - Modeling CuTe tensor concept
- Pointer
 - Modeling the raw pointer to memory location

Better code expressiveness and readability

Operator overloading for arithmetic, comparison and bitwise

- Pythonic way to deal with DslTyped values
- Avoid tedious spelling like arith.muli(a, arith.constant(a.type, 4))
- Instead, simply write **a * 4** and let the DSL take care of it for you

• • •

Better code expressiveness and readability

Operator overloading with vectorization

acute.kernel

```
Ocute.kernel
def sgemm_kernel(
    mA: cute.Tensor,
    mB: cute.Tensor,
    mC: cute.Tensor,
    ...
):

# Activation function fusion
    tCrC = cute.make_tensor_like(tAcc)
    for i in range_dynamic(cute.size(tAcc)):
        a = tAcc[i]
        tCrC[i] = if a > 0 a else a.dtype(0)
    ...
```

- **TensorSSA**: thread local data modeling for CuTe Tensor in value semantics and immutable
 - Vector based with nested CuTe shape support
 - Load tensor elements as vector / store vector data into tensor
 - Operator overloading for vectorized operations

Customized C struct like data types

@cute.struct

cute.struct decorator

- Transform a Python class into a memory-mapped structure with precise control over memory layout, alignment and offsets
- Support scalar, MemRange or nested struct as data members
- Allow customized data alignment which is essential for better performance

```
acute.struct
class complex:
    real: cutlass.Float32
                                                                     offset
                                                                                                 alignment
                                                                                  MyStorage
    imag: cutlass.Float32
acute.struct
                                                                                                                  Natural alignment
class MyStorage:
                                                                                                                      per dtype
                                                                                                     4
    x: cutlass.Float32
    y: cutlass.Int32
   nested: cute.struct.align(complex, 16)
                                                                                    nested
                                                                                                     16
                                                                        16
                                                                                                                    User specified
   mem: cute.struct.align(cute.struct.MemRange(
                                                                                                                      alignment
                                                                      1024
                                                                                                    1024
            cutlass.Float32, cute.cosize(layout_a)), 1024)
                                                                                     mem
```

Kernel writing in an OOP manner

```
acute.kernel
                                                                  @cute.struct
def kernel(...):
    • • •
    smem = cutlass.utils.SmemAllocator()
    ab_full_mbar_ptr = smem.allocate_array(cutlass.Int64,
                                            self.ab_stage)
    ab_empty_mbar_ptr = smem.allocate_array(cutlass.Int64,
                                             self.ab_stage)
    buffer_align_bytes = 1024
    sa = smem.allocate_tensor(
         self.a_dtype,
         a_smem_layout_staged.outer,
         buffer_align_bytes,
         swizzle=a_smem_layout_staged.inner)
    sb = ...
    • • •
def _compute_smem(cta_tile_shape_mnk, a_dtype, b_dtype, ab_stage, c_dtype):
        a_shape = cute.slice_(cta_tile_shape_mnk, (None, 0, None))
        b_shape = cute.slice_(cta_tile_shape_mnk, (0, None, None))
        ab_bytes_per_stage = (
            cute.size(a_shape) * a_dtype.width // 8
            + cute.size(b shape) * b dtype.width // 8)
        mbar_helpers_bytes = 1024
        num_smem_bytes = ab_bytes_per_stage * ab_stage + mbar_helpers_bytes
        return num_smem_bytes
self.kernel(...,
            config=cutlass.LaunchConfig(
                • • •
                smem=self._compute_smem(...),
```

async_deps=[stream]))

Reduced kernel launching latency with caching

Significant overhead without caching

```
class MyGemmKernel:
    acute.jit
    def __call__(
        self,
        a: cute.Tensor,
        b: cute.Tensor,
        c: cute.Tensor,
        stream: cutlass.Stream,
        epilogue_op: cutlass.Constexpr = lambda x: x,
        • • •
def forward(self, input, bias=None):
    batch_size, seq_len, hidden_size = input.shape
    try:
        # Reshape input to prepare for GEMM
        input = input.reshape(batch_size * seq_len, hidden_size)
        output = torch.empty(
            input.size(0), self.out_features, device=input.device,
                                               dtype=input.dtype)
        • • •
        self.gemm(
            input.detach().contiguous(),
            weight.detach().contiguous(),
            output.contiguous(),
```

 In each forward pass, the method will be called with kernel JIT compilation which would cause a significant runtime overhead

stream)

• • •

Reduced kernel launching latency with caching

Zero Compile: JIT Executor with CUBIN cached

```
def forward(self, input, bias=None):
    batch_size, seq_len, hidden_size = input.shape
    try:
        # Reshape input to prepare for GEMM
        input = input.reshape(batch_size * seq_len, hidden_size)
        output = torch.empty(
            input.size(0), self.out_features, device=input.device, dtype=input.dtype)
        ...
    input_tensor = from_dlpack(input.detach().contiguous()).mark_layout_dynamic()
        weight_tensor = from_dlpack(weight.detach().contiguous()).mark_layout_dynamic()
        output tensor = from_dlpack(output.contiguous()).mark_layout_dynamic()
```

```
key = input.shape
if key not in self.cached_kernels:
    self.cached_kernels[key] = cute.compile(
        self.gemm,
        input_tensor,
        weight_tensor,
        output_tensor,
        cutlass_stream,
)
self.cached_kernels[key](
    input_tensor, weight_tensor, output_tensor, cutlass_stream
)
```

• • •

- Customized keys for kernel caching
- JIT Executor with CUBIN cached
- JIT Executor supports serialization to file and deserialization from file

Reduced kernel launching latency with caching

Zero Compile: JIT Executor with CUBIN cached

```
@cute.kernel
def my_kernel(A: cute.Tensor, ...):
    ...
    atom = cute.make_copy_atom(...)
    ...
    cute.make_tiled_copy_tv(...)
    ...
```

Skip generation & compilation to access cached JIT Executor(s) directly

Generation, Compilation, and Launch overhead

Blackwell B100 FP16 GEMM: M=N=K=8K

Without cache

- Goes all the way down to kernel launching
- Includes IR generation, compilation and kernel launch

Stable cache

- By default ON
- Always generates codes for functional correctness
- Skips compilation if generated codes are identical

Zero Compile

- Launches kernel directly through JIT Executor managed by users
- No IR generation and compilation
- Minimized kernel launch overhead at ~4.6 us

Agenda

- Introduction and Motivations
- The DSL Infrastructure
- Kernel Authoring in Python with CuTe
- Runtime Performance
- Conclusion

What is CuTe and why should you care about it

Program GPUs at peak throughout architectural generations

- What's needed for performance
 - Complex tiling and partitioning patterns
 - Arch-specific instructions with their own set of requirements
- Layout book-keeping is hard, error-prone, and takes away time
- CuTe at your rescue without taking away control!
 - A single Layout concept to express all layouts of interest and more based on a hierarchical representation
 - A formal algebra
 - A programming model maintaining logical consistency
 - A consistent set of idioms applicable throughout GPU generations
 - A safer low-level programming
 - Detect illegal patterns by inspecting layouts at compile-time

Maxwell A access addr[tid] = addr[tid]

Maxwell B access
addr[tid] = addr[tid^

Figure 3b: Maxwell thread assignments for LDS.U matching

B _{0, 07}	B _{0, 815}	B _{0, 1623}	B _{0, 2431}	B _{0, 3239}	B _{0, 4047}	B _{0, 4855}	B _{0, 5663}	t_0t_7
B _{1, 07}	B _{1, 815}	B _{1, 1623}	B _{1, 2431}	B _{1, 3239}	B _{1, 4047}	B _{1, 4855}	B _{1, 5663}	t ₈ t ₁₅
B _{2, 07}	B _{2, 815}	B _{2, 1623}	B _{2, 2431}	B _{2, 3239}	B _{2, 4047}	B _{2, 4855}	B _{2, 5663}	t ₁₆ t ₂₃
B _{3, 07}	B _{3, 815}	B _{3, 1623}	B _{3, 2431}	B _{3, 3239}	B _{3, 4047}	B _{3, 4855}	B _{3, 5663}	t ₂₄ t ₃₁

LDG.128 register quad (R_{n..n+3})

B _{0, 07}	B _{1, 07}	B _{2, 07}	B _{3, 07}	B _{0, 3239}	B _{1, 3239}	B _{2, 3239}	B _{3, 3239}
B _{1, 815}	B _{0, 815}	B _{3, 815}	B _{2, 815}	B _{1, 4047}	B _{0, 4047}	B _{3, 4047}	B _{2, 4047}
B _{2, 1623}	B _{3, 1623}	B _{0, 1623}	B _{1, 1623}	B _{2, 4855}	B _{3, 4855}	B _{0, 4855}	B _{1, 4855}
B _{3, 2431}	B _{2, 2431}	B _{1, 2431}	B _{0, 2431}	B _{3, 5663}	B _{2, 5663}	B _{1, 5663}	B _{0, 5663}

Shared memory after STS.128 w/swizzled thread id = (tid[1:0] << 3) | (tid & 4) | (tid[4:3] ^ tid[1:0])

CuTe exposure

If you already use CUTLASS-C++, you will feel at home

- CuTe Layouts and Tensors in all their flavors
 - The algebra is available in its entirety
 - Mixed static/dynamic Layouts are fully supported
- Robust tensor programming model that users of CUTLASS-C++ are already familiar with

MMA/Copy Atoms

Encapsulate the PTX with metadata encoded using Layouts

Tiled MMA/Copy

Robust generic partitioning interface

cute.{gemm|copy} algorithms

Automatically dispatch to the requested PTX instruction

CuTe Layouts and Algebra

Examples

- 1. Tiling MMAs
- 2. Ampere warp-level MMA
- 3. Blackwell 2CTA MMA

Data Layouts logical coord → data offset

shape:stride = (8, 8):(8, 1)

Thread-Value (TV) Layouts (thr, val) → logical coord

Example 1: Building complex tiling of MMA Atoms

MMA Atom MxNxK=1x1x1

1x1x1 Universal MMA based on FMA

Example 1: Building complex tiling of MMA Atoms

Tile this atom in an 8x8 fashion

- threads 0, 8, 16,... own in their registers the same entry of A
- threads [0,7] own in their registers the same entry of B

Description tracked by Tiled MMA with TV-Layouts

Example 1: Building complex tiling of MMA Atoms

- Tile further across values
 - Each thread computes a 2x2 accumulator fragment
- Permute the tiling to enjoy vectorized loads from SMEM to RMEM for M-major A and N-major B

Example 1: Building complex tiling of MMA Atoms

A programming pattern applicable to any MMA!

```
# Layout of Atoms: tiling across threads
atom_layout = cute.make_layout((8, 8, 1))
# Permutation Tiler:
# - tiling across values
# - permutation of the overall tiling
perm_tiler = (
    cute.make_layout((8, 2), stride=(2, 1)),
   cute.make_layout((8, 2), stride=(2, 1)),
    None,
tiled_mma = cute.make_tiled_mma(
    cute.nvgpu.MmaUniversalOp(),
    atom_layout,
    perm_tiler,
```

Example 1: Building complex tiling of MMA Atoms

Partitioning without ever worrying about the physical stride

- The MMA mode for a single atom
- # repetitions along M to cover the full 32x8 tile
- # repetitions along K to cover the full 32x8 tile

Partitioning at a high level:

$$\texttt{t} = Data \circ TV : (\texttt{thr_id}, \texttt{val_id}) \rightarrow \texttt{data offset}$$

$$\texttt{thr_part} = \texttt{t}(\texttt{my_thr}, _)$$

Example 2: GMEM → SMEM → HMMA

Consider the A operand of a half-precision F16 warp-level MMA (HMMA)

Example 2: Resolving SMEM bank conflicts

- SMEM is organized into 32 x 32b banks
- Starting with a simple row-major SMEM layout
 - Represented in unit of 128b elements
 - Each color is a set of 4 banks
- Row-major A in GMEM → use LDG.128 + STS.128
- 128b writes across a row are free of bank conflicts... but
- 128b reads across a column all hit the same 4 banks
- Solution: swizzle

16x64 SMEM

Example 2: Resolving SMEM bank conflicts

	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	9	8	11	10	13	12	15	14
2	18	19	16	17	22	23	20	21
3	27	26	25	24	31	30	29	28
4	36	37	38	39	32	33	34	35
5	45	44	47	46	41	40	43	42
6	54	55	52	53	50	51	48	49
7	63	62	61	60	59	58	57	56

- Reads/writes across rows/columns are now free of bank conflicts!
- This layout is exactly a swizzle layout

```
• l = cute.make_composed_layout(
          cute.swizzle(3,0,3),
          0,
          cute.make_layout((8,8), stride=(8,1)),
     )
     assert l((3,6)) == 29
```

No indexing math!

Such layout can be partitioned just like any other layout

Example 2: SMEM → RMEM

 $128b = 8 \times 16b$

•									→
	0	1	2	3	4	5	6	7	
0	T0 V0	T0 V1	T1 V0	T1 V1	T2 V0	T2 V1	T3 V0	T3 V1	
1	T4 V0	T4 V1	T5 V0	T5 V1	T6 V0	T6 V1	T7 V0	T7 V1	
2	T8 V0	T8 V1	T9 V0	T9 V1	T10 V0	T10 V1	T11 V0	T11 V1	
3	T12 V0	T12 V1	T13 V0	T13 V1	T14 V0	T14 V1	T15 V0	T15 V1	
4	T16 V0	T16 V1	T17 V0	T17 V1	T18 V0	T18 V1	T19 V0	T19 V1	
5	T20 V0	T20 V1	T21 V0	T21 V1	T22 V0	T22 V1	T23 V0	T23 V1	
6	T24 V0	T24 V1	T25 V0	T25 V1	T26 V0	T26 V1	T27 V0	T27 V1	
7	T28 V0	T28 V1	T29 V0	T29 V1	T30 V0	T30 V1	T31 V0	T31 V1	
8	$ \begin{array}{c} T0 \\ V2 \end{array} $	T0 V3	$\begin{array}{c} T1 \\ V2 \end{array}$	T1 V3	$egin{array}{c} T2 \ V2 \end{array}$	T2 V3	T3 V2	T3 V3	
9	$egin{array}{c} { m T4} \\ { m V2} \end{array}$	T4 V3	$egin{array}{c} { m T5} \ { m V2} \end{array}$	T5 V3	$egin{array}{c} { m T6} \\ { m V2} \end{array}$	T6 V3	$\begin{array}{c} \mathrm{T7} \\ \mathrm{V2} \end{array}$	T7 V3	
10	T8 V2	T8 V3	T9 V2	T9 V3	T10 V2	T10 V3	T11 V2	T11 V3	
11	T12 V2	T12 V3	T13 V2	T13 V3	T14 V2	T14 V3	T15 V2	T15 V3	
12	T16 V2	T16 V3	T17 V2	T17 V3	T18 V2	T18 V3	T19 V2	T19 V3	
13	T20 V2	T20 V3	T21 V2	T21 V3	T22 V2	T22 V3	T23 V2	T23 V3	
14	T24 V2	T24 V3	T25 V2	T25 V3	T26 V2	T26 V3	T27 V2	T27 V3	
15	T28 V2	T28 V3	T29 V2	T29 V3	T30 V2	T30 V3	T31 V2	T31 V3	

• • • 64

- A's TV-layout for a 16x8x8 HMMA
- How do I prepare my register fragments efficiently?
- Each ldmatrix instruction loads 128b from 8 rows and places the values in the registers of threads according to HMMA
- This is exactly one column in the previous figure, thus free of bank conflicts
- This pattern can be repeated along K for larger tiles and remains free of bank conflicts

PTX doc for Idmatrix

"The eight addresses required for each matrix are provided by eight threads [...] Each address corresponds to the start of a matrix row."

Threads 0-7

???

addr0-addr7

Example 2: SMEM → RMEM

Construct the Tiled MMA and partition the (swizzled!) SMEM tensor according to the MMA

Construct a Tiled Copy of Idmatrix based off the MMA

Repartition the source SMEM tensor now according to the Copy


```
# Construct a 16x8x8 MMA with F16/F32 inputs/output
# Partition SMEM tensors according to the MMA
mma_op = warp.MmaF16BF160p(
  cutlass.Float16, cutlass.Float32, (16, 8, 8))
tiled_mma = cute.make_tiled_mma(mma_op)
thr_mma = tiled_mma.get_slice(tidx)
tCsA = thr_mma.partition_A(sA)
tCrA = thr_mma.make_fragment_A(tCsA)
# Construct a tiled Copy based off the MMA
# This takes care of any repetition (x2 along M here)
copy_op = warp.LdMatrix8x8x16b0p(transpose=False)
copy_atom = cute.make_copy_atom(copy_op, cutlass.Float16)
tiled_copy = cute.make_tiled_copy_A(copy_atom, tiled_mma)
# Repartition SMEM source tensors according to the Copy
# Retile RMEM destination tensors according to the Copy
thr_copy = tiled_copy.get_slice(tidx)
tCsA_copy = thr_copy.partition_S(sA)
```

tCrA_copy = thr_copy.retile(tCrA)

Example 2: SMEM → RMEM

<pre>tCsA_copy[(_,_,0)]</pre>										
	0	1	2	3	4	5	6	7		
	T0	T0	T0	T0	T0	T0	T0	T0		
	V0	V1	V2	V3	V4	V5	V6	V7		
/ 1	T1 V0	T1 V1	$\begin{array}{c} T1 \\ V2 \end{array}$	T1 V3	T1 V4	T1 V5	T1 V6	T1 V7		
2	T2 V0	T2 V1	$egin{array}{c} { m T2} \\ { m V2} \end{array}$	T2 V3	$\begin{array}{c} { m T2} \\ { m V4} \end{array}$	T2 V5	T2 V6	$\begin{array}{c} T2 \\ V7 \end{array}$		
3	T3 V0	T3 V1	$\begin{array}{c} T3 \\ V2 \end{array}$	T3 V3	T3 V4	T3 V5	T3 V6	$\begin{array}{c} \overline{T3} \\ \overline{V7} \end{array}$		
4	T4 V0	T4 V1	$egin{array}{c} { m T4} \ { m V2} \end{array}$	T4 V3	$egin{array}{c} { m T4} \\ { m V4} \end{array}$	T4 V5	T4 V6	$\begin{array}{c} \mathrm{T4} \\ \mathrm{V7} \end{array}$		
5	T5 V0	T5 V1	$\begin{array}{c} { m T5} \\ { m V2} \end{array}$	T5 V3	T5 V4	T5 V5	T5 V6	T5 V7		
6	T6	T6	T6	T6	T6	T6	T6	T6		
	V0	V1	V2	V3	V4	V5	V6	V7		
7	T7 V0	T7 V1	$\begin{array}{c} \mathrm{T7} \\ \mathrm{V2} \end{array}$	T7 V3	$\begin{array}{c} \mathrm{T7} \\ \mathrm{V4} \end{array}$	T7 V5	T7 V6	T7 V7		
8	T0	T0	T0	T0	T0	T0	T0	T0		
	V8	V9	V10	V11	V12	V13	V14	V15		
9	T1	T1	T1	T1	T1	T1	T1	T1		
	V8	V9	V10	V11	V12	V13	V14	V15		
10	T2 V8	T2 V9	T2 V10	T2 V11	T2 V12	T2 V13	$\begin{array}{c} T2 \\ V14 \end{array}$	T2 V15		
11	T3	T3	T3	T3	T3	T3	T3	T3		
	V8	V9	V10	V11	V12	V13	V14	V15		
12	T4	T4	T4	T4	T4	T4	T4	T4		
	V8	V9	V10	V11	V12	V13	V14	V15		
13	T5	T5	T5	T5	T5	T5	T5	T5		
	V8	V9	V10	V11	V12	V13	V14	V15		
14	T6	T6	T6	T6	T6	T6	T6	T6		
	V8	V9	V10	V11	V12	V13	V14	V15		
15	T7	T7	T7	T7	T7	T7	T7	T7		
	V8	V9	V10	V11	V12	V13	V14	V15		

Copy's src view conforming with ldmatrix

```
tCrA_copy[(_,_,0)]\
0 1 2 3 4 5 6 7
T28 T28 T29 T29 T30 T30 T31
T0
V2
          T4
V3
V2
                                                                                 14

        T28
        T28
        T29
        T29
        T30
        T30

        V2
        V3
        V2
        V3
        V2
        V3
```

Copy's dst view = MMA view

```
# Construct a 16x8x8 MMA with F16/F32 inputs/output
# Partition SMEM tensors according to the MMA
mma_op = warp.MmaF16BF160p(
  cutlass.Float16, cutlass.Float32, (16, 8, 8))
tiled_mma = cute.make_tiled_mma(mma_op)
thr_mma = tiled_mma.get_slice(tidx)
tCsA = thr_mma.partition_A(sA)
tCrA = thr_mma.make_fragment_A(tCsA)
# Construct a tiled Copy based off the MMA
# This takes care of any repetition (x2 along M here)
copy_op = warp.LdMatrix8x8x16b0p(transpose=False)
copy_atom = cute.make_copy_atom(copy_op, cutlass.Float16)
tiled_copy = cute.make_tiled_copy_A(copy_atom, tiled_mma)
# Repartition SMEM source tensors according to the Copy
# Retile RMEM destination tensors according to the Copy
thr_copy = tiled_copy.get_slice(tidx)
tCsA_copy = thr_copy.partition_S(sA)
tCrA_copy = thr_copy.retile(tCrA)
```

Example 3: 2CTA Blackwell MMA

```
tCrA = tiled_mma.make_fragment_A(sA)  # Create a tensor of SMEM descriptors for the A operand
tCgC = thr_mma.partition_C(gC)
tCtC = tiled_mma.make_fragment_C(tCgC) # Create a TMEM tensor for the accumulator

# Issue a GEMM
cute.gemm(
    tiled_mma,
    tCtC,
    tCrA[(None, None, k_block_idx)],
    tCrB[(None, None, k_block_idx)],
    tCtC,
)
```

The 2CTA MMA consumes the SMEM tensors of both CTAs and stores half of the result in each CTA's TMEM allocation.

What if something is missing?

Seamless integration of raw Op builders

```
from cutlass._mlir.dialects import llvm, nvvm
def thread_idx(*, loc=None, ip=None):
    return (
        nvvm.read_ptx_sreg_tid_x(T.i32(), loc=loc, ip=ip),
        nvvm.read_ptx_sreg_tid_y(T.i32(), loc=loc, ip=ip),
        nvvm.read_ptx_sreg_tid_z(T.i32(), loc=loc, ip=ip),
def fence_tma_desc_acquire(tma_desc_ptr_i64, *, loc=None, ip=None):
    llvm.inline_asm(
        None,
        [tma_desc_ptr_i64],
        "fence.proxy.tensormap::generic.acquire.gpu [$0], 128;",
        has_side_effects=True,
       is_align_stack=False,
        asm_dialect=llvm.AsmDialect.AD_ATT,
        loc=loc,
        ip=ip,
```

- LLVM + NVVM Op builders exposed
- Direct access to NVVM Ops
- Inline PTX is straightforward
- Subject to upstream breaking changes

What else?

Refreshed tutorials, examples, and documentation

- Initial support for schedulers and persistency
- Initial support for pipeline abstractions
- New centralized documentation
- Educational notebooks from getting started to SOL


```
cutlass.cute.make_identity_tensor(
    shape: cutlass.cute.typing.Shape,
    loc=None,
    ip=None,
   → cutlass.cute.typing.Tensor
   Creates an identity tensor with the given shape.
   An identity tensor maps each coordinate to itself, effectively creating a counting sequence within
   the shape's bounds. This is useful for generating coordinate indices or creating reference tensors
   for layout transformations.
    Parameters:
        > shape (Shape) - The shape defining the tensor's dimensions. Can be a simple integer
          sequence or a hierarchical structure ((m,n),(p,q))
        ▶ loc (Optional[Location]) – Source location for MLIR operation tracking, defaults to None
        > ip (Optional[InsertionPoint]) - Insertion point for MLIR operation, defaults to None
    Returns:
        A tensor that maps each coordinate to itself
    Return type:
        Tensor
   Examples:
     # Create a simple 1D counting tensor
     tensor = make_identity_tensor(6) # [0,1,2,3,4,5]
     # Create a 2D counting tensor
      tensor = make_identity_tensor((3,2)) # [(0,0),(1,0),(2,0),(0,1),(1,1),(2,1)]
     # Create hierarchical counting tensor
     tensor = make_identity_tensor(((2,1),3)) # [((0,0),0),((1,0),0),((0,0),1),((1,0),1),((0,0),2),((1,0),2)]
```


Agenda

- Introduction and Motivations
- The DSL Infrastructure
- Kernel Authoring in Python with CuTe
- Runtime Performance
- Conclusion

Blackwell Performance: Python vs. C++

FP16 I/O GEMM with M=N=8192

Testing spec: B100 180GB HBM3e, 148SM GPC-800MHz/DRAM 4GHz 850W 128x256x64, Warp-specialized, 2x1 Cluster shape

Blackwell Performance: Python vs. C++

FP16 I/O GEMM with M=N=2048

Testing spec: B100 180GB HBM3e, 148SM GPC-800MHz/DRAM 4GHz 850W 256x128x64, Warp-specialized, 2x1 Cluster shape

Hopper Performance: Python vs. C++

FP16 I/O GEMM with M=N=8192

Perf gap

Python example does not include persistent optimization thus expose more overhead among CTA waves for small GEMM-K cases

Testing spec: H100 80GB HBM3, 132SM GPC-1500MHz/DRAM 2619MHz 700W

128x256x64 cooperative size, Swizzle size = 8

Hopper Performance: Python vs. C++

FP16 I/O GEMM with M=N=2048

Perf gap

For small GEMM-K case, it's single wave hence C++ exposed more overhead due to the tile scheduling calculation cost with its warp-specialized persistent scheduler which is not used in Python example.

Testing spec: H100 80GB HBM3, 132SM GPC-1500MHz/DRAM 2619MHz 700W

128x256x64 cooperative size, Swizzle size = 8

Blackwell Performance: Python vs. C++

FP16 I/O Group GEMM

Testing spec: B100 180GB HBM3e, 148SM GPC-800MHz/DRAM 4GHz 850W 128x256/128x32/64x32/128x128/128x32 CTA Tilesize, Warp-specialized, Cluster shape (C++) 2x1/2x1/2x1/1x1/1x1 vs. (Python)2x1/1x1/1x1/1x1/1x1

CUTLASS Python

CUTLASS comes to Python and is first class citizen with full support!

Initial beta release

- Release date: Q2'25
- Focus on GEMMs, including grouped GEMM
- Blackwell B200: support for major features
 - TMA, 2CTA MMA, TMEM
- Ada/Ampere/Hopper: experimental
- Schedulers and pipelines
- Jupyter notebook examples
 - Tutorial series on how to use the DSL
 - Back to the basics SGEMM tutorial series
 - Ampere TC GEMM and FA2
 - Hopper WGMMA GEMM
 - Blackwell GEMM tutorial series
 - Blackwell grouped GEMM
 - Blackwell FA2

What will come next

- GeForce RTX 50 Series
- Feature complete support for Blackwell including
 - Cluster Launch Control
 - Programming Dependent Launch
- Narrow-precision data types support and blockscaled MMAs
- EVT
- More examples of advanced fusion
- Convolutions
- Fully fledged Ahead-of-time compilation support
- Higher level abstractions & primitives
- More comprehensive documentation
- Graduate Ada, Ampere, Hopper from experimental

Acknowledgements

A great collaboration among various teams made it possible!

THANKYOU!