Handwritten recognition neural network

Ladislav Petera

November 1, 2017

1 Introduction

http://neuralnetworksanddeeplearning.com/chap1.html

1.1 Perceptron

Digital inputs and output:

- \bullet w weight vector
- x input vector
- \bullet b threshold

$$f(x_{i..j}) = \begin{cases} 0 & \text{if } w \cdot x + b \le 0\\ 1 & \text{if } w \cdot x + b > 0 \end{cases}$$

1.2 Sigmoid neurons

Analog inputs and output

$$output = \sigma(w \cdot x + b)$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

2 Network description

Figure 1: Network configuration

2.1 Network function:

$$y = y(x)$$

Where:

- x is the a 28 x 28 = 784-dimensional input vector (0.0 1.0 grayscale for each point)
- \bullet y is the 10-dimensional output vector (0.0 1.0 "probability"" of being a given character)

2.2 Quadratic cost function:

$$C(\omega,b) \equiv \frac{1}{2n} \sum_{x} ||y(x) - a||^2$$

where:

- ullet ω is vector of all weights in the network
- ullet b denotes all the biases
- ullet n is total number of training inputs
- a is the vector of outputs of the network when x is input
- $\bullet\,$ sum is over all training inputs x

2.3 Gradient descent

We are looking for the global minimum of the n-dimensional cost function. Explanation in x of \mathbb{R}^2 :

Figure 2: Gradient

Let's imagine we have placed a ball on some position v_1 , v_2 and look what happens when we move it by a small amount Δv_1 in direction v_1 and Δv_2 in direction v_2 . C changes as follows:

$$\Delta C \approx \frac{\delta C}{\delta v_1} \Delta v_1 + \frac{\delta C}{\delta v_2} \Delta v_2$$

We are looking for a way to make ΔC negative (make tha ball roll down the valley). For this it helps to define Δv to be vector of changes in v, $\Delta v \equiv (\Delta v_1, \Delta v_2)^T$ where T is te transpose operation, turning row vectors into column vectors. We denote the gradient vector by ∇C i.e.:

$$\nabla C \equiv (\frac{\delta C}{\delta v_1}, \frac{\delta C}{\delta v_2})$$

With this the change in C can also be rewritten as:

$$\Delta C \approx \nabla C \cdot \Delta v$$

This equations helps us choose Δv as to make ΔC negative. Let's suppose we choose

$$\Delta v = -\eta \nabla C$$

where η is a small, positive parameter (known as learning rate).

From this follows:

$$\Delta C \approx -\eta \nabla C \cdot \nabla C = -\eta ||\nabla C||^2$$

Because $||\nabla C||^2 \ge 0$, this guarantees that $\Delta C \le 0$ i.e. C will always decrease, never increase, if we change v according to the prescription.

This gives us the equation of one step in a gradient descent:

$$v \to v' = v - \eta \nabla C$$

2.4 Using gradient descent in learning of neural networks

We are looking for weights ω_k and biases b_l which minimize the cost $C(\omega, b)$ Rewriting the gradient descent update rule in terms of these components:

$$\omega_k \to \omega_k' = \omega_k - \eta \frac{\delta C}{\delta \omega_k}$$

$$b_l o b_l' = b_l - \eta \frac{\delta C}{\delta b_l}$$

2.5 Stochastic gradient descent

Challenge:

C has the form of $C = \frac{1}{n} \sum_x C_x$ that is an average over costs $C_x \equiv \frac{||y(x) - a||^2}{2}$ for individual training examples. In practice to compute the gradient ∇C we need to compute the gradients ∇C_x separately for each training input, x, and then average them, $\nabla C = \frac{1}{n} \sum_x \nabla C_x$. Unfortunately, when the number of training inputs is very large this can take a long time, and learning thus occurs slowly.

Idea:

Estimate the gradient ∇C by computing ∇C_x for a small sample of randomly chosen training inputs. By averaging over this small sample it turns out that we can quickly get a good estimate of the true gradient ∇C , and this helps speed up gradient descent, and thus learning.

Main idea - randomly choose a small number of training inputs m (minibatch):

$$\frac{\sum_{j=1}^{m} \nabla C_{X_j}}{m} \approx \frac{\sum_{x} \nabla C_x}{n} = \nabla C$$

2.6 Test data

Learning and test database: http://yann.lecun.com/exdb/mnist/