NOTA: Para las preguntas que se harán en el oral se tendrán en cuenta TODOS los elementos que se suministran en este enunciado. Ejemplo: si hay alguna pregunta que se pueda contestar con la salida de LINDO, no será válido decir que para contestar habría que hacer las cuentas en la tabla de simplex.

Se dispone de un PL para determinar la producción mensual de X1, X2 y X3 a partir de R1, R2 y R3, maximizando beneficios. El producto X3, cuyo precio de venta es de \$2000, tiene una política de venta que exige una facturación mínima de \$200.000 por mes.

A continuación se muestran las ecuaciones iniciales y las tablas óptimas directa y dual de dicho Programa Lineal:

2 X1 + 3 X2 + 4 X3<= 600 [un R1/mes]

2 X1 + 2 X2 + 2 X3<= 450 [un R2/mes]

3 X1 + 2 X2 + 4 X3<= 750 [un R3/mes]

2 X3>= 200 [miles \$/mes]

Z = 500 X1 + 600 X2 + 500 X3 (máx) [\$/mes]

(500, 600 y 500 son los beneficios de cada uno de los productos)

 $\Gamma \cap \cap$

000

A continuación se indican las tablas óptimas del directo y del dual y la resolución del problema con el software LINDO, incluyendo el análisis de sensibilidad

			500	600	500				
Ck	Xk	Bk	A1	A2	А3	A4	A5	A6	A7
500	X1	100	1	3/2	0	1/2	0	0	1
500	Х3	100	0	0	1	0	0	0	-1/2
0	X5	50	0	-1	0	-1	1	0	-1
0	X6	50	0	-5/2	0	-3/2	0	1	-1
	Z =	100000	0	150	0	250	0	0	250

			600	450	750	-200			
Bk	Yk	Ck	A1	A2	A3	A4	A5	A6	A7
600	Y1	250	1	1	3/2	0	-1/2	0	0
-200	Y4	250	0	1	1	1	-1	0	1/2
0	Y6	150	0	-1	5/2	0	-3/2	1	0
	Z =	100000	0	-50	-50	0	-100	0	-100

OBJECTIVE FUNCTION VALUE

1) 100000.0

ARIABLE	VALUE	REDUCED COST
X1 1	100.00000	0.000000
X2	0.000000	150.000000
X3 1	00.00000	0.000000

ROW SLACK OR SURPLUS DUAL PRICES

R1)	0.000000	250.000000
R2)	50.000000	0.000000
R3)	50.000000	0.000000
FACMIN)	0.000000	-250.000000

NO. ITERATIONS= 3

RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES						
VARIABLE	CURRENT	ALLOWABLE	ALLOWABLE			
	COEF	INCREASE	DECREASE			
X1	500.000000	INFINITY	100.000000			
X2	600.000000	150.000000	INFINITY			
Х3	500.000000	500.000000	INFINITY			

RIGHTHAND SIDE RANGES

ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
R1	600.000000	33.333332	200.000000
R2	450.000000	INFINITY	50.000000
R3	750.000000	INFINITY	50.000000
FACMIN	200.000000	100.000000	50.000000