

oteins are part of a biological system

Episode in the series on protein bioinformatics

Function, interaction, localisation and systems of proteins

- interpreting sites in protein sequence and structure that are relevant to system role,
- connecting components in ways that biological evidence indicate, and
- analysing patterns of connectivity—biological networks and pathways

Example: p53 and its binding domains

Biological networks are not random

Networks are an abstraction but have properties

- Most analyses are focused on individual components and their properties—in spatial and temporal isolation
- Molecular function is often determined from properties of multiple components
- Biological processes are supported by the *interaction* and *abundance* of components
- How do we bring this information together?

Protein localisation signals (here signal peptides)

- Conservation (maybe spread in sequence but come together in structure)
- Many same-charged residues (electro-static interaction)
- Hydrophobic patch (unusual at surface; interaction by hydrophobic forces)
- Aromatic residues
- Mainly β sheets or long loops

Expression @ condition

	X ₁	X ₂		X _m
G ₁	+			+
G ₂	+	+		
G ₃		+		
G ₄	+	+		
G _n				

Co-expression

	G ₁	G ₂		G _n
G ₁	+			
G ₂	+	+		
G ₃		+	+	
G ₄	+	+		+
G_n				

Interaction

	G ₁	G ₂		G _n
G ₁				
G ₂	Yes			
G ₃				
G ₄		Yes		
G_n				

Creating a yeast cell cycle interactome

