Analisi Funzionale

Operatori compatti Teoria di Fredholm Il teorema spettrale

Prof. Alessio Martini

Politecnico di Torino a.a. 2023/2024

Operatori compatti

Def. Siano X, Y spazi normati.

- (a) Un operatore $T \in \mathcal{B}(X,Y)$ è detto *compatto* se, per ogni successione $(x_n)_{n \in \mathbb{N}}$ limitata in X, la successione $(Tx_n)_{n \in \mathbb{N}}$ ha una sottosuccessione convergente in Y.
- (b) Denotiamo con $\mathcal{K}(X,Y)$ l'insieme degli operatori compatti da X a Y. Scriviamo anche $\mathcal{K}(X)$ invece di $\mathcal{K}(X,X)$.
- **Prop.** Siano X, Y spazi normati, $T \in \mathcal{B}(X, Y)$. Sono equivalenti:
- (i) $\frac{T \text{ è un operatore compatto;}}{T(A)}$ è un sottoinsieme compatto di Y
- per ogni sottoinsieme limitato A di X; (iii) $\overline{T(B_X(0,1))}$ è un sottoinsieme compatto di Y.
- **Coroll.** Siano X, Y spazi normati e $T \in \mathcal{K}(X, Y)$. Allora $\overline{\text{Im } T}$ è separabile.
- **Prop.** Siano X, Y spazi normati. Sia $T \in \mathcal{B}(X, Y)$ un operatore di *rango finito*, cioè tale che dim Im $T < \infty$. Allora $T \in \mathcal{K}(X, Y)$.
- **Coroll.** Siano X, Y spazi normati. Se dim $X < \infty$ oppure dim $Y < \infty$, allora $\mathcal{K}(X, Y) = \mathcal{B}(X, Y)$.

Proprietà degli operatori compatti

Prop. Siano X, Y, Z spazi normati. Siano $T \in \mathcal{B}(X, Y)$ e $S \in \mathcal{B}(Y, Z)$. Se T è un operatore compatto, oppure S è un operatore compatto, allora ST è un operatore compatto.

Prop. Siano X, Y spazi normati con dim $X = \infty$.

- (i) $id_X \notin \mathcal{K}(X)$.
- (ii) Se $T \in \mathcal{B}(X, Y)$ è un isomorfismo, allora $T \notin \mathcal{K}(X, Y)$.

Teor. Siano X, Y spazi normati.

- (i) $\mathcal{K}(X,Y)$ è un sottospazio vettoriale di $\mathcal{B}(X,Y)$.
- (ii) Se Y è uno spazio di Banach, allora $\mathcal{K}(X,Y)$ è un sottoinsieme chiuso di $(\mathcal{B}(X,Y),\|\cdot\|_{op})$.

Coroll. Siano X uno spazio normato e Y uno spazio di Banach.

- (i) $(\mathcal{K}(X,Y), \|\cdot\|_{op})$ è uno spazio di Banach.
- (ii) Se $(T_n)_n$ è una successione in $\mathcal{B}(X,Y)$ di operatori di rango finito, e $T_n \to T$ in $\mathcal{B}(X,Y)$ per $n \to \infty$, allora $T \in \mathcal{K}(X,Y)$.

Esempi di operatori compatti e non compatti

- 1. Sia $S \in \mathcal{B}(\ell^2)$ l'operatore di shift verso sinistra. Allora né S né S^* sono operatori compatti su ℓ^2 .
- 2. Siano $\underline{w} \in \ell^{\infty}$ e $D_{\underline{w}} \in \mathcal{B}(\ell^2)$ l'operatore di moltiplicazione per w. Allora:
 - ▶ D_w ha rango finito se e solo se $\underline{w} \in c_{00}$;
 - ▶ D_w è compatto se e solo se $\underline{w} \in c_0$.
- 3. Siano $I, J \subseteq \mathbb{R}$ intervalli con la misura di Lebesgue. Siano $K \in L^2(I \times J)$ e $T_K \in \mathcal{B}(L^2(J), L^2(I))$ l'operatore integrale con nucleo integrale K. Allora $T_K \in \mathcal{K}(L^2(J), L^2(I))$. In particolare, se I = J, l'operatore identità $\mathrm{id}_{L^2(I)}$ non è un operatore integrale.
- 4. Siano $[a,b],[c,d]\subseteq\mathbb{R}$. Sia $K\in C([a,b]\times[c,d])$ e $T_K\in\mathcal{B}(C[c,d],C[a,b])$ l'operatore integrale con nucleo integrale K. Allora $T_K\in\mathcal{K}(C[c,d],C[a,b])$.

Operatori compatti in spazi di Hilbert

Teor. Siano X uno spazio normato e H uno spazio di Hilbert. Se $T \in \mathcal{K}(X,H)$, allora esiste una successione $(T_n)_{n \in \mathbb{N}}$ in $\mathcal{B}(X,H)$ di operatori di rango finito tale che $T_n \to T$ in $\mathcal{B}(X,H)$ per $n \to \infty$.

Oss. Dalla dimostrazione si vede che, se H è separabile, per ogni $T \in \mathcal{B}(X,H)$ esiste una successione $(T_n)_n$ di operatori di rango finito tali che $T_n x \to T x$ per ogni $x \in H$.

Se T non è compatto, tuttavia, non si ha $||T_n - T||_{op} \to 0$.

Coroll. Siano X uno spazio normato e H uno spazio di Hilbert. Sia $T \in \mathcal{B}(X, H)$. Sono equivalenti:

- (i) $T \in \mathcal{K}(X, H)$;
- (ii) esiste una successione $(T_n)_n$ in $\mathcal{B}(X,H)$ di operatori di rango finito tale che $T_n \to T$ in $\mathcal{B}(X,H)$.

Prop. Siano H_1, H_2 spazi di Hilbert. Sia $T \in \mathcal{B}(H_1, H_2)$.

- (i) T ha rango finito se e solo se T^* ha rango finito, e in tal caso dim Im $T = \dim \operatorname{Im}(T^*)$.
- (ii) $T \in \mathcal{K}(H_1, H_2)$ se e solo se $T^* \in \mathcal{K}(H_2, H_1)$.

Teoria di Fredholm

Nel seguito H è uno spazio di Hilbert su \mathbb{F} . Scriviamo $I = id_H$.

Oss. Per ogni $T \in \mathcal{B}(H)$ si ha dim Ker $T + \dim \operatorname{Im} T = \dim H$; in particolare, se dim $H < \infty$, si ha

$$T$$
 iniettivo $\iff T$ suriettivo $\iff T$ biiettivo.
Nel caso dim $H = \infty$, queste equivalenze in generale non valgono.

Def. Un operatore della forma I - K, dove $K \in \mathcal{K}(H)$, si dice perturbazione compatta dell'identità.

Teor. Sia $T \in \mathcal{B}(H)$ una perturbazione compatta dell'identità. Allora:

- (i) Im T è un sottospazio vettoriale chiuso di H. In particolare, si ha la decomposizione ortogonale $H = \operatorname{Ker}(T^*) \oplus \operatorname{Im} T$.
- (ii) dim Ker $T = \dim \operatorname{Ker}(T^*) < \infty$.

Coroll. Sia $T \in \mathcal{B}(H)$ una perturbazione compatta dell'identità. Allora T iniettivo $\iff T$ suriettivo $\iff T$ isomorfismo.

Coroll. (alternativa di Fredholm) Sia $T \in \mathcal{B}(H)$ una perturbazione compatta dell'identità. Allora, si verifica uno e uno solo dei casi seguenti:

(a) l'equazione Tx = y ha un'unica soluzione $x \in H$ per ogni dato $y \in H$; (b) l'equazione Tx = 0 ha almeno una soluzione non nulla $x \in H$.

Spettro di operatori compatti, autoaggiunti e normali

Nel seguito $H \neq \{0\}$ è uno spazio di Hilbert su \mathbb{F} . Scriviamo $I = \mathrm{id}_H$.

Prop. Sia $T \in \mathcal{K}(H)$.

- (i) Se dim $H = \infty$, allora $0 \in \sigma(T)$.
- (ii) $0 < \dim \operatorname{Ker}(T \lambda I) < \infty \text{ per ogni } \lambda \in \sigma(T) \setminus \{0\}.$
- (iii) $\sigma(T) \setminus \{0\} \subseteq \sigma_p(T)$.
- (iv) Per ogni t > 0, $\sharp \{\lambda \in \sigma(T) : |\lambda| \ge t\} < \infty$.
- (v) $\sigma(T)$ è finito o numerabile, e nel secondo caso 0 è l'unico punto di accumulazione di $\sigma(T)$ in \mathbb{F} .

Prop. Sia $T \in \mathcal{B}(H)$.

- (i) Se T è autoaggiunto, allora $||T||_{op} \in \sigma(T)$ oppure $-||T||_{op} \in \sigma(T)$.
- (ii) Supponiamo che $\mathbb{F} = \mathbb{C}$ e che T sia compatto e normale. Allora esiste $\mu \in \sigma(T)$ con $|\mu| = ||T||_{\text{op}}$.

Il teorema spettrale per operatori compatti normali

Prop. Sia $T \in \mathcal{K}(H)$ normale. Se $\mathbb{F} = \mathbb{R}$, assumiamo $T = T^*$. Allora $\operatorname{\mathsf{Ker}} T = \left(\bigcup_{\lambda \in \sigma(T) \setminus \{0\}} E_T(\lambda)\right)^{\perp}, \quad \text{ove } E_T(\lambda) := \operatorname{\mathsf{Ker}}(T - \lambda I).$

$$\lambda \in \sigma(T) \setminus \{0\}$$

Teor. (spettrale) Sia $T \in \mathcal{K}(H)$ normale. Se $\mathbb{F} = \mathbb{R}$, assumiamo $T = T^*$. Allora:

(i) $\sigma(T)$ è finito o numerabile, e nel secondo caso 0 è l'unico punto di

accumulazione di
$$\sigma(T)$$
.
ii) Per ogni $\lambda \in \sigma(T) \setminus \{0\}$, si ha $n_{\lambda} := \dim E_{T}(\lambda) < \infty$.

(ii) Per ogni $\lambda \in \sigma(T) \setminus \{0\}$, si ha $n_{\lambda} := \dim E_T(\lambda) < \infty$. Sia $B_{\lambda} = \{e_1^{\lambda}, \dots, e_{n_{\lambda}}^{\lambda}\}$ una b.o.n. di $E_{T}(\lambda)$ per ogni $\lambda \in \sigma(T) \setminus \{0\}$. Allora:

(iii)
$$B:=\bigcup_{\lambda\in\sigma(T)\backslash\{0\}}B_{\lambda}$$
 è una base ortonormale di (Ker T) $^{\perp}=\overline{\operatorname{Im} T}$.
(iv) Per ogni $x\in H$,
$$Tx=\sum_{\lambda\in\sigma(T)\backslash\{0\}}\lambda\sum_{j=1}^{n_{\lambda}}\langle x,e_{j}^{\lambda}\rangle e_{j}^{\lambda}=\sum_{\lambda\in\sigma(T)\backslash\{0\}}\lambda P_{E_{T}(\lambda)}x,$$

con convergenza incondizionata in H.

Coroll. Nelle stesse ipotesi del teorema, se H è separabile, allora H ha una base ortonormale fatta di autovettori di T.