Para la realización del examen se permite un único libro (sea cual sea, salvo el texto **PATTERN RECOGNITION AND MACHINE LEARNING - SOLUTIONS TO EXERCISES - TUTORS' EDITION** de M. Svensén y C.M. Bishop) sin anotaciones de ningún tipo. Si considera que el enunciado contiene algún erratum, hágalo constar en su respuesta y, **de confirmarse**, el equipo docente compensará el tiempo invertido por el estudiante. En los enunciados, asuma el empleo de la notación habitual del texto base.

- 1. Considere dos variables x e y con distribución de probabilidad conjunta p(x,y). Demuestre que:
 - $\blacksquare \mathbb{E}[x] = \mathbb{E}_y[\mathbb{E}_x[x|y]]$
 - $var[x] = \mathbb{E}_{y}[var_{x}[x|y]] + var_{y}[\mathbb{E}_{x}[x|y]]$

donde $\mathbb{E}_x[x|y]$ representa el valor esperado de x asumiendo la distribución de probabilidad condicionada p(x|y), y una notación equivalente se utiliza para la varianza condicional.

2. Deduzca la ecuación para (el logaritmo de) la evidencia de un modelo de regresión lineal con hiperparámetros α y β

$$\ln p(\boldsymbol{t}|\alpha,\beta) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - E(\boldsymbol{m}_N) - \frac{1}{2} \ln |\boldsymbol{A}| - \frac{N}{2} \ln (2\pi)$$

sabiendo que si $p(x) = \mathcal{N}(x|\mu, \Lambda^{-1})$ y $p(y|x) = \mathcal{N}(y|Ax + b, L^{-1})$, la distribución marginal viene dada por

$$p(\boldsymbol{y}) = \mathcal{N}(\boldsymbol{y}|\boldsymbol{A}\boldsymbol{\mu} + \boldsymbol{b}, \boldsymbol{L}^{-1} + \boldsymbol{A}\boldsymbol{\Lambda}^{-1}\boldsymbol{A}^T)$$

con la interpretación habitual de los símbolos implicados utilizada en el texto base.

3. Dado un conjunto de puntos $\{x_n\}$, podemos definir su envolvente convexa (convex hull) como el conjunto de todos los puntos x tales que

$$oldsymbol{x} = \sum\limits_{n} lpha_n oldsymbol{x}_n$$

donde $\alpha_n \geq 0$ y $\sum_n \alpha_n = 1$. Considere un segundo conjunto de puntos \boldsymbol{y}_n y su envolvente convexa. Por definición, los dos conjuntos de puntos $\{\boldsymbol{x}_n\}$ y $\{\boldsymbol{y}_n\}$ serán linealmente separables si existe un vector $\hat{\boldsymbol{w}}$ y un escalar w_0 tales que para todo \boldsymbol{x}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{x}_n + w_0 > 0$, y para todo \boldsymbol{y}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{y}_n + w_0 < 0$. Demuestre que si sus envolventes convexas tienen intersección no nula, entonces los dos conjuntos de puntos no pueden ser linealmente separables y vice versa: si son linealmente separables entonces sus envolventes convexas tienen intersección nula.