Bayesian Statistics

Wenjie Tu

Spring Semester 2022

- Base rate paradox
 - $P(B \mid A_1) \gg P(B \mid A_2) \implies P(A_1 \mid B) > P(A_2 \mid B)$
 - Often $P(B \mid A_1)$ large and $P(A_1)$ very small
- Challenges of Bayesian inference
 - Finding a good model (both prior and likelihood)
 - Calculating the posterior
 - Assessing the fit of the model
- Comparison between Bayesian and frequentist
 - Assumption (parameters)
 - Estimation (MLE, MCMC)
 - Testing (NHST, Bayes factors)
 - Bayesian learning (few observations, prior belief)
- Bayesian point estimates
 - A Bayesian point estimate summarizes the posterior distribution in a number. The following estimates for the location are often used:
 - * Posterior mean
 - * Posterior median
 - * Posterior mode
- Bayesian decision theory
 - Bayesian decision theory provides a unified approach for Bayesian point estimates
 - The posterior risk is the expected loss under the posterior:

$$\rho(T(x), \pi) = \mathbb{E}(L(T(X), \theta) \mid x) = \int_{\Theta} L(T(X), \theta) \pi(\theta \mid x) d\theta$$

- * It is obtained by integrating the loss function over the posterior of the parameter θ
- * It depends on the data x but not on the parameter θ
- Frequentist decision theory
 - The frequentist risk:

$$R(T, \theta) = \mathbb{E}_{\theta}(L(T(X), \theta)) = \int_{X} L(T(x), \theta) f(x \mid \theta) dx$$

- * It is obtained by integrating the loss function over the data x
- st It depends on the parameter heta but on the data
- How to minimize the frequentist risk?

- * Minimax
- * Minimize weighted risk
- * Admissibility
- Testing: Frequentist vs. Bayesian statistics
- Decisions based on Bayes factors
- p-values vs. posterior probability (confidence interval interpretation)
 - In frequentist statistics, the p-value is taken as a measure of evidence against the null hypothesis.
 - p-value is not the same as the posterior probability of the null hypothesis.
 - Posterior probabilities can be substantially larger than p-values.
 - p-values can be misleading measures of evidence against the null hypothesis.
 - Do not confuse $P(H_0 \text{ true} \mid \text{data})$ with $P(\text{data} \mid H_0 \text{ true})$
- Highest posterior density credible set and central credible interval
 - The equi-tailed credible interval has $\frac{\alpha}{2}$ and $1-\frac{1}{\alpha}$ quantiles of $\pi(\theta\mid x)$ at its endpoints.
 - * Easy to compute from MC and MCMC samples
 - * Nice invariance properties
 - The highest posterior density interval provides the shortest possible $(1-\alpha)$ credible interval.
 - * For symmetric distributions it coincides with equi-tailed credible interval
 - * Hard to compute
 - * Invariance property does not apply
- Frequentist asymptotics vs. Bayesian asymptotics
 - Frequentist asymptotics:

$$\begin{split} \widehat{\theta}_n &\overset{\mathsf{approx}}{\sim} \mathcal{N}\left(\theta_0, \frac{1}{n} I(\theta_0)^{-1}\right) \\ 2\left(\log L_n(\widehat{\theta}_n) - \log L_n(\theta_0)\right) \overset{d}{\to} \chi_p^2 \end{split}$$

- Bayesian asymptotics:

$$\theta \mid (x_1, \cdots, x_n) \overset{\mathsf{approx}}{\sim} \mathcal{N}\left(\widehat{\theta}_n, \frac{1}{n} I(\widehat{\theta}_n)^{-1}\right)$$

- * Interpretation: the influence of the prior disappears asymptotically and the posterior is concentrated in a $\sqrt{\frac{1}{n}}$ neighborhood of the MLE.
- Likelihood principle
 - Conditionality principle
 - * If an experiment for inference about a parameter θ is chosen independently from a collection of different possible experiments, then any experiment not chosen is irrelevant to the inference.
 - Sufficiency principle
 - * If there are two observations x and y such that T(x) = T(y) for a sufficient statistic T, then any conclusion about θ should be the same for x and y.
 - Likelihood principle
 - * If there are two different experiments for inference about the same parameter θ and if the outcomes x and y from the two experiments are such that the likelihood functions differ only by a multiplicative constant, then the inference should be the same.
 - Conclusions
 - * Frequentist tests can violate the likelihood principle
 - * Bayesian tests do not suffer from this drawback
 - * Point estimation by maximum likelihood does obey the likelihood principle

- Conjugate priors & sufficient statistics & exponential families?
 - If the posterior distribution $\pi(\theta \mid x)$ is in the same probability distribution family as the prior probability distribution $\pi(\theta)$, the prior and posterior are called conjugate distributions, and the prior is called a conjugate prior for the likelihood function $f(x \mid \theta)$.
 - Exponential family is the only class of distributions which allow for sufficient statistics whose dimension is independent of n.
- Non-informative priors (uniform prior)
 - Finite volume
 - Not invariant under reparametrizations
- Improper priors
 - A prior $\pi(\theta)$ is called an improper prior if

$$\int_{\Theta} \pi(\theta) d\theta = \infty$$

- * Depending on the likelihood, $\pi(\theta)f(x\mid\theta)$ can have both finite or infinite total mass if $\pi(\theta)$ has infinite mass
- Improper priors with proper posteriors can be justified as follows
 - * Approximate an improper prior by a sequence of proper priors π_k
 - * Show that the associated sequence of posteriors $\pi_k(\theta \mid x)$ converges to $\pi(\theta \mid x)$
- · Equivariance of Jeffreys prior
 - Jeffreys prior:

$$\pi(\theta) \propto \det(I(\theta))^{1/2}$$

where $I(\theta)$ is the Fisher information matrix

$$I(\theta) = -\mathbb{E}_{\theta} \left(\frac{\partial^2}{\partial \theta \partial \theta^T} \log f(X \mid \theta) \right)$$

- Conclusions:
 - * Jeffreys prior is usually a good choice for scalar parameters, but for vector parameters, it can have undesirable features.
 - * It often leads to improper priors.
 - * It violates the likelihood principle because the Fisher information contains an integral over X.
- Reference priors
 - A reference prior is a prior π for which the distance between the prior π and the posterior $\pi(\theta \mid x)$ is maximal. If the prior has a small influence on the posterior, the data x has the largest possible impact.
- Kullback-Leibler divergence

$$KL(f,g) = \int f(x) \log \frac{f(x)}{g(x)} dx$$

- In general $KL(f,g) \neq KL(g,f)$
- It satisfies $KL(f,g) \geq 0$ and KL(f,g) = 0 if and only if f(x) = g(x) for almost all x
- Problem with maximization of mutual information $I(X,\theta)$
- Bernardo's approach for nuisance parameters
- Connection between regularization and prior
- · Pros and cons of empirical Bayes method
 - Pros:

- * Do not need to compute the integral
- * Do not need to choose a hyperprior
- Cons:
 - * The data x is used twice
 - * In general, $\pi(\theta \mid x, \widehat{\xi}(x))$ underestimates uncertainty in $\pi(\theta \mid x)$

• g-prior

- The g-prior is a middle ground between being informative and completely non-informative. The idea is to introduce (possibly weak) prior information about β_{γ} but to bypass the prior correlation structure of β_{γ}
- Since for the MLE $\hat{\beta}_{\gamma}$, $Var(\hat{\beta}_{\gamma}) = (\mathbf{X}_{\gamma}^{\mathsf{T}}\mathbf{X}_{\gamma})^{-1}\hat{\sigma}^2$, the prior puts more mass in areas of the paramtere space where we expect the data to be more informative about β on average
- $-\ g>0$ is a hyperparameter which can be interpreted as being inversely proportional to the amount of information available in the prior relative to the data
 - * g = 1 gives the prior the same weight as the data
 - * When g is large, the prior is weakly informative. For $g \to \infty, \pi(\beta_{\gamma} \mid \sigma^2) \propto 1$
- Model selection and improper priors
- Bayesian model averaging
 - Making predictions under every model
 - Averaging all predictions according to the posterior probability of each model
- How to choose g
 - Bartlett's paradox
 - Information paradox
- Laplace approximation
 - Laplace approximation refers to approximating the posterior normalizing constant with Laplace's method.
- Bayes factor and Bayesian information criterion (BIC)
- Independent Monte Carlo
 - Quantile transformation (inverse transform sampling)
- Rejection sampling
 - Rejection sampling is a Monte Carlo algorithm to sample data from a sophisticated distribution with the help of a proxy distribution.
- Importance sampling
 - Importance sampling is based on a similar idea as rejection sampling. Instead of rejecting some variables, we weight them with an appropriate weighting function.
 - Rejection area vs. acceptance area
- Sampling importance resampling
- Markov chain Monte Carlo
 - MCMC provides a class of algorithms for systematic random sampling from high-dimensional probability distributions. It works by constructing a Markov chain that eventually converges to the target distribution (stationary or equilibrium)
 - * Irreducible (no matter where you start, the chain is always able to reach to other point in a finite number of iterations with positive probability)
 - * Aperiodic (no periodic pattern)
 - * Positive-recurrent (the expected return time to any state is finite)

- Due to the Markov property, samples are not independent anymore
- Independent Monte Carlo sampling is inefficient or even intractable for high-dimensional probabilistic models

Gibbs sampler

- The Gibbs sampler is a special case of the single-component Metropolis-Hastings algorithm, which uses
 the full conditional posterior distribution as the proposal distribution. For each time, the Gibbs sampler
 works with a univariate proposal distribution (all components except one are held fixed at their given
 values).
- In each step, random values are generated from univariate distributions (easy to compute).
- Require closed form of the full conditional posterior.
- Acceptance rate is equal to 1.
- Gibbs sampler does not require any tuning of proposal distribution.
- Gibbs sampler can be ineffective when the parameter space is complicated or the parameters are highly correlated (slow).

• Metropolis-Hastings algorithm

- Reversibility (the probability of transitioning from state A to state B is equal to the probability of transitioning from state B to state A)
- A distribution π is called reversible for the transition kernel P if

$$\int_{A} \pi(x)P(x,B)dx = \int_{B} \pi(x)P(x,A)dx \qquad \forall A, B$$
$$\pi(x)p(x,y) = \pi(y)p(y,x)$$

- Compact form of MH algorithm:

$$p(x,y) = q(x,y)a(x,y)$$

$$a(x,y) = \min\left(1, \frac{\pi(y)q(y,x)}{\pi(x)q(x,y)}\right)$$

- Random walk Metropolis algorithm

$$a(x,y) = \min\left(1, \frac{\pi(y)}{\pi(x)}\right)$$

Adaptive MCMC

- How to choose Σ such that the average acceptance rate after the burn-in phase is 23.4%
- Hamiltonian Monte Carlo
 - Gibbs sampler makes only small moves
 - RWM algorithm makes either small moves (with higher acceptance rate and autocorrelation) or big moves with lower acceptance rate (inefficient)
 - Hamiltonian Monte Carlo allows for making big moves that are still accepted with high probability
 - Hamiltonian dynamics: using a time-reversible and volume-preserving numerical integrator to porpose a move to a new point in the state space.
- Sequential Monte Carlo
- Approximate Bayesian computation