OmniAnomaly: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network

≡ Author	Ya Su et al.
read date	@2022년 6월 24일
Journal	KDD
@ PDF	[2019 KDD] Robust Anomaly Detection for Multivariate Time Series.pdf
■ Published Date	2019
≡ detail	
≡ keyword	Anomaly Detection MTS
ල link	https://dl.acm.org/doi/pdf/10.1145/3292500.3330672
• status	Finished!

Introduction

- 관측치가 정규 패턴과 다를수록 이상으로 간주될 가능성이 높음 → "2가지 해결필요 과제"
 - 1. MTS의 temporal dependency(GRU)과 stochastic(VAE)을 모두 고려
 - → 정상적인 패턴을 포착하기 위한 로버스트한 z representation을 학습
 - 2. 확률적 딥러닝 접근 방식(VAE) → 탐지된 개체-수준 이상에 대한 해석을 제공
- 기여점 정리
 - o a novel stochastic RNN for MTS AD (VAE를 사용해서 stochastic 이라고 하는 듯)
 - 산업 장치 모니터링에 필요한 입력 데이터의 로버스트한 표현을 학습하기 위해 확률 variables간 explicit temporal dependence 를 처리할 수 있는 최초의 MTS AD 알고리즘
 - 。 제안 모델 뿐만 아니라 다른 알고리즘과 함께 작동하는 확률 기반 MTS AD 알고리즘을 위한 최초의 이상 해석 접근 방식 제안 (해석 정확도는 최대 0.89)
 - 4가지 핵심 기술에서 큰 효과를 보여 줌
 - 1. GRU
 - 2. planar NF
 - 3. stochastic variable connection(확률적 변수 연결) by Linear Gaussian State Space Model (SSM)
 - 4. 자동 이상치 임계 값 선택을 위한 adjusted Peaks-Over-Threshold 방법

RELATED WORK

- 제안 모델
 - 시계열의 시간적 의존성과 확률성을 명시적으로 모델링할 수 있도록 VAE와 GRU를 결합하는 확률적 RNN
 - 확률 변수 연결과 같은 기술(SSM)을 적용하여 확률 변수 사이의 시간적 의존성을 모델링
 - 확률 변수는 과거 확률 변수로부터 더 많은 정보를 포착 & 입력 데이터를 더 잘 나타낼 수 있다

PRELIMINARIES(예비)

3.1 Problem Statement

ullet MTS: $x=\{x_1,x_2,\ldots x_N\}, x_t=[x_t^1,x_t^2,\ldots,x_t^M]$ $R^{M imes N}$ (M개의 변수, N개의 샘플)

Figure 1: An 8-metric 2-day-long multivariate time series snippet from the server machine dataset, with two anomalous regions highlighted in pink.

- M=8 values, N=48 hours인 데이터로 빨간색으로 칠해진 만큼이 time window 크기이고, 2개의 이상치 관측되는 샘플
- N = 2days * 24hours * 60 minutes (분단위로 변경), T = window size $\rightarrow x_{t-T:t}$

3.2 Overall Structure

- Fig 2. 설명
 - 직선 : 오프라인 훈련 / 점선 : 온라인 훈련 / 실행 단위 : 주 or 월마다
 - Data Preprocessing
 - : 전처리 과정에서 데이터는 표준화에 의해 변환된 다음 길이 T+1의 슬라이딩 윈도우를 통해 시퀀스로 분할 됨
 - Model training
 - : 전처리 된 데이터가 보내지며, MTS의 정규 패턴을 캡쳐하고, 각 관측치에 대한 이상 점수를 출력하는 모델을 학습함
 - Threshold Selection
 - : 이상치 점수는 해당 모듈에서 POT방법에 따라 자동적 임계값을 선택하는데 사용 됨
 - Online Detection
 - : 전처리 후 새로운 관측치가 나오면 이상치 점수를 가질 수 있게 input된다.
- ullet \mathbf{x}_t 의 이상치 점수가 이상치 임계치보다 낮은 경우, \mathbf{x}_t 는 이상치로 판별되고 그렇지 않으면 정상

3.3 Basics of GRU, VAE and Planar NF

- GRU
 - 。 매개변수가 LSTM보다적고 구조가 단순해서 데이터셋이 크지않은 경우 적합
 - 시계열에서 복잡한 시간 의존성을 포착 (complex temporal dependence)
- VAE
 - 。 계절성(빈도가 일정) 단별량 시계열 AD에 성공적으로 적용 되었었음(이전 연구)

- 명시적 확률적 모델링 가능
- \circ 계산어려운 사후(Posterior)확률분포 p(z|x)를 q(z|x)즉, 다루기 쉬운 일정 분포로 근사
 - $ullet q(z|x) = N(\mu_p(x), \sum_q(x))$ (가우시안 분포를 따름)
 - 구조
 - $q_{\phi}(\cdot)$ = q-net = 인코더(inference net)
 - $p_{\theta}(\cdot)$ = p-net = 디코더(generative net)
- planar NF (invertible mapping functions)
 - ㅇ 목적 : To learn the non-Gaussian posterior density $q_\phi(z_t|x_t)$

$$\mathbf{z}_{\mathbf{t}}^{\mathbf{K}} = f^{K}(f^{K-1}(...f^{1}(\mathbf{z}_{\mathbf{t}}^{\mathbf{0}}))), \text{ where } f^{k}(k = 1, 2...K)$$

$$(f^{k}(\mathbf{z}_{\mathbf{t}}^{\mathbf{k}-1}) = \mathbf{z}_{\mathbf{t}}^{\mathbf{k}-1} + \mathbf{u}tanh(\mathbf{w}^{\mathsf{T}}\mathbf{z}_{\mathbf{t}}^{\mathbf{k}-1} + \mathbf{b}) \quad \mathbf{u}, \mathbf{w} \text{ and } \mathbf{b} \text{ are the parameters}$$

 z_0 에 특정한 형태의 함수 f^k 들을 반복 적용하여 모델이 더욱 복잡한 형태의 잠재변수를 표현하게 끔 만들어 줌

- $\circ\;\;$ q-net에서 planar NF의 최종 output인 $\,z_t=z_t^K\,$ 을 확률변수로 사용
- 복잡하고 유연한 분포를 캡쳐해서 모델의 성능을 향상

DESIGN OF OMNIANOMALY

4.1 Network Architecture

- 1. GRU: x-space에 있는 MTS 관측치 사이 간 complex temporal dependence를 포착
- 2. VAE: 표현학습을 위해, x-space에 있는 관측치를 stochastic variables로(z-space) 맵핑
- 3. Linear Gaussian State Space Model (SSM) : 확률변수 연결
 - : latent space에서 확률 변수간의 temporal dependence을 명시적으로 모델링 함
 - → stochastic variables간의 연결, stochastic variable과 GRU hidden variable의 연결
- 4. planar NF: qnet의 stochastic variables의 복잡한 분포 표현에 도움 되기 위해 사용

- e_t, d_t : memory variables in GRU cells which are deterministic(일정한 결과)
- z_t : z-space variable which is stochastic(랜덤한 결과, 불확실성)
- edges: represent the dependence between variables

- (b) Detailed network architecture of *OmniAnomaly* at time *t*.
- qnet : x_t 를 input하여 z_t 생성
 - \circ t시점의 input data x_t 와 이전 qnet의 hidden state e_{t-1} 를 GRU 에 넣어서 e_t 산출
 - ullet e_t : x_t 와 이전 x-space 관측치 사이의 long-term complex temporal 포착
 - 。 이전 qnet에서 최종 산출 된 z_{t-1} 과 e_t 를 concat
 - $_ op$ dense layer h 에 넣어서 stochastic variable z_t 를 위한 μ_{z_t} , σ_{z_t} 를 산출
 - \circ Gaussian $N(\mu_{z_t},\sigma_{z_t}^2I)$ ightarrow z_t^0 를 planar NF를 사용하여 f^k 를 K번 변환
 - $_{
 ightarrow}$ non-Gaussian을 따르는 확률 잠재 변수 z_{t}^{K} = z_{t} 산출
- pnet : z_t 를 사용하여 x_t 와 같이 재구성한 x_t '를 얻고자 함
 - \circ linear Gaussian SSM를 사용하여 z-space variables를 연결하고 z-space variables에 temporally dependent을 만듬 ightarrow z_t

$$z_t = O_{\theta}(T_{\theta}z_{t-1} + v_t) + \epsilon_t$$

- lacksquare $O_{ heta}$, $T_{ heta}$ = transition, observation matrices
- v_t, ϵ_t = transition, observation noises
- $_{
 ightarrow}$ qnet의 z_{t-1} 를 활용하여 z_{t} 를 만들어냄

왜 z_t 를 새로 만들었을까? z_{t-1} 에 dependence하게 하려고!

- 확률 변수 연결(SSM)을 적용하여 확률 변수 사이의 시간적 의존성을 모델링
- 확률 변수는 과거 확률 변수로부터 더 많은 정보를 포착 & 입력 데이터를 더 잘 나타낼 수 있다
- \circ 생성된 z_t 와 이전 디코더의 hidden state d_{t-1} 를 GRU에 넣어서 현재 시점의 d_t 산출
- \circ dense layer h layer에 넣어서 각각 $\; \mu_{x_t}, \, \sigma_{x_t}$ 를 산출
 - $_ op$ $N(\mu_{z_t},\sigma_{z_t}^2I)$ 가우시안 분포를 따르는 x' $_t$ 를 복원 함
- 이상치라면 x_t 와 x_t 는 크게 다름 x_t 의 reconstruction 확률 기반으로 이상치 탐지

4.2 Offline Model Training

• 훈련은 offline에서 하며, 이때 GRU의 네트워크 파라미터를 업데이트한다.

- qnet and pnet은 파라미터를 조정하여 동시에 훈련됨
- Object Function : VAE에서 사용하는 ELBO objective Function 최적화

$$\widetilde{\mathcal{L}}(\mathbf{x}_{t-T:t}) \approx \frac{1}{L} \sum_{l=1}^{L} [\log(p_{\theta}(\mathbf{x}_{t-T:t} | \mathbf{z}_{t-T:t}^{(l)})) + \log(p_{\theta}(\mathbf{z}_{t-T:t}^{(l)})) - \log(q_{\phi}(\mathbf{z}_{t-T:t}^{(l)} | \mathbf{x}_{t-T:t}))]$$
(5)

- 1st term : Negative reconstrcution error (pnet 디코더)
- 2nd + 3rd term = regularization
 - o 2nd term : Linear Gaussian SSM을 통해 계산 (pnet 디코더)
 - o 3rd term: true posterior distribution 추정을 위한 loss term (qnet 인코더)

4.3 Online Detection

• 정상인지 이상인지를 확인하는 단계

$$S_t = \log(p_{\theta}(\mathbf{x_t}|\mathbf{z_{t-T:t}}))$$

- S_t = anomaly score of x_t
 - ↑(잘 재구성) = 정상과 가까움 (임계치 보다 높은 경우)
 - ↓(잘 재구성 못함) = 이상에 가까움 (임계치 보다 낮은 경우)

4.4 Automatic Threshold Selection

자동으로 임계치를 정하는 방법 : 되게 복잡한 통계적 기법 (별도 논문 多)

$${S_1, S_2, ..., S_{N'}}$$

: Anomaly Score S를 EVT를 통해 th_F 를 설정

- Extreme Value Theory (EVT) : 극한값의 법칙을 찾는 것이 목표인 통계 이론
 - 。 이상치의 점수가 S_t 의 분포의 꼬리 부분에 위치할 것이라는 점을 기반으로 활용
- Peaks-Over-Threshold (POT): EVT의 한 부분. 임계점(threshold)을 초과하는 값을 극단치로 정의
 - 。 모수를 사용하여 GPD(파레토 분포)에 의한 추정 통해 확률 분포의 꼬리 부분을 맞춤
 - GPD function

$$\bar{F}(s) = P(th - S > s | S < th) \sim (1 + \frac{\gamma s}{\beta})^{-\frac{1}{\gamma}}$$

: (th-S > s | th 보다 S가 낮을 때) 확률 ~

- lacksquare th = 초기 설정 임계 값
- ullet th-S= 임계값 보다 낮은 부분 (낮은 분수 like 7% 이하) ullet 조절 필요
- γ & β = GPD의 shape & scale 파라미터
 - $\hat{\gamma},\hat{eta}$: Maximum Likelihood Estimation (MLE)로 추정
- Final threshold

$$th_F \simeq th - \frac{\hat{\beta}}{\hat{\gamma}} \left(\left(\frac{qN'}{N'_{th}} \right)^{-\hat{\gamma}} - 1 \right)$$

ullet q = S < th 를 관측하기 위한 원하는 확률 (like 10^{-4}) ightarrow 조절 필요

- N' = 관측치 수
- $lacksymbol{\bullet}$ N'_{th} = $S_i(S_i < th$ 를 만족하는)의 갯수

4.5 Anomaly Interpretation

$$S_t = \sum_{i=1}^{M} S_t^i$$
, where $S_t^i = \log(p_{\theta}(x_t^i | \mathbf{z_{t-T:t}})$

- 앞에서 계산했던 anomaly score는 위와 같이 표현할 수 있다.
- S_t^i = Anomaly score of x_t^i ($x_{t-T:t-1}$ 로 부터의 rich information을 갖고 있음)
- ullet i부터 M까지의 S_t^i 를 오름 차순으로 sorting ullet list AS_t 를 얻음
 - \circ 작은 S_t^i = 높은 AS_t 순위 = x_t^i 가 x_t 에 높은 기여

5 EVALUATION

5.1 Datasets and Performance Metrics

- three datasets
 - SMD (Server Machine Dataset)
 - SMAP (Soil Moisture Active Passive satellite) and MSL (Mars)
 - Science Laboratory rover)
- Performance Metrics
 - o Precision, Recall, F1-Score (denoted as F1)

5.2 Results and Analysis

Methods	SMAP			MSL			SMD			Total		
	P (Precision)	R (Recall)	F1	P	R	F1	P	R	F1	P	R	F1
LSTM-NDT [6]	0.8965	0.8846	0.8905	0.5934	0.5374	0.5640	0.5684	0.6438	0.6037	0.7598	0.7794	0.7694
DAGMM [27]	0.5845	0.9058	0.7105	0.5412	0.9934	0.7007	0.5951	0.8782	0.7094	0.5835	0.9042	0.7093
LSTM-VAE [16]	0.8551	0.6366	0.7298	0.5257	0.9546	0.6780	0.7922	0.7075	0.7842	0.7782	0.7075	0.7411
OmniAnomaly	0.7416	0.9776	0.8434	0.8867	0.9117	0.8989	0.8334	0.9449	0.8857	0.7797	0.9586	0.8599

• 제안 모델이 대체적으로 가장 높은 점수를 보인다

- Ablation Study : C1~ C4
 - 。 (1) GRU, (2) z-공간 변수 연결, (3) 평면 NF, (4) 자동 이상 임계값 선택을 위한 POT 방법
 - 。 C2 SSM 사용이 많은 기여를 하고 있음을 볼 수 있다.

코드 실행 결과

https://github.com/thuml/Anomaly-Transformer

버전 맞추기 넘 힘들었따.... python down해야 함

https://github.com/carrtesy/TSAD/blob/master/models/OmniAnomaly.py

→ 해당 코드로 공부하는게 좀 더 직관적

모델을 살펴 본 결과 POT 부분은 이해 하기 정말 어려운 코드로 만들어져 있다. qnet & pnet은 pytorch인 2번째 코드로는 간략하게 설명되어 있음