Week 4 Homework 1: KNN + Confusion Matrix + Iris Data set + Colab

Introduction:

In the field of Machine Learning, the performance of a model is crucial. To assess the performance of a model, there are several metrics that are used. One of these important metrics is the Confusion Matrix, which is used to evaluate the accuracy of a model. The Confusion Matrix is a matrix with size n x n, where n represents the number of class labels in a given problem. The purpose of the Confusion Matrix is to provide a clear picture of the model's performance in a tabular format.

	Predicted=ill	Predicted=well	
Actual=ill	True-Positive (TP) • Correctly diagnosing an ill patient as ill.	False-Negative (FN) • Incorrectly diagnosing an ill patient as well. • False Negatives may be way worse than False Positives.	
Actual=well	False-Positive (FP) • Incorrectly diagnosing a well patient as ill. • Commonly called a "false alarm"	True-Negative (TN) • Correctly diagnosing an well patient as well.	

Implementation on Google Colab:

https://colab.research.google.com/drive/1eshNs7h3B7Hd9EQcACsN0c3CiiX5Sh3u?usp=sharing

```
import pandas as pd
    import numpy as np
    import sklearn
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn.preprocessing import StandardScaler
    from sklearn import metrics
    from sklearn.metrics import *
    from sklearn.model_selection import *
    from sklearn.model_selection import train_test_split
    from sklearn.neighbors import KNeighborsClassifier
   from google.colab import files
    uploaded = files.upload()
```

- - Choose Files | iris data.csv iris_data.csv(text/csv) - 4811 bytes, last modified: 2/14/2023 - 100% done Saving iris_data.csv to iris_data (1).csv

```
[8] iris = pd.read_csv('iris_data.csv')
    iris.shape
    col_list = iris.columns
    print(type(col_list))
    print(col_list[:])
    iris['Species'].value_counts()
    iris_data = iris.iloc[:,1:5] # select all the rows and col indices 1 to 4
    iris_lables = iris.iloc[:,5:] # select all the rows and 5th cloumn
    iris_data.shape
    iris_data.head(2)
```

Output:

```
<u>□</u>→ 5
  (1, 0.9400000000000000)
  (3, 0.94000000000000000)
  (5, 0.9400000000000000)
  (7, 0.94000000000000001)
  (9, 0.9400000000000000)
    0.98
    0.96
   cv_score
    0.94
    0.92
    0.90
                     k-value
  0.98
  0.96
```

1.00	1.00	1.00	19
0.88	1.00	0.94	15
1.00	0.88	0.93	16
		0.96	50
0.96	0.96	0.96	50
0.96	0.96	0.96	50
	0.88 1.00	0.88 1.00 1.00 0.88 0.96 0.96	0.88 1.00 0.94 1.00 0.88 0.93 0.96 0.96 0.96