World Bank Indicators -Predicting The Gini Index

Team 5 - CSSE-415, Spring 2024-2025

Abdullah Islam, Agnay Srivastava, Parth Sundaram, Steven Johnson

What is the Gini Index?

- It is a measure of income inequality:
 - 0 = perfect equality
 - 100 = perfect inequality
- Ratio of area between the Lorenz Curve & equality line
- Highest & Lowest
 South Africa at 63
 Slovakia at 23.2

Our Kaggle Dataset: **A Summary**

- Annual WB data since 1960
- 274 economies
- 50+ socio-economic, environmental, and institutional metrics
- Size: ~ 17,000 x 50.
- The main operations we perform are

 - A. CleaningB. ImputationC. Time-Series Analysis

4 Core Data Cleaning Steps

- 1. We filter years **2002 2020**
- Drop 15 Sparse, Irrelevant & Discontinued Features
- 3. Drop **countries** ≥ **90** % **empty** values
- 4. Finally, drop countries with **no Gini-Index**
- Before: 274 Economies → After: 163

Before vs After Cleaning [1/3]:

Before vs After Cleaning [3/3]: Top 20 Countries With the Most Missing Data

Mean Imputation Results

- Dataset Size: 3,097 rows × 36 columns
- KNN:
 - K optimization
- MICE:
 - ⊗ Complex
- Miss-Forest:
 - ⊗ Slow, Poor Interpretability
- Per-Country Mean:
 - ✓ Simple & Interpretable
 - **⊗** Doesn't use other features
- Two-Stage Strategy
 - Country-Mean Fill
 - Global Fallback

Time Series Feature Engineering

- Set 1: Year t
 - All features from the year before the Gini value
 - Total of 32 features
- Set 2: Year-t + Rolling Stats
 - All features plus 5-year rolling mean & rolling STD
 - Total of 32*3 = **96** features
- Set 3: Five-Year Lags
 - Which keeps all the raw indicators for t 1, t 2, t 3, t 4.
 - Total of 32*5 = **160** features

Recap – The Big Picture So Far [1/2]

- 1. Cleaning: We removed features and countries with high degrees of missingness.
- 2. Imputation: Filled in what was still missing
- **3. Time-Series:** Used data from past years for new feature columns and generated 3 datasets for each model to use.
- Our philosophy was to pick interpretability over complex procedures that promised accuracy.
 - **⊗** NO Polynomial Features, PCA

Recap – Dataset Numbers [2/2]

- Using each of the 3 data sets, we create 3 train/test sets.
 - 80/20 Split by country.
- Y Train / Test stay the same, as only features change.

Feature Set		X_train (rows × cols)	X_test (rows × cols)	
1:	1 Year lag	813 × 32	216 × 32	
2:	Year 1 + Rolling stats	813 × 96	216 × 96	
3:	5 Year lags	813 × 160	216 × 160	

Model	Data Set 1 (year 1) R ² %	Data Set 2 (year 1 + rolling mean + std) R ² %	Data Set 3 (year 1-5) R ² %	Avg R ² %
Simple Bias	-2.2	-2.2	-2.2	-2.2
Linear Regression	39.9	<mark>53.4</mark>	43.0	45.1
Linear + Forward Feature Selection	40.0	<mark>53.1</mark>	44.2	45.8
Ridge Regression	34.7	42.5	38.4	38.5
Lasso Regression	35.6	51.1	<mark>33.3</mark>	40.0
Random Forest	<mark>54.3</mark>	49.3	49.7	51.1
Gradient Boosted Trees	50.6	<mark>53.6</mark>	50.4	51.5
K-Nearest Neighbors	45.4	43.9	45.4	44.6
Avg R ² %	42.9	<mark>49.6</mark>	43.5	

Interpretation [1/3]: Best Dataset Type:

- ightharpoonup Set 1 **Year-t** only (R² \approx 43 %)
 - Inadequate temporal analysis -> high bias
- ightharpoonup Set 3 **Five-Year** Lags (R² \approx 44 %)
 - Collinearity and imputation noise -> high variance
- > Set 2 Year-t + Rolling Stats ($R^2 \approx 50 \%$)
 - Captures temporal trends, avoiding noise

	Set 1	Set 2	Set 3	Avg	
Model	R ² %	R ² %	R ² %	R ²	
SBR	-2.2	-2.2	-2.2	-2.2	
LR	39.9	53.4	43.0	45.1	
LRFS	40.0	40.0 <mark>53.1</mark> 44		45.8	
Ridge	34.7	42.5	38.4	38.5	
Lasso	35.6	51.1	33.3	40.0	
RF	<mark>54.3</mark>	49.3	49.7	51.1	
GBT	50.6 <mark>53.6</mark> 5		50.4	51.5	
KNN	45.4	43.9	45.4	44.6	
Avg R ²	42.9	<mark>49.6</mark>	43.5		

Interpretation [2/3]: Best Model Types

Random Forests

- Best Single R² -> on Set 1
- Performance stayed in the high 40% to low 50% range across datasets

Why did they outperform the other models?

- Non-linear relationships
- Built-in feature selection
- Robust to noise

Gradient Boosted Trees

- Best R² on Set 2 (best performing dataset)
- Performance stayed at a 50-54% R²range across datasets

	Set 1	Set 2	Set 3	Avg
Model	R ² %	R ² %	R ² %	R ²
RF	54.3	49.3	49.7	51.1
GBT	50.6	53.6	50.4	51.5

Gradient Boosted Trees -> best model even though Random Forests had the highest R² of any model on Set 1!

Interpretation [3/3]: Best Features from our Top Models

- Intentional Homicides (per 100,000 people)
 - Interpretation: Higher income inequality -> instability -> violence
- Forest Land (% of land area)
 - Interpretation: Less urbanization -> more dispersed, rural populations -> less ability to regulate those with power -> higher income inequality
- Access to Electricity (% of population)
 - Interpretation: electricity -> urbanization and machinery -> wider array of jobs-> lower income inequality
- Death Rate (per 1,000 people)
 - Unexpected Insight: Negative correlation

Best Model - GBT on Set 2

Literature Review: Project Takeaways

❖ From Li et al. (2022)¹

- They developed a two-stage ensemble (picking the best of many models) to predict state fragility using 100+ World Bank Development Indicators (WDI).
- We loosely adopt their concept, comparing several models.
- We also found that RFs and GBTs work the best.

❖ From Koç & Akın (2021)²

- They compared linear vs. tree-based methods for nextyear Gini forecasting on OECD nations, using median imputation.
- Building on their analysis, we add more features, test more countries and imputers, and adopt their focus on next-year Gini forecasting.
- Similarly, we found that RF outperformed linear baselines.
- 1. X. Li, A. Vidmer, H. Liao, and K. Lu, "Data-Driven State Fragility Index Measurement Through Classification Methods," *Frontiers in Physics*, vol. 10, Art. no. 830774, Feb. 2022, https://doi.org/10.3389/fphy.2022.830774
- 2. T. Koç and P. Akın, "Comparison of Machine Learning Methods in Prediction of the Gini Coefficient for OECD Countries," *Data Science and Applications*, vol. 4, no. 1, pp. 16–20, 2021. [Online]. Available: https://dergipark.org.tr/en/pub/datasci/issue/90860/1662110.

Obstacles We Faced Throughout

Data Leakage in Cross-Validation:

- ⊗ Standard K-Fold mixes country-year rows.
- ✓ Switched to GroupKFold by country preventing inflated R².

Time-Series Feature Engineering

- Second Few easy, accurate and interpretable methods.
- ✓ Compared 2 strategies against our n-1 year baseline.

Excessive Missingness

- ⊗ Several empty series, risking biased imputations.
- ✓ Dropped features and countries with large gaps.
- ✓ Applied interpretable

Model Demo! Pick a Country, Any Country.

Strengths & Weaknesses of Best Model GBT + Data Set 2

Strengths

- Top accuracy of all models
- Captures non-linear + interaction effects automatically.
- Relies on widely reported metrics (electricity access, forest %, pop density, etc.) → no new surveys needed.
- Trained with grouped CV → proven to generalise to unseen countries.

Weaknesses

- Less interpretable feature importance shows weight, not direction.
- 2nd-ranked variable *intentional homicides* (35 % gaps)
- Key policy levers (tax, education spend) absent from top-10 → model may lean on proxies.
- Only small gain over simpler linear + rolling $(\approx 3 \text{ pp R}^2)$ for higher complexity.

Conclusion & Next Steps

- Overall found that trees shine on lagged data.
- Surprisingly, engineered simplicity is a close second (linear regressors)
- Core Drivers of Inequality: Homicide Rates, Forest Land, Death Rates
- Next Steps:
 - Implement Advanced Imputation.
 - Engineer Domain Driven Ratios (like GDP / pop)
 - Explore Dimensionality Reduction to reduce noise.
 - Check Model Fairness across income tiers and countries
 - Explore Bayesian Modelling

Thank You!

Model	Data Set 1 (year 1)		Data Set 2 (year 1 + rolling mean + std)		Data Set 3 (year 1-5)		Avg R ² %
	R ² %	Hyper parameters	R ² %	Hyper parameters	R ² %	Hyper parameters	
Simple	-2.2		-2.2		-2.2		-2.2
Linear Regression	39.9	N/A	<mark>53.4</mark>	N/A	43.0	N/A	45.1
Linear + Feature Selection	40.0	N/A	53.1	N/A	44.2	N/A	45.8
Ridge Regression	34.7	α = 100	42.5	α = 1000	38.4	α = 1000	38.5
Lasso Regression	35.6	α = 0.01	51.1	α = 0.1	33.3	α = 1	40.0
Random Forest	<mark>54.3</mark>	n_estimators = 50, max_depth = 14	49.3	n_estimators =120 max_depth = 15	49.7	n_estimators =260 max_depth = 14	51.1
Gradient Boosted Trees	50.6	n_estimators = 20 lr = 0.16 max_depth = 3	53.6	n_estimators = 50 lr = 0.06 max_depth = 3	50.4	n_estimators = 90 lr = 0.16 max_depth = 3	<mark>51.5</mark>
K-Nearest Neighbors	45.4	k = 42 P = 1 'distance'	43.9	k = 42 P = 1 'distance'	45.4	k = 39 P = 1 'distance'	44.6
Avg R ² %	42.9		<mark>49.6</mark>		43.5		