Тема 4. Определение синуса, косинуса, тангенса и котангенса в прямоугольном треугольнике.

Рассмотрим прямоугольный треугольник АВС (рисунок 4.1). «Для острого угла α найдем прилежащий к нему катет и противолежащий. Так, α хатет α этого треугольника является α Ри противолежащим углу α , а катет α — прилежащим к углу α » [3].

Из школьного курса геометрии вам известно, что:

- «1. *Синусом* острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
- 2. *Косинусом* острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
- 3. *Тангенсом* острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему» [1].

Значит,
$$\sin \alpha = \frac{a}{c}$$
, $\cos \alpha = \frac{b}{c}$, $tg \alpha = \frac{a}{b} = \frac{\sin x}{\cos x}$, $ctg \alpha = \frac{b}{a} = \frac{\cos x}{\sin x}$.
Кроме того, $ctg \alpha = \frac{1}{tg \alpha}$.

При решении задач часто используют также и другие соотношения между элементами прямоугольного треугольника (Таблица 4.1):

Таблица 4.1 – Основные соотношения, связанные с углами прямоугольного треугольника

$sin^2 \alpha + cos^2 \alpha = 1$ — основное тригонометрическое тождество		
$1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$	$1 + \operatorname{ct} g^2 \alpha = \frac{1}{\sin^2 \alpha}$	
$\alpha + \beta = 90^{\circ}$	$\cos lpha = \sin eta$	
$\sin \alpha = \cos \beta$	$tg \ \alpha = ctg \ \beta$	

Кроме того, при решении задач на отношения между сторонами и углами в прямоугольном треугольнике применяют следующие *утверждения*.

- «сумма углов любого треугольника равна 180°;
- сумма двух острых углов прямоугольного треугольника равна 90°;
- квадрат гипотенузы равен сумме квадратов катетов (*теорема Пифагора*);
 - катет, лежащий напротив угла в 30°, равен половине гипотенузы;
- высота прямоугольного треугольника (рисунок 4.2), проведенная из вершины прямого угла, есть среднее пропорциональное для отрезков, на которые делится гипотенуза этой высотой, то есть: $h_c^2 = b_c \cdot a_c$;
- катет прямоугольного треугольника (рисунок 4.2) есть среднее пропорциональное для гипотенузы и отрезка гипотенузы, заключенного между катетом и высотой, проведенной из вершины прямого угла, то есть: $a^2=c\cdot a_c$; $b^2=c\cdot b_c$ » [1].

В таблице 4.2 приведены значений $\sin \alpha$, $\cos \alpha$ и tg α для углов α , равных 30° . 45° и 60° .

Таблица 4.2 – Значения синуса, косинуса и тангенса для углов 30°, 45° и 60°

α	30°	45°	60°
sin α	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$

cosα	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tg α	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

Пример 1. «Найдите синус, косинус, тангенс и котангенс углов треугольника ABC с прямым углом C, если BC = 12, AC = 9» [1].

Решение. По теореме Пифагора имеем: ${\sf AB} = \sqrt{12^2 + 9^2} \ = 15.$

По определениям синуса, косинуса и тангенса острого угла в прямоугольном треугольнике получим:

$$\sin \alpha = \frac{BC}{AB} = \frac{12}{15} = \frac{4}{5}, \quad \cos \alpha = \frac{AC}{AB} = \frac{9}{15} = \frac{3}{5}, \quad tg \ \alpha = \frac{BC}{AC} = \frac{12}{9} = \frac{4}{3}$$

$$\sin \beta = \frac{AC}{AB} = \frac{9}{15} = \frac{3}{5}, \quad \cos \beta = \frac{BC}{AB} = \frac{12}{15} = \frac{4}{5}, \quad tg \ \beta = \frac{AC}{BC} = \frac{9}{12} = \frac{3}{4}$$

$$ctg \ \alpha = \frac{AC}{BC} = \frac{9}{12} = \frac{3}{4}, \quad ctg \ \beta = \frac{BC}{AC} = \frac{12}{9} = \frac{4}{3}.$$

В соответствии с таблицей 4.1 действительно имеем, что:

$$\cos \alpha = \sin \beta = \frac{3}{5}, \quad \sin \alpha = \cos \beta = \frac{4}{5},$$

$$tg \ \alpha = ctg \ \beta = \frac{4}{3}, \quad tg \ \beta = ctg \ \alpha = \frac{3}{4}.$$

Otbet: $\cos \alpha = \sin \beta = \frac{3}{5}$, $\sin \alpha = \cos \beta = \frac{4}{5}$, $tg \alpha = ctg \beta = \frac{4}{3}$, $tg \beta = ctg \alpha = \frac{3}{4}$.

Пример 2. В треугольнике ABC (рисунок 4.4): \angle C = 90°, $\sin \beta = \frac{7}{25}$. Найдите AB, если BC = 4,8.

Решение. Так как косинус острого угла в прямоугольном треугольнике равен отношению прилежащего к этому углу катета к гипотенузе, то $C\cos\beta=\frac{BC}{AB}=\frac{4,8}{AB}\Rightarrow AB=\frac{4,8}{\cos\beta}$. С помощью основного тригонометрического тождества: $\sin^2\beta+\cos^2\beta=$

$$1$$
 найдем $\cos \beta = \sqrt{1-\sin^2 \beta} = \sqrt{1-\left(\frac{7}{25}\right)^2} = \sqrt{1-\frac{49}{625}} = = \sqrt{\frac{576}{625}} = \frac{24}{25} = 0,96.$ Тогда $AB = \frac{4,8}{\cos \beta} = \frac{4,8}{0,96} = 5$. Ответ: $AB = 5$.

Пример 3. В треугольнике ABC (рисунок 4.5) \angle C = 90°. Известно, что \angle B = 60°, AB = 18. Найдите AC.

Решение. Так как сумма двух острых углов прямоугольного треугольника равна 90° , то \angle A = $90^{\circ} - 60^{\circ} = 30^{\circ}$. Найдем BC: BC = $\frac{18}{2} ==$ 9, так как катет, лежащий напротив угла в 30° , равен доловине гипотенузы. По теореме Пифагора найдем

катет AC: AC =
$$\sqrt{18^2 - 9^2} = \sqrt{(18 + 9) \cdot (18 - 9)} = \sqrt{27 \cdot 9} = 9\sqrt{3}$$
.

Ответ: AC = $9\sqrt{3}$.

Пример 4. В треугольнике ABC (рисунок 4.6) \angle C = 90°, CD — высота, Известно, что \angle ACD = 30°, AC = 6. Найдите BC.

С В Рисунок 4.6

Решение. Рассмотрим прямоугольный треугольник ADC, AD = 3, так как катет, лежащий напротив угла в 30° , равен половине гипотенузы. По теореме Пифагора найдем высоту CD: CD = $= \sqrt{6^2 - 3^2} = \sqrt{36 - 9} = \sqrt{27} = 3\sqrt{3}.$ Рассмотрим треугольник BDC, \angle C = 90° , значит \angle CBD =

прямоугольный треугольник BDC, \angle C = 90°, значит \angle CBD = $90^{\circ} - 60^{\circ} = 30^{\circ}$ Имеем: $\sin 30^{\circ} = \frac{\text{CD}}{\text{CB}} = \frac{3\sqrt{3}}{\text{CB}}$. Тогда BC = $\frac{3\sqrt{3}}{\sin 30^{\circ}} = \frac{3\sqrt{3}}{0.5} = 6\sqrt{3}$.

Ответ: BC = $6\sqrt{3}$.

Пример 5. В треугольнике ABC (рисунок 4.7) \angle C = 90°, CD − высота, Известно, что AC = BC, CD = 12. Найдите BC.

Решение. Так как в прямоугольном треугольнике ABC AC = BC, то он равнобедренный, \angle A = \angle B = 45°.

Рассмотрим прямоугольный треугольник CDB. Имеем:

$$\sin 45^\circ = \frac{\text{CD}}{\text{CB}} = \frac{12}{\text{CB}}$$
. Тогда BC = $\frac{12}{\sin 45^\circ} = \frac{12}{\frac{\sqrt{2}}{2}} = 12\sqrt{2}$.

Ответ: BC = $12\sqrt{2}$.

 $\frac{13}{1+0.04}$ =12,5.

Пример 6. В прямоугольном треугольнике ABC (рисунок 4.8) AB = 13, tg B = $\frac{1}{5}$. Найти BD.

Решение. Первый способ. Известно, что

Рисунок 4.8 $tg \ B = \frac{cD}{BD} = \frac{1}{5}$. Рассмотрим прямоугольный треугольник CDB. $cos \ B = \frac{BD}{CB}$. Тогда $BD = BC \cdot cos \ B$. Рассмотрим прямоугольный треугольник ABC, в котором: $cos \ B = \frac{BC}{AB}$. Значит $BC = AB \cdot cos \ B$. Имеем: $BD = BC \cdot cos \ B = (AB \cdot cos \ B) \cdot cos \ B = AB \cdot cos^2 \ B$. Из тождества $1 + tg^2 \ \alpha = \frac{1}{\cos^2 \alpha}$ найдем: $cos^2 \ B = \frac{1}{1 + tg^2 \ B}$, тогда $BD = AB \cdot cos^2 \ B = \frac{AB}{1 + tg^2 \ B}$

Второй способ. Пусть AC = x, тогда BC = 5x. По теореме Пифагора: $AB^2 = AC^2 + BC^2$, тогда $13^2 = x^2 + (5x)^2$. Получим: $169 = 26x^2$. AC = $x = \frac{13}{\sqrt{26}} = \frac{13}{\sqrt{2\cdot 13}} = \frac{13\sqrt{13}}{\sqrt{2\cdot 13}} = \sqrt{\frac{13}{2}}$, BC = $5x = 5\sqrt{\frac{13}{2}}$. Так как $BC^2 = AB \cdot BD$, то $\left(5\sqrt{\frac{13}{2}}\right)^2 = 13 \cdot BD$. Следовательно BD = $\frac{25\cdot 13}{2} \cdot \frac{1}{13} = 12$,5. Ответ: BD = 12,5.

Пример 7. В прямоугольном треугольнике ABC (рисунок 4.8) AC = 8, $sin B = \frac{1}{2}$. Найти AD.

Решение. Рассмотрим прямоугольные треугольники ABC и CDB, имеем: \angle CBD = \angle DCA как острые углы со взаимно перпендикулярными сторонами.

Тогда $sin \angle$ DCA $= \frac{AD}{BC} = \frac{1}{2}$. Следовательно AD $= \frac{BC}{2} = \frac{8}{2} = 4$. Ответ: AD = 4. Пример 8. В прямоугольном треугольнике ABC (рисунок 4.8) AD = 12, $tg \ B = \frac{2}{3}$. Найти BD.

Решение. Известно, что tg В $=\frac{CD}{BD}=\frac{2}{3}$. Из прямоугольного треугольника ABC с высотой CD имеем: $CD^2=AD\cdot BD$. Тогда tg В $=\frac{\sqrt{12\cdot BD}}{BD}=\frac{2}{3}$. Получим: $\frac{12}{BD}=\frac{4}{9}$, тогда $BD=\frac{12\cdot 9}{4}=27$. Ответ: BD=27.