

Useful Life of Tantalum Capacitors

Alexander Teverovsky

Jacobs Engineering, Inc.

Work performed for EEE Parts, Photonics and Assembly Branch,
NASA GSFC, Code 562

Alexander.A.Teverovsky@nasa.gov

Abstract

Currently, the major reliability characteristic of tantalum capacitors is the failure rate, which is a constant used to characterize random failures of electronic components. However, contemporary MnO₂ and polymer tantalum capacitors have both infant mortality (IM) and wear-out (WO) failures. This requires assessments of the useful life of the parts that is limited by the time of inception of WO failures that can be determined using an adequate reliability model and results of highly accelerated life testing (HALT). In this presentation, a modified time dependent dielectric breakdown (TDDB) model is used to describe both IM and WO failures during HALT. Specifics of physical processes resulting in degradation and failures in polymer and MnO₂ tantalum capacitors are discussed, and the increase of IM failures with the level of stress is explained. The model justifies exponential dependence of the acceleration factors on voltage and predicts higher values of the voltage acceleration constant for IM compared to WO failures.

List of Acronyms

AF	acceleration factor	PS	power supply
BI	burn in	ReRAM	resistive random-access memory
CPTC	chip polymer tantalum capacitor	Ta	Tantalum
FR	failure rate	TDDB	time dependent dielectric breakdown
HALT	highly accelerated life testing	TTF	time to failure
IM	infant mortality	SS	sample size
MIL-spec	military specification	WGT	Weibull grading test
PDA	percent defective allowable	WO	wear-out

Outline

- Why are there no WO failures in MIL-spec Ta capacitors, but they exist in polymer capacitors?
- What are life test failures and is there a life after death?
- How does one assess useful life based on HALT?
- Can we eliminate IM failures and how does one select BI conditions?
- Conclusion

Classic reliability bathtub curve

MIL-grade Ta Capacitors

- ❑ Ideal BI conditions: monitor FR in the process and stop when the required level, FR_{spec} , is reached
- ❑ WGT for MIL Ta capacitors:
85C, ~40hr, 300pcs $1.2 \leq u_{BI} = V/VR \leq 1.52$
- ❑ WGT allows for FR assessment at 85 °C and $u = 1$ is based on AF_V : $AF_V = \exp[B_{WGT} \times (u_{BI} - 1)]$, $B_{WGT} = 18.77$

- ✓ WO degradation without WO failures → unlimited useful life?
- ✓ WGT is applicable when majority of failures are due to IM
 - The smaller the proportion of IM failures, the larger SS and u_{BI} needed
 - PDA requirements cannot be determined
- ✓ Historically, most failures were due to defects, so there were not enough samples during life testing to reach the WO region

New Technology Ta Capacitors

- ❑ Polymer technology creates a lesser stress to the Ta₂O₅ dielectric
→ the parts have lower risk of IM and can live to WO failures
- ❑ High quality MnO₂ capacitors also have WO failures

A general trend for advanced technology components

- ✓ Contemporary advanced capacitors have WO failures, so there is a need to assess useful life at application conditions
- ✓ This can be done using HALT and developing adequate reliability models

Failure as a Powerful Scintillation

- ❑ Scintillation is a breakdown terminated by self-healing
- ❑ Breakdown occurs within ~0.1 msec for MnO₂ and ~1 msec for polymer capacitors

Examples of scintillation events during life testing

- ✓ Scintillations might not be detected during testing if currents are not continuously monitored
- ✓ After scintillations, the parts might remain operational

Failures During BI or Life Test

- ❑ Per MIL-specs, failures are determined by blown 1 A fuses (a few seconds at 1A or msec at 20A).
- ❑ Typically, transient time of a PS is dozens of msec, so only permanent shorts can cause a fuse to blow by currents from the PS

- ✓ Adjacent capacitors can deliver energy fast and blow a fuse in the case of scintillation breakdown
- ✓ Failure/self-healing conditions during operation and life test might be different
- ✓ Life test conditions are more stressful than during operation of a single part

Typical HALT Results

- The shape factor in Weibull distribution of TTF determines the type of failures

$$P(\tau) = 1 - \exp\left[-\left(\frac{\tau}{\eta}\right)^\beta\right] \quad \lambda(t) = \frac{\beta}{\eta} \left(\frac{t}{\eta}\right)^{\beta-1}$$

$\beta < 1 \Rightarrow$ IM failures
 $\beta = 1 \Rightarrow$ random failures
 $\beta > 1 \Rightarrow$ wear-out failures

- Interception between IM and WO failure lines gives proportion of IM failures

*TTF distributions
during HALT*

- ✓ Anti-WO failures might be due to less stressful scintillation events when a small number of samples left at the end of HALT
- ✓ Another reason is solid-state oxidation during HALT that increases breakdown voltages with time of testing

Modeling of HALT Results

Weibull distributions of TTF during HALT for polymer and MnO₂ capacitors

Prediction of TTF_{c_WO} for $u = 1$

- ✓ Both types of capacitors had bimodal distributions indicating presence of IM and WO failures
- ✓ A power model for CPTCs, $AF_V = u^n$, gives a more optimistic prediction compared to the exponential model, $AF_V = \exp(-B(u - 1))$
- ✓ TDDB model validates exponential dependence $AF_V(u)$

TDDB Model

- TTF distributions can be calculated based on VBR distributions
- TDDB model: $TTF = t_0 \times \exp[B \times (u_{BR} - u)]$, $B = \Delta H / kT u_{BR}$

Experimental and calculated TTF distributions

Proportion of IM failures

u	p _{exper., %}	p _{simul., %}
1.8	14	17.5
2	21	17.5
2.2	39	17.5

- ✓ Similarity between experimental and calculated TTF distributions validates TDDB model
- ✓ Major discrepancy: the model predicts constant proportion of IM failures, whereas experiments show that it increases with the level of stress

IM Failures

❑ Degradation: Migration of V_O^{++} leads to accumulation of positive charges at the cathode/Ta₂O₅ interface and formation of conductive filaments (redox-based ReRAM), which intensifies at a defect site

❑ Compensation: Generation of oxygen-containing species to compensate for positive charges and conductive filaments

- ✓ Probability of failure depends on the rates of degradation and compensation
- ✓ Slow degradation at low u can provide sufficient time for the compensation to prevent breakdown
- ✓ The proportion of IM failures will increase with the stress voltage
- ✓ Some IM failures revealed during HALT might never happen at operating conditions

Useful Life

- ❑ Useful life is the time between end of screening (BI) and TTF_i ,

$$TTF_i(u) = TTF_{WO} \times \exp[B(1 - u)] \times [-\ln(0.999)]^{1/\beta}$$

- ❑ Modeling using a general log-linear Weibull distribution allows for predictions of WO failures at BI and usage conditions
- ❑ There might be a temptation to increase u_{BI} to screen out more IM failures, but this might reduce the useful life of the parts

✓ TTF_i , and BI conditions can be determined based on HALT results

Distributions of WO failures during HALT allow for assessments of the time to failure inception during the mission and BI conditions

Conclusion

- ✓ Historically, HALT in MnO₂ capacitors resulted mostly in IM failures. Contemporary MnO₂ and polymer capacitors have both IM and WO failures.
- ✓ Failures are due to powerful scintillation events that can be simulated using a TDDB model
- ✓ Useful life of tantalum capacitors at operating conditions can be estimated based on the exponential model and results of HALT
- ✓ The proportion of IM failures increases with the level of stress; however, increasing stress voltage during BI might be not effective:
 1. Increased risk of damage by undetected scintillations
 2. Reduction of useful life consumed during BI
 3. BI failures might never happen at operating conditions