19/20 浙江工业大学高等数学 A (下) 期末试卷 A

13/2	ברועו טב		1 IH 1	- X - 1	\ I /	221712 MA	, (A), 11
学院:		班级:		姓名:_		学号:	
任课教师(请务必填上):							
题号	_		三	四	五.	六	总分
得分							
1、已知	空题(本 是 y ₁ = e ^{2x} 与	$y_2 = 2xe^{2x}$			ry=0的两~	个解,则 <i>p</i> =	=
$q = $ 。 -4, 4 2、微分方程 $\frac{dy}{dx} = \frac{2x}{3y^2}$ 的通解为 。 $y^3 = x^2 + C$							
3、已知	如向量 $\bar{a}=($	[1,2,-2] 与[向量 $\vec{b} = (2$,3,λ)垂直。	,则λ=	。4	
4、设 $z = \cos(xy)$,则 $dz = \underline{\qquad}_{\circ} dz = -y\sin(xy)dx - x\sin(xy)dy$							
5、设 $z = f(x^2 - y^2)$,其中 f 可导,则 $y\frac{\partial z}{\partial x} + x\frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$ 。0							
6、函数 $u = xy^2 + z^3 - xyz$ 在点(1, 1, 1)处沿方向 $\vec{l} = (0, 1, 2)$ 的方向导数							
为。 √5							
$7, \int_0^2 a$	$dy \int_{y}^{2} e^{-x^2} dx$	=	o -	$\frac{1}{2}(1-e^{-4})$			
8、设由	曲线1为连接	姜(a, a)与((b, b)的直:	线段(a < b)),		
则.	$\int_{l} (x^2 + y^2) dx$	ds =		$\frac{2\sqrt{2}}{3}(b^2)$	$(a^3 - a^3)$		
9、设Σ	$\Sigma: x^2 + y^2 -$	$+z^2=4$, $\sqrt{2}$	則曲面积分	$ \oint_{\Sigma} (x^2 + y^2) $	$+z^2$) ⁿ $dS =$	=	$_{\circ}$ 4 ⁿ⁺² π
10、设 $G: 0 \le x \le 1, 0 \le y \le 2, 0 \le z \le 3$,则三重积分 $\iiint_G x dV =。3$							
11、设	$f(x)$ 是 2π	·为周期的	周期函数,	在[-π,π)上的表达	式为 $f(x)$	$=\pi-x$,

则其傅里叶级数的和函数S(x)在 7π 处的值 $S(7\pi)=$ ____。 π

二、选择题(本题满分12分,每小题3分)

1、 若z = f(x, y)在点 (x_0, y_0) 处可微,则下列结论错误的是 (B)

(A) f(x,y) 在点 (x_0,y_0) 处连续;

(B) $f_x(x,y), f_y(x,y)$ 在点 (x_0, y_0) 处连续;

(C) f(x,y) 在点 (x_0,y_0) 处偏导数存在;

(D) 曲面 Σ : $z = f(x, y) 在(x_0, y_0, f(x_0, y_0))$ 处存在切平面。

2、设 $\frac{(x+ay)dy-ydx}{(x^2+y^2)}$ 在右半平面内为某个二元函数的全微分,则a=(B)

(A) -1; (B) 0; (C) 1; (D) 2.

3、设 $\sum_{n=1}^{\infty} a_n x^n$ 在 x=4 处条件收敛,则该幂级数的收敛半径 (A)

(A)等于4; (B) 大于4; (C) 小于4; (D) 不确定。

4、以下命题中正确的是: (C)

(A) 若正项级数 $\sum_{n=1}^{\infty} u_n$ 满足 $\frac{u_{n+1}}{u_n} < 1$,则该级数收敛;

(B) 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛,且 $\lim_{n\to\infty} \frac{v_n}{u_n} = 1$,则级数 $\sum_{n=1}^{\infty} v_n$ 收敛;

(C) 若正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛,则级数 $\sum_{n=1}^{\infty} a_n^2$ 收敛;

(D) 若级数 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ 都发散, 则级数 $\sum_{n=1}^{\infty} (u_n + v_n)$ 发散。

三、试解下列各题(本题满分12分,每小题6分)

1、设f(x)为 R 上的连续函数,且满足方程: $f(x) - \int_0^x f(t)dt = x^2 + 1$,求f(x)。

解: 方程两边求导得: f'(x) - f(x) = 2x 3分

由一阶线性微分方程通解公式可得:

$$f(x) = e^{-\int (-1)dx} \left(\int e^{\int (-1)dx} 2x dx + C \right)$$

$$= -2(x+1) + Ce^x$$

5分

由 f(0) = 1, 得: C=3, 从而 $f(x) = -2(x+1) + 3e^x$. 6分

2、求曲面Σ: $e^z - z + xy = 2$ 在(1, 1, 0)处的切平面与法线方程。

解: 曲面
$$\Sigma$$
: $e^z - z + xy = 2$ 在 $(1, 1, 0)$ 处的法向量为: $(1,1,0)$

从而切平面方程:
$$x+y-2=0$$
, 4分

法线方程:
$$\begin{cases} \frac{x-1}{1} = \frac{y-1}{1} \\ z = 0 \end{cases}$$
 6分

四、试解下列各题(本题满分14分,每小题7分)

1、计算
$$\iint_D e^{-x^2-y^2} dxdy$$
, 其中 $D = \{(x,y) | x^2 + y^2 \le 2\}$ 。

解: 原式 =
$$\int_0^{2\pi} d\theta \int_0^{\sqrt{2}} e^{-r^2} r dr$$
 4分 = $\pi (1-e^{-2})$ 7分

2 、 计 算 $\int_C (e^x \sin y - y) dx + (e^x \cos y - 3x) dy$, 其 中 C 为 上 半 圆 周 $(x-2)^2 + y^2 = 4, y \ge 0$,方向由点 A(4,0) 到原点 O(0,0) 。

解: 原式=
$$\iint_{C+OA} -\int_{OA}$$
 2分
$$= \iint_{D} (-2) \ dxdy -\int_{OA}$$
 5分
$$= -2\mathbb{I}2\pi - 0 = -4\pi$$
 7分

五、试解下列各题(本题满分24分,每小题8分)

1、一直线过点 $M_0(2,-1,3)$ 且与直线 $l: \frac{x-1}{2} = \frac{y}{-1} = \frac{z+2}{1}$ 相交,又平行于平面 3x-2y+z+5=0,求此直线的方程。

解: 设两直线的交点为
$$A(2t+1,-t,t-2)$$
, $\overrightarrow{M_0}A = (2t-1,-t+1,t-5)$, 2分

因为 $\overrightarrow{M_0}$ A与已知平面的法向量 $\overrightarrow{n} = (3, -2, 1)$ 垂直,所以

$$(2t-1,-t+1,t-5)$$
 $(3,-2,1)=0$,得:

$$t = \frac{10}{9}$$
 所以: $\overrightarrow{M_0} A = \left(\frac{11}{9}, , -\frac{1}{9}, -\frac{35}{9}\right)$ 6分

直线的方程:
$$\frac{x-2}{11} = \frac{y+1}{-1} = \frac{z-3}{-35}$$

解: 取 Σ_1 : z = h, $(\sqrt{x^2 + y^2} \le h)$ 的上侧,

$$\iint_{\Sigma} = \iint_{\Sigma + \Sigma_{1}} - \iint_{\Sigma_{1}}$$
 3

$$= \iiint_{\Omega} 0 \, \mathrm{d}v - \iint_{\Sigma_1} (x^2 - y) \, dx \, dy$$

$$= -\iint_{x^2+y^2 \le h^2} (x^2 - y) dx dy = -\iint_{x^2+y^2 \le h^2} x^2 dx dy + 0$$
 6 \(\frac{1}{2}\)

$$= -\int_0^{2\pi} d\theta \int_0^h r^3 \cos^2 \theta dr$$
$$= -\frac{\pi}{4} h^4$$
 8 \(\frac{\psi}{2}\)

3、求幂级数 $\frac{x}{2} - \frac{x^2}{2 \cdot 2^2} + \frac{x^3}{3 \cdot 2^3} + \dots + (-1)^{n-1} \frac{x^n}{n \cdot 2^n} + \dots$ 的收敛域以及和函数。

∴
$$R = 2$$
 2 $\%$

当
$$x = -2$$
时, $\sum_{n=1}^{\infty} \frac{-1}{n}$ 发散;

当
$$x = 2$$
时, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ 收敛, 收敛域为 $(-2,2]$ 4 分

$$s(x) = -\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{-x}{2} \right)^n = -\sum_{n=1}^{\infty} \int_0^{\frac{-x}{2}} (t)^{n-1} dt = -\int_0^{\frac{-x}{2}} \sum_{n=1}^{\infty} (t)^{n-1} dt$$

$$= -\int_0^{-\frac{x}{2}} \sum_{n=1}^{\infty} (t)^{n-1} dt = -\int_0^{-\frac{x}{2}} \frac{1}{1-t} dt$$
 6 \(\frac{\gamma}{t}\)

$$= \ln\left(1 + \frac{x}{2}\right) \left(x \in \left(-2, 2\right]\right)$$
 8 \(\frac{\gamma}{2}\)

六、(本题满分5分)

设 x_n $(n=1,\,2,\,3,\cdots)$ 是方程 $\tan x=x$ 的正根,且从小到大排序,证明级数 $\sum_{n=1}^\infty \frac{1}{x_n^2}$ 收敛。

证明:
$$:: x_n > (n-1)\pi(n=2,3,\cdots) :: \frac{1}{x_n^2} < \frac{1}{(n-1)^2\pi^2}(n=2,3,\cdots)$$
, 3分

$$\therefore \sum_{n=2}^{\infty} \frac{1}{(n-1)^2 \pi^2}$$
 收敛,所以由比较判别法知级数 $\sum_{n=1}^{\infty} \frac{1}{x_n^2}$ 收敛。 5分