

Cairo University
Faculty of Engineering

Dept. of Electronics and Electrical Communications

Third Year

ELC-3060

Analog IC Design

Project

Universal Bi-quadratic Filter (Parameters Design and Simulations)

Under Supervision of Dr. Mohamed Mubarak T.A. Ahmed Hassan

By Email Amir Ahmed Hassan amir.mohamed01@eng-st.cu.edu.eg

Universal Biquadratic Filter

Figure 1: Circuit Diagram from the project statement, I numbered op-amps in blue to make Derivations

1- Derivation and Components Design.

Assume all op-amps are ideal and in negative feedback. Output of each op-amp is given as: $V_{out} = A_v (V_{in+} - V_{in-})$. Since the output is finite, While $A_v \to \infty$, then $(V_{in+} = V_{in-})$. We approach the derivation by doing KCL at input nodes using s-domain.

KCL for op-amp 1:
$$\frac{V_{HPF}}{R} = -V_{BPF} (sC)$$
. $\therefore V_{HPF} = (-sCR) V_{BPF}$ \rightarrow 1

KCL for op-amp 2: $\frac{V_{BPF}}{R} = -V_{LPF} (sC)$. $\therefore V_{BPF} = (-sCR) V_{LPF}$ \rightarrow 2

KCL for op-amp 3: $\frac{V_{LPF}}{R} + \frac{V_{BSF}}{R} = \frac{-V_{HPF}}{R}$. $\therefore V_{HPF} = -V_{LPF} - V_{BSF}$ \rightarrow 3

KCL for op-amp 4: $\frac{V_{in}}{R/H} + \frac{V_{BPF}}{R.Q} = \frac{-V_{BSF}}{R}$. $\therefore H.V_{in} + \frac{1}{Q} V_{BPF} = -V_{BSF}$ \rightarrow 4

From 3, $-V_{BSF} = V_{HPF} + V_{LPF}$, Substitute in 4. $\therefore H.V_{in} + \frac{1}{Q} V_{BPF} = V_{HPF} + V_{LPF}$

From 2, $V_{BPF} = (-sCR) V_{LPF}$, From 1, $V_{HPF} = (-sCR) V_{BPF} = (sCR)^2 V_{LPF}$

Substitute to make the equation in terms of V_{LPF} $\therefore H.V_{in} + \frac{-(sCR)}{Q} V_{LPF} = (sCR)^2 V_{LPF} + V_{LPF}$

$$\therefore \text{H.}V_{in} = \left(s^2C^2R^2 + \frac{(sCR)}{Q} + 1\right)V_{LPF} \qquad \qquad \therefore \frac{V_{LPF}}{V_{in}} = \frac{H}{s^2C^2R^2 + \frac{sCR}{Q} + 1} = \frac{\left(\frac{H}{C^2R^2}\right)}{s^2 + \frac{s}{QRC} + \left(\frac{1}{C^2R^2}\right)}$$

Now substitute in 2,
$$V_{BPF} = (-sCR) V_{LPF}$$
, $\therefore \frac{V_{BPF}}{V_{in}} = \frac{-H.(sCR)}{s^2 C^2 R^2 + \frac{sCR}{O} + 1} = \frac{-H(\frac{s}{RC})}{s^2 + \frac{s}{ORC} + (\frac{1}{C^2 R^2})}$

Now substitute in 1,
$$V_{HPF} = (-sCR) V_{BPF}$$
, $\therefore \frac{V_{HPF}}{V_{in}} = \frac{H. \ s^2 C^2 R^2}{s^2 C^2 R^2 + \frac{sCR}{O} + 1} = \frac{H. \ s^2}{s^2 + \frac{s}{ORC} + (\frac{1}{C^2 R^2})}$

Now substitute in 4,
$$-V_{BSF} = V_{HPF} + V_{LPF}$$
, $\therefore \frac{V_{BSF}}{V_{in}} = \frac{-H.\ (s^2C^2R^2 + 1)}{s^2C^2R^2 + \frac{sCR}{O} + 1} = \frac{-H.\ (s^2 + (\frac{1}{C^2R^2}))}{s^2 + \frac{s}{ORC} + (\frac{1}{C^2R^2})}$

Below is a list of transfer functions' standard forms of second order filters. The blue highlighted parameter represents an additional gain (and phase in case of negative sign) to the standard form:

$$H_{LPF}(s) = \frac{\omega_o^2}{(s^2 + \frac{\omega_o}{Q}s + \omega_o^2)} \equiv \frac{H.(\frac{1}{C^2R^2})}{s^2 + \frac{s}{QRC} + (\frac{1}{C^2R^2})}. H_{HPF}(s) = \frac{s^2}{(s^2 + \frac{\omega_o}{Q}s + \omega_o^2)} \equiv \frac{H.s^2}{s^2 + \frac{s}{QRC} + (\frac{1}{C^2R^2})}. H_{BPF}(s) = \frac{\frac{\omega_o}{Q}s}{(s^2 + \frac{\omega_o}{Q}s + \omega_o^2)} \equiv \frac{-HQ(\frac{s}{QRC})}{s^2 + \frac{s}{QRC} + (\frac{1}{C^2R^2})}. H_{BSF}(s) = \frac{s^2 + \omega_o^2}{(s^2 + \frac{\omega_o}{Q}s + \omega_o^2)} \equiv \frac{-H.(s^2 + (\frac{1}{C^2R^2}))}{s^2 + \frac{s}{QRC} + (\frac{1}{C^2R^2})}. H_{BSF}(s) = \frac{s^2 + \omega_o^2}{(s^2 + \frac{\omega_o}{Q}s + \omega_o^2)} \equiv \frac{-H.(s^2 + (\frac{1}{C^2R^2}))}{s^2 + \frac{s}{QRC} + (\frac{1}{C^2R^2})}. H_{BSF}(s) = \frac{s^2 + \omega_o^2}{(s^2 + \frac{\omega_o}{Q}s + \omega_o^2)} \equiv \frac{-H.(s^2 + \frac{\omega_o}{Q}s + \omega_o^2)}{s^2 + \frac{s}{QRC} + (\frac{1}{C^2R^2})}. H_{BSF}(s) = \frac{s^2 + \omega_o^2}{(s^2 + \frac{\omega_o}{Q}s + \omega_o^2)} \equiv \frac{-H.(s^2 + \frac{\omega_o}{Q}s + \omega_o^2)}{s^2 + \frac{s}{QRC} + (\frac{1}{C^2R^2})}. H_{BSF}(s) = \frac{s^2 + \omega_o^2}{(s^2 + \frac{\omega_o}{Q}s + \omega_o^2)} \equiv \frac{-H.(s^2 + \frac{\omega_o}{Q}s + \omega_o^2)}{s^2 + \frac{s}{QRC} + (\frac{1}{C^2R^2})}. H_{BSF}(s) = \frac{s^2 + \omega_o^2}{(s^2 + \frac{\omega_o}{Q}s + \omega_o^2)} \equiv \frac{-H.(s^2 + \frac{\omega_o}{Q}s + \omega_o^2)}{s^2 + \frac{s}{QRC} + (\frac{1}{C^2R^2})}. H_{BSF}(s) = \frac{s^2 + \omega_o^2}{(s^2 + \frac{\omega_o}{Q}s + \omega_o^2)} \equiv \frac{-H.(s^2 + \frac{\omega_o}{Q}s + \omega_o^2)}{s^2 + \frac{s}{QRC} + (\frac{1}{C^2R^2})}. H_{BSF}(s) = \frac{s^2 + \omega_o^2}{(s^2 + \frac{\omega_o}{Q}s + \omega_o^2)} \equiv \frac{-H.(s^2 + \frac{\omega_o}{Q}s + \omega_o^2)}{s^2 + \frac{s}{QRC} + (\frac{1}{C^2R^2})}. H_{BSF}(s) = \frac{s^2 + \omega_o^2}{(s^2 + \frac{\omega_o}{Q}s + \omega_o^2)} \equiv \frac{-H.(s^2 + \frac{\omega_o}{Q}s + \omega_o^2)}{s^2 + \frac{\omega_o}{Q}s + \omega_o^2}$$

Fast intuition on parameters:

H: DC gain (the frequency response should be shifted vertically upwards by 20 log |H|).

Q: Quality factor of filter, it can represent $(\frac{\omega_0}{BW})$ graphically.

 ω_o : Cut-off frequency in rad/sec. $\omega_o = \frac{1}{RC}$.

Design required:

$$f_0$$
=1 MHz ($\omega_0 = 2\pi f_0 = 6.283 \times 10^6 \ rad/sec$) Q=2.2 H=1

Using the cut-off frequency we get, $RC = 1/\omega_o = 1.59155 \times 10^{-7}$ sec. This is the Design Curve.

In IC design, component values get translated into area. Capacitance, $C = 1 fF/ \mu m^2$ and typically capacitor size ranges between 10 pF (100 μ m x 100 μ m) to 100 fF (10 μ m x 10 μ). For resistor values, a huge resistor will increase thermal noise power level. S (f) = 4KTR. However, a small resistor will lead to high current and power consumption. Resistors are in kilo ohms typically.

The following figure shows our design space:

Green area: $1 \text{ k}\Omega < R < 100 \text{ k}\Omega$ Pink area: 1 fF < C < 10 pF

Design point chosen A

$$C = 5.4 \text{ pF}$$
 $R = 29.4 \text{ k}\Omega$
 $R/H = 29.4 \text{ k}\Omega$ $R*Q = 64.5 \text{ k}\Omega$

Figure 2: x-axis represents resistance in $K\Omega$ y-axis represents the Capacitance in pF

Figure: 3 Schematic of ideal op-amp

We modeled it as a voltage-controlled voltage source with volt gain = 10,000. And a maximum $|V_{out}| < 1$ volt. Note that we don't have any pole. Also we don't need a buffer stage. Because the resistance seen (Rout = 0). Volt source is modeled as a short circuit in small signal model.

Figure: 4 Schematic of Biquadratic Filter with components values visible on schematic

2- Frequency Response.

2.1. Low Pass Filter Frequency Response: $(s = j\omega)$

$$H_{LPF}(\mathbf{s}) = \frac{{\omega_o}^2}{(\mathbf{s}^2 + \frac{\omega_o}{Q}\mathbf{s} + {\omega_o}^2)}, \qquad H_{LPF}(\omega) = \frac{{\omega_o}^2}{({\omega_o}^2 - \omega^2) + \mathbf{j}\frac{\omega\omega_o}{Q}}, \qquad |H_{LPF}(\omega)| = \frac{{\omega_o}^2}{\sqrt{({\omega_o}^2 - \omega^2)^2 + (\frac{\omega\omega_o}{Q})^2}}.$$

$$@(\omega \rightarrow 0)$$
 $\therefore |H_{LPF}(\omega)| = 1, < \theta = 0^{\circ}$

$$@(\omega \to \infty)$$
 $\therefore |H_{LPF}(\omega)| = 0,$ $< \theta = -180^{\circ}$

$$@(\omega \to \omega_o) \quad :: H_{LPF}(\omega) = \frac{\omega_o^2}{j\frac{\omega_o^2}{o}} = \frac{Q}{j}$$

$$:: |H_{LPF}(\omega_o)| = Q, \quad <\theta_{@\omega_o} = -90^\circ$$

$$@(\omega \to \omega_{peak}), \text{ max magnitude} \qquad \therefore \frac{d|H(\omega)|}{d\omega} = 0, \quad \therefore 2(\omega_o^2 - \omega^2)(-2\omega) + 2(\frac{\omega\omega_o}{Q})(\frac{\omega_o}{Q}) = 0$$

Let
$$\omega \neq 0$$
, then divide by 2ω $\therefore 2(\omega^2 - \omega_0^2) = -(\frac{\omega_0}{Q})^2$ $\therefore \omega^2 = \omega_0^2 (1 - \frac{1}{2Q^2})$

$$\omega_{peak} = \omega_o \sqrt{1 - \frac{1}{2Q^2}}$$
 \rightarrow will give real value only if $Q > \frac{1}{\sqrt{2}}$

$$|H_{LPF}(\omega_{peak})| = \frac{{\omega_o}^2}{\sqrt{({\omega_o}^2 - {\omega_{peak}}^2)^2 + (\frac{{\omega_{peak}}{\omega_o}}{Q})^2}} = \frac{{\omega_o}^2}{\sqrt{\frac{{\omega_o}^4}{4Q^4} + \frac{{\omega_o}^4}{Q^2}(1 - \frac{1}{2Q^2})}} = \frac{Q^2}{\sqrt{Q^2 - \frac{1}{4}}} \text{ slightly > Q}$$

Figure 5: LPF frequency response: magnitude and phase plots

Now, let's compare the measured quantities vs. the theoretical quantities by derivations for LPF

	Measured at Cadence	Theoretically
Cut-off	From phase plot	$C = 5.4 \text{ pF}$ $R = 29.4 \text{ k}\Omega$ $Q = 2.194$ $H = 1$
frequency	At phase = -90°	$H.\left(\frac{1}{C^2R^2}\right)$ $H.\omega_0^2$
(ω_o)	$f_o = 1.002$ MHz, by marker	$H_{LPF}(s) = \frac{H.\left(\frac{1}{C^2 R^2}\right)}{s^2 + \frac{s}{ORC} + \left(\frac{1}{C^2 P^2}\right)} = \frac{H.\omega_o^2}{(s^2 + \frac{\omega_o}{O} s + \omega_o^2)}$
	$\omega_o = 6.296 \times 10^6 \ rad/sec$	$\omega_o = \frac{1}{RC} = 6.3 \times 10^6 \ rad/sec \qquad f_o = 1.0024 \ MHz$
DC Gain	At low frequency,	Defined as a design parameter (ratio between resistors)
(H)	$ H_{LPF}(\omega_{low}) = 20 \log H $ H = 0 dB = 1	$H = \left(\frac{29.4 k\Omega}{29.4 k\Omega}\right) = 1$
Quality	From magnitude plot	Defined as a design parameter (ratio between resistors)
Factor	$(\omega_o, H_{LPF}(\omega_o) = Q = 6.82 \text{ dB}$	$Q = \left(\frac{64.5 k\Omega}{39.4 k\Omega}\right) = 2.194$
(Q)	Q = 6.82 dB = 2.1928	$(29.4k\Omega)$
Peaking	$f_{peak} = 947.2 \text{ kHz}$, by marker	$f = f \left[\frac{1}{1} \right]^{-1} = 0.48 \text{ 0 kHz}$
Frequency	$A_{peak} = 7.053 \text{ dB}$, by marker	$f_{peak} = f_o \sqrt{1 - \frac{1}{2Q^2}} = 948.9 \text{ kHz}$
(ω_{peak})	$A_{peak} = 2.2524$	$A = Q^2 / \sqrt{Q^2 - \frac{1}{4}} = 2.2533$

2.2. High Pass Filter Frequency Response: $(s = j\omega)$

$$H_{HPF}(\mathbf{s}) = \frac{s^2}{(s^2 + \frac{\omega_o}{Q}\mathbf{s} + \omega_o^2)}, \qquad H_{HPF}(\omega) = \frac{-\omega^2}{(\omega_o^2 - \omega^2) + \mathbf{j} \frac{\omega\omega_o}{Q}}, \qquad |H_{HPF}(\omega)| = \frac{\omega^2}{\sqrt{(\omega_o^2 - \omega^2)^2 + (\frac{\omega\omega_o}{Q})^2}}.$$

$$@(\omega \to 0)$$
 $\therefore |H_{HPF}(\omega)| = 0$, $< \theta = 180^{\circ}$ (divide by ω^2 and take limits $= \frac{-1}{\infty}$)

$$@(\omega \to \infty)$$
 $\therefore |H_{HPF}(\omega)| = 1,$ $< \theta = 0^{\circ}$ $\omega_{peak} = \omega_o \sqrt{1 + \frac{1}{2Q^2}}$

$$@(\omega \to \omega_o) \quad \therefore H_{HPF}(\omega) = \frac{-\omega_o^2}{j\frac{\omega_o^2}{o}} = \frac{-Q}{j}$$

$$|H_{HPF}(\omega_o)| = Q, < \theta_{@\omega_o} = 90^{\circ}$$

Figure 6: HPF frequency response: magnitude and phase plots

	Measured at Cadence	Theoretically
Cut-off	From phase plot	$C = 5.4 \text{ pF}$ $R = 29.4 \text{ k}\Omega$ $Q = 2.194$ $H = 1$
frequency	At phase = 90°	$H_{HPF}(s) = \frac{H.s^2}{s^2 + \frac{s}{QRC} + (\frac{1}{C^2R^2})} = \frac{H.s^2}{(s^2 + \frac{\omega_o}{Q}s + \omega_o^2)}$
(ω_o)	$f_o = 1.002$ MHz, by marker	
	$\omega_o = 6.296 \times 10^6 \ rad/sec$	$\omega_o = \frac{1}{RC} = 6.3 \times 10^6 \ rad/sec$ $f_o = 1.0024 \ MHz$
Gain	At high frequency,	Defined as a design parameter (ratio between resistors)
(H)	$ H_{HPF}(\omega_{inf}) = 20 \log H $ H = 0 dB = 1	$H = \left(\frac{29.4 k\Omega}{29.4 k\Omega}\right) = 1$
Quality	From magnitude plot	Defined as a design parameter (ratio between resistors)
Factor (Q)	$ @\omega_o, H_{HPF}(\omega_o) = Q = 6.808 \text{ dB}$ Q = 6.808 dB = 2.19	$Q = \left(\frac{64.5 k\Omega}{29.4 k\Omega}\right) = 2.194$

2.3. Band Pass Filter Frequency Response: $(s = j\omega)$

$$H_{BPF}(\mathbf{s}) = \frac{\frac{\omega_o}{Q}\mathbf{s}}{(s^2 + \frac{\omega_o}{Q}\mathbf{s} + \omega_o^2)}, \qquad H_{BPF}(\omega) = \frac{\mathbf{j}\frac{\omega\omega_o}{Q}}{(\omega_o^2 - \omega^2) + \mathbf{j}\frac{\omega\omega_o}{Q}}, \qquad |H_{BPF}(\omega)| = \frac{\frac{\omega\omega_o}{Q}}{\sqrt{(\omega_o^2 - \omega^2)^2 + (\frac{\omega\omega_o}{Q})^2}}.$$

$$@(\omega \to 0)$$
 $\therefore |H_{BPF}(\omega)| = 0,$ $< \theta = 90^{\circ}$ (divide by and take limits $= \frac{j}{\infty}$)

$$@(\omega \to \infty)$$
 : $|H_{BPF}(\omega)| = 1$, $< \theta = -90^{\circ}$ (take limits $= \frac{j}{-\infty}$)

$$@(\omega \to \omega_o) \quad \therefore H_{BPF}(\omega) = \frac{j\frac{\omega\omega_o}{Q}}{j\frac{\omega\omega_o}{Q}} = 1 \qquad \qquad \therefore |H_{BPF}(\omega_o)| = 1, \qquad <\theta_{@\omega_o} = 0^{\circ}$$

$$@(\omega \to \omega_{1,2}, -3dBs) \qquad \therefore |H_{BPF}(\omega)| = \frac{1}{\sqrt{2}} = \frac{\frac{\omega \omega_o}{Q}}{\sqrt{(\omega_o^2 - \omega^2)^2 + (\frac{\omega \omega_o}{Q})^2}} . \text{ (Solve for BW and 3dBs)}$$

$$2(\frac{\omega\omega_o}{Q})^2 = (\omega_o^2 - \omega^2)^2 + (\frac{\omega\omega_o}{Q})^2 \qquad \qquad \therefore (\omega_o^2 - \omega^2)^2 = (\frac{\omega\omega_o}{Q})^2 \quad (\text{accept only +ve freq})$$

$$\omega^{2} + \frac{\omega\omega_{o}}{Q} - \omega_{o}^{2} = 0$$

$$\therefore \omega_{1,2} = \frac{\pm \frac{\omega_{o}}{Q} + \sqrt{(\frac{\omega_{o}}{Q})^{2} + 4\omega_{o}^{2}}}{2} = \pm \frac{\omega_{o}}{2Q} + \omega_{o}\sqrt{1 + \frac{1}{4Q^{2}}}$$

$$\therefore BW = \omega_{2} - \omega_{1} = \frac{\omega_{o}}{Q}$$

$$\therefore \omega_{o}^{2} = \omega_{2} \omega_{1}$$

Note that these standard derivations are for a function that looks like: $H_{BPF}(s) = \frac{\frac{\omega_0}{Q}s}{(s^2 + \frac{\omega_0}{Q}s + \omega_0^2)}$

our function looks like:
$$\frac{-H\left(\frac{s}{RC}\right)}{s^2 + \frac{s}{QRC} + \left(\frac{1}{C^2R^2}\right)} = \frac{-HQ\left(\frac{s}{QRC}\right)}{s^2 + \frac{s}{QRC} + \left(\frac{1}{C^2R^2}\right)}.$$
 This affects derivations by:

Magnitude shifts up by $20 \log |QH| \cong 6.824 \text{ dB}$; Phase shifts down by -180°.

Figure 7: BPF frequency response: magnitude and phase plots

	Measured at Cadence	Theoretically
Cut-off	From phase plot	$C = 5.4 \text{ pF}$ $R = 29.4 \text{ k}\Omega$ $Q = 2.194$ $H = 1$
frequency	1 * *	
(ω_o)	$f_0 = 1.002$ MHz. by marker	$H_{BPF}(s) = \frac{\frac{-HQ}{QRC}}{s^2 + \frac{s}{QRC} + (\frac{1}{C^2R^2})} = \frac{-HQ.(\frac{\omega_0}{Q}s)}{(s^2 + \frac{\omega_0}{Q}s + \omega_0^2)}$
(0)	$\omega_0 = 6.296 \times 10^6 \ rad/sec$	$s^2 + \frac{s}{QRC} + (\frac{1}{C^2R^2})$ $(s^2 + \frac{s}{Q}s + \omega_0^2)$
	,	$\omega_o = \frac{1}{RC} = 6.3 \times 10^6 \ rad/sec$ $f_o = 1.0024 \ MHz$
3dB points	$f_1 = 799.8 \text{ kHz}$	
$\omega_{1,2}$	$f_2 = 1.256 \text{ MHz}$	$\omega_{1,2} = \pm \frac{\omega_o}{2Q} + \omega_o \sqrt{1 + \frac{1}{4Q^2}}$
	Check: $\sqrt{f_1 f_2} = 1.00227 \text{ MHz}$	$f_1 = 799.34 \text{ kHz}$ $f_2 = 1.256 \text{ MHz}$
Bandwidth		
BW	$BW = f_2 - f_1 = 456.2 \text{ kHz}$	$BW = f_2 - f_1 = \frac{f_0}{Q} = 456.7 \text{ kHz}$
Quality	$BW = \frac{\omega_o}{o}$	Defined as a design parameter (ratio between resistors)
Factor		$Q = \left(\frac{64.5 k\Omega}{39.4 k\Omega}\right) = 2.194$
(Q)	$Q = \frac{\omega_o}{BW} = \frac{1.002}{0.4562} = 2.196$	$Q = \left(\frac{29.4 k\Omega}{2}\right)^{-1} = 2.17$
Gain	From magnitude plot	Defined as a design parameter (ratio between resistors)
(H)	$ H_{BPF}(\omega_o) = \text{HQ} = 6.816 \text{ dB}$	$H = \left(\frac{29.4 k\Omega}{29.4 k\Omega}\right) = 1$
check on	81 1 3 81 21 3 3 3	\29.4K11/
H and Q	$20 \log H = -0.012 \text{ dB}$	
	$H = 1.001 \cong 1$	
	(note that the error in approx is	
	due to Q, but H is 1)	

2.4. Band Stop Filter Frequency Response: (imaginary zeroes are used to create notch at ω_0)

$$H_{BSF}(s) = \frac{s^2 + \omega_o^2}{(s^2 + \frac{\omega_o}{Q} s + \omega_o^2)}, \qquad H_{BSF}(\omega) = \frac{(\omega_o^2 - \omega^2)}{(\omega_o^2 - \omega^2) + j \frac{\omega\omega_o}{Q}}, \qquad |H_{BSF}(\omega)| = \frac{(\omega_o^2 - \omega^2)}{\sqrt{(\omega_o^2 - \omega^2)^2 + (\frac{\omega\omega_o}{Q})^2}}.$$

$$@(\omega \to 0)$$
 $\therefore |H_{BSF}(\omega)| = 1, < \theta = 0^{\circ}$

$$@(\omega \to \infty)$$
 $\therefore |H_{BSF}(\omega)| = 1,$ $< \theta = 0^{\circ}$

$$@(\omega \to \omega_o) \quad :: H_{BSF}(\omega) = 0, \qquad \qquad :: |H_{BSF}(\omega_o)| = 0 = -\infty \ dB, \quad <\theta_{@\omega_o} = 0^\circ$$

$$@(\omega \to \omega_o^-) : H_{BSF}(\omega) = 0, \qquad <\theta_{@\omega_o^-} = -90^\circ \qquad \text{(limits} = \frac{+1}{i*\infty})$$

$$@(\omega \to \omega_o^+) : H_{BSF}(\omega) = 0, \qquad <\theta_{@\omega_o^+} = 90^\circ \qquad \text{(limits } = \frac{-1}{j*\infty})$$

Note that 3dB points $\omega_{1,2}$ are same derivation as in BPF $\omega_0^2 = \omega_2 \omega_1$

$$\therefore \ \omega_{1,2} = \frac{\pm \frac{\omega_0}{Q} + \sqrt{(\frac{\omega_0}{Q})^2 + 4\omega_0^2}}{2} = \pm \frac{\omega_0}{2Q} + \omega_0 \sqrt{1 + \frac{1}{4Q^2}} \qquad \qquad \therefore BW = \omega_2 - \omega_1 = \frac{\omega_0}{Q}$$

Our function looks like: $\frac{-H(s^2 + \frac{1}{C^2R^2})}{s^2 + \frac{s}{QRC} + (\frac{1}{C^2R^2})}$. This affects derivations by -180° to all phases.

Figure 8: BSF frequency response: magnitude and phase plots

	Marana dat Cadana	T1
F	Measured at Cadence	Theoretically
Cut-off	From Magnitude Plot (notch)	$C = 5.4 \text{ pF}$ $R = 29.4 \text{ k}\Omega$ $Q = 2.194$ $H = 1$
frequency	At Mag = $-67 \text{ dB (ideally } -\infty \text{ dB)}$	$-H(s^2 + \frac{1}{c^2 p^2})$ $-H(s^2 + \omega^2)$
(ω_o)	$f_o = 1.002$ MHz, by marker	$H_{BSF}(s) = \frac{-H(s^2 + \frac{1}{C^2 R^2})}{s^2 + \frac{s}{ORC} + (\frac{1}{C^2 R^2})} = \frac{-H(s^2 + \omega_0^2)}{(s^2 + \frac{\omega_0}{O}s + \omega_0^2)}$
	ω_o = 6.296 × 10 ⁶ rad/sec	QNC CN
		$\omega_o = \frac{1}{RC} = 6.3 \times 10^6 \ rad/sec$ $f_o = 1.0024 \ MHz$
3dB points	$f_1 = 799 \text{ kHz}$	
$\omega_{1,2}$	$f_2 = 1.257 \text{ MHz}$	$\omega_{1,2} = \pm \frac{\omega_o}{2Q} + \omega_o \sqrt{1 + \frac{1}{4Q^2}}$
	Check: $\sqrt{f_1 f_2} = 1.00217 \text{ MHz}$	$f_1 = 799.34 \text{ kHz}$ $f_2 = 1.256 \text{ MHz}$
Bandwidth		
BW	$BW = f_2 - f_1 = 458 \text{ kHz}$	BW = $f_2 - f_1 = \frac{f_0}{g} = 456.7 \text{ kHz}$
		7- 7- Q
Quality	$BW = \frac{\omega_o}{\rho}$	Defined as a design parameter (ratio between resistors)
Factor	Y	$Q = \left(\frac{64.5 k\Omega}{29.4 k\Omega}\right) = 2.194$
(Q)	$Q = \frac{\omega_o}{BW} = \frac{1.002}{0.458} = 2.188$	$(29.4k\Omega)$
Gain	From magnitude plot	Defined as a design parameter (ratio between resistors)
(H)	$ H_{BSF}(\omega_{low}) = H = 0 \text{ dB}$	$H = \left(\frac{29.4 k\Omega}{39.4 k\Omega}\right) = 1$
check on	$20 \log \mathbf{H} = 0 \mathrm{dB}$	29.4kΩ /
H and Q	H = 1	

There are other definitions of BW like 10 dB bandwidth. Ideally the magnitude at notch is $-\infty$ dB. We can't get BW in terms of (notch rejection + x dB) in this example.

3- Transient Analysis. (Sine Wave)

Using "Vsin" with following specs:

Amplitude = 100 mV (to avoid output voltage clipping)

Frequency = 1 MHz (f =
$$f_o$$
) $\rightarrow V_{out} = V_{in} * H(\omega_o)$

Figure 9: Transient analysis due to sine wave: LPF and HPF outputs

	Measured at Cadence	Theoretically
Amplitudes	$V_{in} = 100 \ mv$	$\therefore H_{HPF}(\omega_o) = Q$
	$V_{LPF} = 218.5 \ mv$	$: H_{LPF}(\omega_o) = Q$
	$V_{HPF} = 215.9 \ mv$	Q = 2.194
		$V_{LPF} = 219.4 mv (Amplitude)$
	at steady state values approach	$V_{HPF} = 219.4 mv (Amplitude)$
	220 mv = Q*100 mv	
Delay	V_{HPF} and V_{LPF} are 180° out of phase	$: H_{HPF}(\omega_o) = Q, < \theta_{@\omega_o} = 90^{\circ}$
(Phase Shift)		$: H_{LPF}(\omega_0) = Q, < \theta_{\omega\omega_0} = -90^{\circ}$
	V_{HPF} peak at 3.002 µsec	
	V_{in} peak at 3.251 µsec	$V_{HPF} = \mathbf{Q} V_{in} < 90^{\circ}$
	V_{LPF} peak at 3.499 µsec	$V_{LPF} = \mathbf{Q} V_{in} < -90^{\circ}$
	$T = 1 \mu sec = \lambda = 360^{\circ}$. Then if:	
	$\Delta T_{peak} = 0.25 \mu \text{sec} = \frac{\lambda}{4} = 90^{\circ} \text{ difference in phase}$	There is 180° phase difference
		between V_{HPF} and V_{LPF}
	$\Delta T_{peak} = 0.5 \mu \text{sec} = \frac{\lambda}{2} = 180^{\circ} \text{ difference in phase}$	
	V_{HPF} leads V_{in} by 90°, V_{LPF} lags V_{in} by 90°	
	V_{HPF} leads V_{LPF} by 180°	

4- Transient Analysis. (Pulse Wave).

Using "Vpulse" with following specs

 $V1 (V_High) = 100 \text{ mv (to avoid output voltage clipping)},$ $V2 (V_Low) = 0 \text{ voltage clipping}$

Frequency = 1 MHz (f = f_o)

Figure 10: Transient analysis due to Pulse wave: BPF and BSF outputs

Square Pulse can be analyzed using Fourier Coefficients. We use the trigonometric Fourier: $a_o = \frac{Area}{T} = 50 \text{ mV (DC component)}$ $b_n = 0 \text{ (even signal)}$

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(n\omega_o t) dt = \frac{2}{n\pi} \sin\left(\frac{n\pi}{2}\right)$$
 (Only gives value for odd n)

$$V_{in}(t) = 100 \text{ mv} \left[\frac{1}{2} + \sum \frac{2}{n\pi} \sin\left(\frac{n\pi}{2}\right) \cos(n\omega_o t)\right]$$
 \rightarrow Fourier synthesis of Square Wave

$$V_{in}(t) = 100 \ mv \left[\frac{1}{2} + \frac{2}{\pi} (\cos(\omega_o t) - \frac{1}{3} \cos(3\omega_o t) + \frac{1}{5} \cos(5\omega_o t) - \cdots) \right]$$

$$\frac{V_{out}(t) =}{100 \, mv \, \left[\frac{1}{2}H(0) + \frac{2}{\pi}(\cos(\omega_o t)H(\omega_o) - \frac{1}{3}\cos(3\omega_o t)H(3\omega_o) + \frac{1}{5}\cos(5\omega_o t)H(5\omega_o) - \cdots\right]}$$

This means frequency components pass, get amplified, or get rejected.

$@DC(\omega = 0)$	$H_{BPF}(0) = 0$ (rejection)	$H_{BSF}(0) = 1 \text{ (pass)}$
$@\omega_o$	$H_{BPF}(\omega_o) = Q$ (amplified and pass)	$H_{BSF}(\omega_o) = 0$ (rejection/blocked)
$@3\omega_o$	$H_{BPF}(3\omega_o) \rightarrow \text{rejection by some dB}$	$H_{BSF}(3\omega_o) = 1 \text{ (pass)}$
$@5\omega_o, \dots$	All higher harmonics are rejected	All higher harmonics pass as well
	f_o component passes, others rejected	All components pass except f_o .

Conclusions:

We notice that BPF signal is like a sine wave (slightly distorted sine wave). This is because the BPF amplified the component which is exactly at $f = f_o$, Then all other harmonics faced high rejection ratio.

On the other hand the BSF has blocked the frequency component at its notch $f = f_o$. Yet it allowed all other components to pass without rejection. So its output appears as if we subtracted a sine wave (point by point subtraction) from the rectangular pulse.

DFT analysis of output waveforms:

Figure 11: DFT analysis BPF and BSF outputs

Comment:

DFT verifies the Fourier coefficients of rectangle wave. For BPF, highest component is at 1MHz (f_0) while higher harmonics get rejected. For BSF, All components pass nearly without rejection except the component at the notch (f_0) .