Algebra 1 Homework 1 Lee Fisher 2017-08-22

- Proposition 0.1: Let $f: A \to B$ be a function. Then:
 - 1. f is injective iff f has a left inverse.
 - 2. f is surjective iff f has a right inverse.
 - 3. f is bijective iff f admits a left and a right inverse. In this case the inverses are equal and the unique. This function is called the inverse of f and is denoted by f^{-1}
 - 4. If A and B are finite sets of the same order, f is bijective if and only if f is injective if and only if f is surjective.

Proof of 1.

- \rightarrow Suppose f is injective. By definition this means that for any $b \in f(A)$ there exists a unique a such that $f^{-1}(b) = a$. We define $g(b) = f^{-1}(b)$ if b is in f(A) and if b is not in f(A) then g(b) is arbitrary. In this way $g \circ f = id_A$, because $g \circ f(a) = a$ for all $a \in A$.
- \leftarrow Suppose f has a left inverse. This means, by definition, there is a function $g: B \to A$ such that $g \circ f = id_A$. Consider two elements in A, a_1 and a_2 with $a_1 \neq a_2$. (If |A| = 1 then f is trivially injective.) $f(a_1) \neq f(a_2)$, otherwise this would mean $g(f(a_1)) = a_1$ and $g(f(a_1)) = a_2$ which contradicts the definition of a function. Therefore $f(a_1) \neq f(a_2)$ and f is injective. \square

Proof of 2.

- \rightarrow Suppose f is surjective this means f(A) = B, so for any $b \in B$ there is at least one $a \in A$ such that f(a) = b. Consider $g : B \rightarrow A$ where for all b we choose g(b) so that $g(b) \in f^{-1}(b)$. In this way $f \circ g = id_B$, because for any $b \in B$, $f \circ g(b) = b$. Thus f has a right inverse.
- \leftarrow Suppose for sake of contradiction that f has a right inverse and f is not surjective. This means, by definition, there is a function g such that $f \circ g = id_B$ and that there is also an element b in B such that there is no a in A where f(a) = b. Here's the contradiction, in this case $f(g(b)) \neq b$ which contradicts $f \circ g = id_B$. Therefore f is surjective. \square

Proof of 3.

Suppose f is bijective. By definition f is both injective and surjective. Since f is injective (from the proof of 1) f has a left inverse, and since f is surjective (from the proof of 2) f has a right inverse. Likewise suppose f has both a left and right inverse. Then from the two previous proofs, f is both injective and surjective, and therefore bijective.

We call the left inverse as f_L^{-1} and the right inverse as f_R^{-1} . Consider for an element $b \in B$, $f_L^{-1} \circ f \circ f_R^{-1}(b)$. Well $f \circ f_R^{-1} = id_B$, so $f_L^{-1} \circ f \circ f_R^{-1}(b) = f_L^{-1}(b)$. Also $f_L^{-1} \circ f = id_A$ so $f_L^{-1} \circ f \circ f_R^{-1}(b) = f_R^{-1}(b)$. Therefore $f_R^{-1}(b) = f_L^{-1}(b)$ and the left and right inverses are equal.

Now we know that if f is bijective then any left inverse will also be a right inverse. Consider two inverses of f, f_1^{-1} and f_2^{-1} . We know that for any $b \in B$, $f \circ f_1^{-1}(b) = f \circ f_2^{-1}(b)$. Therefore $f_1^{-1}(b) = f_2^{-1}(b)$, so the inverses are the same, and thus unique. \square

Proof of 4.

Suppose A and B are finite sets of the same size and f is a function from A to B. We want to prove that bijectivity, surjectivity, and injectivity are equivalent. From the definition of bijectivity, it will suffice to prove that a function is surjective if and only if it is injective.

- 1. Surjectivity \to Injectivity. Suppose $f: A \to B$ is surjective. For sake of contradiction suppose f is not injective. This means there are two distinct numbers a_1 and a_2 such that $f(a_1) = f(a_2)$. Since the since the cardinality of A and B are the same, this means the image of f(A) is a strict subset of B. Which contradicts f being surjective. Therefore f must be injective.
- 2. Injectivity \to Surjectivity. Suppose $f:A\to B$ is injective. For sake of contradiction suppose f is not surjective. This means f(A) is strictly contained in B, however we know A and B are the same size. This means there must be two elements of A that map to the same thing in B. Thus contradicting injectivity. Thus f must be surjective. \square
- Proposition 0.2 Let \sim be an equivalence relation of the set A. For any $a, b \in A$,
 - 1. $a \sim b$ if and only if $\bar{a} = \bar{b}$
 - 2. if $\bar{a} \neq \bar{b}$ then $\bar{a} \cap \bar{b} = \emptyset$

Proof 1.

- \rightarrow Suppose $a \sim b$ and consider \bar{a} and \bar{b} . Since $a \sim b$ we know that $\bar{a} \subset \bar{b}$ because if any element is equivalent to a it must also be equivalent to b, and likewise that since $b \sim a$ we know that $\bar{b} \subset \bar{a}$. Therefore $\bar{a} = \bar{b}$.
- \leftarrow Suppose $\bar{a} = \bar{b}$. This means $a \in \bar{b}$ and $b \in \bar{a}$. Therefore $a \sim b$.

Proof 2.

Suppose $\bar{a} \neq \bar{b}$ and for sake of contradiction, suppose there is an element c that is in $\bar{a} \cap \bar{b}$. This means that $a \sim c$ and $b \sim c$ and that by the previous logic, $\bar{a} = \bar{c}$, $\bar{b} = \bar{c}$, and $\bar{a} = \bar{b}$. Which is a contradiction of $\bar{a} \neq \bar{b}$. Therefore the intersection must be empty. \Box

ullet Proposition 0.6 Let n be a fixed positive integer. Then

$$(\mathbb{Z}/n\mathbb{Z})^X = \{\bar{a} \in \mathbb{Z}/n\mathbb{Z} | 1 \le a < n \text{ and } a, n \text{ are relatively prime} \}.$$

Proof.

Consider an element a in $(\mathbb{Z}/n\mathbb{Z})^X$. This means there is some number a^{-1} for which $a^{-1}a = 1 \mod n$. In other words there is some multiple of n, mn for which $a^{-1}a + mn = 1$ where all numbers are integers. We arrive at the conclusion that a and n are relatively prime. If they had a common divisor then an integer linear combination of a and n would also be divisible by that number; the equation xa + yn = 1 would have no solutions. In the other direction suppose a and n are relatively prime. This means gcd(a, n) = 1 and since the gcd is a linear combination. There exist solutions x and y such that xa + yn = 1. This equation mod n tells us that $a^{-1} = x$ and that a is in $(\mathbb{Z}/n\mathbb{Z})^X$.