Take n voters with competences:

 $p_1 = \frac{1}{2} + \frac{1}{2}, \quad p_2 = \frac{1}{2} + \frac{1}{2^2}, \quad \dots, \quad p_n = \frac{1}{2} + \frac{1}{2^n}.$

The probability of a correct majority decision, as
$$n$$
 grows, is:

 $\lim_{n \to \infty} \Pr \left[S_n > n/2 \right] = \frac{1}{2}.$

$$n\to\infty$$
 [" '] 2
Even though the competence of each voter is above $1/2$, the probability of a correct majority decision does not go asymptotically towards 1.