CS 6041 Theory of Computation

Deterministic finite automata

Kun Suo

Computer Science, Kennesaw State University

https://kevinsuo.github.io/

Where are we now?

Outline

Finite Automata

- Definition
- Example
- Language of DFA
- Computation for DFAs

Design DFAs

- Example
- Regular language
- Regular operation

Finite Automata

• Definition: DFA is a 5-tuple M=(Q, Σ , δ ,q₀,F)

• Language on M: L(M) = $\{w \in \Sigma^* \mid \delta(q_0, w) \in F\}$

Input string w

Final state is accept

- DFA practice:
 - o definition → graph/language
 - o graph → language
 - o language → graph

This class

Designing finite automata

• State:

$$M=(Q,\Sigma,\delta,q_0,F)$$

- All states, start state, accept state, etc.
- Transition:
 - from one state to another state based on the input

Design a DFA for a language

Step 1: list all possible states

Step 2: draw all the transitions between the states

Step 3: add start and accept states

• L(E₁)={ w | w has odd amount of 1s }, Σ ={0,1}

Step 1: define states

• L(E₁)={ w | w has odd amount of 1s }, Σ ={0,1}

q_{even}: even amount of 1s

q_{odd}: odd amount of 1s

Step 1: define states

• L(E₁)={ w | w has odd amount of 1s }, Σ ={0,1}

q_{even}: even amount of 1s

q_{odd}: odd amount of 1s

Step 1: define states

Step 2: define

transitions

• L(E₁)={ w | w has odd amount of 1s }, Σ ={0,1}

q_{even}: even amount of 1s

q_{odd}: odd amount of 1s

Step 1: define states

Step 2: define

transitions

• L(E₁)={ w | w has odd amount of 1s }, Σ ={0,1}

q_{even}: even amount of 1s

q_{odd}: odd amount of 1s

Step 1: define states

Step 2: define transitions

Step 3: define start state and accept states

• $L(E_2)=\{ w \mid w \text{ has substring } 001 \}, \Sigma=\{0,1\}$

• $L(E_2)=\{ w \mid w \text{ has substring } 001 \}, \Sigma=\{0,1\}$

q: empty string

 q_0 : has substring 0 (for $\underline{0}$ 01)

 q_{00} : has substring 00 (for $\underline{001}$)

q₀₀₁: has substring 001

• L(E₂)={ w | w has substring 001 }, Σ ={0,1}

q: empty string (no 0, 00, 001)

 q_0 : has substring 0 (for $\underline{0}01$)

 q_{00} : has substring 00 (for $\underline{001}$)

q₀₀₁: has substring 001

$$q_{00}$$

• L(E₂)={ w | w has substring 001 }, Σ ={0,1}

q: empty string (no 0, 00, 001)

 q_0 : has substring 0 (for $\underline{0}01$)

 q_{00} : has substring 00 (for $\underline{001}$)

q₀₀₁: has substring 001

• $L(E_2)=\{ w \mid w \text{ has substring } 001 \}, \Sigma=\{0,1\}$

• L = Set of all strings that start with 0, Σ ={0,1} = {0, 00, 01, 000, 010, ...}

Can anyone draw the DFA?

• L = Set of all strings that start with 0, Σ ={0,1} = {0,00,01,000,010,...}

 q_1 : ε

q₂: start with 0

 q_3 : start with 1

$$q_2$$

L = Set of all strings that start with 0

$$= \{0, 00, 01, 000, 010, ...\}$$

 q_1 : ε

q₂: start with 0

q₃: start with 1

L = Set of all strings that start with 0

$$= \{0, 00, 01, 000, 010, ...\}$$

 q_1 : ε

q₂: start with 0

q₃: start with 1

L = Set of all strings that start with 0

$$= \{0, 00, 01, 000, 010, ...\}$$

 q_1 : ε

q₂: start with 0

q₃: start with 1

L = Set of all strings over {0,1} that of length is 2

$$= \{00, 01, 10, 11\}$$

Can anyone draw the DFA?

L = Set of all strings over {0,1} that of length is 2

```
= \{00, 01, 10, 11\}
```

 q_1 : ε

q₂: length is 1

q₃: length is 2

L = Set of all strings over {0,1} that of length is 2

$$= \{00, 01, 10, 11\}$$

 q_1 : ε

q₂: length is 1

q₃: length is 2

$$q_2$$

$$\overline{q_3}$$

$$q_4$$

L = Set of all strings over {0,1} that of length is 2

$$= \{00, 01, 10, 11\}$$

 q_1 : ε

q₂: length is 1

q₃: length is 2

L = Set of all strings over {0,1} that of length is 2

$$= \{00, 01, 10, 11\}$$

 q_1 : ε

q₂: length is 1

q₃: length is 2

L = Set of strings over {a,b} that contains string
 aabb in it

Can anyone draw the DFA?

L = Set of strings over {a,b} that contains string
 aabb in it

q₁: contains nothing

q₂: contains a

q₃: contains aa

q₄: contains aab

L = Set of strings over {a,b} that contains string
 aabb in it

q₁: contains nothing

q₂: contains a

q₃: contains aa

q₄: contains aab

$$q_3$$

L = Set of strings over {a,b} that contains string
 aabb in it

q₁: contains nothing

q₂: contains a

q₃: contains aa

q₄: contains aab

L = Set of strings over {a,b} that contains string
 aabb in it

q₁: contains nothing

q₂: contains a

q₃: contains aa

q₄: contains aab

 L = Set of strings over {a,b} that does not contain string aabb in it

Can anyone draw the DFA?

 L = Set of strings over {a,b} that does not contain string aabb in it

q₁: contains nothing

q₂: contains a

q₃: contains aa

q₄: contains aab

 L = Set of strings over {a,b} that does not contain string aabb in it

q₁: contains nothing

q₂: contains a

q₃: contains aa

q₄: contains aab

$$\overline{q_3}$$

$$\left(q_{4}\right)$$

$$q_5$$

 L = Set of strings over {a,b} that does not contain string aabb in it

q₁: contains nothing

q₂: contains a

q₃: contains aa

q₄: contains aab

 L = Set of strings over {a,b} that does not contain string aabb in it

q₁: contains nothing

q₂: contains a

q₃: contains aa

q₄: contains aab

Regular language

 A language is called a regular language if some finite automaton recognizes it

- Regular language:
 - L=L(M)
 - M is finite automaton

Regular language example

L(M₅) = { w | the sum of the symbols in w is 0 modulo 3, except that (RESET) resets the count to 0 }

Regular language

- What languages are not regular?
 - Not recognized by any DFAs
 - Require memory
 - Memory for DFA is limited, it only stores its current state
 - It cannot store or count strings

E.g., aⁿbⁿ is not regular language

Regular operations

If A and B are languages

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\}$
- Star: $A^* = \{x_1 x_2 ... x_k | k \ge 0 \text{ and each } x_i \in A\}$

• Examples:

```
A = \{ \texttt{good}, \texttt{bad} \} \qquad B = \{ \texttt{boy}, \texttt{girl} \} A \cup B = \{ \texttt{good}, \texttt{bad}, \texttt{boy}, \texttt{girl} \}, A \circ B = \{ \texttt{goodboy}, \texttt{goodgirl}, \texttt{badboy}, \texttt{badgirl} \}, \texttt{and} A^* = \{ \varepsilon, \texttt{good}, \texttt{bad}, \texttt{goodgood}, \texttt{goodbad}, \texttt{badgood}, \texttt{badbad}, \\ \texttt{goodgoodgood}, \texttt{goodgoodbad}, \texttt{goodbadgood}, \texttt{goodbadbad}, \dots \}.
```

Regular operations

- Theorem: the regular languages are closed under regular operations
 - \circ Union, $A \cup B$
 - \circ Concatenation, *A* ∩ *B*
 - Star, A*
 - \circ Complement, $ar{A}$
 - o Boolean operation, AND: \land , OR: \lor , XOR: ⊕

Regular operations

	DFA	PDA	TM
Union	close	?	?
Concatenation	close	?	?
Star	close	?	?
Complement	close	?	?
Boolean operation	close	?	?

Close under the union operation

Theorem: regular language is closed under the union operation

Proof by construction → create a DFA for it

• Proof:

Let $L_i=L(M_i)$ is a regular language, $M_i=(Q_i,\Sigma,\delta_i,q_i,F_i)$, i=1,2. We need to build a finite automata to recognize $L_1\cup L_2$

```
Build M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3).

Q_3 = Q_1 \times Q_2;

\delta_3((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a));

q_3 = (q_1, q_2);

F_3 = (F_1 \times Q_2) \cup (Q_1 \times F_2).
```

 $L(M_3) = L_1 \cup L_2$, so $L_1 \cup L_2$ is still regular language

Close under the union operation

Theorem: regular language is closed under the union operation

Close under the union operation

Theorem: regular language is closed under the union operation

Close under concatenation operation

Theorem: regular language is closed under the concatenation operation

Proof by construction → create a DFA for it

• Proof:

Let $L_j=L(M_i)$ is a regular language, $M_i=(Q_i,\Sigma,\delta_i,q_i,F_i)$, i=1,2. We need to build a finite automata to recognize $L_1\cap L_2$

```
Build M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3).

Q_3 = Q_1 \times Q_2;

\delta_3((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a));

q_3 = (q_1, q_2);

F_3 = F_1 \times F_2.
```

 $L(M_3) = L_1 \cap L_2$, so $L_1 \cap L_2$ is still regular language

Close under concatenation operation

Theorem: regular language is closed under the concatenation operation

Draw DFA online

- http://madebyevan.com/fsm/
 - Add a state: double-click on the canvas
 - Add an arrow: shift-drag on the canvas
 - Move something: drag it around
 - Delete something: click it and press the delete key (not the backspace key);
 On Laptop/Macbook, please press "Fn" + "Delete/backspace".
 - Make accept state: double-click on an existing state
 - Add start state: shift-drag on the canvas to one state
 - Type numeric subscript: put an underscore before the number (like "S_0")
 - Type greek letter: put a backslash before it (like "\beta")