Assessment Schedule - 2008

Scholarship Mathematics with Calculus (93202)

Evidence Statement

For up to a maximum of 4 question parts a single minor error in that part may be accepted without loss of marks.

Question	Evidence	Code	Judgement
ONE (a)	Using 6 equilateral triangles: $Area = 6 \times \frac{1}{2} s^{2} \sin 60^{\circ}$ $= \frac{3\sqrt{3}}{2} s^{2}$	2	
	OR With two triangles and a rectangle: $Area = 2 \times \frac{1}{2} s^2 \sin 120^\circ + 2s^2 \sin 60^\circ$ $= 3s^2 \sin 60^\circ$ $= \frac{3\sqrt{3}}{3} s^2$	1	
	$= \frac{3}{2} s^{2}$ Total area of the hexagonal stack $= 16 \times \frac{3\sqrt{3}}{2} s^{2}$ $= 24\sqrt{3}s^{2}$		
ONE (b)	$A = 6hs + \frac{3}{2}s^{2} \left(\frac{-\cos\theta}{\sin\theta} + \frac{\sqrt{3}}{\sin\theta} \right) = 6hs + \frac{3}{2}s^{2} \left(-\cot\theta + \sqrt{3}\csc\theta \right)$ So $\frac{dA}{d\theta} = \frac{3}{2}s^{2} \left(\cos\sec^{2}\theta - \sqrt{3}\csc\theta\cot\theta \right)$ and for max/min	3	
	$\frac{\frac{3}{2}s^{2}\left(\cos \sec^{2}\theta - \sqrt{3}\cos \cot \theta\right) = 0}{\cos \sec \theta\left(\cos \cot \theta - \sqrt{3}\cot \theta\right) = 0}$ $\cos \cot^{2}\theta\left(1 - \sqrt{3}\cos \theta\right) = 0$ 1	1	
	But $\csc^2 \theta \neq 0$ so $1 - \sqrt{3} \cos \theta = 0$ $\cos \theta = \frac{1}{\sqrt{3}}$ OR	2	
	$A = 6hs + \frac{3}{2}s^{2} \left(\frac{-\cos\theta}{\sin\theta} + \frac{\sqrt{3}}{\sin\theta} \right)$ $\frac{dA}{d\theta} = \frac{3}{2}s^{2} \left(\frac{\sin\theta(\sin\theta) - (-\cos\theta + \sqrt{3})\cos\theta}{\sin^{2}\theta} \right)$	1	

	$= \frac{3}{2}s^{2} \left(\frac{\sin^{2}\theta + \cos^{2}\theta - \sqrt{3}\cos\theta}{\sin^{2}\theta} \right)$ $= \frac{3}{2}s^{2} \left(\frac{1 - \sqrt{3}\cos\theta}{\sin^{2}\theta} \right) = 0 \text{ for max and min}$ $1 - \sqrt{3}\cos\theta = 0$ $\cos\theta = \frac{1}{\sqrt{3}}$ Hence, surface area is a minimum at $\theta = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$ $(= 0.9553 \text{ radians})$ $(= 54.7^{\circ})$	1	
ONE (c)	$\frac{ds}{dt} = k \sin \theta$ $k \sin \frac{\pi}{4} = \sqrt{2}$ $k = 2$ $A = 6hs + \frac{3}{2}s^{2}\left(-\cot \theta + \sqrt{3}\csc \theta\right)$ $\frac{dA}{dt} = 6h\frac{ds}{dt} + \frac{3}{2}2s\frac{ds}{dt}\left(-\cot \theta + \sqrt{3}\csc \theta\right) + \frac{3}{2}s^{2}\left(\csc^{2}\theta - \sqrt{3}\csc \theta\cot \theta\right)\frac{d\theta}{dt}$ $= 2\sin \theta\left(6h + 3s\left(-\cot \theta + \sqrt{3}\csc \theta\right)\right) + \frac{3}{2}s^{2}\cos \theta + \frac{d\theta}{dt}\left(\cos \theta - \sqrt{3}\cot \theta\right)$ $= \frac{2\sqrt{2}}{\sqrt{3}}\left(6h + 3s\left(-\frac{1}{\sqrt{2}} + \sqrt{3}\frac{\sqrt{3}}{\sqrt{2}}\right)\right) + \frac{3}{2}s^{2}\sqrt{\frac{3}{2}}\frac{d\theta}{dt}\left(\sqrt{\frac{3}{2}} - \sqrt{3}\frac{1}{\sqrt{2}}\right)$ $= \frac{2\sqrt{2}}{\sqrt{3}}\left(6h + 3s\frac{2}{\sqrt{2}}\right)$ $= 4\left(\sqrt{6}h + \sqrt{3}s\right)$ (increasing, -sign not needed)	3	Both needed Or equivalent

TWO (a)	$(z+1)^3 = 8$ so $\left(\frac{z+1}{2}\right)^3 = 1$ and $\frac{z+1}{2} = 1, w, w^2$	2	Or $1, \operatorname{cis}\left(\frac{2\pi}{3}\right), \operatorname{cis}\left(\frac{4\pi}{3}\right)$ etc
	$z = 1, 2w - 1, 2w^2 - 1$ and the sum of the roots is $1 + 2w - 1 + 2w^2 - 1 = 2(1 + w + w^2) - 3 = -3$.	1	Accept any 3 correct solutions,
	OR $(z+1)^3 = 8$ so $z^3 + 3z^2 + 3z + 1 = 8$ and $z^3 + 3z^2 + 3z - 7 = 0$		including those with no w's
	the sum of the roots is $-\frac{b}{a} = -3$.	1	
	OR $z^3 + 3z^2 + 3z - 7 = 0$ so $(z - 1)(z^2 + 4z + 7) = 0$,		
	$z = 1, -2 - i\sqrt{3}, -2 + i\sqrt{3}$ (from quadratic formula) OR		
	$(z+1)^3 = 8$ so $z+1 = 2\operatorname{cis}\left(\frac{2k\pi}{3}\right)$, $k = 0,1,2$		
	$z+1=2, \ 2\left(-\frac{1}{2}\pm\frac{\sqrt{3}}{2}i\right)$		
TWO	$z = 1, -2 \pm \sqrt{3}i$	3	
(b)	$(z+1)^3 = 8(z-1)^3 \text{ so}$ $z^3 + 3z^2 + 3z + 1 = 8(z^3 - 3z^2 + 3z - 1)$ $7z^3 - 27z^2 + 21z - 9 = 0$		
	by inspection $z = 3$, (or from $z + 1 = 2(z - 1)$) so	1	
	$(z-3)(7z^2-6z+3) = 0$ and $z = 3$, $\frac{3-2\sqrt{3}i}{7}$, $\frac{3+2\sqrt{3}i}{7}$.	2	
	and $z = 3$, $\frac{1}{7}$, $\frac{1}{7}$. OR $\left(\frac{z+1}{2(z-1)}\right)^3 = 1 \text{ and } \frac{z+1}{2(z-1)} = 1, w, w^2$		Giving A, B, C Accept in decimals $z = .429 \pm .495i$ or equivalent
	z+1=2z-2, z=3 or $z+1=2wz-2w, z=\frac{2w+1}{2w-1}$		
	$since \ w = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \ [or \ w = -\frac{1}{2} - \frac{\sqrt{3}}{2}i]$	1	

$z = \frac{2w+1}{2w-1} = \frac{-1+\sqrt{3}i+1}{-1+\sqrt{3}i-1} = \frac{\sqrt{3}i}{-2+\sqrt{3}i}$		
$= \frac{\sqrt{3}i\left(-2 - \sqrt{3}i\right)}{\left(-2 + \sqrt{3}i\right)\left(-2 - \sqrt{3}i\right)}$	- 2	
$=\frac{3-2\sqrt{3}i}{7}.$		
Hence the other root is the conjugate $=\frac{3+2\sqrt{3}i}{7}$.		
The solution is $z = 3$, $\frac{3 - 2\sqrt{3}i}{7}$, $\frac{3 + 2\sqrt{3}i}{7}$.		
[or use $z + 1 = 2w^2z - 2w^2$, $z = \frac{2w^2 + 1}{2w^2 - 1}$, although this is not needed with the above]		
OR $(z+1)^3 = 8(z-1)^3$ so $\frac{z+1}{z-1} = 2\operatorname{cis}\left(\frac{2k\pi}{3}\right)$, $k = 0,1,2$	1	
$1 + \frac{2}{z - 1} = 2\operatorname{cis}\left(\frac{2k\pi}{3}\right), k = 0, 1, 2 \text{and} 1 + \frac{2}{z - 1} = 2, 2\left(-\frac{1}{2} \pm \frac{\sqrt{3}}{2}i\right) = 2, -1 \pm \sqrt{3}i$	- 1	
$\frac{2}{z-1} = 1, -2 \pm \sqrt{3}i$		
$z-1=2, \frac{2}{-2\pm\sqrt{3}i}$	- 2	
$z - 1 = 2, \frac{2\left(-2 \mp \sqrt{3}i\right)}{7}$		
$z = 3, \ \frac{3 \mp 2\sqrt{3}i}{7}$		
l l		ī

	Scholarship Mathematics with Calculus (93202) 2000 — page 5 of 12		
TWO	$(1)^3 (1)^3$	3	
	For $\left(\frac{1}{z}+1\right)^3 = 8\left(\frac{1}{z}-1\right)^3$ this is part (ii) with the transformation $z=\frac{1}{u}$ where z is the		
	solution to part (ii) and u the solution here, and so $u = \frac{1}{z}$.		
	Either		
	However, when $z = r \operatorname{cis} \theta$, $\frac{1}{z} = \frac{1}{r} \operatorname{cis} (-\theta)$,		
	since $\frac{1}{z} = \frac{1}{r \operatorname{cis}(\theta)} = \frac{\operatorname{cis}(-\theta)}{r \operatorname{cis}(\theta) \operatorname{cis}(-\theta)} = \frac{\operatorname{cis}(-\theta)}{r(c^2 + s^2)} = \frac{1}{r} \operatorname{cis}(-\theta)$		
	or $\frac{1}{r}$ times the solution to (b)		
	and since $r = \frac{\sqrt{21}}{7} = \sqrt{\frac{3}{7}}$, $\frac{1}{r} = \sqrt{\frac{7}{3}}$ and the (b) solutions are		
	$\sqrt{\frac{3}{7}} \left(\sqrt{\frac{3}{7}} \pm \frac{2}{\sqrt{7}} i \right)$		
	Hence the three solutions are $z = \frac{1}{3}$, $\sqrt{\frac{7}{3}} \left(\sqrt{\frac{3}{7}} \pm \frac{2}{\sqrt{7}} i \right)$	1	Accept unsimplified here
	$=\frac{1}{3}$, $1\pm\frac{2}{\sqrt{3}}$ i.		
	OR ()		
	$z = \frac{1}{3}, \frac{7}{3 - 2\sqrt{3}i}, \frac{7}{3 + 2\sqrt{3}i} = \frac{1}{3}, \frac{7(3 + 2\sqrt{3}i)}{9 + 12}, \frac{7(3 - 2\sqrt{3}i)}{9 + 12}$		
	$= \frac{1}{3}, \frac{3 \pm 2\sqrt{3}i}{3} = 1 \pm \frac{2\sqrt{3}i}{3}.$ OR		Or equivalent
	$u = \frac{1}{z} = \frac{2w - 1}{2w + 1} \frac{-2 + \sqrt{3}i}{i\sqrt{3}} = \frac{-3 - 2i\sqrt{3}}{-3}$		
	and the other complex root is the conjugate $=\frac{3-2i\sqrt{3}}{3}$.		
	The solutions are $z = \frac{1}{3}$, $1 - \frac{2i\sqrt{3}}{3}$, $1 + \frac{2i\sqrt{3}}{3}$.		Giving E, F, G
	OR	- 1	
	Replacing z with $\frac{1}{z}$ in $7z^3 - 27z^2 + 21z - 9 = 0$ and multiplying through by z^3 .		
	$7 - 27z + 21z^2 - 9z^3 = 0 \text{ and use } 9z^3 - 21z^2 + 27z - 7 = 0$		
	$(3z-1)(3z^2-6z+7)=0$, and use quadratic formula.		

THREE (a)	$\frac{A}{x} + \frac{B}{P - x} = \frac{A(P - x) + Bx}{x(P - x)} \text{ so } \frac{A(P - x) + Bx}{x(P - x)} = \frac{1}{x(P - x)} \text{ Hence}$	2	
		1	For LHS
	$\Rightarrow -A + B = 0 \Rightarrow A = B \text{ and } AP = 1 \Rightarrow A = B = \frac{1}{P}$		above
THREE		3	Missing k
(b)	$\frac{\mathrm{d}N}{\mathrm{d}t} = kN\left(P - N\right)$		Missing <i>k</i> maximum 2
	$\int \frac{\mathrm{d}N}{N(P-N)} = \int k \mathrm{d}t$		2
	$\frac{1}{P} \int \left(\frac{1}{N} + \frac{1}{P - N} \right) dN = kt + C$		
		1	
	$\left[\ln\left N\right - \ln\left P - N\right \right] = Pkt + PC$		
	$ \ln\left \frac{N}{P-N}\right = Pkt + PC $	2	
	$\frac{N}{P-N} = e^{Pkt+PC} = Me^{Pkt} \tag{1}$		
	$N(1 + Me^{Pkt}) = MPe^{Pkt}$ MPe^{Pkt}		
	$N = \frac{MPe^{Pkt}}{1 + Me^{Pkt}}$		
THREE (c)	t = 0, N = 0.005P	3	
	$\Rightarrow 0.005P = \frac{MP}{1+M}$		
	$\Rightarrow 0.005 = 0.995M$		
	$\Rightarrow M = \frac{0.005}{0.995} = \frac{1}{199}$	1	Accept in
	OR N	1	decimals 3sf
	Using equation (1) $\frac{N}{P-N} = Me^{Pkt}$		
	$\frac{\frac{1}{200}P}{P - \frac{1}{200}P} = Me^{\circ} = M$		
	$M = \frac{\frac{1}{200}P}{\frac{199}{200}P} = \frac{1}{199}$		
	$\frac{dN}{dt} = 0.08P = k \times \frac{P}{5} \times \frac{4P}{5} \Rightarrow k = \frac{1}{2P}$		
	and Either	1	
	Using (1)		For M or
			k

FOUR (a)	$h(x) = \left[f(x) \right]^{g(x)}$	2	
(4)	$\ln\left[h(x)\right] = g(x)\ln\left[f(x)\right]$		
	$\frac{h'(x)}{h(x)} = g'(x) \ln \left[f(x) \right] + g(x) \frac{f'(x)}{f(x)}$	1	Do not
	$h'(x) = h(x) \left[g'(x) \ln \left[f(x) \right] + g(x) \frac{f'(x)}{f(x)} \right]$	1	allow only h'(x) on LHS
	$= \left[f(x) \right]^{g(x)} \left[g'(x) \ln \left[f(x) \right] + g(x) \frac{f'(x)}{f(x)} \right]$		LIIS
	\mathbf{OR}		
	$h(x) = e^{\ln\left(\left[f(x)\right]^{g(x)}\right)} = e^{g(x)\ln\left[f(x)\right]}$		
	$h'(x) == e^{g(x)\ln[f(x)]} \left(g'(x)\ln[f(x)] + g(x)\frac{f'(x)}{f(x)}\right)$		
	$h'(x) = \left[f(x) \right]^{g(x)} \left[g'(x) \ln \left[f(x) \right] + g(x) \frac{f'(x)}{f(x)} \right]$		
FOUR (b)	$p(x) = x \ln(\ln x)$	3	
(6)	$p'(x) = x \frac{\frac{1}{x}}{\ln x} + \ln(\ln x)$		
	$=\frac{1}{\ln x}+\ln(\ln x)$	1	
	If $f(x) = \ln x$ then $f'(x) = \frac{1}{x}$	1	
	and $g(x) = x$ then $g'(x) = 1$		
	So $h'(x) = \left(\ln x\right)^x \left[g'(x)\ln\left[f(x)\right] + g(x)\frac{f'(x)}{f(x)}\right] = \left(\ln x\right)^x \left(1 \times \ln(\ln x) + x \times \frac{1}{x} \times \frac{1}{\ln x}\right)$		
	$= \left(\ln x\right)^x \left(\ln(\ln x) + \frac{1}{\ln x}\right)$		
	Hence	-2	
	$\int (\ln x)^x p'(x) dx = \int (\ln x)^x \left[\ln(\ln x) + \frac{1}{\ln x} \right] dx$		
	$= \int h'(x)dx = \left(\ln x\right)^x + C$		+C required
	OR		•
	$p(x) = \ln(\ln x)^{x}$ $e^{p(x)} = (\ln x)^{x}$		
	but $\frac{d(e^{p(x)})}{dx} = p'(x)e^{p(x)}$		
	$\int dx \qquad p'(x)dx = e^{p(x)} + C \text{ and } \int (\ln x)^x p'(x)dx = e^{p(x)} + C = (\ln x)^x + C$		
	$\int p(x)e^{-\alpha x} = \int e^{-\alpha x} \int \frac{dx}{dx} = \int $		

FOUR (c)	$g(x) = -\left(2x - a\right)^4 + bx + c$	3	
(-)	For a factor $x - 1$, $g(1) = -(2 - a)^4 + b + c = 0$ or		
	$b+c=\left(2-a\right)^4$		
	$-(2x-1)^4 + 8x - 7 = 0$ so $a = 1$, $b = 8$, $c = -7$	1	Or equivalent
	$b+c=1$ and $(2-a)^4=1$ so $x-1$ is a factor.		
	$-(2x-1)^4 + 8x - 7 = (x-1)(fx^3 + gx^2 + hx + j)$		
	$-16x^4 + 32x^3 - 24x^2 + 8x - 1 + 8x - 7 = (x - 1)(fx^3 + gx^2 + hx + j)$		
	$-16x^{4} + 32x^{3} - 24x^{2} + 16x - 8 = (x - 1)(fx^{3} + gx^{2} + hx + j)$	-2	For $x - 1$ and
	and comparing coefficients $f = -16, j = 8, -h + j = 16, h = -8, -g + h = -24, g = 16.$		expansion (indepen-
	$-(2x-1)^4 + 8x - 7 = (x-1)(-16x^3 + 16x^2 - 8x + 8)$		dent marks) OR using long
	$= 8(x-1)(-2x^3 + 2x^2 - x + 1) = 8(x-1)(x-1)(-2x^2 - 1)$		division
	$-8(x-1)^2(2x^2+1)$		
	So for $-(2x-1)^4 + 8x - 7 = 0$,		
	$-8(x-1)^2(2x^2+1)=0$		
	$x = 1$ (twice) or $x = \pm \sqrt{\frac{-1}{2}} = \pm \frac{\sqrt{2}}{2}i$		

FIVE (a)	$x = \sec \theta - 1 \; , \; y = 2 \tan \theta + 2$	2	
(a)	Since $\sec^2 \theta = 1 + \tan^2 \theta$		
	$(1+x)^2 = 1 + \left(\frac{y-2}{2}\right)^2$		1 only for wrong signs.
	$(y-2)^2 = 4(1+x)^2 - 4$		Or equivalent Accept $y = \pm 2\sqrt{(x^2 + 2x)} + 2$
FIVE (b)	Either $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dy}{dt}} = \frac{2\sec^2\theta}{\sec\theta\tan\theta} = \frac{2\sec\theta}{\tan\theta}$	3	
	so the gradient of the normal is $-\frac{\tan \theta}{2 \sec \theta} = -\frac{\sin \theta}{2}$.		
	When $\theta = \frac{\pi}{4}$, $-\frac{\sin \theta}{2} = -\frac{1}{2\sqrt{2}}$.	1	
	Or		
	$(y-2)^2 = 4(1+x)^2 - 4 \text{ so } 2(y-2)\frac{dy}{dx} = 8(1+x)$ $\frac{dy}{dx} = \frac{4(1+x)}{y-2} \text{ and at } x = (\sqrt{2}-1, 4) \frac{dy}{dx} = \frac{4\sqrt{2}}{2} = 2\sqrt{2}$		
	So the gradient of the normal is $-\frac{1}{2\sqrt{2}}$.	1	
	Equation of the normal at $\theta = \frac{\pi}{4}$,		
	$y - (2+2) = -\frac{1}{2\sqrt{2}} \left(x - \sqrt{2} + 1 \right)$		
	$y - 4 = -\frac{1}{2\sqrt{2}} \left(x - \sqrt{2} + 1 \right)$	2	Or equivalent
-	$(x+1) = -2\sqrt{2}(y-4) + \sqrt{2}$	- 2	Or equivalent
	So this meets the curve again where		
	$\left(-2\sqrt{2}(y-4)+\sqrt{2}\right)^2 = \frac{(y-2)^2+4}{4}$		
	$4(-2\sqrt{2}y + 9\sqrt{2})^2 = (y-2)^2 + 4$		
	$4(8y^2 - 72y + 162) = y^2 - 4y + 8$		
	$31y^2 - 284y + 640 = 0$ but $y = 4$ is a solution, so $(y-4)(31y-160) = 0$ and $y = \frac{160}{31}$, $a = 160$, $b = 31$		Accept implicit <i>a</i> , <i>b</i> , but exact answer only.

