WO 2005/017058 . . . PCT/US2004/019609

What is claimed is:

1. A dielectric coating for use on a conductive substrate comprising:

a silicone composition of the formula:

[RSiO_{(4-x)/2}]_n wherein x=1-4 and wherein R comprises a compound selected from the group consisting of: methyl, phenyl, hydrido, hydroxyl, alkoxy groups or a combination of the above or monovalent radicals independently selected from alkyl, aryl, alylamide, arylamide, alkylamino groups and arylamino radicals (when 1 < x < 4);

said dielectric coating having a network structure.

2. The dielectric coating of Claim 1 wherein the silicone composition comprises a silsesquioxane compound of the formula:

[RSiO_{3/2}]_n wherein R comprises a compound selected from the group consisting of: methyl, phenyl, hydrido, hydroxyl, alkoxy or a combination of the above or monovalent radicals independently selected from alkyl, aryl, alylamide, arylamide, alkylamino groups and arylamino radicals (when 1<x<4) (when 1<x<4).

3. The dielectric coating of Claim 2 wherein the silsesquioxane compound further includes silanol units of the formula: $[Rsi\ (OH)_xO_y\ where\ x+y=3\ and\ which can be siliylated with appropriate organisiloxanes to produce corresponding silylated polysilsesquioxanes.$

WO 2005/017058 PCT/US2004/019609

4. The dielectric coating of Claim 1 wherein the silicone composition comprises a polymethyl silsesquioxane of the formula:

[CH 3SiO (3/2)]n.

5. The dielectric coating of Claim 1 wherein the silicone composition

comprises a silsesquioxane copolymer of the formula:

 $R^1{}_aR^2{}_bR^3{}_cSiO_{(4-a-b-c)/2}$, wherein: a is zero or a positive number, b is zero or a positive number, c is zero or a positive number, with the provisos that $0.8 \le (a+b+c) \le 3.0$ and wherein the copolymer has an average of at least $2\ R^1$ groups per molecule, and each R^1 is a functional group independently selected from the group consisting of hydrogen atoms and monovalent hydrocarbon groups having aliphatic unsaturation, and each R^2 and each R^3 are monovalent hydrocarbon groups independently selected from the group consisting of nonfunctional groups and R^1 .

- 6. The dielectric coating of Claim 5 wherein R¹ is an alkenyl group and R² and R³ are nonfunctional groups selected from the group consisting of alkyl and aryl groups.
- 7. The dielectric coating of Claim 6 wherein R¹ is selected from the group consisting of vinyl and allyl groups.
- 8. The dielectric coating of Claim 6 wherein R² and R³ are selected from the group consisting of methyl, ethyl, isopropyl, n-butyl, and isobutyl groups.
- 9. The dielectric coating of Claim 1 wherein the silicone composition comprises a phenyl-methyl siloxane compound of the formula:

WO 2005/017058 . . . PCT/US2004/019609

[(MeSiO₃/₂)_{0.25}(PhSiO₃/₂)_{0.15}(Ph₂SiO_{)0.50}

10. A substrate structure comprising:

a conductive material;

a dielectric coating disposed on a surface of the conductive material

said dielectric coating comprising a slicone composition of the formula:

 $[RSiO_{(4-x)/2}]_n$ wherein x=1-4 and wherein R comprises a compound selected from the group consisting of: methyl, phenyl, hydrido, hydroxyl, alkoxy groups or a combination of the above or monovalent radicals independently selected from alkyl, aryl, alylamide, arylamide, alkylamino groups and arylamino radicals (when 1<x<4);

said dielectric coating having a network structure.

11. The substrate of Claim 10 wherein the silicone composition comprises a silsesquioxane compound of the formula:

[RSiO_{3/2}]_n wherein R comprises a compound selected from the group consisting of: methyl, phenyl, hydrido, hydroxyl, alkoxy or a combination of the above or monovalent radicals independently selected from alkyl, aryl, alylamide, arylamide, alkylamino groups and arylamino radicals (when 1 < x < 4) (when 1 < x < 4).

12. The substrate of Claim 11 wherein the silsesquioxane compound further includes silanol units of the formula: [Rsi $(OH)_xO_y$ where x+y=3 and which can be siliplated with appropriate organisiloxanes to produce corresponding silylated polysilsesquioxanes.

WO 2005/017058 PCT/US2004/019609

13. The substrate of Claim 10 wherein the silicone composition comprises a polymethyl silsesquioxane of the formula:

 $[CH_3SiO_{(3/2)}]_n$.

14. The substrate of Claim 10 wherein the silicone composition

comprises a silsesquioxane copolymer of the formula:

 $R^1{}_aR^2{}_bR^3{}_cSiO_{(4-a-b-c)/2}$, wherein: a is zero or a positive number, b is zero or a positive number, c is zero or a positive number, with the provisos that $0.8 \le (a+b+c) \le 3.0$ and wherein the copolymer has an average of at least $2\ R^1$ groups per molecule, and each R^1 is a functional group independently selected from the group consisting of hydrogen atoms and monovalent hydrocarbon groups having aliphatic unsaturation, and each R^2 and each R^3 are monovalent hydrocarbon groups independently selected from the group consisting of nonfunctional groups and R^1 .

- 15. The substrate of Claim 14 wherein R¹ is an alkenyl group and R² and R³ are nonfunctional groups selected from the group consisting of alkyl and aryl groups.
- 16. The substrate of Claim 15 wherein R¹ is selected from the group consisting of vinyl and allyl groups.
- 17. The substrate of Claim 15 wherein R² and R³ are selected from the group consisting of methyl, ethyl, isopropyl, n-butyl, and isobutyl groups.

18. The substrate of Claim 1 wherein the silicone composition comprises a phenylmethyl siloxane compound of the formula:

[(MeSiO3/2)0.25(PhSiO3/2)0.15(Ph2SiO)0.50.