数值分析・课程作业・第二章

姓名: 潘林越 班级: 数学与应用数学 2020-2 班 学号: 15194694

1. (1) 将方程变形为 $\sin x = \frac{x}{3} - \frac{1}{4}$, 绘出曲线 $y = \frac{1}{3}$ $\sin x$ 和 $y = \frac{x}{3} - \frac{1}{4}$, 由图像可知,方程有 三个实根,分别为 $x_1 \in (-2.5, -1.5), x_2 \in \frac{3}{3}$ $\frac{-2}{3}$ $\frac{2$

(4) 对方程 $f(x) = x^4 + 4x^3 + 2x^2 + 1 = 0$,令 $f'(x) = 4x^3 + 12x^2 + 4x = 0$,可得 驻点 $x_1 = 0, x_2 = \frac{-3 + \sqrt{5}}{2}, x_3 = \frac{-3 - \sqrt{5}}{2}$. 这 3 个点将实轴划分为 4 个区间,各区间的变化规律如下表所示.

\overline{x}	$(-\infty, \frac{-3-\sqrt{5}}{2})$	$\frac{-3-\sqrt{5}}{2}$	$\left(\frac{-3-\sqrt{5}}{2}, \frac{-3+\sqrt{5}}{2}\right)$	$\frac{-3+\sqrt{5}}{2}$	$\left(\frac{-3+\sqrt{5}}{2},0\right)$	0	$(0,+\infty)$
f'(x)	_	0	+	0	_	0	+
f(x)	\searrow	_	7	+	\searrow	+	7
隔根区间			$\left(\frac{-3-\sqrt{5}}{2}, \frac{-3+\sqrt{5}}{2}\right)$				

可知方程有 1 个实根,隔根区间为 $(\frac{-3-\sqrt{5}}{2},\frac{-3+\sqrt{5}}{2})$.

2. $x^* \in [3,4]$,要使 $|x^* - x_n| \le 10^{-2}$,则要 $\frac{1}{2^{n+1}}(b-a) = \frac{1}{2^{n+1}} \le 10^{-2}$. 由此解得 $n \ge \frac{2}{\lg 2} - 1 \approx 5.6$,取 n = 6. $f(a_0) < 0, f(b_0) > 0$,按二分法,计算如下:

n	a_n	b_n	x_n	$f(x_n)$
0	3	4	3.5	+
1	3	3.5	3.25	_
2	3.25	3.5	3.375	_
3	3.375	3.5	3.4375	+
4	3.375	3.4375	3.4062	+
5	3.375	3.4062	3.3906	_
6	3.3906	3.4062	3.3984	_

所求近似根为 $x_6 = 3.3984$.

4. 将方程变形为 $x^3 = x^2 + 1$,绘出曲线 $y = x^3$ 和 $y = \frac{10}{8}$ $x^2 + 1$,由图像可知,方程有 1 个实根,隔根区间为 (1, 1.5). 设方程的根为 x^* ,以下判断 4 种迭代格式的 $\frac{4}{2}$ 收敛性.

- (1) $\forall x \in [1.3, 1.6], \varphi(x) = 1 + \frac{1}{x^2} \in [1.3, 1.6], |\varphi'(x)| = 2x^{-3} \le 0.92$. 所以该迭代格式 收敛. 有 $0 < |\varphi'(x^*)| < 1$, 则迭代过程在 x^* 的邻近为线性收敛.
- (2) $\forall x \in [1.3, 1.6], \varphi(x) = \sqrt[3]{1+x^2} \in [1.3, 1.6], |\varphi'(x)| = \frac{2x}{3(1+x^2)^{\frac{2}{3}}} \le 0.6.$ 所以该迭代格式收敛. 有 $0 < |\varphi'(x^*)| < 1$, 则迭代过程在 x^* 的邻近为线性收敛.
- (3) $\forall x \in [1.3, 1.6], \varphi(x) = \frac{1}{\sqrt{x-1}}, |\varphi'(x)| = \frac{1}{2}(x-1)^{-1.5} \ge 1$. 所以该迭代格式发散.
- (4) $\forall x \in [1.3, 1.6], \varphi(x) = \sqrt{x^3 1}, |\varphi'(x)| = \frac{3x^2}{2\sqrt{x^3 1}} \ge 1.$ 所以该迭代格式发散.

收敛最快的迭代格式为 (2). 迭代时,若 $|x_k-x_{k-1}|<\varepsilon$,则近似解 x_k 有误差估计为 $|x^*-x_k|\leq \frac{L}{1-L}\varepsilon=1.5\varepsilon$. 为使有效数字达到 4 位,即误差小于 0.0005,将控制迭代结束的条件取为 $|x_k-x_{k-1}|\leq 0.0003$. 计算得迭代序列为 1.4,1.43581,1.45205,1.45942,1.46277,1.4643,1.46499,1.46531,1.46545,近似根即为 1.46545.

5. 绘出曲线 y = x 和 $y = 10^x - 2$,由图像可知,方程有 2 个实根,分别为 $x_1 \in (-2.5, -1.5), x_2 \in (0, 0.5)$.

(1) 选用迭代格式为 $x=10^x-2$, $\forall x\in[-2,-1.9]$, $\varphi(x)=10^x-2\in[-2,-1.9]$, $|\varphi'(x)|=10^x\ln 10\le 0.03$. 所以该迭代格式收敛. 有 $0<|\varphi'(x^*)|<1$,则迭代过程在 x^* 的邻近为线性收敛. 迭代时,若 $|x_k-x_{k-1}|<\varepsilon'$,则近似解 x_k 有误差估计为 $|x^*-x_k|\le \frac{L}{1-L}\varepsilon'\le 0.031\varepsilon'$. 为使误差小于 $\varepsilon=10^{-6}$,将控制迭代结束的条件取为 $|x_k-x_{k-1}|\le 0.0001$. 计算得迭代序列为-2,-1.99,-1.98976707,-1.98976158,近似根即为-1.98976158.

- (2) 选用迭代格式为 $x = \lg(2+x)$, $\forall x \in [0,0.5]$, $\varphi(x) = 10^x 2 \in [0,0.5]$, $|\varphi'(x)| = \frac{1}{(2+x)\ln 10} \le 0.22. \text{ 所以该迭代格式收敛.} \quad \text{有 } 0 < |\varphi'(x^*)| < 1, \text{ 则迭 代过程在 } x^* \text{ 的邻近为线性收敛. 迭代时,若 } |x_k x_{k-1}| < \varepsilon', \text{ 则近似解 } x_k \text{ 有 误差估计为 } |x^* x_k| \le \frac{L}{1-L} \varepsilon' \le 0.283 \varepsilon'. \text{ 为使误差小于 } \varepsilon = 10^{-6}, \text{ 将控制迭代结束的条件取为 } |x_k x_{k-1}| \le 0.00001. 计算迭代序列为 0,0.30103, 0.36192228, 0.37326560, 0.37534634, 0.37572694, 0.37579652, 0.37580924, 0.37581156, 近似根即为 0.37581156.$
- 7. (1) 此迭代格式的迭代函数为 $\varphi(x) = \frac{1}{2}(x + \frac{a}{x})$,则 $\varphi'(x) = \frac{1}{2}(1 \frac{a}{x^2}), \varphi'(\sqrt{a}) = 0, \varphi''(x) = \frac{a}{x^3}, \varphi''(\sqrt{a}) = \frac{1}{\sqrt{a}} \neq 0$,所以该格式为 2 阶收敛.
 - (2) 此迭代格式的迭代函数为 $\varphi(x) = \frac{1}{3}(x + \frac{8ax}{a + 3x^2})$. 将 $\varphi(x)$ 看作由 $(a + 3x^2)[3\varphi(x) x] 8ax = 0$ 确定的隐函数,方程两边对 x 求导得 $6x[3\varphi(x) x] + [3\varphi'(x) 1](a + 3x^2) 8a = 0$. 令 $x = \sqrt{a}$,可得 $\varphi'(\sqrt{a}) = 0$. 上式两边再对 x 求导,得 $2[3\varphi(x) x] + 4x[3\varphi'(x) 1] + \varphi''(x)(a + 3x^2) = 0$. 令 $x = \sqrt{a}$,可得 $\varphi''(\sqrt{a}) = 0$. 上式两边再对 x 求导,得 $2[3\varphi'(x) 1] + 4[3\varphi'(x) 1] + 18x\varphi''(x) + \varphi'''(x)(a + 3x^2) = 0$. 令 $x = \sqrt{a}$,可得 $\varphi'''(\sqrt{a}) = \frac{3}{2a} \neq 0$,所以该格式为 3 阶收敛.
- 9. 取 (a,b) 内一个包含根的单调区间,取 $\varphi(x)$ 的反函数 $\varphi^{-1}(x)$,则 $|[\varphi^{-1}(x)]'| \leq \frac{1}{M} \leq$ 1. 将方程 $x = \varphi(x)$ 中 x 替换为 $\varphi^{-1}(x)$,得 $x = \varphi^{-1}(x)$,即为适于迭代的形式. 取 x = 4.5 附近 $x = \tan x$ 的反函数,得到迭代格式为 $x = \arctan x + \pi$,计算得迭代序列为 4.5,4.4937,4.4934,近似根即为 4.4934.
- 10. (1) $x^k a = 0$,牛顿迭代格式为 $x_{n+1} = \frac{(k-1)x_n^k + a}{kx_n^{k-1}}$.

 (2) $1 \frac{a}{x^k} = 0$,牛顿迭代格式为 $x_{n+1} = \frac{(k+1)ax_n x_n^{k+1}}{ak}$. $k = 3, a = 75, x_0 = 4$,选用迭代格式 (1),迭代得 $x_1 = 4.22916667, x_2 = 4.21719736,$ $x_3 = 4.21716333, x_4 = 4.21716333$,故 $\sqrt[3]{75} \approx 4.21716333$.

- 15. 设 x^* 为方程 f(x) = 0 的 m ($m \ge 2$) 重根,则 $f(x) = (x x^*)^m g(x)$,其中 $g(x^*) \ne 0$. 该迭代格式的迭代函数为 $\varphi(x) = x m \frac{f(x)}{f'(x)}$. 求导,并有在 $x = x^*$ 附近 $f(x) = g(x^*)(\Delta x)^m + g'(x^*)(\Delta x)^{m+1} + o[(\Delta x)^{m+1}]$,其中 $\Delta x = x x^*$,则 $\varphi'(x) = 1 m + m \frac{f(x)f''(x)}{f'^2(x)} = 1 m + m \frac{[g(x^*) + g'(x^*)\Delta x + o(\Delta x)][m(m-1)g(x^*) + m(m+1)g'(x^*)\Delta x + o(\Delta x)]}{[mg(x^*) + (m+1)g'(x^*)\Delta x + o(\Delta x)]^2} = \frac{2(m+1-m^2)g'(x^*)}{g(x^*)}\Delta x + o(\Delta x)$,式中用到了分式的展开 $\frac{A+B\Delta x + o(\Delta x)}{C+D\Delta x + o(\Delta x)} = \frac{A}{C} + \frac{BC-AD}{C^2}\Delta x + o(\Delta x)$. 求导,可知 $\varphi''(x^*) = \frac{2(m+1-m^2)g'(x^*)}{g(x^*)}$. 式中 $m+1-m^2 < 0$,而 $g'(x^*)$ 不一定为 0,所以 $\varphi''(x^*)$ 不一定为 0,该迭代格式具平 方收敛.
- **20.** (1) $x_0 = 3, x_2 = 3.142547, x_3 = 3.141593, x_4 = 3.141593.$ 此公式可用于求 π .
 - (2) $R=1: x_0=1, x_1=0.837278, x_2=0.78818, x_3=0.785406, x_4=0.785398;$ $R=\sqrt{3}: x_0=1, x_1=1.05098, x_2=1.04722, x_3=1.0472, x_4=1.0472.$ 此公式可用于求 $\arctan R$.