## CS146 #3



## Create your own probability distribution.

I chose to go with the poisson distribution. the support is all natural numbers N, and 0 for K. i.e.

 $k \in \mathbb{N} \cup 0$ 

```
Lambda <-7
K = 0:10
PDF<-round(dpois(K,lambda = Lambda),3)
plot(PDF, col="blue", type="b")</pre>
```



#### Will your pdf have one mode or multiple modes?

One, over Lambda.

Will it be skew or symmetric? It is skewed because of the vector I decided to draw (1:20) which is not symmetric in relation to the mean (or Lambda).

#### Where will most of the probability mass be?

```
plot(PDF, col="blue", type="b")
most_mass <- qpois(0.51, lambda = Lambda, lower.tail = TRUE)
most_mass</pre>
```

```
[1] 7
```

```
abline(v=most_mass,col="red")
```



We can observe that exactly half of the mass is left to the red line, and in interval o to:

Hide

 ${\tt most\_mass}$ 

[1] 7

#### What are the parameters of your distribution?

Hide

# The parameter is K, which describes some known mean, or average rate in a given volume/time. K

[1] 0 1 2 3 4 5 6 7 8 9 10

## (Optional) Stretch goal: write R functions for the cdf, pdf, qf and random samples from your distribution.

Hide

```
Lambda = 10
K=10
#the CDF function, instead of using ppois:
sum(dpois(0:K,Lambda))
```

# 3.2 Derive the posterior distribution, including its parameter values, from an exponential likelihood function with a gamma prior over the exponential parameter $\lambda$ , and with data $y_i$ for i = 1, 2, ..., n.

Given: posterior is proportional to exponential\_pdf\_likelihood \* gamma\_pdf\_prior.

exponential\_pdf\_likelihood =

$$\lambda e^{-\lambda y(i...n)}$$

gamma\_pdf\_prior. =

$$\frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha - 1} e^{-\beta y}$$

Therefore the posterior for  $\lambda$  with data  $y_i$  for i = 1, 2, ..., n. is:

$$\lambda e^{-\lambda(y_1 + \dots y_n)} \times \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha - 1} e^{-\beta \lambda}$$

Which is proportional to:

$$\lambda^n e^{-\lambda y(i...n)} \times (\lambda^{\alpha-1} e^{-\beta\lambda})$$

Further simplification:

$$\lambda^{n+\alpha-1}e^{-\lambda y(i...n)-\beta\lambda}$$

$$\lambda^{n+\alpha-1}e^{-\lambda(y(i...n)+\beta)}$$

which is the Gamma, with parameters:

$$\alpha + n$$

$$\sum_{n=i}^{n} yi + \beta$$