GESIS Leibniz Institute for the Social Sciences

Open Methodology in practice: Reproduzierbare Forschung mit R

Dr. Tobias Heycke 27.06.2019

Gesis Leibniz Institute for the Social Sciences

Part 1: Introduction

Schedule

- General information about me
- Some general information about the course
- Who are you?
- Why reproducible research?
- Coding rules
- RStudio

Gesis Leibniz Institute for the Social Sciences

About me

- B.Sc./M.Sc. Psychology, Radboud University Nijmegen
- In the Netherlands during 'Stapel-Gate'
- Ph.D. Psychology, University of Cologne
- Teaching statistics and methods since 2013
- Adversarial collaborations with a number of researchers
- First registered report published in 2017
- First registered replication published in 2018

The course: schedule

Today:

- 10.00 18.00 o'clock
- break at 13.00 o'clock
- starting at 18.00 o'clock: wine & cheese

Tomorrow:

- 9.00 16.00 o'clock
- break at 12.30 o'clock

Feeback system

Red post-it: I need help Green post-it: I finished the task

Slides & Material

You can find all slides and additional materials here:

https://github.com/TobiasHeycke/reproduzierbare_forschung_pub

The course: lunch

Today: N1 Lounge, Who wants to join?

Tomorrow: Burrito Baby, Who want to join?

The course: goals

- clean programming
- markdown
- git

Important note

If you do not know how to solve a task? google it!

GESIS Leibniz Institute for the Social Sciences

Who are you?

Who are you?

- Where are you from?
- Expectations?

Software we need

- \blacksquare R
- R Studio
- git
- MiKTeX (windows)

GESIS Leibniz Institute for the Social Sciences

Reproducible analyses

Different Reproducibilities

- Empirical Reproducibility
- Computational Reproducibility
- Statistical Reproducibility
- (Replication)
- Plus: machine vs. human readability

My master thesis folder

- ad_follow_upanalysis_b_weights
- analysis_01
- coefficien_analysis_for_high_low_attractiveness
- coefficient_Zattr_high
- @coefficient_Zattr_low
- acoefficient01
- acoefficient02
- @coefficient02_for_RM_analysis01
- acoefficient02_for_RM_analysis02
- coefficient03
- @coefficients_different0_no_between_subject_factor_split
- coefficients_dv_standadized_without_main_attr
- acoefficients_dv_standadized_without_main_attr_high_attr
- coefficients dv standadized without main attr low attr
- accoefficients dv standadized without main attr story type split
- accoefficients_dv_standadized_without_main_attr_story_type_split_for_RM_mood
- accoefficients_dv_standadized_without_main_attr_story_type_split_high_attr2
- @coefficients_dv_standadized_without_main_attr_story_type_split_low_attr2
- ata_dv_all_cleaned
- data_dv_all_cleaned_02
- adata_dv_all_cleaned_03
- ata_dv_all_cleaned_04
- adata_dv_all_cleaned_05
- ata_dv_cub10
- ata_dv_cub10_cleaned
- ata_dv_cub14

- adata_dv_cub14_cleaned
- ata_dv_cub17
- ata_dv_cub17_cleaned
- ata_dv_RM_ANOVA01
- ata_dv_RM_ANOVA02
 data_dv_RM_ANOVA02_1
- graph RM category effect
- graph_RM_category_effect
- holm_bonferroni_correction_of_sign_t_tests
- @Output_condition_on_b_weights_repeated_GLM
- Poutput_outlier_removed_category_effect_analysis
- autput_volgorder_effect
- eprepare_data_set01
- @re_analyse_all_without_attr_main
- repated_measure_category_recode_variable
- earepated_measure_category_recode_variable_and_ar
- repeated_for_category_with
- repeated measures on b weights
- ____repeated_measures_syntax_without_uotliers
- response_pattern
- RM_ANOVA_category_restructured
- → volgorder_effect)syntax

My master thesis folder

data_dv_cub14_cleaned Adata dy cub17

analysis 01 accefficien analysis for high low attractiveness @coefficient_Zattr_high coefficient Zattr low and coefficients accetticient(2) accefficient02 for RM analysis01 @coefficient02 for RM analysis02 accefficient(3) accefficients different0 no between subject factor split coefficients de standadized without main attr accefficients dy standadized without main attr high attr accefficients_dv_standadized_without_main_attr_low_attr accefficients_dv_standadized_without_main_attr_story_type_split accefficients dv. standadized_without_main_attr_story_type_split_for_RM_mood coefficients dy standadized without main attr story type solit high attr2 @coefficients_dv_standadized_without_main_attr_story_type_split_low_attr2 adata dy all cleaned adata dv all cleaned 02 and the all represent the adata dv all cleaned 04 adata dv. all cleaned 05 Gridata de cubito. adata dv cub10 cleaned adata_dv_cub14

ad follow_upanalysis_b_weights

repeated_measures_on_b_weights repeated_measures_syntax_without_uotliers response pattern RM_ANOVA_category_restructured

adata dv cub17 cleaned ata_dv_RM_ANOVA01 Adeta dy RM ANGVAGZ adata dv RM ANOVA02 1 and any RM category effect in holm_bonferroni_correction_of_sign_t_tests Output condition on b weights repeated GLM Cutout outlier removed category effect analysis autout volgorder effect prepare_data_set01 re analyse all without attrimain repated measure category recode variable arepated measure_category_recode_variable_and_ar repeated for category with mood without outliers repeated measures anova

volgorder effect)syntax

Within participant regression analyses were computed using the standardized uses of and argume), the recomplicality of the every (interception) and ornaine interception) and all products of these variables, except the interaction terms with attractiveness?, as prediction against zero with a t-test to use if a variable was a productor of the coting given to the face $\ensuremath{\sigma}$

African American floor group, 45(1) = 1,140, so, was a significant interaction between valence

Errors happen I

"Our main finding is that [...] high debt/GDP levels [...] are associated with notably lower growth outcomes."

"At the very minimum, this would suggest that traditional debt management issues should be at the forefront of public policy concerns."

Reinhard & Rogoff (2010)

Errors happen I

"We replicate Reinhart and Rogoff (2010a and 2010b) and find that coding errors, selective exclusion of available data, and unconventional weighting of summary statistics lead to serious errors that inaccurately represent the relationship between public debt and GDP growth"

Herndon, Ash, & Pollin (2014)

Reproducing own work

Source: https://twitter.com/massimo006/status/1128604521209442306

Errors in statistical reporting

250,000 p-values checked (in eight major psychology journals)

Nuijten, Hartgerink, van Assen, Epskamp, & Wicherts, 2016

Errors in statistical reporting

- 250,000 p-values checked (in eight major psychology journals)
- appr. 50 % of papers contained at least one inconsistency between p-value and test statistic

Nuijten, Hartgerink,van Assen, Epskamp, & Wicherts, 2016

Errors in statistical reporting

- 250,000 p-values checked (in eight major psychology journals)
- appr. 50 % of papers contained at least one inconsistency between *p*-value and test statistic
- appr. 12 % of papers contained a major inconsistency

Nuijten, Hartgerink, van Assen, Epskamp, & Wicherts, 2016

Science vs.Pseudo-Science

"An article about computational results is advertising, not scholarship. The actual scholarship is the full software environment, code and data, that produced the result."

Claerbout & Karrenbach, 1992

Gesis Leibniz Institute for the Social Sciences

Coding in general

Sources

- Weniger schlecht programmieren (Passig & Jander)
- Google style guide for R (https://google.github.io/styleguide/Rguide.xml)
- Hardley Wickham style guide (http://adv-r.had.co.nz/Style.html)

The goal of this section

- Human readability!
- You will create coding rules for yourself after my introduction

Gesis Leibniz Institute for the Social Sciences

Style Guide/ Clean coding

Be consistent!

Three basic rules (Kernighan & Pike, 1999):

- simplicity (short and manageable)
- clarity (easy to understand)
- generality (work well in broad range of situations)

DRY (Don't repeat yourself), Wilson et al. 2014

■ Use relative paths! (e.g., here, Rproj)

- Use relative paths! (e.g., here, Rproj)
- Never type anything that you can obtain from a saved result

- Use relative paths! (e.g., here, Rproj)
- Never type anything that you can obtain from a saved result
- One main file: call R/Rmd files from main file

- Use relative paths! (e.g., here, Rproj)
- Never type anything that you can obtain from a saved result
- One main file: call R/Rmd files from main file
- Order in file: first definitions, then functions, then executable code

■ Language should be English (US) for everything

- Language should be English (US) for everything
- Number of characters per line = 80

- Language should be English (US) for everything
- Number of characters per line = 80
- Don't show your superiority/cleverness

Clean coding IV

Clean coding IV

- = VS. ->
- Spacing around operators (except :) and ->

Clean coding IV

- = VS. ->
- Spacing around operators (except :) and ->
- Indentation (try Ctrl + i in R Studio)

Clean coding V

 Curly brackets: opening curly brace should never go on its own line; a closing curly brace should always go on its own line (except else)

Clean coding V

- Curly brackets: opening curly brace should never go on its own line; a closing curly brace should always go on its own line (except else)
- Where should the comma go in a function call when using multiple lines?

GESIS Leibniz Institute for the Social Sciences

Variable notation

Variable notation I

■ Be consistent!

Variable notation I

- Be consistent!
- Variable names should be nouns and function names should be verbs

Variable notation I

- Be consistent!
- Variable names should be nouns and function names should be verbs
- Boolean: start name with 'is'

Variable notation II

Variable writing: CamelCase or camelCase or pothole_case or this.case or likethis?

Variable notation II

- Variable writing: CamelCase or camelCase or pothole_case or this.case or likethis?
- Not too similar (InternationRefTemplate vs. InternationalRefTemplate)

Variable notation II

- Variable writing: CamelCase or camelCase or pothole_case or this.case or likethis?
- Not too similar (InternationRefTemplate vs. InternationalRefTemplate)
- Differences in names in the beginning of them

Variable notation III

Don't show your superiority/cleverness

Variable notation III

- Don't show your superiority/cleverness
- i and j for loop counters

Variable notation III

- Don't show your superiority/cleverness
- i and j for loop counters
- Don't use names already defined (e.g., data)

Gesis Leibniz Institute for the Social Sciences

Comments

Comments I

■ Be consistent!

Comments I

- Be consistent!
- Don't repeat the code in different words (code should be written well enough already)

Comments I

- Be consistent!
- Don't repeat the code in different words (code should be written well enough already)
- Explain the goal & context for the code

Comments II

Don't forget to change comments when you change the code

Comments II

- Don't forget to change comments when you change the code
- Use TODO or todo to mark spots that still need your attention (e.g., when commenting out parts of the code)

GESIS Leibniz Institute for the Social Sciences

Information at top of document

Additional information I

date

Additional information I

- date
- name of file

Additional information I

- date
- name of file
- corresponding author and contact

Additional information II

■ List of software necessary to run code (including OS)

Additional information II

- List of software necessary to run code (including OS)
- List of necessary packages (and version numbers)

Additional information III

The following could also be included in an additional read me file

■ Folder structure necessary

Additional information III

The following could also be included in an additional read me file

- Folder structure necessary
- What data is needed (where)

Additional information III

The following could also be included in an additional read me file

- Folder structure necessary
- What data is needed (where)
- Context/description (e.g., journal article)

Gesis Leibniz Institute for the Social Sciences

Folder structure

A uniform folder structure can help you find items in older projects.

As with most previous points, you should choose whatever works best for you.

■ Be consistent!

A uniform folder structure can help you find items in older projects.

As with most previous points, you should choose whatever works best for you.

- Be consistent!
- File and folder naming: use a-z, 0-9 and underscore

A uniform folder structure can help you find items in older projects.

As with most previous points, you should choose whatever works best for you.

- Be consistent!
- File and folder naming: use a-z, 0-9 and underscore
- No blank spaces in file or folder names

A uniform folder structure can help you find items in older projects.

As with most previous points, you should choose whatever works best for you.

- Be consistent!
- File and folder naming: use a-z, 0-9 and underscore
- No blank spaces in file or folder names
- Names: simple, as short as possible, as long as necessary

A possible structure could be one of these:

e.g., folders: data, fig, lit, org, pub, src

Folder structure II

A possible structure could be one of these:

- e.g., folders: data, fig, lit, org, pub, src
- e.g., folders: code, documentation, inputs, outputs

Folder structure II

A possible structure could be one of these:

- e.g., folders: data, fig, lit, org, pub, src
- e.g., folders: code, documentation, inputs, outputs
- e.g., folders: data, experiments, material, paper, presentations

Task I

Create your own style guide!

See my_coding_style.docx in the handout folder.

Send the guide to: ${\tt Claudia.ODonovan-Bellante@gesis.org}$

Gesis Leibniz Institute for the Social Sciences

General reproducibility tips

General reproducibility tips

- R Studio
- Loading packages
- Loading data

R Studio

IDE for R, not necessary but helpful

The following should also be installed:

- MixTeX (full version, win only, instructions: https://tobiasheycke.github.io/pages/fullmiktex.html)
- Add-in: citr
- packages (rmarkdown, devtools, papaja)

Set up R Studio

- save utf-8 (Tools > Global Options > Code > Saving)
- set up terminal (Shift+Alt+T, Tools > Global Options > Terminal > Shell > Git Bash)
- set up color scheme (optional, Tools > Global Options > Appearance)
- set up 80 character vertical line (optional, Tools > Global Options > Code > Display)
- R projects

Loading packages

All packages should to be loaded in the beginning of the script (first chunk)

Helpful function: pacman

```
all_packages <- c("papaja", "afex", "tidyr")
if(!require("pacman")) stop("Please install the 'pacman'
pacman::p_load("papaja", "afex", "tidyr")</pre>
```


Loading data I

- Ideally script should use raw data files
- If preparing data takes too long: cache processed data
- Either use chunk options (see later)
- Or save processed data as csv/Rdata and have Boolean in beginning of script to decide whether to use raw or processed data

Loading data II

Manual caching example:

Loading data III

If you use personally distributed data sets (e.g., large surveys):

■ use md5 checksums to test if data sets are identical

Task II

Write a function that tests if a data set has the same md5 checksum as a provided sum

Tip: tools::md5sum()

You can test the function using the file: example_data.csv

Gesis Leibniz Institute for the Social Sciences

End of part I

