Vector Analysis

Check sakia for proof of this thoerem

THEOREM 1.1.4

 $Proof^1$

$$F, G: \mathbb{R}^n \to \mathbb{R}^m, g: \mathbb{R}^n \to \mathbb{R}$$

1. $\vec{F}(\vec{x}) \cdot \vec{G}(\vec{x}))' = \vec{F}^T(\vec{x}) \cdot \vec{G}'(\vec{x}) + \vec{G}^T(\vec{x}) \cdot \vec{F}'(\vec{x})$ Product rule (check with 1 by 1 matrix)

2.
$$(g(x)F(x))' = g(x)F'(x) + F(x) \cdot g(x)$$

DIRIVATIVES OF VECTOR FUNCTIONS

 $\vec{F}(a+h) = \vec{F}(\vec{a}) + \vec{F}'(a) \cdot h$ for small enough h²

1.
$$F(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \dots \\ f_n(x) \end{pmatrix}$$

2. $f_1(a+h) = f_1(a_1+h_1, a_2+h_2) + \frac{\partial F}{\partial x_1}(a_1, a_2+h_2,, a_n+h_n)h_1 + O(h_1^2)^3$ Now use Tayloar around $h_2O(2)$ is ignored

3. $F(a_1, a_2a_3...a_n) + \frac{\partial f_1}{\partial x_1}(a_1, a_2, a_3 + h_3...1n)h_1 + \frac{\partial f_2}{\partial x_2}(a_1, a_2, a_3 + h_3, ...a_n + h_n) + \frac{\partial f_n}{\partial x_n}(a_1...a_n)h_n$

$$F(a+h) = [F1(a+h)...]^T = [f1(a) + f1(a) \cdot h...]^t + O(h^2) = F(a) + F'(a) \cdot h$$

$$F(a) = [f(a+h)...]^T = [f(a) + f(a) \cdot h...]^t + O(h^2) = F(a) + F'(a) \cdot h$$

 $frac\partial F1x_1(a)][h1,h2]^t$ Gradient : The gradient of a function $f:\mathbb{R}^n\to\mathbb{R}$ is written ∇

$$\nabla f \neq][$$

¹product rule

²from taylor expansion with small |h|

³Taylor