Exercices 2 solutions

TABLE DES MATIÈRES

1	Convexity			
	1.1	C1	1	
		1.1.1 Enoncé	1	
		1.1.2 Solution	1	
	1.2	C2	2	
		1.2.1 Enoncé	2	
		1.2.2 Solution	2	
	1.3	C ₃	2	
		1.3.1 Enoncé	2	
		1.3.2 Solution	2	
	1.4	C4	2	
		1.4.1 Enoncé	2	
		1.4.2 Solution	2	
	1.5	$C_5 \dots C_5$	3	
		1.5.1 Enoncé	3	
		1.5.2 Solution	3	
2	Logistic regression			
	2.1	L1	4	
		2.1.1 Enoncé	4	
		2.1.2 Solution	4	
	2.2	L2	4	
		2.2.1 Enoncé	4	
		2.2.2 Solution	4	

1 CONVEXITY

1.1 C1

1.1.1 Enoncé

Show that all norms are convex.

1.1.2 Solution

 $\alpha \in [0,1]$

$$\|\alpha x + (1 - \alpha)y\| \le \|\alpha x\| + \|(1 - \alpha)y\|$$

= $\alpha \|x\| + (1 - \alpha)\|y\|$ (1)

1.2 C2

1.2.1 Enoncé

 $x \mapsto \theta^T x$ is convex on \mathbb{R}^d with $\theta \in \mathbb{R}^d$ (linear form)

1.2.2 Solution

$$\theta^{\mathsf{T}}(\alpha x + (1 - \alpha)y) = \alpha \theta^{\mathsf{T}} x + (1 - \alpha)\theta^{\mathsf{T}} y \tag{2}$$

1.3 C3

1.3.1 Enoncé

if Q is a symmetric definite positive matrix (matrice définie positive) with smallest eigenvalue $\lambda_{\min} > 0$, then $x \mapsto x^T Qx$ is $2\lambda_{\min}$ - strongly convex.

1.3.2 Solution

Let $\mu = 2\lambda_{\min}$.

We want to show that

$$(\alpha x + (1-\alpha)y)^TQ(\alpha x + (1-\alpha)y) \leqslant \alpha x^TQx + (1-\alpha)y^TQy - \frac{\mu}{2}\alpha(1-\alpha)\|x-y\|^2 \ \ (3)$$

which means

$$(\alpha x + (1 - \alpha)y)^{\mathsf{T}} Q(\alpha x + (1 - \alpha)y) - \alpha x^{\mathsf{T}} Qx - (1 - \alpha)y^{\mathsf{T}} Qy \leqslant -\frac{\mu}{2} \alpha (1 - \alpha)||x - y||^{2}$$

$$\tag{4}$$

We compute the left-hand side :

$$\begin{split} &(\alpha x + (1-\alpha)y)^{\mathsf{T}}Q(\alpha x + (1-\alpha)y) - \alpha x^{\mathsf{T}}Qx + (1-\alpha)y^{\mathsf{T}}Qy \\ &= \alpha^{2}x^{\mathsf{T}}Qx + (1-\alpha)^{2}y^{\mathsf{T}}Qy + \alpha(1-\alpha)(x^{\mathsf{T}}Qy + y^{\mathsf{T}}Qx) - \alpha x^{\mathsf{T}}Qx - (1-\alpha)y^{\mathsf{T}}Qy \\ &= \alpha(\alpha-1)x^{\mathsf{T}}Qx + (1-\alpha)((1-\alpha)-1)y^{\mathsf{T}}Qy + \alpha(1-\alpha)(x^{\mathsf{T}}Qy + y^{\mathsf{T}}Qx) \\ &= \alpha(\alpha-1)x^{\mathsf{T}}Qx + \alpha(\alpha-1)y^{\mathsf{T}}Qy + \alpha(1-\alpha)(x^{\mathsf{T}}Qy + y^{\mathsf{T}}Qx) \\ &= \alpha(1-\alpha)\left(-x^{\mathsf{T}}Qx - y^{\mathsf{T}}Qy + x^{\mathsf{T}}Qy + y^{\mathsf{T}}Qx\right) \\ &= -\alpha(1-\alpha)\left((x-y)^{\mathsf{T}}Q(x-y)\right) \\ &\leq \lambda_{\min}\alpha(1-\alpha)||x-y||^{2} \end{split}$$

$$(5)$$

1.4 C4

1.4.1 Enoncé

If f is increasing and convex and g is convex, then $f \circ g$ is convex.

1.4.2 Solution

Since g is convex,

$$g(\alpha x + (1 - \alpha)y) \leqslant \alpha g(x) + (1 - \alpha)g(y) \tag{6}$$

Since f is increasing,

$$f(g(\alpha x + (1 - \alpha)y)) \leqslant f(\alpha g(x) + (1 - \alpha)g(y)) \tag{7}$$

Since f is convex,

$$f(\alpha g(x) + (1 - \alpha)g(y)) \leqslant \alpha(f(g(x)) + (1 - \alpha)f(g(y))$$
(8)

Finally,

$$(f \circ g)(\alpha x + (1 - \alpha)y)) \leqslant \alpha(f \circ g)(x)) + (1 - \alpha)(f \circ g)(y) \tag{9}$$

1.5 C5

1.5.1 Enoncé

Is f in convex and g is linear, then $f \circ g$ is convex.

1.5.2 Solution

$$\begin{split} (f \circ g)(\alpha x + (1 - \alpha)y) &= f(g(\alpha x + (1 - \alpha)y)) \\ &= f(\alpha g(x) + (1 - \alpha)g(y)) \\ &\leqslant \alpha f(g(x)) + (1 - \alpha)f(g(y)) \end{split} \tag{10}$$

2 LOGISTIC REGRESSION

Definition 1. Cross entropy loss

$$\iota:\mathbb{R}^2\to\mathbb{R}$$

$$l(\hat{y}, y) = y \log(1 + e^{-\hat{y}}) + (1 - y) \log(1 + e^{\hat{y}})$$
(11)

Definition 2. Sigmoid function

 $\sigma:\mathbb{R}\to\mathbb{R}.$

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{12}$$

2.1 L1

2.1.1 Enoncé

Show that σ is differentiable and that

$$\forall z, \sigma'(z) = \sigma(z)\sigma(-z) \tag{13}$$

2.1.2 Solution

$$\sigma'(z) = \left(-\frac{1}{(1+e^{-z})^2}\right)\left(-e^{-z}\right)$$

$$= \frac{1}{1+e^{-z}} \frac{e^{-z}}{1+e^{-z}}$$

$$= \frac{1}{1+e^{-z}} \frac{e^{-z}e^z}{(1+e^{-z})e^z}$$

$$= \frac{1}{1+e^{-z}} \frac{1}{1+e^z}$$

$$= \sigma(z)\sigma(-z)$$
(14)

2.2 L2

2.2.1 Enoncé

Show that $l(\hat{y}, y)$ is convex in its first argument, which means for fixed $y, \hat{y} \mapsto$ $l(\hat{y}, y)$ is convex.

2.2.2 Solution

We compute the second order derivative.

$$\begin{split} \frac{\partial l}{\partial \hat{y}}(\hat{y},y) &= \frac{-ye^{-\hat{y}}}{1+e^{-\hat{y}}} + \frac{(1-y)e^{\hat{y}}}{(1+e^{\hat{y}})} \\ &= \frac{-ye^{-\hat{y}}}{1+e^{-\hat{y}}} + \frac{(1-y)e^{\hat{y}}e^{-\hat{y}}}{(1+e^{\hat{y}})e^{-\hat{y}}} \\ &= \frac{-ye^{-\hat{y}}}{1+e^{-\hat{y}}} + \frac{1-y}{1+e^{-\hat{y}}} \\ &= \frac{1}{1+e^{-\hat{y}}} - y\frac{1+e^{-\hat{y}}}{1+e^{-\hat{y}}} \\ &= \sigma(\hat{y}) - y \end{split}$$
(15)

Hence, the second-order derivative is strictly positive, and $l(\hat{y}, y)$ is strictly convex in its first argument.

 $= \sigma(\hat{y})\sigma(-\hat{y})$