Discrete Structures and Theory of Logic Lecture-20

Dharmendra Kumar July 26, 2020

Exercise

- 1. In the symmetric group S_3 , find all those elements a and b such that
 - (a) $(a * b)^2 \neq a^2 * b^2$
 - (b) $a^2 = e$
 - (c) $a^3 = e$
- 2. Show that in a group (G,o), if for any a,b \in G, $(aob)^2 = a^2ob^2$, then (G,o) must be abelian.
- 3. Show that every cyclic group of order n is isomorphic to the group $(Z_n, +_n)$.
- 4. Find all the subgroups of following groups:-

(a)
$$(Z_{12}, +_{12})$$
 (b) $(Z_5, +_5)$ (c) (Z_7^*, \times_7) (d) (Z_{11}^*, \times_{11})

1

(1) Let $p_1, p_2, p_3, p_4, p_5, p_6$ are the elements of S_3 .

$$p_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, p_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, p_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$p_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, p_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, p_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

The composition table for S_3 with respect to multiplication operation is the following:-

*	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	p_5	<i>p</i> ₆
p_1	 p₁ p₂ p₃ p₁4 p₅ 	p_2	<i>p</i> ₃	<i>p</i> ₄	p_5	<i>p</i> ₆
p_2	p_2	p_1	p_5	p_6	<i>p</i> ₃	<i>p</i> ₄
p_3	<i>p</i> ₃	p_6	p_1	p_5	p_4	p_2
<i>p</i> ₄	<i>p</i> ₁ 4	p_5	<i>p</i> ₆	p_1	p_2	<i>p</i> ₃
p_5	p_5	p_4	p_2	p_3	p_6	p_1
p_6	<i>p</i> ₆	<i>p</i> ₃	<i>p</i> ₄	p_2	p_1	<i>p</i> ₅

(1-a) In this part, we have to find elements a and b of S_3 which satisfy equation (1).

$$(a*b)^2 \neq a^2*b^2$$
 (1)

Consider, $a = p_2$ and $b = p_3$.

Now, LHS =
$$(a * b)^2 = (p_2 * p_3)^2 = p_5^2 = p_6$$

$$RHS = a^2 * b^2 = p_2^2 * p_3^2 = p_1 * p_1 = p_1$$

Clearly,
$$(a*b)^2 \neq a^2*b^2$$
 for $a = p_2$ and $b = p_3$.

Similarly, Consider, $a = p_2$ and $b = p_4$.

Now, LHS =
$$(a*b)^2 = (p_2*p_4)^2 = p_6^2 = p_5$$

$$RHS = a^2 * b^2 = p_2^2 * p_4^2 = p_1 * p_1 = p_1$$

Clearly,
$$(a*b)^2 \neq a^2*b^2$$
 for $a = p_2$ and $b = p_4$.

Similarly, following pairs of a and b are also satisfied.

- $a = p_2$ and $b = p_5$
- $a = p_2$ and $b = p_6$
- $a = p_3$ and $b = p_4$
- $a = p_3$ and $b = p_5$
- $a = p_3$ and $b = p_6$
- $a = p_4$ and $b = p_5$
- $a = p_4$ and $b = p_6$

(1-b) In this part, we have to find element a of S_3 which satisfy equation (2).

$$a^2 = e$$
(2)

Here, the identity element is $e = p_1$.

Consider,
$$a = p_1$$
. So, $a^2 = p_1^2 = p_1 = e$

Therefore, $a = p_1$ satisfy the equation (2).

Similarly, $a = p_2, p_3, p_4$ also satisfy the equation (2).

(1-c) In this part, we have to find element a of S_3 which satisfy equation (3).

$$a^3 = e$$
(3)

Here, the identity element is $e = p_1$.

Consider,
$$a = p_1$$
. So, $a^3 = p_1^3 = p_1 = e$

Therefore, $a = p_1$ satisfy the equation (3).

Similarly, $a = p_5, p_6$ also satisfy the equation (3).

```
(2) Given (aob)^2 = a^2ob^2, for a,b \in G.

It imply that (aob)o(aob) = (aoa)o(bob)
\Rightarrow ao(bo(aob)) = ao(ao(bob)) \text{ (using associative law)}
\Rightarrow (bo(aob)) = (ao(bob)) \text{ (using left cancellation law)}
\Rightarrow (boa)ob = (aob)ob \text{ (using associative law)}
\Rightarrow (boa) = (aob)(using right cancellation law)
Therefore, the group (G,o) is an abelian group.
```

(3) Let cyclic group(G,o) of order n be generated by an element a \in G. So the elements of G are $a, a^2, a^3, \dots, a^n = e$.

Define $g: Z_n \to G$ such that g([1]) = a. [1] is the generator of $(Z_n, +_n)$. Then $g([j]) = a^j$, for all $j = 0,1,2,3,\ldots,n-1$.

Clearly this function is bijective because each element j is mapped to unique element a^{j} .

Now,
$$g([j]+[k]) = a^{[j]+[k]}$$

= $a^{[j]}oa^{[k]}$
= $g[j] \circ g[k]$
Clearly, $g([j]+[k]) = g[j] \circ g[k]$

Therefore, g is homoomorphism. Since g is bijective and homomorphism, so g is isomorphism.

Therefore, every cyclic group of order n is isomorphic to the group $(Z_n, +_n)$.

(4) In this question, we have to find all the subgroups of given groups. In these questions, $Z_n = \{0,1,2,3,4,\dots,n-1\}$ and $+_n$ and \times_n are addition and multiplication modulo n operations.

According to Lagrange's theorem, order of each subgroup is the divisor of the order of the group. We will use this theorem to find all the subgroups.

(4-a) Here group is $(Z_{12}, +_{12})$.

Therefore $Z_{12} = \{0,1,2,3,4,5,6,7,8,9,10,11\}$. Clearly, the order of this group is 12. Using Lagrange's theorem, the number of subgroups of $Z_{12} =$ number of positive divisors of 12.

The positive divisors of 12 are 1,2,3,4,6,12. Since the number of divisors is 6, therefore number of subgroups will be 6 with orders 1,2,3,4,6,12.

These subgroups are the following:-

Now, $H_1 = \{0\}$, this is a subgroup with order 1.

 $H_2 = \{0,6\}$, this is a subgroup with order 2.

 $H_3 = \{0,4,8\}$, this is a subgroup with order 3.

 $H_4 = \{0,3,6,9\}$, this is a subgroup with order 4.

 $H_5 = \{0,2,4,6,8,10\}$, this is a subgroup with order 6.

 $H_6 = \{0,1,2,3,4,5,6,7,8,9,10,11\}$, this is a subgroup with order 12.

(4-b) Here group is $(Z_5, +_5)$. Therefore $Z_5 = \{0,1,2,3,4\}$. Clearly, the order of this group is 5. The positive divisors of 5 are 1,5. Since the number of divisors is 2, therefore number of subgroups will be 2 with orders 1,5. These subgroups are the following:-

 $H_1 = \{0\}$, this is a subgroup with order 1.

 $H_2 = \{0,1,2,3,4\}$, this is a subgroup with order 5.

(4-c) Here group is (Z_7^*, \times_7) . Therefore $Z_7^* = \{1,2,3,4,5,6\}$. Clearly, the order of this group is 6. The positive divisors of 6 are 1,2,3,6. Since the number of divisors is 4, therefore number of subgroups will be 4 with orders 1,2,3,6. These subgroups are the following:-

 $H_1 = \{1\}$, this is a subgroup with order 1.

 $H_2 = \{1,6\}$, this is a subgroup with order 2.

 $H_3 = \{1,2,4\}$, this is a subgroup with order 3.

 $H_4 = \{1,2,3,4,5,6\}$, this is a subgroup with order 6.

(4-d) Here group is (Z_{11}^*, \times_{11}) . Therefore $Z_{11}^* = \{1,2,3,4,5,6,7,8,9,10\}$. Clearly, the order of this group is 10. The positive divisors of 10 are 1,2,5,10. Since the number of divisors is 4, therefore number of subgroups will be 4 with orders 1,2,5,10. These subgroups are the following:-

 $H_1 = \{1\}$, this is a subgroup with order 1.

 $H_2 = \{1,10\}$, this is a subgroup with order 2.

 $H_3 = \{1,3,4,5,9\}$, this is a subgroup with order 5.

 $H_4 = \{1,2,3,4,5,6,7,8,9,10\}$, this is a subgroup with order 10.