Exercícios

Linguagens de Programação

2020.2

Aluno: ______

1. Considere a seguinte gramática de atributos:

Regra Sintática	Regra Semântica
$ <$ E $> \rightarrow <$ E $>[1] + <$ T $>$	$<$ E $>$.val \leftarrow $<$ E $>[1].val + <T>.val$
$\langle E \rangle \rightarrow \langle T \rangle$	$<$ E $>$.val \leftarrow $<$ T $>$.val
$ <$ T $> \rightarrow <$ T $>[1] * <$ F $>$	$<$ T>.val \leftarrow $<$ T>[1].val * $<$ F>.val
$ <$ T $> \rightarrow <$ F $>$	$<$ T $>$.val \leftarrow $<$ F $>$.val
$ \rightarrow ()$	$ val \leftarrow .val$
$\langle F \rangle \rightarrow \langle \text{num} \rangle$	$<$ F $>$.val \leftarrow $<$ num $>$.val

Construa a árvore sintática anotada (completamente atribuída) para a expressão (4*7+1) * 2.

2. Considere a seguinte gramática de atributos:

Regra Sintática	Regra Semântica
$ <$ N $> \rightarrow <$ N $>[1]0$	$<$ N $>$.val \leftarrow 2* $<$ N $>[1].val$
$\langle N \rangle \rightarrow \langle N \rangle [1] 1$	$<$ N $>$.val \leftarrow 2* $<$ N $>[1].val + 1$
$\langle N \rangle \rightarrow 0$	$<$ N $>$.val \leftarrow 0
$\langle N \rangle \rightarrow 1$	$<$ N $>$.val \leftarrow 1

Construa a árvore sintática anotada (completamente atribuída) para a expressão 1010.

3. Considere a seguinte gramática de atributos:

Regra Sintática	Regra Semântica
$ <$ N $> \rightarrow 0 <$ N $>[1]$	$<$ N $>$.val \leftarrow $<$ N $>[1].val$
	$<$ N $>$.pos \leftarrow $<$ N $>[1].pos + 1$
$ <$ N $> \rightarrow 1<$ N $>[1]$	$ <$ N>.val \leftarrow 2 ^{<n>[1].pos</n>} + <n>[1].val</n>
	$<$ N $>$.pos \leftarrow $<$ N $>[1].pos + 1$
$ <$ N $> \rightarrow 0$	$<$ N $>$.val \leftarrow 0
	$<$ N $>$.pos \leftarrow 1
$ <$ N $> \rightarrow 1$	$<$ N $>$.val \leftarrow 1
	$<$ N $>$.pos \leftarrow 1

Construa a árvore sintática anotada (completamente atribuída) para a expressão 1010.

4. Considere a seguinte gramática de atributos:

Regra Sintática	Regra Semântica
$ <$ F $> \rightarrow<$ N $>$	$<$ F $>$.val \leftarrow $<$ N $>$.val
	$<$ N $>$.pow \leftarrow 1
$ <$ N $> \rightarrow 0 <$ N $>[1]$	$<$ N $>$.val \leftarrow $<$ N $>[1].val$
	$<$ N $>$ [1].pow \leftarrow $<$ N $>$.pow $+$ 1
$ <$ N $> \rightarrow 1<$ N $>[1]$	$ <$ N>.val $\leftarrow \frac{1}{2^{N.pow}} + <$ N>[1].val
	$<$ N>[1].pow \leftarrow $<$ N>.pow + 1
$ <$ N $> \rightarrow 0$	$<$ N $>$.val \leftarrow 0
<n> → 1</n>	$ <$ N $>$.val $\leftarrow (\frac{1}{2^{N.pow}})$

Construa a árvore sintática anotada (completamente atribuída) para a expressão .010.

5. Pretende-se controlar um semáforo de 3 estados: Vermelho, Amarelo e Verde, representados pelos valores numéricos 2, 1 e 0, respectivamente. O semáforo é controlado por um temporizador que emite, regularmente, o token NEXT que faz o semáforo evoluir para o estado seguinte, na sequência (Vermelho, Verde, Amarelo e novamente Encarnado). O semáforo tem um botão de pânico que gera o token PANIC e coloca o semáforo no estado Vermelho, independentemente do estado anterior. O estado inicial do sistema é Vermelho.

Considere a seguinte gramática de atributos que permite controlar o estado do semáforo:

Regra Sintática	Regra Semântica
$\langle E \rangle \rightarrow \langle E \rangle [1] \text{ NEXT}$	$\langle E \rangle$.val \leftarrow $(\langle E \rangle [1].val + 1)\%3$
$\langle E \rangle \rightarrow \langle E \rangle [1] PANIC$	$\langle E \rangle$.val \leftarrow 2
$\langle E \rangle \rightarrow \varepsilon$	$\langle E \rangle$.val \leftarrow 2

Construa a árvore sintática anotada para a sequência de tokens **NEXT NEXT PANIC NEXT**.