Laboratório de Circuitos Digitais – Ciências da Computação. Prof. Braga

Laboratório 4 — Circuitos Combinacionais

1) Objetivo

Estudar, ensaiar e montar circuitos combinacionais

2) Conhecimentos a serem desenvolvidos

Funções e portas lógicas, tabela da verdade, construção de circuitos combinacionais

3) Roteiro

Implemente os seguintes circuitos comparando a tabela verdade do seu projeto com a saída apresentada. Para cada um dos circuitos sugerimos os seguintes passos¹:

- 1. Monte a tabela verdade para o problema
- Desenhe o diagrama circuito lógico que represente o problema
- 3. Monte o circuito lógico obtido no simulador
- 4. Verifique se a saída gerada se iguala a tabela verdade.

Circuito 1

Proponha um circuito digital que apresente os valores de uma entrada BCD de 4 bits em um display de sete segmentos. Os valores BCD inválidos deverão apresentar a letra E na saída.

4) Ao término deste laboratório gere um relatório conciso de todos os passos necessários sua para implementação е submeta através da página da disciplina no SIGAA considerando o prazo máximo de submissão.

Por questão de tempo sugerimos que os passos 1 e 2 do roteiro sejam feitos antecipadamente.

Laboratório de Circuitos Digitais – Ciências da Computação. Prof. Braga

Entradas binárias				Níveis lógicos presentes nos segmentos						
A_3	A ₂	A_1	A_0	a	b	С	d	e	f	g
0	0	0	0							
0	0	0	1							
0	0	1	0							
0	0	1	1							
0	1	0	0							
0	1	0	1							
0	1	1	0							
0	1	1	1							
1	0	0	0							
1	0	0	1							
1	0	1	0							
1	0	1	1							
1	1	0	0							
1	1	0	1							
1	1	1	0							
1	1	1	1							