

Московский государственный университет имени М.В. Ломоносова

Факультет вычислительной математики и кибернетики

Кафедра информационной безопасности

Мирпулатов Исломбек Пулат-угли

Многомасштабное моделирование физических явлений и процессов

ЛАБОРАТОРНАЯ РАБОТА №4

Преподаватель:

К.К. Абгарян А.А. Журавлев

1 Постановка задачи

Провести идентификацию параметров потенциалов, таким образом чтобы полученный потенциал воспроизводил свойства материала, рассчитанные при помощи квантовомеханических расчётов. Сохранить несколько различных наборов параметров с наименьшим средним квадратичным отклонением.

Описание материала:

- Химический элемент Са (Кальций)
- Тип решетки Гранецентрическая
- Потенциал RGL

Потенциал RGL:

$$E = \sum_{i} \left(E_{Ai} - \sqrt{E_{Ri}} \right)$$

$$E_{Ai} = \sum_{j \neq i} f_c(r_{ij}) a \exp\left(-p\left(\frac{r_{ij}}{r_0} - 1\right)\right)$$

$$E_{Ri} = \sum_{j \neq i} f_c(r_{ij}) \xi^2 \exp\left(-2q\left(\frac{r}{r_0} - 1\right)\right)$$

$$f_c(r) = \begin{cases} 1, & r < R - D \\ \frac{1}{2} \left(1 - \sin\left(\frac{\pi}{2} \frac{r - R}{D}\right)\right), & R - D \le r < R + D \le r \end{cases}$$

$$0, & R + D \le r$$

Фиксированные параметры: R=6.5, D=0.5.

Интервалы для поиска параметров потенциала RGL

Параметр	Нижняя граница	Верхняя граница
a	0.01	1
ξ	0.5	5
p	5	40
q	0.5	10
r_0	0.95 равновесных расстояний	1.05 равновесных расстояний

2 Решение

Решение разделилось на несколько этапов. Сначала был реализован подсчет потенциала на примере валидационных данных - результаты сходились до 10 знака.

Далее были выбраны несколько методов оптимизации Nelder-Mead, Powell, Sequential Least Squares Programming (SLSQP) и взяты параметры $Lattice_constant$, E_{coh} , B, C_{11} , C_{22} , C_{44} , C_{12} из 3 лабораторной работы:

lattice constant = 5.52359108808

 $E_{coh} = -1.9089984885038827$

B = 17.440890573844225

C11 = 21.603097766183534

C22 = 21.603097766183534

C44 = 14.082393170032377

C12 = 15.34943323587179

В качестве гер для размножения решетки было выбрано 4.

Проводилось несколько наборов эксперементров с различными начальными точками:

- Nelder-Mead с ограничениями 200 итераций
- Nelder-Mead без ограничений 200 итераций
- Powell с ограничениями 50 итераций
- Powell без ограничений 50 итераций
- SLSQP с ограничениями 50 итераций

3 Результаты

Далее представлены результаты оптимизации: alpha0, ksi0, p0, q0, r0 - начальные приближения параметров alpha, ksi, p, q, r - параметры после оптимизации error - ошибка

Nelder-Mead с ограничениями:

	alpha0	ksi0	p0	q0	r0	alpha	ksi	р	q	r	error
51	0.469600	1.646828	32.228389	3.779039	3.902663	0.048163	0.5	40.0	6.359383	3.71048	0.545233
40	0.160865	4.673631	31.216199	2.069217	3.913341	0.048163	0.5	40.0	6.359399	3.71048	0.545233
19	0.643282	4.361319	29.744959	7.847369	4.081857	0.048163	0.5	40.0	6.359348	3.71048	0.545233
100	0.037065	2.822614	36.153774	3.866102	3.778499	0.048163	0.5	40.0	6.359348	3.71048	0.545233
161	0.630758	0.842868	29.960733	7.968074	4.002807	0.048163	0.5	40.0	6.359347	3.71048	0.545233

Nelder-Mead без ограничений:

	alpha0	ksi0	p0	q0	r0	alpha	ksi	р	q	r	error
125	0.069609	3.158172	36.134329	9.205172	3.904584	0.158669	-0.460170	72.576890	6.289119	3.671559	0.415115
186	0.080620	2.204200	37.034392	9.446619	4.049280	0.059329	0.422568	73.560676	6.374364	3.721324	0.415115
100	0.767915	4.496169	9.429843	4.342637	3.898828	5.163789	0.622273	69.094319	5.987335	3.495379	0.415115
1	0.487485	2.660676	11.045162	4.003630	4.068272	0.880362	0.533831	70.863407	6.140635	3.584875	0.415115
89	0.659027	4.734088	22.300343	5.923001	4.041427	0.039271	-0.407726	73.973242	6.410118	3.742198	0.415115

Powell с ограничениями:

	alpha0	ksi0	p0	q0	r0	alpha	ksi	р	q	r	error
28	0.924052	3.014850	32.027914	9.117198	4.056344	0.041782	0.500012	39.999899	6.391227	3.725323	0.557320
32	0.872727	4.374407	39.965225	6.160235	3.923232	0.049158	0.500370	40.000000	6.399640	3.710480	0.565086
10	0.919606	3.496730	37.495998	6.103548	3.903723	0.048252	0.500000	36.855927	6.361273	3.710496	0.581616
9	0.329850	2.959500	24.159030	7.303334	4.085402	0.033720	0.500177	40.000000	6.472039	3.749318	0.587427
23	0.175127	1.225098	6.494666	9.390053	3.937719	0.023946	0.500037	40.000000	6.516495	3.785024	0.623439

Powell без ограничений:

	alpha0	ksi0	p0	q0	r0	alpha	ksi	р	q	r	error
44	0.820607	2.333039	36.066195	7.826845	3.858027	0.050417	0.416624	73.717827	6.388398	3.729550	0.415115
6	0.059663	0.931678	36.829572	9.161473	3.827227	0.033338	0.401968	74.128966	6.424295	3.750476	0.415115
15	0.100932	4.817695	33.454251	6.119570	4.028489	0.023398	-0.389821	74.505579	6.454953	3.768399	0.415115
9	0.346929	3.265327	16.688060	1.006131	3.894116	0.924239	0.536126	70.710057	6.135315	3.582095	0.415116
37	0.256552	1.920721	32.333787	5.617313	3.765218	0.049006	0.415997	73.578449	6.390861	3.730849	0.415117

SLSQP с ограничениями:

	alpha0	ksi0	p0	q0	r0	alpha	ksi	р	q	r	error
48	0.669379	4.914341	38.685410	6.629673	3.723092	0.048163	0.5	40.0	6.359364	3.71048	0.545233
29	0.129659	2.825470	20.690836	9.343868	4.050586	0.048163	0.5	40.0	6.359434	3.71048	0.545233
20	0.518908	2.511361	29.577746	8.700195	3.968931	0.048163	0.5	40.0	6.359441	3.71048	0.545233
15	0.084793	0.810634	28.783285	1.071718	3.965083	0.048164	0.5	40.0	6.359326	3.71048	0.545233
3	0.155711	1.955937	29.383337	2.978650	3.999841	0.048163	0.5	40.0	6.359289	3.71048	0.545233

Лучшие параметры с оптимизатором с ограничениями α =0.048163, ξ =0.5, p=40, q=6.359364, r_0 =3.71048. При этом ошибка 0.545233.

Лучшие параметры с оптимизатором без ограничений α =0.050417, ξ =0.416624, p=73.717827, q=6.388398, r_0 =3.72955. При этом ошибка 0.415115.

Параметры полученные оптимизатором без ограничений лучше, при значения параметра вышли за ограничения только в параметре ξ и p.