Summary

Baoyi Shi

Supported Data Types and Functionalities 1

Table 1: Supported Data Types and Functionalities

	rb	wb	msm	iorw	ne	g-formula
Linear Y						V
Logistic Y	V	V		V		V
Loglinear Y	V	V	V	V		V
Poisson Y						√
Quasipoisson Y						V
NegBin Y					×	V
Coxph Y			$\sqrt{}$	$\sqrt{}$	×	$\sqrt{}$
AFT Exp Y				$\sqrt{}$	×	$\sqrt{}$
AFT Weibull Y					×	$\sqrt{}$
Linear M			$\sqrt{}$			$\sqrt{}$
Logistic M						$\sqrt{}$
Categorical M						
Any type M	0		0			\oslash
User-defined Y/M Models					×	
Continuous A		0	0	\oslash		
Binary A						
Categorical A						
Single M						
Multiple M						
Pre-exposure Confounding						
Post-exposure Confounding	0	0		\oslash	0	
2-way Decomposition						
4-way Decomposition				\oslash	×	
Estimation: Closed-form Parameter Function	*	0	0			\oslash
Estimation: Direct Imputation				0	×	
Inference: Delta Method**		0	0	0		\oslash
Inference: Bootstrapping		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		

^{*} Not available for multiple-mediator cases; only outputs conditional causal effects. ** Only available for closed-form parameter function estimation. \checkmark Available.

 $^{^{\}times}$ Currently not available but applicable.

[○] Neither available nor applicable.

rb: Regression-based Approach; wb: Weighting-based Approach; msm: Marginal; iorw: Inverse Odds Ratio Weighting Approach; ne: Natural Effect Model; g-formula: G-formula Approach.

2 Pre-treatment Confounding

2.1 DAG

In the DAG, A denotes the treatment, Y denotes the outcome, M denotes a set of mediators, and C denotes a set of pre-treatment covariates.

2.2 Estimand

2-way decomposition in additive scale

$$\begin{split} CDE &= E[Y_{am} - Y_{a^*m}] \\ PNDE &= E[Y_{aM_a^*} - Y_{a^*M_a^*}] \\ TNDE &= E[Y_{aM_a} - Y_{a^*M_a}] \\ PNIE &= E[Y_{a^*M_a} - Y_{a^*M_a^*}] \\ TNIE &= E[Y_{aM_a} - Y_{aM_a^*}] \\ TE &= PNDE + TNIE \\ PM &= \frac{TNIE}{PNDE + TE} \end{split}$$

2-way decomposition in RR scale

$$\begin{split} rr^{CDE} &= E[Y_{am}]/E[Y_{a^*m}] \\ rr^{PNDE} &= E[Y_{aM_a^*}]/E[Y_{a^*M_a^*}] \\ rr^{TNDE} &= E[Y_{aM_a}]/E[Y_{a^*M_a}] \\ rr^{PNIE} &= E[Y_{a^*M_a}]/E[Y_{a^*M_a^*}] \\ rr^{TNIE} &= E[Y_{aM_a}]/E[Y_{aM_a^*}] \\ rr^{TE} &= rr^{PNDE} \times rr^{TNIE} \\ PM &= \frac{rr^{PNDE} * (rr^{TNIE} - 1)}{rr^{TE} - 1} \end{split}$$

4-way decomposition in additive scale

$$\begin{split} CDE &= E[Y_{am} - Y_{a^*m}] \\ INT_{ref} &= PNDE - CDE \\ INT_{med} &= TNIE - PNIE \\ PIE &= PNIE \\ prop^{CDE} &= \frac{CDE}{TE} \\ prop^{INT_{ref}} &= \frac{INT_{ref}}{TE} \\ prop^{INT_{med}} &= \frac{INT_{med}}{TE} \\ prop^{PIE} &= \frac{PIE}{TE} \\ overall^{PM} &= \frac{PNIE + INT_{med}}{TE} \\ overall^{INT} &= \frac{INT_{ref} + INT_{med}}{TE} \\ overall^{PE} &= \frac{INT_{ref} + INT_{med}}{TE} \\ \end{split}$$

4-way decomposition in RR scale

$$\begin{split} &err^{CDE} = (E[Y_{am} - Y_{a^*m}])/E[Y_{a^*M_a^*}] \\ &err^{INT_{ref}} = rr^{PNDE} - 1 - err^{CDE} \\ &err^{INT_{med}} = rr^{TNIE} * rr^{PNDE} - rr^{PNDE} - rr^{PNIE} + 1 \\ &err^{PIE} = rr^{PNIE} - 1 \\ &err^{TE} = err^{CDE} + err^{INT_{ref}} + err^{INT_{med}} + err^{PIE} = rr^{TE} - 1 \\ ∝^{err^{CDE}} = \frac{err^{CDE}}{err^{TE}} \\ ∝^{err^{INT_{ref}}} = \frac{err^{INT_{ref}}}{err^{TE}} \\ ∝^{err^{INT_{med}}} = \frac{err^{INT_{med}}}{err^{TE}} \\ ∝^{err^{PIE}} = \frac{err^{PIE}}{err^{TE}} \\ &overall^{PM} = \frac{err^{PIE} + err^{INT_{med}}}{err^{TE}} \\ &overall^{PE} = \frac{err^{INT_{ref}} + err^{INT_{med}}}{err^{TE}} \\ &overall^{PE} = \frac{err^{INT_{ref}} + err^{INT_{med}}}{err^{TE}} \end{split}$$

2.3 Estimation

Closed-form Parameter Function Estimation

Effect estimates are calculated using regression parameters.

Direct Conterfacturals imputation Estimation

- 1. Impute $Y_{am,i}$, $Y_{a^*m,i}$, $Y_{aMa,i}$, $Y_{a^*Ma^*,i}$, $Y_{aMa^*,i}$, and $Y_{a^*Ma,i}$ for each subject i.
- 2. Estimate $E[Y_{am}]$, $E[Y_{a*m}]$, $E[Y_{aMa}]$, $E[Y_{a*Ma^*}]$, $E[Y_{aMa^*}]$, and $E[Y_{a*Ma}]$ by $\frac{\sum_{i=1}^{N} Y_{am,i}}{n}$, $\frac{\sum_{i=1}^{N} Y_{a*m,i}}{n}$, $\frac{\sum_{i=1}^{N} Y_{a*Ma^*,i}}{n}$, and $\frac{\sum_{i=1}^{N} Y_{a*Ma,i}}{n}$ respectively.
- 3. Calculate causal effects using $E[Y_{am}]$, $E[Y_{a^*m}]$, $E[Y_{aMa}]$, $E[Y_{a^*Ma^*}]$, $E[Y_{aMa^*}]$, and $E[Y_{a^*Ma}]$.

2.4 Inference

Delta Method

Standard errors of effects are estimated using the standard errors of regression parameters and delta method based on the closed-form parameter function.

Bootstrapping

Bootstrap the data, refit the regression models, and calculate a bootstrap estimate. Repeat the bootstrapping K times and calculate the standard error of these K boostrap estimates for each estimand, which is the estimated standard error of this estimand.

2.5 Estimation Approaches Can be Used

2.5.1 Regression-based Approach

Reference:

https://www.ncbi.nlm.nih.gov/pubmed/23379553

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287269/

2.5.1.1 Estimation

Closed-form Parameter Function Estimation

(1) Continuous Outcome and Continuous Mediator

Fit a simple linear regression model for the mediator:

$$E[M|a,c] = \beta_0 + \beta_1 a + \beta_2' c \text{ (for continuous exposure)}$$

$$E[M|a,c] = \beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a=k\} + \beta'_2 c \text{ (for binary or categorical exposure)}$$

Fit a simple linear regression model for the outcome:

$$E[Y|a,m,c] = \theta_0 + \theta_1 a + \theta_2 m + \theta_3 am + \theta_4' c$$
 (for continuous exposure)

$$E[Y|a,m,c] = \theta_0 + \sum_{k=1}^{K} \theta_{1k} I\{a=k\} + \theta_2 m + \sum_{k=1}^{K} \theta_{3k} I\{a=k\} m + \theta_4' c \text{ (for binary or categorical exposure)}$$

Closed-form parameter function estimators for the causal effects when the exposure is continuous:

$$CDE = (\theta_1 + \theta_3 m)(a - a^*)$$

$$PNDE = \{\theta_1 + \theta_3(\beta_0 + \beta_1 a^* + \beta_2' c)\}(a - a^*)$$

$$TNDE = \{\theta_1 + \theta_3(\beta_0 + \beta_1 a + \beta_2' c)\}(a - a^*)$$

$$PNIE = (\theta_2 \beta_1 + \theta_3 \beta_1 a^*)(a - a^*)$$

$$TNIE = (\theta_2 \beta_1 + \theta_3 \beta_1 a)(a - a^*)$$

$$CDE = (\sum_{k=1}^{K} \theta_{1k} I\{a = k\} - \sum_{k=1}^{K} \theta_{1k} I\{a^* = k\}) + (\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}) m$$

$$PNDE = (\sum_{k=1}^{K} \theta_{1k} I\{a = k\} - \sum_{k=1}^{K} \theta_{1k} I\{a^* = k\}) + (\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}) (\beta_0 + \sum_{k=1}^{K} \theta_{1k} I\{a^* = k\} + \beta_2' c)$$

$$TNDE = (\sum_{k=1}^{K} \theta_{1k} I\{a = k\} - \sum_{k=1}^{K} \theta_{1k} I\{a^* = k\}) + (\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}) (\beta_0 + \sum_{k=1}^{K} \theta_{1k} I\{a = k\} + \beta_2' c)$$

$$PNIE = (\theta_2 + \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}) (\sum_{k=1}^{K} \beta_{1k} I\{a = k\} - \sum_{k=1}^{K} \beta_{1k} I\{a^* = k\})$$

$$TNIE = (\theta_2 + \sum_{k=1}^{K} \theta_{3k} I\{a = k\}) (\sum_{k=1}^{K} \beta_{1k} I\{a = k\} - \sum_{k=1}^{K} \beta_{1k} I\{a^* = k\})$$

(2) Continuous Outcome and Binary Mediator

Fit a logistic regression model for the mediator:

$$logitE[M|a,c] = \beta_0 + \beta_1 a + \beta_2' c \ (for \ continuous \ exposure)$$

$$logitE[M|a,c] = \beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a=k\} + \beta'_2 c \ (for \ binary \ or \ categorical \ exposure)$$

Fit a simple linear regression model for the outcome:

$$E[Y|a,m,c] = \theta_0 + \theta_1 a + \theta_2 m + \theta_3 am + \theta_4' c \text{ (for continuous exposure)}$$

$$E[Y|a,m,c] = \theta_0 + \sum_{k=1}^{K} \theta_{1k} I\{a=k\} + \theta_2 m + \sum_{k=1}^{K} \theta_{3k} I\{a=k\} m + \theta'_4 c \text{ (for binary or categorical exposure)}$$

Closed-form parameter function estimators for the causal effects when the exposure is continuous:

$$CDE = (\theta_{1} + \theta_{3}m)(a - a^{*})$$

$$PNDE = \{\theta_{1} + \theta_{3}\frac{exp(\beta_{0} + \beta_{1}a^{*} + \beta'_{2}c)}{1 + exp(\beta_{0} + \beta_{1}a^{*} + \beta'_{2}c)}\}(a - a^{*})$$

$$TNDE = \{\theta_{1} + \theta_{3}\frac{exp(\beta_{0} + \beta_{1}a + \beta'_{2}c)}{1 + exp(\beta_{0} + \beta_{1}a + \beta'_{2}c)}\}(a - a^{*})$$

$$PNIE = (\theta_{2} + \theta_{3}a^{*})(\frac{exp(\beta_{0} + \beta_{1}a + \beta'_{2}c)}{1 + exp(\beta_{0} + \beta_{1}a + \beta'_{2}c)} - \frac{exp(\beta_{0} + \beta_{1}a^{*} + \beta'_{2}c)}{1 + exp(\beta_{0} + \beta_{1}a^{*} + \beta'_{2}c)})$$

$$TNIE = (\theta_{2} + \theta_{3}a)(\frac{exp(\beta_{0} + \beta_{1}a + \beta'_{2}c)}{1 + exp(\beta_{0} + \beta_{1}a^{*} + \beta'_{2}c)} - \frac{exp(\beta_{0} + \beta_{1}a^{*} + \beta'_{2}c)}{1 + exp(\beta_{0} + \beta_{1}a^{*} + \beta'_{2}c)})$$

$$CDE = \left(\sum_{k=1}^{K} \theta_{1k} I\{a = k\} - \sum_{k=1}^{K} \theta_{1k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) m$$

$$PNDE = \left(\sum_{k=1}^{K} \theta_{1k} I\{a = k\} - \sum_{k=1}^{K} \theta_{1k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) m$$

$$PNDE = \left(\sum_{k=1}^{K} \theta_{1k} I\{a^* = k\} + \beta_2' c\right) + \left(\sum_{k=1}^{K} \theta_{1k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^* = k\}\right) + \left(\sum_{k=1}^{K} \theta_{3k} I\{a = k\} - \sum_{k=1}^{K} \theta_{3k} I\{a$$

$$PNIE = (\theta_2 + \sum_{k=1}^K \theta_{3k} I\{a^* = k\}) \left(\frac{exp(\beta_0 + \sum_{k=1}^K \beta_{1k} I\{a=k\} + \beta_2' c)}{1 + exp(\beta_0 + \sum_{k=1}^K \beta_{1k} I\{a=k\} + \beta_2' c)} - \frac{exp(\beta_0 + \sum_{k=1}^K \beta_{1k} I\{a^* = k\} + \beta_2' c)}{1 + exp(\beta_0 + \sum_{k=1}^K \beta_{1k} I\{a^* = k\} + \beta_2' c)}\right)$$

$$TNIE = (\theta_2 + \sum_{k=1}^K \theta_{3k} I\{a=k\}) \big(\frac{\exp(\beta_0 + \sum_{k=1}^K \beta_{1k} I\{a=k\} + \beta_2' c)}{1 + \exp(\beta_0 + \sum_{k=1}^K \beta_{1k} I\{a=k\} + \beta_2' c)} - \frac{\exp(\beta_0 + \sum_{k=1}^K \beta_{1k} I\{a^*=k\} + \beta_2' c)}{1 + \exp(\beta_0 + \sum_{k=1}^K \beta_{1k} I\{a^*=k\} + \beta_2' c)} \big)$$

(3) Continuous Outcome and Categorical Mediator

Fit a multinomial logistic regression model for the mediator:

$$\log \frac{E[M = j | a, c]}{E[M = 0 | a, c]} = \beta_{0j} + \beta_{1j}a + \beta'_{2j}c, j = 1, 2, ..., l \text{ (for continuous exposure)}$$

$$log \frac{E[M=j|a,c]}{E[M=0|a,c]} = \beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a=k\} + \beta'_{2j}c, j=1,2,...,l \text{ (for binary or categorical exposure)}$$

Fit a simple linear regression model for the outcome:

$$E[Y|a, m, c] = \theta_0 + \theta_1 a + \sum_{j=1}^{l} \theta_{2j} I\{m = j\} + a \sum_{j=1}^{l} \theta_{3j} I\{m = j\} + \theta'_4 c \text{ (for continuous exposure)}$$

$$E[Y|a,m,c] = \theta_0 + \sum_{k=1}^K \theta_{1k} I\{a=k\} + \sum_{j=1}^l \theta_{2j} I\{m=j\} + \sum_{j=1}^l \sum_{k=1}^K \theta_{3jk} I\{m=j\} I\{a=k\} + \theta_4' c$$

(for binary or categorical exposure)

Closed-form parameter function estimators for the causal effects when the exposure is continuous:

$$CDE = (\theta_1 + \sum_{j=1}^{l} \theta_{3j} I\{m = j\})(a - a^*)$$

$$PNDE = \{\theta_1 + \frac{\sum_{j=1}^{l} \theta_{3j} exp(\beta_{0j} + \beta_{1j} a^* + \beta'_{2j} c)}{1 + \sum_{j=1}^{l} exp(\beta_{0j} + \beta_{1j} a^* + \beta'_{2j} c)} \} (a - a^*)$$

$$TNDE = \{\theta_1 + \frac{\sum_{j=1}^{l} \theta_{3j} exp(\beta_{0j} + \beta_{1j} a + \beta'_{2j} c)}{1 + \sum_{j=1}^{l} exp(\beta_{0j} + \beta_{1j} a + \beta'_{2j} c)} \} (a - a^*)$$

$$PNIE = \frac{\sum_{j=1}^{l} (\theta_{2j} + \theta_{3j}a^*) exp(\beta_{0j} + \beta_{1j}a + \beta_{2j}'c)}{1 + \sum_{j=1}^{l} exp(\beta_{0j} + \beta_{1j}a + \beta_{2j}'c)} - \frac{\sum_{j=1}^{l} (\theta_{2j} + \theta_{3j}a^*) exp(\beta_{0j} + \beta_{1j}a^* + \beta_{2j}'c)}{1 + \sum_{j=1}^{l} exp(\beta_{0j} + \beta_{1j}a^* + \beta_{2j}'c)}$$

$$TNIE = \frac{\sum_{j=1}^{l} (\theta_{2j} + \theta_{3j}a) exp(\beta_{0j} + \beta_{1j}a + \beta'_{2j}c)}{1 + \sum_{j=1}^{l} exp(\beta_{0j} + \beta_{1j}a + \beta'_{2j}c)} - \frac{\sum_{j=1}^{l} (\theta_{2j} + \theta_{3j}a) exp(\beta_{0j} + \beta_{1j}a^* + \beta'_{2j}c)}{1 + \sum_{j=1}^{l} exp(\beta_{0j} + \beta_{1j}a^* + \beta'_{2j}c)}$$

CDE =
$$(\sum_{k=1}^{K} \theta_{1k} I\{a = k\} - \sum_{k=1}^{K} \theta_{1k} I\{a^* = k\}) + (\sum_{j=1}^{l} \sum_{k=1}^{K} \theta_{3jk} I\{m = l\} I\{a = k\} - \sum_{j=1}^{l} \sum_{k=1}^{K} \theta_{3jk} I\{m = l\} I\{a^* = k\})$$

$$PNDE = (\sum_{k=1}^{K} \theta_{1k} I\{a=k\} - \sum_{k=1}^{K} \theta_{1k} I\{a^*=k\}) + \frac{\sum_{j=1}^{l} (\sum_{k=1}^{K} \theta_{3jk} I\{a=k\} - \sum_{k=1}^{K} \theta_{3jk} I\{a^*=k\}) exp(\beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a^*=k\} + \beta'_{2j}c)}{1 + \sum_{j=1}^{l} exp(\beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a^*=k\} + \beta'_{2j}c)}$$

$$TNDE = (\sum_{k=1}^{K} \theta_{1k} I\{a=k\} - \sum_{k=1}^{K} \theta_{1k} I\{a^*=k\}) + \frac{\sum_{j=1}^{l} (\sum_{k=1}^{K} \theta_{3jk} I\{a=k\} - \sum_{k=1}^{K} \theta_{3jk} I\{a^*=k\}) exp(\beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a=k\} + \beta'_{2j}c)}{1 + \sum_{j=1}^{l} exp(\beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a=k\} + \beta'_{2j}c)}$$

$$PNIE = \frac{\sum_{j=1}^{l}(\theta_{2j} + \sum_{k=1}^{K}\theta_{3jk}I\{a^* = k\})exp(\beta_{0j} + \sum_{k=1}^{K}\beta_{1jk}I\{a = k\} + \beta'_{2j}c)}{1 + \sum_{j=1}^{l}exp(\beta_{0j} + \sum_{k=1}^{K}\beta_{1jk}I\{a = k\} + \beta'_{2j}c)} - \frac{\sum_{j=1}^{l}(\theta_{2j} + \sum_{k=1}^{K}\theta_{3jk}I\{a^* = k\})exp(\beta_{0j} + \sum_{k=1}^{K}\beta_{1jk}I\{a^* = k\} + \beta'_{2j}c)}{1 + \sum_{j=1}^{l}exp(\beta_{0j} + \sum_{k=1}^{K}\beta_{1jk}I\{a^* = k\} + \beta'_{2j}c)}$$

$$TNIE = \frac{\sum_{j=1}^{l} (\theta_{2j} + \sum_{k=1}^{K} \theta_{3jk} I\{a=k\}) exp(\beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a=k\} + \beta'_{2j}c)}{1 + \sum_{j=1}^{l} exp(\beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a=k\} + \beta'_{2j}c)} - \frac{\sum_{j=1}^{l} (\theta_{2j} + \sum_{k=1}^{K} \theta_{3jk} I\{a=k\}) exp(\beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a^* = k\} + \beta'_{2j}c)}{1 + \sum_{j=1}^{l} exp(\beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a^* = k\} + \beta'_{2j}c)}$$

(4)Binary Outcome and Continuous Mediator

Fit a simple linear regression model for the mediator:

$$E[M|a,c] = \beta_0 + \beta_1 a + \beta_2' c \ (for \ continuous \ exposure)$$

$$E[M|a,c] = \beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a=k\} + \beta'_2 c \text{ (for binary or categorical exposure)}$$

Fit a logistic regression model for the outcome:

$$logitE[Y|a, m, c] = \theta_0 + \theta_1 a + \theta_2 m + \theta_3 am + \theta'_4 c \ (for \ continuous \ exposure)$$

$$logitE[Y|a,m,c] = \theta_0 + \sum_{k=1}^K \theta_{1k} I\{a=k\} + \theta_2 m + \sum_{k=1}^K \theta_{3k} I\{a=k\} m + \theta_4' c \ (for \ binary \ or \ categorical \ exposure)$$

Closed-form parameter function estimators for the causal effects when the exposure is continuous:

$$\begin{split} OR^{CDE} &= exp((\theta_1 + \theta_3 m)(a - a^*)) \\ OR^{PNDE} &= exp(\{\theta_1 + \theta_3 (\beta_0 + \beta_1 a^* + \beta_2' c + \theta_2 \sigma^2)\}(a - a^*) + 0.5\theta_3^2 \sigma^2 (a^2 - a^{*2})) \\ OR^{TNDE} &= exp(\{\theta_1 + \theta_3 (\beta_0 + \beta_1 a + \beta_2' c + \theta_2 \sigma^2)\}(a - a^*) + 0.5\theta_3^2 \sigma^2 (a^2 - a^{*2})) \\ OR^{PNIE} &= exp((\theta_2 \beta_1 + \theta_3 \beta_1 a^*)(a - a^*)) \\ OR^{TNIE} &= exp((\theta_2 \beta_1 + \theta_3 \beta_1 a)(a - a^*)) \\ OR^{TNIE} &= exp((\theta_2 \beta_1 + \theta_3 \beta_1 a)(a - a^*)) \\ comp^{CDE} &= (exp(\theta_1 (a - a^*) + \theta_3 am) - exp(\theta_3 a^* m)) exp(\theta_2 m - (\theta_2 + \theta_3 a^*)(\beta_0 + \beta_1 a^* + \beta_2' c) - 0.5(\theta_2 + \theta_3 a^*)^2 \sigma^2) \end{split}$$

Closed-form parameter function estimators for the causal effects when the exposure is binary or categorical:

$$\begin{split} OR^{CDE} &= exp((\sum_{k=1}^{K}\theta_{1k}I\{a=k\} - \sum_{k=1}^{K}\theta_{1k}I\{a^*=k\}) + (\sum_{k=1}^{K}\theta_{3k}I\{a=k\} - \sum_{k=1}^{K}\theta_{3k}I\{a^*=k\})m) \\ OR^{PNDE} &= exp((\{\sum_{k=1}^{K}\theta_{1k}I\{a=k\} - \sum_{k=1}^{K}\theta_{1k}I\{a^*=k\}) + (\{\sum_{k=1}^{K}\theta_{3k}I\{a=k\} - \sum_{k=1}^{K}\theta_{3k}I\{a^*=k\})m) \\ OR^{PNDE} &= exp((\{\sum_{k=1}^{K}\theta_{1k}I\{a^*=k\} + \beta_2'c + \theta_2\sigma^2)\} + 0.5\sigma^2(\sum_{k=1}^{K}\theta_{3k}^2I\{a=k\} - \sum_{k=1}^{K}\theta_{3k}I\{a^*=k\})) \\ OR^{TNDE} &= exp((\sum_{k=1}^{K}\theta_{1k}I\{a=k\} - \sum_{k=1}^{K}\theta_{1k}I\{a^*=k\}) + (\sum_{k=1}^{K}\theta_{3k}I\{a=k\} - \sum_{k=1}^{K}\theta_{3k}I\{a^*=k\})) \\ OR^{PNDE} &= exp((\sum_{k=1}^{K}\theta_{1k}I\{a=k\} + \beta_2'c + \theta_2\sigma^2) + 0.5\sigma^2(\sum_{k=1}^{K}\theta_{3k}^2I\{a=k\} - \sum_{k=1}^{K}\theta_{3k}^2I\{a^*=k\})) \\ OR^{PNIE} &= exp(\theta_2(\sum_{k=1}^{K}\beta_{1k}I\{a=k\} - \sum_{k=1}^{K}\beta_{1k}I\{a^*=k\}) + \sum_{k=1}^{K}\theta_{3k}I\{a^*=k\}(\sum_{k=1}^{K}\beta_{1k}I\{a=k\} - \sum_{k=1}^{K}\beta_{1k}I\{a^*=k\})) \\ OR^{TNIE} &= exp(\theta_2(\sum_{k=1}^{K}\beta_{1k}I\{a=k\} - \sum_{k=1}^{K}\beta_{1k}I\{a^*=k\}) + \sum_{k=1}^{K}\theta_{3k}I\{a=k\}(\sum_{k=1}^{K}\beta_{1k}I\{a=k\} - \sum_{k=1}^{K}\beta_{1k}I\{a^*=k\})) \\ OR^{TNIE} &= exp(\theta_2(\sum_{k=1}^{K}\beta_{1k}I\{a=k\} - \sum_{k=1}^{K}\beta_{1k}I\{a^*=k\}) + \sum_{k=1}^{K}\theta_{3k}I\{a=k\}(\sum_{k=1}^{K}\beta_{1k}I\{a=k\} - \sum_{k=1}^{K}\beta_{1k}I\{a^*=k\}) + \sum_{k=1}^{K}\theta_{3k}I\{a=k\}m) - exp(\sum_{k=1}^{K}\theta_{3k}I\{a^*=k\}m)) \\ comp^{CDE} &= (exp((\sum_{k=1}^{K}\theta_{1k}I\{a=k\} - \sum_{k=1}^{K}\theta_{1k}I\{a^*=k\}) + \sum_{k=1}^{K}\theta_{3k}I\{a=k\}m) - exp(\sum_{k=1}^{K}\theta_{3k}I\{a^*=k\})^2\sigma^2) \\ exp(\theta_2m - (\theta_2 + \sum_{k=1}^{K}\theta_{3k}I\{a^*=k\})(\beta_0 + \sum_{k=1}^{K}\beta_{1k}I\{a^*=k\} + \beta_2'c) - 0.5(\theta_2 + \sum_{k=1}^{K}\theta_{3k}I\{a^*=k\})^2\sigma^2) \\ \end{pmatrix}$$

(5)Binary Outcome and Binary Mediator

Fit a logistic regression model for the mediator:

$$logitE[M|a,c] = \beta_0 + \beta_1 a + \beta_2' c \ (for \ continuous \ exposure)$$

Fit a logistic regression model for the outcome:

$$logitE[M|a,c] = \beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a=k\} + \beta'_2 c \ (for \ binary \ or \ categorical \ exposure)$$

Fit a logistic regression model for the outcome:

$$logitE[Y|a, m, c] = \theta_0 + \theta_1 a + \theta_2 m + \theta_3 am + \theta'_4 c \ (for \ continuous \ exposure)$$

$$logitE[Y|a,m,c] = \theta_0 + \sum_{k=1}^{K} \theta_{1k} I\{a=k\} + \theta_2 m + \sum_{k=1}^{K} \theta_{3k} I\{a=k\} m + \theta_4' c \text{ (for binary or categorical exposure)}$$

Closed-form parameter function estimators for the causal effects when the exposure is continuous:

$$\begin{split} OR^{CDE} &= exp((\theta_1 + \theta_3 m)(a - a^*)) \\ OR^{PNDE} &= \frac{exp(\theta_1 a)\{1 + exp(\theta_2 + \theta_3 a + \beta_0 + \beta_1 a^* + \beta_2' c)\}}{exp(\theta_1 a^*)\{1 + exp(\theta_2 + \theta_3 a^* + \beta_0 + \beta_1 a^* + \beta_2' c)\}} \\ OR^{TNDE} &= \frac{exp(\theta_1 a)\{1 + exp(\theta_2 + \theta_3 a + \beta_0 + \beta_1 a + \beta_2' c)\}}{exp(\theta_1 a^*)\{1 + exp(\theta_2 + \theta_3 a^* + \beta_0 + \beta_1 a + \beta_2' c)\}} \\ OR^{PNIE} &= \frac{\{1 + exp(\beta_0 + \beta_1 a^* + \beta_2' c)\}\{1 + exp(\theta_2 + \theta_3 a^* + \beta_0 + \beta_1 a + \beta_2' c)\}}{\{1 + exp(\beta_0 + \beta_1 a + \beta_2' c)\}\{1 + exp(\theta_2 + \theta_3 a^* + \beta_0 + \beta_1 a + \beta_2' c)\}} \\ OR^{TNIE} &= \frac{\{1 + exp(\beta_0 + \beta_1 a^* + \beta_2' c)\}\{1 + exp(\theta_2 + \theta_3 a + \beta_0 + \beta_1 a + \beta_2' c)\}}{\{1 + exp(\beta_0 + \beta_1 a + \beta_2' c)\}\{1 + exp(\theta_2 + \theta_3 a + \beta_0 + \beta_1 a + \beta_2' c)\}} \\ comp^{CDE} &= \frac{exp(\theta_2 m)(exp(\theta_1 (a - a^*) + \theta_3 a m) - exp(\theta_3 a^* m))(1 + exp(\beta_0 + \beta_1 a^* + \beta_2' c))}{1 + exp(\beta_0 + \beta_1 a^* + \beta_0' c + \theta_2 + \theta_3 a^*)} \end{split}$$

Closed-form parameter function estimators for the causal effects when the exposure is binary or categorical:

$$\begin{split} OR^{CDE} &= exp((\sum_{k=1}^{K} \theta_{1k} I\{a=k\} - \sum_{k=1}^{K} \theta_{1k} I\{a^*=k\}) + (\sum_{k=1}^{K} \theta_{3k} I\{a=k\} - \sum_{k=1}^{K} \theta_{3k} I\{a^*=k\}) m) \\ OR^{PNDE} &= \frac{exp(\sum_{k=1}^{K} \theta_{1k} I\{a=k\}) \{1 + exp(\theta_2 + \sum_{k=1}^{K} \theta_{3k} I\{a=k\} + \beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a^*=k\} + \beta_2 c)\}}{exp(\sum_{k=1}^{K} \theta_{1k} I\{a^*=k\}) \{1 + exp(\theta_2 + \sum_{k=1}^{K} \theta_{3k} I\{a^*=k\} + \beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a^*=k\} + \beta_2 c)\}} \\ OR^{TNDE} &= \frac{exp(\sum_{k=1}^{K} \theta_{1k} I\{a=k\}) \{1 + exp(\theta_2 + \sum_{k=1}^{K} \theta_{3k} I\{a=k\} + \beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a=k\} + \beta_2 c)\}}{exp(\sum_{k=1}^{K} \theta_{1k} I\{a^*=k\}) \{1 + exp(\theta_2 + \sum_{k=1}^{K} \theta_{3k} I\{a^*=k\} + \beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a=k\} + \beta_2 c)\}} \\ OR^{PNIE} &= \frac{\{1 + exp(\beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a^*=k\} + \beta_2 c)\} \{1 + exp(\theta_2 + \sum_{k=1}^{K} \theta_{3k} I\{a^*=k\} + \beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a^*=k\} + \beta_2 c)\}}{\{1 + exp(\beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a^*=k\} + \beta_2 c)\} \{1 + exp(\theta_2 + \sum_{k=1}^{K} \theta_{3k} I\{a^*=k\} + \beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a^*=k\} + \beta_2 c)\}} \\ OR^{TNIE} &= \frac{\{1 + exp(\beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a^*=k\} + \beta_2 c)\} \{1 + exp(\theta_2 + \sum_{k=1}^{K} \theta_{3k} I\{a^*=k\} + \beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a^*=k\} + \beta_2 c)\}}{\{1 + exp(\beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a^*=k\} + \beta_2 c)\} \{1 + exp(\theta_2 + \sum_{k=1}^{K} \theta_{3k} I\{a^*=k\} + \beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a^*=k\} + \beta_2 c)\}} \\ comp^{CDE} &= \frac{exp(\theta_2 m)(exp((\sum_{k=1}^{K} \theta_{1k} I\{a^*=k\} - \sum_{k=1}^{K} \theta_{1k} I\{a^*=k\} + \beta_2 c)}{1 + exp(\beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a^*=k\} + \beta_2 c)} \frac{1 + exp(\beta_0 + \sum_{k=1}^{K} \theta_{1k} I\{a^*=k\} + \beta_2 c)}{1 + exp(\beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a^*=k\} + \beta_2 c)} \\ \frac{1 + exp(\beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a^*=k\} + \beta_2 c)}{1 + exp(\beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a^*=k\} + \beta_2 c)} \\ \frac{1 + exp(\beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a^*=k\} + \beta_2 c)}{1 + exp(\beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a^*=k\} + \beta_2 c)} \\ \frac{1 + exp(\beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a^*=k\} + \beta_2 c)}{1 + exp(\beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a^*=k\} + \beta_2 c)} \\ \frac{1 + exp(\beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a^*=k\} + \beta_2 c)}{1 + exp(\beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a^*=k\} + \beta_2 c)} \\ \frac{1 + exp(\beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a^*=k\} + \beta_2 c)}{1 + exp(\beta_0 + \sum_{k=1}^{K} \beta_{1k} I\{a^$$

(6)Binary Outcome and Categorical Mediator

Fit a multinomial logistic regression model for the mediator:

$$log \frac{E[M=j|a,c]}{E[M=0|a,c]} = \beta_{0j} + \beta_{1j}a + \beta'_{2j}c, j = 1, 2, ..., l \ (for \ continuous \ exposure)$$

$$log \frac{E[M=j|a,c]}{E[M=0|a,c]} = \beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a=k\} + \beta'_{2j}c, j=1,2,...,l \text{ (for binary or categorical exposure)}$$

Fit a logistic regression model for the outcome:

$$logitE[Y|a,m,c] = \theta_0 + \theta_1 a + \sum_{j=1}^{l} \theta_{2j} I\{m=j\} + a \sum_{j=1}^{l} \theta_{3j} I\{m=j\} + \theta_4' c \ (for \ continuous \ exposure)$$

$$logitE[Y|a,m,c] = \theta_0 + \sum_{k=1}^{K} \theta_{1k} I\{a=k\} + \sum_{j=1}^{l} \theta_{2j} I\{m=j\} + \sum_{j=1}^{l} \sum_{k=1}^{K} \theta_{3jk} I\{m=j\} I\{a=k\} + \theta_4' c$$

(for binary or categorical exposure)

Closed-form parameter function estimators for the causal effects when the exposure is continuous:

$$\begin{split} OR^{CDE} &= exp \big((\theta_1 + \sum_{j=1}^{l} \theta_{3j} I\{m=j\}) (a-a^*) \big) \\ OR^{PNDE} &= \frac{exp (\theta_1 a) \{1 + \sum_{j=1}^{l} exp (\theta_{2j} + \theta_{3j} a + \beta_{0j} + \beta_{1j} a^* + \beta_{2j}' c) \}}{exp (\theta_1 a^*) \{1 + \sum_{j=1}^{l} exp (\theta_{2j} + \theta_{3j} a^* + \beta_{0j} + \beta_{1j} a^* + \beta_{2j}' c) \}} \\ OR^{TNDE} &= \frac{exp (\theta_1 a) \{1 + \sum_{j=1}^{l} exp (\theta_{2j} + \theta_{3j} a + \beta_{0j} + \beta_{1j} a + \beta_{2j}' c) \}}{exp (\theta_1 a^*) \{1 + \sum_{j=1}^{l} exp (\theta_{2j} + \theta_{3j} a^* + \beta_{0j} + \beta_{1j} a + \beta_{2j}' c) \}} \\ OR^{PNIE} &= \frac{\{1 + \sum_{j=1}^{l} exp (\beta_{0j} + \beta_{1j} a^* + \beta_{2j}' c) \} \{1 + \sum_{j=1}^{l} exp (\theta_{2j} + \theta_{3j} a^* + \beta_{0j} + \beta_{1j} a + \beta_{2j}' c) \}}{\{1 + \sum_{j=1}^{l} exp (\beta_{0j} + \beta_{1j} a + \beta_{2j}' c) \} \{1 + \sum_{j=1}^{l} exp (\theta_{2j} + \theta_{3j} a^* + \beta_{0j} + \beta_{1j} a^* + \beta_{2j}' c) \}} \\ OR^{TNIE} &= \frac{\{1 + \sum_{j=1}^{l} exp (\beta_{0j} + \beta_{1j} a^* + \beta_{2j}' c) \} \{1 + \sum_{j=1}^{l} exp (\theta_{2j} + \theta_{3j} a + \beta_{0j} + \beta_{1j} a + \beta_{2j}' c) \}}{\{1 + \sum_{j=1}^{l} exp (\beta_{0j} + \beta_{1j} a + \beta_{2j}' c) \} \{1 + \sum_{j=1}^{l} exp (\theta_{2j} + \theta_{3j} a + \beta_{0j} + \beta_{1j} a^* + \beta_{2j}' c) \}} \\ comp^{CDE} &= \frac{exp (\sum_{j=1}^{l} \theta_{2j} I\{m=j\}) (1 + \sum_{j=1}^{l} exp (\beta_{0j} + \beta_{1j} a^* + \beta_{2j}' c)) (exp (\theta_{1} (a-a^*) + a \sum_{j=1}^{l} \theta_{3j} I\{m=j\}) - exp (a^* \sum_{j=1}^{l} \theta_{3j} I\{m=j\}))}{1 + \sum_{j=1}^{l} exp (\theta_{2j} + \theta_{3j} a^* + \beta_{0j} + \beta_{1j} a^* + \beta_{2j}' c)} \end{aligned}$$

$$\begin{split} OR^{CDE} &= \exp((\sum_{k=1}^{K} \theta_{1k} I\{a=k\} - \sum_{k=1}^{K} \theta_{1k} I\{a^*=k\}) + (\sum_{j=1}^{l} \sum_{k=1}^{K} \theta_{3jk} I\{m=l\} I\{a=k\} - \sum_{j=1}^{L} \sum_{k=1}^{K} \theta_{3jk} I\{m=l\} I\{a^*=k\})) \\ OR^{PNDE} &= \frac{\exp(\sum_{k=1}^{K} \theta_{1k} I\{a=k\}) \{1 + \sum_{j=1}^{l} \exp(\theta_{2j} + \sum_{k=1}^{K} \theta_{3jk} I\{a=k\} + \beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a^*=k\} + \beta'_{2j}c)\}}{\exp(\sum_{k=1}^{K} \theta_{1k} I\{a^*=k\}) \{1 + \sum_{j=1}^{l} \exp(\theta_{2j} + \sum_{k=1}^{K} \theta_{3jk} I\{a^*=k\} + \beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a^*=k\} + \beta'_{2j}c)\}} \\ OR^{TNDE} &= \frac{\exp(\sum_{k=1}^{K} \theta_{1k} I\{a=k\}) \{1 + \sum_{j=1}^{l} \exp(\theta_{2j} + \sum_{k=1}^{K} \theta_{3jk} I\{a^*=k\} + \beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a=k\} + \beta'_{2j}c)\}}{\exp(\sum_{k=1}^{K} \theta_{1k} I\{a^*=k\}) \{1 + \sum_{j=1}^{l} \exp(\theta_{2j} + \sum_{k=1}^{K} \theta_{3jk} I\{a^*=k\} + \beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a=k\} + \beta'_{2j}c)\}} \\ OR^{PNIE} &= \frac{\{1 + \sum_{j=1}^{l} \exp(\beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a^*=k\} + \beta'_{2j}c)\} \{1 + \sum_{j=1}^{l} \exp(\theta_{2j} + \sum_{k=1}^{K} \theta_{3jk} I\{a^*=k\} + \beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a^*=k\} + \beta'_{2j}c)\}}{\{1 + \sum_{j=1}^{l} \exp(\beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a^*=k\} + \beta'_{2j}c)\} \{1 + \sum_{j=1}^{l} \exp(\theta_{2j} + \sum_{k=1}^{K} \theta_{3jk} I\{a^*=k\} + \beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a^*=k\} + \beta'_{2j}c)\}} \\ OR^{TNIE} &= \frac{\{1 + \sum_{j=1}^{l} \exp(\beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a^*=k\} + \beta'_{2j}c)\} \{1 + \sum_{j=1}^{l} \exp(\theta_{2j} + \sum_{k=1}^{K} \theta_{3jk} I\{a^*=k\} + \beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a^*=k\} + \beta'_{2j}c)\}}}{\{1 + \sum_{j=1}^{l} \exp(\beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a^*=k\} + \beta'_{2j}c)\} \{1 + \sum_{j=1}^{l} \exp(\theta_{2j} + \sum_{k=1}^{K} \theta_{3jk} I\{a^*=k\} + \beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a^*=k\} + \beta'_{2j}c)\}}} \\ comp^{CDE} &= \frac{\exp(\sum_{j=1}^{l} \theta_{2j} I\{m=j\}) (1 + \sum_{j=1}^{l} \exp(\beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a^*=k\} + \beta'_{2j}c))}{\{1 + \sum_{j=1}^{l} \exp(\theta_{2j} + \sum_{k=1}^{K} \theta_{3jk} I\{a^*=k\} + \beta'_{2j}c))}} \\ &= \frac{\exp(\sum_{j=1}^{l} \theta_{2j} I\{m=j\}) (1 + \sum_{j=1}^{l} \exp(\beta_{0j} + \sum_{k=1}^{K} \beta_{1jk} I\{a^*=k\} + \beta'_{2j}c))}{\{1 + \sum_{j=1}^{l} \exp(\theta_{2j} + \sum_{k=1}^{K} \theta_{3jk} I\{a^*=k\} + \beta'_{2j}c))}} \\ \end{aligned}$$

$$\frac{(exp((\sum_{k=1}^{K}\theta_{1k}I\{a=k\}-\sum_{k=1}^{K}\theta_{1k}I\{a^*=k\})+\sum_{j=1}^{l}\sum_{k=1}^{K}\theta_{3jk}I\{a=k\}I\{m=j\})-exp(\sum_{j=1}^{l}\sum_{k=1}^{K}\theta_{3jk}I\{a^*=k\}I\{m=j\}))}{1+\sum_{j=1}^{l}exp(\theta_{2j}+\sum_{k=1}^{K}\theta_{3jk}I\{a^*=k\}+\beta_{0j}+\sum_{k=1}^{K}\beta_{1jk}I\{a^*=k\}+\beta'_{2j}c)}$$

Direct Conterfacturals imputation Estimation

- 1. Fit a regression model for Y on A, M and C.
- 2. Fit a regression model for each mediator in M on A and C.

Estimation Algorithm for $E(Y_{am})$:

- 3. For each subject i, simulate $Y_{am,i}$ by the predicted value of the outcome regression model under $A = a, M = m, C = C_i$.
- 4. Estimate $E[Y_{am}]$ by $\frac{\sum_{i=1}^{N} Y_{am,i}}{n}$.

Estimation Algorithm for $E[Y_{a1Ma2}]$:

- 3. For each subject i, simulate $M_{a2,i}$ by the predicted values of mediator regression models under $A = a2, C = C_i$.
- 4. For each subject i, simulate $Y_{a1Ma2,i}$ by the predicted value of the outcome regression model under $A = a1, M = M_{a2,i}, C = C_i$.
- 5. Estimate $E[Y_{a1Ma2}]$ by $\frac{\sum_{i=1}^{N} Y_{a1Ma2,i}}{n}$.

2.5.1.2 Inference

When the estimands are estimated through closed-form parameter function estimation, their standard errors can be estimated by the delta method or bootstrapping; when the estimands are estimated through direct counterfactuals imputation estimation, their standard errors can be estimated by bootstrapping.

2.5.2 Weighting-based Approach

Reference:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287269/

2.5.2.1 Estimation

Direct Counterfactuals Imputation Estimation

- 1. Fit a regression model for Y on A, M, C.
- 2. For $E[Y_{a^*m}]$, estimate it by taking a weighted average of the predicted Y values for subjects with $A=a^*$ if the subjects had had mediator M=m rather than their own values of mediator and each subject i is given a weight $\frac{P(A=a^*)}{P(A=a|c_i)}$.
- 3. For $E[Y_{am}]$, estimate it by taking a weighted average of the predicted Y values for subjects with A = a if the subjects had had mediator M = m rather than their own values of mediator and each subject i is given a weight $\frac{P(A=a)}{P(A=a|c_i)}$.
- 4. For $E[Y_{a^*Ma^*}]$, estimate it by taking a weighted average of the subjects with $A = a^*$ and each subject i is given a weight $\frac{P(A=a^*)}{P(A=a^*|c_i)}$.
- 5. For $E[Y_{aMa}]$, estimate it by taking a weighted average of the subjects with A=a and each subject i is given a weight $\frac{P(A=a)}{P(A=a|c_i)}$.

- 6. For $E[Y_{aMa^*}]$, estimate it by taking a weighted average of the predicted Y values for subjects with $A=a^*$ if the subjects had had exposure A=a rather than $A=a^*$ and each subject i is given a weight $\frac{P(A=a^*)}{P(A=a^*|c_i)}$.
- 7. For $E[Y_{a^*Ma}]$, estimate it by taking a weighted average of the predicted Y values for subjects with A=a if the subjects had had exposure $A=a^*$ rather than A=a and each subject i is given a weight $\frac{P(A=a)}{P(A=a|c_i)}$.

2.5.2.2 Inference

Estimate standard errors of estimands by bootstrapping.

2.5.3 Inverse Odds Ratio Weighting Approach

Reference:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954805/https://www.ncbi.nlm.nih.gov/pubmed/25693776

2.5.3.1 Estimation

Closed-form Parameter Function Estimation

- 1. Fit a regression model for A given M and C
- 2. Calculate weights for each subject, $w_i = \frac{f_{A|M,C}(A=0|M_i,C_i)}{f_{A|M,C}(A=A_i|M_i,C_i)}$
- 3. Estimate the direct effect by a weighted regression model of Y on A and C using the weights calculated in 2. The estimated direct effect is the coefficient of A in this regression model.
- 4. Estimate the total effect by a regression model of Y on A and C. The estimated total effect is the coefficient of A in this regression model.
- 5. Calculate the indirect effect by subtracting the direct effect from the total effect.

2.5.3.2 Inference

Estimate standard errors of estimands by bootstrapping.

2.5.4 Natural Effect Model

Incorporate the Medflex package: https://www.jstatsoft.org/article/view/v076i11

2.5.4.1 Estimation

- 1. Fit a working model for Y on A, M and C.
- 2. For each subject i, expand the dataset by setting x^* to be the observed exposure value, setting x to enumerate all potential exposure levels, and then imputing $Y_{x,M_{x^*},i}$ using the predicted value of Y under $A = x, M = M_i, C = C_i$. If the exposure is continuous, expand the dataset by setting x to be a number of draws(defaults to 5) from the conditional distribution of A given C_i .
- 3. Fit a natural effect model for Y on x,x^* and C using the expanded dataset. The natural effect model should at least reflect the structure of the working model.

4. The coefficient of x captures the natural direct effect and the coefficient of x^* captures the natural indirect effect.

2.5.4.2 Inference

The standard errors of estimands can be estimated by the delta method or bootstrapping.

2.5.5 Other Approaches

Approaches talked about later can also be used.

3 Post-treatment Confounding

3.1 DAG

In the DAG, A denotes the treatment, Y denotes the outcome, M denotes a set of mediators and $M = (M_1, M_2, ..., M_k)$, C denotes a set of pre-exposure covariates and L denotes a set of post-exposure covariates and $L = (L_1, L_2, ..., L_s)$.

3.2 Estimand

2-way decomposition in additive scale

$$\begin{split} CDE &= E[Y_{am} - Y_{a^*m}] \\ rPNDE &= E[Y_{aG_a^*} - Y_{a^*G_a^*}] \end{split}$$

$$rTNDE = E[Y_{aG_a} - Y_{a^*G_a}]$$

$$rPNIE = E[Y_{a^*G_a} - Y_{a^*G_a^*}]$$

$$rTNIE = E[Y_{aG_a} - Y_{aG_a^*}]$$

$$rTE = rPNDE + rTNIE$$

$$PM = \frac{rTNIE}{rPNDE + rTE}$$

2-way decomposition in RR scale

$$rr^{CDE} = E[Y_{am}]/E[Y_{a^*m}]$$

$$rr^{rPNDE} = E[Y_{aG_a^*}]/E[Y_{a^*G_a^*}]$$

$$rr^{rTNDE} = E[Y_{aG_a}]/E[Y_{a*G_a}]$$

$$rr^{rPNIE} = E[Y_{a^*G_a}]/E[Y_{a^*G^*}]$$

$$rr^{rTNIE} = E[Y_{aG_a}]/E[Y_{aG_a^*}]$$

$$rr^{rTE} = rr^{rPNDE} \times rr^{rTNIE}$$

$$PM = \frac{rr^{rPNDE} * (rr^{rTNIE} - 1)}{rr^{rTE} - 1}$$

4-way decomposition in additive scale

$$CDE = E[Y_{am} - Y_{a^*m}]$$

$$rINT_{ref} = rPNDE - CDE$$

$$rINT_{med} = rTNIE - rPNIE$$

$$rPIE = rPNIE$$

$$prop^{CDE} = \frac{CDE}{rTE}$$

$$prop^{rINT_{ref}} = \frac{rINT_{ref}}{rTE}$$

$$prop^{rINT_{med}} = \frac{rINT_{med}}{rTE}$$

$$prop^{rPIE} = \frac{rPIE}{rTE}$$

$$overall^{PM} = \frac{rPNIE + rINT_{med}}{rTE}$$

$$overall^{INT} = \frac{rINT_{ref} + rINT_{med}}{rTE}$$

$$overall^{PE} = \frac{rINT_{ref} + rINT_{med} + rPIE}{rTE}$$

4-way decomposition in RR scale

$$err^{CDE} = (E[Y_{am} - Y_{a^*m}])/E[Y_{a^*G_a^*}]$$

$$err^{rINT_{ref}} = rr^{rPNDE} - 1 - err^{CDE}$$

$$err^{rINT_{med}} = rr^{rTNIE} * rr^{rPNDE} - rr^{rPNDE} - rr^{rPNIE} + 1$$

$$err^{rPIE} = rr^{rPNIE} - 1$$

$$err^{rTE} = err^{CDE} + err^{rINT_{ref}} + err^{rINT_{med}} + err^{rPIE} = rr^{rTE} - 1$$

$$prop^{err^{CDE}} = \frac{err^{CDE}}{err^{rTE}}$$

$$prop^{err^{rINT}_{ref}} = \frac{err^{rINT}_{ref}}{err^{rTE}}$$

$$prop^{err^{rINT}_{med}} = \frac{err^{rINT}_{med}}{err^{rTE}}$$

$$prop^{err^{rPIE}} = \frac{err^{rPIE}}{err^{rTE}}$$

$$\begin{aligned} overall^{PM} &= \frac{err^{rPIE} + err^{rINT}{med}}{err^{rTE}} \\ overall^{INT} &= \frac{err^{rINT}{ref} + err^{rINT}{med}}{err^{rTE}} \\ overall^{PE} &= \frac{err^{rINT}{ref} + err^{rINT}{med} + err^{rPIE}}{err^{rTE}} \end{aligned}$$

3.3 Estimation Approaches Can be Used

3.3.1 Marginal Structual Model

Reference:

 $https://journals.lww.com/epidem/fulltext/2009/01000/marginal_structural_models_for_the_estimation_of.6.aspx$

3.3.1.1 Estimation

Direct Counterfactuals Imputation Estimation

Estimation Algorithm for $E(Y_{am})$:

- 1. Fit a weighted regression model for Y on A and M where each subject i is given a weight $\frac{P(A=a_i)}{P(A=a_i|C=c_i)} \frac{P(M_1=M_{1,i}|A=a_i)}{P(M_1=M_{1,i}|A=a_i,C=c_i,L=l_i)} \cdots \frac{P(M_k=M_{k,i}|A=a_i)}{P(M_k=M_{k,i}|A=a_i,C=c_i,L=l_i)}.$ Then, simulate Y_{am} by the predicted value of the weighted outcome regression model under A=a, M=m.
- 2. Estimate $E(Y_{am})$ by Y_{am} .

Estimation Algorithm for $E(Y_{a1Ga2})$:

- 1. Fit a weighted regression model for each mediator $M_p, p = 1, 2, ..., k$, on A and C where each subject i is given a weight $\frac{P(A=a_i)}{P(A=a_i|C=c_i)}$. Then, for each subject i, simulate the value of $M_{p,a2,i}$ by the predicted value of $M_p|A=a2, C=C_i$.
- 2. Fit a weighted regression model for Y on A, M and C where each subject i is given a weight $\frac{P(A=a_i)}{P(A=a_i|C=c_i)} \frac{P(M_1=M_{1,i}|A=a_i)}{P(M_1=M_{1,i}|A=a_i,C=c_i,L=l_i)} \cdots \frac{P(M_k=M_{k,i}|A=a_i)}{P(M_k=M_{k,i}|A=a_i,C=c_i,L=l_i)}.$ Then, for each subject i, simulate the potential outcome $Y_{a1Ga2,i}$ by the predicted value of $Y|A=a1, M_1=M_{1,a2,i}, M_2=M_{2,a2,i},...,M_k=M_{k,a2,i},C=C_i.$
- 3. Estimate $E(Y_{a1Ga2})$ by $\frac{\sum_{i=1}^{N} Y_{a1Ga2,i}}{n}$.

3.3.1.2 Inference

Estimate standard errors of estimands by bootstrapping.

3.3.2 G-formula Approach

Reference:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5285457/

3.3.2.1 Estimation

Direct Counterfactuals Imputation Estimation

Estimation Algorithm for $E(Y_{am})$:

- 1. Fit a model for E(Y|A,L,M,C). For subject i, simulate $Y_{am,i}$ by the predicted value of the outcome regression model under $A = a, L = L_i, M = m, C = C_i$.
- 2. Estimate $E(Y_{am})$ by $\frac{\sum_{i=1}^{N} Y_{am,i}}{n}$

Estimation Algorithm for $E(Y_{a1Ga2})$:

- 1. Fit a regression model for each post-exposure covariate $L_q|A,C)$, q=1,2,...,s, on A and C. Then, for each subject i, simulate the value of $L_{q,a1,i}$ by the predicted value of $L_q|A=a1,C=C_i$.
- 2. Fit a regression model for each mediator M_p , p = 1, 2, ..., k, on A, C and L. Then, for each subject i, simulate the value of $M_{p,a2,i}$ by the predicted value of $M_p|A = a2, C = C_i, L = L_i$.
- 3. Fit a regression model for Y on A, L, M, and C. Then, for each subject i, simulate the potential outcome $Y_{a1Ga2,i}$ by the predicted value of $Y|A=a1, L_1=L_{1,a1,i}, L_2=L_{2,a1,i},...,L_s=L_{s,a1,i}, M_1=M_{1,a2,i}, M_2=M_{2,a2,i},...,M_n=M_{k,a2,i}, C=C_i$.
- 4. Estimate $E(Y_{a1Ga2})$ by $\frac{\sum_{i=1}^{N} Y_{a1Ga2,i}}{n}$.

3.3.2.2 Inference

Estimate standard errors of estimands by bootstrapping.