WO 99/60285

5

10

15

20

25

30

Rec'd PC

Screw actuator, and brake calliper comprising such actuator

The invention is related to a screw actuator, comprising an actuating member and a screw mechanism having a screw, nut and rolling elements, one of which screw and nut is rotatably supported with respect to the housing and providing a linear movement of the actuating member with respect to the housing in response to a rotational movement of the motor, and a reduction gear means.

Such screw actuator is known from WO-A-9603301. Said known screw actuator comprises a screw mechanism which is supported with respect to the housing by means of a bearing capable of accommodating axial and/or radial loads, e.g. an axial thrust bearing for accommodating the axial forces exerted on the brakepads.

This screw mechanism is a so-called roller screw mechanism. Depending on the application condition constraints i.e. space available, and load, one can select a roller screw or a ball screw type actuator. Specific application considerations for a roller screw is that such roller screw mechanism provides a high power density, which means that within specific dimensional constraints, a relatively high load carrying capacity can be provided. Said carrying capacity however is predominantly related to axial loads. With respect to radial loads, the carrying capacity is less favourable compared to a ball screw. A roller screw mechanism is in general more sensitive with respect to radial loads and misalignment.

Another specific component in a roller screw mechanism is the cage which is necessary to space the rollers. In high speed applications this cage mass results in higher starting torques.

The object of the invention is to provide an improved actuator. This object is achieved in that the nut is fixed with respect to the housing, and the screw is rotatably supported with respect to the housing by means of the rolling elements. Said rolling elements may comprise rollers or balls.

In order to obtain about the same load bearing capacity as in a roller screw mechanism, the pitch diameter of the rolling balls, the ball diameter and its contact angle with screw and nut, and the number of turns should be designed such that appropriate dimensions and the required load carrying capacity are provided. However, as the rolling elements of the screw mechanism can also act as bearing elements for supporting the rotating screw, no separate bearing is necessary to take of a rolling element bearing. In order to achieve an appropriate reduction, the pitch diameter of the bevel gear is larger than the pitch diameter of the sun gear wheel.

Furthermore, a sensor fixed on a bearing or near the motorshaft may be provided for detecting rotational and/or translational movements of the screw mechanism or other operating parameters. Also, control means may be provided, said control means having an input for a control signal, e.g. from a brake pedal, and being connected to the sensor for controlling the electric motor on the basis of the control signal and the signal from the sensor. The sensor is in particular suitable for obtaining force feedback, wear compensation and/or maintenance indication.

The actuator according to the invention can be applied for different purposes. In particular, the actuator is suitable for use in a brake calliper for an electrically actuatable disc brake, said calliper comprising an actuator as described before, and a claw piece carrying two opposite brake pads, said actuator comprising a screw and a nut one of which is rotatably supported with respect to the housing by means of an angular bearing, and a reduction gear means.

The invention will further be described with reference to the embodiments of figures 1 and 2.

Figure 1 shows a brake calliper, comprising an actuator according to the invention, in exploded view.

Figure 2 shows the brake calliper according to figure 1, in assembled state.

Figure 3 shows a detail.

10

15

20

30

Figure 4 shows a detail of the ball screw.

Figure 5 shows a further embodiment.

The brake calliper shown in figures 1 and 2 comprises a claw piece 1 carrying a fixed brake pad 2 and a displaceable brake pad 3. Said brake pads 2, 3 can be brought into co-operation with brake disc 4.

The displaceable brake pad 3 engages a ball screw mechanism 5 which by means of reduction gear means 6 is driven by motor 7. Said motor 7 may be provided with a sensor 40, connected to the motor shaft.

More in particular, the displaceable brake pad 3 is connected by means of bolt 8 and screwthreaded hole 9 to an actuating member 10. Said actuating member 10 engages the screw 11 by means of an bearing 12 capable to take up axial load. Said

actuating member is carried out as a piston 10, which is slidably, but non-rotatably held in a cylinder space 38 in the housing 17.

By means of balls 13, screw 11 engages the nut 14. Said nut 14 has an external screwthread 15, by means of which the nut 14 is connected to the housing 17. Moreover, a recirculating tube 18 for recirculating the balls 13 upon rotating the screw 11 with respect to said nut 14, extends through the nut.

The screw 11 has a bore 37 with internal grooves 19, which engage balls 20. Said balls 20 also engage the external grooves 21 of drive shaft 22.

By rotating drive shaft 22 through reduction gear means 6 and motor 7, the screw 11 is rotated as well. As a result, it is displaced backward or forward by the co-operation of its screw type groove 23 with the screw type groove 24 of the nut 14, by means of the balls 15.

10

15

30

Drive shaft 23 is connected to a carrier 25, which carries satellite gear wheels 26. Said satellite gear wheels 26 each engage a ring gear wheel 27 as well as a sun gear wheel 28.

Sun gear wheel 28 forms a unity with bevel gear 29 which together form a unitary gear wheel 30. Said unitary gear wheel 30 by means of bearing 31 is supported with respect to the nut 14.

The bevel gear 29 engages the bevel pinion 31, which in turn is driven by motor 7.

The bearing 31, which supports the unitary gear wheel with respect to the nut 14, comprises a sensor 33 for detecting the rotations of the screw mechanism, and thereby the displacement of the displaceable brake pad 3.

Housing 17 comprises a bore 34, through which a wire can be guided to the outside from said sensor 33.

The carrier 25 is supported with respect to the housing 17 by means of bearing 35; by means of bolts 36, motor 7 is connected to said housing 17.

According to the detail of figure 3, the connection between brake pad 3 and piston 10 may alternatively be obtained through edges 43 which are slidable mounted in grooves 43 of piston 10.

In order to accommodate the axial forces exerted on the ball screw mechanism when applying a brake force on the brake pads 2,3, the screw threads 23, 24 of screw 11 respectively nut 14 can be adapted according to the embodiment shown in figure

5

4. In cross-section, the threads 23 have raised parts 51, whereas the threads 24 have raised parts 52.

As a result of these shapes, the working lines 50 as defined by the contact angles and the ball conformity with the ball tracks, which define the load paths which play a role in force transfer, are in a more inclined position. The contact angle is between 45-70° in order to create optimized load carrying capacity for the ball screw in relation to the applied load specification.

The embodiment of figure 5 comprises a motor 61, having a stator 53 and a rotor 54 connected to a sleeve 55. The sleeve 55 is connected through the intermediate piece 56 to drive shaft 22. Alternatively, the sleeve 55 may be connected to the drive shaft 22 through a gear reduction.

10

15

20

25

30

Drive shaft 22 drives screw 11 of screw mechanism 5, through the groove 21, 19 in the respectively the drive shaft 22 and the screw 11, as well as through the balls 20 accommodated in said grooves 21, 19.

Via thrust bearing 69, the screw 11 can be connected to e.g. a brake pad in case of an actuator applied in a claw piece. The thrust bearing 69 comprises two rings 67, 68, and balls 12. One of the rings 67 may from a unity with the screw 11. The other ring 68 may comprise a locking groove 66 for locking a brake pad (not shown) thereto.

The screw 11 is rotatably and translatably held in a cylinder space 59 defined by insert ring 58 inserted in nut 14 of the screw mechanism 5. Nut 14 and screw 11 of screw mechanism 5 engage each other through balls 13, accommodated in respective screwthreaded threads of nut 14 and screw 11.

Sleeve 55 connected to rotor 54 of motor 61 is rotatably supported on the fixed nut 14 by means of bearings 63. These bearings have an outer race accommodated in the sleeve 55, and an inner ring 57 having appropriate raceways as well. The inner ring 57 is locked by means of locking ring 65. Furthermore, these bearings 63 have balls 64.

Alternatively, two separate standard ball or roller bearings may be applied. The housing of the actuator is indicated by reference number 62.

7

- 7. Actuator according to any of the preceding claims, wherein the screw (11) engages the actuating member (10) through a bearing (12) capable to carry axial and/or radial load.
- 8. Actuator according to any of claims 1-6, wherein the screw (11) is rigidly connected to the actuating member (10).
- 9. Actuator according to any of the preceding claims, wherein the actuating member is a piston (10), which is slidably held within a cylinder space (38, 59) of the housing (17).
 - 10. Actuator according to claim 7 and 9, wherein the piston (10) is held non-rotatably by means of a groove and pin assembly, or by means of a ball/groove assembly.

15

- 11. Actuator according to claims 8 and 9, wherein the piston (10) is rotatably held within the cylinder space (38).
- 12. Actuator according to claim 9, wherein the cylinder space (59) is formed 20 in the nut (14).
 - 13. Actuator according to claim 4, wherein the modules are axially aligned.
- 14. Actuator according to claim 4, wherein the modules are in laterally shifted positions.
 - 15. Actuator according to any of the preceding claims, wherein one or two laterally shifted motors are provided.
- 16. Actuator according any of the preceding claims 4-15, wherein the reduction gear means (6) comprises at least part of a planetary gear system having a stationary outer ring gear (27) with inwardly pointing gear teeth.

- 25. Actuator according to any of the preceding claims, wherein the motor (7) is an electric motor.
- 26. Actuator according to any of claims 1-24, wherein the motor (7) is a hydraulic motor.
 - 27. Actuator according to any of claims 1-24, wherein the motor (7) is a pneumatic motor.
- 10 28. Actuator according to any of the preceding claims, wherein at least one of the screw, nut, rolling elements and/or reduction gear components is obtained by hard turning.
- 29. Actuator according to any of the preceding claims, wherein the screw mechanism comprises rolling balls, and the grooves in the screw and nut are arranged for adapted contact angles in view of improved axial load bearing capacity.
 - 30. Reduction gear module for use in the actuator according to any of claims 2-27.
 - 31. Screw mechanism module for use in the actuator according to any of claims 2-27.

20

- 32. Drive module for use in the actuator according to any of claims 2-29.
- 33. Brake calliper for an electrically actuatable disc brake, said calliper comprising an actuator according to any of the preceding claims 1-29, and a claw piece (1) carrying two opposite brake pads (2, 3), said actuator comprising a screw mechanism (5) the screw (11) of which is rotatably supported with respect to the housing (17) by means of the balls (23) of the screw mechanism (5), a reduction gear means (6) and a motor (7).

10

34. Continuously variable transmission comprising two pulleys which each have two discs enclosing a V-shaped groove, as well as a belt engaging said grooves, the discs of each pulley being movable towards and away from each other so as to continually change the running radius of the belt, wherein the discs of each pulley are

5 displaceable by means of an actuator according to any of claims 1-29.

15

- 35. Continuously variable transmission according to claim 34, wherein the drive of the discs comprises hydraulic means.
- 36. Continuously variable transmission according to claim 34, wherein the drive of the discs comprises mechanical means.
 - 37. Clutch, comprising two clutch plates which can be brought into frictional engagement for transferring a drive couple, said clutch plates being connected to the shaft, comprising an actuator according to any of claims 1-29, said actuator having a hollow screw which accommodates one of the shafts.