

MATH 102: Calculus II Sec I & Sec-II Fall 2023-2024

Course Catalog Description

This is the second of a two-semester calculus sequence. This course covers vectors, lines, planes, quadratic surfaces, vector functions, arc length and curvature of a space curve, partial derivatives and linear approximations, maxima and minima of the functions of several variables, Lagrange multipliers, multiple integrals, change of variables formula for multiple integrals, line integrals, surface integrals, Green's theorem, Stokes' theorem, divergence theorem, sequences and series, power series, Taylor and Maclaurin series.

COURSE TEACHING METHODOLGY

Classes will be conducted on-campus.

Course Details			
Credit Hours	3		
Core	Core Course for Math		
Elective			
Open for Student	BS students		
Category			
Closed for			
Student Category			

Course Prerequisite(s)/Co-Requisite(s)

Prerequisites: MATH 101 (Calculus I) AND MATH 120

Co-requisites: None

Course Offering Details						
Lecture(s)	Nbr of Lec(s) Per Week	2	Duration	75 min	Days / Timings and Venues	ТВА
Recitation (per week)	Nbr of Rec (s) Per Week	x	Duration			
Lab (if any) per week	Nbr of Session(s) Per Week	x	Duration			
Tutorial (per week)	Nbr of Tut(s) Per Week	1	Duration	TBA		

Instructors	Masood H. Shah < <u>mshah@lums.edu.pk</u> >, Office (SBASSE, 1 st Floor, Department of Mathematics, Room 9-161 A), Extension (8019)
	Sultan Sial <u>sultans@lums.edu.pk</u> , Office (SBASEE,1 st Floor, Department of Mathematics, Room 9-141 A), Extension (8018)
Office Hours	ТВА
Secretaries	Noreen Sohail < <u>noreen@lums.edu.pk></u> Shazia Zafar< <u>shazia.zafar@lums.edu.pk</u> >
TAs	TBA

Course Learning Outcomes

Students will be able to:

MATH

102	
	Define two and three dimensional Cartesian coordinate systems and make

CLO1: Define two and three dimensional Cartesian coordinate systems and make connections between sets of points and equations

CLO2: Describe limits in two and three dimensions, partial derivatives in two and three dimensions; tangent planes to surfaces and linear approximations; calculate gradients and directional derivatives, apply Lagrange multipliers

CLO3: Integrate in two and three dimensions; be familiar with some applications of integration in higher dimensions; double integrals using Jacobians and change of variables, triple integrals in Cartesian, cylindrical, and spherical coordinates; evaluate line and surface integrals

CLO4: Use Green's theorem, Stokes' theorem and the divergence theorem. Know the basic results about the convergence of sequences and series.

Relation to EE Program Outcomes				
EE-240 CLOs	Related PLOs	Levels of Learning	Teaching Methods	CLO Attainment checked in
CLO1	PLO1	Cog-1	Instruction, Tutorial, Assignments	Quiz, Midterm, Final
CLO2	PLO1	Cog-2 & 3	Instruction, Tutorial, Assignments	Quiz, Midterm, Final
CLO3	PLO1	Cog-3	Instruction, Tutorial, Assignments	Quiz, Midterm, Final
CLO4	PLO1	Cog-3 & 4	Instruction, Tutorial,	Quiz, Final

Assignments

Grading Breakup and Policy

Assignments: 10% Quizzes: 20%

Midterm exam: 30% Final exam: 40%

Textbook(s)/Supplementary Readings

Textbook: Calculus, 7th edition, by James Stewart, BROOKS/COLE.

Course Overview					
Week No.	Book Chapter	Topic	Book sections	Related CLOs & Additional Remarks	
1-2	12 Vectors and the Geometry of Space	Vectors in two and three dimensions, dot product, cross product, equations of lines and planes, cylinders and quadric surfaces CLO1 4 lecture			
3-4	13 Vector Functions	Vector functions and space curves, derivatives and integrals of vector functions, arc length and curvature	13.1-13.3	CLO1 2 lectures	
5-7	14 Partial Derivatives	Functions of several variables, limit and continuity, partial derivatives, tangent planes and linear approximations, the chain rule, directional derivatives, maximum and minimum values, Lagrange multipliers	14.1-14.8	CLO1, CLO2 6 lectures	
Midterm Exam					
8-9	15 Multiple Integrals	Double integrals over rectangles, iterated integrals, double integrals over general regions, triple integrals	15.1-15.3, 15.7	CLO3 4 lectures	
10	15 Multiple Integrals	Change of variables in multiple integrals, double integrals in polar coordinates, triple integrals in cylindrical coordinates, triple integrals in spherical coordinates	15.10, 15.4, 15.8-15.9	CLO3 2 lectures	
11-12	16 Vector Calculus	Vector fields, line integrals, the fundamental theorem for line integrals, Green's theorem, curl and divergence, parametric surfaces and their areas, surface integrals, Stokes' theorem, the divergence theorem	16.1-16.9	CLO4 6 lectures	
13-14	11 Infinite Sequences and Series	Infinite convergence, ratio test, root test, power convergence, representations of functions as power		CLO4 4 lectures	

Final Exam

Examinations Details			
Midterm Exam	Duration: 120 minutes Exam Specifications: Closed books/Closed Notes, Calculators not allowed		
Final Exam	Duration: 150 minutes Exam Specifications: Closed books/Closed Notes, Calculators not allowed		