Теория и реализация языков программирования. Задание 2: НКА и алгоритмы поиска подстрок

Сергей Володин, 272 гр.

задано 2013.09.18

Упражнение 1

Пусть $\sim \subset X \times X$. $C(x) = \{z \in X | x \sim z\}$, $C(y) = \{w \in X | y \sim z\}$. Пусть $\exists z \in C(x) \cap C(y)$. Тогда $x \sim z, y \sim z$, и $w \in C(x) \overset{\text{def}}{\Leftrightarrow} x \sim w \overset{z \sim x}{\overset{\text{гран.}}{\Leftrightarrow}} z \sim w \overset{y \sim z}{\overset{\text{reg.}}{\Leftrightarrow}} y \sim w \overset{\text{def}}{\Leftrightarrow} w \in C(y)$, то есть, C(x) = C(y).

В противном случае $](\exists z \in C(x) \cap C(y)) \Leftrightarrow C(x) \cap C(y) = \emptyset$. Получаем, что возможны два случая:

- 1. $C(x) \cap C(y) = \emptyset$ (не пересекаются)
- 2. C(x) = C(y) (совпадают)

Упражнение 2

Пусть $\varphi \colon \Sigma^* \supseteq X \longrightarrow \Delta^*$. $\varphi(\sigma_i) \stackrel{\text{def}}{=} \delta_i \in \Delta^*$, $|\sigma_i| = 1$.

1. $(e\partial uncm eenhocm b)$ Предположим, что существует такое φ — морфизм. Тогда $\forall w=w_1...w_n\in X, |w_i|=1\hookrightarrow \varphi(w)\equiv \varphi(w_1...w_n)=\varphi(w_1)\cdot \varphi(w_2...w_n)=...=\varphi(w_1)\cdot ...\cdot \varphi(w_n)\in \Delta^*$. Для $w=\varepsilon$ получаем $\varphi(\varepsilon)=\varepsilon$, так как φ — морфизм: $w_0\stackrel{\mathrm{def}}{=}\varphi(\varepsilon)=\varepsilon$. $\varphi(\varepsilon)\equiv \varphi(\varepsilon\varepsilon)=\varphi(\varepsilon)\varphi(\varepsilon)=w_0w_0\Rightarrow w_0=w_0w_0\Rightarrow |w_0|=|w_0||w_0|\Rightarrow w_0=\varphi(\varepsilon)=\varepsilon$.

Таким образом, получаем, что такой морфизм единственный (если существует).

- 2. (существование) Докажем, что определенное выше отображение φ морфизм: пусть $x, y \in X$. Рассмотрим случаи:
 - a. $|x| = 0, |y| = 0 \Rightarrow \varphi(xy) = \varphi(\varepsilon\varepsilon) = \varphi(\varepsilon) = \varepsilon = \varepsilon\varepsilon = \varphi(\varepsilon)\varphi(\varepsilon)$
 - b. $|x| = 0, |y| > 0 \Rightarrow \varphi(xy) = \varphi(y) = \varepsilon \varphi(y) = \varphi(x)\varphi(y)$
 - c. $|x| > 0, |y| = 0 \Rightarrow \varphi(xy) = \varphi(x) = \varphi(x)\varepsilon = \varphi(x)\varphi(y)$
 - d. $|x| > 0, |y| > 0 \Rightarrow \varphi(xy) = \varphi(x_1...x_my_1...y_n) = \varphi(x_1)...\varphi(x_m) \varphi(y_1)...\varphi(y_n) = \varphi(x)\varphi(y)$.

Таким образом, если заданы значения $\varphi(\sigma_i), \sigma_i \in X \subset \Sigma$, то морфизм $\varphi \colon \Sigma^* \supseteq X \longrightarrow \Delta^*$ с этими значениями существует и единственнен.

Задача 1

Определим $R_3: \mathsf{REG} \ni X \longrightarrow \mathbb{N} \cup \{0\}$ — количество применений правила 3 из определения регулярности X. В случае X = AB или $X = A|B, A, B \in \mathsf{REG}\ R_3(X) \stackrel{\mathrm{def}}{=} 1 + R_3(A) + R_3(B)$. В случае $X = A^*, A \in \mathsf{REG}$, определим $R_3(X) \stackrel{\mathrm{def}}{=} 1 + R_3(A)$. В случае $X = \emptyset$ или $X = \{\sigma\}$ определим $R_3(X) \stackrel{\mathrm{def}}{=} 0$. Функция $R_3(X)$ определена корректно, так как определение регулярного языка коррентное.

Пусть $\varphi \colon \Sigma^* \supset X \longrightarrow Y \subset \Delta^*$ — морфизм, $X \in \mathsf{REG}$. Докажем, что $Y \equiv \varphi(X) \in \mathsf{REG}$ индукцией по $R_3(X)$:

 $P(i) = (\forall X \in \mathsf{REG} \colon R_3(X) \leqslant i \ \forall \varphi - \mathsf{морфизм} \hookrightarrow \varphi(X) \in \mathsf{REG}).$

- 1. Докажем P(0): пусть $X \in \mathsf{REG} \colon R_3(X) = 0$. Тогда X получен без применения третьего правила. Значит, $\forall \varphi$ морфизм либо $X = \varnothing \Rightarrow \varphi(X) = \varnothing$, либо $X = \{\sigma\} \Rightarrow \varphi(X) = \{\varphi(\sigma)\} = \{w\}, w \in \Delta^*$.
 - Докажем, что $\Delta^* \supset \{w\} \in \mathsf{REG}$. $\{w\} \equiv \{\sigma_1...\sigma_n\} \equiv \{\sigma_1\} \cdot ... \cdot \{\sigma_n\}$. Поскольку $\{\sigma_i\} \in \mathsf{REG}$, и регулярные языки замкнуты относительно конкатенации (по определению), получаем требуемое.

Итак, $\varphi(X) \in \mathsf{REG} \blacksquare$

- 2. Пусть P(n). Докажем P(n+1). Пусть $\mathsf{REG} \ni X \colon R_3(X) \leqslant n+1$. Если $R_3(X) < n+1$, $P(n) \Rightarrow X \in \mathsf{REG}$. $\sphericalangle X \colon R_3(X) = n+1$. Возможны случаи:
 - а. $X=WZ,\,W,Z\in\mathsf{REG}.$ Тогда $\varphi(X)\equiv\varphi(WZ)=\{\varphi(wz)|w\in W,z\in Z\}=\{\varphi(w)\varphi(z)|w\in W,z\in Z\}=\{\varphi(w)|w\in W\}\cdot\{\varphi(z)|z\in Z\}=\varphi(W)\varphi(Z).$ $R_3(X)=1+R_3(W)+R_3(Z)=n+1\Rightarrow R_3(W),R_3(Z)\leqslant n\stackrel{P(n)}{\Rightarrow}\varphi(W),\varphi(Z)\in\mathsf{REG}\Rightarrow\varphi(X)=\varphi(W)\varphi(Z)\in\mathsf{REG}.$

- b. $X=W|Z,\,W,Z\in\mathsf{REG}.$ Тогда $\varphi(X)\equiv\varphi(W|Z)\equiv\varphi(W)|\varphi(Z).$ Аналогично $R_3(W),R_3(Z)\leqslant n\stackrel{P(n)}{\Rightarrow}\varphi(W),\varphi(Z)\in\mathsf{REG}\Rightarrow\varphi(X)=\varphi(W)|\varphi(Z)\in\mathsf{REG}.$
- с. $X=W^*, W\in \mathsf{REG}$. Тогда $R_3(X)=1+R_3(W)=n+1\Rightarrow R_3(W)=n\stackrel{P(n)}{\Rightarrow}\varphi(W)\in \mathsf{REG}\Rightarrow \varphi(W^*)=\varphi(\varepsilon|W|WW|...)=\varphi(\varepsilon)|\varphi(W)|\varphi(WW)...=\varphi(W)|\varphi(WW)...=\varphi(W)|\varphi(WW)...=\varphi(W)|\varphi(WW)...=\varphi(W)|\varphi(WW)...=\varphi(W)|\varphi(WW)...=\varphi(W)|\varphi(WW)|...=\varphi(W)|\varphi(W)||\varphi(WW)|...=\varphi(W)|\varphi(W)||\varphi(W)$

Получаем $\forall i \geqslant 0 \hookrightarrow P(i) \Rightarrow \forall X \in \mathsf{REG} \, \forall \varphi - \mathsf{морфизм} \hookrightarrow \varphi(X) \in \mathsf{REG} \blacksquare$

Задача 2

- 1. Нет. Пусть $\Sigma = \{0,1\}$, $L = \Sigma^*$. Определим $\varphi \colon L \longrightarrow L \colon \forall w \in L \hookrightarrow \varphi(w) = \varepsilon$. В этом случае φ морфизм, так как $\forall x \in L \, \forall y \in L \hookrightarrow \varphi(xy) = \varepsilon = \varepsilon \varepsilon = \varphi(x)\varphi(y)$. Тогда $\forall \varnothing \neq X \subset L \hookrightarrow \varphi(X) = \{\varepsilon\}$, так как $\forall w \in L \hookrightarrow \varphi(w) = \varepsilon$. Поскольку $\varphi(\varepsilon) = \varepsilon \in L$, $\varphi^{-1}(\varepsilon) \ni \varepsilon \Rightarrow \varphi^{-1}(L) \supset \{\varepsilon\} \neq \varnothing \Rightarrow \varphi^{-1}(L) \neq \varnothing \Rightarrow \varphi(\varphi^{-1}(L)) = \{\varepsilon\} \neq L$. Таким образом, $\exists L \subset \Sigma^* \, \exists \varphi$ морфизм: $\varphi(\varphi^{-1}(L)) \neq L$.
- 2. Нет. Пусть $\Sigma = \{a,b\},\ L = \{b\}^*,\ \varphi(a) \stackrel{\text{def}}{=} \varphi(b) \stackrel{\text{def}}{=} a$. Доопределим φ так, чтобы оно было морфизмом (это возможно, см. упражнение 2). Тогда $\varphi(L) \equiv \varphi(\{b^*\}) \ni \varphi(b) = a \Rightarrow \varphi^{-1}(\varphi(L)) \supset \varphi^{-1}(a) \ni a \notin L \Rightarrow \varphi^{-1}(\varphi(L)) \not\subseteq L \Rightarrow \varphi^{-1}(\varphi(L)) \neq L$. Таким образом, $\exists L \subseteq \Sigma^* \exists \varphi$ морфизм: $\varphi^{-1}(\varphi(L)) \neq L$.
- 3. Нет. Пусть $\Sigma = \{a,b\}, \ L = \{ab\}, \ \text{морфизм} \ \varphi \colon \Sigma^* \longrightarrow \Sigma^* \text{из предыдущего пункта. Тогда} \ \varphi(L) = \{\varphi(ab)\} = \{\varphi(a)\varphi(b)\} = \{aa\}, \ \varphi^{-1}(L) = \{x \in \Sigma^* | \varphi(x) \in \{ab\}\} = \{x \in \Sigma^* | \varphi(x) = ab\} = \varnothing, \ \text{так как} \ \varphi(\Sigma^*) = \varphi((a|b)^*) \stackrel{1.2.c}{=} (\varphi(a|b))^* = \{\varphi(a), \varphi(b)\}^* = \{a\}^* = a^* \not\ni ab. \ \text{Тогда} \ \varphi(\varphi^{-1}(L)) = \varphi(\varnothing) = \varnothing \not\ni aa \in \varphi^{-1}(aa) = \varphi^{-1}(\varphi(L)).$ Таким образом, $\exists L \subseteq \Sigma^* \exists \varphi \text{морфизм} \colon \varphi(\varphi^{-1}(L)) \neq \varphi^{-1}(\varphi(L)).$

Задача 3

 $L \in \mathsf{REG} \Rightarrow \exists \mathcal{A} - \mathsf{ДKA} \colon L(\mathcal{A}) = L$. Построим ДКА \mathcal{A}' для $L^{-1} \stackrel{\scriptscriptstyle \mathrm{def}}{=} \varphi^{-1}(L)$. Для этого каждый переход по σ в \mathcal{A} заменим на переход по $\varphi^{-1}(\sigma)$, а именно, переход по множеству слов понимается как множество переходов по словам, переход по слову — с введением дополнительных состояний.

Задача 4

Пусть языки $\Sigma^* \supset X, Y \in \mathsf{REG}$. Докажем, что

- 1. $X \cup Y \in \mathsf{REG}$: из определения регулярности $\forall X, Y \in \mathsf{REG} \hookrightarrow X \cup Y \in \mathsf{REG} \blacksquare$
- 2. $\overline{X} \stackrel{\text{def}}{=} \Sigma^* \backslash X \in \mathsf{REG} : X \in \mathsf{REG} \Rightarrow \exists$ полный ДКА $\mathcal{A} \colon L(\mathcal{A}) = X$. $F' \stackrel{\text{def}}{=} Q \backslash F$, \mathcal{A}' автомат \mathcal{A} с множеством принимающих состояний F'. Докажем, что $L(\mathcal{A}') = \Sigma^* \backslash X \colon w \in \Sigma^*$, $(q_0, w) \vdash^* (q_w, \varepsilon)$ (здесь используется полнота). $w \in X \Leftrightarrow w \in L(\mathcal{A}) \Leftrightarrow q_w \in F \Leftrightarrow \neg (q_w \in Q \backslash F) \Leftrightarrow \neg (q_w \in F') \Leftrightarrow \neg (w \in L(\mathcal{A}'))$. Но $w \in X \Leftrightarrow \neg (w \in \Sigma^* \backslash X)$, откуда $\neg (w \in \Sigma^* \backslash X) \Leftrightarrow \neg (w \in L(\mathcal{A}'))$ и Получаем ДКА $\mathcal{A}' \colon L(\mathcal{A}') = \Sigma^* \backslash X \xrightarrow{\text{еминаре}} \Sigma^* \backslash X \in \mathsf{REG} \blacksquare$
- $3. \ \ X \cap Y \in \mathsf{REG} \colon X \cap Y = \overline{\overline{X} \cup \overline{Y}}. \ \ X, Y \in \mathsf{REG} \overset{(2)}{\Rightarrow} \overline{X}, \overline{Y} \in \mathsf{REG} \overset{(1)}{\Rightarrow} \overline{X} \cup \overline{Y} \in \mathsf{REG} \overset{(2)}{\Rightarrow} \overline{\overline{X} \cup \overline{Y}} \in \mathsf{REG} \blacksquare$

$$w \in X \cap Y \Leftrightarrow \begin{cases} w \in X \\ w \in Y \end{cases} \Leftrightarrow \begin{cases} \neg(w \in \overline{X}) \\ \neg(w \in \overline{Y}) \end{cases} \Leftrightarrow \neg\left[\begin{array}{c} w \in \overline{X} \\ w \in \overline{Y} \end{array}\right. \Leftrightarrow \neg(w \in \overline{X} \cup \overline{Y}) \Leftrightarrow w \in \overline{\overline{X} \cup \overline{Y}} \text{ (подразумевается } w \in \Sigma^*) \blacksquare$$

 $4. \ \ X\backslash Y \in \mathsf{REG} \colon X\backslash Y = X\cap \overline{Y}. \ Y \in \mathsf{REG} \overset{(2)}{\Rightarrow} \overline{Y} \in \mathsf{REG} \overset{(3)}{\Rightarrow} X\cap \overline{Y} \in \mathsf{REG} \blacksquare$

$$w \in X \cap \overline{Y} \Leftrightarrow \begin{cases} w \in X \\ w \in \overline{Y} \end{cases} \Leftrightarrow \begin{cases} w \in X \\ \neg (w \in Y) \end{cases} \Leftrightarrow w \in X \backslash Y$$
 (подразумевается $w \in \Sigma^*$)

Задача 5

 $\Sigma \stackrel{\text{def}}{=} \{a\}. \ \text{Предположим, что } \Sigma^* \subset L = \{a^{2^n} | n \geqslant 0\} \in \mathsf{REG} \stackrel{\text{по лемме}}{\Rightarrow} \exists p = p_0 \geqslant 1 \colon \forall w \in L \hookrightarrow (w = xyz, |y| \geqslant 1, |xy| \leqslant p, (\forall i \geqslant 0 \hookrightarrow xy^iz \in L)). \ \Phi$ иксируем $n = n_0 = p, w_0 = a^{2^p} \in L. \$ Получаем $w_0 = x_0y_0z_0, |y0| \geqslant 1, |x_0y_0| \leqslant p.$ Поскольку $L \subset a^*, y \in a^*,$ откуда $y = a^j, j \geqslant 1$. Аналогично $x = a^i, z = a^k \Rightarrow w_0 = a^{2^p} = xyz = a^{i+j+k} \Rightarrow i+j+k=2^p$. По лемме должно выполняться $xy^2z = a^{i+2j+k} \in L \Rightarrow a^{i+2j+k} = a^{2^q},$ откуда $i+2j+k=2^q \Rightarrow j=2^q-2^p \geqslant 2^{p+1}-2^p=2^p(2-1)=2^p$. Но $|x_0y_0| \leqslant p \Rightarrow |y_0| \leqslant p$. Получаем $p \geqslant |y_0| = j \geqslant 2^p$ — противоречие, т.к. $\forall p \geqslant 1 \hookrightarrow p < 2^p$.

Значит, предположение неверно, и $L \not\in \mathsf{REG} \blacksquare$

Задача 6

1. Да. $L_1 = \{a^{2013n+5} | n \in \mathbb{N} \cup \{0\}\} \cap \{a^{509k+29} | k \in \mathbb{N}, k \geqslant 401\}.$ $w \in L_1 \Leftrightarrow \exists n_w \in \mathbb{N} \cup \{0\}, 401 \leqslant k_w \in \mathbb{N} \colon w = a^{2013n_w+5} = a^{509k_w+29}.$

 $gcd(2013,509) \Rightarrow$ решение существует, и (*) $\Leftrightarrow \left\| \begin{array}{c} n \\ k \end{array} \right\| = \left\| \begin{array}{c} x_0 \\ y_0 \end{array} \right\| + t \left\| \begin{array}{c} x \\ y \end{array} \right\|; x_0, y_0, \ x, y, \ t \in \mathbb{Z}, \ x_0, y_0, \ x, y -$ фиксированные, $t \geqslant t_0$ — параметр. Тогда $2013n + 5 = 509k + 29 = 2013(x_0 + xt) + 29 = pt + q, \ p, q \in \mathbb{Z}$ — фиксированные, $\mathbb{Z} \ni t \geqslant 0$ параметр.

параметр. Получаем $L_1 = \{a^{pt+q} | \mathbb{Z} \ni t \geqslant 0\} = \{a^{pt} | \mathbb{Z} \ni t \geqslant 0\} \cdot \{a^q\} = \{(a^p)^t | \mathbb{Z} \ni t \geqslant 0\} \cdot \{a^q\} = (a^p)^* a^q \equiv (\underbrace{a...a}_p)^* \underbrace{a...a}_q -$ задается

регулярным выражением

- 2. Нет. Предположим, что $L_2 = \{a^{200n^2+1} | \mathbb{Z} \ni n \geqslant 1000\} \in \mathsf{REG} \overset{\text{по лемме}}{\underset{\text{о накачке}}{\overset{\text{по лемме}}{\Rightarrow}}} \exists p \geqslant 1 \colon \forall w \in L_2 \hookrightarrow (w = xyz, |y| \geqslant 1, |xy| \leqslant p, (\forall i \geqslant 0 \hookrightarrow xy^iz \in L_2)).$ Выберем $\mathbb{Z} \ni n = \max\{p, 1000\} \geqslant 1000 \Rightarrow w \overset{\text{def}}{=} a^{200n^2+1} \in L_2$. Получаем $\exists x, y, z \colon |y| \geqslant 1, |xy| \leqslant p \colon w = xyz, |y| \leqslant p \colon w = xyz, |y|$ откуда $x=a^i,y=a^j,z=a^k,i+j+k=200n^2+1$. Также получаем $xy^2z\in L_2$. Но $xy^2z=a^{i+2j+k}=a^{200m^2+1}\Rightarrow i+2j+k=200m^2+1\geqslant 200(n+1)^2+1\Rightarrow j\geqslant [200(n+1)^2+1]-[200n^2+1]=200+400n\geqslant 200+400p$. С другой стороны, $|xy|\leqslant p\Rightarrow j=|y|\leqslant p\Rightarrow p\geqslant j\geqslant 200+400p\Rightarrow 399p+200\leqslant 0$ при $p\geqslant 1000$ — противоречие.
 - Значит, предположение неверно, и $L_2 \notin \mathsf{REG} \blacksquare$