PRE1: APPLIED STATISTICS More on hypothesis testing

Marie-Anne Poursat

Al Master Université Paris-Saclay

October 13th 2022

The testing procedure

- **①** Specify the model and the hypotheses H_0 and H_1
- 2 Find an appropriate test statistic T:
 - T is calculable (does not depend on unknown parameters)
 - the distribution of T under H_0 is known
- 3 Find the form of the rejection region (look at H_1 !)
- Calculate the p-value and make your decision
 - if you reject H_0 , the risk of an incorrect decision is less than α (type I error)
 - if you don't reject H_0 , the risk of an incorrect decision is usually unknown($type\ II\ error$)

The **power of the test** is defined as the probability of rejecting H_0 when H_1 is true = 1 - type II error.

The power depends on the actual value of the parameter under H_1 and is not calculable. In practice, choosing the test (of given level) that maximizes the power is difficult.

Testing for a mean

one-sample *t*-test

- Normal model : X_1, \ldots, X_n i.i.d. $\mathcal{N}(\mu, \sigma^2)$ $H_0: \mu = \mu_0 \quad H_1: \mu \neq \mu_0$
- ② test statistic : $T = \frac{\overline{X} \mu_0}{S/\sqrt{n}} \sim_{H_0} t(n-1)$ (exact Student distribution under H_0)
- **3** Rejection region $\mathcal{R} = \{|T| > c\}, c = qt_{n-1}(1-\alpha)$
- P-value = $P_{H_0}(|T| \ge |T^{obs}|)$

What if the sample is not Gaussian?

- **1** X_1, \ldots, X_n i.i.d., $E(X_i) = \mu$, $Var(X_i) = \sigma^2$ $H_0: \mu = \mu_0 \quad H_1: \mu \neq \mu_0$
- **2** test statistic : $T = \frac{\overline{X} \mu_0}{S/\sqrt{n}} \sim_{H_O} \mathcal{N}(0,1)$

(TLC : approximate standard normal distribution under H_0)

Testing for one parameter

 X_1, \ldots, X_n i.i.d. with distribution depending on θ , $\widehat{\theta}$ MLE, $\widehat{\text{s.e.}}$ estimated standard error of $\widehat{\theta}$

- H_0 : $\theta = \theta_0$ H_1 : $\theta \neq \theta_0$
- Test statistic $T = \frac{\widehat{\theta} \theta_0}{\widehat{\text{s.e.}}} \sim \mathcal{N}(0, 1)$ (approximate distribution for the MLE)
- Rejection region $\mathcal{R} = \{|T| > c\}, c = qnorm(1 \alpha)$
- P-value = $P_{H_0}(|T| \ge |T^{obs}|)$

We observe the realizations of a Gaussian sample $\mathcal{N}(\mu, \sigma^2)$:

- [1] 7.381875
- [1] 7.381875
- [1] 0.5506023
 - Derive a test at level 5% of

$$H_0: \mu = 7$$
 versus $H_1: \mu > 7$.

What is your decision?

- ② Suppose that the value under the alternative hypothesis is known : $H_1: \mu = 7.5$.
 - In this case, what is the type II error? Give its calculation formula.

A battery manufacturer claims that the average life of his material is 170 hours.

A consumer organization takes a random sample of 100 batteries and observes an average lifetime of 158 hours with a standard deviation of 30 hours. We suppose that the data are realizations of a sample X_i , $i = 1, \ldots, 100$, with expectation m and finite variance.

 \hookrightarrow Can the organization accuse the manufacturer of false advertising?

The two-sample *t*-test

Comparison of two means

Is a given gene differentially expressed between two cell types?

1 2 independent normal samples X_{11}, \ldots, X_{1n_1} and X_{21}, \ldots, X_{2n_2} with means μ_1 and μ_2 and identical variances σ^2 .

$$H_0$$
: $\mu_1 = \mu_2$ versus H_1 : $\mu_1 \neq \mu_2$

2 test statistic $T = \frac{X_1 - X_2}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$, S^2 is the *pooled estimator* of σ^2

$$S^{2} = \frac{\sum_{i} (X_{1i} - \overline{X}_{1})^{2} + \sum_{i} (X_{2i} - \overline{X}_{2})^{2}}{n_{1} + n_{2} - 2}$$

The distribution of T under H_0 is the t-distribution with $n_1 + n_2 - 2$ df.

- **3** Rejection region $\mathcal{R} = \{ |T| > c \}$
- $P-value = P_{H_0}(|T| \ge |T^{obs}|)$

The two-sample *t*-test

Comparison of two means

What if the samples are not Gaussian? or if we cannot assume that the variances are equal?

Let s_1^2 and s_2^2 be the sample variances of the 2 samples (or other consistent estimators).

 $\bullet \ \ \mathsf{Define} \ \ W = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$

Then the distribution of W under H_0 is approximated by the normal standard law.

• P-value = $P_{H_0}(|W| \ge |W^{obs}|)$

Comparing 2 prediction algorithms

We test a prediction algorithm on a test set of size 100 and we test a second algorithm on a second test set of size 80.

X (resp. Y) = number of correct predictions for algo 1 (resp algo 2) We observe X = 95 and Y = 72: is the difference statistically significant?

What if we used the same test set to test both algorithms?

The Likelihood Ratio Test (LRT)

 X_1, \ldots, X_n i.i.d. with distribution depending on $\theta \in \mathbb{R}^p$, $\widehat{\theta}$ MLE

$$H_0: \theta = \theta_0 \quad H_1: \theta \neq \theta_0$$

• The Likelihood ratio test rejects H_0 if

$$LRT = 2 \left[\log L(\widehat{\theta}) - \log L(\theta_0) \right] \ge c$$

- In simple models, the exact distribution of a transformation of LRT can be found to calculate an exact p-value
- In more complex models, the approximate distribution of LRT under H₀ is the chi-squared distribution with p df.

The Likelihood Ratio Test (LRT)

- The LRT can be generalized to test nested models and is very popular.
- The degrees of freedom of the χ^2 distribution is the difference of the number of parameters under H_1 and under H_0 .

Example : $\theta = (\theta_1, \theta_2, \theta_3, \theta_4, \theta_5)$ and we want to test

$$H_0: \ \theta_4=\theta_5=0 \quad \ \ \text{vs} \quad \ \ H_1: \ \theta_4 \neq 0 \ \text{or} \ \theta_5 \neq 0$$

The approximate distribution of the LRT statistic is the χ^2 -distribution with 5-3=2 degrees of freedom