Status of embedding procedure for BM@N Central Tracker

 $P.\ Batyuk$

March 4, 2020

Steps of the algorithm:

- Creating a store with Λ^0
- Creating list of eventIds for reconstructed events where the primary vertex is assumed to be defined
- Passing the stores with Λ^0 to BM@N Central Tracker simulations
- Finding at least one Λ^0 to be reconstructed for a given reconstructed vertex in considering event (pure MC)
- Monitoring events with embedded products from Λ^0 decay
- Creating digits from Λ^0 decay products corresponding to considering event (MC + Digitization)
- Doing correspondence between digits from Λ^0 decay products to a channel and a serial number of ADC
- Doing "pure" convertion from binary data written by DAQ to *.raw.root format
- Using obtained *.raw.root for embedding
- Decoding converted data with embedded ADC-digits to *.digi.root format to be used for analysis

The Algorithm::Creating a store with Λ^0

- Λ^0 are taken from MC simulations of the tracker with the LAQGSM model.
- Input from the model corresponds to known target, projectile, energy, centrality information got from a DST where protons and pions from Λ^0 decay are embedded to.
- Chosen Λ^0 are primary ones.
- Cut mechanism on written Λ^0 can be used if necessary $(\eta, \phi, \text{momentum} \dots)$.
- Desirable number of stores to be produced is also operated by user.

- Each store is sampled in a set of files ($lambdaXXX_vertexXXX.root$) according to a rule: $N_{sets} = N_{stores} \cdot N_{vertices}$
- Each file lambdaXXX_vertexXXX.root contains 50 events (of course, being increased / decreased if necessary)
- Simulations take into account remain misalignment (with opposite sign) and Lorentz shift corrections applied to each element of the tracker
- $\bullet~\Lambda^0$ "starts" from reconstructed position of vertex in considering event
- A Λ^0 to be chosen is considered to be reconstructable if:
 - Decay products have, at least, four points in the acceptance
 - ullet Their momenta are greater than 300 MeV/c
 - Tracks from decay products have one point only for each
 Z-position of any part of the tracker
- First event satisfying the conditions mentioned is assumed to be a candidate for embedding

The Algorithm::Monitoring events with embedded products from Λ^0 decay

To get info on eventId, used store, vertex index and, namely, event for embedding

The Algorithm::Monitoring events with embedded products from Λ^0 decay

The Algorithm::Creating digits from Λ^0 decay products

Clusters with $N_{strips} > 5$ produce hits being reconstructed with a slightly pure efficiency (see next slides)

- Equal amplitudes for each strip in the cluster assumed
- Scenarios with different Gaussian smearing are being tested

Stat 5

Central Tracker, mappings

```
// GEM_id: the second digit 0=left, 1=right;
// Module: 0=00 (mod0.hotZone), 1=01 (mod0.bigZone),
// 2=10 (mod1,hotZone), 3=11 (mod1,bigZone)
            Ch lo
                     Ch hi
                             GEM_id Station Module
   Serial
0x76CD410
             1024
                      2047
                                110
0x76C8320
                      2047
                                110
0x76CB9C0
                      2047
                                111
0x76CA266
            1024
                      2047
                                111
0x76D08B9
             512
                     767
                                110
0x76D4D2B
                      1023
                                100
0x76D5044
                0
                      2047
                                100
```

STLTCON

1

3

```
// 2 - Forward detector
//Layer: 0 - vertical strips, 1 - sloped strips
Serial
          Ch_lo
                   Ch hi
                            GEO mod
0x80BCBFC
            42
                     46
0x80BCBFC
            37
                     41
0x80BCBFC
            32
                     36
                                                2
```

30

20

25

9

// Station: 0 - vertex (near), 1 - vertex(far),

BmnStripDigit (GEM or SILICON)

```
Int_t fStation;
Int_t fModule;
Int_t fStripLayer;
Int_t fStripNumber;
Double_t fStripSignal;
```

Direct problem: ADC-digits from DAQ \rightarrow

Physical digits (decoding)

Inverse problem: Physical digits \rightarrow

Incorporation to ADC-digits (embedding)

+ direct problem

Operating dig. info one has to define corresponding channels & serials using mappings

26

16

21

5

0x80BCBFC

0x80BCBFC

0x80BCBFC

0x80BCBFC

2

DST used as a start point for the procedure

Reconstructed Z_{vertex} over all file

- bmndst_4649.root, ArAl-interactions
- Old (not recently improved) algorithm of vertex finder used

Embedded signal for the BM@N Central Tracker

Embedded signal for SILICON part of the tracker looks wider (if comparing with GEM) due to more significant fluctuations of Command Mode when decoding

QA of the embedding procedure

Efficiency of the embedding procedure

- Calculated for different pseudorapidity ranges of Λ^0 to test precisely the procedure for different elements of the BM@N Central Tracker (stations, modules, zones)
- Tested different approaches to parameterizations of cluster amplitudes (signals) (equal amplitudes, Gaussian distribution of amplitudes)

Embedding for different η -ranges of Λ^0

- Number of events in the DST-file is 199000
- Number of events with reconstructed vertex satisfying to cuts is 4002
- Embedded particles are MC decay products (p, π^-) from Λ^0 decay
- Each product has, at least, four hits in the BM@N Central Tracker acceptance (not depending where, either GEM+SI or GEM only)

Efficiency of the embedding procedure integrated over all $\eta\text{-ranges}$

GEM

Stat# 4

Stat# 5

eff. big zone

Stat# 0

Stat# 1

Efficiency of the embedding procedure integrated over all η -ranges

SILICON

eff. silicon

Parameterization of cluster amplitudes tried

Equal amplitudes for all strips are used now by default

Total integral is close established value

Maximum amplitude is set to established value

At the moment, no one additional parameterization used did not increase efficiency in case of wide clusters:(

Efficiency of the procedure

TODO list:

- To find out why we have a visible inefficiency in big zones, especially, for first two GEM stations of the BM@N Central Tracker
- When being done, try to do a preliminary set of tracking to reconstruct Λ^0 decay products with a high efficiency
- After that, try to perform a correct scaling of embedded signals (from digitizer) to those ones got from experimental data
- Finally, measure efficiency for both procedures, embedding and tracking
- Further tests aiming at Λ^0 reconstruction with improved tracking using existing code (\$VMCWORKDIR/physics/particles/BmnTwoParticleDecay.h)
- More unknown as yet tests to be done:)