UNIVERSIDAD SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA

MSc. Ing. Edgar Darío Álvarez Cotí, Coordinador Guatemala 05 septiembre del año 2020

PRIMER EXAMEN PARCIAL FISICA 2

INSTRUCCIONES GENERALES:

El examen consta de siete problemas. Para los cálculos realizados en el examen se pide utilizar todos los decimales y la respuesta debe aproximarla a 2 decimales. Debe dejar constancia en sus cálculos, suposiciones y referencias en la solución de cada problema. El problema que no tenga el procedimiento de solución será anulado. Debe enviar su procedimiento al correo indicado. Tiempo de examen 100 minutos

NOMBRECAR	RNE
-----------	-----

PROBLEMA 1: (10 puntos)

Los objetos A, B y C son tres cargas puntuales idénticas en forma y tamaño, aislados entre ellos. Inicialmente A y B tienen carga de + 6 μ C, en tanto que C tiene una carga de - 12 μ C. Se deja que los objetos A y C se toquen con un hilo conductor y luego se les separa. En la nueva condición, de la carga C, la magnitud de fuerza (en N) que ejercerán entre B y C cuando están separadas 1.5 cm es

Respuesta = 720 tolerancia = ± 0.01

PROBLEMA 2: (10 puntos)

Una esfera no conductora tiene una densidad uniforme de carga de 800 nC/m³ y tiene radio 24 cm. Considere una superficie cúbica de 6 cm de lado está completamente dentro de la esfera. El flujo eléctrico a través del cubo es (en Nm²/C)

Respuesta = 19.53 tolerancia = ± 0.03

PROBLEMA 3 (15 puntos, 7.5 puntos cada pregunta)

Una partícula (de carga= 30 mC, masa = 7.0g) se mueve en una región del espacio donde el campo eléctrico es uniforme y está dado por, E_y = 3.5 N/C, E_x = E_z = 0. La velocidad de la partícula en t = 0, es v_x = 50 m/s, v_y = v_z = 0. No considerar efectos gravitatorios.

a) ¿Cuál es la rapidez de la partícula t = 2.0 s? (en m/s)

Respuesta = 58.31 tolerancia = ± 0.05

b) ¿Qué distancia vertical en "y" ha recorrido la partícula (en m) desde t = 0 a t = 2.0 s?

Respuesta= 30.0 tolerancia = ± 0.01

PROBLEMA 4 (15 puntos)

Un dipolo con tamaño de cargas q = 2.5 x 10 $^{-3}$ C separadas por 6.0 cm, se encuentra en un campo eléctrico externo de magnitud 6.0 x 10 5 N/C.

a) De acuerdo a la posición mostrada en la figura ¿Cuál es la magnitud (en Nm) del torque eléctrico inicial que experimenta el dipolo? (7 puntos)

Respuesta = 68.94 tolerancia = ± 0.04

b) De acuerdo a la posición mostrada en la figura ¿Cuál es la dirección del torque eléctrico inicial que experimenta el dipolo? (3 puntos)

Respuesta = -k

c) ¿Cuánto trabajo (en J), se requiere para mover el dipolo desde la posición mostrada a la posición paralela al campo eléctrico? (5 puntos)

Respuesta = -32.15 tolerancia = ± 0.05

PROBLEMA 5: (10 puntos)

Una carga de 24 nC está distribuida uniformemente sobre el eje "x" desde x = -2 m hasta x = 6 m.

a) Encuentre la magnitud del campo eléctrico (en N/C) producido por esta distribución de carga en el punto x = 10 m. (07 puntos)

Respuesta = 4.50 tolerancia = ± 0.02

b) ¿Cuál es la dirección del campo eléctrico resultante? (03 puntos)

Respuesta = +i

"p"

– 2 nC

-2 nC

• + 4 nC

PROBLEMA 6 (20 puntos, 5 puntos cada pregunta)

La figura muestra tres cargas en los vértices de un cuadrado de lado 20 cm.

a) Determine la magnitud del campo eléctrico (en N/C) en el punto "p" (5 puntos)

Respuesta = 186.39 tolerancia = ± 0.05

b) ¿Cuál es el potencial eléctrico (en V) en el punto "p", considerando potencial cero en el infinito? (5 puntos)

Respuesta = -52.72 tolerancia = ± 0.05

c) ¿Cuál es la energía potencial mutua del sistema de partículas? (en nJ) (5 puntos)

Respuesta = -592.72 tolerancia = ± 0.05

d) ¿Qué trabajo (en J) se requiere para trasladar la carga de +4 nC desde la posición mostrada hasta el punto "p"? (5 puntos)

Respuesta = cero tolerancia = 0

PROBLEMA 7 (20 puntos)

La figura (*I*) muestra un segmento de un cilindro recto y largo. El segmento mostrado es un cilindro no conductor de radio a=5cm que contiene una carga $Q=+9~\mu\text{C}$, al cual lo rodea un cascarón cilíndrico conductor de radio b=15cm con carga $q=-25~\mu\text{C}$, ambos cilindros concéntricos y tienen la misma longitud L=30cm. En la figura (*II*) aparece la sección de los cilindros. *Utilizando la ley de Gauss*, calcular

a) El campo eléctrico (en N/C) a una distancia r = 20cm del centro del cilindro (6 puntos)

Respuesta = 4.8×10^{6} tolerancia = ± 0.03

b) El campo eléctrico (en N/C) a una distancia r = 7cm del centro del cilindro (6 puntos)

Respuesta = 7.71×10^6 tolerancia = ± 0.03

c) El campo eléctrico (en N/C) a una distancia r=3 cm del centro del cilindro (8 puntos).

Respuesta = 6.48×10^{-6} tolerancia = ± 0.03

