INSTITUT SUPERIEUR DES SCIENCES DE LA POPULATION (ISSP)

LICENCE PROFESSIONNELLE EN ANALYSE STATISTIQUE : 2ième ANNEE

DEVOIR D'ECONOMETRIE DES VARIABLES QUANTITATIVES

Année scolaire: 2023/2024

Durée (4h)

NB: Tables de loi autorisées

Exercice 1 (2 points)

Dans une étude en coupe transversale sur 74 pays analysant l'effet de la structure par âge sur le niveau d'épargne, on obtient pour la régression des moindres carrés les résultats suivants :

$$\ln S/Y = 7,3439 + 0,1596 \ln Y/N + 0,0254 \ln G - 1,3520 \ln D_1 - 1,3520 \ln D_2$$

 $\ln S/N = 2,7851 + 1,1486 \ln Y/N + 0,0265 \ln G - 1,3438 \ln D_1 - 1,3966 \ln D_2$

Avec:

S/Y le ratio de l'épargne nationale

S/N l'épargne par tête

Y/N le revenu par tête

 D_1 le pourcentage de la population en dessous de 15 ans

 D_2 le pourcentage de la population au-dessus de 64 ans

G le taux de croissance du revenu par tête

Ces résultats sont-ils corrects ? Expliquer.

Exercice 2 (3 points)

On suppose que le modèle de régression est $y_i = \alpha + \beta x_i + \varepsilon_i$, où la structure des perturbations est définie telle que $f(\varepsilon_l) = \frac{1}{\delta} \exp(-\delta \varepsilon_l)$, $\varepsilon_l \ge 0$. La particularité de ce modèle est que toutes les perturbations sont supposées positives.

Montrer que l'estimateur des moindres carrés des pentes est sans biais mais que celui de la constante est biaisée.

Exercice 3 (4 points)

Sur 23 années nous avons relevé, sur une parcelle de terre, les rendements de la culture de sorgho notés Y, la température moyenne X_1 et le niveau des précipitations X_2 .

Le modèle économétrique est le suivant :

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$$

Les résultats d'estimation sont les suivants :

$$Y = 27.3 + 0.51 X_1 - 0.35 X_2 + \hat{u}$$

 $R^2 = 0.937$
 $SCT = 317.46$

De plus, on donne la matrice suivante :

$$(X'X)^{-1} = \begin{pmatrix} 0,0009 & -0,08 & -0,3 \\ -0,08 & 0,0025 & 0,02 \\ -0,3 & 0,02 & 0,2 \end{pmatrix}$$

- 1. Présenter de façon claire et méthodique les résultats du modèle
- 2. Tester l'hypothèse $Ho: \beta_1 + \beta_2 = 0$, étant donné que la valeur de la table est environ égale à 2.

NB: deux décimales pour les calculs

Problème (11 points)

Soit le modèle linéaire multiple Y = Xb + u où X la matrice des variables explicatives, et rassemble les vecteurs colonne des variables explicatives suivantes x_1, x_2, x_3, x_4 et x_5 (on a donc k = 5). On dispose de données quotidiennes sur 30 jours (on a donc K = 30). On suppose vérifiées les hypothèses suivantes :

$$H1:E(u)=0$$

$$H3: Rang(X) = k = 5$$

$$H4: E(uu') = \sigma^2 I_T$$

H6:
$$u \rightarrow \mathcal{N}(0, \sigma^2 I_T)$$

Soit \widehat{b} l'estimateur des MCO de b. Soit $\widehat{b_j}$ sa jème composante.

Démontrer que les trois propriétés suivantes :

- 1. $\hat{b} = (X'X)^{-1}X'Y$
- 2. \hat{b} est un estimateur sans biais de b

3.
$$Var(\hat{b}) = \sigma^2(X'X)^{-1}$$