Оглавление

Задача (Дидона). Среди выпуклых фигур периметра P наибольшую площадь имеет круг

Теорема 1. M – метрическое пространство. Равносильны следующие утверждения:

- 1. M компактно
- $2.\ M$ секвенциально компактно
- 3. M полное и вполне ограниченное

Определение 1. M называется секвенциально компактным, если

$$\forall \{x_n\}_{n=1}^{\infty} \quad \exists \ \text{сходящаяся} \ \{x_{n_k}\}_{k=1}^{\infty}$$

Определение 2. M называется полным, если любая фундамментальная последовательность в M сходится

Определение 3. $\{x_n\}_{n=1}^\infty$ фундаментальная, если $\forall \varepsilon>0 \quad \exists\, N: \forall n,k>N \quad \rho(x_n,x_k)<\varepsilon$

Определение 4. M – метрическое пространство, $A \subset M$

A называется ε -сетью, если

$$\forall x \in M \quad \exists a \in A : \rho(x, a) < \varepsilon$$

Определение 5. M вполне ограничено, если для любого $\varepsilon > 0$ существует конечная ε -сеть

0.1 Аксиомы отделимости

Определение 6. X – топологическое пространство. Тогда X удовлетворяет следующим аксиомам:

- **Т0** (Холмогорова). Для любых двух различных точек X существует окрестность, содержащая ровно одну из них
- **Т1** (Тихонова). $\forall x, y \in X \quad \exists U_x : y \notin U_x$
- **Т2** (Хаусдорфа). $\forall x, y \in X \quad \exists U_x, U_y : U_x \cap U_y = \emptyset$
- **Т3** \forall замкнутого F и $\forall x \notin F$ \exists открытые $U_x \ni x, U_F \sup F : U_x \cap U_F = \emptyset$
- **Т4** \forall замкнутых F_1, F_2 \exists открытые $U_{F_1} \sup F_1, U_{F_2} \sup F_2 : U_{F_1} \cap U_{F_2} = \emptyset$

Замечание. ${
m T2} \implies {
m T1} \implies {
m T0}$

Примеры.

1. Антидискретное:

- HeT T0, T1, T2
- Есть **Т3**, **Т4**
- 2. Дискретное:

Есть T0 - T4

3. Стандартная топология:

Есть T0 - T4

- 4. Стрелка:
 - Есть **Т0**, **Т4**
 - Het **T1**, **T2**, **T3**
- 5. Топология Зариского:
 - Есть **ТО**, **Т1**
 - HeT T2, T3, T4

Теорема 2. T1 \iff \forall точка – замкнутое множество

Доказательство.

$$\forall x_0 \in X \quad \forall y \in X \quad \exists U_y \ni y \not\ni x_0$$

$$\forall x_0 \in X \quad \forall y \in X \quad \exists \, U_y \ni y \not\ni x_0$$

$$\bigcup_{y \in X \setminus \{\, x_0 \,\}} U_y = X \setminus \{\, x_0 \,\} \, - \text{ откр.} \implies \{\, x_0 \,\} \, - \text{ замкн.}$$

$$\forall x \neq y \quad U_x \coloneqq X \setminus \{y\} - \text{откр.}$$

Следствие. При ${
m T1}$ верно ${
m T4} \implies {
m T3} \implies {
m T2} \implies {
m T1}$

Определение 7. Т1, Т3 (по следствию, всем, кроме Т4) – регулярное пространство Т1, Т4 (по следствию, всем) – нормальное пространство

Свойства.

- 1. X удовлетворяет **T0 T4**, $A \subset X \implies A$ удовл. **T0 T3**
- 2. X, Y удовл. $\mathbf{T0} \mathbf{T3}$, то