Link Prediction using GNNs Deep Learning | MSc Artificial Intelligence

Andreas Sideras

NCSR Demokritos & University of Piraeus

June 2023

Outline

- Graph Analysis
- Q GNNs
- 3 Link Prediction
- Results

Table of Contents

- Graph Analysis
- 2 GNNs
- Link Prediction
- Results

Graph

- We used a subset of "Statistics and Social Network of YouTube Videos" that comprises of 9064 nodes and 43963 edges.
- Each node represents a YouTube video and it is described with 7 attributes.
- Each video is correlated with some other videos. This relation is represented with directed edges in our graph.

Connected Subgraph

Figure: A random strongly connected component.

Graph Analysis

- A network can be an exceedingly complex structure, as the connections among the nodes can exhibit complicated patterns.
- By plotting the distributions of certain metrics, we can gain meaningful insights about our graph.

Scale Free Property

Figure: In-coming edges distribution

Asymmetric Graph

Figure: Out-coming edges distribution

Small World Property

Figure: Shortest path distribution

Table of Contents

- Graph Analysis
- Q GNNs
- Link Prediction
- Results

GNNs

- GNNs are a class of neural networks specifically designed to operate on graph-structured data.
- They capture both the structural information of the network and the node features, allowing them to learn complex patterns and dependencies among nodes.
- GNNs operate by iteratively aggregating information from neighboring nodes and updating node representations.
- This process allows nodes to gather information from their local neighborhoods and propagate it through the graph (message passing).
- Learn new features/embeddings for each node.

Graph Convolutional Networks

$$h_v^{(l+1)} = \sigma \left(\sum_{u \in \mathcal{N}(v)} \frac{1}{|\mathcal{N}(v)|} W^{(l)} h_u^{(l)} \right)$$

- ullet $h_u^{(l)}$ represents the feature vector of a neighboring node u of v at layer l.
- $\mathcal{N}(v)$ denotes the set of neighboring nodes of v.
- $|\mathcal{N}(v)|$ represents the degree of node v, which indicates the number of neighbors of node v.
- ullet $W^{(l)}$ is the weight matrix associated with the l-th layer.
- σ is a non-linear activation function applied element-wise to introduce non-linearity (e.g., ReLU or sigmoid).

GraphSAGE

$$h_v^{(l+1)} = \sigma\left(W^{(l)} \cdot \mathsf{CONCAT}\left(h_v^{(l-1)}, \mathsf{AGGREGATE}\left(\left\{h_u^{(l)} \,|\, u \in N(v)\right\}\right)\right)\right)$$

- $h_v^{(l)}$ represents the representation of node v at layer l.
- \bullet σ is the activation function (e.g., ReLU, sigmoid) applied element-wise.
- $W^{(l)}$ is a learnable weight matrix for layer l.
- AGGREGATE is an aggregation function that combines the representations of neighboring nodes. It can be a simple mean, max, or sum aggregation, or more complex functions like attention mechanisms.

Graph Attention Networks

$$h_v^{(l+1)} = \sigma \left(\sum_{u \in N(v)} \alpha_{vu}^{(l)} \cdot W^{(l)} \cdot h_u^{(l)} \right)$$

where:

- $\boldsymbol{h}_{v}^{(l)}$ represents the representation of node v at layer l.
- ullet σ is the activation function (e.g., ReLU, sigmoid) applied element-wise.
- $\alpha_{vu}^{(l)}$ represents the attention coefficient between nodes v and u at layer l. It is computed as:

$$\alpha_{vu}^{(l)} = \operatorname{softmax} \left(\vec{a}^{(l)} \cdot \left[W^{(l)} \cdot h_v^{(l)}, W^{(l)} \cdot h_u^{(l)} \right] \right)$$

where $\vec{a}^{(l)}$ is a learnable weight vector specific to layer l and $[\cdot,\cdot]$ denotes concatenation.

ullet $W^{(l)}$ is a learnable weight matrix for layer l.

←ロト ←問 ト ← 恵 ト ・ 恵 ・ 夕 Q @

GIVIN

Graph AutoEncoder

Figure: GAE architecture

- Learns embeddings in latent space using an Encoder network.
- Decodes the representations and reconstructs the initial graph.

Table of Contents

- Graph Analysis
- Q GNNs
- Sink Prediction
- Results

Link Prediction

- We will use the GAE architecture in order to predict the existence of an edge between two nodes.
- We augmented the feature node vectors with some features extracted from the graph, like eigenvector and closeness centrality, pagerank score etc.
- The feature vectors for all the nodes are passed through the following encoder network resulting in a new 64-dimensional representation for each node.

```
GAE(
  (linear1): Linear(in_features=15, out_features=64, bias=True)
  (tanh): Tanh()
  (linear2): Linear(in_features=64, out_features=256, bias=True)
  (tanh): Tanh()
  (linear3): Linear(in_features=256, out_features=1024, bias=True)
  (tanh): Tanh()
  (conv): GNN(1024, 256, num_layers=2)
  (linear4): Linear(in_features=256, out_features=64, bias=True)
)
```

Link Prediction

- The decoder is an inner-product computation, followed by a sigmoid function that predicts the likelihood for the connection of two nodes.
- In each iteration, we use the the positive edges of our graph (their corresponding nodes' representations) and a sample of negative edges.
- The decoder computes $\sigma(\operatorname{InnerProduct}(z_{start}, z_{end}))$ which is the probability for the edge from node z_{start} to node z_{end} to exist (z_i is the latent representation of each node).
- The result goes into a Binary Cross Entropy Loss followed by backprop and an Adam's optimizer step.

Table of Contents

- Graph Analysis
- Q GNNs
- Link Prediction
- Results

Results

Table: Test Performance Metrics

GNN	Precision	Recall	F1 Score	ROC AUC Score
GCN	0.684	0.926	0.787	0.749
GAT	0.694	0.904	0.785	0.753
SAGE	0.674	0.907	0.773	0.734

Confusion Matrix for GCN

ROC Curve

Results

Thank you!

