

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

BACHELOR OF SCIENCE IN COMPUTER SCIENCE

Academic Year 2013/2014 - Second Year Examination - Semester II - 2015- 2014

SCS2111 – Laboratory II TWO (2) HOURS

To be completed by the candidate

Examination Index No:

Important Instructions to candidates:

- 1. The medium of instruction and questions is English.
- 2. If a page or a part of this question paper is not printed, please inform the supervisor immediately.
- Note that questions appear on both sides of the paper. If a page is not printed, please inform the supervisor immediately.
- 4. Write your index number on each and every page of the question paper.
- 5. This paper has 4 questions and 11 pages.
- 6. Answer **ALL** questions. All questions carry equal marks (25 marks).
- Any electronic device capable of storing and retrieving text including electronic dictionaries and mobile phones are not allowed.
- 8. Non-programmable calculators are allowed.

	miner's use only
March 1	
Question No	Marks
1	3 4360
2	111111111111111111111111111111111111111
3	
4	est and and
Total	

1. Circle the correct answer choice. [100 Marks]
 (a) Some hotels ask their guests to rate the hotel's services as excellent, very good, good, and poor. This is an example of the i. ordinal scale
ii. ratio scale
iii. nominal scale
iv. interval scale
(b) Quantitative data refers to data obtained with a(n) i. ordinal scale
ii. nominal scale
iii. either interval or ratio scale
iv. only interval scale
(c) Qualitative data i.must be numeric
ii.must be nonnumeric
iii.cannot be numeric
iv.may be either numeric or nonnumeric
(d) 15% of the students in a school of Business Administration are majoring in Economics, 20% in Finance, 35% in Management, and 30% in Accounting. The graphical representative(s) which can be used to present these data is (are) i. a line graph
ii. only a bar graph
iii. only a pie chart
iv. both a bar graph and a pie chart
(e) A graphical presentation of the relationship between two variables is i. a boxplot
ii. a histogram
iii. either a boxplot or a histogram, depending on the type of data
iv. a scatter diagram

(f) When a histogram has a longer tail to the right, it is said to be i. symmetrical

ii. skewed to the left	
iii.skewed to the right	
iv. none of these alternatives is correct	
 (g) A numerical value used as a summary measure for a a, i. population parameter ii. sample parameter iii. sample statistic iv. population mean (h) Since the population size is always larger than the sample statistic in the samp	
i.can never be larger than the population parameter	or
ii.can never be equal to the population parameter	
iii.can be smaller, larger, or equal to the population	parameter
iv.can never be smaller than the population parame	ter
(i) Some statistics about the hourly wages of a sample of mean = 60 range = 20 mode = 73 variance = 324 median = 74 The coefficient of variation equals i. 0.30% ii. 30% iii. 5.4%	$\frac{S}{2} \times 100\%$. = $\frac{133.4}{69} \times 109 = \frac{18}{6} \times 10$ = 30%.
 (j) The variance of a sample of 169 observations equals equals 13 24 576 28,461 	s 576. The standard deviation of the sample
3	

- (k) The value added and subtracted from a point estimate in order to develop an interval estimate of the population parameter is known as the
 - i. confidence level
 - (ii. margin of error
 - iii. parameter estimate
 - iv. interval estimate
- (1) Whenever the population standard deviation is unknown and the population has a normal or near-normal distribution, which distribution is used in developing interval estimation?
 - i. standard distribution
 - ii. z distribution
 - iii. alpha distribution
 - iv. t distribution
- (m) A Type II error is committed when
 - i. a true alternative hypothesis is mistakenly rejected
 - ii. a true null hypothesis is mistakenly rejected
 - iii. the sample size has been too small
 - iv. not enough information has been available
- (n) The level of significance in hypothesis testing is the probability of
 - i. accepting a true null hypothesis
 - ii. accepting a false null hypothesis
 - (iii. rejecting a true null hypothesis
 - iv. None of these alternatives is correct.
- (o) Your investment executive claims that the average yearly rate of return on the stocks she recommends is more than 10.0%. You plan on taking a sample to test her claim. The correct set of hypotheses is
 - i. H_0 : $\mu < 10.0\%$
- Ha: $\mu \ge 10.0\%$

- (ii. H_0 : $\mu \le 10.0\%$
- Ha: $\mu > 10.0\%$
- Ho: M \$10.0%.

- iii. H_0 : $\mu > 10.0\%$
- H_a: $\mu \le 10.0\%$
- iv. H₀: $\mu \ge 10.0\%$
- Ha: $\mu < 10.0\%$

(a) The amount of time that a sample of students spends watching television per day is given below.

Student	Time (in Minutes)
1	40 ~
2	28
3	71 ✓
4	48 ~
5	49 ~
6	35 ✓
7	40 🗸
8	57 ~

i. Compute the mean.

[10 Marks]

X =	368 =	46 /		
*****************	Q	//		

28,35,40,40,48,49,57,71 ii. Compute the median.

[10 Marks]

e) est		Legisla Angli Albahan Marahan Angli pandipahan				
			46		11 1 141	
	Median =	841 : :	4.5 Value	- Average of	4" and 5"	value
	******************	Abbanane		4		
		2		= (40+43)	=44/	
			Spanistrum on Article Control	2	-//	

iii. Compute the standard deviation.

[20 Marks]

Voluntice =
$$S^{2} = (40-46)^{2} + (28-46)^{2} + (21-46)^{2} + (48-46)^{2} + (49-46)^{2} + (35-46)^{2} + (40-46)^{2} + (37-46)^$$

iv. Compute the 75th percentile.

2= 75 x 8 = 6	[10 Marks]
100	
75th Percentile = Average of	6th and 7th value
= (49+57);	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
)	//

v. Compute the coefficient of variation.

[10 Marks]

(b) State whether the following statements are True or False.

[40 Marks]

- i. In cluster analysis, objects with larger distances between them are more similar to each other than are those at smaller distances. (......)
- ii. One method of assessing reliability and validity of clustering is to use different methods of clustering and compare the results. (.....)
- iii. Agglomerative clustering is a clustering procedure where all objects start out in one giant cluster. Then, the clusters are formed by dividing this cluster into smaller and smaller clusters. (............)
- iv. Non-hierarchical clustering is a clustering procedure characterized by the development of a tree-like structure. (......)
- vi. Matrix scatterplot is a graphical tool that illustrates each pair of variables plotted againate each other. (...........)

	Comments and analysis of Mine Denguine found in an Anteretic colony last year u	es 15.4 kg. In a
	Suppose the mean weight of King Penguins found in an Antarctic colony last year w	
	sample of 35 penguins same time this year in the same colony, the mean penguin we	
	Assume the population standard deviation is 2.5 kg. At 0.05 level of significance, the	
	wants to test the hypothesis that the mean penguin weight in this year does not differ	r from that of the
	last year.	
	State null and alternative hypothesis.	[10 Marks]
	Ho: N = 15.4	
-	Ha: M = 15.4	
	Following R-code is given for the analysis.	
	> xbar <-14.6	
	> mu0 <-15.4 > sigma <-2.5 deviation	
	> n <-35	
	> z <-(xbar-mu0)/(sigma/sqrt(n))	
	> z [1] -1.893146	
	> p <-pnorm(z)	
	> p [1] 0.029169	
	What is the correct p-value associated with the hypothesis test?	
		[15 Marks]
	240.029169 = 0.058338/	
	Give your decision and conclusion clearly.	[20 Marks]
		(20 111010)
	Since p-value > 0.05, we do not re	ect pull
	hypothesis at 5% significance level	20 ME
	can say that mean penguin weight in	this year
	dogsonot differ from the last year.	1,

(b)	An experiment was carried out by a researcher to compare yields (as measured by dried weight of
	plants) obtained under a control and a treatment conditions. He wishes to test whether the treatment
	gives a same yield as the control. The following R code and output are given.

> control<-weight[group=="ctrl"]

> treat<-weight[group=="trt1"]

> t.test(control, treat, var.equal=T)

Two Sample t-test

data: control and treat

t = 1.1913, df = 18, p-value = 0.249

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.2833003 1.0253003

sample estimates:

mean of x mean of y

5.032 4.661

i. Write down the null and alternative hypothesis.

[10 Marks]

ii. Mention the test statistic and the p-value for the problem.

[15 Marks]

iii. Give your conclusion.

[15 Marks]

Since	p-v	alue>	0.05	Ne	do	not	rejec	++	he	
null.	hypoth	esis	So we.	a.e2	3ay	that.	Hie!	lds.	obtained)
unde	0.2	ntiol	ond 1	reat	men	y co.	ndit	ions	S.Y.C	

	[15 Marks]
	95% confidence interval is between -0.28330
e re	gression analysis is carried out between the number of years of college and the current
nual	income (in thousands) for a random sample of heavy equipment salespeople. The following
	ut is obtained.
	fit<-lm(income~years) summary(fit)
Ca	11:
lm	(formula = income ~ years)
Re	siduals:
_	Min 1Q Median 3Q Max 5.60 -2.60 -1.10 3.15 5.40
Co	efficients: Estimate Std. Error t value Pr(> t)
	ntercept) 21.600 4.189 5.156 0.000868 *** ars 2.000 1.325 1.510 0.169559
Si	gnif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Mu	sidual standard error: 4.189 on 8 degrees of freedom Ltiple R-squared: 0.2217, Adjusted R-squared: 0.1244
F-:	statistic: 2.279 on 1 and 8 DF, p-value: 0.1696
i.	Which variable is the dependent variable? [10 Marks]
	[10 Marks]

	[10 Marks]
	income = 21.6 + 2.00 * years
	Interpret the slope coefficient. [10 Marks]
	For each additional lyear, the income rises
	Predict the annual income of a salesperson with one year of college. [15 Marks]
	income = 21.6 + 2.00 × 1 = 23.6 (1housands) = 23.6 × 1000 = 23600//
	Test if the relationship between years of college and income is statistically significant at the .05 level of significance. [20 Marks]
	Calculated t-test statistic is 1.510 with the correspondence 0.169559. Calculated F-test statistic is 2.279 with the correspondence 0.1696.
	In both p-value > 0.05 and here the null hupo
-	connot be rejected at 5% level of significance. Therefore there is no significant relationship
-	between income and 10 years.

vi.	State the coefficient of	determination	on and inter	pret it.		

[20 Marks]

The coefficient of determination is 0.2217, So 221	٠.
of the variability in income is explained by the	
regression fit. This cannot be considered as a good	d
fit.	

vii. Calculate the sample correlation coefficient between income and years of college. Interpret the value you obtain.

[15 Marks]
