Recognizing Emotions in Text

Saima Aman

Master's Thesis Presentation

Supervisor: Dr. S. Szpakowicz

University of Ottawa 2007

Agenda

Introduction

- Problem Definition
- Related Work

Data

- Emotion Annotation
- Annotation Agreement Measurement

Experiments

- Emotion/Non-emotion Classification
- Fine-grained Emotion Classification
- Emotion Intensity Recognition

Conclusions

Problem Definition

Objective

Determine emotions expressed in text at the sentence level

Recognize Emotion Class

- happiness, sadness, anger, disgust, surprise, fear (Ekman, 1992)
- mixed emotion, no emotion

Determine Emotion Intensity

high, medium, low, neutral

Data

- Drawn from blogs
- Manually annotated with emotion labels

Application Areas

Affective Interfaces

- make sense of emotional input
- provide emotional responses
- human-computer interaction (HCI)
- computer-mediated communication (CMC)
- e-learning systems

Text-to-Speech (TTS) Systems

natural emotional rendering of text

Psychological Analysis of Text

- learn user preferences, inclinations, and biases
- personality modeling
- consumer review analysis

Related Work

Sentiment Analysis

- finding subjectivity, opinion, appraisal, orientation, affect, emotions
- finding polarity positive/negative sentiment
- finding intensity high, low, neutral

Genres

- news articles, editorials, opinion pieces (edited, professional)
- movie reviews, product reviews, blogs (unedited,informal)

Sentiment Analysis Methods

- Machine Learning methods
- Unsupervised methods

Related Work

Knowledge Sources

For identifying semantic orientation of words/phrases

- Specialized lexicons (e.g., GI, WN-Affect, SentiWordNet)
- Lexicons built using
 - domain-specific words/phrases (e.g., "great acting")
 - syntactic patterns (e.g., adverb-adj as in "very happy")
 - existing general-purpose lexicons (e.g., WordNet, Roget's)
- Corpus-driven approaches
 - PMI-IR (based on co-occurrence with similar words)
 - probabilistic sentiment scores (based on relative frequency in labeled documents)
- Contextual valence shifters
 - intensifiers, diminishers, negations

Data

Data Collection

- Used seed words for each emotion category
- 173 blog posts collected (5205 sentences)

Annotation Process

- four judges involved in the annotation process
- each sentence subjected to two decisions

Types of Annotations

- Emotion Category {hp, sd, ag, dg, sp, fr, me, ne}
- Emotion Intensity {h, m, l}
- Emotion Indicators (individual words / strings of words)

Example

But all of a sudden it's hit me that I have all this work due. (sp, h)

Annotation Agreement Measurement

Emotion Category

Cohen's kappa used for agreement measurement (Cohen, 1960)

Pairwise agreement in emotion categories

Annotation Agreement Measurement

Emotion Intensity

Cohen's kappa used for agreement measurement (Cohen, 1960)

Pairwise agreement in emotion intensity

Annotation Agreement Measurement

Emotion Indicators

■ MASI (Passonneau, 2006)

A/B = set of emotion indicators identified by Judge1/Judge2
$$MASI = J * M$$

$$J = |A \cap B| / |A \cup B|$$

$$M = \begin{cases} 1, if A = B \\ 2/3, if A \subset B \text{ or } B \subset A \\ 1/3, if A \cap B \neq \phi, A - B \neq \phi, and B - A \neq \phi \\ 0, if A \cap B = \phi \end{cases}$$

I/O Method

each word labeled (In) or (Outside) an emotion indicator Example – "I/O am/O very/I happy/I" (kappa can be used)

Avg. MASI = 0.61 ; Avg. kappa = 0.66

Experiments – Emotion/Non Emotion Classification

Used ML methods – SVM and Naïve Bayes

Features

- GI Emotion, Positive, Negative, Interjection Pleasure, Pain words
- WN-Affect Happiness, Sadness, Anger, Disgust, Surprise, Fear words
- Special symbols Emoticons, Punctuations ("?" and "!")

Emotion/non-emotion classification results

Experiments – Fine-grained Emotion Classification

Baseline

Term counting method using emotion words from WordNet-Affect

Features

- Corpus-based unigram features (excluding low-freq words and stopwords)
- Features from emotion lexicons -
 - WordNet-Affect (existing emotion lists)
 - emotion lexicon automatically built from Roget's Thesaurus

Lexicon from Roget's Thesaurus

- Words in Rogets' classification hierarchy considered as nodes in a network
- Related words likely to be located close to each other in the network
- They can be found using Semantic Similarity Measure (Jarmasz and Szpakowicz, 2004)
- Emotion words for each emotion category acquired by selecting words similar to {happy, sad, anger, disgust, surprise, fear}

Experiments – Fine-grained Emotion Classification

Fine-grained emotion classification results

Experiments – Emotion Intensity Recognition

Emotion Intensity Modifications

- relatively weak and strong words (e.g., "dislike" and "abhor")
- intensifiers (e.g., "very happy", "highly grateful", "much disappointed")
- diminishers (e.g., "little embarrassed", somewhat apprehensive", "not pathetic")
- comparative and superlative forms of adjectives ("happier", "greatest")

Syntactic Bigrams

- Represent English language constructs used to express and modify emotion
- Identified using the Link Parser
- Pairs of words connected by links output by the parser
- Link examples:
 - EA connects adverbs to adjectives (e.g., <more, happy>)
 - EE connects adverbes to other adverbs (e.g., <so, angrily>)
 - Other adjective and adverb related links (e.g., <awful, lot>, <much, more>)
 - Idiomatic expressions (e.g., <very, very>), etc.

Experiments – Emotion Intensity Recognition

Features

- Corpus-based unigram features (excluding low-freq words and stopwords)
- Syntactic bigrams

Emotion intensity classification results

Conclusions

Summary

- Studied emotion expressions in text during manual annotation
- Investigated computational methods to identify the type and strength of the expressed emotion

Results

- Use of external knowledge resources helpful in determining emotion-related words
- Use of syntactic features along with the corpus-based unigram features helpful in recognizing emotion intensity

Contributions

- Prepared an emotion-labeled corpus
- Demonstrated the feasibility of applying computational methods for automatic emotion recognition
- Introduced a novel approach of automatically building Emotion Lexicon using Roget's thesaurus

References

- [1] Cohen, J. (1960). A coefficient of agreement for nominal scales. *Educational and Psychological Measurement*, 20 (1): 37–46.
- [2] Ekman, P. (1992). An Argument for Basic Emotions. Cognition and Emotion, 6, 169-200.
- [3] Jarmasz, M. and Szpakowicz, S. (2004). Roget's Thesaurus and Semantic Similarity. In N. Nicolov, K. Bontcheva, G. Angelova, R. Mitkov (eds.) *Recent Advances in Natural Language Processing III: Selected Papers from RANLP 2003*, John Benjamins, Amsterdam/Philadelphia, *Current Issues in Linguistic Theory*, 260, pages 111-120.
- [4] Passonneau, R. (2006). Measuring agreement on set-valued items (MASI) for semantic and pragmatic annotation. In *Proceedings of LREC-2006*, Genoa, Italy.

Resources

- [1] Jarmasz, M. and Szpakowicz, S. (2001). The Design and Implementation of an Electronic Lexical Knowledge Base. In *Proceeding of the 14th Biennial Conf. of the Canadian Society for Comp. Studies of Intelligence (AI-2001)*, Ottawa, Canada, 325-333.
- [2] Stone, P.J., Dunphy, D.C., Smith, M.S., Ogilvie, D.M., and associates. (1966). *The General Inquirer: A Computer Approach to Content Analysis*. The MIT Press.
- [3] Strapparava, C. and Valitutti, A. (2004). WordNet-Affect: an affective extension of WordNet. In *Proceedings of LREC2004*, 1083 1086, Lisbon, Portugal.

Thank you!

