Text as Data

Justin Grimmer

Professor Department of Political Science Stanford University

May 28th, 2019

Selecting λ

How do we determine λ ? \leadsto Cross validation

Selecting λ

How do we determine λ ? \leadsto Cross validation Applying models gives score (probability) of document belong to class \leadsto threshold to classify

Selecting λ

How do we determine λ ? \leadsto Cross validation Applying models gives score (probability) of document belong to class \leadsto threshold to classify

Suppose observations i have dependent variables Y_i and covariates $\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{iP})$.

Suppose observations i have dependent variables Y_i and covariates $\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{iP})$. Assume:

$$Y_i \sim \text{Distribution}(\mu_i, \phi)$$

 $\mu_i = f(\beta, \mathbf{x}_i)$

Use MLE to obtain $\hat{\beta}$.

Suppose observations i have dependent variables Y_i and covariates $\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{iP})$. Assume:

$$Y_i \sim \text{Distribution}(\mu_i, \phi)$$

 $\mu_i = f(\beta, \mathbf{x}_i)$

Suppose observations i have dependent variables Y_i and covariates $\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{iP})$. Assume:

$$Y_i \sim \text{Distribution}(\mu_i, \phi)$$

 $\mu_i = f(\beta, \mathbf{x}_i)$

$$L\left(Y_i, f(\hat{\boldsymbol{\beta}}, \boldsymbol{x}_i)\right)$$

Suppose observations i have dependent variables Y_i and covariates $\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{iP})$. Assume:

$$Y_i \sim \text{Distribution}(\mu_i, \phi)$$

 $\mu_i = f(\beta, \mathbf{x}_i)$

$$L(Y_i, f(\hat{\boldsymbol{\beta}}, \boldsymbol{x}_i)) = (Y_i - f(\hat{\boldsymbol{\beta}}, \boldsymbol{x}_i))^2$$

Suppose observations i have dependent variables Y_i and covariates $\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{iP})$.

Assume:

$$Y_i \sim \text{Distribution}(\mu_i, \phi)$$

 $\mu_i = f(\beta, \mathbf{x}_i)$

$$L(Y_i, f(\hat{\boldsymbol{\beta}}, \boldsymbol{x}_i)) = (Y_i - f(\hat{\boldsymbol{\beta}}, \boldsymbol{x}_i))^2$$
$$= |Y_i - f(\hat{\boldsymbol{\beta}}, \boldsymbol{x}_i)|$$

Suppose observations i have dependent variables Y_i and covariates $\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{iP})$.

Assume:

$$Y_i \sim \text{Distribution}(\mu_i, \phi)$$

 $\mu_i = f(\beta, \mathbf{x}_i)$

$$L(Y_{i}, f(\hat{\boldsymbol{\beta}}, \boldsymbol{x}_{i})) = (Y_{i} - f(\hat{\boldsymbol{\beta}}, \boldsymbol{x}_{i}))^{2}$$

$$= |Y_{i} - f(\hat{\boldsymbol{\beta}}, \boldsymbol{x}_{i})|$$

$$= I(Y_{i} = 1 - I(f(\hat{\boldsymbol{\beta}}, \boldsymbol{x}_{i}) > \tau))$$

The useful "fiction" of training and test sets:

The useful "fiction" of training and test sets:

- Training set: data set used to fit the model

The useful "fiction" of training and test sets:

- Training set: data set used to fit the model
- Test set: data used to evaluate fit of the model

The useful "fiction" of training and test sets:

- Training set: data set used to fit the model
- Test set: data used to evaluate fit of the model

Even if no division, useful to think about systematic components of data.

Suppose that we have:

Suppose that we have:

- Training sets, \mathcal{T} , with $|\mathcal{T}| = \textit{N}_{\text{train}}$

Suppose that we have:

- Training sets, \mathcal{T} , with $|\mathcal{T}| = \textit{N}_{\text{train}}$
- Test sets, \mathcal{O} with $|\mathcal{O}| = \textit{N}_{\text{test}}$

Suppose that we have:

- Training sets, \mathcal{T} , with $|\mathcal{T}| = N_{\mathsf{train}}$
- Test sets, \mathcal{O} with $|\mathcal{O}| = N_{\mathsf{test}}$

Training (in-sample) error is:

Suppose that we have:

- Training sets, \mathcal{T} , with $|\mathcal{T}| = \textit{N}_{\text{train}}$
- Test sets, \mathcal{O} with $|\mathcal{O}| = N_{\mathsf{test}}$

Training (in-sample) error is:

Error_{in} =

Suppose that we have:

- Training sets, \mathcal{T} , with $|\mathcal{T}| = N_{\mathsf{train}}$
- Test sets, \mathcal{O} with $|\mathcal{O}| = N_{\mathsf{test}}$

Training (in-sample) error is:

Error_{in} =
$$\sum_{i \in \mathcal{T}} \frac{1}{N_{\text{train}}} L(Y_i, f(\hat{\boldsymbol{\beta}}, \boldsymbol{x}_i))$$

Suppose that we have:

- Training sets, \mathcal{T} , with $|\mathcal{T}| = N_{\mathsf{train}}$
- Test sets, \mathcal{O} with $|\mathcal{O}| = \mathit{N}_{\mathsf{test}}$

Training (in-sample) error is:

Error_{in} =
$$\sum_{i \in \mathcal{T}} \frac{1}{N_{\text{train}}} L(Y_i, f(\hat{\boldsymbol{\beta}}, \boldsymbol{x}_i))$$

We'd like to estimate out of sample performance with

Suppose that we have:

- Training sets, \mathcal{T} , with $|\mathcal{T}| = N_{\mathsf{train}}$
- Test sets, \mathcal{O} with $|\mathcal{O}| = N_{\mathsf{test}}$

Training (in-sample) error is:

Error_{in} =
$$\sum_{i \in \mathcal{T}} \frac{1}{N_{\text{train}}} L(Y_i, f(\hat{\boldsymbol{\beta}}, \boldsymbol{x}_i))$$

We'd like to estimate out of sample performance with

$$\mathsf{Error}_{\mathsf{out}} = \mathsf{E}[L(\boldsymbol{Y}_{i \in \mathcal{O}}, f(\hat{\boldsymbol{\beta}}, \boldsymbol{x}_{i \in \mathcal{O}})) | \mathcal{T}]$$

Suppose that we have:

- Training sets, \mathcal{T} , with $|\mathcal{T}| = N_{\mathsf{train}}$
- Test sets, \mathcal{O} with $|\mathcal{O}| = N_{\text{test}}$

Training (in-sample) error is:

Error_{in} =
$$\sum_{i \in \mathcal{T}} \frac{1}{N_{\text{train}}} L(Y_i, f(\hat{\boldsymbol{\beta}}, \boldsymbol{x}_i))$$

We'd like to estimate out of sample performance with

$$\mathsf{Error}_{\mathsf{out}} = \mathsf{E}[L(\boldsymbol{Y}_{i \in \mathcal{O}}, f(\hat{\boldsymbol{\beta}}, \boldsymbol{x}_{i \in \mathcal{O}})) | \mathcal{T}]$$

where the expectation is taken over samples for test sets and supposes we have a training set.

Suppose that we have:

- Training sets, \mathcal{T} , with $|\mathcal{T}| = N_{\mathsf{train}}$
- Test sets, \mathcal{O} with $|\mathcal{O}| = N_{\text{test}}$

Training (in-sample) error is:

Error_{in} =
$$\sum_{i \in \mathcal{T}} \frac{1}{N_{\text{train}}} L(Y_i, f(\hat{\boldsymbol{\beta}}, \boldsymbol{x}_i))$$

We'd like to estimate out of sample performance with

$$\mathsf{Error}_{\mathsf{out}} = \mathsf{E}[L(\boldsymbol{Y}_{i \in \mathcal{O}}, f(\hat{\boldsymbol{\beta}}, \boldsymbol{x}_{i \in \mathcal{O}})) | \mathcal{T}]$$

where the expectation is taken over samples for test sets and supposes we have a training set.

Error =
$$E[E[L(\boldsymbol{Y}, f(\hat{\boldsymbol{\beta}}, \boldsymbol{X}))|\mathcal{T}]]$$

Suppose
$$Y_i = f(\mathbf{x}_i) + \epsilon_i$$

Suppose
$$Y_i = f(\mathbf{x}_i) + \epsilon_i$$

Where $E[\epsilon_i] = 0$

Suppose
$$Y_i = f(\mathbf{x}_i) + \epsilon_i$$

Where $E[\epsilon_i] = 0$
 $var(\epsilon_i) = \sigma_{\epsilon}^2$

Suppose
$$Y_i = f(\mathbf{x}_i) + \epsilon_i$$

Where $E[\epsilon_i] = 0$
 $var(\epsilon_i) = \sigma_{\epsilon}^2$
Define $f(\hat{\boldsymbol{\beta}}, \mathbf{x}) = \hat{f}(\mathbf{x})$

```
Suppose Y_i = f(\mathbf{x}_i) + \epsilon_i
Where E[\epsilon_i] = 0
var(\epsilon_i) = \sigma_{\epsilon}^2
Define f(\hat{\boldsymbol{\beta}}, \mathbf{x}) = \hat{f}(\mathbf{x})
With squared error loss:
```

Suppose
$$Y_i = f(\mathbf{x}_i) + \epsilon_i$$

Where $E[\epsilon_i] = 0$
 $var(\epsilon_i) = \sigma_{\epsilon}^2$
Define $f(\hat{\boldsymbol{\beta}}, \mathbf{x}) = \hat{f}(\mathbf{x})$
With squared error loss:

$$Error(x_0) = E[(Y_i - \hat{f}(x_i))^2 | x_i = x_0]$$

```
Suppose Y_i = f(\mathbf{x}_i) + \epsilon_i
Where E[\epsilon_i] = 0
var(\epsilon_i) = \sigma_{\epsilon}^2
Define f(\hat{\boldsymbol{\beta}}, \mathbf{x}) = \hat{f}(\mathbf{x})
With squared error loss:
```

$$Error(\mathbf{x}_0) = E[(Y_i - \hat{f}(\mathbf{x}_i))^2 | \mathbf{x}_i = \mathbf{x}_0]$$
$$= E[(f(\mathbf{x}_i) + \epsilon_i - \hat{f}(\mathbf{x}_i))^2 | \mathbf{x}_i = \mathbf{x}_0]$$

```
Suppose Y_i = f(\mathbf{x}_i) + \epsilon_i
Where E[\epsilon_i] = 0
var(\epsilon_i) = \sigma_{\epsilon}^2
Define f(\hat{\boldsymbol{\beta}}, \mathbf{x}) = \hat{f}(\mathbf{x})
With squared error loss:
```

$$Error(\mathbf{x}_0) = E[(Y_i - \hat{f}(\mathbf{x}_i))^2 | \mathbf{x}_i = \mathbf{x}_0]$$

$$= E[(f(\mathbf{x}_i) + \epsilon_i - \hat{f}(\mathbf{x}_i))^2 | \mathbf{x}_i = \mathbf{x}_0]$$

$$= \sigma_{\epsilon}^2 + \left[f(\mathbf{x}_0) - E[\hat{f}(\mathbf{x}_0)] \right]^2 + E[(\hat{f}(\mathbf{x}_0) - E[\hat{f}(\mathbf{x}_0)])^2]$$

Suppose
$$Y_i = f(\mathbf{x}_i) + \epsilon_i$$

Where $E[\epsilon_i] = 0$
 $var(\epsilon_i) = \sigma_{\epsilon}^2$
Define $f(\hat{\boldsymbol{\beta}}, \mathbf{x}) = \hat{f}(\mathbf{x})$
With squared error loss:

$$Error(\mathbf{x}_0) = E[(Y_i - \hat{f}(\mathbf{x}_i))^2 | \mathbf{x}_i = \mathbf{x}_0]$$

$$= E[(f(\mathbf{x}_i) + \epsilon_i - \hat{f}(\mathbf{x}_i))^2 | \mathbf{x}_i = \mathbf{x}_0]$$

$$= \sigma_{\epsilon}^2 + \left[f(\mathbf{x}_0) - E[\hat{f}(\mathbf{x}_0)] \right]^2 + E[\left(\hat{f}(\mathbf{x}_0) - E[\hat{f}(\mathbf{x}_0)]\right)^2]$$

$$= Irreducible error + Bias^2 + Variance$$

Probit Regression (for motivational purposes)

Suppose:

$$Y_i \sim \text{Bernoulli}(\pi_i)$$

 $\pi_i = \Phi(\beta' \mathbf{x}_i)$

where $\Phi(\cdot)$ is the cumulative normal distribution. Implies log-likelihood

$$\log \mathsf{L}(\boldsymbol{\beta}|\boldsymbol{X},\boldsymbol{Y}) = \sum_{i=1}^{N} \left[Y_{i} \log \Phi(\boldsymbol{\beta}'\boldsymbol{x}_{i}) + (1-Y_{i}) \log(1-\Phi(\boldsymbol{\beta}'\boldsymbol{x}_{i})) \right]$$

Log-likelihood is a loss function → overly optimistic: improves with more parameters

How Do We Build A Model?

There are many ways to fit models And many choices made when performing model fit How do we choose?

FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error err, while the light red curves show the conditional test error Err for 100 training sets of size 50 each, as the model complexity is increased. The solid curves show the expected test error Err and the expected training error E[err].

There are many ways to fit models And many choices made when performing model fit How do we choose? Bad way to choose:

FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error $\overline{\text{err}}$, while the light red curves show the conditional test error Err- for 100 training sets of size 50 each, as the model complexity is increased. The solid curves show the expected test error Err and the expected training error $\text{E}[\overline{\text{err}}]$.

There are many ways to fit models

And many choices made when performing model fit

How do we choose?

Bad way to choose: within sample model fit (HTF Figure 7.1)

FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error err, while the light red curves show the conditional test error Err for 100 training sets of size 50 each, as the model complexity is increased. The solid curves show the expected test error Err and the expected training error E[err].

8 / 25

FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error ēπ, while the light red curves show the conditional test error Ēπ-τ for 100 training sets of size 50 each, as the model complexity is increased. The solid curves show the expected test error Ēπ and the expected training error Ēḡπ̄T].

FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error ēπ, while the light red curves show the conditional test error Eπγ for 100 training sets of size 50 each, as the model complexity is increased. The solid curves show the expected test error Eπ and the expected training error EEπγ.

Model overfit → in sample error is optimistic:

- Some model complexity captures systematic features of the data

FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error err, while the light red curves show the conditional test error Err. for 100 training sets of size 50 each, as the model complexity is increased. The solid curves show the expected test error Err and the expected training error EBETT!

- Some model complexity captures systematic features of the data
- Characteristics found in both training and test set

FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error ēπ, while the light red curves show the conditional test error Ēπ-γ for 100 training sets of size 50 each, as the model complexity is increased. The solid curves show the expected test error Ēπ and the expected training error Ēḡπ̄¬].

- Some model complexity captures systematic features of the data
- Characteristics found in both training and test set
- Reduces error in both training and test set

FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error ēπ, while the light red curves show the conditional test error Ēπ-γ for 100 training sets of size 50 each, as the model complexity is increased. The solid curves show the expected test error Ēπ and the expected training error Ēḡπ̄¬].

- Some model complexity captures systematic features of the data
- Characteristics found in both training and test set
- Reduces error in both training and test set
- Additional model complexity: idiosyncratic features of the training set

FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error ēπ, while the light red curves show the conditional test error Ēπ-γ for 100 training sets of size 50 each, as the model complexity is increased. The solid curves show the expected test error Ēπ and the expected training error Ēḡπ̄¬].

- Some model complexity captures systematic features of the data
- Characteristics found in both training and test set
- Reduces error in both training and test set
- Additional model complexity: idiosyncratic features of the training set
- Reduces error in training set, increases error in test set

How Do We Choose Covariates?

Best model depends on task

- Causal inference observational study: make treatment assignment ignorable
- Prediction: improve predictive performance

Suppose we have P covariates. 2^P potential models

Suppose we have P covariates. 2^P potential models Stepwise procedures

Suppose we have P covariates.

2^P potential models

Stepwise procedures

- 1) Forward selection
 - a) No variables in model.
 - b) Check all variables p-value if include, include lowest p-value
 - c) Repeat until included p-value is above some threshold

Suppose we have P covariates.

2^P potential models

Stepwise procedures

- 1) Forward selection
 - a) No variables in model.
 - b) Check all variables p-value if include, include lowest p-value
 - c) Repeat until included p-value is above some threshold
- 2) Backward elimination
 - a) Fit model with all variables (if possible)
 - b) Remove variable with largest p-value
 - Repeat until potentially excluded p-value is below some threshold

Suppose we have P covariates.

2^P potential models

Stepwise procedures

- 1) Forward selection
 - a) No variables in model.
 - b) Check all variables p-value if include, include lowest p-value
 - c) Repeat until included p-value is above some threshold
- 2) Backward elimination
 - a) Fit model with all variables (if possible)
 - b) Remove variable with largest p-value
 - c) Repeat until potentially excluded p-value is below some threshold

Problematic:

- 1) Not optimal model selection (path dependent)
- 2) P-value \neq objective of model

Approximate optimism and compensate in loss function.

Approximate optimism and compensate in loss function. Akaike Information Criterion (AIC) → Minimize

Approximate optimism and compensate in loss function. Akaike Information Criterion (AIC) \leadsto Minimize As $N\to\infty$

Approximate optimism and compensate in loss function. Akaike Information Criterion (AIC) \leadsto Minimize As $N\to\infty$

$$-2\mathsf{E}[\log P_{\hat{\boldsymbol{\beta}}}(\boldsymbol{Y})] = -2\left[\mathsf{E}[\log \mathsf{L}(\hat{\boldsymbol{\beta}}|\boldsymbol{X},\boldsymbol{Y})] - d\right]$$

Approximate optimism and compensate in loss function. Akaike Information Criterion (AIC) \leadsto Minimize As $N\to\infty$

$$-2E[\log P_{\hat{\boldsymbol{\beta}}}(Y)] = -2\left[E[\log L(\hat{\boldsymbol{\beta}}|\boldsymbol{X},\boldsymbol{Y})] - d\right]$$

$$AIC = -2\left[\log L(\hat{\boldsymbol{\beta}}|\boldsymbol{X},\boldsymbol{Y}) - d\right]$$

Approximate optimism and compensate in loss function. Akaike Information Criterion (AIC) \leadsto Minimize As $N\to\infty$

$$-2E[\log P_{\hat{\boldsymbol{\beta}}}(\boldsymbol{Y})] = -2\left[E[\log L(\hat{\boldsymbol{\beta}}|\boldsymbol{X},\boldsymbol{Y})] - d\right]$$

$$AIC = -2\left[\log L(\hat{\boldsymbol{\beta}}|\boldsymbol{X},\boldsymbol{Y}) - d\right]$$

Approximate optimism and compensate in loss function. Akaike Information Criterion (AIC) \leadsto Minimize As $N\to\infty$

$$-2E[\log P_{\hat{\boldsymbol{\beta}}}(\boldsymbol{Y})] = -2\left[E[\log L(\hat{\boldsymbol{\beta}}|\boldsymbol{X},\boldsymbol{Y})] - d\right]$$

$$AIC = -2\left[\log L(\hat{\boldsymbol{\beta}}|\boldsymbol{X},\boldsymbol{Y}) - d\right]$$

where d is the number of parameters in the model

- Intuition: balances model fit with penalty for complexity

Approximate optimism and compensate in loss function. Akaike Information Criterion (AIC) \leadsto Minimize As $N\to\infty$

$$-2E[\log P_{\hat{\boldsymbol{\beta}}}(Y)] = -2\left[E[\log L(\hat{\boldsymbol{\beta}}|\boldsymbol{X},\boldsymbol{Y})] - d\right]$$

$$AIC = -2\left[\log L(\hat{\boldsymbol{\beta}}|\boldsymbol{X},\boldsymbol{Y}) - d\right]$$

- Intuition: balances model fit with penalty for complexity
- Derived from method to estimate optimism in likelihood based models

Approximate optimism and compensate in loss function. Akaike Information Criterion (AIC) \leadsto Minimize As $N\to\infty$

$$-2\mathsf{E}[\log P_{\hat{\boldsymbol{\beta}}}(\boldsymbol{Y})] = -2\left[\mathsf{E}[\log \mathsf{L}(\hat{\boldsymbol{\beta}}|\boldsymbol{X},\boldsymbol{Y})] - d\right]$$

$$\mathsf{AIC} = -2\left[\log \mathsf{L}(\hat{\boldsymbol{\beta}}|\boldsymbol{X},\boldsymbol{Y}) - d\right]$$

- Intuition: balances model fit with penalty for complexity
- Derived from method to estimate optimism in likelihood based models
- Derived from a method to compute similarity between estimated model and true model (under assumptions of course)

Approximate optimism and compensate in loss function. Akaike Information Criterion (AIC) \leadsto Minimize As $N\to\infty$

$$-2\mathsf{E}[\log P_{\hat{\boldsymbol{\beta}}}(\boldsymbol{Y})] = -2\left[\mathsf{E}[\log \mathsf{L}(\hat{\boldsymbol{\beta}}|\boldsymbol{X},\boldsymbol{Y})] - d\right]$$

$$\mathsf{AIC} = -2\left[\log \mathsf{L}(\hat{\boldsymbol{\beta}}|\boldsymbol{X},\boldsymbol{Y}) - d\right]$$

- Intuition: balances model fit with penalty for complexity
- Derived from method to estimate optimism in likelihood based models
- Derived from a method to compute similarity between estimated model and true model (under assumptions of course)
- Can be extended to general models, though requires estimate of irresolvable error

Bayesian Information Criterion (BIC) [Schwarz Criterion]

Bayesian Information Criterion (BIC) [Schwarz Criterion]

$$BIC = -2 \log L(\widehat{\beta}|\boldsymbol{X}, \boldsymbol{Y}) + (\log N)d$$

Bayesian Information Criterion (BIC) [Schwarz Criterion]

$$BIC = -2 \log L(\widehat{\beta}|\boldsymbol{X}, \boldsymbol{Y}) + (\log N)d$$

Bayesian Information Criterion (BIC) [Schwarz Criterion]

$$BIC = -2 \log L(\widehat{\beta}|\boldsymbol{X}, \boldsymbol{Y}) + (\log N)d$$

where d is again the effective number of parameters

- Intuition: balances model fit with penalty for complexity

Bayesian Information Criterion (BIC) [Schwarz Criterion]

$$BIC = -2 \log L(\widehat{\beta}|\boldsymbol{X}, \boldsymbol{Y}) + (\log N)d$$

- Intuition: balances model fit with penalty for complexity
- Derived from Bayesian approach to model selection

Bayesian Information Criterion (BIC) [Schwarz Criterion]

$$BIC = -2 \log L(\widehat{\beta}|\boldsymbol{X}, \boldsymbol{Y}) + (\log N)d$$

- Intuition: balances model fit with penalty for complexity
- Derived from Bayesian approach to model selection
- Approximation to Bayes' factor

Bayesian Information Criterion (BIC) [Schwarz Criterion]

$$BIC = -2 \log L(\widehat{\beta}|\boldsymbol{X}, \boldsymbol{Y}) + (\log N)d$$

- Intuition: balances model fit with penalty for complexity
- Derived from Bayesian approach to model selection
- Approximation to Bayes' factor
- Penalizes more heavily than AIC

- BIC

- Asymptotically consistent if true model is in choice set
- As $N \to \infty$ will choose correct model with probability 1 (if available)
- Small samples → overpenalize

- AIC

- No asymptotic guarantees → derivation doesn't require truth in set. (KL-criteria)
- In large samples → favors complexity
- Small samples → avoids over penalization

Analytic statistics for selection, include penalty for complexity

Analytic statistics for selection, include penalty for complexity

- AIC : Akaka Information Criterion

Analytic statistics for selection, include penalty for complexity

- AIC : Akaka Information Criterion
- BIC: Bayesian Information Criterion

Analytic statistics for selection, include penalty for complexity

- AIC : Akaka Information Criterion
- BIC: Bayesian Information Criterion
- DIC: Deviance Information Criterion

Analytic statistics for selection, include penalty for complexity

- AIC : Akaka Information Criterion
- BIC: Bayesian Information Criterion
- DIC: Deviance Information Criterion

Analytic statistics for selection, include penalty for complexity

- AIC: Akaka Information Criterion
- BIC: Bayesian Information Criterion
- DIC: Deviance Information Criterion

Can work well, but...

- Rely on specific loss function

Analytic statistics for selection, include penalty for complexity

- AIC: Akaka Information Criterion
- BIC: Bayesian Information Criterion
- DIC: Deviance Information Criterion

- Rely on specific loss function
- Rely on asymptotic argument

Analytic statistics for selection, include penalty for complexity

- AIC : Akaka Information Criterion
- BIC: Bayesian Information Criterion
- DIC: Deviance Information Criterion

- Rely on specific loss function
- Rely on asymptotic argument
- Rely on estimate of number of parameters

Analytic statistics for selection, include penalty for complexity

- AIC : Akaka Information Criterion
- BIC: Bayesian Information Criterion
- DIC: Deviance Information Criterion

- Rely on specific loss function
- Rely on asymptotic argument
- Rely on estimate of number of parameters
- Extremely model dependent

Analytic statistics for selection, include penalty for complexity

- AIC : Akaka Information Criterion
- BIC: Bayesian Information Criterion
- DIC: Deviance Information Criterion

Can work well, but...

- Rely on specific loss function
- Rely on asymptotic argument
- Rely on estimate of number of parameters
- Extremely model dependent

Need: general tool for evaluating models, replicates decision problem

Optimal division of data for prediction:

Optimal division of data for prediction:

- Train: build model

Optimal division of data for prediction:

- Train: build model

- Validation: assess model

Optimal division of data for prediction:

- Train: build model

- Validation: assess model

- Test: predict remaining data

Optimal division of data for prediction:

- Train: build model

- Validation: assess model

- Test: predict remaining data

K-fold Cross-validation idea: create many training and test sets.

Optimal division of data for prediction:

- Train: build model

- Validation: assess model

- Test: predict remaining data

K-fold Cross-validation idea: create many training and test sets.

- Idea: use observations both in training and test sets

Optimal division of data for prediction:

- Train: build model

- Validation: assess model

- Test: predict remaining data

K-fold Cross-validation idea: create many training and test sets.

- Idea: use observations both in training and test sets

- Each step: use held out data to evaluate performance

Optimal division of data for prediction:

- Train: build model

- Validation: assess model

- Test: predict remaining data

K-fold Cross-validation idea: create many training and test sets.

- Idea: use observations both in training and test sets
- Each step: use held out data to evaluate performance
- Avoid overfitting and have context specific penalty

Optimal division of data for prediction:

- Train: build model

- Validation: assess model

- Test: predict remaining data

K-fold Cross-validation idea: create many training and test sets.

- Idea: use observations both in training and test sets
- Each step: use held out data to evaluate performance
- Avoid overfitting and have context specific penalty

Estimates:

Error =
$$E\left[E[L(\boldsymbol{Y}, f(\hat{\boldsymbol{\beta}}, \boldsymbol{X}))|\mathcal{T}]\right]$$

Cross-Validation: A How To Guide

Process:

Process:

- Randomly partition data into $\ensuremath{\mathsf{K}}$ groups.

Process:

Randomly partition data into K groups.
 (Group 1, Group 2, Group3, ..., Group K)

- Randomly partition data into K groups.
 (Group 1, Group 2, Group3, ..., Group K)
- Rotate through groups as follows

Process:

- Randomly partition data into K groups.
 (Group 1, Group 2, Group3, ..., Group K)
- Rotate through groups as follows

Step Training

Validation ("Test")

Process:

- Randomly partition data into K groups.
 (Group 1, Group 2, Group3, ..., Group K)
- Rotate through groups as follows

Step Training

1 Group? Group? Group 4 Group

1 Group2, Group3, Group 4, ..., Group K

Validation ("Test") Group 1

- Randomly partition data into K groups.
 (Group 1, Group 2, Group3, ..., Group K)
- Rotate through groups as follows

Step	Training	Validation ("Test")
1	Group2, Group3, Group 4,, Group K	Group 1
2	Group 1, Group3, Group 4,, Group K	Group 2

- Randomly partition data into K groups.
 (Group 1, Group 2, Group3, ..., Group K)
- Rotate through groups as follows

Step	Training	Validation ("Test")
1	Group2, Group3, Group 4,, Group K	Group 1
2	Group 1, Group3, Group 4,, Group K	Group 2
3	Group 1, Group 2, Group 4,, Group K	Group 3

- Randomly partition data into K groups.
 (Group 1, Group 2, Group3, ..., Group K)
- Rotate through groups as follows

```
Step Training Validation ("Test")

1 Group2, Group3, Group 4, ..., Group K

2 Group 1, Group3, Group 4, ..., Group K

3 Group 1, Group 2, Group 4, ..., Group K

: : :
```

- Randomly partition data into K groups.
 (Group 1, Group 2, Group3, ..., Group K)
- Rotate through groups as follows

```
Step Training Validation ("Test")

1 Group2, Group3, Group 4, ..., Group K Group 1

2 Group 1, Group3, Group 4, ..., Group K Group 2

3 Group 1, Group 2, Group 4, ..., Group K Group 3

...

K Group 1, Group 2, Group 3, ..., Group K - 1 Group K
```

Step	Training	Validation ("Test")
1	Group2, Group3, Group 4,, Group K	Group 1
2	Group 1, Group3, Group 4,, Group K	Group 2
3	Group 1, Group 2, Group 4,, Group K	Group 3
:	<u>:</u>	:
K	Group 1, Group 2, Group 3,, Group K - 1	Group K

```
Step Training Validation ("Test")

1 Group2, Group3, Group 4, ..., Group K Group 1

2 Group 1, Group3, Group 4, ..., Group K Group 2

3 Group 1, Group 2, Group 4, ..., Group K Group 3

...

K Group 1, Group 2, Group 3, ..., Group K - 1 Group K

Strategy:
```

```
Step Training Validation ("Test")

1 Group2, Group3, Group 4, ..., Group K Group 1

2 Group 1, Group3, Group 4, ..., Group K Group 2

3 Group 1, Group 2, Group 4, ..., Group K Group 3

...

K Group 1, Group 2, Group 3, ..., Group K - 1 Group K

Strategy:
```

- Divide data into K groups

```
Step Training Validation ("Test")

1 Group2, Group3, Group 4, ..., Group K Group 1

2 Group 1, Group3, Group 4, ..., Group K Group 2

3 Group 1, Group 2, Group 4, ..., Group K Group 3

...

K Group 1, Group 2, Group 3, ..., Group K - 1 Group K

Strategy:
```

- Divide data into K groups
- Train data on K-1 groups. Estimate $\hat{f}^{-K}(\boldsymbol{\beta}, \boldsymbol{X})$

```
Step Training Validation ("Test")

1 Group2, Group3, Group 4, ..., Group K Group 1

2 Group 1, Group3, Group 4, ..., Group K Group 2

3 Group 1, Group 2, Group 4, ..., Group K Group 3

...

K Group 1, Group 2, Group 3, ..., Group K - 1 Group K

Strategy:
```

- Divide data into K groups
 - Train data on K-1 groups. Estimate $\hat{f}^{-K}(oldsymbol{eta},oldsymbol{\mathcal{X}})$
 - Predict values for Kth

```
Step Training Validation ("Test")

1 Group2, Group3, Group 4, ..., Group K Group 1

2 Group 1, Group3, Group 4, ..., Group K Group 2

3 Group 1, Group 2, Group 4, ..., Group K Group 3

...

K Group 1, Group 2, Group 3, ..., Group K - 1 Group K

Strategy:
```

- Divide data into K groups
- Train data on K-1 groups. Estimate $\hat{f}^{-K}(oldsymbol{eta},oldsymbol{\mathcal{X}})$
- Predict values for Kth
- Summarize performance with loss function: $L(\mathbf{Y}_i, \hat{f}^{-k}(\boldsymbol{\beta}, \mathbf{X}))$

```
Step Training Validation ("Test")

1 Group2, Group3, Group 4, ..., Group K Group 1

2 Group 1, Group3, Group 4, ..., Group K Group 2

3 Group 1, Group 2, Group 4, ..., Group K Group 3

...

K Group 1, Group 2, Group 3, ..., Group K - 1 Group K

Strategy:
```

- Divide data into K groups
 - Train data on K-1 groups. Estimate $\hat{f}^{-K}(oldsymbol{eta},oldsymbol{\mathcal{X}})$
 - Predict values for Kth
 - Summarize performance with loss function: $L(\boldsymbol{Y}_i, \hat{f}^{-k}(\boldsymbol{\beta}, \boldsymbol{X}))$
 - Mean square error, Absolute error, Prediction error, ...

```
Step Training Validation ("Test")

1 Group2, Group3, Group 4, ..., Group K Group 1

2 Group 1, Group3, Group 4, ..., Group K Group 2

3 Group 1, Group 2, Group 4, ..., Group K Group 3

...

K Group 1, Group 2, Group 3, ..., Group K - 1 Group K

Strategy:
```

- Divide data into K groups
 - Train data on K-1 groups. Estimate $\hat{f}^{-K}(oldsymbol{eta},oldsymbol{\mathcal{X}})$
 - Predict values for Kth
 - Summarize performance with loss function: $L(\boldsymbol{Y}_i,\hat{f}^{-k}(\boldsymbol{\beta},\boldsymbol{X}))$
 - Mean square error, Absolute error, Prediction error, ...

CV(ind. classification) =
$$\frac{1}{N} \sum_{i=1}^{N} L(\mathbf{Y}_i, f^{-k}(\beta, \mathbf{X}_i))$$

```
Step Training Validation ("Test")

1 Group2, Group3, Group 4, ..., Group K Group 1

2 Group 1, Group3, Group 4, ..., Group K Group 2

3 Group 1, Group 2, Group 4, ..., Group K Group 3

...

K Group 1, Group 2, Group 3, ..., Group K - 1 Group K

Strategy:
```

- Divide data into K groups
- Train data on K-1 groups. Estimate $\hat{f}^{-K}(oldsymbol{eta},oldsymbol{\mathcal{X}})$
- Predict values for Kth
- Summarize performance with loss function: $L(\boldsymbol{Y}_i,\hat{f}^{-k}(\boldsymbol{\beta},\boldsymbol{X}))$
 - Mean square error, Absolute error, Prediction error, ...

CV(ind. classification) =
$$\frac{1}{N} \sum_{i=1}^{N} L(\mathbf{Y}_i, f^{-k}(\boldsymbol{\beta}, \mathbf{X}_i))$$

$$CV(proportions) =$$

 $\frac{1}{K}\sum_{j=1}^{K}$ Mean Square Error Proportions from Group j

```
Step Training Validation ("Test")

1 Group2, Group3, Group 4, ..., Group K Group 1

2 Group 1, Group3, Group 4, ..., Group K Group 2

3 Group 1, Group 2, Group 4, ..., Group K Group 3

...

K Group 1, Group 2, Group 3, ..., Group K - 1 Group K

Strategy:
```

- Divide data into K groups
- Train data on K-1 groups. Estimate $\hat{f}^{-K}(oldsymbol{eta},oldsymbol{\mathcal{X}})$
- Predict values for Kth
- Summarize performance with loss function: $L(Y_i, \hat{f}^{-k}(\beta, X))$
 - Mean square error, Absolute error, Prediction error, ...

CV(ind. classification) =
$$\frac{1}{N} \sum_{i=1}^{N} L(\boldsymbol{Y}_i, f^{-k}(\boldsymbol{\beta}, \boldsymbol{X}_i))$$

CV(proportions) =

 $\frac{1}{K}\sum_{i=1}^{K}$ Mean Square Error Proportions from Group j

- Final choice: model with highest CV score

How Do We Select K? (HTF, Section 7.10)

Common values of K

- K = 5: Five fold cross validation
- K = 10: Ten fold cross validation
- K = N: Leave one out cross validation

Considerations:

- How sensitive are inferences to number of coded documents? (HTF, pg 243-244)
- 200 labeled documents
 - $K = N \rightarrow 199$ documents to train,
 - $K=10 \rightarrow 180$ documents to train
 - $K=5 \rightarrow 160$ documents to train
- 50 labeled documents
 - $K = N \rightarrow 49$ documents to train,
 - $K = 10 \rightarrow 45$ documents to train
 - $K = 5 \rightarrow 40$ documents to train
- How long will it take to run models?
 - K-fold cross validation requires $K \times$ One model run
- What is the correct loss function?

If you cross validate, you really need to cross validate (Section 7.10.2, ESL)

- Use CV to estimate prediction error
- All supervised steps performed in cross-validation
- Underestimate prediction error
- Could lead to selecting lower performing model

Credit Claiming (Ridge/Lasso, Grimmer, Westwood, and Messing 2014)

```
library(glmnet)
set.seed(8675309) ##setting seed
folds<- sample(1:10, nrow(dtm), replace=T) ##assigning to fold
out_of_samp<- c() ##collecting the predictions</pre>
```

Credit Claiming (Ridge/Lasso, Grimmer, Westwood, and Messing 2014)

```
for(z in 1:10){
train <- which (folds!=z) ##the observations we will use to train the model
test<- which(folds==z) ##the observations we will use to test the model
part1<- cv.glmnet(x = dtm[train,], y = credit[train], alpha = 1, family =</pre>
binomial) ##fitting the LASSO model on the data.
## alpha = 1 -> LASSO
## alpha = 0 -> RIDGE
## 0<alpha<1 -> Elastic-Net
out_of_samp[test] <- predict(part1, newx= dtm[test,], s = part1$lambda.min,
type =class) ##predicting the labels
print(z) ##printing the labels
conf_table<- table(out_of_samp, credit) ##calculating the confusion table</pre>
> round(sum(diag(conf_table))/len(credit), 3)
[1] 0.844
```

$$\boldsymbol{\beta}^{\mathsf{Ridge}} = \left(\boldsymbol{X}' \boldsymbol{X} + \lambda \boldsymbol{I}_{J} \right)^{-1} \boldsymbol{X}' \boldsymbol{Y}$$

$$eta^{\text{Ridge}} = \left(\mathbf{X}' \mathbf{X} + \lambda \mathbf{I}_J \right)^{-1} \mathbf{X}' \mathbf{Y}$$
 $\widehat{\mathbf{Y}} = \mathbf{X} (\beta)^{\text{Ridge}}$

$$\beta^{\text{Ridge}} = \left(\mathbf{X}' \mathbf{X} + \lambda \mathbf{I}_{J} \right)^{-1} \mathbf{X}' \mathbf{Y}$$

$$\widehat{\mathbf{Y}} = \mathbf{X} (\beta)^{\text{Ridge}}$$

$$= \underbrace{\mathbf{X} \left(\mathbf{X}' \mathbf{X} + \lambda \mathbf{I}_{J} \right)^{-1} \mathbf{X}'}_{\text{Hat Matrix}} \mathbf{Y}$$

$$\beta^{\text{Ridge}} = \left(\mathbf{X}' \mathbf{X} + \lambda \mathbf{I}_{J} \right)^{-1} \mathbf{X}' \mathbf{Y}$$

$$\widehat{\mathbf{Y}} = \mathbf{X} (\beta)^{\text{Ridge}}$$

$$= \underbrace{\mathbf{X} \left(\mathbf{X}' \mathbf{X} + \lambda \mathbf{I}_{J} \right)^{-1} \mathbf{X}'}_{\text{Hat Matrix}} \mathbf{Y}$$

$$\widehat{\mathbf{Y}} = \underbrace{\mathbf{H}}_{\text{Smoother Matrix}} \mathbf{Y}$$

$$\beta^{\text{Ridge}} = \left(\mathbf{X}' \mathbf{X} + \lambda \mathbf{I}_{J} \right)^{-1} \mathbf{X}' \mathbf{Y}$$

$$\widehat{\mathbf{Y}} = \mathbf{X} (\beta)^{\text{Ridge}}$$

$$= \underbrace{\mathbf{X} \left(\mathbf{X}' \mathbf{X} + \lambda \mathbf{I}_{J} \right)^{-1} \mathbf{X}'}_{\text{Hat Matrix}} \mathbf{Y}$$

$$\widehat{\mathbf{Y}} = \underbrace{\mathbf{H}}_{\text{Smoother Matrix}} \mathbf{Y}$$

Why do we care?

Why do we care? Leave one out cross validation

Why do we care? Leave one out cross validation

Cross Validation(1) =
$$\frac{1}{N} \sum_{i=1}^{N} (Y_i - f(\mathbf{X}_{-i}, \mathbf{Y}_{-i}, \lambda, \hat{\boldsymbol{\beta}}))^2$$

Why do we care? Leave one out cross validation

Cross Validation(1)
$$= \frac{1}{N} \sum_{i=1}^{N} (Y_i - f(\mathbf{X}_{-i}, \mathbf{Y}_{-i}, \lambda, \hat{\boldsymbol{\beta}}))^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left(\frac{Y_i - f(\mathbf{X}, \mathbf{Y}, \lambda, \hat{\boldsymbol{\beta}})}{1 - H_{ii}} \right)^2$$

Generalized Cross Validation and Ridge Regression Calculating **H** can be computationally expensive

Generalized Cross Validation and Ridge Regression Calculating **H** can be computationally expensive

- Trace($m{H}$) \equiv Tr($m{H}$) $=\sum_{i=1}^{N}H_{ii}$

Calculating **H** can be computationally expensive

- Trace $(oldsymbol{H}) \equiv \operatorname{Tr}(oldsymbol{H}) = \sum_{i=1}^N H_{ii}$
- $Tr(\mathbf{H}) = Effective number of parameters (class regression = number of independent variables + 1)$

Calculating **H** can be computationally expensive

- Trace $(oldsymbol{H}) \equiv \mathrm{Tr}(oldsymbol{H}) = \sum_{i=1}^N H_{ii}$
- $Tr(\mathbf{H}) = Effective number of parameters (class regression = number of independent variables <math>+ 1$)
- For Ridge regression:

Calculating **H** can be computationally expensive

- Trace $(oldsymbol{H}) \equiv \mathrm{Tr}(oldsymbol{H}) = \sum_{i=1}^N H_{ii}$
- $Tr(\mathbf{H}) = Effective number of parameters (class regression = number of independent variables + 1)$
- For Ridge regression:

$$\operatorname{Tr}(\boldsymbol{H}) = \sum_{j=1}^{J} \frac{\lambda_j}{\lambda_j + \underbrace{\lambda}_{\mathsf{Penalty}}}$$

Calculating **H** can be computationally expensive

- Trace $(oldsymbol{H}) \equiv \mathrm{Tr}(oldsymbol{H}) = \sum_{i=1}^N H_{ii}$
- $Tr(\mathbf{H}) = Effective number of parameters (class regression = number of independent variables + 1)$
- For Ridge regression:

$$Tr(\boldsymbol{H}) = \sum_{j=1}^{J} \frac{\lambda_j}{\lambda_j + \underbrace{\lambda}_{Penalty}}$$

where λ_j is the j^{th} Eigenvalue from $oldsymbol{\Sigma} = oldsymbol{X}'oldsymbol{X}$

Calculating **H** can be computationally expensive

- Trace $(oldsymbol{H}) \equiv \mathrm{Tr}(oldsymbol{H}) = \sum_{i=1}^N H_{ii}$
- $Tr(\mathbf{H}) = Effective number of parameters (class regression = number of independent variables <math>+ 1$)
- For Ridge regression:

$$Tr(\boldsymbol{H}) = \sum_{j=1}^{J} \frac{\lambda_j}{\lambda_j + \underbrace{\lambda}_{Penalty}}$$

where λ_j is the j^{th} Eigenvalue from $\boldsymbol{\Sigma} = \boldsymbol{X}' \boldsymbol{X}$ (!!!!!)

Calculating **H** can be computationally expensive

- Trace $(oldsymbol{H}) \equiv \mathrm{Tr}(oldsymbol{H}) = \sum_{i=1}^N H_{ii}$
- $Tr(\mathbf{H}) = Effective number of parameters (class regression = number of independent variables + 1)$
- For Ridge regression:

$$Tr(\boldsymbol{H}) = \sum_{j=1}^{J} \frac{\lambda_j}{\lambda_j + \underbrace{\lambda}_{Penalty}}$$

where λ_j is the j^{th} Eigenvalue from $oldsymbol{\Sigma} = oldsymbol{X}^{'}oldsymbol{X}$ (!!!!!)

Define generalized cross validation:

Calculating **H** can be computationally expensive

- Trace $(\boldsymbol{H}) \equiv \operatorname{Tr}(\boldsymbol{H}) = \sum_{i=1}^{N} H_{ii}$
- $Tr(\mathbf{H}) = Effective number of parameters (class regression = number of independent variables + 1)$
- For Ridge regression:

$$\operatorname{Tr}(\boldsymbol{H}) = \sum_{j=1}^{J} \frac{\lambda_j}{\lambda_j + \underbrace{\lambda}_{\mathsf{Penalty}}}$$

where λ_j is the j^{th} Eigenvalue from $\boldsymbol{\Sigma} = \boldsymbol{X}' \boldsymbol{X}$ (!!!!!)

Define generalized cross validation:

$$\mathsf{GCV} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{Y_i - \hat{Y}_i}{1 - \frac{\mathsf{Tr}(\mathbf{H})}{N}} \right)^2$$

Calculating **H** can be computationally expensive

- Trace $(\boldsymbol{H}) \equiv \operatorname{Tr}(\boldsymbol{H}) = \sum_{i=1}^{N} H_{ii}$
- $Tr(\mathbf{H}) = Effective number of parameters (class regression = number of independent variables + 1)$
- For Ridge regression:

$$\operatorname{Tr}(\boldsymbol{H}) = \sum_{j=1}^{J} \frac{\lambda_j}{\lambda_j + \underbrace{\lambda}_{\mathsf{Penalty}}}$$

where λ_j is the j^{th} Eigenvalue from $\mathbf{\Sigma} = \mathbf{X}'\mathbf{X}$ (!!!!!)

Define generalized cross validation:

$$\mathsf{GCV} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{Y_i - \hat{Y}_i}{1 - \frac{\mathsf{Tr}(\mathbf{H})}{N}} \right)^2$$

Applicable in any setting where we can write Smoother matrix

Calculating **H** can be computationally expensive

- Trace $(\boldsymbol{H}) \equiv \operatorname{Tr}(\boldsymbol{H}) = \sum_{i=1}^{N} H_{ii}$
- $Tr(\mathbf{H}) = Effective number of parameters (class regression = number of independent variables + 1)$
- For Ridge regression:

$$\operatorname{Tr}(\boldsymbol{H}) = \sum_{j=1}^{J} \frac{\lambda_j}{\lambda_j + \underbrace{\lambda}_{\mathsf{Penalty}}}$$

where λ_j is the j^{th} Eigenvalue from $\mathbf{\Sigma} = \mathbf{X}'\mathbf{X}$ (!!!!!)

Define generalized cross validation:

$$\mathsf{GCV} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{Y_i - \hat{Y}_i}{1 - \frac{\mathsf{Tr}(\mathbf{H})}{N}} \right)^2$$

Applicable in any setting where we can write Smoother matrix