Manchu -n Dropping and Nasal Assimilation Asymmetry: A Case for Coalescence and Linearity

Presented by: Jack Rabinovitch jrabinovitch@g.harvard.edu

Special Thanks

Special Thanks to Professor Elena
Suet-Ying Chiu and Professor Gaja
Jarosz for their knowledge,
encouragement, and enthusiasm in
Manchu and Phonology respectively

Outline of Manchu (Tungusic)

- Belongs to the Tungusic language family
- Historically Spoken in Northeast China
- Currently Spoken in Heilongjiang and Xinjiang Provinces
- Agglutinative

Previous Works Reviewed

- John Koo et al.'s (1994) On Plural Formation in Manchu.
- Baeg-In Seong's (1980) A Study on Intervocalic Consonant Clusters in Manchu.

The Purpose of This Study

Use Optimality Theory to analyze why final -n in Manchu words undergoes assimilation with the following suffix, deletion, or no change in avoidance of nC clusters.

Data Sources

- Data comes from: Haneda To-ru's Manwa Jiten Manchu-Japanese dictionary (1972), Jerry Norman's A Concise Manchu-English Lexicon (1978), and Paul Georg von Möllendorff's A Manchu grammar: With Analysed Texts (1892)
- Tongki fuka sindaha hergen (1632-present)

Data

Context	Result	<u>Example</u>			
before coronal, morpheme boundary	/n/ > [Ø]	/sargan+ta/ /bajan+sa/	> [sargata] > [bajasa]	'wives' 'rich folk'	
before labial, morpheme boundary	/n/ > [m]	/dulin+ba/	> [dulimba]	'middle'	
within morpheme	/n/ > [n]	/wantaxa/	> [wantaxa]	'spruce'	
non-native words or proper	/n/ > [n]	/dziaŋֈiun+sɤ/	> [dʑiaŋֈiunsɤ]	'generals'	
nouns	//// ~ [II]	/niqan+baturu/	> [niqanbaturu]	'Han hero'	

Results

- Rather than **Deletion**, a result of **Coalescence**,
 Assimilation, and **Indexation**
- Define two forms of Linearity: Strong and Weak, in order to accurately analyze Manchu

(1) Max >> NoCoda

	/ilan/	MAX	NC
P	[ilan]		*
	[ila]	*W	L

MAX Assign one violation for every segment in the

input which does not have a corresponding

output segment

NOCODA NC Assign one violation for every segment

which makes a coda in the output

(2) DEP >> NoCodA

	/ilan/	MAX	DEP	NC
P	[ilan]			*
	[ilana]		*W	L

DEP Assign one violation for every segment in the output which does not have a corresponding input segment

(3) NoCoda >> Uniformity

	/sargan ₁ +t ₂ a/	Max	DEP	NC	Unif
P	[sargat _{1,2} a]		**	*	*
	$[sargan_1t_2a]$			**W	L

UNIFORMITY UNIF

Assign one violation for every pair of segments in the input which correspond to the same output segment

(4) LINEARITY >> NoCoda

	$/wan_1t_2a\chi a/$	MAX	DEP	LIN	NC	Unif
P	$[wan_1t_2a\chi a]$		320	11	*	
	$[wat_{1,2}a\chi a]$		_	*W	L	*W

LINEARITY LIN

Assign one violation for every pair of segments in the input whose corresponding outputs do not match in ordering with the input order

(5) IDENTIO[-SONORANT] >> NOCODA

	/dulin ₁ +b ₂ a/	MAX	DEP	Lin	IDIO[- SON]	NC	Unif
(F	[dulim ₁ b ₂ a] [dulim _{1,2} a]				*W	* L	*W

IDENTIO[-SONORANT] IO[-SON] Assign one violation for every [-SONORANT] segment in the input whose corresponding input is not [-SONORANT]

(6) IDENT[PLACE] & IDENT[SONORANT] >> NOCODA

	/dulin ₁ +b ₂ a/	MAX	DEP	LIN	IDIO[-SON]	P&S	NC	Unif
P	[dulim ₁ b ₂ a]		-10	-54	54 SAS SSS	dive	*	
	[dulib _{1,2} a]					*W	L	*W

IDENT[PLACE] & IDENT[SONORANT]

P&S

Assign one violation for every segment in the input whose corresponding output does not match in both [PLACE] and [SONORANT]

(7) AGREE[PLACE] >> IDENT[PLACE]

	/dulin ₁ +b ₂ a/	AGR[PCE]	ID[PCE]
P	[dulim ₁ b ₂ a]		*
	$[dulin_1b_2a]$	*W	L

AGREE[PLACE] AGR[PCE] Assign one violation for every pair of adjacent segments which do not match in [PLACE] feature

IDENT[PLACE] ID[PCE] Assign one violation for every segment whose input does not correspond in [PLACE] to its output

(8) IDENTIO[LABIAL] >> AGREE[PLACE]

	/busum ₁ d ₂ a/	IDIO[LAB]	AGR[PCE]	ID[PCE]
P	$[busum_1d_2a]$		*	
	$[busun_1d_2a]$	*W	L	*W

IDENTIO[LABIAL] IO[LAB]

Assign one violation for every [+LABIAL] segment in the input whose corresponding output is not [+LABIAL]

(9) IDENT[PLACE]OBSTRUENT >> AGREE[PLACE]

	/busum ₁ d ₂ a/	IDIO[LAB]	ID[PCE]OBS	AGR[PCE]	ID[PCE]
P	$[busum_1d_2a]$	99001	Association Association	*	
	$[busum_1b_2a]$		*W	L	*W

IDENT[PLACE]OBSTRUENT ID[PCE]OBS

Assign one violation for every segment whose input is [-SONORANT] and does not correspond in [PLACE] to its output

(10) IDENT[PLACE]_L >> AGREE[PLACE]

	/niqan _{1L} +b ₂ aturu/	IDIO[LAB]	ID[PCE]OBS	ID[PCE] _L	AGR[PCE]	ID[PCE]
(P)	[niqan ₁ b ₂ aturu]				*	
	[niqam ₁ b ₂ aturu]			*W	L	*W

(11) IDENT[SONORANT]_L>> NoCoda

	/dziaŋjiun _{1L} +s ₂ x/	MAX	DEP	LIN	IDIO[- SON]	P&S	IDIO[LAB]	ID[PCE]OBS	ID[PCE] _L	ID[SON] _L	NC	AGR[PCE]	UNIF	ID[PCE]
P	[dzianjiun ₁ s ₂ r]						20		120		**			
	[dzianjius _{1,2} r]									*W	*L		*W	

 $\label{eq:local_local_local_local_local_local} Ident[Sonorant]_L \qquad Ident[Sonorant]_L \qquad Assign one violation for every segment within a lexically indexed morpheme whose does not match its output in [Sonorant]$

(12) Distribution of Nasal-Consonant clusters in Manchu

	<u>-p, -b</u>	<u>-t, -d</u>	-c, -J, -k, -g, -q, -G
m-:	[bomboqon] 'boring'	[busumda] 'lily'	[rmkr] 'one'
n-:		[indaxʊn] 'dog'	
ŋ-:			[taŋʊʊ] 'one-hundred'

(13) /indaχση/ maps unfaithfully to [indaχση], preserving homorganicity

	/iŋdaxʊn/	IDIO[LAB]	AGR[PCE]	ID[PCE]
P	[indaxʊn]			*
	[iŋdaxʊn]		*W	L

(14) /tangʊ/ maps unfaithfully to [tangʊ], preserving homorganicity

	/tangʊ/	IDIO[LAB]	AGR[PCE]	ID[PCE]
P	[taŋcʊ]			*
	[tangʊ]		*W	L

(15) /imdaχτη/ maps faithfully to [imdaχτη], breaking homorganicity

	/imdaxon/*	IDIO[LAB]	AGR[PCE]	ID[PCE]
177	[indaxʊn]	*		*
6 %	[imdaxon]	L	*W	L

(16) /xmkx/ maps faithfully to [xmkx], breaking homorganicity, and maintaining asymmetry

/rmkr/	IDIO[LAB]	AGR[PCE]	ID[PCE]
F [rmkr]		*	
[rŋkr]	*W	L	*W

A Deeper Look at Linearity

UNIFORMITY:

Let input = $i_1i_2i_3$... i_n and output = $o_1o_2o_3$... o_m

Assign one violation mark for every pair i_x and i_y

if $i_x \Re o_z$ and $i_y \Re o_z$

(McCarthy 2008:197)

(WEAK) LINEARITY:

Let input = $i_1i_2i_3$... i_n and output

 $= o_1 o_2 o_3 \dots o_m$

Assign one violation mark for

every pair i_w and i_y

if iw R ox and iy R oz

i_w precedes i_y

oz precedes ox

(McCarthy 2008:198)

(WEAK) LINEARITY: Let input = $i_1 i_2 i_3 ... i_n$ and output = $o_1 o_2 o_3 ... o_m$ Assign one violation mark for every pair i_w and i_y if $i_w \Re o_x$ and $i_y \Re o_z$ i_w precedes i_y o_z precedes o_x

(McCarthy 2008:198)

(STRONG) LINEARITY:

Let input = $i_1 i_2 i_3 ... i_n$ and output

= $o_1 o_2 o_3 ... o_m$ Assign one violation mark for

every pair i_w and i_y if $i_w \Re o_x$ and $i_y \Re o_z$ i_w precedes i_y o_x does not precede o_z

(17) Situations in which various Faithfulness Constraints are violated

	Coalescence	Metathesis	Coalesence on	Metathesis on
	within	within	Morpheme	Morpheme
	Morpheme	Morpheme	Boundary	Boundary
	$a_1b_2 > c_{1,2}$	$a_1b_2 > b_2a_1$	$a_1+b_2>c_{1,2}$	$a_1 + b_2 > b_2 a_1$
UNIFORMITY	*		*	
STRONGLINEARITY	*	*		
WEAKLINEARITY		*		
ALIGNMENT				*

Thank You!

謝謝

谢谢

الم الم

Presented by: Jack Rabinovitch jrabinovitch@g.harvard.edu

Works Cited

Haneda, T. (1972). Manwa Jiten (Manchu-Japanese dictionary). Tokyo: Kokushokankokai.

Koo, J. H., Jingxian, L., Aping, Z., Baozhu, W., & Oh-Sun, K. (1994). On plural formation in Manchu. Central Asiatic Journal, 38(2), 179-187.

Fukazawa, H. (1999). Theoretical Implications of OCP Effects on Features in Optimality Theory. Doctoral dissertation, University of Maryland, College Park. ROA-307

McCarthy, J. J. (2008/2011). Doing optimality theory: Applying theory to data. John Wiley & Sons.

Norman, J. (1978). A concise Manchu-English lexicon. University of Washington.

Pater, J. (2001). Austronesian nasal substitution revisited: What's wrong with* NC (and what's not). Segmental phonology in Optimality Theory: constraints and representations, 159-182.

Pater, J. (2009). Morpheme-specific phonology: Constraint indexation and inconsistency resolution.

Prince, A., & Smolensky, P. (1993). "Optimality Theory: Constraint interaction in generative grammar." Technical Report CU-CS-696-93, Department of Computer Science, University of Colorado at Boulder.

Seong, B. I. (1980). A Study on Intervocalic Consonant Clusters in Manchu.

von Möllendorff, P. G. (1892). A Manchu grammar: With analysed texts. Printed at the American Presbyterian mission Press.

Wheeler, M. W. (2005). Cluster reduction: Deletion or coalescence?. Catalan journal of linguistics, 4(1), 57-82.

Data

	Context	Result	Example		
	before coronal, morpheme boundary	/n/ > [Ø]	/sargan+ta/ /bajan+sa/	> [sargata] > [bajasa]	'wives' 'rich folk'
	before labial, morpheme boundary	/n/ > [m]	/dulin+ba/	> [dulimba]	'middle'
	within morpheme	/n/ > [n]	/wantaxa/	> [wantaxa]	'spruce'
	non-native words or proper nouns	/n/ > [n]	/dziaŋֈiun+sɤ/	> [dʑiaŋֈiunsɤ]	'generals'
30/			/niqan+baturu/	> [niqanbaturu]	'Han hero'