Overfitting, Bias and Variance

Sudeshna Sarkar

Centre of Excellence in Artificial Intelligence

Indian Institute of Technology Kharagpur

Which Decision Tree?

Training Error = 0.05 Test Error = 0.2

Training Error = 0.1 Test Error = 0.15

Overfitting

Overfitting:

- Fit the training data too well
- But fail to generalize to new examples

Causes

- Noise
- Irrelevant Features
- Insufficient Data

Overfitting

A hypothesis h is said to overfit the training data if there is another hypothesis h' such that h has smaller error than h' on the training data but h has larger error on the test data than h'.

Overfitting with noisy data

Overfitting results in decision trees that are more complex than necessary

Regression

Regression

Regularization

 In a linear regression model overfitting is characterized by large weights

- Penalize large weights in Linear Regression
 - L2-Regularization or Ridge Regression
 - L1-Regularization

Overfitting vs Underfitting

Underfitting

- Not able to capture the concept
 - Features don't capture concept
 - Model is not powerful.

Overfitting

Fitting the data too well

Bias

BIAS

- Error caused because the model can not represent the concept
- Bias is the expected difference between the model prediction and the true y's.
- Higher Bias:
 - Decision tree of lower depth
 - Linear functions
 - Important features missing

VARIANCE

- Error caused because the learned model reacts to small changes (noise) in the training data
- High variance can cause an algorithm to model the random noise in the training data, rather than the intended outputs
- Higher Variance
 - Decision tree with large no of nodes
 - High degree polynomials
 - Many features

Bias and Variance

BIAS

• if we train models $f_D(X)$ on many training sets D, bias is the expected difference between their predictions and the true y's.

$$Bias = \mathbb{E}[f_D(X) - y]$$

VARIANCE

• if we train models $f_D(X)$ on many training sets D, variance is the variance of the estimates:

Variance
=
$$E\left[\left(f_D(X) - \bar{f}(X)\right)^2\right]$$

Bias and Variance

Bias and Variance Tradeoff

There is usually a bias-variance tradeoff caused by model complexity.

Complex models often have lower bias, but higher variance.

Simple models often have higher bias, but lower variance.

Avoid Overfitting

- How can we avoid overfitting a decision tree?
 - Prepruning: Stop growing when data split not statistically significant
 - Postpruning: Grow full tree then remove nodes

Pre-Pruning (Early Stopping)

- Typical stopping conditions for a node:
 - All instances belong to the same class
 - All the attribute values are the same
- Early Stopping:
 - Stop the learning algorithm before tree becomes too complex

Number of nodes in DT
Machine Learning, Sudeshna Sarkar, COEAI, IIT Kharagpur

Pre-Pruning (Early Stopping)

- Typical stopping conditions for a node:
 - All instances belong to the same class
 - All the attribute values are the same
- Early Stopping:
 - Stop the learning algorithm before tree becomes too complex

Pre-Pruning (Early Stopping)

- Stopping conditions:
 - Do not split a node which contains too few instances
 - Stop if expanding the current node does not improve impurity measures significantly (e.g., Gini or information gain)
 - Limit tree depth

Reduced-error Pruning

Partition data into train set and validation set

- Build a tree using the train set.
- Until accuracy on validation set decreases, do:
 - For each non-leaf node in the tree
 - Temporarily prune the tree below; replace it by majority vote
 - Test the accuracy of the hypothesis on the validation set
 - Permanently prune the node with the greatest increase
 - in accuracy on the validation test.

Tree Pruning

Tree Pruning

Reduced Error Pruning

Pruning

- Methods for evaluating subtrees to prune:
 - Cross-validation
 - 2. Minimum description length (MDL):Minimize: size(tree) + size(misclassifications(tree))

Trade-Offs

- There is a trade-off between these factors:
 - Complexity of Model c(H)
 - Training set size, m,
 - Generalization error, E on new data
- 1. As *m increases*, *E* decreases
- 2. As c (H) increases, first E decreases and then E increases
- 3. As c (H) *increases*, the training error *decreases* for some time and then stays constant (frequently at o)

As m increases, E decreases

