2.3 Characterizations of Invertible Matrices

The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.

- a) A is an invertible matrix.
- b) A is row equivalent to the $n \times n$ identity matrix.
- c) A has n pivot positions.
- d) The equation Ax = 0 has only the trivial solution.
- e) The columns of A form a linearly independent set.
- f) The linear transformations $x \mapsto Ax$ is one-to-one..
- g) The equation Ax = b has at least one solution for each b in \mathbb{R}^n .
- h) The columns of A span \mathbb{R}^n .
- i) The linear transformation $x \mapsto Ax$ maps \mathbb{R}^n onto \mathbb{R}^n .
- j) There is an $n \times n$ matrix C such that CA = I.
- k) There is an $n \times n$ matrix D such that AD = I.
- 1) A^T is an invertible matrix.

 $(a) \implies (j) \implies (d) \implies (c) \implies (b) \implies (a)$, this would mean if any of these five statements hold true, so do the rest of them. Then the remaining statements of the Invertible Matrix Theorem will also hold true.

$\mathbf{Ex} \ \mathbf{1}$

Use the Invertible Matrix Theorem to decide if A is invertible

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{bmatrix}$$

Since A has three pivot positions while being a 3×3 matrix, then the matrix A is invertible, by statement (c) of the Invertible Matrix Theorem.

Invertible Linear Transformations

When a matrix A is invertible, the equation $A^{-1}Ax = x$ can be viewed as a statement about linear transformations.

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be invertible if there exists a function $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$S(T(x)) = x$$
 $\forall x \in \mathbb{R}^n$
 $T(S(x)) = x$ $\forall x \in \mathbb{R}^n$

The next theorem shows that if such an S exists, it is unique and must be a linear transformation. We call S the inverse of T and write it as T^{-1} .

Theorem 9

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation given by $S(x) = A^{-1x} = A^{-1}x$ is the unique function the equations

$$S(T(x)) = x$$
 $\forall x \in \mathbb{R}^n$
 $T(S(x)) = x$ $\forall x \in \mathbb{R}^n$

$\mathbf{Ex} \ \mathbf{2}$

What can you say about a one-to-one linear transformation T from \mathbb{R}^N into \mathbb{R}^n ?

The columns of the standard matrix of A of T are linearly independent. So A is invertible, then by the Invertible Matrix Theorem and T maps \mathbb{R}^n onto \mathbb{R}^n . Also by Theorem 9, then T is invertible.