Topologie des espaces métriques — Cours

Ivan Lejeune

24 janvier 2025

Table des matières

Chapitre	1 — Topologie (d'un espace métrique) .								2
1	Espaces métriques								2
2	Ouverts d'un espace métrique								3

Chapitre 1 — Topologie (d'un espace métrique)

1 Espaces métriques

Soit X un ensemble.

Définition 1.1. On appellle une **distance** (ou métrique) sur X une application $d: X \times X \to \mathbb{R}$ telle que pour tout $x, y, z \in X$,

(i) la distance est positive :

$$d(x,y) \ge 0$$

(ii) la distance possède la séparation :

$$d(x,y) = 0 \iff x = y$$

(iii) la distance est symétrique :

$$d(x,y) = d(y,x)$$

(iv) la distance vérifie l'inégalité triangulaire :

$$d(x,z) \le d(x,y) + d(y,z)$$

Exemple. Un exemple classique de distance est la **distance euclidienne** sur \mathbb{R}^n :

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Définition 1.2. Soit E un \mathbb{R} -espace vectoriel. On appelle **norme** sur E une application $\|\cdot\|: E \to \mathbb{R}^+$ telle que pour tout $x, y \in E$ et $\lambda \in \mathbb{R}$,

(i) la norme possède la $s\'{e}paration$:

$$||x|| = 0 \iff x = 0$$

(ii) la norme est homogène :

$$\|\lambda x\| = |\lambda| \|x\|$$

(iii) la norme vérifie l'inégalité triangulaire :

$$||x + y|| \le ||x|| + ||y||$$

Exercice *.

Montrer que si $\|\cdot\|$ est une norme sur E, alors la fonction

$$d(x,y) = ||x - y||$$

est une distance sur E.

Exemple. Un exemple classique est \mathbb{R}^n muni d'une norme $\|\cdot\|$.

Exercice *.

Soit X et $\delta: X \times X \to \mathbb{R}$ telle que

$$\delta(x,y) = \begin{cases} 0 & \text{si } x = y \\ 1 & \text{sinon} \end{cases}$$

Montrer que δ est une distance sur X appelée distance discrète.

Remarque. Si on considère \mathbb{R} muni de δ alors δ n'est pas une norme.

2 Ouverts d'un espace métrique

Soit (X, d) un espace métrique.

Définition 2.1. Pour $\varepsilon > 0$ et $x_0 \in X$, on note

$$B(x_0,\varepsilon[= \{x \in X \mid d(x,x_0) < \varepsilon\})$$

la **boule ouverte** de centre x_0 et de rayon ε .

Définition 2.2. Une partie $U \subset X$ est dite **ouverte** si et seulement si pour tout $x \in U$, il existe $\varepsilon > 0$ tel que $B(x, \varepsilon) \subset U$.

Exemple.

• Dans \mathbb{R} muni de la norme euclidienne, on a

$$B(x_0, \varepsilon) = \{x \in \mathbb{R} \mid |x - x_0| < \varepsilon\}$$

qui est l'intervalle ouvert $]x_0 - \varepsilon, x_0 + \varepsilon[$.

• Un contre-exemple est l'intervalle [0,1[dans $\mathbb R$ qui n'est pas ouvert.

Définition 2.3. On note $\mathcal{T}_d = \{$ **ouverts de** $X\}$

Proposition. On a les propriétés suivantes :

- (i) $X \in \mathcal{T}_d$ et $\emptyset \in \mathcal{T}_d$,
- (ii) Si $\{U_i\}_{i\in I}$ est une famille de \mathcal{T}_d , alors $\bigcup_{i\in I} U_i \in \mathcal{T}_d$,
- (iii) Si $\{U_i\}_{i\in\{1,\ldots,n\}}$ est une famille finie de \mathcal{T}_d , alors $\bigcap_{i=1}^n U_i \in \mathcal{T}_d$.

Démonstration.

- (i) Par convention de logique, on a $\emptyset \in \mathcal{T}_d$. Soit $x \in X$, alors $B(x, 1[\subset X, \text{donc } X \in \mathcal{T}_d.$
- (ii) Soit $x \in \bigcup_{i \in I} U_i$, alors il existe $i \in I$ tel que $x \in U_i$. Comme $U_i \in \mathcal{T}_d$, il existe $\varepsilon > 0$ tel que $B\left(x, \varepsilon \right[\subset U_i \subset \bigcup_{i \in I} U_i$. Donc $\bigcup_{i \in I} U_i \in \mathcal{T}_d$.
- (iii) Soit $x \in \bigcap_{i=1}^n U_i$, alors pour tout $i \in \{1, ..., n\}$, on a $x \in U_i$. Comme $U_i \in \mathcal{T}_d$, il existe $\varepsilon_i > 0$ tel que $B(x, \varepsilon_i[\subset U_i$. Posons $\varepsilon = \min_{i=1}^n \varepsilon_i$, alors pour tout $i \in \{1, ..., n\}$, on a $B(x, \varepsilon[\subset U_i$. Donc $\bigcap_{i=1}^n U_i \in \mathcal{T}_d$.

Définition 2.4. Soit X un ensemble (pas forcément métrique). On dit que $\mathcal{T} \subset \mathscr{P}(x)$ est une **topologie** sur X si elle vérifie les propriétés suivantes :

- (i) $X \in \mathcal{T}$ et $\emptyset \in \mathcal{T}$,
- (ii) Si $\{U_i\}_{i\in I}$ est une famille de \mathcal{T} , alors $\bigcup_{i\in I} U_i \in \mathcal{T}$,
- (iii) Si $\{U_i\}_{i\in\{1,\ldots,n\}}$ est une famille finie de \mathcal{T} , alors $\bigcap_{i=1}^n U_i \in \mathcal{T}$.

Les éléments de \mathcal{T} sont appelés **ouverts** de X. On dit alors que (X,\mathcal{T}) est un **espace topologique**.

Exemple. Soit X un ensemble. On a les exemples suivants :

- (a) Si (X,d) est un espace métrique, alors \mathcal{T}_d est une topologie sur X.
- (b) $\mathcal{T} = \{\emptyset, X\}$ est une topologie sur X.
- (c) $\mathcal{T} = \mathcal{P}(X) = \mathcal{T}_{\delta}$ est une topologie sur X où δ est la distance discrète.

3

(d) Si $X = \{a, b\}$, alors $\mathcal{T} = \{\emptyset, \{a\}, \{a, b\}\}$ est une topologie sur X.

Définition 2.5. Soit (X, \mathcal{T}_X) et (Y, \mathcal{T}_Y) deux espaces topologiques et $f: X \to Y$ une application. On dit que f est **continue** si pour tout ouvert $V \in \mathcal{T}_Y$, $f^{-1}(V) \in \mathcal{T}_X$.

Définition 2.6. Soit (X, \mathcal{T}) un espace topologique. On dit que $A \subset X$ est **fermé** si $X \setminus A$ est ouvert