# 제 5 장 이산확률분포

# 1. 확률변수와 확률분포

### 1.1 확률변수(random variable)

확률변수란 실험 또는 관찰에서 일정한 확률을 가지고 발생하는 사건에 수치를 부여한 것을 말하며, 보통 X로 표시한다.

#### 1.1.1 확률변수의 예

동전을 던졌을 때 앞면이 나오는 사건 - 앞면 아니면 뒷면이다.

앞면이 나오면 값 1을, 뒷면이 나오면 값 0을 부여하자. 이러한 값들을 X라 하자. 동전 앞면 또는 뒷면이 발생하는 사건은 일정한 확률을 가지고 발생하므로 X는 확률 변수이다.

X가 1 또는 0의 값을 가질 확률은 P(X=0)=0.5, P(X=1)=0.5이다.

동전을 두 개 던졌을 때 앞면의 수 - 하나도 없거나, 한 개 아니면 두 개이다. 확률변수 X를 사용하여 없으면 0, 한 개면 1, 두 개면 2의 값을 부여하자. 관련 확률은 P(X=0)=0.25, P(X=1)=0.50, P(X=2)=0.25이다.

이산확률변수(discrete random variable), 연속확률변수(continuous random variable)

#### 1.1.2 확률분포(probability distribution)

확률분포란 어떤 확률변수가 취할 수 있는 모든 값들과 이 값들이 나타날 확률을 나타 낸 것이다.

확률분포의 예 - X: 동전을 두 번 던졌을 때 앞면이 나온 횟수

| X | $P\left(X=x\right)$ |
|---|---------------------|
| 0 | 0.25                |
| 1 | 0.50                |
| 2 | 0.25                |

| 앞면의 수 X      | 앞면의 수가 특정한 값 $x$ 일 확률 $P(X = x)$ |
|--------------|----------------------------------|
| {앞면의 수 = } 0 | 앞면의 수가 0일 확률 $P(X=0)$            |
| {앞면의 수 = } 1 | 앞면의 수가 1일 확률 P(X = 1)            |
| {앞면의 수 = } 2 | 앞면의 수가 2일 확률 P(X = 2)            |

| X | P(X) |
|---|------|
| 0 | 0.25 |
| 1 | 0.50 |
| 2 | 0.25 |

| 앞면의 수 X      | 앞면의 수에 관한 확률 <i>P(X</i> ) |
|--------------|---------------------------|
| {앞면의 수 =}0   | {앞면의 수가} 0일 확률 P(0)       |
| {앞면의 수 =}1   | {앞면의 수가} 1일 확률 P(1)       |
| {앞면의 수 = } 2 | {앞면의 수가} 2일 확률 P(2)       |

#### 1.1.2.1 상대도수분포와 확률분포

동전 2개씩 1,000번 던진 결과, 2개 중 앞면이 한 개도 없는 경우는 250, 앞면이 한 개인 경우는 500, 모두 앞면이 경우는 250번이었다. 이를 상대도수분포로 정리하고 이를 확률분포와 비교하면 다음과 같다.

| 계급 | 빈도수   | 상대도수  |
|----|-------|-------|
| 0  | 250   | 0.250 |
| 1  | 500   | 0.500 |
| 2  | 250   | 0.250 |
| 합계 | 1,000 | 1.000 |

학률분포와 비교하면 → \_\_

| 변수(X) | 확률 P(X) |
|-------|---------|
| 0     | 0.250   |
| 1     | 0.500   |
| 2     | 0.250   |
| 합계    | 1.000   |

# 2. 이산확률변수

### 2.1 이산확률분포

이산확률변수에서의 확률함수의 성질

- (1) 모든 x값에 대하여  $p(x) \ge 0 \rightarrow p(x)$ , P(X)는 표현의 차이일 뿐이다.
- $(2)\sum_{x}p(x)=1\rightarrow\sum_{x}() 는 모든 x에 대해 ()의 덧셈을 수행한다.$
- ex) 앞의 동전 던지기의 확률함수

## 2.2 누적분포함수(cumulative distribution function)

일반적으로 F(x)로 표기

 $F(x) = P(X \le x)$   $\rightarrow$  여기서 X는 확률변수, x는 특정한 값

- $\rightarrow F(x)$ 는  $P(X \le x)$ 로 정의된다.
- $\rightarrow P(X \le x)$ 는 - $\infty$ 에서 특정한 값 x까지에 해당하는 확률

#### 2.2.1 앞의 동전 던지기의 예

F(0) = P(X ≤ 0) = P(X = 0) → X가 0이하인 경우를 모두 나열하면 X=0 -2-

$$= P(0) = 0.25$$

$$F(2) = P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2)$$
  
=  $P(0) + P(1) + P(2) = 1.00$ 

## 2.2.2 누적상대도수와 누적분포

| 계급 | <u></u> | 빈도수   | 상대도수  | 누적상대도수 |
|----|---------|-------|-------|--------|
| 0  |         | 250   | 0.250 | 0.250  |
| 1  |         | 500   | 0.500 | 0.750  |
| 2  |         | 250   | 0.250 | 1.000  |
| 합기 | 1       | 1,000 | 1.000 | 1.000  |

| 변수(X) | 확률 P(X) | 누적 F(X) |
|-------|---------|---------|
| 0     | 0.250   | 0.250   |
| 1     | 0.500   | 0.750   |
| 2     | 0.250   | 1.000   |
| 합계    | 1.000   | 1.000   |

**연습문제 1.** 확률변수 X는 4,8,12의 값을 갖는다. P(4)=0.2이다.

문제 1. F(4)=

문제 2. P(8) = 0.3 이라면, F(8) =

문제 3. P(8) = 0.3 이라면, P(12) =

문제 4. F(X)는 항상 증가한다. True, False

# 3. 이산확률분포의 측정

### 3.1 X와 X<sub>i</sub>에 대한 설명

- ① X가 가질 수 있는 값의 수를 n로 표기하자. 동전을 두 개 던졌을 때 앞면이 나온 횟수를 X라 하면, X는 0,1,2의 3가지 값만 갖는다. 동전 두 개 던지는 실험을 1,000 번 실시해도 X값의 유형은 총 3가지이다. 여기서 n = 3이다.
- ② X값 유형의 수를 n이라 하자. X값의 유형 중 첫 번째 값은  $X_1$ , 두 번째 값은  $X_2$ ,..., n번째 값은  $X_n$ 으로 표기하자. ①의 예에서  $X_1=0$ ,  $X_2=1$ ,  $X_3=2$ 가 된다.

X=2 앞면이 나온 횟수(X)는 2이다.  $\rightarrow$  앞면이 두 번 나왔다.

$$X_2 = 1$$
 앞면이 나오는 횟수 중 두 번째 경우의 수는 1이다.

$$X = X_3$$
 앞면이 나오는 횟수 중 세 번째 경우의 수가 발생했다.

#### 3.2 평균(기댓값) Expected Value

이산확률변수 X가  $X_1$ ,  $X_2$ , ...,  $X_n$ 의 값을 취하며 또한 X가  $X_i$  (i=1,2,...,n)의 값을 취할 확률이  $P(X_i)$ 일 때 X의 기댓값은 다음과 같다.

$$E(X) = \sum_{i=1}^{n} X_i \cdot P(X_i)$$

#### 3.2.1 평균[기댓값]의 설명

- ① X의 평균은 어떻게 구할까? 예에서 X=0인 경우는 전체 중 0.25, X=1인 경우는 전체 중 0.50, X=2인 경우는 전체 중 0.25이다. 이에 적절한 방법은 가중평균이다. X 의 가중평균은 0.25×0+0.50×1+0.25×2=1.0이 된다.
  - 여기서 0.25, 0.50, 0.25는 가중치인데, 이 값은 확률값과 동일하다.
  - 그러므로,  $\sum_{i=1}^{n} X_i \cdot P(X_i)$ 는 가중치가 확률값인 가중평균이다.
  - $\rightarrow \Sigma()P(X_i)$ 는 ()의 평균을 의미한다.
- ② 일반적인 가중평균은  $\sum_{i=1}^n w_i \cdot X_i$  형식으로 기입하지만, 기댓값의 경우는  $\sum_{i=1}^n X_i \cdot P(X_i)$ 로 기입한다.

**Example - Expected Value** 

| $X_i$ | $P(X_i)$ | $X_i \cdot P(X_i)$ |
|-------|----------|--------------------|
| -600  | 0.5      | -300               |
| 600   | 0.2      | 120                |
| 1,000 | 0.3      | 300                |
| 합계    | 1.0      | 120 (기댓값)          |

#### 연습문제 2.

어떤 수익 상품에 투자하는 데, 이익은 -600, 200, 800의 세 경우가 있다. 이익이 -600일 확률은 0.40, 이익이 200일 확률은 0.25, 800일 확률은 0.35이다. 이익금을 X라 하자.

- 문제 1. 발생가능한 이익금의 경우의 수(n)는?
- 문제 2. 이익금을 올림차순으로 정렬했다고 하자. X<sub>1</sub> =
- 문제 3. 이익금과 그 이익금이 발생할 확률을 표로 정리하고자 한다. 각 칸의 의미를 설명하시오.

| i | $X_i$ | $P(X_i)$ |
|---|-------|----------|
| 1 |       |          |
| 2 |       |          |
| 3 |       |          |

문제 4. 이익금과 그 이익금이 발생할 확률을 표로 정리하고자 한다. 기호로 쓰시오.

| i | $X_i$ | $P(X_i)$ |
|---|-------|----------|
| 1 |       |          |
| 2 |       |          |
| 3 |       |          |

문제 5. 이익금과 그 이익금이 발생할 확률을 표로 정리하고자 한다. 숫자로 쓰시오.

| i | $X_i$ | $P(X_i)$ |
|---|-------|----------|
| 1 |       |          |
| 2 |       |          |
| 3 |       |          |

문제 6. 이 상품에 1,000 번 투자한다고 하자. 1,000 번 중 -600 의 이익이 실현되는 경우는 대략 몇 번쯤일까?

문제 7. 이 상품에 1,000,000 번 투자한다고 하자. 1,000,000 번 중 800 의 이익이 실현되는 경우는 대략 몇 번쯤일까?

문제 8. 이 상품의 기대이익을 구하시오.

# 3.2.2 기댓값의 컴퓨터 모의실험

| 기체하스       | 해당 시행횟수까지의 이익 평균 |          |         |
|------------|------------------|----------|---------|
| 시행횟수       | 실험 1             | 실험 2     | 실험 3    |
| 1          | 600.00           | 1,000.00 | -600.00 |
| 10         | 320.00           | 560.00   | 0.00    |
| 100        | 140.00           | 100.00   | 116.00  |
| 1,000      | 90.00            | 135.60   | 116.80  |
| 10,000     | 115.40           | 117.40   | 112.36  |
| 100,000    | 118.55           | 117.34   | 120.95  |
| 1,000,000  | 118.86           | 120.11   | 120.74  |
| 10,000,000 | 119.59           | 119.93   | 119.72  |



지수형식으로 숫자 표기 방법

 $3.27E+06 = 3.27 \times 10^6 = 3.27 \times 1,000,000$ 

$$3.27E-0.6 = 3.27 \times \frac{1}{10^6} = 3.27 \times \frac{1}{1,000,000}$$

#### 3.2.2.1 기댓값의 컴퓨터 모의실험 해석

- ① 실험 1,2,3 모두 시행횟수가 작은 경우에는 시행횟수까지의 평균값과 기댓값이 일치하지 않는다. 예) 시행횟수가 10인 경우, 평균은 각각 320,560,0이다.
- ② 시행횟수가 증가할수록 시행횟수까지의 평균값은 기댓값에 근접한다. 예) 시행횟수가 천만인 경우, 평균은 각각 119.59,119.93,119.72이다.
- ③ 기댓값 공식은 일종의 가중평균이다. 여기서 가중치는 확률이다. 상대빈도정의에 따르면 확률은 실험의 횟수가 무한대에 이를 때의 상대빈도이다.
- ④ 종합하면 시행횟수가 작을 때의 평균값은 기댓값과 다를 수 있지만, 횟수가 증가할 수록 평균값은 기댓값에 근접하며, 횟수가 무한대이면 평균값은 기댓값과 일치한다.

#### 3.2.3 산술평균과 기댓값

#### 3.2.3.1 산술평균의 예

 $X_i$ 는 i번째 관찰값을 의미한다. 예:  $X_3 = -600$ 동일한 값(예: -600)이 반복될 수 있다.

| 번호 | 데이터값  |
|----|-------|
| 1  | 1,000 |
| 2  | 600   |

| 번호 | X     |
|----|-------|
| 1  | $X_1$ |
| 2  | $X_2$ |

| 3     | -600  |
|-------|-------|
| 4     | 1,000 |
| 5     | -600  |
|       |       |
| 1,000 | 600   |

| 3     | $X_3$                 |
|-------|-----------------------|
| 4     | $X_4$                 |
| 5     | <i>X</i> <sub>5</sub> |
|       |                       |
| 1,000 | X <sub>1,000</sub>    |

$$\mu = \frac{X_1 + X_2 + X_3 + X_4 + X_5 + \cdots + X_{1,000}}{N}$$

$$= \frac{1,000 + 600 - 600 + 1,000 + \cdots + 600}{1,000}$$

$$| \leftarrow 약 500개 \rightarrow | | \leftarrow 약 200개 \rightarrow | | \leftarrow 약 300개 \rightarrow |$$

$$= \frac{(-600 + \cdots - 600) + (600 + \cdots + 600) + (1,000 + \cdots + 1,000)}{1,000} \quad (분자를 정렬시키면)$$

$$= -600 \times \frac{500}{1,000} + 600 \times \frac{200}{1,000} + 1,000 \times \frac{300}{1,000}$$

$$= -600 \times 0.5 + 600 \times 0.2 + 1,000 \times 0.3$$

#### 3.2.3.2 기대값의 예

 $X_i$ 는 X가 가질 수 있는 값 중 i번째 값을 의미한다. 예:  $X_3$ =1,000 여기서 동일한 값을 갖는  $X_i$ 는 없다.

앞 테이블에 있는 1,000개의 데이터를 도수분포표로 정리하면 아래와 같다.

| 번호 | 데이타값 (X) | 빈도(f) | 상대도수             |
|----|----------|-------|------------------|
| 1  | -600     | 500   | 0.50 (500/1,000) |
| 2  | 600      | 200   | 0.20 (200/1,000) |
| 3  | 1,000    | 300   | 0.30 (300/1,000) |
| 합계 |          | 1,000 | 1.00             |

| 번호 | X     | Prob.      |
|----|-------|------------|
| 1  | $X_1$ | $P(X=X_1)$ |
| 2  | $X_2$ | $P(X=X_2)$ |
| 3  | $X_3$ | $P(X=X_3)$ |
| 합계 |       | 1.00       |

위 테이블에서 총 관찰수는 1,000이지만, 관찰수가 ∞라면 (상대빈도정의에 의해) 상대 도수는 확률이 된다.

# 3.2.4 기댓값의 특성

a, b: 상수, X: 확률변수

$$(1) E(aX) = a \cdot E(X)$$

(2) 
$$E(X + b) = E(X) + b$$

$$(3) E(aX + b) = a \cdot E(X) + b$$

$$E(aX + b) = \sum_{i=1}^{n} (aX_i + b) \cdot P(X_i)$$

$$= \sum_{i=1}^{n} aX_i \cdot P(X_i) + \sum_{i=1}^{n} b \cdot P(X_i)$$

$$= a \sum_{i=1}^{n} X_i \cdot P(X_i) + b \sum_{i=1}^{n} \cdot P(X_i)$$

$$= a \cdot E(X) + b \quad since \sum_{i=1}^{n} P(X_i) = 1$$

**연습문제 3.** 어떤 유형의 투자 사례 10개를 조사한 결과는 다음과 같다. {-400, 100, 100, 600, -400, -400, 600, 600, 100, -400} 이번 조사 결과는 이 유형 투자의 전형적인 사례라 한다.

문제 1. 이익금의 확률분포표를 작성하시오. 단, 이익금을 나타내는 확률변수는 X라 하자.

| i  | $X_i$ | $P(X_i)$ |
|----|-------|----------|
| 1  |       |          |
| 2  |       |          |
| 3  |       |          |
| 합계 |       |          |

문제 2. 이익금의 기댓값을 구하시오.

문제 3. 사례별로 이익금이 10 배씩 커지고 다시 30 이 추가되었다고 하자. 이때의 이익금의 기댓값을 구하시오.

## 3.3 분산(Variance)과 표준편차(Standard Deviation)

#### 3.3.1 분산의 정의-확률변수가 이산변수인 경우

$$Var(X) = V(X) = \sum_{i=1}^{n} (X_i - E(X))^2 \cdot P(X_i)$$

표준편차  $\sigma = \sqrt{V(X)}$  (표준편차는 비음)

3.3.1.1 (확률변수가 아닌) 자료의 분산과 표준편차

① 모집단 - 분산 = 
$$\sigma^2$$
 =  $\frac{\sum_{i=1}^N (X_i - \mu)^2}{N}$ , 표준편차 =  $\sigma$  =  $\sqrt{\frac{\sum_{i=1}^N (X_i - \mu)^2}{N}}$ 

 $\sigma^2$ 는  $(X_i - \mu)^2$ 의 평균이다.  $\rightarrow \frac{\Sigma(\cdot)}{N}$ 은 ()의 평균을 의미한다.

② 표본 - 분산 = 
$$S^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n}$$
, 표준편차 =  $S = \sqrt{\frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n}}$ 

#### 3.3.1.2 V(X)와 $\sigma^2$

- ① V(X)는 함수형식이다. 여기서 함수명은 V인데, 분산을 나타내는 함수이므로 Variance의 첫 글자를 함수명으로 사용했다. Input은 X이다. 정리하면, V(X)란 X의 분산을 의미하다.
- ② V(X)와  $\sigma^2$ 은 동일하다. V(X)는 분산을 함수형식으로 표기한 것이고  $\sigma^2$ 은 기호로 표기한 것뿐이다. 또한 E(X)와  $\mu$ 도 동일하다. E(X)는 평균을 함수형식으로 표기한 것이고  $\mu$ 는 기호로 표기한 것뿐이다.
- 3.3.1.3 V(X)는  $(X_i E(X))^2$ 의 가중평균이다
- ① 편차제곱의 (가중)평균이다.
   → ∑ w<sub>i</sub>() 또는 ∑( )P(X<sub>i</sub>)는 ()의 가중평균을 의미한다.

#### 3.3.2 확률분포표가 주어졌을 때 분산과 표준편차 구하는 방법

국사: 
$$V(X) = \sum_{i=1}^{n} (X_i - E(X))^2 \cdot P(X_i)$$

단계 1. E(X)를 구한다.

단계 2. 각  $X_i$ 별로  $\left(X_i-E(X)\right)^2\cdot P(X_i)$ 를 구한 후 그 값들을 더한다.  $\rightarrow$  분산

단계 3. 분산의 (양의) 제곱근을 구한다. → 표준편차

| X    | P(X) |
|------|------|
| -200 | 0.4  |
| 300  | 0.3  |
| 500  | 0.3  |
| 합계   | 1.0  |

단계 1. E(X) = -200(0.4) + 300(0.3) + 500(0.3) = 160

단계 2.

| X    | P(X) | $\{X-E(X)\}^2$             | $\{X - E(X)\}^2 \cdot P(X)$ |
|------|------|----------------------------|-----------------------------|
| -200 | 0.4  | $(-200 - 160)^2 = 129,600$ | 51,840                      |

| 300 | 0.3 | $(300 - 160)^2 = 19,600$  | 5,880         |
|-----|-----|---------------------------|---------------|
| 500 | 0.3 | $(500 - 160)^2 = 115,600$ | 34,680        |
| 합계  | 1.0 |                           | 92,400 = V(X) |

단계 3. (표준편차)  $\sigma = \sqrt{V(X)} = \sqrt{92,400} = 303.97$ 

0111 학률분포표에 주어진 확률에 따라 X를 무작위로 발생시킨다고 하자.

① 편차제곱이 129,600일 확률은? Ans. 0.4

② 편차제곱이 19,600일 확률은? Ans. 0.3

③ 편차제곱이 115,600일 확률은? Ans. 0.3

(4) 편차제곱의 평균은 보다는 크다. Ans. 19,600

⑤ 편차제곱의 평균은 \_\_\_ 보다는 작다. Ans. 129,600

⑥ 편차제곱의 (가중)평균은? Ans. 129,600(0.4) + 19,600(0.3) + 115,600(0.3) = 92,400

## 연습문제 4.

| X    | P(X) |
|------|------|
| -200 | 0.2  |
| 100  | 0.5  |
| 300  | 0.3  |
| 합계   | 1.0  |

문제 1. X의 기댓값

문제 2. X의 분산과 표준편차

문제 3. 총 백만개의 데이터가 있으며, 그 값들은 위의 분포를 정확히 따른다고 하자. - 200,100,300 은 몇 개씩 존재하는가?

문제 4. (문제 3 의) 데이터들의 평균을 구하시오.

문제 5. (문제 3 의) 데이터들의 분산을 구하시오.

#### 3.3.3 분산의 기댓값 특성

 $(1) V(aX) = a^2 \cdot V(X)$ 

(2) 
$$V(X + b) = V(X)$$
  
(3)  $V(aX + b) = a^2 \cdot V(X)$   
 $V(aX + b) = \sum [aX_i + b - E(aX + b)]^2 P(X_i)$   
 $= \sum [aX_i + b - aE(X) - b]^2 P(X_i)$  since  $E(aX + b) = aE(X) + b$   
 $= \sum [aX_i - aE(X)]^2 P(X_i)$   
 $= \sum a^2 [X_i - E(X)]^2 P(X_i)$   
 $= a^2 \cdot V(X)$   
(4)  $V(X) = E(X^2) - E(X)^2$   
 $V(X) = \sum_{i=1}^n \{X_i - E(X)\}^2 \cdot P(X_i)$   $\stackrel{!}{=} 0$   $\stackrel{!$ 

(1), (2)와 (3)으로부터  $V(X) = E(X^2) - 2E(X)^2 + E(X)^2 = E(X^2) - E(X)^2$ 

#### 연습문제 5.

| X    | P(X) |
|------|------|
| -200 | 0.2  |
| 100  | 0.5  |
| 300  | 0.3  |
| 합계   | 1.0  |

문제 1. E(X)와 V(X)

문제 2. V(10X)

문제 3. V(X + 50)

문제 4. V(10X + 50)

# 4. 이항분포(Binomial Distribution)

### 4.0 [기초 정리] 계승[factorial], 조합[combination]

계승(factorial): n이 양의 정수이면 그 수보다 작거나 같은 모든 양의 정수의 곱이다.

$$n! = \prod_{k=1}^{n} k = 1 \times 2 \times \dots \times n$$

0! = 1, 1! = 1,  $2! = 1 \times 2 = 2$ ,  $4! = 1 \times 2 \times 3 \times 4 = 24$ 

조합(combination): n개 중 r개를 고르는 경우(순서는 무시된다.)

$$_{n}C_{r}=\frac{n!}{r!\left( n-r\right) !}$$

$$_{7}C_{2} = \frac{7!}{2!(7-2)!} = \frac{7!}{2!5!} = \frac{7 \times 6 \times 5!}{2!5!} = 21$$

# 4.1 베르누이 시행 조건

1. 각 시행의 결과는 상호배타적인 두 사건으로 구성.

두 사건을 편의상 성공(S)과 실패(F)로 분류

- $\rightarrow$  확률변수 x, 흔히 성공이면 x에 1의 값을, 실패이면 0의 값을 부여한다.
- 2. 성공의 확률 = p, 실패의 확률 = 1-p. → 성공 확률 + 실패 확률 = 1
- 3. 각 시행은 독립적이다.
- 예) 야구에서 타자가 진루하면 (진루) 성공, 진루에 실패하면 (진루) 실패라 하자. 어떤 타자가 진루할 확률은 0.4이라 하자. 확률변수 x는 성공이면 1, 아니면 0의 값을 갖도록 하자.

진루할 확률 = P(진루 성공) = P(x = 1) = P(1) = 0.4

진루에 실패할 확률 = P(진루 실패) = P(x = 0) = P(0) = 1-0.4 = 0.6

성공 확률을 기호 p로 표기하면, 이 경우 p = 0.4이다.

실패 확률을 기호 p를 사용하여 표기하면, 이 경우 실패확률은 1-p이다.

여기서 P는 P(x)라는 함수의 이름이며, p는 성공확률의 구체적인 값을 나타내는 기

호이다. p를 v 또는  $\tau$  등 다른 기호로 표현해도 무방하지만, 주로 p를 사용한다.

## 4.2 이항분포의 의의

#### 4.2.1 이항분포 사례

10명 중 3명이 지하철과 버스 중 지하철을 이용할 확률 5명 중 2명이 두 개의 메뉴 중 첫 번째 메뉴를 선택할 확률 부품 20개 중 불량품이 19개일 확률

#### 4.2.2 이항분포의 예-동전을 n번 던졌을 때 앞면의 수 분포

S: 앞면, F: 뒷면, n: 시행횟수, X: 앞면의 수 동전을 n번 던졌을 때 앞면이 나오는 횟수의 분포를 알고자 한다.

- ① 동전을 1회 던졌을 때 결과는 앞면 또는 뒷면이다.→ 상호배타적인 두 사건이다. 앞면이 나오면 성공 S, 뒷면이 나오면 F로 표기하자.
- ② 동전을 *n*번 던졌을 때 앞면(성공) 횟수를 *X*라 하자. *X*는 0,1,2,..., *n*의 값을 갖는다.
- ③ 여기서 관심 사항은 n번 던졌을 때 성공 횟수 X의 확률분포이다.

#### 4.2.2.1 n = 3일 때 발생 case

| case | 1 | 시도<br>2 | 3 | 성공<br>횟수 | 실패<br>횟수 | 발생확률                                  | 발생확률<br>(일반화) |
|------|---|---------|---|----------|----------|---------------------------------------|---------------|
| 1    | S | S       | S | 3        | 0        | ррр                                   | $p^3(1-p)^0$  |
| 2    | S | S       | F | 2        | 1        | <i>p p</i> (1- <i>p</i> )             | $p^2(1-p)^1$  |
| 3    | S | F       | S | 2        | 1        | <i>p</i> (1- <i>p</i> ) <i>p</i>      | $p^2(1-p)^1$  |
| 4    | S | F       | F | 1        | 2        | <i>p</i> (1- <i>p</i> )(1- <i>p</i> ) | $p^1(1-p)^2$  |
| 5    | F | S       | S | 2        | 1        | (1- <i>p</i> ) <i>p p</i>             | $p^2(1-p)^1$  |
| 6    | F | S       | F | 1        | 2        | (1-p)p(1-p)                           | $p^1(1-p)^2$  |
| 7    | F | F       | S | 1        | 2        | (1-p)(1-p)p                           | $p^1(1-p)^2$  |
| 8    | F | F       | F | 0        | 3        | (1-p)(1-p)(1-p)                       | $p^0(1-p)^3$  |

주의:  $p^0 = 1$ 이다. (예:  $0.7^0 = 1$ )

| 성공횟수 | 해당 case | 해당 case 확률 합           | 확률의 일반화                   |
|------|---------|------------------------|---------------------------|
| 3    | 1       | $1 \times p^3 (1-p)^0$ | $_{3}C_{3}p^{3}(1-p)^{0}$ |
| 2    | 2, 3, 5 | $3 \times p^2 (1-p)^1$ | $_{3}C_{2}p^{2}(1-p)^{1}$ |

| 1 | 4, 6, 7 | $3 \times p^1 (1-p)^2$ | $_{3}C_{1}p^{1}(1-p)^{2}$ |
|---|---------|------------------------|---------------------------|
| 0 | 8       | $1 \times p^0 (1-p)^3$ | $_{3}C_{0}p^{0}(1-p)^{3}$ |

3번 시도하여 성공횟수가 1일 확률

$$= P(X = 1|n = 3)$$

= 위 표에서 4번,6번 또는 7번이 발생할 확률의 합

$$= P(S,F,F) + P(F,S,F) + P(F,F,S)$$

$$= p(1-p)(1-p) + (1-p)p(1-p) + (1-p)(1-p)p$$

$$= 3p(1-p)(1-p)$$

즉, 
$${}_{3}C_{1} \cdot p(1-p)(1-p)$$
이다.

#### 연습문제 6.

문제 1. 4 번 시도하여 2 번 성공할 성공/실패 경우를 모두 나열하시오.

문제 2. (문제 1의) 각 경우별 발생확률을 기입하시오. 단,1회 성공확률은 p로 한다.

문제 3. 4번 시도하여 2번 성공할 확률은? 단,1회 성공확률은 p로 한다.

문제 4. n번 시도하여 x번 성공할 확률은? 단,1회 성공확률은 p로 한다.

#### 4.3 이항확률함수

$$P(X = x | n, p) = {}_{n}C_{x} p^{x}(1-p)^{n-x}$$

X: (성공횟수를 나타내는) 확률변수, x: (특정한) 성공횟수, n: 시행횟수,

$$p$$
: (단일 시행에서의) 성공확률,  $1-p$ : 실패확률,  ${}_{n}C_{x} = \frac{n!}{x!(n-x)!}$ 

Note: 
$${}_{n}C_{x} p^{x}(1-p)^{n-x} = \frac{(\text{시도횟수})!}{(\text{성공횟수})! \times (\text{실패횟수})!} \times \text{성공확률}^{\text{성공횟수}}$$
 실패확률

Note: 
$$\sum_{x=0}^{n} {}_{n}C_{x} p^{x} q^{n-x} = 1.0$$
이다.  $\rightarrow$  확률의 합은 1.0이다. (여기서,  $q=1-p=$  실패확률)

p+q=1이므로, n값이 무엇이든  $(p+q)^n=1$ 이 성립한다.

 $(p+q)^n$ 를 전개하면

$$(p+q)^n = {}_nC_0p^0q^n + {}_nC_1p^1q^{n-1} + {}_nC_2p^2q^{n-2} + \cdots + {}_nC_np^nq^0 = 1$$

 ${}_{n}C_{0}p^{0}q^{n} + {}_{n}C_{1}p^{1}q^{n-1} + {}_{n}C_{2}p^{2}q^{n-2} + \cdots + {}_{n}C_{n}p^{n}q^{0}$  부분을  $\Sigma$ 으로 표기하면,  $\sum_{r=0}^{n} {}_{n}C_{r}p^{x}q^{n-x}$ 이다.

#### 4.3.2.1 n=3, p=0.3인 이항분포의 (컴퓨터) 모의실험

| 실험     | 시행 차수별<br>성공여부 |   |   | 성공 | 빈도    |       |       | 상대  | 빈도     |        | 합계     |        |        |
|--------|----------------|---|---|----|-------|-------|-------|-----|--------|--------|--------|--------|--------|
| 횟수     | 1              | 2 | 3 | 횟수 | 0     | 1     | 2     | 3   | -      | 1      | 2      | 3      | п .,   |
| 1      | 0              | 0 | 0 | 0  | 1     | -     | -     | 1   | 1.0000 | -      | -      | -      | 1.0000 |
| 2      | 0              | 0 | 1 | 1  | 1     | 1     | -     | -   | 0.5000 | 0.5000 | -      | -      | 1.0000 |
| 3      | 0              | 1 | 0 | 1  | 1     | 2     | -     | -   | 0.3333 | 0.6667 | -      | -      | 1.0000 |
| 4      | 0              | 1 | 0 | 1  | 1     | 3     | -     | -   | 0.2500 | 0.7500 | -      | -      | 1.0000 |
| 5      | 1              | 1 | 1 | 3  | 1     | 3     | -     | 1   | 0.2000 | 0.6000 | -      | 0.2000 | 1.0000 |
| 6      | 0              | 0 | 0 | 0  | 2     | 3     | -     | 1   | 0.3333 | 0.5000 | -      | 0.1667 | 1.0000 |
| 7      | 0              | 0 | 0 | 0  | 3     | 3     | -     | 1   | 0.4286 | 0.4286 | -      | 0.1429 | 1.0000 |
| 8      | 1              | 1 | 0 | 2  | 3     | 3     | 1     | 1   | 0.3750 | 0.3750 | 0.1250 | 0.1250 | 1.0000 |
| 9      | 0              | 0 | 1 | 1  | 3     | 4     | 1     | 1   | 0.3333 | 0.4444 | 0.1111 | 0.1111 | 1.0000 |
| 10     | 0              | 0 | 0 | 0  | 4     | 4     | 1     | 1   | 0.4000 | 0.4000 | 0.1000 | 0.1000 | 1.0000 |
| 100    | 1              | 0 | 1 | 2  | 36    | 41    | 20    | 3   | 0.3600 | 0.4100 | 0.2000 | 0.0300 | 1.0000 |
| 1,000  | 0              | 1 | 0 | 1  | 344   | 436   | 197   | 23  | 0.3440 | 0.4360 | 0.1970 | 0.0230 | 1.0000 |
| 10,000 | 0              | 1 | 1 | 2  | 3,476 | 4,384 | 1,873 | 267 | 0.3476 | 0.4384 | 0.1873 | 0.0267 | 1.0000 |

실험횟수 1:1,2,3차 시도에서 모두 실패, 이번 3차례 시도에서 총 성공횟수 x는 0, 현재까지 성공횟수 x가 0인 빈도는 1, 성공횟수가 1,2,3인 빈도는 0, 상대빈도는 x가 0인 경우는 1/1=(해당 빈도/빈도의 합)=1, 나머지는 모두 0/1=0. 모든 상대빈도의 합은 1.0이다.

실험횟수 2: 1, 2차 시도는 실패, 3차 시도는 성공, 이번 3차례 시도에서 총 성공횟수 x는 1,(실험 1과 2의) 현재까지 성공횟수 x가 0과 1인 빈도는 1, x가 2, 3인 빈도는 0, 상대빈도는 x가 0과 1인 경우는 1/2, 나머지는 모두 0/1=0. 모든 상대빈도의 합은 1.0 이다.

실험횟수 10:1,2,3차 모두 실패, 이번 3차례 시도에서 x=0, 현재까지 (실험 1에서 10까지) x=0,1인 빈도는 4, x=2,3인 빈도는 1,상대빈도는 x=0과 1인 경우는 각각 0.4,2와 3인 경우는 가각 0.1이며, 상대빈도의 합은 1.0이다.

#### 연습문제 7.

문제 1. 위의 표에서 확률변수(우리가 관심을 갖고 있는 대상)는 무엇인가?

- 문제 2. 위의 표를 도수분포표로 변환하시오.
- 문제 3. (상대빈도가 아닌) 빈도만을 사용하여 x의 평균, 분산, 표준편차를 구하시오. 단, 10,000 개를 대상으로 하며, 모집단으로 간주한다.
- 문제 4. 빈도가 아닌 상대빈도를 사용하여 평균, 분산, 표준편차를 구하시오. 단, 10,000 개를 대상으로 하며, 모집단으로 간주한다.
- 문제 5. 문제 4 에서 0, 1, 2, 3 을  $x_1, ..., x_4$ 로, 상대빈도를  $P(x_i)$ 로 변환하여 정리하시오. 단, 평균은 E(X)로, 분산은 V(X)로, 표준편차는  $\sigma$ 로 표기한다.

#### 연습문제 8.

- 문제 1. 확률변수 X는 이항분포를 따른다. 모든 x에 대해  $P(X=x\mid n=3,\ p=0.3)$ 를 구하시오.
- 문제 2. 문제 1 에서 구한 확률값과 연습문제 7 에서 구한 상대빈도값이 다른 이유를 설명하시오.
- 문제 3. 확률변수 X는 이항분포를 따른다. 모든 x에 대해  $P(X=x\mid n=5,\ p=0.7)$ 를 구하시오.

# 4.4~ n과 p에 따른 이항확률분포그래프의 특징

n=6일 때 서로 다른 p의 이항분포







→ p=0.5일 때 대칭

p=0.1일 때 서로 다른 n의 이항분포



 $\rightarrow p$ 가 0.5가 아니라도 n이 충분히 커지면 대칭에 가까워진다.

### 4.5 이항분포의 기댓값과 분산

$$\mu=E(X)=np^{-1}$$
 
$$V(X)=\sigma^2=np(1-p)=npq$$
 여기서  $q$ 는 실패확률이며 당연히 1-성공확률 $(p)$ 이다. 
$$\sigma=\sqrt{npq}$$

1 
$$E(x) = \sum_{i=1}^{n} X_i \cdot P(X_i)$$
 이산확률변수의 기대값 공식
$$= \sum_{x=0}^{n} x \cdot P(x)$$
 이항분포의  $x \in 0, 1, 2, ..., n$ 

$$= \sum_{x=0}^{n} x \cdot {}_{n}C_{x}p^{x}q^{n-x}$$
 이항분포에서  $P(x) = {}_{n}C_{x}p^{x}q^{n-x}$  since  $x = 0$ 이면  $x \cdot {}_{n}C_{x}p^{x}q^{n-x} = 0$ 

$$= \sum_{x=1}^{n} x \cdot \frac{n!}{(n-x)! \cdot (x-1)!} \cdot p^{x}q^{n-x}$$

$$= \sum_{x=1}^{n} \frac{n!}{(n-x)! \cdot (x-1)!} \cdot p^{x}q^{n-x}$$

$$= np \sum_{x=1}^{n} \frac{(n-1)!}{(n-x)! \cdot (x-1)!} \cdot p^{(x-1)}q^{n-x}$$

$$z = x - 1z \text{ 설정하면}$$

$$= np \sum_{z=0}^{n-1} \frac{(n-1)!}{(n-1-z)! \cdot z!} \cdot p^{z}q^{n-1-z}$$

$$m = n - 1z \text{ 설정하면}$$

$$= np \sum_{z=0}^{m} \frac{m!}{(m-z)! \cdot z!} \cdot p^{z}q^{m-z}$$

$$= np \sum_{z=0}^{m} \frac{m!}{(m-z)! \cdot z!} \cdot p^{z}q^{m-z} = 1$$

Note:  $E(X) = \sum_{i=1}^{n} X_i \cdot P(X_i)$ 와 E(X) = np 의 차이

- ① 모든 이산확률변수의 E(X)는  $\sum_{i=1}^{n} X_i \cdot P(X_i)$ 으로 정의된다.
- ② 이항분포에서 E(X)을 ①에 따라 구하면, 그 값은 np이 된다(정리하면 np이 된다).

**연습문제 9.** 확률변수 X는 n=3이고 p=0.3인 이항분포를 따른다.

- 문제 1. n과 p를 사용하여 E(X)를 구하고, 그 결과를 연습문제 7에서 구한 평균과 비교하시오.
- 문제 2. n과 p를 사용하여 V(X)를 구하고, 그 결과를 연습문제 7에서 구한 분산과 비교하시오.

### 4.6 이항확률분포표 읽기

|   |   |        | p      |               |                                                |
|---|---|--------|--------|---------------|------------------------------------------------|
| n | x | 0.05   | 0.10   | 0.15          |                                                |
| 1 | 0 | 0.9500 | 0.9000 | 0.8500        | _                                              |
|   | 1 | 0.0500 | 0.1000 | 0.1500        |                                                |
| 2 | 0 | 0.9025 | 0.8100 | 0.7225        |                                                |
|   | 1 | 0.0950 | 0.1800 | <u>0.2550</u> | $\leftarrow P(x = 1 n = 2, p = 0.15) = 0.2550$ |
|   | 2 | 0.0025 | 0.0100 | 0.0225        |                                                |
| 3 | 0 | 0.8574 | 0.7290 | 0.6141        |                                                |
|   | 1 | 0.1354 | 0.2430 | 0.3251        |                                                |

#### Excel 2010에서 이항분포 확률값 찾기

| f <sub>x</sub> | =BINOM.DIST(3, 6, 0.4, 0) |   |   |  |
|----------------|---------------------------|---|---|--|
| С              |                           | D | Е |  |
| 0.27648        |                           |   |   |  |



$$P(x = 3|n = 6, p = 0.4)$$
  $P(x \le 3|n = 6, p = 0.4)$ 



cumulative: 1이면 누적확률값을, 0이면 해당 확률값을 제시한다.



# 5. 포아송분포(Poisson Distribution)

# 5.0 (기초 정리) e(자연로그 밑수)

오일러의 수, 네이피어 상수, 자연상수로 불린다.

(1) e의 정의

$$e = \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n$$

$$e = \sum_{n=0}^{\infty} \frac{1^n}{n!} = \frac{1}{0!} + \frac{1^1}{1!} + \frac{1^2}{2!} + \frac{1^3}{3!} + \cdots$$

(2) e의 주요 공식

$$e^{z} = \lim_{n \to \infty} \left( 1 + \frac{z}{n} \right)^{n}$$

$$e^{z} = \frac{z^{0}}{0!} + \frac{z^{1}}{1!} + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \dots = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$$

#### 5.1 포아송분포 사례

매장 방문하는 시간당 고객의 수

단위 면적당 결점의 수

일별 불만 건수

페이지당 오타의 수

## 5.2 포아송분포의 조건

- (1) 관심대상이 되는 시간(또는 공간)은 아주 작은 단위구간(subinterval)으로 나누어질 수 있으며, 그 단위구간에서 어떤 사건이 발생할 가능성은 적다.
- (2) 일정한 단위시간(또는 공간)에서 어떤 사건이 발생할 횟수와 다른 구간에서 그 사건 이 발생할 횟수는 서로 독립적이다.
- (3) 아주 작은 단위구간에서 둘 또는 그 이상의 사건이 발생할 확률은 극히 작다(0으로 간주)
- (4) 관심의 대상이 되는 시간 내의 일정시간에서 발생하는 사건수의 확률분포는 다른 시 간에서 발생하는 사건수의 확률분포와 같다.

### 5.3 포아송분포의 확률함수

$$P(X=x) = \frac{e^{-\lambda}\lambda^x}{x!}$$

여기서, e: 2.71828.....(자연로그의 밑수)

 $\lambda$ :(단위 시간 또는 공간당) 평균발생횟수,(lambda $\rightarrow \lambda$ , Lambda $\rightarrow \Lambda$ )

x: 사건발생횟수, 0, 1, 2, 3, ...

#### 5.3.1 Example. 포아송분포

10분당 3.5명 손님 내방 → λ = 3.5

(1) 10분간 방문 손님의 수 = 0일 확률

$$P(X = 0) = \frac{e^{-3.5} \cdot 3.5^0}{0!} = 0.0302$$

(2) 10분간 최대 방문자의 수가 3일 확률

$$P(X \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)$$

$$= \frac{e^{-3.5} \cdot 3.5^{0}}{0!} + \frac{e^{-3.5} \cdot 3.5^{1}}{1!} + \dots + \frac{e^{-3.5} \cdot 3.5^{3}}{3!} = 0.5367$$

#### 5.3.2 Excel로 확률 구하기

| f <sub>x</sub> | =POIS | =POISSON.DIST(0, 3.5, 0) |   |  |  |
|----------------|-------|--------------------------|---|--|--|
| (              | С     | D                        | Е |  |  |
| 0.03           | 30197 |                          |   |  |  |

| f <sub>x</sub> | =POIS | =POISSON.DIST(3, 3.5, 1) |   |  |  |  |
|----------------|-------|--------------------------|---|--|--|--|
| 1              | С     | D                        | Е |  |  |  |
| 0.5            | 36633 |                          |   |  |  |  |

# 5.4 $\lambda$ 에 따른 포아송 확률분포 그래프





λ = 1, 5, 10, 20인 포아송 누적확률분포 그래프



연습문제 10. 확률변수 X는  $\lambda = 3.5$ 인 포아송분포를 따른다.

문제 1. 아래 확률분포표를 완성하시오.

| x | $P(x) = \frac{e^{-\lambda}\lambda^x}{x!}$ | х  | $P(x) = \frac{e^{-\lambda}\lambda^x}{x!}$ |
|---|-------------------------------------------|----|-------------------------------------------|
| 0 | 0.03020                                   | 8  |                                           |
| 1 | 0.10569                                   | 9  | 0.00656                                   |
| 2 | 0.18496                                   | 10 | 0.00230                                   |
| 3 | 0.21579                                   | 11 | 0.00073                                   |
| 4 |                                           | 12 | 0.00021                                   |
| 5 | 0.13217                                   | 13 | 0.00006                                   |
| 6 | 0.07710                                   | 14 | 0.00001                                   |

| 7 0.03855 | 15 | 0.00000 |
|-----------|----|---------|
|-----------|----|---------|

문제 2. 기대값(평균)과 분산을 구하기 위한 아래 표를 완성하시오.

| x  | P(x)   | $x \cdot P(x)$ | $\left(x-E(X)\right)^2$ | $(x - E(X))^2 \cdot P(x)$ |
|----|--------|----------------|-------------------------|---------------------------|
| 0  | 0.0302 | -              | 12.2499                 | 0.3699                    |
| 1  | 0.1057 | 0.1057         | 6.2499                  | 0.6606                    |
| 2  | 0.1850 | 0.3699         | 2.2500                  | 0.4161                    |
| 3  |        |                |                         |                           |
| 4  | 0.1888 | 0.7552         | 0.2500                  | 0.0472                    |
| 5  | 0.1322 | 0.6608         | 2.2500                  | 0.2974                    |
| 6  |        |                |                         |                           |
| 7  | 0.0385 | 0.2698         | 12.2501                 | 0.4722                    |
| 8  | 0.0169 | 0.1349         | 20.2501                 | 0.3415                    |
| 9  |        |                |                         |                           |
| 10 | 0.0023 | 0.0230         | 42.2502                 | 0.0970                    |
| 11 | 0.0007 | 0.0080         | 56.2502                 | 0.0411                    |
| 12 |        |                |                         |                           |
| 13 | 0.0001 | 0.0007         | 90.2503                 | 0.0052                    |
| 14 | 0.0000 | 0.0002         | 110.2503                | 0.0016                    |
| 15 | 0.0000 | 0.0001         | 132.2503                | 0.0004                    |
|    | 합계     | 3.5000         |                         | 3.4999                    |

# 5.5 포아송분포의 기댓값과 분산

$$E(X) = \lambda^{-2}$$

$$2 E(x) = \sum_{x} x \cdot p(x)$$
 모든 x에 대하여 
$$= \sum_{x=0}^{\infty} x \cdot \frac{e^{-\lambda} \cdot \lambda^{x}}{x!}$$
 포아송확률변수는  $0, 1, 2, ..., \infty$ 의 값을 지닌다. 
$$= \sum_{x=1}^{\infty} x \cdot \frac{e^{-\lambda} \cdot \lambda^{x}}{x!}$$
  $x = 0$ 인 경우는  $x \cdot p(x) = 0$  
$$= \sum_{x=1}^{\infty} \frac{e^{-\lambda} \cdot \lambda^{x}}{(x-1)!} = \sum_{x=1}^{\infty} \frac{\lambda^{x-1} \cdot \lambda}{(x-1)!} \cdot e^{-\lambda} = \lambda \cdot e^{-\lambda} \sum_{x=1}^{\infty} \frac{\lambda^{x-1}}{(x-1)!}$$

$$V(X) = \lambda$$

**연습문제 11.** 확률변수 X는 평균이  $\lambda$ 인 포아송분포를 따른다.

문제 1. E(X)를 정의대로 기술하시오.

문제 2. V(X)를 정의대로 기술하시오.

**연습문제 12.** 확률변수 X는  $\lambda = 3.5$  인 포아송분포를 따른다.

문제 1. E(X)

문제 2. V(X)

#### 5.6 이항분포와 포아송분포의 연관성

n이 충분히 크고  $(n \ge 20)$  성공확률 p가 매우 작은  $(p \le 0.05)$  경우 이항분포 확률값은 포아송분포 확률값에 접근한다.

$$_{n}C_{x} p^{x}(1-p)^{n-x} \simeq \frac{e^{-\lambda}\lambda^{x}}{x!}$$
 where  $\lambda = np^{-3}$ 

$$= \lambda \cdot e^{-\lambda} \sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!}$$

$$= \lambda \cdot e^{-\lambda} \cdot e^{\lambda}$$

$$= \lambda$$

$$= \lambda$$
Let  $j = x - 1$ 

$$since \sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!} = e^{\lambda}$$

$$3 p(x) = {}_{n}C_{x}p^{x}(1-p)^{n-x} = \frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x}$$

$$= \frac{n!}{x!(n-x)!} \left(\frac{\lambda}{n}\right)^{x} \left(1 - \frac{\lambda}{n}\right)^{n-x} Let \lambda = np \to p = \frac{\lambda}{n}$$

$$= \frac{n!}{x!(n-x)!} \frac{\lambda^{x}}{n^{x}} \left(1 - \frac{\lambda}{n}\right)^{n-x}$$

$$= \frac{n(n-1)\cdots(n-x+1)\cdot(n-x)!}{x!(n-x)!} \frac{\lambda^{x}}{n^{x}} \left(1 - \frac{\lambda}{n}\right)^{n-x}$$

$$= \frac{n(n-1)\cdots(n-x+1)}{n^{x}} \frac{\lambda^{x}}{x!} \left(1 - \frac{\lambda}{n}\right)^{n-x}$$

$$= \frac{n(n-1)\cdots(n-x+1)}{n^{x}} \frac{\lambda^{x}}{x!} \left(1 - \frac{\lambda}{n}\right)^{n}$$

**Example** p = 0.03, n=20, x=2

이항분포: 
$$P(X=2) = {}_{20}C_2(0.03)^2 \cdot (0.97)^{18} = 0.09883$$

포아충분포: 
$$P(X=2) = \frac{e^{-(20\times0.03)}\times(20\times0.03)^2}{2!} = 0.09879$$
 since  $\lambda = np$ 

# 6. 제6절 초기하분포(Hypergeometric Distribution)

### 6.1 초기하분포의 조건

베르누이 시행과 흡사하나 비복원의 경우이다.

### 6.2 초기하분포의 확률함수

$$P(N_1 \stackrel{\sim}{\sim} x_1, N_2 \stackrel{\sim}{\sim} x_2) = \frac{N_1 C_{x_1} \times N_2 C_{x_2}}{N_1 + N_2 C_{x_1 + x_2}}$$

Example 총 20개의 제품 중 불량품은 5. 4개를 선택했을 때 2개가 불량일 확률은?

비복원 경우: 
$$N_1 = 15$$
,  $N_2 = 5$ ,  $x_1 = 2$ ,  $x_2 = 2$ .

$$P(X = 2) = \frac{{}_{15}C_2 \times {}_5C_2}{{}_{20}C_4} = 0.2167$$

복원의 경우: 
$$n=4$$
,  $x=2$ ,  $p=0.25$  (since  $p=\frac{5}{20}$ )

$$P(X = 2) = {}_{4}C_{2} \times 0.25^{2} \times (1 - 0.25)^{2} = 0.2109$$

# 연습문제 정답

For n large and p small

$$\frac{n(n-1)\cdots(n-x+1)}{n^x} \to 1, \left(1-\frac{\lambda}{n}\right)^x \to 1, \left(1-\frac{\lambda}{n}\right)^n \to e^{-\lambda}$$

$$p(x) = \frac{n(n-1)\cdots(n-x+1)}{n^x} \frac{\lambda^x}{x!} \frac{\left(1-\frac{\lambda}{n}\right)^n}{\left(1-\frac{\lambda}{n}\right)^x} \left(1-\frac{\lambda}{n}\right)^x = \frac{e^{-\lambda} \cdot \lambda^x}{x!}$$

1. (1) 0.2 (2) F(4) + P(8) = 0.5 (3) F(12) - F(8) = 0.5 (4) F, 감소하지 않는다.

# 2. (1) 3 (2) -600

(3)

| i | $X_i$           | $P(X_i)$                   |
|---|-----------------|----------------------------|
| 1 | 이익금의 첫 번째 경우의 값 | 이익금의 첫 번째 경우의<br>값이 발생할 확률 |
| 2 | 이익금의 두 번째 경우의 값 | 이익금의 두 번째 경우의<br>값이 발생할 확률 |
| 3 | 이익금의 세 번째 경우의 값 | 이익금의 세 번째 경우의<br>값이 발생할 확률 |

(4)

| i | $X_i$ | $P(X_i)$ |
|---|-------|----------|
| 1 | $X_1$ | $P(X_1)$ |
| 2 | $X_2$ | $P(X_2)$ |
| 3 | $X_3$ | $P(X_3)$ |

(5)

| i | $X_i$ | $P(X_i)$ |
|---|-------|----------|
| 1 | -600  | 0.40     |
| 2 | 200   | 0.25     |
| 3 | 800   | 0.35     |

- (6) 400번 (1,000×0.4) (7) 350,000번 (1,000,000×0.35)
- (8) -600(0.4)+200(0.25)+800(0.35)
- 3. (1)

| i  | $X_i$ | $P(X_i)$ |
|----|-------|----------|
| 1  | -400  | 0.4      |
| 2  | 100   | 0.3      |
| 3  | 600   | 0.3      |
| 합계 |       | 1.0      |

- (2) E(X) = -400(0.4) + 100(0.3) + 600(0.3) = 50
- (3) E(10X + 30) = 10E(X) + 30 = 10(50) + 30 = 530
- 4. (1)

|   | $X_i$ | $P(X_i)$ | $X_i \cdot P(X_i)$ |
|---|-------|----------|--------------------|
| 1 | -200  | 0.2      | -40                |

| 2  | 100 | 0.5 | 50         |
|----|-----|-----|------------|
| 3  | 300 | 0.3 | 90         |
| 합계 |     | 1.0 | 100 = E(X) |

(2)

| X    | P(X) | $\{X-E(X)\}^2$            | $\{X - E(X)\}^2 \cdot P(X)$ |
|------|------|---------------------------|-----------------------------|
| -200 | 0.2  | $(-200 - 100)^2 = 90,000$ | 18,000                      |
| 100  | 0.5  | $(100 - 100)^2 = 0$       | 0                           |
| 300  | 0.3  | $(300 - 100)^2 = 40,000$  | 12,000                      |
| 합계   | 1.0  |                           | 30,000 = V(X)               |

표준편차 = 
$$\sqrt{V(X)}$$
 =  $\sqrt{30,000}$  = 173.21

(3) 각각 2십만개, 5십만개, 3십만개,

(4) 
$$\mu = \frac{-200 \cdot 200,000 + 100 \cdot 500,000 + 300 \cdot 300,000}{1,000,000} = 100$$

(5) 가능한 편차제곱은 3가지이다. (-200 - 100)², (100 - 100)², (300 - 100)²
 이들은 각각 각각 2십만개, 5십만개, 3십만개씩 존재한다.

$$\sigma^2 = \frac{(-200-100)^2 \cdot 200,000 + (100-100)^2 \cdot 500,000 + (300-100)^2 \cdot 300,000}{1,0000,000}$$

$$= 30,000$$

- 5. (1) E(X) = 100, V(X) = 30,000
  - (2) E(10X) = 10E(X) = 1,000,  $V(10X) = 10^2 V(X) = 3,000,000$

| 10 <i>X</i> | P(10X) | $\{10X - E(10X)\}^2$             | $\{10X - E(10X)\} \cdot P(X)$ |
|-------------|--------|----------------------------------|-------------------------------|
| -2,000      | 0.2    | $(-2,000 - 1,000)^2 = 9,000,000$ | 1,800,000                     |
| 1,000       | 0.5    | $(1,000-1,000)^2=0$              | 0                             |
| 3,000       | 0.3    | $(3,000 - 1,000)^2 = 4,000,000$  | 1,200,000                     |
| 합계          | 1.0    |                                  | 3,000,000                     |

(3) 
$$E(X + 50) = E(X) + 50 = 150, V(X + 50) = V(X) = 30,000$$

| <i>X</i> +50 | P(X + 50) | ${X + 50 - E(X + 50)}^2$  | $\{X - E(X)\}^2 \cdot P(X)$ |
|--------------|-----------|---------------------------|-----------------------------|
| -150         | 0.2       | $(-150 - 150)^2 = 90,000$ | 18,000                      |
| 150          | 0.5       | $(150 - 150)^2 = 0$       | 0                           |
| 350          | 0.3       | $(350 - 150)^2 = 40,000$  | 12,000                      |
| 합계           | 1.0       |                           | 30,000                      |

(4) 
$$E(10X + 50) = E(10X) + 50 = 1,050$$
,  $V(10X + 50) = 10^2 V(X) = 3,000,000$ 

| 10 <i>X</i> +50 | P(10X+50) | $\{10X + 50 - E(10X + 50)\}^2$   | $\{X - E(X)\}^2 \cdot P(X)$ |
|-----------------|-----------|----------------------------------|-----------------------------|
| -1,950          | 0.2       | $(-1,950 - 1,050)^2 = 9,000,000$ | 1,800,000                   |
| 1,050           | 0.5       | $(1,050 - 1,050)^2 = 0$          | 0                           |
| 3,050           | 0.3       | $(3,050 - 1,050)^2 = 4,000,000$  | 1,200,000                   |
| 합계              | 1.0       |                                  | 3,000,000                   |

6. (1) SSFF, SFSF, SFFS, FSSF, FSFS, FFSS (
$$\stackrel{?}{\lessgtr}$$
  $_4C_2=\frac{4!}{2!(4-2)!}=6$ )

(2) 
$$P(S,S,F,F) = p \ p(1-p)(1-p) = p^2(1-p)^2$$
  
 $P(S,F,S,F) = p(1-p)p(1-p) = p^2(1-p)^2$ 

....

$$P(F,F,S,S) = (1-p)(1-p)pp = p^2(1-p)^2$$

(3) 
$$_{4}C_{2} \times p^{2}(1-p)^{2}$$

$$(4) \quad {}_nC_x \times p^x(1-p)^{n-x}$$

Note. 여기서  $p^x(1-p)^{n-x}$ 는 성공확률 설과확률 실패확률 이다.

7. (1) 성공횟수 x (시행 횟수 n은 조건이다.)

(2)

|             |   | 빈도 |     |       |        | 상대빈도  |       |       |       |        |
|-------------|---|----|-----|-------|--------|-------|-------|-------|-------|--------|
| 성공횟수        | 1 | 10 | 100 | 1,000 | 10,000 | 1     | 10    | 100   | 1000  | 10000  |
| <i>x</i> =0 | 1 | 4  | 36  | 344   | 3,476  | 1.0   | 0.4   | 0.36  | 0.344 | 0.3476 |
| <i>x</i> =1 | - | 4  | 41  | 436   | 4,384  | -     | 0.4   | 0.41  | 0.436 | 0.4384 |
| <i>x</i> =2 | - | 1  | 20  | 197   | 1,873  | -     | 0.1   | 0.2   | 0.197 | 0.1873 |
| <i>x</i> =3 | - | 1  | 3   | 23    | 267    | -     | 0.1   | 0.03  | 0.023 | 0.0267 |
| 합계          | 1 | 10 | 100 | 1,000 | 10,000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000  |

(3) 평균 = 
$$\frac{0(3,476)+1(4,384)+2(1,873)+3(267)}{3,476+4,384+1,873+267} = \frac{8,931}{10,000} = 0.8931$$

분산 =  $\frac{(0-0.8931)^2 \cdot 3,476+(1-0.8931)^2 \cdot 4,384+(2-0.8931)^2 \cdot 1,873+(3-0.8931)^2 \cdot 267}{3,476+4,384+1,873+267}$ 

=  $\frac{6,302.724}{10,000} = 0.6303$ 

표준편차 =  $\sqrt{0.6303} = 0.7939$ 

(5) 
$$E(X) = x_1 \cdot P(x_1) + x_2 \cdot P(x_2) + \dots + x_4 \cdot P(x_4) = \sum_{i=1}^4 x_i \cdot P(x_i)$$
  
 $V(X) = (x_1 - E(X))^2 \cdot P(x_1) + (x_2 - E(X))^2 \cdot P(x_2) + \dots + (x_4 - E(X))^2 \cdot P(x_4)$   
 $= \sum_{i=1}^4 (x_i - E(X))^2 \cdot P(x_i)$   
 $\sigma = \sqrt{V(X)}$ 

#### 8. (1)

| X(성공횟수) | $_{n}C_{x}$ | $p^x(1-p)^{n-x}$ | $_nC_x p^x(1-p)^{n-x}$ |
|---------|-------------|------------------|------------------------|
| 0       | 1           | 0.3430           | 0.3430                 |
| 1       | 3           | 0.1470           | 0.4410                 |
| 2       | 3           | 0.0630           | 0.1890                 |
| 3       | 1           | 0.0270           | 0.0270                 |
| 합계      |             |                  | 1.0000                 |

(2) 확률의 정의 중 상대빈도정의에 의하면 실험의 횟수가 ∞에 이를 때 상대빈도값 은 확률에 일치한다. 연습문제 7에서의 실험횟수는 ∞가 아닌 10,000이기 때문에 오차가 발생한다.

(3)

| X(성공횟수) | $_{n}C_{x}$ | $p^x(1-p)^{n-x}$ | $_{n}C_{x}p^{x}(1-p)^{n-x}$ |
|---------|-------------|------------------|-----------------------------|
| 0       | 1           | 0.0024           | 0.0024                      |
| 1       | 5           | 0.0057           | 0.0284                      |
| 2       | 10          | 0.0132           | 0.1323                      |
| 3       | 10          | 0.0309           | 0.3087                      |
| 4       | 5           | 0.0720           | 0.3602                      |
| 5       | 1           | 0.1681           | 0.1681                      |
| 합계      |             |                  | 1.0000                      |

9. (1) 
$$\mu = E(X) = np = 3 \times 0.3 = 0.9$$
 연습문제 7에서는  $0.8931$ 

(2) 
$$V(X) = \sigma^2 = npq = 3 \times 0.3 \times 0.7 = 0.63$$
 연습문제 7에서는  $0.6303$ 

#### 10. (1)

| x | $P(x) = \frac{e^{-\lambda}\lambda^x}{x!}$ |  |  |  |
|---|-------------------------------------------|--|--|--|
| 4 | 0.18881                                   |  |  |  |
| 8 | 0.01687                                   |  |  |  |

(2)

| x  | P(x)   | $x \cdot P(x)$ | $(x-E(X))^2$ | $\big(x-E(X)\big)^2\cdot P(x)$ |
|----|--------|----------------|--------------|--------------------------------|
| 3  | 0.2158 | 0.6474         | 0.2500       | 0.0539                         |
| 6  | 0.0771 | 0.4626         | 6.2501       | 0.4819                         |
| 9  | 0.0066 | 0.0590         | 30.2502      | 0.1984                         |
| 12 | 0.0002 | 0.0026         | 72.2503      | 0.0154                         |

11. (1) 
$$E(X) = \sum_{x=0}^{\infty} x \cdot P(x) = \sum_{x=0}^{\infty} x \cdot \frac{e^{-\lambda} \lambda^x}{x!}$$
 (이 값을 수학적으로 정리하면  $\lambda$ 가 된다.)

(2) 
$$V(X) = \sum_{x=0}^{\infty} \{x - E(x)\}^{2} \cdot P(x) = \sum_{x=0}^{\infty} \{x - E(x)\}^{2} \cdot \frac{e^{-\lambda} \lambda^{x}}{x!}$$
 (이 값을 수학적으로 정리하면  $\lambda$ 가 된다.)