Artificial Intelligence Course (CS 550) - Timetable

Location: ISU, STEM building; Room: T302; Time: 16³⁰ - 17⁴⁵

Date	Day	Туре	Part	Details			
20.01.2020	Monday	Lecture	Applied Math	Introduction: Class syllabus overview; Discussion of grading policy; Topics overview; Software platforms; Linear Algebra: Scalar fields; Vector spaces; Linear dependence; Linear combinations; Bases; Dimension; Morphism; Isomorphism; Classification of morphisms; Linear functional and dual space; Dual bases; Brackets and Reflexivity; Change of basis;			
22.01.2020	Wednesday	Workshop		Practical application using Python in Jupyter Notebook. Examples and exercises.			
27.01.2020	Monday	Lecture		Linear Algebra: Linear transformations; Transformations as vectors; Products; Polynomials; Inverses; Matrices; Matrices transformations; Change of basis; Range and null-space; Rank and nullity; Eigenvectors and eigenvalues; Determinant; Singular Value Decomposition (SVD); Machin Learning Application: Dimensionality reduction; Principal Component Analysis (PCA);			
29.01.2020	Wednesday	Workshop		Practical application using Python in Jupyter Notebook. Examples and exercises. Home Work 1			
03.02.2020	Monday	Lecture		Probability: sigma-algebra; mesure; probability; Bayes' rule; random variable; expectation, Variance and Covariance; law of large numbers; Common probability distributions; Central limit theorem; Information Theory: Measure of information content; Entropy; Cross-entropy; Kullback-Leibler (KL) divergence;			
05.02.2020	Wednesday	Workshop		Practical application using Python in Jupyter Notebook. Examples and exercises. Feedback on Home Work 1			
10.02.2020	Monday	Lecture		Numerical Computation: Metric space; Metrics in Euclidean space; Sequences and limits; Functions; Limits of functions; Continuous functions; Derivatives; Partial derivatives; Total derivative; Directional derivative; Gradient of the function; Local extremums; Gradient descent method; Hessian matrix of continuous functions; Schwartz's theorem; Newton's method; Reverse mode differentiation;			
12.02.2020	Wednesday	Workshop		Practical application using Python in Jupyter Notebook. Examples and exercises. Home Work 2			
	Mildrana Francis (O. b. 2002)						

Midterm Exam I (2 hours)

17.02.2020	Monday	Lecture		Overview of Machine Learning Basics: Learning algorithms; Supervised and Unsupervised learning; Reinforcement learning; Hyperparameter and model selection; Training set, validation set and test set.			
19.02.2020	Wednesday	Workshop		Practical application using Python in Jupyter Notebook. Examples and exercises. Feedback on Home Work 2			
24.02.2020	Monday	Lecture		Linear Regression: The normal equation; Gradient descent; Features, feature engineering and feature importance; Overfitting and underfitting; Estimators, bias and variance; Bias/variance trade-off; Bias-variance decomposition; Regularization.			
26.02.2020	Wednesday	Workshop		Practical application using Python in Jupyter Notebook. Examples and exercises.			
02.03.2020	Monday	Lecture	ing	Probabilistic modeling: Logistic regression; Training and cost function; Naive Bayes algorithm.			
04.03.2020	Wednesday	Workshop	e Learr	Practical application using Python in Jupyter Notebook. Examples and exercises. Home Work 3			
09.03.2020	Monday	Lecture	Machine Learning	Kernel methods: Decision boundaries; Maximum margin classifiers; Support vector machine (SVM).			
11.03.2020	Wednesday	Workshop		Practical application using Python in Jupyter Notebook. Examples and exercises. Feedback on Home Work 3			
16.03.2020	Monday	Lecture		Unsupervised Learning: Clustering algorithms,K Means Clustering, Fuzzy C Means Clustering			
18.03.2020	Wednesday	Workshop		Practical application using Python in Jupyter Notebook. Examples and exercises.			
23.03.2020	Monday	Lecture		Ensemble methods: Decision trees; Bagging and pasting; Random forests; Gradient boosting machines.			
25.03.2020	Wednesday	Workshop		Practical application using Python in Jupyter Notebook. Examples and exercises. Home Work 4			
	Midterm Exam II (2 hours)						

30.03.2020	Monday	Lecture		The Kalman filter, Nonlinear filtering, and Markov Chain Monte Carlo			
01.04.2020	Wednesday	Workshop		Practical application using Python in Jupyter Notebook. Examples and exercises. Feedback on Home Work 4			
06.04.2020	Monday	Lecture		Neural Networks - Basic Mathematics used for Neural Networks Algorithms, Perceptron			
08.04.2020	Wednesday	Workshop		Practical application using Python in Jupyter Notebook. Examples and exercises.			
13.04.2020	Monday	Lecture		Neural Networks, multi layer neural networks, feed forward and back progpagation learning algorithm			
15.04.2020	Wednesday	Workshop	ırning	Practical application using Python in Jupyter Notebook. Examples and exercises. Home Work 5			
20.04.2020	Monday	Holiday	Deep Learning	Orthodox Monday			
22.04.2020	Wednesday	Lecture	De	Basics of Reinforcement Learning: Introduction, Examples, Elements of Reinforcement Learning, Limitations and Scope, Tic-Tac-Toe (Reinforcement Learning: An Introduction second edition, Richard S. Sutton and Andrew G.Barto pp 1-13) Feedback on Home Work 5			
27.04.2020	Monday	Lecture		Deep Learning for Computer Vision pp 119-178 (Francois-Chollet-Deep-Learning-with-Python 2017)			
29.04.2020	Wednesday	Workshop		Practical application using Python in Jupyter Notebook. Examples and exercises.			
04.05.2020	Monday	Lecture		Deep Learning for Text Sequences Vision pp 178-233 (Francois-Chollet-Deep-Learning-with-Python 2017)			
06.05.2020	Wednesday	Workshop		Practical application using Python in Jupyter Notebook. Examples and exercises.			
	Final Exam (2 hours)						

There will be excercises at the end of each Lecture - solutions of these excersises will be discussed on workshop, which will follow the lecture
At the end of each topic there will be homework - in total there will be 5 homeworks - in total there will be 30 points, each homework will be evaluated maximum by 6 points
Midterm Exam I - Applied Math - maximum 20 points
Midterm Exam II - Machine Learning - maximum 20 points
Final Exam - Deep Learning - 30 Points
Total - 100 Points