概率论与数理统计

Friday 16^{th} December, 2022

目录

1	随机	事件及其概率 4
	1.1	符号
	1.2	条件概率
	1.3	乘法公式
	1.4	古典概型
	1.5	几何概型 4
	1.6	完备事件组 4
	1.7	全概率公式 5
		1.7.1 全概率条件公式
	1.8	贝叶斯公式
	1.9	独立事件
	1.10	伯努利概型 5
	_ / _	
2		型随机变量及其分布函数 5
	2.1	密度函数 (概率密度) 5
	2.2	分布函数 6
3	分布	6
•		边缘分布 6
	0.1	3.1.1 边缘分布律
		3.1.2 边缘密度函数
	3.2	条件分布 7
		3.2.1 条件分布律
		3.2.2 条件分布密度函数 7
	3.3	独立性
4	一维	离散型随机变量及其分布律 7
	4.1	两点分布
		二项(伯努利)分布 8
	4.3	泊松分布
		4.3.1 泊松定理 8
	4.4	几何分布
	4.5	超几何分布 9
5	—维	连续型随机变量及其密度函数 9
J	5.1	均匀分布 9
	5.2	指数分布
	5.3	正态 (高斯) 分布
	5.0	5.3.1 标准正态分布
		5.3.2 3σ 原则
	5 4	换元
	∪ • I	-y/s/

		5.4.1	离散型.				 	 . 10						
		5.4.2	连续型.				 	 . 10						
6	— <i>4</i> 莊	连续刑	随机变量及	3.甘宓	帝 添き	₩π								10
U	一岸 6.1	均匀分												
			•											
	6.2		布											
	6.3													
		6.3.1	卷积定理											
		6.3.2	最大最小	值 .			 	 . 11						
7	数字	特征												11
	7.1						 	 	 		 		 	 . 11
	• • •	7.1.1	离散型.											
		7.1.2	连续型.											
		7.1.3	换元											
		7.1.4	性质											
	7.2													
	1.2													
		7.2.1	标准差.											
		7.2.2	离散型.											
		7.2.3	连续型.											
		7.2.4	性质											
	7.3		之随机变量											
	7.4		布期望方											
	7.5	协方差	E				 	 . 14						
	7.6	性质					 	 . 14						
	7.7	(线性	1)相关系	数 .			 	 . 14						
		7.7.1	(线性)	均方说	是差		 	 . 14						
		7.7.2	定义				 	 . 15						
		7.7.3	性质				 	 . 15						
		7.7.4	不(线性) 相	€		 	 . 15						
8	统计													15
	8.1	样本均	•											
	8.2	样本方	差				 	 . 16						
	8.3	样本标	准差				 	 . 16						
	8.4	其他					 	 . 16						
	8.5	矩 .					 	 . 16						
		8.5.1	k 阶原点	矩 .			 	 . 16						
		8.5.2	k 阶中心	矩 .			 	 . 16						
		8.5.3	k+l 阶混	合原点	短短		 	 . 16						
		8 5 4	k+1 阶混	合中心	भ									17

9	抽样	分布		17
	9.1	伽马分	布	 17
		9.1.1	伽马函数	 17
		9.1.2	密度函数	 17
		9.1.3	性质	 17
	9.2	卡方分	布	 17
		9.2.1	非中心的卡方分布	 18
		9.2.2	密度函数	 18
		9.2.3	性质	 18
	9.3	t 分布		 18
		9.3.1	密度函数	 18
		9.3.2	性质	 19
	9.4	F 分布		 19
		9.4.1	密度函数	 19
		9.4.2	性质	 19
	9.5	常见分	布期望方差	 19
	9.6	上侧 p	分位点	 20
	9.7	单正态	总体样本均值和样本方差的分布	 20
10	参数	估计		20
	10.1	矩估计		 20
		10.1.1	基本思想	 20
	10.2	极大似	然估计	 20
	10.3	估计量	评价标准	 21
		10.3.1	均方误差	 21
		10.3.2	无偏性	 21
		10.3.3	有效性	21

1 随机事件及其概率

1.1 符号

名词	符号	注释
随机实验	E	
样本点	ω	
样本空间	Ω	
交 (积) 事件	$A \cap B \stackrel{.}{ ext{id}} AB$	$\{\omega \omega\in A\wedge\omega\in B\}$
并事件	$A \cup B$	$ \left \{ \omega \omega \in A \lor \omega \in B \} \right $
差事件	A-B	$\{\omega \omega\in A\wedge\omega\notin B\}$
互斥事件		$A \cap B = \emptyset$
对立事件	\overline{A}	$\Omega - A$
概率	$P\left(A\right)$	

1.2 条件概率

已知 A 事件发生,发生 B 事件的概率 (P(A) > 0)

$$P(B|A) = \frac{P(AB)}{P(A)}$$

1.3 乘法公式

$$P(AB) = P(A) P(B|A)$$

1.4 古典概型

$$P(A) = \frac{A \text{所含样本点个数}}{\Omega \text{样本点个数}}$$

1.5 几何概型

$$P(A) = \frac{A$$
的几何测度 Ω 的几何测度

1.6 完备事件组

$$\bigcup A_i = \Omega; A_i \cap A_j = \emptyset$$

1.7 全概率公式

 ${A_i}$ 完备事件组

$$P(B) = \sum P(A_i) P(B|A_i)$$

1.7.1 全概率条件公式

$$P(C|B) = \sum P(A_i|B) P(C|A_iB)$$

1.8 贝叶斯公式

$$P(A_j|B) = \frac{P(A_jB)}{P(B)} = \frac{P(A_j) P(B|A_j)}{\sum P(A_i) P(B|A_i)}$$

1.9 独立事件

$$A, B$$
相互独立 \iff $P(AB) = P(A)P(B)$ \iff $P(A|B) = P(A)$ \iff \overline{A}, B 相互独立 \iff $\overline{A}, \overline{B}$ 相互独立 \iff $\overline{A}, \overline{B}$ 相互独立 \iff $P(A|B) = P(A|\overline{B})$ $\{A_i\}$ 相互独立 \iff $P\left(\bigcap A_i\right) = \prod P(A_i)$

1.10 伯努利概型

定义:

- 1. 每次试验对应样本空间相同
- 2. 各次试验结果相对独立
- 3. 只考虑两种结果
 - n 重伯努利试验中,A 事件恰好发生 k 次的概率为 $C_n^k p^k \left(1-p\right)^{n-k}$

2 连续型随机变量及其分布函数

2.1 密度函数(概率密度)

$$f(x)$$
、 $f(x,y)$ 等

定义

$$F(x) = P\{X = x\} (x \in \mathbb{R})$$

性质

$$f(x) \geqslant 0$$

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = 1$$

2.2 分布函数

$$F(x)$$
、 $F(x,y)$ 等

定义

$$F(x) = P\{X \le x\} = \int_{-\infty}^{x} f(t) dt (x \in \mathbb{R})$$
$$F(x,y) = P\{X \le x, Y \le y\} = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv (x, y \in \mathbb{R})$$

性质

$$F(x) \geqslant 0$$

$$\lim_{x \to +\infty} F\left(x\right) = 1$$

3 分布

3.1 边缘分布

$$F_X(x) = \lim_{y \to +\infty} F(x, y) = F(x, +\infty) (x \in \mathbb{R})$$

$$F_{Y}(y) = \lim_{x \to +\infty} F(x, y) = F(+\infty, y) (y \in \mathbb{R})$$

3.1.1 边缘分布律

$$P\{X = x_i\} = \sum_{j} P\{X = x_i, Y = y_j\}$$

$$P\{Y = y_j\} = \sum_{i} P\{X = x_i, Y = y_j\}$$

3.1.2 边缘密度函数

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}y \, (x \in \mathbb{R})$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx (y \in \mathbb{R})$$

3.2 条件分布

$$F_{X|Y}(x|y) = P\left\{X \leqslant x \middle| Y = y\right\}(x \in \mathbb{R})$$

$$F_{Y|X}(y|x) = P\left\{Y \leqslant y \middle| X = x\right\} (y \in \mathbb{R})$$

3.2.1 条件分布律

$$P\{X = x_i | Y = y_j\} = \frac{P\{X = x_i, Y = y_j\}}{\sum_{i} P\{X = x_i, Y = y_j\}}$$

$$P\{Y = y_j | X = x_i\} = \frac{P\{X = x_i, Y = y_j\}}{\sum_{i} P\{X = x_i, Y = y_j\}}$$

3.2.2 条件分布密度函数

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} (x \in \mathbb{R})$$

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} (y \in \mathbb{R})$$

3.3 独立性

充要条件

$$F(x,y) = F_X(x) F_Y(y)$$

4 一维离散型随机变量及其分布律

以下都有

$$p \in (0, 1)$$

4.1 两点分布

$$X \sim B(1, p)$$

$$k \ k \in \{0,1\}$$

$$P\{X = k\} = p^k (1-p)^{1-k}$$

4.2 二项(伯努利)分布

$$X \sim B(n, p)$$

 $n \ n \in \mathbb{N}^+$

 $k \ n \geqslant k \in \mathbb{N}$

$$P\{X = k\} = C_n^k p^k (1-p)^{n-k}$$

4.3 泊松分布

$$X \sim P(\lambda)$$

$$\lambda \ \lambda > 0$$

 $k \ k \in \mathbb{N}$

$$P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}$$

4.3.1 泊松定理

n 重伯努利试验中,事件发生概率 $p_n \in (0,1)$ 与试验次数有关,若 $\lim_{n \to \infty} n p_n = \lambda > 0$,则

$$\lim_{n \to \infty} C_n^k p_n^k \left(1 - p_n\right)^{n-k} = \frac{\lambda^k}{k!} e^{-\lambda}$$

4.4 几何分布

$$X \sim G(p)$$

k 前 k-1 次都失败,第 k 次成功 $p \in \mathbb{N}^+$

$$P\{X = k\} = (1-p)^{k-1}p$$

4.5 超几何分布

 $X \sim H(M, N, n)$

N 总样本数 N > 1

n 抽取样本数 $n \leq N$

M 指定样本数 $M \leq N$

k抽到指定样本数 $k \in \mathbb{N} \cap \left[\max \left\{ 0, M + n - N \right\}, \min \left\{ M, n \right\} \right]$

$$P\{X = k\} = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n}$$

5 一维连续型随机变量及其密度函数

5.1 均匀分布

 $X \sim U[a, b]$

$$f(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & x \in (-\infty,a) \cup (b,+\infty) \end{cases}$$

5.2 指数分布

 $X \sim E(\lambda)$

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

5.3 正态(高斯)分布

$$X \sim N(\mu, \sigma^2)$$

 $\mu \mu \in \mathbb{R}$ 期望

 $\sigma \sigma > 0$ 标准差

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

5.3.1 标准正态分布

 $X \sim N(0,1)$

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

5.3.2 3σ 原则

$$\begin{cases} P\{|X - \mu| < \sigma\} = 0.6826 \\ P\{|X - \mu| < 2\sigma\} = 0.9544 \\ P\{|X - \mu| < 3\sigma\} = 0.9974 \end{cases}$$

5.4 换元

5.4.1 离散型

$$Y = g(X)$$

5.4.2 连续型

6 二维连续型随机变量及其密度函数

6.1 均匀分布

$$(X,Y) \sim U(D)$$

$$f(x,y) = \begin{cases} \frac{1}{S_D} & (x,y) \in D\\ 0 & (x,y) \notin D \end{cases}$$

6.2 正态分布

$$(X,Y) \sim N(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho)$$

 $\mu \mu \in \mathbb{R}$ 期望

 $\sigma \sigma > 0$ 标准差

 ρ $\rho \in (-1,1)$,相关系数 $(\rho = 0 \text{ 时 } X \setminus Y \text{ 独立})$

$$f(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2(1-\rho^2)} \left(\frac{(x-\mu_X)^2}{\sigma_X^2} - 2\rho \frac{(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} + \frac{(y-\mu_Y)^2}{\sigma_Y^2}\right)\right]$$

若 X、Y 独立

$$\left. \begin{array}{l} X \sim N\left(\mu_X, \sigma_X^2\right) \\ Y \sim N\left(\mu_Y, \sigma_Y^2\right) \end{array} \right\} \implies (X, Y) \sim N\left(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, 0\right) \\ Z = aX + bY \sim N\left(a\mu_X + b\mu_Y, a^2\sigma_Y^2 + b^2\sigma_Y^2\right)$$

6.3 换元

$$Z = X + Y$$

$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx = \int_{-\infty}^{+\infty} f(z - y, y) dy$$

6.3.1 卷积定理

若 $X \times Y$ 独立

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f_{X}(x) f_{Y}(z - x) dx = \int_{-\infty}^{+\infty} f_{X}(z - y) f_{Y}(y) dy = f_{X}(z) * f_{Y}(z)$$

6.3.2 最大最小值

$$M = \max \{X, Y\}, N = \min \{X, Y\}$$

则

$$F_{M} = F_{X}F_{Y}$$

$$1 - F_{N} = (1 - F_{X})(1 - F_{Y})$$

$$f_{M} = F'_{M} = f_{X}F_{Y} + f_{Y}F_{X}$$

$$f_{N} = F'_{N} = f_{X}(1 - F_{Y}) + f_{Y}(1 - F_{X})$$

7 数字特征

7.1 期望

7.1.1 离散型

$$E\left(X\right) = \sum x_i p_i$$

7.1.2 连续型

$$E(x) = \int_{-\infty}^{+\infty} x f(x) \, \mathrm{d}x$$

7.1.3 换元

一维

$$Y = g\left(X\right)$$

离散

$$E(Y) = \sum g(x_i) p_i$$

连续

$$E(Y) = \int_{-\infty}^{+\infty} g(x) f(x) dx$$

二维

$$Z = g(X, Y)$$

离散

$$E(Z) = \sum \sum g(x_i, y_j) p_{ij}$$

连续

$$E(Z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x, y) f(x, y) dxdy$$

7.1.4 性质

线性

$$E(kX + c) = kE(X) + c$$

$$E(X \pm Y) = E(X) \pm E(Y)$$

独立 若 $X \times Y$ 独立

$$E(XY) = E(X)E(Y)$$

平均

$$\bar{X} \frac{1}{n} \sum X_i$$

$$E\left(\bar{X}\right) = E\left(X\right)$$

7.2 方差

$$D(X) = E(X^{2}) - (E(X))^{2}$$

7.2.1 标准差

$$\sqrt{D\left(X\right) }$$

7.2.2 离散型

$$D(X) = \sum (x_i - E(X))^2 p_i$$

7.2.3 连续型

$$D(X) = \int_{-\infty}^{+\infty} (x_i - E(X))^2 f(x) dx$$

7.2.4 性质

线性

$$D\left(kX+c\right) = k^2 D\left(X\right)$$

独立 若 $X \times Y$ 独立

$$D(aX + bY) = a^{2}D(X) + b^{2}D(Y)$$

$$D(XY) = D(X)D(Y)$$

平均

$$\bar{X} \frac{1}{n} \sum X_i$$

$$D\left(\bar{X}\right) = \frac{1}{n}D\left(X\right)$$

7.3 标准化随机变量

$$X^* = \frac{X - E(X)}{\sqrt{D(X)}}$$

7.4 常见分布期望方差

$X \sim F(X)$	$E\left(X\right)$	$D\left(X\right)$
B(n,p)	np	np(1-p)
$P(\lambda)$	λ	λ
$G\left(p\right)$	$\frac{1}{p}$	$\frac{(1-p)}{p^2}$
$H\left(M,N,n\right)$	$\frac{nM}{N}$	$\frac{nM(N-n)(N-M)}{N^2(N-1)}$
$U\left[a,b ight]$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$E(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$N\left(\mu,\sigma^2\right)$	μ	σ^2

7.5 协方差

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

7.6 性质

$$Cov(X, X) = D(X)$$

交换律

$$Cov(X, Y) = Cov(Y, X)$$

线性

$$Cov(X, c) = 0$$

$$\operatorname{Cov}\left(\sum a_i X_i, \sum b_j Y_j\right) = \sum_i \sum_j a_i b_j \operatorname{Cov}\left(X_i, Y_j\right)$$

7.7 (线性)相关系数

7.7.1 (线性)均方误差

用 aX + b 去拟合 Y

e(a,b) 越小表明线性关系越强,越大越弱

 $e(a_0,b_0)$ 最小均方误差

 (a_0,b_0) 驻点

$$a_0 \frac{\operatorname{Cov}(X, Y)}{D(X)}$$
 $b_0 E(Y) - a_0 E(X)$

$$e(a,b) = E\left[\left(Y - \left(aX + b\right)^{2}\right)\right]$$

$$e(a_{0}, b_{0}) = \left[1 - \left(\frac{\operatorname{Cov}(X, Y)}{\sqrt{D(X)}\sqrt{D(Y)}}\right)^{2}\right]D(Y)$$

7.7.2 定义

$$\rho_{XY} = \frac{\operatorname{Cov}(X, Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$

7.7.3 性质

$$\rho \in [-1,1]$$

$$|\rho_{XY}| = 1 \Longleftrightarrow P\{Y = aX + b\} = 1 (a \neq 0) \begin{cases} a > 0 \pmod{\mathbb{R}} & \rho_{XY} = 1 \\ a < 0 \pmod{\mathbb{R}} & \rho_{XY} = -1 \end{cases}$$

$$\rho_{(aX)(bY)} = \frac{ab}{|ab|} \rho_{XY}$$

7.7.4 不 (线性) 相关

$$\rho = 0$$

$$\iff \operatorname{Cov}(X, Y) = 0$$

$$\iff E(XY) = E(X) E(Y)$$

$$\iff D(X \pm Y) = D(X) + D(Y)$$

独立 → 不相关

- 8 统计量
- 8.1 样本均值

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

8.2 样本方差

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2} \right)$$

8.3 样本标准差

$$S = \sqrt{S^2}$$

8.4 其他

$$E\left(\bar{X}\right) = \mu$$

$$D\left(\bar{X}\right) = \frac{\sigma^2}{n}$$

$$E\left(S^2\right) = \sigma^2$$

8.5 矩

 $k \in \mathbb{N}^+$

8.5.1 k 阶原点矩

$$k = 1 \sim = E(X)$$

$$E\left(X^{k}\right)$$

8.5.2 k 阶中心矩

$$E\left[\left(X - E\left(X\right)\right)^{k}\right]$$

k=1 $\sim=0$

$$k=2 \sim = D(X)$$

8.5.3 k+l 阶混合原点矩

$$E\left(X^{k}Y^{l}\right)$$

8.5.4 k+l 阶混合中心矩

$$E\left[\left(X - E\left(X\right)\right)^{k} \left(Y - E\left(Y\right)\right)^{l}\right]$$

$$k = l = 1 \sim = \operatorname{Cov}(X, Y)$$

9 抽样分布

$$x \sim \Gamma(\alpha, \beta)$$

- 9.1 伽马分布
- 9.1.1 伽马函数

$$\Gamma(x) = \int_{0}^{+\infty} t^{x-1} e^{-t} dt (x > 0)$$

9.1.2 密度函数

$$f(x, \alpha, \beta) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} & x > 0\\ 0 & x \leq 0 \end{cases}$$

9.1.3 性质

再生性

$$X_1 \sim \Gamma(\alpha_1, \beta)$$

$$X_2 \sim \Gamma(\alpha_2, \beta)$$

$$X_3 \sim \Gamma(\alpha_1 + \alpha_2, \beta)$$

$$X_1 + X_2 = X_3$$

9.2 卡方分布

$$\chi^2 \sim \chi^2\left(n\right) = \Gamma\left(\frac{n}{2}, \frac{1}{2}\right)$$

n 自由度

$$X_i \sim N(0,1)$$

$$\chi^2 = \sum_{i=1}^n X_i^2$$

9.2.1 非中心的卡方分布

$$X_i \sim N(\mu_i, 1)$$

δ 非中心参数

$$\delta = \sqrt{\sum_{i=1}^n \mu_i^2}$$

$$\chi_{n,\delta}^2 = \sum_{i=1}^n X_i^2$$

9.2.2 密度函数

$$f(x,n) = \begin{cases} \frac{x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} & x > 0\\ 0 & x \le 0 \end{cases}$$

9.2.3 性质

再生性

$$\chi_1^2 \sim \chi^2(m)$$

$$\chi_2^2 \sim \chi^2(n)$$

$$\chi_3^2 \sim \chi^2 (m+n)$$

$$\chi_1^2 + \chi_2^2 = \chi_3^2$$

9.3 t 分布

$$T \sim t(n)$$

n 自由度

$$X \sim N(0,1)$$

$$Y \sim \chi^2(n)$$

$$T = \frac{X}{\sqrt{Y/n}}$$

9.3.1 密度函数

$$f(x,n) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}} (x \in \mathbb{R})$$

9.3.2 性质

n=1 时,为柯西分布 n 充分大时,为标准正态分布

9.4 F 分布

$$F \sim F(m, n)$$

m 第一自由度

n 第二自由度

$$X \sim \chi^2(m)$$

$$Y \sim \chi^2(n)$$

$$F = \frac{X/m}{Y/n}$$

9.4.1 密度函数

$$f\left(x,m,n\right) = \begin{cases} \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)} \left(\frac{m}{n}\right)^{\frac{m}{2}} x^{\frac{m}{2}-1} \left(1 + \frac{m}{n}x\right)^{-\frac{m+n}{2}} & x > 0\\ 0 & x \leqslant 0 \end{cases}$$

9.4.2 性质

若
$$T \sim t(n)$$
,则 $T^2 \sim F(1,n)$
若 $F \sim F(m,n)$,则 $\frac{1}{F} \sim F(n,m)$

9.5 常见分布期望方差

\overline{X}	$\sim F(X)$	$E\left(X\right)$	$D\left(X\right)$
X	$\Gamma\left(\alpha,\beta\right)$	$\frac{\alpha}{\beta}$	$\frac{lpha}{eta^2}$
χ^2	$\chi^{2}\left(n\right)$	n	2n
T	$t\left(n\right)$	0 (n > 1)	$\frac{n}{n-2} (n > 2)$
F	$F\left(m,n ight)$	$\frac{n}{n-2} (n > 2)$	$\frac{2n^{2} (m+n-2)}{m(n-2)^{2} (n-4)} (n > 4)$

9.6 上侧 p 分位点

 x_p

$$P\{X \geqslant x_p\} = p(p \in (0,1))$$

9.7 单正态总体样本均值和样本方差的分布

$$\chi^2 = \frac{\sum_{i=1}^n (X_i - \mu)^2}{\sigma^2} \sim \chi^2 (n)$$

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{\sigma^2} \sim \chi^2 (n-1) \qquad \bar{X}, S^2$$
相互独立
$$\bar{X} \sim N \left(\mu, \frac{\sigma^2}{n}\right)$$

$$U = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N (0, 1)$$

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t (n-1)$$

10 参数估计

10.1 矩估计

10.1.1 基本思想

样本矩代替总体矩,建立 k 个方程,从中解出 k 个未知参数的矩估计量(低阶矩优先)

$$k=1$$
 一般采用 $\bar{X}=E(X)$

$$k=2 - 般采用 \begin{cases} \bar{X} = E\left(X\right) \\ \frac{1}{n} \sum_{i=1}^{n} \left(X_{i} - \bar{X}\right)^{2} = D\left(X\right) \end{cases}$$
 也可以用
$$\begin{cases} \bar{X} = E\left(X\right) \\ \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} = E\left(X^{2}\right) \end{cases}$$

10.2 极大似然估计

 $p(x,\theta)$ 分布律或者密度函数

$$L(x_1, x_2, \dots; \theta) = \prod_{i=1}^{n} p(x_i, \theta)$$

$$L\left(x_1,x_2,\cdots;\hat{\theta}\right) = \max_{\theta \in \Theta} \left\{L\left(x_1,x_2,\cdots;\theta\right)\right\}$$
一般解法: 求 $\frac{\mathrm{d}\left(\ln L\left(\theta\right)\right)}{\mathrm{d}\theta} = 0$ 的驻点

10.3 估计量评价标准

10.3.1 均方误差

$$E\left[\left(\hat{\theta}-\theta\right)^{2}\right]=D\left(\hat{\theta}\right)+\left(\theta-E\left(\hat{\theta}\right)\right)^{2}$$

10.3.2 无偏性

无偏估计
$$E(\hat{\theta}) = \theta$$
 否则为有偏估计

渐进无偏估计
$$\lim_{n\to\infty} E\left(\hat{\theta}\right) = \theta$$

性质
$$\bar{X}$$
 是 μ 的无偏估计,即 $E\left(\bar{X}\right)=\mu$ S^2 是 σ^2 的无偏估计,即 $E\left(S^2\right)=\sigma^2$

10.3.3 有效性

 $\hat{\theta}_1, \hat{\theta}_2$ 均为 θ 的无偏估计,均方误差准则就是方差准则,若 $D\left(\hat{\theta}_1\right) < D\left(\hat{\theta}_2\right)$,称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效