Calculus I Writing a Riemann sum, part 1

Todor Milev

2019

Find the sum of the areas of the four approximating rectangles obtained using right endpoints.

• Let R_4 denote the sum of the areas of the rectangles.

- Let R_4 denote the sum of the areas of the rectangles.
- Each rectangle has width ?.

- Let R_4 denote the sum of the areas of the rectangles.
- Each rectangle has width $\frac{1}{4}$.

Find the sum of the areas of the four approximating rectangles obtained using right endpoints.

- Let R₄ denote the sum of the areas of the rectangles.
- Each rectangle has width $\frac{1}{4}$.
- The heights are

? ,? ,? , and?.

- Let R_4 denote the sum of the areas of the rectangles.
- Each rectangle has width $\frac{1}{4}$.
- The heights are $\left(\frac{1}{4}\right)^2$, $\left(\frac{1}{2}\right)^2$, $\left(\frac{3}{4}\right)^2$, and 1².

- Let R_4 denote the sum of the areas of the rectangles.
- Each rectangle has width ¹/₄.
- The heights are $\left(\frac{1}{4}\right)^2$, $\left(\frac{1}{2}\right)^2$, $\left(\frac{3}{4}\right)^2$, and 1².

$$R_4 = \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 + \frac{1}{4} \cdot (1)^2$$

- Let R₄ denote the sum of the areas of the rectangles.
- Each rectangle has width ¹/₄.
- The heights are $\left(\frac{1}{4}\right)^2$, $\left(\frac{1}{2}\right)^2$, $\left(\frac{3}{4}\right)^2$, and 1².

$$R_4 = \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 + \frac{1}{4} \cdot (1)^2 = \frac{15}{32} = 0.46875$$

- Let R₄ denote the sum of the areas of the rectangles.
- Each rectangle has width $\frac{1}{4}$.
- The heights are $\left(\frac{1}{4}\right)^2$, $\left(\frac{1}{2}\right)^2$, $\left(\frac{3}{4}\right)^2$, and 1².
- A similar calculation works for L₄, the sum of the areas of the left endpoint rectangles.

$$R_4 = \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 + \frac{1}{4} \cdot (1)^2 = \frac{15}{32} = 0.46875$$

$$L_4 = \frac{1}{4} \cdot (0)^2 + \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2$$

- Let R₄ denote the sum of the areas of the rectangles.
- Each rectangle has width $\frac{1}{4}$.
- The heights are $\left(\frac{1}{4}\right)^2$, $\left(\frac{1}{2}\right)^2$, $\left(\frac{3}{4}\right)^2$, and 1².
- A similar calculation works for L₄, the sum of the areas of the left endpoint rectangles.

$$R_4 = \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 + \frac{1}{4} \cdot (1)^2 = \frac{15}{32} = 0.46875$$

$$L_4 = \frac{1}{4} \cdot (0)^2 + \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2$$

- Let R₄ denote the sum of the areas of the rectangles.
- Each rectangle has width $\frac{1}{4}$.
- The heights are $\left(\frac{1}{4}\right)^2$, $\left(\frac{1}{2}\right)^2$, $\left(\frac{3}{4}\right)^2$, and 1².
- A similar calculation works for L₄, the sum of the areas of the left endpoint rectangles.

$$R_4 = \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 + \frac{1}{4} \cdot (1)^2 = \frac{15}{32} = 0.46875$$

$$L_4 = \frac{1}{4} \cdot (0)^2 + \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 = \frac{7}{32} = 0.21875$$