Prof.dr.sc. Bojana Dalbelo Bašić

Fakultet elektrotehnike i računarstva Zavod za elekroniku, mikroelektroniku, računalne i inteligentne sustave

> www.zemris.fer.hr/~bojana bojana.dalbelo@fer.hr

Nadzirano učenje

Chapter 2 Supervised Learning

Učenje koncepata (klasa, razreda) na temelju primjera

- Klasa C "obiteljski auto"
 - Predviđanje: Je li auto x obiteljski auto?
 - Crpljenje znanja: Što ljudi očekuju od obiteljskog automobila?
 - Izlaz:
 - Pozitivni (+) i negativni (-) primjeri
 - Predstavljanje ulaza:
 - x₁: cijena, x₂: snaga motora

Skup za učenje X

U stvarnosti ne možemo evaluirati kako dobro se h(x) podudara s c(x)

X je mali podskup

Empirijska greška h na X

$$E(h \mid \mathcal{X}) = \sum_{t=1}^{N} \delta(h(\mathbf{x}^{t}), r^{t})$$

S, G i prostor inačica

najopćenitija hipoteza G

 $h \in \mathcal{H}$, između S i G je konzistentna

i čini prostor inačica

(Mitchell, 1997)

Vapnik-Chervonenkisova dimenzija*

Pretpostavili smo da je $c \in \mathcal{H}$, to znači da postoji $h \in \mathcal{H}$, E(h|X) = 0.

- Može se desiti da to nije slučaj
- Želimo osigurati da je H dovoljno fleksibilan (ili da ima kapacitet) da nauči C.
 - N primjera može se označiti na 2^N načina kao pozitivni ili negativni.

*Razvoj statističke teorije učenja započeo krajem 70tih godina 20.st.

Knjige o SLT: **Vladimir Vapnik (1995)** *The Nature of Statistical Learning Theory*, Springer, 1995, **(1995)** *Statistical Learning Theory*

Vapnik-Chervonenkisova dimenzija

 Ako postoji skup od N primjera takav da za svako označavanje tih primjera postoji hipoteza h ∈ H koja je konzistentna s primjerima, onda kažemo da H razdjeljuje (shatter) N primjera.

Ako je ${\mathcal H}$ skup pravokutnika poravnat po osima tada je ${
m VC}({\mathcal H})=4$ jer može razdijeliti neke 4 točke za sva moguća označavanja.

Vapnik-Chervonenkisova dimenzija

Kod računanja VC dovoljno je da nađemo jedan skup od N točaka koje H razdjeljuje (za sva moguća označavanja!).
 Primjer: VC(H) = 4, ali ipak 4 točke na pravcu se ne mogu razdijeliti s H.

- VC dimenzija skupa je pesimistična
- VC dimenzija ne zavisi o distribuciji.

Pravokutnik poravnat po osima može razdijeliti 4 točke.

VC dimenzija – Primjer

Primjer:

Skup funkcija→ pravci (hiperravnie) u R²

VC dimenzija = 3 $(2^3=8)$ označavanja).

Nije moguće razdijeliti 4 točke u R² sa pravcem.

VC dimenzija – Pitanja

Pitanja: Ako je ${\mathcal H}$

- 1. Skup svih kružnica u R²
- 2. Skup svih trokuta R²
- 3. Skup svih elipsa u R²

Koliko je $VC(\mathcal{H})$?

Statistička teorija učenja

Statistička teorija učenja (ili VC teorija) pokazuje kako se može izbjeći prenaučenost

Važno je napraviti restrikciju klase funkcija iz koje biramo našu procjenu

Šum u podacima i složenost modela

Šum - anomalije u podacima Uzroci šuma ...

Ako je šum prisutan -> nema jednostavne granice.

Opcije:

- 1. hipoteze većeg kapaciteta bez greške, ili
- 2. jednostavne hipoteze i dozvoliti (manju) grešku

Šum u podacima i složenost modela

Koriste se jednostavniji modeli jer:

- jednostavniji je za korištenje za buduće predviđanje (manja vremenska složenost)
- lakše se uči (manje parametara modela manja, prostorna složenost)

Jednostavniji modeli – očekujemo manje promjene modela s manjom promjenom podataka -> mala varijanca

Jednostavniji model je krući i jači u pretpostavkama i može ne pronaći pravu hipotezu -> velika pristranost

Šum u podacima i složenost modela

Koristi se jednostavniji model jer:

- lakše se objašnjava (interpretabilniji je) – ekstakcija informacija
- 4. bolje generalizira
 Ako ima šuma jednostavniji
 model je manje podložan
 promjenama u podacima (manja varijanca) i bolje će generalizirati
 čak i ako radi pogrešku na skupu za učenje

Occamov princip)

 x_{i}

Klasifikacija u više razreda, C_i i=1,...,K

r je k.dim vektor

Family car

Price

$$r_i^t = \begin{cases} 1 \text{ if } \mathbf{x}^t \in C_i \\ 0 \text{ if } \mathbf{x}^t \in C_j, j \neq i \end{cases}$$

Klasifikacija u k klasa -> k binarnih klasifikacija

Hipoteze za treniranje $h_i(x)$, i = 1,...,K:

$$h_i(\mathbf{x}^t) = \begin{cases} 1 \text{ if } \mathbf{x}^t \in C_i \\ 0 \text{ if } \mathbf{x}^t \in C_j, j \neq i \end{cases}$$

Klasifikacija u više razreda, C_i i=1,...,K

r je k.dim vektor

Family car

Price

$$r_i^t = \begin{cases} 1 \text{ if } \mathbf{x}^t \in C_i \\ 0 \text{ if } \mathbf{x}^t \in C_j, j \neq i \end{cases}$$

Klasifikacija u k klasa -> k binarnih klasifikacija

Hipoteze za treniranje $h_i(x)$, i = 1,...,K:

$$h_i(\mathbf{x}^t) = \begin{cases} 1 \text{ if } \mathbf{x}^t \in C_i \\ 0 \text{ if } \mathbf{x}^t \in C_j, j \neq i \end{cases}$$

Regresija

$$\mathcal{X} = \left\{ x^t, r^t \right\}_{t=1}^{N}$$

$$r^t \in \Re$$

Ako nema šuma

-> interpolacija

Ako je x izvan ranga X

-> ekstrapolacija

Regresija:

$$r^t = f(x^t) + \varepsilon$$

nepoznata funkcija

slučajna pogreška <

latentne (skrivene) varijable 💫

Regresija

Analitičo rješenje za w0 i w1 kroz parcijalne derivacije

Stupanj polinoma raste - empirijska greška pada,

ali polinomi višeg reda ne slijede generalni trend u podacima

Mala empirijska pogreška ne garantira malu očekivanu pogrešku!

Odabir modela i generalizacija

- Učenje je loše postavljen problem (engl. ill-posed problem); podatci nisu dovoljni za jedinstveno rješenje
 - Postoji potreba za induktivnom pristranošću, pretpostavkama o H
- Generalizacija:
 - Koliko dobro model radi na novim podatcima
- Za dobru generalizaciju kompleksnost hipoteza treba se poklapati s kompleksnošću podataka
- Podnaučenost (underfitting):
 - H je manje kompleksan od C ili f
- Prenaučenost (overfitting):
 - H je kompleksniji od C ili f

Trostruki balans, pogleška generalizacije

- Tri su faktora u balansu (Dietterich, 2003):
 - 1. Kompleksnost, tj. kapacitet prostora hipoteza ${\mathcal H}$
 - 2. Veličina skupa za učenje, N,
 - 3. Pogreška generalizacije na novim podatcima, E
- Kako N↑, E↓
- As $VC(\mathcal{H}) \uparrow$, prvo $E \uparrow$ onda $E \downarrow$
- □ Pogreška generalizacije* kompleksnih sustava smanjuje se povećanjem podataka, ali samo do neke točke

^{*}generalisation error, expected (test) error, expected risk

Unakrsna validacija

- Kako bismo procijenili pogrešku generalizacije, trebamo podatke neviđene za vrijeme treniranja
- Npr. podijelit ćemo podatke:
 - Skup za učenje(50%)
 - Skup za validaciju (25%)
 - Skup za testiranje (objavu) (25%) očekivana pogreška
- Unakrsna validacija (crossvalidation) tehnika ponovnog uzorkovanja – za selekciju modela
- Podaci se mogu uzrokovati više puta ukoliko je skup malen

Dimenzije nadziranog učenja - sažetak

$$\mathcal{X} = \left\{ x^t, r^t \right\}_{t=1}^{N}$$

Uzorak – poredak nevažan, svi elementi su izvučeni iz iste združene distribucije - nezavisni i identično distribuirani (independent and indentically distributed - iid)

1. Model:

$$g(\mathbf{x} \mid \theta)$$

- 2. Funkcija gubitka(loss function)*: $E(\theta \mid X) = \sum_{t} L(r^{t}, g(\mathbf{x}^{t} \mid \theta))$ (loss function, cost function)
- 3. Optimizacijska procedura:

$$\theta^* = \arg\min_{\theta} E(\theta \mid X)$$

^{*}općenitije od empirijske pogreške

Dimenzije nadziranog učenja

Uvjeti:

- 1. Klasa hipoteza treba imati dovoljan kapacitet da može izraziti funkciju koja je generirala podatke
- Treba biti dovoljno podataka za učenje da bi se oblikovala dovoljno dobra hipoteza
- 3. Dobar optimizacijski algoritam koji pronalazi hipotezu

