Counting

	Order Matters	Not Matter
With Replacement	n^k	$\binom{n+k-1}{k}$
Without Replacement	$\frac{n!}{(n-k)!}$	$\binom{n}{k}$

Thinking Conditionally

Independence

Conditional Independence A and B are conditionally independent given C if $P(A \cap B|C) = P(A|C)P(B|C)$. Conditional independence does not imply independence, and independence does not imply conditional independence.

Unions, Intersections, and Complements

Intersections via Conditioning

$$P(A,B) = P(A)P(B|A)$$

$$P(A,B,C) = P(A)P(B|A)P(C|A,B)$$

Unions via Inclusion-Exclusion

$$\begin{split} P(A \cup B) &= P(A) + P(B) - P(A \cap B) \\ P(A \cup B \cup C) &= P(A) + P(B) + P(C) \\ &- P(A \cap B) - P(A \cap C) - P(B \cap C) \\ &+ P(A \cap B \cap C). \end{split}$$

Simpson's Paradox

It is possible to have

$$P(A \mid B, C) < P(A \mid B^c, C) \text{ and } P(A \mid B, C^c) < P(A \mid B^c, C^c)$$
 yet also
$$P(A \mid B) > P(A \mid B^c).$$

Law of Total Probability (LOTP)

For LOTP with extra conditioning, just add in another event C!

$$P(A|C) = P(A|B_1, C)P(B_1|C) + \dots + P(A|B_n, C)P(B_n|C)$$

$$P(A|C) = P(A \cap B_1|C) + P(A \cap B_2|C) + \dots + P(A \cap B_n|C)$$

Special case of LOTP with B and B^c as partition:

$$P(A) = P(A|B)P(B) + P(A|B^c)P(B^c)$$

$$P(A) = P(A \cap B) + P(A \cap B^c)$$

Bayes' Rule

Bayes' Rule, and with extra conditioning (just add in C!)

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(A|B,C) = \frac{P(B|A,C)P(A|C)}{P(B|C)}$$

We can also write

$$P(A|B,C) = \frac{P(A,B,C)}{P(B,C)} = \frac{P(B,C|A)P(A)}{P(B,C)}$$

Odds Form of Bayes' Rule

$$\frac{P(A|B)}{P(A^c|B)} = \frac{P(B|A)}{P(B|A^c)} \frac{P(A)}{P(A^c)}$$

The $posterior\ odds$ of A are the $likelihood\ ratio$ times the $prior\ odds$.

Random Variables and their Distributions

PMF, CDF, and Independence

Probability Mass Function (PMF)

$$p_X(x) = P(X = x)$$

The PMF satisfies

$$p_X(x) \ge 0$$
 and $\sum_x p_X(x) = 1$

Cumulative Distribution Function (CDF)

$$F_X(x) = P(X \le x)$$

The CDF is an increasing, right-continuous function with

$$F_X(x) \to 0$$
 as $x \to -\infty$ and $F_X(x) \to 1$ as $x \to \infty$

IRVs

Indicator Random Variables

Props of IRVs
$$I_A^2 = I_A, I_A I_B = I_{A \cap B}$$
, and $I_{A \cup B} = I_A + I_B - I_A I_B$.

Distribution $I_A \sim \text{Bern}(p)$ where p = P(A).

Fundamental Bridge The expectation of the indicator for event A is the probability of event A: $E(I_A) = P(A)$.

Continuous RVs, LOTUS, UoU

Continuous Random Variables (CRVs)

What's the probability that a CRV is in an interval? Take the difference in CDF values (or use the PDF as described later).

$$P(a \le X \le b) = P(X \le b) - P(X \le a) = F_X(b) - F_X(a)$$

For $X \sim \mathcal{N}(\mu, \sigma^2)$, this becomes

$$P(a \le X \le b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$

What is the Probability Density Function (PDF)? The PDF f is the derivative of the CDF F.

$$F'(x) = f(x)$$

A PDF is nonnegative and integrates to 1. By the fundamental theorem of calculus, to get from PDF back to CDF we can integrate:

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

To find the probability that a CRV takes on a value in an interval, integrate the PDF over that interval.

$$F(b) - F(a) = \int_{a}^{b} f(x)dx$$

How do I find the expected value of a CRV? Analogous to the discrete case, where you sum x times the PMF, for CRVs you integrate x times the PDF.

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

LOTUS

Expected value of a function of an r.v. The expected value of X is defined this way:

$$E(X) = \sum_{x} x P(X = x)$$
 (for discrete X)

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx \text{ (for continuous } X)$$

The Law of the Unconscious Statistician (LOTUS) states that you can find the expected value of a function of a random variable, g(X), in a similar way, by replacing the x in front of the PMF/PDF by g(x) but still working with the PMF/PDF of X:

$$E(g(X)) = \sum_{x} g(x)P(X = x)$$
 (for discrete X)

$$E(g(X)) = \int_{-\infty}^{\infty} g(x)f(x)dx \text{ (for continuous } X)$$

What's a function of a random variable? A function of a random variable is also a random variable. For example, if X is the number of bikes you see in an hour, then g(X) = 2X is the number of bike wheels you see in that hour and

 $h(X) = {X \choose 2} = \frac{X(X-1)}{2}$ is the number of *pairs* of bikes such that you see both of those bikes in that hour.

Universality of Uniform (UoU)

When you plug any CRV into its own CDF, you get a Uniform(0,1) random variable. When you plug a Uniform(0,1) r.v. into an inverse CDF, you get an r.v. with that CDF. For example, let's say that a random variable X has CDF

$$F(x) = 1 - e^{-x}$$
, for $x > 0$

By UoU, if we plug X into this function then we get a uniformly distributed random variable.

$$F(X) = 1 - e^{-X} \sim \text{Unif}(0, 1)$$

Similarly, if $U \sim \text{Unif}(0,1)$ then $F^{-1}(U)$ has CDF F. The key point is that for any continuous random variable X, we can transform it into a Uniform random variable and back by using its CDF.

Moments and MGFs

Moments

Moments describe the shape of a distribution. Let X have mean μ and standard deviation σ , and $Z=(X-\mu)/\sigma$ be the standardized version of X. The kth moment of X is $\mu_k=E(X^k)$ and the kth standardized moment of X is $m_k=E(Z^k)$. The mean, variance, skewness, and kurtosis are important summaries of the shape of a distribution.

Mean $E(X) = \mu_1$

Variance $Var(X) = \mu_2 - \mu_1^2$

Skewness $Skew(X) = m_3$

Kurtosis $Kurt(X) = m_4 - 3$

Moment Generating Functions

 \mathbf{MGF} For any random variable X, the function

$$M_X(t) = E(e^{tX})$$

is the moment generating function (MGF) of X, if it exists for all t in some open interval containing 0. The variable t could just as well have been called u or v. It's a bookkeeping device that lets us work with the function M_X rather than the sequence of moments.

Why is it called the Moment Generating Function?

Because the kth derivative of the moment generating function, evaluated at 0, is the kth moment of X.

$$\mu_k = E(X^k) = M_X^{(k)}(0)$$

This is true by Taylor expansion of e^{tX} since

$$M_X(t) = E(e^{tX}) = \sum_{k=0}^{\infty} \frac{E(X^k)t^k}{k!} = \sum_{k=0}^{\infty} \frac{\mu_k t^k}{k!}$$

MGF of linear functions If we have Y = aX + b, then

$$M_Y(t) = E(e^{t(aX+b)}) = e^{bt}E(e^{(at)X}) = e^{bt}M_X(at)$$

Uniqueness If it exists, the MGF uniquely determines the distribution. This means that for any two random variables X and Y, they are distributed the same (their PMFs/PDFs are equal) if and only if their MGFs are equal.

Summing Independent RVs by Multiplying MGFs. If X and Y are independent, then

$$M_{X+Y}(t) = E(e^{t(X+Y)}) = E(e^{tX})E(e^{tY}) = M_X(t) \cdot M_Y(t)$$

The MGF of the sum of two random variables is the product of the MGFs of those two random variables.

Joint PDFs and CDFs

Joint Distributions

The **ioint CDF** of X and Y is

$$F(x,y) = P(X \le x, Y \le y)$$

In the discrete case, X and Y have a **joint PMF**

$$p_{X,Y}(x,y) = P(X = x, Y = y).$$

In the continuous case, they have a joint PDF

$$f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y).$$

The joint PMF/PDF must be nonnegative and sum/integrate to 1.

Conditional Distributions

Conditioning and Bayes' rule for discrete r.v.s

$$P(Y = y | X = x) = \frac{P(X = x, Y = y)}{P(X = x)} = \frac{P(X = x | Y = y)P(Y = y)}{P(X = x)}$$

Conditioning and Bayes' rule for continuous r.v.s

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{f_{X|Y}(x|y)f_Y(y)}{f_X(x)}$$

Hybrid Bayes' rule

$$f_X(x|A) = \frac{P(A|X=x)f_X(x)}{P(A)}$$

Marginal Distributions

To find the distribution of one (or more) random variables from a joint PMF/PDF, sum/integrate over the unwanted random variables.

$$P(X = x) = \sum_{y} P(X = x, Y = y)$$
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy$$

Independence of Random Variables

Random variables X and Y are independent if and only if any of the following conditions holds:

- Joint CDF is the product of the marginal CDFs
- Joint PMF/PDF is the product of the marginal PMFs/PDFs
- Conditional distribution of Y given X is the marginal distribution of Y

Multivariate LOTUS

LOTUS in more than one dimension is analogous to the 1D LOTUS. For discrete random variables:

$$E(g(X,Y)) = \sum_{x} \sum_{y} g(x,y) P(X=x,Y=y)$$

For continuous random variables:

$$E(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$$

Covariance and Transformations

Covariance and Correlation

 ${\bf Covariance}\;$ is the analog of variance for two random variables.

$$Cov(X, Y) = E((X - E(X))(Y - E(Y))) = E(XY) - E(X)E(Y)$$

Correlation is a standardized version of covariance that is always between -1 and 1.

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}$$

Covariance and Independence If two random variables are independent, then they are uncorrelated. The converse is not necessarily true (e.g., consider $X \sim \mathcal{N}(0,1)$ and $Y = X^2$).

$$X \perp\!\!\!\perp Y \longrightarrow \operatorname{Cov}(X,Y) = 0 \longrightarrow E(XY) = E(X)E(Y)$$

Covariance and Variance The variance of a sum can be found by

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

$$Var(X_1 + X_2 + \dots + X_n) = \sum_{i=1}^n Var(X_i) + 2\sum_{i < j} Cov(X_i, X_j)$$

If X and Y are independent then they have covariance 0, so

$$X \perp \!\!\!\perp Y \Longrightarrow \operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$$

If X_1, X_2, \ldots, X_n are identically distributed and have the same covariance relationships (often by **symmetry**), then

$$Var(X_1 + X_2 + \dots + X_n) = nVar(X_1) + 2\binom{n}{2}Cov(X_1, X_2)$$

Covariance Properties For random variables W, X, Y, Z and constants a, b:

$$Cov(X, Y) = Cov(Y, X)$$

$$Cov(X + a, Y + b) = Cov(X, Y)$$

$$Cov(aX, bY) = abCov(X, Y)$$

Correlation is location-invariant and scale-invariant For any constants a, b, c, d with a and c nonzero,

$$Corr(aX + b, cY + d) = Corr(X, Y)$$

Transformations

One Variable Transformations Let's say that we have a random variable X with PDF $f_X(x)$, but we are also interested in some function of X. We call this function Y = g(X). Also let y = g(x). If g is differentiable and strictly increasing (or strictly decreasing), then the PDF of Y is

$$f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right| = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|$$

The derivative of the inverse transformation is called the **Jacobian**.

Two Variable Transformations Similarly, let's say we know the joint PDF of U and V but are also interested in the random vector (X,Y) defined by (X,Y) = g(U,V). Let

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}$$

be the **Jacobian matrix**. If the entries in this matrix exist and are continuous, and the determinant of the matrix is never 0, then

$$f_{X,Y}(x,y) = f_{U,V}(u,v) \left\| \frac{\partial(u,v)}{\partial(x,y)} \right\|$$

The inner bars tells us to take the matrix's determinant, and the outer bars tell us to take the absolute value. In a 2×2 matrix,

$$\left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = |ad - bc|$$

Convolutions

Convolution Integral If you want to find the PDF of the sum of two independent CRVs X and Y, you can do the following integral:

$$f_{X+Y}(t) = \int_{-\infty}^{\infty} f_X(x) f_Y(t-x) dx$$

Example Let $X, Y \sim \mathcal{N}(0, 1)$ be i.i.d. Then for each fixed t,

$$f_{X+Y}(t) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \frac{1}{\sqrt{2\pi}} e^{-(t-x)^2/2} dx$$

By completing the square and using the fact that a Normal PDF integrates to 1, this works out to $f_{X+Y}(t)$ being the $\mathcal{N}(0,2)$ PDF.

Poisson Process

Definition We have a **Poisson process** of rate λ arrivals per unit time if the following conditions hold:

- 1. The number of arrivals in a time interval of length t is $Pois(\lambda t)$.
- Numbers of arrivals in disjoint time intervals are independent.

For example, the numbers of arrivals in the time intervals [0,5], (5,12), and [13,23) are independent with $Pois(5\lambda)$, $Pois(7\lambda)$, $Pois(10\lambda)$ distributions, respectively.

Count-Time Duality Consider a Poisson process of emails arriving in an inbox at rate λ emails per hour. Let T_n be the time of arrival of the nth email (relative to some starting time 0) and N_t be the number of emails that arrive in [0,t]. Let's find the distribution of T_1 . The event $T_1 > t$, the event that you have to wait more than t hours to get the first email, is the same as the event $N_t = 0$, which is the event that there are no emails in the first t hours. So

$$P(T_1 > t) = P(N_t = 0) = e^{-\lambda t} \longrightarrow P(T_1 \le t) = 1 - e^{-\lambda t}$$

Thus we have $T_1 \sim \text{Expo}(\lambda)$. By the memoryless property and similar reasoning, the interarrival times between emails are i.i.d. $\text{Expo}(\lambda)$, i.e., the differences $T_n - T_{n-1}$ are i.i.d. $\text{Expo}(\lambda)$.

Order Statistics

Definition Let's say you have n i.i.d. r.v.s X_1, X_2, \ldots, X_n . If you arrange them from smallest to largest, the ith element in that list is the ith order statistic, denoted $X_{(i)}$. So $X_{(1)}$ is the smallest in the list and $X_{(n)}$ is the largest in the list.

Note that the order statistics are dependent, e.g., learning $X_{(4)}=42$ gives us the information that $X_{(1)},X_{(2)},X_{(3)}$ are ≤ 42 and $X_{(5)},X_{(6)},\ldots,X_{(n)}$ are ≥ 42 .

Distribution Taking n i.i.d. random variables X_1, X_2, \ldots, X_n with CDF F(x) and PDF f(x), the CDF and PDF of $X_{(i)}$ are:

$$F_{X_{(i)}}(x) = P(X_{(i)} \le x) = \sum_{k=i}^{n} {n \choose k} F(x)^k (1 - F(x))^{n-k}$$

$$f_{X_{(i)}}(x) = n \binom{n-1}{i-1} F(x)^{i-1} (1 - F(x))^{n-i} f(x)$$

Conditional Expectation

Conditioning on an Event We can find E(Y|A), the expected value of Y given that event A occurred. A very important case is when A is the event X=x. Note that E(Y|A) is a *number*. For example:

- The expected value of a fair die roll, given that it is prime, is $\frac{1}{3} \cdot 2 + \frac{1}{3} \cdot 3 + \frac{1}{3} \cdot 5 = \frac{10}{3}$.
- Let Y be the number of successes in 10 independent Bernoulli trials with probability p of success. Let A be the event that the first 3 trials are all successes. Then

$$E(Y|A) = 3 + 7p$$

since the number of successes among the last 7 trials is $\mathrm{Bin}(7,p).$

Let T ~ Expo(1/10) be how long you have to wait until the shuttle comes. Given that you have already waited t minutes, the expected additional waiting time is 10 more minutes, by the memoryless property. That is, E(T|T>t) = t + 10.

$\begin{array}{ll} \textbf{Discrete } Y & \textbf{Continuous } Y \\ \\ E(Y) = \sum_y y P(Y=y) & E(Y) = \int_{-\infty}^{\infty} y f_Y(y) dy \\ \\ E(Y|A) = \sum_y y P(Y=y|A) & E(Y|A) = \int_{-\infty}^{\infty} y f(y|A) dy \end{array}$

Conditioning on a Random Variable We can also find E(Y|X), the expected value of Y given the random variable X. This is a function of the random variable X. It is not a number except in certain special cases such as if $X \perp \!\!\!\perp Y$. To find E(Y|X), find E(Y|X=x) and then plug in X for x. For example:

- If $E(Y|X = x) = x^3 + 5x$, then $E(Y|X) = X^3 + 5X$.
- Let Y be the number of successes in 10 independent
 Bernoulli trials with probability p of success and X be the
 number of successes among the first 3 trials. Then
 E(Y|X) = X + 7p.
- Let $X \sim \mathcal{N}(0,1)$ and $Y = X^2$. Then $E(Y|X=x) = x^2$ since if we know X = x then we know $Y = x^2$. And E(X|Y=y) = 0 since if we know Y = y then we know $X = \pm \sqrt{y}$, with equal probabilities (by symmetry). So $E(Y|X) = X^2$, E(X|Y) = 0.

Properties of Conditional Expectation

- 1. E(Y|X) = E(Y) if $X \perp \!\!\!\perp Y$
- 2. E(h(X)W|X) = h(X)E(W|X) (taking out what's known) In particular, E(h(X)|X) = h(X).
- 3. E(E(Y|X)) = E(Y) (**Adam's Law**, a.k.a. Law of Total Expectation)

Adam's Law (a.k.a. Law of Total Expectation) can also be written in a way that looks analogous to LOTP. For any events A_1, A_2, \ldots, A_n that partition the sample space,

$$E(Y) = E(Y|A_1)P(A_1) + \cdots + E(Y|A_n)P(A_n)$$

For the special case where the partition is A, A^c , this says

$$E(Y) = E(Y|A)P(A) + E(Y|A^c)P(A^c)$$

Eve's Law (a.k.a. Law of Total Variance)

$$Var(Y) = E(Var(Y|X)) + Var(E(Y|X))$$

LLN, CLT

Law of Large Numbers (LLN)

Let $X_1, X_2, X_3...$ be i.i.d. with mean μ . The sample mean is

$$\bar{X}_n = \frac{X_1 + X_2 + X_3 + \dots + X_n}{n}$$

The Law of Large Numbers states that as $n \to \infty$, $\bar{X}_n \to \mu$ with probability 1. For example, in flips of a coin with probability p of Heads, let X_j be the indicator of the jth flip being Heads. Then LLN says the proportion of Heads converges to p (with probability 1).

Central Limit Theorem (CLT)

Approximation using CLT

We use \sim to denote is approximately distributed. We can use the **Central Limit Theorem** to approximate the distribution of a random variable $Y = X_1 + X_2 + \cdots + X_n$ that is a sum of n i.i.d. random variables X_i . Let $E(Y) = \mu_Y$ and $Var(Y) = \sigma_Y^2$. The CLT says

$$Y \stackrel{.}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$$

If the X_i are i.i.d. with mean μ_X and variance σ_X^2 , then $\mu_Y = n\mu_X$ and $\sigma_Y^2 = n\sigma_X^2$. For the sample mean \bar{X}_n , the CLT says

$$\bar{X}_n = \frac{1}{n}(X_1 + X_2 + \dots + X_n) \stackrel{\cdot}{\sim} \mathcal{N}(\mu_X, \sigma_X^2/n)$$

Asymptotic Distributions using CLT

We use \xrightarrow{D} to denote converges in distribution to as $n \to \infty$. The CLT says that if we standardize the sum $X_1 + \cdots + X_n$ then the distribution of the sum converges to $\mathcal{N}(0,1)$ as $n \to \infty$:

$$\frac{1}{\sigma\sqrt{n}}(X_1 + \dots + X_n - n\mu_X) \xrightarrow{D} \mathcal{N}(0,1)$$

In other words, the CDF of the left-hand side goes to the standard Normal CDF, Φ . In terms of the sample mean, the CLT says

$$\frac{\sqrt{n}(\bar{X}_n - \mu_X)}{\sigma_X} \xrightarrow{D} \mathcal{N}(0, 1)$$

Markov Chains

Definition

Given the present, the past and future are conditionally independent. In symbols,

$$P(X_{n+1} = j | X_0 = i_0, X_1 = i_1, \dots, X_n = i) = P(X_{n+1} = j | X_n = i)$$

State Properties

A state is either recurrent or transient.

- If you start at a **recurrent state**, then you will always return back to that state at some point in the future.
- Otherwise you are at a transient state. There is some positive probability that once you leave you will never return.

A state is either periodic or aperiodic.

- If you start at a periodic state of period k, then the GCD of the possible numbers of steps it would take to return back is k > 1.
- Otherwise you are at an **aperiodic state**. The GCD of the possible numbers of steps it would take to return back is 1.

Transition Matrix

Let the state space be $\{1, 2, ..., M\}$. The transition matrix Q is the $M \times M$ matrix where element q_{ij} is the probability that the chain goes from state i to state j in one step:

$$q_{ij} = P(X_{n+1} = j | X_n = i)$$

To find the probability that the chain goes from state i to state j in exactly m steps, take the (i, j) element of Q^m .

$$q_{ij}^{(m)} = P(X_{n+m} = j | X_n = i)$$

If X_0 is distributed according to the row vector PMF \vec{p} , i.e., $p_j = P(X_0 = j)$, then the PMF of X_n is $\vec{p}Q^n$.

Chain Properties

A chain is **irreducible** if you can get from anywhere to anywhere. If a chain (on a finite state space) is irreducible, then all of its states are recurrent. A chain is **periodic** if any of its states are periodic, and is **aperiodic** if none of its states are periodic. In an irreducible chain, all states have the same period.

A chain is **reversible** with respect to \vec{s} if $s_i q_{ij} = s_j q_{ji}$ for all i, j. Examples of reversible chains include any chain with $q_{ij} = q_{ji}$, with $\vec{s} = (\frac{1}{M}, \frac{1}{M}, \dots, \frac{1}{M})$, and random walk on an undirected network.

Stationary Distribution

Let us say that the vector $\vec{s} = (s_1, s_2, \dots, s_M)$ be a PMF (written as a row vector). We will call \vec{s} the **stationary distribution** for the chain if $\vec{s}Q = \vec{s}$. As a consequence, if X_t has the stationary distribution, then all future X_{t+1}, X_{t+2}, \dots also have the stationary distribution.

For irreducible, aperiodic chains, the stationary distribution exists is unique, and s_i is the long-run probability of a chain being at state i. The expected number of steps to return to i starting from i is $1/s_i$.

To find the stationary distribution, you can solve the matrix equation $(Q'-I)\vec{s}'=0$. The stationary distribution is uniform if the columns of Q sum to 1.

Reversibility Condition Implies Stationarity If you have a PMF \vec{s} and a Markov chain with transition matrix Q, then $s_i q_{ij} = s_j q_{ji}$ for all states i, j implies that \vec{s} is stationary.

Random Walk on an Undirected Network

If you have a collection of **nodes**, pairs of which can be connected by undirected **edges**, and a Markov chain is run by going from the current node to a uniformly random node that is connected to it by an edge, then this is a random walk on an undirected network. The stationary distribution of this chain is proportional to the **degree sequence** (this is the sequence of degrees, where the degree of a node is how many edges are attached to it). For example, the stationary distribution of random walk on the network shown above is proportional to (3,3,2,4,2), so it's $(\frac{3}{14},\frac{3}{14},\frac{3}{14},\frac{4}{14},\frac{1}{14})$.

Continuous Distributions

Uniform Distribution

Let us say that U is distributed Unif(a, b). We know the following:

Properties of the Uniform For a Uniform distribution, the probability of a draw from any interval within the support is proportional to the length of the interval.

Uniform Order Statistics The *j*th order statistic of i.i.d. $U_1, \ldots, U_n \sim \text{Unif}(0, 1)$ is $U_{(j)} \sim \text{Beta}(j, n - j + 1)$.

Uniform(0,1) F(x) = x, for $x \in (0,1)$

Normal Distribution

Let us say that X is distributed $\mathcal{N}(\mu, \sigma^2)$. We know the following:

Central Limit Theorem The Normal distribution is ubiquitous because of the Central Limit Theorem, which states that the sample mean of i.i.d. r.v.s will approach a Normal distribution as the sample size grows, regardless of the initial distribution.

Location-Scale Transformation Every time we shift a Normal r.v. (by adding a constant) or rescale a Normal (by multiplying by a constant), we change it to another Normal r.v. For any Normal $X \sim \mathcal{N}(\mu, \sigma^2)$, we can transform it to the standard $\mathcal{N}(0, 1)$ by the following transformation:

$$Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

Standard Normal The Standard Normal, $Z \sim \mathcal{N}(0,1)$, has mean 0 and variance 1. Its CDF is denoted by Φ .

Exponential Distribution

Example The waiting time until the next shooting star is distributed Expo(4) hours. Here $\lambda=4$ is the **rate parameter**, since shooting stars arrive at a rate of 1 per 1/4 hour on average. The expected time until the next shooting star is $1/\lambda=1/4$ hour.

Expos as a rescaled Expo(1)

$$Y \sim \text{Expo}(\lambda) \to X = \lambda Y \sim \text{Expo}(1)$$

Memorylessness The Exponential Distribution is the only continuous memoryless distribution. The memoryless property says that for $X \sim \text{Expo}(\lambda)$ and any positive numbers s and t,

$$P(X > s + t | X > s) = P(X > t)$$

Equivalently,

$$X - a|(X > a) \sim \text{Expo}(\lambda)$$

Min of Expos If we have independent $X_i \sim \text{Expo}(\lambda_i)$, then $\min(X_1, \dots, X_k) \sim \text{Expo}(\lambda_1 + \lambda_2 + \dots + \lambda_k)$.

Max of Expos If we have i.i.d. $X_i \sim \text{Expo}(\lambda)$, then $\max(X_1, \dots, X_k)$ has the same distribution as $Y_1 + Y_2 + \dots + Y_k$, where $Y_i \sim \text{Expo}(j\lambda)$ and the Y_i are independent.

Exponential(
$$\lambda$$
) $F(x) = 1 - e^{-\lambda x}$, for $x \in (0, \infty)$

Gamma Distribution

Let us say that X is distributed $\operatorname{Gamma}(a, \lambda)$. We know the following:

Story You sit waiting for shooting stars, where the waiting time for a star is distributed $\text{Expo}(\lambda)$. You want to see n shooting stars before you go home. The total waiting time for the nth shooting star is $\text{Gamma}(n, \lambda)$.

Example You are at a bank, and there are 3 people ahead of you. The serving time for each person is Exponential with mean 2 minutes. Only one person at a time can be served. The distribution of your waiting time until it's your turn to be served is $Gamma(3, \frac{1}{2})$.

Beta Distribution

Conjugate Prior of the Binomial In the Bayesian approach to statistics, parameters are viewed as random variables, to reflect our uncertainty. The prior for a parameter is its distribution before observing data. The posterior is the distribution for the parameter after observing data. Beta is the conjugate prior of the Binomial because if you have a Beta-distributed prior on p in a Binomial, then the posterior distribution on p given the Binomial data is also Beta-distributed. Consider the following two-level model:

$$X|p \sim \text{Bin}(n, p)$$

 $p \sim \text{Beta}(a, b)$

Then after observing X = x, we get the posterior distribution

$$p|(X=x) \sim \text{Beta}(a+x,b+n-x)$$

Beta-Gamma relationship If $X \sim \text{Gamma}(a, \lambda)$, $Y \sim \text{Gamma}(b, \lambda)$, with $X \perp \!\!\!\perp Y$ then

- $\frac{X}{X+Y} \sim \text{Beta}(a,b)$
- $X + Y \perp \!\!\! \perp \frac{X}{X+Y}$

This is known as the bank-post office result.

χ^2 (Chi-Square) Distribution

Let us say that X is distributed χ_n^2 . We know the following:

Story A Chi-Square(n) is the sum of the squares of n independent standard Normal r.v.s.

Properties and Representations

$$X$$
 is distributed as $Z_1^2 + Z_2^2 + \dots + Z_n^2$ for i.i.d. $Z_i \sim \mathcal{N}(0,1)$
$$X \sim \operatorname{Gamma}(n/2,1/2)$$

Discrete Distributions

Distributions for four sampling schemes

	Replace	No Replace
Fixed # trials (n)	Binomial	HGeom
Draw until r success	(Bern if $n = 1$) NBin (Geom if $r = 1$)	NHGeom

Bernoulli Distribution

The Bernoulli distribution is the simplest case of the Binomial distribution, where we only have one trial (n = 1). Let us say that X is distributed Bern(p). We know the following:

Story A trial is performed with probability p of "success", and X is the indicator of success: 1 means success, 0 means failure.

Example Let X be the indicator of Heads for a fair coin toss. Then $X \sim \text{Bern}(\frac{1}{2})$. Also, $1 - X \sim \text{Bern}(\frac{1}{2})$ is the indicator of Tails.

Binomial Distribution

Sum of Bernoullis Let $X \sim \text{Bin}(n,p)$ and $X_j \sim \text{Bern}(p)$, where all of the Bernoullis are independent. Then

$$X = X_1 + X_2 + X_3 + \dots + X_n$$

Example If Jeremy Lin makes 10 free throws and each one independently has a $\frac{3}{4}$ chance of getting in, then the number of free throws he makes is distributed Bin(10, $\frac{3}{4}$).

Properties Let $X \sim \text{Bin}(n, p), Y \sim \text{Bin}(m, p)$ with $X \perp \!\!\! \perp Y$.

- Redefine success $n X \sim Bin(n, 1 p)$
- Sum $X + Y \sim Bin(n + m, p)$
- Conditional $X|(X+Y=r) \sim \mathrm{HGeom}(n,m,r)$
- Binomial-Poisson Relationship Bin(n, p) is approximately $Pois(\lambda)$ if p is small.
- Binomial-Normal Relationship Bin(n, p) is approximately $\mathcal{N}(np, np(1-p))$ if n is large and p is not near 0 or 1.

Geometric Distribution

Story X is the number of "failures" that we will achieve before we achieve our first success. Our successes have probability p.

Example If each pokeball we throw has probability $\frac{1}{10}$ to catch Mew, the number of failed pokeballs will be distributed Geom($\frac{1}{10}$)

First Success Distribution

Equivalent to the Geometric distribution, except that it includes the first success in the count. This is 1 more than the number of failures. If $X \sim FS(p)$ then E(X) = 1/p.

Negative Binomial Distribution

Let us say that X is distributed NBin(r, p). We know the following:

Story X is the number of "failures" that we will have before we achieve our rth success. Our successes have probability p.

Example Thundershock has 60% accuracy and can faint a wild Raticate in 3 hits. The number of misses before Pikachu faints Raticate with Thundershock is distributed NBin(3,0.6).

Hypergeometric Distribution

Let us say that X is distributed $\mathrm{HGeom}(w,b,n)$. We know the following:

Story In a population of w desired objects and b undesired objects, X is the number of "successes" we will have in a draw of n objects, without replacement. The draw of n objects is assumed to be a **simple random sample** (all sets of n objects are equally likely).

Examples Here are some HGeom examples.

- Let's say that we have only b Weedles (failure) and w
 Pikachus (success) in Viridian Forest. We encounter n
 Pokemon in the forest, and X is the number of Pikachus in
 our encounters.
- The number of Aces in a 5 card hand.
- You have w white balls and b black balls, and you draw n balls. You will draw X white balls.
- You have w white balls and b black balls, and you draw n balls without replacement. The number of white balls in your sample is $\operatorname{HGeom}(w,b,n)$; the number of black balls is $\operatorname{HGeom}(b,w,n)$.
- Capture-recapture A forest has N elk, you capture n of them, tag them, and release them. Then you recapture a new sample of size m. How many tagged elk are now in the new sample? HGeom(n, N n, m)

Poisson Distribution

Let us say that X is distributed $Pois(\lambda)$. We know the following:

Story There are rare events (low probability events) that occur many different ways (high possibilities of occurences) at an average rate of λ occurrences per unit space or time. The number of events that occur in that unit of space or time is X.

Example A certain busy intersection has an average of 2 accidents per month. Since an accident is a low probability event that can happen many different ways, it is reasonable to model the number of accidents in a month at that intersection as Pois(2). Then the number of accidents that happen in two months at that intersection is distributed Pois(4).

Properties Let $X \sim \text{Pois}(\lambda_1)$ and $Y \sim \text{Pois}(\lambda_2)$, with $X \perp \!\!\! \perp Y$.

- 1. Sum $X + Y \sim Pois(\lambda_1 + \lambda_2)$
- 2. Conditional $X|(X+Y=n) \sim \text{Bin}\left(n, \frac{\lambda_1}{\lambda_1 + \lambda_2}\right)$
- 3. Chicken-egg If there are $Z \sim \operatorname{Pois}(\lambda)$ items and we randomly and independently "accept" each item with probability p, then the number of accepted items $Z_1 \sim \operatorname{Pois}(\lambda p)$, and the number of rejected items $Z_2 \sim \operatorname{Pois}(\lambda (1-p))$, and $Z_1 \perp \!\!\! \perp Z_2$.

Multivariate Distributions

Multinomial Distribution

Let us say that the vector $\vec{X} = (X_1, X_2, X_3, \dots, X_k) \sim \text{Mult}_k(n, \vec{p})$ where $\vec{p} = (p_1, p_2, \dots, p_k)$.

Story We have n items, which can fall into any one of the k buckets independently with the probabilities $\vec{p} = (p_1, p_2, \dots, p_k)$.

Example Let us assume that every year, 100 students in the Harry Potter Universe are randomly and independently sorted into one of four houses with equal probability. The number of people in each of the houses is distributed $\operatorname{Mult}_4(100, \vec{p})$, where $\vec{p} = (0.25, 0.25, 0.25, 0.25)$. Note that $X_1 + X_2 + \cdots + X_4 = 100$, and they are dependent.

Joint PMF For $n = n_1 + n_2 + \cdots + n_k$,

$$P(\vec{X} = \vec{n}) = \frac{n!}{n_1! n_2! \dots n_k!} p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$$

Marginal PMF, Lumping, and Conditionals Marginally, $X_i \sim \text{Bin}(n,p_i)$ since we can define "success" to mean category i. If you lump together multiple categories in a Multinomial, then it is still Multinomial. For example, $X_i + X_j \sim \text{Bin}(n,p_i+p_j)$ for $i \neq j$ since we can define "success" to mean being in category i or j. Similarly, if k=6 and we lump categories 1-2 and lump categories 3-5, then

$$(X_1 + X_2, X_3 + X_4 + X_5, X_6) \sim \text{Mult}_3(n, (p_1 + p_2, p_3 + p_4 + p_5, p_6))$$

Conditioning on some X_i also still gives a Multinomial:

$$X_1, \dots, X_{k-1} | X_k = n_k \sim \text{Mult}_{k-1} \left(n - n_k, \left(\frac{p_1}{1 - p_k}, \dots, \frac{p_{k-1}}{1 - p_k} \right) \right)$$

Variances and Covariances We have $X_i \sim \text{Bin}(n, p_i)$ marginally, so $\text{Var}(X_i) = np_i(1 - p_i)$. Also, $\text{Cov}(X_i, X_j) = -np_ip_j$ for $i \neq j$.

Multivariate Uniform Distribution

See the univariate Uniform for stories and examples. For the 2D Uniform on some region, probability is proportional to area. Every point in the support has equal density, of value $\frac{1}{\text{area of region}}$. For the 3D Uniform, probability is proportional to volume.

Multivariate Normal (MVN) Distribution

A vector $\vec{X} = (X_1, X_2, \dots, X_k)$ is Multivariate Normal if every linear combination is Normally distributed, i.e., $t_1X_1 + t_2X_2 + \dots + t_kX_k$ is Normal for any constants t_1, t_2, \dots, t_k . The parameters of the Multivariate Normal are the **mean vector** $\vec{\mu} = (\mu_1, \mu_2, \dots, \mu_k)$ and the **covariance matrix** where the (i, j) entry is $Cov(X_i, X_j)$.

Properties The Multivariate Normal has the following properties.

- Any subvector is also MVN.
- If any two elements within an MVN are uncorrelated, then they are independent.

• The joint PDF of a Bivariate Normal (X, Y) with $\mathcal{N}(0, 1)$ marginal distributions and correlation $\rho \in (-1, 1)$ is

$$f_{X,Y}(x,y) = \frac{1}{2\pi\tau} \exp\left(-\frac{1}{2\tau^2}(x^2 + y^2 - 2\rho xy)\right),$$

with
$$\tau = \sqrt{1 - \rho^2}$$
.

Distribution Properties

Convolutions of Random Variables

A convolution of n random variables is simply their sum. For the following results, let X and Y be independent.

- 1. $X \sim \text{Pois}(\lambda_1), Y \sim \text{Pois}(\lambda_2) \longrightarrow X + Y \sim \text{Pois}(\lambda_1 + \lambda_2)$
- 2. $X \sim \text{Bin}(n_1, p), Y \sim \text{Bin}(n_2, p)$ $\longrightarrow X + Y \sim \text{Bin}(n_1 + n_2, p)$. Bin(n, p) can be thought of as a sum of i.i.d. Bern(p) r.v.s.
- 3. $X \sim \text{Gamma}(a_1, \lambda), Y \sim \text{Gamma}(a_2, \lambda)$ $\longrightarrow X + Y \sim \text{Gamma}(a_1 + a_2, \lambda). \text{ Gamma}(n, \lambda) \text{ with } n \text{ an integer can be thought of as a sum of i.i.d. Expo}(\lambda) \text{ r.v.s.}$
- 4. $X \sim \text{NBin}(r_1, p), Y \sim \text{NBin}(r_2, p)$ $\longrightarrow X + Y \sim \text{NBin}(r_1 + r_2, p). \text{NBin}(r, p)$ can be thought of as a sum of i.i.d. Geom(p) r.v.s.
- 5. $X \sim \mathcal{N}(\mu_1, \sigma_1^2), Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$ $\longrightarrow X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

Special Cases of Distributions

- 1. $Bin(1, p) \sim Bern(p)$
- 2. Beta(1, 1) $\sim \text{Unif}(0, 1)$
- 3. $Gamma(1, \lambda) \sim Expo(\lambda)$
- 4. $\chi_n^2 \sim \text{Gamma}\left(\frac{n}{2}, \frac{1}{2}\right)$
- 5. $NBin(1, p) \sim Geom(p)$

Inequalities

- 1. Cauchy-Schwarz $|E(XY)| \leq \sqrt{E(X^2)E(Y^2)}$
- 2. Markov $P(X \ge a) \le \frac{E|X|}{a}$ for a > 0
- 3. Chebyshev $P(|X \mu| \ge a) \le \frac{\sigma^2}{a^2}$ for $E(X) = \mu$, $Var(X) = \sigma^2$
- 4. **Jensen** $E(g(X)) \ge g(E(X))$ for g convex; reverse if g is concave

Formulas

Geometric Series

$$1 + r + r^{2} + \dots + r^{n-1} = \sum_{k=0}^{n-1} r^{k} = \frac{1 - r^{n}}{1 - r}$$
$$1 + r + r^{2} + \dots = \frac{1}{1 - r} \text{ if } |r| < 1$$

Exponential Function (e^x)

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$$

Gamma and Beta Integrals

You can sometimes solve complicated-looking integrals by pattern-matching to a gamma or beta integral:

$$\int_0^\infty x^{t-1} e^{-x} \, dx = \Gamma(t) \qquad \qquad \int_0^1 x^{a-1} (1-x)^{b-1} \, dx = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

Also, $\Gamma(a+1) = a\Gamma(a)$, and $\Gamma(n) = (n-1)!$ if n is a positive integer.

Euler's Approximation for Harmonic Sums

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \approx \log n + 0.577\dots$$

Stirling's Approximation for Factorials

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Miscellaneous Definitions

Medians and Quantiles Let X have CDF F. Then X has median m if $F(m) \ge 0.5$ and $P(X \ge m) \ge 0.5$. For X continuous, m satisfies F(m) = 1/2. In general, the ath quantile of X is $\min\{x: F(x) \ge a\}$; the median is the case a = 1/2.

 \log Statisticians generally use log to refer to natural log (i.e., base e).

i.i.d r.v.s Independent, identically-distributed random variables.

Example Problems

Typos on a Single Page

A textbook has n typos randomly scattered amongst its n pages, independently. What is the probability that a random page has no typos? **Answer:** There is a $\left(1-\frac{1}{n}\right)$ probability that any specific

typo isn't on your page, and thus a $\left(1-\frac{1}{n}\right)^n$ probability that

there are no typos on your page. For \overline{n} large, this is approximately $e^{-1}=1/e.$

Unique and Matching Birthdays

In a group of n people, what is the expected number of distinct birthdays (month and day)? What is the expected number of birthday matches? **Answer:** Let X be the number of distinct birthdays and I_j be the indicator for the jth day being represented.

$$E(I_i) = 1 - P(\text{no one born on day } j) = 1 - (364/365)^n$$

By linearity, $E(X) = 365 (1 - (364/365)^n)$. Now let Y be the number of birthday matches and J_i be the indicator that the ith pair of people have the same birthday. The probability that any two specific people share a birthday is 1/365, so

$$E(Y) = \binom{n}{2}/365$$

Hat Matching, Secret Santa

Expected number of people who leave with their own hat? **Answer:** Each hat has a 1/n chance of going to the right person. By linearity, the average number of hats that go to their owners is $\boxed{n(1/n)=1}$.

Coupon Collector (FS)

random coupon type. What is the expected number of coupons needed until you have a complete set? **Answer:** Let N be the number of coupons needed; we want E(N). Let $N = N_1 + \cdots + N_n$, where N_1 is the draws to get our first new coupon, N_2 is the additional draws needed to draw our second new coupon and so on. By the story of the First Success, $N_2 \sim \text{FS}((n-1)/n)$ (after collecting first coupon type, there's (n-1)/n chance you'll get something new). Similarly, $N_3 \sim \text{FS}((n-2)/n)$, and $N_i \sim \text{FS}((n-j+1)/n)$. By linearity,

There are n coupon types. At each draw, you get a uniformly

$$E(N) = E(N_1) + \dots + E(N_n) = \frac{n}{n} + \frac{n}{n-1} + \dots + \frac{n}{1} = n \sum_{j=1}^{n} \frac{1}{j}$$

This is approximately $n(\log(n) + 0.577)$ by Euler's approximation.

Draws Before First Ace

Answer: Consider a non-Ace. Denote this to be card j. Let I_j be the indicator that card j will be drawn before the first Ace. Note that $I_j = 1$ says that j is before all 4 of the Aces in the deck. The probability that this occurs is 1/5 by symmetry. Let X be the number of cards drawn before the first Ace. Then $X = I_1 + I_2 + ... + I_{48}$, where each indicator corresponds to one of

 $X = I_1 + I_2 + ... + I_{48}$, where each indicator corresponds to one of the 48 non-Aces. Thus,

$$E(X) = E(I_1) + E(I_2) + \dots + E(I_{48}) = 48/5 = \boxed{9.6}$$

Pattern-matching with e^x Taylor series

For $X \sim \text{Pois}(\lambda)$, find $E\left(\frac{1}{X+1}\right)$. **Answer:** By LOTUS,

$$E\left(\frac{1}{X+1}\right) = \sum_{k=0}^{\infty} \frac{1}{k+1} \frac{e^{-\lambda} \lambda^k}{k!} = \frac{e^{-\lambda}}{\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k+1}}{(k+1)!} = \boxed{\frac{e^{-\lambda}}{\lambda} (e^{\lambda} - 1)}$$

Adam's Law and Eve's Law

Each day William attempts $N \sim \operatorname{Geom}(s)$ Rubik's Cubes. Suppose each time, he has probability p of solving the cube, independently. Let T be the number of Rubik's Cubes he solves during a day. Find the mean and variance of T. Answer: Note that $T|N \sim \operatorname{Bin}(N,p)$. So by Adam's Law,

$$E(T) = E(E(T|N)) = E(Np) = \boxed{\frac{p(1-s)}{s}}$$

Similarly, by Eve's Law, we have that

$$Var(T) = E(Var(T|N)) + Var(E(T|N)) = E(Np(1-p)) + Var(Np)$$

$$= \frac{p(1-p)(1-s)}{s} + \frac{p^2(1-s)}{s^2} = \boxed{\frac{p(1-s)(p+s(1-p))}{s^2}}$$

MGF - Finding Moments

Find $E(X^3)$ for $X \sim \operatorname{Expo}(\lambda)$ using the MGF of X. **Answer:** The MGF of an $\operatorname{Expo}(\lambda)$ is $M(t) = \frac{\lambda}{\lambda - t}$. To get the third moment, we can take the third derivative of the MGF and evaluate at t = 0:

$$E(X^3) = \frac{6}{\lambda^3}$$

But a much nicer way to use the MGF here is via pattern recognition: note that M(t) looks like it came from a geometric series:

$$\frac{1}{1 - \frac{t}{\lambda}} = \sum_{n=0}^{\infty} \left(\frac{t}{\lambda}\right)^n = \sum_{n=0}^{\infty} \frac{n!}{\lambda^n} \frac{t^n}{n!}$$

The coefficient of $\frac{t^n}{n!}$ here is the *n*th moment of *X*, so we have $E(X^n) = \frac{n!}{\lambda^n}$ for all nonnegative integers *n*.

Stationary Distributions, Validating Reversibility

Suppose X_n is a two-state Markov chain with transition matrix

$$Q = \begin{pmatrix} 0 & 1 \\ 1 & \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}$$

Find the stationary distribution $\vec{s} = (s_0, s_1)$ of X_n by solving $\vec{s}Q = \vec{s}$, and show that the chain is reversible with respect to \vec{s} . **Answer:** The equation $\vec{s}Q = \vec{s}$ says that

$$s_0 = s_0(1 - \alpha) + s_1\beta$$
 and $s_1 = s_0(\alpha) + s_0(1 - \beta)$

By solving this system of linear equations, we have

$$\vec{s} = \left(\frac{\beta}{\alpha + \beta}, \frac{\alpha}{\alpha + \beta}\right)$$

To show that the chain is reversible with respect to \vec{s} , we must show $s_i q_{ij} = s_j q_{ji}$ for all i, j. This is done if we can show $s_0 q_{01} = s_1 q_{10}$. And indeed,

$$s_0 q_{01} = \frac{\alpha \beta}{\alpha + \beta} = s_1 q_{10}$$