Tema 1.- Introducción a la Visión Artificial Visión Artificial Avanzada

Prof. Dr. Nicolás Luis Fernández García

Departamento de Informática y Análisis Numérico Universidad de Córdoba

Segmentación

Segmentación

Segmentación

Introducción

- Segmentación
 - Introducción
 - Algoritmos orientados a regiones
 - Algoritmos orientados a los bordes

Segmentación

Introducción

Segmentación

- El análisis de la imagen requiere una reducción de la cantidad de información.
- La segmentación permite identificar las partes significativas de la imagen.

Segmentación

Introducción

Definición (Segmentación)

- Proceso que permite identificar regiones que representen
 - objetos
 - o partes significativas de los objetos.
- Cada región debe
 - ser homogénea
 - diferenciarse de las regiones adyacentes y del fondo,
 - tener una gran relación con un elemento del mundo real.

Segmentación

Introducción

Definición (Segmentación)

Descomposición de la imagen X en regiones R_1, \dots, R_N tal que:

$$X = \bigcup_{i=1}^{N} R_i$$
 $R_i \cap R_j = \emptyset$ $i \neq j$
 $P(R_i) = Verdadero$ $\forall i \in \{1, 2, ..., N\}$
 $P(R_i \cup R_j) = Falso$ $i \neq j$

donde

- R_i: región o parte significativa la imagen
- P(): predicado lógico que indica un criterio de homogeneidad

Segmentación

Introducción

Segmentación: propiedades

- Similitud: los puntos de una región deben tener valores similares de una propiedad:
 - Nivel de gris
 - Color
 - Textura
 - Etc.
- Conectividad: los puntos de una región han de estar conectados entre sí.
- Discontinuidad: las regiones se deben diferenciar del fondo y tener unos bordes definidos.

Segmentación

Introducción

Segmentación: dificultades

- Similitud: la iluminación influye en que los puntos de un componente de la imagen no tenga valores similares: brillo, ruido, etc.
- Conectividad: las oclusiones u ocultamientos parciales pueden impedir que puntos de un mismo componente estén conectados entre sí.
- **Discontinuidad**: los bordes pueden no estar bien definidos (contornos no cerrados o con bucles).

Segmentación

Introducción

Segmentación: tipos de algoritmos

- Orientados a las regiones (Region-based methods)
- Orientados a los bordes (Edge-based methods)
- Etc.

Segmentación

Algoritmos orientados a regiones

- Segmentación
 - Introducción
 - Algoritmos orientados a regiones
 - Algoritmos orientados a los bordes

Segmentación

Algoritmos orientados a regiones

Algoritmos orientados a regiones

- Intentan detectar las regiones ocupadas por los objetos presentes en una imagen.
- Cada región está compuesta por puntos con
 - propiedades homogéneas
 - y diferentes a las del resto de las regiones y del fondo.

Segmentación

Algoritmos orientados a regiones

Algoritmos orientados a regiones

Tipos

- Umbralización de regiones
- Crecimiento de regiones
- Partición y fusión de regiones
- Etc.

Segmentación

Algoritmos orientados a regiones: Umbralización de regiones

- Segmentación
 - Algoritmos orientados a regiones
 - Umbralización de regiones
 - Crecimiento de regiones
 - Partición y fusión de regiones

Segmentación

Algoritmos orientados a regiones

Umbralización de regiones

- Método muy simple.
- Computacionalmente eficiente.
- Muy útil si la imagen está formada por objetos que constrastan con el fondo.

Segmentación

Algoritmos orientados a regiones

Segmentación

Algoritmos orientados a regiones

Segmentación

Algoritmos orientados a regiones

Umbralización de regiones

- Histograma bimodal
 - Lo genera una imagen con un objeto claro sobre un fondo oscuro.
 - Acumulación de la izquierda: corresponde al fondo de la imagen.
 - Acumulación de la derecha: asociada al objeto.
 - **Zona de transición**: valle que establece el límite de separación entre el objeto y el fondo.

Segmentación

Algoritmos orientados a regiones

Umbralización de regiones

- Histograma bimodal
 - Los puntos con un nivel de intensidad menor que dicho umbral pertenecerán al fondo de la imagen.
 - El resto de puntos formarán parte del objeto.

Segmentación

Algoritmos orientados a regiones

Nota (Umbralización de regiones)

Dificultades

- Una imagen no siempre tiene un único objeto sobre el fondo.
- Cada objeto debe estar formado por puntos con un rango de niveles de intensidad distinto al de los demás objetos y al del fondo.
- Los objetos también se caracterizan por propiedades distintas al nivel de intensidad, como, por ejemplo, su textura.

Segmentación

Algoritmos orientados a regiones

Segmentación

Algoritmos orientados a regiones

Umbralización de regiones

Algoritmo general

- Sea f una imagen formada por N objetos O_1, O_2, \dots, O_N , (uno de ellos es el fondo).
- Selectionar N-1 umbrales $U_1, U_2, \cdots, U_{N-1}$ a partir del histograma.
- Generar una nueva imagen g

$$g(x,y) = \begin{cases} g_1 & \text{si } 0 \le f(x,y) < U_1 \\ g_2 & \text{si } U_1 \le f(x,y) < U_2 \\ \vdots \\ g_N & \text{si } U_{N-1} \le f(x,y) \le 255 \end{cases}$$

Segmentación

Algoritmos orientados a regiones

Umbralización de regiones: tipos de algoritmos

Global

- Calcula un único umbral a partir de los valores de todos los puntos: f(x, y).
- Útil si el contraste de los objetos frente al fondo es relativamente constante.

• Local o adaptativa

- También utiliza propiedades locales de los puntos.
- Por ejemplo: valor medio de intensidad de un vecindario centrado en cada punto.

Dinámica

• Además, tiene en cuenta las coordenadas de cada punto: (x, y).

Segmentación

Algoritmos orientados a regiones

Nota (Umbralización de regiones: tipos de algoritmos)

Los algoritmos locales y dinámicos son útiles cuando

- el fondo de la imagen varía a lo largo de ésta.
- el contraste de los objetos es cambiante.

Segmentación

Algoritmos orientados a regiones: Crecimiento de regiones

- Segmentación
 - Algoritmos orientados a regiones
 - Umbralización de regiones
 - Crecimiento de regiones
 - Partición y fusión de regiones

Segmentación

Algoritmos orientados a regiones

Crecimiento de regiones

- Fase inicial: regiones iniciales del tamaño de un punto (semillas).
- Crecimiento: cada punto se añade a la región contigua con propiedades similares (nivel de gris, color, textura, etc.).
- 3 Comprobación de fronteras adyacentes: medida de consistencia.
 - Frontera fuerte: propiedades medias son sensiblemente diferentes.
 - Frontera débil, en caso contrario.
 - Las fronteras débiles se eliminan, permitiendo la unión de las regiones a las que separaban.

Segmentación

Algoritmos orientados a regiones

Segmentación

Algoritmos orientados a regiones

Crecimiento de regiones

- Dificultades implícitas
 - Elección de las semillas
 - Cada región debe tener al menos una semilla representativa.
 - Cada semilla debe estar situada dentro del contorno de la región a la que representa.
 - Complejidad:
 - Se deben elegir adecuadamente las propiedades y los criterios que controlarán el crecimiento de las regiones.
- Ventaja
 - Robustez:
 - Ofrecen una mejor respuesta en presencia de ruido.
 - En este criterio, superan a los algoritmos de detección de bordes.

Segmentación

Algoritmos orientados a regiones: Partición y fusión de regiones

- Segmentación
 - Algoritmos orientados a regiones
 - Umbralización de regiones
 - Crecimiento de regiones
 - Partición y fusión de regiones

Segmentación

Algoritmos orientados a regiones

Partición y fusión de regiones

- Fase inicial: la imagen original se considera que es una región.
- 2 Comprobación
 - (a) Si P(R) = falso entonces partición
 - (i) R se divide en 4 regiones de igual tamaño: R_1 , R_2 , R_3 y R_4
 - (ii) Para cada región R_i ($i \in \{1, \dots, 4\}$) se repite el paso 2.
 - (b) Si P(R) = verdadero entonces **fusión**
 - (i) Si R es adyacente a R_i, \dots, R_j , $P(R_i) = verdadero, \dots, P(R_i) = verdadero$ y $P(R \cup R_i \cup \dots \cup R_j) = verdadero$ entonces se **fusionan** en una nueva región $R' = R \cup R_i \cup \dots \cup R_j$.
 - (ii) Se comprueba si la nueva región R' se puede fusionar con otras regiones adyacentes (paso 2 b).

Segmentación

Algoritmos orientados a regiones

Segmentación

Algoritmos orientados a los bordes

- Segmentación
 - Introducción
 - Algoritmos orientados a regiones
 - Algoritmos orientados a los bordes

Segmentación

Algoritmos orientados a los bordes: Introducción

- Segmentación
 - Algoritmos orientados a los bordes
 - Introducción
 - Detección de bordes en imágenes monocromáticas
 - Detección de bordes en imágenes en color
 - Evaluación de algoritmos de detección de bordes en color

Segmentación

Algoritmos orientados a los bordes

Introducción

Los algoritmos orientados a los bordes

- Tratan de extraer los objetos de la imagen localizando sus contornos o fronteras.
- Generan como salida una imagen denominada mapa de bordes.
- El mapa de bordes puede incluir información explícita sobre
 - la posición
 - la fuerza o intensidad
 - la orientación

Segmentación

Algoritmos orientados a los bordes

Imagen en color

Mapa de bordes

Segmentación

Algoritmos orientados a los bordes

Introducción

Relevancia de los bordes

- Los bordes contienen una información esencial de la imagen.
- Muy usados en tareas del procesamiento digital de imágenes:
 - Realce de imágenes
 - Segmentación de imágenes
 - Compresión de imágenes
 - Reconocimiento de objetos
 - Reconstrucción 3D
 - Ftc.
- El rendimiento de estas tareas depende de la precisión con la que los bordes sean detectados.

Segmentación

Algoritmos orientados a los bordes

Definición (Borde)

Discontinuidad en algún atributo de la imagen

Segmentación

Algoritmos orientados a los bordes

Introducción

Atributos utilizados en la detección de bordes

- Intensidad luminosa de los niveles de gris de la imagen: atributo más utilizado
- Color: importancia
 - Proporciona más información que una imagen monocromática.
 - La información adicional del color es relevante.
 - Permite detectar bordes provocados por cambios de tono (hue) de color pero con un mismo nivel de intensidad luminosa.
 - La detección de bordes en color supera a la detección monocromática de bordes si el contraste bajo.

Segmentación

Algoritmos orientados a los bordes

Introducción

Causas físicas de los bordes

- Iluminación
- Reflejos
- Sombras
- Geometría de los objetos
- Profundidad de los objetos en la escena
- Ocultaciones parciales de los objetos
- Textura de los objetos
- Cambios de color
- Etc.

Segmentación

Algoritmos orientados a los bordes

Imagen en color con bordes provocados por diferentes motivos.

Segmentación

Algoritmos orientados a los bordes: Detección de bordes en imágenes monocromáticas

- Segmentación
 - Algoritmos orientados a los bordes
 - Introducción
 - Detección de bordes en imágenes monocromáticas
 - Detección de bordes en imágenes en color
 - Evaluación de algoritmos de detección de bordes en color

Segmentación

Algoritmos orientados a los bordes

- Detección de bordes en imágenes monocromáticas
 - Bordes de las imágenes monocromáticas.
 - Clasificación de los detectores de bordes monocromáticos.
 - Diseño de los detectores de bordes monocromáticos
 - Suavización de la imagen.
 - Diferenciación de la imagen.
 - Identificación de los bordes.

Segmentación

Algoritmos orientados a los bordes

- Detección de bordes en imágenes monocromáticas
 - Bordes de las imágenes monocromáticas.
 - Clasificación de los detectores de bordes monocromáticos.
 - Diseño de los detectores de bordes monocromáticos.
 - Suavización de la imagen.
 - Diferenciación de la imagen.
 - Identificación de los bordes.

Segmentación

Algoritmos orientados a los bordes

Definición (Bordes de las imágenes monocromáticas)

Se corresponden con los cambios o discontinuidades de la función de intensidad de los niveles de gris.

Segmentación

Borde ideal tipo escalón o salto

Perfil de la función de intensidad a lo largo de una línea horizontal

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Borde de tipo escalón

- Aparece cuando coinciden dos regiones homogéneas con niveles de gris muy diferentes entre sí.
- El borde se sitúa en el punto en el cual la discontinuidad de los niveles de gris se produce.
- La mayoría de los detectores de bordes han sido diseñados para este tipo de bordes
- Se caracteriza por su ruido, contraste, pendiente y anchura.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Tipos de bordes

- Escalón o salto (step edge).
- Rampa (ramp edge):
 - Con pendiente cóncava (concave slope)
 - Con pendiente convexa (convex slope)
 - o con ambas
- Escalera (staircase edge).
- Pico (peak edge), cresta (ridge edge) o pulso (pulse edge).
- Valle (valley edge).
- Tejado (roof edge).

Segmentación

Algoritmos orientados a los bordes

Tipos de bordes: (a) escalón o salto, (b) rampa convexa, (c) rampa cóncava,

(d) escalera, (e) valle, (f) tejado, (g) y (h) pico o pulso

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Tipos de bordes según la forma geométrica

- Líneas rectas con cualquier dirección
- Líneas curvas
- Uniones (junctions)
- Esquinas (corners)

Segmentación

Imagen con un borde del tipo T-unión

Segmentación

Algoritmos orientados a los bordes

- Detección de bordes en imágenes monocromáticas
 - Bordes de las imágenes monocromáticas.
 - Clasificación de los detectores de bordes monocromáticos.
 - Diseño de los detectores de bordes monocromáticos.
 - Suavización de la imagen.
 - Diferenciación de la imagen.
 - Identificación de los bordes.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Clasificación de los detectores de bordes monocromáticos

- Autónomos
- Contextuales

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Clasificación de los detectores de bordes monocromáticos

- Autónomos
 - No utilizan ningún conocimiento a priori: ni del sistema de visión ni información contextual.
 - Procesamiento local: bordes identificados mediante el análisis de los puntos de su entorno.
 - Flexibles: no limitados a imágenes específicas y apropiados para sistemas de visión de propósito general.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Clasificación de los detectores de bordes monocromáticos

- Contextuales
 - Utilizan conocimiento a priori del borde o la escena que van a procesar.
 - Dependen de los resultados de otros componentes del sistema de visión.
 - Están limitados a un contexto preciso donde las imágenes procesadas siempre incluyen los mismos objetos.

Segmentación

Algoritmos orientados a los bordes

Nota (Detectores de bordes contextuales)

Los detectores de bordes contextuales que han sido propuestos son muy pocos en comparación con los autónomos.

Segmentación

Algoritmos orientados a los bordes

- Detección de bordes en imágenes monocromáticas
 - Bordes de las imágenes monocromáticas.
 - Clasificación de los detectores de bordes monocromáticos.
 - Diseño de los detectores de bordes monocromáticos.
 - Suavización de la imagen.
 - Diferenciación de la imagen.
 - Identificación de los bordes.

Segmentación

Algoritmos orientados a los bordes

- La mayoría de los algoritmos de detección de bordes en imágenes monocromáticas han sido diseñados para bordes de tipo salto o escalón
- También se han diseñado algoritmos específicos para la detección de líneas, uniones y esquinas.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Fases

- Suavización: atenuar el ruido de la imagen para asegurar una correcta detección de los bordes.
- Diferenciación: calcular las derivadas de la imagen para resaltar las características de los bordes.
- Identificación: localizar los bordes reales y suprimir los falsos bordes.

Segmentación

Algoritmos orientados a los bordes

Fases de la detección de bordes

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Otros modelos

- Ajuste paramétrico
- Morfología matemática
- Análisis de texturas
- Teoría de conjuntos borrosos
- Redes neuronales
- Algoritmos genéticos
- Etc.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Se dice que un problema matemático está "bien planteado" si

- Tiene solución
- La solución es única
- Es robusto frente al ruido

Segmentación

Algoritmos orientados a los bordes

- Diferenciación numérica de la imagen
 - Problema mal planteado porque su solución no es robusta frente al ruido.
- Solución
 - La suavización sirve para regularizar la imagen, provocando que la operación de diferenciación esté bien planteada.

Segmentación

Algoritmos orientados a los bordes

- Estas tres operaciones están estrechamente relacionadas:
 - La suavización regulariza la diferenciación
 - La identificación de los bordes depende del funcionamiento de las otras dos operaciones.
- Si la etapa de suavización reduce el ruido sin pérdida de información, la supresión de bordes falsos se puede hacer más fácilmente.

Segmentación

Algoritmos orientados a los bordes

- El diseño de un detector de bordes usando estas tres operaciones es incompleto
- Sería deseable
 - seleccionar una aplicación concreta en la que vaya a ser usado el detector de bordes.
 - tener en cuenta la escala.
 - considerar las características de los tipos de bordes que haya que detectar.

Segmentación

Algoritmos orientados a los bordes

- Detección de bordes en imágenes monocromáticas
 - Bordes de las imágenes monocromáticas.
 - Clasificación de los detectores de bordes monocromáticos.
 - Diseño de los detectores de bordes monocromáticos.
 - Suavización de la imagen.
 - Diferenciación de la imagen.
 - Identificación de los bordes.

Segmentación

Algoritmos orientados a los bordes

Detectores de bordes monocromáticos

Suavización

- Permite que la diferenciación de la imagen sea más robusta frente al ruido.
- Se debe establecer la resolución o escala.
- Dilema: reducción de ruido o pérdida de información.
- Objetivo: diseñar el detector de bordes que asegure la reducción de ruido y la conservación del borde.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Características de la suavización de la imagen

- Efectos positivos: reduce el ruido presente en la imagen y asegura una robusta detección de los bordes.
- Efectos negativos: pérdida de información.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Métodos de suavización más utilizados

- Filtros espaciales lineales, especialmente los filtros de paso bajo y el filtro de la gaussiana.
- Filtros de suavización mediante aproximación.

Segmentación

Algoritmos orientados a los bordes

- Detección de bordes en imágenes monocromáticas
 - Bordes de las imágenes monocromáticas.
 - Clasificación de los detectores de bordes monocromáticos.
 - Diseño de los detectores de bordes monocromáticos.
 - Suavización de la imagen.
 - Diferenciación de la imagen.
 - Identificación de los bordes.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Diferenciación de la imagen

- Bordes: puntos de la imagen en los que se producen discontinuidades o cambios bruscos en el nivel de intensidad.
- Los cambios de intensidad pueden ser acentuados mediante operaciones de diferenciación.
- Resultado de la diferenciación: representación de la imagen que facilita la extracción de las propiedades de los bordes.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Diferenciación de la imagen

- Métodos
 - Derivadas de primer orden (v.g.: el gradiente).
 - Derivadas de segundo orden (v.g.: el laplaciano).
 - Criterios de optimización.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Diferenciación de la imagen

- Identificación de los bordes:
 - Localización de los extremos (máximos o mínimos) de la primera derivada de la función de intensidad.
 - Localización de los cruces por cero (zero crossings) o transiciones de valores negativos a positivos, o viceversa, de la segunda derivada de la función de intensidad.

Segmentación

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Diferenciación de la imagen

- Primera derivada
 - Siempre presenta un extremo (máximo o mínimo) en los puntos situados exactamente en un borde.
- Segunda derivada
 - Se produce un cruce por cero (zero-crossing) en un punto situado exactamente en el borde.
 - La función corta el eje de abscisas en dicho punto, pasando de un valor positivo a otro negativo, o viceversa.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Diferenciación de la imagen

- La primera derivada en un punto de la imagen es obtenida usando la magnitud del gradiente.
- La segunda derivada es obtenida usando el laplaciano.

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Diferenciación de la imagen

• Gradiente: vector $\vec{\nabla} f(x,y)$ que indica la dirección de máxima variación de la función en dicho punto,

$$\vec{\nabla} f(x,y) = (G_x(x,y), G_y(x,y)) = \left(\frac{\partial f}{\partial x}(x,y), \frac{\partial f}{\partial y}(x,y)\right)$$

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Diferenciación de la imagen: gradiente

Magnitud

$$||\vec{\nabla}f(x,y)|| = \sqrt{G_x^2(x,y) + G_y^2(x,y)}$$

Dirección

$$\alpha(x,y) = \arctan\left(\frac{G_y(x,y)}{G_x(x,y)}\right)$$

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Diferenciación de la imagen: gradiente

 Los puntos de la imagen que pertenecen a los bordes son aquéllos que dan un valor máximo en la magnitud del gradiente.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Diferenciación de la imagen: gradiente

- Módulo del gradiente:
 - Operador invariante a rotaciones y no lineal.
 - Se calcula usando sólo las derivadas en x e y.

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Diferenciación de la imagen: gradiente

- Para evitar la complejidad del cálculo de la raíz cuadrada, se pueden utilizar aproximaciones al módulo del gradiente.
 - Suma:

$$||\vec{\nabla} f(x,y)|| \approx |G_x(x,y)| + |G_y(x,y)|$$

Máximo

$$||\vec{\nabla} f(x,y)|| \approx \textit{máximo}(|G_x(x,y)|,|G_y(x,y)|)$$

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Diferenciación de la imagen: operadores para calcular el gradiente

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$\left[\begin{array}{c|c} \hline 0 & 1 \\ -1 & 0 \end{array}\right] \qquad \quad \frac{1}{3} \left[\begin{array}{ccc} -1 & -1 & -1 \\ 0 & \overline{0} & 0 \\ 1 & 1 & 1 \end{array}\right] \qquad \quad \frac{1}{4} \left[\begin{array}{ccc} -1 & -2 & -1 \\ 0 & \overline{0} & 0 \\ 1 & 2 & 1 \end{array}\right]$$

$$\frac{1}{4} \left[\begin{array}{cccc} -1 & -2 & -1 \\ 0 & \boxed{0} & 0 \\ 1 & 2 & 1 \end{array} \right]$$

Roberts

Sobel

$$\frac{1}{5} \left[\begin{array}{cccc} -1 & -1 & -1 \\ 1 & -2 & 1 \\ 1 & 1 & 1 \end{array} \right]$$

Robinson

Kirsch

Isotrópico

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Diferenciación de la imagen: derivadas de segundo orden

• Los operadores se definen usando las derivadas parciales:

$$\frac{\partial^2 f}{\partial x^2}, \frac{\partial^2 f}{\partial x \partial y} y \frac{\partial^2 f}{\partial y^2}.$$

- Operadores de segundo orden más utilizados:
 - Operador laplaciano.
 - Derivadas direccionales de segundo orden en la dirección del gradiente.

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Diferenciación de la imagen: derivadas de segundo orden

• Estos operadores son definidos por:

$$\nabla^2 f(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y)$$

У

$$\frac{\partial^2 f}{\partial \vec{n}^2}(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y)\cos^2(\alpha) + \frac{\partial^2 f}{\partial x \partial y}(x,y) \operatorname{sen}(\alpha)\cos(\alpha) + \frac{\partial^2 f}{\partial y^2}(x,y) \operatorname{sen}^2(\alpha)$$

donde \vec{n} es la dirección del gradiente.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Diferenciación de la imagen: derivadas de segundo orden

- Localización de los bordes
 - Puntos donde se producen los cruces por cero de las derivadas de segundo orden.
- Inconvenientes
 - Suavizan demasiado la forma de la imagen: v. g., las esquinas nítidas se suelen perder.
 - Tienden a crear bordes con lazos cerrados (efecto de plato de espagueti).

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Diferenciación de la imagen: derivadas de segundo orden

Formas del calcular el operador laplaciano

Utilizando la conectividad 4.

$$\nabla^2 f(x,y) \equiv f(x+1,y) + f(x-1,y) + f(x,y-1) + f(x,y+1) - 4f(x,y)$$

Utilizando la conectividad 8.

$$\nabla^2 f(x,y) \equiv f(x+1,y) + f(x-1,y) + f(x,y-1) + f(x,y+1) + f(x+1,y+1) + f(x+1,y-1) + f(x-1,y+1) + f(x-1,y+1) - 8f(x,y)$$

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Diferenciación de la imagen: derivadas de segundo orden

Máscaras del operador laplaciano

$$\left[\begin{array}{cccc}
0 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & 0
\end{array}\right] \qquad \left[\begin{array}{cccc}
1 & 1 & 1 \\
1 & -8 & 1 \\
1 & 1 & 1
\end{array}\right]$$

Conectividad 4

Conectividad 8.

Segmentación

Algoritmos orientados a los bordes

Imagen original

Imagen generada por el operador laplaciano (conectividad 4)

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Diferenciación de la imagen: derivadas de segundo orden

- Inconvenientes del operador laplaciano
 - Muy sensible al ruido (característica propia de los operadores de derivadas de segundo orden).
 - Produce respuestas dobles para un mismo borde.
 - No permite calcular la dirección del borde.

Nota

Debido a estas razones, el operador laplaciano tiene generalmente un papel secundario como detector de bordes.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Diferenciación de la imagen: derivadas de segundo orden

- Mejora del operador laplaciano
 - Combinación con una operación de suavización que utilice la función gaussiana
 - Laplaciano de la función gaussiana (LoG)

$$\nabla^2(G(x,y)*f(x,y))$$

Operadores lineales e intercambiables

$$(\nabla^2 G(x,y)) * f(x,y)$$

Segmentación

Algoritmos orientados a los bordes

Nota

- El laplaciano de la función gaussiana es independiente de la imagen.
- Puede ser computado previamente, reduciéndose la complejidad de la operación de composición.

Segmentación

Algoritmos orientados a los bordes

Laplaciano de la función gaussiana ($\sigma = 1$)

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Diferenciación de la imagen: derivadas de segundo orden

• Versión unidimensional del laplaciano de la función gaussiana:

$$\nabla^2 G(x) = \frac{-1}{\sqrt{2\pi}\sigma^3} \left(1 - \frac{x^2}{\sigma^2} \right) e^{\left(-\frac{x^2}{2\sigma^2} \right)}$$

Segmentación

Algoritmos orientados a los bordes

Laplaciano bidimensional de la función gaussiana ($\sigma=1$)

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Diferenciación de la imagen: derivadas de segundo orden

• Versión bidimensional del laplaciano de la función gaussiana.

$$\nabla^2 G(x,y) = \frac{-1}{2\pi\sigma^4} \left(1 - \frac{x^2 + y^2}{\sigma^2} \right) e^{\left(-\frac{x^2 + y^2}{2\sigma^2}\right)}$$

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Diferenciación de la imagen: derivadas de segundo orden

- Características del operador laplaciano de la función gaussiana.
 - Medida eficiente y estable de los cambios de la imagen.
 - La suavización de la función gaussiana elimina la influencia de los puntos situados a una distancia inferior a 3σ del punto actual.
 - Bordes localizados en los puntos donde se producen cruces por cero.

Segmentación

Algoritmos orientados a los bordes

Nota

 Experimentos neurofisiológicos
 La retina del ojo humano realiza operaciones muy similares a las realizadas por el laplaciano de la función gaussiana.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

- Algoritmo de Canny
- Algoritmo de Deriche
- Algoritmo de Shen
- Algoritmo de Spacek

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

- Problemas de la deteción óptima de bordes:
 - La definición de los criterios de optimización.
 - El diseño de un detector que optimice estos criterios.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

- Características propuestas por Canny para un buen detector de bordes:
 - Buena detección: debe encontrar todos los bordes que haya en la imagen pero sin incluir ningún punto espurio (robusto en presencia de ruido).
 - Buena localización: la distancia entre los bordes detectados y los reales deber ser tan pequeña como sea posible.
 - Unicidad de la respuesta: no debe identificar múltiples bordes donde sólo hay uno.

Segmentación

Algoritmos orientados a los bordes

Sensible al ruido Pobre localización Múltiples respuestas.

Defectos en la detección de bordes

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Detectores de bordes basados en criterios de optimización

• Operador de Canny:

$$h(x) = e^{\alpha x} (a_1 sen(\omega x) + a_2 cos(\omega x)) + e^{-\alpha x} (a_3 sen(\omega x) + a_4 cos(\omega x)) - \frac{\lambda_1}{2}$$

• Primera derivada de la función gaussiana:

$$G'(x) = \frac{-x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}}$$

Segmentación

Algoritmos orientados a los bordes

Operador de Canny

Primera derivada de la función gaussiana ($\sigma = 0.3$)

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

- Pasos de la extensión del operador de Canny a dos dimensiones:
 - Convolución de la imagen con un operador de una función gaussiana bidimensional simétrica.
 - Posterior diferenciación en la dirección del gradiente.

Segmentación

Algoritmos orientados a los bordes

Algoritmos orientados a los bordes

- Detección de bordes en imágenes monocromáticas
 - Bordes de las imágenes monocromáticas.
 - Clasificación de los detectores de bordes monocromáticos.
 - Diseño de los detectores de bordes monocromáticos
 - Suavización de la imagen.
 - Diferenciación de la imagen.
 - Identificación de los bordes.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

- Objetivos:
 - Localización de los bordes.
 - Supresión de los bordes falsos.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

- Técnicas secuenciales.
- Técnicas paralelas.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

- Técnicas secuenciales:
 - Un punto pertenece o no a un borde según los resultados obtenidos por el detector en algunos puntos examinados previamente.
 - Su funcionamiento depende:
 - de la elección del punto inicial apropiado
 - y del proceso de selección del siguiente punto que vaya a ser procesado.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

- Técnicas paralelas:
 - Un punto pertenece o no a un bordes según los valores de dicho punto y de su entorno.
 - Se puede aplicar simultáneamente a todos puntos de la imagen.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

- Métodos basados en el gradiente:
 Puntos donde la magnitud del gradiente alcanza un máximo local.
- Métodos basados en las derivadas de segundo orden:
 Puntos donde se produce un cruce por cero en dicha derivada.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

- Métodos basados en el gradiente:
 - Umbralización del histograma de niveles de gris.
 - Se genera una imagen binaria denominada mapa de bordes.
 - Un nivel de gris para los bordes (normalmente en blanco).
 - y otro para el resto de la imagen (en negro).

Segmentación

Algoritmos orientados a los bordes

(a) Imagen

(c) Histograma de (b)

(b) Suavización y diferenciación

(d) Umbralización (U = 50)

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

Identificación de los bordes

• Imagen binaria b(x, y) generada por umbralización:

$$b(x,y) = \begin{cases} 0 & \text{si } g(x,y) < U \\ 1 & \text{si } g(x,y) \ge U \end{cases}$$

donde

- g(x, y): magnitud del gradiente en el punto (x, y)
- U: umbral seleccionado
- 0: color negro
- 1: color blanco.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

- Métodos de umbralización
 - Global: un único umbral para toda la imagen.
 - Local o adaptativa:
 - Se calcula un umbral para cada punto ((x, y).
 - Se tiene en cuenta sus propiedades locales.
 - Por ejemlo: valor medio de intensidad de un vecindario centrado en (x, y).
 - Dinámica: además, el umbral depende de las coordenadas (x, y) de cada punto.

Segmentación

Algoritmos orientados a los bordes

Nota

La mayoría de los métodos de detección de bordes han utilizado un umbral global pero también se han usado umbrales locales.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

- Fundamentos teóricos usados en la umbralización de un histograma:
 - Porcentaje de puntos de los bordes de los objetos respecto del total de la imagen.
 - Media y la varianza del ruido.
 - Búsqueda de mínimos.
 - Concavidad o convexidad del histograma.
 - Agrupación de clases o clustering del histograma.
 - Redes Neuronales.
 - Etc.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

- Umbralización mediante histéresis (Canny, 1986):
 - Muy usado en la detección de bordes.
 - Selecciona dos umbrales: uno inferior U_i y otro superior U_s :
 - Si g(x,y) ≥ U_s entonces (x,y) es considerado como punto de borde.
 - Si $U_s > g(x,y) \ge U_i$ y está conectado a un punto de borde entonces (x,y) también es considerado como punto de borde.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

- Umbralización mediante histéresis (Canny):
 - Un conjunto de puntos conectados es un borde:
 - si el valor de todos los puntos de la lista está por encima del umbral inferior.
 - y al menos uno está por encima del umbral superior.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

- Características de la umbralización:
 - Ventajas
 - Técnica sencilla.
 - Coste computacional muy bajo.
 - Inconvenientes
 - Si se elige un umbral muy bajo
 Se generan bordes gruesos (más de un punto de anchura).
 Es necesaria una fase posterior de adelgazamiento (thinning) o equeletización (skeletization).
 - Si se elige un umbral muy alto:
 Se generan bordes desconectados o rotos.
 Se requiere una fase de enlazamiento de bordes (edge linking).

Segmentación

Algoritmos orientados a los bordes

Bordes gruesos

Bordes adelgazados

Segmentación

Algoritmos orientados a los bordes

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

- Supresión de no máximos locales:
 - Idea básica:
 - Suprimir los puntos que no son máximos locales del módulo del gradiente.
 - 2 Umbralizar la imagen resultante
 - Evita el problema del adelgazamiento de los bordes.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes monocromáticas

- Algoritmo de Canny (1983) para la supresión de no máximos locales.
 - Localizar el máximo local a lo largo de la dirección del vector gradiente.
 - Determinar el tamaño del vecindario del punto que se va comprobar si es un máximo local.
 - Interpolar los valores del módulo del gradiente de los puntos del vecindario en los que corte la recta que pasa por el punto central.
 - y que tiene como dirección su vector gradiente.
 - Esta interpolación es necesaria puesto que los puntos obtenidos en la intersección pueden no ser reales.

Segmentación

Algoritmos orientados a los bordes

Interpolación para suprimir no máximos locales

Segmentación

Algoritmos orientados a los bordes

(a) Gradiente de una imagen

(b) Supresión de no máximos locales

(c) Umbralización de (b).

Segmentación

Algoritmos orientados a los bordes: Detección de bordes en imágenes en color

- Segmentación
 - Algoritmos orientados a los bordes
 - Introducción
 - Detección de bordes en imágenes monocromáticas
 - Detección de bordes en imágenes en color
 - Evaluación de algoritmos de detección de bordes en color

Segmentación

Algoritmos orientados a los bordes

Definición (Bordes de imágenes en color)

- Un borde es una discontinuidad en el espacio tridimensional de color.
- Estas discontinuidades pueden ser producidas por cambios en una o en varias de las componentes del espacio de color.

Segmentación

Algoritmos orientados a los bordes

Bordes provocados por cambios en los planos de color

Segmentación

Algoritmos orientados a los bordes

Ejemplo (Bordes provocados por cambios en los planos de color)

- Zona 1: cambio en el plano rojo
- Zona 2: cambio en los planos verde y azul
- Zona 3: cambio en los tres planos de color
- Zona 3 i: cambio en los tres planos de color, pero manteniendo el nivel de intensidad

Segmentación

Algoritmos orientados a los bordes

Criterios para clasificar los bordes de las imágenes en color

- su origen
- los cambios en un espacio vectorial
- la información de color de su alrededor

Segmentación

Algoritmos orientados a los bordes

Tipos de bordes de las imágenes en color según su origen

Bordes provocados por

- formas geométricas.
- reflejos.
- sombra.
- cambios de materiales.

Segmentación

Algoritmos orientados a los bordes

Definición (Bordes de imágenes en color)

Si la imagen en color se considera como un espacio vectorial tridimensional

$$\vec{f}(x,y) = (rojo(x,y), verde(x,y), azul(x,y))$$

entonces un borde es una discontinuidad significativa en dicho campo vectorial.

Segmentación

Algoritmos orientados a los bordes

Bordes de imágenes en color

Tipos de bordes

- Escalón: cambio abrupto en el campo vectorial.
- Rampa: cambio gradual en el campo vectorial.

Segmentación

Algoritmos orientados a los bordes

Bordes de imágenes en color

Clasificación según la información de color de su alrededor

- Identifica el perfil de cada borde según las características de color que poseen los dos lados contiguos al borde.
- Caracterizan los fenómenos físicos que provocan los cambios de intensidad.

Segmentación

Algoritmos orientados a los bordes

Bordes provocados por fenómenos físicos.

Segmentación

Algoritmos orientados a los bordes

Bordes de imágenes en color

Clasificación según la información de color de su alrededor (1/3)

- Albedo:
 - Hay un cambio pero no existe ninguna discontinuidad sustancial de profundidad.
- Oclusión (occlusion):
 - Dos regiones de objetos diferentes se encuentran en el borde.
 - No existe ninguna sombra entre los dos objetos.

Segmentación

Algoritmos orientados a los bordes

Bordes de imágenes en color

Clasificación según la información de color de su alrededor (2/3)

- Sombra (shadow): dos regiones pertenecen a una región homogénea de un objeto.
 - Una región se corresponde con la sombra proyectada por otro objeto.
 - La otra región está directamente iluminada por una fuente de luz.
- Cresta (ridge)
 - Dos regiones se juntan en una cresta o valle de un objeto.

Segmentación

Algoritmos orientados a los bordes

Bordes de imágenes en color

Clasificación según la información de color de su alrededor (3/3)

- Compuesto (compound)
 - Dos objetos se solapan, proyectando uno de ellos su sombra sobre el otro.
- Contacto (touch):
 - Dos regiones pertenecen a dos objetos que se tocan o están muy próximos.
 - La iluminación es atenuada en el hueco que separa a los objetos.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

Requisitos para su diseño

- Seleccionar el **espacio de color**
- Seleccionar el filtro de suavización para atenuar el ruido
- Indicar los fundamentos teóricos:
 - Extensiones o variantes de técnicas monocromáticas,
 - Diseñadas específicamente para imágenes en color o multiespectrales.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

Espacios de color usados por los detectores de bordes

- RGB: espacio de color más utilizado
- YT_1T_2 , rgb o el espacio de los colores contrarios (opponent colors space) (R G, Y B)
- YIQ: detección de bordes provocados sólo por cambios de color
- *HSV*: para evitar las reflexiones especulares
- Perceptualmente uniforme (HSI o L*a*b*):
 - evitan la correlación de los planos de color de RGB
 - separan la información cromática de los niveles de intensidad,
- Uso combinado de espacios de color: HSI y RGB

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

Suavización de imágenes en color

- Extensión de métodos de suavización de imágenes monocromáticas
- Métodos basados en los filtros vectoriales direccionales

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

Fundamentos teóricos

- Detectores de bordes basados en técnicas monocromáticas.
- Detectores de bordes que consideran a la imagen en color como un campo vectorial.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

Fundamentos teóricos

- Detectores de bordes basados en técnicas monocromáticas.
 - Los detectores monocromáticos de bordes son utilizados o adaptados para ser aplicados a imágenes en color.
- Detectores de bordes que consideran a la imagen en color como un campo vectorial.

Segmentación

Algoritmos orientados a los bordes

Detectores de bordes en color basados en técnicas monocromáticas

- 1.- Métodos que no utilizan la información cromática de la imagen en color.
- Métodos que reducen la dimensionalidad de la imagen en color.
- 3.- Métodos que utilizan la fusión de bordes.
- 4.- Métodos que combinan gradientes monocromáticos.

Segmentación

Algoritmos orientados a los bordes

Detectores de bordes en color basados en técnicas monocromáticas

- 1.- Detectores que no utilizan de la información cromática
 - Componente de intensidad del espacio de color
 - I del espacio de color HSI
 - Y del espacio de color YIQ
 - Etc.
 - Cálculo de la intensidad como la media aritmética de los planos de color

$$I(x,y) = \frac{1}{3}(R(x,y) + G(x,y) + B(x,y))$$

Segmentación

Algoritmos orientados a los bordes

Imagen en color

Imagen monocromática

Algoritmos orientados a los bordes

Detectores de bordes en color basados en técnicas monocromáticas

2.- Reducción de la dimensionalidad de la imagen en color

Segmentación

Algoritmos orientados a los bordes

Detectores de bordes en color basados en técnicas monocromáticas

- 2.- Detectores que reducen la dimensionalidad de la imagen en color
 - Métodos basados en una métrica de color
 - Los bordes son detectados en los puntos donde se produce alguna discontinuidad de la métrica definida.
 - Métodos basados en la proyección sobre un eje
 - La información de color de cada punto es considerada como un vector tridimensional que puede ser proyectado sobre un eje.

Segmentación

Algoritmos orientados a los bordes

Detectores de bordes en color basados en técnicas monocromáticas

- 3.- Detectores basados en la fusión de bordes
 - Pasos
 - 1 Descomposición de la imagen en sus componentes de color.
 - Obtención del mapa de bordes de cada componente usando una técnica monocromática.
 - § Fusión de los mapas bordes detectados en cada componente de color.

Algoritmos orientados a los bordes

Detectores de bordes en color basados en técnicas monocromáticas

3.- Detectores basados en la fusión de bordes

Segmentación

Algoritmos orientados a los bordes

Detectores de bordes en color basados en técnicas monocromáticas

- 3.- Detectores basados en la fusión de bordes
 - Tipos de fusiones
 - Aplicación de alguna operación lógica
 - Uso restricciones de uniformidad.
 - Minimización
 - Regularización basada en la curvatura de los bordes

Segmentación

Algoritmos orientados a los bordes

Detectores de bordes en color basados en técnicas monocromáticas

- 4.- Detectores basados en los gradientes monocromáticos
 - 1 Descomposición de la imagen en sus componentes de color.
 - Cálculo del gradiente monocromático en cada componente de color
 - 3 Combinación de los gradientes monocromáticos para calcular el gradiente de la imagen en color.
 - Identificación de los bordes mediante umbralización
 Se puede combinar con
 - una fase previa de supresión no máximos locales
 - una fase posterior de adelgazamiento de bordes.

Algoritmos orientados a los bordes

Detectores de bordes en color basados en técnicas monocromáticas

4.- Detectores basados en los gradientes monocromáticos

Algoritmos orientados a los bordes

Detectores de bordes en color basados en técnicas monocromáticas

- 4.- Detectores basados en los gradientes monocromáticos
 - Tipos de combinación de los gradientes (1/2)
 - Suma de los gradientes monocromáticos

$$\overrightarrow{\nabla f}(x,y) = \overrightarrow{\nabla} R(x,y) + \overrightarrow{\nabla} G(x,y) + \overrightarrow{\nabla} B(x,y)$$

• Suma de las magnitudes de los gradientes monocromáticos.

$$||\overrightarrow{\nabla f}(x,y)|| = ||\overrightarrow{\nabla}R(x,y)|| + ||\overrightarrow{\nabla}G(x,y)|| + ||\overrightarrow{\nabla}B(x,y)||$$

Algoritmos orientados a los bordes

Detectores de bordes en color basados en técnicas monocromáticas

- 4.- Detectores basados en los gradientes monocromáticos
 - Tipos de combinación de los gradientes (2/2)
 - Máximo de las magnitudes de los gradientes monocromáticos

$$||\overrightarrow{\nabla f}(x,y)|| = \max\{||\overrightarrow{\nabla}R(x,y)||, ||\overrightarrow{\nabla}G(x,y)||, ||\overrightarrow{\nabla}B(x,y)||\}$$

 Raíz cuadrada de la suma de los cuadrados de las magnitudes de los gradientes monocromáticos.

$$||\overrightarrow{\nabla f}(x,y)|| = \sqrt{||\vec{\nabla}R(x,y)||^2 + ||\vec{\nabla}G(x,y)||^2 + ||\vec{\nabla}B(x,y)||^2}$$

Segmentación

Algoritmos orientados a los bordes

Detectores de bordes en color basados en técnicas monocromáticas

- 4.-Detectores basados en los gradientes monocromáticos
 - Inconvenientes
 - No se tiene en cuenta la posible correlación entre las componentes del espacio de color.
 - La suma de los gradientes monocromáticos puede no detectar todos los bordes en el caso de que los gradientes tengan direcciones opuestas.
 - Los otros métodos pueden detectar falsos bordes, porque no consideran la dirección de los gradientes.

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

Fundamentos teóricos

- Detectores de bordes basados en técnicas monocromáticas.
- Detectores de bordes que consideran a la imagen en color como un campo vectorial.
 - Se asocia a cada punto (x, y) un vector tridimensional del espacio de color utilizado.

$$\vec{f}(x,y) = (R(x,y), G(x,y), B(x,y))$$

Segmentación

Algoritmos orientados a los bordes

Detectores que consideran a las imágenes en color como campos vectoriales

- Reducción de la dimensionalidad mediante la proyección de los vectores sobre un eje
- Ordenamiento de vectores.
- Vector gradiente multidimensional.
- Derivadas de segundo orden.
- Entropía.
- Histogramas.
- Etc.

Segmentación

Algoritmos orientados a los bordes

Detectores de bordes en color basados en el vector gradiente

- Formas de calcular el vector gradiente
 - 1.- Estimación mediante una distancia métrica.
 - 2.- Gradiente multidimensional.
 - 3.- Operadores vectoriales direccionales.
 - 4.- Operadores basados en la diferencia de vectores.

Segmentación

Algoritmos orientados a los bordes

Detectores de bordes en color basados en el vector gradiente

- Formas de calcular el vector gradiente
 - 1.- Estimación mediante una distancia métrica
 - 2.- Gradiente multidimensional.
 - 3.- Operadores vectoriales direccionales.
 - 4.- Operadores basados en la diferencia de vectores.

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

- 1.- Estimación del vector gradiente mediante una distancia métrica
 - Magnitud del gradiente

$$||\overrightarrow{\nabla f}(x_0, y_0)|| = \max_{i=1,...8} \{||\overrightarrow{f}(x_i, y_i) - \overrightarrow{f}(x_0, y_0)||\}$$

donde $|| \cdots ||$ representa la norma euclídea L_2

- Dirección del gradiente:
 - Dirección del vector que une el punto central con el punto en el que se ha alcanzado el máximo.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

- 1.- Estimación del vector gradiente mediante una distancia métrica
 - Distancias métricas alternativas:
 - Distancia de la ciudad de los bloques o norma L_1
 - Distancia de ajedrez o norma L_{∞}
 - Distancia angular
 - Combinación de la distancia euclídea y la distancia angular

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

1.- Estimación del vector gradiente mediante una distancia métrica

- Variantes:
 - Detector borroso (fuzzy): combina
 - una función normalizada de contraste de tono (normalized hue contrast) definida en el espacio de color HSI
 - la distancia euclídea en el espacio de color RGB
 - Detector basado en el espacio de color CIE Lab: utiliza
 - Compass operator
 - Earth mover's distance

Segmentación

Algoritmos orientados a los bordes

Detectores de bordes en color basados en el vector gradiente

- Formas de calcular el vector gradiente
 - 1.- Estimación mediante una distancia métrica.
 - 2.- Gradiente multidimensional.
 - 3.- Operadores vectoriales direccionales.
 - 4.- Operadores basados en la diferencia de vectores.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

2.- Gradiente multidimensional

- Detector de Di Zenzo (1986)
 - Calcular el gradiente de una imagen multidimensional usando los operadores direccionales
 - Evita el problema de la combinación de los gradientes monocromáticos

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

2.- Gradiente multidimensional

- Operadores direccionales
 - Horizontal

$$\vec{u}(x,y) = \frac{\partial R}{\partial x}(x,y)\vec{r} + \frac{\partial G}{\partial x}(x,y)\vec{g} + \frac{\partial B}{\partial x}(x,y)\vec{b}$$

Vertical

$$\vec{v}(x,y) = \frac{\partial R}{\partial y}(x,y)\vec{r} + \frac{\partial G}{\partial y}(x,y)\vec{g} + \frac{\partial B}{\partial y}(x,y)\vec{b}$$

 \vec{r} , \vec{g} y \vec{b} : vectores unitarios de los ejes R, G y B, respectivamente.

164 /

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

2.- Gradiente multidimensional

• Componentes de un tensor simétrico

$$g_{xx}(x,y) = \vec{u}(x,y) \cdot \vec{u}(x,y)$$

$$g_{yy}(x,y) = \vec{v}(x,y) \cdot \vec{v}(x,y)$$

$$g_{xy}(x,y) = g_{yx}(x,y) = \vec{u}(x,y) \cdot \vec{v}(x,y)$$

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

- 2.- Gradiente multidimensional
 - Magnitud del vector gradiente de \vec{f} en cada punto (x,y)

$$df^{2} = F(\theta)$$

$$= \frac{1}{2} \qquad (g_{xx}(x, y) + g_{yy}(x, y) + (g_{xx}(x, y) - g_{yy}(x, y))\cos(2\theta) + 2g_{xy}(x, y)\sin(2\theta)$$

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

2.- Gradiente multidimensional

- El valor de θ que maximiza la función F permite obtener la dirección y la magnitud del gradiente
- Problema que se debe resolver:

$$\frac{\partial F(\theta)}{\partial \theta} = 0$$

ullet Valores de heta candidatos para alcanzar el valor máximo

$$\begin{array}{ll} \theta &= \frac{1}{2} arctan \left(\frac{2 g_{xy}(x,y)}{g_{xx}(x,y) - g_{yy}(x,y)} \right) \\ y & \theta \pm \frac{\pi}{2} \end{array}$$

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

2.- Gradiente multidimensional

- Entre los valores candidatos de θ , se elige el valor θ_0 que maximice $F(\theta)$.
- ullet Dirección del gradiente: $heta_0$
- Magnitud del gradiente: $\sqrt{F(\theta_0)}$

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

2.- Gradiente multidimensional

- Métodos de identificación de los bordes
 - Umbralizar el valor de $\sqrt{F(\theta_0)}$ o de $F(\theta_0)$
 - Localizar los máximos locales en la dirección del gradiente

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

2.- Gradiente multidimensional

 Métodos para calcular los gradientes en los planos de color rojo (R)

$$\frac{\partial R}{\partial x}, \frac{\partial R}{\partial y}, \frac{\partial G}{\partial x}, \frac{\partial G}{\partial y}, \frac{\partial B}{\partial x}, \frac{\partial B}{\partial y}$$

- Di Zenzo (1986): operador de Sobel
- Drewniok (1994): operador de Canny (1986)
- Chapron (1992): método de Deriche (1987), que, a su vez, está basado en el detector de Canny.

Segmentación

Algoritmos orientados a los bordes

Nota (Detección de bordes en imágenes en color)

2.- Gradiente multidimensional

- Dificultades
 - No se puede calcular la dirección del gradiente cuando
 - $\bullet \ g_{xx} = g_{yy} \ y \ g_{xy} = 0$
 - o los valores de g_{xx} y g_{yy} están muy próximos

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

2.- Gradiente multidimensional

Solución: matriz jacobiana (Lee, Novak, Saber):

$$D(x,y) = \begin{bmatrix} \frac{\partial R}{\partial x}(x,y) & \frac{\partial G}{\partial x}(x,y) & \frac{\partial B}{\partial x}(x,y) \\ \frac{\partial R}{\partial y}(x,y) & \frac{\partial G}{\partial y}(x,y) & \frac{\partial B}{\partial y}(x,y) \end{bmatrix}$$

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

2.- Gradiente multidimensional

- Método de la matriz jacobiana
 - Se define una distancia de color d entre $\vec{f}(x, y)$ y $\vec{f}(x + n_1, y + n_2)$,

$$d = \sqrt{\vec{n} \ D \ D^T \ \vec{n}^T}$$

donde $\vec{n} = (n_1, n_2)$ es un vector unitario

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

- 2.- Gradiente multidimensional
 - Método de la matriz jacobiana
 - Dirección del gradiente: autovector asociado al autovalor $\lambda(x,y)$

$$\vec{v}_1(x,y) = (g_{xy}(x,y), \lambda(x,y) - g_{xx}(x,y))$$

0

$$\vec{v}_2(x,y) = (\lambda(x,y) - g_{yy}(x,y), g_{xy}(x,y))$$

si el vector $\vec{v}_1(x, y)$ es un vector nulo

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

2.- Gradiente multidimensional

- Método de la matriz jacobiana
 - Este método no necesita ninguna fase de maximización
 - Magnitud del gradiente: se obtiene directamente de $\lambda(x,y)$
 - Dificultades
 - Problema al estimar la dirección del gradiente cuando los vectores $\vec{v}_1(x, y)$ y $\vec{v}_2(x, y)$ son nulos.
 - Ocurre cuando $g_{xx}(x,y) = g_{yy}(x,y)$ y $g_{xy}(x,y) = 0$.

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

- 2.- Gradiente multidimensional
 - Tiene en cuenta la naturaleza vectorial de la imagen en color
 - Extrae más información de la imagen en color que los métodos basados en la extensión del gradiente monocromático.

Segmentación

Algoritmos orientados a los bordes

Gradiente multidimensional

- Dificultades
 - Muy sensibles a pequeñas variaciones de textura: puede dificultar la identificación de objetos reales
 - Sensibles a los ruidos de tipo gaussiano e impulsivo

Segmentación

Algoritmos orientados a los bordes

Detectores de bordes en color basados en el vector gradiente

- Formas de calcular el vector gradiente
 - 1.- Estimación mediante una distancia métrica.
 - 2.- Gradiente multidimensional.
 - 3.- Operadores vectoriales direccionales.
 - 4.- Operadores basados en la diferencia de vectores.

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

- 3.- Operadores vectoriales direccionales
 - Son generalizaciones de operadores básicos

$$\Delta H = \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \quad \Delta V = \frac{1}{3} \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Operador de Prewitt

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

- 3.- Operadores vectoriales direccionales
 - Para operadores de tamaño $(2w+1) \times (2w+1)$ (w>0)
 - Operador direccional horizontal

$$\Delta H = [H_- \ 0 \ H_+]$$

Operador direccional vertical

$$\Delta V = \left[egin{array}{c} V_- \ 0 \ V_+ \end{array}
ight]$$

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

- 3.- Operadores vectoriales direccionales
 - Núcleos de convolución (convolutions kernels)
 H_, H_+, V_ y V_+
 - Generan vectores que se corresponden con el promedio local de los colores.

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

3.- Operadores vectoriales direccionales

$$\vec{H}_{+}(x_{0},y_{0}) = \frac{1}{w(2w+1)} \sum_{y=y_{0}-w}^{y_{0}+w} \sum_{x=x_{0}+1}^{x_{0}+w} \vec{f}(x,y)$$

$$\vec{H}_{-}(x_0, y_0) = \frac{1}{w(2w+1)} \sum_{y=y_0-w}^{y_0+w} \sum_{x=x_0-1}^{x_0-w} \vec{f}(x, y)$$

• $\vec{f}(x,y)$ representa el color (R(x,y), G(x,y), B(x,y)) en el punto de la imagen (x,y).

◆ロ > ◆回 > ◆ き > ◆き > ・ き ・ り < ○・</p>

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

3.- Operadores vectoriales direccionales

$$\vec{V}_{+}(x_0, y_0) = \frac{1}{w(2w+1)} \sum_{y=y_0+1}^{y_0+w} \sum_{x=x_0-w}^{x_0+w} \vec{f}(x, y)$$

$$\vec{V}_{-}(x_0, y_0) = \frac{1}{w(2w+1)} \sum_{v=v_0-1}^{y_0-w} \sum_{x=x_0-w}^{x_0+w} \vec{f}(x, y)$$

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

- 3.- Operadores vectoriales direccionales
 - Estimación de las variaciones locales en las direcciones horizontal y vertical

$$\Delta \vec{H}(x_0, y_0) = \vec{H}_+(x_0, y_0) - \vec{H}_-(x_0, y_0)$$

$$\Delta \vec{V}(x_0, y_0) = \vec{V}_+(x_0, y_0) - \vec{V}_-(x_0, y_0)$$

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

- 3.- Operadores vectoriales direccionales
 - Estimación de la magnitud del vector gradiente

$$||\overrightarrow{\nabla f}(x_0, y_0)|| = \sqrt{||\Delta \vec{H}(x_0, y_0)||^2 + ||\Delta \vec{V}(x_0, y_0)||^2}$$

Estimación del ángulo del vector gradiente

$$\theta = arctan\left[\frac{\Delta V'(x_0, y_0)}{\Delta H'(x_0, y_0)}\right] + k\pi$$

donde k es un entero

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

3.- Operadores vectoriales direccionales

$$\Delta V'(x_0,y_0) = \begin{cases} ||\Delta \vec{V}(x_0,y_0)|| & \text{Si } ||\vec{V}_+(x_0,y_0)|| \ge ||\vec{V}_-(x_0,y_0)|| \\ -||\Delta \vec{V}(x_0,y_0)|| & \text{En otro caso} \end{cases}$$

$$\Delta H'(x_0, y_0) = \begin{cases} ||\Delta \vec{H}(x_0, y_0)|| & \text{Si } ||\vec{H}_+(x_0, y_0)|| \ge ||\vec{H}_-(x_0, y_0)|| \\ -||\Delta \vec{H}(x_0, y_0)|| & \text{En otro caso} \end{cases}$$

Segmentación

Algoritmos orientados a los bordes

Detectores de bordes en color basados en el vector gradiente

- Formas de calcular el vector gradiente
 - 1.- Estimación mediante una distancia métrica.
 - 2.- Gradiente multidimensional.
 - 3.- Operadores vectoriales direccionales.
 - 4.- Operadores basados en la diferencia de vectores.

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

- 4.- Diferencia de vectores
 - Operador DV vector diferencia (difference vector)

$$DV = \max\{||\overrightarrow{\nabla f}_{0^o}||, ||\overrightarrow{\nabla f}_{45^o}||, ||\overrightarrow{\nabla f}_{90^o}||, ||\overrightarrow{\nabla f}_{135^o}||\}$$
 (1)

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

4.- Diferencia de vectores

$$||\overrightarrow{\nabla f}_{0^o}|| = ||\overrightarrow{Y}_{0^o} - \overrightarrow{X}_{0^o}||$$

$$||\overrightarrow{\nabla f}_{45^{\circ}}|| = ||\overrightarrow{Y}_{45^{\circ}} - \overrightarrow{X}_{45^{\circ}}||$$

$$||\overrightarrow{\nabla f}_{90^o}|| = ||\overrightarrow{Y}_{90^o} - \vec{X}_{90^o}||$$

$$||\overrightarrow{\nabla f}_{135^{\circ}}|| = ||\overrightarrow{Y}_{135^{\circ}} - \overrightarrow{X}_{135^{\circ}}||$$

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

4.- Diferencia de vectores

ullet Para ventana de 3×3 puntos.

$$\vec{X}_{0^o} = \vec{v}(x_0 - 1, y_0), \ \vec{Y}_{0^o} = \vec{v}(x_0 + 1, y_0)$$

$$\vec{X}_{45^{\circ}} = \vec{v}(x_0 - 1, y_0 + 1), \ \vec{Y}_{45^{\circ}} = \vec{v}(x_0 + 1, y_0 - 1)$$

$$\vec{X}_{90^o} = \vec{v}(x_0, y_0 - 1), \ \vec{Y}_{135^o} = \vec{v}(x_0, y_0 + 1)$$

$$\vec{X}_{135^{\circ}} = \vec{v}(x_0 + 1, y_0 + 1), \ \vec{Y}_{135^{\circ}} = \vec{v}(x_0 - 1, y_0 - 1)$$

Segmentación

Algoritmos orientados a los bordes

Detección de bordes en imágenes en color

4.- Diferencia de vectores

- El operador DV es sensible a los ruidos de tipo impulsivo y gaussiano.
- Se pueden definir variantes más robustas en presencia de ruido con ventanas de $n \times n$ puntos.

Segmentación

Algoritmos orientados a los bordes: Evaluación de algoritmos de detección de bordes en color

- Segmentación
 - Algoritmos orientados a los bordes
 - Introducción
 - Detección de bordes en imágenes monocromáticas
 - Detección de bordes en imágenes en color
 - Evaluación de algoritmos de detección de bordes en color

Segmentación

Algoritmos orientados a los bordes

- Introducción
- Detección de bordes en imágenes monocromáticas
- Detección de bordes en imágenes en color
- Evaluación de algoritmos de detección de bordes en color

Segmentación

Algoritmos orientados a los bordes

Evaluación de algoritmos de detección de bordes en color

Tipos de detectores evaluados (1/3): basados en

- Gradiente multidimensional: Di Zenzo (1986) y Lee y Cok (1991)
- Operadores vectoriales direccionales: Scharcanski y Venetsanopoulos (1997)
- Diferencia de vectores: Dv (difference vector, Dv-hv (direcciones horizontal y vertical)
- Ordenamiento de vectores: Mvd (minimun vector dispersion)

Segmentación

Algoritmos orientados a los bordes

Evaluación de algoritmos de detección de bordes en color

Detectores evaluados (2/3): basados en

- Distancia métrica para estimar el vector gradiente: Máximo de las distancias euclídeas
- Entropía: detector de Shiozaki (1986)
- Histogramas: detector Pietikäinen y Harwood (1986)
- Suma de las magnitudes de los gradientes monocromáticos

Algoritmos orientados a los bordes

Evaluación de algoritmos de detección de bordes en color

Detectores evaluados (3/3)

- Además, se ha evaluado el detector de Sobel
 - Comparar un algoritmo monocromático clásico con los detectores de bordes en color.
 - En este caso, se ha usado la imagen monocromática [?]:

$$I(x,y) = \frac{1}{3}(R(x,y) + G(x,y) + B(x,y))$$
 (2)

Segmentación

Imagenes artificiales en color diseñadas (1/2)

Segmentación

Imagenes artificiales en color diseñadas (2/2)

Segmentación

Algoritmos orientados a los bordes

Evaluación de algoritmos de detección de bordes en color

Características de las imágenes diseñadas (1/2)

- Espacio de color: RGB.
- 256 niveles de intensidad ([0..255]).
- Tamaño: 256 × 256 puntos.
- Los bordes provocados por
 - Cambios en una, dos o tres componentes de color.
 - Cambios en las tres componentes de color, pero manteniendo constante la intensidad.
 - La aparición de zonas blancas, negras o grises.

Segmentación

Algoritmos orientados a los bordes

Evaluación de algoritmos de detección de bordes en color

Características de las imágenes diseñadas (2/2)

- Todos los bordes generados eran del tipo de "rampa" ligeramente asimétrica.
- Los bordes generados eran rectos o curvos.
- Variantes de las imágenes:
 - Sin ruido
 - Ruido gaussiano ($\sigma^2 \in \{1, 3, 10\}$)
 - Ruido exponencial ($\sigma^2 \in \{1, 3, 10\}$).

Segmentación

Algoritmos orientados a los bordes

Evaluación de algoritmos de detección de bordes en color

- Aplicación del detector de bordes a la imagen en color: se genera la imagen realzada.
- Umbralizar la imagen realzada con un umbral porcentual: se genera la imagen umbralizada.
- Utilizar la medida de Baddeley para comparar la imagen umbralizada con el mapa de bordes (ground truth).
- Para cada imagen y cada detector, se selecciona el valor mínimo obtenido por la medida de Baddeley entre todas las imágenes umbralizadas.

Segmentación

Imagen artificial en color

Mapa de bordes

Segmentación

Segmentación

Dv: 0'1431

Dv-hv: 0'1015

Segmentación

Segmentación

Suma: 0'2119

Sobel: 0'2607

Segmentación

Algoritmos orientados a los bordes

Subconjuntos homogéneos según el test de Scheffé

	Subconjunto									
Detector	1	2	3	4	5	6				
Lee y Cok	0'1461									
Di Zenzo	0'1461									
∥ M∨d	0'1544	0'1544								
Scharcanski		0'1618								
Dv-hv			0'1789							
∥ Dv			0'1843							
Shiozaki				0'2226						
Suma de magnitudes				0'2247						
Pietikäinen					0'2432					
Máximo de distancias					0'2514					
Sobel						0'2735				
Significación	0'687	0'837	0'978	1'000	0'718	1'000				

Segmentación

Lenna

Amber

Blocks

Saturn

Imágenes reales

Segmentación

Algoritmos orientados a los bordes

Evaluación de algoritmos de detección de bordes en color

Evaluacion con imágenes reales

- Aplicación de los detectores de bordes a las imágenes en color.
- Umbralización de las imágenes generadas por los detectores.
- Generación de las imágenes de consenso.
- Uso de la medida de Baddeley para comparar la imagen umbralizada de cada detector con cada una de las imágenes de consenso generadas.

Segmentación

Algoritmos orientados a los bordes

Lenna

Consenso: 1

Consenso: 2

Segmentación

Algoritmos orientados a los bordes

Consenso: 3

Consenso: 4

Consenso: 5

Segmentación

Algoritmos orientados a los bordes

Consenso: 6

Consenso: 7

Consenso: 8

Segmentación

Algoritmos orientados a los bordes

Consenso: 9

Consenso: 10

Consenso: 11

Segmentación

Algoritmos orientados a los bordes

Lenna

Di Zenzo

Lee y Cok

Segmentación

Algoritmos orientados a los bordes

Segmentación

Segmentación

Algoritmos orientados a los bordes

Segmentación

Algoritmos orientados a los bordes

Prueba con imágenes reales utilizando sólo imágenes de consenso comprendidas entre 3 y 7 y todos los umbrales porcentuales utilizados (10 %, 15 % y 20 %).

	Subconjunto									
Detector	1	2	3	4	5	6	7			
Lee y Cok	0'0329									
Di Zenzo	0'0329									
Scharcanski		0'0534					l l			
Dv		0'0536								
Suma de magnitudes		0'0561								
Sobel		İ	0'0618	İ	İ	İ	l l			
Dv-hv				0'0741						
Pietikäinen		İ	İ	İ	0'0881	İ	l i			
Máximo de distancias						0'1022				
Mvd						0'1051				
Shiozaki							0'2018			
Significación	1'000	0'677	1'000	1'000	1'000	0'560	1'000			

Segmentación

Algoritmos orientados a los bordes

Evaluación de algoritmos de detección de bordes en color

Análisis de los detectores de bordes

- Di Zenzo y Lee y Cok: mejor rendimiento
- Scharcanski y Venetsanopoulos, "Dv" y "Suma de las magnitudes de los gradientes": rendimiento similar.
- Sobel (monocromático) supera a otros detectores de bordes en color: "Dv-hv", Pietikäinen y Harwood y "Máximo de las distancias"
- Mvd: rendimiento muy deficiente, debido a su dependencia de los parámetros.
- Shiozaki: resultados extraordinariamente pobres debido a su alta sensibilidad al ruido.

Tema 1.- Introducción a la Visión Artificial Visión Artificial Avanzada

Prof. Dr. Nicolás Luis Fernández García

Departamento de Informática y Análisis Numérico Universidad de Córdoba