Урок №11

Коллокации

(основано на слайдах Андрея Калинина, Hinrich Schütze, Christina Lioma)

Содержание занятия

- 1. Коллокации
- 2. Частотность
- 3. Среднее и отклонение
- 4. Проверка гипотез

Технический долг

Зависимые/независимые смысловые фрагменты

- Независимый смысловой фрагмент содержит подлежащее, глагол и законченную мысль.
- Зависимый смысловой фрагмент содержит подлежащее и глагол, но не содержит законченной мысли.
- Часто зависимый смысловой фрагмент помечается зависимым словом-маркером (after, although, as, as if, because и т.д.).
- Although it is raining, I am going out for a run.
 - I am going out for a run независимый смысловой фрагмент
 - Although it is raining зависимый смысловой фрагмент

Коллокации

Литература

Foundations of statistical natural language processing, Christopher Manning, Hinze Schultze.

Коллокация

- Устойчивое словосочетание, целостное синтаксически и семантически.
 - Одно слово при этом сохраняет своё значение.
 - Другое слово обусловлено традицией.
- Например:
 - strong tea, powerful drug.
 - идёт дождь, молоть чушь
- Ограниченная композиционность

Зачем их искать?

- Генерация текста.
 - Чтобы текст выглядел естественно.
- Лексикография.
 - Вхождения в словари.
- Разметка текста.
- Корпусные исследования.
 - Почему tea strong, a drug powerful, но не наоборот?

Признаки коллокации

- Некомпозицоинность
 - Смысл коллокации не является композицией смысла её частей.
- Незаменяемость
 - Нельзя заменить зависимое слово на другое подходящее по смыслу или контексту.
- Немодифицируемость
 - Компоненты коллокации не получается свободно
 модифицировать следуя грамматическим правилам (идиомы).

Корпус

- Архив New York Times за 4 месяца
 - Август Ноябрь, 1990
- 115 мегабайтов текста
- 14 миллионов слов

Частотность

Частотность биграмм

• Частотная верхушка дает не очень хорошие результаты

• За исключением ни одной коллокации.

$C(\mathbf{w}^1 \mathbf{w}^2)$	W^1	w ²
80871	of	the
58841	in	the
26430	to	the
21842	on	the
21839	for	the
18568	and	the
16121	that	the
15630	at	the
15494	to	be
13899	in	a
13689	of	a
13361	by	the
13183	with	the
12622	from	the
11428	New	York
10007	he	said
9775	as	a
9231	is	a
8753	has	been
8573	for	a

Добавим фильтр по частям речи

- A adjective, прилагательное
- P preposition, предлог
- N noun, существительное

Tag Pattern	Example
AN	linear function
NN	regression coefficients
AAN	Gaussian random variable
ANN	cumulative distribution function
NAN	mean squared error
NNN	class probability function
NPN	degrees of freedom

Результат применения фильтра

• Только три исключения:

$C(w^1 w^2)$	w^1	w^2	Tag Pattern
11487	New	York	AN
7261	United	States	AN
5412	Los	Angeles	NN
3301	last	year	AN
3191	Saudi	Arabia	NN
2699	last	week	AN
2514	vice	president	AN
2378	Persian	Gulf	AN
2161	San	Francisco	NN
2106	President	Bush	NN
2001	Middle	East	AN
1942	Saddam	Hussein	NN
1867	Soviet	Union	AN
1850	White	House	AN
1633	United	Nations	AN
1337	York	City	NN
1328	oil	prices	NN
1210	next	year	AN
1074	chief	executive	AN
1073	real	estate	AN

20 частых употреблений strong или powerful

w	C(strong, w)	W	C(powerful, w)
support	50	force	13
safety	22	computers	10
sales	21	position	8
opposition	19	men	8
showing	18	computer	8
sense	18	man	7
message	15	symbol	6
defense	14	military	6
gains	13	machines	6
evidence	13	country	6
criticism	13	weapons	5
possibility	11	post	5
feelings	11	people	5
demand	11	nation	5
challenges	11	forces	5
challenge	11	chip	5
case	11	Germany	5
supporter	10	senators	4
signal	9	neighbor	4
man	9	magnet	4

Среднее и отклонение

Коллокация может иметь разрыв

- knock ... door:
 - she knocked on his door
 - they knocked at the door
 - 100 women knocked on Donaldson's door
 - a man knocked on the metal front door
- Строим биграммы для всех слов внутри окна некоторого размера.

Пример построения биграмм внутри окна

- Stocks crash as rescue plan teeters
- Биграммы для трёхсловного окна:

stocks crash stocks as stocks rescue
crash as crash rescue crash plan
as rescue as plan as teeters
rescue plan rescue teeters
plan teeters

Среднее

- knock ... door:
 - she knocked on his door
 - they knocked at the door
 - 100 women knocked on Donaldson's door
 - a man knocked on the metal front door
- Среднее расстояние между knock и door:

$$\frac{1}{4}(3+3+5+5) = 4.0$$

• door ... knock – отрицательное расстояние

Отклонения

- n количество биграмм с обоими словами
- d_i i-ое расстояние

$$s^2 = \frac{\sum_{i=1}^{n} (d_i - \bar{d})^2}{n-1}$$

- Если расстояние всегда одинаковое, s = 0
- Если расстояние случайное, ѕ велико.
- Для knocked ... door:

$$s = \sqrt{\frac{1}{3}((3-4.0)^2 + (3-4.0)^2 + (5-4.0)^2 + (5-4.0)^2)} \approx 1.15$$

Гистограммы отклонений


```
strong / opposition
```

$$m = -1.15$$

$$s = 0.67$$

strong / support

$$m = -1.45$$

$$s = 1.07$$

strong / for

$$m = -1.12$$

$$s = 2.15$$

Position of strong with respect to support (d = -1.45, s = 1.07).

Position of *strong* with respect to for (d = -1.12, s = 2.15).

Примеры

S	đ	Count	Word 1	Word 2
0.43	0.97	11657	New	York
0.48	1.83	24	previous	games
0.15	2.98	46	minus	points
0.49	3.87	131	hundreds	dollars
4.03	0.44	36	editorial	Atlanta
4.03	0.00	78	ring	New
3.96	0.19	119	point	hundredth
3.96	0.29	106	subscribers	by
1.07	1.45	80	strong	support
1.13	2.57	7	powerful	organizations
1.01	2.00	112	Richard	Nixon
1.05	0.00	10	Garrison	said

Проверка гипотез

Проблема

- Биграмма может быть частой случайно
 - new companies
 - оба слова довольно частотные
 - словосочетание может встретиться и без особенного смысла
- Нужно иметь способ отличить случайное от неслучайного.

Классическая задача из статистики

- Основная гипотеза, H_0 между словами нет зависимости.
- Вычисляем р с учётом истинности H₀.
- Если р невелико (уровень значимости р < 0.05, 0.01, 0.005 или 0.001) –
 отвергаем Н₀.
- В обратном случае считаем гипотезу вероятной.

Проверка гипотез

- То есть, проверяем не только саму коллокацию, но и наличие достаточного числа подтверждений для неё.
- Если два слова встречаются независимо друг от друга, то

$$P(w^1w^2) = P(w^1)P(w^2)$$

• Это не совсем корректно, но подходит для демонстрации метода.

Критерий Стьюдента, t-критерий

- Основная гипотеза выборка взята из нормального распределения с мат.
 ожиданием м.
- Сравнивается ожидаемое и наблюдаемое среднее, нормированное на дисперсию: $t = \frac{\bar{x} \mu}{\sqrt{\frac{\bar{x}^2}{N}}}$

• Результат проверяется по таблицам.

Пример

- Средний рост людей некоторой национальности 158 см.
- У нас есть случайная выборка 200 людей,

$$\bar{x}$$
 = 169 u s² = 2600.

• Проверяем:

$$t = \frac{169 - 158}{\sqrt{\frac{2600}{200}}} \approx 3.05$$

- Уровень значимости 0,05 2.576.
- 3.05 > 2.576.

Поиск коллокаций

- Рассматриваем корпус как последовательность N биграмм.
- Случайная величина: 1 если встретилась рассматриваемая биграмма.

new companies

Оценим вероятности методом наибольшего правдоподобия:

$$P(new) = \frac{15828}{14307668}$$

$$P(companies) = \frac{4675}{14307668}$$

• Основная гипотеза: new и companies независимы:

$$H_0: P(new \ companies) = P(new)P(companies)$$

= $\frac{15828}{14307668} \times \frac{4675}{14307668} \approx 3.615 \times 10^{-7}$

new companies

- Биномиальное распределение с $p = 3,615 \times 10^{-7}$
- μ = 3,615×10⁻⁷
- $\sigma^2 = p(1-p) \approx p = 3.615 \times 10^{-7}$
- C(new companies) = 8, τ.e.

$$\bar{x} = 8/14307668 \approx 5,591 \times 10^{-7}$$

• Тогда

$$t = \frac{\bar{x} - \mu}{\sqrt{\frac{\bar{s}^2}{N}}} \approx \frac{5.59110^{-7} - 3.61510^{-7}}{\sqrt{\frac{5.59110^{-7}}{14307668}}} \approx 0.999932$$

t < 2,576 (порог для α=0,05), основную гипотезу отвергнуть нельзя

Примеры применения t-критерия

<u>t</u>	$C(w^1)$	$C(w^2)$	$C(w^1 w^2)$	w^1	$ w^2 $
4.4721	42	20	20	Ayatollah	Ruhollah
4.4721	41	27	20	Bette	Midler
4.4720	30	117	20	Agatha	Christie
4.4720	77	59	20	videocassette	recorder
4.4720	24	320	20	unsalted	butter
2.3714	14907	9017	20	first	made
2.2446	13484	10570	20	over	many
1.3685	14734	13478	20	into	them
1.2176	14093	14776	20	like	people
0.8036	15019	15629	20	time	last

- 824 из 831 биграммы коллокации по этому критерию.
- Поэтому он полезен как основа ранжирования коллокаций.

Критерий Пирсона, χ^2 -критерий

- Критерий Стьюдента подразумевает нормальное распределение (хотя бы аппроксимированное)
- Критерий Пирсона не делает таких предположений.
- Сравниваются наблюдаемые частотности с ожидаемыми в случае независимости.

Критерий Пирсона, χ^2 -критерий

- Критерий Стьюдента подразумевает нормальное распределение (хотя бы аппроксимированное)
- Критерий Пирсона не делает таких предположений.
- Сравниваются наблюдаемые частотности с ожидаемыми в случае независимости.

Простейший случай

	$w_1 = new$	$w_1 \neq new$
$w_2 = companies$	8	4667
	(new companies)	(e.g., old companies)
w ₂ ≠ companies	15820	14287181
	(e.g., new machines)	(e.g., old machines)

$$X^{2} = \sum_{i,j} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

$$\mathsf{E_{1,1}} = \ \frac{8 + 4667}{N} \times \frac{8 + 15820}{N} \times N \approx 5.2$$

$$\chi^2 = \frac{N(O_{11}O_{22} - O_{12}O_{21})^2}{(O_{11} + O_{12})(O_{11} + O_{21})(O_{12} + O_{22})(O_{21} + O_{22})}$$

$$\frac{14307668(8 \times 14287181 - 4667 \times 15820)^2}{(8 + 4667)(8 + 15820)(4667 + 14287181)(15820 + 14287181)} \approx 1.55$$

Для α=0,05 порог 3,841, основная гипотеза не может быть отвергнута.

vache – cow?

	cow	¬ cow
vache	59	6
¬ vache	8	570934

$$\chi^2 = 456400.$$

• Т.е., можно предположить, что vache – хороший вариант перевода cow.

Foundations of statistical natural language processing, Christopher Manning, Hinze Schultze

Рекомендуемая литература

Для саморазвития (опционально) <u>Чтобы не набирать двумя</u> <u>пальчиками</u>

Спасибо за внимание!

Антон Кухтичев

