Bioinformatics – Global Max Similarity Matrix Paths

Conor Heffron

Overview:

- Compute the global max similarity matrix *and* best global upmost and downmost alignments between the two sequences:
 - O AAGTGCCTCAAGATA
 - ACCGTCTCAGCAATA

Manual workings / Notes

	-	Α	Α	G	Т	G	С	С	Т	С	Α	Α	G	Α	Т	Α
-	0	-2	-4	-6	-8	-10	-12	-14	-16	-18	-20	-22	-24	-26	-28	-30
Α		Α	Α								Α	Α		Α		Α
С							С	С		С						
С							С	С		С						
G				G		G							G			
Т																
С							С	C		С						
Т					Т				Т						Т	
С							С	C		С						
Α		Α	Α								Α	Α		Α		Α
G				G		G							G			
С							С	C		С						
Α		Α	Α								Α	Α		Α		Α
Α		Α	Α								Α	Α		Α		Α
Т					T				T						T	
Α		Α	Α								Α	Α		Α		Α

- o AAGTGCCTCAAGATA
- o A CCGTCTCAGC A ATA
- 0 +---++
- o 5 matches, 10 mismatches, zero gaps
- o score = 5x1 + 10x(-1) + 0x(-2) = -5
- O A-AGTGCCTCAAGATA
- o ACCGTCTCAGCA-ATA
- 0 + = ++ -+ - + = +++
- o 8 matches, 5 mismatches, 2 gaps
- \circ score = 8x1 + 6x(-1) + 2x(-2) = -2
- AAGTGCCTCAAGATA
- o ACCGTCTCAGCA-ATA
- 0 = - + + - + - + = + + +
- o 7 matches, 7 mismatches, 2 gaps
- o score = 7x1 + 7x(-1) + 2x(-2) = -4

Global Maximum Similarity Matrix From R Code Output:

• Note: Paths Added Manually

Path 1

	-	A	A	G	T	G	C	C	T	C	A	A	G	A	T	A
-	0	-2	-4	-6	-8	-10	12	- 14	-16	-18	20	-22	-24	-26	-28	-30

A	-2	1	-1	-3	-5	-7	-9	- 11	-13	-15	- 17	-19	-21	-23	-25	-27
C	-4	-1	0	-2	-4	-6	-8	- 10	-12	-12	- 14	-16	-18	-20	-22	-24
C	-6	-3	-2	-1	-1	-3	-5	-7	-9	-11	- 11	-13	-15	-17	-19	-21
G	-8	-5	-4	-3	-2	0	-2	-4	-6	-8	- 10	-12	-14	-16	-16	-18
T	- 10	-7	-6	-5	-2	-2	-1	-3	-5	-7	-7	-9	-11	-13	-15	-17
C	- 12	-9	-6	-5	-4	-3	-1	-2	-2	-4	-6	-6	-8	-10	-12	-14
T	- 14	-11	-8	-5	-6	-5	-2	-2	-1	-3	-5	-5	-7	-9	-11	-13
C	- 16	-13	-10	-7	-6	-5	-4	-1	-3	-2	-4	-6	-6	-8	-8	-10
A	- 18	-15	-12	-9	-8	-7	-4	-3	0	-2	-3	-3	-5	-7	-9	-9
G	- 20	-17	-14	-11	-10	-9	-6	-5	-2	1	-1	-3	-2	-4	-6	-8
C	- 22	-19	-16	-13	-12	-11	-8	-7	-4	-1	0	-2	-2	-1	-3	-5
A	- 24	-21	-18	-15	-12	-13	- 10	-9	-6	-3	0	-1	-3	-3	-2	-4
A	- 26	-23	-20	-17	-14	-13	- 12	- 11	-8	-5	-2	-1	0	-2	-4	-1
T	- 28	-25	-22	-19	-16	-13	- 14	- 11	-10	-7	-4	-3	-2	-1	-1	-3
A	30	-27	-24	-21	-18	-15	- 14	13	-12	-9	-6	-5	-2	-1	-2	0

 $0 \to -1 \to -2 \to -3 \to -2 \to -1 \to 1 \to 0 \to -1 \to -2 \to -3 \to -2 \to -3 \to -2 \to -1 \to -2 \to 0$

Score = 0

Alternative Path 2

	-	A	A	G	T	G	C	C	T	C	A	A	G	A	T	A
-	0	-2	-4	-6	-8	-10	- 12	- 14	-16	-18	20	-22	-24	-26	-28	-30
A	-2	1	-1	-3	-5	-7	-9	- 11	-13	-15	- 17	-19	-21	-23	-25	-27
C	-4	-1	0	-2	-4	-6	-8	- 10	-12	-12	- 14	-16	-18	-20	-22	-24
C	-6	-3	-2	-1	-1	-3	-5	-7	-9	-11	- 11	-13	-15	-17	-19	-21
G	-8	-5	-4	-3	-2	0	-2	-4	-6	-8	- 10	-12	-14	-16	-16	-18
T	- 10	-7	-6	-5	-2	-2	-1	-3	-5	-7	-7	-9	-11	-13	-15	-17
C	- 12	-9	-6	-5	-4	-3	-1	-2	-2	-4	-6	-6	-8	-10	-12	-14
T	- 14	-11	-8	-5	-6	-5	-2	-2	-1	-3	-5	-5	-7	-9	-11	-13
C	- 16	-13	-10	-7	-6	-5	-4	-1	-3	-2	-4	-6	-6	-8	-8	-10
A	- 18	-15	-12	-9	-8	-7	-4	-3	0	-2	-3	-3	-5	-7	-9	-9
G	20	-17	-14	-11	-10	-9	-6	-5	-2	1	-1	-3	-2	-4	-6	-8
C	- 22	-19	-16	-13	-12	-11	-8	-7	-4	-1	0	-2	-2	-1	-3	-5
A	- 24	-21	-18	-15	-12	-13	- 10	-9	-6	-3	0	-1	-3	-3	-2	-4
A	- 26	-23	-20	-17	-14	-13	- 12	- 11	-8	-5	-2	-1	0	-2	-4	-1
T	- 28	-25	-22	-19	-16	-13	- 14	- 11	-10	-7	-4	-3	-2	-1	-1	-3

A	30	-27	-24	-21	-18	-15	14	13	-12	-9	-6	-5	-2	-1	-2	0	
---	----	-----	-----	-----	-----	-----	----	----	-----	----	----	----	----	----	----	---	--

 $0 \to -1 \to -1 \to 0 \to -1 \to 0 \to 1 \to 0 \to 1 \to 0 \to -1 \to -2 \to -1 \to -2 \to -2 \to -1 \to 0 \to 1 \to 0$

Alternative Path 3

	-	A	A	G	T	G	C	C	T	C	A	A	G	A	T	A
-	0	-2	-4	-6	-8	-10	- 12	- 14	-16	-18	20	-22	-24	-26	-28	-30
A	-2	1	-1	-3	-5	-7	-9	- 11	-13	-15	- 17	-19	-21	-23	-25	-27
C	-4	-1	0	-2	-4	-6	-8	- 10	-12	-12	- 14	-16	-18	-20	-22	-24
C	-6	-3	-2	-1	-1	-3	-5	-7	-9	-11	- 11	-13	-15	-17	-19	-21
G	-8	-5	-4	-3	-2	0	-2	-4	-6	-8	- 10	-12	-14	-16	-16	-18
Т	- 10	-7	-6	-5	-2	-2	-1	-3	-5	-7	-7	-9	-11	-13	-15	-17
C	- 12	-9	-6	-5	-4	-3	-1	-2	-2	-4	-6	-6	-8	-10	-12	-14
Т	- 14	-11	-8	-5	-6	-5	-2	-2	-1	-3	-5	-5	-7	-9	-11	-13
C	- 16	-13	-10	-7	-6	-5	-4	-1	-3	-2	-4	-6	-6	-8	-8	-10
A	- 18	-15	-12	-9	-8	-7	-4	-3	0	-2	-3	-3	-5	-7	-9	-9
G	20	-17	-14	-11	-10	-9	-6	-5	-2	1	-1	-3	-2	-4	-6	-8
C	- 22	-19	-16	-13	-12	-11	-8	-7	-4	-1	0	-2	-2	-1	-3	-5
A	- 24	-21	-18	-15	-12	-13	10	-9	-6	-3	0	-1	-3	-3	-2	-4
A	- 26	-23	-20	-17	-14	-13	- 12	- 11	-8	-5	-2	-1	0	-2	-4	-1
Т	- 28	-25	-22	-19	-16	-13	- 14	- 11	-10	-7	-4	-3	-2	-1	-1	-3
A	30	-27	-24	-21	-18	-15	- 14	13	-12	-9	-6	-5	-2	-1	-2	0

0 -> -1 -> -2 -> 0 -> -1 -> 0 -> 1 -> 0 -> 1 -> 0 -> 1 -> 0