Kombinatoryka & teoria grafów

by a fish

21.03.2137

SYLABUS - teoria grafów:

- 1. Basic concepts: graphs, paths and cycles, complete andbipartite graphs
- 2. Matchings: Hall's Marriage theorem and its variations
- 3. Forbidden subgraphs: complete bipartite and r-partite subgraphs, chromatic numbers, Tur"an's thorem, asymptotic behaviour og edge density, Erd"os-Stone theorem
- 4. Hamiltonian cycles (Dirac's Theorem), Eulerian circuits
- 5. Connectivity: connected and k-connected graphs, Menger's theorem
- 6. Ramsey theory: edge colourings of graphs, Ramsey's theorem and its variations, asymptotic bounds on Ramsey numbers
- 7. Planar graphs and colourings: statements of Kuratowski's and Four Colour theorems, proof of Five Colour theorem, graphs on other surfaces and Euler chracteristics, chromatic polynomial, edge colourings and Vizing's theorem
- 8. Random graphs: further asymptotic bounds on Ramsey numbers, Zarankiewicz numbers and their bounds, graphs of large firth and high chromatic number, cmplete subgraphs in random graphs.
- 9. Algebraic methods: adjavenvy matrix and its eigenvalues, strongly regular graphs, Moore graphs and their existence.

Contents

1 Motivation 6

Definicja - to jest bardzo wyedukowany tekst w ramce

Troszke mniej wyedukowany tekst, bo jest poza fajna ramka ktora wyglada jak guwno i w sumie to nie wiem czemu ja ja w ten sposob ranie

1 Motivation

Graph - collection of vertices joined by edges.

Seven bridges of Konigsberg - can one walk around the city crossing each bridge only once? $\,NO$

•

•

Simultaneous representation of cosets: let G be a finite group and $H \subseteq G$ be a subgroup of G, then there exists elements $a_1, \ldots, a_k \in G$ such that $G = a_1 H \cup \ldots \cup a_k H$ and there exists $b_1, \ldots, b_k \in G$ such that $G = Hb_1 \cup \ldots \cup Hb_k$. Can we take $a_i = b_i$? YES (Hall's Marriage Theorem)

Map coloring problem

Suppose we have a political map and we want to color its regions so that given any two regions sharing a border they have different colors.

How many colors do we need? 4 will alwas be enough.

Fremat's Last Theorem modulo p (where p is prime) – FLT stated that if $\mathbf{x}^n + \mathbf{y}^n = \mathbf{z}^n$, $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{n} \in \mathbb{Z}$ and $\mathbf{n} \geq 3$ then $\mathbf{x} = \mathbf{0} \vee \mathbf{y} = \mathbf{0} \vee \mathbf{z} = \mathbf{0}$. Given a prime p do there exist $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{Z}$ such that $\mathbf{x}^n + \mathbf{y}^n = \mathbf{z}^n \pmod{p}$ but $\mathbf{x}, \mathbf{y}, \mathbf{z} \neq \mathbf{0} \pmod{p}$? YEP for p large enough.

PROOF

Let $G = (\mathbb{Z}/p\mathbb{Z})^X$ and $H = \{g^n : g \in G\} \leq G$. Given $h \in H$, the polynomial $x^n - h \in (\mathbb{R}/p\mathbb{Z})[X]$ (ring of remainder modulo p????) has degree n so it has at most n roots. Therefore, $\frac{|G|}{|H|} \leq n$, so there are at most n left cosets of H in G. Suppose there exists a, b, c \in gH such that a+b=c. Then $g^{-1}a+g^{-1}b=g^{-1}c$ and $g^{-1}a...\in H$, which implies that $g^{-1}a=x^n...$ It is enough to show that for any integer k that is large enough if the set $\{1,2,...,k-1\}$ is partitioned into n parts, then some part contains a, b, c such that a+b=c. This will be shown using graph theory and its such a fucking mess.