Predicting Spotify Track Skipping

By Heather Knudson

About the Data

- Originally released for Spotify's 2018 Sequential Skip Prediction Challenge
- User behavior/context, not track features
- 130M observations
 ➡ 2.9M subsample

Project Objective

To predict track skipping solely from user behavior/characteristics, rather than track features

Data Cleaning

- 1. All categorical variables made numeric
- 2. Re-coded numerous variables to reverse negation
- 3. One-hot encoded all variables before modelling
- 4. Filtered data to include only listening sessions with 20 tracks
- 5. Filtered again to include only observations that were either the 1st, 10th, or 20th track in a listening session

3 datasets • 89,672 obs in each

23 columns

Most listening sessions were in the afternoon and night

Most Spotify users are premium members

Most users skipped their current track

Clustering

- HDBSCAN
- 12-cluster solution for all 3 tracks

The clusters help explain the variation in skipping across tracks

Methods

Logistic Regression

Best Scores from Logistic Regression

Track 1: 72% AUC; 17% & 79% F1; 66% accuracy

Track 10: 86% AUC; 68% & 89% F1; 84% accuracy

Track 20: 85% AUC; 70% & 88% F1; 82% accuracy

Best Scores from Random Forest

Track 1: 80% AUC; 58% & 79% F1; 72% accuracy

Track 10: 95% AUC; 81% & 93% F1; 89% accuracy

Track 20: 93% AUC; 79% & 91% F1; 87% accuracy

XGBoost

Best Scores from XGBoost Final Model

Track 1: 80% AUC; 66% & 73% F1; 70% accuracy

Track 10: 95% AUC; 81% & 93% F1; 89% accuracy

Track 20: 93% AUC; 79% & 91% F1; 87% accuracy

Feature Importance

Hd_clusters

The clusters that resulted from each track's HDBSCAN solution

<u>Track</u>	<u>Odds Ratio</u>	Likelihood of Skipping
Track 1	1.0	Equally as likely
Track 10	1.2	20% more
Track 20	1.1	10% more

Paused_before_play

The current track was paused before it was played

<u>Track</u>	Odds Ratio	Likelihood of Skipping
Track 1	N/A	N/A
Track 10	17.0	17 times more
Track 20	12.7	12.7 times more

No_seekfwd

The user did not seek forward within their current track

<u>Track</u>	Odds Ratio	Likelihood of Skipping
Track 1	.18	82% less likely
Track 10	.09	91% less likely
Track 20	.07	93% less likely

Start_trackdone

The current track started because the previous track ended

<u>Track</u>	Odds Ratio	Likelihood of Skipping
Track 1	.803	19.7% less
Track 10	.040	96% less
Track 20	.045	95.5% less

Limitations

- Track 1 difficult to optimize
- Categorical data
- Relatively low amount of computing power

Conclusions

- The majority of Spotify users *did* skip their current track
- Pausing before playing was highly influential to skipping, as was fast-forwarding within the current track
- Users who listened to a personal playlist were much more likely to skip

Implications for Spotify

- Spotify is motivated to prevent skipping to improve song recommendations
- This dataset, however, looked at reasons other than track information to explain why skipping occurs
- This could be useful in determining confounding variables other than track features that affect skipping

Future Research Possibilities

- Another project that uses just the original variables rather than one-hot encoding
- Use this information on user behaviors in further investigation of track features to determine if these user-related variables could be confounding variables

