Lecture 13: WPA2 & IP Security

Stephen Huang

Content

- 1. WiFi security: WPA2 and WPA3
 - WPA: WiFi Protected Access
- 2. IPSec
- 3. IPv4 Basics

Review

Communication Threats in Practice

Review

IEEE 802.11 Security Standards

- WEP (Wired Equivalent Privacy)
 - introduced in 1997 as part of the original 802.11 standard
 - shown to be insecure in 2001
- WPA (WiFi Protected Access)
 - introduced in 2003, as a quick fix to WEP
 - subset of draft IEEE 802.11i
- WPA-2 (IEEE 802.11i)
 - standardized in 2004

1. WiFi Security: WPA2

- Standard: IEEE 802.11i
 - WPA 2 devices can be certified by the Wi-Fi Alliance

Phases

Discovery

agree on what authentication method and ciphers to use

Authentication

- may use an authentication server
- create a pairwise master key
- 3. Key management
 - derive keys for various purposes
- 4. Protected data transfer
- 5. Connection termination

1.1 Discovery Phase

Goal: station and AP may support different authentication methods and ciphers \rightarrow they need to agree on which ones they will use.

- Authentication and key-management suite: how to perform mutual authentication and derive fresh keys
 - IEEE 802.1X, pre-shared key (PSK), or vendor-specific
- Cipher suite: what ciphers to use for confidentiality and integrity
 - WEP, TKIP, CCMP, or vendor-specific
- Protocol
 - AP can periodically broadcast its security capabilities using a Beacon (or the station can ask for it using a Probe Request message)
 - Station specifies an authentication and cipher suite in an Association Request
 - if the AP accepts the specified suites, it sends an Association Response

1.2 Authentication Phase

Goals:

- Mutual authentication:
 - Only authorized stations can use the network,
 - The station is assured that it communicates with a legitimate network
- Generate a pairwise master key (PMK)

Approaches

- Pre-shared key (PSK)
 - Password is deployed on each station, and the AP manually
 - PMK = PSK = generated from the password using a hash function
 - Ideal for home and small office networks
- IEEE 802.1X

Port-Based Access Control: IEEE 802.1X

- Standard for port-based network access control
- Entities
 - supplicant = station
 - authenticator = access point
 - authentication server
- Port-based: supplicant can access only the authentication server until the authentication succeeds
- Authentication server does not have to be implemented on the access point, little overhead for the access point.

802.1X Access Control

The Extensible Authentication Protocol (EAP) specifies the structure of an authentication communication between a client and an authentication server

UNIVERSITY of HOUSTON

IEEE 802.1X and EAP

- Reminder:
 - successful authentication enables access to a network and provides a fresh pairwise master key (PMK)
- IEEE 802.1X builds on IEEE 802 LAN (e.g., WiFi or Ethernet)

Point-to-Point Protocol (PPP) is a TCP/IP protocol that is used to connect one computer system to another.

- Authentication is performed using the Extensible Authentication Protocol (EAP)
 - EAPOL (EAP over LAN) protocol:
 enables the station to communicate with the authentication server

EAP Authentication Methods

- Extensible framework, not a specific authentication mechanism
- Example methods
 - EAP-TLS: based on public-key certificates
 - EAP-GPSK (Generalized Pre-Shared Key): based on secret keys shared by the client and the server, uses symmetric-key cryptography

– ...

1.3 Key-Management Phase

Goals:

- derive pairwise transient keys from the Pairwise Master Key (PMK)
- distribute group keys
- Pairwise Transient Key (PTK)
 - protecting data between the station and AP
 - generated from PMK and the AP's and station's MAC addresses and nonces
- Group Temporal Key (GTK)
 - protecting multicast communication
 - group master key (GMK):generated randomly by the AP
 - distributed using the PTK

1.4 Protected Data Transfer Phase

Standard defines two schemes: TKIP and CCMP

- TKIP (Temporal Key Integrity Protocol): same as WPA (Wi-Fi Protected Access)
- CCMP (Counter mode CBC-MAC Protocol)
 - based on the CCM (Counter with CBC-MAC) authenticated encryption mode
 - integrity: CBC-MAC based on AES encryption
 - confidentiality: AES encryption in counter (CTR) mode
 - same 128-bit key for integrity and confidentiality (from PTK)
 - -48-bit packet number to prevent replay attacks

IEEE 802.11i Conclusion

Terminology

- WPA ≈ subset of draft IEEE 802.11i (2003), deprecated
- WPA 2 ≈ "full" IEEE 802.11i (2004)
- WPA 3 (2018)
- Security: WPA 2 is generally secure with secure EAP methods, secure passwords, and CCMP
 - may be configured to be insecure, e.g., weak pre-shared keys or WiFi Protected Setup (WPS)

WPA 3 improvements

- new algorithms (AES-256 in GCM mode, SHA-384 as HMAC)
- replaces PSK with Simultaneous Authentication of Equals

2. IPSec

Internet Protocol Security (IPSec)

- Collection of protocols and mechanisms standardized by the Internet Engineering Task Force (IETF) in a series of publications.
- IPSec was a mandatory part of IPv6 (it is now optional)
 - optional to use with IPv4.
- Provides
 - data confidentiality and integrity (encryption)
 - source authentication (prevent address spoofing, i.e., sending from a fake address).
 - protection against packet replay.
- Below the transport layer (TCP or UDP) → transparent to applications.
- End-to-end security between two hosts, a host and a network, or between two networks.

Example Applications of IPSec

Secure remote access over the Internet

Secure virtual private network

3. IPv4 Basics

- Internet Protocol version 4 (IPv4) is the fourth version of the Internet Protocol (IP) and the first to be widely deployed.
 - IPv4 addresses are 32-bit integers that have to be expressed in Decimal, such as 189.123.10.123.
- IP version 6 is the new version, which is way better than
 IP version 4 in terms of complexity and efficiency.
 - IPv6 is written as a group of 8 hexadecimal numbers separated by colon (:). Example:
 - ABCD: EF01: 2345: 6789: ABCD: B201: 5482: D023.
 - IPSEC is an inbuilt security feature in the IPv6.

Reminder: TCP/IP

- Transmission Control Protocol (TCP) is a communications standard that enables application programs and computing devices to exchange messages over a network.
- The Internet Protocol (IP) is the method for sending data from one device to another across the internet.
- The four layers of the TCP/IP model
 - Datalink layer
 - Internet layer
 - Transport layer
 - Application layer

	OSI	TCP/IP
,	Application	Applications (FTP, SMTP, HTTP, etc.)
•	Presentation	
5	Session	
ı	Transport	TCP (host-to-host)
}	Network	IP
2	Data link	Network access (usually Ethernet)
	Physical	
		·

IPv4 Packet

Header **Payload**

IPv4 Packet

Detailed View

[Image: IP Header]

IP Packet Forwarding

- Challenges for security
 - some fields need to be read by intermediate nodes ↔
 confidentiality
 - some fields need to be changed by intermediate nodes ↔ integrity

IP forwarding algorithm

Given a destination IP address, D, and network prefix, N:

```
if (N matches a directly connected network address)

Deliver datagram to D over that network link;
else if (The routing table contains a route for N)

Send datagram to the next-hop address
listed in the routing table;

the entry with the longest
```

else if (a default route exists)

Send datagram to the default route;

else

Send a forwarding error message to the originator;

subnet mask is chosen

IPSec Transport Mode and Tunnel Mode

<u>Transport</u> mode

- protects the payload of the IP packet
- typically host-to-host communication

Tunnel mode

- protects the entire IP packet by encapsulating it in the payload of a new IP packet
- typically host-to-network or network-to-network communication

Transport Mode Example

Transport between A and B:

Src: A Dst: B
TTL: 255
Prot: TCP

payload

protected
payload

Src: A Dst: B
TTL: 254
Prot: IPSec

IPSec header
Prot: TCP

protected
payload

Src: A Dst: B
TTL: 253
Prot: IPSec

IPSec header
Prot: TCP

protected
payload

Src: A Dst: B
TTL: 252
Prot: IPSec

IPSec header
Prot: TCP

protected
payload

Tunnel Mode Example

Tunnel between A and B:

Src: A Dst: B
TTL: 255
Prot: IPSec

IPSec header
Prot: IP

Src: A Dst: B
TTL: 255
Prot: TCP

payload

Src: A Dst: B
TTL: 254
Prot: IPSec

IPSec header
Prot: IP

Src: A Dst: B
TTL: 255
Prot: TCP

protected
payload

Src: A Dst: B
TTL: 253
Prot: IPSec

IPSec header
Prot: IP

Src: A Dst: B
TTL: 255
Prot: TCP

protected
payload

Src: A Dst: B
TTL: 252
Prot: IPSec

IPSec header
Prot: IP

Src: A Dst: B
TTL: 255
Prot: TCP

protected
payload

Tunnel Mode VPN Example

Tunnel between R and T:

Src: A Dst: B TTL: 255 **Prot: TCP** payload

Src: R Dst: T TTL: 254 Prot: IPSec **IPSec** header Prot: IP Src: A Dst: B TTL: 254 **Prot: TCP** protected payload

TTL: 253 Prot: IPSec **IPSec** header Prot: IP Src: A Dst: B TTL: 254 **Prot: TCP** protected payload

Src: R Dst: T

Src: A Dst: B TTL: 253 **Prot: TCP** payload

IPSec Protocols

	Protocol		
	Authentication Header (AH)	Encapsulating Security Payloads (ESP)	
Modes	both transport and tunnel		
Provides	integrity, replay prevention	integrity, confidentiality, replay prevention	
Protects	payload and IP header	payload	

Authentication Header

Services

- –data and origin integrity
- -replay-prevention

Message authentication

- computed from immutable fields of the IP header, AH header (except ICV), and original payload
- -algorithms: HMAC-MD5, HMAC-SHA-1, HMAC-SHA-2, ...

Authentication Header

Original IP packet

Version	QoS	Length			
ID		DF, MF, Frag. Offset			
TTL	Protocol	Checksum			
Source IP address					
Destination IP address					
Payload					

Authentication Header

AH in Transport & Tunnel Modes

Original IP Packet

Transport Mode

Tunnel Mode

Encapsulating Security Payload

- Services: confidentiality, integrity (optional), replay prevention
 - Encryption: AES-CBC, 3DES-CBC, ...
 - Message authentication: HMAC-SHA-1, AES-GMAC, ...
- Authenticated encryption: AES-GCM algorithms and Bit: 16 0 keys to be used by the receiver **Security Parameters Index (SPI) Sequence Number** anti-replay Authentication Coverage **ESP** header -Confidentiality Coveragepayload (e.g., TCP in transport, IP in Payload Data (variable) tunnel) Padding (0 - 255 bytes) **Pad Length Next Header** Authentication code (similar to AH) **Authentication Data (variable)**

36

ESP in Transport & Tunnel Modes

Original IP Packet

Combining Modes and Protocols

- Mode comparison
 - Tunnel: requires support only at the gateways, vs.
 - Transport: requires support only at the hosts
- Header comparison
 - AH: authenticates some elements of the original header, vs.
 - ESP: protects both integrity and confidentiality
- Combining modes
 - IPSec tunnel can carry any IP packet
 - → IPSec transport or tunnel packets can be sent through an IPSec tunnel
 - IPSec transport can protect any IP packet
 - → IPSec transport or tunnel packets can be protected by outer IPSec transport
 - may be nested to any depth

Combination Examples

1. AH in transport (for integrity) + ESP in transport (for confidentiality)

Combination Examples

2. IPSec packets over tunnel

IPSec Conclusion

- Between network and transport layers (e.g., IP and TCP)
 - works over any IP network
 - transparent to applications
- Applications
 - host-to-host, host-to-network, network-to-network (VPN)
- Modes:
 - traffic and
 - tunnel
- Protocols:
 - Authentication Header and
 - Encapsulating Security Payload
- Provides confidentiality, integrity, source authentication, anti-replay

Next Topic

- IPSec
- Transport-Layer Security (SSL/TLS)

