Barclays Case Study Competion

1. Importing the libraries

- Numpy for all the mathematical operations
- Pandas for loading the dataset and data preprocessing
- Matplotlib for performing Data Visualization
- · Datetime for operations related to BusinessDate
- Sklearn for the Linear Regression algorithm

```
In [1]: # Importing the Libraries
  import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  %matplotlib inline
  import datetime
  from sklearn.linear_model import LinearRegression
```

2. Loading the Dataset

```
In [2]: # Loading the Dataset
    df = pd.read_excel('dataset.xlsx', index=None)
    df.head()
```

Out[2]:

	BusinessDate	SEDOL	Counterparty_Account_ID	Position_Quantity_SD
0	2019-05-02	5BDN21B	11009	121000.0
1	2019-05-02	5BDN21B	14120	928200.0
2	2019-05-02	5BDN21B	16109	1452000.0
3	2019-05-02	5BDN21B	16140	-40600.0
4	2019-05-02	5BDN21B	62004	10000.0

3. Grouping the Dataset

Grouping the dataset according to the SEDOLs and BusinessDate and taking sum of all the data on a particular date

```
In [3]: df_grp = df.groupby(['SEDOL', 'BusinessDate']).sum()
    df_grp
```

Out[3]:

Position_Quantity_SD

SEDOL	BusinessDate	
	2019-05-02	2254208.0
	2019-05-03	2249508.0
5BDN21B	2019-05-06	2303108.0
05514215	2019-05-07	2206708.0
	2019-05-08	2188708.0
	2019-09-04	3913907.0
	2019-09-05	3677907.0
74ZI41B	2019-09-06	3713907.0
	2019-09-09	1874907.0
	2019-09-10	2195907.0

470 rows × 1 columns

```
In [4]: # Different Sedols present
    names=df.SEDOL.unique().tolist()
    names
```

```
Out[4]: ['5BDN21B', '5MJ2C1B', '6NY9V1B', '6Y3RH2B', '74ZI41B']
```

```
In [5]: # Visualization of the complete Data
    df_grp['Position_Quantity_SD'].plot.line(label='BC', figsize=(16,8), title='POS', g
    rid=True)
```

Out[5]: <matplotlib.axes. subplots.AxesSubplot at 0x208af553160>

4. Dividing the dataset

Dividing the dataset into 5 different Sedols and performing the following steps on the resulting dataset.

- · Creating a DataFrame of the SEDOL
- Grouping the resulting Dataframe according the BusinessDate and adding the Position_Quantity_SD of the same BusinessDates
- · Plotting the graph
- Creating a window of 30 and dividing the Training and Testing Data
- Training the model using Linear Regression and plotting the Training and Testing curves (for the first SEDOL - tried different Regression algorithms but didn't see any significant improvements)
- Applying Simple Moving Average (SMA) using the rolling() function of the Pandas DataFrame with window size = 30 and plotting the graph
- Applying Exponential Moving Average (EMA) using the ewm() function of the Pandas DataFrame with window size = 30 and plotting the combined graph of SMA and EMA

SEDOL1

```
In [6]: df_sedol1 = df.loc[df.SEDOL=='5BDN21B']
    df_sedol1.head()
```

Out[6]:

	BusinessDate	SEDOL	Counterparty_Account_ID	Position_Quantity_SD
0	2019-05-02	5BDN21B	11009	121000.0
1	2019-05-02	5BDN21B	14120	928200.0
2	2019-05-02	5BDN21B	16109	1452000.0
3	2019-05-02	5BDN21B	16140	-40600.0
4	2019-05-02	5BDN21B	62004	10000.0

```
In [7]: df_sedol1_edit = df_sedol1.groupby(['BusinessDate']).sum()
    df_sedol1_edit.head()
```

Out[7]:

Position_Quantity_SD

2254208.0
2249508.0
2303108.0
2206708.0
2188708.0

```
In [8]: df_sedol1_edit['Position_Quantity_SD'].plot.line(label='SEDOL1', figsize=(16,8), ti
tle='Position Quantity SD', grid=True)
```

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x208a43ff518>


```
In [9]: #Train the model on the last 30 days and predict the label for the 31th day
  window = 30

num_samples = len(df_sedol1_edit) - window
  indices = np.arange(num_samples).astype(np.int)[:,None] + np.arange(window + 1).ast
  ype(np.int)
  len(indices)
```

Out[9]: 64

In [11]: X = data[:, :-1]

y = data[:, -1]

```
data = df sedol1 edit['Position Quantity SD'].values[indices]
In [10]:
Out[10]: array([[ 2254208., 2249508., 2303108., ..., 1793908., 1869608.,
                  1908308.],
                [ 2249508., 2303108.,
                                       2206708., ..., 1869608.,
                                                                  1908308.,
                  1884608.],
                [ 2303108., 2206708.,
                                       2188708., ..., 1908308.,
                                                                  1884608.,
                 2043008.],
                [ 1416208., 1416208., 1309208., ..., -1244092., -1143592.,
                -1143592.],
                [ 1416208., 1309208., 1299108., ..., -1143592., -1143592.,
                -1141192.],
                [ 1309208., 1299108., 1279008., ..., -1143592., -1141192.,
                 -1141192.]])
```

```
In [12]: split_frac = 0.8
    split_indices = int(split_frac * num_samples)
    X_train = X[:split_indices]
    y_train = y[:split_indices]
    X_test = X[split_indices:]
    y_test = y[split_indices:]
    split_indices
```

Out[12]: 51

```
In [14]: #Plot the graph for it has trained on the training data
    df_linear = df_sedol1_edit.copy()
    df_linear = df_linear.iloc[window:split_indices]
    df_linear['Position_Quantity_SD_Train'] = y_pred_train_linear_reg[:-window]
    df_linear.plot(label='SEDOL1', figsize=(16, 8), title='Position_Quantity_SD', grid=
    True)
```

Out[14]: <matplotlib.axes. subplots.AxesSubplot at 0x208b1b24e48>


```
In [15]: #Plot the graph for the testing data
    df_linear = df_sedol1_edit.copy()
    df_linear = df_linear.iloc[split_indices+window:]
    df_linear['Position_Quantity_SD_Test'] = y_pred_linear_reg
    df_linear.plot(label='SEDOL1', figsize=(16, 8), title='Position_Quantity_SD', grid=
    True)
```

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x208b1e37978>


```
In [16]: from sklearn.linear_model import Ridge

#Train
ridge_model = Ridge()
ridge_model.fit(X_train, y_train)

#Inferences
y_pred_train_ridge = ridge_model.predict(X_train)
y_pred_ridge = ridge_model.predict(X_test)
```

```
In [17]: #Plot the graph for it has trained on the training data
    df_ridge = df_sedol1_edit.copy()
    df_ridge = df_ridge.iloc[window:split_indices]
    df_ridge['POS Train'] = y_pred_train_ridge[:-window]
    df_ridge.plot(label='SEDOL1', figsize=(16, 8), title='POS', grid=True)
```

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x208b1bef1d0>


```
In [18]: #Plot the graph for the testing data
    df_ridge = df_sedol1_edit.copy()
    df_ridge = df_ridge.iloc[split_indices+window:]
    df_ridge['POS Test'] = y_pred_ridge
    df_ridge.plot(label='SEDOL1', figsize=(16, 8), title='POS', grid=True)
```

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x208b20d8f28>


```
In [19]: from sklearn.ensemble import GradientBoostingRegressor

#Train
   gb_model = GradientBoostingRegressor()
   gb_model.fit(X_train, y_train)

#Inferences
   y_pred_train_gb = gb_model.predict(X_train)
   y_pred_gb = gb_model.predict(X_test)
```

```
In [20]: #Plot the graph for it has trained on the training data
df_gb = df_sedol1_edit.copy()
df_gb = df_gb.iloc[window:split_indices]
df_gb['POS Train'] = y_pred_train_gb[:-window]
df_gb.plot(label='SEDOL1', figsize=(16, 8), title='POS', grid=True)
```

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x208b2112cc0>


```
In [21]: #Plot the graph for the testing data
    df_gb = df_sedol1_edit.copy()
    df_gb = df_gb.iloc[split_indices+window:]
    df_gb['POS Test'] = y_pred_gb
    df_gb.plot(label='SEDOL1', figsize=(16, 8), title='POS', grid=True)
```

Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x208b2760f28>

Out[22]:

Position_Quantity_SD SMA(window=30)

BusinessDate		
2019-09-04	-1244092.0	107194.666667
2019-09-05	-1143592.0	20021.333333
2019-09-06	-1143592.0	-65305.333333
2019-09-09	-1141192.0	-150552.000000
2019-09-10	-1141192.0	-232232.000000

```
In [23]: df_sedol1_edit.plot(label='SEDOL1', figsize=(16, 8), title='POS', grid=True)
```

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x208af17d908>

Out[24]:

Position_Quantity_SD SMA(window=30) EMA(window=30)

BusinessDate			
2019-05-02	2254208.0	NaN	2.254208e+06
2019-05-03	2249508.0	NaN	2.253905e+06
2019-05-06	2303108.0	NaN	2.257079e+06
2019-05-07	2206708.0	NaN	2.253829e+06
2019-05-08	2188708.0	NaN	2.249628e+06

Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x208b25b2c88>

SEDOL2

Out[26]:

	BusinessDate	SEDOL	Counterparty_Account_ID	Position_Quantity_SD
8	2019-05-02	5MJ2C1B	0010V	200.0
9	2019-05-02	5MJ2C1B	1003V	100.0
10	2019-05-02	5MJ2C1B	12280	10000.0
11	2019-05-02	5MJ2C1B	25SJP	-200.0
12	2019-05-02	5MJ2C1B	3210P	-151400.0

Out[27]:

Position_Quantity_SD

	BusinessDate
732.0	2019-05-02
732.0	2019-05-03
-4902.0	2019-05-06
-85468.0	2019-05-07
-102202.0	2019-05-08

```
In [28]: df_sedol2_edit['Position_Quantity_SD'].plot.line(label='SEDOL2', figsize=(16,8), ti
tle='Position Quantity SD', grid=True)
```

```
Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x208af19ccf8>
```



```
In [29]: #Train the model on the last 30 days and predict the label for the 31st day
window = 30

num_samples = len(df_sedol2_edit) - window
indices = np.arange(num_samples).astype(np.int)[:,None] + np.arange(window + 1).ast
ype(np.int)
len(indices)
```

Out[29]: 64

```
In [30]: data = df_sedol2_edit['Position_Quantity_SD'].values[indices]
    data
```

```
Out[30]: array([[
                               732.,
                                                                 5703.,
                     732.,
                                       -4902., ...,
                                                    16903.,
                                                                          -4402.],
                     732.,
                             -4902.,
                                     -85468., ...,
                                                      5703.,
                                                                -4402.,
                                                                           2669.],
                Γ
                  -4902.,
                           -85468., -102202., ...,
                [
                                                      -4402.,
                                                                 2669.,
                                                                          -7031.],
                [ 50113.,
                            62928.,
                                     53219., ..., -163315., -150291., -164515.],
                [ 62928.,
                           53219.,
                                     62813., ..., -150291., -164515., -228391.],
                                     78214., ..., -164515., -228391., -260215.]])
                [ 53219.,
                            62813.,
```

```
In [31]: X = data[:, :-1]
y = data[:, -1]
```

Out[32]: 51

```
In [33]: from sklearn.linear_model import LinearRegression

#Train
linear_reg_model = LinearRegression()
linear_reg_model.fit(X_train, y_train)

#Inferences
y_pred_train_linear_reg = linear_reg_model.predict(X_train)
y_pred_linear_reg = linear_reg_model.predict(X_test)
```

```
In [34]: #Plot the graph for it has trained on the training data
    df_linear = df_sedol2_edit.copy()
    df_linear = df_linear.iloc[window:split_indices]
    df_linear['Position_Quantity_SD_Train'] = y_pred_train_linear_reg[:-window]
    df_linear.plot(label='SEDOL2', figsize=(16, 8), title='Position Quantity SD', grid=
    True)
```

Out[34]: <matplotlib.axes._subplots.AxesSubplot at 0x208af399b70>


```
In [35]: #Plot the graph for the testing data
    df_linear = df_sedol2_edit.copy()
    df_linear = df_linear.iloc[split_indices+window:]
    df_linear['Position_Quantity_SD_Test'] = y_pred_linear_reg
    df_linear.plot(label='SEDOL2', figsize=(16, 8), title='Position_Quantity_SD', grid=
    True)
```

Out[35]: <matplotlib.axes._subplots.AxesSubplot at 0x208af1a4f98>

Out[36]:

Position_Quantity_SD SMA(window=30)

BusinessDate		
2019-09-04	-163315.0	18702.700000
2019-09-05	-150291.0	12315.900000
2019-09-06	-164515.0	5161.633333
2019-09-09	-228391.0	-4549.000000
2019-09-10	-260215.0	-14996.800000

Out[37]: <matplotlib.axes._subplots.AxesSubplot at 0x208af467ac8>

Out[38]:

Position_Quantity_SD	SMA(window=30)	EMA(window=30)
----------------------	----------------	----------------

BusinessDate			
2019-09-04	-163315.0	18702.700000	-18221.328766
2019-09-05	-150291.0	12315.900000	-26741.952717
2019-09-06	-164515.0	5161.633333	-35630.536412
2019-09-09	-228391.0	-4549.000000	-48066.695354
2019-09-10	-260215.0	-14996.800000	-61753.682750

SEDOL3

Out[40]:

	BusinessDate	SEDOL	Counterparty_Account_ID	Position_Quantity_SD
32	2019-05-02	6NY9V1B	0130V	346000.0
33	2019-05-02	6NY9V1B	10240	-511000.0
34	2019-05-02	6NY9V1B	10240	-3281000.0
35	2019-05-02	6NY9V1B	10321	336530.0
36	2019-05-02	6NY9V1B	11009	964.0

Out[41]:

Position_Quantity_SD

	BusinessDate
-3.972417e+07	2019-05-02
-4.064518e+07	2019-05-03
-4.089717e+07	2019-05-06
-4.131317e+07	2019-05-07
-4.155817e+07	2019-05-08

```
In [42]: df_sedol3_edit['Position_Quantity_SD'].plot.line(label='SEDOL3', figsize=(16,8), ti
tle='Position Quantity SD', grid=True)
```

Out[42]: <matplotlib.axes._subplots.AxesSubplot at 0x208b2cfcf60>


```
In [43]: #Train the model on the last 30 days and predict the label for the 31st day
  window = 30

num_samples = len(df_sedol3_edit) - window
  indices = np.arange(num_samples).astype(np.int)[:,None] + np.arange(window + 1).ast
  ype(np.int)
  len(indices)
```

Out[43]: 64

```
In [44]: data = df_sedol3_edit['Position_Quantity_SD'].values[indices]
    data
```

```
, -40645177.81059113, -40897168.
Out[44]: array([[-39724168.
                 -28026744.
                                   , -26904744.
                                                       , -27339744.
                                                                            ],
                 [-40645177.81059113, -40897168.
                                                       , -41313168.
                                                                            , ...,
                                   , -27339744.
                                                       , -28530744.
                 -26904744.
                                                                            ],
                                   , -41313168.
                                                       , -41558168.
                [-40897168.
                                                                            , ...,
                 -27339744.
                                   , -28530744.
                                                        , -30616744.
                                                                            ],
                                   , -31063708.
                                                       , -30137708.
                [-30067708.
                                   , -33168708.
                                                        , -31753708.
                 -34253708.
                                                                            ],
                [-31063708.
                                   , -30137708.
                                                       , -30765708.
                                   , -31753708.
                                                       , -34278708.
                 -33168708.
                                                                            ],
                                   , -30765708.
                                                       , -30144708.
                [-30137708.
                                                                            , . . . ,
                                                        , -34318708.
                 -31753708.
                                    , -34278708.
                                                                            ]])
```

```
In [45]: X = data[:, :-1]
y = data[:, -1]
```

```
In [46]: split_frac = 0.8
    split_indices = int(split_frac * num_samples)
    X_train = X[:split_indices]
    y_train = y[:split_indices]
    X_test = X[split_indices:]
    y_test = y[split_indices:]
    split_indices
```

Out[46]: 51

```
In [47]: from sklearn.linear_model import LinearRegression

#Train
linear_reg_model = LinearRegression()
linear_reg_model.fit(X_train, y_train)

#Inferences
y_pred_train_linear_reg = linear_reg_model.predict(X_train)
y_pred_linear_reg = linear_reg_model.predict(X_test)
```

```
In [48]: #Plot the graph for it has trained on the training data
    df_linear = df_sedol3_edit.copy()
    df_linear = df_linear.iloc[window:split_indices]
    df_linear['Position_Quantity_SD_Train'] = y_pred_train_linear_reg[:-window]
    df_linear.plot(label='SEDOL3', figsize=(16, 8), title='Position_Quantity_SD', grid=
    True)
```



```
In [49]: #Plot the graph for the testing data
df_linear = df_sedol3_edit.copy()
df_linear = df_linear.iloc[split_indices+window:]
df_linear['Position_Quantity_SD_Test'] = y_pred_linear_reg
df_linear.plot(label='SEDOL3', figsize=(16, 8), title='Position_Quantity_SD', grid=
True)
```

Out[49]: <matplotlib.axes._subplots.AxesSubplot at 0x208b3bccf60>


```
In [50]: df_sedol3_edit['SMA(window=30)'] = df_sedol3_edit.Position_Quantity_SD.rolling(wind
    ow=30).mean()
    df_sedol3_edit.tail()
```

Out[50]:

Position_Quantity_SD SMA(window=30)

BusinessDate		
2019-09-04	-34253708.0	-2.980320e+07
2019-09-05	-33168708.0	-2.994886e+07
2019-09-06	-31753708.0	-3.000506e+07
2019-09-09	-34278708.0	-3.011223e+07
2019-09-10	-34318708.0	-3.025160e+07

Out[51]: <matplotlib.axes._subplots.AxesSubplot at 0x208b4085e48>

Out[52]:

Position_Quantity_SD	SMA(window=30)	EMA(window=30)
----------------------	----------------	----------------

BusinessDate			
2019-09-04	-34253708.0	-2.980320e+07	-3.056616e+07
2019-09-05	-33168708.0	-2.994886e+07	-3.073407e+07
2019-09-06	-31753708.0	-3.000506e+07	-3.079985e+07
2019-09-09	-34278708.0	-3.011223e+07	-3.102430e+07
2019-09-10	-34318708.0	-3.025160e+07	-3.123684e+07

Out[53]: <matplotlib.axes._subplots.AxesSubplot at 0x208b40c5978>

SEDOL4

```
In [54]: df_sedol4 = df.loc[df.SEDOL=='6Y3RH2B']
    df_sedol4.head()
```

Out[54]:

	BusinessDate	SEDOL	Counterparty_Account_ID	Position_Quantity_SD
64	2019-05-02	6Y3RH2B	10240	-112000.0
65	2019-05-02	6Y3RH2B	10240	-373000.0
66	2019-05-02	6Y3RH2B	10321	173000.0
67	2019-05-02	6Y3RH2B	1310P	-202000.0
68	2019-05-02	6Y3RH2B	1310V	520000.0

Out[55]:

Position_Quantity_SD

BusinessDate	
2019-05-02	-19662000.0
2019-05-03	-19176000.0
2019-05-06	-18134000.0
2019-05-07	-16142000.0
2019-05-08	-15565000.0

```
In [56]: df_sedol4_edit['Position_Quantity_SD'].plot.line(label='SEDOL4', figsize=(16,8), ti
    tle='Position Quantity SD', grid=True)
```

Out[56]: <matplotlib.axes._subplots.AxesSubplot at 0x208b4585e80>


```
In [57]: #Train the model on the last 30 days and predict the label for the 31st day
window = 30

num_samples = len(df_sedol4_edit) - window
indices = np.arange(num_samples).astype(np.int)[:,None] + np.arange(window + 1).ast
ype(np.int)
len(indices)
```

Out[57]: 64

```
In [58]: data = df_sedol4_edit['Position_Quantity_SD'].values[indices]
    data
```

```
In [59]: X = data[:, :-1]
y = data[:, -1]
```

```
In [60]: split_frac = 0.8
    split_indices = int(split_frac * num_samples)
    X_train = X[:split_indices]
    y_train = y[:split_indices]
    X_test = X[split_indices:]
    y_test = y[split_indices:]
    split_indices
```

Out[60]: 51

```
In [61]: from sklearn.linear_model import LinearRegression

#Train
linear_reg_model = LinearRegression()
linear_reg_model.fit(X_train, y_train)

#Inferences
y_pred_train_linear_reg = linear_reg_model.predict(X_train)
y_pred_linear_reg = linear_reg_model.predict(X_test)
```

```
In [62]: #Plot the graph for it has trained on the training data
    df_linear = df_sedol4_edit.copy()
    df_linear = df_linear.iloc[window:split_indices]
    df_linear['Position_Quantity_SD_Train'] = y_pred_train_linear_reg[:-window]
    df_linear.plot(label='SEDOL4', figsize=(16, 8), title='Position Quantity SD', grid=
    True)
```



```
In [63]: #Plot the graph for testing data
    df_linear = df_sedol4_edit.copy()
    df_linear = df_linear.iloc[split_indices+window:]
    df_linear['Position_Quantity_SD_Test'] = y_pred_linear_reg
    df_linear.plot(label='SEDOL4', figsize=(16, 8), title='Position_Quantity_SD', grid=
    True)
```

Out[63]: <matplotlib.axes._subplots.AxesSubplot at 0x208b5a270f0>

Out[64]:

Position_Quantity_SD SMA(window=30)

BusinessDate		
2019-09-04	-21241000.0	-1.704940e+07
2019-09-05	-19065000.0	-1.737863e+07
2019-09-06	-16994000.0	-1.765353e+07
2019-09-09	-15916000.0	-1.789910e+07
2019-09-10	-15230000.0	-1.810600e+07

Out[65]: <matplotlib.axes._subplots.AxesSubplot at 0x208b5abd978>

Out[66]:

Position_Quantity_SD SMA(window=30) EMA(window=30)

BusinessDate			
2019-09-04	-21241000.0	-1.704940e+07	-1.939856e+07
2019-09-05	-19065000.0	-1.737863e+07	-1.937704e+07
2019-09-06	-16994000.0	-1.765353e+07	-1.922329e+07
2019-09-09	-15916000.0	-1.789910e+07	-1.900992e+07
2019-09-10	-15230000.0	-1.810600e+07	-1.876605e+07

Out[67]: <matplotlib.axes._subplots.AxesSubplot at 0x208b5f61b38>

SEDOL5

```
In [68]: df_sedo15 = df.loc[df.SEDOL=='74ZI41B']
    df_sedo15.head()
```

Out[68]:

	BusinessDate	SEDOL	Counterparty_Account_ID	Position_Quantity_SD
87	2019-05-02	74ZI41B	1003V	697000.0
88	2019-05-02	74ZI41B	10240	4000.0
89	2019-05-02	74ZI41B	10240	557000.0
90	2019-05-02	74ZI41B	10321	433000.0
91	2019-05-02	74ZI41B	12210	164000.0

Out[69]:

Position_Quantity_SD

sinessDate	
2019-05-02	8785907.0
2019-05-03	8177907.0
2019-05-06	7815907.0
2019-05-07	7686907.0
2019-05-08	7561907.0

```
In [70]: df_sedol5_edit['Position_Quantity_SD'].plot.line(label='SEDOL5', figsize=(16,8), ti
tle='Position Quantity SD', grid=True)
```

Out[70]: <matplotlib.axes._subplots.AxesSubplot at 0x208b2ce1cc0>


```
In [71]: #Train the model on the last 30 days and predict the label for the 31st day
   window = 30

num_samples = len(df_sedol5_edit) - window
   indices = np.arange(num_samples).astype(np.int)[:,None] + np.arange(window + 1).ast
   ype(np.int)
  len(indices)
```

Out[71]: 64

```
[8177907., 7815907., 7686907., ..., 3982907., 3407907.],
[7815907., 7686907., 7561907., ..., 3407907., 3123907.],
[7815907., 7686907., 7561907., ..., 3407907., 3123907., 3250907.],
...,
[1493907., 1472907., 1735907., ..., 3913907., 3677907., 3713907.],
[1472907., 1735907., 2364907., ..., 3677907., 3713907., 1874907.],
[1735907., 2364907., 2634907., ..., 3713907., 1874907., 2195907.]])
```

```
In [73]: X = data[:, :-1]
y = data[:, -1]
```

```
In [74]: split_frac = 0.8
    split_indices = int(split_frac * num_samples)
    X_train = X[:split_indices]
    y_train = y[:split_indices]
    X_test = X[split_indices:]
    y_test = y[split_indices:]
    split_indices
```

Out[74]: 51

```
In [75]: from sklearn.linear_model import LinearRegression

#Train
linear_reg_model = LinearRegression()
linear_reg_model.fit(X_train, y_train)

#Inferences
y_pred_train_linear_reg = linear_reg_model.predict(X_train)
y_pred_linear_reg = linear_reg_model.predict(X_test)
```

```
In [76]: #Plot the graph for it has trained on the training data
    df_linear = df_sedol5_edit.copy()
    df_linear = df_linear.iloc[window:split_indices]
    df_linear['Position_Quantity_SD_Train'] = y_pred_train_linear_reg[:-window]
    df_linear.plot(label='SEDOL5', figsize=(16, 8), title='Position Quantity SD', grid=
    True)
```

Out[76]: <matplotlib.axes._subplots.AxesSubplot at 0x208b672ba90>


```
In [77]: #Plot the graph for the testing data
    df_linear = df_sedol5_edit.copy()
    df_linear = df_linear.iloc[split_indices+window:]
    df_linear['Position_Quantity_SD_Test'] = y_pred_linear_reg
    df_linear.plot(label='SEDOL5', figsize=(16, 8), title='Position_Quantity_SD', grid=
    True)
```

Out[77]: <matplotlib.axes._subplots.AxesSubplot at 0x208b6496f60>


```
In [78]: df_sedol5_edit['SMA(window=30)'] = df_sedol5_edit.Position_Quantity_SD.rolling(wind
    ow=30).mean()
    df_sedol5_edit.tail()
```

Out[78]:

Position_Quantity_SD SMA(window=30)

BusinessDate		
2019-09-04	3913907.0	3.782407e+06
2019-09-05	3677907.0	3.846307e+06
2019-09-06	3713907.0	3.920307e+06
2019-09-09	1874907.0	3.933707e+06
2019-09-10	2195907.0	3.949040e+06

Out[79]: <matplotlib.axes._subplots.AxesSubplot at 0x208b6986390>

Out[80]:

Position_Quantity_SD	SMA(window=30)	EMA(window=30)
----------------------	----------------	----------------

BusinessDate			
2019-09-04	3913907.0	3.782407e+06	4.382346e+06
2019-09-05	3677907.0	3.846307e+06	4.336899e+06
2019-09-06	3713907.0	3.920307e+06	4.296706e+06
2019-09-09	1874907.0	3.933707e+06	4.140461e+06
2019-09-10	2195907.0	3.949040e+06	4.015006e+06

Out[81]: <matplotlib.axes._subplots.AxesSubplot at 0x208b6986940>

In []: