Question 1 [4]

The terminal voltage and terminal current were measured (b) on the device (a) shown. Construct a circuit model for the device consisting of a single resistor. Provide a graph (either hand-drawn or software generated) showing how you determine the value of the resistor.

i (mA)	v (V)
-10	-120
-5	-60
5	60
10	120
15	180
(b)	

Question 2 [4]

For the circuit shown, find:

- (a) The value of i_a .
- (b) The value of i_b .
- (c) The value of v_a .
- (d) the power dissipated in each resistor.
- (e) the power delivered by the 200V source.

Question 3 [4]

In the circuit below, the current $i_o = 2A$.

- (a) Find i_1 .
- (b) Find the power dissipated in each resistor.
- (c) Verify that the total power dissipated in the circuit equals the power provided by the voltage source.

Question 4 [4]

The variable resistor R is adjusted until $i_o = 10$ mA. Find the value of R.

Question 5 [4]

Find v_o and the total power supplied in the circuit.

