Leinster - Basic Category Theory - Selected problem solutions for Chapter 4

Adam Barber

February 9, 2022

4.1.27

 H_A is naturally isomorphic if and only if $\alpha_A: H_A(B) \to H_{A'}(B)$ is isomorphic for all B in A.

The naturality square of H_A is constructed below. For every map $g: B' \to B$, B, B' in A, the following square commutes

$$H_{A}(B) \xrightarrow{H_{A}(g) = -\circ g} H_{A}(B')$$

$$\downarrow^{\alpha_{A}} \qquad \downarrow^{\alpha_{A'}}$$

$$H_{A'}(B) \xrightarrow{H_{A'}(g) = -\circ g} H_{A'}(B')$$

Moreover, since $H_A \cong H_{A'}$, α_A is an isomorphism for every B in A.

Now consider the square below. For an arbitrary B in A we need to show there is a bijection between the component α_A and a morphism \overline{f} in A.

$$\begin{array}{ccc}
\mathcal{A}(B,A) \xrightarrow{\alpha_A = f \circ -} \mathcal{A}(B,A') \\
\xrightarrow{(-)^B} & & \downarrow^{(-)(B)} \\
A & \xrightarrow{\overline{f}} & A'
\end{array}$$

But $(-)^B$ and (-)(B) are unique and inverses so take $f, \overline{f} \colon A \to A'$ as $\overline{f}(A) = f(A^B)(B) = A'$ and we have our required bijection, hence A and A' are isomorphic. Note that the isomorphism of α_A must hold for all B in A. To see why, suppose there exists a B, such that α_A is a bijective morphism but not an isomorphism, then \overline{f} is not an isomorphism, and we have a contradiction. Suppose, alternatively, there exists a B, such that α_A is not bijective, then our expression for \overline{f} implies \overline{f} is not bijective, and again we have a contradiction.

4.1.27 - another less convoluted attempt

With $f: A \to B$, $A, B \in \mathcal{A}$ consider the following diagram

$$H_A(B) \xrightarrow{-\circ f} H_A(A)$$

$$\downarrow^{\alpha_B} \qquad \qquad \downarrow^{\alpha_A}$$

$$H_B(B) \xrightarrow{-\circ f} H_B(A)$$

We require $g \circ f = 1_A$ and $f \circ g = 1_B$.

Set $g: B \to A$. By naturality above square commutes, so

$$\alpha_A(g \circ f) = (\alpha_B \circ g)(f),$$

$$\alpha_A(g \circ f) = 1_B(f),$$

$$g \circ f = \alpha_A^{-1} 1_B f = 1_{H_A(A)} = 1_A,$$

the last equality just being a matter of notation.

4.1.28

Here we construct a bijection between the set $U_p(G)$ and a group homomorphism ϕ .

$$U_p(G) \xrightarrow{h} U_p(H)$$

$$\downarrow^{\alpha_G} \qquad \qquad \downarrow^{\alpha_H}$$

$$\mathbf{Grp}(\mathbb{Z}/p\mathbb{Z}, G) \xrightarrow{h} \mathbf{Grp}(\mathbb{Z}/p\mathbb{Z}, H)$$

 $U_p(G)$ is the set of $\{g \in G : g^p = 1\}$.

For the present question, take an arbitrary g in G. Set $\phi(1) = g$. By the properties of a homormorphism we shall see this maps the additive group $\mathbb{Z}/p\mathbb{Z}$ to $U_p(G)$. ϕ preserves the identity so $\phi(0) = 1$. Since $\phi(1+1) = g^2$, generally $\phi(n) = g^n$. So $\phi(p) = g^p = \phi(0) = 1$. So ϕ maps to a group with order p, or simply order 1 if g is the element of the trivial group. So $\mathbb{Z}/p\mathbb{Z}$ sees groups of order p or 1. This result means we have the required bijection, α and α^{-1} in the diagram above. Observing the diagram we just need to specify how morphisms in $\mathbf{Grp}(\mathbb{Z}/p\mathbb{Z}, -)$ work. They are simply group homomorphisms h, that take $\mathbf{Grp}(\mathbb{Z}/p\mathbb{Z}, G)$ to $\mathbf{Grp}(\mathbb{Z}/p\mathbb{Z}, H)$. So referring to the diagram, naturality holds, and we can conclude $\mathbf{Grp}(\mathbb{Z}/p\mathbb{Z}, -)$ and U_p are naturally isomorphic. ¹

¹A well known result is as follows. For a group homomorphism $\psi: G_1 \to G_2$, let $g \in G_1$ be of finite order n. Then $\psi(g)$ divides the order of g. Because $g^n = e_1$ implies $\psi(g)^n = \psi(g^n) = \psi(e_1) = e_2$. So if p is prime then the resulting homomorphism maps to a group of order p or 1.