

VERIFIABLE RANDOM SECRETS AND SUBLIMINAL-FREE DIGITAL SIGNATURES

Master's thesis. Tjerand Aga Silde, August 2020

ABSTRACT

Contribution

We present the first post-quantum secure subliminal-free digital signature schemes. The first scheme is based purely on lattices, while the second scheme is based on collision-resistant hash-functions combined with any post-quantum "hash-then-sign" signature scheme.

ABSTRACT

- ▶ The concrete instantiation of the purely lattice-based scheme can be made non-interactive and it takes less than 10 seconds[†] to create a subliminal-free signature of total size \approx 12.65 MB[‡].
- ▶ The concrete instantiation of the hash-based scheme combined with lattice-based signatures is interactive and it takes ≈ 1 second to generate a subliminal-free signature of size 3.3 KB, where a malicious signer has probability 2^{-10} to embed subliminal information into the signature.

 $^{^{\}ddagger}$ improved from pprox 50 MB in Herman Galteland's Ph.D. thesis

[†]now only \approx 5 seconds due to new optimizations

PREFACE

- Sections §1, §4 and §5 are co-authored with Herman Galteland.
- ➤ Sections §2 and §3 are background material, where the shuffle-protocol in §3.2 is joint work with Diego, Carsten, Kristian and Thor.
- ► Section §6 is my own contribution[‡]. We conclude in §7.
- Sections §4, §5 and §6 are the main new contributions in this work.

[‡]new and improved compared to work published in Herman Galteland's Ph.D. thesis

OUTLINE

Introduction

Preliminaries

Lattice-Based Cryptography

Verifiable Random Secrets

Subliminal-Free Digital Signatures

Our Schemes

Conclusion

Introduction

Imagine an authentication without secrecy communication channel with a sender S, a warden W, a recipient R and a message-signature pair (m, σ) :

$$\mathtt{S} \quad \overset{(m,\sigma)}{\longrightarrow} \quad \mathtt{W} \quad \overset{(m,\sigma)}{\longrightarrow} \quad \mathtt{R}$$

Then S and R can communicate covertly by embedding secret information into the signature, e.g., if S and R have some key-material that is shared in advance.

Introduction

Example: Schnorr-signatures

Public parameters (g,G), signature keys $(a,x=g^a)$, hash-function H, symmetric key system $(\mathcal{E},\mathcal{D})$ and symmetric key k. Assume that (a,k) is shared between S and R. Then S can send a subliminal message \hat{m} to R without W noticing:

$$\mathtt{S}: \quad r = \mathcal{E}(k, \hat{m}), \quad \alpha = \mathbf{g}^r, \quad \beta = \mathtt{H}(\alpha || m), \quad \gamma = r + \beta \mathbf{a}, \quad \sigma = (\alpha, \gamma).$$

$$\mathtt{W}: \quad \beta = \mathtt{H}(\alpha||m), \quad \mathbf{g}^{\gamma} \stackrel{?}{=} \alpha \mathbf{x}^{\beta}, \quad \text{if yes: forward } (m,\sigma) \text{ to } \mathtt{R}.$$

R:
$$\beta = H(\alpha||m)$$
, $g^{\gamma} \stackrel{?}{=} \alpha x^{\beta}$, if yes: compute $r = \gamma - \beta a$, $\hat{m} = \mathcal{D}(k,r)$.

Introduction

To prevent such an subliminal channel, we need a procedure for creating verifiable random values that is not controlled by S, but also hides the values from others: a *verifiable random secrets* (VRS) scheme. We combine the VRS with a signature scheme to achieve a subliminal-free signature (SFS) scheme.

There exists several SFS constructions for signatures based on the hardness of discrete logarithms, and we propose the two first post-quantum SFS schemes.

Preliminaries

- ▶ Working over the ring $R_p = \mathbb{Z}_p[X]/\langle X^N + 1 \rangle$ for prime p and power-of-two N.
- ▶ The k-SUM problem is to find a subset of size k out of a set of n values $a_1, a_2, ..., a_n$ that sums to a given target s. The decisional and search variants are equivalent, and k-SUM takes $\mathcal{O}(n^{k/2})$ operations to solve.
- ▶ We use both randomized and deterministic discrete Gaussian sampling.

Lattice-Based Cryptography

Commitment Scheme

- KeyGen, outputs $\mathbf{A} = \begin{bmatrix} 1 & a_1 & a_2 \\ 0 & 1 & a_3 \end{bmatrix}$, where $a_1, a_2, a_3 \stackrel{\$}{\leftarrow} R_p$,
- Com, on input $m \in R_p$ and ${m r} \in R_p^3$ where $||{m r}||_{\infty} =$ 1, computes

$$c = A \cdot r + \begin{bmatrix} 0 \\ m \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$
, and returns c and $d = (m, r, 1)$,

- Open, on input \boldsymbol{c} and (m, \boldsymbol{r}, f) , verifies the opening by checking if $f \cdot \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \stackrel{?}{=} \boldsymbol{A} \cdot \boldsymbol{r} + f \cdot \begin{bmatrix} 0 \\ m \end{bmatrix}$, and that $||r_i|| \le 4\sigma \sqrt{N}$.

Lattice-Based Cryptography

Zero-Knowledge Proof of Linear Relations

Let $[x_1], [x_2]$ and $[x_3]$ be commitments such that $x_3 = \alpha_1 x_1 + \alpha_2 x_2$ for some public values $\alpha_1, \alpha_2 \in R_p$. Then Π_{Lin} produces a zero-knowledge proof of knowledge of this relation, and Π_{LinV} verifies the proof.

Lattice-Based Cryptography

Zero-Knowledge Proof of Correct Shuffle

Given a list of elements $\hat{M}_1, \hat{M}_2, \ldots, \hat{M}_{\tau}$ from R_p and commitments $[M]_1, [M]_2, \ldots, [M]_{\tau}$, we can prove that the $[M]_i$'s are commitments to the $\hat{M}_{\gamma(i)}$'s, for some secret permutation γ . Then Π_{Shuffle} produces a zero-knowledge proof of knowledge of this relation, and Π_{ShuffleV} verifies the proof.

Verifiable Random Secrets

Definition

- Setup, on input security parameter 1^{λ} , outputs public parameters sp,
- Π_{Seed} , on input sp, outputs a random seed s,
- Com, on input seed s, outputs commitment \tilde{c} of s and opening \tilde{d} ,
- Challenge, on no input, outputs a random challenge t,
- Generate, on input commitment \tilde{c} , opening \tilde{d} and challenge t, outputs commitment c, opening d of c (containing r = r(s,t)) and proof π ,
- Check, on input \tilde{c} and c, challenge t, and proof π , outputs 0 or 1,

Verifiable Random Secrets

Figure: Our abstract verifiable random secret scheme.

Verifiable Random Secrets

A VRS has the following properties:

- Completeness,
- Binding,
- Prover bit-Unpredictability, and
- ► Honest-Verifier Secrecy.

Subliminal-Free Digital Signatures

Definition (Subliminal-Free Digital Signature Scheme)

- KeyGen, on input the security parameter 1^{λ} , outputs public parameters pp, a signing key sk, and a verification key vk,
- Setup, on input security parameter 1^{λ} , outputs public parameters sp,
- $\Pi_{ exttt{Sign}}$, on input message m and $exttt{sk}$, outputs signature σ and proof π ,
- Verify, on input m, σ and vk, outputs either 0 or 1,
- Check, on input m, σ , vk and π , outputs either 0 or 1,

We require that Check returns 1 if and only if Verify returns 1 and π is valid.

Subliminal-Free Digital Signatures

A SFS has the following properties:

- Completeness,
- Soundness, and
- Security against existential forgery.

Lattice-Based VRS

- **1.** Seed: V draws τ Gaussian distributed polynomials s_i from R_p with standard deviation $\sigma/\sqrt{\kappa}$ and sends them to P.
- 2. Commit: P shuffles the polynomials using a random permutation γ , commits to them in the new order, and sends the commitments to V.
- **3.** Challenge: V draws three random subset T_j , for $1 \le j \le 3$, each of size κ , of indices from 1 to τ and sends them to P.
- **4.** Generate: P sums together the commitments for each set of indices, and sends the sums to V together with the proof of shuffle.
- 5. Check: V verifies that the sums and the proof of shuffle are correct.

Lattice-Based Subliminal-Free Signature Scheme		
Prover		Verifier
		Seed:
	$s = \{s_i\}$	$s_i \stackrel{\$}{\leftarrow} \mathcal{N}_{\sigma/\sqrt{\kappa}}, 1 \leq i \leq \tau$
Com:		
$\gamma \stackrel{\$}{\leftarrow} S_{\tau}$		
$(\tilde{c}_i, \tilde{d}_i) \leftarrow \mathtt{Com}(s_{\gamma(i)})$	$\tilde{c} = \{\tilde{c}_i\}$	
		Challenge:
$\pi_S \leftarrow \Pi_{\text{Shuffle}}(\{\tilde{c}_i\}, \{s_i\}, \gamma)$		$T_j \stackrel{\$}{\subset} \{1,, \tau\},$
	$t = \{T_j\}$	$ T_j =\kappa, 1\leq j\leq 3$
Generate:		
$(c_j, d_j) \leftarrow \sum_{l \in T_i} Com(s_{\gamma^{-1}(l)})$		
$\pi_L \leftarrow \Pi_{\mathrm{Lin}}(\{c_j\}, t', (1, a_1, a_2))$		
44	(m, (t', z)),	
$(t',z) \leftarrow \mathtt{Sign}(m,\mathtt{sk})$	$(\{c_j\}, (\pi_S, \pi_L))$	
		Check:
		$1 \stackrel{?}{=} \Pi_{\text{ShuffleV}}(\{\tilde{c}_i\}, \{s_i\}, \pi_S)$
		$1 \stackrel{?}{=} \Pi_{\text{LinV}}(\{c_j\}, t', (1, a_1, a_2), \pi_L)$
		Verify:
		$1 \stackrel{?}{=} \mathtt{Verify}(\mathtt{vk}, m, (t', z)))$
		If all algorithms output 1:
		Send $(m, (t', z))$ to the receiver.

Figure: Merkle-tree

Hash-Based VRS

- **1.** Seed: P chose a random bit string s of length 3λ and keeps this private.
- 2. Commit: P generates the full tree applying the algorithm BuildTree on s, and sends the root \tilde{c} to V as a commitment.
- **3.** Challenge: V draws a random index t = I, where $0 \le I \le M 1$, and sends t to P.
- **4.** Generate: P publishes $c = w_l$ and the proof π_l , generated by applying the algorithm SubTrees on s and l, which contains the roots of the subtrees not on the path between s and u_l .
- **5.** Check: V verifies that w_l and π_l generates the tree by applying the algorithm CompleteTree to w_l and π_l and comparing the root to \tilde{c} .


```
Hash-Based Subliminal-Free Signature Scheme
                                                          Verifier
Prover
Seed:
s \stackrel{\$}{\leftarrow} \{0,1\}^{3\lambda}
Com:
(\tilde{c}, \tilde{d}) \leftarrow \texttt{BuildTree}(s) \tilde{c}
                                                          Challenge:
                                    t = I I \stackrel{\$}{\leftarrow} \{0,...,M-1\}
Generate:
(c,d) \leftarrow (w_I,v_I)
\pi_I \leftarrow \text{SubTrees}(s, I)
(w_I, z) \leftarrow \text{Sign}(m, \text{sk}) \ (c, \pi_I, (w_I, z))
                                                          Check:
                                                         \tilde{c} \stackrel{?}{=} {	t CompleteTree}(w_I, \pi_I)
                                                          Verify:
                                                          1 \stackrel{?}{=} Verify(vk, m, (w_I, z)))
                                                          If all algorithms output 1:
                                                          Send (m, (w_I, z)) to the receiver.
```


Conclusion

- ▶ The concrete instantiation of the purely lattice-based scheme can be made non-interactive and it takes less than 5 seconds to create a subliminal-free signature of total size \approx 12.65 MB.
- ▶ The concrete instantiation of the hash-based scheme combined with lattice-based signatures is interactive and it takes ≈ 1 second to generate a subliminal-free signature of size 3.3 KB, where a malicious signer has probability 2^{-10} to embed subliminal information into the signature.

Thank you! Any questions?

Presentation available at tjerandsilde.no/talks.

