Geometrische Morphismen; Eigenschaften von Topoi und Konstruktionen mit Topoi

Tim Baumann

13. April 2017

1 Geometrische Morphismen

Definition. Ein geometrischer Morphismus $f: \mathcal{E} \to \mathcal{D}$ zwischen Topoi ist ein Paar

$$\mathcal{E} \xrightarrow{f^*} \mathcal{D}$$

von adjungierten Funktoren, wobei f^* linksexakt ist, d. h. f^* bewahrt endliche Limiten. Dabei heißt f^* Urbildfunktor und f_* Direktes-Bild-Funktor.

Erinnerung. Außerdem bewahrt f_* Limiten und f^* Kolimiten, denn:

Left-Adjoints Preserve Colimits (LAPC), Right-Adjoints Preserve Limits (RAPL)

Bemerkung. Aus dem Yoneda-Lemma folgt: Bei einer Adjunktion $F \dashv G$ ist F eindeutig (bis auf Isomorphie) durch G bestimmt (und umgekehrt). Die Daten eines geometrischen Morphismus sind also schon allein durch f^* oder f_* gegeben.

Definition. Ein Punkt eines Topos \mathcal{E} ist ein geometrischer Morphismus $\mathbf{Set} \to \mathcal{E}$.

Bemerkung. Diese Definition ergibt Sinn, da für $\mathcal{E} = \mathbf{Sh}(X)$ geometrische Morphismen $\mathbf{Set} = \mathbf{Sh}(\{\heartsuit\}) \to \mathbf{Sh}(X)$ in 1-zu-1-Korrespondenz zu stetigen Abbildungen $\{\heartsuit\} \to X$, also Punkten von X, stehen.

TODO: warum sind Punkte interessant?

Beispiel. Sei $\mathcal E$ ein kovollständiger Topos (z. B. ein Grothendiecktopos). Dann hat der Globale-Schnitte-Funktor

$$\Gamma: \mathcal{E} \to \mathbf{Set}, \quad E \mapsto \mathrm{Hom}_{\mathcal{E}}(1, E)$$

einen Linksadjungierten, nämlich

$$\Delta: \mathbf{Set} \to \mathcal{E}, \quad S \mapsto \coprod_{s \in S} 1.$$

Für diesen gelten

$$\begin{split} &\Delta(\{\heartsuit\}) = \coprod_{s \in \{\heartsuit\}} 1 \cong 1 \\ &\Delta(S \times T) = \coprod_{(s,t) \in S \times T} 1 \cong \left(\coprod_{s \in S} 1\right) \times \left(\coprod_{t \in T} 1\right) = \Delta(S) \times \Delta(T) \end{split}$$

Außerdem kann man zeigen, dass Δ auch Differenzkerne und somit alle endlichen Limiten erhält. Folglich ist

$$\mathcal{E} \stackrel{\Delta}{\stackrel{\perp}{=}} \mathbf{Set}$$

ein geometrischer Morphismus.

Es gibt auch keinen anderen geometrischen Morphismus $f: \mathcal{E} \to \mathbf{Set}$, denn für jeden solchen Morphismus und jedes Objekt $E \in \mathcal{E}$ gilt:

$$f_*E \cong \operatorname{Hom}_{\mathbf{Set}}(1, f_*E) \cong \operatorname{Hom}_{\mathcal{E}}(f^*1, E) \cong \operatorname{Hom}_{\mathcal{E}}(1, E) \cong \Gamma(E).$$

2 Stetige Abbildungen induzieren geometrische Morphismen

TODO

3 Scheibenkategorien von Topoi sind Topoi

Satz. Sei \mathcal{E} ein Topos, $B \in \mathrm{Ob}(\mathcal{E})$. Dann ist auch die Scheibenkategorie \mathcal{E}/B ein Topos.

Beweis. Wir müssen die Toposaxiome nachrechnen:

(1) \mathcal{E}/B ist endlich vollständig:

Der Differenzkern berechnet sich wie in \mathcal{E} :

Binäre Produkte in \mathcal{E}/B sind Pullbacks in \mathcal{E} :

Das terminale Objekt in \mathcal{E}/B ist der Morphismus $id_B: B \to B$:

(2) \mathcal{E}/B besitzt einen Unterobjektklassifizierer:

Sei $U: \mathcal{E}/B->\mathcal{E}$ der offensichtliche Vergissfunktor. Dieser Funktor ist linksadjungiert zum Funktor $(-\times B): \mathcal{E} \to \mathcal{E}/B$, denn es gilt

$$\operatorname{Hom}_{\mathcal{E}}(X,Y)\operatorname{Hom}_{\mathcal{E}/B}(X\xrightarrow{f}B,Y\times B\xrightarrow{\pi_2}B)$$

natürlich in $(X \xrightarrow{f} B) \in \text{Ob}(\mathcal{E}/B)$ und $Y \in \text{Ob}(\mathcal{E})$. Da ein Morphismus f in \mathcal{E}/B genau dann ein Monomorphismus ist, wenn U(f) ein solcher ist, gilt:

$$\operatorname{Sub}_{\mathcal{E}/B}(A \xrightarrow{f} B) \cong \operatorname{Sub}_{\mathcal{E}}(A) \cong \operatorname{Hom}_{\mathcal{E}}(A, \Omega_{\mathcal{E}}) \cong \operatorname{Hom}_{\mathcal{E}/B}(A \xrightarrow{f} B, \Omega_{\mathcal{E}} \times B \xrightarrow{\pi_2} B)$$

Nach Proposition I.3.1 in SiGaL ist folglich $\Omega_{\mathcal{E}/B} = \Omega_{\mathcal{E}} \times B \xrightarrow{\pi_2} B$ der Unterobjektklassifizierer in \mathcal{E}/B . Der universelle Monomorphismus true : $1 \to \Omega$ ist die Komposition

(3) \mathcal{E}/B ist kartesisch abgeschlossen:

TODO: gibt es hierfür eine schöne Konstruktion mithilfe der internen Sprache? Die Konstruktion in SiGaL ist zu kompliziert und nimmt außerdem $Z = \Omega$ an. Vergleich mit Set: Dort gilt $Z^Y = \coprod_{b \in B} Z_b^{Y_b}$.

TODO: Evtl. erwähnen wie Kolimiten berechnet werden

Definition. Sei $k: B \to A$ ein Morphismus in \mathcal{E} . Dann erhalten wir einen Funktor

$$\Sigma_k : \mathcal{E}/B \to \mathcal{E}/A, \quad (X \xrightarrow{p_X} B) \mapsto (k \circ p_X : X \xrightarrow{p_X} B \xrightarrow{k} A)$$

durch Komponieren mit k und einen Basiswechselfunktor

$$k^*: \mathcal{E}/A \to \mathcal{E}/B, \quad (X \xrightarrow{p_X} A) \mapsto (B \times_A X \xrightarrow{\pi_B} B)$$

durch Pullback entlang k.

Lemma. $\Sigma_k \dashv k^*$

Beweis. Wir müssen zeigen, dass

$$\operatorname{Hom}_{\mathcal{E}/A}(\Sigma_k(X \to B), Y \to A) \cong \operatorname{Hom}_{\mathcal{E}/B}(X \to B, k^*(Y \to A)).$$

Betrachte das Diagramm

Elemente der linken Hom-Menge sind Morphismen $X \to Y$, die das äußere Viereck kommutieren lassen; Elemente der rechten Hom-Menge sind Morphismen $X \to B \times_A Y$, die das linke Dreieck kommutieren lassen. Zwischen solchen Elementen besteht eine 1-zu-1-Korrespondenz, gegeben durch die universelle Eigenschaft des Pullbacks $B \times_A Y$.

Lemma. k^* besitzt auch einen Rechtsadjungierten $\Pi_k : \mathcal{E}/B \to \mathcal{E}/A$.

Beweis. Wir dürfen annehmen, dass $A \cong 1$ und somit $\mathcal{E}/A \cong \mathcal{E}$. (Ansonsten verwende $\mathcal{E}' := \mathcal{E}/A$ und $B' := (B \xrightarrow{k} A) \in \text{Ob}(\mathcal{E}')$ anstelle von \mathcal{E} bzw. B. Beachte, dass $\mathcal{E}'/B' \cong \mathcal{E}/B$.)

$$\operatorname{Hom}_{\mathcal{E}/B}(k^*(X), Y \xrightarrow{h} B) \cong \operatorname{Hom}_{\mathcal{E}/B}(X \times B \xrightarrow{\pi_B} B, Y \xrightarrow{h} B)$$

$$\cong \{ t \in \operatorname{Hom}_{\mathcal{E}}(X \times B, Y) \mid h \circ t = \pi_B \}$$

$$\cong \{ t' \in \operatorname{Hom}_{\mathcal{E}}(X, Y^B) \mid h^B \circ t' = j \circ ! \}$$

$$\cong \operatorname{Hom}_{\mathcal{E}}(X, \{ g : Y^B \mid h \circ g = \operatorname{id}_B \})$$

wobei $j: 1 \to B^B$ die Curryfizierung von id_B und $!: X \to 1$ ist. Wir definieren somit Π_k durch

$$\Pi_k(k:Y\to B) := \{g:Y^B \mid h \circ g = \mathrm{id}_B\}.$$

Korollar. $\mathcal{E}/B \xrightarrow{\stackrel{k^*}{-}} \mathcal{E}/A$ ist ein geometrischer Morphismus.

Dieser ist wesentlich, d. h. k^* besitzt auch einen Linksadjungierten.

4 Lawvere-Tierney-Topologien und Garbifizierung

Definition. Eine Lawvere-Tierney-Topologie auf einem Topos \mathcal{E} ist ein Morphismus $j:\Omega\to\Omega$, für den gilt:

(a)
$$j \circ \text{true} = \text{true}$$
 (b) $j \circ j = j$ (b) $j \circ \wedge = \wedge \circ (j \times j)$

$$\begin{array}{ccc}
 & 1 & & & & & \\
 & \text{true} & \Omega & & & & \\
 & \downarrow j & & & \downarrow j & & \\
 & \Omega & & & & \\
 & \Omega & & & & & \\$$

Interpretation. j ist ein idempotenter, mit \land und true verträglicher modaler Operator Zum Beispiel: Sei φ eine Aussage. Die anschauliche Bedeutung von $\Box \varphi$ ist " φ gilt immer". Dann sollten intuitiv auch folgende Regeln gelten:

$$\Box \top = \top, \qquad \Box \Box \varphi \iff \Box \varphi \qquad \text{sowie} \qquad (\Box \varphi) \wedge (\Box \psi) \iff \Box (\varphi \wedge \psi)$$

Solch ein Operator \square sollte also eine Lawvere-Tierney-Topologie stiften. Im Gegensatz dazu stiftet der Operator \lozenge mit der Interpretation " $\lozenge \varphi$ gilt, falls φ möglich ist", denn aus $\lozenge \varphi \wedge \lozenge \psi$ folgt i. A. nicht $\lozenge (\varphi \wedge \psi)$.

Definition. Für ein Unterobjekt $A \hookrightarrow E$ ist $\overline{A} \hookrightarrow E$ dasjenige Unterobjekt mit

$$\chi_{\overline{A}} = j \circ \chi_A : E \to \Omega.$$

Lemma.

$$\bullet \ A \subseteq \overline{A}, \quad \overline{\overline{A}} = \overline{A}, \quad \overline{A \cap B} = \overline{A} \cap \overline{B}$$

•
$$f^{-1}(\overline{A}) = \overline{f^{-1}(A)}$$
 (Natürlichkeit)

Definition. Sei j eine Lawvere-Tierney-Topologie auf \mathcal{E} .

- Ein Unterobjekt $A \hookrightarrow E$ heißt dicht, falls $\overline{A} = E$.
- Eine j-Garbe ist ein Objekt $F \in \text{Ob}(\mathcal{E})$, für das gilt: Für alle dichten Unterobjekte $A \stackrel{m}{\hookrightarrow} E$ ist $m^* : \text{Hom}(E, F) \to \text{Hom}(A, F)$ ein Isomorphismus.
- $\mathbf{Sh}_{i}(\mathcal{E})$ ist die volle Unterkategorie der j-Garben von \mathcal{E} .

Satz. $\mathbf{Sh}_i(\mathcal{E})$ ist ein Topos.

Beweisskizze. Zeige:

- Die Unterkategorie $\mathbf{Sh}_{j}(\mathcal{E})$ ist abgeschlossen unter der Bildung von Limiten und Exponentialobjekten.
- Sei Ω_i der Differenzkern

$$\Omega_j \longrightarrow \Omega \xrightarrow{j} \Omega$$

Nenne ein Subobjekt $A \hookrightarrow F$ abgeschlossen, falls $\overline{A} = A$. Für eine j-Garbe F zeige dann, dass

$$\operatorname{Sub}_{\mathbf{Sh}_{i}(\mathcal{E})}(F) = \{ A \in \operatorname{Sub}_{\mathcal{E}}(F) \mid A \text{ abgeschlossen} \} \cong \operatorname{Hom}_{\mathcal{E}}(F, \Omega_{j})$$

und dass Ω_j eine F-Garbe ist. Somit ist Ω_j der Unterobjektklassifizierer von $\mathbf{Sh}_j(\mathcal{E})$.

Sei $i: \mathbf{Sh}_i(\mathcal{E}) \to \mathcal{E}$ der Einbettungsfunktor.

Satz/Definition.

- i hat einen Linksadjungierten, die j-Garbifizierung $\mathbf{a}: \mathcal{E} \to \mathbf{Sh}_i(\mathcal{E})$.
- \bullet a ist linksexakt.

Korollar/Definition. $\operatorname{Sh}_j(\mathcal{E}) \xrightarrow{\underline{\mathbf{a}}} \mathcal{E}$ ist ein geometrischer Morphismus.

Dieser ist eine geometrische Einbettung, d.h. der Direktes-Bild-Funktor i ist volltreu. Dies macht $\mathbf{Sh}_{j}(\mathcal{E})$ zu einem Untertopos von \mathcal{E} .

Bemerkung. Bis auf Kategorienäquivalenz ist jede geometrische Einbettung von dieser Form.

Beispiel. FinSet ist kein Untertopos von **Set** vermöge der Inklusion $i: \mathbf{FinSet} \to \mathbf{Set}$, denn es gibt keine endliche Menge X mit

$$\operatorname{Hom}_{\mathbf{FinSet}}(X, \{\heartsuit, \diamondsuit\}) \cong \operatorname{Hom}_{\mathbf{Set}}(\mathbb{N}, i(\{\heartsuit, \diamondsuit\})).$$

Somit besitzt i keinen Linksadjungierten.

Satz. Sei \mathcal{C} eine kleine Kategorie und $\mathcal{E} := [\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$. Dann gibt es eine 1-zu-1-Korrespondenz

$$\{ \text{ Grothendieck-Topologien auf } \mathcal{C} \} \quad \leftrightarrow \quad \{ \text{ Lawvere-Tierney-Topologien auf } \mathcal{E} \}$$

$$J \quad \mapsto \quad j_J := ((j_J)_C : S \mapsto \{g \mid \operatorname{codom}(g) = C, \ S \text{ "berdeckt } g\})_{C \in \operatorname{Ob}(\mathcal{C})}$$

$$J_j := j^*(1 \stackrel{\operatorname{true}}{\longleftrightarrow} \Omega) \quad \leftrightarrow \quad j$$

(Erinnerung: $\Omega \in \text{Ob}(\mathcal{E})$ ist die Prägarbe mit $\Omega(C) := \{ \text{ Siebe auf } C \}. \}$

Satz. Desweiteren gilt für eine Prägarbe $P \in Ob(\mathcal{E})$:

$$P$$
 ist j -Garbe $\iff P$ ist Garbe bzgl. J_j , also $P \in \mathrm{Ob}(\mathbf{Sh}(\mathcal{E}, J_j))$.

Korollar. Die Garbifizierungen einer Prägarbe bzgl. der Lawvere-Tierney-Topologie j oder der zugehörigen Grothendieck-Topologie J_j sind isomorph.

5 Weitere Quellen für geometrische Morphismen

Satz. Sei $\phi: \mathcal{C} \to \mathcal{D}$ ein Funktor. Dann gibt es einen geometrischen Morphismus

$$[\mathcal{C}^{\mathrm{op}}, \mathbf{Set}] \xrightarrow{\phi^*} [\mathcal{D}^{\mathrm{op}}, \mathbf{Set}] \text{ mit } \phi^*(P) := (\mathcal{C}^{\mathrm{op}} \xrightarrow{\phi^{\mathrm{op}}} \mathcal{D}^{\mathrm{op}} \xrightarrow{P} \mathbf{Set}). \text{ Dieser ist wesentlich.}$$