1. functions $\tilde{\kappa}:(\alpha,\beta)\to\mathbb{R}$,

1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}, \ \tilde{\kappa}(t) > 0 \ for \ all \ t$,

1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}$

- 1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}$
- 2. $p \in \mathbb{R}^3$

- 1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}$
- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1,\}$

- 1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}$
- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \}$

- 1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}$
- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p,

- 1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}$
- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

- 1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}$
- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization,

- 1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}$
- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

- 1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}$
- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$, so that,

1. $\tilde{\kappa}:(\alpha,\beta)\to\mathbb{R}^3$

- 1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}$
- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$, so that,

1. $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$ is its curvature function

- 1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}$
- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$, so that,

1. $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$ is its curvature function and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function

- 1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}$
- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

- 1. $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$ is its curvature function and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$

- 1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}$
- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

- 1. $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$ is its curvature function and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0),$

- 1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}$
- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

- 1. $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$ is its curvature function and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0),$

- 1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}$
- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

- 1. $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$ is its curvature function and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$

$$\dot{\mathbf{T}}(t) = 0\mathbf{T}(t) + \kappa(t)\mathbf{N}(t) + 0\mathbf{B}(t)$$

1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\mathbf{N}(t) = -\kappa(t)\mathbf{T}(t) + 0\mathbf{N}(t) + \tau(t)\mathbf{B}(t)$ $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}$

$$\mathbf{\dot{N}}(t) = -\kappa(t)\mathbf{T}(t) + 0\mathbf{N}(t) + \tau(t)\mathbf{B}(t)$$
 $\dot{\mathbf{B}}(t) = 0\mathbf{T}(t) - \tau(t)\mathbf{N}(t) + 0\mathbf{B}(t)$

- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1,\mathbf{E}_2,\mathbf{E}_3\}$ based at p, such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

- 1. $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$ is its curvature function and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$

Proof.

$$\mathbf{e}_1(t) = 0\mathbf{e}_1(t)$$

1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$ $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}$

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1,\mathbf{E}_2,\mathbf{E}_3\}$ based at p, such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

- 1. $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$ is its curvature function and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$

1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$ $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}$

- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$, so that,

- 1. $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$ is its curvature function and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

By the theory of differential equations,

1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$ $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}$

- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$, so that,

- 1. $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$ is its curvature function and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

 $\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$

By the theory of differential equations, always has a solution,

1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$ $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}$

- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, $\mathbf{e}_1(t_0)$, $\mathbf{e}_2(t_0)$, and $\mathbf{e}_3(t_0)$. such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$, so that,

- 1. $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$ is its curvature function and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$ $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}$

- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0)$, and $\mathbf{e}_3(t_0)$. such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$, so that,

- 1. $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$ is its curvature function and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

1. functions
$$\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$$
, $\tilde{\kappa}(t) > 0$ for all t , and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$
 $\dot{\tau}: (\alpha, \beta) \to \mathbb{R}$ $\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$

- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0)$. such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$, so that,

- 1. $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$ is its curvature function and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_2(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\mathbf{e}_1(t_0) = \mathbf{E}_1, \, \mathbf{e}_2(t_0) = \mathbf{E}_2, \, \text{and } \mathbf{e}_3(t_0)$$

1. functions
$$\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$$
, $\tilde{\kappa}(t) > 0$ for all t , and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$
 $\dot{\tau}: (\alpha, \beta) \to \mathbb{R}$ $\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$

2.
$$p \in \mathbb{R}^3$$
, $t_0 \in (\alpha, \beta)$,

3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$. such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

By the theory of differential equations, always has a solution, unique if we fix,

$$\mathbf{e}_1(t_0) = \mathbf{E}_1, \ \mathbf{e}_2(t_0) = \mathbf{E}_2, \ \text{and} \ \mathbf{e}_3(t_0) = \mathbf{E}_3.$$

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$, so that,

1. $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$ is its curvature function and $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function

2.
$$p = \gamma(t_0)$$

3.
$$\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$$

1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$ $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}$

- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$. such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$, so that,

- 1. $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$ is its curvature function and $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\mathbf{e}_1(t_0) = \mathbf{E}_1$$
, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$.
 $(\mathbf{e}_i.\mathbf{e}_i)' = 0$

1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$ $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}$

- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$. such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$, so that,

- 1. $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$ is its curvature function and $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

By the theory of differential equations, always has a solution, unique if we fix,

 $(\mathbf{e}_i.\mathbf{e}_i)' = 0$ (exercise!)

1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$ $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}$

- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$. such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$. so that,

- 1. $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$ is its curvature function and $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

By the theory of differential equations, always has a solution, unique if we fix,

$$\mathbf{e}_1(t_0) = \mathbf{E}_1, \, \mathbf{e}_2(t_0) = \mathbf{E}_2, \, \text{and } \mathbf{e}_3(t_0) = \mathbf{E}_3.$$

 $(\mathbf{e}_i.\mathbf{e}_i)' = 0$ (exercise!), so constant, so $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ is orthonormal for all t

1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$ $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}$

- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$. such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$. so that,

- 1. $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$ is its curvature function and $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

By the theory of differential equations, always has a solution, unique if we fix,

$$\mathbf{e}_1(t_0) = \mathbf{E}_1, \ \mathbf{e}_2(t_0) = \mathbf{E}_2, \ \text{and} \ \mathbf{e}_3(t_0) = \mathbf{E}_3.$$

 $(\mathbf{e}_i.\mathbf{e}_i)' = 0$ (exercise!), so constant, so $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ is orthonormal for all t

Can find
$$\gamma(t)$$
, so that, $\dot{\gamma}(t) = \mathbf{e}_1(t)$ and $\gamma(t_0) = p$

1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$ $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}$

- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$. such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$ so that,

- 1. $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$ is its curvature function and $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$

Proof.

 $\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$ $\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$

By the theory of differential equations, always has a solution, unique if we fix,

 $(\mathbf{e}_i.\mathbf{e}_i)' = 0$ (exercise!), so constant, so $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ is orthonormal for all t

Can find $\gamma(t)$, so that, $\dot{\gamma}(t) = \mathbf{e}_1(t)$ and $\gamma(t_0) = p$ (exercise!!

1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$ $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}$

- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$. such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$ so that,

- 1. $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$ is its curvature function and $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_3(t) + \sigma(t)\mathbf{e}_3(t) + 0\mathbf{e}_3(t)$$

 $\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$

By the theory of differential equations, always has a solution, unique if we fix,

 $(\mathbf{e}_i.\mathbf{e}_i)' = 0$ (exercise!), so constant, so $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ is orthonormal for all t

Can find $\gamma(t)$, so that, $\dot{\gamma}(t) = \mathbf{e}_1(t)$ and $\gamma(t_0) = p$ (exercise!! Integration

1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$ $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}$

- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$. such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$ so that,

- 1. $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$ is its curvature function and $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$

Proof.

 $\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$ $\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$

By the theory of differential equations, always has a solution, unique if we fix,

 $(\mathbf{e}_i.\mathbf{e}_i)' = 0$ (exercise!), so constant, so $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ is orthonormal for all t

1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$ $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}$

- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$. such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$ so that,

- 1. $\tilde{\kappa}$: $(\alpha, \beta) \rightarrow \mathbb{R}^3$ is its curvature function and $\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$ $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

By the theory of differential equations, always has a solution, unique if we fix,

 $(\mathbf{e}_i.\mathbf{e}_i)' = 0$ (exercise!), so constant, so $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ is orthonormal for all t

$$\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$$

1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$ $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}$

- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$. such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$ so that,

- 1. $\tilde{\kappa}$: $(\alpha, \beta) \rightarrow \mathbb{R}^3$ is its curvature function and $\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$ $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

By the theory of differential equations, always has a solution, unique if we fix,

$$\mathbf{e}_1(t_0) = \mathbf{E}_1$$
, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$.

 $(\mathbf{e}_i.\mathbf{e}_i)' = 0$ (exercise!), so constant, so $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ is orthonormal for all t

$$\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$$

So, $\mathbf{N}(t) = \mathbf{e}_2(t)$

1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$ $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}$

- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$. such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$ so that,

- 1. $\tilde{\kappa}$: $(\alpha, \beta) \rightarrow \mathbb{R}^3$ is its curvature function and $\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$ $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

By the theory of differential equations, always has a solution, unique if we fix,

 $(\mathbf{e}_i.\mathbf{e}_i)' = 0$ (exercise!), so constant, so $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ is orthonormal for all t

$$\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$$

So, $\mathbf{N}(t) = \mathbf{e}_2(t)$

$$\mathbf{B}(t)$$

1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$ $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}$

- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$. such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$ so that,

- 1. $\tilde{\kappa}$: $(\alpha, \beta) \rightarrow \mathbb{R}^3$ is its curvature function and $\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$ $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

By the theory of differential equations, always has a solution, unique if we fix,

$$\mathbf{e}_1(t_0) = \mathbf{E}_1, \ \mathbf{e}_2(t_0) = \mathbf{E}_2, \ \text{and} \ \mathbf{e}_3(t_0) = \mathbf{E}_3.$$

 $(\mathbf{e}_i.\mathbf{e}_i)' = 0$ (exercise!), so constant, so $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ is orthonormal for all t

$$\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$$

So, $\mathbf{N}(t) = \mathbf{e}_2(t)$

$$\mathbf{B}(t)$$
 unit

1. functions
$$\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$$
, $\tilde{\kappa}(t) > 0$ for all t , and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$
 $\dot{\tau}: (\alpha, \beta) \to \mathbb{R}$ $\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$

2.
$$p \in \mathbb{R}^3$$
, $t_0 \in (\alpha, \beta)$,

3. an orthonormal basis
$$\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$$
 based at p , $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$ so that,

1.
$$\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$$
 is its curvature function and $\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$
 $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function So, $\mathbf{N}(t) = \mathbf{e}_2(t)$

2.
$$p = \gamma(t_0)$$

3.
$$\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$$

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

By the theory of differential equations, always has a solution, unique if we fix,

$$\mathbf{e}_1(t_0) = \mathbf{E}_1, \ \mathbf{e}_2(t_0) = \mathbf{E}_2, \ \text{and} \ \mathbf{e}_3(t_0) = \mathbf{E}_3.$$

 $(\mathbf{e}_i.\mathbf{e}_i)' = 0$ (exercise!), so constant, so $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ is orthonormal for all t

Can find $\gamma(t)$, so that, $\mathbf{T}(t) = \dot{\gamma}(t) = \mathbf{e}_1(t)$ and $\gamma(t_0) = p$ (exercise!! Integration (anti-derivative)!)

$$\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$$

So, $\mathbf{N}(t) = \mathbf{e}_2(t)$

 $\mathbf{B}(t)$ unit and orthogonal

1. functions
$$\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$$
, $\tilde{\kappa}(t) > 0$ for all t , and $\dot{\mathbf{e}_2}(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$
 $\dot{\tau}: (\alpha, \beta) \to \mathbb{R}$ $\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$

- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$. such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$ so that,

1.
$$\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$$
 is its curvature function and $\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$
 $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function So, $\mathbf{N}(t) = \mathbf{e}_2(t)$

- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

By the theory of differential equations, always has a solution, unique if we fix,

$$\mathbf{e}_1(t_0) = \mathbf{E}_1, \ \mathbf{e}_2(t_0) = \mathbf{E}_2, \ \text{and} \ \mathbf{e}_3(t_0) = \mathbf{E}_3.$$

 $(\mathbf{e}_i.\mathbf{e}_i)' = 0$ (exercise!), so constant, so $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ is orthonormal for all t

Can find $\gamma(t)$, so that, $\mathbf{T}(t) = \dot{\gamma}(t) = \mathbf{e}_1(t)$ and $\gamma(t_0) = p$ (exercise!! Integration (anti-derivative)!)

$$\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$$

So, $\mathbf{N}(t) = \mathbf{e}_2(t)$

 $\mathbf{B}(t)$ unit and orthogonal to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.

1. functions
$$\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$$
, $\tilde{\kappa}(t) > 0$ for all t , and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$
 $\dot{\tau}: (\alpha, \beta) \to \mathbb{R}$ $\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$

2.
$$p \in \mathbb{R}^3$$
, $t_0 \in (\alpha, \beta)$,

3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$. such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$ so that,

1.
$$\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$$
 is its curvature function and $\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$
 $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function So, $\mathbf{N}(t) = \mathbf{e}_2(t)$

2.
$$p = \gamma(t_0)$$

3.
$$\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$$

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

By the theory of differential equations, always has a solution, unique if we fix,

$$\mathbf{e}_1(t_0) = \mathbf{E}_1, \ \mathbf{e}_2(t_0) = \mathbf{E}_2, \ \text{and} \ \mathbf{e}_3(t_0) = \mathbf{E}_3.$$

 $(\mathbf{e}_i.\mathbf{e}_i)' = 0$ (exercise!), so constant, so $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ is orthonormal for all t

Can find $\gamma(t)$, so that, $\mathbf{T}(t) = \dot{\gamma}(t) = \mathbf{e}_1(t)$ and $\gamma(t_0) = p$ (exercise!! Integration (anti-derivative)!)

$$\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$$

So, $\mathbf{N}(t) = \mathbf{e}_2(t)$

1. functions
$$\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$$
, $\tilde{\kappa}(t) > 0$ for all t , and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$
 $\dot{\tau}: (\alpha, \beta) \to \mathbb{R}$ $\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$

2.
$$p \in \mathbb{R}^3$$
, $t_0 \in (\alpha, \beta)$,

3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$. such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$ so that,

1.
$$\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$$
 is its curvature function and $\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$
 $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function So, $\mathbf{N}(t) = \mathbf{e}_2(t)$

2.
$$p = \gamma(t_0)$$

3.
$$\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$$

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

By the theory of differential equations, always has a solution, unique if we fix,

$$\mathbf{e}_1(t_0) = \mathbf{E}_1, \ \mathbf{e}_2(t_0) = \mathbf{E}_2, \ \text{and} \ \mathbf{e}_3(t_0) = \mathbf{E}_3.$$

 $(\mathbf{e}_i.\mathbf{e}_i)' = 0$ (exercise!), so constant, so $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ is orthonormal for all t

Can find $\gamma(t)$, so that, $\mathbf{T}(t) = \dot{\gamma}(t) = \mathbf{e}_1(t)$ and $\gamma(t_0) = p$ (exercise!! Integration (anti-derivative)!)

$$\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$$

So, $\mathbf{N}(t) = \mathbf{e}_2(t)$

$$\mathbf{e}_3(t)$$

1. functions
$$\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$$
, $\tilde{\kappa}(t) > 0$ for all t , and $\dot{\mathbf{e}_2}(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$
 $\dot{\tau}: (\alpha, \beta) \to \mathbb{R}$ $\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$

2.
$$p \in \mathbb{R}^3$$
, $t_0 \in (\alpha, \beta)$,

3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$. such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$ so that,

1.
$$\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$$
 is its curvature function and $\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$
 $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function So, $\mathbf{N}(t) = \mathbf{e}_2(t)$

2.
$$p = \gamma(t_0)$$

3.
$$\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$$

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

By the theory of differential equations, always has a solution, unique if we fix,

$$\mathbf{e}_1(t_0) = \mathbf{E}_1, \ \mathbf{e}_2(t_0) = \mathbf{E}_2, \ \text{and} \ \mathbf{e}_3(t_0) = \mathbf{E}_3.$$

 $(\mathbf{e}_i.\mathbf{e}_i)' = 0$ (exercise!), so constant, so $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ is orthonormal for all t

Can find $\gamma(t)$, so that, $\mathbf{T}(t) = \dot{\gamma}(t) = \mathbf{e}_1(t)$ and $\gamma(t_0) = p$ (exercise!! Integration (anti-derivative)!)

$$\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$$

So, $\mathbf{N}(t) = \mathbf{e}_2(t)$

$$\mathbf{e}_3(t)$$
 unit

1. functions
$$\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$$
, $\tilde{\kappa}(t) > 0$ for all t , and $\dot{\mathbf{e}_2}(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$
 $\dot{\tau}: (\alpha, \beta) \to \mathbb{R}$ $\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$

2.
$$p \in \mathbb{R}^3$$
, $t_0 \in (\alpha, \beta)$,

3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$. such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$ so that,

1.
$$\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$$
 is its curvature function and $\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$
 $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function So, $\mathbf{N}(t) = \mathbf{e}_2(t)$

2.
$$p = \gamma(t_0)$$

3.
$$\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$$

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

By the theory of differential equations, always has a solution, unique if we fix,

$$\mathbf{e}_1(t_0) = \mathbf{E}_1$$
, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$.

 $(\mathbf{e}_i.\mathbf{e}_i)' = 0$ (exercise!), so constant, so $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ is orthonormal for all t

Can find $\gamma(t)$, so that, $\mathbf{T}(t) = \dot{\gamma}(t) = \mathbf{e}_1(t)$ and $\gamma(t_0) = p$ (exercise!! Integration (anti-derivative)!)

$$\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$$

So, $\mathbf{N}(t) = \mathbf{e}_2(t)$

$$\mathbf{e}_3(t)$$
 unit and orthogonal

1. functions
$$\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$$
, $\tilde{\kappa}(t) > 0$ for all t , and $\dot{\mathbf{e}_2}(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$
 $\dot{\tau}: (\alpha, \beta) \to \mathbb{R}$ $\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$

2.
$$p \in \mathbb{R}^3$$
, $t_0 \in (\alpha, \beta)$,

3. an orthonormal basis
$$\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$$
 based at p , $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$ so that,

1.
$$\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$$
 is its curvature function and $\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$
 $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function So, $\mathbf{N}(t) = \mathbf{e}_2(t)$

2.
$$p = \gamma(t_0)$$

3.
$$\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$$

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

By the theory of differential equations, always has a solution, unique if we fix,

$$\mathbf{e}_1(t_0) = \mathbf{E}_1, \ \mathbf{e}_2(t_0) = \mathbf{E}_2, \ \text{and} \ \mathbf{e}_3(t_0) = \mathbf{E}_3.$$

 $(\mathbf{e}_i.\mathbf{e}_i)' = 0$ (exercise!), so constant, so $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ is orthonormal for all t

Can find $\gamma(t)$, so that, $\mathbf{T}(t) = \dot{\gamma}(t) = \mathbf{e}_1(t)$ and $\gamma(t_0) = p$ (exercise!! Integration (anti-derivative)!)

$$\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$$

So, $\mathbf{N}(t) = \mathbf{e}_2(t)$

 $\mathbf{B}(t)$ unit and orthogonal to $\mathbf{T}(t) = \mathbf{e}_1(t)$ and $\mathbf{N}(t) =$ $\mathbf{e}_1(t)$.

 $\mathbf{e}_3(t)$ unit and orthogonal to $\mathbf{e}_1(t)$ and $\mathbf{e}_2(t)$.

1. functions $\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$, $\tilde{\kappa}(t) > 0$ for all t, and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$ $\tilde{\tau}:(\alpha,\beta)\to\mathbb{R}$

- 2. $p \in \mathbb{R}^3$, $t_0 \in (\alpha, \beta)$,
- 3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$. such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$ so that,

- 1. $\tilde{\kappa}$: $(\alpha, \beta) \rightarrow \mathbb{R}^3$ is its curvature function and $\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$ $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function
- 2. $p = \gamma(t_0)$
- 3. $\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$

Proof.

 $\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$

 $\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$

By the theory of differential equations, always has a solution, unique if we fix,

 $(\mathbf{e}_i.\mathbf{e}_i)' = 0$ (exercise!), so constant, so $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ is orthonormal for all t

Can find $\gamma(t)$, so that, $\mathbf{T}(t) = \dot{\gamma}(t) = \mathbf{e}_1(t)$ and $\gamma(t_0) = p$ (exercise!! Integration (anti-derivative)!)

So, **N**(t) = **e**₂(t)

 $\mathbf{B}(t)$ unit and orthogonal to $\mathbf{T}(t) = \mathbf{e}_1(t)$ and $\mathbf{N}(t) =$ $\mathbf{e}_1(t)$.

 $\mathbf{e}_3(t)$ unit and orthogonal to $\mathbf{e}_1(t)$ and $\mathbf{e}_2(t)$. only two choices, and negatives of each other. So one is $\mathbf{e}_1(t)$ × $\mathbf{e}_2(t)$, other is $-\mathbf{e}_1(t) \times \mathbf{e}_2(t)$.

1. functions
$$\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}$$
, $\tilde{\kappa}(t) > 0$ for all t , and $\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$
 $\dot{\tau}: (\alpha, \beta) \to \mathbb{R}$ $\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$

2.
$$p \in \mathbb{R}^3$$
, $t_0 \in (\alpha, \beta)$,

3. an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ based at p, $\mathbf{e}_1(t_0) = \mathbf{E}_1$, $\mathbf{e}_2(t_0) = \mathbf{E}_2$, and $\mathbf{e}_3(t_0) = \mathbf{E}_3$. such that $\mathbf{E}_3 = \mathbf{E}_1 \times \mathbf{E}_2$.

there is a unit speed parametrization, $\gamma:(\alpha,\beta)\to\mathbb{R}^3$ so that,

1.
$$\tilde{\kappa}: (\alpha, \beta) \to \mathbb{R}^3$$
 is its curvature function and $\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$
 $\tilde{\tau}: (\alpha, \beta) \to \mathbb{R}^3$ is its torsion function So, $\mathbf{N}(t) = \mathbf{e}_2(t)$

2.
$$p = \gamma(t_0)$$

3.
$$\mathbf{E}_1 = \mathbf{T}(t_0), \mathbf{E}_2 = \mathbf{N}(t_0), \mathbf{E}_3 = \mathbf{B}(t_0)$$

Proof.

$$\dot{\mathbf{e}}_1(t) = 0\mathbf{e}_1(t) + \kappa(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_2(t) = -\kappa(t)\mathbf{e}_1(t) + 0\mathbf{e}_2(t) + \tau(t)\mathbf{e}_3(t)$$

$$\dot{\mathbf{e}}_3(t) = 0\mathbf{e}_1(t) - \tau(t)\mathbf{e}_2(t) + 0\mathbf{e}_3(t)$$

By the theory of differential equations, always has a solution, unique if we fix,

$$\mathbf{e}_1(t_0) = \mathbf{E}_1, \ \mathbf{e}_2(t_0) = \mathbf{E}_2, \ \text{and} \ \mathbf{e}_3(t_0) = \mathbf{E}_3.$$

 $(\mathbf{e}_i.\mathbf{e}_i)' = 0$ (exercise!), so constant, so $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ is orthonormal for all t

Can find $\gamma(t)$, so that, $\mathbf{T}(t) = \dot{\gamma}(t) = \mathbf{e}_1(t)$ and $\gamma(t_0) = p$ (exercise!! Integration (anti-derivative)!)

$$\kappa(t)\mathbf{N}(t) = \dot{\mathbf{T}}(t) = \dot{\mathbf{e}}_1(t) = \kappa(t)\mathbf{e}_2(t)$$

So, $\mathbf{N}(t) = \mathbf{e}_2(t)$

 $\mathbf{B}(t)$ unit and orthogonal to $\mathbf{T}(t) = \mathbf{e}_1(t)$ and $\mathbf{N}(t) =$ $\mathbf{e}_1(t)$.

 $\mathbf{e}_3(t)$ unit and orthogonal to $\mathbf{e}_1(t)$ and $\mathbf{e}_2(t)$. only two choices, and negatives of each other. So one is $\mathbf{e}_1(t)$ × $\mathbf{e}_2(t)$, other is $-\mathbf{e}_1(t) \times \mathbf{e}_2(t)$. Can distinguish using dot products...