In [1]:	<pre>using Pkg Pkg.activate(".") using BenchmarkTools using DataFrames Activating environment at `~/Documents/schoolwork-codes/physics-215-julia/session-4/</pre>
	Project.toml` Session 4: Fast function calls
	KR1: Variable implementations For this session, we will examine the impact of calling global variables on the speed of code. We use a relatively simple gravitational central force code, where G is Newton's gravitational constant, M is the mass of the Sun, and rand_pos is a random position of a test particle along the x-y plane.
In [2]:	<pre>G = 6.67e-11 #in SI units M = 1.989e30 #in kg function centralforce(r::Vector) squaredr = r[1]^2.0 + r[2]^2.0 return -G*M/squaredr end</pre>
Out[2]: In [4]:	<pre>rand_pos = rand(2);</pre>
In [5]: Out[5]:	We can benchmark the performance of this code and get the following times. mark0 = @benchmark centralforce(\$rand_pos) BenchmarkTools.Trial: 10000 samples with 985 evaluations. Range (min max): 54.961 ns 1.102 μs GC (min max): 0.00% 91.90%
	Time (median): 68.420 ns Time (mean $\pm \sigma$): 71.533 ns ± 34.957 ns GC (median): 0.00% GC (mean $\pm \sigma$): 1.72% $\pm 3.34\%$ 55 ns Histogram: log(frequency) by time 94.8 ns Memory estimate: 64 bytes, allocs estimate: 4.
In [6]:	<pre>@code_warntype centralforce(rand_pos) Variables #self#::Core.Const(centralforce) r::Vector{Float64} squaredr::Float64</pre>
	Body::Any 1 - %1 = Base.getindex(r, 1)::Float64 %2 = (%1 ^ 2.0)::Float64 %3 = Base.getindex(r, 2)::Float64 %4 = (%3 ^ 2.0)::Float64 (squaredr = %2 + %4)
	%6 = -Main.G::Any %7 = (%6 * Main.M)::Any %8 = (%7 / squaredr)::Any return %8 As we can see with @code_warntype , leaving G and M as plain global variables sets their type as Any , which slows down code operations as Julia has to narrow down the concrete variable type each
In [7]:	<pre>time the code runs. We can alleviate this problem by setting all global constants as const s, fixing both their value and variable typing. const G_const = 6.67e-11 #in SI units const M_const = 1.989e30 #mass of sun in kg function centralforce_const(r::Vector) squaredr = r[1]^2.0 + r[2]^2.0</pre>
Out[7]:	return -G_const*M_const/squaredr end centralforce_const (generic function with 1 method) If we benchmark this new function centralforce_const with the same rand_pos , we get a
In [8]: Out[8]:	<pre>significantly improved runtime on the code. mark1 = @benchmark centralforce_const(\$rand_pos) BenchmarkTools.Trial: 10000 samples with 1000 evaluations. Range (min max): 1.977 ns 23.678 ns</pre>
	Time (median): 2.418 ns GC (median): 0.00% GC (mean $\pm \sigma$): 0.00% $\pm 0.00\%$ GC (mean $\pm \sigma$): 0.00% $\pm 0.00\%$ 1.98 ns Histogram: frequency by time 2.59 ns <
In [9]:	<pre>Memory estimate: 0 bytes, allocs estimate: 0. speedup1 = median(mark0.times) / median(mark1.times) table = DataFrame("Method"=>["Global", "Constant"], "Speedup" => [1.0, speedup1]); print(table)</pre>
	2×2 DataFrame Row Method Speedup String Float64 1 Global 1.0 2 Constant 28.296
In [10]:	Furthermore, @code_warntype shows us that there is no type ambiguity in the resulting code, with both inputs and outputs being Float64. @code_warntype centralforce_const(rand_pos) Variables
	<pre>#self#::Core.Const(centralforce_const) r::Vector{Float64} squaredr::Float64 Body::Float64 1 - %1 = Base.getindex(r, 1)::Float64 %2 = (%1 ^ 2.0)::Float64</pre>
	<pre>%3 = Base.getindex(r, 2)::Float64 %4 = (%3 ^ 2.0)::Float64</pre>
In [11]:	We can also test the difference in speed if one of the variables, in this case mass, is parameterized into the function instead of being declared as a global variable. function centralforce_param(r::Vector; mass = 1.989e30) squaredr = r[1]^2.0 + r[2]^2.0 return -G_const*mass/squaredr
Out[11]:	return -G_const*mass/squaredr end centralforce_param (generic function with 1 method) From here we can compare different parameterization approaches. The first benchmark has mass be parameterized with the global variable M . The second benchmark has mass parameterized with the
In [12]:	<pre>constant global variable M_const . The third benchmark has the value of mass directly specified into the function call. mark2a = @benchmark centralforce_param(\$rand_pos, mass = M)</pre>
Out[12]:	BenchmarkTools.Trial: 10000 samples with 800 evaluations. Range (min max): 152.213 ns 1.810 μ s GC (min max): 0.00% 88.97% Time (median): 181.864 ns GC (median): 0.00% GC (mean $\pm \sigma$): 185.224 ns \pm 45.199 ns GC (mean $\pm \sigma$): 0.68% \pm 2.53%
In [13]:	<pre>152 ns Histogram: log(frequency) by time 210 ns < Memory estimate: 48 bytes, allocs estimate: 3. mark2b = @benchmark centralforce_param(\$rand_pos, mass = M_const)</pre>
Out[13]:	BenchmarkTools.Trial: 10000 samples with 1000 evaluations. Range (min max): 2.610 ns 39.743 ns GC (min max): 0.00% 0.00% Time (median): 3.064 ns GC (median): 0.00% Time (mean $\pm \sigma$): 3.076 ns \pm 0.553 ns GC (mean $\pm \sigma$): 0.00% \pm 0.00%
In [14]:	2.61 ns Histogram: log(frequency) by time 3.74 ns < Memory estimate: 0 bytes, allocs estimate: 0. mark2c = @benchmark centralforce_param(\$rand_pos, mass = 1.989e30)
Out[14]:	Range (min max): 2.611 ns 17.038 ns GC (min max): 0.00% 0.00% Time (median): 3.066 ns GC (median): 0.00% GC (mean $\pm \sigma$): 0.00% $\pm 0.00\%$
In [15]:	2.61 ns Histogram: log(frequency) by time 3.73 ns < Memory estimate: 0 bytes, allocs estimate: 0. speedup2a = median(mark0.times) / median(mark2a.times) speedup2b = median(mark0.times) / median(mark2b.times) speedup2c = median(mark0.times) / median(mark2c.times)
	<pre>push!(table, ["Parametrized", speedup2a]); push!(table, ["Parametrized (implicit)", speedup2b]); push!(table, ["Parametrized (explicit)", speedup2c]); print(table)</pre>
	5×2 DataFrame Row Method Speedup String Float64 1 Global 1.0 2 Constant 28.296 3 Parametrized 0.376213
	Parametrized (implicit) 22.3302 5 Parametrized (explicit) 22.3157 As we can see in the above table, parameterizing mass with the non-constant global variable actually slows down the code by an order of magnitude compared to just leaving it as a global constant to input into the code. The constant variable parameterizations have a speed-up comparable to that of the pure
	KR2-5: Speeding up function calls via numerical and Julia macro techniques For this section, we will show how implementing efficient numerical algorithms can shorten code run time,
	and how turning these algorithms into Julia macros can speed up the code even further. Consider the following polynomial expansion of some function $p(x)$ up to some finite order n : $p(x) = \sum_{i=0}^n a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n. \tag{1}$
In [16]:	p = zero(x)
Out[16]:	<pre>for i in eachindex(a)</pre>
In [17]:	For our purposes, we generate a constant set of 100 random coefficients coeffs for our polynomial expansion.
In [18]:	This allows us to write our naive polynomial evaluation as $f_naive(x)$. $f_naive(x) = poly_naive(x, coeffs)$ $f_naive(generic function with 1 method)$
Out[18]:	Suppose we wish to evaluate our given polynomial at $x=3.5$. We can benchmark the performance of the naive implementation to get the following runtimes. $ x = 3.5 $
Out[19]: In [21]:	<pre>3.5 poly_mark0 = @benchmark f_naive(\$x)</pre>
Out[21]:	BenchmarkTools.Trial: 10000 samples with 4 evaluations. Range (min max): 7.852 μ s 12.969 μ s GC (min max): 0.00% 0.00% Time (median): 8.241 μ s GC (median): 0.00% Time (mean \pm σ): 8.281 μ s \pm 295.227 ns GC (mean \pm σ): 0.00% \pm 0.00%
	7.85 μs Histogram: log(frequency) by time 9.01 μs < Memory estimate: 0 bytes, allocs estimate: 0. It is possible to improve on this runtime by evaluating the polynomial via Horner's method. Horner's method is a recursive evaluation algorithm which effectively "linearizes" the higher polynomial orders at each step, reducing the complexity of the computational operations. The schema of the algorithm goes as
	reducing the complexity of the computational operations. The schema of the algorithm goes as $b_n=a_n, \qquad \qquad (2)$ $b_{n-1}=a_{n-1}+b_nx, \qquad \qquad (3)$ $b_{n-2}=a_{n-2}+b_{n-1}x, \qquad \qquad (4)$ $\vdots \qquad \qquad (5)$
	: $b_0=a_0+b_1x, \tag{5}$ where $p(x)=b_0.$ We can implement the said algorithm with the following <code>poly_horner</code> implementation.
In [22]:	<pre>function poly_horner(x, a::Vector) b = zero(x) for i in reverse(eachindex(a)) b = a[i] + b*x end return b</pre>
Out[22]: In [23]:	end
Out[23]:	Benchmarking this Horner implementation at $x=3.5$ shows an order of magnitude speedup compared to the naive implementation.
In [24]: Out[24]:	poly_mark1 = @benchmark f_horner(\$x) BenchmarkTools.Trial: 10000 samples with 681 evaluations. Range (min max): 179.107 ns 312.634 ns GC (min max): 0.00% 0.00% Time (median): 189.200 ns GC (median): 0.00% Time (mean $\pm \sigma$): 189.812 ns \pm 8.858 ns GC (mean $\pm \sigma$): 0.00% \pm 0.00%
	179 ns Histogram: log(frequency) by time 239 ns < Memory estimate: 0 bytes, allocs estimate: 0.
In [25]:	<pre>poly_speedup1 = median(poly_mark0.times) / median(poly_mark1.times) table2 = DataFrame("Method"=>["Naive", "Horner"], "Speedup" => [1.0, poly_speedup1]); print(table2)</pre>
	2×2 DataFrame Row Method Speedup String Float64
In [26]:	is a recursive process that can be iterated by the function $muladd(x, y, z)$, which performs the operation $x * y + z$. This allows us to write the Horner method as the following Julia macro: $macro\ horner(x, a)$ $ex = esc(a[end])$
Out[26]:	<pre>for i in length(a)-1:-1:1</pre>
In [27]:	<pre>f_horner_macro(x) = @horner(x, coeffs) f_horner_macro (generic function with 1 method)</pre>
In [28]:	Benchmarking its performance for $x=3.5$ gives us a significant three orders of magnitude faster code compared to the naive implementation. It is also two orders of magnitude faster compared to the function implementation of the Horner method. $ poly_mark2 = @benchmark f_horner_macro(\$x) $
Out[28]:	
In [29]:	<pre>1.37 ns</pre>
	<pre>push!(table2, ["Macro", poly_speedup2]); print(table2) 3×2 DataFrame Row Method Speedup</pre>
	String Float64 1 Naive 1.0 2 Horner 43.5545 3 Macro 5015.52 To put this to scale, suppose we let the naive implementation run for a full 24 hours/1440 minutes. The
In [30]:	equivalent function-based Horner implementation will be able to execute the code in just around 30 minutes of runtime, while the equivalent macro-based implementation will finish the execution in just half a minute. This clearly demonstrates the advantages of implementing already efficient chunks of code as Julia macros. for r in eachrow(table2)
<u>.</u> .	for r in eachrow(table2) println("\$(24*60/r.Speedup) mins for \$(r.Method) method.") end 1440.0 mins for Naive method. 33.062020155635096 mins for Horner method. 0.2871087919422365 mins for Macro method.
In [31]:	<pre>transform!(table2,:Speedup=>ByRow(x->24*60/x)=>:"Time(mins)") print(table2) 3×3 DataFrame Row Method Speedup Time(mins)</pre>
	1 Naive 1.0 1440.0 2 Horner 43.5545 33.062 3 Macro 5015.52 0.287109