### Combined H1-ZEUS $lpha_{\scriptscriptstyle S}$ fit



#### **Thomas Kluge**

for the H1 and ZEUS Collaborations



# DIS 2008, University College London 7-11 April 2008





#### Motivation

- lacksquare strong coupling  $lpha_s$  : free parameter of perturbative QCD
- least precisely known of the standard model couplings
- lacktriangle determinations of  $lpha_s$  performed since ~20 years
- challenge to improve precision further
- lacktriangle HERA:  $lpha_s$  fits to structure function and final states/jets data
- lacksquare started program towards **the** HERA  $lpha_{_S}$
- lacksquare 2004: average of several  $lpha_s$  fits from HERA
- now: combined H1/ZEUS fit of one observable: inclusive jet cross section

### What to fit

- most precise determination now:
- inclusive jets at high  $Q^2$ ,  $k_{\tau}$  jet-algorithm in Breit frame, R=1
- lacksquare directly sensitive to  $lpha_s$
- NLO prediction describes data, hadronisation effects smallish
- scale (sqrt $\epsilon \sqrt{Q^2}$  or  $E_T$ ) spans some range for running of coupling
- can optimise measurement to either exp. or theo. error





Lowest Order Graphs for Inclusive Jet Production in DIS in the Breit System of Reference

### H1 Data

#### **Inclusive Jet Cross Section**



- Event sample HERA I (HERA II see M.Gouzevitch talk) 1999-2000,  $e^+p$ ,  $\mathcal{L}_{int}=65pb^{-1}$
- Event selection NC DIS 150<Q²<15000 GeV², 0.2<y<0.7</p>
- Jet selection inclusive  $k_T$  algorithm, R=1.0

$$-1.0 < \eta^{LAB} < 2.5$$
  
7 < E<sub>T</sub> BREIT < 50GeV

- Good description by theory corrected for hadronisation and Z₀ exchange
- DIS last year:
   improved exp. precision using normalised cross sections



### **ZEUS Data**



- Event sample HERA I 1998-2000,  $e^{\pm}p$ ,  $\mathcal{L}_{int}=82pb^{-1}$
- Event selection NC DIS
   Q<sup>2</sup> >500GeV<sup>2</sup>(used in fit)
- Jet selection: inclusive  $k_T$  algorithm analysis done for three jet radii: R=0.5, 0.7, 1.0 used for  $\alpha_S$  fit: R=1.0
- Good description by theory corrected for hadronisation and Z<sub>0</sub> exchange



#### **Fits**

QCD Fits to the cross sections yield:

**ZEUS** 
$$\alpha_s(M_Z) = 0.1207 \pm 0.0014 \text{ (stat.)} ^{+0.0035}_{-0.0033} \text{ (exp.)} ^{+0.0022}_{-0.0023} \text{ (th.)}$$

**H1** 
$$\alpha_s(M_Z) = 0.1179 \pm 0.0024 \,(\text{exp.}) \,_{-0.0032}^{+0.0052} \,(\text{th.}) \,\pm 0.0028 \,(\text{pdf})$$

Compatible results, but why different size of errors?

**ZEUS** higher Q<sup>2</sup>: exp. ↑, theo. ↓

**H1** Hessian method: exp. ↓

H1 theo, offset method: theo. 1

ZEUS PDF ZEUS2002: theo.

Allow correlated systematical parameters to vary during Fit

Theory "calibrates" experiment

Repeat fit with shifted systematics

No assumption of Gaussian distribution of systematic parameters -> conservative

### Combined Fit Method



Exp. uncertainty of fit defined as  $lpha_s$  interval upto minimum  $\chi^2+1$ 

- Overestimate theo. error by repeating fit with  $\mu_R$  scaled by 0.5 and 2 due to limited statistics in the data?
- Use alternative method, estimation of theoretical error using theory only (no refit of data) [Jones et al., JHEP122003007]





NLO calculation,  $\mu_{\scriptscriptstyle R}$ =2.0 E<sub>T</sub>





### Result

- Simultaneos fit to 30 data points
  - 24 from H1
  - 6 from ZEUS
- Theory calculation
  - NLOJET++ (fastNLO) and DISENT (ZEUS grid program)
  - $\mu_R = E_T$ ,  $\mu_F = Q$
  - PDF MRST2001

$$\alpha_s(M_Z) = 0.1198 \pm 0.0019 \text{ (exp.)} \pm 0.0026 \text{ (th.)}$$
 
$$\chi^2/\text{ndf} = 27.4/29$$

Good quality of combined fit

### Result

$$\alpha_s(M_Z) = 0.1198 \pm 0.0019 \text{ (exp.)} \pm 0.0026 \text{ (th.)}$$

#### details on uncertainties

| Source                   | Variation (H1/ZEUS) | Effect on $lpha_{_S}$ |
|--------------------------|---------------------|-----------------------|
| experimental errors      |                     |                       |
| detector correction      | RAPGAP/DJANGOH      |                       |
| EM energy scale          | 0.7-3% / 1%         |                       |
| e scattering angle       | 1-3mrad             | 0.0019                |
| hadronic energy scale    | 2% / 1-3%           |                       |
| luminosity               | 1.5% / 2.2%         |                       |
| theory errors            |                     |                       |
| renormalisation scale    | scale by 0.5/2.0    | 0.0021                |
| factorisation scale      | scale by 0.5/2.0    | 0.0010                |
| PDFs                     | MRST2001E           | 0.0010                |
| hadronisation correction | RAPGAP/DJANGOH      | 0.0004                |

## Comparison of Results



## Comparison of Results

HERA average 2004

$$\overline{\alpha}_s(M_Z) = 0.1186 \pm 0.0011 \text{ (exp.)} \pm 0.0050 \text{ (th.)}$$

HERA average 2007 (incl. jets)

$$\alpha_s(M_Z) = 0.1198 \pm 0.0019 \text{ (exp.)} \pm 0.0026 \text{ (th.)}$$

exp. error now larger:

2004: 9 data sets

2007: 2 data sets (more involved method, will use more sets soon....)

theo. error now smaller:

2004: assume th. fully correlated: add linearly per experiment

2007: combined fit of 2 measurements, only one common theory uncertainty for both

# Running coupling

- Separate fits at different jet E<sub>T</sub>
- clear observation of running
- agreement with QCD prediction of scale dependence





collection of further results from HERA

### Conclusions

- HERA 2007 combined value  $\alpha_s(M_Z) = 0.1198 \pm 0.0019 \text{ (exp.)} \pm 0.0026 \text{ (th.)}$
- lacktriangle Very precise  $lpha_s$  determination
- Running of the strong coupling from HERA alone
- Improvements reached due to
  - experimental systematics with Hessian method
  - theory error extracted from NLO calculation alone
  - combination by common fit to data points
- Future: more processes, e.g.  $\gamma$ p jets, HERA II data set

# Backup

# Backup



# Backup

