

Figure 2. Mass Transfer Zone

Inventor: Matthew L. McCullough

Title: Method for Achieving Ultra-Low Emission Limits for VOC/HAP/TAC Control

Figure 3. Adsorption Breakthrough R sults - GAC Adsorption Bed at Ultra-Low Concentrations Op rating in Humid Air Stream Matth w L. McCullough M thod for Achieving Ultra-Low Emission Limits for VOC/HAP/TAC **Control Concentration Total HAPs Days in Service**

Figure 5. Laboratory Adsorption Apparatus

Inventor: Matthew L. McCullough

Title: Method for Achieving Ultra-Low Emission Limits for VOC/HAP/TAC Control

Air Stripper

Figure 6. Laboratory Desorption Apparatus

Inventor: Matthew L. McCullough

Figure 8. Ultra-Low Concentration Study Results

Matthew L. McCullough

Method for Achieving Ultra-Low Emission Limits for VOC/HAP/TAC Control

Method for Achieving Ultra-Low Emission Limits for VOC/HAP/TAC Control			
Sample Name	Comment	Result (ppbv)	
RAW V493-1D	First sample of raw V493 resin in a fixed-head space 100 ml vial.	Various alcohols and esters.	
RAW V493-2D	Second (confirming) sample of raw V493 resin in a fixed-head space 100 ml vial.	Various alcohols and esters identical to first sample.	
CLEAN V493-1D	First sample of clean V493 resin not exposed to VOCs in a fixed-head space 100 ml vial.	ND for all compounds – flat chromatogram.	
CLEAN V493-2D	Confirming sample of clean V493 resin not exposed to VOCs in a fixed-head space 100 ml vial.	ND for all compounds – flat chromatogram.	
DIRTY V493-1D	First sample of V493 resin exposed to VOCs in a fixed-head space 100 ml vial.	~22,000 ppbv TCE 800 ppbv c-1,2-DCE 700 ppbv PCE 270 1,1-DCE	
DIRTY V493-2D	Second (confirming) sample of XUR resin exposed to VOCs in a fixed-head space 100 ml vial.	~15,900 ppbv TCE 260 ppbv c-1,2-DCE 240 ppbv PCE	
DESORB V493-0.0 MIN	Desorption of V493 resin at design temperature and air flow – initial sample.	7,400 ppbv TCE	
DESORB V493-1.0 MIN	Desorption of V493 resin at design temperature and air flow – sample after 1 minute.	4,000 ppbv TCE	
DESORB V493-3.0 MIN	Desorption of V493 resin at design temperature and air flow – sample after 3 minutes.	1,200 ppbv TCE	
DESORB V493-5.0 MIN	Desorption of V493 resin at design temperature and air flow – sample after 5 minutes.	430 ppbv TCE	
DESORB V493-22 MIN	Desorption of V493 resin at design temperature and air flow – sample after 22 minutes.	56 ppbv TCE	
DESORB V493-45 MIN	Desorption of V493 resin at design temperature and air flow – sample after 45 minutes.	ND for all compounds.	
DESORB V493-60 MIN	Desorption of V493 resin at design temperature and air flow – sample after 60 minutes.	ND for all compounds.	
DESORB V493-60MIN (FHS)		ND for all compounds – flat chromatogram.	
DESORB V493-100 MIN (FHS)	Fixed head space of sample of desorbed V493 resin at design temperature after 100 minutes of desorption.	ND for all compounds – flat chromatogram.	

Figure 8. Ultra-Low Concentration Study Results

Matthew L. McCullough

Method for Achieving Ultra-Low Emission Limits for VOC/HAP/TAC Control

Sample Name Comment Result		
Jampie 14ame	Comment	(ppbv)
DIRTY V493-1D (SECOND	First sample of V493 resin after 2	11,200 ppbv TCE
CYCLE)	desorption cycles and one	230 ppbv c-1,2-DCE
(CICEL)	adsorption cycle in a fixed-head	220 ppbv C-1,2-DCE 220 ppbv PCE
	space 100 ml vial.	ZZO PPOV I CE
AIR STRIPPER EXHAUST	Test bed influent.	145 ppbv TCE
AIR STRIPPER EXHAUST	Test bed influent – confirming	130 ppbv TCE
	sample.	150 pp5V 1 GE
C22 REGEN EFFLUENT MIX 1	Effluent from 22 nd regeneration	ND for all compounds - flat
Desorption Time = 20 Minutes	cycle - confirmation of clean	chromatogram.
	resin.	
C22 REGEN EFFLUENT MIX 2	Effluent from 22 nd regeneration	ND for all compounds - flat
Desorption Time = 30 Minutes	cycle – confirmation of clean	chromatogram.
	resin.	
C22 REGEN EFFLUENT MIX 3	Effluent from 22 nd regeneration	ND for all compounds - flat
Desorption Time = 45 Minutes	cycle – confirmation of clean	chromatogram.
	resin.	
C23 REGEN HEADSPACE	Fixed-headspace of 22 nd	10 ppbv c-1,2-DCE. Resin has a
Desoprtion Time = 45 Minutes	regeneration cycle resin. This	slight residual of VOCs.
	provides a worst-case analysis of	
	whether the resin has been	
COA DETE A CO OF 1 FD HUTTER	completely cleaned.	
C23 BED 2 @ 25 MINUTES	Adsorption bed 2 (in series)	ND for all compounds - flat
	effluent after 25 minutes of	chromatogram.
C02 PED 1 10:20	operation	NID C
C23 BED 1 12:30	Adsorption bed 1 effluent after 0.5	ND for all compounds – flat
Adsorption time = 30 Minutes	hours of operation	chromatogram.
C23 BED 1 12:45	Adsorption bed 1 effluent after	ND for all compounds – flat
Adsorption time = 45 Minutes	0.75 hours of operation	chromatogram.
C23 BED 1 13:30	Adsorption bed 1 effluent after 1.5	ND for all compounds – flat
Adsorption time = 90 Minutes	hours of operation	chromatogram.
C23 BED 1 14:00	Adsorption bed 1 effluent after 2	ND for all compounds – flat
Adsorption time = 120 Minutes	hours of operation	chromatogram.

Figure 9. Desorption Effluent TCE Concentration versus Time

Matthew L. McCullough

Method for Achieving Ultra-Low Emission Limits for VOC/HAP/TAC Control

Figure 12. Generalized System Components

Matthew L. McCullough

Method for Achieving Ultra-Low Emission Limits in VOC/HAP/TAC Control

ERALIZED LAYOUT AND P&ID FOR ULTRA-LOW EMISSION LIMITS FIGURE 13. PREFERRED EMBODIEMENT GEN MATTHEW L. McCULLOUGH METHOD FOR ACHIEVING ULTRA-LOW EMISS CONTROL /TAC VOC/HAP

LINELD EMBUDIEMENT GENERALIZED LAYOUT AND FOR ULTRALOW EMMISION LIMITS L, McCULLDUGH OR ACHIEVING P&ID (CONTINUED)
MATTHEW | Marri

TAC CONTROL

VOC/HAP/

FROM CONVENTION

OF SCIENCE

O [38] [37] AIR IMLET IAS TAN [38] THE GEN MEDICAL [14] 圓 (2) B [40] [12] [2] [4] [13] (F) Z-1101 VENT 30. DUCT (F) **₽** (F) (£) C-1101 FLUMIZED BED ADSDRUGE FLDV RATE 14,000 OKENAL) EDECISIONS HONOTORING SAMPLE PORT [3] VENTED AIR FROM C-4131 SCRUBBER E-1101 AIR STRUPPER M.IIVER C-1100
PACKED COLLINN AIR STRUPPER
AIR FLUY RATE 14,000 SCPNOURML)

倒倒 [42] -[25] STEER CO. FOR VOC/HAP/TAC CONTROL 图图 -**에디디**-13. X 51. MC [41] 画画画画 [47] -[28] 豳 [24] -[27] LIMITS **-**[21] [33] EMMISION a B 回 -134MATTHEW L. MCCULLOUGH METHOD FOR ACHIEVING ULTRALOW -[19] 1 通 1 1 [36] [35] [20] [18]

UENERALIZED LAYOUT AND P&ID (CONTINUED) DUDIEMENI

D EMBODIEMENT GENERALIZED
ONTINUED>
UGH
NG ULTRALOW EMMISION LIMITS FOR

HIGURE 18. PREFERRED EMBODIEMENT GENERALIZED LAYOUT AND P&ID (CONTINUED)
MATTHEW L. McCULLOUGH

METHOD FOR ACHIEVING ULTRALOW EMMISION LIMITS

FOR VOC/HAP/TAC CONTROL

Figure 19. Alternative Embodiment for Recovery of Low Boiling Point Compounds

Matthew L. McCullough

Method for Achieving Ultra-Low Emission Limits in VOC/HAP/TAC Control

Figure 20. Alternative Embodiment Utilizing Recirculating Fluidized Bed Matthew L. McCullough

Method for Achieving Ultra-Low Emission Limits in VOC/HAP/TAC Control

Figure 21. Alternative Embodiment for Recovery of Liquid Solvent

Matthew L. McCullough

Method for Achieving Ultra-Low Emission Limits in VOC/HAP/TAC Control

