МНОЖЕСТВА

1.1. Множества и их элементы. Способы задания множеств

Понятие множества является одним из фундаментальных понятий математики. Оно было введено в математику создателем теории множеств немецким ученым Георгом Кантором (1845 — 1918). Следуя ему, под *множеством* понимается совокупность объектов произвольной природы, которая рассматривается как единое целое. Объекты, входящие в состав множества, называются его элементами.

Это описание понятия множества нельзя считать логическим определением, а всего лишь пояснением. Понятие множества принимается как исходное, первичное, то есть не сводимое к другим понятиям.

Примерами множеств могут служить множество всех книг, составляющих данную библиотеку, множество всех точек данной линии, множество всех решений данного уравнения, множество всех одноклеточных организмов и т.п.

Множества принято обозначать прописными буквами латинского алфавита: A, B, C, \ldots Для числовых множеств будем использовать следующие обозначения:

N — множество натуральных чисел;

 N_0 – множество неотрицательных целых чисел;

Z – множество целых чисел;

Q – множество рациональных чисел;

I — множество иррациональных чисел;

R – множество действительных чисел;

C – множество комплексных чисел.

Элементы множества будем обозначать строчными латинскими буквами: a,b,c,\dots

Предложения вида «объект a есть элемент множества A», «объект a принадлежит множеству A», имеющие один и тот же смысл, кратко записывают в виде $a \in A$. Если элемент a не принадлежит множеству A, то пишут $a \notin A$.

Символ ∈ называется знаком принадлежности.

Множества могут содержать как конечное число элементов, так и бесконечное. Например, множество всех корней уравнения $x^2 - 4x - 5 = 0$ конечно (два элемента), а множество всех точек прямой бесконечно. Рассматривают в математике и множество, не содержащее ни одного элемента.

Определение 1.1. Множество, не содержащее ни одного элемента, называется *пустым* и обозначается символом \emptyset .

Число элементов конечного множества называется его *мощностью*. Если множество A содержит n элементов, то будем писать |A|=n. Если $A=\emptyset$, то

|A| = 0. Мощность бесконечного множества является более сложным понятием. Оно будет рассмотрено в главе 3.

Замечание 1.1. Элементами множества могут быть множества. Например, можно говорить о множестве групп некоторого факультета университета.

Элементы этого множества – группы, являющиеся в свою очередь множествами студентов. Но конкретный студент одной из групп уже не является элементом множества групп факультета.

Определение 1.2. Множество, элементами которого являются другие множества, называется *семейством* (*классом*).

Определение 1.3. Если все элементы данной совокупности множеств принадлежат некоторому одному множеству, то такое множество называется универсальным множеством, или универсумом, и обозначается U.

Множество считают заданным, если о любом объекте можно сказать, принадлежит он этому множеству или не принадлежит. *Множество можно задать следующими способами*:

- 1) перечислением всех его элементов (списком);
- 2) характеристическим свойством элементов множества;
- 3) порождающей процедурой.

Первый способ задания множеств применим только для конечных множеств, да и то при условии, что число элементов множества невелико. Если a, b, c, d – обозначения pазличных объектов, то множество A этих объектов записывают так: $A = \{a; b; c; d\}$. Запись читают: «A – множество, элементы которого a, b, c, d».

Замечание 1.2. Порядок перечисления элементов множества *не имеет* значения. Так, множества $\{a; b; c; d\}$ и $\{b; c; d; a\}$ совпадают.

Вторым способом можно задавать как конечные, так и бесконечные множества. *Характеристическое свойство* — это такое свойство, которым обладает каждый элемент, принадлежащий множеству, и не обладает ни один элемент, который ему не принадлежит. Обозначив символом P(x) характеристическое свойство элементов множества A, будем писать: $A = \{x \mid P(x)\}$.

Порождающая процедура описывает способ получения элементов нового множества из уже полученных элементов или из других объектов. Тогда элементами множества считаются все объекты, которые могут быть получены с помощью этой процедуры. С помощью порождающей процедуры можно задавать множества, содержащие любое число элементов.

Пример 1.1. Определим различными способами множество M_{2n-1} всех нечетных чисел, не превышающих 10:

- 1) $M_{2n-1} = \{1, 3, \hat{5}, 7, 9\};$
- 2) $M_{2n-1} = \{2k-1 | k \in \mathbb{N}, k \le 5\};$
- 3) порождающая процедура определяется правилами:
 - a) $1 \in M_{2n-1}$;
 - б) если $m \in M_{2n-1}$, то $(m+2) \in M_{2n-1}$, $m \le 7$.

1.2. Подмножества

Определение 1.4. Множество B называется подмножеством множества A, если каждый элемент множества B принадлежит множеству A.

Пример 1.2. Пусть $A = \{a, b, c, d, e, f, g, h, i, j, k\}$, а $B = \{c, e, g, h, j, k\}$. Множество B является подмножеством множества A, поскольку каждый элемент множества B принадлежит множеству A.

Если множество B является подмножеством множества A, то говорят также, что B содержится в A или B включено в A и пишут $A \subseteq B$. Символ \subseteq называется знаком включения (точнее, нестрого включения).

Согласно данному определению подмножества каждое множество является подмножеством самого себя: ($\forall A$) $A \subseteq A$. Кроме того, считается, что пустое множество есть подмножество любого множества A: ($\forall A$) $\varnothing \subseteq A$.

Различают два вида подмножеств множества A. Само множество A и \varnothing называются несобственными подмножествами множества A. Любые подмножества множества A, отличные от A и \varnothing , называются собственными подмножествами множества A.

Определение 1.5. Множества A и B называются pавными (пишут A = B), если они состоят из одних и тех же элементов.

Справедливо следующее утверждение, которое также можно рассматривать в качестве определения равных множеств.

Утверждение 1.1. $A = B \Leftrightarrow A \subseteq B$ и $B \subseteq A$.

Замечание 1.3. Из утверждения 1.1 вытекает способ доказательства равенства двух множеств: если доказать, что каждый элемент из множества A является элементом множества B и каждый элемент из множества B является элементом множества A, то делают вывод, что A = B.

Говорят, что множество B строго включено в множество A или, подругому, A строго включает B, если $B \subseteq A$ и $B \neq A$. В этом случае пишут $B \subset A$. Символ \subset называется знаком строгого включения.

Пример 1.3. Имеют место следующие строгие включения числовых множеств: $N \subset N_0 \subset Z \subset Q \subset R \subset C$, $I \subset R \subset C$.

Определение 1.6. Множество всех подмножеств множества A называется его *булеаном* (или *множеством-степенью*) и обозначается через P(A) (или 2^A).

Пример 1.4. Если
$$A = \{a, b, c\}$$
, то $P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}.$

1.3. Операции над множествами

Определим операции над множествами, с помощью которых можно получать из любых имеющихся двух множеств новые множества.

Определение 1.7. *Объединением* (*суммой*) $A \cup B$ (или A + B) множеств A и B называется множество, состоящее из тех и только тех элементов, которые принадлежат хотя бы одному из множеств A и B.

Таким образом, по определению, $A \cup B = \{x \mid x \in A \text{ или } x \in B\}.$

Заметим, что в объединение двух множеств A и B могут входить элементы из A, не принадлежащие множеству B, элементы из B, не принадлежащие

множеству A, и элементы, принадлежащие множествам A и B одновременно. Следовательно, $(\forall A, B) A \subseteq A \cup B$ и $B \subseteq A \cup B$.

Определение 1.8. Пересечением (произведением) $A \cap B$ (или $A \cdot B$, или AB) множеств A и B называется множество, состоящее из тех и только тех элементов, которые принадлежат обоим множествам А и В одновременно.

Таким образом, по определению, $A \cap B = \{x \mid x \in A \text{ и } x \in B\}.$

Замечание 1.4. Если $A \cap B \neq \emptyset$, то говорят, что множества A и B пересекаются. Если $A \cap B = \emptyset$, то в этом случае множества A и B называются непересекающимися.

Из определения пересечения следует, что $(\forall A, B) A \cap B \subseteq A$ и $A \cap B \subseteq B$.

Определение 1.9. *Разностью* $A \setminus B$ множеств A и B называется множество, состоящее из тех и только тех элементов, которые принадлежат множеству A и не принадлежат множеству B.

Таким образом, по определению, $A \setminus B = \{x \mid x \in A \text{ и } x \notin B\}.$

Замечание 1.5. Если $B \subseteq A$, то в этом случае разность $A \setminus B$ называют ∂o полнением В до А.

Определим, опираясь на определения 1.7–1.9, операции симметрической разности и дополнения множества.

Определение 1.10. Симметрической разностью (кольцевой суммой) $A \Delta B$ (или $A \oplus B$) множеств A и B называется множество, состоящее из тех и только тех элементов, которые принадлежат одному из множеств A либо B, но не являются их общими элементами.

Таким образом, по определению,

$$A \Delta B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B).$$

Определение 1.11. Дополнением \overline{A} (или A') множества A (до универсума U) называется множество $U \setminus A$.

Таким образом, по определению, $\overline{A} = U \setminus A = \{x \mid x \in U \text{ и } x \notin A\}.$

Пример 1.5. Пусть $U = \{a, b, c, d, e, f, g, h\}, A = \{a, d, e, f, h\},$

 $B = \{b, d, f, h\}$. Найти: $A \cup B, A \cap B, A \setminus B, B \setminus A, A \Delta B, \overline{A}, \overline{B}$.

Решение. $A \cup B = \{a, b, d, e, f, h\}, A \cap B = \{d, f, h\}, A \setminus B = \{a, e\},$

$$B \setminus A = \{b\} \Longrightarrow A \setminus B \neq B \setminus A, A \Delta B = \{a, b, e\}, \overline{A} = \{b, c, g\}, \overline{B} = \{a, c, e, g\}.$$

Введем некоторые обобщения вышеприведенных определений. Пусть I – любое конечное или бесконечное множество индексов. Тогда объединение или пересечение произвольного семейства множеств $\{A_i\}, i \in I$, определяется следующим образом:

$$\bigcup_{i \in I} A_i = \{x \mid x \in A_i \text{ , хотя бы для одного } i(i \in I)\}, \bigcap_{i \in I} A_i = \{x \mid x \in A_i \text{ для всех } i(i \in I)\}.$$

Если $I = \{1, 2, ..., n\}$, то используются записи $A_1 \cup A_2 \cup ... \cup A_n$ и

$$A_I \cap A_2 \cap \ldots \cap A_n$$
, или $\bigcup_{i=1}^n A_i$ и $\bigcap_{i=1}^n A_i$.

 $A_I\cap A_2\cap\ldots\cap A_n$, или $\bigcup_{i=1}^n A_i$ и $\bigcap_{i=1}^n A_i$. Определение 1.12. Пусть E — некоторое семейство подмножеств множества A, то есть $E = \{E_i\}$, $i \in I$, где $(\forall i \in I)$ $E_i \subseteq A$. Семейство E называется no κ рытием множества A, если каждый элемент множества A принадлежит хотя бы одному множеству семейства E.

Таким образом, $E=\{E_i\},\,i{\in}\,I,$ где ($\forall\,i\in I$) $E_i\subseteq A$ – покрытие множества $A\Leftrightarrow A=\bigcup_{i\in I}E_i$.

Пример 1.6. Пусть $A = \{a, b, c, d, e, f, g, h, i, j,k\}$. Выяснить, какие из следующих семейств являются покрытиями множества A:

```
E_{1} = \{\{a\}, \{c, d\}, \{f, g, h\}, \{i, j, k\}\};
E_{2} = \{\{i, j, k\}, \{e, f, g, h\}, \{a, b, c, d\}\};
E_{3} = \{\{a, f, i, k, d\}, \{b, c, g, h\}, \{d\}, \{e, j\}\};
E_{4} = \{\{c, d, e, f\}, \{a, b, c\}, \{i, j, k\}, \{g, k\}\}.
```

Решение. Семейства E_2 и E_3 – покрытия множества A, а семейства E_1 и E_4 не являются покрытиями множества A.

Определение 1.13. Покрытие E называется *разбиением* множества A, если каждый элемент множества A принадлежит в точности одному множеству семейства E.

Таким образом, $E = \{E_i\}$, $i \in I$, где $(\forall i \in I)$ $E_i \subseteq A$ – разбиение множества $A \Leftrightarrow A = \bigcup_{i \in I} E_i$ и $E_i \cap E_j = \emptyset$, если $i \neq j$.

Пример 1.7. Пусть $B = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Выяснить, какие из следующих семейств образуют разбиения множества B:

```
E_{1} = \{\{1, 3, 5\}, \{2, 4, 6, 8\}, \{7, 9\}\};
E_{2} = \{\{5\}, \{2, 4, 8, 9\}, \{1, 6\}\};
E_{3} = \{\{1, 3, 7\}, \{4, 6, 8\}, \{2, 5, 6, 9\}\};
E_{4} = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}, \{8\}, \{9\}\}.
```

Решение. Среди перечисленных семейств только E_1 и E_4 образуют разбиения множества B. Семейство E_2 не является разбиением множества B, так как $B \neq \{5\} \cup \{2,4,8,9\} \cup \{1,6\}$, а семейство E_3 – так как $\{4,6,8\} \cap \{2,5,6,9\} \neq \emptyset$.

Рассмотрим основные, наиболее важные свойства операций объединения, пересечения и дополнения над множествами.

Свойства операций над множествами

Пусть задан универсум U. Тогда ($\forall A, B, C$) $A, B, C \subseteq U$ выполняются следующие свойства:

1. идемпотентность:

 $A \cup A = A$ (идемпотентность \cup), $A \cap A = A$ (идемпотентность \cap);

2. коммутативность:

 $A \cup B = B \cup A$ (коммутативность \cup), $A \cap B = B \cap A$ (коммутативность \cap);

3. ассоциативность:

$$A \cup (B \cup C) = (A \cup B) \cup C$$
 (ассоциативность \cup), $A \cap (B \cap C) = (A \cap B) \cap C$ (ассоциативность \cap);

4. дистрибутивность:

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (дистрибутивность \cup относительно \cap), $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (дистрибутивность \cap относительно \cup);

- 5. поглощение: $(A \cap B) \cup A = A$, $(A \cup B) \cap A = A$;
- 6. свойства нуля: $A \cup \emptyset = A$, $A \cap \emptyset = \emptyset$;
- 7. свойства единицы: $A \cup U = U$, $A \cap U = A$;
- 8. инволютивность (свойство двойного дополнения): $\overline{A} = A$;
- 9. законы де Моргана: $\overline{A \cap B} = \overline{A} \cup \overline{B}$, $\overline{A \cup B} = \overline{A} \cap \overline{B}$;
- 10. свойства дополнения: $A \cup \overline{A} = U$, $A \cap \overline{A} = \emptyset$;
- 11. выражение для разности: $A \setminus B = A \cap B$.

Доказательство. Справедливость каждого из этих свойств можно доказать, используя утверждение 1.1 и замечание 1.3.

В качестве примера приведем доказательство дистрибутивности объединения относительно пересечения: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Пусть
$$X = A \cup (B \cap C)$$
, $Y = (A \cup B) \cap (A \cup C)$.

Надо доказать, что множества X и Y равны, то есть (a) $X \subseteq Y$; (b) $Y \subseteq X$. $X \subseteq Y$, если каждый элемент множества X принадлежит множеству Y. Пусть $x \in A \cup (B \cap C)$. Тогда возможны два случая: (a₁) $x \in A$ и (a₂) $x \in B \cap C$.

В случае (a₁) $x \in A \cup B$ и $x \in A \cup C$; следовательно, $x \in Y$. В случае (a₂) $x \in B$ и $x \in C$, поэтому $x \in A \cup B$ и $x \in A \cup C$; отсюда $x \in Y$. Из произвольности элемента x следует, что $X \subseteq Y$.

Предложим теперь, что $y \in Y$; то есть $y \in (A \cup B) \cap (A \cup C)$, тогда $y \in A \cup B$ и $y \in A \cup C$.

При этом если $y \notin A$, то $y \in B$ и $y \in C$, значит $y \in B \cap C$; следовательно, $y \in A \cup (B \cap C)$. Если же $y \in A$, то $y \in A \cup (B \cap C) = X$. Из произвольности элемента y вытекает, что $Y \subseteq X$.

Из (a) и (b) следует равенство X = Y.

1.4. Диаграммы Эйлера – Венна

Для графического (наглядного) изображения множеств и их свойств используются диаграммы Эйлера — Венна (Леонард Эйлер (1707—1783) — швейцарский математик, механик и физик; Джон Венн (1834 — 1923) — английский логик). На них множество отождествляется с множеством точек на плоскости, лежащих внутри некоторых замкнутых кривых, например окружностей (так называемые круги Эйлера). В частности, универсальное множество U изображается множеством точек некоторого прямоугольника.

Проиллюстрируем с помощью диаграмм Эйлера – Венна введенные определения. На рисунках 1.1 – 1.5 результат выполнения операции выделен штриховкой.

1.5. Прямое произведение множеств

При задании некоторого конечного множества списком его элементов порядок указания элементов этого множества не имеет значения. Например, множества $\{a,b\}$ и $\{b,a\}$ совпадают, так как они состоят из одних и тех же элементов, хотя порядок указания элементов в этих записях различен. Кроме этого, каждый элемент входит в множество в точности один раз, то есть среди элементов множества нет повторяющихся. Так, запись $\{a,a\}$ означает множество, состоящее из единственного элемента a, то есть $\{a,a\} = \{a\}$.

Введем новое исходное понятие — понятие *упорядоченной пары* (a, b), которая представляет собой набор двух объектов a и b, не обязательно различных, первым элементом которого является a, а вторым — b.

Определение 1.14. Упорядоченные пары (a, b) и (c, d) называются *равными* (пишут (a, b) = (c, d)), если a = b и c = d.

В частности, $(a, b) = (b, a) \Leftrightarrow a = b$ (сравните: из равенства $\{a, b\} = \{b, a\}$ не следует, что a = b).

Обобщением понятия упорядоченной пары является понятие *кортежа* (вектора) — упорядоченного набора произвольных, не обязательно различных n объектов. Кортеж, состоящий из элементов $x_1, x_2, ..., x_n$ обозначается $(x_1, x_2, ..., x_n)$ или $< x_1, x_2, ..., x_n >$. Элементы x_i (i = 1, 2, ..., n) называются *координатами* или *компонентами* кортежа. Число координат называется *длиной кортежа* (размерностью вектора). Кортежи длины 2 называют также упорядоченными парами, кортежи длины 3 — упорядоченными тройками и т.д., кортежи длины n — упорядоченными n —

Определение 1.15. Два кортежа $(x_1, x_2, ..., x_n)$ и $(y_1, y_2, ..., y_m)$ называются равными (пишут $(x_1, x_2, ..., x_n) = (y_1, y_2, ..., y_m)$), если:

- 1) n = m;
- 2) $x_i = y_i \ (i = 1, 2, ..., n)$.

Введем еще одну операцию над множествами.

Определение 1.16. Прямым (декартовым) произведением

 $A_1 \times A_2 \times ... \times A_n$ и множеств $A_1, A_2, ..., A_n$ называется множество всех кортежей длины $n (x_1, x_2, ..., x_n)$ таких, что $x_1 \in A_1, x_2 \in A_2, ..., x_n \in A_n$.

Таким образом, по определению,

$$A_1 \times A_2 \times ... \times A_n = \{(x_1, x_2, ..., x_n) \mid x_1 \in A_1, x_2 \in A_2, ..., x_n \in A_n\}.$$

В частности, если n = 2, то $A \times B = \{(x, y) | x \in A, y \in B\}$.

Пример 1.8. Пусть $A = \{a, b, c\}$ и $B = \{1, 2\}$. Тогда

$$A \times B = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\};$$

$$B \times A = \{(1, a), (2, a), (1, b), (2, b), (1, c), (2, c)\};$$

$$A \times A = \{(a, a), (b, b), (c, c)\}; B \times B = \{(1, 1), (2, 2)\}.$$

Если $A_1 = A_2 = ... = A_n = A$, то множество

 $A_1 \times A_2 \times ... \times A_n = A \times A \times ... \times A$ называется n-кратным прямым произведением

множества A или n- \ddot{u} cтеленью множества A и обозначается через A^n . При этом будем считать, что A^l = A.

Рассмотрим *геометрическую интерпретацию прямого произведения двух числовых множеств* A и B – множество всех точек координатной плоскости Oxy с координатами (x, y) такими, что $x \in A$, а $y \in B$. Тогда для двух заданных числовых множеств можно наглядно изображать их прямое произведение и, обратно, по изображению прямого произведения двух множеств определять их элементы.

Пример 1.9. Изобразить на координатной плоскости $Oxy \ A \times B$, если:

- a) $A = \{3, 5, 7\}, B = \{2, 4\};$
- б) $A = \{3, 5, 7\}, B = [2; 4];$
- B) A = [3, 7], B = [2; 4].

Решение.

Пример 1.10. Определить, прямое произведение каких множеств A и B изображено на рисунках:

