CM1604 Computer Systems Fundamentals

Data Representation Computing Components

Week No 03 | Lecturer Name

In this week lecture...

- Data storage
- Character encoding
 - ASCII
 - UNICODE
- Images
 - 24 bit colour RGB
 - Sizes of images
- Computing components

By the end of this lecture, you will be able to:

- Distinguish between various units of data storage and convert between them
- Understand standards of textual representation for computer systems
 - **ASCII**
 - UNICODE
- Understand 24-bit RGB colour coding and calculate the size of bitmap images
- List the components and their function in a von Neumann machine.

Data Storage

Bit

- Binary Digit
- 0 or 1 \rightarrow smallest unit

Nibble

• 4 bits \rightarrow 1 Hex

Byte

- 8 bits
- Smallest addressable unit in computer

Data Storage

Name	Size
Byte (B)	8 bits
Kilobyte (KB)	2 ¹⁰ Bytes = 1024 B
Megabyte (MB)	2 ²⁰ Bytes = 1024 KB
Gigabyte (GB)	2 ³⁰ Bytes = 1024 MB
Terabyte (TB)	2 ⁴⁰ Bytes = 1024 GB
Petabyte (PB)	2 ⁵⁰ Bytes = 1024 TB
Exabyte (EB)	2 ⁶⁰ Bytes = 1024 PB
Zettabyte (ZB)	2 ⁷⁰ Bytes = 1024 EB
Yottabyte (YB)	2 ⁸⁰ Bytes = 1024 ZB

Character encoding

Representing text

- How to represent text?
 - Number of characters → finite
 - Then assign each character a binary value /pattern

- Character set
 - A list of character and the codes used to represent them
 - Standard agreed by the manufacturers
 - ASCII
 - Unicode

ASCII Character set

- American Standard Code for Information Interchange
- Initially used 7-bits \rightarrow 128 unique characters

- Evolved version → Extended ASCII
 - Use 8-bits
 - 256 possible unique characters

ASCII Character set

	0	1	2	3	4	5	6	7	8	9
0	nul	soh	stx	etx	eot	enq	ack	be1	bs	ht
1	nl	vt	ff	cr	so	si	dle	dc1	dc2	dc3
2	dc4	nak	syn	etb	can	em	sub	esc	fs	gs
3	rs	us	sp	!		#	\$	%	&	
4	()	*	+	•	-		1	0	1
5	2	3	4	5	6	7	8	9	:	;
6	<	-	>	?	@	Α	В	С	D	Е
7	F	G	Н	I	J	K	L	М	N	0
8	Р	Q	R	S	Т	U	V	W	X	Υ
9	z	[1]	٨	_	,	a	b	С
10	d	e	f	g	h	i	j	k	1	m
11	n	o	р	q	r	s	t	u	V	w
12	×	У	z	{	1	}	~	del		

UNICODE Character set

- Extended ASCII nor sufficient for international use
- UNICODE → uses 16-bit per character (code point)
- First 256 are same as extended ASCII character set
- Newer version uses 32-bit code unit per code point
 - supports even emojis

Sinhala Unicode Block

	Sinhala ^{[1][2]}															
	Official Unicode Consortium code chart 🔑 (PDF)															
	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
U+0D8x			ಂ	ಃ		약	ආ	क्र	क्र	9	ð	උ	උඉ	æa	asas	ල
U+0D9x	පග	එ	ಲ್	ඓ	@	ඕ	ඔඉ				ක	ର	ග	සි	ඞ	ത
U+0DAx	ච	ඡ	ජ	ඣ	ඤ	ඥ	ඡ	ට	ది	ඩ	යි	6 56	ඬ	ත	ථ	ę
U+0DBx	ವಿ	න		ę	ප	ඵ	බ	භ	ම	@	ය	ර		C		
U+0DCx	ව	ශ	ෂ	ස	හ	e	ო				්					ാ
U+0DDx	ા	્ર	8	ొ	9		្ធ		a	ෙ	ේ	ෙ	ො	ോ	ලග	ංග
U+0DEx							4	<u></u>	ത	ത	ඡ	ల్	ര	7	Q	෯
U+0DFx			aa	୍ଷ	MM											

Notes

- 1. As of Unicode version 13.0
- 2. Grey areas indicate non-assigned code points

Tamil Unicode Block

	Tamil ^{[1][2]} Official Unicode Consortium code chart ▶ (PDF)															
	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
U+0B8x			ំ	00		அ	ஆ	a	FF	ഉ	<u>ഉണ</u>				எ	ஏ
U+0B9x	ස		99	ஓ	ஔ	க				固	ச		ஐ		ஞ	L
U+0BAx				ண	த				ந	ன	Ц				Ф	ш
U+0BBx	ர	ற	ຎ	ள	ழ	ഖ	υŪ	ഖ	സ	ஹ					ா	ി
U+0BCx	<u></u> °	ு	্ত				െ	േ	ഞ		ொ	ோ	ௌ	ं		
U+0BDx	ஓ							ണ								
U+0BEx							0	க	ഉ	匝	판	(ff)	௬	எ	அ	கூ
U+0BFx	Ŵ	ſΠ	சூ	ഖ	மீ	௵	Ш	வெ	ணு	(ħ	நீ					

Notes

- 1. As of Unicode version 13.0
- 2. Grey areas indicate non-assigned code points

Images

Images

Pixels (picture elements)

Dots of color in an image (or display device)

Resolution

Number of pixels in an image (or device)

Raster graphics

- Image is represented as a collection of pixels
- Most common formats: BMP, GIF, PNG, and JPEG

Vector graphics

- Image is represented as a collection of geometric objects
- Most important formats: SVG

Bitmap - RGB

- Each pixel is coded with 3 Bytes (24-bits)
 - 1 Byte- RED
 - 1 Byte GREEN
 - 1 Byte BLUE

130,0,230

Values:

Red: 130

Green: 0

Blue: 230

Few examples of colors within the RGB spectrum

255,0,0 0,0,255 0,255,0 130,0,130 Values: Values: Values: Values: Red: 0 Red: 255 Red: 130 Red: 0 Green: 0 Green: 0 Green: 255 Green: 0 Blue: 255 Blue: 130 Blue: 0 Blue: 0 51,148,46 130,240,212 239,250,30

0,0,0 255,255,255 Values: Red: 255 Green: 255

Values: Red: 51 Green: 148 Blue: 46

Values: Red: 130 Green: 240 Blue: 212

Values: Red: 239 Green: 250 Blue: 30

Values: Red: 0 Green: 0 Blue: 255 Blue: 0

Sizes of images - Bitmap

- A Bitmap image is 2048 X 1024 pixel size. What is the disk space (in MB) needed to save 50 such images? Formulate the answer.
 - No of pixel in the image
 - each pixel coded with 3 bytes therefore, file size
 - file size in MB

= 2048 X 1024

= 2048 X 1024 X 3 Bytes

= 2048 X 1024 X 3

----- MB

1024 X 1024

therefore, size of 50 such images = 2048 X 1024 X 3

----- X 50 MB

1024 X 1024

Data Compression

 To reduce file size and transmission times, digital data can be compressed.

 Data compression refers to any technique that recodes the data in a file so that it contains fewer bits.

Data Compression

Compression techniques divided into two categories:

lossless and lossy

Lossless compression provides a way to compress data and reconstitute it into its original state;

uncompressed data stays exactly the same as the original data

Lossy compression throws away some of the original data during the compression process; uncompressed data is not exactly the same as the original

Data Encryption

 Encryption is the process of encoding messages or information in such a way that only authorized parties can read it.

· Discussions.

Computing components

The von Neumann architecture

The von Numann architecture

Arithmetic/logic unit

- Capable of performing arithmetic and logic operation
 Memory Unit
- Holds data and instruction (holds the running program)
 Input unit
- moves the data from outside world into the computer
 Output unit
- Moves the data from inside the computer to the outside world
 Control Unit
- manages all other component in the computer

System Interconnection

CPU connected to other components using buses (copper wire connections)

Address bus

used by CPU to select which memory location or I/O or storage device to access

Data bus

transmits binary data to or from CPU

Control bus

used to control operation of memory (e.g. enable read or write control)

Modern Computers now use separate buses for more specific needs and to increase the speed of the system

RAM and ROM

RAM (random-access memory)

- memory can be accessed as well as changed
- volatile
- used as the working memory

ROM (read-only memory)

- · can access the memory but not changed
- non-volatile
- used to store BIOS program

Secondary storage devices

- RAM is volatile
- Need a way to store the information
- The memory used to store the data

Eg:

magnetic tape magnetic disk optic disk flash memory

REFERENCE

Dale, N.B. and Lewis, J., 2007. Computer science illuminated. Jones
 & Bartlett Learning.

https://en.wikipedia.org/wiki/File:Motherboard_diagram.svg

READING

Chapter # 3, 5

Computer science illuminated. Jones & Bartlett Learning.