

PVsyst - Simulation report

Grid-Connected System

Project: report on shading analysis for solar projects.

Variant: report on shading analysis for solar project
No 3D scene defined, no shadings
System power: 5.04 kWp
Qaryah-ye Chaman-e Barakī - Afghanistan

PVsyst TRIAL

PVsyst TRIAL

Author

Variant: report on shading analysis for solar project

PVsyst V7.4.8

VC1, Simulation date: 10/28/24 11:22 with V7.4.8

Project summary

Geographical Site

Qaryah-ye Chaman-e Barakī

Afghanistan

Situation Latitude

Longitude Altitude 34.55 °N 69.15 °E 1793 m

Time zone UTC+4.5

Project settings

Albedo

0.20

Weather data

Qaryah-ye Chaman-e Barakī

NASA-SSE satellite data 1983-2005 - Synthetic

System summary

Grid-Connected System

No 3D scene defined, no shadings

PV Field Orientation

Fixed plane

Tilt/Azimuth 34 / 0 °

Near Shadings
No Shadings

Unlimited load (grid)

User's needs

System information

PV Array

Nb. of modules
Pnom total

Inverters

Nb. of units
Pnom total

Pnom ratio

1 unit

4950 W 1.018

Results summary

Produced Energy

9622.75 kWh/year

Specific production

16 units

5.04 kWp

1909 kWh/kWp/year Perf. Ratio PR

85.59 %

Table of contents	
Project and results summary	2
General parameters, PV Array Characteristics, System losses	3
Horizon definition	4
Main results	5
Loss diagram	6
Predef. graphs	7
Single-line diagram	8

PVsyst TRIAL

Variant: report on shading analysis for solar project

PVsyst V7.4.8

VC1, Simulation date: 10/28/24 11:22 with V7.4.8

General parameters

Grid-Connected System No 3D scene defined, no shadings

PV Field Orientation

Orientation Sheds configuration Models used

Fixed plane No 3D scene defined Transposition Perez Tilt/Azimuth 34 / 0 $^{\circ}$ Diffuse Perez, Meteonorm

Circumsolar separate

Horizon Near Shadings User's needs

Average Height 3.2 ° No Shadings Unlimited load (grid)

PV Array Characteristics

PV module Inverter

Manufacturer Generic Manufacturer Generic

Model PM318B01_315 Model SUN2000-4.95KTL-JPL1

(Custom parameters definition) (Original PVsyst database)

Unit Nom. Power 3.15 Wp Unit Nom. Power 4.95 kWac Number of PV modules 16 units Number of inverters 2 * MPPT 50% 1 unit Nominal (STC) 5.04 kWp Total power 5.0 kWac

Modules 2 string x 8 In series Operating voltage 90-560 V

At operating cond. (50°C)

Max. power (=>40°C)

5.21 kWac

Pmpp 4567 Wp Pnom ratio (DC:AC) 1.02

U mpp 388 V No power sharing between MPPTs

I mpp 12 A

Total PV power Total inverter power

Nominal (STC) 5 kWp Total power 5 kWac
Total 16 modules Number of inverters 1 unit

Module area 26.1 m² Pnom ratio 1.02

Cell area 23.4 m²

Array losses

Thermal Loss factor DC wiring losses Module Quality Loss

Module temperature according to irradiance Global array res. 555 m Ω Loss Fraction -0.8 %

Uc (const) 20.0 W/m²K Loss Fraction 1.5 % at STC

Uv (wind) 0.0 W/m²K/m/s

Module mismatch losses IAM loss factor

Loss Fraction 2.0 % at MPP ASHRAE Param.: IAM = 1 - bo (1/cosi -1)

bo Param. 0.05

10/28/24 PVsyst Evaluation mode Page 3/8

Variant: report on shading analysis for solar project

PVsyst V7.4.8 VC1, Simulation date: 10/28/24 11:22 with V7.4.8

Horizon definition

Horizon from PVGIS website API, Lat=34°32'45", Long=69°8'54", Alt=1793m

Average Height	3.2 °	Albedo Factor	0.80
Diffuse Factor	0.97	Albedo Fraction	100 %

Horizon profile

Azimuth [°]	-180	-173	-165	-158	-150	-143	-135	-128	-120	-105	-98	-90
Height [°]	2.7	1.9	2.3	2.7	2.3	1.9	1.9	2.3	1.9	1.9	2.3	1.1
Azimuth [°]	-83	-75	-68	-60	-53	-45	-38	-30	-23	-15	-8	0
Height [°]	1.1	1.9	2.3	1.9	1.9	2.3	2.7	3.1	5.0	5.3	5.3	2.7
Azimuth [°]	8	15	23	30	38	45	53	60	68	75	83	90
Height [°]	3.8	3.1	3.1	6.1	8.0	5.7	3.8	3.1	1.9	2.7	4.2	5.0
Azimuth [°]	98	105	113	120	128	135	143	150	158	165	173	180
Height [°]	4.6	4.6	5.0	5.3	4.2	3.8	4.2	3.4	2.7	1.9	1.9	2.7

Sun Paths (Height / Azimuth diagram)

Variant: report on shading analysis for solar project

PVsyst V7.4.8

VC1, Simulation date: 10/28/24 11:22 with V7.4.8

Main results

System Production

Produced Energy 9622.75 kWh/year

Specific production Perf. Ratio PR 1909 kWh/kWp/year

85.59 %

Normalized productions (per installed kWp)

Balances and main results

0.2 0.1 0.0

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	kWh	ratio
January	90.5	35.28	-3.36	145.5	139.9	693.1	668.1	0.911
February	101.1	40.83	-1.71	142.1	137.8	674.0	649.9	0.908
March	141.0	59.84	3.30	170.4	164.8	791.6	763.9	0.889
April	171.3	64.81	8.98	180.1	173.9	811.1	783.4	0.863
May	218.9	67.00	14.03	206.2	198.6	903.7	873.4	0.840
June	240.9	54.51	19.08	214.0	205.8	913.4	883.4	0.819
July	241.2	57.49	21.20	219.6	211.3	926.4	895.9	0.809
August	209.6	59.74	20.06	212.1	204.9	903.7	873.8	0.817
September	175.5	47.76	15.69	205.4	198.9	887.4	857.8	0.829
October	153.8	39.28	9.44	213.1	206.8	949.5	917.9	0.854
November	109.8	32.42	4.28	177.2	172.1	820.6	792.7	0.888
December	86.2	32.57	-0.60	145.1	140.2	687.3	662.5	0.906
Year	1939.7	591.52	9.26	2230.6	2155.1	9961.9	9622.7	0.856

Legends

GlobHor Global horizontal irradiation

DiffHor Horizontal diffuse irradiation

T_Amb Ambient Temperature
GlobInc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings

EArray E_Grid PR Effective energy at the output of the array

Energy injected into grid

Performance Ratio

Variant: report on shading analysis for solar project

PVsyst V7.4.8

VC1, Simulation date: 10/28/24 11:22 with V7.4.8

Variant: report on shading analysis for solar project

PVsyst V7.4.8 VC1, Simulation date: 10/28/24 11:22

