USN

R. V. COLLEGE OF ENGINEERING

Autonomous Institution Affiliated to VTU

III Semester B. E. Examinations, December – 2017

BRANCH: Computer Science & Engineering and Information Science & Engineering COURSE: FOURIER SERIES, LAPLACE TRANSFORMS AND LINEAR ALGEBRA

MODEL QUESTION PAPER - II

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A question should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6.

PART - A

1	1.1	$L\{5^t\} = \underline{\hspace{1cm}}.$	01
	1.2	If $L\left\{\frac{\sin t}{t}\right\}$ is $\tan^{-1}\left(\frac{1}{s}\right)$, then $L\left\{\frac{\sin 2t}{2t}\right\} = \underline{\qquad}$.	01
		$L^{-1}\left\{\frac{se^{-\pi s}}{s^2+9}\right\}$	01
	1.4	$L^{-1}{F(s)} = f(t)$, then $L^{-1}{F(s-a) \choose s} = $	01
	1.5	The function $sin(nx)$ is periodic with period	01
	1.6	The complex form of Fourier series $f(x)$ in the interval $(a, a+2l)$ is	01
	1.7	The subset E of R^2 defined by $E = \{(x, y) \in R^2 \mid 2x + 3y = 4\}$ is not a subspace of R^2 .	
		Justify the statement.	01
	1.8	State the Rank Nullity theorem for an m x n matrix A.	01
	1.9	Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the projection of $\begin{bmatrix} x \\ y \end{bmatrix}$ on to $X - \text{axis i. e. } T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix}$, the $\text{Ker}(T) = \underline{\qquad}$.	01
	1.10	In the singular value decomposition $A = U \sum V^T$, $C(A) = \text{span of } _$	01
	1.11	Express the following function in terms of unit step function.	
		$f(t)$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$	02

	Find $L^{-1}\left\{\log\left(1-\frac{1}{s^2}\right)\right\}$.	02
1.13	If $x^2 = \frac{\pi^2}{3} - 4\left(\frac{\cos x}{1^2} - \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} + \cdots\right)$ in $[-\pi, \pi], 0 \le x \le \pi$ then $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots = \underline{\qquad}.$	02
1.14	If A is a 64 x 17 matrix of rank 11, how many independent vectors satisfy $Ax = 0$? How many independent vectors satisfy $A^{T}y = 0$.	02
1.15	Verify directly from $c^2 + s^2 = 1$ that reflection matrices satisfy $H^2 = I$.	02

PART - B

		IAKI - D	
2	a	Evaluate (i) $L\left\{\int_{0}^{t} te^{-3t} \sin 2t \ dt\right\}$ (ii) $\int_{0}^{\infty} e^{-t} \left(\frac{1-\cos t}{t}\right) dt$.	08
	b	Express the following in terms of Heaviside unit step function and also sketch the graph of the function	08
		$f(t) = \begin{cases} \cos t & 0 < t \le \pi \\ 1 & \pi < t \le 2\pi \text{ and find its Laplace transform.} \\ \sin t & t > 2\pi \end{cases}$	
		$\begin{vmatrix} \sin t & t > 2\pi \end{vmatrix}$	
		(323	
3	a	Find the Inverse Laplace transform of the following	08
		$\log \left[\frac{s^2 + a^2}{(s-a)(s-b)^2} \right].$	
		$\int_{a}^{a} \left[(s-a)(s-b)^2 \right]^{a}$	
	b	A small oscillations of a certain system with two degrees of freedom are	08
		given by	
		$\frac{d^2x}{dt^2} + 3x - 2y = 0, \frac{d^2x}{dt^2} + \frac{d^2y}{dt^2} - 3x + 5y = 0, x = y = 0, \frac{dx}{dt} = 3, \frac{dy}{dt} = 2 \text{ at}$	
		t = 0. Find the solution.	
		OR	
4	a	Using convolution theorem, find $L^{-1}\left\{\frac{s}{(2s^2+1)(s^2-4)}\right\}$.	08
	b	Solve $y'' - 3y' + 2y = 4t + e^{3t}$, given that $y(0) = 1$, $y'(0) = 1$.	08
5	a	A sinusoidal voltage $E \sin \omega t$ is passed through a half-wave rectifier which clips the negative portion of the wave. Find the resulting periodic function	08
		$U(t) = \begin{cases} 0 & -T/2 < t < 0 \\ E \sin \omega t & 0 < t < T/2 \end{cases}, T = 2\pi/\omega, \text{ in a Fourier series.}$	
	b	Find the half- range cosine series for the function $f(x) = \sin\left(\frac{m\pi x}{l}\right)$, where m	08
		is a positive integer over the interval (0, 1).	
		OR	

6	a	Expand $f(x) = \sqrt{1 - \cos x}$, $0 < x < 2\pi$ in a Fourier series, Hence, evaluate	08
		$\frac{1}{1\times3} + \frac{1}{3\times5} + \frac{1}{5\times7} + \cdots$	
	b	Obtain the complex form of the Fourier series for $f(x) = e^x$ in $-\pi < x < \pi$.	08
7	a	Find the basis and dimension of the four fundamental subspaces of the matrix	08
	b	$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}.$ Apply the Gram – Schmidt orthogonalization processes to find an orthonormal basis for the subspace U of R ⁴ spanned by $v_1 = (1, 1, 1, 1), v_2 = (1, -3, -4, -2).$	08
8	a	If $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(x, y) = (2x + 3y, 4x - 5y)$. Find the matrix representation $[T]_B$ of T relative to the basis $B = \{u_1, u_2\}$, where $u_1 = (1, -2)$,	08
	b	$u_2 = (2, -5).$ Obtain the singular value decomposition of $A = \begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix}$.	08