Faculty of engineering
Alexandria University
Department of Electrical engineering
Commination and Electronic
4th year 2022/2023



## **VLSI**

### FINAL PROJECT

# 4-BIT RIPPLE CARRY ADDER

| Name                    | ID             |
|-------------------------|----------------|
| Asmaa Gamal Abdel-Halem | 15010473       |
| Mohamed Ezzat Faiq      | 18011553       |
| Khaled Ali Diab         | 18010598       |
| Hasan Mostafa Hasan     | 18010573       |
| Tasneem Samy Hasan      | (لائحة قديمة)6 |

#### A) 1- Bit Full Adder constructed as a 24- transistor mirror

• Schematic:



• Symbol:



4-bit ripple carry adder:



#### B) Sizing each transistor:



However, we keep in mind that the size of P-MOS must be double that of N-MOS. Therefore when testing, we applied a × 2 to every PMOS, such that we need only to set one variable up (Which we refer to as W).





#### C) Full adder operation and optimization:

For propagation delay <1.5 nsec we first choosing the W\_P=1200nm and W\_P=600nm resulting delay to be in 0.8ns but this high sizing. So to make the best trade off between sizing and delaying as set in assignment we choose W\_P=700nm and W\_P=3500nm resulting delay =1.2ns This has the advantage of having a better practical applicability, having minimal area and delay.

Also for the operation of full adder choosing that B0-B3 pulses set to be zeros and A0-A3 set to be ones. SO the result will be:

A = 0000, B = 1111, Cin = Pulse with amplitude = 1 This should result in:

S = 0000, Cout = Pulse with amplitude = 1 Cout should have the same period as Cin and only equating to 1 when Cin also happens to be equal to 1. As such, we know have a good method to quantify the resulting delay upon changing the widths.







#### **Calculating Delay:**





**Delay =1.213 ns**