• Schedule

- 4/04: Bounds
 - Read MU Chapter 3.3, 4.2
- 4/09: Selection & Other App., Quiz
 - You are allowed to bring one A4 sized reference note (Original, handwritten)
 - Read MU 3.4, 4.2, 4.3
 - HW: Chapter3 2, 3, 6, 9, 16, 22, 25
 - Chapter 4 1, 2, 3, 5, 6, 9, 12
- 4/11: BB Model
 - Read MU 5
- 4/13: Supp Class(7:00PM), BB Model
 - Read MU 5

• Schedule

- 4/09: Selection & Other App., Quiz
 - You are allowed to bring one A4 sized reference note (Original, handwritten)
 - Read MU 3.4, 4.2, 4.3
 - HW: Chapter3 2, 3, 6, 9, 16, 22, 25
 - Chapter 4 1, 2, 3, 5, 6, 9, 12
- 4/11: Selection, BB Model
 - Read MU 5
- 4/13: Supp Class(7:00PM), BB Model
 - Read MU 5

S_{eoul} N_{ational} U_{niversity} 2018-04-13

- Schedule
 - 4/11: Selection
 - Read MU 5
 - 4/13: BB Model
 - Read MU 5
 - HW: Chapter 4 2, 4, 5, 9, 11, 17, 20
 - 4/16: BB Model
 - Read MU 5

Seoul National University 2018-04-13

Load Balancing

- Load balancing is one of important topics in Computer Science
 - Examples
 - Allocate Jobs to CPUs
 - Assign search requests to (google) servers
 - Distribute requests to YouTube servers
 - CDNs and ,,,

- There are several clever load balancing algorithms such as shortest queue first
- Random allocation works surprisingly good

Secul National University 2018-04-13

Load Balancing

- Random allocation can be modeled as the Balls into Bins model
 - Ball: Video requests, m requests
 - Bin: YouTube server, n servers
 - For example, $m = 10^6$, $n = 10^3$

Refer to MU Exercise 4.17

- On average, m/n requests are allocated to each YouTube server
- Let X_i = # requests allocated to the i-th server
 - $X_i \sim B(m, 1/n)$
 - $E[X_i]=m/n$, $Var[X_i]=m(n-1)/n^2 \approx m/n$
 - Applying Chernoff bound (Corollary 4.6), we can prove that with high probability $X_i \leq \frac{m}{n} + 3\sqrt{(m/n) \cdot \ln m}$

About 250

Secul National University 2018-04-13

- Schedule
 - 4/13: BB Model
 - Read MU 5
 - HW: Chapter 4 2, 4, 5, 9, 11, 17, 20
 - 4/16: BB Model Examples
 - Read MU 5
 - 4/18: BB Models Examples
 - Read MU 5

Seoul National University 2018-04-13

How to manage password database?

- Several reports on personal information databases
 - 2013 Adobe
 - SKT, KT, LG U+
 - Auction, Interpark, ...
 - NH
- People tend to use same IDs and passwords in different sites
- Leak in one system requires changes in many other systems
- Both inside and outside attackers
 - → Should not trust anyone
- Naïve approach

Ann	Ann Tylor	Tylor072 I
Beeth	Beth Smith	seattle#97012
Cheese	Mike Chenny	password

Hashed Password

Secul National University 2018-04-13

Regression Toward the Mean

- Average heights of Female & Male are 160 & 170, respectively
- Consider a couple whose heights are 170 (wife) and 180 (husband)
- The couple has a girl (or a boy). What do you expect her height?
 - More than 170?
 - More than 160?
 - Less than 160?

Seoul National University 2018-04-13