The single-cell pathology landscape of breast cancer

Hartland W. Jackson et al. 2020/01, Nature

Taehoon Ha

Complex single-cell phenotypes and spatial context are not at present reflected in the histological stratification.

- Histological and phenotypical differences between tumors guide cancer diagnosis, prognosis and the selection of treatment.
- Breast cancers are graded based on tumor structure and cellular morphology.
- Breast cancers are subcategorized when more than 1% of tumour cells contain hormone receptors or more than 10% express high levels of HER2 protein or exhibit amplification of the HER2 gene
 - This leaves a large portion of cells uncharacterized.

To comprehensively quantify the cellular heterogeneity and spatial organization of breast cancer tissue

- Designed an imaging mass cytometry (IMC) panel specific to breast histology
- Used this to image samples from 281 tumours that represent all clinical subtypes and grades of pathology

Quantified 35 biomarkers, resulting in 720 high-dimensional pathology images of tumour tissue from 352 patients with breast cancer.

- Using a random forest pixel classifier (Ilastik) and CellProfiler, images were segmented into single cells and tumour and stromal regions.
- Identified 855,668 cells in 381 images
 - 289 tumour
 - 87 healthy breast
 - 5 liver controls
- Quantified the expression of both marker genes and the spatial features of each cell (Fig. 1a)

35 biomarkers

Overview of patient clinical metadata for cohort from Basel Univ. Hospital

Supplementary Table 1.

Metadata	Values	Patient Counts/ Means	-
Grade	1	19	
	2	26	[Age] US : 43.3
	3	27	Taiwan2 :53.4
Tumor Size [mm]	8 - 80	26.93	s
Age [years]	42 - 60	53.77	[Menopausal]
Gender	Female	72	- US Pre: 76
	Male	0	Post: 53
Menpausal	Pre	0	Taiwan2
	Post	72	Pre: 47 Post: 69

Supplementary Table 1. (cont'd)

Metadata	Values	Patient Counts/ Means	Taiwan2
ER Status	Positive	51	Pos: 96 Neg: 18
	Negative	21	Missing:
PR Status	Positive	43	[PR]
	Negative	29	US Dage 25
HER2 Status	Positive	14	Pos: 35 Neg: 38
	Negative	58	Missing:
Clinical Subtype	HR+HER2+	12	Taiwan2
	HR+HER2-	39	Pos: 79 Neg: 31
	HR-HER2+	2	Missing:
	TripleNeg	9	

[ER] US

Pos: 48 Neg: 29 Missing: 53

: 57

: 6

Supplementary Table 1. (cont'd)

Metadata	Values	Patient Counts/ Means
ER Status	Positive	51
	Negative	21
PR Status	Positive	43
	Negative	29
HER2 Status	Positive	14
	Negative	58
Clinical Subtype	HR+HER2+	12
	HR+HER2-	39
	HR-HER2+	2
	TripleNeg	9

[HER2] US

Pos: 3 Neg: 68 Missing: 59

Taiwan2

Pos: 19 Neg: 90 Missing: 7

[Subtype] US

HER2+: 3 HR+HER2-: 42 TripleNeg: 26 Noninvasive or benign: 59

Taiwan2

HER2+: 19 HR+HER2-: 79 TripleNeg: 11

Missing: 7

Multicellular breast cancer architecture

Based on the previous single-cell phenotypes, they defined patterns of multicellular architecture in breast tumour tissue

 Evaluated regional correlations between cellular metaclusters to determine whether cells co-occurred across all images

Multicellular breast cancer architecture

- Used neighbourhood analysis based on permutation tests
 - To quantify cell colocalization
 - To identify statistically significant interaction or avoidance between pairs of cell phenotypes

- (2) endothelium
- (3) immune cells
- (4) surrounding stroma
- (5) endothelium and T cells
- (6) proliferating epithelium surrounding endothelial cells.

Multicellular breast cancer architecture

- clustered by PhenoGraph on the basis of the min to max normalized absolute number of cells from each cellular metacluster
 - (c, d) Individually coloured epithelial communities (n = 8,495)
 - (e, f) microenvironment communities (n= 12,854)
- Barplots indicate the average number of cells from each cellular metacluster
- **(f)** Black represents tumour cell phenotypes.

Single-cell pathology and risk

Investigated how the organization of single cells into communities contributes to the tissue architecture of breast cancer and its subtypes

- **(Fig3a, b)** Observed variable structures and cellular densities, and relationships between cellular phenotype and tissue organization
- (Fig. 3b)
 - Heterogeneous tumours consist of multiple phenotypically pure communities
 - Homogeneous tumours have only a few clustered bands
- (Fig. 4d) Patients with these heterogeneous tumours of subgroup SCP 8 had very poor outcomes.

Quantification of intratumour heterogeneity

Investigated the reproducibility and spatial variability of SCP classifications in two central and two peripheral tumour regions from 72 patients in an independent cohort.

- Used the same approach
 - 1) to independently define single-cell phenotypes
 - 2) match them to cellular metaclusters
 - 3) classify each imaged region into SCP subgroups and stromal architectures
- All cellular metaclusters and SCP subgroups that were identified in the first cohort were present in the second cohort.

Discussion

- Single-cell pathology can better segregate patients with distinct clinical outcomes than can the current strategy of clinical subtyping.
- When it comes to the patient outcome, the information yielded by the multicellular structures was superior to that yielded by single-cell data alone.
- Observed that phenotypic and spatial heterogeneity varied between clinically established subtypes and identified breast cancer phenotypes that co-occur
- Multicellular spatial information provides a basis for future study of how spatial and phenotypic tissue features influence disease outcome.