Naïve' Bayes

BY MG ANALYTICS

Probability

$$P(A) = A / F$$

$$P(O) = B / F$$

$$P(B) = B / F$$

$$P(A) = \frac{|A|}{|U|}$$

$$P(B) = \frac{|B|}{|U|}$$

$$P(AB) = rac{|AB|}{|U|}$$

$$P(A|B) = rac{|AB|}{|B|}$$

$$P(A|B)=rac{rac{|AB|}{|U|}}{rac{|B|}{|U|}}$$

$$P(A|B) = rac{P(AB)}{P(B)}$$

$$P(A|B) = rac{P(AB)}{P(B)}$$

$$P(B|A) = rac{P(AB)}{P(A)}$$

$$P(A|B)P(B) = P(B|A)P(A)$$

$$P(A|B) = rac{P(B|A)P(A)}{P(B)}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) \cdot P(B|A)}{P(B)}$$

where:

P(A) = The probability of A occurring

P(B) = The probability of B occurring

P(A|B) =The probability of A given B

P(B|A) = The probability of B given A

 $P(A \cap B)$ = The probability of both A and B occurring

$$P(A|B_1 \cap B_2 \cap B_3 \cap ...) = \frac{P(B_1 \cap B_2 \cap B_3 \cap ...|A) * P(A)}{P(B_1 \cap B_2 \cap B_3 \cap ...)}$$

$$P(A|B_1 \cap B_2 \cap B_3 \cap ..) = \frac{P(B_1|A) * P(B_2|A) * P(B_3|A) * P(A)}{P(B_1 \cap B_2 \cap B_3 \cap ..)}$$

Naïve Bayes

- The Naive Bayesian classifier is based on Bayes' theorem with the independence assumptions between predictors.
- A Naive Bayesian model is easy to build, with no complicated iterative parameter estimation which makes it particularly useful for very large datasets.
- Despite its simplicity, the Naive Bayesian classifier often does surprisingly well and is widely used because it often outperforms more sophisticated classification methods.

Algorithm

- Bayes theorem provides a way of calculating the posterior probability-> $P(c \mid x)$, from prior -> P(c), P(x), and $P(x \mid c)$.
- Prior probability is the probability of an event before new data is collected.
- Posterior probability is the revised probability of an event occurring after taking into consideration new information.
- Posterior probability is the probability of event A occurring given that event B has occurred.
- Naive Bayes classifier assume that the effect of the value of a predictor (x) on a given class (c) is independent of the (x) values of other predictors.
- This assumption is called class conditional independence.
- It is called Naïve because of class conditional independence.

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

NB problem:

Frequency Table		Play Golf		
riequei	icy lable	Yes No		I
Outlook	Sunny	3	2	Ī
	Overcast	4	0	I
	Rainy	2	3	

Likelih	Likelihood Table		y G	Golf	
Likeiiii	ood labic	Yes		No	
	Sunny	3/9		2/5	5/14 🌸
Outlook	Overcast	4/9		0/5	4/14
	Rainy	2/9		3/5	5/14
		9/14		5/14	
	·				

$$P(x) = P(Sumy)$$

= 5/14 = 0.36

$$P(c) = P(Yes) = 9/14 = 0.64$$

Posterior Probability:

$$P(c \mid x) = P(Yes \mid Sunny) = 0.33 \times 0.64 \div 0.36 = 0.60$$

Posterior Probability:

$$P(c \mid x) = P(No \mid Sunny) = 0.40 \times 0.36 \div 0.36 = 0.40$$

Frequency Table

Likelihood Table

		Play Golf	
		Yes	No
	Sunny	3	2
Outlook	Overcast	4	0
	Rainy	2	3

		Play	Golf
		Yes	No
	Sunny	3/9	2/5
Outlook	Overcast	4/9	0/5
	Rainy	2/9	3/5

		Play Golf	
		Yes	No
	High	3	4
Humidity	Normal	6	1

		Play	Golf
		Yes	No
	High	3/9	4/5
Humidity	Normal	6/9	1/5

		Play	Golf
		Yes	No
	Hot	2	2
Temp.	Mild	4	2
	Cool	3	1

		Play Golf	
		Yes	No
	Hot	2/9	2/5
Temp.	Mild	4/9	2/5
	Cool	3/9	1/5

		Play Golf	
		Yes	No
Man de .	False	6	2
Windy	True	3	3

		Play Golf	
		Yes	No
	False	6/9	2/5
Windy	True	3/9	3/5

Outlook	Temp	Humidity	Windy	Play
Rainy	Cool	High	True	?

$$P(Yes \mid X) = P(Rainy \mid Yes) \times P(Cool \mid Yes) \times P(High \mid Yes) \times P(True \mid Yes) \times P(Yes)$$

$$P(Yes \mid X) = 2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.00529$$

$$0.2 = \frac{0.00529}{0.02057 + 0.00529}$$

$$P(No \mid X) = P(Rainy \mid No) \times P(Cool \mid No) \times P(High \mid No) \times P(True \mid No) \times P(No)$$

$$P(No \mid X) = 3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.02057$$

$$0.02057$$