Омский государственный университет им. Ф.М. Достоевского Институт математики и информационных технологий Кафедра алгебры

Аналог теоремы Каца для разрешимых аффинных групповых суперсхем

Дипломная работа

Специальность «Прикладная математика и информатика»

(nodnucь руководителя)

Введение

Здесь захватывающий текст гениального введения.

Предполагается знакомство читателя с базовыми понятиями теории категорий, алгебр и супералгебр.

Содержание

1.	Предварительные сведения	3
	1.1. <i>К</i> -функторы	3
	1.2. Аффинные суперсхемы	3
	1.3. Групповые K -функторы и аффинные групповые суперсхемы	4
2.	Основные понятия	5
3.	Супералгебра распределений и Лиевские супералгебры	6
	3.1. Супералгебры распределений	6
	3.2. Действие сопряжения и функтор $\mathbf{Lie}(G)$	6
4.	Связная супергруппа	8
5.	Разрешимые супергруппы	9
6.	Аналог теоремы Капа	10

1. Предварительные сведения

В этом разделе вводятся основные понятия теории— аффинные суперсхемы, замкнутые подсуперсхемы

1.1. K-функторы

Определения, данные в [1] для обычного случая, можно почти дословно перенести на суперслучай. Некоторые из них можно найти в [4].

Введем некоторые предварительные обозначения. K – произвольное поле, \mathbf{SAlg}_K — категория супералгебр над полем K, \mathbf{Sets} — категория множеств, \mathbf{Gr} — категория групп.

Определение 1. K-функтором назовем функтор из категории \mathbf{SAlg}_K в \mathbf{Sets} .

Для K-функторов X, X' обозначим через $\mathrm{Mor}(X, X')$ множество морфизмов из в X'.

Определение 2. Пусть X - K-функтор. K-функтор Y называется подфунктором функтора X, если $\forall A, A' \in \mathbf{SAlg}_K \ \forall \varphi \in \mathrm{Hom}_{\mathbf{SAlg}_K}(A, A')$ выполнены условия: $Y(A) \subset X(A)$ и $Y(\varphi) = X(\varphi)|_{Y(A)}$.

Для любого семейства подфункторов $\{Y_i\}_{i\in I}\subset X$ определим функтор-пересечение $\bigcap_{i\in I}Y_i$ следующим образом:

$$\left(\bigcap_{i\in I} Y_i\right)(A) = \bigcap_{i\in I} Y_i(A).$$

Для $f \in \mathrm{Mor}(X,X') \; \forall \; Y' \subseteq X'$ определим функтор-прообраз

$$(f^{-1}(Y'))(A) = f(A)^{-1}(Y'(A))$$
 для $A \in \mathbf{SAlg}_K$.

Очевидно, что $\bigcap_{i \in I} Y_i$ и $f^{-1}(Y')$.

Определение 3. Прямым произведением K-функторов X_1 и X_2 называется функтор $(X_1 \times X_2)(A) = X_1(A) \times X_2(A)$ для $A \in \mathbf{SAlg}_K$.

1.2. Аффинные суперсхемы

Определение 4. K-функтор SSpR, определенный как

$$(SSp\,R)(A) = \operatorname{Hom}_{\mathbf{SAlg}_{K}}(R,A)$$
 для $A \in \mathbf{SAlg}_{K}$,

называется аффинной суперсхемой. Супералгебра $R \in \mathbf{SAlg}_K$ называется координатной супералгеброй суперсхемы SSpR. Если X = SSpR, то R обозначается K[X].

Лемма 1 (лемма Йонеды). $\forall R \in \mathbf{SAlg}_K \ \forall K$ -функтора X отображение $f \mapsto f(R)(id_R)$ является биекцией

$$Mor(SSp R, X) \simeq X(R).$$

Доказательство.

Определение 5. Аффинная суперсхема $\mathbf{A}^{m|n} = SSp K[t_1, \dots, t_m|z_1, \dots, z_n]$ называется (m|n)-аффинным суперпространством.

Очевидно, что $\mathbf{A}^{m|n}(B) = B_0^m \oplus B_1^n$ для $B \in \mathbf{SAlg}_K$. В частности, $\mathbf{A}^{1|1}(B) = B$ для любой супералгебры B.

Определение 6. Пусть I — суперидеал $B \in \mathbf{SAlg}_K$. Подфунктор $V(I) = \{ \varphi \in (SSpR)(A) \mid \varphi(I) = 0 \}$ функтора SSpR называется замкнутым подфунктором, соответствующим суперидеалу I.

Очевидно, что $V(I) \simeq SSp(K[X]/I)$.

Определение 7. Аффинная суперсхема называется алгебраической, если $K[X] \simeq K[t_1, \dots, t_m] z$ для некоторых $m, n \in \mathbb{N}$ и конечнопорожденного суперидеала I.

Определение 8. Аффинная суперсхема X называется редуцированной, если K[X] не содержит нильпотентных элементов, отличных от 0.

1.3. Групповые K-функторы и аффинные групповые суперсхемы

Определение 9. Групповым K-функтором будем называть функтор из \mathbf{SAlg}_K в \mathbf{Gr} .

Если взять композицию группового функтора с забывающим функтором из \mathbf{Gr} в \mathbf{Sets} , то групповой K-функтор можно рассматривать как K-функтор. Поэтому все результаты для K-функторов можно перенести на групповые K-функторы.

Пусть G, H — групповые K-функторы. Обозначим через Mor(G, H) множество морфизмов из G в H, если рассматривать G и H как K-функторы; через Hom(G, H) множество морфизмов групповых функторов.

2. Основные понятия

Аффинные суперсхемы, аффинные групповые суперсхемы, супералгебры Хопфа, дуальность категорий аффинных групповых суперсхем и супералгебр Хопфа. Все понятия дословно переносятся с книги [1], также можно посмотреть [4].

Пусть K – произвольное поле.

Определение 10. K-функтором будем называть функтор из категории \mathbf{SAlg}_K в Sets.

Определение 11. Пусть X – K-функтор. K-функтор Y называется подфунктором функтора X, если $\forall A, A' \in \mathbf{SAlg}_K \forall \phi \in \mathrm{Hom}_{\mathbf{SAlg}_K}(A, A')$ выполнены условия: $Y(A) \subset X(A)$ и $Y(\phi) = X(\phi)|_{Y(A)}$.

Определение 12. Для любого семейства подфункторов $\{Y_i\}_{i\in I}\subset X$ определим пересечение $\bigcap_{i\in I}Y_i$ следующим образом: $(\bigcap_{i\in I}Y_i)(A)=\bigcap_{i\in I}Y_i(A)$.

3. Супералгебра распределений и Лиевские супералгебры

3.1. Супералгебры распределений

Пусть X — аффинная суперсхема. Повторим определения, приведенные в [4] и [1]. Элемент из $\mathrm{Dist}_n(X,\mathcal{M}) = (K[X]/\mathcal{M}^{n+1})^*$ будем называть распределением на X с носителем в \mathcal{M} порядка $\leqslant n$, где \mathcal{M} — максимальный идеал супералгебры K[X]. Имеем

$$\bigcup_{n\geqslant 0} \mathrm{Dist}_n(X,\mathcal{M}) = \mathrm{Dist}(X,\mathcal{M}) \subseteq K[X]^*.$$

Если $g:X\to Y$ — морфизм аффинных суперсхем, то он порождает морфизм суперпространств $dg_{\mathcal{M}}:\mathrm{Dist}(X,\mathcal{M})\to\mathrm{Dist}(Y,(g^*)^{-1}(\mathcal{M}))$ такой, что

$$dg_{\mathcal{M}}(\mathrm{Dist}_n(X,\mathcal{M})) \subseteq \mathrm{Dist}_n(Y,(g^*)^{-1}(\mathcal{M})) \qquad \forall n \geqslant 0.$$

Если X = V(I) — замкнутая подсуперсхема в Y, то $\mathrm{Dist}(X,\mathcal{M})$ отождествляется с $\{\varphi \in \mathrm{Dist}(Y,\mathcal{M}) \mid \varphi(I) = 0\}$, где $I \subseteq \mathcal{M}$.

Если X — алгебраическая аффинная групповая суперсхема и $\mathcal{M} = \ker \varepsilon_X$, то $\mathrm{Dist}(X,\mathcal{M})$ обозначается как $\mathrm{Dist}(X)$. В этом случае $\mathrm{Dist}(X)$ имеет структуру супералгебры Хопфа с умножением $\varphi\psi(f) = \sum (-1)^{|\varphi||\psi|} \varphi(f_1) \psi(f_2)$ для $\varphi, \psi \in \mathrm{Dist}(X), f \in K[X]$, и коумножением $\Delta_X(f) = \sum f_1 \otimes f_2$, с единицей ε_X , коединицей $\varepsilon_{\mathrm{Dist}(X)}: \varphi \mapsto \varphi(1)$ и антиподом $s_{\mathrm{Dist}(X)}(\varphi)(f) = \varphi(s_X(f))$ для $\varphi \in \mathrm{Dist}(X)$ и $f \in K[X]$.

 $\mathrm{Dist}(X)$ — фильтрованная алгебра, т.е. $\forall m,n\geqslant 0\mathrm{Dist}_m(X)\mathrm{Dist}_n(X)\subseteq \mathrm{Dist}_{m+n}(X)$. Рассмотрим суперпространство $\mathrm{Lie}(X)=\{\varphi\in\mathrm{Dist}_1(X)\mid \varphi(1)=0\}$. Его можно наделить структурой супералгебры Ли, положив $[\varphi,\psi]=\varphi\psi-(-1)^{|\varphi||\psi|}\varphi\psi$.

Замечание 1. Lie(X) не является алгеброй Ли в обычном смысле — аксиомы выполняются в учетом четности элементов, а именно $\forall \varphi, \psi, \rho \in \text{Lie}(X)$

$$[\varphi, \psi] = (-1)^{|\varphi||\psi|} [\psi, \varphi],$$

$$[[\varphi,\psi],\rho] = (-1)^{|\psi||\rho|}[[\varphi,\rho],\psi] + [\varphi,[\psi,\rho]].$$

Как супералгебра Хопфа $\mathrm{Dist}(X)$ кокоммутативна, т.е. $\sum \varphi_1 \otimes \varphi_2 = \sum (-1)^{|\varphi_1||\varphi_2|} \varphi_2 \otimes \varphi_1$.

3.2. Действие сопряжения и функтор $\mathbf{Lie}(G)$

Определение 13. Пусть $A \in \mathbf{SAlg}_K$. Супералгеброй дуальных чисел называется $A[\varepsilon_0, \varepsilon_1] = \{a + \varepsilon_0 b + \varepsilon_1 c \mid a, b, c \in A\}, \ |\varepsilon_i| = i, \ \varepsilon_i \varepsilon_j = 0, \ i, j \in \{0, 1\}.$

Имеем проективный $p_A: A[\varepsilon_0, \varepsilon_1] \to A$ и инъективный $i_A: A \to A[\varepsilon_0, \varepsilon_1]$ морфизмы супералгебр, определенные как $a + \varepsilon_0 b + \varepsilon_1 c \mapsto a$ и $a \mapsto a$ соответственно.

Определение 14. Функтором супералгебры Πu будем называть функтор $\mathbf{Lie}(G)$, определенный как

$$\mathbf{Lie}(G) = \left(G(A[\varepsilon_0, \varepsilon_1]) \stackrel{G(p_A)}{\longrightarrow} G(A) \right), \qquad A \in \mathbf{SAlg}_K.$$

Пусть V — суперпространство. Определим функтор V_a из категории \mathbf{SAlg}_K в категорию векторных суперпространств: $V_a(A) = V \otimes A$.

Лемма 2. Существует изоморфизм абелевых групповых функторов $\mathrm{Lie}(G)_a \simeq \mathrm{Lie}(G)$, который задается отображением

$$(v \otimes a)(f) = \varepsilon_G(f) + (-1)^{|a||f|} \varepsilon_{v \otimes a} v(f) a, \qquad v \in \text{Lie}(G) = (\mathcal{M}/\mathcal{M}^2)^*, a \in A, f \in K[G].$$

Для более подробной информации см. [3].

Если мы отождествляем $\mathrm{Lie}(G)\otimes A$ с $\mathrm{Hom}_K(\mathcal{M}/\mathcal{M}^2,A)$ при помощи отображения $(v\otimes a)(f)=(-1)^{|a||f|}v(f)a$, то вышеуказанный изоморфизм может быть представлен отображением

$$u \mapsto \varepsilon_G + \varepsilon_0 u_0 + \varepsilon_1 u_1, \qquad u \in \operatorname{Hom}_K(\mathcal{M}/\mathcal{M}^2, A).$$

Определение 15. Рассмотрим действие аффинной групповой суперсхемы G на функтор $\mathbf{Lie}(G)$:

$$(g,x) \mapsto G(i_a)(g) x G(i_A)(g)^{-1}, \qquad g \in G(A), \ x \in \mathbf{Lie}(G)(A), \ A \in \mathbf{SAlg}_K.$$

Это действие называется сопряжением и обозначается Ad.

Пемма 3. Сопряжение линейно. В частности, оно порождает морфизм аффинных групповых схем $G \to \mathrm{GL}(\mathrm{Lie}(G))$.

4. Связная супергруппа

Связная компонента, связная супергруппа, утверждение про центр группы (если оно нужно для доказательства). [4]

Везде в этом пункте G – аффинная групповая суперсхема над полем K.

Определение 16. Подфунктор $\mathbf{Z}(G)$ групового K-функтора G называется центральным, если H – подфунктор в G и $\forall A \in \mathbf{SAlg}_K$ H(A) – центральная подгруппа в G(A).

Утверждение 1. Пусть G – аффинная групповая суперсхема. $\mathbf{Z}(G)$ – замкнутая аффинная групповая подсуперсхема в G.

Утверждение 2. Если G связна, $\operatorname{char} K = 0$, то $\operatorname{Lie}(\mathbf{Z}(G)) = \mathbf{Z}(\operatorname{Lie}(G))$.

 $extit{Доказательство}.$

Теорема 1. Пусть char K = 0, G – связная аффинная групповая суперсхема, I – максимальный абелев суперидеал в Lie(G). Существует $H \triangleleft G$: Lie(H) = I.

Доказательство. Обозначим L = Lie(G). Доказательство проведем индукцией по $\dim L$. Предположим, что если H – связная аффинная групповая суперсхема и $\dim \text{Lie}(H) < \dim L$, то утверждение выполнено для H.

Рассмотрим действие $\mathbf{Ad}: G \to \mathrm{GL}(I)$, $\ker \mathbf{Ad} = R$. Пусть $J = \mathrm{Lie}(R) = \{x \in L | [x,I] = 0\}$. Очевидно, $I \subseteq J$.

Если $\dim J \leqslant \dim L$, то по предположению индукции утверждение выполнено для R, т.е. $\exists \ H \lhd R : \mathrm{Lie}(H) = I$. Поскольку $H \lhd R$ и $R \lhd G$ как ядро \mathbf{Ad} , то $H \lhd G$, следовательно, утверждение выполнено для G.

Рассмотрим случай dim $J=\dim L$. Т.к. G алгебраическая, то dim $L<\infty\Rightarrow J=L$. Отсюда следует, что [L,I]=0, а в силу определения центра $I\subseteq \mathbf{Z}(L)$. По условию I — максимальный суперидеал $\Rightarrow I$ не может быть собственным подмножеством $\Rightarrow I=\mathbf{Z}(L)$. По лемме 2 получаем, что $I=\mathrm{Lie}(\mathbf{Z}(G))$, а $\mathbf{Z}(G)\lhd G$.

5. Разрешимые супергруппы

Для того, чтобы сформулировать определение разрешимой супергруппы, сначала необходимо определить коммутант супергруппы.

Пусть S - алгебраическая матричная супергруппа. Рассмотрим отображение $S \times S \to S$, переводящее (x,y) в $xyx^{-1}y^{-1}$. Ядро I_1 соотвествующего отображения $K[S] \to K[S] \otimes K[S]$ состоит из функций, зануляющихся на всех коммутаторах из S; таким образом, замкнутое множество, им определяемое, является замыканием коммутаторов. Аналогично имеем отображение $S^{2n} \to S$, переводящее $(x_1, y_1, \ldots, x_n, y_n)$ в $x_1y_1x_1^{-1}y_1^{-1}\cdots x_ny_nx_n^{-1}y_n^{-1}$. Соответствующее отображение $K[S] \to \otimes^{2n} K[S]$ имеет ядро I_n , определяющее замыкание произведения n коммутаторов. Очевидно, что $I_1 \supseteq I_2 \supseteq I_3 \supseteq \ldots$

Коммутаторная подгруппа в S - объединение произведений из n коммутаторов по всем n, поэтому идеалом функций, зануляющихся на S является $I = \bigcap I_n$. Замкнутое множество, определяемое идеалом I, является замыканием коммутаторной подгруппы. Это замкнутая нормальная подгруппа в S, которую будем называть коммутантом $\mathscr{D}S$. Итерируя эту процедуру, получаем цепочку замкнутых подгрупп \mathscr{D}^nS . Если S разрешима как абстрактрая группа, то последовательность \mathscr{D}^nS достигает $\{e\}$.

Все эти рассуждения могут быть проведены и в общем случае. Пусть G - аффинная групповая суперсхема над полем K. Имеем отображения $G^{2n} \to G$, которые соответствут $K[G] \to \otimes^{2n} K[G]$ с ядрами I_n , удовлетворяющими условию $I_1 \supseteq I_2 \supseteq \ldots$ Если $f \in I_{2n}$, то $\Delta(f)$ обращается в нуль на $K[G]/I_n \otimes K[G]/I_n$ в силу того, что при перемножении двух произведений по n коммутаторов образуется произведение 2n коммутаторов. Поэтому $I = \bigcap I_n$ определяет замкнутую подгруппу $\mathscr{D}S$.

Будем называть супергруппу G разрешимой, если \mathscr{D}^nG тривиальна для некоторого n.

Замечание 2. Все коммутаторы G(R) лежат в $\mathscr{D}G(R)$, $\mathscr{D}G$ - нормальная подгруппа в G.

Теорема 2. Пусть G – алгебраическая супергруппа. Если G связна, то и $\mathcal{D}G$ связна.

 $oxed{\it Доказательство}.$

Утверждение 3. $I = \bigcap I_n$ - суперидеал Хопфа

Утверждение 4. $\mathcal{D}G$ – нормальная подгруппа в G.

Утверждение 5. $I_{n+1} \subseteq I_n$

Утверждение 6. I – наименьшая замкнутая подгруппа G, содержащая произведение любых коммутаторов

Утверждение 7. G абелева $\Leftrightarrow Lie(G)$ абелева.

Доказательство. Достаточно доказать, что $\mathrm{Dist}(G)$ абелева $\Leftrightarrow K[G]^*$ кокоммутативна.

6. Аналог теоремы Каца

Лемма 4. Обозначим $Lie(G) = L = L_0 \oplus L_1$. $Lie(G_{ev}) = L_0$.

 \square оказательство.

Лемма 5. $A\phi\phi$ инная групповая суперсхема G абелева \Leftrightarrow $\mathrm{Lie}(G)$ абелева.

 $oxed{arDeta}$ оказательство.

Теорема 3 (Кац). Супералгебра Ли $L = L_0 \oplus L_1$ разрешима \Leftrightarrow разрешима алгебра Ли L_0 . Доказательство можно найти в статье [2].

Теорема 4. Пусть char K = 0, G - связная аффинная групповая суперсхема. G разрешима $\Leftrightarrow \text{Lie}(G)$ разрешима $\Leftrightarrow G_{ev}$ разрешима.

Доказательство. 1) тут ссылка на теорему Каца и на предыдущие леммы. из них следует вторая эквивалентность

2) Предположим, что G разрешима, т.е. для некоторого $n \in \mathbb{N}$

$$G \triangleright G' \triangleright G'' \triangleright \ldots \triangleright G^{(n)} = 1$$

Рассмотрим $G \rhd G' \rhd G''$, следовательно, имеем точную последовательность

$$1 \to G' \to G \to G/G' \to 1$$
,

которая эквивалентна точной последовательности для супералгебр Ли:

$$0 \to \operatorname{Lie}(G') \to \operatorname{Lie}(G) \to \operatorname{Lie}(G/G') \to 0$$

. Все факторы субнормальной цепочки абелевы $\Leftrightarrow G/G'$ абелев, откуда по лемме 5 получаем, что $\mathrm{Lie}(G/G')$ абелева.

Список литературы

- [1] J.C. Jantzen. Representations of Algebraic Groups. Academic Press, Inc., Orlando, Florida, 1987.
- [2] V.G. Kac. Lie superalgebras. Advanced in Mathematics, 26:8–96, 1977.
- [3] W.C. Waterhouse. Introduction to Affine Group Schemes. Springer Verlag, 1979.
- [4] A.N. Zubkov. Affine quotients of supergroups. *Transformation Groups*, 14(3):713–745, 2009.