COL719 Lab Assignment 1

Timing diagrams and computation details

Normal timings

Here N - E - S - W sequence is assumed. Reverse of this is equally valid

Timings with pedestrian interrupt

A pedestrian makes a request while it is green/orange for SOUTH. Green/orange interval is not reduced.

Timings with emergency vehicle interrupt - 1

An emergency vehicle makes a request while it is green for SOUTH. Remaining time for green (let us denote it by T_x) is cut short.

Timings with emergency vehicle interrupt - 2

An emergency vehicle makes a request while it is orange for SOUTH. Orange interval is not reduced.

Timings for sampling number of vehicles waiting

Timings for computations

Computations to be performed

North sensor unit:
$$N_N <= (N_{N,1} + N_{N,2} + \ldots + N_{N,k}) / k$$

East sensor unit: $N_E <= (N_{E,1} + N_{E,2} + \ldots + N_{E,k}) / k$
South sensor unit: $N_S <= (N_{S,1} + N_{S,2} + \ldots + N_{S,k}) / k$
West sensor unit: $N_W <= (N_{W,1} + N_{W,2} + \ldots + N_{W,k}) / k$
where $N_{i,p}$ denotes p^{th} sample read by sensor unit on road i .

Adaptation unit:

$$N_{avg} \le (N_N + N_E + N_S + N_W) / 4$$
 $T_{G,N} \le T_{G,N} + \beta * (N_N - N_{avg})$
 $T_{G,E} \le T_{G,E} + \beta * (N_E - N_{avg})$
 $T_{G,S} \le T_{G,S} + \beta * (N_S - N_{avg})$
 $T_{G,W} \le T_{G,W} + \beta * (N_W - N_{avg})$