

DEPARTMENT OF COMPUTER SCIENCE

Faculty of Mathematics and Computer Sciences South Asian University (A University established by SAARC Nations)

Akbar Bhawan, Chanakyapuri, New Delhi - 110021, India

Semester-End Examination, 3rd July 2020 M. Sc. (CS) II Semester Data Mining

The scanned copy of the answer sheet must be sent to me latest by 3pm

Time: 3 Hours Max. Marks: 40

1. What do you mean by *support* and *confidence* of an Association Rule? Explain with the help of suitable examples. Consider the *min-support* value as 2 and following set of transactions, and generate top-five association rules with respect to confidence value. Show all the steps.

T1: ACDEF, T2: ABEF, T3: ABCD, T4: BCDEF, T5: ABCDEF

2. Considering the following benchmark dataset and system predictions, generate confusion [10] matrix and determine the values of Precision, Error-rate, Specificity, and Sensitivity.

Benchmark:

Instance ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Class label	C1	C2	C1	C2	C1	C1	C2	C1	C1	C2	C1	C1	C2	C2	C1

System prediction:

Instance ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Class label	C1	C1	C1	C2	C2	C1	C1	C2	C2	C1	C1	C2	C1	C2	C2

3. Consider the following three-dimensional data points and assume that k = 2, and initial [10] centroid of the clusters as C1 = $\{x1\}$ and C2 = $\{x6\}$.

	A1	A2	A2
X 1	0	1	1
X 2	1	1	0
X 3	1	0	1
X 4	0	1	1
X ₅	0	0	0
X 6	0	1	0

Answer the following questions:

- (i) Generate 2-dimesnional distance (dissimilarity) matrix.
- (ii) Apply the K-means algorithm for two iterations, assuming the Manhattan distance or the L1-norm
- (iii) Find the radius and dimeter of the final clusters obtained in step (ii)
- (iv) Find the complete-link, single-link, and mean distance between the final clusters obtained in step (ii)

4. Considering the following dataset in which "play" is the class attribute. For the feature set **[10]** <Rainy, Hot, High, True>, what will be class label using the Naïve Bayes classifier?

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No