Student's Name:	50	Section

Show all work to receive credit

1. A rocket sled having an initial speed of 150 mi/h is slowed by a channed of water. During the braking process, the acceleration a is $a(v) = -\mu v^2$, where v is the velocity and μ is a constant. Use the chain rule dv/dt = v(dv/dx) to solve for v in terms of x. If it requires a distance of half a mile to slow the sled to 15mi/h, determine μ .

$$\frac{dv}{dt} = -\mu v^2$$
, with $\frac{dv}{dt} = v \frac{dv}{dx} \Rightarrow v \frac{dv}{dx} = -\mu v^2$
 $\frac{dv}{dt} = -\mu dx$

Substituting: $\ln |v| = -\mu x + C$ or $v = Ce^{\mu x}$

As $v(0) = v_0 = 150$, $v = 150e^{-\mu x}$

Now, $v = 150e^{-\mu x}$

2. For the initial value problem

$$\frac{dy}{dt} = \frac{1+t^2}{3y-y^2}, \ y(1) = 2,$$

provide a rectangle R where the hypotheses of the Theorem of existence and uniqueness are satisfied.

Let
$$f(t,y) = \frac{1+i^2}{3y-y^2}$$
. Then $\frac{2f}{3y} = -\frac{(1+i^2)(3-2y)}{(3y-y^2)^2}$
Both f and $\frac{2f}{3y}$ are continual everywhere except for points for which $3y-y^2=0$. This is $y(3-y)=0$ or $y=0, y=3$.

This is $y(3-y)=0$ or $y=0, y=3$.

If f or $(1,2)$, the rectangle f of $(1,2)$, the rectangle f of $(1,2)$.