Branch: CSE/IT

Batch: English

Discrete Mathematics Mathematical logic

DPP-01

[MCQ]

- 1. Which of the following is tautology?
 - (a) $(\sim p \Lambda (p \rightarrow q)) \rightarrow \sim q$
 - $(b) \sim (p \rightarrow q) \rightarrow \sim q$
 - (c) $[(\sim p \land q) \land [q \rightarrow (p \rightarrow q)]] \rightarrow \sim r$
 - (d) None of these

[MCQ]

- 2. The statement $[P V (p \leftrightarrow Q) V Q]$ is equivalent to
 - (a) P
- (b) Q
- (c) A tautology
- (d) $(P \land Q)$

[MCQ]

3. Consider the following statement

$$S_1: [(p \Rightarrow q) \land (q \Rightarrow r)] \Rightarrow (r \Rightarrow p)$$

$$S_2$$
: $[((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)]$

Which of the following is/are correct?

- (a) S₁ is contingency
- (b) S₂ is tautology
- (c) S_1 and S_2 both contingency
- (d) S_1 and S_2 both Tautology

[MCQ]

4. Which of the following is valid?

S1:
$$p \Rightarrow (q \ V \ r) \equiv (p \Rightarrow q) \ V \ (p \Rightarrow r)$$

S2:
$$p \Rightarrow (q \land r) \equiv (p \Rightarrow q) \land (p \Rightarrow r)$$

- (a) S_1 is valid and S_2 is not valid
- (b) S₁ is not valid and s₂ is valid
- (c) Both S₁ and S₂ are valid
- (d) Neither S₁ nor S₂ is valid

[MCQ]

5. Which of the following is not a tautology?

$$(a) ((p \rightarrow q) \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))$$

(b)
$$((p \rightarrow (r \lor q)) \rightarrow ((p \rightarrow r) \lor (p \rightarrow q))$$

(c)
$$(p \rightarrow (r \land q)) \rightarrow ((p \rightarrow r) \lor (p \rightarrow q))$$

$$(d) (p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow r)$$

Answer Key

(b) 1.

2. **(c)**

3. (a, b)

4. (c) 5. (d)

Hints and solutions

1. (b)

$$\sim (p \rightarrow q) \rightarrow \sim q$$
$$\sim [\sim (p \rightarrow q)] \ V \sim q$$
$$(p \rightarrow q) \ V \sim q$$

$$\sim p \ V \ q \ V \sim q$$

 $\sim p \ V \ 1 \equiv 1$

Hence, option B is tautology.

2. (c)

The statement : $P V (P \leftrightarrow Q) V Q$

PVP'Q'VPQVQ

P V P'Q' V (P V 1) Q

PVP'Q'VQ

Apply absorption LAW

$$\underbrace{P\;V\;\bar{P}\;\bar{Q}}\;V\;Q$$

$$\therefore PV1 \equiv 1$$

Hence, the given statement is tautology.

 $3. \quad (a, b)$

Statement S1 : Contingency

$$[(p \Rightarrow q) \land (q \Rightarrow r)] \Rightarrow (r \Rightarrow p)$$

$$[(\overline{p} + q) \Lambda (\overline{q} + r)] \Rightarrow (\overline{r} + p)$$

$$(\overline{\overline{p}+q})+(\overline{\overline{q}+r})+(\overline{r}+p)$$

$$\therefore \ p\overline{q} + q\overline{r} + \overline{r} + p$$

$$\therefore$$
 p + \overline{r} [LAW of Absorption]

Hence, S1 is contingency

Statement S2: Tautology

$$[((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)]$$

$$\therefore p\overline{q} + q\overline{r} + \overline{p} + r$$

$$\therefore \ \underline{p}\overline{q} + \overline{p} + q\overline{r} + r$$

$$\therefore \ \overline{p} + \overline{q} + q + r$$

$$\therefore \ \overline{p} + 1 + r \equiv 1$$

Hence, S₂ is tautology

4. (c)

Statement S_1 : valid

$$p \Rightarrow (q V r) \equiv (p \Rightarrow q) V (p \Rightarrow r)$$

$$\overline{p} + q + r \equiv (\overline{p} + q) + (\overline{p} + r)$$

$$\overline{p} \ + q + r = \, \overline{p} \ + q + r$$

Hence, statement S₁ is valid

Statement S2: Valid

$$p \Rightarrow (q \land r) \equiv (p \Rightarrow q) \land (p \Rightarrow r)$$

$$\overline{p} + qr \equiv (\overline{p} + q) \cdot (\overline{p} + r)$$

$$\overline{p} + qr \equiv \overline{p} + qr$$

Hence, statement S₂ is also valid.

5. (d)

Statement: $(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow r)$

$$(p \rightarrow (\overline{q} + r)) \rightarrow ((\overline{p} + q) \rightarrow r)$$

$$(\overline{p} + \overline{q} + r) \rightarrow (\overline{(\overline{p} + q)} + r)$$

$$\overline{\left(\overline{p}+\overline{q}+r\right)}+p\overline{q}+r$$

$$pq\overline{r} + p\overline{q} + r$$

$$p(q\overline{r} + \overline{q}) + r$$

$$p(\overline{r} + \overline{q}) + r$$

$$p\overline{r} + p\overline{q} + r$$

$$\therefore \underbrace{p+r+p}_{p(1+\bar{q})+r} \overline{q}$$

$$\therefore p + r \neq 1$$

Hence, option D is not tautology.

Any issue with DPP, please report by clicking here:- $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{for more questions, kindly visit the library section: Link for web: } \frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

PW Mobile APP: https://smart.link/7wwosivoicgd4