00 Before we get started

http://www.datacarpentry.org/R-ecology-lesson/00-before-we-start.html

- 0. Learning Objectives:
 - Organize files and directories related to a particular set of analyses in an R Project within RStudio
 - Define the following (as they apply to R): Script, function, working directory, assign, object, variable
 - Describe the purpose of the RStudio script, console, environment, and plot windows
 - Assign values to variables -Call functions with zero or more named or unnamed arguments
 - Use the built-in RStudio help interface to search for more information on R functions -Ask for help from the R user community, providing sufficient information for the problem to be reproduced and troubleshooted
- 1. Working Directory
- 2. RStudio to manage WD
 - Open RStudio
 - Create Project data-carpentry
 - Create data/ and download data into it
 - \bullet Create data-carpentry-script.R
 - Show diagram
- 3. RStudio walk-through
 - Panes
 - Auto-complete
 - R Code
 - Code is instructions to computer: 2-ways
 - Console
 - * prompt (> vs +)
 - * ESC
 - Script to console (buttons and ctrl-enter)
- 4. Basics of R
 - Free and Open Source
 - Better than commercial
 - First implementations
 - widely extensible (nrow(available.packages()))
 - 1000's of developers vs 10's-100's
 - huge and (mostly) friendly community
 - functional and OO
 - not just for stats, general purpose programming too.
- 5. R Syntax
 - http://www.datacarpentry.org/R-ecology-lesson/00-before-we-start.html#the-r-syntax
 - comments
 - assignment operator
 - a function
 - = for args
 - \$
 - quotes v not quotes
- 6. Using functions

- round
- args(round)
- show multiple args
 - named (orderd, not ordered)
 - not-named
- 7. The most important skill in coding: HELP!
 - $\bullet \ \, https://twitter.com/The Practical Dev/status/716390583217029124$
 - When you know the function
 - ? or help
 - args
 - RStudio auto-complete
 - When you know the package
 - help(package="dplyr")
 - When you know a bit of the topic
 - ??smirnov
 - ??histogram
 - Google and Stackoverflow
 - Asking good questions (see http://www.datacarpentry.org/R-ecology-lesson/00-before-we-start. html#asking-for-help)
 - Mailing Lists
 - Task Views

01 Intro to R

http://www.datacarpentry.org/R-ecology-lesson/01-intro-to-R.html

- 0. Learning objectives:
 - Familiarize participants with R syntax
 - Understand the concepts of objects and assignment
 - Understand the concepts of vector and data types
 - Get exposed to a few functions
- 1. Creating Objects
 - Basic operators +, -, *, /
 - can save result to an object with <-
 - weight kg < -55
 - (weight kg < -55)
 - weight_kg <- 55; weight_kg
 - overwrite value
 - use math to change (*2.2 for lbs)
- 2. Challenge
 - work with person next to you
 - discuss what you think values would be
 - confirm using R
 - About 5 minutes
- 3. Vectors and data types
 - Vector

- most basic structure
- have length
- have type (must be the same)
- weight_g <- c(50, 60, 65, 82)
- weight_g
- animals <- c("mouse", "rat", "dog")
- animals
- length(), class(), str()
- add to the vector (beginning and end)
 - c(animals,"")
- types
 - numeric
 - character
 - logical/boolean
 - integer
 - raw
 - complex
- Other data structures
 - list
 - matrix
 - factor
 - data.frame

4. Challenge

- Work on together
- We've seen that atomic vectors can be of type character, numeric, integer, and logical. But what happens if we try to mix these types in a single vector?
 - coercion
- What class will these be?
- num char <- c(1, 2, 3, 'a')
- num_logical <- c(1, 2, 3, TRUE)
- char_logical <- c('a', 'b', 'c', TRUE)
- tricky <- c(1, 2, 3, '4')
- c(3,"z",TRUE)
- so:
- Logical > Numeric
- Logical > Character
- Character > Numeric
- Character > Numeric + Logical

5. Subsetting

- animals <- c("mouse", "rat", "dog", "cat")
- animals[2]
- animals [c(3,2)]
- animals [c(1, 2, 3, 2, 1, 4)]
- animals[-3]

6. Conditional subsetting

- weight_g <- c(21, 34, 39, 54, 55)
- Subset based on logical
 - weight_g[c(TRUE, FALSE, TRUE, TRUE, FALSE)]
- so we can use conditional statements such as

- $weight_g > 50 \\ weight_g[weight_g > 50] \\ or: weight_g[weight_g < 30 \mid weight_g > 50] \\ and: weight_g[weight_g >= 30 \& weight_g == 21]$
- Works with both numeric and character
 - animals[animals == "cat" | animals == "rat"]
 - %in%: animals %in% c("rat", "cat", "dog", "duck")
 - animals[animals %in% c("rat", "cat", "dog", "duck")]

7. Challenge:

- what does "four" > "five" return?
- why?

8. Missing Data

- Should have already discussed during spreadsheet, if not say a few words
- R's values is NA
- for example:
 - planets <- c("Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune", NA)
 - heights < c(2, 4, 4, NA, 6)
 - mean(heights)
 - max(heights)
 - mean(heights, na.rm = TRUE)
 - $\max(\text{heights, na.rm} = \text{TRUE})$
- is.na()
- na.omit()
- complete.cases()

9. Challenge

- Try this: sample $\langle c(2, 4, 4, "NA", 6) \rangle$; mean(sample, na.rm = TRUE)
- What happens and why?
- Why does the error message say the argument is not numeric?

02 Starting with data

http://www.datacarpentry.org/R-ecology-lesson/02-starting-with-data.html

- 0. Learning objectives:
 - load external data (CSV files) in memory using the survey table (surveys.csv) as an example
 - explore the structure and the content of a data frame in R
 - understand what factors are and how to manipulate them
- 1. Introduce the survey.csv dataset
 - it is data on species captured across many years and plots

Column	Description
record_id	Unique id for the observation
month	month of observation
day	day of observation
year	year of observation

Column	Description
plot_id	ID of a particular plot
species_id	2-letter code
sex	sex of animal ("M", "F")
$hindfoot_length$	length of the hindfoot in mm
weight	weight of the animal in grams
genus	genus of animal
species	species of animal
taxa	e.g. Rodent, Reptile, Bird, Rabbit
$plot_type$	type of plot

•

- 2. Download the data, store in data folder, and read in
 - download.file("https://ndownloader.figshare.com/files/2292169", "data/portal_data_joined.csv")
 - $\bullet \ \ surveys <- \ read.csv(`data/portal_data_joined.csv')\\$
 - \bullet head(surveys): describe the result
 - str(surveys): describe the result

3. Challenge:

- If not already done, download data
- read into surveys
- get result of str(): green sticky when you get there
- Answer these:
 - What is the class of the object surveys?
 - How many rows and how many columns are in this object?
 - How many species have been recorded during these surveys?
- Point out factors. Useful structure, but unique and need to be discussed before we dig more into data frames.

4.