theoretische Biologie (SS 2017)

Inhaltsverzeichnis

1	Vor	06.04.2017	1
	1.1	Begriffe und Konzepte	1
2	Vor	lesung 13.04.2017	1
	2.1	Begriffe und Konzepte	1
3	Vor	$ m Plesung \ 20.04.2017$	1
4	Vor	lesung 27.04.2017	2
	4.1	Teil 1: Dynamische Systeme	2
	4.2	Qualitative Analyse von DS	3
	4.3	Teil 2: Genkonzept	5
5	Vor	elesung 04.05.2017	5
6	Vor	lesung 11.05.2017	6
	6.1	Teil 1: Populationsdynamik	6
		6.1.1 Beispiel: Räuber-Beute-Modell	7
	6.2	Teil 2: Diskussion zu den Vorträgen beim mitteldeutschen Bioinformati	k-
		Meeting 2017	11
7	Vorlesung 18.05.2017		
	7.1	Musterbildung	12
8	Vor	lesung 01.06.2017	13
	8.1	Teil 1: Musterbildung	13
	8.2		13
	8.3	Vergleich Übungsaufgaben	13
9	Vor	lesung 08.06.2017	14
	9.1	Teil 1: Fitnesslandschaften	14
		0	14
			15
		1 0	15
			15
	9.2	Übung farbliche Ausprägung Katzenfell und beteiligte Gene	16

1 Vorlesung 06.04.2017

1.1 Begriffe und Konzepte

- Begriffsbildung am Beispiel Information (Was ist Information? [Prüfungsrelevant!])
- Vorlesungsunterlagen siehe ¹
- Begriffsbildung am Beispiel Gen [Prüfungsrelevant!]
 - Welche Überschneidungen, welche Differenzen?
 - Welche Genkonzepte gibt es? (zu lesen: siehe ² und ³)

2 Vorlesung 13.04.2017

2.1 Begriffe und Konzepte

- GWAS (Prof. Markus Scholz)
- Diskussion zum Begriff Struktur

3 Vorlesung 20.04.2017

- Gendefinition im Kontext der Messtechnik⁴
- random mating, rezessive und dominante Epistasis????

¹http://www.bioinf.uni-leipzig.de/Leere/SS17/TBio/concepts.pdf

²http://www.bioinf.uni-leipzig.de/Leere/SS17/TBio/Gerstein07_gene_definition.pdf

³http://www.bioinf.uni-leipzig.de/Leere/SS17/TBio/Stadler09_gene_definition.pdf

⁴http://www.bioinf.uni-leipzig.de/Leere/SS17/TBio/gene_definition.pdf

4 Vorlesung 27.04.2017

4.1 Teil 1: Dynamische Systeme

• diskrete Zeit: "Generationen" $X_1, X_2, ...$

aktueller Zustand $X_n = F(X_{n-1}) := X_{n-1}$ Zustand vorher Änderung des Zustandes $X_{n+1} = F(X_n) = F(F(X_{n-1}))$

Beispiel:

 $X_n = (1+a) \cdot x_{n-1}$

a = effektive Vermehrungsrate = Geburtenrate - Sterberate

Anfangsbedingung: $X_{t_0} = X_0$

Bedingung: effektive Vermehrungsrate a verändert sich nicht

Lösung: $X_n = (1+a)^n \cdot x_0$

im allgemeinen: mit zeitlich variablen Vermehrungsraten:

$$X_n = \prod_{i=0}^{n-1} (1 + a_i) \cdot x_0$$

- 3 verschiedene Resultate:
 - $-+\infty$ für a>0
 - $-x_0$ für a=0
 - -0 für a<0

$$X_n = X_{n-1} + \underbrace{a \cdot X_{n-1}}_{f(X_{n-1})}$$

 $f(X_{n-1}) = X_{n-1} \cdot r(X_{n-1})$

mit r(0)=const. entspricht autonomer Wachstumsrate $[lim(x \to 0)r(x) \in R_0^+]$

• kontinuierliche Zeit

$$x(t + \Delta t) = x(t) + \underbrace{f(x(t)) \cdot \Delta t}_{\text{Änderung}}$$

t=aktuelle Zeit, Δt =zeitliche Änderung $\frac{x(t+\delta t)-x(t)}{\delta t}=f(x(t))$

$$\lim(\delta t \to 0) \frac{x(t+\delta t) - x(t)}{\delta t} = \frac{\delta x}{\delta t} \stackrel{\text{deformal}}{=} \text{zeitlicher Ableitung von x}$$

$$= \dot{x} = f(x)$$

Beispiel:

$$\dot{x} = a \cdot x, \ x(0) = x_0$$

$$\frac{dx}{dt} = a \cdot x$$

$$\frac{dx}{a \cdot x} = dt$$

$$\int_{x_0}^{x(t)} \frac{1}{a \cdot x} \cdot dx = \int_{0}^{1} 1 \cdot dt$$

$$\dot{x} = f(x) \Rightarrow \int_{x_0}^{x(t)} \frac{1}{f(x)} = \int_{0}^{1} dt = t$$

$$\frac{1}{a} \int_{x}^{1} \frac{1}{x} dx = \frac{1}{a} \cdot \ln(x) / \cdot a$$

$$\frac{1}{a} \ln(x(t)) - \frac{1}{a} \ln(x_0) = a \cdot t$$

$$\ln(x(t)) = at + \ln(x_0)$$

$$x(t) = e^{at} \cdot x_0$$

Grenzen für a wieder wie vorher, 3 verschiedene Resultate:

- $+\infty$ für a > 0
- x_0 für a=0
- 0 für a < 0

Wie machen wir das Model realistischer? f(x) und r(x) muss für sehr große x dann ≤ 0 werden. $\dot{x} = f(x) = x \cdot (a - bx)$

Übungsaufgabe:

- 1. Löse $\dot{x} = x(a bx) \text{ mit } x(0) = x_0$
- 2. Löse x' = x + x(a bx) mit $x(0) = x_0$

4.2 Qualitative Analyse von DS

- 1. Fixpunkte: keine zeitliche Veränderung $(x' = x, \dot{x} = 0)$ d.h. diskret und kontinuierlich, f(x)=0 Welche Fixpunkte gibt es? im Beispiel x(a-bx)=0
 - (a) $x=0 \rightarrow Population ausgestorben$
 - (b) a-bx=0 $\rightarrow x = \frac{a}{b}$

Störung:
$$x(0) = \underbrace{\hat{x}}_{Fixpunkt} + \epsilon$$
 mit sehr kleinem ϵ
$$\dot{x} = f(x) \to f(\hat{x} + \epsilon) = \dot{\epsilon}$$
 mit $x = \hat{x} + \epsilon$
$$\dot{x} = \frac{\delta \hat{x}}{\delta t} + \dot{\epsilon}$$

$$\dot{\epsilon} = f(\hat{x} + \epsilon)$$

mit Taylorreihenentwicklung: $0 = \underbrace{f(\hat{x})}_{=0} + \epsilon \frac{\delta f}{\delta x}(\hat{x}) + O(\epsilon^2)$

Für sehr kleine Störungen:

$$\dot{\epsilon} = \frac{\delta f}{\delta x}(\hat{x}) \cdot \epsilon + O(\epsilon^2)$$

 $\dot{\epsilon} = \frac{\delta f}{\delta x}(\hat{x}) \cdot \epsilon + O(\epsilon^2)$ Linearisierung der Differentialgleichung x = f(x) in der Nähe eines Fixpunktes \hat{x} : $\epsilon(t) = e^{\left[\frac{\delta f}{\delta x}(\hat{x})\right] \cdot t} \cdot \epsilon_0$

$$\hat{c} = \hat{c} + \hat{c}$$

 $\epsilon_0 = x_0 - \hat{x}$

 $\epsilon_0 \leftarrow \text{initiale St\"{o}rung}$

- \bullet Störung wird gedämpft wenn $\frac{\delta f}{\delta x}(\hat{x}) < 0 = \text{STABIL}$
- Störung eskaliert wenn $\frac{\delta f}{\delta x}(\hat{x}) > 0 = \text{INSTABIL}$

im Diskreten Fall?

$$\begin{array}{l} x' = x + f(x) \text{ mit } x = \hat{x} + \epsilon \\ \not \tilde{x} + \epsilon' = \not \tilde{x} + \epsilon + f(\hat{x} + \epsilon) = f(\hat{x}) + \epsilon \cdot \frac{\delta f}{\delta x}(\hat{x}) + \underbrace{Rest(\epsilon)}_{\epsilon'} \\ \epsilon' = \epsilon (1 + \frac{\delta f}{\delta x}(\hat{x})) \text{ mit:} \end{array}$$

- $\epsilon \to 0$ wenn $|1 + \frac{\delta f}{\delta x}(\hat{x})| < 1 = \text{stabil } (1 > |\frac{df}{dx}(\hat{x})|)$
- $\epsilon \to \infty$ wenn $|1 + \frac{\delta f}{\delta x}(\hat{x})| > 1 = \text{instabil } (1 < |\frac{df}{dx}(\hat{x})|)$

jetzt Mehrdimensional:

- Räuber x: $f_x(x,y) = x(-a+by-cx)$
- Beute y: $f_u(x,y) = y(+d ex qy)$

 $a,d \rightarrow Wachstumsraten$

 $c,g \rightarrow intraspezifische Konkurrenz$

be, \rightarrow interspezifische Beeinflussung

4 Fixpunkte möglich:

- 1. Fall: x=0, y=0 (trivialer Fall)
- 2. Fall: $x \neq 0$, y = 0
- 3. Fall: $x=0, y\neq 0$
- 4. Fall: $x\neq 0$, $y\neq 0$

Nicht alle Fälle müssen biologisch relevant sein, es können sich zum Beispiel auch Fixpunkte im negativem befinden \rightarrow wird nicht betrachtet

4

Stabilität: gegeben durch

- $\frac{\delta f_x}{\delta x}(\hat{x}, \hat{y}) \frac{\delta f_x}{\delta y}(\hat{x}, \hat{y})$
- $\frac{\delta f_y}{\delta x}(\hat{x}, \hat{y}) \frac{\delta f_y}{\delta y}(\hat{x}, \hat{y})$

Übungsaufgabe 2:

Bestimme die Fixpunkte von Räuber-Beute-Modell für a,b,c,d,e,g >0 Welche Fixpunkte gibt es immer? Wieviele sind das?

4.3 Teil 2: Genkonzept

• Unterschiede und Überscheidungen zwischen den beiden in den Papern vorgestellten Genkonzepten (siehe Vorlseung 13.04.2017) [Prüfungsrelevant]

5 Vorlesung 04.05.2017

 \bullet Vorlesung entfallen wegen: Mitteldeutschen Bioinformatik-Meeting 2017^5

 $^{^5 {\}rm http://me17.bioinf.uni-leipzig.de/}$

6 Vorlesung 11.05.2017

6.1 Teil 1: Populationsdynamik

Eindimensional:

$$\begin{split} \dot{x} &= f(x), x(0) = x_{(0)} \\ \text{Fixpunkte: } \dot{x} &= 0 = f(\hat{x}) \\ x - \hat{x} &= \epsilon \leftrightarrow x = \hat{x} + \epsilon \\ \hat{x} &= \dot{\epsilon}? \\ \dot{x} &= \dot{\epsilon} = f(x) = f(\hat{x} + \epsilon) \\ \text{durch Taylorreihe folgt: } \underbrace{f(\hat{x})}_{=0} + \frac{\delta f(\hat{x})}{\delta x} \cdot \epsilon + \text{Rest}(\epsilon^2) \\ \dot{\epsilon} &= \frac{\delta f(\hat{x})}{\delta x} \cdot \epsilon \text{ für } |\epsilon| \text{ klein} \\ \epsilon(t) &= e^{\frac{\delta f(\hat{x})}{\delta x} \cdot t} \cdot \epsilon(0) \\ \frac{\delta f(\hat{x})}{\delta x} &< 0 \Rightarrow \text{ stabil } \hat{=} \text{ anziehend} \\ \frac{\delta f(\hat{x})}{\delta x} &> 0 \Rightarrow \text{ instabil } \hat{=} \text{ abstoßend} \end{split}$$

Mehrdimensional:

DGL. System 1. Ordnung
$$\dot{x}_1 = f_1(x_1, x_2, ..., x_n)$$
 ... $\dot{x}_n = f_n(x_1, x_2, ..., x_n)$

Anfangsbedingungen (AB):

$$x_1(0) = \dot{x_1}$$
...
 $x_n(0) = \dot{x_n}$
wo kommen die Punkte hin? $\dot{x_n}$ oder x_n

Fragen:

- 1. Existenz von Lösungen?
- 2. Eindeutigkeit?
- 3. Wie schaut die Lösung überhaupt aus?

Betrachten unser DGL. System auf einem Gebiet $\Omega \subseteq \mathbb{R}^n$ $f = (f_1...f_n)^T$ $f: x \mapsto f(x)$ Vektorfeld $x \in \Omega, \mathbb{R}^n...$ n-dim Vektor von Änderungen

Lösung:

Übungsaufgabe: Visualisiere die Vektorfelder für Reuber-Beute Modelle

Annahme: Vektorfeld f ist mindestens 1 mal stetig differenzierbar, d.h. $\frac{\delta f_i}{\delta x_j}$ existiert auf ganz Ω , sind auf ganz Ω stetig

 \Rightarrow Existenz: für jede Anfangsbedingung x_0 in Ω gibt es eine Zeitspanne $T(x_0)$ sodass $x(t|x_0)$ für alle $0 \le t \le T(x_0)$ existiert, eindeutig ist und $t \mapsto x(t|x_0)$ stetig ist

Trajektorien kreuzen sich nie!

Kreuzungspunkt nicht eindeutig \Rightarrow

$$z_0 = x_0(t_1) = y_0(t_2)$$

$$z(t|z_0) = x_0(t - t_1) = y_0(t - t_2)$$

laut Eindeutigkeitssatz nicht möglich \rightarrow Situation kann nicht vorkommen

Fixpunkte: $\hat{x} \in \Omega$ sodass $f(\hat{x}) = 0$

6.1.1 Beispiel: Räuber-Beute-Modell

Lotka-Volterra-Gleichung: $f_i(x) = (r_i + \sum_j b_{ij} \cdot x_j)x_i$ mit

 r_i . . . Spezies-spezifische autonome Wachstumsrate

 $\sum_{j} b_{ij} \cdot x_{j} \dots$ Interaktion mit allen (anderen) Spezies + intraspezifische Konkurenz $b_{ii} \cdot x_{i}$

 x_i ... Wachstum proportional zur Populationsgröße

Fixpunkte in LV-Systemen:

1. Trivialer Fixpunkt:

$$x_1 = x_2 = \dots = x_n = 0, \hat{x} = 0 \Rightarrow$$
 alle Spezies ausgestorben

2. innerer Fixpunkt: alle $x_i \neq 0$

$$f_i(x) = (r_i + (Bx)_i)x_i = 0$$
 mit $(Bx)_i = \sum_j b_{ij} \cdot x_j$
 $\Leftrightarrow r_i + (Bx)_i = 0$

$$\Leftrightarrow Bx = -r \text{ (lineares GLS)}$$

$$x = -B^{-1} \cdot r$$

3. Fixpunkte von Teilsystemen: $S = \{1, ..., n\}$ $A \subseteq S \to x_i = 0$ für $i \in S \setminus A$: verstorben, $x_i \neq 0$ für $i \in A$

es existieren insgesamt 2ⁿ mögliche Fixpunkte!

Status um Fixpunkte?

$$\overline{\epsilon = x - \hat{x}, \epsilon_i = x_i - \hat{x}_i}$$

$$\dot{\epsilon}_i = \dot{x}_i = f_i(x_1, \dots, x_n) = f_i(\hat{x} + \epsilon) = f_i(\hat{x}_1 + \epsilon_1, \dots, \hat{x}_n + \epsilon_n)$$
Taylorreihenentwicklung:
$$= f_i(\hat{x}_1, \dots, \hat{x}_n) + \sum_k \frac{\delta f_i(\hat{x})}{\delta x_k} \cdot \epsilon_k + \text{Rest}(\epsilon^2)$$

für $|\epsilon|$ sehr klein folgt:

Jacobimatrix
$$J_{ik} := \sum_{k} \frac{\delta f_i(\hat{x})}{\delta x_k}$$

 $\epsilon_i = (J_\epsilon)_i$ zeitliche Entwicklung der Störung $\epsilon \Rightarrow \dot{\epsilon} = J(\hat{x}) \cdot \epsilon$

Das Verhalten von $\dot{x} = f(x)$ wird in der Nähe einer Fixpunktes \hat{x} durch die Linearisierung $\dot{\epsilon} = J(\hat{x}) \cdot \epsilon$ beschrieben.

 \Rightarrow müssen verstehen, wie die Lösung von linearen DGL-Systemen aussehen $\dot{x}=Ax, x\in R^n, A\in R^{n,n}$

1. Dimension:

$$\dot{x} = a \cdot x \Rightarrow x(t) = e^{a \cdot t} \cdot x_0$$

Formale Lösung in $R^n : x(t) = exp(t \cdot A) \cdot x_0$
Darstellung Exponentialfunktion Matrix:
Zahl: $e^a = 1 + \frac{1}{1!}a^1 + \frac{1}{2!}a^2 + \dots$

$$exp(A) := \sum_{k=0}^{\infty} \frac{1}{k!} A^{k}$$

$$[exp(A)]_{ij} = \sum_{k=0}^{\infty} \frac{1}{k!} [A^{k}]_{ij}$$

$$\Rightarrow exp(t \cdot A) = \sum_{k=0}^{\infty} \frac{1}{k!} (t \cdot A)^{k} = \sum_{k=0}^{\infty} \frac{t^{k}}{k!} A^{k}$$

$$\Rightarrow \frac{d}{dt} [exp(t \cdot A)]_{ij} = \sum_{k=0}^{\infty} \underbrace{\frac{dt^{k}}{dt}}_{k \cdot t^{k-1}} \cdot \underbrace{\frac{1}{k!}}_{l} [A^{k}]_{ij}$$

$$= \sum_{k=0}^{\infty} t^{k-1} \cdot \underbrace{\frac{k}{k!}}_{k \cdot (k-1)!} [A^{k}]_{ij}$$

$$\begin{split} &= \sum_{k=0}^{\infty} \frac{1}{(k-1)!} \cdot t^{k-1} [A^k]_{ij} \\ &\text{mit } k-1 = l \text{ folgt: } \sum_{l=0}^{\infty} \frac{1}{l!} \cdot t^l [A^{l+1}]_{ij} \\ &\Rightarrow \frac{d}{dt} exp(t \cdot A) = \sum_{l=0}^{\infty} \frac{t^l}{l!} \cdot A^{l+1} = A \sum_{l=0}^{\infty} \frac{t^l}{l!} \cdot A^l = A \cdot exp(t \cdot A) \end{split}$$

$$\dot{x} = A \cdot x \Rightarrow \text{Ansatz:}$$
 $x(t) = \exp(t \cdot A) \cdot x_0$
 $\dot{x}(t) = A \underbrace{\exp(t \cdot A) \cdot x_0}_{x(t)}$
 $\Rightarrow x(t) = \exp(t \cdot A) \cdot x_0$ löst tatsächlich die lineare DGL

Spezialfall: Matrix A ist eine Diagonalmatrix

$$A = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix} \Rightarrow A^k = \begin{pmatrix} \lambda_1^k & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n^k \end{pmatrix}$$

$$\sum_{k=0}^{\infty} \frac{1}{k!} \cdot A^k = \sum_{k=0}^{\infty} \frac{1}{k!} \cdot \begin{pmatrix} \lambda_1^k & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n^k \end{pmatrix} = \begin{pmatrix} \sum_{k=0}^{\infty} \frac{1}{k!} \cdot \lambda_1^k & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sum_{k=0}^{\infty} \frac{1}{k!} \cdot \lambda_n^k \end{pmatrix} = \begin{pmatrix} e^{\lambda_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e^{\lambda_n} \end{pmatrix}$$

$$\begin{array}{l} \Rightarrow x(t) = exp(tA)x_0? \\ x_i(t) = \sum_j [exp(tA)]_{ij} \cdot x_j^\circ = \sum_j e^{t \cdot \lambda_j} \cdot \delta_{ij} \cdot x_j^\circ \\ \text{mit } x_j^\circ = \text{j-Koordinate der } A_iB_i, \ \delta_{ij} = \text{Kronecker-Delta was bedeutet } \mathring{j}? \end{array}$$

$$x_i(t) = e^{t\lambda_i} \cdot x_i$$

$$x_i(t) \to 0$$
 wenn $\lambda_i < 0$ stabile Richtung $x_i(t) \leadsto \pm \infty$ wenn $\lambda_i > 0$ instabile Richtung

wenn alle Richtungen stabil: Senke wenn alle Richtungen instabil: Quelle sonst: Sattelpunkt

Was wenn Jacobimatrix nicht diagonal?

Eigenwerte und Eigenvektoren

 $Au = \lambda u \leftarrow u \neq 0$ Eigenvektor von A zum Eigenwert λ $Au^{(j)} = \lambda_i u^{(j)}$

$$U \cdot A \to A = \begin{pmatrix} x_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & x_n \end{pmatrix}$$
$$A \underbrace{[u^{(1)}, \dots, u^{(n)}]}_{} = [\lambda_1 u^{(1)}, \dots, \lambda_n u^{(n)}]$$

*... U-Matrix deren Spalten die Eigenvektoren von A sind

$$A \cdot U = U \cdot A$$
 vorausgesetzt es gibt n linear unabhängige Eigenwerte von A $U^{-1}exp(tA)U = U^{-1}\sum_{k=0}^{\infty} \frac{t^k}{k!} A^k U = U^{-1}\sum_{k=0}^{\infty} \frac{t^k}{k!} U A^k = \underbrace{U^{-1}U}_{I} \sum_{k=0}^{\infty} \frac{t^k}{k!} A^k = exp(tA) = e^{tA}$

$$x(t) = exp(tA) \cdot x_0 = Uexp(tA)U^{-1} \cdot x_0$$

neue Koordinate: $y := U^{-1}x \Leftrightarrow x = U \cdot y$
 $\dot{y} = U^{-1}\dot{x} = U^{-1}Ax = \underbrace{U^{-1} \cdot A \cdot U}_{x} \cdot y = Ay$

* wenn A symmetrisch, dann gibt es n linear unabhängige Eigenvektoren, die sind sogar orthogonal $U^{-1} = U^T$ alle Eigenwerte $\lambda_i \in R$

hier fehlt was im Skript von Christian

Eigenwerte i. A. nicht reell:

macht nix, nehmen Eigenwerte über komplexe Zahlen

für jeden Eigenwert $\lambda=Re\lambda+i\cdot Im\lambda$ ist auch konjugiert komplexe Zahl $\lambda=Re\lambda-i\cdot Im\lambda$ ein Eigenwert

Satz von Moivre:
$$e^{t\lambda} = e^{tRE\lambda} \cdot e^{itIm\lambda} = e^{tRe\lambda}(costIm\lambda + isintIm\lambda)$$

 $e^{t\overline{\lambda}} = e^{tRE\lambda} \cdot e^{-itIm\lambda} = e^{tRe\lambda}(costIm\lambda - isintIm\lambda) \leftarrow \text{Wirbel}$

 $\lambda_i \dots$ reell in diese Eigenrichtung $u_i e^{t\lambda_i}$

 $\lambda_i, \overline{\lambda_i}$... Paar von konjugiert komplexen Eigenwerten dann gibt es 2D-Ebene, in der

$$y_{1,2}(t) = e^{tRe\lambda} \cdot costIm\lambda$$

Allgemeiner Fall: Stabilität durch $Re\lambda_i$ gegeben.

 $Re\lambda_i < 0$ anziehende Richtung $Re\lambda_i > 0$ abstoßende Richtung Quelle: $Re\lambda_i > 0$ für alle i Senke: $Re\lambda_i < 0$ für alle i

Sattelpunkt: sowohl $Re\lambda_i < 0$ als auch $Re\lambda_i > 0$ existieren.

6.2 Teil 2: Diskussion zu den Vorträgen beim mitteldeutschen Bioinformatik-Meeting 2017

- 7 Vorlesung 18.05.2017
- 7.1 Musterbildung

- 8 Vorlesung 01.06.2017
- 8.1 Teil 1: Musterbildung
- 8.2 Teil 2: Cat Coat Colors
- 8.3 Vergleich Übungsaufgaben

9 Vorlesung 08.06.2017

9.1 Teil 1: Fitnesslandschaften

evol. Theorie: Wachstumsrate in Räuber-Beute-Modellen + Reproduktion mit Variation + "Survival of the fittests" \rightarrow Wachstumsrate einer Population in einer gege. Umgebung

Günther Wagner: Messtheorie von Fitness (measurement theorie)

X... Suchraum (genotyp—phänotyp), allgemein irgendeine Repräsentation der betrachteten Taxa

Ähnlichkeitsstruktur σ

Fitness funktion: $f: x \to R$

mit R=totale geordnete Menge $(f_1, f_2 \in R : f_1 < f_2, f_1 > f_2, f_1 = f_2)$

Begründer: Sewall Wright (~ 1930)

siehe zurückliegendes Bild: Individuum hat höhere Wahrscheinlichkeit Erbgut in nächste Generation zu übertragen ("Verbesserung")

9.1.1 Genetische Algorithmen

Idee: benutze künstliche Evolution um Optimierungsprobleme zu lösen

- 1. Population $A \subseteq X$
- 2. Nachfolgerpopulation von Kandidaten C(A)
- 3. Selektiere die Besten bezüglich Fitnessfunktion $x \in C(A)$
- 4. zurück zu 1.

genetische Algorithmen, evolutionäre Progammierung (Rechenberg, Schwefel $\sim 1960/70)$

geg.: RNA oder Proteinsequenz α ges.: Alle möglichen Strukturen x, die α einnehmen kann \to Menge x von Konfigurationen

Energiefunktion $f: X \to R$

z.B. Loop basiertes Energiemodell für RNA Sekundärstrukturen

Lenskis E.Coli Zucht⁶

X... Menge von Gen oder Genomsequenzen

 σ ... Mutationen (hauptsächlich Substitution, Insertion, Deletion)

 (X,σ) ... Suchraum \Leftrightarrow Graphen über $\{A,G,T,C\}^n$

mit n=Sequenzlänge

mit Kanten=Hammingdistanz 1 (| Levensteindistanz 1)

9.1.2 3D-Strukturen

Proteinstruktur = $(\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_n})$ mit $\overrightarrow{x_1} = 3$ D-Koordinaten für Atom 1

Constraint: Bindungswinkel, Bindungslängen

X... alle möglichen 3D-Einbettungen des Proteins

Nachbar: $||\overrightarrow{x} - \overrightarrow{x}'|| = \sum_{i} |\overrightarrow{x_i} - \overrightarrow{x_i}'| < \epsilon$ für gegebenes $\epsilon > 0$

Wenn RNA Sekundärstrukturen?

X... Menge aller erlaubten Strukturen [(,),.]

 $x\sim y$ wenn x und y sich durch ein Basenpaar unterscheiden \Rightarrow Graph

Beispiel:

9.1.3 Optimierung auf Landschaften

 \rightarrow max, min finden

Wie misst man Rauheit?

Minimum: $\hat{x} \in X$ sodass $\forall y$ Nachbar von $\hat{x} : f(\hat{x}) \leq f(y)$

für metrischen (kontinuierlichen) Raum: $\forall y: |\hat{x} - y| < \epsilon$

Maximum: $f(\hat{x}) \ge f(y)$

Was möchte man messen?

- # lokale Minima, nur gut bei kleinen Instanzen, daher sampeln! (zufällige x wählen und bestimmen ab Minimum)
- mittlere Länge von <u>adaptiven walks</u> $x_0, x_1, x_2, \dots, x_l$ sodass x_i Nachbar von x_{i-1} ist und $\underbrace{f(x_i) > f(x_{i-1})}_*$ i=1...l
 - * für Fitness (für Energie <)
- Alternative: gradient walks (Weg des stelsten Anstiegs), Distanz zum "nächstgelegenenllokalen Min/Max

9.1.4 Autokorrelationsfunktionen

 $x_0, x_1, x_2, \ldots, x_l$ sodass x_i Nachbar von x_{i-1} betrachte Folge der Funktionswerte $f(x_0), f(x_1), \ldots$ betrachte das als Signal (Zeitserie)

$$\varrho(\tau) = \frac{\langle f(x_t) \cdot f(x_{t+\tau}) \rangle_t - \langle f \rangle_t^2}{\langle f^2 \rangle_t - \langle f \rangle_t^2}$$

$$< f_t > \dots$$
 Mittelwert über die $f(x)$
 $< f_t > := \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} f(x_t)$
 $< f(x_t) \cdot f(x_{t+\tau}) > := \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} f(x_t) f(x_{t-\tau})$

X... Menge von Gen oder Genomsequenzen

 σ ... Graph, regulär (jedes x hat gleich viele Nachbarn D)

A... Adjazenz von (X,σ)

$$\begin{split} \varrho(\tau) &= \frac{(f(\frac{1}{D} \cdot A)^{\tau} \cdot f) - (f)^2}{(f^2) - (f)^2} \\ \Rightarrow \text{leichter so auf Graphen als direkt auf Fitness (Funktion)} \end{split}$$

Korellationslänge:

Funktion in Abhängigkeit der Verschiebung von τ

$$L_{c} = \sum_{\tau=0}^{\infty} \varrho(\tau)$$

$$(f) = \frac{1}{|X|} \sum_{x \in X} f(x)$$

$$(f^{2}) = \sum_{x \in X} f(x)^{2}$$

$$(f, \frac{1}{D} \cdot A \cdot f) := \sum_{x \in X} \sum_{y \in X} \frac{1}{D} f(y) \cdot A_{yx} \cdot f(x)$$
wenn $(f) = 0$ folgt vereinfachte Gleichung
$$(f^{2}) = 1 \rightarrow \varrho(\tau) = \langle f(x_{t}), f(x_{x_{t}-\tau}) \rangle = (f, \underbrace{\frac{1}{D} \cdot A \cdot f})$$
Graphstruktur

Beispiel:

Kostenfunktion in Fall 1 ändert sich stärker als in Falls 2 $\Rightarrow L_R \simeq 2L_T$

?(Länge Korrelationslängen \rightarrow Lange Wege zum nächsten Minimum \rightarrow gut!)

Übung farbliche Ausprägung Katzenfell und beteilig-9.2 te Gene