Unitree A1 (load key)

Unitree A1 (zero position)

r= 0.5

W= 0.047

C= 0.183

Unitree A1 (frames)

Unitree A1 (joints) 7 dos free joint (x, y, Z, 90, 9x, 9x, 9x, 92) [x, y, z, wbx, wby, wbz) - revolute 0,0 1/12 xml defined this 3 3 3 3 = 6 00,00,00, 2 RR - Lear Right OFR - Wont right 3 fl- Rear left 1FL - front left Trot gait: 0,3 leg-no = 0,1,2,5 FR,FL,R4,RL

Unitree A1 Trotting Code Flow

1) Kinematic Control

Cartesian_Traj()

Joint_Traj()

Mj_forward

2) Dynamic Control

√State Machine() Cartesian_Traj() Joint_Traj() Joint_Control() Mi step

3) High Level Control

State Machine() Cartesian Traj() Joint_Traj() High_Level_Control() set xd-f-ref (x)

Mj_step

Ydot-ref (y)

Psidot-ref (\psi)

Unitree A1 (Analytic Inverse Kinematics)

HW5
yellow dot is
below the white
dot when

9a=9h=9k=0

Unitree A1 Leg (Kinematics/Jacobian)

4w7 w\$0

forward-kinematics.leg() jae-end_eff-leg() State martine (4 legs)

4 finite state madiene (one for each lg)

fsm [leg-no] leg-no = 0,1,2,3 fR, FL,RA,FL

Fsm stand ~ state where all legs are on the ground.

frm [0:3) = frm_ stand {initialization}

fsm_swing: - leg is in the air fsm_stance - less than 4 legs are on the ground

cortesian traj ex_ret, by ret, be-rek quintic-poly init | final joint -tray () 1x_ref, 1y-ref, 12-ref analytic_Solution

gransty lorgue, teg

state-wachine (lx-i, lx-f) 1x = 0.5 (X dot-ref) (t-step) 1x4: -0.5 (Xdof_ref)(t_stap) castesim traj quintic ply. ex ref, lxdot, ref

The state leg control for trotting

$$F_{k} = F_{k} \quad F_{k} \quad F_{k}$$

$$F_{k} \quad F_{k} \quad$$

b 6x1

$$F_{k} + F_{k}$$

$$Y_{f} \times F_{f} + Y_{e} \times F_{k}$$

$$S_{f} \times S_{k}$$

$$S_{f} \times F_{f} + S_{e} \times F_{k}$$

$$S_{f} \times F_{k} \times F_{k} \times F_{k$$

Turning (ip)

sideway

+ two

