PLSC 504 – Autumn 2017 Panel Models for Binary Responses

October 31, 2016

Logit/Probit Redux

Start with:

$$Y_{it}^* = \mathbf{X}_{it}\beta + u_{it}$$

$$Y_{it} = \begin{cases} 0 \text{ if } Y_{it}^* \leq 0 \\ 1 \text{ if } Y_{it}^* > 0 \end{cases}$$

which is generically:

$$Y_{it} = f(\mathbf{X}_{it}\beta + u_{it})$$

What Can Go Wrong?

Suppose:

$$X_{it} = \rho_X \mathbf{X}_{it-1} + \nu_{it}$$

$$u_{it} = \rho_u u_{it-1} + \epsilon_{it}$$

For high values of ρ , logit/probit:

- $\hat{\beta}$ s are consistent, but s.e.s are biased, inefficient (Poirier and Ruud 1988);
- underestimate $Var(\beta)$ by up to 50 percent (Beck and Katz 1997).

Unit Effects, Fixed

One-way unit effects:

$$Y_{it} = f(\mathbf{X}_{it}\beta + \alpha_i + u_{it})$$

for logit only, so:

$$\Pr(Y_{it} = 1) = \frac{\exp(\mathbf{X}_{it}\beta + \alpha_i)}{1 + \exp(\mathbf{X}_{it}\beta + \alpha_i)} \equiv \Lambda(\mathbf{X}_{it}\beta + \alpha_i)$$

Incidental Parameters

- Nonlinearity \rightarrow inconsistency in both $\hat{\alpha}$ s and $\hat{\beta}$.
- Anderson:

$$L^{U} = \prod_{i=1}^{N} \prod_{t=1}^{T} \Lambda(\mathbf{X}_{it} + \alpha_i)^{Y_{it}} [1 - \Lambda(\mathbf{X}_{it} + \alpha_i)]^{1 - Y_{it}}$$

• Chamberlain:

$$L^{C} = \prod_{i=1}^{N} \Pr\left(Y_{i1} = y_{i1}, Y_{i2} = y_{i2}, ... Y_{iT} = y_{iT} \mid \sum_{t=1}^{T} Y_{it}\right)$$

Intuition:

•
$$Pr(Y_{i1} = 0 \text{ and } Y_{i2} = 0 \mid \sum_{T} Y_{it} = 0) = 1.0$$

•
$$Pr(Y_{i1} = 1 \text{ and } Y_{i2} = 1 \mid \sum_{T} Y_{it} = 2) = 1.0$$

Fixed-Effects (continued)

More intuition:

$$\Pr\left(Y_{i1} = 0 \text{ and } Y_{i2} = 1 \mid \sum_{T} Y_{it} = 1\right) = \frac{\Pr(0,1)}{\Pr(0,1) + \Pr(1,0)}$$

with a similar statement for $\Pr(Y_{i1} = 0 \text{ and } Y_{i2} = 1 \mid \sum_{T} Y_{it} = 1)$.

Points:

- Fixed effects = no estimates for β_b
- Interpretation: per logit, but $|\hat{\alpha}_i|$.
- BTSCS in IR: Green et al. (2001) v. B&K (2001).

Random Effects

Model is:

$$Y_{it}^* = X_{it}\beta + u_{it}$$

 $Y_{it} = 0 \text{ if } Y_{it}^* \le 0 ;$
 $= 1 \text{ if } Y_{it}^* > 0$

with:

$$u_{it} = \alpha_i + \eta_{it}$$

with $\eta_{it} \sim \text{i.i.d. N(0,1)}$, and $\alpha_i \sim N(0, \sigma_{\alpha}^2)$.

Random Effects (continued)

Implies:

$$Var(u_{it}) = 1 + \sigma_{\alpha}^2$$

and so:

$$\mathsf{Corr}(u_{it},u_{is},\ t
eq s) \equiv
ho = rac{\sigma_{lpha}^2}{1+\sigma_{lpha}^2}$$

which means that we can write $\sigma_{\alpha}^2 = \left(\frac{\rho}{1-\rho}\right)$.

Random Effects Variants

Probit:

$$L_{i} = \text{Prob}(Y_{i1} = y_{i1}, Y_{i2} = y_{i2}, ... Y_{iT} = y_{iT})$$

$$= \int_{-\infty}^{X_{i1}\beta} \int_{-\infty}^{X_{i2}\beta} ... \int_{-\infty}^{X_{iT}\beta} \phi(u_{i1}, u_{i2}...u_{iT}) du_{iT}... du_{i2} du_{i1}$$

Logit:

$$L_{i} = \operatorname{Prob}(Y_{i1} = y_{i1}, Y_{i2} = y_{i2}, ... Y_{iT} = y_{iT})$$

$$= \int_{-\infty}^{X_{i1}\beta} \int_{-\infty}^{X_{i2}\beta} ... \int_{-\infty}^{X_{iT}\beta} \lambda(u_{i1}, u_{i2}...u_{iT}) du_{iT}... du_{i2} du_{i1}$$

Solution?

$$\phi(u_{i1}, u_{i2}, ... u_{iT}) = \int_{-\infty}^{\infty} \phi(u_{i1}, u_{i2}, ... u_{iT} \mid \alpha_i) \phi(\alpha_i) d\alpha_i$$

Practical Things

- $\hat{\rho}$ = proportion of the variance due to the α_i s.
- Implementation: Gauss-Hermite quadrature or MCMC.
- Best with N large and T small.
- Critically requires $Cov(\mathbf{X}, \alpha) = 0$ (see notes re: Chamberlain's CRE Estimator).

Software

R

- glmmML (Gauss-Hermite quadrature)
- pglm (panel GLMs) (maximum likelihood + quadrature)
- MCMCpack (MCMChlogit)
- Various user-generated functions (e.g., here).

Stata

- xtprobit, xtlogit, xtcloglog
- Plus xttrans (transition probabilities), quadchk (quadrature checking), xtrho / xtrhoi (estimation of within-unit covariances)

Example: Segal (1986) Search & Seizure Cases

Y = 1 (search allowed)

- warrant: Whether (=1) or not (=0) a warrant was issued,
- house: Whether (=1) or not (=0) the search was of a private home,
- person: Whether (=1) or not (=0) the search was of a person,
- business: Whether (=1) or not (=0) the search was of a business,
- car: Whether (=1) or not (=0) the search was of an automobile,
- us: Whether (=1) or not (=0) the U.S. government was the petitioner,
- except: The number of "exceptions" outlined by the Court under which the search fell, and
- justideo: The justice's Segal-Cover (1989) ideology score, ranging from zero (most conservative) to 1 (most liberal).

$$N = 14, \ \bar{T} = 74.1.$$

Data

> summary(Segal)

, pammary (pogar	-/			
justid	caseid	year	vote	warrant
Min. : 1.0	Min. : 1	Min. :63	Min. :0.00	Min. :0.00
1st Qu.: 6.0	1st Qu.: 34	1st Qu.:69	1st Qu.:0.00	1st Qu.:0.00
Median: 8.0	Median : 64	Median:73	Median :1.00	Median :0.00
Mean : 8.1	Mean : 64	Mean :73	Mean :0.53	Mean :0.15
3rd Qu.:11.0	3rd Qu.: 94	3rd Qu.:78	3rd Qu.:1.00	3rd Qu.:0.00
Max. :14.0	Max. :123	Max. :81	Max. :1.00	Max. :1.00
house	person	business	car	us
Min. :0.00	Min. :0.00	Min. :0.00	Min. :0.0	Min. :0.00
1st Qu.:0.00	1st Qu.:0.00	1st Qu.:0.00	1st Qu.:0.0	1st Qu.:0.00
Median:0.00	Median:0.00	Median :0.00	Median:0.0	Median:0.00
Mean :0.23	Mean :0.31	Mean :0.15	5 Mean :0.2	Mean :0.45
3rd Qu.:0.00	3rd Qu.:1.00	3rd Qu.:0.00	3rd Qu.:0.0	3rd Qu.:1.00
Max. :1.00	Max. :1.00	Max. :1.00	Max. :1.0	Max. :1.00
except	justideo			
Min. :0.00	Min. :0.05			
1st Qu.:0.00	1st Qu.:0.17			
Median:0.00	Median:0.73			
Mean :0.35	Mean :0.59			
3rd Qu.:1.00	3rd Qu.:0.88			
Max. :3.00	Max. :1.00			

Plain-Vanilla Logit

```
> SegalLogit<-glm(vote~warrant+house+person+business+car+us+
                  except, data=Segal, family="binomial")
> summary(SegalLogit)
Deviance Residuals:
   Min
            10 Median
                            30
                                   Max
-1.9802 -1.0391
                0.6581
                         1.1220
                                 1.5798
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
           0.4164
                      0.2246 1.854 0.06369 .
(Intercept)
            0.4818 0.1932 2.493 0.01265 *
warrant
house
        -1.1742 0.2575 -4.560 5.12e-06 ***
person
        -0.7509 0.2387 -3.146 0.00166 **
business
         -1.3258 0.2758 -4.807 1.53e-06 ***
          -0.7541 0.2609 -2.890 0.00385 **
car
           115
            0.8679 0.1307 6.639 3.17e-11 ***
except
---
Signif. codes:
0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1434.9 on 1036 degrees of freedom
Residual deviance: 1338.7 on 1029 degrees of freedom
ATC: 1354.7
```

Number of Fisher Scoring iterations: 4

14 / 16

Fixed Effects

```
> library(glmmML)
> SegalFE<-glmmboot(vote~warrant+house+person+business+car+us+
         except, data=Segal, family="binomial",
         cluster=justid)
> summary(SegalFE)
Call: glmmboot(formula = vote ~ warrant + house + person + business +
      car + us + except, family = "binomial", data = Segal, cluster = justid)
         coef se(coef) z Pr(>|z|)
warrant 0.599 0.228 2.63 8.7e-03
house -1.473 0.305 -4.82 1.4e-06
person -1.124 0.282 -3.99 6.7e-05
car -1.202 0.308 -3.90 9.6e-05
us 0.537 0.162 3.32 9.1e-04
except 1.093
                0.155 7.03 2.1e-12
```

Residual deviance: 1050 on 1016 degrees of freedom AIC: 1090

Random Effects

```
> SegalRE<-glmmML(vote~warrant+house+person+business+car+us+
                except+justideo,data=Segal,family="binomial",
                cluster=justid)
> summary(SegalRE)
Call: glmmML(formula = vote ~ warrant + house + person + business +
car + us + except + justideo, family = "binomial", data = Segal, cluster = justid)
            coef se(coef) z Pr(>|z|)
(Intercept) 2.016 0.565 3.57 3.6e-04
warrant
         0.594 0.226 2.63 8.5e-03
house -1.434 0.303 -4.73 2.2e-06
person -1.104 0.280 -3.95 7.9e-05
business -1.799 0.324 -5.56 2.7e-08
      -1.181 0.306 -3.86 1.1e-04
car
          0.531 0.160 3.31 9.3e-04
นร
         1.070 0.154 6.95 3.6e-12
except
justideo -2.344 0.737 -3.18 1.5e-03
Scale parameter in mixing distribution: 0.926 gaussian
Std. Error:
                                     0.195
       LR p-value for H 0: sigma = 0: 4.63e-24
Residual deviance: 1100 on 1027 degrees of freedom AIC: 1120
```