#2 Draw the vectors in Exercise 1 with their tails at the point (2, -3).

#5 For each of the following pairs of points, draw the vector \overrightarrow{AB} . Then compute and redraw \overrightarrow{AB} as a vector in standard position.

(a)
$$A = (1, -1), B = (4, 2)$$

(b)
$$A = (0, -2), B = (2, -1)$$

(c)
$$A = (2, \frac{3}{2}), B = (\frac{1}{2}, 3)$$

(d)
$$A = (\frac{1}{3}, \frac{1}{3}), B = (\frac{1}{6}, \frac{1}{2})$$

#8 Refer to the vectors in Exercise 1. Compute the indicated vectors and also show how the results can be obtained geometrically.

 $\mathbf{b} - \mathbf{c}$

#12 Refer to the vectors in Exercise 3. Compute the indicated vectors.

$$3\mathbf{b} - 2\mathbf{c} + \mathbf{d}$$

#14 In Figure 1.24, A, B, C, D, E, and F are the vertices of a regular hexagon centered at the origin. Express each of the following vectors in terms of

- $\mathbf{a} = \overrightarrow{OA}$ and $\mathbf{b} = \overrightarrow{OB}$:
 - (a) \overrightarrow{AB}
 - **(b)** \overrightarrow{BC}
 - (c) \overrightarrow{AD}
 - (d) \overrightarrow{CF}
 - (e) \overrightarrow{AC}
 - (f) $\overrightarrow{BC} + \overrightarrow{DE} + \overrightarrow{FA}$

#16 Simplify the given vector expression. Indicate which properties in Theorem 1.1 you use.

$$-3(\mathbf{a}-\mathbf{c})+2(\mathbf{a}+2\mathbf{b})+3(\mathbf{c}-\mathbf{b})$$

#17 Solve for the vector x in terms of the vectors a and b.

$$\mathbf{x} - \mathbf{a} = 2(\mathbf{x} - 2\mathbf{a})$$

#22 Draw the standard coordinate axes on the same diagram as the axes relative to \mathbf{u} and \mathbf{v} . Use these to find \mathbf{w} as a linear combination of \mathbf{u} and \mathbf{v} .

these to find
$$\mathbf{w}$$
 as a linear combination of \mathbf{u} and \mathbf{v} .
$$\mathbf{u} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 2 \\ 9 \end{bmatrix}$$