STA260 Summer 2024 Tutorial 8 (Cramer-Rao Inequality, Exponential Family)

Disclaimer: STA260 covers extensive material. Tutorials serve as additional aids, but they cannot cover every question type.

Recall: Exponential Family

If the distribution has the form: $f(y|\theta)=e^{p(\theta)k(y)+q(\theta)+s(y)}$ then it is part of the exponential family. Additionally, $U=\sum_{i=1}^n k(y_i)$ is sufficient and complete.

Relevant Review from Lecture: Cramer-Rao Inequality

If $\hat{\theta}$ is unbiased and $V(\hat{\theta}) = \frac{1}{I_n(\theta)}$ then $\hat{\theta}$ is the MVUE.

$$I_n(\theta) = nI(\theta) = n\left(-\left(\mathbb{E}\left[\left(\frac{d^2}{d^2\theta}\ln(f_Y(y|\theta))\right)\right]\right)\right)$$

Remark: this may only be used if the support is free from θ . It is also not recommended compared to Rao-Blackwell unless $V(\hat{\theta})$ can be easily computed.

Let Y_1, Y_2, \dots, Y_n be a random sample from a population with common probability mass function

$$p_Y(y \mid \theta) = \theta^y (1 - \theta)^{1 - y}, \quad y = 0 \text{ or } 1,$$

where $0 \le \theta \le 1$ is a parameter.

- (a) Derive the Fisher information $I_n(\theta)$ of this distribution.
- (b) Prove that \bar{Y} is MVUE of θ using the Cramer-Rao theorem.

Let $Y_1,...,Y_n$ denote a random sample from $N(0,\theta^2)$ where $\theta>0$ is unknown. Compute the Cramer-Rao Lower Bound.

Let $Y_1, ..., Y_n$ be a random sample with the following common probability density function:

$$f(y) = \begin{cases} \frac{1}{\theta^2} y e^{\frac{-y}{\theta}} & y > 0\\ 0 & \text{otherwise} \end{cases}$$

Here $\theta > 0$. Prove that $\sum_{i=1}^{n} Y_i$ is a complete sufficient statistic for θ .

Let $Y_1, ..., Y_n$ be a random sample with the following common probability density function:

$$f(y) = \begin{cases} \frac{1}{2}e^{\frac{-(y-\theta)}{2}} & y > \theta \\ 0 & \text{otherwise} \end{cases}$$

Here, $\theta \in \mathbb{R}$. Determine whether f(y) is part of the exponential family.

Continuous Distributions

Distribution	Probability Function	Mean	Variance	Moment- Generating Function
Uniform	$f(y) = \frac{1}{\theta_2 - \theta_1}; \theta_1 \le y \le \theta_2$	$\frac{\theta_1+\theta_2}{2}$	$\frac{(\theta_2 - \theta_1)^2}{12}$	$\frac{e^{t\theta_2} - e^{t\theta_1}}{t(\theta_2 - \theta_1)}$
Normal	$f(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\left(\frac{1}{2\sigma^2}\right)(y-\mu)^2\right]$ $-\infty < y < +\infty$	μ	σ^2	$\exp\left(\mu t + \frac{t^2\sigma^2}{2}\right)$
Exponential	$f(y) = \frac{1}{\beta} e^{-y/\beta}; \beta > 0$ $0 < y < \infty$	β	$oldsymbol{eta}^2$	$(1-\beta t)^{-1}$
Gamma	$f(y) = \left[\frac{1}{\Gamma(\alpha)\beta^{\alpha}}\right] y^{\alpha - 1} e^{-y/\beta};$ $0 < y < \infty$	αβ	$lphaeta^2$	$(1-\beta t)^{-\alpha}$
Chi-square	$f(y) = \frac{(y)^{(v/2)-1}e^{-y/2}}{2^{v/2}\Gamma(v/2)};$ $y^2 > 0$	v	2ν	$(1-2t)^{-\nu/2}$
Beta	$f(y) = \left[\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}\right] y^{\alpha - 1} (1 - y)^{\beta - 1};$ $0 < y < 1$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	does not exist in closed form

Discrete Distributions

Distribution	Probability Function	Mean	Variance	Moment- Generating Function
Binomial	$p(y) = \binom{n}{y} p^{y} (1-p)^{n-y};$ $y = 0, 1, \dots, n$	np	np(1-p)	$[pe^t + (1-p)]^n$
Geometric	$p(y) = p(1-p)^{y-1};$ y = 1, 2,	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - (1 - p)e^t}$
Hypergeometric	$p(y) = \frac{\binom{r}{y} \binom{N-r}{n-y}}{\binom{N}{n}};$ $y = 0, 1, \dots, n \text{ if } n \le r,$ $y = 0, 1, \dots, r \text{ if } n > r$	$\frac{nr}{N}$	$n\left(\frac{r}{N}\right)\left(\frac{N-r}{N}\right)\left(\frac{N-n}{N-1}\right)$	
Poisson	$p(y) = \frac{\lambda^{y} e^{-\lambda}}{y!};$ $y = 0, 1, 2, \dots$	λ	λ	$\exp[\lambda(e^t-1)]$
Negative binomial	$p(y) = {y-1 \choose r-1} p^r (1-p)^{y-r};$ y = r, r+1,	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left[\frac{pe^t}{1-(1-p)e^t}\right]^r$