第八章 功率放大电路

71 7	序号	学号	姓名	
------	----	----	----	--

一、填空题

1	功率放大电路研究的重点是如何在允许失真的情况下,尽可能提高输		
	出和。		
2	由于功放电路输入端为大信号,信号放大电路分析时用的微变等效电		
	路法则不再适用,所以对功放电路分析常采用法。		
3	根据三极管静态工作点的位置不同,放大电路的工作状态可分为		
	类、类、类、类。		
4	功放管的导通时间越短,管子的功耗越(大、小),效率越		
	(高、低)。		
5	乙类互补推挽功率放大电路的能量转换效率,在理想的情况下最高可		
	达		
	应当给功放管, 使其工作于状态。		

二、分析计算题

- 1、如图 1 所示电路中,设 BJT 的 β =100, V_{BE} =0.7V, V_{CES} =0.5V,电容 C 对交流可视为短路。输入信号 v_i 为正弦波。
 - (1)计算电路可能达到的最大不失真输出功率 Pom?
 - (2)此时 R_B应调节到什么数值?
 - (3)此时电路的效率 η=?

- 2、一双电源互补对称功率放大电路如图 2 所示,已知 $V_{\rm CC}$ =12 $V_{\rm i}$, $R_{\rm L}$ =8 Ω , $v_{\rm i}$ 为正弦波。
- (1)在 BJT 的饱和压降 V_{CES} =0 的条件下,负载上可能得到的最大输出功率 P_{om} 为多少? 每个管子允许的管耗 P_{CM} 至少应为多少?
- (2)当输出功率达到最大时,电源供给的功率 $P_{\rm V}$ 为多少? 当输出功率最大时的输入电压有效值应为多大?

- 3、电路如图 2 所示,已知 V_{CC} =15V, R_L =16 Ω , v_i 为正弦波。
- (1)在输入信号 V_i =8V (有效值)时,电路的输出功率、管耗、直流电源供给的功率和效率?
- (2)当输入信号幅值 $V_{\text{im}}=V_{\text{CC}}=15\text{V}$ 时,电路的输出功率、管耗、直流电源供给的功率和效率?

4、在图 3 所示电路中,已知 $V_{\rm CC}=16$ V, $R_{\rm L}=4\Omega$, T_1 和 T_2 管的饱和管压降 $\left|V_{\rm CES}\right|=2$ V,输入电压足够大。

- (1) 最大输出功率 P_{om} 和效率 η 各为多少?
- (2) 晶体管的最大功耗 P_{Tmax} 为多少?

- 5、 在图 4 所示电路中,已知 $V_{CC}=15$ V, T_1 和 T_2 管的饱和管压降 $\left|V_{CES}\right|=2$ V,输入电压足够大。
 - (1) 最大不失真输出电压的有效值?
 - (2) 负载电阻 R_L 上电流的最大值?
 - (3) 最大输出功率 P_{om} 和效率 η ?

- 6、一带前置推动级的甲乙类双电源互补对称功放电路如图 5 所示,图中 $V_{\rm CC}$ =20V, $R_{\rm L}$ =8 Ω , $T_{\rm 1}$ 和 $T_{\rm 2}$ 管的 $|V_{\rm CES}|$ =2V。
- (1) 当 T_3 管输出信号 V_{o3} =10V(有效值)时,计算电路的输出功率、管耗、直流电源供给的功率和效率?
- (2) 计算该电路的最大不失真输出功率、效率和达到最大不失真输出时所需 V_{03} 的有效值?

- 7、 一乙类单电源互补对称(OTL)电路如图 6 所示,设 T_1 和 T_2 的特性完全对称, v_i 为正弦波, R_L =8 Ω
 - (1) 静态时, 电容 C 两端的电压应是多少?
- (2) 若管子的饱和压降 V_{CES} 可以忽略不计。忽略交越失真,当最大不失真输出功率可达到 9W 时,电源电压 V_{CC} 至少应为多少?

- 8. 在图 7 所示电路中,已知 $V_{CC}=15$ V, T_1 和 T_2 管的饱和管压降 $\left|V_{CES}\right|=1$ V,集成运放的最大输出电压幅值为±13V,二极管的导通电压为 0.7V。
 - (1) 若输入电压幅值足够大,则电路的最大输出功率为多少?
 - (2) 若 V_i =0.1V 时, V_o =5V,则反馈网络中电阻的取值约为多少?

- 9. 某电路的输出级如图 8 所示。试分析
 - (1) R_3 、 R_4 和 T_3 电路组合有什么作用?
 - (2) 电路中引入 D_1 、 D_2 的作用?

10. 2030 集成功率放大器的一种应用电路如图 9 所示,双电源供电,电源电压为正负 15V,假定其输出级 BJT 的饱和压降 $U_{\rm CES}$ 可以忽略不计, $u_{\rm i}$ 为正弦电压。

- (1) 指出该电路属于 OTL 还是 OCL 电路?
- (2) 求理想情况下最大输出功率 P_{om} ?
- (3) 求电路输出级的效率 η?

