A Bayesian Approach for Sequence Tagging with Crowds

Anonymous EMNLP-IJCNLP submission

Abstract

Current methods for sequence tagging, a core task in NLP, are data hungry, which motivates the use of crowdsourcing as a cheap way to obtain labelled data. However, annotators are often unreliable and current aggregation methods cannot capture common types of span annotation error. To address this, we propose a Bayesian method for aggregating sequence tags that reduces errors by modelling sequential dependencies between the annotations as well as the ground-truth labels. By taking a Bayesian approach, we account for uncertainty in the model due to both annotator errors and the lack of data for modelling annotators who complete few tasks. We evaluate our model on crowdsourced data for named entity recognition, information extraction and argument mining, showing that our sequential model outperforms the previous state-of-theart, and that Bayesian approaches outperform non-Bayesian alternatives. We also find that our approach can reduce crowdsourcing costs through more effective active learning, as it better captures uncertainty in the sequence labels when there are few annotations.

1 Introduction

000

001

002

003

004

005

006

007

800

009

010

012

014

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

The high demand for labeled training data in current NLP methods, particularly deep learning, is widely recognized (Zoph et al., 2016; Rastogi et al., 2016; Gormley et al., 2014). A common NLP task that has benefited from deep learning is sequence tagging, which involves classifying sequences of tokens for tasks such as named entity recognition, part-of-speech tagging, or information extraction. Neural network sequence taggers are typically trained on tens of thousands of documents (Ma and Hovy, 2016; Lample et al., 2016), which presents a challenge when facing new domains or tasks, where obtaining labels is often time-consuming or costly.

Labeled data can be obtained cheaply by crowdsourcing, in which large numbers of untrained workers annotate documents instead of more expensive experts. For sequence tagging, this results in multiple sequences of unreliable labels for each document. Probabilistic methods for aggregating these labels have been shown to be more accurate than simple heuristics such as majority voting (Raykar et al., 2010; Sheshadri and Lease, 2013; Rodrigues et al., 2013; Hovy et al., 2013). However, work on sequence tagging is limited and existing methods cannot model dependencies between the annotators' labels and hence miss error patterns such as a tendency to label overly long spans (Rodrigues et al., 2014; Nguyen et al., 2017). In this paper, we remedy this by proposing a sequential annotator model and applying it to tasks that follow a beginning, inside, outside (BIO) scheme, in which the first token in a span of type 'x' is labeled 'B-x', subsequent tokens are labeled 'I-x', and tokens outside spans are labeled 'O'.

050

051

052

053

054

055

056

057

058

059

060 061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

When learning from noisy or small datasets, commonly-used methods based on maximum likelihood estimation may produce over-confident predictions (Xiong et al., 2011; Srivastava et al., 2014). In contrast, Bayesian inference accounts for model uncertainty when making predictions, and enables hyperparameter tuning in unsupervised scenarios through Bayesian model selection (Bishop, 2006). Unlike alternative methods that optimize the values for model parameters, Bayesian inference integrates over all possible values of a parameter, weighted by a prior distribution that captures background knowledge. The resulting posterior probabilities improve downstream decision making as they include the probability of errors due to a lack of knowledge. For example, during active learning, posterior probabilities assist with selecting the most informative data points (Settles, 2010). We therefore develop a Bayesian sequence combination method, building on prior work that has demonstrated the advantages of Bayesian inference for aggregating unreliable classifications (Kim and Ghahramani, 2012; Simpson et al., 2013; Felt et al., 2016; Paun et al., 2018). We make all of our code freely available 1

This paper provides the following contributions:

- We propose Bayesian sequence combination (BSC), a method for aggregating sequence labels from multiple annotators that models sequential dependencies between tags
- Theoretical and empirical comparisons of annotator models for sequence tagging, including a novel model that captures sequential dependencies between annotations (referred to later as seq)

The following sections discuss related work, annotator models for sequence tagging, our BSC model, and our variational inference approach that enables us to integrate existing sequence taggers. Then, we evaluate a range of Bayesian and non-Bayesian aggregation methods with simulated annotators and two crowdsourced NLP datasets, showing that our sequential model consistently outperforms the previous state-of-the-art, and benefits from the inclusion of automated sequence taggers.

1.1 Related Work

Sheshadri and Lease (2013) benchmarked several aggregation models for non-sequential classifications, obtaining the most consistent performance from that of Raykar et al. (2010), who model the reliability of individual annotators using probabilistic confusion matrices, as proposed by Dawid and Skene (1979). Simpson et al. (2013) showed that a Bayesian variant of of Dawid and Skene (1979)'s model, independent Bayesian classifier combination (IBCC) (Kim and Ghahramani, 2012) can outperform maximum likelihood approaches and simple heuristics when combining crowds of image annotators. To reduce the number of parameters in multi-class problems, Hovy et al. (2013) proposed MACE, and showed that it performed better under a Bayesian treatment on NLP tasks. Paun et al. (2018) further illustrated the advantages of Bayesian models of annotator ability on NLP classification tasks with

different levels of annotation sparsity and noise. We expand this work by detailing the relationships between several annotator models and extending them to sequential classification. Here we focus on the core annotator representation, rather than extensions for clustering annotators (Venanzi et al., 2014; Moreno et al., 2015), modeling their dynamics (Simpson et al., 2013), adapting to task difficulty (Whitehill et al., 2009; Bachrach et al., 2012), or time spent (Venanzi et al., 2016).

To accout for disagreement between annotators when training a sequence tagger, Plank et al. (2014) modify the loss function of the learner. However, typical cross entropy loss naturally accommodates probabilities of labels as well as discrete labels (Bekker and Goldberger, 2016). A contrasting approach is CRF-MA (Rodrigues et al., 2014), a CRF-based model that assumes only one annotator is correct for any given label. Recently, Nguyen et al. (2017) proposed a hidden Markov model (HMM) approach that outperformed CRF-MA, called HMM-crowd. Both CRF-MA and HMM-crowd use simpler annotator models than Dawid and Skene (1979) that do not capture the effect of sequential dependencies on annotator reliability. Neither CRF-MA nor HMM-crowd use a fully Bayesian approach. In this paper, we develop a sequential annotator model and a fully Bayesian method for aggregating sequence labels.

2 Modeling Sequential Annotators

When combining multiple annotators with varying skill levels, we can improve performance by modeling their individual reliability. Here, we describe several existing models that do not consider dependencies between annotations in a sequence, then provide an extension that captures sequential dependencies. Each of the approaches presented employs a different function, A, to model the likelihood of the annotator choosing the label c_{τ} given the true label, t_{τ} , for token τ .

Accuracy model (acc): simply models the annotator's accuracy, π , as follows:

$$A = p(c_{\tau} = i | t_{\tau} = j, \pi) = \begin{cases} \pi & \text{where } i = j \\ \frac{1-\pi}{J-1} & \text{otherwise} \end{cases},$$
(1)

where c_{τ} is the label given by the annotator for token τ , t_{τ} is its true label and J is the number of classes. This is the basis of several previous methods (Donmez et al., 2010; Rodrigues et al., 2013).

¹http://github.com/****

It assumes reliability is constant, which means that when one class label is far more common than others, a spammer who always selects the most common label will nonetheless have a high π .

MACE (Hovy et al., 2013): assumes constant accuracy, π , but when an annotator is incorrect, they label according to a spamming distribution, ξ , that is independent of the true label, t_{τ} .

$$A = p(c_{\tau} = i | t_{\tau} = j, \pi, \boldsymbol{\xi})$$

$$= \begin{cases} \pi + (1 - \pi)\xi_{j} & \text{where } i = j \\ (1 - \pi)\xi_{j} & \text{otherwise} \end{cases}.$$
 (2)

This addresses the case where spammers choose the most common label when the classes are imbalanced. While MACE can capture spamming patterns, it does not explicitly model different rates of errors per class. This could be an issue for sequence tagging using the BIO encoding, for example, if an annotator frequently labels longer spans than the true spans by starting the spans early. In this case, they may more frequently mis-label the 'B' tokens than the 'I' or 'O' tokens, which cannot be modeled by MACE.

Confusion vector (CV): this approach learns a separate accuracy for each class label (Nguyen et al., 2017) using parameter vector, $\boldsymbol{\pi}$, of size J:

$$A = p(c_{\tau} = i | t_{\tau} = j, \boldsymbol{\pi}) = \begin{cases} \pi_{j} & \text{where } i = j \\ \frac{1 - \pi_{j}}{J - 1} & \text{otherwise} \end{cases}$$
(3)

This model does not capture spamming patterns where one of the incorrect labels has a much higher likelihood than the others.

Confusion matrix (CM) (Dawid and Skene, 1979): this model can be seen as an expansion of the confusion vector so that π becomes a $J \times J$ matrix with values given by:

$$A = p(c_{\tau} = i | t_{\tau} = j, \boldsymbol{\pi}) = \pi_{i,i}. \tag{4}$$

This requires a larger number of parameters, J^2 , compared to the J+1 parameters of MACE or J parameters of the confusion vector. CM can model spammers who frequently chose one label regardless of the ground truth, as well as annotators with different error rates for each type of 'B-x', 'I-x' and 'O' label. For example, if an annotator is better at detecting type 'x' spans than type 'y', or if they frequently mis-label the start of a span as 'O' when the true label is 'B-x', but are otherwise

accurate. However, the confusion matrix ignores dependencies between annotations in a sequence, such as the fact that an 'I' cannot immediately follow an 'O'.

Sequential Confusion Matrix (seq): we introduce a new extension to the confusion matrix to model the dependency of each label in a sequence on its predecessor, giving the following likelihood:

$$A = p(c_{\tau} = i | c_{\tau-1} = \iota, t_{\tau} = j, \pi) = \pi_{i,\iota,i}, \tag{5}$$

where π is now three-dimensional with size $J \times J \times J$. In the case of disallowed transitions, e.g. from $c_{\tau-1}$ = 'O' to c_{τ} = 'I', the value $\pi_{j,c_{\tau-1},c_{\tau}}$ = 0, $\forall j$ is fixed *a priori*. The sequential model can capture phenomena such as a tendency toward overly long sequences, by learning that $\pi_{O,O,O} > \pi_{O,I,O}$, or a tendency to split spans by inserting 'B' in place of 'I' by increasing the value of $\pi_{I,I,B}$ without affecting $\pi_{I,B,B}$ and $\pi_{I,O,B}$.

The annotator models we presented, which include the most widespread models for NLP annotation tasks, can therefore be seen as extensions of one another. The choice of annotator model for a particular annotator depends on the developer's understanding of the annotation task: if the annotations have sequential dependencies, this suggests the seg model; for non-sequential classifications CM may be effective with small (< 5) numbers of classes; MACE may be more suitable if there are more classes. However, there is also a tradeoff between the expressiveness of the model and the number of parameters that must be learned. Simpler models with fewer parameters, such as acc, which may be effective if there are only small numbers of annotations from each annotator. Our experiments in Section 5 investigate this trade-off on NLP tasks involving sequential annotation. The next section shows how these models can be used as part of a model for aggregating sequential annotations.

3 A Generative Model for Bayesian Sequence Combination

The generative story for our approach, *Bayesian* sequence combination (BSC), is as follows. We assume a transition matrix, T, where each entry is $T_{j,\iota} = p(t_{\tau} = \iota | t_{\tau-1} = j)$. We draw each row of the transition matrix, $T_j \sim \text{Dir}(\gamma_j)$, where Dir is the Dirichlet distribution. For each document, n, in a set of N documents, we draw a sequence of class labels, $t_n = [t_{n,1}, ..., t_{n,L_n}]$, of

length L_n , from a categorical distribution: $t_{n,\tau} \sim$ $Cat(T_{t_{n,\tau-1}})$. The set of all labels for all documents is referred to as $t = \{t_1, ..., t_N\}$.

300

301

302

303

304

305

306

307

308

309

310

312

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

In the generative model, we assume one of the annotator models described in Section 2 for each of K annotators. The number of parameters depends on the choice of annotator model: for acc, only one parameter, $\pi^{(k)}$, is drawn for annotator k; for MACE, we draw a single value $\pi^{(k)}$ and a vector $\xi^{(k)}$ of length J, while for CV we draw Jindependent values of $\pi_i^{(k)}$, and for *CM* we draw a vector $\boldsymbol{\pi}_{j}^{(k)}$ of size J for each true label value $j \in \{1,...,J\}$; in the case of seq, we draw vectors $\pi_{i,l}^{(k)}$ for each true label value for each previous label value, ι . All parameters of these annotator models are probabilities, so are drawn from Dirichlet priors. We refer to the set of hyperparameters for k's annotator model as $\alpha^{(k)}$. Given its parameters, the annotator model defines a likelihood function, $A^{(k)}(t_{n,\tau}, \boldsymbol{c}_{n,\tau}, \boldsymbol{c}_{n,\tau-1})$, where $\boldsymbol{c}_{n,\tau}$ is the τ th label of document n. The argument $c_{n,\tau-1}$ is only required if $A^{(k)}$ is an instance of seq and is ignored by the other annotator models. We draw annotator k's label for each token τ in each document n according to:

$$c_{n,\tau}^{(k)} \sim \text{Cat}([A^{(k)}(t_{n,\tau}, 1, \boldsymbol{c}_{n,\tau-1}^{(k)}), ..., A^{(k)}(t_{n,\tau}, J, \boldsymbol{c}_{n,\tau-1}^{(k)})]).$$
 (6)

The annotators are assumed to be conditionally independent of one another given the true labels, t, which means that their errors are assumed to be uncorrelated. This is a strong assumption when considering that the annotators have to make their decisions based on the same input data. However, in practice, dependencies do not usually cause the most probable label to change (Zhang, 2004), hence the performance of classifier combination methods is only slightly degraded, while avoiding the complexity of modeling dependencies between annotators (Kim and Ghahramani, 2012).

Joint distribution: the complete model can be represented by the joint distribution, given by:

$$p(\boldsymbol{t}, \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{T}, \boldsymbol{\theta}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{x} | \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma})$$
(7)
$$= \prod_{k=1}^{K} \left\{ p(A^{(k)} | \boldsymbol{\alpha}^{(k)}) \prod_{n=1}^{N} p(\boldsymbol{c}_{n}^{(k)} | A^{(k)}, \boldsymbol{t}) \right\}$$

$$\prod_{j=1}^{J} p(\boldsymbol{T}_{j} | \boldsymbol{\gamma}_{j}) \prod_{n=1}^{N} \prod_{\tau=1}^{L_{n}} p(\boldsymbol{t}_{n} | \boldsymbol{T}_{t_{n,\tau-1}})$$
(8)

$$\prod_{j=1}^{J} p(\boldsymbol{T}_{j}|\boldsymbol{\gamma}_{j}) \prod_{n=1}^{N} \prod_{\tau=1}^{L_{n}} p(\boldsymbol{t}_{n}|\boldsymbol{T}_{t_{n,\tau-1}})$$
(8)

where each term is defined by the distributions of the generative model described in this section.

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Inference using Variational Bayes

Given a set of annotations, $c = \{c^{(1)}, ..., c^{(K)}\}\$, from K annotators, our aim is to obtain a posterior distribution over sequence labels, t. To do this, we employ variational Bayes (VB) (At-In comparison to other Bayesian tias, 2000). approaches such as Markov chain Monte Carlo (MCMC), VB is often faster, readily allows incremental learning, and provides easier ways to determine convergence (Bishop, 2006). Unlike maximum likelihood methods such as standard expectation maximization (EM), VB considers prior distributions and accounts for parameter uncertainty in a Bayesian manner. The trade-off is that VB requires us to approximate the posterior distribution. Here, we apply the *mean field* assumption to assume a variational approximation that factorizes between subsets of parameters or latent variables, so that each subset, z, has a variational factor, q(z):

$$p(\boldsymbol{t}, \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{T}, \boldsymbol{\theta} | \boldsymbol{c}, \boldsymbol{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma})$$

$$\approx \prod_{k=1}^{K} q(A^{(k)}) \prod_{j=1}^{J} q(\boldsymbol{T}_{j}) \prod_{n=1}^{N} q(\boldsymbol{t}_{n}). \tag{9}$$

The labels produced by the sequence taggers, d, can be marginalized analytically so do not require a separate factor. Each variational factor has the form $\ln q(z) = \mathbb{E}[\ln p(z|\boldsymbol{c}, \neg z)]$, where $\neg z$ contains all the latent variables except z. We perform approximate inference by using coordinate ascent to update each variational factor, q(z), in turn, taking expectations with respect to the current estimates of the other variational factors. Each iteration reduces the KL-divergence between the true and approximate posteriors of Equation 9, and hence optimizes a lower bound on the log marginal likelihood, also called the evidence lower bound or ELBO (Bishop, 2006; Attias, 2000). The complete VB algorithm is described in Algorithm 1, which makes use of the update equations for the log variational factors given below.

The prior distributions chosen for our generative model are conjugate to the distributions over the latent variables and model parameters, meaning that each q(z) is the same type of distribution as the corresponding prior distribution defined in Section 3. The parameters of each variational distribution can be computed in terms of expectations **Input**: Annotations, *c*

- 1 Randomly initialize $\mathbb{E} \ln A^{(k)}$, $\forall k$, $\mathbb{E} \ln T_j$, $\forall j$ while not_converged $(r_{n,\tau,j}, \forall n, \forall \tau, \forall j)$ do
- 2 Update $r_{j,n,\tau}$, $s_{t_{j,n,\tau-1},t_{\iota,n,\tau}}$, $\forall j, \forall \tau, \forall i, \forall \iota$, using forward-backward algorithm
- Update $\ln q(A^{(k)})$ and $\mathbb{E} \ln A^{(k)}, \forall k$, given current $c, r_{j,n,\tau}$
- 4 Update $\ln q(\boldsymbol{T}_j)$ and $\mathbb{E} \ln T_{j,\iota}, \forall j, \forall \iota$, given current $s_{t_j,n,\tau-1},t_{\iota,n,\tau}$

end

Output: Label posteriors, $r_{n,\tau,j}$, $\forall n, \forall \tau, \forall j$, most probable sequence of labels, $\hat{\boldsymbol{t}}_n, \forall n$ using Viterbi algorithm

Algorithm 1: The VB algorithm for BSC.

over the other subsets of variables. For the true labels, t, the variational factor is:

$$\ln q(\boldsymbol{t}_n) = \sum_{n=1}^{N} \sum_{\tau=1}^{L_n} \sum_{k=1}^{K} \mathbb{E} \ln A^{(k)} \left(t_{n,\tau}, c_{n,\tau}^{(k)}, c_{n,\tau-1}^{(k)} \right) + \mathbb{E} \ln T_{t_{n,\tau-1}, t_{n,\tau}} + \text{const.}$$
(10)

From this factor, we compute the posterior probability of each true token label, $r_{n,\tau,j} = \mathbb{E}[p(t_{n,\tau} = j|c)]$, and of each label transition, $s_{n,\tau,j,\iota} = \mathbb{E}[p(t_{n,\tau-1} = j,t_{n,\tau} = \iota|c)]$, using the forward-backward algorithm (Ghahramani, 2001). Please see supplementary material for the detailed update equations.

Each row of the transition matrix has the factor:

$$\ln q(\boldsymbol{T}_j) = \ln \operatorname{Dir} \left([N_{j,\iota} + \gamma_{j,\iota}, \forall \iota \in \{1, .., J\}] \right), \tag{11}$$

where $N_{j,\iota} = \sum_{n=1}^{N} \sum_{\tau=1}^{L_n} s_{n,\tau,j,\iota}$ is the expected number of times that label ι follows label j. The forward-backward algorithm requires expectations of $\ln T$ that can be computed using standard equations for a Dirichlet distribution:

$$\mathbb{E} \ln T_{j,\iota} = \Psi(N_{j,\iota} + \gamma_{j,\iota}) - \Psi\left(\sum_{\iota=1}^{J} (N_{j,\iota} + \gamma_{j,\iota})\right),$$
(12)

where Ψ is the digamma function.

The variational factor for each annotator model is a distribution over its parameters, which differs

data -set		nces or dev				#gold spans			
NER	6,056	2,800	3,256	47	4.9	21,612	1.51		
PICO	9,480	191	191	312	6.0	700	7.74		
ARG	8,000	60	100	105	5	73	17.52		

Table 1: Dataset statistics. Span lengths are means.

between models. For seq, the variational factor is:

$$\ln q\left(A^{(k)}\right) = \sum_{j=1}^{J} \sum_{l=1}^{J} \operatorname{Dir}\left(\left[\boldsymbol{N}_{j,l,m}^{(k)} \forall m \in \{1,..,J\}\right]\right)$$

$$N_{j,l,m}^{(k)} = \alpha_{j,l,m}^{(k)} + \sum_{n=1}^{N} \sum_{\tau=1}^{L_n} r_{n,\tau,j} \delta_{l,c_{n,\tau-1}^{(k)}} \delta_{m,c_{n,\tau}^{(k)}}, \quad (13)$$

where δ is the Kronecker delta. For *CM*, *MACE*, *CV* and *acc*, the factors follow a similar pattern of summing pseudo-counts of correct and incorrect answers. The forward-backward passes also require the following expectation terms for *seq*, which are standard equations for Dirichlet distributions and can be simplified for the other annotator models:

$$\mathbb{E} \ln A^{(k)}(j,l,m) = \Psi\left(N_{j,l,m}^{(k)}\right) - \Psi\left(\sum_{m'=1}^{J} \left(N_{j,l,m'}^{(k)}\right)\right). \tag{14}$$

4.1 Most Likely Sequence Labels

The approximate posterior probabilities of the true labels, $r_{j,n,\tau}$, provide confidence estimates for the labels. However, it is often useful to compute the most probable sequence of labels, \hat{t}_n , using the Viterbi algorithm (Viterbi, 1967). To apply the algorithm, we use the converged variational factors to compute $\mathbb{E}[T]$ and $\mathbb{E}[A^{(k)}]$, $\forall k$. The most probable sequence is particularly useful because, unlike $r_{j,n,\tau}$, the sequence will be consistent with any transition constraints imposed by the priors on the transition matrix T, such as preventing 'O' \rightarrow 'I' transitions by assigning them zero probability.

5 Experiments

We evaluate Bayesian sequence combination (BSC) with each of the annotator models described in Section 3 to assess whether the sequential annotator model, *seq*, improves the quality of the inferred sequence tags. The first experiment uses simulated annotators to investigate the effects of different types of error on aggregation methods.

We then introduce two NLP datasets to test performance in passive and active learning scenarios, analyze errors, and visualize the learned annotator models. The experiments also assess whether including including sequence taggers into the probabilistic model improves the aggregated sequence tags as well as the sequence taggers' predictions on test data.

5.1 Evaluated Methods

500

501

502

503

504

505

506

507

508

509

510

512

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

well-established non-sequential baselines, we include token-level majority voting (MV), MACE (Hovy et al., 2013), Dawid-Skene (DS) (Dawid and Skene, 1979) and independent Bayesian classifier combination (IBCC) (Kim and Ghahramani, 2012), a Bayesian treatment of Dawid-Skene. We also test the sequential HMM-crowd method (Nguyen et al., 2017), which uses a combination of maximum a posteriori (or smoothed maximum likelihood) estimates for the confusion vector (CV) annotator model and variational inference for an integrated hidden Markov model (HMM). MACE and IBCC are variants of BSC-MACE and BSC-CM, respectively, with non-sequential true label models. HMM-Crowd and DS use non-Bayesian inference steps and can be compared with their Bayesian variants, BSC-CV and IBCC, respectively.

BSC is tested with each of the different annotator models described in Section 2. To determine the effect of each component of the model we also test BSC-CM and BSC-seq without a text model (*notext*), and with the transition matrix, T, replaced by simple independent class probabilities (labeled \T). We also test the BiLSTM-LSTM-CRF of Lample et al. (2016) trained on the output predictions of HMM-crowd and BSC-seq (labeled →LSTM). We use the implementation of Lample et al. (2016), which must be trained on discrete labels and outputs discrete predictions rather than probabilities. We follow the authors' recommendations for hyperparameters except for the optimizer, for which we use Adam to improve the convergence rate as recommended by Reimers and Gurevych (2017).

5.2 Crowdsourced Datasets

We use two datasets containing both crowd-sourced and gold sequential annotations. The CoNLL 2003 named-entity recognition dataset (Tjong Kim Sang and De Meulder, 2003), *NER*, contains gold labels for four named entity

categories (PER, LOC, ORG, MISC), with crowd-sourced labels provided by (Rodrigues et al., 2014). *PICO* (Nguyen et al., 2017), consists of medical paper abstracts that have been annotated by a crowd to indicate text spans that identify the population enrolled in a clinical trial. Further information about the datasets is shown in Table 1. Note that NER spans are typically much shorter than those in PICO.

550 551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

Evaluation metrics: For NER we use the CoNLL 2003 F1-score, which considers only exact span matches to be correct. For PICO, we use the relaxed F1-measure (Nguyen et al., 2017), which counts the matching fractions of spans when computing precision and recall. Since the spans in PICO are longer than those of NER, partial matches may still contain much of the required information. We also compute the cross entropy error (*CEE*) at the level of tokens to compare the probability estimates produced by aggregation methods, which are useful for decision-making tasks such as active learning.

5.3 Aggregating Crowdsourced Labels

In this task, we use the aggregation methods to combine multiple crowdsourced labels and predict the true labels for the same documents. For both datasets, we provide all the crowdsourced labels as input to the aggregation method. In both cases, we split the gold-labeled documents into 50% validation and test sets. For NER, we use the split given by Nguyen et al. (2017), while for PICO, the split was not available so our results are not directly comparable to theirs.

We tune the hyperparameters using a validation set. To limit the number of hyperparameters to tune, we optimize only three values for BSC. Hyperparameters of the transition matrix, γ_i , are set to the same value, γ_0 , except for disallowed transitions, (O-I, transitions between types, e.g. I-PER-I-ORG), which are set to 0.1. For the annotator models (both A and B), all values are set to α_0 , except for disallowed transitions, which are set to 0.1, then ϵ_0 is added to hyperparameters corresponding to correct annotations (e.g. diagonal entries in a confusion matrix). We use ϵ_0 to encode the prior assumption that annotators are more likely to have an accuracy greater than random. This avoids the non-identifiability problem, in which the class labels become switched around. We use validation set F1-scores to choose values

	NER				PICO)						
	Prec.	Rec.	F1	CEE	Prec.	Rec.	F1	CEE	Prec.	Rec.	F1	CEE
Best worker	76.4	60.1	67.3	17.1	64.8	53.2	58.5	17.0	62.7	57.5	60.0	44.20
Worst worker	55.7	26.5	35.9	31.9	50.7	52.9	51.7	41.0	25.5	19.2	21.9	70.33
MV	79.9	55.3	65.4	6.24	82.5	52.8	64.3	2.55	40.0	31.5	34.8	14.03
MACE	74.4	66.0	70.0	1.01	25.4	84.1	39.0	58.2	31.2	32.9	32.0	2.62
DS	79.0	70.4	74.4	2.80	71.3	66.3	68.7	0.44	45.6	49.3	47.4	0.97
IBCC	79.0	70.4	74.4	0.49	72.1	66.0	68.9	0.27	44.9	47.9	46.4	0.85
HMM-crowd	80.1	69.2	74.2	1.00	75.9	66.7	71.0	0.99	43.5	37.0	40.0	3.38
BSC-acc	83.4	54.3	65.7	0.96	89.4	45.2	60.0	1.59	36.9	32.9	34.8	6.47
BSC-MACE	67.9	74.1	70.9	0.89	46.7	84.4	60.1	1.98	55.7	53.4	54.5	2.80
BSC-CV	83.0	64.6	72.6	0.93	74.9	67.2	71.1	0.84	37.9	34.2	36.0	4.73
BSC-CM	79.9	72.2	75.8	1.46	60.1	78.8	68.2	1.49	56.0	57.5	56.8	3.76
BSC-seq	80.3	74.8	77.4	0.65	72.9	77.6	75.1	1.10	54.4	67.1	60.1	3.26
BSC-CM-notext	74.7	69.7	72.1	1.48	62.7	74.8	68.2	1.32				
$BSC ext{-}CM ackslash m{T}$	80.0	73.0	76.3	0.99	65.8	66.7	66.2	0.28				
BSC-seq-notext	81.3	71.9	76.3	0.52	81.2	59.2	68.5	0.73				
$\overline{ ext{BSC-seq} \setminus T}$	64.2	44.4	52.5	0.77	51.2	70.4	59.8	1.04				

Table 2: Aggregating crowdsourced labels: estimating true labels for documents labeled by the crowd.

Figure 1: Clusters of confusion matrix representations from each BSC-*** annotator model trained on PICO.

from [0.1, 1, 10, 100], training on a small subset of 250 documents for NER and 500 documents for PICO. Note that we use the dev set at each VB iteration to select the best LSTM model after each epoch.

The results of the aggregation task are shown in Table 2. Although DS and IBCC do not consider sequence information nor the text itself, they both perform well on both datasets, with IBCC reaching better cross entropy error than DS due to its Bayesian treatment. The improvement of DS over the results given by Nguyen et al. (2017) may be due to implementation differences. Neither MACE, BSC-acc nor BSC-MACE perform strongly, with F1-scores sometimes falling below MV. The acc and MACE annotator models may be a poor match for the sequence labeling task if annotator competence varies greatly depending on

the true class label.

BSC-seq outperforms the other approaches, although without the text model (BSC-seq-notext) or the transition matrix (BSC-seq \T), its performance decreases. However, for BSC-CM, the results are less clear: BSC-CM-notext differs from IBCC only in the inclusion of the transition matrix, T, yet IBCC outperforms BSC-CM-notext. This suggests that the combination of these elements is important: the seq annotator model is effective in combination with the transition matrix and simple text model. Integrating an LSTM improves performance further in both datasets, and outperforms an LSTM trained on the output of HMM-crowd or BSC-seq.

We categorize the errors made by key methods and list the counts for each category in Table 3. All machine learning methods shown reduce the

Method	Dataset	exact match	wrong type	partial match	missing span	false +ve	late start	early start	late finish	early finish	fused spans	splits	inv- alid	length error
MV	NER	4307	304	228	1773	100	96	10	15	85	17	26		
HMM-crowd	NER	4519	361	256	924	182	101	15	26	97	28	22		
BSC-CV	NER	4431	275	243	1245	177	100	17	23	89	29	16		
BSC-CM	NER	4534	387	258	734	269	111	23	37	86	39	12		
BSC-seq	NER	4581	351	261	564	195	93	42	33	85	39	17		
MV	PICO	168	0	32	185	48	9	11	1	0	3	9	40	1.26
HMM-crowd	PICO	190	0	47	124	81	13	21	0	0	5	8	0	1.99
BSC-CV	PICO	156	0	76	117	81	10	25	0	0	11	0	0	2.15
BSC-CM	PICO	216	0	50	83	157	10	19	0	0	4	17	0	2.42
BSC-seq	PICO	168	0	86	95	67	17	19	5	0	4	9	0	0.61
MV	ARG	17	0	26	14	4	9	1	0	2	0	0	9	5.27
IBCC	ARG	27	1	21	8	9	7	2	0	1	0	3	9	3.43
HMM-Crowd	ARG	20	0	23	14	4	7	2	0	2	0	0	4	4.87
BSC-CV	ARG	18	0	25	14	4	12	2	0	2	0	0	0	5.37
BSC-CM	ARG	35	1	12	9	9	7	2	0	1	1	0	0	2.11
BSC-Seq	ARG	39	3	12	3	20	6	4	0	0	1	0	0	0.46

Table 3: Counts of different types of span errors.

number of spans that were completely missed by majority voting.

To determine whether BSC-seq learns distinctive confusion matrices depending on the previous labels, we plot the learned annotator models for PICO as probabilistic confusion matrices in Figure 1. As the dataset contains a large number of annotators, we clustered the confusion matrices inferred by each model into five groups by applying K-means to their posterior expected values, then plotted the means for each cluster. In all clusters, BSC-CV learns different accuracies for B, I and O (the diagonal entries). These differences may explain its improvement over BSC-acc. BSC-CM differs from BSC-CV in that the first, fourth and fifth clusters have off-diagonal values with different heights for the same true label value. The second cluster for BSC-CM encodes likely spammers who usually choose 'O' regardless of the ground truth. The confusion matrices for BSC-seq are very different depending on the worker's previous annotation. Each column in the figure shows the confusion matrices corresponding to the same cluster of annotators. The first column, for example, shows annotators with a tendency toward I→I or O→O transitions, while the following clusters indicate very different labeling behavior. The model therefore appears able to learn distinct confusion matrices for different workers given previous labels, which supports the use of sequential annotator models.

Figure 2: F1-scores for active learning simulations on NER using an uncertainty sampling strategy that selects the least-confident sequences.

5.4 Active Learning

Active learning iteratively selects informative data points to be labeled so that a model can be trained using less labeled data. Posterior probabilities output by Bayesian methods account for uncertainty in the model parameters, hence can be used to choose data points that rapidly reduce uncertainty. We hypothesize that BSC will learn more quickly than non-sequential methods in an active learning scenario. While various active learning methods could be applied here, in this paper we wish to demonstrate only that BSC may serve as a good foundation for active learning, and defer a deeper investigation of active learning techniques to future work. We therefore simulate active learning using a well-established technique, uncertainty sampling (?Settles, 2010), as described in Algo-The LSTM implementation provided by Lample et al. (2016) outputs discrete label predictions, so to allow direct comparison of BSC **Input**: A random *initial_set* of training labels, the same for all methods.

- 1 Set training set c = initial_set while training set size | max_no_labels do
- 2 Train model on c
- 3 Predict sequence labels for all documents
- Compute the mean entropy of the sequence labels of each document: $-\frac{1}{L_n} \sum_{\tau=1}^{L_n} \sum_{j=1}^{J} p(t_{n,\tau} = j|\boldsymbol{c}) \ln p(t_{n,\tau} = j|\boldsymbol{c})$
- 5 Select *batch_size* documents with highest mean entropy, add their annotations to *c*

end

Algorithm 2: Active learning simulation for each method using uncertainty sampling.

against a neural sequence tagger, we modify the network to output probabilities for the active learning simulation. For MV, probabilities are estimated by fractions of votes.

Figure 2 plots the mean F1 scores over ten repeats of the active learning simulation. IBCC learns more rapidly than DS on NER due to its Bayesian approach, which may also explain the stronger performance of BSC-CV compared to the similar HMM-crowd model, although this does not hold for the PICO dataset. BSC variants outperform non-sequential IBCC. BSC-CM and BSC-CV are strongest on PICO with small numbers of labels, but are later overtaken by BSCseq, which may require more data to learn its more complex model. On NER, BSC-CM continues to outperform the more complex BSC-seq, but the integrated LSTM clearly improves BSCseq+LSTM. BSC-seq-LSTM performs strongly on NER but poorly on PICO, where fewer labels were provided, while BSC-seq+LSTM appears more robust to this problem.

6 Discussion and Conclusions

We proposed BSC-Seq, a Bayesian approach to aggregating sequence labels, which models the effect of label sequences on annotator reliability. Our results reinforce previous work that has demonstrated the benefits of modeling annotator reliability when aggregating noisy data, such as crowdsourced labels. We showed that sequential models outperform non-sequential baselines and that BSC-seq improves the state-of-the-art over HMM-crowd. Its performance depends on the

combination of sequential annotator model, label transition matrix, and text model.

References

- Hagai Attias. 2000. A variational Bayesian framework for graphical models. In Advances in Neural Information Processing Systems 12, pages 209–215. MIT Press
- Yoram Bachrach, Tom Minka, John Guiver, and Thore Graepel. 2012. How to grade a test without knowing the answers: a Bayesian graphical model for adaptive crowdsourcing and aptitude testing. In *Proceedings of the 29th International Coference on International Conference on Machine Learning*, pages 819–826. Omnipress.
- Alan Joseph Bekker and Jacob Goldberger. 2016. Training deep neural-networks based on unreliable labels. In *Acoustics, Speech and Signal Processing (ICASSP)*, 2016 IEEE International Conference on, pages 2682–2686. IEEE.
- C. M. Bishop. 2006. *Pattern recognition and machine learning*, 4th edition. Information Science and Statistics. Springer.
- A. P. Dawid and A. M. Skene. 1979. Maximum likelihood estimation of observer error-rates using the EM algorithm. *Journal of the Royal Statistical Society. Series C (Applied Statistics)*, 28(1):20–28.
- Pinar Donmez, Jaime Carbonell, and Jeff Schneider. 2010. A probabilistic framework to learn from multiple annotators with time-varying accuracy. In *Proceedings of the 2010 SIAM International Conference on Data Mining*, pages 826–837. SIAM.
- Paul Felt, Eric K. Ringger, and Kevin D. Seppi. 2016. Semantic annotation aggregation with conditional crowdsourcing models and word embeddings. In *International Conference on Computational Linguistics*, pages 1787–1796.
- Zoubin Ghahramani. 2001. An introduction to hidden markov models and Bayesian networks. *International Journal of Pattern Recognition and Artificial Intelligence*, 15(01):9–42.
- Matthew R. Gormley, Margaret Mitchell, Benjamin Van Durme, and Mark Dredze. 2014. Low-resource semantic role labeling. In *Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1177–1187. Association for Computational Linguistics.
- Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani, and Eduard H Hovy. 2013. Learning whom to trust with MACE. In *HLT-NAACL*, pages 1120–1130.
- Hyun-chul Kim and Zoubin Ghahramani. 2012. Bayesian classifier combination. In *International Conference on Artificial Intelligence and Statistics*, pages 619–627.

- Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. 2016. Neural architectures for named entity recognition. In *Proceedings of NAACL-HLT*, pages 260–270.

 Xuezhe Ma and Eduard Hovy. 2016. End-to-end sequence labeling via bi-directional LSTM-CNNs-
- Xuezhe Ma and Eduard Hovy. 2016. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), volume 1, pages 1064–1074.
- Pablo G. Moreno, Yee Whye Teh, and Fernando Perez-Cruz. 2015. Bayesian nonparametric crowdsourcing. *Journal of Machine Learning Research*, 16:1607–1627.
- An T Nguyen, Byron C Wallace, Junyi Jessy Li, Ani Nenkova, and Matthew Lease. 2017. Aggregating and predicting sequence labels from crowd annotations. In *Proceedings of the conference. Association for Computational Linguistics. Meeting*, volume 2017, page 299. NIH Public Access.
- Silviu Paun, Bob Carpenter, Jon Chamberlain, Dirk Hovy, Udo Kruschwitz, and Massimo Poesio. 2018. Comparing bayesian models of annotation. *Transactions of the Association for Computational Linguistics*, 6:571–585.
- Barbara Plank, Dirk Hovy, and Anders Søgaard. 2014. Learning part-of-speech taggers with inter-annotator agreement loss. In *Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics*, pages 742–751.
- Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner. 2016. Weighting finite-state transductions with neural context. In *Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 623–633.
- V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni, and L. Moy. 2010. Learning from crowds. *Journal of Machine Learning Research*, 11:1297–1322.
- Nils Reimers and Iryna Gurevych. 2017. Optimal hyperparameters for deep lstm-networks for sequence labeling tasks. *arXiv preprint arXiv:1707.06799*, *version 2*.
- Filipe Rodrigues, Francisco Pereira, and Bernardete Ribeiro. 2013. Learning from multiple annotators: distinguishing good from random labelers. *Pattern Recognition Letters*, 34(12):1428–1436.
- Filipe Rodrigues, Francisco Pereira, and Bernardete Ribeiro. 2014. Sequence labeling with multiple annotators. *Machine learning*, 95(2):165–181.
- Burr Settles. 2010. Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin-Madison, 52(55-66):11.

Aashish Sheshadri and Matthew Lease. 2013. Square: A benchmark for research on computing crowd consensus. In *First AAAI Conference on Human Computation and Crowdsourcing*.

- E. Simpson, S. Roberts, I. Psorakis, and A. Smith. 2013. Dynamic Bayesian combination of multiple imperfect classifiers. *Intelligent Systems Reference Library series*, Decision Making with Imperfect Decision Makers: 1–35.
- Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from overfitting. *The Journal of Machine Learning Research*, 15(1):1929–1958.
- Erik F Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In *Proceedings of the seventh conference on Natural language learning at HLT-NAACL 2003-Volume 4*, pages 142–147. Association for Computational Linguistics.
- Matteo Venanzi, John Guiver, Gabriella Kazai, Pushmeet Kohli, and Milad Shokouhi. 2014. Community-based Bayesian aggregation models for crowdsourcing. In 23rd international conference on World wide web, pages 155–164.
- Matteo Venanzi, John Guiver, Pushmeet Kohli, and Nicholas R Jennings. 2016. Time-sensitive Bayesian information aggregation for crowdsourcing systems. *Journal of Artificial Intelligence Research*, 56:517–545.
- Andrew Viterbi. 1967. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. *IEEE transactions on Information Theory*, 13(2):260–269.
- Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier R Movellan, and Paul L Ruvolo. 2009. Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. In *Advances in neural information processing systems*, pages 2035–2043.
- Hui Yuan Xiong, Yoseph Barash, and Brendan J Frey. 2011. Bayesian prediction of tissue-regulated splicing using rna sequence and cellular context. *Bioinformatics*, 27(18):2554–2562.
- Harry Zhang. 2004. The optimality of naïve Bayes. In *Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference, FLAIRS* 2004. AAAI Press.
- Barret Zoph, Deniz Yuret, Jonathan May, and Kevin Knight. 2016. Transfer learning for low-resource neural machine translation. In *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing*, pages 1568–1575.

A Update Equations for the Forward-Backward Algorithm

The forward-backward algorithm consists of two passes. The *forward pass* for each document, n, starts from $\tau=1$ and computes:

$$\ln r_{n,\tau,j}^{-} = \ln \sum_{\iota=1}^{J} \left\{ r_{n,\tau-1,\iota}^{-} e^{\mathbb{E} \ln T_{\iota,j}} \right\} + l l_{n,\tau}(j),$$

$$ll_{n,\tau}(j) = \sum_{k=1}^{K} \mathbb{E} \ln A^{(k)} \left(j, c_{n,\tau}^{(k)}, c_{n,\tau-1}^{(k)} \right)$$
 (15)

where $r_{n,0,\iota}^-=1$ where $\iota=$ 'O' and 0 otherwise. The *backwards pass* starts from $\tau=L_n$ and scrolls backwards, computing:

$$\ln \lambda_{n,L_{n},j} = 0, \qquad \ln \lambda_{n,\tau,j} = \ln \sum_{\iota=1}^{J} \exp \left\{ \ln \lambda_{i,\tau+1,\iota} + \mathbb{E} \ln T_{j,\iota} + ll_{n,\tau+1}(\iota) \right\}.$$
 (16)

By applying Bayes' rule, we arrive at $r_{n,\tau,j}$ and $s_{n,\tau,j,\iota}$:

$$r_{n,\tau,j} = \frac{r_{n,\tau,j}^{-} \lambda_{n,\tau,j}}{\sum_{j'=1}^{J} r_{n,\tau,j'}^{-} \lambda_{n,\tau,j'}}$$
(17)

$$s_{n,\tau,j,\iota} = \frac{\tilde{s}_{n,\tau,j,\iota}}{\sum_{j'=1}^{J} \sum_{\iota'=1}^{J} \tilde{s}_{n,\tau,j',\iota'}}$$
(18)

$$\tilde{s}_{n,\tau,j,\iota} = r_{n,\tau-1,j}^{-} \lambda_{n,\tau,\iota} \exp\{\mathbb{E} \ln T_{j,\iota} + ll_{n,\tau}(\iota)\}.$$