CS & IT ENGING

Operating System

CPU Scheduling

Lecture - 05

Recap of Previous Lecture

Topic

Priority based algorithm

Topic

Round Robin Algorithm

Topics to be Covered

Topic

Multilevel Queue Scheduling

Topic

Multilevel Feedback Queue Scheduling

Topic

Questions on Scheduling

Topic: RR

Advantages:

- All processes execute one by one, so no starvation
- 2. Better interactive Ness
- 3. Burst time is not required to be known in advance, hence implemented practically

Disadvantages:

are

- 1. Average waiting time and turnaround time more
- 2. Can degrade to FCFS

[MCQ]

- #Q. If the time-slice used in the round-robin scheduling policy is more than the maximum time required to execute any process, then the policy will?
- A Degenerate to shortest job first
- B Degenerate to priority scheduling
- C Degenerate to first come first serve
- None of the above

[MCQ]

#Q. A scheduling algorithm assigns priority proportional to the waiting time of a process. Every process starts with priority zero (the lowest priority). The scheduler re-evaluates the process priorities every T time units and decides the next process to schedule. Which one of the following is TRUE if the processes have no I/O operations and all arrive at time zero?

GATE-2013

- A This algorithm is equivalent to the first-come-first-serve algorithm
- This algorithm is equivalent to the round-robin algorithm. with time slice = T.
- This algorithm is equivalent to the shortest-job-first algorithm
- This algorithm is equivalent to the shortest-remaining-time-first algorithm

PI	P2	2 P.	3 1	PI	P2	P3	–
0	3	6	9	12	15	- 18	

=> multiple ready Queues

=> one scheduling algo per Queue.

Que le 1

System Processes

Que ue 2

Foreground Processes

anece 3

Background Processes

1. Fixed priority preemptive scheduling method

2. Time slicing

Every anene gets a fixed priority & processes from highest priority anene execute first. when all processes of highest priority Queue are executed then next Queue's processes start executing. of low priority anew preempts a process

fixed priority preemptive

Queue 1: RR with Q=2

Queue 2: FCFS

PI		P2	PI		92	P3	f	941	P4	Ps	
0	2		4	Ġ	7			10.0	13		

Process	Arrival Time	Burst Time	Queue	
P1	0	(ACX)	1	Q1 => PL P2, P4
P2	0	30	1	$Q_2 = 73$
Р3	0	87	2	W12 - 7 1 3
P4	9	X	1	

Disadvantages:

- Some processes may starve for CPU if some higher priority queues are never becoming empty
- 2. It is inflexible in nature. => Processes con not be switched from one area to another.

Topic: Multilevel Feedback Queue Scheduling

Extension of M.L. Queue scheduling.

Topic: Multilevel Feedback Queue Scheduling

System Processes

Foreground Processes

Background Processes

Disadvantage:

 Some processes may starve for CPU if some higher priority queues are never becoming empty.

Advantage:

1. Flexible

Topic: Analysis of Scheduling Algorithms

Basis of Analysis	Algorithm
Minimum average WT among non- preemptive	SJF
Minimum average WT among all algos	SRTF (Preemptive)
Non-preemptive always	FCFS, SJF, LJF, HRRN, Non-preemptive priority
Preemptive always	
SRTF behaves as SJF	Dwhen all processes arrive together. (2) when later arriving processes are not smaller than running ^
Preemptive Priority behaves as Non- Preemptive	Dwhen all processes arrive together. (2) when later arriving processes are not smaller than running ^ (2) when all processes arrive together. (2) when later arriving processes have lower priority.

Topic: Analysis of Scheduling Algorithms

Basis of Analysis	Algorithm
RR behaves as Non-Preemptive	Max (BT of all processes) < Q
Convoy Effect	FCFS, LJF, LRTF
Starvation	SJF, SRTF, liverity also both type, LJF, LRTF
when LRTF is non-preempting	when all processes have $BT = 1$

esc:- when SRTF behaves like SJF:-

1 AT BT 2 AT BT PI O 10 P2 1 20 P3 0 4 P3 2 30

=> SJF & SRTF also are priority based algorithm where lowest B.T. process gets highest priority.

ex:- Reemptive priority algo behaves as non-preemptive priority

PI O 5
PI O 1 (Kighest)
P2 O 2 (Kighest)
P3 O 8
P3 2 3

[NAT]

Homework

#Q. Consider the following set of processes:

Process	Arrival Time	Burst Time	FCFS = 28
P1	0	10ms	SJF =13
P2	0	29ms	
Р3	0	3ms	SRTF =13
P4	0	7ms	RR =23
P5	0	12ms	

Calculate average waiting time for: FCFS, Non-preemptive SJF, SRTF and Round-robin (quantum = 10ms)

Process state:

$$avg \omega T = \frac{7 + 14 + 3 + 12}{4} = 9$$

#Q. Consider a process scenario in which each process executes first in CPU then goes for IO operation, then once again process needs a CPU bursts and then terminates. Following is given a process scenario in which for CPU execution system uses non–preemptive SJF algorithm. Consider system has enough number of resources to carry out IO operations for ALL processes in parallel at a time. What is the average waiting time for the execution for the

processes? in Ready Queue = (TAT - sum of all burst time)CT TAT WT Process Arrival Time CPU Burst Time IO Burst Time CPU Burst Time

22 22 7 P1 0 2 8 5

30 30 14 P2 0 4 5 7

17 17 3 P3 0 3 9 2

23 23 12 P4 0 6 4 1

#Q. Consider a process scenario in which each process executes first in CPU then goes for IO operation, then once again process needs a CPU bursts and then terminates. Following is given a process scenario in which for CPU execution system uses preemptive SRTF algorithm. Consider system has enough number of resources to carry out IO operations for all processes in parallel at a time. What is the average waiting time for the execution for the processes?

Process	Arrival Time	CPU Burst Time	IO Burst Time	CPU Burst Time
P1	0	6	7	1
P2	1	4	2	9
Р3	2	1	6	5

#Q. The arrival time, priority and duration of the CPU and I/O bursts for each of three processes P1, P2 and P3 are given in the table below. Each process has a CPU burst followed by an I.O burst followed by another CPU burst. Assume that each process has its own I/O resource.

Process	AT	Priority	BT (CPU)	BT(I/O)	BT(CPU)
P1	0	2	1	5	3
P2	2	3(lowest)	3	3	1
Р3	3	1(highest)	2	3	1

The multi – programmed operating system uses preemptive priority scheduling. What are the finish times of the process P1, P2 and P3?

GATE - 2006

A 11, 15, 9

11, 16, 10

B 10, 15, 9

D 12, 17, 11

#Q. Multilevel Queue Scheduling, with fixed priority preemptive algorithm

Queue 1: RR with Q=2

Queue 2: SJF

Process	Arrival Time	Burst Time	Queue
P1	0	3	1
P2	1	3	2
Р3	2	5	2
P4	1	4	1
P5	11	4	2
P6	15	3	1
P7	16	2	1

2 mins Summary

Topic

Multilevel Queue Scheduling

Topic

Multilevel Feedback Queue Scheduling

Topic

Questions on Scheduling

Happy Learning

THANK - YOU