

Varianta 64

Subjectul I.

- a) x+2y+3z-4=0.
- **b)** 3x + 8y 5 = 0
- c) Aria căutată este $S = \frac{3\sqrt{3}}{4}$.
- **d**) De exemplu, numerele complexe 1, -1, i, -i au modulul egal cu 1.
- e) $(\cos \pi + i \cdot \sin \pi)^{2007} = -1$
- **f**) $\sin^2 \frac{\pi}{3} = \frac{3}{4}$.

Subjectul II.

- 1.
- **a)** n = 5.
- **b**) $D = (-\infty, 0] \cup [1, \infty)$.
- c) Soluțiile sunt tripletele (1, 2, 4), (2, 2, 2) și (4, 2, 1).
- **d)** Câtul împărțirii lui f la g este $q = X^2 X + 2$, iar restul este r = -1.
- **e**) $T_3 = 24$.
- 2.
- **a**) $f''(x) = 2007 \cdot 2006 \cdot x^{2005}$, $\forall x \in \mathbf{R}$.
- **b**) Funcția f are două puncte de extrem.
- c) Funcția f are un singur punct de inflexiune.

d)
$$\int_{0}^{1} f''(x) dx = 2007$$
.

e)
$$\lim_{n\to\infty}\frac{1}{n^{2007}}\int_{0}^{n}f'(x)dx=1$$
.

Subjectul III.

- a) Evident.
- b) Se demonstrează prin calcul direct.
- c) Se demonstrează prin calcul direct.
- **d**) Evident, deoarece $M \cdot N = N \cdot M$.
- e) Se calculează efectiv $\det(M+i\cdot N)=u+i\cdot v$, cu $u,v\in \mathbf{R}$ și se arată că $\det(M-i\cdot N)=u-i\cdot v$, de unde rezultă concluzia.
- **f**) Dacă $det(M^2 + N^2) = 0$, din punctele **d**) și **e**) rezultă

 $\det(M+i\cdot N) = \det(M-i\cdot N) = 0$ și folosind apoi punctele **c**) și **a**) rezultă concluzia.

g) Avem: $\det(M^2 + I_2) = \det(M^2 + I_2^2) = 0 \iff \det(M) = \det(I_2) = 1$. Din punctul **b)** obținem

 $0 = \det\left(M^2 + I_2\right) = \det\left(tr(M) \cdot M\right) \stackrel{\text{a)}}{=} \left(tr(M)\right)^2 \cdot \det\left(M\right) = \left(tr(M)\right)^2, \text{ deci} \quad tr(M) = 0.$ Înlocuind în relația (1) obținem $M^2 + I_2 = 0_2$.

Subjectul IV.

$$\mathbf{a)} \quad g_n \left(\frac{\sqrt{2}}{2} \right) = 0 \ .$$

b) Aplicând teorema Leibniz-Newton, obținem: $g_n(x) = F_n(\arcsin x) - F_n\left(\frac{\pi}{4}\right)$.

c) Pentru orice $n \in \mathbb{N}^*$, funcția g_n este derivabilă pe (-1,1) și derivând relația de la **b**) obținem: $g'_n(x) = \frac{\ln(1+x^n)}{\sqrt{1-x^2}}$.

d) Avem: $\forall x \in (0,1), g'_n(x) > 0$. Atunci, pentru $n \in \mathbb{N}^*$, funcția g_n este strict monotonă pe $(-1,1) \iff \forall x \in (-1,1), g'_n(x) > 0 \iff \forall x \in (-1,1), \ln(1+x^n) > 0 \iff \forall x \in (-1,1), x^n > 0 \iff n$ este un număr par.

e) Se arată prin calcul direct.

$$\mathbf{f}) \left| \int_{0}^{\frac{\sqrt{2}}{2}} g_{n}(x) dx \right| \stackrel{e}{=} \left| \int_{0}^{\frac{\sqrt{2}}{2}} \frac{x \cdot \ln(1 + x^{n})}{\sqrt{1 - x^{2}}} dx \right| \le \int_{0}^{\frac{\sqrt{2}}{2}} \left| \frac{x \cdot \ln(1 + x^{n})}{\sqrt{1 - x^{2}}} \right| dx = \int_{0}^{\frac{\sqrt{2}}{2}} \frac{x \cdot \ln(1 + x^{n})}{\sqrt{1 - x^{2}}} dx$$

Obţinem: $0 < \int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \frac{x \cdot \ln(1+x^n)}{\sqrt{1-x^2}} dx < \int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \ln(1+x^n) dx,$

de unde rezultă că $\lim_{n\to\infty} \int_{1}^{\frac{\sqrt{2}}{2}} \frac{x \cdot \ln(1+x^n)}{\sqrt{1-x^2}} dx = 0$ și folosind (1) rezultă concluzia.

g) Aplicând regula lui l'Hospital și punctul c), deducem:

$$\lim_{n\to\infty} \left(\lim_{x\to\frac{\sqrt{2}}{2}} \frac{g_{n+1}(x)}{g_n(x)} \right) \stackrel{\frac{0}{0}}{=} \lim_{n\to\infty} \left(\lim_{x\to\frac{\sqrt{2}}{2}} \frac{\ln\left(1+x^{n+1}\right)}{\ln\left(1+x^n\right)} \right) = \frac{\sqrt{2}}{2}.$$