

Last revised date: 05.11.2021 Supersedes Date: 05.11.2021

SAFETY DATA SHEET

According to Regulation (EC) No. 1907/2006 (REACH) Article 31, Annex II as amended.

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1 Product identifier

Product Name: Safety Silv® 38T Flux Cored

Product Size: ALL

Other means of identification

SDS number: 200000007757

1.2 Relevant identified uses of the substance or mixture and uses advised against

Identified uses: Metal Brazing

Uses advised against: Not known. Read this SDS before using this product.

1.3 Details of the supplier of the safety data sheet

Manufacturer/Importer/Supplier/Distributor Information

Company Name: The Harris Products Group Address: 4501 Quality Place

Address. 4501 Quality Flace

Mason, OH 45040-1971

USA

Telephone: +1 (513) 754-2000

Contact Person: Safety Data Sheet Questions: custservmason@jwharris.com

Company Name: Lincoln Electric Europe B.V. Address: Nieuwe Dukenburgseweg 20

Niimegen 6534AD

The Netherlands
Telephone: +31 243 522 911

Contact Person: Safety Data Sheet Questions: www.lincolnelectric.com/sds

Arc Welding Safety Information: www.lincolnelectric.com/safety

1.4 Emergency telephone number:

USA/Canada/Mexico +1 (888) 609-1762 Americas/Europe +1 (216) 383-8962 Asia Pacific +1 (216) 383-8966 Middle East/Africa +1 (216) 383-8969

3E Company Access Code: 333988

SECTION 2: Hazards identification

2.1 Classification of the substance or mixture

The product has not been classified as hazardous according to the legislation in force.

Classification according to Regulation (EC) No 1272/2008 as amended.

Not classified as hazardous according to applicable GHS hazard classification criteria.

Last revised date: 05.11.2021 Supersedes Date: 05.11.2021

Supplemental label information

EUH210: Safety data sheet available on request.

Restricted to professional users.

2.3 Other hazards

Heat rays (infrared radiation) from flame or hot metal can injure eyes. Overexposure to brazing fumes and gases can be hazardous. Read and understand the manufacturer's instructions, Safety Data Sheets and the precautionary labels before using this product.

Substance(s) formed under the conditions of use:

Fumes produced from use of this product may contain the following constituent(s) and/or their complex metallic oxides as well as solid particles or other constituents from the solder, brazing consumable, flux material or base metal, or base metal coating not listed below.

Chemical name	CAS-No.
Carbon dioxide	124-38-9
Carbon monoxide	630-08-0
Nitrogen dioxide	10102-44-0
Ozone	10028-15-6

SECTION 3: Composition/information on ingredients

Reportable Hazardous Ingredients 3.2 Mixtures

Chemical name	Concentration	CAS-No.	EC No.	Classification	Notes	REACH Registration No.
Silver	20 - <50%	7440-22-4	231-131-3	Aquatic Acute: 1:	#	01-2119555669-21;
				H400; Aquatic		
				Chronic: 1: H410;		
Copper and/or copper	20 - <50%	7440-50-8	231-159-6	Aquatic Acute: 1:	#	01-2119480154-42;
alloys and compounds				H400; Aquatic		
(as Cu)				Chronic: 3: H412;		
Zinc	20 - <50%	7440-66-6	231-175-3	Not classified		01-2119467174-37;
Potassium fluoroborate	10 - <20%	14075-53-7	237-928-2	Not classified	#	01-2119968922-24;
Boric acid	5 - <10%	10043-35-3	233-139-2	Repr.: 1B: H360FD;	##	01-2119486683-25;
Potassium tetraborate tetrahydrate	5 - <10%	12045-78-2	601-707-2	Repr.: 2: H361d;		No data available.
Methacrylate polymer	1 - <5%	9011-14-7		Not classified		No data available.
Tin	1 - <5%	7440-31-5	231-141-8	Not classified	#	01-2119486474-28;

All concentrations are percent by weight unless ingredient is a gas. Gas concentrations are in percent by volume.

CLP: Regulation No. 1272/2008.

The full text for all H-statements is displayed in section 16.

[#] This substance has workplace exposure limit(s). ## This substance is listed as SVHC

Last revised date: 05.11.2021 Supersedes Date: 05.11.2021

Composition Comments: The term "Hazardous Ingredients" should be interpreted as a term defined

in Hazard Communication standards and does not necessarily imply the existence of a welding or allied process hazard. The product may contain additional non-hazardous ingredients or may form additional compounds under the condition of use. Refer to Sections 2 and 8 for more information.

SECTION 4: First aid measures

4.1 Description of first aid measures

Inhalation: Move to fresh air if breathing is difficult. If breathing has stopped, perform

artificial respiration and obtain medical assistance at once.

Skin Contact: Remove contaminated clothing and wash the skin thoroughly with soap and

water. For reddened or blistered skin, or thermal burns, obtain medical

assistance at once.

Eye contact: Do not rub eye. Any material that contacts the eye should be washed out

immediately with water. If easy to do, remove contact lenses. Continue to rinse for at least 15 minutes. Get medical attention promptly if symptoms

occur after washing.

Ingestion: Avoid hand, clothing, food, and drink contact with fluxes, metal fume or

powder which can cause ingestion of particulate during hand to mouth activities such as drinking, eating, smoking, etc. If ingested, do not induce vomiting. Contact a poison control center. Unless the poison control center advises otherwise, wash out mouth thoroughly with water. If symptoms

develop, seek medical attention at once.

4.2 Most important symptoms and effects, both acute and

delayed:

Short-term (acute) overexposure to fumes and gases from welding and allied processes may result in discomfort such as metal fume fever, dizziness, nausea, or dryness or irritation of nose, throat, or eyes. May aggravate pre-existing respiratory problems (e.g. asthma, emphysema). Long-term (chronic) overexposure to fumes and gases from welding and allied processes can lead to siderosis (iron deposits in lung), central nervous system effects, bronchitis and other pulmonary effects. Refer to Section 11 for more information.

4.3 Indication of any immediate medical attention and special treatment needed

Hazards:

The hazards associated with welding and its allied processes such as soldering and brazing are complex and may include physical and health hazards such as but not limited to electric shock, physical strains, radiation burns (eye flash), thermal burns due to hot metal or spatter and potential health effects of overexposure to fumes, gases or dusts potentially generated during the use of this product. Refer to Section 11 for more

information.

Treatment: Treat symptomatically.

SECTION 5: Firefighting measures

Last revised date: 05.11.2021 Supersedes Date: 05.11.2021

General Fire Hazards:

As shipped, this product is nonflammable. However, welding arc and sparks as well as open flames and hot surfaces associated with brazing and soldering can ignite combustible and flammable materials. Read and understand American National Standard Z49.1, "Safety in Welding, Cutting and Allied Processes" and National Fire Protection Association NFPA 51B, "Standard for Fire Prevention during Welding, Cutting and Other Hot Work" before using this product.

5.1 Extinguishing media Suitable extinguishing media:

Use fire-extinguishing media appropriate for surrounding materials.

Unsuitable extinguishing media:

Do not use water jet as an extinguisher, as this will spread the fire.

5.2 Special hazards arising from the substance or mixture:

During fire, gases hazardous to health may be formed.

5.3 Advice for firefighters Special fire fighting procedures:

Use standard firefighting procedures and consider the hazards of other

involved materials.

Special protective equipment for fire-fighters:

Selection of respiratory protection for fire fighting: follow the general fire precautions indicated in the workplace. Self-contained breathing apparatus

and full protective clothing must be worn in case of fire.

SECTION 6: Accidental release measures

6.1 Personal precautions, protective equipment and emergency procedures:

If airborne dust and/or fume is present, use adequate engineering controls and, if needed, personal protection to prevent overexposure. Refer to recommendations in Section 8.

6.2 Environmental Precautions:

Avoid release to the environment. Prevent further leakage or spillage if safe to do so. Do not contaminate water sources or sewer. Environmental manager must be informed of all major spillages.

6.3 Methods and material for containment and cleaning up:

Absorb with sand or other inert absorbent. Stop the flow of material, if this is without risk. Clean up spills immediately, observing precautions in the personal protective equipment in Section 8. Avoid generating dust. Prevent product from entering any drains, sewers or water sources. Refer to Section 13 for proper disposal.

6.4 Reference to other sections:

For further specification, refer to section 8 of the SDS.

SECTION 7: Handling and storage:

Last revised date: 05.11.2021 Supersedes Date: 05.11.2021

7.1 Precautions for safe handling:

Prevent abrading consumable materials or creating dust. Provide appropriate exhaust ventilation at places where fume or dust is formed. Wear appropriate personal protective equipment. Observe good industrial hygiene practices.

Read and understand the manufacturer's instruction and the precautionary label on the product. See American National Standard Z49.1, "Safety In Welding, Cutting and Allied Processes" published by the American Welding Society, http://pubs.aws.org and OSHA Publication 2206 (29CFR1910), U.S. Government Printing Office, www.gpo.gov.

7.2 Conditions for safe storage, including any incompatibilities:

Store in closed original container in a dry place. Store in accordance with local/regional/national regulations. Store away from incompatible materials.

7.3 Specific end use(s): No data available.

SECTION 8: Exposure controls/personal protection

8.1 Control Parameters

MAC, PEL, TLV and other exposure limit values may vary per element and form - as well as per country. All country-specific values are not listed. If no occupational exposure limit values are listed below, your local authority may still have applicable values. Refer to your local or national exposure limit values.

Control Parameters

Occupational Exposure Limits: Great Britain

Chemical Identity	Туре	Exposure Limit Values	Source
Silver	TWA	0,1 mg/m3	UK. EH40 Workplace Exposure Limits (WELs) (2007)
	TWA	0,1 mg/m3	EU. Indicative Exposure Limit Values in Directives 91/322/EEC, 2000/39/EC, 2006/15/EC, 2009/161/EU (12 2009)
	TWA	0,1 mg/m3	EU. Scientific Committee on Occupational Exposure Limit Values (SCOELs), European Commission - SCOEL, as amended (2014)
Copper and/or copper alloys and compounds (as Cu) - Inhalable dusts and mists as Cu	TWA	1 mg/m3	UK. EH40 Workplace Exposure Limits (WELs) (2007)
Copper and/or copper alloys and compounds (as Cu) - Fume.	TWA	0,2 mg/m3	UK. EH40 Workplace Exposure Limits (WELs) (2007)
Copper and/or copper alloys and compounds (as Cu) - Respirable fraction.	TWA	0,01 mg/m3	EU. Scientific Committee on Occupational Exposure Limit Values (SCOELs), European Commission - SCOEL, as amended (2014)
Copper and/or copper alloys and compounds (as Cu) - Inhalable dusts and mists as Cu	STEL	2 mg/m3	UK. EH40 Workplace Exposure Limits (WELs) (01 2020)
Potassium fluoroborate	TWA	2,5 mg/m3	EU. Indicative Exposure Limit Values in Directives 91/322/EEC, 2000/39/EC, 2006/15/EC, 2009/161/EU (12 2009)
	TWA	2,5 mg/m3	EU. Scientific Committee on Occupational Exposure Limit Values (SCOELs), European Commission - SCOEL, as amended (2014)

Last revised date: 05.11.2021 Supersedes Date: 05.11.2021

Potassium fluoroborate - as F	TWA	2,5 mg/m3	UK. EH40 Workplace Exposure Limits (WELs)
			(01 2020)
Tin - as Sn	TWA	2 mg/m3	EU. Indicative Exposure Limit Values in
		_	Directives 91/322/EEC, 2000/39/EC,
			2006/15/EC, 2009/161/EU (12 2009)

Biological Limit Values: Great Britain

None of the components have assigned exposure limits.

Biological Limit Values: ACGIH

None of the components have assigned exposure limits.

Additional exposure limits under the conditions of use: Great Britain

Chemical Identity	Туре	Exposure Limit Values	Source
Carbon dioxide	TWA	5.000 ppm	UK. EH40 Workplace Exposure Limits (WELs)
	TWA	5.000 ppm	EU. Indicative Exposure Limit Values in
			Directives 91/322/EEC, 2000/39/EC,
			2006/15/EC, 2009/161/EU (Indicative)
	STEL	15.000 ppm	UK. EH40 Workplace Exposure Limits (WELs)
Carbon monoxide	STEL	100 ppm	EU. Indicative Exposure Limit Values in
			Directives 91/322/EEC, 2000/39/EC,
			2006/15/EC, 2009/161/EU (Indicative)
	TWA	20 ppm	EU. Indicative Exposure Limit Values in
			Directives 91/322/EEC, 2000/39/EC,
			2006/15/EC, 2009/161/EU (Indicative)
	STEL	100 ppm	EU. Scientific Committee on Occupational
			Exposure Limit Values (SCOELs), European
			Commission - SCOEL, as amended
	TWA	20 ppm	EU. Scientific Committee on Occupational
			Exposure Limit Values (SCOELs), European
			Commission - SCOEL, as amended
	STEL	200 ppm	UK. EH40 Workplace Exposure Limits (WELs)
	TWA	30 ppm	UK. EH40 Workplace Exposure Limits (WELs)
	STEL	100 ppm	UK. EH40 Workplace Exposure Limits (WELs)
	TWA	20 ppm	UK. EH40 Workplace Exposure Limits (WELs)
	TWA	30 ppm	UK. EH40 Workplace Exposure Limits (WELs)
			(The expiration date of this limit: 21 August 2023)
	STEL	200 ppm	UK. EH40 Workplace Exposure Limits (WELs)
			(The expiration date of this limit: 21 August
			2023)
Nitrogen dioxide	TWA	0,5 ppm	EU. Indicative Exposure Limit Values in
			Directives 91/322/EEC, 2000/39/EC,
			2006/15/EC, 2009/161/EU (Indicative)
	STEL	1 ppm	EU. Indicative Exposure Limit Values in
			Directives 91/322/EEC, 2000/39/EC,
			2006/15/EC, 2009/161/EU (Indicative)
	STEL	1 ppm	EU. Scientific Committee on Occupational
			Exposure Limit Values (SCOELs), European
	T\4/4	0.5 ====	Commission - SCOEL, as amended
	TWA	0,5 ppm	EU. Scientific Committee on Occupational
			Exposure Limit Values (SCOELs), European
	TWA	0.5 nnm	Commission - SCOEL, as amended
	STEL	0,5 ppm	UK. EH40 Workplace Exposure Limits (WELs)
07000	STEL	1 ppm	UK. EH40 Workplace Exposure Limits (WELs)
Ozone	SIEL	0,2 ppm	UK. EH40 Workplace Exposure Limits (WELs)

Additional exposure limits under the conditions of use: US

Last revised date: 05.11.2021 Supersedes Date: 05.11.2021

Chemical Identity	Туре	Exposure L	imit Values	Source
Carbon dioxide	TWA	5.000 ppm		US. ACGIH Threshold Limit Values (12 2010)
	STEL	30.000 ppm		US. ACGIH Threshold Limit Values (12 2010)
	PEL	5.000 ppm	9.000 mg/m3	US. OSHA Table Z-1 Limits for Air
				Contaminants (29 CFR 1910.1000) (02 2006)
Carbon monoxide	TWA	25 ppm		US. ACGIH Threshold Limit Values (12 2010)
	PEL	50 ppm	55 mg/m3	US. OSHA Table Z-1 Limits for Air
				Contaminants (29 CFR 1910.1000) (02 2006)
Nitrogen dioxide	TWA	0,2 ppm		US. ACGIH Threshold Limit Values (02 2012)
	Ceiling	5 ppm	9 mg/m3	US. OSHA Table Z-1 Limits for Air
				Contaminants (29 CFR 1910.1000) (02 2006)
Ozone	PEL	0,1 ppm	0,2 mg/m3	US. OSHA Table Z-1 Limits for Air
				Contaminants (29 CFR 1910.1000) (02 2006)
	TWA	0,05 ppm		US. ACGIH Threshold Limit Values (03 2014)
	TWA	0,10 ppm		US. ACGIH Threshold Limit Values (03 2014)
	TWA	0,08 ppm		US. ACGIH Threshold Limit Values (03 2014)
	TWA	0,20 ppm		US. ACGIH Threshold Limit Values (02 2020)

8.2 Exposure controls Appropriate Engineering Controls

Ventilation: Use enough ventilation and local exhaust at the arc, flame or heat source to keep the fumes and gases from the worker's breathing zone and the general area. Train the operator to keep their head out of the fumes. **Keep exposure as low as possible.**

Individual protection measures, such as personal protective equipment General information: Exposure Guidelines: To reduce the po

Exposure Guidelines: To reduce the potential for overexposure, use controls such as adequate ventilation and personal protective equipment (PPE). Overexposure refers to exceeding applicable local limits, the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Values (TLVs) or the Occupational Safety and Health Administration's (OSHA) Permissible Exposure Limits (PELs). Workplace exposure levels should be established by competent industrial hygiene assessments. Unless exposure levels are confirmed to be below the applicable local limit, TLV or PEL, whichever is lower, respirator use is required. Absent these controls, overexposure to one or more compound constituents, including those in the fume or airborne particles, may occur resulting in potential health hazards. According to the ACGIH, TLVs and Biological Exposure Indices (BEIs) "represent conditions under which ACGIH believes that nearly all workers may be repeatedly exposed without adverse health effects." The ACGIH further states that the TLV-TWA should be used as a guide in the control of health hazards and should not be used to indicate a fine line between safe and dangerous exposures. See Section 10 for information on constituents which have some potential to present health hazards. Welding consumables and materials being joined may contain chromium as an unintended trace element. Materials that contain chromium may produce some amount of hexavalent chromium (CrVI) and other chromium compounds as a byproduct in the fume. In 2018, the American Conference of Governmental Industrial Hygienists (ACGIH) lowered the Threshold Limit Value (TLV) for hexavalent chromium from 50 micrograms per cubic meter of air (50 $\mu g/m^3$) to 0.2 $\mu g/m^3$. At these new limits, CrVI exposures at or above the TLV may be possible in cases where adequate ventilation is not provided. CrVI compounds are on the IARC and NTP lists as posing a lung cancer and sinus cancer risk. Workplace conditions are unique and welding fume exposures levels vary. Workplace exposure assessments must be conducted by a qualified professional, such as an industrial hygienist, to determine if exposures are below applicable

Last revised date: 05.11.2021 Supersedes Date: 05.11.2021

limits and to make recommendations when necessary for preventing

overexposures.

Eye/face protection: Wear helmet, face shield or eye protection with filter lens shade number 2

for torch soldering and 3-4 for torch brazing, and follow the

recommendations as specified in ANSI Z49.1, Section 4, based on your process details. Shield others by providing appropriate screens and eye

protection.

Skin protection Hand Protection:

Wear protective gloves. Suitable gloves can be recommended by the glove

supplier.

Other: Protective Clothing: Wear hand, head, and body protection which help to

prevent injury from radiation, open flames, hot surfaces, sparks and electrical shock. See Z49.1. At a minimum, this includes welder's gloves and a protective face shield when welding, and may include arm protectors, aprons, hats, shoulder protection, as well as dark substantial clothing when welding, brazing and soldering. Wear dry gloves free of holes or split seams. Train the operator not to permit electrically live parts or electrodes from contacting the skin . . . or clothing or gloves if they are wet. Insulate yourself from the work piece and ground using dry plywood, rubber mats or

other dry insulation.

Respiratory Protection: Keep your head out of fumes. Use enough ventilation and local exhaust to

keep fumes and gases from your breathing zone and the general area. An approved respirator should be used unless exposure assessments are

below applicable exposure limits.

Hygiene measures: Do not eat, drink or smoke when using the product. Always observe good

personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective equipment to remove contaminants. Determine the composition and quantity of fumes and gases to which workers are exposed by taking an air sample from inside the welder's helmet if worn or in the worker's breathing zone. Improve ventilation if exposures are not below limits. See ANSI/AWS F1.1, F1.2, F1.3 and F1.5, available from the

American Welding Society, www.aws.org.

SECTION 9: Physical and chemical properties

9.1 Information on basic physical and chemical properties

Appearance: Flux cored brazing consumable.

Physical state: Solid Form: Solid

Color:No data available.Odor:No data available.Odor Threshold:No data available.pH:No data available.Melting Point:No data available.Boiling Point:No data available.

Last revised date: 05.11.2021 Supersedes Date: 05.11.2021

Flash Point: No data available. **Evaporation Rate:** No data available. Flammability (solid, gas): No data available. Flammability Limit - Upper (%): No data available. Flammability Limit - Lower (%): No data available. Vapor pressure: No data available. Relative vapor density: No data available. Density: No data available. Relative density: No data available.

Solubility(ies)

Solubility in Water: No data available. Solubility (other): No data available. Partition coefficient (n-octanol/water): No data available. **Autoignition Temperature:** No data available. **Decomposition Temperature:** No data available. SADT: No data available. No data available. Viscosity: No data available. **Explosive properties:** Oxidizing properties: No data available.

9.2 Other information

VOC Content: Not available.

Bulk density:Not available.Dust Explosion Limit, Upper:Not available.Dust Explosion Limit, Lower:Not available.

Dust Explosion Description Number

Kst

Not available.

Minimum ignition energy:Not available.Minimum ignition temperature:Not available.Metal Corrosion:Not available.

SECTION 10: Stability and reactivity

10.1 Reactivity:The product is non-reactive under normal conditions of use, storage and

transport.

10.2 Chemical Stability: Material is stable under normal conditions.

10.3 Possibility of hazardous

reactions:

None under normal conditions.

10.4 Conditions to avoid: Avoid heat or contamination.

10.5 Incompatible Materials: Strong acids. Strong oxidizing substances. Strong bases.

Last revised date: 05.11.2021 Supersedes Date: 05.11.2021

10.6 Hazardous Decomposition Products:

Fumes and gases from welding and its allied processes such as brazing and soldering cannot be classified simply. The composition and quantity of both are dependent upon the metal to which the joining or hot work is applied, the process, procedure - and where applicable - the electrode or consumable used. Other conditions which also influence the composition and quantity of the fumes and gases to which workers may be exposed include: coatings on the metal being welded or worked (such as paint, plating, or galvanizing), the number of operators and the volume of the work area, the quality and amount of ventilation, the position of the operator's head with respect to the fume plume, as well as the presence of contaminants in the atmosphere (such as chlorinated hydrocarbon vapors from cleaning and degreasing activities.)

In cases where an electrode or other applied material is consumed, the fume and gas decomposition products generated are different in percent and form from the ingredients listed in Section 3. Decomposition products of normal operation include those originating from the volatilization, reaction, or oxidation of the materials shown in Section 3, plus those from the base metal and coating, etc., as noted above. Reasonably expected fume constituents produced during arc welding and brazing include the oxides of iron, manganese and other metals present in the welding consumable or base metal. Hexavalent chromium compounds may be in the welding or brazing fume of consumables or base metals which contain chromium. Gaseous and particulate fluoride may be in the fume of consumables or flux materials which contain fluoride. Gaseous reaction products may include carbon monoxide and carbon dioxide. Ozone and nitrogen oxides may be formed by the radiation from the arc associated with welding.

SECTION 11: Toxicological information

General information: The International Agency for Research on Cancer (IARC) has determined

welding fumes and ultraviolet radiation from welding are carcinogenic to humans (Group 1). According to IARC, welding fumes cause cancer of the lung and positive associations have been observed with cancer of the kidney. Also according to IARC, ultraviolet radiation from welding causes ocular melanoma. IARC identifies gouging, brazing, carbon arc or plasma arc cutting, and soldering as processes closely related to welding. Read and understand the manufacturer's instructions, Safety Data Sheets and

the precautionary labels before using this product.

Information on likely routes of exposure

Inhalation: Inhalation is the primary route of exposure. In high concentrations, dust,

vapors, fumes or mists may irritate nose, throat and mucus membranes.

Skin Contact: Moderately irritating to skin with prolonged exposure.

Eye contact: HEAT RAYS (INFRARED RADIATION) from flame or hot metal can injure

eyes.

Ingestion: Avoid ingestion - wear gloves and other appropriate personal protection -

wash hands thoroughly following use or handling.

Last revised date: 05.11.2021 Supersedes Date: 05.11.2021

Symptoms related to the physical, chemical and toxicological characteristics

Inhalation: Short-term (acute) overexposure to fumes and gases from brazing and

and pulmonary edema resulting in death.

soldering may result in discomfort such as metal fume fever, dizziness. nausea, or dryness or irritation of nose, throat, or eyes. May aggravate preexisting respiratory problems (e.g. asthma, emphysema). Long-term (chronic) overexposure to fumes and gases from brazing and soldering can lead to siderosis (iron deposits in lung), central nervous system effects, bronchitis and other pulmonary effects. Products which contain lead or cadmium have additional specific health hazards - refer to Sections 2, 8 and 11 of this SDS. Depending on specific product composition, some products may produce hazardous concentrations of airborne oxides of cadmium, lead, zinc or fluoride compounds. Use adequate ventilation and respiratory protection during use. Avoid breathing fumes. Avoid ingestion wear gloves and other appropriate personal protection - wash hands thoroughly following use or handling. Inhalation of fumes may cause upper respiratory tract irritation and systemic poisoning with early symptoms including headache, coughing, and a metallic taste as well as metal fume fever. Chronic cadmium exposure causes lung and kidney damage. Chronic exposure to lead causes damage to lungs, liver, kidney, nervous system as well as blood and musculoskeletal disorders. Exposures to high levels of cadmium or lead dust or fume may be immediately dangerous to life or health and can cause delayed pneumonitis with fever and chest pain.

11.1 Information on toxicological effects

Acute toxicity (list all possible routes of exposure)

Oral

Product: Not classified

Specified substance(s):

Copper and/or copper LD 50 (Rat): 481 mg/kg

alloys and compounds

(as Cu)

Boric acid LD 50 (Rat): 2.660 mg/kg

Dermal

Product: Not classified

Inhalation

Product: Not classified

Repeated dose toxicity

Product: Not classified

Skin Corrosion/Irritation

Product: Not classified

Serious Eye Damage/Eye Irritation

Product: Not classified

Respiratory or Skin Sensitization

Product: Not classified

Carcinogenicity

Last revised date: 05.11.2021 Supersedes Date: 05.11.2021

Product: Arc rays: Skin cancer has been reported.

IARC Monographs on the Evaluation of Carcinogenic Risks to Humans:

Specified substance(s):

Methacrylate polymer Overall evaluation: 3. Not classifiable as to carcinogenicity to humans.

Germ Cell Mutagenicity

In vitro

Product: Not classified

In vivo

Product: Not classified

Reproductive toxicity

Product: Not classified

Specified substance(s):

Boric acid EU RA R2

Specific Target Organ Toxicity - Single Exposure

Product: Not classified

Specific Target Organ Toxicity - Repeated Exposure

Product: Not classified

Aspiration Hazard

Product: Not classified

Symptoms related to the physical, chemical and toxicological characteristics under the condition of use

Additional toxicological Information under the conditions of use: Acute toxicity

Inhalation

Specified substance(s):

Carbon dioxide LC Lo (Human, 5 min): 90000 ppm

Carbon monoxide LC 50 (Rat, 4 h): 1300 ppm Nitrogen dioxide LC 50 (Rat, 4 h): 88 ppm

Ozone LC Lo (Human, 30 min): 50 ppm

Other effects:

Specified substance(s):

Carbon dioxide Asphyxia

Carbon monoxide Carboxyhemoglobinemia

Nitrogen dioxide Lower respiratory tract irritation

SECTION 12: Ecological information

12.1 Ecotoxicity

Acute hazards to the aquatic environment:

Fish

Product: Not classified.

Last revised date: 05.11.2021 Supersedes Date: 05.11.2021

Specified substance(s):

Silver LC 50 (Rainbow trout, donaldson trout (Oncorhynchus mykiss), 96 h): 0,013

Copper and/or copper

alloys and compounds

(as Cu)

LC 50 (Fathead minnow (Pimephales promelas), 96 h): 1,6 mg/l

Zinc LC 50 (Fathead minnow (Pimephales promelas), 96 h): 1,277 - 3,649 mg/l

Boric acid LC 50 (Pimephales promelas, 96 h): 79,7 mg/l

Aquatic Invertebrates

Not classified. **Product:**

Specified substance(s):

Silver LC 50 (Water flea (Daphnia pulex), 48 h): 0.014 mg/l Copper and/or copper EC 50 (Water flea (Daphnia magna), 48 h): 0,102 mg/l

alloys and compounds

(as Cu)

Zinc EC 50 (Water flea (Daphnia magna), 48 h): 2,8 mg/l

Boric acid LC 50 (Hyalella azteca, 96 h): 64 mg/l

Chronic hazards to the aquatic environment:

Fish

Product: Not classified.

Aquatic Invertebrates

Product: Not classified.

Toxicity to Aquatic Plants

Product: Not classified.

Specified substance(s):

Copper and/or copper alloys and compounds

(as Cu)

LC 50 (Green algae (Scenedesmus dimorphus), 3 d): 0,0623 mg/l

12.2 Persistence and Degradability

Biodegradation

Product: No data available.

12.3 Bioaccumulative potential

Bioconcentration Factor (BCF)

Product: No data available.

Specified substance(s):

Copper and/or copper Blue-green algae (Anacystis nidulans), Bioconcentration Factor (BCF):

alloys and compounds 36,01 (Static)

(as Cu)

Zinc Brown shrimp (Penaeus aztecus), Bioconcentration Factor (BCF): > 400 - <

600 (Static)

12.4 Mobility in soil: No data available.

12.5 Results of PBT and vPvB

assessment:

No data available.

12.6 Other adverse effects: No data available.

Last revised date: 05.11.2021 Supersedes Date: 05.11.2021

12.7 Additional Information: No data available.

SECTION 13: Disposal considerations

13.1 Waste treatment methods

General information: The generation of waste should be avoided or minimized whenever

possible. When practical, recycle in an environmentally acceptable, regulatory compliant manner. Dispose of non-recyclable products in accordance with all applicable Federal, State, Provincial, and Local

requirements.

Disposal instructions: Dispose of this material and its container to hazardous or special waste

collection point.

Contaminated Packaging: Dispose of contents/container to an appropriate treatment and disposal

facility in accordance with applicable laws and regulations, and product

characteristics at time of disposal.

SECTION 14: Transport information

ADR

14.1 UN number or ID number:

14.2 UN Proper Shipping Name: NOT DG REGULATED

14.3 Transport Hazard Class(es)

Class: NR
Label(s): Hazard No. (ADR): Tunnel restriction code:

14.4 Packing Group: -

Limited quantity Excepted quantity

14.5 Marine Pollutant No

ADN

14.1 UN number or ID number:

14.2 UN Proper Shipping Name: NOT DG REGULATED

14.3 Transport Hazard Class(es)

Class: NR
Label(s): –
Hazard No. (ADR): –

14.4 Packing Group: –
Limited quantity

Excepted quantity

14.5 Marine Pollutant No

RID

14.1 UN number or ID number:

14.2 UN Proper Shipping Name NOT DG REGULATED

14.3 Transport Hazard Class(es)

Class: NR Label(s): -

Last revised date: 05.11.2021 Supersedes Date: 05.11.2021

14.4 Packing Group: –

14.5 Marine Pollutant No

IMDG

14.1 UN number or ID number:

14.2 UN Proper Shipping Name: NOT DG REGULATED

14.3 Transport Hazard Class(es)

Class: NR Label(s): – EmS No.:

14.4 Packing Group:

Limited quantity
Excepted quantity

14.5 Marine Pollutant No.

IATA

14.1 UN number or ID number:

14.2 Proper Shipping Name: NOT DG REGULATED

14.3 Transport Hazard Class(es):

Class: NR
Label(s): –

14.4 Packing Group: –

Cargo aircraft only:

Passenger and cargo aircraft:

Limited quantity: Excepted quantity

14.5 Marine Pollutant No
Cargo aircraft only: Allowed.

14.7 Transport in bulk according to Annex II of MARPOL and the IBC Code: Not applicable

SECTION 15: Regulatory information

15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture:

EU Regulations

Regulation 1005/2009/EC on substances that deplete the ozone layer, Annex I, Controlled Substances: None

EU. REACH Annex XIV, Substances Subject to Authorization: None

EU. Regulation 2019/1021/EU on persistent organic pollutants (POPs) (recast), as amended: None

EU. REACH Candidate List of Substances of Very High Concern for Authorization (SVHC):

Chemical name	CAS-No.	Concentration	Additional Information
Boric acid	10043-35-3	1,0 - 10%	Not Regulated

Regulation (EC) No. 1907/2006 Annex XVII Substances subject to restriction on marketing and use:

Chemical name	CAS-No.	Concentration
Zinc	7440-66-6	20 - 30%

Last revised date: 05.11.2021 Supersedes Date: 05.11.2021

Boric acid	10043-35-3	1,0 - 10%

Directive 2004/37/EC on the protection of workers from the risks related to exposure to carcinogens and mutagens at work.: None

Directive 92/85/EEC: on the safety and health of pregnant workers and workers who have recently given birth or are breast feeding.:

Chemical name	CAS-No.	Concentration
Boric acid	10043-35-3	1,0 - 10%

EU. Directive 2012/18/EU (SEVESO III) on major accident hazards involving dangerous substances, Annex I:

Not applicable

EU. Regulation No. 166/2006 PRTR (Pollutant Release and Transfer Registry), Annex II: Pollutants:

Chemical name	CAS-No.	Concentration
Copper and/or copper alloys and compounds (as Cu)	7440-50-8	30 - 40%
Zinc	7440-66-6	20 - 30%
Potassium fluoroborate	14075-53-7	10 - 20%

Directive 98/24/EC on the protection of workers from the risks related to chemical agents at work:

Chemical name	CAS-No.	Concentration
Zinc	7440-66-6	20 - 30%
Boric acid	10043-35-3	1.0 - 10%

National Regulations

Water Hazard Class (WGK):

non-hazardous to water

TA Luft, Technical Guidance Air:

	Number 5.2.2 Class III, Inorganic
compounds (as Cu)	dust-forming substance
Tin	Number 5.2.2 Class III, Inorganic
	dust-forming substance
Potassium fluoroborate	Number 5.2.2 Class III, Inorganic
	dust-forming substance

INRS, maladies professionelles, table of work-related illnesses Listed:

15.2 Chemical safety assessment:

No Chemical Safety Assessment has been carried out.

International regulations

Last revised date: 05.11.2021 Supersedes Date: 05.11.2021

Inventory Status:

Australia AICS: On or in compliance with the inventory

Canada DSL Inventory List:

One or more components are not listed or are exempt from listing.

EINECS, ELINCS or NLP:

One or more components are not listed or are exempt from listing.

Japan (ENCS) List:

One or more components are not listed or are exempt from listing.

China Inv. Existing Chemical Substances: On or in compliance with the inventory

Korea Existing Chemicals Inv. (KECI): One or more components are not listed or are exempt from listing.

Canada NDSL Inventory:

One or more components are not listed or are exempt from listing.

Philippines PICCS:

One or more components are not listed or are exempt from listing.

US TSCA Inventory:

One or more components are not listed or are exempt from listing.

New Zealand Inventory of Chemicals:

One or more components are not listed or are exempt from listing.

One or more components are not listed or are exempt from listing.

Japan ISHL Listing:

One or more components are not listed or are exempt from listing.

Japan Pharmacopoeia Listing:

One or more components are not listed or are exempt from listing.

Mexico INSQ:

One or more components are not listed or are exempt from listing.

Ontario Inventory:

One or more components are not listed or are exempt from listing.

Taiwan Chemical Substance Inventory: On or in compliance with the inventory

Montreal protocol

Not applicable

Stockholm convention

Not applicable

Rotterdam convention

Not applicable

Kyoto protocol

Not applicable

SECTION 16: Other information

Definitions:

References

PBT PBT: persistent, bioaccumulative and toxic substance. vPvB vPvB: very persistent and very bioaccumulative substance.

Key literature references and A sources for data:

According to Regulation (EC) No. 1907/2006 (REACH) Article 31, Annex II as

amended.

Wording of the H-statements in section 2 and 3

H360FD May damage fertility. May damage the unborn child. H361 Suspected of damaging fertility or the unborn child.

H400 Very toxic to aquatic life.

H410 Very toxic to aquatic life with long lasting effects.H412 Harmful to aquatic life with long lasting effects.

Other information: Additional information is available by request.

Last revised date: 05.11.2021 Supersedes Date: 05.11.2021

Issue Date: 05.11.2021

Disclaimer:

The Lincoln Electric Company urges each end user and recipient of this SDS to study it carefully. See also www.lincolnelectric.com/safety. If necessary, consult an industrial hygienist or other expert to understand this information and safeguard the environment and protect workers from potential hazards associated with the handling or use of this product. This information is believed to be accurate as of the revision date shown above. However, no warranty, expressed or implied, is given. Because the conditions or methods of use are beyond Lincoln Electric's control, we assume no liability resulting from the use of this product. Regulatory requirements are subject to change and may differ between various locations. Compliance with all applicable Federal, State, Provincial, and local laws and regulations remain the responsibility of the user.

© 2021 Lincoln Global, Inc. All Rights Reserved.

Last revised date: 05.11.2021 Supersedes Date: 05.11.2021

Annex to the extended Safety Data Sheet (eSDS) Exposure Scenario:

Read and understand the "Recommendations for Exposure Scenarios, Risk Management Measures and to identify Operational Conditions under which metals, alloys and metallic articles may be safely welded", which is available from your supplier and at http://european-welding.org/health-safety.

Welding/Brazing produces fumes which can affect human health and the environment. Fumes are a varying mixture of airborne gases and fine particles which, if inhaled or swallowed, constitute a health hazard. The degree of risk will depend on the composition of the fume, concentration of the fume and duration of exposure. The fume composition is dependent upon the material being worked, the process and consumables being used, coatings on the work such as paint, galvanizing or plating, oil or contaminants from cleaning and degreasing activities. A systematic approach to the assessment of exposure is necessary, taking into account the particular circumstances for the operator and ancillary worker that can be exposed.

Considering the emission of fumes when welding, brazing or cutting of metals, it is recommended to (1) arrange risk management measures through applying general information and guidelines provided by this exposure scenario and (2) using the information provided by the Safety Data Sheet, issued in accordance with REACH, by the welding consumable manufacturer.

The employer shall ensure that the risk from welding fumes to the safety and health of workers is eliminated or reduced to a minimum. The following principle shall be applied:

- 1- Select the applicable process/material combinations with the lowest class, whenever possible.
- 2- Set welding process with the lowest emission parameter.
- 3- Apply the relevant collective protective measure in accordance with class number. In general, the use of PPE is taken into account after all other measures is applied.
- 4- Wear the relevant personal protective equipment in accordance with the duty cycle.

In addition, compliance with the National Regulations regarding the exposure to welding fumes of welders and related personnel shall be verified.