

TEST REPORT

of the accredited test laboratory

TÜV Nr.: INE-AT/FG-17/133

Applicant:

BlueLocar GmbH

Autokaderstr. 29/BT 2

A-1210 Vienna

Tested Product:

Frequency hopping device "base-antenna"

FCC-ID:

2AJPPBAS01

IC-ID:

21949-BAS01

Manufacturer:

See applicant

Output power /

724 mW eirp

power supply:

12 VDC

field strength:

Frequency range:

915,000 -

Channel separation:

38kHz

916,976 MHz

Standard:

FCC: 47 CFR Part 15 (October 1, 2016 edition)

RSS-247 Issue 2, March 16, 2017

TUV Austria Services GmbH Test laboratory for EMC

Supervisor of EMC-laboratory:

Ing. Wilhelm Seier

Rundsiegel AUSTRIA

30.10.2017

Copy Nbr.:

hecked by:

Ing. Michael Emminger

A publication of this test report is only permitted literally. Copying or reproduction of partial sections needs a written permission of TUV Austria Services GmbH.

The results of this test report only refer to the provided equipment.

TÜV AUSTRIA SERVICES GMBH

Office:

Deutschstrasse 10 1230 Vienna/Austria T: +43 5 0454-0 F: +43 5 0454-6505 E: pzw@tuv.at W: www.tuv.at

Business Area Industry & Energy Austria

Technik

Testing Laboratory, Inspection Body, Certification Body, Calibration Laboratory, Verifizierungsstelle

Notified Body 0408 IC 2932K-1

Non-executive **Board of Directors:** KR DI Johann Marihart

Management: DI Dr. Stefan Haas Mag. Christoph Wenninger

Registered Office: Deutschstrasse 10 1230 Vienna/Austria

Branch Offices: www.tuv.at/standorte

Company Register Court / - Number: Vienna / FN 288476 f

Bank Details: IBAN AT131200052949001066

BIC BKAUATWW IBAN AT153100000104093282

VAT ATU63240488 DVR 3002476

BIC RZBAATWW

Relative humidity: 41%

LIST OF MEASUREMENTS

The complete list of measurements called for in 47 CFR 15 and RSS-247 is given below.

SUBCLAUSE	PARAMETER TO BE MEASURED	PAGE
	Intentional Radiators	
	Test object data	3
15.247(a)(1) 5.1 (c)	Number of channels and channel spacing	4
15.247(a)(1) 5.1 (a) (c)	20 dB Bandwidth	5-7
15.247(b)(2) 5.4 (a)	Maximum Peak RF Power Output (eirp)	8
15.247(a)(1)(i) 5.1 (c)	Average time of occupancy	9-11
15.247(d) 5.5	Out-of-band Emissions	12
15.209(a) RSS-Gen	Emissions in restricted bands	13-15
15.207 RSS-Gen 8.8	Conducted Limits	16
15.247(i)	Maximum permissible exposure	17

30.10.2017

Page 2 of 17

TEST OBJECT DATA

General EUT Description

This frequency hopping device is using the 902-928 MHz frequency band.

- 2.1033 (c) Technical description
- 2.1033 (4) Type of emission: 14K0F1D Channel spacing 38 kHz.
- 2.1033 (5) Frequency range: 915,000 to 916,976 MHz (channel center frequencies).
- 2.1033 (6) Power range and Controls: The maximum peak output power is 724 mW and there is no power regulation.
- 2.1033 (7) Maximum output power rating: 724 mW eirp.
- 2.1033 (8) DC Voltage and Current: 12V DC

maximum current consumption: 200 mA

- RSS-135 This standard does not apply to:
 - 1.1.(a) a receiver that scans radio frequencies for the purpose of enabling its associated transmitter to avoid transmitting in an occupied frequency but which does not have the capability of decoding the message (e.g. converting it to audio voice) contained in the radio signal

Tests were performed August 21st and October 19th 2017.

Number of channels and channel spacing

§ 15.247 (a) (1) 5.1 (c)

Mode: Bluetooth

Conducted Measurement

Rated output power: 724 mW

Date: 21.AUG.2017 14:00:55

There are 53 Channels used, starting at 915,000 till 2480 each spaced by 38 kHz channel spacing.

LIMIT

SUBCLAUSE 15.247(a) (1) – 5.1(c)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Frequency hopping systems in the 902-928 MHz band shall use at least 50 channels if the 20 dB Bandwidth is less than 250 kHz.

Relative humidity: 41%

20dB Bandwidth

§ 15.247 (a) (1) 5.1 (a) (c)

Radiated Measurement

Rated output power: 724 mW 915,000 MHz

Date:

21.AUG.2017 11:47:49

20dB Bandwidth:

12,82 kHz

LIMIT

SUBCLAUSE 15.247(a) (1) – 5.1(a) (c)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Frequency hopping systems in the 902-928 MHz band shall use at least 50 channels if the 20 dB Bandwidth is less than 250 kHz.

Relative humidity: 41%

20dB Bandwidth

§ 15.247 (a) (1) 5.1 (a) (c)

Radiated Measurement

Rated output power: 724 mW 915,988 MHz

Date.

21.AUG.2017 11:44:37

20dB Bandwidth:

14,02 kHz

LIMIT

SUBCLAUSE 15.247(a) (1) - 5.1(a) (c)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Frequency hopping systems in the 902-928 MHz band shall use at least 50 channels if the 20 dB Bandwidth is less than 250 kHz.

Relative humidity: 41%

20dB Bandwidth

§ 15.247 (a) (1) 5.1 (a) (c)

Radiated Measurement

Rated output power: 724 mW 916,976 MHz

Date:

21.AUG.2017 11:36:46

20dB Bandwidth:

12,62 kHz

LIMIT

SUBCLAUSE 15.247(a) (1) - 5.1(a) (c)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Frequency hopping systems in the 902-928 MHz band shall use at least 50 channels if the 20 dB Bandwidth is less than 250 kHz.

Relative humidity: 41%

Maximum Peak RF Power Output (EIRP)

§ 15.247(b)(2) 5.4(a)

Radiated Measurement

Rated output power: 724 mW

Test conditions		Transmitter power (mW)					
		915,000 MHz	915,988 MHz	916,976 MHz			
T _{nom} (28)°C	V _{nom} (12) V	708	724	661			
Maximum deviation from rated output power under normal test conditions (dB)							
Measurement uncertainty			<u>+</u> 3 dB				

LIMIT

SUBCLAUSE 15.247(b)(2) - 5.4(a)

Under normal test conditons 1W conducted (4W eirp)
--

Relative humidity: 41%

Average Time of Occupancy

§ 15.247(a)(1)(i) 5.1(c)

Radiated Measurement

Rated output power: 724 mW 915,000 MHz

Date: 21.AUG.2017 14:09:24

According to the protocol description the channel occupancy time in one transmit sequence is equal to 0,4 seconds. No more than 1 transmit sequence in any 20 seconds period was observed.

LIMIT SUBCLAUSE 15.247(a)(1)(i) - 5.1(c)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 20 seconds if at least 50 hopping channels are employed.

Relative humidity: 41%

Average Time of Occupancy

§ 15.247(a)(1)(i) 5.1(c)

Radiated Measurement

Rated output power: 724 mW 915,988 MHz

Date: 21.AUG.2017 14:13:57

According to the protocol description the channel occupancy time in one transmit sequence is equal to 0,4 seconds. No more than 1 transmit sequence in any 20 seconds period was observed.

LIMIT SUBCLAUSE 15.247(a)(1)(i) - 5.1(c)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 20 seconds if at least 50 hopping channels are employed.

Relative humidity: 41%

Average Time of Occupancy

§ 15.247(a)(1)(i) 5.1(c)

Radiated Measurement

Rated output power: 724 mW 916,976MHz

Date: 21.AUG.2017 14:18:13

According to the protocol description the channel occupancy time in one transmit sequence is equal to 0,4 seconds. No more than 1 transmit sequence in any 20 seconds period was observed.

LIMIT SUBCLAUSE 15.247(a)(1)(i) - 5.1(c)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 20 seconds if at least 50 hopping channels are employed.

Relative humidity: 41%

Out-of-band Emission

§ 15.247(d) 5.5

The 15.209 (RSS-Gen) Limit was checked during radiated emissions testing, see following pages

LIMIT

SUBCLAUSE 15.247(d) - 5.5

In any 100 kHz bandwidth outside the frequency band in which the radio device is operating.	At least 20dB below the power in the 100 kHz bandwidth within the band that contains the highest level of the
	desired power.

Test Equipment used: N/A

Relative humidity: 41%

Emissions in restricted bands Emissions falling within restricted frequency bands

§ 15.209(a) RSS-Gen

Measurement radiated with Peak-Detector (green line) and Average detector (magenta line):

Radiated measurement - 915,000 MHz

Worst case emission: 52,6 dBµV/m @ 1830,000 MHz

Remark: An averaging factor of -10,2 dB was taken into account at the harmonics. According to the protocol description the worst case transmit time in any 100ms period would be 35,83ms (device transmitting a SYNC packet in the second pretime-slot followed by the first payload packet.

LIMIT

SUBCLAUSE 15.209(a) - RSS-Gen

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-112/1; NT-122; NT-126; NT-131/1; NT-207; NT-216; NT-337; NT-414

Relative humidity: 41%

Emissions in restricted bands Emissions falling within restricted frequency bands

§ 15.209(a) RSS-Gen

Measurement radiated with Peak-Detector (green line) and Average detector (magenta line):

Radiated measurement - 915,988 MHz

Worst case emission: 52,5 dBµV/m @ 1831,976 MHz

Remark: An averaging factor of -10,2 dB was taken into account at the harmonics. According to the protocol description the worst case transmit time in any 100ms period would be 35,83ms (device transmitting a SYNC packet in the second pretime-slot followed by the first payload packet.

LIMIT

SUBCLAUSE 15.209(a) - RSS-Gen

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-112/1; NT-122; NT-126; NT-131/1; NT-207; NT-216; NT-337; NT-414

Relative humidity: 41%

Emissions in restricted bands Emissions falling within restricted frequency bands

§ 15.209(a) RSS-Gen

Measurement radiated with Peak-Detector (green line) and Average detector (magenta line):

Radiated measurement - 916,976 MHz

Worst case emission: 51,9 dBµV/m @ 1833,952 MHz

Remark: An averaging factor of -10,2 dB was taken into account at the harmonics. According to the protocol description the worst case transmit time in any 100ms period would be 35,83ms (device transmitting a SYNC packet in the second pretime-slot followed by the first payload packet.

LIMIT

SUBCLAUSE 15.209(a) - RSS-Gen

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-112/1; NT-122; NT-126; NT-131/1; NT-207; NT-216; NT-337; NT-414

Relative humidity: 41%

Conducted Limits

§ 15.207 RSS-Gen 8.8

As no external power connector is available, no measurement of conducted limits was performed.

LIMIT

SUBCLAUSE 15.207(a) - RSS-Gen 8.8

	Conducted limit (dBµV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*}Decreases with the logarithm of the frequency.

Test Equipment used: N/A

Test Report Reference: INE-AT/FG-17/133

Ambient temperature: 28°C

Relative humidity: 41%

Maximum permissible Exposure

§ 15.247(i)

This kind of radio equipment is categorically excluded from routine environmental evaluation.

l office@tuv at

Appendix 1 Test equipment used

	Anechoic Chamber with 3m measurement distance	NT-100	Spectrumanalyzer – FSP7 9 kHz – 7 GHz	NT-200	Division: Industry 8
	Stripline according to ISO 11452-5	NT-108	ESCI - Test receiver 9 kHz - 7 GHz	NT-203/1	Danadasa
	MA4000 - Antenna mast 1 - 4 m height	NT-110/1	ESI26 – Test receiver 20 Hz – 26,5 GHz	NT-207	Departme Test repo
	DS - Turntable 0 - 400 ° Azimuth	NT-111/1	Digital Radio Tester CTS55	NT-208	INE-AT/F
	CO3000 Controller Mast+Turntable	NT-112/1	Noise-gen., ITU-R 559-2 20 Hz – 20 kHz	NT-209	Page: 1 o
	HUF-Z3 - Log. Per. Antenna 200 - 1000 MHz	NT-121	CMTA - Radiocommunication analyzer; 0,1 - 1000 MHz	NT-210	Checked
	HFH-Z2 - Loop Antenna 9 kHz - 30 MHz	NT-122	3271 - Spectrum analyzer 100 Hz - 26,5 GHz	NT-211	
	HFH-Z6 - Rod Antenna 9 kHz - 30 MHz	NT-123	Digital Radio Tester Aeroflex 3920	NT-212/1	
	3121C - Dipole Antenna 28 - 1000 MHz	NT-124	Mixer M28HW 26,5 GHz - 40 GHz	NT-214	
	3115 - Horn Antenna 1 - 18 GHz (immunity)	NT-125	RubiSource T&M Timing reference	NT-216	
	3116 - Horn Antenna 18 - 40 GHz	NT-126	Radiocommunicationanalyzer SWR 1180 MD	NT-217	
	SAS-200/543 - Bicon. Antenna 20 MHz - 300 MHz	NT-127	Mixer M19HWD 40 GHz – 60 GHz	NT-218	
	AT-1080 - Log. Per. Antenna 80 - 1000 MHz	NT-128	Mixer M12HWD 60 GHz – 90 GHz	NT-219	
	HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-129	DSO9104 Digital scope	NT-220/1	
	HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-130	TPS 2014 Digital scope	NT-222	
	3146 - Log. Per. Antenna 200 – 1000 MHz	NT-131	Artificial Ear according to IEC 60318	NT-224	
	VULB 9163 Trilog Antenna 30 – 3000 MHz	NT-131/1	1 kHz Sound calibrator	NT-225	
	Loop Antenna H-Field	NT-132	B10 - Harmonics and flicker analyzer	NT-232	
	Horn Antenna 500 MHz - 2900 MHz	NT-133	SRM-3000 Spectrumanalyzer	NT-233	
	Horn Antenna 500 MHz - 6000 MHz	NT-133/1	SRM-3006 Spectrumanalyzer	NT-233/1a	
	Log. per. Antenna 800 MHz - 2500 MHz	NT-134	E-field probe SRM 75 MHz – 3 GHz	NT-234	
	Log. per. Antenna 800 MHz - 2500 MHz	NT-135	Field Meter NBM-500 incl. E- and H-Field probes	NT-240a-d	
	BiConiLog Antenna 26 MHz – 2000 MHz	NT-137	Hall-Teslameter ETM-1	NT-241	
	Conical Dipol Antenna PCD8250	NT-138	EFA-3 H-field- / E-field probe	NT-243	
	HF 906 - Horn Antenna 1 - 18 GHz (emission)	NT-139	EHP-50F H-field- / E-field probe	NT-243/1	
	HZ-1 Antenna tripod	NT-150	Field Meter EMR-200 100 kHz – 3 GHz	NT-244	
	BN 1500 Antenna tripod	NT-151	E-field probe 100 kHz – 3 GHz	NT-245	
	Ant. tripod for EN61000-4-3 Model TP1000A	NT-156	H-field probe 300 kHz – 30 MHz	NT-246	
	Power quality analyzer Fluke 1760 (complete set)	NT-160 - NT-173			

n: · & Energy

ent: FG

oort number: FG-17/133

of 4

.10.2017

office@tuv.at

w tuv at

TUV AUSTRIA

Appendix 1 (continued) Test equipment used

E-field probe 3 MHz – 18 GHz	NT-247	Oscillatory Wave Simulator incl. Coupling networks	NT- 328a+b+c
H-field probe 27 MHz – 1 GHz	NT-248	BTA-250 - RF-Amplifier 9 kHz - 220 MHz / 250 W	NT-330
ELT-400 1 Hz – 400 kHz	NT-249	T82-50 RF-Amplifier 2 GHz – 8 GHz	NT-331
MDS 21 - Absorbing clamp 30 - 1000 MHz	NT-250	500W1000M7 - RF-Amplifier 80 - 1000 MHz / 500 W	NT-332
FCC-203I EM Injection clamp	NT-251	AS0102-65R - RF-Amplifier 1 GHz - 2 GHz	NT-333
FCC-203I-DCN Ferrite decoupling network	NT-252	APA01 – RF-Amplifier 0,5 GHz – 2,5 GHz	NT-334
PR50 Current Probe	NT-253	Preamplifier 1 GHz - 4 GHz	NT-335
i310s Current Probe	NT-254/1	Preamplifier for GPS MKU 152 A	NT-336
Fluke 87 V True RMS Multimeter	NT-260	Preamplifier 100 MHz – 23 GHz	NT-337
Model 2000 Digital Multimeter	NT-261	DC Block 10 MHz – 18 GHz Model 8048	NT-338
Fluke 87 V Digital Multimeter	NT-262/1	2-97201 Electronic load	NT-341
ESH2-Z5-U1 Artificial mains network 4x25A	NT-300	TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-344
ESH3-Z5-U1 Artificial mains network 2x10A	NT-301	TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-345
ESH3-Z6-U1 Artificial mains network 1x100A	NT-302	VDS 200 Mobil-impuls-generator	NT-350
ESH3-Z6-U1 Artificial mains network 1x100A	NT-302a	LD 200 Mobil-impuls-generator	NT-351
PHE 4500/B Power amplifier	NT-304	MPG 200 Mobil-Impuls-Generators	NT-352
EZ10 T-Artificial Network	NT-305	EFT 200 Mobil-impuls-generator	NT-353
SMG - Signal generator 0,1 - 1000 MHz	NT-310	AN 200 S1 Artificial Network	NT-354
SMA100A - Signal generator 9 kHz - 6 GHz	NT-310/1	FP-EFT 32M 3 ph. Coupling filter (Burst)	NT-400/1
RefRad Reference generator	NT-312	PHE 4500 - Mains impedance network	NT-401
SMP 02 Signal generator 10 MHz - 20 GHz	NT-313	IP 6.2 Coupling filter for data lines (Surge)	NT-403
40 MHz Arbitrary Generator TGA1241	NT-315	TK 9421 High Power Volt. Probe 150 kHz - 30 MHz	NT-409
Artificial mains network NSLK 8127-PLC	NT-316	ESH2-Z3 - Probe 9 kHz - 30 MHz	NT-410
PEFT - Burst generator up to 4 kV	NT-320	IP 4 - Capacitive clamp (Burst)	NT-411
ESD 30 System up to 25 kV	NT-321	Highpass-Filter 100 MHz – 3 GHz	NT-412
PSURGE 4.1 Surge generator	NT-324	Highpass-Filter 600 MHz – 4 GHz	NT-413
IMU4000 Immunity test system	NT-325/1	Highpass-Filter 1250 MHz – 4 GHz	NT-414
VCS 500-M6 Surge-Generator	NT-326	Highpass-Filter 1800 MHz – 16 GHz	NT-415

Division: Industry & Energy

Department: FG

Test report number: INE-AT/FG-17/133

Page: 2 of 4

Date: 30.10.2017

Checked by:

office@tuv at

/ tuv at ____ c

Appendix 1 (continued) Test equipment used

	Highpass-Filter 3500 MHz – 18 GHz	NT-416	FCC-801-S25 Coupling decoupling network	NT-462	Division: Industry & Energy
	RF-Attenuator 10 dB DC – 18 GHz / 50 W	NT-417	FCC-801-T4 Coupling decoupling network	NT-463	Department: FG
	RF-Attenuator 6 dB DC - 18 GHz / 50 W	NT-418	FCC-801-C1 Coupling decoupling network	NT-464	Test report number:
	RF-Attenuator 3 dB DC – 18 GHz / 50 W	NT-419	SW 9605 - Current probe 150 kHz - 30 MHz	NT-465/1	INE-AT/FG-17/133 Page: 3 of 4
	RF-Attenuator 20 dB DC - 1000 MHz / 25 W	NT-421	95242-1 – Current probe 1 MHz – 400 MHz	NT-468	Date: 30.10.2017
	RF-Attenuator 30 dB DC - 1000 MHz / 1 W	NT-423	94106-1L-1 – Current probe 100 kHz – 450 MHz	NT-471	Checked by:
	RF-Attenuator 30 dB	NT-424	GA 1240 Power amplifier according to EN 61000-4-16	NT-480	<i>Y</i> .
	RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-425	Coupling networks according to EN 61000-4-16	NT-481 - NT-483	
	RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-426	Van der Hoofden Test Head	NT-484	
	RF-Attenuator 6 dB	NT-428	PC P4 3 GHz Test computer	NT-500	
	RF-Attenuator 0 dB - 81 dB	NT-429	PC P4 1700 MHz Notebook	NT-505	
	WRU 27 - Band blocking 27 MHz	NT-430	Monitoring camera with Monitor	NT-511	
	WHJ450C9 AA - High pass 450 MHz	NT-431	ES-K1 Version 1.71 SP2 Test software	NT-520	
	WHJ250C9 AA - High pass 250 MHz	NT-432	EMC32 Version 10.28.00 Test software	NT-520/1	
	RF-Load 150 W	NT-433	SRM-TS Version 1.3 software for SRM-3000	NT-522	
	Impedance transducer 1:4; 1:9; 1:16	NT-435	SRM-TS Version 1.3.1 software for SRM-3006	NT-522/1	
	RF-Attenuator DC – 18 GHz 6 dB	NT-436	Spitzenberger und Spies Test software V4.1	NT-525	
	RF-Attenuator DC – 18 GHz 6 dB	NT-437	Noise power test apparatus according to EN 55014	NT-530	
	RF-Attenuator DC – 18 GHz 10 dB	NT-438	Vertical coupling plane (ESD)	NT-531	
	RF-Attenuator DC – 18 GHz 20 dB	NT-439	Test cable #4 for EN 61000-4-6	NT-553	
	I+P 7780 Directional coupler 100 - 2000 MHz	NT-440	Test cable #3 for conducted emission	NT-554	
	ESH3-Z2 - Pulse limiter 9 kHz - 30 MHz	NT-441	Test cable #5+#6 ESD-cable (2x470k)	NT-555 + NT-556	
	Power Divider 6 dB/1 W/50 Ohm	NT-443	Test cable #8 Sucoflex 104EA	NT-559	
	Directional coupler 0,1 MHz – 70 MHz	NT-444	Test cable #9 (for outdoor measurements)	NT-580	
	Directional coupler 0,1 MHz – 70 MHz	NT-445	Test cable #10 (for outdoor measurements)	NT-581	
	Tube imitations according to EN 55015	NT-450	Test cable #13 Sucoflex 104PE	NT-584	
	FCC-801-M3-16A Coupling decoupling network	NT-458	Test cable #21 for SRM-3000	NT-592	
	FCC-801-M2-50A Coupling decoupling network	NT-459	Shield chamber	NT-600	
	FCC-801-M5-25 Coupling decoupling network	NT-460	Climatic chamber	M-1200	
	FCC-801-AF10 Coupling decoupling network	NT-461			
	-				

Appendix 1 (continued) Test equipment used

Anechoic Chamber 3 m / 5 m measuring distance	EMV-100	Log.per Antenna 0,7 – 9 GHz STLP9149	EMV-305	Division: Industry & Energy
Turntabel 6 m diameter	EMV-101	HF- Ampflifier 9 kHz-250 MHz BBA150 (low noise)	EMV-306	Department: FG
Antenna mast 1 – 4 m	EMV-102	Load Dump Generator Substitution LD 200N	EMV-350	Test report number:
Mast and Turntable controller FC-06	EMV-103	Ultra Compact Symulator UCS 200N100	EMV-351	INE-AT/FG-17/133 Page: 4 of 4
EMC Video/Audiosystem	EMV-104	Automotive Power fail module PFM 200N100.1	EMV-352	Date: 30.10.2017/
EMC Software EMC32 Version 10.28.00	EMV-105	Voltage Drop Symulator VDS 200Q100	EMV-353	Checked by:
Hornantenna 1 – 18 GHz HF 907	EMV-110	Arb. Generator AutoWave	EMV-354	U
Antennapre.amp. 1 – 18 GHz ERZ-LNA0200-1800-30-2	EMV-111	Ultra Compact Symulator UCS 500N7	EMV-355	
Trilog Antenna 30-3000 MHz VULB9163	EMV-112	Coupling decoupling network CNI 503B7 / 32 A	EMV-356	
Monopol 9 kHz – 30 MHz VAMP 9243	EMV-113	Coupling decoupling network CNI 503B7 / 63 A	EMV-357	
Antennapre.amp 18 – 40 GHz BBV 9721	EMV-114	Telecom Surge Generator TSurge 7	EMV-358	
DC Artificial Network PVDC 8300	EMV-150	Coupling decoupling network CNI 508N2	EMV-359	
AC Artificial Network NNLK 8121 RC	EMV-151	Coupling decoupling network CNV 504N2.2	EMV-360	
EMI Receiver ESR26	EMV-200	Immunity generator NSG4060/NSG4060-1	EMV-361	
Signalgenerator 9 kHz – 40 GHz N5173B	EMV-201	Coupling network CDND M316-2	EMV-362	
GPS Frequency normal B-88	EMV-202	Coupling network CT419-5	EMV-363	
DC Power supply N5745A	EMV-203	ESD Generator NSG 437	EMV-364	
Spektrum Analyzator FSV40	EMV-205	Pulse Limiter VTSD 9561-F BNC	EMV-405	
Thd Multimeter Model 2015	EMV-206	Transient emission BSM200N40+BS200N100	EMV- 450+451	
Poweramplifier PAS15000	EMV- 207/abc	Cap. Coupling Clamp HFK	EMV-455	
Inrush Current Source	EMV- 208/abc	Mag. Field System MS100N+MC26100+MC2630	EMV- 456-458	
Arbgenerator Sycore	EMV-209	Coupling network CDN M2-100A	EMV-459	
Harmonics/Flicker analyzer ARS 16/3	EMV-210	Coupling network CDN M3-32A	EMV-460	
HF- Ampflifier 9 kHz-250 MHz BBA150	EMV-300	Coupling network CDN M5-100A	EMV-461	
HF- Amplifier 80 -1000 MHz BBA150	EMV-301	Current Clamp CIP 9136A	EMV-462	
HF- Amplifier 0,8 - 6 GHz BBA150	EMV-302	DC Artificial Network HV-AN 150	EMV- 464+465	
High Power Ant. 20-200 MHz VHBD 9134	EMV-303	Coupling Clamp EM 101	EMV-466	
Log.per Antenna 80-2700 MHz STLP 9128 E special	EMV-304	Decoupling Clamp FTC 101	EMV-467	
01E1 0120 E Special		Power attenuator 10 dB / 250 Watt	EMV-469/2	!

Description: Front view

Division: Industry & Energy

Department: FG

Test report reference: INE-AT/FG-17/133

Page: 1 of 7

Date: 30.10.2017

Description: Backside view

Department: FG

Test report reference: INE-AT/FG-17/133

Page: 2 of 7

Date: 30.10.2017

Description: Cable detached

Division: Industry & Energy

Department: FG

Test report reference: INE-AT/FG-17/133

Page: 3 of 7

Date: 30.10.2017

Description: PCBs with shielding detached

Division: Industry & Energy

Department: FG

Test report reference: INE-AT/FG-17/133

Page: 4 of 7

Date: 30.10.2017

Description: Control unit

Division: Industry & Energy

Department: FG

Test report reference: INE-AT/FG-17/133

Page: 5 of 7

Date: 30.10.2017

Description: Test setup below 30 MHz

Division: Industry & Energy

Department: FG

Test report reference: INE-AT/FG-17/133

Page: 6 of 7

Date: 30.10.2017/

Description: Test setup above 30 MHz

Division: Industry & Energy

Department: FG

Test report reference: INE-AT/FG-17/133

Page: 7 of 7

Date: 30.10.2017/