Ordinary Differential Equations

Chapter 1.2 Notes: Solutions & Inital Value Problems

Victor C. Van

December 19, 2024

An nth order ordinary differential equation is an equality involving the independent variable x, the dependent variable y, and the first n derivative of y. Examples are:

Second Order:
$$x^2 + \frac{d^2y}{dx^2} + y = x^3$$

Second Order:
$$\sqrt{1 - (\frac{d^2y}{dx^2})^2} - y = 0$$

Fourth Order:
$$\frac{d^4y}{dx^4} = xy$$

Thus a general form for an nth order equation would be:

$$F(x, y, \frac{dy}{dx}, \cdots, \frac{d^n y}{dx^n} = 0)$$
 (1)

where F is a function of the independent variable x, the dependent variable y, and the derivative of y up to order n; that is $x, y, \dots, \frac{d^{n-1}y}{dx^{n-1}}$. We assume that the equation holds for all x in an interval I (which masy or may not include its endpoints: $a \le x \le b, a < x \le b, etc$). In many cases, we can isolate the highest-order term $\frac{d^ny}{dx^n}$, and write (1) as:

$$\frac{d^n y}{dx^n} = f(x, y, \frac{dy}{dx}, \cdots, \frac{d^n y}{dx^n})$$
 (2)

which is often preferable to (1) for theoretical and computational purposes.

EXPLICIT SOLUTION

Definition 1. A function $\phi(x)$ that when substituted for y in equation (1) [or (2)] satisfies the equation for all x in the interval I is called an **explicit solution** to the equation on I.

EXAMPLE 1: Show that $\phi(x) = x^2 - x^{-1}$ is an explicit solution today

$$\frac{d^2y}{dx^2} - \frac{2}{x^2}y = 0.$$

Solution: The functions $\phi(x) = x^2 - x^{-1}$, $\phi'(x) = 2x + x^{-2}$, and $\phi''(x) = 2 - 2x^{-3}$ are defined for all $x \neq 0$. Substitution of $\phi(x)$ for y in the equation (3) gives:

$$(2-2x^{-3}) - \frac{2}{x^2}(x^2 - x^{-1}) = (2-2x^{-3}) - (2-2x^{-3}) = 0.$$

EXAMPLE 2: Show that for any choice of the constants c_1 and c_2 , the function

$$\phi(x) = c_1 e^{-1} + c_2 e^{2x}$$

is an explicit solution to

$$y'' - y' - 2y = 0. (4)$$