

INSTITUTO/S: Tecnología e Ingeniería

CARRERA/S: Licenciatura en informática

MATERIA: Sistemas Distribuidos y Tiempo Real

NOMBRE DEL RESPONSABLE DE LA ASIGNATURA: José Antonio Rapallini

EQUIPO DOCENTE: José Antonio Rapallini

CUATRIMESTRE: 1^{ro}

AÑO: 4^{to}

PROGRAMA N°: 36 (Aprob. Por Cons.Directivo fecha XX)

Instituto/s: Tecnología e Ingeniería Carrera/s: Licenciatura en informática

Nombre de la materia: Sistemas Distribuidos y Tiempo Real

Responsable de la asignatura y equipo docente: Ing. José Antonio Rapallini

Cuatrimestre y año: 1er cuat. del 4to año

Carga horaria semanal: 6 hs

Programa N°: 36

Código de la materia en SIU: 779

Sistemas Distribuidos y Tiempo Real

1. Fundamentación

En todo sistema de información, el rendimiento de los ordenadores para realizar procesamiento de datos, almacenar información, etc.; va relacionado con sus prestaciones de hardware y con el software que utilicen.

Una forma de incrementar este rendimiento es utilizando **sistemas distribuidos** donde un conjunto de ordenadores independientes funciona como uno solo a ojos del usuario, incrementando la capacidad y velocidad de procesamiento y almacenamiento, de forma notoria.

Al resolver esta problemática en tiempo real, se incorporan exigencias a estos sistemas dado que deben aportar su actuación al sistema, en cortos tiempos con gran fiabilidad y alta disponibilidad

2. Propósitos y/u objetivos

Propósitos

- Promover la reflexión sobre los desafíos que los nuevos contextos sociales, políticos y culturales plantean a la formación académica y profesional.
- Contribuir al análisis crítico del uso y apropiación de las tecnologías de época en diferentes ámbitos de la vida de cada uno de los estudiantes: personal, profesional y académico.
- Instalar la noción de cultura colaborativa como fundamento de la comunidad UNAHUR.

Objetivos

Son objetivos de esta materia que los/as estudiantes, a través de los conocimientos referidos a los sistemas distribuidos informáticos en el contexto de las aplicaciones en tiempo real, puedan:

 Reflexionar sobre los desafíos que se puedan desarrollar en los contextos sociales, políticos y culturales que plantea su formación académica y profesional.

 Contribuyan al análisis crítico del uso y apropiación de las tecnologías estudiadas para su utilización en forma personal, profesional y académico.

3. Programa sintético:

Sistemas en tiempo real distribuidos. Características de Tiempo Real: Sistemas Ciber Físicos. Ámbitos y Entornos de los SDTR. Características de los SD, Coordinación de recursos, concurrencia, modularidad, escalabilidad, transparencia. Modelos, enfoque Lógico y Físico. Características funcionales, sincronización, pasaje de mensaje, procedimientos remotos, memoria, archivos. Nuevas tecnologías en los SDTR. Aplicaciones.

4. Programa analítico

4.1 Organización del contenido:

Módulo 1: Sistemas en tiempo real. Ámbitos y Entornos

- 1. Características: Tiempo de respuesta del sistema y parámetros que lo afectan. Razón o tasa de transferencia de datos. Requisitos Temporales periódicos o esporádicos, estricto o flexible. Diagramas de bloques y funcionales.
- 2. **Sistemas ciberfísicos [SCF].** Capacidades de computación, características de las comunicaciones y estructuras de control de los SCF. 2.1. Tipos y Componentes de los sistemas de Comunicaciones: Analógicas. Digitales. Punto a Punto, Punto Multipunto, En red, Protocolos de comunicación, software de comunicación y proveedores de servicios
- 2.2. Arquitecturas de los sistemas de cómputo: Elementos Hardware: Procesador, memorias, interfases. Elementos Software: Sistemas operativos, programa, aplicaciones de Ciencia de Datos: Algoritmos, Simulación, Inteligencia artificial, Manejo de Gran Cantidad de Datos, Minería de Datos, Seguridad.
- 2.3. Estructuras de control
- 2.4. Modelo conceptual de los Sistemas Ciberfísicos. Mapa conceptual. Ejemplos de SCF Esquemas de comparación y parámetros de cualificación de los Sistemas Ciberfísicos
- 3. Ámbitos de los SCF para el proceso de diseño. Externo Periférico Interno. 3.1. Ámbito Externo: 3.1.1. Normalización Internacional, regional y Nacional. Tipos y usos
- 3.1.2. El Medio, Condiciones Energéticas, Físicas y Humanas
- 3.1.3. Seguridad, Fiabilidad, Disponibilidad, Confiabilidad, Mantenibilidad
- 3.1.4. Tolerancia a Fallas, Confiabilidad para Hardware y Software, Análisis CDM
- 3.2. Ámbito Periférico: 3.2.1. Sistemas de captura de datos (sensores) y actuación al medio (actuadores). Características y clasificación
- 3.2.2. HMI (Interfaz Maquina Humano), elementos típicos de interconexión, software y hardware. Nuevas tecnologías RV y RA. Herramientas de diseño
- 3.2.3. Comunicaciones: Interfaces de comunicación físicas. Tipos y clasificación según alcance de la transmisión y volumen de información
- 3.3. Ámbito Interno: 3.3.1. Entornos: Sistemas Embebidos (SE), Centralizados (SC) y Distribuidos (SD).

- 3.3.2. Sistemas Embebidos (SE): Microcontroladores, Microprocesadores, DSP, FPGA. Características, programación (Sistemas monotarea), comunicación (sincrónicos, asincrónicos, buses), Principios de control utilizados en sistemas embebidos. Herramientas para diseño, ejemplos de diseño.
- 3.3.3. Sistemas Centralizados (SC): Interfases de I/O y placas, Instrumentos de toma de datos DAQ (adquisición de datos), Controlador lógico programable (PLC), Computadoras industriales y equipos microprocesadores de alta performance. Sistemas multitareas. Software de adquisición y control.
- 3.3.4. Sistemas Distribuidos (SD): Redes de comunicación de datos, Sistemas de manejo de datos comerciales e industriales. Sistemas multitarea distribuidas.
- 3.3.5. Introducción a la programación de los SE, SC y SD. Proceso de software, desde la especificación a la implementación de la Aplicación. Modelo de Computación. Herramientas que permiten el diseño de programas informáticos haciendo uso de determinado lenguaje de programación.

Módulo 2: Análisis de los Sistemas Distribuidos (SD)

- 1. Interpretación. Definiciones. Características. Ventajas y desventajas. Ejemplos según las características temporales. Tipos Homogéneos y no homogéneos 1.1. Modelos de Sistemas Distribuidos 1.1.1. Enfoque Lógico. Categorías de integración y de aplicación. Middleware. Funciones Herramientas de desarrollo.
- 1.1.2. Enfoque Componentes. Cliente-Servidor. Múltiples servidores y sus variaciones. Entre iguales (Peer-to-peer, P2P).
- 1.2. Características funcionales de los SD:
- 1.2.1. Sincronismo (Relojes físicos, relojes lógicos, tipos de sincronización, multiplexación).
- 1.2.2. Sincronismo Distribuido. Algoritmos de Sincronización.
- 1.2.3. Memoria distribuida. Sistemas de archivos distribuidos.
- 1.2.4. Modelo de fallas. Consistencia, disponibilidad y tolerancia a la partición (Teorema de CAP)

Módulo 3: Aplicaciones de SD en Tiempo Real

- 1. Los nuevos desafíos tecnológicos, sus pilares. Casos de utilización en SDTR. Sistemas de integración horizontales y verticales. Simulación. Robots autónomos. Computación en la nube. Internet de las cosas. Ciberseguridad. Big Data y análisis. Realidad Virtual, Aumentada y Mixta.
- 2. Las comunicaciones. Comprensión de un sistema general de comunicaciones. Características de las comunicaciones inalámbricas aplicadas en SDTR. Enlaces y protocolos. Confluencia de tecnologías de comunicaciones para la solución de problemáticas.
- 3. Aspectos tecnológicos de los SDTR. Aplicaciones actuales en gestión, supervisión y control de Sistemas Distribuidos. Ejemplos comérciales (Google) e industriales (Sistemas DCS y SCADA). Análisis del equipamiento para las distintas tecnologías. Redes de sensores. Integración de servicios de Domótica, Inmótica, Urbótica a través de los SDTR

4.2 Bibliografía y recursos obligatorios:

 Lee, E.A., and Sanjit A. Seshia (2017) 'Introduction to Embedded Systems, A Cyber-Physical Systems Approach', Second Edition, MIT Press.

- Platzer, A. (2018). 'Cyber-Physical Systems. Systems'. Springer.
- Burns,A. y Wellings,A. (2003). "Sistemas de tiempo real lenguajes de programación"
 Editorial Addison Wesley, Madrid
- Coulouris, G., Dollimore, J., Tim Kindberg, T. y Blair, G. (2017). "Distributed Systems" Pearson Education
- Tanenbaum y Van Steen, M. (2017). "Sistemas Distribuidos Principios y Paradigmas"
 3ra edición Published by Maarten van Steen

4.3 Bibliografía optativa:

- Boltom, W. Mecatrónica Alfaomega. (2010), México
- López Fuentes, Francisco. (2015) "Sistemas Distribuidos", UAM, Unidad Cuajimalpa, México.
- Aguiló, J. M. (2019). Industria 4.0 "La transformación digital en la industria", e-libro
- Gayoso Martínez, V. (2020). Ciberseguridad, CSIC e-libro
- Barrio, A. (2018). Internet de las cosas, REUS e-libro
- Sánchez Jiménez, J.L. (2021) Fundamentos de robótica, IC e-libro
- Alonso Castro Gil, M. (2007) Comunicaciones industriales: sistemas distribuidos y aplicaciones, UNED e-libro
- Instituto Nacional de Ciberseguridad (INCIBE) (2022) "Guía de ciberseguridad. La ciberseguridad al alcance de todos". Ministerio de Asuntos Económicos y Transformación Digital -Secretaría de Estado de Digitalización e Inteligencia Artificial. Gobierno de España
- Basco, G. Beliz, D., P. Garnero. (2018). Industria 4.0 Fabricando el futuro, UIA Unión Industrial Argentina – BID Banco Interamericano de Desarrollo - Intal Instituto Para la Integración de América Latina y el Caribe.

5. Metodología de enseñanza:

Partiendo de la **descripción y características** de un Sistema de Tiempo Real (STR), se analizan y describen los distintos **entornos** (Embebidos, Centralizados, Distribuidos) de desarrollo de los STR, para luego enfrentar situaciones reales de cada uno, mostrando a partir de ejemplos sus **características particulares**, generando comparativas y conclusiones que permiten presentar los conceptos teóricos necesarios para resolverlos. Su conocimiento permitirá abordar **Sistemas Distribuidos** (**SD**) **en Tiempo Real**, utilizados en todo tipo de servicios (personales, públicos, de comunicaciones e industriales).

Plan de trabajo en el campus:

En el aula virtual se pondrá material educativo preparado por los docentes y artículos de actualidad en la temática de la materia. Textos de lectura obligatoria y presentaciones empleadas durante las clases. Se tendrá acceso a clases grabadas y videos ampliatorios de los temas. Se encontrarán también las guías de trabajos a realizar y todo material que el/la alumno/a deba entregar. También incluirá foro de consultas, programa, cronograma de la asignatura y otras informaciones adicionales que sean necesarias.

6. Actividades de investigación y extensión (si hubiera)

Dado que la propuesta corresponde a la realización de una experiencia real, la misma podrá desarrollarse en forma conjunta con actividades que se realicen en áreas afines del Instituto correspondientes a Investigación, extensión o transferencia. Esto permitirá complementar y enriquecer el desarrollo del trabajo permitiendo una interacción con otras actividades que se realizan en la universidad.

7. Evaluación y régimen de aprobación

Aspectos generales:

Para la aprobación de la materia se propone la realización de un trabajo que acompañará al desarrollo temático de la materia, incorporando en forma secuencial los contenidos de la materia a través de un intercambio de conocimientos en forma horizontal, entre todos los alumnos del curso con el docente a cargo.

Se desarrollarán evaluaciones continuas, que para fines prácticos se concentraran en dos presentaciones que determinaran el avance de la incorporación de los contenidos (1ra evaluación) y el cumplimiento de realización del trabajo (2da evaluación).

7.1 Aprobación de la cursada

Para aprobar la cursada y obtener la condición de regular, el régimen académico establece que debe obtenerse una nota no inferior a cuatro (4) puntos. Todas las instancias evaluativas deberán tener una instancia de recuperatorio. Podrán acceder a la administración de esta modalidad solo aquellos y aquellas estudiantes que hayan obtenido una nota inferior o igual a 6 (seis) puntos en el examen parcial.

Siempre que se realice una evaluación de carácter recuperatorio, la calificación que los/as estudiantes obtengan reemplazará la calificación obtenida en el examen que se ha recuperado y será la considerada definitiva a los efectos de la aprobación.

El/La alumno/a deberá poseer una asistencia no inferior al 75% en las clases presenciales.

En cuanto a las cursadas de materias virtuales se requerirá que el estudiante ingrese al aula virtual como mínimo una vez por semana.

7.2 Aprobación de la materia

La materia puede aprobarse por promoción, evaluación integradora, examen final o libre.

Promoción directa: tal como lo establece el art°17 del <u>Régimen Académico</u>, para acceder a esta modalidad, el/la estudiante deberá aprobar la cursada de la materia con una nota no inferior a siete (7) puntos, no obteniendo en ninguna de las instancias de evaluación parcial menos de seis (6) puntos, sean evaluaciones parciales o recuperatorios. El promedio estricto resultante deberá ser una nota igual o superior a siete (7) sin mediar ningún redondeo.

Evaluación integradora: tal como lo establece el art°18 del <u>Régimen Académico</u>, podrán acceder a esta evaluación aquellos estudiantes que hayan aprobado la cursado con una nota de entre cuatro (4) y seis (6) puntos.

La evaluación integradora tendrá lugar por única vez en el primer llamado a exámenes finales posterior al término de la cursada. Deberá tener lugar en el mismo día y horario de la cursada

y será administrado, preferentemente, por el/la docente a cargo de la comisión. Se aprobará tal instancia con una nota igual o superior a cuatro (4) puntos, significando la aprobación de la materia.

La nota obtenida se promediará con la nota de la cursada.

Examen final: Instancia destinada a quienes opten por no rendir la evaluación integradora o hayan regularizado la materia en cuatrimestres anteriores. Se evalúa la totalidad de los contenidos del programa de la materia y se aprueba con una calificación igual o superior a cuatro (4) puntos. Esta nota no se promedia con la cursada.

7.3 Criterios de calificación

Asimilación de los contenidos de cada módulo y su incorporación en el desarrollo del trabajo de Aprobación, donde se evaluarán a los integrantes teniendo en cuenta la forma de desarrollarlo a través de la intervención en las clases y la presentación escrita de un documento final, teniendo en cuenta en las dos instancias el seguimiento de estos ítems:

- Objetivos del trabajo, expuestos como resumen de la idea general qué consiste y la problemática que se pretende solucionar.
- Antecedentes y Estado del arte donde se pretende, a través de la búsqueda, lectura y análisis de la bibliografía encontrada, generar la información documental de las características del tema que se desarrollará.
- **Diagrama de comprensión del sistema: Que mostrará** gráficamente un diagrama en bloques completo. Indicando el nombre de cada bloque
- Descripción funcional donde se debe describir el funcionamiento del sistema, independientemente de cualquier implementación, mediante un modelo formal del mismo.
- Desarrollo del diseño y si sus características lo permiten la implementación, presentando las pautas utilizadas y justificando las soluciones adoptadas para resolver el trabajo
- Resumen y Conclusiones, donde se argumentará lo realizado, explicando el porqué de los resultados obtenidos.
- Posibles tareas derivadas del proyecto y Criticas: especificar otras alternativas, modificaciones o mejoras que se pueden derivar del trabajo realizado para que en el futuro pueda ser continuado por otros interesados en el tema. Referencias bibliográficas utilizadas en el desarrollo del trabajo.

8. Cronograma

Semana	Tema	Modalidad
1	Presentación de la materia y pautas para su desarrollo.	Presencial
2	¿Qué son STR?, ¿cuáles son sus característi- cas?. Sistemas Ciber Físicos (SCF). Diagramas de comprensión Hardware y Software de los SCF.	Presencial/Virtual

3	Propuesta y discusión de temas de los Trabajos de Aprobación [TA]	Presencial/Virtual
4	Ámbitos Externos, Periféricos e Internos de los SCF.	Presencial/Virtual
5	Continuación clase 4.	Presencial/Virtual
6	Entornos de desarrollo - Sistemas Embebidos (SE), Centralizados (SC) y Distribuidos (SD).	Presencial/Virtual
7	Los SE, SC y SD en el desarrollo del TA.	Presencial/Virtual
8	Evaluaciones: Presentaciones de 1ra parte del TA por los alumnos	Presencial
9	Modelos de Sistemas Distribuidos. Enfoque Lógico. Enfoque Componentes	Presencial/Virtual
10	Características funcionales de los SD, sincronización, pasaje de mensaje, procedimientos remotos, memoria, archivos.	Presencial/Virtual
11	Herramientas para el estudio y desarrollo de SD. Descripción de su utilización en el desarrollo del TA	Presencial/Virtual
12	Los nuevos desafíos tecnológicos, sus pilares. Casos de utilización.	Presencial/Virtual
13	Las comunicaciones. Características de las comunicaciones inalámbricas aplicadas en SDTR. Casos de utilización.	Presencial/Virtual
14	Aspectos tecnológicos de los SDTR. Aplicaciones actuales en gestión, supervisión y control de Sistemas Distribuidos. Ejemplos comérciales (Google) e industriales (Sistemas DCS y SCADA).	Presencial/Virtual
15	Análisis del equipamiento para las distintas tecnologías. Redes de sensores. Integración de servicios de Domótica, Inmótica, Urbótica a través de los SDTR. Análisis de las aplicaciones en los TA	Presencial/Virtual
16	Presentación Final por los alumnos: 1. Oral (en forma de seminario) 2. Escrita: Presentación monográfica de investigación, desarrollo e implementación.	Presencial