

M61A: Intégration Probabilités LOUIS LOISEAU

L3 Mathématiques 2020-2021

Feuille d'exercice n°1 Solutions des exercices

Exercice 1.

1) $\sum \frac{1}{1+n+n^2} u_n \ge 0$ et $u_n \sim \frac{1}{n^2}$

2) $\sum n^{\alpha} (\ln n)^{\beta}$, avec $\alpha, \beta \in \mathbf{R}$.

— Cas 1: $\alpha < -1$:

On écrit $n^{\alpha}(\ln n)^{\beta} = (n^{\alpha+\varepsilon})n^{-\varepsilon}(\ln n)^{\beta}$ avec $\varepsilon > 0$ assez petit pour que $\alpha + \varepsilon < -1$.

Comme $-\varepsilon < 0$, on a $n^{-\varepsilon} (\ln n)^{\beta} \xrightarrow[n \to \infty]{} 0$ Donc, pour n assez grand, on a

$$0 \le n^{\alpha} (\ln n)^{\beta} \le n^{\alpha + \epsilon}$$

avec $\alpha + \varepsilon < 1$ donc $\sum n^{\alpha + \varepsilon}$ converge.

— Cas 2: $\alpha > 1$

On écrit $n^{\alpha}(\ln n)^{\beta} = n^{-1}n^{\alpha+1}(\ln n)^{\beta}$ avec $\alpha + 1 > 0$ donc $n^{\alpha+1}(\ln n)^{\beta} \xrightarrow[n \to \infty]{} +\infty$.

Donc, pour n assez grand, on a

$$n^\alpha (\ln n)^\beta \ge n^{-1}$$

donc la série diverge.

— Cas 3: $\alpha = -1$. On pose $f(x) = \frac{(\ln x)^{\beta}}{x}$ qui est monotone sur tout $[a, +\infty[$ avec a > 0. On peut alors étudier

$$I = \int_{a}^{b} \frac{(\ln x)^{\beta}}{x} dx = \int_{\ln(a)}^{\ln(b)} u^{\beta} du$$
$$= \left[\frac{u^{\beta+1}}{\beta^{\beta+1}} \right]_{\ln(a)}^{\ln(b)} \text{ si } \beta \neq 1$$
$$= [\ln(u)]_{\ln(a)}^{\ln(b)} \text{ si } \beta = 1$$

Donc *I* diverge si $\beta \ge 1$ et converge si $\beta < 1$.

Finalement, si $\alpha = -1$, la série converge si et seulement $\beta < 1$.

3) $\sum \frac{(-1)^n}{n^{\alpha}}$, avec $\alpha \in \mathbf{R}$.

— Si $\alpha > 1$, il y a convergence absolue.

- Si $\alpha \le 0$, il y a convergence grossière.
- Si $0 < \alpha < 1$, il y a convergence par le théorème des séries alternées.

Exercice 2.

Exercice 3.

Exercice 4.

Exercice 5.

Exercice 6.

1) Soit $x \in \limsup A_n$, alors $x \in \bigcup_{k \ge n} A_k$ pour tout $n \in \mathbb{N}$. Donc pour tout entier n, il existe $k \ge n$ tel que $x \in A_k$. Donc $x \in A_k$ pour une infinité d'indices k.

Récriproquement, si $x \in A_k$ pour une infinité d'indices k, alors pour tout entier n, il existe $k \ge n$ tel que $x \in A_k$.

Donc pour tout entier n, on a $x \in \bigcup_{k \ge n} A_k$, et donc

$$x \in \bigcap_{n \in \mathbb{N}} \left(\bigcup_{k \geqslant n} A_k \right)$$

NB. On aurait pu raisonner par équivalence, ce que nous allons faire pour la question suivante.

2)

$$\begin{aligned} x \in \liminf A_k &\iff \exists n \in \mathbf{N} \ x \in \bigcap_{k \geqslant n} A_k \\ &\iff \exists n \in \mathbf{N} \ x \in A_k, \forall \, k \geqslant n \end{aligned}$$

3) **Note:** Faire un dessin.

 $\limsup = \{x \mid x \text{ appartient à une infinité de } A_{2l} \text{ ou à une infinité de } A_{2l+1}\} = [-1,2] \cup [-2,1] = [-2,2]$

 $\liminf = \{x \in A_{2l} \text{ et } x \in A_{2l+1} \text{ à partir d'un certain rang.}\} = [-1, 1]$

Remarque : On a toujours $\liminf A_n \subset \limsup A_n$

Exercice 7. Raisonnons par l'absurde.

On suppose qu'il existe $\varphi : \mathbb{N} \rightarrow [0, 1]$ surjective.

On note $x_k = \varphi(k) \in [0, 1]$. Alors on a $[0, 1] = \{x_k \mid k \in \}$.

On construit de proche en proche une suite d'intervalles fermés I_k de longueurs non nulles, avec $I_n \subset \cdots \subset I_1 \subset I_0$ et $x_k \notin I_k$.

On choisit $I_0 \subset [0,1]$ fermé de longueur non nulle avec $x_0 \notin I_0$ et $I_1 \subset I_0$ avec $x_1 \notin I_1$. (si $x_1 \notin I_0$, on prend (par exemple) $I_1 = I_0$.)

On continue ainsi de proche en proche pour définir I_2, I_3, \ldots

On considère maintenant $E = \bigcap_{k \in I_k} I_k$. Il est non-vide. En effet, s'il était vide, on aurait une famille $\{I_k\}_{k \in I_k}$ de fermés de [0,1] d'intersection vide. Comme [0,1] est compact, il existerait un nombre fini d'indice k_0, \ldots, k_n tels que

$$\emptyset = I_{k_0} \cap I_{k_1} \cap \cdots \cap I_{k_n} = I_m$$

Où $m = \max\{k_0, \dots, k_n\}$ (par décroissance de la famille (I_k)), donc E est non vide.

De plus, pour tout $n \in \mathbb{N}$, on a $x_n \notin I_n$, donc $x_n \notin E$. Comme par hypothèse, $[0,1] = \{x_n \mid n \in \mathbb{N}\}$ et comme $E \subset [0,1]$, on obtient $E = \emptyset$.

On a ainsi montré par l'absurde qu'il n'existe pas de surjection de ${\bf N}$ dans [0,1], il n'est donc pas dénombrable.

Exercice 8.

Exercice 9.

Définition. Soit $\{u_i\}_I$ une famille quelconque de nombres réels ou complexes. On dit qu'elle est sommable si

$$\sum_{I} |u_i| < +\infty$$

Supposons $u_i \in \mathbf{R}$, $\forall i \in I$. On définit $u_i^+ = \max\{0, u_1\}$ et $u_i^- = -\min\{0, u_i\}$.

On a $|u_i| = u_i^+ + u_i^-$, $u_i = u_i^+ - u_i^-$. De plus, $u_i^{\pm} \ge 0$. On a $\{u_i\}$ est sommable si et seulement si

$$\sum u_i^+ < -\infty \sum u_i^- < \infty$$

Définition. Si $\{u_i\}$ est sommable, on pose :

— Si $u_i \in \mathbf{R}$,

$$\sum u_i = \sum u_i^+ - \sum u_i^-$$

— Si $u_i \in \mathbf{C}$,

$$\sum u_i = \sum \mathfrak{Re}(u_i) + i \sum \mathfrak{Im}(u_i)$$

Proposition. Supposons que $\{u_i\}$ est une famille sommable et I est dénombrable. Alors pour tout bijection $\varphi : \mathbf{N} \mapsto I$ on a

$$\sum_{I} u_{i} = \sum_{n=0}^{\infty} u_{\varphi(n)}$$

Démonstration. On utilise la proposition analogue pour les familles à termes positifs.

Exercice 10. On partitionne la famille :

$$u_{2k} = \frac{1}{2k}$$
 et $u_{2k+1} = \frac{-1}{2k}$

On a $\sum u_{2k} = +\infty$ et $\sum_{2k+1} = -\infty$

On cherche $\varphi : \mathbf{N} \mapsto \mathbf{N}^*$ une bijection telle que

$$\sum_{n \geq 0} u_{\varphi(n)} = l$$

On définit φ de proche en proche.

On pose $\varphi(0) = u_0 = 1$ (arbitrairement, ça n'a aucune importance.)

On suppose qu'on a définit $\varphi(0), \varphi(1), \dots, \varphi(n-1)$ et on définit $\varphi(n)$ comme suit :

- Si $\sum_{k\geqslant 0}^{n-1} u_{\varphi(k)} \le l$, on prend pour $\varphi(n)$ le plus petit entier pair différent de $\varphi(0), \varphi(1), \ldots, \varphi(n-1)$
- Si $\sum_{k\geqslant 0}^{n-1}u_{\varphi(k)}>l$, on prend pour $\varphi(n)$ le plus petit entier impair différent de $\varphi(0),\varphi(1),\ldots,\varphi(n-1)$.

NB. Il est clair que, ainsi définie, φ est bijective.

Montrons que $\sum_{n=0}^{N} u_{\varphi(n)} \xrightarrow[N \to +\infty]{} \ell$.

Soit $\varepsilon > 0$, on cherche $N_{\varepsilon} \in \mathbb{N}$ tel que, pour tout $N \ge N_{\varepsilon}$,

$$\left| \sum_{n=0}^{N} u_{\varphi(n)} - \ell \right| \le \varepsilon$$

D'abord, il existe un $K_{\varepsilon} \in \mathbb{N}$ tel que $n \ge K_{\varepsilon} \Longrightarrow |u_{\varphi(n)}| \le \varepsilon$. En effet φ est une injection donc $\varphi(n) \xrightarrow[n \to \infty]{} \infty$ et comme $u_k \xrightarrow[k \to \infty]{} 0$, on a $u_{\varphi(n)} \xrightarrow[n \to \infty]{} 0$. Soit $M \ge K_{\varepsilon}$ et tel que

$$\sum_0^{M-1} u_{\varphi(n)} \leq l \leq \sum_0^M u_{\varphi(n)}$$

Pour le membre de droite, on a rajouté $u_{\varphi(M)}$ à la somme de gauche, avec $0 < u_{\varphi(M)} < \varepsilon$, donc

$$\ell \leq \sum_{0}^{M} u_{\varphi(n)} \leq \ell + \varepsilon$$

Comme pour $n \ge M$, on a $|u_{\varphi(n)}| \le \varepsilon$ on obtient avec la def de φ et l'inégalité plus haut, que pour tout $N \ge M$:

$$\ell - \varepsilon \leq \sum_{0}^{N} u_{\varphi(n)} \leq \ell + \varepsilon$$

Donc $N_{\varepsilon} = M$ convient.

Exercice 11.

Règles de calcul

- $-- [0, +\infty] = [0, +\infty] \cup \{+\infty\}$
- $-- a + (+\infty) = +\infty \text{ si } a \in \mathbb{R} \cup \{+\infty\}$
- $-a \times (+\infty) = +\infty \text{ si } a \in]0, +\infty]$

Rappel.

Si $(u_n)_{n \in \mathbb{N}}$ est une suite de nombres réels ou complexes, on définit (si elle existe) :

$$\sum_{n=0}^{+\infty} u_n = \lim_{N \to +\infty} S_n, \quad S_n = \sum_{n=0}^{N} u_n$$

Définition.

Soient I un ensemble et $\{u_i\}_{i\in I}$ une famille quelconque d'éléments de $[0, +\infty]$. On définit

$$\sum_{i \in I} u_i = \sup_{J \subset I \, \text{fini}} \sum_{j \in J} u_j \; (\in [0, +\infty])$$

Proposition.

1) Si $\sum_I u_i < +\infty$, alors $I^* = \{i \in I \mid u_i \neq 0\}$ est dénombrable et

$$\sum_{I} u_{i} = \sum_{I^{*}} u_{i}$$

2) Si *I* est dénombrable infini, aloirs pour tout bijection $\varphi : \mathbb{N} \to I$, on a

$$\sum_{I} u_{i} = \sum_{n=0}^{+\infty} u_{\varphi(n)}$$

Démonstration. 1) $I^* = \{i \in I \mid u_i > 0\} \text{ car } u_i \in [0, +\infty] \text{ par hypothèse.}$

Alors $I^* = \bigcup_{k \in \mathbb{N}^*} \{i \in I \mid u_i \ge 1/k\}$, c'est-à-dire une union d'ensembles finis (car les séries convergent). Comme une réunion dénombrable d'ensembles dénombrables est un ensemble dénombrable, on obtient que I^* est dénombrable.

Puisque pour $i \in I \setminus I^*$ on a $u_i = 0$, on voit, par définition de la somme que $\sum_I = \sum_{I^*}$.

2) Par définition, $\sum_{n=0}^{+\infty} u_{\varphi(n)} = \lim_{N \to +\infty} S_n$. La suite (S_N) est croissante donc $\sum_{n=0}^{+\infty} u_{\varphi(n)}$ existe dans $[0, +\infty]$ et on a :

$$\lim_{N} S_{N} = \sup \{ S_{n} \mid N \in \mathbf{N} \}$$

$$= \sup_{N} \sum_{j \in \varphi(\{0, \dots, N\})} u_{j} \leq \sum_{I} u_{i}$$

Donc $\sum_{n=0}^{+\infty} u_{\varphi(n)} \leq \sum_{I} u_{i}$.

D'autre part, soit $J \subset I$ fini. Comme $\varphi : \mathbb{N} \mapsto I$ est une bijection, il existe un $N \in \mathbb{N}$ tel que $\varphi(\{0,\ldots,N\}) \supset J$.

Donc $\sum_{j \in J} u_j \leq S_n \leq \sum_{n=0}^{+\infty} u_{\varphi(n)}$.

En prenant le sup sur les J, on obtient que

$$\sum_I u_i \le \sum_{n=0}^{+\infty} u_{\varphi(n)}$$

NB. Si $J \subset \{i \in I \mid u_i \ge 1/k\}$, alors $\sum_J u_i \ge |J| \times 1/k$

Proposition. Pour $n \in \mathbb{N}$, on suppose donné un sous-ensemble $A_n \subset X$ où X est un ensemble quelconque fixé.

On suppose A_n dénombrable pour tout $n \in \mathbb{N}$. Alors

$$A = \bigcup_{n \in \mathbb{N}} A_n \subset X$$
 est dénombrable.

Démonstration. On peut écrire $A_n = \{a_{nk} \mid k \in \mathbb{N}\}$ car A_n est dénombrable. Alors on a $A = \{a_{nk} \mid n \in \mathbb{N}, k \in \mathbb{N}\}$. Ainsi, l'application $\varphi : (n, k) \in \mathbb{N} \times \mathbb{N} \mapsto a_{nk} \in A$ est une surjection. On sait qu'il existe une surjection $\psi : \mathbb{N} \mapsto \mathbb{N} \times \mathbb{N}$ donc l'application $\varphi \circ \psi : \mathbb{N} \mapsto A$ est surjective.

Exercice 12. On cherche à savoir si

$$\sum_{(p,q)\in \mathbf{N}^{2*}}\frac{1}{(p+q)^{\alpha}}<+\infty$$

Comme $\frac{1}{(p+q)^{\alpha}} \ge 0$, on a vu que l'on peut utiliser une bijection entre \mathbf{N} et \mathbf{N}^{2*} et sommer suivant l'ordre de \mathbf{N} . On somme suivant les diagonales de $\mathbf{N}^2 \setminus \{(0,0)\}$. C'est-à-dire les ensembles de points à coordonnées entières sur les droites $\{(p,q)\mid p+q=k\}$ avec $k\in\mathbf{N}^*$. La k-ème diagonale porte k+1 points de $\mathbf{N}^2\setminus\{(0,0\}\}$. Donc

$$\sum_{\mathbf{N}^2 \setminus \{0,0\}} \frac{1}{(p+q)^{\alpha}} = \sum_{k=1}^{+\infty} \frac{k+1}{k^{\alpha}}$$

Mais $\frac{k+1}{k^{\alpha}} \sim k^{1-\alpha}$. Alors la somme est finie si et seulement si $\sum k^{1-\alpha}$ converge, c'est-à-dire si et seulement si $\alpha > 2$.

Exercice 13. On considère seulement des tribus de **R** qui contiennent deux intervalles donnés [a,b] et [c,d] avec a,b,c,d deux à deux distincts. Soit \mathcal{B} une telle tribu.

— Si [a, b] et [c, d] sont disjoints, alors $\mu : \mathcal{B} \mapsto [0, 1 + \infty]$ définie par $\mu(A) = \text{diam}(A)$ n'est pas une mesure.

En effet, comme [a, b] et [c, d] sont disjoints, on a

$$\operatorname{diam}([a, b] \cup [c, d]) > \operatorname{diam}[a, b] + \operatorname{diam}[c, d]$$

Or, une mesure est σ -additive, c'est-à-dire que si $\{A_n\}$ est une famille dénombrable d'éléments de \mathcal{B} qui sont deux à deux disjoints, alors

$$\mu\left(\bigcup_{n} A_{n}\right) = \sum_{n} \mu(A_{n})$$

— Si [a,b] et [c,d] s'intersectent et qu'aucun n'est contenu dans l'autre.

On peut supposer a < c et on a $[a, b] \in \mathcal{B}$ et $[c, d] \in \mathcal{B}$.

Donc $[a, b] \setminus [c, d] \in \mathcal{B}$ (on peut écrire le complémentaire comme $A \cap (X \setminus B)$)

Par suite, $[a, c] \in \mathcal{B}$. De même, $[c, d] \setminus [a, b] \in \mathcal{B}$, donc $]b, d] \in \mathcal{B}$.

Comme diam ($[a, c[\cup]b, d]$) > diam [a, c[+diam]b, d] et comme [a, b[et]b, d] sont disjoints, diam n'est pas une mesure sur \mathcal{B} .

— Si l'un est contenu dans l'autre, par exemple $[c, d] \subset [a, b]$.

Les éléments de $\sigma([a,b],[c,d])$ sont :

$$- [a, b], [c, d]$$

— **R**,∅

 $-\mathbf{R} \setminus [c, d] =]-\infty, a[\cup]b, +\infty[$

$$-\mathbf{R} \setminus [c,d] =]-\infty, c[\cup]d, +\infty$$

$$-[a,b]\setminus[c,d]=[a,c[\cup]d,b]$$

$$-- [c,d] \cup (\mathbf{R} \setminus [a,b]) = X \setminus ([a,b[\cup]a,b[)=] - \infty, a[\cup[c,d]\cup]b, +\infty[$$

On a $[a, b] \cup [d, b] \in \sigma([a, b], [c, d])$ et $[c, d] \in \sigma([a, b], [c, d])$. Ils sont disjoints et

$$\operatorname{diam}([a, c[\cup]d, b] \cup [c, d]) < \operatorname{diam}([a, c[\cup]d, b]) + \operatorname{diam}[c, d]$$

Donc diam n'est pas une mesure sur $\sigma([a,b],[c,d])$ et donc pas sur \mathcal{B} non plus.

Exercice 14 (Mesure de DIRAC).

Pour montrer que μ est une mesure, il suffit de vérifier la propriété de σ -additivité. C'est à dire montrer que

$$\mu\left(\bigcup_{J} E_{j}\right) = \sum_{J} \mu(E_{j})$$

$$\iff \sum_{\{i \in I \mid x_{i} \in \cup E_{j}\}} = \sum_{J} \left(\sum_{I} m_{i} \delta_{x_{i}}\right)$$

Pour cela, on pose, pour $i \in I$ et $j \in J$, $m_i = \begin{cases} m_i \text{ si } x_i \in E_j \\ 0 \text{ sinon.} \end{cases}$

Alors l'application

$$\varphi: \{(i,j) \in I \times J \mid m_{ij} \neq 0\} \rightarrow \left\{i \in I \mid x_i \in \bigcup_J E_j\right\}$$

est une bijection. (*vérification directe*).

De cette manière, on peut appliquer le théorème de Fubini pour réécrire la somme, d'où le résultat.

Exercice 15 (Lemme de BOREL-CANTELLI).

D'après l'exercice 6, le problème revient à montrer que $\mu(\limsup A_i) = 0$. Pour tout entier i, $\limsup A_i \subset \bigcup_{k \geqslant i} A_k$. Donc

$$0 \le \mu(\limsup A_i) \le \mu\left(\bigcup_{k \ge i} A_k\right) \le \sum_{k \ge i} \mu(A_k)$$

Or, le terme de droite est la reste d'une série convergente, donc tend vers 0.

Exercice 16.

1) Il s'agit de montrer que

$$\mu\left(\bigcap_{i\in\mathbf{N}}\left(\bigcup_{k\geqslant i}A_k\right)\right)\geqslant\alpha$$

Comme la famille $\{\bigcup_{k \ge i} A_k\}_{\mathbf{N}} \equiv \{B_i\}$ est décroissante, et que pour i = 0, $B_0 = \bigcup_{k \ge 0} A_k$ est de mesure finie, on a d'après les propriétés sur les mesures, que

$$\mu(A) = \mu\left(\bigcup_{i} B_{i}\right) = \lim_{+\infty} \mu(B_{i})$$

Comme $A_i \subset B_i$, on a $\mu(B_i) \ge \mu(A_i)$, donc $\mu(A) \ge \alpha$

2) Il est facile de construire un contre-exemple en prenant $\Omega = \mathbb{N}$, $B = \mathcal{P}(\mathbb{N})$, μ la mesure de comptage et $A_i = \{i\}$.

Exercice 17.

1) Montrons que $\mathcal{B}(\mathbf{R})$ est engendré par les sous-ensembles de la forme

$$A = \{ | a, b[| a, b \in \mathbb{R}, a < b \} \}$$

Il s'agit de montrer que $\mathcal{B}(\mathbf{R}) = \sigma(A)$. (ie : la plus petite tribu - pour l'inclusion - de \mathbf{R} qui contient les éléments A)

Comme $\mathscr{B}(\mathbf{R})$ contient les éléments de A et que c'est une tribu, $\mathscr{B}(\mathbf{R})$ contient $\sigma(A)$. D'où $\sigma(A) \subset \mathscr{B}(\mathbf{R})$.

Montrons que $\mathscr{B}(\mathbf{R}) \subset \sigma(A)$. C'est-à-dire, montrons que pour tout \mathscr{O} ouvert de \mathbf{R} , on a $\mathscr{O} \in \sigma(A)$. Cela entraine que $\sigma(A)$ contiendra tous les ouverts de \mathbf{R} , et comme c'est une tribu, on aura $\mathscr{B}(\mathbf{R}) \subset \sigma(A)$.

Il existe une suite dénombrable (I_n) d'intervalles ouverts bornés de ${\bf R}$ telle que

$$\mathcal{O} = \bigcup I_n$$
.

Comme $I_n \in \sigma(A)$ et comme $\sigma(A)$ est stable par réunion dénombrable (c'est une tribu), on a $\mathcal{O} \in \sigma(A)$.

On va démontrer la propriété précédente.

On utilise le fait que $\overline{\mathbf{Q}} = \mathbf{R}$ et que \mathbf{Q} est dénombrable.

Pour chaque $x \in \mathcal{O} \cap \mathbf{Q}$, il existre un r > 0 tel que $]x - r, x + r \subset \mathcal{O}$. (\mathcal{O} est ouvert)

On prend $r = r_x = d(x, \mathbf{R} \setminus \mathcal{O})$ et on a $]x - r_x, x + r_x[\subset \mathcal{O}]$ (dans ce cas, r_x est le "meilleur" r_x)

Montrons que

$$\mathscr{O} = \bigcup_{x \in \mathscr{O} \cap \mathbf{Q}}]x - r_x, x + r_x[$$

Comme $\mathcal{O} \cap \mathbf{Q} \subset \mathbf{Q}$ et que \mathbf{Q} est dénombrable, $\mathcal{O} \cap \mathbf{Q}$ l'est aussi. On aura alors le résultat. Soit $y \in \mathcal{O}$, il existe $\rho > 0$ tel que

$$]y - \rho, y + \rho [\subset \mathcal{O} \text{ car } \mathcal{O} \text{ est ouvert.}]$$

Comme **Q** est dense dans **R**, il existe $r \in \mathbf{Q} \cap]y - \rho/2, y + \rho/2[$.

On a alors $r_x \ge \rho/2$ et donc $y \in]x - r_x, x + r_x[$. (cela découle du fait qu'on a choisi le "meilleur" r_x).

D'où l'égalité.

2) $B = \{] - \infty, a] \mid a \in \mathbf{Q} \}$

Montrons que $\sigma(B) = \mathcal{B}(\mathbf{R})$.

On a] $-\infty$, $a \in \mathcal{B}(\mathbf{R})$ car $\mathcal{B}(\mathbf{R})$ contient tous les fermés de \mathbf{R} (comme complémentaires d'ouverts).

Donc $\mathscr{B}(\mathbf{R})$ est une tribu qui contient B, donc elle contient $\sigma(B)$. Ainsi $\sigma(B) \subset \mathscr{B}(\mathbf{R})$ Montrons que $\sigma(A) \subset \sigma(B)$, comme $\sigma(A) = \mathscr{A}(\mathbf{R})$ on aura $\mathscr{B}(\mathbf{R}) \subset \sigma(B)$.

Il s'agit de montrer que $A \subset \sigma(b)$.

Soit] $a, b \in A$, montrons que] $a, b \in \sigma(B)$.

Remarque. $]-\infty,q]\in B\subset\sigma(B)$, donc $\mathbb{R}\setminus]-\infty,q]=]q$, $+\infty[\in\sigma(B)$. (stabilité par complémentaire)

Pour $p, q \in \mathbf{Q}, p < q$: $] - \infty, q] \in \sigma(B)$ et $] p, +\infty [\in \sigma(B)]$.

Donc] $-\infty$, q] \cap] p, $+\infty$ [$\in \sigma(B)$ (stabilité par intersection dénombrable), càd]p, q] $\in \sigma(B)$. On a :

$$]a,b[=\bigcup_{n\in\mathbb{N}}]p_n,q_n]$$

avec $p_n \in \mathbf{Q}$, $q_n \in Q$, où $p_n \setminus a$ et $q_n \uparrow b$, strictement. (car] p, q = 0] p, q = 1/n[.) Comme une tribu est stable par réunion dénombrable, on a] $a, b \in \sigma(B)$.

Exercice 18. Soit λ la mesure de LEBESGUE sur **R**.

1) $\mathbf{Q} \cap]0,1[$ est dense dans [0,1] et dénombrable. On a $\mathbf{Q} \cap []0,1[=\{r_n\}_{\mathbf{N}}]$. On choisit pour chaque $n \in \mathbf{N}$ un intervalle ouvert I_n centré en r_n , contenu dans]0,1[de longueur $\delta_n > 0$ à définir. On pose :

$$U = \bigcup_{\mathbf{N}} I_n \subset]0,1[$$

C'est un ouvert dense dans [0,1]. De plus, par σ -sous-additivité,

$$\lambda(U) \leq \sum \lambda(I_n) = \sum \delta_n$$

Si on prend $\delta_n \leq \frac{\varepsilon}{2^{n+1}}$, alors

$$\lambda(U) < \varepsilon \sum 2^{-(n+1)} = \varepsilon$$

2) $F = [0,1] \setminus U \subset [0,1]$ est fermé dans **R** et

$$\lambda(F) = \lambda([0,1]) - \lambda(U) > 1 - \varepsilon$$

De plus, comme U est dense dans [0,1], son complémentaire dans [0,1] est d'intérieur vide. Néanmoins, il n'en existe aucun de mesure 1. En effet, si F est d'intérieur vide, son complémentaire dans [0,1] est un ouvert non-vide de [0,1], alors contient un intervalle I de longueur non-nulle. On a alors

Exercice 19. Soit λ la mesure de LEBESGUE sur **R**. Soit $E \subset \mathbf{R}$ quelconque.

$$\lambda^*(E) = \inf \left\{ \sum_{j \in J} (b_j - a_j) \mid E \subset \bigcup_{j \in J} [a_j - b_j] \right\}$$

C'est une *mesure extérieure* sur $\mathcal{P}(\mathbf{R})$.

C'est une mesure sur la tribu des boréliens. On note λ la restriction de λ^* à $(\mathbf{R}, \mathcal{B}(\mathbf{R}))$. C'est la *mesure de* LEBESGUE sur $(\mathbf{R}, \mathcal{B}(\mathbf{R}))$.

NB:

$$\lambda^*(E) = \inf \left\{ \sum_{J} \log(I_j) \mid E \subset \bigcup_{J} I_j, \ I_j \text{ intervalles ouverts et } J \text{ dénombrable.} \right\}$$

Idem avec I_j intervalle fermé. (exo)

On va raisonner par encadrement.

- " ≤ ". $E \subset U$ donc $\lambda(E) \leq \lambda(U)$ donc $\lambda(E) \leq \inf\{...\}$.
- "≥".

Soit $\varepsilon > 0$. On cherche U ouvert tel que $E \subset U$ et $\lambda(E) \ge \lambda(U) - \varepsilon$.

Par définition, il existe une famille dénombrable $\{I_i\}_I$ d'intervalles ouverts tels que

$$E \subset \bigcup_{j \in J} I_{j}$$
$$\lambda(E) \ge \sum_{i \in J} \log I_{j} - \varepsilon$$

On pose $U = \bigcup_I I_i$, c'est un ouvert par réunion. De plus, par σ -sous-additivité,

$$\lambda(U) \leq \sum_{j \in J} \lambda(I_j)$$
$$= \sum_{j \in J} \log I_j$$

Et alors on a $\lambda(E) \ge \lambda(U) - \varepsilon$

Exercice 20.

1) $f_1 = g_1 \mu$ -pp signifique que l'ensemble

$${x \in X \mid f_1(x) \neq g_1(x)}$$

est négligeable.

On considère

$$x \in X \mid (f_1 + f_2)(x) \neq (g_1 + g_2)(x) \subset \{x \in X \mid f_1(x) \neq g_1(x) \text{ ou } f_2(x) \neq g_2(x)\} = N_1 \cup N_2$$

Or, l'union est négligeable, donc notre ensemble est inclu dans un négligeable et l'est de facto lui-même.

2) On définit:

$$N_n = \{x \in X \mid f_n(x) \neq g_n(x)\}\$$

Il faut montrer que

$$\{x \in X \mid f(x) \neq g(x)\} = \{x \in X \mid \sup f_n(x) \neq \sup g_n(x)\}\$$

est négligeable. Il suffit de remarquer qu'il est inclu dans

$$\{x \in X \mid \exists n \in \mathbb{N}, \ f_n(x) \neq g_n(x)\} = \bigcup_{\mathbb{N}} N_n$$

C'est-à-dire une union dénombrable de négligeables, donc négligeable.

Remarque : Dans $(\mathbf{R}, \mathcal{B}, \lambda)$, on a $A \subset \mathbf{R}$ négligeable $\longrightarrow A$ négligeable mais il existe des sous-ensembles de \mathbf{R} négligeables non dénombrables. Par exemple, le CANTOR triadique.

Remarque: En fait, l'hypothèse "mesurable" n'était pas utile.

Exercice 21.

1) Soit $f,g: \mathbf{R} \to \mathbf{R}$ des fonctions continues. On suppose qu'elles sont égales presque-partout, c'est-à-dire que

$$N = \{x \in \mathbf{R} \mid f(x) \neq g(x)\}$$

est négligleable. On a :

$$\mathbf{R} \setminus N = \{x \in \mathbf{R} \mid f(x) = g(x)\}$$

Comme $\lambda(N) = 0$, N ne contient aucun intervalle de longueur > 0, donc $\mathring{N} = \emptyset$. Par suite, $\mathbf{R} \setminus N$ est dense dans \mathbf{R} . De plus, $\mathbf{R} \setminus N = (f - g)^{-1} (\{0\})$ est fermé, car f - g est continue.

Donc $\mathbf{R} \setminus N = \mathbf{R}$ et donc f = g partout. L'affirmation est vraie.

2) Soit $f : \mathbf{R} \longrightarrow \mathbf{R}$ définie par :

$$f(x) = \begin{cases} 1 & \text{si } x \ge 0 \\ 0 & \text{si } x < 0 \end{cases}$$

C'est-à-dire $f = \mathbf{1}_{[0,+\infty[}$. Alors

$$\{x \in \mathbf{R} \mid f \text{ n'est pas continue en } x\} = \{0\}$$

est un ensemble négligeable, donc f est pp continue.

Montrons qu'il n'existe *pas* de fonction continue $g: \mathbf{R} \longrightarrow \mathbf{R}$ telle que f = g pp. Raisonnons par l'absurde. On applique le premier point aux restrictions de f et g à $]0,+\infty[$ et à $]-\infty,0[$. On obtient donc que f=g partout sur $]0,+\infty[$ et sur $]-\infty,0[$.

Cela entraı̂ne que $\lim_{x < 0} g(x) = 0 \neq 1 = \lim_{x > 0} g(x)$. Mais g est continue en $0 \nleq g$

3) Soit $f: \mathbf{R} \longrightarrow \mathbf{R}$ quelconque et $g: \mathbf{R} \longrightarrow \mathbf{R}$ continue. On suppose que f = g pp. On va montrer que f n'est pas forcément continue pp. Prenons g = 0 et $f = \mathbf{1}_{\mathbf{0}}$. On a f = g pp mais f est discontinue en tout $x \in \mathbf{R}$.

Exercice 22 (Ensembles de CANTOR).

1)

2) E est fermé comme intersections de fermés et borné dans \mathbf{R} , il est donc compact. Il est non vide car les extrêmités des intervalles E_n^k appartiennent à E. Montrons qu'il n'admet pas de point isolé.

Soit $x \in E$ et soit r > 0.

On cherche $y \in E$, $y \neq x$ et |x - y| < r. Les intervalles E_n sont de longueur $\delta_n 2^{-n}$ avec $\delta_n \setminus \text{et } \delta_0 = 1$.

Il existe n tel que $\delta_n 2^{-n} < r$.

Sout E_n^k l'intervalle de E_n qui contient x. Ses extremités sont à distance < r de x et appartiennent à E. L'une d'entre elles est différente de x, on l'appelle y. On a $y \in E$, $y \neq x$ et |x - y| < r.

 $\stackrel{\circ}{E}=\emptyset$, sinon il contriendrait un intervalle de longueur non nulle. Soit L>0 cette longueur. Comme E_n est formé d'intervalles disjoints de longueur $\delta_n 2^{-n}$, E_n ne contient pas d'intervalles de longueur L pour n assez grand. Donc E non plus. $\frac{1}{2}$

3) On représente les intervalles de E_n par des n-uplets de 0 et de 1, c'est-à-dire par des éléments de $\{0,1\}^n$. On définit!

$$\varphi: \left| \begin{array}{ccc} \{0,1\}^{\mathbf{N}^*} & \longrightarrow & E \\ (u_k)_{k=1}^{\infty} & \longmapsto & \bigcap_{k=1}^{\infty} I(u_1, \dots, u_k) \end{array} \right|$$

où $I(u_1,...,u_n)$ est l'intervalle de E représenté par la suite $(u_1,...,u_n)$.

L'intersection est décroissante formée de fermés de longueurs $\delta_k 2^{-k}$ C'est un singleton. (à démontrer : utiliser la caractérisation des compacts les intersections de fermés). Alors φ est bijective par construction. (à vérifier)

4)

$$E_n = \bigcap_{k \in \{1, \dots, 2^n\}} E^n$$

union disjointe de boréliens.

 $\lambda(E_0) = 1 < \infty$, donc $\lambda(E) = \lim \lambda(E_n) = \lim \delta_n$ où (δ_n) donnée telle que $\delta_n \nearrow$ et $\delta_0 = 0$. Pour le Cantor triadique, on a $\delta_n = (2/3)^n$ et $\lambda(E) = 0$. 5) Sur {0, 1}, on a la tribu

$$\mathscr{P}(\{0,1\}) = \{\varnothing, \{0\}, \{1\}, \{0,1\}\}\$$

On muni Ω de la tribu produit

$$\mathscr{F} = \mathscr{P}(\{0,1\}) \otimes \mathscr{P}(\{0,1\}) \otimes \cdots \equiv \mathscr{P}(\{0,1\})^{\otimes \mathbf{N}^*}$$

C'est la tribu engendrée par les $\pi_i^{-1}(\mathcal{P}(\{0,1\}))$ où

$$\pi_i: \begin{cases} \Omega \longrightarrow \{0,1\} \\ u = (u_1, u_2, \dots) \longrightarrow u_i \end{cases}$$

 ${\mathscr F}$ est engendrée par les sous-ensembles de Ω de la forme

$$\pi_i^{-1}(\{0\}) = \{ u \in \Omega \mid u_i = 0 \}$$

$$\pi_i^{-1}(\{1\}) = \{ u \in \Omega \mid u_i = 1 \}$$

Elle est aussi engendrée par les cylindres, c'est-à-dire les

$$C(u_1,...,u_n) = \{v \in \Omega \mid v_1 = u_1,...,v_n = u_n\}$$

On a $\varphi(C(u_1,...,u_n)) = I(u_1,...,u_n) \cap E$ par définition de φ .

On veut comparer \mathscr{F} avec $\mathscr{B}(E)$ où $\mathscr{B}(E)$ est la tribu des boréliens de E, c'est-à-dire la tribu engendrée par les ouverts de E. $\mathscr{B}(E) \subset \mathscr{P}(E)$.

Montrons que $\varphi(\mathcal{F}) = \mathcal{B}(E)$.

NB: $\varphi(\mathcal{F})$ est une tribu car φ est bijective.

- $-\varphi(\mathscr{F})\subset\mathscr{B}(E)$:
 - \mathscr{F} est engendrée par les cylindres, donc $\varphi(\mathscr{F})$ est engendrée par les images des cylindres. Ce sont des fermés de E, donc ils appartiennent à $\mathscr{B}(E)$
- $-\mathscr{B}(E) \subset \varphi(\mathscr{F})$:

Soit *U* un ouvert de *E*. Il faut montrer que $U \subset \varphi(\mathcal{F})$.

Comme *U* est un ouvert de *E*, il existe r > 0 tel que $]x - r, x + r[\cap E \subset U]$.

Pour n assez grand, l'intervalle $I_{(u_1,...,u_n)}$ qui contient x est de longueur < r. Par suite il existe $(u_1,...,u_n) \in \{0,1\}^n$ tel que

$$x \in (I(u_1, \dots, u_n) \cap E) \subset (|x - r, x + r| \cap E) \subset U$$

Donc *U* est l'union d'ensembles de la forme

$$I(u_1,\ldots,u_n)\cap E$$

Comme les intervalles $I(u_1, ..., u_n)$ avec $n \in \mathbb{N}^*$ et $(u_1, ..., u_n) \in \{0, 1\}^n$ forment une famille *dénombrable*, U est une union dénombrable d'ensembles de cette forme. Chacun d'entre eux appartiennent à $\varphi(\mathscr{F})$ donc $U \in \varphi(\mathscr{F})$.

Remarque : Il existe une mesure de probabilité μ sur Ω, \mathcal{F}) unique, telle que

$$\mu(C(u_1,\ldots,u_n)) = \left(\frac{1}{2}\right)^n$$

En la transportant sur E, on obtient une mesure sur $(E, \mathcal{B}(E))$, notée $\varphi_*(\mu)$ telle que

$$(\varphi_*(\mu))(I(u_1,\ldots,u_n)\cap E) = \left(\frac{1}{2}\right)^n$$

Exercice 23. 1) OK

2)