Druhý opravný zápočtový test (45 minut)

Úvod do praktické fyziky NOFY055

Příklad 1

Zadání:

Dva studenti naměřili nezávisle na sobě 10 hodnot rychlosti proudící kapaliny v. Výsledky měření jsou uvedeny v následující tabulce. Předpokládáme, že náhodná proměnná v má normální rozdělení.

n	$v \text{ (cm s}^{-1})$	n	$v \text{ (cm s}^{-1})$
1	3.89	1	5.39
2	3.38	2	4.88
3	7.08	3	10.56
4	3.32	4	6.22
5	4.40	5	3.83
6	1.76	6	2.03
7	5.85	7	6.20
8	3.07	8	5.49
9	4.96	9	5.32
10	5.88	10	4.81

Pro oba studenty zvlášť:

- (a) spočítejte odhad očekávané hodnoty $\hat{\mu}_v$.
- (b) spočítejte odhad standardní odchylky $\hat{\sigma}_v$.
- (c) spočítejte chybu průměrné rychlosti \bar{v} .
- (d) zapište výsledek (průměrná rychlost a její chyba) ve **správném** tvaru.

Poznámka: Za 5 bodů navíc vyřešte úlohy (a) – (d) pro všechny naměřené hodnoty dohromady.

(10 bodů)

Řešení:

Předpokládáme-li, že rychlost v má normální rozdělení, potom její očekávanou hodnotu a standardní odchylku můžeme odhadnout jako:

$$\hat{\mu}_v = \bar{v} = \frac{1}{n} \sum_{i=1}^n v_i,$$

$$\hat{\sigma}_v = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (v_i - \bar{v})^2}.$$

Očekávaná (průměrná) hodnota rychlosti změřená 1. a 2. studentem jsou tedy aritmetickými průměry naměřených hodnot.

$$\hat{\mu}_{v_1} = \bar{v}_1 = 4.36 \text{ cm s}^{-1}$$

 $\hat{\mu}_{v_2} = \bar{v}_2 = 5.47 \text{ cm s}^{-1}$

Vzorec pro výpočet odhadu standardní odchylky si ještě můžeme zjednodušit jako:

$$\hat{\sigma}_v = \sqrt{\frac{1}{n-1} \left(\sum_{i=1}^n v_i^2 - n\bar{v}^2 \right)}.$$

$$\hat{\sigma}_{v_1} = 1.60 \text{ cm s}^{-1}$$

 $\hat{\sigma}_{v_2} = 2.17 \text{ cm s}^{-1}$

Chyba aritmetického průměru, spočítaná metodou přenosu chyb, je rovna podílu standardní odchylky a odmocniny z počtu naměřených hodnot.

$$\hat{\sigma}_{\bar{v}_1} = \frac{\hat{\sigma}_{v_1}}{\sqrt{n}} \doteq 0.5 \text{ cm s}^{-1}$$

$$\hat{\sigma}_{\bar{v}_2} = \frac{\hat{\sigma}_{v_2}}{\sqrt{n}} \doteq 0.7 \text{ cm s}^{-1}$$

Výsledek měření, tj. průměrné hodnoty rychlosti a jejich chyby zapíšeme v následujícím tvaru.

$$v_1 = (44 \pm 5) \times 10^{-3} \text{ m s}^{-1}$$

 $v_2 = (55 \pm 7) \times 10^{-3} \text{ m s}^{-1}$

Počítáme-li se všemi hodnotami, naměřenými oběma studenty, získáme na základě předchozích vzorců tyto hodnoty $\hat{\mu}_v$, $\hat{\sigma}_v$ a $\sigma_{\bar{v}}$.

$$\hat{\mu}_v = 4.92 \text{ cm s}^{-1}$$

$$\hat{\sigma}_v = 1.94 \text{ cm s}^{-1}$$

$$\hat{\sigma}_{\bar{v}} = 0.43 \text{ cm s}^{-1}$$

$$v = (49 \pm 4) \times 10^{-3} \text{ m s}^{-1}$$

Poznámka: Vidíme, že průměrná rychlost je rovna průměru rychlostí \bar{v}_1 a \bar{v}_2 , nebo obecněji váženému průměru rychlostí \bar{v}_1 a \bar{v}_2 při různém počtu naměřených hodnot. Průměrné hodnoty počítáme pouze z naměřených hodnot. Nezáleží tedy na tom, jestli nejprve spočítáme průměry pro první a druhé měření zvlášť a z nich následně výslednou průměrnou hodnotu, nebo jestli spočítáme výslednou průměrnou hodnotu pro všechny hodnoty najednou. Výsledek je v obou případech stejný.

Totéž ovšem **nemůžeme** tvrdit o odchylkách $\hat{\sigma}_v$ a $\sigma_{\bar{v}}$. Ty jsou na rozdíl od průměrů dány nejen naměřenými hodnotami, ale i samotnými průměrnými hodnotami. Odchylky $\hat{\sigma}_{v_1}$ a $\hat{\sigma}_{v_2}$, resp. $\sigma_{\bar{v}_1}$ a $\sigma_{\bar{v}_2}$ **nelze** spojit v jedinou výslednou odchylku, aniž bychom se přitom nedopustili dodatečné chyby při výpočtu.

Příklad 2

Na obrázku je graf závislosti elektrického proudu procházejícího rezistorem na přivedeném elektrickém napětí (modré body). Lineární regresí naměřených hodnot byla nalezena přímka (červená čára) procházející počátkem. Směrnice této přímky je číselně a=0.27727 s chybou $\sigma_a=0.00055$.

- (a) Jakou jednotku (SI) má směrnice a a chyba σ_a ?
- (b) Vypočítejte odpor R rezistoru a jeho chybu σ_R .
- (c) Zapište výsledek ve **správném** tvaru.

(5 bodů)

Řešení:

(a) Z grafu na obrázku vidíme, že jednotkou elektrického napětí jsou kV, zatímco jednotkou elektrického proudu jsou mA. Směrnice a její chyba má tudíž jednotku:

$$[a] = \frac{[I]}{[U]} = \frac{\text{mA}}{\text{kV}} = 10^{-6} \text{ A V}^{-1} = 10^{-6} \Omega^{-1}$$

(b) Směrnice závislosti proudu I na napětí U je rovna vodivosti rezistoru. Elektrický odpor R je roven převrácené hodnotě této směrnice.

$$R = \frac{1}{a} = 3.607 \times 10^6 \ \Omega$$

Chybu odporu σ_R získáme metodou přenosu chyb.

$$\sigma_R^2 = \left(\frac{\partial R}{\partial a}\sigma_a\right)^2$$
$$\sigma_R = \frac{\sigma_a}{a^2}$$
$$\sigma_R = 0.007 \times 10^6 \ \Omega$$

(c) Chybu σ_R zaokrouhlíme na 1 platnou číslici, očekávanou hodnotu odporu R zaokrouhlíme na stejný řád platné číslice jako u chyby σ_R a zapíšeme výsledek ve tvaru:

$$R = (3.607 \pm 0.007) \times 10^6 \ \Omega$$