Метод Монте-Карло SSA для многомерных временных рядов

Потешкин Егор Павлович, гр.20.Б04-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Отчет по производственной практике (научно-исследовательская работа) (6 семестр)

Санкт-Петербург, 2023

Введение

Временной ряд $X = (x_1, ..., x_N)$.

Aано: X = S + R, где S — сигнал, R — шум.

Проблема: проверить, есть ли в сигнал в ряде, и, если есть, выделить его.

 H_0 : ряд состоит из чистого шума (S = 0).

Критерий проверки H_0 : метод Monte-Carlo SSA (MC-SSA).

Метод SSA позволяет выделить обнаруженный сигнал.

Будем рассматривать часто используемую на практике версию MC-SSA, которая использует метод SSA. Назовем ее me1 [Golyandina, 2023].

Такая версия критерия радикальная, это можно исправить поправкой до точного критерия, но очень сильная радикальность мешает это сделать.

Решение: вместо SSA рассмотреть модификацию Toeplitz SSA. В [Ларин, 2022] показано, что Toeplitz MC-SSA менее радикальный.

Введение. Обобщение на многомерный случай

 $\mathsf{X} = \{\mathsf{X}^{(d)}\}_{d=1}^{D} - D$ -канальный временной ряд.

MSSA и Monte-Carlo MSSA — обобщение SSA и MC-SSA на многомерный случай.

Проблема: me1, обобщенный на многомерный случай, очень радикальный [Ларин, 2022].

Решение: использовать Toeplitz MSSA.

Но: отсутствует реализация этой модификации.

Задача:

- Реализовать Toeplitz MSSA.
- ② Сравнить с обычным MSSA.

Обозначения и известные результаты: оператор вложения и ганкелизации

 $\mathsf{X} = (x_1, \dots, x_N)$. Зафиксируем длину окна L, 1 < L < N.

Оператор вложения Т:

$$\mathfrak{I}(\mathsf{X}) = \mathbf{X} = \begin{pmatrix} x_1 & x_2 & \cdots & x_K \\ x_2 & x_3 & \cdots & x_{K+1} \\ \vdots & \vdots & \ddots & \vdots \\ x_L & x_{L+1} & \cdots & x_N \end{pmatrix}.$$
(1)

Результат \mathbf{X} — траекторная матрица.

Оператор ганкелизации \mathcal{H} — усреднение матрицы по побочным диагоналям.

Обозначения и известные результаты: метод MSSA

Дано: D-канальный временной ряд ${\sf X} = \{{\sf X}^{(d)}\}_{d=1}^D.$

Параметр: длина окна L.

 ${\sf Peзультат}\colon m$ восстановленных D-канальных временных рядов.

- f 0 Вложение: ${f X} = [\mathfrak{T}({f X}^{(1)}):\ldots:\mathfrak{T}({f X}^{(D)})] = [{f X}^{(1)}:\ldots:{f X}^{(D)}]$
- ② Сингулярное разложение (SVD):

$$\mathbf{X} = \sum_{i=1}^{p} \sqrt{\lambda_i} U_i V_i^{\mathrm{T}} = \sum_{i=1}^{p} \mathbf{X}_i.$$

- $oldsymbol{\circ}$ Группировка: $\mathbf{X} = \sum_{k=1}^m \mathbf{X}_{I_k}$
- $lacksymbol{0}$ Диагональное усреднение: $\{\mathfrak{T}^{-1}\circ \mathfrak{H}(\mathbf{X}_{I_k}^{(d)})\}_{d=1}^D$

Обозначения и известные результаты: Toeplitz SSA

Стационарный ряд $X = (x_1, ..., x_N)$.

f Tёплицева L-ковариационная матрица $f \widetilde{C}$ с элементами

$$\widetilde{c}_{ij} = \frac{1}{N - |i - j|} \sum_{n=1}^{N - |i - j|} x_n x_{n+|i - j|}, \quad 1 \leqslant i, j \leqslant L,$$
 (2)

является оценкой ковариационной матрицы.

Toeplitz SSA отличается от базового SSA на шаге разложения тем, что U_i — собственные векторы $\widetilde{\mathbf{C}}$. Причем важно, что X стационарный ряд.

Полученные результаты: Toeplitz MSSA

SVD:
$$\mathbf{X} = \sum_{i=1}^p \sqrt{\lambda_i} U_i V_i^\mathrm{T}$$
, где U_i — с.в. $\mathbf{X} \mathbf{X}^\mathrm{T}$, V_i — с.в. $\mathbf{X}^\mathrm{T} \mathbf{X}$. $\mathbf{X} = \{\mathbf{X}^{(1)}, \mathbf{X}^{(2)}\}$.

$$\mathbf{X}\mathbf{X}^{\mathrm{T}} = \mathbf{X}^{(1)}(\mathbf{X}^{(1)})^{\mathrm{T}} + \mathbf{X}^{(2)}(\mathbf{X}^{(2)})^{\mathrm{T}}$$

$$\mathbf{X}^{\mathrm{T}}\mathbf{X} = \begin{pmatrix} (\mathbf{X}^{(1)})^{\mathrm{T}} \mathbf{X}^{(1)} & (\mathbf{X}^{(1)})^{\mathrm{T}} \mathbf{X}^{(2)} \\ (\mathbf{X}^{(2)})^{\mathrm{T}} \mathbf{X}^{(1)} & (\mathbf{X}^{(2)})^{\mathrm{T}} \mathbf{X}^{(2)} \end{pmatrix}.$$

В связи с этим возникает два метода Toeplitz MSSA:

- floor Сумма тёплицевых L-ковариационных матриц метод Sum.
- Блочная матрица метод Block.

Полученные результаты: Toeplitz MSSA. Метод Sum

- $oldsymbol{0}$ Построить $\widetilde{\mathbf{C}} = \sum_{d=1}^D \widetilde{\mathbf{C}}_{d}$, где $\widetilde{\mathbf{C}}_1, \dots, \widetilde{\mathbf{C}}_D$ тёплицевы L-ковариационные матрицы для каждого канала.
- Найти ортонормированные собственные векторы H_1, \ldots, H_L матрицы $\hat{\mathbf{C}}$.
- Получить разложение

$$\mathbf{X} = \sum_{i=1}^{L} H_i Z_i^{\mathrm{T}},\tag{3}$$

гле $Z_i = \mathbf{X}^T H_i$.

Полученные результаты: Toeplitz MSSA. Метод Block

 $oldsymbol{0}$ K=N-L+1. Рассмотрим блочную матрицу $oldsymbol{\mathbf{T}}$, где элементы каждого блока $oldsymbol{\mathbf{T}}_{lk},\ 1\leqslant l,k\leqslant D$, имеют вид

$$t_{ij}^{(lk)} = \frac{1}{\tilde{N}} \sum_{n=\max(1,1+i-j)}^{\min(N,N+i-j)} x_n^{(l)} x_{n+j-i}^{(k)}, \ 1 \leqslant i, j \leqslant K,$$
 (4)

где
$$\tilde{N} = \min(N, N + i - j) - \max(1, 1 + i - j) + 1.$$

 $oldsymbol{Q}$ Найти ортонормированные собственные векторы Q_1,\dots,Q_{DK} матрицы $oldsymbol{T}$ и получить разложение

$$\mathbf{X} = \sum_{i=1}^{DK} (\mathbf{X}Q_i) Q_i^{\mathrm{T}} = \sum_{i=1}^{DK} P_i Q_i^{\mathrm{T}}.$$
 (5)

Полученные результаты: Toeplitz MSSA. Численное исследование

Дано:
$$(\mathsf{F}^{(1)},\mathsf{F}^{(2)})=(\mathsf{H}^{(1)},\mathsf{H}^{(2)})+(\mathsf{R}^{(1)},\mathsf{R}^{(2)}),\;N=71.$$

Задача: проверить точность базового и модифицированных методов для разных значений параметра L.

Рассмотрим 2 случая:

Одинаковые периоды:

$$h_n^{(1)} = 30\cos(2\pi n/12), \quad h_n^{(2)} = 20\cos(2\pi n/12), \quad n = 1, \dots, N.$$

Разные периоды:

$$h_n^{(1)} = 30\cos(2\pi n/12), \quad h_n^{(2)} = 20\cos(2\pi n/8), \quad n = 1, \dots, N.$$

Полученные результаты: Toeplitz MSSA. Численное исследование. Результаты

Таблица: MSE восстановления сигнала.

Случай 1	L = 12	L=24	L = 36	L = 48	L = 60
MSSA	3.18	1.83	1.59	1.47	2.00
SSA	3.25	2.01	2.00	2.01	3.25
Sum	3.17	1.75	1.44	1.32	1.33
Block	1.39	1.26	1.25	1.33	1.97
Случай 2	L = 12	L = 24	L = 36	L = 48	L = 60
MSSA	0.01	^ 			
IVISSA	6.91	3.77	3.07	2.88	3.84
SSA	3.23	$\frac{3.77}{2.01}$	$\frac{3.07}{2.00}$	$\frac{2.88}{2.01}$	$\frac{3.84}{3.23}$

Обозначения и известные результаты: Monte-Carlo SSA

 $\mathsf{\Pi}$ араметр: W — вектор с какой-то частотой.

Задача: проверка гипотезы H_0 , что ряд состоит из чистого шума (S = 0).

Решение: Monte-Carlo SSA:

- $oldsymbol{0}$ Построить статистику критерия $\widehat{p} = \|\mathbf{X}^{\mathrm{T}}W\|^2.$
- ② Построить доверительную область случайной величины $p = \|\mathbf{\Xi}^{\mathrm{T}}W\|^2$: распределение p оценивается методом Монте-Карло и строится интервал от нуля до $(1-\alpha)$ -квантиля.
- footnotesize 5 Если \widehat{p} не попадает в построенный интервал H_0 отвергается.

Обозначения и известные результаты: MC-SSA: множественные тесты

- В реальных задачах частота сигнала неизвестна и нужно проверить, что в ряде присутствует сигнал.
- Рассматривается набор векторов W_1, \dots, W_H , соответствующих разным частотам.
- Проблема множественного тестирования, нужно ограничить групповую ошибку.
- Решение: Multiple MC-SSA [Golyandina, 2023].

Обозначения и известные результаты: Multiple MC-SSA

Дано: временной ряд Х.

Параметр: способ выбора векторов W_1,\ldots,W_H , количество суррогатных данных G.

Алгоритм:

- ① Для $k=1,\ldots,H$ вычисляется статистика \widehat{p}_k , выборка $P_k=\{p_{ki}\}_{i=1}^G$, где $p_{ki}=\|\mathbf{\Xi}_i^\mathrm{T}W_k\|^2$, ее среднее μ_k и стандартное отклонение σ_k .
- $oldsymbol{2}$ Вычисляется $\eta=(\eta_i,\ldots,\eta_G)$ с

$$\eta_i = \max_{1 \leqslant k \leqslant H} (p_{ki} - \mu_k) / \sigma_k, \quad i = 1, \dots, G.$$

- ullet Находится q_k как выборочный (1-lpha)-квантиль η , где lpha уровень значимости.
- Нулевая гипотеза не отвергается, если

$$\max_{1 \le k \le H} (\widehat{p}_k - \mu_k) / \sigma_k < q. \tag{6}$$

Обозначения и известные результаты: Multiple MC-MSSA: рассматриваемые случаи

Basic MC-MSSA: W_i — собственные или факторные векторы матрицы \mathbf{X} .

Toeplitz MC-MSSA: $\mathbf{X} = \sum_i \sigma_i H_i Q_i^{\mathrm{T}}, \ W_i - H_i$ или Q_i .

Пусть $\mathbf{X} = \sum_i \sigma_i H_i Q_i^{\mathrm{T}}$ — любое приведенное ранее разложение. Будем называть H_i левыми, а Q_i — правыми векторами матрицы \mathbf{X} .

Обозначения и известные результаты: ROC-кривая

Определение

ROC-кривая — это кривая, задаваемая параметрически

$$\begin{cases} x = \alpha_I(\alpha) \\ y = \beta(\alpha) \end{cases}, \quad \alpha \in [0, 1],$$

где $\alpha_I(\alpha)$ — функция зависимости ошибки первого рода α_I от уровня значимости α , $\beta(\alpha)$ — функция зависимости мощности β от уровня значимости α .

С помощью ROC-кривых можно сравнивать по мощности неточные (в частности, радикальные) критерии, к которым применена поправка. Отметим, что для точного критерия ROC-кривая совпадает с графиком мощности, так как $\alpha_I(\alpha)=\alpha$.

Полученные результаты: MC-MSSA. Численное сравнение методов.

Дано: $\mathsf{X}=\mathsf{S}+\mathsf{R}$, где R — красный шум с параметрами $\varphi=0.7$ и $\delta=1$, а S — сигнал с

$$s_n^{(1)} = s_n^{(2)} = \cos(2\pi n\omega), \quad n = 1, \dots, N,$$

где w = 0.075, N = 100, G = 1000.

 H_0 : S = 0,

 $H_1: \mathsf{S} \neq 0$

Задача: сравнить критерии Basic MC-MSSA и Toeplitz MC-MSSA в двух вариациях с помощью графиков ошибки первого рода и ROC-кривых.

Полученные результаты: MC-MSSA. Численное сравнение методов. Метод Sum.

Рис.: **Ошибка первого рода** критерев с проекцией на левые векторы методов Sum и базового MSSA.

Полученные результаты: MC-MSSA. Численное сравнение методов. Метод Sum. Продолжение.

Рис.: **ROC-кривая** критериев с проекцией на левые векторы методов Sum и базового MSSA.

Полученные результаты: MC-MSSA. Численное сравнение методов. Метод Block.

Рис.: **Ошибка первого рода** критериев с проекцией на правые векторы методов Block и базового MSSA.

Полученные результаты: MC-MSSA. Численное сравнение методов. Метод Block. Продолжение.

Рис.: **ROC-кривая** критериев с проекцией на правые векторы методов Block и базового MSSA.

Заключение

Мои результаты:

- Был реализован метод Toeplitz MSSA в вариантах block и sum (на языке R), на его основе была построена реализация Toeplitz Multiple MC-MSSA.
- На основе численных экспериментов были сделаны следующие выводы:
 - Sum и Block версии Toeplitz MSSA для стационарного ряда точнее выделяют сигнал, чем Basic MSSA.
 - Toeplitz MC-MSSA менее радикален, чем Basic MC-MSSA. Версия Sum с проекцией на собственные вектора оказывается наименее радикальной без потери в мощности скорректированного критерия.

В дальнейшем предполагается использовать метод Sum с проекцией на левые векторы, оптимизировать его реализацию и продолжить исследование метода Monte-Carlo MSSA.

Список литературы

- Golyandina N. Detection of signals by Monte Carlo singular spectrum analysis: multiple testing // Statistics and Its Interface. 2023. Vol. 16, no. 1. P. 147–157.
- Парин Е. С. Метод SSA для проверки гипотезы о существовании сигнала во временном ряде : квалификационная работа магистра; СПбГУ. — 2022.
- Multivariate and 2D Extensions of Singular Spectrum Analysis with the Rssa Package / Golyandina Nina, Korobeynikov Anton, Shlemov Alex, and Usevich Konstantin // Journal of Statistical Software. 2015. Vol. 67, no. 2.