${\bf HOMEWORK}$

Metodi quantitativi per la gestione del rischio

Autori

Roberta Costa sGiuseppe Priolo sVirginia Zura-Puntaroni s03/02/2025

Indice

	1	Intro	duzione al problema	2													
	2	Mode	Modelli di ottimizzazione														
		2.1	Modello Base	2													
		2.2	Modello Bilanciato	3													
		2.3	DRO	4													
	3	Test		6													
		3.1	Risultati - Modello base	8													
		3.2	Risultati - Modello bilanciato	Ć													
		3.3	Risultati - Modello DRO	12													
		3.4	Tempi di Ottimizzazione	15													
		_															
Α	\mathbf{Ris}	ultati	sperimentali	17													

1 Introduzione al problema

Il presente report ha l'obiettivo di descrivere il modello di ottimizzazione sviluppato e i risultati ottenuti nell'analisi del problema in esame.

Consideriamo un'azienda esposta al rischio di cambio. In un istante di tempo futuro T, l'azienda avrà bisogno di una quantità incerta di valuta estera, il cui tasso di cambio futuro è anch'esso incerto. Per coprirsi da questo rischio, l'azienda può ricorrere a contratti forward e opzioni call con scadenza in T. Si assume di conoscere i prezzi di tutte le opzioni call e dei contratti forward. Inoltre, consideriamo i prezzi dei derivati relativi a un'unica unità del sottostante, per cui ogni opzione o contratto forward si riferisce a una sola unità del sottostante.

La decisione può essere presa esclusivamente al tempo t=0. L'obiettivo è costruire un modello di programmazione stocastica finalizzato alla minimizzazione di una misura di rischio.

2 Modelli di ottimizzazione

2.1 Modello Base

Per affrontare il problema proposto, è stato adottato il $Conditional\ Value-at-Risk\ (CV@R)$ come misura di rischio, in quanto si tratta di una misura coerente e asimmetrica.

Sulla base di questa scelta, possiamo formulare il seguente modello di ottimizzazione stocastica:

$$\min \ \eta + \frac{1}{1 - \alpha} \sum_{s \in S} \pi^s \xi^s$$

s.t.
$$\xi^s \ge L^s - \eta$$
 $\forall s \in \mathcal{S}$ (1)

$$\xi^s \ge 0 \qquad \forall s \in \mathcal{S} \tag{2}$$

$$\gamma_i^s(S_T^s - K_i) \ge 0 \qquad \forall i \in \mathcal{I} \tag{3}$$

$$h_i^s \le y_i \qquad \forall i \in \mathcal{I} \tag{4}$$

$$x + \sum_{i \in \mathcal{I}} h_i^s \gamma_i^s + z^s - w^s = V^s \qquad \forall s \in \mathcal{S}$$
 (5)

$$x, y_i, z^s, w^s, h_i^s \ge 0$$
$$\gamma_i^s \in \{0, 1\}$$

In cui sono state adottate le seguenti variabili:

- η è il $V@R_{\alpha}$
- $\bullet \ \pi^s$ è la probabilità dello scenario s
- ξ^s è la perdita eccedente V@R nello scenario s
- la loss è definita come $L^s = O^s R^s$ dove
 - $O^s=xF_0+z^sS_T^s-w^sS_T^s+\sum_{i\in\mathcal{I}}y_iC_i^0+\sum_{i\in\mathcal{I}}\gamma_i^sy_iK_i$ è il flusso di cassa in uscita;
 - $-R^s=S_0V^s$ è un valore di riferimento con S_0 prezzo spot iniziale.
- S_T^s è lo stock price nello scenario s alla maturità
- \bullet K_i è lo strike price dell'opzione i

- \bullet x è il numero di contratti forward acquistati
- y_i è il numero di opzioni call di tipo i possedute
- γ_i^s è una variabile binaria che assume i seguenti valori:

$$\gamma_i^s = \begin{cases} 1 & \text{se l'opzione } i \text{ viene esercitata nello scenario } s \\ 0 & \text{altrimenti} \end{cases}$$

- ullet z^s è la valuta acquistata al prezzo spot nello scenario s
- w^s è la valuta venduta al prezzo spot nello scenario s
- V^s è il volume nello scenario s

I vincoli (1) e (2) linearizzano la definizione della perdita in eccesso rispetto alla soglia accettabile.

I vincoli (3) e (4) impongono condizioni sull'esercizio delle opzioni call.

Nello specifico, un'opzione call può essere esercitata solo se il prezzo spot è maggiore del prezzo strike, ovvero $S_T^s > K$.

Inoltre, il numero di opzioni esercitate deve essere sempre minore o uguale al numero di opzioni possedute.

Il vincolo (5) rappresenta un vincolo di equilibrio sul volume di valuta.

2.2 Modello Bilanciato

Al fine di bilanciare il numero di contratti forward e opzioni call utilizzate per coprire il rischio, è stato introdotto un termine aggiuntivo. La nuova funzione obiettivo è definita come segue:

$$\min \ \eta + \frac{1}{1 - \alpha} \sum_{s \in \mathcal{S}} \pi^s \xi^s + \lambda (\theta^+ + \theta^-)$$
 (6)

dove $\lambda \geq 0$ è il parametro di bilanciamento, mentre θ^+ e θ^- rappresentano rispettivamente la parte positiva e la parte negativa della differenza tra il numero di contratti forward e il numero di opzioni call.

Il termine $\lambda(\theta^+ + \theta^-)$ è una penalizzazione che limita la differenza tra contratti forward e opzioni call. Se λ è alto, il modello tenderà a minimizzare tale deviazione, cercando di bilanciare la strategia di hedging. L'obiettivo è quindi evitare strategie estreme, favorendo un mix equilibrato.

Per giustificare l'introduzione delle nuove variabili, è necessario aggiungere al modello i seguenti vincoli:

1.
$$\theta^+ - \theta^- = (1 - \rho)x - \rho \sum_{i \in T} y_i$$

Il parametro ρ rappresenta la percentuale di contratti forward utilizzata per la copertura.

2.
$$x + \sum_{i \in \mathcal{I}} y_i \le C_{\text{max}}$$

dove C_{max} è la quantità massima di valuta che può essere utilizzata per coprire il rischio. L'introduzione di questo vincolo è necessaria per garantire che la strategia di copertura sia realistica. Senza tale vincolo, il modello potrebbe suggerire strategie di hedging irrealistiche, richiedendo una quantità di denaro superiore a quella disponibile.

3.
$$\theta^+ \ge 0, \, \theta^- \ge 0$$

2.3 DRO

Assumiamo ora che vi sia incertezza sulla distribuzione dei prezzi. Per tenere conto di questa incertezza, utilizziamo un modello di Ottimizzazione Robusta Distribuzionalmente (DRO), che ottimizza la funzione obiettivo rispetto alla peggiore distribuzione possibile all'interno di un insieme di distribuzioni plausibili, noto come ambiguity set.

Nei modelli precedenti, si assumeva che tutti gli scenari fossero equiprobabili, ovvero che la distribuzione di probabilità degli esiti fosse nota e uniforme. Tuttavia, nella pratica, questa ipotesi può risultare troppo restrittiva o irrealistica, poiché la distribuzione effettiva dei dati potrebbe essere sconosciuta o soggetta a errori di stima. Per questo motivo, il modello DRO non fissa una singola distribuzione di probabilità, ma invece considera un insieme di distribuzioni possibili, garantendo così soluzioni robuste rispetto all'incertezza distributiva.

Il modello può essere formulato come segue:

$$\begin{aligned} & \min \left\{ \operatorname{Var} + \frac{1}{1 - \alpha} \sum_{i \in \mathcal{I}} \pi^s \xi^s + \lambda(\theta^+ + \theta^-) \right\} \\ & \text{s.t.} \qquad \xi^s \geq L^s - \eta, \quad \forall i \\ & \xi^s \geq 0, \quad \forall i \\ & \gamma_i^s (S_T^s - K_i) \geq 0, \quad \forall i \\ & h_i^s \leq y_i, \quad \forall i \\ & x + \sum_{i \in \mathcal{I}} h_i^s \gamma_i^s + z^s - w^s = V^s \\ & \theta^+ - \theta^- = (1 - \rho)x - \rho \sum_{i \in \mathcal{I}} y_i \\ & x + \sum_{i \in \mathcal{I}} y_i \leq C_{\max} \\ & \theta^+ \geq 0 \\ & \theta^- \geq 0 \\ & \sum_{s \in \mathcal{S}} \pi^s S_T^s \leq \mathbb{E} \left[\sum_{s \in \mathcal{S}} S_T^s \right] (1 + \text{tol}) \\ & \sum_{s \in \mathcal{S}} \pi^s S_T^s \geq \mathbb{E} \left[\sum_{s \in \mathcal{S}} S_T^s \right] (1 - \text{tol}) \\ & \sum_{s \in \mathcal{S}} \pi^s \left(S_T^s - \mathbb{E} \left[\sum_{s \in \mathcal{S}} S_T^s \right] \right)^2 \leq \operatorname{Var} \left(\sum_{s \in \mathcal{S}} S_T^s \right) (1 + \text{tol}) \\ & \sum_{s \in \mathcal{S}} \pi^s \left(S_T^s - \mathbb{E} \left[\sum_{s \in \mathcal{S}} S_T^s \right] \right)^2 \geq \operatorname{Var} \left(\sum_{s \in \mathcal{S}} S_T^s \right) (1 - \text{tol}) \\ & \sum_{s \in \mathcal{S}} \pi^s \delta_i^s = 1 \\ & \sum_{s \in \mathcal{I}} \delta_i^s \in \{0, 1\}, \quad \forall i \end{aligned}$$

In cui;

- \bullet Π è un set discreto di probabilità ammissibili.
- tol è una tolleranza fissata a 1e-6.

Il modello DRO proposto è un modello basato sui momenti del primo e del secondo ordine. Questo significa che l'ambiguity set è definito imponendo vincoli sulla media e sulla varianza delle distribuzioni plausibili, in modo da garantire che la distribuzione delle variabili non si discosti eccessivamente dai valori di riferimento osservati, ossia la media e la varianza empirica.

L'idea alla base di questa scelta è che, sebbene la distribuzione esatta dei dati possa essere incerta, è spesso possibile stimare con una certa affidabilità i suoi momenti principali. Di conseguenza, limitando la variazione della distribuzione entro un insieme compatibile con tali momenti, il modello DRO riesce a fornire soluzioni più robuste senza dover assumere una distribuzione specifica.

Questa formulazione permette di controllare il grado di avversità dell'ottimizzazione: vincoli più stringenti sull'ambiguity set rendono il modello meno conservativo, mentre un insieme più ampio di distribuzioni plausibili porta a soluzioni più prudenziali, capaci di fronteggiare scenari avversi con maggiore sicurezza. In sintesi, il modello garantisce un equilibrio tra flessibilità e robustezza, evitando soluzioni eccessivamente ottimistiche che potrebbero fallire in condizioni sfavorevoli, ma senza essere troppo conservativo da risultare inefficiente.

3 Test

Per testare il modello, sono stati analizzati tre scenari relativi a condizioni economiche differenti, basati sulla relazione tra il tasso di interesse domestico e quello estero:

• Dollaro forte: il tasso di interesse domestico è superiore a quello estero, il che implica una maggiore attrattività degli investimenti in valuta nazionale rispetto a quelli in valuta estera. In questo scenario, i parametri sono definiti come:

$$r_d = 0.08, r_f = 0.02$$

• **Dollaro stabile**: il tasso di interesse nel paese nazionale è uguale a quello estero, il che indica una situazione di equilibrio tra le due economie. In questo caso:

$$r_d = 0.05, r_f = 0.05$$

• Dollaro debole: il tasso di interesse domestico è inferiore a quello estero, rendendo meno vantaggiosi gli investimenti in valuta nazionale rispetto a quelli in valuta estera. I parametri in questo scenario sono:

$$r_d = 0.02, r_f = 0.08$$

Tutti i test sono stati effettuati utilizzando valori fissi per i parametri, come riportato nella Tabella 1, ad eccezione del numero di scenari che nel modello DRO è stato impostato a [5 000, 7 500, 10 000, 12 500]. Per ottenere risultati numerici, è stato simulato un moto browniano geometrico (GBM) al fine di generare scenari di prezzo del tasso di cambio. Successivamente, sono stati calcolati il prezzo forward, il prezzo delle opzioni call e il Value-at-Risk (VaR) utilizzando le seguenti formule:

• Prezzo forward

$$F = S_0 e^{(r_d - r_f)T}$$

• Prezzo delle opzioni call

$$C = S_0 e^{-r_f T} N(d_1) - K e^{-r_d T} N(d_2)$$

con

$$d_1 = \frac{\ln \frac{S_0}{K} + \left(r_d - r_f + \frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}}$$
$$d_2 = d_1 - \sigma\sqrt{T}$$

• Value-at-risk

$$X_T = \ln\left(\frac{S_T}{S_0}\right)$$

$$\mu_X = \left(r_d - r_f + \frac{\sigma^2}{2}\right)$$

$$\sigma_X = \sigma\sqrt{T}$$

$$q_X = \mu_X + N^{-1}(1 - \alpha) \cdot \sigma_X$$

$$S_T = S_0 e^{q_X}$$

$$V@R_\alpha = money \cdot \max\left(S_0 - S_T, 0\right)$$

dove money indica la quantità di denaro da coprire.

Le metriche utilizzate per valutare le prestazioni del modello includono:

- Obj.Val: rappresenta la perdita minima ottenuta in condizioni avverse, ovvero il valore ottimizzato della funzione obiettivo.
- AvgLoss: indica la perdita media calcolata tra tutti gli scenari considerati, fornendo una misura della performance attesa del modello.
- **StdDevLoss**: misura la variabilità della perdita tra gli scenari, fornendo un'indicazione del rischio associato alle soluzioni ottenute.
- Opt.Time (s): rappresenta il tempo impiegato per risolvere il modello, valutando così l'efficienza computazionale dell'approccio adottato.

Parametro	Descrizione	Valore
scenarios	numero di scenari	[10 000, 50 000, 100 000]
alphas	livello di confidenta	[0.68, 0.95, 0.99]
$for eign_currency$	Quantità di valuta estera necessaria al tempo t	1e6
$s\theta$	prezzo spot initiale	1
rds	Tasso di interesse domestico privo di rischio	[0.08, 0.05, 0.02]
$r\!f\!s$	Tasso di interesse estero privo di rischio	[0.02, 0.05, 0.08]
sigma	volatilità	0.1
t	maturità (in anni)	1
n_steps	numero di istanti di tempo (giorni)	365
k	prezzo strike	$s0 \cdot [0.8, 0.9, 1.0, 1.1, 1.2]$
coeffs	valore del parametro di bilanciamento λ	[0.001, 0.01, 0.1, 1]
rho	percentuale di contratti forward utilizzati per la copertura	0.3
max_coverage	valuta massima utilizzabile per hedging	1 000 000
$allowed_probabilities$	set di probabilità ammissibili	[0.1, 1]
tolerance	valore della tolleranza	1e-6

Tabella 1: Valori utilizzati per testare i modelli

3.1 Risultati - Modello base

Di seguito alcune osservazioni sui risultati del modello base:

- OptimizedX: in tutti i test eseguiti, il numero di contratti forward acquistati risulta sempre pari a zero, ad eccezione di un singolo caso. Questo potrebbe indicare che, nelle condizioni date, l'ottimizzazione non considera vantaggioso l'acquisto di forward, probabilmente a causa della relazione tra il prezzo forward e i parametri economici del modello.
- OptimizedY: tutte le opzioni call sono considerate equivalenti dal modello. La scelta di una call rispetto a un'altra sembra dipendere principalmente dall'instabilità dovuta al numero limitato di scenari analizzati. Inoltre, poiché il pricing delle opzioni è stato effettuato sotto l'ipotesi di condizioni risk-neutral, tutti i prezzi risultano coerenti con il modello teorico, senza che emerga un'opzione significativamente più vantaggiosa rispetto alle altre.
- Obj.Val: per valori elevati del parametro α (ad esempio, 0.95 o 0.99), si osserva un aumento del valore della funzione obiettivo. Questo effetto è coerente con l'interpretazione del parametro α: valori più alti implicano una maggiore enfasi sugli scenari estremi, che tendono a presentare perdite più elevate. Di conseguenza, sia il Value-at-Risk (VaR) che il Conditional Value-at-Risk (CVaR) aumentano, riflettendo una maggiore avversione al rischio nelle decisioni ottimali del modello.

Per ogni possibile scenario sono stati poi tracciati i grafici della distribuzione delle perdite, tenendo conto della perdita media (indicata dalla linea verde tratteggiata) e il VaR, che indica la soglia oltre la quale le perdite sono considerate estreme o improbabili (messa in evidenza dalla linea rossa tratteggiata). Di seguito è riportato il grafico che descrivere la distribuzione delle perdite nel caso di 100 000 scenari:

Figura 1: Distribuzione della perdita media (dollaro forte) con $\alpha = 0.95$

Sia nel caso di dollaro stabile che in quello di dollaro debole, si osserva una perdita media negativa, il che implica un guadagno netto per l'investitore. Questo risultato suggerisce che, in tali condizioni di mercato, la strategia adottata dal modello riesce a trarre vantaggio dalle dinamiche del tasso di cambio.

Analizziamo ora i risultati in termini di strategia di copertura. Per questa analisi, prendiamo come riferimento i risultati della Tabella A.1 relativi a 100 000 scenari, poiché offrono una maggiore stabilità e affidabilità nella valutazione delle strategie ottimali.

- Caso di dollaro forte: quando il tasso di interesse domestico è superiore a quello estero, il dollaro tende ad apprezzarsi ulteriormente. In questa situazione, è strategicamente vantaggioso acquistare opzioni call per garantirsi un tasso di cambio favorevole nel caso in cui il dollaro si rafforzi ulteriormente. L'acquisto di call permette di coprirsi dal rischio di un ulteriore apprezzamento della valuta nazionale, riducendo le potenziali perdite.
- Caso di dollaro stabile: anche in questa condizione, il modello continua a preferire la copertura con opzioni call. Tuttavia, si osserva una riduzione nel numero di opzioni acquistate rispetto al caso di dollaro forte. Questo suggerisce che, in un contesto di stabilità valutaria, il bisogno di protezione contro variazioni avverse del tasso di cambio è meno pressante, portando a una strategia di copertura più moderata e meno costosa.

3.2 Risultati - Modello bilanciato

Come si può notare dai risultati riportati nella Tabella A.2.1 e nella Tabella A.2.2, la strategia di copertura ottimale si discosta da quella del modello base, prevedendo l'utilizzo combinato di opzioni call e contratti forward. Questo rappresenta una differenza significativa rispetto al modello iniziale, in cui l'acquisto di forward risultava generalmente non vantaggioso.

L'adozione di una strategia mista è dovuta principalmente al vincolo imposto sul numero di call e forward nel modello. In particolare, l'influenza del parametro λ appare bilanciata: il modello non impone una condizione eccessivamente stringente, poiché il numero di forward utilizzati rimane sempre inferiore al valore massimo oltre il quale quella componente della funzione obiettivo verrebbe minimizzata (in questo caso, 300 000 forward). Ciò suggerisce che il modello sta ottimizzando la strategia di copertura senza introdurre distorsioni eccessive nella scelta tra i diversi strumenti derivati.

In Figura 2, possiamo osservare la distribuzione dei derivati utilizzati. L'analisi grafica mostra che, in tutti i casi considerati, il rapporto tra contratti forward e opzioni call risulta approssimativamente pari a 1 : 3. Questo indica che, pur essendo i forward inclusi nella strategia ottimale, il modello continua a privilegiare l'uso delle opzioni call come principale strumento di copertura.

Figura 2: Distribuzione opzioni call e contratti forward nel modello bilanciato

Nei grafici seguenti viene mostrato un confronto tra perdita media e deviazione standard relative al modello base e al modello bilanciato.

Figura 3: Confronto tra modello base e modello bilanciato

Aumentando il valore del parametro λ , si introduce una maggiore penalizzazione, il che si riflette nei valori della perdita media.

Come previsto, il modello bilanciato tende ad aumentare la perdita media, ma al tempo stesso consente di ottenere una soluzione più realistica, mantenendo il budget sotto controllo.

Questo aspetto lo rende una scelta più plausibile rispetto al modello base, poiché riflette meglio le limitazioni operative che si incontrano in contesti reali di copertura finanziaria.

Un ulteriore aspetto rilevante è l'aumento della varianza delle perdite nel modello bilanciato.

Questo suggerisce che la strategia ottimizzata presenta una maggiore dispersione dei risultati rispetto al modello base, il che può essere interpretato come un aumento dell'incertezza sulle performance della copertura.

Tuttavia, questa maggiore variabilità è coerente con il fatto che la strategia ottimale utilizza una combinazione più flessibile di strumenti derivati, piuttosto che concentrarsi esclusivamente sulle opzioni call.

3.3 Risultati - Modello DRO

In modo analogo a quanto fatto nel modello precedente, analizziamo la diversa composizione tra Forward e Call, considerando un numero di scenari pari a $[5000, 7500, 10\ 000, 12\ 500]$ in riferimento alla Figura 4.

Osservazioni principali:

1. Caso di dollaro forte (Rd=0.08, Rf=0.02):

Il valore totale dei derivati aumenta con il numero di scenari, per poi stabilizzarsi dopo i 10 000 scenari. Inoltre, il peso delle Call risulta dominante rispetto ai Forward, suggerendo che il modello preferisce proteggersi attraverso opzioni piuttosto che con contratti forward.

2. Caso di dollaro stabile (Rd=0.05, Rf=0.05):

L'aumento del numero di scenari porta a un incremento più graduale del valore totale dei derivati. Anche in questo caso, il contributo delle Call è predominante rispetto ai Forward.

Si osserva, tuttavia, la presenza di un salto anomalo, il che potrebbe indicare che il modello necessita di un numero maggiore di scenari per raggiungere una stabilità ottimale.

3. Caso di dollaro debole (Rd=0.02, Rf=0.08):

L'andamento in questo caso è diverso: per 5 000, 7 500 e 12 500 scenari, il valore totale dei derivati rimane relativamente basso. Tuttavia, con 10 000 scenari, si osserva una crescita drastica fino a 634 112, indicando una potenziale instabilità o un cambiamento significativo nel comportamento dell'ottimizzazione.

Figura 4: Distribuzione opzioni call e contratti forward nel modello DRO

Costi Computazionali DRO

Durante l'implementazione del modello DRO, è emerso un aspetto rilevante che merita di essere sottolineato: con l'aumentare del numero di scenari, il numero di distribuzioni di probabilità possibili cresce esponenzialmente.

Questo fenomeno rende il problema significativamente più complesso da risolvere, poiché il modello deve considerare un insieme sempre più ampio di distribuzioni potenziali.

Di conseguenza, all'aumentare del numero di scenari, la dimensione del problema cresce, rendendo l'ot-

timizzazione computazionalmente più onerosa.

Questo comportamento è confermato dai tempi di ottimizzazione riportati nella Figura 6, che evidenziano un aumento significativo del tempo di calcolo al crescere degli scenari considerati.

Per affrontare questa sfida, il modello è stato sviluppato cercando di bilanciare il numero di scenari utilizzati e la trattabilità computazionale, garantendo così un compromesso tra accuratezza della soluzione e sostenibilità dei tempi di risoluzione.

Confronto DRO - Modello Base

Ci dedichiamo ora a un confronto tra il modello DRO e il modello base, illustrato in Figura 5, con particolare attenzione ai valori di perdita media e deviazione standard della perdita per le tre diverse combinazioni di tasso di cambio.

AvgLoss: il modello base mostra una tendenza più stabile rispetto ai modelli DRO.

I modelli DRO con coefficienti più elevati (es. $\lambda = 0.1$ e $\lambda = 1.0$) presentano variazioni più marcate nella perdita media, suggerendo una maggiore sensibilità al numero di scenari.

Inoltre, alcuni valori dell'AvgLoss risultano negativi, il che indica potenziali guadagni o una riduzione della perdita rispetto al modello base.

StdDevLoss: il modello base tende a mantenere una variabilità più stabile nel tempo.

I modelli DRO, invece, mostrano oscillazioni più accentuate.

Per il caso ($R_d = 0.02, R_f = 0.08$), la deviazione standard della perdita cala drasticamente per alcuni scenari (ad esempio, per 12 500 scenari), suggerendo un'ottimizzazione più robusta per determinati parametri.

In generale, per scenari più piccoli (5 000 - 7 500), il modello base mostra risultati più stabili rispetto ai modelli DRO.

Tuttavia, per scenari più grandi (oltre 10 000), alcuni modelli DRO riescono a ridurre sia la perdita media che la deviazione standard rispetto al modello base, suggerendo che il DRO potrebbe migliorare la robustezza della soluzione con un numero sufficiente di scenari.

Nonostante ciò, il comportamento del modello DRO con coefficiente elevato ($\lambda = 1.0$) risulta meno prevedibile e più volatile, indicando che un valore troppo alto di λ potrebbe introdurre instabilità nella soluzione ottimizzata.

Figura 5: Confronto tra DRO e modello base

3.4 Tempi di Ottimizzazione

Di seguito sono riportati i grafici che rappresentano il tempo medio di ottimizzazione per ciascun modello e per diversi valori di α .

Data la struttura dei modelli, è possibile notare alcune peculiarità nei primi due modelli, mentre il modello DRO presenta un costo computazionale significativamente più elevato.

In particolare:

1. Modello Base (Basic Model):

Il tempo di ottimizzazione aumenta linearmente con il numero di scenari per tutti e tre i valori di α . Inoltre, non si osservano variazioni significative tra i diversi valori di α , suggerendo che l'influenza di questo parametro sul tempo di calcolo è trascurabile in questo modello.

2. Modello Bilanciato (Mix Model):

Anche in questo caso, il tempo di ottimizzazione cresce linearmente con il numero di scenari.

Tuttavia, si osservano leggere variazioni tra i diversi valori di α , con $\alpha = 0.68$ che risulta leggermente più veloce rispetto agli altri.

Questa differenza, che si manifesta nell'ordine di pochi secondi, potrebbe essere dovuta al numero limitato di simulazioni effettuate e probabilmente tenderebbe a ridursi mediando i risultati su un numero maggiore di simulazioni.

3. Modello DRO (Dro Mix Model):

In questo caso, il trend risulta più irregolare e il tempo di ottimizzazione è mediamente più elevato rispetto agli altri modelli.

Questo potrebbe essere dovuto al fatto che, all'aumentare del numero di scenari, cresce notevolmente anche il numero di distribuzioni di probabilità considerate nel processo di ottimizzazione.

Di conseguenza, il problema diventa computazionalmente più complesso, aumentando il tempo necessario per la risoluzione del modello.

Nel complesso, possiamo osservare che il tempo di ottimizzazione tende a crescere con il numero di scenari, tuttavia, l'impatto dei valori di α varia a seconda del modello utilizzato.

Mentre nel Modello Base l'influenza di α è trascurabile, nel Modello Bilanciato si notano leggere variazioni, sebbene probabilmente attribuibili al numero limitato di simulazioni.

Nel **Modello DRO**, invece, il tempo di ottimizzazione è mediamente più elevato e il comportamento è meno prevedibile, a causa della complessità computazionale crescente legata al numero di distribuzioni di probabilità considerate.

Figura 6: Confronto tra i tempi medi di ottimizzazione dei modelli

Appendice A

Risultati sperimentali

Coeff	Alpha	Rd	Rf	# Scenari	Ottim. X	Ottim. Y	Obj. Val	Avg Loss	Std Dev Loss	Opt. Time (s)
None	0.68	0.08	0.02	10000	0	[1242437, 0, 0, 0, 0]	119228	36982	25830	2.965
None	0.68	0.08	0.02	50000	0	[1251959, 0, 0, 0, 0]	118535	36595	26662	13.818
None	0.68	0.08	0.02	100000	0	[1247883, 0, 0, 0, 0]	119103	36870	26211	29.213
None	0.68	0.05	0.05	10000	0	[716157, 0, 0, 0, 283842]	50452	-6877	28483	2.182
None	0.68	0.05	0.05	50000	0	[0, 0, 971879, 0, 0]	50452	-1652	55661	12.166
None	0.68	0.05	0.05	100000	0	[881405, 0, 0, 0, 0]	50452	-8653	13225	25.888
None	0.68	0.02	0.08	10000	0	[0, 0, 0, 987084, 0]	105749	-56861	87846	2.024
None	0.68	0.02	0.08	50000	0	[661242, 0, 0, 0, 0]	105749	-60120	34982	10.9
None	0.68	0.02	0.08	100000	0	[0, 664126, 0, 0, 0]	105749	-59086	52489	22.695
None	0.95	0.08	0.02	10000	0	[0, 894657, 0, 0, 0]	103704	50444	17394	2.381
None	0.95	0.08	0.02	50000	0	[875580, 0, 0, 0, 0]	103704	44143	13450	12.948
None	0.95	0.08	0.02	100000	0	[894101, 0, 0, 0, 0]	103704	43850	11597	27.937
None	0.95	0.05	0.05	10000	0	[580752, 0, 0, 0, 0]	155900	-5758	42434	2.274
None	0.95	0.05	0.05	50000	0	[0, 715475, 0, 0, 0]	155900	-3273	39250	12.11
None	0.95	0.05	0.05	100000	0	[0, 678003, 0, 0, 0]	155900	-3705	42567	26.033
None	0.95	0.02	0.08	10000	0	[373713, 0, 0, 0, 0]	205057	-59157	60185	1.956
None	0.95	0.02	0.08	50000	0	[0, 476412, 0, 0, 0]	205057	-58583	63599	10.624
None	0.95	0.02	0.08	100000	0	[0, 483877, 0, 0, 0]	205057	-58473	63062	22.374
None	0.99	0.08	0.02	10000	0	[741787, 0, 0, 0, 0]	162751	46938	27669	2.304
None	0.99	0.08	0.02	50000	0	[785517, 0, 0, 0, 0]	162751	45991	22965	13.226
None	0.99	0.08	0.02	100000	0	[0, 814406, 0, 0, 0]	162751	51449	24733	28.068
None	0.99	0.05	0.05	10000	572274	[0, 0, 0, 0, 0]	211509	310	43061	2.207
None	0.99	0.05	0.05	50000	0	[0, 682939, 0, 0, 0]	211509	-3695	42227	12.258
None	0.99	0.05	0.05	100000	0	[0, 623372, 0, 0, 0]	211509	-3281	46992	25.708
None	0.99	0.02	0.08	10000	0	[0, 0, 0, 368930, 0]	257427	-58815	91468	1.977
None	0.99	0.02	0.08	50000	0	[0, 425630, 0, 0, 0]	257427	-58687	66829	10.848
None	0.99	0.02	0.08	100000	0	[0, 363137, 0, 0, 0]	257427	-58637	70390	22.372

Tabella A.1: Risultati ottimizzazione modello base

Coeff	Alpha	Rd	Rf	# Scenari	Ottim. X	Ottim. Y	Obj. Val	Avg Loss	Std Dev Loss	Opt. Time (s)
0.001	0.68	0.08	0.02	10000	0	[1000000, 0, 0, 0, 0]	130709	41728	1060	2.775
0.001	0.68	0.08	0.02	50000	0	[1000000, 0, 0, 0, 0]	130680	41716	1345	21.469
0.001	0.68	0.08	0.02	100000	0	[1000000, 0, 0, 0, 0]	130653	41707	1468	31.848
0.001	0.68	0.05	0.05	10000	264904	[618110, 0, 0, 0, 0]	50452	-5682	12338	2.372
0.001	0.68	0.05	0.05	50000	268640	[626828, 0, 0, 0, 0]	50452	-6008	11299	13.493
0.001	0.68	0.05	0.05	100000	265923	[620487, 0, 0, 0, 0]	50452	-6022	12309	28.39
0.001	0.68	0.02	0.08	10000	204062	[0, 476146, 0, 0, 0]	105749	-58787	44616	2.065
0.001	0.68	0.02	0.08	50000	216019	[0, 504044, 0, 0, 0]	105749	-58652	41993	12.245
0.001	0.68	0.02	0.08	100000	200621	[0, 468117, 0, 0, 0]	105749	-58596	45510	24.644
0.001	0.95	0.08	0.02	10000	261679	[610586, 0, 0, 0, 0]	103704	50222	13253	2.566
0.001	0.95	0.08	0.02	50000	273067	[637158, 0, 0, 0, 0]	103704	48988	9661	14.473
0.001	0.95	0.08	0.02	100000	272025	[634727, 0, 0, 0, 0]	103704	49099	10096	30.03
0.001	0.95	0.05	0.05	10000	186129	[0, 434301, 0, 0, 0]	155900	-2575	44598	2.352
0.001	0.95	0.05	0.05	50000	203164	[0, 474051, 0, 0, 0]	155900	-2301	38975	13.594
0.001	0.95	0.05	0.05	100000	215794	[0, 503519, 0, 0, 0]	155900	-2601	35730	28.656
0.001	0.95	0.02	0.08	10000	126104	[0, 0, 294244, 0, 0]	205057	-58952	73741	2.018
0.001	0.95	0.02	0.08	50000	141218	[0, 198216, 131293, 0, 0]	205057	-45792	77015	11.569
0.001	0.95	0.02	0.08	100000	151834	[0, 184997, 169282, 0, 0]	205057	-47217	75044	23.603
0.001	0.99	0.08	0.02	10000	223154	[520694, 0, 0, 0, 0]	162751	52958	25623	2.391
0.001	0.99	0.08	0.02	50000	253999	[592664, 0, 0, 0, 0]	162751	50234	16402	14.49
0.001	0.99	0.08	0.02	100000	237660	[554542, 0, 0, 0, 0]	162751	50805	22058	30.274
0.001	0.99	0.05	0.05	10000	158056	[89487, 279311, 0, 0, 0]	211509	15185	60920	2.377
0.001	0.99	0.05	0.05	50000	167227	[0, 390198, 0, 0, 0]	211509	-2123	49269	13.707
0.001	0.99	0.05	0.05	100000	173494	[0, 404821, 0, 0, 0]	211509	-1825	47609	28.91
0.001	0.99	0.02	0.08	10000	67639	[0, 0, 0, 157825, 0]	257427	-59270	85687	2.024
0.001	0.99	0.02	0.08	50000	127174	[0, 129994, 166744, 0, 0]	257427	-48243	81910	11.504
0.001	0.99	0.02	0.08	100000	144826	[0, 260908, 0, 77019, 0]	257427	-42594	79973	23.024
0.01	0.68	0.08	0.02	10000	0	[1000000,0,0,0,0]	133282	41687	1543	2.756
0.01	0.68	0.08	0.02	50000	0	[1000000,0,0,0,0]	133377	41716	1304	21.46
0.01	0.68	0.08	0.02	100000	0	[1000000,0,0,0,0]	133326	41695	1696	31.027
0.01	0.68	0.05	0.05	10000	261745	[610739, 0, 0, 0, 0]	50452	-5291	13324	2.403
0.01	0.68	0.05	0.05	50000	264111	[616259,0,0,0,0]	50452	-5952	12708	13.635
0.01	0.68	0.05	0.05	100000	264645	[617507,0,0,0,0]	50452	-6007	12632	28.125
0.01	0.68	0.02	0.08	10000	212747	[0, 496410, 0, 0, 0]	105749	-58743	42674	2.343
0.01	0.68	0.02	0.08	50000	206855	[0, 482663, 0, 0, 0]	105749	-58654	44121	12.773
0.01	0.68	0.02	0.08	100000	200665	[0, 468218, 0, 0, 0]	105749	-58751	45730	24.349
0.01	0.95	0.08	0.02	10000	269292	[628349,0,0,0,0]	103704	49564	10748	2.742
0.01	0.95	0.08		50000	267954	[625227,0,0,0,0]	103704	49327	11515	14.476
0.01	0.95	0.08	0.02	100000	272238	[635222, 0, 0, 0, 0]	103704	49090	9962	29.484
0.01	0.95	0.05	0.05	10000	187820	[0, 438246, 0, 0, 0]	155900	-2658	43156	2.533
0.01	0.95	0.05	0.05	50000	210888	[0, 492073, 0, 0, 0]	155900	-2739	36994	13.677
0.01	0.95	0.05	0.05	100000	204442	[0, 477032, 0, 0, 0]	155900	-2467	38619	28.822
0.01	0.95	0.02	0.08	10000	139759	[0, 0, 326105, 0, 0]	205057	-58210	70997	2.324
0.01	0.95	0.02	0.08	50000	135513	[0, 183018, 133179, 0, 0]	205057	-47000	77350	11.53
0.01	0.95	0.02	0.08	100000	161016	[0, 199723, 175982, 0, 0]	205057	-46501	74153	23.398
0.01	0.99	0.08	0.02	10000	230190	[537110, 0, 0, 0, 0]	162751	52695	23410	2.634
0.01	0.99	0.08	0.02	50000	233811	[545559, 0, 0, 0, 0]	162751	51154	23455	15.1
0.01	0.99	0.08	0.02	100000	252849	[589982, 0, 0, 0, 0]	162751	50116	16726	29.561
0.01	0.99	0.05	0.05	10000	173627	[125278, 279852, 0, 0, 0]	211509	20502	60469	2.485
0.01	0.99	0.05	0.05	50000	171972	[0, 401268, 0, 0, 0]	211509	-2489	48674	13.742
0.01	0.99	0.05	0.05	100000	184572	[0, 430670, 0, 0, 0]	211509	-2366	44523	28.256
0.01	0.99	0.02	0.08	10000	96523	[0, 0, 0, 225220, 0]	257427	-57145	84042	2.182
0.01	0.99	0.02	0.08	50000	99947	[0, 0, 225539, 7671, 0]	257427	-54355	84754	11.377
0.01	0.99	0.02	0.08	100000	137788	[0, 242202, 0, 79304, 0]	257427	-43731	80880	22.651

Tabella A.2.1: Risultati ottimizzazione modello bilanciato

Coeff	Alpha	Rd	Rf	# Scenari	Ottim. X	Ottim. Y	Obj. Val	Avg Loss	Std Dev Loss	Opt. Time (s)
				**						
0.1	0.68	0.08	0.02	10000	300000	[700000, 0, 0, 0, 0]	149177	47733	1358	2.959
0.1	0.68	0.08	0.02	50000	300000	[700000, 0, 0, 0, 0]	149206	47744	1107	22.315
$0.1 \\ 0.1$	$0.68 \\ 0.68$	0.08	$0.02 \\ 0.05$	$100000 \\ 10000$	300000 300000	[700000, 0, 0, 0, 0] $[700000, 0, 0, 0, 0]$	$\frac{149197}{50452}$	47741 -6258	$\frac{1169}{5003}$	31.013 2.507
	0.68	$0.05 \\ 0.05$	0.05	50000	300000	[700000, 0, 0, 0, 0]	50452 50452	-6238 -6722	3779	$\frac{2.507}{13.512}$
$0.1 \\ 0.1$	0.68	0.05	0.05	100000	300000	[700000, 0, 0, 0, 0]	50452 50452	-6769	3454	$\frac{15.512}{28.563}$
0.1	0.68	0.03 0.02	0.03	100000	300000	[435522, 264477, 0, 0, 0]	105749	-0709 753	50149	20.503 2.073
0.1	0.68	0.02 0.02	0.08	50000	201796	[201733, 269125, 0, 0, 0]	105749 105749	-31222	57841	12.026
0.1	0.68	0.02 0.02	0.08	100000	201790	[182951, 285620, 0, 0, 0]	105749 105749	-31222 -33854	57247	24.948
0.1	0.08 0.95	0.02 0.08	0.08	100000	300000	[700000, 0, 0, 0, 0]	103749 103704	-33634 48232	4060	24.946 2.53
$0.1 \\ 0.1$	$0.95 \\ 0.95$	0.08	0.02 0.02	50000	300000	[700000, 0, 0, 0, 0] $[700000, 0, 0, 0, 0]$	103704 103704	48232	1935	14.46
0.1	0.95	0.08	0.02	100000	300000	[700000, 0, 0, 0, 0] $[700000, 0, 0, 0, 0]$	103704 103704	47782	1690	29.773
0.1	0.95	0.05	0.02	100000	300000	[370267, 329732, 0, 0, 0]	155900	50019	55535	2.38
0.1	0.95	0.05	0.05	50000	300000	[352217, 347782, 0, 0, 0]	155900	46943	53847	13.772
0.1	0.95	0.05	0.05	100000	300000	[338000, 361999, 0, 0, 0]	155900	44895	52054	28.521
0.1	$0.95 \\ 0.95$	0.03	0.03	100000	300000	[0, 700000, 0, 0, 0]	205057	-15219	65047	2.0321 2.032
0.1	0.95	0.02	0.08	50000	300000	[0, 700000, 0, 0, 0]	205057	-15847	65889	11.521
0.1	0.95	0.02	0.08	100000	300000	[0, 700000, 0, 0, 0]	205057	-15640	66159	23.716
0.1	0.99	0.02	0.03	100000	300000	[700000, 0, 0, 0, 0]	162751	49937	10747	2.356
0.1	0.99	0.08	0.02	50000	300000	[700000, 0, 0, 0, 0]	162751 162751	48145	4773	14.56
0.1	0.99	0.08	0.02	100000	300000	[700000, 0, 0, 0, 0]	162751 162751	47944	3418	29.657
0.1	0.99	0.05	0.02	100000	300000	[466801, 233198, 0, 0, 0]	211509	79883	58013	2.329
0.1	0.99	0.05	0.05	50000	169616	[183167, 212603, 0, 0, 0]	211509	30376	67624	13.616
0.1	0.99	0.05	0.05	100000	174623	[184287, 223166, 0, 0, 0]	211509	30172	66580	29.199
0.1	0.99	0.03	0.08	100000	300000	[700000, 0, 0, 0, 0]	257427	40124	65780	2.054
0.1	0.99	0.02	0.08	50000	300000	[0, 0, 700000, 0, 0]	257427	-47010	66018	11.412
0.1	0.99	0.02	0.08	100000	300000	[0, 0, 700000, 0, 0]	257427	-46901	65935	22.706
1	0.68	0.08	0.02	10000	300000	[700000, 0, 0, 0, 0]	149252	47760	816	2.911
1	0.68	0.08	0.02	50000	300000	[700000, 0, 0, 0, 0]	149202	47743	1128	24.311
1	0.68	0.08	0.02	100000	300000	[700000, 0, 0, 0, 0]	149181	47737	1172	30.616
1	0.68	0.05	0.05	10000	259936	[606518, 0, 0, 0, 0]	50452	-5497	13827	2.365
1	0.68	0.05	0.05	50000	263605	[615079, 0, 0, 0, 0]	50452	-6007	12962	13.65
1	0.68	0.05	0.05	100000	268181	[625757, 0, 0, 0, 0]	50452	-6053	11590	28.315
1	0.68	0.02	0.08	10000	179576	[0, 419012, 0, 0, 0]	105749	-58703	50462	2.09
1	0.68	0.02	0.08	50000	202648	[0, 472847, 0, 0, 0]	105749	-58897	45086	12.053
1	0.68	0.02	0.08	100000	210006	[0, 490014, 0, 0, 0]	105749	-58522	43328	24.966
1	0.95	0.08	0.02	10000	269177	[628080, 0, 0, 0, 0]	103704	49359	10791	2.541
1	0.95		0.02	50000	266983	[622960, 0, 0, 0, 0]	103704	49291	11751	14.245
1	0.95	0.08	0.02	100000	269177	[628080, 0, 0, 0, 0]	103704	49229	11003	30.208
1	0.95	0.05	0.05	10000	204437	[0, 477020, 0, 0, 0]	155900	-2445	38788	2.283
1	0.95	0.05	0.05	50000	195900	[0, 457100, 0, 0, 0]	155900	-2678	41499	13.978
1	0.95	0.05	0.05	100000	222215	[0, 518502, 0, 0, 0]	155900	-2692	33649	28.764
1	0.95	0.02	0.08	10000	137222	[0, 320186, 0, 0, 0]	205057	-38874	82232	2.041
1	0.95	0.02	0.08	50000	154999	[0, 222288, 139377, 0, 0]	205057	-45272	76038	11.831
1	0.95	0.02	0.08	100000	147397	[0, 148352, 195574, 0, 0]	205057	-49227	74754	23.622
1	0.99	0.08	0.02	10000	227086	[529868, 0, 0, 0, 0]	162751	53016	24082	2.502
1	0.99	0.08	0.02	50000	243752	[568755, 0, 0, 0, 0]	162751	50758	19824	14.437
1	0.99	0.08	0.02	100000	234048	[546112, 0, 0, 0, 0]	162751	50833	23270	29.883
1	0.99	0.05	0.05	10000	183322	[0, 427752, 0, 0, 0]	211509	-2086	45233	2.352
1	0.99	0.05	0.05	50000	164514	[0, 383866, 0, 0, 0]	211509	-2139	50490	13.792
1	0.99	0.05	0.05	100000	207918	[0, 485142, 0, 0, 0]	211509	-2400	37775	28.929
1	0.99	0.02	0.08	10000	131024	[0, 0, 0, 305724, 0]	257427	-59137	79374	1.981
1	0.99	0.02	0.08	50000	136745	[0, 18079, 300994, 0, 0]	257427	-52843	81243	11.583
1	0.99	0.02	0.08	100000	111217	[0, 167734, 0, 91773, 0]	257427	-47823	83200	22.908

Tabella A.2.2: Risultati ottimizzazione modello bilanciato

Coeff	Alpha	Rd	Rf	# Scenari	Ottim. X	Ottim. Y	Obj. Val	Avg Loss	Std Dev Loss	Opt. Time (s)
0.001	0.68	0.08	0.02	5000	0	[1000000, 0, 0, 0, 0]	130591	41677	2057	1.525
0.001	0.68	0.08	0.02	7500	0	[1000000, 0, 0, 0, 0]	130592	41690	1589	2.483
0.001	0.68	0.08	0.02	10000	990902	[0, 0, 0, 0, 0]	193968	61847	982	2.734
0.001	0.68	0.08	0.02	12500	0	[1000000, 0, 0, 0, 0]	130663	41707	1549	180.463
0.001	0.68	0.05	0.05	5000	257024	[599723, 0, 0, 0, 0]	50452	-4392	14084	1.371
0.001	0.68	0.05	0.05	7500	264367	[616858, 0, 0, 0, 0]	50452	-4741	12263	2.104
0.001	0.68	0.05	0.05	10000	300000	[86, 0, 365593, 333027, 1292]	50452	1281	48617	82.157
0.001	0.68	0.05	0.05	12500	300000	[0, 0, 366196, 332329, 1474]	50452	1767	49602	127.655
0.001	0.68	0.02	0.08	5000	191091	[99473, 346405, 0, 0, 0]	105749	-44983	53633	1.25
0.001	0.68	0.02	0.08	7500	199649	[0, 465847, 0, 0, 0]	105749	-57891	45754	2.041
0.001	0.68	0.02	0.08	10000	0	[0, 0, 0, 0, 0]	0	0	0	10.308
0.001	0.68	0.02	0.08	12500	0	[0, 0, 0, 0, 0]	0	0	0	13.822
0.001	0.95	0.08	0.02	5000	259880	[606388, 0, 0, 0, 0]	103704	50458	13993	1.404
0.001	0.95	0.08	0.02	7500	262204	[611809, 0, 0, 0, 0]	103704	49938	13051	2.209
0.001	0.95	0.08	0.02	10000	300000	[0, 700000, 0, 0, 0]	103704	53881	9451	111.321
0.001	0.95	0.08	0.02	12500	300000	[113694, 223096, 24371, 140774, 198063]	103704	85666	31957	189.233
0.001	0.95	0.05	0.05	5000	182610	[0, 426090, 0, 0, 0]	155900	-1227	43897	1.35
0.001	0.95	0.05	0.05	7500	198069	[0, 462161, 0, 0, 0]	155900	-2052	40142	2.127
0.001	0.95	0.05	0.05	10000	0	[0, 0, 0, 0, 0]	0	0	0	2.581
0.001	0.95	0.05	0.05	12500	205885	[0, 480398, 0, 0, 0]	155900	-2945	38146	3.479
0.001	0.95	0.02	0.08	5000	114557	[0, 0, 267301, 0, 0]	205057	-58886	74649	1.273
0.001	0.95	0.02	0.08	7500	125090	[0, 0, 291876, 0, 0]	205057	-58828	75163	2.016
0.001	0.95	0.02	0.08	10000	365887	[3404, 0, 0, 0, 630708]	205127	-57202	59764	10.541
0.001	0.95	0.02	0.08	12500	133873	[0, 312371, 0, 0, 0]	205057	-38422	82061	3.84
0.001	0.99	0.08	0.02	5000	225119	[525278, 0, 0, 0, 0]	162751	53359	24679	1.377
0.001	0.99	0.08	0.02	7500	244621	[570782, 0, 0, 0, 0]	162751	52394	18315	2.145
0.001	0.99	0.08	0.02	10000	300000	[21047, 248165, 11914, 107087, 311786]	162751	98309	56892	110.328
0.001	0.99	0.08	0.02	12500	300000	[700000, 0, 0, 0, 0]	162751	51031	18465	135.829
0.001	0.99	0.05	0.05	5000	142835	[0, 333281, 0, 0, 0]	211509	-1784	56972	1.322
0.001	0.99	0.05	0.05	7500	153791	[80053, 278794, 0, 0, 0]	211509	14298	61041	2.089
0.001	0.99	0.05	0.05	10000	167228	[83648, 306552, 0, 0, 0]	211509	17745	57324	5.748
0.001	0.99	0.05	0.05	12500	319641	[96893, 34469, 93726, 188148, 267119]	211529	26473	66612	24.563
0.001	0.99	0.02	0.08	5000	108952	[0, 0, 0, 254221, 0]	257427	-56820	83618	1.25
0.001	0.99	0.02	0.08	7500	118599	[0, 0, 0, 276731, 0]	257427	-55782	81404	2.035
0.001	0.99	0.02	0.08	10000	374627	[0, 0, 0, 0, 625372]	257502	-57704	59224	10.364
0.001	0.99	0.02	0.08	12500	132250	[0, 0, 0, 308583, 0]	257427	-59471	79969	3.317
0.01	0.68	0.08	0.02	5000	0	[1000000, 0, 0, 0, 0]	133356	41713	1162	1.486
0.01	0.68	0.08	0.02	7500	0	[1000000, 0, 0, 0, 0]	133383	41717	1373	2.273
0.01	0.68	0.08	0.02	10000	0	[1000000, 0, 0, 0, 0]	133396	41715	1584	108.001
0.01	0.68	0.08	0.02	12500	729712	[0, 0, 0, 0, 0]	198414	61786	28529	3.484
0.01	0.68	0.05	0.05	5000	253577	[591680, 0, 0, 0, 0]	50452	-4667	14931	1.334
0.01	0.68	0.05	0.05	7500	263889	[615742, 0, 0, 0, 0]	50452	-4886	12556	2.151
0.01	0.68	0.05	0.05	10000	299892	[291, 109, 365303, 334044, 0]	50452	878	48694	78.572
0.01	0.68	0.05	0.05	12500	300000	[0, 17113, 340170, 342103, 611]	50452	3472	48177	130.901
0.01	0.68	0.02	0.08	5000	184453	[69909,360480,0,0,0]	105749	-49342	52778	1.193
0.01	0.68	0.02	0.08	7500	182329	[0, 425435, 0, 0, 0]	105749	-58818	49123	2.206
0.01	0.68	0.02	0.08	10000	341965	[122,0,0,0,657912]	106950	-57294	61867	10.268
0.01	0.68	0.02	0.08	12500	183145	[0, 427340, 0, 0, 0]	105749	-58245	49732	3.954

Tabella A.3.1: Risultati ottimizzazione modello DRO

Coeff	Alpha	Rd	Rf	# Scenari	Ottim. X	Ottim. Y	Obj. Val	Avg Loss	Std Dev Loss	Opt. Time (s)
0.01	0.95	0.08	0.02	5000	258532	[603241, 0, 0, 0, 0]	103704	50117	14453	1.332
0.01	0.95	0.08	0.02	7500	271151	[632687, 0, 0, 0, 0]	103704	49576	9821	2.262
0.01	0.95	0.08	0.02	10000	0	[0, 0, 0, 0, 0]	0	0	0	2.513
0.01	0.95	0.08	0.02	12500	271766	[634121, 0, 0, 0, 0]	103704	49463	10102	3.825
0.01	0.95	0.05	0.05	5000	199995	[0, 466655, 0, 0, 0]	155900	-2565	40508	1.359
0.01	0.95	0.05	0.05	7500	176658	[0, 412202, 0, 0, 0]	155900	-1839	47177	2.205
0.01	0.95	0.05	0.05	10000	300000	[109106, 1086, 160194, 43218, 386394]	155900	25861	65799	68.141
0.01	0.95	0.05	0.05	12500	188170	[0, 439065, 0, 0, 0]	155900	-2015	43313	7.009
0.01	0.95	0.02	0.08	5000	125600	[0, 0, 293068, 0, 0]	205057	-57903	74496	1.288
0.01	0.95	0.02	0.08	7500	100025	[0, 0, 233393, 0, 0]	205057	-58251	78490	2.033
0.01	0.95	0.02	0.08	10000	300000	[0, 0, 0, 699999]	205136	-57845	65973	10.538
0.01	0.95	0.02	0.08	12500	137966	[0, 0, 321922, 0, 0]	205057	-59366	72002	3.785
0.01	0.99	0.08	0.02	5000	233170	[544063, 0, 0, 0, 0]	162751	53397	22071	1.433
0.01	0.99	0.08	0.02	7500	232796	[543190, 0, 0, 0, 0]	162751	52612	22341	2.334
0.01	0.99	0.08	0.02	10000	230003	[536675, 0, 0, 0, 0]	162751	53397	23119	3.035
0.01	0.99	0.08	0.02	12500	300000	[100509, 38005, 288235, 273250, 0]	162751	61414	33003	156.707
0.01	0.99	0.05	0.05	5000	136368	[0, 318193, 0, 0, 0]	211509	-1205	57651	1.361
0.01	0.99	0.05	0.05	7500	159970	[67712, 305552, 0, 0, 0]	211509	9393	58310	2.228
0.01	0.99	0.05	0.05	10000	300000	[0, 0, 1823, 698176, 0]	211509	1201	59801	21.068
0.01	0.99	0.05	0.05	12500	300000	[95897, 65338, 152848, 199484, 186430]	211509	32586	68983	24.187
0.01	0.99	0.02	0.08	5000	104007	[0, 0, 0, 242684, 0]	257427	-57855	82668	1.266
0.01	0.99	0.02	0.08	7500	94472	[0, 0, 0, 220434, 0]	257427	-56747	84276	2.008
0.01	0.99	0.02	0.08	10000	300000	[0, 0, 0, 0, 699999]	257654	-57780	66693	10.562
0.01	0.99	0.02	0.08	12500	104984	[0, 0, 0, 244963, 0]	257427	-58504	82627	4.353
0.1	0.68	0.08	0.02	5000	300000	[700000, 0, 0, 0, 0]	149149	47714	1894	1.497
0.1	0.68	0.08	0.02	7500	300000	[700000, 0, 0, 0, 0]	149273	47767	627	2.631
0.1	0.68	0.08	0.02	10000	0	[0, 0, 0, 0, 0]	0	0	0	2.623
0.1	0.68	0.08	0.02	12500	300000	[700000, 0, 0, 0, 0]	149196	47739	1204	4.402
0.1	0.68	0.05	0.05	5000	300000	[700000, 0, 0, 0, 0]	50452	-5535	7211	1.509
0.1	0.68	0.05	0.05	7500	300000	[700000, 0, 0, 0, 0]	50452	-5861	6669	2.111
0.1	0.68	0.05	0.05	10000	300000	[700000, 0, 0, 0, 0]	50452	-5509	6972	3.84
0.1	0.68	0.05	0.05	12500	299875	[371, 0, 365478, 333859, 0]	50452	1445	48873	126.698
0.1	0.68	0.02	0.08	5000	300000	[449154, 250845, 0, 0, 0]	105749	5146	48533	1.333
0.1	0.68	0.02	0.08	7500	300000	[442751, 257248, 0, 0, 0]	105749	3576	49213	2.119
0.1	0.68	0.02	0.08	10000	299997	[0, 0, 0, 0, 699995]	106998	-57253	66211	10.508
0.1	0.68	0.02	0.08	12500	300000	[435123, 264876, 0, 0, 0]	105749	2624	48709	5.815
0.1	0.95	0.08	0.02	5000	300000	[700000, 0, 0, 0, 0]	103704	48393	4825	1.334
0.1	0.95	0.08	0.02	7500	300000	[700000, 0, 0, 0, 0]	103704	48292	4495	2.33
0.1	0.95	0.08	0.02	10000	291536	[428040, 0, 0, 0, 252211]	103704	95203	20169	115.083
0.1	0.95	0.08	0.02	12500	0	[0, 0, 0, 0, 0]	0	0	0	3.582
0.1	0.95	0.05	0.05	5000	176291	[175664, 235682, 0, 0, 0]	155900	23905	65318	1.403
0.1	0.95	0.05	0.05	7500	188349	[179481, 260000, 0, 0, 0]	155900	23969	63251	2.167
0.1	0.95	0.05	0.05	10000	300000	[31326, 131639, 42274, 136437, 358321]	155900	21163	66178	63.488
0.1	0.95	0.05	0.05	12500	300000	[712, 72151, 188078, 133633, 305424]	155900	15123	67563	66.22
0.1	0.95	0.02	0.08	5000	300000	[0, 700000, 0, 0, 0]	205057	-16496	65325	1.195
0.1	0.95	0.02	0.08	7500	300000	[0, 700000, 0, 0, 0]	205057	-15694	66231	2.095
0.1	0.95	0.02	0.08	10000	299748	[34, 0, 0, 0, 699410]	205079	-57367	67030	10.972
0.1	0.95	0.02	0.08	12500	300000	[0, 700000, 0, 0, 0]	205057	-15650	65822	3.92

Tabella A.3.2: Risultati ottimizzazione modello DRO

Coeff	Alpha	Rd	Rf	# Scenari	Ottim. X	Ottim. Y	Obj. Val	Avg Loss	Std Dev Loss	Opt. Time (s)
0.1	0.99	0.08	0.02	5000	300000	[700000, 0, 0, 0, 0]	162751	50378	12007	1.321
0.1	0.99	0.08	0.02	7500	300000	[700000, 0, 0, 0, 0]	162751	50350	11807	2.151
0.1	0.99	0.08	0.02	10000	0	[0, 0, 0, 0, 0]	0	0	0	2.597
0.1	0.99	0.08	0.02	12500	300000	[700000, 0, 0, 0, 0]	162751	50098	15739	134.448
0.1	0.99	0.05	0.05	5000	157104	[220743, 145834, 0, 0, 0]	211509	38222	72693	1.259
0.1	0.99	0.05	0.05	7500	170173	[229626, 167445, 0, 0, 0]	211509	40060	70509	2.107
0.1	0.99	0.05	0.05	10000	300000	[114207, 0, 0, 157076, 428715]	211509	23595	69083	20.829
0.1	0.99	0.05	0.05	12500	300000	[33936, 54692, 165871, 57824, 387675]	211509	19052	67813	27.562
0.1	0.99	0.02	0.08	5000	300000	[0, 0, 700000, 0, 0]	257427	-47873	66138	1.325
0.1	0.99	0.02	0.08	7500	300000	[0, 0, 700000, 0, 0]	257427	-45968	65926	2.066
0.1	0.99	0.02	0.08	10000	300000	[0, 0, 0, 0, 700000]	257453	-58838	65993	10.936
0.1	0.99	0.02	0.08	12500	300000	[0, 0, 700000, 0, 0]	257427	-46938	65853	3.814
1	0.68	0.08	0.02	5000	300000	[700000, 0, 0, 0, 0]	149200	47744	903	1.401
1	0.68	0.08	0.02	7500	300000	[700000, 0, 0, 0, 0]	149166	47731	1186	2.408
1	0.68	0.08	0.02	10000	300000	[700000, 0, 0, 0, 0]	149177	47730	1517	104.57
1	0.68	0.08	0.02	12500	300000	[700000, 0, 0, 0, 0]	149162	47731	1200	164.937
1	0.68	0.05	0.05	5000	268993	[627651, 0, 0, 0, 0]	50452	-4661	10761	1.459
1	0.68	0.05	0.05	7500	263604	[615078, 0, 0, 0, 0]	50452	-5125	12469	2.187
1	0.68	0.05	0.05	10000	300000	[697827, 0, 0, 0, 2172]	50452	47090	12498	77.479
1	0.68	0.05	0.05	12500	0	[0, 0, 0, 0, 0]	0	0	0	3.576
1	0.68	0.02	0.08	5000	172372	[46161, 356041, 0, 0, 0]	105749	-52188	55614	1.181
1	0.68	0.02	0.08	7500	177229	[0, 413536, 0, 0, 0]	105749	-58065	50106	2.201
1	0.68	0.02	0.08	10000	299997	[0, 0, 0, 0, 699993]	106996	-55813	65993	10.365
1	0.68	0.02	0.08	12500	193056	[0, 450464, 0, 0, 0]	105749	-58601	46930	4.05
1	0.95	0.08	0.02	5000	258596	[603392, 0, 0, 0, 0]	103704	49946	14378	1.334
1	0.95	0.08	0.02	7500	267331	[623773, 0, 0, 0, 0]	103704	49804	11254	2.274
1	0.95	0.08	0.02	10000	300000	[107600, 231366, 20708, 149058, 191266]	103704	85558	32202	138.622
1	0.95	0.08	0.02	12500	300000	[581100, 0, 0, 0, 118899]	103704	78182	18036	178.179
1	0.95	0.05	0.05	5000	207724	[0, 484691, 0, 0, 0]	155900	-2441	37112	1.459
1	0.95	0.05	0.05	7500	195166	[0, 455388, 0, 0, 0]	155900	-3285	41741	2.21
1	0.95	0.05	0.05	10000	204020	[0, 476047, 0, 0, 0]	155900	-1967	39177	2.812
1	0.95	0.05	0.05	12500	300000	[19632, 24056, 134409, 195917, 325983]	155914	11985	66860	76.836
1	0.95	0.02	0.08	5000	140246	[0, 0, 327242, 0, 0]	205057	-58525	72503	1.359
1	0.95	0.02	0.08	7500	168515	[0, 0, 393202, 0, 0]	205057	-58960	67414	2.135
1	0.95	0.02	0.08	10000	0	[0, 0, 0, 0, 0]	0	0	0	10.441
1	0.95	0.02	0.08	12500	111066	[0, 259154, 0, 0, 0]	205057	-41636	83527	5.365
1	0.99	0.08	0.02	5000	212758	[496436, 0, 0, 0, 0]	162751	54254	28674	1.337
1	0.99	0.08	0.02	7500	229029	[534401, 0, 0, 0, 0]	162751	52677	23260	2.289
1	0.99	0.08	0.02	10000	0	[0, 0, 0, 0, 0]	0	0	0	2.724
1	0.99	0.08	0.02	12500	235346	[549141, 0, 0, 0, 0]	162751	52729	21324	4.067
1	0.99	0.05	0.05	5000	131970	[37599, 270331, 0, 0, 0]	211509	5767	62912	1.214
1	0.99	0.05	0.05	7500	155429	[103166, 259501, 0, 0, 0]	211509	16954	62371	2.196
1	0.99	0.05	0.05	10000	177379	[0, 413885, 0, 0, 0]	211509	-1985	47114	2.938
1	0.99	0.05	0.05	12500	0	[0,0,0,0]	0	0	0	3.506
1	0.99	0.02	0.08	5000	114989	[0, 0, 0, 268308, 0]	257427	-59187	82918	1.154
1	0.99	0.02	0.08	7500	87063	[0, 0, 0, 203149, 0]	257427	-57905	84634	2.121
1	0.99	0.02	0.08	10000	300000	[0, 0, 0, 0, 700000]	257459	-58994	65775	10.455
1	0.99	0.02	0.08	12500	134822	[0, 0, 116145, 198440, 0]	257427	-56542	80472	3.886

Tabella A.3.3: Risultati ottimizzazione modello DRO