MATEMATIKA

1. letnik – splošna gimnazija

Jan Kastelic

Gimnazija Antona Aškerca, Šolski center Ljubljana

31. marec 2025

Vsebina

- Pravokotni koordinatni sistem
- Punkcija

2/33

Section 1

Pravokotni koordinatni sistem

3/33

- 📵 Pravokotni koordinatni sistem
 - Pravokotni koordinatni sistem
 - Razdalja med točkama in razpolovišče daljice
 - Ploščina trikotnika
- Punkcija

4/33

5/33

Pravokotni koordinatni sistem v ravnini oziroma kartezični ravninski koordinatni sistem določa par pravokotnih številskih premic (koordinatne osi), ki se sekata v koordinatnem izhodišču (O).

5/33

Pravokotni koordinatni sistem v ravnini oziroma kartezični ravninski koordinatni sistem določa par pravokotnih številskih premic (koordinatne osi), ki se sekata v koordinatnem izhodišču (O).

Koordinatni osi imenujemo:

5/33

Pravokotni koordinatni sistem v ravnini oziroma kartezični ravninski koordinatni sistem določa par pravokotnih številskih premic (koordinatne osi), ki se sekata v koordinatnem izhodišču (O).

Koordinatni osi imenujemo:

• os x ali abscisna os.

5/33

Pravokotni koordinatni sistem v ravnini oziroma kartezični ravninski koordinatni sistem določa par pravokotnih številskih premic (koordinatne osi), ki se sekata v koordinatnem izhodišču (O).

Koordinatni osi imenujemo:

- os x ali abscisna os.
- os y ali ordinatna os.

5/33

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 夕○○

6/33

Poljubni točki T v ravnini s pravokotnim koordinatnim sistemom lahko enolično določimo **koordinate točke**: $T(x_0, y_0)$.

 Jan Kastelic (GAA)
 MATEMATIKA
 31. marec 2025
 6/33

Poljubni točki T v ravnini s pravokotnim koordinatnim sistemom lahko enolično določimo **koordinate točke**: $T(x_0, y_0)$. To so števila, ki nam povedo, kje ležijo projekcije točke T na koordinatnih oseh.

 Jan Kastelic (GAA)
 MATEMATIKA
 31. marec 2025
 6/33

Poljubni točki T v ravnini s pravokotnim koordinatnim sistemom lahko enolično določimo **koordinate točke**: $T(x_0, y_0)$. To so števila, ki nam povedo, kje ležijo projekcije točke T na koordinatnih oseh.

Koordinate točke imenujemo:

Poljubni točki T v ravnini s pravokotnim koordinatnim sistemom lahko enolično določimo **koordinate točke**: $T(x_0, y_0)$. To so števila, ki nam povedo, kje ležijo projekcije točke T na koordinatnih oseh.

Koordinate točke imenujemo:

ullet prva koordinata x_0 je abscisa točke T in

 Jan Kastelic (GAA)
 MATEMATIKA
 31. marec 2025
 6 / 33

Poljubni točki T v ravnini s pravokotnim koordinatnim sistemom lahko enolično določimo **koordinate točke**: $T(x_0, y_0)$. To so števila, ki nam povedo, kje ležijo projekcije točke T na koordinatnih oseh.

Koordinate točke imenujemo:

- prva koordinata x_0 je abscisa točke T in
- druga koordinata y_0 je ordinata točke T.

Poljubni točki T v ravnini s pravokotnim koordinatnim sistemom lahko enolično določimo **koordinate točke**: $T(x_0, y_0)$. To so števila, ki nam povedo, kje ležijo projekcije točke T na koordinatnih oseh.

Koordinate točke imenujemo:

- prva koordinata x_0 je abscisa točke T in
- druga koordinata y_0 je ordinata točke T.

Vsakemu urejenemu paru števil (x_0, y_0) ustreza natanko ena točka $T(x_0, y_0)$.

7/33

Vsaka premica v ravnini razdeli ravnino na dve polravnini.

7/33

Vsaka premica v ravnini razdeli ravnino na dve **polravnini**.

Koordinatni osi ravnino $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ razdelita na štiri kvadrante.

31. marec 2025

Vsaka premica v ravnini razdeli ravnino na dve polravnini.

Koordinatni osi ravnino $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ razdelita na štiri **kvadrante**.

• *I*. kvadrant:

$$\{(x,y) \in \mathbb{R}^2; x > 0 \land y > 0\} = (0,\infty) \times (0,\infty)$$

7/33

Vsaka premica v ravnini razdeli ravnino na dve polravnini.

Koordinatni osi ravnino $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ razdelita na štiri **kvadrante**.

I. kvadrant:

$$\{(x,y)\in\mathbb{R}^2;x>0\land y>0\}=(0,\infty)\times(0,\infty)$$

• *II*. kvadrant:

$$\{(x,y) \in \mathbb{R}^2; x < 0 \land y > 0\} = (-\infty,0) \times (0,\infty)$$

4 D > 4 B > 4 E > 4 E > 9 Q @

Vsaka premica v ravnini razdeli ravnino na dve **polravnini**.

Koordinatni osi ravnino $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ razdelita na štiri kvadrante.

- I. kvadrant: $\{(x, y) \in \mathbb{R}^2; x > 0 \land y > 0\} = (0, \infty) \times (0, \infty)$
- # II kyadrant: $\{(x, y) \in \mathbb{R}^2; x < 0 \land y > 0\} = (-\infty, 0) \times (0, \infty)$
- # III kyadrant. $\{(x, y) \in \mathbb{R}^2; x < 0 \land y < 0\} = (-\infty, 0) \times (-\infty, 0)$

7/33

Vsaka premica v ravnini razdeli ravnino na dve polravnini.

Koordinatni osi ravnino $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ razdelita na štiri **kvadrante**.

- *I*. kvadrant: $\{(x, y) \in \mathbb{R}^2; x > 0 \land y > 0\} = (0, \infty) \times (0, \infty)$
- II. kvadrant: $\{(x,y) \in \mathbb{R}^2 : x < 0 \land y > 0\} = (-\infty,0) \times (0,\infty)$
- III. kvadrant: $\{(x,y) \in \mathbb{R}^2; x < 0 \land y < 0\} = (-\infty,0) \times (-\infty,0)$
- *IV*. kvadrant: $\{(x,y) \in \mathbb{R}^2; x > 0 \land y < 0\} = (0,\infty) \times (-\infty,0)$

Jan Kastelic (GAA)

MATEMATIKA

31. marec 2025

7/33

Na abscisni osi ležijo točke, ki imajo ordinato enako nič – so oblike T(x,0); $x \in \mathbb{R}$.

MATEMATIKA

◆ロト ◆卸 ト ◆ 差 ト ◆ 差 ・ 夕 Q ②

Na abscisni osi ležijo točke, ki imajo ordinato enako nič – so oblike $T(x,0); x \in \mathbb{R}$. $\left\{(x,y) \in \mathbb{R}^2; y=0\right\} = \mathbb{R} \times \{0\}$

Jan Kastelic (GAA)

8/33

Na abscisni osi ležijo točke, ki imajo ordinato enako nič – so oblike $T(x,0); x \in \mathbb{R}$. $\left\{(x,y) \in \mathbb{R}^2; y=0\right\} = \mathbb{R} \times \{0\}$

Na ordinatni osi ležijo točke, ki imajo absciso enako nič – so oblike T(0, y); $y \in \mathbb{R}$.

ロト (個) (重) (重) (重) の(で

8/33

Na abscisni osi ležijo točke, ki imajo ordinato enako nič – so oblike $T(x,0); x \in \mathbb{R}$. $\left\{(x,y) \in \mathbb{R}^2; y=0\right\} = \mathbb{R} \times \{0\}$

Na ordinatni osi ležijo točke, ki imajo absciso enako nič – so oblike $T(0,y);\ y\in\mathbb{R}.$ $\left\{(x,y)\in\mathbb{R}^2;x=0\right\}=\{0\} imes\mathbb{R}$

 Jan Kastelic (GAA)
 MATEMATIKA
 31. marec 2025
 8 / 33

Na abscisni osi ležijo točke, ki imajo ordinato enako nič – so oblike $T(x,0); x \in \mathbb{R}$. $\{(x,y) \in \mathbb{R}^2; y=0\} = \mathbb{R} \times \{0\}$

Na ordinatni osi ležijo točke, ki imajo absciso enako nič – so oblike $T(0,y);\ y\in\mathbb{R}$. $\big\{(x,y)\in\mathbb{R}^2;x=0\big\}=\{0\}\times\mathbb{R}$

Množico točk $\{(x, y) \in \mathbb{R}^2; y = x\}$ imenujemo **simetrala lihih kvadrantov**.

Na abscisni osi ležijo točke, ki imajo ordinato enako nič – so oblike T(x,0); $x \in \mathbb{R}$.

$$\left\{ (x,y) \in \mathbb{R}^2; y=0 \right\} = \mathbb{R} \times \{0\}$$

Na ordinatni osi ležijo točke, ki imajo absciso enako nič – so oblike T(0, y); $y \in \mathbb{R}$.

$$\left\{ (x,y) \in \mathbb{R}^2; x=0
ight\} = \{0\} imes \mathbb{R}$$

Množico točk $\{(x,y) \in \mathbb{R}^2; y = x\}$ imenujemo **simetrala lihih kvadrantov**.

Množico točk $\{(x,y) \in \mathbb{R}^2; y = -x\}$ imenujemo **simetrala** sodih kvadrantov.

Jan Kastelic (GAA) MATEMATIKA 31. marec 2025 8 / 33

Naloga

V koordinatnem sistemu je narisanih 22 točk.

- Zapišite koordinate vseh točk, ki ležijo v II. kvadrantu.
- Zapišite koordinate vseh točk, ki ležijo v III. kvadrantu.
- V koordinatni sistem narišite še točke X(2,-1), Y(-3,-4), W(5,-3).
- Poimenujte točke.
 _(2,-4), _(-6,2), _(1,5),
 _(-2,-5), _(-4,-2), _(0,3)

Naloga

Narišite množico točk.

•
$$\{T(x,y); x \ge -1\}$$

•
$$\{T(x,y); y \leq 3\}$$

•
$$\{T(x,y); x \leq 4 \land y < -1\}$$

•
$$\{T(x,y); x \ge -2 \land y < 1\}$$

•
$$\{T(x,y); -2 < x \le 4 \land -3 < y < 1\}$$

•
$$\{T(x,y); 0 \le x < 4 \land -3 \le y < 3\}$$

•
$$\{T(x,y); x < 4 \land y < -1\}$$

•
$$\{T(x,y); |x| < 3\}$$

•
$$\{T(x,y); x \geq 1 \land |y| < 1\}$$

•
$$\{T(x,y); |x-3| < 1 \land y \ge 1\}$$

•
$$\{T(x,y); |x| < 2 \land |y+3| \le 1\}$$

•
$$\{T(x,y); x = y\}$$

$$\bullet \ \{T(x,y); \ x \geq y\}$$

•
$$\{T(x,y); xy \ge 0\}$$

10 / 33

11/33

31. marec 2025

Naloga

Zapišite množico točk, ki je upodobljena v koordinatnem sistemu.

Pravokotni koordinatni sistem

12/33

Pravokotni koordinatni sistem

31. marec 2025

Pravokotni koordinatni sistem

V koordinatnem sistemu narišite točke A(-2,3), B(0,4), C(0.5,-1) in D(-3,-1).

- Točke A, B, C in D prezrcalite čez abscisno os in zapišite koordinate točk A_1 , B_1 , C_1 in D_1 .
- Točke A, B, C in D prezrcalite čez ordinatno os in zapišite koordinate točk A_2 , B_2 , C_2 in D_2 .
- Točke A, B, C in D prezrcalite čez koordinatno izhodišče in zapišite koordinate točk A₃, B₃, C₃ in D₃.

|ロト 4回 ト 4 m ト 4 m ト 9 m 9 q 0 c

14 / 33

Pravokotni koordinatni sistem

V koordinatni sistem narišite točke (x, y) kartezičnega produkta.

- $[-2,3) \times [-5,-1]$
- $(-1,2) \times [2,3]$
- $\{2\} \times (3,5]$
- $[-2,3] \times \{3,4\}$
- $\{1,2,3\} \times \{-1,1\}$
- $(0,\infty)\times(1,2)$
- $[-1,3] \times (-\infty,3]$
- $(-1,3] \times \{2\}$

15/33

Jan Kastelic (GAA)

Jan Kastelic (GAA) MATEMATIKA 3

Razdalja med točkama

31. marec 2025

Jan Kastelic (GAA) MATEMATIKA

Razdalja med točkama

Razdalja d(A, B) med dvema točkama $A(x_a, y_a)$ in $B(x_b, y_b)$ v ravnini je

Razdalja med točkama

Razdalja d(A, B) med dvema točkama $A(x_a, y_a)$ in $B(x_b, y_b)$ v ravnini je

$$d(A, B) = \sqrt{(x_b - x_a)^2 + (y_b - y_a)^2}.$$

Razdalja med točkama

Razdalja d(A, B) med dvema točkama $A(x_a, y_a)$ in $B(x_b, y_b)$ v ravnini je

$$d(A, B) = \sqrt{(x_b - x_a)^2 + (y_b - y_a)^2}.$$

Razdalja med točkama

Razdalja d(A, B) med dvema točkama $A(x_a, y_a)$ in $B(x_b, y_b)$ v ravnini je

$$d(A, B) = \sqrt{(x_b - x_a)^2 + (y_b - y_a)^2}.$$

Lastnosti razdalje

• $d(A, B) \ge 0$

Razdalja med točkama

Razdalja d(A, B) med dvema točkama $A(x_a, y_a)$ in $B(x_b, y_b)$ v ravnini je

$$d(A, B) = \sqrt{(x_b - x_a)^2 + (y_b - y_a)^2}.$$

- $d(A, B) \ge 0$
- $d(A, B) = 0 \Leftrightarrow A = B$

Razdalja med točkama

Razdalja d(A, B) med dvema točkama $A(x_a, y_a)$ in $B(x_b, y_b)$ v ravnini je

$$d(A, B) = \sqrt{(x_b - x_a)^2 + (y_b - y_a)^2}.$$

- $d(A, B) \ge 0$
- $d(A, B) = 0 \Leftrightarrow A = B$
- d(A, B) = d(B, A)

Razdalja med točkama

Razdalja d(A, B) med dvema točkama $A(x_a, y_a)$ in $B(x_b, y_b)$ v ravnini je

$$d(A, B) = \sqrt{(x_b - x_a)^2 + (y_b - y_a)^2}.$$

- $d(A, B) \ge 0$
- $d(A, B) = 0 \Leftrightarrow A = B$
- d(A, B) = d(B, A)
- $d(A, C) \leq d(A, B) + d(B, C)$

31. marec 2025

Jan Kastelic (GAA) MATEMATIKA

Razpolovišče daljice

Jan Kastelic (GAA) MATEMATIKA

Razpolovišče daljice

Razpolovišče S daljice AB s krajiščema $A(x_a, y_a)$ in $B(x_b, y_b)$ v ravnini je

Razpolovišče daljice

Razpolovišče S daljice AB s krajiščema $A(x_a, y_a)$ in $B(x_b, y_b)$ v ravnini je

$$S\left(\frac{x_a+x_b}{2},\frac{y_a+y_b}{2}\right).$$

Razdalja med točkama in razpolovišče daljice

Izračunajte razdaljo med točkama.

- A(2,-1) in B(4,2)
- C(-3, -4) in D(3, -3)
- $E(\sqrt{3}, -7)$ in F(0, -3)
- $G(-\frac{3}{4},\frac{1}{2})$ in $H(\frac{1}{4},-\frac{1}{2})$

18 / 33

Izračunajte razdaljo med točkama.

- A(2,-1) in B(4,2)
- C(-3, -4) in D(3, -3)
- $E(\sqrt{3}, -7)$ in F(0, -3)
- $G(-\frac{3}{4}, \frac{1}{2})$ in $H(\frac{1}{4}, -\frac{1}{2})$

Naloga

Izračunajte koordinati razpolovišča S daljice XY.

- X(3,-2) in Y(5,4)
- X(-3,4) in Y(-2,-6)
- $X(\frac{2}{3}, -\frac{1}{2})$ in $Y(-\frac{8}{3}, 1)$
- $X(2\sqrt{3}, -8)$ in $Y(8\sqrt{3}, 2)$
- $X(5+\sqrt{7},-4)$ in $Y(3-\sqrt{7},0)$

18 / 33

Razdalja med točkama in razpolovišče daljice

19/33

Ali je trikotnik $\triangle ABC$, kjer je A(-2, -3), B(8, 1) in C(1, 4), enakostraničen? Izračunajte njegov obseg.

19/33

Ali je trikotnik $\triangle ABC$, kjer je A(-2, -3), B(8, 1) in C(1, 4), enakostraničen? Izračunajte njegov obseg.

Naloga

Izračunajte obseg kvadrata $\Box ABCD$, kjer je A(4, -4) in C(10, -2).

19/33

Ali je trikotnik $\triangle ABC$, kjer je A(-2, -3), B(8, 1) in C(1, 4), enakostraničen? Izračunajte njegov obseg.

Naloga

Izračunajte obseg kvadrata $\square ABCD$, kjer je A(4, -4) in C(10, -2).

Naloga

Izračunajte višino na osnovnico c v enakokrakem trikotnik $\triangle ABC$, kjer je A(-2, -7), B(4, -3) in C(3, -8).

19 / 33

Razdalja med točkama in razpolovišče daljice

Dani sta točki M(-6,2) in N(x,11). Izračunajte absciso x točke tako, da bo dolžina daljice MN enaka $9\sqrt{2}$.

20 / 33

Dani sta točki M(-6,2) in N(x,11). Izračunajte absciso x točke tako, da bo dolžina daljice MN enaka $9\sqrt{2}$.

Naloga

Izračunajte koordinati točke X in Y na abscisni in ordinatni osi, ki sta enako oddaljeni od točk G(-3, -6) in H(9, 6).

20/33

Dani sta točki M(-6,2) in N(x,11). Izračunajte absciso x točke tako, da bo dolžina daljice MN enaka $9\sqrt{2}$.

Naloga

Izračunajte koordinati točke X in Y na abscisni in ordinatni osi, ki sta enako oddaljeni od točk G(-3, -6) in H(9, 6).

Naloga

Določite točko U, ki leži na simetrali lihih kvadrantov in je enako oddaljena od točk P(-3, -5) in R(3, -7).

4 D > 4 A > 4 B > 4 B > B = 990

31. marec 2025

21/33

Jan Kastelic (GAA) MATEMATIKA

Ploščina trikotnika

21/33

Jan Kastelic (GAA) MATEMATIKA

Ploščina trikotnika

Ploščina trikotnika $\triangle ABC$ z oglišči $A(x_a, y_a)$, $B(x_b, y_b)$ in $C(x_c, y_c)$ je

21 / 33

Ploščina trikotnika

Ploščina trikotnika $\triangle ABC$ z oglišči $A(x_a, y_a)$, $B(x_b, y_b)$ in $C(x_c, y_c)$ je

$$S = rac{1}{2} \cdot orient \cdot \begin{vmatrix} x_b - x_a & y_b - y_a \\ x_c - x_a & y_c - y_a \end{vmatrix},$$

21 / 33

Ploščina trikotnika

Ploščina trikotnika $\triangle ABC$ z oglišči $A(x_a, y_a)$, $B(x_b, y_b)$ in $C(x_c, y_c)$ je

$$S = \frac{1}{2} \cdot orient \cdot \begin{vmatrix} x_b - x_a & y_b - y_a \\ x_c - x_a & y_c - y_a \end{vmatrix}$$
$$= \frac{orient}{2} \left[(x_b - x_a)(y_c - y_a) - (y_b - y_a)(x_c - x_a) \right],$$

21 / 33

Ploščina trikotnika

Ploščina trikotnika $\triangle ABC$ z oglišči $A(x_a, y_a)$, $B(x_b, y_b)$ in $C(x_c, y_c)$ je

$$\begin{split} S &= \frac{1}{2} \cdot orient \cdot \begin{vmatrix} x_b - x_a & y_b - y_a \\ x_c - x_a & y_c - y_a \end{vmatrix} \\ &= \frac{orient}{2} \left[(x_b - x_a)(y_c - y_a) - (y_b - y_a)(x_c - x_a) \right], \end{split}$$

$$\textit{kjer je} \\ \textit{orient} = \begin{cases} 1; & \triangle \textit{ABC pozitvno orientiran} \\ -1; & \triangle \textit{ABC negativno orientiran} \end{cases}.$$

21 / 33

Narišite trikotnik $\triangle ABC$ in izračunajte njegovo ploščino.

- A(-4,-2), B(5,1) in C(-2,5)
- A(2,1), B(-5,1) in C(2,6)

22 / 33

Narišite trikotnik $\triangle ABC$ in izračunajte njegovo ploščino.

- A(-4,-2), B(5,1) in C(-2,5)
- A(2,1), B(-5,1) in C(2,6)

Naloga

Ali so točke kolinearne?

- P(-4, -5), Q(4, -1) in R(10, 2)
- X(1,-7), Y(-2,2) in Z(3,2)

22 / 33

23 / 33

Določite x tako, da bo trikotnik $\triangle ABC$, z oglišči v A(-2, -3), B(5, 3) in C(x, -1), negativno orientiran in bo imel ploščino 17.

23 / 33

Določite x tako, da bo trikotnik $\triangle ABC$, z oglišči v A(-2, -3), B(5, 3) in C(x, -1), negativno orientiran in bo imel ploščino 17.

Naloga

Določite p tako, da bo imel trikotnik $\triangle ABC$, z oglišči v A(2,3), B(p,-3) in C(-1,6), ploščino 18.

23 / 33

Določite x tako, da bo trikotnik $\triangle ABC$, z oglišči v A(-2, -3), B(5, 3) in C(x, -1), negativno orientiran in bo imel ploščino 17.

Naloga

Določite p tako, da bo imel trikotnik $\triangle ABC$, z oglišči v A(2,3), B(p,-3) in C(-1,6), ploščino 18.

Naloga

Dani sta točki A(2, -4) in B(8,3). Določite koordinati točke C, ki leži na simetrali lihih kvadrantov, da bo trikotnik $\triangle ABC$ pozitivno orientiran in bo imel ploščino 17.

23 / 33

Section 2

Funkcija

Jan Kastelic (GAA)

- Pravokotni koordinatni sistem
- Punkcija
 - Linerana funkcija
 - Predpis linearne funkcije
 - Graf linearne funkcije

25 / 33

Funkcija

26 / 33

 Jan Kastelic (GAA)
 MATEMATIKA
 31. marec 2025
 27 / 33

Funkcijo $f:A\to B$ predstavite s tabelo. Izračunajte, kam posamezna funkcija preslika x=1.

•
$$A = \{-2, -1, 0, 1, 2, 3\}, B = \{0, 1, 2, 3, 4, 5\}, f(x) = |x| + 1$$

•
$$A = \{1, 2, 3, 4, 5\}, B = \mathbb{N}, f(x) = 2x + 1$$

•
$$A = B = \left\{\frac{1}{3}, \frac{1}{2}, 1, 2, 3\right\}, f(x) = \frac{1}{x}$$

27 / 33

Funkcijo $f:A\to B$ predstavite s tabelo. Izračunajte, kam posamezna funkcija preslika x=1.

- $A = \{-2, -1, 0, 1, 2, 3\}, B = \{0, 1, 2, 3, 4, 5\}, f(x) = |x| + 1$
- $A = \{1, 2, 3, 4, 5\}, B = \mathbb{N}, f(x) = 2x + 1$
- $A = B = \left\{\frac{1}{3}, \frac{1}{2}, 1, 2, 3\right\}, f(x) = \frac{1}{x}$

Naloga

Tabelirajte funkcijo g(x) = 2x + |x| od -3 do 3 s korakom 1.

27 / 33

 Jan Kastelic (GAA)
 MATEMATIKA
 31. marec 2025
 28 / 33

Zapišite definicijska območja funkcij.

•
$$f(x) = \frac{-7}{x+1}$$

•
$$g(x) = \frac{1}{(x+2)(x+6)}$$

•
$$h(x) = \frac{3x^2 + 1}{5}$$

•
$$i(x) = \sqrt{x-2}$$

•
$$j(x) = x^3 - \frac{2}{3}$$

•
$$k(x) = \sqrt{x^2 + 7}$$

$$I(x) = \frac{3}{x}$$

•
$$m(x) = \frac{x^2 + 1}{x^2 - 5x - 6}$$

31. marec 2025

Jan Kastelic (GAA)

 Jan Kastelic (GAA)
 MATEMATIKA
 31. marec 2025
 29 / 33

Izračunajte ničle funkcij.

•
$$f(x) = \frac{4}{5} - 6x$$

•
$$g(x) = x^2 - 7x + 12$$

•
$$h(x) = \frac{3x+6}{5}$$

•
$$i(x) = x^2 - 9$$

•
$$j(x) = x^2 + 1$$

•
$$k(x) = x^2 - 3x^2 - 4x + 12$$

•
$$I(x) = \sqrt{x+7}$$

$$m(x) = \frac{3}{x}$$

Jan Kastelic (GAA)

 Jan Kastelic (GAA)
 MATEMATIKA
 31. marec 2025
 30 / 33

Izračunajte začetne vrednosti funkcij.

•
$$f(x) = \frac{4}{5} - 6x$$

•
$$g(x) = x^2 - 7x + 12$$

•
$$h(x) = \frac{3x+6}{5}$$

•
$$i(x) = x^2 - 9$$

$$j(x) = x^2 - 3x^2 - 4x + 12$$

•
$$k(x) = \sqrt{x+7}$$

$$I(x) = \frac{3}{x}$$

•
$$m(x) = \frac{x^3 - 2x^2 - 4}{x^4 + 2x^3 + 3}$$

30 / 33

Predpis linearne funkcije

Jan Kastelic (GAA) MATEMATIKA

Predpis linearne funkcije

32 / 33

31. marec 2025

Jan Kastelic (GAA) MATEMATIKA

Graf linearne funkcije

33 / 33

Jan Kastelic (GAA) MATEMATIKA