# 12: Interactive Real-Time Visualization for Streaming Data

**Jonas Traub** jonas.traub@tu-berlin.de

Nikolaas Steenbergen nikolaas.steenbergen@dfki.de

Philipp Grulich philipp.grulich@dfki.de

Tilmann Rabl rabl@tu-berlin.de

Volker Markl volker.markl@tu-berlin.de

12 - Two Types of Interactivity

## **Interactive Development**

Change your program and deploy your updates with just one click. Develop real-time data visualizations while operating on live data.





### Interactive Visualization

Explore live data in visualizations. The underlying cluster job adapts at runtime to your settings and sends the required data to the dashboard.

#### **Example Dashboard:**

- Sensor data from a football match.
- Adaptive Flink job.
- Interactivity:
  - player selection.
  - different metrics.
  - range of the depicted history.



## **Architecture Overview**



</script>

I<sup>2</sup> seamlessly connects live data visualization with the development of analysis pipelines for streaming data.

- Develop stream analysis pipelines and visualizations.
- 2. Deploy your code with just one click.
- 3. Discover the incoming live data.

I<sup>2</sup> observes visualization properties and adapts the Flink job at runtime. The visualization no longer suffers from massive ingestion rates.

## **Efficient Real-Time Visualization of Time Series Data**



1. There is a trade off between the length of the depicted history and visualization precision (pixel columns per time). [M4, Jugel et al., VLDB'14]

- background ground pixels time
- 2. We need exactly four data points per pixel column to provide a loss-free plot of time series data.



- Transfer four values per pixel column.
- Constant workload at the front end.
- The front end is independent from the ingestion rate at the Flink cluster.

## **Adaptive Flink Operators**

We provide runtime adaptive operators.



**Example:** A runtime adaptive filter operator for variable thresholds.

### **Performance Evaluation**



#### **Frame Rate**

#### Without I<sup>2</sup>:

Unresponsive dashboard shortly after start-up (CPU overload). With I<sup>2</sup>:

Constant 60Hz frame rate.



## **CPU Utilization**

#### Without I<sup>2</sup>:

CPU cannot keep up with the massive ingestion rates.

#### With I<sup>2</sup>:

Reduced and constant CPU load.

# Try it! - It's all open source!



Apache Flink – flink.apache.org



Apache Zeppelin – zeppelin.apache.org

github.com/TU-Berlin-DIMA/i2

hub.docker.com/r/tuberlindima/i2









Technische Universität Berlin (dima.tu-berlin.de) German Research Center for Artificial Intelligence (dfki.de)

