An Equivalence between Bayesian Priors and Penalties in Variational Inference ISBA 2022

Pierre Wolinski¹, Guillaume Charpiat², Yann Ollivier³

¹Post-doc, UGA / Inria Grenoble, LJK, Statify Team (France)

²Inria Paris-Saclay, Tau Team (France)

³Facebook, Paris (France)

28/06/2022

- Neural Network (NN) F_{θ} , parameters θ ;
- measure the incertitude on θ after training
 ⇒ Bayesian inference;

- Neural Network (NN) F_{θ} , parameters θ ;
- measure the incertitude on θ after training
 ⇒ Bayesian inference;
- how to perform Bayesian inference on θ ?
 - ⇒ Bayesian posterior intractable in general;

- Neural Network (NN) F_{θ} , parameters θ ;
- measure the incertitude on θ after training
 ⇒ Bayesian inference;
- ullet how to perform Bayesian inference on $oldsymbol{ heta}?$
 - \Rightarrow Bayesian posterior intractable in general;
- possible solution: approximate the Bayesian posterior in a scalable way
 - ⇒ Variational Inference (VI);

- Neural Network (NN) F_{θ} , parameters θ ;
- measure the incertitude on θ after training
 ⇒ Bayesian inference;
- how to perform Bayesian inference on θ?
 ⇒ Bayesian posterior intractable in general;
- possible solution: approximate the Bayesian posterior in a scalable way
 Variational Inference (VI);
- variational posterior easily computable with standard deep learning libraries (TensorFlow, PyTorch).

Setup.

• set \mathcal{D} of data points (x_i, y_i) randomly sampled from \mathbb{P} ; for convenience, let $\mathbf{x} = (x_i)_i$ and $\mathbf{y} = (y_i)_i$;

Setup.

- set \mathcal{D} of data points (x_i, y_i) randomly sampled from \mathbb{P} ; for convenience, let $\mathbf{x} = (x_i)_i$ and $\mathbf{y} = (y_i)_i$;
- $F_{\theta}(x_i)$ outputs a distribution $p_{\theta}(\cdot|x_i)$ over y_i ;

Setup.

- set \mathcal{D} of data points (x_i, y_i) randomly sampled from \mathbb{P} ; for convenience, let $\mathbf{x} = (x_i)_i$ and $\mathbf{y} = (y_i)_i$;
- $F_{\theta}(x_i)$ outputs a distribution $p_{\theta}(\cdot|x_i)$ over y_i ;
- prior distribution α on $\boldsymbol{\theta}$.

Setup.

- set \mathcal{D} of data points (x_i, y_i) randomly sampled from \mathbb{P} ; for convenience, let $\mathbf{x} = (x_i)_i$ and $\mathbf{y} = (y_i)_i$;
- $F_{\theta}(x_i)$ outputs a distribution $p_{\theta}(\cdot|x_i)$ over y_i ;
- prior distribution α on $\boldsymbol{\theta}$.
- \Rightarrow posterior $\pi_{\mathcal{D}}$:

$$\pi_{\mathcal{D}}(\boldsymbol{\theta}) = \frac{p_{\boldsymbol{\theta}}(\mathbf{y}|\mathbf{x}) \, \alpha(\boldsymbol{\theta})}{\int p_{\boldsymbol{\theta}'}(\mathbf{y}|\mathbf{x}) \, \alpha(\boldsymbol{\theta}') \, \mathrm{d}\boldsymbol{\theta}'}.$$

Setup.

- set \mathcal{D} of data points (x_i, y_i) randomly sampled from \mathbb{P} ; for convenience, let $\mathbf{x} = (x_i)_i$ and $\mathbf{y} = (y_i)_i$;
- $F_{\theta}(x_i)$ outputs a distribution $p_{\theta}(\cdot|x_i)$ over y_i ;
- prior distribution α on $\boldsymbol{\theta}$.
- \Rightarrow posterior $\pi_{\mathcal{D}}$:

$$\pi_{\mathcal{D}}(\boldsymbol{\theta}) = \frac{p_{\boldsymbol{\theta}}(\mathbf{y}|\mathbf{x}) \, \alpha(\boldsymbol{\theta})}{\int p_{\boldsymbol{\theta}'}(\mathbf{y}|\mathbf{x}) \, \alpha(\boldsymbol{\theta}') \, \mathrm{d}\boldsymbol{\theta}'}.$$

Usual approximation: MAP: $m{ heta}_{ ext{MAP}}^* = rg \max \pi_{\mathcal{D}}(m{ heta})$. (common in NNs)

Variational inference.

ullet parameterized family $\mathcal{B}=\{eta_{oldsymbol{\phi}}:oldsymbol{\phi}\inarPhi\};$

Variational inference.

- parameterized family $\mathcal{B} = \{\beta_{\phi} : \phi \in \Phi\};$
- ullet approximate the Bayesian posterior $\pi_{\mathcal{D}}$ by the closest distribution in \mathcal{B} :

$$\phi^* = \arg\min_{\phi \in \Phi} \mathrm{KL}(\beta_{\phi} \| \pi_{\mathcal{D}})$$

Variational inference.

- parameterized family $\mathcal{B} = \{\beta_{\phi} : \phi \in \Phi\};$
- ullet approximate the Bayesian posterior $\pi_{\mathcal{D}}$ by the closest distribution in \mathcal{B} :

$$\begin{split} \boldsymbol{\phi}^* &= \arg\min_{\boldsymbol{\phi} \in \boldsymbol{\Phi}} \mathrm{KL}(\boldsymbol{\beta}_{\boldsymbol{\phi}} \| \boldsymbol{\pi}_{\mathcal{D}}) \\ &= \arg\min_{\boldsymbol{\phi} \in \boldsymbol{\Phi}} \left[\underbrace{-\mathbb{E}_{\boldsymbol{\theta} \sim \boldsymbol{\beta}_{\boldsymbol{\phi}}} \ln p_{\boldsymbol{\theta}}(\mathbf{y} | \mathbf{x}) + \mathrm{KL}(\boldsymbol{\beta}_{\boldsymbol{\phi}} \| \boldsymbol{\alpha})}_{L_{\mathrm{VI}}(\boldsymbol{\phi})} \right] \end{split}$$

Variational inference.

- parameterized family $\mathcal{B} = \{\beta_{\phi} : \phi \in \Phi\};$
- ullet approximate the Bayesian posterior $\pi_{\mathcal{D}}$ by the closest distribution in \mathcal{B} :

$$\begin{split} \boldsymbol{\phi}^* &= \arg\min_{\boldsymbol{\phi} \in \boldsymbol{\varPhi}} \mathrm{KL}(\boldsymbol{\beta}_{\boldsymbol{\phi}} \| \boldsymbol{\pi}_{\mathcal{D}}) \\ &= \arg\min_{\boldsymbol{\phi} \in \boldsymbol{\varPhi}} \left[\underbrace{-\mathbb{E}_{\boldsymbol{\theta} \sim \boldsymbol{\beta}_{\boldsymbol{\phi}}} \ln p_{\boldsymbol{\theta}}(\mathbf{y} | \mathbf{x}) + \mathrm{KL}(\boldsymbol{\beta}_{\boldsymbol{\phi}} \| \boldsymbol{\alpha})}_{L_{\mathrm{VI}}(\boldsymbol{\phi})} \right] \end{split}$$

loss L_{VI}: known also as the Evidence Lower BOund, ELBO;

Variational inference.

- parameterized family $\mathcal{B} = \{\beta_{\phi} : \phi \in \Phi\};$
- ullet approximate the Bayesian posterior $\pi_{\mathcal{D}}$ by the closest distribution in \mathcal{B} :

$$\begin{split} \boldsymbol{\phi}^* &= \arg\min_{\boldsymbol{\phi} \in \boldsymbol{\varPhi}} \mathrm{KL}(\boldsymbol{\beta}_{\boldsymbol{\phi}} \| \boldsymbol{\pi}_{\mathcal{D}}) \\ &= \arg\min_{\boldsymbol{\phi} \in \boldsymbol{\varPhi}} \left[\underbrace{-\mathbb{E}_{\boldsymbol{\theta} \sim \boldsymbol{\beta}_{\boldsymbol{\phi}}} \ln p_{\boldsymbol{\theta}}(\mathbf{y} | \mathbf{x}) + \mathrm{KL}(\boldsymbol{\beta}_{\boldsymbol{\phi}} \| \boldsymbol{\alpha})}_{L_{\mathrm{VI}}(\boldsymbol{\phi})} \right] \end{split}$$

- loss L_{VI} : known also as the Evidence Lower BOund, ELBO;
- variational posterior: β_{ϕ^*} .

Ref.: Practical variational inference for neural networks, Graves, 2011.

VI setup:

• parameters $\theta_i^k \sim \mathcal{N}(\mu_i^k, (\sigma_i^k)^2)$, independently drawn;

Ref.: Practical variational inference for neural networks, Graves, 2011.

VI setup:

- parameters $\theta_i^k \sim \mathcal{N}(\mu_i^k, (\sigma_i^k)^2)$, independently drawn;
- variational parameters to train: $\phi = (\mu_i^k, (\sigma_i^k)^2)_{k,i}$;

Ref.: Practical variational inference for neural networks, Graves, 2011.

VI setup:

- parameters $\theta_i^k \sim \mathcal{N}(\mu_i^k, (\sigma_i^k)^2)$, independently drawn;
- variational parameters to train: $\phi = (\mu_i^k, (\sigma_i^k)^2)_{k,i}$;
- prior for parameters $(\theta_i^k)_i$ of neuron k: $\alpha \sim \mathcal{N}(0, s_k^2)$, where $s_k^2 = 1/\#\{\text{inputs of neuron } k\}$.

Ref.: Practical variational inference for neural networks, Graves, 2011.

VI setup:

- parameters $\theta_i^k \sim \mathcal{N}(\mu_i^k, (\sigma_i^k)^2)$, independently drawn;
- variational parameters to train: $\phi = (\mu_i^k, (\sigma_i^k)^2)_{k,i}$;
- prior for parameters $(\theta_i^k)_i$ of neuron k: $\alpha \sim \mathcal{N}(0, s_k^2)$, where $s_k^2 = 1/\#\{\text{inputs of neuron } k\}$.

Training procedure for one step:

1 draw $\theta \sim \beta_{\phi}$;

Ref.: Practical variational inference for neural networks, Graves, 2011.

VI setup:

- parameters $\theta_i^k \sim \mathcal{N}(\mu_i^k, (\sigma_i^k)^2)$, independently drawn;
- variational parameters to train: $\phi = (\mu_i^k, (\sigma_i^k)^2)_{k,i}$;
- prior for parameters $(\theta_i^k)_i$ of neuron k: $\alpha \sim \mathcal{N}(0, s_k^2)$, where $s_k^2 = 1/\#\{\text{inputs of neuron } k\}$.

Training procedure for one step:

- **1** draw $\theta \sim \beta_{\phi}$;
- \odot send a batch of training points to F_{θ} ;

Ref.: Practical variational inference for neural networks, Graves, 2011.

VI setup:

- parameters $\theta_i^k \sim \mathcal{N}(\mu_i^k, (\sigma_i^k)^2)$, independently drawn;
- variational parameters to train: $\phi = (\mu_i^k, (\sigma_i^k)^2)_{k,i}$;
- prior for parameters $(\theta_i^k)_i$ of neuron k: $\alpha \sim \mathcal{N}(0, s_k^2)$, where $s_k^2 = 1/\#\{\text{inputs of neuron } k\}$.

Training procedure for one step:

- **1** draw $\theta \sim \beta_{\phi}$;
- 2 send a batch of training points to F_{θ} ;
- **3** backpropagate the gradient of the loss L until ϕ ;

Ref.: Practical variational inference for neural networks, Graves, 2011.

VI setup:

- parameters $\theta_i^k \sim \mathcal{N}(\mu_i^k, (\sigma_i^k)^2)$, independently drawn;
- variational parameters to train: $\phi = (\mu_i^k, (\sigma_i^k)^2)_{k,i}$;
- prior for parameters $(\theta_k^i)_i$ of neuron k: $\alpha \sim \mathcal{N}(0, s_k^2)$, where $s_k^2 = 1/\#\{\text{inputs of neuron } k\}$.

Training procedure for one step:

- **1** draw $\theta \sim \beta_{\phi}$;
- 2 send a batch of training points to F_{θ} ;
- **3** backpropagate the gradient of the loss L until ϕ ;
- update the variational parameters: $\phi \leftarrow \phi \eta \nabla_{\phi} L$

Penalty-KL Equivalence: Framework

Ref.: Practical Bayesian Framework for Backpropagation Networks, MacKay, 1992.

Difference between the usual framework and Variational Inference:

usual:
$$L_{\text{usual}}(\boldsymbol{\theta}) = -\ln p_{\boldsymbol{\theta}}(\mathbf{y}|\mathbf{x}) + r(\boldsymbol{\theta})$$

Penalty-KL Equivalence: Framework

Ref.: Practical Bayesian Framework for Backpropagation Networks, MacKay, 1992.

Difference between the usual framework and Variational Inference:

$$\begin{array}{rcl} \text{usual:} & L_{\text{usual}}(\boldsymbol{\theta}) & = & -\ln p_{\boldsymbol{\theta}}(\mathbf{y}|\mathbf{x}) & + & r(\boldsymbol{\theta}) \\ \text{Variational Inference:} & L_{\text{VI}}(\boldsymbol{\beta}) & = & \mathbb{E}_{\boldsymbol{\theta} \sim \boldsymbol{\beta}} \Big[-\ln p_{\boldsymbol{\theta}}(\mathbf{y}|\mathbf{x}) \Big] & + & \text{KL}(\boldsymbol{\beta} \| \boldsymbol{\alpha}) \end{array}$$

Penalty-KL Equivalence: Framework

Ref.: Practical Bayesian Framework for Backpropagation Networks, MacKay, 1992.

Difference between the usual framework and Variational Inference:

$$\begin{array}{rcl} \text{usual:} & L_{\text{usual}}(\boldsymbol{\theta}) & = & -\ln p_{\boldsymbol{\theta}}(\mathbf{y}|\mathbf{x}) & + & r(\boldsymbol{\theta}) \\ \text{Variational Inference:} & L_{\text{VI}}(\boldsymbol{\beta}) & = & \mathbb{E}_{\boldsymbol{\theta} \sim \boldsymbol{\beta}} \Big[-\ln p_{\boldsymbol{\theta}}(\mathbf{y}|\mathbf{x}) \Big] & + & \text{KL}(\boldsymbol{\beta}\|\boldsymbol{\alpha}) \end{array}$$

Variational Inference:

- optimize $\beta \in \mathcal{B} = \{\beta_{\phi}, \phi \in \mathbb{R}^P\};$
- Bayesian prior α ;
- $m{eta}$ contains more information than $m{ heta}$: uncertainty...

Link between a Penalty and a Bayesian Prior

We assume that $\theta \sim \beta$. We define, for a penalty r and a prior α :

$$\begin{array}{lcl} L(\beta) & = & -\mathbb{E}_{\theta \sim \beta} \ln p_{\theta}(\mathbf{y}|\mathbf{x}) & + & r(\beta) \\ L_{\mathrm{VI}}(\beta) & = & -\mathbb{E}_{\theta \sim \beta} \ln p_{\theta}(\mathbf{y}|\mathbf{x}) & + & \mathrm{KL}(\beta \| \alpha). \end{array}$$

Link between a Penalty and a Bayesian Prior

We assume that $\theta \sim \beta$. We define, for a penalty r and a prior α :

$$\begin{array}{lcl} L(\beta) & = & -\mathbb{E}_{\theta \sim \beta} \ln p_{\theta}(\mathbf{y}|\mathbf{x}) & + & \mathbf{r}(\beta) \\ L_{\mathrm{VI}}(\beta) & = & -\mathbb{E}_{\theta \sim \beta} \ln p_{\theta}(\mathbf{y}|\mathbf{x}) & + & \mathrm{KL}(\beta \| \alpha). \end{array}$$

Questions

Given r, does there exist a prior α such that for all β , $r(\beta) = KL(\beta || \alpha)$?

If so, is there a systematic way to compute α from r?

Link between a Penalty and a Bayesian Prior

We assume that $\theta \sim \beta$. We define, for a penalty r and a prior α :

$$\begin{array}{lcl} L(\beta) & = & -\mathbb{E}_{\theta \sim \beta} \ln p_{\theta}(\mathbf{y}|\mathbf{x}) & + & \mathbf{r}(\beta) \\ L_{\mathrm{VI}}(\beta) & = & -\mathbb{E}_{\theta \sim \beta} \ln p_{\theta}(\mathbf{y}|\mathbf{x}) & + & \mathrm{KL}(\beta \| \alpha). \end{array}$$

Questions

Given r, does there exist a prior α such that for all β , $r(\beta) = KL(\beta || \alpha)$?

If so, is there a systematic way to compute α from r?

Main assumptions and notation:

- \mathcal{B} is translation-invariant: $\beta_{\phi}(\theta) = \beta_{\mu,\nu}(\theta) = \beta_{0,\nu}(\theta \mu)$ (μ is the mean);
- notation: $r(\beta_{\phi}) = r(\mu, \nu) = r_{\nu}(\mu)$.

Typically: μ represents the mean and $oldsymbol{
u}$ the variance of $eta_{\mu, oldsymbol{
u}}$.

Main Theorem

Goal: given a function r, find a probability distribution α such that:

$$\exists K \in \mathbb{R} : \forall \phi \in \Phi, \qquad r(\phi) = \mathrm{KL}(\beta_{\phi} \| \alpha) + K. \tag{1}$$

Main Theorem

Goal: given a function r, find a probability distribution α such that:

$$\exists K \in \mathbb{R} : \forall \phi \in \Phi, \qquad r(\phi) = \mathrm{KL}(\beta_{\phi} \| \alpha) + K. \tag{1}$$

Definition 1

Let
$$A_{\nu} = -\operatorname{Ent}(\beta_{0,\nu})\mathbb{1} - \mathcal{F}^{-1}\left[\frac{\mathcal{F}_{r_{\nu}}}{\mathcal{F}\check{\beta}_{0,\nu}}\right].$$

Main Theorem

Goal: given a function r, find a probability distribution α such that:

$$\exists K \in \mathbb{R} : \forall \phi \in \Phi, \qquad r(\phi) = \mathrm{KL}(\beta_{\phi} \| \alpha) + K. \tag{1}$$

Definition 1

Let
$$A_{\nu} = -\mathrm{Ent}(\beta_{0,\nu})\mathbb{1} - \mathcal{F}^{-1}\left[\frac{\mathcal{F}_{r_{\nu}}}{\mathcal{F}\check{\beta}_{0,\nu}}\right].$$

Theorem 2 (informal)

Equation (1) has a solution $\alpha \in \mathcal{T} \Leftrightarrow r$ fulfills (\star) and $\alpha = \frac{1}{\kappa} \exp(A)$.

Further details

We recall $A_{
u}$:

$$A_{\nu} = -\mathrm{Ent}(\beta_{0,\nu})\mathbb{1} - \mathcal{F}^{-1}\left[\frac{\mathcal{F}r_{\nu}}{\mathcal{F}\check{\beta}_{0,\nu}}\right]$$

- warning: typical choice for the penalty: $r_{\nu}(\mu) \propto \mu^2$ $\Rightarrow r_{\nu} \notin \mathcal{L}^2$
- Fourier transform of r_{ν} : theory of distributions $\Rightarrow \mathcal{F} r_{\nu} \propto -\delta''$.

Further details

We recall A_{ν} :

$$A_{\nu} = -\mathrm{Ent}(\beta_{0,\nu})\mathbb{1} - \mathcal{F}^{-1}\left[\frac{\mathcal{F}r_{\nu}}{\mathcal{F}\check{\beta}_{0,\nu}}\right]$$

- warning: typical choice for the penalty: $r_{\nu}(\mu) \propto \mu^2$ $\Rightarrow r_{\nu} \notin \mathcal{L}^2$
- Fourier transform of r_{ν} : theory of distributions $\Rightarrow \mathcal{F}r_{\nu} \propto -\delta''$.

Corollary (informal)

For a given weight w drawn from $\beta_{\mu,\sigma^2} = \mathcal{N}(\mu,\sigma^2)$. If $r_{a,b}(\beta_{\mu,\sigma^2}) = a(\sigma^2) + b(\sigma^2)\mu^2$ corresponds to a prior α , then there exists σ_0^2 such that:

$$lpha = \mathcal{N}(0, \sigma_0^2), \qquad \mathsf{a}(\sigma^2) = rac{1}{2\sigma_0^2}, \qquad \mathsf{b}(\sigma^2) = rac{1}{2} \left[rac{\sigma^2}{\sigma_0^2} + \ln\left(rac{\sigma_0^2}{\sigma^2}
ight) - 1
ight].$$

9/13

Ref.: Understanding the difficulty of training deep feedforward neural networks, Glorot and Bengio, 2010.

How to fix the regularization factor λ ? Loss: $L(\phi) = \ell(\phi) + \lambda \tilde{r}(\phi)$.

Ref.: Understanding the difficulty of training deep feedforward neural networks, Glorot and Bengio, 2010.

How to fix the regularization factor λ ? Loss: $L(\phi) = \ell(\phi) + \lambda \tilde{r}(\phi)$.

Determine λ .

Penalty-prior equivalence: $r_{\lambda} = \lambda \tilde{r} \Rightarrow \text{prior } \alpha_{\lambda};$

Glorot's initialization: $Var(\alpha_{\lambda}) = 1/P_{\ell} \Rightarrow \lambda = ...$

Ref.: Understanding the difficulty of training deep feedforward neural networks, Glorot and Bengio, 2010.

How to fix the regularization factor λ ? Loss: $L(\phi) = \ell(\phi) + \lambda \tilde{r}(\phi)$.

Determine λ .

Penalty-prior equivalence: $r_{\lambda} = \lambda \tilde{r} \Rightarrow \text{prior } \alpha_{\lambda}$; Glorot's initialization: $Var(\alpha_{\lambda}) = 1/P_{\ell} \Rightarrow \lambda = ...$

Key hypothesis: the prior and the initialization distribution must have the same variance.

Ref.: Understanding the difficulty of training deep feedforward neural networks, Glorot and Bengio, 2010.

How to fix the regularization factor λ ? Loss: $L(\phi) = \ell(\phi) + \lambda \tilde{r}(\phi)$.

Determine λ .

Penalty-prior equivalence: $r_{\lambda} = \lambda \tilde{r} \Rightarrow \text{prior } \alpha_{\lambda}$; Glorot's initialization: $Var(\alpha_{\lambda}) = 1/P_{\ell} \Rightarrow \lambda = ...$

Key hypothesis: the prior and the initialization distribution must have the same variance.

Example: Gaussian distributions with \mathcal{L}^2 penalty.

 $\beta_{\phi} = \beta_{\mu,\sigma^2} \sim \mathcal{N}(\mu, \sigma^2)$ and $r_{\lambda}(\beta_{\mu,\sigma^2}) = \lambda \mu^2$.

With the corollary, we prove that $\alpha = \alpha_{\sigma_0^2} \sim \mathcal{N}(0, \sigma_0^2)$, so

lpha fulfills Glorot $\Leftrightarrow \sigma_0^2 = \frac{1}{P_\ell}$.

Experimental Results

Tested architectures: simple convolutional NN (CVNN) and VGG19. Complete penalty: $\lambda \sum_{\ell} \lambda_{\ell} r(\theta_{\ell})$, where θ_{ℓ} is the tensor of the ℓ -th layer.

Experiments:

- "usual setup": λ_{ℓ} is set to λ_{usual} (found by heuristics);
- "Bayesian setup": λ_{ℓ} is set to $\lambda_{\mathrm{Bayesian}}$ (see above);
- in both setups: grid search over $\lambda \Rightarrow (\lambda^*, acc^*)$;
- in the Bayesian setup: λ should be theoretically equal to $\lambda_{\rm Th}=1/\#[{\rm training\ set}].$

	$ w _{2}^{2}$		$ w _1$		$ w _{2,1}$		$\ w^T\ _{2,1}$	
	CVNN	VGG	CVNN	VGG	CVNN	VGG	CVNN	VGG
acc*usual (%)	$88.00\pm.4$	$93.35 \pm .15$	$88.36 \pm .3$	$\textbf{93.17} \pm .3$	$\textbf{88.43} \pm .14$	$\textbf{92.78} \pm .19$	$88.04 \pm .4$	$93.37 \pm .09$
acc* Bayesian	$88.69 \pm .12$	$93.48 \pm .09$	$88.41 \pm .3$	$92.89 \pm .2$	$88.67 \pm .09$	$92.35 \pm .18$	$88.32 \pm .16$	$93.03 \pm .15$
accBayesian	$88.25 \pm .3$	$93.28 \pm .17$	$87.48 \pm .08$	$92.74 \pm .19$	$87.45 \pm .17$	$92.24 \pm .14$	$85.49 \pm .3$	$92.85 \pm .06$
$\lambda_{\mathrm{Th}}/\lambda^{*}$	10 ^{0.5}	10 ¹	10 ¹	10 ¹	10^{2}	10 ²	10 ^{1.5}	10 ¹

Main question: why is this apparently well-founded method to find λ suboptimal?

Main question: why is this apparently well-founded method to find λ suboptimal?

 \Rightarrow see the general problem called "cold posterior effect"

Reference: How good is the Bayes posterior in deep neural networks really? Wenzel et al., 2020.

Main question: why is this apparently well-founded method to find λ suboptimal?

 \Rightarrow see the general problem called "cold posterior effect"

Reference: How good is the Bayes posterior in deep neural networks really? Wenzel et al., 2020.

Relation prior-initialization: are we right to assume that these distributions should be equal?

Main question: why is this apparently well-founded method to find λ suboptimal?

 \Rightarrow see the general problem called "cold posterior effect"

Reference: How good is the Bayes posterior in deep neural networks really? Wenzel et al., 2020.

Relation prior-initialization: are we right to assume that these distributions should be equal?

Message. Penalty-prior equivalence: depends on the penalty r and the structure of the variational family \mathcal{B} .

Main question: why is this apparently well-founded method to find λ suboptimal?

⇒ see the general problem called "cold posterior effect"

Reference: How good is the Bayes posterior in deep neural networks really? Wenzel et al., 2020.

Relation prior-initialization: are we right to assume that these distributions should be equal?

Message. Penalty-prior equivalence: depends on the penalty r and the structure of the variational family \mathcal{B} .

Possible improvements:

- improve the main theorem contribution;
- replace Glorot's initialization heuristics by the "Edge of Chaos"'s (more general).

Thank you!

References:

- Practical Bayesian Framework for Backpropagation Networks, MacKay, 1992;
- An Introduction to Variational Methods for Graphical Models, Jordan et al., 1999;
- Understanding the difficulty of training deep feedforward neural networks, Glorot and Bengio, 2010;
- Practical variational inference for neural networks, Graves, 2011;
- Learning the number of neurons in deep networks, Alvarez and Salzmann, 2016;
- Deep information propagation, Schoenholz et al., 2016;
- Generalized variational inference: Three arguments for deriving new posteriors, Knoblauch et al., 2019;
- How good is the Bayes posterior in deep neural networks really? Wenzel et al., 2020.

Penalty-KL Equivalence: Graphs (1)

Penalty-KL Equivalence: Graphs (2)

