Finite State Machines

What is a Finite State Machine?

- A state machine is a digital device that traverses through a predetermined sequence of states in an orderly fashion.
- The machine is in only one state at a time; the state it
 is in at any given time is called the current state.
- It can change from one state to another when initiated by a triggering event or condition, this is called a transition
- A particular FSM is defined by a list of its states, and the triggering condition for each transition.

State Machines

- Synchronous Sequential Circuit
 - Circuit whose outputs depend on both its current inputs and its past sequence of inputs

State

- Q's or flip-flop outputs known as the state
 - Can be encoded as a binary number
 - For n flip flops (n state variables) there are 2ⁿ possible states
 - Can also be encoded as one-hot
 - For n flip flops (n state variables) there are n possible states
- Inputs and current state determine next state

Mealy State Machine

 A Mealy state machine's outputs are based on a logical combination of the inputs and the current state

Moore State Machine

 A Moore state machine's outputs are based ONLY on the current state

State Machine Example

- The evil toaster
 - Inputs:
 - User (Cliver = I, not Cliver = 0)
 - Lever (up = I, down = 0)
 - Timer (done = I, not done = 0)
 - Outputs
 - Coil (on = 1, off = 0)
 - Flame thrower (on = 1, off = 0)
 - States
 - Idle
 - Toasting
 - Burning

The Evil Toaster

- The toaster sits in the idle state when not in use
- When the user pushes down the lever, the toaster goes to the toasting state
- When in the toasting state:
 - If timer is done and the user is not Prof. Cliver, the toaster returns to idle state
 - If timer is done and the user is Prof. Cliver, the toaster enters the burning state
- When in the burning state if timer is done, the toaster returns to idle

The Evil Toaster

		Outputs		
State	Coil	Flame Thrower		
Idle	Off	Off		
Toasting	On	Off		
Burning	Off	On		

- Use one-hot encoding
 - In one-hot encoding use I flip flop for each state
 - Only one flip flop is set at a time

State	Encoding $Q_2Q_1Q_0$
Idle	001
Toasting	010
Burning	100

Note that in each state 1 and only 1 FF is active high

- If NI = 1 the next State will be Idle
- If NT = 1 the next
 State will be Toasting
- If NB = 1 the next
 State will be burning

-			
	93	tate	Encoding
	Idle	(l)	001
	Toa	sting	010
X	(T)		
	Bur	ning (B)	100

Use current state and inputs to set up NI, NT and NB

Conditions for Idle to be next state

$$NI = (I \cdot Lever) + (T \cdot Timer \cdot \overline{Cliver}) + (B \cdot Timer)$$

Conditions for Toasting to be the next state

$$NT = (I \cdot \overline{Lever}) + (T \cdot \overline{Timer})$$

Conditions for Burning to be the next state

$$NB = (T \cdot Timer \cdot Cliver) + (B \cdot \overline{Timer})$$


```
• NI = (I \cdot Lever) + (T \cdot Timer \cdot \overline{Cliver}) + (B \cdot Timer)

NT = (I \cdot \overline{Lever}) + (T \cdot \overline{Timer})

NB = (T \cdot Timer \cdot Cliver) + (B \cdot \overline{Timer})
```

The next state equations form
The combination logic

- Outputs
 - Moore State Machine: outputs dependent on state only

	Outputs		
State	Coil	Flame Thrower	
Idle (001)	Off	Off	
Toasting (010)	On	Off	
Burning (100)	Off	On	

- Coil = Q_I
- Flame Thrower = Q_2

Mustang Blinker example

- Consider the turn signal on the Mustang
 - It follows the following pattern:

Four states

- Inputs
 - Lever (up = I, neutral = 0)
- Outputs
 - \circ Bulb I (on = I, off = 0)
 - \circ Bulb2 (on = I, off = 0)
 - \circ Bulb3 (on = 1, off = 0)

- All three bulbs are off when not in use
- When the driver raises the directional lever the following happens
 - The first bulb goes on
 - The first bulb stays on and the second bulb goes on
 - The first and second bulb stay on and the third bulb goes on
- After the third bulb goes on
 - If the lever is still up, the sequence above repeats
 - If the lever is in neutral position, all lights go off
- If the lever is returned to the neutral position prior to all 3 bulbs being on, it is ignored

State Transition Diagram

Outputs

	Outputs			
State	Bulbl	Bulb2	Bulb3	
Idle	Off	Off	Off	
LI	On	Off	Off	
L2	On	On	Off	
L3	On	On	On	

- Encoding
 - Use one-hot encoding
 - 4 flip flops for 4 states
 - Only I flip flop active high at a time

State	Encoding $Q_3Q_2Q_1Q_0$
ldle	0001
LI	0010
L2	0100
L3	1000

Set up NI

$$NI = (I \cdot \overline{Lever}) + (L3 \cdot \overline{Lever})$$

Set up NLI

$$NL1 = (I \cdot Lever) + (L3 \cdot Lever)$$

Set up NL2

$$NL2 = L1$$

Set up NL3

$$NL3 = L2$$

Output Logic

State	Encoding $Q_3Q_2Q_1$ Q_0	Bulbl	Bulb2	Bulb3
Idle	0001	Off	Off	Off
LI	0010	On	Off	Off
L2	0100	On	On	Off
L3	1000	On	On	On

•
$$Bulb1 = Q_1 + Q_2 + Q_3$$

•
$$Bulb2 = Q_2 + Q_3$$

•
$$Bulb3 = Q_3$$

Adding outputs

