

IEEE VISUALIZATION CONTEST 2010

File name	Sequence	VoxelToWorldMatri	x (4 x 4 matrix)			Dimension (x,y,z,t)	Data type / byte ordering
case1_fMRI.raw	fMRI	2.994719505310059 0.1773206740617752 -0.01457840669900179 0	-0.1779192239046097 2.984649419784546 -0.2453829348087311 0	-1.201156862862263e-08 0.2703971564769745 3.28890323638916 0	-89.32270050048828 -106.674186706543 -22.97527122497559	64,64,36,100	unsigned int16 / little endian
(*) case1_fMRI_tMAP. raw	fMRI t-map	2.99471950531006 0.177320674061775 -0.0145784066990018 0	-0.17791922390461 2.98464941978455 -0.245382934808731 0	-1.20115686286226e-08 0.270397156476974 3.28890323638916 0	-89.3227005004883 -106.674186706543 -22.9752712249756	64, 64, 36, 1	float / little endian
(**) case1_DTI.raw	DTI (diffusion- weighted images)	1.794009327888489 0.09445105493068695 -0.03724772110581398 0	-0.09666856378316879 1.790551543235779 -0.1155765876173973 0	0.03420480713248253 0.1293596029281616 1.975473642349243 0	-107.7457733154297 -125.7801818847656 -40.25832366943359 1	128, 128, 72, 62	unsigned int16 / little endian
case1_T1_post.raw	T1 post contrast, N3 intensity corrected	-0.05724509432911873 0.4849123954772949 0.001148993615061045 0	-0.002962826518341899 0.0008071824559010565 -0.4882713556289673 0	-0.9930853247642517 -0.1172499656677246 0.005832202266901731 0	106.3236465454102 -127.7092361450195 116.0096435546875 1	512, 512, 176, 1	unsigned int16 / little endian
case1_T1_post_tu mormask.raw	Tumor segmentation	-0.05724509432911873 0.4849123954772949 0.001148993615061045	-0.002962826518341899 0.0008071824559010565 -0.4882713556289673	-0.9930853247642517 -0.1172499656677246 0.005832202266901731 0	1.393469572067261 17.32006454467773 81.72914886474609	44, 43, 19, 1	unsigned int8 / little endian
case1_T1_pre_brai nmask.raw	Brain mask based on pre contrast T1	-0.05860297381877899 0.4847515225410461 -1.184334941228826e-08	-0.001692513702437282 -0.000204624404432252 -0.4882780313491821 0	-0.9935299754142761 -0.1201106309890747 0.003494198899716139 0	106.2399139404297 -127.0562210083008 116.7083969116211	512, 512, 176, 1	unsigned int8 / little endian
case1_T1_pre.raw	T1 pre-contrast, N3 intensity corrected	-0.05860297381877899 0.4847515225410461 -1.184334941228826e-08 0	-0.001692513702437282 -0.000204624404432252 -0.4882780313491821 0	-0.9927655458450317 -0.1200182214379311 0.003491510637104511 0	106.2395248413086 -127.056266784668 116.7083969116211 1	512, 512, 176, 1	unsigned int16 / little endian
case1_FLAIR.raw	FLAIR	0.4483248889446259 0.02823803387582302 -0.002257697749882936 0	-0.02832658030092716 0.4464985132217407 -0.04042759910225868 0	-0.003970428369939327 0.5407986044883728 5.975576877593994 0	-86.51061248779297 -125.5127639770508 -50.41564559936523 1	432, 512, 24, 1	unsigned int16 / little endian
case1_T2.raw	T2	0.35852912068367 0.02457579225301743 -0.001815958297811449 0	-0.02463969029486179 0.3570880591869354 -0.03211537748575211 0	-0.006541388109326363 0.5370038151741028 5.975916862487793 0	-86.40677642822266 -126.1543350219727 -51.51309204101562 1	544, 640, 24, 1	unsigned int16 / little endian
case1_SWI.raw	SWI (susceptibility weighted images)	0.8970050811767578 0.05006756633520126 -0.008015030063688755 0	-0.05047772824764252 0.8951905965805054 -0.05724125728011131 0	0.01334583479911089 0.1602791100740433 2.494821071624756 0	-77.39154052734375 -122.8127670288086 -56.31328201293945 1	192, 256, 60, 1	unsigned int16 / little endian

(*) You can use this t-map, if you have not your own fMRI tools for evaluating the fMRI data (case1_fMRI.raw)

If you want to analyze the fMRI dataset yourself, you have to know the used paradigm:

It begins with **10 volumes activation** followed by **10 at rest**. **5 cycles** were performed to get 100 volumes.

For the provided t-Map the 5%, 1% and 0,1% significance thresholds correspond to these t-Values using False Discovery Correction method:

5% - 2.8163

1% - 3.4279

0.1% - 4.1859

(**) DTI data: 30 diffusion sensitizing directions were used and the number of excitations (NEX) is 2.

At the beginning of each excitation, one B_0 has been acquired. That means, the sequence in the t-dimension is as follows:

One **B_0** image, **30** diffusion-weighted gradients, one **B_0** image, **30** diffusion-weighted gradients. Thus, overall, t = **62** images are available for each anatomical slice. The **b-value** is **1000**.

The **gradient scheme** for the 30 diffusion-weighted images is:

-0.20316298 -0.52240086 -0.82814378 0.19837686 -0.52297902 -0.82893878 0.40371078 -0.17805667 -0.89739257 -0.40407982 -0.73386353 -0.54604375

-0.20174906 -0.94292772 -0.26492411 -0.85222679 -0.52036119 -0.05416229

 $\begin{array}{l} -0.73158294 \ -0.52194691 \ -0.43858632 \\ -0.40805301 \ -0.17854710 \ -0.89532870 \end{array}$

-0.73408896 -0.17835702 -0.65521157 -0.64898384 -0.73224169 0.20649958

-0.32126319 -0.94155931 0.10127255

-0.32402194 -0.52262664 0.78858817

-0.64949858 -0.52315557 0.55177891

 $-0.97823954 -0.17950523 \ 0.10404437$

 $\hbox{-}0.85470557 \hbox{-}0.17986068 \hbox{0.}48695832$

0.00210645 -0.73366684 0.67950600

0.00349019 -0.94274104 0.33350730 0.65403271 -0.52191073 0.54758590

0.32996047 -0.52309948 0.78580719

0.19816579 0.17932798 -0.96362412

0.20433427 -0.17908071 0.96238136

0.65020293 -0.73202717 0.20340200

0.32354867 -0.94131631 0.09612516

0.20068364 -0.94162840 -0.27030057

0.40459251 -0.73366910 -0.54592538

0.73371565 -0.17810377 -0.65569848

0.72961622 -0.52148885 -0.44239065

0.85194236 -0.52018380 -0.06002662

 $0.85786074 - 0.18008229 \ 0.48129547$

0.97880262 -0.18003200 0.09764180

Note that all data sets have been linearly co-registered to the 3D-T1 reference data set. The 3D T1 data sets have been corrected for MR intensity inhomogeneties using a standard algorithm (N3, nonparametric non-uniformity normalization). The fMRI data has been motion-corrected and analyzed using a general linear model (GLM).

Each voxel (x,y,z) can easily be transformed into world coordinates by multiplying the voxel values by the corresponding VoxelToWorldMatrix M: **M** x (x,y,z,1)^T. All VoxelToWorld matrices can be found in the table above, and additionally as separate ascii files which come along with the raw data.

The voxel coordinate system and its transformation into the world coordinate system is defined as follows:

Example:

voxel coordinate system

world coordinate system

v₁ defines the voxel coordinate system point (0,0,0)

w₁ defines the world coordinate system point (10,15, 0)

v₂ defines the voxel coordinate system point (0.5, 0.5,0)

w₂ defines the world coordinate system point (11.5, 16.5, 0)

We have put together some resources to get you started in case you are not familiar with MRI and the type of images provided here. There is a wealth of information available on these techniques. A good place to start reading might be Wikipedia, the following entries in particular:

http://en.wikipedia.org/wiki/Magnetic_resonance_imaging

http://en.wikipedia.org/wiki/Diffusion_MRI

http://en.wikipedia.org/wiki/Fmri

Also, the following books might be of interest:

- S. Mori, Introduction to Diffusion tensor Imaging, Elsevier, 2007
- S. Mori et al., "MRI Atlas of Human White Matter", Elsevier, 2005
- H. Johansen-Berg, T. E.J. Behrens, "Diffusion MRI", Academic Press, 2009
- S. A. Huettel et al., Functional Magnetic Resonance Imaging, Sinauer Associates, 2004

If you need tools to work with the fMRI or DTI datasets, have a look at the following free tools (there are a lot more though...):

3D-Slicer - http://www.slicer.org/

Camino - http://www.cs.ucl.ac.uk/research/medic/camino/

FSL - http://www.fmrib.ox.ac.uk/fsl/

Also, we can provide add-on packages for MeVisLab that allow analysis of fMRI and DTI datasets. Contact us, if you're interested in trying them out.