Théorie des Langages 1

Cours 5: Minimisation d'automates

L. Rieg (thanks M. Echenim)

Grenoble INP - Ensimag, 1re année

Année 2020-2021

Illustration

Construire un AFD complet pour $L = (\{0\}^* \{1\}^*)^* \{0, 01\}^* \{0\}^+$.

Illustration

Construire un AFD complet pour $L = (\{0\}^* \{1\}^*)^* \{0,01\}^* \{0\}^+$.

Illustration

Construire un AFD complet pour $L = (\{0\}^* \{1\}^*)^* \{0,01\}^* \{0\}^+$.

Exercice: On peut montrer que $L = \{0,1\}^* \{0\}$.

Exercice: On peut montrer que $L = \{0, 1\}^* \{0\}$.

Exercice: On peut montrer que $L = \{0, 1\}^* \{0\}$.

Exercice: On peut montrer que $L = \{0, 1\}^* \{0\}$.

Les deux automates déterministes construits sont équivalents.

Exercice: On peut montrer que $L = \{0, 1\}^* \{0\}$.

Les deux automates déterministes construits sont équivalents.

Définition (Minimalité)

Un AFD complet A est minimal si tout AFD complet équivalent à A a au moins autant d'états que A.

Cet automate minimal est unique au renommage des états près.

Exercice: On peut montrer que $L = \{0, 1\}^* \{0\}$.

Les deux automates déterministes construits sont équivalents.

Définition (Minimalité)

Un AFD complet A est minimal si tout AFD complet équivalent à A a au moins autant d'états que A.

Cet automate minimal est unique au renommage des états près.

Question : comment construire de façon systématique un AFD minimal?

On peut facilement « fusionner » certains états.

On peut facilement « fusionner » certains états.

On peut facilement « fusionner » certains états.

On peut facilement « fusionner » certains états.

On peut facilement « fusionner » certains états.

Généralisation

Définition (Équivalence de Nerode)

Soit $A = \langle Q, V, \delta, \{q_0\}, F \rangle$ un AFD complet.

Deux états $p, q \in Q$ sont équivalents dans A si et seulement si

$$\forall w \in V^*, \ (\delta^*(p, w) \in F \Leftrightarrow \delta^*(q, w) \in F)$$

Généralisation

Définition (Équivalence de Nerode)

Soit $A = \langle Q, V, \delta, \{q_0\}, F \rangle$ un AFD complet.

Deux états $p,q \in Q$ sont équivalents dans A si et seulement si

$$\forall w \in V^*, \ (\delta^*(p, w) \in F \Leftrightarrow \delta^*(q, w) \in F)$$

On note alors $p \equiv_A q$, ou simplement $p \equiv q$.

Généralisation

Définition (Équivalence de Nerode)

Soit $A = \langle Q, V, \delta, \{q_0\}, F \rangle$ un AFD complet.

Deux états $p,q \in Q$ sont équivalents dans A si et seulement si

$$\forall w \in V^*, \ (\delta^*(p, w) \in F \Leftrightarrow \delta^*(q, w) \in F)$$

On note alors $p \equiv_A q$, ou simplement $p \equiv q$.

Proposition

 $\textit{Posons } A_p \stackrel{\textit{def}}{=} \langle Q, V, \delta, \{p\} \,, F \rangle \,\, \text{et } A_q \stackrel{\textit{def}}{=} \langle Q, V, \delta, \{q\} \,, F \rangle.$

On a alors : $p \equiv_A q$ si et seulement si A_p et A_q sont équivalents.

$$q_4 \equiv_A q_5 \equiv_A q_6$$

$$q_4 \equiv_A q_5 \equiv_A q_6$$
$$q_2 \equiv_A q_3$$

Proposition

- 1. \equiv_A est une relation d'équivalence. On note [p] (ou $[p]_A$) la classe d'équivalence de p.
- 2. Si $p \equiv_A q$, alors $\forall w \in V^*$, $\delta^*(p, w) \equiv_A \delta^*(q, w)$.

Proposition

- 1. \equiv_A est une relation d'équivalence. On note [p] (ou $[p]_A$) la classe d'équivalence de p.
- 2. Si $p \equiv_A q$, alors $\forall w \in V^*$, $\delta^*(p,w) \equiv_A \delta^*(q,w)$. Si $[p]_A = [q]_A$ alors $\forall w \in V^*$, $[\delta^*(p,w)]_A = [\delta^*(q,w)]_A$.

Proposition

- 1. \equiv_A est une relation d'équivalence. On note [p] (ou $[p]_A$) la classe d'équivalence de p.
- 2. Si $p \equiv_A q$, alors $\forall w \in V^*$, $\delta^*(p,w) \equiv_A \delta^*(q,w)$. Si $[p]_A = [q]_A$ alors $\forall w \in V^*$, $[\delta^*(p,w)]_A = [\delta^*(q,w)]_A$.

Preuve: exercice.

Proposition

- 1. \equiv_A est une relation d'équivalence. On note [p] (ou $[p]_A$) la classe d'équivalence de p.
- 2. Si $p \equiv_A q$, alors $\forall w \in V^*$, $\delta^*(p,w) \equiv_A \delta^*(q,w)$. Si $[p]_A = [q]_A$ alors $\forall w \in V^*$, $[\delta^*(p,w)]_A = [\delta^*(q,w)]_A$.

Preuve: exercice.

Définition

Soit $A = \langle Q, V, \delta, \{q_0\}, F \rangle$ un AFD complet et initialement connecté. On définit $\mu(A) = \langle Q_{\mu}, V, \delta_{\mu}, \{[q_0]\}, F_{\mu} \rangle$, où :

• Q_{μ} est l'ensemble des classes d'équivalence des états de Q;

Proposition

- 1. \equiv_A est une relation d'équivalence. On note [p] (ou $[p]_A$) la classe d'équivalence de p.
- 2. Si $p \equiv_A q$, alors $\forall w \in V^*$, $\delta^*(p,w) \equiv_A \delta^*(q,w)$. Si $[p]_A = [q]_A$ alors $\forall w \in V^*$, $[\delta^*(p,w)]_A = [\delta^*(q,w)]_A$.

Preuve: exercice.

Définition

Soit $A = \langle Q, V, \delta, \{q_0\}, F \rangle$ un AFD complet et initialement connecté. On définit $\mu(A) = \langle Q_{\mu}, V, \delta_{\mu}, \{[q_0]\}, F_{\mu} \rangle$, où :

- ullet Q_{μ} est l'ensemble des classes d'équivalence des états de Q ;
- F_n est l'ensemble des classes d'équivalence des états de F;

Proposition

- 1. \equiv_A est une relation d'équivalence. On note [p] (ou $[p]_A$) la classe d'équivalence de p.
- 2. Si $p \equiv_A q$, alors $\forall w \in V^*$, $\delta^*(p,w) \equiv_A \delta^*(q,w)$. Si $[p]_A = [q]_A$ alors $\forall w \in V^*$, $[\delta^*(p,w)]_A = [\delta^*(q,w)]_A$.

Preuve: exercice.

Définition

Soit $A=\langle Q,V,\delta,\{q_0\}\,,F\rangle$ un AFD complet et initialement connecté. On définit $\mu(A)=\langle Q_\mu,V,\delta_\mu,\{[q_0]\}\,,F_\mu\rangle$, où :

- ullet Q_{μ} est l'ensemble des classes d'équivalence des états de Q ;
- ullet F_{μ} est l'ensemble des classes d'équivalence des états de F ;
- $\forall [p] \in Q_{\mu}$, $\forall a \in V$, $\delta_{\mu}([p], a) = [\delta(p, a)]$.

Soit un AFD $A = \langle Q, V, \delta, \{q_0\}, F \rangle$ qu'on souhaite minimiser.

1. Supprimer les états inaccessibles de A est simple.

Soit un AFD $A = \langle Q, V, \delta, \{q_0\}, F \rangle$ qu'on souhaite minimiser.

- 1. Supprimer les états inaccessibles de A est simple.
- 2. Comment déterminer efficacement la relation \equiv ?

Soit un AFD $A = \langle Q, V, \delta, \{q_0\}, F \rangle$ qu'on souhaite minimiser.

- 1. Supprimer les états inaccessibles de A est simple.
- Comment déterminer efficacement la relation ≡?
 Par approximations successives

Soit un AFD $A = \langle Q, V, \delta, \{q_0\}, F \rangle$ qu'on souhaite minimiser.

- 1. Supprimer les états inaccessibles de A est simple.
- Comment déterminer efficacement la relation ≡?
 Par approximations successives

Définition

Pour $k \geq 0$, on définit la relation $\equiv_k \operatorname{sur} Q$ par : $p \equiv_k q$ si et seulement si :

$$\forall w \in V^*, \text{ si } |w| \leq k, \text{ alors } (\delta^*(p, w) \in F \Leftrightarrow \delta^*(q, w) \in F)$$

Soit un AFD $A = \langle Q, V, \delta, \{q_0\}, F \rangle$ qu'on souhaite minimiser.

- 1. Supprimer les états inaccessibles de A est simple.
- Comment déterminer efficacement la relation ≡?
 Par approximations successives

Définition

Pour $k \geq 0$, on définit la relation $\equiv_k \operatorname{sur} Q$ par : $p \equiv_k q$ si et seulement si :

$$\forall w \in V^*, \text{ si } |w| \le k, \text{ alors } (\delta^*(p, w) \in F \Leftrightarrow \delta^*(q, w) \in F)$$

Autrement dit, $p \equiv_k q$ si ces deux états sont équivalents pour tous les mots de longueur au plus k.

Soit un AFD $A = \langle Q, V, \delta, \{q_0\}, F \rangle$ qu'on souhaite minimiser.

- 1. Supprimer les états inaccessibles de A est simple.
- 2. Comment déterminer efficacement la relation \equiv ? Par approximations successives

Définition

Pour $k \geq 0$, on définit la relation $\equiv_k \operatorname{sur} Q$ par : $p \equiv_k q$ si et seulement si :

$$\forall w \in V^*, \text{ si } |w| \le k, \text{ alors } (\delta^*(p, w) \in F \Leftrightarrow \delta^*(q, w) \in F)$$

Autrement dit, $p \equiv_k q$ si ces deux états sont équivalents pour tous les mots de longueur au plus k.

Si $p \equiv_k q$, alors les automates A_p et A_q reconnaissent exactement les mêmes mots de longueur au plus k.

Calcul de ≡

Proposition

On a les propriétés suivantes :

$$\equiv_{k+1} \subseteq \equiv_k$$

Calcul de ≡

Proposition

On a les propriétés suivantes :

$$\equiv_{k+1} \subseteq \equiv_k \equiv \bigcap_{k>0} \equiv_k$$

Calcul de ≡

Proposition

On a les propriétés suivantes :

$$\equiv_{k+1} \subseteq \equiv_k \equiv \bigoplus_{k \ge 0} \equiv_k$$

Proposition (Stabilisation de la suite \equiv_k)

Si A est un AFD à n états, alors il existe $k \le n$ tel que les relations \equiv_k , \equiv_{k+1} et \equiv sont identiques.

Donc, si on sait calculer les relations \equiv_k efficacement, on saura en déduire la relation \equiv .

Calcul de ≡ (suite)

Proposition

On a les propriétés suivantes :

- 1. $p \equiv_0 q$ si et seulement si $p \in F \Leftrightarrow q \in F$
- 2. $\forall k \geq 0$, $p \equiv_{k+1} q$ si et seulement si

$$p \equiv_k q \ et \ \forall a \in V, \ \delta(p, a) \equiv_k \delta(q, a)$$

Preuve: exercice

Calcul de ≡ (suite)

Proposition

On a les propriétés suivantes :

- 1. $p \equiv_0 q$ si et seulement si $p \in F \Leftrightarrow q \in F$
- 2. $\forall k \geq 0$, $p \equiv_{k+1} q$ si et seulement si

$$p \equiv_k q \ et \ \forall a \in V, \ \delta(p, a) \equiv_k \delta(q, a)$$

Preuve: exercice

Conséquences

1. \equiv_0 contient deux classes : F et $Q \setminus F$

Calcul de ≡ (suite)

Proposition

On a les propriétés suivantes :

- 1. $p \equiv_0 q$ si et seulement si $p \in F \Leftrightarrow q \in F$
- 2. $\forall k \geq 0$, $p \equiv_{k+1} q$ si et seulement si

$$p \equiv_k q \ et \ \forall a \in V, \ \delta(p, a) \equiv_k \delta(q, a)$$

Preuve: exercice

Conséquences

- 1. \equiv_0 contient deux classes : F et $Q \setminus F$
- 2. Si $p \equiv_k q$ et $\exists a \in V$ tel que $\delta(p, a) \not\equiv_k \delta(q, a)$, alors $p \not\equiv_{k+1} q$

$$\equiv_0 : \{r_0, r_1, r_2\}, \{r_3\}$$

$$\equiv_0 : \{r_0, r_1, r_2\}, \{r_3\}$$

 $\equiv_1 : , \{r_3\}$

$$\equiv_0 : \{r_0, r_1, r_2\}, \{r_3\}$$

$$\equiv_1 : \{r_0, r_1\}, \{r_3\}$$

$$\equiv_0 : \{r_0, r_1, r_2\}, \{r_3\}$$

 $\equiv_1 : \{r_0, r_1\}, \{r_3\}$

$$\equiv_0 : \{r_0, r_1, r_2\}, \{r_3\}$$

$$\equiv_1 : \{r_0, r_1, r_2\}, \{r_3\}$$

Exemple (solution)

Exercice

Minimiser l'automate suivant :

Exercice

Minimiser l'automate suivant :

Suppression de q_7

Solution

1. Suppression des ε -transitions

1. Suppression des ε -transitions

1. Suppression des ε -transitions

2. Déterminisation

1. Suppression des ε -transitions

2. Déterminisation

1. Suppression des ε -transitions

2. Déterminisation

3. Minimisation

1. Suppression des ε -transitions

2. Déterminisation

3. Minimisation

