Part 2. R 통계분석 (데이터 분석 전문가 양성과정)

09

F-분포와 분산분석

경북대학교 배준현 교수

(joonion@knu.ac.kr)

- 평균검정과 분산분석:
 - 평균검정: t-test
 - 두 개의 표본을 이용하여 각각 대응되는 두 개의 모집단 평균이 동일한지 검정
 - 분산분석: ANOVA (analysis of variance)
 - 세 개 이상의 표본집단에서 여러 모집단 간의 평균과 동일성을 검정

■ 분산분석 사례:

- ADHD(주의력결핍-과잉행동장애)에 대한 두 가지 심리치료 방법의 효과 비교
 - A: 첫 번째 심리치료, B: 두 번째 심리치료
 - 10명의 실험 참여자를 모집한 후 무작위로 A/B로 나눔
 - 심리치료 후 ADHD-RS(ADHD 평가점수) 측정

- 일원 분산분석: one-way ANOVA
 - 집단 간 일원 분산분석: between-groups
 - 독립변수: 심리치료 방법(A/B)
 - 집단 내 일원분산분석: within-groups
 - 독립변수: 심리치료 기간(4주/16주)

심리치료 A		심리치료 B	
환자	점수	환자	점수
S1		s6	
S2		s7	
s3		s8	
s4		s9	
s 5		s10	

집단 간 일원분산분석

환자	기간		
	4주	16주	
S1			
S2			
s 3			
s4			
s5			
s6			
s7			
s8			
s9			
S10			

집단 내 일원분산분석

- 이원 분산분석: two-way ANOVA
 - 독립변수: 심리치료 방법과 기간
 - 주 호과: main effect
 - 심리치료 방법과 기간의 영향
 - 상호작용 효과: interaction effect
 - 방법과 기간 간의 상호작용의 영향

	かしてし	기간	
	환자	4주	16주
심리치료 A	S1		
	S2		
	s3		
	S4		
	s5		
심리치료 B	s6		
	s7		
	s8		
	s9		
	S10		

- 분산분석을 위한 F-value:
 - F-value: 집단 간 분산과 집단 내 분산의 비율로 계산

$$- F = \frac{\text{집단 간 분산}}{\text{집단 내 분산}}$$

- 집단 간분산 =
$$\frac{\mathrm{집단}\;\mathrm{간}\;\mathrm{M}\mathrm{집합}}{\mathrm{자유도}} = \frac{\sum_g[(\overline{X_g} - \overline{X})^2 \times n_g]}{g-1}$$

• g: 집단의 개수, $\overline{X_g}$: g집단의 표본평균, \overline{X} : 전체 표본평균, n_g : g집단의 표본크기

- 집단 내분산
$$=$$
 $\frac{ ext{집단 내제곱합}}{ ext{자유도}} = \frac{ \sum_g \sum_i (X_{ig} - \overline{X_g})^2}{ \sum_g (n_g - 1)}$

• X_{ig} : g집단의 i번째 관측값

- F-검정: F-test
 - 집단 간의 평균의 차이를 검정할 때
 - 가설검정을 위한 검정통계량으로 F-value를 사용
 - 집단의 평균이 서로 다르다:
 - 집단평균의 퍼져 있는 정도를 나타내는 집단평균의 분산이 크다는 의미
 - 집단평균의 분산이 클수록 집단 간의 평균은 서로 다를 가능성이 높다.
 - 집단평균의 분산이 크더라도 각 집단 내의 분산 또한 크다면
 - 집단 간의 분포가 서로 겹쳐지는 영역이 커진다.

https://www.researchgate.net/figure/Graphical-representation-of-the-rationale-behind-the-analysis-of-variance-ANOVA-A_fig2_329788831

심리치료 A		심리치료 B		
환자	점수	환자	점수	
S1	95	s6	110	
S2	105	s7	125	
s3	98	s8	105	
S4	103	s9	113	
s 5	107	S10	120	
표본평균	101.6	표본평균	114.6	
표준편차	4.98	표준편차	7.96	
전체 표본평균: 108.1 전체 표준편차: 9.28				

• ADHD 데이터: 두 가지 심리치료 방법에 따른 치료효과 차이 검정

```
> adhd <- data.frame(score=c(95,105,98,103,107,110,125,105,113,120),</pre>
                      therapy=c(rep("A", 5), rep("B", 5)))
> adhd
 score therapy
      95
     105
      98
     103
     107
     110
     125
8
     105
     113
10
     120
```



```
• 집단 간분산 =rac{\sum_g[(X_g-X)^2	imes n_g]}{g-1}
                       = \frac{(101.6 - 108.1)^2 \times 5 + (114.6 - 108.1)^2 \times 5}{2 - 1} = 422.5
```

```
> g <- 2
> ng <- c(5, 5)
> mg <- c(mean(adhd$score[1:5]), mean(adhd$score[6:10]))</pre>
> m <- mean(adhd$score)</pre>
> mstr <- sum(((mg-m)^2*ng) / (g-1))
> mstr
[1] 422.5
```



```
• 집단 내 분산 =rac{\sum_{g}\sum_{i}(X_{ig}-X_{g})^{2}}{\sum_{g}(n_{g}-1)}
```

```
> Xg1 <- adhd$score[1:5]</pre>
> Xg2 <- adhd$score[6:10]</pre>
> mse <- (sum((Xg1-mg[1])^2) + sum((Xg2-mg[2])^2)) / sum(ng - 1)
> mse
[1] 44.05
> F.value <- mstr/mse
> F.value
[1] <mark>9.591373</mark>
```


- F-분포: F-distribution
 - F-value는 두 개의 자유도에 의해 분포의 모양이 결정되는 F-분포를 따른다.

```
> x <- seq(0, 4, length=100)</pre>
\rightarrow F.1 <- df(x, df1=1, df2=30)
> F.5 < -df(x, df1=5, df2=25)
> F.25 <- df(x, df1=25, df2=5)
> plot(x, F.1, lty=1, lwd=3, col="black", type="l", ylim=c(0, 1))
> lines(x, F.5, lty=2,lwd=3, col="blue")
> lines(x, F.25, lty=3, lwd=3, col="red")
> legend('topright', lty=c(1, 2, 3), col=c("black", "blue", "red"),
         legend=c("df = 1, 30", "df = 5, 25", "df = 25, 5"))
```


• 특정 F값에 대응되는 유의확률 구하기

```
> pf(9.59, df1=1, df=8, lower.tail=FALSE)
[1] 0.0147376
```

- 특정 확률에 대응되는 F값 구하기
- > qf(0.05, df1=1, df=8, lower.tail=FALSE)

16


```
> str(adhd)
'data.frame': 10 obs. of 2 variables:
$ score : num 95 105 98 103 107 110 125 105 113 120
 $ therapy: chr "A" "A" "A" "A" ...
> adhd.aov <- aov(score ~ therapy, data=adhd)</pre>
> summary(adhd.aov)
           Df Sum Sq Mean Sq F value Pr(>F)
therapy 1 422.5 422.5 9.591 0.0147 *
Residuals 8 352.4 44.0
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

18


```
> tapply(adhd$score, adhd$therapy, mean)
Α
    В
101.6 114.6
> tapply(adhd$score, adhd$therapy, sd)
        В
4.97996 7.95613
> mean(adhd$score)
[1] 108.1
> sd(adhd$score)
[1] 9.279009
```


Any Questions?

