Opciones, Derivados & Futuros

Gabriel Cabrera G.

8 de Octubre del 2018

- 1 Call & Put
- 2 Estrategias
- Black & Scholes
- Black & Scholes con Datos Reales
- Árbol Binomial

Información de Conctacto

- ✓ gcabrerag@fen.uchile.cl⋄ gcabrerag.rbind.io✓ @GaboC_g
 - **○** @GaboCg
- ♥ Facultad de Economía & Negocios, Universidad de Chile

Call & Put

Comencemos...

A modo de resumen, existen cuatro tipos de posiciones en las opciones:

- Posición larga en una opción de compra (call)
- Posición larga en una opción de venta (put)
- O Posición corta en una opción de compra (call)
- Posición corta en una opción de venta (put)

Cargamos nuestras librerias:

```
if(!require("pacman")) install.packages("pacman")
## Loading required package: pacman
p_load("tidyverse","quantmod")
```

Simulamos nuestro S_t :

```
# Valores para el ejemplo
s <- seq(0,130,by=10) # Precio</pre>
```

- Para la call usamos: v (precio de la call) = \$5, precio de ejercicio (k) = 100.
- Para la put usamos: v (precio de la put) = \$7, precio de ejercicio (k) = 70.

Posición Larga en Call: Payoff & Profit

EL rendimiento proveniente de una opción larga en una opción de compra europea es:

Payoff opción call larga

$$\mathsf{payoff} = \mathsf{max}(S_t - k, 0)$$

Profit opción call larga

profit = payoff
$$-v * e^{-r*t}$$

Construimos la función:

```
long.callpayoff <- function(s,k,v,r,t){
   data.frame("payoff" = pmax(0,s-k), "periodo" = s) %>%
   mutate("profit" = payoff - v*exp(-r*t))
}
payoff.longcall <- long.callpayoff(s,100,5,0,0)</pre>
```

Posición Larga en Call: Gráfico Payoff Código

Recordar que todo ggplot2 plot tiene tres componentes:

- O Datos
- ② Un conjunto de aesthetic mappings entre variables y propiedades de visualización.
- Al menos una layer que describe la observación, son usualmente creadas con la función geom_*.

Posición Larga en Call: Gráfico Payoff

Payoff de una Option Call Posicion Larga en Call

Posición Larga en Call: Gráfico Profit Código

Para corroborar el gráfico ver la figura 9.1 (capítulo 9) del libro Introducción a los Mercados de Futuros y Opciones (octava edición).

Para efecto de académicos restringimos la escala del eje x e y (dimensión).

Posición Larga en Call: Gráfico Profit

Profit de una Option Call Posicion Larga en Call

Posición larga en put: Payoff & Profit

EL rendimiento para el tenedor de una opción larga en una opción de venta europea:

Payoff opción put larga

$$\mathsf{payoff} = \mathsf{max}(k - S_t, 0)$$

Profit opción put larga

profit = payoff
$$-v * e^{-r*t}$$

Construimos la función:

```
long.putpayoff <- function(s,k,v,r,t){
   data.frame("payoff" = pmax(k-s,0), "periodo" = s) %>%
   mutate("profit" = payoff - v*exp(-r*t))
}
payoff.longput <- long.putpayoff(s,70,7,0,0)</pre>
```

Posición larga en put: Gráfico Payoff Código

Posición larga en put: Gráfico Payoff

Payoff de una Option Put Posicion Larga en Put

Posición larga en put: Gráfico Profit Código

Para corroborar el gráfico ver la figura 9.2 (capítulo 9) del libro Introducción a los Mercados de Futuros y Opciones (octava edición).

Para efecto de académicos restringimos la escala del eje x e y (dimensión).

Posición larga en put: Gráfico Profit

Profit de una Option Put Posicion Larga en Put

Posición corta en call: Payoff & Profit

EL rendimiento para el tenedor de una posición corta en una opción de compra europea es:

Payoff opción call corta

$$\mathsf{payoff} = -\mathsf{max}(S_t - k, 0) = \mathsf{min}(k - S_t, 0)$$

Profit opción call corta

$$profit = payoff + v * e^{-r*t}$$

Construimos la función:

```
short.callpayoff <- function(s,k,v,r,t){
  data.frame("payoff" = pmin(k-s,0), "periodo" = s) %>%
  mutate("profit" = payoff + v*exp(-r*t))
}
payoff.shortcall <- short.callpayoff(s,100,5,0,0)</pre>
```

Posición corta en call: Gráfico Payoff Código

Posición corta en call: Gráfico Payoff

Payoff de una Option Call

Posición corta en call: Gráfico Profit Código

Para corroborar el gráfico ver la figura 9.3 (capítulo 9) del libro Introducción a los Mercados de Futuros y Opciones (octava edición).

Para efecto de académicos restringimos la escala del eje x e y (dimensión).

Posición corta en call: Gráfico Profit

Posición corta en put: Payoff & Profit

EL rendimiento para el tenedor de una posición corta en una opción de venta europea es:

Payoff opción put corta

$$\mathsf{payoff} = -\mathsf{max}(k - S_t, 0) = \mathsf{min}(S_t - k, 0)$$

Profit opción put corta

$$profit = payoff + v * e^{-r*t}$$

Construimos la función:

```
short.putpayoff <- function(s,k,v,r,t){
   data.frame("payoff" = pmin(s-k,0),"periodo" = s) %>%
   mutate("profit" = payoff + v*exp(-r*t))
}
payoff.shortput <- short.putpayoff(s,70,7,0,0)</pre>
```

Posición corta en put: Gráfico Payoff Código

Posición corta en call: Gráfico Payoff

Posición corta en call: Gráfico Profit Código

Para corroborar el gráfico ver la figura 9.4 (capítulo 9) del libro Introducción a los Mercados de Futuros y Opciones (octava edición).

Para efecto de académicos restringimos la escala del eje x e y (dimensión).

Posición corta en call: Gráfico Profit

Estrategias

Estrategia: Bull Spread

Una estrategia de negociación de diferenciales implica tomar una posición en dos o más opciones del mismo tipo (dos o más opciones de compra o dos o más opciones de venta). Las más conocidas son:

- Diferenciales Alcistas (bull spreads)
- Diferenciales bajistas (bear spreads)
- Estrategias con opciones de tipo mariposa (butterfly spread)

Diferenciales Alcistas (bull spreads)

Este se crea mediante la adquisición de una opción de compra europea sobre una acción, con cierto precio de ejercicio, y la venta de una opción de compra europea sobre la misma acción con un precio de ejercicio más alto. Ambas opciones tienen la misma fecha de expiración.

Estrategia: Bull Spread Utilidades

Intervalo variación precio acción	Beneficio derivado de call larga	Beneficio derivado de call corta	Beneficio total
$S_t \leq K_1$	0	0	0
$K_1 < S_t < K_2$	$S_t - K_1$	0	$S_t - K_1$
$\mathcal{S}_t \geq \mathcal{K}_2$	${\mathcal S}_t - {\mathcal K}_1$	$K_2 - S_t$	$K_2 - K_1$

Estrategia: Bull Spread Ejemplo

Ejemplo Bull Spread

Un inversionista adquiere en 3 una opción de compra a tres meses con un precio de ejercicio de 30, y vende en 1 un opción de compra a tres meses con un precio de ejercicio de 35. El beneficio derivado de esta estrategia de diferencial alcista es de 5 si el precio de la acción está por arriba de 35, y de cero si está por debajo de 30. Si el precio de la acción se encuentra entre 30 y 35, el beneficio es la cantidad en la cual el precio de ejercicio excede de 30. El costo de la estrategia es 3 - 1 = 2. Por lo tanto, la utilidad es:

Intervalo variación precio acción	Utilidad
$S_t \le 30$ $30 < S_t < 35$	-2 $S_t - 32$
$S_t \geq 35$	+3

Estrategia: Función Bull Spread I

Comenzamos contruyendo la estructura de la estrategia:

```
bullspread.call <- function(S,K1,K2,precio1,precio2){</pre>
  if(K1>=S) stop("K1 debe ser menor a S.")
  if(S>=K2) stop("K2 debe ser mayor a S.")
  #larga
  callP1 = precio1
  #corto
  callP2 = precio2
  stock=unique(round(seq(0,K1,length.out=6)))
  stock=c(stock,round(seq(K1,K2,length.out=4)))
  stock=c(stock,round(seq(K2,K2+K1,length.out=6)))
  stock=unique(stock)
  payoff=rep(0,length(stock))
  profit=rep(0,length(stock))
```

Estrategia: Función Bull Spread II

```
for(i in 1:length(stock)){
   if(stock[i]<=K1) payoff[i]=0
   if(stock[i]>=K2) payoff[i]=K2-K1
   if(stock[i]<K2 & stock[i]>K1) payoff[i]=stock[i]-K1
   profit[i]=payoff[i]+(callP2-callP1)
}
data <- data.frame(stock,payoff,profit)
   return(data)</pre>
```

Estrategia: Posición call Larga & Corta Para el Bull Spread Call

Para ilustrar calculamos las dos call (larga y corta):

Es la misma función vista anteriormente, solo que en vez de tener una columna llamada "periodo" ahora será "stock", conceptualmente es lo mismo, pero facilita para graficar:

```
# Posición larga en call
long.callpayoff <- function(s,k,v,r,t){
   data.frame("payoff" = pmax(0,s-k), "stock" = s) %>%
    mutate("profit" = payoff - v*exp(-r*t))
}

# Posición corta en call
short.callpayoff <- function(s,k,v,r,t){
   data.frame("payoff" = pmin(k-s,0), "stock" = s) %>%
    mutate("profit" = payoff + v*exp(-r*t))
}
```

Estrategia: Construcción de la Bull Spread Call

En el Global Environment vemos el objeto 'bull.spread'', que tiene los stock (S_t) , payoff y profit.

```
# Extraemos la St
s <- bull.spread$stock
# Call larga
long.call <- long.callpayoff(s,30,3,0,0)</pre>
# Call corta
short.call <- short.callpayoff(s,35,1,0,0)
g1 <- ggplot(bull.spread[4:10,]) + geom line(aes(long.call$stock[4:10],long.call$profit[4:10]),
                                                 linetype="dashed", color = "blue",size=1)
g1 <- g1 + geom_line(aes(short.call$stock[4:10],short.call$profit[4:10]),linetype="dashed",
                         color = "red".size=1)
g1 <- g1 + geom_line(aes(bull.spread$stock[4:10],bull.spread$profit[4:10]),color = "green",size=1)
g1 <- g1 + ggtitle("Estrategia Bull Spreads") + xlab("stock") + ylab("Profit") + theme_bw()
g1 <- g1 + geom hline(yintercept=0, linetype="dashed",color = "orange", size=1)
g1
```

Estratégia: Gráfico Bull Spread Call

Estrategia Bull Spreads

Gabriel Cabrera G.

Estrategía: Con librería la Bull Spread Call

Una librería útil para construir estratégias es la librería FinancialMath, recuerden install.packages("FinancialMath") y luego library("FinancialMath"):

```
# Con libreria
# bull.call(S,K1,K2,r,t,price1,price2,plot=FALSE)
library("FinancialMath")
bull.call <- bull.call(31,30,35,0.0000001,3,3,1,plot=TRUE)</pre>
```

Otras funciones son, bear.call(),straddle(),strangle(),butterfly.spread().

NB: Es importante que el S_t debe estar entre k_1 y k_2 . Deben incluir una tasa de interés y un T, pero si no se especifica, agreguen una cerca a cero.

Estrategia: Con librería El gráfico Bull Spread Call

Bull Call Spread Payoff and Profit

Estrategia: Payoff inferior Bull Spread Call de la Librería

Los payoff inferiores deberían ser igual a -2:

head(bull.call\$Payoff,4)

Table 3: Bull Spread Call

Stock Price	Payoff	Profit
0	0	-2.000001
6	0	-2.000001
12	0	-2.000001
18	0	-2.000001

Estrategia: Payoff superior Bull Spread Call de la Librería

Los payoff inferiores deberían ser igual a 3:

tail(bull.call\$Payoff,4)

Table 4: Bull Spread Call

	Stock Price	Payoff	Profit
11	47	5	2.999999
12	53	5	2.999999
13	59	5	2.999999
14	65	5	2.999999

Black & Scholes

Black & Scholes: de la formula a una función

Las Formulas de Black Scholes y Merton para los precios de las opciones de compra y de venta europeas sobre acciones que **no pagan dividendos** son:

Formulas de Valuación Black, Scholes & Merton

•
$$c = S_0 N(d_1) - Ke^{-rt} N(d_2)$$

•
$$p = Ke^{-rt}N(-d_2) - S_0N(-d_1)$$

donde:

•
$$d_1 = \frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}}$$

•
$$d_2 = \frac{\ln(S_0/K) + (r - \sigma^2/2)T}{\sigma\sqrt{T}} = d_1 - \sigma\sqrt{T}$$

Black & Scholes: Ejercicio

Uso de la formula en R

El precio de las acciones después de seis meses a partir de la expiración de una opción es de 42, el precio de ejercicio de la opción es de 40, la tasa de interés libre de riesgo es de 10% anual y la volatilidad es de 20% anual. Esto Significa:

```
S0 <- 42
K <- 40
r <- 0.1
T <- 1/2
sigma <- 0.2
```

Parámetros

Black & Scholes: Función

Construimos la función basándonos en la formula:

```
bs.opm <- function(S,K,T,riskfree,sigma,type){
  d1<-(log(S/K)+(riskfree+0.5 * sigma^2) * T)/(sigma * sqrt(T))
  d2<-d1-sigma * sqrt(T)
  if(type=="Call"){
    opt.val<-S * pnorm(d1)-K * exp(-riskfree * T) * pnorm(d2)
  }
  if(type=="Put"){
    opt.val<-K * exp(-riskfree * T) * pnorm(-d2)-S * pnorm(-d1)
  }
  opt.val</pre>
```

```
# Para la call
C <- bs.opm(S = S0, K = K, T = T, riskfree = r, sigma = sigma, type = "Call" )
C

## [1] 4.759422

# Para la put
C <- bs.opm(S = S0, K = K, T = T, riskfree = r, sigma = sigma, type = "Put" )
C

## [1] 0.8085994</pre>
```

Black & Scholes: Ahora con librerías

La librería que se utilizará para usa BS es fOptions, recordar el install.packages("fOptions") y posterior library("fOptions").

```
library("fOptions")
```

La función de la librería es GBSOption():

```
GBSOption(TypeFlag = " ", S = SO, X = K, Time = T, r = r, b = r, sigma = sigma)
```

En TypeFlag, va "c" para call y "p" para put, tener presente que deberán seleccionar un b que es el *annualized cost-of-carry rate*, si no se especifica, debe ser igual a r.

```
# Con libreria call
GBSOption(TypeFlag = "c", S = S0, X = K, Time = T, r = r, b = r, sigma = sigma)@price
## [1] 4.759423
# Con libreria put
GBSOption(TypeFlag = "p", S = S0, X = K, Time = T, r = r, b = r, sigma = sigma)@price
## [1] 0.8086
```

Black & Scholes con Datos Reales

Black & Scholes con Datos Reales: Pasos

Una manera de trabajar con datos reales directo usando R, es:

- Usar las funcion getOptionChain de la librería quantmod. Seleccionar las call y put para la fecha de valuación (recomiendo en objetos separados).
- ② Usar la función getSymbols de la librería quantmod para elegir el ticker correspondiente, calcular el retorno y extraer el precio a la fecha que se está haciendo la valuación.
- "Construimos" la fecha de expiración y valuación, esto nos permite calcular el T a través de: expiración valuación / 365. La tasa libre de riesgo se puede obtener de FRED usando la 3-Month Constant Maturity Treasury yield (debe ser la fecha de valuación, un único valor).
- Para la volatilidad se puede usar la desviación estándar de los últimos 3 años multiplicado por 252, esto se hace para anualizarlo.
- Finalmente seleccionamos las que están cerca al at the money y usamos Black & Scholes, por librería o bien la función que creamos.

Black & Scholes con Datos Reales: Parte a

Imaginemos que es 31 de mayo del 2018 y queremos valorar las opciones call y put de Oracle con vencimiento al 17 de Agosto del 2018. Para comenzar usamos la función getOptionChain() de la librería quantmod:

```
opciones <- getOptionChain("ORCL",Exp="2018-12-21")

calls <- opciones$calls[,c(1:2,4:6)] # Nos quedamos con las columnas del 1 al 2 y del 4 al 6.

puts <- opciones$puts[,c(1:2,4:6)] # Nos quedamos con las columnas del 1 al 2 y del 4 al 6.
```

Black & Scholes con Datos Reales: Parte b

Como debemos obtener el precio de cierre para el 31 de mayo del 2018 y a su vez el histórico de tres años para la volatilidad usamos:

Black & Scholes con Datos Reales: Parte c y d

Con la función getSymbols usamos la fuente de la FRED y extraemos la rf con subset.

```
getSymbols("DGS3MO", src ="FRED", to = "2018-06-01", periodicity = "daily")
## [1] "DGS3MO"

rf <- as.numeric(subset(DGS3MO["2018-05-31"]))*0.01

expiracion.date <- as.Date("2018-08-17")
valuacion.date <- as.Date("2018-06-01")
TTM <- as.numeric((expiracion.date-valuacion.date)/365)</pre>
```

Extraemos del objeto orcl y calculamos su desviación estándar, luego se multiplica por 252.

```
vol.hist <- sd(orcl$ret)*sqrt(252)</pre>
```

Black & Scholes con Datos Reales: Parte e

Vemos el precio a la fecha la valuación y seleccionamos aquellas cercana a estar at the money, tanto put como call.

```
# call
GBSOption(TypeFlag = "c", S = precio, X = 45, Time = TTM, r = rf, b = rf, sigma = vol.hist)@price
## [1] 1.720309
GBSOption(TypeFlag = "c", S = precio, X = 50, Time = TTM, r = rf, b = rf, sigma = vol.hist)@price
## [1] 0
# put
GBSOption(TypeFlag = "p", S = precio, X = 45, Time = TTM, r = rf, b = rf, sigma = vol.hist)@price
## [1] O
GBSOption(TypeFlag = "p", S = precio, X = 50, Time = TTM, r = rf, b = rf, sigma = vol.hist)@price
## [1] 3.259375
```

Árbol Binomial

Árbol Binomial: Generalización

Una generalización cuando queremos realizar un árbol con dos pasos:

- $p = \frac{e^{r\Delta t} d}{u d}$
- $f_u = e^{-r\Delta t}[pf_{uu} + (1-p)f_{ud}]$
- $f_d = e^{-r\Delta t}[pf_{ud} + (1-p)f_{dd}]$
- $f = e^{-r\Delta t}[pf_u + (1-p)f_d] = e^{-2r\Delta t}[p^2f_{uu} + 2p(1-p)f_{ud} + (1-p)^2f_{dd}]$ esto último solo cuando es una opción europea.
- No obstante, en términos del modelo, $u=e^{\sigma\sqrt{\Delta t}}$ y $d=e^{-\sigma\sqrt{\Delta t}}=\frac{1}{u}$.

Árbol Binomial: Ejercicio

Considere una call europea a dos años con precio de strike de 52 en una acción cuyo precio es 50. Suponga que existen *two time steps* en un año, y en cada *time steps* el precio se mueve 30%. La tasa de interes libre de riesgo es 5%.

La librería a usar será de nuevo fOptions.

```
library("fOptions")
```

Árbol Binomial: Con call europea

```
# Europea
CRRTree = BinomialTreeOption(TypeFlag = "ce", S = 50, X = 52, Time = 2, r = 0.05, b = 0.05, sigma = 0.3,
CRRTree
BinomialTreePlot(CRRTree, dy = 1, cex = 0.8, ylim = c(-6, 7), xlab = "n", ylab = "valores Opción")
title(main = "Arbol Binomial Opción")
```

Árbol Binomial: Con call europea gráfico

Arbol Binomial Opción

Gabriel Cabrera G.

Árbol Binomial: Con call americana

Árbol Binomial: Con call americana gráfico

Arbol Binomial Opción

Gabriel Cabrera G.

Apunte del curso

• Apunte curso Finanzas I: https://finance-r.netlify.com/

Opciones, Derivados & Futuros

Gabriel Cabrera G.

8 de Octubre del 2018