Arith. Mittel	\overline{x}	Kovarianz	C_{XY}
Median	\widetilde{x}	Korrelation	r_{XY}
Varianz	σ^2	Chi Quadrat	χ^2
SDA	σ	KontingenzK	K
Sample Var.	S^2	Sample SDA	S
Bestimmtheit	R^2	Korrig. K	K^*
Adj. Best.	R_a^2	Erwartungswert	E(X

B. Statistik

- Qualitative Merkmale:
- Variieren nach Beschaffenheit
- Ouantitative Merkmale:
 - Variieren nach Wert/Zahlen
- · Diskrete Merkmale:
- abgestufte Werte
- Stetige Merkmale:
- können im Intervall jeden reellen Wert annehmen

Skalenniveaus

- Nominal
- nur Gleichheit oder Andersartigkeit feststellbar (keine Bewertung)
- stets qualitativ
- Ordinal
- natürliche oder festzulegende Rangfolge
- · Kardinal/Metrisch
- numerischer Art
- Ausprägung und Unterschied sind mess-
- verhältnisskaliert (Absoluter Nullpunkt vorhanden; (Doppelt so viel.))
- intervallskaliert (Kein Nullpunkt, nur Differenzen;

Werte

- Arithmetisches Mittel \bar{x}
- $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} a_i = \frac{a_1 + a_2 + \dots + a_n}{n}$ Nur auf kardinale Merkmale
- Summe aller Abweichungen vom Mittel =
- Verschiebung um kostanten Wert a $a + \overline{x}$
- Multiplikation mit konstantem Wert $a \cdot \overline{x}$
- Auch als gewichtetes arth. Mittel mit den relativen Häufigkeiten

- Median \tilde{x}
- Mittleres Element der geordneten Liste
- Bei gerader Anzahl, Durchschnitt der mittleren Elemente
- Ordinal und Kardinale Merkmale
- Modus
- Meist auftretendes Element
- Alle Skalenniveaus
- Quartile (sortieren & ablesen)
- Unteres Quartil $\tilde{x}_{0.25}$
- Oberes Quartil $\tilde{x}_{0.75}$
- Mindestens 25% der Werte
- Varianz σ^2
 - Populations Varianz $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2$
- Sample Varianz $S_{n-1}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \overline{x})^2$
- Altn. Formel $\sigma^2 = \overline{x^2} \overline{x}^2$
- Eigenschaften:
 - * Immer ≥ 0
 - * Addition mit a. Varianz unverändert
 - * Multiplikation mit b, $Varianz * b^2$
- Standardabweichung σ
 - $-\sigma = \sqrt{\sigma^2}$
- StichprobenSDA $S = \sqrt{S_{n-1}^2}$
- (Inter-) Quartilsabstand $\tilde{x}_{0.75} \tilde{x}_{0.25}$

Zweidimensionale Häuffigkeitstabellen

- · Statistische Variablen X und Y mit versch.Auspräungen
- Spaltensummen sowie Zeilensummen = n
- Relative Häufigkeit $h_{ij} = \frac{n_{ij}}{n}$
- Randverteilung = Betrachtung einer einzigen Variable
- Z = X + Y; $\overline{z} = \overline{x} + \overline{y}$;

Kovarianz

- Arithmetisches Mittel des Produkts der Abweichung der einzelnen Beobachtungen von ihrem Mittel
- $C_{XY} := \frac{1}{n} \sum_{j=1}^{n} (x_j \overline{x})(y_j \overline{y}) = \overline{xy} \overline{x} * \overline{y}$
- $C_{XY} > 0$ "große X-Werte zu großen Y-Werten"
- $C_{XY} < 0$ "große Werte zu kleine Werten"
- Sind zwei Variablen statistisch unabhängig ist die Kovarianz = 0

Korrelation

- Normal (Pearson) $r_{XY} = \frac{C_{XY}}{\sigma_X * \sigma_X}$
- normiertes Maß für Strenge des linearen statistischen Zusammenhangs
- r_{XY} hat das gleiche Vorzeichen wie C_{XY}
- Bleibt unverändert bei linearer Transformation
- $-r_{XY}=r_{YX}$
- $-1 \le r_{XY} \le +1$
- (Spearman) r_{XY}^{Sp} Rangkorrelation $r_{rg(X),rg(Y)}$
 - für ordinale Variablen
 - misst monotonen Zusammenhangs
 - Ist unempfindlich gegenüber Ausreißern
 - Ränge müssen vorher berechnet werden
- Berechnung mit TR über Ränge
- $-1 \le r_{yy}^{Sp} \le +1$
- Kovarianz und Korrelation bedeuten nicht zwangsweise eine kausale Beziehung!

Kontingenzkoeffizient

- beschreibt die Stärke des Zusammenhangs zweier Merkmale, nicht deren Richtung
- Nur für nominale und ordinale Merkmale
- Chi-Quadrat $QK = \sum_{i=1}^k \sum_{j=1}^l \frac{(n_{ji} E_{ij})^2}{E_{ij}}$
- $-E_{ij} = \frac{1}{n} * n_i * n_j = \frac{1}{n} n(x_i) * n(y_j)$
- Siehe Erweiterte Kontingeztabelle
- X und Y unabhängig: QK = 0
- Sonst QK > 0
- Für 2x2 Matrix: $QK = \frac{n(ad-bc)^2}{(a+b)(a+c)(b+d)(c+d)}$
- a bis d sind Inhalte der Tabelle, Summen sind Randhäufigkeiten
- Kontingenzkoeffizient $K := \sqrt{\frac{QK}{OK + n}}$
 - normiertes Maß
- X und Y unabhängig: K = 0
- $-0 \le K \le K_{max} = \sqrt{\frac{m-1}{m}} < 1$
- m = Minimum von Zeilenzahl und Spaltenzahl
- Korrigierter K.-koeffizient $K^* := \frac{K}{K_{max}} =$ $\sqrt{\frac{QK*m}{(QK+n)(m-1)}}$
- - $0 \le K^* \le 1$
- Vergleichbar mit anderen K-Tabellen

Regression

- Lineare Regression y(x) = a + bx
 - $b = \frac{c_{XY}}{c_{2}^{2}}$ und $a = \overline{y} b\overline{x}$
 - Interpret: b*x erhöht pro Einheit und a: Achsenabschnitt
 - Extrapolation (Punkte außerhalb der orig. Daten) nicht aussagekräftig
 - Regressionswerte = $\hat{v}_i = v(x_i)$
 - Residuen (Fehler) $e_i = y_i \hat{y}_i$
- Andere Regressionen:
- $-\hat{y} = a + bx + cx^2$ Quadr. Regr.
- $-\hat{y} = a + x^b$ Potenzfunkt.
- $-\hat{y} = ab^x$ Expo-funkt.
- · Meth. kleinste Quadrate
- Varianzzerlegung $SSQ_{Total} = SSQ_{Reg} +$ SSQ_{Resi}
- $SSQ_{Reg} = \sum_{i=1}^{n} (\hat{y}_i \overline{y})^2$ (Abweichung von Vorhersage und Mittelwert)
- $SSQ_{Total} = \sum_{i=1}^{n} (y_i \overline{y})^2$ (Gesamtabwe-
- $-SSQ_{Resi} = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$ (Abweichung von Vorhersage und y)
- Bestimmtheitsmaß $R^2 = \frac{SSQ_{Reg}}{SSQ_{Total}} = \frac{S_{\hat{Y}}^2}{S_{c_2}^2} = r^2$
- $-r^2$ gilt nicht für Quadr. Reg. !!!
- Schlecht $0 \le R^2 \le 1$ Gut
- R^2 ≥ 0.8 akzeptabel
- Multiple Regr.
- Y wird durch mehrere Variablen erklärt
- $\hat{y} = a + b_1 x_3 + b_2 x_3 + b_3 x_3$
- Adjustiertes Bestimmtheitsmaß $R_a^2 = R^2 \frac{k}{n-k-1}*(1-R^2)$
- Hinzunahme von Params, erhöht den R² automatisch, auch wenn es nicht besser wird
- n = Anzahlder Messwerte
- k = AnzahlderReg.Params
- R_a^2 kann auch kleiner/negativ werden > Variable nicht aufnehmen
- Anmerkungen:
 - Residualplot: Gutes Modell, wenn kein Muster erkennbar!
- Optimum finden: 1.Ableitung = 0 setzen
- "Faktor Größe" hat nichts mit Einfluss zu-

tun, nur bei standardisierten Daten

Wahrsch. Rech.

- Zufallsvariable $X : \Omega > R mit X(\omega) = x$
- Funktion, die jedem Möglichen Ergenis eine reelle Zahl zuordnet
- Wahrscheinlichkeits-/ Dichtefunktion *f* : P(X=x)
- Verteiteilungsfunktion $F: P(X \le t)$
- F ist Stammfunktion für f aber muss mit +C angepasst werden
- Diskrete
 - f: R > [0,1] mit f(x) = P(X = x)
- -P(X = X) Wahrscheinlichkeit mit der X die Realisation x annimmt
- $F(t) = P(X \le t) = \sum_{x_i \le t} P(X = x_i)$
- Stetige
- Zufallsvariable ist stetig, Wahrscheinlichkeit durch Dichtefunktion abbilden lässt
- Dichtefunktion, wenn $\int_{-\infty}^{+\infty} f(x) dx = 1$, $f(x) \ge 0$ und f: X - > R
- $-F(t) = P(X \le t) = \int_{-\infty}^{t} f(x) dx$
- Erwartungswert
- Diskret: $E(X) = \sum_{i=1}^{n} x_i * f(x_i)$ Stetig: $E(X) = \int_{x_{min}}^{x_{max}} x * f(x) dx$
- Varianz $(Var(X) = \sigma^2)$ & SDA $(\sigma = \sqrt{\sigma^2})$
- Es gilt: $\sigma^2 = E((X E(X))^2) = E(X^2)$ - $(E(X))^2$
- Diskret: $Var(X) = \sum_{i=1}^{n} (x_i E(X))^2 * f(x_i)$ Stetig: $Var(X) = \int_{x_{min}}^{x_{max}} (x E(X))^2 *$ f(x)dx
- Rechenregeln
 - E(a + b * X) = a + b * E(X)
- $Var(a+b*X) = b^2 * Var(X)$
- E(X+Y) = E(X) + E(Y)
- Stichprobe:
- Stichprobenmittel von unabhängigen Variablen $\overline{X} := \frac{1}{n}(X_1 + ... + X_n)$
- $-E(\overline{X})=\mu$

- SDA von $\overline{X} \sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$
- Wahrscheinlichkeit, größer/kleiner bei Stichprobe n ist: Einfach Gaußtest.
- Normalverteilung
- SD-normalverteilung mit $\mu = 0$ und $\sigma = 1$
- z-Transformation $z = \frac{x-\mu}{\sigma}$
- Zentr.Grenz.Satz: Für hinreichend großes n jeder Vertilung gilt $\overline{X}_n \tilde{N}(\mu, \frac{\sigma^2}{n})$ "normalverteilt"

4 Schl. Statistik

Anmerkungen

- α meist 5% oder 1%
- Wenn nötig: Punktschätzung SDA: $\hat{\sigma}^2$ =
- "Mindestens" meint meist beidseitgen Test
- "Maximal" meint meist rechtsseitigen Test

Mittelwerttest

- GG ist norm. verteilt oder n > 30
- Stichprobenmittel \overline{x} und ggf. Stichprobenvarianz s² bekannt
- σ der GG bekannt

 - $-z = \sqrt{n} \frac{\overline{x} \mu_0}{\sigma}$ - > Tabelle Norm.Verteilung
- σ der GG unbekannt
- $-t=\sqrt{n-1}\frac{\overline{x}-\mu_0}{s_n}$
- > t Tabelle!
- Gleiches gilt für t-1

Seite:	H_0 behalten	H_0 verwerfen
Beide	$ z \le z[1 - \alpha/2]$	$ z > z[1 - \alpha/2]$
Rechts	$z \le z[1-\alpha]$	$z > z[1-\alpha]$
Links	$z \ge z[\alpha]$	$z < z[\alpha]$

Varianztest

- GG ist normalverteilt, α und σ_0 bekannt
- μ von GG. bekannt
- In der χ^2 Tabelle nachschlagen!
- - $t_n = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i \mu)^2$

- Siehe (II)
- μ von GG. unbekannt
- $-t_n = n * \frac{s_n^2}{\sigma_n^2}$
- Siehe (III)

H_0	H_1	Krit.
$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$t_n < \chi_n^2 [\alpha/2]$ $t_n > \chi_n^2 [1 - \alpha/2]$
$\sigma^2 \ge \sigma_0^2$	$\sigma^2 < \sigma_0^2$	$t_n < \chi_n^2[\alpha]$
$\sigma^2 \le \sigma_0^2$	$\sigma^2 > \sigma_0^2$	$t_n > \chi_n^2 [1 - \alpha]$

III

H_0	H_1	Krit.
$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$t_n < \chi^2_{n-1}[\alpha/2]$ $t_n > \chi^2_{n-1}[1 - \alpha/2]$
$\sigma^2 \ge \sigma_0^2$	$\sigma^2 < \sigma_0^2$	$t_n < \chi^2_{n-1}[\alpha]$
$\sigma^2 \le \sigma_0^2$	$\sigma^2 > \sigma_0^2$	$t_n > \chi_{n-1}^2 [1 - \alpha]$

Differenztest

- GG ist normalverteilt
- σ_v^2 und σ_v^2 gleich aber unbekannt
- δ_0 vorgegeben oder $\delta = \mu_X \mu_Y$

$$t = \frac{\overline{x} - \overline{y} - \delta_0}{\sqrt{\frac{1}{n} + \frac{1}{m}} * \sqrt{\frac{n * s_n^2 + m * s_m^2}{n + m - 2}}}$$

H_0	H_1	Krit.
$\delta = \delta_0$	$\delta \neq \delta_0$	$ t_n > t_{n+m-2}[1-\alpha/2]$
$\delta \ge \delta_0$	$\delta < \delta_0$	$t_n < t_{n+m-2}[\alpha]$
$\delta \leq \delta_0$	$\delta > \delta_0$	$t_n > t_{n+m-2}[1-\alpha]$

χ^2 Test

- $E_{ii}immer \ge 5$
- $H_0 = X$, Y sind unabhängig; $H_1 = X$, Y sind abhängig
- Prüfgröße χ^2 (wie oben, mit erw. Kont.-
- Krit.Wert: $c = \chi^2_{(k-1)(l-1)}[1-\alpha]$
- $\chi^2 \le c \text{ H0 behalten}$
- $\chi^2 > c$ H0 verwerfen

Excel Tests

- Koeffizienten für jede X_i > Formel lässt sich daraus ableiten
- t-Statistik:
- Test, ob x überhaupt y beeinflusst
- Parameter wird nur im Modell behalten wenn $|t| := |\frac{\beta_j}{\hat{\sigma}_i}| > 2$
- Signifikanzniveau von ca. 5%
- Alternativ: p-Werte $< \alpha$ werden behalten, p-Werte > α werden verworfen
- F-Test des Bestimmtheitsmaßes:
- Testet ob. nicht auch alle Parameter = 0 sein könnten (Sinnhaftigkeit der Regression)
- H_0 :
- Prüfgröße F aus Excel
- FWert: aus F-Verteilung oder gegeben
- $-F \ge FWert H_0$ verwerfen, Regressionsansatz sinnvoll
- $-F < FWert H_0$ behalten, Regressionsansatz schlecht
- Einfacher: Über F.Krit
- $pWert < F.Krit H_0$ behalten, Regressionsansatz sinnvoll
- $pWert > F.Krit H_0$ verwerfen, Regressionsansatz schlecht

Other

Integrationsregel - Fläche unter Funktion $\int_{a}^{b} x^{n} = \left[\frac{1}{n+1}x^{n+1}\right]_{a}^{b} = \left[\frac{1}{n+1}b^{n+1}\right] - \left[\frac{1}{n+1}a^{n+1}\right]$

$$\begin{array}{c|c} n_{ij} & (n_{ij} - E_{ij})^2 \\ \hline n_{ij} - E_{ij} & E_{ij} \end{array}$$

Test\Realität	H_0 richtig	H_1 richtig
H_0 behalten	ok (Spezifität)	β Fehler (FP)
<i>H</i> ₀ verwerfen	α Fehler (FN)	ok (Sensitivität)