$\operatorname{MATH730}$ - Fundamental Concepts of Topology

Haoran Li

2020/08/18

\mathbf{C}	റ	n	T (\mathbf{r}	1 T	C
$\mathbf{\mathcal{L}}$	u	11	υv	L.	LU	

1	General topology	2
Ind	lex	6

1 General topology

Example 1.1. \mathbb{R}/\mathbb{Q} is not Hausdorff

Proposition 1.2. If Y is discrete, then X is connected if every continuous function $f: X \to Y$ is a constant

Proposition 1.3. X is compact, Y is Hausdorff, any continuous function $f: X \to Y$ is closed. In particular, if f is bijective, then f is a homeomorphism

Fact 1.4. X is Hausdorff and locally compact iff X is homeomorphic to an open subset of a compact Hausdorff space Y through one point compactification

$$\operatorname{Hom}(X \times A, Y) \cong \operatorname{Hom}(X, \operatorname{Hom}(A, Y))$$

as a set. However as topological spaces $\text{Hom}(X \times A, Y) \to \text{Hom}(X, \text{Hom}(A, Y))$ is not surjective. Consider X = Hom(A, Y)

Note. Here Hom(A, Y) is endowed with compact-open topology

Theorem 1.5. A is locally compact and Hausdorff, then $f: X \times A \to Y$ is continuous iff $f: X \to \operatorname{Hom}(A,Y)$ is continuous. Furthermore, if X is also locally compact and Hausdorff, then

$$\operatorname{Hom}(X \times A, Y) \cong \operatorname{Hom}(X, \operatorname{Hom}(A, Y))$$

as topological spaces

Proposition 1.6. If $g: A \to Y$ is injective, then $\iota_X: X \to X \cup_A Y$ is also injective. If $f: A \to Y$ is surjective, then $\iota_Y: X \to Y \cup_A Y$ is also surjective, moreover, if f is a homeomorphism, so is ι_Y

Proof. Proof of homeomorphism: Show that Y satisfies the universal property of the pushout

$$\begin{array}{cccc}
A & \xrightarrow{g} & Y \\
\downarrow & & \parallel & \\
X & \xrightarrow{gf} & Y & \\
& & & & \downarrow & \\
\varphi_1 & & & & T
\end{array}$$

 $\forall \varphi_1, \varphi_2 \text{ such that } \varphi_1 f = \varphi_2 g, \Phi g f^{-1} = \varphi_1, \text{ thus } \Phi = \varphi_2$

Definition 1.7 (CW complexes). For $x, y \in X$, define $\varphi : S^0 \to X$ with $\varphi(-1) = x$, $\varphi(1) = y$, Write $X \cup_{\varphi} D^1$ for pushout

$$\begin{array}{ccc} S^0 & \stackrel{\varphi}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} X \\ \downarrow & & \downarrow \\ D^1 & \stackrel{\iota}{-\!\!\!\!-\!\!\!-} X \cup_{\varphi} D^1 \end{array}$$

The image $\iota(\operatorname{Int}(D^1))$ is called a 1-cell, denoted e^1 In general, we have

$$\begin{array}{ccc}
S^{n-1} & \xrightarrow{\varphi} & X \\
\downarrow & & \downarrow \\
D^n & \xrightarrow{\iota} & X \cup_{\varphi} D^n
\end{array}$$

The image $\iota(\operatorname{Int}(D^n))$ is called an n-cell, denoted e^n . Attaching cells does not disturb the interiors of the cells

A CW complex is built up in the following way

- 1. Starting with a discrete set X_0 , the set of 0-cells or the 0-skeleton
- 2. Given (n-1)-skeleton X_{n-1} , then n-skeleton X_n is obtained by attaching n-cells to X_{n-1} , that is

$$\bigsqcup_{\alpha \in A_n} S_{\alpha}^{n-1} \xrightarrow{\phi_{\alpha}} X_{n-1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\bigsqcup_{\alpha \in A} D_{\alpha}^{n} \xrightarrow{\Phi_{\alpha}} X_{n}$$

3. The space X is the union of X_n 's, topologized by weak topology

The third condition ensures $X_n \hookrightarrow X$ is continuous. As a set, X is the disjoint union of $\Phi_{\alpha}(\operatorname{Int}(D^n))$, $\Phi_{\alpha}: D^n \to X_n \to X$ are called characteristic maps, CW complexes are determined by characteristic maps

Definition 1.8. G is a discrete group. $Y \times G \to Y$ is a continuous action, then $q: Y \to Y/G$ is continuous, the action is *properly discontinuous* if $\forall y \in Y, \exists U$ neighborhood such that $U \cap Ug = \emptyset, \forall g \neq 1$, this implies that the action is free, then q is a covering map, furthermore, $p: Y/H \to Y/G$ is a covering map for $H \leq G$

Fact 1.9. A finite group which acts freely on a Hausdorff space Y is properly discontinuous

Theorem 1.10 (Monodromy). Let $\tilde{\gamma}_x$ be the lift of γ against p starting at x

$$\pi_1(B,b_0) imes F o F \ ([\gamma],x)\mapsto ilde{\gamma}_x(1)$$

specifies a transitive left action of $\pi_1(B,b_0)$ on F, called the monodromy action

Proof. Let c_{b_0} be the constant loop, which is the identity element, by transitivity, path-connectedness and orbit-stabilizer theorem, $F \cong G/G_{x_0}$

Proposition 1.11. The stabilizer of $x \in F$ under the monodromy action is the subgroup $p_*(\pi_1(E,x)) \leq \pi_1(B,b_0)$

Corollary 1.12. $\pi_1(B, b_0)/p_*(\pi_1(E, x)) \to F$ is an isomorphism

Proposition 1.13. $\varphi: E_1 \to E_2$ induce map on fibers $F_1 \to F_2$ is $\pi_1(B, b_0)$ equivariant, i.e. $[\gamma] \cdot \varphi(x) = \tilde{\gamma}_{\varphi(x)}(1) = \varphi(\tilde{\gamma}_x)(1) = \varphi(\tilde{\gamma}_x(1)) = \varphi([\gamma] \cdot x)$

Proposition 1.14. $H, K \leq G$, every G equivariant map $\varphi : G/H \to G/K$ is of the form $gH \mapsto g\gamma K$ for some $\gamma \in G$ such that $\gamma H \gamma^{-1} \leq K$, in short, H is subconjugate to K

Proof. An equivariant map is determined by the value at one element, suppose $eH \mapsto \gamma K$, for some $\gamma \in G$. then $gH \mapsto g\gamma K$ which is well-defined should have ghH = gH, $gh\gamma H = h\gamma H$, so we need $\gamma^{-1}h\gamma \in K \Rightarrow \gamma^{-1}H\gamma \leq K$

Corollary 1.15. An equivariant map $\varphi: G/H \to G/K$ exists iff H is subconjugate of K. The two orbits are isomorphic as G-sets iff H is conjugate to K

Theorem 1.16. There is a bijection of sets

$$\operatorname{Hom}_{B}(E_{1}, E_{2}) \cong \operatorname{Hom}_{\pi_{1}(B, b_{0})}(F_{1}, F_{2})$$

Corollary 1.17.

$$\operatorname{Aut}_B(E) \cong \operatorname{Hom}_G(G/H, G/H) \cong N_G(H)/H = W_G(H)$$

here $H = p_*(\pi_1(E))$

Proof. There exists a surjective homomorhpism $N_G(H) \to \operatorname{Hom}_G(G/H, G/H)$, $\gamma \mapsto gh \mapsto g\gamma H$, thus $eH \mapsto \gamma H \Rightarrow \gamma \in H$, thus $\operatorname{Hom}_G(G/H, G/H) \cong N_G(H)/H$

Proposition 1.18. X is the universal cover of B, $\operatorname{Aut}_B(X) \to F$, $\varphi \mapsto \varphi(x)$, $x \in q^{-1}(b)$ is a bijection as sets

References

 $[1] \ Algebraic \ Topology$ - Allen Hatcher

\mathbf{Index}

Properly discontinuous group action, 3