Practical No. 4

Tomasz Siłkowski ts407106@students.mimuw.edu.pl

29 kwietnia 2023

2 Attention Exploration

a) Attention input for identity

For attention to approximately copy one of the value vectors v_i , $k_i^T q$ would have to significantly greater than $k_j^T q$ for any $j \neq i$.

b) Query input for attention to return average

$$q = C(k_a + k_b)$$
, where $C \gg 0$

c) Drawbacks of single-headed attention

1.

$$q = C(\mu_a + \mu_b)$$
, where $C \gg 0$

Because covariance matrices for all keys k are identity matrix multiplied by a vanishingly small constant, we know that keys (random variables) k_a and k_b are not correlated, therefore independent. That means μ_a and μ_b are their best estimators and are also perpendicular to each other, they are the best guess for requested value.

2. To restate the problem, we have $k_a \sim \mathcal{N}(\mu_a, \alpha I + \frac{1}{2}(\mu_a \mu_a^T))$ where α is vanishingly small.

Let $q = C(\mu_a + \mu_b)$ (same as part 1) and let k_b be the key pointing in the same direction as k_a but with different norm. This means:

$$k_i^T q \approx \begin{cases} \varepsilon_a C & \text{for } i = a, \text{ where } \varepsilon_a \sim \mathcal{N}(1, \frac{1}{2}) \\ \varepsilon_b C & \text{for } i = b, \text{ where } \varepsilon_b \sim \mathcal{N}(1, \frac{1}{2}) \\ 0 & \text{otherwise} \end{cases}$$

Because of that, when calculating c:

$$c = \frac{\exp(\varepsilon_a C)}{\exp(\varepsilon_a C) + \exp(\varepsilon_b C)} v_a + \frac{\exp(\varepsilon_b C)}{\exp(\varepsilon_a C) + \exp(\varepsilon_b C)} v_b =$$

$$= \frac{1}{\exp((\varepsilon_a - \varepsilon_b)C)} v_a + \frac{1}{\exp((\varepsilon_b - \varepsilon_a)C)} v_b.$$

Because ε_a and ε_b come from the same distribution, it is equally likely that c will be closer to v_a as to v_b . This means c will be closer to whichever v_i has bigger $|k_i|$ for $i \in \{a, b\}$.

d) Benefits of multi-headed attention

1.

$$q_1 = C_1 \mu_a$$
, where $C_1 \gg 0$
 $q_2 = C_2 \mu_b$, where $C_2 \gg 0$

2.

$$k_a^T q_1 = C_1 \varepsilon_a$$
$$k_b^T q_2 = C_2 \varepsilon_b$$

Then:

$$c_1 = v_a$$

$$c_2 = v_b$$

$$c = \frac{1}{2}(c_1 + c_2) \approx \frac{1}{2}(v_a + v_b)$$

Basing my judgement on these calculations, I expect output c to be close to the average of v_a and v_b .

e) Key-Query-Value self-attention intuition

1. c_2 approximates vector u_a .

It's impossible to approximate u_b with c_2 by adding either u_c or u_d to x_2 . Any of these vectors will increase in value equally along with u_b . That means there's no way for u_b to dominate the combination.

2.

3 Pretraining Transformer-based Generative Model

d) Model with only finetuning

After 75 epochs of finetuning previously untrained model, in evaluation it achieved a score of 0.6% (3 out of 500 correct).

For comparison, naive model (outputting only "London" as an answer) achieved a score of 5.0% (25 out of 500 correct).

f) Fully trained model on CharCorruptedDataset

After 650 epochs of pretraining and 10 epochs of finetuning using Dataset with randomly masked substrings, the model achieved a score of 23.0% (115 out of 500 correct) in evaluation.