Total No. of Questions: 8]	SEAT No.:	:				
PA-1451	[Tota	l No. of Pages : 2				
T.E. (Computer Engineering) ARTHICIAL INTELLIGENCE						
(2019 Pattern) (Semester - II) (310253)						
Time: 2½ Hours]	[/]	Max. Marks : 70				
Instructions to the candidates:						
1) Attempt Q.1 or Q.2, Q.3 or Q.4,	Q.5 or Q.6, Q.7 or Q.8.					
2) Near diagrams must be drawn		Y + ()				
3) Assume suitable data, if necess	ary.					
Evaloin Min Moy and Alpha	Data pruning descrithm	for advargarial				
Explain Min Max and Alpha search with example.	i Beta pruning argorumin	[9]				
Define and explain Constrain	its satisfaction problem.	[9]				
	OR O					
Q Explain with example graph	coloring problem.	[9]				
How AI toohnique is read to	salva tia taa taa problem	100				
How AI technique is used to	solve tic-tac-toe problem	. [9]				
Q3 a Explain Wumpus world envi	ronment giving its PEAS	description.				
89.	9	[9]				
Explain different inference ru	iles in FOL with suitable	example. [8]				
	OR S	1 3				
Q4) a Write an propositional logic	for the statement,	[10]				
1) "All birds fly"	CY &					
"Every man respect his	parents" "V(M/V)(v)	(P(v x)R(x v))))"				

Differentiate between propositional logic and First order logic.

P.T.O.

		Q5) (a)	Explain Forward chaining algorithm with the help of example.	[9]
		b)	Write and explain the steps of knowledge engineering process.	[9]
	9	,	OR	
		Q(6)	Explain Backward chaining algorithm with the help of example	[9]
		b)	Write a short note on 2	[9]
				[>]
		_ `	Resolution and	
			ii) Unification	
	(_ ,		
Q7) a) Write a short note on planning agent, state goal and a				
_			representation.	[6]
)			Explain different components of planning system.	[6]
		(2)	Explain the components of AI.	[5]
			OR	•
		Q8)	What are the types of planning? Explain in detail.	[6]
		U)	Explain Classical Planning and its advantages with example.	[6]
		_ c)	Write note on hierarchical task network planning.	[5]
			. 6.2	
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5

[5926]-67