	m cha al m T	D 45-34-34 M
그는 다 51.16	大学研究生课程	とう はんばん

课程	名称	矩阵论			课程类	を別 <u>団公共</u> ロ专业	選 考核	形式 <u>口肝卷</u> 形式 <u>过闭卷</u>
学生	类别 <u>专</u>	完生 考	试日期	2023.12	.01 学生	E院系	班级	
学号			姓名		-	任课教师_		
思号	-	=	Ξ	四	五	*		总分
数位								

	分 数		**************************************
1	评卷人	_,	填空题(15分)(每小题3分,共5小题

- 1. 记 W 为实数域上的所有 3 阶对称矩阵构成的线性空间,则 W 的维数为______
- 设自然基 E_{ij} ∈ R^{n×n},该矩阵在 i 行 j 列相交位置为 1 其余 位置全为 0,则4E_{ij}的 M-P 广义逆为_______.
- 3. 矩阵 $A = \begin{pmatrix} 2 & 15 & -4 \\ 3 & 7 & 12 \\ -20 & -1 & 2 \end{pmatrix}$,則 $\|A\|_{\infty} =$ ______.
- 4. 矩 阵 $A = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ (1 1 1), 则 A 的 最 大 奇 异 值 为
- 5. {v₁,...,v_n}是Rⁿ的一组标准正交基,则

$v_1v_1^T + \cdots + v_nv_n^T$	= .

分						是数域					
评礼	人金	$V_n($	F) 上	的线	性变	换.设有	ī	丰零市	11	tαe	$V_n(F)$

使得 $T^{n-1}(\alpha) \neq 0$ 且 $T^n(\alpha) = 0$.

(1)证明: $\{\alpha, T(\alpha), T^2(\alpha), \cdots, T^{n-1}(\alpha)\}$ 构成 $V_n(F)$ 的一组基:

(2)求线性变换在基 $\{\alpha, T(\alpha), T^2(\alpha), \cdots, T^{n-1}(\alpha)\}$ 下的矩阵 A.

- (1) 求一组基 $\{f_1, f_2, f_3\}$, 使得T在这组基下的矩阵为Jordan 标准形 J_A ,并求 J_A .
- (2) 给出T的一个二维不变子空间W,且W不构成特征子空间。

分 数	四、(10分)假设3阶方阵 A 满足
评卷人	$Ax = 2x - 3(x, u_1)u_1 - 2(x, u_2)u_2,$

其中 $u_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, 求矩阵 A 的奇异值分解。

分 数 评卷人

五、 计算题 (1) (15分) 给定方程组 Ax = b,

其中

$$A = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ 2 & 4 & 1 & 2 \end{pmatrix}, \ b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

问方程组是否有解?若有解,求最小范数解;若无解,求最小 二乘解。 (2)(15分)求解以下微分方程组

$$X'(t) = \begin{pmatrix} 2 & 1 & -1 \\ -3 & -1 & 1 \\ 9 & 3 & -4 \end{pmatrix} X(t), \quad X(0) = \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}.$$

(2) (7 分)矩阵 $A = (A_1, A_2, ..., A_n) \in R^{m \times n}, \alpha = \underbrace{(1, ..., 1)}_{n} \in R^{1 \times n}.$ 则当 向量 $x \in R^{m \times 1}$ 取何值,使得 $\|A - \alpha \otimes x\|_F$ 最小?这里 $\|\cdot\|_F$ 表示矩阵的 Frobenius 范数。