

THE DO'S AND DON'TS OF DESIGNING & REPORTING NEUROFEEDBACK STUDIES

Tomas Ros, PhD

Department of Neuroscience, University of Geneva, Switzerland Research Staff Scientist, Center for Biomedical Imaging, Geneva University Hospitals

doi:10.1093/brain/awaa009 BRAIN 2020: 143; 1674–1685 | 16

UPDATE

Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist)

Tomas Ros, 1,* Stefanie Enriquez-Geppert, 2,3* Vadim Zotev, Kymberly D. Young, 5 Guilherme Wood, Susan Whitfield-Gabrieli, 7,8 Feng Wan, Patrik Vuilleumier, François Vialatte, 11 Dimitri Van De Ville, 12 Doron Todder, 13,14 Tanju Surmeli, 15 James S. Sulzer, 16 Ute Strehl, 17 Maurice Barry Sterman, 18 Naomi J. Steiner, 19 Bettina Sorger,²⁰ Surjo R. Soekadar,²¹ Ranganatha Sitaram,²² Leslie H. Sherlin,²³ Michael Schönenberg,²⁴ Frank Scharnowski,^{25,26} Manuel Schabus,²⁷ Katya Rubia,²⁸ Agostinho Rosa,²⁹ Miriam Reiner,³⁰ Jaime A. Pineda,³¹ Christian Paret,³² Alexei Ossadtchi, 33 Andrew A. Nicholson, 25,26 Wenya Nan, 34 Javier Minguez, 35 Jean-Arthur Micoulaud-Franchi, 36 David M.A. Mehler, 37 Michael Lührs, 20 Joel Lubar, 38 Fabien Lotte,³⁹ David E.J. Linden,⁴⁰ Jarrod A. Lewis-Peacock,⁴¹ Mikhail A. Lebedev,^{42,43,44} Ruth A. Lanius, 45 Andrea Kübler, 46 Cornelia Kranczioch, 47 Yury Koush, 48 Lilian Konicar, 49 Simon H. Kohl, ⁵⁰ Silivia E. Kober, Manousos A. Klados, ⁵¹ Camille Jeunet, ⁵² T.W.P. Janssen, ⁵³ Rene J. Huster,⁵⁴ Kerstin Hoedlmoser,²⁷ Laurence M. Hirshberg,⁵⁵ Stephan Heunis,⁵⁶ Talma Hendler,⁵⁷ Michelle Hampson,⁵⁸ Adrian G. Guggisberg,⁵⁹ Robert Guggenberger,⁶⁰ John H. Gruzelier, ⁶¹ Rainer W. Göbel, ²⁰ Nicolas Gninenko, ¹² Alireza Gharabaghi, ⁶⁰ Paul Frewen, 45 Thomas Fovet, 62 Thalía Fernández, 63 Carlos Escolano, 35 Ann-Christine Ehlis, ⁶⁴ Renate Drechsler, ⁶⁵ R. Christopher deCharms, ⁶⁶ Stefan Debener, ⁴⁷ Dirk De Ridder, 67 Eddy J. Davelaar, 68 Marco Congedo, 69 Marc Cavazza, 70 Marinus H.M. Breteler, ⁷¹ Daniel Brandeis, ^{65,72} Jerzy Bodurka, ⁷³ Niels Birbaumer, ⁷⁴ Olga M. Bazanova, 75 Beatrix Barth, 64 Panagiotis D. Bamidis, 76 Tibor Auer, 77 Martijn Arns 78 and Robert T. Thibault 79,80,*

CRED-nf best practices checklist 2020			
Domain	Item #	Checklist item	Reported on page #
Pre-experin	nent		
	1a	Pre-register experimental protocol and planned analyses	
	1b	Justify sample size	
Control gro	ups		
	2a	Employ control group(s) or control condition(s)	
	2b	When leveraging experimental designs where a double-blind is possible, use a double-blind	
	2c	Blind those who rate the outcomes, and when possible, the statisticians involved	
	2d	Examine to what extent participants and experimenters remain blinded	
	2e	In clinical efficacy studies, employ a standard-of-care intervention group as a benchmark for improvement	
Control me	asures		
	3a	Collect data on psychosocial factors	
	3b	Report whether participants were provided with a strategy	
	3c	Report the strategies participants used	
	3d	Report methods used for online-data processing and artefact correction	
	3e	Report condition and group effects for artefacts	
Feedback s	pecificatio	ns	
	4a	Report how the online-feature extraction was defined	
	4b	Report and justify the reinforcement schedule	
	4c	Report the feedback modality and content	
	4d	Collect and report all brain activity variable(s) and/or contrasts used for feedback,	
		as displayed to experimental participants	
	4e	Report the hardware and software used	
Outcome m	easures		
Brain	5a	Report neurofeedback regulation success based on the feedback signal	
	5b	Plot within-session and between-session regulation blocks of feedback	
		variable(s), as well as pre-to-post resting baselines or contrasts	
	5c	Statistically compare the experimental condition/group to the control	
		condition(s)/group(s) (not only each group to baseline measures)	
Behaviour	6a	Include measures of clinical or behavioural significance, defined a priori, and	
	6b	describe whether they were reached Run correlational analyses between regulation success and behavioural	
	db	outcomes	
Data storag	ıe		
Data Storay	7a	Upload all materials, analysis scripts, code, and raw data used for analyses, as	
		well as final values, to an open access data repository, when feasible	

Online version of CRED-nf checklist:

https://crednf.shinyapps.io/CREDnf/

Top 3 DOs:

- 1. DO include a control group:
- Sham feedback
- Another neural target
- Biofeedback (EMG, HRV)
- 2. DO use a double-blind design + use artifact control
- 3. DO pre-register a study with *a priori* hypotheses on:
- online changes of target brain activity (within + between training sessions)
- offline changes of target brain activity (within + between training sessions)

What is the similarity & difference between classic **BCI** and **neurofeedback** (NFB)?

Similarity:

BCI & NFB both enable control of brain activity in a closed-loop

Difference:

- classic BCI: used for executing a command (e.g. to an external device)
- -→ "control"
- NFB: used for lastingly altering brain activity as a goal in itself
- -→ "control + plasticity"

Example 1: Neurofeedback (NFB) up-regulation of alpha rhythm in healthy subjects

Plasticity is Hebbian since it occurs in the direction of NFB training

Example 2: Neurofeedback (NFB) down-regulation of theta rhythm in autistic children

Neurofeedback improves executive functioning in autism spectrum disorders (Kouijzer et al. 2008)

TOP 3 DON'Ts:

1. DON'T generalise neural features from a healthy population to a neurological disorder

Top-down Modulation of Neural Activity in Anticipatory Visual Attention

Yuelu Liu^{1,2}, Jesse Bengson², Haiqing Huang¹, George R. Mangun^{2,3} and Mingzhou Ding¹

Alpha power

Patients with *left* visuospatial neglect (after stroke in right hemisphere)

THETA

BETA

Stroke > controls

DELTA

ALPHA

ABSOLUTE POWER GAMMA

Effects of neurofeedback on impulsivity in adult ADHD

25 ADHD patients: 34 ± 11 y.o, 14 males **22 Control subjects:** 31 ± 7 y.o, 8 males

Spontaneous EEG in adult ADHD

Poil et al. 2014, Woltering et al. 2012 Koehler et al. 2009

Increased alpha in adult ADHD suggests cortical hypo-activation

EEG results

At baseline (T1): ADHD vs controls

Decreased alpha in adult ADHD suggests cortical hyper-activation

Alpha rebound after NFB

Correlation between alpha power & impulsivity

- ↑ alpha during Go/NoGo after neurofeedback
- ↓ commission errors

Inverted-U relationship between CNS arousal and performance

Theoretical model of neurofeedback mechanism:

Homeostatic normalization of E/I balance in adult ADHD

TOP 3 DON'Ts:

- 1. DON'T generalise neural features from a healthy population to a neurological disorder
- 2. DON'T expect homogenous neural features within the same neurological disorder
- 3. DON'T expect only Hebbian changes in the neural feature, but also homeostatic effects.