

Microservice Smells and Automated Detection Tools: A Systematic Review

Software Engineering Approaches

Denis Pinheiro, Johnatan Oliveira and Eduardo Figueiredo Microservices 2022 - International Conference on Microservices

Summary

- Introduction
- Research Design
 - Research Questions
 - Digital Libraries and Query String
 - Filtering Process
 - Research Execution
- Results and Discussions
- Threats to Validity
- Related Work
- Conclusion and Future Work

Introduction

- The Microservice Architecture style (MSA) is becoming popular in the development of modern applications.
- Architectural and Code Smells are symptoms of poor design that can hinder code understandability and decrease maintainability.
 - Several architectural bad smells have been defined in literature.
 - Research field for service-based anti-patterns and bad smells is not as cohesive and organized.
- The goal is to present a systematic review of the literature related to microservices smells and related detection tools.

Background

- Microservice Architecture (MSA):
 - Lews and Fowler (2014)

"an approach to developing a single application as a suite of small services, each running in its own process and communicating with lightweight mechanisms, often an HTTP resource API."

- Architecture Style (Fowler, 2015)
 - An alternative to monolithic applications (MA)
 - Shorter cycles for testing, build and release
 - Less frequently affected by downtime than MA
- Zimmermann (2017)

"Microservice Architecture (MSA) may also be described as one way of implementing Service Oriented Architecture (SOA)."

Background

Architecture and Code Smells:

- The result in the source code of bad software design or implementation decisions.
 - Code or Architecture smells (anti-patterns) lead to Technical debt (quality degradation).
- Fowler (1999) provided a catalog of 22 bad smells (and related Refactorings).

Microservice Smells:

- Architecture or Code Smells identified in the development of microservices.
- Related microservice smells terms from the literature considered in this work:
 - Microservice smell (MsS)
 - Microservice Pitfall (MsP)
 - Microservice Technical Debt (MTD)
 - Architecture Smell (ArcS)
 - Architectural Technical Debt (ATD)
 - Symptoms of Low Manutenibility (LoM)
 - Challenges for Evolution (ChE))
 - Migration Smell (MigS)

Research Design

Systematic Literature Review (SLR) following protocol of Kichenham (2007).

• Planning:

- Identified the topics to be investigated (research questions)
- Selected the Digital Libraries
- Defined search string
- Applied filtering process with include/exclude criteria

Research Questions

- **RQ1 (When):** How has the research interest on microservice smells evolved over time?
- **RQ2 (Where):** *Where have the papers related to microservice smells been published?*
- **RQ3 (How):** How are microservice smells researches being performed?
- **RQ4 (What):** What are the microservice smells being reported by literature so far?
- **RQ5 (What):** What are the microservice smells detection tools presented in the literature?

Digital Libraries and Query String

Database	Address	
ACM Digital Library	https://dl.acm.org	
Engineering Village	https://www.engineeringvillage.com	
IEEE Explore	https://ieeexplore.ieee.org	
Science Direct	https://www.sciencedirect.com	
Scopus	http://scopus.com	
Springer	http://link.springer.com	

"microservice" AND ("architectural smell" OR "code smell"
OR "bad smell" OR "anti-pattern" OR "technical debt")

Filtering Process

Inclusions Criteria

- Papers published in Computer Science
- Papers peer-reviewed and published in conferences, journals, book chapters or science magazines
- Papers written in English and available in electronic format.
- Papers published until mid-21 (Jun 1st).

Exclusions Criteria

- Papers with less than 5 pages
- Thesis, dissertation, tutorial and courses
- Websites, leaflets, and grey literature (blogs and non scientific magazines)

Research Execution

- **Step 1:** Applying the search string in all Digital Libraries (all metadata);
- Step 2: Applying the inclusion/exclusion criterias;
- Step 3: Title filtering;
- Step 4: Abstract filtering;
- **Step 5:** Reading remaining papers:
 - o collecting the *microservice smell* catalog and related *detection tools/methods*.

RQ1 (When): Research Over Time

RQ2 (Where): Paper Venues

RQ3 (How): Type of Empirical Studies

RQ4 (What): Microservice Smells (21 selected)

Microservice Smell	Category	DT #1[14]	DT #2[22]
(by study)	(by study)	(Arcan)	(MSANose)
API Versioning (Static Contract Pitfall)	MsS(MsP)		X
Cyclic Dependency	MsS	X	X
Shared Libraries	MsS		X
Outdated Library	LoM/MTD		
ESB usage	MsS		X
Not Having an API Gateway	MsS/MDT/ArcS		X
Hard-coded endpoints	MsS(MsP)	X	X
Too Many Pont-to-Point Connections	MTD		
Shared Persistence (Data ownership)	MsS(MsP)/ArcS	X	X
Inappropriate Service Intimacy	MsS		X
Microservice Greedy	MsS		X
Wrong Cuts	MsS		X
Single Layer Teams	ArcS		
Too Many Standards (Lust/Gluttony)	$\mathrm{MsS}(\mathrm{MsP})$		X
Technological Heterogeneity	ChE/ATD		
Architectural/Technical Complexity	ChE/ATD		
No Standardized Communication Model	MTD/ATD		
Business Logic Inside Comm. Layer	MTD/ATD		
Diff. Middleware Tech. for Comm.	MTD		
Inadequate Testing	LoM/ChE		
Weak Source Code and Knowledge mgmt.	MTD		

* All 77 microservice smells

https://bit.ly/3ow5dSn

RQ5 (What): Microservice Smells Detection Tools

- **New Arcan** (Pigazzini et al., 2020):
 - Cyclic Dependencies
 - Hard-Coded Endpoints
 - Shared Persistence

• Evaluation highlights:

 Evaluated manually the detection of 3 microservices smells using 30 open-source projects presented by Marques and Astudillo (2018).

lab-soft software engineering laboratory

RQ5 (What): Microservice Smells Detection Tools

- MSANose (Walker et. al., 2021) :
 - API Versioning
 - Cyclic Dependency
 - ESB Usage
 - Hard-Coded Endpoints
 - Inappropriate Service Intimacy
 - Microservice Greedy
 - Not Having an API Gateway
 - Shared Libraries
 - Shared Persistency
 - Too Many Standards

Evaluation highlights:

 Evaluated the automatic detection by presenting 2 study cases that uses fictional microservices projects

RQ5 (What): Microservice Smells Detection Tools

Related Detection Tools:

- o Bogner et. al. (2018, 2019)
- 19 smells detection Tools
- Supports microservices adoption on:
 - Symptoms of Low Maintainability
 - Challenges on Evolvability

Supporting tool	${\bf Maintainability}[2]$	Evolvability[4]
Cadecov	X	X
CAST	X	
Checkstyle	X	Х
Cobertura	X	X
Codacy	X	X
Error Prone	X	
FindBugs	X	X
HPE AML Suite	X	
IDE Linting		Х
JMetrics	X	
Lattix	X	
Maven Jardiff	X	
PMD	X	X
QBench SISSy	X	
Resharper	X	
SonarQube	X	X
Structure101		X
Teamscale	X	
VersionEye	X	X

Threats to Validity

External Validity

- It concerns the ability to generalize the results.
- Major threat was during the identification of primary studies:
 - Digital libraries quality (Six)
 - Missed studies due to keywords (Synonyms)

Threats to Validity

Internal Validity

- Are results reliable enough?
- Is this reproducible?
- This threat was addressed by following:
 - Adopted a systematic protocol (Kichenham, 2007).
 - Three researchers have been involved.

Threats to Validity

Conclusion Validity

- Ability to draw correct conclusions from the study.
- Potential threat is the reliability of data extraction:
 - Cross-discussions between reviewers.
 - In the event of disagreement of two, the third researcher act as an arbitrator.

Related Work

• Taibi and Lenarduzzi (2018)

- Provided a catalog with definitions for 11 microservice-specific bad smells.
- Result of 72 interviews of experienced microservice developers.

Related Work

• Bogner et al. (2018)

- Performed a SLR focused on service-based antipatterns and bad smells.
- o Presented a holistic data model to describe and document service anti-patterns.
- Reported 36 anti-patterns.

Related Work

• Pereira-Vale et al. (2021)

- Performed a SLR on scientific papers (370) and gray literature (620).
- Focused on investigating security on microservice-smells.
- Provided a comprehensive catalog security solutions for microservice-based systems.

Conclusions and Future Work

- We presented a literature review
- Research on this topic has grow.
- We found 77 microservice smells.
- Small number of detection tools was reported (2)
- Future work:
 - Consolidate guidelines for microservices adoption.

Software Engineering Approaches

Microservice Smells and Automated Detection Tools: A Systematic Review

Q & A

Denis Pinheiro, Johnatan Oliveira and Eduardo Figueiredo Microservices 2022 - International Conference on Microservices