Lab chat on my PhD

"Novel algorithms for population-scale analysis of complex plant genomes"

July 2, 2015

What?

▶ Novel algorithms to analyse large-scale genomics data

What?

- Novel algorithms to analyse large-scale genomics data
- Our wish-list:
 - ► Reference & alignment free
 - Tolerates any sequencing platform
 - ► Works with Borevitz-style "wide and shallow" expts: e.g. 1000 samples at 1x

How?

- ▶ k-mer analysis: analyse k-length words of sequence
 - Fast
 - ► Constant-memory (with khmer)
 - ► Scaleable and parallelisable

How?

- ▶ k-mer analysis: analyse k-length words of sequence
 - Fast
 - Constant-memory (with khmer)
 - ► Scaleable and parallelisable
- ▶ Multi-layered "zooming" analysis
 - ► First pass basic clustering
 - Error correction
 - Population graph "alignment"
 - Variant calling

How?

- ▶ k-mer analysis: analyse k-length words of sequence
 - Fast
 - Constant-memory (with khmer)
 - Scaleable and parallelisable
- Multi-layered "zooming" analysis
 - ► First pass basic clustering
 - Error correction
 - ► Population graph "alignment"
 - Variant calling
- In-silico experiment-driven development

k-mer based clustering

- k-mer based clustering
- In collaboration w/ Sylvain Foret, Cheng-Soon Ong, Christfried Webers (NICTA)

- k-mer based clustering
- In collaboration w/ Sylvain Foret, Cheng-Soon Ong, Christfried Webers (NICTA)
- Extending work in alignment-free sequence comparison (SF) and text/document clustering (C-SO, CW @ NICTA).

- k-mer based clustering
- In collaboration w/ Sylvain Foret, Cheng-Soon Ong, Christfried Webers (NICTA)
- Extending work in alignment-free sequence comparison (SF) and text/document clustering (C-SO, CW @ NICTA).
- Have functioning software package: kWIP

- k-mer based clustering
- In collaboration w/ Sylvain Foret, Cheng-Soon Ong, Christfried Webers (NICTA)
- Extending work in alignment-free sequence comparison (SF) and text/document clustering (C-SO, CW @ NICTA).
- Have functioning software package: kWIP
- Using Titus Brown's khmer (contributed a lot of code myself)

► The k-mer Weighted Inner Product

kWIP

- ► The k-mer Weighted Inner Product
- Algorithm:
 - ► For each sample: count all k-mers (k=20) into a hash

- ► The k-mer Weighted Inner Product
- Algorithm:
 - ▶ For each sample: count all k-mers (k=20) into a hash
 - ► For each analysis set, a.k.a "population":
 - Calculate the informational entropy of hash bins (vector P)
 - ▶ For each pair of hashes A and B, calculate $A \cdot B \cdot P$

- ► The k-mer Weighted Inner Product
- Algorithm:
 - ▶ For each sample: count all k-mers (k=20) into a hash
 - ► For each analysis set, a.k.a "population":
 - Calculate the informational entropy of hash bins (vector P)
 - ▶ For each pair of hashes A and B, calculate $A \cdot B \cdot P$

Shannon Entropy

kWIF

- ► The software:
 - ► C++, 2000 SLOC
 - ▶ Depends on khmer
 - ▶ Parallelised, \approx 12 hrs for 96 rice samples.

- ► The software:
 - ► C++, 2000 SLOC
 - Depends on khmer
 - ▶ Parallelised, \approx 12 hrs for 96 rice samples.
- ▶ The paper:
 - Coming soon, planning to have it done by August
 - Involves many in-silico experiments

Rice Experiment

- ▶ 3000 rice lines, 25k sequence runs, 20TB data
- Analysing in sets of 96, from two major groups
- ▶ Looks very accurate, detect Basmatia as Jap, strange samples.

Drosophila

- Several read technologies
- Several species, population, reps
- ▶ Detect failed samples, repoduced known tree

Simulation??

- ▶ Need to think about simulation
- ► Time consuming to do well, but can make lots of data
- Can we do it somewhat dodgy?