Search For Double Higgs Production in the $b\bar{b}WW^*$ Channel

John C.S. Myers

University of Oregon

May 19, 2019

1/18

About Me

- ▶ B.Sc. at Ohio State University, 2013
 - Worked with Harris Kagan and KK. Gan on accelerated lifetime testing for IBL optical readouts
- ▶ Began work at UO with Stephanie Majewski in 2013
 - Worked on LAr Phase-II Upgrade TDR
 - \blacktriangleright Began working with Eric Torrence in 2015 on τ trigger upgrade studies Qualification task
 - lacktriangle Started work on full Run 2 Boosted $HH o bar bWW^*$ analysis
 - ▶ 2015-2016 analysis needed manpower to move toward publication
 - ► Started working as HLT Reprocessing Expert in 2017
 - ► Moved to Coordinator within 9 months
 - ► Served as Trigger Online On-call during 2018

Motivation

SM di-Higgs production

- Two dominant production modes
- ► Destructively interfere
- Gives very small cross section
- Measurement of trilinear Higgs coupling is an important measurement for the HL-LHC

Motivation

Resonant di-Higgs production Run 2, more interesting to perform search for BSM productionEg: Heavy Higgs-like Scalar

- Couples to SM Higgs
 - Large enhancement to HH production rate
- ► This was the original focus of my thesis

bbWW* semi-leptonic channel

- ► Lower QCD background but more $t\bar{t}$ than 4b
- Lepton is strong discriminate for QCD but decay contains
- This search is not currently competitive for SM measurement
- Could be competitive at large resonant mass

HH → bbWW Analysis Strategy

Resolved Analysis

- SM production is not very boosted
- ► A resolved topology is used for a SM, non-resonant measurement and a low mass resonance search

Boosted Analysis

- As the resonant mass increases, the system becomes more boosted
- Boosted analysis focuses on high resonant masses (1-3 TeV)

Data and Background

Final State

▶ bblνqq

Data

▶ 36.1 fb⁻¹

Major Backgrounds

- ightharpoonup $t\bar{t}~(\sim 50\%)$
- ► W+Jets (~ 20% (~ 5% Res.))
- ► QCD Multi-jet (~ 20%)
 - ► (from data)

$t\bar{t}$ vs signal

Resolved Event Selection

Pre-selection

- ▶ 1+ trigger matched electron or muon
- ▶ 4+ jets, exactly 2 b-tags

Event Selection

- **▶** *E*⁄
- ▶ high p_T^{WW} and p_T^{bb}
- $ightharpoonup m_{bb} \sim m_H$

- ► m_{HH} window
 - Depends on resonant signal mass hypothesis
 - ► I helped develop an implement these windows

Resolved Background Determination

tτ

- ► Normalized in m_{bb} CRs
 - ► reversed *m_{bb}* cut

Other MC Bkg.

Modeled using MC and normilized to SM XSec

QCD multi-jet background

- ► ABCD data driven estimate
 - $ightharpoonup N_A = FN_CN_B/N_D$
 - F is a correction factor determined earlier in the cutflow
 - I developed the correction factor to overcome low stats in C region

Resolved Background Shape Check

$$m_T = \sqrt{2p_T^l E_T \times (1 - \cos \Delta \phi)}$$

John C.S. Myers

Boosted Analysis

Signal Region

- ▶ slightly larger 万 cut
- $ightharpoonup m_{
 m Large-R} \sim m_H$

Background Modeling

- ► tt̄ VR
- Other MC Bkg: Normalized to SM XSec
- Multijet: Similar to resolved
 - ► *5*/₇ > 50 GeV
 - ► m_{HH} dist, taken from 1 b-tag selection

Results

Combined Limit

Improvements for Full Run II

Motivation

- ► $H \rightarrow WW$ becomes boosted around 1 TeV
- Quarks become too close together to use 0.4 jets
- Overlap removal with leptons kill efficiency
- ► A "Fully-Boosted" selection recovers lost efficiency at high m_S

Event Selection

14/18

Signal Reconstruction

Background Modeling

Similar to Boosted Analysis

ightharpoonup $t\bar{t}$ checked in m_{bb} VR

QCD multijet: ABCD method

► Other: Norm to SM XSec

	_	
Sample	Yield	Stats Unc
tt	187.7	± 8.8
W+Jets	33.7	$\pm~1.9$
QCD	34.5	± 5.5
Single-top	7.0	\pm 1.3
Z+Jets	4.7	± 0.4
Dibosons	3.3	± 0.6
Prediction	271.0	± 10.7
Data	268	-
Data/Pred	0.99	-

Results

Results

Improved Analysis

Backup

John C.S. Myers University of Oregon

19/18