Saturday, July 8, 2023 10:44 AM

Ordinary Least Squares:
$$OLS$$
)
$$y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_K x_K$$

$$Error f^n Z = \sum \begin{bmatrix} y_1 - (b_0 + b_1 x_1 + b_2 x_2 + \dots + b_K x_K) \end{bmatrix}^2$$

$$\frac{\partial Z}{\partial b_0} = 0, \quad \frac{\partial Z}{\partial b_1} = 0, \quad \frac{\partial Z}{\partial b_K} = 0$$

$$K+1 \text{ equations}$$

Ridge Regression (12)

The coeff of less influential variables, reduce to a lower value
$$\pm 0$$

Error $\int_{0}^{\infty} Z = \sum_{i=1}^{\infty} y_{i} - (b_{0} + b_{1}x_{1} + b_{2}x_{2} + \cdots + b_{K}x_{K}) + \alpha \sum_{j=1}^{\infty} b_{j}$

$$\frac{\partial z}{\partial b_{0}} = 0, \quad \frac{\partial z}{\partial b_{1}} = 0, \quad \frac{\partial z}{\partial b_{K}} = 0$$

Regularization

Regularization

Parameter

 $\int_{j=1}^{k} b_{j}^{2} = b_{1}^{2} + b_{2}^{2} + \dots + b_{K}^{2} : l_{2} \text{ norm}$

Lasso Regression: - (li)
The coeff of less influential variables, reduce to zero $Z = \sum_{2n} \left[y_1 - \left(b_0 + b_1 x_1 + b_2 x_2 + \dots + b_K x_K \right) \right] + \alpha \sum_{j=1}^{K} b_j$ $\frac{\partial Z}{\partial b_0} = 0$, $\frac{\partial Z}{\partial b_1} = 0$, $\frac{\partial Z}{\partial b_K} = 0$ a non-negative number: $\frac{\partial Z}{\partial b_0} = 0$, $\frac{\partial Z}{\partial b_1} = 0$ Regularization

Parameter

Elastic net: (l, l2) n = training obs $Z = \frac{1}{2n} = \frac{1}$

$$-2n - \lfloor 0i \rfloor$$

$$+ < * l_1 - ratio * = |bj|$$

$$+ < 0.5 * < * (1 - l_1 - ratio) * = |bj|$$

bo, b, ... bx : Parameters

Model	Hyper-Parameters
Ridge	Alpha
Lasso	Alpha
Elastic Net	Alpha, l1_ratio

then drop X2