Denial of Service Attacks and Resilient Overlay Networks

Angelos D. Keromytis

Network Security Lab

Computer Science Department, Columbia University

Motivation: Network Service Availability

Motivation: Network Service Availability

We are increasingly relying on Internet Services

• Financial services, Voice over IP (VoIP), e- Government, news, "Cloud Computing", ...

But Internet Services are not dependable...

- Denial of Service attacks can disrupt online service
 - DDoS attack on Estonia (2007)
 2 Weeks, 1M computers, 5,000 clicks per second
 - ▶ DDoS attacks against Georgia (2008)
 - ▶ Storm Worm: 1.7M infected machines used for DDoS (typically extortion)
- Ease of assembling and controlling botnets means the problem will persist

- End-users/sites:
 - Bandwidth over-provisioning
 - Multi-hosting/multi-homing
 - Use of Content Delivery Networks
- ISPs:
 - Blackhole routing
 - Anomaly detection & blocking
 - Centralized vs. distributed

- IP traceback (attribution)
- IP Pushback (reactive blocking)
- Collaborative filtering (reactive blocking)
- Router/receiver capabilities (proactive blocking)
- Improve host-based protection

- Few economic incentives for deployment
 - Most schemes require global adoption & deployment
 - End-users lack the means to react
- DDoS is mostly an externality for ISPs
 - no market opportunity for router manufacturers
- Cross-ISP collaboration not always feasible
 - Competition concerns

- A different term of "distributed system"
 - Collection of systems
 - Connected over a wide-area network, such as the Internet
 - Route traffic amongst them without considering physical topology
 - Addressing, "neighborhood", other properties may differ from those of the actual network fabric
- Good way of introducing new functionality into the network without changing routers/protocols (and, sometimes, end-hosts)

- Distribute logical function of a firewall across the Internet
 - Allow users to contact any overlay node
 - Any overlay node can validate a legitimate user
 - Once admitted into overlay, user's traffic is treated preferentially
 - Allowed to reach attacked site
 - All other traffic dropped/rate-limited

- Difficult to attack with a DDoS due to distributed nature
 - Assumes "large enough" overlay
- Does not rely on ISP co-operation or goodwill
 - Can take advantage of such, where it exists
- A single overlay can provide protection service to different users
 - Commercialization model similar to CDN
- A large enough distributed organization can create its own overlay

- How do users discover (accessible) overlay nodes?
 - Largely static content, users (software) can access any node
- Overlay network becomes obvious target of attack
 - Dedicated nodes, easier to "harden"
- Performance issues
 - Higher latency, lower throughput due to non-direct routing
- How can we tell who is a legitimate user, vs. a bot?
- How do we effectively discriminate overlay vs. non-overlay traffic?

Can we remove Packet Filtering?

Prototype in Planet-Lab

Migration Performance

Latency increase by a factor of 2 when using indirection

Latency increase by a factor of 2 when using indirection

Also vulnerable to some more intelligent attacks ...

New Attack: Sweeping Attack

New Attack: Sweeping Attack

New Attack: Sweeping Attack

Resilience Results: Throughput

Throughput vs Error Rate in regular TCP

Source: Robust TCP for Large-Bandwidth Delay, Packet Erasure and Multi-Path Environments. Shivkumar Kalyanaraman (RPI), K.K. Ramakrishnan (AT&T Labs Research)

Fix attempt: use many entry points

Indirection-Based Network (IBN)

But this solution increases the state stored!!!

Ticket-based mechanism to the rescue

- Move state to the ticket
- Ticket is issued by the Overlay using a shared key
- Ticket becomes a contract between the user and the overlay
- Use of a shared key guarantees honor of the agreement

Key & Ticket establishement protocol

- Random spreading sequence protects against "stalker" attacks
- Packet sequence range guarantees traffic control
- Ticket design and issue protocol prevent replay, spoofing and computational attacks

Overlay Nodes

Spread Spectrum Architecture - Replication

Indirection-Based Network (IBN)

A2M: Access Assured Mobile Desktop Computing

End-to-End Latency with Client Packet Replication

Throughput vs Node Failure

End-to-End Latency vs Node Failure (Web)

Performance Results: Latency (Web)

Web Latency vs Packet Replication

Video Quality vs Packet Replication

Resilience Results: Video Streaming

Resilience Results: Video Streaming

Video Quality vs Node Failure for Wireless

Video Quality vs Node Failure

TCP Friendliness of Approach

- Initial implementation non-TCP friendly provided the worst case scenario (use of non-responsive channels)
- Current implementation encodes path in the TCP options field for acknowledgments generating a different TCP-window for each path
- Works for regular TCP, UDP, and UDP-encapsulated TCP
- Existence of multiple paths makes attacks against TCP more difficult

Conclusion

- Recent events have demonstrated the continued and real threat of DDoS as an effective instrument of both cyber-warfare and cyber-crime
- Overlay-based mechanisms can mitigate the impact of large DDoS attacks
 - Topology- and provider-independent deployment at relatively low cost
 - Performance impact low (< 10%), only incurred during attack periods
 - A pan-European DDoS Protection Network?
 - Leverage PlanetLab/GRID sites as "seeds"

What is the underlying problem?

How clients connect to the overlay:

- Connection to a single indirection node (entry point)
- Client's state is stored to this entry point
- End-to-End connection depends on a small but static set of overlay nodes

What is the underlying problem (II)?

How the overlay sees the client:

- User can establish multiple connections to an overlay node
- An authenticated client can inject any amount of traffic to the overlay network
- Even if there is access control in the entry point the user can reset that by attacking the entry point

