CS 473ug: Algorithms

Chandra Chekuri chekuri@cs.uiuc.edu 3228 Siebel Center

University of Illinois, Urbana-Champaign

Fall 2007

Part I

Optimal Binary Search Trees

Binary Search Trees

Given n sorted keys/numbers $a_1 < a_2 < \ldots < a_n$. Data structure to store keys so that one can answer dictionary query: is a one of the keys?

Binary Search Trees

Given n sorted keys/numbers $a_1 < a_2 < ... < a_n$. Data structure to store keys so that one can answer dictionary query: is a one of the keys?

Binary Search Tree:

- a full binary tree T
- keys at leaves of the tree
- leaves in left to right give sorted order a_1, a_2, \ldots, a_n
- internal node stores relevant information to guide search

Given a, can walk down the tree to check if a in the tree or not.

Example

3, 7, 9, 11, 15

Balanced Binary Search Trees

General setting: keys are dynamic with insertions, deletions, etc.

Dynamic search trees: keep tree balanced so that height of tree is $O(\log n)$. Search/insertion/deletion take $O(\log n)$ time.

Static setting:

- keys a_1, a_2, \ldots, a_n known in advance
- no insertions or deletions, only search queries
- also know frequencies of search queries: p_i probability of querying a_i

Static setting:

- keys a_1, a_2, \ldots, a_n known in advance
- no insertions or deletions, only search queries
- also know frequencies of search queries: p_i probability of querying a_i

Problem: design a binary search tree T so as to minimize the average search time

$$\sum_{i=1}^n p_i s_T(a_i)$$

where $s_T(a_i)$ is the search time for a_i in T.

Static setting:

- keys a_1, a_2, \ldots, a_n known in advance
- no insertions or deletions, only search queries
- also know frequencies of search queries: p_i probability of querying a_i

Problem: design a binary search tree T so as to minimize the average search time

$$\sum_{i=1}^n p_i s_T(a_i)$$

where $s_T(a_i)$ is the search time for a_i in T.

What is $s_T(a_i)$?

Static setting:

- keys a_1, a_2, \ldots, a_n known in advance
- no insertions or deletions, only search queries
- also know frequencies of search queries: p_i probability of querying a_i

Problem: design a binary search tree T so as to minimize the average search time

$$\sum_{i=1}^n p_i s_T(a_i)$$

where $s_T(a_i)$ is the search time for a_i in T.

What is $s_T(a_i)$? depth of a_i in T denoted by $d_T(a_i)$

Example

Real Problem

Can search for any key a

Statistical information: $q_0, p_1, q_1, p_2, q_2, \dots, p_n, q_n$

- p_i : probability that a_i is searched for
- q_i : probability that a number a in the range (a_i, a_{i+1}) is searched for

Simpler problem ideas can be extended to the above real problem.

Optimal Binary Search Trees: Recursive Solution?

Can we solve the problem recursively?

S(i,j): optimum cost of a binary search tree for $a_i, a_{i+1}, \ldots, a_j$ with probabilities $p_i, p_{i+1}, \ldots, p_j$ Want S(1, n)

Optimal Binary Search Trees: Recursive Solution?

Can we solve the problem recursively?

S(i,j): optimum cost of a binary search tree for $a_i, a_{i+1}, \ldots, a_j$ with probabilities $p_i, p_{i+1}, \ldots, p_j$ Want S(1,n)

Recurrence for S(i,j)

$$S(i,j) = \min_{i \le k < j} \left(S(i,k) + S(k+1,j) + \sum_{k=i}^{j} p_k \right)$$

ax, acti --

Optimal Binary Search Trees: Recursive Solution?

Can we solve the problem recursively?

S(i,j): optimum cost of a binary search tree for $a_i, a_{i+1}, \ldots, a_j$ with probabilities $p_i, p_{i+1}, \ldots, p_j$ Want S(1,n)

Recurrence for S(i,j)

$$S(i,j) = \min_{i \le k < j} \left(S(i,k) + S(k+1,j) + \sum_{k=i}^{j} p_k \right)$$

Base case: $S(i, i) = p_i$ for $1 \le i \le n$

$$S(i,j) = \min_{i \le k < j} \left(S(i,k) + S(k+1,j) + \sum_{k=i}^{j} p_k \right)$$

$$S(i,j) = \min_{i \le k < j} \left(S(i,k) + S(k+1,j) + \sum_{k=i}^{j} p_k \right)$$

Base case: $S(i, i) = p_i$ for $1 \le i \le n$

How many subproblems?

$$S(i,j) = \min_{i \le k < j} \left(S(i,k) + S(k+1,j) + \sum_{k=i}^{j} p_k \right)$$

Base case: $S(i, i) = p_i$ for $1 \le i \le n$

How many subproblems? $O(n^2)$

$$S(i,j) = \min_{i \le k < j} \left(S(i,k) + S(k+1,j) + \sum_{k=i}^{j} p_k \right)$$

Base case: $S(i, i) = p_i$ for $1 \le i \le n$

How many subproblems? $O(n^2)$

Precomputation: $P(i,j) = \sum_{k=i}^{j} p_k$ in $O(n^2)$ time.

$$S(i,j) = \min_{i \le k < j} (S(i,k) + S(k+1,j) + P(i,j))$$

Base case: $S(i, i) = p_i$ for $1 \le i \le n$

$$S(i,j) = \min_{i \le k < j} (S(i,k) + S(k+1,j) + P(i,j))$$

Base case:
$$S(i, i) = p_i$$
 for $1 \le i \le n$

for
$$i = 1$$
 to n do $S[i, i] = P[i, i]$

$$S(i,j) = \min_{i \le k < j} (S(i,k) + S(k+1,j) + P(i,j))$$

Base case:
$$S(i, i) = p_i$$
 for $1 \le i \le n$

for
$$i = 1$$
 to n do $S[i, i] = P[i, i]$

for
$$d=1$$
 to $n-1$ do for $i=1$ to $n-d$ do
$$j=i+d$$

$$S[i,j]=\min_{i\leq k< j}(S[i,k]+S[k+1,j]+P[i,j])$$

Running time:

$$S(i,j) = \min_{i \le k < j} (S(i,k) + S(k+1,j) + P(i,j))$$

Base case:
$$S(i, i) = p_i$$
 for $1 \le i \le n$

for
$$i = 1$$
 to n do $S[i, i] = P[i, i]$

for
$$d=1$$
 to $n-1$ do for $i=1$ to $n-d$ do
$$j=i+d$$

$$S[i,j]=\min_{i\leq k< j}(S[i,k]+S[k+1,j]+P[i,j])$$

Running time: $O(n^3)$

Space:

$$S(i,j) = \min_{i \le k < j} (S(i,k) + S(k+1,j) + P(i,j))$$

Base case:
$$S(i, i) = p_i$$
 for $1 \le i \le n$

for
$$i = 1$$
 to n do $S[i, i] = P[i, i]$

for
$$d=1$$
 to $n-1$ do for $i=1$ to $n-d$ do
$$j=i+d$$

$$S[i,j]=\min_{i\leq k< j}(S[i,k]+S[k+1,j]+P[i,j])$$

Running time: $O(n^3)$

Space: $O(n^2)$

for
$$i = 1$$
 to n do $S[i, i] = P[i, i]$

```
for i=1 to n do S[i,i] = P[i,i] for i=n downto 1 do for \ j=i+1 \ to \ n \ do S[i,j] = \min_{i \leq k < j} (S[i,k] + S[k+1,j] + P[i,j])
```


for i = 1 to n do S[i, i] = P[i, i]


```
for i=1 to n do S[i,i]=P[i,i] for j=1 to n do for \ i=j-1 \ \text{downto} \ 1 \ \text{do} S[i,j]=\min_{i\leq k< j}(S[i,k]+S[k+1,j]+P[i,j])
```

Part II

Knapsack

Knapsack Problem

Input

- n items. each item i has a positive integer size
 s_i and a positive integer profit p_i.
- a knapsack of integer capacity B.

Goal Pack a maximum profit subset of items into knapsack.

Example

Towards a Recursive Solution

Observation

Consider an optimal solution \mathcal{O}

Case item $n \in \mathcal{O}$ Then $\mathcal{O} - \{n\}$ is an optimum solution for items 1 to n-1 in knapsack of capacity $B-s_n$

Case item $n \notin \mathcal{O}$ \mathcal{O} is an optimal solution to items 1 to n-1

Towards a Recursive Solution

Observation

Consider an optimal solution O

Case item $n \in \mathcal{O}$ Then $\mathcal{O} - \{n\}$ is an optimum solution for items 1 to n-1 in knapsack of capacity $B-s_n$

Case item $n \notin \mathcal{O}$ \mathcal{O} is an optimal solution to items 1 to n-1

Subproblems depend also on remaining capacity.

OPT(i, C): optimum profit for items 1 to i in knapsack of size C

Goal: compute OPT(n, B)

Recursive Solution

OPT(i, C): optimum profit for items 1 to i in knapsack of size C

$$OPT(i, C) = \max \left\{ egin{array}{ll} p_i + OPT(i-1, C-s_i) & ext{if } s_i \leq C \ 0 & ext{if } s_i > C \ OPT(i-1, C) \end{array}
ight.$$

OPT(i, C): optimum profit for items 1 to i in knapsack of size C

$$OPT(i, C) = \max \left\{ egin{array}{ll} p_i + OPT(i-1, C-s_i) & ext{if } s_i \leq C \ 0 & ext{if } s_i > C \ OPT(i-1, C) \end{array}
ight.$$

Base case: OPT(i, 0) = 0 for i = 1 to n.

OPT(i, C): optimum profit for items 1 to i in knapsack of size C

$$OPT(i, C) = \max \left\{ egin{array}{ll} p_i + OPT(i-1, C-s_i) & ext{if } s_i \leq C \ 0 & ext{if } s_i > C \ OPT(i-1, C) \end{array}
ight.$$

Base case: OPT(i, 0) = 0 for i = 1 to n.

How many subproblems?

OPT(i, C): optimum profit for items 1 to i in knapsack of size C

$$OPT(i,C) = \max \left\{ egin{array}{ll} p_i + OPT(i-1,C-s_i) & ext{if } s_i \leq C \ 0 & ext{if } s_i > C \ OPT(i-1,C) \end{array}
ight.$$

Base case: OPT(i, 0) = 0 for i = 1 to n.

How many subproblems? O(nB)

Iterative Algorithm

```
for i=0 to n do OPT[i,0]=0 for i=1 to n do for C=1 to B do if s_i \leq C then OPT[i,C] = \max(OPT[i-1,C], p_i + OPT[i-1,C-s_i]) else OPT[i,C] = OPT[i-1,C]
```

Running time:

Iterative Algorithm

```
for i=0 to n do OPT[i,0]=0 for i=1 to n do for C=1 to B do if s_i \leq C then OPT[i,C] = \max(OPT[i-1,C], p_i + OPT[i-1,C-s_i]) else OPT[i,C] = OPT[i-1,C] Output OPT[n,B]
```

Running time: O(nB) Space:

Iterative Algorithm

```
for i=0 to n do OPT[i,0]=0 for i=1 to n do for C=1 to B do if s_i \leq C then OPT[i,C] = \max(OPT[i-1,C],p_i+OPT[i-1,C-s_i]) else OPT[i,C] = OPT[i-1,C]
```

Running time: O(nB)

Space: O(nB)

Knapsack Algorithm and Polynomial time

Input size for Knapsack:

Knapsack Algorithm and Polynomial time

Input size for Knapsack: $O(n) + \log B + \sum_{i=1}^{n} (\log s_i + \log p_i)$

Knapsack Algorithm and Polynomial time

Input size for Knapsack: $O(n) + \log B + \sum_{i=1}^{n} (\log s_i + \log p_i)$

Running time of dynamic programming algorithm: O(nB)

Not a polynomial time algorithm!

Example: $B = 2^n$ and $s_i, p_i \in [1..2^n]$. Input size is O(n), running time is $O(n2^n)$.

Algorithm is called a *pseudo-polynomial* time algorithm because running time is polynomial if *numbers* in input are of size polynomial in *combinatorial* size of problem.

Knapsack is NP-hard if numbers are not polynomial in n!

Part III

Traveling Salesman Problem

Traveling Salesman Problem

Input A graph G = (V, E) with non-negative edge costs/lengths. c(e) for edge eGoal Find a tour of minimum cost that visits each node.

Traveling Salesman Problem

Input A graph G = (V, E) with non-negative edge costs/lengths. c(e) for edge eGoal Find a tour of minimum cost that visits each node.

No polynomial time algorithm known. Problem is NP-Hard.

Example

How many different tours are there?

How many different tours are there? n!

How many different tours are there? n!

Stirling's formula: $n! \simeq \sqrt{n}(n/e)^n$

How many different tours are there? n!

Stirling's formula: $n! \simeq \sqrt{n} (n/e)^n$ which is $\Theta(2^{cn\log n})$ for some constant c>1

How many different tours are there? n!

Stirling's formula: $n! \simeq \sqrt{n} (n/e)^n$ which is $\Theta(2^{cn\log n})$ for some constant c>1

Can we do better? Can we get a $2^{O(n)}$ time algorithm?

Given G and nodes v_i , v_j find a minimum cost path from v_i to v_j that visits every node exactly once.

Given G and nodes v_i , v_j find a minimum cost path from v_i to v_j that visits every node exactly once.

Can solve TSP using above. Do you see how?

Given G and nodes v_i , v_j find a minimum cost path from v_i to v_j that visits every node exactly once.

Can solve TSP using above. Do you see how?

Let f(i, j, V) be minimum cost path from v_i to v_j that visits all nodes.

Can we express this as a recursive solution?

Given G and nodes v_i , v_j find a minimum cost path from v_i to v_j that visits every node exactly once.

Can solve TSP using above. Do you see how?

Let f(i, j, V) be minimum cost path from v_i to v_j that visits all nodes.

Can we express this as a recursive solution?

What is the next node in the optimum path from i to j? Suppose it v_k . Then what is f(i,j)?

$$f(i,j,V) = c(v_i,v_k) + f(k,j,V - \{i\})$$

$$f(i,j,V) = \min_{k \neq i,j} (c(v_i, v_k) + f(k,j, V - \{i\}))$$

Why is $f(k, j, V - \{i\})$ a subproblem?

$$f(i,j,V) = \min_{k \neq i,j} (c(v_i, v_k) + f(k,j, V - \{i\}))$$

Why is $f(k, j, V - \{i\})$ a subproblem? What are the subproblems?

$$f(i,j,V) = \min_{k \neq i,j} (c(v_i, v_k) + f(k,j, V - \{i\}))$$

Why is $f(k, j, V - \{i\})$ a subproblem?

What are the subproblems?

$$f(a, b, S)$$
 for $a = 1, 2, ..., n$, $b = 1, 2, ..., n$, $S \subseteq V$.

How many subproblems?

$$f(i,j,V) = \min_{k \neq i,j} (c(v_i, v_k) + f(k,j, V - \{i\}))$$

Why is $f(k, j, V - \{i\})$ a subproblem?

What are the subproblems?

$$f(a, b, S)$$
 for $a = 1, 2, ..., n$, $b = 1, 2, ..., n$, $S \subseteq V$.

How many subproblems? $O(n^22^n)$

Exercise: Show that one can compute TSP using above dynamic program in $O(n^32^n)$ time and $O(n^22^n)$ space.

Disadvantage of dynamic programming solution:

$$f(i,j,V) = \min_{k \neq i,j} (c(v_i, v_k) + f(k,j, V - \{i\}))$$

Why is $f(k, j, V - \{i\})$ a subproblem?

What are the subproblems?

$$f(a, b, S)$$
 for $a = 1, 2, ..., n$, $b = 1, 2, ..., n$, $S \subseteq V$.

How many subproblems? $O(n^22^n)$

Exercise: Show that one can compute TSP using above dynamic program in $O(n^32^n)$ time and $O(n^22^n)$ space.

Disadvantage of dynamic programming solution: memory!

