INSIGHT

Find out more about the Insight Data Engineering Fellows Program and Data Labs

Ingestion

- 1. Kafka
- 2. Logstash
- 3. RabbitMQ
- 4. Fluentd
- 5. AWS Kinesis 5. ORC Files

Mouse over each box for more details.

Click on each technology for resources to get started.

Last updated Oct 26th, 2015 You can also find the previous version <u>here</u>.

High-Level MR

- 1. Pig
- 2. Cascading
- 3. Hadoop Streaming
- 4. Cascalog

Batch ML

- 1, H2O
- 2. Mahout
- 3. Spark MLlib 4. FlinkML

Batch Graph

- 1. GraphLab
- 2. Giraph
- 3. Spark GraphX
- 4. Hama

Batch SQL

- 1. Hive
- 2. Presto
- 3. Drill
- 4. Impala

General management tools for data pipelines

Cluster Management

- 1. Docker
- 2. Zookeeper
- 3. YARN 4. Mesos
- 5. Hue

Scheduling/Monitoring

- 1. Luigi
- Airflow
 Nagios
- 4. Graphite
- 5. Azkaban

File System | Batch P

- 1. HDFS
- 2. AWS S3
- 3. Azure

File Format

2. ProtoBuf

1. Avro

3. Thrift

4. Parquet

- 4. Tachyon
- 5. Ceph

Batch Processing

- 1. Spark
- 2. Hadoop MapReduce
- 3. AWS EMR
- 4. Flink
- 5. Tez

Stream Processing

2. Spark Streaming

3. AWS Lambda

1. Storm

4. Samza

5. Flink

Data Store

Transactions

Analytics

Uptime Critical

Search Graph

Geospatial Time Series

Cache

Web Framework

- 1. Ruby on Rails
- 2. Node.js
- 3. Django4. AngularJS
- 4. Angula
- 5. Flask

Data Visualization

- 1. D3
- 2. Tableau
- 3. Leaflet
- 4. Highcharts
- 5. Kibana

Transactions

- 1. MySQL
- 2. Oracle
- 2. Orac
- 3. PostgreSQL

Analytics 1. AWS Redshift

- 2. Vertica
- 3. HBase

Uptime Critical

- 1. Cassandra
- 2. Riak
- 3. AWS DynamoDB

Search 1. Elasticsearch

- 2. Solr
- 3. MongoDB

Graph

- 1. Neo4j
- 2. OrientDB
- 3. ArangoDB

<u>Geospatial</u>

- 1. CouchDB
- 2. PostGIS
- 3. Elasticsearch

Time Series

- 1. InfluxDB
- 2. Cassandra
- 3. Druid

Cache

- 1. Redis
- 2. Memcached
- 3. Hazelcast

All these libraries/frameworks/components are designed and implemented to be distributed and can talk seamlessly to others at different layers of the ecosystem

CDH

BATCH PROCESSING (MapReduce, Hive, Pig) ANALYTIC SQL (Impala) SEARCH ENGINE (Cloudera Search) MACHINE LEARNING (Spark, MapReduce, Mahout) STREAM PROCESSING (Spark) 3RD PARTY APPS (Partners)

WORKLOAD MANAGEMENT (YARN)

STORAGE FOR ANY TYPE OF DATA

UNIFIED, ELASTIC, RESILIENT, SECURE (Sentry)

Filesystem (HDFS) Online NoSQL (HBase)

DATA INTEGRATION (Sqoop, Flume, NFS)

MapR Data Platform

How can we differentiate between a traditional high performance computing infrastructure (e.g., Beowulf/Palmetto) and a data-intensive computing infrastructure (e.g., Hadoop)

Applications Orchestration (Pegasus, Taverna, Dryad, Swift) Advanced Analytics & Machine Learning (Pilot-KMeans, Replica Exchange) MPI Frameworks for Advanced Analytics & Machine Learning Declarative MapReduce

(Blas, ScaLAPACK, CompLearn, PetSc, Blast)

Frameworks (Pilot-MapReduce) Languages (Swift)

Workload Management (Pilots, Condor)

MPI, RDMA

Cluster Resource Manager (Slurm, Torque, SGE)

Data Access (Virtual Filesystem, GridFTP, SSH)

Storage Management (iRODS, SRM, GFFS)

Compute Resources (Nodes, Cores, VMs) Storage Resources (Lustre, GPFS)

High-Performance Computing

Applications Orchestration (Oozie, Pig) Advanced Analytics & Machine Learning (Mahout, R, MLBase) SQL-Engines (Impala, Hive, Shark, Phoenix) In-Memory MapReduce Twister Data Store & Higher-Level (Spark) MapReduce Processing Workload (HBase) Map Management **Twister** Spark Reduce (TEZ, LLama) Scheduler Scheduler Scheduler Scheduler Hadoop Shuffle/Reduction, HARP Collectives Cluster Resource Manager (YARN, Mesos) Compute and Data Resources (Nodes, Cores, HDFS)

Apache Hadoop Big Data

Nextgen Computing Center

TACC Stampede (previous cluster)

Storage Class	Size	Architecture
Local	250GB/600GB/1TB	SATA
Parallel	14PB	Lustre
Таре	60PB	SAM-FS

Regional/National Resources

References

http://insightdataengineering.com/blog/new-ecosystem/

Hortonworks, 2015

Cloudera, 2015

MapR, 2015

Pivotal, 2015

Jha, Somesh, Jian Qiu, Andre Luckow, Pradeep Mantha, and Geoffrey C. Fox. "A tale of two data-intensive paradigms: Applications, abstractions, and architectures." In *Big Data (BigData Congress), 2014 IEEE International Congress on*, pp. 645-652. IEEE, 2014.

https://portal.wrangler.tacc.utexas.edu/

https://portal.tacc.utexas.edu/user-guides/stampede#overview-table4