Large Deviations

Chang Feng

June 11, 2025

I am working on a problem related to functional central limit theorem. I obtained some results that are strange or hard to interpret. Consider the sequence of random processes X_n . I have obtained the functional law of large numbers limit of the family of processes $\bar{X}^{(n)}(t) = n^{-1}X_n(t)$. Let's call the FLLN limit \bar{X} . Now I only consider the cases when \bar{X} has an equilibrium point \bar{X}^* . For FCLT, I consider the process $\hat{X}^n(t) = \sqrt{n}(\bar{X}^n)(t) - \bar{X}^*$. I think I showed that $\hat{X}^n \Rightarrow$ to \hat{X} , which is the solution to the SDE $d\hat{X}(t) = (a - b\hat{X}(t))dt + \sigma dB(t)$. However, the constants a, b don't have to be positive. So suppose b < 0 the limiting process could go to infinity and don't have a stationary distribution. When I center around fluid limit's equilibrium point, isn't the diffusion limit supposed to be centered around 0? Am I wrong to analyze FCLT by centering around the equilibrium point?

the fluid limit \bar{X} solves the ODE

$$d\bar{X}(t) = adt - bd\bar{X}(t)$$

where a < 0, b < 0. So $\frac{a}{b}$ is an equilibrium point but it is not locally stable. Does this mean I should not center around $\frac{a}{b}$ in this case?