Random walks and diffusion on networks

Naoki Masuda

Department of Engineering Mathematics University of Bristol, UK

naoki.masuda@bristol.ac.uk www.naokimasuda.net

Talk plan

- Random walks and diffusion
- 1-dim
- Networks
- Applications of RWs on networks

Diffusion is a broad term

- Diffusion of innovation
- Biological diffusion

Background

- Gamblers ruin: Pascal, Fermat, Huygens, Bernoulli,
- Term random walk was coined by Karl Pearson (1905).
- Brownian motion of particles colliding with atoms and molecules (Einstein, 1905)
- Applications: locomotion and foraging of animals, neuronal firing, decision-making in the brain, population genetics, polymer chains, financial markets, sports statistics
- Relevant theoretical research areas: probability theory (in maths),
 CS, statistical physics, OR,

Why do we study RWs on networks?

- Theoretical interest
- Applications. Especially, RWs lie at the core of many algorithms
 - PageRank
 - community detection
 - core-periphery structure
 - diffusion map
 - respondent-driven sampling
 - consensus algorithms

1-dim

- Assume the continuous space (\mathbb{R}^1)
 - Discrete-space case is similar
- Assume discrete-time RW
- In each time step, a walker at x moves to the interval $[x+r,x+r+\Delta r]$ with probability $f(r)\Delta r$. Then, the master equation is given by

$$p(x; n) = \int_{-\infty}^{\infty} f(x - x') p(x'; n - 1) \mathrm{d}x'.$$

• As time n tends to ∞ .

$$p(x; n) = \frac{1}{(2\pi Dn)^{1/2}} e^{-\frac{(x-vn)^2}{4Dn}},$$

where $v \equiv \langle r \rangle$ and $D \equiv \langle (r - \langle r \rangle)^2 \rangle / 2$.

Continuous-time RW

(b)
$$\frac{\text{steps }(n)}{x}$$
 $\frac{0}{3}$ $\frac{1}{2}$ $\frac{2}{3}$ $\frac{3}{4}$ $\frac{4}{5}$ $\frac{5}{6}$ $\frac{6}{7}$ $\frac{8}{8}$ $\frac{9}{10}$ $\frac{10}{x}$

(This fig assumes a discrete space)

$$p(x;t) = \sum_{n=0}^{\infty} p(x;n)p(n,t)$$

where x: position, t: time, n: number of moves made

$$\langle n \rangle = \frac{t}{\langle \tau \rangle}$$
, where τ is inter-event time

E.g.,
$$\psi(\tau) = \beta e^{-\beta \tau} \rightarrow p(n,t) = \frac{(\beta t)^n}{n!} e^{-\beta t}$$

√ Full soln in terms of the Laplace and Fourier transforms

RWs on networks

Adjacency matrix

• We allow directed and weighted adjacency matrices.

Transition-probability matrix (of DTRW)

• $i \rightarrow j$ with probability $T_{ij} = \frac{A_{ij}}{s_i^{\text{out}}}$ where $s_i^{\text{out}} = \sum_{j=1}^{N} A_{ij}$ is the out-strength of node i.

$$v_3 \\ v_4$$

$$A = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

- Directed networks allowed
- Weighted networks allowed

Q: Which complicates things more than the other?

Transition-probability matrix (of DTRW)

• $i \rightarrow j$ with probability $T_{ij} = \frac{A_{ij}}{s_i^{\text{out}}}$ where $s_i^{\text{out}} = \sum_{j=1}^{N} A_{ij}$ is the out-strength of node i.

$$B = \begin{pmatrix} 0 & 0 & \frac{1}{3} & \frac{1}{3} & 0 & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{3} & 0 & 0 & 0 & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{3} & 0 & 0 & 0 & \frac{1}{3} & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

- Directed networks allowed
- Weighted networks allowed

Q: Which complicates things more than the other?

- Conservation: $\sum_{j=1}^{N} T_{ij} = 1$
- Dynamics: $p_j(n+1) = \sum_{i=1}^{N} p_i(n) T_{ij} \quad (j \in \{1, ..., N\})$

Note that
$$\sum_{i=1}^{N} p_i(n) = 1$$

- With vectors, $\boldsymbol{p}(n+1) = \boldsymbol{p}(n)T$ where $\boldsymbol{p}(t) = (p_1(n), \dots, p_N(n))$
- $p(n) = p(0)T^n$. That's it.
 - Q: linear or nonlinear?

Two main Qs for RWs

- Both in theory and applications, we are mostly concerned with either (or both) of the following questions
 - Stationary density (infinite-time behaviour)
 - Relaxation time (asymptotic behaviour)
 - First-passage time (finite-time behaviour)
- Other important questions:
 - Flow
 - Other finite-time behaviour (esp. in community detection)
 - (Loss of) detailed balance

Two main Qs for RWs

- Both in theory and applications, we are mostly concerned with either (or both) of the following questions
 - Stationary density (infinite-time behaviour)
 - Relaxation time (asymptotic behaviour)
 - First-passage time (finite-time behaviour)
- Other important questions:
 - Flow
 - Other finite-time behaviour (esp. in community detection)
 - (Loss of) detailed balance

Stationary density of DTRWs

$$p(n+1) = p(n)T$$

$$\boldsymbol{p}(n) = \boldsymbol{p}(0)T^n$$

Let
$$p_i^* = \lim_{n \to \infty} p_i(n)$$

$$p^* = p^*T$$

The stationary density is the left eigenvector of T with eigenvalue 1.

The corresponding right eigenvector is: $(1, ..., 1)^{T}$.

Relaxation: $\boldsymbol{p}(n) \approx \boldsymbol{p}^* + \lambda_2^n \boldsymbol{u}_2^{\mathrm{L}} \langle \boldsymbol{p}(0), \boldsymbol{u}_2^{\mathrm{R}} \rangle$

where λ_2 is the 2nd largest eigenvalue (in modulus) of T

Stationary density for undirected networks

Central result:
$$p_i^* = \frac{s_i}{\sum_{l=1}^N s_l}$$
 $(i \in \{1, \dots, N\})$

where $s_i = \sum_{j=1}^N A_{ij} = \sum_{j=1}^N A_{ji}$ is the strength (i.e., weighted degree) of node i

Proof: Use $p^* = p^*T$, or $p_i^* = \sum p_j^*T_{ji}$ (for each i).

What does
$$p_i^* = \frac{s_i}{\sum_{\ell=1}^N s_\ell}$$
 mean?

Stationary density for directed networks

- No such handy results.
- First-order approximation:

$$p_i^* = \sum_{j=1}^N p_j^* rac{A_{ji}}{s_j^{ ext{out}}} pprox (ext{const}) imes \sum_{j=1}^N A_{ji} \propto s_i^{ ext{in}}$$

where $s_i^{\text{in}} = \sum_{i=1}^{N} A_{ii}$ is the in-strength of node *i*.

Accurate in many cases, and inaccurate in many other cases

Example

Node	p_i^*	k_i^{in}	From k_i^{in}	k_i^{out}	From k_i^{out}
<i>V</i> ₁	0.2275	5	0.2381	3	0.1429
<i>V</i> ₂	0.0140	1	0.0476	2	0.0952
<i>V</i> ₃	0.0899	2	0.0952	1	0.0476
<i>V</i> ₄	0.0969	3	0.1429	3	0.1429
<i>V</i> ₅	0.0843	1	0.0476	6	0.2857
<i>v</i> ₆	0.2528	2	0.0952	3	0.1429
<i>V</i> ₇	0.0140	1	0.0476	2	0.0952
<i>v</i> ₈	0.2205	6	0.2857	1	0.0476

CTRWs on networks

(b)
$$\frac{\text{steps }(n)}{x}$$
 $\frac{0}{3}$ $\frac{1}{2}$ $\frac{2}{3}$ $\frac{3}{4}$ $\frac{4}{5}$ $\frac{5}{6}$ $\frac{6}{7}$ $\frac{8}{8}$ $\frac{9}{10}$ $\frac{10}{x}$

- Node-centric CTRW
 - The walker at node i waits an inter-event time τ distributed according to $\psi(\tau)$
 - ② Then, it moves to an (out-) neighbour j with the probability $\propto A_{ij}$
- Edge-centric CTRW:
 - Each edge (incident to i) is activated with an inter-event time τ distributed according to $\psi(\tau)$
 - 2 The walker moves the (first) activated edge to a neighbour j
- They are the same only for regular networks (or $s_i^{\text{out}} = (\text{const})$ for directed networks)
- When $\psi(\tau)$ is a non-Poissonian distribution (cf. temporal networks), things are more complicated. Here we assume a Poissonian $\psi(\tau)$.
 - (a) Node-centric CTRW

(b) Edge-centric CTRW

20 / 46

(Poissonian) node-centric CTRW

Master equation:

$$\frac{\mathrm{d}\boldsymbol{p}(t)}{\mathrm{d}t} = \boldsymbol{p}(t)(-I+T) \equiv -\boldsymbol{p}(t)L' = -\boldsymbol{p}(t)D^{-1}L$$

where

$$L' = I - T = \left(\delta_{ij} - \frac{A_{ij}}{s_i^{\text{out}}}\right)$$
 (random-walk normalized Laplacian)

 $D = diag((s_1^{out}, \dots, s_N^{out}) \quad (diag(s_1, \dots, s_N) \text{ if undirected networks})$

 $L \equiv D - A$ ((combinatorial) Laplacian matrix)

Stationary density: $\frac{d\mathbf{p}^*(t)}{dt} = 0$

 $\rightarrow \boldsymbol{p}^* = \boldsymbol{p}^* T$. Same as DTRW.

If the network is undirected, $p_i^* = s_i / \sum_{\ell=1}^N s_\ell$.

(Poissonian) edge-centric CTRW

Master equation:

$$\frac{\mathrm{d}\boldsymbol{p}(t)}{\mathrm{d}t} = \boldsymbol{p}(t)(-D+A) = -\boldsymbol{p}(t)L$$

Stationary density:

$$p^*L = 0$$

i.e., zero eigenvector of L

- For undirected networks, $p^* = \frac{1}{N}(1, ..., 1)$
- For directed networks, no simple solution but the first-order approximation:

$$p_i^* pprox (ext{const}) imes rac{oldsymbol{s}_i^{ ext{in}}}{oldsymbol{s}_i^{ ext{out}}}$$

Interim summary

- DTRW
 - driven by transition-probability matrix T
 - $p^* = p^*T$
 - $p_i^* \propto s_i^*$ for undirected networks
- CTRW
 - node-centric
 - driven by random-walk normalized Laplacian L' = I T
 - Same p* as DTRW
 - edge-centric
 - driven by combinatorial Laplacian L = D A
 - $p^*L = 0$
 - $p_i^* = 1/N$ for undirected networks
- Undirected vs directed

Applications

- PageRank
- Community detection
- Respondent-driven sampling

PageRank

- Sergey Brin & Larry Page (1998) (but see Pinski & Narin 1976)
 Rank websites in Google search!
 They were born on 1973.
 12th and 13rd richest persons in the world (Nov 2016)
- Other applications: ranking of academic journals and papers, professional sports, disease-gene identification, recommendation systems in online marketplaces, prediction of traffic flow . . .
- It is the stationary density of a DTRW on a network. Why should it be?

Web graph

Design principle of the PageRank

The rank of node *i* should be large when

- *i* receives many edges (with large weights)
- i received edges from important nodes j
- i receives "exclusive" edges from j

$$p^* = p^*T$$
, i.e., $p_i^* = \sum_{j=1}^N p_j^* \frac{A_{ji}}{\sum_{\ell=1}^N A_{i\ell}}$ fulfills these three criteria.

PageRank math

- Empirical networks (e.g., web graph) are usually not "strongly connected"
 - Sinks (dangling nodes) i.e., $s_i^{\text{out}} = 0$
 - Sources, i.e., $s_i^{in} = 0$
 - Multiple strongly connected components
 - transient nodes and components

PageRank math

- So, we allow walkers to teleport to other nodes with probability $1-\alpha$ to make an effective network that is strongly connected.
- Master equation:

$$p_i(t+1) = \alpha \sum_{j=1}^{N} p_j(t) T_{ji} + (1-\alpha) u_i$$

where (u_1, \ldots, u_N) is the "preference vector" $(\sum_{i=1}^N u_i = 1)$

- A popular choice: $u_i = 1/N$
- At dangling nodes, teleport with probability 1
- A popular choice: $\alpha = 0.85$
- Effective network: $T'_{ii} = \alpha T_{ij} + (1 \alpha)u_i$ (and correction for dangling nodes)
- PageRank: $p^* = p^*T'$

Back to the example

Node	p_i^*	k_i^{in}	k_i^{out}
<i>V</i> ₁	0.2275	5	3
<i>V</i> ₂	0.0140	1	2
<i>V</i> ₃	0.0899	2	1
<i>V</i> ₄	0.0969	3	3
<i>V</i> 5	0.0843	1	6
<i>v</i> ₆	0.2528	2	3
V 7	0.0140	1	2
<i>V</i> ₈	0.2205	6	1

- The three criteria are respected?
 - *i* receives many edges (with large weights)
 - i received edges from important nodes j
 - i receives "exclusive" edges from j

Tennis players on PageRank

(Radicchi, PLOS ONE, 2011)

Tennis players on PageRank

Table 1. Top 30 players in the history of tennis.

Jimmy Connors United States L 1970 1996 16 Michael Chang 17 Roscoe Tanner 18 Eddie Dibbs 19 19 19 19 19 19 19 1						
Ivan Lendl	Rank	Player	Country	Hand	Start	End
John McEnroe	1	Jimmy Connors	United States	L	1970	1996
Guillermo Vilas Argentina L 1969 1992 19 Harold Solomon Andre Agassi United States R 1986 2006 20 Tom Okker Stefan Edberg Sweden R 1982 1996 21 Mats Wilander Roger Federer Switzerland R 1998 2010 22 Goran Ivaniševic' Pete Sampras United States R 1988 2002 23 Vitas Gerulaitis Ilie Nästase Romania R 1968 1985 24 Rafael Nadal Björn Borg Sweden R 1971 1993 25 Raúl Ramirez Boris Becker Germany R 1983 1999 26 John Newcombe Arthur Ashe United States R 1968 1979 27 Ken Rosewall Brian Gottfried United States R 1970 1984 28 Yevgeny Kafelnikov Stan Smith United States R 1968 1985 29 Andy Roddick	2	Ivan Lendl	United States	R	1978	1994
Andre Agassi United States R 1986 2006 Stefan Edberg Sweden R 1982 1996 Roger Federer Switzerland R 1998 2010 Pete Sampras United States R 1988 2002 Bijorn Borg Sweden R 1968 1985 Bijorn Borg Sweden R 1971 1993 Boris Becker Germany R 1983 1999 Arthur Ashe United States R 1968 1979 Brian Gottfried United States R 1970 1984 Stan Smith United States R 1968 1985 Stan Smith United States R 1968 1985 Andy Roddick Stan Smith United States R 1968 1985 Andy Roddick Stan Smith United States R 1968 1985 Andy Roddick	3	John McEnroe	United States	L	1976	1994
Stefan Edberg Sweden R 1982 1996 Roger Federer Switzerland R 1998 2010 Pete Sampras United States R 1988 2002 Illie Nüstase Romania R 1968 1985 Björn Borg Sweden R 1971 1993 Boris Becker Germany R 1983 1999 Arthur Ashe United States R 1968 1979 Brian Gottfried United States R 1970 1984 Stan Smith United States R 1968 1985	4	Guillermo Vilas	Argentina	L	1969	1992
Roger Federer Switzerland R 1998 2010 Pete Sampras United States R 1988 2002 Illie Nästase Romania R 1968 1985 Björn Borg Sweden R 1971 1993 Boris Becker Germany R 1983 1999 Arthur Ashe United States R 1968 1979 Brian Gottfried United States R 1970 1984 Stan Smith United States R 1968 1985	5	Andre Agassi	United States	R	1986	2006
Pete Sampras United States R 1988 2002 Illie Nästase Romania R 1968 1985 Björn Borg Sweden R 1971 1993 25 Raúl Ramirez Boris Becker Germany R 1983 1999 26 John Newcombe Arthur Ashe United States R 1968 1979 27 Ken Rosewall Brian Gottfried United States R 1970 1984 28 Yevgeny Kafelnikov Stan Smith United States R 1968 1985 29 Andy Roddick	6	Stefan Edberg	Sweden	R	1982	1996
Ilie Nästase Romania R 1968 1985 24 Rafael Nadal	7	Roger Federer	Switzerland	R	1998	2010
Björn Borg Sweden R 1971 1993 25 Raúl Ramirez Boris Becker Germany R 1983 1999 26 John Newcombe Arthur Ashe United States R 1968 1979 27 Ken Rosewall Brian Gottfried United States R 1970 1984 28 Yevgeny Kafelnikov Stan Smith United States R 1968 1985 29 Andy Roddick	8	Pete Sampras	United States	R	1988	2002
Boris Becker Germany R 1983 1999 26 John Newcombe Arthur Ashe United States R 1968 1979 27 Ken Rosewall Brian Gottfried United States R 1970 1984 28 Yevgeny Kafelnikov Stan Smith United States R 1968 1985 29 Andy Roddick	9	Ilie Nästase	Romania	R	1968	1985
Arthur Ashe United States R 1968 1979 27 Ken Rosewall Brian Gottfried United States R 1970 1984 28 Yevgeny Kafelnikov Stan Smith United States R 1968 1985 29 Andy Roddick	10	Björn Borg	Sweden	R	1971	1993
Brian Gottfried United States R 1970 1984 28 Yevgeny Kafelnikov R Stan Smith United States R 1968 1985 29 Andy Roddick U	11	Boris Becker	Germany	R	1983	1999
Stan Smith United States R 1968 1985 29 Andy Roddick Un	12	Arthur Ashe	United States	R	1968	1979
29 Alluy Nodulck Office	13	Brian Gottfried	United States	R	1970	1984
Manuel Orantes Spain L 1968 1984 30 Thomas Müster Austr	14	Stan Smith	United States	R	1968	1985
	15	Manuel Orantes	Spain	L	1968	1984

(Radicchi, PLOS ONE, 2011)

Community detection

- A very very popular application of network analysis
- Various algorithms to detect communities in unlabeled networks

(Fortunato, Phys Rep, 2010)

Why RWs?

- Idea: A random walker would wander within a community for a long time before transiting to another community.
- Various algorithms based on this idea: Markov stability, Walktrap, InfoMap, Nibble, . . .

Walktrap (Pons & Latapy, J. Graph Algo., 2006)

- Consider an undirected and unweighted network
- A (DT)RW-based distance between nodes:

$$r_{ij} = \sqrt{\sum_{\ell=1}^{N} \frac{(T_{i\ell}^{n} - T_{j\ell}^{n})^{2}}{k_{\ell}}}$$

Physical meaning of r_{ij} ?

- Nodes i and j with small r_{ij} would belong to the same community
- Then run a hierarchical clustering algorithm
- ullet Discounted by k_ℓ because $p_\ell^* \propto k_\ell$
- n should not be too large because $\lim_{n\to\infty} T^n_{i\ell} = \lim_{n\to\infty} T^n_{j\ell} = p^*_{\ell}$, implying $r_{ij} \approx 0$

InfoMap (Rosvall & Bergstrom, PNAS 2008)

- Use DTRWs on (generally) directed and weighted networks
- Encode each node into a binary code word
 - Ex: If $v_1 \to 000$, $v_2 \to 001$, $v_3 \to 010$, $v_4 \to 011$, $v_5 \to 100$, ..., Trajectory v_3 , v_6 , v_3 , v_1 , v_8 , ... is encoded into $01010100001111\cdots$.
- Unique decoding requires a "prefix-free" coding scheme.
 - : Ex: If $v_1 \to 000$ and $v_2 \to 0001$?
 - Huffman code is a famous prefix-free code yielding short binary sequences.
 - frequently visited node \rightarrow short code word
 - The Shannon entropy gives the lower bound of the mean code word length

$$H = -\sum_{i=1}^{N} p_i^* \log p_i^*$$

Not about communities so far

- Use coding schemes local to individual communities.
 - Extra workaround to get around entry to and exit from communities
 - But shorter code words if walkers wander within a community
 - Doesn't matter if the same local code word is used in different communities
- Find such a two-layer Huffman code that minimises the mean code word length

11 111 10 01 00 00 10 01 110 . .

apps code publications about

Simplify and highlight important structures in complex networks

enterFlow log enterFlow = nlogn(enterFlow).

Maps of information flow reveal community structure in complex networks

Publications »

Martin Rosvall and Carl T. Bergstrom
PNAS 105, 1118 (2008), [arXiv:0707.0609]
To comprehend the multipartite
organization of large-scale biological

News

 $April\ 11,2017\ \textbf{Source\ code} - \textbf{Infomap\ on\ Windows} - \text{run\ Infomap\ in\ bash\ on\ ubuntu\ on\ Windows}$

 Estimate the fraction of infected individuals in a large or difficult-to-reach population.
 What would you do?

- Estimate the fraction of infected individuals in a large or difficult-to-reach population.
 What would you do?
- Respondent-driven sampling uses edge-tracing in a social network.

- Estimate the fraction of infected individuals in a large or difficult-to-reach population.
 What would you do?
- Respondent-driven sampling uses edge-tracing in a social network.
 - Start from a seed individual
 - 4 He/she recruits neighbours to a survey by passing a coupon to each of them.
 - The successfully recruited individuals then participate in the survey and also pass coupons to their neighbors.
 - Calculate a weighted mean of the samples to derive an estimate

- Estimate the fraction of infected individuals in a large or difficult-to-reach population.
 What would you do?
- Respondent-driven sampling uses edge-tracing in a social network.
 - Start from a seed individual
 - He/she recruits neighbours to a survey by passing a coupon to each of them.
 - The successfully recruited individuals then participate in the survey and also pass coupons to their neighbors.
 - Calculate a weighted mean of the samples to derive an estimate
 - Don't forget to reward participants

Useful for difficult-to-reach populations

The Structure of Romantic and Sexual Relations at "Jefferson High School"

Each circle represents a student and lines connecting students represent romantic relations occuring within the 6 months preceding the interview. Numbers under the figure count the number of times that pattern was observed (i.e. we found 63 pairs unconnected to anyone else). • RDS = "snowball sampling" + mathematics

(www.dreamstime.com)

Q: Why a "weighted" mean?

- y_i : quantity assigned to node i (e.g., infected or not, age, opinion)
- N_S: number of samples S
- $p_i^* \propto k_i$
- Estimator: $\langle \hat{y} \rangle = \frac{1}{N_S} \sum_{v_i \in S} \frac{y_i}{N \hat{p}_i^*}$ because $N \hat{p}_i^*$ is normalised $(\langle N \hat{p}_i^* \rangle = 1)$
- Use $\hat{p}_i^* = \frac{k_i}{N(\hat{k})}$ to rewrite

$$\langle \hat{y} \rangle = \frac{1}{N_S} \sum_{\nu_i \in S} \frac{y_i \langle \hat{k} \rangle}{k_i}$$

What's all this mess?

- y_i : quantity assigned to node i (e.g., infected or not, age, opinion)
- N_S: number of samples S
- $p_i^* \propto k_i$
- Estimator: $\langle \hat{y} \rangle = \frac{1}{N_S} \sum_{v_i \in S} \frac{y_i}{N \hat{p}_i^*}$ because $N \hat{p}_i^*$ is normalised $(\langle N \hat{p}_i^* \rangle = 1)$
- Use $\hat{p}_i^* = \frac{k_i}{N(\hat{k})}$ to rewrite

$$\langle \hat{y} \rangle = \frac{1}{N_S} \sum_{v_i \in S} \frac{y_i \langle \hat{k} \rangle}{k_i}$$

What's all this mess?
 We do not know the value of p_i* or ⟨k⟩. We have to estimate them.

We use

$$\langle \hat{\textbf{k}} \rangle = \frac{\sum_{v_i \in \mathcal{S}} \frac{k_i}{Np_i^*}}{\sum_{v_i \in \mathcal{S}} \frac{1}{Np_i^*}} = \frac{N_{\mathcal{S}}}{\sum_{v_i \in \mathcal{S}} (k_i)^{-1}}$$

$$\langle \hat{y} \rangle = \frac{1}{N_S} \sum_{v_i \in S} \frac{y_i \langle \hat{k} \rangle}{k_i} = \frac{\sum_{v_i \in S} (k_i)^{-1} y_i}{\sum_{v_i \in S} (k_i)^{-1}}$$

(RDS II estimator. Volz & Heckathorn, J Official Stat, 2008)

E.g., proportion of nodes that have a discrete type *A* (e.g., infected):

$$\hat{P}_{A} = \frac{\sum_{v_i \in A \cap S} (k_i)^{-1}}{\sum_{v_i \in S} (k_i)^{-1}}$$

Resources

Masuda, Porter & Lambiotte, arXiv:1612.03281

- Other topics covered:
 - Fourier and Laplace transforms
 - First-passage times
 - Fractal networks
 - Multilayer networks
 - Temporal networks
 - Discrete-choice models
 - More on community detection
 - Diffusion maps
 - Opinion formation models

