Advancing Weather Forecasting: A Comparative Analysis of Long Short-Term Memory and Support Vector Machines

Libraries

```
In [1]:
       import numpy as np
        import pandas as pd
         import matplotlib.pyplot as plt
         import matplotlib.image as mpimg
         import seaborn as sns
        from geopy.distance import distance
        from statsmodels.graphics.tsaplots import plot_acf, plot_pacf, month_plot, quarter_
        from statsmodels.tsa.stattools import adfuller
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import mean_squared_error
        from sklearn.metrics import mean_absolute_error
        from sklearn.preprocessing import MinMaxScaler
        import torch
        import torch.nn as nn
        import time
        from joblib import dump, load
```

Loading the Dataset

```
In [2]: # Load the dataset
   data = pd.read_csv('aggregated_hourly_data.csv')
   data = data.dropna()
```

Data Transformation

```
In [3]: # Calculate decimal degrees for latitude and longitude - even though there are geog
### but for this analysis i have not used geographical points
###though i have calculated some geographical variables

data['st_lat'] = data['st_lat'].apply(lambda x: int(str(x)[-2:])/3600 + int(str(x)[
    data['st_long'] = data['st_long'].apply(lambda x: (int(str(x)[-2:])/3600 + int(str(datahead)))
    datahead
```

Out[3

3]:		Unnamed: 0	date	ind	rain	ind.1	temp	ind.2	wetb	dewpt	vappr	•••	sun	vis
	370509	370509	2007- 12-31 02:00:00	2	0.0	0	9.6	0	8.8	8.0	10.7		0.0	20000.0
	370510	370510	2007- 12-31 03:00:00	0	0.0	0	9.7	0	8.8	7.9	10.6		0.0	20000.0
	370511	370511	2007- 12-31 04:00:00	0	0.0	0	9.9	0	8.8	7.6	10.4		0.0	20000.0
	370512	370512	2007- 12-31 05:00:00	0	0.0	0	10.4	0	9.3	8.2	10.8		0.0	20000.0
	370513	370513	2007- 12-31	0	0.0	0	10.6	0	9.7	8.7	11.3		0.0	20000.0

5 rows × 28 columns

06:00:00

```
In [4]:
        data.drop(columns=['Unnamed: 0'], inplace=True)
        data.info()
        datahead = data.head(100)
        # rename columns
        data.rename(columns = {'ind': 'i_rain', 'ind.1': 'i_temp', 'ind.2': 'i_wetb',
                                          'ind.3': 'i_wdsp', 'ind.4': 'i_wddir'}, inplace =
        print('Column names: ', data.columns)
        # Are all datetime values unique?
        print('Unique timestamps: ', data.date.nunique())
        print('All timestamps: ', data.shape[0])
        # Set timestamp as an index
        data.set_index('date', inplace = True)
        data.head()
        # Convert index to datetime objects
        data.index = pd.to_datetime(data.index)
        # Check for missing hours in index
        print('Unique Timestamps in our data: ', data.index.nunique())
        print('Total range: ', (data.index.max() - data.index.min()) / pd.Timedelta('1 hour
```

```
<class 'pandas.core.frame.DataFrame'>
Index: 662345 entries, 370509 to 2962034
Data columns (total 27 columns):
# Column Non-Null Count Dtype
---
               _____
0 date
             662345 non-null object
    ind
1
             662345 non-null int64
             662345 non-null float64
 2
   rain
             662345 non-null int64
3
   ind.1
4 temp
             662345 non-null float64
             662345 non-null int64
5 ind.2
              662345 non-null float64
6
   wetb
7
    dewpt
              662345 non-null float64
8 vappr
             662345 non-null float64
9 rhum
             662345 non-null float64
             662345 non-null float64
10 msl
11 ind.3 662345 non-null float64
12 wdsp 662345 non-null float64
13 ind.4 662345 non-null float64
14 wddir 662345 non-null float64
15 ww
             662345 non-null float64
             662345 non-null float64
16 w
16 w
17 sun
             662345 non-null float64
              662345 non-null float64
18 vis
19 clht
             662345 non-null float64
20 clamt
             662345 non-null float64
21 county 662345 non-null object
22 st id
             662345 non-null int64
23 st_name 662345 non-null object
 24 st_height 662345 non-null int64
25 st_lat
             662345 non-null float64
26 st long
               662345 non-null float64
dtypes: float64(19), int64(5), object(3)
memory usage: 141.5+ MB
Column names: Index(['date', 'i_rain', 'rain', 'i_temp', 'temp', 'i_wetb', 'wet
b', 'dewpt',
       'vappr', 'rhum', 'msl', 'i_wdsp', 'wdsp', 'i_wddir', 'wddir', 'ww', 'w',
      'sun', 'vis', 'clht', 'clamt', 'county', 'st_id', 'st_name',
       'st_height', 'st_lat', 'st_long'],
     dtype='object')
Unique timestamps: 123503
All timestamps: 662345
Unique Timestamps in our data: 123503
Total range: 123502.0
```

Removing Nulls

```
In [5]: # count NAs
   data.isnull().sum()
   # look at rows with NAs
   data[data.isna().any(axis=1)]
   # fill NAs by interpolating (default method = 'linear')
   data.interpolate(inplace = True)
   # make sure all NAs are filled
   data.isnull().sum()
   # drop indicators
   data.drop(columns = ['i_rain', 'i_temp', 'i_wetb', 'i_wdsp', 'i_wddir'], inplace =
   # count unique values in each column
   data.nunique()
```

C:\Users\Syed Muhammad Mohsin\AppData\Local\Temp\ipykernel_25792\1707903422.py:6: FutureWarning: DataFrame.interpolate with object dtype is deprecated and will rais e in a future version. Call obj.infer_objects(copy=False) before interpolating ins tead.

data.interpolate(inplace = True)

```
Out[5]:
```

```
426
temp
wetb
           342
dewpt
           327
vappr
          210
rhum
           80
msl
          978
wdsp
          53
           37
wddir
           74
WW
           71
           11
sun
vis
           87
clht
         157
clamt
           10
county
            6
st_id
            8
           8
st name
st_height
           8
st_lat
            8
st_long
            8
dtype: int64
```

EXPLORATORY DATA ANALYSIS

```
In [6]: # look at statistics
    Datadesc = data.describe().T
    #Datadesc.to_excel('datadesc.xlsx')
    Datadesc
```

Out[6]:

7	50%	25%	min	std	mean	count	
0.000	0.000000	0.000000	0.000000	0.497221	0.124380	662345.0	rain
13.400	10.000000	6.600000	-15.400000	4.830016	9.922873	662345.0	temp
11.900	8.900000	5.500000	-49.900000	4.525487	8.596542	662345.0	wetb
10.600	7.400000	3.900000	-16.400000	4.513444	7.185166	662345.0	dewpt
12.800	10.300000	8.100000	1.700000	3.175379	10.570086	662345.0	vappr
94.000	87.000000	77.000000	20.000000	12.114841	84.142935	662345.0	rhum
1021.900	1014.400000	1005.500000	948.200000	12.529400	1013.246276	662345.0	msl
13.000	9.000000	6.000000	0.000000	5.575393	9.918461	662345.0	wdsp
260.000	220.000000	140.000000	0.000000	84.909557	200.974477	662345.0	wddir
25.000	2.000000	2.000000	0.000000	23.643263	17.189089	662345.0	ww
62.000	11.000000	11.000000	0.000000	28.703269	33.520283	662345.0	w
0.100	0.000000	0.000000	0.000000	0.324983	0.167173	662345.0	sun
40000.000	25000.000000	17000.000000	5.000000	15137.275498	26918.633144	662345.0	vis
250.000	41.000000	20.000000	0.000000	401.669618	270.422165	662345.0	clht
7.000	7.000000	4.000000	0.000000	2.323820	5.746390	662345.0	clamt
3904.000	2375.000000	532.000000	518.000000	1668.160880	2477.993177	662345.0	st_id
155.000	71.000000	20.000000	9.000000	63.482789	86.559600	662345.0	st_height
53.427	53.305556	52.690278	51.847222	0.842819	53.042253	662345.0	st_lat
-6.438	-8.486111	-8.918056	-10.240833	1.358236	-7.964170	662345.0	st_long

Correlation Matrix

```
In [7]:
        # Select only numeric columns for correlation analysis - excluding geographical dat
        numeric_data = data.select_dtypes(include='number')
        corr_matrix = numeric_data.corr()
        # Look at correlations between weather variables recorded from Dublin Airport stati
        sns.set_context('notebook', font_scale=1)
        fig, ax = plt.subplots(figsize=(12, 12))
        sns.heatmap(data=numeric_data.corr(), annot=True, fmt='.2f', cmap='coolwarm', ax=ax
        plt.show()
```


Distribution of Variables - Transforming Data Weekly

```
fig.tight_layout()
fig.show()
```

C:\Users\Syed Muhammad Mohsin\AppData\Local\Temp\ipykernel_25792\2327037471.py:22:
UserWarning: Matplotlib is currently using module://matplotlib_inline.backend_inli
ne, which is a non-GUI backend, so cannot show the figure.
fig.show()

MODELLING

LSTM VS SVM

LONG-SHORT TERM MEMORY - RAINFALL FORECASTING

```
In [9]:
        # Extract rainfall data - from the weekly data aggregated data created earlier
        rainfall data = weekly da['rain'].values.astype(float)
        # Normalize data - min max scaler
        scaler = MinMaxScaler(feature range=(-1, 1))
        rainfall_data_normalized = scaler.fit_transform(rainfall_data.reshape(-1, 1))
        # Convert data to PyTorch tensors
         rainfall tensor = torch.FloatTensor(rainfall data normalized).view(-1)
        def create_sequences(data, seq_length):
            xs = []
            ys = []
            for i in range(len(data) - seq_length):
                x = data[i:i+seq_length]
                y = data[i+seq_length:i+seq_length+1]
                xs.append(x)
                ys.append(y)
            return torch.stack(xs), torch.stack(ys)
        # Define sequence length
        seq length = 5
        # Create sequences
        xs, ys = create_sequences(rainfall_tensor, seq_length)
```

```
# Split data into training and testing sets
train_size = int(len(xs) * 0.8)
test_size = len(xs) - train_size
train_X, test_X = xs[:train_size], xs[train_size:]
train_y, test_y = ys[:train_size], ys[train_size:]
# Define LSTM model
class LSTM(nn.Module):
   def __init__(self, input_size=1, hidden_layer_size=100, output_size=1):
        super().__init__()
        self.hidden_layer_size = hidden_layer_size
        self.lstm = nn.LSTM(input_size, hidden_layer_size)
        self.linear = nn.Linear(hidden_layer_size, output_size)
        self.hidden cell = (torch.zeros(1,1,self.hidden layer size),
                            torch.zeros(1,1,self.hidden_layer_size))
    def forward(self, input_seq):
        lstm_out, self.hidden_cell = self.lstm(input_seq.view(len(input_seq) ,1, -1
        predictions = self.linear(lstm_out.view(len(input_seq), -1))
        return predictions[-1]
# Hyperparameters for tuning - could have used more hidden layers but computational
learning rates = [0.001, 0.01]
hidden_layer_sizes = [10, 50]
# Record validation losses and MSEs and Record training times
validation_losses = []
mse_values = []
training_times_rain_lstm = []
# Train models with different hyperparameters
for lr in learning rates:
   for hidden_size in hidden_layer_sizes:
        start_time = time.time() # started time for collecting training times
        # Instantiate the model, define loss function and optimizer
        model = LSTM(hidden_layer_size=hidden_size)
        loss_function = nn.MSELoss()
        optimizer = torch.optim.Adam(model.parameters(), lr=lr)
        # Train the model with epochs set to 50
        epochs = 50
        train losses = []
        val losses = []
        for i in range(epochs):
            model.train()
            epoch_train_loss = 0
            # Record start time
            start time = time.time()
            for seq, labels in zip(train_X, train_y):
                optimizer.zero_grad()
                model.hidden_cell = (torch.zeros(1, 1, model.hidden_layer_size),
                                torch.zeros(1, 1, model.hidden_layer_size))
                y_pred = model(seq)
                single loss = loss function(y pred, labels)
                epoch train loss += single loss.item()
                single_loss.backward()
                optimizer.step()
            # Calculate epoch training time and appending epoch training time to the
            epoch_time = time.time() - start_time
```

```
training_times_rain_lstm.append(epoch_time)
            train_losses.append(epoch_train_loss / len(train_X))
            model.eval()
            epoch_val_loss = 0
            with torch.no_grad():
                for seq, labels in zip(test_X, test_y):
                    model.hidden_cell = (torch.zeros(1, 1, model.hidden_layer_size)
                                    torch.zeros(1, 1, model.hidden_layer_size))
                    y_pred = model(seq)
                    val_loss = loss_function(y_pred, labels)
                    epoch_val_loss += val_loss.item()
                # Record validation loss
                val_losses.append(epoch_val_loss / len(test_X))
            if i % 10 == 1:
                print(f'lr: {lr}, hidden_size: {hidden_size}, epoch: {i:3} train_lc
        validation_losses.append(val_losses)
        # Make predictions using the trained model lstm-rainfall
        model.eval()
        test_predictions = []
        for seq in test_X:
            with torch.no grad():
                model.hidden = (torch.zeros(1, 1, model.hidden_layer_size),
                                torch.zeros(1, 1, model.hidden_layer_size))
                test_predictions.append(model(seq).item())
        # Inverse transform the predictions
        test predictions = scaler.inverse transform(np.array(test predictions).resh
        # Calculate MSE for rainfall
        mse_rainfall = ((scaler.inverse_transform(test_y.reshape(-1, 1)) - test_pre
        mse_values.append({
            'lr': lr,
            'hidden_size': hidden_size,
            'mse_rainfall': mse_rainfall
        })
# Plot validation loss graphs for each set of hyperparameters
for idx, (lr, hidden_size) in enumerate([(lr, hidden_size) for lr in learning_rates
    plt.plot(validation losses[idx], label=f'LR={lr}, Hidden={hidden size}')
plt.xlabel('Epoch')
plt.ylabel('Validation Loss')
plt.title('Validation Loss for Different Hyperparameters Rainfall - LSTM')
plt.legend()
plt.show()
# Convert MSE values to DataFrame
mse_df_rain_lstm = pd.DataFrame(mse_values)
# Display the MSE values table
print("MSE Values Rainfall:")
print(mse_df_rain_lstm)
```

```
lr: 0.001, hidden size: 10, epoch:
                                    1 train_loss_rainfall: 0.07602387 val_loss_ra
infall: 0.03590120 epoch_time: 1.25 seconds
lr: 0.001, hidden_size: 10, epoch: 11 train_loss_rainfall: 0.07180347 val_loss_ra
infall: 0.03375670 epoch time: 1.15 seconds
lr: 0.001, hidden_size: 10, epoch: 21 train_loss_rainfall: 0.07109370 val_loss_ra
infall: 0.03324873 epoch_time: 1.23 seconds
lr: 0.001, hidden_size: 10, epoch: 31 train_loss_rainfall: 0.07083794 val_loss_ra
infall: 0.03315763 epoch_time: 1.20 seconds
lr: 0.001, hidden_size: 10, epoch: 41 train_loss_rainfall: 0.07064841 val_loss_ra
infall: 0.03318968 epoch_time: 1.27 seconds
lr: 0.001, hidden_size: 50, epoch: 1 train_loss_rainfall: 0.07680452 val_loss_ra
infall: 0.03893052 epoch_time: 1.51 seconds
lr: 0.001, hidden_size: 50, epoch: 11 train_loss_rainfall: 0.07139355 val_loss_ra
infall: 0.03340363 epoch_time: 1.43 seconds
lr: 0.001, hidden size: 50, epoch: 21 train loss rainfall: 0.07077269 val loss ra
infall: 0.03336529 epoch time: 1.46 seconds
lr: 0.001, hidden_size: 50, epoch: 31 train_loss_rainfall: 0.06968960 val_loss_ra
infall: 0.03349022 epoch_time: 1.56 seconds
lr: 0.001, hidden_size: 50, epoch: 41 train_loss_rainfall: 0.06886658 val_loss_ra
infall: 0.03354351 epoch_time: 1.47 seconds
lr: 0.01, hidden_size: 10, epoch: 1 train_loss_rainfall: 0.07623863 val_loss_rai
nfall: 0.03857206 epoch_time: 1.15 seconds
lr: 0.01, hidden size: 10, epoch: 11 train loss rainfall: 0.07295657 val loss rai
nfall: 0.03501853 epoch time: 1.15 seconds
lr: 0.01, hidden_size: 10, epoch: 21 train_loss_rainfall: 0.07237298 val_loss_rai
nfall: 0.03441368 epoch_time: 1.14 seconds
lr: 0.01, hidden size: 10, epoch: 31 train_loss_rainfall: 0.07149480 val_loss_rai
nfall: 0.03432428 epoch_time: 1.13 seconds
lr: 0.01, hidden_size: 10, epoch: 41 train_loss_rainfall: 0.07100196 val_loss_rai
nfall: 0.03417190 epoch_time: 1.11 seconds
lr: 0.01, hidden_size: 50, epoch: 1 train_loss_rainfall: 0.07754331 val_loss_rai
nfall: 0.03993025 epoch time: 1.49 seconds
lr: 0.01, hidden size: 50, epoch: 11 train loss rainfall: 0.07268040 val loss rai
nfall: 0.03492030 epoch_time: 1.41 seconds
lr: 0.01, hidden_size: 50, epoch: 21 train_loss_rainfall: 0.07207873 val_loss_rai
nfall: 0.03446159 epoch_time: 1.54 seconds
lr: 0.01, hidden_size: 50, epoch: 31 train_loss_rainfall: 0.07323821 val_loss_rai
nfall: 0.03407450 epoch_time: 1.48 seconds
lr: 0.01, hidden_size: 50, epoch: 41 train_loss_rainfall: 0.06852092 val_loss_rai
nfall: 0.03431610 epoch time: 1.43 seconds
```


MSE Values Rainfall:

	lr	hidden_size	mse_rainfall
0	0.001	10	3550.368425
1	0.001	50	3533.907725
2	0.010	10	4174.129595
3	0.010	50	3958.486429

Creating a df to save model losses (train and validation) for comparison

```
In [10]:
         # Create a DataFrame for hyperparameters, validation losses, and training times for
         lstm_data = []
         for lr in learning_rates:
             for hidden size in hidden layer sizes:
                 idx = learning_rates.index(lr) * len(hidden_layer_sizes) + hidden_layer_siz
                 lstm_data.append({
                      'Learning Rate': lr,
                      'Hidden Size': hidden_size,
                      'Validation Loss': validation_losses[idx][-1], # Get the last validati
                      'Training Time': training_times_rain_lstm[idx] # Get the training time
                 })
         # Convert the LSTM data to a DataFrame
         df_hyperparameters_lstm_rain = pd.DataFrame(lstm_data)
         # Display the DataFrame
         print(df_hyperparameters_lstm_rain)
            Learning Rate Hidden Size
                                        Validation Loss
                                                         Training Time
```

0.033237

0.033461

0.034252

0.034153

1.090688

1.254242

1.224217

1.120978

10

50

10

50

0.001

0.001

0.010

0.010

0

1

2

3

```
In [11]: #This line of code is generated to draw the hyperparameter comparison (using a df t
#df_hyperparameters_lstm_rain.to_excel('df_hyperparameters_lstm_rain.xlsx')
```

Best LSTM Model Trained with best hyperparameters - Rainfall

```
In [12]: # Find the index of the minimum validation loss
         best_index = np.unravel_index(np.argmin(validation_losses), np.array(validation_los
         best_lr_index = best_index[0] // len(hidden_layer_sizes)
         best_hidden_size_index = best_index[0] % len(hidden_layer_sizes)
         best_lr = learning_rates[best_lr_index]
         best hidden size = hidden layer sizes[best hidden size index]
         # Instantiate the best model with the best hyperparameters
         best_model_lstm_rainfall = LSTM(hidden_layer_size=best_hidden_size)
          loss_function = nn.MSELoss()
         optimizer = torch.optim.Adam(best_model_lstm_rainfall.parameters(), lr=best_lr)
         # Train the best model
         ## Train the best model lstm rainfall over best set of hyperparameters deduced earl
         epochs = 100
         best_train_losses = []
         best_val_losses = []
         for i in range(epochs):
             best_model_lstm_rainfall.train()
             epoch_train_loss = 0
             for seq, labels in zip(train_X, train_y):
                 optimizer.zero_grad()
                 best model lstm rainfall.hidden cell = (torch.zeros(1, 1, best model lstm r
                                  torch.zeros(1, 1, best_model_lstm_rainfall.hidden_layer_siz
                 y_pred = best_model_lstm_rainfall(seq)
                 single_loss = loss_function(y_pred, labels)
                 epoch_train_loss += single_loss.item()
                 single_loss.backward()
                 optimizer.step()
             best train losses.append(epoch train loss / len(train X))
             best model lstm rainfall.eval()
             epoch_val_loss = 0
             with torch.no grad():
                 for seq, labels in zip(test_X, test_y):
                     best_model_lstm_rainfall.hidden_cell = (torch.zeros(1, 1, best_model_ls
                                      torch.zeros(1, 1, best model 1stm rainfall.hidden layer
                     y_pred = best_model_lstm_rainfall(seq)
                     val loss = loss function(y pred, labels)
                     epoch val loss += val loss.item()
                  # Record validation loss
                 best_val_losses.append(epoch_val_loss / len(test_X))
             if i % 25 == 1:
                 print(f'Best model: lr={best_lr}, hidden_size={best_hidden_size}, epoch: {i
         # Make predictions using the best model
         best_model_lstm_rainfall.eval()
         best_test_predictions_rain_lstm = []
         for seq in test X:
             with torch.no_grad():
```

Best model: lr=0.001, hidden_size=10, epoch: 1 train_loss_rainfall: 0.07630340 v al_loss_rainfall: 0.03624599
Best model: lr=0.001, hidden_size=10, epoch: 26 train_loss_rainfall: 0.07075860 v al_loss_rainfall: 0.03347538
Best model: lr=0.001, hidden_size=10, epoch: 51 train_loss_rainfall: 0.06944639 v al_loss_rainfall: 0.03419261
Best model: lr=0.001, hidden_size=10, epoch: 76 train_loss_rainfall: 0.06772627 v al_loss_rainfall: 0.03409336

Saving the test file

```
In [13]: # Save the test data as a NumPy file
    np.save('test_X.npy', test_X)
```

Saving the Model-LSTM_Rainfall

```
In [14]: ### SAVING THE MODEL- LSTM
# Save the best model as a joblib file
dump(best_model_lstm_rainfall, 'best_model_lstm_rainfall.joblib')

# Load the best model from the joblib file ( if needed)
#Loaded_model = Load('best_model_lstm_rainfall.joblib')

# Load the test data from the NumPy file
#loaded_test_X = np.load('test_X.npy')

## to use this test text convert to the test to pytorch tensor to be utilized

Out[14]: ['best_model_lstm_rainfall.joblib']
```

LONG-SHORT TERM MEMORY - TEMPERATURE FORECASTING

```
In [15]: # Extract temperature data
         temperature_data = weekly_da['temp'].values.astype(float)
         # Normalize data
         scaler = MinMaxScaler(feature_range=(-1, 1))
         temperature_data_normalized = scaler.fit_transform(temperature_data.reshape(-1, 1))
         # Convert data to PyTorch tensors
         temperature_tensor = torch.FloatTensor(temperature_data_normalized).view(-1)
         def create_sequences(data, seq_length):
             xs = []
             ys = []
             for i in range(len(data) - seq_length):
                 x = data[i:i+seq_length]
                 y = data[i+seq length:i+seq length+1]
                 xs.append(x)
                 ys.append(y)
             return torch.stack(xs), torch.stack(ys)
         # Define sequence length
         seq_length = 5
         # Create sequences
         xs, ys = create sequences(temperature tensor, seq length)
         # Split data into training and testing sets
         train_size = int(len(xs) * 0.8)
         test_size = len(xs) - train_size
         train_X, test_X = xs[:train_size], xs[train_size:]
         train_y, test_y = ys[:train_size], ys[train_size:]
         # Define LSTM model
         class LSTM(nn.Module):
             def __init__(self, input_size=1, hidden_layer_size=100, output_size=1):
                 super().__init__()
                 self.hidden layer size = hidden layer size
                 self.lstm = nn.LSTM(input_size, hidden_layer_size)
                 self.linear = nn.Linear(hidden_layer_size, output_size)
                  self.hidden_cell = (torch.zeros(1,1,self.hidden_layer_size),
                                      torch.zeros(1,1,self.hidden_layer_size))
```

```
def forward(self, input_seq):
        lstm_out, self.hidden_cell = self.lstm(input_seq.view(len(input_seq) ,1, -1
        predictions = self.linear(lstm_out.view(len(input_seq), -1))
        return predictions[-1]
# Hyperparameters for tuning
learning_rates = [0.001, 0.01]
hidden_layer_sizes = [10, 50]
# Record validation losses and MSEs
validation_losses = []
mse_values = []
# Record training times
training_times_temp_lstm = []
# Train models with different hyperparameters
for lr in learning_rates:
    for hidden_size in hidden_layer_sizes:
        # Instantiate the model, define loss function and optimizer
        model = LSTM(hidden_layer_size=hidden_size)
        loss_function = nn.MSELoss()
        optimizer = torch.optim.Adam(model.parameters(), lr=lr)
        # Train the model
        epochs = 50
        train_losses = []
        val_losses = []
        for i in range(epochs):
            model.train()
            epoch_train_loss = 0
            # Record start time
            start time = time.time()
            for seq, labels in zip(train_X, train_y):
                optimizer.zero_grad()
                model.hidden_cell = (torch.zeros(1, 1, model.hidden_layer_size),
                                torch.zeros(1, 1, model.hidden_layer_size))
                y_pred = model(seq)
                single loss = loss function(y pred, labels)
                epoch_train_loss += single_loss.item()
                single_loss.backward()
                optimizer.step()
                # Calculate epoch training time
            epoch_time = time.time() - start_time
           # Append epoch training time to the list
            training times temp lstm.append(epoch time)
            train_losses.append(epoch_train_loss / len(train_X))
            model.eval()
            epoch_val_loss = 0
            with torch.no_grad():
                for seq, labels in zip(test_X, test_y):
                    model.hidden_cell = (torch.zeros(1, 1, model.hidden_layer_size)
                                    torch.zeros(1, 1, model.hidden_layer_size))
                    y_pred = model(seq)
                    val_loss = loss_function(y_pred, labels)
                    epoch val loss += val loss.item()
                # Record validation loss
```

```
val_losses.append(epoch_val_loss / len(test_X))
            if i % 10 == 1:
                print(f'lr: {lr}, hidden_size: {hidden_size}, epoch: {i:3} train_lc
        validation losses.append(val losses)
        # Make predictions using the trained model
        model.eval()
        test_predictions = []
        for seq in test_X:
            with torch.no_grad():
                model.hidden = (torch.zeros(1, 1, model.hidden_layer_size),
                                torch.zeros(1, 1, model.hidden layer size))
                test_predictions.append(model(seq).item())
        # Inverse transform the predictions
        test_predictions = scaler.inverse_transform(np.array(test_predictions).rest
        # Calculate MSE for temperature
        mse_temperature = ((scaler.inverse_transform(test_y.reshape(-1, 1)) - test
        mse_values.append({
            'lr': lr,
            'hidden size': hidden size,
            'mse_temperature': mse_temperature
        })
# Plot validation loss graphs for each set of hyperparameters
for idx, (lr, hidden_size) in enumerate([(lr, hidden_size) for lr in learning_rates
   plt.plot(validation_losses[idx], label=f'LR={lr}, Hidden={hidden_size}')
plt.xlabel('Epoch')
plt.ylabel('Validation Loss')
plt.title('Validation Loss for Different Hyperparameters Temperature - LSTM')
plt.legend()
plt.show()
# Convert MSE values to DataFrame
mse df temp lstm = pd.DataFrame(mse values)
# Display the MSE values table
print("MSE Values:")
print(mse_df_temp_lstm)
```

```
Neural Computing Indiv project
lr: 0.001, hidden_size: 10, epoch:
                                    1 train loss temperature: 0.03826221 val loss
_temperature: 0.03296080 epoch_time: 1.16 seconds
lr: 0.001, hidden_size: 10, epoch: 11 train_loss_temperature: 0.02787560 val_loss
temperature: 0.02870887 epoch time: 1.15 seconds
lr: 0.001, hidden_size: 10, epoch: 21 train_loss_temperature: 0.02729108 val_loss
_temperature: 0.02813397 epoch_time: 1.13 seconds
lr: 0.001, hidden_size: 10, epoch: 31 train_loss_temperature: 0.02702738 val_loss
_temperature: 0.02783833 epoch_time: 1.14 seconds
lr: 0.001, hidden_size: 10, epoch: 41 train_loss_temperature: 0.02683518 val_loss
_temperature: 0.02758594 epoch_time: 1.16 seconds
lr: 0.001, hidden_size: 50, epoch: 1 train_loss_temperature: 0.03464158 val_loss
_temperature: 0.03459286 epoch_time: 1.41 seconds
lr: 0.001, hidden_size: 50, epoch: 11 train_loss_temperature: 0.02823700 val_loss
_temperature: 0.02934927 epoch_time: 1.39 seconds
lr: 0.001, hidden size: 50, epoch: 21 train loss temperature: 0.02730909 val loss
temperature: 0.02792965 epoch_time: 1.43 seconds
lr: 0.001, hidden_size: 50, epoch: 31 train_loss_temperature: 0.02672229 val_loss
_temperature: 0.02739959 epoch_time: 1.40 seconds
lr: 0.001, hidden_size: 50, epoch: 41 train_loss_temperature: 0.02593279 val_loss
_temperature: 0.02765058 epoch_time: 1.39 seconds
lr: 0.01, hidden_size: 10, epoch: 1 train_loss_temperature: 0.03687944 val_loss_
temperature: 0.04240744 epoch_time: 1.14 seconds
lr: 0.01, hidden size: 10, epoch: 11 train loss temperature: 0.03220438 val loss
temperature: 0.03023518 epoch time: 1.29 seconds
lr: 0.01, hidden_size: 10, epoch: 21 train_loss_temperature: 0.03141422 val_loss_
temperature: 0.02815167 epoch_time: 1.16 seconds
lr: 0.01, hidden size: 10, epoch: 31 train_loss_temperature: 0.03068597 val_loss_
temperature: 0.02721832 epoch_time: 1.14 seconds
lr: 0.01, hidden_size: 10, epoch: 41 train_loss_temperature: 0.03100885 val_loss_
temperature: 0.02713575 epoch_time: 1.16 seconds
lr: 0.01, hidden_size: 50, epoch: 1 train_loss_temperature: 0.04605461 val_loss_
temperature: 0.04556071 epoch time: 1.36 seconds
lr: 0.01, hidden size: 50, epoch: 11 train loss temperature: 0.03386287 val loss
temperature: 0.03324554 epoch_time: 1.36 seconds
lr: 0.01, hidden_size: 50, epoch: 21 train_loss_temperature: 0.03110022 val_loss_
temperature: 0.03121962 epoch_time: 1.37 seconds
lr: 0.01, hidden_size: 50, epoch: 31 train_loss_temperature: 0.02798713 val_loss_
temperature: 0.03217605 epoch_time: 1.41 seconds
lr: 0.01, hidden size: 50, epoch: 41 train loss temperature: 0.02634635 val loss
```

temperature: 0.03190569 epoch time: 1.42 seconds

Validation Loss for Different Hyperparameters Temperature - LSTM

50

0.010

Creating a df to save model losses (train and validation) for comparison

5.029695

```
# Create a DataFrame for hyperparameters, validation losses, and training times for
In [16]:
         lstm_data_temp = []
         for lr in learning rates:
             for hidden size in hidden layer sizes:
                  idx = learning_rates.index(lr) * len(hidden_layer_sizes) + hidden_layer_siz
                 lstm_data_temp.append({
                      'Learning Rate': lr,
                      'Hidden Size': hidden_size,
                      'Validation Loss': validation_losses[idx][-1], # Get the last validati
                      'Training Time': training_times_rain_lstm[idx] # Get the training time
                 })
         # Convert the LSTM data to a DataFrame
         df_hyperparameters_lstm_temp = pd.DataFrame(lstm_data_temp)
         # Display the DataFrame
         print(df_hyperparameters_lstm_temp)
            Learning Rate Hidden Size Validation Loss
                                                          Training Time
         0
                    0.001
                                     10
                                                0.027431
                                                               1.090688
         1
                    0.001
                                     50
                                                               1.254242
                                                0.027529
         2
                                     10
                    0.010
                                                0.030135
                                                               1.224217
```

0.031584

1.120978

50

0.010

```
In [17]: #This line of code is generated to draw the hyperparameter comparison (using a df t
    #df_hyperparameters_lstm_temp.to_excel('df_hyperparameters_lstm_temp.xlsx')
```

Best LSTM Model Trained with best hyperparameters - Temperature

```
In [18]: # Find the index of the minimum validation loss
         best_index = np.unravel_index(np.argmin(validation_losses), np.array(validation_los
         best_lr_index = best_index[0] // len(hidden_layer_sizes)
         best_hidden_size_index = best_index[0] % len(hidden_layer_sizes)
          best_lr = learning_rates[best_lr_index]
         best_hidden_size = hidden_layer_sizes[best_hidden_size_index]
         # Instantiate the best model with the best hyperparameters
         best_model_lstm_temp = LSTM(hidden_layer_size=best_hidden_size)
         loss_function = nn.MSELoss()
         optimizer = torch.optim.Adam(best_model_lstm_temp.parameters(), lr=best_lr)
         # Train the best model Lstm temperature over best set of hyperparameters deduced ed
         epochs = 100
         best_train_losses = [] # calculating training losses and validation losses
         best_val_losses = []
         for i in range(epochs):
             best_model_lstm_temp.train()
             epoch_train_loss = 0
             for seq, labels in zip(train_X, train_y):
                 optimizer.zero_grad()
                 best_model_lstm_temp.hidden_cell = (torch.zeros(1, 1, best_model_lstm_temp.
                                  torch.zeros(1, 1, best_model_lstm_temp.hidden_layer_size))
                 y_pred = best_model_lstm_temp(seq)
                 single_loss = loss_function(y_pred, labels)
                 epoch train loss += single loss.item()
                 single loss.backward()
                 optimizer.step()
             best_train_losses.append(epoch_train_loss / len(train_X))
             best_model_lstm_temp.eval()
             epoch_val_loss = 0
             with torch.no grad():
                 for seq, labels in zip(test_X, test_y):
                     best model lstm temp.hidden cell = (torch.zeros(1, 1, best model lstm t
                                      torch.zeros(1, 1, best_model_lstm_temp.hidden_layer_siz
                     y_pred = best_model_lstm_temp(seq)
                     val loss = loss function(y pred, labels)
                     epoch_val_loss += val_loss.item()
                 # Record validation loss
                 best_val_losses.append(epoch_val_loss / len(test_X))
             if i % 25 == 1:
                 print(f'Best model: lr={best_lr}, hidden_size={best_hidden_size}, epoch: {i
         # Make predictions using the best model
         best_model_lstm_temp.eval()
         best_test_predictions_lstm_temp = []
         for seq in test X:
             with torch.no_grad():
```

```
best_model_lstm_temp.hidden = (torch.zeros(1, 1, best_model_lstm_temp.hiddecorch.zeros(1, 1, best_model_lstm_temp.hiddecorch.zeros(1, 1, best_model_lstm_temp.hidden_layer_size))
    best_test_predictions_lstm_temp.append(best_model_lstm_temp(seq).item())

# Inverse transform the predictions
best_test_predictions_lstm_temp = scaler.inverse_transform(np.array(best_test_predictions_lstm_temp, label='Predicted')
plt.plot(best_test_predictions_lstm_temp, label='Predicted')
plt.plot(scaler.inverse_transform(test_y.reshape(-1, 1)), label='Actual')
plt.xlabel('Time')
plt.ylabel('Temperature')
plt.title('Actual vs Predicted Temperature for Best Model LSTM')
plt.legend()
plt.show()
```

Best model: lr=0.01, hidden_size=10, epoch: 1 train_loss_temperature: 0.03693691 val_loss_temperature: 0.04347377
Best model: lr=0.01, hidden_size=10, epoch: 26 train_loss_temperature: 0.03041685 val_loss_temperature: 0.02793481
Best model: lr=0.01, hidden_size=10, epoch: 51 train_loss_temperature: 0.02838734 val_loss_temperature: 0.02899118
Best model: lr=0.01, hidden_size=10, epoch: 76 train_loss_temperature: 0.02470626 val_loss_temperature: 0.02907690

Actual vs Predicted Temperature for Best Model LSTM

Saving the Model file - LSTM-Temperature

```
In [19]: #Saving the model
    # Save the best model as a joblib file
    dump(best_model_lstm_temp, 'best_model_lstm_temp.joblib')

# Load the best model from the joblib file ( if you need loading of the model - con
#loaded_model_lstm_temp = load('best_model_lstm_temp.joblib')
```

```
Out[19]: ['best_model_lstm_temp.joblib']
```

SVM

SVM - Rainfall Forecasting

```
import numpy as np
In [20]:
         import pandas as pd
         from sklearn.preprocessing import MinMaxScaler
         from sklearn.svm import SVR
         from sklearn.metrics import mean_squared_error
         from sklearn.model_selection import GridSearchCV
          import matplotlib.pyplot as plt
         import seaborn as sns
         # Assuming you have your data loaded in 'weekly da'
         # Extract rainfall data
         rainfall_data = weekly_da['rain'].values.astype(float)
         # Normalize data
         scaler = MinMaxScaler(feature_range=(-1, 1))
         rainfall_data_normalized = scaler.fit_transform(rainfall_data.reshape(-1, 1))
         # Define sequence Length
         seq_length = 5
         # Create sequences
         def create_sequences(data, seq_length):
             xs = []
             ys = []
             for i in range(len(data) - seq_length):
                 x = data[i:i+seq length]
                 y = data[i+seq_length]
                 xs.append(x)
                 ys.append(y)
             return np.array(xs), np.array(ys)
         xs, ys = create sequences(rainfall data normalized, seq length)
         # Split data into training and testing sets
         train_size = int(len(xs) * 0.8)
         test_size = len(xs) - train_size
         train_X, test_X = xs[:train_size], xs[train_size:]
         train_y, test_y = ys[:train_size], ys[train_size:]
         # Flatten the sequence dimension while keeping the other dimensions intact
         train X flat = train X.reshape(train X.shape[0], -1)
         test_X_flat = test_X.reshape(test_X.shape[0], -1)
         # Define the parameter grid
         param_grid = {
              'kernel': ['rbf', 'linear'], # Different kernel types
              'C': [0.1, 1, 10], # Regularization parameter values
              'gamma': ['scale', 'auto'] # Gamma parameter for RBF kernel
         }
         # Initialize SVR model
         svm model = SVR()
```

```
# Perform grid search with cross-validation
grid_search = GridSearchCV(estimator=svm_model, param_grid=param_grid, cv=3, scorir
grid_search.fit(train_X_flat, train_y)
# Get the best model
best svm model = grid search.best estimator
# Make predictions on the test set using the best model
svm_predictions = best_svm_model.predict(test_X_flat)
# Inverse transform the predictions
svm_predictions_inv = scaler.inverse_transform(svm_predictions.reshape(-1, 1))
test_y_inv = scaler.inverse_transform(test_y.reshape(-1, 1))
# Calculate Mean Squared Error (MSE) for rainfall
mse_rainfall_svm = mean_squared_error(test_y_inv, svm_predictions_inv)
print("MSE for Rainfall (SVM):", mse_rainfall_svm)
# Plot predictions vs actual rainfall
plt.plot(test_y_inv, label='Actual Rainfall')
plt.plot(svm_predictions_inv, label='Predicted Rainfall (SVM)')
plt.xlabel('Time')
plt.ylabel('Rainfall')
plt.title('Actual vs Predicted Rainfall (SVM)')
plt.legend()
plt.show()
# Get the best hyperparameters
best_params = grid_search.best_params_
print("Best Hyperparameters:", best_params)
# Extract grid search results
results = pd.DataFrame(grid_search.cv_results_)
# Pivot the dataframe to have hyperparameters as columns
pivot_table = results.pivot_table(index='param_kernel', columns='param_C', values='
# Plot the heatmap
plt.figure(figsize=(4, 2))
sns.heatmap(pivot table, annot=True, cmap="YlGnBu", cbar kws={'label': 'Mean Test 5
plt.title("Grid Search Results")
plt.xlabel("C (Regularization Parameter)")
plt.ylabel("Kernel")
plt.show()
# Create a DataFrame for hyperparameters, validation losses, and training times
svm_data = []
for kernel in param grid['kernel']:
    for C in param grid['C']:
        for gamma in param_grid['gamma']:
            idx = param_grid['kernel'].index(kernel) * len(param_grid['C']) * len(param_grid['C']) *
                  param_grid['C'].index(C) * len(param_grid['gamma']) + param_grid[
            svm_data.append({
                'Kernel': kernel,
                'C': C,
                'Gamma': gamma,
                'Validation Loss': grid search.cv results ['mean test score'][idx],
                'Training Time': grid search.cv results ['mean fit time'][idx]
            })
df hyperparameters svm = pd.DataFrame(svm data)
```

Display the DataFrame
print(df_hyperparameters_svm)

```
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column or 1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
```

```
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column or 1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
```

C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn ing: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

y = column_or_1d(y, warn=True)

C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn ing: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

y = column_or_1d(y, warn=True)

C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn ing: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

y = column_or_1d(y, warn=True)

C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn ing: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

y = column_or_1d(y, warn=True)

C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn ing: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

y = column_or_1d(y, warn=True)

MSE for Rainfall (SVM): 3602.8760644338677

Best Hyperparameters: {'C': 1, 'gamma': 'auto', 'kernel': 'rbf'}

In [21]: #This line of code is generated to draw the hyperparameter comparison (using a df t #df_hyperparameters_svm.to_excel('df_hyperparameters_svm_rain.xlsx')

SVM - Temperature Forecasting

```
In [22]:
         # Extract temperature data
         temperature_data = weekly_da['temp'].values.astype(float)
         # Normalize data
         scaler temp = MinMaxScaler(feature range=(-1, 1))
         temperature data normalized = scaler temp.fit transform(temperature data.reshape(-1
         # Create sequences for temperature
         xs_temp, ys_temp = create_sequences(temperature_data_normalized, seq_length)
         # Split data into training and testing sets for temperature
         train size temp = int(len(xs temp) * 0.8)
         test_size_temp = len(xs_temp) - train_size_temp
         train_X_temp, test_X_temp = xs_temp[:train_size_temp], xs_temp[train_size_temp:]
         train_y_temp, test_y_temp = ys_temp[:train_size_temp], ys_temp[train_size_temp:]
         # Flatten the sequence dimension while keeping the other dimensions intact for temp
         train X flat temp = train X temp.reshape(train X temp.shape[0], -1)
         test_X_flat_temp = test_X_temp.reshape(test_X_temp.shape[0], -1)
         # Perform grid search with cross-validation for temperature
         grid_search_temp = GridSearchCV(estimator=svm_model, param_grid=param_grid, cv=3, s
         grid_search_temp.fit(train_X_flat_temp, train_y_temp)
         # Get the best model for temperature
         best_svm_model_temp = grid_search_temp.best_estimator_
         # Make predictions on the test set using the best model for temperature
```

```
svm predictions temp = best svm model temp.predict(test X flat temp)
# Inverse transform the predictions for temperature
svm_predictions_inv_temp = scaler_temp.inverse_transform(svm_predictions_temp.resha
test_y_inv_temp = scaler_temp.inverse_transform(test_y_temp.reshape(-1, 1))
# Calculate Mean Squared Error (MSE) for temperature
mse_temperature_svm = mean_squared_error(test_y_inv_temp, svm_predictions_inv_temp)
print("MSE for Temperature (SVM):", mse_temperature_svm)
# Plot predictions vs actual temperature
plt.plot(test_y_inv_temp, label='Actual Temperature')
plt.plot(svm_predictions_inv_temp, label='Predicted Temperature (SVM)')
plt.xlabel('Time')
plt.ylabel('Temperature')
plt.title('Actual vs Predicted Temperature (SVM)')
plt.legend()
plt.show()
# Get the best hyperparameters for temperature
best_params_temp = grid_search_temp.best_params_
print("Best Hyperparameters for Temperature:", best_params_temp)
# Extract grid search results for temperature
results temp = pd.DataFrame(grid search temp.cv results )
# Pivot the dataframe to have hyperparameters as columns for temperature
pivot_table_temp = results_temp.pivot_table(index='param_kernel', columns='param_C')
# Plot the heatmap for temperature
plt.figure(figsize=(4, 2))
sns.heatmap(pivot_table_temp, annot=True, cmap="YlGnBu", cbar_kws={'label': 'Mean True, chap_kws={'label': 'Mean 
plt.title("Grid Search Results for Temperature")
plt.xlabel("C (Regularization Parameter)")
plt.ylabel("Kernel")
plt.show()
# Create a DataFrame for hyperparameters, validation losses, and training times for
svm_data_temp = []
for kernel in param grid['kernel']:
       for C in param grid['C']:
               for gamma in param grid['gamma']:
                      idx = param grid['kernel'].index(kernel) * len(param grid['C']) * len(param grid['C']) *
                                  param grid['C'].index(C) * len(param grid['gamma']) + param grid[
                      svm_data_temp.append({
                              'Kernel': kernel,
                              'C': C,
                              'Gamma': gamma,
                              'Validation Loss': grid search temp.cv results ['mean test score'][
                              'Training Time': grid search temp.cv results ['mean fit time'][idx]
                      })
df hyperparameters svm temp = pd.DataFrame(svm data temp)
# Display the DataFrame for temperature
print(df hyperparameters svm temp)
#This line of code is generated to draw the hyperparameter comparison (using a df t
#df hyperparameters svm temp.to excel('df hyperparameters svm temp.xlsx')
```

```
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column or 1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
```

```
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column or 1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn
ing: A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
```

C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn ing: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

y = column_or_1d(y, warn=True)

C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn ing: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

y = column_or_1d(y, warn=True)

C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn ing: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

y = column_or_1d(y, warn=True)

C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn ing: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n samples,), for example using ravel().

y = column_or_1d(y, warn=True)

C:\Anaconda\Lib\site-packages\sklearn\utils\validation.py:1183: DataConversionWarn ing: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

y = column_or_1d(y, warn=True)

MSE for Temperature (SVM): 3.5063773157897056

Actual vs Predicted Temperature (SVM) 20.0 Actual Temperature Predicted Temperature (SVM) 17.5 15.0 **Temperature** 12.5 10.0 7.5 5.0 2.5 0.0 0 20 40 60 80 100 120 140 Time

Best Hyperparameters for Temperature: {'C': 1, 'gamma': 'auto', 'kernel': 'rbf'}

Saving the Model files for SVM - Rainfall & Temperature

```
In [23]: # Save the best SVM model for rainfall prediction
    dump(best_svm_model, 'best_svm_model_rainfall.joblib')

# Save the best SVM model for temperature prediction
    dump(best_svm_model_temp, 'best_svm_model_temperature.joblib')

Out[23]: ['best_svm_model_temperature.joblib']
```

Results and Findings - SVM VS LSTM

MSE PLOTS - Rainfall and Temperature

```
In [24]: # Calculate Mean Absolute Error (MAE) for rainfall predictions
    mae_rainfall_svm = mean_absolute_error(test_y_inv, svm_predictions_inv)
    mae_rainfall_lstm = mean_absolute_error(test_y_inv, best_test_predictions_rain_lstm

# Calculate Mean Absolute Error (MAE) for temperature predictions
    mae_temperature_svm = mean_absolute_error(test_y_inv_temp, svm_predictions_inv_temp,
    mae_temperature_lstm = mean_absolute_error(test_y_inv_temp, best_test_predictions_l

# Calculate the MSE values for SVM models for temperature and rainfall predictions
lowest_temp_svm = mse_temperature_svm
lowest_rain_svm = mse_rainfall_svm

# Calculate the MSE values for LSTM models for temperature and rainfall predictions
lowest_temp_lstm = mse_df_temp_lstm['mse_temperature'].min()
lowest_rain_lstm = mse_df_rain_lstm['mse_rainfall'].min()

# Plotting subplots for MSE and MAE comparison for temperature and rainfall
```

```
# Create a figure and subplots
fig, axs = plt.subplots(2, 2, figsize=(12, 10))
# Temperature MSE comparison
axs[0, 0].bar(['SVM', 'LSTM'], [lowest_temp_svm, lowest_temp_lstm], color=['orange'
axs[0, 0].set_xlabel('Model')
axs[0, 0].set_ylabel('MSE')
axs[0, 0].set_title('Temperature MSE (SVM vs LSTM)')
# Annotate values
for i, v in enumerate([lowest_temp_svm, lowest_temp_lstm]):
    axs[0, 0].text(i, v + 0.01, str(round(v, 2)), ha='center', va='bottom')
# Rainfall MSE comparison
axs[0, 1].bar(['SVM', 'LSTM'], [lowest_rain_svm, lowest_rain_lstm], color=['orange'
axs[0, 1].set xlabel('Model')
axs[0, 1].set_ylabel('MSE')
axs[0, 1].set_title('Rainfall MSE (SVM vs LSTM)')
# Annotate values
for i, v in enumerate([lowest_rain_svm, lowest_rain_lstm]):
    axs[0, 1].text(i, v + 0.01, str(round(v, 2)), ha='center', va='bottom')
# Temperature MAE comparison
axs[1, 0].bar(['SVM', 'LSTM'], [mae_temperature_svm, mae_temperature_lstm], color=
axs[1, 0].set xlabel('Model')
axs[1, 0].set_ylabel('MAE')
axs[1, 0].set_title('Temperature MAE (SVM vs LSTM)')
# Annotate values
for i, v in enumerate([mae_temperature_svm, mae_temperature_lstm]):
    axs[1, 0].text(i, v + 0.01, str(round(v, 2)), ha='center', va='bottom')
# Rainfall MAE comparison
axs[1, 1].bar(['SVM', 'LSTM'], [mae_rainfall_svm, mae_rainfall_lstm], color=['orang
axs[1, 1].set xlabel('Model')
axs[1, 1].set_ylabel('MAE')
axs[1, 1].set_title('Rainfall MAE (SVM vs LSTM)')
# Annotate values
for i, v in enumerate([mae_rainfall_svm, mae_rainfall_lstm]):
    axs[1, 1].text(i, v + 0.01, str(round(v, 2)), ha='center', va='bottom')
# Adjust Layout
plt.tight layout()
# Show plot
plt.show()
```


Residual plots - SVM VS LSTM

```
In [25]:
         # Calculate residuals for SVM temperature prediction
         residuals_svm_temp = svm_predictions_temp - test_y_inv_temp.flatten()
         residuals_svm_rain = svm_predictions_inv.flatten() - test_y_inv.flatten()
         # Calculate residuals for LSTM temperature prediction
         best test predictions lstm temp = best test predictions lstm temp.flatten()
         residuals_lstm_temp = best_test_predictions_lstm_temp - test_y_inv_temp.flatten()
         best_test_predictions_rain_lstm = best_test_predictions_rain_lstm.flatten()
         test y inv rain = scaler.inverse transform(test y.reshape(-1, 1))
         residuals_rain_lstm = best_test_predictions_rain_lstm.flatten() - test_y_inv_rain.fl
         # Create a figure with subplots for rainfall and temperature predictions
         plt.figure(figsize=(10, 8))
         # Subplot for rainfall predictions
         plt.subplot(2, 1, 1)
         # Residual plot for SVM rainfall prediction
         plt.scatter(svm_predictions_inv, residuals_svm_rain, color='orange', alpha=0.5, lak
         plt.axhline(y=0, color='red', linestyle='--')
         plt.title('Residual Plot for Rainfall Prediction')
         plt.xlabel('Predicted Values')
         plt.ylabel('Residuals')
         plt.grid(True)
         plt.legend()
         # Residual plot for LSTM rainfall prediction
         plt.scatter(best test predictions rain lstm, residuals rain lstm, color='blue', alp
         plt.axhline(y=0, color='red', linestyle='--')
         plt.xlabel('Predicted Values')
         plt.ylabel('Residuals')
         plt.grid(True)
```

```
plt.legend()
# Subplot for temperature predictions
plt.subplot(2, 1, 2)
# Residual plot for SVM temperature prediction
plt.scatter(svm_predictions_temp, residuals_svm_temp, color='orange', alpha=0.5, la
plt.axhline(y=0, color='red', linestyle='--')
plt.title('Residual Plot for Temperature Prediction')
plt.xlabel('Predicted Values')
plt.ylabel('Residuals')
plt.grid(True)
plt.legend()
# Residual plot for LSTM temperature prediction
plt.scatter(best_test_predictions_lstm_temp, residuals_lstm_temp, color='blue', alr
plt.axhline(y=0, color='red', linestyle='--')
plt.xlabel('Predicted Values')
plt.ylabel('Residuals')
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()
```



```
In [ ]:
```