PHY114: QUANTUM PHYSICS (2024-25, 2nd Semester) Homework-12

- **Q.1:** Consider the three angular momentum operators $L_x = yp_z zp_y$ and $L_y = zp_x xp_z$ and $L_z = xp_y yp_x$ in terms of the position operators x, y and z and the momentum operators p_x , p_y and p_z .
- (a) Argue that L_x , L_y and L_z are Hermitian and show that $[L_x, L_y] = i\hbar L_z$.
- (b) Using L_x , L_y and L_z commutators show that the operator $L^2 = L_x^2 + L_y^2 + L_z^2$ commutes with L_x .
- (c) Show that $Y_{lm}(\theta, \phi)$ is an eigen state of the operator $L_x^2 + L_y^2$. Find the corresponding eigen value? Argue that in state $Y_{lm}(\theta, \phi)$ the vector \vec{L} makes an angle α with the xy-plane, given by $\sin \alpha = \frac{m}{\sqrt{l(l+1)}}$. What are different α values for l=1?
- (d) Given an eigen-state of L_z , i.e. $L_z|m\rangle = m\hbar|m\rangle$, and relation $[L_y, L_z] = i\hbar L_x$, prove that the expectation value of L_x over state $|m\rangle$ is zero.
- **Q.2:** (a) The spin angular momentum of a spin-1/2 particle is given by $\vec{S} = (\hbar/2) \vec{\sigma}$ with the Pauli matrices given by: $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ and $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.
- (a) Show that the Pauli matrices satisfy the commutation relation $[\sigma_x, \sigma_y] = 2i\sigma_z$ and its cyclic permutations. What can you conclude about the commutator $[S_x, S_y]$ from this?
- **(b)** Find σ_x^2 , σ_y^2 and σ_z^2 and thus the operator S^2 in matrix form.
- (c) Show that the expectation values of S_x and S_y are zero for both the eigen-states of S_z . What are the expectation values of S_x^2 and S_y^2 for these eigen states?
- **Q.3:** A particle is known to be in a state given by the wave-function $\psi(\vec{r}) = N(r + x + y + z)e^{-r^2/a^2}$, where *N* is a normalization constant.
- (a) Write this wave-function in terms of spherical harmonics and an r dependent function. Suppose L^2 is measured for this state, what are the possible results of the measurements and with what probabilities?
- (b) What are the possible results when L_z is measured for above state and with what probabilities?
- Q.4: (a) What is the Bohr Magneton value in SI units for the electron and the proton?
- **(b)** What is the magnetic potential energy of an electron with its spin magnetic moment aligned anti-parallel to a magnetic field of 100 G (i.e. 0.01 Tesla)?
- (c) What is the Larmour precession frequency of the electron's spin in this magnetic field?
- **Q.5:** Consider an angular momentum l system with gyromagnetic ratio γ (i.e. $\vec{\mu} = \gamma \vec{L}$) in a magnetic field $\vec{B} = B\hat{z}$ leading to the Zeeman Hamiltonian $H = -\vec{\mu}_l \cdot \vec{B} = -\gamma B L_z$.
- (a) Use the Heisenberg equation of motion to find how the expectation values of the three components of $\vec{\mu}$ evolve with time.
- **(b)** Argue that these agree with the classical equations of motion for these components and amount to precession. What is the precession frequency?
- **Q.6:** Two orthonormal states $|\pm n\rangle$ of a spin-1/2 particle in $|\pm z\rangle$ (or $|\uparrow\rangle$ and $|\downarrow\rangle$) basis are given as

$$|+n\rangle = \begin{pmatrix} \cos\frac{\theta}{2} \\ \sin\frac{\theta}{2}e^{i\phi} \end{pmatrix}$$
 and $|-n\rangle = \begin{pmatrix} \sin\frac{\theta}{2} \\ -\cos\frac{\theta}{2}e^{i\phi} \end{pmatrix}$ together with an operator $S_n = \frac{\hbar}{2}\hat{n}$. Here $\hat{n} = \frac{\hbar}{2}\hat{n}$.

 $\sin \theta \cos \phi \hat{x} + \sin \theta \sin \phi \hat{y} + \cos \theta \hat{z}$ and $\vec{\sigma} = \sigma_x \hat{x} + \sigma_y \hat{y} + \sigma_z \hat{z}$ with σ_x , σ_y and σ_z as the three Pauli matrices.

- (a) Find the expectation values of $S_x = \frac{\hbar}{2} \sigma_x$, S_y and S_z for the state $|+n\rangle$.
- (b) Use the explicit matrix form of Pauli matrices to find S_n in matrix form and simplify it.
- (c) Prove that $|\pm n\rangle$ states are eigen states of S_n operator. What are the corresponding eigen values?
- (d) Let us construct an operator U using the $|\pm n\rangle$ states as $U = \begin{pmatrix} \cos\frac{\theta}{2} & \sin\frac{\theta}{2}e^{-i\phi} \\ \sin\frac{\theta}{2} & -\cos\frac{\theta}{2}e^{-i\phi} \end{pmatrix}$. Prove that U is unitary, i.e. UU^{\dagger} is identity operator.
- (e) U represents the transformation from the $|\pm z\rangle$ basis to the new $|\pm n\rangle$ basis. Find the $|\pm n\rangle$ states and the operator S_n in the new basis, i.e. $U|\pm n\rangle$ and US_nU^{\dagger} in matrix form.
- **Q.7:** The Hamiltonian of a proton with spin-1/2 having magnetic moment $\vec{\mu} = g_p \mu_N \vec{S}/\hbar$ in a magnetic field $B\hat{k}$ is given by $H = -\frac{g_p \mu_N}{\hbar} \vec{S} \cdot \vec{B} = -\frac{g_p \mu_N}{2} B \sigma_z$.
- (a) Show that the time dependent spin state given by $|\chi(t)\rangle = \begin{pmatrix} e^{i\omega_0 t/2} \cos \frac{\theta}{2} \\ e^{i(\phi_0 \omega_0 t/2)} \sin \frac{\theta}{2} \end{pmatrix}$ satisfies the

time dependent Schrodinger equation, i.e. $H|\chi(t)\rangle = i\hbar \frac{\partial}{\partial t}|\chi(t)\rangle$ with a suitable ω_0 .

(b) Interpret the time evolution of state $|\chi(t)\rangle$ physically. For this you may find the expectation values of the three magnetic moment (or spin) components for this time dependent state. Also, the previous problem provides some hints for this.