Norges teknisk-naturvitenskapelige universitet

Side 1 av 3

Institutt for matematiske fag

Bokmål

Faglig kontakt under eksamen:

 Arvid Næss
 99 53 83 50

 Jarle Tufto
 99 70 55 19

 Ola Diserud
 93 21 88 23

EKSAMEN I EMNE TMA4245 STATISTIKK

XX. august 2010 Tid: 09:00-13:00

Hjelpemidler: Tabeller og formler i statistikk, Tapir Forlag

K. Rottmann: Matematisk formelsamling

Kalkulator HP30S

Gult, stemplet A5-ark med egne håndskrevne notat.

Oppgave 1

La X være en stokastisk variabel med sannsynlighetstetthet (ST):

$$f_X(x) = \frac{1}{\sqrt{2\pi}\tau x} e^{-\frac{1}{2\tau^2}(\ln x - \nu)^2}, \quad x > 0,$$

= 0, \quad x \leq 0, \quad (1)

der $\tau > 0$ og ν er reelle tall, og $\ln x$ betegner den naturlige logaritmen til x.

Dersom en tar n uavhengige jordprøver i et bestemt distrikt, hver på én kilo, og betegner det målte nikkelinnholdet angitt i mg i de respektive prøvene med x_1, \ldots, x_n , har det vist seg at x_1, \ldots, x_n kan betraktes som et utfall av uavhengige og identisk fordelte stokastiske variabler X_1, \ldots, X_n med ST som gitt i ligning (1).

a) Vis at når X har ST gitt ved ligning (1), så er $Y = \ln X$ normalfordelt med forventningsverdi $\nu = E[Y]$ og varians $\tau^2 = Var[Y]$. TMA4245 Statistikk Side 2 av 3

b) Vis at $F_X(x) = \text{Prob}(X \leq x) = \Phi\left(\frac{\ln x - \nu}{\tau}\right)$, der Φ betegner den kumulative sannsynlighetsfordelingen til en stokastisk variabel $Z \sim N(0, 1)$.

Innfører en $Y_j = \ln X_j$, $j = 1, \ldots, n$, blir altså Y_1, \ldots, Y_n uavhengige og identisk fordelte stokastiske variabler, og $Y_j \sim N(\nu, \tau^2)$, $j = 1, \ldots, n$.

- c) Anta at $\nu = 1.0 \text{ og } \tau = 0.8$. Bestem $\text{Prob}(X_1 \le 1.0) \text{ og } \text{Prob}(X_1 \cdot X_2 \le 1.0)$.
- d) Anta fortsatt at $\nu = 1.0$ og $\tau = 0.8$ samt at n = 5. Hvor stor er da sannsynligheten for at målt nikkelinnhold i minst 4 av 5 jordprøver skal være mindre enn 2.72 mg?
- e) Vis at

$$\mu = E[X] = e^{\nu + \tau^2/2}$$
, $\sigma^2 = Var[X] = e^{2\nu} (e^{2\tau^2} - e^{\tau^2})$

Hint: En måte å gå fram på, er å innføre $t = (\ln x - \nu)/\tau$ som ny integrasjonsvariabel.

f) Anta at en har målt nikkelinnholdet x_1, \ldots, x_n i n jordprøver og ønsker en anslagsverdi for μ basert på disse målingene. En mulig estimator er

$$\hat{\mu} = \frac{1}{n} \sum_{j=1}^{n} X_j = \overline{X}.$$

Kommentér kort hvilke egenskaper denne estimatoren har, og gjennomfør estimeringen når n = 10 og observasjonsmaterialet er som angitt til slutt i denne oppgaven.

- g) Et alternativ til estimatoren $\hat{\mu}$ får en ved først å bestemme sannsynlighetsmaksimeringsestimatorene (SME) $\hat{\nu}$ og $\hat{\tau}^2$ for ν og τ^2 , og så utnytte resultatet i punkt e). Bestem $\hat{\nu}$ og $\hat{\tau}^2$. Hvilke egenskaper har disse estimatorene? Angi til slutt en estimator μ^* for μ basert på $\hat{\nu}$ og $\hat{\tau}^2$. Gjennomfør estimeringen av μ når observasjonsmaterialet er som angitt til slutt i oppgaven.
- h) Gå ut fra at τ^2 er kjent og lik τ_0^2 . På grunnlag av det tilfeldige utvalget x_1, \ldots, x_n ønsker en å teste

$$H_0: \mu < \mu_0$$

mot

$$H_1: \mu > \mu_0$$

der μ_0 er et gitt tall.

Bruk resultatet i punkt e) til å uttrykke H_0 og H_1 ved hjelp av ν , og vis at testproblemet er ekvivalent med å teste

$$H_0' : \nu \leq \nu_0$$

TMA4245 Statistikk Side 3 av 3

mot

$$H_1': \nu > \nu_0$$

der ν_0 er et kjent tall.

Utnytt dette til å angi en rimelig test for H_0 mot H_1 . Velg signifikansnivå α .

i) Utled et uttrykk for teststyrken for testen i punkt h) under alternativhypotesen $\mu = \gamma \mu_0$ ($\gamma > 1$) når $\alpha = 0.05$, $\tau_0^2 = 0.36$.

Hvor stor må n minst være for at testen med en sannsynlighet på minst 0.90 forkaster H_0 når $\mu=1.5\mu_0$?

j) Gå fortsatt ut fra at τ^2 er kjent og lik τ_0^2 . Utled først et $100(1-\alpha)\%$ konfidensintervall for ν , og bruk resultatet til å bestemme et tilsvarende konfidensintervall for μ .

Hva blir konfidensintervallet for μ når n=10, $\alpha=0.05$, $\tau_0^2=0.36$ og observasjonsmaterialet er som angitt til slutt i oppgaven?

	57									
$y_j = \ln x_j$	4.04	3.64	5.01	3.37	4.17	3.78	3.58	3.18	3.93	4.48

Tabell 1: Observasjonsmateriale

$$\sum_{j=1}^{10} y_j = 39.58 \qquad \sum_{j=1}^{10} (y_j - \overline{y})^2 = 3.2360$$