CENTRO ESTADUAL DE EDUCAÇÃO TECNOLÓGICA PAULA SOUZA

Faculdade de Tecnologia Rubens Lara

Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas

HUGO BESSA SILVA DE OLIVEIRA

SISTEMA DE EDIÇÃO COLABORATIVA POR P2P
UTILIZANDO PARADIGMA DE PROGRAMAÇÃO
FUNCIONAL

HUGO BESSA SILVA DE OLIVEIRA

SISTEMA DE EDIÇÃO COLABORATIVA POR P2P UTILIZANDO PARADIGMA DE PROGRAMAÇÃO FUNCIONAL

Pré-Projeto de Desenvolvimento apresentada à Faculdade de Tecnologia Rubens Lara, como exigência para a obtenção do Título de Tecnólogo em Análise e Desenvolvimento de Sistemas.

Orientador: Prof. Me. Alexandre Garcia de Oliveira

Santos, SP 2016

SUMÁRIO

1.	INTRODUÇÃO	3
	1. OBJETÍVO GERAL	
	2. OBJETIVOS ESPECÍFICOS	.5
	REFERÊNCIAS BIBLIOGRÁFICAS	

1. INTRODUÇÃO

A difusão de dispositivos móveis leva, ano após ano, o acesso à internet para cada vez mais pessoas. "Em 2015 existem mais de 7 bilhões de assinaturas de celulares móveis em todo o mundo, partindo de menos de 1 bilhão em 2000." (tradução nossa) (SANOU; BRAHIMA, 2015, p. 1,).

Os softwares e serviços utilizados nestes dispositivos precisam se adaptar a um computacional ambiente diferente. *Smartphones* de baixo custo possuem pouco poder de processamento e redes utilizadas por dispositivos móveis são conhecidas por suas baixas velocidades e disponibilidade de conexão não-confiável.

Garantir a consistência de dados entre dispositivos conectados por redes precárias é incompatível com uma arquitetura de sistema centralizada em apenas um servidor, já que a latência na rede pode degradar consideravelmente a experiência do usuário.

De acordo com Shapiro et al. (2011) modelos de Forte Consistência Eventual (FCE) garantem melhor disponibilidade e performance em sistemas distribuídos, principalmente em redes com grande latência. Isto é alcançado por atualizações serem realizadas em réplicas locais dos dados e eventualmente sincronizadas com outras réplicas dentro do sistema. Uma estrutura de dados compatível com as exigências de FCE é a *Conflict-free Replicated Data Type* (CRDT, em português Tipo de Dados Replicados Livre de Conflitos).

CRDTs garantem a consistência dos dados pois operações realizadas nesta estrutura são comutativas. CRDTs baseadas em operações transmitem seu estado propagando operações de atualização realizadas. Estas operações devem ser comutativas. Para remover a necessidade de manter garantias de entrega única das mensagens de operação, as funções de operações de atualização também devem ser idempotentes e associativas.

Com as garantias de uma CRDT com operações associativas, comutativas e idempotentes, é possível construir um sistema em uma arquitetura de rede em que as réplicas se comunicam diretamente e propagam atualizações de forma distribuída. Esta arquitetura de rede se chama peer-to-peer (P2P), onde cada

participante da rede atua tanto como cliente (requisitando dados) quanto como servidor (servindo dados) (SCHOLLMEIER; Rüdiger, 2002).

No presente trabalho, utilizarei a CRDT Logoot para implementar um Sistema de Edição Colaborativa distribuído com comunicação por uma rede *peer-to-peer*. A Logoot utiliza simples identificadores de posição para atingir comutatividade e associatividade em operações de inserção e remoção, que podem ser executadas em qualquer réplica participante do sistema sem alterar a ordem das linhas do documento (WEISS; URSO; MOLLI, 2008, p. 5).

Com o fim de facilitar a implementação da estrutura de dados Logoot, da interface de rede e do editor de texto necessários para o Sistema de Edição Colaborativa, utilizarei ClojureScript, uma linguagem de programação que segue o paradigma funcional, tirando proveito de suas estruturas de dados imutáveis e *atoms* (uma forma de gerenciar estado compartilhado).

1. OBJETIVO GERAL

Desenvolver um sistema de edição colaborativa Logoot em um editor de texto com comunicação *peer-to-peer* (P2P) utilizando a linguagem de programação ClojureScript.

2. OBJETIVOS ESPECÍFICOS

Desenvolver módulo ClojureScript que implemente o sistema Logoot e permita todas as suas funcionalidades: adição, remoção e edição de conteúdo; Implementar módulo ClojureScript que transforme a estrutura de dados Logoot em um editor de texto capaz de realizar operações de adição, remoção e edição de conteúdo no sistema; Implementar infraestrutura de rede pra suportar a Edição Colaborativa por P2P utilizando a tecnologia WebRTC; Demonstrar a utilização de uma linguagem funcional para trabalhar com estruturas de dados complexas e compor pequenas partes do software em um sistema completo.

2. REFERÊNCIAS BIBLIOGRÁFICAS

ICT Data and Statistics Division. **ICT Facts & Figures 2015**. Maio de 2015. Disponível em: http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ ICTFactsFigures2015.pdf>. Acesso em: 10 de abril de 2016.

SHAPIRO, Marc; PREGUIÇA, Nuno; BAQUERO, Carlos; ZAWIRSKI, Marek. Conflict-free Replicated Data Types. 19 de julho de 2011. Disponível em: https://hal.inria.fr/inria-00609399v1/document. Acesso em: 10 de abril de 2016.

SCHOLLMEIER, Rüdiger. A Definition of Peer-to-Peer Networking for the Classification of Peer-to-Peer Architectures and Applications. 2002. Disponível em http://www.computer.org/csdl/proceedings/p2p/2001/1503/00/15030101.pdf. Acesso em: 10 de abril de 2016.

WEISS, Stéphane; URSO Pascal; MOLLI, Pascal. **Logoot: a P2P collaborative editing system**. 10 de dezembro de 2008. Disponível em: https://hal.inria.fr/ inria-00336191/PDF/main.pdf>. Acesso em: 11 de abril de 2016.