Method 1: Calculating P, Q, and S Based on Sequence Components

1. Reconstruct Voltages and Currents The sequence components V_{seq} and I_{seq} (positive, negative, zero) are provided as real and imaginary parts. Combine them to reconstruct the complex phasors:

$$V_{seq} = V_{seq, real} + j \cdot V_{seq, img}$$

 $I_{seq} = I_{seq, real} + j \cdot I_{seq, img}$

Where: - V_{seq} : Voltage sequence components (positive, negative, zero). - I_{seq} : Current sequence components (positive, negative, zero). - j: Imaginary unit $\sqrt{-1}$.

2. Calculate Total Complex Power (S) Using the sequence components, calculate the total complex power S:

$$S = 3 \cdot \left(V_{\text{pos}} \cdot I_{\text{pos}}^* + V_{\text{neg}} \cdot I_{\text{neg}}^* + V_{\text{zero}} \cdot I_{\text{zero}}^* \right)$$

Where: $-V_{\rm pos}, V_{\rm neg}, V_{\rm zero}$: Voltages for the positive, negative, and zero sequences. $-I_{\rm pos}, I_{\rm neg}, I_{\rm zero}$: Currents for the positive, negative, and zero sequences. -*: Denotes the complex conjugate.

- **3. Calculate Active and Reactive Power** Calculate the active power (P) and reactive power (Q) directly using the sequence components:
 - Active Power (P):

$$P = 3 \cdot (|V_{\text{pos}}| \cdot |I_{\text{pos}}| \cdot \cos(\phi_{\text{pos}}) + |V_{\text{neg}}| \cdot |I_{\text{neg}}| \cdot \cos(\phi_{\text{neg}}) + |V_{\text{zero}}| \cdot |I_{\text{zero}}| \cdot \cos(\phi_{\text{zero}}))$$

• Reactive Power (Q):

$$Q = 3 \cdot (|V_{\text{pos}}| \cdot |I_{\text{pos}}| \cdot \sin(\phi_{\text{pos}}) + |V_{\text{neg}}| \cdot |I_{\text{neg}}| \cdot \sin(\phi_{\text{neg}}) + |V_{\text{zero}}| \cdot |I_{\text{zero}}| \cdot \sin(\phi_{\text{zero}}))$$

Where: - $|V_{seq}|$: Magnitude of the voltage sequence components. - $|I_{seq}|$: Magnitude of the current sequence components. - ϕ_{seq} : Phase angle difference between the voltage and current sequence components.

4. Calculate Apparent Power (S) The apparent power is the magnitude of the complex power:

$$S=\sqrt{P^2+Q^2}$$

Method 2: Calculating P, Q, and S Based on Voltage Current of Each Phase

- 1. Formulas For an unbalanced three-phase power system, the active power (P), reactive power (Q), and apparent power (S) for each phase are calculated as follows:
 - Active Power (P_{ϕ}) for each phase:

$$P_{\phi} = V_{LN,\phi} \cdot I_{\phi} \cdot \cos(\phi_{\phi})$$

• Reactive Power (Q_{ϕ}) for each phase:

$$Q_{\phi} = V_{LN,\phi} \cdot I_{\phi} \cdot \sin(\phi_{\phi})$$

• Apparent Power (S_{ϕ}) for each phase:

$$S_{\phi} = \sqrt{(P_{\phi})^2 + (Q_{\phi})^2}$$

Where: $-V_{LN,\phi}$: Line-to-neutral voltage for phase ϕ ($\phi = A, B, C$). $-I_{\phi}$: Current magnitude for phase ϕ . $-\phi_{\phi}$: Phase angle difference between voltage and current for phase ϕ .

- 2. Total Power for the System The total active, reactive, and apparent power for the system are the sum of the respective quantities for all three phases:
 - Total Active Power (P):

$$P = P_A + P_B + P_C$$

• Total Reactive Power (Q):

$$Q = Q_A + Q_B + Q_C$$

• Total Apparent Power (S):

$$S = \sqrt{P^2 + Q^2}$$