Different models

Yuan-Ning Chu 1/3/2020

```
ess_2002 = haven::read_stata("ESS1e06_6.dta")
ess_2004 = haven::read_stata("ESS2e03_6.dta")
ess_2006 = haven::read_stata("ESS3e03_7.dta")
ess_2008 = haven::read_stata("ESS4e04_5.dta")
ess_2010 = haven::read_stata("ESS5e03_4.dta")
ess_2002 = ess_2002 %>%
  select(essround, cntry, agea, blgetmg, brncntr, ctzcntr, livecntr, cntbrth, gndr, edulvla, facntr, mo
  plyr::rename(c("cntbrth"="birthplace","blgetmg"="ethnic", "edulvla"="edu","brncntr"="fborn", "wrkctr"
  ess_2002 = ess_2002 %% mutate(hinctnt = hinctnt/12*10) # rescale to fit data from 2008 and 2010
ess 2004 = ess 2004 \%
  select(essround, cntry, agea, blgetmg, brncntr, ctzcntr, livecntr, cntbrtha, gndr, edulvla, facntr, m
  plyr::rename(c("cntbrtha"="birthplace","blgetmg"="ethnic", "edulvla"="edu","brncntr"="fborn"))
  ess_2004 = ess_2004 %>% mutate(hinctnt = hinctnt/12*10)
ess_2006 = ess_2006 %>%
  select(essround, cntry, agea, blgetmg, brncntr, ctzcntr, livecntr, cntbrtha, gndr, edulvla, facntr, m
  plyr::rename(c("cntbrtha"="birthplace", "blgetmg"="ethnic", "edulvla"="edu", "brncntr"="fborn"))
  ess_2006 = ess_2006 %>% mutate(hinctnt = hinctnt/12*10)
ess_2008 = ess_2008 %>%
  select(essround, cntry, agea, blgetmg, brncntr, ctzcntr, livecntr, cntbrthb, gndr, edulvla, facntr, m
  plyr::rename(c("cntbrthb"="birthplace", "blgetmg"="ethnic", "edulvla"="edu", "brncntr"="fborn", "hinctn
ess_2010 = ess_2010 \%
  select(essround, cntry, agea, blgetmg, brncntr, ctzcntr, livecnta, cntbrthb, gndr, edulvlb, facntr, m
  plyr::rename(c("cntbrthb"="birthplace", "blgetmg"="ethnic", "edulvlb"="edu", "livecnta" = "livecntr", "b.
ess_2010$livecntr = ess_2010$livecntr - 2010
ess_2010$livecntr = ifelse(ess_2010$livecntr >= 1, 1,
                           ifelse(ess_2010$livecntr %in% c(-1:-5), 2,
                                  ifelse(ess 2010$livecntr %in% c(-6:-10), 3,
                                         ifelse(ess_2010$livecntr %in% c(-11:-20), 4,
                                                ifelse(ess_2010$livecntr < -20, 5, NA)))))</pre>
ess_2010polcmpl = NA
ess_2010poldcs = NA
ess_raw = rbind(ess_2002, ess_2004, ess_2006, ess_2008, ess_2010)
ess_raw$sec.immi = ifelse(ess_raw$facntr == 2 | ess_raw$mocntr == 2, 1, 0)
ess_raw$ethnic = ifelse(ess_raw$ethnic == 1, 1,
                        ifelse(ess_raw$ethnic == 2, 0, NA))
ess_raw$citizen = ifelse(ess_raw$ctzcntr == 1, 1,
                         ifelse(ess_raw$ctzcntr == 2, 0, NA))
ess_raw$residence = ifelse(ess_raw$livecntr <= 3, 1, 0) # 1 = lived less than 10 yrs, 0 = lived more th
ess_raw$birthplace = ifelse(ess_raw$birthplace %in% c(66,77,88,99,"02","03","04","06"), NA, ess_raw$bir
  # ess_raw = ess_raw[complete.cases(ess_raw$birthplace),]
  eu_member = c("BE", "FR", "DE", "IT", "LU", "NL", "DK", "IE", "GB", "GR", "PT", "ES", "AT", "SE")
  ess_raw$eubirth = ifelse(ess_raw$birthplace %in% eu_member, 1, 0)
ess_raw$female = ifelse(ess_raw$gndr == 2, 1,
                        ifelse(ess_raw$gndr == 1, 0, NA))
ess_raw$edu = ifelse(ess_raw$edu > 5, NA, ess_raw$edu)
```

```
ess_raw$fborn = ifelse(ess_raw$fborn == 1, 0, 1) # now 1 as foreign born, 0 as native born

civix.cntry = c("AT", "BE", "DK", "FI", "FR", "DE", "GR", "IE", "NL", "PT", "ES", "SE", "GB")
    civix.sc = as.numeric( c(5.5, 1.25, 8.25, 2.5, 5, 7, 5.25, 1, 6.25, 1.25, 2.5, 0, 5.5))
    civix.1 = as.data.frame(t(rbind(civix.cntry, civix.sc)))
    colnames(civix.1) = c("cntry", "civix")
    civix.1$civix = as.numeric(civix.1$civix)

ess_raw = ess_raw %>% left_join(civix.1, by = 'cntry')
    ess_raw = ess_raw %>% mutate(civix.d = ifelse(civix > 2.5, 1, 0))
```

Playing with the models

Political Incorporation

```
ess_raw$tvpol = ifelse(ess_raw$tvpol > 8, NA, ess_raw$tvpol)
ess_raw$rdpol = ifelse(ess_raw$rdpol > 8, NA, ess_raw$rdpol)
ess_raw$nwsppol = ifelse(ess_raw$nwsppol > 8, NA, ess_raw$nwsppol)
ess_raw$contplt = ifelse(ess_raw$contplt == 2, 0, ess_raw$contplt)
ess_raw$wrkprty = ifelse(ess_raw$wrkprty == 2, 0, ess_raw$wrkprty)
ess_raw$wrkorg = ifelse(ess_raw$wrkorg == 2, 0, ess_raw$wrkorg)
ess_raw$badge = ifelse(ess_raw$badge == 2, 0, ess_raw$badge)
ess raw$sgnptit = ifelse(ess raw$sgnptit == 2, 0, ess raw$sgnptit)
ess_raw$pbldmn = ifelse(ess_raw$pbldmn == 2, 0, ess_raw$pbldmn)
ess_raw$bctprd = ifelse(ess_raw$bctprd == 2, 0, ess_raw$bctprd)
pol mean = ess raw %>% filter(citizen == 1, fborn == 0) %>% group by(cntry) %>%
  select(cntry, contplt, wrkprty, wrkorg, badge, sgnptit, pbldmn, bctprd, stfgov, tvpol, rdpol, nwsppol
  summarise(mean.contplt = mean(contplt, na.rm = TRUE),
           mean.wrkprty = mean(wrkprty, na.rm = TRUE),
            mean.wrkorg = mean(wrkorg, na.rm = TRUE),
            mean.badge = mean(badge, na.rm = TRUE),
            mean.sgnptit = mean(sgnptit, na.rm = TRUE),
            mean.pbldmn = mean(pbldmn, na.rm = TRUE),
            mean.bctprd = mean(bctprd, na.rm = TRUE),
            # mean.dntmny = mean(dntmny, na.rm = TRUE),
            # mean.ilglpst = mean(ilglpst, na.rm = TRUE),
            mean.stfgov = mean(stfgov, na.rm = TRUE),
            mean.tvpol = mean(tvpol, na.rm = TRUE),
            mean.rdpol = mean(rdpol, na.rm = TRUE),
           mean.nwsppol = mean(nwsppol, na.rm = TRUE))
ess_pol = ess_raw %>% filter(residence == 1)
ess_pol = ess_pol %>% left_join(pol_mean, by='cntry')
ess_pol = ess_pol %>% mutate(
  contplt.gap = contplt - mean.contplt,
  wrkprty.gap = wrkprty - mean.wrkprty,
  wrkorg.gap = wrkorg - mean.wrkorg,
  badge.gap = badge - mean.badge,
```

```
sgnptit.gap = sgnptit - mean.sgnptit,
  pbldmn.gap = pbldmn - mean.pbldmn,
  bctprd.gap = bctprd - mean.bctprd,
  stfgov.gap = stfgov - mean.stfgov,
  tvpol.gap = tvpol - mean.tvpol,
  rdpol.gap = rdpol - mean.rdpol,
  nwsppol.gap = nwsppol - mean.nwsppol
pol.1 = glm(contplt ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol, family = "binomia
pol.2 = lm(contplt.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # gap
pol.3 = glm(contplt ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_pol, family = "binom
pol.4 = lm(contplt.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess pol) # qap
stargazer(pol.1, pol.2, pol.3, pol.4, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "worked in political party or group",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
pred.pol.dat = with(ess_pol, data.frame(agea = mean(agea, na.rm = T),
                                        ethnic = mean(ethnic, na.rm = T),
                                        female = mean(female, na.rm = T),
                                        eubirth = mean(eubirth, na.rm = T),
                                        edu = mean(edu, na.rm = T),
                                        civix = 0:9)
pred.pol = pol.1 %>%
  broom::augment(newdata = pred.pol.dat, predict = "response") %>%
  mutate(upper = .fitted + 1.96 * .se.fit,
         lower = .fitted - 1.96 * .se.fit)
plot(0:9, pred.pol$.fitted, type = "1",
     ylab = "Predicted Probability to have worked in political party",
     xlab = "CIVIX",
     ylim = c(-3,1)
     )
  lines(0:9, pred.pol$lower, lty = 2)
  lines(0:9, pred.pol$upper, lty = 2)
  abline(h = 0, lty=3, col="red")
wrkprty.1 = glm(wrkprty ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol, family = "bin
wrkprty.2 = lm(wrkprty.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # qap
wrkprty.3 = glm(wrkprty ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_pol, family = "b
wrkprty.4 = lm(wrkprty.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_pol) # qap
stargazer(wrkprty.3, wrkprty.4, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX.d"),
          dep.var.caption = "worked in political party",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
# pred.pol = wrkprty.1 %>%
# broom::augment(newdata = pred.pol.dat, predict = "response") %>%
   mutate(upper = .fitted + 1.96 * .se.fit,
           lower = .fitted - 1.96 * .se.fit)
```

Table 1:

		worked in political p	party or group)
	$\operatorname{contplt}$	${\rm contplt.gap}$	contplt	contplt.gaj
	logistic Abs. Level	OLS Gap w/ Natives	logistic	OLS
	(1)	(2)	(3)	(4)
Age	0.022***	0.002***	0.022***	0.002***
	(0.006)	(0.0005)	(0.006)	(0.0005)
Ethnicity	0.297*	0.016	0.253	0.010
v	(0.158)	(0.013)	(0.157)	(0.012)
Female	-0.225	-0.019^*	-0.229^*	-0.020^*
	(0.139)	(0.011)	(0.139)	(0.011)
Education	0.302***	0.017***	0.296***	0.019***
	(0.051)	(0.004)	(0.052)	(0.004)
Born in Europe	0.603***	0.043***	0.605***	0.049***
-	(0.161)	(0.015)	(0.162)	(0.015)
CIVIX	-0.063**	-0.005**		
	(0.028)	(0.002)		
civix.d			-0.246	0.023
			(0.159)	(0.014)
Constant	-3.974***	-0.154^{***}	-4.036***	-0.200***
	(0.333)	(0.025)	(0.342)	(0.026)
Observations	2,579	2,579	2,579	2,579
\mathbb{R}^2	,	0.023	,	0.022
Adjusted R^2		0.021		0.020
Log Likelihood	-749.184		-750.532	
Akaike Inf. Crit.	$1,\!512.367$		$1,\!515.064$	
Residual Std. Error (df = 2572)		0.286		0.286
F Statistic (df = 6 ; 2572)		10.138***		9.754***

Table 2:

	worked in political party				
	wrkprty	wrkprty.gap			
	logistic	OLS			
	Abs. Level	Gap w/ Natives			
	(1)	(2)			
Age	0.010	0.0001			
	(0.012)	(0.0002)			
Ethnicity	0.163	0.004			
	(0.313)	(0.006)			
Female	-0.140	-0.002			
	(0.282)	(0.006)			
Education	0.101	0.003			
	(0.100)	(0.002)			
Born in Europe	0.518	0.008			
-	(0.337)	(0.007)			
CIVIX.d	0.380	0.006			
	(0.382)	(0.007)			
Constant	-4.977***	-0.043***			
	(0.686)	(0.013)			
Observations	2,582	2,582			
\mathbb{R}^2	•	0.002			
Adjusted R ²		-0.0004			
Log Likelihood	-251.758				
Akaike Inf. Crit.	517.516	0.4.4.4.7.0			
Residual Std. Error		0.141 (df = 2575)			
F Statistic		0.845 (df = 6; 2575)			
Note:	*n<0.1	· **n<0.05· ***n<0.01			

Figure 1: Predicted Probability to have contacted politician

```
# plot(0:9, pred.pol$.fitted, type = "l",
       ylab = "Predicted Probability to have worked in political party",
#
#
       xlab = "CIVIX",
#
       ylim = c(-5, -1)
#
#
    lines(0:9, pred.pol$lower, lty = 2)
    lines(0:9, pred.pol$upper, lty = 2)
wrkorg.1 = glm(wrkorg ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol, family = "binom
wrkorg.2 = lm(wrkorg.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # qap
wrkorg.3 = glm(wrkorg ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_pol, family = "bin
wrkorg.4 = lm(wrkorg.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_pol) # gap
stargazer(wrkorg.1, wrkorg.2, wrkorg.3, wrkorg.4, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "have worked in another organisation",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
# pred.pol = wrkorg.1 %>%
    broom::augment(newdata = pred.pol.dat, predict = "response") %>%
#
    mutate(upper = .fitted + 1.96 * .se.fit,
#
           lower = .fitted - 1.96 * .se.fit)
# plot(0:9, pred.pol$.fitted, type = "l",
#
       ylab = "Predicted Probability to have worked in another organisation",
#
       xlab = "CIVIX",
#
       ylim = c(-5, -1)
#
#
    lines(0:9, pred.pol$lower, lty = 2)
    lines(0:9, pred.pol$upper, lty = 2)
wrkorg.2.plot = wrkorg.2 %>% broom::augment(.) %>%
```

Table 3:

	have worked in another organisation				
	wrkorg	wrkorg.gap	wrkorg	wrkorg.gap	
	logistic Abs. Level	OLS Gap w/ Natives	logistic	OLS	
	(1)	(2)	(3)	(4)	
Age	0.011*	0.0004	0.011*	0.0004	
	(0.006)	(0.0005)	(0.006)	(0.0005)	
Ethnicity	0.326*	0.023*	0.317^{*}	0.017	
v	(0.168)	(0.012)	(0.166)	(0.012)	
Female	-0.149	-0.017	-0.149	-0.018^*	
	(0.149)	(0.011)	(0.149)	(0.011)	
Education	0.305***	0.020***	0.301***	0.020***	
	(0.055)	(0.004)	(0.056)	(0.004)	
Born in Europe	0.589***	0.039***	0.582***	0.041***	
•	(0.174)	(0.014)	(0.175)	(0.014)	
CIVIX	-0.016	-0.006***			
	(0.030)	(0.002)			
civix.d			-0.120	-0.006	
			(0.174)	(0.014)	
Constant	-4.034***	-0.130***	-3.996***	-0.152***	
	(0.357)	(0.023)	(0.368)	(0.025)	
Observations	2,583	2,583	2,583	2,583	
\mathbb{R}^2	,	0.022	,	0.019	
Adjusted \mathbb{R}^2		0.020		0.017	
Log Likelihood	-678.268		-678.181		
Akaike Inf. Crit.	$1,\!370.537$		$1,\!370.363$		
Residual Std. Error (df = 2576)		0.269		0.270	
F Statistic (df = 6 ; 2576)		9.785***		8.462***	

```
mutate(upper = .fitted + 1.96 * .se.fit,
         lower = .fitted - 1.96 * .se.fit)
# plot(ess_pol$civix, ess_pol$wrkorq.qap)
# abline(wrkorg.2)
# plot(wrkorg.2)
# ggplot(wrkorg.2.plot, aes(civix, wrkorg.gap)) +
   geom_point() +
  geom_smooth(data = wrkorg.2.plot, aes(civix, .fitted), method = "lm") +
   xlab("worked in another organisation") +
  theme_bw()
badge.1 = glm(badge ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol, family = "binomia
badge.2 = lm(badge.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # gap
# stargazer(badge.1, badge.2, type = "latex", header = FALSE,
            covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
#
            dep.var.caption = "Worn or displayed campaign badge/sticker",
            column.labels = c("Abs. Level", "Gap w/ Natives"))
# pred.pol = badge.1 %>%
  broom::augment(newdata = pred.pol.dat, predict = "response") %>%
   mutate(upper = .fitted + 1.96 * .se.fit,
#
           lower = .fitted - 1.96 * .se.fit)
#
# plot(0:9, pred.pol$.fitted, type = "l",
      ylab = "Predicted Probability to have worn or displayed campaign badge/sticker",
      xlab = "CIVIX",
#
#
      ylim = c(-5, -1)
#
  lines(0:9, pred.pol\$lower, lty = 2)
  lines(0:9, pred.pol$upper, lty = 2)
sgnptit.1 = glm(sgnptit ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol, family = "bin
sgnptit.2 = lm(sgnptit.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # gap
sgnptit.3 = glm(sgnptit ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_pol, family = "b
sgnptit.4 = lm(sgnptit.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_pol) # gap
stargazer(sgnptit.1, sgnptit.2, sgnptit.3, sgnptit.4, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
         dep.var.caption = "Signed petition",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
pred.pol = badge.1 %>%
  broom::augment(newdata = pred.pol.dat, predict = "response") %>%
  mutate(upper = .fitted + 1.96 * .se.fit,
        lower = .fitted - 1.96 * .se.fit)
plot(0:9, pred.pol$.fitted, type = "1",
     ylab = "Predicted Probability to have signed petition",
     xlab = "CIVIX",
    ylim = c(-5,0)
```

Table 4:

	Signed petition				
	sgnptit	sgnptit.gap	sgnptit	$\begin{array}{c} {\rm sgnptit.gap} \\ {\it OLS} \end{array}$	
	logistic Abs. Level	OLS Gap w/ Natives	logistic		
	(1)	(2)	(3)	(4)	
Age	-0.006 (0.005)	-0.001 (0.001)	-0.006 (0.005)	-0.001 (0.001)	
Ethnicity	$0.065 \\ (0.136)$	$0.004 \\ (0.015)$	$0.105 \\ (0.134)$	0.001 (0.015)	
Female	$0.015 \\ (0.117)$	$0.005 \\ (0.014)$	0.025 (0.117)	0.003 (0.014)	
Education	0.319*** (0.043)	0.023*** (0.005)	0.314*** (0.044)	0.025*** (0.005)	
Born in Europe	1.009*** (0.133)	0.143*** (0.018)	0.984*** (0.133)	0.148*** (0.018)	
CIVIX	0.044^* (0.023)	-0.002 (0.003)			
civix.d			-0.016 (0.138)	0.031^* (0.017)	
Constant	-3.227^{***} (0.277)	-0.181^{***} (0.029)	-2.988^{***} (0.284)	-0.218^{***} (0.031)	
Observations R ²	2,575	2,575 0.042	2,575	2,575 0.043	
Adjusted R ² Log Likelihood Akaike Inf. Crit.	-983.724 $1,981.447$	0.039	-985.562 $1,985.124$	0.041	
Residual Std. Error (df = 2568) F Statistic (df = 6 ; 2568)		0.341 18.637***		0.341 19.135***	

Figure 2: Signed petition

```
lines(0:9, pred.pol$lower, lty = 2)
  lines(0:9, pred.pol$upper, lty = 2)
  abline(h = 0, lty=3, col="red")
pbldmn.1 = glm(pbldmn ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol, family = "binom
pbldmn.2 = lm(pbldmn.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # gap
pbldmn.3 = glm(pbldmn ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_pol, family = "bin
pbldmn.4 = lm(pbldmn.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_pol) # qap
stargazer(pbldmn.1, pbldmn.2, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "Taken part in lawful public demonstration",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
# pred.pol = badge.1 %>%
    broom::augment(newdata = pred.pol.dat, predict = "response") %>%
    mutate(upper = .fitted + 1.96 * .se.fit,
#
           lower = .fitted - 1.96 * .se.fit)
# plot(0:9, pred.pol$.fitted, type = "l",
#
       ylab = "Predicted Probability to have taken part in lawful public demonstration",
#
       xlab = "CIVIX",
#
       ylim = c(-5, -1)
#
#
    lines(0:9, pred.pol$lower, lty = 2)
    lines(0:9, pred.pol$upper, lty = 2)
bctprd.1 = glm(bctprd ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol, family = "binom
bctprd.2 = lm(bctprd.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # gap
```

bctprd.3 = glm(bctprd ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_pol, family = "bin bctprd.4 = lm(bctprd.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_pol) # gap

Table 5:

	Table 5.	
	Taken part in	lawful public demonstration
	pbldmn	pbldmn.gap
	logistic	OLS
	Abs. Level	Gap w/ Natives
	(1)	(2)
Age	-0.020**	-0.001***
	(0.008)	(0.0004)
Ethnicity	0.158	0.022**
	(0.179)	(0.011)
Female	-0.262^{*}	-0.014
	(0.157)	(0.010)
Education	0.168***	0.014***
	(0.057)	(0.003)
Born in Europe	0.559***	0.058***
•	(0.185)	(0.013)
CIVIX	-0.046	-0.001
	(0.032)	(0.002)
Constant	-2.359***	-0.029
	(0.355)	(0.022)
Observations	2,581	2,581
\mathbb{R}^2	•	0.019
Adjusted R ²		0.017
Log Likelihood	-629.579	
Akaike Inf. Crit.	$1,\!273.158$	
Residual Std. Error		0.253 (df = 2574)
F Statistic		$8.425^{***} (df = 6; 2574)$
AT 1	,	* .0.1 ** .0.05 *** .0.01

Table 6:

		boycotted certain	n products	
	bctprd	bctprd.gap	bctprd	bctprd.gap
	logistic Abs. Level	OLS Gap w/ Natives	logistic	OLS
	(1)	(2)	(3)	(4)
Age	0.002	0.0001	0.002	0.00002
	(0.006)	(0.001)	(0.006)	(0.001)
Ethnicity	0.116	0.012	0.147	0.005
	(0.155)	(0.013)	(0.153)	(0.013)
Female	-0.059	-0.009	-0.053	-0.011
	(0.132)	(0.012)	(0.132)	(0.012)
Education	0.384***	0.025***	0.387***	0.026***
	(0.050)	(0.004)	(0.051)	(0.004)
Born in Europe	1.144***	0.147***	1.141***	0.154***
•	(0.146)	(0.016)	(0.147)	(0.016)
CIVIX	0.043*	-0.007***		
	(0.026)	(0.002)		
civix.d			0.154	0.025*
			(0.157)	(0.015)
Constant	-4.100***	-0.130***	-4.033***	-0.187***
	(0.325)	(0.026)	(0.334)	(0.028)
Observations	2,578	2,578	2,578	2,578
R^2	,	0.062	,	0.060
Adjusted R ²		0.060		0.058
Log Likelihood	-807.523		-808.386	
Akaike Inf. Crit.	1,629.047		1,630.771	
Residual Std. Error ($df = 2571$)		0.302		0.302
F Statistic (df = 6 ; 2571)		28.468***		27.457***

Figure 3: boycotted certain products

```
plot(0:9, pred.pol$.fitted, type = "1",
     ylab = "Predicted Probability to boycotted certain products",
     xlab = "CIVIX",
     ylim = c(-5,0)
  lines(0:9, pred.pol$lower, lty = 2)
  lines(0:9, pred.pol$upper, lty = 2)
stfgov.1 = lm(stfgov ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # absolute level
stfgov.2 = lm(stfgov.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # gap
stfgov.3 = lm(stfgov ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_pol) # absolute lev
stfgov.4 = lm(stfgov.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_pol) # gap
stargazer(stfgov.1, stfgov.2, stfgov.3, stfgov.4, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "satisfaction with government",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
tvpol.1 = lm(tvpol ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # absolute level
tvpol.2 = lm(tvpol.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # gap
tvpol.3 = lm(tvpol ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_pol) # absolute level
tvpol.4 = lm(tvpol.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_pol) # gap
stargazer(tvpol.1, tvpol.2, tvpol.3, tvpol.4, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "Watching TV for News about Politics",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
rdpol.1 = lm(rdpol ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # absolute level
rdpol.2 = lm(rdpol.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_pol) # gap
rdpol.3 = lm(rdpol ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_pol) # absolute level
rdpol.4 = lm(rdpol.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess pol) # qap
```

Table 7:

	satisfaction with government				
	stfgov Abs. Level	stfgov.gap Gap w/ Natives	stfgov	stfgov.gap	
	(1)	(2)	(3)	(4)	
Age	-0.001 (0.004)	-0.002 (0.004)	-0.001 (0.004)	-0.002 (0.004)	
Ethnicity	-0.005 (0.109)	-0.075 (0.107)	-0.030 (0.108)	-0.094 (0.105)	
Female	0.032 (0.098)	$0.020 \\ (0.095)$	$0.030 \\ (0.098)$	0.011 (0.095)	
Education	-0.054 (0.034)	-0.099^{***} (0.033)	-0.062^* (0.034)	-0.089^{***} (0.033)	
Born in Europe	-0.642^{***} (0.130)	-0.810^{***} (0.127)	-0.650^{***} (0.130)	-0.785^{***} (0.127)	
CIVIX	-0.035^* (0.020)	-0.012 (0.019)			
civix.d			-0.197 (0.128)	0.197 (0.125)	
Constant	5.679*** (0.213)	1.691*** (0.208)	5.704*** (0.228)	1.450*** (0.222)	
Observations R^2 Adjusted R^2 Residual Std. Error (df = 2315) F Statistic (df = 6; 2315)	2,322 0.015 0.012 2.341 5.706***	2,322 0.025 0.023 2.287 9.939***	2,322 0.014 0.012 2.342 5.577***	2,322 0.026 0.023 2.286 10.298***	

Table 8:

	Watching TV for News about Politics				
	tvpol Abs. Level	tvpol.gap Gap w/ Natives	tvpol	tvpol.gap	
	(1)	(2)	(3)	(4)	
Age	0.019*** (0.002)	0.020*** (0.002)	0.019*** (0.002)	0.020^{***} (0.002)	
Ethnicity	-0.020 (0.061)	-0.055 (0.060)	-0.037 (0.060)	-0.076 (0.059)	
Female	-0.129^{**} (0.054)	-0.133^{**} (0.054)	-0.133^{**} (0.054)	-0.141^{***} (0.054)	
Education	0.081*** (0.019)	0.062*** (0.019)	0.083*** (0.019)	0.069*** (0.019)	
Born in Europe	-0.133^* (0.072)	-0.163^{**} (0.072)	-0.121^* (0.073)	-0.137^* (0.072)	
CIVIX	-0.017 (0.011)	-0.016 (0.011)			
civix.d			0.014 (0.070)	0.112 (0.069)	
Constant	1.039*** (0.117)	-0.883^{***} (0.116)	0.949*** (0.125)	-1.060^{***} (0.124)	
Observations R^2 Adjusted R^2 Residual Std. Error (df = 2419) F Statistic (df = 6; 2419)	2,426 0.040 0.037 1.329 16.686***	2,426 0.039 0.037 1.319 16.546***	2,426 0.039 0.036 1.330 16.298***	2,426 0.040 0.037 1.319 16.646***	

Table 9:

	Liste	ning to Radio for N	ews about Pol	litics
	rdpol Abs. Level	rdpol.gap Gap w/ Natives	rdpol	rdpol.gap
	(1)	(2)	(3)	(4)
Age	0.016*** (0.003)	0.015*** (0.003)	0.016*** (0.003)	0.015*** (0.003)
Ethnicity	-0.033 (0.074)	-0.071 (0.074)	-0.045 (0.073)	-0.061 (0.073)
Female	-0.110^* (0.065)	-0.095 (0.065)	-0.106 (0.065)	-0.099 (0.064)
Education	0.127*** (0.023)	0.083*** (0.023)	$0.115^{***} \\ (0.023)$	0.095*** (0.023)
Born in Europe	0.126 (0.081)	-0.001 (0.080)	$0.100 \\ (0.082)$	0.027 (0.081)
CIVIX	-0.023^* (0.013)	0.020 (0.013)		
civix.d			-0.247^{***} (0.081)	0.249*** (0.081)
Constant	0.426*** (0.144)	-1.144^{***} (0.142)	0.562^{***} (0.152)	-1.293^{***} (0.151)
Observations R^2 Adjusted R^2	1,677 0.051 0.048	1,677 0.029 0.025	1,677 0.055 0.051	1,677 0.033 0.029
Residual Std. Error (df = 1670) F Statistic (df = 6; 1670)	1.327 15.003***	1.314 8.215***	1.324 16.099***	1.311 9.436***

Table 10:

	Read	Reading Newspaper for News about Politics				
	nwsppol Abs. Level	nwsppol.gap Gap w/ Natives	nwsppol	nwsppol.gap		
	(1)	(2)	(3)	(4)		
Age	0.009*** (0.002)	0.009*** (0.002)	0.009*** (0.002)	0.009^{***} (0.002)		
Ethnicity	0.053 (0.052)	$0.046 \\ (0.052)$	$0.040 \\ (0.051)$	0.033 (0.052)		
Female	-0.139^{***} (0.046)	-0.145^{***} (0.046)	-0.142^{***} (0.046)	-0.149^{***} (0.046)		
Education	0.109*** (0.016)	0.109*** (0.016)	0.110*** (0.016)	0.113*** (0.017)		
Born in Europe	0.154*** (0.058)	0.125** (0.058)	0.161*** (0.058)	0.142** (0.059)		
CIVIX	-0.011 (0.009)	-0.006 (0.009)				
civix.d			$0.006 \\ (0.055)$	0.102^* (0.055)		
Constant	0.522*** (0.101)	-0.719^{***} (0.102)	0.467*** (0.105)	-0.836^{***} (0.106)		
Observations R^2 Adjusted R^2 Residual Std. Error (df = 1623) F Statistic (df = 6; 1623)	1,630 0.060 0.056 0.918 17.167***	1,630 0.053 0.050 0.928 15.219***	1,630 0.059 0.055 0.918 16.895***	1,630 0.055 0.052 0.927 15.755***		

*p<0.1; **p<0.05; ***p<0.01

Social Incorporation

```
### social incorporation

# ess_raw$stflife # How satisfied with life as a whole

# table(ess_raw$pplhlp) # Most of the time people helpful or mostly looking out for themselves (0: look

# ess_raw$happy # How happy are you
```

```
## ess_raw$inmdisc # Anyone to discuss intimate and personal matters with
# ess_raw$aesfdrk # Feeling of safety of walking alone in local area after dark
# ess_raw$health # Subjective general health
# ess_raw$dscrgrp # Member of a group discriminated against in this country
# ess_raw$dscrrce # Discrimination of respondent's group: colour or race
#
# ess_raw$dscrntn # Discrimination of respondent's group: nationality
#
# # ess_raw$dscretn # Discrimination of respondent's group: ethnic group
# ess_raw$lnqhoma # Lanquage most often spoken at home: first mentioned *** COME BACK FOR THIS
# ### citizen involvement
#
# ess_raw$sptcptp # Sports/outdoor activity club, last 12 months: participated
# ess_raw$cltoptp # Cultural/hobby activity organisation, last 12 months: participated
# ess raw$truptp # Trade union, last 12 months: participated
# ess raw$prfoptp # Business/profession/farmers organisation, last 12 months: participated
#
# ess_raw$cnsoptp # Consumer/automobile organisation, last 12 months: participated
#
# ess_raw$hmnoptp # Humanitarian organisation etc., last 12 months: participated
# ess_raw$epaoptp # Environmental/peace/animal organisation, last 12 months: participated
#
# ess_raw$rlqoptp # Religious/church organisation, last 12 months: participated
#
# ess_raw$prtyptp # Political party, last 12 months: participated
# ess_raw$setoptp # Science/education/teacher organisation, last 12 months: participated
# ess_raw$sclcptp # Social club etc., last 12 months: participated
# ess_raw$othuptp # Other voluntary organisation, last 12 months: participated
ess raw$dscrgrp = ifelse(ess raw$dscrgrp == 2, 0, ess raw$dscrgrp) # 1 as yes, 0 as no
ess raw = ess raw %>%
  filter(cntry %in% c("DK", "NL", "DE", "AT", "FR", "GB", "GR", "IE", "SE", "BE", "PT", "ES", "FI", "LU"
main.lan.1 = ess_raw %>% group_by(cntry) %>%
  filter(lnghoma != 999, lnghoma != 888, lnghoma != 777) %>%
  summarise(main.lan.1 = tail(names(sort(table(lnghoma))),1))
main.lan.2 = ess_raw %>% group_by(cntry) %>%
  filter(lnghoma != 999, lnghoma != 888, lnghoma != 777) %>%
```

```
summarise(main.lan.2 = tail(names(sort(table(lnghoma))),2)[1])
ess_raw = ess_raw %>%
  left_join(main.lan.1, by = "cntry") %>%
  left_join(main.lan.2, by = "cntry")
ess_raw = ess_raw %>% group_by(cntry) %>%
  mutate(main.lan = ifelse(lnghoma == main.lan.1 |lnghoma == main.lan.2 , 1, 0))
  # 1: speak majority language at home, 0: minority language
soc_mean = ess_raw %>% filter(citizen == 1, fborn == 0) %>% group_by(cntry) %>%
  select(cntry, stflife, pplhlp, happy, aesfdrk, health, dscrgrp, dscrrce, dscrntn, main.lan) %>%
  summarise(mean.stflife = mean(stflife, na.rm = TRUE),
            mean.pplhlp = mean(pplhlp, na.rm = TRUE),
            mean.happy = mean(happy, na.rm = TRUE),
            # mean.inmdisc = mean(inmdisc, na.rm = TRUE),
            mean.aesfdrk = mean(aesfdrk, na.rm = TRUE),
            mean.health = mean(health, na.rm = TRUE),
            mean.dscrgrp = mean(dscrgrp, na.rm = TRUE),
            mean.dscrrce = mean(dscrrce, na.rm = TRUE),
            mean.dscrntn = mean(dscrntn, na.rm = TRUE),
            mean.lan = mean(main.lan, na.rm = TRUE))
ess_soc = ess_raw %>% filter(residence == 1)
ess soc = ess soc %>% left join(soc mean, by='cntry')
ess_soc = ess_soc %>% mutate(
  stflife.gap = stflife - mean.stflife,
  pplhlp.gap = pplhlp - mean.pplhlp,
  happy.gap = happy - mean.happy,
  aesfdrk.gap = aesfdrk - mean.aesfdrk,
  health.gap = health - mean.health,
  dscrgrp.gap = dscrgrp - mean.dscrgrp,
  dscrrce.gap = dscrrce - mean.dscrrce,
  dscrntn.gap = dscrntn - mean.dscrntn,
  lan.gap = main.lan - mean.lan
 )
stflife.1 = lm(stflife ~ agea + ethnic + female + edu + eubirth + civix, data = ess_soc) # absolute lev
stflife.2 = lm(stflife.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_soc) # gap
stflife.3 = lm(stflife ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_soc) # absolute l
stflife.4 = lm(stflife.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_soc) # gap
stargazer(stflife.1, stflife.2, stflife.3, stflife.4, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "Satisfaction with Life",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
pplhlp.1 = lm(pplhlp ~ agea + ethnic + female + edu + eubirth + civix, data = ess_soc) # absolute level
pplhlp.2 = lm(pplhlp.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_soc) # gap
pplhlp.3 = lm(pplhlp ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_soc) # absolute lev
pplhlp.4 = lm(pplhlp.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_soc) # gap
stargazer(pplhlp.1, pplhlp.2,pplhlp.3, pplhlp.4, type = "latex", header = FALSE,
```

Table 11:

	Satisfaction with Life				
	stflife Abs. Level	stflife.gap Gap w/ Natives	stflife	stflife.gap	
	(1)	(2)	(3)	(4)	
Age	-0.005 (0.004)	$-0.006* \\ (0.004)$	-0.005 (0.004)	-0.007^* (0.004)	
Ethnicity	-0.262^{***} (0.097)	-0.338*** (0.097)	-0.267^{***} (0.096)	-0.368^{***} (0.096)	
Female	0.063 (0.087)	0.076 (0.087)	$0.065 \\ (0.087)$	$0.066 \\ (0.087)$	
Education	0.098*** (0.030)	0.051* (0.030)	0.091*** (0.030)	0.063** (0.030)	
Born in Europe	0.470^{***} (0.115)	0.267** (0.115)	0.451*** (0.116)	0.310*** (0.115)	
CIVIX	-0.014 (0.018)	-0.022 (0.018)			
civix.d			-0.181 (0.112)	0.221** (0.111)	
Constant	6.662*** (0.190)	-0.097 (0.189)	6.767*** (0.201)	-0.408** (0.200)	
Observations R^2 Adjusted R^2 Residual Std. Error (df = 2573) F Statistic (df = 6; 2573)	2,580 0.020 0.018 2.208 8.720***	2,580 0.013 0.011 2.197 5.853***	2,580 0.021 0.018 2.207 9.060***	2,580 0.014 0.012 2.196 6.256***	

```
covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
dep.var.caption = "People are helpful",
column.labels = c("Abs. Level", "Gap w/ Natives"))
```

Table 12:

	People are helpful				
	pplhlp Abs. Level	pplhlp.gap Gap w/ Natives	pplhlp	pplhlp.gap	
	(1)	(2)	(3)	(4)	
Age	0.014^{***} (0.004)	$0.015^{***} $ (0.004)	0.015*** (0.004)	0.015*** (0.004)	
Ethnicity	-0.045 (0.106)	-0.201** (0.101)	-0.029 (0.103)	-0.206** (0.099)	
Female	$0.075 \\ (0.095)$	0.111 (0.090)	0.101 (0.093)	$0.108 \\ (0.090)$	
Education	0.101*** (0.033)	-0.035 (0.031)	0.047 (0.033)	-0.031 (0.031)	
Born in Europe	$0.166 \\ (0.125)$	-0.134 (0.119)	0.012 (0.124)	-0.122 (0.120)	
CIVIX	-0.029 (0.019)	-0.002 (0.018)			
civix.d			-1.152^{***} (0.119)	$0.070 \\ (0.115)$	
Constant	4.318*** (0.206)	-0.270 (0.196)	5.267*** (0.215)	-0.347^* (0.207)	
Observations R^2 Adjusted R^2 Residual Std. Error (df = 2565) F Statistic (df = 6; 2565)	2,572 0.013 0.011 2.391 5.736***	2,572 0.008 0.006 2.269 3.481***	2,572 0.047 0.045 2.350 21.198***	2,572 0.008 0.006 2.269 3.541***	

Table 13:

		People are h	elpful	
	happy Abs. Level	happy.gap Gap w/ Natives	happy	happy.gap
	(1)	(2)	(3)	(4)
Age	-0.012^{***} (0.003)	-0.013^{***} (0.003)	-0.013^{***} (0.003)	-0.013^{***} (0.003)
Ethnicity	-0.283^{***} (0.085)	-0.340^{***} (0.085)	-0.288^{***} (0.083)	-0.345^{***} (0.084)
Female	-0.018 (0.076)	-0.008 (0.076)	-0.017 (0.076)	-0.012 (0.076)
Education	0.094*** (0.026)	0.051** (0.026)	0.088*** (0.026)	0.060** (0.026)
Born in Europe	0.413*** (0.100)	0.267*** (0.100)	0.398*** (0.101)	0.291*** (0.101)
CIVIX	-0.011 (0.015)	0.002 (0.015)		
civix.d			-0.141 (0.097)	0.173^* (0.097)
Constant	7.470*** (0.165)	0.234 (0.165)	7.553*** (0.175)	0.079 (0.175)
Observations R^2 Adjusted R^2 Residual Std. Error (df = 2578) F Statistic (df = 6; 2578)	2,585 0.026 0.024 1.916 11.440***	2,585 0.018 0.016 1.918 8.042***	2,585 0.027 0.024 1.916 11.718***	2,585 0.020 0.017 1.917 8.578***

Table 14:

		Feel safe aft	er dark	
	aesfdrk Abs. Level	aesfdrk.gap Gap w/ Natives	aesfdrk	aesfdrk.gap
	(1)	(2)	(3)	(4)
Age	-0.004^{***} (0.001)	-0.004^{***} (0.001)	-0.004^{***} (0.001)	-0.004^{***} (0.001)
Ethnicity	$0.040 \\ (0.033)$	0.032 (0.034)	0.053 (0.033)	0.046 (0.033)
Female	0.337*** (0.030)	0.345*** (0.030)	0.339*** (0.030)	0.349*** (0.030)
Education	-0.035^{***} (0.010)	-0.034^{***} (0.010)	-0.035^{***} (0.010)	-0.036^{***} (0.011)
Born in Europe	-0.055 (0.039)	-0.036 (0.040)	-0.059 (0.040)	-0.046 (0.040)
CIVIX	0.015** (0.006)	0.014** (0.006)		
civix.d			0.026 (0.038)	-0.019 (0.039)
Constant	2.033*** (0.065)	-0.051 (0.066)	2.079*** (0.069)	0.034 (0.069)
Observations R ² Adjusted R ²	2,582 0.063 0.061	2,582 0.061 0.059	2,582 0.061 0.059	2,582 0.059 0.057
Residual Std. Error (df = 2575) F Statistic (df = 6 ; 2575)	0.753 28.848***	0.760 27.907***	0.754 27.831***	0.761 26.963***

```
health.1 = lm(health ~ agea + ethnic + female + edu + eubirth + civix, data = ess_soc) # absolute level health.2 = lm(health.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_soc) # gap health.3 = lm(health ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_soc) # absolute lev health.4 = lm(health.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_soc) # gap
```

Table 15:

	subjective general health				
	health Abs. Level	health.gap Gap w/ Natives	health	health.gap	
	(1)	(2)	(3)	(4)	
Age	0.014*** (0.001)	0.014*** (0.001)	0.014*** (0.001)	0.014*** (0.001)	
Ethnicity	-0.032 (0.034)	0.023 (0.034)	-0.028 (0.034)	0.026 (0.033)	
Female	0.095*** (0.031)	0.090*** (0.030)	0.093*** (0.031)	0.094*** (0.030)	
Education	-0.050^{***} (0.011)	-0.027^{***} (0.010)	-0.043^{***} (0.011)	-0.035^{***} (0.011)	
Born in Europe	-0.114^{***} (0.041)	-0.003 (0.040)	-0.096^{**} (0.041)	-0.026 (0.040)	
CIVIX	0.011* (0.006)	-0.004 (0.006)			
civix.d			0.157^{***} (0.039)	-0.165^{***} (0.039)	
Constant	1.473*** (0.067)	-0.718^{***} (0.066)	1.375*** (0.071)	-0.579^{***} (0.070)	
Observations R^2 Adjusted R^2	2,597 0.051 0.048	2,597 0.047 0.045	2,597 0.055 0.053	2,597 0.054 0.051	
Residual Std. Error $(df = 2590)$ F Statistic $(df = 6; 2590)$	0.780 23.001***	0.769 21.277***	0.778 25.282***	0.767 24.405***	

Table 16:

	1401	e 10:		
		subjective gene	eral health	
	dscrgrp	dscrgrp.gap	dscrgrp	dscrgrp.gap
	logistic Abs. Level	OLS Gap w/ Natives	logistic	OLS
	(1)	(2)	(3)	(4)
Age	-0.002 (0.004)	-0.0003 (0.001)	-0.003 (0.004)	-0.0003 (0.001)
Ethnicity	1.248*** (0.102)	0.240*** (0.018)	1.248*** (0.101)	0.238*** (0.018)
Female	-0.127 (0.098)	-0.019 (0.016)	-0.137 (0.098)	-0.020 (0.016)
Education	-0.200^{***} (0.034)	-0.037^{***} (0.006)	-0.184^{***} (0.034)	-0.035^{***} (0.006)
Born in Europe	-0.495^{***} (0.153)	-0.060^{***} (0.021)	-0.452^{***} (0.154)	-0.055^{**} (0.022)
CIVIX	0.013 (0.020)	-0.0001 (0.003)		
civix.d			0.377*** (0.140)	0.040^* (0.021)
Constant	-0.827^{***} (0.211)	0.268*** (0.035)	-1.121^{***} (0.231)	0.230*** (0.037)
Observations R ²	2,550	2,550 0.101	2,550	2,550 0.102
Adjusted R ² Log Likelihood Akaike Inf. Crit.	-1,282.716 $2,579.432$	0.099	-1,279.128 $2,572.256$	0.100
Residual Std. Error (df = 2543) F Statistic (df = 6 ; 2543)		0.409 47.579***		0.409 48.270***

Table 17:

		language spoker	at home	
	main.lan	lan.gap	main.lan	lan.gap
	logistic Abs. Level (1)	OLS Gap w/ Natives	logistic	OLS
		(2)	(3)	(4)
Age	0.010** (0.004)	0.002** (0.001)	0.010** (0.004)	0.002*** (0.001)
Ethnicity	-0.464^{***} (0.092)	-0.108^{***} (0.021)	-0.419^{***} (0.091)	-0.098^{***} (0.020)
Female	0.086 (0.084)	0.018 (0.019)	0.080 (0.084)	0.017 (0.019)
Education	-0.052^* (0.029)	-0.012^* (0.006)	-0.019 (0.029)	-0.005 (0.006)
Born in Europe	0.530*** (0.118)	0.107*** (0.025)	0.613*** (0.120)	0.123*** (0.025)
CIVIX	0.087*** (0.017)	0.019*** (0.004)		
civix.d			0.767*** (0.106)	0.176*** (0.024)
Constant	0.038 (0.183)	-0.457^{***} (0.041)	-0.280 (0.193)	-0.535^{***} (0.043)
Observations R^2 Adjusted R^2	2,597	2,597 0.031 0.029	2,597	2,597 0.042 0.040
Log Likelihood Akaike Inf. Crit.	-1,643.609 $3,301.218$		-1,630.229 $3,274.458$	
Residual Std. Error (df = 2590) F Statistic (df = 6 ; 2590)		0.473 13.907***		0.470 19.086***

Socioeconomic incorporation

```
# pdjobev - Ever had a paid job

# pdjobyr - Year last in paid job

# emplrel - Employment relation

# emplno - Number of employees respondent has/had

# wrkctra - Employment contract unlimited or limited duration

# jbspv - Responsible for supervising other employees

# wkdcorga - Allowed to decide how daily work is organised

# wkhtot - Total hours normally worked per week in main job overtime included

# iscoco - Occupation, ISCO88 (com)

# uemp3m - Ever unemployed and seeking work for a period more than three months

# uemp12m - Any period of unemployment and work seeking lasted 12 months or more

# uemp5yr - Any period of unemployment and work seeking within last 5 years
```

##

```
# hinctnta - Household's total net income, all sources
ess_raw$pdjobev = ifelse(ess_raw$pdjobev > 5, NA,
                         ifelse(ess_raw$pdjobev == 2, 0, ess_raw$pdjobev)) # 1 as yes, 0 as no
ess_raw$pdjobyr = ifelse(ess_raw$pdjobyr > 2010, NA, ess_raw$pdjobyr)
essr = c(2002, 2004, 2006, 2008, 2010)
essround = c(1:5)
essround = as.data.frame(t(rbind(essr, essround)))
ess_raw = ess_raw %>% left_join(essround, by='essround')
ess_raw = ess_raw %>% mutate(pdjobyr = essr - pdjobyr)
ess_raw$self.emply = ifelse(ess_raw$emplrel == 1, 0,
                            ifelse(ess_raw$emplrel == 2, 1,
                                   ifelse(ess_raw$emplrel == 3, 1, NA))) # remember that there's no "qa
ess_raw$wrkctr = ifelse(ess_raw$wrkctra == 1, 0,
                         ifelse(ess_raw$wrkctra == 2, 1,
                                ifelse(ess_raw$wrkctra == 3, 1, NA))) # 1 as w/ limited contract or no
ess_raw$contract = ifelse(ess_raw$wrkctra == 1, 1,
                             ifelse(ess_raw$wrkctra == 2, 1,
                                    ifelse(ess_raw$wrkctra == 3, 0, NA))) # 1 as with contract, 0 as w/
ess_raw$jbspv = ifelse(ess_raw$jbspv == 2, 0,
                       ifelse(ess_raw$jbspv == 1, 1, NA))
ess_raw$wkdcorga = ifelse(ess_raw$wkdcorga > 10, NA, ess_raw$wkdcorga)
ess raw$wkhtot = ifelse(ess raw$wkhtot > 168, NA, ess raw$wkhtot)
iscoco.h.w = c(100:3500) # high skilled white collar
iscoco.1.w = c(4000:5500) # low skilled white collar
iscoco.h.b = c(6000:7500) # high skilled blue collar
iscoco.l.b = c(8000:9330) # low skilled blue collar
ess_raw$skill = ifelse(ess_raw$iscoco %in% iscoco.h.w, 1,
                       ifelse(ess_raw$iscoco %in% iscoco.h.b, 1,
                              ifelse(ess_raw$iscoco %in% iscoco.l.w, 0,
                                     ifelse(ess_raw$iscoco %in% iscoco.l.b, 0, NA)))) # 1 as high skill
ess_raw$blue = ifelse(ess_raw$iscoco %in% iscoco.h.w, 0,
                       ifelse(ess_raw$iscoco %in% iscoco.l.w, 0,
                              ifelse(ess_raw$iscoco %in% iscoco.h.b, 1,
                                     ifelse(ess_raw$iscoco %in% iscoco.l.b, 1, NA)))) # 1 as blue colla
ess_raw$uemp3m = ifelse(ess_raw$uemp3m == 2, 0,
                        ifelse(ess_raw$uemp3m == 1, 1, NA))
ess_raw$uemp12m = ifelse(ess_raw$uemp12m == 2, 0,
                        ifelse(ess_raw$uemp12m == 1, 1, NA))
ess_raw$uemp5yr = ifelse(ess_raw$uemp5yr == 2, 0,
                        ifelse(ess_raw$uemp5yr == 1, 1, NA))
ess_raw$soc.welfare = ifelse(ess_raw$hincsrca == 5 | ess_raw$hincsrca == 6, 1, 0)
ses_mean = ess_raw %>% filter(citizen == 1, fborn == 0) %>% group_by(cntry) %>%
```

```
summarise(mean.pdjobev = mean(pdjobev, na.rm = TRUE),
            mean.pdjobyr = mean(pdjobyr, na.rm = TRUE),
            mean.emplno = mean(emplno, na.rm = TRUE),
            mean.wrkctr = mean(wrkctr, na.rm = TRUE),
            mean.jbspv = mean(jbspv, na.rm = TRUE),
            mean.wkdcorga = mean(wkdcorga, na.rm = TRUE),
            mean.wkhtot = mean(wkhtot, na.rm = TRUE),
            mean.skill = mean(skill, na.rm = TRUE),
            mean.blue = mean(blue, na.rm = TRUE),
            mean.contract = mean(contract, na.rm = TRUE),
            mean.hinctnt = mean(hinctnt, na.rm = TRUE),
            mean.uemp3m = mean(uemp3m, na.rm = TRUE),
            mean.uemp12m = mean(uemp12m, na.rm = TRUE),
            mean.uemp5yr = mean(uemp5yr, na.rm = TRUE),
            mean.soc.welfare = mean(soc.welfare, na.rm = TRUE),
            mean.brwmny = mean(brwmny, na.rm = TRUE))
ess_ses = ess_raw %>% filter(residence == 1)
ess_ses = ess_ses %>% left_join(ses_mean, by='cntry')
ess_ses = ess_ses %>% mutate(
 pdjobev.gap = pdjobev - mean.pdjobev,
 pdjobyr.gap = pdjobyr - mean.pdjobyr,
  emplno.gap = emplno - mean.emplno,
  wrkctr.gap = wrkctr - mean.wrkctr,
  jbspv.gap = jbspv - mean.jbspv,
  wkdcorga.gap = wkdcorga - mean.wkdcorga,
  wkhtot.gap = wkhtot - mean.wkhtot,
  skill.gap = skill - mean.skill,
  blue.gap = blue - mean.blue,
  contract.gap = contract - mean.contract,
  hinctnt.gap = hinctnt - mean.hinctnt,
  uemp3m.gap = uemp3m - mean.uemp3m,
  uemp12m.gap = uemp12m - mean.uemp12m,
  uemp5yr.gap = uemp5yr - mean.uemp5yr,
  soc.welfare.gap = soc.welfare - mean.soc.welfare,
  brwmny.gap = brwmny - mean.brwmny
ses.dat = with(ess_ses, data.frame(agea = mean(agea, na.rm = T),
                                        ethnic = mean(ethnic, na.rm = T),
                                        female = mean(female, na.rm = T),
                                        eubirth = mean(eubirth, na.rm = T),
                                        edu = mean(edu, na.rm = T),
                                   civix = 0:9))
pdjobev.1 = glm(pdjobev ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses, family = "bin
pdjobev.2 = lm(pdjobev.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # gap
pdjobev.3 = glm(pdjobev ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_ses, family = "b
pdjobev.4 = lm(pdjobev.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_ses) # gap
# stargazer(pdjobev.1, pdjobev.2, pdjobev.3, pdjobev.4, type = "latex", header = FALSE,
            covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
```

select(pdjobev, pdjobyr, emplno, wrkctr, jbspv, wkdcorga, wkhtot, skill, blue, contract, hinctnt, uem

```
dep.var.caption = "language spoken at home",
            column.labels = c("Abs. Level", "Gap w/ Natives"))
# absolute = pdjobev.1 %>%
  broom::augment(newdata = ses.dat, predict = "response") %>%
   mutate(upper = .fitted + 1.96 * .se.fit,
#
           lower = .fitted - 1.96 * .se.fit) %>%
   select(.fitted, upper, lower)
pdjobyr.1 = lm(pdjobyr ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # absolute lev
pdjobyr.2 = lm(pdjobyr.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # gap
# stargazer(pdjobyr.1, pdjobyr.2, type = "latex", header = FALSE,
            covariate.labels = c("Aqe", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
#
            dep.var.caption = "language spoken at home",
            column.labels = c("Abs. Level", "Gap w/ Natives"))
self.emply.1 = glm(self.emply ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses, family
# starqazer(self.emply.1, type = "latex", header = FALSE,
            covariate.labels = c("Aqe", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
#
            dep.var.caption = "language spoken at home",
            column.labels = c("Abs. Level", "Gap w/ Natives"))
emplno.1 = lm(emplno ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # absolute level
emplno.2 = lm(emplno.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # qap
# stargazer(emplno.1, emplno.2, type = "latex", header = FALSE,
            covariate.labels = c("Aqe", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
            dep.var.caption = "language spoken at home",
            column.labels = c("Abs. Level", "Gap w/ Natives"))
contract.1 = glm(contract ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses, family = "b
contract.2 = lm(contract.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # gap
contract.3 = glm(contract ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_ses, family =
contract.4 = lm(contract.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_ses) # gap
stargazer(contract.1, contract.2, contract.3, contract.4, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "working under contract",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
pred.ses = contract.1 %>%
  broom::augment(newdata = ses.dat, predict = "response") %>%
  mutate(upper = .fitted + 1.96 * .se.fit,
         lower = .fitted - 1.96 * .se.fit)
plot(0:9, pred.ses$.fitted, type = "1",
     ylab = "Predicted Probability to work under contracts",
     xlab = "CIVIX", ylim = c(0,2.5)
  lines(0:9, pred.ses$lower, lty = 2)
  lines(0:9, pred.ses$upper, lty = 2)
  abline(h = 0, lty=3, col="red")
```

Table 18:

		working under	contract	
	contract	contract.gap	contract	contract.gap
	logistic Abs. Level	OLS Gap w/ Natives	logistic	OLS
	(1)	(2)	(3)	(4)
Age	0.006 (0.006)	0.001 (0.001)	0.007 (0.006)	0.001 (0.001)
Ethnicity	-0.264^* (0.136)	-0.014 (0.019)	-0.216 (0.134)	-0.015 (0.018)
Female	-0.138 (0.124)	-0.024 (0.016)	-0.152 (0.125)	-0.024 (0.016)
Education	0.234*** (0.043)	0.042*** (0.006)	0.284*** (0.045)	0.041*** (0.006)
Born in Europe	0.397** (0.180)	0.073*** (0.021)	0.512*** (0.184)	0.069*** (0.022)
CIVIX	0.098*** (0.026)	-0.002 (0.003)		
civix.d			0.866*** (0.149)	-0.033 (0.021)
Constant	0.242 (0.278)	-0.188^{***} (0.038)	-0.161 (0.292)	-0.166^{***} (0.040)
Observations R ² Adjusted R ²	1,911	1,911 0.042	1,911	1,911 0.043
Adjusted R ² Log Likelihood Akaike Inf. Crit.	-844.070 $1,702.139$	0.039	-835.192 $1,684.384$	0.040
Residual Std. Error (df = 1904) F Statistic (df = 6; 1904)		0.358 13.941***		0.358 14.318***


```
jbspv.1 = glm(jbspv ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses, family = "binomia
jbspv.2 = lm(jbspv.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # gap
jbspv.3 = glm(jbspv ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_ses, family = "binom
jbspv.4 = lm(jbspv.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_ses) # gap
stargazer(jbspv.1, jbspv.2, jbspv.3, jbspv.4, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "working under contract",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
# pred.ses = jbspv.1 %>%
    broom::augment(newdata = ses.dat, predict = "response") %>%
    mutate(upper = .fitted + 1.96 * .se.fit,
#
           lower = .fitted - 1.96 * .se.fit)
#
# plot(0:9, pred.ses$.fitted, type = "l",
       ylab = "Predicted Probability to work under contracts",
#
       xlab = "CIVIX", ylim = c(0,2.5)
#
#
    lines(0:9, pred.ses$lower, lty = 2)
    lines(0:9, pred.ses$upper, lty = 2)
wkdcorga.1 = lm(wkdcorga ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # absolute l
wkdcorga.2 = lm(wkdcorga.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # gap
wkdcorga.3 = lm(wkdcorga ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_ses) # absolute
wkdcorga.4 = lm(wkdcorga.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_ses) # gap
stargazer(wkdcorga.1, wkdcorga.2, wkdcorga.3, wkdcorga.4, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
```

dep.var.caption = "control over organization of daily work",

column.labels = c("Abs. Level", "Gap w/ Natives"))

Table 19:

		working under	contract	
	jbspv	jbspv.gap	jbspv	jbspv.gap
	logistic Abs. Level	OLS Gap w/ Natives	logistic	OLS
	(1)	(2)	(3)	(4)
Age	0.018*** (0.005)	0.003*** (0.001)	0.018*** (0.005)	0.003*** (0.001)
Ethnicity	-0.046 (0.124)	-0.018 (0.019)	-0.063 (0.122)	-0.031 (0.019)
Female	-0.575^{***} (0.108)	-0.090^{***} (0.017)	-0.577^{***} (0.108)	-0.093^{***} (0.017)
Education	0.475*** (0.041)	0.064*** (0.006)	0.471^{***} (0.042)	0.064*** (0.006)
Born in Europe	0.367*** (0.127)	0.041* (0.022)	0.364*** (0.128)	0.047^{**} (0.022)
CIVIX	-0.023 (0.021)	-0.014*** (0.003)		
civix.d			-0.111 (0.126)	-0.012 (0.022)
Constant	-3.259^{***} (0.267)	-0.276^{***} (0.039)	-3.257^{***} (0.277)	-0.329^{***} (0.041)
Observations R ²	2,199	2,199 0.084	2,199	2,199 0.077
Adjusted R ² Log Likelihood Akaike Inf. Crit.	-1,079.669 $2,173.338$	0.082	-1,079.863 $2,173.725$	0.075
Residual Std. Error (df = 2192) F Statistic (df = 6 ; 2192)		0.397 33.690***		0.398 30.621***

Table 20:

	c	ontrol over organiza	tion of daily v	vork
	wkdcorga Abs. Level	wkdcorga.gap Gap w/ Natives	wkdcorga	wkdcorga.gap
	(1)	(2)	(3)	(4)
Age	0.036*** (0.007)	0.036*** (0.007)	0.036*** (0.007)	0.035^{***} (0.007)
Ethnicity	-0.669^{***} (0.171)	-0.674^{***} (0.168)	-0.734^{***} (0.169)	-0.806^{***} (0.167)
Female	-0.088 (0.152)	-0.115 (0.150)	-0.109 (0.152)	-0.143 (0.151)
Education	0.642*** (0.053)	0.607*** (0.052)	0.658^{***} (0.054)	0.610^{***} (0.053)
Born in Europe	0.966*** (0.196)	0.954*** (0.193)	1.029*** (0.198)	1.006*** (0.196)
CIVIX	-0.062^{**} (0.031)	-0.145^{***} (0.031)		
civix.d			0.233 (0.193)	-0.094 (0.191)
Constant	1.936*** (0.352)	-3.699^{***} (0.348)	1.423*** (0.375)	-4.270^{***} (0.372)
Observations R^2 Adjusted R^2 Residual Std. Error (df = 1984) F Statistic (df = 6; 1984)	1,991 0.127 0.125 3.369 48.273***	1,991 0.134 0.132 3.322 51.363***	1,991 0.126 0.124 3.371 47.790***	1,991 0.125 0.122 3.340 47.098***

```
wkhtot.1 = lm(wkhtot ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # absolute level
wkhtot.2 = lm(wkhtot.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # gap
wkhtot.3 = lm(wkhtot ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_ses) # absolute lev
wkhtot.4 = lm(wkhtot.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_ses) # qap
# stargazer(wkhtot.1, wkhtot.2, wkhtot.3, wkhtot.4, type = "latex", header = FALSE,
            covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
#
            dep.var.caption = "hours worked per week",
#
            column.labels = c("Abs. Level", "Gap w/ Natives"))
skill.1 = glm(skill ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses, family = "binomia
skill.2 = lm(skill.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # gap
skill.3 = glm(skill ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_ses, family = "binom
skill.4 = lm(skill.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_ses) # gap
stargazer(skill.1, skill.2, skill.3, skill.4, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "Skilled worker or not",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
pred.ses = skill.1 %>%
  broom::augment(newdata = ses.dat, predict = "response") %>%
  mutate(upper = .fitted + 1.96 * .se.fit,
         lower = .fitted - 1.96 * .se.fit)
plot(0:9, pred.ses\stated, type = "l",
     ylab = "Predicted Probability to work under contracts",
     xlab = "CIVIX", ylim = c(-1, 0.5)
 lines(0:9, pred.ses$lower, lty = 2)
 lines(0:9, pred.ses$upper, lty = 2)
  abline(h = 0, lty=3, col="red")
Predicted Probability to work under contra
      0
      -1.0
             0
                             2
                                                            6
                                            4
                                                                           8
                                             CIVIX
```

Table 21:

		Skilled worker	r or not	
	skill	skill.gap	skill	skill.gap
	logistic Abs. Level	OLS Gap w/ Natives	logistic	OLS
	(1)	(2)	(3)	(4)
Age	0.020***	0.004***	0.020***	0.004***
	(0.004)	(0.001)	(0.004)	(0.001)
Ethnicity	-0.020	-0.003	0.001	-0.006
	(0.108)	(0.022)	(0.106)	(0.022)
Female	-1.197***	-0.259***	-1.204***	-0.261***
	(0.098)	(0.020)	(0.098)	(0.020)
Education	0.497***	0.106***	0.516***	0.109***
	(0.035)	(0.007)	(0.036)	(0.007)
Born in Europe	0.522***	0.106***	0.565***	0.115***
•	(0.122)	(0.025)	(0.124)	(0.025)
CIVIX	0.040**	-0.002		
	(0.019)	(0.004)		
civix.d			0.395***	0.049**
			(0.121)	(0.025)
Constant	-2.203***	-0.424^{***}	-2.413***	-0.479***
	(0.224)	(0.045)	(0.240)	(0.048)
Observations	2,186	2,186	2,186	2,186
\mathbb{R}^2	,	0.176	,	0.178
Adjusted R^2		0.174		0.175
Log Likelihood	$-1,\!305.462$		$-1,\!302.210$	
Akaike Inf. Crit.	$2,\!624.924$		2,618.419	
Residual Std. Error (df = 2179)		0.456		0.455
F Statistic (df = 6 ; 2179)		77.688***		78.444***

Table 22:

		Skilled worke	r or not	
	blue	blue.gap	blue	blue.gap
	logistic Abs. Level	OLS Gap w/ Natives	logistic	OLS
	(1)	(2)	(3)	(4)
Age	0.009* (0.005)	0.002* (0.001)	0.008* (0.005)	0.002** (0.001)
Ethnicity	-0.097 (0.113)	-0.001 (0.021)	-0.108 (0.111)	0.009 (0.020)
Female	-1.127^{***} (0.102)	-0.216^{***} (0.018)	-1.134^{***} (0.103)	-0.213^{***} (0.018)
Education	-0.650^{***} (0.038)	-0.119^{***} (0.006)	-0.641^{***} (0.038)	-0.120^{***} (0.007)
Born in Europe	-1.340^{***} (0.144)	-0.184^{***} (0.023)	-1.309^{***} (0.145)	-0.190^{***} (0.024)
CIVIX	-0.004 (0.021)	0.011*** (0.004)		
civix.d			0.164 (0.132)	0.003 (0.023)
Constant	2.464*** (0.236)	0.519*** (0.042)	2.290*** (0.251)	0.566*** (0.044)
Observations R ² Adjusted R ²	2,186	2,186 0.236	2,186	2,186 0.233
Adjusted R ² Log Likelihood Akaike Inf. Crit.	-1,183.450 $2,380.899$	0.234	-1,182.689 $2,379.378$	0.231
Residual Std. Error (df = 2179) F Statistic (df = 6 ; 2179)		0.424 112.483***		0.425 110.595***

[#] pred.ses = blue.1 %>%

broom::augment(newdata = ses.dat, predict = "response") %>%

mutate(upper = .fitted + 1.96 * .se.fit,

```
lower = .fitted - 1.96 * .se.fit)
# plot(0:9, pred.ses$.fitted, type = "l",
       ylab = "Predicted Probability to work under contracts",
#
       xlab = "CIVIX", ylim = c(-1, 0.5)
#
   lines(0:9, pred.ses$lower, lty = 2)
#
   lines(0:9, pred.ses$upper, lty = 2)
hinctnt.1 = lm(hinctnt ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # absolute lev
hinctnt.2 = lm(hinctnt.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # gap
hinctnt.3 = lm(hinctnt ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_ses) # absolute l
hinctnt.4 = lm(hinctnt.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_ses) # gap
stargazer(hinctnt.1, hinctnt.2, hinctnt.3, hinctnt.4, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "Skilled worker or not",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
uemp3m.1 = glm(uemp3m ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses, family = "binom
uemp3m.2 = lm(uemp3m.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # gap
uemp3m.3 = glm(uemp3m ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_ses, family = "bin
uemp3m.4 = lm(uemp3m.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_ses) # gap
stargazer(uemp3m.1, uemp3m.2, uemp3m.3, uemp3m.4, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "unemployed for three months",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
uemp12m.1 = glm(uemp12m ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses, family = "bin
uemp12m.2 = lm(uemp12m.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # gap
uemp12m.3 = glm(uemp12m ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_ses, family = "b
uemp12m.4 = lm(uemp12m.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_ses) # gap
stargazer(uemp12m.1, uemp12m.2,uemp12m.3, uemp12m.4, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "unemployed for three months",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
pred.ses = uemp12m.1 %>%
  broom::augment(newdata = ses.dat, predict = "response") %>%
  mutate(upper = .fitted + 1.96 * .se.fit,
         lower = .fitted - 1.96 * .se.fit)
plot(0:9, pred.ses$.fitted, type = "1",
     ylab = "Predicted Probability to be unemployed for twelve months",
     xlab = "CIVIX", ylim = c(-1, 1)
  lines(0:9, pred.ses$lower, lty = 2)
  lines(0:9, pred.ses$upper, lty = 2)
  abline(h = 0, lty=3, col="red")
uemp5yr.1 = glm(uemp5yr ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses, family = "bin
```

uemp5yr.2 = lm(uemp5yr.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # gap

Table 23:

	Skilled worker or not				
	hinctnt Abs. Level	hinctnt.gap Gap w/ Natives	hinctnt	hinctnt.gap	
	(1)	(2)	(3)	(4)	
Age	0.009** (0.004)	0.009** (0.004)	0.009** (0.004)	0.009** (0.004)	
Ethnicity	-0.254** (0.107)	-0.347^{***} (0.106)	-0.263^{**} (0.106)	-0.399^{***} (0.104)	
Female	-0.169^* (0.097)	-0.213^{**} (0.096)	-0.172^* (0.097)	-0.224^{**} (0.096)	
Education	0.395*** (0.033)	0.340*** (0.033)	0.403*** (0.034)	0.349*** (0.033)	
Born in Europe	0.763*** (0.127)	0.583*** (0.126)	0.779*** (0.128)	0.620*** (0.126)	
CIVIX	-0.001 (0.019)	-0.048^{***} (0.019)			
civix.d			0.163 (0.121)	0.141 (0.120)	
Constant	3.301*** (0.219)	-1.465^{***} (0.216)	3.143*** (0.230)	-1.826^{***} (0.227)	
Observations R^2 Adjusted R^2 Residual Std. Error (df = 1885) F Statistic (df = 6; 1885)	1,892 0.114 0.111 2.097 40.339***	1,892 0.099 0.096 2.066 34.639***	1,892 0.115 0.112 2.096 40.680***	1,892 0.097 0.094 2.069 33.662***	

Table 24:

		unemployed for t	three months	
	uemp3m	uemp3m.gap	uemp3m	uemp3m.gap
	logistic Abs. Level	OLS Gap w/ Natives	logistic	OLS
	(1)	(2)	(3)	(4)
Age	0.011*** (0.004)	0.002*** (0.001)	0.011*** (0.004)	0.002*** (0.001)
Ethnicity	0.259*** (0.090)	0.073*** (0.021)	0.275*** (0.088)	$0.077^{***} $ (0.021)
Female	-0.247^{***} (0.081)	-0.060^{***} (0.019)	-0.244^{***} (0.081)	-0.059^{***} (0.019)
Education	-0.057** (0.028)	-0.012^* (0.007)	-0.056** (0.028)	-0.013^{**} (0.007)
Born in Europe	-0.471^{***} (0.112)	-0.088^{***} (0.025)	-0.474^{***} (0.112)	-0.094^{***} (0.026)
CIVIX	$0.020 \\ (0.016)$	0.003 (0.004)		
civix.d			0.051 (0.106)	-0.027 (0.025)
Constant	-0.528^{***} (0.177)	0.126*** (0.042)	-0.484^{**} (0.188)	0.167*** (0.044)
Observations R ²	2,588	2,588 0.021	2,588	2,588 0.021
Adjusted R ² Log Likelihood Akaike Inf. Crit.	-1,717.183 $3,448.366$	0.019	-1,717.786 $3,449.572$	0.019
Residual Std. Error (df = 2581) <u>F</u> Statistic (df = 6 ; 2581)		0.486 9.192***		0.486 9.288***

Table 25:

	unemployed for three months				
	uemp12m logistic Abs. Level (1)	uemp12m.gap OLS Gap w/ Natives (2)	uemp12m logistic (3)	uemp12m.gap OLS (4)	
Age	0.030^{***} (0.007)	$0.007^{***} $ (0.002)	0.031*** (0.007)	$0.007^{***} $ (0.002)	
Ethnicity	0.269^* (0.137)	0.067** (0.033)	0.335** (0.135)	0.081** (0.033)	
Female	0.361*** (0.130)	$0.074^{**} \ (0.031)$	0.365*** (0.130)	0.076** (0.031)	
Education	-0.103^{**} (0.045)	-0.025** (0.011)	-0.097^{**} (0.045)	-0.024** (0.011)	
Born in Europe	-0.035 (0.187)	0.017 (0.044)	-0.036 (0.187)	0.014 (0.045)	
CIVIX	0.079*** (0.026)	0.016*** (0.006)			
civix.d			0.211 (0.174)	0.029 (0.041)	
Constant	-1.662^{***} (0.301)	-0.345^{***} (0.070)	-1.516^{***} (0.319)	-0.304^{***} (0.075)	
Observations R^2 Adjusted R^2	1,049	1,049 0.043 0.037	1,049	1,049 0.037 0.031	
Log Likelihood Akaike Inf. Crit.	$-692.271 \\ 1,398.542$		-696.278 $1,406.556$		
Residual Std. Error (df = 1042) F Statistic (df = 6 ; 1042)		0.493 7.745***		0.494 6.620***	

Figure 4: unemployed for twelve months

```
uemp5yr.3 = glm(uemp5yr ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess ses, family = "b
uemp5yr.4 = lm(uemp5yr.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_ses) # gap
stargazer(uemp5yr.1, uemp5yr.2, uemp5yr.3, uemp5yr.4, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "unemployed for five years",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
# pred.ses = uemp5yr.1 %>%
    broom::augment(newdata = ses.dat, predict = "response") %>%
    mutate(upper = .fitted + 1.96 * .se.fit,
#
           lower = .fitted - 1.96 * .se.fit)
# plot(0:9, pred.ses$.fitted, type = "l",
#
       ylab = "Predicted Probability to be unemployed for twelve months",
#
       xlab = "CIVIX", ylim = c(-1, 1)
#
       )
#
    lines(0:9, pred.ses$lower, lty = 2)
#
    lines(0:9, pred.ses$upper, lty = 2)
    abline(h = 0, lty=3, col="red")
soc.welfare.1 = glm(soc.welfare ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses, famil
soc.welfare.2 = lm(soc.welfare.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) #
soc.welfare.3 = glm(soc.welfare ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_ses, fam
soc.welfare.4 = lm(soc.welfare.gap ~ agea + ethnic + female + edu + eubirth + civix.d, data = ess_ses)
stargazer(soc.welfare.1, soc.welfare.2, soc.welfare.3, soc.welfare.4, type = "latex", header = FALSE,
          covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
          dep.var.caption = "unemployed for five years",
          column.labels = c("Abs. Level", "Gap w/ Natives"))
```

Table 26:

	unemployed for five years			
	uemp5yr logistic Abs. Level (1)	uemp5yr.gap OLS Gap w/ Natives (2)	uemp5yr logistic (3)	uemp5yr.gap OLS (4)
Age	-0.022^{***} (0.007)	-0.004^{***} (0.001)	-0.024^{***} (0.007)	-0.004^{***} (0.001)
Ethnicity	0.287^* (0.160)	0.065** (0.029)	0.235 (0.157)	0.062** (0.029)
Female	$0.058 \\ (0.147)$	$0.011 \\ (0.028)$	$0.036 \\ (0.147)$	$0.005 \\ (0.028)$
Education	-0.050 (0.050)	-0.006 (0.009)	-0.040 (0.051)	-0.001 (0.010)
Born in Europe	-0.229 (0.198)	-0.028 (0.039)	-0.188 (0.200)	-0.015 (0.039)
CIVIX	-0.046 (0.029)	$0.001 \\ (0.005)$		
civix.d			0.110 (0.190)	0.087** (0.037)
Constant	2.189*** (0.338)	0.382*** (0.063)	1.899*** (0.355)	0.312*** (0.067)
Observations R^2 Adjusted R^2	1,039	1,039 0.015 0.010	1,039	1,039 0.021 0.015
Log Likelihood Akaike Inf. Crit. Residual Std. Error (df = 1032)	-575.981 $1,165.963$	0.438	-577.089 $1,168.179$	0.436
F Statistic (df = 6 ; 1032)		2.704**		3.649***

Table 27:

	unemployed for five years					
	soc.welfare logistic Abs. Level (1)	soc.welfare.gap OLS Gap w/ Natives (2)	soc.welfare logistic (3)	soc.welfare.gap OLS (4)		
Age	-0.007	-0.001	-0.007	-0.001		
	(0.006)	(0.001)	(0.006)	(0.001)		
Ethnicity	0.527***	0.046***	0.594***	0.051***		
	(0.134)	(0.014)	(0.133)	(0.014)		
Female	0.242*	0.026**	0.267**	0.028**		
	(0.128)	(0.012)	(0.128)	(0.012)		
Education	-0.106**	-0.017***	-0.146***	-0.019***		
	(0.043)	(0.004)	(0.044)	(0.004)		
Born in Europe	0.016	-0.014	-0.123	-0.021		
	(0.180)	(0.016)	(0.183)	(0.017)		
CIVIX	0.045*	0.005**				
	(0.026)	(0.003)				
civix.d			-0.674***	-0.023		
			(0.153)	(0.016)		
Constant	-2.031***	0.084***	-1.188***	0.131***		
	(0.280)	(0.027)	(0.287)	(0.029)		
Observations	2,533	2,533	2,533	2,533		
\mathbb{R}^2	•	0.019	•	0.019		
Adjusted R^2		0.017		0.016		
Log Likelihood	-880.953		-873.331			
Akaike Inf. Crit.	1,775.905		1,760.662			
Residual Std. Error ($df = 2526$)		0.312		0.312		
F Statistic (df = 6 ; 2526)		8.337***		7.972***		

Figure 5: Depend on social benefits

```
pred.ses = soc.welfare.1 %>%
  broom::augment(newdata = ses.dat, predict = "response") %>%
  mutate(upper = .fitted + 1.96 * .se.fit,
         lower = .fitted - 1.96 * .se.fit)
plot(0:9, pred.ses$.fitted, type = "l",
     ylab = "Predicted Probability to depend on social benefits",
     xlab = "CIVIX", ylim = c(-3, 1)
 lines(0:9, pred.ses$lower, lty = 2)
  lines(0:9, pred.ses$upper, lty = 2)
  abline(h = 0, lty=3, col="red")
brwmny.1 = lm(brwmny ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # absolute level
brwmny.2 = lm(brwmny.gap ~ agea + ethnic + female + edu + eubirth + civix, data = ess_ses) # gap
# stargazer(brwmny.1, brwmny.2, type = "latex", header = FALSE,
            covariate.labels = c("Age", "Ethnicity", "Female", "Education", "Born in Europe", "CIVIX"),
#
#
            dep.var.caption = "Difficulty to borrow money",
            column.labels = c("Abs. Level", "Gap w/ Natives"))
```