SMS: COLLABORATIVE STREAMING IN MOBILE SOCIAL NETWORKS

Chenguang Kong, Chuan Wu, Victor O.K. Li
The University of Hong Kong

Outline

- Introduction
- System Architecture
- Detailed Design and Protocols
- Evaluation and Results
- Conclusion

- Users' preferences are important during communication
 - Allow a part of other users to communicate with them
 - Refuse others
- Commonly, users are divided according to social closeness

- Exploiting the functions of users' preferences is necessary in various communication scenarios
 - Bring better user experience
 - Increase users' incentive to collaborate
 - Keep users away from unwanted disturbance

SMS: collaborative streaming in mobile social network

- Challenges in SMS
 - Motivate users to participate
 - Guarantee streaming transmission rate in low bandwidth network
 - Efficient VOD fashion of Streaming

Contribution

- Exploit a novel social network model
 - Three different levels of social connection qualities based on
 - User' social relationships
 - Users' preferences
- Construct streaming overlays by combining
 - Social network model
 - Video segment availability
 - Bluetooth infrastructure
- Design detailed protocols to implement SMS

System Architecture

SMS		
User Interface	Video Player	User Profile
P2P Streaming	Block Request/Transfer	Streaming Topology Construction
Social Preferences	Preference and Attribute Inquiry	Preference and Attribute Match
Bluetooth Protocols	Connection Setup	Data Transmission

- Social preference and user matching
 - Users' social relationships:
 - Friends
 - Users with same attributes
 - Strangers
 - Users' preferences:
 - To friends only: strongly socially selfish
 - To friends and users with same attributes: weakly socially selfish
 - To all users: altruistic

Social preference and user matching

Friends **Social Relationship Users with same** attributes **Strangers** Strongly selfish Weakly selfish **Preference Altruistic**

→ Having privilege to connect to

- Social preference and user matching
 - W(x,y) denotes the level of preference for x to provide service to y

$$W(x,y) = \begin{cases} a : & friends \\ b : attributes - matching \\ c : strangers \\ 0 : otherwise \end{cases}$$

$$a+b+c=1; a>b>c$$

- Segment availability
 - $S_x = (s_x^1, s_x^2, ..., s_x^n)$: bitmap indicating which video segments user x has

$$s_x^i = \begin{cases} 1 & : X \text{ holds video segment i} \\ 0 & : \text{ otherwise} \end{cases}, i = 1, \dots, n.$$

 $\blacksquare R_y = (r_y^1, r_y^2, ..., r_y^n)$: the segment request list at user y

$$r_y^i = \begin{cases} \rho^{i-p} & : & i \ge p \\ 0 & : & \text{otherwise} \end{cases}, \quad i = 1, \dots, n,$$

 ρ <1, p indicating the index of the segment user y is currently playing

- Segment availability
 - Suitability for user y to stream from user x

$$F(x,y) = \sum_{i=1}^{n} r_y^i \times s_x^i.$$

 Download preference: the priority for user y to require to connect to user x

$$P(x,y) = W(x,y) \cdot F(x,y).$$

- Bluetooth transmission efficiency
 - Piconet and scatternet
 - Data transmission is executed in piconet
 - Each piconet has unique FHS
 - Multi piconets form scatternet
 - Different types of nodes
 - Master
 - Master/Slave
 - Slave

- Each mobile user maintains only one download connection
 - Higher quality of service
 - Higher transmission rate
- Users with similar segment requests are maximally arranged into the same piconets
- Broadcast is available if device and platform support

Practical protocols

Practical Protocols

- Joining the system
 - Device discovery, service discovery: to find out available users
 - Attributes in service records: to obtain the social network and video segment information
 - Users choose the suitable users and request to join their piconets

Practical Protocols

- Mobility
 - Connection may break due to various reasons:
 - Uploading users leave the system
 - Downloading users perform VCR operations
 - All available segments are downloaded
 - Tearing down connection and starting up the joining procedure to build a new connection

Performance Evaluation

- Experiment setting
 - 6 HTC Wildfire mobile phones
 - Android 2.1 platform
 - A video with size of 15MB, playback time of 320 seconds
 - Mobile devices join the system one by one
 - Social relationship and preference of each user are randomly chosen

Performance Evaluation

□ Streaming Performance

Performance Evaluation

Battery Consumption

Conclusion

- A novel collaborative streaming system in mobile social network: SMS
 - Exploit novel social network model based on social relationships and users' preferences
 - Construct streaming overlay by combining social network, video segment availability and Bluetooth infrastructure
 - Implement system with designed protocols
- □ Future work: large-scale system implementation

Thanks!

Q&A