MAT216 Fall 2020

Assignment 3 on Week 6-7

Problem 1. (Coordinates and Change of Basis)

Consider

$$B = \left\{ \begin{bmatrix} 1\\2\\4 \end{bmatrix}, \begin{bmatrix} -1\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\4\\0 \end{bmatrix} \right\}, \qquad B' = \left\{ \begin{bmatrix} 0\\2\\1 \end{bmatrix}, \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$

- i) Show that B and B' are bases for \mathbb{R}^3 .
- ii) Find the coordinate matrices of $\mathbf{v} = \begin{bmatrix} 9 \\ 2 \\ 4 \end{bmatrix}$ relative to the bases B and B'.
- iii) Find the transition matrix $P_{B\to B'}$.
- iv) Verify that $[\mathbf{x}(\mathbf{v})]_{B'} = P_{B \to B'}[\mathbf{x}(\mathbf{v})]_B$.

Problem 2. (Coordinates and Change of Basis)

Consider

$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \right\}, \qquad B' = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix} \right\}.$$

- i) Show that B and B' are bases for $M_{2,2}$.
- ii) Find the coordinate matrices of $A = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$ relative to the bases B and B'.
- iii) Find the transition matrix $P_{B\to B'}$.
- iv) Verify that $[\mathbf{x}(A)]_{B'} = P_{B \to B'}[\mathbf{x}(A)]_B$.

Problem 3. (Coordinates and Change of Basis)

Consider

$$B = \{1 + x, x + x^2, 1 + x^2\}, \qquad B' = \{1 + x^2, 1 - x^2, 1 - 2x\}.$$

- i) Show that B and B' are bases for P_2 .
- ii) Find the coordinate matrices of $p(x) = -x^2 + 4x + 7$ relative to B and B'
- iii) Find the transition matrix $P_{B\to B'}$.
- iv) Verify that $[\mathbf{x}(p)]_{B'} = P_{B \to B'}[\mathbf{x}(p)]_B$.

MAT216 Fall 2020

Assignment 3 on Week 6-7

Problem 4. (Row Space, Column Space of a Matrix)

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 & 0 \\ 2 & 5 & 1 & 1 & 0 \\ 3 & 7 & 2 & 2 & -2 \\ 4 & 9 & 3 & -1 & 4 \end{bmatrix}$$

- i) Find row space R(A) and column space C(A) of A.
- ii) Find the bases for row space and column space of *A* obtained in i).
- iii) Find $\dim(R(A))$ and $\dim(C(A))$.
- iv) Find the rank(A).

Problem 5. (Homogeneous and Nonhomogeneous Systems of Equations)

Consider the matrix *A* in Problem 4.

- i) Find the solution space of the homogeneous system $A\mathbf{x} = \mathbf{0}$, that is N(A), the nullspace of A.
- ii) Find the basis and dimension of N(A).
- iii) What is $\dim(C(A)) + \dim(N(A))$? Explain by referring it to an appropriate theorem.
- iv) If $\mathbf{b} = \begin{bmatrix} 1 \\ -1 \\ 2 \\ -3 \end{bmatrix}$, determine whether the nonhomogeneous system $A\mathbf{x} = \mathbf{b}$ is

consistent.

v) If the system $A\mathbf{x} = \mathbf{b}$ is consistent, find the complete solution in the form $\mathbf{x} = \mathbf{x}_p + \mathbf{x}_h$ where \mathbf{x}_p denotes the particular solution and \mathbf{x}_h denotes a solution associated homogeneous system $A\mathbf{x} = \mathbf{0}$.

Note: It is recommended to use information and results obtained in Problem 4 to solve Problem 5.