Lab 05: Recursive Algorithms

• TASK 03

Procedure

- 1) A 20x20 maze is generated.
- 2) The maze is populated (Write 1) in random number of cells and random positions in the maze.
 - a) The random number of cells <= 400
 - b) The random positions is: 0 <= x <= 20 & 0 <= y <= 20
- 3) Then find whether there exists a path between (0, 0) and (19, 19), If so count them.
- 4) Then go to step 1 and repeat again for several number of times (in my case 10¹⁰ simulations).

This procedure is followed for 5000, 10^4 , 10^5 , 10^6 , 10^7 , 10^9 , 10^{10} and average probability reached is 0.113. This probability suggests us that in 2^{400} all possible mazes there can be around $2^{390.2}$ mazes where there can exists a path between (0, 0) and (19, 19).

$$\frac{2^{390.2}}{2^{400}} \times 100 = 0.113$$