Estrutura de Dados I

Merge-Sort

Prof. Rodrigo MinettoUniversidade Tecnológica Federal do Paraná
Material compilado de: Cormen.

Sumário

- Introdução
- 2 Visão geral
- 3 Algoritmo
- 4 Intercala
- Considerações

O algoritmo Merge-Sort foi inventado em 1945 por John Von Neumann. O algoritmo segue o paradigma de divisão e conquista (divide and conquer):

- Dividir: descubra o ponto médio do sub-arranjo (tempo constante).
- Conquistar: resolva recursivamente dois subproblemas de tamanho n/2.
- Combinar: combine os dois sub-arranjos em um único conjunto ordenado (tempo de n).

Sumário

- Introdução
- Visão geral
- 3 Algoritmo
- 4 Intercala
- Considerações

Sumário

- Introdução
- Visão geral
- 3 Algoritmo
- 4 Intercala
- Considerações

0

Merge-Sort
$$(A, \mathbf{e}, \mathbf{d}, O)$$

1. se $\mathbf{e} < \mathbf{d}$ então

2. $\mathbf{m} \leftarrow \lfloor (\mathbf{e} + \mathbf{d})/2 \rfloor$;

3. Merge-Sort $(A, \mathbf{e}, \mathbf{m}, O)$;

4. Merge-Sort $(A, \mathbf{m} + 1, \mathbf{d}, O)$;

5. Intercala $(A, \mathbf{e}, \mathbf{m}, \mathbf{d}, O)$;

 \mathbf{m}_0
 \mathbf{m}_0

Sumário

- Introdução
- 2 Visão geral
- Algoritmo
- 4 Intercala
- Considerações

$$\mathsf{O} = igcup | \mathsf{O} = \mathsf{O}$$

Intercala (A, e, m, d, O)

. . .

INTERCALA (A, e, m, d, O) \triangleright Enquanto $(j \le d)$ faça $O[k++] \leftarrow A[j++]$;

INTERCALA (A, e, m, d, O) **Enquanto** $(j \le d)$ faça $\triangleright O[k++] \leftarrow A[j++];$

INTERCALA (A, e, m, d, O) \triangleright Enquanto $(j \le d)$ faça $O[k++] \leftarrow A[j++];$

INTERCALA (A, e, m, d, O) **Enquanto** $(j \le d)$ faça $\triangleright O[k++] \leftarrow A[j++];$

$$O = | 1 | 2 | 4 | 5 | 7 | 7 | 8$$

INTERCALA (A, e, m, d, O) \triangleright **Enquanto** $(j \le d)$ **faça** $O[k++] \leftarrow A[j++];$

INTERCALA (A, e, m, d, O) **Enquanto** $(j \le d)$ faça $\triangleright O[k++] \leftarrow A[j++];$

Sumário

- Introdução
- 2 Visão geral
- Algoritmo
- 4 Intercala
- Considerações

Complexidade

O algoritmo do Merge-Sort é estável e sua equação de recorrência é dado por:

$$T(\mathbf{n}) = \left\{ egin{array}{ll} \Theta(1) & ext{se} & \mathbf{n} = 1, \\ T(\lceil \mathbf{n}/2 \rceil) + T(\lfloor \mathbf{n}/2 \rfloor) + \Theta(\mathbf{n}) & ext{se} & \mathbf{n} > 1. \end{array}
ight.$$

Complexidade de tempo: $\Theta(n \log n)$.

Complexidade de espaço: $\Theta(n)$.