KOSTERNÍ SVALOVINA

MORFOLOGIE KOSTERNÍHO SVALU

SVALOVÉ VLÁKNO

TRIÁDA

DHP – dihydropyridinový receptor

RyR – ryanodinový receptor

SARKOMERA

AKTINOVÉ (TENKÉ) FILAMENTUM

troponinový komplex: podjednotky C, I, T

MYOZINOVÉ (TLUSTÉ) FILAMENTUM

Tlusté filamentum

VZNIK PŘÍČNÉHO MŮSTKU

Ca²⁺: 10⁻⁷ mol/l Ca²⁺: 10⁻⁵ mol/l

PODSTATA KONTRAKCE

- Vazba ATP na hlavu M
- Rozštěpení ATP na ADP a fosfát
- Vznik příčného můstku mezi A a M
- Uvolnění fosfátu
- Pohyb M hlavy, uvolnění ADP
- Vazba nové molekuly ATP na hlavu M
- Odpojení M hlavy od A
- Rozštěpení ATP na ADP a fosfát
- Napřímení M hlavy
- Opakování cyklu

ANIMACE

A – aktin, M - myozin

ELEKTROMECHANICKÁ VAZBA

- Nervosvalový přenos
- AP svalového vlákna
- Šíření AP po svalovém vlákně
- Aktivace DHP receptorů
- Uvolnění vápníku ze SR
- Vazba vápníku na troponin C

- Aktivace kontraktilního aparátu
- Kontrakce svalového vlákna

VAZBA MEZI EXCITACÍ A KONTRAKCÍ = ELEKTROMECHANICKÁ VAZBA

ZMĚNY SARKOMERY PŘI KONTRAKCI

kontrakce

relaxace

RELAXACE

Odčerpání Ca²⁺ do SR (SERCA)

Uvolnění vápníku z troponinu C

Zakrytí aktivních míst

Sériová elasticita, titin

ZEVNÍ PROJEVY SVALOVÉ ČINNOSTI

sumace

vlnitý tetanus

hladký tetanus

trhnutí

ZÁVISLOST SÍLY KONTRAKCE NA DÉLCE SARKOMERY

TYPY SVALOVÝCH VLÁKEN

- pomalá vlákna pomalu nastupující, dlouhodobá kontrakce, vysoká rezistence k únavě
- rychlá vlákna rychle nastupující, krátkodobá kontrakce, vyšší intenzita
- a) únavě odolná
- b) unavitelná

In vivo: kombinace obou typů vláken.

POMALÁ	RYCHLÁ VLÁKNA	
VLÁKNA	Únavě odolná	Unavitelná
↓ průměr vlákna	střední průměr	↑ průměr vlákna
↓ glykogen	↑↓ glykogen	↑ glykogen
↑ oxidativní fosforylace		↑ glykolýza
více mitochondrií		méně mitochondrií
více myoglobinu (červená)		↓ myoglobinu (bílá)
↑ krevní zásobení		↓ krevní zásobení
↓ unavitelnost	↑↓ unavitelnost	↑ unavitelnost

SVALOVINA	KOSTERNÍ	HLADKÁ
Inervace	motorická vlákna	autonomní systém
Nervosvalový přenos	motorická ploténka	varikozity s přenašečem
Humorální regulace	ne	ano
Elektrické spojení buněk	vlákna izolována	gap junction (útrobní)vlákna izolována (vícejednot.)
T-tubuly	ano	ne
SR	bohaté	málo vyvinuté
Zdroj Ca ²⁺	SR	SR, extracelulární Ca ²⁺
Regulační proteiny	troponin, tropomyozin	kalmodulin, tropomyozin
KMP	–80 mV	–60 mV
Depolarizace	Na⁺ proud do buňky	Ca ²⁺ proud do buňky s malým příspěvkem Na ⁺ proudu
Trvání AP	2 – 4 ms	podle typu svaloviny až několik s
Spontánní produkce AP	ne	možná (útrobní)ne (vícejednotková)
Elektromechanická vazba	elektrický signál	Ca ²⁺ , nezbytná fosforylace myozinu
Rychlost kontrakce	rychlá	pomalá
Spotřeba energie	vyšší	nižší

METABOLISMUS KOSTERNÍHO SVALU

SVALOVÁ ÚNAVA

SVALOVÁ PRÁCE - ENERGIE

Potřeba energie hrazena ATP.

- tvorba a rozpojování příčných můstků
- činnost Ca²⁺-ATPázy
- činnost Na⁺-K⁺-ATPázy

ZDROJE ENERGIE

- ATP ve svalech
- kreatin fosfát (KP)
- anaerobní glykolýza
- aerobní glykolýza

ZÁSOBY KYSLÍKU

- Alveolární vzduch
- Hemoglobin
- Myoglobin

KYSLÍKOVÝ DLUH

- vzniká při intenzivní svalové práci
- zvýšená plicní ventilace po ukončení námahy:
 - přeměna kyseliny mléčné na glukózu
 - obnova zásob ATP
 - obnova zásob KP
 - obnova zásob O₂

SVALOVÁ ÚNAVA

 neschopnost udržet požadovanou sílu svalové kontrakce

PŘÍČINY:

- intenzivní svalová práce
- dlouhodobá svalová práce
- kombinace obou příčin

nedostatek energie

ZNÁMKY SVALOVÉ ÚNAVY

- pokles intenzity kontrakce
- zpomalení kontrakce
- bolest
- svalové křeče

POMALÁ VLÁKNA	RYCHLÁ VLÁKNA	
pomalejší nástup (desítky	rychlý nástup (min)	
minut až hodiny)	rychlé zotavení	
MECHANISMUS		
na úrovni SR:	vyčerpání zásob	
změny Ca ²⁺ metabolismu	glykogenu	
(narušení	hromadění kyseliny	
elektromechanické vazby)	mléčné	
	acidóza	
	hromadění K+ v ECT a Na+ v ICT	

STATICKÁ vs. DYNAMICKÁ PRÁCE

↑ prokrvení svalu při práci

Dynamická práce

- vzestup průtoku při relaxaci
- pokles průtoku při kontrakci

Statická práce

- méně výrazný ↑ prokrvení
- cévy komprimovány kontrahovaným svalem