Introduzione al calcolo delle probabilità

Eventi certi, impossibili, aleatori

Supponiamo di lanciare un dado e consideriamo i seguenti "eventi":

 E_1 ={ esce un numero compreso tra 1 e 6 (estremi inclusi) }

 $E_2=\{$ esce il numero $7\}$

 $E_3=\{$ esce il numero $2 \}$

L'evento E₁ è "**certo**": infatti lanciando un dado possono uscire i numeri da 1 a 6.

L'evento E₂ è "**impossibile**".

L'evento E₃ è possibile ma non è certo e viene detto "**aleatorio**".

Il termine "aleatorio" deriva da "**alea**" che in latino significa proprio "dado" e per gli antichi il lancio del dado era il tipico esempio di situazione casuale.

Nota

Il calcolo delle probabilità è nato proprio in relazione ai giochi di dadi e vedremo come Galileo fu interpellato da alcuni giocatori del "gioco dei tre dadi".

È chiaro però che non tutti gli eventi aleatori hanno la stessa "probabilità" di accadere (di verificarsi). Se per esempio considero E_4 ={ esce un numero pari }, scommettereste su E_3 ={ esce il numero 2 } o su E_4 ?

È chiaro che l'evento E_4 ha più probabilità di verificarsi di E_3 : infatti se consideriamo che i casi possibili nel caso del lancio di un dado non truccato sono l'uscita dei numeri 1,2,3,4,5,6 vediamo che perché accada E_3 ho solo un caso favorevole {2} mentre perché si verifichi E_4 ho i tre casi favorevoli {2} {4} {6}.

Probabilità di un evento E

Ma come è definita la probabilità di un evento E?

Per ora daremo solo la definizione cosiddetta "classica" ed approfondiremo poi l'argomento nella classe quarta.

Definizione classica

La probabilità (classica) di un evento E è data dal *rapporto tra il numero dei casi favorevoli ad E* e il numero dei casi possibili (tutti ugualmente possibili)

$$p(E) = \frac{n^{\circ} \quad casi \quad favorevoli}{n^{\circ} \quad casi \quad possibili}$$

Nel nostro esempio

$$p(E_1) = 1$$
 (evento certo)
 $p(E_2) = 0$ (evento impossibile)
 $p(E_3) = \frac{1}{6}$
 $p(E_4) = \frac{3}{6} = \frac{1}{2}$

Osserviamo che essendo n° casi favorevoli \leq n° casi possibili si ha che la probabilità di un evento E è un numero compreso tra 0 e 1

$$0 \le p(E) \le 1$$

Eventi ed insiemi

Possiamo rappresentare gli eventi utilizzando gli insiemi. Considerando sempre il lancio di un dado, l'insieme di tutti gli eventi "elementari" (chiamato insieme universo U) sarà:

L'evento E₄ sarà rappresentato da un sottoinsieme di U

$$E_4 = \{2,4,6\}$$

Poiché

 $E_1 \equiv U$ si ha che E_1 è l'evento certo;

 $E_2 = \Phi$ si ha che E_2 è l'evento impossibile.

Evento contrario

Se E è un evento indicheremo con \overline{E} l'evento contrario.

Per esempio se considero

 E_4 ={ nel lancio di un dado esce un numero pari }

avremo

 \overline{E}_4 ={ nel lancio di un dado **non** esce un numero pari }

Da un punto di vista insiemistico l'evento contrario \overline{E} è rappresentato dall'insieme complementare di E (rispetto all'insieme universo U)

È chiaro quindi che
$$p(\overline{E}) = \frac{n^{\circ} casi \quad possibili - n^{\circ} casi \quad favorevoli \quad ad \quad E}{n^{\circ} casi \quad possibili} = 1 - p(E)$$

Problema

Lancio di due dadi

Consideriamo il lancio di due dadi (non truccati): possiamo avere

$$(1,1) (1,2)$$
 ... $(1,6)$ $(2,1) (2,2)$... $(2,6)$

.

.

(6,1)(6,2) ... (6,6)

Attenzione

L'evento (1,2) è diverso dall'evento (2,1): per non confondere i due dadi possiamo pensare che siano di colori diversi, quindi l'uscita della coppia 1-2 può avvenire in due modi diversi.

Ci sono quindi 36 eventi elementari.

Qual è la probabilità di E_1 ={ nel lancio di due dadi esce il doppio 6 } ?

È chiaro che $p(E_1) = \frac{1}{36}$ (se facessi una scommessa lo giocherei 35 a 1).

Qual è la probabilità di avere una certa somma S?

Per avere somma 2 devo avere (1,1) e questo è l'unico caso favorevole.

Quindi
$$p(S=2) = \frac{1}{36}$$

•
$$p(S=3)=?$$

Posso ottenere somma 3 in due casi: (1,2) (2,1) e quindi

$$p(S=3) = \frac{2}{36} = \frac{1}{18}$$

ecc...

PROBLEMIINTRODUZIONE AL CALCOLO DELLE PROBABILITA'

1) Lanciando due volte una moneta, qual è la probabilità che esca per due volte testa?	$\left[\frac{1}{4}\right]$
2) Nel gioco del "pari-dispari" (che consiste nell'aprire alcune dita della mano e sommare i dei due giocatori) è indifferente scommettere sul pari o sul dispari ?	punti
[solo se si decide che si può "gettare" il pugno ch	niuso]
3) Lanciando tre volte una moneta, qual è la probabilità di ottenere almeno una volta croce? pensare che sia l'evento contrario di "esce sempre testa")	(puoi $\left[\frac{7}{8}\right]$
4) Estraendo una carta da un mazzo di 40 carte napoletane qual è la probabilità che:	
• sia un asso;	$\left[\frac{1}{10}\right]$
• sia una carta di picche;	$\left[\frac{1}{4}\right]$
• sia una figura;	$\left[\frac{3}{10}\right]$
• sia il "settebello".	$\left[\frac{1}{40}\right]$
5) Lanciando due dadi qual è la probabilità che:	
escano numeri uguali	$\left\lceil \frac{1}{6} \right\rceil$
• escano due numeri pari	$\left[\frac{1}{4}\right]$
escano due numeri primi	$\left\lceil \frac{1}{4} \right\rceil$

Introduzione al calcolo delle probabilità

6) (Invalsi 2014/15)

Da un mazzo di 52 carte da gioco (composto da 13 carte per ognuno dei semi: cuori, quadri, fiori, picche) sono stati tolti i 4 assi. Si estrae una carta a caso. Qual è la probabilità che sia di cuori?

 $\left[\frac{1}{4}\right]$

7) (Invalsi 2014/15)

Si lancia 300 volte un dado non truccato a 6 facce. Quante volte ci si aspetta di ottenere un numero maggiore di 4?

[circa 100 volte]

8)(Invalsi 2014/15)

Un'urna contiene 40 palline identiche tranne che per il colore: 23 sono rosse e 17 blu.

Si estraggono contemporaneamente due palline dall'urna. Entrambe sono blu. Senza reintrodurre le due palline estratte, si estrae dall'urna una terza pallina. Qual è la probabilità che anche la terza pallina sia blu?

[15/38]

9)(Invalsi 2015/16)

Quale tra i seguenti numeri non può rappresentare la probabilità di un evento?

- A. $\Box \frac{2}{3}$
- B. \square $\frac{11}{15}$
- c. $\Box \frac{8}{7}$
- D. \Box $\frac{20}{27}$

[C]

10))(Invalsi 2015/16)

Nella scatola A vi sono 6 palline verdi e 4 rosse. Nella scatola B vi sono invece 12 palline verdi e 5 rosse. Quante palline verdi si devono spostare dalla scatola B alla scatola A affinché la probabilità di estrarre una pallina verde da A diventi uguale alla probabilità di estrarre una pallina verde da B?

[2]

11)(Invalsi 2017/18)

Due urne A e B contengono ciascuna tre bigliettini numerati con i numeri 1, 2 e 3. Si estrae un bigliettino dall'urna A e poi un bigliettino dall'urna B. Fra tutte le possibili somme che si possono ottenere, qual è la più probabile?

[4]

TEST IN INGLESE PROBABILITA'

- 1) Tom has 50 model cars. He has 10 blue cars and 19 red cars. He has no yellow cars.
 - a) Tom chooses a car at random. Write down the probability that it is
 - (i) red,
 - (ii) red or blue,
 - (iii) not blue,
 - (iv) yellow.
 - b) The probability that a car is damaged is 1. How many cars are damaged?
- 2) The probability that FC Victoria wins the cup is 0.18. Work out the probability that they do **not** win the cup.
- 3) A whole number is picked at random from the numbers 1 to 200, inclusive.
 - a) What is the probability that is **more than** 44? Give your answer as
 - (i) a fraction in its lowest terms,
 - (ii) a decimal
 - b) What is the probability that the number is at least 180?
- 4) After training, the shirts are washed. There are 5 red, 3 blue and 6 green shirts. One shirt is taken from the washing machine at random. Find the probability that is
 - a) red
 - b) blue or green
 - c) white
- 5) Celine buys a bag of 24 tulip bulbs. There are 8 red bulbs and 5 white bulbs. All of the other bulbs are yellow. Celine chooses a blub at random from the bag.
 - a) Write down the probability that the bulb is red or white.
 - b) Write down the probability that the bulb is yellow.
- 6) Jonah uses a fair five-sided spinner in a game.

- a) What is the probability that the spinner lands on
 - (i) 3.
 - (ii) an even number,
 - (iii) a number greater than 5?

b) Jonah spins the spinner 25 times and records the results in a frequency table.

Number that the spinner lands on	Frequency
1	8
2	4
3	5
4	
5	2

- (i) Fill in the missing number.
- (ii) Write down the mode.
- 7) The diagram shows a six-sided spinner.
 - a) Amy spins a **biased** spinner and the probability she gets a two is $\frac{5}{36}$. Find the probability she

- (i) does not get a two,
- (ii) gets a seven,
- (iii) gets a number on the spinner that is less than 7.
- b) Joel spins his blue spinner 99 times and gets a two 17 times. Write down the relative frequency of getting a two with Joel's spinner.
- c) The relative frequency of getting a two with Piero's spinner is $\frac{21}{102}$. Which of the three spinners, Amy's, Joel's or Piero's, is most likely to give a two?
- 8) A bag contains 5 black beads, 7 white beads and 4 blue beads.
 - a) Mohini picks a bead at random. What is the probability that it is.
 - (i) black,
 - (ii) not black?
 - b) One of the 16 beads is lost. The probability that Mohini picks a black bead is now $\frac{1}{3}$. What can you say about the colour of the lost bead?
- 9) a) The diagram shows 5 discs. One disc is chosen at random.
 - (i) Which is most likely to be choosen?
 - (ii) What is the probability that the number on the disc is even?
 - (iii) What is the probability that the number on the disc is even and a factor of 20?
 - b) A disc is chosen at random from the discs with even numbers. What is the probability that the number on the disc is a factor of 20?