

Challenges in Automated Machine Learning

Gilberto Titericz Jr November / 2019 Spain

Automated Machine Learning What is autoML?

- Wiki: "Is the process of automating end-to-end the process of applying machine learning to real-world problems".
- It an intuitive tool that enables anyone to do Machine Learning and a productive tool for Data Scientists.
- AutoML is an A.I. that build A.I.'s.

Automated Machine Learning (AutoML)

According Forbes, the world generates 2.500.000.000.000.000.000 (2.5 Zetta) bytes of data every day.

Demand for Data Scientists in 2018

Source: https://economicgraph.linkedin.com/research/linkedin-2018-emerging-jobs-report

	Metro Area	July 2015	July 2018
1	New York City, NY	+4,132	+34,032
2	San Francisco Bay Area, CA	+10,995	+31,798
3	Los Angeles, CA	+425	+12,251
4	Boston, MA	+1,667	+11,276
5	Seattle, WA	+1,182	+9,688
6	Chicago, IL	-1,826	+5,925
7	Washington, D.C.	+735	+7,686
8	Dallas-Ft. Worth, TX	-2,496	+3,641
9	Atlanta, GA	-2,301	+3,350
10	Austin, TX	+26	+4,949

So urc e:

https://learning.linkedin.com/blog/tech-tips/why-it-s-really-good-to-be-a-data-scientist-right-now

• 5-Fold CV, AUC Performance: (50 binary classification datasets)

Algorithm	Defaul HP	Tuned HP
GradientBoosting	0.826	0.891 (+6.57%)
RandomForest	0.810	0.861 (+5.1%)
KNeighbors	0.780	0.827 (+4.6%)
LinearSVC	0.772	0.811 (+4.0%)
RidgeClassifier	0.765	0.790 (+2.5%)
	0.790	0.836 (+4.6%)

• Ensembling:

Stacking Ensemble of HP Tuned models AUC: 0.902 (+7.6% over best untuned model)

- Model Interpretability:
 - Why the model predicted it?
 - What are the most important features?
 - How features interact each other?

AutoML: Automation of a Machine Learning

Gathering Data

• Define a problem.

How to gather the data?

How to store the data?

1 - Data Preparation/Wrangling

- Load the Data.
- Join Tables.
- Clean/Drop values or errors.
- Remove outliers (outlier detection).
- Data augmentation (add artificial examples).

2 - Analyze Data

- Feature Discovery.
- Feature Distribution.
- Correlations.
- Clusterings.
- Build Features (Feature Engineering).

3 - Train a Model

- Choose a range of algorithms.
- Choose a validation strategy.
- Hyperparameter tuning.
- Neural Architecture Searching.
- Feature Selection.
- Ensembling.

4 - Test a Model

- Analyze predictions.
- Check for inconsistences.
- Calculate relevant metrics.
- Compare models predictions.
- Prepare for model interpretability.

5 - Deploy a Model

- Deploy models to production.
- Check consistence.
- Maintain.
- Data health.

AutoML Challenges

This is a test	80455	1234567890	1,80
I like data	80995	9876543211	5-6
I like data	45665	1928376450	1.55
Ask a DS about data	12336	1122334455	2.05

Categorical Feature	Zip Codes	TimeStamp	Human Height
This is a test	80455	1234567890	1,80 m
I like data	80995	9876543211	5 ft-6 in
I like data	45665	1928376450	1.55 m
Ask a DS about data	12336	1122334455	2.05 m

Tabular Data:

1	2	3	4	5	6
Cat 1	Cat 2	num	AVG(num)byCat1	Cat1+Cat2	Cat1 Frequency
RED	DARK	1	3.5	REDDARK	2
GREEN	DARK	10	6	GREENDARK	2
GREEN	DARK	2	6	GREENDARK	2
RED	LIGHT	6	3.5	REDLIGHT	2
BLUE	LIGHT	3	3	BLUELIGHT	1

NLP:

- Detect Language.
- Find Language specific relations between the words.
- Cleaning the text.
- Fix Misspellings.
- Traditional approaches like: ngrams, tf-idf and bag of words.
- Extracted Embeddings from Pretrained Models.

Image Classification:

- Extracted Embeddings from pretrained models:
 - Raw, PCA, ICA, Isomap, AutoEncoder, etc...

- Pure CNN model:
 - Preprocessings: filter, edge detection, equalization.
 - Augmentations: horizontal/vertical flip, rotation, deformation, distortion, equalization, add noise.

Tabular + NLP + Images

Automatic Model Fit

- Set a Validation Strategy (Time based, Random/Stratified, Grouped).
- Set a relevant Metric.
- Train a model: Linear, Decision Trees, Deep Learning, etc...
 - Preprocess data for each model type.
- Optimize Hyperparameter and Neural Architecture Search.

- LightGBM (GBDT) Parameters:
 - Around 60 hyperparameters to set.
- Neural Nets:
 - Some hyperparametrs and a large number of architectures to try.


```
Class lightgbm.LGBMClassifier(
        boosting_type='gbdt',
        num_leaves=31,
        max depth=-1,
        learning rate=0.1,
        n estimators=100,
        subsample_for_bin=200000,
        objective='binary',
        class_weight=None,
        min split gain=0.0,
        min_child_weight=0.001,
        min child samples=20,
        subsample=1.0,
        subsample freq=0,
        colsample_bytree=1.0,
        reg_alpha=0.0,
        reg_lambda=0.0,
```


- Algorithms:
 - Grid Search
 - Random Search
 - Gradient Based Optimization
 - Bayesian Optimization
 - Bayesian Optimization + Hyperband
 - Guess (sklearn-autoML)

Important parameter

Image source: Bergstra & Bengio, JMLR 2012_ Kagge

- Grid Search:
 - Parameters:
 - 1. Param1 = $\{0.001, 0.01, 0.1, 1, 10.0\}$
 - 2. Param2 = { 1, 2, 4, 8, 16 }
 - 3. Param3 = { 1, 10, 100, 1000, 10000 }

Iterations: $5 \times 5 \times 5 = 125$ (can be parallelized)

- Random Search:
 - Parameters:
 - 1. Param1 = random value(0.001, 10.0)
 - 2. Param2 = random value(1, 16)
 - 3. Param3 = random value(1, 10000)

Iterations: N (can be parallelized)

- Bayesian Optimization:
 - Starts from M initial HP combinations.
 - Parameters:

Maps the performance of the M initial parameters in a Gaussian Space and use the priors to calculate the next HP point to query.

Iterations: M initial points + N iterations (serial)

Bayesian Optimization

Ensembling

 Combine N fitted models in order to improve overall accuracy.

Model Selection Algorithm.

Training Strategy.

Model Interpretability

 Understand a model is very important (trust).

 Add mechanisms to enable model interpretation.

MY HOBBY: EXTRAPOLATING

Model Interpretability

(a) Husky classified as wolf

(b) Explanation

LIME: https://arxiv.org/abs/1602.04938

AutoML

```
import autosklearn.classification

automl = autosklearn.classification.AutoSklearnClassifier(
    time_left_for_this_task=600,
    ml_memory_limit=4096,
    n_jobs = 4,

)

automl.fit( X_train, y_train )

predictions = automl.predict_proba(X_test)[:,1]
```


AutoML Challenges

- Cost and Model Performance vs Time
 - More time, better performance, higher costs.

AutoML Challenges

- Dataset Join/Merge
- Feature Discovery
- Feature Processing
- Feature Imputation
- Feature Engineering
- Feature Selection
- Model Selection
- Ensemble Models
- Hyper Parameter Optimization
- Big Data/Scalability (Large RAM or distributed systems).
- Cost
- Maintainability.
- Interpretability.
- Deploy

AutoML Advantages

- Near zero complexity for the user.
- Reduce costs of hiring ML Experts.
- Reduces human bias a errors.
- Increases productivity ("time to reward").
- Fast Insights about the data and performance.
- State-of-the-art in ML.
- Easy Scalable.
- Easy Deployable.

Thank You

Find me @

www.linkedin.com/in/giba1

https://www.kaggle.com/titericz

