Свойства оценок. Задача 1

Ильичёв А.С., 693

```
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
```

1. Зададим массив из значений θ и сгенерируем выборки X_1,\dots,X_N из равномерного распределения на отрезке $[0,\theta]$ для $N=10^4$ и для каждого θ .

```
N = 10 ** 4

ns = np.arange(1, N + 1)

thetas = [0.5, 1, 5, 13, 27]

# выборки для каждого theta

samples = [np.random.uniform(0, theta, N)] for theta in thetas]
```

2. Для всех $n \leq N$ посчитаем оценки параметра θ из теоретической задачи.

```
def make_estimator(func): # функция построения массива оценок
    est = []
    for sample in samples:
        est.append([func(sample[:i]) for i in ns])
    return np.array(est)
est = [None] * 5
```

a) $\hat{ heta}_0=2\overline{X}$

```
est[0] = make_estimator(lambda x: 2 * np.mean(x))
```

b)
$$\hat{ heta}_1 = \overline{X} + X_{(n)}/2$$

```
est[1] = make_estimator(lambda x: np.mean(x) + np.max(x) / 2)
```

c)
$$\hat{ heta}_2=(n+1)X_{(1)}$$

```
est[2] = make_estimator(lambda x: (len(x) + 1) * np.min(x))
```

d)
$$\hat{ heta}_3=X_{(1)}+X_{(n)}$$

3. Построим на одном графике для всех оценок функции модуля разности оценки и истинного значения θ в зависимости от n

```
make_plot(theta_num=0, limit=False)
```


Как видно, оценка (2) сильно отличается от истинных значений θ . Это происходит из-за того, что, как следует из решения теоретической задачи, такая оценка не является состоятельной (и стремится к 0 п.н. при $n \to \infty$). Исключим ее из рассмотрения и построим графики оценок для всех θ .

```
for i, theta in enumerate(thetas):
    make_plot(theta_num=i, exclude={2})
```


4. Сделаем выводы.

Все оценки, кроме (3), являются состоятельными (из решения теоретической задачи). Как видно из графиков, лучше всего себя ведут оценки (3) и (4), не включающие в себя выборочное среднее. Оценка (0), состоящая только из выборочного среднего, ведет себя хуже остальных. Скорее всего, это происходит из-за того, что первая и n-ая порядковые статистики менее подвержены флуктуациям, т.е. с ростом n (и приближением статистик к границам отрезка) вероятность изменения их значения уменьшается (например, для минимума $P(x<lpha)=rac{lpha}{ heta}$), при этом номер n, на котором будет достигнут уровень приближения $|\hat{ heta}_n - heta| < eta \ll 1$, удовлетворяет геометрическому распределению, т.е. уровень убывает экспоненциально с ростом n. Это заметно на графике. Выборочное среднее же изменяется с каждым новым измерением (вклад которого пропорционален 1/n), и потому медленнее сходится к истинному значению θ .