Wartość zakładu produkującego fajerwerki wynosi 3 mln zł. Właściciel posiada ponadto majątek o wartości w zainwestowany w aktywa nie obarczone ryzykiem. Prawdopodobieństwo iż dojdzie do eksplozji w zakładzie wynosi 0,01. Eksplozja (o ile nastąpi) spowoduje całkowite zniszczenie zakładu, a ponadto obciąży pozostały majątek właściciela roszczeniami innych poszkodowanych. Rozkład łącznej wartości szkód obu rodzajów (w mln zł) dany jest funkcją gęstości:

$$f(x) = \begin{cases} 2 \cdot e^{-2(x-3)} & \text{dla} \quad x > 3 \\ 0 & \text{dla} \quad x \le 0 \end{cases}$$

Funkcja użyteczności (majątku wyrażonego w mln zł) opisująca preferencje właściciela fabryki ma postać:

$$u(x) = \begin{cases} x & \text{dla } x > w \\ w + 1 - e^{-(x - w)} & \text{dla } x \le w \end{cases}$$

Spośród poniżej przedstawionych wartości składki za ubezpieczenie od łącznej szkody obu rodzajów, wybierz największą którą właściciel byłby skłonny zapłacić.

- (A) Za mało danych
- (B) 0,0350
- (C) 0,0369
- (D) 0,0386
- (E) 0,0400

Dla pewnego ubezpieczenia, w roku 1998 wartość szkody ma rozkład jednostajny na odcinku (0,1000). Udział własny ubezpieczonego w szkodzie wynosi 20% wartości szkody, jednak nie więcej niż 100. W wyniku inflacji wysokość szkód w roku 1999 wzrośnie, jak przypuszczamy, o i=10%. Udział własny ubezpieczonego w szkodzie pozostaje taki sam jak w roku 1998 (tj., odpowiednio, 20% lub 100). O ile wzrośnie wartość oczekiwana wypłaty? Podaj wartość najbliższą.

- (A) 10,00%
- (B) 10,27%
- (C) 10,54%
- (D) 11,23%
- (E) 12,03%

Łączna wartość szkód ma złożony rozkład Poissona z częstotliwością $\lambda = 4$ i rozkładem wartości pojedynczej szkody Y danym wzorem:

$$Pr(Y = i) = \left(\frac{1}{2}\right)^i$$
 dla $i = 1, 2, 3, ...$

 $E(\max[0, X-3])$ wynosi:

- (A) $5 + 8e^{-4}$
- (B) $5 + 9e^{-4}$
- (C) $5 + 10e^{-4}$
- (D) $5 + 11e^{-4}$
- (E) $5 + 12e^{-4}$

Firma ubezpieczeniowa specjalizująca się w ubezpieczeniach dla dużego przemysłu prowadzi swą działalność w 4 różnych gałęziach przemysłu. Charakterystyka ubezpieczeń w podziale na poszczególne gałęzie jest następująca:

Gałąź	Wysokość szkody	Prawdopodobieństwo	Ilość
przemysłu		szkody	polis
1	1 mln	0,01	100
2	10 mln	0,02	50
3	20 mln	0,005	200
4	Х	0,002	500

gdzie x jest pewną (nielosową) liczbą większą od 30 mln.

Dla każdej z gałęzi przemysłu został policzony względny narzut bezpieczeństwa (*relative security loading*), w taki sposób by wartość wypłaconych szkód z prawdopodobieństwem 0,8 nie przewyższała zebranych składek w tej gałęzi. W każdym przypadku posłużono się aproksymacją rozkładem normalnym.

Dla której z gałęzi przemysłu względny narzut bezpieczeństwa jest największy?

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) Za mało danych

Dla dyskretnego procesu nadwyżki U_n , n=0,1,2,...

- $W_n = U_n U_{n-1}, n = 0, 1, 2, ...$
- o procesie W_n wiemy, że:
 - jest stacjonarnym procesem Markowa
 - może przyjmować wartości –1, 0, 1.
 - $E(W_n) = 0.4$
 - $VAR(W_n) = 0.44$

Wyznacz współczynnik dopasowania \widetilde{R} . Podaj najbliższą wartość.

- (A)1,39
- (B) 1,61
- (C) 1,79
- (D)1,95
- (E) 2,08

Przyjmijmy, że jest dzisiaj 30 listopada 1998 roku. Analizujemy ilość szkód w pewnym ubezpieczeniu. Ilość szkód możemy opisać procesem stochastycznym $\{N(t), t \geq 0\}$, N(t) oznacza ilość szkód jaka zaszła od 1 stycznia 1998 do czasu t. Proces $\{N(t), t \geq 0\}$ ma następujące własności:

- czasy pomiędzy następującymi po sobie szkodami mają identyczne rozkłady prawdopodobieństwa, jest to rozkład jednostajny na odcinku [0,3], jednostką czasy jest 1 rok;
- pomiędzy 1 stycznia 1998 a 30 listopada 1998 wystąpiło 5 szkód; $N(\frac{11}{12}) = 5$;
- piąta szkoda wystąpiła dnia 30 czerwca 1998; $T(5) = \frac{6}{12}$;

Dla uproszczenia przyjmijmy, że każdy miesiąc ma 30 dni, a rok 360 dni.

Oblicz prawdopodobieństwo, że następna szkoda wystąpi w miesiącu grudniu 1998 lub styczniu 1999. Podaj najbliższą wartość.

- (A) mamy zbyt mało danych o procesie $\{N(t), t \ge 0\}$.
- (B)0,056
- (C)0,065
- (D)0,080
- (E) 0,167

Firma transportowa posiadająca 2 samochody, prowadząca swoją działalność w regionie o bardzo dużym ryzyku, postanowiła wykupić specjalne ubezpieczenie Auto-Casco na te dwa pojazdy. Kontrakt ubezpieczeniowy przewiduje wypłatę dywidendy. Dywidenda jest równa:

50%*[zapłacona składka minus (wypłacone odszkodowania + koszty administracyjne + koszty reasekuracji)], jeżeli ta wartość jest dodatnia.

Dane:

- składka za dwa pojazdy wynosi 4;
- koszty administracyjne wynoszą 10% składki;
- reasekuracja jest typu *excess of loss* z zachowkiem równym 2; reasekurator skalkulował składkę w wysokości składki netto z narzutem 25%
- każdy z pojazdów może mieć tylko jedną szkodę; rozkład prawdopodobieństwa wypłaty za jeden pojazd ma postać:

$$p(0) = 0.4$$

 $p(1) = 0.3$
 $p(2) = 0.2$
 $p(4) = 0.1$

• wypłaty dla poszczególnych pojazdów są niezależne;

Ile wynosi wartość oczekiwana dywidendy? Podaj najbliższą wartość.

- (A) 0,612
- (B) 0,644
- (C) 0,688
- (D) 0,712
- (E) 0,744

Wartość szkody w danej grupie ryzyk jest opisywana rozkładem gamma o parametrach α ,

 $\beta = 0.001$.

Zróżnicowanie grup jest opisywane rozkładem prawdopodobieństwa parametru α , który to rozkład jest rozkładem gamma o średniej 5 i wariancji 5.

Zaobserwowaliśmy 9 szkód pochodzących z jednej grupy ryzyk. Wartość średnia tych szkód wyniosła 3000.

Korzystając z klasycznego modelu Bühlmanna dla optymalnego niehomogenicznego liniowego estymatora, znajdź wartość oczekiwaną następnej szkody. Podaj najbliższą wartość.

- (A)3000
- (B) 3200
- (C)4000
- (D) 4800
- (E) 5000

Pewien portfel ryzyk składa się z dwóch subportfeli. Dla każdego subportfela może wystąpić co najwyżej jedna szkoda na ryzyko, a jeśli wystąpi, to ma rozkład równomierny na przedziale (0, a).

Subportfel	Prawdopodobieństwo	Liczba ryzyk w	Parametr
	zajścia szkody	subportfelu	а
1	0,3	1000	100
2	0,1	5000	50

Łączną szkodę aproksymujemy złożonym rozkładem Poissona o parametrach $(\lambda, F(\cdot))$, gdzie uproszczenie polega na zastąpieniu w każdym subportfelu dwumianowego rozkładu ilości szkód przez rozkład Poissona o tej samej wartości oczekiwanej.

F(30) wynosi:

- (A) 0,327
- (B) 0,375
- (C) 0,450
- (D) 0,488
- (E) 0,550

Zadanie 10.

W ciągu pierwszych pięciu lat działalności ubezpieczyciel osiągnął następujące wyniki (tys. ECU):

	1993	1994	1995	1996	1997
Przypis składki		8 000	13 000		25 000
Udział reasekuratora		2 000		4 300	
Odszkodowania	1 200		9 000	16 000	16 400
Udział reasekuratora		1 000	2 250		4 100
Rezerwa składek	900	1 000	2 000	2 400	
Udział reasekuratora	225	250		600	738
Rezerwa szkód	500	3 000		7 000	15 000
Udział reasekuratora	125	750	1 500	1 750	
Margines wypłacalności	567	1 080	1 710		3 325

Udział w reasekuratora w rezerwie szkodowej na koniec ostatniego roku wynosi:

- (A) 3 050
- (B) 3 100
- (C) 3 150
- (D) 3 200
- (E) Brak danych do udzielenia odpowiedzi

Egzamin dla Aktuariuszy z 5 grudnia 1998 r.

Matematyka ubezpieczeń majątkowych

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	KLUCZ ODPOWIEDZI	
Pesel		

Zadanie nr	Odpowiedź	Punktacja [◆]
1	Е	
2	D	
3	С	
4	D	
5	В	
6	С	
7	В	
8	В	
9	D	
10	D	

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.