1.Importing the headers

import in
import in
import number as pd
import number as pd
import number as num
import statistics as st
import statistics as st
import skinarm

2.Downloading and loading the churn_modelling dataset

Upload midget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable. Saving Churn_Modelling.cov to Churn_Modelling.cov

Ex [XI] - dataset = pd.read_cxv(io.BytesT0(uploaded['Churn_Modelling.cxv']]))

1= [T3]
af = df.drsp(cniumus]/Eudhador', 'Contour Ed', 'Lorume'])
af.head()

4[73]:		CreditScars	Geography	Gender	Age	Tenure	Bylance	NumOfFroducts	HmCrCard	IsActiveMember	EstimutedSulary	Exited
	ø	8.19	France	Perrosite	42	- 2	0.00	,	4	1	10134530	7
	1	606	Spen	Tyman	41		81807.00				HISACOR	
	2	303	France	female	42	0	159160310	1	1	- 0	11000157	
	3	100	Frame	Terrisio	.59	(3)	0.00	2.	100	10	100200	0
	4	350	Span	Seeige	43	- 3	121510.62		- 1	19	7909430	

2	302	Fearnin		41	6 159000.60	2	1	0	112851.57	3
3	ster	Figure.	Female:	26	1 900	2	4		0050	10
4	850	Spin	Fernalis:	43.1	Z 125510HZ	1.	1	191	79004.10	0

```
[# [74]: de['InActiveNember'] = df['InActiveNember'].astype('category')
df['Exited'] = df['Exited'].astype('category')
df['HadrCard'] = df['HadrCard'].astype('category')
```

3a.Univariate Analysis

```
t= [T]: sex_Mdeplot(s='CreditScore', data = df , but = 'Esited')
plt.show()
```


3b.Bivariate Analysis

```
dencity = u#['Exited'].value_counts(normalize=True).reset_index()
sec.ourplotidata=dencity, x="index", y="Exited", ))
dencity
```

0 0 07901 1 3 02007

3b.Bivariate Analysis

3c.Multivariate Analysis

4. Discriptive Statistics bold text

```
To (78) | df.info()
         cclass 'gandas.come.frame.bataFrame's
         FungeIndes: 10000 entries, 0 to 9000
Data columns (total 15 columns):
         20000 non-null sategory
         dtypes: category(3), float64(2), int64(4), object(2)
memory usage: 654.8= 82
```

In [79] off, describe()

Del[TR]

	CreditScore	Age	Tenure	Statence	NumOfFreducts	EstimatedSalary
count	100002-000000	10000.050000	10000.000000	10000.000000	13000-000000	10000.000000
mean	610 Unite	3652300	511269	79465.089286	1 530300	500000,229881
and	90.603299	11.411101	2392174	62397.405202	0.591054	17510,00216
min.	.350.000000	18.000000	0.000000	0.000000	1500000	11.560000
25%	384,000000	32,000,000	3,000000	0.000000	1,000000	51002.110000
58%	812 100008	27300000	1.00000	9719E3400E	1000000	TREE 915000
75%	719.00000	44.000000	7.500000	127644240000	2.290000	188388,247500
max	850.000000	67:000000	10.0000000	250896390000	4:000000	199992-400000

5. Haldle Missing Values

- 0

- 61

.

Balance Numil#Products

HasCrCard

IsactiveNester

Estimatedialary

```
2= (10) of.Line().sen()
Dat[88] CreditScore
        Geography
                         0
        Center
                         .
        Age
                         - 26
                        0.0
        Tenune
```

6. Find the Outliers and Replace the Outlier

Finding outliers

```
24 [81]
               def box_scatter(data, x, y):
    fig, (ax1, ax2) = plt.umplots(proms=2, ecols=1, figsize=(16,6))
    ses.boxplot(data=data, x=x, as=ax1)
    ses.scatterplot(data=data, x=x,y=y,ax=ax2)
Jac (BIT):
                box_scatter(df,'CreditScore','Esited');
plt.tight_layout()
print(f'& of Riveriate Outliers: (len(df,loc[df['CreditScore'] < 400]))*)</pre>
                4 of Riverlate Outliers: 19
                                                                                                                                  600
Contricues
                                                     100
                                                                                             300
                   Dit
                   67
                   64
                   24
                                                                                                                                      600
                                                                                              100
                                                                                                                                                                                                                       100
 TR-{$11}-
                  bus_loatter(of, 'Age', 'Exited');
                  pit.tight_layout()
print(FTG of Bluerist= Outliers: {lem(df.loc(df['Age'] > 87])}")
                 # of Misuriate Datliers; 3
```


Removing the Outliers

Brigery

7.Categorical Encoding

8.Split the data into dependent and indipendent variables

9.Scale and independent variables

54

66

34

375

Male: 37

如他

1100

0.00

0.00

8812858

111577.01

54502130

Surroms Craditicors Geography Gender Age.

779

125

571

616

623

410

799

Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited

×

Ŕ.

2

ż

٦.

8

٦

25951.91

170705.53

188271.90

(2)116.52

503101.62

174006.28

121603-07.

٠

a truit

6811

2974

952

5643

4653

1217

RoseNumber Contomorid

6812

3975

853

5646

3902

4054

1218

15771322: Ogunjintur

Lance

Wood

Shih

15746731

15000149

15782096

15579017

11720702

041(29%)

n_test AVE[188. RowNumber Customerid Surname CreditScore Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exits 7720 1221 15700637 Charig 718 9.00 2 Ò. 0 121537.61 7155 538 18467.00 1154 1576mm? 366047520 2, 122773.50 3156 2157 15509643 642 £ 130701.29 ò 39354,24 Surry ó 4554 4515 15058676 Chier 669 8404E16 2.00 à 2817 2016 15700244 530 0,00 41197.95 Mackeni ٦ 3443 3444 15606715 Moretti 1907 0.00 Ź. Ü 58607.16 7123 712× 722 1560066 Christomeia 0.00 16798A72 1997 1991 150,0781 Monete 672 1 142151.75 2 í 1 103753:34 5735 5734 15756070 585 00.5 101726-80 15574367 625 79064.85 Q 113291.75 2500 rows + 14 columns 4:11 BOJING. y_train dut(iet. Exited 1150 ٥ 2974 α 952 5643 7061 10 4653 1317 3661 à 1002 5967 0

7500 rows = 1 columns

y_test

2h (188).

```
952
                 10
         5643
         7061
         4653
         1317
         3661
          1002
         5961
                12
         7500 rows - 1 columns
14 (196.,
          y_test
out tex.
              Esited
          7220
          1154 F
          3154
          4514
          2617
          3443
          7123
           1997
          5735
           4340
          2500 rows = 1 columns
  16 J. Jr
```