Нейронные сети в рекомендациях

Введение

В этом уроке поговорим об использовании нейронных сетей для рекомендательных систем.

План

Понятие эмбеддинг

Neu Col Filte

Neural Collaborative Filtering

Базовая архитектура нейронной сети

Понятие эмбеддинг

Векторные представления товаров

Embedding (эмбеддинг) – это способ представлять объекты, когда каждый объект превращается в вектор фиксированной длины, и близким объектам соответствуют близкие векторы. Практически всем известным моделям требуется, чтобы данные на входе были фиксированной длины, и набор векторов — простой способ привести их к такому виду.

Эмбеддинг можно получать из чего угодно:

Из текстов — word2vec.

Фото – последний слой нейронной сети для задачи классификации. Из характеристик – например **РСА** (метод главных компонент).

Embedding (векторное представление)

	dim-0	dim-1	dim-2	dim-3	dim-4	 dim-45	dim-46	dim-47	dim-48	dim-49
title										
War and Peace	-0.279165	-0.107367	0.114153	0.143709	-0.141921	 -0.067178	0.230711	-0.230550	0.199285	-0.099167
Anna Karenina	-0.248443	-0.000578	0.150472	0.151845	0.000908	 -0.141615	0.178011	-0.230794	0.042102	-0.189196
The Hitchhiker's Guide to the Galaxy (novel)	-0.190761	-0.060406	0.115548	-0.249868	-0.120824	 -0.038944	0.084992	-0.047035	-0.054157	-0.209883

В 2017-м группа исследователей опубликовала работу о **Нейронной Коллаборативной Фильтрации (NCF)**. Она содержит обобщенный фреймворк для изучения нейронных зависимостей, моделируемых факторизацией матриц при коллаборативной фильтрации с помощью нейронной сети. Авторы также объяснили, как получить зависимости высшего порядка (МF имеет порядок всего лишь 2), и как объединить оба эти подхода.

https://arxiv.org/pdf/1708.05031.pdf

Нейронная сеть может (теоретически) усвоить любую функциональную зависимость. Это значит, что зависимость, которую модель коллаборативной фильтрации выражает матричной факторизацией, может быть усвоена нейронной сетью.

Идея: NCF предлагает простой слой представления сразу для пользователей и объектов, за которым следует простая нейронная сеть вроде многослойного перцептрона, которая должна усвоить зависимость между представлениями пользователя и объекта, аналогичную произведению факторизованных матриц.

Преимущество подхода — нелинейность многослойного перцептрона. Простое произведение матриц, используемое при матричной факторизации, всегда будет ограничивать модель взаимодействиями 2-й степени, тогда как нейронная сеть с X слоями в теории может усвоить взаимодействия гораздо более высоких степеней.

Первый нейронный СF-слой:

$$\phi_1(p_u, q_i) = p_u \times q_i$$

Поскольку NCF использует два пути для моделирования пользователей и элементов, интуитивно понятно объединить функции двух путей путем их конкатенации. Однако простая конкатенация векторов не учитывает никаких взаимодействий между скрытыми функциями пользователя и элемента, что недостаточно для моделирования эффекта совместной фильтрации. Чтобы решить эту проблему, предлагается добавить скрытые слои в объединенный вектор, используя стандартный MLP для изучения взаимодействия между пользователем и скрытыми функциями элемента.

Полносвязная нейронная сеть

$$z_1 = \phi_1(p_u, q_i) = \begin{bmatrix} p_u \\ q_i \end{bmatrix},$$

$$\phi_2(z_1) = a_2(W_2^T z_1 + b_2),$$

... ...

$$\phi_L(z_L - 1) = a_L(W_L^T z_{L-1} + b_L)$$

$$\hat{y}_{ui} = \sigma(h^T \phi_L(z_{L-1}))$$

Модель для объединения GMF с однослойным MLP:

$$\hat{y}_{ui} = \sigma \left(h^T a \left(p_u \times q_i + W \begin{bmatrix} p_u \\ q_i \end{bmatrix} + b \right) \right)$$

Объединение GMF и MLP последним скрытым слоем

$$\phi^{GMF} = p_u^G \times q_i^G$$

$$\phi^{MLP} = a_L \left(W_L^T \left(a_{L-1} \left(\dots a_2 \left(W_2^T \begin{bmatrix} p_u^M \\ q_i^M \end{bmatrix} + b_2 \right) \dots \right) \right) + b_L \right)$$

$$\hat{y}_{ui} = \sigma \left(h^T \begin{bmatrix} \phi^{GMF} \\ \phi^{MLP} \end{bmatrix} \right)$$

Метрика HR@k

Hit Ratio или HR или HR@K.

Для каждого пользователя HR@K соответствует тому, относится ли тестовый элемент к top-K элементам этого пользователя.

$$\mathbf{HR} \mathbf{@K} = egin{cases} \mathbf{1}, \mathbf{e} \mathbf{c} \mathbf{n} \mathbf{u} \mathbf{t} \mathbf{e} \mathbf{c} \mathbf{o} \mathbf{b} \mathbf{u} \mathbf{n} \mathbf{e} \mathbf{n} \mathbf{e}$$

Производительность разных моделей на 3-х датасетах

Ci ao	HR@50	HR@100	HR@200	NDCG@50	NDCG@100	NDCG@200	RI
MP	0.1047	0.1384	0.1776	0.0396	0.0452	0.0506	+67.96%
ItemKNN	0.1453	0.1884	0.2468	0.0497	0.0581	0.0668	+26.14%
BPR	0.1531	0.1930	0.2558	0.0517	0.0598	0.0685	+21.91%
WMF	0.1587	0.2011	0.2608	0.0562	0.0631	0.0714	+16.40%
ExpoMF	0.1602	0.1994	0.2613	0.0569	0.0626	0.0709	+16.41%
GMF	0.1668	0.2103	0.2674	0.0633	0.0687	0.0752	+9.36%
NCF	0.1651	0.2108	0.2712	0.0629	0.0695	0.0764	+8.84%
ConvNCF	0.1682	0.2237	0.2741	0.0641	0.0714	0.0787	+5.90%
ENMF-U	0.1750**	0.2296**	0.2945**	0.0651**	0.0741**	0.0830**	_
ENMF-I	0.1749**	0.2311**	0.2946**	0.0643*	0.0734**	0.0823**	_
ENMF-A	0.1757**	0.2331**	0.3015**	0.0662**	0.0753**	0.0850**	

Производительность разных моделей на 3-х датасетах

Epinion	HR@50	HR@100	HR@200	NDCG@50	NDCG@100	NDCG@200	RI
MP	0.0661	0.1068	0.1659	0.0234	0.0299	0.0382	+153.96%
ItemKNN	0.1312	0.2082	0.2929	0.0455	0.0563	0.0682	+34.41%
BPR	0.1708	0.2338	0.3007	0.0548	0.0646	0.0747	+17.04%
WMF	0.1765	0.2384	0.3158	0.0605	0.0685	0.0789	+11.07%
ExpoMF	0.1784	0.2368	0.3064	0.0602	0.0691	0.0781	+11.70%
GMF	0.1811	0.2513	0.3388	0.0613	0.0739	0.0845	+5.52%
NCF	0.1816	0.2534	0.3442	0.0621	0.0750	0.0869	+4.08%
ConvNCF	0.1833	0.2510	0.3418	0.0617	0.0742	0.0851	+4.87%
ENMF-U	0.1893**	0.2647**	0.3523**	0.0639**	0.0761**	0.0883**	_
ENMF-I	0.1888**	0.2667**	0.3534**	0.0634**	0.0759**	0.0884**	_
ENMF-A	0.1911**	0.2688**	0.3546**	0.0648**	0.0773**	0.0893**	

Производительность разных моделей на 3-х датасетах

MP	0.1842			NDCG@50	NDCG@100	NDCG@200	RI
	U. 1012	0.2099	0.3382	0.0441	0.0481	0.0659	+109.01%
ItemKNN	0.2101	0.2889	0.3918	0.0598	0.0724	0.0867	+59.18%
BPR	0.2637	0.4048	0.5710	0.0757	0.0986	0.1217	+17.59%
WMF	0.2924	0.4378	0.6040	0.0909	0.1073	0.1324	+6.47%
ExpoMF	0.2904	0.4368	0.5927	0.0865	0.1100	0.1346	+7.11%
GMF	0.2847	0.4226	0.5847	0.0821	0.1086	0.1289	+10.30%
NCF	0.2902	0.4316	0.6023	0.0837	0.1097	0.1324	+8.02%
ConvNCF	0.2943	0.4403	0.6017	0.0872	0.1112	0.1333	+6.30%
ENMF-U	0.3117**	0.4574**	0.6092**	0.0962**	0.1198**	0.1410**	_
ENMF-I	0.3105**	0.4576**	0.6107**	0.0956**	0.1194**	0.1398**	_
ENMF-A	0.3124**	0.4581**	0.6139**	0.0968**	0.1202**	0.1419**	

Базовая архитектура нейронной сети

Cross-domain Content-boosted CF

Cross-domain Content-boosted CF

Чтобы преодолеть проблему разреженности данных, предлагается систему междоменных рекомендаций под названием СССFNet, которая может сочетать совместную фильтрацию и фильтрацию на основе содержимого в единой структуре. Сначала мы представляем структуру факторизации, чтобы связать СF и контентную фильтрацию.

Cross-domain Content-boosted CF

Cross-domain Content-boosted CF

Затем мы обнаруживаем, что оценка МАР этой структуры может быть встроена в нейронную сеть с несколькими представлениями. Благодаря встраиванию этой нейронной сети фреймворк может быть дополнительно расширен за счет передовых методов глубокого обучения.

Разные архитектуры нейронных сетей

DSSM

В 2013 году исследователи из Microsoft Research описали свой подход, который получил название Deep Structured Semantic Model.

DSSM

На вход модели подаются тексты запросов и заголовков. Для уменьшения размеров модели, над ними производится операция, которую авторы называют word hashing. К тексту добавляются маркеры начала и конца, после чего он разбивается на буквенные триграммы. По сути, мы отмечаем таким образом вхождение триграмм из текста в словарь, состоящий из всех известных триграмм. Если сравнить такие вектора, то можно узнать только о наличии одинаковых триграмм в запросе и заголовке, что не представляет особого интереса. Поэтому теперь их надо преобразовать в другие вектора, которые уже будут иметь нужные нам свойства семантической близости.

DSSM. Большой входной слой

В оригинальной модели DSSM входной слой представляет собой множество буквенных триграмм. Его размер равен 30 000.

Пример DSSM. Алгоритм «Палех» от Яндекс

В ходе обучения DSSM был разработан поисковый алгоритм «Палех» использует нейронные сети для того, чтобы находить документы не по словам, которые используются в запросе и в самом документе, а по смыслу запроса и заголовка.

- Клюв это высокочастотные запросы
- Туловище среднечастотные
- Хвост низкочастотные

Алгоритм «Палех» от Яндекс

Как происходит обучение нейросети?

Каждый пример — это пара «запрос — заголовок».

Яндекс научил нейронную сеть переводить миллиарды известных Яндексу заголовков веб-страниц в числа — а точнее, в группы из трёхсот чисел каждая. В результате все документы из базы данных Яндекса получили координаты в трёхсотмерном пространстве.

Планета рецептов картофель гратен Календарь посадок: когда сажать картошку в разных регионах [фильм про человека который выращивал картошку на другой планете] Марсианин (2015) смотреть бесплатно онлайн — поисковый запрос — заголовки веб-страниц

Autoencoder VAE

Вариационный автоэнкодер (Variational Autoencoder – VAE) — генеративная модель, которая находит применение во многих областях исследов

применение во многих областях исследований: от генерации новых человеческих лиц до создания полностью искусственной музыки.

Генеративные модели используют для того, чтобы производить случайные выходные данные, которые выглядят схоже с тренировочным набором данных, и тоже самое вы можете делать с помощью VAEs.

Autoencoder VAE

Нейросеть автоэнкодера является парой из двух соединенных нейросетей – энкодера и декодера.

Энкодер принимает входные данные и преобразует их, делая представление более компактным и сжатым. В свою очередь, декодер использует преобразованные данные для трансформации их обратно в оригинальное состояние.

Autoencoder VAE

Вариационный автоэнкодер (Variational Autoencoder – VAE) — генеративная модель, которая находит применение во многих областях исследов

применение во многих областях исследований: от генерации новых человеческих лиц до создания полностью искусственной музыки.

Генеративные модели используют для того, чтобы производить случайные выходные данные, которые выглядят схоже с тренировочным набором данных, и тоже самое вы можете делать с помощью VAEs.

Convolution ONCF

Outer Product-based Neural Collaborative Filtering

Целью моделирования является оценка соответствия между пользователем и и элементом і, то есть $\widehat{y_{ui}}$; а затем мы можем создать персонализированный список рекомендаций для пользователя на основе оценок.

Convolution ONCF

Outer Product-based Neural Collaborative Filtering

Целью моделирования является оценка соответствия между пользователем и и элементом і, то есть $\widehat{y_{ui}}$; а затем мы можем создать персонализированный список рекомендаций для пользователя на основе оценок.

Convolution ONCF

Figure 2: An example of the architecture of our ConvNCF model that has 6 convolution layers with embedding size 64.

https://www.ijcai.org/proceedings/2018/0308.pdf

Библиотека DLRM от Facebook

Библиотека DLRM на python для построение рекомендательных систем.

https://github.com/facebookresearch/dlrm

Библиотека DLRM от Facebook

Каждый категориальный признак представлен вектором представления, а постоянные признаки обрабатываются многослойным перцептроном таким образом, чтобы на выходе получались векторы такого же размера, как и векторы представления. На второй стадии рассчитываются взаимные произведения всех векторов представления и выходных векторов перцептрона. После этого произведения соединяются вместе и передаются в другой многослойный перцептрон, а в конце концов – в функцию сигмоиды, выдающую вероятность.

Библиотека DLRM от Facebook

Are We Really Making Much Progress?

Обратная сторона

Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Approaches

Maurizio Ferrari Dacrema Politecnico di Milano, Italy maurizio.ferrari@polimi.it Paolo Cremonesi Politecnico di Milano, Italy paolo.cremonesi@polimi.it

Dietmar Jannach University of Klagenfurt, Austria dietmar.jannach@aau.at

https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation

https://arxiv.org/pdf/1907.06902.pdf

https://www.youtube.com/watch?v=JILHIrzrmi4

Are We Really Making Much Progress?

Выявленные проблемы

- Воспроизводимость: можно воспроизвести менее половины лучших работ (7/18 в исходной статье, 12/26 в расширенной версии) в этой области
- Прогресс: можно показать, что только 1/7 (в исходной статье) результатов стабильно превосходит хорошо настроенные базовые показатели

How often is DL competitive against baselines?

Only few algorithms are competitive, mostly to a limited extent, against ML baselines

Algorithm	KNN and graph	KNN and graph Non-pers.	KNN and graph Non-pers. Machine learning
ConvNCF	1/12 - 8%	1/12 - 8%	1/12 - 8%
DMF	6/8 - 75%	<u>6/8 - 75%</u>	2/8 - 25%
CDL	9/24 - 37%	9/24 - 37%	9/24 - 37%
CVAE	9/24 - 37%	9/24 - 37%	9/24 - 37%
Mult-VAE	12/12 - 100%	12/12 - 100%	10/12 - 83%

Воспроизводимость

Воспроизводимость – числовые

результаты, представленные в исследовании, могут быть точно воспроизведены с использованием исходных артефактов (то есть данных)

Воспроизводимые работы по алгоритмам глубокого обучения среди лучших рекомендаций по серии конференций с 2015 по 2018 г.

Conference	Rep. ratio	Reproducible
KDD	3/4 (75%)	[17], [23], [48]
RecSys	1/7 (14%)	[53]
SIGIR	1/3 (30%)	[10]
WWW	2/4 (50%)	[14], [24]
Total	7/18 (39%)	

Non-reproducible: KDD: [43], RecSys: [41], [6], [38], [44], [21], [45], SIGIR: [32], [7], WWW: [42], [11]

Воспроизводимость

Экспериментальные результаты для метода СМN с использованием показателей и пороговых значений, представленных в исходной статье. Числа напечатаны жирным шрифтом, если они соответствуют наилучшему результату или когда базовый уровень превосходит СМN.

Итог: воспроизводимость очень низкая

	CiteULike-a			
	HR@5	NDCG@5	HR@10	NDCG@10
TopPopular	0.1803	0.1220	0.2783	0.1535
UserKNN	0.8213	0.7033	0.8935	0.7268
ItemKNN	0.8116	0.6939	0.8878	0.7187
$P^3\alpha$	0.8202	0.7061	0.8901	0.7289
$RP^3\beta$	0.8226	0.7114	0.8941	0.7347
CMN	0.8069	0.6666	0.8910	0.6942
	Pinterest			
	HR@5	NDCG@5	HR@10	NDCG@10
TopPopular	0.1668	0.1066	0.2745	0.1411
UserKNN	0.6886	0.4936	0.8527	0.5470
ItemKNN	0.6966	0.4994	0.8647	0.5542
$P^3\alpha$	0.6871	0.4935	0.8449	0.5450
$RP^3\beta$	0.7018	0.5041	0.8644	0.5571
CMN	0.6872	0.4883	0.8549	0.5430
	Epinions			
	HR@5	NDCG@5	HR@10	NDCG@10
TopPopular	0.5429	0.4153	0.6644	0.4547
UserKNN	0.3506	0.2983	0.3922	0.3117
ItemKNN	0.3821	0.3165	0.4372	0.3343
$P^3\alpha$	0.3510	0.2989	0.3891	0.3112
$RP^3\beta$	0.3511	0.2980	0.3892	0.3103
CMN	0.4195	0.3346	0.4953	0.3592

Воспроизводимость

Итог: воспроизводимость очень низкая

Проблемы:

- артефакты не доступны или не работы
- контакт с авторами часто бесполезен
- частота методологических проблем
- произвольный экспериментальный дизайн

	CiteULike-a			
	HR@5	NDCG@5	HR@10	NDCG@10
TopPopular	0.1803	0.1220	0.2783	0.1535
UserKNN	0.8213	0.7033	0.8935	0.7268
ItemKNN	0.8116	0.6939	0.8878	0.7187
$P^3\alpha$	0.8202	0.7061	0.8901	0.7289
$RP^3\beta$	0.8226	0.7114	0.8941	0.7347
CMN	0.8069	0.6666	0.8910	0.6942
	Pinterest			
	HR@5	NDCG@5	HR@10	NDCG@10
TopPopular	0.1668	0.1066	0.2745	0.1411
UserKNN	0.6886	0.4936	0.8527	0.5470
ItemKNN	0.6966	0.4994	0.8647	0.5542
$P^3\alpha$	0.6871	0.4935	0.8449	0.5450
$RP^3\beta$	0.7018	0.5041	0.8644	0.5571
CMN	0.6872	0.4883	0.8549	0.5430
	Epinions			
	HR@5	NDCG@5	HR@10	NDCG@10
TopPopular	0.5429	0.4153	0.6644	0.4547
UserKNN	0.3506	0.2983	0.3922	0.3117
ItemKNN	0.3821	0.3165	0.4372	0.3343
$P^3\alpha$	0.3510	0.2989	0.3891	0.3112
$RP^3\beta$	0.3511	0.2980	0.3892	0.3103
CMN	0.4195	0.3346	0.4953	0.3592

Обзор базовых методов

Table 1. Overview of Baseline Methods

Family	Method	Description	
Non-personalized	TopPopular	Recommends the most popular items to everyone [10]	
Nearest-Neighbor	UserKNN	User-based k-nearest neighbors [26]	
	ItemKNN	Item-based k-nearest neighbors [27]	
Graph-based	$P^3\alpha$	A graph-based method based on random walks [9]	
	$RP^3\beta$	An extension of $P^3\alpha$ [23]	
Content-Based and Hybrid	ItemKNN-CBF	ItemKNN with content-based similarity [20]	
	ItemKNN-CFCBF	A simple item-based hybrid CBF/CF approach [21]	
	UserKNN-CBF	UserKNN with content-based similarity	
	UserKNN-CFCBF	A simple user-based hybrid CBF/CF approach	
	iALS	Matrix factorization for implicit feedback data [15]	
	PureSVD	A basic matrix factorization method [10]	
	NFM	A basic non-negative matrix factorization method [8]	
Non-Neural Machine Learning	FunkSVD	Matrix factorization for rating prediction [17]	
	MF BPR	Matrix factorization optimized for ranking [25]	
	SLIM ElasticNet	A scalable linear model [18, 22]	
	SLIM BPR	A variation of SLIM optimizing ranking [4]	
	EASE ^R	A recent linear model, similar to auto-encoders [28]	

Выбор и распространение слабых базовых линий

Fig. 1. Overview of Neural Methods, arrows indicate when a newer method used another one as baseline in the experiments.

Ошибки и недостаток информации

- предоставленное разделение данных не соответствует описанию
- выбрано лучшее значение показателя независимо от периода времени
- ошибка в вычислении метрики

Ошибки и недостаток информации

- предоставленное разделение данных не соответствует описанию
- выбрано лучшее значение показателя независимо от периода времени
- ошибка в вычислении метрики

Однако проблема не в deep-learning

Что делать дальше?

Советы для практиков

- Не пользуйтесь модным алгоритмом глубокого обучения с первой попытки. Это может стоить вам драгоценного времени
- Вместо этого начните с изучения вашего набора данных и настройки применимых базовых моделей
- Помните, что получателями рекомендаций являются настоящие люди

Вопросы

Семинар: Построение нейронной сети для рекомендательной системы