КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

ФІЗИЧНИЙ ФАКУЛЬТЕТ КАФЕДРА ЕКСПЕРИМЕНТАЛЬНОЇ ФІЗИКИ

Холоімов Валерій Вячеславович

ЗВІТ з лабораторної роботи №2

«СПЕКТР ВИПРОМІНЮВАННЯ АТОМАРНОГО ВОДНЮ

практикум "Атомна фізика" 3 курс

Викладач практикуму Н.В. Башмакова

1 Опис методу

1.1 Хвильові числа спектральних ліній

Експериментально встановлено, що розміщення ліній у спектрі випромінювання атомарного водню підлягає певній закономірності. Ці лінії можна об'єднати в серії, які розміщуються в ультрафіолетовій (серія Лаймана), видимій (серія Бальмера), близькій інфрачервоній (серія Пашена) та в далекій інфрачервоній (серій Бреккета, Пфунда та ін.) частинах спектру.

Хвильові числа спектральних ліні $\nu=\frac{1}{\lambda}$ визначаються співвідношеннями, яке називають узагальненою формулою Бальмера

$$\nu_{m,n} = R(\frac{1}{m^2} - \frac{1}{n^2})$$

де R - стала Рідберга

для серії Лаймана -
$$m=1, n=2,3,4,\dots$$
 для серії Бальмера - $m=2, n=3,4,5,\dots$ для серії Пашена - $m=3, n=4,5,6$

Перша успішна модель атома, яка пояснила серіальні закономірності і дозволила незалежно визначити сталу Рідберга була подубована Нільсоном Бором.

1.2 Теорія Бора

Згідно другого постулату Бора, частота ліній в спектрі випромінювання визначається різницею енергій електрона в початковому і кінцевому станах:

$$\hbar\nu_{m,n} = W_n - W_m$$

де \hbar - стала Планка.

Енергія таких стаціонарних станів визначення з умови квантування моменту імпульсу електрона:

$$M = n\hbar$$

$$W = -\frac{m_0 e^4}{8\epsilon_0^2 h^2} \frac{1}{n^2}$$

1.3 Отримання з рівняння Шредінгера

Такий же спектр енергій можна одержати з рівняння Шредінгера для стаціонарних станів:

$$(-\frac{\hbar}{2m}\Delta + V)\Psi = W\Psi$$

припустивши, що

$$V = -\frac{e^2}{4\pi\epsilon_0 r}$$

та вважаючи W<0

2 Практична частина

Запишемо дані для отриманих ліній водню:

$$\lambda_1 = 4861$$

$$\lambda_2 = 4859$$

$$\lambda_3 = 4343$$

$$\lambda_4 = 4342$$

Порівняємо отримані дані з теоретично відомими даними для спектру водню.

Обозначение	Hα	H _β	Н	H _δ	H _ε	H _ζ	Η _η	Граница серии
n	3	4	5	6	7	8	9	∞
Длина волны, нм	656,3	486,1	434,1	410,2	397,0	388,9	383,5	364,6

Бачимо, що отримані лінії відповідаються переходами

$$4 \rightarrow 2$$

та

$$5 \rightarrow 2$$

З цих даних можна отримати значення Рідберга для Протій та Дейтерію:

$$R_H = 109554 cm^{-1}$$

$$R_D = 109588cm^{-1}$$

Теоретично відомі табличні значення:

$$R_H = 109677 cm^{-1}$$

$$R_D = 109707 cm^{-1}$$

Відхилення експериментально значення від практичного $\epsilon \approx 0.1\%$

3 Теоретичні питання

3.1 Моделі атома

Першою моделю атому, яка дозволила пояснити серіальні закономірності була **модель Нільсона Бора**. Вона грунтується на двох постулатах:

Згідно першого постулату атом водню має тільки такі стійкі орбіти електрона, для яких момент імпульса електрона $M=n\hbar$, причому, перебуваючи на стійкій орбіті, електрон не випромінює електромагнітного випромінювання.

Згідно з другим постулатом Бора, квант світла випромінюється атомом водню при переході електрона з однієї стійкої орбіти на іншу. Енергія кванта визначається із співвідношення $h\nu=W_k-W_i$, де W_i W_k - повна енергія електрона до і після випромінювання фотона.

Сучасні уявлення про будову атомів грунтуються на результатах застосування рівняння Шредінгера до атомних систем. Загальний вигляд рівняння Шредінгера для атома водня:

$$\Delta \psi + \frac{2m_0}{\hbar^2} (W + \frac{Ze^2}{4\pi\epsilon_0 r}) \psi = 0$$

3.2 Постулати Бора. На яких експериментальних фактах вони грунтуються

Модель атома Бора грунтується на двох постулатах:

Згідно першого постулату атом водню має тільки такі стійкі орбіти електрона, для яких момент імпульса електрона $M=n\hbar$, причому, перебуваючи на стійкій орбіті, електрон не випромінює електромагнітного випромінювання.

Згідно з другим постулатом Бора, квант світла випромінюється атомом водню при переході електрона з однієї стійкої орбіти на іншу. Енергія кванта визначається із співвідношення $h\nu=W_k-W_i$, де W_i W_k - повна енергія електрона до і після випромінювання фотона.

Модель Бора з'явилась через неможливість використання формул класичної електродинаміки для моделі атомів. Згідно формул електродинаміки електро, що рухається коловою орбітою, мав би випромінювали ЕМП і втрачати енергію, в результаті впавши на ядро. Перший постулат Бора розв'язує цю проблему.

Другий постулат Бора з'явився для пояснення отриманих раніше закономірностей атомарних спектрів.

3.3 Чому спектр випромінювання атомарного водню являє собою сукупність дискретних спектральних ліній?

Бо існуює певна кількість можливих енергій для випроміненого кванту світла, згідно формули Бальмера. Нами в експерименті спостерігалась серія Бальмена в видимому спектрі. В цій серії відбувається перехід електрона з збудженого стану, в сатн, якому відповідає квантове число n=2.

3.4 Комбінаційний принцип Рідберга-Рітца. Серії випромінювання. Чому лінії випромінювання атома водню утворюють серії, розташовані в різних ділянках спектра (ультрафіолетовій, видимій, інфрачервоній)? Яка серія досліджується в роботі?

Комбінаційний принцип Рідберга-Рітца - комбінуючи частоти ліній одних серій, можна визначити частити спектральних ліній з інших серій.

Серії випромінювання:

серія Лаймана -
$$\nu=R(\frac{1}{1^2}-\frac{1}{n^2}), n=2,3,4,\dots$$
 серія Бальмера - $\nu=R(\frac{1}{2^2}-\frac{1}{n^2}), n=3,4,\dots$ серія Пашена - $\nu=R(\frac{1}{3^2}-\frac{1}{n^2}), n=4,5,6\dots$ серія Бреккет - $\nu=R(\frac{1}{4^2}-\frac{1}{n^2}), n=5,6,7,\dots$ серія Пфунда - $\nu=R(\frac{1}{5^2}-\frac{1}{n^2}), n=6,7,8,\dots$ серія Хемфрі - $\nu=R(\frac{1}{6^2}-\frac{1}{n^2}), n=7,8,9,\dots$

Лінії випромінювання атома водню утворюють серії, розташовані в різних ділянках спектру через те, що різні серії дають різний порядок отриманої частоти/довжини хвилі.

В роботі досліджується серія Бальмера, оскільки саме вона знаходиться у видимому диапазоні.

- 3.5 Теорія Бора для атома водню та воднеподібних іонів. Квантування моменту імпульсу електрона. Боровський радіус. Енергія атома водню та воднеподібного іона. Фізичний зміст головного квантового числа п. Теорія Бора-Зоммерфельда.
- 3.5.1 Колові орбіти

$$W = -\frac{Ze^2}{4\pi\epsilon_0 r} + \frac{mv^2}{2}$$
$$\frac{Ze^2}{4\pi\epsilon_0 r} = \frac{mv^2}{r}$$
$$W = -\frac{Ze^2}{8\pi\epsilon_0 r}$$
$$\frac{Ze^2mr}{4\pi\epsilon_0} = m^2v^2r^2$$
$$M = n\hbar = mvr$$
$$n^2\hbar^2 = \frac{Ze^2mr}{4\pi\epsilon_0}$$
$$W = -\frac{Z^2e^4m}{32\pi^2\epsilon_0^2\hbar^2} \frac{1}{n^2}$$

3.5.2 Борівський радіус

Для Z = 1, n = 1 з формули

$$n^{2}\hbar^{2} = \frac{Ze^{2}mr}{4\pi\epsilon_{0}}$$
$$r = \frac{4\pi\epsilon_{0}\hbar^{2}}{Ze^{2}m}n^{2}$$
$$r_{B} = 0.0529nm$$

Фізичний зміст числа n - величина моменту імпульсу електрона М в величинах \hbar

3.6 Фізичний зміст сталої Рідберга R. Чому вона може мати різні розмірності?

Фізичний змісти сталої рідберга - найбільше квантове число хвильового числа фотону, який може бути випромінений атомом водню. У той самий час - наймешне можливе число фотону, яке необхідне для іонізації атома водню. Має розмірність 1/м.

3.7 Записати формули для довжин хвиль ліній серії Бальмера, які досліджуються в роботі

$$\frac{1}{\lambda} = R(\frac{1}{2^2} - \frac{1}{n^2}), n = 3, 4, \dots$$

3.8 Рівняння Шредінгера для атома водню.

$$\Delta \psi + \frac{2m_0}{\hbar^2} (W + \frac{Ze^2}{4\pi\epsilon_0 r})\psi = 0$$

3.9 Фізичний зміст хвильової функції.

Фізичний зміст хвильової функції - фмовірність знаходження електрону в певному стані.

3.10 Умови квантування.

Умови квантування для атому водню:

$$M = n\hbar$$

M - момент імпульсу електрона n - головне квантове число

3.11 Квантові числа в теорії Шредінгера. Співставити квантові числа в теорії Бора-Зоммерфельда з квантовими числами теорії Шредінгера

Для теорії Бора:

$$n = 1, 2, 3, ...$$

 $n = n_r + n_\phi$
 $n_r = 0, 1, 2, ...$

$$n_{\phi} = 0, 1, 2, \dots$$

Для теорія Шредінгера:

$$n = 1, 2, 3, \dots$$

$$n = l + m + 1$$

$$l = 0, 1, ..., n - 1$$

$$m0, \pm 1, ..., \pm l$$

3.12 Чому в експериментальному спектрі спостерігається дуже багато ліній, крім ліній досліджуваної серії?

6