4CSLL5 Parameter Estimation (Supervised and Unsupervised)

Martin Emms

September 21, 2018

Supervised Maximum Likelihood Estimation(MLE)

First scenario: $(toss a 'coin' Z)^D$

2nd scenario: $(toss Z; (then A or B)^{10})^D$

Unsupervised Maximum Likelihood (re-)Estimation

Hidden variant of 2nd scenario
The EM Algorithm
Numerically worked example
More realistic run of EM

Parameter Estimation

Outline

Supervised Maximum Likelihood Estimation(MLE)

First scenario: (toss a 'coin' Z)^D 2nd scenario: (toss Z; (then A or B)¹⁰)^D

Unsupervised Maximum Likelihood (re-)Estimation

Hidden variant of 2nd scenario
The EM Algorithm
Numerically worked example
More realistic run of EM

Suppose a 2-sided 'coin' Z, one side labelled 'a', other side labelled 'b'

Suppose a 2-sided 'coin' Z, one side labelled 'a', other side labelled 'b'

P(Z = a): probability of giving 'a' when tossed – currently not known

Suppose a 2-sided 'coin' Z, one side labelled 'a', other side labelled 'b'

P(Z = a): probability of giving 'a' when tossed – currently not known

P(Z = b): probability of giving 'b' when tossed – currently not known

Suppose a 2-sided 'coin' Z, one side labelled 'a', other side labelled 'b' P(Z=a): probability of giving 'a' when tossed – currently not known P(Z=b): probability of giving 'b' when tossed – currently not known Suppose you have data **d** recording 100 tosses of Z

Suppose a 2-sided 'coin' Z, one side labelled 'a', other side labelled 'b' P(Z=a): probability of giving 'a' when tossed – currently not known P(Z=b): probability of giving 'b' when tossed – currently not known Suppose you have data **d** recording 100 tosses of Z if there were (50 a, 50 b) in **d**, 'common-sense' says P(Z=a)=50/100

Suppose a 2-sided 'coin' Z, one side labelled 'a', other side labelled 'b' P(Z=a): probability of giving 'a' when tossed – currently not known P(Z=b): probability of giving 'b' when tossed – currently not known Suppose you have data **d** recording 100 tosses of Z if there were (50 a, 50 b) in **d**, 'common-sense' says P(Z=a)=50/100 if there were (30 a, 70 b) in **d**, 'common-sense' says P(Z=a)=30/100

Suppose a 2-sided 'coin' Z, one side labelled 'a', other side labelled 'b' P(Z=a): probability of giving 'a' when tossed – currently not known P(Z=b): probability of giving 'b' when tossed – currently not known Suppose you have data **d** recording 100 tosses of Z if there were (50 a, 50 b) in **d**, 'common-sense' says P(Z=a)=50/100 if there were (30 a, 70 b) in **d**, 'common-sense' says P(Z=a)=30/100 ie. you 'define' or 'estimate' the probability by the *relative frequency*

assuming the tosses of Z are all independent, can work out the probability of the observed data \mathbf{d} if Z's probabilities had particular values.

assuming the tosses of Z are all independent, can work out the probability of the observed data \mathbf{d} if Z's probabilities had particular values.

let
$$\theta_a$$
 and θ_b stand for $P(Z=a)$ and $P(Z=b)$

assuming the tosses of Z are all independent, can work out the probability of the observed data \mathbf{d} if Z's probabilities had particular values.

let
$$\theta_a$$
 and θ_b stand for $P(Z=a)$ and $P(Z=b)$

let #(a) be the number of 'a' outcomes in the sequence \mathbf{d}

assuming the tosses of Z are all independent, can work out the probability of the observed data \mathbf{d} if Z's probabilities had particular values.

let
$$\theta_a$$
 and θ_b stand for $P(Z=a)$ and $P(Z=b)$

let #(a) be the number of 'a' outcomes in the sequence \mathbf{d}

let #(b) be the number of 'b' outcomes in the sequence \mathbf{d}

assuming the tosses of Z are all independent, can work out the probability of the observed data \mathbf{d} if Z's probabilities had particular values.

let θ_a and θ_b stand for P(Z=a) and P(Z=b)

let #(a) be the number of 'a' outcomes in the sequence \mathbf{d}

let #(b) be the number of 'b' outcomes in the sequence \mathbf{d}

the probability of $\mathbf{d},$ assuming the probability settings θ_{a} and θ_{b} is

assuming the tosses of Z are all independent, can work out the probability of the observed data \mathbf{d} if Z's probabilities had particular values.

let
$$\theta_a$$
 and θ_b stand for $P(Z=a)$ and $P(Z=b)$

let #(a) be the number of 'a' outcomes in the sequence **d**

let #(b) be the number of 'b' outcomes in the sequence \mathbf{d}

the probability of \mathbf{d} , assuming the probability settings θ_a and θ_b is

$$p(\mathbf{d}) = \theta_a^{\#(a)} \times \theta_b^{\#(b)} \tag{1}$$

assuming the tosses of Z are all independent, can work out the probability of the observed data \mathbf{d} if Z's probabilities had particular values.

let θ_a and θ_b stand for P(Z=a) and P(Z=b)

let #(a) be the number of 'a' outcomes in the sequence **d**

let #(b) be the number of 'b' outcomes in the sequence \mathbf{d}

the probability of \mathbf{d} , assuming the probability settings θ_a and θ_b is

$$p(\mathbf{d}) = \theta_a^{\#(a)} \times \theta_b^{\#(b)} \tag{1}$$

different settings of θ_a and θ_b will give different values for $p(\mathbf{d})$

following slides investigate this empirically

First scenario: (toss a 'coin' Z)^D

$p(\mathbf{d})$ for 50 a, 50 b

as θ_a is varied, data prob $p(\mathbf{d})$ varies

$p(\mathbf{d})$ for 50 a, 50 b

as θ_a is varied, data prob $p(\mathbf{d})$ varies max occurs at $\theta_a=0.5$

$p(\mathbf{d})$ for 50 a, 50 b

as θ_a is varied, data prob $p(\mathbf{d})$ varies max occurs at $\theta_a=0.5$ which is $\frac{50}{50+50}$

First scenario: (toss a 'coin' Z)^D

$p(\mathbf{d})$ for 30 a, 70 b

as θ_a is varied, data prob $p(\mathbf{d}; \theta_a, \theta_b)$ varies

$p(\mathbf{d})$ for 30 a, 70 b

as θ_a is varied, data prob $p(\mathbf{d}; \theta_a, \theta_b)$ varies

max occurs at $\theta_a = 0.3$

$p(\mathbf{d})$ for 30 a, 70 b

as θ_a is varied, data prob $p(\mathbf{d}; \theta_a, \theta_b)$ varies

max occurs at
$$\theta_a = 0.3$$

which is
$$\frac{30}{30+70}$$

First scenario: (toss a 'coin' Z)^D

$p(\mathbf{d})$ for 70 a, 30 b

as θ_a is varied, data prob $p(\mathbf{d}; \theta_a, \theta_b)$ varies

$p(\mathbf{d})$ for 70 a, 30 b

as θ_a is varied, data prob $p(\mathbf{d}; \theta_a, \theta_b)$ varies

max occurs at $\theta_a = 0.7$

$p(\mathbf{d})$ for 70 a, 30 b

as θ_a is varied, data prob $p(\mathbf{d}; \theta_a, \theta_b)$ varies

max occurs at
$$\theta_a = 0.7$$

which is
$$\frac{70}{70+30}$$

4CSLL5 Parameter Estimation (Supervised and Unsupervised)

L Supervised Maximum Likelihood Estimation(MLE)

L First scenario: (toss a 'coin' Z)^D

▶ in each case, it looks like the max of the data probability occured at the value given by the relative frequency

- in each case, it looks like the max of the data probability occured at the value given by the relative frequency
- this suggests that in these cases,

Max. Likelihood Estimator

if you wanted to find θ_a (and θ_b) that maximise the data probability, that is you want

$$\underset{\theta_a,\theta_b}{\arg\max}\,p(\mathbf{d};\theta_a,\theta_b)$$

- in each case, it looks like the max of the data probability occured at the value given by the relative frequency
- this suggests that in these cases,

Max. Likelihood Estimator

if you wanted to find θ_a (and θ_b) that maximise the data probability, that is you want

$$\underset{\theta_a,\theta_b}{\operatorname{arg\,max}}\,p(\mathbf{d};\theta_a,\theta_b)$$

then the relative frequencies would give the answer, that is

$$heta_a = rac{\#(a)}{\#(a) + \#(b)} \quad heta_b = rac{\#(b)}{\#(a) + \#(b)}$$

- in each case, it looks like the max of the data probability occured at the value given by the relative frequency
- this suggests that in these cases,

Max. Likelihood Estimator

if you wanted to find θ_a (and θ_b) that maximise the data probability, that is you want

$$\underset{\theta_a,\theta_b}{\operatorname{arg\,max}}\,p(\mathbf{d};\theta_a,\theta_b)$$

then the relative frequencies would give the answer, that is

$$\theta_a = \frac{\#(a)}{\#(a) + \#(b)}$$
 $\theta_b = \frac{\#(b)}{\#(a) + \#(b)}$

 technically expressed as: the relative frequency is a maximum likelihood estimator of the parameters

formula for $p(\mathbf{d}; \theta_a, \theta_b)$ is (1), repeated below

$$p(\mathbf{d}; \theta_a, \theta_b) = \theta_a^{\#(a)} \times \theta_b^{\#(b)}$$

and because $heta_b = 1 - heta_a$ can really write this in terms of just parameter $heta_a$

$$p(\mathbf{d}; \theta_a) = \theta_a^{\#(a)} \times (1 - \theta_a)^{\#(b)}$$

formula for $p(\mathbf{d}; \theta_a, \theta_b)$ is (1), repeated below

$$p(\mathbf{d}; \theta_a, \theta_b) = \theta_a^{\#(a)} \times \theta_b^{\#(b)}$$

and because $heta_b = 1 - heta_a$ can really write this in terms of just parameter $heta_a$

$$p(\mathbf{d}; \theta_a) = \theta_a^{\#(a)} \times (1 - \theta_a)^{\#(b)}$$

Looking at some pics suggested a formula for the value of θ_a that maximises this. Can we actually *derive* this formula?

formula for $p(\mathbf{d}; \theta_a, \theta_b)$ is (1), repeated below

$$p(\mathbf{d}; \theta_a, \theta_b) = \theta_a^{\#(a)} \times \theta_b^{\#(b)}$$

and because $heta_{\it b} = 1 - heta_{\it a}$ can really write this in terms of just parameter $heta_{\it a}$

$$p(\mathbf{d};\theta_a) = \theta_a^{\#(a)} \times (1 - \theta_a)^{\#(b)}$$

Looking at some pics suggested a formula for the value of θ_a that maximises this. Can we actually *derive* this formula?

Yes \Rightarrow take the log of this – the **log-likelihood** and use calculus to maximize that w.r.t. θ_a – this turns out to be (relatively) easy

Define $L(\theta_a)$ as $log(P(\mathbf{d}; \theta_a))$.

$$L(\theta_a) = \#(a)\log\theta_a + \#(b)\log(1-\theta_a)$$

$$L(\theta_a) = \#(a)\log\theta_a + \#(b)\log(1-\theta_a)$$

need to take derivative wrt to θ_a and set to 0, which is

$$\frac{dL(\theta_a)}{d\theta_a} = \frac{\#(a)}{\theta_a} - \frac{\#(b)}{1 - \theta_a} = 0$$

$$L(\theta_a) = \#(a)\log\theta_a + \#(b)\log(1-\theta_a)$$

need to take derivative wrt to θ_a and set to 0, which is

$$\frac{dL(\theta_a)}{d\theta_a} = \frac{\#(a)}{\theta_a} - \frac{\#(b)}{1 - \theta_a} = 0 \implies \theta_a = \frac{\#(a)}{\#(a) + \#(b)} = \frac{\#(a)}{100}$$

$$L(\theta_a) = \#(a)\log\theta_a + \#(b)\log(1-\theta_a)$$

need to take derivative wrt to θ_a and set to 0, which is

$$\frac{dL(\theta_a)}{d\theta_a} = \frac{\#(a)}{\theta_a} - \frac{\#(b)}{1 - \theta_a} = 0 \qquad \Longrightarrow \qquad \theta_a = \frac{\#(a)}{\#(a) + \#(b)} = \frac{\#(a)}{100}$$

so in this scenario of 100 tosses of Z, we have proven that the relative frequency is always going to the maximum likelihood estimator

$$L(\theta_a) = \#(a)\log\theta_a + \#(b)\log(1-\theta_a)$$

need to take derivative wrt to θ_a and set to 0, which is

$$\frac{dL(\theta_a)}{d\theta_a} = \frac{\#(a)}{\theta_a} - \frac{\#(b)}{1 - \theta_a} = 0 \qquad \Longrightarrow \qquad \theta_a = \frac{\#(a)}{\#(a) + \#(b)} = \frac{\#(a)}{100}$$

so in this scenario of 100 tosses of Z, we have proven that the relative frequency is always going to the maximum likelihood estimator

now want to consider slightly more complex scenario

Outline

Supervised Maximum Likelihood Estimation(MLE)

First scenario: (toss a 'coin' Z)^D

2nd scenario: $(toss Z; (then A or B)^{10})^D$

Unsupervised Maximum Likelihood (re-)Estimation

Hidden variant of 2nd scenario
The EM Algorithm
Numerically worked example
More realistic run of EM

suppose D repetitions of toss disc Z, to choose *one* of two coins A or B then toss chosen coin 10 times

suppose D repetitions of toss disc Z, to choose *one* of two coins A or B then toss chosen coin 10 times

Suppose 9 repetitions gave

ď	Z		H counts									
1	Α	Н	Н	Н	Н	Н	Н	Н	Н	Т	Т	(8H)
2	В	Т	Т	Н	Т	Т	Т	Н	Т	Т	Т	(2H)
3	Α	Н	Т	Н	Н	Т	Н	Н	Н	Н	Т	(7H)
4	Α	Н	Т	Н			Т	Н	Н	Н	Н	(8H)
5	В	Т	Т	Т	Т	Т	Т	Н	Т	Т	Т	(1H)
6	Α	Н	Н	Т	Н	Н	Н	Н	Н	Н	Н	(9H)
7	Α	Т	Н	Н	Τ	Н	Н	Н	Н	Н	Т	(7H)
8	Α	Н	Н	Н	Н	Н	Н	Т	Н	Н	Н	(9H)
9	В	Н	Н	Т	Т	Т	Т	Т	Н	Т	Т	(3H)

suppose *D* repetitions of toss disc *Z*, to choose *one* of two coins *A* or *B* then toss chosen coin 10 times

Suppose 9 repetitions gave

d	Z		H counts									
1	Α	Н	Н	Н	Н	Н	Н	Н	Н	Т	Т	(8H)
2	В	Т	Т	Н	Т	Т	Т	Н	Т	Т	Т	(2H)
3	Α	Н	Т	Н	Н	Т	Н	Н	Н	Н	Т	(7H)
4	Α	Н	Т	Н	Н	Н	Т	Н	Н	Н	Н	(8H)
5	В	Т	Т	Т	Т	Т	Т	Н	Т	Т	Т	(1H)
6	Α	Н	Н	Т	Н	Н	Н	Н	Н	Н	Н	(9H)
7	Α	Т	Н	Н	Т	Н	Н	Н	Н	Н	Т	(7H)
8	Α	Н	Н	Н	Н	Н	Н	Т	Н	Н	Н	(9H)
9	В	Н	Н	Т	Т	Т	Т	Т	Н	Т	Т	(3H)

Let θ_a be Z's probability of giving A

suppose *D* repetitions of toss disc *Z*, to choose *one* of two coins *A* or *B* then toss chosen coin 10 times

Suppose 9 repetitions gave

d	Z		H counts									
1	Α	Н	Н	Н	Н	Н	Н	Н	Н	Т	Т	(8H)
2	В	Т	Т	Н	Т	Т	Т	Н	Т	Т	Т	(2H)
3	Α	Н	Т	Н	Н	Т	Н	Н	Н	Н	Т	(7H)
4	Α	Н	Т	Н	Н	Н	Т	Н	Н	Н	Н	(8H)
5	В	Т	Т	Т	Т				Т	Т	Т	(1H)
6	Α	Н	Н	Т	Н	Н	Н	Н	Н	Н	Н	(9H)
7	Α	Т	Н	Н	Т	Н	Н	Н	Н	Н	Т	(7H)
8	Α	Н	Н	Н	Н	Н	Н	Т	Н	Н	Н	(9H)
9	В	Н	Н	Т	Т	Т	Т	Т	Н	Т	Т	(3H)

Let θ_a be Z's probability of giving A Let $\theta_{h|a}$ be A's probability of giving H

suppose *D* repetitions of toss disc *Z*, to choose *one* of two coins *A* or *B* then toss chosen coin 10 times

Suppose 9 repetitions gave

d	Z		H counts									
1	Α	Н	Н	Н	Н	Н	Н	Н	Н	Т	Т	(8H)
2	В	Т	Т	Н	Т	Т	Т	Н	Τ	Т	Т	(2H)
3	Α	Н	Т	Н	Н	Т	Н	Н	Н	Н	Т	(7H)
4	Α	Н	Т	Н	Н	Н	Т	Н	Н	Н	Н	(8H)
5	В	Τ	Т	Т	Т	Т	Т	Н	Τ	Т	Т	(1H)
6	Α	Н	Н	Т	Н	Н	Н	Н	Н	Н	Н	(9H)
7	Α	Т	Н	Н	Т	Н	Н	Н	Н	Н	Т	(7H)
8	Α	Н	Н	Н	Н	Н	Н	Т	Н	Н	Н	(9H)
9	В	Н	Н	Т	Т	Т	Т	Т	Н	Т	Т	(3H)

Let θ_a be Z's probability of giving A Let $\theta_{h|a}$ be A's probability of giving H Let $\theta_{h|b}$ be B's probability of giving H 'common sense' calculation of $\theta_{\it a}$, $\theta_{\it h|a}$ and $\theta_{\it h|b}$

'common sense' calculation of $\theta_{\it a},\;\theta_{\it h|\it a}$ and $\theta_{\it h|\it b}$

for θ_a , need (count of Z = A cases)/(count of all Z cases), ie.

'common sense' calculation of θ_{a} , $\theta_{h|a}$ and $\theta_{h|b}$

for θ_a , need (count of Z = A cases)/(count of all Z cases), ie.

$$est(\theta_a) = \frac{\sum_{d:Z=A} 1}{D} =$$

'common sense' calculation of θ_a , $\theta_{h|a}$ and $\theta_{h|b}$

for θ_a , need (count of Z = A cases)/(count of all Z cases), ie.

$$est(\theta_a) = \frac{\sum_{d:Z=A} 1}{D} = \frac{6}{9} = 0.66$$
 (2)

'common sense' calculation of $\theta_{\it a},\;\theta_{\it h|\it a}$ and $\theta_{\it h|\it b}$

for θ_a , need (count of Z = A cases)/(count of all Z cases), ie.

$$est(\theta_a) = \frac{\sum_{d:Z=A} 1}{D} = \frac{6}{9} = 0.66$$
 (2)

for $\theta_{h|a}$, need (count of H when A chosen)/(count of all tosses when A chosen), ie.

'common sense' calculation of θ_a , $\theta_{h|a}$ and $\theta_{h|b}$

for θ_a , need (count of Z = A cases)/(count of all Z cases), ie.

$$est(\theta_a) = \frac{\sum_{d:Z=A} 1}{D} = \frac{6}{9} = 0.66$$
 (2)

for $\theta_{h|a}$, need

(count of H when A chosen)/(count of all tosses when A chosen), ie.

$$est(\theta_{h|a}) = rac{\sum_{d:Z=A} \#(d,h)}{\sum_{d:Z=A} 10} =$$

'common sense' calculation of $\theta_{a},\;\theta_{h|a}$ and $\theta_{h|b}$

for θ_a , need (count of Z = A cases)/(count of all Z cases), ie.

$$est(\theta_a) = \frac{\sum_{d:Z=A} 1}{D} = \frac{6}{9} = 0.66$$
 (2)

for $\theta_{h|a}$, need

(count of H when A chosen)/(count of all tosses when A chosen), ie.

$$est(\theta_{h|a}) = \frac{\sum_{d:Z=A} \#(d,h)}{\sum_{d:Z=A} 10} = \frac{48}{60} = \frac{4}{5} = 0.8$$
 (3)

'common sense' calculation of θ_{a} , $\theta_{h|a}$ and $\theta_{h|b}$

for θ_a , need (count of Z = A cases)/(count of all Z cases), ie.

$$est(\theta_a) = \frac{\sum_{d:Z=A} 1}{D} = \frac{6}{9} = 0.66$$
 (2)

for $\theta_{h|a}$, need

(count of H when A chosen)/(count of all tosses when A chosen), ie.

$$est(\theta_{h|a}) = \frac{\sum_{d:Z=A} \#(d,h)}{\sum_{d:Z=A} 10} = \frac{48}{60} = \frac{4}{5} = 0.8$$
 (3)

for $\theta_{h|b}$, need

(count of H when B chosen)/(count of all tosses when B chosen), ie.

'common sense' calculation of $heta_{a}$, $heta_{h|a}$ and $heta_{h|b}$

for θ_a , need (count of Z = A cases)/(count of all Z cases), ie.

$$est(\theta_a) = \frac{\sum_{d:Z=A} 1}{D} = \frac{6}{9} = 0.66$$
 (2)

for $\theta_{h|a}$, need

(count of H when A chosen)/(count of all tosses when A chosen), ie.

$$est(\theta_{h|a}) = \frac{\sum_{d:Z=A} \#(d,h)}{\sum_{d:Z=A} 10} = \frac{48}{60} = \frac{4}{5} = 0.8$$
 (3)

for $\theta_{h|b}$, need

(count of H when B chosen)/(count of all tosses when B chosen), ie.

$$est(\theta_{h|b}) = \frac{\sum_{d:Z=B} \#(d,h)}{\sum_{d:Z=B} 10} =$$

'common sense' calculation of θ_a , $\theta_{h|a}$ and $\theta_{h|b}$

for θ_a , need (count of Z = A cases)/(count of all Z cases), ie.

$$est(\theta_a) = \frac{\sum_{d:Z=A} 1}{D} = \frac{6}{9} = 0.66$$
 (2)

for $\theta_{h|a}$, need

(count of H when A chosen)/(count of all tosses when A chosen), ie.

$$est(\theta_{h|a}) = \frac{\sum_{d:Z=A} \#(d,h)}{\sum_{d:Z=A} 10} = \frac{48}{60} = \frac{4}{5} = 0.8$$
 (3)

for $\theta_{h|b}$, need

(count of H when B chosen)/(count of all tosses when B chosen), ie.

$$est(\theta_{h|b}) = \frac{\sum_{d:Z=B} \#(d,h)}{\sum_{d:Z=B} 10} = \frac{6}{30} = \frac{1}{5} = 0.2$$
 (4)

to make the comparision with the hidden variable version which will come up later, its worth noting that we can formulate all the restricted sums $\sum_{d:Z=A}(\Phi(d)) \text{ with } \textit{unrestricted sums} \text{ if we put a so-called Kronecker-delta} \\ \text{indicator function inside the sum } \sum_{d}(\delta(d,A)\Phi(d)) \text{ where } \delta(d,A)=1 \text{ if datum } d \text{ had } Z=A, \text{ and is 0 otherwise.}$

 $\sqsubseteq_{\text{2nd scenario: }} (\text{toss Z; (then A or B)}^{10})^D$

to make the comparision with the hidden variable version which will come up later, its worth noting that we can formulate all the restricted sums $\sum_{d:Z=A}(\Phi(d)) \text{ with } \textit{unrestricted sums} \text{ if we put a so-called Kronecker-delta} \\ \text{indicator function inside the sum } \sum_{d}(\delta(d,A)\Phi(d)) \text{ where } \delta(d,A)=1 \text{ if datum } d \text{ had } Z=A \text{, and is 0 otherwise.}$

$$est(\theta_a) = \frac{\sum_d \delta(d, A)}{D} \tag{5}$$

$$est(\theta_{h|a}) = \frac{\sum_{d} \delta(d, A) \#(d, h)}{\sum_{d} \delta(d, A) 10}$$
(6)

$$est(\theta_{h|b}) = \frac{\sum_{d} \delta(d, B) \#(d, h)}{\sum_{d} \delta(d, B) 10}$$
(7)

the formula for $p(\mathbf{d}; \theta_a, \theta_b, \theta_{h|a}, \theta_{t|a}, \theta_{h|b}, \theta_{t|b})$

$$\rho(\mathbf{d}) = \prod_{d:Z=a} [\theta_a \theta_{h|a}^{\#(d,h)} \theta_{t|a}^{\#(d,t)}] \prod_{d:Z=b} [\theta_b \theta_{h|b}^{\#(d,h)} \theta_{t|b}^{\#(d,t)}]$$

the formula for $p(\mathbf{d}; \theta_a, \theta_b, \theta_{h|a}, \theta_{t|a}, \theta_{h|b}, \theta_{t|b})$

$$p(\mathbf{d}) = \prod_{d: Z=a} [\theta_a \theta_{h|a}^{\#(d,h)} \theta_{t|a}^{\#(d,t)}] \prod_{d: Z=b} [\theta_b \theta_{h|b}^{\#(d,h)} \theta_{t|b}^{\#(d,t)}]$$

and its log comes out as

$$\begin{split} \sum_{d:Z=a} [log\theta_a + \#(d,h)log\theta_{h|a} + \#(d,t)log\theta_{t|a}] + \\ \sum_{d:Z=b} [log\theta_b + \#(d,h)log\theta_{h|b} + \#(d,t)log\theta_{t|b}] \end{split}$$

the formula for $p(\mathbf{d}; \theta_a, \theta_b, \theta_{h|a}, \theta_{t|a}, \theta_{h|b}, \theta_{t|b})$

$$p(\mathbf{d}) = \prod_{d:Z=a} [\theta_a \theta_{h|a}^{\#(d,h)} \theta_{t|a}^{\#(d,t)}] \prod_{d:Z=b} [\theta_b \theta_{h|b}^{\#(d,h)} \theta_{t|b}^{\#(d,t)}]$$

and its log comes out as

$$\begin{split} \sum_{d:Z=a} [log\theta_a + \#(d,h)log\theta_{h|a} + \#(d,t)log\theta_{t|a}] + \\ \sum_{d:Z=b} [log\theta_b + \#(d,h)log\theta_{h|b} + \#(d,t)log\theta_{t|b}] \end{split}$$

call this $L(\theta_a, \theta_{h|a}, \theta_{h|b})$

$$\begin{split} \sum_{d:Z=a} [log\theta_a + \#(d,h)log\theta_{h|a} + \#(d,t)log\theta_{t|a}] + \\ \sum_{d:Z=b} [log\theta_b + \#(d,h)log\theta_{h|b} + \#(d,t)log\theta_{t|b}] \end{split}$$

$$\begin{split} \sum_{d:Z=a} [log\theta_a + \#(d,h)log\theta_{h|a} + \#(d,t)log\theta_{t|a}] + \\ \sum_{d:Z=b} [log\theta_b + \#(d,h)log\theta_{h|b} + \#(d,t)log\theta_{t|b}] \end{split}$$

$$\begin{split} \sum_{d:Z=a} [log\theta_a + \#(d,h)log\theta_{h|a} + \#(d,t)log\theta_{t|a}] + \\ \sum_{d:Z=b} [log\theta_b + \#(d,h)log\theta_{h|b} + \#(d,t)log\theta_{t|b}] \end{split}$$

$$L(\theta_a) = \left[\sum_{d:Z=a} 1\right] log \theta_a + \left[\sum_{d:Z=b} 1\right] log (1-\theta_a)$$
 (8)

$$\begin{split} \sum_{d:Z=a} [log\theta_a + \#(d,h)log\theta_{h|a} + \#(d,t)log\theta_{t|a}] + \\ \sum_{d:Z=b} [log\theta_b + \#(d,h)log\theta_{h|b} + \#(d,t)log\theta_{t|b}] \end{split}$$

$$L(\theta_a) = \left[\sum_{d:Z=a} 1\right] \log \theta_a + \left[\sum_{d:Z=b} 1\right] \log (1-\theta_a) \tag{8}$$

$$L(\theta_{h|a}) = \sum_{d:Z=a} \#(d,h)]log\theta_{h|a} + [\sum_{d:Z=a} \#(d,t)] log(1-\theta_{h|a})$$
 (9)

$$\begin{split} \sum_{d:Z=a} [log\theta_a + \#(d,h)log\theta_{h|a} + \#(d,t)log\theta_{t|a}] + \\ \sum_{d:Z=b} [log\theta_b + \#(d,h)log\theta_{h|b} + \#(d,t)log\theta_{t|b}] \end{split}$$

$$L(\theta_a) = \left[\sum_{d:Z=a} 1\right] log \theta_a + \left[\sum_{d:Z=b} 1\right] log (1-\theta_a)$$
 (8)

$$L(\theta_{h|a}) = \left[\sum_{d:Z=a} \#(d,h) \right] log \theta_{h|a} + \left[\sum_{d:Z=a} \#(d,t) \right] log (1-\theta_{h|a})$$
(9)

$$L(\theta_{h|b}) = \left[\sum_{d:Z=b} \#(d,h) \right] log \theta_{h|b} + \left[\sum_{d:Z=b} \#(d,t) \right] log (1-\theta_{h|b})$$
 (10)

$$\begin{split} \sum_{d:Z=a} [log\theta_a + \#(d,h)log\theta_{h|a} + \#(d,t)log\theta_{t|a}] + \\ \sum_{d:Z=b} [log\theta_b + \#(d,h)log\theta_{h|b} + \#(d,t)log\theta_{t|b}] \end{split}$$

$$L(\theta_a) = \left[\sum_{d:Z=a} 1\right] \log \theta_a + \left[\sum_{d:Z=b} 1\right] \log (1-\theta_a) \tag{8}$$

$$L(\theta_{h|a}) = \left[\sum_{d:Z=a} \#(d,h) \right] log \theta_{h|a} + \left[\sum_{d:Z=a} \#(d,t) \right] log (1-\theta_{h|a})$$
(9)

$$L(\theta_{h|b}) = \left[\sum_{d:Z=b} \#(d,h) \right] log \theta_{h|b} + \left[\sum_{d:Z=b} \#(d,t) \right] log (1-\theta_{h|b})$$
 (10)

and this means that when you take the derivatives of $L(\theta_a,\theta_{h|a},\theta_{h|b})$ wrt. θ_a , $\theta_{h|a}$ and $\theta_{h|b}$ in each case you can just look at one of the above terms.

$$\begin{split} \sum_{d:Z=a} [log\theta_a + \#(d,h)log\theta_{h|a} + \#(d,t)log\theta_{t|a}] + \\ \sum_{d:Z=b} [log\theta_b + \#(d,h)log\theta_{h|b} + \#(d,t)log\theta_{t|b}] \end{split}$$

$$L(\theta_a) = \left[\sum_{d:Z=a} 1\right] \log \theta_a + \left[\sum_{d:Z=b} 1\right] \log (1-\theta_a) \tag{8}$$

$$L(\theta_{h|a}) = \left[\sum_{d:Z=a} \#(d,h) \right] log \theta_{h|a} + \left[\sum_{d:Z=a} \#(d,t) \right] log (1-\theta_{h|a})$$
(9)

$$L(\theta_{h|b}) = \left[\sum_{d:Z=b} \#(d,h)\right] log \theta_{h|b} + \left[\sum_{d:Z=b} \#(d,t)\right] log (1-\theta_{h|b}) \quad (10)$$

and this means that when you take the derivatives of $L(\theta_a,\theta_{h|a},\theta_{h|b})$ wrt. θ_a , $\theta_{h|a}$ and $\theta_{h|b}$ in each case you can just look at one of the above terms. They are all really of the same form being N(log(p)) + M(log(1-p)), the same form as seen in the first simple scenario, and it has maximum value at $p = \frac{N}{N+M}$

$$\frac{\partial L(\theta_a)}{\partial \theta_a} =$$

$$\frac{\partial L(\theta_a)}{\partial \theta_a} \quad = \quad 0 \quad \implies \theta_a = \frac{\sum_{d:Z=a} 1}{\sum_{d:Z=a} 1 + \sum_{d:Z=b} 1}$$

$$\frac{\partial L(\theta_a)}{\partial \theta_a} \quad = \quad 0 \quad \implies \theta_a = \frac{\sum_{d:Z=a} 1}{\sum_{d:Z=a} 1 + \sum_{d:Z=b} 1}$$

$$\frac{\partial L(\theta_{h|a})}{\partial \theta_{h|a}} \quad = \quad$$

$$\frac{\partial L(\theta_a)}{\partial \theta_a} \quad = \quad 0 \quad \implies \theta_a = \frac{\sum_{d:Z=a} 1}{\sum_{d:Z=a} 1 + \sum_{d:Z=b} 1}$$

$$\frac{\partial L(\theta_{h|a})}{\partial \theta_{h|a}} \quad = \quad 0 \quad \implies \theta_{h|a} = \frac{\sum_{d:Z=a} \#(d,h)}{\sum_{d:Z=a} \#(d,h) + \sum_{d:Z=a} \#(d,t)}$$

$$\begin{array}{lcl} \frac{\partial L(\theta_a)}{\partial \theta_a} & = & 0 & \Longrightarrow \theta_a = \frac{\sum_{d:Z=a} 1}{\sum_{d:Z=a} 1 + \sum_{d:Z=b} 1} \\ \\ \frac{\partial L(\theta_{h|a})}{\partial \theta_{h|a}} & = & 0 & \Longrightarrow \theta_{h|a} = \frac{\sum_{d:Z=a} \#(d,h)}{\sum_{d:Z=a} \#(d,h) + \sum_{d:Z=a} \#(d,t)} \\ \\ \frac{\partial L(\theta_{h|b})}{\partial \theta_{h|b}} & = & \end{array}$$

$$\frac{\partial L(\theta_{a})}{\partial \theta_{a}} = 0 \implies \theta_{a} = \frac{\sum_{d:Z=a} 1}{\sum_{d:Z=a} 1 + \sum_{d:Z=b} 1}$$

$$\frac{\partial L(\theta_{h|a})}{\partial \theta_{h|a}} = 0 \implies \theta_{h|a} = \frac{\sum_{d:Z=a} \#(d,h)}{\sum_{d:Z=a} \#(d,h) + \sum_{d:Z=a} \#(d,t)}$$

$$\frac{\partial L(\theta_{h|b})}{\partial \theta_{h|b}} \quad = \quad 0 \quad \implies \theta_{h|b} = \frac{\sum_{d:Z=b} \#(d,h)}{\sum_{d:Z=b} \#(d,h) + \sum_{d:Z=b} \#(d,t)}$$

$$\frac{\partial L(\theta_a)}{\partial \theta_a} \quad = \quad 0 \quad \implies \theta_a = \frac{\sum_{d:Z=a} 1}{\sum_{d:Z=a} 1 + \sum_{d:Z=b} 1}$$

$$\frac{\partial L(\theta_{h|a})}{\partial \theta_{h|a}} = 0 \implies \theta_{h|a} = \frac{\sum_{d:Z=a} \#(d,h)}{\sum_{d:Z=a} \#(d,h) + \sum_{d:Z=a} \#(d,t)}$$

$$\frac{\partial L(\theta_{h|b})}{\partial \theta_{h|b}} = 0 \implies \theta_{h|b} = \frac{\sum_{d:Z=b} \#(d,h)}{\sum_{d:Z=b} \#(d,h) + \sum_{d:Z=b} \#(d,t)}$$

finally the denominators of these turn into D, $\sum_{d:Z=a} 10$ and $\sum_{d:Z=b} 10$ respectively and so are exactly the 'common sense' formulae we started with in (2), (3), (4)