

# Gép- és szerkezeti elemek II. BTS2 2023/24 Tavasz II. Házifeladat

Készítette: Török Teréz

Neptun-kód: MAO9IR

Dátum: 2024. 05. 23.

Gyakorlatvezető: Dr. Kerényi György

#### FELADATLAP - KISGÉP HAJTÁSRENDSZERÉNEK ELEMZÉSE

| Tantárgy:                    |               | Kurzus: |                 | GÉP- ÉS        |
|------------------------------|---------------|---------|-----------------|----------------|
| Gép- és szerkezeti elemek II | •••           | G       | //GT3           | TERMÉKTERVEZÉS |
| BMEGEGIBTS2                  |               |         |                 | TANSZÉK        |
| Hallgató neve:               | NEPTUN kódja: | Dátum:  | Félév:          |                |
| Török Teréz                  | 2024.02.26    | 202     | 3-2024 2. félév |                |

#### Feladat bevezetése:

Napjainkban a korszerű technika jellemző vonása a háztartások nagyfokú gépesítése. Szinte minden emberi erőkifejtést igénylő kézi tevékenység kiváltható egy arra alkalmas kisgéppel. Így ma már szinte minden háztartásban megtalálhatók a konyhai robotgépek (turmix, keverő, kenyérvágó stb.), a barkácsgépek (fűró, csiszoló, dekopír fűrész stb.), kerti szerszámok (fűnyíró, sövényvágó stb.), takarító, tisztító gépek stb.

A feladat célja egy kiválasztott, a gyakorlatvezető által elfogadott és jóváhagyott háztartási berendezés működésének és felépítésének megismerése, jellemző hajtáselemeinek ellenőrzése, méretezése, valamint a lehetséges hibák és elhárításuk elemzése.

#### Feladat részletezése:

- I. Részfeladat (max. 15 pont):
  - 1. Ismertesse a választott berendezés feladatát, felhasználási jellemzőit, technológiai és műszaki paramétereit!
  - 2. Írja le a gép működését, feltüntetve az egyes alkatrészek feladatát (funkcióját). A leírás tartalmazza a szét- és összeszerelés sorrendjét is!
  - 3. Készítse el a berendezés alkatrészeinek 3D modelljét!
  - 4. Készítse el a gép robbantott ábráját. Minden alkatrészt tételszámmal lásson el és készítsen darabjegyzéket a méretek, a darabszám, az anyag és tömeg feltüntetésével!

#### II. Részfeladat (max. 15 pont):

- A műszaki rajzolás szabályai szerint készítse el a hajtáslánc (motor, tengely, tengelykapcsoló, csapágyazás, fogaskerék-, lánc-, szíj-, dörzshajtás stb.) beméretezett összeállítási rajzát, a szükséges előírásokkal (tűrés, illesztés, felületi minőség stb.)
- 2. A tanultak alapján ismertesse a hajtáslánc elemeinek ellenőrzését, illetve méretezését, valamint egy-két, a gyakorlatvezetővel egyezetetett, kiválasztott hajtáselemet ellenőrizzen!
- 3. Készítse el a gép használati leírását úgy, hogy azt egy átlagos vásárló ennek alapján üzembe tudja helyezni!

| Beadási határidő 1. részfeladat: | 2024.03.21         |
|----------------------------------|--------------------|
| Beadási határidő 2. részfeladat: | 2024.05.23         |
| A feladatot kiadta:              | Dr. Kerényi György |

Budapesti Műszaki és Gazdaságtudományi Egyetem, Gép- és Terméktervezés Tanszék Budapest, Bertalan Lajos utca 1. • Telefon: 463-2345 • Telefax: 463-3510

# TARTALOMJEGYZÉK

| Feladatlap                    | 2  |
|-------------------------------|----|
| Hajtáslánc bemutatása         | 4  |
| Csigahajtás geometriája       | .4 |
| Csigahajtás során ébredő erők | 6  |
| Jellemző tengely ellenőrzése  | 7  |
| Csapágyak ellenőrzése         | 12 |
| Források                      | 16 |

# I. A hajtáslánc elemeinek ellenőrzése, méretezése

# A hajtáslánc bemutatása:

A hatásláncolat teljesítményforrása egy elektromotor, mely a csigát egy közös tengely segítségével forgatja, ami a csigakerekek segítségével meghajtja a mixer keverőkarját. A tengelyen egy mélyhornyú golyóscsapágy (vezető csapágy) és egy beálló sikló csapágy (szabad csapágy) található.

A dokumentáció során a fent bemutatott hajtásrendszert elemzem. Feltárásra kerül(nek) többek között a csiga-csigakerék kapcsolat, a csigára, illetve a csapágyazott tengelyre ható erők és nyomatékok és a csigakerekeket támasztó siklócsapágyak terhelései is.

### A csigahajtás geometriájának meghatározása:

• A csiga geometriája:

Mért adatok:

Csigamenet hossza (b<sub>1</sub>): 32 mm

A csiga bekezdéseinek száma (z<sub>1</sub>): 2 [-]

Csiga fejkör átmérője (da1): 7 mm

$$ha*= 1 \text{ \'es } c*= 0.2$$

Először a csiga menetemelkedését (p<sub>z</sub>) számítottam ki:

$$p_z = \frac{b_1}{7} = \frac{32 \, mm}{7} = 4,57 \, mm$$

Ebből meghatározható az axiális osztás  $(p_x)$ :

$$p_x = \frac{p_z}{z_1} = \frac{4,57 \text{ mm}}{2} = 2,29 \text{ mm}$$

Az axiális osztás segítségével meghatároztam a modult (m):

$$m = \frac{p_x}{\pi} = \frac{2,29}{\pi} = 0,73$$

Mivel a modul egy szabványosított érték, ezért a DIN szabvány értékei (1.1 ábra) közül a 0,7-es modult választottam. Tehát a csiga modulja m = 0,7 [-]

|      | Szabványos modulok DIN 780 szerint - 1. sorozat |      |     |      |      |     |      |     |     |     |     |     |     |     |    |      |
|------|-------------------------------------------------|------|-----|------|------|-----|------|-----|-----|-----|-----|-----|-----|-----|----|------|
| 0,05 | 0,06                                            | 0,08 | 0,1 | 0,12 | 0,16 | 0,2 | 0,25 | 0,3 | 0,4 | 0,5 | 0,6 | 0,7 | 0,8 | 0,9 | 1  | 1,25 |
| 1,5  | 2                                               | 2,5  | 3   | 4    | 5    | 6   | 8    | 10  | 12  | 16  | 20  | 25  | 32  | 40  | 50 | 60   |

1.1 ábra: Szabványos modulok

A csiga jellemző geometriai adataihoz tartozik a középátmérő (d<sub>m</sub>) is:

d<sub>m</sub> = mq, ahol q az átmérőhányados, amit a következő képlet segítségével számoltam:

$$d_{a1} = m \cdot q + 2ha * \cdot m$$

$$q = \frac{7 - 1.4}{0.7} = 8$$

Az átmérőhányados szintén szabványos érték és a q = 8 éppen megfelel.

Ebből számítható:

$$d_m = m \cdot q = 0.7 \cdot 8 = 5.6$$

q ismeretében meghatározható a csiga lábkör átmérője (df1):

$$f_{f1} = m \cdot q - 2(ha * +c *) \cdot m = 5,6 - 1,68 = 3,92 mm$$

Végül pedig a csiga menetemelkedési szögét (γ<sub>m</sub>) számítottam:

$$tg\gamma_m = \frac{z_1}{q} = \frac{2}{8}$$
$$\gamma_m = 14,03^\circ$$

• A csigakerék geometriája:

Mért adatok:

Csigakerék fogszáma (z<sub>2</sub>): 44 [-]

Csigakerék fejkör átmérője (da2): 32 mm

Csigakerék lábkör átmérője (d<sub>f2</sub>): 28 mm

Modul ( $m_t = m$ ): 0,7

Először a csigakerék osztókörének (d2) átmérőjét számítottam ki:

$$d_2 = z_2 \cdot m = 44 \cdot 0.7 = 30.8 \ mm$$

Majd a csigakerékre jellemző profileltolást (x<sub>2</sub>) is meghatároztam:

$$d_{a2} = d_2 + 2(ha * + x_2) \cdot m$$

$$x_2 = \frac{1,2}{1,4} = 0,86 \, mm$$

Végül pedig a csiga és a csigakerék tengelytávolságát (a) is kiszámítottam:

$$a = \frac{m}{2} \cdot (8 + 44) = 18,2 \, mm$$

#### A csigahajtás során ébredő erők meghatározása:

A következő lépésben a csigán és a csigakerekeken ébredő erőket számítottam ki. Ehhez szükség volt a láncban szereplő motor vizsgálatára. Elsősorban a fordulatszám volt kérdéses, ugyanis a választott mixer motorjához konkrét adatot nem találtam. Piackutatást végeztem és kiválasztottam egy – a keresetthez hasonlatos – motort [1] és annak adataival számoltam tovább.

• A motor adatai:

A motor teljesítménye:

$$P_{n\text{\'e}vleges} = 450 \text{ W}$$

$$P_{\text{hasznos}} = 450 \cdot 0.75 = 337.5 \text{ W}$$

A motor fordulatszáma:

$$n_{motor} = 15\ 000\ \frac{1}{min} = 250\ \frac{1}{s}$$

A motor nyomatéka:

$$T_m = \frac{P_h}{\omega} = \frac{337.5}{2 \cdot 250 \cdot \pi} = 0.215 \, Nm$$

• A hajtásrendszerhez tartozó erők:

Először a motor nyomatékának segítségével meghatároztam a csigához tartozó kerület erőt (F<sub>t1</sub>)

$$F_{t1} = \frac{2 \cdot T_m}{d_m} = \frac{2 \cdot 0.215}{5.6 \cdot 10^{-3}} = 76.8 \, N$$

A csigához tartozó kerületi erő megegyezik a csigakeréken ható axiális erővel (Fa2), így tehát:

$$F_{t1} = F_{a2} = 76.8 N$$

Második lépésben a csigára ható axiális erőt (F<sub>a1</sub>) számoltam:

$$F_{a1} = \frac{F_{t1}}{tg(\gamma_m + \rho')}$$

 $\rho$ ' súrlódási félkúpszög számításához szükségem volt az acél és a polimer közti súrlódási tényezőre, melyet online kerestem meg és végül a forrás alapján  $\mu=0.35$  [-] számoltam.

| Polystyrene  | Polystyrene  | Clean and Dry | 0.5        |  |
|--------------|--------------|---------------|------------|--|
| Polystyrene  | Polystyrene  | Grease        | 0.5        |  |
| Polystyrene  | Steel        | Clean and Dry | 0.3 - 0.35 |  |
| Polystyrene  | Steel        | Grease        | 0.3 - 0.35 |  |
| Polyethylene | Polytehylene | Clean and Dry | 0.2        |  |
| Polyethylene | Steel        | Clean and Dry | 0.2        |  |

1.2 ábra: Súrlódási tényező

Innen az ismert képlet segítségével p' számítható volt:

$$tg\rho' = \mu' = \frac{\mu}{\cos \alpha_n} = \frac{0.35}{\cos 20^{\circ}}$$
$$\rho' = 20.43^{\circ}$$

Az axiális erő tehát:

$$F_{a1} = \frac{F_{t1}}{tg(\gamma_m + \rho')} = \frac{78,6}{tg(14,03 + 20,43)} = 111,9 N$$

A csigára ható axiális erő a csigakeréken ébredő kerületi erőnek (F<sub>t2</sub>) megfeleltethető, innen:

$$F_{a1} = F_{t2} = 111,9 N$$

A radiális erő a csigán és a csigakeréken megegyezik:

$$F_{r1} = F_{r2} = F_{a1} \cdot tg\alpha_{ax}$$

 $\alpha_{ax}$  menetemelkedési szög számítható:

$$tg\alpha_{ax} = \frac{tg\alpha_{n}}{cos\gamma_{m}} = \frac{tg20^{\circ}}{cos14,03^{\circ}}$$
$$\alpha_{ax} = 20,56^{\circ}$$

Innen:

$$F_{r1} = F_{r2} = F_{a1} \cdot tg\alpha_{ax} = 111,9 \cdot tg20,53^{\circ} = 41,97 \cong 42N$$

A csigára és csigakerékre ható eredő erők (F<sub>n1</sub>, F<sub>n2</sub>) pedig:

$$F_{n1} = F_{n2} = \sqrt{F_{t1}^2 \cdot F_{a1}^2 \cdot F_{r1}^2} = \sqrt{76.8^2 \cdot 111.9^2 \cdot 42^2} = 142.1N$$

### A jellemző tengely ellenőrzése:

A jellemző tengely ellenőrzéséhez először felrajzoltam a tengely szabadtest ábráját (2.1 ábra) a megfelelő támasztásokkal. Az A jelű támasz a mélyhornyú golyóscsapágy, mely a vezető csapágy a hajtásláncban, a B jelű pedig a sikló csapágy, ami pedig egy szabad csapágy.



2.1 ábra: Tengely szabadtest ábrája

Az alátámasztásoknál ébredő reakcióerők kiszámítását X-Y (2.2 ábra) és Z-Y (2.3 ábra) síkokra bontottam.

#### X-Y sík:



2.2 ábra: Reakció erők X-Y síkban

Az egyensúlyi egyenletek tehát X-Y síkban:

1. 
$$\sum F_x = A_x + F_{a1} = 0$$

$$2. \sum F_y = A_y + B_y + F_{r1} = 0$$

3. 
$$\sum M_{hAz} = -0.1B_y + 0.0028F_{a1} - 0.151F_{r1} = 0$$

Melyből a reakcióerők:

$$1. \rightarrow A_x = -F_{a1} = 111.9 N$$

3. 
$$\Rightarrow B_y = \frac{0.0028 \cdot 111.9 + 0.151 \cdot 42}{0.1} = -58.78 \, N$$

2. 
$$\rightarrow A_y = B_y - F_{r1} = 58,78 - 42 = 16,78 \, N$$

#### Z-Y sík:



2.3 ábra: Reakció erők Z-Y síkban

Az egyensúlyi egyenletek ebben a síkban:

4. 
$$\sum F_z = A_z + B_z + F_{t1} = 0$$

5. 
$$\sum M_{hAy} = 0.1B_z + 0.122F_{t1} = 0$$

Amiből a reakcióerők:

5. 
$$\rightarrow B_z = \frac{0.122 \cdot 76.8}{0.1} = -93.7 \, N$$

$$4. \rightarrow A_z = B_z - F_{t1} = 93.7 - 76.8 = 16.9 N$$

A reakció erők meghatározása után felírtam a nyomatéki egyenleteket, az igénybevételek meghatározásához.

#### Normál igénybevétel:

$$N_{x1} = A_x = -111,9 N$$

$$N_{x2} = A_x = -111,9 N$$

$$N_{x3} = A_x + F_{a1} = 0 N$$

#### Nyíró igénybevétel:

- Y irányú:

$$V_{v1} = A_v = 16,78 \, N$$

$$V_{v2} = A_v + B_v = -42 N$$

$$V_{y3} = A_y + B_y + F_{r1} = 16,78 - 58,78 + 42 N = 0 N$$

- Z irányú:

$$V_{z1} = A_z = 16,9 N$$

$$V_{z2} = A_z + B_z = 16,9 - 93,7 = -76,8 N$$

$$V_{z3} = A_z + B_z + F_{t1} = 16.9 - 93.7 + 76.8 = 0 N$$

#### Csavaró igénybevétel:

$$M_t = F_{t1} \cdot \frac{d_{m1}}{2} = 76.8 \cdot 2.8 = 215.04 \, N$$

#### Hajlító igénybevétel:

- Y irányú:

$$x = 100$$

$$M_{hy1} = A_z \cdot (x - 14) = 1453,4 Nm$$

$$x = 122$$

$$M_{hy2} = A_z \cdot (x - 14) + B_z \cdot (x - 100) = -236,2 \, Nm$$

$$x = 151$$

$$M_{hy3} = A_z \cdot (x - 14) + B_z \cdot (x - 100) + F_{t1} \cdot (x - 122) = -236,2 \text{ Nm}$$

- Z irányú:

$$x = 100$$

$$M_{hz1} = -A_v \cdot (x - 14) = -1443,1 \ Nm$$

$$x = 122$$
 $M_{hz2} = -A_y \cdot (x - 14) - B_y \cdot (x - 100) = -519,1 Nm$ 
 $x = 151$ 
 $M_{hz3} = -A_y \cdot (x - 14) + B_y \cdot (x - 100) + F_{r1} \cdot (x - 122) = -520,1 Nm$ 

Az igénybevételi függvényeket igénybevételi ábrákon ábrázoltam (2.4 ábra). Ebből meghatározható a veszélyes keresztmetszet (Mh = max) mely a vizsgált esetben 0,122 m-nél található.

A veszélyes keresztmetszet igénybevételei ezalapján:

$$N_x = -111,9 N$$

$$V_{v} = -29,39 \, N$$

$$V_z = -29,95 N$$

$$M_t = 215,04 N$$

$$M_{hy} = 1453,4 Nm$$

$$M_{hz1} = -1443,1 Nm$$

A veszélyes keresztmetszet igénybevételeiból számítható továbbá:

- Eredő hajlító igénybevétel:

$$M_{he} = \sqrt{{M_{hy}}^2 + {M_{hz}}^2} = \sqrt{1453,4^2 + 1443,1^2} = 2048,15 \ Nm$$

- Csúsztató feszültség:

$$\tau = \frac{M_t}{K_p} = \frac{215,04}{67,34} = 3,2 MPa$$

$$K_p = \frac{7^3 \cdot \pi}{16} = 67,37$$

- б feszültség:

$$\sigma = \frac{M_{he}}{K} + \frac{N}{A} = \frac{2048,15}{33,67} + \frac{-111,9}{38,48} = 57,9 MPa$$

$$K = \frac{7^3 \cdot \pi}{32} = 33,67 ; A = 3,5^2 \pi = 38,48$$

A csúsztató feszültségből, illetve a δ feszültségből számítottam Mohr egyenértékű feszültséget. A tengelyem anyaga C45 melynek folyáshatára 245 N/mm², erre kell megfelelnie a tengelynek.

$$\sigma^{Mohr} = \sqrt{\sigma^2 + 4\tau^2} = \sqrt{57,9^2 + 4 \cdot 3,2^2} = 58,25 \, MPa < \sigma_{Meg}$$

Így tehát a tengely szilárdságilag megfelelőnek tekinthető.



2.4 ábra: Igénybevételi ábrák

# Csapágyak ellenőrzése:

#### Sikló csapágy:

A siklócsapágyat a tanult módon, a mért adatok, illetve P-v diagram (4.1 ábra) segítségével ellenőriztem.

$$F_{r1} = 42 \text{ N}$$

d = persely átmérő = 7 mm

b = csapágy hossza = 11 mm

$$P = \frac{F_{r1}}{d \cdot b} = \frac{42}{7 \cdot 11} = 0.55 \, N/mm^2$$

$$v_{ker} = \frac{0,007}{2} \cdot 1570,8 = 5,5 \, m/s$$



4.1 ábra: P-v diagram

Megfigyelhető, hogy a sebesség érték nem esik a kívánt tartományon belülre, ez több okból adódhat. Lehetséges, hogy a választott fordulatszámom nem helyes, vagy a diagram nem a keresett anyagnak megfelelő.

#### Mélyhornyú golyóscsapágy:

A golyóscsapágyhoz nem tudtam teljesen hozzáférni, ezért méreteit a persely alapján határoztam meg, majd a SKF katalógusából kiválasztottam a 619/6 2Z cikkszámú csapágyat, és ennek adataival (4.2/3 ábra) végeztem el a számításokat.

$$C = 1,24 \text{ kN}$$
  $F_r = 16,78 \text{ N}$ 

$$C_0 = 0,475 \text{ kN}$$
  $F_{ax} = 111,9 \text{ N}$ 



4.2 ábra: Csapágy jellemző méretei

| Főméretek |    |     | Alapterh | nelés                 | Kifáradási                        |
|-----------|----|-----|----------|-----------------------|-----------------------------------|
|           |    |     | dinami-  | stati-                | határ-                            |
| d         | D  | В   | kus<br>C | kus<br>C <sub>0</sub> | <b>terhelés</b><br>P <sub>u</sub> |
| mn        | ı  |     | kN       |                       | kN                                |
| 3         | 10 | 4   | 0,54     | 0,18                  | 0,007                             |
| 4         | 9  | 2,5 | 0,54     | 0,18                  | 0,007                             |
|           | 11 | 4   | 0,715    | 0,232                 | 0,010                             |
|           | 12 | 4   | 0,806    | 0,28                  | 0,012                             |
|           | 13 | 5   | 0,936    | 0,29                  | 0,012                             |
|           | 16 | 5   | 1,11     | 0,38                  | 0,016                             |
| 5         | 11 | 3   | 0,637    | 0,255                 | 0,011                             |
|           | 13 | 4   | 0,884    | 0,34                  | 0,014                             |
|           | 16 | 5   | 1,14     | 0,38                  | 0,016                             |
|           | 19 | 6   | 2,34     | 0,95                  | 0,04                              |
| 6         | 13 | 3,5 | 0,884    | 0,345                 | 0,015                             |
|           | 15 | 5   | 1,24     | 0,475                 | 0,02                              |
|           | 19 | 6   | 2,34     | 0,95                  | 0,04                              |
| 7         | 14 | 3,5 | 0,956    | 0,4                   | 0,017                             |
|           | 17 | 5   | 1,48     | 0,56                  | 0,024                             |

4.3 ábra: Csapágy adatai

e  $\Rightarrow \frac{F_{ax}}{C_0} = 10 \cdot \frac{111.9}{475} = 2,36$  ehhez az értékhez a 2,07-es szabványos tényező (4.4 ábra) áll legközelebb így számításaimban az ehhez tartozó adatokkal fogok dolgozni.

| Az egysorú mély hornyú golyóscsapágyak számítási tényezői |       |         |      |       |          |      |  |
|-----------------------------------------------------------|-------|---------|------|-------|----------|------|--|
|                                                           | Normá | l hézag |      | C3 hé | C3 hézag |      |  |
| $f_0 F_a/C_0$                                             | е     | X       | Y    | е     | X        | Y    |  |
| 0,172                                                     | 0,19  | 0,56    | 2,30 | 0,29  | 0,46     | 1,88 |  |
| 0,345                                                     | 0,22  | 0,56    | 1,99 | 0,32  | 0,46     | 1,71 |  |
| 0,689                                                     | 0,26  | 0,56    | 1,71 | 0,36  | 0,46     | 1,52 |  |
| 1,03                                                      | 0,28  | 0,56    | 1,55 | 0,38  | 0,46     | 1,41 |  |
| 1,38                                                      | 0,30  | 0,56    | 1,45 | 0,40  | 0,46     | 1,34 |  |
| 2,07                                                      | 0,34  | 0,56    | 1,31 | 0,44  | 0,46     | 1,23 |  |
| 3,45                                                      | 0,38  | 0,56    | 1,15 | 0,49  | 0,46     | 1,10 |  |
| 5,17                                                      | 0,42  | 0,56    | 1,04 | 0,54  | 0,46     | 1,01 |  |
| 6,89                                                      | 0,44  | 0,56    | 1,00 | 0,54  | 0,46     | 1,00 |  |

4.4 ábra: Számítási tényezők

Ellenőrzés statikus terhelésre:

$$P_0 = 0.6 \text{ F}_r + 0.5 \text{ F}_{ax}$$

$$P_0 = 0.6 \cdot 16.78 + 0.5 \cdot 111.9 = 66.02$$

$$S_0 = \frac{P_0}{C_0} = \frac{475}{66.02} = 7.02 > 1$$

Tehát a csapágy statikus terhelésre megfelel. (4.5 ábra)

| ${\bf 10.\ t\'abl\'azat}$ ${\bf s}_0$ statikus biztonsági tényező irányadó értékei |                                        |                      |                        |                      |                      |                      |                      |                      |
|------------------------------------------------------------------------------------|----------------------------------------|----------------------|------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Üzemmód                                                                            | Forgó csaj<br>Sima futá<br>jelentéktel | s követelm           | <b>ényei</b><br>normál |                      | magas                |                      | Álló<br>csapágyak    | •                    |
|                                                                                    | golyós-<br>csapágyak                   | görgős-<br>csapágyak | golyós-<br>csapágyak   | görgős-<br>csapágyak | golyós-<br>csapágyak | görgős-<br>csapágyak | golyós-<br>csapágyak | görgős-<br>csapágyak |
| Sima, rezgésmentes                                                                 | 0,5                                    | 1                    | 1                      | 1,5                  | 2                    | 3                    | 0,4                  | 8,0                  |
| Normális                                                                           | 0,5                                    | 1                    | 1                      | 1,5                  | 2                    | 3,5                  | 0,5                  | 1                    |
| Lökésszerű terhelések <sup>1)</sup>                                                | ≥ 1,5                                  | ≥ 2,5                | ≥ 1,5                  | ≥3                   | ≥2                   | ≥ 4                  | ≥1                   | ≥ 2                  |

4.5 ábra: Statikus biztonsági tényezők értékei

Ellenőrzés dinamikus terhelésre:

$$\frac{F_{ax}}{F_r} = \frac{111.9}{16.76} = 6.7 > e$$
 ebben az esetben X = 0.53 Y = 1.31

$$P = X \cdot F_r + Y \cdot F_{ax}$$

$$P = 0.56 \cdot 16.78 + 1.31 \cdot 111.9 = 155.99$$

Üzemórára:

$$L_{10} = \left(\frac{C}{P}\right)^p = \left(\frac{1240}{155,99}\right)^3 = 502,3$$

$$L_{10h} = \left(\frac{10^6}{60 \cdot 15000}\right)^{13} 502,3 = 558,1$$

A csapágy a kívánt üzemóra számnak megfelel, melynek adataira a 4.6 táblázat ad iránymutatást.

| Különböző típusú gépek élettartamának irányértékei                                                                                         |                              |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|--|--|--|
| Géptípus                                                                                                                                   | <b>Élettartam</b><br>üzemóra |  |  |  |  |  |  |  |
| Háztartási gépek, mezőgazdasági gépek, műszerek, orvostechnikai eszközök                                                                   | 300 3 000                    |  |  |  |  |  |  |  |
| Rövid ideig vagy szakaszosan üzemelő gépek: villamos kéziszerszámok, szerelődaruk, építőipari gépek és berendezések                        | 3 000 8 000                  |  |  |  |  |  |  |  |
| Rövid ideig vagy szakaszosan üzemelő gépek fokozott üzembiztonsági követelményekkel: felvonók, daruk csomagolt árukhoz vagy bálákhoz. stb. | 8 000 12 000                 |  |  |  |  |  |  |  |
| Gépek nyolcórás napi üzemre, de nem teljes kihasználtsággal:                                                                               | 40,000 35,000                |  |  |  |  |  |  |  |

#### Csigakerék persely, mint csapágypersely:

A csigakerék két perselye gyakorlatban csapágyperselyként funkcionál. Az itt ébredő erőket úgy határozhatjuk meg, hogy a csigakereket tengelyként a perselyeket pedig tartóként kezeljük, s mint egy kéttámaszú tartóra (4.6 ábra) tekintünk.



(4.6 ábra)

A C és D tartókban egyaránt egy x irányú, a kerületi erő felével megegyező és egy y irányú a radiális erő felével megegyező reakció erő ébred.

$$C_x = D_x = F_{t1}/2 \text{ \'es } C_v = D_v = F_{rad}/2$$

Innen számítható az egyes tartóknál fellépő eredő erő:

$$F_{eC,D} = \sqrt{\left(\frac{F_{t1}}{2}\right)^2 + \left(\frac{F_r}{2}\right)^2} = \sqrt{55,95^2 + 21^2} = 59,76 \, N$$

Az eredő erőből pedig meghatározható a palástnyomás:

$$P = \frac{F_e}{A} = \frac{59,76}{69.12} = 0,865 MPa$$

$$A = 2 \cdot \pi \cdot 2 \cdot 5,5 = 69,12 \ mm^2$$

A perselyek a csigakerékre ható erő elvezetésére szolgálnak, ezért peremezve vannak. A palástnyomás ezért függ a perem nagyságától, illetve a csigára ható radiális erőtől is.

# FORRÁSOK

Gépelemek I.-II. előadás és gyakorlat diasorok

Motor:

https://www.alibaba.com/product-detail/TM-8825-JB-JR-universal-electric 60656383052.html?spm=a2700.7724857.0.0.324975d0tZDosY

Súrlódási tényező:

https://www.engineeringtoolbox.com/friction-coefficients-d 778.html

SKF katalógus:

 $\underline{https://www.sib.hu/doc/skf\%20fokatalogus.pdf}$ 

Modul:

https://hu.wikipedia.org/wiki/Modul (m%C5%B1szaki)