Convolution & Hough Transform

Convolution

1.continuous formula

$$(f*g)(n) = \int_{-\infty}^{\infty} f(au)g(n- au)d au$$

2.discrete formula

$$(f*g)(n) = \sum_{ au=-\infty}^{\infty} f(au)g(n- au)$$

Notice that: $n = \tau + (n - \tau)$

3.example in cv: smoothing

$$f = egin{bmatrix} a_{0,0} & a_{0,1} & a_{0,2} \ a_{1,0} & a_{1,1} & a_{1,2} \ a_{2,0} & a_{2,1} & a_{2,2} \end{bmatrix} g = egin{bmatrix} b_{0,0} & b_{0,1} & b_{0,2} \ b_{1,0} & b_{1,1} & b_{1,2} \ b_{2,0} & b_{2,1} & b_{2,2} \end{bmatrix}$$

rotate matrix g 180^o , do simple multiplication, get the new $c_{1,1}$.(g can be simple mean or Gaussian mean)

4.sum:

- 卷积可以理解为瞬时行为的持续性后果。
- 可以理解为先将g翻转,然后滑动叠加。
- cv中作为滤波器(卷积和)

5. Why convolution in deep learning?

- · Params sharing: unchanged convolution kernel
- sparsity of connections: output depends only on a small number of inputs(size of convolution kernel)
- translation invariance

6.卷积的意义

- 物理意义可以是:瞬时行为的持续性后果,与Bayes类似,即此时的结果依赖之前的输出\假设
- 卷积的傅里叶变换是函数傅里叶变换的乘积:

时域:
$$F[f(au)*g(au)]=F(\omega)\cdot G(\omega)$$
 频域: $F[f(au)*g(au)]=rac{1}{2\pi}F(\omega)*G(\omega)$

具有对称性

霍夫变换

1.Params space

直线方程y = kx + b 经极坐标转换后 $(k = \frac{-\cos\theta}{\sin\theta}, b = \frac{r}{\sin\theta})$, 得到:

$$r = xcos\theta + ysin\theta$$

对于点 (x_0,y_0) 的某个参数 (r_0,θ_0) ,表示通过 (x_0,y_0) 的一条直线。

则 $r = x_0 cos\theta + y_0 sin\theta$ 表示为通过 (x_0, y_0) 的所有直线,且为正弦函数

$$r=x_0cos heta+y_0sin heta=\sqrt{x_0^2+y_0^2}sin(heta+\phi),tan\phi=rac{y}{x}$$

若点 (x_1,y_1) 的参数方程 $r=\sqrt{x_1^2+y_1^2}sin(\theta+\phi),tan\phi=rac{y}{x}$ 与 (x_0,y_0) 的参数方程相交于 (r_0,θ_0) ,则两点间的直线参数为 (r_0,θ_0) 。

据此可推广, 若找出圆、矩形的平面图形, 至少需要三点 (不共线) 的参数方程相交

2.算法原理

(图片需要预处理:抑制噪声、灰度等)

霍夫变换通过accumulator (矩阵)来确定位置参数。accumulator维数等于未知参数的数量(每一'行'表示一个参数)。

因此,对于直线,累加器维度为2,对于圆(平面图形),维度为3.

3.算法优化

probabilistic Hough transform:
随机选取点集进行计算(直线检测足够),但要相应降低threshold

• Hough gradient direction:对于平面图形,将累加器降成2维。