Module 8: Solutions to Recommended Exercises

TMA4268 Statistical Learning V2025

Sara Martino, Stefanie Muff, Kenneth Aase Department of Mathematical Sciences, NTNU

March 12, 2025

Problem 1 – Theoretical

a)

- 1. Recursive binary splitting: We find the best single partitioning of the data such that the reduction of RSS is the greatest. This process is applied sequencially to each of the split parts until a predefined minimum number of leave observation is reached.
- 2. Cost complexity pruning of the large tree from previous step, in order to obtain a sequence of best trees as a function of a parameter α . Each value of α corresponds to a subtree that minimize the following equation (several α s for the same tree):

$$\sum_{m=1}^{|T|} \sum_{i: x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|,$$

where |T| is the number of terminal nodes.

- 3. K-fold cross-validation to choose α . For each fold:
- Repeat Steps 1 and 2 on all but the kth folds of the training data.
- Evaluate the mean squared prediction on the data in the left-out kth fold, as a function of α .
- Average the results for each value of α and choose α to minimize the average error.
- 4. Return the subtree from Step 2 that corresponds to the chosen value of α .

For a classification tree, we replace RSS with Gini index or cross entropy.

b)

Advantages

- Very easy to explain
- Can be displayed graphically
- Can handle both quantitative and qualitative predictors without the need to create dummy variables

Disadvantages

- The predictive accuracy is usually not very high. This limitation often leads practitioners to use ensemble methods like Random Forests or Boosting to improve accuracy.
- They are non-robust. That is, a small change in the data can cause a large change in the estimated tree.

c)

Limitation of decision trees: Decision trees suffer from high variance. Recall that if we have B i.i.d observations of a random variable X with the same mean and variance σ^2 . We calculate the mean $\bar{X} = \frac{1}{B} \sum_{b=1}^{B} X_b$, and the variance of the mean is $Var(\bar{X}) = \frac{\sigma^2}{B}$. That is by averaging we get reduced variance.

Idea behind bagging: For decision trees, if we have B training sets, we could estimate $\hat{f}_1(\mathbf{x}), \hat{f}_2(\mathbf{x}), \dots, \hat{f}_B(\mathbf{x})$ and average them as

$$\hat{f}_{avg}(\boldsymbol{x}) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b(\boldsymbol{x}) .$$

However we do not have many data independent data sets, and we bootstraping to create B datasets. These datasets are however not completely independent and the reduction in variance is therefore not as large as for independent training sets.

How do random forests improve that idea?: To make the different trees that are built from each bootstrapped dataset more different, random forests use a random subset of the predictors to split the tree into new branches at each step. This decorrelates the different trees that are built from the B bootstrapped datasets, and consequently reduces variance.

d) An OOB is the set of observations that were not chosen to be in a specific bootstrap sample. From RecEx5-Problem 4c we have that on average 1 - 0.632 = 0.368 are included in the OOB sample.

e)

Variable importance based on node impurity

- Regression Trees: The total amount that the RSS is decreased due to splits of each predictor, averaged over the B trees.
- Classification Trees: The importance is the mean decrease (over all B trees) in impurity (often measured by the Gini index) by splits of a predictor. A higher decrease indicates a more significant role of the predictor in partitioning the data into homogeneous groups, thereby enhancing classification accuracy.

Variable importance based on randomization

• This measure is based on how much the predictive accuracy (MSE or gini indiex) is decreased when the variable is replaced by a permuted version of it. You find a drawing here.

Problem 2 – Regression (Book Ex. 8)

```
a)
library(ISLR)
data("Carseats")
set.seed(4268)
n <- nrow(Carseats)</pre>
train <- sample(n, 0.7*nrow(Carseats), replace = FALSE)
Carseats.train <- Carseats[train,]</pre>
Carseats.test <- Carseats[-train,]</pre>
  b)
library(tree)
tree.mod <- tree(Sales ~ ., Carseats, subset = train)</pre>
summary(tree.mod)
##
## Regression tree:
## tree(formula = Sales ~ ., data = Carseats, subset = train)
## Variables actually used in tree construction:
## [1] "ShelveLoc" "Price"
                                                     "Income"
                                                                    "CompPrice"
                                      "Age"
```

```
## [6] "Population" "Advertising" "Education"
## Number of terminal nodes: 18
## Residual mean deviance: 2.609 = 683.6 / 262
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.74000 -1.12400 -0.06522 0.00000 1.06800 4.47200
plot(tree.mod)
text(tree.mod, pretty = 0)
```


- Shelf location ('ShelveLoc') is should be one of the important predictors, with bad/medium locations correlating with lower sales while good location leads to higher sales in general.
- Age criteria suggests that younger customers tend to contribue higher sales.
- For higher prices, Advertising becomes relevant, indicating that higher marketing efforts result in higher sales.
- etc.

We see that trees with sizes 11, 12, 16 and 17 have similar deviance values. We might choose the tree of size 11 as it gives the simpler tree.

```
pr.tree <- prune.tree(tree.mod, best = 11)
plot(pr.tree)
text(pr.tree, pretty = 0)</pre>
```


[1] 4.378499

There is a slight reduction in MSE for the pruned tree with 11 leaves.

d)

```
library(randomForest)
dim(Carseats)
```

```
## [1] 400 11
```

[1] 2.122958

Bagging decreases the test MSE significantly to 2.12. From the importance plots we might conclude that Priceand ShelveLoc are the most important Variables.

importance(bag.Carseats)

```
##
                 %IncMSE IncNodePurity
               26.803869
## CompPrice
                             218.740455
## Income
               10.284817
                             127.447480
## Advertising 25.795425
                             196.438893
## Population
                6.084270
                              92.149065
## Price
               67.791459
                             667.696518
## ShelveLoc
               75.485534
                             734.902022
## Age
               24.961130
                             229.491494
## Education
                3.423565
                              64.510742
## Urban
               -1.373635
                               9.423406
## US
                              10.105870
                3.141449
varImpPlot(bag.Carseats)
```

bag.Carseats

e)

[1] 2.25397

We use $p/3 = 10/3 \approx 3$ trees, and we obtain an MSE of 2.25 which is slightly larger than Bagging MSE. The two most important Variables are again Priceand ShelveLoc.

importance(rf.Carseats)

```
##
                 %IncMSE IncNodePurity
## CompPrice
               15.789484
                              211.79213
## Income
                5.415374
                              174.79625
## Advertising 18.402600
                              210.47149
## Population
                1.076874
                              148.09993
## Price
               45.548596
                              577.68865
## ShelveLoc
               47.810006
                              549.62278
               15.936114
                              241.99130
## Age
## Education
                3.275725
                              104.89503
## Urban
               -1.646580
                               19.63668
## US
                5.427599
                               36.45647
varImpPlot(rf.Carseats)
```

rf.Carseats

f)
set.seed(123)

train.predictors <- Carseats.train[, -1]
test.predictors <- Carseats.test[, -1]</pre>

```
Y.train <- Carseats.train[, 1]
Y.test <- Carseats.test[, 1]
ntree <- 500
bag.Car <- randomForest(train.predictors,</pre>
                         y = Y.train,
                         xtest = test.predictors,
                         ytest = Y.test,
                         mtry = 10,
                         ntree = ntree)
rf.Car <- randomForest(train.predictors,</pre>
                        y = Y.train,
                        xtest = test.predictors,
                        ytest = Y.test,
                        mtry = 3,
                        ntree = ntree)
plot(1:ntree,
     bag.Car$test$mse,
     col = "blue",
     type = "1",
     xlab = "Number of Trees",
     ylab = "Test MSE",
     ylim = c(2, 2.8))
lines(1:ntree, rf.Car$test$mse, col = "green")
legend("topright",
       c("m = p", "m = p/3"),
       col = c("blue", "green"),
       cex = 1,
       lty = 1)
                                                 m = p
                                                 m = p/3
     9
     ď
Test MSE
     2.4
     2
     \alpha
     2.0
            0
                    100
                            200
                                     300
                                              400
                                                       500
                          Number of Trees
```

NB! Typically, RandomForest models outperform Bagging models due to their decorrelation property stemming from a limited selection of predictors.

Problem 3 – Classification

```
library(kernlab)
data(spam)
  a)
?spam
  b)
library(ISLR)
set.seed(4268)
n <- nrow(spam)</pre>
train <- sample(1:n, 0.7 * n, replace = FALSE)</pre>
test <- (1:n)[-train]
spam.train <- spam[train,]</pre>
spam.test <- spam[-train,]</pre>
  c)
spam.tree <- tree(type~.,spam,subset=train)</pre>
plot(spam.tree)
text(spam.tree, pretty = 1)
                                        charExclamation < 0.0795
                            remove < 0.045
                                                         charDollar < 0.0065
                   charDollar < 0.0575
                                      spam
                                                    remove < 0.065
                                                                  hpl < 0.395
                             hp < 0.21
                                                                 spam nonspam
 hp < 0.015
capitalLqng < 9.5
                     nonspam spam nonspam
                                              capitalAve < 2.7545
                                        charExclamation < 0.838
nonspam
     nonspam spam
                                          nonspam spam
summary(spam.tree)
##
## Classification tree:
## tree(formula = type ~ ., data = spam, subset = train)
## Variables actually used in tree construction:
## [1] "charExclamation" "remove"
                                                    "charDollar"
                                                                         "george"
## [5] "hp"
                              "capitalLong"
                                                    "our"
                                                                         "capitalAve"
## [9] "hpl"
## Number of terminal nodes: 14
## Residual mean deviance: 0.4801 = 1539 / 3206
```

```
## Misclassification error rate: 0.08975 = 289 / 3220
  d)
yhat <- predict(spam.tree,spam[test,],type="class")</pre>
response.test <- spam$type[test]</pre>
misclass <- table(yhat,response.test)</pre>
misclass
##
             response.test
## yhat
              nonspam spam
##
     nonspam
                   781
                         67
##
     spam
                    67
                        466
1 - sum(diag(misclass)) / sum(misclass)
## [1] 0.09703114
  e)
set.seed(4268)
cv.spam <- cv.tree(spam.tree, FUN = prune.misclass)</pre>
plot(cv.spam$size, cv.spam$dev, type = "b")
     1200
     1000
cv.spam$dev
     800
     009
```

According to the plot the optimal number of terminal nodes is 6 (or larger). We choose 6 as this gives the simplest tree, and prune the tree according to this value.

10

12

14

400

2

4

6

8

cv.spam\$size

```
prune.spam <- prune.misclass(spam.tree, best = 6)

plot(prune.spam)
text(prune.spam, pretty = 1)</pre>
```


We predict the response for the test data:

```
yhat.prune <- predict(prune.spam, spam[test, ], type = "class")</pre>
misclass.prune <- table(yhat.prune, response.test)</pre>
misclass.prune
##
              response.test
## yhat.prune nonspam spam
      nonspam
                   796 104
                    52 429
##
      spam
The misclassification rate is
1 - sum(diag(misclass.prune)) / sum(misclass.prune)
## [1] 0.1129616
  f)
library(randomForest)
bag.spam <- randomForest(type ~ .,</pre>
                           data = spam,
                           subset = train,
                           mtry = ncol(spam) - 1,
                           ntree = 500,
                           importance = TRUE)
```

We predict the response for the test data as before:

```
yhat.bag <- predict(bag.spam, newdata = spam[test, ])
misclass.bag <- table(yhat.bag, response.test)
misclass.bag</pre>
```

```
## response.test
## yhat.bag nonspam spam
## nonspam 810 43
## spam 38 490
```

The misclassification rate is

```
1 - sum(diag(misclass.bag)) / sum(misclass.bag)
## [1] 0.05865315
```

g)

We now use the random forest-algorithm and consider only $\sqrt{57} \approx 8$ of the predictors at each split. This is specified in mtry.

We study the importance of each variable

```
importance(rf.spam)
```

If MeanDecreaseAccuracy and MeanDecreaseGini are large, the corresponding covariate is important.

```
varImpPlot(rf.spam)
```

rf.spam

In this plot we see that charExclamation is the most important covariate, followed by remove and charDollar. This is as expected as these variables are used in the top splits in the classification trees we have seen so far.

We now predict the response for the test data.

```
yhat.rf <- predict(rf.spam, newdata = spam[test, ])
misclass.rf <- table(yhat.rf, response.test)
1 - sum(diag(misclass.rf)) / sum(misclass.rf)</pre>
```

[1] 0.044895

The misclassification rate is given by

misclass.rf

```
## response.test
## yhat.rf nonspam spam
## nonspam 824 38
## spam 24 495
```

h) The ranks of misclassification rates: 1) random forest, 2) bagging, 3) decision tree, with a higher rank indicating a lower misclassification rate. This order is what we expected.