Ang 152 US

UNITED STATES PATENT AND TRADEMARK OFFICE

I, Charles Edward SITCH BA,

Managing Director of RWS Group Ltd UK Translation Division, of Europa House, Marsham Way, Gerrards Cross, Buckinghamshire, England declare;

- 1. That I am a citizen of the United Kingdom of Great Britain and Northern Ireland.
- 2. That the translator responsible for the attached translation is well acquainted with the German and English languages.
- 3. That the attached is, to the best of RWS Group Ltd knowledge and belief, a true translation into the English language of the accompanying copy of the specification filed with the application for a patent in Germany on 19 December 2002 under the number 102 61 804.6 and the official certificate attached thereto.
- 4. That I believe that all statements made herein of my own knowledge are true and that all statements made on information and belief are true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the patent application in the United States of America or any patent issuing thereon.

Chile.

For and on behalf of RWS Group Ltd
The 30th day of October 2007

FEDERAL REPUBLIC OF GERMANY

[Eagle crest]

Priority Certificate for the filing of a Patent Application

File Reference:

102 61 804.6

Filing date:

19 December 2002

Applicant/Proprietor: Argolinz Melamin GmbH, Linz/AT

Title:

Direct synthesis process for preparing etherified melamine resin

condensates, melamine resin condensates and their use

IPC:

C 08 G, C 08 J, C 08 L

The attached documents are a correct and accurate reproduction of the original submission for this Application.

Munich, 12 December 2003

German Patent and Trademark Office The President

[Seal of the German Patent and Trademark Office]

pp

[signature]

Agurks

- 1 - AMG152

Description

Direct synthesis process for preparing etherified melamine resin condensates, melamine resin condensates and their use

The invention relates to a direct synthesis process for etherified melamine resin condensates according to the precharacterizing clause of Claim 1, to a use of the melamine resin condensates according to Claim 21 and to melamine resin condensates according to Claim 22.

Direct synthesis processes for preparing etherified melamine resin condensates are known.

15

20

25

30

35

10

5

According to DE-A 25 16 349 and US-A 4,425,466, etherified methylolaminotriazines can be prepared by reacting aminotriazines with formaldehyde and alcohols in the presence of strong organic acids at from 80 to 130°C. BE-A 623 888 describes the use of ion exchangers in the direct preparation of etherified formaldehyde resins. The disadvantage with these known processes is that they cannot prepare relatively highly condensed melamine resin ethers, and that the melamine resin ethers formed still contain hydroxymethyleneamino groups bonded to the triazine rings of the melamine resin condensates and still retain -NH-CH2-O-CH2-NHgroups linking the triazine rings, the result of this being that, during curing, formaldehyde is eliminated and microcracks form in the cured resins and coatings.

It is an object of the invention to provide a direct synthesis process for preparing etherified melamine resin condensates which have average molecular weights of from 500 to 50 000 and which are free from hydroxymethyleneamino groups bonded to the triazine rings

and from $-NH-CH_2-O-CH_2-NH-$ groups linking the triazine rings.

This object is achieved by way of a direct synthesis process in which

- a) in a first step of the reaction, an etherified melamine resin precondensate is prepared in alcoholic solution,
- b) in at least one vaporization step, the concentration of the etherified melamine resin precondensate in alcoholic solution is increased, C₄-C₁₈ alcohols, diols of the type represented by HO-R-OH and/or tetrahydric alcohols based on erythritol being added to the melamine resin precondensate prior to, during and/or after the concentration-increase process,
 - c) in a second step of the reaction, the increased-concentration melamine resin precondensate is reacted, using a mixer, in particular a kneader.
- In one advantageous embodiment of the inventive process, after the second step of the reaction the etherified melamine resin condensate is discharged and pelletized.
- Methanol is advantageously used as alcohol in the first step of the reaction. There are two advantageous methods for carrying out the methylolation and the etherification.
- On the one hand, the methylolation and the etherification are executed in succession, and on the other hand the methylolation and the etherification are executed simultaneously.
- In the first method, by way of example, the melamine is first methylolated at a preferred pH of from about 7 to 9 by adding a formaldehyde component, such as formaldehyde or a mixture of formaldehyde and methanol,

and the resultant methylolmelamine is then etherified under acidic conditions, using an alcohol, preferably methanol. This etherification preferably takes place at temperatures of from 70 to 160°C, at pressures from 1.3 to 20 bar and at a preferred pH of from 5.5 to 6.5. The reaction time may be varied from a few seconds to 1 hour and is typically from 5 to 40 minutes. Continuous and/or batchwise operation is possible here.

consists 10 The second method in simultaneous methylolation and etherification in the first step of the reaction. By way of example, methanol alcohol used for the etherification. By way of example, the dispersion comprising from 10 to 60% by weight of 15 melamine is prepared by introducing melamine methanol or a mixture of from 5 to 95% by weight of and from 95 to 5왕 by weight hydrocarbons at a temperature of from 30 to 95°C. Once a pH of from 5.5 to 6.5 has been established, 20 formaldehyde solution with а formaldehyde aqueous concentration of from 35 to 55% by weight and/or pformaldehyde is metered in as formaldehyde component. The formaldehyde solution may comprise up to 15% by weight of methanol. The reaction mixture is reacted at 25 a reaction temperature of from 70 to 110°C, pressure of from 1.3 to 5 bar and for a reaction time of from 5 to 40 minutes to give etherified melamine precondensates. The resultant alcoholic solution of the etherified melamine resin precondensate is cooled to 40 - 60°C. 30

The molar melamine/formaldehyde ratio is advantageously from 1:2 to 1:4. The molar melamine/methanol ratio is advantageously from 1:10 to 1:20. These molar ratios apply to both methods for carrying out the first step of the reaction.

35

Particularly suitable C_4 - C_8 hydrocarbons for dispersing melamine in mixtures of from 5 to 95% by weight of methanol and from 95 to 5% by weight of C_4 - C_8 hydrocarbons in the first step of the reaction are: isobutane, pentane, heptane and/or isooctane.

In the first step of the reaction in one embodiment of the inventive process, the formaldehyde component used comprises a mixture of 35% by weight of formaldehyde, 15% by weight of methanol and 50% by weight of water. Alternatively, a mixture of 50% by weight of formaldehyde and 50% by weight of water may be used in the first step of the reaction.

15 Paraformaldehyde may also be used as formaldehyde component in the first step of the reaction.

The preferred reaction temperature in the first step of the reaction is in the range from 70 to 160°C, particularly preferably from 95 to 100°C.

In one preferred embodiment of the first step of the reaction, the reaction takes place in the presence of acidic, or of a mixture of acidic and basic, ion exchangers. By way of example, suitable ion exchangers are ion exchangers based on chloromethylated and trimethylolamine-aminated styrene-divinylbenzene copolymers or based on sulphonated styrene-divinylbenzene copolymers.

30

5

10

20

25

The concentration of the alcoholic, preferably methanolic, melamine resin precondensate solution obtained in the first step of the reaction is then increased through at least one vaporization step.

35

It is preferable to carry out two vaporization steps. By way of example, once a pH of less than 10 has been established,

concentration of the etherified melamine resin precondensate is increased in a first evaporator stage removal οf water/methanol the mixture temperatures of from 60 to 100°C and at a pressure of from 0.2 to 1 bar, until the solids content etherified melamine resin precondensate is from 65 to 85% by weight, and is increased in a second evaporator intended to achieve a solids etherified melamine resin precondensate of from 95 to 99% by weight at from 60 to 120°C and from 0.1 to 1 bar.

Prior to and/or during the concentration increase process, i.e. prior to the first and/or prior to the second evaporator stage and/or after the concentrationincrease process, i.e. prior to the second step of the reaction, C_4 - C_{18} alcohols, diols of the type represented HO-R-OH and/or tetrahydric alcohols based erythritol may be added the to melamine precondensate. The molecular weights of these diols are preferably from 62 to 20 000.

Prior to and/or during the concentration increaseprocess, i.e. prior to the first and/or prior to the second vaporization stage and/or after the concentration-increase process, i.e. prior to the second step of the reaction, anhydrides and/or acids dissolved in alcohols or in water may be added to the melamine resin precondensate.

30

35

.10

15

20

25

The ratio of the ether groups of the precondensate to the hydroxy groups of the added C_4-C_{18} alcohols and/or diols may be from 1:0.5 to 1:0.1, for example. Examples of suitable C_4-C_{18} alcohols are butanol, ethylhexyl alcohol, dodecvl alcohol and stearyl alcohol.

The added diols are preferably diols where the substituent R has one of the following structures:

 $C_{2}-C_{18}-alkylene,\\ -CH\left(CH_{3}\right)-CH_{2}-O-\left(C_{2}-C_{12}\right)-alkylene-O-CH_{2}-CH\left(CH_{3}\right)-,\\ -CH\left(CH_{3}\right)-CH_{2}-O-\left(C_{2}-C_{12}\right)-arylene-O-CH_{2}-CH\left(CH_{3}\right)-,\\ -(CH_{2}-CH_{2}-CH_{2}-CH_{2}-CO-\right)_{x}-\left(CH_{2}-CHR\right)_{y}-\\ -\left[CH_{2}-CH_{2}-O-CH_{2}-CH_{2}\right]_{n}-,\\ -\left[CH_{2}-CH\left(CH_{3}\right)-O-CH_{2}-CH\left(CH_{3}\right)\right]_{n}-,\\ -\left[CH_{2}-CH\left(CH_{3}\right)-CH_{2}-CH\left(CH_{3}\right)\right]_{n}-,\\ -\left[(CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}\right]_{n}-,\\ -\left[(CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}\right]_{n}-,\\ -\left[(CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}\right]_{n}-,\\ -\left[(CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}\right]_{n}-,\\ -\left[(CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}\right]_{n}-,\\ -\left[(CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}\right]_{n}-,\\ -\left[(CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2})-alkylene-CO-O-\left(CH_{2}-CH_{2}-CH_{2}-CH_{2}\right]_{n}-,\\ -\left[(CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2})-alkylene-CO-O-\left(CH_{2}-CH_{2}-CH_{2}-CH_{2}\right]_{n}-,\\ -\left[(CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2})-alkylene-CO-O-\left(CH_{2}-CH_{2}-CH_{2}-CH_{2}\right)_{n}-,\\ -\left[(CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2})-alkylene-CO-O-\left(CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}\right)_{n}-,\\ -\left[(CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2})-alkylene-CO-O-\left(CH_{2}-CH_$

sequences which contain siloxane groups and are represented by the type

polyester sequences which contain siloxane groups and are represented by the type

$$-[(X)_r-O-CO-(Y)_s-CO-O-(X)_r]-,$$

where n = 1 - 200;

20 where

15

$$C_1 - C_4 - alkyl \quad C_1 - C_4 - alkyl \\ | \quad | \quad | \\ Y = - \{ (C_6 - C_{14}) - arylene - CO - O - (\{Si - O - [Si - O]_y - CO - (C_6 - C_{14})arylene - \} \\ | \quad | \quad | \\ C_1 - C_4 - alkyl \quad C_1 - C_4 - alkyl$$

or

where r = 1 - 70; s = 1 - 70 and y = 3 - 50;

polyether sequences which contain siloxane groups and are represented by the type

$$C_1-C_4-alkyl$$
 $C_1-C_4-alkyl$ $|$ $|$ $-CH_2-CHR'_2-O-({Si-O_y}-CHR'_2-CH_2-|$ $|$ $|$ $C_1-C_4-alkyl$ $C_1-C_4-alkyl$

where $R'_2 = H$; C_1-C_4 -alkyl and y = 3 - 50;

10

5

sequences based on alkylene oxide adducts of melamine and represented by the type of

 $2-amino-4, 6-di-(C_2-C_4)$ alkyleneamino-1,3,5-triazine sequences

15

phenol ether sequences based on dihydric phenols and on $\mbox{\ensuremath{\text{C}}}_2\mbox{-}\mbox{\ensuremath{\text{C}}}_8$ diols and represented by the type of

 $-\left(C_2-C_8\right) \text{ alkylene-O-}\left(C_6-C_{18}\right) - \text{arylene-O-}\left(C_2-C_8\right) - \\ \text{alkylene sequences.}$

Examples of diols of the type represented by $HO-R_1-OH$, where R_1 = C_2-C_{18} -alkyl, are ethylene glycol, butanediol, octanediol, dodecanediol and octadecanediol.

Examples of diols of the type represented by $HO-R_2-OH$, where $R_2 = -[CH_2-CH_2-O-CH_2-CH_2]_n - \text{ and } n = 1-200, \text{ are polyethylene}$ glycols with molecular weights of from 500 to 5 000.

Examples of diols represented by the type HO-R₃-OH, where

10 $R_3 = -[CH_2-CH(CH_3)-O-CH_2-CH(CH_3)]_n$ and n = 1-200, are polypropylene glycols with molecular weights of from 500 to 5 000.

Examples of diols of the type represented by $HO-R_4-OH$, where

15 $R_4 = -[-O-CH_2-CH_2-CH_2-CH_2-]_n$ and n = 1-200, are polytetrahydrofurans with molecular weights of from 500 to 5 000.

Examples of diols of the type represented by $HO-R_5-OH$, where

20 $R_5 = -[(CH_2)_{2-8}-0-CO-(C_6-C_{14})-arylene-CO-0-(CH_2)_{2-8}]_n-$ and n=1-200, are esters and polyesters based on saturated dicarboxylic acids, such as terephthalic acid, isophthalic acid or naphthalenedicarboxylic acid and on diols, such as ethylene glycol, butanediol, neopentyl glycol and/or 25 hexanediol. Preference is given to bis(hydroxyethyl) terephthalate as ester.

Examples of diols of the type represented by $HO-R_6-OH$, where

30 $R_6 = -[(CH_2)_{2-8}-O-CO-(C_2-C_{12})-alkylene-CO-O-(CH_2)_{2-8}-]_n$ and n = 1-200, are polyesters based on saturated dicarboxylic acids, such as adipic acid and/or succinic acid, on unsaturated dicarboxylic acids, such as maleic acid, fumaric acid and/or itaconic acid, and on diols, such as ethylene glycol, butanediol, neopentyl glycol and/or hexanediol.

Examples of diols of the type represented by $HO-R_7-OH$, where

 R_7 = sequences containing siloxane groups and represented by the type

are 1,3-bis(hydroxybutyl)tetramethyldisiloxane and 1,3-bis(hydroxyoctyl)tetraethyldisiloxane.

Examples of polyester sequences having diols containing siloxane groups and represented by the type $HO-R_8-OH$, where

$$R_8 = -[(X)_r-O-CO-(Y)_s-CO-O-(X)_r]-,$$
 where

15
$$X = \{(CH_2)_{2-8}-O-CO-(C_6-C_{14})-arylene-CO-O-(CH_2)_{2-8}-\}$$
 or
$$-\{(CH_2)_{2-8}-O-CO-(C_2-C_{12})-alkylene-CO-O-(CH_2)_{2-8}-\};$$

$$C_1-C_4-alkyl \quad C_1-C_4-alkyl \quad | \quad | \quad |$$

$$Y = -\{(C_6-C_{14})-arylene-CO-O-(\{Si-O-[Si-O]_y-CO-(C_6-C_{14})arylene-\}\}$$

$$| \quad | \quad |$$

$$C_1-C_4-alkyl \quad C_1-C_4-alkyl$$

5

$$C_1-C_4-alkyl$$
 $C_1-C_4-alkyl$

-{O-CO-(C_2-C_{12})-alkylene-CO-O-({Si-O-[Si-O]_y-CO-(C_2-C_{12})alkylene-CO-};

$$C_1-C_4$$
-alkyl C_1-C_4 -alkyl;

where r = 1 - 70; s = 1 - 70 and y = 3 - 50, are polyesters containing hydroxy end groups and based on aromatic C_6 - C_{14} -arylenedicarboxylic acids, such as terephthalic acid or naphthalenedicarboxylic acid, or on aliphatic C_2 - C_{12} -alkylenedicarboxylic acids, such as adipic acid, maleic acid or pimelic acid. Diols, such as ethylene glycol, butanediol, neopentyl glycol or hexanediol, and on siloxanes, such as hexamethyldisiloxane or α, ω -dihydroxypolydimethylsiloxane.

Examples of polyetherdiols $HO-R_9-OH$ containing siloxane groups, where R_9 is polyether sequences represented by the type

15

20

5

10

where $R'_2 = H$; C_1-C_4 -alkyl and y = from 3 to 50 are polyetherdiols based on siloxanes, such as hexamethyl-disiloxane or α, ω -dihydroxypolydimethylsiloxane, and on alkylene oxides, such as ethylene oxide or propylene oxide.

Examples of diols based on alkylene oxide adducts of the melamine represented by the type

25 2-amino-4,6-bis(hydroxy-(C_2-C_4)-alkyleneamino)-1,3,5-triazine

are diols based on melamine and ethylene oxide or propylene oxide.

Examples of phenol ether diols based on dihydric phenols and C_2 - C_8 diols represented by the type

bis(hydroxy- (C_2-C_8) -alkylene-O-)(C_6-C_{18})-arylene are ethylene oxide adducts or propylene oxide adducts onto diphenylolpropane.

10

15

20

Besides diols as polyhydric alcohols, trihydric alcohols, such as glycerol, or tetrahydric alcohols based on erythritol, or mixtures of these with dihydric alcohols, may also be used in the direct synthesis process.

If C_4 - C_{18} alcohols and/or diols of the type represented by HO-R-OH are added prior to the first evaporator stage and/or prior to the second evaporator stage, mixing sections are installed to homogenize the components prior to the evaporator stages.

In a second step of the reaction, the melamine resin precondensate treated with alcohols and/or with diols 25 reacted in a kneader. This is preferably continuous kneader. The reaction time in the kneader is from about 2 to 12 min, and the reaction temperature is 250°C. 180 to Unreacted reactants from about are removed during venting in the kneader, 30 etherified melamine resin condensate is then preferably discharged and granulated.

Up to 75% by weight of fillers and/or reinforcing fibres, other reactive polymers of the type represented by ethylene copolymers, maleic anhydride copolymers,

modified maleic anhydride copolymers, poly(meth)acrylates, polyamides, polyesters and/or polyurethanes may also be added to the kneader, as well as up to 2% by weight of stabilizers, UV absorbers and/or auxiliaries, each weight being based on the etherified melamine resin condensates.

The continuous kneaders in the second step of the reaction may comprise twin-screw extruders which have vent zones after the feed zone and also after the reaction zone. These twin-screw extruders may have an L/D ratio of from 32 to 48 with a corotating arrangement of screws.

In principle, the kneaders used may also comprise other, at least to some extent self-cleaning, continuously operating machines suitable for the processing of highly viscous substances and having vacuum venting (e.g. Buss Co-Kneader, single-screw extruders, extruders in a cascade arrangement, single- or twin-screw kneaders of the type represented by LIST ORP; CRP, Discotherm, etc.).

20

25

30

35

15

5

10

To remove any inhomogeneity, the melt may be conveyed into a melt filter, using a gear pump. The melt may be converted into pellets in pelletizers or in pastille-production systems by metering the melt through a feed device onto a continuous steel belt and cooling and solidifying the pastilles deposited.

Examples of suitable fillers which may be metered into the continuous kneader during the direct synthesis process are: Al₂O₃, Al₃(OH)₃, barium sulphate, calcium carbonate, glass beads, siliceous earth, mica, powdered quartz, powdered slate, hollow microbeads, carbon black, talc, powdered stone, wood flour, cellulose powder and/or ground shells or ground kernels, e.g. ground peanut shells or around olive kernels. Preferred fillers are phyllosilicates οf the type represented by montmorillonite,

bentonite, kaolinite, muscovite, hectorite, fluorohectorite, kanemite, revdite, grumantite, ilerite, saponite, beidelite, nontronite, stevensite, laponite, taneolite, vermiculite, halloysite, volkonskoite, magadite, rectorite, kenyaite, sauconite, borofluorophlogopites and/or synthetic smectites.

5

20

25

Examples of suitable reinforcing fibres which may be metered into the continuous kneader during the direct synthesis process are inorganic fibres, in particular glass 10 fibres and/or carbon fibres, natural fibres, in particular cellulose fibres, such as flax, jute, kenaf, and wood fibres, and/or synthetic fibres, in particular fibres of polyacrylonitrile, of polyvinyl alcohol, of polyvinyl acetate, of polypropylene, of polyesters and/or of polyamides.

Examples of reactive polymers of the type represented by ethylene copolymers, which can be metered into the continuous kneader during the direct synthesis process are partially hydrolyzed ethylene-vinyl acetate copolymers, ethylene-butyl acryl-acrylic acid copolymers, ethylene-hydroxyethyl acrylate copolymers and ethylene-butyl acrylate-glycidyl methacrylate copolymers.

Examples of reactive polymers of the type represented by maleic anhydride copolymers which may be metered into the continuous kneader during the direct synthesis process are C_2 - C_{20} olefin-maleic anhydride copolymers and copolymers of maleic anhydride and C_8 - C_{20} vinylaromatics.

Examples of the C₂-C₂₀ olefin components which may be present in the maleic anhydride copolymers are ethylene, 30 propylene, 1-butene, isobutene, diisobutene, 1-hexene, 1-octene, 1-heptene, 1-pentene, 3-methyl-1-butene, 4-methyl-1-pentene, methylethyl-1-pentene, ethyl-1-pentene, ethyl-1-hexene, 1-octadecene and 5,6-dimethylnorbornene.

Examples of the C_8 - C_{20} vinylaromatic components which may be present in the maleic anhydride copolymers are

styrene, α-methylstyrene, dimethylstyrene, isopropenylstyrene, p-methylstyrene and vinylbiphenyl.

Examples of modified maleic anhydride copolymers which may be metered into the continuous kneader during the direct synthesis process are partially or completely esterified, amidated or, respectively, imidated maleic anhydride copolymers.

5

30

10 Particularly suitable substances modified are copolymers of maleic anhydride with C_2-C_{20} olefins or with C₈-C₂₀ vinylaromatics with a molar ratio of from 1:1 to 1:9 and weight-average molecular weights of from 5 000 to 500 000, which have been reacted with ammonia, 15 $C_1 - C_{18}$ monoalkylamines, with $C_6 - C_{18}$ monoaminoalcohols, monoamines, with $C_2 - C_{18}$ monoaminated poly(C2-C4-alkylene) oxides of molecular weight from 400 to 3 000, and/or with monoetherified poly(C2-C4-alkylene) oxides of molecular weight from 100 to 10 000, the molar ratio of anhydride groups in the 20 copolymer to ammonia, amino groups of the monoalkylamines, of the C_6-C_{18} aromatic monoamines or the C₂-C₁₈ monoaminoalcohols or monoaminated poly(C₂-C₄oxide and/or hydroxy alkylene) groups C4-alkylene) oxide being from 1:1 to 20:1. 25

Examples of reactive polymers of the type represented by poly(meth)acrylates which can be metered into the continuous kneader during the direct synthesis process are copolymers based on functional unsaturated (meth)acrylate monomers, such as acrylic hydroxyethyl acrylate, glycidyl acrylate, methacrylic hydroxybutyl methacrylate or acid. glycidyl methacrylate, non-functional unsaturated and on 35 (meth)acrylate monomers, such as ethyl acrylate, butyl ethylhexyl acrylate, acrylate, methyl methacrylate ethyl acrylate and/or butyl methacrylate, and/or on C₈-C₂₀-vinylaromatics. Preference is given to copolymers based on methacrylic acid, hydroxyethyl acrylate,

methyl methacrylate and styrene. Examples of reactive polymers of the type represented by polyamides which may be metered into the continuous kneader during the direct synthesis process are nylon-6, nylon-6,6, nylon-11, nylon-12, polyaminoamides composed of polycarboxylic acids and of polyalkyleneamines, and also the corresponding methoxylated polyamides.

5

25

30

35

Examples of reactive polymers of the type represented by 10 polyesters which may be metered into the continuous kneader during the direct synthesis process polyesters with molecular weights of from 2 000 to 15 000 composed of saturated dicarboxylic acids, such as phthalic acid, isophthalic acid, adipic acid and/or succinic acid, of unsaturated dicarboxylic acids, such 15 as maleic acid, fumaric acid and/or itaconic acid, and of diols, such as ethylene glycol, butanediol, neopentyl and/or hexanediol. Preference glycol is given branched polyesters based neopentyl on glycol, trimethylolpropane, isophthalic acid and azelaic acid. 20

Examples of reactive polymers of the type represented by polyurethanes which may be metered into the continuous kneader during the direct synthesis process are noncrosslinked polyurethanes based on tolylene diphenylmethane diisocyanate, diisocyanate, butane diisocyanate and/or hexane diisocyanate as diisocyanate butanediol, hexanediol components and polyalkylene glycols as diol components with molecular weights of from 200 to 30 000.

Examples of suitable stabilizers and UV absorbers which may be metered into the continuous kneader during the direct synthesis process are piperidine derivatives, benzophenone derivatives, benzotriazole derivatives, triazine derivatives and/or benzofuranone derivatives.

Examples of suitable auxiliaries which may be metered into the continuous kneader during the direct synthesis

process are latent hardeners, such as ammonium sulphate and/or ammonium chloride, and/or processing aids such as calcium stearate, magnesium stearate and/or waxes.

5 The particular advantage of the direct synthesis process of the invention is that the molecular weight of the etherified melamine resin condensates can be controlled with precision via the addition of C_4-C_{18} alcohols and/or diols represented by the type HO-R-OH. Without addition of C_4-C_{18} alcohols and/or diols represented by the type 10 HO-R-OH, the increase in molecular weight in etherified melamine resin condensates takes place in an uncontrolled manner by way of the azomethine groups present therein. The regulator function of the added C_4 -15 C₁₈ alcohols and/or diols represented by the type HO-R-OH consists in the deactivation, by their hydroxy groups, the azomethine groups present in the etherified melamine resin condensates. When diols are added, the deactivation takes place with simultaneous linking of 20 two melamine resin clusters.

The inventively prepared etherified melamine resin condensates have average molecular weights of from 500 to 50 000.

25

30

The inventively prepared etherified melamine resin condensates are preferably mixtures with average molecular weights of from 500 to 2 500, particularly preferably from 800 to 1 500, composed of tris(methoxymethylamino)triazine and its higher-molecular-weight oligomers.

The etherified melamine resin condensates prepared by the process of the invention are preferably suitable for processing in the melt, in particular as hot-melt adhesives and for producing sheets, pipes, profiles, injection mouldings, fibres, coatings and foams, or for processing from solution or dispersion in the form of an adhesive, impregnating resin, surface-coating resin or

laminating resin or for producing foams, microcapsules or fibres.

The particular advantage of the etherified melamine resin condensates prepared by the direct synthesis process with average molecular weights of from 500 to 50 000 is that, due to higher melt viscosity when conventional triazine with derivative compared melamine-formaldehyde precondensates, such as processed precondensates, they can be thermoplastics by processes operating in the melt, and the hardness and flexibility of the resultant products are adjustable over a wide range of properties.

5

10

15

20

25

30

35

When comparison is made with moulding compositions based on low-molecular-weight amino plastic precondensates, there is a dramatic reduction in the proportion of volatile cleavage products present during the curing of the etherified melamine resin condensates prepared by the direct synthesis process, during the shaping of the melt to give the product. For this reason, crack-free products can be produced from the etherified melamine resin condensates with short cycle times.

Preferred application sectors for the etherified melamine resin condensates prepared by the direct synthesis process are hot-melt adhesives, and also the production of sheets, pipes, profiles, injection mouldings, fibres and foams.

As long as they do not comprise any fillers or any other polymers, the etherified melamine condensates prepared by the direct synthesis process are soluble in polar solvents of the type represented by C_1 -C₁₀ alcohols, dimethylformamide or dimethyl sulphoxide in concentrations of up to 60% by weight. The solutions or dispersions are suitable as an adhesive, impregnating agent, surface-coating resin formulation or laminating resin formulation, or for producing foams, microcapsules of fibres. The advantages the solutions dispersions of the etherified melamine resin condensates prepared by the direct synthesis process, when compared

with conventional triazine resin precondensates are higher viscosity and the resultant better flow properties or higher strengths of uncured intermediate products during the production of fibres or of foam.

5

The object is also achieved by way of melamine resin products which can be produced using the etherified melamine resin condensates prepared by the direct synthesis process.

10

The invention is illustrated by the following examples.

Inventive Example 1

- 15 A melamine dispersion is prepared by introducing 12.0 kg of melamine into 42.6 kg of methanol at 95°C in a stirred autoclave, and once a pH of 6 has been established in the stirred autoclave а temperature-controlled in advance to 90°C, of 10 kg of 20 formaldehyde, 2.7 kg of methanol and 16.6 kg of water is metered in under pressure as formaldehyde component, and the reaction mixture is reacted at a reaction temperature of 95°C for a reaction time of 5 min.
- After cooling to 65°C, a pH of 9 is established by 25 hydroxide solution, sodium and the adding N/10etherified melamine resin precondensate dissolved in water/methanol mixture is transferred, addition of 21.0 kg of butanol, into a first vacuum evaporator, in which the solution of the etherified 30 melamine resin precondensate is concentrated at 80°C to give a highly concentrated melamine resin solution whose solids content is 75% by weight

and whose butanol content is 10% by weight.

The highly concentrated solution of the etherified melamine resin is subsequently transferred into a second vacuum evaporator and concentrated at 90°C to give a syrupy melt whose solids content is 95% by weight and whose butanol content is 5% by weight.

The syrupy melt is metered into the feed hopper of a 10 GL 27 D44 (Leistritz) laboratory extruder with vacuum venting downstream of the reaction zone prior temperature profile 220°C/220°C/ product discharge, 220°C/240°C/240°C/240°C/240°C/240°C/240°C/190°C/150°C. extruder rotation rate 150 rpm, and, after a residence 15 time of 3.2 min in the reaction zone, volatile content is removed at 100 mbar, and the discharged extrudate is chopped in a pelletizer.

The etherified melamine resin condensate has a weightaverage molecular weight (GPC) of 800 and a butoxy 20 οf 4.1% group content by weight. Neither hydroxymethyleneamino groups bonded to the triazine rings of the melamine resin condensate nor -NH-CH2-O-CH2-NH- groups linking triazine rings are discernible 25 in the IR spectrum.

Inventive Example 2

melamine dispersion is prepared by introducing 30 12.0 kg of melamine into 42.6 kg of methanol at 95°C in a stirred autoclave, and once a pH of 6.1 has been established in the stirred autoclave а mixture, temperature-controlled in advance to 92°C, of 8.6 kg of formaldehyde and 8.6 kg of water is metered in under pressure as formaldehyde component, and the reaction 35 mixture is reacted at a reaction temperature of 95°C

for a reaction time of 6 min. After cooling to 65°C, a pH of 9.2 is established by adding N/10 sodium hydroxide solution, and the etherified melamine resin precondensate dissolved in the water/methanol mixture is transferred into a first vacuum evaporator, in which the solution of the etherified melamine resin precondensate is concentrated at 80°C to give a highly concentrated melamine resin solution whose solids content is 78% by weight.

10

15

5

The highly concentrated solution of the etherified melamine resin is subsequently mixed, in a mixing section, with 0.8 kg of Simulsol BPLE (oligoethylene glycol ether of bisphenol A), transferred into a second vacuum evaporator and concentrated at 90°C to give a syrupy melt whose solids content is 98% by weight and whose butanol content is 2% by weight.

The syrupy melt is metered into the feed hopper of a 20 GL 27 D44 (Leistritz) laboratory extruder with vacuum venting zones downstream of the feed zone and also downstream of the reaction zone prior to product discharge, temperature profile 220°C/220°C/220°C/240°C/240°C/240°C/240°C/240°C/190°C/150°C,

25 extruder rotation rate 150 rpm, and the reaction mixture is devolatilized at 150 mbar, and, after a residence time of 3.2 min in the reaction zone, volatile content is removed at 100 mbar, and the discharged extrudate is chopped in a pelletizer.

30

35

The etherified melamine resin condensate has a weight-average molecular weight (GPC) of 10 000. Neither hydroxymethyleneamino groups bonded to the triazine rings of the melamine resin condensate nor $-\mathrm{NH-CH_2-O-CH_2-NH-}$ groups linking triazine rings are discernible in the IR spectrum.

Inventive Example 3

10

A melamine dispersion is prepared by introducing 12.0 kg of melamine into 42.6 kg of methanol at 95°C in a stirred autoclave, and once a pH of 5.9 has been established in the stirred autoclave а mixture, temperature-controlled in advance to 90°C, of 8.6 kg of formaldehyde, 3.5 kg of methanol and 9.9 kg of water is metered in under pressure as formaldehyde component, and the reaction mixture is reacted at a reaction temperature of 95°C for a reaction time of 10 min.

After cooling to 65°C, a pH of 9 is established by sodium hydroxide solution, adding N/10and etherified melamine resin precondensate dissolved in 15 water/methanol mixture is transferred, addition of 21.0 kg of butanol, into a first vacuum evaporator, in which the solution of the etherified melamine resin precondensate is concentrated at 82°C to give a highly concentrated melamine resin solution 20 whose solids content is 76% by weight and whose butanol content is 8% by weight.

The highly concentrated solution of the etherified melamine resin is subsequently transferred into a second vacuum evaporator and concentrated at 90°C to give a syrupy melt whose solids content is 96% by weight and whose butanol content is 4.5% by weight.

30 The syrupy melt, mixed in a mixing section with 5.0 kg of polyethylene glycol (molecular weight 800), is metered into the feed hopper of a GL 27 D44 laboratory extruder with vacuum venting zones downstream of the feed zone and downstream of the reaction zone prior to product discharge, temperature profile 220°C/220°C/220°C/24

reaction mixture is devolatilized at 150 mbar, and, after a residence time of 3.1 min in the reaction zone, volatile content is removed at 100 mbar, and the discharged extrudate is chopped in a pelletizer.

5

The etherified melamine resin condensate has a weight-average molecular weight (GPC) of 20 000 and a butoxy group content below 0.5% by weight. Neither hydroxymethyleneamino groups bonded to the triazine rings of the melamine resin condensate nor -NH-CH₂-O-CH₂-NH- groups linking triazine rings are discernible in the IR spectrum.

Inventive Example 4

15

20

10

A melamine dispersion is prepared by introducing 1.0 kg of melamine into 3.6 kg of methanol at 98°C in a 10 l stirred autoclave, and once a pH of 6 has been established in the stirred autoclave 0.84 kg of p-formaldehyde is metered in as formaldehyde component, and stirring of the reaction mixture is continued at a reaction temperature of 95°C until a clear solution has been obtained at that temperature.

After cooling to 65°C, a pH of 9 is established by adding N/10 sodium hydroxide solution, and the dissolved etherified melamine resin precondensate is transferred, after addition of 2.0 kg of butanol, into a first vacuum evaporator, in which the solution of the etherified melamine resin precondensate is concentrated at 80°C to give a highly concentrated melamine resin solution whose solids content is 79% by weight and whose butanol content is 7% by weight.

The highly concentrated solution of the etherified melamine resin is subsequently transferred into a second vacuum evaporator and concentrated at 90°C to give a syrupy melt whose solids content is 96% by weight and whose butanol content is 3.4% by weight.

The syrupy melt is metered into the feed hopper of a GL 27 D44 (Leistritz) laboratory extruder with vacuum venting downstream of the reaction zone prior to product discharge, temperature profile 220°C/220°C/220°C/220°C/240°C/240°C/240°C/240°C/240°C/190°C/150°C, extruder rotation rate 150 rpm, and, after a residence time of 3.2 min in the reaction zone, volatile content is removed at 100 mbar, and the discharged extrudate is chopped in a pelletizer.

The etherified melamine resin condensate has a weight-average molecular weight (GPC) of 4 200 and a butoxy group content of 3.8% by weight. Neither hydroxymethyleneamino groups bonded to the triazine rings of the melamine resin condensate nor -NH-CH₂-O-CH₂-NH- groups linking triazine rings are discernible in the IR spectrum.

25 Inventive Example 5

10

15

20

A melamine dispersion is prepared by introducing 12.0 kg of melamine into 42.6 kg of methanol at 99°C in a 100 l stirred autoclave, and once a pH of 6.1 has been established in the stirred autoclave a mixture, temperature-controlled in advance to 92°C, of 8.6 kg of formaldehyde and 8.6 kg of water is metered in under pressure as formaldehyde component, and the reaction mixture is reacted at a reaction temperature of 90°C for a reaction time of 15 min.

After cooling to 65°C, a pH of 9.0 is established by adding N/10 sodium hydroxide solution, and the etherified melamine resin precondensate dissolved in the water/methanol mixture is transferred, after addition of 10 kg of butanol, into a first vacuum evaporator, in which the solution of the etherified melamine resin precondensate is concentrated at 80°C to give a highly concentrated melamine resin solution whose solids content is 80% by weight and whose butanol content is 3.4% by weight.

5

10

The highly concentrated solution of the etherified melamine resin is subsequently mixed in a mixing section with 2.0 kg of bis(hydroxyethyl) terephthalate and transferred into a second vacuum evaporator and concentrated at 90°C to give a syrupy melt whose solids content is 98.5% by weight and whose butanol content is 1.5% by weight.

The syrupy melt is metered into the feed hopper of a 20 GL 27 D44 (Leistritz) laboratory extruder with vacuum downstream venting zones οf the feed zone and downstream of the reaction zone upstream of the metering equipment, temperature ancillary-stream 220°C/220°C/220°C/240°C/240°C/240°C/240°C/ 25 240°C/240°C/190°C/150°C, extruder rotation rate 150 rpm, and the reaction mixture is devolatilized at 150 mbar, and, after a residence time of 3.2 min in the reaction zone, volatile content is removed at 100 mbar, 4% by weight of Na montmorillonite (Südchemie AG) and 6% by 30 weight of polyamide D1466 (Ems-Chemie), in each case based on the melamine used, being metered into the

melt by way of the ancillary-flow metering equipment and homogenized and the discharged extrudate is chopped in a pelletizer.

5 Inventive Example 6

The modified filled melamine resin ether of inventive Example 5 is finely ground to an average particle diameter of 0.07 mm, and used to produce prepregs via powdered application to cellulose nonwovens (120 g/m² Lenzing AG, Austria) followed by melting of the powder at about 160°C in a field of infrared radiation. The amount of resin applied to the cellulose nonwoven prepregs produced is about 45% by weight.

15

The prepregs are cut to a size of 30×20 cm. produce a moulding with curved edges similar to a U profile, three prepregs and an untreated cellulose nonwoven forming an upper side are mutually superposed in a compression mould $(30 \times 20 \text{ cm})$ preheated to 160°C , 20 and the press is slowly closed, the prepregs being capable of slight deformation during this process since the resin has not yet cured. The temperature is raised to 185°C under a pressure of 150 bar and the material 25 compression moulded for 12 min. The finished workpiece is removed and slowly cooled, and the flash produced by resin discharged at the vertical flash face of the compression mould is removed by grinding.

30 In the flexural test, specimens cut by a rotary cutter from the workpiece have a modulus of elasticity of $5.8~\mathrm{GPa}$, an elongation at maximum force of 3.1% and an impact strength of $11.8~\mathrm{kJ/m^2}$.

Even though the first stage of the process in the examples took place batchwise, the process of the invention may also be operated in a continuous system, using a reactor whose operation is correspondingly continuous.

The evaporators used may comprise falling-film evaporators, rotary evaporators, or else other types of evaporator.

10

15

5

The working of the invention is not restricted to the preferred examples given above. Rather, it is possible to conceive a number of variants which utilize fundamentally different embodiments of the inventive direct synthesis process, of the use of melamine resin products, and of the melamine resin products.

Patent claims

1. Direct synthesis process for preparing etherified melamine resin condensates with average molecular weights of from 500 to 50 000, wherein the melamine resin condensates are free from hydroxymethyleneamino groups bonded to the triazine rings of the melamine resin condensate and from -NH-CH₂-O-CH₂-NH- groups which link triazine rings,

10

15

characterized in that

- a) in the first step of the reaction, an etherified melamine resin precondensate is prepared in alcoholic solution,
- b) in at least one vaporization step, the concentration of the etherified melamine resin precondensate in alcoholic solution is increased, C_4 - C_{18} alcohols, diols of the type represented by HO-R-OH and/or tetrahydric alcohols based on erythritol being added to the melamine resin precondensate prior to, during and/or after the concentration-increase process,
- 25 c) in a second step of the reaction, the increased-concentration melamine resin precondensate is reacted, using a mixer, in particular a kneader.
- Direct synthesis process according to Claim 1,
 characterized in that, after the second step of the reaction, the etherified melamine resin condensate is discharged and pelletized.
- Direct synthesis process according to Claim 1 or
 characterized in that the alcohol in the first step of the reaction is methanol.
 - 4. Direct synthesis process according to at least one of the preceding claims, characterized in that, in

the first step of the reaction, the methylolation of the melamine takes place with subsequent etherification.

5 5. Direct synthesis process according to at least one of the preceding claims, characterized in that, in the first step of the process, formaldehyde is used in the form of formalin solution at variable concentration and/or paraformaldehyde.

10

5. Direct synthesis process according to Claim 4, characterized in that the methylolation takes place at a pH of from 7 to 9 and the etherification takes place at a pH of from 5.5 to 6.5.

15

6. Direct synthesis process according to at least one of Claims 1 to 4, characterized in that, in the first step of the reaction, the methylolation and the etherification take place simultaneously.

20

- 7. Direct synthesis process according to Claim 6, characterized in that the first step of the reaction takes place at a pH of from 5.5 to 6.5.
- 25 8. Direct synthesis process according to at least one of the preceding claims, characterized in that the first step of the reaction takes place in the presence of acidic, or of a mixture of acidic and basic, ion exchangers.

30

9. Direct synthesis process according to at least one of the preceding claims, characterized in that, in the first step of the reaction, a reaction temperature of from 70 to 160°C, in particular from 95 to 100°C, is

35 established.

10. Direct synthesis process according to at least one of the preceding claims, characterized in that the

first step of the reaction is carried out using a melamine/formaldehyde molar ratio

of from 1 : 2.0 to 1 : 4.0.

- 11. Direct synthesis process according to at least one of the preceding claims, characterized in that the increased-concentration melamine resin precondensate obtained after the vaporization process has a concentration of from 95 to 99% by weight.
- 12. Direct synthesis process according to at least one 10 of the preceding claims, characterized in that the vaporization of the low-molecular-weight components takes place in two stages.
- 13. Direct synthesis process according to at least one of the preceding claims, characterized in that use is made of at least one diol represented by the type HO-R-OH with molecular weight of from 62 to 20 000 or of a mixture of at least two diols represented by the type HO-R-OH with molecular weights of from 62 to 20 000,
- 20 where the substituent R may have one of the following structures

```
C_{2}-C_{18}-alkylene, \\ -CH(CH_{3})-CH_{2}-O-(C_{2}-C_{12})-alkylene-O-CH_{2}-CH(CH_{3})-, \\ -CH(CH_{3})-CH_{2}-O-(C_{2}-C_{12})-arylene-O-CH_{2}-CH(CH_{3})-, \\ -CH(CH_{3})-CH_{2}-CH_{2}-CH_{2}-CO-)_{x}-(CH_{2}-CH_{R})_{y}-\\ -(CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2})_{n}-, \\ -[CH_{2}-CH_{2}-O-CH_{2}-CH_{2}]_{n}-, \\ -[CH_{2}-CH(CH_{3})-O-CH_{2}-CH(CH_{3})]_{n}-, \\ -[O-CH_{2}-CH_{2}-CH_{2}-CH_{2}-]_{n}-, \\ -[(CH_{2})_{2-8}-O-CO-(C_{6}-C_{14})-arylene-CO-O-(CH_{2})_{2-8}-]_{n}-, \\ -[(CH_{2})_{2-8}-O-CO-(C_{2}-C_{12})-alkylene-CO-O-(CH_{2})_{2-8}-]_{n}-, \\ where n = 1 - 200; x = 5 - 15;
```

sequences which contain siloxane groups and are represented by the type

polyester sequences which contain siloxane groups and are represented by the type

$$-[(X)_{r}-O-CO-(Y)_{s}-CO-O-(X)_{r}]-,$$

10 where

15

5

$$C_1 - C_4 - alkyl \quad C_1 - C_4 - alkyl \\ | \quad | \quad | \\ Y = - \{ (C_6 - C_{14}) - arylene - CO - O - (\{Si - O - [Si - O]_y - CO - (C_6 - C_{14})arylene - \} \\ | \quad | \quad | \\ C_1 - C_4 - alkyl \quad C_1 - C_4 - alkyl$$

or

20

where r = 1 - 70; s = 1 - 70 and y = 3 - 50;

polyether sequences which contain siloxane groups and are represented by the type

where $R'_2 = H$; C_1-C_4 -alkyl and y = 3 - 50;

sequences based on alkylene oxide adducts of melamine and represented by the type of

 $2-amino-4, 6-di-(C_2-C_4) \ alkyleneamino-1, 3, 5-triazine \\ 10 \ \ sequences$

phenol ether sequences based on dihydric phenols and on $\text{C}_2\text{-}\text{C}_8$ diols and represented by the type of

$$-(C_2-C_8)$$
 alkylene-O- (C_6-C_{18}) -arylene-O- (C_2-C_8) -

15 alkylene sequences.

5

20

- 14. Direct synthesis process according to at least one of the preceding claims, characterized in that the etherified melamine resin condensates are mixtures with average molecular weights of from 500 to 2500 composed of tris(methoxymethylamino)triazine and its higher-molecular-weight oligomers.
- Direct synthesis process according to at least one of the preceding claims, characterized in that, prior 25 to and/or during the concentration-increase process, i.e. prior to the first and/or prior to the second vaporizing stage and/or after the concentrationincrease process, i.e. prior to the second step of the 30 reaction, anhydrides and/or acids dissolved in alcohols added water are to the melamine resin precondensate.

16. Direct synthesis process according to at least one of the preceding claims, characterized in that the kneader is a continuously operating, at least to some extent self-cleaning, extruder with vacuum venting.

5

17. Direct synthesis process according to at least one of the preceding claims, characterized in that the kneader used comprises a twin-screw extruder with vent zones.

10

- Direct synthesis process according to at least one of the preceding claims, characterized in that, in the continuous kneader, up to 75% by weight of fillers and/or reinforcing fibres, other reactive polymers of 15 the type represented by ethylene copolymers, maleic anhydride copolymers, modified maleic anhydride copolymers, poly(meth) acrylates, polyamides, polyesters and/or polyurethanes are also incorporated, as are up to 2% by weight of stabilizers, UV absorbers and/or 20 auxiliaries, each weight being based on the etherified melamine resin condensates.
- 19. Direct synthesis process according to at least one of the preceding claims, characterized in that the 25 first step of the reaction is executed in a stirred tank or in a continuous reactor.
- 20. Direct synthesis process according to at least one of the preceding claims, characterized in that the 30 process is carried out either continuously or batchwise.
- 21. Use of etherified melamine resin condensates prepared by a direct synthesis process according to at least one of claims 1 to 20 for processing in the melt, in particular in the form of hot-melt adhesives and for producing sheets, pipes, profiles, injection mouldings, fibres, coatings and foams, or for processing from solution or dispersion in the form of an adhesive,

impregnating resin, surface-coating resin or laminating resin or for producing foams, microcapsules or fibres.

22. Melamine resin products, produced via a melamine resin condensate etherified using a direct synthesis process according to at least one of Claims 1 to 20.

Abstract

Direct synthesis process for preparing etherified melamine resin condensates, melamine resin condensates and their use

The invention relates to a direct synthesis process for preparing etherified melamine resin condensates with average molecular weights of from 500 to 50 000, wherein the melamine resin condensates are free from hydroxymethyleneamino groups bonded to the triazine rings of the melamine resin condensate and from -NH- $\mathrm{CH_2-0-CH_2-NH-}$ groups which link triazine rings, characterized in that

15

10

5

- a) in the first step of the reaction, an etherified melamine resin precondensate is prepared in alcoholic solution,
- b) in at least one vaporization step, the concentration of the etherified melamine resin precondensate in alcoholic solution is increased, C₄-C₁₈ alcohols, diols of the type represented by HO-R-OH and/or tetrahydric alcohols based on erythritol being added to the melamine resin precondensate prior to, during and/or after the concentration-increase process,
- c) in a second step of the reaction, the increased-concentration melamine resin precondensate is reacted, 30 using a mixer, in particular a kneader. Melamine resin condensates with average molecular weights of from 500 to 50 000 can be prepared in this way and are free from hydroxymethyleneamino groups bonded to the triazine rings and from -NH-CH₂-O-CH₂-NH- groups which link the triazine rings.