

SM-1402 Basic Statistics

Chapter 5: Regression analysis [handout version]

Dr. Haziq Jamil

 ${\sf Mathematical\ Sciences,\ Faculty\ of\ Science,\ UBD}$

https://haziqj.ml

Semester II 2022/23

Learning outcomes

- Understand and quantify the linear association between two variables by calculating the correlation coefficient between them.
- Be familiar with the concept of least squares regression and know how to compute the least squares estimates for the intercept and slope for a simple linear regression model.
- Diagnose a linear model by analysing the residuals.
- Conduct a test of significance for the slope parameter of a linear regression model.
- Use the fitted model for statistical inference (interpreting the coefficients) and forecasting.

Required reading

• Madsen (2016) Chapter 7.

Linear associations

Relationship between height and weight of 17 boys in the Fitness Club survey. Is there a relationship between height (X) and weight (Y)?

Quantifying the relationship

The correlation coefficient quantifies the *strength* of the <u>linear association</u> between two variables.

- It takes values between -1 (perfect negative) and 1 (perfect positive).
- A value of 0 indicates no relationship whatsoever.
- Usually denoted by symbol r.

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

For the current data, the correlation is r=0.765 (in Excel, use CORREL). This seems to suggest that a linear relationship is present.

Example

i	Χ	Y	$X - \bar{X}$	$(X-\bar{X})^2$	$Y - \bar{Y}$	$(Y - \bar{Y})^2$	$(X-\bar{X})(Y-\bar{Y})$
1	157	66	-6.47	41.9	9.06	82.06	-58.62
2	115	36	-48.47	2349.4	-20.94	438.53	1015.03
3	174	58	10.53	110.9	1.06	1.12	11.15
4	171	52	7.53	56.7	-4.94	24.41	-37.20
5	141	47	-22.47	504.9	-9.94	98.83	223.38
:	:	:	:	:	:	:	:

SUM

- $\sum X = 2779$, $\sum Y = 968$, $\bar{X} = 163.47$, $\bar{Y} = 56.94$
- $\sum (X \bar{X})^2 = 6378.235$, $\sum (Y \bar{Y})^2 = 2898.941$
- $\sum (X \bar{X})(Y \bar{Y}) = 3287.471$

Correlations

Eyeballing the line

Evidently, a linear trend exists. But there are many lines that can be drawn—which line passes "the best" through all the data points?

Equation of a line

The equation of a line in two dimensions is

$$Y = \alpha + \beta X$$

Any straight line is "parameterised" by

- an intercept α ; and
- a slope β .

In the previous example, the Y variable (response) is the weight of boys (in cm), whereas the X variable (explanatory) is the height of boys (in kg).

Obviously, we don't expect the line to pass through all the data points due to some randomness in the data points.

Definition 1 (Errors)

The (random) errors ϵ of the linear regression model is the amount by which an observation differs from its expected value

$$\epsilon = Y - (\alpha + \beta X)$$

Least squares regression

Our model then becomes

$$Y = \alpha + \beta X + \epsilon$$

(Typically, we also assume that $\epsilon \sim N(0, \sigma^2)$). So perhaps the "best line" to fit is the line which gives as small an error as possible.

The method of least squares aims to find values α and β which minimises the sum of squared errors

$$\sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$$

As a remark, errors are *random variables*, whose quantity is unknown beforehand. Once we have a straight line and observe the difference, these are known as *residuals* (often use hats $\hat{\epsilon}$ to distinguish).

Least squares regression (cont.)

"Adjust" the regression line (intercept α and slope β) such that the sum of all the vertical red lines (errors) are as small as possible.

Formula for least squares regression

For this simple linear model, the solution to the least squares minimisation problem is pretty straightforward.

Proposition 2 (Least squares solutions)

For the linear regression model $Y = \alpha + \beta X + \epsilon$, where ϵ are random errors, the least squares solution $\hat{\alpha}$ and $\hat{\beta}$ are given by

$$\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x}$$
 and $\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$.

Remarks

- No need to memorise these formula.
- In Excel, use INTERCEPT and SLOPE to calculate $\hat{\alpha}$ and $\hat{\beta}$ respectively. (See the book for more details)

R^2 value

Another useful determinant of how well the model captures the variability of the data is the coefficient of determination R^2 .

Definition 3 (Coefficient of determination)

For the simple linear regression model, let

- $\hat{y}_i = \hat{\alpha} + \hat{\beta}x_i$ represent the *fitted* values
- $SS_{tot} = \sum_{i=1}^{n} (y_i \bar{y})^2$ represent the *total sum of squares*
- $SS_{reg} = \sum_{i=1}^{n} (\hat{y}_i \bar{y})^2$ represent the regression sum of squares
- $SS_{resid} = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$ represent the residual sum of squares

Then, the coefficient of determination $R^2 \in [0,1]$ is

$$R^2 = \frac{SS_{\text{reg}}}{SS_{\text{tot}}} = 1 - \frac{SS_{\text{resid}}}{SS_{\text{tot}}}$$

The R^2 measures how much the variation in the data is explained by the model. Values closer to 1 are desirable.

R^2 value (cont.)

•
$$SS_{tot} = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

•
$$SS_{reg} = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

•
$$SS_{resid} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$R^2 = \frac{\text{SS}_{\text{reg}}}{\text{SS}_{\text{tot}}} = 1 - \frac{\text{SS}_{\text{resid}}}{\text{SS}_{\text{tot}}}$$

Residuals

Definition 4 (Residuals)

The residuals are the difference between the the observed value and the fitted values (values on the straight line), i.e.

$$\hat{\epsilon}_i = y_i - \hat{y}_i = y_i - (\hat{\alpha} + \hat{\beta}x_i)$$

We expect that error values

- 1. Follow a bell-shaped normal distribution;
 - 2. Are not too extreme-valued (no outliers); and
 - 3. Are truly random and show no discernible pattern with any other variable.

Analysing the residuals can help diagnose inconsistencies of linear model assumptions in the data set.

Calculating residuals

For the Fitness Club example, we may calculate the least squares estimators

- $\hat{\alpha} = -27.31$
- $\hat{\beta} = 0.52$

Thus, for each explanatory variable x_i , we may calculate the *fitted value* as

$$\hat{y}_i = -27.31 + 0.52 \times x_i,$$

and the residual as $\hat{\epsilon}_i = y_i - \hat{y}_i$.

i	Χ	Υ	Ŷ	$\hat{\epsilon}$
1	157	66	53.6	12.39
2	115	36	32.0	4.04
3	174	58	62.4	-4.37
4	171	52	60.8	-8.82
5	141	47	45.4	1.64
:	÷	÷	:	:

Checking residuals

12.39	4.04	-4.37	-8.82	1.64	-13.24	-5.18	-4.61	-3.33
-2.64	-11.31	2.26	1.35	-0.06	3.69	5.48	22.69	

Checking residuals (cont.)

Plot $\hat{\epsilon}$ against x; ensure that only a random pattern is seen.

Homoscedasticity

Is there a relationship?

Can we be sure that the linear relationship is "real"? Is it any different, say, from just a horizontal line at the average?

$$H_0: Y = \alpha$$
 v.s. $H_1: Y = \alpha + \beta X$

Using the general approach we learnt last chapter, we can test the hypothesis.

- 1. Assume that the hypothesis is true (i.e. $\beta = 0$).
- Calculate the p-value, i.e. the probability of observing the data or "more extreme cases" of it.
- 3. If p < 0.05, reject the (null) hypothesis; if not, we accept it.

Test statistic

Definition 5 (Test statistic for slope)

To test the hypothesis that $H_0: \beta = 0$ in the simple linear regression, calculate

$$T = r\sqrt{\frac{n-2}{1-r^2}},$$

where r is the correlation coefficient between X and Y. This value is then compared against critical values of the t_{n-2} distribution.

Example 6

Earlier we computed r = 0.765 for our data set (n = 17). Thus,

$$T = 0.765 \times \sqrt{\frac{17 - 2}{1 - 0.765^2}} = 4.594.$$

From the tables: $Pr(t_{15} > 1.753) = 0.05$, so $Pr(t_{15} > 4.594) \ll 0.05$.

The *t*-distribution

Each table entry is the value t, where $\int_{-\infty}^{t} f(x) dx = A$ with $X \sim t_k$.

					Α				
k	0.80	0.85	0.90	0.95	0.975	0.990	0.9925	0.9950	0.9975
11	0.876	1.088	1.363	1.796	2.201	2.718	2.879	3.106	3.497
12	0.873	1.083	1.356	1.782	2.179	2.681	2.836	3.055	3.428
13	0.870	1.079	1.350	1.771	2.160	2.650	2.801	3.012	3.372
14	0.868	1.076	1.345	1.761	2.145	2.624	2.771	2.977	3.326
15	0.866	1.074	1.341	1.753	2.131	2.602	2.746	2.947	3.286

Interpreting the model

For our simple linear regression model,

- Suppose that the value of X=0. Then $Y=\alpha+\beta X=\alpha$. Hence α is the expected value of Y when the explanatory variable is zero.
- Consider two values

$$Y = \alpha + \beta X$$

$$Y' = \alpha + \beta (X + 1)$$

If we subtract Y'-Y we get the value β . Hence, the slopes give the (average) increase in the response variable given a unit change in the explanatory variable.

Forecasting

Since we have the estimated regression line Y = -27.31 + 0.52X, we can plug in any value for X, even new data points for predictive purposes.

Forecasting (cont.)

When forecasting a new value y_* given input x_* , bear in mind the following.

- Forecasting works when x_* is close to the observed data $\{x_1, \ldots, x_n\}$. We cannot expect it to work well for data points that are very far to the left or right.
- Every prediction comes with some uncertainty. While this is beyond the scope of this module, if interested, the uncertainty is captured by the $100(1-\alpha)\%$ interval

$$\hat{y}_* \pm t_{n-2}(\alpha/2) \times \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x_* - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$
,

where $\hat{\sigma} = \sqrt{\frac{\sum_{i=1}^{n} (y - \hat{y}_i)^2}{n-2}}$ is called the *residual standard error*, and $t_{n-2}(\alpha/2)$ is the top $\alpha/2$ th point¹ of the t_{n-2} distribution.

¹E.g. for a 95% interval with n = 17, then $t_{n-2}(\alpha/2) = t_{15}(0.025) = 2.131$.

Further topics

 Our explanatory variable need not be continuous. In fact, they can be categorical. For example,

Weight =
$$\alpha + \beta$$
 WtTrain

I.e., modelling the weight of individuals by whether or not they do weight training ("Yes"/"No").

We can build a model using more than one explanatory variables, e.g.

$$\texttt{Weight} = \alpha + \beta_1 \texttt{Height} + \beta_2 \texttt{WtTrain} + \beta_3 \texttt{Sex} + \beta_4 \texttt{Age}$$

This can easily be done in most modern statistical softwares including MS Excel. Note that the formulae presented in this lecture is exclusively for simple models (Y and X variables only).

• Binary explanatory variables (aka logistic regression).

