

UNIVERSIDADE FEDERAL DO MARANHÃO DEPARTAMENTO DE MATEMÁTICA 2º AVALIAÇÃO DE CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA - PROVA C

Prof^a Valeska Martins de Souza

- 1. [vale 2,0 pontos] Determine os possíveis valores de α para os quais os vetores v=(1,0,1)e $w = (1, 1, 1 + \alpha)$ formem um ângulo de $\theta = \frac{\pi}{3}$.
- 2. [vale 2,0 pontos] Sejam os vetores $\vec{u} = (1, 1, 0), \vec{v} = (2, 0, 1)$ e

$$\overrightarrow{w_1} = 3\overrightarrow{u} - 2\overrightarrow{v} - (4.40) - 4.00 \times (4.40)$$

$$\overrightarrow{w_2} = \overrightarrow{u} + 3\overrightarrow{v}$$

$$\overrightarrow{w_3} = \overrightarrow{t} + \overrightarrow{f} - 2\overrightarrow{k}$$

Determine o volume do paralelepípedo definido por $\overrightarrow{w_1}$, $\overrightarrow{w_2}$ e $\overrightarrow{w_3}$.

3. [vale 2,0 pontos] Sejam r a reta que passa por A=(1,0,0) e B=(0,2,0) e s a reta:

$$\frac{x-2}{1} = \frac{y-3}{2} = \frac{z-4}{3}$$

Calcular a distância entre as retas r e s.

- 4. [vale 2,0 pontos]
 - a) Considere os vetores $\vec{a} = 2\vec{i} + 3\vec{j} \vec{k}$; $\vec{b} = \vec{i} + \vec{j}$ e $\vec{c} = \vec{i} \vec{j} \vec{k}$. Verifique se o conjunto $\{\vec{a}, \vec{b}, \vec{c}\}$ é L.D ou L.I.
 - b) Calcule o produto vetorial $\vec{a} \times \vec{b}$.
- [vale 2,0 pontos] Considere as bases ordenadas $\beta = \{(1,0), (0,1)\}$ e $\beta' = \{v_1, v_2\}$ do R^2 tais que $v_1 = 6(1,0) - 2(0,1)$ e $v_2 = 9(1,0) - 4(0,1)$.
 - a) Determine a matriz de mudança de base da base β para a base β' .
 - b) Encontre $[v]_{\beta}'$ para o vetor $v = -3v_1 + 3v_2$.