Discussion

Comparisons of ⁶⁷Ga and ²⁰¹TI

Details

- Gallium-67
 - 3.2613 (5) d
 - 100% EC
 - 184.576 keV γ
 - Hodgkin's disease
 - Lymphoma
 - BronchogenicCacinoma
 - Infection Imaging

- Thallium-201
 - 3.0421 (17) d
 - 100% EC
 - 167.45 keV γ
 - Myocardial PerfusionImaging

Key comparison BIPM.RI(II)-K1.Ga-67

MEASURAND: Equivalent activity of ⁶⁷Ga

Key comparison reference value: the SIR reference value for this radionuclide x_R is 116.2 MBq, with a standard uncertainty u_R of 0.6 MBq (see Final Report updated in June 2006).

The degree of equivalence of each laboratory with respect to the reference value is given by a pair of terms: $D_{i} = (x_{i} - x_{R}) \text{ and } U_{i}, \text{ its expanded uncertainty } (k = 2), \text{ both expressed in MBq. With } n \text{ the number of laboratories,}$ $U_{i} = 2[(1 - 2/n)u_{i}^{2} + (1/n^{2})\Sigma u_{i}^{2}]^{1/2} \text{ when each laboratory has contributed to the computation of } x_{R}, \text{ see } \underbrace{Metrologia. 42. 140-144}_{MR}.$

The degree of equivalence between two laboratories is given by a pair of terms: $D_{ij} = D_i - D_j = (x_i - x_j)$ and U_{ij} , its expanded uncertainty (k = 2), both expressed in MBq. The approximation $U_{ij} \sim 2(u_i^2 + u_j^2)^{1/2}$ is used in the following table.

Lab j	\Longrightarrow
Lav j	

Lab i	abi [CMI-IIR		NPL		CSIR-NML		OMH		NIST		NMIJ		CIEMAT		LNE-LNHB	
	D; /M	U; Bq	D _{ij}	U _{ij} Bq	D _{ij}	υ _# MBq	D _{ij}	U _{ij} Bq	D _{ij}	U _{ij} Bq	D _{ij}	U _{ij} Bq	D _{ij}	U _{ij} Bq	D _{ij}	U _{ij} Bq	D _{ij}	U _{ij} IBq
CMI-IIR	2.6	2.0			2.8	3.6	2.4	2.3	3.6	2.5	2.6	2.3	3.6	2.4	0.8	3.0	5.0	2.3
NPL	-0.2	2.5	-2.8	3.6			-0.4	2.9	0.8	3.0	-0.2	2.9	8.0	2.9	-2.0	3.5	2.2	2.9
CSIR-NML	0.2	0.7	-2.4	2.3	0.4	2.9			1.2	1.3	0.2	0.9	1.2	1.0	-1.5	2.2	2.6	0.9
ОМН	-1.0	1.2	-3.6	2.5	-0.8	3.0	-1.2	1.3			-1.0	1.4	0.0	1.5	-2.8	2.4	1.4	1.4
NIST	0.0	0.9	-2.6	2.3	0.2	2.9	-0.2	0.9	1.0	1.4			1.0	1.1	-1.7	2.2	2.4	1.0
NMIJ	-1.0	0.9	-3.6	2.4	-0.8	2.9	-1.2	1.0	0.0 1.5		-1.0	1.1			-2.8	2.3	1.4	1.1
CIEMAT	1.8	1.9	-0.8	3.0	2.0	3.5	1.5	2.2	2.8	2.4	1.7	2.2	2.8	2.3			4.1	2.2
LNE-LNHB	-2.4	0.8	-5.0	2.3	-2.2	2.9	-2.6	0.9	-1.4	1.4	-2.4	1.0	-1.4	1.1	-4.1	2.2		

The BIPM key comparison database, June 2006

Key comparison BIPM.RI(II)-K1.TI-201

MEASURAND: Equivalent activity of 201TI

Key comparison reference value: the SIR reference value for this radionuclide is $x_R = 312.8$ MBq with a standard uncertainty $u_R = 1.3$ MBq.

 x_R is computed as the mean of the results obtained by primary methods.

The degree of equivalence of each laboratory with respect to the reference value is given by a pair of terms:

 $D_i = (x_i - x_R)$ and U_i , its expanded uncertainty (k = 2), both expressed in MBq, and with n the number of laboratories $U_i = 2((1 - 2/n)u_i^2 + (1/n^2)\Sigma u_i^2)^{1/2}$ when each laboratory has contributed to the reference value (see Final Report dated 21 April 2008)

The degree of equivalence between two laboratories is given by a pair of terms:

 $D_{ij} = D_i - D_j = (x_i - x_j)$ and U_{ij} , its expanded uncertainty (k = 2), both expressed in MBq.

The approximation $U_{ij} \sim 2(u_i^2 + u_j^2)^{1/2}$ is used in the following table.

Lab j

Lab i				
٧	D; /M	U; Ba		
NMISA	-0.3	3.3		
ANSTO	-7.8	22.1		
MKEH	1.6	7.1		
NIST	5.1	2.8		
LNE-LNHB	-4.8	2.8		
PTB	-0.3	4.3		
NPL	-1.5	3.0		

	NMISA D _{ij} U _{ij} / MBq		NMISA ANSTO		MKEH		NI	ST	LNE-	LNHB	P	ГВ	NPL	
			D _{ij} U _{ij} / MBq		D _{ij} U _{ij} / MBq		D _{ij} U _{ij} /MBq		D _{ij} U _{ij} / MBq		D _{ij} U _{ij} /MBq		D _{ij} U _{ij} / MBq	
			7.5	22.3	-1.9	9.1	-5.4	4.3	4.5	4.3	0.0	5.9	1.2	4.4
	-7.5	22.3			-9.4	23.5	-12.9	22.2	-3.0	22.2	-7.5	22.5	-6.3	22.2
	1.9	9.1	9.4	23.5			-3.5	8.8	6.4	8.8	1.9	9.7	3.1	8.9
	5.4	4.3	12.9	22.2	3.5	8.8			9.9	3.7	5.4	5.5	6.6	3.8
	-4.5	4.3	3.0	22.2	-6.4	8.8	-9.9 3.7				-4.5	5.5	-3.3	3.8
	0.0	5.9	7.5	22.5	-1.9	9.7	-5.4	5.5	4.5 5.5			1.2	5.6	
	-1.2	4.4	6.3	22.2	-3.1	8.9	-6.6	3.8	3.3	3.8	-1.2	5.6		

