Correction du devoir surveillé 5.

Exercice 1

$$\mathbf{1}^{\circ}) \ \mathbf{a}) \ M^{2} = \begin{pmatrix} 3 & -2 & -1 \\ 1 & 0 & -1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 3 & -2 & -1 \\ 1 & 0 & -1 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 7 & -6 & -3 \\ 3 & -2 & -3 \\ 0 & 0 & 4 \end{pmatrix} = \begin{pmatrix} 9 & -6 & -3 \\ 3 & 0 & -3 \\ 0 & 0 & 6 \end{pmatrix} + \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

$$\text{Ainsi}, \ M^{2} = 3M - 2I \ .$$

b) On en déduit que $3M - M^2 = 2I$.

En factorisant par M à gauche, on obtient $M\left(\frac{3}{2}I-\frac{1}{2}M\right)=I$, et en factorisant par M à droite, $\left(\frac{2}{2}I-\frac{1}{2}M\right)M=I$.

Ainsi, M est inversible et $M^{-1} = \frac{2}{2}I - \frac{1}{2}M = \frac{1}{2} \begin{pmatrix} 0 & 2 & 1 \\ -1 & 3 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

- **2°) a)** On pose, pour $n \in \mathbb{N}$, $H_n : \exists (a_n, b_n) \in \mathbb{R}^2$, $M^n = a_n I + b_n M$.
 - \bigstar Pour $n=0: M^0=I=1.I+0.M$ donc $a_0=1,\,b_0=0$ conviennent. Ainsi, H_0 est vraie.
 - ★ On suppose que H_n est vraie pour un rang n fixé dans \mathbb{N} . Alors, il existe deux réels a_n et b_n tels que : $M^n = a_n I + b_n M$.

$$M^{n+1} = M^n \times M = (a_n I + b_n M) M \quad \text{par } H_n$$

$$= a_n M + b_n M^2$$

$$= a_n M + b_n (3M - 2I) \quad \text{par } 1a$$

$$= -2b_n I + (a_n + 3b_n) M$$

En posant $a_{n+1} = -2b_n$ et $b_{n+1} = a_n + 3b_n$, on a $M^{n+1} = a_{n+1}I + b_{n+1}M$,

- ★ On a montré par récurrence que, pour tout $n \in \mathbb{N}, H_n$ est vraie.

 De plus, on a obtenu les relations : $a_{n+1} = -2b_n$ $b_{n+1} = a_n + 3b_n$ pour tout $n \in \mathbb{N}$.
- **b)** Soit $n \in \mathbb{N}$. $a_{n+1} + b_{n+1} = a_n + 3b_n 2b_n = a_n + b_n$. Ainsi, [la suite $(a_n + b_n)$ est constante.]

On en déduit : $\forall n \in \mathbb{N}, a_n + b_n = a_0 + b_0 \text{ donc } [a_n + b_n = 1].$

- c) Soit $n \in \mathbb{N}$. $b_{n+2} = a_{n+1} + 3b_{n+1} = -2b_n + 3b_{n+1}$ par 2a. Donc, $b_{n+2} = 3b_{n+1} 2b_n$.
- d) La suite (b_n) vérifie une relation de récurrence linéaire d'ordre 2. L'équation caractéristique est : $r^2 - 3r + 2 = 0$ de racines 1 et 2. Ainsi,

$$\exists ! (\lambda, \mu) \in \mathbb{R}^2, \forall n \in \mathbb{N}, b_n = \lambda + \mu 2^n$$

$$b_0 = 0 \text{ et } b_1 = a_0 + 3b_0 = 1. \text{ Donc, } \begin{cases} \lambda + \mu = 1 \\ \lambda + 2\mu = 1 \end{cases}$$
 i.e. $\sum_{L_2 \leftarrow L_2 - L_1} \begin{cases} \lambda + \mu = 1 \\ \mu = 1 \end{cases}$ d'où $\mu = 1, \lambda = -1.$

Ainsi, pour tout $n \in \mathbb{N}, b_n = 2^n - 1$

De plus, on sait, pour tout
$$n \in \mathbb{N}$$
, $a_n + b_n = 1$ donc $a_n = 1 - b_n = 2 - 2^n$

Ainsi,
$$M^n = (2 - 2^n)I + (2^n - 1)M$$
.

$$M^{n} = \begin{pmatrix} 2 - 2^{n} + 3(2^{n} - 1) & -2(2^{n} - 1) & -(2^{n} - 1) \\ 2 - 2^{n} & 2 - 2^{n} & -(2^{n} - 1) \\ 0 & 0 & 2 - 2^{n} + 2(2^{n} - 1) \end{pmatrix}$$
i.e.
$$M^{n} = \begin{pmatrix} 2^{n+1} - 1 & 2 - 2^{n+1} & 1 - 2^{n} \\ 2^{n} - 1 & 2 - 2^{n} & 1 - 2^{n} \\ 0 & 0 & 2^{n} \end{pmatrix}$$

e) Pour
$$n = -1$$
, l'expression donne $\begin{pmatrix} 1 - 1 & 2 - 1 & 1 - \frac{1}{2} \\ \frac{1}{2} - 1 & 2 - \frac{1}{2} & 1 - \frac{1}{2} \\ 0 & 0 & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 0 & 1 & \frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} \end{pmatrix}$, c'est bien M^{-1} .

$$\mathbf{3}^{\circ}) \ \ \mathbf{a}) \ \ B = \begin{pmatrix} 3 & -4 & -2 \\ 2 & -3 & -2 \\ 0 & 0 & 1 \end{pmatrix}, \ B^2 = \begin{pmatrix} 3 & -4 & -2 \\ 2 & -3 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & -4 & -2 \\ 2 & -3 & -2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I.$$

On a donc, pour tout $k \in \mathbb{N}$, $B^{2k} = (B^2)^k = I^k = I$, et $B^{2k+1} = B^{2k}B = I \times B = B$.

b) On a
$$M = \frac{1}{2}B + \frac{3}{2}I = \frac{1}{2}(B+3I)$$
, donc pour tout $n \in \mathbb{N}$, $M^{2n+1} = \frac{1}{2^{2n+1}}(B+3I)^{2n+1}$. Comme B et $3I$ commutent, d'après la formule du binôme de Newton, pour tout $n \in \mathbb{N}$,

$$M^{2n+1} = \frac{1}{2^{2n+1}} \sum_{p=0}^{2n+1} {2n+1 \choose p} (3I)^{2n+1-p} B^p = \frac{1}{2^{2n+1}} \sum_{p=0}^{2n+1} {2n+1 \choose p} 3^{2n+1-p} B^p$$

En séparant dans cette somme les termes d'indices p pair et les termes d'indices p impairs, et à l'aide de la question précédente, on obtient, pour tout $n \in \mathbb{N}$:

$$M^{2n+1} = \frac{1}{2^{2n+1}} \sum_{k=0}^{n} {2n+1 \choose 2k} 3^{2n+1-2k} I + \frac{1}{2^{2n+1}} \sum_{k=0}^{n} {2n+1 \choose 2k+1} 3^{2n+1-(2k+1)} B$$

$$= \left(\frac{1}{2^{2n+1}} \sum_{k=0}^{n} {2n+1 \choose 2k} 3^{2n+1-2k}\right) I + \left(\frac{1}{2^{2n+1}} \sum_{k=0}^{n} {2n+1 \choose 2k+1} 3^{2n-2k}\right) B$$

$$M^{2n+1} = r_n I + s_n B$$

c) Soit $n \in \mathbb{N}$. A l'aide de la question précédente et de la question 2d,

$$M^{2n+1} = \begin{pmatrix} 2^{2n+2} - 1 & 2 - 2^{2n+2} & 1 - 2^{2n+1} \\ 2^{2n+1} - 1 & 2 - 2^{2n+1} & 1 - 2^{2n+1} \\ 0 & 0 & 2^{2n+1} \end{pmatrix} = r_n \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + s_n \begin{pmatrix} 3 & -4 & -2 \\ 2 & -3 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

En considérant le coefficient (2,1), on obtient $2^{2n+1}-1=2s_n$, d'où $\left|s_n=2^{2n}-\frac{1}{2}\right|$

En considérant le coefficient
$$(3,3)$$
, on obtient $2^{2n+1} = r_n + s_n$.
D'où $r_n = 2^{2n+1} - 2^{2n} + \frac{1}{2} = 2 \cdot 2^{2n} - 2^{2n} + \frac{1}{2}$, donc $r_n = 2^{2n} + \frac{1}{2}$.

Exercice 2

 $\mathbf{1}^{\circ}$) Soit $n \in \mathbb{N}$.

$$X_{n+1} = A^{n+1}X_0 = A(A^nX_0) \text{ donc } X_{n+1} = AX_n$$

Ainsi,
$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix}$$
. Il vient :
$$\begin{cases} x_{n+1} = 2x_n + 3y_n \\ y_{n+1} = x_n + 2y_n \end{cases}$$

- 2°) Pour $n \in \mathbb{N}$, on note $H_n : X_n \in \mathcal{H}_+$.
 - ★ Pour n = 0. $X_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ vérifie : $1 \in \mathbb{N}, 0 \in \mathbb{N}$. De plus $1^2 3 \times 0^2 = 1$. Donc $X_0 \in \mathcal{H}_+$.
 - \bigstar On suppose H_n vraie pour un rang n fixé dans \mathbb{N} . Montrons que H_{n+1} est vraie.

Par la question précédente, $\begin{cases} x_{n+1} = 2x_n + 3y_n \\ y_{n+1} = x_n + 2y_n \end{cases}$

Or x_n et y_n sont dans \mathbb{N} donc x_{n+1} et y_{n+1} aussi, comme sommes et produits d'entiers naturels. De plus,

$$x_{n+1}^{2} - 3y_{n+1}^{2} = 4x_{n}^{2} + 12x_{n}y_{n} + 9y_{n}^{2} - 3(x_{n}^{2} + 4x_{n}y_{n} + 4y_{n}^{2})$$

$$= x_{n}^{2}(4-3) + y_{n}^{2}(9-12) + x_{n}y_{n}(12-12)$$

$$= x_{n}^{2} - 3y_{n}^{2}$$

$$= 1 \quad \text{car } X_{n} \in \mathcal{H}$$

Ainsi, H_{n+1} est vraie.

 \bigstar On a montré par récurrence que : $\forall n \in \mathbb{N}, \ X_n \in \mathcal{H}_+$

On en déduit que $\mathcal{E} \subset \mathcal{H}^+$.

3°) Par ce qui précède, pour tout $n \in \mathbb{N}, X_n \in \mathcal{H}^+$. Précisons X_0, X_1, X_2 .

$$X_{0} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}. \ X_{1} = AX_{0} = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \ X_{2} = AX_{1} = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \end{pmatrix}.$$

Ainsi, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 7 \\ 4 \end{pmatrix}$ dont des éléments de \mathcal{H}^+ .

4°)

$$\begin{pmatrix}
2 & 3 \\
1 & 2
\end{pmatrix} & \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \\
\begin{pmatrix}
1 & 2 \\
2 & 3
\end{pmatrix} & L_1 \leftrightarrow L_2 & \begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix} \\
\begin{pmatrix}
1 & 2 \\
0 & 1
\end{pmatrix} & L_2 \leftarrow L_2 - 2L_1 & \begin{pmatrix}
0 & 1 \\
-1 & 2
\end{pmatrix} \\
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} & L_2 \leftarrow -L_2 & \begin{pmatrix}
2 & -3 \\
-1 & 2
\end{pmatrix}$$

Par opérations élémentaires sur les lignes, on a transformé A en I_2 .

Ainsi, A est inversible. De plus, $A^{-1} = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}$.

5°) a) $y \in \mathbb{N}$ donc $y \ge 0$. Supposons que y = 0. Comme $X \in \mathcal{H}$, $x^2 - 3y^2 = 1$. D'où $x^2 = 1$.

Comme $x \in \mathbb{N}$, x = 1. Finalement, $X = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ donc $X = X_0$: ceci est exclu.

On en déduit que $y \ge 1$.

- **b)** \star $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$. Donc, $\begin{cases} x' = 2x 3y \\ y' = -x + 2y \end{cases}$.
 - \bigstar Vérifions que $BX \in \mathcal{H}$.

 $x'^2 - 3y'^2 = (2x - 3y)^2 - 3(-x + 2y)^2 = x^2(4 - 3) + y^2(9 - 12) = x^2 - 3y^2 = 1 \text{ car } X \in \mathcal{H}.$ Donc $BX \in \mathcal{H}.$

3

★ Vérifions maintenant que $x' \in \mathbb{N}, y' \in \mathbb{N}$. x' et y' sont des entiers relatifs comme sommes, produits, différences d'entiers. Montrons que $x' \geq 0$ et $y' \geq 0$.

$$x' \ge 0 \iff 2x \ge 3y$$

 $\iff 4x^2 \ge 9y^2 \quad \text{car } 2x \ge 0 \text{ et } 3y \ge 0$
 $\iff 4(1+3y^2) \ge 9y^2 \quad \text{car } X \in \mathcal{H}$
 $\iff \underbrace{3y^2+4\ge 0}_{\text{vrai}}$

Donc $2x - 3y \ge 0$.

$$y' \ge 0 \iff -x + 2y \ge 0$$

$$\iff 2y \ge x$$

$$\iff 4y^2 \ge x^2 \quad \text{car } 2x \ge 0 \text{ et } 3y \ge 0$$

$$\iff 4y^2 \ge 1 + 3y^2 \quad \text{car } X \in \mathcal{H}$$

$$\iff y^2 > 1$$

Par 5a, $y \ge 1$ donc $y^2 \ge 1$. Donc $y' \ge 0$.

On a bien montré que $BX \in \mathcal{H}^+$

- c) Montrons que $\varphi(BX) < \varphi(X)$. $\varphi(BX) = x' + y' = (2x - 3y) + (-x + 2y) = x - y$. D'autre part, $\varphi(X) = x + y$. Or $y \ge 1$ donc y > 0 donc $\varphi(BX) < \varphi(X)$.
- **6°)** ★ On pose, pour $n \in \mathbb{N}$, $H_n : B^n X \in \mathcal{H}^+$.
 - Pour n = 0: $B^0X = X$ et $X \in \mathcal{H}^+$. Ainsi, H_0 est vraie.
 - On suppose H_n vraie pour un rang n fixé dans $\mathbb{N}: B^nX \in \mathcal{H}^+$. De plus, $B^nX \neq X_0$. Par 5b, $B(B^nX) \in \mathcal{H}^+$ i.e. $B^{n+1}X \in \mathcal{H}^+$. Ainsi, H_{n+1} est vraie.
 - On a montré, par récurrence que : $\forall n \in \mathbb{N}, B^n X \in \mathcal{H}^+$.
 - ★ De plus, pour tout $n \in \mathbb{N}$, $B^n X \neq X_0$. Donc, par 5c, pour tout $n \in \mathbb{N}$, $\varphi(B(B^n X)) < \varphi(B^n X)$ i.e. $\varphi(B^{n+1} X) < \varphi(B^n X) : u_{n+1} < u_n$. (u_n) est donc une suite strictement décroissante.
 - * Soit $n \in \mathbb{N}$; notons α_n et β_n les réels tels que $B^n X = \begin{pmatrix} \alpha_n \\ \beta_n \end{pmatrix}$.

 $B^nX \in \mathcal{H}^+$ donc α_n et β_n sont dans \mathbb{N} . Donc $u_n = \varphi(B^nX) = \alpha_n + \beta_n \in \mathbb{N}$.

Ainsi, (u_n) est une suite d'entiers naturels strictement décroissante : c'est impossible vu le résultat admis en début de partie.

On en déduit que : $\forall X \in \mathcal{H}^+, \exists n \in \mathbb{N}, B^n X = X_0$

- **7°)** \bigstar On a déjà vu que, par 2, que : $\mathcal{E} \subset \mathcal{H}^+$.
 - \bigstar Réciproquement, soit $X \in \mathcal{H}^+$.

Par 6, il existe $n \in \mathbb{N}$ tel que $B^n X = X_0$.

Ainsi, $(A^{-1})^n X = X_0$. Donc $(A^n)^{-1} X = X_0$ i.e. $X = A^n X_0$. Ainsi, $X \in \mathcal{E}$.

Finalement, on a montré que :

$$\mathcal{H}^+ = \mathcal{E} \text{ i.e. } \mathcal{H}^+ = \{A^n X_0 / n \in \mathbb{N}\}$$

8°) Effectuons deux calculs:

$$A \times P = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \times \begin{pmatrix} \sqrt{3} & -\sqrt{3} \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2\sqrt{3} + 3 & -2\sqrt{3} + 3 \\ \sqrt{3} + 2 & -\sqrt{3} + 2 \end{pmatrix}.$$

$$P \times D = \begin{pmatrix} \sqrt{3} & -\sqrt{3} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 + \sqrt{3} & 0 \\ 0 & 2 - \sqrt{3} \end{pmatrix} = \begin{pmatrix} 2\sqrt{3} + 3 & -2\sqrt{3} + 3 \\ 2 + \sqrt{3} & 2 - \sqrt{3} \end{pmatrix}.$$
Ainsi, on a bien:
$$AP = PD$$
.

 9°) Effectuons des opérations élémentaires sur les lignes de P.

$$P = \begin{pmatrix} \sqrt{3} & -\sqrt{3} \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ \sqrt{3} & -\sqrt{3} \end{pmatrix} \quad L_1 \leftrightarrow L_2$$

$$T = \begin{pmatrix} 1 & 1 \\ 0 & -2\sqrt{3} \end{pmatrix} \quad L_2 \leftarrow L_2 - \sqrt{3}L_1$$

On a transformé P, par opérations élémentaires, en la matrice T.

Or T est triangulaire supérieure, à coefficients diagonaux tous non nuls, donc T est inversible. Donc, P est inversible.

10°) P est inversible donc on peut multiplier les 2 membres de l'égalité AP = PD à droite par P^{-1} . On obtient $A = PDP^{-1}$.

On pose, pour $n \in \mathbb{N}, \overline{H_n} : A^n = PD^nP^{-1}$.

- Pour n = 0: $PD^0P^{-1} = I_2 = A^0$ donc H_0 est vraie.
- Soit $n \in \mathbb{N}$ fixé. On suppose que H_n est vraie. Alors $A^{n+1} = A^n \times A = (PD^nP^{-1})(PDP^{-1}) = P(D^nD))P^{-1}$ donc $A^{n+1} = PD^{n+1}P^{-1}$. Donc H_{n+1} est vraie.
- On a montré par récurrence que : $\forall n \in \mathbb{N}, A^n = PD^nP^{-1}$.
- 11°) On suppose qu'il existe k dans \mathbb{N}^* tel que $A^k X_0 = X_0$.

On a donc, par la question précédente : $PD^kP^{-1}X_0 = X_0$.

En multipliant à gauche par $P^{-1}: D^k(P^{-1}X_0) = P^{-1}X_0$.

On note $Y_0 = P^{-1}X_0$. Alors, on a $D^kY_0 = Y_0$.

Par l'absurde, supposons $Y_0 = 0$. Alors, $P^{-1}X_0 = 0$.

En multipliant à gauche par P, cela donne : $X_0 = 0$: ceci est exclu.

Ainsi, $Y_0 \neq 0$.

12°) Notons a et b les réels tels que $Y_0 = \binom{a}{b}$. $Y_0 \neq 0$ donc $a \neq 0$ ou $b \neq 0$.

$$D = \begin{pmatrix} 2 + \sqrt{3} & 0 \\ 0 & 2 - \sqrt{3} \end{pmatrix}. \text{ Donc, } D^k = \begin{pmatrix} (2 + \sqrt{3})^k & 0 \\ 0 & (2 - \sqrt{3})^k \end{pmatrix}.$$

On a alors:
$$\binom{(2+\sqrt{3})^k}{0} = \binom{0}{(2-\sqrt{3})^k} \binom{a}{b} = \binom{a}{b}$$
. Ainsi, $\begin{cases} (2+\sqrt{3})^k a = a \\ (2-\sqrt{3})^k b = b \end{cases}$

On sait que $a \neq 0$ ou $b \neq 0$.

- Supposons $a \neq 0$. Alors, $(2 + \sqrt{3})^k = 1$. Or $2 + \sqrt{3} > 1$ donc $(2 + \sqrt{3})^k > 1$. C'est exclu.
- Supposons que $b \neq 0$. Alors, $(2 \sqrt{3})^k = 1$. Or 1 < 3 < 4 donc $1 < \sqrt{3} < 2$ donc $0 < 2 \sqrt{3} < 1$. Donc $(2 \sqrt{3})^k < 1$. C'est exclu aussi.

Dans les 2 cas, on obtient une contradiction.

On en déduit que : $\forall k \in \mathbb{N}^*, A^k X_0 \neq X_0$.

13°) Soit $(n,p) \in \mathbb{N}^2$. On suppose que $n \neq p$. Montrons que $A^n X_0 \neq A^p X_0$.

Par l'absurde, supposons que $A^n X_0 = A^p X_0$.

 $n \neq p$. Supposons par exemple que n > p.

Comme A est inversible, A^p aussi. On multiplie $A^n X_0 = A^p X_0$ à gauche par $(A^p)^{-1}$.

On obtient : $(A^p)^{-1}A^nX_0 = X_0$. Donc $(A^{-1})^pA^nX_0 = X_0$.

Ce qui s'écrit : $A^{n-p}X_0=X_0$. On a trouvé k dans \mathbb{N}^* tel que $A^kX_0=X_0$: exclu.

Donc, on a bien $A^n X_0 \neq A^p X_0$.

Le raisonnement est analogue si p > n.

Ainsi, l'énoncé (*) est vrai

Exercice 3

$$\mathbf{1}^{\circ}) \ f(x) \underset{x \to 0}{=} \frac{x}{x + o(x)} \underset{x \to 0}{=} \frac{1}{1 + o(1)} \ \mathrm{donc} \ f(x) \underset{x \to 0}{\longrightarrow} 1.$$

Donc f est prolongeable par continuité en 0, en posant f(0) = 1.

D'autre part, f est continue sur \mathbb{R}^* comme quotient de fonctions continues.

Ainsi, f se prolonge en une fonction continue sur \mathbb{R} en posant f(0) = 1.

- 2°) D'après la question précédente, f est continue sur \mathbb{R} .
 - f est dérivable sur \mathbb{R}^* comme quotient de fonctions dérivables.
 - Pour tout $x \in \mathbb{R}^*$, on a $f'(x) = \frac{\operatorname{sh} x x \operatorname{ch} x}{\operatorname{sh}^2(x)}$

$$\sinh x - x \cosh x = x + \frac{x^3}{6} + o(x^3) - x(1 + \frac{x^2}{2} + o(x^2))$$
$$= -\frac{x^3}{3} + o(x^3)$$

D'autre part, sh(x) = x + o(x) donc $sh^{2}(x) = x^{2} + o(x^{2})$.

Ainsi,
$$f'(x) = \frac{x^2 \left(-\frac{x}{3} + o(x)\right)}{x^2 (1 + o(1))} = \frac{-\frac{x}{3} + o(x)}{1 + o(1)}.$$

Ainsi, par opérations sur les limites, $f'(x) \xrightarrow[x \to 0]{} 0$

Donc, par le théorème limite de la dérivée, $\frac{f(x)-f(0)}{x-0} \xrightarrow[x \to 0]{} 0$.

- \star Cela signifie que f est dérivable en 0 et que f'(0) = 0.
- \bigstar L'information $f'(x) \xrightarrow[x \to 0]{} 0$ se réécrit $f'(x) \xrightarrow[x \to 0]{} f'(0)$, donc f' est continue en 0.

Comme f est de classe \mathcal{C}^1 sur \mathbb{R}^* comme quotient de fonctions de classe C^1 , on conclut finalement que f est de classe \mathcal{C}^1 sur \mathbb{R} .

3°) a) La fonction sh est continue et strictement croissante sur l'intervalle \mathbb{R}_+ .

Par le théorème de la bijection, sh réalise une bijection de \mathbb{R}_+ dans $[\operatorname{sh}(0), \lim_{x \to +\infty} \operatorname{sh}(x)] = \mathbb{R}_+$.

Comme $1 \in \mathbb{R}_+$, 1 admet un unique antécédent α dans \mathbb{R}_+ .

Ce qui signifie que l'équation $\operatorname{sh}(x)=1$ admet une unique solution α dans \mathbb{R}_+

Comme $sh(0) = 0 \neq 1$, on a $\alpha > 0$.

On a
$$\operatorname{ch}^2 \alpha - \operatorname{sh}^2 \alpha = 1$$
 d'où $\operatorname{ch}^2 \alpha = 1 + (1)^2 = 2$.

Comme ch est une fonction positive, on en déduit que $ch(\alpha) = \sqrt{2}$.

- **b)** $f(\alpha) = \frac{\alpha}{\sinh(\alpha)} = \alpha$. Ainsi, α est un point fixe de f.
- **4°) a)** u est dérivable sur \mathbb{R}_+ comme somme et produit de fonctions dérivables, et pour tout $x \in \mathbb{R}_+$, $u'(x) = \operatorname{ch}(x) + x \operatorname{sh}(x) \operatorname{ch}(x) = x \operatorname{sh}(x)$.

On a : pour tout $x \in \mathbb{R}_+$, $u'(x) \ge 0$ et $u'(x) = 0 \iff x = 0$ ou $\operatorname{sh}(x) = 0$.

Or $sh(x) = 0 \iff x = 0$. Donc $u'(x) = 0 \iff x = 0$.

Donc u est strictement croissante sur l'intervalle \mathbb{R}_+ .

Comme u(0) = 0, on a: pour tout $x \in \mathbb{R}_+$, $u(x) \ge 0$ et $u(x) = 0 \iff x = 0$

6

b)
$$\forall x \in \mathbb{R}_+^*, f'(x) = -\frac{u(x)}{\sinh^2(x)} < 0. \text{ De plus } f'(0) = 0.$$

Ainsi, f est strictement décroissante sur l'intervalle \mathbb{R}_+ .

- c) On sait que : $\alpha > 0$. Donc, par stricte décroissance de f sur \mathbb{R}_+ , $f(\alpha) < f(0)$ ie $f(\alpha) < 1$. Or $f(\alpha) = \alpha$ donc $\alpha < 1$.
- d) Posons $v(x) = \frac{1}{2} \operatorname{sh}^2(x) x \operatorname{ch} x + \operatorname{sh} x$ pour tout $x \in \mathbb{R}_+$. v est dérivable comme somme et produit de fonctions dérivables, et pour tout $x \in \mathbb{R}_+$,

$$v'(x) = \operatorname{sh} x \operatorname{ch} x - \operatorname{ch} x - x \operatorname{sh} x + \operatorname{ch} x = \operatorname{sh} x \operatorname{ch} x - x \operatorname{sh} x = \operatorname{sh} x (\operatorname{ch} x - x).$$

Comme sh est positive sur \mathbb{R}_+ , v'(x) est du signe de $w(x) = \operatorname{ch} x - x$. w est dérivable sur \mathbb{R}_+ et, pour tout $x \in \mathbb{R}$, $w'(x) = \operatorname{sh} x - 1$.

$$w'(x) \ 0 \iff \operatorname{sh} x > 1$$

 $\iff \operatorname{sh} x > \operatorname{sh} \alpha$
 $\iff x > \alpha$ car sh est strictement croissante

De même, $w'(x) = 0 \iff x = \alpha$.

x	0		α		$+\infty$
w'(x)		_	0	+	
w(x)	1		$w(\alpha)$		+∞

 $w(\alpha) = \operatorname{ch}(\alpha) - \alpha = \sqrt{2} - \alpha$. Comme $\alpha < 1 < \sqrt{2}$, la fonction w est positive sur \mathbb{R}_+ , donc v' est positive sur \mathbb{R}_+ . Donc v est croissante sur l'intervalle \mathbb{R}_+ , et comme v(0) = 0, on obtient bien que v est positive sur \mathbb{R}_+ , c'est-à-dire :

$$\forall x \ge 0, \quad x \operatorname{ch}(x) - \operatorname{sh}(x) \le \frac{1}{2} \operatorname{sh}^2(x)$$

e) Pour tout $x \in \mathbb{R}_+^*$, $f'(x) \leq 0$ par 4b. On a donc, pour tout $x \in \mathbb{R}_+^*$:

$$|f'(x)| = -f'(x) = \frac{x \operatorname{ch} x - \operatorname{sh} x}{\operatorname{sh}^2(x)} \le \frac{1}{2}$$
 d'après la question précédente, et parce que $\operatorname{sh}^2 x > 0$.

Cette inégalité est encore valable pour x=0 puisque f'(0)=0. Ainsi, $k=\frac{1}{2}$ convient.

f) D'après le calcul de la question 2, pour tout $x \in \mathbb{R}^*$, $f'(x) = \frac{\sinh x - x \cosh x}{\sinh^2(x)}$. Comme sh est impaire et ch est paire, pour tout $x \in \mathbb{R}_{-}^*$,

$$f'(-x) = \frac{\sinh(-x) + x \cosh(-x)}{\sinh^2(-x)} = \frac{-\sinh(x) + x \cosh(x)}{\sinh^2(x)} = -f'(x)$$

D'où $|f'(x)| = |-f'(-x)| = |f'(-x)| \le k$ puisque $-x \in \mathbb{R}_+^*$. Ainsi, pour tout $x \in \mathbb{R}$, $|f'(x)| \le k$.

5°) a) f est dérivable sur l'intervalle \mathbb{R} , et pour tout $x \in \mathbb{R}$, on a $|f'(x)| \leq k = \frac{1}{2}$, donc, d'après l'inégalité des accroissements finis :

$$\forall (x,y) \in \mathbb{R}^2, |f(x) - f(y)| \le k|x - y|$$

Soit
$$n \in \mathbb{N}$$
. Comme $f(u_n) = u_{n+1}$ et que $f(\alpha) = \alpha$, on obtient bien : $|u_{n+1} - \alpha| \le \frac{1}{2}|u_n - \alpha|$.

b) On pose, pour tout
$$n \in \mathbb{N}$$
, $P_n : |u_n - \alpha| \le \frac{1}{2^n} |u_0 - \alpha|$.

• Supposons
$$P_n$$
 vraie pour un $n \in \mathbb{N}$ fixé.

$$|u_{n+1}-\alpha|\leq \frac{1}{2}|u_n-\alpha| \quad \text{d'après la question précédente}$$
 or
$$\frac{1}{2}|u_n-\alpha|\leq \frac{1}{2}\frac{1}{2^n}|u_0-\alpha| \quad \text{par l'hypothèse de récurrence}$$
 d'où
$$|u_{n+1}-\alpha|\leq \frac{1}{2^{n+1}}|u_0-\alpha| \quad :P_{n+1} \text{ est vraie}.$$

• Conclusion :
$$\boxed{\text{pour tout } n \in \mathbb{N}, |u_n - \alpha| \leq \frac{1}{2^n}|u_0 - \alpha|}$$
.

$$-1 < \frac{1}{2} < 1 \text{ donc } \left(\frac{1}{2}\right)^n \xrightarrow[n \to +\infty]{} 0, \text{ donc } \left(\frac{1}{2}\right)^n |u_0 - \alpha| \xrightarrow[n \to +\infty]{} 0.$$

On en déduit par le théorème d'encadrement que $u_n - \alpha \xrightarrow[n \to \infty]{} 0$, c'est-à-dire que $u_n \xrightarrow[n \to +\infty]{} \alpha$.

6°) On a
$$f(0) = 1$$
 donc $ch(0)f(2.0) = 1 \times 1 = 1 = f(0)$, et pour tout $x \in \mathbb{R}^*$,

$$ch(x)f(2x) = ch(x)\frac{2x}{sh(2x)}$$

$$= \frac{e^x + e^{-x}}{2}2x\frac{2}{e^{2x} - e^{-2x}}$$

$$= (e^x + e^{-x})x\frac{2}{(e^x)^2 - (e^{-x})^2}$$

$$= x\frac{2}{e^x - e^{-x}} = \frac{x}{sh(x)} = f(x)$$

Ainsi, f vérifie (*).

Comme $f: \mathbb{R} \to \mathbb{R}$ est continue d'après la question 1, $f \in \mathcal{E}$.

7°) a) Pour tout
$$x \in \mathbb{R}^*$$
, $\operatorname{sh}(x) \neq 0$ et $x \neq 0$ donc $f(x) \neq 0$, et $f(0) = 1 \neq 0$, donc φ est bien définie sur \mathbb{R} .

b) Pour tout
$$x \in \mathbb{R}$$
, comme $ch(x) \neq 0$,

$$\varphi(2x) = \frac{g(2x)}{f(2x)} = \frac{\operatorname{ch}(x)g(2x)}{\operatorname{ch}(x)f(2x)} = \frac{g(x)}{f(x)} = \varphi(x).$$

Ainsi, pour tout $x \in \mathbb{R}$, $\varphi(2x) = \varphi(x)$

c) D'après la question précédente, pour tout
$$n \in \mathbb{N}$$
, $\varphi\left(2\frac{x}{2^{n+1}}\right) = \varphi\left(\frac{x}{2^{n+1}}\right)$, i.e. $a_n = a_{n+1}$.
La suite (a_n) est donc constante : $\forall n \in \mathbb{N}$, $a_n = a_0$. Donc $a_n \underset{n \to +\infty}{\longrightarrow} a_0 = \varphi(x)$.

Par ailleurs, comme 2 > 1, $2^n \xrightarrow[n \to +\infty]{} + \infty$ et donc $\frac{x}{2^n} \xrightarrow[n \to +\infty]{} 0$.

Par quotient, φ est continue, en particulier en 0. Donc $a_n = \varphi\left(\frac{x}{2^n}\right) \xrightarrow[n \to +\infty]{} \varphi(0)$

Par unicité de la limite, $|\varphi(x) = \varphi(0)|$

8°) • Soit
$$g \in \mathcal{E}$$
. D'après ce qui précède, pour tout $x \in \mathbb{R}$, $\frac{g(x)}{f(x)} = \frac{g(0)}{f(0)}$ donc $g(x) = \frac{g(0)}{f(0)}f(x)$. Ainsi, g s'écrit λf avec $\lambda \in \mathbb{R}$. On a donc $\mathcal{E} \subset \{\lambda f \mid \lambda \in \mathbb{R}\}$.

Réciproquement, si $\lambda \in \mathbb{R}$, alors, grâce à la question 6, pour tout $x \in \mathbb{R}$,

$$\operatorname{ch}(x)(\lambda \cdot f)(2x) = \lambda \operatorname{ch}(x)f(2x) = \lambda f(x),$$

et $\lambda.f$ est continue sur \mathbb{R} , donc $\lambda.f \in \mathcal{E}$.

On a donc $\{\lambda.f / \lambda \in \mathbb{R}\} \subset \mathcal{E}$.

Conclusion: $\mathcal{E} = \{\lambda.f / \lambda \in \mathbb{R}\} = \text{Vect}(f)$