Institute of Actuaries of India

Subject CS1-Actuarial Statistics (Paper B)

May 2023 Examination

INDICATIVE SOLUTION

Introduction

The indicative solution has been written by the Examiners with the aim of helping candidates. The solutions given are only indicative. It is realized that there could be other points as valid answers and examiner have given credit for any alternative approach or interpretation which they consider to be reasonable.

Solution 1:

i) set.seed(052023) (1)

u<-runif(150)

round(mean(u),2) (1) [1] 0.52

This shows sample mean ~0.52.

[2]

ii) chi<-qchisq(u,2)

[2]

iii) gam<-qgamma(u,1,1/2)

(1)

sum(chi-gam)

(0.5)

[1] 0

We know the property that if $X \sim Gamma(\alpha, \lambda)$ then $2\lambda X$ has χ^2 distribution with 2α degrees of freedom.

•

(1)

We have $X \sim \chi^2$ with 2 degrees of freedom.

Above can be written as $(2\lambda X/2\lambda) \sim \chi^2$ with 2α degrees of freedom where $\alpha=1,\lambda=1/2$ Thus,

(0.5)

 $X \sim Gamma(\alpha, \lambda)$ with $\alpha=1, \lambda=1/2$

 $X \sim Gamma(1,1/2)$

(0.5)

This is why both samples are same.

[Max 3]

iv)

a) hist(chi, main ="Histogram of chi square distribution sample")

(1) (1)

Histogram of chi square distribution sample

#Histogram shows positive skewed distribution

(1) **[3]**

b) > summary(chi)

(1)

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.006184 0.603187 1.534968 2.217946 2.983161 12.350562

Alternate:

mean(chi)

(0.5)

median(chi)

(0.5)

#mean = 2.218

#median = 1.535

#Mean is greater than median since it is positively skewed distribution

(1)

[2]

v)	set.seed(052023) y = rep(0,1000) for(i in 1:1000) y[i] = sum(rch) {			(0.5) (1) (1) (2)
	}				[Max 4]
vi)	hist(y, main ="Hi	stogram of Samples Sum	ר")		(0.5) (1)
		Histo	gram of Sam	ples Sum	
	Frequency 0 150	250	200	250	400
		250	300	350	400
			у		
	#This displays Ce	n of sample sums is roug entral Limit Theorem pro ribution move towards r	perty. As the sample	e size	(1) (1) (1) [Max 3] [19 Marks]
Solution:		~1			(1)
i)	Sales<-read.csv((1)
	> mean(Sales\$\ [1] 1307.167	/alue)			(1)
					[2]
ii) a)	cor(Sales\$Value, [1] -0.2130327	Sales\$City,method = "ke	endall")		[1]
b)	r<-cor(Sales\$Vales	ue,Sales\$Age) ue)*sd(Sales\$Age)			(1) (1)
	cov(sales\$Value, [1] -278.5169		an utod		(1.5) (0.5)
•••	creait is given if	Kendall covariance is cor	присеа.		[2]
iii) a)	plot(Sales\$Value	e,Sales\$Age)			(1)

No trend (showing linear relationship) is visible from the scatter plot.

Most likely it indicates that correlation is zero.

[3]

(1)

b) > cor.test(Sales\$Value,Sales\$Age)

(1)

Pearson's product-moment correlation

data: Sales\$Value and Sales\$Age t = -0.95277, df = 58, p-value = 0.3447

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.3665088 0.1340120

(1) for CI

sample estimates:

cor

-0.1241369

Confidence Interval is (-0.367,0.134)

Since 0 lies in the confidence interval, we cannot reject the hypothesis that correlation coefficient (1) = 0.

[3]

iv)

a) Since correlation between Value and Age is (close to) 0, age can be excluded.

(2)

b) > model1<-lm(data = Sales, Value~Device+City+Age)

(1) (1)

> summary(model1)

Call:

Im(formula = Value ~ Device + City + Age, data = Sales)

Residuals:

Min 1Q Median 3Q Max -768.21 -239.97 -19.05 236.74 959.32

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2887.26 378.29 7.632 3.12e-10 ***

City -135.98 100.03 -1.359 0.1795 Age -26.25 13.41 -1.958 0.0552.

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Residual standard error: 377 on 56 degrees of freedom Multiple R-squared: 0.6388, Adjusted R-squared: 0.6195 F-statistic: 33.01 on 3 and 56 DF, p-value: 2.019e-12 Device = 1 for Mobile and 0 for Laptop. Parameter for this variable is significant. (0.5)Alternate: Device is significant Age and City are not significant ... (1) (0.5).....since p-value > 0.05. Age is expected to insignificant per the earlier analysis. (0.5)[Max 4] c) model2<-lm(data = Sales, Value~Device)</p> (1)> anova(model1,model2) (1)Analysis of Variance Table Model 1: Value ~ Device + City + Age Model 2: Value ~ Device Res.Df RSS Df Sum of Sq F Pr(>F) 56 7958529 58 8716151 -2 -757622 2.6655 0.07838 . Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1 H0: β (City) = β (Age) =0 against H1: at least one of β (City) or β (Age) is non-zero. (1)In model 2, there are 2 less parameters thus -2 degrees of freedom in Anova analysis (1) p-value >0.05 showing we can't reject H0: β (City) = β (Age) =0. (1)This indicates neither of the covariates have strong relationship with Order value. (0.5)[Max 5] **d**) summary(model2) (1)Im(formula = Value ~ Device, data = Sales) Residuals: 1Q Median 3Q Max -810.9 -240.1 -8.7 271.6 889.1 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2056.47 94.02 21.873 < 2e-16 *** DeviceMobile -1045.54 111.06 -9.414 2.77e-13 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1 Residual standard error: 387.7 on 58 degrees of freedom Multiple R-squared: 0.6044, Adjusted R-squared: 0.5976 F-statistic: 88.62 on 1 and 58 DF, p-value: 2.77e-13 > # Value = 2056.47 - 1045.54 X Device, (1.5)where Device= 1 for Mobile else 0 (0.5)Alternate: > # Value = 2056.47 - 1045.54 X Device Mobile (2) [Max 3]

Page **5** of **9**

v) a)	confint(model2,level=.95) 2.5 % 97.5 % (Intercept) 1868.268 2244.6737 DeviceMobile -1267.855 -823.2257 > # C.I. (-1267.8,-823.2)	(1) (1) [2]
b)	> residual<-model2\$residuals > n<-length(residual) > varhat<-var(residual) > (n-2)*varhat/qchisq(c(0.975,.025),58) [1] 105867.1 220588.2 > # C.I. (105867,220588)	(1) (0.5) (1.5) (2) (1) [Max 5]
vi) a)	m<-mean(Sales\$Order) > m [1] 2.383333 Mu hat = 2.383	(1) (1) [2]
b)	table(Sales\$Order)	(1)
	0 1 2 3 4 5 7 8 13 13 8 12 5 1	(1) [2]
c)	a<-as.numeric(table(Sales\$Order)) #using above table, combine order 5 and 5+ a[6]=sum(a[6:7]) a<-a[-7] #to remove 5+ as combine above	(1) (1) (0.5)
	e<-dpois(c(0:4),m) sum(e)	(1) (0.5)
	[1] 0.9062099 e[6]<-1 - sum(e) sum(e) [1] 1	(1) (1)
	chisq.test(x=a,p=e) Chi-squared test for given probabilities	(2)
	data: a X-squared = 6.0026, df = 5, p-value = 0.306	
	Since p-value is greater than 0.05 , we can reject the hypothesis that number of order poisson distribution.	follows (1) [Max 8]
vii) a)	glm2<-glm(data=Sales,Order~Device,family=poisson(link="log")) > summary(glm2)	(2) (1)
	Call: glm(formula = Order ~ Device, family = poisson(lin = "log"),	

data = Sales)

Deviance Residuals:

Min 1Q Median 3Q Max -2.4495 -0.6149 0.0000 0.5491 1.9652

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 81.185 on 59 degrees of freedom Residual deviance: 51.570 on 58 degrees of freedom

AIC: 199.88

Number of Fisher Scoring iterations: 5

[3]

b) Log link function is used in above model.

(0.5)

Log link implied log mu = linear predictor. Inverting to mu leads to mu = exp(linear predictor). Exponent will make sure mu always remain greater than 0, an essential feature for poisson distribution with mean mu.

(1.5) **[2]**

viii)

a) Customers<- data.frame(Device =c("Mobile","Mobile"),Age =c(18,28), City = c(1,2)) (1.5)

> predict.glm(glm2,newdata = Customers,type= "response") (2)

12

33

(0.5) **[4]**

- b) Only device is used in the model and for both customers, device is same and thus, the predicted
- value is same for both customers. [2]
- ix) Channel <-data.frame(Device =c("Mobile","Laptop")) (1.5)
 - > pred_order <- predict.glm(glm2,newdata = Channel,type= "response") (1.5)
 - > pred_value <- predict(model2,newdata = Channel) (1)

>

> totalvalue<-pred_order * pred_value (1.5)

> totalvalue

1 2

3032.791 1693.564 (1)

> #total value for Mobile = 3032.8

> # and for Laptop = 1693.6

[Max 6]

[61 Marks]

Solution 3:

i) #m1x0 = E[X] and (0.5)

 $\#m2x0=E[x^2]$ and $var = E[x^2] - E[x]^2 >> m2x0 = var + E[x]^2$ (0.5)

prior_mean=60
prior_sd=5

```
m1x0= prior_mean
                                                                                                         (0.5)
      m2x0 = prior_sd^2 + prior_mean^2
                                                                                                           (1)
      > m1x0
                                                                                                         (0.5)
      [1] 60
      > m2x0
      [1] 3625
                                                                                                         (0.5)
                                                                                                      [Max 3]
ii)
   a) # theta follows N(prior mean, prior variance)
      # Random Variable X follows N(theta, variance)
      # posterior distribution of theta follows Normal with
                                                                                                         (0.5)
      # post mean = (n*sample mean/variance +prior mean/prior variance)/
                                                                                                         (1.5)
                    (n/variance + 1/prior variance)
      #post variance = 1/(n/variance + 1/prior variance)
                                                                                                           (1)
      Max 2
      n<-5
      sample_mean<- 340/5
      sdev<-20
      post_mean = (n*sample_mean/sdev^2 + prior_mean/prior_sd^2)/(n/sdev^2 + 1/prior_sd^2)
                                                                                                           (2)
      post_var= 1/(n/sdev^2 + 1/prior_sd^2)
                                                                                                           (1)
      > post mean
                                                                                                         (0.5)
      [1] 61.90476
                                                                                                         (0.5)
      > post_var
      [1] 19.04762
                                                                                                         (0.5)
      > sqrt(post var)
      [1] 4.364358
                                                                                                      [Max 6]
   b) sample2_mean<-3400/50
                                                                                                         (0.5)
      n2<-50
      post2_mean = (n2*sample2_mean/sdev^2 + prior_mean/prior_sd^2)/(n2/sdev^2 + 1/prior_sd^2)
                                                                                                         (1.5)
      post2_var= 1/(n2/sdev^2 + 1/prior_sd^2)
                                                                                                         (0.5)
      > post2 mean
                                                                                                         (0.5)
      [1] 66.06061
      > post2_var
                                                                                                         (0.5)
      [1] 6.060606
      > sqrt(post2_var)
      [1] 2.46183
                                                                                                      [Max 3]
iii)
   a) x<-60+seq(-3,3,by=0.2)*5
      y<-dnorm(x,mean=60,sd=5)
      plot(x,y,ylim=c(0,.2))
                                                                                                          [1]
   b) px1<-post_mean+seq(-3,3,by=0.2)*sqrt(post_var)
                                                                                                         (0.5)
      py1<-dnorm(px1,mean=post_mean,sd=sqrt(post_var))</pre>
                                                                                                         (0.5)
      lines(px1,py1)
                                                                                                           (1)
                                                                                                          [2]
                                                                                                         (0.5)
   c) px2<-post2_mean+seq(-3,3,by=0.2)*sqrt(post2_var)
      py2<-dnorm(px2,mean=post2_mean,sd=sqrt(post2_var))
                                                                                                         (0.5)
      lines(px2,py2)
                                                                                                           (1)
```

d)

The posterior distribution with sample size =5 is close to prior distribution. There is slight shift to mean towards sample mean and similar dispersion. (1)

When the sample size increased, the posterior distribution moves towards sample mean and dispersion. (1)

More weight is given to sample where sample is big. Further, the variation reduced with larger sample size. (1)

[Max 3] [20 Marks]

[2]
