life.augmented

STM32F302xD STM32F302xE

ARM® Cortex®-M4 32b MCU+FPU, up to 512KB Flash, 64KB SRAM, FSMC, 2 ADCs, 1 DAC ch., 4 comp, 2 Op-Amp, 2.0-3.6 V

Datasheet - production data

Features

- Core: ARM[®] Cortex[®]-M4 32-bit CPU with 72 MHz FPU, single-cycle multiplication and HW division, DSP instruction and MPU (memory protection unit)
- · Operating conditions:
 - V_{DD}, V_{DDA} voltage range: 2.0 V to 3.6 V
- Memories
 - Up to 512 Kbytes of Flash memory
 - 64 Kbytes of SRAM, with HW parity check implemented on the first 32 Kbytes.
 - Flexible memory controller (FSMC) for static memories, with four Chip Select
- CRC calculation unit
- · Reset and supply management
 - Power-on/Power-down reset (POR/PDR)
 - Programmable voltage detector (PVD)
 - Low-power modes: Sleep, Stop and Standby
 - V_{BAT} supply for RTC and backup registers
- Clock management
 - 4 to 32 MHz crystal oscillator
 - 32 kHz oscillator for RTC with calibration
 - Internal 8 MHz RC with x 16 PLL option
 - Internal 40 kHz oscillator
- Up to 115 fast I/Os
 - All mappable on external interrupt vectors
 - Several 5 V-tolerant
- Interconnect matrix
- 12-channel DMA controller
- Two ADCs 0.20 µs (up to 18 channels) with selectable resolution of 12/10/8/6 bits, 0 to 3.6 V conversion range, separate analog supply from 2.0 to 3.6 V
- One 12-bit DAC channels with analog supply from 2.4 to 3.6 V

- Four ultra-fast rail-to-rail analog comparators with analog supply from 2.0 to 3.6 V
- Two operational amplifiers that can be used in PGA mode, all terminals accessible with analog supply from 2.4 to 3.6 V
- Up to 24 capacitive sensing channels supporting touchkey, linear and rotary touch sensors
- Up to 11 timers:
 - One 32-bit timer and two 16-bit timers with up to four IC/OC/PWM or pulse counter and quadrature (incremental) encoder input
 - One 16-bit 6-channel advanced-control timers, with up to six PWM channels, deadtime generation and emergency stop
 - One 16-bit timer with two IC/OCs, one OCN/PWM, deadtime generation and emergency stop
 - Two 16-bit timers with IC/OC/OCN/PWM, deadtime generation and emergency stop
 - Two watchdog timers (independent, window)
 - One SysTick timer: 24-bit downcounter
 - One 16-bit basic timers to drive the DAC
- Calendar RTC with Alarm, periodic wakeup from Stop/Standby
- · Communication interfaces
 - CAN interface (2.0B Active)

- Three I²C Fast mode plus (1 Mbit/s) with 20 mA current sink, SMBus/PMBus, wakeup from STOP
- Up to five USART/UARTs (ISO 7816 interface, LIN, IrDA, modem control)
- Up to four SPIs, 4 to 16 programmable bit frames, two with multiplexed half/full duplex I²S interface
- USB 2.0 full-speed interface with LPM support
- Infrared transmitter
- SWD, Cortex®-M4 with FPU ETM, JTAG
- 96-bit unique ID

Table 1. Device summary

Reference	Reference Part number	
STM32F302xD	STM32F302RD, STM32F302VD, STM32F302ZD.	
STM32F302xE	STM32F302RE, STM32F302VE, STM32F302ZE.	

Contents

1	Intro	duction
2	Desc	ription
3	Func	tional overview
	3.1	ARM® Cortex®-M4 core with FPU with embedded Flash and SRAM 15
	3.2	Memory protection unit (MPU)
	3.3	Embedded Flash memory
	3.4	Embedded SRAM
	3.5	Boot modes
	3.6	Cyclic redundancy check (CRC)
	3.7	Power management
		3.7.1 Power supply schemes
		3.7.2 Power supply supervisor
		3.7.3 Voltage regulator
		3.7.4 Low-power modes
	3.8	Interconnect matrix
	3.9	Clocks and startup
	3.10	General-purpose input/outputs (GPIOs)
	3.11	Direct memory access (DMA)
	3.12	Flexible static memory controller (FSMC)
	3.13	Interrupts and events
		3.13.1 Nested vectored interrupt controller (NVIC)
	3.14	Fast analog-to-digital converter (ADC)
		3.14.1 Temperature sensor
		3.14.2 Internal voltage reference (V _{REFINT})
		3.14.3 V _{BAT} battery voltage monitoring
		3.14.4 OPAMP reference voltage (VREFOPAMP)
	3.15	Digital-to-analog converter (DAC)
	3.16	Operational amplifier (OPAMP)
	3.17	Ultra-fast comparators (COMP) 24
	3.18	Timers and watchdogs

		3.18.1	Advanced timers (TIM1)	. 25
		3.18.2	General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17) .	. 25
		3.18.3	Basic timers (TIM6)	. 26
		3.18.4	Independent watchdog (IWDG)	. 26
		3.18.5	Window watchdog (WWDG)	. 26
		3.18.6	SysTick timer	. 27
	3.19	Real-tii	me clock (RTC) and backup registers	. 27
	3.20	Inter-in	tegrated circuit interface (I ² C)	. 27
	3.21	Univers	sal synchronous/asynchronous receiver transmitter (USART)	. 28
	3.22	Univers	sal asynchronous receiver transmitter (UART)	. 29
	3.23	Serial p	peripheral interface (SPI)/Inter-integrated sound interfaces (I ² S)	. 29
	3.24	Contro	ller area network (CAN)	. 30
	3.25	Univers	sal serial bus (USB)	. 30
	3.26	Infrare	d transmitter	. 30
	3.27	Touch	sensing controller (TSC)	. 31
	3.28	Develo	pment support	. 32
		3.28.1	Serial wire JTAG debug port (SWJ-DP)	. 32
		3.28.2	Embedded Trace Macrocell	. 32
4	Pino	ut and p	oin description	. 34
5	Mem	ory ma _l	pping	. 61
6	Elect	trical ch	aracteristics	. 64
	6.1	Param	eter conditions	. 64
		6.1.1	Minimum and maximum values	. 64
		6.1.2	Typical values	. 64
		6.1.3	Typical curves	. 64
		6.1.4	Loading capacitor	. 64
		6.1.5	Pin input voltage	. 64
		6.1.6	Power supply scheme	. 65
		6.1.7	Current consumption measurement	. 66
	6.2	Absolu	te maximum ratings	. 66
	6.3	Operat	ing conditions	. 68
		6.3.1	General operating conditions	. 68
		6.3.2	Operating conditions at power-up / power-down	. 69

		6.3.3	Embedded reset and power control block characteristics	69
		6.3.4	Embedded reference voltage	70
		6.3.5	Supply current characteristics	70
		6.3.6	Wakeup time from low-power mode	82
		6.3.7	External clock source characteristics	83
		6.3.8	Internal clock source characteristics	87
		6.3.9	PLL characteristics	88
		6.3.10	Memory characteristics	89
		6.3.11	FSMC characteristics	89
		6.3.12	EMC characteristics	110
		6.3.13	Electrical sensitivity characteristics	111
		6.3.14	I/O current injection characteristics	112
		6.3.15	I/O port characteristics	113
		6.3.16	NRST pin characteristics	118
		6.3.17	Timer characteristics	119
		6.3.18	Communications interfaces	120
		6.3.19	ADC characteristics	127
		6.3.20	DAC electrical specifications	139
		6.3.21	Comparator characteristics	141
		6.3.22	Operational amplifier characteristics	
		6.3.23	Temperature sensor characteristics	145
		6.3.24	V _{BAT} monitoring characteristics	146
7	Pack	age info	ormation	147
	7.1	Packag	ge mechanical data	147
	7.2	LQFP1	44 package information	147
	7.3	UFBGA	A100 package information	151
	7.4	LQFP1	00 package information	154
	7.5	WLCSI	P100 package information	157
	7.6	LQFP6	4 package information	160
	7.7	Therma	al characteristics	163
		7.7.1	Reference document	163
		7.7.2	Selecting the product temperature range	163
8	Part	number	ring	166
•	D : '	-: l:	Anne	46-
9	Kevi	sion his	story	167

List of tables

Table 1.	Device summary	2
Table 2.	STM32F302xD/E family device features and peripheral counts	
Table 3.	External analog supply values for analog peripherals	
Table 4.	STM32F302xD/E peripheral interconnect matrix	18
Table 5.	Timer feature comparison	24
Table 6.	Comparison of I ² C analog and digital filters	
Table 7.	STM32F302xD/E I ² C implementation	28
Table 8.	USART features	29
Table 9.	STM32F302xD/E SPI/I ² S implementation	30
Table 10.	Capacitive sensing GPIOs available on STM32F302xD/E devices	31
Table 11.	Number of capacitive sensing channels available on	
	STM32F302xD/E devices	32
Table 12.	Legend/abbreviations used in the pinout table	39
Table 13.	STM32F302xD/E pin definitions	39
Table 14.	STM32F302xD/E alternate function mapping	50
Table 15.	Memory map, peripheral register boundary addresses	62
Table 16.	Voltage characteristics	66
Table 17.	Current characteristics	67
Table 18.	Thermal characteristics	67
Table 19.	General operating conditions	68
Table 20.	Operating conditions at power-up / power-down	69
Table 21.	Embedded reset and power control block characteristics	69
Table 22.	Programmable voltage detector characteristics	69
Table 23.	Embedded internal reference voltage	70
Table 24.	Internal reference voltage calibration values	
Table 25.	Typical and maximum current consumption from V_{DD} supply at $V_{DD} = 3.6V$	71
Table 26.	Typical and maximum current consumption from the V _{DDA} supply	
Table 27.	Typical and maximum V _{DD} consumption in Stop and Standby modes	
Table 28.	Typical and maximum V _{DDA} consumption in Stop and Standby modes	
Table 29.	Typical and maximum current consumption from V _{BAT} supply	74
Table 30.	Typical current consumption in Run mode, code with data processing running from Flash	76
Table 31.	Typical current consumption in Sleep mode, code running from Flash or RAM	
Table 32.	Switching output I/O current consumption	
Table 33.	Peripheral current consumption	
Table 34.	Low-power mode wakeup timings	
Table 35.	Wakeup time using USART	
Table 36.	High-speed external user clock characteristics	
Table 37.	Low-speed external user clock characteristics	
Table 38.	HSE oscillator characteristics	85
Table 39.	LSE oscillator characteristics (f _{LSE} = 32.768 kHz)	86
Table 40.	HSI oscillator characteristics	
Table 41.	LSI oscillator characteristics	88
Table 42.	PLL characteristics	
Table 43.	Flash memory characteristics	89
Table 44.	Flash memory endurance and data retention	89
Table 45.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings	
Table 46.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings	91

Table 47.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings	92
Table 48.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings	93
Table 49.	Asynchronous multiplexed PSRAM/NOR read-NWAIT timings	93
Table 50.	Asynchronous multiplexed PSRAM/NOR read timings	94
Table 51.	Asynchronous multiplexed PSRAM/NOR write timings	96
Table 52.	Asynchronous multiplexed PSRAM/NOR write-NWAIT timings	96
Table 53.	Synchronous multiplexed NOR/PSRAM read timings	97
Table 54.	Synchronous multiplexed PSRAM write timings	99
Table 55.	Synchronous non-multiplexed NOR/PSRAM read timings	100
Table 56.	Synchronous non-multiplexed PSRAM write timings	102
Table 57.	Switching characteristics for PC Card/CF read and write cycles	
	in attribute/common space	103
Table 58.	Switching characteristics for PC Card/CF read and write cycles in I/O space	106
Table 59.	Switching characteristics for NAND Flash read cycles	109
Table 60.	Switching characteristics for NAND Flash write cycles	109
Table 61.	EMS characteristics	110
Table 62.	EMI characteristics	111
Table 63.	ESD absolute maximum ratings	111
Table 64.	Electrical sensitivities	112
Table 65.	I/O current injection susceptibility	112
Table 66.	I/O static characteristics	113
Table 67.	Output voltage characteristics	116
Table 68.	I/O AC characteristics	117
Table 69.	NRST pin characteristics	118
Table 70.	TIMx characteristics	119
Table 71.	IWDG min/max timeout period at 40 kHz (LSI)	
Table 72.	WWDG min-max timeout value @72 MHz (PCLK)	120
Table 73.	I2C analog filter characteristics	121
Table 74.	SPI characteristics	121
Table 75.	I ² S characteristics	124
Table 76.	USB startup time	126
Table 77.	USB DC electrical characteristics	126
Table 78.	USB: full-speed electrical characteristics	126
Table 79.	ADC characteristics	127
Table 80.	Maximum ADC RAIN	
Table 81.	ADC accuracy - limited test conditions, 100-/144-pin packages	132
Table 82.	ADC accuracy, 100-pin/144-pin packages	
Table 83.	ADC accuracy - limited test conditions, 64-pin packages	135
Table 84.	ADC accuracy, 64-pin packages	
Table 85.	ADC accuracy at 1MSPS	
Table 86.	DAC characteristics	
Table 87.	Comparator characteristics	
Table 88.	Operational amplifier characteristics	
Table 89.	TS characteristics	
Table 90.	Temperature sensor calibration values	
Table 91.	V _{BAT} monitoring characteristics	
Table 92.	LQFP144 mechanical data	
Table 93.	UFBGA100 package mechanical data	
Table 94.	UFBGA100 recommended PCB design rules (0.5 mm pitch BGA)	
Table 95.	LQPF100 package mechanical data	
Table 96.	WLCSP100 package mechanical data	
Table 97.	WLCSP100 recommended PCB design rules (0.4 mm pitch)	159

List of tables

STM32F302xD STM32F302xE

Table 98.	LQFP64 package mechanical data	160
	Package thermal characteristics	
Table 100.	Ordering information scheme	166
Table 101.	Document revision history	167

List of figures

Figure 1.	STM32F302xD/E block diagram	14
Figure 2.	STM32F302xD/E clock tree	20
Figure 3.	Infrared transmitter	31
Figure 4.	STM32F302xD/E LQFP64 pinout	34
Figure 5.	STM32F302xD/E LQFP100 pinout	35
Figure 6.	STM32F302xD/E LQFP144 pinout	36
Figure 7.	STM32F302xD/E WLCSP100 ballout	
Figure 8.	STM32F302xD/E UFBGA100 ballout	38
Figure 9.	STM32F302xD/E memory map	61
Figure 10.	Pin loading conditions	
Figure 11.	Pin input voltage	
Figure 12.	Power supply scheme	
Figure 13.	Current consumption measurement scheme	
Figure 14.	Typical V _{BAT} current consumption (LSE and RTC ON/LSEDRV[1:0] 00')	
Figure 15.	High-speed external clock source AC timing diagram	
Figure 16.	Low-speed external clock source AC timing diagram	
Figure 17.	Typical application with an 8 MHz crystal	
Figure 18.	Typical application with a 32.768 kHz crystal	
Figure 19.	HSI oscillator accuracy characterization results for soldered parts	
Figure 20.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings	
Figure 21.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings	
Figure 22.	Asynchronous multiplexed PSRAM/NOR read timings	
Figure 23.	Asynchronous multiplexed PSRAM/NOR write timings	
Figure 24.	Synchronous multiplexed NOR/PSRAM read timings	
Figure 25.	Synchronous multiplexed PSRAM write timings	
Figure 26.	Synchronous non-multiplexed NOR/PSRAM read timings	
Figure 27.	Synchronous non-multiplexed PSRAM write timings	
Figure 28.	PC Card/CompactFlash controller waveforms for common memory	
ga. e =e.	read access	104
Figure 29.	PC Card/CompactFlash controller waveforms for common memory	
ga. e =e.	write access	104
Figure 30.	PC Card/CompactFlash controller waveforms for attribute memory	
ga. 0 00.	read access	105
Figure 31.	PC Card/CompactFlash controller waveforms for attribute memory	
ga. 0 0	write access	106
Figure 32.	PC Card/CompactFlash controller waveforms for I/O space read access	
Figure 33.	PC Card/CompactFlash controller waveforms for I/O space write access	
Figure 34.	NAND controller read timings	
Figure 35.	NAND controller write timings	
Figure 36.	TC and TTa I/O input characteristics - CMOS port	
Figure 37.	TC and TTa I/O input characteristics - TTL port	
Figure 38.	Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port	
Figure 39.	Five volt tolerant (FT and FTf) I/O input characteristics - TTL port	
Figure 40.	I/O AC characteristics definition	
Figure 41.	Recommended NRST pin protection	
Figure 42.	SPI timing diagram - slave mode and CPHA = 0	
Figure 43.	SPI timing diagram - slave mode and CPHA = 1 ⁽¹⁾	122
Figure 44.	SPI timing diagram - master mode and GFTIA - TV	123
i iqui G TT.		120

Figure 45.	I ² S slave timing diagram (Philips protocol) ⁽¹⁾	125
Figure 46.	I ² S master timing diagram (Philips protocol) ⁽¹⁾	125
Figure 47.	USB timings: definition of data signal rise and fall time	126
Figure 48.	ADC typical current consumption on VDDA pin	129
Figure 49.	ADC typical current consumption on VREF+ pin	130
Figure 50.	ADC accuracy characteristics	138
Figure 51.	Typical connection diagram using the ADC	139
Figure 52.	12-bit buffered /non-buffered DAC	141
Figure 53.	OPAMP voltage noise versus frequency	145
Figure 54.	LQFP144 package outline	147
Figure 55.	Recommended footprint for the LQFP144 package	149
Figure 56.	LQFP144 marking example (package top view)	150
Figure 57.	UFBGA100 package outline	151
Figure 58.	Recommended footprint for the UFBGA100 package	152
Figure 59.	UFBGA100 marking example (package top view)	153
Figure 60.	LQFP100 package outline	154
Figure 61.	Recommended footprint for the LQFP100 package	155
Figure 62.	LQFP100 marking example (package top view)	156
Figure 63.	WLCSP100 package outline	157
Figure 64.	Recommended footprint for the WLCSP100 package	158
Figure 65.	WLCSP100 marking example (package top view)	159
Figure 66.	LQFP64 package outline	160
Figure 67.	Recommended footprint for the LQFP64 package	161
Figure 68.	LQFP64 marking example (package top view)	162
Figure 69.	LQFP100 P _D max vs. T _A	165

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F302xD/E microcontrollers.

This STM32F302xD/E datasheet should be read in conjunction with the reference manual of STM32F302xB/C/D/E, STM32F302x6/8 devices (RM0365) available on STMicroelectronics website at www.st.com.

For information on the ARM[®] Cortex[®]-M4 core with FPU, refer to the following documents:

- Cortex[®] -M4 with FPU Technical Reference Manual, available from the www.arm.com website
- STM32F3 and STM32F4 Series Cortex® -M4 programming manual (PM0214) available on STMicroelectronics website at www.st.com.

2 Description

The STM32F302xD/E family is based on the high-performance ARM[®] Cortex[®]-M4 32-bit RISC core with FPU operating at a frequency of 72 MHz, and embedding a floating point unit (FPU), a memory protection unit (MPU) and an embedded trace macrocell (ETM). The family incorporates high-speed embedded memories (512-Kbyte Flash memory, 64-Kbyte SRAM), a flexible memory controller (FSMC) for static memories (SRAM, PSRAM, NOR and NAND), and an extensive range of enhanced I/Os and peripherals connected to an AHB and two APB buses.

The devices offer two fast 12-bit ADCs (5 Msps), four comparators, two operational amplifiers, one DAC channel, a low-power RTC, up to two general-purpose 16-bit timers, one general-purpose 32-bit timer, and one timer dedicated to motor control. They also feature standard and advanced communication interfaces: up to three I²Cs, up to four SPIs (two SPIs are with multiplexed full-duplex I²Ss), three USARTs, up to two UARTs, CAN and USB. To achieve audio class accuracy, the I²S peripherals can be clocked via an external PLL.

The STM32F302xD/E family operates in the -40 to +85°C and -40 to +105°C temperature ranges from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F302xD/E family offers devices in different packages ranging from 64 to 144 pins.

Depending on the device chosen, different sets of peripherals are included.

57

Table 2. STM32F302xD/E family device features and peripheral counts

Р	STM32F302Rx STM32F302Vx ST		STM32	STM32F302Zx			
Flash (Kbytes)	384	512	384	512	384	512	
SRAM (Kbytes) on data bus		64					
FMC (flexible m	nemory controller)		NO		YE	S	
	Advanced control			1 (1	6-bit)		
	General purpose	5 (16-bit) 1 (32-bit)					
				<u> </u>	<u> </u>		
Timers	Basic	1 (16-bit)					
l	PWM channels (all) (1)				26		
	PWM channels (except complementary)			2	20		
	SPI (I ² S) ⁽²⁾			4	(2)		
	I ² C			,	3		
Communication	USART			,	3		
interfaces	UART				2		
	CAN	1					
	USB				1		
	Normal I/Os (TC, TTa)		26	LQFP1	SP100,44 in 100 and SA100	4	5
GPIOs	5-volt tolerant I/Os (FT, FTf)		25	40 in WLC	QFP100 SP100 and GA100	7	0
DMA channels		12					
Capacitive sensi	ng channels		18	24			
12-bit ADCs			2		2		2
		16 c	hannels		annels	18 cha	annels
12-bit DAC chan		1					
Analog compara		4					
Operational amplifiers		2					
CPU frequency		72 MHz					
Operating voltage		2.0 to 3.6 V					
Operating temperature		Ambient operating temperature: - 40 to 85 °C / - 40 to 105 °C Junction temperature: - 40 to 125 °C			105 °C		
Packages		LO	QFP64	,WLC	P100 SP100 GA100	LQFI	P144

^{1.} This total number considers also the PWMs generated on the complementary output channels.

^{2.} The SPI interfaces works in an exclusive way in either the SPI mode or the I²S audio mode.

Figure 1. STM32F302xD/E block diagram

1. AF: alternate function on I/O pins.

3 Functional overview

3.1 ARM[®] Cortex[®]-M4 core with FPU with embedded Flash and SRAM

The ARM® Cortex®-M4 processor with FPU is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM® Cortex®-M4 32-bit RISC processor with FPU features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allows efficient signal processing and complex algorithm execution.

Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.

With its embedded ARM core, the STM32F302xD/E family is compatible with all ARM tools and software.

Figure 1 shows the general block diagram of the STM32F302xD/E family devices.

3.2 Memory protection unit (MPU)

The memory protection unit (MPU) is used to separate the processing of tasks from the data protection. The MPU manage up to 8 protection areas that are further divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The memory protection unit is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS detects it and takes action. In an RTOS environment, the kernel dynamically updates the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

3.3 Embedded Flash memory

All STM32F302xD/E devices feature 384/512 Kbyte of embedded Flash memory available for storing programs and data. The Flash memory access time is adjusted to the CPU clock frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above).

3.4 Embedded SRAM

STM32F302xD/E devices feature 64 Kbyte of embedded SRAM with hardware parity check implemented on the first 32 Kbyte. The memory can be accessed in read/write at CPU clock speed with 0 wait states.

3.5 Boot modes

At startup, Boot0 pin and Boot1 option bit are used to select one of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in the system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART2 (PA2/PA3) or USB (PA11/PA12) through DFU (device firmware upgrade).

3.6 Cyclic redundancy check (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.

3.7 Power management

3.7.1 Power supply schemes

- V_{SS} , V_{DD} = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. It is provided externally through V_{DD} pins.
- V_{SSA} , V_{DDA} = 2.0 to 3.6 V: external analog power supply for ADC, DAC, comparators, operational amplifier, reset blocks, RCs and PLL. The minimum voltage to be applied to V_{DDA} differs from one analog peripheral to another. *Table 3* provides the summary of the V_{DDA} ranges for analog peripherals. The V_{DDA} voltage level must always be greater than or equal to the V_{DD} voltage level and must be provided first.

	0 11 7	01 1	
Analog peripheral	Minimum V _{DDA} supply	Maximum V _{DDA} supply	
ADC/COMP	2.0 V	3.6 V	
DAC/OPAMP	24 V	3 6 V	

Table 3. External analog supply values for analog peripherals

 V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

3.7.2 Power supply supervisor

The device has an integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, VPOR/PDR, without the need for an external reset circuit.

- The POR monitors only the V_{DD} supply voltage. During the startup phase it is required that V_{DDA} should arrive first and be greater than or equal to V_{DD}.
- The PDR monitors both the V_{DD} and V_{DDA} supply voltages, however the V_{DDA} power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V_{DDA} is higher than or equal to V_{DD}.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.7.3 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR), and power-down.

- The MR mode is used in the nominal regulation mode (Run)
- The LPR mode is used in Stop mode.
- The power-down mode is used in Standby mode: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption.

The voltage regulator is always enabled after reset. It is disabled in Standby mode.

3.7.4 Low-power modes

The STM32F302xD/E supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and wake up the CPU when an interrupt/event occurs.

Stop mode

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the USB wakeup, the RTC alarm, COMPx, I2Cx or U(S)ARTx.

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin or an RTC alarm occurs.

The RTC, the IWDG and the corresponding clock sources are not stopped by entering Stop

or Standby mode.

Note:

3.8 Interconnect matrix

Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency.

Interconnect Interconnect source Interconnect action destination TIMx Timers synchronization or chaining **ADC**x Conversion triggers DAC1 TIMx DMA Memory to memory transfer trigger Compx Comparator output blanking **COMPx** TIMx Timer input: OCREF_CLR input, input capture **ADCx** TIMx Timer triggered by analog watchdog

Table 4. STM32F302xD/E peripheral interconnect matrix

Table 4. STM32F302xD/E peripheral interconnect matrix (continued)

Interconnect source	Interconnect destination	Interconnect action
GPIO RTCCLK HSE/32 MC0	TIM16	Clock source used as input channel for HSI and LSI calibration
CSS CPU (hard fault) COMPx GPIO	TIM1 TIM15, 16, 17	Timer break
	TIMx	External trigger, timer break
GPIO	ADCx DAC1	Conversion external trigger
DAC1	COMPx	Comparator inverting input

Note:

For more details about the interconnect actions, refer to the corresponding sections in the STM32F302xD/E reference manual (RM0365).

3.9 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).

Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed APB domain is 36 MHz.

Figure 2. STM32F302xD/E clock tree

3.10 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable except for analog inputs.

The I/Os alternate function configuration can be locked if needed following a specific sequence to avoid spurious writing to the I/Os registers.

Fast I/O handling allows I/O toggling up to 36 MHz.

3.11 Direct memory access (DMA)

The flexible general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each of the 12 DMA channels is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

The DMA is used with the main peripherals: SPI, I²C, USART, general-purpose timers, DAC and ADC.

3.12 Flexible static memory controller (FSMC)

The flexible static memory controller (FSMC) includes two memory controllers:

- The NOR/PSRAM memory controller,
- The NAND/PC Card memory controller.

This memory controller is also named Flexible memory controller (FMC).

The main features of the FMC controller are the following:

- Interface with static-memory mapped devices including:
 - Static random access memory (SRAM),
 - NOR Flash memory/OneNAND Flash memory,
 - PSRAM (four memory banks),
 - NAND Flash memory with ECC hardware to check up to 8 Kbyte of data,
 - 16-bit PC Card compatible devices.
- 8-,16-bit data bus width,
- Independent Chip Select control for each memory bank,
- Independent configuration for each memory bank,
- Write FIFO,
- LCD parallel interface.

The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost

effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

3.13 Interrupts and events

3.13.1 Nested vectored interrupt controller (NVIC)

The STM32F302xD/E devices embed a nested vectored interrupt controller (NVIC) able to handle up to 73 maskable interrupt channels and 16 priority levels.

The NVIC benefits are the following:

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

3.14 Fast analog-to-digital converter (ADC)

Two fast analog-to-digital converters 5 MSPS, with selectable resolution between 12 and 6 bit, are embedded in the STM32F302xD/E family devices. The ADCs have up to 18 external channels. The ADCs can perform conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADCs have also internal channels: Temperature sensor connected to ADC1 channel 16, VBAT/2 connected to ADC1 channel 17, Voltage reference VREFINT connected to the 2 ADCs channel 18, VREFOPAMP1 connected to ADC1 channel 15, VREFOPAMP2 connected to ADC2 channel 17.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold
- Single-shunt phase current reading techniques.

The ADC can be served by the DMA controller.

Three analog watchdogs are available per ADC.

The analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers and the advanced-control timer (TIM1) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

3.14.1 Temperature sensor

The temperature sensor (TS) generates a voltage V_{SENSE} that varies linearly with temperature.

The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

3.14.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and Comparators. V_{REFINT} is internally connected to the ADCx_IN18, x=1...4 input channel. The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

3.14.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC1_IN17. As the V_{BAT} voltage may be higher than V_{DDA} , and thus outside the ADC input range, the V_{BAT} pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the V_{BAT} voltage.

3.14.4 OPAMP reference voltage (VREFOPAMP)

Every OPAMP reference voltage can be measured using a corresponding ADC internal channel: VREFO, VREFOPAMP1 connected to ADC1 channel 15, VREFOPAMP2 connected to ADC2 channel 17.

3.15 Digital-to-analog converter (DAC)

One 12-bit buffered DAC channel can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This digital interface supports the following features:

- · One DAC output channel
- 8-bit or 10-bit monotonic output
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- DMA capability (for each channel)

- External triggers for conversion
- Input voltage reference VREF+

3.16 Operational amplifier (OPAMP)

The STM32F302xD/E embed two operational amplifiers (OPAMP1 and OPAMP2) with external or internal follower routing and PGA capability (or even amplifier and filter capability with external components). When an operational amplifier is selected, an external ADC channel is used to enable output measurement.

The operational amplifier features:

- 8.2 MHz bandwidth
- 0.5 mA output capability
- Rail-to-rail input/output
- In PGA mode, the gain is programmed to be 2, 4, 8 or 16.

3.17 Ultra-fast comparators (COMP)

The STM32F302xD/E devices embed four ultra-fast rail-to-rail comparators (COMP1, 2, 4, 6) with programmable reference voltage (internal or external) and selectable output polarity.

The reference voltage can be one of the following:

- External I/O
- DAC output pin
- Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to *Table 23: Embedded internal reference voltage* for the value and precision of the internal reference voltage.

All comparators can wake up from STOP mode, generate interrupts and breaks for the timers.

3.18 Timers and watchdogs

The STM32F302xD/E include one advanced control timer, up to six general-purpose timers, one basic timer, two watchdog timers and one SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers.

Table 5. Timer feature comparison

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary outputs
Advanced	TIM1	16-bit	Up, Down, Up/Down	Any integer between 1 and 65536	Yes	4	Yes
General- purpose	TIM2	32-bit	Up, Down, Up/Down	Any integer between 1 and 65536	Yes	4	No

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary outputs
General- purpose	TIM3, TIM4	16-bit	Up, Down, Up/Down	Any integer between 1 and 65536	Yes	4	No
General- purpose	TIM15	16-bit	Up	Any integer between 1 and 65536	Yes	2	1
General- purpose	TIM16, TIM17	16-bit	Up	Any integer between 1 and 65536	Yes	1	1
Basic	TIM6	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

Table 5. Timer feature comparison (continued)

Note: TIM1/2/3/4/15/16/17 can have PLL as clock source, and therefore can be clocked at 144 MHz.

3.18.1 Advanced timers (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead-times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes) with full modulation capability (0-100%)
- One-pulse mode output

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs.

Many features are shared with those of the general-purpose TIM timer (described in Section 3.18.2) using the same architecture, so the advanced-control timers can work together with the TIM timers via the Timer Link feature for synchronization or event chaining.

3.18.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17)

There are up to six synchronizable general-purpose timers embedded in the STM32F302xD/E (see *Table 5* for differences). Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base.

TIM2. 3. and TIM4

These are full-featured general-purpose timers:

- TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler
- TIM3 and 4 have 16-bit auto-reload up/downcounters and 16-bit prescalers.

These timers all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other generalpurpose timers via the Timer Link feature for synchronization or event chaining.

The counters can be frozen in debug mode. All have independent DMA request generation and support quadrature encoders.

TIM15, 16 and 17

These three timers general-purpose timers with mid-range features:

They have 16-bit auto-reload upcounters and 16-bit prescalers.

- TIM15 has 2 channels and 1 complementary channel
- TIM16 and TIM17 have 1 channel and 1 complementary channel

All channels can be used for input capture/output compare, PWM or one-pulse mode output.

The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation.

The counters can be frozen in debug mode.

3.18.3 **Basic timers (TIM6)**

This timer is mainly used for DAC trigger generation. It can also be used as a generic 16-bit time base.

3.18.4 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.18.5 Window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free running. It is used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

DocID026900 Rev 4 26/168

3.18.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0.
- Programmable clock source

3.19 Real-time clock (RTC) and backup registers

The RTC and the 16 backup registers are supplied through a switch that takes power from either the V_{DD} supply when present or the V_{BAT} pin. The backup registers are sixteen 32-bit registers used to store 64 bytes of user application data when V_{DD} power is not present.

They are not reset by a system or power reset, or when the device wakes up from Standby mode.

The RTC is an independent BCD timer/counter. It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Automatic correction for 28, 29 (leap year), 30 and 31 days of the month.
- Two programmable alarms with wake up from Stop and Standby mode capability.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy.
- Three anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.
- 17-bit Auto-reload counter for periodic interrupt with wakeup from STOP/STANDBY capability.

The RTC clock sources can be:

- A 32.768 kHz external crystal
- A resonator or oscillator
- The internal low-power RC oscillator (typical frequency of 40 kHz)
- The high-speed external clock divided by 32.

3.20 Inter-integrated circuit interface (I²C)

Up to three I^2C bus interfaces can operate in multimaster and slave modes. They can support standard (up to 100 kHz), fast (up to 400 kHz) and fast mode + (up to 1 MHz) modes.

Drawbacks

Wakeup from Stop on address

filter is enabled.

match is not available when digital

All I^2C bus interfaces support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). They also include programmable analog and digital noise filters.

-	Analog filter	Digital filter		
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I ² C peripheral clocks		
Benefits	Available in Stop mode	Extra filtering capability vs. standard requirements. Stable length		

Table 6. Comparison of I²C analog and digital filters

In addition, they provide hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. They also have a clock domain independent from the CPU clock, allowing the I2Cx (x=1,2,3) to wake up the MCU from Stop mode on address match.

The I²C interfaces can be served by the DMA controller.

Refer to *Table 7* for the features available in I2C1, I2C2 and I2C3.

Variations depending on

temperature, voltage, process

I²C features⁽¹⁾ **I2C1 I2C2 12C3** 7-bit addressing mode Χ Х Χ Χ Χ Χ 10-bit addressing mode Standard mode (up to 100 kbit/s) Х Χ Χ Fast mode (up to 400 kbit/s) Х Х Χ Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) Χ Χ Х Independent clock Χ Χ Χ **SMBus** Х Χ Χ Wakeup from STOP Χ Χ Χ

Table 7. STM32F302xD/E |2C implementation

3.21 Universal synchronous/asynchronous receiver transmitter (USART)

The STM32F302xD/E devices have three embedded universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3).

The USART interfaces are able to communicate at speeds of up to 9 Mbit/s.

They provide hardware management of the CTS and RTS signals, they support IrDA SIR ENDEC, the multiprocessor communication mode, the single-wire half-duplex

X = supported.

communication mode and have LIN Master/Slave capability. The USART interfaces can be served by the DMA controller.

3.22 Universal asynchronous receiver transmitter (UART)

The STM32F302xD/E devices have 2 embedded universal asynchronous receiver transmitters (UART4, and UART5). The UART interfaces support IrDA SIR ENDEC, multiprocessor communication mode and single-wire half-duplex communication mode. The UART4 interface can be served by the DMA controller.

Refer to *Table 8* for the features available in all U(S)ART interfaces.

USART modes/features⁽¹⁾ **USART1 USART2 UART5 USART3 UART4** Hardware flow control for modem Х Х Χ Χ Χ Χ Continuous communication using DMA Χ Multiprocessor communication Χ Χ Χ Χ Χ Χ Synchronous mode Х Χ Smartcard mode Χ Χ Χ Single-wire half-duplex communication Χ Χ Χ Χ Χ IrDA SIR ENDEC block Χ Χ Х Х Χ LIN mode Χ Х Χ Χ Χ Χ Х Х Х Х Dual clock domain and wakeup from Stop mode Χ Χ Χ Х Х Receiver timeout interrupt Modbus communication Χ Χ Χ Χ Χ Χ Auto baud rate detection Χ Χ **Driver Enable** Х Х Х

Table 8. USART features

3.23 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I²S)

Up to four SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

Two standard I²S interfaces (multiplexed with SPI2 and SPI3) supporting four different audio standards can operate as master or slave at half-duplex and full duplex communication modes. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by 8-bit programmable linear prescaler. When operating in master mode it can output a clock for an external audio component at 256 times the sampling frequency.

Refer to *Table 9* for the features available in SPI1, SPI2, SPI3 and SPI4.

^{1.} X = supported.

SPI features ⁽¹⁾	SPI1	SPI2	SPI3	SPI4
	V.		V. 10	V.
Hardware CRC calculation	X	Х	X	X
Rx/Tx FIFO	X	Х	Х	Х
NSS pulse mode	X	X	Х	Х
I ² S mode	-	Х	Х	-
TI mode	Х	Х	Х	Х

Table 9. STM32F302xD/E SPI/I²S implementation

3.24 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

3.25 Universal serial bus (USB)

The STM32F302xD/E embeds a full-speed USB device peripheral compliant with the USB specification version 2.0. The USB interface implements a full-speed (12 Mbit/s) function interface with added support for USB 2.0 Link Power Management. It has software-configurable endpoint setting with packet memory up-to 1 Kbyte (256 bytes are used for CAN peripheral if enabled) and suspend/resume support.

The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator).

3.26 Infrared transmitter

The STM32F302xD/E devices provide an infrared transmitter solution. The solution is based on internal connections between TIM16 and TIM17 as shown in the figure below.

TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be sent. The infrared output signal is available on PB9 or PA13.

To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must be properly configured to generate correct waveforms. All standard IR pulse modulation modes can be obtained by programming the two timers output compare channels.

^{1.} X = supported.

Figure 3. Infrared transmitter

3.27 Touch sensing controller (TSC)

The STM32F302xD/E devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic, etc.). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

Group	Capacitive sensing signal name	Pin name	
	TSC_G1_IO1	PA0	
1	TSC_G1_IO2	PA1	
ı	TSC_G1_IO3	PA2	
	TSC_G1_IO4	PA3	
	TSC_G2_IO1	PA4	
2	TSC_G2_IO2	PA5	
2	TSC_G2_IO3	PA6	
	TSC G2 IO4	PA7	

Table 10. Capacitive sensing GPIOs available on STM32F302xD/E devices

Group	Capacitive sensing signal name	Pin name
	TSC_G5_IO1	PB3
5	TSC_G5_IO2	PB4
5	TSC_G5_IO3	PB6
	TSC_G5_IO4	PB7
	TSC_G6_IO1	PB11
6	TSC_G6_IO2	PB12
O	TSC_G6_IO3	PB13
	TSC_G6_IO4	PB14

Group	Capacitive sensing signal name	Pin name		Group	Capacitive sensing signal name	Pin name
	TSC_G3_IO1	PC5	-	7	TSC_G7_IO1	PE2
3	TSC_G3_IO2	PB0	-		TSC_G7_IO2	PE3
3	TSC_G3_IO3	PB1	-		TSC_G7_IO3	PE4
	TSC_G3_IO4	PB2	-		TSC_G7_IO4	PE5
4	TSC_G4_IO1	PA9	-	8	TSC_G8_IO1	PD12
	TSC_G4_IO2	PA10			TSC_G8_IO2	PD13
	TSC_G4_IO3	PA13	-		TSC_G8_IO3	PD14
	TSC_G4_IO4	PA14	-		TSC_G8_IO4	PD15

Table 10. Capacitive sensing GPIOs available on STM32F302xD/E devices (continued)

Table 11. Number of capacitive sensing channels available on STM32F302xD/E devices

Analog I/O group	Number of capacitive sensing channels						
Analog I/O group	STM32F302VE/ZE	STM32F302RE					
G1	3	3					
G2	3	3					
G3	3	3					
G4	3	3					
G5	3	3					
G6	3	3					
G7	3	0					
G8	3	0					
Number of capacitive sensing channels	24	18					

3.28 Development support

3.28.1 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.28.2 Embedded Trace Macrocell

The ARM embedded trace macrocell (ETMTM) provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F302xD/E through a small number of ETMTM pins to an external hardware trace

port analyzer (TPA) device. The TPA is connected to a host computer using a high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.

4 Pinout and pin description

<u>______</u> 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 🗖 VDD VBAT ☐ 1 47 🗖 VSS PC13 🗖 2 PC14-OSC32_IN ☐ 3 46 🗖 PA13 PC15-OSC32 OUT 4 45 🗖 PA12 PF0-OSC_IN ☐ 5 44 🏻 PA11 PF1-OSC_OUT ☐ 6 43 PA10 NRST □ 7 42 PA9 PC0 🗖 8 41 🗖 PA8 LQFP64 PC1 **□** 9 40 PC9 PC2 🗖 10 39 PC8 PC3 🗖 11 38 🗖 PC7 37 🗖 PC6 VSSA 🗖 12 36 🗖 PB15 VDDA 🗖 13 35 Þ PB14 PA0 14 PA1 🗖 15 34 🏳 PB13 PA2 33 🗖 PB12 16 \ 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PA3 VSS VDD PA4 PA5 PA7 PC4 PC5 PB10 PB10 PB11 VSS VDD

Figure 4. STM32F302xD/E LQFP64 pinout

MS34908V1

Figure 5. STM32F302xD/E LQFP100 pinout

PE2 🗖 □ VDD 108 PE3 🗖 □ vss 2 107 PH2 PA 13 PE4 3 106 PE5 🗆 105 104 PA12 103 PA11 PE6 🗆 5 VBAT ☐ 6 PC13_ANTI_TAMP 102 PA10 7 PA9 PC14_OSC32_IN 101 PC15_OSC32_OUT 100 PH0 ☐ 10 PH1 ☐ 11 PF2 ☐ 12 PF3 ☐ 13 96 PC6 PF4 🗖 14 95 □ VDD □ VSS □ PG8 PF5 🗖 15 94 vss□ 16 93 92 | PG7 91 | PG6 VDD d 17 PF6 ☐ 18 LQFP144 PF7 🗖 19 90 Þ PG5 PF8 20 89 □ PG4 □ PG3 □ PG2 □ PD15 88 PF10 ☐ 22 87 PF0/OSC INC 23 86 PF1/OSC_OUT 24 85 PD14 84 VDD 83 VSS ÑRST ☐ 25 PC0 ☐ 26 PC1 🗆 27 PC2 ☐ 28 РС3 □ 29 VSSA□ PD10 30 79 VREF-□ 31 78 76 PD9 77 PD8 76 PB15 75 PB14 74 PB13 73 PB12 VREF+□ 32 VDDA 33 PA0_WKUP口 34 35 PA1□ PA2口 36 MS34910V2

Figure 6. STM32F302xD/E LQFP144 pinout

57/

Figure 7. STM32F302xD/E WLCSP100 ballout

MSv40453V1

Figure 8. STM32F302xD/E UFBGA100 ballout

			FIQ	jure o	3 I W 32	2F302xE	VE UFE	GAT	o Dan	out			
	1	2	3	4	5	6	7	8	9	10	11	12	
Α	(PE3)	(PE1)	PB8	воого	(PD7)	PD5	PB4	(РВЗ)	PA15	PA14	PA13	PA12	
В	PE4	(PE2)	(PB9)	(PB7)	PB6	PD6	PD4	(PD3)	(PD1)	PC12	PC10	(PA11)	
С	C13	PE5	PE0	VDD	PB5		' 	PD2	(PD0)	(PC11)	PF6	PA10	
D	PC14	(PE6)	vss							PA9	PA8	PC9	
Е	PC15	(VBAT)	vss							PC8	PC7	PC6	
F	PF0-OSOIN	(PF9)					1				vss	VSS	
G	PF1-OSCOU	T (PF10)					 				VDD	VDD	
Н	PC0	(IRS)	VDD							PD15	PD14	PD13	
J	PF2	PC1	PC2							PD12	(PD11)	PD10	
K	VSSA/ VREF-	PC3	PA2	PA5	PC4			PD9	PD8	PB15	PB14)	PB13	
L	(VDD)	(PA0)	(PA3)	PA6	PC5	PB2	PE8	(E10)	PE12	PB10	PB11	PB12	
М	VREF+	(PA1)	PA4	PA7	PB0	(PB1)	PE7	PE9	PE11	PE13	PE14	PE15	
							1						MS35562\

Table 12. Legend/abbreviations used in the pinout table

Na	me	Abbreviation	Definition					
Pin n	name		specified in brackets below the pin name, the pin function during and ame as the actual pin name					
		FT	5 V tolerant I/O					
		FTf	5 V tolerant I/O, I ² C FM+ option					
		TTa	3.3 V tolerant I/O					
I/O str	ucture	TC	Standard 3.3V I/O					
		В	Dedicated to BOOT0 pin					
		RST Bi-directional reset pin with embedded weak pull-up resistor						
No	tes	Unless otherwise specified by a note, all I/Os are set as floating inputs during and a reset						
Alternate functions selected through GPIOx_AFR registers								
Pin functions	Additional functions	Functions directly	selected/enabled through peripheral registers					

Table 13. STM32F302xD/E pin definitions

	Pin n	umbe	r						
LQFP64	LQFP100	WLCSP100	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	1	D6	1	PE2	I/O	FT	(1)	TRACECK, EVENTOUT, TIM3_CH1, TSC_G7_IO1, SPI4_SCK, FMC_A23	-
-	2	D7	2	PE3	I/O	FT	(1)	TRACED0, EVENTOUT, TIM3_CH2, TSC_G7_IO2, SPI4_NSS, FMC_A19	-
-	3	C8	3	PE4	I/O	FT	(1)	TRACED1, EVENTOUT, TIM3_CH3, TSC_G7_IO3, SPI4_NSS, FMC_A20	-
-	4	В9	4	PE5	I/O	FT	(1)	TRACED2, EVENTOUT, TIM3_CH4, TSC_G7_IO4, SPI4_MISO, FMC_A21	-
-	5	E7	5	PE6	I/O	FT	(1)	TRACED3, EVENTOUT, SPI4_MOSI, FMC_A22	WKUP3, RTC_TAMP3
1	6	D8	6	VBAT	S	-	-	-	-

Table 13. STM32F302xD/E pin definitions (continued)

	Pin n	umbei	r					E pin definitions (continu	
LQFP64	LQFP100	WLCSP100	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
2	7	С9	7	PC13 ⁽²⁾	I/O	тс	-	EVENTOUT, TIM1_CH1N	WKUP2,RTC_TAMP1, RTC_TS, RTC_OUT
3	8	C10	8	PC14 - OSC32_IN ⁽²⁾	I/O	TC	-	EVENTOUT	OSC32_IN
4	9	D9	9	PC15 - OSC32_OUT	I/O	TC	-	EVENTOUT	OSC32_OUT
-	-	-	10	PH0	I/O	FT	(1)	EVENTOUT, FMC_A0	-
-	-	-	11	PH1	I/O	FT	(1)	EVENTOUT, FMC_A1	-
-	19	E8	12	PF2	I/O	TTa	(1)	EVENTOUT, FMC_A2	ADC12_IN10
-	-	-	13	PF3	I/O	FT	(1)	EVENTOUT, FMC_A3	-
-	-	-	14	PF4	I/O	ТТа	(1)	EVENTOUT, COMP1_OUT, FMC_A4	ADC1_IN5 ⁽³⁾
-	-	-	15	PF5	I/O	FT	(1)	EVENTOUT, FMC_A5	-
-	-	-	16	VSS	S	-	(1)	-	-
-	-	-	17	VDD	S	-	(1)	-	-
-	73	C1	18	PF6	I/O	FTf	(1)	EVENTOUT, TIM4_CH4, I2C2_SCL, USART3_RTS, FMC_NIORD	-
-	-	-	19	PF7	I/O	FT	(1)	EVENTOUT, FMC_NREG	-
-	-	-	20	PF8	I/O	FT	(1)	EVENTOUT, FMC_NIOWR	-
-	10	D10	21	PF9	I/O	FT	(1)	EVENTOUT, TIM15_CH1, SPI2_SCK, FMC_CD	-
-	11	E10	22	PF10	I/O	FT	(1)	EVENTOUT, TIM15_CH2, SPI2_SCK, FMC_INTR	-
5	12	F10	23	PF0-OSC_IN	I	FTf	-	EVENTOUT, I2C2_SDA, SPI2_NSS/I2S2_WS, TIM1_CH3N	OSC_IN
6	13	F9	24	PF1- OSC_OUT	0	FTf	-	EVENTOUT, I2C2_SCL, SPI2_SCK/I2S2_CK	OSC_OUT
7	14	E9	25	NRST	I-O	RST	-	Device reset input/internal re	set output (active low)
8	15	G10	26	PC0	I/O	TTa	-	EVENTOUT, TIM1_CH1	ADC12_IN6

Table 13. STM32F302xD/E pin definitions (continued)

	Pin n	umbe	r					pin deminions (continu	,
LQFP64	LQFP100	WLCSP100	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
9	16	G9	27	PC1	I/O	TTa	-	EVENTOUT, TIM1_CH2	ADC12_IN7
10	17	G8	28	PC2	I/O	TTa	-	EVENTOUT, TIM1_CH3	ADC12_IN8
11	18	H10	29	PC3	I/O	ТТа	-	EVENTOUT, TIM1_CH4, TIM1_BKIN2	ADC12_IN9
12	20	Н8	30	VSSA	S	-	(1)	-	-
-	-	-	31	VREF-	S	-	(1)	-	-
-	21	J8	32	VREF+ ⁽⁴⁾	S	-	-	-	-
13	22	J10	33	VDDA	S	-	-	-	-
14	23	Н9	34	PA0	I/O	ТТа	-	TIM2_CH1/TIM2_ETR, TSC_G1_IO1, USART2_CTS, COMP1_OUT, EVENTOUT	ADC1_IN1 ⁽³⁾ , COMP1_INM, RTC_TAMP2, WKUP1
15	24	J9	35	PA1	I/O	ТТа	-	RTC_REFIN, TIM2_CH2, TSC_G1_IO2, USART2_RTS, TIM15_CH1N, EVENTOUT	ADC1_IN2 ⁽³⁾ , COMP1_INP, OPAMP1_VINP
16	25	F7	36	PA2	I/O	ТТа	(5)	TIM2_CH3, TSC_G1_IO3, USART2_TX, COMP2_OUT, TIM15_CH1, EVENTOUT	ADC1_IN3 ⁽³⁾ , COMP2_INM, OPAMP1_VOUT
17	26	G7	37	PA3	I/O	ТТа	-	TIM2_CH4, TSC_G1_IO4, USART2_RX, TIM15_CH2, EVENTOUT	ADC1_IN4 ⁽³⁾ , OPAMP1_VINM/ OPAMP1_VINP
18	27	K9, K10	38	VSS	s	-	-	-	-
19	28	K8	39	VDD	S	-	(1)	-	-
20	29	J7	40	PA4	I/O	ТТа	(5)	TIM3_CH2, TSC_G2_IO1, SPI1_NSS, SPI3_NSS/I2S3_WS, USART2_CK, EVENTOUT	ADC2_IN1 ⁽³⁾ , DAC1_OUT1, COMP1_INM, COMP2_INM, COMP4_INM, COMP6_INM,

Table 13. STM32F302xD/E pin definitions (continued)

	Din n	umbe	,	14516 13.		502	ויטאר	E pin definitions (continu	
	rın nı	umbe	Г 						
LQFP64	LQFP100	WLCSP100	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
21	30	Н7	41	PA5	I/O	ТТа	(5)	TIM2_CH1/TIM2_ETR, TSC_G2_IO2, SPI1_SCK, EVENTOUT	ADC2_IN2 ⁽³⁾ , COMP1_INM, COMP2_INM, COMP4_INM, COMP6_INM, OPAMP1_VINP, OPAMP2_VINM,
22	31	Н6	42	PA6	I/O	ТТа	(5)	TIM16_CH1, TIM3_CH1, TSC_G2_IO3, SPI1_MISO, TIM1_BKIN, COMP1_OUT, EVENTOUT	ADC2_IN3 ⁽³⁾ , OPAMP2_VOUT
23	32	K7	43	PA7	I/O	ТТа	-	TIM17_CH1, TIM3_CH2, TSC_G2_IO4, SPI1_MOSI, TIM1_CH1N, EVENTOUT	ADC2_IN4 ⁽³⁾ , COMP2_INP, OPAMP1_VINP, OPAMP2_VINP
24	33	G6	44	PC4	I/O	ТТа	-	EVENTOUT, TIM1_ETR, USART1_TX	ADC2_IN5 ⁽³⁾
25	34	F6	45	PC5	I/O	ТТа	-	EVENTOUT, TIM15_BKIN, TSC_G3_IO1, USART1_RX	ADC2_IN11, OPAMP1_VINM, OPAMP2_VINM
26	35	J6	46	PB0	I/O	ТТа	-	TIM3_CH3, TSC_G3_IO2, TIM1_CH2N, EVENTOUT	COMP4_INP, OPAMP2_VINP,
27	36	K6	47	PB1	I/O	ТТа	(5)	TIM3_CH4, TSC_G3_IO3, TIM1_CH3N, COMP4_OUT, EVENTOUT	-
28	37	K5	48	PB2	I/O	TTa	-	TSC_G3_IO4, EVENTOUT	ADC2_IN12, COMP4_INM
-	-	-	49	PF11	I/O	FT	(1)	EVENTOUT	-
-	-	-	50	PF12	I/O	FT	(1)	EVENTOUT, FMC_A6	-
-	-	-	51	VSS	S	-	-	-	-
-	-	-	52	VDD	S	-	(1)	-	-
-	-	-	53	PF13	I/O	FT	(1)	EVENTOUT, FMC_A7	-
-	-	-	54	PF14	I/O	FT	(1)	EVENTOUT, FMC_A8	-
-	-	-	55	PF15	I/O	FT	(1)	EVENTOUT, FMC_A9	-
-	-	-	56	PG0	I/O	FT	(1)	EVENTOUT, FMC_A10	-
-	-	-	57	PG1	I/O	FT	(1)	EVENTOUT, FMC_A11	-

Table 13. STM32F302xD/E pin definitions (continued)

	Pin n	umbe	r					E pin definitions (continu	
LQFP64	LQFP100	WLCSP100	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	38	F8	58	PE7	I/O	ТТа	(1)	EVENTOUT, TIM1_ETR, FMC_D4	-
-	39	E6	59	PE8	I/O	ТТа	(1)	EVENTOUT, TIM1_CH1N, FMC_D5	COMP4_INM
-	40	-	60	PE9	I/O	TTa	(1)	EVENTOUT, TIM1_CH1, FMC_D6	-
-	-	-	61	VSS	S	-	(1)	-	-
-	-	-	62	VDD	S	-	(1)	-	-
-	41	-	63	PE10	I/O	TTa	(1)	EVENTOUT, TIM1_CH2N, FMC_D7	-
-	42	H5	64	PE11	I/O	TTa	(1)	EVENTOUT, TIM1_CH2, SPI4_NSS, FMC_D8	-
-	43	G5	65	PE12	I/O	TTa	(1)	EVENTOUT, TIM1_CH3N, SPI4_SCK, FMC_D9	-
-	44	-	66	PE13	I/O	TTa	(1)	EVENTOUT, TIM1_CH3, SPI4_MISO, FMC_D10	-
-	45	-	67	PE14	I/O	ТТа	(1)	EVENTOUT, TIM1_CH4, SPI4_MOSI, TIM1_BKIN2, FMC_D11	-
-	46	-	68	PE15	I/O	ТТа	(1)	EVENTOUT, TIM1_BKIN, USART3_RX, FMC_D12	-
29	47	K4	69	PB10	I/O	TTa	-	TIM2_CH3, TSC_SYNC, USART3_TX, EVENTOUT	-
30	48	K3	70	PB11	I/O	TTa	-	TIM2_CH4, TSC_G6_IO1, USART3_RX, EVENTOUT	ADC12_IN14, COMP6_INP
31	49	K1, J1, K2	71	VSS	S	-	-	-	-
32	50	J5	72	VDD	S	-	-	-	-
33	51	J4	73	PB12	I/O	ТТа	(5)	TSC_G6_IO2, I2C2_SMBAL, SPI2_NSS/I2S2_WS, TIM1_BKIN, USART3_CK, EVENTOUT	-

Table 13. STM32F302xD/E pin definitions (continued)

	Pin n	umbe	r	Table 10.		21 302		E pin definitions (continu	
LQFP64	LQFP100	WLCSP100	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
34	52	J3	74	PB13	I/O	тта	-	TSC_G6_IO3, SPI2_SCK/I2S2_CK, TIM1_CH1N, USART3_CTS, EVENTOUT	-
35	53	J2	75	PB14	I/O	тта	-	TIM15_CH1, TSC_G6_IO4, SPI2_MISO/I2S2ext_SD, TIM1_CH2N, USART3_RTS, EVENTOUT	OPAMP2_VINP
36	54	H4	76	PB15	I/O	тта	-	RTC_REFIN, TIM15_CH2, TIM15_CH1N, TIM1_CH3N, SPI2_MOSI/I2S2_SD, EVENTOUT	COMP6_INM
-	55	-	77	PD8	I/O	TTa	(1)	EVENTOUT, USART3_TX, FMC_D13	-
-	56	G4	78	PD9	I/O	TTa	(1)	EVENTOUT, USART3_RX, FMC_D14	-
-	57	НЗ	79	PD10	I/O	TTa	(1)	EVENTOUT, USART3_CK, FMC_D15	COMP6_INM
-	58	H2	80	PD11	I/O	TTa	(1)	EVENTOUT, USART3_CTS, FMC_A16	-
-	59	H1	81	PD12	I/O	ТТа	(1)	EVENTOUT, TIM4_CH1, TSC_G8_IO1, USART3_RTS, FMC_A17	-
-	60	G3	82	PD13	I/O	TTa	(1)	EVENTOUT, TIM4_CH2, TSC_G8_IO2, FMC_A18	-
-	-	-	83	VSS	S	-	(1)	-	-
-	-		84	VDD	S	-	(1)	-	-
-	61	G2	85	PD14	I/O	TTa	(1)	EVENTOUT, TIM4_CH3, TSC_G8_IO3, FMC_D0	OPAMP2_VINP
-	62	G1	86	PD15	I/O	ТТа	(1)	EVENTOUT, TIM4_CH4, TSC_G8_IO4, SPI2_NSS, FMC_D1	-
-	-	-	87	PG2	I/O	FT	(1)	EVENTOUT, FMC_A12	-
-	-	-	88	PG3	I/O	FT	(1)	EVENTOUT, FMC_A13	-
-	-	-	89	PG4	I/O	FT	(1)	EVENTOUT, FMC_A14	-

Table 13. STM32F302xD/E pin definitions (continued)

	Pin n	umbe	r					E pin definitions (continu	,
LQFP64	LQFP100	WLCSP100	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	90	PG5	I/O	FT	(1)	EVENTOUT, FMC_A15	-
-	-	-	91	PG6	I/O	FT	(1)	EVENTOUT, FMC_INT2	-
-	-	-	92	PG7	I/O	FT	(1)	EVENTOUT, FMC_INT3	-
-	-	-	93	PG8	I/O	FT	(1)	EVENTOUT	-
-	-	-	94	VSS	S	-	(1)	-	-
-	-	-	95	VDD	S	-	(1)	-	-
37	63	F4	96	PC6	I/O	FT	-	EVENTOUT, TIM3_CH1, I2S2_MCK, COMP6_OUT	-
38	64	F2	97	PC7	I/O	FT	-	EVENTOUT, TIM3_CH2, I2S3_MCK	-
39	65	F1	98	PC8	I/O	FT	-	EVENTOUT, TIM3_CH3	-
40	66	F3	99	PC9	I/O	FTf	-	EVENTOUT, TIM3_CH4, I2C3_SDA, I2SCKIN	-
41	67	F5	100	PA8	I/O	FTf	-	MCO, I2C3_SCL, I2C2_SMBAL, I2S2_MCK, TIM1_CH1, USART1_CK, TIM4_ETR, EVENTOUT	-
42	68	E5	101	PA9	I/O	FTf	-	I2C3_SMBAL, TSC_G4_IO1, I2C2_SCL, I2S3_MCK, TIM1_CH2, USART1_TX, TIM15_BKIN, TIM2_CH3, EVENTOUT	-
43	69	E1	102	PA10	I/O	FTf	-	TIM17_BKIN, TSC_G4_IO2, I2C2_SDA, SPI2_MISO/I2S2ext_SD, TIM1_CH3, USART1_RX, COMP6_OUT, TIM2_CH4, EVENTOUT	-
44	70	E2	103	PA11	I/O	FT	-	SPI2_MOSI/I2S2_SD, TIM1_CH1N, USART1_CTS, COMP1_OUT, CAN_RX, TIM4_CH1, TIM1_CH4, TIM1_BKIN2, EVENTOUT	USB_DM

Table 13. STM32F302xD/E pin definitions (continued)

	Pin n	umbe	r					E pin definitions (continu	04,
LQFP64	LQFP100	WLCSP100	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
45	71	D1	104	PA12	I/O	FT	-	TIM16_CH1, I2SCKIN, TIM1_CH2N, USART1_RTS, COMP2_OUT, CAN_TX, TIM4_CH2, TIM1_ETR, EVENTOUT	USB_DP
46	72	E3	105	PA13	I/O	FT	-	SWDIO-JTMS, TIM16_CH1N, TSC_G4_IO3, IR-OUT, USART3_CTS, TIM4_CH3, EVENTOUT	-
-	-	-	106	PH2	I/O	FT	(1)	EVENTOUT	-
47	74	A1, A2, B1	107	VSS	S	-	-	-	-
48	75	D2	108	VDD	S	-	-	-	-
49	76	C2	109	PA14	I/O	FTf	-	SWCLK-JTCK, TSC_G4_IO4, I2C1_SDA, TIM1_BKIN, USART2_TX, EVENTOUT	-
50	77	B2	110	PA15	I/O	FTf	-	JTDI, TIM2_CH1/TIM2_ETR, TSC_SYNC, I2C1_SCL, SPI1_NSS, SPI3_NSS/I2S3_WS, USART2_RX, TIM1_BKIN, EVENTOUT	-
51	78	E4	111	PC10	I/O	FT	-	EVENTOUT, UART4_TX, SPI3_SCK/I2S3_CK, USART3_TX	-
52	79	D3	112	PC11	I/O	FT	-	EVENTOUT, UART4_RX, SPI3_MISO/I2S3ext_SD, USART3_RX	-
53	80	А3	113	PC12	I/O	FT	-	EVENTOUT, UART5_TX, SPI3_MOSI/I2S3_SD, USART3_CK	-
-	81	В3	114	PD0	I/O	FT	(1)	EVENTOUT, CAN_RX, FMC_D2	-

Table 13. STM32F302xD/E pin definitions (continued)

	Pin n	umbe	r					E pin definitions (continue	
LQFP64	LQFP100	WLCSP100	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	82	СЗ	115	PD1	I/O	FT	(1)	EVENTOUT, CAN_TX, FMC_D3	-
54	83	A4	116	PD2	I/O	FT	-	EVENTOUT, TIM3_ETR, UART5_RX	-
-	84	B4	117	PD3	I/O	FT	(1)	EVENTOUT, TIM2_CH1/TIM2_ETR, USART2_CTS, FMC_CLK	-
-	85	C4	118	PD4	I/O	FT	(1)	EVENTOUT, TIM2_CH2, USART2_RTS, FMC_NOE	-
-	86	-	119	PD5	I/O	FT	(1)	EVENTOUT, USART2_TX, FMC_NWE	-
-	-	-	120	VSS	S	-	(1)	-	-
-	-	-	121	VDD	S	-	(1)	-	-
-	87	-	122	PD6	I/O	FT	(1)	EVENTOUT, TIM2_CH4, USART2_RX, FMC_NWAIT	-
-	88	D4	123	PD7	I/O	FT	(1)	EVENTOUT, TIM2_CH3, USART2_CK, FMC_NE1/FMC_NCE2	-
-	-	-	124	PG9	I/O	FT	(1)	EVENTOUT, FMC_NE2/FMC_NCE3	-
-	-	-	125	PG10	I/O	FT	(1)	EVENTOUT, FMC_NCE4_1/FMC_NE3	-
-	-	-	126	PG11	I/O	FT	(1)	EVENTOUT, FMC_NCE4_2	-
-	-	-	127	PG12	I/O	FT	(1)	EVENTOUT, FMC_NE4	-
-	-	-	128	PG13	I/O	FT	(1)	EVENTOUT, FMC_A24	-
-	-	-	129	PG14	I/O	FT	(1)	EVENTOUT, FMC_A25	-
-	-	-	130	VSS	S	-	(1)	-	-
-	-	-	131	VDD	S	-	(1)	-	-
-	-	-	132	PG15	I/O	FT	(1)	EVENTOUT	-

Table 13. STM32F302xD/E pin definitions (continued)

	Pin n	umbe	r					pin deminions (continue	,
LQFP64	LQFP100	WLCSP100	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
55	89	A5	133	PB3	I/O	FT	-	JTDO-TRACESWO, TIM2_CH2, TIM4_ETR, TSC_G5_IO1, SPI1_SCK, SPI3_SCK/I2S3_CK, USART2_TX, TIM3_ETR, EVENTOUT	-
56	90	B5	134	PB4	I/O	FT	-	JTRST, TIM16_CH1, TIM3_CH1, TSC_G5_IO2, SPI1_MISO, SPI3_MISO/I2S3ext_SD, USART2_RX, TIM17_BKIN, EVENTOUT	-
57	91	A6	135	PB5	I/O	FTf	-	TIM16_BKIN, TIM3_CH2, I2C1_SMBAI, SPI1_MOSI, SPI3_MOSI/I2S3_SD, USART2_CK, I2C3_SDA, TIM17_CH1, EVENTOUT	-
58	92	В6	136	PB6	I/O	FTf	-	TIM16_CH1N, TIM4_CH1, TSC_G5_IO3, I2C1_SCL, USART1_TX, EVENTOUT	-
59	93	C5	137	PB7	I/O	FTf	-	TIM17_CH1N, TIM4_CH2, TSC_G5_IO4, I2C1_SDA, USART1_RX, TIM3_CH4, FMC_NADV, EVENTOUT	-
60	94	A7	138	воото	I	-	-	-	-
61	95	D5	139	PB8	I/O	FTf	-	TIM16_CH1, TIM4_CH3, TSC_SYNC, I2C1_SCL, USART3_RX, COMP1_OUT, CAN_RX, TIM1_BKIN, EVENTOUT	-
62	96	C6	140	PB9	I/O	FTf	-	TIM17_CH1, TIM4_CH4, I2C1_SDA, IR-OUT, USART3_TX, COMP2_OUT, CAN_TX, EVENTOUT	-
-	97	В7	141	PE0	I/O	FT	(1)	EVENTOUT, TIM4_ETR, TIM16_CH1, USART1_TX, FMC_NBL0	-

Table 13. STM32F302xD/E pin definitions (continued)

	Pin n	umbei	r					, , , , , , , , , , , , , , , , , , ,	
LQFP64	LQFP100			Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	98	A8	142	PE1	I/O	FT	(1)	EVENTOUT, TIM17_CH1, USART1_RX, FMC_NBL1	-
63	99	C7	143	VSS	S	-	-	-	-
64	100	A9, A10, B10, B8	144	VDD	S	-	-	-	-

- 1. Function availability depends on the chosen device.
- PC13, PC14 and PC15 are supplied through the power switch. Since the switch sinks only a limited amount of current (3 mA), the use of GPIO PC13 to PC15 in output mode is limited:

 The speed should not exceed 2 MHz with a maximum load of 30 pF

- These GPIOs must not be used as current sources (e.g. to drive an LED)

After the first backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the Backup registers which is not reset by the main reset. For details on how to manage these GPIOs, refer to the Battery backup domain and BKP register description sections in the RM0316 reference manual.

- 3. Fast ADC channel.
- The VREF+ functionality is not available on the 64-pin package. In this package, the VREF+ is internally connected to
- 5. These GPIOs offer a reduced touch sensing sensitivity. It is thus recommended to use them as sampling capacitor I/O.

Pinout and pin description

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
ı	Port	SYS_AF	TIM2/15/ 16/17/E VENT	I2C3/TIM1 /2/3/4/8/20 /15/GPCO MP1	12C3//15/ TSC	I2C1/2/TI M1/8/16/ 17	SPI1/SPI2 /I2S2/SPI3 /I2S3/SPI4 /UART4/5/ Infrared	SPI2/I2S2/ SPI3/I2S3/ TIM1/8/20/ Infrared	USART1/2 /3/CAN/GP COMP6	I2C3/GPC OMP1/2/3/ 4/5/6	CAN/TIM1 /8/15	TIM2/3/ 4/8/17	TIM1/8	FSMC /TIM1	-	1	EVENT
	PA0	-	TIM2_ CH1/TIM 2_ETR	-	TSC_G1 _IO1	-	-	-	USART2_ CTS	COMP1_ OUT		-	-	-	-	-	EVENT OUT
	PA1	RTC_ REFIN	TIM2_ CH2	-	TSC_G1 _IO2	-	-	-	USART2_ RTS	-	TIM15_ CH1N	-	-	-	-	-	EVENT OUT
	PA2	-	TIM2_ CH3	-	TSC_G1 _IO3	-	-	-	USART2_ TX	COMP2_ OUT	TIM15_ CH1	-	-	-	-	-	EVENT OUT
	PA3	-	TIM2_ CH4	-	TSC_G1 _IO4	-	-	-	USART2_ RX	-	TIM15_ CH2	-	-	-	-	-	EVENT OUT
Port A	PA4	-		TIM3_ CH2	TSC_G2 _IO1	-	SPI1_NSS	SPI3_NSS /I2S3_WS	USART2_ CK	-	-	-	-	-	-	-	EVENT OUT
	PA5	-	TIM2_ CH1/TIM 2_ETR	-	TSC_G2 _IO2	-	SPI1_SCK	-	-	-	-	-	-	-	-	-	EVENT OUT
	PA6	-	TIM16_ CH1	TIM3_ CH1	TSC_G2 _IO3	-	SPI1_ MISO	TIM1_ BKIN	-	COMP1_ OUT	-	-	-	-	-	-	EVENT OUT
	PA7	-	TIM17_ CH1	TIM3_ CH2	TSC_G2 _IO4	-	SPI1_ MOSI	TIM1_ CH1N	-	-	-	-	ı	-	-	ı	EVENT OUT
	PA8	MCO	-	-	I2C3_ SCL	I2C2_ SMBAL	12S2_ MCK	TIM1_ CH1	USART1_ CK	-	-	TIM4_ ETR	-	-	-	-	EVENT OUT
	PA9	-	-	I2C3_ SMBAL	TSC_G4 _IO1	I2C2_SCL	I2S3_ MCK	TIM1_ CH2	USART1_ TX	-	TIM15_ BKIN	TIM2_ CH3	-	-	-	-	EVENT OUT

Table 14. STM32F302xD/E alternate function mapping (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Port	SYS_AF	TIM2/15/ 16/17/E VENT	I2C3/TIM1 /2/3/4/8/20 /15/GPCO MP1	12C3//15/ TSC	I2C1/2/TI M1/8/16/ 17	SPI1/SPI2 /I2S2/SPI3 /I2S3/SPI4 /UART4/5/ Infrared	SPI2/I2S2/ SPI3/I2S3/ TIM1/8/20/ Infrared	USART1/2 /3/CAN/GP COMP6	I2C3/GPC OMP1/2/3/ 4/5/6	CAN/TIM1 /8/15	TIM2/3/ 4/8/17	TIM1/8	FSMC /TIM1	-	-	EVENT
	PA10	-	TIM17_ BKIN	-	TSC_G4 _IO2	I2C2_SDA	SPI2_MIS O/I2S2ext _SD	TIM1_ CH3	USART1_ RX	COMP6_ OUT	-	TIM2_ CH4	-	-	-	-	EVENT OUT
	PA11	-	-	-	-	-	SPI2_MO SI/I2S2_ SD	TIM1_ CH1N	USART1_ CTS	COMP1_ OUT	CAN_RX	TIM4_ CH1	TIM1_ CH4	TIM1_ BKIN2	-	-	EVENT OUT
Port A	PA12	-	TIM16_ CH1	-	-	-	I2SCKIN	TIM1_ CH2N	USART1_ RTS	COMP2_ OUT	CAN_TX	TIM4_ CH2	TIM1_ ETR	-	-	-	EVENT OUT
4	PA13	SWDIO- JTMS	TIM16_ CH1N	-	TSC_G4 _IO3	-	IR-OUT	-	USART3_ CTS	-	-	TIM4_ CH3	-	-	-	-	EVENT OUT
	PA14	SWCLK- JTCK	-	-	TSC_G4 _IO4	I2C1_SDA	-	TIM1_ BKIN	USART2_ TX	-	-	-	-	-	-	-	EVENT OUT
	PA15	JTDI	TIM2_ CH1/TIM 2_ETR	-	TSC_ SYNC	I2C1_SCL	SPI1_NSS	SPI3_NSS /I2S3_WS	USART2_ RX	-	TIM1_ BKIN	-	-	-	-	-	EVENT OUT
	PB0	-	-	TIM3_ CH3	TSC_G3 _IO2	-	-	TIM1_ CH2N	-	-	-	-		-	-	-	EVENT OUT
В	PB1	-	-	TIM3_ CH4	TSC_G3 _IO3	-	-	TIM1_ CH3N	-	COMP4_ OUT	-	-	-	-	-	-	EVENT OUT
Port E	PB2	-	-	-	TSC_G3 _IO4	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB3	JTDO- TRACES WO	TIM2_ CH2	TIM4_ ETR	TSC_G5 _IO1	-	SPI1_SCK	SPI3_SCK /I2S3_CK	USART2_ TX	-	-	TIM3_ ETR	-	-	-	-	EVENT OUT

					Table 14	. STM32	F302xD/I	E alterna	te functi	on mapp	ing (con	tinued)	1				
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Port	SYS_AF	TIM2/15/ 16/17/E VENT	I2C3/TIM1 /2/3/4/8/20 /15/GPCO MP1	12C3//15/ TSC	I2C1/2/TI M1/8/16/ 17	SPI1/SPI2 /I2S2/SPI3 /I2S3/SPI4 /UART4/5/ Infrared	SPI2/I2S2/ SPI3/I2S3/ TIM1/8/20/ Infrared	USART1/2 /3/CAN/GP COMP6	I2C3/GPC OMP1/2/3/ 4/5/6	CAN/TIM1 /8/15	TIM2/3/ 4/8/17	TIM1/8	FSMC /TIM1	-	-	EVENT
	PB4	JTRST	TIM16_ CH1	TIM3_ CH1	TSC_G5 _IO2	-	SPI1_ MISO	SPI3_MIS O/I2S3ext _SD	USART2_ RX	-	-	TIM17_ BKIN	-	-	-	-	EVENT OUT
	PB5	-	TIM16_ BKIN	TIM3_ CH2	-	I2C1_ SMBAI	SPI1_ MOSI	SPI3_MO SI/I2S3_ SD	USART2_ CK	I2C3_SDA	-	TIM17_ CH1	-	-	-	-	EVENT OUT
	PB6	-	TIM16_ CH1N	TIM4_ CH1	TSC_G5 _IO3	I2C1_SCL	-	-	USART1_ TX	-	-	-	-	-	-	-	EVENT OUT
	PB7	-	TIM17_ CH1N	TIM4_ CH2	TSC_G5 _IO4	I2C1_SDA	-	-	USART1_ RX	-	-	TIM3_ CH4	-	FMC_ NADV	-	-	EVENT OUT
t B	PB8	-	TIM16_ CH1	TIM4_ CH3	TSC_ SYNC	I2C1_SCL	-	-	USART3_ RX	COMP1_ OUT	CAN_RX	-	-	TIM1_ BKIN	-	-	EVENT OUT
Port B	PB9	-	TIM17_ CH1	TIM4_ CH4	-	I2C1_SDA	-	IR-OUT	USART3_ TX	COMP2_ OUT	CAN_TX	-	-	-	-	-	EVENT OUT
	PB10	-	TIM2_ CH3	-	TSC_ SYNC	-	-	-	USART3_ TX	-	-	-	-	-	-	-	EVENT OUT
	PB11	-	TIM2_ CH4	-	TSC_G6 _IO1	-	-	-	USART3_ RX	-	-	-	-	-		-	EVENT OUT
	PB12	-	-	-	TSC_G6 _IO2	I2C2_ SMBAL	SPI2_NSS /I2S2_WS	TIM1_ BKIN	USART3_ CK	-	-	-	-	-	-	-	EVENT OUT
	PB13	-	-	-	TSC_G6 _IO3	-	SPI2_SCK /I2S2_CK	TIM1_ CH1N	USART3_ CTS	-	-	-	-	-	-	-	EVENT OUT

Table 14. STM32F302xD/E alternate function mapping (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Port	SYS_AF	TIM2/15/ 16/17/E VENT	I2C3/TIM1 /2/3/4/8/20 /15/GPCO MP1	12C3//15/ TSC	I2C1/2/TI M1/8/16/ 17	SPI1/SPI2 /I2S2/SPI3 /I2S3/SPI4 /UART4/5/ Infrared	SPI2/I2S2/ SPI3/I2S3/ TIM1/8/20/ Infrared	USART1/2 /3/CAN/GP COMP6	12C3/GPC OMP1/2/3/ 4/5/6	CAN/TIM1 /8/15	TIM2/3/ 4/8/17	TIM1/8	FSMC /TIM1	-	-	EVENT
	PB14	-	TIM15_ CH1	-	TSC_G6 _IO4	-	SPI2_MIS O/I2S2ext _SD	TIM1_ CH2N	USART3_ RTS	-	-	-	-	-	-	-	EVENT OUT
Port B	PB15	RTC_ REFIN	TIM15_ CH2	TIM15_ CH1N	-	TIM1_ CH3N	SPI2_MO SI/I2S2_S D	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC0	-	EVENT OUT	TIM1_ CH1	-	-	-	-	-	-	-	-	-	-	-	-	-
	PC1	-	EVENT OUT	TIM1_ CH2	-	-	-	-	-	-	-	-	-	-	-	-	-
	PC2	-	EVENT OUT	TIM1_ CH3	-	-	-	-	-	-	-	-	-	-	-	-	-
	PC3	-	EVENT OUT	TIM1_ CH4	-	-	-	TIM1_ BKIN2	-	-	-	-	-	-	-	-	-
tc	PC4	-	EVENT OUT	TIM1_ ETR	-	-	-	-	USART1_ TX	-	-	-	-	-	-	-	-
Port C	PC5	-	EVENT OUT	TIM15_ BKIN	TSC_G3 _IO1	-	-	-	USART1_ RX	-	-	-	-	-	-	-	-
	PC6	-	EVENT OUT	TIM3_ CH1	-	-	-	I2S2_ MCK	COMP6_O UT	-	-	-	-	-	-	-	-
	PC7	-	EVENT OUT	TIM3_ CH2	-	-	-	12S3_ MCK	-	-	-	-	-	-	-	-	-
	PC8	-	EVENT OUT	TIM3_ CH3	-	-	-	-	-	-	-	-	-	-	-	-	-
	PC9	-	EVENT OUT	TIM3_ CH4	I2C3_ SDA	-	I2SCKIN	-	-	-	-	-	-	-	-	-	-

54/168

Table 14. STM32F302xD/E alternate function mapping (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
I	Port	SYS_AF	TIM2/15/ 16/17/E VENT	I2C3/TIM1 /2/3/4/8/20 /15/GPCO MP1	12C3//15/ TSC	I2C1/2/TI M1/8/16/ 17	SPI1/SPI2 /I2S2/SPI3 /I2S3/SPI4 /UART4/5/ Infrared	SPI2/I2S2/ SPI3/I2S3/ TIM1/8/20/ Infrared	USART1/2 /3/CAN/GP COMP6	I2C3/GPC OMP1/2/3/ 4/5/6	CAN/TIM1 /8/15	TIM2/3/ 4/8/17	TIM1/8	FSMC /TIM1	-	-	EVENT
	PD5	-	EVENT OUT	-	-	-	-	-	USART2_ TX	-	-	-	-	FMC_ NWE	-	-	-
	PD6	-	EVENT OUT	TIM2_ CH4	-	-	-	-	USART2_ RX	-	-	-	-	FMC_ NWAIT	-	-	-
	PD7	-	EVENT OUT	TIM2_ CH3	-	-	-	-	USART2_ CK	-	-	-	-	FMC_NE 1/FMC_ NCE2	-	-	-
	PD8	-	EVENT OUT	-	-	-	-	-	USART3_ TX	-	-	-	-	FMC_ D13	-	-	-
	PD9	-	EVENT OUT	-	-	-	-	-	USART3_ RX	-	-	-	-	FMC_ D14	-	-	-
Port D	PD10	-	EVENT OUT	-	-	-	-	-	USART3_ CK	-	-	-	-	FMC_ D15	-	-	-
	PD11	-	EVENT OUT	-	-	-	-	-	USART3_ CTS	-	-	-	-	FMC_ A16	-	-	-
	PD12	-	EVENT OUT	TIM4_ CH1	TSC_G8 _IO1	-	-	-	USART3_ RTS	-	-	-	-	FMC_ A17	-	-	-
	PD13	-	EVENT OUT	TIM4_ CH2	TSC_G8 _IO2	-	-	-	-	-	-	-	ı	FMC_ A18	-	-	-
	PD14	-	EVENT OUT	TIM4_ CH3	TSC_G8 _IO3	-	-	-	-	-	-	-	-	FMC_D0	-	-	-
	PD15	-	EVENT OUT	TIM4_ CH4	TSC_G8 _IO4	-	-	SPI2_NSS	-	-	-	-	-	FMC_D1	-	-	-

56/168

					Table 14	. STM32	F302xD/I	E alterna	te functi	on mapp	ing (con	tinued)					
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
ı	Port	SYS_AF	TIM2/15/ 16/17/E VENT	I2C3/TIM1 /2/3/4/8/20 /15/GPCO MP1	12C3//15/ TSC	I2C1/2/TI M1/8/16/ 17	SPI1/SPI2 /I2S2/SPI3 /I2S3/SPI4 /UART4/5/ Infrared	SPI2/I2S2/ SPI3/I2S3/ TIM1/8/20/ Infrared	USART1/2 /3/CAN/GP COMP6	I2C3/GPC OMP1/2/3/ 4/5/6	CAN/TIM1 /8/15	TIM2/3/ 4/8/17	TIM1/8	FSMC /TIM1	-	•	EVENT
	PE0	-	EVENT OUT	TIM4_ ETR	-	TIM16_ CH1	-	-	USART1_ TX	-	-	-	-	FMC_ NBL0	-	-	-
	PE1	-	EVENT OUT	-	-	TIM17_ CH1	-	-	USART1_ RX	-	-	-	-	FMC_ NBL1	-	1	-
	PE2	TRACECK	EVENT OUT	TIM3_ CH1	TSC_G7 _IO1	-	SPI4_SCK	-	-	-	-	-	-	FMC_ A23	-	-	-
	PE3	TRACED0	EVENT OUT	TIM3_ CH2	TSC_G7 _IO2	-	SPI4_NSS	-	-	-	-	-	-	FMC_ A19	-	-	-
	PE4	TRACED1	EVENT OUT	TIM3_ CH3	TSC_G7 _IO3	-	SPI4_NSS	-	-	-	-	-	-	FMC_ A20	-	-	-
T T	PE5	TRACED2	EVENT OUT	TIM3_ CH4	TSC_G7 _IO4	-	SPI4_ MISO	-	-	-	-	-	-	FMC_ A21	-	-	-
Port E	PE6	TRACED3	EVENT OUT	-	-	-	SPI4_ MOSI	-	-	-	-	-	-	FMC_ A22	-	-	-
	PE7	-	EVENT OUT	TIM1_ ETR	-	-	-	-	-	-	-	-	-	FMC_D4	-	-	-
	PE8	-	EVENT OUT	TIM1_ CH1N	-	-	-	-	-	-	-	-	-	FMC_D5	-	1	-
	PE9	-	EVENT OUT	TIM1_ CH1	-	-	-	-	-	-	-	-	-	FMC_D6	-	1	-
	PE10	-	EVENT OUT	TIM1_ CH2N		-	-	-	-	-	-	-		FMC_D7	-	1	-
	PE11	-	EVENT OUT	TIM1_ CH2	-	-	SPI4_NSS	-	-	-	-	-	-	FMC_D8	-	-	-

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Port	SYS_AF	TIM2/15/ 16/17/E VENT	I2C3/TIM1 /2/3/4/8/20 /15/GPCO MP1	12C3//15/ TSC	I2C1/2/TI M1/8/16/ 17	SPI1/SPI2 /I2S2/SPI3 /I2S3/SPI4 /UART4/5/ Infrared	SPI2/I2S2/ SPI3/I2S3/ TIM1/8/20/ Infrared	USART1/2 /3/CAN/GP COMP6	I2C3/GPC OMP1/2/3/ 4/5/6	CAN/TIM1 /8/15	TIM2/3/ 4/8/17	TIM1/8	FSMC /TIM1	-	-	EVENT
	PE12	-	EVENT OUT	TIM1_ CH3N	-	-	SPI4_SCK	-	-	-	-	-	-	FMC_D9	-	-	-
Port E	PE13	-	EVENT OUT	TIM1_ CH3	-	-	SPI4_ MISO	-	-	-	-	-	-	FMC_ D10	-	-	-
Por	PE14	-	EVENT OUT	TIM1_ CH4	-	-	SPI4_ MOSI	TIM1_ BKIN2	-	-	-	-	-	FMC_ D11	-	-	-
	PE15	-	EVENT OUT	TIM1_ BKIN	-	-	-	-	USART3_ RX	-	-	-	-	FMC_ D12	-	-	-
	PF0	-	EVENT OUT	-	-	I2C2_SDA	SPI2_NSS /I2S2_WS	TIM1_ CH3N	-	-	-	-	-	-	-	-	-
	PF1	-	EVENT OUT	-	-	I2C2_SCL	SPI2_SCK /I2S2_CK	-	-	-	-	-	-	-	-	-	-
	PF2	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_A2	-	-	-
Port F	PF3	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_A3	-	-	-
	PF4	-	EVENT OUT	COMP1_ OUT	-	-	-	-	-	-	-	-	-	FMC_A4	-	-	-
	PF5	-	EVENT OUT	-	-	-	-	-	-	-	-		-	FMC_A5	-	-	-
	PF6	-	EVENT OUT	TIM4_ CH4	-	I2C2_SCL	-	-	USART3_ RTS	-	-		-	FMC_ NIORD	-	-	-
	PF7	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_ NREG	-	ı	-

					Table 14	I. STM32	F302xD/I	E alterna	te functi	on mapp	ing (con	tinued)	ı				
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
F	Port	SYS_AF	TIM2/15/ 16/17/E VENT	I2C3/TIM1 /2/3/4/8/20 /15/GPCO MP1	12C3//15/ TSC	I2C1/2/TI M1/8/16/ 17	SPI1/SPI2 //2S2/SPI3 //2S3/SPI4 /UART4/5/ Infrared	SPI2/I2S2/ SPI3/I2S3/ TIM1/8/20/ Infrared	USART1/2 /3/CAN/GP COMP6	I2C3/GPC OMP1/2/3/ 4/5/6	CAN/TIM1 /8/15	TIM2/3/ 4/8/17	TIM1/8	FSMC /TIM1	-	-	EVENT
	PF8	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_ NIOWR	-	-	-
	PF9	-	EVENT OUT	-	TIM15_ CH1	-	SPI2_SCK	-	-	-	-	-	-	FMC_CD	-	-	-
	PF10	-	EVENT OUT	-	TIM15_ CH2	-	SPI2_SCK	-	-	-	-	-	-	FMC_ INTR	-	-	-
Port F	PF11	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Por	PF12	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_A6	-	-	-
	PF13	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_A7	-	-	-
	PF14	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_A8	-	-	-
	PF15	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_A9	-	-	-
	PG0	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_ A10	-	-	-
	PG1	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_ A11	-	-	-
Port G	PG2	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_ A12	-	-	-
	PG3	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_ A13	-	-	-
	PG4	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_ A14	-	-	-

Table 14. STM32F302xD/E alternate function mapping (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
I	Port	SYS_AF	TIM2/15/ 16/17/E VENT	I2C3/TIM1 /2/3/4/8/20 /15/GPCO MP1	12C3//15/ TSC	I2C1/2/TI M1/8/16/ 17	SPI1/SPI2 /I2S2/SPI3 /I2S3/SPI4 /UART4/5/ Infrared	SPI2/I2S2/ SPI3/I2S3/ TIM1/8/20/ Infrared	USART1/2 /3/CAN/GP COMP6	12C3/GPC OMP1/2/3/ 4/5/6	CAN/TIM1 /8/15	TIM2/3/ 4/8/17	TIM1/8	FSMC /TIM1	-	-	EVENT
	PG5	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_ A15	-	-	-
	PG6	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_ INT2	-	-	-
	PG7	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_ INT3	-	-	-
	PG8	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	PG9	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_NE 2/FMC_ NCE3	-	-	-
Port G	PG10	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_ NCE4_1/ FMC_ NE3	-	-	-
	PG11	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_ NCE4_2	-	-	-
	PG12	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_ NE4	-	-	-
	PG13	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_ A24	-	-	-
	PG14	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_ A25	-	-	-
	PG15	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Pinout and pin description

Table 14. STM32F302xD/E alternate function mapping (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
ı	Port	SYS_AF	TIM2/15/ 16/17/E VENT	I2C3/TIM1 /2/3/4/8/20 /15/GPCO MP1	12C3//15/ TSC	I2C1/2/TI M1/8/16/ 17	SPI1/SPI2 /I2S2/SPI3 /I2S3/SPI4 /UART4/5/ Infrared	SPI2/I2S2/ SPI3/I2S3/ TIM1/8/20/ Infrared	USART1/2 /3/CAN/GP COMP6	I2C3/GPC OMP1/2/3/ 4/5/6	CAN/TIM1 /8/15	TIM2/3/ 4/8/17	TIM1/8	FSMC /TIM1	-	-	EVENT
	PH0	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_A0	-	-	-
Port H	PH1	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	FMC_A1	-	-	-
	PH2	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	-	-	-	-

5 Memory mapping

Figure 9. STM32F302xD/E memory map

Table 15. Memory map, peripheral register boundary addresses

Bus	Boundary address	Size (bytes)	Peripheral
	0xA000 0000 - 0xA000 0FFF	4 K	FSMC control registers
AHB4	0x8000 0000 - 0x9FFF FFFF	512 M	FSMC Banks 3 and 4
	0x6000 0000 - 0x7FFF FFFF 512 M		FSMC Banks 1 and 2
-	0x5000 0400 - 0x5FFF FFFF	~384 M	Reserved
AHB3	0x5000 0000 - 0x5000 03FF	1 K	ADC1 - ADC2
-	0x4800 2000 - 0x4FFF FFFF	~132 M	Reserved
	0x4800 1C00 - 0x4800 1FFF	1 K	GPIOH
	0x4800 1800 - 0x4800 1BFF	1 K	GPIOG
	0x4800 1400 - 0x4800 17FF	1 K	GPIOF
AHB2	0x4800 1000 - 0x4800 13FF	1 K	GPIOE
AUDZ	0x4800 0C00 - 0x4800 0FFF	1 K	GPIOD
	0x4800 0800 - 0x4800 0BFF	1 K	GPIOC
	0x4800 0400 - 0x4800 07FF	1 K	GPIOB
	0x4800 0000 - 0x4800 03FF	1 K	GPIOA
-	0x4002 4400 - 0x47FF FFFF	~128 M	Reserved
	0x4002 4000 - 0x4002 43FF	1 K	TSC
	0x4002 3400 - 0x4002 3FFF	3 K	Reserved
	0x4002 3000 - 0x4002 33FF	1 K	CRC
	0x4002 2400 - 0x4002 2FFF	3 K	Reserved
AHB1	0x4002 2000 - 0x4002 23FF	1 K	Flash interface
ALIDI	0x4002 1400 - 0x4002 1FFF	3 K	Reserved
	0x4002 1000 - 0x4002 13FF	1 K	RCC
	0x4002 0800 - 0x4002 0FFF	2 K	Reserved
	0x4002 0400 - 0x4002 07FF	1 K	DMA2
	0x4002 0000 - 0x4002 03FF	1 K	DMA1
-	0x4001 8000 - 0x4001 FFFF	32 K	Reserved
	0x4001 4C00 - 0x4001 7FFF	13 K	Reserved
	0x4001 4800 - 0x4001 4BFF	1 K	TIM17
	0x4001 4400 - 0x4001 47FF	1 K	TIM16
	0x4001 4000 - 0x4001 43FF	1 K	TIM15
	0x4001 3C00 - 0x4001 3FFF	1 K	SPI4
APB2	0x4001 3800 - 0x4001 3BFF	1 K	USART1
AFD2	0x4001 3400 - 0x4001 37FF	1 K	Reserved
	0x4001 3000 - 0x4001 33FF	1 K	SPI1

Table 15. Memory map, peripheral register boundary addresses (continued)

	To: Memory map, peripheral register		
Bus	Boundary address	Size (bytes)	Peripheral
	0x4001 2C00 - 0x4001 2FFF	1 K	TIM1
APB2	0x4001 0800 - 0x4001 2BFF	9 K	Reserved
AFDZ	0x4001 0400 - 0x4001 07FF	1 K	EXTI
	0x4001 0000 - 0x4001 03FF	1 K	SYSCFG + COMP + OPAMP
-	0x4000 7C00 - 0x4000 FFFF	32 K	Reserved
	0x4000 7800 - 0x4000 7BFF	1 K	I2C3
	0x4000 7400 - 0x4000 77FF	1 K	DAC
	0x4000 7000 - 0x4000 73FF	1 K	PWR
	0x4000 6800 - 0x4000 6FFF	2 K	Reserved
	0x4000 6400 - 0x4000 67FF	1 K	bxCAN
	0x4000 6000 - 0x4000 63FF	1 K	USB/CAN SRAM
	0x4000 5C00 - 0x4000 5FFF	1 K	USB device FS
	0x4000 5800 - 0x4000 5BFF	1 K	I2C2
	0x4000 5400 - 0x4000 57FF	1 K	I2C1
	0x4000 5000 - 0x4000 53FF	1 K	UART5
	0x4000 4C00 - 0x4000 4FFF	1 K	UART4
	0x4000 4800 - 0x4000 4BFF	1 K	USART3
	0x4000 4400 - 0x4000 47FF	1 K	USART2
APB1	0x4000 4000 - 0x4000 43FF	1 K	I2S3ext
APDI	0x4000 3C00 - 0x4000 3FFF	1 K	SPI3/I2S3
	0x4000 3800 - 0x4000 3BFF	1 K	SPI2/I2S2
	0x4000 3400 - 0x4000 37FF	1 K	I2S2ext
	0x4000 3000 - 0x4000 33FF	1 K	IWDG
	0x4000 2C00 - 0x4000 2FFF	1 K	WWDG
	0x4000 2800 - 0x4000 2BFF	1 K	RTC
	0x4000 1800 - 0x4000 27FF	4 K	Reserved
	0x4000 1000 - 0x4000 13FF	1 K	TIM6
	0x4000 0C00 - 0x4000 0FFF	1 K	Reserved
	0x4000 0800 - 0x4000 0BFF	1 K	TIM4
	0x4000 0400 - 0x4000 07FF	1 K	TIM3
	0x4000 0000 - 0x4000 03FF	1 K	TIM2

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A$ max (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3o).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = V_{DDA} = 2.0$ to 3.6 V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2 σ).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 10*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 11.

6.1.6 Power supply scheme

Backup circuitry Power 1.65 - 3.6 V (LSE, RTC, switch Wakeup logic, Backup registers) GP I/Os I/O logic Kernel logic (CPU, digital & memories) 11 x V_{DD} Regulator 11 x 100 nF $11 \times V_{SS}$ + 1 x 4.7 µF V_{DDA} V_{DDA} Analog: RCs, 10 nF 10 nF V_{REF+} ADC/DAC PLL, comparators, OPAMP, + 1 µF V_{REF} MS35524V1

Figure 12. Power supply scheme

 Dotted lines represent the internal connections on low pin count packages, joining the dedicated supply pins.

Caution:

Each power supply pair (V_{DD}/V_{SS} , V_{DDA}/V_{SSA} etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

6.1.7 Current consumption measurement

Figure 13. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 16: Voltage characteristics*, *Table 17: Current characteristics*, and *Table 18: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
V_{DD} – V_{SS}	External main supply voltage (including $\mathrm{V}_{\mathrm{DDA,}}\mathrm{V}_{\mathrm{BAT}}$ and $\mathrm{V}_{\mathrm{DD}})$	-0.3	4.0	
V _{DD} –V _{DDA}	Allowed voltage difference for V _{DD} > V _{DDA}	-	0.4	V
V _{REF+} -V _{DDA} ⁽²⁾	Allowed voltage difference for V _{REF+} > V _{DDA}	-	0.4	
	Input voltage on FT and FTf pins	V _{SS} -0.3	V _{DD} + 4.0	
	Input voltage on TTa pins	V _{SS} -0.3	4.0	
$V_{IN}^{(3)}$	Input voltage on any other pin	V _{SS} -0.3	4.0	V
	Input voltage on Boot0 pin	0	9	
$ \Delta V_{DDx} $	V _{DDx} Variations between different V _{DD} power pins		50	m\/
V _{SSX} -V _{SS}	V _{SS} Variations between all the different ground pins		50	mV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 6.3.13: Electrical sensitivity characteristics		-

Table 16. Voltage characteristics⁽¹⁾

All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range. The following relationship must be respected between V_{DDA} and V_{DD}: V_{DDA} must power on before or at the same time as V_{DD} in the power up sequence. V_{DDA} must be greater than or equal to V_{DD}.

V_{REF+} must be always lower or equal than V_{DDA} (V_{REF+} ≤V_{DDA}). If unused then it must be connected to V_{DDA}.

V_{IN} maximum must always be respected. Refer to Table 17: Current characteristics for the maximum allowed injected current values.

Table 17. Current characteristics

Symbol	Ratings	Max.	Unit
ΣI_{VDD}	Total current into sum of all VDD_x power lines (source)	160	
ΣI_{VSS}	Total current out of sum of all VSS_x ground lines (sink)	-160	
I _{VDD}	Maximum current into each V _{DD_x} power line (source) ⁽¹⁾	100	
I _{VSS}	Maximum current out of each V _{SS_x} ground line (sink) ⁽¹⁾	100	
ı	Output current sunk by any I/O and control pin	25	
I _{IO(PIN)}	Output current source by any I/O and control pin	-25	
ΣI	Total output current sunk by sum of all IOs and control pins ⁽²⁾	80	- mA
$\Sigma I_{IO(PIN)}$	Total output current sourced by sum of all IOs and control pins ⁽²⁾	-80	
	Injected current on FT, FTf, and B pins ⁽³⁾	-5/+0	
I _{INJ(PIN)}	Injected current on TC and RST pin ⁽⁴⁾		
	Injected current on TTa pins ⁽⁵⁾	±5	
$\Sigma I_{\text{INJ(PIN)}}$	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	±25	

- All main power (V_{DD}, V_{DDA}) and ground (V_{SS} and V_{SSA}) pins must always be connected to the external power supply, in the permitted range.
- 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
- 3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value
- A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 16: Voltage characteristics* for the maximum allowed input voltage values.
- A positive injection is induced by V_{IN} > V_{DDA} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ}(PIN) must never be exceeded. Refer also to *Table 16: Voltage characteristics* for the maximum allowed input voltage values. Negative injection disturbs the analog performance of the device. See note ⁽²⁾ below *Table 81*.
- When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 18. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
T _J	Maximum junction temperature	150	°C

6.3 Operating conditions

6.3.1 General operating conditions

Table 19. General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency	-	0	72	
f _{PCLK1}	Internal APB1 clock frequency	-	0	36	MHz
f _{PCLK2}	Internal APB2 clock frequency	-	0	72	
V_{DD}	Standard operating voltage	-	2	3.6	V
V	Analog operating voltage (OPAMP and DAC not used)	Must have a potential	2	3.6	V
V DDA	Analog operating voltage (OPAMP and DAC used) equal to or higher than VDD	2.4	3.6	V	
V_{BAT}	Backup operating voltage	-	1.65	3.6	V
		TC I/O	-0.3	V _{DD} +0.3	
		TTa I/O	-0.3	V _{DDA} +0.3	
V_{IN}	I/O input voltage	FT and FTf I/O ⁽¹⁾	-0.3	5.5	V
	воото	0	5.5		
		LQFP144	-	606	
	Power dissipation at T _A =	WLCSP100	-	454	
P_{D}	85 °C for suffix 6 or T _A = 105 °C for suffix 7 ⁽²⁾	LQFP100	-	476	mW
	105 °C for suffix $7^{(2)}$	UFBGA100	-	339	
		LQFP64	-	435	
	Ambient temperature for 6	Maximum power dissipation	-40	85	°C
TA	suffix version	Low power dissipation ⁽³⁾	-40	105	
IA	Ambient temperature for 7	Maximum power dissipation	-40	105	°C
	suffix version	Low power dissipation ⁽³⁾	-40	125	
TJ	lunction tomperature range	6 suffix version	-40	105	°C
IJ	Junction temperature range	7 suffix version	-40	125	C

^{1.} To sustain a voltage higher than V_{DD} +0.3 V, the internal pull-up/pull-down resistors must be disabled.

^{2.} If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see *Section 7.7: Thermal characteristics*).

^{3.} In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.7: Thermal characteristics).

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 20* are derived from tests performed under the ambient temperature condition summarized in *Table 19*.

Table 20. Operating conditions at power-up / power-down

Symbol	Parameter	Conditions	Min	Max	Unit
+	V _{DD} rise time rate		0	∞	
t _{VDD}	V _{DD} fall time rate	-	20	∞	μs/V
+	V _{DDA} rise time rate		0	∞	μ5/ ν
t _{VDDA}	V _{DDA} fall time rate	-	20	∞	

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 21* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 19*.

Table 21. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{POR/PDR} ⁽¹⁾	Power on/power down reset threshold	Falling edge	1.8 ⁽²⁾	1.88	1.96	٧
* POR/PDR		Rising edge	1.84	1.92	2.0	٧
V _{PDRhyst} ⁽¹⁾	PDR hysteresis	-	-	40	-	mV

The PDR detector monitors V_{DD} and also V_{DDA} (if kept enabled in the option bytes). The POR detector monitors only V_{DD}.

Table 22. Programmable voltage detector characteristics

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V	PVD threshold 0	Rising edge	2.1	2.18	2.26	
V _{PVD0}	F VD tillesiloid 0	Falling edge	2	2.08	2.16	
V	PVD threshold 1	Rising edge	2.19	2.28	2.37	
V _{PVD1}	F VD tillesiloid i	Falling edge	2.09	2.18	2.27	
V	PVD threshold 2	Rising edge	2.28	2.38	2.48	
VPVD2	V _{PVD2} PVD threshold 2	Falling edge	2.18	2.28	2.38	V
V	PVD threshold 3	Rising edge	2.38	2.48	2.58	V
V _{PVD3}	F VD tillesiloid 3	Falling edge	2.28	2.38	2.48	
V	PVD threshold 4	Rising edge	2.47	2.58	2.69	
VPVD4	V _{PVD4} PVD threshold 4	Falling edge	2.37	2.48	2.59	
V DVD throohold 5	PVD threshold 5	Rising edge	2.57	2.68	2.79	
V _{PVD5}	PVD tillesiloid 5	Falling edge	2.47	2.58	2.69	

^{2.} The product behavior is guaranteed by design down to the minimum $V_{\mbox{\scriptsize POR}/\mbox{\scriptsize PDR}}$ value.

	_	_		-	-	
Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V	PVD threshold 6	Rising edge	2.66	2.78	2.9	
V _{PVD6}	F VD tillesiloid 0	Falling edge	2.56	2.68	2.8	V
)/ D/D there is a list 7	Rising edge	2.76	2.88	3	V	
V_{PVD7}	PVD threshold 7	Falling edge	2.66	2.78	2.9	
V _{PVDhyst} ⁽²⁾	PVD hysteresis	-	-	100	-	mV
IDD(PVD)	PVD current consumption	-	-	0.15	0.26	μA

Table 22. Programmable voltage detector characteristics (continued)

6.3.4 Embedded reference voltage

The parameters given in *Table 23* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 19*.

rabio 20. Embodada medinar rototonos voltago						
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	Internal reference voltage	-40 °C < T _A < +105 °C	1.16	1.2	1.25	V
V_{REFINT}	Internal reference voltage	-40 °C < T _A < +85 °C	1.16	1.2	1.24 ⁽¹⁾	V
T _{S_vrefint}	ADC sampling time when reading the internal reference voltage	-	2.2	-	-	μs
V _{RERINT}	Internal reference voltage spread over the temperature range	V _{DD} = 3 V ±10 mV	-	-	10 ⁽²⁾	mV
T _{Coeff}	Temperature coefficient	-	-	-	100 ⁽²⁾	ppm/°C

Table 23. Embedded internal reference voltage

Table 24. Internal reference voltage calibration values

Calibration value name	Description	Memory address
V _{REFINT_CAL}	Raw data acquired at temperature of 30 °C V _{DDA} = 3.3 V	0x1FFF F7BA - 0x1FFF F7BB

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 13: Current consumption measurement scheme*.

^{1.} Data based on characterization results only, not tested in production.

^{2.} Guaranteed by design, not tested in production.

^{1.} Data based on characterization results, not tested in production.

^{2.} Guaranteed by design, not tested in production.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Note: The total current consumption is the sum of I_{DD} and I_{DDA} .

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency (0 wait state from 0 to 24 MHz,1 wait state from 24 to 48 MHz and 2 wait states from 48 to 72 MHz)
- Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled $f_{PCLK2} = f_{HCLK}$ and $f_{PCLK1} = f_{HCLK/2}$
- When f_{HCLK} > 8 MHz, the PLL is ON and the PLL input is equal to HSI/2 (4 MHz) or HSE (8 MHz) in bypass mode.

The parameters given in *Table 25* to *Table 29* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 19*.

Table 25. Typical and maximum current consumption from V_{DD} supply at V_{DD} = 3.6V

	Parameter	Conditions		All	periphe	erals en	abled	All					
Symbol			f _{HCLK}	Тур	Max @ T _A ⁽¹⁾			T	Max @ T _A ⁽¹⁾			Unit	
					25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C		
I _{DD}	Supply current in Run mode, executing from Flash	External clock (HSE bypass)	72 MHz	66.4	76.5	76.9	77.4	33.0	37.2	38.1	38.9	- mA	
			64 MHz	59.8	66.4	67.7	68.6	29.7	33.5	34.3	35.0		
			48 MHz	47.3	53.7	53.8	55.1	23.2	26.2	27.1	28.0		
			32 MHz	33.3	36.8	37.4	38.5	16.8	19.8	20.6	21.4		
			24 MHz	26.0	29.4	30.0	31.2	13.5	16.6	17.4	18.6		
			8 MHz	10.7	13.8	14.4	15.3	6.63	10.2	10.5	11.2		
			1 MHz	4.27	7.47	8.13	8.90	3.78	7.40	7.70	8.50		
		Internal clock (HSI)	64 MHz	55.6	59.6	62.8	63.2	29.4	33.1	34.5	35.0		
			48 MHz	43.6	47.0	49.2	50.1	23.1	26.2	27.1	28.0		
			32 MHz	30.8	33.6	35.3	35.8	16.7	19.8	20.6	21.5		
			24 MHz	24.0	28.0	28.2	29.7	13.5	16.5	17.5	18.4		
			8 MHz	10.5	13.6	14.7	15.2	6.63	9.74	10.6	11.2		
I _{DD}	Supply current in Run mode, executing from RAM	e, clock (HSE bypass)		72 MHz	66.2	76.2 ⁽²⁾	76.7	77.2 ⁽²⁾	32.8	36.9 ⁽²⁾	37.7	38.5 ⁽²⁾	
			64 MHz	59.6	66.2	67.6	68.4	29.3	33.1	33.9	34.4		
			48 MHz	47.0	53.4	53.6	54.9	22.4	25.6	26.2	27.2		
			32 MHz	33.0	36.6	37.2	38.1	16.0	19.0	19.5	20.4		
			24 MHz	25.6	29.0	29.5	30.6	12.8	15.7	16.3	17.6		
			8 MHz	10.3	13.4	13.8	14.7	6.40	9.48	9.93	10.90		

Table 25. Typical and maximum current consumption from V_{DD} supply at V_{DD} = 3.6V (continued)

		Conditions		All	periphe	erals en	abled	All				
Symbol				Тур	Max @ T _A ⁽¹⁾			T	Max @ T _A ⁽¹⁾			Unit
					25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C	
I _{DD} I	Supply current in Run mode, executing from RAM	External clock (HSE bypass)	1 MHz	3.92	7.06	7.54	8.60	3.42	6.53	7.05	8.10	
		Internal clock (HSI)	64 MHz	55.4	59.2	62.5	62.9	29.1	32.7	34.0	34.6	mA
			48 MHz	43.1	46.7	49.0	49.9	22.8	26.1	26.8	27.8	
			32 MHz	30.5	33.2	35.0	35.5	15.8	18.8	19.5	20.9	
			24 MHz	23.8	27.8	27.9	29.2	12.6	15.6	16.3	17.5	
			8 MHz	9.85	13.1	14.1	14.6	6.20	9.37	10.3	10.7	
	Supply current in Sleep mode, executing from Flash or RAM	External clock (HSE bypass)	72 MHz	48.8	53.5 ⁽²⁾	53.6	54.0 ⁽²⁾	7.60	8.20 ⁽²⁾	8.50	9.00 ⁽²⁾	
			64 MHz	43.5	48.6	49.1	49.3	6.90	7.50	7.80	8.00	
			48 MHz	33.6	38.1	40.0	41.3	5.30	5.80	6.00	6.40	
I _{DD}			32 MHz	24.3	27.5	28.1	29.3	3.80	4.10	4.40	4.70	
			24 MHz	18.6	21.9	22.4	22.6	2.90	3.30	3.40	3.90	
			8 MHz	8.24	11.27	11.79	12.70	1.36	1.74	1.85	2.00	
			1 MHz	3.64	6.72	7.36	8.30	0.79	1.17	1.26	1.35	
		Internal clock (HSI)	64 MHz	39.7	43.9	45.5	45.8	6.70	7.30	7.40	7.70	
			48 MHz	30.4	33.9	35.3	36.5	5.10	5.60	5.70	6.10	
			32 MHz	21.9	25.8	26.2	26.7	3.60	4.10	4.20	4.50	
			24 MHz	17.0	20.2	21.5	21.7	2.98	3.41	3.46	3.57	
			8 MHz	7.81	11.0	11.7	12.4	1.41	1.74	1.81	1.87	

^{1.} Data based on characterization results, not tested in production unless otherwise specified.

Table 26. Typical and maximum current consumption from the V_{DDA} supply

Symbol	Parameter	Conditions (1)	f _{HCLK}		V_{DDA}	= 2.4 V						
				Тур	Max @ T _A ⁽²⁾			Typ	Max @ T _A ⁽²⁾			Unit
					25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C	
I _{DDA}	Supply current in Run mode, code executing from Flash or RAM	bypass	72 MHz	220	243	255	260	241	264	281	287	μΑ
			64 MHz	194	215	226	231	212	233	248	254	
			48 MHz	145	164	172	176	158	176	187	192	
			32 MHz	100	116	121	124	108	123	130	134	
			24 MHz	78	92	96	98	85	97	102	105	
		OI RAIVI	8	8 MHz	1.9	3.1	3.6	4.4	2.5	3.7	4.4	5.5

^{2.} Data based on characterization results and tested in production with code executing from RAM.

Table 26. Typical and maximum current consumption from the V_{DDA} supply (continued)

					V _{DDA}	= 2.4 V		V _{DDA}				
Symbol	Parameter	erameter Conditions (1)	f _{HCLK}	fнськ Тур -	М	Max @ T _A ⁽²⁾		Тур	Max @ T _A ⁽²⁾			Unit
					25 °C	85 °C	105 °C	ijΡ	25 °C	85 °C	105 °C	
Supply	HSE bypass	1 MHz	1.9	3.1	3.6	4.4	2.5	3.7	4.4	5.5		
	current in Run mode.		64 MHz	266	290	301	306	295	320	335	341	
I _{DDA}	code		48 MHz	216	237	247	251	240	262	274	279	μΑ
	executing from Flash or RAM	J HOLOUCK	32 MHz	170	188	196	199	190	208	217	221	
			24 MHz	148	164	170	172	166	182	189	192	
		OI IVAIVI	8 MHz	70	78	81	82	84	92	95	97	

^{1.} Current consumption from the V_{DDA} supply is independent of whether the peripherals are on or off. Furthermore when the PLL is off, I_{DDA} is independent from the frequency.

Table 27. Typical and maximum $V_{\mbox{\scriptsize DD}}$ consumption in Stop and Standby modes

		Conditions		Typ $@V_{DD} (V_{DD}=V_{DDA})$						Мах		
Symbol	Parameter		2.0 V	2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
	O	Regulator in run mode, all oscillators OFF	18.4	18.7	18.8	18.9	19.0	19.1	47	435	940	μA
I _{DD}	Stop mode	Regulator in low-power mode, all oscillators OFF	6.80	6.94	7.11	7.18	7.26	7.39	33	408	898	
	1-1- 7	LSI ON and IWDG ON	0.72	0.87	0.99	1.10	1.23	1.37	-	-	-	P 1
	current in	LSI OFF and IWDG OFF	0.57	0.68	0.76	0.85	0.94	1.03	6.2	8.6	13.5	

^{2.} Data based on characterization results, not tested in production.

Table 28. Typical and maximum V_{DDA} consumption in Stop and Standby modes

					Тур @	V _{DD} (V _{DD} =	V _{DDA})		Max ⁽¹⁾					
Symbol	Parameter	Conditions		2.0 V	2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit		
cı Si	Supply current in Stop mode	or C	Regulator in run/low- power mode, all oscillators OFF	1.72	1.85	1.97	2.10	2.25	2.41	10.7	11	12			
	Supply current in	Supply ourrent in Standby	LSI ON and IWDG ON	2.08	2.26	2.43	2.61	2.82	3.05	ı	1	-			
				LSI OFF and IWDG OFF	1.60	1.73	1.85	1.98	2.13	2.29	3.6	4	6		
I _{DDA}	Supply current in Stop mode	rO	Regulator in run/low- power mode, all oscillators OFF	1.00	1.02	1.05	1.10	1.16	1.24	-	-	-	μΑ		
cur Sta	Standby \leq	current in	Supply	Supply	LSI ON and IWDG ON	1.36	1.43	1.51	1.61	1.74	1.88	ı	1	-	
			s A	LSI OFF and IWDG OFF	0.88	0.90	0.93	0.98	1.05	1.12	-	-	-		

^{1.} Data based on characterization results, not tested in production.

Table 29. Typical and maximum current consumption from V_{BAT} supply

											AI			
Symbol	Para	Conditions (1)	Typ @V _{BAT}							Max @V _{BAT} = 3.6 V ⁽²⁾			Unit	
Symbol	meter		1.65V	1.8V	2V	2.4V	2.7V	3V	3.3V	3.6V	T _A = 25°C	T _A = 85°C	T _A = 105°C	Onic
I _{DD_VBAT} do	Backup domain	LSE & RTC ON; "Xtal mode" lower driving capability; LSEDRV[1: 0] = '00'	0.48	0.50	0.52	0.58	0.65	0.72	0.80	0.90	1.1	1.5	2.0	
	supply current	LSE & RTC ON; "Xtal mode" higher driving capability; LSEDRV[1: 0] = '11'	0.83	0.86	0.90	0.98	1.03	1.10	1.20	1.30	1.5	2.2	2.9	μА

^{1.} Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.

^{2.} Data based on characterization results, not tested in production.

Figure 14. Typical V_{BAT} current consumption (LSE and RTC ON/LSEDRV[1:0] 00')

Typical current consumption

The MCU is placed under the following conditions:

- V_{DD} = V_{DDA} = 3.3 V
- All I/O pins available on each package are in analog input configuration
- The Flash access time is adjusted to f_{HCLK} frequency (0 wait states from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz), and Flash prefetch is ON
- When the peripherals are enabled, f_{APB1} = f_{AHB/2}, f_{APB2} = f_{AHB}
- PLL is used for frequencies greater than 8 MHz
- AHB prescaler of 2, 4, 8,16 and 64 is used for the frequencies 4 MHz, 2 MHz, 1 MHz, 500 kHz and 125 kHz respectively.

Table 30. Typical current consumption in Run mode, code with data processing running from Flash

				Ту	ур	
Symbol	Parameter	Conditions	f _{HCLK}	Peripherals enabled	Peripherals disabled	Unit
			72 MHz	60.7	27.3	
			64 MHz	54.3	24.1	
			48 MHz	42.1	19.4	
			32 MHz	28.7	13.9	
I _{DD}			24 MHz	22.2	11.0	
	Supply current in Run mode from		16 MHz	15.4	7.9	mA
	V _{DD} supply		8 MHz	8.3	4.51	- IIIA
			4 MHz	5.14	3.02	
			2 MHz	3.37	2.21	
		1 MHz 2.49	1 MHz	2.49	1.80	
			1.57	1		
			125 kHz	1.71	0.84	
		code executing from	72 MHz	23	9.7	
		Flash	64 MHz	21	0.5	
			48 MHz	15	5.6	
			32 MHz	10	5.5	
			24 MHz	81	1.9	
I _{DDA} ^{(1) (2)}	Supply current in Run mode from		16 MHz	58	3.6	
'DDA` ´ ` ´	V _{DDA} supply		8 MHz	1.	16	μA
	DDA 113		4 MHz	1.	16	
			2 MHz	1.	16	
			1 MHz	1.16		
			500 kHz	1.	16	
			125 kHz	1.	16	

^{1.} V_{DDA} supervisor is OFF.

^{2.} When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators, OpAmp is not included. Refer to the tables of characteristics in the subsequent sections.

Table 31. Typical current consumption in Sleep mode, code running from Flash or RAM

				Ty	ур		
Symbol	Parameter	Conditions	f _{HCLK}	Peripherals enabled	Peripherals disabled	Unit	
			72 MHz	43.0	7.4		
			64 MHz	38.3	6.8		
			48 MHz	29.0	5.29		
I _{DD}			32 MHz	19.7	3.91		
			24 MHz	15.2	3.19		
	Supply current in		16 MHz	10.8	2.46		
	Sleep mode from V _{DD} supply		8 MHz	5.85	1.55	- mA	
	DD - FF 7		4 MHz	3.80	1.45		
			2 MHz	2.67	1.32		
			1 MHz	2.12	1.22		
		Running from HSE	500 kHz	500 kHz 1.83	1.19		
		crystal clock 8 MHz,	125 kHz	1.60	0.83		
		code executing from	72 MHz	239.7			
		Flash or RAM	64 MHz	210.5			
			48 MHz	15	5.6		
			32 MHz	10	5.5		
			24 MHz	81	1.9		
I _{DDA} ^{(1) (2)}	Supply current in Sleep mode from		16 MHz	58	3.6	Ī	
IDDA () (-)	V _{DDA} supply		8 MHz	1.	16	μA	
			4 MHz	1.	16		
			2 MHz	1.	16		
			1 MHz	1.16			
			500 kHz	1.	16		
			125 kHz	1.	16		

^{1.} V_{DDA} supervisor is OFF.

^{2.} When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators, OpAmp is not included. Refer to the tables of characteristics in the subsequent sections.

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 66: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution:

Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 33: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where:

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load V_{DD} is the MCU supply voltage

f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: $C = C_{INT} + C_{EXT} + C_{S}$

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Table 32. Switching output I/O current consumption

Symbol	Parameter	Conditions ⁽¹⁾	I/O toggling frequency (f _{SW})	Тур	Unit
			2 MHz	0.90	
			4 MHz	0.93	
		$V_{DD} = 3.3 V$ $C_{ext} = 0 pF$	8 MHz	1.16	
		$C = C_{INT} + C_{EXT} + C_{S}$	$C = C_{INT} + C_{EXT} + C_{S}$ 18 MHz	1.60	
			36 MHz	2.51	
			48 MHz	2.97	
			2 MHz	0.93	
			4 MHz	1.06	
		V_{DD} = 3.3 V C_{ext} = 10 pF	8 MHz	1.47	
		$C = C_{INT} + C_{EXT} + C_{S}$	18 MHz	2.26	
			36 MHz	3.39	
			48 MHz	5.99	
	I/O current consumption		2 MHz	1.03	
I _{SW}		V _{DD} = 3.3 V C _{ext} = 22 pF	4 MHz	1.30	mA
	·		8 MHz	1.79	
		$C = C_{INT} + C_{EXT} + C_{S}$	18 MHz	3.01	
			36 MHz	5.99	
			2 MHz	1.10	
		V _{DD} = 3.3 V	4 MHz	1.31	
		C _{ext} = 33 pF	8 MHz	2.06	
		$C = C_{INT} + C_{EXT} + C_{S}$	18 MHz	3.47	
			36 MHz	8.35	
			2 MHz	1.20	
		V _{DD} = 3.3 V	4 MHz	1.54	
		$C_{ext} = 47 pF$	8 MHz	2.46	
		$C = C_{INT} + C_{EXT} + C_{S}$	18 MHz	4.51	
			36 MHz	9.98	

^{1.} CS = 5 pF (estimated value).

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- all I/O pins are in analog input configuration
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- ambient operating temperature at 25°C and V_{DD} = V_{DDA} = 3.3 V.

Table 33. Peripheral current consumption

Peripheral	Typical consumption ⁽¹⁾	Unit
reliplietai	I _{DD}	
BusMatrix (2)	8.3	
DMA1	7.0	
DMA2	5.4	
FSMC	35.0	
CRC	1.5	
GPIOH	1.3	
GPIOA	5.4	
GPIOB	5.3	
GPIOC	5.4	
GPIOD	5.0	
GPIOE	5.4	
GPIOF	5.2	
GPIOG	5.0	
TSC	5.2	μA/MHz
ADC1&2	15.4	
APB2-Bridge (3)	3.1	
SYSCFG	4.0	
TIM1	26.0	
USART1	17.7	
SPI4	6.2	
TIM15	11.9	
TIM16	8.0	
TIM17	8.5	

Table 33. Peripheral current consumption (continued)

	Typical consumption ⁽¹⁾	
Peripheral	I _{DD}	Unit
APB1-Bridge (3)	6.7	
TIM2	39.2	
TIM3	30.8	
TIM4	31.3	
TIM6	4.3	
WWDG	1.3	
SPI2	33.6	
SPI3	33.9	
USART2	39.3	
USART3	39.3	
UART4	29.8	μA/MHz
UART5	27.0	
I2C1	6.7	
12C2	6.4	
USB	14.7	
CAN	25.6	
PWR	3.7	
DAC	22.1	
I2C3	6.8	

The power consumption of the analog part (I_{DDA}) of peripherals such as ADC, DAC, Comparators, OpAmp is not included. Refer to the tables of characteristics in the subsequent sections.

^{2.} BusMatrix is automatically active when at least one master is ON (CPU, DMA1 or DMA2).

^{3.} The APBx bridge is automatically active when at least one peripheral is ON on the same bus.

6.3.6 Wakeup time from low-power mode

The wakeup times given in *Table 34* are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

- For Stop or Sleep mode: the wakeup event is WFE.
- WKUP1 (PA0) pin is used to wake up from Standby, Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 19*.

Table 34. Low-power mode wakeup timings

Symbol	Parameter	Conditions		Typ @Vdd, $V_{DD} = V_{DDA}$						Unit
Symbol	Parameter	Conditions	2.0 V	2.4 V	2.7 V	3 V	3.3 V	3.6 V	Max	J
	Wakeup from	Regulator in run mode	5.4	5.2	5.2	5.1	5.0	4.9	5.6	
t _{WUSTOP}	Stop mode	Regulator in low power mode	12.0	10.1	9.2	8.6	8.1	7.8	12.9	μs
t _{WUSTANDBY} (1)	Wakeup from Standby mode	LSI and IWDG OFF	91.0	77.1	71.7	68.0	65.1	63.1	139	
t _{WUSLEEP}	Wakeup from Sleep mode	-	6						-	CPU clock cycles

^{1.} Data based on characterization results, not tested in production.

Table 35. Wakeup time using USART

Symbol	Parameter	Conditions	Тур	Max	Unit
tWUUSART	Wakeup time needed to calculate the maximum USART baudrate allowing	Stop mode with main regulator in low power mode	-	13.125	
IWOUSARI	to wakeup up from stop mode when USART clock source is HSI	Stop mode with main regulator in run mode	-	3.125	μs

tw(HSEH)

tw(HSEL)

t_{r(HSE)}

t_{f(HSE)}

15

6.3.7 **External clock source characteristics**

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.15. However, the recommended clock input waveform is shown in Figure 15.

Symbol Parameter Conditions Min Тур Max Unit User external clock source 32 1 8 MHz f_{HSE_ext} frequency⁽¹⁾ 0.7V_{DD} OSC IN input pin high level voltage $V_{DD} \\$ V_{HSEH} V V_{SS} V_{HSEL} OSC IN input pin low level voltage $0.3V_{DD}$

Table 36. High-speed external user clock characteristics

OSC IN high or low time(1)

OSC IN rise or fall time⁽¹⁾

Figure 15. High-speed external clock source AC timing diagram

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.15. However, the recommended clock input waveform is shown in Figure 16.

ns

20

Guaranteed by design, not tested in production.

Table 37. Low-speed external user clock characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V_{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	V
t _{w(LSEH)}	OSC32_IN high or low time ⁽¹⁾		450	-	ı	ns
t _{r(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115

^{1.} Guaranteed by design, not tested in production.

Figure 16. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 38*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	32	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	ı	8.5	
		V _{DD} = 3.3 V, Rm= 30Ω CL=10 pF@8 MHz	-	0.4	-	
	HSE current consumption	V _{DD} = 3.3 V, Rm= 45Ω CL=10 pF@8 MHz	-	0.5	-	
I _{DD}		V _{DD} = 3.3 V, Rm= 30Ω CL=5 pF@32 MHz	-	0.8	-	mA
		V _{DD} = 3.3 V, Rm= 30Ω CL=10 pF@32 MHz	-	1	-	
		V _{DD} = 3.3 V, Rm= 30Ω CL=20 pF@32 MHz	-	1.5	-	
9 _m	Oscillator transconductance	Startup	10	-	-	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms

Table 38. HSE oscillator characteristics

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 17*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note:

For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

^{1.} Resonator characteristics given by the crystal/ceramic resonator manufacturer.

^{2.} Guaranteed by design, not tested in production.

^{3.} This consumption level occurs during the first 2/3 of the $t_{SU(HSE)}$ startup time.

^{4.} t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Figure 17. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 39*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
		LSEDRV[1:0]=00 lower driving capability	-	0.5	0.9	
l	LSE current consumption	LSEDRV[1:0]=01 medium low driving capability	-	-	1	μA
I _{DD}	LSE current consumption	LSEDRV[1:0]=10 medium high driving capability	-	-	1.3	μΛ
		LSEDRV[1:0]=11 higher driving capability	-	-	1.6	
		LSEDRV[1:0]=00 lower driving capability	5	-	-	
	Oscillator	LSEDRV[1:0]=01 medium low driving capability	8	-	-	μΑ/V
9 _m	transconductance	LSEDRV[1:0]=10 medium high driving capability	15	-	-	μ. ν
		LSEDRV[1:0]=11 higher driving capability	25	-	-	
t _{SU(LSE)} (3)	Startup time	V _{DD} is stabilized	-	2	-	S

Table 39. LSE oscillator characteristics (f_{LSE} = 32.768 kHz)

Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

^{2.} Guaranteed by design, not tested in production.

t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Resonator with integrated capacitors

OSC32_IN

Drive programmable amplifier

OSC32_OUT

MS30253V2

Figure 18. Typical application with a 32.768 kHz crystal

Note:

An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

6.3.8 Internal clock source characteristics

The parameters given in *Table 40* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 19*.

High-speed internal (HSI) RC oscillator

Symbol Parameter Conditions Min Max Unit Тур Frequency 8 MHz f_{HSI} 1(2) **TRIM** % HSI user trimming step 55⁽²⁾ 45⁽²⁾ $DuCy_{(HSI)}$ Duty cycle -2.8⁽³⁾ $3.8^{(3)}$ $T_A = -40 \text{ to } 105^{\circ}\text{C}$ -1.9⁽³⁾ $2.3^{(3)}$ $T_{\Delta} = -10 \text{ to } 85^{\circ}\text{C}$ $2^{(3)}$ $T_A = 0 \text{ to } 85^{\circ}\text{C}$ $-1.9^{(3)}$ Accuracy of the HSI ACC_{HSI} % oscillator $2^{(3)}$ $-1.3^{(3)}$ $T_A = 0 \text{ to } 70^{\circ}\text{C}$ -1⁽³⁾ $T_A = 0 \text{ to } 55^{\circ}\text{C}$ $2^{(3)}$ $T_A = 25^{\circ}C^{(4)}$ -1 1 1⁽²⁾ $2^{(2)}$ HSI oscillator startup time t_{SU(HSI)} μs HSI oscillator power $100^{(2)}$ 80 μΑ I_{DDA(HSI)} consumption

Table 40. HSI oscillator characteristics⁽¹⁾

- 1. V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.
- 2. Guaranteed by design, not tested in production.
- 3. Data based on characterization results, not tested in production.
- 4. Factory calibrated, parts not soldered.

Figure 19. HSI oscillator accuracy characterization results for soldered parts

Low-speed internal (LSI) RC oscillator

Table 41. LSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI}	Frequency	30	40	50	kHz
t _{su(LSI)} ⁽²⁾	LSI oscillator startup time	-	-	85	μs
I _{DD(LSI)} ⁽²⁾	LSI oscillator power consumption	-	0.75	1.2	μA

^{1.} V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

6.3.9 PLL characteristics

The parameters given in *Table 42* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 19*.

Table 42. PLL characteristics

Symbol	Parameter		Unit		
Symbol		Min	Тур	Max	Oill
f	PLL input clock ⁽¹⁾	1 ⁽²⁾	-	24 ⁽²⁾	MHz
f _{PLL_IN}	PLL input clock duty cycle	40 ⁽²⁾	-	60 ⁽²⁾	%
f _{PLL_OUT}	PLL multiplier output clock	16 ⁽²⁾	-	72	MHz
t _{LOCK}	PLL lock time	-	-	200 ⁽²⁾	μs
Jitter	Cycle-to-cycle jitter	-	-	300 ⁽²⁾	ps

Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f_{PLL_OUT}.

5//

^{2.} Guaranteed by design, not tested in production.

^{2.} Guaranteed by design, not tested in production.

6.3.10 Memory characteristics

Flash memory

The characteristics are given at T_A = -40 to 105 °C unless otherwise specified.

Table 43. Flash memory characteristics

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	$T_A = -40 \text{ to } +105 ^{\circ}\text{C}$	40	53.5	60	μs
t _{ERASE}	Page (2 KB) erase time	$T_A = -40 \text{ to } +105 ^{\circ}\text{C}$	20	-	40	ms
t_{ME}	Mass erase time	$T_A = -40 \text{ to } +105 ^{\circ}\text{C}$	20	-	40	ms
ı	Supply current	Write mode	-	-	10	mA
IDD	Supply current	Erase mode	-	-	12	mA

^{1.} Guaranteed by design, not tested in production.

Table 44. Flash memory endurance and data retention

Symbol	Parameter	Conditions	Value	Unit
Symbol	raiailletei	Conditions	Min ⁽¹⁾	Oilit
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years
		10 kcycle ⁽²⁾ at T _A = 55 °C	20	

^{1.} Data based on characterization results, not tested in production.

6.3.11 FSMC characteristics

Unless otherwise specified, the parameters given in *Table 45* to *Table 60* for the FSMC interface are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage conditions summarized in *Table 19* with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5VDD

Refer to *Section 6.3.15: I/O port characteristics*: for more details on the input/output characteristics.

^{2.} Cycling performed over the whole temperature range.

Asynchronous waveforms and timings

Figure 20 to *Figure 23* represent asynchronous waveforms and *Table 45* to *Table 52* provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- AddressSetupTime = 0x1
- AddressHoldTime = 0x1
- DataSetupTime = 0x1 (except for asynchronous NWAIT mode, DataSetupTime = 0x5)
- BusTurnAroundDuration = 0x0
- NOR NWAIT pulse width= 1THCLK

In all the timing tables, the $T_{\mbox{\scriptsize HCLK}}$ is the HCLK clock period.

Table 45. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	2THCLK-1	2THCLK+1	
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	0	1	
t _{w(NOE)}	FMC_NOE low time	2THCLK	2THCLK+ 1.5	
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	0.5	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	3	
t _{h(A_NOE)}	Address hold time after FMC_NOE high	0	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	2 (NA)	ns
t _{h(BL_NOE)}	FMC_BL hold time after FMC_NOE high	0	-	
t _{su(Data_NE)}	Data to FMC_NEx high setup time	THCLK + 6	-	
t _{su(Data_NOE)}	Data to FMC_NOEx high setup time	THCLK +7	-	
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	2	
t _{w(NADV)}	FMC_NADV low time	-	THCLK +1.5	

^{1.} Based on characterization, not tested in production

Table 46. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	7THCLK +0.5	7THCLK+ 1	
t _{w(NOE)}	FMC_NWE low time	6THCLK -1.5	6THCLK +2	
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	4THCLK +5	-	ns
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4THCLK-3	-	

^{1.} Based on characterization, not tested in production.

Figure 21. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

Table 47. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	3THCLK-1	3THCLK+2	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	THCLK+0.5	THCLK+1	
t _{w(NWE)}	FMC_NWE low time	THCLK-2	THCLK+1	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	THCLK-0.5	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0	
t _{h(A_NWE)}	Address hold time after FMC_NWE high	THCLK-1.5	-	ns
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	1	
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	THCLK-0.5	-	
t _{v(Data_NE)}	Data to FMC_NEx low to Data valid	-	THCLK+ 3	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	THCLK+0.5	-	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	2.5	
t _{w(NADV)}	FMC_NADV low time	-	THCLK+2	

1. Based on characterization, not tested in production.

Table 48. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	8THCLK+1	8THCLK+2	
t _{w(NWE)}	FMC_NWE low time	6THCLK-1	6THCLK+2	
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5THCLK-0.5	-	ns
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4THCLK+2	-	

^{1.} Based on characterization, not tested in production.

Table 49. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	8THCLK+2	8THCLK+2	
t _{w(NOE)}	FMC_NWE low time	6THCLK-1	6THCLK+1.5	
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	4THCLK+6	-	ns
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4THCLK-4	-	

^{1.} Based on characterization, not tested in production.

Figure 22. Asynchronous multiplexed PSRAM/NOR read timings

Table 50. Asynchronous multiplexed PSRAM/NOR read timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	3THCLK-0.5	3THCLK+1	
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	2THCLK	2THCLK+1	
t _{w(NOE)}	FMC_NOE low time	THCLK-2	THCLK+2	
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	0	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	1.5	no
t _{v(NADV_NE})	FMC_NEx low to FMC_NADV low	0	2	ns
t _{w(NADV)}	FMC_NADV low time	THCLK-2	THCLK+2	
t _{h(AD_NADV)}	FMC_AD(address) valid hold time after FMC_NADV high	0	-	
t _{h(A_NOE)}	Address hold time after FMC_NOE high	THCLK-0.5	-	
t _{h(BL_NOE)}	FMC_BL time after FMC_NOE high	0	-	

Table 50. Asynchronous multiplexed PSRAM/NOR read timings⁽¹⁾ (continued)

Symbol	Parameter	Min	Max	Unit
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	2	
t _{su(Data_NE)}	Data to FMC_NEx high setup time	THCLK	-	
t _{su(Data_NOE)}	Data to FMC_NOE high setup time	THCLK+1	-	ns
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	

^{1.} Based on characterization, not tested in production.

Figure 23. Asynchronous multiplexed PSRAM/NOR write timings

Symbol Parameter Min Max Unit FMC NE low time 4THCLK-1 4THCLK+1 $t_{w(NE)}$ FMC NEx low to FMC NWE low THCLK THCLK+0.5 t_{v(NWE NE)} 2THCLK-0.5 2THCLK+1 FMC NWE low time tw(NWE) FMC NWE high to FMC NE high hold THCLK-0.5 t_{h(NE NWE)} FMC NEx low to FMC A valid 5 t_{v(A NE)} FMC NEx low to FMC NADV low 1 2.5 t_{v(NADV_NE)} FMC NADV low time THCLK-2 THCLK+2 ns t_{w(NADV)} FMC AD(adress) valid hold time after THCLK-2 t_{h(AD NADV)} FMC NADV high) Address hold time after FMC NWE high THCLK-1 t_{h(A NWE)} FMC_BL hold time after FMC_NWE high THCLK-0.5 t_{h(BL NWE)} FMC NEx low to FMC BL valid 1 $t_{v(BL_NE)}$ FMC_NADV high to Data valid THCLK +3.5 t_{v(Data NADV)} Data hold time after FMC NWE high THCLK +0.5 t_{h(Data NWE)}

Table 51. Asynchronous multiplexed PSRAM/NOR write timings⁽¹⁾

Table 52. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	9THCLK	9THCLK+0.5	
t _{w(NWE)}	FMC_NWE low time	6THCLK	6THCLK+2	ne
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5THCLK+6	-	ns
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	5THCLK-5	-	

^{1.} Based on characterization, not tested in production.

Synchronous waveforms and timings

Figure 24 and *Figure 27* present the synchronous waveforms and *Table 53* to *Table 56* provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- BurstAccessMode = FMC_BurstAccessMode_Enable;
- MemoryType = FMC_MemoryType_CRAM;
- WriteBurst = FMC_WriteBurst_Enable;
- CLKDivision = 1;
- DataLatency = 2 for NOR Flash; DataLatency = 0 for PSRAM

In all timing tables, the THCLK is the HCLK clock period (with maximum FMC_CLK = 36 MHz).

^{1.} Based on characterization, not tested in production.

Figure 24. Synchronous multiplexed NOR/PSRAM read timings

Table 53. Synchronous multiplexed NOR/PSRAM read timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2THCLK	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	5	
t _{d(CLKH_NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	THCLK+1	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	7	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	2.5	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	3	ns
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	0	-	
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	6	
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	THCLK+1	-	
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	2	

Table 53. Synchronous multiplexed NOR/PSRAM read timings⁽¹⁾ (continued)

Symbol	Parameter	Min	Max	Unit
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
t _{su(ADV-CLKH)}	FMC_A/D[15:0] valid data before FMC_CLK high	4	-	
t _{h(CLKH-ADV)}	FMC_A/D[15:0] valid data after FMC_CLK high	6	-	ns
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	3	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	4	-	

^{1.} Based on characterization, not tested in production.

Figure 25. Synchronous multiplexed PSRAM write timings

57

Table 54. Synchronous multiplexed PSRAM write timings⁽¹⁾ (2)

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period, VDD range= 2.7 to 3.6 V	2THCLK-1	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	5.5	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	THCLK+1	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	7	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	2	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	0	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	0	-	
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	5.5	ns
t _{d(CLKH-NWEH)}	FMC_CLK high to FMC_NWE high	THCLK+1	-	
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	7.5	
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
t _{d(CLKL-DATA)}	FMC_A/D[15:0] valid data after FMC_CLK low	-	8	
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	-	6	1
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	THCLK+1	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	3	-	
t _{h(CLKH-NWAIT})	FMC_NWAIT valid after FMC_CLK high	5	-	

^{1.} Based on characterization, not tested in production.

^{2.} $C_L = 30 pF$.

Figure 26. Synchronous non-multiplexed NOR/PSRAM read timings

Table 55. Synchronous non-multiplexed NOR/PSRAM read timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2THCLK-1	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	5	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	THCLK+1	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	7	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	2.5	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	7	ns
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	THCLK	-	
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	6	
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	THCLK+1	-	
t _{su(DV-CLKH)}	FMC_D[15:0] valid data before FMC_CLK high	3.5	-	

Table 55. Synchronous non-multiplexed NOR/PSRAM read timings⁽¹⁾ (continued)

Symbol	Parameter	Min	Max	Unit
t _{h(CLKH-DV)}	FMC_D[15:0] valid data after FMC_CLK high	5	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	2	-	ns
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	4	-	

^{1.} Based on characterization, not tested in production.

Figure 27. Synchronous non-multiplexed PSRAM write timings

Symbol Parameter Min Max Unit FMC CLK period 2THCLK-1 t_{w(CLK)} FMC CLK low to FMC NEx low (x=0..2) 6 t_d(CLKL-NExL) FMC CLK high to FMC NEx high THCLK+1.5 t_{d(CLKH-NExH)} (x = 0...2)FMC CLK low to FMC NADV low 7.5 t_{d(CLKL-NADVL)} FMC CLK low to FMC NADV high 0 t_{d(CLKL-NADVH)} FMC CLK low to FMC Ax valid 6.5 t_{d(CLKL-AV)} (x=16...25)FMC CLK high to FMC Ax invalid 0 t_{d(CLKH-AIV)} ns (x=16...25)FMC CLK low to FMC NWE low 0 t_d(CLKL-NWEL) FMC CLK high to FMC NWE high THCLK+2 t_{d(CLKH-NWEH)} FMC D[15:0] valid data after FMC CLK 7.5 t_{d(CLKL-Data)} FMC CLK low to FMC NBL low 7 t_d(CLKL-NBLL) FMC CLK high to FMC NBL high THCLK+0.5 _ t_{d(CLKH-NBLH)} FMC NWAIT valid before FMC CLK high 2 t_{su(NWAIT-CLKH)} FMC NWAIT valid after FMC CLK high 4 th(CLKH-NWAIT)

Table 56. Synchronous non-multiplexed PSRAM write timings⁽¹⁾

PC Card/CompactFlash controller waveforms and timings

Figure 28 to Figure 33 present the PC Card/Compact Flash controller waveforms, and Table 57 to Table 58 provide the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

- COM.FMC SetupTime = 0x04;
- COM.FMC_WaitSetupTime = 0x07;
- COM.FMC_HoldSetupTime = 0x04;
- COM.FMC HiZSetupTime = 0x05;
- ATT.FMC_SetupTime = 0x04;
- ATT.FMC WaitSetupTime = 0x07;
- ATT.FMC HoldSetupTime = 0x04;
- ATT.FMC_HiZSetupTime = 0x05;
- IO.FMC SetupTime = 0x04;
- IO.FMC WaitSetupTime = 0x07;
- IO.FMC HoldSetupTime = 0x04;
- IO.FMC HiZSetupTime = 0x05;
- TCLRSetupTime = 0;
- TARSetupTime = 0.

In all timing tables, the THCLK is the HCLK clock period.

^{1.} Based on characterization, not tested in production.

Table 57. Switching characteristics for PC Card/CF read and write cycles in attribute/common space⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{v(NCEx-A)}	FMC_Ncex low to FMC_Ay valid	-	0	
t _{h(NCEx_AI)}	FMC_NCEx high to FMC_Ax invalid	2.5	-	
t _{d(NREG-NCEx)}	FMC_NCEx low to FMC_NREG valid	-	2	
t _{h(NCEx-NREG)}	FMC_NCEx high to FMC_NREG invalid	0	-	
t _{d(NCEx-NWE)}	FMC_NCEx low to FMC_NWE low	-	5THCLK+2	
t _{w(NWE)}	FMC_NWE low width	8THCLK	8THCLK+0.5	
t _{d(NWE_NCEx)}	FMC_NWE high to FMC_NCEx high	5THCLK-1	-	
t _{v (NWE-D)}	FMC_NWE low to FMC_D[15:0] valid	-	5	
t _{h (NWE-D)}	FMC_NWE high to FMC_D[15:0] invalid	4THCLK-1	-	ns
t _{d (D-NWE)}	FMC_D[15:0] valid before FMC_NWE high	13THCLK-3	-	
t _{d(NCEx-NOE)}	FMC_NCEx low to FMC_NOE low	-	5THCLK+2	
t _{w(NOE)}	FMC_NOE low width	8THCLK-1	8THCLK+2	
t _{d(NOE_NCEx)}	FMC_NOE high to FMC_NCEx high	5THCLK-1	-	
t _{su (D-NOE)}	FMC_D[15:0] valid data before FMC_NOE high	THCLK+2	-	
t _{h(NOE-D)}	FMC_N0E high to FMC_D[15:0] invalid	0	-	

^{1.} Based on characterization, not tested in production.

Figure 28. PC Card/CompactFlash controller waveforms for common memory read access

1. FMC_NCE4_2 remains high (inactive during 8-bit access.

Figure 29. PC Card/CompactFlash controller waveforms for common memory write access

577

Figure 30. PC Card/CompactFlash controller waveforms for attribute memory read access

1. Only data bits 0...7 are read (bits 8...15 are disregarded).

Figure 31. PC Card/CompactFlash controller waveforms for attribute memory write access

1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z).

Table 58. Switching characteristics for PC Card/CF read and write cycles in I/O space⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NIOWR)}	FMC_NIOWR low width	8THCLK-0.5	-	
t _{v(NIOWR-D)}	FMC_NIOWR low to FMC_D[15:0] valid	-	5.5	
t _{h(NIOWR-D)}	FMC_NIOWR high to FMC_D[15:0] invalid	4THCLK-0.5	-	
t _{d(NCE4_1-NIOWR)}	FMC_NCE4_1 low to FMC_NIOWR valid	-	5THCLK+1	
t _{h(NCEx-NIOWR)}	FMC_NCEx high to FMC_NIOWR invalid	4THCLK+0.5	-	
t _{d(NIORD-NCEx)}	FMC_NCEx low to FMC_NIORD valid	-	5THCLK	ns
t _{h(NCEx-NIORD)}	FMC_NCEx high to FMC_NIORD) valid	6THCLK+2	-	
t _{w(NIORD)}	FMC_NIORD low width	8THCLK-1	8THCLK+1	
t _{su(D-NIORD)}	FMC_D[15:0] valid before FMC_NIORD high	THCLK+2	-	
t _{d(NIORD-D)}	FMC_D[15:0] valid after FMC_NIORD high	0	-	

1. Based on characterization, not tested in production.

Figure 32. PC Card/CompactFlash controller waveforms for I/O space read access

NAND controller waveforms and timings

Figure 34 and Figure 35 present the NAND controller synchronous waveforms, and Table 59 and Table 60 provide the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

- COM.FMC_SetupTime = 0x01;
- COM.FMC_WaitSetupTime = 0x03;
- COM.FMC_HoldSetupTime = 0x02;
- COM.FMC_HiZSetupTime = 0x03;
- ATT.FMC SetupTime = 0x01;
- ATT.FMC_WaitSetupTime = 0x03;
- ATT.FMC_HoldSetupTime = 0x02;
- ATT.FMC HiZSetupTime = 0x03;
- Bank = FMC Bank NAND;
- MemoryDataWidth = FMC_MemoryDataWidth_16b;
- ECC = FMC_ECC_Enable;
- ECCPageSize = FMC_ECCPageSize_512Bytes;
- TCLRSetupTime = 0;
- TARSetupTime = 0.

In all timing tables, the THCLK is the HCLK clock period.

Figure 34. NAND controller read timings

6THCLK -0.5

6THCLK-1

Symbol	Parameter	Min	Max	Unit
t _{w(NOE)}	FMC_NOE low width	6THCLK	6THCLK + 2	
t _{su(D-NOE)}	FMC_D[15-0] valid data before FMC_NOE high	THCLK+5	-	
t _{h(NOE-D)}	FMC_D[15-0] valid data after FMC_NOE	0	-	ns

Table 59. Switching characteristics for NAND Flash read cycles⁽¹⁾ (2)

t_{d(ALE-NOE)}

t_{h(NOE-ALE)}

Figure 35. NAND controller write timings

FMC ALE valid before FMC NOE low

FMC_NWE high to FMC_ALE invalid

Table 60. Switching characteristics for NAND Flash write cycles⁽¹⁾

Symbol	Symbol Parameter Min		Max	Unit
t _{w(NWE)}	FMC_NWE low width	4THCLK-0.5		
t _{v(NWE-D)}	FMC_NWE low to FMC_D[15-0] valid	-	3.5	
t _{h(NWE-D)}	FMC_NWE high to FMC_D[15-0] invalid	3THCLK -1.5 -		
t _{d(D-NWE)}	FMC_D[15-0] valid before FMC_NWE high 5THCLK - 3		-	ns
t _{d(ALE_NWE)}	FMC_ALE valid before FMC_NWE low	- 4THCLK+2		
t _{h(NWE-ALE)}	FMC_NWE high to FMC_ALE invalid	2THCLK-1	-	

^{1.} Based on characterization, not tested in production.

Based on characterization, not tested in production.

CL = 30 pF

6.3.12 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling two LEDs through I/O ports), the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 61*. They are based on the EMS levels and classes defined in application note AN1709.

Level/ **Symbol Parameter Conditions** Class $V_{DD} = 3.3 \text{ V, LQFP144, T}_{A} = +25^{\circ}\text{C,}$ Voltage limits to be applied on any I/O pin to f_{HCLK} = 72 MHz 2B V_{FESD} induce a functional disturbance conforms to IEC 61000-4-2 $V_{DD} = 3.3 \text{ V, LQFP144, T}_{A} = +25^{\circ}\text{C,}$ Fast transient voltage burst limits to be f_{HCLK} = 72 MHz $\mathsf{V}_{\mathsf{EFTB}}$ applied through 100 pF on V_{DD} and V_{SS} 4A pins to induce a functional disturbance conforms to IEC 61000-4-4

Table 61. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and pre qualification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- · Corrupted program counter
- Unexpected reset

110/168

Critical Data corruption (control registers...)

DocID026900 Rev 4

Pre qualification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored	Max vs. [f _{HSE} /f _{HCLK}]	Unit
Symbol	i arameter	frequency band		8/72 MHz	Oille
		V 26V T 25°C	0.1 to 30 MHz	7	
6	Peak level		30 to 130 MHz	15	dΒμV
S _{EMI}		compliant with IEC 61967-2	130 MHz to 1GHz	31	
			SAE EMI Level	4	-

Table 62. EMI characteristics

6.3.13 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the ANSI/JEDEC standard.

Maximum **Conditions** Unit Symbol **Ratings** Class value⁽¹⁾ Electrostatic discharge $T_A = +25 \,^{\circ}C$, conforming 2 2000 $\mathsf{V}_{\mathsf{ESD}(\mathsf{HBM})}$ voltage (human body model) to ANSI/JEDEC JS-001 ٧ Electrostatic discharge $T_A = +25 \,^{\circ}C$, conforming V_{ESD(CDM)} voltage (charge device C3 250 to ANSI/ESD STM5.3.1 model)

Table 63. ESD absolute maximum ratings

Data based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 64. Electrical sensitivities

	Symbol	Parameter	Conditions	Class
Ī	LU	Static latch-up class	T _A = +105 °C conforming to JESD78A	II Level A

6.3.14 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of $-5 \,\mu\text{A}/+0 \,\mu\text{A}$ range), or other functional failure (for example reset occurrence or oscillator frequency deviation).

The test results are given in Table 65.

Table 65. I/O current injection susceptibility

		Functional s	usceptibility	
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on BOOT0	-0	NA	
I _{INJ}	Injected current on PF3, PC1, PC2, PA1, PA2, PA3, PA4, PA5, PA6, PA7, PB0, PB1, PE8, PE9, PE10, PE11, PE12, PE13, PE14, PE15, PB13, PB14, PB15, PD8, PD9, PD10, PD11, PD12, PD13, PD14 pins with induced leakage current on adjacent pins less than - 50 μ A or more than +400 μ A	-5	+5	mA
	Injected current on PF2, PF4, PC0, PC1, PC2, PC3, PA0, PA1, PA2, PA3, PA4, PA5, PA6, PA7, PC4, PC5, PB2, PB11 with induced leakage current on other pins from this group less than -50 μ A or more than +400 μ A	-5	+5	

Table 65. I/O current injection susceptibility (continued)

		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
I _{INJ}	Injected current on PB0, PB1, PE7, PE8, PE9, PE10, PE11, PE12, PE13, PE14, PE15, PB12, PB13, PB14, P15, PD8, PD9, PD10, PD11, PD12, PD13, PD14 with induced leakage current on other pins from this group less than -50 µA or more than +400 µA	-5	+5	mA
	Injected current on any other FT and FTf pins	-5	NA	
	Injected current on any other pins	-5	+5	

Note:

It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

6.3.15 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 66* are derived from tests performed under the conditions summarized in *Table 19*. All I/Os are CMOS and TTL compliant.

Table 66. I/O static characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		TC and TTa I/O	-	-	0.3 V _{DD} +0.07 ⁽¹⁾	
V _{IL}	Low level input	FT and FTf I/O	-	-	0.475 V _{DD} -0.2 ⁽¹⁾	V
V IL	voltage	BOOT0	-	-	0.3 V _{DD} -0.3 ⁽¹⁾	V
		All I/Os except BOOT0	-	-	0.3 V _{DD} ⁽²⁾	
		TC and TTa I/O	0.445 V _{DD} +0.398 ⁽¹⁾	-	-	
		FT and FTf I/O	0.5 V _{DD} +0.2 ⁽¹⁾	-	-	
V _{IH}	High level input	BOOT0	0.2 V _{DD} +0.95 ⁽¹⁾	-	-	V
- 1111	voltage	All I/Os except BOOT0	0.7 V _{DD} ⁽²⁾	-	-	
		TC and TTa I/O	-	200 (1)	-	
V_{hys}	Schmitt trigger hysteresis	FT and FTf I/O	-	100 (1)	-	mV
	11,00010010	BOOT0	-	300 (1)	-	

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		TC, FT and FTf I/O TTa I/O in digital mode $V_{SS} \le V_{IN} \le V_{DD}$	-	-	±0.1	
Input leakage current ⁽³⁾		TTa I/O in digital mode V _{DD} ≤V _{IN} ≤V _{DDA}	-	-	1	=
	Input leakage current (3)	TTa I/O in analog mode V _{SS} ≤V _{IN} ≤V _{DDA}	-	-	±0.2	μA
		FT and FTf I/O ⁽⁴⁾ V _{DD} ≤V _{IN} ≤5 V	-	-	10	
R _{PU}	Weak pull-up equivalent resistor ⁽⁵⁾	$V_{IN} = V_{SS}$	25	40	55	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽⁵⁾	$V_{IN} = V_{DD}$	25	40	55	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

Table 66. I/O static characteristics (continued)

- 1. Data based on design simulation.
- 2. Tested in production.
- Leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 65: I/O current injection susceptibility.
- 4. To sustain a voltage higher than V_{DD} +0.3 V, the internal pull-up/pull-down resistors must be disabled.
- Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order).

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 36* and *Figure 37* for standard I/Os.

Figure 36. TC and TTa I/O input characteristics - CMOS port

47/

V_{IL}/V_{IHmin} 2.0

1.3

V_{ILmax} 0.8

0.7

TTL standard requirements V_{IHmin} = 2 V

V_{ILmax} 0.8 O.7

TTL standard requirements V_{ILmax} = 0.3V_{DD}+0.398

Based on design simulations

Based on design simulations

V_{ILmax} 0.8

V_{DD} (V)

2.0

2.7

3.0

3.3

3.6

MS30256V2

Figure 37. TC and TTa I/O input characteristics - TTL port

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2:

- The sum of the currents sourced by all the I/Os on V_{DD} , plus the maximum Run consumption of the MCU sourced on V_{DD} , cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 17*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 17*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 67* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 19*. All I/Os (FT, TTa and TC unless otherwise specified) are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4	O
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} = +48 mA 2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} = +8 mA 2.7 V < V _{DD} < 3.6 V	2.4	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA	-	1.3	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = +6 mA	-	0.4	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	2 V < V _{DD} < 2.7 V	V _{DD} -0.4	-	
V _{OLFM+} ⁽⁴⁾⁽⁴⁾	Output low level voltage for an FTf I/O pin in FM+ mode	I _{IO} = +20 mA 2.7 V < V _{DD} < 3.6 V	-	0.4	

Table 67. Output voltage characteristics

4. Data based on design simulation.

The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 17* and the sum of I_{IO} (I/O ports and control pins) must not exceed ΣI_{IO(PIN)}.

^{2.} TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in *Table 17* and the sum of I_{IO} (I/O ports and control pins) must not exceed ΣI_{IO(PIN)}.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 40* and *Table 68*, respectively.

Unless otherwise specified, the parameters given are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 19*.

Table 68. I/O AC characteristics⁽¹⁾

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit	
	f _{max(IO)out}	Maximum frequency ⁽²⁾	$C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$	-	2 ⁽³⁾	MHz	
x0	t _{f(IO)out}	Output high to low level fall time	C _L = 50 pF, V _{DD} = 2 V to 3.6 V	1	125 ⁽³⁾	ns	
	t _{r(IO)out}	Output low to high level rise time	-C _L = 30 μr, ν _{DD} = 2 ν to 3.0 ν	-	125 ⁽³⁾	113	
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C _L = 50 pF, V _{DD} = 2 V to 3.6 V	-	10 ⁽³⁾	MHz	
01	t _{f(IO)out}	Output high to low level fall time	C _L = 50 pF, V _{DD} = 2 V to 3.6 V	-	25 ⁽³⁾	ns	
	t _{r(IO)out}	Output low to high level rise time	-C _L = 50 pr, ν _{DD} = 2 v to 3.6 v	-	25 ⁽³⁾	TIS	
			$C_L = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$	-	50 ⁽³⁾		
	f _{max(IO)out}	,	C _L = 50 pF, V _{DD} = 2.7 V to 3.6 V	-	30 ⁽³⁾	MHz	
			C _L = 50 pF, V _{DD} = 2 V to 2.7 V	-	20 ⁽³⁾		
			C _L = 30 pF, V _{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾		
11	t _{f(IO)out}	Output high to low level fall time	C _L = 50 pF, V _{DD} = 2.7 V to 3.6 V	-	8 ⁽³⁾		
			C _L = 50 pF, V _{DD} = 2 V to 2.7 V	-	12 ⁽³⁾	no	
			C _L = 30 pF, V _{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾	ns	
	t _{r(IO)out}	Output low to high level rise time	C _L = 50 pF, V _{DD} = 2.7 V to 3.6 V	-	8 ⁽³⁾		
			C _L = 50 pF, V _{DD} = 2 V to 2.7 V	-	12 ⁽³⁾		
	f _{max(IO)out}	Maximum frequency ⁽²⁾		-	2 ⁽⁴⁾	MHz	
FM+ configuration ⁽⁴⁾	t _{f(IO)out}	Output high to low level fall time	C _L = 50 pF, V _{DD} = 2 to 3.6 V	-	12 ⁽⁴⁾	20	
Somgaration	t _{r(IO)out}	Output low to high level rise time		-	34 ⁽⁴⁾	ns	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10 ⁽³⁾	1	ns	

The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0365 reference manual for a description of GPIO Port configuration register.

^{4.} The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the reference manual RM0365 for a description of FM+ I/O mode configuration.

^{2.} The maximum frequency is defined in Figure 40.

^{3.} Guaranteed by design, not tested in production.

Figure 40. I/O AC characteristics definition

1. See Table 68: I/O AC characteristics.

6.3.16 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 66*).

Unless otherwise specified, the parameters given in *Table 69* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 19*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage	-	-	-	0.3V _{DD} + 0.07 ⁽¹⁾	V
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage	-	0.445V _{DD} + 0.398 ⁽¹⁾	-	-	V
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	25	40	55	kΩ
V _{F(NRST)} ⁽¹⁾	NRST Input filtered pulse	-	-	-	100 ⁽¹⁾	ns
V _{NF(NRST)} ⁽¹⁾	NRST Input not filtered pulse	-	500 ⁽¹⁾	-	-	ns

Table 69. NRST pin characteristics

57

^{1.} Guaranteed by design, not tested in production.

^{2.} The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

Figure 41. Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- 2. The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in *Table 69*. Otherwise the reset is not taken into account by the device.
- 3. Place the external capacitor 0.1u F on NRST as close as possible to the chip.

6.3.17 Timer characteristics

The parameters given in *Table 70* are guaranteed by design.

Refer to Section 6.3.15: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Max	Unit
		-	1	-	t _{TIMxCLK}
t _{res(TIM)}	Timer resolution time	f _{TIMxCLK} = 72 MHz	13.9	-	ns
		f _{TIMxCLK} = 144 MHz	6.95	-	ns
f _{EXT}	Timer external clock	-	0	f _{TIMxCLK} /2	MHz
'EXI	frequency on CH1 to CH4	f _{TIMxCLK} = 72 MHz	0	36	MHz
Res _{TIM}	Timer resolution	TIMx (except TIM2)	-	16	bit
T COTIM		TIM2	i	32	Dit
	16-bit counter clock period	-	1	65536	t _{TIMxCLK}
t _{COUNTER}		f _{TIMxCLK} = 72 MHz	0.0139	910	μs
		f _{TIMxCLK} = 144 MHz	0.0069	455	μs
	Market and the second	-	-	65536 × 65536	t _{TIMxCLK}
t _{MAX_COUNT}	Maximum possible count with 32-bit counter	f _{TIMxCLK} = 72 MHz	-	59.65	s
		f _{TIMxCLK} = 144 MHz	-	29.825	s

Table 70. TIMx⁽¹⁾⁽²⁾ characteristics

- 1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM4, TIM15, TIM16 and TIM17 timers.
- 2. Guaranteed by design, not tested in production.

	(20)						
Prescaler divider	PR[2:0] bits	Min timeout (ms) RL[11:0]= 0x000	Max timeout (ms) RL[11:0]= 0xFFF				
/4	0	0.1	409.6				
/8	1	0.2	819.2				
/16	2	0.4	1638.4				
/32	3	0.8	3276.8				
/64	4	1.6	6553.6				
/128	5	3.2	13107.2				
/256	7	6.4	26214.4				

Table 71. IWDG min/max timeout period at 40 kHz (LSI) (1)

These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing
of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

	Table 72. WWDO IIIII-IIIax timeout value @72 Wi12 (FOLK)							
Prescaler	WDGTB	Min timeout value	Max timeout value					
1	0	0.05687	3.6409					
2	1	0.1137	7.2817					
4	2	0.2275	14.564					
8	3	0.4551	29.127					

Table 72. WWDG min-max timeout value @72 MHz (PCLK)⁽¹⁾

6.3.18 Communications interfaces

I²C interface characteristics

The I²C interface meets the timings requirements of the I²C-bus specification and user manual rev.03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1Mbits/s

The I²C timings requirements are guaranteed by design when the I²C peripheral is properly configured (refer to Reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.15: I/O port characteristics.

All I²C I/Os embed an analog filter, refer to the *Table 73: I2C analog filter characteristics*.

^{1.} Guaranteed by design, not tested in production.

Table 73. I2C analog filter characteristics⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{AF}	Pulse width of spikes that are suppressed by the analog filter	50	260	ns

^{1.} Guaranteed by design, not tested in production.

SPI/I²S characteristics

Unless otherwise specified, the parameters given in *Table 74* for SPI or in *Table 75* for I^2S are derived from tests performed under ambient temperature, f_{PCLKX} frequency and V_{DD} supply voltage conditions summarized in *Table 19*.

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Table 74. SPI characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур.	Max	Unit
		-	-	24		
					18	
f _{SCK}		55			24	MHz
			18			
					16.5 ⁽²⁾	
					22.5 ⁽²⁾⁾	-
Duty _(SCK)	1	Slave mode	30	50	70	%
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-	
	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+2	
t _{su(MI)}	Data input setup time	Master mode	3	-	-	
t _{su(SI)}	Data input setup time	Slave mode	3	-	-	
t _{h(MI)}	Data input hold time	Master mode	6.5	-	-	
t _{h(SI)}		Slave mode	4.5	-	-	
t _{a(SO)}	Data output access time	Slave mode	10	-	30	
t _{dis(SO)}	Data output disable time	Slave mode	8	-	7	

Table 74. SPI characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min	Тур.	Max	Unit
t		Slave mode 2.7 V <v<sub>DD<3.6 V</v<sub>	-	15	22	
t _{v(SO)}	Data output valid time	Slave mode 2 V <v<sub>DD<3.6 V</v<sub>	-	15	30	
t _{v(MO)}	<u>-</u>	Master mode	-	2	4.5	
t _{h(SO)}	Data output hold time	Slave mode	9	-	-	
t _{h(MO)}	Data output noid time	Master mode	0	-	-	

- 1. Data based on characterization results, not tested in production.
- The maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty_(SCK) = 50%.

Figure 42. SPI timing diagram - slave mode and CPHA = 0

Figure 43. SPI timing diagram - slave mode and CPHA = 1⁽¹⁾

1. Measurement points are done at $0.5V_{DD}$ and with external C_L = 30 pF.

1. Measurement points are done at $0.5V_{DD}$ and with external C_L = 30 pF.

	Table	75. I ² S characteristics	s ⁽¹⁾		
Symbol	Parameter	Conditions	Min	Max	Unit
f _{MCK}	I2S Main clock output	-	256 x 8K	256xFs ⁽²⁾	MHz
ť	ICC clock fraguency	Master data: 32 bits	-	64xFs	MHz
f _{CK}	I2S clock frequency	Slave data: 32 bits	-	64xFs	-
D _{CK}	I2S clock frequency duty cycle	Slave receiver	30	70	%
t _{v(WS)}	WS valid time	Master mode	-	20	
t _{h(WS)}	WS hold time	Master mode	2	-	
t _{su(WS)}	WS setup time	Slave mode	0	-	
t _{h(WS)}	WS hold time	Slave mode	4	-	
t _{su(SD_MR)}	Data input setup time	Master receiver	1	-	
t _{su(SD_SR)}	- Data input setup time	Slave receiver	1	-	
t _{h(SD_MR)}	Data input hold time	Master receiver	8	-	
t _{h(SD_SR)}		Slave receiver	2.5	-	ns
t _{v(SD_ST)}	- Data output valid time	Slave transmitter (after enable edge)	-	50	
t _{su(WS)} V t _{h(WS)} V t _{su(SD_MR)} D t _{su(SD_SR)} D t _{h(SD_SR)} D t _{h(SD_SR)} D t _{h(SD_SR)} D t _{v(SD_MT)} D	- Data output valid time	Master transmitter (after enable edge)	-	22	
t _{h(SD_ST)}	Data output hold time	Slave transmitter (after enable edge)	8	-	
thich MT	Data output noid time	Master transmitter	1	_	

Table 75 I²S characteristics⁽¹⁾

Note:

t_{h(SD_MT)}

Refer to the I^2S section in RM0365 Reference Manual for more details about the sampling frequency (Fs), f_{MCK} , f_{CK} , DCK values reflect only the digital peripheral behavior, source clock precision might slightly change the values DCK depends mainly on ODD bit value. Digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD)) and a max of (I2SDIV+ODD)/(2*I2SDIV+ODD) and Fs max supported for each mode/condition.

(after enable edge)

^{1.} Data based on characterization results, not tested in production.

^{2. 256}xFs maximum is 36 MHz (APB1 Maximum frequency)

Figure 45. I²S slave timing diagram (Philips protocol)⁽¹⁾

- 1. Measurement points are done at $0.5V_{DD}$ and with external C_L =30 pF.
- LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first

Figure 46. I²S master timing diagram (Philips protocol)⁽¹⁾

- Measurement points are done at $0.5V_{DD}$ and with external C_L =30 pF.
- LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first

USB characteristics

Table 76. USB startup time

Symbol	Parameter	Max	Unit
t _{STARTUP} ⁽¹⁾	USB transceiver startup time	1	μs

^{1.} Guaranteed by design, not tested in production.

Table 77. USB DC electrical characteristics

Symbol	Parameter	eter Conditions		Max. ⁽¹⁾	Unit			
Input leve	Input levels							
V _{DD}	USB operating voltage ⁽²⁾	-	3.0 ⁽³⁾	3.6	V			
V _{DI} ⁽⁴⁾	Differential input sensitivity	I(USB_DP, USB_DM)	0.2	-				
V _{CM} ⁽⁴⁾	Differential common mode range	Includes V _{DI} range	0.8	2.5	V			
V _{SE} ⁽⁴⁾	Single ended receiver threshold	-	1.3	2.0				
Output le	vels							
V _{OL}	Static output level low	R_L of 1.5 k Ω to 3.6 $V^{(5)}$	-	0.3	V			
V _{OH}	Static output level high	R_L of 15 k Ω to $V_{SS}^{(5)}$	2.8	3.6]			

- 1. All the voltages are measured from the local ground potential.
- 2. To be compliant with the USB 2.0 full-speed electrical specification, the USB_DP (D+) pin should be pulled up with a 1.5 k Ω resistor to a 3.0-to-3.6 V voltage range.
- 3. The STM32F302xD/E USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V $\rm V_{DD}$ voltage range.
- 4. Guaranteed by design, not tested in production.
- 5. R_I is the load connected on the USB drivers.

Figure 47. USB timings: definition of data signal rise and fall time

Table 78. USB: full-speed electrical characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Driver characteristics						
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	-	20	ns
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	-	20	ns

Table 78. USB: full-speed electrical characteristics ⁽¹⁾ (continued)						
Parameter	Tvp	Max				

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	-	110	%
V _{CRS}	Output signal crossover voltage	-	1.3	-	2.0	V
Output driver Impedance ⁽³⁾	Z _{DRV}	driving high and low	28	40	44	Ω

- 1. Guaranteed by design, not tested in production.
- Measured from 10% to 90% of the data signal. For more detailed information, refer to USB Specification Chapter 7 (version 2.0).
- No external termination series resistors are required on USB_DP (D+) and USB_DM (D-), the matching impedance is already included in the embedded driver.

CAN (controller area network) interface

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output alternate function characteristics (CAN TX and CAN RX).

6.3.19 **ADC** characteristics

Unless otherwise specified, the parameters given in Table 79 to Table 82 are guaranteed by design, with conditions summarized in Table 19.

Table 79. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DDA}	Analog supply voltage for ADC	-	2.0	-	3.6	V
	Current on VDDA pin (see <i>Figure 48</i>)	Single-ended mode, 5 MSPS	-	907	1033	
		Single-ended mode, 1 MSPS	-	194	285.5	
ı		Single-ended mode, 200 KSPS	-	51.5	70	
I _{DDA}		Differential mode, 5 MSPS	-	887.5	1009	μΑ
		Differential mode, 1 MSPS	-	212	285	
		Differential mode, 200 KSPS	-	51	69.5	

Table 79. ADC characteristics (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Single-ended mode, 5 MSPS	-	104	139	
		Single-ended mode, 1 MSPS	-	20.4	37	
	Current on VREF+ pin (see <i>Figure 49</i>)	Single-ended mode, 200 KSPS	-	3.3	11.3] <u>,</u>
I _{REF}		Differential mode, 5 MSPS	-	174	235	μA
		Differential mode, 1 MSPS	-	34.6	52.6	
		Differential mode, 200 KSPS	-	6	13.6	
V _{REF+}	Positive reference voltage	-	2	-	V_{DDA}	V
f _{ADC}	ADC clock frequency	-	0.14	-	72	MHz
		Resolution = 12 bits, Fast Channel	0.01	-	5.14	
f _S ⁽¹⁾	Sampling rate	Resolution = 10 bits, Fast Channel	0.012	-	6	MSPS
t _S ('')		Resolution = 8 bits, Fast Channel	0.014	-	7.2	INISES
		Resolution = 6 bits, Fast Channel	0.0175	-	9	
f _{TRIG} ⁽¹⁾	External trigger frequency	f _{ADC} = 72 MHz Resolution = 12 bits	-	-	5.14	MHz
		Resolution = 12 bits	-	-	14	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽²⁾	-	0	-	V _{REF+}	V
R _{AIN} ⁽¹⁾	External input impedance	-	-	-	100	kΩ
C _{ADC} ⁽¹⁾	Internal sample and hold capacitor	-	-	5	-	pF
t _{STAB} ⁽¹⁾	Power-up time	-	0	0	1	μs
+ (1)	Calibration time	f _{ADC} = 72 MHz		1.56	1	μs
t _{CAL} ⁽¹⁾	Calibration time	-		112		1/f _{ADC}
	Trigger conversion latency	CKMODE = 00	1.5	2	2.5	1/f _{ADC}
t _{latr} (1)	Regular and injected	CKMODE = 01	-	-	2	1/f _{ADC}
Yatr` ′	channels without conversion abort	CKMODE = 10	-	-	2.25	1/f _{ADC}
	abuit	CKMODE = 11	-	-	2.125	1/f _{ADC}
		CKMODE = 00	2.5	3	3.5	1/f _{ADC}
, (1)	Trigger conversion latency Injected channels aborting a	CKMODE = 01	-	-	3	1/f _{ADC}
t _{latrinj} ⁽¹⁾	regular conversion	CKMODE = 10	-	-	3.25	1/f _{ADC}
		CKMODE = 11	-	-	3.125	1/f _{ADC}

 $(V_{SSA} +$

V_{REF}+)/2 + 0.18

٧

Symbol Parameter Conditions Min Тур Max Unit $f_{ADC} = 72 \text{ MHz}$ 0.021 8.35 μs $t_{S}^{(1)}$ Sampling time 1.5 601.5 1/f_{ADC} ADC Voltage Regulator T_{ADCVREG} _STUP 10 μs Start-up time $f_{ADC} = 72 \text{ MHz}$ 0.19 8.52 μs Resolution = 12 bits Total conversion time $t_{\text{CONV}}^{(1)}$ 14 to 614 (t_S for sampling + 12.5 (including sampling time) Resolution = 12 bits 1/f_{ADC} successive approximation)

Table 79. ADC characteristics (continued)

CMIR

range

Common Mode Input signal

ADC differential mode

 $(V_{SSA} +$

V_{REF}+)/2

-0.18

(V_{SSA} +

V_{REF}+)/2

5

^{1.} Data guaranteed by design, not tested in Production.

V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to Section 4: Pinout and pin description for further details.

Figure 49. ADC typical current consumption on VREF+ pin

Table 80. Maximum ADC $R_{AIN}^{\ \ (1)}$

	Sampling	Sampling	Ain	R _{AIN} max (kΩ)	
Resolution	cycle @ 72 MHz	time [ns] @ 72 MHz	Fast channels ⁽²⁾	Slow channels	Other channels ⁽³⁾
	1.5	20.83	0.018	NA	NA
	2.5	34.72	0.150	NA	0.022
	4.5	62.50	0.470	0.220	0.180
12 bits	7.5	104.17	0.820	0.560	0.470
12 bits	19.5	270.83	2.70	1.80	1.50
	61.5	854.17	8.20	6.80	4.70
	181.5	2520.83	22.0	18.0	15.0
	601.5	8354.17	82.0	68.0	47.0
	1.5	20.83	0.082	NA	NA
	2.5	34.72	0.270	0.082	0.100
	4.5	62.50	0.560	0.390	0.330
10 bits	7.5	104.17	1.20	0.82	0.68
TO DIES	19.5	270.83	3.30	2.70	2.20
	61.5	854.17	10.0	8.2	6.8
	181.5	2520.83	33.0	27.0	22.0
	601.5	8354.17	100.0	82.0	68.0

Table 80. Maximum ADC $R_{AIN}^{\ \ (1)}$ (continued)

	Sampling	Sampling	AIN (COM	R_{AIN} max ($k\Omega$)	
Resolution	cycle @ 72 MHz	time [ns] @ 72 MHz	Fast channels ⁽²⁾	Slow channels	Other channels ⁽³⁾
	1.5	20.83	0.150	NA	0.039
	2.5	34.72	0.390	0.180	0.180
	4.5	62.50	0.820	0.560	0.470
8 bits	7.5	104.17	1.50	1.20	1.00
o bits	19.5	270.83	3.90	3.30	2.70
	61.5	854.17	12.00	12.00	8.20
	181.5	2520.83	39.00	33.00	27.00
	601.5	8354.17	100.00	100.00	82.00
	1.5	20.83	0.270	0.100	0.150
	2.5	34.72	0.560	0.390	0.330
	4.5	62.50	1.200	0.820	0.820
6 bits	7.5	104.17	2.20	1.80	1.50
o bits	19.5	270.83	5.60	4.70	3.90
	61.5	854.17	18.0	15.0	12.0
	181.5	2520.83	56.0	47.0	39.0
	601.5	8354.17	100.00	100.0	100.0

^{1.} Data based on characterization results, not tested in production.

^{2.} All fast channels, expect channels on PA2, PA6.

^{3.} Fast channels available on PA2, PA6.

Table 81. ADC accuracy - limited test conditions, 100-/144-pin packages (1)(2)

Symbol	Parameter	(Conditions		Min (3)	Тур	Max (3)	Unit
			Cinale anded	Fast channel 5.1 Ms	-	±3.5	±4.5	
	Total		Single ended	Slow channel 4.8 Ms	-	±4	±4.5	
ET	unadjusted error		Differential	Fast channel 5.1 Ms	-	±3	±3	
			Dillerential	Slow channel 4.8 Ms	-	±3	±3	
			Single anded	Fast channel 5.1 Ms	-	±1	±1.5	
EO	Offset error		Single ended	Slow channel 4.8 Ms	-	±1	±2.5	
EO	EO Oliset cirol		Differential	Fast channel 5.1 Ms	-	±1	±1.5	
			Dillerential	Slow channel 4.8 Ms	-	±1	±1.5	
			Single anded	Fast channel 5.1 Ms	-	±3	<u>±4</u>	
EG	Gain orror		Single ended -	Slow channel 4.8 Ms	-	±3.5	±4	LSB
EG	G Gain error		Differential	Fast channel 5.1 Ms	-	±1.5	±2.5	LOD
		Dillerential	Slow channel 4.8 Ms	-	<u>+2</u>	±2.5		
			Single ended	Fast channel 5.1 Ms	-	±1	±1.5	-
ED	Differential linearity		Sirigle ended	Slow channel 4.8 Ms	-	±1	±1.5	
	error		Differential	Fast channel 5.1 Ms	-	±1	±1	
			Dilicicida	Slow channel 4.8 Ms	-	±1	±1	
			Single ended	Fast channel 5.1 Ms	-	±1.5	<u>+2</u>	
EL	Integral		Sirigle efficed	Slow channel 4.8 Ms	-	±1.5	±3	
	linearity error		Differential	Fast channel 5.1 Ms	-	±1	±1.5	
			Dillerential	Slow channel 4.8 Ms	-	±1	±1.5	
			Single ended	Fast channel 5.1 Ms	10.7	10.8	-	
ENOB ⁽⁴⁾	Effective number of		Sirigle ended	Slow channel 4.8 Ms	10.7	10.8	-	bits
ENOB	bits		Differential	Fast channel 5.1 Ms	11.2	11.3	-	DILS
			Dillerential	Slow channel 4.8 Ms	11.1	11.3	-	
	Cianal to		Single anded	Fast channel 5.1 Ms	66	67	-	
SINAD ⁽⁴⁾	Signal-to- noise and	-	Single ended	Slow channel 4.8 Ms	66	67	1	dB
SINAD	distortion ratio		Differential	Fast channel 5.1 Ms	69	70	-	ub
	Tallo		Dillerential	Slow channel 4.8 Ms	69	70	-	

Table 81. ADC accuracy - limited test conditions, 100-/144-pin packages (1)(2) (continued)

Symbol	Parameter	C	Min (3)	Тур	Max (3)	Unit		
			Single ended	Fast channel 5.1 Ms	66	67	-	
SMRV	Signal-to-	ADC clock freq. ≤ 72 MHz Sampling freq ≤ 5 Msps V _{DDA} = V _{REF+} = 3.3 V	Sirigle efficed	Slow channel 4.8 Ms	66	67	-	
	noise ratio		Differential	Fast channel 5.1 Ms	69	70	-	
				Slow channel 4.8 Ms	69	70	-	dB
		25°C 100-pin/144-pin package	Cingle anded	Fast channel 5.1 Ms	-	-76	-76	uв
THD ⁽⁴⁾	Total harmonic		Single ended	Slow channel 4.8 Ms	-	-76	-76	
	distortion		Differential	Fast channel 5.1 Ms	-	-80	-80	
			Differential	Slow channel 4.8 Ms	-	-80	-80	

- 1. ADC DC accuracy values are measured after internal calibration.
- 2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.15 does not affect the ADC accuracy.
- 3. Data based on characterization results, not tested in production.
- 4. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.

Table 82. ADC accuracy, 100-pin/144-pin packages⁽¹⁾⁽²⁾⁽³⁾

Symbol	Parameter	Co	onditions		Min ⁽⁴⁾	Max ⁽⁴⁾	Unit
			Single	Fast channel 5.1 Ms	-	±6.5	
ET	Total		Ended	Slow channel 4.8 Ms	-	±6.5	
='	unadjusted error		Differential	Fast channel 5.1 Ms	-	±4	
			Dillerential	Slow channel 4.8 Ms	-	<u>±4</u>	
EO Offset error		Single	Fast channel 5.1 Ms	-	±3		
		Ended	Slow channel 4.8 Ms	-	±3		
	Oliset error	ADC clock freq. ≤ 72 MHz,	Differential	Fast channel 5.1 Ms	-	±2	
		Sampling freq. ≤ 5 Msps	Dillerential	Slow channel 4.8 Ms	-	<u>+2</u>	LSB
		2.0 V ≤ V _{DDA} , V _{REF+} ≤ 3.6 V 100-pin/144-pin package	Single Ended	Fast channel 5.1 Ms	-	±6	LOD
EG	Gain error			Slow channel 4.8 Ms	-	±6	
	Gain enoi		Differential	Fast channel 5.1 Ms	-	±3	
			Dillerential	Slow channel 4.8 Ms	-	±3	
			Single	Fast channel 5.1 Ms	-	±1.5	
ED	Differential		Ended	Slow channel 4.8 Ms	-	±1.5	
ED	linearity error		Differential	Fast channel 5.1 Ms	-	±1.5	
			Dilletetida	Slow channel 4.8 Ms	-	±1.5	

Table 82. ADC accuracy, 100-pin/144-pin packages⁽¹⁾⁽²⁾⁽³⁾ (continued)

Symbol	Parameter	Co	onditions		Min ⁽⁴⁾	Max ⁽⁴⁾	Unit
			Single	Fast channel 5.1 Ms	-	<u>+2</u>	
EL	Integral		Ended	Slow channel 4.8 Ms	-	±3	LSB
	linearity error		Differential	Fast channel 5.1 Ms	-	<u>+2</u>	LOD
			Dillerential	Slow channel 4.8 Ms	-	±2	
	ENOB Effective number of bits		Single	Fast channel 5.1 Ms	10.4	-	
			Ended	Slow channel 4.8 Ms	10.2	-	bits
(5)			Differential	Fast channel 5.1 Ms	10.8	-	DILS
		Dillerential	Slow channel 4.8 Ms	10.8	-		
	Signal to	stortion 2.0 V \leq V _{DDA} , V _{REF+} \leq 3.6 V	Single	Fast channel 5.1 Ms	64	-	
SINAD	noise and distortion		Ended	Slow channel 4.8 Ms	63	-	
(5)			Differential	Fast channel 5.1 Ms	67	-	
	Tallo			Slow channel 4.8 Ms	67	-	
			Single	Fast channel 5.1 Ms	64	-	
SNR ⁽⁵⁾	Signal-to-		Ended	Slow channel 4.8 Ms	64	-	dB
SINK	noise ratio		Differential	Fast channel 5.1 Ms	67	-	uБ
			Dillerential	Slow channel 4.8 Ms	67	-	
			Single	Fast channel 5.1 Ms	-	74	
THD ⁽⁵⁾	Total harmonic		Ended	Slow channel 4.8 Ms	-	-74	
	distortion		Differential	Fast channel 5.1 Ms	-	-78	
			Dilletetillal	Slow channel 4.8 Ms	•	-76	

^{1.} ADC DC accuracy values are measured after internal calibration.

- 3. Better performance may be achieved in restricted V_{DDA}, frequency and temperature ranges.
- 4. Data based on characterization results, not tested in production.
- 5. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.

ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
 Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.15 does not affect the ADC accuracy.

Table 83. ADC accuracy - limited test conditions, 64-pin packages⁽¹⁾⁽²⁾

Symbol	Parameter	(Conditions		Min (3)	Тур	Max (3)	Unit
			Single ended	Fast channel 5.1 Ms	-	±4	±4.5	
ET	Total		onigic crided	Slow channel 4.8 Ms	-	±5.5	±6	
	unadjusted error		D.W	Fast channel 5.1 Ms	-	±3.5	±4	
			Differential	Slow channel 4.8 Ms	-	±3.5	±4	
			Cinalo ondod	Fast channel 5.1 Ms	-	±2	±2	
FO Offset error		Single ended	Slow channel 4.8 Ms	-	±1.5	±2		
EO	EO Offset error		Differential	Fast channel 5.1 Ms	-	±1.5	±2	
		Differential	Slow channel 4.8 Ms	-	±1.5	±2		
			Cinalo ondod	Fast channel 5.1 Ms	-	±3	±4	
F.C.	FG Gain error		Single ended	Slow channel 4.8 Ms	-	±5	±5.5	LCD
EG Gain error		Differential	Fast channel 5.1 Ms	-	±3	±3	LSB	
		Differential	Slow channel 4.8 Ms	-	±3	±3.5		
		ADC clock freq. ≤72 MHz Sampling freq. ≤5 Msps V _{DDA} = 3.3 V	Single ended	Fast channel 5.1 Ms	-	±1	±1	
ED	Differential linearity		Single ended	Slow channel 4.8 Ms	-	±1	±1	
	error	ν _{DDA} – 3.3 ν 25°C	Differential	Fast channel 5.1 Ms	-	±1	±1	
		64-pin package	Dilicicital	Slow channel 4.8 Ms	-	±1	±1	
			Single ended	Fast channel 5.1 Ms	-	±1.5	±2	
EL	Integral			Slow channel 4.8 Ms	-	±2	±3	
	linearity error		Differential	Fast channel 5.1 Ms	-	±1.5	±1.5	
			Dillerential	Slow channel 4.8 Ms	-	±1.5	±2	
			Single anded	Fast channel 5.1 Ms	10.8	10.8	-	
ENOB	Effective number of		Single ended	Slow channel 4.8 Ms	10.8	10.8	-	bit
(4)	bits		Differential	Fast channel 5.1 Ms	11.2	11.3	-	Dit
			Dillerential	Slow channel 4.8 Ms	11.2	11.3	-	
	Cianal to		Single anded	Fast channel 5.1 Ms	66	67	-	
SINAD	Signal-to- noise and		Single ended	Slow channel 4.8 Ms	66	67	-	dB
(4)	distortion ratio		Differential	Fast channel 5.1 Ms	69	70	-	uБ
	TallU		Differential	Slow channel 4.8 Ms	69	70	-	

Table 83. ADC accuracy - limited test conditions, 64-pin packages⁽¹⁾⁽²⁾ (continued)

Symbol	Parameter	C	Min (3)	Тур	Max (3)	Unit		
SMRV			Single ended	Fast channel 5.1 Ms	66	67	-	
	Signal-to-	ADC clock freq. ≤ 72 MHz Sampling freq ≤ 5 Msps V _{DDA} = 3.3 V	Single ended	Slow channel 4.8 Ms	66	67	-	
	noise ratio		Differential	Fast channel 5.1 Ms	69	70	-	
				Slow channel 4.8 Ms	69	70	-	dB
		25°C otal 64-pin package armonic	Single ended	Fast channel 5.1 Ms	-	-80	-80	ub .
THD ⁽⁴⁾	Total		Sirigle ended	Slow channel 4.8 Ms	-	-78	-77	
I IIID.	distortion		Differential	Fast channel 5.1 Ms	-	-83	-82	
			Dillerential	Slow channel 4.8 Ms	-	-81	-80	

- 1. ADC DC accuracy values are measured after internal calibration.
- ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
 significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
 Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
 Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.15 does not affect the ADC
 accuracy.
- 3. Data based on characterization results, not tested in production.
- 4. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.

Table 84. ADC accuracy, 64-pin packages (1)(2)(3)

Symbol	Parameter	(Conditions		Min ⁽⁴⁾	Max (4)	Unit
			Cingle anded	Fast channel 5.1 Ms	-	±6.5	
ET	Total		Single ended	Slow channel 4.8 Ms	-	±6.5	
ET unadjusted error	-		Differential	Fast channel 5.1 Ms	-	±4	
			Dilleterillai	Slow channel 4.8 Ms	-	±4.5	
		Single anded	Fast channel 5.1 Ms	-	±3		
EO	Offset error		Single ended	Slow channel 4.8 Ms	-	±3	
EO	Oliset elloi	ADC clock freq. ≤ 72 MHz,	Differential	Fast channel 5.1 Ms	-	±2.5	
		Sampling freq. ≤ 5 Msps	Dilleterillai	Slow channel 4.8 Ms	-	±2.5	LSB
		2.0 V ≤ V _{DDA} ≤ 3.6 V 64-pin package	Single ended	Fast channel 5.1 Ms	-	±6	LSB
EG	Gain error			Slow channel 4.8 Ms	-	±6	
EG	Gain enoi		Differential	Fast channel 5.1 Ms	-	±3.5	
			Dilleterillai	Slow channel 4.8 Ms	-	±4	
			Single anded	Fast channel 5.1 Ms	-	±1.5	
ED	Differential		Single ended	Slow channel 4.8 Ms	-	±1.5	
	linearity error		D:#:	Fast channel 5.1 Ms	-	±1.5	
			Differential	Slow channel 4.8 Ms	-	±1.5	

Table 84. ADC accuracy, 64-pin packages⁽¹⁾⁽²⁾⁽³⁾ (continued)

Symbol	Parameter	C	Conditions		Min ⁽⁴⁾	Max (4)	Unit
			Single ended	Fast channel 5.1 Ms	-	±3	
EL	Integral linearity		Sirigle ended	Slow channel 4.8 Ms	-	±3.5	LSB
	error		Differential	Fast channel 5.1 Ms	-	±2	LOD
			Dillerential	Slow channel 4.8 Ms	-	±2.5	
	ENOB Effective number of bits		Cinalo andad	Fast channel 5.1 Ms	10.4	-	
			Single ended	Slow channel 4.8 Ms	10.4	-	bits
(5)			Differential	Fast channel 5.1 Ms	10.8	-	DIIS
			Differential -	Slow channel 4.8 Ms	10.8	-	
	Cianal to		Single ended	Fast channel 5.1 Ms	64	-	- dB
SINAD	noise and			Slow channel 4.8 Ms	63	-	
(5)	distortion		Differential -	Fast channel 5.1 Ms	67	-	
	Tallo			Slow channel 4.8 Ms	67	-	
			Single ended	Fast channel 5.1 Ms	64	-	
SNR ⁽⁵⁾	Signal-to-		Sirigle ended	Slow channel 4.8 Ms	64	-	
SINK	noise ratio		Differential	Fast channel 5.1 Ms	67	-	
			Dillerential	Slow channel 4.8 Ms	67	-	dB
			Cinalo ondod	Fast channel 5.1 Ms	-	-75	ub
	Total		Single ended	Slow channel 4.8 Ms	-	-75	
וחטייי	harmonic distortion		Differential	Fast channel 5.1 Ms	-	-79	
			Differential	Slow channel 4.8 Ms	-	-78	

^{1.} ADC DC accuracy values are measured after internal calibration.

- 3. Better performance may be achieved in restricted V_{DDA} , frequency and temperature ranges.
- 4. Data based on characterization results, not tested in production.
- 5. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.

^{2.} ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.15 does not affect the ADC accuracy.

Symbol	Parameter	Test condition	ıs	Тур	Max ⁽³⁾	Unit
ET	Total upadjusted error	otal unadjusted error		±2.5	±5	
			Slow channel	±3.5	±5	
EO	Offset error		Fast channel	±1	±2.5	
EO	Oliset error	ADC Freq ≤ 72 MHz	Slow channel	±1.5	±2.5	
EG	Cain arrar	in error	Fast channel	±2	±3	LSB
EG	Gairrenoi		Slow channel	±3	±4	LOD
ED	Differential linearity error		Fast channel	±0.7	±2	
	Differential fifteatity entor		Slow channel	±0.7	±2	
EL	Integral linearity error		Fast channel	±1	±3	
EL	Integral linearity error		Slow channel	±1.2	±3	

Table 85. ADC accuracy at 1MSPS⁽¹⁾⁽²⁾

3. Data based on characterization results, not tested in production.

Figure 50. ADC accuracy characteristics

^{1.} ADC DC accuracy values are measured after internal calibration.

ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and Σ IINJ(PIN) in Section 6.3.15: I/O port characteristics does not affect the ADC

Figure 51. Typical connection diagram using the ADC

- Refer to Table 79 for the values of RAIN.
- $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high $C_{parasitic}$ value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 12. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

6.3.20 **DAC** electrical specifications

Table 86. DAC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DDA}	Analog supply voltage	-	2.4	-	3.6	V
R _{LOAD} ⁽¹⁾	Resistive load	DAC output buffer ON	5	-	-	kΩ
R _L	Posistivo load	Dac output buffer ON: connected to V _{SSA}	5	-	-	kΩ
	Resistive load	Dac output buffer ON: connected to V _{DDA}	25	-	-	kΩ
R _O ⁽¹⁾	Output impedance	DAC output buffer OFF	-	-	15	kΩ
C _{LOAD} ⁽¹⁾	Capacitive load	DAC output buffer ON	-	-	50	pF
V _{DAC_OUT} ⁽¹⁾	Voltage on DAC_OUT output	Corresponds to 12-bit input code (0x0E0) to (0xF1C) at $V_{\rm DDA}$ = 3.6 V and (0x155) and (0xEAB) at $V_{\rm DDA}$ = 2.4 V DAC output buffer ON.	0.2	-	V _{DDA} – 0.2	٧
		DAC output buffer OFF	-	0.5	V _{DDA} - 1LSB	mV

Table 86. DAC characteristics (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{REF}	DAC DC current consumption in quiescent mode (Standby mode)	With no load, worst code (0xF1C) on the input	-	-	220	μA
. (3)	DAC DC current	With no load, middle code (0x800) on the input.	-	-	380	μA
I _{DDA} ⁽³⁾	consumption in quiescent mode (Standby mode) ⁽²⁾	With no load, worst code (0xF1C) on the input.	-	-	480	μA
DNL ⁽³⁾	Differential non linearity	Given for a 10-bit input code	-	-	±0.5	LSB
DINL	Difference between two consecutive code-1LSB)	Given for a 12-bit input code	-	-	±2	LSB
	Integral non linearity	Given for a 10-bit input code	-	-	±1	LSB
INL ⁽³⁾	(difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095)	Given for a 12-bit input code	-	-	±4	LSB
		-	-	-	±10	mV
Offset ⁽³⁾	Offset error (difference between measured value at Code (0x800) and the ideal	Given for a 10-bit input code at V _{DDA} = 3.6 V	-	-	±3	LSB
	value = V _{DDA} /2)	Given for a 12-bit input code at V _{DDA} = 3.6 V	-	-	±12	LSB
Gain error ⁽³⁾	Gain error	Given for a 12-bit input code	-	-	±0.5	%
t _{SETTLING} ⁽³⁾	Settling time (full scale: for a 12-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±1LSB	C _{LOAD} ⊴50 pF, R _{LOAD} ≥ 5 kΩ	-	3	4	μs
t _{STAB}	Power-up time	-	1			conver sion cycle
Update rate ⁽³⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	C _{LOAD} ≤50 pF, R _{LOAD} ≥ 5 kΩ	-	-	1	MS/s
t _{WAKEUP} (3)	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	C _{LOAD} ≤50 pF, R _{LOAD} ≥ 5 kΩ	-	6.5	10	μs
PSRR+ ⁽¹⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement	$C_{LOAD} = 50 \text{ pF},$ No $R_{LOAD} \ge 5 \text{ k}\Omega,$	-	-67	-40	dB
I _{skink} (1)	Output sink current	DAC buffer ON Output level higher than 0.2 V	100	-	-	μA

^{1.} Guaranteed by design, not tested in production.

- Quiescent mode refers to the state of the DAC a keeping steady value on the output, so no dynamic consumption is involved.
- 3. Data based on characterization results, not tested in production.

Figure 52. 12-bit buffered /non-buffered DAC

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

6.3.21 Comparator characteristics

Table 87. Comparator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V_{DDA}	Analog supply voltage	-	2	-	3.6 V _{DDA} V	
V _{IN}	Comparator input voltage range	-	0	-		
V_{BG}	Scaler input voltage	-	-	V _{REFINIT}	-	
V _{SC}	Scaler offset voltage	-	-	±5	±10	mV
t _{S_SC}	Scaler startup time from power down	-	-	-	0.2	ms
4	Comparator startup time	V _{DDA} ≥ 2.7 V	-	-	4	μs
^t START		V _{DDA} < 2.7 V	-	-	10	
	Propagation delay for 200 mV step with 100 mV overdrive Propagation delay for full range step with 100 mV overdrive	$V_{DDA} \ge 2.7 \text{ V}$	-	25	28	ns
		V _{DDA} < 2.7 V	-	28	30	
t _D		$V_{DDA} \ge 2.7 \text{ V}$	-	32	35	
		V _{DDA} < 2.7 V	-	35	40	
V	Comparator offset error	V _{DDA} ≥ 2.7 V	-	±5	±10	mV
V _{OFFSET}		V _{DDA} < 2.7 V	-	-	±25	1110

Table 87. Comparator characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
TV _{OFFSET}	Total offset variation	Full temperature range	-	-	3	mV
l	COMP current consumption	-	-	400	600	μΑ

^{1.} Guaranteed by design, not tested in production.

6.3.22 Operational amplifier characteristics

Table 88. Operational amplifier characteristics⁽¹⁾

Symbol	Parameter		Condition	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage		-	2.4	-	3.6	V
CMIR	Common mode input range		-	0	-	V_{DDA}	V
M	Input offset	Maximum calibration range	25°C, No Load on output.	-	-	4	mV
			All voltage/Temp.	-	-	6	
VI _{OFFSET}	voltage	After offset	25°C, No Load on output.	-	-	1.6	
		calibration	All voltage/Temp.	-	-	3	
ΔVI _{OFFSET}	Input offset voltage drift		-	-	5	-	μV/°C
I _{LOAD}	Drive current		-	-	-	500	μA
I _{DDA}	OPAMP consumption		No load, quiescent mode	-	690	1450	μΑ
TS_OPAMP_VOUT	ADC sampling time when reading the OPAMP output.		-	400	-	-	ns
CMRR	Common mode rejection ratio		-	-	90	-	dB
PSRR	Power supply rejection ratio		DC	73	117	-	dB
GBW	Bandwidth		-	-	8.2	-	MHz
SR	Slew rate		-	-	4.7	-	V/µs
R _{LOAD}	Resistive load		-	4	-	-	kΩ
C _{LOAD}	Capacitive load		-	-	-	50	pF
VOH _{SAT}	High saturation voltage ⁽²⁾		R _{load} = min, Input at V _{DDA} .	V _{DDA-100}	-	-	
VOTISAL	Thigh saturation vo	nage	R _{load} = 20K, Input at V _{DDA} .	V _{DDA-20}	-	-	mV
VOL	Low saturation voltage ⁽²⁾		Rload = min, input at 0V	-	-	100	1111
VOL _{SAT}			Rload = 20K, input at 0V.	-	-	20	
φm	Phase margin		-	-	62	-	٥
tofftrim	Offset trim time: during calibration, minimum time needed between two steps to have 1 mV accuracy		-	-	-	2	ms
t _{WAKEUP}	Wake up time from OFF state.		$\begin{split} &C_{LOAD} \leq \!\! 50 \text{ pf,} \\ &R_{LOAD} \geq 4 \text{ k}\Omega, \\ &\text{Follower} \\ &\text{configuration} \end{split}$	-	2.8	5	μs

Table 88. Operational amplifier characteristics⁽¹⁾ (continued)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
PGA gain	Non inverting gain value		-	2	-	-
			-	4	-	-
			-	8	-	-
			-	16	-	-
		Gain=2	-	5.4/5.4	-	
D	R2/R1 internal resistance values in	Gain=4	-	16.2/5.4	-	kO
R _{network}	PGA mode ⁽³⁾	Gain=8	-	37.8/5.4	-	kΩ
		Gain=16	-	40.5/2.7	-	
PGA gain error	PGA gain error	-	-1%	-	1%	-
I _{bias}	OPAMP input bias current	-	-	-	±0.2 ⁽⁴⁾	μA
	PGA bandwidth for different non inverting gain	PGA Gain = 2, Cload = 50pF, Rload = 4 KΩ	-	4	-	MHz
DOA DW		PGA Gain = 4, Cload = 50pF, Rload = 4 KΩ	-	2	-	
PGA BW		PGA Gain = 8, Cload = 50pF, Rload = 4 KΩ	-	1	-	
		PGA Gain = 16, Cload = 50pF, Rload = 4 KΩ	-	0.5	-	
en	Voltage noise density	@ 1KHz, Output loaded with 4 KΩ	-	109	-	
		@ 10KHz, Output loaded with 4 KΩ	-	43	-	<u>nV</u> √Hz

^{1.} Guaranteed by design, not tested in production.

4. Mostly TTa I/O leakage, when used in analog mode.

^{2.} The saturation voltage can be also limited by the lload (drive current).

^{3.} R2 is the internal resistance between OPAMP output and OPAMP inverting input. R1 is the internal resistance between OPAMP inverting input and ground. The PGA gain =1+R2/R1

Figure 53. OPAMP voltage noise versus frequency

6.3.23 Temperature sensor characteristics

Table 89. TS characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₂₅	Voltage at 25 °C	1.34	1.43	1.52	V
t _{START} (1)	Startup time	4	-	10	μs
T _{S_temp} ⁽¹⁾⁽²⁾	ADC sampling time when reading the temperature	2.2	-	-	μs

- 1. Guaranteed by design, not tested in production.
- 2. Shortest sampling time can be determined in the application by multiple iterations.

Table 90. Temperature sensor calibration values

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V _{DDA} = 3.3 V	0x1FFF F7B8 - 0x1FFF F7B9
TS_CAL2	TS ADC raw data acquired at temperature of 110 °C V _{DDA} = 3.3 V	0x1FFF F7C2 - 0x1FFF F7C3

6.3.24 V_{BAT} monitoring characteristics

Table 91. V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Max	Unit
R	Resistor bridge for V _{BAT}	-	50	-	ΚΩ
Q	Ratio on V _{BAT} measurement	-	2	-	-
Er ⁽¹⁾	Error on Q	-1	-	+1	%
T _{S_vbat} ⁽¹⁾⁽²⁾	ADC sampling time when reading the V _{BAT} 1mV accuracy	2.2	-	-	μs

^{1.} Guaranteed by design, not tested in production.

577

^{2.} Shortest sampling time can be determined in the application by multiple iterations.

7 Package information

7.1 Package mechanical data

To meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

7.2 LQFP144 package information

LQFP144 is a 144-pin, 20 x 20 mm low-profile quad flat package.

1. Drawing is not to scale.

Table 92. LQFP144 mechanical data

Sumb al		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
Α	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	21.800	22.000	22.200	0.8583	0.8661	0.8740	
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953	
D3	-	17.500	-	-	0.6890	-	
E	21.800	22.000	22.200	0.8583	0.8661	0.8740	
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953	
E3	-	17.500	-	-	0.6890	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
ccc	-	-	0.080	-	-	0.0031	

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 55. Recommended footprint for the LQFP144 package

- 1. Drawing is not to scale.
- 2. Dimensions are expressed in millimeters.

Device marking for LQFP144

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 56. LQFP144 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.3 UFBGA100 package information

UFBGA100 is a 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package.

Figure 57. UFBGA100 package outline

1. Drawing is not to scale.

Table 93. UFBGA100 package mechanical data

Cumbal	millimeters			inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	0.460	0.530	0.600	0.0181	0.0209	0.0236
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197
A3	-	0.130	-	-	0.0051	-
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
D	6.950	7.000	7.050	0.2736	0.2756	0.2776
D1	5.450	5.500	5.550	0.2146	0.2165	0.2185
Е	6.950	7.000	7.050	0.2736	0.2756	0.2776
E1	5.450	5.500	5.550	0.2146	0.2165	0.2185
е	-	0.500	-	-	0.0197	-
F	0.700	0.750	0.800	0.0276	0.0295	0.0315

Table 93. UFBGA100 package mechanical data (continued)

Symbol	millimeters		inches ⁽¹⁾			
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
ddd	-	-	0.100	-	-	0.0039
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 58. Recommended footprint for the UFBGA100 package

Table 94. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values		
Pitch	0.5		
Dpad	0.27 mm		
Dsm	0.35 mm typ. (depends on the soldermask registration tolerance)		
Solder paste	0.27 mm aperture diameter.		

Note: Non-solder mask defined (NSMD) pads are recommended.

Note: 4 to 6 mils solder paste screen printing process.

Device marking for UFBGA100

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 59. UFBGA100 marking example (package top view)

Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.

LQFP100 package information 7.4

LQFP100 is a 100-pin, 14 x 14 mm low-profile quad flat package.

Figure 60. LQFP100 package outline

1. Drawing is not to scale.

Table 95. LQPF100 package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378

154/168 DocID026900 Rev 4

				•		
Complete	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
E	15.800	16.000	16.200	0.6220	0.6299	0.6378
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°
ccc	-	-	0.080	-	-	0.0031

Table 95. LQPF100 package mechanical data (continued)

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 61. Recommended footprint for the LQFP100 package

- 1. Drawing is not to scale.
- 2. Dimensions are expressed in millimeters.

Device marking for LQFP100

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Product identification (1)

Revision code

VETL

Pin 1 identification

MSv35571V2

Figure 62. LQFP100 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.5 WLCSP100 package information

WLCSP100 is a 100-ball, 4.775 x 5.041 mm, 0.4 mm pitch wafer level chip scale package.

Figure 63.WLCSP100 package outline

1. Drawing is not to scale.

0.0020

inches⁽¹⁾ millimeters **Symbol** Min Max Тур Min Max Typ 0.525 0.555 0.585 0.0207 0.0219 0.0230 Α Α1 0.175 0.0069 A2 0.38 0.0150 A3⁽²⁾ 0.025 0.0010 Ø b⁽³⁾ 0.22 0.25 0.28 0.0098 0.0110 4.74 D 4.775 4.81 0.1880 0.1894 Ε 5.006 5.041 5.076 0.1985 0.1998 е 0.4 0.0157 0.1417 3.6 e1 3.6 0.1417 e2 F 0.5875 0.0231 G 0.7205 0.0284 Ν 100 3.9370 0.0039 0.1 aaa 0.0039 bbb 0.1 0.1 0.0039 CCC

Table 96. WLCSP100 package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

0.05

0.05

2. Back side coating.

ddd

eee

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 64. Recommended footprint for the WLCSP100 package

158/168 DocID026900 Rev 4

Table 97. WLCSP100 recommended PCB design rules (0.4 mm pitch)

Dimension	Recommended values
Pitch	0.4 mm
Dpad	0.225 mm
Dsm	0.290 mm
Stencil thickness	0.1 mm

Device marking for WLCSP100

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Ball A1 identifier

Product identification(1)

ESF303VEYL

Revision code

Y WW R

MSV40085V1

Figure 65. WLCSP100 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.6 LQFP64 package information

LQFP64 is a 64-pin, 10 x 10 mm low-profile quad flat package.

Figure 66. LQFP64 package outline

1. Drawing is not to scale.

Table 98. LQFP64 package mechanical data

rabio oo. Eq. 1 oq paokago moonamoar aata							
Cumahal	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
Α	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	-	12.000	-	-	0.4724	-	
D1	-	10.000	-	-	0.3937	-	
D3	-	7.500	-	-	0.2953	-	
E	-	12.000	-	-	0.4724	-	
E1	-	10.000	-	-	0.3937	-	

577

CCC

0.0031

inches⁽¹⁾ millimeters **Symbol** Min Typ Max Min Тур Max 7.500 0.2953 E3 0.500 0.0197 е 0° 7° 0° 7° θ 3.5° 3.5° L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 1.000 0.0394

0.080

Table 98. LQFP64 package mechanical data (continued)

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Dimensions are expressed in millimeters.

Device marking for LQFP64

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 68. LQFP64 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.7 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 19: General operating conditions*.

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

$$T_J \max = T_A \max + (P_D \max x \Theta_{JA})$$

Where:

- T_A max is the maximum temperature in °C,
- Θ_{IA} is the package junction-to- thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and $P_{I/O}$ max (P_D max = P_{INT} max + $P_{I/O}$ max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

$$P_{I/O}$$
 max = Σ ($V_{OL} \times I_{OL}$) + Σ (($V_{DD} - V_{OH}$) × I_{OH}),

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction- LQFP144 - 20 × 20 mm	33	
	Thermal resistance junction- UFBGA100 - 7 × 7 mm	59	
$\Theta_{\sf JA}$	Thermal resistance junction- LQFP100 - 14 × 14 mm	42	°C/W
	Thermal resistance junction- WLCSP100 - 0.4 mm pitch	44	
	Thermal resistance junction- LQFP64 - 10 × 10 mm / 0.5 mm pitch	46	

Table 99. Package thermal characteristics

7.7.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

7.7.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 8: Part numbering*.

Each temperature range suffix corresponds to a specific guaranteed temperature at maximum dissipation and to a specific maximum junction temperature.

As applications do not commonly use the STM32F302xD/E at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range is best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum temperature T_{Amax} = 82 °C (measured according to JESD51-2),

 I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL} = 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL} = 1.3 V

 P_{INTmax} = 50 mA × 3.5 V= 175 mW

 $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} + 8 \times 20 \text{ mA} \times 1.3 \text{ V} = 272 \text{ mW}$

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW:

 $P_{Dmax} = 175 + 272 = 447 \text{ mW}$

Using the values obtained in *Table 99 T_{Jmax}* is calculated as follows:

For LQFP100, 42 °C/W

$$T_{Jmax}$$
 = 82 °C + (42 °C/W × 447 mW) = 82 °C + 18.774 °C = 100.774 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105$ °C).

In this case, parts must be ordered at least with the temperature range suffix 6 (see Section 8: Part numbering).

Note:

With this given P_{Dmax} we can find the T_{Amax} allowed for a given device temperature range (order code suffix 6 or 7).

Suffix 6:
$$T_{Amax} = T_{Jmax}$$
 - $(42^{\circ}\text{C/W} \times 447 \text{ mW}) = 105\text{-}18.774 = 86.226 ^{\circ}\text{C}$
Suffix 7: $T_{Amax} = T_{Jmax}$ - $(42^{\circ}\text{C/W} \times 447 \text{ mW}) = 125\text{-}18.774 = 106.226 ^{\circ}\text{C}$

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high temperature with a low dissipation, as long as junction temperature T₁ remains within the specified range.

Assuming the following application conditions:

Maximum temperature T_{Amax} = 100 °C (measured according to JESD51-2),

 I_{DDmax} = 20 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL} = 0.4 V

 P_{INTmax} = 20 mA × 3.5 V= 70 mW

 $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$

This gives: $P_{INTmax} = 70 \text{ mW}$ and $P_{IOmax} = 64 \text{ mW}$:

 $P_{Dmax} = 70 + 64 = 134 \text{ mW}$

Thus: P_{Dmax} = 134 mW

Using the values obtained in *Table 99 T_{Jmax}* is calculated as follows:

For LQFP100, 42 °C/W

$$T_{Jmax}$$
 = 100 °C + (42 °C/W × 134 mW) = 100 °C + 5.628 °C = 105.628 °C

This is above the range of the suffix 6 version parts ($-40 < T_{.1} < 105$ °C).

In this case, parts must be ordered at least with the temperature range suffix 7 (see Section 8: Part numbering) unless we reduce the power dissipation to be able to use suffix 6 parts.

577

164/168 DocID026900 Rev 4

Refer to *Figure 69* to select the required temperature range (suffix 6 or 7) according to your temperature or power requirements.

8 Part numbering

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, contact the nearest ST sales office.

TR = tape and reel

9 Revision history

Table 101. Document revision history

Date	Revision	Changes
20-Jan-2015	1	Initial release.
09-Apr-2015	2	Added USB_DM and USB_DP as additional function to PA11 and PA12 description, respectively in <i>Table 13:</i> STM32F302xD/E pin definitions. Updated: - Figure 56: LQFP144 marking example (package top view), - Figure 59: UFBGA100 marking example (package top view), - Figure 62: LQFP100 marking example (package top view).
08-Mar-2016	3	Renamed: - FMC as FSMC, - CCM RAM as CCM SRAM. Removed: - table: I2C timings specification and Figure: I2C bus AC waveforms and measurement circuit in Section: I2C interface characteristics. Added: - Package information for WLCSP100 in Section 7: Package information.
18-Oct-2016	4	Updated: Table 2: STM32F302xD/E family device features and peripheral counts, Section 3.17: Ultra-fast comparators (COMP), Table 66: DAC characteristics, Table 61: ADC characteristics, Table 13: STM32F302xD/E pin definitions, Table 14: STM32F302xD/E alternate function mapping, Figure 41: Recommended NRST pin protection Added: Table 37: Wakeup time using USART.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

168/168 DocID026900 Rev 4