Principles of Cyber-Physical Systems

Liveness Requirements

Instructor: Lanshun Nie

Formal Verification

How to formalize requirements?

- 1. Safety requirements: Invariants, monitors
- 2. Liveness requirements: Temporal logic

Recap: Safety Requirements

- □ Nothing bad ever happens
 - Trains should not be on bridge simultaneously
 - If the east train is waiting, the west train should not be allowed on the bridge twice in succession
- Violation of a safety property is demonstrated by a (finite) execution
- ☐ Formalization:
 - Identify a property ϕ over state variables, and check if ϕ is an invariant of the system
 - Construct a monitor M and check that "monitor mode is not error" is an invariant of the composite system C | M
- □ Analysis:
 - Proof based on inductive invariants
 - Algorithms for exploring the reachable states of the system

Liveness Requirements

- Something good eventually happens
 - A waiting train is eventually allowed to enter the bridge
 - Each process eventually decides to be a leader/follower
- □ No finite execution demonstrates violation of such properties
 - Counterexample should show a cycle in which the system may get stuck without achieving the goal
- ☐ Formalization:
 - Need to consider infinite executions (also called ω -executions)
 - Need a logic to state properties of infinite executions

Temporal Logic

- ☐ Logics proposed to reason about time
 - Origins in philosophy
 - Tense logic: Prior (1920)
- ☐ Linear temporal logic (LTL) proposed for reasoning about executions of reactive systems
 - Pnueli (1977), later selected for Turing award (1996)
- ☐ Industrial adoption
 - Property Specification Language (PSL) IEEE standard
 - LTL enriched with many additional constructs for usability
 - Supported by CAD tools for simulation/analysis of Verilog/VHDL

Valuations and Base Formulas

- ☐ V: set of typed variables
 - Example: nat x, bool y
- □ Valuation: Type-consistent assignment of values to variables in V
 - $q_0: (x=6, y=0)$
 - $q_1: (x=11, y=1)$
- ☐ Base formula: Boolean-valued expression over V
 - even(x)
 - $y=0 \rightarrow even(x)$
- \Box Valuation q satisfies formula φ , written $q \models \varphi$, if $q(\varphi)$ evaluates to 1
 - $q_0 = q_0$
 - $q_0 \mid = y=0 \rightarrow even(x)$
 - q_1 does not satisfy even(x)
 - $q_1 \mid = y=0 \rightarrow even(x)$

Traces

- ☐ Base formula states a property of a single valuation
- ☐ Trace: Infinite sequence of valuations
 - $\rho: (0,0), (1,1), (2,0), (3,1), (4,0), (5,1)...$
 - ρ': (0,0), (21,1), (13,1), (43,0) ...
- ☐ In context of system specification and verification:
 - V can be set of state variables, and then a trace corresponds to a possible infinite execution of the system
 - V can be set of input and output variables, and then a trace corresponds to an observed input/output behavior of system
 - V can include all of state, input, and output variables

LTL Basics

- ☐ Base formula states a property of a single valuation
- ☐ Trace: Infinite sequence of valuations
- □ LTL formula is evaluated with respect to a trace
- □ LTL formulas are built from base formulas using
 - Logical connectives $(\&, |, \rightarrow, \sim)$
 - Temporal operators
- \square A trace $\rho = q_1, q_2, q_3, ...$ satisfies a base formula φ if $q_1 \models \varphi$

Always Operator

- \Box Always φ means φ holds at all times
- \square Trace $\rho = q_1, q_2, q_3, ...$ satisfies Always φ if for all j, $q_i \models \varphi$
- ☐ Example trace

x: 0 1 2 3 4 5 ... y: 0 1 0 1 0 1 ...

- \Box Does not satisfy Always [even(x)]
- \square Satisfies Always [y=0 \rightarrow even(x)]
- \Box State property φ is an invariant of a transition system T iff every infinite execution of T satisfies Always φ

Eventually Operator

- \Box Eventually φ means φ holds at some position (at least once)
- \square Trace $\rho = q_1, q_2, q_3, ...$ satisfies Eventually φ if for some j, $q_i \models \varphi$
- ☐ Example trace

```
x: 0 1 2 3 4 5 ...
y: 0 1 0 1 0 1 ...
```

- □ Satisfies Eventually [y = 1]
- \square Satisfies Eventually [x = 45]
- \Box Does not satisfy Eventually [x=10 & y=1]
- \Box Logical dual of Always: A trace satisfies Eventually φ if and only if it does not satisfy Always ~ ϕ

Next Operator

- \square Next φ means φ holds at "next" time
- \square Trace $\rho = q_1, q_2, q_3, ...$ satisfies Next φ if $q_2 \models \varphi$
- ☐ Example trace

x: 0 1 2 3 4 5 ... y: 0 1 0 1 0 1 ...

- ☐ Satisfies Next [y = 1]
- \Box Does not satisfy Next [x=2]

Until Operator

- $\ \ \Box \ \phi$ Until ψ means ψ holds at some position and ϕ holds at all positions till then
- Trace $\rho = q_1, q_2, q_3, ...$ satisfies $\phi \cup \psi$ if for some $j, q_j \mid = \psi$ and for all $i < j, q_i \mid = \phi$
- \square Example trace: x: 0 0 0 2 2 5 ...
- \Box Satisfies (x=0) U (x=2)
- \square Satisfies (x<5) \cup (x=5)
- \Box If a trace satisfies ϕ \cup ψ then it must also satisfy Eventually ψ

Nested Operators

- What does Next Always φ mean?
- \Box Trace $\rho = q_1, q_2, q_3, ...$ satisfies Next Always φ if for all j>=2, $q_j \models \varphi$
- \Box To formalize this, we have to define the relation $(\rho, j) \models \varphi$
 - Trace ρ satisfies formula φ at position j
 - Same as suffix trace q_j , q_{j+1} , q_{j+2} , ... starting at position j satisfies ϕ
 - Trace ρ satisfies φ is same as $(\rho, 1) \models \varphi$
- \square $(\rho, j) |= Always \varphi$ if $(\rho, k) |= \varphi$ for every position k >= j
- \square $(\rho, j) |= \text{Next } \varphi \text{ if } (\rho, j+1) |= \varphi$
- \Box $(\rho, j) |=$ Eventually φ if $(\rho, k) |= \varphi$ for some position k>= j
- \Box $(\rho, j) |= \phi \cup \psi$ if there exists position k>= j such that $(\rho, k) |= \psi$ and for all positions i such that j<=i<k, $(\rho, i) |= \phi$

Multiple Eventualities

- ☐ Example: Multi-agent system where multiple goals have to be satisfied
 - Goal1: Robot 1 has finished its mission
 - Goal2: Robot 2 has finished its mission
- ☐ Spec: (Eventually Goal1) & (Eventually Goal2)
 - Trace ρ satisfies this spec if there exist positions i and j such that $(\rho, i) = Goal1$ and $(\rho, j) = Goal2$
 - No specific order specified in which goals are achieved
- ☐ Spec: Eventually [Goal1 & (Eventually Goal2)]
 - Trace ρ satisfies this spec if there exist positions i and j such that ix=j and $(\rho, i) = Goal1$ and $(\rho, j) = Goal2$
- ☐ Spec: Eventually [Goal1 & Next (Eventually Goal2)]
 - Trace ρ satisfies this spec if there exist positions i and j such that i/j and $(\rho, i) = Goal1$ and $(\rho, j) = Goal2$

Recurrence and Persistence

- \square Repeatedly φ = Always Eventually φ
 - For every position j, (ρ,j) |= Eventually φ
 - For every j, there exists a position i>= j such that $(\rho,i) \mid = \varphi$
 - There are infinitely many positions where φ holds
- \Box Persistently φ = Eventually Always φ
 - For some position j, $(\rho,j) = Always \varphi$
 - There exists j such that for all positions i>=j, $(\rho,i) \mid = \varphi$
 - lacktriangleright Formula ϕ becomes true eventually and stays true
- \Box The two patterns are logical duals: A trace satisfies Repeatedly ϕ if and only if it does not satisfy Persistently ~ ϕ

Examples

☐ Example trace

```
x: 0 1 2 3 4 5 ...
y: 0 1 0 1 0 1 ...
```

Repeatedly (y=0)

Persistently (x >= 10)

Always [even(x) \rightarrow Next odd(x)]

Repeatedly prime(x)

Requirements-based Design

- ☐ Given:
 - Input/output interface of system C to be designed
 - Model E of the environment
 - ullet LTL-formula ϕ over input/output variables and also state variables of the environment model E
- Design problem: Fill in details of C so that every infinite execution of the composite system satisfies the LTL-formula ϕ
- → Applies to synchronous as well as asynchronous designs

Leader Election

- □ Requirements refer to output variable status of each node
- □ Liveness: Each node n eventually decides

 Eventually (status_n = leader | status_n = follower)
- Safety: For m!=n, if a node m decides to be a leader then node n cannot be a leader

Eventually (status_m = leader) \rightarrow Always (status_n!= leader)

Railroad Controller

- □ Requirements refer to mode variables of trains and input/output variables (signals)
- Safety: Both trains should not be on bridge simultaneously Always ~ (mode_w = bridge & mode_E = bridge)
- Liveness 1: West train gets on bridge repeatedly
 - Repeatedly (mode_W = bridge)
 - Not a good spec (why?), no controller can satisfy this
- ☐ Liveness 2: A waiting west train is eventually allowed to enter
 - Always [(mode_W = wait) \rightarrow Eventually (signal_W = green)]
 - Note: LTL helps clarify ambiguities in English sentences
 - Not satisfied by our controller (what is a counter-example?)
 - What if east train never leaves the bridge??

Railroad Controller

- ☐ Liveness 3: Conditioned upon east train not staying on bridge forever
 - Repeatedly (mode_E!= bridge) \rightarrow Always[(mode_W = wait) \rightarrow Eventually (signal_W = green)]
 - Do the two controllers in Chapter 3 satisfy this?
- Liveness 4: If west is waiting then eventually either it is allowed to enter or east is on bridge (this implies absence of deadlocks)
 - Always [(mode_W = wait) →
 Eventually (signal_W = green | mode_E = bridge)]
- → Writing precise requirements is challenging (but important)

LTL Recap

- □ Syntax: Formulas built from
 - Base formulas: Boolean-valued expressions over typed variables
 - Logical connectives: AND, OR, NOT, IMPLIES ...
 - Temporal Operators: Always, Eventually, Next, Until
- \Box LTL formula is evaluated w.r.t. a trace ρ (infinite seq of valuations)
- Semantics defined by rules for the satisfaction relation
- \Box A system satisfies LTL spec φ if every infinite execution satisfies φ
- Derived operators
 - Repeatedly (Always Eventually); Persistently (Eventually Always)
- Sample requirement: Every req is eventually granted Always [req=1 \rightarrow Eventually (grant=1)]