Introduction to Geographic Information Systems

Peter Galante
Biodiversity Informatics Scientist
Center for Biodiversity and Conservation
American Museum of Natural History

Outline

How do we represent real world geographic information with a computer?

- What is a Geographic Information System?
- Data models representations of geographic reality
- GPS
- Georeferencing, sampling bias
- Remote Sensing

Notable GIS software

Commercial:

- ArcGIS, including ArcMap (Esri)
- IDRISI (Clark Labs)
- ERDAS IMAGINE (ERDAS Inc.)

Open source:

- Quantum GISGRASS GIS
- GRASS GIS
- MANIS tool
- GPSvisualizer
- Biogeomancer

Free (but not open source):

DIVA GIS

What is a Geographic Information System?

- A Geographic Information System (GIS)
 - software, hardware, geographic information, spatially explicit data
- Software can be used to store, query, manage, analyze and display spatial data.
- A GIS links cartographic, statistical, and data-basing technologies.

What is a Geographic information system?

- Data (layers)
 - Spatial Images, shape data, geographic information
 - Tabular Spreadsheet data with geographic properties

Layering

Outline

How do we represent real world geographic information with a computer?

- What is a Geographic Information System?
- Data models representations of geographic reality
- Georeferencing, sampling bias
- Remote Sensing

Two methods of GIS representation

- There are two main ways a GIS can create a logical data model of the world:
 - Raster = continuous fields
 - Vector = discrete features

Two methods of GIS representation

- There are two main ways a GIS can create a logical data model of the world:
 - Raster = continuous fields
 - Vector = discrete features

Two methods of GIS representation

- There are two main ways a GIS can create a logical data model of the world:
 - Raster = continuous fields
 - Vector = discrete features

Vector

• Discrete objects

 Represents the geographic world as objects with well-defined boundaries in otherwise empty space

Vector

• Discrete objects

 Represents the geographic world as objects with well-defined boundaries in otherwise empty space

Vector

• Discrete objects

 Represents the geographic world as objects with well-defined boundaries in otherwise empty space

Vector Data

- Vector data represents features as *points*, *lines*, and *polygons*.
- It is best applied to discrete objects with defined shapes and boundaries.
- It is tied with tabular data
- Examples include:
 - o GPS points
 - Roads
 - Protected areas

Raster

- Continuous fields
 - Represents the real world as a finite number of variables, each one defined at every possible position.

• E.g. a Digital Elevation Model

Raster Data

A raster model represents the world as a surface that is divided into a regular grid of cells, each of which are assigned a value.

Raster data includes images and grids.
aerial photograph, a satellite image,
or a scanned map, are often used
for generating raster datasets.

General data issues: spatial scale

Spatial scale has two elements: resolution and extent

Resolution and extent tend to be inversely related

Vector data

Advantage

- precise representation of points, boundaries, and linear features
 - defining spatial relationship (connectivity and adjacency) between coverage features
 - network analysis (for example to find an optimal path between two nodes in a complex transport network)

Disadvantage

- boundaries of the resulting map polygons are discrete/enclosed by well-defined boundary lines. In reality the map polygons may represent continuous gradation or gradual change, as in soil maps
- Resolution is not clear how many points were used to make up a line?

Raster data

Advantage

- Represent indistinct boundaries
 - thematic information on soil types, soil moisture, vegetation, ground temperatures
- Reconnaissance satellites and aerial surveys use raster-based scanners
 - scanned images can be directly incorporated into GIS

Potential disadvantage

- The higher the grid resolution, the larger the data file is going to be
- If converting from vector to raster can lose information:

Outline

How do we represent real world geographic information with a computer?

- What is a Geographic Information System?
- Data models representations of geographic reality
- GPS
- Georeferencing, sampling bias
- Remote Sensing

GPS

Outline

How do we represent real world geographic information with a computer?

- What is a Geographic Information System?
- Data models representations of geographic reality
- GPS
- Georeferencing, sampling bias
- Remote Sensing

Species' distribution data: possible sources

- Personal collection during field surveys (e.g., using a GPS receiver or smartphone)
- Extracting data from large surveys (e.g., North American Breeding Bird Survey)
- Digitizing atlases (e.g. *The new atlas of breeding birds in Britain and Ireland: 1988-1991*)
- Collections in natural history museums
- On-line distributed databases (e.g. GBIF, HerpNET, FishNET, ORNIS)

Georeferencing

- Woodbury, NY
- Near Woodbury
- 5 miles from Woodbury
- 1 mile east of Woodbury
- 10 minutes along the path leading out of Woodbury

Outline

How do we represent real world geographic information with a computer?

- What is a Geographic Information System?
- Data models representations of geographic reality

- GPS
- Georeferencing, sampling bias
- Remote Sensing

What is remote sensing?

Source: P. Ersts, July 2004

General definition: Acquiring information about an object without physical contact.

Definition in context of Earth observation: A technology for
sampling reflected and emitted
electromagnetic (EM) radiation
of features on the Earth's land
surface, oceans, and atmosphere.

GIS projects

The majority of your grade for this course will be based on a comprehensive final project. Ideally, your project will represent some aspect of your graduate research. It should be of sufficient quality to be used in a publication, whether as just a map (or series of maps), supporting documentation, or values generated as part of an analysis.

If you do not have a project, or an interesting spatial aspect of a project, we can chat and come up with one.

