A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 1ED	Bookmark	Show all steps: ON

Problem

Let G be a group. By an *automorphism* of G we mean an isomorphism $f: G \to G$.

The symbol Aut(G) is used to designate the set of all the automorphisms of G. Prove that the set Aut(G), with the operation \circ of composition, is a group by proving that Aut(G) is a subgroup of S_G .

Step-by-step solution

Step 1 of 4

Suppose that G is a group and let Aut(G) is the set of all the automorphisms of G.

Objective is to prove that $\operatorname{Aut}(G)$ with composition as a binary operation forms a group by proving that $\operatorname{Aut}(G)$ is a subgroup of S_G . Here S_G denotes the group of all the permutations of G, that is, symmetric group on G.

One step test: If H is a nonempty subset of group G, then H will be subgroup of G if and only if for all $a, b \in H$

$$ab^{-1} \in H$$

Comment

Step 2 of 4

The identity is an automorphism, so $\operatorname{Aut}(G)$ is not empty. There is a need to show that composition of two automorphisms is an automorphism and that the inverse of an automorphism is an automorphism.

Suppose that $x, y \in Aut(G)$. Let z = x y. If $a, b \in G$ then

$$z(ab) = x \quad y(ab)$$

$$= x(y(ab))$$

$$= x(y(a)y(b))$$

$$= x(y(a))x(y(b))$$

then

$$z(ab) = x \quad y(a) \cdot x \quad y(b)$$
$$= z(a)z(b).$$

Thus permutation z is a homomorphism. Since z is a bijection (member of $\operatorname{Aut}(G)$), therefore z is an isomorphism and so $\operatorname{Aut}(G)$ is closed under composition.

Comment

Step 3 of 4

Now, for next let c = ab. Because of the permutation x, one can find a', b' and c' such that x(a') = a, x(b') = b and x(c') = c.

Since x is a homomorphism, so

$$x(a'b') = x(a') \cdot x(b')$$
$$= ab.$$

Apply x^{-1} both the sides and get

$$x^{-1}x(a'b') = x^{-1}(ab)$$

$$a'b' = x^{-1}(c)$$

$$a'b' = c',$$

that is, $x^{-1}(ab) = x^{-1}(a)x^{-1}(b)$. It shows that x^{-1} is an automorphism.

Comment

Step 4 of 4

Hence, by the one step test it conclude that $\operatorname{Aut}(G)$ is a subgroup of S_G and thus $\operatorname{Aut}(G)$ forms a group under the composition of mapping.

Comment