Fachbereich Mathematik

Prof. Dr. Ulrich Kohlenbach Dr. Benno van den Berg

Formale Grundlagen der Informatik I

Bsc Inf, BEd Inf, LaG Inf

Versehen Sie bitte jedes Blatt mit Namen und Matrikelnummer und fangen Sie für jede Aufgabe eine neue Seite an.

Nachname:	
Vorname:	
Tutor:	
Matrikelnummer: _	

Aufgabe	1	2	3	4	5	Gesamt	Note
mögl. Punktzahl	12	12	12	12	12	48+12	
err. Punktzahl							

vor der Abgabe bitte hier falten und die Lösungsblätter hineinlegen

Die Klausur besteht auf 5 Aufgaben, die alle mit 12 Punkten bewertet sind. Um die maximale Punktzahl zu erreichen, brauchen Sie insgesamt 48 Punkte. Bei der Bewertung wird auf klare Darstellung und Begründungen Wert gelegt.

Aufgabe 1 (12 Punkte)

Betrachten Sie $\Sigma = \{a, b\}$ und die reguläre Sprache $L = L(ab^*)$.

- (a) Geben Sie einen DFA \mathcal{A} an mit $L(\mathcal{A}) = L$.
- (b) Geben Sie einen NFA \mathcal{B} an, mit $L(\mathcal{B}) = L$ und minimaler Zustandszahl.
- (c) Betrachten Sie den DFA C:

Bestimmen Sie $L(\mathcal{C})$.

Aufgabe 2 (12 Punkte)

Betrachten Sie den NFA \mathcal{A}

$$\longrightarrow 0 \xrightarrow{a} 1 \xrightarrow{b} 2 \xrightarrow{a} 3$$

und sei L = L(A).

- (a) Bestimmen Sie einen regulären Ausdruck für L.
- (b) Geben Sie einen DFA \mathcal{B} an mit $L(\mathcal{B}) = L$.
- (c) Geben Sie einen minimalen DFA \mathcal{C} an mit $L(\mathcal{C}) = L$ und zeigen Sie die Minimalität.

Aufgabe 3 (12 Punkte)

Betrachten Sie die kontextfreie Grammatik $G = (\{a, b\}, \{X_0\}, P, X_0)$ mit

$$\begin{array}{ccc} P: & X_0 & \rightarrow & aXa \,|\, bXb \,|\, a \,|\, b \\ & X & \rightarrow & aXa \,|\, bXb \,|\, \varepsilon \end{array}$$

- (a) Bestimmen Sie L(G).
- (b) Konstruieren Sie eine zu G äquivalente Grammatik in Chomsky-Normalform.
- (c) Geben Sie einen Kellerautomaten (PDA) \mathcal{P} an mit $L(\mathcal{P}) = L(G)$.

Aufgabe 4 (12 Punkte)

Geben Sie an, ob die folgenden Aussagen richtig oder falsch sind und begründen Sie Ihre Antwort.

- (a) Jede kontextfreie Sprache hat ein aufzählbares Komplement.
- (b) Sind L_1 und L_2 kontextfreie Sprachen, dann ist auch $L_1 \backslash L_2$ kontextfrei.
- (c) Jede Sprache mit endlichem Komplement ist regulär.
- (d) Ist L_1 regulär und L_2 beliebig, dann ist

$$L = \{x \in \Sigma^* : \text{ es existiert ein } y \in L_2, \text{ so dass } xy \in L_1\}$$

regulär.

Aufgabe 5 (12 Punkte)

Welche der folgenden Sprachen über dem Alphabet $\Sigma = \{a, b, c\}$ sind (i) regulär, (ii) kontexfrei, aber nicht regulär, oder (iii) nicht kontextfrei? Begründen Sie Ihre Antwort!

$$L_{1} = \{x \in \Sigma^{*} : |x|_{a} > |x|_{b}\}$$

$$L_{2} = \{x \in \Sigma^{*} : |x|_{a} > |x|_{b} > |x|_{c}\}$$

$$L_{3} = \{x \in \Sigma^{*} : |x|_{a} > |x|_{b} \text{ und } |x|_{b} \leq 2008\}$$

$$L_{4} = \{x \in \Sigma^{*} : |x|_{a} > |x|_{b} \text{ und } |x|_{b} \geq 2008\}$$