

RECEIVED

JAN 3 0 2003

TECH CENTER 1600/2900

- FIG. 1
- AlaSerCysLeuAsnCysSerAlaSerIl IleProAspArgGluValLeuTyrArgGlu

 GGCCTCCTGCTTGAACTGCTCGGCGAGCATCATACCTGACAGGAAGTCCTCTACCGAGA

 CCGGAGGACGAACTTGACGAGCCGCTCGTAGTATGGACTGTCCCTTCAGGAGATGGCTCT
- PheAspGluMetGluGluCysSerGlnHisLeuProTyrIleGluGlnGlyMetMetLeu
 61 GTTCGATGAGATGGAAGAGTGCTCTCAGCACTTACCGTACATCGAGCAAGGGATGATGCT
 CAAGCTACTCTACCTTCTCACGAGAGTCGTGAATGGCATGTAGCTCGTTCCCTACTACGA
- AlaGluGlnPheLysGlnLysAlaLeuGlyLeu
 121 CGCCGAGCAGTTCAAGCAGAAGGCCCTCGGCCTCC
 GCGGCTCGTCAAGTTCGTCTTCCGGGAGCCGGAGG

- GlyCysValValIleValGlyArgValValLeuSerGlyLysProAlaIleIleProAsp CTGGCTGCGTGGTCATAGTGGGCAGGGTCGTCTTGTCCGGGAAGCCGGCAATCATACCTG GACCGACGCACCAGTATCACCCGTCCCAGCAGAACAGGCCCTTCGGCCGTTAGTATGGAC
- ArgGluValLeuTyrArgGluPheAspGluMetGluGluCysSerGlnHisLeuProTyr
 61 ACAGGAAGTCCTCTACCGAGAGTTCGATGAGATGGAAGAGTGCTCTCAGCACTTACCGT
 TGTCCCTTCAGGAGATGGCTCTCAAGCTACTCTCACCAGAGAGTCGTGAATGGCA
- IleGluGlnGlyMetMetLeuAlaGluGlnPheLysGlnLysAlaLeuGlyLeuLeuGln
 121 ACATCGAGCAAGGGATGATGCTCGCCGAGCAGTTCAAGCAGAAGGCCCTCGGCCTCCTGC
 TGTAGCTCGTTCCCTACTACGAGCGGCTCGTCAAGTTCGTCTTCCGGGAGCCGGAGGACG
- ThrAlaSerArgGlnAlaGluValIleAlaProAlaValGlnThrAsnTrpGlnLysLeu
 181 AGACCGCGTCCCGTCAGGCAGAGGTTATCGCCCCTGCTGTCCAGACCAACTGGCAAAAAC
 TCTGGCGCAGGGCAGTCCGTCTCCAATAGCGGGGACGACAGGTCTGGTTGACCGTTTTTG
- GluThrPheTrpAlaLysHisMetTrpAsnPheIleSerGlyIleGlnTyrLeuAlaGly
 TCGAGACCTTCTGGGCGAAGCATATGTGGAACTTCATCAGTGGATACAATACTTGGCGG
 AGCTCTGGAAGACCCGCTTCGTATACACCTTGAAGTAGTCACCCTATGTTATGAACCGCC
- LeuSerThrLeuProGlyAsnProAlaIleAlaSerLeuMetAlaPheThrAlaAlaVal
 GCTTGTCAACGCTGCCTGGTAACCCCGCCATTGCTTCATTGATGGCTTTTACAGCTGCTG
 CGAACAGTTGCGACGACCATTGGGGCGGTAACGAAGTAACTACCGAAAATGTCGACGAC
- ThrserProLeuThrThrserGln
 361 TCACCAGCCCACTAACCACTAGCCAAA
 AGTGGTCGGGTGATTGGTGATCGGTTT

5-1-1	5-1-1 l los los los los los los los los los l	IC JATCATACCTGACAGGGAAG
81	1	GTCCGGGAAGCCGGCAATCATACCTGACAGGGAAG
91		CAATCATACCTGACAGGGAAG
1-2	1-2 1 6GTCATAGTGGGCAGGGTCGTCTTGTCCGGGAAGCCGGCAATCATACCTGACAGGGAAG	CAATCATACCTGACAGGGAAG
5-1-1		CGTACATCGAGCAAGGGATGATGC
81		CGTACATCGAGCAAGGGATGATGC
91		CGTACATCGAGCAAGGGATGATGC
1-2	1-2 60 TCCTCTAtCGAGGTTCGATGAGATGGAAGAGTGCTCTCAGCACTTACCGTACATCGAGCAAGGGATGATGC	CGTACATCGAGCAAGGGATGATGC
5-1-1		
81		CCCGTCAGGCAGAGGTTATCGCCC
91	91 142 TCGCCGAGCAGTTCAAGCAGAGGCCCTCGGCCTCCTGCAGAGGCCGTCCCGTCAGGCAGG	CCCGTCAGGCAGAGGTTATCGCCC
1-2		
81		ATATGTGGAACTTCATCAGTGGGA
91	91 214 CTGCTGTCCAGACCAACTGGCAAAACTCGAGACCTTCTGGGCGAAGCATATGTGGAACTTCATCAGTGGGA	######################################
81		cttcattgatggcttttacagctg

324 ctgtcaccagcccactaaccactagccaaa

8

91

SerGlyLysProAlallelleProAspArgGluValLeuTyrArgGluPheAspGluMet 1 GTCCGGGAAGCCGGCAATCATACCTGACAGGGAAGTCCTCTACCGAGAGTTCGATGAGAT CAGGCCCTTCGGCCGTTAGTATGGACTGTCCCTTCAGGAGATGGCTCTCAAGCTACTCTA GluGluCysSerGlnHisLeuProTyrIleGluGlnGlyMetMetLeuAlaGluGlnPhe 61 GGAAGAGTGCTCTCAGCACTTACCGTACATCGAGCAAGGGATGATGCTCGCCGAGCAGTT CCTTCTCACGAGAGTCGTGAATGGCATGTAGCTCGTTCCCTACTACGAGCGGCTCGTCAA LysGlnLysAlaLeuGlyLeuLeuGlnThrAlaSerArgGlnAlaGluValIleAlaPro 121 CAAGCAGAAGGCCCTCGGCCTCCTGCAGACCGCGTCCCGTCAGGCAGAGGTTATCGCCCC GTTCGTCTTCCGGGAGCCGGAGGACGTCTGGCGCCAGGGCAGTCCGTCTCCAATAGCGGGG AlaValGlnThrAsnTrpGlnLysLeuGluThrPheTrpAlaLysHisMetTrpAsnPhe **ACGACAGGTCTGGTTGACCGTTTTTTGAGCTCTGGAAGACCCGCTTCGTATACACCTTGAA** 181 TGCTGTCCAGACCAACTGGCAAAĀACTCGAGACCTTCTGGGCGAĀGCATATGTGĀAACTT

IleSerGlyIleGlnTyrLeuAlaGlyLeuSerThrLeuProGlyAsnProAlaIleAla 241 CATCAGTGGGATACAATĀCTTGGCGGGČTTGTCAACGCTGCTGGTAACCCCGCCATTGC GTAGTCACCCTATGTTATGAACCGCCCGAACAGTTGCGACGGACCATTGGGGCGGTAACG

301 TTCATTGATGGCTTTTACAGCTGCTGTCACCAGCCCACTAACCACTAGCCAAA **AAGTAACTACCGAAAATGTCGACGACAGTGGTCGGGTGATTGGTGATCGGTTT** SerLeuMetAlaPheThrAlaAlaValThrSerProLeuThrThrSerGln

AspAlaHisPheLeuSerGlnThrLysGlnSerGlyGluAsnLeuProTyrLeuValAla TyrGlnAlaThrValCysAlaArgAlaGlnAlaProProProSerTrpAspGlnMetTrp

61 TACCAAGCCACCGTGTGCGCTAGGGCTCAAGCCCCTCCCCCATCGTGGGACCAGATGTGG

121 AAGTGTTTGATTCGCCTCAAGCCCACCCTCCATGGGCCAACACCCCTGCTATACAGACTG TTCACAAACTAAGCGGAGTTCGGGTGGGAGGTACCCGGTTGTGGGGACGATATGTCTGAC LysCysLeuIleArgLeuLysProThrLeuHisGlyProThrProLeuLeuTyrArgLeu

GlyAlaValGlnAsnGluIleThrLeuThrHisProValThrLysTyrIleMetThrCys

181 GGCGCTGTTCAGAATGAAATCACCCTGACGCACCCAGTCACCAĀATĀCATCATGACATĠC CCGCGACAAGTCTTACTTAGTGGGACTGCGTGGGTCAGTGGTTTATGTAGTACTGTACG

MetSerAlaAspLeuGluValValThrSerThrTrpValLeuValGlyGlyValLeuAla ATGTCGGCCGACCTGGAGGTCGTCACGAGCACCTGGGTGCTCGTTGGCGGCGCGTCCTGGCT TACAGCCGGCTGGACCTCCAGCAGTGCTCGTGGACCCACGAGCAACCGCCGCGGAGCGA 241,

GCTTTGGCCGCGTATTGCCTGTCAACAGGCTGCGTGGTCATAGTGGGCAGGGTCGTCTTG CGAAACCGGCGCATAACGGACAGTTGTCCGACGCACCAGTATCACCCGTCCCAGCAGAAC AlaLeuAlaAlaTyrCysLeuSerThrGlyCysValValIleValGlyArgValValLeu

TCCGGGAAGCCGCCAATCATACCTGACAGGGAAGTCCTCTACCGAG **AGGCCCTTCGGCCGTTAGTATGGACTGTCCCTTCAGGAGATGGCTC**

- TyrGlnAlaThrValCysAlaArgAlaGlnAlaProProProSerTrpAspGlnMetTrp
 61 TACCAAGCCACCGTGTGCGCTAGGGCTCAAGCCCCTCCCCATCGTGGGACCAGATGTGG
 ATGGTTCGGTGGCACACGCGATCCCGAGTTCGGGGAGGGGGTAGCACCCTGGTCTACACC
- LysCysLeuIleArgLeuLysProThrLeuHisGlyProThrProLeuLeuTyrArgLeu
 121 AAGTGTTTGATTCGCCTCAAGCCCACCCTCCATGGGCCAACACCCCTGCTATACAGACTG
 TTCACAAACTAAGCGGAGTTCGGGTGGGAGGTACCCGGTTGTGGGGACGATATGTCTGAC
- GlyAlaValGlnAsnGluIleThrLeuThrHisProValThrLysTyrIleMetThrCys GGCGCTGTTCAGAATGAAATCACCCTGACGCACCCAGTCACCAAATACATCATGACATGC CCGCGACAAGTCTTACTTTAGTGGGACTGCGTGGGTCAGTGGTTTATGTAGTACTGTACG
- MetSerAlaAspLeuGluValValThrSerThrTrpValLeuValGlyGlyValLeuAla 241 ATGTCGGCCGACCTGGAGGTCGTCACGAGCACCTGGGTGCTCGTTGGCGGCGTCCTGGCT TACAGCCGGCTGGACCTCCAGCAGTGCTCGTGGACCCACGAGCAACCGCCGCAGGACCGA
- AlaLeuAlaAlaTyrCysLeuSerThrGlyCysValValIleValGlyArgValValLeu
 301 GCTTTGGCCGCGTATTGCCTGTCAACAGGCTGCTGTCATAGTGGGCAGGGTCGTCTTG
 CGAAACCGGCGCATAACGGACAGTTGTCCGACGCACCAGTATCACCCGTCCCAGCAGAAC
- SerGlyLysProAlaIleIleProAspArgGluValLeuTyrArgGluPheAspGluMet TCCCGGAAGCCGGCAATCATACCTGACAGGGAAGTCCTCTACCGAGAGTTCGATGAGATG AGGCCCTTCGGCCGTTAGTATGGACTGTCCCTTCAGGAGATGGCTCTCAAGCTACTCTAC
- GluGluCysSerGlnHisLeuProTyrIleGluGlnGlyMetMetLeuAlaGluGlnPhe 421 GAAGAGTGCTCTCAGCACTTACCGTACATCGAGCAAGGGATGATGCTCGCCGAGCAGTTC CTTCTCACGAGAGTCGTGAATGGCATGTAGCTCGTTCCCTACTACGAGCGGCTCGTCAAG
- LysGlnLysAlaLeuGlyLeuLeuGlnThrAlaSerArgGlnAlaGluValIleAlaPro
 481 AAGCAGAAGGCCCTCGGCCTCCTGCAGACCGCGTCCCGTCAGGCAGAGGTTATCGCCCCT
 TTCGTCTTCCGGGAGCCCGGAGGACGTCTGCCAATAGCGGGGA
- AlaValGlnThrAsnTrpGlnLysLeuGluThrPheTrpAlaLysHisMetTrpAsnPhe
 GCTGTCCAGACCAACTGGCAAAAACTCGAGACCTTCTGGGCGAAGCATATGTGGAACTTC
 CGACAGGTCTGGTTGACCGTTTTTGAGCTCTGGAAGACCCGCTTCGTATACACCTTGAAG
- IleSerGlyIleGlnTyrLeuAlaGlyLeuSerThrLeuProGlyAsnProAlaIleAla
 ATCAGTGGGATACAATACTTGGCGGGCTTGTCAACGCTGCCTGGTAACCCCGCCATTGCT
 TAGTCACCCTATGTTATGAACCGCCCGAACAGTTGCGACGACCATTGGGGCGGTAACGA
- SerleuMetAlaPhethrAlaAlaValthrSerProLeuThrThrSerGln
 661 TCATTGATGGCTTTTACAGCTGCTGTCACCAGCCCACTAACCACTAGCCAAA
 AGTAACTACCGAAAATGTCGACGACAGTGGTCGGGTGATTGGTGATCGGTTT

	Overlap with 81
	PheThrAlaAlaValThrSerProLeuThrThrSerGlnThrLeuLeuPheAsnIleLeu
1	CTTTTACAGCTGCTGTCACCAGCCCACTAACCACTAGCCAAACCCTCCTCTTCAACATAT .
	GAAAATGTCGACGACAGTGGTCGGGTGATTGGTGATCGGTTTGGGAGGAGAAGTTGTATA

- GlyGlyTrpValAlaAlaGlnLeuAlaAlaProGlyAlaAlaThrAlaPheValGlyAla
 61 TGGGGGGGTGGCTGCCCAGCTCGCCGCCCCCGGTGCCGCTACTGCCTTTGTGGGCG
 ACCCCCCACCACCGACGGTCGAGCGGGGGCCACGGCGATGACGGAAACACCCGC
- GlyLeuAlaGlyAlaAlaIleGlySerValGlyLeuGlyLysValLeuIleAspIleLeu
 121 CTGGCTTAGCTGGCGCCGCCATCGGCAGTGTTGGACTGGGGAAGGTCCTCATAGACATCC
 GACCGAATCGACCGCGGGGTAGCCGTCACAACCTGACCCCTTCCAGGAGTATCTGTAGG
- ValProSerThrGluAspLeuValAsnLeuLeuProAlaIleLeuSerProGlyAlaLeu
 241 AGGTCCCTCCACGGAGGACCTGGTCAATCTACTGCCCGCCATCCTCTCGCCCGGAGCCC
 TCCAGGGGAGGTGCCTCCTGGACCAGTTAGATGACGGCCGGTAGGAGAGCGGGCCTCGGG
- ValValGlyValValCysAlaAlaIleLeuArgArgHisValGlyProGlyGluGlyAla
 301 TCGTAGTCGGCGTGGTCTGTGCAGCAATACTGCGCCGGCACGTTGGCCCGGGCGAGGGGG
 AGCATCAGCCGCACCAGACACGTCGTTATGACGCGGCCGTGCAACCGGGCCCGCTCCCCC

FIG. 8A

TCCATTGAGACAATCACGCTCCCCAGGATGCTGTCTCCCGCACTCAACGTCGGGGCAGG AGGTAACTCTGTTAGTGCGAGGGGGTCCTACGACAGAGGGCGTGAGTTGCAGCCCCGTCC SerIleGluThrIleThrLeuProGlnAspAlaValSerArgThrGlnArgArgGlyArg

61 ACTGGCAGGGGAAGCCAGGCATCTACAGATTTGTGGCACCGGGGGAGCGCCCCTCCGGC ${\tt ThrGlyArgGlyLysProGlyIleTyrArgPheValAlaProGlyGluArgProSerGly}$

MetPheAspSerSerValLeuCysGluCysTyrAspAlaGlyCysAlaTrpTyrGluLeu ATGTTCGACTCGTCCTCTGTGAGTGCTATGACGCAGGCTGTGCTTGGTATGAGCTC TACAAGCTGAGCAGGAGACACTCACGATACTGCGTCCGACACGAACCATACTCGAG 121

ACGCCCCCCCGAGACTACAGTTAGGCTACGAGCGTACATGAACACCCCCGGGGCTTCCCGTG TGCGGGCGCCTCTGATGTCAATCCGATGCTCGCATGTACTTGTGGGGCCCCCGAAGGGCAC ThrProAlaGluThrThrValArgLeuArgAlaTyrMetAsnThrProGlyLeuProVal 181

FIG. 8B

CysGlnAspHisLeuGluPheTrpGluGlyValPheThrGlyLeuThrHisIleAspAla 241 TGCCAGGACCATCTTGAATTTTGGGAGGGCGTCTTTACAGGCCTCACTCA
--

301 CACTITCTATCCCAGACAAAGCAGAGTGGGGAGAACCTTCCTTACCTGGTAGCGTACCAA HisPheLeuSerGlnThrLysGlnSerGlyGluAsnLeuProTyrLeuValAlaTyrGln

AlaThrValCysAlaArgAlaGInAlaProProProSerTrpAspGlnMetTrpLysCys CGGTGGCACACGCGATCCCGAGTTCGGGGAGGGGGTAGCACCCTGGTCTACACCTTCACA 361 GCCACCGTGTGCGCTAGGGCTCAAGCCCCTCCCCCATCGTGGGACCAGATGTGGAAGTGT ---Overlap with 36------

421 TIGATICGCCICAÂGCCCACCCICCAIGGGCCAACACCCCTGCIATACAGACIGGGCGCI LeulleArgLeuLysProThrLeuHisGlyProThrProLeuLeuTyrArgLeuGlyAla aactaagcggagttcgggtgggaggtacccggttgtggggacgatatgtctgacccgcga

FIG. 9A

- SerileGluThrIleThrLeuProGlnAspAlaValSerArgThrGlnArgArgGlyArg
 TCCATTGAGACAATCACGCTCCCCCAGGATGCTGTCTCCCGCACTCAACGTCGGGGCAGG
 AGGTAACTCTGTTAGTGCGAGGGGGTCCTACGACAGAGGGCCGTGAGTTGCAGCCCCGTCC
- ThrGlyArgGlyLysProGlyIleTyrArgPheValAlaProGlyGluArgProSerGly
 61 ACTGGCAGGGGAAGCCAGGCATCTACAGATTTGTGGCACCGGGGGAGCGCCCCTCCGGC
 TGACCGTCCCCTTCGGTCCGTAGATGTCTAAACACCGTGGCCCCCTCGCGGGGAGGCCG
- MetPheAspSerSerValLeuCysGluCysTyrAspAlaGlyCysAlaTrpTyrGluLeu 121 ATGTTCGACTCGTCCTCTGTGAGTGCTATGACGCAGGCTGTGCTTTGGTATGAGCTC TACAAGCTGAGCAGGAGACACTCACGATACTGCGTCCGACACGAACCATACTCGAG
- ThrProAlaGluThrThrValArgLeuArgAlaTyrMetAsnThrProGlyLeuProVal ACGCCCGCCGAGACTACAGTTAGGCTACGAGCGTACATGAACACCCCGGGGCTTCCCGTG TGCGGGCGGCTCTGATGTCAATCCGATGCTCGCATGTACTTGTGGGGCCCCGAAGGGCAC

- AlaThrValCysAlaArgAlaGlnAlaProProProSerTrpAspGlnMetTrpLysCys 361 GCCACCGTGTGCGCTAGGGCTCAAGCCCCTCCCCCATCGTGGGACCAGATGTGGAAGTGT CGGTGGCACACGCGATCCCGAGTTCGGGGAGGGGGTAGCACCCTGGTCTACACCTTCACA
- LeulleArgLeuLysProThrLeuHisGlyProThrProLeuLeuTryArgLeuGlyAla TTGATTCGCCTCAAGCCCACCCTCCATGGGCCAACACCCCTGCTATACAGACTGGGCGCT AACTAAGCGGAGTTCGGGTGGGAGGTACCCGGTTGTGGGGACGATATGTCTGACCCGCGA
- AlaAspLeuGluValValThrSerThrTrpValLeuValGlyGlyValLeuAlaAlaLeu 541 GCCGACCTGGAGGTCGTCACGAGCACCTGGGTGCTCGTTGGCGGCGCCGCAGGACCGACGAAAC CGGCTGGACCTCCAGCAGTGCTCGTGGACCCACGAGCAACCGCCGCAGGACCGAAAC
- AlaAlaTyrCysLeuSerThrGlyCysValValIleValGlyArgValValLeuSerGly 601 GCCGCGTATTGCCTGTCAACAGGCTGCGTGGTCATAGTGGGCAGGGTCGTCTTGTCCGGG CGGCGCATAACGGACAGTTGTCCGACGCACCAGTATCACCCGTCCCAGCAGAACAGGCCC
- LysProAlaIleIleProAspArgGluValLeuTyrArgGluPheAspGluMetGluGlu 661 AAGCCGGCAATCATACCTGACAGGGAAGTCCTCTACCGAGAGTTCGATGAGATGGAAGAG TTCGGCCGTTAGTATGGACTGTCCCTTCAGGAGATGGCTCTCAAGCTACCTCTCTC
- CysSerGlnHisLeuProTyrIleGluGlnGlyMetMetLeuAlaGluGlnPheLysGln
 TGCTCTCAGCACTTACCGTACATCGAGCAAGGGATGATGCTCGCCGAGCAGTTCAAGCAG
 ACGAGAGTCGTGAATGGCATGTAGCTCGTTCCCTACTACGAGCGGCTCGTCAAGTTCGTC
- LysAlaLeuGlyLeuLeuGlnThrAlaSerArgGlnAlaGluValIleAlaProAlaVal AAGGCCCTCGGCCTCCTGCAGACCGCGTCCCGTCAGGCAGAGGTTATCGCCCCTGCTGTC TTCCGGGAGCCGGAGGACGTCTGGCGCAGGCAGTCCGTCTCCAATAGCGGGGACGACAG

FIG. 9B

- GlnThrAsnTrpGlnLysLeuGluThrPheTrpAlaLysHisMetTrpAsnPheIleSer 841 CAGACCAACTGGCAAAAACTCGAGACCTTCTGGGCGAAGCATATGTGGAACTTCATCAGT GTCTGGTTGACCGTTTTTGAGCTCTGGAAGACCCGCTTCGTATACACCTTGAAGTAGTCA
- GlylleGlnTyrLeuAlaGlyLeuSerThrLeuProGlyAsnProAlaIleAlaSerLeu 901 GGGATACAATACTTGGCGGGCTTGTCAACGCTGCCTGGTAACCCCGCCATTGCTTCATTG CCCTATGTTATGAACCGCCCGAACAGTTGCGACGGACCATTGGGGCCGGTAACGAAGTAAC
- MetAlaPheThrAlaAlaValThrSerProLeuThrThrSerGlnThrLeuLeuPheAsn ATGGCTTTTACAGCTGCTGTCACCAGCCCACTAACCACTAGCCAAACCCTCCTCTTCAAC TACCGAAAATGTCGACGACAGTGGTCGGGTGATTGGTGATCGGTTTGGGAGGACAAGTTG
- IleLeuGlyGlyTrpValAlaAlaGlnLeuAlaAlaProGlyAlaAlaThrAlaPheVal 1021 ATATTGGGGGGGTGGCTGCCCAGCTCGCCGCCCCCGGTGCCGCTACTGCCTTTGTG TATAACCCCCCCACCCACCGACGGGTCGAGCGGGGGGCCACGGCGATGACGGAAACAC
- GlyAlaGlyLeuAlaGlyAlaAlaIleGlySerValGlyLeuGlyLysValLeuIleAsp GGCGCTGGCTTAGCTGGCGCCGCCATCGGCAGTGTTGGACTGGGGAAGGTCCTCATAGAC CCGCGACCGAATCGACCGCGGCGGTAGCCGTCACAACCTGACCCCTTCCAGGAGTATCTG
- IleLeuAlaGlyTyrGlyAlaGlyValAlaGlyAlaLeuValAlaPheLysIleMetSer ATCCTTGCAGGGTATGGCGCGGGCGTGGCGGGAGCTCTTGTGGCATTCAAGATCATGAGC TAGGAACGTCCCATACCGCGCCCGCACCGCCCTCGAGAACACCGTAAGTTCTAGTACTCG
- GlyGluValProSerThrGluAspLeuValAsnLeuLeuProAlaIleLeuSerProGly GGTGAGGTCCCCTCCACGGAGGACCTGGTCAATCTACTGCCCGCCATCCTCTCGCCCGGA CCACTCCAGGGGAGGTGCCTCCTGGACCAGTTAGATGACGGGCGGTAGGAGAGCGGGCCT
- AlaLeuValValGlyValValCysAlaAlaIleLeuArgArgHisValGlyProGlyGlu GCCCTCGTAGTCGGCGTGGTCTGTGCAGCAATACTGCGCCGGCACGTTGGCCCGGGCGAG CGGGAGCATCAGCCGCACCAGACACGTCGTTATGACGCGGCCGTGCAACCGGGCCCGCTC

LeuAlaAlaLysLeuValAlaLeuGlyIleAsnAlaValAlaTyrTyrArgGlyLeuAsp 1 CTCGCCGCAAAGCTGGTCGCATTGGGCATCAATGCCGTGGCCTACTACTACCGCGGTCTTGAC GAGCGGCGTTTCGACCAGCGTAACCCGTAGTTACGGCACCGGATGATGGCGCCCAGAACTG

61 GTGTCCGTCATCCCGACCAGCGGCGAPGTTGTCGTCGTGGCAACCGAFGCCCTCATGACC CACAGGCAGTAGGGCTGGTCGCCGCTACAACAGCAGCACCGTTGGCTACGGGAGTACTGG ValSerValIleProThrSerGlyAspValValValValAlaThrAspAlaLeuMetThr

CCGATATIGGCCCCCTGAGCTGAGCCACTATCTGATGTTATGCACACAGTGGGTCTGTCAG 121 GGCTATACCGGCGACTTCGACTCGGTGATAGACTACAATACGTGTGTCACCCAGACAGTC GlyTyrThrGlyAspPheAspSerValIleAspTyrAsnThrCysValThrGlnThrVal

----Overlap with CTAAAGTCGGAACTGGATGGAAGTGGTAACTCTGTTAGTGCGAGGGGGGTCCTACGACAG AspPheSerLeuAspProThrPheThrIleGluThrIleThrLeuProGlnAspAlaVal 181GATTTCAGCCTTGACCCTACCTTCACCATTGAGACAATCACGCTCCCCCAGGATGCTGT

clone 35----SerArgInArgArgGlyArgThr 241TCCGGCACTCAACGTCGGGGCAGGACTG

AGGGCGTGAGTTGCAGCCCCGTCCTGAC

1	Overlap with 32MetAsnArgLeulleAlaPheAlaSerArgGlyAsnHisValSerProThrHisTyrValGATGAACCGGCTGATAGCCTTCGCCTCCCGGGGGAACCATGTTTCCCCCACGCACTACGTCTACTTGGCCGACTATCGGAAGCGGAGGGCCCCCTTGGTACAAAGGGGGGTGCGTGATGCA
61	ProGluSerAspAlaAlaAlaArgValThrAlaIleLeuSerSerLeuThrValThrGlr GCCGGAGAGCGATGCAGCTGCCCGCGTCACTGCCATACTCAGCAGCCTCACTGTAACCCA CGGCCTCTCGCTACGTCGACGGGCGCAGTGACGGTATGAGTCGTCGGAGTGACATTGGGT
121	LeuLeuArgArgLeuHisGlnTrpIleSerSerGluCysThrThrProCysSerGlySerGCTCCTGAGGCGACTGCACCAGTGGATAAGCTCGGAGTGTACCACTCCATGCTCCGGTTCCGAGGACTCCGCTGACGTGGTCACCTATTCGAGCCTCACATGGTGAGGTACGAGGCCAAG
181	TrpLeuArgAspIleTrpAspTrpIleCysGluValLeuSerAspPheLysThrTrpLeuCTGGCTAAGGGACATCTGGGACTGGATATGCGAGGTGTTGAGCGACTTTAAGACCTGGCTGACCGATTCCGCTGTAGACCCTGACCTATACGCTCCACAACTCGCTGAAATTCTGGACCGA
241	LysAlaLysLeuMetProGlnLeuProGlyIleProPheValSerCysGlnArgGlyTyr AAAAGCTAAGCTCATGCCACAGCTGCCTGGGATCCCCTTTGTGTCCTGCCAGCGCGGGTA TTTTCGATTCGA
301	LysGlyValTrpArgVal TAAGGGGGTCTGGCGAGTG

AlaTyrMetSerLysAlaHisGlyIleAspProAsnIleArgThrGlyValArgThrIle CCGAATGTACAGGTTCCGAGTACCCTAGCTAGGATTGTAGTCCTGGCCCCACTCTTGTTA GGCTTACATGTCCAAGGCTCATGGGATCGATCCTAACATCAGGACCGGGGTGAGAACAAT

ThrThrGlySerProlleThrTyrSerThrTyrGlyLysPheLeuAlaAspGlyGlyCys **ATGGTGACCGTCGGGGTAGTGCATGAGGTGGATGCCGTTCAAGGAACGGCTGCCGCCCAC** TACCACTGGCAGCCCCATCACGTACTCCACCTACGGCAAGTTCCTTGCCGACGGCGGTG 61

SerGlyGlyAlaTyrAspIleIleCysAspGluCysHisSerThrAspAlaThrSer

SAGCCCCCCCCGCGAATACTGTATTAAACACTGCTCACGGTGAGGTGCCTACGGTGTAG CTCGGGGGGGCGTTATGACATAATTTGTGACGAGTGCCACTCCACGGATGCCACATC 121

IleLeuGlyIleGlyThrValLeuAspGlnAlaGluThrAlaGlyAlaArqLeuValVal CATCTTGGGČATCGGČACTGTCCTTGAČCAAGCAGAGACTGCGGGGGGGGAGĀCTGGTTGT THAGAACCCGTAGCCGTGACAGGAACTGGTTCGTCTCTGACGCCCCCCGCTCTGACCACA 181

LeuAlaThrAlaThrProProGlySerValThrValProHisProAsnIleGluGluVal

GCTCGCCACCGCCACCCTCCGGGCTCCGTCACTGTGCCCCATCCCAACATCGAGGAGGT CGAGCGGTGGCGGGGGGCCCGAGGCAGTGACACGGGGTAGGGTTGTAGCTCCTCCA 241

AlaLeuSerThrThrGlyGluIleProPheTyrGlyLysAlaIleProLeuGluValIle <u>rgctictigticcaccacciggagagaticccttttttacggcaaggctatcccccctcgaagtaat</u> **ACGAGACAGGIGGIGGCCICICIAGGGAAAAAIGCCGTICCGAIAGGGGGGAGCIICAITA** 301

LysGlyGlyArqHisLeuIlePheCysHisSerLysLysLysCysAspGluLeuAlaAla STICCCCCCCCCCTCTGTAGAGTAGAAGACAGTAAGTTTCTTCTTCACGCTGCTTGAGCGGCG CAĀGGGĞGĞAGĀCATCTCTTCTĞTCATTCAAĞĞAĞAĞAĞTĞCĞAĞGAACTCGCCĞC 361

LysLeuValAlaLeuGlyIleAsnAlaValAlaTyrTyrArgGlyLeuAspValSerVal --Overlap with 37b--

AAAGCTGGTCGCATTGGGCATCAATGCCGTGGCCTACTACCGCGGGTCTTGACGTGTCCGT TITCGACCAGCGTAACCCGTAGTTACGGCACCGGATGATGGCGCCCAGAACTGCACAGGCA 421

CATCCGACCAG IleProThr 481

STAGGGCTGGTC

ı	CysSerLeuThrValThrGlnLeuLeuArgArgLeuHisGlnTrpIleSerSerGluCy: ACTGCAGCCTCACTGTAACCCAGCTCCTGAGGCGACTGCACCAGTGGATAAGCTCGGAGTTGACGTCGGAGTGACACCTATTCGAGCCTCA
	ThrThrProCysSerGlySerTrpLeuArgAspIleTrpAspTrpIleCysGluValLeu
61	GTACCACTCCATGCTCCGGTTCCTGGCTAAGGGACATCTGGGACTGGATATGCGAGGTGT CATGGTGAGGTACGAGGCCAAGGACCGATTCCCTGTAGACCCTGACCTATACGCTCCACA.
	Overlap with 33b
121	TGAGCGACTTTAAGACCTGGCTAAAAGCTAAGCTCATGCCACAGCTGCCTGGGATCCCCT ACTCGCTGAAATTCTGGACCGATTTTCGATTCGA
	ValSerCysGlnArgGlyTyrLysGlyValTrpArgGlyAspGlyIleMetHisThrArg
181	TTGTGTCCTGCCAGCGCGGTÅTAÅGGGGGTCTGGCGÅGGGGACGGCATCATGCACACTC AACACAGGACGGTCGCGCCCATATTCCCCCAGACCGCTCCCCTGCCGTAGTACGTGTGAG
241	CyshisCysGlyAlaGluIleThrGlyHisValLysAsnGlyThrMetArgIleValGlyGCTGCCACTGTGGAGCTGAGATCACTGGACATGTCAAAAACGGGACGATGAGGATCGTCGCGACGGTGACACTCCTAGCAGCCTGTACAGTTTTTGCCCTGCTACTCCTAGCAGC
301	ProArgThrCysArgAsnMetTrpSerGlyThrPheProIleAsnAlaTyrThrThrGlyGTCCTAGGACCTGCAGGAACATGTGGAGTGGGACCTTCCCCATTAATGCCTACACCACGGCAGGATCCTGGACGTCCCTGGAAGGGGTAATTACGGATGTGGTGCC
361	ProCysThrProLeuProAlaProAsnTyrThrPheAlaLeuTrpArgValSerAlaGluGCCCCTGTACCCCCCTTCCTGCGCCGAACTACACGTTCGCGCTATGGAGGGTGTCTGCAGCGGGGACATGGGGGGGAAGGACGTCCCACAGACGTC
421	GluTyrValGluIleArgGlnValGlyAspPheHisTyrValThrGlyMetThrThrAspAGGAATATGTGGAGATAAGGCAGGTGGGGGACTTCCACTACGTGACGGGTATGACTACTG TCCTTATACACCTCTATTCCGTCCACCCCCTGAAGGTGATGCACTGCCCATACTGATGAC
481	AsnLeuLysCysProCysGlnValProSerProGluPhePheThrGlu ACAATCTCAAATGCCCGTGCCAGGTCCCATCGCCCGAATTTTTCACAGAAT TGTTAGAGTTTACGGGCACGGTCCAGGGTAGCGGGCTTAAAAAGTGTCTTA

FIG. 14A

- AlaTyrMetSerLysAlaHisGlyIleAspProAsnIleArgThrGlyValArgThrIle 1 TGCTTACATGTCCAAGGCTCATGGGATCGATCCTAACATCAGGACCGGGGTGAGAACAAT ACGAATGTACAGGTTCCGAGTACCCTAGCTAGGATTGTAGTCCTGGCCCCACTCTTGTTA
- ThrThrGlySerProIleThrTyrSerThrTyrGlyLysPheLeuAlaAspGlyGlyCys
 61 TACCACTGGCAGCCCCATCACGTACTCCACCTACGGCAAGTTCCTTGCCGACGGCGGTG
 ATGGTGACCGTCGGGGTAGTGCATGAGGTGGATGCCGTTCAAGGAACGGCTGCCGCCCAC
- SerGlyGlyAlaTyrAspIleIleIleCysAspGluCysHisSerThrAspAlaThrSer
 121 CTCGGGGGGCCTTATGACATAATAATTTGTGACGAGTGCCACTCCACGGATGCCACATC
 GAGCCCCCCGCGAATACTGTATTATTAAACACTGCTCACGGTGAGGTGCCTACGGTGTAG
- LeuAlaThrAlaThrProProGlySerValThrValProHisProAsnIleGluGluVal GCTCGCCACCGCCACCCTCCGGGCTCCGTCACTGTGCCCCATCCCAACATCGAGGAGGT CGAGCGGTGGCGGTGGGGAGGCCCGAGGCAGTGACACGGGGTAGGGTTGTAGCTCCTCCA
- AlaLeuSerThrThrGlyGluIleProPheTyrGlyLysAlaIleProLeuGluValIle TGCTCTGTCCACCACCGGAGAGATCCCTTTTTACGGCAAGGCTATCCCCCTCGAAGTAAT ACGAGACAGGTGGTGGCCTCTCTAGGGAAAAATGCCGTTCCGATAGGGGGAGCTTCATTA
- LysLeuValAlaLeuGlyIleAsnAlaValAlaTyrTyrArgGlyLeuAspValSerVal 421 AAAGCTGGTCGCATTGGGCATCAATGCCGTGGCCTACTACCGCGGTCTTGACGTGTCCGT TTTCGACCAGCGTAACCCGTAGTTACGGCACCGGATGATGGCGCCAGAACTGCACAGGCA
- IleProThrSerGlyAspValValValValAlaThrAspAlaLeuMetThrGlyTyrThr CATCCCGACCAGCGGCGATGTTGTCGTCGTGGCAACCGATGCCCTCATGACCGGCTATAC GTAGGGCTGGTCGCCGCTACAACAGCAGCACCGTTGGCTACGGGAGTACTGGCCGATATG
- GlyAspPheAspSerVallleAspTyrAsnThrCysValThrGlnThrValAspPheSer CGGCGACTTCGACTCGGTGATAGACTACAATACGTGTGTCACCCAGACAGTCGATTTCAG GCCGCTGAAGCTGAGCCACTATCTGATGTTATGCACACAGTGGGTCTGTCAGCTAAAGTC
- LeuAspProThrPheThrIleGluThrIleThrLeuProGlnAspAlaValSerArgThr
 601 CCTTGACCCTACCTTCACCATTGAGACAATCACGCTCCCCAGGATGCTGTCTCCCGCAC
 GGAACTGGGATGGAAGTGGTAACTCTGTTAGTGCGAGGGGGTCCTACGACAGAGGGCGTG
- GlnArgArgGlyArgThrGlyArgGlyLysProGlyIleTyrArgPheValAlaProGly
 TCAACGTCGGGGCAGGACTGGCAGGGGAAGCCAGGCATCTACAGATTTGTGGCACCGGG
 AGTTGCAGCCCCCTCCTGACCGTCCCCCTTCGGTCCGTAGATGTCTAAACACCGTGGCCC
- GluArgProSerGlyMetPheAspSerSerValLeuCysGluCysTyrAspAlaGlyCys
 721 GGAGCGCCCTCCGGCATGTTCGACTCGTCCTCTGTGAGTGCTATGACGCAGGCTG
 CCTCGCGGGGAGGCCGTACAAGCTGAGCAGGCAGGAGACACTCACGATACTGCGTCCGAC
- AlaTrpTyrGluLeuThrProAlaGluThrThrValArgLeuArgAlaTyrMetAsnThr TGCTTGGTATGAGCTCACGCCCGCCGAGACTACAGTTAGGCTACGAGCGTACATGAACAC ACGAACCATACTCGAGTGCGGGCGCTCTGATGTCAATCCGATGCTCGCATGTACTTGTG
- ProGlyLeuProValCysGlnAspHisLeuGluPheTrpGluGlyValPheThrGlyLeu 841 CCCGGGGCTTCCCGTGTGCCAGGACCATCTTGAATTTTGGGAGGGCGTCTTTACAGGCCT GGGCCCCGAAGGGCACACGGTCCTGGTAGAACCTTAAAACCCTCCCGCAGAAATGTCCGGA

FIG. 14B

- LeuValAlaTyrGlnAlaThrValCysAlaArgAlaGlnAlaProProProSerTrpAsp 961 CCTGGTAGCGTACCAAGCCACCGTGTGCGCTAGGGCTCAAGCCCCTCCCCCATCGTGGGA GGACCATCGCATGGTTCGGTGGCACACGCGATCCCGAGTTCGGGGAGGGGGTAGCACCCT
- GlnMetTrpLysCysLeuIleArgLeuLysProThrLeuHisGlyProThrProLeuLeu 1021 CCAGATGTGGAAGTGTTTGATTCGCCTCAAGCCCACCCTCCATGGGCCAACACCCCTGCT GGTCTACACCTTCACAAACTAAGCGGAGTTCGGGTGGGAGGTACCCGGTTGTGGGGACGA
- TyrArgLeuGlyAlaValGlnAsnGluIleThrLeuThrHisProValThrLysTyrIle 1081 ATACAGACTGGGCGCTGTTCAGAATGAAATCACCCTGACGCACCCAGTCACCAAATACAT TATGTCTGACCCGCGACAAGTCTTACTTTAGTGGGACTGCGTGGGTCAGTGGTTTATGTA
- MetThrCysMetSerAlaAspLeuGluValValThrSerThrTrpValLeuValGlyGly
 1141 CATGACATGCATGTCGGCCGACCTGGAGGTCGTCACGAGCACCTGGGTGCTCGTTGGCGG
 GTACTGTACGTACAGCCGGCTGGACCTCCAGCAGTGCTCGTGGACCCACGAGCAACCGCC
- ValleuAlaAlaLeuAlaAlaTyrCysLeuSerThrGlyCysValValIleValGlyArg 1201 CGTCCTGGCTGCTTTGGCCGCGTATTGCCTGTCAACAGGCTGCGTGGTCATAGTGGGCAG GCAGGACCGACGAAACCGGCGCATAACGGACAGTTGTCCGACGCACCAGTATCACCCGTC
- ValValLeuSerGlyLysProAlaIleIleProAspArgGluValLeuTyrArgGluPhe 1261 GGTCGTCTTGTCCGGGAAGCCGGCAATCATACCTGACAGGGAAGTCCTCTACCGAGAGTT CCAGCAGAACAGGCCCTTCGGCCGTTAGTATGGACTGTCCCTTCAGGAGATGGCTCTCAA
- AspGluMetGluGluCysSerGlnHisLeuProTyrIleGluGlnGlyMetMetLeuAla 1321 CGATGAGATGGAAGAGTGCTCTCAGCACTTACCGTACATCGAGCAAGGGATGATGCTCGC GCTACTCTACCTTCTCACGAGAGTCGTGAATGGCATGTAGCTCGTTCCCTACTACGAGCG
- GluGlnPheLysGlnLysAlaLeuGlyLeuLeuGlnThrAlaSerArgGlnAlaGluVal CGAGCAGTTCAAGCAGAAGGCCCTCGGCCTCCTGCAGACCGCGTCCCGTCAGGCAGAGGT GCTCGTCAAGTTCGTCTTCCGGGAGCCGGAGGACGTCTGGCGCAGGGCAGTCCGTCTCCA
- IleAlaProAlaValGInThrAsnTrpGInLysLeuGluThrPheTrpAlaLysHisMet
 TATCGCCCCTGCTGTCCAGACCAACTGGCAAAAACTCGAGACCTTCTGGGCGAAGCATAT
 ATAGCGGGGACGACAGGTCTGGTTGACCGTTTTTGAGCTCTGGAAGACCCGCTTCGTATA
- TrpAsnPheIleSerGlyIleGlnTyrLeuAlaGlyLeuSerThrLeuProGlyAsnPro GTGGAACTTCATCAGTGGGATACAATACTTGGCGGGCTTGTCAACGCTGCCTGGTAACCC CACCTTGAAGTAGTCACCCTATGTTATGAACCGCCCGAACAGTTGCGACGACCATTGGG
- AlaIleAlaSerLeuMetAlaPheThrAlaAlaValThrSerProLeuThrThrSerGln 1561 CGCCATTGCTTCATTGATGGCTTTTACAGCTGCTGTCACCAGCCCACTAACCACTAGCCA GCGGTAACGAAGTAACTACCGAAAATGTCGACGACAGTGGTCGGGTGATTGGTGATCGGT
- ThrLeuLeuPheAsnIleLeuGlyGlyTrpValAlaAlaGlnLeuAlaAlaProGlyAla 1621 AACCCTCCTCTTCAACATATTGGGGGGGGTGGCTGCCCAGCTCGCCGCCCCCGGTGC TTGGGAGGAGAAGTTGTATAACCCCCCCACCGACGGGTCGAGCGGCGGGGGCCACG
- AlaThrAlaPheValGlyAlaGlyLeuAlaGlyAlaAlaIleGlySerValGlyLeuGly CGCTACTGCCTTTGTGGGCGCTGGCTTAGCTGGCGCCGCCATCGGCAGTGTTGGACTGGG GCGATGACGGAAACACCCGCGACCGAATCGACCGCGGCGGTAGCCGTCACAACCTGACCC

FIG. 14C

- PheLysIleMetSerGlyGluValProSerThrGluAspLeuValAsnLeuLeuProAla 1801 ATTCAAGATCATGAGCGGTGAGGTCCCCTCCACGGAGGACCTGGTCAATCTACTGCCCGC TAAGTTCTAGTACTCGCCACTCCAGGGGAGGTGCCTCCTGGACCAGTTAGATGACGGGCG
- IleLeuSerProGlyAlaLeuValValGlyValValCysAlaAlaIleLeuArgArgHis CATCCTCTCGCCCGGAGCCCTCGTAGTCGGCGTGGTCTGTGCAGCAATACTGCGCCGGCA GTAGGAGAGCGGGCCTCGGGAGCATCAGCCGCACCAGACACGTCGTTATGACGCGGCCGT
- GlyAsnHisValSerProThrHisTyrValProGluSerAspAlaAlaAlaArgValThr 1981 GGGGAACCATGTTTCCCCCACGCACTACGTGCCGGAGAGCGATGCAGCTGCCCGCGTCAC CCCCTTGGTACAAAGGGGGTGCGTGATGCACGGCCTCTCGCTACGTCGACGGGCGCAGTG
- AlalleLeuSerSerLeuThrValThrGlnLeuLeuArgArgLeuHisGlnTrplleSer TGCCATACTCAGCAGCCTCACTGTAACCCAGCTCCTGAGGCGACTGCACCAGTGGATAAG ACGGTATGAGTCGTCGGAGTGACATTGGGTCGAGGACTCCGCTGACGTGGTCACCTATTC
- SerGluCysThrThrProCysSerGlySerTrpLeuArgAspIleTrpAspTrpIleCys
 2101 CTCGGAGTGTACCACTCCATGCTCCGGTTCCTGGCTAAGGGACATCTGGGACTGGATATG *
 GAGCCTCACATGGTGAGGTACGAGGCCAAGGACCGATTCCCTGTAGACCCTGACCTATAC
- GluValLeuSerAspPheLysThrTrpLeuLysAlaLysLeuMetProGlnLeuProGly CGAGGTGTTGAGCGACTTTAAGACCTGGCTAAAAGCTAAGCTCATGCCACAGCTGCCTGG GCTCCACAACTCGCTGAAATTCTGGACCGATTTTCGATTCGAGTACGGTGTCGACGGACC
- IleProPheValSerCysGlnArgGlyTyrLysGlyValTrpArgValAspGlyIleMet 2221 GATCCCTTTGTGTCCTGCCAGCGCGGGTATAAGGGGGTCTGGCGAGTGGACGGCATCAT CTAGGGGAAACACAGGACGGTCGCGCCCATATTCCCCCAGACCGCTCACCTGCCGTAGTA
- HISTHRATGCYSHISCYSGIYAlaGluIleThrGIYHISVALLYSASnGIYThrMetArg
 2281 GCACACTCGCTGCCACTGTGGAGCTGAGATCACTGGACATGTCAAAAACGGGACGATGAG
 CGTGTGAGCGACGGTGACACCTCGACTCTAGTGACCTGTACAGTTTTTTGCCCTGCTACTC
- IleValGlyProArgThrCysArgAsnMetTrpSerGlyThrPheProIleAsnAlaTyr GATCGTCGGTCCTAGGACCTGCAGGAACATGTGGAGTGGGACCTTCCCCATTAATGCCTA CTAGCAGCCAGGATCCTGGACGTCCTTGTACACCTCACCCTGGAAGGGGTAATTACGGAT
- ThrThrGlyProCysThrProLeuProAlaProAsnTyrThrPheAlaLeuTrpArgVal
 2401 CACCACGGGCCCTTGTACCCCCCTTCCTGCGCCGAACTACACGTTCGCGCTATGGAGGGT
 GTGGTGCCCGGGGACATGGGGGGAAGGACGCGGCTTGATGTGCAAGCGCGATACCTCCCA
- SerAlaGluGluTyrValGluIleArgGlnValGlyAspPheHisTyrValThrGlyMet 2461 GTCTGCAGAGGAATATGTGGAGATAAGGCAGGTGGGGGACTTCCACTACGTGACGGGTAT CAGACGTCTCCTTATACACCTCTATTCCGTCCACCCCCTGAAGGTGATGCACTGCCCATA
- ThrThrAspAsnLeuLysCysProCysGlnValProSerProGluPhePheThrGlu 2521 GACTACTGACAATCTCAAATGCCCGTGCCAGGTCCCATCGCCCGAATTTTTCACAGAAT CTGATGACTGTTAGAGTTTACGGGCACGGTCCAGGGTAGCGGGCTTAAAAAGTGTCTTA

- AlaValAspPheIleProValGluAsnLeuGluThrThrMetArgSerProValPheThr 1 GGCGGTGGACTTTATCCCTGTGGAGAACCTAGAGACAACCATGAGGTCCCCGGTGTTCAC CCGCCACCTGAAATAGGGACACCTCTTGGATCTCTGTTGGTACTCCAGGGGCCACAAGTG
- AspAsnSerSerProProValValProGlnSerPheGlnValAlaHisLeuHisAlaPro 61 GGATAACTCCTCTCCACCAGTAGTGCCCCAGAGCTTCCAGGTGGCTCACCTCCATGCTCC CCTATTGAGGAGAGGTGGTCATCACGGGGTCTCGAAGGTCCACCGAGTGGAGGTACGAGG
- ThrGlySerGlyLysSerThrLysValProAlaAlaTyrAlaAlaGlnGlyTyrLysVal
 121 CACAGGCAGCGCAAAAGCACCAAGGTCCCGGCTGCATATGCAGCTCAGGGCTATAAGGT
 GTGTCCGTCGCCGTTTTCGTGGTTCCAGGGCCGACGTATACGTCGAGTCCCGATATTCCA
- LeuValLeuAsnProSerValAlaAlaThrLeuGlyPheGlyAlaTyrMetSerLysAla 181 GCTAGTACTCAACCCCTCTGTTGCTGCAACACTGGGCTTTGGTGCTTACATGTCCAAGGC CGATCATGAGTTGGGGAGACAACGACGTTGTGACCCGAAACCACGAATGTACAGGTTCCG
- ThrTyrSerThrTyrGlyLysPheLeuAlaAspGlyGlyCysSerGlyGlyAlaTyrAsp
 301 CACGTACTCCACCTACGGCAAGTTCCTTGCCGACGGCGGGTGCTCGGGGGGGCGCTTATGA
 GTGCATGAGGTGGATGCCGTTCAAGGAACGGCTGCCGCCCACGAGCCCCCCGCGAATACT

- ProglySerValThrValProHisProAsnIleGluGluValAlaLeuSerThrThrGly
 TCCGGGCTCCGTCACTGTGCCCCATCCCAACATCGAGGAGGTTGCTCTGTCCACCACCGG
 AGGCCCGAGGCAGTGACACGGGGTAGGGTTGTAGCTCCTCCAACGAGACAGGTGGTGGCC
- GluIleProPheTyrGlyLysAlaIleProLeuGluValIleLysGlyGlyArgHisLeu 541 AGAGATCCCTTTTTACGGCAAGGCTATCCCCCTCGAAGTAATCAAGGGGGGGAGACATCT TCTCTAGGGAAAAATGCCGTTCCGATAGGGGGAGCTTCATTAGTTCCCCCCCTCTGTAGA
- IlePheCysHisSerLysLysCysAspGluLeuAlaAlaLysLeuValAlaLeuGly 601 CATCTTCTGTCATTCAAAGAAGAAGTGCGACGAACTCGCCGCAAAGCTGGTCGCATTGGG GTAGAAGACAGTAAGTTTCTTCTCACGCTGCTTGAGCGGCGTTTCGACCAGCGTAACCC
- IleAsnAlaValAlaTyrTyrArgGlyLeuAspValSerValIleProThrSerGlyAsp
 661 CATCAATGCCGTGGCCTACTACCGCGGTCTTGACGTGTCCGTCATCCCGACCAGCGGCGA
 GTAGTTACGGCACCGGATGATGGCGCCAGAACTGCACAGGCAGTAGGGCTGGTCGCCGCT
- ValValValAlaThrAspAlaLeuMetThrGlyTyrThrGlyAspPheAspSerVal
 TGTTGTCGTCGTGGCAACCGATGCCCTCATGACCGGCTATACCGGCGACTTCGACTCGGT
 ACAACAGCAGCACCGTTGGCTACGGGAGTACTGGCCGATATGGCCGCTGAAGCTGAGCCA
- IleAspCysAsnThrCys 781 GATAGACTGCAATACGTGTG CTATCTGACGTTATGCACAC

- ProCysThrCysGlySerSerAspLeuTyrLeuValThrArgHisAlaAspValIlePro CTCCCTGCACTTGCGGCTCCTCGGACCTTTACCTGGTCACGAGGCACGCCGATGTCATTC GAGGGACGTGAACGCCGAGGAGCCTGGAAATGGACCAGTGCTCCGTGCGGCTACAGTAAG
- ValArgArgArgGlyAspSerArgGlySerLeuLeuSerProArgProIleSerTyrLeu 61 CCGTGCGCCGGCGGGGTGATAGCAGGGGCAGCCTGCTGTCGCCCCGGCCCATTTCCTACT GGCACGCGGCCGCCCCACTATCGTCCCCGTCGGACGACAGCGGGGCCGGGTAAAGGATGA
- LysGlySerSerGlyGlyProLeuLeuCysProAlaGlyHisAlaValGlyIlePheArg
 121 TGAAAGGCTCCTCGGGGGGTCCGCTGTTGTGCCCCGCGGGGCACGCCGTGGGCATATTTA
 ACTTTCCGAGGAGCCCCCCAGGCGACAACACGGGGCGCCCCGTGCGGCACCCGTATAAAT
- AlaAlaValCysThrArgGlyValAlaLysAlaValAspPheIleProValGluAsnLeu
 181 GGGCCGCGGTGTGCACCCGTGGAGTGGCTAAGGCGGTGGACTTTATCCCTGTGGAGAACC
 CCCGGCGCCACACGTGGGCACCTCACCGATTCCGCCACCTGAAATAGGGACACCTCTTGG
- GluThrThrMetArgSerProValPheThrAspAsnSer
 TAGAGACAACCATGAGGTCCCCGGTGTTCACGGATAACTCCTC
 ATCTCTGTTGGTACTCCAGGGGCCACAAGTGCCTATTGAGGAG

- GlyTrpArgLeuLeuAlaProIleThrAlaTyrAlaGlnGlnThrArgGlyLeuLeuGly 1 GGGGTGGAGGTTGCTGGCGCCCATCACGGCGTACGCCCAGCAGACAAGGGGCCTCCTAGG CCCCACCTCCAACGACCGCGGGTAGTGCCGCATGCGGGTCGTCTGTTCCCCGGAGGATCC
- CysilelleThrSerLeuThrGlyArgAspLysAsnGlnValGluGlyGluValGlnile 61 GTGCATAATCACCAGCCTAACTGGCCGGGACAAAAACCAAGTGGAGGGTGAGGTCCAGAT CACGTATTAGTGGTCGGATTGACCGGCCCTGTTTTTGGTTCACCTCCCACTCCAGGTCTA
- ValSerThrAlaAlaGlnThrPheLeuAlaThrCysIleAsnGlyValCysTrpThrVal TGTGTCAACTGCTGCCCAAACCTTCCTGGCAACGTGCATCAATGGGGTGTGCTGGACTGT ACACAGTTGACGACGGGTTTGGAAGGACCGTTGCACGTAGTTACCCCACACGACCTGACA
- TyrHisGlyAlaGlyThrArgThrIleAlaSerProLysGlyProValIleGlnMetTyr CTACCACGGGGCCGGAACGAGGACCATCGCGTCACCCAAGGGTCCTGTCATCCAGATGTA GATGGTGCCCCGGCCTTGCTCCTGGTAGCGCAGTGGGTTCCCAGGACAGTAGGTCTACAT
- ThrAsnValAspGlnAspLeuValGlyTrpProAlaProGlnGlySerArgSerLeuThr 241 TACCAATGTAGACCAAGACCTTGTGGGCTGGCCCGCTCCGCAAGGTAGCCGCTCATTGAC ATGGTTACATCTGGTTCTGGAACACCCGACCGGGCGAGGCGTTCCATCGGCGAGTAACTG
- -----Overlap with 8h------ProCysThrCysGlySerSerAspLeuTyrLeuValThrArgHis
 301 ACCCTGCACTTGCGGCTCCTCGGACCTTTACCTGGTCACGAGGCACG
 TGGGACGTGAACGCCGAGGAGCCTGGAAATGGACCAGTGCTCCGTGC

1	AsnMetTrpSerGlyThrPheProlleAsnAlaTyrThrThrGlyProCysThrProGAACATGTGGAGTGGGACCTTCCCCATTAATGCCTACACCACGGGCCCCTGTACCCCCCTTGTACCCCCCCTTGTACACCCCCCCC	Let CT GA
61	Overlap with 25cProAlaProAsnTyrThrPheAlaLeuTrpArgValSerAlaGluGluTyrValGluTCCTGCGCCGAACTACACGTTCGCGCTATGGAGGTGTCTGCAGAGGAATACGTGGAGAGGACTGCCTGATGCACCTCCCACAGACGTCTCCTTATGCACCTCCACAGACGTCTCCTTATGCACCTCCCACAGACGTCTCCTTATGCACCTCCCACAGACGTCTCCTTATGCACCTCCCACAGACGTCTCCTTATGCACCTCCCACAGACGTCTCCTTATGCACCTCCCACAGACGTCTCCTTATGCACCTCCCACAGACGTCTCCTTATGCACCTCCCACAGACGTCTCCTTATGCACCTCCCACAGACGTCTCCTTATGCACCTCCCACAGACGTCTCCTTATGCACCTCCCACAGACGTCTCCTTATGCACCTCCCACAGACGTCTCCTTATGCACCTCCCACAGACGTCTCCTTATGCACCTCCACAGACGTCTCCTTATGCACCTCCACAGACGTCTCCTTATGCACCTCCACAGACGTCTCCTTATGCACCTCCACAGACGTCTCCTTATGCACCTCCACAGACGTCTCCTTATGCACCTCCACAGACGACGTCTCCTTATGCACCTCCACAGACGTCTCCTTATGCACCTCCACAGACGTCTCCTTATGCACCTCCACAGACGTCTCCTCACAGACGACGTCTCCTCACAGACGACAGACGTCTCCTCACAGACGTCTCCTCACAGACGACAGACGTCTCCTCACAGACGACAGACGTCTCCTCACAGACGACAGACGTCTCCTCACAGACGACAGACGTCTCCCTCACAGACGACAGACGTCTCCTCCTCACAGACGACACACAGACGTCTCCCACAGACGACACACAC	IIIe AT
121	ArgGlnValGlyAspPheHisTyrValThrGlyMetThrThrAspAsnLeuLysCys AAGGCAGGTGGGGGACTTCCACTACGTGACGGGTATGACTACTGACAATCTTAAATGC TTCCGTCCACCCCCTGAAGGTGATGCACTGCCCATACTGATGACTGTTAGAATTTACG	Pro CC GG
181	CysGlnValProSerProGluPhePheThrGluLeuAspGlyValArgLeuHisArg GTGCCAGGTCCCATCGCCCGAATTTTTCACAGAATTGGACGGGGTGCGCCTACATAGG CACGGTCCAGGGTAGCGGGCTTAAAAAGTGTCTTAACCTGCCCCACGCGGATGTATCC	Phe TT AA
241	AlaproproCysLysProLeuLeuArgGluGluValSerPheArgValGlyLeuHis TGCGCCCCCTGCAAGCCCTTGCTGCGGAGGAGGTATCATTCAGAGTAGGACTCCAC ACGCGGGGGGACGTTCGGGAACGACGCCCTCCTCCATAGTAAGTCTCATCCTGAGGTG	Glu GA CT
301	TyrProValGlySerGlnLeuProCysGluProGluProAspValAlaValLeuThr ATACCCGGTAGGGTCGCAATTACCTTGCGAGCCCGAACCGGACGTGGCCGTGTTGACG TATGGGCCATCCCAGCGTTAATGGAACGCTCGGGCTTGGCCTGCACCGGCACAACTGC	Ser TC AG
361	MetLeuThrAspProSerHisIleThrAlaGluAlaAlaGlyArgArgLeuAlaArg CATGCTCACTGATCCCTCCCATATAACAGCAGAGGCGGCCGGGCGAAGGTTGGCGAGG GTACGAGTGACTAGGGAAGGTATATTGTCGTCTCCGCCGGCCCGCTTCCAACCGCTCC	Gly GG CC
421	SerProProSerValAlaSerSerSerAlaSerGlnLeuSerAlaProSerLeuLys ATCACCCCCTCTGTGGCCAGCTCCTCGGCTAGCCAGCTATCCGCTCCATCTCAAG TAGTGGGGGGAGACACCGGTCGAGGAGCCGATCGGTCGATAGGCGAGGTAGAGAGTTC	Ala GC CG
481	ThrCysThrAlaAsnHisAspSerProAsp AACTTGCACCGCTAACCATGACTCCCCTGAT TTGAACGTGGCGATTGGTACTGAGGGGACTA	

- -----Overlap with 14c-----SerSerSerAlaSerGlnLeuSerAlaProSerLeuLysAlaThrCysThrAlaAspHis
 AGCTCCTCGGCTAGCCAGCTATCCGCTCCATCTCTCAAGGCAACTTGCACCGCTAACCAT
 TCGAGGAGCCGATCGGTCGATAGGCGAGGTAGAGAGTTCCGTTGAACGTGGCGATTGGTA
- ASPSerProAspAlaGluLeuIleGluAlaAsnLeuLeuTrpArgGlnGluMetGlyGlu 61 GACTCCCTGATGCTGAGCTCATAGAGGCCAACCTCCTATGGAGGCAGGAGATGGGCGGC CTGAGGGGACTACGACTCGAGTATCTCCGGTTGGAGGATACCTCCGTCCTCTACCCGCCG
- ASNI leThrArgValGluSerGluAsnLysValValIleLeuAspSerPheAspProLeu 121 AACATCACCAGGGTTGAGTCAGAAAACAAAGTGGTGATTCTGGACTCCTTCGATCCGCTT TTGTAGTGGTCCCAACTCAGTCTTTTGTTTCACCACTAAGACCTGAGGAAGCTAGGCGAA
- ValAlaGluGluAspGluArgGluIleSerValProAlaGluIleLeuArgLysSerArg GTGGCGGAGGAGGACGAGCGGGAGATCTCCGTACCCGCAGAAATCCTGCGGAAGTCTCGG CACCGCCTCCTCCTGCTCGCCCTCTAGAGGCATGGGCGTCTTTAGGACGCCTTCAGAGGC
- ArgPheAlaGlnAlaLeuProValTrpAlaArgProAspTyrAsnProProLeuValGlu 241 AGATTCGCCCAGGCCCTGCCCGTTTGGGCGCGGCCGGACTATAACCCCCCGCTAGTGGAG TCTAAGCGGTCCGGGACGGCAAACCCGCGCCTGATATTGGGGGGGCGATCACCTC
- ThrTrpLysLysProAspTyrGluProProValValHisGlyCysProLeuProProProAcGTGGAAAAAGCCCGACTACGAACCACCTGTGGTCCATGGCTGTCCGCTTCCACCTCCATGCACCTTTTTCGGGCTGATGCTTGGTGGACACCAGGTACCGACAGGCGAAGGTGGAGGT
- 361 AAGTCCCCTCCTGTGCCG TTCAGGGGAGGACACGGC

- ValTrpAlaArgProAspTyrAsnProProLeuValGluThrTrpLysLysProAspTyr 1 CGTTTGGGCGCCGGACTATAACCCCCCGCTAGTGGAGACGTGGAAAAAACCCGACTA GCAAACCCGCGCCGGCCTGATATTGGGGGGGCGATCACCTCTGCACCTTTTTTGGGCTGAT
- GluProProValValHisGlyCysProLeuProProProLysSerProProValProPro
 GCTTGGTGGACACCAGGTACCGACGGGCGAAGGTGGAGGTTTCAGGGGAGGAGGACACGGAGG
- ProArgLysLysArgThrValValLeuThrGluSerThrLeuSerThrAlaLeuAlaGlu 121 GCCTCGGAAGAAGCGGACGGTGGTCCTCACTGAATCAACCCTATCTACTGCCTTGGCCGA CGGAGCCTTCTTCGCCTGCCACCAGGAGTGACTTAGTTGGGATAGATGACGGAACCGGCT
- LeuAlaThrArgSerPheGlySerSerSerThrSerGlyIleThrGlyAspAsnThrThr GCTCGCCACCAGAAGCTTTGGCAGCTCCTCAACTTCCGGCATTACGGGCGACAATACGAC CGAGCGGTGGTCTTCGAAACCGTCGAGGAGTTGAAGGCCGTAATGCCCGCTGTTATGCTG
- ThrserserGluProAlaProSerGlyCysProProAspSerAspAlaGluSerPhe
 241 AACATCCTCTGAGCCGGCCCCTTCTGGCTGCCCCCCGACTCCGACGCTGAGTCCTTTGC
 TTGTAGGAGACTCGGGCGGGGAAGACCGACGGGGGGGGGCTGAGGCTGCGACTCAGGAAACG

- AlaSerArgSerPheGlySerSerSerThrSerGlyIleThrGlyAspAsnThrThrThr 1 GCCTCCAGAAGCTTTGGCAGCTCCTCAACTTCCGGCATTACGGCGACAATACGACAACA CGGAGGTCTTCGAAACCGTCGAGGAGTTGAAGGCCGTAATGCCCGCTGTTATGCTGTTGT
- MetProProLeuGluGlyGluProGlyAspProAspLeuSerAspGlySerTrpSerThr 121 ATGCCCCCCTGGAGGGGAGCCTGGGGATCCTAGGCGACGGGTCATGGTCAACG TACGGGGGGGACCTCCCCCTCGGACCCCTAGGCCTAGAATCGCTGCCCAGTACCAGTTGC
- ValSerSerGluAlaAsnAlaGluAspValValCysCysSerMetSerTyrSerTrpThr GTCAGTAGTGAGGCCAACGCGGAGGATGTCGTGTGCTGCTCAATGTCTTACTCTTGGACA CAGTCATCACTCCGGTTGCGCCTCCTACAGCACGACGAGTTACAGAATGAGAACCTGT
- GlyAlaLeuValThrProCysAlaAlaGluGluGlnLysLeuProIleAsnAlaLeuSer GGCGCACTCGTCACCCCGTGCGCCGCGGAAGAACAGAAACTGCCCATCAATGCACTAAGC CCGCGTGAGCAGTGGGGCACGCGGCGCCTTCTTGTCTTTGACGGGTAGTTACGTGATTCG
- AsnSerLeuLeuArgHisHisAsnLeuValTyrSerThrThrSerArgSer
 301 AACTCGTTGCTACGTCACCACAATTTGGTGTATTCCACCACCTCACGCAGTG
 TTGAGCAACGATGCAGTGGTGTTAAACCACATAAGGTGGTGGAGTGCGTCAC

- GlyThrTyrValTyrAsnHisLeuThrProLeuArgAspTrpAlaHisAsnGlyLeuArg 1 GGCACCTATGTTTATAACCATCTGACTCCTCTTCGGGACTGGGCGCACAACGGCTTGCGA CCGTGGATACAAATATTGGTAGAGTGAGGAGAAGCCCTGACCCGCGTGTTGCCGAACGCT
- AspLeuAlaValAlaValGluProValValPheSerGlnMetGluThrLysLeuIleThr GATCTGGCCGTGGCTGTAGAGCCAGTCGTCTTCTCCCAAATGGAGACCAAGCTCATCACG CTAGACCGGCACCGACATCTCGGTCAGCAGAAGAGGGTTTACCTCTGGTTCGAGTAGTGC
- ArgGlyArgGluIleLeuLeuGlyProAlaAspGlyMetValSerLysGlyTrpArgLeu
 181 AGGGGCCGGGAGATACTGCTCGGGCCAGCCGATGGAATGGTCTCCAAGGGTTGGAGGTTG
 TCCCCGGCCCTCTATGACGAGCCCGGTCGGCTACCTTACCAGAGGTTCCCAACCTCCAAC
- LeuAlaProIleThrAlaTyrAlaGlnGlnThrArgGlyLeuLeuGlyCysIleILeThr CTGGCGCCCATCACGGCGTACGCCCAGCAGACAAGGGGCCTCCTAGGGTGCATAATCACC GACCGCGGGTAGTGCCGCATGCGGGTCGTCTGTTCCCCGGAGGATCCCACGTATTAGTGG
- SerLeuThrGlyArgAspLysAsnGlnValGluGlyGluValGlnIleValSerThrAla
 301 AGCCTAACTGGCCGGGACAAAAACCAAGTGGAGGGTGAGGTCCAGATTGTGTCAACTGCT
 TCGGATTGACCGGCCCTGTTTTTGGTTCACCTCCCACTCCAGGTCTAACACAGTTGACGA
- AlaGInThrPheLeuAlaThrCysIleAsnGlyValCysTrp GCCCAAACCTTCCTGGCAACGTGCATCAATGGGGTGTGCTGG CGGGTTTGGAAGGACCGTTGCACGTAGTTACCCCACACGACC

- GlyGlyValValLeuValGlyLeuMetAlaLeuThrLeuSerProTyrTyrLysArgTyr GGCGGTGTTGTTCTCGTCGGGTTGATGGCGCTGACTCTGTCACCATATTACAAGCGCTAT CCGCCACAACAAGAGCAGCCCAACTACCGCGACTGAGACAGTGGTATAATGTTCGCGATA
- IleSerTrpCysLeuTrpTrpLeuGlnTyrPheLeuThrArgValGluAlaGlnLeuHis
 61 ATCAGCTGGTGCTTGTGGTGGCTTCAGTATTTTCTGACCAGAGTGGAAGCGCAACTGCAC
 TAGTCGACCACGAACACCACCGAAGTCATAAAAGACTGGTCTCACCTTCGCGTTGACGTG
- ValTrpIleProProLeuAsnValArgGlyGlyArgAspAlaValIleLeuLeuMetCys
 121 GTGTGGATTCCCCCCTCAACGTCCGAGGGGGGGGCGCGACGCCGTCATCTTACTCATGTGT
 CACACCTAAGGGGGGGAGTTGCAGGCTCCCCCGCGCTGCGGCAGTAGAATGAGTACACA
- AlaValHisProThrLeuValPheAspIleThrLysLeuLeuLeuAlaValPheGlyPro
 181 GCTGTACACCGACTCTGGTATTTGACATCACCAAATTGCTGCTGGCCGTCTTCGGACCC
 CGACATGTGGGCTGAGACCATAAACTGTAGTGGTTTAACGACGACCGCAGAAGCCTGGG
- LeuTrpIleLeuGlnAlaSerLeuLeuLysValProTyrPheValArgValGlnGlyLeu
 CTTTGGATTCTTCAAGCCAGTTTGCTTAAAGTACCCTACTTTGTGCGCGTCCAAGGCCTT
 GAAACCTAAGAAGTTCGGTCAAACGAATTTCATGGGATGAAACACGCGCAGGTTCCGGAA
- _euArgPheCysAlaLeuAlaArgLysMetIleGlyGlyHisTyrValGlnMetValIle
 301 CTCCGGTTCTGCGCGTTAGCGCGGAAGATGATCGGAGGCCATTACGTGCAAATGGTCATC
 GAGGCCAAGACGCGCAATCGCGCCTTCTACTAGCCTCCGGTAATGCACGTTTACCAGTAG
- IleLysLeuGlyAlaLeuThrGlyThrTyrValTyrAsnHisLeuThrProLeuArgAsp
 ATTAAGTTAGGGGCGCTTACTGGCACCTATGTTTATAACCATCTCACTCCTCTTCGGGAC
 TAATTCAATCCCCGCGAATGACCGTGGATACAAATATTGGTAGAGTGAGGAGAAGCCCTG
- TrpAlaHisAsnGlyLeuArgAspLeuAlaValAlaValGluProValValPheSerGln
 TGGGCGCACAACGGCTTGCGAGATCTGGCCGTGGCTGTAGAGCCAGTCGTCTTCTCCCAA
 ACCCGCGTGTTGCCGAACGCTCTAGACCGGCACCGACATCTCGGTCAGCAGAAGAGGGTT
- MetGluThrLysLeuIleThrTrpGly
 481 ATGGAGACCAAGCTCATCACGTGGGGGGC
 TACCTCTGGTTCGAGTAGTGCACCCCCG

- MetMetLeuLeuIleSerGlnAlaGluAlaAlaLeuGluAsnLeuValIleLeuAsnAla 61 GGATGATGCTACTCATATCCCAAGCGGAGGCGGCTTTGGAGAACCTCGTAATACTTAATG CCTACTACGATGAGTATAGGGTTCGCCTCCGCCGAAACCTCTTGGAGCATTATGAATTAC
- TyrLeuLysGlyLysTrpValProGlyAlaValTyrThrPheTyrGlyMetTrpProLeu
 181 GGTATTTGAAGGGTAAGTGGGTGCCCGGAGCGGTCTACACCTTCTACGGGATGTGGCCTC
 CCATAAACTTCCCATTCACCCACGGGCCTCGCCAGATGTGGAAGATGCCCTACACCGGAG
- LeuLeuLeuLeuAlaLeuProGlnArgAlaTyrAlaLeuAspThrGluValAlaAla
 TCCTCCTGCTCCTGTTGGCGTTGCCCCAGCGGGCGTACGCGCTGGACACGGAGGTGGCCG
 AGGAGGACGACGCAACGGGGTCGCCCGCATGCGCGACCTGTGCCTCCACCGGC
- SerCysGlyGlyValValLeuValGlyLeuMetAlaLeuThrLeuSerProTyrTyrLys
 CGTCGTGTGCGCGCACAACAAGAGCAGCCCAACTACCGCGACTGAGACAGTGGTATAATGT
- ArgTyrIleSerTrpCysLeuTrpTrpLeuGln 361 AGCGCTATATCAGCTGGTGCTTGTGGTGGCTTCAGAA TCGCGATATAGTCGACCACGAACACCACCGAAGTCTT

- ProAlaProSerGlyCysProProAspSerAspAlaGluSerTyrSerSerMetProPro CCAGCCCTTCTGGCTGCCCCCCGACTCCGACGCTGAGTCCTATTCCTCCATGCCCCCC GGTCGGGGAAGACCGACGGGGGGGCTGAGGCTGCGACTCAGGATAAGGAGGTACGGGGGG
- GluAlaAsnAlaGluAspValValCysCysSerMetSerTyrSerTrpThrGlyAlaLeu GAGGCCAACGCGGAGGATGTCGTGTGCTCCTAATGTCCTACTCTTGGACAGGCGCACTC CTCCGGTTGCGCCTCCTACAGCACGACGACGAGTTACAGGATGAGAACCTGTCCGCGTGAG
- ValThrProCysAlaAlaGluGluGlnLysLeuProIleAsnAlaLeuSerAsnSerLeu GTCACCCGTGCGCCGCGGAAGAACAGAAACTGCCCATCAATGCACTGAGCAACTCGTTG CAGTGGGGCACGCGCGCCTTCTTGTCTTTGACGGGTAGTTACGTGACTCGTTGAGCAAC
- LeuArgHisHisAsnLeuValTyrSerThrThrSerArgSerAlaCysGlnArgGlnLys CTACGTCACCACAATTTGGTGTATTCCACCACCTCACGCAGTGCTTGCCAAAGGCAGAAG GATGCAGTGGTGTTAAACCACATAAGGTGGTGGAGTGCGTCACGAACGGTTTCCGTCTTC
- LysValThrPheAspArgLeuGlnValLeuAspSerHisTyrGlnAspValLeuLysGly
 AAAGTCACATTTGACAGACTGCAAGTTCTGGACAGCCATTACCAGGACGTACTCAAGGAG
 TTTCAGTGTAAACTGTCTGACGTTCAAGACCTGTCGGTAATGGTCCTGCATGAGTTCCTC
- VallysAlaAlaAlaSerLysVallysAlaAsnPhe GTTAAAGCAGCGGCGTCAAAAGTGAAGGCTAACTTC CAATTTCGTCGCCGCAGTTTTCACTTCCGATTGAAG

- MetMetLeuLeuIleSerGlnAlaGluAlaAlaLeuGluAsnLeuValIleLeuAsnAla GGATGATGCTACTCATATCCCAAGCGGAGGCGGCTTTGGAGAACCTCGTAATACTTAATG CCTACTACGATGAGTATAGGGTTCGCCTCCGCCGAAACCTCTTGGAGCATTATGAATTAC
- TyrLeuLysGlyLysTrpValProGlyAlaValTyrThrPheTyrGlyMetTrpProLeu
 181 GGTATTTGAAGGGTAAGTGGGTGCCCGGAGCGGTCTACACCTTCTACGGGATGTGGCCTC
 CCATAAACTTCCCATTCACCCACGGGCCTCGCCAGATGTGGAAGATGCCCTACACCGGAG
- LeuLeuLeuLeuLeuAlaLeuProGlnArgAlaTyrAlaLeuAspThrGluValAlaAla
 TCCTCCTGCTCCTGTTGGCGTTGCCCCAGCGGGCGTACGCGCTGGACACGGAGGTGGCCG
 AGGAGGACGAGGACAACCGCAACGGGGTCGCCCGCATGCGCGACCTGTGCCTCCACCGGC
- SerCysGlyGlyValValLeuValGlyLeuMetAlaLeuThrLeuSerProTyrTyrLys
 301 CGTCGTGTGGCGGTGTTGTTCTCGTCGGGTTGATGGCGCTGACTCTGTCACCATATTACA
 GCAGCACACCGCCACAACAAGAGCCCCAACTACCGCGACTGAGACAGTGGTATAATGT
- ArgTyrlleSerTrpCysLeuTrpTrpLeuGlnTyrPheLeuThrArgValGluAlaGln
 361 AGCGCTATATCAGCTGGTGCTTGTGGTGGCTTCAGTATTTTCTGACCAGAGTGGAAGCGC
 TCGCGATATAGTCGACCACGAACACCACCGAAGTCATAAAAGACTGGTCTCACCTTCGCG
- LeuHisValTrpIleProProLeuAsnValArgGlyGlyArgAspAlaValIleLeuLeu
 421 AACTGCACGTGTGGATTCCCCCCCTCAACGTCCGAGGGGGGGCGCGACGCCGTCATCTTAC
 TTGACGTGCACACCTAAGGGGGGGAGTTGCAGGCTCCCCCCCGCGCTGCGGCAGTAGAATG
- MetCysAlaValHisProThrLeuValPheAspIleThrLysLeuLeuLeuAlaValPhe
 481 TCATGTGTGTGTACACCCGACTCTGGTATTTGACATCACCAAATTGCTGCTGGCCGTCT
 AGTACACACACGACATGTGGGCTGAGACCATAAACTGTAGTGGTTTAACGACGACCGGCAGA
- GlyProLeuTrpIleLeuGlnAlaSerLeuLeuLysValProTyrPheValArgValGln
 TCGGACCCCTTTGGATTCTTCAAGCCAGTTTGCTTAAAGTACCCTACTTTGTGCGCGTCC
 AGCCTGGGGAAACCTAAGAAGTTCGGTCAAACGAATTTCATGGGATGAAACACGCGCAGG
- GlyLeuLeuArgPheCysAlaLeuAlaArgLysMetIleGlyGlyHisTyrValGlnMet
 AAGGCCTTCTCCGGTTCTGCGCGTTAGCGCGCAAGATGATCGGAGGCCATTACGTGCAAA
 TTCCGGAAGAGGCCAAGACGCGCAATCGCGCCTTCTACTAGCCTCCGGTAATGCACGTTT
- ValllelleLysLeuGlyAlaLeuThrGlyThrTyrValTyrAsnHisLeuThrProLeu
 TGGTCATCATTAAGTTAGGGGGCGCTTACTGGCACCTATGTTTATAACCATCTCACTCCTC
 ACCAGTAGTAATTCAATCCCCGCGAATGACCGTGGATACAAATATTGGTAGAGTGAGGAG
- ArgAspTrpAlaHisAsnGlyLeuArgAspLeuAlaValAlaValGluProValValPhe
 721 TTCGGGACTGGGCGCACAACGGCTTGCGAGATCTGGCCGTGGCTGTAGAGCCAGTCGTCT
 AAGCCCTGACCCGCGTGTTGCCGAACGCTCTAGACCGGCACCGACATCTCGGTCAGCAGA
- SerGlnMetGluThrLysLeuIleThrTrpGlyAlaAspThrAlaAlaCysGlyAspIle
 781 TCTCCCAAATGGAGACCAAGCTCATCACGTGGGGGGCAGATACCGCCGCGTGCGGTGACA
 AGAGGGTTTACCTCTGGTTCGAGTAGTGCACCCCCCGTCTATGGCGGCGCACGCCACTGT
- IleAsnGlyLeuProValSerAlaArgArgGlyArgGluIleLeuLeuGlyProAlaAsp
 TCATCAACGGCTTGCCTGTTTCCGCCCGCAGGGGCCGGGAGATACTGCTCGGGCCAGCCG
 AGTAGTTGCCGAACGGACAAAGGCGGGCCTCCCCGGCCCTCTATGACGAGCCCGGTCGGC
- GlyMetValSerLysGlyTrpArgLeuLeuAlaProIleThrAlaTyrAlaGlnGlnThr 901 ATGGAATGGTCTCCAAGGGGTGGAGGTTGCTGGCGCCCATCACGGCGTACGCCCAGCAGA TACCTTACCAGAGGTTCCCCACCTCCAACGACCGCGGGTAGTGCCGCATGCGGGTCGTCT

FIG. 26B Arg6lyLeuLeuGlyCysIleIleThrSerLeuThrGlyArgAspLysAsnGlnValGlu CAAGGGGCCTCCTAGGGTGCATAATCACCAGCCTAACTGGCCGGGACAAAAACCAAGTGG GTTCCCCGGAGGATCCCACGTATTAGTGGTCGGATTGACCGGCCCTGTTTTTGGTTCACC GlyGluValGlnIleValSerThrAlaAlaGlnThrPheLeuAlaThrCysIleAsnGly
1021 AGGGTGAGGTCCAGATTGTGTCAACTGCTGCCCAAACCTTCCTGGCAACGTGCATCAATG
TCCCACTCCAGGTCTAACACACAGTTGACGACGGGTTTGGAAGGACCGTTGCACGTAGTTAC ValCysTrpThrValTyrHisGlyAlaGlyThrArgThrIleAlaSerProLysGlyPro
1081 GGGTGTGCTGGACTGTCTACCACGGGGCCGGAACGAGGACCATCGCGTCACCCAAGGGTC
CCCACACGACCTGACAGATGGTGCCCCGGCCTTGCTCCTGGTAGCGCAGTGGGTTCCCAG ValileGinMetTyrThrAsnValAspGinAspLeuValGlyTrpProAlaProGinGly
1141 CTGTCATCCAGATGTATACCAATGTAGACCAAGACCTTGTGGGCTGGCCCGCTCCGCAAG
GACAGTAGGTCTACATATGGTTACATCTGGTTCTGGAACACCCGACCGGCCGAGGCGTTC SerArgSerLeuThrProCysThrCysGlySerSerAspLeuTyrLeuValThrArgHis
1201 GTAGCCGCTCATTGACACCCTGCACTTGCGGCTCCTCGGACCTTTACCTGGTCACGAGGC
CATCGGCGAGTAACTGTGGGACGTGAACGCCGAGGAGCCTGGAAATGGACCAGTGCTCCG AlaAspVallleProValArgArgGlyAspSerArgGlySerLeuLeuSerProArg 1261 ACGCCGATGTCATTCCCGTGCGCCGGCGGGGTGATAGCAGGGGCAGCCTGCTGTCGCCCC TGCGGCTACAGTAAGGGCACGCGGCCGCCCACTATCGTCCCCGTCGGACGACAGCGGGG ProlleSerTyrLeuLysGlySerSerGlyGlyProLeuLeuCysProAlaGlyHisAla 1321 GGCCCATTTCCTACTTGAAAGGCTCCTCGGGGGGTCCGCTGTTGTGCCCCGCGGGGCACG CCGGGTAAAGGATGAACTTTCCGAGGAGCCCCCCAGGCGACAACACGGGGCGCCCCCGTGC ValGlyIlePheArgAlaAlaValCysThrArgGlyValAlaLysAlaValAspPheIle 1381 CCGTGGGCATATTTAGGGCCGCGGTGTGCACCCGTGGAGTGGCTAAGGCGGTGGACTTTA GGCACCCGTATAAATCCCGGCGCCACACGTGGGCACCTCACCGATTCCGCCACCTGAAAT ProvalGluAsnLeuGluThrThrMetArgSerProvalPheThrAspAsnSerSerPro
1441 TCCCTGTGGAGAACCTAGAGACAACCATGAGGTCCCCGGTGTTCACGGATAACTCCTCTC
AGGGACACCTCTTGGATCTCTGTTGGTACTCCAGGGGCCACAAGTGCCTATTGAGGAGAG ProvalvalproginserPheGinValAlaHisLeuHisAlaProThrGlySerGlyLys
1501 CACCAGTAGTGCCCCAGAGCTTCCAGGTGGCTCACCTCCATGCTCCCACAGGCAGCGCA
GTGGTCATCACGGGGTCTCGAAGGTCCACCGAGTGGAGGTACGAGGGTGTCCGTCGCCGT SerThrLysValProAlaAlaTyrAlaAlaGlnGlyTyrLysValLeuValLeuAsnPro AAAGCACCAAGGTCCCGGCTGCATATGCAGCTCAGGGCTATAAGGTGCTAGTACTCAACC TTTCGTGGTTCCAGGGCCGACGTATACGTCGAGTCCCGATATTCCACGATCATGAGTTGG 1561 ASNI LeArgThrGlyValArgThrIleThrThrGlySerProIleThrTyrSerThrTyr
1681 CTAACATCAGGACCGGGGTGAGAACAATTACCACTGGCAGCCCCATCACGTACTCCACCT
GATTGTAGTCCTGGCCCCACTCTTGTTAATGGTGACCGTCGGGGTAGTGCATGAGGTGGA GlyLysPheLeuAlaAspGlyGlyCysSerGlyGlyAlaTyrAspIleIleIleCysAsp
1741 ACGGCAAGTTCCTTGCCGACGGCGGGTGCTCGGGGGGGCGCTTATGACATAATTTTGTG
TGCCGTTCAAGGAACGGCTGCCGCCCACGAGCCCCCCGCGAATACTGTATTATTAAACAC GluCysHisSerThrAspAlaThrSerIleLeuGlyIleGlyThrValLeuAspGlnAla 1801 ACGAGTGCCACTCCACGGATGCCACATCCATCTTGGGCATCGGCACTGTCCTTGACCAAG TGCTCACGGTGAGGTGCCTACGGTGTAGGTAGAACCCGTAGCCGTGACAGGAACTGGTTC GluThrAlaGlyAlaArgLeuValValLeuAlaThrAlaThrProProGlySerValThr 1861 CAGAGACTGCGGGGGGGAGACTGGTTGTGCTCGCCACCGCCACCCCTCCGGGCTCCGTCA GTCTCTGACGCCCCCGCTCTGACCAACACGAGCGGTGGCGGTGGGGAGGCCCGAGGCAGT ValProHisProAsnIleGluGluValAlaLeuSerThrThrGlyGluIleProPheTyr 1921 CTGTGCCCCATCCCAACATCGAGGAGGTTGCTCTGTCCACCACCGGAGAGATCCCTTTTT GACACGGGGTAGGGTTGTAGCTCCTCCAACGAGACAGGTGGTGGCCTCTCTAGGGAAAAA

FIG. 26C

GlyLysAlaIleProLeuGluVallleLysGlyGlyArgHisLeuIlePheCysHisSer 1981 ACGGCAAGGCTATCCCCCTCGAAGTAATCAAGGGGGGGGAGACATCTCATCTTCTGTCATT TGCCGTTCCGATAGGGGGAGCTTCATTAGTTCCCCCCCCTCTGTAGAGTAGAAGACAGTAA

- LysLysCysAspGluLeuAlaAlaLysLeuValAlaLeuGlyIleAsnAlaValAla
 2041 CAAAGAAGAAGTGCGACGAACTCGCCGCAAAGCTGGTCGCATTGGGCATCAATGCCGTGG
 GTTTCTTCTTCACGCTGCTTGAGCGGCGTTTCGACCAGCGTAACCCGTAGTTACGGCACC
- TyrTyrArgGlyLeuAspValSerValIleProThrSerGlyAspValValValAla 2101 CCTACTACCGCGGTCTTGACGTGTCCGTCATCCCGACCAGCGGCGATGTTGTCGTCGTGG GGATGATGGCGCCAGAACTGCACAGGCAGTAGGGCTGGTCGCCGCTACAACAGCAGCACC
- ThrAspAlaLeuMetThrGlyTyrThrGlyAspPheAspSerVallleAspCysAsnThr 2161 CAACCGATGCCCTCATGACCGGCTATACCGGCGACTTCGACTCGGTGATAGACTGCAATA GTTGGCTACGGGAGTACTGGCCGATATGGCCGCTGAAGCTGAGCCACTATCTGACGTTAT
- CysValThrGlnThrValAspPheSerLeuAspProThrPheThrIleGluThrIleThr CGTGTGTCACCCAGACAGTCGATTTCAGCCTTGACCCTTCACCATTGAGACAATCA GCACACAGTGGGTCTGTCAGCTAAAGTCGGAACTGGGATGGAAGTGGTAACTCTGTTAGT
- LeuProGlnAspAlaValSerArgThrGlnArgArgGlyArgThrGlyArgGlyLysPro
 CGCTCCCCAGGATGCTGTCTCCCGCACTCAACGTCGGGGCAGGACTGGCAGGGGGAAGC
 GCGAGGGGGTCCTACGACAGAGGGCGTGAGTTGCAGCCCCGTCCTGACCGTCCCCCTTCG
- GlylleTyrArgPheValAlaProGlyGluArgProSerGlyMetPheAspSerSerVal CAGGCATCTACAGATTTGTGGCACCGGGGGAGCGCCCCTCCGGCATGTTCGACTCGTCCG GTCCGTAGATGTCTAAACACCGTGGCCCCCTCGCGGGGAGGCCGTACAAGCTGAGCAGGC
- LeuCysGluCysTyrAspAlaGlyCysAlaTrpTyrGluLeuThrProAlaGluThrThr
 TCCTCTGTGAGTGCTATGACGCAGGCTGTGCTTGGTATGAGCTCACGCCCGCGAGACTA
 AGGAGACACTCACGATACTGCGTCCGACACGAACCATACTCGAGTGCGGCCGCTCTGAT
- ValArgLeuArgAlaTyrMetAsnThrProGlyLeuProValCysGlnAspHisLeuGlu 2461 CAGTTAGGCTACGAGCGTACATGAACACCCCGGGGCTTCCCGTGTGCCAGGACCATCTTG GTCAATCCGATGCTCGCATGTACTTGTGGGGCCCCGAAGGGCACACGGTCCTGGTAGAAC
- PheTrpGluGlyValPheThrGlyLeuThrHisIleAspAlaHisPheLeuSerGlnThr 2521 AATTTTGGGAGGGCGTCTTTACAGGCCTCACTCATATAGATGCCCACTTTCTATCCCAGA TTAAAACCCTCCCGCAGAAATGTCCGGAGTGAGTATATCTACGGGTGAAAGATAGGGTCT
- LysGlnSerGlyGluAsnLeuProTyrLeuValAlaTyrGlnAlaThrValCysAlaArg
 2581 CAAAGCAGAGTGGGGAGAACCTTCCTTACCTGGTAGCGTACCAAGCCACCGTGTGCGCTA
 GTTTCGTCTCACCCCTCTTGGAAGGAATGGACCATCGCATGGTTCGGTGGCACACGCGAT
- AlaGlnAlaProProProSerTrpAspGlnMetTrpLysCysLeuIleArgLeuLysPro GGGCTCAAGCCCCTCCCCATCGTGGGACCAGATGTGGAAGTGTTTGATTCGCCTCAAGC CCCGAGTTCGGGGAGGGGGTAGCACCCTGGTCTACACCTTCACAAACTAAGCGGAGTTCG
- ThrLeuHisGlyProThrProLeuLeuTyrArgLeuGlyAlaValGlnAsnGluIleThr
 CCACCCTCCATGGGCCAACACCCCTGCTATACAGACTGGGCGCTGTTCAGAATGAAATCA
 GGTGGGAGGTACCCGGTTGTGGGGACGATATGTCTGACCCGCGACAAGTCTTACTTTAGT
- ThrSerThrTrpValLeuValGlyGlyValLeuAlaAlaLeuAlaAlaTyrCysLeuSer 2821 TCACGAGCACCTGGGTGCTCGTTGGCGGCGTGTTTGCCTGT AGTGCTCGTGGACCCACGAGCAACCGCCGCAGGACCGAAACCGGCGCATAACGGACA
- Thr6lyCysValValIleValGlyArgValValLeuSerGlyLysProAlaIleIlePro
 2881 CAACAGGCTGCGTGGTCATAGTGGGCAGGGTCGTCTTGTCCGGGAAGCCGGCAATCATAC
 GTTGTCCGACGCACCAGTATCACCCGTCCCAGCAGAACAGGCCCTTCGGCCGTTAGTATG

FIG. 26D

TyrileGluGlnGlyMetMetLeuAlaGluGlnPheLysGlnLysAlaLeuGlyLeuLeu
3001 CGTACATCGAGCAAGGGATGATGCTCGCCGAGCAGTTCAAGCAGAAGGCCCTCGGCCTCC
GCATGTAGCTCGTTCCCTACTACGAGCGGCTCGTCAAGTTCGTCTTCCGGGAGCCGGAGG

- GlnThrAlaSerArgGlnAlaGluValIleAlaProAlaValGlnThrAsnTrpGlnLys
 TGCAGACCGCGTCCCGTCAGGCAGAGGTTATCGCCCCTGTGTCCAGACCAACTGGCAAA
 ACGTCTGGCGCAGGGCAGTCCGTCTCCAATAGCGGGGACGACAGGTCTGGTTGACCGTTT
- LeuGluThrPheTrpAlaLysHisMetTrpAsnPheIleSerGlyIleGlnTyrLeuAla 3121 AACTCGAGACCTTCTGGGCGAAGCATATGTGGAACTTCATCAGTGGGATACAATACTTGG TTGAGCTCTGGAAGACCCGCTTCGTATACACCTTGAAGTAGTCACCCTATGTTATGAACC
- GlyLeuSerThrLeuProGlyAsnProAlaIleAlaSerLeuMetAlaPheThrAlaAla 3181 CGGGCTTGTCAACGCTGCCTGGTAACCCCGCCATTGCTTCATTGATGGCTTTTACAGCTG GCCCGAACAGTTGCGACGACCATTGGGGCGGTAACGAAGTAACTACCGAAAATGTCGAC
- AlaAlaGInLeuAlaAlaProGlyAlaAlaThrAlaPheValGlyAlaGlyLeuAlaGly
 TGGCTGCCCAGCTCGCCGCCCCCGGTGCCGCTACTGCCTTTGTGGGCGCTGGCTTAGCTG
 ACCGACGGGTCGAGCGGGGGCCCACGGCGATGACGGAAACACCCGCGAACCGAATCGAC
- AlaAlaIleGlySerValGlyLeuGlyLysValLeuIleAspIleLeuAlaGlyTyrGly
 3361 GCGCCGCCATCGGCAGTGTTGGACTGGGGAAGGTCCTCATAGACATCCTTGCAGGGTATG
 CGCGGCGGTAGCCGTCACAACCTGACCCCTTCCAGGAGTATCTGTAGGAACGTCCCATAC
- AlaGlyValAlaGlyAlaLeuValAlaPheLysIleMetSerGlyGluValProSerThr
 GCGCGGGCGTGGCGGAGCTCTTGTGGCATTCAAGATCATGAGCGGTGAGGTCCCCTCCA
 CGCGCCCGCACCGCCCTCGAGAACACCGTAAGTTCTAGTACTCGCCACTCCAGGGGAGGT
- GluAspLeuValAsnLeuLeuProAlaIleLeuSerProGlyAlaLeuValValGlyVal 3481 CGGAGGACCTGGTCAATCTACTGCCCGCCATCCTCTCGCCCGGAGCCCTCGTAGTCGGCG GCCTCCTGGACCAGTTAGATGACGGGCGGTAGGAGAGCGGGCCTCGGGAGCATCAGCCGC
- ValCysAlaAlaIleLeuArgArgHisValGlyProGlyGluGlyAlaValGlnTrpMet
 TGGTCTGTGCAGCAATACTGCGCCGGCACGTTGGCCCGGGCGAGGGGGCAGTGCAGTGGA
 ACCAGACACGTCGTTATGACGCGGCCGTCAACCGGGCCCGCTCCCCCGTCACGTCACCT
- AsnArgLeuIleAlaPheAlaSerArgGlyAsnHisValSerProThrHisTyrValPro
 TGAACCGGCTGATAGCCTTCGCCTCCCGGGGGAACCATGTTTCCCCCACGCACTACGTGC
 ACTTGGCCGACTATCGGAAGCGGAGGCCCCCTTGGTACAAAGGGGGTGCGTGATGCACG
- GluSerAspAlaAlaAlaArgValThrAlaIleLeuSerSerLeuThrValThrGlnLeu
 3661 CGGAGAGCGATGCAGCTGCCGGGTCACTGCCATACTCAGCAGCCTCACTGTAACCCAGC
 GCCTCTCGCTACGTCGACGGGCGCAGTGACGGTATGAGTCGTCGGAGTGACATTGGGTCG
- LeuArgArgLeuHisGlnTrpIleSerSerGluCysThrThrProCysSerGlySerTrp
 TCCTGAGGCGACTGCACCAGTGGATAAGCTCGGAGTGTACCACTCCATGCTCCGGTTCCT
 AGGACTCCGCTGACGTGGTCACCTATTCGAGCCTCACATGGTGAGGTACGAGGCCAAGGA
- LeuArgAspIleTrpAspTrpIleCysGluValLeuSerAspPheLysThrTrpLeuLys
 3781 GGCTAAGGGACATCTGGGACTGGATATGCGAGGTGTTGAGCGACTTTAAGACCTGGCTAA
 CCGATTCCCTGTAGACCCTGACCTATACGCTCCACAACTCGCTGAAATTCTGGACCGATT
- GlyValTrpArgValAspGlyIleMetHisThrArgCysHisCysGlyAlaGluIleThr 3901 AGGGGGTCTGGCGAGTGGACGCATCATGCACACTCGCTGCCACTGTGGAGCTGAGATCA TCCCCCAGACCGCTCACCTGCCGTAGTACGTGTGAGCGACGGTGACACCTCGACTCTAGT

FIG. 26E
SerGlyThrPheProlleAsnAlaTyrThrThrGlyProCysThrProLeuProAlaPro
4021 GGAGTGGGACCTTCCCCATTAATGCCTACACCACGGGCCCCTGTACCCCCCTTCCTGCGC
CCTCACCCTGGAAGGGGTAATTACGGATGTGGTGCCCGGGGACATGGGGGGAAGGACGCG

- ASNTYTTHYPHEA1aLeuTrpArgValSerAlaGluGluTyrValGluIleArgGlnVal
 4081 CGAACTACACGTTCGCGCTATGGAGGGTGTCTGCAGAGGAATATGTGGAGATAAGGCAGG
 GCTTGATGTGCAAGCGCGATACCTCCCACAGACGTCTCCTTATACACCTCTATTCCGTCC
- GlyAspPheHisTyrValThrGlyMetThrThrAspAsnLeuLysCysProCysGlnVal TGGGGGACTTCCACTACGTGACGGGTATGACTACTGACAATCTCAAATGCCCGTGCCAGG ACCCCTGAAGGTGATGCACTGCCCATACTGATGACTGTTAGAGTTTACGGGCACGGTCC
- ProSerProGluPhePheThrGluLeuAspGlyValArgLeuHisArgPheAlaProPro 4201 TCCCATCGCCCGAATTTTTCACAGAATTGGACGGGGTGCGCCTACATAGGTTTGCGCCCC AGGGTAGCGGGCTTAAAAAGTGTCTTAACCTGCCCCACGCGGATGTATCCAAACGCGGGG
- CyslysProLeuLeuArgGluGluValSerPheArgValGlyLeuHisGluTyrProVal 4261 CCTGCAAGCCCTTGCTGCGGGAGGAGGTATCATTCAGAGTAGGACTCCACGAATACCCGG GGACGTTCGGGAACGACGCCCTCCTCCATAGTAAGTCTCATCCTGAGGTGCTTATGGGCC
- GlySerGlnLeuProCysGluProGluProAspValAlaValLeuThrSerMetLeuThr 4321 TAGGGTCGCAATTACCTTGCGAGCCCGAACCGGACGTGGCCGTGTTGACGTCCATGCTCA ATCCCAGCGTTAATGGAACGCTCGGGCTTGGCCTGCACCGGCACAACTGCAGGTACGAGT
- ASPPROSERHISILETHRALAGIUALAALAGIYARGARGLEUALAARGGIYSERPROPRO
 4381 CTGATCCCTCCCATATAACAGCAGAGGCGGCCGGGCGAAGGTTGGCGAGGGGATCACCCC
 GACTAGGGAGGGTATATTGTCGTCTCCGCCGGCCCGCTTCCAACCGCTCCCCTAGTGGGG
- SerValAlaSerSerSerAlaSerGlnLeuSerAlaProSerLeuLysAlaThrCysThr 4441 CCTCTGTGGCCAGCTCCTCGGCTAGCCAGCTATCCGCTCCATCTCTCAAGGCAACTTGCA GGAGACACCGGTCGAGGAGCCGATCGGTCGATAGGCGAGGTAGAGAGTTCCGTTGAACGT
- AlaAsnHisAspSerProAspAlaGluLeuIleGluAlaAsnLeuLeuTrpArgGlnGlu 4501 CCGCTAACCATGACTCCCCTGATGCTGAGCTCATAGAGGCCAACCTCCTATGGAGGCAGG GGCGATTGGTACTGAGGGGACTACGACTCGAGTATCTCCGGTTGGAGGATACCTCCGTCC
- MetGlyGlyAsnIleThrArgValGluSerGluAsnLysValValIleLeuAspSerPhe 4561 AGATGGGCGCAACATCACCAGGGTTGAGTCAGAAAACAAAGTGGTGATTCTGGACTCCT TCTACCCGCCGTTGTAGTGGTCCCAACTCAGTCTTTTGTTTCACCACTAAGACCTGAGGA
- AspProLeuValAlaGluGluAspGluArgGluIleSerValProAlaGluIleLeuArg
 4621 TCGATCCGCTTGTGGCGGAGGAGGAGGACGAGCGGGAGATCTCCGTACCCGCAGAAATCCTGC
 AGCTAGGCGAACACCGCCTCCTCCTGCTCGCCCTCTAGAGGCATGGGCGTCTTTAGGACG
- LysSerArgArgPheAlaGlnAlaLeuProValTrpAlaArgProAspTyrAsnProPro 4681 GGAAGTCTCGGAGATTCGCCCAGGCCCTGCCCGTTTGGGCGCGGGCCGGACTATAACCCCC CCTTCAGAGCCTCTAAGCGGGTCCGGGACGGCCAAACCCGCGCCGGCCTGATATTGGGGG
- LeuValGluThrTrpLysLysProAspTyrGluProProValValHisGlyCysProLeu 4741 CGCTAGTGGAGACGTGGAAAAAGCCCGACTACGAACCACCTGTGGTCCATGGCTGTCCGC GCGATCACCTCTGCACCTTTTTCGGGCTGATGCTTGGTGGACACCAGGTACCGACAGGCG
- ProProProLysSerProProValProProArgLysLysArgThrValValLeuThr 4801 TTCCACCTCCAAAGTCCCCTCCTGTGCCTCCGCCTCGGAAGAAGCGGACGGTGGTCCTCA AAGGTGGAGGTTTCAGGGGAGGACACGGAGGCGGAGCCTTCTTCGCCTGCCACCAGGAGT
- GluSerThrLeuSerThrAlaLeuAlaGluLeuAlaThrArgSerPheGlySerSerSer 4861 CTGAATCAACCCTATCTACTGCCTTGGCCGAGCTCGCCACCAGAAGCTTTGGCAGCTCCT GACTTAGTTGGGATAGATGACGGAACCGGCTCGAGCGGTGGTCTTCGAAACCGTCGAGGA
- ProproAspSerAspAlaGluSerTyrSerSerMetProProLeuGluGlyGluProGly
 4981 GCCCCCCGACTCCGACGCTGAGTCCTATTCCTCCATGCCCCCCTGGAGGGGGAGCCTG
 CGGGGGGGCTGAGGCTGCGACTCAGGATAAGGAGGTACGGGGGGGACCTCCCCCTCGGAC

FIG. 26F

- AspProAspLeuSerAspGlySerTrpSerThrValSerSerGluAlaAsnAlaGluAsp 5041 GGGATCCGGATCTTAGCGACGGGTCATGGTCAACGGTCAGTAGTGAGGCCAACGCGGAGG CCCTAGGCCTAGAATCGCTGCCCAGTACCAGTTGCCAGTCACTCCGGTTGCGCCTCC
- ValValCysCysSerMetSerTyrSerTrpThrGlyAlaLeuValThrProCysAlaAla 5101 ATGTCGTGTGCTCAATGTCTTACTCTTGGACAGGCGCACTCGTCACCCCGTGCGCCG TACAGCACACGACGAGTTACAGAATGAGAACCTGTCCGCGTGAGCAGTGGGGCACGCGGC
- GluGluGlnLysLeuProIleAsnAlaLeuSerAsnSerLeuLeuArgHisHisAsnLeu 5161 CGGAAGAACAGAACTGCCCATCAATGCACTAAGCAACTCGTTGCTACGTCACCACAATT GCCTTCTTGTCTTTGACGGGTAGTTACGTGATTCGTTGAGCAACGATGCAGTGGTGTTAA
- ValtyrSerThrThrSerArgSerAlaCysGlnArgGlnLysLysValThrPheAspArg
 5221 TGGTGTATTCCACCACCTCACGCAGTGCTTGCCAAAGGCAGAAGAAAGTCACATTTGACA ACCACATAAGGTGGTGGAGTGCGTCACGAACGGTTTCCGTCTTCTTTCAGTGTAAACTGT
- LeuGlnValLeuAspSerHisTyrGlnAspValLeuLysGluValLysAlaAlaAlaSer 5281 GACTGCAAGTTCTGGACAGCCATTACCAGGACGTACTCAAGGAGGTTAAAGCAGCGGCGT <u>CTGACGTTCAAGACCTGTCGGTAATGGTCCTGCATGAGTTCCTCCAATTTCGTCGCCGCA</u>
- LysVallysAlaAsnLeu 5341 CAAAAGTGAAGGCTAACTTG GTTTTCACTTCCGATTGAAC

- GlyGlyGluAsnCysGlyTyrArgArgCysArgAlaSerGlyValLeuThrThrSerCys GGGGGGGGAAACTGCGGCTATCGCAGGTGCCGCGCAAGCGGCGTACTGACAACTAGCTGT CCCCCCCTCTTGACGCCGATAGCGTCCACGGCGCGTTCGCCGCATGACTGTTGATCGACA
- GlyAsnThrLeuThrCysTyrIleLysAlaArgAlaAlaCysArgAlaAlaGlyLeuGln GGTAACACCCTCACTTGTTACATCAAGGCCCGAGCAGCCTGTCGAGCCGCAGGGCTCCAG CCATTGTGGGAGTGAACAATGTAGTTCCGGGCTCGTCGGACAGCTCGGCGTCCCGAGGTC 61
- AspCysThrMetLeuValCysGlyAspAspLeuValValIleCysGluSerAlaGlyValGACTGCACCATGCTCGTGTGTGGCGACGACGTTAGTCGTTATCTGTGAAAGCGCGGGGGGTC 121 ĊŢĠĄĊĠŢĠĠŢĄĊĠĄĠĊĄĊĄĊĄĊĠĊŢĠĊŢĠĄĄŢĊĄĠĊĄĄŢĄĠĄĊĄĊŢŢŢĊĠĊĠĊĊĊĊĄĠ
- GlnGluAspAlaAlaSerLeuArgAlaPheThrGluAlaMetThrArgTyrSerAlaPro CAGGAGGACGCGGCGAGCCTGAGAGCCTTCACGGAGGCTATGACCAGGTACTCCGCCCCC GTCCTCCTGCGCCCCTCGGACTCTCGGAAGTGCCTCCGATACTGGTCCATGAGGCGGGGG 181
- ProGlyAspProProGlnProGluTyrAspLeuGluLeuIleThrSerCysSerSerAsn CCTGGGGACCCCCACAACCAGAATACGACTTGGAGCTCATAACATCATGCTCCTCCAAC GGACCCCTGGGGGGTGTTGGTCTTATGCTGAACCTCGAGTATTGTAGTACGAGGAGGTTG 241
- ValSerValAlaHisAspGlyAlaGlyLysArgValTyrTyrLeuThrArgAspProThr GTGTCAGTCGCCACGACGGCGCTGGAAAGAGGGTCTACTACCTCACCCGTGACCCTACA CACAGTCAGCGGGTGCTGCCGCGACCTTTCTCCCAGATGATGGAGTGGGCACTGGGATGT 301
- ThrProLeuAlaArgAlaAlaTrpGluThrAlaArgHisThrProValAsnSerTrpLeu ACCCCCTCGCGAGAGCTGCGTGGGAGACAGCAGACACTCCAGTCAATTCCTGGCTA TGGGGGGAGCGCTCTCGACGCACCCTCTGTCGTTCTGTGTGAGGTCAGTTAAGGACCGAT 361
- GlyAsnIleIleMetPheAlaProThrLeuTrpAla GGCAACATAATCATGTTTGCCCCCACACTGTGGGCG CCGTTGTATTAGTACAAACGGGGGTGTGACACCCGC 421

IlePheLysIleArgMetTyrValGlyGlyValGluHisArgLeuGluAlaAlaCysAsn 1 CCATATITAAAATCAGGATGTĀCGTGGGĀGGĞGTCGAACACAGĞCTGGAAGCTGCCTĞCA

TrpThrArgGlyGluArgCysAspLeuGluAspArgAspArgSerGluLeuSerProLeu TGACCTGCGCCCCCGCTTGCAACGCTAGACCTTCTGTCCCTGTCCAGGCTCGAGTCGGGCA 61 ACTGGACGCGGGCGAACGTTGCGATCTGGAAGACAGGGACAGGTCCGAGCTCAGCCCGT

LeuLeuThrThrThrGlnTrpGlnValLeuProCysSerPheThrThrLeuProAlaLeu ATGACGACTGGTGATGTCTCACCGTCCAGGAGGGCACAAGGAAGTGTTGGGATGGTCGGA 121 TACTGCTGACCACTACACAGTGGCAGGTCCTCCCGTGTTCCTTCACAACCCTACCAGCCT

SerThrGlyLeuIleHisLeuHisGlnAsnIleValAspValGlnTyrLeuTyrGlyVal TGTCCACCGGCCTCATCCACCTCCACCAGAACATTGTGGACGTGCAGTĀCTTGTĀCGGĞG <u> ACAGGTGGCCGGAGTAGGTGGAGGTGGTCTTGTAACACCTGCACGTCATGAACATGCCCC</u> 181

GlySerSerIleAlaSerTrpAlaIleLysTrpGluTyrValValLeuLeuPheLeuLeu ACCCCAGTTCGTAGCGCAGGACCCGGTAATTCACCCTCATGCAGCAAGAGGACAAGGAAG 241 TGGGGTCAAGCATCGCGTCCTGGGCCATTAAGTGGGAGTACGTCGTTCTCCTGTTCCTTC

LeuAlaAspAlaArgValCysSerCysLeuTrpMetMetLeuLeuIleSerGlnAlaGlu TGCTTGCAGACGCGCGCGTCTGCTCCTGCTTGTGGATGATGCTACTCATATCCCAAGCGG ACGAACGTCTGCGCGCGCGAGGACGACGAACACCTACTACGATGAGTATAGGGTTCGCC 301

AlaAlaLeuGluAsnLeuValIleLeuAsnAlaAlaSerLeuAlaGlyThrHisGlyLeu AGGCGGCTTTGGAGAACCTCGTAATACTTAATGCAGCATCCCTGGCCGGGACGCACGGTC TCCGCCGAAACCTCTTGGAGCATTATGAATTACGTCGTAGGGACCGGCCCTGCGTGCCAG 361

---Overlap with 14i----

Val

421 TTGTATC AACATAG

1	LeuLysGluValLysAlaAlaAlaSerLysValLysAlaAsnLeuLeuSerValGluGlu TGCTCAAGGAGGTTAAAGCAGCGGCGTCAAAAGTGAAGGCTAACTTGCTATCCGTAGAGG ACGAGTTCCTCCAATTTCGTCGCCGCAGTTTTCACTTCCGATTGAACGATAGGCATCTCC

- AlaCysSerLeuThrProProHisSerAlaLysSerLysPheGlyTyrGlyAlaLysAsp
 61 AAGCTTGCAGCCTGACGCCCCACACTCAGCCAAATCCAAGTTTGGTTATGGGGCAAAAG
 TTCGAACGTCGGACTGCGGGGGTGTGAGTCGGTTTAGGTTCAAACCAATACCCCGTTTTC
- GluAspAsnValThrProIleAspThrThrIleMetAlaLysAsnGluValPheCysVal 181 TGGAAGACAATGTAACACCAATAGACACTACCATCATGGCTAAGAACGAGGTTTTCTGCG ACCTTCTGTTACATTGTGGTTATCTGTGATGGTAGCCGATTCTTGCTCCAAAAGACGC
- GlnProGluLysGlyGlyArgLysProAlaArgLeuIleValPheProAspLeuGlyVal
 TTCAGCCTGAGAAGGGGGGTCGTAAGCCAGCTCGTCTCATCGTGTCCCCGATCTGGGCG
 AAGTCGGACTCTTCCCCCCAGCATTCGGTCGAGCAGAGTAGCACAAGGGGCTAGACCCGC
- ArgValCysGluLysMetAlaLeuTyrAspValValThrLysLeuProLeuAlaValMet
 TGCGCGTGTGCGAAAAGATGGCTTTGTACGACGTGGTTACAAAGCTCCCCTTGGCCGTGA
 ACGCGCACACGCTTTTCTACCGAAACATGCTGCACCAATGTTTCGAGGGGAACCGGCACT
- GlySerSerTyrGlyPheGlnTyrSerProGlyGlnArgValGluPheLeuValGlnAla TGGGAAGCTCCTACGGATTCCAATACTCACCAGGACAGCGGGTTGAATTCCTCGTGCAAG ACCCTTCGAGGATGCCTAAGGTTATGAGTGGTCCTGTCGCCCAACTTAAGGAGCACGTTC
- TrpLysSerLysLysThrProMetGlyPheSerTyrAspThrArgCysPheAspSerThr
 421 CGTGGAAGTCCAAGAAAACCCCAATGGGGTTCTCGTATGATACCCGCTGCTTTGACTCCA
 GCACCTTCAGGTTCTTTTGGGGTTACCCCAAGAGCATACTATGGGCGACGAAACTGAGGT
- ValThrGluSerAspileArgThrGluGluAla 481 CAGTCACTGAGAGCGACATCCGTACGGAGGAGGCA GTCAGTGACTCTCGCTGTAGGCATGCCTCCTCCGT

GluPheLeuValGlnAlaTrpLysSerLysLysThrProMetGlyPheSerTyrAspThr GAATTCCTCGTGCAAGCGTGGAAGTCCAAGAAAACCCCAATGGGGTTCTCGTATGATACC CTTAAGGAGCACGTTCGCACCTTCAGGTTCTTTTGGGGTTACCCCAAGAGCATACTATGC -----Overlap with 35f------ArgCysPheAspSerThrValThrGluSerAspIleArgThrGluGluAlaIleTyrGln CGČTĞCTTTGAČTCCACAGTCACTGAGAGCGAČATCCGŤACGGAGGAGGCAATCTÂCCAA 61 GCGACGAAACTGAGGTGTCAGTGACTCTCGCTGTAGGCATGCCTCCTCCGTTAGATGGTT CysCysAspLeuAspProGlnAlaArgValAlaIleLysSerLeuThrGluArgLeuTyr 121 TĠŢŢĠŢĠĂĊĊŢĊĠĂĊĊĊĊAĄĠĊĊĠĊĠŢĠĠĊĊĄŢĊĄĂĠŢĊĊŢĊĄĊĠĄĠĄĠĠĊŢŢŢĂŢ ACAACACTGGAGCTGGGGGTTCGGGCGCACCGGTAGTTCAGGGAGTGGCTCTCCGAAATA ValGlyGlyProLeuThrAsnSerArgGlyGluAsnCysGlyTyrArgArgCysArgAla GTTGGGGGCCCTCTTACCAATTCAAGGGGGGAGAACTGCGGCTATCGCAGGTGCCGCGCG 181 CAACCCCGGGAGAATGGTTAAGTTCCCCCCTCTTGACGCCGATAGCGTCCACGGCGCGC SerGlyValLeuThrThrSerCysGlyAsnThrLeuThrCysTyrIleLysAlaArgAla **AGCGGCGTACTGACAACTAGCTGTGGTAACACCCTCACTTGCTACATCAAGGCCCGGGCA** TCGCCGCATGACTGTTGATCGACACCATTGTGGGAGTGAACGATGTAGTTCCGGGCCCGT

AlaCysArgAlaAlaGlyLeuGlnAspCysThrMetLeuValCysGlyAspAspLeuVal
301 GCCTGTCGAGCCGCAGGGCTCCAGGACTGCACCATGCTCGTGTGTGGCGACGACTTAGTC

CGGACAGCTCGGCGTCCCGAGGTCCTGACGTGGTACGAGCACACCGCTGCTGAATCAG

VallleCysGluSerAlaGlyValGlnGluAspAlaAla 361 GTTATCTGTGAAAGCGCGGGGGTCCAGGAGGACGCGGCGAG CAATAGACACTTTCGCGCCCCCAGGTCCTCCTGCGCCGCTC

ArgAspGlnLeuGluGlnAlaLeuAspCysGluIleTyrGlyAlaCysTyrSerIleGlu AlaProThrLeuTrpAlaArgMetIleLeuMetThrHisPhePheSerValLeuIleAla AlaTrpGluThrAlaArgHisThrProValAsnSerTrpLeuGlyAsnIleIleMetPhe GlyAlaGlyLysArgValTyrTyrLeuThrArgAspProThrThrProLeuAlaArgAla TGCCCCCACACTGTGGGCGAGGATGATACTGATGACCCATTTCTTTAGCGTCCTTATAGC CAGGGACCAGCTTGAACAGGCCCTCGATTGCGAGATCTACGGGGCCTGCTACTCCATAGA GTCCCTGGTCGAACTTGTCCGGGAGCTAACGCTCTAGATGCCCCGGACGATGAGGTATCT **ACGGGGGTGTGACACCCGCTCCTACTATGACTACTGGGTAAAGAAATCGCAGGAATATCG** TGCGTGGGAGACAGCAAGACACACTCCAGTCAATTCCTGGCTAGGCAACATAATCATGTT **ACGCACCCTCTGTCTGTGTGTGTCAGTTAAGGACCGATCCGTTGTATTAGTACAA** CGGCGCTGGĀAĀGAGGGTCTĀCTĀCCTCACCCGTGACCCTACAACCCCCCCTCGCGAGAGC --Overlap with 26g--181 121 19

ACCACTTGATCTACCTCCAATCATTCAAAGACTC TGGTGAACTAGATGGAGGTTAGTAAGTTTCTGAG

241

ProLeuAspLeuProProllelleGlnArqLeu

OIPE JAN 27 2003 1

FIG. 32A

- TrpThrArgGlyGluArgCysAspLeuGluAspArgAspArgSerGluLeuSerProLeu
 61 ACTGGACGCGGGGCGAACGTTGCGATCTGGAAGACAGGGACAGGTCCGAGCTCAGCCCGT
 TGACCTGCGCCCCGCTTGCAACGCTAGACCTTCTGTCCCTGTCCAGGCTCGAGTCGGGCA
- LeuLeuThrThrThrGlnTrpGlnValLeuProCysSerPheThrThrLeuProAlaLeu
 121 TACTGCTGACCACTACACAGTGGCAGGTCCTCCCGTGTTCCTTCACAACCCTACCAGCCT
 ATGACGACTGGTGATGTCACCGTCCAGGAGGGCACAAGGAAGTGTTGGGATGGTCGGA
- SerThrGlyLeuIleHisLeuHisGlnAsnIleValAspValGlnTyrLeuTyrGlyVal
 181 TGTCCACCGGCCTCATCCACCTCCACCAGAACATTGTGGACGTGCAGTACTTGTACGGGG
 ACAGGTGGCCGGAGTAGGTGGAGGTGGTCTTGTAACACCTGCACGTCATGAACATGCCCC
- GlySerSerIleAlaSerTrpAlaIleLysTrpGluTyrValValLeuLeuPheLeuLeu
 241 TGGGGTCAAGCATCGCGTCCTGGGCCATTAAGTGGGAGTACGTCGTTCCTTC
 ACCCCAGTTCGTAGCGCAGGACCCGGTAATTCACCCTCATGCAGCAAGAGGACAAGGAAG
- LeuAlaAspAlaArgValCysSerCysLeuTrpMetMetLeuLeuIleSerGlnAlaGlu 301 TGCTTGCAGACGCGCGCGTCTGCTCCTGCTTGTGGATGATGCTACTCATATCCCAAGCGG ACGAACGTCTGCGCGCGCAGACGACGACCACCTACTACGATGAGTATAGGGTTCGCC
- AlaAlaLeuGluAsnLeuValIleLeuAsnAlaAlaSerLeuAlaGlyThrHisGlyLeu 361 AGGCGGCTTTGGAGAACCTCGTAATACTTAATGCAGCATCCCTGGCCGGGACGCACGGTC TCCGCCGAAACCTCTTGGAGCATTATGAATTACGTCGTAGGGACCGGCCCTGCGTGCCAG
- ValSerPheLeuValPhePheCysPheAlaTrpTyrLeuLysGlyLysTrpValProGly
 421 TTGTATCCTTCCTCGTGTTCTTCTGCTTTGCATGGTATTTGAAGGGTAAGTGGGTGCCCG
 AACATAGGAAGGAGCACAAGAAGACGAAACGTACCATAAACTTCCCATTCACCCACGGGC
- AlaValTyrThrPheTyrGlyMetTrpProLeuLeuLeuLeuLeuLeuLeuAlaLeuProGln GAGCGGTCTACACCTTCTACGGGATGTGGCCTCTCCTCCTGCTCCTGTTGGCGTTGCCCC CTCGCCAGATGTGGAAGATGCCCTACACCGGAGAGGAGGACGACGACCGCAACGGGG
- ArgAlaTyrAlaLeuAspThrGluValAlaAlaSerCysGlyGlyValValLeuValGly
 541 AGCGGGCGTACGCGCTGGACACGGAGGTGGCCGCGTCGTGTGGCGGTGTTGTTCTCGTCG
 TCGCCCGCATGCGCGACCTGTGCCTCCACCGGCGCACACCACCACCACAACAAGAGCAGC
- LeuMetAlaLeuThrLeuSerProTyrTyrLysArgTyrIleSerTrpCysLeuTrpTrp 601 GGTTGATGGCGCTGACTCTGTCACCATATTACAAGCGCTATATCAGCTGGTGCTTGTGGT CCAACTACCGCGACTGAGACAGTGGTATAATGTTCGCGATATAGTCGACCACGAACACCA
- ValArgGlyGlyArgAspAlaVallleLeuLeuMetCysAlaValHisProThrLeuVal 721 ACGTCCGAGGGGGCGCGACGCCGTCATCTTACTCATGTGTGCTGTACACCCGACTCTGG TGCAGGCTCCCCCCGCGCTGCGGCAGTAGAATGAGTACACACGACATGTGGGCTGAGACC
- PheAspIleThrLysLeuLeuLeuAlaValPheGlyProLeuTrpIleLeuGlnAlaSer
 781 TATTTGACATCACCAAATTGCTGCTGGCCGTCTTCGGACCCCTTTGGATTCTTCAAGCCA
 ATAAACTGTAGTGGTTTAACGACGACCGGCAGAAGCCTGGGGAAACCTAAGAAGTTCGGT
- LeuLeuLysValProTyrPheValArgValGlnGlyLeuLeuArgPheCysAlaLeuAla 841 GTTTGCTTAAAGTACCCTACTTTGTGCGCGTCCAAGGCCTTCTCCGGTTCTGCGCGTTAG CAAACGAATTTCATGGGATGAAACACGCGCAGGTTCCGGAAGAGGCCAAGACGCGCAATC

FIG. 32B

- ArgLysMetIleGlyGlyHisTyrValGlnMetValIleIleLysLeuGlyAlaLeuThr CGCGGAAGATGATCGGAGGCCATTACGTGCAAATGGTCATCATTAAGTTAGGGGCGCTTA GCGCCTTCTACTAGCCTCCGGTAATGCACGTTTACCAGTAGTAATTCAATCCCCGCGAAT
- GlyThrTyrValTyrAsnHisLeuThrProLeuArgAspTrpAlaHisAsnGlyLeuArg
 961 CTGGCACCTATGTTTATAACCATCTCACTCCTCTTCGGGACTGGGCGCACAACGGCTTGC
 GACCGTGGATACAAATATTGGTAGAGTGAGGAGAAGCCCTGACCCGCGTGTTGCCGAACG
- AspleuAlaValAlaValGluProValValPheSerGlnMetGluThrLysLeuIleThr GAGATCTGGCCGTGGCTGTAGAGCCAGTCGTCTTCTCCCAAATGGAGACCAAGCTCATCA CTCTAGACCGGCACCGACATCTCGGTCAGCAGAAGAGGGTTTACCTCTGGTTCGAGTAGT
- TrpGlyAlaAspThrAlaAlaCysGlyAspIleIleAsnGlyLeuProValSerAlaArg 1081 CGTGGGGGCAGATACCGCCGCGTGCGGTGACATCATCAACGGCTTGCCTGTTTCCGCCC GCACCCCCGTCTATGGCGGCGCACGCCACTGTAGTAGTTGCCGAACGGACAAAGGCGGG
- ArgGlyArgGluIleLeuLeuGlyProAlaAspGlyMetValSerLysGlyTrpArgLeu
 1141 GCAGGGGCCGGGAGATACTGCTCGGGCCAGCCGATGGAATGGTCTCCAAGGGGTGGAGGT
 CGTCCCCGGCCCTCTATGACGAGCCCGGTCGCTACCTTACCAGAGGTTCCCCACCTCCA
- LeuAlaProIleThrAlaTyrAlaGlnGlnThrArgGlyLeuLeuGlyCysIleIleThr TGCTGGCGCCCATCACGGCGTACGCCCAGCAGACAAGGGGCCTCCTAGGGTGCATAATCA ACGACCGCGGGTAGTGCCGCATGCGGGTCGTCTGTTCCCCGGAGGATCCCACGTATTAGT
- SerLeuThrGlyArgAspLysAsnGlnValGluGlyGluValGlnIleValSerThrAla 1261 CCAGCCTAACTGGCCGGGACAAAAACCAAGTGGAGGGTGAGGTCCAGATTGTGTCAACTG GGTCGGATTGACCGGCCCTGTTTTTGGTTCACCTCCCACTCCAGGTCTAACACAGTTGAC
- AlaGInThrPheLeuAlaThrCysIleAsnGlyValCysTrpThrValTyrHisGlyAla CTGCCCAAACCTTCCTGGCAACGTGCATCAATGGGGTGTGCTGGACTGTCTACCACGGGG GACGGGTTTGGAAGGACCGTTGCACGTAGTTACCCCACACGACCTGACAGATGGTGCCCC
- GlyThrArgThrIleAlaSerProLysGlyProValIleGlnMetTyrThrAsnValAsp CCGGAACGAGGACCATCGCGTCACCCAAGGGTCCTGTCATCCAGATGTATACCAATGTAG GGCCTTGCTCCTGGTAGCGCAGTGGGTTCCCAGGACAGTAGGTCTACATATGGTTACATC
- GlnAspLeuValGlyTrpProAlaProGlnGlySerArgSerLeuThrProCyrThrCys 1441 ACCAAGACCTTGTGGGCTGGCCCGCTCCGCAAGGTAGCCGCTCATTGACACCCTGCACTT TGGTTCTGGAACACCCGACCGGGCGAGGCGTTCCATCGGCGAGTAACTGTGGGACGTGAA
- GlySerSerAspLeuTyrLeuValThrArgHisAlaAspValIleProValArgArgArg
 1501 GCGGCTCCTCGGACCTTTACCTGGTCACGAGGCACGCCGATGTCATTCCCGTGCGCCGGC
 CGCCGAGGAGCCTGGAAATGGACCAGTGCTCCGTGCGGCTACAGTAAGGGCACGCGGCCG
- GlyAspSerArgGlySerLeuLeuSerProArgProIleSerTyrLeuLysGlySerSer GGGGTGATAGCAGGGGCAGCCTGCTGTCGCCCCGGCCCATTTCCTACTTGAAAGGCTCCT CCCCACTATCGTCCCCGTCGGACGACAGCTGGGCCGGGTAAAGGATGAACTTTCCGAGGA
- GlyGlyProLeuLeuCysProAlaGlyHisAlaValGlyIlePheArgAlaAlaValCys
 CGGGGGGTCCGCTGTTGTGCCCCGCGGGGCACGCCGTGGGCATATTTAGGGCCGCGGTGT
 GCCCCCAGGCGACAACACGGGGCGCCCCGTGCGGCACCCGTATAAATCCCGGCGCCACA
- ThrArgGlyValAlaLysAlaValAspPheIleProValGluAsnLeuGluThrThrMet
 GCACCCGTGGAGTGGCTAAGGCGGTGGACTTTATCCCTGTGGAGAACCTAGAGACAACCA
 CGTGGGCACCTCACCGATTCCGCCACCTGAAATAGGGACACCTCTTGGATCTCTGTTGGT

FIG. 32C

- ArgSerProValPheThrAspAsnSerSerProProValValProGlnSerPheGlnVal
 1741 TGAGGTCCCCGGTGTTCACGGATAACTCCTCTCCACCAGTAGTGCCCCAGAGCTTCCAGG
 ACTCCAGGGGCCACAAGTGCCTATTGAGGAGAGGTGGTCATCACGGGGTCTCGAAGGTCC
- AlaHisLeuHisAlaProThrGlySerGlyLysSerThrLysValProAlaAlaTyrAla 1801 TGGCTCACCTCCATGCTCCCACAGGCAGCGGCAAAAGCACCAAGGTCCCGGCTGCATATG ACCGAGTGGAGGTACGAGGGTGTCCGTCGCCGTTTTCGTGGTTCCAGGGCCGACGTATAC
- AlaGlnGlyTyrLysValLeuValLeuAsnProSerValAlaAlaThrLeuGlyPheGly
 1861 CAGCTCAGGGCTATAAGGTGCTAGTACTCAACCCCTCTGTTGCTGCAACACTGGGCTTTG
 GTCGAGTCCCGATATTCCACGATCATGAGTTGGGGAGACAACGACGTTGTGACCCGAAAC
- AlaTyrMetSerLysAlaHisGlyIleAspProAsnIleArgThrGlyValArgThrIle 1921 GTGCTTACATGTCCAAGGCTCATGGGATCGATCCTAACATCAGGACCGGGGTGAGAACAA CACGAATGTACAGGTTCCGAGTACCCTAGCTAGGATTGTAGTCCTGGCCCCACTCTTGTT
- ThrThrGlySerProIleThrTyrSerThrTyrGlyLysPheLeuAlaAspGlyGlyCys
 1981 TTACCACTGGCAGCCCCATCACGTACTCCACCTACGGCAAGTTCCTTGCCGACGGCGGGT
 AATGGTGACCGTCGGGGTAGTGCATGAGGTGGATGCCGTTCAAGGAACGGCTGCCGCCCA
- SerGlyGlyAlaTyrAspIleIleIleCysAspGluCysHisSerThrAspAlaThrSer
 CGAGCCCCCGGGATACTATTATTATAACACTGCTCCACGGTGCCCCCACGGTGCCACAC
 CGAGCCCCCGCGAATACTGTATTATTAAACACTGCTCACGGTGAGGTGCCCTACGGTGTA
- IleLeuGlyIleGlyThrValLeuAspGlnAlaGluThrAlaGlyAlaArgLeuValVal CCATCTTGGGCATCGGCACTGTCCTTGACCAAGCAGAGACTGCGGGGGGCGAGACTGGTTG GGTAGAACCCGTAGCCGTGACAGGAACTGGTTCGTCTCTGACCCCCCGCTCTGACCAAC
- LeuAlaThrAlaThrProProGlySerValThrValProHisProAsnIleGluGluVal
 TGCTCGCCACCGCCACCCCTCCGGGCTCACTGTGCCCCATCCCAACATCGAGGAGG
 ACGAGCGGTGGCGGTGGGGAGGCCCGAGGCAGTGACACGGGGTAGGGTTGTAGCTCCTCC
- AlaLeuSerThrThrGlyGluIleProPheTyrGlyLysAlaIleProLeuGluValIle TTGCTCTGTCCACCACCGGAGAGATCCCTTTTTACGGCAAGGCTATCCCCCTCGAAGTAA AACGAGACAGGTGGTGGCCTCTCTAGGGAAAAATGCCGTTCCGATAGGGGGAGCTTCATT
- LysLeuValAlaLeuGlyIleAsnAlaValAlaTyrTyrArgGlyLeuAspValSerVal CAAAGCTGGTCGCATTGGGCATCAATGCCGTGGCCTACTACCGCGGTCTTGACGTGTCCG GTTTCGACCAGCGTAACCCGTAGTTACGGCACCGGATGATGGCGCCAGAACTGCACAGGC
- IleProThrSerGlyAspValValValAlaThrAspAlaLeuMetThrGlyTyrThr
 TCATCCCGACCAGCGGCGATGTTGTCGTCGTCGTCGACCATGCCCTCATGACCGGCTATA
 AGTAGGGCTGGTCGCCGCTACAACAGCAGCACCGTTGGCTACAGGAGTACTGGCCGATAT
- GlyAspPheAspSerValileAspCysAsnThrCysValThrGlnThrValAspPheSer CCGGCGACTTCGACTCGGTGATAGACTGCAATACGTGTCACCCAGACAGTCGATTTCA GGCCGCTGAAGCTGAGCCACTATCTGACGTTATGCACACAGTGGGTCTGTCAGCTAAAGT
- LeuAspProThrPheThrIleGluThrIleThrLeuProGlnAspAlaValSerArgThr GCCTTGACCCTACCTTCACCATTGAGACAATCACGCTCCCCAGGATGCTGTCTCCCGCA CGGAACTGGGATGGAAGTGGTAACTCTGTTAGTGCGAGGGGGTCCTACGACAGAGGGCGT
- GlnArgArgGlyArgThrGlyArgGlyLysProGlyIleTyrArgPheValAlaProGly
 CTCAACGTCGGGGCAGGACTGGCAGGGGAAGCCAGGCATCTACAGATTTGTGGCACCGG
 GAGTTGCAGCCCGTCCTGACCGTCCCCCTTCGGTCCGTAGATGTCTAAACACCGTGGCC
- GluArgProSerGlyMetPheAspSerSerValLeuCysGluCysTyrAspAlaGlyCys 2641 GGGAGCGCCCTCCGGCATGTTCGACTCGTCCTCTGTGAGTGCTATGACGCAGGCT CCCTCGCGGGGAGGCCGTACAAGCTGAGCAGGCAGGAGACACTCACGATACTGCGTCCGA
- AlaTrpTyrGluLeuThrProAlaGluThrThrValArgLeuArgAlaTyrMetAsnThr 2701 GTGCTTGGTATGAGCTCACGCCCGCCGAGACTACAGTTAGGCTACGAGCGTACATGAACA CACGAACCATACTCGAGTGCGGGCGCTCTGATGTCAATCCGATGCTCGCATGTACTTGT

FIG. 32D

- ProglyLeuProvalCysGlnAspHisLeuGluPheTrpGluGlyValPheThrGlyLeu
 2761 CCCCGGGGCTTCCCGTGTGCCAGGACCATCTTGAATTTTGGGAGGGCGTCTTTACAGGCC
 GGGGCCCCGAAGGGCACACGGTCCTGGTAGAACTTAAAACCCTCCCGCAGAAATGTCCGG
- LeuValAlaTyrGlnAlaThrValCysAlaArgAlaGlnAlaProProProSerTrpAsp 2881 ACCTGGTAGCGTACCAAGCCACCGTGTGCGCTAGGGCTCAAGCCCCTCCCCCATCGTGGG TGGACCATCGCATGGTTCGGTGGCACACGCGATCCCGAGTTCGGGGAGGGGGTAGCACCC
- GlnMetTrpLysCysLeuIleArgLeuLysProThrLeuHisGlyProThrProLeuLeu 2941 ACCAGATGTGGAAGTGTTTGATTCGCCTCAAGCCCACCCTCCATGGGCCAACACCCCTGC TGGTCTACACCTTCACAAACTAAGCGGAGTTCGGGTGGGAGGTACCCGGTTGTGGGGACG
- TyrArgLeuGlyAlaValGlnAsnGluIleThrLeuThrHisProValThrLysTyrIle 3001 TATACAGACTGGGCGCTGTTCAGAATGAAATCACCCTGACGCACCCAGTCACCAAATACA ATATGTCTGACCCGCGACAAGTCTTACTTTAGTGGGACTGCGTGGGTCAGTGGTTTATGT
- MetThrCysMetSerAlaAspLeuGluValValThrSerThrTrpValLeuValGlyGly
 3061 TCATGACATGCATGTCGGCCGACCTGGAGGTCGTCACGAGCACCTGGGTGCTCGTTGGCG
 AGTACTGTACGTACAGCCGGCTGGACCTCCAGCAGTGCTCGTGGACCCACGAGCAACCGC
- ValleuAlaAlaLeuAlaAlaTyrCysLeuSerThrGlyCysValValIleValGlyArg 3121 GCGTCCTGGCTGCTTTTGGCCGCGTATTGCCTGTCAACAGGCTGCGTGGTCATAGTGGGCA CGCAGGACCGACGAAACCGGCGCATAACGGACAGTTGTCCGACGCACCAGTATCACCCGT
- ValValLeuSerGlyLysProAlaIleIleProAspArgGluValLeuTyrArgGluPhe 3181 GGGTCGTCTTGTCCGGGAAGCCGGCAATCATACCTGACAGGGAAGTCCTCTACCGAGAGT CCCAGCAGAACAGGCCCTTCGGCCGTTAGTATGGACTGTCCCTTCAGGAGATGGCTCTCA
- AspGluMetGluGluCysSerGlnHisLeuProTyrIleGluGlnGlyMetMetLeuAla TCGATGAGATGGAAGAGTGCTCTCAGCACTTACCGTACATCGAGCAAGGGATGATGCTCG AGCTACTCTACCTTCTCACGAGGAGTCGTGAATGGCATGTAGCTCGTTCCCTACTACGAGC
- GluGlnPheLysGlnLysAlaLeuGlyLeuLeuGlnThrAlaSerArgGlnAlaGluVal 3301 CCGAGCAGTTCAAGCAGAAGGCCCTCGGCCTCCTGCAGACCGCGTCCCGTCAGGCAGAGG GCTCGTCAAGTTCGTCTTCCGGGAGCCGGAGGACGTCTGGCGCAGGGCAGTCCGTCTCC
- IleAlaProAlaValGlnThrAsnTrpGlnLysLeuGluThrPheTrpAlaLysHisMet 3361 TTATCGCCCCTGCTGTCCAGACCAACTGGCAAAAACTCGAGACCTTCTGGGCGAAGCATA AATAGCGGGGACGACAGGTCTGGTTGACCGTTTTTGAGCTCTGGAAGACCCGCTTCGTAT
- TrpAsnPheIleSerGlyIleGlnTyrLeuAlaGlyLeuSerThrLeuProGlyAsnPro 3421 TGTGGAACTTCATCAGTGGGATACAATACTTGGCGGGCTTGTCAACGCTGCCTGGTAACC ACACCTTGAAGTAGTCACCCTATGTTATGAACCGCCCGAACAGTTGCGACGGACCATTGG
- AlalleAlaSerLeuMetAlaPheThrAlaAlaValThrSerProLeuThrThrSerGln CCGCCATTGCTTCATTGATGGCTTTTACAGCTGCTGTCACCAGCCCACTAACCACTAGCC GGCGGTAACGAAGTAACTACCGAAAATGTCGACGACAGTGGTCGGGTGATTGGTGATCGG
- ThrLeuLeuPheAsnIleLeuGlyGlyTrpValAlaAlaGlnLeuAlaAlaProGlyAla 3541 AAACCCTCCTCTTCAACATATTGGGGGGGGTGGCTGCCCAGCTCGCCGCCCCCGGTG TTTGGGAGGAGAAGTTGTATAACCCCCCCACCCACCGACGGGTCGAGCGGCGGGGGCCAC
- AlaThrAlaPheValGlyAlaGlyLeuAlaGlyAlaAlaIleGlySerValGlyLeuGly
 3601 CCGCTACTGCCTTTGTGGGCGCTGGCTTAGCTGGCGCCGCCATCGGCAGTGTTGGACTGG
 GGCGATGACGGAAACACCCGCGACCGAATCGACCGCGGCGGTAGCCGTCACAACCTGACC
- PheLysIleMetSerGlyGluValProSerThrGluAspLeuValAsnLeuLeuProAla 3721 CATTCAAGATCATGAGCGGTGAGGTCCCCTCCACGGAGGACCTGGTCAATCTACTGCCCG GTAAGTTCTAGTACTCGCCACTCCAGGGGAGGTGCCTCCTGGACCAGTTAGATGACGGGC

FIG. 32E

- IleLeuSerProGlyAlaLeuValValGlyValValCysAlaAlaIleLeuArgArgHis
 3781 CCATCCTCTCGCCCGGAGCCCTCGTAGTCGGCGTGGTCTGTGCAGCAATACTGCGCCGGC
 GGTAGGAGAGCGGGCCTCGGGAGCATCAGCCGCACCAGACACGTCGTTATGACGCGGCCG
- GlyAsnHisValSerProThrHisTyrValProGluSerAspAlaAlaAlaArgValThr 3901 GGGGGAACCATGTTTCCCCCACGCACTACGTGCCGGAGAGCGATGCAGCTGCCCGCGTCA CCCCCTTGGTACAAAGGGGGTGCGTGATGCACGGCCTCTCGCTACGTCGACGGCGCAGT
- AlaileLeuSerSerLeuThrValThrGlnLeuLeuArgArgLeuHisGlnTrpIleSer 3961 CTGCCATACTCAGCAGCCTCACTGTAACCCAGCTCCTGAGGCGACTGCACCAGTGGATAA GACGGTATGAGTCGTCGGAGTGACATTGGGTCGAGGACTCCGCTGACGTGGTCACCTATT
- SerGluCysThrThrProCysSerGlySerTrpLeuArgAspIleTrpAspTrpIleCys
 4021 GCTCGGAGTGTACCACTCCATGCTCCGGTTCCTGGCTAAGGGACATCTGGGACTGGATAT
 CGAGCCTCACATGGTGAGGTACGAGGCCAAGGACCGATTCCCTGTAGACCCTGACCTATA
- GluValLeuSerAspPheLysThrTrpLeuLysAlaLysLeuMetProGlnLeuProGly
 4081 GCGAGGTGTTGAGCGACTTTAAGACCTGGCTAAAAGCTAAGCTCATGCCACAGCTGCCTG
 CGCTCCACAACTCGCTGAAATTCTGGACCGATTTTCGATTCGAGTACGGTGTCGACGGAC
- IleProPheValSerCysGlnArgGlyTyrLysGlyValTrpArgValAspGlyIleMet
 4141 GGATCCCCTTTGTGTCCTGCCAGCGCGGGTATAAGGGGGTCTGGCGAGTGGACGGCATCA
 CCTAGGGGAAACACAGGACGGTCGCGCCCATATTCCCCCAGACCGCTCACCTGCCGTAGT
- HISTHRATGCYSHISCYSGIYAlaGluIleThrGlyHisValLysAsnGlyThrMetArg
 4201 TGCACACTCGCTGCCACTGTGGAGCTGAGATCACTGGACATGTCAAAAACGGGACGATGA
 ACGTGTGAGCGACGGTGACACCTCGACTCTAGTGACCTGTACAGTTTTTTGCCCTGCTACT
- IleValGlyProArgThrCysArgAsnMetTrpSerGlyThrPheProIleAsnAlaTyr 4261 GGATCGTCGGTCCTAGGACCTGCAGGAACATGTGGAGTGGGACCTTCCCCATTAATGCCT CCTAGCAGCCAGGATCCTGGACGTCCTTGTACACCTCACCCTGGAAGGGGTAATTACGGA
- ThrThrGlyProCysThrProLeuProAlaProAsnTyrThrPheAlaLeuTrpArgVal
 4321 ACACCACGGGCCCCTGTACCCCCCTTCCTGCGCCGAACTACACGTTCGCGCTATGGAGGG
 TGTGGTGCCCGGGGACATGGGGGGAAGGACGCGGCTTGATGTGCAAGCGCGATACCTCCC
- SeralagiuGluTyrValGluIleArgGlnValGlyAspPheHisTyrValThrGlyMet
 4381 TGTCTGCAGAGGAATATGTGGAGGATAAGGCAGGTGGGGGGACTTCCACTACGTGACGGGTA
 ACAGACGTCTCCTTATACACCTCTATTCCGTCCACCCCCTGAAGGTGATGCACTGCCCAT
- ThrThrAspAsnLeuLysCysProCysGlnValProSerProGluPhePheThrGluLeu
 4441 TGACTACTGACAATCTCAAATGCCCGTGCCAGGTCCCATCGCCCGAATTTTTCACAGAAT
 ACTGATGACTGTTAGAGTTTACGGGCACGGTCCAGGGTAGCGGGCTTAAAAAGTGTCTTA
- ASPG1yValArgLeuHisArgPheAlaProProCysLysProLeuLeuArgG1uG1uVal
 TGGACGGGGTGCGCCTACATAGGTTTGCGCCCCCTGCAAGCCCTTGCTGCGGGAGGAGG
 ACCTGCCCCACGCGGATGTATCCAAACGCGGGGGACGTTCGGGAACGACGCCCTCCTCC
- SerPheArgValGlyLeuHisGluTyrProValGlySerGlnLeuProCysGluProGlu
 4561 TATCATTCAGAGTAGGACTCCACGAATACCCGGTAGGGTCGCAATTACCTTGCGAGCCCG
 ATAGTAAGTCTCATCCTGAGGTGCTTATGGGCCATCCCAGCGTTAATGGAACGCTCGGGC
- AlaGlyArgArgLeuAlaArgGlySerProProSerValAlaSerSerSerAlaSerGln
 4681 CGGCCGGGCGAAGGTTGGCGAGGGGATCACCCCCCTCTGTGGCCAGCTCCTCGGCTAGCC
 GCCGGCCCGCTTCCAACCGCTCCCCTAGTGGGGGAGACACCGGTCGAGGAGCCGATCGG
- LeuSerAlaProSerLeuLysAlaThrCysThrAlaAsnHisAspSerProAspAlaGlu
 4741 AGCTATCCGCTCCATCTCTCAAGGCAACTTGCACCGCTAACCATGACTCCCCTGATGCTG
 TCGATAGGCGAGGTAGAGAGTTCCGTTGAACGTGGCGATTGGTACTGAGGGGACTACGAC

FIG. 32F

LeulleGluAlaAsnLeuLeuTrpArgGlnGluMetGlyGlyAsnIleThrArgValGlu
4801 AGCTCATAGAGGCCAACCTCCTATGGAGGCAGGAGATGGGCGGCAACATCACCAGGGTTG
TCGAGTATCTCCGGTTGGAGGATACCTCCGTCCTCTACCCGCCGTTGTAGTGGTCCCAAC

- SerGluAsnLysValValIleLeuAspSerPheAspProLeuValAlaGluGluAspGlu 4861 AGTCAGAAAACAAAGTGGTGATTCTGGACTCCTTCGATCCGCTTGTGGCGGAGGAGGACG TCAGTCTTTTGTTTCACCACTAAGACCTGAGGAAGCTAGGCGAACACCGCCTCCTCCTGC
- ArgGluIleSerValProAlaGluIleLeuArgLysSerArgArgPheAlaGlnAlaLeu
 4921 AGCGGGAGATCTCCGTACCCGCAGAAATCCTGCGGAGATTCGCCCAGGCCC
 TCGCCCTCTAGAGGCATGGGCGTCTTTTAGGACGCCTTCAGAGCCTCTAAGCGGGTCCGGG
- ProValTrpAlaArgProAspTyrAsnProProLeuValGluThrTrpLysLysProAspTGCCCGTTTGGGCGCGGCCGGACTATAACCCCCCGCTAGTGGAGACGTGGAAAAAGCCCGACCGCGCCGGCCTGATATTGGGGGGCGATCACCTCTGCACCTTTTTCGGGC
- TyrGluProProValValHisGlyCysProLeuProProProLysSerProProValPro
 5041 ACTACGAACCACCTGTGGTCCATGGCTGTCCGCTTCCAAAGTCCCCTCCTGTGC
 TGATGCTTGGTGGACACCAGGTACCGACAGGCGAAGGTTGCAGGGGAGGACACG
- ProproArgLysLysArgThrValValLeuThrGluSerThrLeuSerThrAlaLeuAla CTCCGCCTCGGAAGAAGCGGACGGTGGTCCTCACTGAATCAACCCTATCTACTGCCTTGG GAGGCGGAGCCTTCTTCGCCTGCCACCAGGAGTGACTTAGTTGGGATAGATGACGGAACC
- GluLeuAlaThrArgSerPheGlySerSerSerThrSerGlyIleThrGlyAspAsnThr
 CCGAGCTCGCCACCAGAAGCTTTGGCAGCTCCTCAACTTCCGGCATTACGGGCGACAATA
 GGCTCGAGCGGTGGTCTTCGAAACCGTCGAGGAGTTGAAGGCCGTAATGCCCGCTGTTAT
- SerSerMetProProLeuGluGlyGluProGlyAspProAspLeuSerAspGlySerTrp
 5281 ATTCCTCCATGCCCCCCTGGAGGGGGAGCCTGGGGATCCTAGGATCTTAGCGACGGTCAT
 TAAGGAGGTACGGGGGGACCTCCCCCTCGGACCCCTAGGCCTAGAATCGCTGCCCAGTA
- SerThrValSerSerGluAlaAsnAlaGluAspValValCysCysSerMetSerTyrSer
 5341 GGTCAACGGTCAGTAGTGAGGCCAACGCGGAGGATGTCGTGTGCTCAATGTCTTACT
 CCAGTTGCCAGTCATCACTCCGGTTGCGCCTCCTACAGCACACGACGACGAGTTACAGAATGA
- TrpThrGlyAlaLeuValThrProCysAlaAlaGluGluGlnLysLeuProIleAsnAla 5401 CTTGGACAGGCGCACTCGTCACCCCGTGCGCCGCGGAAGAACAGAAACTGCCCATCAATG GAACCTGTCCGCGTGAGCAGTGGGGCACGCGCGCCTTCTTGTCTTTGACGGGTAGTTAC
- LeuSerAsnSerLeuLeuArgHisHisAsnLeuValTyrSerThrThrSerArgSerAla
 5461 CACTAAGCAACTCGTTGCTACGTCACCACAATTTGGTGTATTCCACCACCTCACGCAGTG
 GTGATTCGTTGAGCAACGATGCAGTGGTGTTAAACCACATAAGGTGGTGGAGTGCGTCAC
- CysGlnArgGlnLysLysValThrPheAspArgLeuGlnValLeuAspSerHisTyrGln
 5521 CTTGCCAAAGGCAGAAGAAAGTCACATTTGACAGACTGCAAGTTCTGGACAGCCATTACC
 GAACGGTTTCCGTCTTCTTTCAGTGTAAACTGTCTGACGTTCAAGACCTGTCGGTAATGG
- ASPValLeuLysGluValLysAlaAlaAlaSerLysValLysAlaAsnLeuLeuSerVal
 AGGACGTACTCAAGGAGGTTAAAGCAGCGGCGTCAAAAGTGAAGGCTAACTTGCTATCCG
 TCCTGCATGAGTTCCTCCAATTTCGTCGCCGCAGTTTTCACTTCCGATTGAACGATAGGC
- GluGluAlaCysSerLeuThrProProHisSerAlaLysSerLysPheGlyTyrGlyAla
 TAGAGGAAGCTTGCAGCCTGACGCCCCACACTCAGCCAAATCCAAGTTTGGTTATGGGG
 ATCTCCTTCGAACGTCGGACTGCGGGGGTGTGAGTCGGTTTAGGTTCAAACCAATACCCC
- LeuLeuGluAspAsnValThrProIleAspThrThrIleMetAlaLysAsnGluValPhe
 5761 ACCTTCTGGAAGACAATGTAACACCAATAGACACTACCATCATGGCTAAGAACGAGGTTT
 TGGAAGACCTTCTGTTACATTGTGGTTATCTGTGATGGTAGCACCGATTCTTGCTCCAAA

JAN 27 2003 A

FIG. 32G

CysValGlnProGluLysGlyGlyArgLysProAlaArgLeuIleValPheProAspLeu
5821 TCTGCGTTCAGCCTGAGAAGGGGGGTCGTAAGCCAGCTCGTCTCATCGTGTTCCCCGATC
AGACGCAAGTCGGACTCTTCCCCCCAGCATTCGGTCGAGCAGAGTAGCACAAGGGGCTAG

- GlyValArgValCysGluLysMetAlaLeuTyrAspValValThrLysLeuProLeuAla
 TGGGCGTGCGCGTGTGCGAAAAGATGGCTTTGTACGACGTGGTTACAAAGCTCCCCTTGG
 ACCCGCACGCGCACACGCTTTTCTACCGAAACATGCTGCACCAATGTTTCGAGGGGAACC
- ValMetGlySerSerTyrGlyPheGlnTyrSerProGlyGlnArgValGluPheLeuVal
 5941 CCGTGATGGGAAGCTCCTACGGATTCCAATACTCACCAGGACAGCGGGTTGAATTCCTCG
 GGCACTACCCTTCGAGGATGCCTAAGGTTATGAGTGGTCCTGTCGCCCAACTTAAGGAGC
- GlnAlaTrpLysSerLysLysThrProMetGlyPheSerTyrAspThrArgCysPheAsp
 TGCAAGCGTGGAAGTCCAAGAAAACCCCAATGGGGTTCTCGTATGATACCCGCTGCTTTG
 ACGTTCGCACCTTCAGGTTCTTTTGGGGTTACCCCAAGAGCATACTATGGGCGACGAAAC
- SerThrValThrGluSerAspIleArgThrGluGluAlaIleTyrGlnCysCysAspLeu 6061 ACTCCACAGTCACTGAGAGCGACATCCGTACGGAGGAGGCAATCTACCAATGTTGTGACC TGAGGTGTCAGTGACTCTCGCTGTAGGCATGCCTCCGTTAGATGGTTACAACACTGG
- AspProGlnAlaArgValAlaIleLysSerLueThrGluArgLeuTyrValGlyGlyPro
 6121 TCGACCCCAAGCCCGCGTGGCCATCAAGTCCCTCACCGAGAGGCTTTATGTTGGGGGCC
 AGCTGGGGGTTCGGGCGCACCGGTAGTTCAGGGAGTGGCTCTCCGAAATACAACCCCCGG
- LeuThrAsnSerArgGlyGluAsnCysGlyTyrArgArgCysArgAlaSerGlyValLeu 6181 CTCTTACCAATTCAAGGGGGGAGAACTGCGGCTATCGCAGGTGCCGCGCGAGCGGCGTAC GAGAATGGTTAAGTTCCCCCCTCTTGACGCCGATAGCGTCCACGGCGCGCTCGCCGCATG
- ThrThrSerCysGlyAsnThrLeuThrCysTyrIleLysAlaArgAlaAlaCysArgAla
 6241 TGACAACTAGCTGTGGTAACACCCTCACTTGCTACATCAAGGCCCGGGCAGCCTGTCGAG
 ACTGTTGATCGACACCATTGTGGGAGTGAACGATGTAGTTCCGGGCCCGTCGGACAGCTC
- AlaGlyLeuGlnAspCysThrMetLeuValCysGlyAspAspLeuValValIleCysGlu 6301 CCGCAGGGCTCCAGGACTGCACCATGCTCGTGTGTGGCGACGACTTAGTCGTTATCTGTG GGCGTCCCGAGGTCCTGACGTGGTACGAGCACACCGCTGCTGAATCAGCAATAGACAC
- SerAlaGlyValGlnGluAspAlaAlaSerLeuArgAlaPheThrGluAlaMetThrArg 6361 AAAGCGCGGGGGTCCAGGAGGACGCGGCGAGCCTGAGAGCCTTCACGGAGGCTATGACCA TTTCGCGCCCCCAGGTCCTCCTGCGCCCGCTCGGACTCTCGGAAGTGCCTCCGATACTGGT
- TyrSerAlaProProGlyAspProProGlnProGluTyrAspLeuGluLeuIleThrSer
 6421 GGTACTCCGCCCCCTGGGGACCCCCCACAACCAGAATACGACTTGGAGCTCATAACAT
 CCATGAGGCGGGGGGGCCCCCTGGGGGGTGTTGGTCTTATGCTGAACCTCGAGTATTGTA
- CysSerSerAsnValSerValAlaHisAspGlyAlaGlyLysArgValTyrTyrLeuThr 6481 CATGCTCCTCCAACGTGTCAGTCGCCCACGACGGCGCTGGAAAGAGGGTCTACTACCTCA GTACGAGGAGGTTGCACAGTCAGCGGGTGCTGCCGCGACCTTTCTCCCAGATGATGAGT
- ArgAspProThrThrProLeuAlaArgAlaAlaTrpGluThrAlaArgHisThrProVal CCCGTGACCCTACAACCCCCCTCGCGAGAGCTGCGTGGGAGACAGCAAGACACCCCCAG GGGCACCTGTGGGATGTTGGGGGGAGCGCTCTCGACGCACCCTCTGTCGTTCTGTGTGAGGTC
- AsnSerTrpLeuGlyAsnIleIleMetPheAlaProThrLeuTrpAlaArgMetIleLeu
 TCAATTCCTGGCTAGGCAACATAATCATGTTTGCCCCCACACTGTGGGCGAGGATGATAC
 AGTTAAGGACCGATCCGTTGTATTAGTACAAACGGGGGTGTGACACCCGCTCCTACTATG
- MetThrHisPhePheSerValLeuIleAlaArgAspGlnLeuGluGlnAlaLeuAspCys
 TGATGACCCATTTCTTTAGCGTCCTTATAGCCAGGGACCAGCTTGAACAGGCCCTCGATT
 ACTACTGGGTAAAGAAATCGCAGGAATATCGGTCCCTGGTCGAACTTGTCCGGGAGCTAA
- GlulleTyrGlyAlaCysTyrSerIleGluProLeuAspLeuProProIleIleGlnArg
 6721 GCGAGATCTACGGGGCCTGCTACTCCATAGAACCACTTGATCTACCTCCAATCATTCAAA
 CGCTCTAGATGCCCCGGACGATGAGGTATCTTGGTGAACTAGATGGAGGTTAGTAAGTTT
- Leu 6781 GACTC CTGAG

FIG. 33

Lane Number	Chimp Reference Number	Infection Type	Sample date (days) (O=inoculation day)	ALT (alanine) aminotransferase level in sera)mµ/ml)
1 2 3 4	1 1 1	NANB NANB NANB NANB	0 76 118 154	0 71 19 N/A
5 6 7 8	2 2 2 2	NANB NANB NANB NANB	0 21 73 138	0 52 13 N/A
9 10 11 12	3333	NANB NANB NANB NANB	0 43 53 159	205 14 6
13 14 15 16	4 4 4 4	NANB NANB NANB NANB	-3 55 83 140	11 132 N/A N/A
17 18 19 20	5 5 5 5	HAV HAV HAV	0 25 40 268	147 18 5
21 22 23 24	6 6 6	HAV HAV HAV HAV	-8 15 41 129	N/A 100 10 N/A
26 27 28 29	7 7 7 7	HAV HAV HAV HAV	0 22 115 139	7 83 5 N/A
30 31 32 33	8 8 8	HAV HAV HAV HAV	0 26 74 205	15 130 8 5
34 35 36	999	HBV HBV HBV	-290 379 435	N/A 9 6
37 38 39 40	10 10 10 10	HBV HBV HBV HBV	0 111-118 205 240	(pool) 96-156 (pool) 9
41 42 43 44	11 11 11 11	HBV HBV HBV HBV	0 28-56 () 169 223	0001) 11 8-100 (pool) 9

FIG. 33A

CHIMPS

FIG. 33B

CHIMPS

FIG. 34

Lane Number	Patient Reference Number	Diagnosis	ALT Level (mu/ml)
1 2 3 4 5 6 7 8	11 11	NANB	1354
2	11	NANB	31
3	21	NANB	14
4	21	NANB	79
· 5	21	NANB	26
6	31	NANB	78
. 7	21 21 21 21 23 33 41 41 55 61	NANB	87
8	31	NANB	25
9	41	NANB	60
10	41	NANB	13
11	5‡	NANB	298
12	51	NANB	101
13	6 <u>+</u>	NANB	474
14	6 <u>1</u>	NANB	318
15	71	NANB	20
16	71	NANB	163
17	81 81	NANB	44
18	81	NANB	. 50
19	9	NANB	N/A
20	10	NANB	N/A
- 21	11	NANB	N/A
22	12	Normal	N/A
23	13	Normal	N/A
24	14	Normal	N/A
26	30174	Normal	N/A
27	30105	Normal	N/A
28	30072	Normal	N/A
29	30026	Normal	N/A
30	30146	Normal	N/A
31	30250	Normal	ŊΛ
32	30071	Normal	N/A
33	15	AcuteHAV	N/A
34	16	AcuteHAV	N/A
35	17	AcuteHAV	N/A
36	18	AcuteHAV	N/A
37	48088	AcuteHAV	N/A
38	47288	AcuteHAV	N/A
39	47050	AcuteHAV	N/A
40	46997	AcuteHAV	N/A
41	19	Convalescent HBV	N/A
42	20	(anti-HBSag+ve;	N/A
43	. 21	anti-HBCag+ve)	N/A
44	22	(anti-HBSag+ve;	N/A
45	23	anti-HBCag+ve)	N/A
46	24	(anti-HBSag+ve;	N/A
47	25	anti-HBCag+ve)	N/A
48	26	(anti-HBSag+ve;	N/A
49	27	anti-HBSag+ve)	N/A

¹Sequential serum samples were assayed from these patients

FIG. 34A

FIG. 34B

FIG. 35

50

FIG. 36A

- -----SOD------COOH][--adaptor---][NANBHpolypeptide>
 AlaCysGlyVallleGlyIleAlaGlnAsnLeuGlyIleArgAspAlaHisPheLeuSer
 GCTTGTGGTGTAATTGGGATCGCCCAGAATTTGGGAATTCGGGATGCCCACTTTCTATCC
 CGAACACCACATTAACCCTAGCGGGTCTTAAACCCTTAAGCCCTACGGGTGAAAGATAGG
- GINTHYLYSGINSERGIYGIUASNLEUPROTYRLEUVALALATYRGINALATHRVALCYS
 61 CAGACAAAGCAGAGTGGGGAGAACCTTCCTTACCTGGTAGCGTACCAAGCCACCGTGTGC
 GTCTGTTTCGTCTCACCCCTCTTGGAAGGAATGGACCATCGCATGGTTCGGTGGCACACG
- AlaArgAlaGlnAlaProProProSerTrpAspGlnMetTrpLysCysLeuIleArgLeu
 121 GCTAGGGCTCAAGCCCCTCCCCCATCGTGGGACCAGATGTGGAAGTGTTTGATTCGCCTC
 CGATCCCGAGTTCGGGGAGGGGGTAGCACCCTGGTCTACACCTTCACAAACTAAGCGGAG
- LysProThrLeuHisGlyProThrProLeuLeuTyrArgLeuGlyAlaValGlnAsnGlu 181 AAGCCCACCTCCATGGGCCAACACCCCTGCTATACAGACTGGGCGCTGTTCAGAATGAA TTCGGGTGGGAGGTACCCGGTTGTGGGGACGATATGTCTGACCCGCGACAAGTCTTACTT
- ValValThrSerThrTrpValLeuValGlyGlyValLeuAlaAlaLeuAlaAlaTyrCys GTCGTCACGAGCACCTGGGTGCTCGTTGGCGGCGCCTCCTGGCTGCTTTTGCCGCGCTATTGC CAGCAGTGCTCGTGGACCCACGAGCAACCGCCGCAGGACCGACGAAACCGGCGCATAACG
- LeuSerThrGlyCysValValIleValGlyArgValValLeuSerGlyLysProAlalle
 361 CTGTCAACAGGCTGCGTGGTCATAGTGGGCAGGGTCGTCTTGTCCGGGAAGCCGGCAATC
 GACAGTTGTCCGACGCACCAGTATCACCCGTCCCAGCAGAACAGGCCCTTCGGCCGTTAG
- IleProAspArgGluValLeuTyrArgGluPheAspGluMetGluGluCysSerGlnHis
 ATACCTGACAGGGAAGTCCTCTACCGAGAGTTCGATGAGATGGAAGAGTGCTCTCAGCAC
 TATGGACTGTCCCTTCAGGAGATGGCTCTCAAGCTACTCTACCTTCTCACGAGAGTCGTG
- LeuProTyrIleGluGlnGlyMetMetLeuAlaGluGlnPheLysGlnLysAlaLeuGly
 TTACCGTACATCGAGCAAGGGATGATGCTCGCCGAGCAGTTCAAGCAGAAGGCCCTCGGC
 AATGGCATGTAGCTCGTTCCCTACTACGAGCGGCTCGTCAAGTTCGTCTTCCGGGAGCCG
- LeuLeuGlnThrAlaSerArgGlnAlaGluValIleAlaProAlaValGlnThrAsnTrp 541 CTCCTGCAGACCGCGTCCCGTCAGGCAGAGGTTATCGCCCCTGCTGTCCAGACCAACTGG GAGGACGTCTGGCGCAGGGCAGTCCGTCTCCAATAGCGGGGACGACAGGTCTGGTTGACC
- GlnLysLeuGluThrPheTrpAlaLysHisMetTrpAsnPheIleSerGlyIleGlnTyr CAAAAACTCGAGACCTTCTGGGCGAAGCATATGTGGAACTTCATCAGTGGGATACAATAC GTTTTTGAGCTCTGGAAGACCCGCTTCGTATACACCTTGAAGTAGTCACCCTATGTTATG
- LeuAlaGlyLeuSerThrLeuProGlyAsnProAlaIleAlaSerLeuMetAlaPheThr TTGGCGGGCTTGTCAACGCTGCCTGGTAACCCCGCCATTGCTTCATTGATGGCTTTTACA AACCGCCCGAACAGTTGCGACGACCATTGGGGCGGTAACGAAGTAACTACCGAAAATGT
- AlaAlaValThrSerProLeuThrThrSerGlnThrLeuLeuPheAsnIleLeuGlyGly
 721 GCTGCTGTCACCAGCCCACTAACCACTAGCCAAACCCTCCTCTTCAACATATTGGGGGGG
 CGACGACAGTGGTCGGGTGATTGGTGATCGGTTTTGGGAGGAGAAGTTGTATAACCCCCCC
- TrpValAlaAlaGInLeuAlaAlaProGlyAlaAlaThrAlaPheValGlyAlaGlyLeu
 781 TGGGTGCCCAGCTCGCCGCCCCCGGTGCCGCTACTGCCTTTGTGGGCGCTGGCTTA
 ACCCACCGACGGGTCGAGCGGGGGGCCACGGCGATGACGGAAACACCCGCGACCGAAT

FIG. 36B

- AlaGlyAlaAlaIleGlySerValGlyLeuGlyLysValLeuIleAspIleLeuAlaGly
 6CTGGCGCCGCCATCGGCAGTGTTGGACTGGGGAAGGTCCTCATAGACATCCTTGCAGGG
 CGACCGCGGCGGTAGCCGTCACAACCTGACCCCTTCCAGGAGTATCTGTAGGAACGTCCC
- TyrGlyAlaGlyValAlaGlyAlaLeuValAlaPheLysIleMetSerGlyGluValPro
 901 TATGGCGCGGGCGTGGCGGAGCTCTTGTGGCATTCAAGATCATGAGCGGTGAGGTCCCC
 ATACCGCGCCCGCACCGCCCTCGAGAACACCGTAAGTTCTAGTACTCGCCACTCCAGGGG
- SerThrGluAspLeuValAsnLeuLeuProAlaIleLeuSerProGlyAlaLeuValVal
 TCCACGGAGGACCTGGTCAATCTACTGCCCGCCATCCTCTCGCCCGGAGCCCTCGTAGTC
 AGGTGCCTCCTGGACCAGTTAGATGACGGGCGGTAGGAGAGCGGGCCTCGGGAGCATCAG
- GlyValValCysAlaAlaIleLeuArgArgHisValGlyProGlyGluGlyAlaValGln 1021 GGCGTGGTCTGTGCAGCAATACTGCGCCGGCACGTTGGCCCGGGCGAGGGGGGCAGTGCAG CCGCACCAGACACGTCGTTATGACGCGGCCGTGCAACCGGGCCCGCTCCCCCGTCACGTC
- LysArgOP
 1141 AAGCGTTGACGCTCCCTACGGGTGGACTGTGGAGAGACAGGGCACTGCTAAGGCCCAAAT
 TTCGCAACTGCGAGGGATGCCCACCTGACACCTCTCTGTCCCGTGACGATTCCGGGTTTA
- 1261 TCCTTTCTCGATGGTCCATACCTTAGATGCGTTAGCATTAATCCGAATTC AGGAAAGAGCTACCAGGTATGGAATCTACGCAATCGTAATTAGGCTTAAG

FIG. 37A

FIG. 37B

FIG. 42A

нсч	10	20	30	40	50
	EYVVLLFLLL <i>I</i>	NDARVCSCLWMMLL	ISQAEAALENLV	'ILNAASLAGTH	IGLVSFLVFFCFA
MNWVD1	AVSFVTLITGNN 130	140	ATMTDDIGMGVT 150	YLALLAAFKVF 160 j	RPTFAAGLLLRKL 70 180
НСУ	60 70	80	90	100	110
	WYLKGKWVPGA\	YYTFYGMWPLLLLL	LALPQRAYALDT	EVAASCGGVVL	VGLMALTLSPYY
MNWVD1	TSKELMMTTIGI	VLLSQSTIPETIL	ELTDALALGMMV	LKMVRKMEKYO	LAVTIMAILCVP
	190	200	210	220 2	240
HCV	120 130	140	150	160	170
	KRYISWCLWWLG	NYFLTRVEAQLHVW	IPPLNVRGGRDA	VILLMCAVHPT	LVFDITKLLLAV
MNWVD1	NAVILQNAWKVS	CTÍLAVVŠVSPLF	ĹŤŚSÒQKADWIP	LALTİKĞLNPİ	AİF-LİTLSRİN
	250	260	270	280 2	90
HCV	180 190 FGPLWILQASLL	.KVPYF-VRVQGLL	210 RF-CALARKMIG	220 GHYVQMVIIKL	230 GALTGTYVYNHL
MNWVD1	KKRSWPLNEAIN	IAVGMVSİLASSLL	ĸŊŊĮĖMŦĠPĹŸĀ	ĠĠĿĹŢŸĊŶŸ-Ĺ	TĠŖŚĀDLELĖŔA
	300 310	320	330	340	350
HCV		0 DLAVAVEPVVFSQI			
MNWVD1	ÁDVK-WEDQÁEI	sgsspilsitisė.	-DĠŚMSİKNĖĖĖ	ĖQTLŤILIRTG	LLVISGLFP
	360 37	0 380	390	400	410
HCV		O LAPITAYAQQTRGI			_
MNWVD1	VŠIPĪTĀAĀWYL	WĖVKKQRĀGVLWD	VPŠPPPVĠKĀĖL	ĖDĠĀYRIĶQKG	İLĞYSQİGAĞVY
	420	430	40 450	460	470
нсч	360	O 380	390	400	410
	INGVCWTVYHGA	GTRTIASPKGPVIO	MYTNVDQDLV-	GWPAPQGS	RSLTPCTCGSSD
MNWVD1	KĖĠŤFHŤMWHVŤ	RĠAVLMHKGKRİER	SWADVKKĎĽÝS	CGGĠŴKLEGĖW	KĖGĖEVQVLALĖ
	480	490 50	510	520	530
HCV		430 VRRRGDSRGSLLSF			GIFRAAVCTRGV
MNWVD1	PGKNPRAVQTKP	GLFKTNAĞTİĞA	vsLbfspgtsg	SPÍ Í DKKGKVV	ĠĹŶĠŇĠŸVŤŔŠĠ
	540	550	560	70 58	O 590

FIG. 42B

HCV MNWVD1	480 490 500 510 520 AKAVDFIPVENLETTMRSPVFTDNSSPPVVPQSFQVAHLHAPTGSGKS1 ÄYVSÄIAQTEKSIEDNPEIEDDIFRKRKLTIMDLHPGÄGKTKRYLF 600 610 620 630	530 FKVPAAYAAQ SAİVRĞAIKR 640
HCV MNWVD1	540 550 560 570 580 GYKVLVLNPSVAATLGFGAYMSKAHGIDPNIRTGVRTITTGSPITYSTY ĠĹŔŤĹĬĹÁÞŤRVŸÁÁĖMĖEÁLRGLPIRYQŤÞÁÍŘÁĖHTĠRĖÍVĎLMCHÁŤF 650 660 670 680 690	
HCV MNWVD1	590 630 640 SGGAYDI I CDECHSTDATSI LGI GTVLDQAETAGARLVVLATATPPGSVT RVPNYNLI İMDEAHFTDPASİ AARGY İSTRVE-MGEAAG İFMTATPPGSRD 710 720 730 740 750	VPHP <u>N</u> IEEV V-PFPQSNAP 760
HCV MNWVD1	650 660 670 680 690 700 ALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAAKLVALGINAVA IMDEEREIPERSWSSGHEWVTDFKGKTVWFVPSIKAGNDTAACLRKNGKKV 770 780 790 810	
HCV MNWVD1	710 720 730 740 750 760 IPTSGDVVVVATDALMTGYTGDFDSVIDCNTCVTQTVDFSLDPTFTIETIT SEYVKTRTNDWNFVVTTDISEMGANFKAERVIDPRRCMKPVILTDGEERVI 830 840 850 860 870	
HCV MNWVD1	770 780 790 800 810 820 QRRGRTGRGKPGIYRFVAPGERPSGMFDSSVLCECYDAGCAWYELTPAETT SS	VRLRAYMNT

FIG. 45

Name	Common Sequence	Variable Sequence
5'-3-1	AAGCTTGATCGAATTC	CGATCTTGC
-2	AMOCTIONICOMMITO	CGATCCTGC
-3		CGATCATGC
-4		CGATCGTGC
-5		CGAAGTTGC
-6		CGAAGCTGC
- 7		AGATCTTGC
-8		AGATCCTGL
- 9		AGATCATGC
-10		AGATCGTGC
-11		AGAAGTTGC
-12		AGAAGCTGC
-13		CGATCTTGT
-14		CGATCCTGT
-15		CGATCATGT
-16		CGATCGTGT
-17		CGAAGTTGT
-18		CGAAGCTGT
-19		AGATCTTGT
-20		AGATCCTGT
-21		AGATCATGT
-22		AGATCGTGT
-23		AGAAGTTGT
-24		AGAAGCTGT
-25		CGCTCTTGC
-26		CGCTCCTGC
-27		CGCTCATGC
-28		CGCTCGTGC
-29		CGCAGTTGC
-30		CGCAGCTGC
-31		CGCTCTTGT
-32		CGCTCCTGT
-33		CGCTCATGT
-34		CGCTCGTGT
-35	·	CGCAGTTGT
-36		CGCAGCTGT

FIG. 46A

GlyCysProGluArgLeuAlaSerCysArgProLeuThrAspPheAspGlnGlyTrpGly CAGGÉTIGITCCIGAGAGGETAGCCAGCIGCCGACCCCITACCGATITITGACCAGGGETGGG GTCCGACAGGACTCTCCGATCGGTCGACGGCTGGGGAATGGCTAAAACTGGTCCCGACCC ProlleSerTyrAlaAsnGlySerGlyProAspGlnArgProTyrCysTrpHisTyrPro 61 GCCCTATCAGTTĀTGCCAACGGĀAGCGGCCCCGACCAGCGCCCTĀCTGCTGGCACTĀCC CGGGATAGTCAATACGGTTGCCTTCGCCGGGGCTGGTCGCGGGGATGACGACGTGATGG ProLysProCysGlyIleValProAlaLysSerValCysGlyProValTyrCysPheThr CCCCAAAACCTIGCGGTATIGTGCCCCCCGAAGAGTGTGTGTGGTCCGGTATATIGCTTCA ProSerProValValValGlyThrThrAspArgSerGlyAlaProThrTyrSerTrpGly CTCCCAGCCCCGTGGTGGTGGTACGACCGACAGGTCGGGCGCGCCCCCACCTACAGCTGGG GAGGGTCGGGGCACCACCACCTTGCTGGCTGTCCAGCCCGCGGGGGGGATGTCGACCC 181

GluAsnAspThrAspValPheValLeuAsnAsnThrArqProProLeuGlyAsnTrpPhe 241 GIGAAAATGATACGGACGTCTTCGTCCTTAACAATACCAGGCCACCGCTGGGCAATTGGT CACTITIACTATGCCTGCAGAAGCAGGAATTGTTATGGTCCGGTGGCGACCCGTTAACCA

GlyCysThrTrpMetAsnSerThrGlyPheThrLysValCysGlyAlaProProCysVal 301 TCGGTTGTACCTGGATGAACTCAACTGGATTCACCAAAGTGTGCGGAGCGCCTCCTTGTG **AGCCAACATGGACCTACTTGAGTTGACCTAAGTGGTTTCACACGCCTCGCGGAGGAACAC**

FIG. 46B

IleGlyGlyAlaGlyAsnAsnThrLeuHisCysProThrAspCysPheArgLysHisPro 361 TCATCGGAGGGGGGGGAACACACCCTGCACTGCCCCACTGATTGCTTCCGCAAGCATC **AGTAGCCTCCCCGCCCGTTGTTGTGGGACGTGACGGGGTGACTAACGAAGGCGTTCGTAG** AspAlaThrTyrSerArgCysGlySerGlyProTrpIleThrProArgCysLeuValAsp 421 CGGACGCCACATACTCTCGGTGCGGCTCCGGTCCCTGGATCACACCCAGGTGCCTGGTCG GCCTGCGGTGTATGAGAGCCACGCCGAGGCCAGGGACCTAGTGTGGGGTCCACGGACCAGC

 ${\tt TyrProTyrArgLeuTrpHisTyrProCysThrIleAsnT}_{r}{\tt ThrIlePheLysIleArg}$ 481 ACTÁCCCGTÁTAGÉCTTTGÉCATTÁTCCTTGTACCATCAACT MACTATATTTAÁAATCA TGATGGGCATATCCGAAACCGTAATAGGAACATGGTAGTTGATGTGATATAAATTTTAGT ${ t MetTyrValGlyGlyValGluHisArgLeuGluAlaAlaCysAsnTrpThrArgGlyGlu}$ CCTACATIGCACCCTCCCCAGCTCGTGTCCGACCTTCGACGGAGGTTGACCTGCGCCCCGC 541 GGATGTĀCGTGGĞAGĞGTCGAGACAGĞCTGGAAGCTGCCTĞCAACTGĞACGCĞĞGĞĞĞ

ArgCysAspLeuGluAspArgAspArgSerGluLeuSerProLeuLeuLeuThrThrThr 601 AACGTTGCGATCTGGAAGATAGGGAČAGGTCCGAGCTCAGCCCGTTACTGCTGACCACTA TTGCAACGCTAGACCTTCTATCCCTGTCCAGGCTCGAGTCGGGCAATGACGACTGGTGAT GlnTrpGlnValLeuProCysSerPheThrThrLeuProAlaLeuSerThrGlyLeuIle 661 CACAGTGGCAGGTCCTCCCGTGTTCCTTCACAACCCTGCCAGCCTTGTCCACCGGCCTCA STGTCACCGTCCAGGAGGCACAAGGAAGTGTTGGGACGGTCGGAACAGGTGGCCGGAGT

FIG. 46C

HisLeuHisĞlnAsnIleValAspValGlnTyrLeuTyrGlyValGİySerSerIleAla 721 TCCACCTCCACAGAACATTGTGGACGTGCAGTACTTGTACGGGGTGGGGTCAAGCATCG **AGGTGGAGGTGGTCTTGTAACACCTGCACGTCATGAACATGCCCCACCCCAGTTCGTAGC** ----Overlap with Combined ORF of DNAs 12f through 15eSerTrpAlaIleLysTrpGluTyrValValLeuLeuPheLeuLeuLeuAlaAspAlaArg GCAGGACCCGGTAATTCACCCTCATGCAGCAGGAGGACAAGGAAGACGTCTGCGCG 781 CGTCCTGGGCCATTAAGTGGGAGTACGTCGTCCTCCTGTTCCTTCTGCTTGCAGACGCGC

ValCysSerCysLeuTrpMetMetLeuLeuIleSerGlnAlaGluAlaAlaLeuGluAsn 841 GCGTCTGCTCCTGCTTGTGGATGATGCTACTCATATCCCAAGCGGAAGCGGCTTTGGAGA CGCAGACGAGGACGAACACCTACTACGATGAGTATAGGGTTCGCCTTCGCCGAAACCTCT LeuValIleLeuAsnAlaAlaSerLeuAlaGlyThrHisGlyLeuValSerPheLeuVal 901 ACCTCGTAATACTTAATGCAGCATCCCTGGCCGGACGCACGGTCTTGTATCCTTCGTCTCCTCG PhePheCysPheAlaTrpTyrLeuLysGlyLysTrpValProGlyAlaValTyrThrPhe 961 TGTTCTTCTGCTTTGCATGGTÄTCTGAÄGGGTAÄGTGĞGTGCCCGGÄGCGGTCTÄCACCT **ACAAGAAGACGAAACGTACCATAGACTTCCCATTCACCCACGGGCCTCGCCAGATGTGGA**

FIG. 46D

TyrGlyMetTrpProLeuLeuLeuLeuLeuLeuAlaLeuProGlnArgAlaTyrAlaLeu 1021 TCTÁCGGGATGTGGCCTCTCCTCCTGCTCCTGTTGGCGTTGCCCCAGCGGGGGTĀCGCGC agatigecetacaceggagaggacgacgacaaccgcaacggggtcgcccccatatgcgc AspThrGluValAlaAlaSerCysGlyGlyValValLeuValGlyLeuMetAlaLeuThr TGGACACGGAGGTGCCCCCCCTCTGTGCCGGTGTTCTTCTCCTCGGGTTGATGGCCCTAA <u> ACCTGTGCCTCCACCGGCGCAGCACACCGCCACAACAAGAGCAGCCCCAACTACCGCGATT</u> 1081

LeuSerProTyrTyrLysArgTyrIleSerTrpCysLeuTrpTrpLeuGlnTyrPheLeu GAGACAGTGGTATAATGTTCGCGATATAGTCGACCACGAACACCCGCGAAGTCATAAAAG 1141

ThrArgValGluAlaGlnLeuHisValTrpIleProProLeuAsnValArgGlyGlyArg 1201 TGACCAGAGTGGAAGCGCAACTGCACGTGTGGATTCCCCCCCTCAACGTCCGAGGGGGG AspAlaValIleLeuLeuMetCysAlaValHisProThrLeuValPheAspIleThrLys 1261 GCGACGCTGTCATCTTACTCATGTGTGCTGTACACCCGACTCTGGTATTTGACATCACCA CGCTGCGACAGTAGAATGAGTACACACGACATGTGGGCTGAGACCATAAACTGTAGTGGT

ITAACGACGACCGCAGAAGCCTGGGGAAACCTAAGAAGTTCGGTC 1321 AATTGCTGCTGCCGTCTTCGGACCCCTTTGGATTCTTCAAGCCAG LeuLeuLeuAlaValPheGlyProLeuTrpIleLeuGlnAla

FIG. 47A

- GlyCysProGluArgLeuAlaSerCysArgProLeuThrAspPheAspGlnGlyTrpGly
 CAGGCTGTCCTGAGAGGCTAGCCAGCTGCCGACCCCTTACCGATTTTGACCAGGGCTGGG
 GTCCGACAGGACTCTCCGATCGGTCGACGCTGGGGAATGGCTAAAACTGGTCCCGACCC
- ProlleSerTyrAlaAsnGlySerGlyProAspGlnArgProTyrCysTrpHisTyrPro GCCCTATCAGTTATGCCAACGGAAGCGGCCCCGACCAGCGCCCCTACTGCTGGCACTACC CGGGATAGTCAATACGGTTGCCTTCGCCGGGGCTGGTCGCGGGGATGACGACCGTGATGG

- GluAsnAspThrAspValPheValLeuAsnAsnThrArgProProLeuGlyAsnTrpPhe
 41 GTGAAAATGATACGGACGTCTTCGTCCTTAACAATACCAGGCCACCGCTGGGCAATTGGT
 CACTTTTACTATGCCTGCAGAAGCAGGAATTGTTATGGTCCGGTGGCGACCCGTTAACCA
- GlyCysThrTrpMetAsnSerThrGlyPheThrLysValCysGlyAlaProProCysVal
 TCGGTTGTACCTGGATGAACTCAACTGGATTCACCAAAGTGTGCGGAGCGCCTCCTTGTG
 AGCCAACATGGACCTACTTGAGTTGACCTAAGTGGTTTCACACGCCTCGCGGAGGAACAC
- IleGlyGlyAlaGlyAsnAsnThrLeuHisCysProThrAspCysPheArgLysHisPro
 TCATCGGAGGGGCGGCAACAACACCCTGCACTGCCCCACTGATTGCTTCCGCAAGCATC
 AGTAGCCTCCCCGCCCGTTGTTGTGGGACGTGACGGGGTGACTAACGAAGGCGTTCGTAG
- AspAlaThrTyrSerArgCysGlySerGlyProTrpIleThrProArgCysLeuValAsp CGGACGCCACATACTCTCGGTGCGGCTCCGGTCCCTGGATCACACCCAGGTGCCTGGTCG GCCTGCGTGTATGAGAGCCACGCCGAGGCCAGGGACCTAGTGTGGGTCCACGGACCAGC
- TyrProTyrArgLeuTrpHisTyrProCysThrIleAsnTyrThrIlePheLysIleArg
 ACTACCCGTATAGGCTTTGGCATTATCCTTGTACCATCAACTACACCATATTTAAAATCA
 TGATGGGCATATCCGAAACCGTAATAGGAACATGGTAGTTGATGTGGTATAAATTTTAGT
- ArgCysAspLeuGluAspArgAspArgSerGluLeuSerProLeuLeuLeuThrThrThr 601 AACGTTGCGATCTGGAAGACAGGGACAGGTCCGAGCTCAGCCCGTTACTGCTGACCACTA TTGCAACGCTAGACCTTCTGTCCCTGTCCAGGCTCGAGTCGGGCAATGACGACTGGTGAT
- GlnTrpGlnValLeuProCysSerPheThrThrLeuProAlaLeuSerThrGlyLeuIle CACAGTGGCAGGTCCTCCCGTGTTCCTTCACAACCCTACCAGCCTTGTCCACCGGCCTCA GTGTCACCGTCCAGGAGGGCACAAGGAAGTGTTGGGATGGTCGGAACAGGTGGCCGGAGT
- HISLEUHISGINASNI 1eValAspValGINTyrLeuTyrGIyValGIySerSerIleAla
 721 TCCACCTCCACCAGAACATTGTGGACGTGCAGTACTTGTACGGGGTGGGGTCAAGCATCG
 AGGTGGAGGTGGTCTTGTAACACCTGCACGTCATGAACATGCCCCACCCCAGTTCGTAGC
- ValCysSerCysLeuTrpMetMetLeuLeuIleSerGlnAlaGluAlaAlaLeuGluAsn GCGTCTGCTCCTGCTTGTGGATGATGCTACTCATATCCCAAGCGGAGGCGGCTTTGGAGA CGCAGACGAGGACGAACACCTACTACGATGAGTATAGGGTTCGCCTCCGCCGAAACCTCT

FIG. 38

FIG. 40

FIG. 39

LIC. 64

TRANSFORM E coli WITH RECOMBINANT PLASMIDS | (BLOT BACTERIA ON | WITROCELLULOSE FILTER)

CCO NEGATIVE CHIMPS 1 POST ACUTE
2 POST ACUTE
3 COO CONVERSION EXPRESSION LEVEL. COMMUNITY AC CHRONIC HCV PATIENT CHRONIC HCV PATIENT CONVALSCENT **GOO NEGATIVE** CIOO POSITIVE 1 000(4) 2 000(4) 3 000(-) 4 000(-) 98 ひまれららでほ SOD CA259a + CA290a CA202a N.T. **CAI67**a + CAI56C + π 14a CA84a \pm CA59a CA6IC CA74a C26j + CI3i ± CI2f + Cl4i C23q CIIb C9h ± C7f C7e C8h 土 C33c + + C40g ± + С37ь C35 **±** C36 5-1-1 C8I C32 C33b C25c + Cl4c C8f <u>±</u> C33f ‡ + C33a C39c C35f N.T. Cl9g + **C26g** + CI5e ±

N.T. = EXPRESSION NOT TESTED

† THIS POLYPEPTIDE WAS NEGATIVE IN THIS
COLONY SCREEN BUT POSITIVE BY WESTERN
BLOT ANALYSIS

FIG. 65

FIG. 66A

R T MSTNPKPQKKNKRNTNRRPQDVKFPGGGQIVGGVYLLPRRGPRLGVRATR KTSERSQPRGRRQPIPKARRPEGRTWAQPGYPWPLYGNEGCGWAGWLLSP-100 RGSRPSWGPTDPRRRSRNLGKVIDTLTCGFADLMGYIPLVGAPLGGAARA

LAHGVRVLEDGVNYATGNLPGCSFSİFLLALLSCLTVPASAYQVRNSTGL-200 YHVTNDCPNSSIVYEAADAILHTPGCVPCVREGNASRCWVAMTPTVATRD GKLPATQLRRHIDLLVGSATLCSALYVGDLCGSVFLVGQLFTFSPRRHWT-300

TQGCNCSIYPGHITGHRMAWDMMMNWSPTTALVMAQLLRIPQAILDMIAG
AHWGVLAGIAYFSMVGNWAKVLVVLLLFAGVDAETHVTGGSAGHTVSGFV-400
SLLAPGAKQNVQLINTNGSWHLNSTALNCNDSLNTGWLAGLFYHHKFNSS
GCPERLASCRPLTDFDQGWGPISYANGSGPDQRPYCWHYPPKPCGIVPAK-500
SVCGPVYCFTPSPVVVGTTDRSGAPTYSWGENDTDVFVLNNTRPPLGNWF
GCTWMNSTGFTKVCGAPPCVIGGAGNNTLHCPTDCFRKHPDATYSRCGSG-600

PWLTPRCLVDYPYRLWHYPCTINYTIFKIRMYVGGVEHRLEAACNWTRGE RCDLEDRDRSELSPLLTTTQWQVLPCSFTTLPALSTGLIHLHQNIVDVQ-700 YLYGVGSSIASWAIKWEYVVLLFLLADARVCSCLWMMLLISQAEAALEN LVILNAASLAGTHGLVSFLVFFCFAWYLKGKWVPGAVYTFYGMWPLLLL-800

LALPQRAYALDTEVAASCGGVVLVGLMALTLSPYYKRYISWCLWWLQYFL
TRVEAQLHVWIPPLNVRGGRDAVILLMCAVHPTLVFDITKLLAVFGPLN-900
ILQASLLKVPYFVRVQGLLRFCALARKMIGGHYVQMVIIKLGALTGTYVY
NHLTPLRDWAHNGLRDLAVAVEFVVFSQMETKLITWGADTAACGDIINGL-1000
PVSARRGREILLGPADGMVSKGWRLLAPITAYAQQTRGLLGCIITSLTGR
DKNQVEGEVQIVSTAAQTTFATCINGVCWTVYHGAGTRTIASPKGPVIQM-1100
YTNVDQDLVGWPAPQGSRSLTPCTCGSSDLYLVTRHADVIPVRRRGDSRG
SLLSPRPISYLKGSSGGPLLCPAGHAVGIFRAAVCTRGVAKAVDFIPVEN-1200
LETTMRSPVFTDNSSPPVVPQSFQVAHLHAPTGSGKSTKVPAAYAAQGYK

VLVLNPSVAATLGFGAYMSKAHGIDPNIRTGVRTITTGSPITYSTYGKFL-1300

ADGGCSGGAYDIIICDECHSTDATSILGIGTVLDQAETAGARLVVLATAT PPGSVTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKC-1400 DELAAKLVALGINAVAYYRGLDVSVIPTSGDVVVVATDALMTGYTGDFDS

VIDCNTCVTQTVDFSLDPTFTIETITLPQDAVSRTQRRGRTGRGKPGIYR-1500 FVAPGERPSGMFDSSVLCECYDAGCAWYELTPAETTVRLRAYMNTPGLPV CQDHLEFWEGVFTGLTHIDAHFLSQTKQSGENLPYLVAYQATVCARAQAP-1600 PPSWDQMWKCLIRLKPTLHGPTPLLYRLGAVQNEITLTHPVTKYIMTCMS ADLEVVTSTWVLVGGVLAALAAYCLSTGCVVIVGRVVLSGKPAIIPDREV-1700 LYREFDEMEECSQHLPYIEQGMMLAEQFKQKALGLLQTASRQAEVIAPAV QTNWQKLETFWAKHMWNFISGIQYLAGLSTLPGNPAIASLMAFTAAVTSP-1800 LTTSQTLLFNILGGWVAAQLAAPGAATAFVGAGLAGAAIGSVGLGKVLID

FIG. 66B

(G)
ILAGYGAGVAGALVAFKIMSGEVPSTEDLVNLLPAILSPGALVVGVVCAA-1900

ILRRHVGPGEGAVQWMNRLIAFASRGNHVSPTHYVPESDAAARVTAILSS LTVTQLLRRLHQWISSECTTPCSGSWLRDIWDWICEVLSDFKTWLKAKLM-2000

PQLPGIPFVSCQRGYKGVWRGDGIMHTRCHCGAEITGHVKNGTMRIVGPR TCRNMWSGTFPINAYTTGPCTPLPAPNYTFALWRVSAEEYVEIRQVGDFH-2100 YVTGMTTDNLKCPCQVPSPEFFTELDGVRLHRFAPPCKPLLREEVSFRVG LHEYPVGSQLPCEPEPDVAVLTSMLTDPSHITAEAAGRRLARGSPPSVAS-2200 SSASQLSAPSLKATCTANHDSPDAELIEANLLWRQEMGGNITRVESENKV VILDSFDPLVAEEDEREISVPAEILRKSRRFAQALPVWARPDYNPPLVET-2300

WKKPDYEPPVVHGCPLPPPKSPPVPPPRKKRTVVLTESTLSTALAELATR

(FA)
SFGSSSTSGITGDNTTTSSEPAPSGCPPDSDAESYSSMPPLEGEPGDPDL-2400
SDGSWSTVSSEANAEDVVCCSMSYSWTGALVTPCAAEEQKLPINALSNSL
LRHHNLVYSTTSRSACQRQKKVTFDRLQVLDSHYQDVLKEVKAAASKVKA-2500

(F)
NLLSVEEACSLTPPHSAKSKFGYGAKDVRCHARKAVTHINSVWKDLLEDN
VTPIDTTIMAKNEVFCVQPEKGGRKPARLIVFPDLGVRVCEKMALYDVVT-2600
KLPLAVMGSSYGFQYSPGQRVEFLVQAWKSKKTPMGFSYDTRCFDSTVTE

SDIRTEEAIYQCCDLDPQARVAIKSLTERLYVGGPLTNSRGENCGYRRCR-2700 ASGVLTTSCGNTLTCYIKARAACRAAGLQDCTMLVCGDDLVVICESAGVQ EDAASLRAFTEAMTRYSAPPGDPPQPEYDLELITSCSSNVSVAHDGAGKR-2800 VYYLTRDPTTPLARAAWETARHTFVNSWLGNIIMFAPTLWARMILMTHFF SVLIARDQLEQALDCEIYGACYSIEPLDLPPIIQRLHGLSAFSLHSYSPG-2900

EINRVAACLRKLGVPPLRAWRHRARSVRARLLARGGRAAICGKYLFNWAV RTKLK-----(Stop codon not yet reached)

() = Heterogeneity due to possible 5' or 3' terminal cloning artefacts.

FIG. 68

		NS3 region	NS5 Highly-conserved Polymerase region
Flaviviruses (Yellow Fever, West Nile,Dengu	TATPPG-	SAAQRRGRIGRNP	GDDCVV
west wile, bengu	~*****	* ****	***
HCV	TATPPG 1 #1348	SRTQRRGRTGRGK #1483	GDDL'VV I #2737

FIG. 73

5, CATGTTTCCCCCTAATGAG GTACAAAGGGGGATTACTCAGÇ

FIG. 70

polyhedrin CCTATAAAT ATG CCG GAT TAT TCA TAC CGT CCC ACC ATC GGG

FIG. 71

GlyArgAlaAlaIleCysGlyLysTyrLeuPheAsnTrpAlaValArgThrLysLeuLys GGČAGĞGCTGCCATATĞTGGČAÁGTÁCCTCTTCAACTGĞGCAGTAAGĂACAAÁGCTCAÁA CCGTCCCGACGGTATACACCGTTCATGGAGAAGTTGACCCGTCATTCTTGTTTCGAGTTT ---Overlap with 16jh--

LeuThrProIleAlaAlaAlaGlyGlnLeuAspLeuSerGlyTrpPheThrAlaGlyTyr 61

AGCGGĞGGĞGAĞATTTĂTCACAGCGTGTCTCATGCCCGĞCCCCGĞTGĞATCTGĞTTTTĞC ICGCCCCCTCTGTAATAGTGTCGCACAGAGTACGGGCCGGGGCGACCTAGACCAAAACG SerGlyGlyAspIleTyrHisSerValSerHisAlaArgProArgTrpIleTrpPheCys 121

181 CC

FIG. 72A

MetSerThrAsnProLysProGlnArgLysThrLysArgAsnThrAsnArgArgProGln ATGAGCACGAATCCTAĀACCTCAAAĀĀĀAAACAĀACGTAACACCAACCGTCGČCCACAG TACTCGTGCTTAGGATTTTGTTTTTTTTTTTGCATTGTGGTTGGCAGCGGGTGTC

GAČGTCAĀGTTCCCGGGĪGGČGGĪCAGATCGTTGGĪGGĀGTTTĀCTTGTTGCCGCGČAGĞ CTGCAGTTCAAGGGCCCACCGCCAGTCTAGCAACCACCTCAAATGAACAACGGCGCGTCC AspValLysPheProGlyGlyGlyGlnIleValGlyGlyValTyrLeuLeuProArgArg 61

FIG. 72B

- GGCCCTAGATTGGGTGTGCGCGCGACGAGAAGACTTCCGAGCGTCGCAACCTCGAGGT CCGGGATCTAACCCACACGCGCGCTGCTCTTTCTGAAGGCTCGCCAGCGTTGGAGCTCCA ${\tt GlyProArgLeuGlyValArgAlaThrArgLysThrSerGluArgSerGlnProArgGly}$ 121
- **AGACGTCAGCCTATCCCCAAGGCTCGTCGGCCCGAGGGCAGGACCTGGGCTCAGCCCGG**G TCTGCAGTCGGATAGGGGTTCCGAGCAGCCGGGCTCCCGTCCTGGACCCGAGTCGGGCCC ${\tt ArgArgGlnProIleProLysAlaArgArgProGluGlyArgThrTrpAlaGlnProGly}$ 181
- TyrProTrpProLeuTyrGlyAsnGluGlyCysGlyTrpAlaGlyTrpLeuLeuSerPro TACCCTTGGCCCCTCTATGGCAATGAGGGCTGCGGGTGGGCGGGATGGCTCCTGTCTCCC ATGGGAACCGGGGAGATACCGTTACTCCCGACGCCCACCCGCCCTACCGAGGACAGAGGG 241
- GCACCGAGAGCCGGATCGACCCCGGGGTGTCTGGGGGCCGCATCCAGCGCGTTAAACCCA ArgGlySerArgProSerTrpGlyProThrAspProArgArgArgSerArgAsnLeuGly CGTGGCTCTCGGCCTAGCTGGGGCCCCACAGACCCCCGGCGTAGGTCGCGCAATTTGGGT 301
- TTCCAGTAGCTATGGGAATGCACGCCGAAGCGGCTGGAGTACCCCATGTATGGCGAGCAG ${\tt LysValIleAspThrLeuThrCysGlyPheAlaAspLeuMetGlyTyrIleProLeuVal}$ **AAGGTCATCGATACCCTTACGTĞCGGČTTCGCCGAČCTCATGGGĞTĀCATACCGCTCGTC** 361
- GlyAlaProLeuGlyGlyAlaAlaArqAlaLeuAlaHisGlyValArgValLeuGluAsp GGCGCCCCTCTTGGAGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCGGGTTCTGGAAGAC CCGCGGGGAGAACCTCCGCGACGGTCCCGGGACCGCGTACCGCAGGCCCAAGACCTTCTG 421

FIG. 72C

- GlyValAsnTyrAlaThrGlyAsnLeuProGlyCysSerPheSerIlePheLeuLeuAla CCGCACTTGATACGTTGTCCCTTGGAAGGACCAACGAGAAAGAGATAGAAGGAAAGACCGG 481
- LeuLeuSerCysLeuThrValProAlaSerAlaTyrGlnValArgAsnSerThrGlyLeu CTGCTCTCTTGCTTGACTGTGCCCCGCTTCGGCCTACCAAGTGCGCAACTCCACGGGGCTT SACGAGAGAACGAACTGACACGGGCGAAGCCGGATGGTTCACGCGTTGAGGTGCCCCGAA 541
- TyrHisValThrAsnAspCysProAsnSerSerIleValTyrGluAlaAlaAspAlaIle ATGGTGCAGTGGTTACTAACGGGATTGAGCTCATAACACATGCTCCGCCGGCTACGGTAG TACCACGTCACCAATGATTGCCCTAACTCGAGTATTGTGTĀCGAGGCGGCCGATGCCATC 109
- CTGCACACTCCGGGGTGCGTCCCTTGCGTTCGTGAGGGCAACGCCTCGAGGTGTTGGGTG SACGIGIGAGGCCCCACGCAGGGAACGCAAGCACICCCGIIGCGGAGCICCACAACCCAC LeuHisThrProGlyCysValProCysValArgGluGlyAsnAlaSerArgCysTrpVal 199
- AlaMetThrProThrValAlaThrArgAspGlyLysLeuProAlaThrGlnLeuArgArg GCGATGACCCCTACGGTGGCCACCAGGGATGGČAĀACTCCCCGCGACGCAGCTTCGĀCGŤ CGCTACTGGGGGATGCCACCGGTGGTCCCTACCGTTTGAGGGGGCGCTGCGTCGAAGCTGCA 721
- CACATCGAŤCTGCTTGTCGGĞAGCGCCACCCTCTĞTTCGGCCCTCTĀCGTGGGĞGAČCTG GTGTAGCTAGACGAACAGCCCTCGCGGTGGGAGACAAGCCGGGAGATGCACCCCCTGGAC HisIleAspLeuLeuValGlySerAlaThrLeuCysSerAlaLeuTyrValGlyAspLeu 781
- <u> PGCGGGTCTGTCTTGTCGGCCAACTGTTCACCTTCTCTCCCAGGCGCGCCATGGACG</u> **ACGCCCAGACAGAAAGAACAGCCGGTTGACAAGTGGAAGAGAGGGTCCGCGGTGACCTGC** CysGlySerValPheLeuValGlyGlnLeuPheThrPheSerProArgArgHisTrpThr 841

FIG. 72D

ThrGlnGlyCysAsnCysSerIleTyrProGlyHisIleThrGlyHisArgMetAlaTrp **ACGCAAGGTTĞCAATTĞCTCTATCTĀTCCCGĞCATATAACGGĞTCACCĞĞATGGCATĞĞ** TGCGTTCCAACGTTAACGAGATAGATAGGGCCGGTATATTGCCCAGTGGCGTACCGTACC 901

GATATGATGATGAACTGGTCCCCTACGACGGCGTTGGTAATGGCTCAGCTGCTCCGGATC CTATACTACTACTTGACCAGGGGATGCTGCCGCAACCATTACCGAGTCGACGAGGCCTAG AspMetMetMetAsnTrpSerProThrThrAlaLeuValMetAlaGlnLeuLeuArgIle 196

CCACAAGCCATCTTGGACATGATCGCTGGTGCTCACTGGGGGAGTCCTGGCGGGCATAGCG SGTGTTCGGTAGAACCTGTACTAGCGACCACGAGTGACCCCTCAGGACCGCCCGTATCGC ProGlnAlaIleLeuAspMetIleAlaGlyAlaHisTrpGlyValLeuAlaGlyIleAla 1021

TATTTCTCCATGGTGGGGAACTGGGCGAAGGTCCTGGTAGTGCTGCTGCTATTTGCCGGČ ATAAAGAGGTACCACCCTTGACCCGCTTCCAGGACCATCACGACGACGATAAACGGCCG TyrPheSerMetValGlyAsnTrpAlaLysValLeuValValLeuLeuLeuPheAlaGly 1081

CAGCTGCGCCTTTGGGTGCAGTGGCCCCCTTCACGGCCGGTGTGACACAGACCTAAACAA GTCGAČGCGGAAACCCACGTCACCGGGGGĀAGTGCCGGČCACACTGTGTCTGGĀTTTGTT ValAspAlaGluThrHisValThrGlyGlySerAlaGlyHisThrValSerGlyPheVal 1141

SerLeuLeuAlaProGlyAlaLysGlnAsnValGlnLeuIleAsnThrAsnGlySerTrp <u> AGCCTCCTCGCACCAGGCGCCAĀGCAGAACGTCCAGCTGATCAACACCAACGGČAGTTGĞ</u> **PCGGAGGAGCGTGGTCCGCGGTTCGTCTTGCAGGTCGACTAGTTGTGGGTTGCCGTCAACC** 1201

FIG. 72E

CACCTCAATAGCACGGCCCTGAACTGCAATGATAGCCTCAACACCGGCTGGTTGGCAGGG GTGGAGTTATCGTGCCGGGACTTGACGTTACTÄTCGGAGTTGTGGCCGACCAACCGTCCC HisLeuAsnSerThrAlaLeuAsnCysAsnAspSerLeuAsnThrGlyTrpLeuAlaGly 1261

SAAAAGATAGTGGTGTTCAAGTTGAGAAGTCCGACAGGACTCTCCGATCGGTCGACGGCT CTTTTCTĀTCACCACAĀGTTCAACTCTTCAGGČTĞTCCTGAGAGĞCTAGCCAGCTĞCCGA LeuPheTyrHisHisLysPheAsnSerSerGlyCysProGluArgLeuAlaSerCysArg 1321

ProLeuThrAspPheAspGlnGlyTrpGlyProIleSerTyrAlaAsnGlySerGlyPro CCCCTTACCGATTTTGAČCAGGĞTGĞGĞCCTATCAGTTĀTGCCAACGGĀAGCGĞCCCC GGGGAATGGCTAAAACTGGTCCCGACCCCGGGATAGTCAATACGGTTGCCTTCGCCGGGG 1381

CTGGTCGCGGGGATGACGACCGTGATGGGGGGTTTTGGAACGCCATAACACGGGCGCTTC AspGlnArgProTyrCysTrpHisTyrProProLysProCysGlyIleValProAlaLys GAČCAGCGČCCCTĀCTGCTGĞCACTĀCCCCCCAAĀACCTTĞCGGTATTGTGCCCGCGAĀG 1441

SerValCysGlyProValTyrCysPheThrProSerProValValGlyThrThrAsp 1501

ArgSerGlyAlaProThrTyrSerTrpGlyGluAsnAspThrAspValPheValLeuAsn **AGĞICGGGCGCCCCACCIACAGCIGGGGTGAAAIGAIACGGACGICTICGICCITAAC** TCCAGCCCGCGCGGGTGGATGTCGACCCCACTTTTACTATGCCTGCAGAAGCAGGAATTG

FIG.72F

AsnThrArgProProLeuGlyAsnTrpPheGlyCysThrTrpMetAsnSerThrGlyPhe **AATACCAGGCCACCGCTGGGCAATTGGTTCGGTTGTACCTGGATGAACTCAACTGGATTC** ITATGGTCCGGTGGCGACCCGTTAACCAAGCCAACATGGACCTACTTGAGTTGACCTAAG 1621

ThrLysValCysGlyAlaProProCysValIleGlyGlyAlaGlyAsnAsnThrLeuHis **ACCADAGEGEGEGEGECECTECTETETETETEGEGEGEGEGEGEGAAAAAACACCCTGCAC** 1681

TGCCCCACTGATTGCTTCCGCAAGCATCCGGACGCCACATACTCTCGGTGCGGCTCCGGT ACGGGGTGACTAACGAAGGCGTTCGTAGGCCTGCGGTGTATGAGAGCCACGCCGAGGCCA CysProThrAspCysPheArgLysHisProAspAlaThrTyrSerArgCysG1ySerG1y 1741

ProTrpLeuThrProArgCysLeuValAspTyrProTyrArgLeuTrpHisTyrProCys CCCTGGATCACACCCAGGTGCCTGGTCGACTACCCGTATAGGCTTTGGCATTATCCTTGT GGGACCTAGTGTGGGTCCACGGACCAGCTGATGGGCATATCCGAAACCGTAATAGGAACA 1801

ACCATCAACTACACCATATTTAAAATCAGGATGTACGTGGGAGGGGTCGAACACAGGCTG TGGTAGTTGATGTGGTATAAATTTTAGTCCTACATGCACCCTCCCCAGCTTGTGTCCCAC ThrIleAsnTyrThrIlePheLysIleArqMetTyrValGlyGlyValGluHisArgLeu 1861

GluAlaAlaCysAsnTrpThrArgGlyGluArgCysAspLeuGluAspArgAspArgSer GAAGCTGCCTĞCAACTGĞACGCGGGĞGĞAACGŤTĞCGAŤCTGGAAGAČAĞĞGAČAGĞTCC CTICGACGGACGITGACCIGCGCCCCGCTIGCAACGCTAGACCTICTGICCCIGICCAGG 1921

GAGCTCAGCCCGTTACTGCTGACCACTACACAGTGGCAGGTCCTCCCGTGTTCCTTCACA GluLeuSerProLeuLeuLeuThrThrThrGlnTrpGlnValLeuProCysSerPheThr CTCGAGTCGGGCAATGACGACTGGTGATGTGTCACCGTCCAGGAGGGCACAAGGAAGTGT 1981

FIG. 72G

- !hrLeuProAlaLeuSerThrGlyLeuIleHisLeuHisGlnAsnIleValAspValGln **ACCCTACCAGCCTTGTCCACCGGCCTCATCCACCTCCACCAGAACATTGTGGACGTGCAG IGGGATGGTCGGAACAGGTGGCCGGAGTAGGTGGAGGTGGTCTTGTAACACCTGCACGTC** 2041
- TACTIGIACGGGGIGGGGICAAGCAICGCGICCIGGGCCAITAAGIGGGGAGIACGICGII ATGAACATGCCCCACCCCAGTTCGTAGCGCAGGACCCGGTAATTCACCCTCATGCAGCAA PyrLeuTyrG1yVa1G1ySerSerI1eA1aSerTrpA1aI1eLysTrpG1uTyrVa1Va1 2101
- CICCIGIICCIICIGCIIGCAGACGCGCGCGTCIGCICCIGCIIGIGGAIGAIGCIACIC SAGGACAAGGAAGACGTCTGCGCGCGCAGACGAGGACGAACACCTACTACGATGAG LeuLeuPheLeuLeuLeuAlaAspAlaArgValCysSerCysLeuTrpMetMetLeuLeu 2161
- IleSerGlnAlaGluAlaAlaLeuGluAsnLeuValIleLeuAsnAlaAlaSerLeuAla ATATCCCAAGCGGAGGCGGCTTTGGAGAACCTCGTAATACTTAATGCAGCATCCCTGGCC PATAGGGTTCGCCTCCGCCGAAACCTCTTGGAGCATTATGAATTACGTCGTAGGGACCGG 2221
- GlyThrHisGlyLeuValSerPheLeuValPhePheCysPheAlaTrpTyrLeuLysGly CCTGCGTGCCAGAACATAGGAAGGAGCACAAGAAGACGAAACGTACCATAAACTTCCCA 2281
- LysTrpValProG1yAlaValTyrThrPheTyrG1yMetTrpProLeuLeuLeuLeuLeu PTCACCCACGGCCTCGCCAGATGTGGAAGATGCCCTACACCGGAGAGGAGGACGAGGAGGAC

FIG. 72H

- AACCGCAACGGGGTCGCCCCCATGCGCGACCTGTGCCTCCACCGGCGCAGCACACCGCCA TTGGCGTTGCCCCAGCGGCGTĀCGCGCTGGĀČĀCGGAGGTGGCCGCGTCGTĞTGGĞG LeuAlaLeuProGlnArgAlaTyrAlaLeuAspThrGluValAlaAlaSerCysGlyGly 2401
- CAACAAGAGCAGCCCAACTACCGCGACTGAGACAGTGGTATAATGTTCGCGATATAGTCG GTTGTTCTCGTCGGGTTGATGGCGCTGACTCTGTCACCATATTACAAGCGCTATATCAGC /alValLeuValGlyLeuMetAlaLeuThrLeuSerProTyrTyrLysArgTyrIleSer 2461
- TGĞTĞCTTĞTGĞTGĞCTTCAGTĀTTTTCTGACCAĞĀGTGGAAGCGCAACTGCACGTGTĞĞ TrpCysLeuTrpTrpLeuGlnTyrPheLeuThrArgValGluAlaGlnLeuHisValTrp ACCACGAACACCCACCGAAGTCATAAAAGACTGGTCTCACCTTCGCGTTGACGTGCACAC 2521
- TAAGGGGGGGAGTTGCAGGCTCCCCCCCCCGCTGCGCAGTAGAATGAGTACACACAT IleProProLeuAsnValArgGlyGlyArgAspAlaValIleLeuLeuMetCysAlaVal 2581
- HisProThrLeuValPheAspIleThrLysLeuLeuLeuAlaValPheGlyProLeuTrp CACCCGACTCTGGTATTTGACATCACCAAATTGCTGCTGGCCGTCTTCGGACCCCTTTGG STGGGCTGAGACCATAAACTGTAGTGGTTTAACGACGACGGCAGAAGCCTGGGGAAACC 2641
- TAAGAAGTTCGGTCAAACGAATTTCATGGGATGAAACACGCGCAGGTTCCGGAAGAGGCC IleLeuGlnAlaSerLeuLeuLysValProTyrPheValArqValGlnGlyLeuLeuArq <u> ATTCTTCAAGCCAGTTTGCTTAAAGTACCCTACTTTGTGCGCGTCCAAGGCCTTCTCCGG</u>

- TICIĞCGCGITAGCGCGĞAĀGATGATCGGĀGGČCATTĀCGTGCAAATGGTCATTAAG **AAGACGCCCAATCGCCCCTTCTACTAGCCTCCGGTAATGCACGTTTACCAGTAGTAATTC** PheCysAlaLeuAlaArgLysMetIleGlyGlyHisTyrValGlnMetValIleIleLys 2761
- LeuGlyAlaLeuThrGlyThrTyrValTyrAsnHisLeuThrProLeuArgAspTrpAla TTAGGĞGCGCTTACTGGČACCTĂTGTTTĂTAACCATCTCACTCCTCTTTCGĞGAÖTGĞGCG <u> AATCCCCCCGAATGACCGTGGATACAAATATTGGTAGAGTGAGGAGAAGCCCTGACCCGC</u> 2821
- HisAsnGlyLeuArgAspLeuAlaValAlaValGluProValValPheSerGlnMetGlu CACAACGGČTTGCGĀGAĪCTGGCCGTGGTGTAGAGCCAGTCGTCTTCTCCCAAATGGAG STGTTGCCGAACGCTCTAGACCGGCACCGACATCTCGGTCAGCAGAAGAGGGGTTTACCTC 2881
- ACCAAGCTCATCACGTGGGGGGCAGATACCGCCGCGTGCGGTGACATCATCAACGGCTTG IGGTICGAGIAGIGCACCCCCCGICIAIGGCGCGCGCACGCCACIGIAGIAGIIGCCGAAC ThrLysLeuIleThrTrpGlyAlaAspThrAlaAlaCysGlyAspIleIleAsnGlyLeu 2941
- SGACAAAGGCGGGCGTCCCCGGCCCTCTATGACGAGCCCGGTCGGCTACCTTACCAGAGG ProValSerAlaArgArgGlyArgGluIleLeuLeuGlyProAlaAspGlyMetValSer CCTGTTTCCGCCCGCAGGGGCCGGGAGATACTGCTCGGGCCAGCCGATGGAATGGTCTCC 3001
- AAGGGGTGGAGGTTGCTGGCGCCCATCACGGCGTACGCCCAGCAGACAAGGGGGCCTCCTA ITCCCCACCTCCAACGACCGCGGGTAGTGCCGCATGCGGGTCGTCTGTTCCCCGGAGGAT LysGlyTrpArgLeuLeuAlaProIleThrAlaTyrAlaGlnGlnThrArgGlyLeuLeu 3061
- GlyCysIleIleThrSerLeuThrGlyArgAspLysAsnGlnValGluGlyGluValGln GGGTGCATAATCACCAGCCTAACTGGCCGGGACAAAAACCAAGTGGAGGGTGAGGTCCAG CCCACGTATTAGTGGTCGGATTGACCGGCCCTGTTTTTGGTTCACCTCCCACTCCAGGTC

FIG. 72.

- ATTGTGTCAACTGCTGCCCAAACCTTCCTGGCAACGTGCATCAATGGGGTGTGTGCTGGACT TAACACAGTTGACGACGGGTTTGGAAGGACCGTTGCACGTAGTTACCCCACACGACCTGA IleValSerThrAlaAlaGlnThrPheLeuAlaThrCysIleAsnGlyValCysTrpThr 3181
- GICIACCACGGGCCGGAACGAGGACCATCGCGTCACCCAAGGGTCCTGTCATCCAGATG CAGATGGTGCCCCGGCCTTGCTCCTGGTAGCGCAGTGGGTTCCCAGGACAGTAGGTCTAC ValTyrHisGlyAlaGlyThrArgThrIleAlaSerProLysGlyProValIleGlnMet 3241
- IyrThrAsnValAspGlnAspLeuValGlyTrpProAlaProGlnGlySerArqSerLeu TATACCAATGTAGACCAAGACCTTGTGGGCTGGCCCGCTCCGCAAGGTAGCCGCTCATTG 3301
- ThrProCysThrCysGlySerSerAspLeuTyrLeuValThrArgHisAlaAspValIle ACACCCTGCACTTGCGGCTCCTCGGACCTTTACCTGGTCACGAGGCACGCCGATGTCATT IGIGGGACGIGAACGCCGAGGAGCCIGGAAAIGGACCAGIGCICCGIGCGGCIACAGIAA 3361
- CCCGTGCGCCGGCGGGGGGATAGCAGGGGCAGCCTGCTGTCGCCCCGGCCCATTTCCTAC **3GGCACGCCGCCCCCCACTATCGTCCCCGTCGGACGACACCGGGGCCCGGGTAAAGGATG** ProValArgArgGlyAspSerArgGlySerLeuLeuSerProArgProIleSerTyr 3421
- LeuLysG1ySerSerG1yG1yProLeuLeuCysProA1aG1yHisA1aVa1G1yI1ePhe TTGAAAGGCTCCTCGGGGGGTCCGCTGTTGTGCCCCCGGGGGCACGCCGTGGGCATATTT <u> AACTTTCCGAGGAGCCCCCCAGGCGACAACACGGGGCGCCCCCGTGCGGCACCCGTATAAA</u> 3481
- AGGGCCGCGGTGTGCACCCGTGGAGTGGCTAAGGCGGTGGACTTTATCCCTGTGGAAC TCCCGGCGCCACACGTGGGCACCTCACCGATTCCGCCACCTGAAATAGGGACACCTCTTG ArqAlaAlaValCysThrArqGlyValAlaLysAlaValAspPheIleProValGluAsn 3541

FIG. 72K

- LeuGluThrThrMetArqSerProValPheThrAspAsnSerSerProProValValPro CTAGAGACAACCATGAGGTCCCCGGTGTTCACGGATAACTCCTCTCCACCAGTAGTGCCC SATCTCTGTTGGTACTCCAGGGGCCACAAGTGCCTATTGAGGAGGAGGTGGTCATCACGGG 3601
- CAGAGCTTCCAGGTGGCTCACCTCCATGCTCCCACAGGCAGCGGCAAAAGCACCAAGGTC GTCTCGAAGGTCCACCGAGTGGAGGTACGAGGGTGTCCGTCGCCGTTTTCGTGGTTCCAG GlnSerPheGlnValAlaHisLeuHisAlaProThrGlySerGlyLysSerThrLysVal 3661
- ProAlaAlaTyrAlaAlaGlnGlyTyrLysValLeuValLeuAsnProSerValAlaAla CCGGCTGCATĀTGCAGCTCAGGGČTĀTAĀGGTGCTAGTACTCAACCCCTCTGTTGCTGCA GGCCGACGTATACGTCGAGTCCCGATATTCCACGATCATGAGTTGGGGAGACAACGACGT 3721
- ${\tt ThrLeuGlyPheGlyAlaTyrMetSerLysAlaHisGlyIleAspProAsnIleArgThr}$ ACACTGGGČTTTGGTGCTTĀCATGTCCAĀGGCTCATGGĞATCGATCCTAACATCAGĞACC 3781
- GlyValArgThrIleThrThrGlySerProIleThrTyrSerThrTyrGlyLysPheLeu GGGGTGAGAACAATTACCACTGGCAGCCCCATCACGTACTCCACCTACGGCAAGTTCCTT CCCCACTCTTGTTAATGGTGACCGTCGGGGTAGTGCATGAGGTGGATGCCGTTCAAGGAA 3841
- AlaAspGlyGlyCysSerGlyGlyAlaTyrAspIleIleIleCysAspGluCysHisSer GCCGAČGGČGGĞTĞCTCGGGĞGGČGCTTĀTGAČATAATAATTTĞTGAĞGAGTĞCCACTCC 390I

FIG. 72L

- <u> ACGGATGCCACATCCATCTTGGGČATCGGČACTGTCCTTGAČCAAGCAGAGACTGCGGGĞ</u> IGCCIACGGIGIAGGIAGAACCCGIAGCCGIGACAGGAACIGGIICGICICIGACGCCCC ThrAspAlaThrSerIleLeuGlyIleGlyThrValLeuAspGlnAlaGluThrAlaGly 3961
- AlaArqLeuValValLeuAlaThrAlaThrProProGlySerValThrValProHisPro GCGAGACTGGTTGTGCTCGCCACCGCCACCCCTCCGGGCTCCGTCACTGTGCCCCATCCC CGCTCTGACCAACACGAGCGGTGGCGGTGGGGAGGCCCGAGGCAGTGACACGGGGTAGGG 4021
- AsnIleGluGluValAlaLeuSerThrThrGlyGluIleProPheTyrGlyLysAlaIle **AACATCGAGGAGGTTGCTCTGTCCACCACCGGAGAGATCCCTTTTTTACGGCAAGGCTATC** ITGTAGCTCCTCCAACGAGACAGGTGGTGGCCTCTCTAGGGAAAAATGCCGTTCCGATAG 4081
- ProLeuGluValIleLysGlyGlyArgHisLeuIlePheCysHisSerLysLysLysCys CCCCTCGAAGTAATCAĀGGĞĞĞĞĞĞĞAĞATCTCATCTTCTĞTCATTCAAĀGAĀGAĞTĞC SGGGAGCTTCATTAGTTCCCCCCCCTCTGTAGAGTAGAAGACAGTAAGTTTCTTCTTCACG 4141
- GACGAACTCGCCGCAAĀGCTGGTCGCATTGGGČATCAATGCCGTGGCCTĀCTĀCCGČGGĪ CTGCTTGAGCGGCGTTTCGACCAGCGTAACCCGTAGTTACGGCACCGGATGATGGCGCCCA AspGluLeuAlaAlaLysLeuValAlaLeuGlyIleAsnAlaValAlaTyrTyrArgGly 4201
- CTTGACGTGTCCGTCATCCCGACCAGCGGCGATGTTGTCGTCGTCGCAACCGATGCCCTC LeuAspValSerValIleProThrSerGlyAspValValValValAlaIALauLeu SAACTGCACAGGCAGTAGGGCTGGTCGCCGCTACAACAGCAGCACCGTTGGCTACGGGAG 4261

F	IG. 47B
961	AČÁÁĞÁÁĞÁČĞÁÁÁČĞTÁCCATAAACTTCCCATTCACCCACGGGCCTCGCCAGATGTGGA
1021	TyrGlyMetTrpProLeuLeuLeuLeuLeuLeuAlaLeuProGlnArgAlaTyrAlaLeu TCTACGGGATGTGGCCTCTCCTCCTGCTCCTGTTGGCGTTGCCCCAGCGGGCGTACGCGC AGATGCCCTACACCGGAGAGGACGAGGACGAGGACAACCGCAACGGGGTCGCCCGCATGCGCG
1081	ASPTHrGluValAlaAlaSerCysGlyGlyValValLeuValGlyLeuMetAlaLeuThr TGGACACGGAGGTGGCCGCGTCGTGTGGCGGTGTTGTTCTCGTCGGGTTGATGGCGCTGA ACCTGTGCCTCCACCGGCGCAGCACACCGCCACAACAAGAGCAGCCCAACTACCGCGACT
1141	LeuSerProTyrTyrLysArgTyrIleSerTrpCysLeuTrpTrpLeuGlnTyrPheLeu CTCTGTCACCATATTACAAGCGCTATATCAGCTGGTGCTTGTGGTGGCTTCAGTATTTTC GAGACAGTGGTATAATGTTCGCGATATAGTCGACCACCGAACACCACCGAAGTCATAAAAG
1201	ThrargvalGluAlaGlnLeuHisValTrpIleProProLeuAsnValArgGlyGlyArg TGACCAGAGTGGAAGCGCAACTGCACGTGTGGATTCCCCCCCTCAACGTCCGAGGGGGGC ACTGGTCTCACCTTCGCGTTGACGTGCACACCTAAGGGGGGGAGTTGCAGGCTCCCCCCG
1261	ASPAlaVallleLeuLeuMetCysAlaValHisProThrLeuValPheAsplleThrLys GCGACGCCGTCATCTTACTCATGTGTGCTGTACACCCGACTCTGGTATTTGACATCACCA CGCTGCGGCAGTAGAATGAGTACACACGACATGTGGGCTGAGACCATAAACTGTAGTGGT
1321	LeuLeuLeuAlaValPheGlyProLeuTrpIleLeuGlnAlaSerLeuLeuLysValPro AATTGCTGCTGGCCGTCTTCGGACCCCTTTGGATTCTTCAAGCCAGTTTGCTTAAAGTAC TTAACGACGACCGGCAGAAGCCTGGGGAAACCTAAGAAGTTCGGTCAAACGAATTTCATG
1381	TyrPheValArgValGlnGlyLeuLeuArgPheCysAlaLeuAlaArgLysMetIleGly CCTACTTTGTGCGCGTCCAAGGCCTTCTCCGGTTCTGCGCGTTAGCGCGGAAGATGATCG GGATGAAACACGCGCAGGTTCCGGAAGAGGCCAAGACGCGCAATCGCGCCTTCTACTAGC
1441	GlyHisTyrValGlnMetValIleIleLysLeuGlyAlaLeuThrGlyThrTyrValTyr GAGGCCATTACGTGCAAATGGTCATCATTAAGTTAGGGGCGCTTACTGGCACCTATGTTT CTCCGGTAATGCACGTTTACCAGTAGTAATTCAATCCCCGCGAATGACCGTGGATACAAA
1501	ASNHISLEUTHTPTOLEUATGASpTTpAlaHisASnGlyLeuArgAspLeuAlaValAla ATAACCATCTCACTCCTCTTCGGGACTGGGCGCACAACGGCTTGCGAGATCTGGCCGTGG TATTGGTAGAGTGAGGAGAAGCCCTGACCCGCGTGTTGCCGAACGCTCTAGACCGGCACC
1561	ValGluProvalValPheSerGlnMetGluThrLysLeuIleThrTrpGlyAlaaspThr CTGTAGAGCCAGTCGTCTCTCCCAAATGGAGACCAAGCTCATCACGTGGGGGGCAGATA GACATCTCGGTCAGCAGAAGAGGGTTTACCTCTGGTTCGAGTAGTGCACCCCCCGTCTAT
1621	AlaAlaCysGlyAspIleIleAsnGlyLeuProValSerAlaArgArgGlyArgGluIle CCGCCGCGTGCGGTGACATCATCAACGGCTTGCCTGTTTCCGCCCGC
1681	LeuLeuGlyProAlaAspGlyMetValSerLysGlyTrpArgLeuLeuAlaProIleThr TACTGCTCGGGCCAGCCGATGGAATGGTCTCCAAGGGGTGGAGGTTGCTGGCGCCCATCA ATGACGAGCCCGGTCGGCTACCTTACCAGAGGTTCCCCACCTCCAACGACCGCGGGTAGT
1741	AlaTyrAlaGlnGlnThrArgGlyLeuLeuGlyCysIleIleThrSerLeuThrGlyArg CGGCGTACGCCCAGCAGACAAGGGGCCTCCTAGGGTGCATAATCACCAGCCTAACTGGCC GCCGCATGCGGGTCGTCTGTTCCCCGGAGGATCCCACGTATTAGTGGTCGGATTGACCGG
1801	ASPLYSASNGINVAIGIUGIYGIUVAIGINIIeVAISerThrAlaAlaGInThrPheLeu GGGACAAAAACCAAGTGGAGGGTGAGGTCCAGATTGTGTCAACTGCTGCCCAAACCTTCC CCCTGTTTTTGGTTCACCTCCCACTCCAGGTCTAACACAGTTGACGACGGGTTTGGAAGG
1861	AlaThrCysIleAsnGlyValCysTrpThrValTyrHisGlyAlaGlyThrArgThrIle TGGCAACGTGCATCAATGGGGTGTGCTGGACTGTCTACCACGGGGCCGGAACGAGGACCA ACCGTTGCACGTAGTTACCCCACACGACCTGACAGATGGTGCCCCGGCCTTGCTCCTGGT
1921	AlaSerProLysGlyProVallleGlnMetTyrThrAsnValAspGlnAspLeuValGly TCGCGTCACCCAAGGGTCCTGTCATCCAGATGTATACCAATGTAGACCAAGACCTTGTGG

FIG. 47C

- TrpProAlaProGInGlySerArgSerLeuThrProCysThrCysGlySerSerAspLeu
 1981 GCTGGCCCGCTCCGCAAGGTAGCCGCTCATTGACACCCTGCACTTGCGGCTCCTCGGACC
 CGACCGGGCGAGGCGTTCCATCGGCGAGTAACTGTGGGACGTGAACGCCGAGGAGCCTGG
- TyrLeuValThrArgHisAlaAspVallleProValArgArgArgGlyAspSerArgGly 2041 TTTACCTGGTCACGAGGCACGCCGATGTCATTCCCGTGCGCCGGCGGGGTGATAGCAGGG AAATGGACCAGTGCTCCGTGCGGCTACAGTAAGGGCACGCCGGCCCCCCACTATCGTCCC
- SerLeuLeuSerProArgProIleSerTyrLeuLysGlySerSerGlyGlyProLeuLeu 2101 GCAGCCTGCTGTCGCCCCGGCCCATTTCCTACTTGAAAGGCTCCTCGGGGGGTCCGCTGT CGTCGGACGACAGCGGGCCGGGTAAAGGATGAACTTTCCGAGGAGCCCCCCAGGCGACA
- CysProAlaGlyHisAlaValGlyIlePheArgAlaAlaValCysThrArgGlyValAla 2161 TGTGCCCCGCGGGGCACGCCGTGGGCATATTTAGGGCCGCGGGTGTGCACCCGTGGAGTGG ACACGGGGCCCCCGTGCGGCACCCGTATAAATCCCGGCGCCACACGTGGGCACCTCACC
- LysAlaValAspPheIleProValGluAsnLeuGluThrThrMetArgSerProValPhe 2221 CTAAGGCGGTGGACTTTATCCCTGTGGAGAACCTAGAGACAACCATGAGGTCCCCGGTGT GATTCCGCCACCTGAAATAGGGACACCTCTTGGATCTCTGTTGGTACTCCAGGGGCCACA
- ThrAspAsnSerSerProProValValProGlnSerPheGlnValAlaHisLeuHisAla 2281 TCACGGATAACTCCTCCCACCAGTAGTGCCCCAGAGCTTCCAGGTGGCTCACCTCCATG AGTGCCTATTGAGGAGAGGTGGTCATCACGGGGTCTCGAAGGTCCACCGAGTGGAGGTAC
- ProThrGlySerGlyLysSerThrLysValProAlaAlaTyrAlaAlaGlnGlyTyrLys 2341 CTCCCACAGGCAGCGCAAAAGCACCAAGGTCCCGGCTGCATATGCAGCTCAGGGCTATA GAGGGTGTCCGTCGCCGTTTTCGTGGTTCCAGGGCCGACGTATACGTCGAGGTCCCGATAT
- ValleuValleuAsnProSerValAlaAlaThrLeuGlyPheGlyAlaTyrMetSerLys 2401 AGGTGCTAGTACTCAACCCCTCTGTTGCTGCAACACTGGGCTTTGGTGCTTACATGTCCA TCCACGATCATGAGTTGGGGAGACAACGACGTTGTGACCCGAAACCACGAATGTACAGGT
- AlaHisGlyIleAspProAsnIleArgThrGlyValArgThrIleThrThrGlySerPro 2461 AGGCTCATGGGATCGATCCTAACATCAGGACCGGGGTGAGAACAATTACCACTGGCAGCC TCCGAGTACCCTAGCTAGGATTGTAGTCCTGGCCCCACTCTTGTTAATGGTGACCGTCGG
- IleThrTyrSerThrTyrGlyLysPheLeuAlaAspGlyGlyCysSerGlyGlyAlaTyr 2521 CCATCACGTACTCCACCTACGGCAAGTTCCTTGCCGACGGCGGGTGCTCGGGGGGGCGCTT GGTAGTGCATGAGGTGGATGCCGTTCAAGGAACGGCTGCCGCCCACGAGCCCCCCGCGAA
- ThrValLeuAspGlnAlaGluThrAlaGlyAlaArgLeuValValLeuAlaThrAlaThr 2641 GCACTGTCCTTGACCAAGCAGAGACTGCGGGGGGGGGGAGACTGGTTGTGCCCACCGCCA CGTGACAGGAACTGGTTCGTCTCTGACGCCCCCGCTCTGACCAACACGAGCGGTGGCGGT
- ProproglySerValThrValProHisProAsnIleGluGluValAlaLeuSerThrThr 2701 CCCCTCCGGGCTCCGTCACTGTGCCCCATCCCAACATCGAGGAGGTTGCTCTGTCCACCA GGGGAGGCCCGAGGCAGTGACACGGGGTAGGGTTGTAGCTCCTCCAACGAGACAGGTGGT
- LeullePheCysHisSerLysLysLysCysAspGluLeuAlaAlaLysLeuValAlaLeu 2821 ATCTCATCTTCTGTCATTCAAAGAAGAAGTGCGAACTCGCCGCAAAGCTGGTCGCAT TAGAGTAGAAGACAGTAAGTTTCTTCTTCACGCTGCTTGAGCGGCGTTTCGACCAGCGTA
- GlylleAsnAlaValAlaTyrTyrArgGlyLeuAspValSerVallleProThrSerGly
 2881 TGGGCATCAATGCCGTGGCCTACTACCGCGGTCTTGACGTGTCCGTCATCCCGACCAGCG
 ACCCGTAGTTACGGCACCGGATGATGGCGCCAGAACTGCACAGGCAGTAGGGCTGGTCGC
- AspValValValAlaThrAspAlaLeuMetThrGlyTyrThrGlyAspPheAspSer 2941 GCGATGTTGTCGTCGTGGCAACCGATGCCCTCATGACCGGCTATACCGGCGACTTCGACT CGCTACAACAGCAGCACCGTTGGCTACGGGAGTACTGGCCGATATGGCCGCTGAAGCTGA

FIG. 47D

- ValileAspCysAsnThrCysValThrGlnThrValAspPheSerLeuAspProThrPhe 3001 CGGTGATAGACTGCAATACGTGTGTCACCCAGACAGTCGATTTCAGCCTTGACCCTACCT GCCACTATCTGACGTTATGCACACAGTGGGTCTGTCAGCTAAAGTCGGAACTGGGATGGA
- ThrileGluThrileThrLeuProGlnAspAlaValSerArgThrGlnArgArgGlyArg
 3061 TCACCATTGAGACAATCACGCTCCCCCAGGATGCTGTCTCCCGCACTCAACGTCGGGGCA
 AGTGGTAACTCTGTTAGTGCGAGGGGGTCCTACGACAGAGGGCGTGAGTTGCAGCCCCGT
- ThrGlyArgGlyLysProGlyIleTyrArgPheValAlaProGlyGluArgProSerGly 3121 GGACTGGCAGGGGAAGCCAGGCATCTACAGATTTGTGGCACCGGGGGAGCGCCCCTCCG CCTGACCGTCCCCTTCGGTCCGTAGATGTCTAAACACCGTGGCCCCCTCGCGGGGAGGC
- MetPheAspSerSerValLeuCysGluCysTyrAspAlaGlyCysAlaTrpTyrGluLeu 3181 GCATGTTCGACTCGTCCGTCCTCTGTGAGTGCTATGACGCAGGCTGTGCTTGGTATGAGC CGTACAAGCTGAGCAGGAGACACTCACGATACTGCGTCCGACACGAACCATACTCG
- ThrProAlaGluThrThrValArgLeuArgAlaTyrMetAsnThrProGlyLeuProVal
 TCACGCCGGCGAGACTACAGTTAGGCTACGAGCGTACATGAACACCCCGGGGCTTCCCG
 AGTGCGGGCGGCTCTGATGTCAATCCGATGCTCGCATGTACTTGTGGGGCCCCGAAGGGC

- AlaThrValCysAlaArgAlaGlnAlaProProProSerTrpAspGlnMetTrpLysCys 3421 AAGCCACCGTGTGCGCTAGGGCTCAAGCCCCTCCCCCATCGTGGGACCAGATGTGGAAGT TTCGGTGGCACACGCGATCCCGAGTTCGGGGAGGGGGGTAGCACCCTGGTCTACACCTTCA
- LeuIleArgLeuLysProThrLeuHisGlyProThrProLeuLeuTyrArgLeuGlyAla 3481 GTTTGATTCGCCTCAAGCCCACCCTCCATGGGCCAACACCCCTGCTATACAGACTGGGCG CAAACTAAGCGGAGTTCGGGTGGGAGGTACCCGGTTGTGGGGACGATATGTCTGACCCGC
- AlaAspLeuGluValValThrSerThrTrpValLeuValGlyGlyValLeuAlaAlaLeu 3601 CGGCCGACCTGGAGGTCGTCACGAGCACCTGGGTGCTCGTTGGCGGCGTCCTGGCTGCTT GCCGGCTGGACCTCCAGCAGTGCTCGTGGACCCACGAGCAACCGCCGCAGGACCGACGAA
- AlaAlaTyrCysLeuSerThrGlyCysValValIleValGlyArgValValLeuSerGly 3661 TGGCCGCGTATTGCCTGTCAACAGGCTGCGTGGTCATAGTGGGCAGGGTCGTCTTGTCCG ACCGGCGCATAACGGACAGTTGTCCGACGCACCAGTATCACCCGTCCCAGCAGAACAGGC
- LysProAlaIleIleProAspArgGluValLeuTyrArgGluPheAspGluMetGluGlu 3721 GGAAGCCGGCAATCATACCTGACAGGGAAGTCCTCTACCGAGAGTTCGATGAGATGGAAG CCTTCGGCCGTTAGTATGGACTGTCCCTTCAGGAGATGGCTCTCAAGCTACTCTACCTTC
- CysSerGlnHisLeuProTyrIleGluGlnGlyMetMetLeuAlaGluGlnPheLysGln
 3781 AGTGCTCTCAGCACTTACCGTACATCGAGCAAGGGATGATGCTCGCCGAGCAGTTCAAGC
 TCACGAGAGTCGTGAATGGCATGTAGCTCGTTCCCTACTACGAGCGGCTCGTCAAGTTCG
- LysAlaLeuGlyLeuLeuGlnThrAlaSerArgGlnAlaGluVallleAlaProAlaVal 3841 AGAAGGCCCTCGGCCTCCTGCAGACCGCGTCCCGTCAGGCAGAGGTTATCGCCCCTGCTG TCTTCCGGGAGCCGGAGGACGTCTGGCGCAGGGCAGTCCGTCTCCAATAGCGGGGACGAC
- GINTHRASHTTPGINLYSLEUGIUTHTPHETTPAIALYSHISMETTTPASHPHEIleSer 3901 TCCAGACCAACTGGCAAAAACTCGAGACCTTCTGGGCGAAGCATATGTGGAACTTCATCA AGGTCTGGTTGACCGTTTTTTGAGCTCTGGAAGACCCGCTTCGTATACACCTTGAAGTAGT
- GlyIleGlnTyrLeuAlaGlyLeuSerThrLeuProGlyAsnProAlaIleAlaSerLeu 3961 GTGGGATACAATACTTGGCGGGCTTGTCAACGCTGCCTGGTAACCCCGCCATTGCTTCAT CACCCTATGTTATGAACCGCCCGAACAGTTGCGACGGACCATTGGGGCGGTAACGAAGTA

FIG. 4	17E
--------	-----

- MetalaPheThrAlaAlaValThrSerProLeuThrThrSerGlnThrLeuLeuPheAsn 4021 TGATGGCTTTTACAGCTGCTGTCACCAGCCCACTAACCACTAGCCAAACCCTCCTCTTCA ACTACCGAAAATGTCGACGACAGTGGTCGGGTGATTGGTGATCGGTTTGGGAGGAGAAGT
- IleLeuGlyGlyTrpValAlaAlaGlnLeuAlaAlaProGlyAlaAlaThrAlaPheVal 4081 ACATATTGGGGGGGTGGCTGCCCAGCTCGCCCCCGGTGCCGCTACTGCCTTTG TGTATAACCCCCCCACCCACCGACGGGTCGAGCGGGGGGCCACGGCGATGACGGAAAC
- GlyAlaGlyLeuAlaGlyAlaAlaIleGlySerValGlyLeuGlyLysValLeuIleAsp TGGGCGCTGGCTTAGCTGGCGCCGCCATCGGCAGTGTTGGACTGGGGAAGGTCCTCATAG ACCCGCGACCGAATCGACCGCGGCGGTAGCCGTCACAACCTGACCCCTTCCAGGAGTATC
- IleLeuAlaGlyTyrGlyAlaGlyValAlaGlyAlaLeuValAlaPheLysIleMetSer 4201 ACATCCTTGCAGGGTATGGCGCGGGCGTGGCGGGAGCTCTTGTGGCATTCAAGATCATGA TGTAGGAACGTCCCATACCGCGCCCGCACCGCCCTCGAGAACACCGTAAGTTCTAGTACT
- GlyGluValProSerThrGluAspLeuValAsnLeuLeuProAlaIleLeuSerProGly 4261 GCGGTGAGGTCCCCTCCACGGAGGACCTGGTCAATCTACTGCCCGCCATCCTCTCGCCCG CGCCACTCCAGGGGAGGTGCCTCCTGGACCAGTTAGATGACGGGCCGGTAGGAGAGCGGGC
- AlaLeuValValGlyValValCysAlaAlaIleLeuArgArgHisValGlyProGlyGlu 4321 GAGCCCTCGTAGTCGGCGTGGTCTGTGCAGCAATACTGCGCCGGCACGTTGGCCCGGGCG CTCGGGAGCATCAGCCGCACCAGACACGTCGTTATGACGCGGCCGTGCAACCGGGCCCGC
- ProThrHisTyrValProGluSerAspAlaAlaAlaArgValThrAlaIleLeuSerSer 4441 CCCCCACGCACTACGTGCCGGAGAGCGATGCAGCTGCCCGCGTCACTGCCATACTCAGCA GGGGGTGCGTGATGCACGGCCTCTCGCTACGTCGACGGGCGCAGTGACGGTATGAGTCGT
- LeuThrValThrGlnLeuLeuArgArgLeuHisGlnTrpIleSerSerGluCysThrThr GCCTCACTGTAACCCAGCTCCTGAGGCGACTGCACCAGTGGATAAGCTCGGAGTGTACCA CGGAGTGACATTGGGTCGAGGACTCCGCTGACGTGGTCACCTATTCGAGCCTCACATGGT
- ProcysserGlySerTrpLeuArgAspIleTrpAspTrpIleCysGluValLeuSerAsp 4561 CTCCATGCTCCGGTTCCTGGCTAAGGGACATCTGGGACTGGATATGCGAGGTGTTGAGCG GAGGTACGAGGCCAAGGACCGATTCCCTGTAGACCCTGACCTATACGCTCCACAACTCGC
- CysGlnArgGlyTyrLysGlyValTrpArgValAspGlyIleMetHisThrArgCysHis 4681 CCTGCCAGCGCGGGTATAAGGGGGTCTGGCGAGTGGACGGCATCATGCACACTCGCTGCC GGACGGTCGCCCCATATTCCCCCAGACCGCTCACCTGCCGTAGTACGTGTGAGCGACGG
- CysGlyAlaGluIleThrGlyHisValLysAsnGlyThrMetArgIleValGlyProArg 4741 ACTGTGGAGCTGAGATCACTGGACATGTCAAAAACGGGACGATGAGGATCGTCGGTCCTA TGACACCTCGACTCTAGTGACCTGTACAGTTTTTGCCCTGCTACTCCTAGCAGCCAGGAT
- ThrCysArgAsnMetTrpSerGlyThrPheProIleAsnAlaTyrThrThrGlyProCys
 4801 GGACCTGCAGGAACATGTGGAGTGGGACCTTCCCCATTAATGCCTACACCACGGGCCCCT
 CCTGGACGTCCTTGTACACCTCACCCTGGAAGGGGTAATTACGGATGTGGCCCGGGGA
- ThrProLeuProAlaProAsnTyrThrPheAlaLeuTrpArgValSerAlaGluGluTyr 4861 GTACCCCCTTCCTGCGCCGAACTACACGTTCGCGCTATGGAGGGTGTCTGCAGAGGAAT CATGGGGGGAAGGACGCGGCTTGATGTGCAAGCGCGATACCTCCCACAGACGTCTCCTTA
- ValGluIleArgGlnValGlyAspPheHisTyrValThrGlyMetThrThrAspAsnLeu 4921 ATGTGGAGATAAGGCAGGTGGGGGACTTCCACTACGTGACGGGTATGACTACTGACAATC TACACCTCTATTCCGTCCACCCCCTGAAGGTGATGCACTGCCCATACTGATGACTGTTAG
- LysCysProCysGlnValProSerProGluPhePheThrGluLeuAspGlyValArgLeu 4981 TCAAATGCCCGTGCGAGGTCCCATCGCCCGAATTTTTCACAGAATTGGACGGGGTGCGCC AGTTTACGGGCACGGTCCAGGGTAGCGGGCTTAAAAAGTGTCTTAACCTGCCCCACGCGG

FIG. 47F

HisArgPheAlaProProCysLysProLeuLeuArgGluGluValSerPheArgValGly
5041 TACATAGGTTTGCGCCCCCTGCAAGCCCTTGCTGCGGGAGGAGGTATCATTCAGAGTAG
ATGTATCCAAACGCGGGGGGACGTTCGGGAACGACGCCCTCCTCCATAGTAAGTCTCATC

- LeuHisGluTyrProValGlySerGlnLeuProCysGluProGluProAspValAlaVal 5101 GACTCCACGAATACCCGGTAGGGTCGCAATTACCTTGCGAGCCCGAACCGGACGTGGCCG CTGAGGTGCTTATGGGCCATCCCAGCGTTAATGGAACGCTCGGGCTTGGCCTGCACCGGC
- LeuThrSerMetLeuThrÄspProSerHisIleThrAlaGluAlaAlaGlyArgArgLeu
 5161 TGTTGACGTCCATGCTCACTGATCCCTCCCATATAACAGCAGAGGCGGCCGGGCGAAGGT
 ACAACTGCAGGTACGAGTGACTAGGGAGGGTATATTGTCGTCTCCGCCGGCCCGCTTCCA
- AlaArgGlySerProProSerValAlaSerSerSerAlaSerGlnLeuSerAlaProSer 5221 TGGCGAGGGATCACCCCCCTCTGTGGCCAGCTCCTCGGCTAGCCAGCTATCCGCTCCAT ACCGCTCCCCTAGTGGGGGGAGACACCGGTCGAGGAGCCGATCGGTCGATAGGCGAGGTA
- LeuLysAlaThrCysThrAlaAsnHisAspSerProAspAlaGluLeuIleGluAlaAsn 5281 CTCTCAAGGCAACTTGCACCGCTAACCATGACTCCCCTGATGCTGAGCTCATAGAGGCCA GAGAGTTCCGTTGAACGTGGCGATTGGTACTGAGGGGACTACGACTCGAGTATCTCCGGT
- LeuLeuTrpArgGlnGluMetGlyGlyAsnIleThrArgValGluSerGluAsnLysVal 5341 ACCTCTATGGAGGCAGGAGATGGGCGGCAACATCACCAGGGTTGAGTCAGAAAACAAAG TGGAGGATACCTCCGTCCTCTACCCGCCGTTGTAGTGGTCCCAACTCAGTCTTTTGTTTC
- ValileLeuAspSerPheAspProLeuValAlaGluGluAspGluArgGluIleSerVal TGGTGATTCTGGACTCCTTCGATCCGCTTGTGGCGGAGGAGGACGAGCGGGAGATCTCCG ACCACTAAGACCTGAGGAAGCTAGGCGAACACCGCCTCCTCCTGCTCGCCCTCTAGAGGC
- ProAlaGluIleLeuArgLysSerArgArgPheAlaGlnAlaLeuProValTrpAlaArg
 5461 TACCCGCAGAAATCCTGCGGAAGTCTCGGAGATTCGCCCAGGCCCTGCCCGTTTGGGCGC
 ATGGGCGTCTTTAGGACGCCTTCAGAGCCTCTAAGCGGGTCCGGGACGGCCAAACCCGCG
- ProAspTyrAsnProProLeuValGluThrTrpLysLysProAspTyrGluProProVal 5521 GGCCGGACTATAACCCCCCGCTAGTGGAGACGTGGAAAAAGCCCGACTACGAACCACCTG CCGGCCTGATATTGGGGGGGCGATCACCTCTGCACCTTTTTCGGGCTGATGCTTGGTGGAC
- ValHisGlyCysProLeuProProProLysSerProProValProProProArgLysLys 5581 TGGTCCATGGCTGTCCGCTTCCACCTCCAAAGTCCCCTCCTGTGCCTCCGCCTCGGAAGA ACCAGGTACCGACAGGCGAAGGTGGAGGTTTCAGGGGAGCACGGAGGCGGAGCCTTCT
- ArgThrValValLeuThrGluSerThrLeuSerThrAlaLeuAlaGluLeuAlaThrArg
 5641 AGCGGACGGTGGTCCTCACTGAATCAACCCTATCTACTGCCTTGGCCGAGCTCGCCACCA TCGCCTGCCACCAGGAGTGACTTAGTTGGGATAGATGACGGAACCGGCTCGAGCGGTGGT
- SerPheGlySerSerSerThrSerGlyIleThrGlyAspAsnThrThrThrSerSerGlu 5701 GAAGCTTTGGCAGCTCCTCAACTTCCGGCATTACGGGCGACAATACGACAACATCCTCTG CTTCGAAACCGTCGAGGAGTTGAAGGCCGTAATGCCCGCTGTTATGCTGTTGTAGGAGAC
- ProAlaProSerGlyCysProProAspSerAspAlaGluSerTyrSerSerMetProPro
 5761 AGCCCGCCCTTCTGGCTGCCCCCCGACTCCGACGCTGAGTCCTATTCCTCCATGCCCC
 TCGGGCGGGAAGACCGACGGGGGGGCTGAGGCTGCGACTCAGGATAAGGAGGAGACGGGGG
- LeuGluGlyGluProGlyAspProAspLeuSerAspGlySerTrpSerThrValSerSer
 5821 CCCTGGAGGGGGAGCCTGGGGATCCGGATCTTAGCGACGGTCATGGTCAACGGTCAGTA GGGACCTCCCCCCCGGACCCCTAGGCCTAGAATCGCTGCCCAGTACCAGTTGCCAGTCAT
- GluAlaAsnAlaGluAspValValCysCysSerMetSerTyrSerTrpThrGlyAlaLeu 5881 GTGAGGCCAACGCGGAGGATGTCGTGTGCTCAATGTCTTACTCTTGGACAGGCGCAC CACTCCGGTTGCGCCTCCTACAGCACACGACGAGTTACAGAATGAGAACCTGTCCGCGTG
- ValThrProCysAlaAlaGluGluGlnLysLeuProIleAsnAlaLeuSerAsnSerLeu
 5941 TCGTCACCCGTGCGCCGGGAAGAACAGAAACTGCCCATCAATGCACTAAGCAACTCGT AGCAGTGGGGCACGCGGCGCCTTCTTGTCTTTGACGGGTAGTTACGTGATTCGTTGAGCA
- LeuArgHisHisAsnLeuValTyrSerThrThrSerArgSerAlaCysGlnArgGlnLys 6001 TGCTACGTCACCACAATTTGGTGTATTCCACCACCTCACGCAGTGCTTGCCAAAGGCAGA ACGATGCAGTGGTGTTAAACCACATAAGGTGGTGGAGTGCGTCACGAACGGTTTCCGTCT

FIG. 47G

LysValThrPheAspArgLeuGlnValLeuAspSerHisTyrGlnAspValLeuLysGlu 6061 AGAAAGTCACATTTGACAGACTGCAAGTTCTGGACAGCCATTACCAGGACGTACTCAAGG TCTTTCAGTGTAAACTGTCTGACGTTCAAGACCTGTCGGTAATGGTCCTGCATGAGTTCC

- VallysAlaAlaAlaSerLysVallysAlaAsnLeuLeuSerValGluGluAlaCysSer 6121 AGGTTAAAGCAGCGGCGTCAAAAGTGAAGGCTAACTTGCTATCCGTAGAGGAAGCTTGCA TCCAATTTCGTCGCCGCAGTTTTCACTTCCGATTGAACGATAGGCATCTCCTTCGAACGT
- LeuThrProProHisSerAlaLysSerLysPheGlyTyrGlyAlaLysAspValArgCys 6181 GCCTGACGCCCCACACTCAGCCAAATCCAAGTTTGGTTATGGGGCAAAAGACGTCCGTT CGGACTGCGGGGGTGTGAGTCGGTTTAGGTTCAAACCAATACCCCGTTTTCTGCAGGCAA
- HisAlaArgLysAlaValThrHisIleAsnSerValTrpLysAspLeuLeuGluAspAsn 6241 GCCATGCCAGAAAGGCCGTAACCCACATCAACTCCGTGTGGAAAGACCTTCTGGAAGACA CGGTACGGTCTTTCCGGCATTGGGTGTAGTTGAGGCACACCTTTCTGGAAGACCTTCTGT
- ValThrProlleAspThrThrIleMetAlaLysAsnGluValPheCysValGlnProGlu 6301 ATGTAACACCAATAGACACTACCATCATGGCTAAGAACGAGGTTTTCTGCGTTCAGCCTG TACATTGTGGTTATCTGTGATGGTAGCACCGATTCTTGCTCCAAAAGACGCAAGTCGGAC
- GluLysMetAlaLeuTyrAspValValThrLysLeuProLeuAlaValMetGlySerSer 6421 GCGAAAAGATGGCTTTGTACGACGTGGTTACAAAGCTCCCCTTGGCCGTGATGGGAAGCT CGCTTTTCTACCGAAACATGCTGCACCAATGTTTCGAGGGGAACCGGCACTACCCTTCGA
- TyrGlyPheGlnTyrSerProGlyGlnArgValGluPheLeuValGlnAlaTrpLysSer 6481 CCTACGGATTCCAATACTCACCAGGACAGCGGGTTGAATTCCTCGTGCAAGCGTGGAAGT GGATGCCTAAGGTTATGAGTGGTCCTGTCGCCCAACTTAAGGAGCACGTTCGCACCTTCA
- LysLysThrProMetGlyPheSerTyrAspThrArgCysPheAspSerThrValThrGlu 6541 CCAAGAAAACCCCAATGGGGTTCTCGTATGATACCCGCTGCTTTGACTCCACAGTCACTG GGTTCTTTTGGGGTTACCCCAAGAGCATACTATGGGCGACGAAACTGAGGTGTCAGTGAC
- SerAspIleArgThrGluGluAlaIleTyrGlnCysCysAspLeuAspProGlnAlaArg 6601 AGAGCGACATCCGTACGGAGGAGGCAATCTACCAATGTTGTGACCTCGACCCCCAAGCCC TCTCGCTGTAGGCATGCCTCCTCCGTTAGATGGTTACAACACTGGAGCTGGGGGTTCGGG
- ValAlaIleLysSerLeuThrGluArgLeuTyrValGlyGlyProLeuThrAsnSerArg 6661 GCGTGGCCATCAAGTCCCTCACCGAGAGGCTTTATGTTGGGGGCCCTCTTACCAATTCAA CGCACCGGTAGTTCAGGGAGTGGCTCTCCGAAATACAACCCCCGGGAGAATGGTTAAGTT
- ASnThrLeuThrCysTyrIleLysAlaArgAlaAlaCysArgAlaAlaGlyLeuGlnAsp 6781 GTAACACCCTCACTTGCTACATCAAGGCCCGGGCAGCCTGTCGAGCCGCAGGGCTCCAGG CATTGTGGGAGTGAACGATGTAGTTCCGGGCCCGTCGGACAGCTCGGCGTCCCGAGGTCC
- CysThrMetLeuValCysGlyAspAspLeuValValIleCysGluSerAlaGlyValGln 6841 ACTGCACCATGCTCGTGTGTGGCGACGACTTAGTCGTTATCTGTGAAAGCGCGGGGGTCC TGACGTGGTACGAGCACACCGCTGCTGAATCAGCAATAGACACTTTCGCGCCCCCAGG
- GluAspAlaAlaSerLeuArgAlaPheThrGluAlaMetThrArgTyrSerAlaProPro 6901 AGGAGGACGCGGCGAGCCTGAGAGCCTTCACGGAGGCTATGACCAGGTACTCCGCCCCC TCCTCCTGCGCCGCTCGGACTCTCGGAAGTGCCTCCGATACTGGTCCATGAGGCGGGGGG
- GlyAspProProGlnProGluTyrAspLeuGluLeuIleThrSerCysSerSerAsnVal 6961 CTGGGGACCCCCACAACCAGAATACGACTTGGAGCTCATAACATCATGCTCCTCCAACG GACCCCTGGGGGGTGTTGGTCTTATGCTGAACCTCGAGTATTGTAGTACGAGGAGGTTGC
- SerValAlaHisAspGlyAlaGlyLysArgValTyrTyrLeuThrArgAspProThrThr 7021 TGTCAGTCGCCCACGACGGCGCTGGAAAGAGGGTCTACTACCTCACCCGTGACCCTACAA ACAGTCAGCGGGTGCTGCCGCGACCTTTCTCCCAGATGATGGAGTGGGCACTGGGATGTT

FIG. 47H

7081

ASNIJEIJEMET GCAACATAATCATG CGTTGTATTAGTAC 7141

.61yA1a .6666 SerValLeuIleAlaArgAspGlnLeuGluGlnAlaLeuAspCysG TTAGCGTCCTTATAGCCAGGGACCAGCTTGAACAGGCCCTCGATTGC AATCGCAGGAATATCGGTCCCTGGTCGAACTTGTCCGGGAGCTAACG 7201

7261 CCTGCTACTCCATAGAACCACTTGATCTACCTCCAATCATTCAAAGACTC

ProserProvalvalvalGlyThrThrAspArgSerGlyAlaProThrTyrSerTrpGl

GluAsnAspThrAspValPheValLeuAsnAsnThrArgProProLeuGlyAsnTrpPhe CACTITIACTATGCCTGCAGAAGCAGGAATTGTTATGGTCCGGTGGCGACCCGTTAACCA 61 GTGAAAATGATACGGACGTCTTCGTCCTTAACAATACCAGGCCACCGCTGGGCAATTGGT

GlyCysThrTrpMetAsnSerThrGlyPheThrLysValCysGlyAlaProProCysVal 121 TCGGTTGTACCTGGATGAACTCAACTGGATTCACCAAAGTGTGCGGAGCGCCTCCTTGTG

IleGlyGlyAlaGlyAsnAsnThrLeuHisCysProThrAspCysPheArgLysHisPro AGCCAACATGGACCTACTTGAGTTGACCTAAGTGGTTTCACACGCCTCGCGGAGGAACAC

AspAlaThrTyrSerArgCysGlySerGlyProTrpLeuThrProArgCysLeuValAsp AGTAGCCTCCCCGCCCGTTGTTGTGGGACGTGACGGGGTGACTAACGAAGGCGTTCGTAG 181 TCATCGGĀGGĞGCGGĞÇAACACACCCTGCACTĞCCCCCACTGAŤTĞCTTCCGČAĀGCATC

241 CGGACGCCACATÁCTCTCGGTĞCGGČTCCGGTCCCTGGCTCACACCCCAGGTGCCTGGTCG GCCTGCGGTGTATGAGAGCCACGCCGAGGCCAGGGACCGAGTGTGGGTCCACGGACCAGC ${\tt TyrProTyrArgLeuTrpHisTyrProCysThrIleAsnTyrThrIlePheLysIleArg}$ 301 ACTÁCCCGTÁTAGGCTTTGGCATTÁTCCTTGTACCATCAACTÁCACCATATTTAÁAATCA TGATGGGCATATCCGAAACCGTAATAGGAACATGGTAGTTGATGTGGTATAAATTTTAGT MetTyrValGlyGlyValGluHisArgLeuGluAlaAlaCysAsnTrpThrArgGlyGlu 361 GGATGTĀCGTGGGĀGGĞGTCGAGCACAGĞCTGGAAGCTGCCTĞCAACTGĞACGCĞĞGĞĞĞ ----Overlap with 12f-----

إب

ArgCysAspLeuGluAspArgAspArgSerGluLeuSerProLeuLeuLeuThrThrThr 421 AACGTTGCGATCTGGAAGAČAGĞGAĞAGĞTCCGAGCTCAGCCCGTTACTGCTGACCACTA TIGCAACGCIAGACCIICIGICCCIGICCAGGCICGAGICGGGCAAIGACGACIGGIGAI

481 CACAGTGGCAGGTCCTCCCGTGTTCCTTCACAACCCTGCCAGCCTTGTCCACCGGCCTCA GTGTCACCGTCCAGGAGGGCACAAGGAAGTGTTGGGACGGTCGGAACAGGTGGCCGGAGT ${\tt GlnTrpGInValLeuProCysSerPheThrThrLeuProAlaLeuSerThrGlyLeu}$

AspGlnArgProTyrCysTrpHisTyrProProLysProCysGlyIleValProAlaLys ProLeuThrAspPheAspGlnGlyTrpGlyProIleSerTyrAlaAsnGlySerGlyPro LeuPheTyrHisHisLysPheAsnSerSerGlyCysProGluArgLeuAlaSerCysArg 121 CGACCAGCGCCCTACTGCTGCACTACCCCCCAAAACCTTGCGGTATTGTGCCCGCAA CGAAAAGATAGTGGTGTTCAAGTTGAGAAGTCCGACAGGACTCTCCGATCGGTCGACGGC 1 GCTTTTCTATCACCACAGTTCAACTCTTCAGGCTGTCCTGAGAGGCTAGCCAGCTGCCG GCTGGTCGCGGGATGACGACCGTGATGGGGGGTTTTGGAACGCCATAACACGGGCGCTT 61 ACCCCTTACCGATTTTGACCAGGGCTGGGGCCCTATCAGTTATGCCAACGGAAGCGGCCC TGGGGAATGGCTAAAACTGGTCCCGACCCCGGGATAGTCAATACGGTTGCCTTCGCCGGG

181 GAGTGTGTGTGTCCGGTATATTGCTTCACTCCCAGCCCCGTGGTGGTGG CTCACACACACCAGGCCATATAACGAAGTGAGGGTCGGGGCACCACCACCC ---Overlap with 13i--SerValCysGlyProValTyrCysPheThrProSerProValValVal

LeuValMetAlaGlnLeuLeuArqIleProGlnAlaIleLeuAspMetIleAlaGlyAla TTGGTAATGGCTCAGCTCCCGATCCCACAAGCCATCTTGGACATGATCGCTGGTGCT AACCATTACCGAGTCGACGAGGCCTAGGGTGTTCGGTAGAACCTGTACTAGCGACCACGA

GIGACCCCTCAGGACCGCCCGTATCGCATAAAGAGGTACCACCCCTTGACCCGCTTCCAG **HisTrpGlyValLeuAlaGlyIleAlaTyrPheSerMetValGlyAsnTrpAlaLysVal** 61 CACTGGGGAGTCCTGGCGGGCATAGCGTATTTCTCCATGGTGGGGAACTGGGCGAAGGTC

LeuValValLeuLeuLeuPheAlaGlyValAspAlaGluThrHisValThrGlyGlySer CTGGTAGTGCTGCTGCTATTTGCCGGCGTCGACGCGGAAACCCACGTCACCGGGGGAAGT GACCATCACGACGACGATAAACGGCCGCAGCTGCGCCTTTGGGTGCAGTGGCCCCCTTCA 121

CGGCCGGTGTGACACAGACCTAAACAATCGGAGGAGCGTGGTCCGCGGTTCGTCTTGCAG GCCGGCCACACTGTGTCTGGATTTGTTAGCCTCCTCGCACCAGGCGCCCAAGCAACGTC AlaGlyHisThrValSerGlyPheValSerLeuLeuAlaProGlyAlaLysGlnAsnVal 181

GlnLeuIleAsnThrAsnGlySerTrpHisLeuAsnSerThrAlaLeuAsnCysAsnAsp GTCGACTAGTTGTGGGTTGCCGTCAACCGTGGAGTTATCGTGCCGGGACTTGACGT<u>TACTA</u> 241 cagcigaicaacaccaacggcagiiggcaccicaatagcacggcccigaacigcaatgai

TCGGAGTTGTGGCCGACCAACCGTCCCGAAAAGATAGTGGTGTTCAAGTTGAGAAGTCCG ${ t SerLeuAsnThrGlyTrpLeuAlaGlyLeuPheTyrHisHisHisLysPheAsnSerSerGly}$ 301 AGCCTCAACACCGGCTGGTTGGCAGGCCTTTTCTATCACCACAAGTTCAACTCTTCAGGC --Overlap with 26j--

-----Overlap with K9-1-----

CysProGluArgLeuAlaSerCysArgPro 361 TGTCCTGAGAGGCTAGCCAGCTGCCGACCCC ACAGGACTCTCCGATCGGTCGACGGCTGGGG

GlnGlyCysAsnCysSerIleTyrProGlyHisIleThrGlyHisArgMetAlaTrpAsp 1 CGCAAGGTTĞCAATTĞCTCTATCTATCCGĞCCATATAACGGĞTCACCĞATGGCATGĞG GCGTTCCAACGTTAACGAGATAGATAGGGCCGGTATATTGCCCCAGTGGCGTACCGTACCC MetMetMetAsnTrpSerProThrThrAlaLeuValMetAlaGlnLeuLeuArgIlePro 61 ATATGATGATGAACTGGTCCCCTACGACGGCGTTGGTAATGGCTCAGCTGCTCCGGATCC TATACTACTACTTGACCAGGGGATGCTGCCGCAACCATTACCGAGTCGACGAGGCCTAGG **GlnAlaIleLeuAspMetIleAlaGlyAlaHisTrpGlyValLeuAlaGlyIleAlaTyr** GTGTTCGGTAGAACCTGTACTAGCGACCACGAGTGACCCCTCAGGACCGCCCGTATCGCA 121 CACAAGCCATCTTGGACATGATCGCTGGTGCTCACTGGGGAGTCCTGGCGGGCATAGCGT

PheSerMetValGlyAsnTrpAlaLysValLeuValValLeuLeuLeuPheAlaGlyVal 181 ATTTCTCCATGGTGGGGAACTGĞGCGAĀGGTCCTGGTAGTGCTGCTGCTATTTGCCGGČG TAAAGAGGTACCACCCCTTGACCCGCTTCCAGGACCATCACGACGACGATAAACGGCCGC ------Overlap with CA59a-------

AspalaGluThrHisValThrGly 241 TCGACGCGGAACCCACGTCACCGGGG AGCTGCGCCTTTGGGTGCAGTGGCCCC

CysTrpValAlaMetThrProThrValAlaThrArgAspGlyLysLeuProAlaThrGln 1 GTGTTGGGTGGCGATGACCCCTACGGTGGCCACCAGGGATGGCAAACTCCCCGCGACGCA CACAACCCACCGCTACTGGGGATGCCACCGGTGGTCCCTACCGTTTGAGGGGGGCGCTGCGT

LeuArgArgHisIleAspLeuLeuValGlySerAlaThrLeuCysSerAlaLeuTyrVal GCTTCGACGTCACATCGATCTGCTTGTCGGAGCGCCCACCCTCTGTTCGGCCCTCTACGT CGAAGCTGCAGTGTAGCTAGACGAACAGCCCTCGCGGTGGGAGACAAGCCGGGAGATGCA 6]

GlyAspLeuCysGlySerValPheLeuValGlyGlnLeuPheThrPheSerProArgArg GGGGGACCTATGCGGGTCTGTCTTGTCGGCCAACTGTTCACCTTCTCTCCCAGGCG CCCCCTGGATACGCCCAGACAGAACAGCCGGTTGACAAGTGGAAGAGAGGGGTCCGC **HisTrpThrThrGlnGlyCysAsnCysSerIleTyrProGlyHisIleThrGlyHisArg** CCACTGGACGACGCAAGGTTGCAATTGCTCTATCTĀTCCCGGCCATATAACGGGTCACCG

GGTGACCTGCTGCGTTCCAACGTTAACGAGATAGATAGGCCGGTATATTGCCCCAGTGGC

----Overlap with CA84a-----

MetAlaTrpAspMetMetAsnTrpSerProThrThrAlaLeuValValAlaGlnLeu CATGGCATGGGATATGATGAACTGGTCCCCTACGACGGCGTTGGTAGTGGCTCAGCT GTACCGTACCCTATACTACTTGACCAGGGGATGCTGCCGCAACCATCACCGAGTCGA 241

LeuArgileProGlnAla 301 GCTCCGGATCCCACAAGCC CGAGGCCTAGGGTGTTCGG

SerThrGlyLeuTyrHisValThrAsnAspCysProAsnSerSerIleValTyrGluAla GAGGTGCCCCGAAATGGTGCAGTGGTTACTAACGGGATTGAGCTCATAACACATGCTCCG 1 CTCCACGGGGCTTTĀCCACGTCACCAATGAĪTĪGCCCTAACTCGAGTATTGTGTĀCGAGGC

AlaAspAlaIleLeuHisThrProGlyCysValProCysValArgGluGlyAsnAlaSer 61 GGCCGATGCCATCCTGCACACTCCGGGGTGCGTCCCTTGCGTTCGTGAGGGGAACGCCTC CCGGCTACGGTAGGACGTGTGAGGCCCCACGCAGGGAACGCAAGCACTCCCGTTGCGGAG **ArgCysTrpValAlaMetThrProThrValAlaThrArgAspGlyLysLeuProAlaThr** 121 GAGĞTĞTTGĞGTGGCGATGACCCCTACGGTGGCCACCAGĞGATGGČAĀACTCCCCGCGAC CTCCACAACCCACCGCTACTGGGGATGCCACCGGTGGTCCCTACCGTTTGAGGGGGCGCTG

GlnLeuArgArgHisIleAspLeuLeuValGlySerAlaThrLeuCysSerAlaLeuTyr 181 GCAGCTTCGACGTCACATCGATCTGCTTGTCGGGAGCGCTACCCTCTGTTCGGCCCTCTA CGTCGAAGCTGCAGTGTAGCTAGACGAACAGCCCTCGCGATGGGAGACAAGCCGGGAGAT ------Cyerlap with CA156e------

ValGlyAspLeuCysGlySerValPheLeu 241 CGTGGGGACTTGTGCGGGTCTGTTTTTTG GCACCCCTGAACACGCCCAGACAGAACAC

FIG. 54A

- ArgSerArgAsnLeuGlyLysVallleAspThrLeuThrCysGlyPheAlaAspLeuMet 1 AGGTCGCGCAATTTGGGTAAGGTCATCGATACCCTTACGTGCGGCTTCGCCGACCTCATG TCCAGCGCGTTAAACCCATTCCAGTAGCTATGGGAATGCACGCCGAAGCGGCTGGAGTAC
- GlyTyrIleProLeuValGlyAlaProLeuGlyGlyAlaAlaArgAlaLeuAlaHisGly 61 GGGTACATACCGCTCGTCGGCGCCCCTCTTGGAGGCGCTGCCAGGGCCCTGGCGCATGGC CCCATGTATGGCGAGCAGCCGCGGGGAGAACCTCCGCGACGGTCCCGGGACCGCGTACCG
- ValArgValLeuGluAspGlyValAsnTyrAlaThrGlyAsnLeuProGlyCysSerPhe 121 GTCCGGGTTCTGGAAGACGGCGTGAACTATGCAACAGGGAACCTTCCTGGTTGCTCTTTC CAGGCCCAAGACCTTCTGCCGCACTTGATACGTTGTCCCTTGGAAGGACCAACGAGAAAG
- SerilePheLeuLeuAlaLeuLeuSerCysLeuThrValProAlaSerAlaTyrGlnVal
 TCTATCTTCCTTCTGGCCCTGCTCTCTTGCTTGACTGTGCCCGCTTCGGCCTACCAAGTG
 AGATAGAAGGAAGACCGGGACGAGAGAACGAACTGACACGGGCGAAGCCGGATGGTTCAC
- ArgAsnSerThrGlyLeuTyrHisValThrAsnAspCysProAsnSerSerIleValTyr CGCAACTCCACGGGGCTTTACCACGTCACCAATGATTGCCCTAACTCGAGTATTGTGTAC GCGTTGAGGTGCCCCGAAATGGTGCAGTGGTTACTAACGGGATTGAGCTCATAACACATG
- GluAlaAlaAspAlaIleLeuHisThrProGlyCysValProCysValArgGluGlyAsn 301 GAGGCGGCCGATGCCATCCTGCACACTCCGGGGTGCGTCCCTTGCGTTCGTGAGGGCAAC CTCCGCCGGCTACGGTAGGACGTGTGAGGCCCCACGCAGGGAACGCAAGCACTCCCGTTG
- AlaSerArgCysTrpValAlaMetThrProThrValAlaThrArgAspGlyLysLeuPro GCCTCGAGGTGTTGGGTGGCGATGACCCCTACGGTGGCCACCAGGGATGGCAAACTCCCC CGGAGCTCCACAACCCACCGCTACTGGGGATGCCACCGGTGGTCCCTACCGTTTGAGGGG
- AlaThrGlnLeuArgArgHisIleAspLeuLeuValGlySerAlaThrLeuCysSerAla GCGACGCAGCTTCGACGTCACATCGATCTGCTTGTCGGGAGCGCCACCCTCTGTTCGGCC CGCTGCGTCGAAGCTGCAGTGTAGCTAGACGAACAGCCCTCGCGGTGGGAGACAAGCCGG
- LeuTyrValGlyAspLeuCysGlySerValPheLeuValGlyGlnLeuPheThrPheSer CTCTACGTGGGGACCTATGCGGGTCTGTCTTTCTTGTCGGCCAACTGTTCACCTTCTCT GAGATGCACCCCCTGGATACGCCCAGACAGAAAGAACAGCCGGTTGACAAGTGGAAGAGA

FI	G. 54B			4-+11-41-Clv41	olloTrnGlv	
661	GCTCAGC I GC CGAGTCGACC	AGGCCTAGGGTG	nAlalleLeuAsph AGCCATCTTGGACA TCGGTAGAACCTG	TACTAGCGACCACG	AĞTĞACCCCT	
721	GTCCTGGCGC CAGGACCGCC	GCATAGCGTATT CCGTATCGCATAA	neSerMetValGlyA FCTCCATGGTGGGA NGAGGTACCACCCC	TTGACCCGCTTCCA	ĞĞACCATCAC	
781	CTGCTGCTAT GACGACGAT	AAACGGCCGCAGC	spAlaGluThrHis\ ACGCGGAAACCCACG TGCGCCTTTGGGTGG	CAGTGGCCCCCTTC	ACĞĞCCĞĞTĞ	· /
841			euLeuAlaProGlyA CCTCGCACCAGGC AGGAGCGTGGTCCGC			
901			euAsnSerThrAlal CAATAGCACGGCC AGTTATCGTGCCGG			
961			neTyrHisHisLysF CTATCACCACAAG GATAGTGGTGTTC/			·
1021	AGGCTAGCCA TCCGATCGGT	CGACGGCTGGGG	euThrAspPheAsp0 TACCGATTTTGAC0 ATGGCTAAAACTG0	STCCCGACCCCGGG	ATAĞTCAATA	
1081	CGGTTGCCTT	CGCCGGGGCTGGT	nArgProTyrCys1 GCGCCCCTACTGC7 CGCGGGGATGACGA	CCGTGATGGGGGG	TTTTĞĞAACĞ	
1141	CCATAACAC	GGCGCTTCTCAC	lCysGlyProVall GTGTGGTCCGGTAI CACACCAGGCCATA	ltaacgaagtgagg	ĞTCĞĞĞĞĞÄĞ	
1201	CACCACCCTT	GCTGGCTGTCCAG	rGlyAlaProThr] GGGCGCGCCACCI GCCGCGCGGGTGGA	TGTCGACCCCACT	TTTACTATGC	
1261	CTGCAGAAGO	AGGAATTGTTAT	nrArgProProLeu0 CAGGCCACCGCTG0 GCCCGGTGGCGAC0	CGTTAACCAAGCC	ÄÄČÄŤĞĞÄČČ	
1321	TACTTGAGTT	GACCTAAGTGGT1	rsValCysGlyAlaf AGTGTGCGGAGCGG TCACACGCCTCGCG	SĞAĞĞAACACAĞTA	ĞČČŤČČČČĞČ	
1381	CCGTTGTTGT	GGGACGTGACGGG	OTHRASDCYSPHEA CACTGATTGCTTCO GTGACTAACGAAGO	ĠĊĞŦŦĊĞŦ <i>ĂĞĞĊ</i> ĊŦ	ĞCĞĞTĞTATĞ	
1441	AGAGCCACGC	CGAGGCCAGGGAC	plleThrProArg(GATCACACCCAGG) CTAGTGTGGGTCCA	CGGACCAGCTGAT	ĞĞĞCATATCC	·
1501	LeuTrpHisT CTTTGGCATT GAAACCGTAA	YrProCysThrll ATCCTTGTACCAT TAGGAACATGGTA	eAsnTyrThrIleF CAACTACACCATAT GTTGATGTGGTATA	PheLysIleArgMe TTAAAATCAGGAT AAATTTTAGTCCTA	tTyrValGly GTACGTGGGA CATGCACCCT	
1561	GlyValGluH GGGGTCGAAC CCCCAGCTTG	isArgLeuGluAl ACAGGCTGGAAGC TGTCCGACCTTCG	aAlaCysAsnTrpT TGCCTGCAACTGGA ACGGACGTTGACCT	hrargGlyGluAr CGCGGGGGCGAACG GCGCCCCGCTTGC	ÁÁČĞČTAGAC	
1621	GluAspArgA	spArgSerGluLe	uSerProLeuLeuL CAGCCCGTTACTGC GTCGGGCAATGACC	euThrThrThrGl	nTrpGlnVal GTGGCAGGTC CACCGTCCAG	MIJGARI & SYS
						COUR I'S MAL
		•				Peres

Γľ	J. 04U				, ,	TI - 03		-114 -1	114.001.0
1681	LeuProCys CTCCCGTGT GAGGGCACA	TCCTTCA AGGAAGT	CAACCCT GTTGGGA	TGGTCG	GAACAG	GTGGCC	GGAGTA	ĞĞTĞĞAĞ	GTGGTC
1741	AsnileVal AACATTGTG TTGTAACAC	GACGTGC CTGCACG	TCATGAA	CATGCC	CCACCC	CAGTTC	GTAGCG	CAGGACC	CGGTAA
1801	LysTrpGlu AAGTGGGAG TTCACCCTC	TACGTCG	TTCTCC	6000	11.11.1.1	Hat.AtsA	しいしいしい	しじししじしし	166186
1861	LeuTrpMet TTGTGGATG AACACCTAG	: A TGCT A C	TCALAIC	TTAAGE	Inta Atatat.	(7(7(.) 1	いいみいみみり	ししししじょみ	AIACII
1921	AsnAlaAla AATGCAGCA TTACGTCGT	TOTOTE	CCGGGAC	Tal Al Gal-		Δ I (, t , t) I	1.1.11.151	けいしいいし	ווטטוו
1981	AlaTrpTyr GCATGGTA1 CGTACCATA	TTGAAGG	GIAAGIG	1.1.1 1.1.1	.l.lataAtat.	tata I t. I A	LACCIT	しょれしひひひ	AIGIGG
2041	ProLeuLet CCTCTCCTC GGAGAGGAG	`CTGCTCC	TGTTGGC	61160	CCAbla	โรโรโ.โร I A	しししししし	ひいみしみしひ	UNUUIU
2101	AlaAlaSer GCCGCGTCG CGGCGCAGG	こてんてんにん	GTGTTGT	TCTCGT	C666 L	GA Halat.	.bl. I bAし	ILIUILA	CUATAL
2161	TyrLysArg TACAAGCGC ATGTTCGCC		fat Hala He		ala I tatat . I	11.AG1A		ひれししれひれ	DIGGAR
2221	AlaGinLeu GCGCAACTG CGCGTTGAG	3C A CG 3 G 1	GGALICE		LAALGI	LLUARI	いいいいししい	LUHLULL	JINJIU
2281	LeuLeuMet TTACTCATO AATGAGTAO	TCTCCTC	TACACC	GALLE	Infa LA L L	I IDALA I	LALLAA	AIIUUIU	
2341	ValPheGly GTCTTCGGA CAGAAGCCT		12120111	II.AAIII	.1.417111	ULLIAN	1 80176 6	CINCIII	0,0000
2401	ValGlnGly GTCCAAGGC CAGGTTCC		1-1-1 1 1 1 1 1		// fal tal ta		17 M I I . 1717	MITITIAL I	Incuru
2461	GlnMetVal CAAATGGTO GTTTACCAO	A 1 1 B 1 A	10 to 1 1 // Inl			N AL.S. IA		INNUUNI	CIUNCI
2521	ProLeuArg CCTCTTCGG GGAGAAGCG	: (: N (· 1 L L L	FLIALA		11-1 1-21-2		. 1 . 13 13171 .	ITTIMUMU	ICCRUIC
2581	ValPheSer GTCTTCTCC CAGAAGAGG	GlnMetG CAAATGG GTTTACC	luThrLy AGACCA TCTGGTT	SLeuI GCTCAT CGAGT/	leThrTr rcacgTG \GTGCAC	pGlyAl GGGGGG CCCCC	aAspTh AGATAC STCTATG	rAlaAla CGCCGCG GCGGCGC	CysGly TGCGGT ACGCCA
2641	ASPITEITE GACATCATO CTGTAGTAG	`^^^	TECCILL	1 1 1 1 1 1 1	ΙΙΙ-Ι ΔΙ-	1.1.1.1.1.1.1.1.1.1	าเราเราเรา	ALIBLIL	しいいししんれ

FIG. 54D

2701	AlaAsp6 GCCGAT6 CGGCTAC	igāai	GGTO	:TCC	AAGG	iGGT	GGA	GGTT	GC	rgg	CGC	CCA	TCI	٩CG	GCG	TA(CGC	CCA	G
2761	GlnThrA CAGACAA GTCTGTT	\GĞG6	iccto	CTA	GGGT	GCA	TAA	ГСАС	CCAC	GCC.	TAA	CTG	GC(CGG	GAC	AA <i>I</i>	AAA	CCA	A
2821	ValGluG GTGGAGG CACCTCG	GTG	GGTO	CAG	ATTG	TGT	CAAC	CTGC	TG(CCC	AAA	ССТ	TCO	CTG	GCA	ACC	STG	CAT	С
2881	AsnGly\ AATGGGG TTACCC	iTGT(CTG	SACT	GTCT	ACC	ACGO	GGG(CCGO	GAAG	CGA	GGA	CCI	ATC	GCG	TCA	1CC	CAA	G
2941	GlyPro\ GGTCCTG CCAGGAG	iTCA1	CCAC	iATG'	TATA	CCA	ATG^{T}	TAG/	\CC <i>i</i>	٩AG	ACC	TTG	TG	GGC	TGG	ccc	CGC	TCC	G
3001	GlnGlyS CAAGGTA GTTCCAT	IGCCC	ictc <i>i</i>	ATTG.	ACAC	CCT	GCAC	CTTO	SCG	GCT	CCT	CGG	AC(TAC	CTG	3G I	CAC	5
3061	ArgHisA AGGCACO TCCGTGO	CCG	\TGT(:ATT	იიიც	TGC	6000	GGC(iGG(STG	ATA	GCA	.GG(GGC	AGC	CTG	3CT	GTC	G
3121	ProArgF CCCCGGC GGGGCCG	CCAT	TTC	CTAC	TTGA	AAG	GCT	CCTO	CGG	GGG	GTC	CGC	TG	ΓTG	TGC	CCC	CGC	GGG(G
3181	HisAla\ CACGCCG GTGCGGC	iTGGG	CATA	TTT	4 GĞG	CCG	CGG	TGT(SCA	CCC	GŤG	GAG	TG(GCT.	AAG	GCC	3GT	GGAG	С
3241	PhelleF TTTATCO AAATAGO	CTGT	GGA6	SAAC	CTAG	iaga	CAA	CCAT	[GA(GGT	CCC	CGG	TG	TTC.	ACG	GA]	ΓΑΑ	CTC	С
3301	SerProF TCTCCAC AGAGGTG	CAGT	AGTO	iCCC(CAGA	GCT	TCC/	4GG1	rgg(CTC	ACC	TCC	AT(GCT	CCC	AC#	٩GG	CAG	
3361	GlyLysS GGCAAAA CCGTTTT	GCAC	CAAG	GTC	cce	CTG	CATÍ	ATGO	`AG(CTC	AGG	GCT	ATI	٩AG	GTG	CTA	\GT	ACTO	С
3421	ASNProS AACCCCT TTGGGGA	Γ	ፐርርገ	$GC\Delta$	ገልገል	TGG	GCT^{T}	TTG(iTG	TT.	ACA	TGT	CCI	٩AG	GCT	CAT	ГGG	GAT	С
3481	ASPPROA GATCCTA CTAGGAT	ACAT	CAGG	ACC(รดดด	TGA	GAA(CAAC	TAC	CCA	CTG	GCA	.GC(CCC	AIC	ACC	iΙΑ	CIC	C
3541	ThrTyrG ACCTACG TGGATGC	lyLy GCAA CGTT	SPhe GTTC CAAG	Leu CTT GAA	AlaA GCCG CGGC	SPG ACG TGC	lyg: GCG(CGC(LyCy GGT CCA(rsSe GCT(GA(er6 2660 3000	l yG GGG CCC	lyA GCG CGC	la CT GA/	Tyr TAT ATA	Asp GAC CTG	Ile ATA TAT	AT TA	elle AAT TTA	E T A

CysAspGluCysHisSerThrAspAlaThrSerIleLeuGlyIleGlyThrValLeuAsp TGTGACGAGTGCCACTCCACGGATGCCACATCCATCTTGGGCATCGGCACTGTCCTTGAC ACACTGCTCACGGTGAGGTGCCTACGGTGTAGGTAGAACCCGTAGCCGTGACAGGAACTG

KAN BAND PART PLANT

	G. 54E GlnAlaGluThrAlaGlyAlaArgLeuValValLeuAlaThrAlaThrProProGlySer CAAGCAGAGACTGCGGGGGGCGAGACTGGTTGTGCTCGCCACCGCCACCCCTCCGGGCTCC	
	GTTCGTCTCTGACGCCCCCGCTCTGACCAACACGAGCGGTGGCGGTGGGGAGGCCCGAGG ValThrValProHisProAsnIleGluGluValAlaLeuSerThrThrGlyGluIlePro 1 GTCACTGTGCCCCATCCCAACATCGAGGAGGTTGCTCTGTCCACCACCGGAGAGATCCCT	
3/2.	CAGTGACACGGGGTAGGGTTGTAGCTCCTCCAACGAGACAGGTGGTGGCCTCTCTAGGGA PheTyrGlyLysAlalleProLeuGluVallleLysGlyGlyArgHisLeuIlePheCys	
378:	1 TTTTACGGCAAGGCTATCCCCCTCGAAGTAATCAAGGGGGGGG	
384:	HisserLysLysLysCysAspGluLeuAlaAlaLysLeuValAlaLeuGlyIleAsnAla 1 CATTCAAAGAAGAAGTGCGACGAACTCGCCGCAAAGCTGGTCGCATTGGGCATCAATGCC GTAAGTTTCTTCTTCACGCTGCTTGAGCGGCGTTTCGACCAGCGTAACCCGTAGTTACGG	
390:	ValAlaTyrTyrArgGlyLeuAspValSerValIleProThrSerGlyAspValValVal 1 GTGGCCTACTACCGCGGTCTTGACGTGTCCGTCATCCCGACCAGCGGCGATGTTGTCGTC CACCGGATGATGGCGCCAGAACTGCACAGGCAGTAGGGCTGGTCGCCGCTACAACAGCAG	
396.	ValAlaThrAspAlaLeuMetThrGlyTyrThrGlyAspPheAspSerValIleAspCys 1 GTGGCAACCGATGCCCTCATGACCGGCTATACCGGCGACTTCGACTCGGTGATAGACTGC CACCGTTGGCTACGGGAGTACTGGCCGATATGGCCGCTGAAGCTGAGCCACTATCTGACG	
402	AsnThrCysValThrGlnThrValAspPheSerLeuAspProThrPheThrIleGluThr AATACGTGTGTCACCCAGACAGTCGATTTCAGCCTTGACCCTTCACCATTGAGACA TTATGCACACAGTGGGTCTGTCAGCTAAAGTCGGAACTGGGATGGAAGTGGTAACTCTGT	
408:	IleThrLeuProGlnAspAlaValSerArgThrGlnArgArgGlyArgThrGlyArgGly ATCACGCTCCCCAGGATGCTGTCTCCCGCACTCAACGTCGGGGCAGGACTGGCAGGGGG TAGTGCGAGGGGGTCCTACGACAGAGGGCGTGAGTTGCAGCCCCGTCCTGACCGTCCCC	
414	LysProGlyIleTyrArgPheValAlaProGlyGluArgProSerGlyMetPheAspSer 1 AAGCCAGGCATCTACAGATTTGTGGCACCGGGGGAGCGCCCCTCCGGCATGTTCGACTCG TTCGGTCCGTAGATGTCTAAACACCGTGGCCCCCTCGCGGGGAGGCCGTACAAGCTGAGC	
420	SerValLeuCysGluCysTyrAspAlaGlyCysAlaTrpTyrGluLeuThrProAlaGlu 1 TCCGTCCTCTGTGAGTGCTATGACGCAGGCTGTGCTTGGTATGAGCTCACGCCCGAG AGGCAGGAGACACTCACGATACTGCGTCCGACACGAACCATACTCGAGTGCGGGCGG	
426	ThrThrValArgLeuArgAlaTyrMetAsnThrProGlyLeuProValCysGlnAspHis ACTACAGTTAGGCTACGAGCGTACATGAACACCCCGGGGCTTCCCGTGTGCCAGGACCAT TGATGTCAATCCGATGCTCGCATGTACTTGTGGGGCCCCGAAGGGCACACGGTCCTGGTA	
4323	LeuGluPheTrpGluGlyValPheThrGlyLeuThrHisIleAspAlaHisPheLeuSer CTTGAATTTTGGGAGGGCGTCTTTACAGGCCTCACTCATATAGATGCCCACTTTCTATCC GAACTTAAAACCCTCCCGCAGAAATGTCCGGAGTGAGTATATCTACGGGTGAAAGATAGG	
4383	GlnThrLysGlnSerGlyGluAsnLeuProTyrLeuValAlaTyrGlnAlaThrValCys CAGACAAAGCAGAGTGGGGAGAACCTTCCTTACCTGGTAGCGTACCAAGCCACCGTGTGC GTCTGTTTCGTCTCACCCCTCTTGGAAGGAATGGACCATCGCATGGTTCGGTGGCACACG	
444]	AlaArgAlaGinAlaProProProSerTrpAspGlnMetTrpLysCysLeuIleArgLeu I GCTAGGGCTCAAGCCCCTCCCCCATCGTGGGACCAGATGTGGAAGTGTTTGATTCGCCTC CGATCCCGAGTTCGGGGAGGGGGTAGCACCCTGGTCTACACCTTCACAAACTAAGCGGAG	
4501	LysProThrLeuHisGlyProThrProLeuLeuTyrArgLeuGlyAlaValGlnAsnGlu AAGCCCACCCTCCATGGGCCAACACCCCTGCTATACAGACTGGGCGCTGTTCAGAATGAA TTCGGGTGGGAGGTACCCGGTTGTGGGGACGATATGTCTGACCCGCGACAAGTCTTACTT	
4561	IleThrLeuThrHisProValThrLysTyrIleMetThrCysMetSerAlaAspLeuGlu ATCACCCTGACGCACCCAGTCACCAAATACATCATGACATGCATG	
4621	ValValThrSerThrTrpValLeuValGlyGlyValLeuAlaAlaLeuAlaAlaTyrCys L GTCGTCACGAGCACCTGGGTGCTCGTTGGCGGCGTCCTGGCTGCTTTGGCCGCGTATTGC CAGCAGTGCTCGTGGACCCACGAGCAACCGCCGCAGGACCGAAACCGGCGCATAACG	
	, 3, 10°	AH

.

COUR L'S HAL

FI	G. 54F	
4681	LeuSerThrGlyCysValValIleValGlyArgValValLeuSerGlyLysProAlaI CTGTCAACAGGCTGCGTGGTCATAGTGGGCAGGGTCGTCTTGTCCGGGAAGCCGGCAA GACAGTTGTCCGACGCACCAGTATCACCCGTCCCAGCAGAACAGGCCCTTCGGCCGTT	TO
4741	IleProAspArgGluValLeuTyrArgGluPheAspGluMetGluGluCysSerGlnHATACCTGACAGGAAGTCCTCTACCGAGAGTTCGATGAGATGGAAGAGTGCTCTCAGCTATGGACTGTCCCTTCAGGAGATGGCTCTCAAGCTACCTTCTCACGAGAGTCG	ΆC
4801	LeuProTyrIleGluGlnGlyMetMetLeuAlaGluGlnPheLysGlnLysAlaLeuGTTACCGTACATCGAGCAAGGGATGATGCTCGCCGAGCAGTTCAAGCAGAAGGCCCTCGAATGGCATGTAGCTCGTTCCCTACTACGAGCGGCTCGTCAAGTTCGTCTTCCGGGAGC	GC
4861	LeuLeuGlnThrAlaSerArgGlnAlaGluValIleAlaProAlaValGlnThrAspTCTCCTGCAGACCGCTCCGTCAGGCAGAGGTTATCGCCCCTGCTGTCCAGACCAACTGAGGACGTCTGGCGCAGGGCAGTCCGTCTCCAATAGCGGGGACGACAGGTCTGGTTGA	Ge
4921	GlnLysLeuGluThrPheTrpAlaLysHisMetTrpAsnPheIleSerGlyIleGlnT CAAAAACTCGAGACCTTCTGGGCGAAGCATATGTGGAACTTCATCAGTGGGATACAAT GTTTTTGAGCTCTGGAAGACCCGCTTCGTATACACCTTGAAGTAGTCACCCTATGTTA	ΑC
4981	LeuAlaGlyLeuSerThrLeuProGlyAsnProAlaIleAlaSerLeuMetAlaPheT TTGGCGGGCTTGTCAACGCTGCCTGGTAACCCCGCCATTGCTTCATTGATGGCTTTTA AACCGCCCGAACAGTTGCGACGGACCATTGGGGCGGTAACGAAGTAACTACCGAAAAT	CA
5041	AlaAlaValThrSerProLeuThrThrSerGlnThrLeuLeuPheAsnIleLeuGlyGGCTGCTGTCACCAGCCCACTAACCACTAGCCAAACCCTCCTCTTCAACATATTGGGGGCCGACGACAGTGGTCGGTGATTGGTGATCGGTTTTGGGAGGAGAAGTTGTATAACCCCC	GG
5101	TrpValAlaAlaGlnLeuAlaAlaProGlyAlaAlaThrAlaPheValGlyAlaGlyL TGGGTGGCTGCCCAGCTCGCCGCCCCCGGTGCCGCTACTGCCTTTGTGGGCGCTGGCT ACCCACCGACGGGTCGAGCGGCGGGGGCCACGGCGATGACGGAAACACCCGCGACCGA	TΑ
5161	AlaGlyAlaAlaIleGlySerValGlyLeuGlyLysValLeuIleAspIleLeuAlaG GCTGGCGCCGCCATCGGCAGTGTTGGACTGGGGAAGGTCCTCATAGACATCCTTGCAG CGACCGCGGCGGTAGCCGTCACAACCTGACCCCTTCCAGGAGTATCTGTAGGAACGTC	ly GG CC
5221	TyrGlyAlaGlyValAlaGlyAlaLeuValAlaPheLysIleMetSerGlyGluValP TATGGCGCGGGGGGGGGGGGGGTCTTGTGGCATTCAAGATCATGAGCGGTGAGGTCC ATACCGCGCCCGCACCGCCCTCGAGAACACCGTAAGTTCTAGTACTCGCCACTCCAGG	CC
5281	SerThrGluAspLeuValAsnLeuLeuProAlaIleLeuSerProGlyAlaLeuValV TCCACGGAGGACCTGGTCAATCTACTGCCCGCCATCCTCTCGCCCGGAGCCCTCGTAG AGGTGCCTCCTGGACCAGTTAGATGACGGGCGGTAGGAGAGCGGGCCTCGGGAGCATC	16
5341	GlyValValCysAlaAlaIleLeuArgARgHisValGlyProGlyGluGlyAlaValG GGCGTGGTCTGTGCAGCAATACTGCGCCGGCACGTTGGCCCGGGCGAGGGGGCAGTGC CCGCACCAGACACGTCGTTATGACGCGGCCGTGCAACCGGGCCCGCTCCCCCGTCACG	ΑĢ
5401	TrpMetAsnArgLeuIleAlaPheAlaSerArgGlyAsnHisValSerProThrHisT TGGATGAACCGGCTGATAGCCTTCGCCTCCCGGGGGAACCATGTTTCCCCCACGCACT ACCTACTTGGCCGACTATCGGAAGCGGAGGGCCCCCTTGGTACAAAGGGGGTGCGTGA	АC
5461	ValProGluSerAspAlaAlaAlaArgValThrAlaIleLeuSerSerLeuThrValT GTGCCGGAGAGCGATGCAGCTGCCCGCGTCACTGCCATACTCAGCAGCCTCACTGTAA CACGGCCTCTCGCTACGTCGACGGGCGCAGTGACGGTATGAGTCGTCGGAGTGACATT	L.L.
5521	GlnLeuLeuArgArgLeuHisGlnTrpIleSerSerGluCysThrThrProCysSerG CAGCTCCTGAGGCGACTGCACCAGTGGATAAGCTCGGAGTGTACCACTCCATGCTCCG GTCGAGGACTCCGCTGACGTGGTCACCTATTCGAGCCTCACATGGTGAGGTACGAGGC	ly ST CA
5581	SerTrpLeuArgAspIleTrpAspTrpIleCysGluValLeuSerAspPheLysThrT TCCTGGCTAAGGGACATCTGGGACTGGATATGCGAGGTGTTGAGCGACTTTAAGACCT(AGGACCGATTCCCTGTAGACCCTGACCTATACGCTCCACAACTCGCTGAAATTCTGGA(5G
5641	LeuLysAlaLysLeuMetProGlnLeuProGlyIleProPheValSerCysGlnArgG CTAAAAGCTAAGCTCATGCCACAGCTGCCTGGGATCCCCTTTGTGTCCTGCCAGCGCG GATTTTCGATTCGA	GG

- F19	G. 541	J												
5701	TyrlysG Tataagg Atattcc	GGGT	CTGGC	:GAGT6	iGACGG	CATCA	TGCAC	ACTC6	L I GCC <i>I</i>	AC EG EG	GAGCIG	iAG		
5761	IleThrG ATCACTG TAGTGAC	GACA	TGTC#	\AAAA (GGGAC	GATGA	GGATC	GTCGG	TCCTAG	GGACCT	GCAGGA	AC		
5821	MetTrpS ATGTGGA TACACCT	GTGG	GACCT	TCCCC	CATTAC	TGCCT	ACACC	ACGGG	CCCCTE	STACCO	CCCTTC	:C1		
5881	AlaProA GCGCCGA CGCGGCT	ACTA	CACGT	ETCGCG	ich a re	iGAGGG	3161C.L	GCAGA	GGAATA	116166	AGATAA	166		
5941	GlnValG CAGGTGG GTCCACC	ĞĞGA	CTTCC	CACTÁC	GTGAC	GGGTA	TGACT	ACTGA	CAATCI	CAAAT	GCCCGT	GC		
6001	GlnValP CAGGTCC GTCCAGG	CATC	60000	TTTAA	TTCAC	:AGAAT	TGGAC	666614	GCGCCI	IACATA	.GG 1 10	iCG		
6061	ProProC CCCCCT GGGGGGA	GCAA	GCCCT	TGCTG	iCGĞGÂ	GGAGG	TATCA	TTCAG	AGTAGO	SACTCC	ACGAAT	'AC		
6121	ProValG CCGGTAG GGCCATC	GGTC	GCAAT	TACCT	TGCGA	GCCCG	IAACCG	GACGT	GGCCGT	FGTTGA	CGTCCA	ιTG		
6181	LeuThrA CTCACTG GAGTGAC	ATCC	CTCCC	ATATA:	ACAGO	CAGAGG	CGGCC	GGGCG	AAGGTT	GGCGA	GGGGAT	CA		
6241	ProProS CCCCCCT GGGGGGA	CTGT	GGCC <i>E</i>	\GCTCC	TCGGC	TAGCC	AGCTA	TCCGC	TCCATO	JICICA	AGGCAA	CI		
6301	CysThrA TGCACCG ACGTGGC	CTAA	CCATE	SACTCO	CCTGA	TGCTG	AGCTC	ATAGA(GGCCA	ICCTCC	TATGGA	GG		
6361	GlnGluM CAGGAGA GTCCTCT	TEEE	reera	ACATO	ACCAG	GGTTG	AGTCA	GAAAA	CAAAGT	IGGTGA	TTCTGG	iAC		
6421	SerPheA TCCTTCG AGGAAGC	A.T.C.C.(60.116	iTGGCG	GAGGA	GGACG	AGCGG	GAGATI	ししししし	ALLLU	LAGAAA	116		
6481	LeuArgL CTGCGGA GACGCCT	AGTC:	TCGGA	IGATTO	GCCCA	GGCCC	TGCCC	GTTTG	GGCGCE	iGCCGG	ACTATA	AC		
6541	ProProLe CCCCCGC GGGGGCG	TAGTI	GGAGA	CGTGG	AAAAA	GCCCG	ACTAC	GAACC	ACCTGT	GGTCC	ATGGCT	GT		
6601	ProLeuP CCGCTTC GGCGAAG	CACC	TCCAA	AGTCC	CCTCC	TGTGC	CTCCG	CCTCG	GAAGAA	IGCGGA	CGGTGG	TC		
6661	LeuThrG CTCACTG GAGTGAC	AATC	AACCC	TATCT	ACTGC	CTTGG	CCGAG	CTCGC(CACCAG	IAAGCT	TTGGCA	GC		
													PIGARI DE	E SE
												EDOS COOR	, TS MAI	
								•				E	a i W	

FIG. 54H GlyCysProProAspSerAspAlaGluSerTyrSerSerMetProProLeuGluGlyGlu 6781 GGCTGCCCCCGACTCCGACGCTGAGTCCTATTCCTCCATGCCCCCCCTGGAGGGGGAG CCGACGGGGGGGCTGAGGCTGCGACTCAGGATAAGGAGGTACGGGGGGGACCTCCCCCTC ProGlyAspProAspLeuSerAspGlySerTrpSerThrValSerSerGluAlaAsnAla CCTGGGGATCCTGGCGACGGGTCATGGTCAACGGTCAGTAGTGAGGCCAACGCG GGACCCCTAGGCCTAGAATCGCTGCCCAGTACCAGTTGCCAGTCATCACTCCGGTTGCGC 6841 GluAspValValCysCysSerMetSerTyrSerTrpThrGlyAlaLeuValThrProCys GAGGATGTCGTGTGCTCAATGTCTTACTCTTGGACAGGCGCACTCGTCACCCCGTGC CTCCTACAGCACACGACGAGTTACAGAATGAGAACCTGTCCGCGTGAGCAGTGGGGCACG 6901 AlaAlaGluGluGlnLysLeuProIleAsnAlaLeuSerAsnSerLeuLeuArgHisHis 6961 GCCGCGGAAGAACAGAAACTGCCCATCAATGCACTAAGCAACTCGTTGCTACGTCACCAC CGGCGCCTTCTTGTCTTTGACGGGTAGTTACGTGATTCGTTGAGCAACGATGCAGTGGTG ASNLeuValTyrSerThrThrSerArgSerAlaCysGlnArgGlnLysLysValThrPhe AATTTGGTGTATTCCACCACCTCACGCAGTGCTTGCCAAAGGCAGAAGAAAGTCACATTT TTAAACCACATAAGGTGGTGGAGTGCGTCACGAACGGTTTCCGTCTTTCAGTGTAAA 7021 ASPARGLEUGINVALLEUASPSErHISTYRGINASPVALLEULYSGIUVALLYSALAAIA 7081 GACAGACTGCAAGTTCTGGACAGCCATTACCAGGACGTACTCAAGGAGGTTAAAGCAGCG CTGTCTGACGTTCAAGACCTGTCGGTAATGGTCCTGCATGAGTTCCTCCAATTTCGTCGC AlaSerLysValLysAlaAsnLeuLeuSerValGluGluAlaCysSerLeuThrProPro 7141 GCGTCAAAAGTGAAGGCTAACTTGCTATCCGTAGAGGAAGCTTGCAGCCTGACGCCCCA CGCAGTTTTCACTTCCGATTGAACGATAGGCATCTCCTTCGAACGTCGGACTGCGGGGGGT HisSerAlaLysSerLysPheGlyTyrGlyAlaLysAspValArgCysHisAlaArgLysCACTCAGCCAAATCCAAGTTTGGTTATGGGGCAAAAGACGTCCGTTGCCATGCCAGAAAGGTGAGTCGGTTTAGGTTCAAACCAATACCCCGTTTTCTGCAGGCAACGGTACGGTCTTTC 7201 AlaValThrHisIleAsnSerValTrpLysAspLeuLeuGluAspAsnValThrProIle GCCGTAACCCACATCAACTCCGTGTGGAAAGACCTTCTGGAAGACAATGTAACACCAATA CGGCATTGGGTGTAGTTGAGGCACACCTTTCTGGAAGACCTTCTGTTACATTGTGGTTAT ASPTHrThrIleMetAlaLysAsnGluValPheCysValGlnProGluLysGlyGlyArg
7321 GACACTACCATCATGGCTAAGAACGAGGTTTTCTGCGTTCAGCCTGAGAAGGGGGGTCGT <u>ČŤĞŤĞÅŤĞĞŤÅĞŤÅČČĞÁŤŤČŤŤĞČŤČĆÁÁÁÁĞÁČĞĆÁÁĞTCGGACTCTTCCCCCCAGCA</u> LysProAlaArgLeuIleValPheProAspLeuGlyValArgValCysGluLysMetAla AAGCCAGCTCGTCTCATCGTGTTCCCCGATCTGGGCGTGCGCGTGTGCGAAAAGATGGCT 7381 TTCGGTCGAGCAGAGTÁGCACAAGGGGCTÁGACCCGCÁCGCGCACÁCGCTTTTCTACCGA LeuTyrAspValValThrLysLeuProLeuAlaValMetGlySerSerTyrGlyPheGln 7441 TTGTACGACGTGGTTACAAAGCTCCCCTTGGCCGTGATGGGAAGCTCCTACGGATTCCAA AACATGCTGCACCAATGTTTCGAGGGGAACCGGCACTACCCTTCGAGGATGCCTAAGGTT TyrSerProGlyGlnArgValGluPheLeuValGlnAlaTrpLysSerLysLysThrProTACTCACCAGGACAGCGGGTTGAATTCCTCGTGCAAGCGTGGAAGTCCAAGAAAACCCCA ATGAGTGGTCCTGTCGCCCAACTTAAGGAGCACGTTCGCACCTTCAGGTTCTTTTGGGGT MetGlyPheSerTyrAspThrArgCysPheAspSerThrValThrGluSerAspIleArg ATGGGGTTCTCGTATGATACCCGCTGCTTTGACTCCACAGTCACTGAGAGCGACATCCGT TACCCCAAGAGCATACTATGGGCGACGAAACTGAGGTGTCAGTGACTCTCGCTGTAGGCA 7561 ThrGluGluAlaIleTyrGlnCysCysAspLeuAspProGlnAlaArgValAlaIleLys ACGGAGGAGGCAATCTACCAATGTTGTGACCTCGACCCCCAAGCCCGCGTGGCCATCAAG TGCCTCCTCCGTTAGATGGTTACAACACTGGAGCTGGGGGTTCGGGCGCACCGGTAGTTC 7621 SerLeuThrGluArgLeuTyrValGlyGlyProLeuThrAsnSerArgGlyGluAsnCys TCCCTCACCGAGAGGCTTTATGTTGGGGGCCCTCTTACCAATTCAAGGGGGGAGAACTGC AGGGAGTGGCTCTCCGAAATACAACCCCCGGGAGAATGGTTAAGTTCCCCCCTCTTGACG S KOWSOVEL PLANT

EDOS TS HAL

- GlyTyrArgArgCysArgAlaSerGlyValLeuThrThrSerCysGlyAsnThrLeuThr 7741 GGCTATCGCAGGTGCCGCGCGAGCGGCGTACTGACACCTGTGGTAACACCCTCACT CCGATAGCGTCCACGGCGCGCTCGCCGCATGACTGTTGATCGACACCATTGTGGGAGTGA
- CysTyrIleLysAlaArgAlaAlaCysArgAlaAlaGlyLeuGlnAspCysThrMetLeu 7801 TGCTACATCAAGGCCCGGGCAGCCTGTCGAGCCGCAGGGCTCCAGGACTGCACCATGCTC ACGATGTAGTTCCGGGCCCGTCGGACAGCTCGGCGTCCCGAGGTCCTGACGTGGTACGAG
- ValCysGlyAspAspLeuValValIleCysGluSerAlaGlyValGlnGluAspAlaAla 7861 GTGTGTGGCGACGACTTAGTCGTTATCTGTGAAAGCGCGGGGGTCCAGGAGGACGCGGCG CACACACCGCTGCTGAATCAGCAATAGACACTTTCGCGCCCCCAGGTCCTCCTGCGCCCC
- SerLeuArgAlaPheThrGluAlaMetThrArgTyrSerAlaProProGlyAspProPro 7921 AGCCTGAGAGCCTTCACGGAGGCTATGACCAGGTACTCCGCCCCCCTGGGGACCCCCCA TCGGACTCTCGGAAGTGCCTCCGATACTGGTCCATGAGGCGGGGGGGACCCCTGGGGGGT
- GlnProGluTyrAspLeuGluLeuIleThrSerCysSerSerAsnValSerValAlaHis 7981 CAACCAGAATACGACTTGGAGCTCATAACATCATGCTCCTCCAACGTGTCAGTCGCCCAC GTTGGTCTTATGCTGAACCTCGAGTATTGTAGTACGAGGAGGTTGCACAGTCAGCGGGTG
- ASPG1yAlaG1yLysArgValTyrTyrLeuThrArgAspProThrThrProLeuAlaArg 8041 GACGGCGCTGGAAAGAGGGTCTACTACCTCACCCGTGACCCTACAACCCCCCTCGCGAGA CTGCCGCGACCTTTCTCCCAGATGATGGAGTGGGCACTGGGATGTTGGGGGGGAGCGCTCT
- AlaAlaTrpGluThrAlaArgHisThrProValAsnSerTrpLeuGlyAsnIleIleMet 8101 GCTGCGTGGGAGACAGCAGACACTCCAGTCAATTCCTGGCTAGGCAACATAATCATG CGACGCACCCTCTGTCGTTCTGTGAGGTCAGTTAAGGACCGATCCGTTGTATTAGTAC
- PheAlaProThrLeuTrpAlaArgMetIleLeuMetThrHisPhePheSerValLeuIle TTTGCCCCACACTGTGGGCGAGGATGATACTGATGACCCATTTCTTTAGCGTCCTTATA AAACGGGGGTGTGACACCCGCTCCTACTATGACTACTGGGTAAAGAAATCGCAGGAATAT
- AlaArgAspGlnLeuGluGlnAlaLeuAspCysGluIleTyrGlyAlaCysTyrSerIle GCCAGGGACCAGCTTGAACAGGCCCTCGATTGCGAGATCTACGGGGCCTGCTACTCCATA CGGTCCCTGGTCGAACTTGTCCGGGAGCTAACGCTCTAGATGCCCCGGACGATGAGGTAT
- GluProLeuAspLeuProProIleIleGlnArgLeu 8281 GAACCACTTGATCTACCTCCAATCATTCAAAGACTC CTTGGTGAACTAGATGGAGGTTAGTAAGTTTCTGAG

ArgArgArgSerArgAsnLeuGlyLysValIleAspThrLeuThrCysGlyPheAlaAsp GlnValArgAsnSerThrGlyLeuTyrHisValThrAsnAspCysProAsnSerSerIle SerPheSerIlePheLeuLeuAlaLeuLeuSerCysLeuThrValProAlaSerAlaTyr HisGlyValArgValLeuGluAspGlyValAsnTyrAlaThrGlyAsnLeuProGlyCys LeuMetGlyTyrIleProLeuValGlyAlaProLeuGlyGlyAlaAlaArgAlaLeuAla CCCGGCGTAGGTCGCGCAATTTGGGTAAGGTCATCGATACCCTTACGTGCGGCTTCGCCG GGGCCGCATCCAGCGCGTTAAACCCATTCCAGTAGCTATGGGAATGCACGCCGAAGCGGC ACCAAGTGCGCAACTCCACGGGGCTTTACCACGTCACCAATGATTGCCCTAACTCGAGTA IGGTTCACGCGTTGAGGTGCCCCGAAATGGTGCAGTGGTTACTAACGGGATTGAGCTCAT GCTCTTTCTCTATCTTCCTTCTGGCCCTGCTCTTTTGCTTGACTGTGCCCGCTTCGGCCT CGCATGGCGTCCGGGTTCTGGAAGACGGCGTGAACTĀTGCAACAGGGAACCTTCCTGGTT SCGTACCGCAGGCCCAAGACCTTCTGCCGCACTTGATACGTTGTCCCTTGGAAGGACCAA ACCTCATGGGGTACATACCGCTCGTCGGCGCCCCTCTTGGAGGCGCTGCCAGGGCCTTGG TGGAGTACCCCATGTATGGCGAGCAGCCGCGGGGAGAACCTCCGCGACGGTCCCGGGACC 181 241 61 121

ValTyrGluAlaAlaAspAlaIleLeuHisThrProGlyCysValProCysValArgGlu TIGIGIACGAAGCGGCCGAIGCCAICCIGCACACICCGGGGIGCGICCCIIGCGIICGIG **AACACATGCTTCGCCGGCTACGGTAGGACGTGTGAGGCCCCCACGCAGGGAACGCAAGCAC** ---overlap with CA167b---301

ICCCGTIGCGGAGCICCACAACCCACCGCIACIGGGGAIGCCACCGG GlyAsnAlaSerArgCysTrpValAlaMetThrProThrValAla **AGGGCAACGCCTCGAGGTGTTGGGTGGCGATGACCCCTACGGTGGCC**

361

481

LeuProGlyCysSerPheSerThrPhe ACCTTCCTGGTTGCTCTTCTCTACCTTC TGGAAGGACCAACGAGAAAGAGATGGAAG	LeuPro ACCTTCC: TGGAAGG	481
ArgalaLeualaHisGlyValargValLeuGluaspGlyValasnTyralaThrGlyAsn CCAGGGCCCTGGCGCATGGCGTCCGGGTTCTGGAAGACGGCGTGAACTATGCAACAGGGA GGTCCCGGGACCGCGTACCGCAGGCCCAAGACCTTCTGCCGCACTTGATACGTTGTCCCT	ArgAl: CCAGGGC GGTCCCG	421
GlyPheAlaAspLeuMetGlyTyrIleProLeuValGlyAlaProLeuGlyGlyAlaAla GCGGCTTCGCCGACCTCATGGGGTACATACCGCTCGTCGGCGCCCCTCTTGGAGGCGCTG CGCCGAAGCGGCTGGAGTACCCCCATGTATGGCGAGCAGCCGCGGGGAGAACCTCCGCGAC	GLyPhe GCGGCTTC CGCCGAAC	361
ProThrAspProArgArgArgSerArgAsnLeuGlyLysValIleAspThrLeuThrCys GCCCCACAGACCCCGGGCGTAGGTCGCGCGAATTTGGGTAAGGTCATCGATACCCTTACGT CGGGGTGTCTGGGGGGCCGCATCCAGCGCGCTTAAACCCCATTCCAGTAGCTATGGGAATGCA	ProTh	301
GluGlyCysGlyTrpAlaGlyTrpLeuLeuSerProArgGlySerArgProSerTrpGlyATGAGGGCTGCGGGTGGCCTAGCTGGCTCCCGTGGCTCTCGGCCTAGCTGGGCTGGGCTAGCTGGGCTCCCGAGGGGCACCGAGAGCCGATCGACCCCTACCGAGGACAGAGGGGCACCGAGAGCCGGATCGACCCCTACCGAGGACAGAGGGGCACCGAGAGCCGAGAGCCCCCTACCGAGAGGACAGAGGGCACCGAGAGCCGATCGACCCCCCCC	GLuGI ATGAGGG TACTCCC	241
ArgargrowtugtyarginrirpataginProgryTyrProfrpProLeuTyrGlyAsn CTCGTCGGCCCGAGGGCAGGACCTGGGCTCAGCCCGGGTACCCTTGGCCCCTCTATGGCA GAGCAGCCGGGCTCCCGTCCTGGACCCGAGTCGGGCCCCATGGGAAACCGGGGAGATACCGT	CTCGTCG GAGCAGC	181
ThrargLysThrSerGLuargSerGLnProArgGLyArgArgGlnProIleProLysAla CGACGAGAAAGACTTCCGAGCGTCGCAACCTCGAGGTAGACGCCAGCCTATCCCCAAGG GCTGCTCTTTCTGAAGGCTCGCCAGCGTTGGAGCTCCATCTGCGGTCGGATAGGGGTTCC	CGACGAG	121
GINILeValGlyValTyrLeuLeuProArgArgGlyProArgLeuGlyValArgAla GTCAGATCGTTGGTGGAGTTTACTTGTTGCCGCGCAGGGGCCCTAGATTGGGTGTGCGCG CAGTCTAGCAACCACCTCAAATGAACAACGGCGCGTCCCCGGGATCTAACCCACACGCGC	GICAGAT CAGTCTA	61
LysLysAsnLysArgAsnThrAsnArgArgProGlnAspValLysPheProGlyGlyGlyAAAAAAAAAAAAACGTAACGCAACCGTCGCCCACAGGACGTCAAGTTCCCGGGGTGGCGCTTTTTTTT	LysLy AAAAAA TTTTTTT	<u>ب</u>

FIG. 58A

#MetSerValValGlnProProGlyProProLeu

CGCAGAAAGCGTCTAGCCATGGCGTTAGTATGAGTGTCGTGCAGCCTCCAGGACCCCCCC #MetAlaLeuValOF

GCGTCTTTCGCAGATCGGTACCGCAATCATACTCACAGCACGTCGGAGGTCCTGGGGGGG

ProGlyGluProAM

13 TCCCGGGAGAGCCATAGTGGTCTGCGGAACCGGTGAGTACACCGGAATTGCCAGGACGAC AGGGCCCTCTCGGTATCACCAGACGCCTTGGCCACTCATGTGGCCTTAACGGTCCTGCTG

#MetProGlyAspLeuGlyValProProGlnAsp

121 GCCCAGGAAAGAACCTAGTTGGGCGAGTTACGGACCTCTAAACCCGCACGGGGGGGCGTTCT CGGGTCCTTTCTTGGATCAACCCGCTCAATGCCTGGAGATTTGGGCGTGCCCCCCCAAGA

OP AM GlyAlaCys

Cysam

181 CTGCTAGCCGAGTAGTGTTGGGTCGCGAAAGGCCTTGTGGTACTGCCTGATAGGGTGCTT GACGATCGGCTCATCACAACCCAGCGCTTTCCGGAACACCATGACGGACTATCCCACGAA

GluCysProGlyArgSerArgArgProCysThrMetSerThrAsnProLysProGlnLys

FIG. 58B

	1
241	GCGAGTGCCCCGGGAGGTCTCGTAGACCGTGCACCATGAGCACGAATCCTAAACCTCAAA CGCTCACGGGGCCCTCCAGAGCATCTGGCACGTGGTACTCGTGCTTAGGATTTGGAGTTT
	LysAsnLysArgAsnThrAsnArgArgProGlnAspValLysPheProGlyGlyGlyGln
301	AAAAAAACAAACGTAACACCAACCGTCGCCCACAGGACGTCAAGTTCCCGGGTGGCGGTC TTTTTTTGTTTGCATTGTGGTGGCAGCGGGGTGTCCTGCAGGTTCAAGGGCCCACCGCCAG
	IleValGlyGlyValTyrLeuLeuProArgArgGlyProArgLeuGlyValArgAlaThr
361	AGATCGTTGGTGGAGTTTACTTGTTGCCGCGCGCAGGGGCCCCTAGATTGGGTGTGCGCGCGA TCTAGCAACCACCTCAAATGAACAACGGCGCGCGTCCCCGGGATCTAACCCACACGCGCGCT
	${\tt ArgLysThrSerGluArgSerGlnProArgGlyArgArgGlnProIleProLysAlaArg}$
421	CGAGAAAGACTTCCGAGCGGTCGCAACCTCGAGGTAGACGTCAGCCTATCCCCAAGGCTC GCTCTTTCTGAAGGCTCGCCAGCGTTGGAGCTCCATCTGCAGTCGGATAGGGGTTCCGAG
	ArgProGluGlyArgThrTrpAlaGlnProGlyTyrProTrpProLeuTyrGlyAsnGlu

GlyCysGlyTrpAlaGlyTrpLeuLeuSerProArgGlySerArgProSerTrpGlyPro

541 AGGGCTGCGGGTGGGCGGGATGGCTCCCTGTCTCCCCGTGGCTCTCGGCCTAGCTGGGGCCC

TCCCGACGCCCACCCGCCCTACCGAGGACAGAGGGGCACCGAGAGCCGGATCGACCCCGG ThrAspProArgArgArgSerArgAsnLeuGlyLysVallleAspThrLeuThrCysGly

601 CCACAGACCCCCGGCGTAGGTCGCGCAATTTGGGTAAGGTCATCGATACCCTTACGTGCG **GGTGT**CTGGGGGCCGCATCCAGCGCGTTAAACCCCATTCCAGTAGCTATGGGAATGCACGC

Phe

661 GCTTC

Start of long HCV ORF

Putative first amino acid of large HCV polyprotein

Putative small encoded peptides (that may play a translational regulatory role)

FIG. 58C

TCCTGGACCCGAGTCGGGCCCATGGGAACCGGGGAGATACCGTTACTCCCGACGC

* = putative initiator methionine codon

FIG. 59

ValleuGlyArgGluArgProCysGlyThrAlaOP AM GlyAlaCysGluCysProGlyGTCTTGGGTCGCGAAAGGCCTTGTGGTACTGCCTGATAGGGTGCTTGCGAGTGCCCCGGG CAGAACCCAGCGCTTTCCGGAACACCATGACGGACTATCCCACGAACGCTCACGGGGCCC

301	241	181	121	. 61
ArgThrTrpAlaGlnProGlyTyrProTrpProLeuTyrGlyAsnGluGlyCys AGGACCTGGGCTCAGCCCGGGTACCCTTGGCCCCTCTATGGCAATGAGGGCTGCG		ValTyrLeuLeuProArgArgGlyProArgLeuGlyValArgAlaThrArgLysThrSer GTTTACTTGTTGCCGCGCGCGGGCCCTAGATTGGGTGTGCGCGCGACGAGAAAGACTTCC CAAATGAACAACGGCGCGTCCCCGGGATCTAACCCCACACGCGCGCG	AsnThrAsnArgArgProGlnAspValLysPheProGlyGlyGlyGlnIleValGlyGlyAACACCAACCGTCGCCCACAGGACGTCAAGTTCAAGGGCCCACCGCCAGTCGTTGGTGGATTGTTGTTGGTTG	* ArgSerArgArgProCysThrMetSerThrAsnProLysProGlnArgLysThrLysArg AGGTCTCGTAGACCGTGCACCATGAGCACGAATCCTAAACCTCAAAGAAAAACCAAACGT TCCAGAGCATCTGGCACGTGCTACTCGTGCTTAGGATTTGGAGTTTCTTTTTGGTTTTGCA

FIG. 60

LeuHisHisGluSerLeuProCysGluGluLeuLeuSerSerArgArgLysArgLeuAla GAGGTGGTACTTAGTGAGGGGACACTCCTTGATGACAGAAGTGCGTCTTTCGCAGATCGG CTCCACCATGAATCACTCCCCTGTGAGGAACTACTGTCTTCACGCAGAAAGCGTCTAGCC #SerThrMetAsnHisSerProValArgAsnTyrCysLeuHisAlaGluSerValAM #ProProOP

MetAlaLeuValOP #MetSerValValGlnProProGlyProProLeuProGlyGluProAM

61

121 GGTCTGCGGAACCGGTGAGTACACCGGAATTGCCAGGACGACCGGGTCCTTTCTTGGATC CCAGACGCCTTGGCCACTCATGTGGCCTTAACGGTCCTGCTGGCCCAGGAAAGAACCTAG ----overlap with ag30a----

#MetProGlyAspLeuGlyValProProGlnAspCysAM

181 AACCCGCTCAATGCCTGGAGATTTGGGCCGTGCCCCCGCAAGACTGCTAGCCGAGTAGTGT TTGGGCGAGTTACGGACCTCTAAACCCGGCACGGGGGCGTTCTGACGATCGGCTCATCACA

OP AM GlyAlaCysGluCysProGlyArgSer

241 TGGGTCGCGAAAGGCCTTGTGGTACTGCCTGATAGGGTGCTTGCGAGTGCCCCCGGGAGGT ACCCAGCGCTTTCCGGAACACCATGACGGACTATCCCACGAACGCTCACGGGGCCCTCCA

ArgArg #

GAGCATCT

= Start of long HCV ORF

= Putative small encoded peptides (that may
play a translational regulatory role)

FIG. 61

1 GGGGCCTGCTACTCCATAGAACCACTGGATCTACCTCCAATCATTCAAAGACTCCATGGC CCCCGGACGATGAGGTATCTTGGTGACCTAGATGGAGGTTAGTAAGTTTCTGAGGTACCG ${ t GlyAlaCysTyrSerIleGluProLeuAspLeuProProIleIleGlnArgLeuHisGly}$ --Overlap with 15e

61 CTCAGCGCATTTTCACTCCACAGTTACTCTCCAGGTGAAATTAATAGGGTGGCCGCATGC GAGTCGCGTAAAAGTGAGGTGTCAATGAGAGGTCCACTTTAATTATCCCACCGGCGTACG ${ t LeuSerAlaPheSerLeuHisSerTyrSerProGlyGluIleAsnArgValAlaAlaCys}$

Gly*

121 CTCAGAAAACTTGGGGTACCGCCCTTGCGAGCTTGGAGACACCGGGCCCGGAGCGTCCGC GAGTCTTTTGAACCCCATGGCGGGAACGCTCGAACCTCTGTGGCCCGGGCCTCGCAGGCG ${\tt LeuArgLysLeuGlyValProProLeuArgAlaTrpArgHisArgAlaArgSerValArg}$

181 _GCTAGGCTTCTGGCCAGAGGAGGCAGGGCTGCCATATGTGGCAAGTACCTCTTCAACTGG AlaArgLeuLeuAlaArgGlyGlyArgAlaAlaIleCysGlyLysTyrLeuPheAsnTrp CGATCCGAAGACCGGTCTCCTCCGTCCCGACGGTATACACCGTTCATGGAGAAGTTGACC

AlaValArgThrLysLeuLys 241GCAGTAAGAACAAAGCTCAAAC CGTCATTCTTGTTTCGAGTTTG

nucleotide heterogeneity

FIG. 62A

CACTCCACCATGAATCACTCCCCTGTGAGGAACTACTGTCTTCACGCAGAAAGCGTCTAG CCATGGCGTTAGTATGAGTGTCGTGCAGCCTCCAGGACCCCCCTCCCGGGAGAGCCATA GTGGTCTGCGGAACCGGTGAGTACACCGGAATTGCCAGGACGACCGGGTCCTTTCTTGGA TCAACCCGCTCAATGCCTGGAGATTTGGGCGTGCCCCGCAAGACTGCTAGCCGAGTAGT GTTGGGTCGCGAAAGGCCTTGTGGTACTGCCTGATAGGGTGCTTGCGAGTGCCCCGGGAG-300

GCAAATGGTCATCATTAAGTTAGGGGGGGTTAGCGCGGAAGATGATCGGAGGCCATTACGT GCAAATGGTCATCATTAAGTTAGGGGCGCTTACTGGCACCTATGTTTATAACCATCTCAC TCCTCTTCGGGACTGGGCGCACAACGGCTTGCGAGATCTGGCCGTGGGCTGCAGT CGTCTTCTCCCAAATGGAGACCAAGCTCATCACGTGGGGGCAGATACCGCCGCGTGCGG-3300 TGACATCATCAACGGCTTGCCTGTTTCCGCCCGCAGGGGCCGGGAGATACTGCTCGGGCC AGCCGATGGAATGGTCTCCAAGGGGTGGAGGTTGCTGGCGCCCATCACGGCGTACGCCCA GCAGACAAGGGGCCTCCTAGGGTGCATAATCACCAGCCTAACTGGCCGGGACAAAAACCA AGTGGAGGGTGAGGTCCAGATTGTGTCAACTGCTGCCCAAACCTTCCTGGCAACGTGCAT

MARIE & THEIR

FIG. 62B

CAATGGGGTGTGCTGGACTGTCTACCACGGGGCCGGAACGAGGACCATCGCGTCACCCAA-3600 GGGTCCTGTCATCCAGATGTATACCAATGTAGACCAAGACCTTGTGGGCTGGCCCGCTCC GCAAGGTAGCCGCTCATTGACACCCTGCACTTGCGGCTCCTCGGACCTTTACCTGGTCAC <u>CGTCACTGTGCCCCATCCCAACATCGAGGAGGTTGCTCTGTCCACCACCGGAGAGATCCC</u> GGTCGTCACGAGCACCTGGGTGCTCGTTGGCGGCGTCCTGGCTGCTTTGGCCGCGTATTG CCTGTCAACAGGCTGCGTGGTCATAGTGGGCAGGGTCGTCTTGTCCGGGAAGCCGGCAAT-5400 CATACCTGACAGGGAAGTCCTCTACCGAGAGTTCGATGAGATGGAAGAGTGCTCTCAGCA CTTACCGTACAGGGAAGTCCTCTACCGAGAGTTCGATGAGATGGAAGAGGTGCTCTCAGCA CTTACCGTACATCGAGCAAGGGATGATGCTCGCCGAGCAGTTCAAGCAGAAGGCCCTCGG CCTCCTGCAGACCGCGTCCCGTCAGGCAGAGGTTATCGCCCCTGCTGTCCAGACCAACTG GCAAAAACTCGAGACCTTCTGGGCGAAGCATATGTGGAACTTCATCAGTGGGATACAATA CTTGGCGGGCTTGTCAACGCTGCCTGGTAACCCCGCCATTGCTTCATTGATGGCTTTTAC-5700 AGCTGCTGTCACCAGCCCACTAACCACTAGCCAAACCCTCCTCTTCAACATATTGGGGGG GTGGGTGGCTGCCCAGCTCGCCGCCCCCGGTGCCGCTACTGCCTTTGTGGGCGCTTGCAGG AGCTGGCGCGCCCCTTGCCGGAGCTCTTGTGGGAAGGTCCTCATAGACCATCCTTGCAGG ĠŤĂŤĠĞĊĞĊĞĞĞĊĞŤĞĞĊĞĠĞAĞĊŤĊŤŤĞŤĞĞĊĂŤŤĊĂAĞĂŤĊĂŤĠĂĠĊĠĠŤĞAĠĞŤĊĊĊ ĊŤĊĊĄĊĠĠĄĠĠĄĊĊŤĠĠŤĊĄĄŤĊŤĄĊŤĠĊĊĊĠĊĊĄŤĊĊŤĊŤĊĠĊĊĊĠĠĄĠĊĊĊŤĊĠŢĄĠŤ-6000 ĊĠĠĊĠŤĠĠŤĊŤĠŤĠĊĂĠĊĂĂŤĂĊŤĠĊĠĊĊĠĠĊĂĊĠŤŤĠĠĊĊĊĠĠĠĊĠĂĠĠĠĠĠĊĂĠŤĠĊĀ ĠŢĠĠĀŢĠĂĀĊĊĠĠĊŢĠĀŤĀĠĊĊŤŢĊĠĊĊŢĊĊĊĠĠĠĠĠĀĀĊĊĀŢĠŤŤŢĊĊĊĊĀĊĠĊĀĊŢĀ CGTGCCGGAGAGCGATGCAGCTGCCCGCGTCACTGCCATACTCAGCAGCCTCACTGTAAC CCAGCTCCTGAGGCGACTGCACCAGTGGATAAGCTCGGAGTGTACCACTCCATGCTCCGG TTCCTGGCTAAGGGACATCTGGGACTGGATATGCGAGGTGTTGAGCGACTTTAAGACCTG-6300

FIG. 62C

FIG. 62D

1 CACTCCACCATGAATCACTCCCCTGTGAGGAACTACTGTCTTCACGCAGAAAGCGTCTAG GTGAGGTGGTACTTAGTGAGGGGACACTCCTTGATGACAGAAGTGCGTCTTTCGCAGATC 61 CCATGGCGTTAGTATGAGTGTCGTGCAGCCTCCAGGACCCCCCCTCCCGGGAGAGCCATA 121 GTGGTCTGCGGAACCGGTGAGTACACCGGAATTGCCAGGACGACCGGGTCCTTTCTTGGA CACCAGACGCCTTGGCCACTCATGTGGCCTTAACGGTCCTGCTGGCCCAGGAAAGAACCT 181 TCAACCCGCTCAATGCCTGGAGATTTGGGCGTGCCCCCGCAAGACTGCTAGCCGAGTAGT AGTTGGGCGAGTTACGGACCTCTAAACCCGCACGGGGGCGTTCTGACGATCGGCTCATCA 241 GTTGGGTCGCGAAAGGCCTTGTGGTACTGCCTGATAGGGTGCTTGCGAGTGCCCCGGGAGCACCACCAGCGCTTTCCGGAACACCATGACGGACTATCCCACGAACGCTCACGGGGCCCTC 361 CACCAACCGTCGCCCACAGGACGTCAAGTTCCCGGGTGGCGGTCAGATCGTTGGTGGAGT GTGGTTGGCAGCGGGTGTCCTGCAGTTCAAGGGCCCACCGCCAGTCTAGCAACCACCTCA 421 TTACTTGTTGCCGCGCAGGGGCCCTAGATTGGGTGTGCGCGCGACGAGAAAGACTTCCGA AATGAACAACGGCGCGTCCCCGGGATCTAACCCACACGCGCGCTCTCTTTCTGAAGGCT 481 GCGGTCGCAACCTCGAGGTAGACGTCAGCCTATCCCCAAGGCTCGTCGGCCCGAGGGCAG CGCCAGCGTTGGAGCTCCATCTGCAGTCGGATAGGGGTTCCGAGCAGCCGGGCTCCCGTC 541 GACCTGGGCTCAGCCCGGGTACCCTTGGCCCCTCTATGGCAATGAGGGCTGCGGGTGGGC CTGGACCCGAGTCGGGCCCATGGGAACCGGGGAGATACCGTTACTCCCGACGCCCACCCG 601 GGGATGGCTCCTGTCTCCCCGTGGCTCTCGGCCTAGCTGGGGCCCCACAGACCCCCGGCG CCCTACCGAGGACAGAGGGGCACCGAGAGCCGGATCGACCCCGGGGTGTCTGGGGGCCGC 661 Ţ<u>A</u>GGŢ<u>C</u>G<u>C</u>G<u>CAAT</u>TTGGGTAAGGTCATCGATACCCTTACGTGCGGCCTTCGCCGACCTCAT ATCCAGCGCGTTÁAACCCÁTTCCAGTÁGCTÁTGGGÁÁTGCÁCGCCGAÁGCGGCTGGÁGTA 721 GGGGTACATACCGCTCGTCGGCGCCCCTCTTGGAGGCGCTGCCAGGGCCCTGGCGCATGG CCCCATGTATGGCGAGCAGCCGCGGGGAGAACCTCCGCGACGGTCCCGGGACCGCGTACC 781 CGTCCGGGTTCTGGAAGACGGCGTGAACTATGCAACAGGGAACCTTCCTGGTTGCTCTTT GCAGGCCCAAGACCTTCTGCCGCACTTGATACGTTGTCCCTTGGAAGGACCAACGAGAAA 841 CTCTATCTTCCTTCTGGCCCTGCTCTTGCTTGACTGTGCCCGCTTCGGCCTACCAAGT GAGATAGAAGGAAGACCGGGACGAGAGAACGAACTGACACGGGCGAAGCCGGATGGTTCA 901 GCGCAACTCCACGGGGCTTTACCACGTCACCAATGATTGCCCTAACTCGAGTATTGTGTA CGCGTTGAGGTGCCCCGAAATGGTGCAGTGGTTACTAACGGGATTGAGCTCATAACACAT 961 CGAGGCGGCCGATGCCATCCTGCACACTCCGGGGTGCGTCCCTTGCGTTCGTGAGGGCAA GCTCCGCCGGCTACGGTAGGACGTGTGAGGCCCCACGCAGGGAACGCAAGCACTCCCGTT 1021 CGCCTCGAGGTGTTGGGTGGCGATGACCCCTACGGTGGCCACCAGGGATGGCAAACTCCC GCGGAGCTCCACACCCACCGCTACTGGGGATGCCACCGGTGGTCCCTACCGTTTGAGGG 1081 CGCGACGCAGCTTCGACGTCACATCGATCTGCTTGTCGGGAGCGCCACCCTCTGTTCGGCGCGCCGTCGCAGCCTCGCGGTGGAAACAGCCCTCGCGGTGGGAGACAAGCCG 1141 CCTCTACGTGGGGGACCTATGCGGGTCTGTCTTTCTTGTCGGCCAACTGTTCACCTTCTC GGAGATGCACCCCCTGGATACGCCCAGACAGAAAGAACAGCCGGTTGACAAGTGGAAGAG

STATE WATER

J J 5003

FIG. 62E

1321	GGCTCA CCGAGT	GCT C	GAG(CGGA SCCT	TCC(AGG(CACA STGT	AGC TCG	CAT GTA	CTT GAA	GGA CCT	CAT GTA	GAT CTA	CGC GCG	TGG ACC	TGC ACG	TCA AGT	CTC GAC	3666 CCC
1381	AGTCCT TCAGGA	GGCG	GGC/	ATAG FATC	CGT/ GCAT	TTTA	CTC	CAT GTA	GGT CCA	GGG	GAA CTT	CTG GAC	GGC CCG	GAA CTT	GGT CCA	CCT GGA	GGT CC#	TAGT NTCA
1441	GCTGCT CGACGA	GCTA CGAT	TTT(GCCG GGC	GCGT CGC#	CGA GCT	CGC	GGA CCT	AAC TTG	CCA GGT	CGT GCA	CAC GTG	CGG GCC	GGG CCC	AAG TTC	TGC ACG	CGG	GCCA GGT
1501		GTCT	GGAT	TTG	TTAG	CCT	ССТ	የ	۵۲۲	۵GG	ርፍር	ΓΔΔ	GΓΔ	GΔΔ	ССТ	CCV	CCT	СЛТ
1561	CAACAC GTTGTG	CAAC GTTG	GGC/ CCG1	GTT	GGC <i>A</i> CCG1	CCT GGA	CAA GTT	TAG ATC	CAC GTG	GGC CCG	CCT GGA	GAA CTT	CTG GAC	CAA GTT	TGA ACT	TAG ATC	CCT GGA	CAA
1621	CACCGG GTGGCC	CTGG GACC	TTG0	CAG GTC	GGCT CCGA	TTT	CTA GAT	TCA AGT	CCA GGT	CAA GTT	GTT CAA	CAA GTT	CTC GAG	TTC AAG	AGG TCC	CTG GAC	TCC AGG	TGA ACT
1681	GAGGCT CTCCGA	AGCC TCGG	AGCT TCGA	GCC	GACC CTGG	CCT GGA	TAC ATG	CGA GCT	TTT AAA	TGA ACT	CCA GGT	GGG CCC	CTG GAC	GGG CCC	CCC GGG	TAT ATA	CAG GTC	ATTA AAT
1741	TGCCAA ACGGTT	CGGA GCCT	AGCG TCGC	GCC(CCGA GGCT	CCA GGT	GCG CGC	CCC(GGG(CTA GAT	CTG GAC	CTG GAC	GCA CGT	CTA GAT	CCC GGG	CCC GGG	AAA TTT	ACC TGG	TTG
1801	CGGTAT GCCATA	TGTG ACAC	CCCG	CGA/	AGAG TCTC	TGT	GTG CAC	TGG ACC	TCC 4GG	GGT.	ATA TAT	TTG AAC	CTT(CAC GTG	TCC AGG	CAG GTC	CCC GGG	CGT GCA
1861	GGTGGT CCACCA	GGGA CCCT	ACGA TGCT	CCG/ GGC	ACAG FGTC	GTC CAG	GGG	CGC(GCG(GCC CGG	CAC GTG	CTA GAT	CAG GTC	CTG(GAC(GGG CCC	TGA. ACT	AAA TTT	TGA ACT	TAC ATG
1921	GGACGT CCTGCA	CTTC GAAG	GTCC CAGG	TTA/	ACAA IGTT	TAC	CAG GTC	GCC/ CGG	ACC FGG	GCT CGA	GGG(CAAT STT/	TTG(STT	CGG GCC	TTG AAC	TAC ATG	CTG GAC
1981	GATGAA CTACTT	CTCA SAGT	ACTG TGAC	GATT CTA	TCAC \GTG	CAA.	AGT(GTG(CAC(CGG.	AGC(FCG(GCC ⁻ CGG/	CC.	TTGT VAC	TGT(CATO	CGG GCC	AGG TCC	GGC CCG
2041	GGGCAA(CAAC	ACCC TGGG	TGC <i>A</i> ACG1	ACTG FGAC	CCC(CAC GTG/	TGAT ACT <i>i</i>	TTG(CTT(GAA(CCG(GGC(CAA(STT(GCAT	CC(GGA CCT	CGC	CAC GTG	ATA Tat
2101	CTCTCG(STGC CACG	GGCT CCGA	CCG6	STCC SAGG	CTG(GAT(CAC <i>A</i> GTG1	CC(CAG	GTG(CAC(CCT(GTC CA6	GA(CT(CTA(CCC GGG	GTA CAT	TAG ATC
2161	GCTTTG(GCAT GTA	TATC ATAG	CTT G	STAC ATG	CAT(CAA(GTT(CTAC SATE	CAC	CATA	TTT FAA <i>A</i>	TÄA <i>A</i> NTT1	ATC TAC	CAGO STCC	SAT(STAC	CGT GCA	GGG CCC
2221	AGGGGT(GAA(CTT(CACA GTGT	GGCT CCGA	GGA CCT	AGC ⁻ TCG/	TGC(ACG(CTGC SACE	AAC TTC	CTG(SAC(GACO CTGC	600 600	GGG CCG	GA/ CTT	CGT GC/	TTG(CGA GCT	TCT AGA
2281	GGAAGA(AGG(GACA CTGT	GGTC CCAG	CGA GCT	GCT(CAGO		ATT	CTO	GCT (ACC TGG	ACT TGA	ACA TG1	CAC	STG(GCA(GGT CCA
2341	CCTCCC6 GGAGGG	TGT	TCCT AGGA	TCAC AGTG	AAC	CCTA GGAT	ACCA IGGT	GCC CGG	TTO AAC	TC(CACC	:660 :CC6	CTC GAG	ATC TAG	CAC GTC	CCT(CCA(CCA GGT
2401	GAACATT CTTGTAA	GTG(GACG CTGC	TGCA ACGT	GTA CAT	CTT(STAC	9993 3000	GT0 CAC	6666 CCC	TCA CAGT	AGC TCG	ATC TAG	GCGC	TCC AGC	TG(GC(CAT GTA
2461	TAAGTGG ATTCACC	GAGT CTC/	TACG ATGC/	TCGT AGCA	TCT(CCT6	STTC AAG	CTT GAA	CTO GAC	CTT GAA	GCA CGT	GAC CTG	GCG	CGC GCG	GTC CAG	TGO	TC(CTG GAC
2521	CTTGTGG GAACACC	ATGA TACT	ATGC FACG	TACT ATGA	CATA GTA	ATCC FAGE	CAA GTT	929 090	GAC CTC	GCG CGC	GCT CGA	TTG AAC	GAG CTC	AAC TTG	CTC GAG	GT <i>E</i> CAT	ATA TAT	ACT FGA
581	TAATGCA ATTACGT	GCAT CGTA	CCCT	rggc Accg	0000 0000	SACG	CAC	GGT	CTT	GTA	TCC	TTC AAG	CTC GAG	GTG CAC	TTC	TTC	TGC	TT

FIG. 62F

2641	TGCATGGTATTTGAAGGGTAAGTGGGTGCCCGGAGCGGTCTACACCTTCTACGGGATGACGTACCATAAACTTCCCATTCACCCACGGGCCTCGCCAGATGTGGAAGATGCCCTACA	TG 4C
2701	GCCTCTCCTCCTGCTCCTGTTGGCGTTGCCCCAGCGGGCGTACGCGCTGGACACGGAGCCGAGAGAGGACGAGGACAACCGCAACGGGGTCGCCCGCATGCGCGACCTGTGCCTCC	ST A
2761	GGCCGCGTCGTGTGGCGGTGTTGTTCTCGTCGGGTTGATGGCGCTGACTCTGTCACCACCCGCCACCACCACCACCACCCCCCACCTACCCGCGACTACCGCGACTGAGACAGTGGTA	ΓA \ T
2821	TTACAAGCGCTATATCAGCTGGTGCTTGTGGTGGCTTCAGTATTTTCTGACCAGAGTGCAATGTTCGCGATATAGTCGACCACGAACACCACCGAAGTCATAAAAGACTGGTCTCAC	SA CT
2881	AGCGCAACTGCACGTGTGGATTCCCCCCCTCAACGTCCGAGGGGGGGG	AT FA
2941	CTTACTCATGTGTGCTGTACACCCGACTCTGGTATTTGACATCACCAAATTGCTGCTGCGAATGAGTACACACGACATGTGGGCTGAGACCATAAACTGTAGTGGTTTAACGACGACGAC	3C 3G
3001	CGTCTTCGGACCCCTTTGGATTCTTCAAGCCAGTTTGCTTAAAGTACCCTACTTTGTGCGCAGAAGCCTGGGGAAACCTAAGAAGTTCGGTCAAACGAATTTCATGGGATGAAACACC	C SC
3061	CGTCCAAGGCCTTCTCCGGTTCTGCGCGTTAGCGCGGAAGATGATCGGAGGCCATTACGGCAGGTTCCGGAAGAGGCCAAGACGCGCAATCGCGCCTTCTACTAGCCTCCGGTAATGG	Tć A
3121	GCAAATGGTCATCATTAAGTTAGGGGCGCTTACTGGCACCTATGTTTATAACCATCTCACCGTTTACCAGTAGTAATTCAATCCCCGCGAATGACCGTGGATACAAATATTGGTAGAGT	۱C ۲G
3181	TCCTCTTCGGGACTGGGCGCACAACGGCTTGCGAGATCTGGCCGTGGCTGTAGAGCCACAGAGAAGCCCTGACCCGCGTGTTGCCGAACGCTCTAGACCGGCACCGACATCTCGGTC	Tć A
3241	CGTCTTCTCCCAAATGGAGACCAAGCTCATCACGTGGGGGGCAGATACCGCCGCGTGCGGCAGAAGAGAGGGTTTACCTCTGGTTCGAGTAGTGCACCCCCCGTCTATGGCGGCGCACGC	iG C
3301	TGACATCATCAACGGCTTGCCTGTTTCCGCCCGCAGGGGCCGGGAGATACTGCTCGGGGACTGTAGTAGTTGCCGAACGGACAAAGGCGGGCG	C G
3361	AGCCGATGGAATGGTCTCCAAGGGGTGGAGGTTGCTGGCGCCCATCACGGCGTACGCCCTCGGCTACCTTACCAGAGGTTCCCCACCTCCAACGACCGCGGGTAGTGCCGCATGCGG	À T
3421	GCAGACAAGGGGCCTCCTAGGGTGCATAATCACCAGCCTAACTGGCCGGGACAAAAACCCCGTCTGTTCCCCGGAGGATCCCACGTATTAGTGGTCGGATTGACCGGCCCTGTTTTTG	À T
3481	AGTGGAGGGTGAGGTCCAGATTGTGTCAACTGCTGCCCAAACCTTCCTGGCAACGTGCACTCCACTCCCACTCCAGGTCTAACACAGTTGACGACGGGTTTGGAAGGACCGTTGCACGT	IΤ
3541	CAATGGGGTGTGCTGGACTGTCTACCACGGGGCCGGAACGAGGACCATCGCGTCACCCAGTTACCCCACACGACCTGACAGATGGTGCCCCGGCCTTGCTCCTGGTAGCGCAGTGGG	IA IT
3601	GGGTCCTGTCATCCAGATGTATACCAATGTAGACCAAGACCTTGTGGGCTGGCCCGCTCCCCAGGACAGTAGGTCTACATATGGTTACATCTGGTTCTGGAACACCCGACCGGCCGAC	C G
3661	GCAAGGTAGCCGCTCATTGACACCCTGCACTTGCGGCTCCTCGGACCTTTACCTGGTCAGCTTCCATCGGCGAGTAACTGTGGGACGTGAACGCCGAGGAGCCTGGAAATGGACCAGT	lC lC
3721	GAGGCACGCCGATGTCATTCCCGTGCGCCGGCGGGGTGATAGCAGGGGCAGCCTGCTGTCCCGTGCGGCTACAGTAAGGGCACGCGCCCCACTATCGTCCCCGTCGGACGACA	G G
3781	GCCCCGGCCCATTTCCTACTTGAAAGGCTCCTCGGGGGGTCCGCTGTTGTGCCCCGCGCCCGGGGCCGGGTAAAGGATGAACTTTCCGAGGAGCCCCCCAGGCGACAACACGGGGCGCCCC	G C
3841	GCACGCCGTGGGCATATTTAGGGCCGCGGTGTGCACCCGTGGAGTGGCTAAGGCGGTGGCGCGCACCCGTATAAATCCCGGCGCCACACGTGGGCACCTCACCGATTCCGCCAC	Αί Τ
3901	CTTTATCCCTGTGGAGAACCTAGAGACAACCATGAGGTCCCCGGTGTTCACGGATAACT	IC IG

FIG. 62G

3961	CTCTCCACCAGTAG	TGCCCCAGAGO	CTTCCAGGTG	GCTCACCTCC	ATGCTCCCACAGG	CAC
	GAGAGGTGGTCATC	ACGGGGTCTC	GAAGGTCCAC	CGAGTGGAGG	TACGAGGGTGTCC	GTC
4021	CGGCAAAAGCACCA	AGGTCCCGGCT	TGCATATGCA	GCTCAGGGCT	ATAAGGTGCTAGT	ACT
	GCCGTTTTCGTGGT	TCCAGGGCCG/	ACGTATACGT	CGAGTCCCGA	TATTCCACGATCA	TGA
4081	CAACCCCTCTGTTG	CTGCAACACT(GGGCTTTGGT	GCTTACATGT	CCAAGGCTCATGG	GAT
	GTTGGGGAGACAAC	GACGTTGTGA(CCCGAAACCA	CGAATGTACA	GGTTCCGAGTACC	CTA
4141	CGATCCTAACATCA	GGACCGGGGT(GAGAACAATT	ACCACTGGCA	GCCCCATCACGTA	CTC
	GCTAGGATTGTAGT	CCTGGCCCCA(CTCTTGTTAA	TGGTGACCGT	CGGGGTAGTGCAT	GAG
4201	CACCTACGGCAAGT	TCCTTGCCGA(CGGCGGGTGC	TCGGGGGGCG	CTTATGACATAAT	TAAT
	GTGGATGCCGTTCA	AGGAACGGCT(GCCGCCCACG	AGCCCCCGC	GAATACTGTATTA	ATT
4261	TTGTGACGAGTGCC AACACTGCTCACGG	ACTCCACGGAT TGAGGTGCCT	TGCCACATCC ACGGTGTAGG	ATCTTGGGCA	TCGGCACTGTCCT AGCCGTGACAGGA	TGA ACT
4321	CCAAGCAGAGACTG	CGGGGGCGAGA	ACTGGTTGTG	CTCGCCACCG	CCACCCCTCCGGG	CTC
	GGTTCGTCTCTGAC	GCCCCCGCTCT	FGACCAACAC	GAGCGGTGGC	GGTGGGGGAGGCCC	GAG
4381	CGTCACTGTGCCCC	ATCCCAACATO	CGAGGAGGTT	GCTCTGTCCA	CCACCGGAGAGAT	CCC
	GCAGTGACACGGGG	TAGGGTTGTAG	SCTCCTCCAA	CGAGACAGGT	GGTGGCCTCTCTA	GGG
4441	TTTTTACGGCAAGG	CTATCCCCCTC SATAGGGGGAG	CGAAGTAATC SCTTCATTAG	AAGGGGGGGA TTCCCCCCCT	GACATCTCATCTT CTGTAGAGTAGAA	CTG GAC
4501	TCATTCAAAGAAGAA	AGTGCGACGAA	ACTCGCCGCA	AAGCTGGTCG	CATTGGGCATCAA	TGC
	AGTAAGTTTCTTCT	FCACGCTGCTT	FGAGCGGCGT	TTCGACCAGC	GTAACCCGTAGTT	ACG
4561	CGTGGCCTACTACCO	GCGGTCTTGAC	CGTGTCCGTC	ATCCCGACCA	GCGGCGATGTTGT	CGT
	GCACCGGATGATGGO	CGCCAGAACTG	GCACAGGCAG	TAGGGCTGGT	CGCCGCTACAACA	GCA
4621	CGTGGCAACCGATGG	CCCTCATGACC	CGGCTATACC	GGCGACTTCG	ACTCGGTGATAGA	CTG
	GCACCGTTGGCTACG	GGGAGTACTGG	SCCGATATGG	CCGCTGAAGC	TGAGCCACTATCT	GAC
4681	CAATACGTGTGTCAC	CCAGACAGTO	CGATTTCAGC	CTTGACCCTA	CCTTCACCATTGA	GAC
	GTTATGCACACAGTC	GGGTCTGTCAG	CTAAAGTCG	GAACTGGGAT	GGAAGTGGTAACT	CTG
4741	AATCACGCTCCCCC/	AGGATGCTGTC	TCCCGCACT	CAACGTCGGG	GCAGGACTGGCAG	GGG
	TTAGTGCGAGGGGG	CCTACGACAG	SAGGGCGTGA	GTTGCAGCCC	CGTCCTGACCGTC	CCC
4801	GAAGCCAGGCATCTA	ACAGATTTGTG	GCACCGGGG	GAGCGCCCCT	CCGGCATGTTCGA	CTC
	CTTCGGTCCGTAGAT	GTCTAAACAC	CGTGGCCCC	CTCGCGGGGA	GGCCGTACAAGCT	GAG
4861	GTCCGTCCTCTGTGA	AGTGCTATGAC	GCAGGCTGT	GCTTGGTATG	AGCTCACGCCCGC	CGA
	CAGGCAGGAGACACT	CACGATACTG	CGTCCGACA	CGAACCATAC	TCGAGTGCGGGCG	GCT
4921	GACTACAGTTAGGCT	ACGAGCGTAC	ATGAACACC	CCGGGGCTTC	CCGTGTGCCAGGA	CCA
	CTGATGTCAATCCGA	TGCTCGCATG	TACTTGTGG	GGCCCCGAAG	GGCACACGGTCCT	GGT
4981	TCTTGAATTTTGGGA	AGGGCGTCTTT	ACAGGCCTC	ACTCATATAG	ATGCCCACTTTCT	ATC
	AGAACTTAAAACCCT	CCCGCAGAAA	TGTCCGGAG	TGAGTATATC	TACGGGTGAAAGA	TAG
5041	CCAGACAAAGCAGAG	TGGGGAGAAC	CTTCCTTAC	CTGGTAGCGT	ACCAAGCCACCGT	GTG
	GGTCTGTTTCGTCTC	ACCCCTCTTG	GAAGGAATG	GACCATCGCA	TGGTTCGGTGGCA	CAC
5101	CGCTAGGGCTCAAGC	CCCTCCCCA	TCGTGGGAC	CAGATGTGGA	AGTGTTTGATTCG	CCT
	GCGATCCCGAGTTCG	GGGAGGGGGT	AGCACCCTG	GTCTACACCT	TCACAAACTAAGC	GGA
5161	CAAGCCCACCCTCCA	TGGGCCAACA	CCCCTGCTA	TACAGACTGG	GCGCTGTTCAGAA ⁻	TGA
	GTTCGGGTGGGAGGT	ACCCGGTTGT	GGGGACGAT	ATGTCTGACC	CGCGACAAGTCTT <i>I</i>	ACT
5221	AATCACCCTGACGCA TTAGTGGGACTGCGT	CCCAGTCACC	AAATACATCA	ATGACATGCATACGT	TGTCGGCCGACCT(GGA CCT

FIG. 62H

5281	GGTCGTC CCAGCAG	ACGAG TGCTC	CACCTO GTGGAO	GGTG CCAC	CTCGT GAGCA	TGGCG ACCGC	GCGTC CGCAC	CTGG GACC	CTGCT SACGA	TTGG(CGC(STATT
5341	CCTGTCA GGACAGT	ACAGG TGTCC	CTGCG [*] GACGC <i>I</i>	TGGTCA	ATAGT TATCA	GGGCA CCCGT	GGGTC CCCAG	GTCT CAGA	TGTCC ACAGG	GGGA/ CCCT	GCC(GGCAA CCGTT
5401	CATACCT GTATGGA	GACAG CTGTC	GGAAGT CCTTCA	CCTC NGGAG	TACCG ATGGC	AGAGT TCTCA	TCGAT AGCTA	GAGA CTCT/	TGGAA NCCTT	GAGT(CTCA(GAGA	CAGC!
5461	CTTACCG GAATGGC	TACAT ATGTA	CGAGC# GCTCGT	AGGG	ATGAT FACTA	GCTCG CGAGC	CCGAG GGCTC	CAGTT GTCA	TCAAG NGTTC	CAGA/ GTCT1	0000 0000	CTCG
5521	CCTCCTG GGAGGAC	CAGAC GTCTG	CGCGT(CCGT	CAGGC STCCG	AGAGG TCTCC	TTATC AATAG	GCCC(TGCT SACGA	GTCC/ CAGGT	GACC CTGG	AACT(
5581	GCAAAAA CGTTTTT	CTCGA GAGCT	GACCTT CTGGAA	CTGG(GCGAA CGCTT	GCATA CGTAT	TGTGG ACACC	AACTT TTGAA	CATC GTAG	AGTG0 TCACO	GATA CTAT	CAATA GTTAT
5641	CTTGGCG GAACCGC	GGCTT CCGAA	GTCAAC CAGTTE	GCTG(CCTGG GACC	TAACC ATTGG	22923 2029	ATTGO TAACG	TTCA AAGT	TTGAT AACTA	GGCT CCGA	TTTAC
5701	AGCTGCT TCGACGA	GTCAC(CAGTG(CAGCCC GTCGGG	ACTA/ TGATT	CCAC GGTG/	TAGCC ATCGG	AAACC TTTGG	CTCCT GAGGA	CTTC.	AACAT FTGTA	ATTG TAAC	66666 CCCCC
5761	GTGGGTG CACCCAC	GCTGC(CGACG(CCAGCT GGTCGA	CGCCG	GGGGG	CGGTG GCCAC	CCGCT GGCGA	ACTGC TGACG	CTTT GAAA	GTGGG CACCC	CGCT GCGA	GGCTT CCGAA
5821	AGCTGGC TCGACCG	GCCGC(CATCGG STAGCC	CAGTO GTCAC	TTGG/	ACTGG(FGACC(GGAAG CCTTC	GTCCT CAGGA	CATA(GACAT CTGTA	CCTT GGAA	GCAGG CGTCC
5881	GTATGGC CATACCG	000000 000000	CGTGGC SCACCG	GGGAG CCCTC	GAGA	TGTGG(ACACC(CATTC STAAG	AAGAT TTCTA	CATG/ GTAC	AGCGG CGCC	TGAG ACTC	GTCCC CAGGG
5941	CTCCACGO GAGGTGCO	GAGGAC CTCCTC	CTGGT GACCA	CAATC GTTAG	TACTO ATGAC	GCCCG(CCATC GGTAG	CTCTC GAGAG	GCCC(CGGG(GAGC CTCG	CCTC GGAG	GTAGT CATCA
5001	CGGCGTGG GCCGCACG	GTCTGT CAGACA	TGCAGC NCGTCG	AATAC TTATG	TGCGC ACGCG	CGGC/ GGCCG1	CGTT(GGCCC CCGGG	666C0 CCCG(AGGG TCCC	GGCA CCGT	GTGCA CACGT
5061	GTGGATGA CACCTACT	ACCG6 FTGGC0	GACTA	AGCCT TCGGA	TCGCC AGCGC	TCCC(GGGGG/ CCCC	AACCA FTGGT	TGTTT ACAAA	CCCC GGGG	CACG GTGC	CACTA GTGAT
5121	CGTGCCGC GCACGGCC	SAGAGO TCTCG	GATGC CTACG	AGCTG TCGAC	CCCGC	GTCA(CAGT(TGCC/ SACGG	ATACT FATGA	CAGC <i>A</i> GTCGT	GCCT CGGA	CACT GTGA	GTAAC CATTG
5181	CCAGCTCO GGTCGAGO	TGAGG ACTCC	CGACT GCTGA	GCACC CGTGG	AGTG6 TCACC	ATAAC TATTC	SCTCG(SGAGC(GAGTG TCAC	TACCA ATGGT	CTCC GAGG	ATGC TACG	TCCGG AGGCC
5241	TTCCTGGC AAGGACCG	TAAGG ATTCC	GACAT CTGTA	CTGGG GACCC	ACTGG TGACC	TATAC	GCGAGG GCTCC	STGTT	GAGCG CTCGC	ACTT TGAA	TAAGA NTTC	ACCTG FGGAC
301	GCTAAAAG CGATTTTC	CTAAG GATTC	CTCAT(GAGTA(GCCAC CGGTG	AGCTG TCGAC	CCTGG GGACC	GATCO CTAGO	CCTT GGAA	TGTGT ACACA	CCTG(GGAC(CCAG(GGTC(CGCGG GCGCC
361	GTATAAGG CATATTCC	GGGTC CCCAG	TGGCG ACCGC	AGTGG:	ACGGC T GCC G	ATCAT TAGTA	GCACA CGTGT	CTCG(GAGC(CTGCC SACGG	ACTG TGAC	TGGA(GACT
421	GATCACTG CTAGTGAC	GACAT CTGTA	GTCAA/ CAGTT	AAACG(GGACG CCTGC	ATGAG TACTC	GATCG CTAGC	TCGG AGCC/	TCCTA AGGAT	GGAC(CCTG(TGC/ SACGT	AGGAA FCCTT
481	CATGTGGA GTACACCT	GTGGG CACCC	ACCTT(CCCA ⁻ GGGGT <i>I</i>	TAAT ATTA	GCCTA CGGAT	CACCA GTGGT	CGGG(CCCT SGGGA	GTAC(CATG(0000	TTCC SAAGG
541	TGCGCCGA ACGCGGCT	ACTAC.	ACGTT(GCGCG/	TATGG.	AGGGT TCCCA	GTCTG CAGAC	CAGAG	GAAT.	ATGTO	GAGA CTCT	TAAG

FIG. 621

6601	GCAGGTGGGGGACTTCCACTACGTGACGGGTATGACTACTGACAATCTCAAATGCCCGTCGTCCACCCCTGAAGGTGATGCACTGCCCATACTGATGACTGTTAGAGTTTACGGGCA	G C
6661	CCAGGTCCCATCGCCCGAATTTTTCACAGAATTGGACGGGGTGCGCCTACATAGGTTTGGGTCCAGGGTAGCGGGCTTAAAAAGTGTCTTAACCTGCCCCACGCGGATGTATCCAAAC	C G
6721	GCCCCCTGCAAGCCCTTGCTGCGGGAGGAGGTATCATTCAGAGTAGGACTCCACGAATCGGGGGGGACGTTCGGGAACGACGCCCTCCTCCATAGTAAGTCTCATCCTGAGGTGCTTA	A T
6781	CCCGGTAGGGTCGCAATTACCTTGCGAGCCCGAACCGGACGTGGCCGTGTTGACGTCCAGGCCATCCCAGCGTTAATGGAACGCTCGGGCTTGGCCTGCACCGGCACAACTGCAGGT	T A
6841	GCTCACTGATCCCTCCCATATAACAGCAGAGGCGGCCGGGCGAAGGTTGGCGAGGGGATCGAGTGACTAGGGAGGG	C G
6901	ACCCCCTCTGTGGCCAGCTCCTCGGCTAGCCAGCTATCCGCTCCATCTCTCAAGGCAATGGGGGGAGACACCGGTCGAGGAGCCGATCGGTCGATAGGCGAGGTAGAGAGTTCCGTT	C G
6961	TTGCACCGCTAACCATGACTCCCCTGATGCTGAGCTCATAGAGGCCAACCTCCTATGGAAACGTGGCGATTGGTACTGAGGGGACTACGACTCGAGTATCTCCGGTTGGAGGATACCT	G C
7021	GCAGGAGATGGGCGCAACATCACCAGGGTTGAGTCAGAAAACAAAGTGGTGATTCTGGCCGTCCTCTACCCGCCGTTGTAGTGGTCCCAACTCAGTCTTTTGTTTCACCACTAAGACC	A T
7081	CTCCTTCGATCCGCTTGTGGCGGAGGAGGAGGACGGGGAGATCTCCGTACCCGCAGAAA GAGGAAGCTAGGCGAACACCGCCTCCTCCTGCTCGCCCTCTAGAGGCATGGGCGTCTTT	T A
7141	CCTGCGGAAGTCTCGGAGATTCGCCCAGGCCCTGCCCGTTTGGGCGCGGCCGGACTATAGGACGCCTTCAGAGCCTCTAAGCGGGTCCGGGACGGCCAAACCCGCGCCGGCCTGATAT	A T
7201	CCCCCGCTAGTGGAGACGTGGAAAAAGCCCGACTACGAACCACCTGTGGTCCATGGCTGGGGGGGG	G C
7261	TCCGCTTCCACCTCCAAAGTCCCCTCCTGTGCCTCCGCCTCGGAAGAAGCGGACGGTGGAGGCGAAGGTGGAGGTTTCAGGGGAGGACACGGAGGCGGAGCCTTCTTCGCCTGCCACC	T A
7321	CCTCACTGAATCAACCCTATCTACTGCCTTGGCCGAGCTCGCCACCAGAAGCTTTGGCAGGGTGACTTAGTTGGGATAGATGACGGAACCGGCTCGAGCGGTGGTCTTCGAAACCGT	G C
7381	CTCCTCAACTTCCGGCATTACGGGCGACAATACGACAACATCCTCTGAGCCCGCCC	C G
7441	TGGCTGCCCCCCGACTCCGACGCTGAGTCCTATTCCTCCATGCCCCCCCTGGAGGGGGACCCCCCCC	A T
7501	GCCTGGGGATCCGGATCTTAGCGACGGGTCATGGTCAACGGTCAGTAGTGAGGCCAACGCGGACCCCTAGGCCTAGAATCGCTGCCCAGTACCAGTTGCCAGTCATCACTCCGGTTGCC	C G
7561	GGAGGATGTCGTGTGCTCAATGTCTTACTCTTGGACAGGCGCACTCGTCACCCCGTCCTCCTACAGCACACGACGAGTTACAGAATGAGAACCTGTCCGCGTGAGCAGTGGGGCA	G C
7621	CGCCGCGGAAGAACAGAAACTGCCCATCAATGCACTAAGCAACTCGTTGCTACGTCACCGCGGCGCCTTCTTGTCTTTGACGGGTAGTTACGTGATTCGTTGAGCAACGATGCAGTGG	A T
7681	CAATTTGGTGTATTCCACCACCTCACGCAGTGCTTGCCAAAGGCAGAAGAAAGTCACATGTTAAACCACATAAGGTGGTGGAGTGCGTCACGAACGGTTTCCGTCTTCTTTCAGTGTA	T A
7741	TGACAGACTGCAAGTTCTGGACAGCCATTACCAGGACGTACTCAAGGAGGTTAAAGCAGACTGTCTGACGTTCAAGACCTGTCGGTAATGGTCCTGCATGAGTTCCTCCAATTTCGTC	C G
7801	GGCGTCAAAAGTGAAGGCTAACTTGCTATCCGTAGAGGAAGCTTGCAGCCTGACGCCCCCCCGCAGTTTTCACTTCCGATTGAACGATAGGCATCTCCTTCGAACGTCGGACTGCGGGG	C G
7861	ACACTCAGCCAAATCCAAGTTTGGTTATGGGGCAAAAGACGTCCGTTGCCATGCCAGAA	Ą

FIG. 62J

7921	GGCCGTAACCCACATCAACTCCGTGTGGAAAGACCTTCTGGAAGACAATGTAACACCAATCCGGCATTGGGTGTAGTTGAGGCACACCTTTCTGGAAGACCTTCTGTTACATTGTGGTTA
7981	AGACACTACCATCATGGCTAAGAACGAGGTTTTCTGCGTTCAGCCTGAGAAGGGGGGGTCCTCTGTGATGGTAGTACCGATTCTTGCTCCAAAAGACGCAAGTCGGACTCTTCCCCCAGG
8041	TAAGCCAGCTCGTCTCATCGTGTTCCCCGATCTGGGCGTGCGCGTGTGCGAAAAGATGGCATTCGGTCGAGCAGAGTAGCACAAGGGGGCTAGACCCGCACGCGCACACGCTTTTCTACCG
8101	TTTGTACGACGTGGTTACAAAGCTCCCCTTGGCCGTGATGGGAAGCTCCTACGGATTCCAAAACATGCTGCACCAATGTTTCGAGGGGAACCGGCACTACCCTTCGAGGATGCCTAAGGT
8161	ATACTCACCAGGACAGCGGGTTGAATTCCTCGTGCAAGCGTGGAAGTCCAAGAAAACCCCTATGAGTGGTCCTGTCGCCCAACTTAAGGAGCACGTTCGCACCTTCAGGTTCTTTTGGGG
8221	AATGGGGTTCTCGTATGATACCCGCTGCTTTGACTCCACAGTCACTGAGAGCGACATCCCTTACCCCAAGAGCATACTATGGGCGACGAAACTGAGGTGTCAGTGACTCTCGCTGTAGGC
8281	TACGGAGGAGGCAATCTACCAATGTTGTGACCTCGACCCCCAAGCCCGCGTGGCCATCAAATGCCTCCGTTAGATGGTTACAACACTGGAGCTGGGGGTTCGGGCGCACCGGTAGTT
8341	GTCCCTCACCGAGAGGCTTTATGTTGGGGGCCCTCTTACCAATTCAAGGGGGGAGAACTGCAGGGAGTGGCTCTCCGAAATACAACCCCCGGGAGAATGGTTAAGTTCCCCCCTCTTGAC
8401	CGGCTATCGCAGGTGCCGCGCGAGCGGCGTACTGACAACTAGCTGTGGTAACACCCTCACGCCGATAGCGTCCACGGCGCGCTCGCCGCATGACTGTTGATCGACACCATTGTGGGAGTG
8461	TTGCTACATCAAGGCCCGGGCAGCCTGTCGAGCCGCAGGGCTCCAGGACTGCACCATGCTAACGATGTAGTTCCGGGCCCGTCGGACAGCTCGGCGTCCCGAGGTCCTGACGTGCTACGA
8521	CGTGTGTGGCGACGACTTAGTCGTTATCTGTGAAAGCGCGGGGGTCCAGGAGGACGCGGGGCACACACCGCTGCTGAATCAGCAATAGACACTTTCGCGCCCCCAGGTCCTCCTGCGCCG
8581	GAGCCTGAGAGCCTTCACGGAGGCTATGACCAGGTACTCCGCCCCCCTGGGGACCCCCCCC
8641	ACAACCAGAATACGACTTGGAGCTCATAACATCATGCTCCTCCAACGTGTCAGTCGCCCATGTTGGTCTTATGCTGAACCTCGAGTATTGTAGTACGAGGAGGTTGCACAGTCAGCGGGT
8701	CGACGGCGCTGGAAAGAGGGTCTACTACCTCACCCGTGACCCTACAACCCCCCTCGCGAGGCTGCCGCGACCTTTCTCCCAGATGATGGAGTGGGCACTGGGATGTTGGGGGGAGCGCTC
8761	AGCTGCGTGGGAGACAGCAAGACACCTCCAGTCAATTCCTGGCTAGGCAACATAATCATTCGACGCACCCTCTGTCGTTCTGTGTGAGGTCAGTTAAGGACCGATCCGTTGTATTAGTA
8821	GTTTGCCCCCACACTGTGGGCGAGGATGATACTGATGACCCATTTCTTTAGCGTCCTTATCAAACGGGGGTGTGACACCCGCTCCTACTATGACTACTGGGTAAAGAAATCGCAGGAATA
8881	AGCCAGGGACCAGCTTGAACAGGCCCTCGATTGCGAGATCTACGGGGCCTGCTACTCCATTCGGTCCCTGGTCGAACTTGTCCGGGAGCTAACGCTCTAGATGCCCCGGACGATGAGGTA
8941	AGAACCACTTGATCTACCTCCAATCATTCAAAGACTCCATGGCCTCAGCGCATTTTCACTTCTTGGTGAACTAGATGGAGGTTAGTAAGTTTCTGAGGTACCGGAGTCGCGTAAAAGTGA
9001	CCACAGTTACTCTCCAGGTGAAATTAATAGGGTGGCCGCATGCCTCAGAAAACTTGGGGTGGTGTCAATGAGAGGTCCACTTTAATTATCCCACCGGCGTACGGAGTCTTTTGAACCCCA
9061	ACCGCCCTTGCGAGCTTGGAGACACCGGGCCCGGAGCGTCCGCGCTAGGCTTCTGGCCAGTCCGAACCTCTGTGGCCCGGGCCTCGCAGGCGCGATCCGAAGACCGGTC
9121	AGGAGGCAGGCTGCCATATGTGGCAAGTACCTCTTCAACTGGGCAGTAAGAACAAAGCTTCCTCCGTCCCGACGGTATACACCGTTCATGGAGAAGTTGACCCGTCATTCTTGTTTCGA
9181	CAAAC GTTTG

FIG. 77

FIG. 78

FIG. 79A

- AlaValAspPheIleProValGluAsnLeuGluThrThrMetArgSerProValPh Thr 2 GCGGTGGACTTTATCCCTGTGGAGAACCTAGAGACAACCATGAGGTCCCCGGTGTTCACG CGCCACCTGAAATAGGGACACCTCTTGGATCTCTGTTGGTACTCCAGGGGCCACAAGTGC
 - 29 MAE1, 40 NLA111, 43 MNL1, 45 AVA2 NLA1V SAU96, 49 NCI1 SC RF1, 50 HPA11,
- AspAsnSerSerProProValValProGlnSerPheGlnValAlaHisLeuHisAlaPro 62 GATAACTCCTCCACCAGTAGTGCCCCAGAGCTTCCAGGTGGCTCACCTCCATGCTCCC CTATTGAGGAGAGGTGGTCATCACGGGGTCTCGAAGGTCCACCGAGTGGAGGTACGAGGG
 - 69 MNL1, 83 BSP1286, 92 ALU1, 97 ECOR11 SCRF1, 106 HPH, 109 MNL1, 113 NLA111,
- ThrGlySerGlyLysSerThrLysValProAlaAlaTyrAlaAlaGlnGlyTyrLysVal
 ACAGGCAGCGGCAAAAGCACCAAGGTCCCGGCTGCATATGCAGCTCAGGGCTATAAGGTG
 TGTCCGTCGCCGTTTTCGTGGTTCCAGGGCCGACGTATACGTCGAGTCCCGATATTCCAC
 - 126 BBV FNU4H1, 127 NSPB11, 129 FNU4H1, 145 AVA2 NLAIV SAU96, 148 NCI1 SCRF1, 149 HPA11, 152 BBV FNU4H1, 156 NDE1, 161 BBV FNU4H1, 163 ALU1, 165 DDE1,
- LeuValleuAsnProSerValAlaAlaThrLeuGlyPheGlyAlaTyrMetSerLysAla
 CTAGTACTCAACCCCTCTGTTGCTGCAACACTGGGCTTTGGTGCTTACATGTCCAAGGCT
 GATCATGAGTTGGGGAGACAACGACGTTGTGACCCGAAACCACGAATGTACAGGTTCCGA
 - 182 MAE1, 184 SCA1, 185 RSA1, 195 MNL1, 203 BBV FNU4H1, 228 AFL111 NSPC1, 229 NLA111,
- HisGlylleAspProAsnIleArgThrGlyValArgThrIleThrThrGlySerProIle
 CATGGGATCGATCCTAACATCAGGACCGGGGTGAGAACAATTACCACTGGCAGCCCCATC
 GTACCCTAGCTAGGATGTAGTCCTGGCCCCACTCTTGTTAATGGTGACCGTCGGGGTAG
 - 242 NLA111, 246 BIN1, 247 MBO1 SAU3A, 248 CLA1, 249 TAQ1, 25 1 BIN1 MBO1 SAU3A, 264 AVA2 SAU96, 267 HPA11 NCI1 SCRF1, 271 HPH, 291 BBV FNU4H1,
- - 302 MAE2, 304 RSA1, 340 BSP1286 HGIA, 343 AVA1, 350 HAE11, 351 HHA1,
- - 372 MAE3, 391 FOK1, 392 SFAN1, 399 FOK1,
- ValleuAspGlnAlaGluThrAlaGlyAlaArgLeuValValleuAlaThrAlaThrPro 422 GTCCTTGACCAAGCAGAGCTGCGGGGGGGGGGGGGGTGGTGGTGCCACCCCCT CAGGAACTGGTTCGTCTCTGACGCCCCCGCTCTGACCAACACGAGCGGTGGCGGTGGGGA
 - 431 TTHIII2, 435 ALWN1, 461 BSP1286 HGIA, 479 MNL1,

FIG. 79B

- ProGlySerValThrValProHisProAsnIleGluGluValAlaLeuS rThrThrGly
 CCGGGCTCCGTCACTGTGCCCCATCCCAACATCGAGGAGGTTGCTCTGTCCACCACCGGA
 GGCCCGAGGCAGTGACACGGGGTAGGGTTGTAGCTCCTCCAACGAGACAGGTGGTGGCCT
 - 482 HPA11 NCI1 SCRF1, 484 BAN11 BSP1286, 485 NLA1V, 491 MAE3, 497 BSP1286, 503 FOK1, 513 TAQ1, 515 MNL1, 518 MNL1, 537 H PA11,
- GlulleProPheTyrGlyLysAlaIleProLeuGluValIleLysGlyGlyArgHisLeu
 542 GAGATCCCTTTTTACGGCAAGGCTATCCCCCTCGAAGTAATCAAGGGGGGGAGACATCTC
 CTCTAGGGAAAAATGCCGTTCCGATAGGGGGAGCTTCATTAGTTCCCCCCCTCTGTAGAG
 - 543 XHO2, 544 BIN1 MBO1 SAU3A, 571 MNL1, 573 TAQ1,
- IlePheCysHisSerLysLysCysAspGluLeuAlaAlaLysLeuValAlaLeuGly
 ATCTTCTGTCATTCAAAGAAGAAGTGCGACGAACTCGCCGCAAAGCTGGTCGCATTGGGC
 TAGAAGACAGTAAGTTTCTTCTCACGCTGCTTGAGCGGCGTTTCGACCAGCGTAACCCG.
 - 603 MBOll, 619 MBOll, 638 FNU4H1, 645 ALU1, 660 SFAN1,
- IleAsnAlaValAlaTyrTyrArgGlyLeuAspValSerValIleProThrSerGlyAsp
 662 ATCAATGCCGTGGCCTACTACCGCGGTCTTGACGTGTCCGTCATCCCGACCAGCCGGTGAT
 TAGTTACGGCACCGGATGATGGCGCCAGAACTGCACAGGCAGTAGGGCTGGTCGCCGCTA
 - 672 HAE1, 673 HAE111, 682 NSPB11 SAC2, 683 THA1, 693 AFL111 MAE2, 703 FOK1, 712 NSPB11, 714 FNU4H1,
- ValValValAlaThrAspAlaLeuMetThrGlyTyrThrGlyAspPheAspSerVal
 GTTGTCGTCGTGGCAACCGATGCCCTCATGACCGGCTATACCGGCGACTTCGACTCGGTG
 CAACAGCAGCACCGTTGGCTACGGGAGTACTGGCCGATATGGCCGCTGAAGCTGAGCCAC
 - 740 SFAN1, 745 MNL1, 748 NLA111, 753 HPA11, 762 HPA11, 771 T AQ1, 773 HINF1, 778 HPH,
- IleAspCysAsnThrCysValThrGlnThrValAspPheSerLeuAspProThrPheThr
 ATAGACTGCAATACGTGTGTCACCCAGACAGTCGATTTCAGCCTTGACCCTACCTTCACC
 TATCTGACGTTATGCACACAGTGGGTCTGTCAGCTAAAGTCGGAACTGGGATGGAAGTGG
 - 794 AFL111 MAE2, 800 MAE3, 801 HPH, 813 TAQ1, 837 HPH,
- IleGluThrIleThrLeuProGlnAspAlaValSerArgThrGlnArgArgGlyArgThr
 842 ATTGAGACAATCACGCTCCCCCAAGATGCTGTCTCCCGCACTCAACGTCGGGGCAGGACT
 TAACTCTGTTAGTGCGAGGGGGTTCTACGACAGAGGGCGTGAGTTGCAGCCCCGTCCTGA
 - 866 SFAN1, 886 MAE2,
- GlyArgGlyLysProGlyIleTyrArgPheValAlaProGlyGluArgProSerGlyMet
 GGCAGGGGAAGCCAGGCATCTACAGATTTGTGGCACCGGGGGAGCGCCCTCCGGCATG
 CCGTCCCCTTCGGTCCGTAGATGTCTAAACACCGTGGCCCCCTCGCGGGGAGGCCGTAC
 - 914 ECOR11 SCRF1, 918 SFAN1, 934 BAN1 NLALV, 938 HPA11 NCI1 SCRF1, 945 HAE11, 946 HHA1, 948 BGL1, 951 MNL1, 954 HPA11, 957 NSPC1, 958 NLA111,
- PheAspSerSerValleuCysGluCysTyrAspAlaGlyCysAlaTrpTyrGluLeuThr 962 TTCGACTCGTCCTCTGTGAGTGCTATGACGCAGGCTGTGCTTGGTATGAGCTCACG AAGCTGAGCAGGCAGGAGACACTCACGATACTGCGTCCGACACCATACTCGAGTGC
 - 963 TAQ1, 965 HINF1, 976 MNL1, 992 HGA1, 1003 TTHIII2, 1013 BAN11 BSP1286 HGIA SAC1, 1014 ALU1,

FIG. 79C

1051 RSA1, 1054 NLA111, 1063 AVA1 NCI1 SCRF1 SMA1, 1064 HPA1 1 NCI1 SCRF1, 1081 ECOR11 SCRF1,

- - 1084 AVA2 SAU96, 1103 MNL1, 1106 AHA11, 1107 HGA1, 1117 HAE1 STU1, 1118 HAE111, 1120 MNL1, 1133 SFAN1,
- - 1183 ECOR11 SCRF1, 1192 RSA1, 1201 DRA3,
- ThrvalcysAlaArgAlaGlnAlaProProProSerTrpAspGlnMetTrpLysCysLeu
 ACCGTGTGCGCTAGGGCTCAAGCCCCTCCCCCATCGTGGGACCAGATGTGGAAGTGTTTGTGGCACACGCGATCCCGAGTTCGGGGAGGGGGTAGCACCCTTGACAAAC
 - 1209 HHA1, 1212 MAE1, 1215 BAN11 BSP1286, 1226 MNL1, 1239 NL AlV, 1240 AVA2 SAU96, 1256 TTHIII2, 1261 HINF1,
- IleArgLeuLysProThrLeuHisGlyProThrProLeuLeuTyrArgLeuGlyAlaVal
 ATTCGCCTCAAGCCCACCCTCCATGGGCCAACACCCCTGCTATACAGACTGGGCGCTGTT
 TAAGCGGAGTTCGGGTGGGAGGTACCCGGTTGTGGGGACGATATGTCTGACCCGCGACAA
 - 1267 MNL1, 1279 MNL1, 1282 NCO1, 1283 NLA111, 1286 SAU96, 1287 HAE111, 1313 HAE11, 1314 HHA1,
- - 1332 HPH, 1339 HGA1, 1349 MAE3, 1350 HPH, 1363 NLA111, 1367 NSPC1, 1368 NLA111, 1369 AVA3 NSI1, 1371 NSPC1, 1372 NLA111, 1377 CFR1 XMA3, 1378 HAE111,
- AspleuGluValValThrSerThrTrpValLeuValGlyGlyValLeuAlaAlaLeuAla
 GACCTGGAGGTCGTCACGAGCACCTGGGTGCTCGTTGGCGGCGTCCTGGCTGCTTTGGCC
 CTGGACCTCCAGCAGTGCTCGTGGACCCACGAGCAACCGCCGCAGGACCAAAACCGG
 - 1384 ECOR11 SCRF1, 1385 GSU1, 1388 MNL1, 1394 MAE3, 1399 BSP 1286 HGIA, 1404 ECOR11 SCRF1, 1409 BSP1286 HGIA, 1419 FNU4H1, 1421 AHA11, 1422 HGA1, 1426 ECOR11 SCRF1, 1430 BBV FNU4H1, 1437 CFR1, 1438 HAE111, 1439 FNU4H1, 1441 THA1,
- AlatyrcysleuSerthrGlyCysValValIleValGlyArgValValLeuSerGlyLys
 GCGTATTGCCTGTCAACAGGCTGCGTGGTCATAGTGGGCAGGGTCGTCTTGTCCGGGAAG
 CGCATAACGGACAGTTGTCCGACGCACCAGTATCACCCGTCCCAGCAGAACAGGCCCCTTC
 - 1453 HINC11, 1461 BBV FNU4H1, 1494 HPAI1 NCI1 SCRF1, 1501 NA E1,
- ProAlaIleIleProAspArgGluValLeuTyrArgGluPheAspGluMetGluGluCys CCGGCAATCATACCTGACAGGGAAGTCCTCTACCGAGAGTTCGATGAGATGGAAGAGTGC GGCCGTTAGTATGGACTGTCCCTTCAGGAGATGGCTCTCAAGCTACTCTACCTTCTCACG
 - 1502 HPA11, 1528 MNL1, 1542 TAQ1, 1553 MBO11, 1558 BSP1286 H GIA,
- Serginhisleuprotyrilegiuginglymetmetleualagiuginphelysginlys TCTCAGCACTTACCGTACATCGAGCAAGGGATGATGCTCGCCGAGCAGTTCAAGCAGAAG AGAGTCGTGAATGGCATGTAGCTCCCTACTACGAGCGGCTCGTCAAGTTCGTCTTC
 - 1563 DDE1. 1576 RSA1, 1581 TAQ1, 1590 FOK1, 1594 SFAN1, 1612

TTHIII2, 1621 HAE111 SAU96,

FIG. 79D

- AlaLeuGlyLeuLeuGlnThrAlaSerArgGlnAlaGluValIleAlaProAlaValGln
 GCCCTCGGCCTCCTGCAGACCGCGTCCCGTCAGGCAGAGGTTATCGCCCCTGCTGTCCAG
 CGGGAGCCGGGAGGACGTCTGGCGCAGGGCAGTCCGTCTCCAATAGCGGGGACGACAGGTC
 - 1624 MNL1, 1628 HAE111, 1630 MNL1, 1634 PST1, 1639 TTHIII1, 1642 THA1, 1643 HGA1, 1658 MNL1,
- ThrAsnTrpGlnLysLeuGluThrPheTrpAlaLysHisMetTrpAsnPheIleSerGly
 ACCAACTGGCAAAAACTCGAGACCTTCTGGGCGAAGCATATGTGGAACTTCATCAGTGGG
 TGGTTGACCGTTTTTGAGCTCTGGAAGACCCGCTTCGTATACACCTTGAAGTAGTCACCC
 - 1697 AVA1 XHO1, 1698 TAQ1, 1718 NDE1,
- IleGlnTyrLeuAlaGlyLeuSerThrLeuProGlyAsnProAlaIleAlaSerLeuMet
 ATACAATACTTGGCGGGCTTGTCAACGCTGCTTGGTAACCCCGCCATTGCTTCATTGATG
 TATGTTATGAACCGCCCGAACAGTTGCGACGGACCATTGGGGCGGTAACGAAGTAACTAC-
 - 1762 HINC11, 1768 BBV FNU4H1, 1772 ECOR11 SCRF1, 1775 BSTE2, 1776 MAE3,
- AlaPheThrAlaAlaValThrSerProLeuThrThrSerGlnThrLeuLeuPheAsnlle GCTTTTACAGCTGCTGTCACCAGCCCACTAACCACTAGCCAAACCCTCCTCTTCAACATA CGAAAATGTCGACGACAGTGGTCGGGTGATTGGTATCGGTTTGGGAGGAGAAGTTGTAT
 - 1809 ALWN1 NSPB11 PVU11, 1810 ALU1, 1811 BBV FNU4H1, 1817 MA E3, 1818 HPH, 1836 MAE1, 1846 MNL1, 1849 MNL1, 1851 MBO11,
- LeuGlyGlyTrpValAlaAlaGlnLeuAlaAlaProGlyAlaAlaThrAlaPheValGly
 1862 TTGGGGGGGTGGCTGCCCAGCTCGCCGCCCCGGTGCCGCTACTGCCTTTGTGGGC
 AACCCCCCCACCGACGGGTCGAGCGGTCGAGCGGGCCACGGCGAAACACCCCG
 - 1877 BBV FNU4H1, 1884 ALU1, 1889 FNU4H1, 1895 NCI1 SCRF1, 18 96 HPA11, 1898 BAN1 NLAIV, 1901 FNU4H1, 1919 HAE11, 1920 HHA 1,
- AlaglyLeuAlaglyAlaAlaIleglySerValGlyLeuGlyLysValLeuIleAspIle GCTGGCTTAGCTGGCGCCGCCATCGGCAGTGTTGGACTGGGGAAGGTCCTCATAGACATC CGACCGAATCGACCGGCGGCGGTAGCCGTCACAACCTGACCCCTTCCAGGAGTATCTGTAG
 - 1927 DDE1, 1930 ALU1, 1934 AHA11 BAN1 HAE11 NAR1 NLA1V, 1935 HHA1, 1937 FNU4H1, 1966 AVA2 SAU96, 1969 MNL1, 1978 FOK1,
- - 1995 HHA1, 1996 THA1, 2010 BAN11 BSP1286 HGIA SAC1, 2011 ALU 1, 2021 BSM1, 2029 MBO1 SAU3A, 2032 NLA111, 2039 HPH,
- GluValProSerThrGluAspLeuValAsnLeuLeuProAlaIleLeuSerProGlyAla 2042 GAGGTCCCCTCCACGGAGGACCTGGTCAATCTACTGCCCGCCATCCTCTCGCCCGGAGCC CTCCAGGGGAGGTGCCTCCTGGACCAGTTAGATGACGGGCGGTAGGAGAGCGGGCCTCGG
 - 2042 MNL1, 2044 AVA2 NLALV SAU96, 2049 MNL1, 2057 MNL1, 2059 AVA2 SAU96, 2060 TTHIII1, 2062 ECOR11 SCRF1, 2083 FOK1, 2086 MNL1, 2093 NCI1 SCRF1, 2094 HPA11, 2096 NLALV, 2097 BAN11 BSP1286, 2101 MNL1,
- Leuvalvalgiyvalvalcysalaalaileleuargarghisvalgiyproglyglugly
 2102 CTCGTAGTCGGCGTGGTCTGTGCAGCAATACTGCGCCGGCACGTTGGCCCGGCGAGGGG
 GAGCATCAGCCGCACCAGACACGTCGTTATGACGCGGCCCGTGCAACCGGGCCCGCTCCCC
 - 2123 BBV FNU4H1, 2134 HHA1, 2136 NAE1, 2137 HPA11, 2142 MAE2, 2147 HAE111 SAU96, 2149 AVA1 NCI1 SCRF1 SMA1, 2150 HPA11 N

FIG. 79E

CI1 SCRF1, 2156 MNL1,

2172 FOK1, 2179 HPA11, 2196 MNL1, 2199 AVA1 NCI1 SCRF1 SMA1, 2200 HPA11 NCI1 SCRF1, 2205 NLA1V, 2210 NLA111,

2222

FIG. 80A

Human 23

- GlyPheAlaAspLeuMetGlyTyrIleProLeuValGlyAlaProLeuGlyGlyArgAla GGCTTCGCCGACCTCATGGGGTACATACCGCTCGTCGGCGCCCCTCTTGGAGGCCGTGCC ArgAlaLeuAlaHisGlyValArgValLeuGluAspGlyValAsnTyrAlaThrGlyAsn **AGGGCCCTGGCGCACGGCGTCCGGGTTTTGGAAGACGGCGTGAACTĀTGCAACAGGGAAC** 61
- LeuProGlyCysSerPheSerIlePheLeuLeuAlaLeuLeuSerCysLeuThrValPro CTICCIGGITGCICCITITCIAICIICCITCIGGCCCIACICICITGCCIGACCGIGCCC 121
- AsnSerSerIleValTyrGluAlaAlaAspAlaIleLeuHisAlaProGlyCysValPro AlaSerAlaTyrGlnValArgAsnSerThrGlyLeuTyrHisValThrAsnAspCysPro GCTTCAGCCTÁCCAAGTGCGCAACTCTACGGGGCTTTÁCCATGTCACCAATGATTGCCCT **AACTCGAGTATTGTGTĀCGAGGCGGCCGAĪGCCATCCTGCACGCTCCGGGĞTĞTGTCCCT** 181 241
- TGCGTTCGCGAGGATAACGTCTCGAGÁTGTTGGGTGGCGGTGACCCCCACGGTGGCCACC CysValArgGluAspAsnValSerArgCysTrpValAlaValThrProThrValAlaThr 301
- **AAGGAČGGČAĀACITCCCCACAACGCAGCITCGĀCGĪCACATCGAĪCTGCTIGITCGGĀAGC** t LysAspGlyLysLeuProThrThrGlnLeuArgArgHisIleAspLeuLeuValGlySer361
- $\verb|AlaThrLeuCysSerAlaLeuTyrValGlyAspLeuCysGlySerIlePheLeuValGly|$ 421
- GlnLeuPheThrPheSerProArgArgHisTrpThrThrGlnAspCysAsnCysSerIle CAACTGITIACCITCICCCAGGCGCCACTGGACGACGCAGGACTGCAACTGITCIAIC 481

U

FIG. 80B

- TyrProGlyHisIleThrGlyHisArgMetAlaTrpAspMetMetMetAsnTrpSerPro TATCCCGGCCATATAACGGGTCACGCATGGCATGGGATATGATGATGAACTGGTCCCCT 541
 - ThralaalaLeuValValAlaGlnLeuLeuArgIleProGlnAlaIleLeuAspMetIle ACGGCGCCATTGGTAGTAGCTCAGCTGCTCCGGATCCCACAAGCCATCTTGGACATGATC 601
- AlaGlyAlaHisTrpGlyValLeuAlaGlyMetAlaTyrPheSerMetValGlyAsnTrp GCTGGTGCTCACTGGGGAGTCCTGGCGGGATGGCGTATTTCTCCATGGTGGGGAACTGG 199
- GCGAAGGTCCTGGTAGTGCTTCTATTTGCCGGČGTCGAČGCGGAAACCCACCGTACC **AlaLysValLeuValValLeuLeuLeuPheAlaGlyValAspAlaGluThrHisArgThr** 721
 - GlyGlySerAlaAlaArqSerThrAlaGlyValAlaSerLeuPheThrProGlyAlaArg
- GGGGGAAGTGCCGCCCGCACGCTGGAGTTGCTAGTCTTCTTCACACCAGGCGCTAGG GlnAsnIleGlnLeuIleAsnThrAsnGlySerTrpHisIleAsnSerThrAlaLeuAsn CAGAACATCCAGCTGATCAACACCAACGGČAGTTGĞCACATCAATAGTACGGCCTTGAAC 781 841
- CysAsnAspSerLeuThrThrGlyTrpLeuAlaGlyLeuPheTyrHisHisLysPheAsn TGCAATGACAGCCTTACCACCGGCTGGTTAGCGGGGCTTTTCTĀTCACCATAĀATTCAAC 106
- TCTTCAGGCTGTCCCGAGAGGTTGGCCAGCTGCCGÁCCCCTCACCGATTTTGCCCAGG SerSerGlyCysProGluArgLeuAlaSerCysArgProLeuThrAspPheAlaGln 196

FIG. 81A

Human 27

- GlyPheAlaAspLeuMetGlyTyrIleProLeuValGlyAlaProLeuGlyGlyAlaAla GGCTTCGCCGAČCTCATGGGĞTĀCATTCCGCTCGTCGĞGCTCCTCTTGGĞGGĞGĞCTCCT
- AGGGCCCTGGCGCATGGČGTCCGĞGTTCTGGAAGAČGGČGTGAACTĀTGCAACAGGĞAAC ArgAlaLeuAlaHisGlyValArgValLeuGluAspGlyValAsnTyrAlaThrGlyAsn 61
- LeuProGlyCysSerPheSerIlePheLeuLeuAlaLeuLeuSerCysLeuThrValPro 121
- AlaSerAlaTyrGlnValArgAsnSerSerGlyIleTyrHisValThrAsnAspCysPro GCATCGGCCTÁCCAAGTACGCAACTCCTCGGGCATTTÁCCATGTCACCAATGATTGCCCT 181
- AsnSerSerIleValTyrGluThrAlaAspThrIleLeuHisSerProGlyCysValPro <u>AATTCGAGTATTGTGTĀCGAGACGGCCGĀČACCATCCTACACTCTCCGGGĞTĞTGTCCCT</u> 241
- TGCGTTCGCGAGGGTAACGCCTCGAAATGTTGGGTGCCGGTAGCCCCCACAGTGGCCAAC CysValArgGluGlyAsnAlaSerLysCysTrpValProValAlaProThrValAlaThr 301
- AGGGACGGCAACCTCCCCGCAACGCAGCTTCGACGTCACATCGATCTGCTTGTCGGGAGT ArgAspGlyAsnLeuProAlaThrGlnLeuArgArqHisIleAspLeuLeuValGlySer 361
- AlaThrLeuCysSerAlaLeuTyrValGlyAspLeuCysGlySerValPheLeuValGly 421
- GlnLeuPheThrPheSerProArgArgHisTrpThrThrGlnAspCysAsnCysSerIle CAACTGTTCACTTTCTCCCCCAGGCGCCACTGGACAACGCAAGATTGCAACTGCTCTATC 481

FIG. 81B

- TyrProGlyHisIleThrGlyHisArgMetAlaTrpAspMetMetAetAsnTrpSerPro TÄCCCCGGČCATATAACGGGÄCACGČATGGCATGĞGATATGATGATGAACTGĞTCCCCT 541
- ThralaalaLeuValMetAlaGlnLeuLeuArgIleProGlnAlaIleLeuAspMetIle ACAGCAGCGCTGGTAATGGCTCAGCTGCTCAGĞATCCCGCAAGCCATCTTGGAĞATGATC 601
- AlaGlyAlaHisTrpGlyValLeuAlaGlyIleAlaTyrPheSerMetValGlyAsnTrP GCTGGTGCTCACTGGGGAGTCCTAGCGGCATAGCGTATTTCTCCATGGTGGGGAACTGG 199
- AlaLysValLeuValValLeuLeuLeuPheAlaGlyValAspAlaThrThrThrThrThr GCGAAGGTCCTGGTGCTGTTGCTGTTTGCCGGCGTCGATGCGACAACCTATACCACC 721
- **GlyGlyAsnAlaAlaArgThrThrGlnAlaLeuThrSerPhePheSerProGlyAlaLys** GGGGGAATGCTGCCAGĞACCACGCAGGCGCTCACCAGTTTTTCAGCCCAGGCGCCAĀG 781
- GlnAspileGlnLeuileAsnThrAsnGlySerTrpHisileAsnArgThrAlaLeuAsn CAGGATATCCAGCTGATCAACACCAACGGCAGTTGGCACATCAATCGCACGGCCTTGAAC 841
- CysAsnAlaSerLeuAspThrGlyTrpValAlaGlyLeuPheTyrTyrHisLysPheAsn TĠTAATGCGAGCCTCGAČACTGGČTGĠGTAGCGGGĠCTCTTCTĀTTĀCCACAĀATTCAAC 901
- TCTTCAGGCTGCCCCGAGAGGATGGCCAGCTGTAGGCCCCCTTGCCGATTTCGACCAGG SerSerGlyCysProGluArgMetAlaSerCysArgProLeuAlaAspPheAspGln 196

FIG. 72M

- **ATGACCGGCTATACCGGCGACTTCGACTCGGTGATAGACTGCAATACGTGTGTCACCCAG** TACTGGCCGATATGGCCGCTGAAGCTGAGCCACTATCTGACGTTATGCACACAGTGGGTC MetThrGlyTyrThrGlyAspPheAspSerValIleAspCysAsnThrCysValThrGln 4321
- ThrValAspPheSerLeuAspProThrPheThrIleGluThrIleThrLeuProGlnAsp **ACAGTCGATTTCAGCCTTGACCCTTCACCATTGAGACAATCACGCTCCCCAGGAT** TGTCAGCTAAAGTCGGAACTGGGATGGAAGTGGTAACTCTGTTAGTGCGAGGGGGTCCTA 4381
- GCTGTCTCCCGCACTCAACGTCGGGGCAGGACTGGCAGGGGGGAAGCCCAGGCATCTACAGĂ $\mathtt{AlaValSerArgThrGlnArgArgGlyArgThrGlyArgGlyLysProGlyIleTyrArg}$ CGACAGAGGGCGTGAGTTGCAGCCCCCGTCCTGACCGTCCCCCTTCGGTCCGTAGATGTCT 4441
- PheValAlaProGlyGluArgProSerGlyMetPheAspSerSerValLeuCysGluCys TTTGTGGCACCGGGGAGCGCCCCTCCGGCATGTTCGACTCGTCGTCCTCTGTGAGTGC 4501
- TÂTGAĈGCAGGĈTĜTGCTTGĞTĀTGAGCTCACGCCCGCGAGACTACAGTTAGGCTACGA ATACTGCGTCCGACACGAACCATACTCGAGTGCGGGCGGCTCTGATGTCAATCCGATGCT ${\tt TyrAspAlaGlyCysAlaTrpTyrGluLeuThrProAlaGluThrThrValArgLeuArg}$ 4561
- CGCATGTACTTGTGGGGCCCCCGAAGGGCACACGGTCCTGGTAGAACTTAAAAACCCTCCCG $\mathtt{AlaTyrMetAsnThrProGlyLeuProValCysGlnAspHisLeuGluPheTrpGluGly}$ GCGTĀCATGAACACCCCGGGĞCTTCCCGTGTĞCCAGGAČCATCTTGAATTTTGĞGAGGĞ 4621
- GTCTTTACAGGCCTCACTCATATAGATGCCCACTTTCTATCCCAGACAAAGCAGAGTGGG ${\tt ValPheThrGlyLeuThrHisIleAspAlaHisPheLeuSerGlnThrLysGlnSerGly}$ CAGAAATGTCCGGAGTGAGTATATCTACGGGTGAAAGATAGGGTCTGTTTCGTCTCACCC 4681

FIG. 72N

	ProProSerTrpAspGlnMetTrpLysCysLeuIleArgLeuLysProThrLeuH1sG1y
4801	CCCCCATCGTGGGACCAGATGTGGAAGTGTTTGATTCGCCTCAAGCCCCACCCTCCATGGG
	GGGGGTAGCACCCTGGTCTACACCTTCACAAACTAAGCGGAGTTCGGGTGGGAGTACCC

ValThrLysTyrIleMetThrCysMetSerAlaAspLeuGluValValThrSerThrTrp GTCACCAÁATÂCATCATGACATGCATGTCGGCCGAČCTGGAGGTCGTCACGAGCACCTGĞ CAGTGGTTTATGTAGTACTGTACGTACAGCCGGCTGGACCTCCAGCAGTGCTCGTGGACC 4921

/alLeuValGlyGlyValLeuAlaAlaLeuAlaAlaTyrCysLeuSerThrGlyCysVal GTGCTCGTTGGCGGCGTCCTGCCTTTGGCCGCGTATTGCCTGTCAACAGGCTGCGTG CACGAGCAACCGCCGCAGGACCGACGAAACCGGCGCATAACGGACAGTTGTCCGACGCAC 4981

GTCATAGTGGGCAGGGTCGTCTTGTCCGGGAAGCCGGCAATCATACCTGACAGGGAAGTC CAGTATCACCCGTCCCAGCAGAACAGGCCCTTCGGCCGTTAGTATGGACTGTCCCTTCAG ValileValGlyArgValValLeuSerGlyLysProAlaIleIleProAspArgGluVal 5041

LeuTyrArgGluPheAspGluMetGluGluCysSerGlnHisLeuProTyrIleGluGln CICITACCGAGAGITCGATGAGATGGAAGAGTGCTCTCAGCACTTACCGTACATCGAGCAA GAGATGGCTCTCAAGCTACTCTACCTTCTCACGAGAGTCGTGAATGGCATGTAGCTCGTT 5101

FIG. 720

- GGĞATGATGCTCGCCGAGCAGTTCAAGCAGAAGGCCCTCGGĞCTCCTGCAGACCGCGTCC CCCTACTACGAGCGGCTCGTCAAGTTCGTCTTCCGGGAGCCGGAGGACGTCTGGCGAGG GlyMetMetLeuAlaGluGlnPheLysGlnLysAlaLeuGlyLeuLeuGlnThrAlaSer 5161
- ArgGlnAlaGluValIleAlaProAlaValGlnThrAsnTrpGlnLysLeuGluThrPhe CGTCAGGCAGAGGTTATCGCCCCTGCTGTCCAGACCAACTGGCAAAAACTCGAGACCTTC GCAGTCCGTCTCCAATAGCGGGGACGACAGGTCTGGTTGACCGTTTTTGAGCTCTGGAAG 5221
- TrpAlaLysHisMetTrpAsnPheIleSerGlyIleGlnTyrLeuAlaGlyLeuSerThr TGGGCGAAGCATATGTGGAACTTCATCAGTGGGATACAATACTTGGCGGGCTTGTCAACG <u> ACCCGCTTCGTATACACCTTGAAGTAGTCACCCTATGTTATGAACCGCCCGAACAGTTGC</u> 5281
- LeuProGlyAsnProAlaIleAlaSerLeuMetAlaPheThrAlaAlaValThrSerPro CIGCCIGGIAACCCCGCCATIGCIICATIGAIGGCIITIIACAGCIGCIGICACCAGCCCA SACGGACCATTGGGGCGGTAACGAAGTAACTACCGAAAATGTCGACGACAGTGGTCGGCGT 5341
- LeuThrThrSerGlnThrLeuLeuPheAsnIleLeuGlyGlyTrpValAlaAlaGlnLeu 5401
- CGGCGGGGCCACGGCGATGACGGAAACACCCGCGACCGAATCGACCGCGGCGGTAGCCG AlaAlaProGlyAlaAlaThrAlaPheValGlyAlaGlyLeuAlaGlyAlaAlaIleGly GCCGCCCCCGGTGCCGCTACTGCCTTTGTGGGCGCTGGCTTAGCTGGCGCCCCCATCGGC 5461

FIG. 72P

- ICACAACCIGACCCCTICCAGGAGIAICIGIAGGAACGICCCAIACCGCGCCCCGCACCGC <u>AGTGTTGGĀCTGGGGAĀGGTCCTCATAGAČATCCTTGCAGGĞTĀTGGČGCGGĞĞTGGCĞ</u> SerValGlyLeuGlyLysValLeuIleAspIleLeuAlaGlyTyrGlyAlaGlyValAla 5521
- GGĀGCTCTTGTGGCATTCAĀGATCATGAGCGGĀGAGGTCCCCTCCACGGAGGACCTGGTC GlyAlaLeuValAlaPheLysIleMetSerGlyGluValProSerThrGluAspLeuVal 5581
- AsnLeuLeuProAlaIleLeuSerProGlyAlaLeuValValGlyValValCysAlaAla <u> AATCTACTGCCCGCCATCCTCCCCCCGGAGCCCTCGTAGTCGGCGTGGTCTGTGCAGCA</u> TTAGATGACGGGCGGTAGGAGAGCGGGCCTCGGGAGCATCAGCCGCACCAGACACGTCGT 5641
- IleLeuArqArqHisValGlyProGlyGluGlyAlaValGlnTrpMetAsnArgLeuIle ATACTIGCGCCGGCACGTTGGCCCCGGCCGAGGGGGCCAGTGCAGTGGATGAACCGGCTGATA TATGACGCGGCCGTGCAACCGGGCCCGCTCCCCCGTCACGTCACCTACTTGGCCGACTAT 5701
- GCCTTCGCCTCCCGGGGGAACCATGTTTCCCCCACGCACTACGTGCCGGAGAGCGATGCA CGGAAGCGGAGGGCCCCCTTGGTACAAAGGGGGGTGCGTGATGCACGGCCTCTCTCGCTACGT AlaPheAlaSerArgGlyAsnHisValSerProThrHisTyrValProGluSerAspAla 5761
- AlaAlaArqValThrAlaIleLeuSerSerLeuThrValThrGlnLeuLeuArqArqLeu GCTGCCCGCGTCACTGCCATACTCAGCAGCCTCACTGTAACCCCAGCTCCTGAGGCGACTG CGACGGGCGCAGTGACGGTATGAGTCGTCGGAGTGACATTGGGTCGAGGACTCCGCTGAC 5821

FIG. 72Q

- HisGlnTrpIleSerSerGluCysThrThrProCysSerGlySerTrpLeuArgAspIle CACCAGTGGATAAGCTCGGAGTGTACCACTCCATGCTCCGGTTCCTGGCTAAGGGACATC GTGGTCACCTATTCGAGCCTCACATGGTGAGGTACGAGGCCCAAGGACCGATTCCCTGTAG 5881
- TGGGACTGGATATGCGAGGTGTTGAGCGACTTTAAGACCTGGCTAAAAGCTAAAGCTCATG $\verb!TrpAspTrpIleCysGluValLeuSerAspPheLysThrTrpLeuLysAlaLysLeuMet$ ACCCTGACCTATACGCTCCACAACTCGCTGAAATTCTGGACCGATTTTCGATTCGAGTAC 5941
- ProGlnLeuProGly11eProPheValSerCysGlnArgGlyTyrLysGlyValTrpArg CCACAGCTGCCTGGGATCCCCTTTGTGTCCTGCCAGCGCGGTATAAGGGGGGTCTGGCGA SGTGTCGACGGACCCTAGGGGAAACACAGGACGGTCGCGCCCATATTCCCCCCAGACCGCT 1009
- ${ t ValAspGlyIleMetHisThrArgCysHisCysGlyAlaGluIleThrGlyHisValLys}$ GTGGAČGGČATCATGCACACTCGČTĞCCACTĞTGGĀGCTGAGATCACTGGĀCATGTCAĀA CACCTGCCGTAGTACGTGTGAGCGACGGTGACACCTCGACTCTAGTGACCTGTACAGTTT 1909
- AsnGlyThrMetArg1leValGlyProArgThrCysArgAsnMetTrpSerGlyThrPhe **AACGGACGATGAGGATCGTCGGTCCTAGGACCTGCAGGAACATGTGGAGTGGGACCTTC** TTGCCCTGCTACTCCTAGCAGCCAGGATCCTGGACGTCCTTGTACACCTCACCCTGGAAG 6121
- ProlleAsnAlaTyrThrThrGlyProCysThrProLeuProAlaProAsnTyrThrPhe CCCATTAATGCCTACACGGGCCCCTGTACCCCCCTTCCTGCGCCGAACTACACGTTC SGGTAATTACGGATGTGGTGCCCGGGGACATGGGGGGAAGGACGCGGCTTGATGTGCAAG 6181

FIG. 72R

- ${\tt TyrValThrGlyMetThrThrAspAsnLeuLysCysProCysGlnValProSerProGlu}$ TACGTGACGGGTATGACTACTGACAATCTCAAATGCCCGTGCCAGGTCCCATCGCCCGAA ATGCACTGCCCATACTGATGACTGTTAGAGTTTACGGGCACGGTCCAGGGTAGCGGGCTT 6301
- **AAAAAGTGTCTTAACCTGCCCCACGCGGATGTATCCAAACGCGGGGGGGACGTTCGGGAAC** PhePheThrGluLeuAspGlyValArgLeuHisArgPheAlaProProCysLysProLeu TTTTTCACAGAATTGGAČGGGGGGGCCCTACATAGGTTTGCGCCCCCCTGCAĀGCCCTTG 6361
- LeuArgGluGluValSerPheArgValGlyLeuHisGluTyrProValGlySerGlnLeuCTGCGGGAGGAATTCATTCAGĀGTAGGĀCTCCACGAATĀCCCGGTAGGĞTCGCAATTA SACGCCCTCCTCCATAGTAAGTCTCATCCTGAGGTGCTTATGGGCCATCCCAGCGTTAAT 6421
- ProCysGluProGluProAspValAlaValLeuThrSerMetLeuThrAspProSerHis CCTTGCGAGCCCGAACCGGACGTGGCCGTGTTGACGTCCATGCTCACTGATCCCTCCAT 6481
- ATAACAGCAGAGGCGGCCGGCCGAAGGTTGGCGAGGGGATCACCCCCCCTCTGTGGCCAGC **PATTGTCGTCTCCGCCCGCCTTCCAACCGCTCCCCTAGTGGGGGGGAGACACCGGTCG** IleThrAlaGluAlaAlaGlyArgArgLeuAlaArgGlySerProProSerValAlaSer 6541

FIG. 72S

ICCCCTGATGCTGAGCTCATAGAGGCCAACCTCCTATGGAGGCAGGAGATGGGCGGCAAC SerProAspAlaGluLeuIleGluAlaAsnLeuLeuTrpArgGlnGluMetGlyGlyAsn AGGGGACTACGACTCGAGTATCTCCGGTTGGAGGATACCTCCGTCCTCTACCCGCCGTTG **6661**

ATCACCAGGGTTGAGTCAGAAAACAAAGTGGTGATTCTGGACTCCTTCGATCCGCTTGTG TAGTGGTCCCAACTCAGTCTTTTGTTTCACCACTAAGACCTGAGGAAGCTAGGCGAACAC [leThrArqValGluSerGluAsnLysValValIleLeuAspSerPheAspProLeuVal 6721

GCGGAGGAGGACGAGCGGGAGATCTCCGTACCCGCAGAAATCCTGCGGAAGTCTCGGAGA AlaGluGluAspGluArqGluIleSerValProAlaGluIleLeuArgLysSerArgArg COCCICCICCICCICCICCICICIAGAGGCAIGGGCGICITIAGGACGCCIICAGAGCCICI 6781

PheAlaGlnAlaLeuProValTrpAlaArgProAspTyrAsnProProLeuValGluThr 6841

!rpLysLysProAspTyrGluProProValValHisGlyCysProLeuProProLys TGGAAAAAGCCCGACTACGAACCACCTGTGGTCCATGGCTGTCCGCTTCCACCTCCAAAG ACCTTTTTCGGGCTGATGCTTGGTGGACACCAGGTACCGACAGGCGAAGGTGGAGGTTTTC 6901

TCCCCTCCTGTGCCTCCGCCTCGGAAGAAGCGACGGTGGTCCTCACTGAATCAACCCTA SerProProValProProProArgLysLysArgThrValValLeuThrGluSerThrLeu AGGGGAGGACACGGAGGCGGAGCCTTCTTCGCCTGCCACCAGGAGTGACTTAGTTGGGAT 1969

FIG. 72T

SerThrAlaLeuAlaGluLeuAlaThrArgSerPheGlySerSerSerThrSerGlyIle TCTACTGCCTTGGCCGAGCTCGCCACCAGAAGCTTTGGCAGCTCCTCAACTTCCGGCATT AGATGACGGAACCGGCTCGAGCGGTGGTCTTCGAAACCGTCGAGGAGTTGAAGGCCGTAA 7021

ThrG1yAspAsnThrThrSerSerG1uProA1aProSerG1yCysProProAspSer 7081

AspAlaGluSerTyrSerSerMetProProLeuGluGlyGluProGlyAspProAspLeu GACGCTGAGTCCTÄTTCCTCCATGCCCCCCTGGAGGGGGGAGCCTGGGGATCCGGATCTT CTGCGACTCAGGATAAGGAGGTACGGGGGGGACCTCCCCCTCGGACCCCTAGGAA 7141

SerAspG1ySerTrpSerThrValSerSerG1uAlaAsnAlaG1uAspValValCysCys <u>AGCGAČGGĞTCATGĞTCAACGGTCAGTAGTGAGGCCAACGCGGAGGATGTCGTGTĞCTĞC</u> **PCGCTGCCCAGTACCAGTTGCCAGTCATCACTCCGGTTGCGCCTCCTACAGCACACGACG** 7201

SerMetSerTyrSerTrpThrGlyAlaLeuValThrProCysAlaAlaGluGluGlnLys TCAATGTCTTĀCTCTTGĞACAGGČGCACTCGTCACCCCGTĞCGCCGCGGAAGAACAGĀA AGTTACAGAATGAGAACCTGTCCGCGTGAGCAGTGGGGCACGCGGCGCCCTTCTTGTCTTT 7261

LeuProlleAsnAlaLeuSerAsnSerLeuLeuArgHisHisAsnLeuValTyrSerThr CTGCCCATCAATGCACTAAGCAACTCGTTGCTACGTCACCACAATTTGGTGTATTCCACC SACGGGTAGTTACGTGGTTCGTTGAGCAACGATGCAGTGGTGTTAAACCACATAAGGTGG

FIG. 72U

- ThrSerArgSerAlaCysGlnArgGlnLysLysValThrPheAspArgLeuGlnValLeu ACCTCACGCAGTGCTTGCCAAAGGCAGAAAGTCACATTTGACAGACTGCAAGTTCTG **IGGAGTGCGTCACGAACGGTTTCCGTCTTTCAGTGTAAACTGTCTGACGTTCAAGAC** 7381
- AspSerHisTyrGlnAspValLeuLysGluValLysAlaAlaAlaSerLysValLysAla GACAGCCATTACCAGGACGTACTCAAGGAGGTTAAAGCAGCGGCGTCAAAAGTGAAGGCT CIGICGGIAAIGGICCIGCAIGAGIICCICCAAITIICGICGCCGCAGIIIITCACIICCGA 7441
- AsnLeuLeuSerValGluGluAlaCysSerLeuThrProProHisSerAlaLysSerLys **AACTTGCTATCCGTAGAGGAAGCTTGCAGCCTGACGCCCCCCACACTCAGCCAAATCCAAG** 7501
- PheGlyTyrGlyAlaLysAspValArgCysHisAlaArgLysAlaValThrHisIleAsn TTTGGTTĀTGGĞGCAAAAGAČGTCCGTTĞCCATGCCAGAAAGGCCGTAACCCACATCAAC **AAACCAATACCCCGTTTTCTGCAGGCAACGGTACGGTCTTTCCGGCATTGGGTGTAGTTG** 7561
- SerValTrpLysAspLeuLeuGluAspAsnValThrProIleAspThrThrIleMetAla **AGGCACACCTTTCTGGAAGACCTTCTGTTACATTGTGGTTATCTGTGATGGTAGTACCGA** TCCGTGTGGAAAGACCTTCTGGAAGACAATGTAACACCAATAGACACTACCATCATGGCT 7621
- AAGAACGAGGTTTTCTGCGTTCAGCCTGAGAAGGGGGGTCGTAAGCCAGCTCGTCTCATC LysAsnGluValPheCysValGlnProGluLysGlyGlyArgLysProAlaArgLeuIle TTCTTGCTCCAAAAGACGCAAGTCGGACTCTTCCCCCCAGCATTCGGTCGAGCAGAGTAG 7681
- ValPheProAspLeuGlyValArgValCysGluLysMetAlaLeuTyrAspValValThr GTGTTCCCCGATCTGGGČGTGCGČGTGTĞCGAAAAGATGGCTTTGTACGACGTGGTTACA CACAAGGGGCTAGACCCGCACGCGCACGCTTTTCTACCGAAACATGCTGCACCAATGT 7741

FIG. 72V

ValGluPheLeuValGlnAlaTrpLysSerLysLysThrProMetGlyPheSerTyrAsp GTTGAATTCCTCGTGCAAGCGTGGAAGTCCAAGAAACCCCAATGGGGTTCTCGTATGAT CAACTTAAGGAGCACGTTCGCACCTTCAGGTTCTTTTGGGGGTTACCCCAAGAGCATACTA 7861

ACCCGCTGCTTTGACTCCACAGTCACTGAGAGCGACATCCGTACGGAGGAGGCAATCTAC TGGGCGACGAAACTGAGGTGTCAGTGACTCTCGCTGTAGGCATGCCTCCTCCGTTAGATG ThrArgCysPheAspSerThrValThrGluSerAspIleArgThrGluGluAlaIleTyr 7921

 ${\tt GlnCysCysAspLeuAspProGlnAlaArgValAlaIleLysSerLeuThrGluArgLeu}$ CAATGTTGTGTGACCTCGACCCCCAAGCCCGCGTGGCCCATCAAGTCCCTCACCGAGAGGCTT STTACAACACTGGAGCTGGGGGTTCGGGCGCACCGGTAGTTCAGGGAGTGGCTCTCCGAA 7981

TyrValG1yG1yProLeuThrAsnSerArgG1yG1uAsnCysG1yTyrArgArgCysArg TATGTTGGGGGCCCTCTTACCAATTCAAGGGGGGAGAACTGCGGCTĀTCGCAGGTGCCGC ATACAACCCCCGGGAGAATGGTTAAGTTCCCCCCTCTTGACGCCGATAGCGTCCACGGCG 8041

GCGAGCGGCGTACTGACAACTAGCTGTGGTAACACCCTCACTTGCTACATCAAGGCCCGG AlaSerGlyValLeuThrThrSerCysGlyAsnThrLeuThrCysTyrIleLysAlaArg CGCTCGCCGCATGACTGTTGATCGACACCATTGTGGGAGTGAACGATGTAGTTCCGGGCC 8101

FIG. 72W

AlaAlaCysArgAlaAlaGlyLeuGlnAspCysThrMetLeuValCysGlyAspAspLeu	ValValileCysGluSerAlaGlyValGluAspAlaAlaSerLeuArgAlaPheThr	GlualaMetThrArgTyrSerAlaProProGlyAspProProGlnProGluTyrAspLeu	GluLeuIleThrSerCysSerSerAsnValSerValAlaHisAspGlyAlaGlyLysArg
1 GCAGCCTGTCGAGCCGCAGGGCTCCAGGACTGCACCATGCTCGTGTGTGGCGACGACTTA	1 GTCGTTATCTGTGAAAGCGCGGGGGTCCAGGAGGACGCGGCGAGCCTGAGAGCCTTCACG	1 GAGGCTATGACCAGGTACTCCGCCCCCCTGGGGACCCCCCCACAACCAGAATACGACTTG	1 GAGCTCATAACATCATGCTCCTCCAACGTGTCAGTCGCCCACGACGGCGCTGGAAAGAGG
CGTCGGACAGCTCGGCGTCCCGAGGTCCTGACGTGGTACGAGCACACACA	CAGCAATAGACACTTTCGCGCCCCCAGGTCCTCCTGCGCCCCGGACTCTCGGAAGTGC	CTCCGATACTGGTCCATGAGGCGGGGGGGACCCCTGGGGGGGG	CTCGAGTATTGTAGTACGAGGAGGTTGCACAGTCAGCGGGTGCTGCCGCGACCTTTCTCC
8161	8221	8281	8341

ValTyrTyrLeuThrArgAspProThrThrProLeuAlaArgAlaAlaTrpGluThrAla GTCTACTACCTCACCCGTGACCCTACAACCCCCCTCGCGAGÁGCTGCGTGGGAGACAGCA CAGATGATGGAGTGGGCACTGGGATGTTGGGGGGGGGCGCTCTCGACGCACCCTCTGTCGT

8401

8461

ArgHisThrProValAsnSerTrpLeuGlyAsnIleIleMetPheAlaProThrLeuTrp AGACACACTCCAGTCAATTCCTGGCTAGGCAACATAATCATGTTTGCCCCCACACTGTGG TCTGTGTGAGGTCAGTTAAGGACCGATCCGTTGTATTAGTACAAACGGGGGTGTGACACC

FIG. 72X

	GlnAlaLeuAspCysGluIleTyrGlyAlaCysTyrSerIleGluProLeuAspLeuPro
8581	8581 CAGGCCCTCGATTGCGAGATCTACGGGGCCTGCTACTCCATAGAACCACTTGATCTACCT
	らまたこのこのないです。 ないこのこのないである。 では、このでは、このでは、このでは、このできた。 では、このでは、このでは、このでは、このでは、このでは、このでは、このでは、この

GluIleAsnArgValAlaAlaCysLeuArgLysLeuGlyValProProLeuArgAlaTrp GAAATTAATAGGGTGGCCGCATGCCTCAGAAAACTTGGGGTACCGCCCTTGCGAGCTTGG CITITAATITATCCCACCGGGGGTACGGAGICITITIGAACCCCAIGGCGGGAACGCICGAACC 8701

ArgHisArgAlaArgSerValArgAlaArgLeuLeuAlaArgGlyGlyArgAlaAlaIle AGACACCGGGCCCGGAGCGTCCGCGCTAGGCTTCTGGCCAGAGGAGGCAGGGCTGCCATA TCTGTGGCCCCGGGCCTCGCAGGCGCGATCCGAAGACCGGTCTCCTCCGTCCCGACGGTAT 8761

CysGlyLysTyrLeuPheAsnTrpAlaValArgThrLysLeuLysLeuThrProIleAla 8821

FIG. 72Y

GCCGCTGGCCAGCTTGTCCGGCTGGTTCACGGCTGGCTACAGCGGGGGAGACATT AlaAlaGlyGlnLeuAspLeuSerGlyTrpPheThrAlaGlyTyrSerGlyGlyAspile 8881

TyrHisSerValSerHisAlaArgProArgTrpIleTrpPheCys TATCACAGCGTGTCTCATGCCCGGCCCCGCTGGATCTGGTTTTGCCC ATAGTGTCGCACAGAGTACGGGCCGGGGGGCCTAGACCAAAACGGG 8941

- GluPheGlySerVallleProThrSerGlyAspValValValValAlaThrAspAlaLeu
 GAATTCGGGTCCGTCATCCCGACCAGCGGCGATGTTGTCGTCGTCGCAACCGATGCCCTC
 CTTAAGCCCAGGCAGTAGGGCTGGTCGCCGCTACAACAGCAGCACCGTTGGCTACGGGAG
 - 1 ECOR1, 7 NLAIV, 8 AVA2 SAU96, 15 FOK1, 24 NSPB11, 26 FNU4H 1, 52 SFAN1, 57 MNL1, 60 NLAIL1,
- MetThrGlyTyrThrGlyAspPheAspSerVallleAspCysAsnThrCysValThrGln
 61 ATGACCGGCTATACCGGCGACTTCGACTCGGTGATAGACTGCAATACGTGTGTCACCCAG
 TACTGGCCGATATGGCCGCTGAAGCTGAGCCACTATCTGACGTTATGCACACAGTGGGTC
 - 65 HPA11, 74 HPA11, 83 TAQ1, 85 HINF1, 90 HPH, 106 AFL111 MA E2, 112 MAE3, 113 HPH,
- ThrValAspPheSerLeuAspProThrPheThrIleGluThrIleThrLeuProGlnAsp
 121 ACAGTCGATTCAGCCTTGACCCTTCACCATTGAGACAATCACGCTCCCCCAAGAT
 TGTCAGCTAAAGTCGGAACTGGGATGGAAGTGGTAACTCTGTTAGTGCGAGGGGGTTCTA
 - 125 TAQ1, 149 HPH, 178 SFAN1,
- AlaValSerArgThrGlnArgArgGlyArgThrGlyArgGlyLysProGlyIleTyrArg
 181 GCTGTCTCCCGCACTCAACGTCGGGGCAGGCAGGCAGGGGAAGCCAGGCATCTACAGA
 CGACAGAGGGCGTGAGTTGCAGCCCCGTCCTGACCGTCCCCCTTCGGTCCGTAGATGTCT
 - 198 MAE2, 226 ECOR11 SCRF1, 230 SFAN1,
- PheValAlaProGlyGluArgProProAlaCysSerThrArgProSerSerValSerAla
 TTTGTGGCACCGGGGGAGCGCCCTCCGGCATGTTCGACTCGTCCTCTGTGAGTGCC
 AAACACCGTGGCCCCTCGCGGGAGGCCGTACAAGCTGAGCAGGAGACACTCACGG
 - 246 BAN1 NLAIV, 250 HPA11 NCI1 SCRF1, 257 HAE11, 258 HHA1, 2 62 MNL1, 265 HPA11, 268 NSPC1, 269 NLA111, 274 TAQ1, 276 HIN F1, 287 MNL1, 296 BSP1286,
- Argile 301 CGAATTC GCTTAAG

302 ECOR1,

361

FIG. 74

TTATCACAGCGTGTCTCATGCCCGGCCCCGCTGGATCTGGTTTTGCCTACTCCTGCTTGC **AATAGTCTCCCACAGAGTACGGCCCGGGCGACCTAGACCAAAACGGATGAGGACGAACG**

AlaGlyValGlyIleTyrLeuLeuProAsnArgOP

TGCAGGGGTAGGCATCTÃCCTCCTCCCCAACCGÁTGAAGGTTGGGGGTAAACACTCCGGCC ACGICCCCATCCGTAGAIGGAGGAGGGGTIGGCTACTICCAACCCCATTIGIGAGGCCGG 19

FIG. 76

CGGCTTCGCCGACCTCATGGGGTACAT+CCGCTCGTCGGCGCCCCTCTTTGGGGGCGCTGCCAGGGCCCTGGC CGGCTTCGCCGACCTCATGGGGTACATACCGCTCGTCGGCGCCCCCTCTTGGAGGCGCTGCCAGGGCCCTGGC

CGGCTTCGCCGACCTCATGGGGTACATACCGCTCGTCGGCGCCCCTCTTGGAGGCCgTGCCAGGGCCCTGGC 的复数的复数的复数的复数的复数的复数使用的复数使用的复数使用的复数使用的现在分词

73 GCATGGCGTCCGGGTTCTGGAAGACGGCGTGAACTATGCAACAGGGAACCTTCCTGGTTGCTCTTTCTCTA *********************************

GCATGGCGTCCGGGTTCTGGAAGACGGCGTGAACTATGCAACAGGGAACCTTCCTGGTTGCTCTTTCTCTAT

145 CTTCCTTCTGGCtCTGCTCTTGCcTGACcGTGCCCGCaTCGGCCTACCAAGTaCGCAACTCCtCGGGcaT GCAcGGCGTCCGGGTTtTGGAAGACGGCGTGAACTATGCAACAGGGAACCTTCCTGGTTGCTCcTTtTCTAT

145 CTTCCTTCTGGCCCTGCTCTTGCtTGACtGTGCCCGCTTCGGCCTACCAAGTGCGCAACTCCACGGGGCT

145 CTTCCTTCTGGCCCTaCTCTTGCcTGACcGTGCCCGCTTCaGCCTACCAAGTGCGCAACTCtACGGGGCT

TTACCAtGTCACCAATGATTGCCCTAAtTCGAGTATTGTGTACGAGaCGGCCGAcaCCATCCTaCACtCTC

TTACCACGTCACCAATGATTGCCCTAACTCGAGTATTGTGTACGAGGCGGCCGATGCCATCCTGCACaCTCC

TTACCA LGTCACCAATGATTGCCCTAACTCGAGTATTGTGTACGAGGCGGCCGATGCCATCCTGCACgCTCC

289 GGGGTG+GTCCCTTGCGTTCGcGAGGG+AACGCCTCGAaaTGTTGGGTGcCGgTagCCCCcACaGTGGCCAC 计计划分析法 计计划计划计划计划计划计划计划 计对对对对对对对对对对对 计计划计划计划计划 计计 计 ****

289 289 GGGGTG+GTCCCTTGCGTTCGcGAGGa+AACG+CTCGAGaTGTTGGGTGGCGGTGACCCCCACGGTGGCCAC GGGGTGCGTTCCCTTGCGTTCG+GAGGGCAACGCCTCGAGGTGTTTGGGTGGCGATGACCCCC+ACGGTGGCCAC 计计划分析 计设计计划计算计划计算计算 计设计计 计计算计算法 计分词计算计算计算计算计 计分子计算计算计 计计算计算计算计算计

82B 361 CAGGGACGGCAACCTCCCCGCAACGCAGCTTCGACGTCACATCGATCTGCTTGTCGGGAGEGCCACCCTETG **361** CAGGGA tGGCAAACTCCCCGCgACGCAGCTTCGACGTCACATCGATCTGCTTGTCGGGAGCGCCACCCTCTG 机转换机转机 计对话语句 经非常的的的 医非非常的现在分词的现在分词的现在分词的现在分词的现在分词的现在分词的 医多种性性性性

361 CAAGGACGGCAAACTCCCCCACAACGCAGCTTCGACGTCACATCGATCTGCTTGTCGGGAGCGCCACCCTCTG

433 CTCGGCCCTCTAtGTGGGGGACtTGTGCGGGTCTGTCTTTCTTGTCGGtCAACTGTTCACtTTCTCcCCCAG

计分类设计 计分类设计 计多数设计设计设计 计分别设计设计设计设计设计设计设计设计设计设计 计分别设计设计设计 计分子设计 计分子设计

433 tTCGGCCCTCTACGTGGGGGACCTGTGCGGGTCTGTCTTCTTGTCGGcCAACTGTTCACCTTCTCTCCCAG

433 505 GCGCCACTGGACaACGCAAGaTTGCAAcTGCTCTATCTAcCCCGGCCATATAACGGGaCACCGCATGGCATG cTCGGCCCTCTACGTGGGGGACCTtTGCGGGTCcaTCTTTCTTGTCGGtCAACTGTTtACCTTCTCTCCCAG

505 *****

GCGCCACTGGACGACGCAAGGTTGCAA&TGCTCTATCTATCCCGGCCATATAACGGGTCACCGCATGGCATG

505 GCGCCACTGGACGACGCAgGacTGCAAcTGtTCTATCTATCCCGGCCATATAACGGGTCACCGCATGGCATG

577 GGATATGATGATGAACTGGTCCCCTACagCaGCGcTGGTAATGGCTCAGCTGCTCaGGATCCCGCAAGCCAT **********

GGATATGATGATGAACTGGTCCCCTACGACGGCGTTGGTAATGGCTCAGCTGCTCCGGATCCCACAAGCCAT

577 CTTGGACATGATCGCTGGTGCTCACTGGGGAGTCCTaGCGGGCATAGCGTATTTCTCCATGGTGGGGAACTG GGATATGATGAACTGGTCCCCTACGGCGGCaTTGGTAGTAGCTCAGCTGCTCCGGATCCCACAAGCCAI

649

649 CTTGGACATGATCGCTGGTGCTCACTGGGGAGTCCTGGCGGCATAGCGTATTTCTCCATGGTGGGGAACTG

CTTGGACATGATCGCTGGTGCTCACTGGGGAGTCCTGGCGGCATgGCGTATTTCTCCATGGTGGGGAACTG

649 GGCGAAGGTCCTGGTGGTGCTGTTGCTGTTTGCCGGCGTCGAtGCGacAACCtAtacCACCGGGGGGAaTGC

GGCGAAGGTCCTGGTAGTGCTGCTATTTGCCGGCGTCGACGCGGAAACCCCACgtCACCGGGGGAAGTGC *****

GGCGAAGGTCCTGGTAGTGCTGCTTCTATTTGCCGGCGTCGACGCGGAAACCCCACcgtACCGGGGGAAAGTGC ****

793 CGcCCgCAgcacGgCTGGAgTTGcTAGtCTCtTCaCACCAGGCGCtAgGCAGAACaTCCAGCTGATCAACAC 793 CGgCCaCACtgtGtCTGGAtTTGtTAGcCTCcTCgCACCAGGCGCCAAGCAGAACgTCCAGCTGATCAACAC 793 tGcCaggACcacGcagGcgcTcaccAGttTttTCagcCCAGGCGCCAAGCAGgAtaTCCAGCTGATCAACAC 计计算计算计算计算计算计算计算 计 计设计计算计算计算计算计算计算计

865 865 865 CAACGGCAGTTGGCACaTCAATcGCACGGCCtTGAACTGtAATGcgAGCCTCgACACtGGCTGGgTaGCgGG CAACGGCAGTTGGCACaTCAATAG tACGGCCtTGAACTGCAATGAcAGCCTtAcCACCGGCTGGTTaGCgGG CAACGGCAGTTGGCACGTCAATAGCACGGCCGTGAACTGCAATGAŁAGCCTCAACACCGGCTGGTTgGCaGG 计计划计划计划计划计划计划计划 计对对对计 计对对对对对对对 计对对对对对 计计划计划 计对对对 计计划计划 计 计计 计计

937 937 937 GCTcTTCTATtACCACAAaTTCAACTCTTCAGGCTGcCCcGAGAGGaTgGCCAGCTGtaGgCCCCTTgCCGA GCTTTTCTATCACCACAAgTTCAACTCTTCAGGCTGTCC+GAGAGGCTaGCCAGCTGCCGACCCCTTACCGA GCTTTTCTATCACCAtAAaTTCAACTCTTCAGGCTGTCCcGAGAGGETgGCCAGCTGCCGACCCCTcACCGA 经条件 法计划的现在分词 计设计设计设计设计设计设计设计设计设计设计 计 计设计设计设计设计 计 计设计设计设计 计分析设计设计 计对码设计 法法法法法法法法法法法法法法法法 经收 经有效的现在分词的现在分词 医克拉氏试验检 计 医阿拉克氏试验检尿病性尿病性尿病 医非动物的

1009 1009 TTTCGACCAGG TTTTGACCAGG **** ****

1009

TTTTGcCCAGG

- -	
1 GFADIMGYIPIVGAPLGGAARALAHGVRVLEDGVNYATGNLPGCSFSIFLLALLSCLTVPASAYQVRNSsGi ************************************	

- 73 YHVTNDCPNSSIVYELADtILHSPGCVPCVREGNASKCWVpvaPTVATRDGnLPATQLRRHIDLLVGSATLC GFADIMGY IPLYGAPLGGTARALAHGVRVLEDGVNYATGNLPGCSFS IFLIALLSCLTVPASAYQVRNSTGL
- 73 YHVTNDCPNSSIVYEAADAILHEPGCVPCVREGNASRCWVAmTPTVATRDGKLPATQLRRHIDLLVGSATLC 计计算计算计算法 计计算计算计算计算计算计算计算计
- YHVTNDCPNSSIVYEAADAILHaPGCVPCVREdNvSRCWVAvTPTVATKDGKLPtTQLRRHIDLLVGSATLC
- 145 SALYVGDLCGSVFLVGQLFTFSPRRHWTTQdCNCSIYPGHITGHRMAWDMMNWSPTaALVMAQLLRIPQAI
- 145 145 SALYVGDLCGSVFLVGQLFTFSPRRHWTTQgCNCSIYPGHITGHRMAWDMMMWSPTLALVMAQLLRIPQAI SALYVGDLCGS1FLVGQLFTFSPRRHWTTQdCNCS1YPGH1TGHRMAWDMMMWSPTaALVvAQLLRIPQA1 法法法法法法法法法法法 经分类的法法法法法法法法法法法法法法法 计多数计算法法法法法法法法法法法法法法法法法 医生物 医克勒氏性皮肤炎性皮肤炎
- 217 LDMIAGAHWGVLAGIAYFSMVGNWAKVLVVLLLFAGVDAtTytTGGnAarTtqaltSffsPGAKQdiQLINT 女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女
- LDMIAGAHWGVLAGIAYFSMVGNWAKVLVVLLLFAGVDAETHvTGGSAghTvsGfvSLlapGAKQNvQLINT 化水水水水水水水水水水水 化水水水水水水水水水水水水水水水水水水水水水水 计计计计 *** ** ***
- LDMIAGAHWGVLAGmAYFSMVGNWAKVLVVLLLFAGVDAETHrTGGSAarstaGvaSLftPGArQNiQLINT
- 289 NGSWHINTTALNCNASIATGWVAGLFYYHKFNSSGCPERMASCRPLADFDQ

289

- NGSWHLNSTALNCNDSLnTGWLAGLFYHHKFNSSGCPERLASCRPLTDFDQ ω.».H human
- NGSWHINSTALNCNDSLtTGWLAGLFYHHKFNSSGCPERLASCRPLTDFaQ SH CH human

433

GTCGGCGCCCCTCTTGGAGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCGGGTTCTGGAAGACGGCGTGAAC

С П 25A

н н	1. ssThorn#8.r (1-587) 2. ssEC1#2.r (1-587) 3. ssHCT18#7.r (1-587) 4. envl.hcv (1-1657)
1 289 gggt	gggtgggcgggatggctcctgtctcccgtggctctcggcctagctggggccccacagacccccggcgtaGg
3 ATTC	CGCAATTTGGGTAAGGTCATCGATACCCTTACGTGCGGCTTCGCCGACCTCATGGGGTACATACCGCTC
3 ATTC	CGCAATTTGGGTAAGGTCATCGATACCCTTACGTGCGGCTTCGCCGACCTCATGGGGTA+ATACCG
361 tcgC(togCGCAATTTGGGTAAGGTCATCGATACCCTTACGTGCGGCTTCGCCGACCTCATGGGGTAcATACCG
75 GTCG	GCCCCCCTCTTGGGGCCCTGCCAGGGCCCTGGCGCATGGCGTCCGGGTTCTGGAAGACGGCGTGAAC
75 GTCG(GGCGCCCCTCTTGGAGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCGGGTTCTGGAAGACGGCGTGAAC
75 GTCG	GTCGGCGCCCCTCTTGGAGGCGCTGCCAGGGCCCTTGGCGATGGCGTCCGGGTTCTGGAAGACGGCGTGAAC

FIG. 85B

363 721	363	649 363	291	291	291	577	219	219	219	505	147	147	147
CGAGGTGTTGGGTGGCGGTGACCCCCACGGTGGCCACCAGGGATGGCAAACTCCCCACAACG		ATTGTYTACGAGGCGGCCGATGCCATCCTGCACACTCCGGGGTGcGTCCCTTGCGTTCGLAACGCAACGcCA TCGAGGTGTTGGGTGGCGATGACCCCACGGTGGCCGCAGGGGACGGCAGACTCCCTTGCGTTCGCAAACGCAACGCA	TaTACGAAGCGGCCGAcGCCATCCTGCACACTCCGGGGTGTGTCCCTTGCGTTCA	TCCCTTGCGTTCACGAGGGCAACGT	ATTGTGTACGAGGCGGCCGATGC+ATCCTGCACGCTCCGGGGTGTGTCCCTTGCGTTCGCGAGGG+AACGCC	ATTGCCCtAACT	ATTGCCCCAACT	CCCGCTTCAGCCTACCAAGTGCGCAACTCC+CGGGGCTTTACCATGTCACCAATGATTGCCCC+AACTCGAGC	CCCGCTTCAGCCTACCAAGTGCGCAACTCCACGGGGCTTTACCATGTCACCAACGATTGCCCCAACTCGAG+	TATGCAACAGGGAACCTTCCTGGTTGCTCTTTCTCTATCTTCCTTC	CTGGTTGCTCTTTCTCTATCTTCCTTCTGGCCCTGCTCTTGCCTC	-(<u>)</u>	TATGCAACAGGGAACCTTCCTGGTTGCTCTTTCTCTCTCT

865	507	507	507	793	435	435	435
01011 01011	507 GTCTTTCTTGTCGGCCAACTGTTTACCTTCTCTCCCAGGCGCACTGGACGACGCAAGGTTGCAATTGCTCT	GTCT	aTCT	CGTC	-CGTC	435 CGTCACATCGATCTGCTTGTCGGGAGCGCCACCTCTGCTCTGCCTCTACGTGGGGGACCTGTGCGGGTCT	CGTC
1000 - 10			L+CII	ACATO	ACATO	ACATO	ACATO
ひ - - - - -		IGTCG	I GTCG	CGATC	CGATC	CGATC	CGATC
Δ 	GCCA	-GTCA	GTCA	HGCT	-: -: -: -: -: -: -: -: -: -: -: -: -: -	-\ <u>H</u> GCT CT	ingci
ひ し -	ACTG:	ACTG	ACTG	TGTC	TGTC	TGTC(TGTC
コロス — - -	PTTAC	PTTAC	TCAC	GGAG	GGAG	GGAG	GGAG
ブー ユー ブー	-CHIC	-CITC	CTTC	CGCC		-cc- -cc- -cc-	 -
ン ユ ユ ユ	ICIC		ICIC	ACCCI	ACCCI	ACCC3	ACCCI
7 7 7 1	CAGG	CAGG	CAGG	CIGE	CIGC		
2 2 2 	#2255 			TCGGC	TCGGC		TCGGC
ひ- ひ- ひ- ひ-	CIGG	CIGG	CIGG	CCIC	CCIC		CCIC
ACC AC	ACGA(ACGA(ACGAO	TACG:	TAtg:	TACG	TACG
A A U U L I	CGCAA	GCAA	CGCAA	reeee	reee		
ルー リー リー	-GGTT(GGTT	GACci	GACt:	GACC	GACC
ムママム	IIIIII GCAAT	GCAAT	GCAAT	raTGC	IGIGC	IGIGC	IGIGO
4 () () () () ()		TGCT	TGCT	GGGT	GGGT		GGGT(
3-	_뎒_	-ဌ-	_U	8-	-G-	-H	_C

FIG. 85C

937 ATCtAtccC

579

FIG. 86


```
AA #117-308 (putative envelope region)
                                               FIG. 87
1) HCT #18 (USA)
                          3 clones sequenced
2) JH23 (USA)
3) JH 27 (USA)
                                ?
                                ?
4) PBL-Th (USA)
                          2 clones sequenced
5) EC1 (Italy)
                          3 clones sequenced
6) HCV-1 (chimpanzee)
                          multiple
  C/M←→S
                         (P)
1)
2)
3)
4)
5)
6)RNLGKVIDTLTCGFADLMGYIPLVGAPLGGAARALAHGVRVLEDGVNYATGNL
1)
                          Н
2)
                                  S
3)
                                                       T
4)
         L
5)
       (F)
6)PGCSFSIFLLALLSCLTVPASAYQVRNSTGLYHVTNDCPNSSIVYEAADAILH
          (H)
1)
                         V
                                         T
2)A
              D
                         ٧
                                  K
3)s
                        PVA
                                     N
4)A
                                     R
5)
6)TPGCVPCVREGNASRCWVAMTPTVATRDGKLPATQLRRHIDLLVGSATLCS
1)
2)
                                    D
                                    D
3)
4)
6)ALYVGDLCGSVFLVGQLFTFSPRRHWTTQGCNCSI
SUMMARY: "S" AA117-308 (93%)
HCT#18, PBL-Th, EC1(Italy) have 97% homology with HCV-1
JH23 and JH 27 have 96% and 95% homology with HCV-1, respectively
```


AA am	#30 ino	0-4 ~1/	38 (3 (C-to	erminal i)	re	gio	n of	the	put	at	ive en	velo	pe.	regi	on a	nd
1) JH23 2) JH27 3) Japanese isolate (T. Miyamura) 4) EC10 (Italy)								? ? ? 2 clones sequenced (one nt difference, which did result in an amino acid chang								on l	
5)	НС	V-1	(ch	impa	nzee)				S	mu ←→	iti	ple →NS I					9-,
1))								A		V					
2)										A		. •					
3)												v s			VM	V	
4)		•													٧,,,,	•	
•	TQC	SCN	CSIY	/PGH	ITGHRM	IA۱	۷DN	имм	INWS	PTT	Al	LVMAQ	LLR	PC	AILD	MIAG	A
1)			M									R		A	RST A	- VA	
2)					÷						T	YT	N	A	R TO	ALT	F
3)			L	Y			- 1	M		G	Н	R	VC)	VT	TLT	
4) 5)H	WG	VLA	(GIA	YFSM	IVGNWA	ιK	· A VLV	VLLI	LFAG	VDA	Æ	THVTG			K TA		
1)F	s	R	1			ŧ				т		V					
2)F	T		DI			ŧ	R		A	D							
3)F	R	S	Κı	V		ı	R			Q		F					
4)F	NL		ł			ı	R					N					
5)L/	APG	AK(ONNC	ZLINT	NGSWH	L	VST.	ALN	CNDS	SLNT	G	WL					
UMI	MAR'	Y: 1	NS 1	AA	330-66	0											
'Isc	ola	te"		ZHo	mology	(AA3	30-	438)			ZHomo	logy	7 (/	AA3 8	3-4	05)
JH2	23				83								57				
JH					80								39				
	pan				73								48				
EC!	10	(Ita	aly)		84								48				

FIG. 88

FIG. 89A

TCAACCCGCTCAATGCCTGGAGATTTGGGCGTGCCCCCGCAAGACTGCTAGCCGAGTAGT GTTGGGTCGCGAAAGGCCTTGTGGTACTGCCTGATAGGGTGCTTGCGAGTGCCCCGGGAG-300 (Putative initiator methionine codon)

FIG. 89B

CTTACTCATGTGTGCTGTACACCCGACTCTGGTATTTGACATCACCAAATTGCTGCTGGC-3000 CGTCTTCGGACCCCTTTGGATTCTTCAAGCCAGTTTGCTTAAAGTACCCTACTTTGTGCG CGTCCAAGGCCTTCTCCGGTTCTGCGCGTTAGCGCGGAAGATGATCGGAGGCCATTACGT GCAAATGGTCATCATTAAGTTAGGGGCGCTTACTGGCACCTATGTTTATAACCATCTCAC TCCTCTTCGGGACTGGGGCACAACGGCTTGCGAGATCTGGCCGTGGCTGTAGAGCCAGT CGTCTTCTCCCAAATGGAGACCAAGCTCATCACGTGGGGGGCAGATACCGCCGCGTGCGG-3300 TGACATCAACGGCTTGCCTGTTTCCGCCCGCAAGGGGCCGGAGATACTGCTCGGGCC AGCCGATCACGGCCTAACTGGACGTCCCAAGCCAAAAACCAAGCCAAAGGGGCCCCAAAGGGGTGCATAATCACCAGCCTAACTGGCCGGGACAAAAACCAAAGGGGTGGAGTTCCAAGGGGTGCATCACCCCAAACGTGCATCACGGGGTGCATCACCCCAA-3600

GGGTCCTGTCATCCAGATGTATACCAATGTAGACCAAGACCTTGTGGGCTGGCCCGCTCC

GCAAGGTAGCCGCTCATTGACACCCTGCACTTGCGGCTCCTCGGACCTTTACCTGGTCAC
GAGGCACGCCGATGTCATTCCCGTGCGCCGGCGGGGTGATAGCAGGGGCAGCCTGCTGTC
GCCCCGGCCCATTTCCTACTTGAAAGGCTCCTCGGGGGGTCCGCTGTTGTGCCCCGCGGG
GCACGCCGTGGGCATATTTAGGGCCGCGGTGTGCACCCGTGGAGTGGCTAAGGCGGTGGA-3900
CTTTATCCCTGTGGAGAACCTAGAGACAACCATGAGGTCCCCGGTGTTCACGGATAACTC
CTCTCCACCAGTAGTGCCCCAGAGCTTCCAGGTGGCTCACCTCCATGCTCCACAGGCAG
CGGCAAAAGCACCAAGGTCCCGGCTGCATATGCAGCTCAGGGCTATAAGGTGCTAGTACT
CAACCCCTCTGTTGCTGCAACACTGGGCTTTGGTGCTTACATGTCCCAAGGCTCATGGGAT

FIG. 89C

TTCCTGGCTAAGGGACATCTGGGACTGGATATGCGAGGTGTTGAGCGACTTTAAGACCTG-6300 GCTAAAAGCTAAGCTCATGCCACAGCTGCCTGGGATCCCCTTTGTGTCCTGCCAGCGCGG GTATAAGGGGGTCTGGCGAGTGGACGTCATGCACACTCGCTGCCACTGTGGAGCTGA GATCACTGGACATGTCAAAAACGGGACGATGAGGATCGTCGGTCCTAGGACCTGCAGGAA CATGTGGAGTTCCCCATTAATGCCTACACCACGGGCCCCTGTACCCCCCTTCC TGCGCCGAACTACACGTTCGCGCTATGGAGGGTGTCTGCAGAGGAATATGTGGAGAGATAAG-6600 GCAGGTGGGGGGGACTTCCACATAGCACGTGACGGGAATATGCACAGACCTACATAGCCCGTG

ACCGCCCTTGCGAGCTTGGAGACACCGGGCCCGGAGCGTCCGCGCTAGGCTTCTGGCCAG AGGAGGCAGGGCTGCCATATGTGGCAAGTACCTCTTCAACTGGGCAGTAAGAACAAAGCT CAAACTCACTCCAATAGCGGCCGCTGGCCAGCTGGACTTGTCCGGCTGGTTCACGGCTGG CTACAGCGGGGGAGACATTTATCACAGCGTGTCTCATGCCCGGCCCCGCTGGATCTGGTT-9300 TTGCCTACTCCTGCTTGCTGCAGGGGTAGGCATCTACCTCCTCCCCAACCGATGAAGGTT GGGGTAAACACTCCGGCCT------3'terminus

Some clonal heterogeneities producing amino acid substitutions are shown. There are many other "silent mutations (not shown).

FIG. 90A

R T MSTNPKPQKKNKRNTNRRPQDVKFPGGGQIVGGVYLLPRRGPRLGVRATR KTSERSQPRGRRQPIPKARRPEGRTWAQPGYPWPLYGNEGCGWAGWLLSP-100 RGSRPSWGPTDPRRRSRNLGKVIDTLTCGFADLMGYIPLVGAPLGGAARA

LAHGVRVLEDGVNYATGNLPGCSFSIFLLALLSCLTVPASAYQVRNSTGL-200 YHVTNDCPNSSIVYEAADAILHTPGCVPCVREGNASRCWVAMTPTVATRD GKLPATQLRRHIDLLVGSATLCSALYVGDLCGSVFLVGQLFTFSPRRHWT-300

TQGCNCSIYPGHITGHRMAWDMMMNWSPTTALVMAQLLRIPQAILDMIAG AHWGVLAGIAYFSMVGNWAKVLVVLLFAGVDAETHVTGGSAGHTVSGFV-400 SLLAPGAKQNVQLINTNGSWHLNSTALNCNDSLNTGWLAGLFYHHKFNSS GCPERLASCRPLTDFDQGWGPISYANGSGPDQRPYCWHYPPKPCGIVPAK-500 SVCGPVYCFTPSPVVVGTTDRSGAPTYSWGENDTDVFVLNNTRPPLGNWF GCTWMNSTGFTKVCGAPPCVIGGAGNNTLHCPTDCFRKHPDATYSRCGSG-600

PWLTPRCLVDYPYRLWHYPCTINYTIFKIRMYVGGVEHRLEAACNWTRGE RCDLEDRDRSELSPLLTTTQWQVLPCSFTTLPALSTGLIHLHQNIVDVQ-700 YLYGVGSSIASWAIKWEYVVLLFLLLADARVCSCLWMMLLISQAEAALEN LVILNAASLAGTHGLVSFLVFFCFAWYLKGKWVPGAVYTFYGMWPLLLL-800

LALPQRAYALDTEVAASCGGVVLVGLMALTLSPYYKRYISWCLWWLQYFL
TRVEAQLHVWIPPLNVRGGRDAVILLMCAVHPTLVFDITKLLLAVFGPLW-900
ILQASLLKVPYFVRVQGLLRFCALARKMIGGHYVQMVIIKLGALTGTYVY
NHLTPLRDWAHNGLRDLAVAVEPVVFSQMETKLITWGADTAACGDIINGL-1000
PVSARRGREILLGPADGMVSKGWRLLAPITAYAQQTRGLLGCIITSLTGR
DKNQVEGEVQIVSTAAQTFLATCINGVCWTVYHGAGTRTIASPKGPVIQM-1100

S T YTNVDQDLVGWPAPQGSRSLTPCTCGSSDLYLVTRHADVIPVRRRGDSRG SLLSPRPISYLKGSSGGPLLCPAGHAVGIFRAAVCTRGVAKAVDFIPVEN-1200 LETTMRSPVFTDNSSPPVVPQSFQVAHLHAPTGSGKSTKVPAAYAAQGYK

VLVLNPSVAATLGFGAYMSKAHGIDPNIRTGVRTITTGSPITYSTYGKFL-1300

ADGGCSGGAYDIIICDECHSTDATSILGIGTVLDQAETAGARLVVLATAT PPGSVTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKC-1400 DELAAKLVALGINAVAYYRGLDVSVIPTSGDVVVVATDALMTGYTGDFDS

Y (S)
VIDCNTCVTQTVDFSLDPTFTIETITLPQDAVSRTQRRGRTGRGKPGIYR-1500
FVAPGERPSGMFDSSVLCECYDAGCAWYELTPAETTVRLRAYMNTPGLPV
CQDHLEFWEGVFTGLTHIDAHFLSQTKQSGENLPYLVAYQATVCARAQAP-1600
PPSWDQMWKCLIRLKPTLHGPTPLLYRLGAVQNEITLTHPVTKYIMTCMS
ADLEVVTSTWVLVGGVLAALAAYCLSTGCVVIVGRVVLSGKPAIIPDREV-1700
LYREFDEMEECSQHLPYIEQGMMLAEQFKQKALGLLQTASRQAEVIAPAV
QTNWQKLETFWAKHMWNFISGIQYLAGLSTLPGNPAIASLMAFTAAVTSP-1800
LTTSQTLLFNILGGWVAAQLAAPGAATAFVGAGLAGAAIGSVGLGKVLID

FIG. 90B

(G)
ILAGYGAGVAGALVAFKIMSGEVPSTEDLVNLLPAILSPGALVVGVVCAA-1900

(HC)
ILRRHVGPGEGAVQWMNRLIAFASRGNHVSPTHYVPESDAAARVTAILSS
LTVTQLLRRLHQWISSECTTPCSGSWLRDIWDWICEVLSDFKTWLKAKLM-2000

PQLPGIPFVSCQRGYKGVWRGDGIMHTRCHCGAEITGHVKNGTMRIVGPR TCRNMWSGTFPINAYTTGPCTPLPAPNYTFALWRVSAEEYVEIRQVGDFH-2100 YVTGMTTDNLKCPCQVPSPEFFTELDGVRLHRFAPPCKPLLREEVSFRVG LHEYPVGSQLPCEPEPDVAVLTSMLTDPSHITAEAAGRRLARGSPPSVAS-2200 SSASQLSAPSLKATCTANHDSPDAELIEANLLWRQEMGGNITRVESENKV VILDSFDPLVAEEDEREISVPAEILRKSRRFAQALPVWARPDYNPPLVET-2300

WKKPDYEPPVVHGCPLPPPKSPPVPPPRKKRTVVLTESTLSTALAELATR

(FA)
SFGSSSTSGITGDNTTTSSEPAPSGCPPDSDAESYSSMPPLEGEPGDPDL-2400
SDGSWSTVSSEANAEDVVCCSMSYSWTGALVTPCAAEEQKLPINALSNSL
LRHHNLVYSTTSRSACQRQKKVTFDRLQVLDSHYQDVLKEVKAAASKVKA-2500

(F)
NLLSVEEACSLTPPHSAKSKFGYGAKDVRCHARKAVTHINSVWKDLLEDN
VTPIDTTIMAKNEVFCVQPEKGGRKPARLIVFPDLGVRVCEKMALYDVVT-2600
KLPLAVMGSSYGFQYSPGQRVEFLVQAWKSKKTPMGFSYDTRCFDSTVTE

(G)
SDIRTEEAIYQCCDLDPQARVAIKSLTERLYVGGPLTNSRGENCGYRRCR-2700
ASGVLTTSCGNTLTCYIKARAACRAAGLQDCTMLVCGDDLVVICESAGVQ
EDAASLRAFTEAMTRYSAPPGDPPQPEYDLELITSCSSNVSVAHDGAGKR-2800
VYYLTRDPTTPLARAAWETARHTFVNSWLGNIIMFAPTLWARMILMTHFF
SVLIARDQLEQALDCEIYGACYSIEPLDLPPIIQRLHGLSAFSLHSYSPG-2900

G EINRVAACLRKLGVPPLRAWRHRARSVRARLLARGGRAAICGKYLFNWAV

(P) RTKLKLTPIAAAGQLDLSGWFTAGYSGGDIYHSVSHARPRWIWFCLLLLA-3000 AGVGIYLLPNRO-3011

Stop codon

() = Heterogeneity due possibly
 to 5' or 3' terminal cloning
 artefact.

FIG. 91

