Based on	somilarity 8	single	link	age			
		Oluster	PI	P2	173	124	<i>P</i> 5
		PI	/	0.1	0.41	055	235
	-	p2	0-/	1	a64	a47	0.98
		P3	0.41	0.64		0.44	0.85
		P4	0.55	247	244	1	a76
		ps	uzt	0.98	ass	1276	

· Recalculate somilarity.

mas (p25, p1) = max c som (p1, p2), som (p1, p51)

=)
$$max(p25, p1) = 0.35$$
 $max(p25, p3) = 0.85$
 $max(p25, p4) = 0.76$

Table. First Update

Step 2.

· max = som (P25, P3)=0.85 — joh 2,3 & 5.

· Update the table.

max (P253. P1) = 0-41

max (P253, P4) = 0-76

Table. Second Update

Cluster P1 P253 P4

P1 1 0.41 0.55

P253 0.41 1 0.76

P4 0.55 0.76 1

step 3.

· max = som (P253, P4) = 0.76 _____ Joon 2,3,5&4.

· Update.

max CPx34, P1) = 0.41.

Table. Third Update

Cluster P1 P2534

P1 1 041

P2534 0.41

Step 4.

• Merge 2.5, 3, 4 & 1.

Plot.

I transfer the somilarity to the classimilarity by the formula. dis = 1-sim.

So.

 $dis(P_2,P_5) = 0.02$ $dis(P_3,P_35) = 0.15$ $dis(P_4,P_35) = 0.24$ $dis(P_1,P_354) = 0.59$

