Análisis Futbol

2024-02-14

Tabla de contenidos

Preface		3
1	Introduction	4
2	Formulación	5
3	Dinámica del modelo	6
4	Descripción y Justificación de la recompensa	7
5	Justificación de las acciones	8
References		g

Preface

1 Introduction

This is a book created from markdown and executable code.

See Van Roy et al. (2021) for additional discussion of literate programming.

2 Formulación

El Proceso de Decisión de Markov se compone de los siguientes elementos:

- El conjunto de estados estará conformado por las 3 divisiones del campo c_1, c_2, c_3 , además se agregan tres estados absorbentes:
 - -lp = pérdida de posesión del balón.
 - -ng = realizar un tiro y que no termine en gol.
 - g=realizar un tiro y que termine en gol. De esta forma el conjunto de estados ${\cal S}$ queda como

$$S = \{c_1, c_2, c_3, lp, ng, g\}$$

- El conjunto de acciones admisibles se considerarán 3 acciones que serán
 - -t = tiro
 - -p = pase
 - -r = regate

De esta forma el conjunto de acciones queda como

$$\mathcal{A} = \{t, p, r\}$$

• Para las de transiciones haremos uso de las probabilidades de transición definidas de la siguiente forma:

$$P: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0, 1]$$

Que se interpreta como la probabilidad de estar en un estado s_i realizar una acción a_k y terminar en un estado s_j . Notemos que se aceptan los casos cuando i=j y más adelante se mostrará que algunas probabilidades serán 0.

• La función de recompensa $R: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0,1]$ será

$$R(s_i, a_k, s_j) = \begin{cases} 1 & \text{si} \quad s_j = g \\ 0 & o.c. \end{cases}$$

3 Dinámica del modelo

En el contexto del fútbol llamamos *jugada* a una sucesión de acciones donde el balón se traslada desde un punto inicial donde el equipo A tiene el balón hasta un punto final que puede ser: perder el balón, tirar a puerta y no anotar gol o tirar y anotar gol.

Ejemplo: El balón comienza en el saque de meta del portero, el portero da un pase a un defensa que se encuentra en el primer tercio, que esté da un pase a un delantero que se encuentra en el tercer tercio y al intentar un regate pierde el balón.

En nuestro contexto se verá como el hecho de iniciar la sucesión de acciones desde alguna sección c_i y terminar en alguno de los 3 estados absorbentes. Ejemplo

$$c_1 \xrightarrow{p} c_1 \xrightarrow{p} c_3 \xrightarrow{r} lp.$$

Para movernos de un estado s_i a un estado s_j mediante una acción a_k haremos uso de las probabilidades de transición, estas probabilidades las estimaremos utilizando datos extraídos de FBREF para 4 clubes particulares: Chivas, América, Cruz Azul y Pumas.

4 Descripción y Justificación de la recompensa

En un partido de fútbol gana el equipo que anota más goles, en caso de anotar los mismos goles se considera empate y no existe desempate de ningún tipo. Por lo que la recompensa será la de anotar un gol R=1, pues es lo único que puede hacer que un equipo gane un partido. No existe penalización porque los goles válidos anotados no pueden ser descontandos.

 $^{^1\}mathrm{No}$ se consideran los partidos de eliminación directa donde existe el desempate por penales.

5 Justificación de las acciones

Las acciones que puede realizar un equipo durante un partido son limitadas y se pueden enlistar. Sin embargo para nuestro modelo vamos a seleccionar las 3 más importantes que son el pase, tiroy regate.

- tiro: Es la acción que nos permite anotar goles.
- pase: Ayuda a un equipo a mover el balón por el campo sin necesidad de desplazarse o dejar rivales atrás.
- regate: Permite que podamos trasladar el balón de un lugar a otro y dejar a rivales atrás.

References

Van Roy, Maaike, Wen-Chi Yang, Luc De Raedt, y Jesse Davis. 2021. "Analyzing learned markov decision processes using model checking for providing tactical advice in professional soccer". En AI for Sports Analytics (AISA) Workshop at IJCAI 2021.