CLASSICAL IWASAWA THEORY ARIZONA WINTER SCHOOL 2018

JOHN COATES

(typeset by Robert JS McDonald, UConn¹) LECTURE 1. FOUNDATIONAL MATERIAL.

The lecture will briefly cover, without proofs, the background in algebra and number theory needed at the beginning of Iwasawa theory. Throughout, p will denote an arbitrary prime number, and Γ a topological group which is isomorphic to the additive group of p-adic integers \mathbb{Z}_p . Thus, for each $n \geq 0$, Γ will have a closed subgroup of index p^n , which we will denote by Γ_n , and Γ/Γ_n will then be a cyclic group of order p^n . The Iwasawa algebra $\Lambda(\Gamma)$ of Γ is defined by

$$\Lambda(\Gamma) = \lim_{\longleftarrow} \mathbb{Z}_p[\Gamma/\Gamma_n]$$

and it is endowed with the natural topology coming from the p-adic topology on the $\mathbb{Z}_p[\Gamma/\Gamma_n]$.

1.1. Some relevant algebra. We recall without proof some of the basic algebra needed in classical Iwasawa theory. Let $R = \mathbb{Z}_p[\![T]\!]$ be the ring of formal power series in an indeterminate T with coefficients in \mathbb{Z}_p . Then R is a Noetherian regular local ring of dimension 2 with maximal ideal $\mathfrak{m} = (p,T)$. We say that a monic polynomial $q(T) = \sum_{i=0}^n a_i T^i$ in R is distinguished if $a_0,\ldots,a_{n-1} \in p\mathbb{Z}_p$. The Weierstrass preparation theorem for R tells us that every non-zero f(T) in R can be written uniquely in the form $F(T) = p^{\mu}q(T)u(T)$, where $\mu \geq 0$, q(T) is distinguished polynomial, and u(T) is a unit in R.

Proposition 1.1. Let γ be a fixed topological generator of Γ . Then there is a unique isomorphism of \mathbb{Z}_p -algebras

$$\Lambda(\Gamma) \xrightarrow{\sim} R = \mathbb{Z}_p[\![T]\!]$$

which maps γ to 1+T.

In the following, we shall often identify $\Lambda(\Gamma)$ and R, bearing in mind that Γ will not usually have a canonical topological generator.

Let X be any profinite abelian p-group, on which Γ acts continuously. Then the Γ -action extends by continuity and linearity to an action of the whole Iwasawa algebra $\Lambda(\Gamma)$. Moreover, X will be finitely generated over $\Lambda(\Gamma)$ if and only if $X/\mathfrak{m}X$ is finite, where $\mathfrak{m}=(p,\gamma-1)$, with γ a topological generator of Γ , is the maximal ideal of $\Lambda(\Gamma)$. We write $\mathcal{R}(\Gamma)$ for the category of finitely generated $\Lambda(\Gamma)$ -rank of X to be the $Q(\Gamma)$ -dimension of $X \otimes_{\Lambda(\Gamma)} Q(\Gamma)$, where $Q(\Gamma)$ denotes the field of fractions of $\Lambda(\Gamma)$. We say X is $\Lambda(\Gamma)$ -torsion if it has $\Lambda(\Gamma)$ -rank 0, or equivalently if $\alpha X=0$ for some non-zero α in $\Lambda(\Gamma)$.

Although $\Lambda(\Gamma)$ is not a principal ideal domain, there is nevertheless a beautiful structure theory for modules in $Q(\Gamma)$ (see Bourbaki, Commutative Algebra, Chap. 7, §4), which can be summarized by the following result:

¹please feel free to contact me with corrections: robert.j.mcdonald@uconn.edu

Theorem 1.2. For each X in $\mathcal{R}(\Gamma)$, we have an exact sequence of $\Lambda(\Gamma)$ -modules

$$0 \longrightarrow D_1 \longrightarrow X \longrightarrow \Lambda(\Gamma)^r \oplus \bigoplus_{i=1}^m \Lambda(\Gamma)/(f_i) \longrightarrow D_2 \longrightarrow 0,$$

where D_q and D_2 have finite cardinality, and $f_i \neq 0$ for i = 1, ...m. Moreover, the ideal $c(X) = f_1 \cdots f_m \Lambda(\Gamma)$ is uniquely determined by X when r = 0.

We list some of the main consequences of the structure theory used in Iwasawa theory. First, X will be $\Lambda(\Gamma)$ -torsion if and only if r=0. Suppose now that X is $\Lambda(\Gamma)$ -torsion. The principal ideal c(X) is called the characteristic ideal of X. A characteristic element of X is any generator $f_X(T)$ of c(X). By the Weierstrass preparation theorem, we can write

$$f_X(T) = p^{\mu(X)} q_X(T) u(T),$$

where $\mu(X)$ is an integer ≥ 0 , $q_X(T)$ is a distinguished polynomial, and u(T) is a unit in $\Lambda(\Gamma)$. Clearly $\mu(X)$ and $q_X(T)$ are uniquely determined by X. We define $\mu(X)$ to be the μ -invariant of X, and we define the degree $\lambda(X)$ of $q_X(T)$ to be the λ -invariant of X.

Ex 1.1. Assume X in $\mathcal{R}(\Gamma)$ is $\Lambda(\Gamma)$ -torsion. Prove that X is finitely generated as a \mathbb{Z}_p -module if and only if $\mu(X) = 0$.

Recall that Γ_n denotes the unique subgroup of Γ of index p^n . Thus, if Γ has a topological generator γ , then Γ_n is topologically generated by γ^{p^n} . If X is in $\mathcal{R}(\Gamma)$, we define X^{Γ_n} and X_{Γ_n} to be the largest submodule and quotient submodule of X, respectively, on which Γ_n acts trivially. Thus

$$(X)_{\Gamma_n} = X/(\gamma^{p^n} - 1)X.$$

Ex 1.2. Assume X is in $\mathcal{R}(\Gamma)$, and that, for all $n \geq 0$, we have

$$\mathbb{Q}_p$$
-dimension of $\left((X)_{\Gamma_n} \bigotimes_{\mathbb{Z}_p} \mathbb{Q}_p\right) = mp^n + \delta_n$,

where m is independent of n, and δ_n is bounded as $n \to \infty$. Prove that X has $\Lambda(\Gamma)$ -rank equal to m, and that δ_n is constant for n sufficiently large.

Ex 1.3. Assume X in $\mathcal{R}(\Gamma)$ is $\Lambda(\Gamma)$ -torsion, and let $f_X(T)$ be any characteristic element. Prove that the following are equivalent:

- (i) $f_X(0) \neq 0$,
- (ii) X_{Γ} is finite, and
- (iii) X^{Γ} is finite.

When all three are valid, prove the Euler characteristic formula

$$|f_X(0)|_p^{-1} = \#(X_\Gamma)/\#(X^\Gamma)$$

1.2. Some basic class field theory. We recall basic facts from abelian class field theory which will be used repeatedly later. As always, p is any prime number. Let F be a finite extension of \mathbb{Q} , and K an extension of F. We recall that an infinite place v of F is said to ramify in K if v is real and if there is at least one complex prime of K above v. In these lectures, we will mainly be concerned with the maximal abelian p-extension L of F, which is unramified at all finite and infinite places of F (i.e. L is the p-Hilbert class field of F), and with the maximal abelian p-extension of F, which is unramified at all infinite places of F and all finite places of F which do not lie above p. Artin's global reciprocity law gives the following explicit descriptions of $\operatorname{Gal}(L/F)$ and $\operatorname{Gal}(M/F)$, in which we simply write isomorphisms for the relevant Artin maps. Firstly, we have

$$A_F \xrightarrow{\sim} \operatorname{Gal}(L/F),$$

where A_F denotes the *p*-primary subgroup of the ideal class group of F. Secondly, for each place v of F lying above p, write U_v for the group of local units in the completion of F at v which are $\equiv 1 \mod v$. Put

$$U_F = \prod_{v|p} U_v.$$

If W is any \mathbb{Z}_p -module, we define the \mathbb{Z}_p -rank of W to be $\dim_{\mathbb{Q}_p}(W \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)$. Then U_F is a \mathbb{Z}_p -module of \mathbb{Z}_p -rank equal to $[F:\mathbb{Q}]$. Let E_F be the group of all global units of F which are $\equiv 1 \mod v$ for all primes v of F lying above p. By Dirichlet's theorem, E_F has \mathbb{Z} -rank equal to $r_1 + r_2 - 1$, where r_1 is the number of real and r_2 the number of complex places of F. Now we have the obvious embedding of E_F into U_F and we define \overline{E}_F to be the closure in the p-adic topology of the image of E_F (equivalently, \overline{E}_F is the \mathbb{Z}_p -submodule of U_F which is generated by the image of E_F). Secondly, the Artin map then induces an isomorphism

$$U_F/\overline{E}_F \stackrel{\sim}{\longrightarrow} \operatorname{Gal}(M/L),$$

where, as above, L is the p-Hilbert class field of F. Clearly, the \mathbb{Z}_p -module \overline{E}_F must have \mathbb{Z}_p -rank equal to $r_q + r_2 - 1 - \delta_{F,p}$ for some integer $\delta_{F,p} \geq 0$, and so we immediately obtain:

Theorem 1.3. Let M be the maximal abelian p-extension of F which is unramified outside the primes of F lying above p. Then Gal(M/F) is a finitely generated \mathbb{Z}_p -module of \mathbb{Z}_p -rank equal to $r_2 + 1 + \delta_{F,p}$.

Leopoldt's Conjecture. $\delta_{F,p} = 0$.

The conjecture follows from Baker's thorem on linear forms in the p-adic logarithms of algebraic numbers when F is a finite abelian extension of either \mathbb{Q} or an imaginary quadratic field.

1.3. \mathbb{Z}_p -extensions. Let F be a finite extension of \mathbb{Q} . A \mathbb{Z}_p -extension of F is defined to be any Galois extension F_{∞} of F such that the Galois group of F_{∞} over F is topologically isomorphic to \mathbb{Z}_p .

The most basic example of a \mathbb{Z}_p -extension is the cyclotomic \mathbb{Z}_p extension of F. For each m>1, let μ_m denote the group of m-th roots of unity, and put $\mu_{p^{\infty}}=\bigcup_{n\geq 1}\mu_{p^n}$. The action of the Galois group of $\mathbb{Q}(\mu_{p^{\infty}})$ over \mathbb{Q} on $\mu_{p^{\infty}}$ defines an injection of this Galois group into \mathbb{Z}_p^{\times} , and this injection is an isomorphism by the irreducibility of the p-power cyclotomic polynomials. Put $V=1+2p\mathbb{Z}_p$, so that V is isomorphic to \mathbb{Z}_p under the p-adic logarithm. Then $\mathbb{Z}_p^{\times}=\mu_2\times V$ when p=2, and

 $\mu_{p-1} \times V$ when p > 2. Hence $\operatorname{Gal}(\mathbb{Q}(\mu_{p^{\infty}})/\mathbb{Q}) = \Delta \times \Gamma$, where $\Gamma \xrightarrow{\sim} \mathbb{Z}_p$ and Δ is cyclic of order 2 or p-1, according as p=2 or p>2. Thus

$$\mathbb{Q}_{\infty} = \mathbb{Q}(\mu_{p^{\infty}})^{\Delta}$$

will be a \mathbb{Z}_p extension of \mathbb{Q} , which we call the cyclotomic \mathbb{Z}_p -extension. Theorem 1.3 shows that it is the unique \mathbb{Z}_p extension of \mathbb{Q} . If now F is any finite extension, the compositum $F\mathbb{Q}_{\infty}$ will be a \mathbb{Z}_p -extension of F, called the cyclotomic \mathbb{Z}_p -extension of F. Note that, if F is totally real, we see from Theorem 1.3 that, provided Leopoldt's conjecture is valid for F, then the cyclotomic \mathbb{Z}_p -extension is the unique \mathbb{Z}_p -extension of F.

Here is another example of a \mathbb{Z}_p -extension. Let K be an imaginary quadratic field, and let p be a rational prime which splits in K into two distinct primes \mathfrak{p} and \mathfrak{p}^* . Then global class field theory shows that there is a unique \mathbb{Z}_p -extension K_{∞} of K in which only the prime \mathfrak{p} (but not \mathfrak{p}^*) is ramified. If now F is any finite extension of K, the compositum $F_{\infty} = FK_{\infty}$ will be another example of a \mathbb{Z}_p extension, which is not the cyclotomic \mathbb{Z}_p -extension. We shall call this \mathbb{Z}_p -extension the split prime \mathbb{Z}_p -extension of F. Interestingly, the cyclotomic and the split prime \mathbb{Z}_p -extensions of any number field seem to have many properties in common.

Ex 1.4. Let F be a number field. If F_{∞} is the cyclotomic \mathbb{Z}_p -extension of F, prove that there are only finitely many places of F_{∞} lying above each finite prime of F. If F contains an imaginary quadratic field K, and p splits in K, prove the same assertion for the split prime \mathbb{Z}_p -extension of F.

Finally, we point out the following result.

Proposition 1.4. Let F be a finite extension of \mathbb{Q} , and J_{∞}/F a Galois extension such that $\operatorname{Gal}(J_{\infty}/F) = \mathbb{Z}_p^d$ for some $d \geq 1$. If a prime v of F is ramified in J_{∞} , then v must divide p.

Proof. If v is a prime of F not dividing p, then its inertia group in J_{∞}/F must be tamely ramified. But then, by class field theory, such a tamely ramified group must be finite, and so it must be 0 in $\operatorname{Gal}(J_{\infty}/F)$.

Lecture 2.

2.1. Henceforth, F will denote a finite extension of \mathbb{Q} , and r_2 will always denote the number of complex places of F. For the moment, F_{∞}/F will denote an arbitrary \mathbb{Z}_p -extension of F, where p is any prime number. Put $\Gamma = \operatorname{Gal}(F_{\infty}/F)$, and let Γ_n denote the unique closed subgroup of Γ of index p^n . Let F_n denote the fixed field of Γ_n , so that $[F_n:F]=p^n$. Let M_{∞} be the maximal abelian p-extension of F_{∞} , which is unramified outside the set of places of F_{∞} lying above p, and put $X(F_{\infty}) = \operatorname{Gal}(M_{\infty}/F_{\infty})$. For each $n \geq 0$, let M_n be the maximal abelian p-extension of F n unramified outside p. Since F_{∞}/F is unramified outside p, we see that $M_n \supset F_{\infty}$ and that M_n is the maximal abelian extension of F_n contained in M_{∞} . We next observe that there is a canonical (left) action of Γ on $X(F_{\infty})$, which is defined as follows. By maximality, it is clear that M_{∞} is Galois over F, so that we have the exact sequence of groups

$$0 \longrightarrow X(F_{\infty}) \longrightarrow \operatorname{Gal}(M_{\infty}/F) \longrightarrow \Gamma \longrightarrow 0.$$

If $\tau \in \Gamma$, let $\tilde{\tau}$ denote any lifting of τ to $Gal(M_{\infty}/F)$. We then define, for $x \in X(F_{\infty})$, $\tau x = \tilde{\tau} x \tilde{\tau}^{-1}$. This action is well defined because $X(F_{\infty})$ is abelian, and is continuous. Now let $X(F_{\infty})_{\Gamma_n}$ be the

largest quotient of $X(F_{\infty})$ on which the subgroup Γ_n of Γ acts trivially. Since M_n is the maximal abelian extension of F_n contained in M_{∞} , it follows easily that

$$X(F_{\infty})_{\Gamma_n} = \operatorname{Gal}(M_n/F_{\infty}).$$

In particular, since class field theory tells us that $\operatorname{Gal}(M_0/F_\infty)$ is a finitely generated \mathbb{Z}_p -module, it follows from Nakayama's lemma that $X(F_\infty)$ is a finitely generated $\Lambda(\Gamma)$ -module where the $\Lambda(\Gamma)$ -action is given by extending the Γ -action by linearity and continuity. For each $n \geq 0$, let $\delta_{F_n,p}$ denote the discrepancy of the Leopoldt conjecture for the field F_n (see §1).

Proposition 2.1. The $\Lambda(\Gamma)$ -rank of $X(F_{\infty})$ is always $\geq r_2$. It is equal to r_2 if and only if the $\delta_{F_n,p}$ are bounded as $n \to \infty$.

Proof. Since $X(F_{\infty})$ is a finitely generated $\Lambda(\Gamma)$ -module, it follows from the structure theory (see Ex 1.2) that, provided n is sufficiently large, we have

(1)
$$\mathbb{Z}_p\text{-rank }X(F_{\infty})_{\Gamma_n}=mp^n+c$$

where m is the $\Lambda(\Gamma)$ -rank of $X(F_{\infty})$, and c is a constant integer ≥ 0 . On the other hand, since $X(F_{\infty})_{\Gamma_n} = \operatorname{Gal}(M_n/F_{\infty})$, we conclude from Theorem 1.3 applied to the extension M_n/F_n that

(2)
$$\mathbb{Z}_p$$
-rank of $X(F_{\infty})_{\Gamma_n} = r_2 p^n + \delta F_n, p$;

here we are using the fact that the number of complex places of F_n is r_2p^n , because no real place can ramify in the \mathbb{Z}_p -extension F_{∞}/F . The equalities (1) and (2) immediately imply the proposition. \square

Ex 2.1. If $\delta_{F,p} = 0$, prove that the $\delta_{F_n,p}$ are bounded as $n \to \infty$.

Our aim in these lectures is to prove the following theorem which is one of the principal results of Iwasawa's 1973 Annals paper.

Theorem 2.2. Let p be any prime number and F_{∞}/F the cyclotomic \mathbb{Z}_p -extension. Then $X(F_{\infty})$ has $\Lambda(\Gamma)$ -rank r_2 , or equivalently $\delta_{F_n,p}$ is bounded as $n \to \infty$.

The essential idea of Iwasawa's proof is to use multiplicative Kummer theory. We do not know how to prove this result for non-cyclotomic \mathbb{Z}_p -extensions.

2.2. Multiplicative Kummer theory. For each integer m > 1, μ_m will denote the group of m-th roots of unity in $\overline{\mathbb{Q}}$. Until further notice, we shall assume that F_{∞}/F is the cyclotomic \mathbb{Z}_p -extension, and that

$$\mu_p \subset F$$
 if $p > 2$, $\mu_4 \subset F$ if $p = 2$.

Thus, we have

$$F_{\infty} = F(\mu_{p^{\infty}}).$$

Since $\mu_{p^{\infty}} \subset F_{\infty}$, classical multiplicative Kummer theory is as follows. Let F_{∞}^{\times} be the multiplicative group of F_{∞} , and let F_{∞}^{ab} be the maximal abelian extension of F_{∞} . Then we have the canonical dual pairing

$$\langle , \rangle : \operatorname{Gal}(F_{\infty}^{\operatorname{ab}}/F_{\infty}) \times (F_{\infty}^{\times} \otimes_{\mathbb{Z}} \mathbb{Q}_p/\mathbb{Z}_p) \to \mu_{p^{\infty}}$$

given by (here $\alpha \in F_{\infty}^{\times}$ and $a \geq 0$)

$$\langle \sigma, \alpha \otimes (p^{-a} \mod \mathbb{Z}_p) \rangle = \sigma \beta / \beta \text{ where } \beta^{p^a} = \alpha.$$

JOHN COATES

Of course, there is a natural action of $\Gamma = \operatorname{Gal}(F_{\infty}/F)$ on all of these groups, and the pairing gives rise to an isomorphism of Γ -modules

$$\operatorname{Gal}(F_{\infty}^{\operatorname{ab}}/F_{\infty}) \xrightarrow{\sim} \operatorname{Hom}(F_{\infty}^{\times} \otimes \mathbb{Q}_p/\mathbb{Z}_p, \mu_{p^{\infty}}).$$

AS before, let M_{∞} be the maximal abelian p-extension of F_{∞} which is unramified outside of p. Since $M_{\infty} \subset F_{\infty}$, the Kummer pairing induces an isomorphism of Γ -modules

$$\operatorname{Gal}(M_{\infty}/F_{\infty}) \xrightarrow{\sim} \operatorname{Hom}(\mathfrak{M}_{\infty}, \mu_{p^{\infty}}),$$

for a subgroup $\mathcal{M}_{\infty} \subset F_{\infty}^{\times} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p$, which can be described explicitly as follows. Recall that, as F_{∞}/F is the cyclotomic \mathbb{Z}_p -extension, there are only finitely many primes of F_{∞} lying above each rational prime number, and that the primes which do not lie above p all have discrete valuations. Let I_{∞}' be the free abelian group on the primes of F_{∞} which do not lie above p. Then every $\alpha \in F_{\infty}^{\times}$ determines a unique ideal $(\alpha)' \in I_{\infty}'$. The following lemma is then proven.

Lemma. \mathcal{M}_{∞} is the subgroup of all elements of $F_{\infty}^{\times} \otimes \mathbb{Q}_p/\mathbb{Z}_p$ of the form $\alpha \otimes p^{-a} \mod \mathbb{Z}_p$ where $\alpha \in F_{\infty}^{\times}$ is such that $(\alpha)' \in I_{\infty}^{p^a}$.

We can then analyze \mathcal{M}_{∞} by the following exact sequence. Let E'_{∞} be the graph of all elements α in F^{\times}_{∞} with $(\alpha)' = 1$. We have the obvious map

$$i_{\infty}: E'_{\infty} \otimes_{\mathbb{Z}} \mathbb{Q}_p/\mathbb{Z}_p \to \mathfrak{M}_{\infty}$$

given by $i_{\infty}(\varepsilon \otimes p^{-a} \mod \mathbb{Z}_p) = \varepsilon \otimes p^{-a} \mod \mathbb{Z}_p$, which is easily seen to be injective. Moreover, the map

$$j_{\infty}: \mathcal{M}_{\infty} \to A'_{\infty}$$

is defined by $j_{\infty}(\alpha \otimes p^{-a} \mod \mathbb{Z}_p) = d(\mathfrak{a})$ where $(\alpha)' = \mathfrak{a}^{p^a}$. Both i_{∞} and j_{∞} are obviously Γ -homomorphisms.

Lemma. The sequence of Γ -modules

$$(3) 0 \longrightarrow E'_{\infty} \otimes_{\mathbb{Z}} \mathbb{Q}_p/\mathbb{Z}_p \xrightarrow{i_{\infty}} \mathcal{M}_{\infty} \xrightarrow{j_{\infty}} A'_{\infty} \longrightarrow 0$$

is exact.

6

The proof of exactness is completely straightforward. In view of the exact sequence (3), we can now break up the Iwasawa module $X(F_{\infty}) = \text{Gal}(M_{\infty}/F_{\infty})$ into two parts. Define

$$N_{\infty}' = F_{\infty}(\sqrt[p^n]{\varepsilon} \text{ for all } \varepsilon \in E_{\infty}' \text{ and all } n \ge 1).$$

Then, thanks to (3), the Kummer pairing induces Γ -isomorphisms

$$\operatorname{Gal}(N_{\infty}'/F_{\infty}) \xrightarrow{\sim} \operatorname{Hom}(E_{\infty}' \otimes_{\mathbb{Z}} \mathbb{Q}_p/\mathbb{Z}_p, \mu_{p^{\infty}})$$

and

$$\operatorname{Gal}(M_{\infty}/N_{\infty}') \xrightarrow{\sim} \operatorname{Hom}(A_{\infty}', \mu_{p^{\infty}}).$$

Let $T_p(\mu) = \varprojlim \mu_{p^n}$ be the Tate module of $\mu_{p^{\infty}}$. Thus, $T_p(\mu)$ is a free \mathbb{Z}_p -module of rank 1 on which Γ acts via the character giving the action of Γ on $\mu_{p^{\infty}}$ l Thus, if we now define

$$Z'_{\infty} = \operatorname{Hom}(A'_{\infty}, \mathbb{Q}_p/\mathbb{Z}_p),$$

we see immediately that $\operatorname{Gal}(M_{\infty}/N_{\infty}') = Z_{\infty}' \otimes_{\mathbb{Z}_p} T_p(\mu)$, endowed with the diagonal action of Γ .

Theorem A (Iwasawa). Z'_{∞} is always a finitely generated torsion $\Lambda(\Gamma)$ -module.

In fact, Iwasawa proves Theorem A for an arbitrary \mathbb{Z}_p -extension F_{∞}/F (the definition of A'_{∞} we have given must be slightly modified for an arbitrary \mathbb{Z}_p -extension).

Now it is easy to see that if Z'_{∞} is $\Lambda(\Gamma)$ -torsion, then so is $Z'_{\infty} \otimes_{\mathbb{Z}_p} T_p(\mu)$. Hence, for the cyclotomic \mathbb{Z}_p -extension, Theorem A has the following corollary:

Corollary. Gal (M_{∞}/N'_{∞}) is a finitely generated $\Lambda(\Gamma)$ -module.

In the next lecture, we will outline Iwasawa's proof of the following result:

Theorem B (Iwasawa). Let $F_{\infty} = F(\mu_{p^{\infty}})$, where $\mu_p \subset F$ if p > 2 and $\mu_4 \subset F$ if p = 2. Then $\operatorname{Gal}(N'_{\infty}/F_{\infty})$ is a finitely generated $\Lambda(\Gamma)$ -module of rank $r_2 = [F : \mathbb{Q}]/2$.

The value of r_2 is as given because F is clearly totally imaginary. As we shall see in the next lecture, Iwasawa's proof gives very precise information about the $\Lambda(\Gamma)$ -torsion submodule of $\operatorname{Gal}(N_{\infty}'/F_{\infty})$.

Of course, Theorem A and Theorem B together imply that $Gal(M_{\infty}/F_{\infty})$ has $\Lambda(\Gamma)$ -rank equal to $r_2 = [F : \mathbb{Q}]/2$, proving the weak Leopoldt conjecture in this case.

2.3. Elementary properties of p-units in F_{∞}/F . As a first step towards proving Theorem B, we establish some basic properties of the units E'_{∞} . Let W_n be the group of all roots of unity in F_n , and W_{∞} to group of all roots of unity in F_{∞} . Thus, W_{∞} is the product of $\mu_{p^{\infty}}$ with a finite group of order prime to p. Define

$$\mathcal{E}'_n = E'_n/W_n,$$
 $\mathcal{E}'_\infty = E'_\infty/W_\infty;$

here E'_n denotes the group of p-units of F_n . Let s_n denote the number of primes of F_n lying above p. Then, by the generalization of the unit theorem to p-units, \mathcal{E}'_n is a free abelian group of rank $r_2p^n + s_n - 1$, where $r_2 = [F : \mathbb{Q}]/2$. Moreover, \mathcal{E}'_∞ is the union of the increasing sequence of subgroups \mathcal{E}'_n .

Lemma. \mathcal{E}'_{∞} is a free abelian group, and, for all $n \geq 0$, \mathcal{E}'_n is a direct summand of \mathcal{E}'_{∞} .

Proof. Now $(E'_{\infty})^{\Gamma_n} = E'_n$ for all $n \geq 0$. As $H^1(\Gamma_n, W_{\infty}) = (W_{\infty})_{\Gamma_n} = 0$, it follows that $(\mathcal{E}'_{\infty})^{\Gamma_n} = \mathcal{E}'_n$ for all $n \geq 0$. We next observe that $\mathcal{E}'_{\infty}/\mathcal{E}'_n$ is torsion free. Indeed, suppose u is an element of \mathcal{E}'_{∞} with $u^k \in E'_n$ for some integer $k \geq 1$. If γ is any element of Γ_n , we must then have $(\gamma u/u)^k = 1$, where $\gamma u = u$ since \mathcal{E}'_{∞} is torsion free, and so $u \in \mathcal{E}'_n$ as required. Hence, for all $m \geq n$, $\mathcal{E}'_m/\mathcal{E}'_n$ is torsion free. As \mathcal{E}'_m and \mathcal{E}'_n are both finitely generated torsion free abelian groups, it follows that \mathcal{E}'_n must be a direct summand of \mathcal{E}'_m for all $m \geq n$, and the assertions of the lemma follow. \square

We now give Iwasawa's proof of Theorem B of the last lecture. Let \mathbb{Q}' be the ring of all rational numbers whose denominator is a power of p. Note that $\mathbb{Q}'/\mathbb{Z} = \mathbb{Q}_p/\mathbb{Z}_p$. Hence, for all $n \geq 0$, we have the exact sequence

$$0 \longrightarrow \mathcal{E}'_n \longrightarrow \mathcal{E}'_n \otimes_{\mathbb{Z}} \mathbb{Q}' \longrightarrow \mathcal{E}'_n \otimes \mathbb{Q}_p / \mathbb{Z}_p \longrightarrow 0.$$

Also, we have the exact sequence

$$(4) 0 \longrightarrow \mathcal{E}'_{\infty} \longrightarrow \mathcal{E}'_{\infty} \otimes_{\mathbb{Z}} \mathbb{Q}' \longrightarrow \mathcal{E}'_{\infty} \otimes \mathbb{Q}_p/\mathbb{Z}_p \longrightarrow 0.$$

Recall that, for all $n \geq 0$, \mathcal{E}'_n is a direct summand of \mathcal{E}'_{∞} , and $(\mathcal{E}_{\infty})^{\Gamma_n} = \mathcal{E}'_n$. It follows that

$$(\mathcal{E}'_{\infty} \otimes_{\mathbb{Z}} \mathbb{Q}')^{\Gamma_n} = \mathcal{E}'_n \otimes_{\mathbb{Z}} \mathbb{Q}'.$$

Also, for all $n \geq 0$,

$$H^1(\Gamma_n, \mathcal{E}'_{\infty} \otimes_{\mathbb{Z}} \mathbb{Q}') = \lim_{\substack{m > n}} H^1(\operatorname{Gal}(K_m/K_n), \mathcal{E}'_m \otimes_{\mathbb{Z}} \mathbb{Q}'),$$

and this last cohomology group is 0 because $\mathcal{E}'_m \otimes \mathbb{Z}\mathbb{Q}'$ is p-divisible. Hence we have

$$H^1(\Gamma)n, \mathcal{E}'_{\infty} \otimes_{\mathbb{Z}} \mathbb{Q}') = 0.$$

Thus, taking Γ_n -cohomology of the exact sequence (4), we immediately obtain:

Proposition 3.1. For all $n \geq 0$, we have the exact sequence

$$0 \longrightarrow \mathcal{E}'_n \otimes_{\mathbb{Z}} \mathbb{Q}_p/\mathbb{Z}_p \longrightarrow (\mathcal{E}'_\infty \otimes_{\mathbb{Z}} \mathbb{Q}_p/\mathbb{Z}_p)^{\Gamma_n} \longrightarrow H^1(\Gamma_n, \mathcal{E}'_\infty) \longrightarrow 0.$$

To prove Theorem B, we also need to know that $H^1(\Gamma_n, \mathcal{E}'_\infty)$ is a finite group. In fact, it is a torsion group, and it must be finitely generated because the Pontrjagin dual of $\mathcal{E}_\infty \otimes \mathbb{Q}_p/\mathbb{Z}_p$ is a finitely generated $\Lambda(\Gamma)$ -module. However, a more intrinsic proof, which in the end yields more information about hte strucutre of $\operatorname{Gal}(N'_\infty/F_\infty)$ as a $\Lambda(\Gamma)$ -module, comes from the following result. For all $n \geq 0$, let I'_n denote the multiplicative group of all fractional ideals of F_n which are prime to p, and let $P'_n = \{(\alpha)' : \alpha \in F_n^\times\}$ be the subgroup of principal ideals. Put A'_n for the p-primary subgroup of I'_n/P'_n . For all $n \geq 0$, we have the natural injection $I'_n \to I'_\infty$, and this induces a homomorphism $A'_n \to A'_\infty$.

Proposition 3.2. For all $n \geq 0$, we have

$$H^1(\Gamma_n, \mathcal{E}'_{\infty}) = \ker(A'_n \to A'_{\infty}).$$

In particular, $H^1(\Gamma_n, \mathcal{E}'_{\infty})$ is finite.

We remark that, in his 1973 Annals paper, Iwasawa proves that Proposition 3.2 is valid for every \mathbb{Z}_p -extension F_{∞}/F in which every prime of F above p is ramified. Under the same hypotheses, he also shows that the order of $H^1(\Gamma_n, \mathcal{E}'_{\infty})$ is bounded as $n \to \infty$. In his Ph.D thesis at Princeton under Iwasawa, Ralph Greenberg showed the existence of many examples when $\ker(A'_n \to A'_{\infty})$ is non-zero. However, in the most classical case when $F = \mathbb{Q}(\mu_p)$ with p an odd prime, and $F_{\infty} = \mathbb{Q}(\mu_{p^{\infty}})$, it is still unknown whether there exist primes p such that $\ker(A'_n \to A'_{\infty})$ is non-zero.

Before proving Proposition 3.2, we first show that Theorem B is an easy consequence of Proposition 3.1. For each $n \geq 0$, let s_n denote the number of primes of F_n lying above p. Then the analogue of Dirichlet's theorem for the E'_n tells us that \mathcal{E}'_n is a free abelian group of rank $r_2p^n + s_n - 1$. Moreover, since p is totally ramified in the extension $\mathbb{Q}(\mu_{p^{\infty}})/\mathbb{Q}$, it follows that there exists $n_0 \geq 0$ such that every prime above p is totally ramified in the extension F_{∞}/F_{n_0} . Hence, we conclude that $s_n = s$, where $s = s_{n_0}$ for all $n \geq n_0$. Thus, since $H^1(\Gamma_n, \mathcal{E}'_{\infty})$ is finite, it follows from Proposition 3.1 that, provided $n \geq n_0$, the maximal divisible subgroup of $(\mathcal{E}'_{\infty} \otimes_{\mathbb{Z}} \mathbb{Q}_p/\mathbb{Z}_p)^{\Gamma_n}$ has \mathbb{Z}_p -corank $r_2p^n + s - 1$.

Put

$$Y'_{\infty} = \operatorname{Hom}(\mathcal{E}'_{\infty} \otimes_{\mathbb{Z}} \mathbb{Q}_p/\mathbb{Z}_p, \mathbb{Q}_p/\mathbb{Z}_p).$$

Then it follows immediately from Pontrjagin duality that $(Y'_{\infty})_{\Gamma_n}$ has \mathbb{Z}_p -rank r_2p^n+s-1 for all $n \geq n_0$. Now Y'_{∞} is a finitely generated $\Lambda(\Gamma)$ -module because $(Y'_{\infty})_{\Gamma}$ is a finitely generated \mathbb{Z}_p -module, and so it follows immediately from the structure theory (see Ex 1.2) that Y'_{∞} has $\Lambda(\Gamma)$ -rank equal to r_2 . But Kummer theory immediately shows that

$$Y'_{\infty} \otimes_{\mathbb{Z}_p} T_p(\mu) = \operatorname{Gal}(N'_{\infty}/F_{\infty}).$$

Thus Theorem B follows from the following simple algebraic exercise.

Ex 3.1. Let W be any finitely generated $\Lambda(\Gamma)$ -module. Assume $\mu_{p^{\infty}} \subset F_{\infty}$ and let $V = W \otimes_{\mathbb{Z}_p} T_p(\mu)$, where Γ acts on V by the twisted action $\sigma(w \otimes \alpha) = \sigma w \otimes \sigma \alpha$, with $w \in W$ and $\alpha \in T_p(\mu)$. Prove that the $\Lambda(\Gamma)$ -module V has the same $\Lambda(\Gamma)$ -rank as W.

We remark that, in his 1073 Annals paper, Iwasawa shows that a further analysis of the above proof of Theorem B yields more information about the $\Lambda(\Gamma)$ -module $\operatorname{Gal}(N_{\infty}'/F_{\infty})$. Let $t(\operatorname{Gal}(N_{\infty}/F_{\infty}))$ denote the $\Lambda(\Gamma)$ -torsion submodule of $\operatorname{Gal}(N_{\infty}'/F_{\infty})$. Then Iwasawa proves the following facts:

- (i) $\operatorname{Gal}(N_{\infty}'/F_{\infty})$ contains non non-zero \mathbb{Z}_p -torsion,
- (ii) $t(\operatorname{Gal}(N'_{\infty}/F_{\infty}))$ is a free \mathbb{Z}_p -module of rank s-1 where s= number of primes above p in the extension F_{∞}/F_{n_0} as above, and he determines exactly its characteristic power series (even its structure up to pseudo-isomorphism), and
- (iii) $\operatorname{Gal}(N_{\infty}'/F_{\infty})/t(\operatorname{Gal}(N_{\infty}'/F_{\infty}))$ is a free $\Lambda(\Gamma)$ -module if and only if $H^1(\Gamma_n, \mathcal{E}_{\infty}') = 0$ for all $n \geq a$, where a is an explicitly determined integer $\leq s 1$.

Finally, we give the proof of Proposition 3.2. For all $m \ge n$, we will prove that there is an isomorphism

$$\tau_{n,m}: \ker(A'_n \to A'_m) \xrightarrow{\sim} H^1(\operatorname{Gal}(F_m/F_n), E'_m).$$

Passing to the inductive limit over all $m \geq n$, and noting that $H^i(\Gamma_n, W_\infty) = 0$ for all $i \geq 1$, Proposition 3.2 will then follow. Fix a generator σ of $\operatorname{Gal}(F_m/F_n)$, and write \mathcal{O}'_m for the ring of p-integers of F_m . If c is some element of $\ker(A'_n \to A'_m)$, and $\mathfrak{a} \in I_n$ is an ideal in c, then $\mathfrak{a}\mathcal{O}'_m = \alpha \mathcal{O}'_m$ for some $\alpha \in \mathcal{O}'_m$. Define $\varepsilon = \sigma \alpha/\alpha$. Thus ε is an element of E'_m with $N_{F_m/F_n}(\varepsilon) = 1$. It is easy to see that the cohomology class $\{\varepsilon\}$ of ε in $H^1(\operatorname{Gal}(F_m/F_n), E'_m)$ depends only on c, and we define $\tau_{n,m}(c) = \{\varepsilon\}$. One checks easily that $\tau_{n,m}$ is injective. To prove surjectivity, let $\{\varepsilon\}$ be any cohomology class in $H^1(\operatorname{Gal}(F_m/F_n), E'_m)$ which is represented by an element ε of E'_m with $N_{m,n}(\varepsilon) = 1$. By Hilbert's Theorem 90, we then have $\varepsilon = \alpha^{\sigma-1}$ for some $\alpha \in \mathcal{O}'_m$. Let \mathfrak{a} in I'_m be given by $\mathfrak{a} = \alpha \mathcal{O}'_m$. Since ε is in E'_m , we see that $\mathfrak{a}^\sigma = \mathfrak{a}$. Moreover, no prime of F_n which does not divide p is ramified in F_m , and so it follows that \mathfrak{a} must be the image of an ideal \mathfrak{b} in I'_n under the natural inclusion $I'_n \hookrightarrow I'_m$. Let c be the class of \mathfrak{b} in I'_n . One sees easily that c lies in $\ker(A'_n \to A'_m)$, and $\tau_{n,m} = \{\varepsilon\}$, completing the proof.

Lecture 4.

We now rapidly explain Iwasawa's proof of Theorem A. Let F_{∞}/F be an arbitrary \mathbb{Z}_p -extension. For each $n \geq 0$, let \mathcal{O}'_n be the ring of p integers of F_n , I'_n the group of invertible \mathcal{O}'_n -ideals, $P'_n \subset I'_n$ the group of principle invertible \mathcal{O}'_n -ideals, and A'_n the p-primary subgroup of I'_n/P'_n . If $n \leq m$, we have the two natural homomorphisms

$$i_{n,m}: A'_n \longrightarrow A'_m,$$
 $N_{m,n}: A'_m \longrightarrow A'_n$

which are respectively induced by the natural inclusion of I'_n into I'_m and the norm map from I'_m to I'_n . We then define the Γ -modules

$$A'_{\infty} = \lim_{\longrightarrow} A'_{n},$$
 $W'_{\infty} = \lim_{\longleftarrow} A'_{n},$

where the inductive limit is taken with respect to the $i_{n,m}$ and the projective limit is taken with respect to the $N_{m,n}$, and both are endowed with their natural action of Γ . Thus A'_{∞} is a discrete $\Lambda(\Gamma)$ -module, and W'_{∞} is a compact $\Lambda(\Gamma)$ -module.

10 JOHN COATES

Proposition 4.1. W'_{∞} is canonically isomorphic as a $\Lambda(\Gamma)$ -module to $\operatorname{Gal}(L'_{\infty}/F_{\infty})$ where L'_{∞} denotes the maximal unramified abelian p-extension of F_{∞} , in which every prime F_{∞} lying above p splits completely.

Proof. Let L'_n be the maximal unramified abelian p-extension of F_n in which every prime above p splits completely. By global class field theory, the Artin map induces an isomorphism $A'_n \stackrel{\sim}{\to} \operatorname{Gal}(L'_n/F_n)$, which preserves the natural action of Γ/Γ_n on both abelian groups. Let $n_0 \geq 0$ be such that every prime of F_{n_0} which is ramified in F_{∞} is totally ramified in F_{∞} . Thus, if $m \geq n \geq n_0$, we must have $L_n \cap F_m = F_n$, so that $\operatorname{Gal}(L'_n F_m/F_m) \stackrel{\sim}{\to} \operatorname{Gal}(L'_n/F_n)$. Moreover, global class field theory then tells us that the diagram

$$A'_{m} \xrightarrow{\sim} \operatorname{Gal}(L'_{m}/F_{m})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A'_{n} \xrightarrow{\sim} \operatorname{Gal}(L'_{n}F_{m}/F_{m}) = \operatorname{Gal}(L'_{n}/F_{n})$$

is commutative. Hence, $W_{\infty} = \varprojlim A'_n$ is isomorphic as a $\Lambda(\Gamma)$ -module to $\operatorname{Gal}(R_{\infty}/F_{\infty})$, where $R_{\infty} = \bigcup_{n \geq 0} L'_n$. Obviously, $R_{\infty} \subset L'_{\infty}$. But every element of L'_{∞} satisfies an equation with coefficients in F_n for some $n \geq n_0$, whence we see that also $L'_{\infty} \subset R_{\infty}$, and so $L'_{\infty} = R_{\infty}$, and W_{∞} is isomorphic as a $\Lambda(\Gamma)$ -module to $\operatorname{Gal}(L'_{\infty}/F_{\infty})$, as required.

Proposition 4.2. Let $s \ge 1$ be the number of primes of F_{∞} which are ramified in the \mathbb{Z}_p -extension F_{∞}/F . Then, for all $n \ge n_0$, we have that

$$\mathbb{Z}_p$$
-rank of $(W'_{\infty})_{\Gamma_n} \leq s-1$.

In particular, W'_{∞} is a torsion $\Lambda(\Gamma)$ -module.

Proof. For each $n \geq 0$, let \mathcal{L}'_n denote the maximal abelian extension of F_n contained in L'_∞ . Obviously, $\mathcal{L}'_n \supset F_\infty$, and by the definition of the Γ-action on $W'_\infty = \operatorname{Gal}(L'_\infty/F_\infty)$, we have

$$(5) (W_{\infty}')_{\Gamma_n} = \operatorname{Gal}(\mathcal{L}_n'/F_{\infty}).$$

Assume now that $n \geq n_0$, so that there are precisely s primes of F_n which are ramified in the extension \mathcal{L}'_n/F_n . Denote these primes by w_i $(i=1,\ldots,s)$, and let T_i be the inertia group of w_i in \mathcal{L}'_n/F_n . Since w_i is completely ramified in F_{∞}/F_n , and then splits completely in $\mathcal{L}'_n/F_{\infty}$, we must have $T_i \stackrel{\sim}{\to} \Gamma_n \stackrel{\sim}{\to} \mathbb{Z}_p$ for $i=1,\ldots,s$. Now, L'_n is the maximal unramified extension of F_n contained in \mathcal{L}'_n . Hence

$$\operatorname{Gal}(\mathcal{L}'_n/L'_n) = T_1 \cdots T_s.$$

Since $\operatorname{Gal}(L'_n/F_n)$ is finite, we conclude that the module $\operatorname{Gal}(\mathcal{L}'_n/F_n)$ has \mathbb{Z}_p -rank at most s. As $\operatorname{Gal}(F_{\infty}/F_n)$ has \mathbb{Z}_p -rank equal to 1, it follows that

$$\mathbb{Z}_p$$
-rank of $\operatorname{Gal}(\mathcal{L}'_n/F_\infty) \leq s-1$ for all $n \geq n_0$.

In view of (5), it now follows from the structure theory that W'_{∞} is a torsion $\Lambda(\Gamma)$ -module, as claimed.

We end these notes by explaining, without proofs, the precise relationship between W'_{∞} and $\operatorname{Hom}(A'_{\infty}, \mathbb{Q}_p/\mathbb{Z}_p)$ as $\Lambda(\Gamma)$ -modules, which shows, in particular, that $\operatorname{Hom}(A'_{\infty}, \mathbb{Q}_p/\mathbb{Z}_p)$ is also a

torsion $\Lambda(\Gamma)$ -module. Let X be any finitely generated torsion $\Lambda(\Gamma)$ -module. We define the $\Lambda(\Gamma)$ -module $\alpha(X)$, called the adjoint of X by

$$\alpha(X) = \operatorname{Ext}_{\Lambda(\Gamma)}^{1}(X, \Lambda(\Gamma)).$$

It turns out that $\alpha(X)$ is pseudo-isomorphic to X, and contains no non-zero finite $\Lambda(\Gamma)$ -submodule.

Theorem 4.3. Hom $(A'_{\infty}, \mathbb{Q}_p/\mathbb{Z}_p) = \alpha(\operatorname{Gal}(L'_{\infty}/F_{\infty}L'_{n_0}))$. Hence $\operatorname{Hom}(A'_{\infty}, \mathbb{Q}_p/\mathbb{Z}_p)$ is pseudo-isomorphic to $W'_{\infty} = \operatorname{Gal}(L'_{\infty}/F_{\infty})$, and so is $\Lambda(\Gamma)$ -torsion.