SEGUNDO CUATRIMESTRE 2013

GUÍA 2: SEGUNDO PRINCIPIO, MÁQUINAS TÉRMICAS

1. Demostrar que:

- a) Los postulados del segundo principio de Clausius y de Kelvin son equivalentes
- b) Ninguna máquina cíclica que funciona entre dos fuentes de temperatura puede tener mayor rendimiento que una máquina reversible que funciona entre las mismas temperaturas.
- c) Todas las máquinas reversibles que funcionan entre dos fuentes de temperatura tienen el mismo rendimiento.
- 2. Usando la convención gráfica según la cual una máquina simple que entrega trabajo positivo se representa como en la figura:

Figura 1: Convención gráfica

- a) Haga el esquema de una estufa eléctrica
- b) Haga el esquema para una heladera. ¿Cuál es en la práctica la fuente fría y cuál la caliente?
- c) ¿Es posible una máquina como la indicada en a)? ¿Puede ser reversible? ¿Y una como la que se indica en b)?

Figura 2: ¿Es posible?

3. Para enfriar un ambiente se abre la puerta de la heladera y se la hace funcionar. ¿Qué habrá pasado con la temperatura del cuarto después de algún tiempo?

- 4. En una cocina hay una heladera y un equipo de aire acondicionado que da al exterior. Se pretende mantener la cocina a una temperatura constante de 17°C y al congelador de la heladera a una temperatura constante de −3°C. Por mala aislación en congelador absorbe de la cocina 200 cal/min. La temperatura externa es de 27°C. Sabiendo que el refrigerador tiene una eficiencia del 60 % de uno ideal y que el equipo de aire acondicionado tiene una eficiencia del 50 % del ideal, calcular la potencia eléctrica consumida entre ambos artefactos.
- 5. La máquina térmica de una heladera a gas intercambia calor con las siguientes fuentes de calor: 1) una llama de gas, que se puede considerar una fuente de calor a $700\,\mathrm{K}$, y de la que absorbe Q_1 ; 2) una cámara frigorífica, de la que absorbe el calor Q_2 , y a la que se puede considerar como una fuente de calor a $-10^{\circ}\mathrm{C}$ (esta temperatura se mantiene constante, porque la máquina debe absorber la misma cantidad de calor por ciclo que el que entra a la cámara en el mismo tiempo debido a la aislación imperfecta); 3) el aire de la habitación en que se halla la heladera, que constituye una fuente de calor a $20^{\circ}\mathrm{C}$ y al que entrega calor Q_3 . La máquina térmica no recibe ni entrega trabajo.
 - a) Si la pérdida a la cámara por mala aislación vale $30 \, \text{cal/min}$, y la máquina térmica realiza $100 \, \text{ciclos/min}$, hallar cuanto debe valer Q_2/ciclo .
 - b) Hallar el mínimo valor de Q_1 /ciclo que debe absorber.
- 6. Calcular la variación de la eficiencia de una máquina reversible cuando:
 - a) se aumente la temperatura de la fuente superior en ΔT
 - b) se disminuye la temperatura de la fuente inferior en ΔT
 - c) ¿Qué cambio produce un mayor aumento de la eficiencia?

7.

a) Explique si el siguiente ciclo es posible o no. Justifique.

b) Sean dos gases puestos en contacto térmico a través de una pared diatérmica. Ambos están encerrados en un recipiente de paredes adiabáticas.

- 1) ¿Se conserva la energía del sistema?
- 2) ¿Cómo evolucionará la entropía del sistema? Escriba dS para cada gas considerando a S = S(E, V).

- 3) A partir del punto anterior, demuestre que, en el equilibrio, ambos gases alcanzan la misma temperatura
- 8. ¿Qué se puede decir de la magnitud $\int_A^B dQ/T$ para
 - a) Un proceso reversible
 - b) Un proceso irreversible
 - c) Un proceso adiabático
- 9. Un mol de gas ideal diatómico realiza el siguiente ciclo reversible:

Figura 3: Ciclo reversible

- a) Calcular $\int dQ_R/T$ para los procesos AB, BC, DA y compruebe que la suma es nula.
- b) ¿Cuánto vale S(C) S(A)?
- c) ¿Se puede pasar en forma adiabática de A a C si $T_1 = 500 \,\mathrm{K}$, $V_1 = 51 \,\mathrm{y}$ $T_2 = 300 \,\mathrm{K}$, $V_2 = 301 \,\mathrm{m}$
- 10. Un mol de gas ideal diatómico se halla en un recipiente adiabático provisto de un pistón en el estado A ($V_A = 21$, $T_A = 300 \,\mathrm{K}$). Se saca la traba que retiene el pistón y el gas se expande contra la presión exterior constante de 1 atm, hasta el volumen V_B , donde se encuentra una segunda traba para el pistón. La entropía del gas vale:

$$S(T,V) = S(300 \text{ K}, 21) + R \ln \left(\frac{V}{21}\right) + C_V \ln \left(\frac{T}{300 \text{ K}}\right)$$

Calcular

- a) W_{AB}
- b) ΔU_{AB}
- c) $T_B = f(V_B)$
- d) $S_B S_A$
- e) Hallar el valor $V_B = V_B^{(m)}$ que hace máxima la entropía total.
- f) Hallar la presión termodinámica del gas cuando $V_B = V_R^{(m)}$.
- g) ¿Qué puede deducir respecto al volumen final que alcanzaría el gas en el equilibrio si, cuando el gas se hallaba en A se sacan ambas trabas?

11.

a) ¿Qué se obtiene calculando el área bajo la curva, en un diagrama T-S ?

Figura 4: Área bajo la curva

b) Si se realiza el siguiente ciclo: ¿cuánto vale la variación de energía interna?

Figura 5: ΔU ?

- c) ¿Cómo es el gráfico en el diagrama T-S de un proceso adiabático? ¿y uno isotérmico?
- d) Dado el siguiente diagrama, con la rama CD irreversible, ¿cuál es la variación de entropía ΔS_{CD} conociendo ΔS_{AB} ? ¿Cómo se comparan con ΔS_{AB} , las variaciones de entropía de las fuentes para las partes AB y CD del ciclo?

Figura 6: $\mathcal{L}\Delta S_{CD}$?

- 12. Considere un mol de un gas de van der Waals.
 - a) Encuentre la expresión de la energía interna del gas, E(T,V).
 - b) Encuentre la expresión de la entropía del gas, S(T, V).
 - c) Considere un recipiente rígido y adiabático dividido en dos compartimientos separados por una válvula, inicialmente cerrada. Uno de los compartimentos de volumen V_1 , contiene un gas de van der Waals a temperatura T_1 . El otro compartimento de volumen V_2 , se encuentra vacío. En un momento dado, se abre

la válvula, pudiendo entonces expandirse el gas. Suponga que la capacidad calorífica del gas a volumen constante, c_v , y la del recipiente, c son constantes para temperaturas en un entorno considerable de T_1 .

- 1) ¿Qué función de estado se conserva? Justifique.
- 2) Encuentre la temperatura final T del gas (tenga en cuenta al recipiente en el proceso).
- 13. Un mol de gas de van der Waals se expande reversible e isobáricamente desde V_A hasta V_B . Datos: P_A , V_A , T_A , V_B . Hallar:
 - a) La temperatura final.
 - b) La variación de energía interna en el proceso.
 - c) El calor absorbido.
 - d) La variación de entropía.
- 14. Dos cuerpos idénticos, con capacidad calorífica a presión constante c_p independiente de la temperatura, se utilizan como fuentes de calor para una máquina térmica. Los cuerpos se mantienen a presión constante e inicialmente sus temperaturas son $T_1 > T_2$. Finalmente, como resultado del funcionamiento de la máquina térmica, los cuerpos llegan a una temperatura final T_f .
 - a) Calcule la cantidad total de trabajo W realizado por la máquina en función de c_p , T_2 y T_f .
 - b) Deduzca cuál es la temperatura T_f mínima a la que pueden llegar ambos cuerpos. Justifique.
 - c) Para temperaturas iniciales T_1 y T_2 , ¿cuál es el máximo trabajo que puede dar la máquina, trabajando entre esos dos cuerpos?
- 15. Considere un gas a temperatura T para el cual vale la relación p = u/3, siendo u la energía interna por unidad de volumen y p la presión del gas. Considere que u depende solamente de la temperatura. Un gas con esta caracteristicas se llama "gas de fotones".
 - a) Considerando un ciclo de Carnot adecuado con este gas, demuestre que $u = \sigma T^4$, con σ una constante.
 - b) Reobtener el resultado pero usando que la entropía es una función de estado.
 - c) Calcule su entropía. ¿Cuál es la ecuación de las adiabáticas?
 - d) ¿Qué imagina que sucede con este gas en una expansión isotérmica?
- 16. El ciclo de Stirling se realiza mediante dos procesos isotérmicos y dos isocoros. Para un gas ideal, según el gráfico

Figura 7: Ciclo de Stirling

a) Dibujar el ciclo en el plano T-S, suponiendo que la sustancia es un gas ideal.

- b) Demostrar que $Q_{23} = -Q_{41}$
- c) Hallar la eficiencia.
- 17. Se tienen dos gases ideales diferentes en un recipientes aislado a la misma p y T pero separados por una pared diatérmicas; ambos están en equilibrio termodinámico. Se quita la pared. Si n_1 , n_2 es el número de moles de cada gas, calcule la variación total de entropía como función de los n_i y de R. ¿Es éste un proceso reversible? ¿Qué pasa si el mismo gas se encuentra a ambos lados del tabique?