

Università degli Studi dell'Insubria Dipartimento di Scienze Teoriche e Applicate

Programmazione Concorrente e Distribuita Reti e protocolli

Luigi Lavazza

Dipartimento di Scienze Teoriche e Applicate luigi.lavazza@uninsubria.it

Il concetto di rete di calcolatori

- Una "rete di calcolatori" è un sistema informatico costituito da due o più calcolatori collegati attraverso un sistema di comunicazione
- Una "applicazione distribuita" è una applicazione composta da più programmi cooperanti posti in esecuzione su macchine diverse all'interno di una rete di calcolatori
 - Su ogni macchina c'è almeno un <u>processo</u> che comunica con processi che risiedono su macchine diverse

Il quadro storico - Anni '60

- Costo degli elaboratori troppo alto per permettere un uso individuale
- Esigenze dei singoli utenti basse permettono la condivisione della potenza di calcolo fornita da un singolo elaboratore centrale
- Sviluppo di reti composte da un elaboratore centrale e più terminali remoti connessi attraverso linee telefoniche in una architettura a stella
 - ▶ I terminali sono "stupidi", fanno solo I/O, non elaborazione

II quadro storico - Anni '70

- Il costo dell'hardware diminuisce velocemente
- Vengono prodotti «minicomputer»
 - Il più famoso è il Digital PDP11
- Certe elaborazioni avvengono in locale
- Il computer centrale è connesso (sempre attraverso linea telefonica) con terminali o minicomputer.

Il quadro storico - Anni '80

- Il costo dell'hardware continua a scendere
- Si diffondono i personal computer
- Diventa sempre più importante condividere applicazioni e dati
- Nascono le reti locali e geografiche di micro e personal computer

Il quadro storico - Anni '80

II quadro storico - Oggi

- Le reti sono molto veloci e affidabili
 - Consentono cooperazione stretta: applicazioni distribuite real-time
- I computer sono anche mobili
 - Connessi da reti wireless
- Anche gli oggetti sono connessi (IoT)

Topologia di rete

- Con il termine "topologia di rete" si indica la disposizione fisica dei componenti che realizzano la rete...
 - ... la loro tipologia...
 - ... e la modalità con la quale sono connessi

Topologie standard

Mezzi trasmissivi

- La comunicazione tra due nodi della rete avviene attraverso un mezzo trasmissivo, come ad es.:
 - doppino telefonico;
 - cavo coassiale;
 - fibra ottica;
 - onde elettromagnetiche;
 - porte a infrarossi;
 - o una loro combinazione.

Trasmissione

- La trasmissione tra due nodi della rete può essere
 - Simplex
 - Il senso di trasmissione è fisso (poco usata)
 - Half-duplex
 - La trasmissione è possibile, alternativamente, nei due sensi
 - Full-duplex
 - La trasmissione è possibile, contemporaneamente, nei due sensi

La tecnologia di rete

- È definita da un insieme di tipi di mezzi trasmissivi e di regole di connessione dei calcolatori e degli altri apparati di rete, dalle regole di interpretazione dei segnali trasmessi.
- I parametri della tecnologia di rete sono:
 - la distanza;
 - la velocità di trasmissione (bit al secondo);
 - il costo.

Commutazione

- In generale in una rete non c'è comunicazione diretta fra tutti i nodi
- Per collegare due nodi occorre stabilire un collegamento tra questi
- Commutazione di circuito
 - ▶ il collegamento è "fisico"
- Commutazione di pacchetto
 - il collegamento e "virtuale"

Connessione a commutazione di circuito

- È una connessione diretta, punto a punto;
- Garantisce una banda (ad es. 64 kbps);
- Tipica per le comunicazioni telefoniche («antiche», oggi si fa VOIP);
- Lo sfruttamento della banda non è generalmente continuo:

 (ad es. occupo la linea senza sfruttarne la banda quando leggo una pagina Web che ho appena scaricato in locale);
- Comporta costi elevati.

Commutazione di circuito

Commutazione di circuito

A seguito della richiesta di connessione, viene creato un circuito <u>fisico</u> da A a B.

Connessione a commutazione di pacchetto

- Il traffico è diviso in piccoli messaggi (pacchetti) di poche centinaia di byte;
 - quando un calcolatore collegato in rete non utilizza la banda, questa può essere utilizzata da altri calcolatori, consentendo più comunicazioni simultanee;
 - non è garantito il percorso effettuato (pacchetti diversi possono percorrere strade diverse);
 - presenta lo svantaggio di comunicazione frammentata.

Commutazione di pacchetto

 A seguito della richiesta di connessione, la rete non crea nessun collegamento.

- Percorso pacchetto M1:
 - Origine, nodo 1, nodo 3, nodo 5, nodo 6, destinazione
- Percorso pacchetto M2:
 - Origine, nodo 1, nodo 2, nodo 4, nodo 6, destinazione
- Percorso pacchetto M3:
 - Origine, nodo 1, nodo 3, nodo 4, nodo 6, destinazione

Reti a commutazione di pacchetto: servizi forniti

- Le reti a commutazione di pacchetto forniscono due tipi di servizi
 - Servizi a datagramma
 - Non viene creato alcun circuito tra mittente e destinatario
 - Il singolo messaggio viene gestito indipendentemente dai precedenti e dai successivi
 - Servizi a circuito virtuale
 - Viene stabilito un circuito virtuale tra mittente e destinatario
 - Il circuito è a commutazione di pacchetto, ma si comporta come se fosse a commutazione di circuito
 - Viene mantenuto l'ordinamento tra messaggi diversi inviati lungo il circuito virtuale
 - messaggi diversi inviati lungo lo stesso circuito virtuale possono comunque compiere strade diverse lungo la rete per raggiungere il destinatario

Il modello di interazione client-server

- Il modello client-server è il principale e più elementare modello di interazione utilizzato delle applicazioni di rete.
- Un server è un programma che offre un servizio
 - Nel nostro caso un server offre un servizio tramite la rete.
 - Un server si affaccia alla rete ad un indirizzo ben noto (e ad una porta ben nota) e rimane in attesa di richieste da parte dei client.
 - L'indirizzo serve a individuare la macchina nella rete
 - Il numero di porta serve a individuare il processo tra i tanti che girano sulla macchina
- Un client è un programma che vuole usufruire del servizio offerto dal server.

Il modello di interazione client-server

- NB: nulla vieta che un programma che si comporta da client nei confronti del server A si comporti da server nei confronti del client B.
- Nel caso in cui ci siano solo due programmi, uno che fa il client e uno che fa il server, si parla di architettura client-server.
- A noi interessa l'interazione client-server tra due programmi, indipendentemente dall'architettura complessiva.

Il modello di interazione client-server

- La prima cosa che un client deve fare per richiedere il servizio è connettersi al server
- Perché una connessione possa essere stabilita, bisogna che
 - il server si sia dichiarato disposto ad accettare richieste di connessione da parte di clienti (ha aperto la connessione in modo passivo).
 - Il server non conosce a priori l'identità dei suoi clienti.
 - un client chieda in modo attivo l'apertura della connessione con il server.
 - Il client deve conoscere l'identità (l'indirizzo) del server per aprire la connessione.
- La connessione è un'operazione asimmetrica!
- La vita di un server si prolunga normalmente oltre il tempo dell'interazione con il singolo client.

Protocollo di comunicazione

- Con il termine "protocollo di comunicazione" si indica l'insieme di regole di comunicazione che debbono essere seguite da due interlocutori affinché essi possano comprendersi
- Esempio: il protocollo alla base della comunicazione tra docente e allievi durante una lezione
 - il docente parla in una lingua comprensibile agli allievi
 - gli allievi ascoltano (si spera)
 - quando vogliono intervenire gli allievi alzano la mano ed attendono il permesso del docente per iniziare a parlare
 - durante l'intervento degli allievi il docente ascolta
 - al termine dell'intervento il docente risponde
 - **>** ...

Organizzazione a pila dei protocolli

- I protocolli per le reti di calcolatori sono organizzati secondo una gerarchia (pila di protocolli)
- Salendo nella gerarchia, cresce il livello di astrazione dei servizi offerti da un protocollo
- Ogni protocollo si appoggia ai protocolli di più basso livello per fornire un servizio di qualità superiore

II modello ISO/OSI

- l'Open Systems Interconnection (meglio conosciuto come modello o stack ISO/OSI) è uno standard de iure per reti di calcolatori stabilito nel 1978 dall'International Organization for Standardization (ISO)
- Il modello stabilisce per l'architettura logica di rete una struttura a strati composta da una pila di protocolli di comunicazione di rete suddivisa in 7 livelli, i quali insieme eseguono tutte le funzionalità della rete, seguendo un modello logico-gerarchico.

Il modello ISO/OSI

- Per ogni layer sono definiti un insieme di protocolli di comunicazione adatti al livello del layer considerato
- Dati due nodi A e B, il livello n del nodo A può scambiare informazioni col livello n del nodo B, ma non con gli altri.

Il modello ISO/OSI

Problemi gestiti dai vari protocolli

- Malfunzionamenti hardware (host o gateway);
- Congestione della rete;
- Ritardo o perdita di pacchetti: il software deve riconoscere ed adattarsi a ritardi lunghi e di durata variabile;
- Alterazione dei dati dovuta a possibili errori di trasmissione;
- Duplicazione dei dati o errore nella sequenza di trasmissione, ad es. dovuti a reti che offrono più percorsi alternativi.

Il livello fisico

- Si occupa della gestione fisica (meccanica ed elettrica) dell'interfaccia con il mezzo fisico usato per il collegamento
- A livello fisico il protocollo definisce le regole per l'interpretazione dei segnali scambiati attraverso il mezzo trasmissivo (segnalazione in banda base/modulazione, voltaggi, ecc.)

Il livello di collegamento (data-link)

- Si occupa dello spostamento, con un certo livello di affidabilità, di una stringa di bit da un nodo all'altro
- Svolge tre funzioni:
 - distingue il segnale dal rumore
 - riconosce certi tipi di errori (codici di correzione)...
 - ... e li corregge

Il livello di rete

- Si occupa dell'indirizzamento dei messaggi lungo la rete...
- ... implementando gli opportuni meccanismi di commutazione
- Il servizio fornito è, a livello funzionale, indipendente dal particolare tipo di rete adottata

Il livello di trasporto

- Il livello di rete
 - Permette di stabilire connessioni fra due nodi (host) della rete
 - Rende funzionalmente indistinguibili reti di tipo diverso
- Il livello di trasporto
 - Permette di stabilire connessioni fra applicazioni diverse su host diversi
 - Si occupa di estendere l'indistinguibilità anche a livello di prestazioni (affidabilità inclusa)
 - Fornisce connessioni con una qualità di servizio richiesta
 - Gestisce la correttezza delle informazioni trasmesse ed il loro ordinamento

Il modello ISO/OSI

OSI model		
Layer	Name	Example protocols
7	Application Layer	HTTP FTP, DNS, SNMP, Telnet
6	Presentation Layer	SSL, TLS
5	Session Layer	NetBIOS, PPTP
4	Transport Layer	TCP UDP
3	Network Layer	IP, ARP, ICMP, IPSec
2	Data Link Layer	PPP, ATM, Ethernet
1	Physical Layer	Ethernet, USB, Bluetooth, IEEE802.1

Reti standard

- La maggior parte delle reti è basata sui seguenti standard (data-link):
 - ► IEEE 802.3 (Ethernet): di tipo LAN;
 - Fast Ethernet: di tipo LAN;
 - Token-Ring (IBM): di tipo LAN.
- La comunicazione tra calcolatori deve essere possibile anche fra reti differenti. L'utente vuole vedere tutto come una unica rete.

internet

- Una rete di reti è detta internet (con la i minuscola).
- Una internet è definita fornendo i protocolli per trasferire le informazioni tra le varie reti.

Interconnessione tra reti

Messaggio da rete 1 a rete 2

Messaggio da rete 1 a rete 2 che

lo rilancia a rete 3

Terminologia

- internet: una rete di reti;
- Internet (INTERconnected NETwork): la più diffusa internet del mondo.
- TCP/IP: il più diffuso protocollo per creare internet, ed usato da Internet.
- intranet: una rete privata basata sulle stesse tecnologie di Internet.

Internet: architettura logica

Internet: architettura fisica

Storia di Internet

- Fine anni '60:
 - la Defence Advanced Research Project Agency (DARPA) sviluppa ARPANET che connette laboratori di ricerca, università e reti governative
- Fine anni '70:
 - DARPA finanzia lo sviluppo di protocolli a commutazione di pacchetto
 - Nasce TCP/IP
 - Nel 1980 ARPANET si "converte" a TCP/IP

Storia di Internet

Anni '80

- Nel 1983 la conversione a TCP/IP è completa, l'ufficio del Segretario della Difesa US ordina che tutti i computer connessi a reti a lunga distanza usino TCP/IP
- MILNET (rete governativa e militare) si separa da ARPANET (1983)
- DARPA finanzia lo sviluppo di Berkeley UNIX (implementazione di TCP/IP che introduce l'astrazione dei socket)
- ARPANET diventa un sottoinsieme di Internet
- ▶ La National Science Foundation (NSF) realizza una rete di supercomputer (NSFNET) che agisce come backbone di Internet (1985)
- ▶ Nel 1986 si stima che Internet connettesse circa 20.000 computer
- Anni '90:
 - Internet esplode e cresce con ritmi velocissimi (dimensioni e traffico)

Internet vs. Intranet

- Internet: rete globale caratterizzata dall'uso dei protocolli TCP/IP
- Intranet: rete locale caratterizzata dall'uso dei medesimi protocolli di Internet
- Il boom di Internet ha favorito lo sviluppo di centinaia di applicazioni distribuite basate su TCP/IP
- Ciò ha reso conveniente l'uso dei protocolli TCP/IP anche in ambito locale
- Attualmente la maggior parte delle reti locali sfrutta TCP/IP come protocollo base
- NB: si può usare TCP/IP anche per far comunicare processi che girano sulla medesima macchina.

Internet Protocol Suite

Comunicazione tra due host

Indirizzo IP

- Ogni host collegato ad una internet ha un suo proprio indirizzo (detto indirizzo IP):
 - univoco: non esistono cioè due macchine di una stessa internet che abbiano indirizzo IP uguale;
 - composto da netid e hostid, per un totale di 32 bit;
 - tutte le macchine di una rete hanno lo stesso netid.
- Gli indirizzi IP si scrivono come quattro interi separati da punti
 - Esempio: 131.175.5.25

Il protocollo IP

- Il servizio realizzato da IP è la consegna del datagramma.
- Il datagramma è un pacchetto di bit contenente:
 - i dati;
 - ▶ le informazioni ausiliare quali ad es:
 - indirizzo del mittente;
 - indirizzo del destinatario.

- 46 -

II protocollo IP

- Il protocollo IP fornisce un servizio senza connessione di trasmissione non affidabile di datagrammi (pacchetti)
- Non si assicura:
 - la consegna,
 - l'integrità,
 - la non-duplicazione
 - l'ordine di consegna
- IP si può appoggiare ad una varietà di protocolli di più basso livello, quali Ethernet, PPP, X.25, Frame Relay, ATM, ...

Il protocollo IP

Fornisce:

- formato esatto di tutti i dati;
- funzioni di istradamento (routing), realizzato proprio in base all'indirizzo IP;
- ogni gateway dispone di opportune tabelle (di routing) per l'istradamento;
- insieme di regole che inglobano l'idea di consegna non affidabile.

Pacchetto IP - 1

0	4	8 12	16	20	24	28	31
Versione	IHL	Tipo di serviz	zio	Lu	nghezza to	tale	
Id del datagramma Flag Offset di frammentazion					ne		
Time 7	Time To Live Protocollo Checksum dello header						
Indirizzo IP sorgente							
	Indirizzo IP destinatario						
	Opzioni riempimento						
	Dati						

Pacchetto IP - 2

- Versione (4 bit): valore corrente 4
- IHL (Internet Header Length, 4 bit): dimensioni dello header in parole di 32 bit
- Tipo servizio (8 bit): specifica una priorità e il tipo di qualità del servizio (delay ridotto, alte prestazioni, o affidabilità).
- Lunghezza totale (16 bit): dimensione complessiva del pacchetto in byte
 - Un pacchetto IP non può essere più lungo di 64k
- Id (16 bit): identificatore unico del pacchetto

Pacchetto IP - 3

- Flag (3 bit) e offset (13 bit): gestiscono il processo di frammentazione
- TTL (8 bit): specifica il numero massimo di "hop" del pacchetto prima che venga considerato "perso"
- Protocollo (8 bit): specifica il protocollo incapsulato nella parte dati del pacchetto (ad es. TCP)
- Checksum dello header (16 bit): protegge da errori nella trasmissione
- Indirizzi (32+32 bit): indirizzi IP sorgente e destinazione
- Opzioni: Possono avere lunghezza variabile

Incapsulamento IP

User Datagram Protocol

- IP non consente di distinguere più destinazioni di datagrammi all'interno della stessa macchina (vede solo l'indirizzo IP).
- Questo è un problema, perché in una macchina ci sono tanti processi e noi vogliamo
 - Che ciascun processo possa partecipare a una connessione
 - Che diversi processi possano connetteresti contemporaneamente a diversi altri processi remoti.
- Per superare questo limite è stato definito il protocollo User Datagram Protocol.

II protocollo UDP

- Caratteristiche:
 - Si appoggia sul protocollo IP
 - Fornisce un servizio connectionless di trasmissione non affidabile di pacchetti
 - Fornisce un servizio di correzione d'errore
 - Non assicura la consegna né, tantomeno, l'ordine di invio (unreliable, best-effort protocol)
- Aggiunge l'astrazione di porta che permette di distinguere più sorgenti/destinazioni dei messaggi per uno stesso indirizzo IP

Pacchetto UDP - 1

Domanda: perchè manca l'indirizzo IP nel datagramma UDP?

Pacchetto UDP - 2

- Porta sorgente e destinazione (16+16 bit): specificano una particolare destinazione del pacchetto
- Lunghezza del messaggio (16 bit): numero di byte del pacchetto UDP.
 Un pacchetto può avere dimensione massima di 64k
- Checksum (16 bit): protegge da errori nella trasmissione (facoltativa)

Incapsulamento UDP

II protocollo TCP

- Caratteristiche:
 - protocollo connection-oriented (indirizzo IP + porta TCP)
 - fornisce un servizio full-duplex, con acknowledge e correzione d'errore
- Due host connessi su Internet possono scambiarsi messaggi attraverso canali TCP
- TCP costituisce l'infrastruttura di comunicazione della maggior parte dei sistemi basati su scambio messaggi su Internet

L'affidabilità di TCP/IP

- È una caratteristica imprescindibile.
- È basata sul riscontro positivo di ricezione (PAR Positive Acknowledge with Retransmission).
- Il destinatario informa il mittente della ricezione del messaggio.
- Il mittente se non ottiene riscontro dal destinatario entro un certo tempo (time-out), arguisce la perdita del pacchetto.

Protocollo con riscontro positivo di ricezione

Trasmissione con perdita di pacchetto

Trasmissione contemporanea di più pacchetti

Controllo di flusso

- Ogni riscontro dal ricevente indica anche il numero di byte che il ricevente è in grado di accettare.
- In tal modo il ricevente può indicare al trasmittente se si ha congestione sulla linea e addirittura annullare la trasmissione di altri pacchetti indicando di essere disposto a ricevere 0 byte.

II datagramma TCP

- II datagramma TCP descrive il formato dei pacchetti.
- Esso prevede:
 - una parte intestazione, di lunghezza fissa pari a 6 blocchi da 32 bit ciascuno (quindi 192 bit);
 - una parte dati, di lunghezza variabile.

Pacchetto TCP - 1

0	4 8	12	16	20	24	28	31
Porta sorgente				Porta	di destin	azione	
Numero di			li sequ	enza			
Numero di acknowledgment (se ACK)							
HLEN	Riservati	Flag		Window			
Checksum				Urgent p	oointer (s	se URG)	
Opzioni					rier	npimento	
	Dati						

Pacchetto TCP - 2

- Porta del mittente e del destinatario (16 + 16 bit):
 - La quaterna formata dagli indirizzi IP del pacchetto IP e dalle porte del pacchetto TCP specifica univocamente il circuito virtuale a cui il pacchetto appartiene
 - ▶ Le porte inferiori alla 1024 sono considerate privilegiate e sono riservate a servizi standard (telnet, ftp, http, ...)
- HLEN (4 bit): lunghezza dello header in parole di 32 bit
- Bit riservati per usi futuri (6 bit)
- Flag (6 bit): usati per gestire l'apertura e la chiusura delle connessioni (SYN, ACK, FIN, ...) e altro
- Window (16 bit): specifica il numero di window size units che il mittente del segment desidera ricevere
- Checksum (16 bit): viene calcolata su header e dati per proteggere da errori di trasmissione
- Opzioni: usate per contrattare la dimensione massima dei segmenti TCP per una sessione

Pacchetto TCP - 2

- Sequence number (32 bits)
 - Se SYN flag è 1, indica il numero iniziale di sequenza. Il numero di sequenza del primo byte di dati e il corrispondente numero di ACK saranno uguali a questo numero incrementato di uno
 - Se il SYN flag è zero, è il numero di sequenza cumulato del segmento
- Acknowledgment number (32 bits)
 - Se ACK=1, indica il prossimo numero di sequenza che il mittente di un ACK si aspetta. Costituisce la ricevuta di tutti i byte precedenti. Il primo ack mandato dai partecipanti alla connessione è la ricevuta della sequenza iniziale dell'altro partecipante, senza dati
- Urgent pointer (16 bit)
 - Se il flag URG è uno, è un offset nella sequenza che indica l'ultimo byte di dati urgente

Incapsulamento

Sessione TCP: setup - 1

- Un server, in ascolto ad una determinata porta, riceve una richiesta di connessione da parte di un client
- Il segmento di richiesta è marcato con il bit di sincronismo SYN e contiene un numero casuale come numero di sequenza sc
- Il server risponde con un segmento marcato con il bit di sincronismo SYN e il bit di ACK
 - il numero di sequenza è un altro numero casuale ac
 - nel campo acknowledgment viene inserito il numero di sequenza del client incrementato di uno sc + 1
- Il client manda un segmento con il bit di ACK e contenente i numeri di sequenza e acknowledgment sc + 1 e ac+ 1

Sessione TCP: setup - 2

Client

13987			23
seq: 6574		ack: 0	
SYN:1	AC	K:0	FIN:0

23		13987	
seq: 7611		ack: 6575	
SYN:1	AC	K:1	FIN:0

13987		23		
seq: 65	seq: 6575		ack: 7612	
SYN:0	AC	K:1	FIN:0	

Server

Sessione TCP: scambio dati - 1

- Si instaura un circuito virtuale attraverso il quale avviene la comunicazione
- Il client (come il server) inserisce in ogni pacchetto l'acknowledgment del pacchetto precedente e il proprio numero di sequenza incrementato del numero di byte trasmessi
- Un partner accetta i segmenti dell'altro partner solo se questi indicano dei dati all'interno di un finestra di ricezione
- Il sistema a finestra serve ad evitare che uno dei due partner inondi l'altro di informazioni che questo non è in grado di gestire

Sessione TCP: scambio dati - 2

Client

13987			23	
seq: 6575		ac	k:7612	
SYN:0	AC	K:1	FIN:0	
25 byte di dati				

23		1	3987	
seq: 7612		acl	k: 6600	
SYN:0	SYN:0 AC		FIN:0	
30 byte di dati				

1398	7		23
seq: 6600		ack: 7642	
SYN:0	AC	K:1	FIN:0

Server

Sessione TCP: shutdown - 1

- Il client (o il server) possono indicare la fine della trasmissione con un pacchetto marcato dal bit di FIN
- Il server (o il client) risponderà con un segmento di acknowledgment
- Il server (o il client) prima o poi indicherà che anche lui ha finito di trasmettere e il circuito virtuale verrà interrotto

Sessione TCP: shutdown - 2

Client

13987			23
seq: 6983		ac	k:8777
SYN:0	AC	K:1	FIN:1

23		13987		
seq: 8777		ack: 6984		
SYN:0	AC	K:1	FIN:0	
30 byte di dati				

23		1	3987
seq: 8807		ack: 6984	
SYN:0	AC	K:1	FIN:1

13987			23
seq: 6984		ack: 8808	
SYN:0	AC	K:1	FIN:0

Server

Alcune porte riservate

num.	nome	descrizione
11	USERS	lista utenti attivi
13	DAYTIME	ora del giorno
20	FTP-DATA	connessione dati FTP
21	FTP-CONTROL	connessione di torrinale remete
23 25	TELNET SMTP	connessione di terminale remoto simple mail transfer protocol
37	TIME	tempo
42	NAMESERVER	server di nomi
80	WEBSERVER	web server

Applicazioni distribuite

- Applicazione: un insieme di programmi coordinati per svolgere una data funzione.
- Un'applicazione è distribuita se prevede più programmi (processi) eseguiti su differenti calcolatori connessi tramite una rete.
 - ► Es: Web Browser (Firefox, IE, Chrome, Safari, Opera ...) e Web Server (Apache, ...)

Protocollo applicativo

- Le regole per la comunicazione in una applicazione distribuita sono dette protocollo applicativo.
 - ► Es. il protocollo applicativo della navigazione Web è detto HyperText Transfer Protocol - HTTP.
- Il protocollo applicativo deve essere definito opportunamente e comune a tutti i programmi dell'applicazione.
 - Es. ogni messaggio scambiato è terminato dalla stringa "\0 \0 \0".

Interfacce e protocolli

- I programmi applicativi utilizzano opportune interfacce (API application program interface), fornite dal sistema operativo e dal software di rete, per accedere ai servizi di comunicazione
 - Nascondono i dettagli dei livelli inferiori.
- Il protocollo applicativo rappresenta le regole di comunicazione, e considera il contenuto della comunicazione.
 - Realizzabile usando, attraversi API, i servizi disponibili

Interfacce e protocolli

