Algèbre linéaire Chapitre 2

Definition 0.1

On écrit $M_{m\times n}(\mathbb{R})$ pour l'ensemble des matrices de tailles $m\times n$ à coefficients réels. Aussi, pour deux matrices $A,B\in M_{m\times n}(\mathbb{R})$, on définit $A+B\in M_{m\times n}(\mathbb{R})$ comme étant la matrice satisfaisant

$$(A+B)_{ij} = A_{ij} + B_{ij},$$

ceci pour tout $1 \leq i \leq m$ et tout $1 \leq j \leq n$. De manière similaire, pour $A \in M_{m \times n}(\mathbb{R})$ et $\lambda \in \mathbb{R}$, on définit $\lambda A \in M_{m \times n}(\mathbb{R})$ par

$$(\lambda A)_{ij} = \lambda A_{ij},$$

ceci pour tout $1 \leq i \leq m$ et tout $1 \leq j \leq n$. Finalement, on définit la transposée d'une matrice $A \in M_{m \times n}(\mathbb{R})$, notée A^T comme suit :

$$(A^T)_{ij} = A_{ji},$$

ceci pour tout $1 \leq i \leq n$ et tout $1 \leq j \leq m$. Il est important de remarquer que $A^T \in M_{n \times m}(\mathbb{R})$ dans cette situation.

Lemma 0.2

Soient $A, B, C \in M_{m \times n}(\mathbb{R})$ et $\lambda, \mu \in \mathbb{R}$. Soit également $0 \in M_{m \times n}(\mathbb{R})$ la matrice de taille $m \times n$ dont toutes les composantes sont nulles. (On appelle cette matrice la matrice nulle.) Alors les propriétés suivantes sont vérifiées.

- 1. A + B = B + A.
- 2. A + (B + C) = (A + B) + C.
- 3. $\lambda(A+B) = \lambda A + \lambda B$.
- 4. $(\lambda + \mu)A = \lambda A + \mu A$.
- 5. $(\lambda \mu)A = \lambda(\mu A)$.
- 6. $1 \cdot A = A$.
- 7. $(A+B)^T = A^T + B^T$.
- 8. $(A^T)^T = A$.
- 9. $(\lambda A)^T = \lambda A^T$.
- 10. 0 + A = A = A + 0.
- 11. $(-1) \cdot A + A = 0$.
- 12. $0 \cdot A = 0$.

Definition 0.3

Soient $A \in M_{m \times p}(\mathbb{R})$ et $B \in M_{p \times n}(\mathbb{R})$. On définit le produit $A \cdot B \in M_{m \times n}(\mathbb{R})$ comme étant la matrice satisfaisant

$$(A \cdot B)_{ij} = \sum_{k=1}^{p} A_{ik} B_{kj}.$$

Lemma 0.4

Soient $A, B \in M_{m \times p}(\mathbb{R}), C, D \in M_{p \times q}(\mathbb{R}), E \in M_{q \times n}(\mathbb{R}), \lambda \in \mathbb{R}$. Soit également $I_p \in M_{p \times p}(\mathbb{R})$ la matrice telle que $(I_p)_{ii} = 1$ et $(I_p)_{ij} = 0$ pour tous $1 \leq i, j \leq q$ tels que $i \neq j$. (On appelle cette matrice la matrice identité de taille $p \times p$.) Alors les propriétés suivantes sont vérifiées.

- 1. A(CE) = (AC)E.
- 2. (A+B)C = AC + BC.
- 3. A(C+D) = AC + AD.
- 4. $\lambda(AC) = (\lambda A)C = A(\lambda C)$.
- 5. $0_{a\times m} \cdot A = 0_{a\times p}, A \cdot 0_{p\times r} = 0_{m\times r}.$
- 6. $(AC)^T = C^T A^T$.
- 7. $AI_p = A$ et $I_pC = C$.

Definition 0.5

On dit qu'une matrice A est carrée si elle est de taille $n \times n$ pour un certain entier $n \in \mathbb{N}$, c'est-à-dire si elle possède le même nombre de lignes et de colonnes. Aussi, une telle matrice est dite *inversible* s'il existe une matrice $B \in M_{n \times n}(\mathbb{R})$ telle que $AB = I_n = BA$.

Proposition 0.6

Si $A \in M_{n \times n}(\mathbb{R})$ est une matrice inversible, alors il existe une unique matrice $B \in M_{n \times n}(\mathbb{R})$ telle que $AB = I_n = BA$. On notera en général $B = A^{-1}$.

Definition 0.7

Soit A une matrice de taille $m \times n$ à coefficients réels. La diagonale principale de A est la "ligne oblique" formée des composantes (i,i) de A.

Definition 0.8

On dit d'une matrice $A = (a_{ij}) \in M_{m \times n}(\mathbb{R})$ qu'elle est

- triangulaire supérieure si $a_{ij} = 0$ pour tout i > j.
- triangulaire inférieure si $a_{ij} = 0$ pour tout i < j.
- diagonale si elle est carrée (i.e. m = n) et $a_{ij} = 0$ pour tous $i \neq j$.
- symétrique si elle est carrée et $a_{ij} = a_{ji}$ pour tous i, j, i.e. $A = A^T$.

Lemma 0.9

Soient $A \in M_{n \times n}(\mathbb{R})$ une matrice inversible et AX = b un système de n équations aux inconnues x_1, \ldots, x_n . Alors le système possède une unique solution, donnée par $X = A^{-1}b$.

Definition 0.10

Une matrice élémentaire (de taille $n \times n$) est une matrice obtenue en effectuant une (et une seule) opération élémentaire, de type (I),(II) ou (III), sur les lignes de la matrice I_n . Concrétement, on adoptera les notations suivantes.

- 1. La matrice T_{ij} est la matrice obtenue en échangeant les lignes i et j de I_n .
- 2. La matrice $D_r(\lambda)$ est la matrice obtenue en multipliant la r-ème ligne de I_n par $\lambda \in \mathbb{R}$.
- 3. La matrice $L_{rs}(\lambda)$ est la matrice obtenue en ajoutant λ fois la ligne s à la ligne r de I_n .

Theorem 0.11

Soient $A \in M_{m \times n}(\mathbb{R})$ et $E \in M_{m \times m}(\mathbb{R})$ une matrice élémentaire de type (I),(II) ou (III). Alors EA est la matrice obtenue en effecturant sur les lignes de A l'opération de type (I),(II) ou (III) qui définit la matrice E.

Corollary 0.12

Les matrices élémentaires sont inversibles. On a en effet

$$T_{ij}^{-1} = T_{ji}, \ D_r(\lambda)^{-1} = D_r(\lambda^{-1}), \ L_{rs}(\lambda)^{-1} = L_{rs}(-\lambda).$$

Theorem 0.13 (Premier critère d'inversibilité)

Une matrice $A \in M_{n \times n}(\mathbb{R})$ est inversible si et seulement si le système homogène AX = 0 possède une solution unique, à savoir, la solution triviale.

Algorithme pour trouver A^{-1} :

- 1. Ecrire les matrices A et I_n l'une à côté de l'autre, formant ainsi une nouvelle matrice de taille $n \times 2n$ $(A I_n)$.
- 2. Opérer sur les lignes de cette matrice ainsi obtenue afin de réduire le côté gauche à I_n .
- 3. Si l'on y arrive, alors A est inversible et son inverse est donnée par la matrice à droite.

Proposition 0.14 (Corollaire du premier critère d'inversibilité)

Soit $A \in M_{n \times n}(\mathbb{R})$. alors les deux affirmations suivantes sont vérifiées.

- 1. La matrice A est inversible si et seulement s'il existe $B \in M_{n \times n}(\mathbb{R})$ telle que $BA = I_n$.
- 2. La matrice A est inversible si et seulement s'il existe $B \in M_{n \times n}(\mathbb{R})$ telle que $AB = I_n$.

Proposition 0.15

Soit $A \in M_{m \times n}(\mathbb{R})$. Alors les affirmations suivantes sont vérifiées.

- 1. La matrice AT_{ij} est obtenue en échangeant les colonnes i et j de A.
- 2. La matrice $AD_r(\lambda)$ est obtenue en multipliant la r-ème colonne de A par λ .
- 3. La matrice $AL_{rs}(\lambda)$ est obtenue en ajoutant λ fois la r-ème colonne de A à la s-ème.

Proposition 0.16

Soit A une matrice de taille $m \times n$ et supposons qu'il soit possible de réduire A à une forme échelonnée en n'utilisant que des opérations élémentaires de la forme $D_r(\lambda)$, $E_{rs}(\lambda)$ (avec r > s) sur les lignes de A. Alors il existe une matrice triangulaire inférieure L et une matrice triangulaire supérieure U telles que A = LU.

Algorithme pour trouver L et U:

- 1. On applique successivement les opérations élémentaires de types (II) et (III) (avec matrices élémentaires correspondantes E_1, \ldots, E_k) aux lignes de la matrice A afin de la rendre échelonnée.
- 2. Poser $U = E_k \cdots E_1 A$, c'est-à-dire U est la forme échelonnée de A obtenue à l'aide des opérations élémentaires ci-dessus.
- 3. La matrice L est alors obtenue en opérant sur les colonnes de I_n par $E_1^{-1}, \ldots, E_k^{-1}$, dans cet ordre.

Application de la décomposition LU aux systèmes linéaires :

Soit un système AX = b d'équations linéaires aux inconnues x_1, \ldots, x_n et supposons que A = LU, où L est triangulaire inférieure et U triangulaire supérieure. Alors on résout le système de la manière suivante :

- 1. Poser $Y = \begin{pmatrix} y_1 & y_2 & \cdots & y_n \end{pmatrix}^T$.
- 2. Résoudre le système LY = b.
- 3. Résoudre le sytème UX = Y.

Definition 0.17

Soit A une matrice de taille $m \times n$ à coefficients réels. Une décomposition par blocs de A est une manière de partitionner A en plus petites matrices, que l'on obtient en traçant des lignes verticales et horizontales dans la matrice A.

Lemma 0.18

Soient $A, B \in M_{m \times n}(\mathbb{R})$ deux matrices décomposées en matrices par blocs de la même façon, alors on peut additionner A et B par blocs. Aussi, si C et D sont deux matrices admettant des décompositions en blocs

$$C = \begin{pmatrix} C_{11} & \cdots & C_{1p} \\ C_{21} & \cdots & C_{2p} \\ \vdots & & \vdots \\ C_{m1} & \cdots & C_{mp} \end{pmatrix}, D = \begin{pmatrix} D_{11} & \cdots & D_{1n} \\ D_{21} & \cdots & D_{2n} \\ \vdots & & \vdots \\ D_{p1} & \cdots & D_{pn} \end{pmatrix}$$

telles que le nombre de colonnes de chaque bloc C_{ij} soit égal au nombre de lignes de chaque bloc D_{kj} , alors on peut multiplier par blocs.