TECHNOLOGIE MLÉKA

Úvod do problematiky

PRODUKCE MLÉKA v rámci EU

Production and use of milk

(million tonnes, EU, 2021)

- (1) In whole milk equivalent
- (2) Includes other yellow fat dairy products; expressed in butter equivalent.
- (3) In liquid whey equivalent.

Source: Eurostat (online data codes: apro_mk_pobta and apro_mk_farm)

Collection of cows' milk by dairies

(%, 2021)

Milk collection from animals other than cows

(% of total milk delivered to dairies, 2021)

Note: Little or no milk from animals other than cows is produced in the Member States that are not shown in this Figure.

EU estimate made for the purpose of this article. France and Latvia (cow's milk), provisional data.

Source: Eurostat (online data code: apro_mk_pobta)

Development of price indices for milk

(2015 = 100, EU, 2015-2021)

PRVOVÝROBA MLÉKA v ČR

- Simentalské (České strakaté) plemeno = 45,6 % (plemeno kombinované, užitkovost 6352 litrů za laktaci, lepší profil MK)
- Holštýnské plemeno = 48,7 % (plemeno mléčné, užitkovost 8373 litrů za laktaci)
- Ostatní plemena = 6,7 % (Montbeliarde, Ayrshire, Jersey...)
- Tržnost mléka 95,9 %
- https://www.youtube.com/watch?v=-4SIWNcJPel

Spotřeba mléka v ČR

- Mléko a mléčné výrobky (bez másla) 263 kg/obyv.
- Mléko 59 kg/obyv.
- ČR je soběstačná ve výrobě mléka a mléčných výrobků (134 %)
- Soběstačnost ve výrobě másla klesla ze 126,6 % na 72,9 % (r. 1989)
- Vládní regulace dotační systém
- https://youtu.be/q-_-b7yNIXE

Spotřeba mléka a mléčných výrobků (kg/rok)

Druh/kg/rok	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021*)
Mléko a mléčné výrobky v hodnotě mléka celkem (bez másla)	234,3	234,1	236,5	242,3	247,5	246,5	245,8	249,0	262,6	263,0
 z toho kravské mléko 	234,2	234	236,4	242,2	247,4	246,4	245,7	248,9	262,5	262,9
 kozí mléko 	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
Konzumní mléko kravské	58,9	62,2	60,1	60,5	60,4	61,3	59,7	58,8	59,3	58,4
Máslo	5,2	5,1	5,1	5,5	5,4	5	5,1	5,4	5,7	5,3
Sýry celkem	13,4	12,7	12,8	13,1	13,3	13,2	13,4	13,8	14,3	14,4
- tavené	2,2	2,2	2,1	2	2	1,9	1,8	1,8	1,9	1,9
- přírodní	11,2	10,5	10,7	11,1	11,3	11,3	11,6	12	12,4	12,5
Tvarohy	3,4	3,6	3,8	3,8	4,4	4,7	4,5	4,7	4,8	4,7
Sýry a tvarohy	16,8	16,3	16,6	16,9	17,7	17,9	17,9	18,5	19,1	19,1
Ostatní mléčné výrobky	33,2	31,5	31,3	32,8	33,8	34,4	34,9	35,2	36,3	37,2
Mléčné konzervy	1,4	1,6	2,1	1,8	2	1,7	1,5	1,4	2,1	2,1

Zdroj: ČSÚ – Spotřeba potravin

Spotřeba mléka a mléčných výrobků v hodnotě mléka (bez másla) v ČR v letech 1948 - 2009 (kg/ obyvatele/ rok)

MLÉKO

1 . 1		,		
pio	logic	ka	te	kutina

Druhy mléka	Bílkoviny (%)	Tuk (%)	Laktóza (%)	Voda (%)
Kravské	2-5	3-6	3-5	85-88
Kozí	3,6-3,8	3-4	4-4,6	85-88
Ovčí	5-7	7-11	3,5-4,5	77-82

• Mléka nezralá:

- mlezivo (kolostrum) vylučované mléčnou žlázou těsně před porodem a tři až pět dnů po porodu – mlezivo předběžné, pravé
- mléko aberantní vylučované mléčnou žlázou bez vazby na předchozí graviditu (hormonální poruchy, mléko samců apod.), neslouží k výživě mláďat.
- Mléka zralá normální mléko, tvoří se po ukončení tvorby mleziva.
 - ≽kaseinová (nad 75 %)
 - > albuminová

Druhy mléka	Bílkoviny (%)	Tuk (%)	Laktóza (%)	Voda (%)
Mateřské	1-2	4-6	5-9	84-90
Kobylí	1-2	1-2	7-8	87-91
Prasečí	5-7	4-10	3-6	79-82

- bod mrznutí mléka -0,525 °C
- **Disperzní** systém emulze, koloidní roztok, pravý roztok

Složka	Průměrný obsah (%)	Rozsah (%)
Voda	87,3	85,5 - 88,7
Sušina	12,7	14,5 - 11,3
Tukuprostá sušina	8,8	7,9 - 10,0
Tuk v sušině	31,0	21,0-38,0
Laktóza	4,6	3,8 - 5,3
Tuk	3,9	2,4-6,5
Bilkoviny	3,25	2,3 - 4,4
Kasein	2,6	1,7 - 3,5
Popeloviny	0,65	0,53 - 0,80
Organické kyseliny	0,18	0,13 - 0,22

Sušina mléka

Mezi sušinou, tučností a hustotou mléka platí tzv.
 Fleischmannův vztah:

$$S = 0.21 \cdot t + 0.25 \cdot ^{\circ}L_{20} + 0.82$$

Druh mléka	Hodnota L ₂₀
Syrové plné mléko	28,9 – 30,5
Pasterované mléko, tuk 3,5 %	29,4 – 30,3
Pasterované mléko, tuk 2 %	30,8 - 31,8
Pasterované odstředěné mléko, tuk 0,05 %	32,7 – 34,3

Sušina mléka

Složka mléka	ρ ²⁰ (kg·m ⁻³)
Voda	998,2
Tuk	918
Bilkoviny	1400
Laktóza	1780
Ostatní sloučeniny	1850

Druh mléka	Hodnota L ₂₀
Syrové plné mléko	28,9 – 30,5
Pasterované mléko, tuk 3,5 %	29,4 – 30,3
Pasterované mléko, tuk 2 %	30,8 - 31,8
Pasterované odstředěné mléko, tuk 0,05 %	32,7 – 34,3

Zdroj: Lukášová a kol., 1999

Dusíkaté látky v mléce

Obsah bílkovin ve vztahu k obsahu močoviny

Močovina Bílkoviny	< 150	150-300	> 300	
> 3,6	Nedostatek bílkovin a přebytek energie	Přebytek energie	Přebytek bílkovin a energie	
3,2-3,6	Nedostatek bílkovin a slabý přebytek energie	Bílkoviny a energie v rovnováze	Přebytek bílkovin a slabý nedostatek energie	
< 3,2	Nedostatek energie a bílkovin	Nedostatek energie	Přebytek bílkovin a nedostatek energie	

Dusíkaté látky bílkovinné – zastoupení AK

Dusíkaté látky bílkovinné – biologická hodnota

BH
100
92–96
92–96
88
82–85

	+
Rostlinné bílkoviny	
Sója	84
Zelené řasy	81
Žito	76
Fazole	72
Rýže	70
Brambory	70
Chleba	70
Čočka	60
Pšenice	56
Hrách	56
Kukuřice	54

Složení proteinů kravského mléka

Proteiny	Podíl v %	Obsah v g/dm ⁻³
Kaseiny celkem	80	25,6
α-kasein	42	13,4
β-kasein	25	8,0
γ-kasein	4	1,3
κ-kasein	9	2,9
Proteiny syrovátky celkem	20	6,4
l-laktalbumin	4	1,3
d-sérový albumin	1	0,3
d-laktoglobulin	9	2,9
imunoglobuliny	2	0,6
Polypeptidy (proteosy, peptony)	4	1,3

Kasein

Ve mléce tvoří asi 77 % bílkovin, z chemického hlediska se jedná o fosfoprotein. Ve mléce je přítomen jako komplex kaseinátu vápenatého (95 %) a fosforečnanu vápenatého (5 %). Izoelektrický bod je pH 4,4 až 4,6. V mléce je ve formě micel v kulovitých shlucích, které jsou tvořeny 20 000 až 50 000 molekulami kaseinů. Jednotlivé frakce se liší vlastnostmi, složením a hodnotami izoelektrického bodu.

Syrovátkové bílkoviny

Genetický polymorfizmus

Polymorfizmem se v genetice rozumí existence více variant (alel) určitého genu.

Forma genu (alela)	Projeví se v mléčné bílkovině κ-kaseinu následující změnou	Chovatel zaregistruje
A	V řetězci aminokyselin je na 136. místě aminokyselina treonin a 148. místě je kyselina asparagová	Nižší obsah proteinů v mléce, horší syřitelnost,
В	Řetězci aminokyselin jsou na 163. a na 148. místě leucin a alanin	Vyšší obsah proteinů v mléce, při zpracování na sýr až o 10 % vyšší výtěžnost, možnost výroby kvalitních sýrů typu parmezán, gouda,
C	Na 97. místě řetězce je místo argininu histidin	Efekt zatím není znám
E	Na 155. místě řetězce je místo aminokyseliny serinu glycin	Efekt zatím není znám

Struktura kaseinu

Vliv pH

Model molekuly bílkoviny při pH 6,6 tj. pH čerstvého mléka

Fig 2.25 A protein molecule at pH 6.6 has a net negative charge.

Model molekuly bílkoviny při kyselém a alkalickém pH

Fig 2.26 Protein molecules at pH \simeq 4.7, the isoelectric point.

Fig 2.27 Protein molecules at pH = 1

Fig 2.28 Protein molecules at pH v 14

Srážení bílkovin mléka

Kaseinové micely

Částečná hydrolýza κ-kaseinu

Agregace micel

Vznik sýřeniny

PyrGLu... Met – Ala – Arg – His - (Pro - His)₂ – Leu – Ser – Phe – Met – Ala – Ile... Val

1 volná NH₂ skupina

H-konec

hydrofobní para - kapa - kasein

169 – volná –COOH skupina

C-konec

hydrofilní kapa- kaseinomakropeptid

Srážení bílkovin mléka

Kaseinové micely

Částečná hydrolýza κ-kaseinu

Agregace micel

Vznik sýřeniny

PyrGLu... Met – Ala – Arg – His - (Pro - His)₂ – Leu – Ser – Phe – Met – Ala – Ile... Val

1 volná NH₂ skupina

H-konec

hydrofobní para - kapa - kasein

169 – volná –COOH skupina

C-konec

hydrofilní kapa- kaseinomakropeptid

Denaturace bílkovin – vazba beta-laktoglobulinu na kasein

Fig. 2.42 During denaturation κ-caseln achieves to β-factoglobulis.

Při záhřevu mléka nad 60 °C dochází k vazbě denaturovaného beta-laktoglobulinu na kapa kasein. Vlivy působící na množství a složení dusíkatých látek

- Výživa
- Plemeno
- Dojivost
- Sezóna
- Stádium laktace
- Pořadí laktace

Lactose Intolerance

Lactose

SMALL INTESTINE LARGE INTESTINE

Normal

Alergie na mléčnou bílkovinu / laktózová intolerance

	laktóz ová intolerance	alergie na kravské mléko
spouštěč	laktóza v jakémkoliv mléce, mléčném výrobku	specifické bílkoviny v kravském mléce
reakce těla	laktóza je bakteriálně odbourávána ve střevě	imunitní systém vyvolává tvorbu protilátek
potíže	žaludeční a střevní potíže; závislé na množství	alergické příznaky - svědění, kašel, obtíže vyvolává stopové množství

lactose digestion

tabulka č. 1

LIPIDY MLÉKA

- 97 99 % triacylglyceroly (estery glycerolu a mastných kyselin),
- 1 3 % ostatní látky rozpustné v tucích (fosfolipidy, cholesterol, karotenoidy, lipofilní vitaminy, aj.),
- 0.0,1-0,4 % volné mastné kyseliny

$$H_2-C-OH HOOC-R_1 H_2-C-OOCR_1$$
 $H-C-OH HOOC-R_2 H_2-C-OOCR_2 + 3H_2O$
 $H_2-C-OH HOOC-R_3 H_2-C-OOCR_3$

Glycerol + fatty acids → triglyceride (fat) + water

LIPIDY MLÉKA

Původ MK

- 1. syntetizují se v mléčné žláze prekursory jsou kyseliny octová, máselná a propionová
 - → nasycené C4 C14, částečně i palmitová C16
 - nedají se ovlivnit výživou, jsou dány charakterem činnosti bachorové mikroflóry, tvoří je mléčná žláza
- 2. z tuku v krmivu přes krevní lipidy stearová (C18:0), olejová (C18:1), částečně i palmitová C16
 - lze ovlivnit skladbou krmiva

Význam MK:

- \rightarrow Zdravotní
- → Technologický

Druh	Energie (kcal)	Bílkoviny (g)	Tuky (g)	Laktóza (g)	Vápník (mg)	Cholesterol (mg)
Plnotučné	66	3,2	3,9	4,5	115	14
Polotučné	48	3,2	1,5	4,7	120	6
Odstředěné	33	3,3	0,5	4,8	120	2

Mléčný tuk

- Měrná hmotnost 0,916 g/ml (plazma 1,033 g/ml)
- Široké spektrum mastných kyselin
- Stabilnější polymorfismus ve směsných krystalech triacylglycerolů
- Ztloukatelnost
- Hydrolýza vede k chuťovým vadám
- Je žádoucí minimalizovat faktory inicializující autooxidaci

Laktóza

- Substrát pro rozvoj řady MO
- Redukující disacharid
- Omezená rozpustnost řízená krystalizace

Minerální látky

• Ca²⁺, Na+, K+, Cl-

OBSAH VÁPNÍKU V POTRAVINÁCH

Potravina 100 g, vápník	(mg)				
Mák	1262	Tvaroh tvrdý Clever	150	Smetana 33 %	83
Sušené mléko polotučné	1256	Lísková jádra	140	Lučina s pažitkou	73
Madeland 45 %	887	Kapusta vařená	138	Podmáslí 1,6 %	72
Eidam 30 %	773	Mléko kozí	133	Gervais natur	56
Čedar	761	Kefírové mléko	132	Hlávkové zelí	47
Sezamová semena	670	Mléko kravské	124	Čínské zelí	39
Veselá kráva	610	Jogurt bílý 3 % Activia	120	Mrkev	36
Niva	553	Jogurt smetanový	120	Růžičková kapusta	36
Apetito light	489	10 % t.v.s.		vařená .	
Hermelín	389	Kysaná smetana	113	Brokolice vařená	36
Pribina smetanový	315	12-18 %		Máslo	22,4
Mandle	240	Tvaroh měkký jemný	110	Chřest vařený	18
Mléčné mražené krémy smetanové 10 % tuku	157	Smetana 12 % Tvaroh tučný	109	Květák vařený	17

Zdroj: nutridatabaze.cz

Druh mléka	Bílkoviny	Kaseiny	Popel	Tuk	Laktóza	Sušina
Kravské	3,2-3,8	2,4-2,7	0,7	4,1-4,3	4,6	12,5
Buvolí	4,8-4,9	3,4-3,7	0,8	7,0-7,6	4,83	18
Kozí	2,6-3,7	2,1-2,9	0,8	3,0-5,2	4,7	12,0
Ovčí	4,9-6,1	4,5-4,8	0,9-1,0	6,3-8,2	5,0	18,2

Technologicky významné vlastnosti mléka

- Kyselost
- Syřitelnost/kvasnost
- Termostabilita

Základní technologické ošetření mléka

- Odstřeďování
- Standardizace tučnosti
- Pasterace mléka
- Pasterace smetany
- Homogenizace mléka
- Deaerace
- Baktofugace

Odstřeďování mléka a standardizace tučnosti

Nadojené mléko 37 - 40°C

Smetana

Odstředěné mleko

Homogenizace mléka

Tepelné ošetření mléka - pasterační záhřevy

- Dlouhodobá pasterace 63 °C / 30 min.
- Šetrná pasterace 72 °C / 15 s.
- Vysoká pasterace 85 °C / 5 s.
- Smetana nad 90 °C / několik sec.

Rozdíly	Čerstvé mléko	Trvanlivé mléko	
Trvanlivost	7 dnů Datum použitelnosti	6 měsíců DMT	
Skladování	V chladu 4-8°C	Při pokojové teplotě Do 24 °C	
Nutriční hodnota	Nejmenší změny fyz., chem., biologických vlastností	Výraznější změny, vařivá chuť, rozklad vitamínů	
Mikrobiologie	Zničení choroboplodných MO	Zničení všech MO i spor	
Tepelné ošetření	Pasterizace 85°c, 1-2 s	UHT 137°C-142°C, po dobu nejméně 1 s	