How to give a talk?

Florian Rabe

University Erlangen-Nuremberg

2019

Example: Final Preparation of a Slide

Example: Final Preparation of a Slide

If we abstract from

- concrete syntax
- intended purpose
- user community
- ► tool support

the languages are quite similar:

 MathML

- MathML objects: constants, variables, application, arbitrary binding
- ▶ all operators introduced/specified in content dictionaries

- ▶ TPTP formulas: constants, variables, application, built-in binders $\forall \exists \lambda \Pi \Sigma$
 - ▶ logic-related operators built-in, specified in various language references no fixed type systems, no fixed calculus
 - ▶ other operators introduced/specified in TPTP files

If we abstract from

- concrete syntax
- intended purpose
- user community
- tool support

the languages are quite similar:

MathML

- ▶ MathML objects: constants, variables, application, arbitrary binding
- ▶ all operators introduced/specified in content dictionaries

- ▶ TPTP formulas: constants, variables, application, built-in binders $\forall \exists \lambda \Pi \Sigma$
- ► logic-related operators built-in, specified in various language references no fixed type systems, no fixed calculus
 - other operators introduced/specified in TPTP files

```
Example: Final Preparation of a Slide
```

If we abstract from

- concrete syntax
- intended purpose
- user community
- tool support

the languages are quite similar:

MathML

- constants, variables, application, arbitrary binding
- all operators introduced/specified in content dictionaries

- \blacktriangleright constants, variables, application, built-in binders $\forall \exists \lambda \Pi \Sigma$
- most operators introduced/specified in TPTP files
- built-in logic-related operators, specified in various language references no fixed type systems, no fixed calculus

If we abstract from

- concrete syntax
- intended purpose
- user community
- tool support

the languages are quite similar:

MathML

- constants, variables, application, arbitrary binding
- all operators introduced/specified in content dictionaries

- ► constant, variables, application, built-in binders $\forall \exists \lambda \Pi \Sigma$
- most operators introduced/specified in TPTP files
- built-in logic-related operators, specified in various language references no fixed type systems, no fixed calculus

MathML vs. TPTP: Logical Similarities If we abstract from

Concrete cunta

- concrete syntax
- intended purpose
- user community
- tool support

the languages are quite similar:

MathML

- constants, variables, application, arbitrary binding
- all operators introduced/specified in content dictionaries

- ► constant, variables, application, built-in binders ∀∃λΠΣ
 - most operators introduced/specified in TPTP files
 - built-in logic-related operators
 - built-iii logic-related operators
 - semantics left open no fixed type systems, no fixed calculus
 specified in various language references fof, tff, thf, thf1, ...

Languages are quite similar if we abstract from

concrete syntax

user community

intended purpose

tool support

MathML

- constants, variables, application, arbitrary binding
- all operators introduced/specified in content dictionaries

- ► constant, variables, application, built-in binders ∀∃λΠΣ
- most operators introduced/specified in TPTP files
- built-in logic-related operators
 - ► semantics left open no fixed type systems, no fixed calculus
 - ► various dialects fof, tff, thf, thf1, ...