Коллоквиум по дискретной математике N21

Цыганов Аскар, Евгений Катасонов, Александр Деревягин, Амир Галеев, Артем Сафин, Даня Смирнов, Алексей Дацковский, Иван Мачуговский

10 декабря 2022

Содержание

Ļ	Опр	ределения и обозначения	5
	1.1	Принцип математической индукции. Принцип полной математической индукции. Принцип наименьшего числа.	5
	1.2	Множества, теоретико-множественные операции. Парадокс Рассела.	5
	1.3	Бинарные отношения, композиция отношений.	6
	1.4	Функции (как частный случай отношений). Образы и прообразы множеств. Обратная функция.	6
	1.5	Виды функций: инъекции, сюръекции и биекции.	6
	1.6	Отношения эквивалентности. Классы эквивалентности	6
	1.7	Правила суммы и произведения в комбинаторике. Задачи о подсчете путей. Конечные слова в алфавите. Упорядоченный выбор k элементов из n (с повторениями или без повторений)	7
	1.8	Числа сочетаний. Треугольник Паскаля. Рекуррентное соотношение для чисел сочетаний	8
	1.9	Бином Ньютона. Сумма и знакочередующаяся сумма биномиальных коэффициентов	8
	1.10	Сочетания с повторениями. Количество решений уравнения $x_1 + x_2 + + x_n = k$ в неотрицательных целых числах.	9
	1.11	Полиномиальные коэффициенты. Их алгебраический и комбинаторный смысл	9
	1.12	Задание булевых функций таблицами истинности. Количество булевых функций от $m{n}$ переменных	9
	1.13	Правила алгебры логики, доказательство теоретико-множественных тождеств с помощью алгебры логики.	9
	1.14	Формулы, полные системы связок, примеры. Дизъюнктивная нормальная форма, СДНФ.	10
	1.15	Полином Жегалкина. Теорема о представлении булевой функции полиномом Жегалкина.	11
	1.16	Класс линейных функций, лемма о нелинейной функции	11
	1.17	Принцип двойственности, класс самодвойственных функций, лемма о несамодвойственной функции	11
	1.18	Класс монотонных функций, лемма о немонотонной функции	12
	1.19	Критерий Поста полноты системы булевых функций.	12
	1.20	Предполные классы булевых функций. Описание предполных классов булевых функций	12
	1.21	Формула включений-исключений	12
	1.22	Равномощные множества. Счетные и континуальные множества. Примеры.	12
	1.23	Сравнение мощностей, теорема Кантора.	12
	1.24	Теорема Кантора-Бернштейна.	13
	1.25	Частично упорядоченные множества: строгий и нестрогий частичные порядки, их связь, линейный порядок	13
	1.26	Операции с частично упорядоченными множествами: сумма порядков, покоординатный порядок, лексикографический порядок.	13
	1.27	Изоморфизм порядков, примеры	14
	1.28	Минимальные и максимальные элементы в частичных порядках. Наибольшие и наименьшие элементы .	14
	1.29	Бесконечно убывающие цепи. Фундированные множества. Принцип математической индукции для фундированных множеств	14

	1.30	Цепи и антицепи в частично упорядоченных множествах. Теорема Дилуорса.	14
	1.31	LYM-лемма, теорема Шпернера о размере максимальной антицепи в булевом кубе.	14
	1.32	Ориентированные и неориентированные графы. Степени вершин. Лемма о рукопожатиях. Понятия пути, цикла, простого пути, простого цикла.	15
	1.33	Отношение достижимости и компоненты связности графа. Неравенство, связывающее число вершин, ребер и компонент связности в графе. Компоненты сильной связности ориентированного графа	16
	1.34	Деревья. Теорема об эквивалентных определениях дерева.	16
	1.35	Полное двоичное дерево. Остовное дерево в графе.	16
	1.36	Ациклические орграфы, топологическая сортировка.	16
	1.37	Эйлеровы циклы в ориентированных и неориентированных графах. Критерий существования эйлерова	
	1.00	цикла.	17
		Двудольные графы, критерий двудольности графа. Булев куб.	17
		Теорема Холла.	17
		Паросочетания. Вершинные покрытия. Теорема Кёнига.	17
	1.41	Теорема Рамсея. Верхняя оценка чисел Рамсея	17
2	Док	азательства	19
	2.1	Применения метода математической индукции: существование 2-цветной раскраски областей на плоскости; неравенство Бернулли; сумма обратных квадратов меньше 2	19
	2.2	Эквивалентность принципа математической индукции, принципа полной индукции и принципа наименьшего числа	19
	0.9		19
	2.3	Бинарные отношения, теорема об ассоциативности композиции отношений. Функции. Критерий существования функции, обратной к данной. Композиция биекций является биекцией.	20
	2.4	Теорема о классах эквивалентности для отношения эквивалентности.	21
	2.5	Числа сочетаний: явная и рекуррентная формула. Треугольник Паскаля. Рекуррентное соотношение для чисел сочетаний. Бином Ньютона. Сумма биномиальных коэффициентов. Знакопеременная сумма биномиальных коэффициентов.	21
	2.6	Сочетания с повторениями. Количество решений уравнения $x_1 + x_2 + + x_n = k$ в неотрицательных целых числах	22
	2.7	Полиномиальные коэффициенты. Их алгебраический и комбинаторный смысл.	23
	2.8	Формулы, полные системы связок. Полнота системы связок «конъюнкция, дизъюнкция, отрицание». Дизъюнктивная нормальная форма, СДН Φ .	23
	2.9	Полнота системы связок «XOR, конъюнкция, 1». Теорема о представлении булевой функции полиномом Жегалкина (существование и единственность).	23
	2.10	Класс линейных функций, лемма о нелинейной функции. Классы функций, сохраняющих константу. Лемма о функции, не лежащей в классе, сохраняющем константу.	24
	2.11	Принцип двойственности, класс самодвойственных функций, лемма о несамодвойственной функции. Класс монотонных функций, лемма о немонотонной функции	25
	2.12	Критерий Поста полноты системы булевых функций.	26
	2.13	Предполные классы булевых функций. Описание предполных классов булевых функций	27
	2.14	Формула включений-исключений	27
	2.15	Подмножество счетного множества конечно или счетно. Во всяком бесконечном множестве есть счетное подмножество. Объединение конечного или счётного числа конечных или счётных множеств конечно или счётно. Декартово произведение конечного числа счетных множеств счетно. Счетность множества конечных последовательностей натуральных чисел.	28
	2.16	Если множество A бесконечно, а множество B конечно или счётно, то множество $A \cup B$ равномощно A . Равномощность множеств: бесконечных последовательностей из 0 и 1; вещественных чисел; $[0,1]$; $[0,1)$; множества всех подмножеств натуральных чисел. Равномощность отрезка и квадрата.	29
	2.17	Несчетность множества бесконечных последовательностей из 0 и 1. Сравнение мощностей, теорема Кантора о сравнении мощности множества и множества всех его подмножеств.	31
	2.18	Теорема Кантора — Бернштейна.	31

	2.19	Связь строгих и нестрогих частичных порядков. Изоморфизм порядков. Примеры. Доказательство попарной неизоморфности порядков $\mathbb{Z}, \mathbb{Q}, [0,1]$ и $(0,1)$. Доказательство неизоморфности покоординатных порядков на $[0,1]^2$ и $\{(x,y)\in\mathbb{R}^2 x + y \leq 1\}$.	32
	2.20	Изоморфизм конечных линейных порядков одинаковой мощности. Теорема о том, что счетный линейный порядок изоморфен подмножеству рациональных чисел.	33
	2.21	Доказательство эквивалентности трех определений фундированных множеств	33
	2.22	Связь длины цепей и размеров разбиений частично упорядоченного множества на антицепи	34
		Теорема Дилуорса	34
	2.24	LYM-лемма, теорема Шпернера о размере максимальной антицепи в булевом кубе	35
	2.25	Доказательство того, что достижимость в неориентированном графе является отношением эквивалентности и всякий граф можно разбить на компоненты связности. Неравенство, связывающее число вершин, ребер и компонент связности в графе. Разбиение ориентированного графа на компоненты сильной связности.	36
	2.26	Эквивалентность различных определений деревьев: число вершин и число ребер, минимально связные графы, графы без простых циклов, графы с единственностью простых путей. Существование остовного дерева в связном графе.	37
	2.27	Ациклические орграфы, топологическая сортировка	38
	2.28	Эйлеровы циклы в ориентированных и неориентированных графах. Критерий существования эйлерова	
		цикла	38
		Двудольные графы, критерий двудольности графа. Пример: булев куб	39
		Теорема Холла.	40
		Паросочетания. Вершинные покрытия. Теорема Кёнига	41
	2.32	Теорема Рамсея. Верхняя оценка чисел Рамсея.	41
3	Сем	инары	43
	3.1	Семинар 1	43
	3.2	Семинар 2	45
	3.3	Семинар 3	46
	3.4	Семинар 4	48
	3.5	Семинар 5	49
	3.6	Семинар 6	50
	3.7	Семинар 7	52
	3.8	Семинар 8	53
	3.9	Семинар 9	54
	3.10	Семинар 10	55
	3.11	Семинар 11	56
1	Дом	лашние задания	57
	4.1	Домашнее задание 1	57
	4.2	Домашнее задание 2	61
	4.3	Домашнее задание 3	64
	4.4	Домашнее задание 4	68
	4.5	Домашнее задание 5	71
	4.6	Домашнее задание 6	75
	4.7	Домашнее задание 7	78
	4.8	Домашнее задание 8	82
	4.9	Домашнее задание 9	86
	4.10	Домашнее задание 10	88

4.11 Домашнее задание 11			
--------------------------	--	--	--

1 Определения и обозначения

1.1 Принцип математической индукции. Принцип полной математической индукции. Принцип наименьшего числа.

• Принцип математической индукции:

Пусть есть некоторое утверждение A зависящее от $n \in \mathbb{N}$, которое может быть либо истинным, либо ложным, и выполняются следующие условия:

- 1. A(1) истинно (База индукции)
- 2. $\forall n: A(n)$ истинно $\Rightarrow A(n+1)$ истинно. (Шаг индукции)

Тогда $\forall n : A(n)$ истинно.

• Принцип математической индукции (эквивалентная формулировка):

Пусть $S \subseteq \mathbb{N}$ и выполняются следующие условия:

- 1. $1 \in S$
- 2. $\forall n \in \mathbb{N} : n \in S \Rightarrow n+1 \in S$

Тогда $S = \mathbb{N}$.

• Принцип полной математической индукции:

Пусть есть некоторое утверждение A зависящее от $n \in \mathbb{N}$, которое может быть либо истиным, либо ложным, и выполняются следующие условия:

- 1. A(1) истинно
- 2. $\forall n : (\forall k < n \ A(k) \text{истинно}) \Rightarrow A(n)$ истинно.

Тогда A(n) истинно.

• Принцип наименьшего числа

Пусть $S \subseteq \mathbb{N}$, $S \neq \emptyset \Rightarrow$ в S существует наименьший элемент.

Наименьшим элементом множества A называют такое число c, что $\forall a \in A : c \leqslant a$

1.2 Множества, теоретико-множественные операции. Парадокс Рассела.

• Определение и некоторые обозначения

Множеством называют совокупность произвольных объектов

$$X = \{a, b, c\}$$

 $a \in X$ – объект a лежит в множестве, $d \notin X$ – объект d не лежит в множестве

Способы задания множества:

- 1. Явно (списком элементов): $X = \{1, 2, 3\}$
- 2. Условием: $Y = \{ y \in \mathbb{N} \mid y \text{четно} \}$

Ø − пустое множество

 2^{A} – множество всех подмножеств A (в том числе пустое и само A)

• Операции над множествами

Пусть A, B – множества. Тогда:

Объединение множеств: $A \cup B = \{x \mid x \in A \lor x \in B \}$

Пересечение множеств: $A \cap B = \{x \mid x \in A \land x \in B \}$

Разность множеств: $A \setminus B = \{x \in A \mid x \notin B\}$

Дополнение множества A до B: $\bar{A} = B \setminus A$

Симметрическая разность: $A\triangle B = \{x \mid (x \in A \land x \notin B) \lor (x \notin A \land x \in B)\}$

 $A \subseteq X \Leftrightarrow \forall x (x \in A \Rightarrow x \in X)$. A – подмножество, X – надмножество.

 $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$.

• Парадокс Рассела

 $U = \{x \mid x \notin x\}.$

Bопрос: $U \in U$?

Если да, то по определению U имеем: $U \notin U$ - противоречие. Если нет, то т.к $U \notin U$, то U является элементом себя же. Противоречие.

1.3 Бинарные отношения, композиция отношений.

Бинарное отношение R на множестве $A \times B$ – это $R \subseteq A \times B$ такое, что если $x \in A, y \in B$ и $(x,y) \in R$, элементы находятся в отношении (R(x,y)=1,xRy)

Пример: $\mathbb{R} \times \mathbb{R}$, x < y – отношение.

Композиция отношений

Пусть $R \subseteq A \times B, S \subseteq B \times C$. Тогда $(S \circ R) \subseteq A \times C$: $(a,c) \in S \circ R \Leftrightarrow \exists b \in B : (a,b) \in R, (b,c) \in S \ (aRb \ u \ bSc)$.

1.4 Функции (как частный случай отношений). Образы и прообразы множеств. Обратная функция.

Функция f из A в B – это такое отношение $f \subseteq A \times B$, что $\forall a \in A$ в f есть не более одной пары (a,b), где $b \in B$.

Обозначение: $(a,b) \in f$ или $afb \Leftrightarrow f(a) = b$.

Мы рассматриваем частичные функции, то есть они не полностью определены на A. Но

f на A и B тотальна, если Dom f = A (функция определена на всем множестве A). Тогда пишут $f: A \to B$.

Запись $f:A\to B$ с подвохом: мы подразумеваем при подобной записи что f тотальна, однако это может быть не так вне нашего курса, будьте бдительны.

Если $X \subseteq A$, то $f(X) = \{b \in B \mid \exists x \in X : f(x) = b\}$ – **образ** множества X.

Прообраз множества Y $f^{-1}(Y)(Y \subseteq B) = \{a \in A \mid f(a) \in Y\}.$

Пусть $f:A\to B$ – биекция. Тогда $f^{-1}:B\to A$ или **обратная функция к** f определяется как $f^{-1}(b)=a\Leftrightarrow f(a)=b$. Эквивалентное определение: функция $g:B\to A$ называется обратной к $f:A\to B$, если $g\circ f=id_A, f\circ g=id_B$.

1.5 Виды функций: инъекции, сюръекции и биекции.

Функция $f: A \to B$ называется инъекцией, если $a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$

Функция $f:A\to B$ называется сюръекцией, если $\forall y\in B\colon \exists x, f(x)=y$ (область значений функции есть все множество B).

Функция $f: A \to B$ называется биекцией, если она одновременно и инъекция, и сюрьекция.

1.6 Отношения эквивалентности. Классы эквивалентности.

Отношение R на A называют:

Рефлексивным, если $\forall a \in A \colon aRa$.

Симметричным, если $\forall a, b \in A : aRb \Leftrightarrow bRa$.

Транзитивным, если $\forall a, b, c \colon aRb \land bRc \Rightarrow aRc$.

Пример: отношение a < b транзитивно, но не рефлексивно и не симметрично. Отношение $a + b = a \cdot b$ симметрично, но не рефлексивно и не транзитивно.

Отношение R на A называют **отношением эквивалентности**, если отношение R рефлексивно, симметрично и транзитивно.

Пример: Отношение a=b – рефлексивно ($\forall a \in A \colon a=a$), симметрично ($\forall a,b \in A \colon a=b \Rightarrow b=a$), транзитивно ($\forall a,b,c \in A \colon a=bb=c \Rightarrow a=c$).

Если R на A – отношение эквивалентности, то множество A можно разбить на классы эквивалентности A_i

Классы эквивалентности – это разбиение множества A отношением эквивалентности R на непересекающиеся классы ($\forall i \neq j : A_i \cap A_j = \varnothing$, $\cup_{i \in I} A_i = A$) такое, что $\forall x, y \in A_i : xRy$ и $\forall x \in A_i, y \in A_j, i \neq j : \neg xRy$. (то есть если два элемента принадлежат одному классу эквивалентности, они находятся в отношении R и наоборот).

1.7 Правила суммы и произведения в комбинаторике. Задачи о подсчете путей. Конечные слова в алфавите. Упорядоченный выбор k элементов из n (с повторениями или без повторений)

A, B, C - какие-то конечные множества.

• Правило суммы:

Пусть
$$A = B \cup C$$
 и $B \cap C = \emptyset$, тогда $|A| = |B| + |C|$

• Правило произведения:

$$|A \times B| = |A| \cdot |B|$$

• Задача на подсчет путей № 1

Пусть дана сеточка и вы можете ходить только вправо и вверх по ее узлам. Необходимо посчитать количество путей из левого нижнего угла в правый верхний угол данной сетки.

Можно сделать это, используя, правило суммы. Для каждого из узлов вычисляя количество способов дойти из левого нижнего угла в этот. Для того чтобы насчитать количество путей для очередного узла мы можем просто сложить количество путей ведущих в узел ниже и узел левее. Это верно так как два множества этих путей не пересекаются.

• Задача на подсчет путей № 2

Найти количество путей из s в f в подобном графе.

Множество таких путей можно представить себе как декартово произведение множеств путей между парами вершин.

Тогда количество путей из s в f это произведение количества путей между парами вершин.

• Упорядоченный выбор k элементов из n

Пусть множество |A| = n.

Тогда количество строк длины k с элементами из алфавита A, которые могут повторятся, это n^k . То же самое, что количество способов упорядоченно выбрать k элементов из множества размера n с повторениями.

Если же повторения запрещены, то количество таких строк - это $\frac{n!}{(n-k)!}$. То же самое, что количество способов упорядоченно выбрать k элементов из множества размера n без повторений.

1.8 Числа сочетаний. Треугольник Паскаля. Рекуррентное соотношение для чисел сочетаний

Сочетанием из n по k называется набор из k элементов, выбранных из n-элементного множества, в котором не учитывается порядок элементов.

Количество сочетаний из n по k записывается так: $\binom{n}{k}$ или так: $\binom{n}{k}$. $\binom{n}{k} = \binom{n}{k} = \frac{n!}{k!\cdot(n-k)!}$

$$\binom{n}{k} = \binom{n}{n-k}$$

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Треугольником Паскаля называется бесконечная треугольная таблица, в которой на вершине и по боковым сторонам стоят единицы, каждое из остальных чисел равно сумме двух чисел, стоящих над ним в предшествующей строке. В таком треугольнике элемент в строке n на позиции k равен $\binom{n}{k}$.

1.9 Бином Ньютона. Сумма и знакочередующаяся сумма биномиальных коэффициентов.

Биномом Ньютона называют формулу для разложения n-й ($n \in \mathbb{N}$) степени суммы двух переменных, а именно:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Собственно из-за этой формулы C_n^k в том числе называют биномиальным коэффициентом. Также верны следующие равенства:

$$\sum_{k=0}^{n} C_n^k = 2^n$$

$$\sum_{k=0}^{n} (-1)^k C_n^k = 0$$

8

1.10 Сочетания с повторениями. Количество решений уравнения $x_1 + x_2 + ... + x_n = k$ в неотрицательных целых числах.

• Сочетание с повторениями

Сочетанием с повторениями из n элементов по k называют неупорядоченный k-элеметный набор, в котором количество каждого элемента может быть произвольным. Их количество обозначается \overline{C}_n^k и равно:

$$\overline{C}_n^k = \binom{n+k-1}{k} = \binom{n+k-1}{n-1}$$

• Количество решений уравнения $x_1+x_2+...+x_n=k, x_i\geqslant 0, \ x_i\in \mathbb{Z}$

Количество решений равно $\binom{n+k-1}{n-1}$

• Количество решений уравнения $x_1 + x_2 + ... + x_n = k, x_i \in \mathbb{N}$

Количество решений равно $\binom{k-1}{n-1}$

1.11 Полиномиальные коэффициенты. Их алгебраический и комбинаторный смысл.

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{\alpha_1 + \alpha_2 + \dots + \alpha_k = n} \begin{pmatrix} n \\ \alpha_1, & \dots, & \alpha_k \end{pmatrix} x_1^{\alpha_1} x_2^{\alpha_2} \dots x_k^{\alpha_k}$$

Где $\begin{pmatrix} n \\ \alpha_1, & ..., & \alpha_k \end{pmatrix} = \frac{n!}{\alpha_1!\alpha_2!...\alpha_k!}$. Это число называют полиномиальным коэффициентом.

Собственно алгебраический смысл - коэффициенты разложения суммы $(x_1 + x_2 + ... + x_k)^n$.

Комбинаторный смысл - полиномиальный коэффициент равен числу упорядоченных разбиений n-элементного множества на k подмножеств размеров (мощностей) $\alpha_1, \alpha_2, ..., \alpha_k$

1.12 Задание булевых функций таблицами истинности. Количество булевых функций от n переменных

• Задание булевых функций таблицами истинности

Любую булеву функцию можно задать с помощью таблицы истинности. Выглядит она следующим образом: в каждой строке перечисляются значения набора переменных x_1, x_2, \ldots, x_n , после чего перечисляется значение функции от данного набора переменных.

Пример для базовых булевых операций:

x	y	\wedge	V	\oplus	\rightarrow	
0	0	0	0	0	1	1
0	1	0	1	1	1	0
1	0	0	1	1	0	0
1	1	1	1	0	1	1

• Количество булевых функций

Количество булевых функций от n переменных равно 2^{2^n} . Это следует из того, что различных наборов на n переменных всего 2^n , и для каждого набора мы можем выбрать значение 0 или 1

1.13 Правила алгебры логики, доказательство теоретико-множественных тождеств с помощью алгебры логики.

9

• Правила алгебры логики

1. Коммутативность

$$x \lor y = y \lor x$$

$$x \wedge y = y \wedge x$$

$$x \oplus y = y \oplus x$$

2. Ассоциативность

$$x \lor (y \lor z) = (x \lor y) \lor z$$
$$x \land (y \land z) = (x \land y) \land z$$
$$x \oplus (y \oplus z) = (x \oplus y) \oplus z$$

3. Дистрибутивность

$$(x \lor y) \land z = (x \land z) \lor (y \land z)$$

$$(x \land y) \lor z = (x \lor z) \land (y \lor z)$$

$$(x \oplus y) \land z = (x \land z) \oplus (y \land z)$$

4. Закон де Моргана

$$\neg(x \land y) = \neg x \lor \neg y$$
$$\neg(x \lor y) = \neg x \land \neg y$$

5. Следствие

$$(x \to y) = (\neg y \to \neg x)$$

• Доказательство теоретико-множественных тождества с помощью алгебры логики

Доказать утверждение: $(A_1 \cap A_2 \cap ... \cap A_n) \setminus (B_1 \cup B_2 \cup ... \cup B_n) = (A_1 \setminus B_1) \cap (A_2 \setminus B_2) \cap ... \cap (A_n \setminus B_n)$ Доказательство:

Рассмотрим произвольный элемент x.

$$a_i = x \in A_i \ (false/true)$$

$$b_i = x \in B_i \ (false/true)$$

Выпишем в этих терминах левую часть:

$$(a_1 \wedge a_2 \wedge ... \wedge a_n) \wedge \neg (b_1 \vee b_2 \vee ... \vee b_n)$$

Правую часть:

$$(a_1 \wedge \neg b_1) \wedge (a_2 \wedge \neg b_2) \wedge \dots \wedge (a_n \wedge \neg b_n)$$

Используя закон де Моргана преобразуем левую часть:

$$(a_1 \wedge a_2 \wedge \ldots \wedge a_n) \wedge \neg (b_1 \vee b_2 \vee \ldots \vee b_n) = (a_1 \wedge a_2 \wedge \ldots \wedge a_n) \wedge (\neg b_1 \wedge \neg b_2 \wedge \ldots \wedge \neg b_n) = (a_1 \wedge \neg b_1) \wedge (a_2 \wedge \neg b_2) \wedge \ldots \wedge (a_n \wedge \neg b_n)$$

Получили идентичную правой части формулу, следовательно тождество верно, ч.т.д.

Несколько полезных соображений:

$$x \in A \cup B \Leftrightarrow a \vee b$$

$$x \in A \cap B \Leftrightarrow a \wedge b$$

$$x \in A \setminus B \Leftrightarrow a \wedge \neg b$$

$$x \in A \triangle B \Leftrightarrow a \oplus b$$

1.14 Формулы, полные системы связок, примеры. Дизъюнктивная нормальная форма, СДНФ.

Связка — это любая булева функция. Вроде как точно связку не определяют, тем не менее, под связками понимают именно булевы функции

Пример множества связок: $F = \{\neg, \land, \lor\}$.

Пусть F это множество связок. Тогда, функция $f:\{0,1\}^n \to \{0,1\}$ выразима в системе связок F, если \exists формула φ под данной системой F (или f можно выразить через функции системы связок F):

$$\forall (x_1, \dots, x_n) \in \{0, 1\}^n : f(x_1, \dots, x_n) = \varphi(x_1, \dots, x_n)$$

Формула φ строится последовательно:

- 1. Переменная x_i сама по себе является формулой
- 2. Переменная $g(\varphi_1,\ldots,\varphi_n)$, где $g\in F$ и $\varphi_1,\varphi_2,\ldots,\varphi_n$ формулы тоже формула.
- 3. Если $\varphi(x_1, x_2, \dots, x_n)$ формула, то $\varphi(x_1, x_2, \dots, x_n, x_{n+1})$ тоже формула (где x_{n+1} фиктивная переменная, так мы умеем расширять количество аргументов у формулы).

Константы по умолчанию не являются формулами, их надо выражать из связок.

[F] — множество всех булевых функций, выразимых в F (или замыкание F)

F – **полная система связок**, если [F] – все булевы функции (P_2) .

Пусть $x^a = x$ если a = 1 и $\neg x$ если a = 0. Тогда:

Коньюнкт – $x_1^{a_1} \wedge x_2^{a_2} \wedge \ldots \wedge x_k^{a_k}$

Дизьюнктивная Нормальная Форма (ДНФ) – представление функции $f(x_1, x_2, ..., x_n)$ как дизьюнкции коньюнктов.

Пример: для функции $(A \lor B) \land (C \lor \neg D)$, ДНФ $-A^1 \land C^1 \lor A^1 \land D^0 \lor B^1 \land C^1 \lor B^1 \land D^0$

1.15 Полином Жегалкина. Теорема о представлении булевой функции полиномом Жегалкина.

Моном – это выражение вида $x_{i_1} \wedge x_{i_2} \wedge ... \wedge x_{i_k}$.

(0 и 1 - тоже мономы)

Полином Жегалкина – многочлен вида $\bigoplus_{(i_1,\dots,i_k),k=0\dots n} a_{i_1\dots i_k} \wedge x_{i_1} \wedge x_{i_2} \wedge \dots \wedge x_{i_k}$

Пример: $1 \oplus (x \land y) \oplus (x \land y \land z)$

Теорема о представлении булевой функции полиномом Жегалкина: каждую булеву функцию можно однозначно представить в виде полинома Жегалкина.

1.16 Класс линейных функций, лемма о нелинейной функции.

Функция f называется линейной, если $f(x_1,\dots,x_n)=a_0\oplus a_1x_1\oplus a_2x_2\oplus\dots\oplus a_nx_n$, где $a_i\in\{0,1\}$

 $L = \{ f \in P_2 | f$ – линейная $\}$ – множество всех линейных функций.

Пример: $x_i \in L$, $x \oplus y \in L$, $0, 1 \in L$

 $x \land y \notin L, x \lor y \notin L$

Лемма о нелинейной функции: Пусть $f(x_1, ..., x_n) \notin L$. Тогда подставив вместо переменных функции $x_1, ..., x_n$ 0, x и y можно получить $g(x, y) \notin L$.

Иначе говоря, через любую не линейную функцию на п переменных можно выразить не линейную функцию на двух переменных.

1.17 Принцип двойственности, класс самодвойственных функций, лемма о несамодвойственной функции.

Пусть $f(x_1, ..., x_n) \in P_2$. Тогда $f^*(x_1, ..., x_n) = \neg f(\neg x_1, ..., \neg x_n)$ – двойственная функция.

Пример: $(\neg x)^* = \neg(\neg(\neg x)) = \neg x$

 $(x \wedge y)^* = \neg((\neg x) \wedge (\neg y)) = x \vee y.$

 $(f^*)^* = f$

Принцип двойственности:

Пусть $f(x_1,\ldots,x_n)=f_0(f_1(x_1,\ldots,x_n),\ldots,f_k(x_1,\ldots,x_n))$. Тогда:

$$f^*(x_1,\ldots,x_n) = f_0^*(f_1^*(x_1,\ldots,x_n),\ldots,f_k^*(x_1,\ldots,x_n))$$

Функция $f \in P_2$ называется самодвойственной, если $f^* = f$.

 $S = \{ f \in P_2 | f^* = f \}$ — множество всех самодвойственных функций.

Пример: $x \in S, \neg x \in S, x \oplus y \oplus z \in S$

Лемма о несамодвойственной функции:

Пусть $f(x_1,\ldots,x_n) \notin S$. Тогда подставляя вместо переменных функции $x, \neg x$, можно получить константу.

1.18 Класс монотонных функций, лемма о немонотонной функции.

Для того, чтобы ввести класс монотонных функций нам нужно ввести понятие порядка на множестве наборов переменных. Скажем, что изначально 0 < 1. Тогда:

Набор $(\alpha_1,\ldots,\alpha_n) \leq (\beta_1,\ldots,\beta_n)$, если $\forall i : \alpha_i \leq \beta_i$.

Пример: $(1,0) \le (1,1)$

 $(1,0) \nleq (0,1)$ (не сравнимы)

 $(0,1) \nleq (1,0)$ (не сравнимы)

 $f \in P_2$ монотонная, если $\forall \alpha, \beta, \alpha_i \leq \beta_i \Rightarrow f(\alpha) \leq f(\beta)$

Лемма о немонотонной функции:

Пусть $f(x_1, ..., x_n) \notin M$. Тогда, подставляя вместо переменных 0, 1, x, можно получить $\neg x$.

1.19 Критерий Поста полноты системы булевых функций.

Критерий Поста:
$$[F] = P_2 \Leftrightarrow F \nsubseteq L, F \nsubseteq T_0, F \nsubseteq T_1, F \nsubseteq S, F \nsubseteq M$$

Иначе говоря, система связок полная тогда и только тогда, когда для любого класса L, S, T_0 , T_1 , M в системе связок F есть функция, не лежащая в этом классе.

1.20 Предполные классы булевых функций. Описание предполных классов булевых функций

Пусть $F \subseteq P_2$. И F - замкнутый класс, то есть [F] = F.

Тогда F - предполный в P_2 , если $F \neq P_2$ и $\forall g \notin F$ верно, что $[F \cup \{g\}] = P_2$

В P_2 есть ровно пять предполных классов: T_0, T_1, L, S, M

1.21 Формула включений-исключений

Пусть $A_1, A_2...A_n$ - конечные множества. Тогда:

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{k=1}^n \sum_{1 \le i_1 \le i_2 \le \dots \le i_k \le n} (-1)^{k+1} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}|$$

1.22 Равномощные множества. Счетные и континуальные множества. Примеры.

Равномощные множества. Множества A и B называются равномощными, если $\exists f: A \to B$ - биекция. $|A| = |B|, A \sim B$

Счетное множество - множество равномощное множеству натуральных чисел N.

Континуальное множество - множество равномощное множеству действительных чисел \mathbb{R} .

Примеры.

- 1. $\mathbb{N} \sim \mathbb{N} \cup \{0\}, f(n) = n 1$
- 2. $(0,1) \sim (0,2), f(x) = 2x$
- 3. $[a, b] \sim [c, d]$

1.23 Сравнение мощностей, теорема Кантора.

Сравнение мощностей.

 $|A| \leqslant |B|$, если $\exists f : A \to B$ - инъекция.

|A| < |B|, если $|A| \le |B|$ и $A \not\sim B$.

Теорема Кантора:

 Π усть X - множество.

Тогда $|X| < |2^X|$.

1.24 Теорема Кантора-Бернштейна.

Пусть $|A| \leqslant |B|$ и $|A| \geqslant |B|$, тогда $A \sim B$.

1.25 Частично упорядоченные множества: строгий и нестрогий частичные порядки, их связь, линейный порядок

Говорят, что бинарное отношение R, определенное на множестве P, является **строгим частичным порядком**, если для него выполнены такие свойства:

- 1. ∀a ∈ P, ¬aRa (антирефлексивность)
- 2. $\forall a, b, c \in P, aRb, bRc \Rightarrow aRc$ (транзитивность)

Из транзитивности и антирефлексивности следует то, что отношения строгого порядка не обладают свойством симметричности (aRb и bRa не может выполняться, т.к тогда по транзитивности $aRb, bRa \Rightarrow aRa$, что противоречит антирефлексивности)

Обычно отношения строгого порядка обозначают как <.

Говорят, что бинарное отношение R, определенное на множестве P, является **нестрогим частичным порядком**, если для него выполнены такие свойства:

- 1. $\forall a \in P, aRa$ (рефлексивность)
- 2. $\forall a, b \in P, aRb$ и $bRa \Rightarrow a = b$ (антисимметричность)
- 3. $\forall a, b, c \in P$, $aRb, bRc \Rightarrow aRc$ (транзитивность)

Обычно отношения нестрогого порядка обозначают как \leq

Связь строгого и нестрогого частичных порядков: Из отношения не строгого порядка на P можно получить отношение строгого порядка на P и наоборот следующим образом

$$a \le b \Leftrightarrow a < b$$
 или $a = b$ $a < b \Leftrightarrow a \le b$ и $a \ne b$

Множество P называется **частично упорядоченным**, если на нем определен порядок R.

Обозначается как (P, \leq_P) или (P, \leq_P) для строгого и нестрогого порядков соответственно.

Линейный порядок – это такой порядок (P, \leq_P) , что для любых элементов $x, y \in P$, $x \leq y$ или $y \leq x$. Иначе говоря, в линейном порядке любые два элемента сравнимы.

1.26 Операции с частично упорядоченными множествами: сумма порядков, покоординатный порядок, лексикографический порядок.

Пусть (P, \leq_P) , (Q, \leq_Q) – частично упорядоченные множества. Тогда:

Покоординатный порядок — это такой порядок $\leq_{P\times Q}$, определенный на множетсве $(P\times Q, \leq_{P\times Q})$, что $(p_1, q_1) \leq_{P\times Q}$ $(p_2, q_2) \Leftrightarrow p_1 \leq_P p_2$ и $q_1 \leq_Q q_2$.

Лексикографический порядок – это такой порядок $<_{lex}$, определенный на множестве $(P \times Q, <_{lex})$, что $(p_1, q_1) <_{lex}$ $(p_2, q_2) \Leftrightarrow p_1 <_P p_2$ или $p_1 = p_2$ и $q_1 <_Q q_2$

Сумма порядков. Можно определить только для множеств P,Q таких, что $P \cap Q = \emptyset$. Пусть $P + Q = P \cup Q$. Тогда на $(P + Q, \leq)$ **сумма порядков** – это такой порядок, что:

$$x \le y \Leftrightarrow \begin{cases} x, y \in P, x \le_P y \\ x, y \in Q, x \le_Q y \\ x \in P, y \in Q \end{cases}$$

1.27 Изоморфизм порядков, примеры

Пусть (P, \leq_P) и (Q, \leq_Q) – частично упорядоченные множества.

Порядки \leq_P и \leq_Q изоморфны, если существует биекция $\varphi: P \to Q$ такая, что $x \leq_P y \Leftrightarrow \varphi(x) \leq_Q \varphi(y)$.

Обозначается как $P \cong Q$

Пример: порядки $((0,1),<)((-\infty,-1),<)$ изоморфны, т.к есть биекция $\varphi(x)=-\frac{1}{x}$.

Пример кажется может быть любой, его в целом можно привести из головы

1.28 Минимальные и максимальные элементы в частичных порядках. Наибольшие и наименьшие элементы

Пусть (P, \leq_P) — частично упорядоченное множество. Тогда:

Элемент $x \in P$ называется наименьшим, если $\forall y \in P : x \leq y$, при этом любой y сравним с x.

Элемент $x \in P$ называется наибольшим, если $\forall y \in P : y \leq x$, при этом любой y сравним с x.

Элемент $x \in P$ называется **минимальным**, если $\nexists y \in P : y < x$.

Элемент $y \in P$ называется **максимальным**, если $\nexists y \in P : x < y$.

Минимальных, максимальных элементов в множестве может быть несколько, наименьших, наибольших - не больше одного.

1.29 Бесконечно убывающие цепи. Фундированные множества. Принцип математической индукции для фундированных множеств

Пусть $(P, <_P)$ — частично упорядоченное множество. Тогда:

Цепь – это подмножество $P' \subseteq P$, что для любого $x, y \in P'$, элементы x и y сравнимы.

Бесконечно убывающей цепью обозначим бесконечную последовательность элементов порядка $x_1 > x_2 > \dots$, в котором каждый элемент меньше предыдущего ($x_i < x_{i-1}$). (это тоже цепь, просто задаем её как последовательность). В бесконечно убывающей цепи нет минимума, т.к иначе последовательность x_i содержала бы конечное число элементов.

Порядок P называется фундированным, если для него выполнено одно из следующих свойств:

- 1. каждое непустое подмножество имеет минимальный элемент
- 2. любая убывающая цепь конечна
- 3. Для порядка P спраедлив принцип индукции: если для утверждения A(p), зависящего от элемента порядка, для любого p верно утверждение «если A(q) верно при всех q < p, то и A(p) верно». Тогда утверждение A(p) верно при любом $p \in P$.

Для фундированных множеств выполняется принцип математической индукции: если для утверждения A(p), зависящего от элемента порядка, для любого p верно утверждение «если A(q) верно при всех q < p, то и A(p) верно». Тогда утверждение A(p) верно при любом $p \in P$.

1.30 Цепи и антицепи в частично упорядоченных множествах. Теорема Дилуорса.

Пусть (P, \leq_P) — частично упорядоченное множество. Тогда:

Цепь – это подмножество $P' \subseteq P$, что для любого $x, y \in P'$, элементы x и y сравнимы.

Антицепь – это подмножество $P' \subseteq P$, что для любого $x, y \in P'$, элементы x и y несравнимы.

Размером цепи P' назовем мощность множества |P'|. Аналогично определим размер для антицепи. Тогда:

Теорема Дилуорса: Наибольший размер антицепи в порядке равен наименьшему количеству цепей в разбиениях порядка на непересекающиеся цепи.

(работает только для конечных порядков, т.е порядков, которые определены на конечных множествах)

1.31 LYM-лемма, теорема Шпернера о размере максимальной антицепи в булевом кубе.

Отношение порядка на булевом кубе. Вершины булева куба - двоичные слова, тогда, если слово x является подсловом y (с точки зрения единиц), то $x \leqslant y$ (покоординатное сравнение).

LYM-лемма, или *LYM-inequality*. Дан булев куб, пусть A в нем - антицепь, a_k - количество элементов в антицепи, в которых ровно k единиц. Тогда утверждается, что выполнено:

$$\sum_{k=0}^{n} \frac{a_k}{C_n^k} \leqslant 1$$

Теорема Шпернера. Длина максимальной антицепи в булевом кубе равна $C_n^{[\frac{n}{2}]}.$

1.32 Ориентированные и неориентированные графы. Степени вершин. Лемма о рукопожатиях. Понятия пути, цикла, простого пути, простого цикла.

Неориентированный граф - пара множества вершин и множества ребер.

$$G = (V, E), |V| < \infty$$

$$E \subseteq \{\{a,b\} \mid a,b \in V, \ a \neq b\}$$

Ориентированный граф - пара множества вершин и множества ребер.

$$G = (V, E), |V| < \infty.$$

$$E \subseteq \{(a,b) \mid a,b \in V, \ a \neq b\}$$

Степень вершины - количество ребер исходящих из вершины.

Для неориентированного графа:

$$\deg(v) = |\{e \in E \mid v \in e\}|$$

Для ориентированного графа:

$$\deg_+(v) = |\{(v, a) \in E \mid a \in V\}|$$

$$\deg_{-}(v) = |\{(b, v) \in E \mid b \in V\}|$$

Лемма о рукопожатиях

Для неориентированного графа:

$$\sum_{v \in V} \deg(v) = 2|E|$$

Для ориентированного графа:

$$\sum_{v \in V} \deg_+(v) = \sum_{v \in V} \deg_-(v) = |E|$$

Смежные вершины. Вершины v_1, v_2 называются смежными, если $\exists e \in E : e = \{v_1, v_2\}.$

Путь - последовательность смежных вершин. $(v_1, v_2, v_3, ..., v_n)$

Простой путь - путь, в котором все вершины различны.

Цикл - путь, у которого первая и последняя вершины одинаковы.

Простой цикл - путь, у которого совпадают только первая и последняя вершины, длины больше или равной 3.

Длина пути - количество вершин в пути - 1.

1.33 Отношение достижимости и компоненты связности графа. Неравенство, связывающее число вершин, ребер и компонент связности в графе. Компоненты сильной связности ориентированного графа.

Отношение достижимости. Вершина u достижима из вершины v, если \exists путь из v в u. Так же говорят, что вершины v и u - связны ($u \sim v$). Отношение достижимости называют отношением связности.

Отношение сильной связности. u и v - сильно связны, если \exists ориентированный путь u-v и \exists ориентированный путь v-u.

Компонента связности графа. Так как отношение связности является отношением эквивалентности, то множество вершин можно разбить на компоненты - компоненты связности.

Неравенство, связывающее число вершин, ребер и компонент связности в графе.

Количество компонент связности $\geqslant |V| - |E|$

Компоненты сильной связности ориентированного графа. Так как отношение сильно связности является отношением эквивалентности, то множество вершин ориентированного графа можно разбить на компоненты - компоненты сильной связности.

1.34 Деревья. Теорема об эквивалентных определениях дерева.

Эквивалентные определения дерева:

- 1. G минимальный связный граф
- 2. G связен и |E| = |V| 1
- 3. в G между любыми 2 вершинами ∃! простой путь
- 4. G связен и в нем нет простых циклов

Обычно дерево обозначают через T.

Предки - все вершины на пути от корня до вершины, не включая саму вершину.

Вершина v называется потомком вершины u, если u - предок v.

Лист - вершина степени 1.

1.35 Полное двоичное дерево. Остовное дерево в графе.

Полное двоичное дерево - дерево, где каждой вершине можно присвоить булевый кортеж и тогда все вершины будут представимы в виде $\bigcup_{k=0}^{n} \{0,1\}^k$. Тогда ребра будут между вершинами $a_1,...,a_k$ и $a_1,...,a_k,a_{k+1}$.

В полном двоичном дереве 2^n листьев.

Остовное дерево в графе. Дан граф G = (V, E). Тогда остовное дерево в G - это $T = (V, E'), E' \subseteq E, T$ - дерево.

1.36 Ациклические орграфы, топологическая сортировка.

Ациклический орграф - орграф, в котором нет циклов.

Топологическая сортировка. Эквивалентные определения:

1. Орграф G - ацикличен.

- 2. Все компоненты сильной связности G состоят из 1 вершины.
- 3. Все вершины G можно пронумеровать числами от 1 до n: если $i \to j$, то i < j.

1.37 Эйлеровы циклы в ориентированных и неориентированных графах. Критерий существования эйлерова цикла.

Цикл (в неориентированном или ориентированном графе) называется эйлеровым, если он проходит по всем рёбрам графа ровно по одному разу (любое ребро соединяет соседние вершины в цикле, и никакое ребро не делает это дважды).

Граф называется эйлеровым, если в нём есть эйлеров цикл.

Есть простой критерий эйлеровости графов и орграфов. Прежде всего заметим, что добавление и удаление изолированных вершин, то есть тех вершин, из которых не выходит и в которые не входит ни одного ребра, не изменяет свойство эйлеровости графа.

Теорема 1. В ориентированном графе без изолированных вершин существует эйлеров цикл тогда и только тогда, когда граф сильно связен и у любой вершины входящая степень равна исходящей

Теорема 2. Неориентированный граф без вершин нулевой степени содержит эйлеров цикл тогда и только тогда, когда он связен и степени всех вершин чётны.

1.38 Двудольные графы, критерий двудольности графа. Булев куб.

Двудольным графом называется неориентированный граф, в котором вершины можно разделить на две доли — левую и правую, и все рёбра соединяют вершины из разных долей (нет рёбер, соединяющих вершины одной доли). Другими словами, чтобы задать двудольный граф, надо указать два конечных множества L (левую долю) и R (правую долю) и указать, какие вершины левой доли соединены с какими вершинами правой доли.

Критерий двудольности графа. Граф является двудольным тогда и только тогда, когда не содержит в себе циклы нечетной длины.

Булев куб размерности n — это неориентированный граф, вершинами которого являются двоичные слова длины n, а рёбра соединяют слова, отличающиеся в одной позиции.

1.39 Теорема Холла.

Теорема Холла. Если для каждого множества X вершин двудольного графа G = (L, R, E) множество соседей $G(X) \subseteq R$ содержит не меньше, чем |X| вершин, то в графе G есть паросочетания размера |L|

1.40 Паросочетания. Вершинные покрытия. Теорема Кёнига.

Пусть дан граф G = (V, E), **паросочетание M** в G -это множество попарно несмежных рёбер, то есть рёбер, не имеющих общих вершин.

Вершинным покрытием называется такое множество вершин S, что для любого ребра хотя бы один из концов лежит в S. Нетрудно проверить, что дополнение к вершинному покрытию — независимое множество и, наоборот, дополнение к независимому множеству — вершинное покрытие. Для двудольных графов вершинные покрытия оказываются связанными с паросочетаниями.

Теорема Кёнига. В любом двудольном графе максимальный размер паросочетания равен минимальному размеру вершинного покрытия.

1.41 Теорема Рамсея. Верхняя оценка чисел Рамсея.

Теорема Рамсея. Для любых k, n найдётся такое число N_0 , что в любом графе на $N \geqslant N_0$ вершинах есть или клика размера k, или независимое множество размера n. Минимальное такое N_0 называют **числом Рамсея**, обозначается R(k,n).

Оценка сверху. Уже знаем, что $R(k,n)\leqslant R(k-1,n)+R(k,n-1)$, естественно очень похоже на биномиальный коэффициент. Действительно, по индукции можно доказать, что $R(k,n)\leqslant C_{n+k-2}^{k-1}=C_{n+k-2}^{n-1}$

2 Доказательства

2.1 Применения метода математической индукции: существование 2-цветной раскраски областей на плоскости; неравенство Бернулли; сумма обратных квадратов меньше 2

- Существование 2-цветной раскраски областей на плоскости
 - Утверждение: n прямых делят плоскость на области. A(n) верно ли, что эти области можно раскрасить в 2 цвета так, чтобы никакие две соседние области не были покрашены в один цвет.
 - База:
 - Шаг: пусть A(n) верно, докажем верность A(n+1):

По сути нам дана правильная раскраска плоскости в случае n прямых. Утверждается, что если при добавлении n+1 прямой инвертировать цвет всех областей по одну сторону от нее, то мы получим правильную раскраску. Докажем, что любая граница разделяет области разных цветов. Для этого рассмотрим 2 случая:

- 1. Граница принадлежит какой-либо из старых n прямых. Тогда области, которые она разделяет, лежат по одну сторону от новой прямой. Поэтому поскольку старая раскраска была правильной, то в новой они также будут разного цвета.
- 2. Граница принадлежит новой n+1 прямой. Тогда области, что она разделяет, в старой раскраске были одного цвета, мы инвертируем только одну из них, поэтому получаем 2 разных цвета.

Таким образом A(n+1) верно \Rightarrow индукция верна \Rightarrow исходное утверждение верно.

- Неравенство Бернулли
 - Утверждение: A(n) верно ли, что $(1+x)^n\geqslant 1+xn,\ x\in\mathbb{R}, x>-1$
 - База: A(1): $(1+x)^1 \geqslant 1+x\cdot 1 \Leftrightarrow 0 \geqslant 0 \Rightarrow$ база верна
 - Шаг: пусть A(n) верно, докажем верность A(n+1):

$$(1+x)^{n+1} = (1+x)^n (1+x) \geqslant (1+xn)(1+x) \geqslant$$
$$\geqslant (1+xn) + x = 1 + x(n+1)$$

Таким образом A(n+1) верно \Rightarrow индукция верна \Rightarrow исходное утверждение верно.

- Сумма обратных квадратов меньше 2
 - Утверждение: A(n) верно ли, что $\displaystyle \sum_{k=1}^n \frac{1}{k^2} \leqslant 2 \frac{1}{n}$
 - База: A(1): $\sum_{k=1}^{1} \frac{1}{k^2} = \frac{1}{1} = 1 \leqslant 2 1 \Rightarrow$ база верна
 - Шаг: пусть A(n) верно, докажем верность A(n+1):

$$\sum_{k=1}^{n+1} \frac{1}{k^2} \leqslant 2 - \frac{1}{n} + \frac{1}{(n+1)^2} = 2 - \frac{n^2 + n + 1}{n(n+1)^2} \leqslant 2 - \frac{n(n+1)}{n(n+1)^2} = 2 - \frac{1}{n+1}$$

Таким образом A(n+1) верно \Rightarrow индукция верна \Rightarrow исходное утверждение верно. Так как $\frac{1}{n} > 0$ получаем:

$$\sum_{k=1}^{n} \frac{1}{k^2} \leqslant 2 - \frac{1}{n} < 2$$

2.2 Эквивалентность принципа математической индукции, принципа полной индукции и принципа наименьшего числа

- 1. ПМИ (принцип математической индукции)
- 2. ППМИ (принцип полной математической индукции)
- 3. ПНЧ (принцип наименьшего числа)

Докажем следствия по циклу (из утверждения 1 следует утверждение 2, из $2 \Rightarrow 3$, из $3 \Rightarrow 1$), тогда эквивалетнонсть каждой пары будет доказана.

19

• $\Pi M \mathcal{U} \Rightarrow \Pi \Pi M \mathcal{U}$

Пусть $S \subseteq \mathbb{N}$

 $\forall n : (\forall k < n, k \in S) \Rightarrow n \in S$

$$X = \{ n \mid \forall k < n, k \in S \}$$

 $1 \in X$

 $n \in X \Rightarrow n \in S$

$$n \in X \Rightarrow n+1 \in X \Rightarrow n+1 \in S$$

Тогда по индукции $S=\mathbb{N}$, значит ПМИ \Rightarrow ППМИ, ч.т.д.

• $\Pi\Pi\Pi\Pi \Rightarrow \Pi\Pi\Pi$

Рассмотрим $S \subseteq \mathbb{N}, S \neq \emptyset$.

Докажем от противного. Пусть в S нет минимального элемента.

$$\overline{S} = \mathbb{N} \setminus S = \{ n \in \mathbb{N} \mid n \notin S \}.$$

Тогда
$$1 \in \overline{S}$$
 и $\forall n : (\forall k < n, k \in \overline{S}) \Rightarrow n \in \overline{S}$

По ППМИ получаем $\overline{S} = \mathbb{N} \Rightarrow S = \emptyset \Rightarrow$ противоречие \Rightarrow , значит ППМИ \Rightarrow ПНЧ, ч.т.д.

• $\Pi H H \Rightarrow \Pi M H$

Пусть $S = \{n \in \mathbb{N} \mid A(n) - \text{ложное}\}$ Рассмотрим 2 случая:

- 1. $S = \varnothing \Rightarrow \forall n \in \mathbb{N} : A(n)$ верно, ч.т.д.
- 2. $S \neq \emptyset \Rightarrow \exists \min S$. Обозначим $m = \min S$

Но тогда $m-1 \notin S \Rightarrow A(m-1)$ – верно

Но при этом A(m) - верно $\Rightarrow m \notin S \Rightarrow$ противоречие, значит ПНЧ \Rightarrow ПМИ, ч.т.д.

2.3 Бинарные отношения, теорема об ассоциативности композиции отношений. Функции. Критерий существования функции, обратной к данной. Композиция биекций является биекцией.

• Ассоциативность композиции бинарных отношений

Пусть $R \subseteq A \times B$, $S \subseteq B \times C$, $T \subseteq C \times D$. Тогда $T \circ (S \circ R) = (T \circ S) \circ R$. Иначе говоря, композиция отношений обладает свойством ассоциативности.

Доказательство:

 $a \in A, d \in D$

$$(a,d) \in T \circ (S \circ R) \Leftrightarrow \exists z \in C : a(S \circ R)z$$
 и $zTd \Leftrightarrow \exists y \in B, z \in C : aRy, ySz$ и zTd .

Правая часть расписывается аналогично:

$$(a,d) \in (T \circ S) \circ R \Leftrightarrow \exists y \in B : aRy$$
 и $y(T \circ S)d \Leftrightarrow \exists z \in C, y \in B : aRy, ySz$ и zTd .

• Критерий существования функции, обратной к данной

Теорема. У функции $f:A \to B$ существует обратная $\Leftrightarrow f$ - биекция.

Доказательство.

1)
$$\Leftarrow$$
 Знаем, что f - биекция, то есть $\forall y \; \exists ! x : f(x) = y$. Зададим $g : B \to A$ - всюду определенная функция $g(y) = x$. Проверяем: $f \circ g(y) = f(g(y)) = f(x) = y = id_B$ и $g \circ f(x) = g(f(x)) = g(y) = x = id_A$

$$(2) \Rightarrow 3$$
наем, что существует $g: B \to A$, что $g \circ f = id_A$, $f \circ g = id_B$. Докажем, что f - биекция. Возьмем $(x_1, x_2) \in A$, пусть $(x_1) = f(x_2)$, тогда $(x_2) = g(f(x_2)) \Rightarrow x_1 = x_2$ по $(x_2) = f(x_2)$ по (x_2)

Пусть x = q(y), тогда f(x) = f(q(y)) = y, значит f - сюръекция. А значит и биекция, доказано.

• Композиция биекций является биекцией

Пусть заданы $f:A\to B$ и $g:B\to C$ - биекции, докажем, что $g\circ f$ - биекция.

1)
$$g \circ f$$
 - инъекция, рассмотрим $a_1, a_2 \in A, a_1 \neq a_2$, так как f - инъекция $f(a_1) \neq f(a_2)$, так как g - инъекция, то $g(f(a_1)) \neq g(f(a_2))$, а значит $g \circ f$ - инъекция.

2) $g \circ f$ - сюръекция, возьмем $c \in C$, тогда так как g - сюръекция $\exists b \in B : g(b) = c$, так как f - сюръекция, то $\exists a \in A : f(a) = b$. По определению композиции, (a,c) в композиции, если $\exists b : afb, bgc$, что мы и сделали.

 $g \circ f$ сюръекция + инъекция, значит биекция.

2.4 Теорема о классах эквивалентности для отношения эквивалентности.

Теорема. Если R — отношение эквивалентности на A, то существует разбиение множества A отношением эквивалентности R на непересекающиеся классы ($\forall i \neq j : A_i \cap A_j = \varnothing$, $\cup_{i \in I} A_i = A$) такое, что $\forall x,y \in A_i : xRy$ и $\forall x \in A_i, y \in A_j, i \neq j : \neg xRy$. (то есть если два элемента принадлежат одному классу эквивалентности, они находятся в отношении R и наоборот).

Доказательство:

 $a \in A$

 $[a] = \{b \in A | aRb\}$ – класс эквивалентности для a.

- 1) $a \in [a]$, т.к aRa.
- 2) Пусть $\neg(aRb) \Rightarrow [a] \cap [b] = \varnothing$.

Действительно, если $x \in [a] \cap [b]$, то aRx и $bRx \Rightarrow aRx$ и $xRb \Rightarrow aRb$ – противоречие.

3) Пусть aRb. Тогда [a] = [b].

Действительно, пусть $x \in [b]$, то есть bRx.

Тогда aRb и $bRx \Rightarrow aRx \Rightarrow x \in [a]$.

Значит $[b] \subseteq [a]$

Аналогично можно заключить, что $[a] \subseteq [b]$. Из этого следует, что классы совпадают.

- 4) A есть объединение набора непересекающихся множеств (классов эквивалентности). Классы внутри пересекаться не могут, т.к если пересекаются, то по транзитивности это один и тот же класс.
- 5) Пусть $x, y \in [a]$. Тогда aRx и $aRy \Rightarrow xRa$ и $aRy \Rightarrow xRy$.
- 6) Если $x, y \in$ разным классам, то $\neg(xRy)$.

От противного: пусть $x \in [a], y \in [b], [a] \neq [b], xRy$.

Тогда aRx, xRy, $yRb \Rightarrow aRb$, то есть [a] = [b].

2.5 Числа сочетаний: явная и рекуррентная формула. Треугольник Паскаля. Рекуррентное соотношение для чисел сочетаний. Бином Ньютона. Сумма биномиальных коэффициентов. Знакопеременная сумма биномиальных коэффициентов.

• Число размещений

$$A_n^k = \frac{n!}{(n-k)!}$$

Количество способов извлечь первый элемент равно n. Удалим его из множества. Количество затем извлечь из оставшихся n-1 объекта второй элемент равно n-1. Продолжим эту процедуру пока не извлечем k элементов. (на последнем шаге количество способов будет равно n-k+1). Применим правило умножения и получим, что количество способов извлечь k произвольных элементов (что и есть неупорядоченный k-элеметный набор элементов) из n-элементого множества равно $A_n^k = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1) = \frac{n!}{(n-k)!}.$

• Число сочетаний явная формула

$$C_n^k = \frac{n!}{(n-k)!k!}$$

Выпишем все сочетания. Далее заменим каждое на всевозможные его перестановки (то есть $\{a_1,a_2,...,a_{k-1},a_k\} \rightarrow \{\{a_1,a_2,...,a_{k-1},a_k\},\{a_1,a_2,...,a_k,a_{k-1}\},...,\{a_k,a_{k-1},...,a_1\}\}$). Получим всевозможные размещения. Количество способов переставить сочетание размера k равно k! (так как все элементы различные). Таким образом получим $A_n^k = C_n^k \cdot k! \Rightarrow C_n^k = \frac{A_n^k}{k!} = \frac{n!}{(n-k)!k!}$.

• Число сочетаний рекуррентная формула

$$C_n^k = C_{n-1}^{k-1} + C_{n-1}^k$$

Обозначим первый элемент n-элементого множества за a. Любое сочетание размера k из этого множества либо содержит его, либо не содержит. Число сочетаний размера k не содержащих a равно числу сочетаний размера k из (n-1)-элементного множества, то есть C_{n-1}^k . Число сочетаний размера k содержащих a равно числу сочетаний размера (k-1) из (n-1)-элементого множества, то есть C_{n-1}^{k-1} . В итоге получим:

$$C_n^k = C_{n-1}^{k-1} + C_n^{k-1}$$

• Бином Ньютона

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$$

Очевидно, что $(a+b)^n = \underbrace{(a+b)(a+b)...(a+b)}_n$. Пусть мы взяли a из k скобок и b из остальных n-k скобок.

Получим слагаемое вида a^kb^{n-k} . Количество способов взять такое слагаемое равно количеству способов выбрать k скобок из которых мы возьмем a (так как если нам известно из каких скобок мы возьмем a, нам известно из каких скобок мы возьмем b). Это количество равно числу сочетаний размера k из n-элементного множества, то есть слагаемое a^kb^{n-k} войдет в итоговое разложение C_n^k раз. Получим:

$$(a+b)^n = C_n^0 \cdot a^0 \cdot b^n + C_n^1 \cdot a^1 \cdot b^{n-1} + \dots + C_n^n \cdot a^n \cdot b^0 = \sum_{k=0}^n C_n^k a^k b^{n-k}$$

• Сумма биномиальных коэффициентов

$$\sum_{k=0}^{n} C_n^k = 1^0 \cdot 1^n \cdot C_n^0 + 1^1 \cdot 1^{n-1} \cdot C_n^1 + \dots + 1^n \cdot 1^0 \cdot C_n^n = (1+1)^n = 2^n$$

• Знакопеременная сумма биномиальных коэффициентов

$$\sum_{k=0}^{n} (-1)^{k} C^{k} = (-1)^{0} \cdot 1^{n} \cdot C_{n}^{0} + (-1)^{1} \cdot 1^{n-1} \cdot C_{n}^{1} + \dots + (-1)^{n} \cdot 1^{0} \cdot C_{n}^{n} = (-1+1)^{n} = 0^{n} = 0$$

2.6 Сочетания с повторениями. Количество решений уравнения $x_1 + x_2 + ... + x_n = k$ в неотрицательных целых числах.

• Сочетания с повторениями

Обозначим исходное множество за $\{a_1, a_2, ..., a_n\}$. Пусть у нас есть сочетание с повторениями размера k из этого множества. Сопоставим ему следующую последовательность 0 и 1:

$$\underbrace{11...1}_{cnt_{a_1}} \underbrace{0}_{cnt_{a_2}} \underbrace{11...1}_{cnt_{a_n}} \underbrace{0...}_{cnt_{a_n}} \underbrace{11...1}_{cnt_{a_n}}$$

где cnt_{a_i} - количество элементов a_i в сочетании.

Теперь заметим несколько фактов:

- 1. Длина такой последовательности равна n+k-1, так как сумма всех cnt_{a_i} равна размеру сочетания, то есть k, а количество нулей равно n-1.
- 2. Такое отображение будет биективным, так как два разных сочетания переходят в разные последовательности (если два сочетания не равны, то они различаются хотя бы в одной позиции. Возьмем первую такую позицию, пусть в первом сочетании там стоит a, а во втором b. Тогда при построении двоичной последовательности после $\min(a,b)$ единиц в одной последовательности последует 0, а в другой 1, следовательно не равны) и для любой подходящей последовательности найдется соответствующее ей сочетание.

Поскольку между множествами существует биекция, их мощности равны. Значит количество сочетаний с повторениями равно количеству двоичных последовательностей вышеуказанного вида. А оно равно C_{n+k-1}^k , так как выбрав позиции единиц, мы однозначно можем восстановить позиции нулей. То есть $\overline{C}_n^k = C_{n+k-1}^k$, ч.т.д.

• Количество решений уравнения $x_1 + x_2 + ... + x_n = k, x_i \geqslant 0, x_i \in \mathbb{Z}$

Для начала решим аналогичную задачу, но с ограничем $x_i \geqslant 1$. Применим метод шаров и перегородок. Пусть у нас есть k шаров, расположенных в линию и мы поставили между ними n-1 перегородку, причем никакие две перегородки не идут подряд (то есть не разделяют одинаковые пары шаров). Тогда пусть x_i это будет количество шаров до i-й перегородки. Понятно, что тогда выполняется условие $\sum_{i=1}^n x_i = k$. То есть количество решений уравнений сводится к количеству способов расставить перегородки в такой модели. У нас есть (k-1) позиция куда мы можем поставить перегородку и их количество равно (n-1), значит число способов равно C_{k-1}^{n-1} .

Теперь сведем исходную задачу к той что мы решили:

$$x_1 + x_2 + \dots + x_n = k$$

 $y_i = x_i + 1, \ y_i \ge 1$
 $(y_1 - 1) + (y_2 - 1) + \dots + (y_n - 1) = k$
 $y_1 + y_2 + \dots + y_n = k + n$

А значит количество решений равно $C_{k+n-1}^{n-1}=C_{n+k-1}^k$, ч.т.д.

Полиномиальные коэффициенты. Их алгебраический и комбинаторный смысл. 2.7

$$\begin{pmatrix} n \\ \alpha_1, & \dots, & \alpha_k \end{pmatrix} = \frac{n!}{\alpha_1! \alpha_2! \dots \alpha_k!}$$

Очевидно, что $(x_1+x_2+...+x_k)^n=\underbrace{(x_1+...+x_k)(x_1+...+x_k)...(x_1+...+x_k)}_n$. Пусть из α_i скобок мы выбрали x_i . Получим слагаемое $x_1^{\alpha_1}x_2^{\alpha_2}...x_k^{\alpha_k}$, причем $\alpha_1+\alpha_2+...+\alpha_k=n$. Тогда количество способов его выбрать равно

произведению количеств способов выбрать каждый x_i . Получим:

$$\begin{pmatrix} n \\ \alpha_1, & \dots, & \alpha_k \end{pmatrix} = C_n^{\alpha_1} \cdot C_{n-\alpha_1}^{\alpha_2} \cdot C_{n-\alpha_1-\alpha_2}^{\alpha_3} \cdot \dots \cdot C_{n-\alpha_1-\alpha_2-\dots-\alpha_k}^{\alpha_k} =$$

$$= \frac{n!}{\alpha_1!(n-\alpha_1)!} \cdot \frac{(n-\alpha_1)!}{\alpha_2!(n-\alpha_1-\alpha_2)!} \cdot \frac{(n-\alpha_1-\alpha_2)!}{\alpha_3!(n-\alpha_1-\alpha_2-\alpha_3)!} \cdot \dots \cdot \frac{(n-\alpha_1-\dots-\alpha_{k-1})!}{\alpha_k!(n-\alpha_1-\dots-\alpha_k)!} =$$

$$= \frac{n!}{\alpha_1!} \cdot \frac{1}{\alpha_2!} \cdot \dots \cdot \frac{1}{\alpha_k!} = \frac{n!}{\alpha_1!\alpha_2!\dots\alpha_k!}$$

2.8 Формулы, полные системы связок. Полнота системы связок «конъюнкция, дизъюнкция, отрицание». Дизъюнктивная нормальная форма, СДНФ.

Теорема 4.6: $\{\neg, \land, \lor\}$ – полная система связок

Доказательство:

Выразим функции f, равные единице только на одном конкретном наборе. Пусть такая функция $f(x_1, x_2, \dots, x_n)$ равна единице на наборе a_1, a_2, \ldots, a_n . Тогда $f = y_1 \wedge y_2 \wedge \ldots \wedge y_n$, где $y_i = \neg x_i$, если $a_i = 0$ и $y_i = x_i$ иначе.

Обозначим за $x^a = x$ если a = 1 и $\neg x$ если a = 0.

То есть $f_{a_1,a_2,...,a_n}(x_1,\ldots,x_n)=x_1^{a_1}\wedge x_2^{a_2}\wedge\ldots\wedge x_n^{a_n}$ – функция, которая принимает 1 только на наборе a_1,a_2,\ldots,a_n .

Пусть f принимает 1 на некоторых наборах.

Тогда
$$f = \bigvee_{(a_1, \dots, a_n) \in \{0,1\}^n : f(a_1, a_2, \dots, a_n) = 1} f_{a_1, a_2, \dots, a_n} = \bigvee_{(a_1, \dots, a_n) : f(a) = 1} x_1^{a_1} x_2^{a_2} \dots x_n^{a_n}$$

Частный случай: тождественный ноль, мы можем его выразить как $x_1 \wedge \neg x_1$.

Вообще, такое представление функции имеет название СДНФ или совершенная дизьюнктивная нормальная форма.

2.9 Полнота системы связок «XOR, конъюнкция, 1». Теорема о представлении булевой функции полиномом Жегалкина (существование и единственность).

Полнота системы связок многочлена Жегалкина.: Система связок $\{1, \oplus, \wedge\}$ – полная система связок

Доказательство:

Индукция по n:

База:
$$n = 0$$

$$0 = 1 \oplus 1, 1 = 1$$

Переход: $n \to n+1$

```
f(x_1, x_2, \dots, x_n, x_{n+1}) = (f(x_1, \dots, x_n, 0) \land (x_{n+1} \oplus 1)) \oplus (f(x_1, \dots, x_n, 1) \land x_{n+1})
```

(верхнее равенство легко проверяется разбором случаев по x_{n+1})

Подставляем вместо x_{n+1} 0 и 1, получаем функци уже от n переменных. По индукции, для них уже построены многочлены Жегалкина. Потому, подставим их вместо функций и приведем подобные, получим многочлен Жегалкина от n+1 переменной.

Теорема о представлении булевой функции полиномом Жегалкина (существование и единственность).

Всякая булева функция от n переменных единственным образом представима в виде полинома Жегалкина(с точностью до перестановки мономов и переменных).

Доказательство:

Существование было доказано только что.

Теперь докажем единственность. Всего булевых функций от n переменных - 2^{2^n} . Количество мономов (a_i) в полиноме Жегалкина - 2^n , каждый может быть равен 0 или 1. Значит всего полиномов Жегалкина - 2^{2^n} .

Теперь построим биекцию $f: \{\Pi_1,...,\Pi_{2^{2^n}}\} \to \{f_1,...,f_{2^{2^n}}\}$, где f_i - булева функция, а Π_i - полином Жегалкина.

Пусть $f(\Pi_i)$ - функция, которой соответствует полином Жегалкина. Тогда f - сюръекция и тотальная функция, но в силу равенства количества функций и полиномов Жегалкина, f - инъекция, поэтому f - биекция. Значит представление функции в виде полинома Жегалкина единственно. Чтд

2.10 Класс линейных функций, лемма о нелинейной функции. Классы функций, сохраняющих константу. Лемма о функции, не лежащей в классе, сохраняющем константу.

Замкнутость класса линейных функций [L] = L

Доказательство: Индукция по построению формулы:

Пусть $f_0(y_1,\ldots,y_k)f_1,f_2,\ldots,f_k\in L$. Докажем, что $f_0(f_1(x_1,\ldots,x_n),\ldots,f_k(x_1,\ldots,x_n))=g\in L$. Вспомним, что $g=a_0\oplus a_1f_1\oplus a_2f_2\oplus\ldots\oplus a_kf_k$. Подставим f_i , раскроем скобки, приведем подобные и получим линейную функцию. Получается, что $g\in L$.

Утверждение $L = [\oplus, 1]$

Доказательство: по определению линейной функции.

Лемма о нелинейной функции: Пусть $f(x_1, ..., x_n) \notin L$. Тогда подставив вместо переменных функции $x_1, ..., x_n$ 0, x и y можно получить $g(x, y) \notin L$.

Доказательство: $f(x_1,...,x_n) = ... \oplus (x_{i_1} \land x_{i_2} \land ... \land x_{i_k})$

Рассмотрим в многочлене Жегалкина моном с количеством переменных $r \geq 2: x_{i_1} \wedge x_{i_2} \wedge \ldots \wedge x_{i_r}$. Важный момент: среди всех таких мономов мы должны выбрать такой, что r минимально. Подставим в x_{i_1} x, в x_{i_2}, \ldots, x_{i_r} y, а во все остальные x_j (не присутствующие в выбранном нами мономе) 0. Получим следующую функцию от двух переменных: $g(x,y) = x \wedge y \oplus ax \oplus by \oplus c \notin L$.

Следствие: Пусть $f \notin L$. Тогда $x \land y \in [\{0, \neg x, f\}]$

Доказательство: $g(x,y) = xy \oplus ax \oplus by \oplus c \in [\{0,f\}]$

Рассмотрим $g(x \oplus b, y \oplus a) = (x \oplus b) \land (y \oplus a) \oplus a(x \oplus b) \oplus b(y \oplus a) \oplus c = xy \oplus xa \oplus by \oplus ab \oplus ax \oplus ab \oplus by \oplus ab = xy \oplus ab \oplus c$. Если $ab \oplus c = 0$, то все хорошо и мы получили xy. Иначе $\neg g(x \oplus b, y \oplus a) = xy$.

Класс
$$T_0 = \{ f \in P_2 | f(0, \dots, 0) = 0 \}$$

Класс
$$T_1 = \{ f \in P_2 | f(1, \dots, 1) = 1 \}$$

 $(f \in T_0 - \phi)$ нкция, сохраняющая ноль; $f \in T_1 - \phi$ ункция, сохраняющая единицу).

Замкнутость классов функций, сохраняющих константу. $[T_0] = T_0, [T_1] = T_1$

Доказательство:

Пусть $f_0, f_1, \ldots, f_k \in T_0$. Тогда $f_0(f_1(x_1, \ldots, x_n), f_2(x_1, \ldots, x_n), \ldots, f_k(x_1, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, 0), f_2(0, \ldots, 0), \ldots, f_k(x_1, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, 0), f_2(0, \ldots, 0), \ldots, f_k(x_1, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, 0), f_2(0, \ldots, 0), \ldots, f_k(x_1, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, 0), f_2(0, \ldots, 0), \ldots, f_k(x_1, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, 0), f_2(0, \ldots, 0), \ldots, f_k(x_1, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, 0), f_2(0, \ldots, 0), \ldots, f_k(x_1, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, 0), f_2(0, \ldots, 0), \ldots, f_k(x_1, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, 0), f_2(0, \ldots, 0), \ldots, f_k(x_1, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, 0), f_2(0, \ldots, 0), \ldots, f_k(x_1, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, 0), f_2(0, \ldots, 0), \ldots, f_k(x_1, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, 0), f_2(0, \ldots, 0), \ldots, f_k(x_1, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, 0), f_2(0, \ldots, 0), \ldots, f_k(x_1, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, 0), f_2(0, \ldots, 0), \ldots, f_k(x_1, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, 0), f_2(0, \ldots, 0), \ldots, f_k(x_1, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, 0), f_2(0, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, 0), f_2(0, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, 0), f_2(0, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, 0), f_2(0, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, 0), f_2(0, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, 0), f_2(0, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, x_n), f_2(0, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, x_n), f_2(0, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, x_n), f_2(0, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, x_n), f_2(0, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, x_n), f_2(0, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, x_n), f_2(0, \ldots, x_n)) \in T_0$ так, как $f_0(f_1(0, \ldots, x_n), f_2(0, \ldots, x_n)) \in T_0$

Лемма о функции, не лежащей в классе, сохраняющем константу.

- 1. Если $f \notin T_0$, тогда $f(x, ..., x) \in \{1, \neg x\}$. (m.к для f(0, ..., 0) мы точно знаем что значение равно 1, а для f(1, ..., 1) множество будет содержать в себе все возможные значения f).
- 2. Если $f \notin T_1$, тогда $f(x, ..., x) \in \{0, \neg x\}$ (аналогично).
- 2.11 Принцип двойственности, класс самодвойственных функций, лемма о несамодвойственной функции. Класс монотонных функций, лемма о немонотонной функции.

Класс S

Лемма о принципе двойственности:

Пусть
$$f(x_1,\ldots,x_n)=f_0(f_1(x_1,\ldots,x_n),\ldots,f_k(x_1,\ldots,x_n))$$
. Тогда: $f^*(x_1,\ldots,x_n)=f_0^*(f_1^*(x_1,\ldots,x_n),\ldots,f_k^*(x_1,\ldots,x_n))$

Доказательство:

$$f^*(x_1, \dots, x_n) = \neg f(f_1(\neg x_1, \dots, \neg x_n), \dots, f_k(\neg x_1, \dots, \neg x_n)) =$$

$$= \neg f_0(\neg f_1^*(x_1, \dots, x_n), \dots, \neg f_k^*(x_1, \dots, x_n)) = f_0^*(f_1^*(x_1, \dots, x_n), \dots, f_k^*(x_1, \dots, x_n))$$

Следствие [S] = S

Доказательство: $x_i \in S$

$$f_0, \dots, f_k \in S \Rightarrow f_0(f_1(x_1, \dots, x_n), \dots, f_k(x_1, \dots, x_n)) = g(x_1, \dots, x_n) \in S$$

 $g^* = g$ по принципу двойственности.

Лемма о несамодвойственной функции:

Пусть $f(x_1, ..., x_n) \notin S$. Тогда подставляя вместо переменных функции $x, \neg x$, можно получить константу.

Доказательство:

Пусть $f(x_1, ..., x_n) \neq \neg f(\neg x_1, ..., \neg x_n)$. Тогда есть какой-то набор $\alpha_1, ..., \alpha_n \in \{0, 1\}^n$ такой, что: $f(\alpha_1, ..., \alpha_n) = f(\neg \alpha_1, ..., \neg \alpha_n)$. Подставим вместо единиц в этом наборе x и вместо нулей $\neg x$. Таким образом, получили новую функцию g от одной переменной. Для неё будет справедливо следующее: $g(1) = f(\alpha_i) = f(\neg \alpha_i) = g(0)$.

Класс М

Для того, чтобы ввести класс монотонных функций нам нужно ввести понятие порядка. Скажем, что изначально 0 < 1. Тогда: **набор** $(\alpha_1, \dots, \alpha_n) \leq (\beta_1, \dots, \beta_n)$, если $\forall i, \alpha_i \leq \beta_i$.

Пример: $(1,0) \le (1,1)$

 $(1,0) \nleq (0,1)$ (не сравнимы)

 $(0,1) \nleq (1,0)$ (не сравнимы)

 $f \in P_2$ - монотонная, если $\forall \alpha_i, \beta_i : \alpha_i \leq \beta_i \Rightarrow f(\alpha) \leq f(\beta)$

Лемма о замкнутости класса монотонных функций. [M]=M

Доказательство: $x_i \in M_i$

 $f_0, \dots, f_k \in M, \ g(x_1, \dots, x_n) = f_0(f_1(x_1, \dots, x_n), \dots, f_k(x_1, \dots, x_n)).$ Пусть $\alpha = (\alpha_1, \dots, \alpha_n) \leq (\beta_1, \dots, \beta_n) = \beta.$ Тогда $\forall 1 \leq i \leq k, f_i(\alpha) \leq f_i(\beta) \Rightarrow f_0(f_i(\alpha)) \leq f_0(f_i(\beta)).$

Лемма о немонотонной функции:

Пусть $f(x_1, ..., x_n) \notin M$. Тогда, подставляя вместо переменных 0, 1, x, можно получить $\neg x$.

Доказательство: $\exists \alpha = (\alpha_1, \dots, \alpha_n), \ \exists \beta = (\beta_1, \dots, \beta_n)$ такие, что $\alpha \leq \beta$, но при этом $f(\alpha) = 1, f(\beta) = 0$ (т.к функция $\notin M$).

Построим новую функцию g(x), полученная в результате подставления в x_i значения 0,1 и x. Рассмотрим две группы индексов i:

- 1. $\alpha_i = \beta_i$. Тогда поставим в x_i значение α_i .
- 2. $\alpha_i = 0, \beta_i = 1$. Тогда поставим в x_i переменную x.

При подстановке в x значения 1 получим значение $g(1) = f(\beta) = 0$. При подстановке в x значения 0 получим значение $g(0) = f(\alpha) = 1$. Получим то, что нам было нужно.

2.12 Критерий Поста полноты системы булевых функций.

Критерий Поста. $[F] = P_2 \Leftrightarrow F \nsubseteq L, F \nsubseteq T_0, F \nsubseteq T_1, F \nsubseteq S, F \nsubseteq M$

Доказательство:

1. ⇐

От противного: пусть $F \subseteq C$, где C это какой-то класс. Тогда $[F] \subseteq [C] = C$.

 $2. \Rightarrow$

Из леммы о функции, не лежащей в классе, сохраняющем константу, заметим, что мы можем выразить из функции не из T_0 и не из T_1 либо константы, либо отрицание $\neg x$. Пусть мы смогли выразить отрицание. Тогда по лемме о несамодвойственной функции мы также можем выразить 0 и 1. Пусть мы не смогли выразить отрицание. Тогда мы точно смогли выразить 0 и 1, потому по лемме о немонотонной функции, используя 0, 1 и x, мы можем выразить $\neg x$. По лемме о нелинейной функции, коньюнкция $x \land y \in [0, \neg x, f]$. Потому мы также можем выразить коньюнкцию, а из коньюнкции и отрицания можем выразить дизьюнкцию, потому мы получили полную систему связок.

2.13 Предполные классы булевых функций. Описание предполных классов булевых функций

В P_2 есть ровно пять предполных классов: T_0, T_1, L, S, M

Доказательство:

Сперва докажем, что эти пять классов являются различными. Для этого, например, можно написать таблицу в которой на пересечении строки и столбца будет выписана функция, принадлежащая классу соответствующему строке и не принадлежащая классу соответствующему столбцу.

#	T_0	T_1	M	S	L
T_0	#	0	$x \oplus y$	0	$x \wedge y$
T_1	1	#	$x \oplus y \oplus 1$	1	$x \wedge y$
M	1	0	#	1	$x \wedge y$
S	$\neg x$	$\neg x$	$\neg x$	#	MAJ(x, y, z)
L	1	0	$x \oplus y$	1	#

Теперь докажем, что эти классы являются предполными: допустим мы взяли клас T_0 и добавили в него какую-то функцию не из T_0 . Из таблицы выписанной выше видно, что в T_0 для оставшихся четырех классов найдется функция не входящая в эти классы, а мы добавили функцию не из T_0 . Получается, по критерию Поста, мы получили полную систему. А значит T_0 - предполный класс. Аналогично это можно доказать и для T_1, M, S, L .

Теперь докажем, что никакой другой класс не является предполным. Пусть существует еще какой-то предполный класс F. F должен полностью содержатся в одном из классов T_0, T_1, M, S, L , иначе, по критерию Поста, F - полная система. Пускай F содержится в T_0 (для других классов все аналогично), но при этом $F \neq T_0$, ведь мы предположили, что это какой-то другой класс. Но тогда найдется функций g такая, что $g \in T_0 \setminus F$. Значит $\{g\} \cup F \subseteq T_0$ но из этого следует, что $[\{g\} \cup F] \neq P_2$. Значит F - не предполный класс.

2.14 Формула включений-исключений

Для начала введем определение характеристической функции. Пусть есть множество X и вы нем выбрали подмножество $A \subseteq X$. Тогда следующуюу функцию называют характеристической:

$$\chi_A(x) = \begin{cases} 1, x \in A \\ 0, x \notin A \end{cases}$$

Отметим следующие её свойства:

$$\chi_{\overline{A}}(x) = 1 - \chi_A(x)$$

$$\chi_{A \cap B}(x) = \chi_A(x)\chi_B(x)$$

$$\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x) - \chi_A(x)\chi_B(x) = 1 - (1 - \chi_A(x))(1 - \chi_B(x))$$

Используя равенство $A_1 \cup A_2 \cup ... \cup A_n = \overline{\overline{A_1} \cap \overline{A_2} \cap ... \cap \overline{A_n}}$ получим (далее в записи будет опускаться x, то есть $\chi_A(x) \Leftrightarrow \chi_A(x)$):

$$\chi_{A_1 \cup A_2 \cup \dots \cup A_n} = \chi_{\overline{A_1 \cap \overline{A_2} \cap \dots \cap \overline{A_n}}} = 1 - \chi_{\overline{A_1} \cap \overline{A_2} \cap \dots \cap \overline{A_n}} = 1 - \chi_{\overline{A_1} \setminus \overline{A_2} \cap \dots \cap \overline{A_n}} = 1 - \chi_{\overline{A_1}} \chi_{\overline{A_2} \dots \chi_{\overline{A_n}}} = 1 - (1 - \chi_{A_1})(1 - \chi_{A_2})\dots(1 - \chi_{A_n}) = \sum_{k=1}^n \sum_{1 \le i_1 \le i_2 \le \dots \le i_k} (-1)^{k+1} \chi_{A_{i_1}} \chi_{A_{i_2}} \dots \chi_{A_{i_k}}$$

Понятно, что $|A| = \sum_{x \in A} \chi_A(x)$. Получим:

$$|A_1 \cup A_2 \cup ... \cup A_n| = \sum_{x \in A_1 \cup A_2 \cup ... \cup A_n} \chi_{A_1 \cup A_2 \cup ... \cup A_n}(x) =$$

$$=\sum_{x\in A_1\cup A_2\cup...\cup A_n}\sum_{k=1}^n\sum_{1\leqslant i_1\leqslant i_2\leqslant...\leqslant i_k}(-1)^{k+1}\chi_{A_{i_1}}(x)\chi_{A_{i_2}}(x)...\chi_{A_{i_k}}(x)=\sum_{k=1}^n\sum_{1\leqslant i_1\leqslant i_2\leqslant...\leqslant i_k\leqslant n}(-1)^{k+1}|A_{i_1}\cap A_{i_2}\cap...\cap A_{i_k}|$$

- 2.15 Подмножество счетного множества конечно или счетно. Во всяком бесконечном множестве есть счетное подмножество. Объединение конечного или счётного числа конечных или счётных множеств конечно или счётно. Декартово произведение конечного числа счетных множеств счетно. Счетность множества конечных последовательностей натуральных чисел.
 - Подмножество счетного множества конечно или счетно.

Пусть В - счетно. $A \subseteq B$, тогда A - счетно или конечно.

Доказательство:

Так как B - счетно, то занумеруем все элементы из B и выпишем их в ряд. Теперь вычеркнем все элементы из $B \setminus A$.

$$B: b_1, b_2, b_3, b_4, ..., b_5, b_6, ...$$

Остались только элементы из А и это все элементы А, значит мы занумеровали все элементы из А. Чтд

Во всяком бесконечном множестве есть счетное подмножество.

Если A - бесконечное множество, то $\exists B \subseteq A$, что B - счетно.

Доказательство:

$$\exists a_1 \in A \Rightarrow B_1 = \{a_1\}$$

$$\exists a_2 \in A \backslash B_1 \Rightarrow B_2 = \{a_1, a_2\}$$

$$\exists a_3 \in A \backslash B_2 \Rightarrow B_3 = \{a_1, a_2, a_3\}$$

...

$$\exists a_k \in A \backslash B_{k-1} \Rightarrow B_k = \{a_1, a_2, ..., a_k\}$$

$$B = igcup_{i=1}^\infty B_i,$$
 очевидно, что B - счетно. Чтд

• Объединение конечного или счётного числа конечных или счётных множеств конечно или счётно.

Пусть нам дано не более чем счетное количество множеств $A_1, A_2, ..., A_n, ...$ Тогда докажем, что их объединение - не более, чем счетно.

Доказательство:

Выпишем в столбец все множества $A_1, A_2, ...,$ так можно, так как их не более чем, счетно. В строку выпишем элементы этих множеств.

Теперь будем набирать элементы по диагоналям, сначала берем с первой, потом со второй и тд. Так мы получим все элементы из А. И они будут занумерованы. Если какие-то элементы совпали, то их можно просто пропустить.

$$A = a_{11}, a_{21}, a_{12}, a_{31}, a_{22}, a_{13}, \dots$$

Ну или можно представить это в виде

$$A = \bigcup_{i=2}^{\infty} \bigcup_{j=1}^{i-1} a_{j(j-i)}$$

Значит А - счетно. Чтд

• Декартово произведение конечного числа счетных множеств счетно.

Сначала докажем, что если A, B - счетны. То $A \times B$ - тоже счетно.

Доказательство:

$$A\times B=\{(a,b)|a\in A,b\in B\}=\bigcup_{i=1}^{\infty}\underbrace{A\times\{b_i\}}_{\text{счетное множеств}}$$

Но очевидно, что $A \times \{b_i\}$ - счетное множество, так как это просто множество A, к каждому элементу в котором приписали b_i . Значит $A \times B$ - счетное объединение счетных множеств, значит оно счетно.

Но раз $A \times B$ - счетно, то перейдя к равномощным $\mathbb{N} \times \mathbb{N} = \mathbb{N}^2$ - тоже счетно, значит можно по индукции доказать, что $\forall k \ \mathbb{N}^k$ - счетно. Чтд

• Счетность множества конечных последовательностей натуральных чисел.

Пусть n - длина максимальной последовательности, значит такое множество можно представить в виде $\bigcup_{k=1}^n \mathbb{N}^k$.

 $\bigcup_{k=1}^{n} \mathbb{N}^{k}$ - счетно, так как это счетное объединение счетных множеств. Кстати, тут \mathbb{N}^{k} - можно считать за все слова длины k в алфавите \mathbb{N} .

2.16 Если множество A бесконечно, а множество B конечно или счётно, то множество $A \cup B$ равномощно A. Равномощность множеств: бесконечных последовательностей из 0 и 1; вещественных чисел; [0,1]; [0,1); множества всех подмножеств натуральных чисел. Равномощность отрезка и квадрата.

Если множество A бесконечно, а множество B конечно или счётно, то множество $A \cup B$ равномощно A.

Пусть A - бесконечно, B - не более, чем счетное. Тогда $A \cup B \sim A$.

Доказательство:

 $B'=B\backslash A,\ B'$ - не более, чем счетное. Очевидно, что $A\cup B=A\cup B',$ но A и B' - не пересекаются. Так как A - бесконечно, то $\exists C\subseteq A, C$ - счетно. Так как $C\cup B'$ - счетно, то $C\sim C\cup B'$. Значит $\exists f:C\to C\cup B'$ - биекция.

Рис. 1: иллюстрация биекции

Теперь просто построим биекцию $g:A \to A \cup B'$.

$$g(a) = egin{cases} f(a), ext{если } a \in C \ a, ext{иначе} \end{cases}$$

Равномощность множеств: $\mathbb{B}^{\infty} \sim [0,1) \sim [0,1] \sim \mathbb{R} \sim 2^{\mathbb{N}}$.

Доказательство $\mathbb{B}^{\infty} \sim [0,1)$:

Построим биекцию $f: \mathbb{B}^{\infty} \to [0,1)$. Инициализируем f(b) так:

Пусть $b=b_0b_1b_2...$, тогда разделим полуинтервал напополам, если $b_0=0$, то перейдем в левую половину и запустимся рекурсивно, если $b_0=1$, то вправо. Так мы сможем получить любые числа на полуинтервале [0,1), но это не будет биекцией, так как некоторые числа можно получить двумя способами. К примеру, $\frac{1}{2}$ будет соответствовать последовательность 01111... и 10000.... Поэтому давайте просто запретим последовательности, которые заканчиваются на бесконечную последовательность 1. Тогда $\mathbb{B}^{\infty}=\mathbb{B}'\cup Y$, где $Y=\{(*******0),1111...\}$ - все последовательности, которые заканчиваются на все 1. Но $Y=\bigcup_{k=0}^{\infty}Y_k$, где $Y_k=\{a_1,a_2,...,a_{k-1},0,1,1,1,...\}$, но Y_k - конечно($|Y_k|=2^{k-1}$). Значит Y - счетно, а $\mathbb{B}'\sim [0,1)$, так как мы исключили плохие случаи, то верно, что

$$\mathbb{B}^{\infty} = \mathbb{B}' \cup Y \sim \mathbb{B}' \sim [0, 1)$$

Доказательство $[0,1) \sim [0,1] \sim \mathbb{R}$:

Добавление конечного не меняет мощность, поэтому $[0,1) \sim [0,1] \sim (0,1)$. Заметим, что $(0,1) \sim (-\frac{\pi}{2},\frac{\pi}{2})$, тут легко строится биекция $f:(0,1) \to (-\frac{\pi}{2},\frac{\pi}{2})$, $f(x) = x \cdot \pi - \frac{\pi}{2}$. Пусть $g:(-\frac{\pi}{2},\frac{\pi}{2}) \to \mathbb{R}$ и $g(x) = \operatorname{tg} x$ - это очевидно биекция, тогда $(-\frac{\pi}{2},\frac{\pi}{2}) \sim \mathbb{R}$. Значит $[0,1) \sim [0,1] \sim (0,1) \sim (-\frac{\pi}{2},\frac{\pi}{2}) \sim \mathbb{R}$.

Доказательство $\mathbb{B}^{\infty} \sim 2^{\mathbb{N}}$:

Тут довольно легко построить биекцию. Пусть дана двоичная последовательность $b = b_1 b_2 b_3...$ Тогда если $b_i = 1$, то мы берем число i в наше подмножество, а если 0, то не берем. При таком кодировании очевидно все подмножества будут различны. Аналогично можно восстановить бинарную последовательность из данного подмножества.

Равномощность отрезка и квадрата.

Было доказано, что $\mathbb{B}^\infty \to [0,1]$. Докажем, что $\mathbb{B}^\infty \to \mathbb{B}^\infty \times \mathbb{B}^\infty$. Построим биекцию $f:(\mathbb{B}^\infty)^2 \to \mathbb{B}^\infty$, наглядно продемонстрируем работу f((a,b))

$$\left. \begin{array}{l} a_1 a_2 a_3 a_4 \dots \\ b_1 b_2 b_3 b_4 \dots \end{array} \right\} \xrightarrow{\mathbf{f}} a_1 b_1 a_2 b_2 a_3 b_3 \dots$$

Значит $[0,1] \sim \mathbb{B}^{\infty} \sim (\mathbb{B}^{\infty})^2 \sim [0,1]^2$.

2.17 Несчетность множества бесконечных последовательностей из 0 и 1. Сравнение мощностей, теорема Кантора о сравнении мощности множества и множества всех его подмножеств.

Несчетность множества бесконечных последовательностей из 0 и 1.

Доказательство от противного:

Пусть \mathbb{B}^{∞} - счетно. Тогда можно каждому натуральному поставить во взаимно-однозначное соответствие бесконечную последовательность из 0 и 1. Тогда выпишем в столбик все натуральные числа, а в строчку к ним припишем соответствующие им последовательности. Тогда у нас не будет последовательностей, которых нет в этой таблице. Воспользуемся диагональным методом Кантора.

Теперь возьмем все элементы с диагонали и инвертируем их, то есть возьмем обратные к ним, заметим теперь, что мы из каждой последовательности взяли по элементу, и изменили его на обратный, то есть полученная последовательность не равна никакой из таблицы, то есть этой последовательности нет в таблице. Противоречие.

Сравнение мощностей, теорема Кантора о сравнении мощности множества и множества всех его подмножеств.

Пусть X - множество. Тогда $|X|<|2^X|$.

Доказательство:

1) $|X| \leq |2^X|$, так как существует инъекция $f: X \to 2^X, f(x) = \{x\} \in 2^X$.

2)
$$X \nsim 2^X$$

Докажем от обратного, пусть существует биекция $f: X \to 2^X$. Пусть $Y = \{x \in X \mid x \notin f(x)\}$. Очевидно, что $Y \subseteq X \Rightarrow Y \in 2^X$. Значит $\exists x \in X : f(x) = Y$.

1.
$$x \in Y \Rightarrow x \notin f(x) = Y$$
 - противоречие

2.
$$x \notin Y \Rightarrow x \in f(x) = Y$$
 - противоречие

Во все случаях получили противоречие, значит такой биекции нет. Чтд

2.18 Теорема Кантора – Бернштейна.

Пусть $|A| \leqslant |B|$ и $|A| \geqslant |B|$. Тогда $A \sim B$. Для простоты будем считать, что $A \cap B = \emptyset$.

Доказательство.

По условию $\exists f: A \to B, q: B \to A$ - инъекции. Тогда построим множества:

$$C_0 = A \backslash g(B) \subseteq A$$

$$C_1 = g(f(C_0)) \subseteq A$$

$$\dots$$

$$C_{n+1} = g(f(C_n)) \subseteq A$$

Значит $C = \bigcup_{n=0}^{\infty} C_n$. Теперь построим функцию $h: A \to B$.

$$h(x) = \begin{cases} f(x), x \in C \\ g^{-1}(x), x \notin C \end{cases}$$

Теперь докажем, что полученная функция h - биекция:

- 1) h инъекция. Пусть $h(x_1) = h(x_2)$.
 - 1. Если $x_1, x_2 \in C$, то $h(x_2) = h(x_1) = f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.
 - 2. Если $x_1, x_2 \notin C$, то $h(x_2) = h(x_1) = g^{-1}(x_1) = g^{-1}(x_2) \Rightarrow g(h(x_2)) = g(h(x_1)) \Rightarrow x_2 = x_1$.
 - 3. Если $x_1 \in C, x_2 \notin C$, то $f(x_1) = h(x_1) = h(x_2) = g^{-1}(x_2) \Rightarrow g(f(x_1)) = x_2$, но так как $x_1 \in C_n, n \geqslant 0$, то $x_2 = g(f(x_1)) \in C_{n+1} \subseteq C \Rightarrow x_2 \in C$ противоречие.
- 2) h сюръекция. Пусть $y \in B$.
 - 1. Если $y \in f(C) \Rightarrow \exists x \in C : y = f(x) \Rightarrow y = h(x)$.
 - 2. Если $y \notin f(C) \Rightarrow$ рассмотрим g(y).
 - (a) Если $g(y) \notin C \Rightarrow h(g(y)) = g^{-1}(g(y)) = y$.
 - (b) Если $q(y) \in C \Rightarrow q(y) \in C_n \Rightarrow q(y) = q(f(x)), x \in C_{n-1} \Rightarrow y = f(x) = h(x)$, так как $x \in C$.

Чтд

2.19 Связь строгих и нестрогих частичных порядков. Изоморфизм порядков. Примеры. Доказательство попарной неизоморфности порядков $\mathbb{Z}, \mathbb{Q}, [0,1]$ и (0,1). Доказательство неизоморфности покоординатных порядков на $[0,1]^2$ и $\{(x,y)\in\mathbb{R}^2||x|+|y|\leq 1\}$.

Связь строгого и нестрогого частичных порядков: Из отношения не строгого порядка на P можно получить отношение строгого порядка на P и наоборот следующим образом

$$a \leq b \Leftrightarrow a < b$$
 или $a = b$ $a < b \Leftrightarrow a \leq b$ и $a \neq b$

Доказательство:

- 1. Докажем, что отношение (a < b или a = b) обладает свойствами отношения нестрогого порядка:
 - Рефлексивность следует из того, что если a=b, то объекты находятся в отношении.
 - Антисимметричность следует из того, что строгие порядки не обладают свойством симметричности (для них одновременно не выполняется то, что a < b и b < a).
 - Для транзитивности рассмотрим три случая. Если a = b и b = c, то a = c. Если a = b и b < c или a < b и b = c, то a < c. Иначе, $a < b < c \Rightarrow a < c$. Во всех трех случаях транзитивность выполняется.
- 2. Докажем, что отношение ($a \le b$ и $a \ne b$) обладает свойствами отношения строгого порядка:

Антирефлексивность следует из того, что в отношении рассматриваются $a \neq b$. Т.к a = a, при любых a этот элемент не будет находиться в отношении с самим собой.

Пусть $a \leq b, b \leq c, \ a \neq b, b \neq c$, докажем что $a \leq c$ и $a \neq c$. Первое следует из транзитивности нестрогого частичного порядка \leq . Если же a = c, то $a \leq b$ и $b \leq c = a \Rightarrow a \leq b$ и $b \leq a \Rightarrow a = b$. Противоречие.

Порядки \leq_P и \leq_Q изоморфны, если существует биекция $\varphi:P\to Q$ такая, что $x\leq_P y\Rightarrow \varphi(x)\leq_Q \varphi(y)$.

Обозначается как $P \cong Q$

Пример: порядки $((0,1),<)((-\infty,-1),<)$ изоморфны, т.к есть биекция $\varphi(x)=-\frac{1}{x}$.

Когда порядки могут быть не изоморфны? Например, когда:

- 1. Один порядок имеет максимальный/минимальный элементы, а второй не имеет. Например, поэтому порядки [0,1] и (0,1) не изоморфны: первый порядок имеет очевидные минимальный и максимальный элементы, а второй таковых не имеет.
- 2. Порядки в целом имеют разное количество максимальных/минимальных/наименьших/наибольших элементов. Например, покоординатные порядки на $[0,1]^2$ и $\{(x,y)\in\mathbb{R}^2||x|+|y|\leq 1\}$ неизоморфны: в порядке $[0,1]^2$ всего лишь один минимальный элемент (0,0), а наименьших элементов нет: с другой стороны, в $\{(x,y)\in\mathbb{R}^2||x|+|y|\leq 1\}$ минимальных элементов нет, а наименьших бесконечно много. Потому данные порядки не изоморфны.
- 3. Изоморфизм не порождает изоморфизма отрезков. В частности, отрезок из конечного числа элементов должен соответствовать отрезку из конечного числа элементов. Потому например $\mathbb Z$ не изоморфен $\mathbb Q$: в первом случае все отрезки конечны, во втором случае все отрезки бесконечны.
- 4. Ну и не будем забывать что мы строим биекцию. В частности, потому множество $\mathbb Q$ не изоморфно интервалу (0,1): если бы мы могли её построить, то существовала бы биекция из $\mathbb N$ в (0,1), что значит что интервал был бы счетным множеством. Потому такой биекции нет. Аналогично, потому не изоморфны остальные пары порядков.

2.20 Изоморфизм конечных линейных порядков одинаковой мощности. Теорема о том, что счетный линейный порядок изоморфен подмножеству рациональных чисел.

• Изоморфизм конечных линейных порядков одинаковой мощности

Пусть $(P, \leqslant_P), (Q, \leqslant_Q)$ - конечные линейно упорядоченные множества и |P| = |Q|. Тогда $(P, \leqslant_P) \cong (Q, \leqslant_Q)$ Доказательство:

Докажем по индукции. База - один элемент в порядке, тривиально. Предположим, что все линейные порядки мощности n изоморфны. Рассмотрим произвольные линейные порядки P и Q с (n+1) элементов. Выделим в них наименьшие элементы p и q (они существуют, так как линейные порядки конечны). Порядки на оставшихся n элементах изоморфны по предположению индукции. Поставив в соответствие p элемент q получим изоморфизм порядков P и Q.

• Теорема о том, что счетный линейный порядок изоморфен подмножеству рациональных чисел

Пусть (P,\leqslant_P) - счетное линейное упорядоченное множество. Тогда $(P,\leqslant_P)\cong (A,\leqslant)$, где $A\subseteq \mathbb{Q}$ Доказательство:

Пусть $P = \{p_1, p_2, p_3, ...\}$

Построим инъекцию $\varphi: P \to \mathbb{Q}: p_i \leqslant_P p_i \Leftrightarrow \varphi(p_i) \leqslant \varphi(p_i)$

 $\varphi(p_1)=1$

Пусть определены значения функции в точках $p_1, p_2, ..., p_n$. Определим $\varphi(p_{n+1})$:

- 1. Если p_{n+1} наибольщий элемент в множестве $\{p_1,p_2,...,p_n,p_{n+1}\}$, тогда $\varphi(p_{n+1})=\max_{1\leqslant i\leqslant n}\varphi(p_i)+1$
- 2. Если p_{n+1} наибольщий элемент в множестве $\{p_1,p_2,...,p_n,p_{n+1}\}$, тогда $\varphi(p_{n+1})=\min_{1\leqslant i\leqslant n}\varphi(p_i)-1$
- 3. Если $p_i < p_{n+1} < p_j$, где $|[p_i, p_j]| = 3$, тогда $\varphi(p_{n+1}) = \frac{\varphi p_i + \varphi p_j}{2}$

Получили инъекцию, значит $P \cong \varphi P = A$, ч.т.д.

2.21 Доказательство эквивалентности трех определений фундированных множеств

Следующие три определения фундированных множеств эквивалентны:

- 1. каждое непустое подмножество имеет минимальный элемент
- 2. любая убывающая цепь конечна
- 3. Для порядка P спраедлив принцип индукции: если для утверждения A(p), зависящего от элемента порядка, для любого p верно утверждение «если A(q) верно при всех q < p, то и A(p) верно». Тогда утверждение A(p) верно при любом $p \in P$.

Доказательство:

Докажем, что из 1 следует 2 и из 2 следует 1.

- $1 \Rightarrow 2$. От противного: пусть существует бесконечная убывающая цепь. Тогда она не имеет минимальный элемент, т.к если бы имела, то цепь не была бы бесконечной.
- $2 \Rightarrow 1$. Пусть какое-то непустое подмножество не имеет минимального элемента. Попробуем построить в нем бесконечную убывающую цепь. Возьмем какой-нибудь элемент x_0 , он не минимальный, т.к существует $x_1 < x_0$, для x_1 же в свою очередь существует $x_2 < x_1$ и так далее. Получаем бесконечную убывающую цепь.

Таким образом, $1 \Leftrightarrow 2$. Докажем, что из 1 следует 3 и из 3 следует 1.

- $1\Rightarrow 3$. Рассмотрим множество всех x таких, что A(x) ложно. Из 1 следует, что в данном множестве есть минимальный элемент m. Если это не минимум множества в целом. то для всех y < m из множества, A(y) = 1, потому A(m) = 1 противоречие. К тому же m не может быть минимальным элементом в множестве в целом, т.к тогда для него не выполняется принцип индукции, а мы предположили что он выполняется. Потому множество всех x таких, что A(x) = 0 пусто.
- $3\Rightarrow 1.$ Выделим из P непустое подмножество X, в котором нет минимального элемента. Рассмотрим следующее индуктивное утверждение $A(p):p\notin X$.

Индуктивное утверждение выполняется: если q < p и A(q) = 1, то A(p) = 1 (иначе p — минимальный элемент в X). Потому $\forall p, p \notin X \Rightarrow X = \emptyset$.

2.22 Связь длины цепей и размеров разбиений частично упорядоченного множества на антицепи.

Пусть нам дано конечное частично упорядоченное множество (P, \leqslant) . Напомню, что c_{\max} - максимальная цепь, \hat{a} - минимальное разбиение множества на антицепи. Теперь мы готовы доказывать теорему.

Доказательство.

Сначала докажем, что $c_{\text{max}} \leqslant \hat{a}$. Разложим наше множество на минимальное количество антицепей, из каждой мы можем выбрать максимум по 1 элементу, чтобы получить цепь, значит по принципу Дирихле наше неравенство верно.

Теперь докажем обратное, что $c_{\text{max}} \geqslant \hat{a}$.

Возьмем
$$P_1 = \min(P)$$
 - множество всех минимальных элементов $P, \min(P) \neq \varnothing$.
$$P_2 = \min(P \backslash P_1) \\ P_3 = \min(P \backslash (P_1 \cup P_2)) \\ \dots \\ P_n = \min(P \backslash (P_1 \cup \dots \cup P_{n-1})) \\ P_{n+1} = \varnothing$$
 - такое $n+1$ найдется, так как множество конечно.

Все такие слои - антицепи. Возьмем $p_n \in P_n$. Заметим, что p_n - не минимальный в $P_{n-1} \cup P_n \Rightarrow \exists p_{n-1} \in P_{n-1} : p_n > p_{n-1}$. p_{n-1} - не минимальный в $P_n \cup P_{n-1} \cup P_{n-2} \Rightarrow \exists p_{n-2} \in P_{n-2} : p_n > p_{n-1} > p_{n-2}$.

Продолжаем этот процесс, пока не получим цепь $c, p_n > p_{n-1} > ... > p_{n-2} > ... > p_1$.

Значит $c_{\max} \geqslant |c| = n \geqslant \hat{a}$. Значит $c_{\max} = \hat{a}$. Чтд

2.23 Теорема Дилуорса

Теорема: Наибольший размер антицепи в порядке равен наименьшему количеству цепей в разбиениях порядка на непересекающиеся цепи.

Доказательство:

Напомню, что теорема Дилуорса работает только для конечных порядков, т.е их мощность это некоторое число n.

Для начала, любая цепь в разбиении содержит в себе не более одного элемента антицепи, иначе два элемента антицепи были бы сравнимы и антицепь не была бы антицепью, противоречие.

Давайте докажем теоремму дилуорса по индукции для мощности множества, на котором определен порядок, а именно: пусть для порядков, мощности < n, утверждение теоремы выполняется. Докажем, что утверждение выполняется для порядков мощности n.

Для пустого множества удтверждение теоремы очевидно выполняется. Потому, база индукции n=0 корректна.

Пусть утверждение теоремы Дилуорса справедливо для конечных порядков, определенных на множествах мощностью < n. Докажем утверждение для конечных порядков мощности n.

Возьмем порядок, определенный на множестве мощности n и назовем его P. У всякого конечного порядка есть минимум, пусть это элемент m.

Также, пусть Q — это всё множество P без минимума m, а s это размер максимальной антицепи в множестве Q. Для множества Q теорема справедлива, т.к мощность Q меньше n.

Максимальный размер антицепи в P может быть равен s+1 или s. Если он равен s+1, то мы можем разбить P на s+1 непересекающуюся цепь: возьмем разбиение Q на s цепей и добавим к данному разбиению элемент m как цепь из одного элемента. Иначе, сделаем следующее.

Рассмотрим каждую цепь из разбиения Q на s цепей по отдельности. Пусть a_i — минимальный элемент i-ой цепи в разбиении, для которого существует антицепь размера s, содержащая его. **Утверждение:** элементы A_i образуют антицепь.

Действительно, пусть $i \neq j, A_i \leq A_j$. Тогда возьмем цепь, содержащую A_i в качестве элемента, посмотрим какой элемент антицепи содержится в цепи, содержащей A_j . Если это сам A_j , то получается, что в антицепи есть два сравнимых элемента, что противоречит условию. Если этот элемент $\leq A_j$, то A_j это не минимальный элемент, для которого существует антицепь размера s, содержащая его. Осталось рассмотреть случай, когда данный элемент больше либо равен A_j .

Назовем этот элемент x. По транзитивности, т.к $A_i \leq A_j$, $A_j \leq x \Rightarrow A_i \leq x$. Получается, что в антицепи два элемента сравнимы. Противоречие.

Итак, если элементы A_i вместе с m образуют антицепь, то размер максимальной антицепи в P равен s+1, но ведь мы предположили что этот размер равен s. Потому $\exists k: m \leq A_k$. Возьмем все элементы, содержащиеся в той же цепи, что и A_k , больше либо равные A_k . Объединим их вместе с m в цепь и исключим данную цепь из множества. Получившееся множество P' имеет размер антицепи равный s-1, т.к иначе A_j , который мы исключили, был бы не минимален. Также, т.к мощность множества P' < n, данное множество можно разбить минимум на s-1 непересекающихся цепей. Получается, что добавив удаленную цепь обратно мы сможем разбить множество P не менее, чем на s цепей и получить в нем антицепь размера не более, чем s. Переход доказан.

2.24 LYM-лемма, теорема Шпернера о размере максимальной антицепи в булевом кубе.

LYM-лемма, или *LYM-inequality*. Дан булев куб, пусть A в нем - антицепь, a_k - количество элементов в антицепи, в которых ровно k единиц. Тогда утверждается, что выполнено:

$$\sum_{k=0}^{n} \frac{a_k}{C_n^k} \leqslant 1$$

Доказательство:

Посчитаем количество цепей максимальной длины двумя способами. Для начала разберемся какой длины максимальная цепь. Будем рассматривать элементы цепи в порядке увеличения. Тогда если после x идет y, то x - подслово y, это значит, что в y единицы обязательно в тех же местах что и в x + хотя бы еще одна в других местах. Каждый раз количество единиц в вершины строго увеличивается, а значит, чтобы достичь цепь максимальной длины, нужно увеличивать вес(количество единиц) вершины на 1. Получаем, что максимальная длина цепи n+1.

Посчитаем первым способом количество цепей максимально длины. Чтобы дойти от 00...0 до 11...1. Нам нужно вставить в каком-то порядке n единиц, причем каждый порядок задает свою цепь. Получаем, что у нас n! вариантов последовательно вставить единицы, а значит и n! цепей.

Посчитаем вторым способом. Зафиксируем какую-то вершину куба x, вес которой k. Сколько цепей максимальной длины проходит через нее? По тем же соображениям $k! \cdot (n-k)!$, потому что нам нужно каким-то порядком сначала поставлять k заданных единиц, а потом дойти из x до 11...1, проставив уже n-k единиц.

Тогда сколько цепей максимальной длины проходит через вершины антицепи А? Заметим тот факт, что через каж-

дую вершину проходят свои уникальные цепи. Пусть это не так, тогда x_1 и x_2 находятся в одной цепи, значит их можно сравнить, значит они не могут быть в одной антицепи. Раз через каждую вершину проходят уникальные цепи максимальной длины, можно выписать неравенство:

$$\sum_{k=0}^{n} a_k \cdot k! \cdot (n-k)! \leqslant n!$$

то есть количество уникальных цепей максимальный длины, проходящих через вершины антицепи A не превосходит общего количества цепей максимальной длины. Делим неравенство на правую сторону, получаем то, что и требовалось доказать:

$$\sum_{k=0}^{n} \frac{a_k}{C_n^k} \leqslant 1$$

Теорема Шпернера. Длина максимальной антицепи в булевом кубе равна $C_n^{[\frac{n}{2}]}.$

Лемма, что $\max_{0 \le k \le n} C_n^k = C_n^{[\frac{n}{2}]}$. Будет использоваться, но не доказываться.

Доказательство:

Возьмем, то, что мы получили в LYM-лемме и воспользуемся нашей локальной леммой, получим:

$$1 \geqslant \sum_{k=0}^{n} \frac{a_k}{C_n^k} \geqslant \sum_{k=0}^{n} \frac{a_k}{C_n^{[\frac{n}{2}]}} \Rightarrow \sum_{k=0}^{n} a_k \leqslant C_n^{[\frac{n}{2}]}$$

правая часть неравенства не что иное, как количество элементов в антицепи A.

Доказали, что небольше, как найти пример, где ровно. Посмотрим на все вершины весом $\left[\frac{n}{2}\right]$. Очевидно, что они все несравнимы, а их количество как раз равно $C_n^{\left[\frac{n}{2}\right]}$. Что и требовалось доказать.

- 2.25 Доказательство того, что достижимость в неориентированном графе является отношением эквивалентности и всякий граф можно разбить на компоненты связности. Неравенство, связывающее число вершин, ребер и компонент связности в графе. Разбиение ориентированного графа на компоненты сильной связности.
 - Доказательство того, что достижимость в неориентированном графе является отношением эквивалентности и всякий граф можно разбить на компоненты связности
 - Отношение связности считается отношением эквивалентности, если выполнены три условия:
 - 1. Рефлексивность: $xRx \ \forall x \in V$
 - 2. Симметричность: $xRy \Rightarrow yRx \ \forall x,y \in V$
 - 3. Транзитивность: $xRy, yRz \Rightarrow xRz \ \forall x, y, z \in V$
 - Докажем все эти 3 свойства.
 - 1. Рефлексивность: между вершинами x и x всегда существует путь нулевой длины, поэтому они лежат в одной компоненте связности
 - 2. Симметричность: если можно попасть из вершины x в вершину y, то можно попасть из вершины y в вершину x просто пройдя по всем ребрам в обратном порядке.
 - 3. Транзитивность: если есть путь из вершины x в вершину y, а из вершины y в вершину z, то "склеив" эти два пути, можно получить путь из вершины x в вершину y
 - Таким образом, наше множество вершин V делится на классы эквивалентности, называемые компонентами связности
 - Неравенство, связывающее число вершин, ребер и компонент связности в графе
 - Кол-во компонент связности в графе G всегда больше, либо равно (|V|-|E|), где V множество вершин в графе G, E множество ребер в графе G.

— Докажем это. Для начала, удалим все ребра из нашего графе, после чего будем их последовательно добавлять и следить за значением двух величин: разностью (|V|-|E|) и количеством компонент связности. Каждый раз, когда мы добавляем ребро, |E| увеличивается на один, соответственно, разница (|V|-|E|) уменьшается на один. Посмотрим на концы добавленного ребра. Если эти вершины были в одной компоненте связности, то количество компонент связности не изменится. Иначе, две компоненты связности соединятся, и общее количество компонент связности уменьшится на 1. Выходит, после каждого шага (|V|-|E|) уменьшается на 1, а кол-во компонент связности уменьшается либо на 0, либо на 1. Стоит отметить, что до добавления первого ребра эти две величины будут равны. Отсюда следует инвариант: после добавления любого ребра (|V|-|E|) будет больше, либо равно кол-ва компонент связности.

• Разбиение ориентированного графа на компоненты сильной связности

- Отношение сильной связности отношение эквивалентности.
- Докажем это.
 - 1. Рефлексивность: между вершинами x и x всегда существует путь нулевой длины, поэтому они лежат в одной компоненте связности
 - 2. Симметричность: если вершины x и y сильно связаны, то по определению существует ориентированный путь из x в y и из y в x.
 - 3. Транзитивность: если вершины x и y, y и z сильно связаны, то по определению есть ориентированный путь $x \to y$ и $y \to z$, следовательно, есть ориентированный путь $x \to z$. Аналогично показывается, что есть путь $z \to x$.
- Наше множество вершин в графе G разбивается на непересекающиеся подмножества вершин: V_1, V_2, \ldots, V_k . Они называются компонентами сильной связности. Сожмем каждую компоненту в одну вершину. Затем, посмотрим на наши исходные ребра в нашем графе. Если концы і-ого ребра находятся в разных компонентах связности, соединим две вершины, которые будут соответствовать сжатым компонентам связности. Получим новый граф, который называется конденсацией графа G.

2.26 Эквивалентность различных определений деревьев: число вершин и число ребер, минимально связные графы, графы без простых циклов, графы с единственностью простых путей. Существование остовного дерева в связном графе.

- Эквивалентность различных определений деревьев: число вершин и число ребер, минимально связные графы, графы без простых циклов, графы с единственностью простых путей
 - Существует 4 эквивалентных определения графа G, который является деревом:
 - 1. G связен и |E| = |V| 1, то есть количество ребер на один меньше, чем количество вершин
 - 2. G минимально связный граф
 - $3. \,\, G$ связен и в нем нет циклов
 - 4. в G между любыми вершинами v,u существует единственный простой путь
 - Покажем, что все 4 определения эквивалентны.
 - * Докажем, что из 1 следует 2. Воспользуемся неравенством, что кол-во компонент связности больше, либо равно (|V| |E|). В нашем случае, |V| |E| = 1, поэтому при удалении любого ребра, |V| |E| станет равно 2, то есть кол-во компонент связности станет строго больше 1. Отсюда следует, что наш граф минимальный связный граф.
 - * Докажем, что из **2** следует **3**. Предположим противное в нашем графе есть цикл. Тогда можно удалить любое ребро из этого цикла, и граф все ещё останется связным в силу того, что удаленное ребро можно "компенсировать оставшейся частью цикла". Выходит, наш граф не минимально связный противоречие.
 - * Докажем, что из **3** следует **4**. Предположим противное между двумя вершинами v и u существует два простых пути. Найдем первую вершину, после которой эти пути отличаются, пусть это будет вершина a. Таким образом, первый и второй путь начинаются с одинаковой части $v \to a$. Найдем первую вершину после вершины a, где они совпадают, пусть это будет вершина b. Такие вершины обязательно найдутся, к примеру, в качестве вершины a подойдет вершина v, в качестве вершины b вершина u. Заметим, что участки путей между вершинами a и b не пересекаются, выходит мы нашли цикл на вершинах a и b противоречие.

* Докажем, что из 4 следует 1. Для начала заметим такой факт. Если мы добавляем ребро (v;u) в граф, при этом они уже находятся в одной компоненте связности, то между вершинами v и u будет хотя бы два простых различных пути. Первый - по ребру (v;u). Второй - вершины v и u были в одной компоненте связности, поэтому между ними существовал какой-либо простой путь. Вернемся к нашему доказательству, выкинем все ребра из нашего и будем их по очереди туда добавлять. Заметим, что между любыми двумя вершинами v и u существует единственный простой путь. Поэтому каждый раз, когда мы добавляем новое ребро, оно должно иметь концы в разных компонентах связности. В начале процесса граф состоял из |V| компонент связности. При добавлении любого ребра, кол-во компонент уменьшается на 1. Отсюда следует, что мы сможем добавить не более |V|-1 ребер. Отсюда - в нашем графе должно быть ровно |V|-1 ребер.

• Существование остовного дерева в связном графе

 Докажем, что в любом связном графе существует остовное дерево. Будем удалять из нашего графа ребра, при удалении которых не увеличивается количество компонент связности. Заметим, что если таких ребер не осталось, то мы имеем минимальный связный граф. Отсюда следует, что получившийся граф - остовное дерево.

2.27 Ациклические орграфы, топологическая сортировка

- Рассмотрим следующие утверждения:
 - 1. Ориентированный граф G ацикличен.
 - 2. Все компонентны сильной связности G состоят из одной вершины.
 - 3. Вершины G можно пронумеровать числами от 1 до n таким образом, что если из вершины v можно достичь вершину u, то номер, сопоставленный вершине v будет меньше номера, сопоставленного вершине u.
- Докажем, что эти утверждения эквивалентны.
 - Докажем, что из 1 следует 2. Предположим, что существуют две вершины v, u, которые находятся в одной компоненте сильной связности. Значит есть путь $v \to u$ и $u \to v$, то есть есть существует цикл на вершинах v и u противоречие.
 - Докажем, что из 2 следует 1. Предположим, что в графе G бы существовал цикл. Рассмотрим две вершины v, u из этого цикла. Посколько из v можно попасть в u, а из u в v, то они должны лежать в одной компоненте связности, следовательно размер этой компоненты будет хотя бы 2 противоречие.
 - Докажем, что из **3** следует **1**. Предположим, что в графе G бы существовал цикл. Рассмотрим любое ребро из этого цикла, пусть оно имеет вид: $v \to u$. Тогда число, присвоенное вершине v должно быть меньше числа, присвоенного вершине u. С другой стороны, существует путь из вершины u в вершину v. Каждый раз, когда мы переходим к следующей вершине, номер, присвоенный ей, будет увеличиваться, поэтому когда мы придем из u в v, номер вершины v должен оказаться больше номера вершины u противоречие.
 - Докажем, что из ${f 1}$ следует ${f 3}$. Воспользуемся мат. индукцией по количеству вершин в графе. ${f Basa}$: n=1 очевидно.

Переход: Пусть верно для n = (k - 1), докажем для n = k. Найдем в нашем графе вершину, в которую не входит ни одно ребро. Такая всегда найдется, ведь иначе в нашем графе есть цикл.

Покажем это: будем идти по обратным ребрам от произвольной вершины v. По предположению не существует вершины, в которую не входят ребра, поэтому мы можем идти по обратным ребрам бесконечно долго - неизбежно получится цикл.

Итак, удалим вершину, в которую не входит ни одно ребро, присвоим ей номер 1. Останется часть графа на (k-1) вершине, которую можно занумеровать числами от 1 до (k-1). Прибавим к каждому номеру единицу. Получим граф, в котором каждой вершине сопоставлено число от 1 до k, причем если вершина v достижима из вершины u, то номер, сопоставленной вершине v будет меньше номера, сопоставленного вершине u.

2.28 Эйлеровы циклы в ориентированных и неориентированных графах. Критерий существования эйлерова цикла.

Определение:

Цикл называется эйлеровым, если он проходит по всем рёбрам графа по одному разу (любое ребро входит в цикл, и никакое ребро не входит дважды).

Критерий существования:

Неориентированный граф без вершин нулевой степени содержит эйлеров цикл тогда и только тогда, когда он связен и степени всех вершин чётны.

Ориентированный граф без вершин нулевой степени (в которые не входит и из которых не выходит рёбер) содержит эйлеров цикл тогда и только тогда, когда он сильно связен и у любой вершины входящая степень равна исходящей.

Доказательство:

Будем доказывать параллельно оба варианта теоремы. Пусть сначала эйлеров цикл есть. Тогда он проходит через все вершины (поскольку они имеют ненулевую степень), и по нему можно дойти от любой вершины до любой. Значит, граф связен (сильно связен в ориентированном случае).

Теперь про степени. Возьмём какую-то вершину v, пусть она встречается в цикле k раз. Идя по циклу, мы приходим в неё k раз и уходим k раз, значит, использовали k входящих и k исходящих рёбер. При этом, раз цикл эйлеров, других рёбер у этой вершины нет, так что в ориентированном графе её входящая и исходящая степени равны k, а в неориентированном графе её степень равна 2k. Таким образом, в одну сторону критерий доказан.

Рассуждение в обратную сторону чуть сложнее. Будем рассматривать пути, которые не проходят дважды по одному ребру. (Таков, например, путь из одного ребра.) Выберем среди них самый длинный путь

$$a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow \cdots \rightarrow a_{n-1} \rightarrow a_n$$

и покажем, что он является искомым циклом, то есть что $a_1 = a_n$ и что он содержит все рёбра.

В самом деле, если он самый длинный, то добавить к нему ребро $a_n \to a_{n+1}$ уже нельзя, то есть все выходящие из ап рёбра уже использованы. Это возможно, лишь если $a_1 = a_n$. В самом деле, если вершина ап встречалась только внутри пути (пусть она входит k раз внутри пути и ещё раз в конце пути), то мы использовали k+1 входящих рёбер и k выходящих, и больше выходящих нет. Это противоречит равенству входящей и исходящей степени (в ориентированном случае) или чётности степени (в неориентированном случае).

Итак, мы имеем цикл, и осталось доказать, что в него входят все рёбра. В самом деле, если во всех вершинах цикла использованы все рёбра, то из вершин этого цикла нельзя попасть в вершины, не принадлежащие циклу, то есть использованы все вершины (мы предполагаем, что граф связен или сильно связен) и, следовательно, все рёбра. С другой стороны, если из какой-то вершины a_i выходит ребро $a_i \to v$, то путь можно удлинить до

$$a_i \to a_{i+1} \to \cdots \to a_n = a_1 \to a_2 \to \cdots \to a_i \to v$$

вопреки нашему выбору (самого длинного пути). Аналогично можно получить противоречие и для входящего ребра v → аі , добавив его в начало. (А можно заметить, что если есть неиспользованное входящее ребро, то есть и неиспользованное выходящее.) Это рассуждение было для ориентированного случая, но в неориентированном всё аналогично. Теорема доказана.

Помимо эйлеровых циклов, можно рассматривать эйлеровы nymu — пути в графе, которые проходят один раз по каждому ребру. (Для неориентированных графов: рисуем картинку, не отрывая карандаша от бумаги, но не обязаны вернуться в исходную точку.) Для них тоже есть критерий: в неориентированном случае нужно, чтобы граф был связен и было не более двух вершин нечётной степени.

2.29 Двудольные графы, критерий двудольности графа. Пример: булев куб.

Определение:

Двудольным графом называется неориентированный граф, в котором можно разбить вершины на две доли — левые и правые, что все рёбра соединяют вершины из разных долей (нет рёбер, соединяющих вершины одной доли).

Критерий двудольности:

Граф двудольный тогда и только тогда, когда он двураскрашиваемый, то есть не содержит циклов нечетной длины.

Очевидно доказать экививалентность утверждений граф двудольный и граф двураскрашиваемый, так что приведем доказательство того, что в двураскрашиваемом графе нет циклов нечетной длины.

Доказательство:

Докажем сначала, что в двураскрашиваемом графе нет циклов нечётной длины. По контрапозиции, это условие равносильно тому, что если в графе есть цикл нечётной длины, то его нельзя раскрасить в два цвета. Это утверждение легко проверить. Если правильная раскраска есть, то в силу симметрии можно считать, что первая вершина цикла покрашена в цвет 1, тогда вторая вершина покрашена в цвет 2 и так далее, то есть каждая нечётная вершина будет покрашена в цвет 1, а каждая чётная — в цвет 2. Тогда последняя вершина цикла будет покрашена в тот же цвет, что и первая, что невозможно.

Докажем теперь, что если в графе нет циклов нечётной длины, то он двураскрашиваемый. Для этого построим раскраску. Выберем в каждой компоненте связности по вершине с, которую назовём центром, и покрасим её в цвет 2; все вершины на расстоянии (все расстояния и пути подразумеваются минимальными по количеству ребер) 1 от неё покрасим в цвет 1, все вершины на расстоянии 2 — в цвет 2 и так далее: вершины на чётном расстоянии от центра покрасим в цвет 2, а на нечётном в цвет 1.

Предположим, что в результате этой процедуры получилась неправильная раскраска. Это означает, что у некоторого ребра $\{u,v\}$ концы были покрашены в один цвет, а это произошло, если расстояния от центра с некоторой компоненты до вершин u и v имеют одинаковую чётность. Заметим, что если расстояния от центра до u и v не равны, то путь до одной из вершин можно было сократить, проходя через другую вершину (так как расстояния отличаются как минимум на 2). Получаем, что расстояния от центра до v и u равны.

Но тогда путь от центра до v + ребро $\{v,u\}$ + путь от u до центра имеют нечетную длину (пути могут пересекаться, но простоту цикла в теореме ничего не сказано). Получили противоречие.

Булев куб двураскрашиваемый

Будем называть четностью вершины $v = (x_1, \dots, x_n)$ число $parity(v) = x_1 + \dots + x_n \mod 2$. Тогда заметим, что если v, u связаны ребром, то $parity(v) \neq parity(u)$. Значит если у нас существует цикл нечетной длины k

$$v_1 \to v_2 \to \cdots \to v_k \to v_1$$

то, так как четность на каждом шаге меняется, получаем $parity(v_1) = parity(v_3) = \cdots = parity(v_k)$, но соседние вершины не могут иметь одну четность. Получаем противоречие.

2.30 Теорема Холла.

Теорема Холла. Если для каждого множества X вершин двудольного графа G = (L, R, E) множество соседей $G(X) \subseteq R$ содержит не меньше вершин, чем X, то в графе G есть паросочетания размера |L|

Доказательство:

Полная индукция по количеству элементов в левой доле L.

 $\mathit{База}\ undyкuuu.$ Если в L всего одна вершина x, то у неё есть хотя бы один сосед у в правой доле R по условию теоремы. Получаем паросочетание с ребром $\{x,y\}$.

 $extit{\it Шаг индукции}.$ Предположим, что утверждение теоремы выполняется для всех двудольных графов, в которых левая доля содержит меньше п вершин. Рассмотрим граф G=(L,R,E), для которого выполняются условия теоремы и в L ровно n вершин. Разберём два случая.

Первый случай: в левой доле есть такое множество X, для которого |X| = |G(X)|. Выделим из графа два подграфа. Первый, G_1 , имеет доли X, G(X) и все рёбра между этими вершинами. Второй, G_2 , имеет доли $L \setminus X$, $R \setminus G(X)$ и все рёбра между этими вершинами. Для обоих графов выполняются условия теоремы Холла. Для G_1 это очевидно по построению. Докажем выполнение условий теоремы для графа G_2 от противного. Пусть для подмножества $Z \subseteq L \setminus X$ соседей в $R \setminus G(X)$ меньше, чем вершин в Z. Тогда в графе G соседей у множества $X \cup Z$ меньше $|Z \cup X|$ (ведь множества X и Z не пересекаются, а соседей у X ровно |X|).

Итак, для G_1 , G_2 выполняются условия теоремы, а количество вершин в них меньше n. Поэтому по предположению индукции в каждом из них есть паросочетание размера левой доли. Объединяя эти два паросочетания, получаем искомое паросочетание в G размера |L|.

Второй случай: для каждого $X \subseteq L$ выполняется неравенство |X| < |G(X)|.

Выберем вершину $a \in L$ и её соседа $b \in R$ (в этом случае соседей у каждой вершины больше одного, нас устроит любой).

Если в графе $G' = ((L \setminus a), (R \setminus b, E'))$, полученном из G выбрасыванием вершин a, b и инцидентных им рёбер, есть паросочетание P размера n-1, то в графе G есть паросочетание размера n: к рёбрам из P добавим ребро $\{a, b\}$.

Если такого паросочетания нет, условие теоремы Холла для G' нарушается в силу индуктивного предположения. Какое-то «особое» множество $X \subseteq L \setminus \{a\}$ имеет мало соседей в $(R \setminus \{b\} : |X| > |G'(X)|$. Но в графе G у множества X есть разве что ещё один сосед b. Поэтому для этого множества выполняется равенство |X| = |G(X)|. Это первый случай, который уже рассмотрен выше.

2.31 Паросочетания. Вершинные покрытия. Теорема Кёнига

Теорема Кёнига В любом двудольном графе максимальный размер паросочетания равен минимальному размеру вершинного покрытия.

Доказательство:

В одну сторону легко. Если P - паросочетание в двудольном графе G=(L,R,E), то любое вершинное покрытие содержит хотя бы по одному концу каждого ребра паросочетания и поэтому его размер не меньше размера паросочетания. Значит, минимальный размер вершинного покрытия не меньше максимального размера паросочетания. (Факт верен для любых графов)

Теперь в другую сторону (тут уже верно только для двудольных): рассмотрим минимальное по размеру вершинное покрытие $X \sqcup Y, X \subseteq L, Y \subseteq R$, в графе G. Проверим выполнение условия теоремы Холла для ограничения $G_{X,G(X)\setminus Y}$ графа на множество вершин X в левой доле и множество вершины $G(X)\setminus Y$ в правой доле (оставляем в $G_{X,G(X)\setminus Y}$ только рёбра между указанными вершинами). Пусть $S\subseteq X$.

Множество $(X \setminus S) \sqcup Y \sqcup G_{X,G(X) \setminus Y}(S)$ является вершиным покрытием в G: все рёбра, покрытые вершинами из S, покрыты также либо вершинами из Y, либо соседями вершин из S в правой доле. Поскольку мы выбрали минимальное по размеру вершинное покрытие, $|G_{X,G(X) \setminus Y}(S)| \ge |S|$, что и означает выполнение условия теоремы Холла.

Аналогично проверяется выполнение условия теоремы и для графа $G_{L\setminus X,Y}$, полученного ограничением G на вершины $L\setminus X$ в левой доле и Y в правой доле (так как $X\sqcup Y$ - вершинное покрытие исходного графа, $L\setminus X$ входит в множество соседей Y в левой доле).

По теореме Холла в $G_{X,G(X)\setminus Y}$ есть паросочетание размера |X|, а в $G_{L\setminus X,Y}$ есть паросочетание размера |Y|. Рёбра этих паросочетаний не совпадают по построению. Значит, объединение этих паросочетаний даёт паросочетание размера |X|+|Y| в графе G. Таким образом, размер максимального паросочетания в G не меньше размера минимального вершинного покрытия.

2.32 Теорема Рамсея. Верхняя оценка чисел Рамсея.

Кликой называется множество вершин графа, каждая пара которых соединена ребром.

Теорема Рамсея. Для любых k, n найдётся такое число N_0 , что в любом графе на $N \geqslant N_0$ вершинах есть или клика размера k, или независимое множество размера n.

Ясно, что если утверждение теоремы справедливо для графов на N вершинах, то оно справедливо и для графов с N'>N вершинами. Обозначим через R(k,n) число Рамсея — минимальное количество вершин, для которого справедлива теорема.

Доказательство:

Будем доказывать индукцией по s, что для любой пары чисел k, n такой, что k+n=s справедливо утверждение теоремы.

База индукции s=2 очевидна: 2=1+1 — это единственный способ разложить число 2 в сумму целых положительных слагаемых, а одна вершина является одновременно и кликой, и независимым множеством.

Шаг индукции. Предположим, что утверждение выполнено для всех пар (k,n) таких, что k+n=s.

Докажем его для пары (k,n) такой, что k+n=s+1. По индуктивному предположению утверждение теоремы выполнено для пар (k-1,n) и (k,n-1).

Рассмотрим граф на $N_0 = R(k-1,n) + R(k,n-1)$ вершине и возьмём какую-то вершину v этого графа.

Вершин в графе за исключением вершины v ровно N_0-1 штук. Среди них x соседей и y несоседей.

Докажем, что выполняется хотя бы одно из неравенств

$$x \geqslant R(k-1,n)$$

$$y \geqslant R(k, n-1)$$

В противном случае выполняются два неравенства

$$x < R(k-1,n)$$

$$y < R(k, n-1)$$

из которых следует $x + y \leq R(k-1,n) - 1 + R(k,n-1) - 1 = R(k-1,n) + R(k,n-1) - 2$.

Получаем противоречие

$$N_0 - 1 = x + y \le R(k - 1, n) - 1 + R(k, n - 1) - 1 = N_0 - 2$$

Поэтому у вершины v есть R(k-1,n) соседей или есть R(k,n-1) несоседей.

Оба случая рассматриваются аналогично.

Первый случай. В индуцированном соседями вершины v подграфе по предположению индукции найдётся клика размера k-1 или независимое множество размера n. В первом варианте добавление вершины v даёт клику в исходном графе размера k, во втором варианте в исходном графе есть независимое множество размера n.

Второй случай. В индуцированном несоседями вершины v подграфе по предположению индукции найдётся клика размера k или независимое множество размера n-1. В первом варианте в исходной графе есть клика размера k, а во втором добавление вершины v даёт независимое множество размера n в исходном графе.

Итак, мы доказали утверждение теоремы и для произвольной пары (k,n), для которой k+n=s+1. Индуктивный переход доказан, и теорема следует из принципа математической индукции.

Оценка сверху. Докажем по индукции $R(k,n)\leqslant C_{n+k-2}^{k-1}=C_{n+k-2}^{n-1}$. Будем опять делать индукцию по s=n+k. База очевидна.

Переход, имеем: $R(k-1,n)\leqslant C_{n+k-3}^{k-2},\ R(k,n-1)\leqslant C_{n+k-3}^{k-1},\$ тогда пользуясь $C_n^k=C_{n-1}^{k-1}+C_{n-1}^k$ получаем, что $R(k,n)\leqslant C_{n+k-3}^{k-2}+C_{n+k-3}^{k-1}=C_{n+k-3}^{k-1}$

3 Семинары

3.1 Семинар 1

Задача 1

a)

База индукции:
$$n=1$$
: $1+\frac{1}{2}\geqslant\frac{1}{2}+1$ Переход: $n\to n+1$: $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{2^n}\geqslant\frac{n}{2}+1$ $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{2^n}+\frac{1}{2^n+1}+\ldots+\frac{1}{2^{n+1}}\geqslant\frac{n}{2}+1+\left(\frac{1}{2^n+1}+\ldots+\frac{1}{2^{n+1}}\right)\geqslant$ $\geqslant\frac{n}{2}+1+\left(\frac{1}{2^{n+1}}\cdot 2^n\right)=\frac{n+1}{2}+1$ 6) Докажем, что $\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2n}\leqslant\frac{3}{4}-\frac{1}{2n}$

База:
$$n=1$$
: $\frac{1}{2} \leqslant \frac{3}{4} - \frac{1}{4} = \frac{1}{2}$

Переход
$$n \to n+1$$
: $\frac{1}{n+2} + \dots + \frac{1}{2n+2} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} - \frac{1}{n+1} + \frac{1}{2n+1} + \frac{1}{2n+1} + \frac{1}{2n+2} \leqslant \frac{3}{4} - \frac{1}{2n} - \frac{1}{n+1} + \frac{1}{2n+1} + \frac{1}{2n+2} = \frac{3}{4} - \frac{1}{2n} + \frac{1}{2n+1} - \frac{1}{2n+2} \leqslant \frac{3}{4} - \frac{1}{2n+2}$

Задача 2

Докажем, что 1 можно представить в виде суммы любого числа различных обыкновенных дробей:

База:
$$n = 1$$
: $1 = \frac{1}{1}$

Переход: $n \to n+1$: Пусть мы представили 1 в виде суммы n дробей и дробь с минимальным значением равна $\frac{1}{n}$. Тогда возьмём от этой суммы все дроби кроме наименьшей, а её заменим на $\left(\frac{1}{n+1} + \frac{1}{n(n+1)}\right)$. Проверка: $\frac{1}{n+1} + \frac{1}{n(n+1)} = \frac{(n+1)^2}{n(n+1)^2} = \frac{1}{n}$

Задача 3

Докажем что мы можем получить любую комбинацию из любой по индукции, не применяя операцию 2 типа если последовательность равна 00...01:

База: n=1. Тогда мы первой операцией можем изменить значение.

Переход: $n \to n+1$. Если последний символ начальной последовательности равен тому, каким он должен быть в итоговой комбинации, то просто сделаем префикс длины n такой, каким он нам нужен (мы можем это сделать, так как по индукции мы умеем решать задачу для n и мы запретили операцию, которая изменила бы последний символ).

Если же последний символ нужно изменить, то сделаем префикс длины n равным 0...001, после применим 2 операцию, а после сделаем префикс длины n таким, как надо.

Мы получили требуемую комбинацию и не сделали запрещённую операцию, поэтому переход доказан.

Задача 4

Будем доказывать, что мы не только можем проехать n километров, но и можем сделать сколь угодно большой запас бензина в точке на расстоянии n километров от края пустыни, оказавшись в этой точке после окончания перевозок.

База: n=1: рейс на расстояние 1 и обратно требует 2 единиц бензина (будем называть единицей количество бензина на километр пути), поэтому мы можем оставить 1 единицу бензина в хранилище. За несколько рейсов в хранилище можно сделать запас произвольного размера, какого нам потребуется.

Переход: $n \to n+1$: Пусть мы хотим запасти в следующей точке b единиц бензина. Тогда запасём в предыдущей точке 3x единиц бензина. Тогда после этого сделаем x рейсов: залить в бак 3 единицы, за 1 проехать в n+1, вылить там 1 и за 1 вернуться назад (в последнем рейсе это не надо делать). Мы доказали переход.

Задача 5

Представим число $x=2^s \cdot t$, где t - нечётное. Тогда если представить так все числа от 1 до 2n, то значения t будут равны множеству $\{1, 3, ..., 2n-1\}$ - n элементов. Тогда если выбрать n+1 число, то у хотя бы двух будут равны t, значит они отличаются в $2^{s_2-s_1}$ раз, значит одно делится на другое.

Задача 6

Введём систему координат. Заметим, что пусть сейчас максимальная сумма координат клетки среди всех клеток равна n, тогда на следующем шагу она не может быть больше чем n-1 (все с суммой n пропадут, так как для существования им нужны были клетки с суммой n+1, а клетки с суммой больше n также появиться не могут).

А так как не может появиться клетки ниже чем самая низкая клетка изначально (так как ей для появления нужна либо она сама, либо клетка справа, но таких нет). Также не могло появиться клетки левее самой левой. Значит сумма координат ограничена снизу, значит все клетки пропадут за конечное число шагов.

Задача 7

- а) Частный случай пункта в)
- б) Пусть мы всегда применяли операцию к самой левой паре 01. Мы получили какое-то число операций. Теперь докажем, что любая последовательность операций равносильна этой.

Пусть мы в какой-то момент применили операцию не к самой левой паре 01. Тогда пока мы не применим операцию к ней значения на этих позициях не изменятся, как как эти символы не входят ни в одну другую подстроку 01. Значит, в какой-то момент мы применим операцию к этой самой левой паре. Теперь если бы мы сделали операцию как только эта пара стала бы самой левой, то все будущие операции не изменились (только сдвинулись налево на 1), поэтому количество операций в любой последовательности будет равно последовательности из начала.

в) Заметим, что данная операция лексикографически увеличивает слово.

Нужно доказать, что слово нельзя увеличивать бесконечно. Отбросим префикс, который мы ни разу не поменяли (он не влияет на операции), количество единиц в строке могло уменьшиться. Рассмотрим операцию, которая изменила первый элемент строки: 0 заменился на 1, после этого эта 1 уже не может участвовать ни в одной операции. Значит после повторного отбрасывания префикса, который не будет изменяться, единиц гарантированно станет меньше.

Мы не можем увеличить количество единиц и гарантированно его уменьшаем, а значит в какой-то момент мы придём к строке из нулей, к которой нельзя применить операцию. Значит количество операций обязательно конечно.

3.2 Семинар 2

Задача 1

а) $(A \cup B) \setminus (A \cap B)$ - элементы, которые либо только в A, либо только в B.

$$(A \backslash B) \subseteq ((A \cup B) \backslash (A \cap B)) \Longrightarrow (A \backslash B) \cap ((A \cup B) \backslash (A \cap B)) = (A \backslash B).$$

б) Если элемент в $A \setminus C$ или в $B \setminus$, то он есть в $(A \cap B) \setminus C$.

Если элемент в $(A \cap B) \setminus C$, то он либо в A, либо в B, а так как его нет в C, то он либо в $A \setminus C$, либо в $B \setminus C$.

в) $(A_1 \times B_1) \cap (A_2 \times B_2) \Leftrightarrow$ только те пары, в которых первый элемент в $A_1 \cap A_2$, а второй в $(B_1 \cap B_2) \Leftrightarrow (A_1 \cap A_2) \times (B_1 \cap B_2)$.

Задача 2

Нужно доказать, что любой элемент из левого множества принадлежит правому.

Если $x \in (A_1 \cap A_2 \cap ... \cap A_n)$ и $x \not\in (B_1 \cap B_2 \cap ... \cap B_n)$, то есть B_i , которому он не принадлежит, тогда $x \in A_i \triangle B_i$, значит элемент входит в объединение справа.

Аналогично если выполняется зеркальное условие \triangle .

Задача 3

a) $R = \{(x,y) \mid y = x+1\}$

 $R \circ R = \{(x,z) \mid \exists y: y=x+1, z=y+1 \Longrightarrow z=x+2, \text{ так как такой } y \text{ существует всегда.}$

6) $R = \{(x,y) \mid y = 1 - x\}$

 $R \circ R = \{(x,z) \mid \exists y: \ y=1-x, \ z=1-y=1-(1-x)=x \Longrightarrow z=x, \ \text{так как такой } y \ \text{всегда существует.}$

Задача 4

Не верно: пусть множество элементов равно $\{1,2,3\}$, $A = \{(1,1),(2,2),(3,3),(1,2),(2,1)\}$, $B = \{(1,1),(2,2),(3,3),(2,3),(3,2)\}$. Тогда композиция A и B не включает в себя (3,1), но включает (1,3), поэтому не выполняется симметричность.

Задача 5

 $f\left(f^{-1}(B)\right)\subseteq B$: пусть $x\in f\left(f^{-1}(B)\right)\Longrightarrow \exists y:\ f(y)=x\wedge y\in f^{-1}(B)\Longrightarrow \exists x_1:f^{-1}(x_1)=y_1,x_1\in B\Longrightarrow x=x_1\Longrightarrow x\in B$.

Нельзя поставить знак =, так как пусть $X=\{1\},\ Y=\{2,3\},\ f(1)=2$. Тогда $f\left(f^{-1}(\{2,\,3\})\right)=\{2\}$.

Задача 6

а, б) $A = \{0\}$, $B = \{1, 2\}$, f(0) = 1, g(1) = g(2) = 0. Тогда $(g \circ f)(x) = x$, но $(f \circ g)(2) = 1$, значит g является певой обратной к f, но не является правой.

- в) Пусть $l \circ f = id$, $f \circ r = id \Longrightarrow r = id \circ r = (l \circ f) \circ r = l \circ (f \circ r) = l$ по теореме по об ассоциативности композиции.
- r) todo
- д) todo

Задача 7

todo

Задача 9

Нет на колке

3.3 Семинар 3

Задача 1

 4^9 - нужно выбрать 9 раз одного из 4 человек, который понесёт этот предмет

Задача 2

 $\frac{9!}{5!}$

Задача 3

 $\frac{C_8^4}{2^8}$

Задача 4

 $900'000-5^6$ - всего чисел минус числа только из нечётных цифр

Задача 5

 $\frac{6\cdot 6\cdot 5!}{8!}=\frac{3}{28}$ - позиция этих 3 людей * количество перестановок этих людей * количество перестановок остальных / всего перестановок

Задача 6

Пусть есть 2 операции: распечатать число и прибавить к нему 1, изначально число равно 1. Тогда нам нужно расставить 4 распечатывания и 8 увеличений (после каждой печати обязательно должно следовать +1, +1 может быть до 1 числа или после последнего). Итого нам нужно расставить 4 операции $print\ and\ +\ u\ 5$ операций + (так как после вывода последнего числа прибавлять не надо), это делается C_9^4 способами.

Задача 7

Расставим 12 человек в ряд и сделаем пары 1-2, 3-4... Тогда каждое паросочетание посчитается $6! \cdot 2^6$ раз. Итого ответ $\frac{12!}{6! \cdot 2^6} = 11!!$ (но это уже на заметку)

Задача 8

Равносильно количеству решений уравнения $x_1+x_2+...+x_7=8$ (по одной монете раздали изначально). А количество таких способов: $C_{7+8-1}^8=\frac{8}{14}$.

Залача 9

Нужно посчитать количество бинарных строк длины 15, где 0 означает что мы не взяли число, а 1 - что взяли. При этом единиц должно быть 6 и после всех единиц кроме последней обязательно должен стоять 0. То есть нам нужно расставить 4 нуля и 6 комбинаций 01 (последняя просто 1). Это можно сделать $C_{10}^6=210$ способами. А всего комбинаций $_{15}^6$, поэтому вероятность $\frac{210}{\frac{6}{15}}$.

Задача 10

- а) Справа количество способов выбрать капитана и добрать ему команду. Слева устанавливаем размер команды, выбираем её и среди них выбираем капитана. Значит равнозначно.
- б) todo

Задача 11

В последовательности либо последний символ 0, либо последний 1, тогда обязательно перед ним 0. Получается количество последовательностей длины n равно количеству длины n-1 (последняя 1) плюс количество длины n-2 (последний 0). База очевидна.

Задача 12

todo

Задача 13

Посмотрим на последний столбец. Если в нём вертикальная доминошка, то += количество способов заполнить n-1 стоблец. Если там горизонтальная, то под ним тоже обязательно горизонтальная, значит количество способов += количество способов заполнить n-2. База очевидна.

Задача 16*

Одинаково, https://www.problems.ru/view_problem_details_new.php?id=34899

3.4 Семинар 4

Задача 1

Идея: выбрать позиции для О, потом расставить остальные буквы (некоторые другие буквы тоже повторяются, нужно разделить на факториал количества их вхождений)

Задача 2

- а) Выражение равносильно $a \lor b \lor c$ (выводится перебором количества единичных переменных).
- б) Пусть k переменных имеют значение 1, тогда значение 1 примет такое количество скобок:

 $C_k^1 + C_k^2 + ... + C_k^k = 2^k - 1$. Это значение нечётно при всех $k \neq 0$. Значит это выражение равносильно $x_1 \vee x_2 \vee ... \vee x_n$.

Задача 3

- а) $(x_1 \wedge x_2) \oplus (x_1 \wedge x_3) \oplus (x_2 \wedge x_3)$ (ясно что нужны такие переменные, после проверка показывает что такое выражение подходит)
- б) $(x_1 \wedge x_2) \oplus (x_1 \wedge x_3) \oplus (x_1 \wedge x_4) \oplus (x_2 \wedge x_3) \oplus (x_2 \wedge x_4) \oplus (x_3 \wedge x_4) \oplus (x_1 \wedge x_2 \wedge x_3 \wedge x_4)$ если две единицы, то работает, если 3 то 3 выражения 1, значит работает. Если все 4, то получается что нужно было добавить И всех аргументов.

Задача 4

- а) Верно когда нет выражений $1 \to 0$, значит либо все x = 0, тогда в y что угодно, либо в x есть 1 и тогда все игреки
- 1. Получается количество способов $2^5 + 2^5 1 = 63$.
- б) todo
- в) Если все переменные 1, то в многочлене Жегалкина все мономы равны 1, поэтому чтобы выражение было равно 1 нужно чтобы мономов было нечётно.

Задача 5

Если выражение - тождественная единица, то $a \vee \neg a$ (нужно узнать можно ли так). Иначе построим СДНФ для выражения $\neg f$, а после по закону Де-Мограна мы получим КНФ для f.

Задача 6

Мы знаем, что связка $\{\neg, \land\}$ полная. Отрицание - $X \mid X$, И - $(X \mid Y) \mid (X \mid Y)$.

Задача 7

- а) Нет, так как на наборе из всех 0 нельзя получить 1
- 6) Нет, так как на наборе из 0 и на наборе из 1 обязательно будут одинаковые результаты.

Задача 8

Нет, так как обе функции в ней самодвойственны, то есть на наборе из всех 0 и на наборе из всех 1 они не могут дать одинаковые значения. Доказательство по рекурсии, в выражении всё до текущего момента изменилось, значит изменится и результат текущей операции. (критерий Поста явно не используется)

3.5 Семинар 5

Задача 1

- а) Верно, так как если $f \in P \cap Q \Longrightarrow f \in P \land f \in Q \Longrightarrow [f] \in P, [f] \in Q \Longrightarrow [f] \in P \cap Q$ (я очень в этом не уверен)
- б) Не верно. Пример: $S \cup M$. В нём содержатся \wedge и \neg , значит замыкание равно множеству всех функций, что не равно $S \cup M$.

Задача 2

- а) 2^{2^n-1} (для всех масок кроме нулевой любые значения)
- б) Так как линейная функция представляется в виде полиномо Жегалкина где есть только свободный моном и мономы с одной переменной, то есть всего 2^{n-1} вариант коэффициентов, а значит есть ровно столько линейных функций.
- в) $2^{2^n/2} = 2^{2^{n-1}}$, так как каждое значение задаёт значение и для обратной маски

Задача 3

Нет, так как $\land \in M, \lor \in M, XOR_3 \not\in M$.

Задача 4

Выберем все маски, в которых $\lfloor \frac{n}{2} \rfloor$ переменных. Сделаем значения во всех масках с меньшим количеством нулей 0, а с большим - 1. Тогда мы можем сделать любые значения в масках с ровно таким количеством нулей и функция будет монотонной. Значит, таких функций хотя бы $2^{\lfloor \frac{n}{2} \rfloor}$.

Задача 5

- а) Является, так как \rightarrow принадлежит только T_1 , а diff этому классу не принадлежит
- б) Является, так как $0 \not\in T_1, 1 \not\in T_0, \land \not\in S, L, evn \not\in M$
- в) Является, так как для каждого класса есть функция, которая ему не принадлежит (с 1 взгляда это так, но легче это проверить на месте)

Задача 6

todo

Задача 7

todo

Задача 8

Я не понимаю пункт В, так что скорее всего моя логика неправильна и описаться на неё нельзя. Но вот что пока написано:

- а) Обе функции сохряняют 0, кроме этого \oplus только линейна, а \wedge не линейна, поэтому их замыкание равно T_0 .
- б) \equiv сохраняет 1 и линейна, \wedge сохраняет 1 и не линейна, значит замыкание T_1 .
- в) $\{0,1,\wedge,\vee\}$. Все монотонны, \wedge

3.6 Семинар 6

Задача 1

$$15 \cdot C_4^1 - 6 \cdot C_4^2 + 2 \cdot C_4^3 - 1 = 31$$

Задача 2

Их не более чем счётно, так как они - подмножество натуральных. Далее пусть их конечно. Тогда перемножим их все и прибавим 1. Новое число не будет делиться ни на одно известное простое, а значит это были не все простые числа. Противоречие. Значит их ровно счётно.

Задача 3

Докажем, что количество подмножеств фиксированного размера счётно. А так как таких множеств счётно, то получится что всего различных множеств счётно.

Пусть мы зафиксировали количество элементов c и пронумеровали $\mathbb Q$. Тогда выберем индекс максимального элемента, который будет в множестве, пусть это d. Тогда различных множеств 2^d - конечно. А так как вариантов d счётно, то всего количество множеств будет счётным. Также оно не может быть конечным, так как количество множеств из одного элемента счётно.

Задача 4

- а) Представим каждую цифру как двоичный код из 2 символов.
- б) $0 \leftrightarrow 0.1 \leftrightarrow 10.2 \leftrightarrow 11$. Из бинарной построить двоичную очевидно, любая двоичная однозначно построит бинарную так как никакая не является префиксом другой.

Задача 5

Количество подмножеств B размера |A| счётно (зафиксируем максимальный индекс, для него множеств конечно, индексов счётно). А функция - это перестановка длины |A|. А так как перестановок каждого множества конечно, то всего получается счётное число функций.

Задача 6

Зафиксируем T (их счётно), теперь нам нужно выбрать T значений для одного периода функции. Их конечно, так как выбрать подмножеств фиксированного размера у счётного множества счётно (зафиксируем максимальный и минимальный элемент, таких множеств конечно).

Задача 7

Выберем подпоследовательность $\left[\frac{1}{2},\frac{1}{4},\frac{1}{8},\ldots\right]$. Тогда $0 \to \frac{1}{2},1 \to \frac{1}{4}$, если число входит в последовательность, то берём элемент на 2 индекса больше, остальные переходят в себя. Это биекция, так как из каждой и в каждую входят рёбра.

Задача 8

Верно. Выберем в A счётное множество. После этого сделаем последовательность $C = [A_1, B_1, A_2, B_2, \ldots]$. Теперь в биекции $A_i \leftrightarrow C_i$, остальные элементы переходят сами в себя. Значит $|A \cup B| = |A|$, так как есть биекция.

Задача 9

Введём полярные координаты с центром в центре окружности, тогда вектора домножаются на R (при переходе обратно делятся на R).

Задача 10

Проведём диаметр AB и касательную l через точку B, перпендикулярную AB. Тогда для любой точки окружности X кроме A точкой на прямой будет $AX \cap l$. Осталась одна точка A, чтобы её добавить выберем последовательность и сделаем её первой (то есть биекция отображает в следующий элемент последовательности, см предыдущие задачи).

Задача 11

Сначала сделаем очевидные отображения $(0,1) \to (0,2) \to (-1,1)$. Теперь для (-1,0) сделаем $f(x) = \frac{x}{1+x}$ (перейдёт в $(-\infty,0)$), для (0,1) сделаем $f(x) = \frac{x}{1-x}$ (перейдёт в $(0,+\infty)$), и $0 \to 0$. Получилась биекция.

Задача 12

В прошлом номере мы сделали биекцию между $(0, +\infty)$ и (0,1). Применим её и задача свёдется просто к прошлому номеру.

Задача 14

Выберем из интервала последовательность, прочередуем её с Z, сделаем биекцию.

3.7 Семинар 7

Задача 1

a)
$$R \sim \{0,1\}^{\mathbb{N}} \sim \mathbb{N}^{\mathbb{N}}$$
.

Первая эквивалентность по определению, доказательство второй:

Последовательность $\leftrightarrow \mathbb{N}^{\mathbb{N}}$: количество подряд идущих единиц - число, 0 - разделитель.

б) Пронумеруем $\mathbb Q$ и заменим элементы на индексы. Получили прошлый пункт

Задача 2

Докажем, что количество прямых равносильно \mathbb{R}^4 :

Из прямой в набор: выберем 2 разные точки на прямой и запишем их координаты. У разных прямых будут разные координаты.

Обратно; $\mathbb{R}^4 \sim \mathbb{R}$, поэтому для $y \in \mathbb{R}$ проведём f = y.

Задача 3

Докажем, что $\mathbb{R} \sim \mathbb{R}^2$, дальше доказательство рекурсивно.

 $\mathbb{R} \sim (0,1) \sim (0,1)^2$ (каждое число возводим в квадрат) $\sim \mathbb{R}^2$.

Задача 4

Доказать что $\mathbb{R}^{\mathbb{N}} \sim \mathbb{R} \iff \{0,1\}^{\mathbb{N}^{\mathbb{N}}} \sim \{0,1\}^{\mathbb{N}}$

Это верно, так как распишем последовательности в таблицу и будем проходить по ней по диагоналям, получим одну последовательность, по которой можно восстановить изначальную.

Задача 5

- а) Конечно (не конечно в смысле оно точно счётно, а правда оно конечно), так как первые k элементов задают всю последовательность (она периодична с периодом k)
- б) Из двоичной последовательности в $\{0,1\}^{\mathbb{N}}$ очевидно.

В обратную сторону: из a_n сделаем $[0,1,a_1,0,1,a_2,...]$. Все условия выполняются вне зависимости от значений a_n .

Задача 6

Выберем внутри обеих окружностей рациональные точки. У непересекающихся восьмёрок они не могут пересекаться, значит подмножество (инъекция) $\mathbb{Q}^4 \sim \mathbb{N}$.

Задача 7

Да, горизонтальные прямые на плоскости. Их континуум (по y координате), и их объединение равно $\mathbb{R}^2 \sim \mathbb{R}$.

Задача 8

todo

3.8 Семинар 8

Задача 1

Нет, так как в первом у 1 есть предыдущий элемент, а во втором его нет.

Задача 2

Перенесём оба отрезка в [0,1] (параллельный перенос и домножение на константу), получим биекцию.

Задача 3

 $(0,1) \sim \mathbb{R}, \mathbb{Q} \sim \mathbb{N} \Longrightarrow$ не изоморфны.

Задача 4

Разобьём (0,1) на $\left(0,\frac{1}{2}\right], \left(\frac{1}{2},\frac{1}{4}\right],\dots$, а $\left(0,\sqrt{2}\right)$ на $(0,1]\cup(1,1.4]\cup(1.4,1.141]\cup\dots$ - десятичные приближения. Между полуинтервалами есть изоморфность, поэтому изоморфны и объединения.

Задача 5

Сравниваем пары лексикографически. Пусть $(0,1) \to (a,b)$. Тогда есть какое-то $(c,d) \to (a,b-1)$. Но тогда (c,d+1) должно переходить в пару между (a,b-1) и (a,b), что невозможно.

Задача 6

 $1 > 01 > 001 > 0001 > \dots$ - не фундировано.

Задача 7

Пусть смотрящие налево - 1, смотрящие направо - 0. Тогда пара 10 изменится на пару 01. То есть бинарная строка лексикографически уменьшится. А так как она конечна, то множество фундировано, то есть в какой-то момент изменения прекратятся.

Задача 8

(Копия 1.7) Заметим, что данная операция лексикографически увеличивает слово.

Нужно доказать, что слово нельзя увеличивать бесконечно. Отбросим префикс, который мы ни разу не поменяли (он не влияет на операции), количество единиц в строке могло уменьшиться. Рассмотрим операцию, которая изменила первый элемент строки: 0 заменился на 1, после этого эта 1 уже не может участвовать ни в одной операции. Значит после повторного отбрасывания префикса, который не будет изменяться, единиц гарантированно станет меньше.

Мы не можем увеличить количество единиц и гарантированно его уменьшаем, а значит в какой-то момент мы придём к строке из нулей, к которой нельзя применить операцию. Значит количество операций обязательно конечно.

Задача 9

todo

Задача 10

todo

Задача 11

Построим конструктивно биекцию. Пусть мы уже сделали отношения между $a \subseteq A$, $b \subseteq B$. Тогда выберем любое $x \in A \setminus a$. Оно может быть либо больше всех элементов a, либо меньше всех, либо между какими-то a_i и a_{i+1} . Тогда найдём элемент в B, который в таком же отношении с элементами b (такой элемент обязательно есть, так как нет граничных элементов и множество плотно). Сделаем между ними ребро биекции. Мы сделали переход $n \to n+1$.

Также чтобы каждый элемент гарантированно сопоставить пронумеруем A,B и на чётные шаги будем сопоставлять минимальный неиспользованный элемент A, а на чётных - из B.

3.9 Семинар 9

Задача 1

Пусть f(x) < x. Тогда f(f(x)) < f(x), так как аргумент слева меньше аргумента справа. Построим последовательность $x, f(x), f(f(x)), \ldots$ Она убывает и бесконечна, что противоречит тому что множество фундировано. Значит наше предположение не верно и $\forall x: f(x) \geqslant x$.

Задача 2

(Копия 8.11)

а) Построим конструктивно биекцию. Пусть мы уже сделали отношения между $a \subseteq A$, $b \subseteq B$. Тогда выберем любое $x \in A \setminus a$. Оно может быть либо больше всех элементов a, либо меньше всех, либо между какими-то a_i и a_{i+1} . Тогда найдём элемент в B, который в таком же отношении с элементами b (такой элемент обязательно есть, так как нет граничных элементов и множество плотно). Сделаем между ними ребро биекции. Мы сделали переход $n \to n+1$.

Также чтобы каждый элемент гарантированно сопоставить пронумеруем A,B и на чётные шаги будем сопоставлять минимальный неиспользованный элемент A, а на чётных - из B.

б) todo

Задача 3

Множество максимальных элементов образует антицепь (так как иначе один из них был бы меньше другого). Пусть M_1 - множество максимальных элементов множества P. Далее M_2 - множество максимумов $P \setminus M_1$. M_3 - максимумы $P \setminus M_1 \setminus M_2$ и так далее пока множество не станет пустым. Если одно из множеств размера хотя бы m+1, то мы нашли нужную антицепь. Если множеств хотя бы n+1, то мы можем построить цепь $a_1, a_2, ... a_{n+1}$, где $a_i \in M_i$ (так как у каждого элемента есть элемент в предыдущем M, который больше него).

Если же всего множеств $\leqslant n$ и размер каждого $\leqslant m$, то всего элементов $\leqslant mn$ - противоречие.

Задача 4

Скажем что a < b если \dot{b} : a. Тогда в множестве нет антицепей размера больше 2, значит по теореме Дилуорса множество можно разбить на 2 цепи, что и требовалось в задаче.

Задача 5

- а) Пусть 2 элемента сравнимы, если $a_i < a_j \land i < j$. Тогда в множестве есть либо возрастающая последовательность размера 7+1, либо убывающая размера 5+1. Используем 3 задачу.
- б) Не из всякой, пример: $[29..35,\,22..28,\,15..21,\,8..14,\,1..7]$. Нет возрастающих размера 8 и убывающих размера 6.

Задача 6

3.10 Семинар 10

Задача 2

Выберем 4 вершины степени 4. Из этого подграфа выходит минимум 4 ребра. Но осталась только вершина размера 2 - противоречие.

Задача 3

- а) Пусть все вершины степени ≤ 15 , тогда суммарно в графе не более $15 \cdot 100 = 1500$ концов рёбер. Но в нём 800 рёбер, а значит 1600 концов. Противоречие.
- б) Может, расставим вершины по кругу и соединим каждую со следующими 8 и предыдущими 8 по кругу.

Задача 4

Пусть в графе n вершин. Тогда в нём есть вершина размера 0 и размера n-1. Первая не соединена ни с какой вершиной, а вторая соединена со всеми. Противоречие.

Задача 5

Пусть все вершины степени $\geqslant 2$, тогда концов рёбер $\geqslant 2n$, но в дереве их всего 2n-2 - противоречие.

Задача 6

- а) В дереве 8 рёбер \Longrightarrow 16 концов рёбер. Если есть 2 вершины степени 5, то пусть остальные вершины степени 1, тогда концов рёбер $2 \cdot 5 + 1 \cdot 7 = 17 > 16$. Противоречие.
- б) В дереве 2n-2 конца. Пусть x листьев, тогда концов рёбер не меньше $x+3\cdot(n-x)=3n-2x\leqslant 2n-2\Longrightarrow n+2\leqslant 2x\Longrightarrow x\geqslant \frac{n}{2}+1.$

Задача 7

Пусть в графе не связаны вершины A и B, а в дополнении - вершины C и D. Тогда рёбра AC и BD могут либо оба существовать в графе, либо оба не существовать, пусть AC существует. Тогда если BC существует, то A и B соединены в графе, а если не существует, то C и D соединены в дополнении. Противоречие.

Задача 8*

Можно разрезать на 27 кусов (разрезать на 15, поверх разрезать на 13, gcd = 1, поэтому совпадение будет только одно).

Пусть можно разрезать на меньшее число кусков. Построим двудольный граф, в первой доле будет 13 людей, во второй будет 15 людей. Соединим ребром людей, которым достался один кусок и на ребре напишем, какую долю пирога оно представляет, если общий объём пирога равен $15 \cdot 13$).

Рассмотрим какую-то компоненту связности этого графа. В нём сумма чисел на рёбрах должно делиться и на 15, и на 13 (так как каждому досталось только, сколько людей в другой группе), поэтому он равен $15 \cdot 13$ и в графе одна компонента. А так как граф на 15 + 13 вершинах связен, то в нём не меньше 15 + 13 - 1 = 27 вершин.

3.11 Семинар 11

Задача 1

Построим граф цифр, которые могут следовать друг за другом

$$1 \to 4, 4 \to 2, 4 \to 9, 9 \to 2, 9 \to 8, 8 \to 4$$

$$3 \rightarrow 5.5 \rightarrow 6.6 \rightarrow 3$$

$$7 \rightarrow 0, 7 \rightarrow 7$$

Жадно набираем ответ, получаем 98431.

Задача 2

Het, пример: $1 \to 2$, $2 \to 1$, $1 \to 3$, $3 \to 1$. Везде только 1 простой путь, а исходящая степень вершины 1 равна 2.

Задача 3

 $k \cdot (k-1)^{n-1}$, раскрашиваем одну вершину, потом у каждой есть 1 заблокированный вариант.

Задача 4

- а) Если добавленные рёбра соединяют вершины одной чётности то раскраски нет, значит она есть только при n=1.
- б) При нечётных n граф 2—раскрашиваем. Рассмотрим чётные. При n=2 получается полный граф на 4 вершинах, в нём нет 3— раскраски. А для n>2 сделаем так: сначала раскрасим n вершин цикла в 1212..., потом 3, потом 1212... и в конце ещё одна тройка. Добавленные рёбра будут соединять разные цвета, так как мы сбили цикл.

Задача 5

Докажем по полной индукции. База n=2 - очевидно.

Переход: при $n \geqslant 3$ в графе есть вершина степени хотя бы 2. Если после её удаления граф не распадается, то доказано. Иначе выберем одну из компонент связности после удаления этой вершины. В этой компоненте по индукции можно найти требуемую вершину. Доказано

Задача 6

Если нет пути, то можно разбить: поместим все достижимые из s в S, достижимые из t в T. Остальные тоже добавим в S. Пересечений нет, так как иначе был бы путь.

Если можно разбить, то нет пути: пусть путь есть, тогда в нём есть 2 соседние вершины из разных множеств - противоречие.

Задача 7

Сделаем топологическую сортировку. Теперь сделаем чтобы из всех меньших вершин в большие вело ребро. Все старые пути остались и могли появиться новые, то есть количество путей в таком графе не меньше, чем в любом другом. Максимальное количество путей между двумя вершинами этого графа будет между первой и последней вершиной и количество путей будет равно 2^{n-2} (так как из любой мы можем перейти в любую, то есть мы можем как угодно выбрать набор посещённых вершин).

Задача 8

Индукцией по количеству рёбер докажем, что есть Эйлеров цикл во всем рёбрам (что гарантирует сильную связность).

Выберем начальную вершину и будем жадно идти по выходящим рёбрам, пока не зациклимся. После этого удалим цикл из графа. По индукции у компонент связности есть Эйлеровы циклы и каждая компонента соединена с удалённым циклом, поэтому мы можем построить новый цикл по всему начальному графу.

4 Домашние задания

4.1 Домашнее задание 1

Задача 1

Заметим, что если $a, b \ge 0, a + b \le 1/2$, выполняется

$$\frac{1-a}{1+a} \cdot \frac{1-b}{1+b} = \frac{1-(a+b)+ab}{1+(a+b)+ab} = 1 - \frac{2(a+b)}{1+(a+b)+ab} \ge 1 - \frac{2(a+b)}{1+(a+b)} = \frac{1-(a+b)}{1+(a+b)}.$$

Докажем теперь по индукции по n, что при $x_1 + x_2 + \cdots + x_n = 1/2$ выполняется

$$\frac{1-x_1}{1+x_1} \cdot \frac{1-x_2}{1+x_2} \cdot \dots \cdot \frac{1-x_n}{1+x_n} \ge \frac{1}{3}.$$

База n=1 очевидна:

$$\frac{1-1/2}{1+1/2} = \frac{1}{3}.$$

Предположим, утверждение верно для n, докажем его для n+1. Тогда применим требуемое утверждение для $x_1, x_2, \ldots, x_{n-1}, x_{n+1}$:

$$\frac{1-x_1}{1+x_1} \cdot \frac{1-x_2}{1+x_2} \cdot \dots \cdot \frac{1-x_n}{1+x_n} \cdot \frac{1-x_{n+1}}{1+x_{n+1}} \geq \frac{1-x_1}{1+x_1} \cdot \frac{1-x_2}{1+x_2} \cdot \dots \cdot \frac{1-x_{n-1}}{1+x_{n-1}} \cdot \frac{1-(x_n+x_{n+1})}{1+(x_n+x_{n+1})} \geq$$

$$[\text{по предположению индукции}] \geq \frac{1}{3}. \quad \blacksquare$$

(все знаки корректны, поскольку дроби положительны)

Задача 2

Покажем, что при $n \geq 2, 1 \leq k \leq n$

$$k\sqrt{(k+1)\sqrt{(k+2)\sqrt{\ldots\sqrt{(n-1)\sqrt{n}}}}} < k(k+2)$$

по (обратной) индукции по k.

База индукции: при k = n имеем n < n(n+1), что верно.

Предположим, что утверждение верно при некотором k+1, докажем его для k:

$$k\sqrt{(k+1)\sqrt{(k+2)\sqrt{\ldots\sqrt{(n-1)\sqrt{n}}}}} < k\sqrt{(k+1)(k+3)} <$$

[по неравенству о средних] $< k \frac{(k+1) + (k+3)}{2} = k(k+2),$ ■.

Тогда требуемое утверждение получается при подстановке k=1.

Задача 3

Обозначим за C_n множество координат отмеченных точек для отрезка длины 3^n . Формально:

$$C_0 = \{0, 1\},\$$

 $C_n = \{m \mid 0 \le m \le 3^n, m \in C_{n-1} \lor m - 2 \cdot 3^{n-1} \in C_{n-1}\}.$

Отметим, что множество C_n симметрично, то есть $m \in C_n \iff 3^n - m \in C_n$. Это тривиально проверяется индукцией, доказательство в этом решении опущено.

Будем по индукции по n доказывать, что для любого $0 \le k \le 3^n$ найдутся два целых числа $0 \le a_n(k) \le b_n(k) \le 3^n$, такие, что $b_n(k) - a_n(k) = k$ и $a_n(k), b_n(k) \in C_n$.

База: n=0, тогда отрезок имеет длину 1 и оба его конца отмечены, условие задачи выполняется.

Индукционный переход: пусть для n утверждение выполняется, докажем его для n+1.

- 1. Если $0 \le k \le 3^n$, пусть $a_{n+1}(k) = a_n(k), b_{n+1}(k) = b_n(k)$.
- 2. Если $3^n < k \le 2 \cdot 3^n$, пусть $a_{n+1}(k) = 3^n a_n(2 \cdot 3^n k), b_{n+1}(k) = 3^{n+1} b_n(2 \cdot 3^n k)$.
- 3. Если $2 \cdot 3^n \le k \le 3^{n+1}$, пусть $a_{n+1}(k) = a_n(k-2\cdot 3^n), b_{n+1}(k) = 2\cdot 3^n + b_n(k-2\cdot 3^n).$

Легко проверить, что аргументы функций в нужных границах. Расстояния правильны:

- 1. $b_{n+1}(k) a_{n+1}(k) = b_n(k) a_n(k) = k$.
- $2. \ b_{n+1}(k) a_{n+1}(k) = 3^{n+1} b_n(2 \cdot 3^n k) 3^n + a_n(2 \cdot 3^n k) = 2 \cdot 3^n (b_n(2 \cdot 3^n k) a_n(2 \cdot 3^n k)) = 2 \cdot 3^n (2 \cdot 3^n k) = k.$
- 3. $b_{n+1}(k) a_{n+1}(k) = 2 \cdot 3^n + b_n(k-2 \cdot 3^n) a_n(k-2 \cdot 3^n) = 2 \cdot 3^n + (k-2 \cdot 3^n) = k$.

...а точки действительно отмечены:

1.

$$a_n(k) \in C_n \implies a_n(k) \in C_{n+1};$$

 $b_n(k) \in C_n \implies b_n(k) \in C_{n+1}.$

2.

$$a_n(2 \cdot 3^n - k) \in C_n \implies 3^n - a_n(2 \cdot 3^n - k) \in C_n \implies 3^n - a_n(2 \cdot 3^n - k) \in C_{n+1};$$

 $b_n(2 \cdot 3^n - k) \in C_n \implies b_n(2 \cdot 3^n - k) \in C_{n+1} \implies 3^{n+1} - b_n(2 \cdot 3^n - k) \in C_{n+1}.$

3.

$$a_n(k-2\cdot 3^n) \in C_n \implies a_n(k-2\cdot 3^n) \in C_{n+1};$$

$$b_n(k-2\cdot 3^n) \in C_n \implies 3^n - b_n(k-2\cdot 3^n) \in C_n \implies 3^n - b_n(k-2\cdot 3^n) \in C_{n+1} \implies 3^{n+1} - 3^n + b_n(k-2\cdot 3^n) \in C_{n+1} \implies 2\cdot 3^n + b_n(k-2\cdot 3^n) \in C_{n+1}.$$

Задача 4

Заметим, что кузнечик всегда может некоторой последовательностью действий переместиться ровно на 1 вправо.

В самом деле, предположим, что кузнечик уже сделал k-1 прыжок и сейчас готовится делать k-й. Тогда пусть он сделает $m=2^k$ прыжков влево, а потом один прыжок вправо. Изменение его позиции на числовой прямой равно

$$\left(\sum_{i=0}^{m-1} -(2^{k+i}+1)\right) + (2^{k+m}+1) = -2^k(2^m-1) - m + 2^{k+m} + 1 = 2^k - m + 1 = 1.$$

Таким образом, кузнечику нужно постоянно прыгать на 1 вправо описанным методом, и так он посетит все целые точки положительной полуоси.

Задача 5

Проведем индукцию по числу n лампочек: для каждого n будем показывать, что для любого числа m кнопок утверждение верно.

База индукции: n = 0, тривиальный случай, все уже правильно.

Индукционный переход: пусть утверждение верно для n, докажем для n+1.

Применяя свойство из условия для множества из одной лампочки $\{n+1\}$, получаем, что всегда существует кнопка, связанная в том числе с этой лампой; пусть без ограничения общности она будет m-й.

Чтобы свести задачу к меньшей, построим новую систему, состоящую из первых n лампочек и первых m-1 кнопок, где связи между лампочками и кнопками формируются следующим образом. Если A_i – множество лампочек, связанных с i-й кнопкой в старой системе, то в новой системе:

$$B_i = egin{cases} A_i \oplus A_m & ext{ecли } n+1 \in A_i, \ A_i & ext{uhave}. \end{cases}$$

Здесь \oplus обозначает симметрическую разность множеств. Легко видеть, что $n+1 \notin B_i$, поэтому новая система определена корректно.

В таком случае сведение выглядит следующим образом:

- 1. Если n+1-ю лампу надо погасить, нажмем m-ю кнопку.
- 2. Применим алгоритм для n ламп и m-1 кнопок со связями, задаваемыми конечной последовательностью B, где нажатие i-й кнопки в новой системе соответствует либо нажатию ее же в старой системе, если $n+1 \not\in A_i$, либо нажатию ее и затем m-й кнопки в противном случае.

Легко видеть, что это дает правильный ответ: первый шаг устанавливает n+1-ю лампу в правильное состояние, а второй сбрасывает первые n ламп, не задевая n+1-ю.

Осталось показать, что это сведение корректно, то есть сохраняет существование кнопки, соединенной с нечетным числом лампочек из произвольного набора $K \neq \emptyset$.

В самом деле, рассмотрим два случая:

- 1. Если $|K \cap A_m| = 0 \pmod 2$, то решим сначала задачу поиска кнопки i, соединенной с нечетным числом элементов из K, в старой системе. Сразу отметим, что $i \neq m$, так как $|K \cap A_i| = 1 \pmod 2$. Утверждается, что эта лампа обладает требуемым свойством и в новой системе. В самом деле, если $n+1 \not\in A_i$, то она переключает в обоих системах один и тот же набор ламп. Если же $n+1 \in A_i$, то в новой системе среди данных K ламп ее нажатие переключает сначала переключает нечетное число из них, а затем четное число, поскольку $|K \cap A_m| = 0 \pmod 2$. Даже если эти множества пересекаются, в итоге переключено оказывается нечетное число ламп, что и требовалось.
- 2. Если $|K \cap A_m| = 1 \pmod 2$), то исполним ту же самую идею, что и в первом пункте, но будем требовать нечетное пересечение не с K, а с $K \cup \{n+1\}$. Опять же, $i \neq m$, так как $|(K \cup \{n+1\}) \cap A_i| = 1 \pmod 2) \Longrightarrow |K \cup A_i| = 0 \pmod 2$. Тогда если $n+1 \not\in A_i$, то (n+1)-я лампа не задействована вообще, и в обоих системах переключен один и тот же набор ламп. Если же $n+1 \in A_i$, то нажатие i-й лампы в новой системе среди данных K ламп сначала переключает четное число (поскольку мы учитываем n+1-ю лампу в старой системе, но не в новой), а затем нечетное число (поскольку $|K \cap A_m| = 1 \pmod 2$) ламп итого нечетное количество.

Индукционный переход доказан.

Задача 6

Будем доказывать, что при фиксированных a_1, a_2, \ldots, a_n для любого $1 \le m \le n$ числа $a_m, a_{m+1}, \ldots, a_n$ можно разбить на две группы, суммы которых отличаются не больше, чем на m.

База индукции: при m=n достаточно взять группы $[a_m]$ и [] (то есть группу из одного элемента a_m и пустую группу); суммы различаются на $a_m \le m$.

Индукционный переход: пусть утверждение верно для m+1, докажем его для m. Рассмотрим какое-нибудь разбиение a_{m+1},\ldots,a_n на группы с суммами s_1 и s_2 , где $|s_1-s_2|\leq m+1$. Тогда добавим элемент a_m в группу с меньшей суммой. Без ограничения общности считаем, что $s_1\geq s_2$, тогда для $\Delta=s_1-(s_2+a_m)$ выполняется:

$$\Delta = (s_1 - s_2) - a_m \le (m+1) - a_m \le (m+1) - 1 = m,$$

$$\Delta \ge 0 - a_m \ge -m.$$

 $|\Delta| \le m$ – новая разность сумм групп, она удовлетворяет требуемым условиям, индукционный переход завершен.

Для получения требуемого в задаче результата подставим m=1, что дает разбиение на две группы с суммами, отличающимися не более, чем на 1, а поскольку сумма $a_1+a_2+\cdots+a_n$ четна, суммы групп должны быть одной четности и отличаться на 1 не могут.

Задача 7

Будем доказывать требуемое по индукции по n.

База, n = 0, тривиальна.

Пусть утверждение верно для всех количеств черных клеток, меньших n, покажем его истинность для n.

Рассмотрим самый левый столбец, содержащий хотя бы одну черную клетку. Справа от него находится k < n черных клеток. Легко видеть, что поведение части плоскости правее этого столбца никак не зависит от состояния этого столбца; значит, можно применить предположение индукции, из которого следует, что после k шагов (а тем более n-1 шаг) правая часть плоскости будет полностью состоять из белых клеток. Также очевидно, что слева от этого столбца ни одна черная клетка появиться не может. Итак, спустя n-1 шаг содержать черные клетки может только один столбец.

Проделав аналогичные рассуждения с самой нижней строкой, можно сделать вывод о том, что спустя n-1 шаг черные клетки может содержать только одна строка.

Из этого следует, что через n-1 шаг черной может быть только одна клетка, расположенная на пересечении этих столбца и строки. За n-й шаг эта клетка превратится в белую, если она не была таковой до этого, а значит, белым окажется все поле.

4.2 Домашнее задание 2

Задача 1

$$(x,y) \in (A_1 \setminus A_2) \times (B_1 \setminus B_2) \Longleftrightarrow \begin{cases} x \in A_1 \setminus A_2 \\ y \in B_1 \setminus B_2 \end{cases} \Longleftrightarrow \begin{cases} x \in A_1, x \notin A_2 \\ y \in B_1, y \notin B_2 \end{cases} \Longrightarrow$$

$$\Longrightarrow \begin{cases} x \in A_1, y \in B_1, \\ x \notin A_2 \lor y \notin B_2 \end{cases} \Longleftrightarrow \begin{cases} (x,y) \in A_1 \times B_1, \\ (x,y) \notin A_2 \times B_2 \end{cases} \Longleftrightarrow (x,y) \in (A_1 \times B_1) \setminus (A_2 \times B_2).$$

Единственный не эквивалентный переход отмечен ⇒ . Для равенства множеств требуется, чтобы

$$\begin{cases} x \in A_1, x \notin A_2 \\ y \in B_1, y \notin B_2 \end{cases} \iff \begin{cases} x \in A_1, y \in B_1, \\ x \notin A_2 \lor y \notin B_2 \end{cases}.$$

Слева направо импликация верна всегда, справа налево она верна при условии

$$\forall x \in (A_1 \setminus A_2), y \in B_1 : y \notin B_2;$$
$$\forall x \in A_1, y \in (B_1 \setminus B_2) : x \notin A_2.$$

Первое выражение истинно либо если $A_1 \setminus A_2$ пусто (тривиальный случай), либо если $\forall y \in B_1 : y \notin B_2$, то есть $B_1 \cap B_2$ пусто. Аналогично со вторым выражением. Итого

$$(A_1 \subseteq A_2 \vee B_1 \cap B_2 = \emptyset) \wedge (A_1 \cap A_2 = \emptyset \vee B_1 \subseteq B_2)$$

Задача 2

Отношение R рефлексивно при $x \neq 0$, поэтому:

$$(x,y) \in R \implies \begin{cases} (x,y) \in R \\ x \neq 0 \end{cases} \implies \begin{cases} (x,x) \in R \\ (x,y) \in R \end{cases} \implies (x,y) \in R \circ R.$$

И обратно:

$$(x,y) \in R \circ R \implies \exists z \in \mathbb{R} : \frac{x}{z} > 0, \frac{z}{y} > 0 \implies \exists z \in \mathbb{R} : \frac{x}{\cancel{z}} \cdot \frac{\cancel{z}}{y} > 0 \implies \frac{x}{y} > 0 \implies (x,y) \in R.$$

Поэтому $R \circ R = R$.

Задача 3

Пусть для некоторой последовательности (индексируемой произвольными объектами) множеств $A_{\lambda \in \Lambda}$ и функций F, G из последовательности множеств в множество верно

$$F(A) \neq G(A)$$
.

Тогда из определения равенства множеств следует, что

$$\exists x : (x \in F(A)) \neq (x \in G(A)).$$

Обозначим $B_{\lambda} = A_{\lambda} \cap \{x\}$, тогда утверждается, что

$$(x \in F(B)) \neq (x \in G(B)) \implies F(B) \neq G(B).$$

В самом деле, для этого достаточно показать, что

$$x \in F(B) \iff x \in F(A).$$

 Θ то можно сделать по индукции по числу операций в F. База — ноль операций, тогда

$$x \in B_{\lambda} \iff x \in A_{\lambda} \cap \{x\} \iff \begin{cases} x \in A_{\lambda} \\ x \in \{x\} \end{cases} \iff x \in A_{\lambda}.$$

Шаг индукции:

1. Если $F(X) = F_a(X) \cap F_b(X)$, имеем

$$x \in (F_a(A) \cap F_b(A)) \Longleftrightarrow \begin{cases} x \in F_a(A) \\ x \in F_b(A) \end{cases} \iff \begin{cases} x \in F_a(B) \\ x \in F_b(B) \end{cases} \iff x \in (F_a(B) \cap F_b(B)).$$

2. Если $F(X) = F_a(X) \cup F_b(X)$, имеем

$$x \in (F_a(A) \cup F_b(A)) \Longleftrightarrow \begin{bmatrix} x \in F_a(A) \\ x \in F_b(A) \end{bmatrix} \Longleftrightarrow \begin{bmatrix} x \in F_a(B) \\ x \in F_b(B) \end{bmatrix} \Longleftrightarrow x \in (F_a(B) \cup F_b(B)).$$

3. Если $F(X) = F_a(X) \setminus F_b(X)$, имеем

$$x \in (F_a(A) \setminus F_b(A)) \Longleftrightarrow \begin{cases} x \in F_a(A) \\ x \notin F_b(A) \end{cases} \iff \begin{cases} x \in F_a(B) \\ x \notin F_b(B) \end{cases} \iff x \in (F_a(B) \setminus F_b(B)).$$

Задача 4

Т.к. $f(x) \in A \iff x \in f^{-1}(A)$ по определению прообраза множества, имеем

$$x \in f^{-1}(A \triangle B) \iff f(x) \in A \triangle B \iff \begin{cases} f(x) \in A \\ f(x) \notin B \\ f(x) \notin A \\ f(x) \in B \end{cases} \iff \begin{cases} x \in f^{-1}(A) \\ x \notin f^{-1}(B) \\ x \notin f^{-1}(A) \\ x \in f^{-1}(B) \end{cases} \iff x \in f^{-1}(A) \triangle f^{-1}(B),$$

поэтому оба знака корректны.

Задача 5

Покажем, что f^n (под возведением функции в степень здесь понимается композиция ее с самой собой n раз) на отрезке [0;1] представляет из себя последовательность из 2^n отрезков монотонности, где на концах каждого промежутка одно из значений равно 0, а другое -1.

Доказательство проведем по индукции. База: n = 1, тогда $f^1 = f$ действительно удовлетворяет условию, поскольку f — парабола с ветвями вниз и вершиной (1/2, 1), а также f(0) = f(1) = 0.

Для перехода от n к n+1 нам понадобится очевидная

Лемма 4.1. Если некоторая функция $g:[0;1] \to \mathbb{R}$ имеет промежуток монотонности [a,b], а функция $h:[l,r] \to [0;1]$ сюръективна и монотонно возрастает, то $g \circ h$ имеет промежуток монотонности $[h^{-1}(a),h^{-1}(b)]$ с теми же значениями в крайних точках.

Следовательно, если функция f^n имела промежуток монотонности [a,b], то, подставляя в лемму $g=f^n$, $h:[0;1/2]\to [0;1]=4x(1-x)$, получаем, что f^{n+1} имеет промежуток монотонности $[h^{-1}(a),h^{-1}(b)]$, причем один из концов сохраняется единичным, другой – нулевым. Применяя эту лемму ко всем 2^n промежуткам монотонности f^n , получаем, что f^{n+1} имеет 2^n промежутков монотонности на [0;1/2].

Аналогично можно показать, что на отрезке [1/2;1] функция f^{n+1} также имеет 2^n промежутков монотонности. Итого промежутков монотонности 2^{n+1} .

Итак, рассмотрим произвольный промежуток монотонности [a;b] функции $g=f^{2022}$. Как было показано, g(a)=0, g(b)=1 либо g(a)=1, g(b)=0. Рассмотрим первый случай, второй рассматривается аналогично. Если g(a)=0, то $a-g(a)\geq 0$; если g(b)=1, то $b-g(b)\leq 0$. x-g(x) — непрерывная функция, поэтому найдется $x\in [a;b], g(x)-x=0$, следовательно, x — одно из искомых решений. Легко видеть, что никаким двум промежуткам не может соответствовать один и тот же x, потому что если это так, то x=a либо x=b, откуда $f(x)\in \{0,1\}$, откуда $x\in \{0,1\}$, но промежуток с концом 0 единственен, как и промежуток с концом 1. Итак, каждому промежутку монотонности соответствует свое решение (не обязательно единственное), а значит, решений как минимум 2^{2022} .

С другой стороны, $f^n(x)$ – многочлен степени 2^n , поскольку $\deg f^1(x) = 2$ и

$$\deg f^{n+1}(x) = \deg 4f^n(x)(1 - f^n(x)) = \deg (f^n(x))^2 = 2 \deg f^n(x).$$

Следовательно, $f^{2022}(x) - x$ может иметь не более 2^{2022} корней.

Итак, решений не менее 2^{2022} и не более 2^{2022} , значит, их ровно столько.

Задача 6

Нет, докажем это от противного. Предположим, существует функция $f: \mathbb{N} \to \mathbb{N}$, удовлетворяющая условию $f^2(n) = n+1$ (здесь под f^k понимается композиция функции с самой собой k раз).

Отсюда следует, что $f^{2k}(n) = n + k$.

Обозначим a = f(1). Тогда

$$f^{2a-1}(1) = f^{2(a-1)}(a) = a + (a-1) = 2a - 1;$$

$$f^{2a-1}(1) = f(f^{2(a-1)}(1)) = f(1 + (a-1)) = f(a) = f^{2}(1) = 2.$$

Но 2a-1 и 2 имеют разную четность и потому не могут быть равны.

Задача 7

Обозначим за $\{a_n\}$ последовательность всех чисел $a \in \mathbb{N}$, удовлетворяющих $\sqrt{a} \notin \mathbb{N}$, упорядоченную по возрастанию.

Тогда каждое натуральное число n, кроме единицы, представимо в виде $a_i^{2^k}$ для некоторых i,k. В самом деле, если n — минимальное непредставимое число, то возможны два случая. Если $\sqrt{n} \notin \mathbb{N}$, то n есть в последовательности a, и подставив k=0, мы получаем требуемое. Если же $\sqrt{n} \in \mathbb{N}$, то в силу минимальности n число \sqrt{n} представимо как $a_i^{2^k}$, тогда $n=a_i^{2^{k+1}}$.

Легко видеть и обратное: каждое число, кроме единицы, представимо в таком виде единственным образом, который можно выразить конструктивно, итеративно беря квадратный корень от n, пока он представим в натуральных числах. Единица же не представима никак.

Тогда определим f следующим образом:

$$f(1) = 1,$$

$$f\left(a_{2i-1}^{2^k}\right) = a_{2i}^{2^k},$$

$$f\left(a_{2i}^{2^k}\right) = a_{2i-1}^{2^{k+1}}.$$

Тогда

$$(f\circ f)(x) = \begin{cases} 1, & \text{если } x=1\\ a_{2i-1}^{2^{k+1}}, & \text{если } x=a_{2i-1}^{2^k},\\ a_{2i}^{2^{k+1}}, & \text{если } x=a_{2i}^{2^k} \end{cases},$$

TO ECTH $(f \circ f)(x) = x^2$.

4.3 Домашнее задание 3

Задача 1

Выберем, на каких позициях будут стоять четные цифры, а на каких — нечетные. После этого число определяется однозначно. Поэтому ответ

$$\binom{10}{5} = \frac{10!}{(5!)^2} = 252.$$

Задача 2

Имеем 18 черных карт и 18 красных карт. Вероятность того, что первые две карты – черные, а следующие две – красные, равна

$$\frac{18}{36} \cdot \frac{17}{35} \cdot \frac{18}{34} \cdot \frac{17}{33}$$
.

Такая же вероятность получится при всех других способах выбора двух черных карт и двух красных, коих всего $\binom{4}{2}$. Итого, искомая вероятность

$$\binom{4}{2} \cdot \frac{18}{36} \cdot \frac{17}{35} \cdot \frac{18}{34} \cdot \frac{17}{33} = \frac{153}{385}.$$

Задача 3

Требуемое эквивалентно условию: первая цифра нечетна, среди следующих 6 цифр ровно две четны, и четные цифры не стоят рядом.

Число способов выбрать места для четных цифр так, чтобы они не стояли рядом, равно $\binom{6}{2} - 5$. После этого на каждой из позиций возможно по пять вариантов (поскольку первая цифра нечетна, число не будет начинаться с нуля). Итого

$$\left(\binom{6}{2} - 5 \right) \cdot 5^7 = 781250.$$

Задача 4

Будем считать, что группы могут быть пустыми. Тогда каждый человек случайно равновероятно выбирает номер группы, к которой он присоединится.

Хоровод получается у всех трех елок, если в каждой группе ровно три человека. Способов разделить 9 человек на группы по 3, 3 и 3 будет

$$\binom{9}{3} \cdot \binom{9-3}{3} \cdot \binom{9-3-3}{3} = \frac{9!}{3! \cdot 3! \cdot 3!} = 1680.$$

Следовательно, вероятность неудачи

$$1 - \frac{1680}{3^9} = \frac{6001}{6561}.$$

Задача 5

Докажем это по индукции по n.

База -n = 0 и n = 1, тогда равенство тривиально.

Докажем утверждение для $n \ge 2$ в предположении его верности для всех меньших номеров.

Доопределим $\binom{n}{k}=0$ при k>n или k<0; все еще считаем при этом $n\geq 0$, чтобы на всей области определения выполнялось $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$. Тогда

$$\sum_{0 \leq k \leq n/2} \binom{n-k}{k} = 1 + \sum_{1 \leq k \leq n/2} \binom{n-k}{k} =$$

$$[\text{т.к. } n-k>0] = 1 + \sum_{1 \leq k \leq n/2} \binom{n-k-1}{k} + \binom{n-k-1}{k-1} =$$

$$= 1 + \sum_{1 \leq k \leq n/2} \binom{n-k-1}{k} + \sum_{1 \leq k \leq n/2} \binom{n-k-1}{k-1} =$$

$$= \sum_{0 \leq k \leq n/2} \binom{n-k-1}{k} + \sum_{1 \leq k \leq n/2} \binom{n-k-1}{k-1} =$$

$$[\text{после замены } k \to k+1 \text{ справа}] = \sum_{0 \leq k \leq n/2} \binom{n-1-k}{k} + \sum_{0 \leq k \leq n/2-1} \binom{n-2-k}{k} =$$

$$[\text{т.к. при } k > (n-1)/2 \text{ значение } 0] = \sum_{0 \leq k \leq (n-1)/2} \binom{n-1-k}{k} + \sum_{0 \leq k \leq (n-2)/2} \binom{n-2-k}{k} =$$

Задача 6

Чтобы было проще решать, усложним задачу: будем рассматривать более общий случай, когда требуется, чтобы числа были не нечетными, а не делились на некоторое простое p.

Обозначим за $\operatorname{ord}_p a$ степень вхождения p в a. Тогда

$$\operatorname{ord}_{p} n! = \sum_{x=1}^{n} \operatorname{ord}_{p} x = \sum_{m=1}^{\infty} m \cdot \#_{x} [1 \le x \le n, \operatorname{ord}_{p} x = m] =$$

$$= \sum_{m=1}^{\infty} \#_{x} [1 \le x \le n, \operatorname{ord}_{p} x \ge m] = \sum_{m=1}^{\infty} \#_{x} [1 \le x \le n, p^{m} \mid x] = \sum_{m=1}^{\infty} \lfloor \frac{n}{p^{m}} \rfloor.$$

Возвращаясь к задаче,

$$\operatorname{ord}_{p}\binom{n}{k} = \operatorname{ord}_{p} \frac{n!}{k!(n-k)!} = \operatorname{ord}_{p} n! - \operatorname{ord}_{p} k! - \operatorname{ord}_{p} (n-k)! = \sum_{m=1}^{\infty} \lfloor \frac{n}{p^{m}} \rfloor - \lfloor \frac{k}{p^{m}} \rfloor - \lfloor \frac{n-k}{p^{m}} \rfloor.$$

Легко видеть, что $\lfloor a \rfloor + \lfloor b \rfloor \leq \lfloor a + b \rfloor$, поэтому $\operatorname{ord}_p\binom{n}{k} = 0$ тогда и только тогда, когда каждое слагаемое вида $\lfloor a + b \rfloor - \lfloor a \rfloor - \lfloor b \rfloor$ равно нулю.

$$\lfloor a+b \rfloor = \lfloor a \rfloor + \lfloor b \rfloor \Longleftrightarrow a+b-\{a+b\} = a-\{a\}+b-\{b\} \Longleftrightarrow$$

$$\iff \{a+b\} = \{a\}+\{b\} \Longleftrightarrow \{a\}+\{b\} < 1,$$

то есть

$$\forall m \ge 1: \left\{\frac{k}{p^m}\right\} + \left\{\frac{n-k}{p^m}\right\} < 1 \Longleftrightarrow \forall m \ge 1: (k \bmod p^m) + ((n-k) \bmod p^m) < p^m.$$

Понятно, что если при всех $p^m \le n$ верно $n = -1 \pmod{p^m}$, то

$$(k \bmod p^m) + ((n-k) \bmod p^m) = (k \bmod p^m) + ((-1-k) \bmod p^m) = \\ = (k \bmod p^m) + (p^m - 1 - (k \bmod p^m)) = p^m - 1 < p^m;$$

при $p^m > n$ результат

$$(k \bmod p^m) + ((n-k) \bmod p^m) = k + (n-k) = n < p^m$$

получается автоматически, и поэтому $\operatorname{ord}_p\binom{n}{k}=0$ при всех k.

С другой стороны, если $n \neq -1 \pmod{p^m}$ при некотором $p^m \leq n$, то при подстановке $k = p^m - 1$ имеем

$$(k \bmod p^m) + ((n-k) \bmod p^m) = (p^m - 1) + ((n+1) \bmod p^m) \ge p^m$$

так как $(n+1) \bmod p^m \neq 0$.

Таким образом, все элементы в n-й строке треугольника Паскаля не делятся на p тогда и только тогда, когда

$$\forall m \ge 1, p^m \le n : n = -1 \pmod{p^m}.$$

Это означает, что число n представляется в виде $n=a\cdot p^k-1,\ 0< a< p$ (эквивалентность в обе стороны легко проверяется формально).

В частном случае p=2 получаем, что n имеет вид 2^k-1 .

Задача 7

Докажем, что если на доске из n полей ведется игра, подобная описанной в условии, с k фигурами, каждая из которых бьет не более m полей, и $n \geq \frac{(2+(k+1)m)k}{2}$, то фигуры можно расставить так, чтобы они друг друга не били. В нашем частном случае $n=10^4, k=m=20$, и неравенство выполняется.

Доказывать утверждение будем по индукции по числу фигур k. При k=0 утверждение тривиально верно.

Рассмотрим случай k>0. Тогда проделаем следующее вычисление. Для каждой фигуры от 1 до k-1 для каждого ее положения отметим поля, которые фигура бьет в этом положении. Для каждого поля посчитаем, сколько раз оно было отмечено. Всего отметок не более (k-1)mn, значит, по принципу Дирихле, существует поле с не более чем (k-1)m отметками.

Поставим k-ю фигуру на это поле. Теперь "выколем" из доски поля так, что k-я фигура не бьет ни одно из оставшихся полей, и наоборот, как бы ни поставить любые другие фигуры на оставшуются доску, они не бьют поле k-й фигуры. Выколоть нужно следующие поля: само поле k-й фигуры, поля, которые она бьет (не более m), а также все поля, с которых были поставлены отметки на это поле (не более (k-1)m). Итого выколото не более 1+km полей. Соответственно, мы свелись к состоянию

$$k' = k - 1,$$

$$m' = m,$$

$$n' \ge n - (1 + km) \ge \frac{(2 + (k+1)m)k}{2} - (1 + km) = \frac{(2 + (k'+1)m')k'}{2},$$

в котором, по предположению индукции, корректная расстановка существует. Добавляя k-ю фигуру, получаем все еще корректную расстановку, поскольку по построению оставшиеся поля не бьют ее, а она не бьет оставшиеся поля.

Задача 8

Назовем строку тяжелой, если в ней больше \sqrt{n} единиц.

Рассмотрим данную нам таблицу. Пока в этой таблице есть тяжелая строка, будем делать следующее:

1	0	0	0	0	0	0
0	0	1	1	0	0	0
0	0	1	0	1	0	0
1	1	0	1	1	0	1
0	0	0	1	0	1	0
0	1	1	0	0	0	0

Зафиксируем тяжелую строку (на рисунке обозначена желтым). Назовем столбец хорошим, если на пересечении его с этой тяжелой строкой стоит единица (на рисунке оранжевый).

Тогда сумма всех чисел в хороших столбцах разделяется на два слагаемых: сумму в желтой строке и во всех остальных (среди хороших столбцов). Первое слагаемое, очевидно, не превосходит n. Второе слагаемое также не превосходит n, поскольку в каждой строке среди хороших столбцов не может быть больше одной единицы, иначе будет существовать прямоугольник с единицами в каждом углу. Следовательно, сумма чисел в хороших столбцах не превосходит 2n.

Вычеркнем все хорошие столбцы из таблицы и продолжим алгоритм дальше: выберем тяжелую строку, посчитаем сумму в хороших столбцах, и так далее.

1	0		
1	0		
0	0		
0	1		
1	0		

В итоге мы получим таблицу, в которой тяжелых строк нет. Следовательно, в каждой строке единиц не более \sqrt{n} , а значит, всего единиц не более $n\sqrt{n}$.

Поскольку каждый раз мы удаляли тяжелую строку, число столбцов уменьшалось каждый раз как минимум на \sqrt{n} , следовательно, всего операций могло произойти не больше, чем $\frac{n}{\sqrt{n}} = \sqrt{n}$. При каждой операции вычеркивались столбцы с суммой не более 2n, поэтому всего вычеркнуто не более $2n\sqrt{n}$ единиц.

Итого, в изначальной таблице единиц было не более $3n\sqrt{n}$.

4.4 Домашнее задание 4

Задача 1

Задачу можно проинтерпретировать двумя способами, поэтому приведем два ответа.

Если под разделением академической нагрузки подразумевается разделение часов между преподавателями, где конкретные группы, составляющие эти часы, значения не имеют, то искомое число способов – это количество способов разделить число 9 на сумму шести натуральных слагаемых.

Переводим задачу на язык шаров и перегородок: есть 9 шаров, подряд идущие отрезки из которых соответствуют слагаемым, и 5 перегородок, разделяющих слагаемые. Каждый способ разделить 9 на сумму шести слагаемых соответствует последовательности из 9 шаров и 5 перегородок.

Чтобы никакое слагаемое не было нулевым, на первом месте должен обязательно стоять шар, и после каждой перегородки также должен находиться шар. Поэтому допустимые наборы шаров и перегородок имеют следующий вид: на первом месте идет шар, далее идет некоторая последовательность из 5 пар "перегородка + шар" и 9-5-1=3 шаров. Итого ответ

$$\binom{5+3}{3} = 56.$$

Если же конкретные группы важны, то рассмотрим варианты:

1. Нагрузка между преподавателями распределяется как перестановка последовательности [1,1,1,1,4], то есть один преподаватель берет 4 часа, остальные – по одному. Переберем, какой преподаватель берет 4 часа, а затем разделение групп между преподавателями. Таких вариантов

$$6 \cdot \binom{9}{1,1,1,1,1,4} = 6 \cdot (9 \cdot 8 \cdot 7 \cdot 6 \cdot 5) = 90720.$$

2. Нагрузка между преподавателями распределяется как перестановка последовательности [1,1,1,1,2,3]. Таких вариантов

$$(6 \cdot 5) \cdot {9 \choose 1.1, 1.1, 2.3} = (6 \cdot 5) \cdot \left(9 \cdot 8 \cdot 7 \cdot 6 \cdot \frac{5 \cdot 4}{2}\right) = 907200.$$

3. Нагрузка между преподавателями распределяется как перестановка последовательности [1,1,1,2,2,2]. Таких вариантов

$$\binom{6}{3} \cdot \binom{9}{1,1,1,2,2,2} = \binom{6}{3} \cdot \left(9 \cdot 8 \cdot 7 \cdot \binom{6}{2} \cdot \binom{4}{2}\right) = 907200.$$

Итого ответ 90720 + 907200 + 907200 = 1905120.

Задача 2

Пусть из всех переменных ровно m – единицы. При m=0 искомое выражение равно 0. Если же $m\geq 1$, то

$$\sum_{S, |S| \bmod 2 = 1} \bigwedge_{i \in S} x_i = \binom{m}{1} + \binom{m}{3} + \binom{m}{5} + \dots$$

Из бинома Ньютона

$$2^{m} = (1+1)^{m} = {m \choose 0} + {m \choose 1} + {n \choose 2} + \dots,$$

$$0 = (1-1)^{m} = {m \choose 0} - {m \choose 1} + {n \choose 2} - \dots,$$

откуда

$$2^{m} - 0 = 2\binom{m}{1} + 2\binom{n}{3} + 2\binom{n}{5} + \dots,$$

следовательно,

$$\sum_{S, |S| \bmod 2 = 1} \bigwedge_{i \in S} x_i = 2^{m-1}.$$

При m=1 правая часть равна единице, следовательно, сумма нечетна, а значит, искомое выражение есть XOR нечетного числа единиц, то есть равно 1.

При $m \ge 2$ правая часть четна, значит, искомое выражение равно нулю.

Ответ: если ровно один из x_i равен единице, значение равно 1, иначе оно равно 0.

Задача 3

Найдем в данном многочлене Жегалкина P любой моном максимальной степени. Без ограничения общности будем считать, что переменные пронумерованы так, что этот моном имеет вид $x_1x_2...x_k$.

Покажем, что существует (как минимум) 2^{n-k} наборов переменных, на которых P принимает значение 0 (если требуется, чтобы значение было 1, изначально проксорим многочлен с единицей).

Переменные с x_{k+1} по x_n суммарно принимают 2^{n-k} вариантов. Для каждого варианта выберем значения переменных x_1, x_2, \ldots, x_k так, чтобы многочлен P принимал значение 0, следующим образом.

Пусть $x_{k+1}, x_{k+2}, \ldots, x_n$ фиксированы. Подставляя их значения в P и приводя подобные слагаемые, получаем новый многочлен Жегалкина Q от переменных x_1, x_2, \ldots, x_k . Поскольку моном $x_1x_2 \ldots x_k$ был в P, а никакого другого монома, содержащего все эти переменные одновременно, там не было (ведь k – максимальная степень), то в Q соответствующий моном сохранится. Тогда обязан существовать набор переменных x_1, x_2, \ldots, x_k , при котором Q обращается в нуль. В самом деле, если Q равен единице при всех значениях переменных, то существуют два различных многочлена Жегалкина, задающих единицу: 1 и собственно Q (а $1 \neq Q$, потому что Q содержит моном $x_1x_2 \ldots x_k$), но многочлен Жегалкина для любой данной функции уникален – противоречие.

Задача 4

$$x \vee (\neg y \wedge \neg z) \vee \neg w = \neg (\neg x \wedge \neg (\neg y \wedge \neg z) \wedge w) = \neg (\neg x \wedge (y \vee z) \wedge w) = \\ = (x \oplus 1)(y \oplus z \oplus yz)w \oplus 1 = xyw \oplus xzw \oplus xyzw \oplus yw \oplus zw \oplus yzw \oplus 1.$$

Задача 5

- а) Нет: \lor и \to сохраняют единицу, то есть $1 \lor 1 = 1$ и $1 \to 1 = 1$. Следовательно, если все переменные единичны, то и любое выражение, составленное из \lor и \to , будет единично, следовательно, некоторые функции, например, тождественный нуль, записать нельзя.
- б) Через МАЈ можно выразить ∧:

$$MAJ(a, a, b, b) = MAJ(a, b) = a \wedge b,$$

а система связок из ¬ и \wedge полна, следовательно, и данная система полна.

Задача 6

Обозначим $k = \lfloor n/2 \rfloor + 1$ — минимальное количество переменных, которые должны быть единицами, чтобы MAJ обратилось в единицу.

Оценка Рассмотрим оптимальную ДНФ F(x).

Очевидно, что в ней ни в одном мономе нет одновременно и переменной, и ее отрицания.

Построим новую ДНФ G, убирая из F в каждом мономе все отрицания переменных (например, заменяя моном $x_1 \land \neg x_2$ на x_1). Очевидно, степень у нее не больше, чем у F. Утверждается, что G все еще будет задавать функцию MAJ. Докажем это от противного.

Предположим, при некоторых значениях переменных x выполняется F(x) = 1, G(x) = 0. Но такое невозможно: если F(x) = 1, то в некотором мономе из F все множители единичны, значит, в соответствующем мономе из G все множители также единичны, ведь они – подмножество множителей монома из F, значит, G(x) = 1.

Наоборот, если при некоторых значениях переменных F(x) = 0, G(x) = 1, то рассмотрим любой из единичных мономов в G:

$$x_{i_1} \wedge x_{i_2} \wedge \cdots \wedge x_{i_s}$$

и соответствующий ему моном из F:

$$x_{i_1} \wedge x_{i_2} \wedge \cdots \wedge x_{i_s} \wedge \neg x_{j_1} \wedge \neg x_{j_2} \wedge \cdots \wedge \neg x_{j_t}.$$

Тогда вычислим F в точке y, где $y_{i_1} = \cdots = y_{i_s} = 1$, а все остальные переменные нулевые. В этой точке этот моном единичен, поэтому F(y) = 1, но в y единиц s (по построению), а в x – не менее s (ведь соответствующий моном из G единичен). Раз в y единиц не меньше, чем в x, то из F(y) = 1 следует F(x) = 1 – противоречие.

Итак, оптимальная ДНФ не содержит отрицаний.

В оптимальной ДНФ в каждом мономе не менее k переменных, поскольку если существует моном с s < k переменными x_{i_1}, \ldots, x_{i_s} , то в точке x, где $x_{i_1} = \cdots = x_{i_s} = 1$, а все остальные переменные нулевые, F(x) = 1, что противоречит определению MAJ.

В оптимальном ДНФ для каждого множества $S\subseteq\{1,2,\ldots,n\}$ мощности ровно k найдется моном, являющийся произведением переменных с этими номерами. В самом деле: в точке x, где $x_{S_1}=\cdots=x_{S_k}=1$, а все остальные переменные нулевые, должно исполняться F(x)=1, следовательно, должен существовать моном, номера переменных которого образуют подмножество S; но каждый моном содержит минимум k=|S| переменных, поэтому этот моном будет состоять posho из этих переменных.

Итак, в оптимальном ДНФ минимум $\binom{n}{k}$ мономов, а в каждом мономе минимум k литералов, следовательно, степень оптимального ДНФ не менее $k\binom{n}{k}$.

Пример Пусть

$$F(x_1, x_2, \dots, x_n) = \bigvee_{S \subseteq \{1, 2, \dots, n\}, |S| = k} \bigwedge_{i \in S} x_i.$$

Легко видеть, что если среди переменных x_1, x_2, \ldots, x_n меньше k единиц, то в каждом из множеств S найдется нулевая переменная, поэтому F обращается в ноль, и наоборот, если среди переменных x_1, x_2, \ldots, x_n как минимум k единиц, при некотором S (равном, например, множеству номеров первых k единичных переменных) моном единичен, поэтому F обращается в единицу.

Размер этой ДНФ $k\binom{n}{k}$, что совпадает с оценкой.

Ответ:

$$\left(\lfloor \frac{n}{2} \rfloor + 1\right) \cdot \binom{n}{\lfloor \frac{n}{2} \rfloor + 1}.$$

Задача 7

Да, можно.

Если среди переменных x_1, x_2, \dots, x_n не все переменные единичны, то

$$0 = x_1 \wedge x_2 \wedge \cdots \wedge x_n.$$

Отсюда строится

$$\neg a = (a \rightarrow 0),$$

а связка $\{\land, \neg\}$, как известна, полна. Следовательно, имея операции \land и \rightarrow , можно построить выражение, совпадающее с данной функций всегда, кроме, возможно, случая $x_1 = x_2 = \cdots = x_n = 1$. В этом случае построенное выражение всегда обращается в единицу, ведь $1 \land 1 = 1$ и $(1 \rightarrow 1) = 1$. Но нам гарантируется, что если все переменные единичны, то функция также принимает единичное значение, поэтому построение корректно.

4.5 Домашнее задание 5

Задача 1

a)

$$|S \cap (T_1 \setminus L)| = |S \cap T_1| - |S \cap T_1 \cap L|.$$

Первая половина таблицы истинности любой самодвойственной функции $(x_1=0)$ однозначно восстанавливается по второй половине $(x_1=1)$. T_1 добавляет ограничение на значение последней строки таблицы истинности. Итого независимых строк в таблице истинности $2^{n-1}-1$, поэтому

$$|S \cap T_1| = 2^{2^{n-1}-1}.$$

Линейные функции представляются в виде

$$f(x_1,\ldots,x_n)=a_0\oplus a_1x_1\oplus\cdots\oplus a_nx_n,$$

где a_i — константы. Условие $f \in S$ добавляет требование

$$\neg f(\neg x_1, \dots, \neg x_n) = (a_0 \oplus 1) \oplus a_1(x_1 \oplus 1) \oplus \dots \oplus a_n(x_n \oplus 1) =
= (a_0 \oplus a_1 x_1 \dots \oplus a_n x_n) \oplus (1 \oplus a_1 \oplus \dots \oplus a_n) =
= f(x_1, \dots, x_n) \oplus (1 \oplus a_1 \oplus \dots \oplus a_n) = f(x_1, \dots, x_n),$$

то есть

$$a_1 \oplus \cdots \oplus a_n = 1$$
,

а условие $f \in T_1$ представляется как

$$f(1,\ldots,1)=a_0\oplus a_1\oplus\cdots\oplus a_n=1.$$

Соответственно, $a_0 = 0$, а a_1 единственным образом определяется по a_2, \ldots, a_n , поэтому свободных коэффициентов n-1, откуда

$$|S \cap T_1 \cap L| = 2^{n-1},$$

итого

$$|S \cap (T_1 \setminus L)| = 2^{2^{n-1}-1} - 2^{n-1}.$$

б) F содержит функцию $\neg x$, поскольку она линейна и самодвойственна, а также $x \land y$, поскольку она монотонна и не самодвойственна. Эти две функции образуют полную систему, поэтому F полна.

Задача 2

$$x_1 \oplus x_2 \oplus x_3 = ((x_1 \lor x_2 \lor x_3) \land \neg (x_1x_2 \lor x_1x_3 \lor x_2x_3)) \lor x_1x_2x_3,$$

поскольку

$$a=(x_1\vee x_2\vee x_3)=$$
 [среди x_1,x_2,x_3 1, 2 или 3 единицы], $b=(x_1x_2\vee x_1x_3\vee x_2x_3)=$ [среди x_1,x_2,x_3 2 или 3 единицы], $c=(x_1x_2x_3)=$ [среди x_1,x_2,x_3 3 единицы],

откуда

$$(a \land \neg b) \lor c = [\text{среди } x_1, x_2, x_3 \ 1 \ \text{или } 3 \ \text{единицы}].$$

Да, это так.

Обозначим n = 2022.

Рассмотрим отображение $\Psi: M \to (P_2 \setminus M)$, построенное следующим образом. Если $f(x_1, \dots, x_n) \in M$ — не тождественный нуль или единица, то

$$\Psi(f)(x_1,\ldots,x_n) = \neg f(x_1,\ldots,x_n).$$

Легко видеть, что эта функция не монотонна, потому что если f – не константа, то $f(0,\ldots,0)=0$ и $f(1,\ldots,1)=1$, откуда $\Psi(f)(0,\ldots,0)=1$, $\Psi(f)(1,\ldots,1)=0$, откуда следует немонотонность.

Тогда Ψ инъективна. В самом деле, если $f \neq g$, то $\Psi(f) = \neg f \neq \neg g = \Psi(g)$.

Для констант же определим

$$\Psi(0)(x_1,\ldots,x_n) = x_1 \oplus x_2, \ \Psi(1)(x_1,\ldots,x_n) = x_2 \oplus x_3.$$

Легко видеть, что эти функции также немонотонны.

C этим доопределением Ψ остается инъективной, потому что если $f \neq 0$ и

$$\Psi(0) = \Psi(f),$$

то либо f=1, что неправда, поскольку $x_1\oplus x_2\neq x_2\oplus x_3$, либо f монотонна и не является константой, но тогда

$$f = \neg \Psi(f) = \neg \Psi(0) = x_1 \oplus x_2 \oplus 1,$$

что не является монотонной функцией. Аналогично проверяется, что $\Psi(1) \neq \Psi(f)$.

Раз Ψ инъективна, то

$$|M| \le |P_2 \setminus M| \implies |M| \le \frac{|P_2|}{2}.$$

Методами, подобными используемыми в решении задачи 1.а), можно показать, что

$$|T_0| = |T_1| = 2^{2^n - 1} = \frac{|P_2|}{2},$$

$$|L| = 2^{n+1} < 2^{2^n - 1} = \frac{|P_2|}{2},$$

$$|S| = 2^{2^{n-1}} < 2^{2^n - 1} = \frac{|P_2|}{2}.$$

Итак, мощность каждого из классов T_0, T_1, L, S, M не превосходит половины мощности P_2 , поэтому если выбрать более половины функций из P_2 , полученная система F не будет целиком включаться ни в один из этих классов, откуда по критерию Поста следует, что F полна.

Задача 4

Проанализируем по отдельности принадлежность каждой из данных функций стандартным классам:

$$\begin{split} f_1 &= x \oplus y \in T_0, \not\in T_1, \not\in S, \not\in M, \in L, \\ f_2 &= x \oplus y \oplus z \oplus 1 \not\in T_0, \not\in T_1, \in S, \not\in M, \in L, \\ f_3 &= (x \wedge y) \oplus z \in T_0, \not\in T_1, \not\in S, \not\in M, \not\in L, \\ f_4 &= \operatorname{MAJ}(x, y, z) \in T_0, \in T_1, \in S, \in M, \not\in L. \end{split}$$

Базис обязательно должен содержать функцию не из T_0 , поэтому f_2 обязательно лежит в базисе.

Сама по себе f_2 одноэлементный базис не образует, так как $f_2 \in L$.

Переберем двухэлементные системы. Система $\{f_2, f_3\}$ не вложена ни в один из классов и потому образует базис. Следовательно, другие базисы f_3 не содержат. Системы $\{f_1, f_2\} \subseteq L$ и $\{f_2, f_4\} \subseteq S$ базис не образуют.

Помимо рассмотренных систем, потенциальный базис, не содержащий f_3 , единственный – $\{f_1, f_2, f_4\}$. Эта система не вложена ни в один из классов и потому образует базис.

Итак, базисы:

$$\{f_2, f_3\}, \{f_1, f_2, f_4\}.$$

Задача 5

Формально, мы хотим показать, что

$$((0 \notin [F]) \land (1 \notin [F])) \iff ((F \subseteq T_0 \cap T_1) \lor F \subseteq S).$$

Если правая сторона выполняется, то есть $F \subseteq T_0 \cap T_1$ или $F \subseteq S$, то $[F] \subseteq T_0 \cap T_q$ или $[F] \subseteq S$. Константы 0 и 1 не попадают ни в S, ни в $T_0 \cap T_1$, поскольку $0 \notin T_1, 1 \notin T_0$, поэтому они не попадают и в их подмножество [F] в каждом из случаев, что и требовалось.

С другой стороны, если правая сторона не выполняется, то есть $F \not\subseteq S$ и $F \not\subseteq T_0 \cap T_1$, то существует не самодвойственная функция $f_S \in F$ и хотя бы одна из функций $f_0, f_1 \in F$, где f_0 не сохраняет нуль, а f_1 не сохраняет единицу. Требуется показать, что и левая сторона не выполняется, то есть что $0 \in [F]$ или $1 \in [F]$.

Если существует f_0 , причем $f_0(1,\ldots,1)=1$, то в силу того, что $f_0 \notin T_0$, имеем $f_0(0,\ldots,0)=1$, а следовательно, $f_0(x,\ldots,x)$ представляет собой константу 1, что и требовалось, и на этом доказательство завершается. Остался случай, когда $f_0(1,\ldots,1)=0$, откуда следует $f_0(x,\ldots,x)=\neg x$.

Аналогично, если существует f_1 , причем $f_1(0,\ldots,0)=0$, то в силу того, что $f_1 \notin T_1$, имеем $f_1(1,\ldots,1)=0$, а следовательно, $f_1(x,\ldots,x)$ представляет собой константу 0, что, опять же, и требовалось. Остался случай, когда $f_1(0,\ldots,0)=1$, откуда следует $f_1(x,\ldots,x)=\neg x$.

Если доказательство к текущему моменту еще не завершено, в обоих вариантах мы уже построили $\neg x$. Вспомним о существовании f_S . $f_S \notin S$ означает, что для некоторого набора значений y_1, \ldots, y_n имеет место равенство

$$f_S(y_1,\ldots,y_n)=f_S(\neg y_1,\ldots,\neg y_n).$$

Это эквивалентно

$$f_S(0 \oplus y_1, \dots, 0 \oplus y_n) = f_S(1 \oplus y_1, \dots, 1 \oplus y_n),$$

а значит, следующая функция от переменной x является константой:

$$f_S(x \oplus y_1, \ldots, x \oplus y_n).$$

 y_1, \ldots, y_n — фиксированные значения, поэтому выражения $x \oplus y_i$ представляются в виде x или $\neg x$ в зависимости от конкретных значений. $\neg x$ представимо в [F], поэтому и эта функция представима в [F], а следовательно, [F] содержит константу, что и требовалось.

Задача 6

Базис мощности более 5 невозможен. В самом деле, если F – некоторый базис P_2 , то он содержит функции не из T_0 , н

Более того, мощность базиса не может быть равна 5: это бы требовало наличия пяти функций, каждая из которых не лежит ровно в одном из классов. Тогда найдется функция $f_1 \notin T_1$, лежащая в T_0, L, M, S . Но если

$$f_1 \in T_0 \implies f_1(0, 0, \dots, 0) = 0,$$

 $f_1 \in S \implies f_1(1, 1, \dots, 1) = \neg f_1(0, 0, \dots, 0),$

то получаем $f_1(1,1,\ldots,1)=1$, откуда $f_1\in T_1$ – противоречие.

Возможен базис мощности 1: например, штрих Шеффера (NAND) образует полную систему.

Возможен базис мощности 2: например, знакомая всем система $\{\neg x, x \land y\}$ является полной, а ее одноэлементные подмножества $\{\neg x\} \subseteq S$ и $\{x \land y\} \subseteq M$ полную систему не образуют.

Возможен базис мощности 3: например, система $\{1, x \oplus y, x \wedge y\}$ образуют полную систему, поскольку

$$1 \notin T_0,$$

$$x \oplus y \notin T_1, S, M,$$

$$x \wedge y \notin L.$$

Если убрать первую операцию, то оставшиеся две обе сохраняют нуль, если убрать вторую – оставшиеся две обе сохраняют сохраняют единицу, если убрать третью – оставшиеся две обе линейны, поэтому это базис.

Возможен базис мощности 4: например, система $\{0,1,x\wedge y,x\oplus y\oplus z\}$ образует полную систему, поскольку

$$0 \notin T_1, S$$
$$1 \notin T_0, S$$
$$x \land y \notin L,$$
$$x \oplus y \oplus z \notin M.$$

Если убрать первую операцию, то оставшиеся три сохраняют единицу, если убрать вторую – оставшиеся три сохраняют сохраняют нуль, если убрать третью – оставшиеся три линейны, если убрать четвертую – оставшиеся три монотонны, поэтому это базис.

Задача 7

Функция голосования от трех аргументов - самодвойственная, а функции голосований от четного количество аргументов нет. Получается, что если мы имеем функции голосования от трех переменных мы никак из нее не соберем функцию которая имеет четное количество аргументов.

Теперь, давайте докажем, что имея функцию от трех переменных мы сможем собрать любую функцию которая принимает не четное количество переменных. Докажем это по индукции. Базой у нас будет функция голосования от трех переменных.

Переход. Допустим, мы научились получать функцию голосования от n переменных, покажем, как получать функцию голосования от n+2 переменных. Я утверждаю, что функция голосования от n+2 может выглядеть так: $MAJ_{n+2} = MAJ_3(MAJ_n(x_1, x_2, x_3, ..., x_n),$

```
MAJ_{n}(MAJ_{n}(x_{2},...x_{n+1}),MAJ_{n}(x_{1},x_{3},...x_{n+1}),...,MAJ_{n}(x_{1},...,x_{n-1},x_{n+1})),
```

 $MAJ_n(MAJ_n(x_2,...x_{n+2}),MAJ_n(x_1,x_3,...x_{n+2}),...,MAJ_n(x_1,...,x_{n-1},x_{n+2})))$. Достаточно просто увидеть, что если разница между количество ноликов и единичек в переменных: $x_1,x_2,x_3,...,x_n$ по модулю больше одного, т то эта функция всегда выведет правильный ответ. Остальные варианты можно просто перебрать, но я не вижу смысла это записывать.

4.6 Домашнее задание 6

Задача 1

Воспользуемся формулой включений-исключений. Обозначим за A_i множество строк, содержащих подстроку 1110, начиная с i-й позиции ($0 \le i \le 12$).

Строк, содержащих подстроку 1110 на данной i-й позиции — 2^{12} , поэтому суммарная мощность множеств по всем i — $2^{12} \cdot 13$.

Строк, содержащих подстроки 1110 на i-й и j-й позициях (i < j) — 2^8 , если $i+4 \le j$ и 0 иначе, итого суммарная мощность пересечений всех пар множеств:

$$\sum_{i=0}^{8} 2^8 \cdot (9-i) = 2^8 \cdot 45.$$

Строк, содержащих подстроки 1110 на i, j и k-х позициях (i < j < k) — 2^4 , если $i + 4 \le j, j + 4 \le k$, и 0 иначе, итого суммарная мощность пересечений всех троек множеств:

$$\sum_{i=0}^{4} \sum_{j=i+4}^{8} 2^{4} \cdot (9-j) = 2^{4} \cdot \sum_{i=0}^{4} \sum_{j=1}^{5-i} j = 2^{4} \cdot \sum_{i=1}^{5} \sum_{j=1}^{i} j = 2^{4} \cdot \sum_{i=1}^{5} \frac{i(i+1)}{2} = 2^{4} \cdot (1+3+6+10+15) = 2^{4} \cdot 35.$$

Строк, содержащих подстроки 1110 на четырех позициях – ровно одна: 1110111011101110.

Тогда по формуле включений-исключений ответ:

$$2^{12} \cdot 13 - 2^8 \cdot 45 + 2^4 \cdot 35 - 1 = 42287.$$

Задача 2

а) Построим биекцию между $A \setminus B$ и $A = (A \setminus B) \sqcup B$.

 $A \setminus B$ бесконечно, поэтому в нем можно выбрать некоторую счетную последовательность $a_1, a_2, \ldots, a_n, \ldots$ Обозначим множество ее значений K. B само также счетно, поэтому занумеруем его элементы $b_1, b_2, \ldots, b_n, \ldots$

Пусть $f:(A\setminus B)\to A$ такова, что:

$$f(a_{2i}) = a_i,$$

$$f(a_{2i-1}) = b_i,$$

$$f(x) = x \ (x \notin K).$$

Легко видеть, что это биекция: функция, суженная на первую строку этого определения, инъективна и имеет образ K, на вторую – инъективна и имеет образ B, на третью – инъективна и имеет образ $A \setminus B \setminus K$, а эти множества не пересекаются и в объединении дают все A.

б) Нет, неверно: если $A = B = \mathbb{N}$, то $A \triangle B = \emptyset$, что неравномощно \mathbb{N} .

Задача 3

Многочленов с целыми коэффициентами степени $n - \mathbb{Z}^{n+1} \sim \mathbb{N}^{n+1} \sim \mathbb{N}$. У каждого из этих многочленов не более n корней, поэтому всего корней таких многочленов не более $n \times \mathbb{N} \sim \mathbb{N}$.

Соответственно, корней суммарно по всем степеням многочленов — счетное объединение не более чем счетных множеств, то есть не более $\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$.

С другой стороны, алгебраических чисел как минимум счетно, потому что каждое целое число является алгебраическим.

Следовательно, алгебраических чисел счетно.

Задача 4

Из бесконечного множества A выпишем счетную последовательность $a_1, a_2, \ldots, a_n, \ldots$

Разделим все элементы этой последовательность на группы согласно степени вхождения простого 2 в их номер. Тогда в k-ю группу ($k \ge 0, k \in \mathbb{Z}$) попадают элементы

$$a_{2^k}, a_{3\cdot 2^k}, a_{5\cdot 2^k}, a_{7\cdot 2^k}, \ldots,$$

коих счетно, и всего групп счетно, что и требовалось.

Задача 5

В каждом отрезке можно выбрать рациональную точку. Отрезки не пересекаются, поэтому все выбранные рациональные точки будут различны. Всего рациональных чисел счетно, поэтому выбранных точек, а следовательно, и отрезков, не более, чем счетно.

Задача 6

Будем строить биекции итеративно: сначала установим им значения в точке 0, затем 1, -1, 2, -2, 3, -3, и так далее.

Пусть к текущему моменту уже построены некоторые функции g_1, g_2, g_3 , определенные на конечном числе точек, и мы хотим присвоить им некоторое значение в очередной точке x.

Найдем ближайшее к нулю значение, отсутствующее в образе хотя бы одной из этих трех функций (образы будем обозначать как $g_i(\mathbb{Z})$) на текущий момент. Ничью разбиваем, предпочитая положительные числа. Пусть это значение y, и без ограничения общности $y \notin g_1(\mathbb{Z})$. Тогда присвоим $g_1(x) = y$. Образы g_2 и g_3 конечны, поэтому найдется такое n, что $n \notin g_2(\mathbb{Z})$ и $f(x) - y - n \notin g_3(\mathbb{Z})$. Присвоим $g_2(x) = n, g_3(x) = f(x) - y - n$. Тогда $g_1(x) + g_2(x) + g_3(x) = f(x)$, что и требовалось.

Строя g_1, g_2, g_3 таким образом итеративно, мы в итоге получим некоторые отображения, определенные на всем множестве целых чисел.

Во-первых, эти отображения будут инъекциями, поскольку каждый раз мы присваиваем g_1, g_2, g_3 значения, отсутствовавшие до этого в их образах.

Во-вторых, они будут сюръективны, поскольку мы на каждом шаге выбираем ближайшее к нулю не использованное число. Более формально, g_1, g_2, g_3 гарантированно принимают значение 0 за первые три итерации, 1 – за следующие три итерации, -1 – за следующие три и так далее; в общем случае каждая из трех функций гарантированное принимает k-е значение из последовательности $0, 1, -1, 2, -2, \ldots$ после 3k итераций.

Задача 7

Нет, не обязательно. Приведем контрпример.

Будем строить возрастающую последовательность $a_1, a_2, \ldots, a_n, \ldots$, множество значений которой будет A.

Заметим, что если последовательность $\{a_n\}$ возрастает достаточно быстро, то она не будет содержать трехчленных арифметических прогрессий:

 $\forall n \in N: \frac{a_{n+1}}{a_n} \geq 2 \implies \{a_n\}$ не содержит трехчленных арифметических прогрессий.

В самом деле, если для некоторых i < j < k мы имеем

$$a_k - a_j = a_j - a_i,$$

то

$$a_j - a_i < a_j \implies a_k - a_j < a_j \implies a_k < 2a_j \implies \frac{a_k}{a_j} < 2,$$

но

$$\frac{a_k}{a_j} = \frac{a_{j+1}}{a_j} \cdot \frac{a_{j+2}}{a_{j+1}} \cdot \dots \cdot \frac{a_k}{a_{k-1}} \ge 2^{k-j},$$

противоречие.

Таким образом, достаточно построить достаточно быстро возврастающую последовательность $\{a_n\}$, такую, что дополнение ее образа не содержит бесконечной арифметической прогрессии, или, что то же самое, множество ее значений пересекается с каждой из бесконечных арифметических прогрессий. Для этого воспользуемся методом, похожим на диагональный аргумент Кантора.

Каждая бесконечная арифметическая прогрессия задается двумя натуральными числами — первым элементом и шагом, поэтому всего таких прогрессий $\mathbb{N}^2 \sim \mathbb{N}$. Занумеруем их $I_1, I_2, \ldots, I_n, \ldots$ Последовательность $\{a_n\}$ строим итеративно: первым элементом выбираем что угодно из I_1 , а далее на n-м шаге в качестве a_n выбирается произвольный элемент I_n , не меньший $2a_{n-1}$ (такой найдется, так как I_n неограничена).

Тогда по построению $\frac{a_{n+1}}{a_n} \geq 2$ и A пересекается с каждой прогрессией, чего мы и добивались.

4.7 Домашнее задание 7

Задача 1

Нет, несчетно. В самом деле, обозначим это множество A и построим инъекцию $f:\{0,1\}^{\mathbb{N}}\to A$:

$$f(a_1 a_2 \dots a_n \dots) = a_1 \overline{a_1} a_2 \overline{a_2} \dots a_n \overline{a_n} \dots,$$

где $\overline{x}=1-x$ – операция отрицания. Тогда каждый отрезок нечетной длины содержит некоторое количество n "блоков" из двух бит вида $x\overline{x}$ и еще некоторый дополнительный бит y из конца предыдущего блока или начала следующего. Итого нулевых и единичных бит соответственно $n+\overline{y}$ и n-y, что отличается ровно на единицу.

Итого $|\{0,1\}^{\mathbb{N}}| \leq |A|$, а $\{0,1\}^{\mathbb{N}}$ несчетно, поэтому и A несчетно.

Задача 2

Обозначим множество таких последовательностей А.

C одной стороны, очевидно, $|A| \leq |3^{\mathbb{N}}| = \mathfrak{c}$.

С другой стороны, легко построить инъекцию $f:\{0,1\}^{\mathbb{N}}\to A$. Будем строить последовательность $b=f(a_1a_2\dots a_n\dots)$ итеративно. Пусть $b_1=a_1$. Далее для каждого $n\geq 2$:

- 1. Если $b_{n-1} = 0$, пусть $b_n = a_n$.
- 2. Если $b_{n-1} = 1$, пусть $b_n = 2a_n$.
- 3. Если $b_{n-1}=2$, пусть $b_n=1+a_n$.

Легко видеть, что в этой последовательности никакие два соседних элемента в сумме не дают 2: по построению возможны только комбинации

$$(0,0), (0,1), (1,0), (1,2), (2,1), (2,2).$$

Эта функция — действительно инъекция, поскольку для любых двух различных последовательностей a и a', различающихся в первый раз в индексе n, имеем

$$b_{n-1} = b'_{n-1}, \ a_n \neq a'_n \implies b_n \neq b'_n.$$

Тогда $|A| \ge |\{0,1\}^{\mathbb{N}}| = \mathfrak{c}$.

Отсюда по теореме Кантора-Бернштейна $|A| = \mathfrak{c}$.

Задача 3

Да, можно.

Введем на плоскости декартову систему координат. Для каждой точки A прямой x=y расположим единицу так, что ее вершина (общий конец отрезков) находится в точке A, а длинный отрезок расположен вертикально. Легко видеть, что при таком расположении единицы не пересекаются, а всего их будет $|\mathbb{R}| = \mathfrak{c}$.

Задача 4

Нет, нельзя.

Рассмотрим произвольное удовлетворяющее условию расположение крестов на плоскости.

Сопоставим каждому кресту множество из четырех точек с рациональными координатами следующим образом.

Для данного креста назовем его вершины A, B, C, D в порядке обхода против часовой стрелки. Тогда $O = AC \cap BD$ – центр креста. Выберем произвольно по рациональной точке из внутренностей $\triangle AOB, \triangle BOC, \triangle COD$ и $\triangle DOA$ (то есть точки на границе брать запрещается). Сопоставим кресту множество из этих четырех точек.

Если ни у каких двух крестов все четыре точки одновременно не совпадают, то всего крестов должно быть не более, чем четверок рациональных точек, то есть $(|\mathbb{Q}|^2)^4 = \aleph_0 < \mathfrak{c}$, что и требуется.

Покажем, что совпадения действительно исключены.

Будем пользоваться следующей простой леммой: если у креста с вершинами A, B, C, D и центром O были выбраны рациональные точки K, L, M, N, где $K \in \triangle AOB$ и далее циклически, имеют место условия

$$OB \cap KL \neq \emptyset$$
, $OC \cap LM \neq \emptyset$, $OD \cap MN \neq \emptyset$, $OA \cap NK \neq \emptyset$.

Предположим, у некоторых двух крестов с вершинами A_1, B_1, C_1, D_1 и A_2, B_2, C_2, D_2 и центрами O_1 и O_2 соответственно совпадают выбранные множества рациональных точек $\{K, L, M, N\}$.

Без ограничения общности считаем, что $O_1A_1 \ge O_2A_2$.

Введем декартову систему координат так, что

$$A_1 = (1,0), B_1 = (0,1), C_1 = (-1,0), D_1 = (0,-1) \implies O_1 = (0,0).$$

K, L, M, N были выбраны, в частности, для первого креста, поэтому без ограничения общности можно считать, что K, L, M, N строго лежат в первой, второй, третьей и четвертой четвертях соответственно.

Вершина второго креста O_2 лежит в одной из четвертей плоскости (или, возможно, на осях; отнесем оси к четвертям произвольно). Пусть без ограничения общности это первая четверть.

K, L, M, N были выбраны и для второго креста тоже, поэтому по лемме отрезок LM обязательно пересекается со вторым крестом в некоторой точке P. Имеем

$$L_x < 0, 0 < L_y < 1,$$

 $M_x < 0, -1 < M_y < 0,$

поэтому для точки P

$$P_x < 0, -1 < P_y < 1.$$

С другой стороны, $O_2A_2 \leq O_1A_1 = 1$. Следовательно, описанная окружность квадрата $A_2B_2C_2D_2$ имеет радиус не более 1, поэтому каждая из точек K, L, M, N удалена от O_2 менее, чем на 1. Тогда

$$O_{2y} < M_y + 1 < 1.$$

Следовательно, вершины отрезка O_2P (подмножество второго креста) расположены по разные стороны от оси ординат (или, в случае O_2 , возможно, на осях), а их ординаты лежат в интервале (-1,1), следовательно, этот отрезок пересекает B_1D_1 , поэтому кресты пересекаются. Противоречие.

Задача 5

Нет, неверно.

Любую нестрого убывающую последовательность натуральных чисел $a_1, a_2, \ldots, a_n, \ldots$ можно переписать в виде

$$b_1, b_1 - b_2, b_1 - b_2 - b_3, \ldots, b_1 - b_2 - \cdots - b_n, \ldots,$$

где

$$b_1 = a_1, \ b_{n+1} = a_n - a_{n+1},$$

причем $b_n \in \mathbb{N}_0$. Каждый ненулевой член последовательности $\{b_n\}$, начиная с $n \geq 2$, соответствует уменьшению элементов последовательности $\{a_n\}$, поэтому таких членов конечно (формально – не более a_1).

Показать, что последовательностей целых чисел с конечным числом ненулевых элементов счетно, можно кучей разных способов; пожалуй, самый короткий — воспользоваться тем, что в силу основной теоремы арифметики такая последовательность b_1, b_2, \ldots однозначно кодируется рациональным (а в нашем частном случае вообще целым) числом $\prod_n p_n^{b_n}$, где $\{p_n\}$ — последовательность простых чисел, а таких кодов счетно.

Задача 6

Поскольку $\mathbb Q$ и $\mathbb N$ равномощны, можно исследовать мощность множества биекций не из $\mathbb N$ в $\mathbb Q$, а из $\mathbb N$ в $\mathbb N$.

Обозначим множество биекций $f: \mathbb{N} \to \mathbb{N}$ за A. С одной стороны,

$$|A| \le |\mathbb{N}^{\mathbb{N}}| \le |(2^{\mathbb{N}})^{\mathbb{N}}| = |2^{\mathbb{N} \times \mathbb{N}}| = |2^{\mathbb{N}}| = \mathfrak{c}.$$

С другой стороны, легко построить инъекцию $g:\{0,1\}^{\mathbb{N}}\to A$, интерпретируя A как подмножество множества последовательностей натуральных чисел:

$$g(a_1, a_2, \dots, a_n, \dots) = \{1 + a_1, 2 - a_1, 3 + a_2, 4 - a_2, \dots, 2n - 1 + a_n, 2n - a_n, \dots\}.$$

Здесь если $a_n = 0$, то соответствующие члены последовательности будут равны 2n - 1 и 2n, как в натуральном ряде, а если $a_n = 1$, то они будут равны 2n и 2n - 1, то есть de facto поменяны местами.

Отсюда $|A| \geq \left|\{0,1\}^{\mathbb{N}}\right| = \mathfrak{c}.$ Итого по теореме Кантора-Бернштейна $|A| = \mathfrak{c}.$

Задача 7

Да, верно.

Лемма 4.2. Любое бесконечное множество есть объединение счетных множеств.

Доказательство. Эту лемму предлагаю считать либо самоочевидной и не заслуживающей пристального внимания, потому что идейная часть доказательства не здесь, либо признать ее нетривиальность и рассмотреть доказательство через лемму Цорна.

Пусть K – данное бесконечное множество. Пусть \mathfrak{P} – семейство всех таких наборов P из счетных множеств, что

$$P = \{p_{\lambda}\}_{\lambda \in \Lambda}, \ \bigsqcup_{\lambda \in \Lambda} p_{\lambda} \subseteq K.$$

Легко видеть, что $\emptyset \in \mathfrak{P}$.

Отношение \leq введем стандартно: $P \leq Q \iff P \subseteq Q$.

Тогда любая цепь $\{P_{\alpha}\}_{{\alpha}\in A}$ имеет верхнюю грань

$$P = \bigcup_{\alpha \in A} P_{\alpha},$$

лежащую в 🏗, поскольку

$$\bigcup_{\lambda \in \Lambda} p_{\lambda} = \bigcup_{\alpha \in A} \bigcup_{\lambda \in \Lambda_{\alpha}} p_{\alpha\lambda} \subseteq K,$$

а элементы P не пересекаются, ведь если $p_{\kappa} \cap p_{\mu} \neq \emptyset$, то $p_{\kappa} \in P_{\alpha}$ и $p_{\mu} = P_{\beta}$ для некоторых $\alpha, \beta \in A$. Так как $\{P_{\alpha}\}$ – цепь, то либо $P_{\alpha} \preccurlyeq P_{\beta}$, либо $P_{\alpha} \preccurlyeq P_{\beta}$; в обоих случаях получаем, что $p_{\kappa}, p_{\mu} \in P_{\beta}$ либо P_{α} соответственно, и при этом $p_{\kappa} \cap p_{\mu} \neq 0$, откуда $p_{\kappa} = p_{\mu}$.

Следовательно, условия леммы Цорна выполняются, и существует максимальное семейство Р. Обозначим

$$L = K \setminus \bigsqcup_{\alpha \in A} p_{\alpha}.$$

Если $L = \emptyset$, получено требуемое. Если L конечно, выберем в P любое счетное множество и прибавим к нему L; оно останется счетным, и теперь $L = \emptyset$.

Если же L бесконечно, выберем в нем произвольное счетное подмножество $p \subseteq L$. Тогда $P' = P \cup \{p\} \in \mathfrak{P}$ и при этом $P \preceq P', P \neq P'$, что противоречит лемме Цорна.

Лемма 4.3. Пусть K – бесконечное множество. Тогда $|K| = |K \times \{1,2\}|$.

Доказ атель cm 60. Разобьем K на объединение непересекающихся счетных множеств:

$$K = \bigsqcup_{\lambda \in \Lambda} K_{\lambda}, \ K_{\lambda} = \{k_{\lambda 1}, k_{\lambda 2}, \dots\}$$

Определим биекцию $f: K \times \{1,2\} \to K$ как

$$f(k_{\lambda n}, 1) = k_{\lambda, 2n-1},$$

$$f(k_{\lambda n}, 2) = k_{\lambda, 2n}.$$

Отсюда $|K| = |K \times \{1, 2\}|$.

Пусть $|A \cup B| = \mathfrak{c}$. В ZFC любые два множества сравнимы, тогда без ограничения общности $|A| \leq |B|$. Тогда

$$|B| \le |A \cup B| = \mathfrak{c}.$$

B бесконечно, потому что в противном случае и A, а значит, и $\mathfrak c$ были бы конечны.

Тогда по лемме

$$|B| = |B \times \{1, 2\}| \ge |(A \times \{1\}) \sqcup (B \times \{2\})| \ge |A \cup B| = \mathfrak{c},$$

откуда по теореме Кантора-Бернштейна $|B| = \mathfrak{c}$, что доказывает требуемое.

Задача 8

Да, существует.

Занумеруем рациональные числа $\{q_n\}$.

Для каждого действительного числа a выберем по рациональной точке в его проколотой $1, \frac{1}{2}, \ldots, \frac{1}{n}, \ldots$ -окрестности: $\{q_1(a), q_2(a), \ldots\}$. Это множество счетно, поскольку в противном случае в некоторой окрестности a не лежало бы ни одной рациональной точки, и имеет единственную предельную точку -a. Тогда $Q(a) = \{q^{-1}(q_n(a)) \mid n \in \mathbb{N}\}$ – множество натуральных чисел.

Рассмотрим семейство из таких множеств – по одному на каждое a. Оно будет, очевидно, континуально. Любые два множества Q(a), Q(b) из этого семейства не пересекаются начиная с $n \ge \left\lceil \frac{2}{|a-b|} \right\rceil$, поскольку при этом условии $\frac{1}{n}$ -окрестности a и b не пересекаются, поэтому $Q(a) \cap Q(b)$ конечно.

4.8 Домашнее задание 8

Задача 1

Проверим, что выполняются три свойства отношения эквивалентности:

1. Рефлексивность:

$$x \sim x \Longleftrightarrow \begin{cases} x \le x \\ x \le x \end{cases} \Longleftrightarrow x \le x,$$

что верно в силу рефлексивности ≤.

2. Симметричность:

$$x \sim y \Longleftrightarrow \begin{cases} x \leq y \\ y \leq x \end{cases} \iff \begin{cases} y \leq x \\ x \leq y \end{cases} \Longleftrightarrow y \sim x.$$

3. Транзитивность:

$$x \sim y, y \sim z \implies \begin{cases} x \leq y \\ y \leq x \\ y \leq z \\ z \leq y \end{cases}$$

В силу транзитивности \leq из $x\leq y, y\leq z$ следует $x\leq z,$ а из $z\leq y, y\leq x-z\leq x,$ откуда

$$\begin{cases} x \le z \\ z \le x \end{cases} \implies x \sim z.$$

Задача 2

Всего (неупорядоченных) пар из 4 элементов 6. Для удобства обозначим эти четыре элемента a, b, c, d.

Оказывается, все семь вариантов возможны. Приведем примеры частичных порядков на каждый из вариантов ответа. Частичный порядок будем обозначать набором неравенств, например, $a \leq b \leq c, b \leq d$, транзитивное замыкание которых дает сам порядок.

- Ноль несравнимых пар: $a \le b \le c \le d$.
- Одна несравнимая пара (c и d): a < b, b < c, b < d.
- Две несравнимые пары $(a \ u \ b, c \ u \ d)$: $a \le c, a \le d, b \le c, b \le d$.
- Три несравнимые пары $(a \ u \ b, \ a \ u \ c, \ a \ u \ d): b \le c \le d.$
- Четыре несравнимых пары $(a \ u \ c, a \ u \ d, b \ u \ c, b \ u \ d): a \le b, c \le d.$
- Пять несравнимых пар (все кроме упомянутой): $a \le b$.
- Шесть несравнимых пар (все): ∅.

Задача 3

Предположим, существует изоморфизм $\varphi: \mathbb{Z} + \mathbb{N} \to \mathbb{Z} + \mathbb{Z}$. В $\mathbb{Z} + \mathbb{N}$ у $1_{\mathbb{N}}$ (единицы из \mathbb{N}) нет предыдущего элемента, поскольку его нет в \mathbb{N} , а если $x_{\mathbb{Z}} < 1_{\mathbb{N}}$, то и $(x+1)_{\mathbb{Z}} < 1_{\mathbb{N}}$. Но в $\mathbb{Z} + \mathbb{Z}$ у $\varphi(1_{\mathbb{N}})$, независимо из того, в каком из двух \mathbb{Z} он находится, предыдущий элемент есть $(\varphi(1_{\mathbb{N}}) - 1)$, поэтому порядки не изоморфны.

Задача 4

Предположим, изоморфизм существует. В $\mathbb{N} \times \mathbb{Z}$ любой отрезок, правый конец которого имеет вид (1,x), конечен. Но для соответствующего ему элемента (a,b) из $\mathbb{Z} \times \mathbb{Z}$ такое свойство не выполняется, потому что отрезок [(a-1,b),(a,b)] бесконечен, поэтому порядки не изоморфны.

Лемма 4.4. $\mathbb{Q} \cap (l,r) \sim \mathbb{Q} \cap (L,R)$ для любых рациональных l < r, L < R.

Доказательство. Легко видеть, что

$$\varphi: \mathbb{Q} \cap (l,r) \to \mathbb{Q} \cap (L,R), \ \varphi(x) = L + \frac{x-l}{r-l}(R-L)$$

есть изоморфизм.

Лемма 4.5. $\mathbb{Q} \sim \mathbb{Q} \cap (l,r)$ для любых l < r, где l – действительное число или $-\infty$, а r – действительное число или $+\infty$.

Доказательство. Выберем возрастающую двунаправленную последовательность рациональных чисел $\{x_n\}_{n=-\infty}^{\infty}$ (формально – возрастающее отображение $\mathbb{Z} \to \mathbb{Q}$), такую, что

$$\lim_{n \to -\infty} x_n = l, \ \lim_{n \to +\infty} x_n = r.$$

Тогда, используя первую лемму и то, что любые два синглтона изоморфны, получаем

$$\mathbb{Q} \sim \dots + \{-n\} + (-n, -n+1) + \{-n+1\} + \dots + \{m\} + (m, m+1) + \{m+1\} + \dots \sim \dots + \{-x_n\} + (-x_n, -x_{n+1}) + \{-x_{n+1}\} + \dots + \{x_m\} + (x_m, x_{m+1}) + \{x_{m+1}\} + \dots \sim \mathbb{Q} \cap (l, r).$$

Под бесконечной суммой частично упорядоченных множеств предлагается понимать частично упорядоченное множество, носителель которого равен объединению носителей всех слагаемых, и со сравнением, для элементов из одного слагаемого наследуемого из соответствующего чума, а для элементов из разных слагаемых — согласно взаимному расположению этих слагаемых в сумме. Такое определение позволяет рассматривать суммы двунаправленных рядов и более чем счетных рядов, чем мы и будем радостно пользоваться.

Лемма 4.6. $\mathbb{N} \times \mathbb{Q} \sim \mathbb{Q}$.

Доказательство. В силу предудыщей леммы

$$\mathbb{N} \times \mathbb{Q} \sim \mathbb{Q} + \mathbb{Q} + \mathbb{Q} + \cdots \sim (\mathbb{Q} \cap (-\infty, \sqrt{2})) + (\mathbb{Q} \cap (\sqrt{2}, 2\sqrt{2})) + (\mathbb{Q} \cap (2\sqrt{2}, 3\sqrt{2})) + \dots,$$

а поскольку здесь концы всех интервалов иррациональны,

$$(\mathbb{Q} \cap (-\infty, \sqrt{2})) + (\mathbb{Q} \cap (\sqrt{2}, 2\sqrt{2})) + (\mathbb{Q} \cap (2\sqrt{2}, 3\sqrt{2})) + \cdots \sim \mathbb{Q},$$

что завершает доказательство.

Задача 6

Да, является.

Легко показать, что если множества $(A, \leq_A), (B, \leq_B)$ вполне упорядочены, то и их декартово произведение вполне упорядочено: минимальный элемент множества $C \subseteq A \times B, C \neq \emptyset$ имеет первую координату, равную минимуму первых координат по всем элементам из C, а вторую координату – равную минимуму вторых координат по элементам из C, имеющих совпадающую первую координату.

Отсюда по индукции можно показать, что при фиксированном n множество $(\mathbb{N}+\{\infty\})^n$ также вполне упорядочено.

Далее отсюда показывается, что, позволяя себе некоторую свободу формулировок,

$$\Gamma = \sum_{n=0}^{\infty} (\mathbb{N} + \{\infty\})^n$$

также вполне упорядочено: в силу вполне упорядоченности \mathbb{N}_0 в произвольном множестве $X\subseteq \Gamma, X\neq\emptyset$ можно выбрать подмножество элементов, обладающих минимальным n, а уже из них выбрать минимум можно в силу вполне упорядоченности $(\mathbb{N}+\{\infty\})^n$.

Каждой бесконечной невозрастающей последовательности натуральных чисел $\{a_1, a_2, \dots\}$ можно сопоставить конечную последовательность длины a_1 с элементами из $\mathbb{N} + \{\infty\}$, где k-й c конца элемент обозначает количество вхождений числа k в $\{a_n\}$.

Назовем это преобразование φ . Легко видеть, что оно инъективно, а также что

$$\{x_n\} \leq_{lex} \{y_n\} \iff \varphi(\{x_n\}) \leq_{\Gamma} \varphi(\{y_n\}),$$

поэтому множество бесконечных невозрастающих последовательностей натуральных чисел с лексикографическим порядком изоморфно подмножеству Γ , а Γ вполне упорядочено.

Задача 7

Предположим, что бесконечных цепей в множестве нет.

Утверждается, что при этом условии в любом бесконечном частично упорядоченном множестве A найдется элемент $a \in A$, несравнимый с бесконечным числом элементов из A.

Доказательность $\{a_1, a_2, \dots\}$. Запустим алгоритм: начнем с пустой цепи и будем по одному пытаться добавлять в нее элементы a_1, a_2, \dots : элемент добавляется, если при его добавлении цепь будет оставаться цепью. Поскольку по предположению все цепи конечны, начиная с какого-то момента этот алгоритм перестанет добавлять в цепь элементы; назовем построенную цепь S.

Для каждого элемента $s \in S$ обозначим

$$A_s = \{a \in \{a_1, a_2, \dots\} \mid a \text{ и } s \text{ несравнимы}\}.$$

Их объединение — это просто множество всех элементов из $\{a_1, a_2, \dots\}$, не попавших в S, а в силу конечности S таковых счетно, поэтому хотя бы одно из A_s счетно. Отсюда и следует, что существует элемент s, несравнимый с бесконечным числом элементов из A.

Пусть A — бесконечное частично упорядоченное множество без бесконечной цепи. Используя эту лемму, приведем алгоритм построения бесконечной антицепи.

По лемме найдется элемент $a_1 \in A$, несравнимый с бесконечым множеством элементов из A; назовем это множество A_1 . Если A не содержит бесконечных цепей, то и его подмножество A_1 не может содержать бесконечных цепей, поэтому лемма применима и к A_1 , поэтому найдется элемент $a_2 \in A_1$, несравнимый с бесконечым множеством элементов из A_1 . Повторим этот аргумент счетное число раз, в итоге получая последовательность $\{a_1, a_2, \dots\}$ и $\{A_1, A_2, \dots\}$. По построению

$$\forall i < j : a_i \in A_{i-1} \subseteq A_{i-2} \subseteq \cdots \subseteq A_i \implies \forall i < j : a_i$$
 и a_j несравнимы,

поэтому построенная последовательность – бесконечная антицепь, что и требовалось.

Задача 8

Пусть дана какая-либо раскраска ребер описанного в условии графа. Изменим ориентацию синих ребер и забудем про цвета всех ребер. Легко видеть, что такое соответствие биективно. Тогда условие того, что для любых x < y не существует одновренно красного и синего путей из x в y переходит в требование того, что не существует цикла, в котором ребра сначала все направлены слева направо, а потом справа налево. Назовем такой цикл обыкновенным (я честно искал термин, еще не использующийся в теории графов для другой цели).

Лемма 4.7. Для полных графов отсутствие обыкновенных циклов эквивалентно ацикличности графа.

Доказательство. В самом деле, если граф ацикличен, то и обыкновенных циклов в нем, в частности, нет. Покажем, что, наоборот, если граф содержит цикл, то он содержит и обыкновенный цикл.

Пусть граф содержит некоторый простой цикл. Выберем из всех вершин этого цикла самую левую и запишем все ребра этого цикла начиная с нее: $v_1 \to v_2, v_2 \to v_3, \ldots, v_k \to v_1$. Для каждого из этих k ребер выпишем в строчку букву R, если ребро направлено слева направо, и L, если оно направлено справа налево. В силу того, что v_1 — самая левая вершина, первая буква строки всегда R, а последняя — всегда L. Если получившаяся строка выглядит как $R \ldots R L \ldots L$, то этот цикл обыкновенен, и получено требуемое.

В противном случае легко видеть, что строка будет содержать подстроку LR. Это означает, что в каком-то месте этого цикла подряд идут три вершины v_{i-1}, v_i, v_{i+1} , где $v_{i-1} < v_i, v_i > v_{i+1}$, и есть ребра $v_{i-1} \to v_i, v_i \to v_{i+1}$, причем 2 < i < k-1. Посмотрим теперь на направление ребра между v_1 и v_i . Если оно направлено как $v_1 \to v_i$, то $v_1 \to v_i \to v_{i+1} \to \cdots \to v_k \to v_1$ будет циклом меньшей длины, чем рассматриваемый (но все еще хотя бы 3). Аналогично, если $v_i \to v_1$, то $v_1 \to v_2 \to \cdots \to v_i \to v_1$ будет циклом меньшей длины.

Следовательно, для любого необыкновенного цикла найдется цикл строго меньшей длины. Поскольку бесконечную убывающую последовательность длин выстроить нельзя, в каком-то момент такая цепочка циклов оборвется на обыкновенном цикле.

В силу леммы раскраска хорошая тогда и только тогда, когда соответствующий бесцветный граф ацикличен. Но ацикличный полный граф — ни что иное, как полный порядок, где каждое ребро идет, например, от меньшего элемента к большему, а полный порядок на n элементах однозначно задается перестановкой из n чисел, коих n!.

Ответ: n!.

4.9 Домашнее задание 9

Задача 1

Если некоторая цепь и антицепь пересекаются по хотя бы двум элементам, то эти два элемента обязаны одновременно быть сравнимыми и несравнимыми, что невозможно. Следовательно, антицепь может включать в себя не более n-k+1 элементов: не более одного из максимальной цепи и не более n-k из оставшихся n-k элементов. Эта граница строго достигается, например, на частично упорядоченном множестве $(\{1,2,\ldots,n\},\preccurlyeq)$, где $a \preccurlyeq b$, если $a \le b \le k$.

Задача 2

Введем порядок на прямых: пусть $f \leq g$, если график функции g, ограниченный на верхнюю полуплоскость (включая y=0), лежит нестрого справа от графика функции f, ограниченной на то же множество. Это эквивалентно тому, что f и g пересекаются в нижней полуплоскости (включая y=0), и угловой коэффициент g меньше, чем у f.

Если существует антицепь мощности 5, то из этих пяти прямых любые две несравнимы, то есть при $y \ge 0$ ни у одной из них график не лежит нестрого правее другой, а значит, любые две из этих прямых пересекаются в верхней полуплоскости, что и требовалось.

Если же все антицепи имеют мощности ≤ 4, то по теореме Дилуорса найдется разбиение множества прямых (коих 16) на не более чем 4 непересекающихся цепи. Следовательно, в силу принципа Дирихле хотя бы одна из этих цепей будет иметь мощность ≥ 4, то есть найдутся 4 прямые, любые две из которых не пересекаются в верхней полуплоскости, а значит, пересекаются в нижней. Что несколько подозрительно, потому что в условии оценка хуже, но как есть.

Задача 3

а) Нет: пусть A состоит их двух копий \mathbb{N} , где сравнения внутри копий наследуются из \mathbb{N} , а между копиями не определены. Формально,

$$A = (\{n, n' \mid n \in \mathbb{N}\}, \preceq); \ n \leq m \iff n \preceq m \iff n' \preceq m'; \ \neg(n \preceq m'), \neg(n' \preceq m).$$

Легко видеть, что это множество образует частичный порядок. Оно также фундированно, поскольку любое $B \subseteq A, B \neq \emptyset$ пересекается либо с \mathbb{N}' (либо с обоими); наименьший элемент в $B \cap \mathbb{N}'$ или $B \cap \mathbb{N}'$ соответственно будет минимальным в B.

Тогда определим $f: A \to A$ так, что f(n) = n', f(n') = n. Если $x \prec y$, то либо

$$x = n, y = m, n < m \implies f(x) = n' \prec m' = f(y),$$

либо

$$x = n', y = m', n < m \implies f(x) = n \prec m = f(y),$$

поэтому f возрастает. Но, например, $f(1) = 1' \geq 1$ не выполняется.

б) Да, верно. Докажем это от противного.

То, что элементы x и f(x) сравнимы и при этом $f(x) \not \succcurlyeq x$, эквивалентно f(x) < x. Тогда пусть

$$B = \{ x \in A \mid f(x) < x \}$$

и при этом $B \neq \emptyset$. А фундированно, поэтому B содержит минимальный элемент x'.

Тогда f(x') < x'. Значит, в силу возрастания f имеем f(f(x')) < f(x'), но тогда $f(x') \in B$. С другой стороны, f(x') < x, значит, x не могло быть минимальным элементом B. Противоречие.

Задача 4

Сперва посчитаем количество цепей из 6 элементов, не включающих 0. Это будут произвольные шестиэлементные подмножества $\{1,2,\ldots,9\}$, поскольку подмножество цепи — цепь. Таких подмножеств $\binom{9}{6}$.

Сколько существует цепей, включающих 0? По условию все элементы от 1 до 9 сравнимы, поэтому те 4 пары несравнимых элементов, описанные в условии, обязаны иметь вид (0,n), то есть 0 несравним с ровно 4 элементами от 1 до 9, а значит, сравним ровно с 5 элементами от 1 до 9. Следовательно, ровно и только с этими пятью элементами он будет образовывать 6-элементную цепь.

Итого ответ

$$\binom{9}{6} + 1 = 85.$$

Задача 5

Введем на отрезках частичный порядок: [a, b] < [c, d], если b < c. Легко проверить, что это действительно порядок.

Тогда цепь — это такое множество отрезков, что любые два из них не пересекаются. Антицепь — это множество отрезков, из которых любые два пересекаются; то, что это эквивалентно тому, что все отрезки пересекаются — классическая задача, для доказательства которой проверяющему предлагается избавиться от отрезков, целиком содержащих другие отрезки, и внимательно посмотреть на получившуюся картинку.

Следовательно, в каждой антицепи можно выбрать точку, содердащуюся в каждом из отрезке, и наоборот, множество отрезков, содердащих произвольную фиксированную точку, образует антицепь. Поэтому каждому подмножеству точек на прямой, удовлетворяющему условию, соответствует некоторое разбиение множества данных отрезков на антицепи (возможно, пересекающиеся, но от пересечений легко избавиться, вычитая из каждой антицепи объединение всех предыдущих).

По теореме, дуальной теореме Дилуорса (судя по всему, теореме Мирского), длина максимальной цепи (то есть k) равна минимальному числу антицепей, на которое можно разбить множество (то есть n), что и требовалось.

Задача 6

Для фиксированной перестановки σ введем порядок на ее индексах $(\{1,\ldots,n\}, \preccurlyeq)$ так, что $i \preccurlyeq j$, если $(i,\sigma(i)) \leq (j,\sigma(j))$ поэлементно.

Хорошая перестановка – это такая перестановка, у которой в соответствующем ей порядке нельзя выбрать антицепь из 11 элементов. Следовательно, у хорошей перестановки мощность максимальной антицепи ≤ 10, поэтому по теореме Дилуорса ее можно разбить на ≤ 10 непересекающихся цепей.

Произвольно пронумеруем эти ≤ 10 цепей натуральными числами от 1 до 10. Если цепей меньше, чем 10, то какие-то из чисел останутся неиспользованными.

Для каждого индекса i выпишем номер цепи, в которой он лежит. Получится однозначное соответствие undexcos и цепей – строка из n чисел от 1 до 10.

Аналогично, для каждого элемента σ_i выпишем номер цепи, в которой он лежит. Получится однозначное соответствие *значений* и цепей – строка из n чисел от 1 до 10.

Итого для σ выписано 2n чисел от 1 до 10. По такой строке σ восстанавливается однозначно, ведь элементы цепи, если их выписать по возрастанию индексов, сами возрастают: для каждой цепи мы знаем принадлежащие ей индексы и значения; отсортируем и то, и другое, и сопоставим k-му индексу k-е значение. Естественно, некоторые строки будут невалидны, а именно те, в которых в какой-то цепи число индексов не равно числу значений.

Таким образом, описанное преобразование перестановки в строку является инъекцией. Строк всего 10^{2n} , поэтому перестановок не более 10^{2n} , что и требовалось.

4.10 Домашнее задание 10

Задача 1

- а) Нет. В самом деле, если удалить из графа эту вершину степени 1 и исходящее из нее ребро, останется граф из 7 вершин и 22 ребер. Но в графе из 7 вершин может быть не более $\binom{7}{2} = 21$ ребер, противоречие.
- б) Нет. В самом деле, если у трех вершин степень 4, а у остальных семи ≥ 1 (поскольку граф связен), то

$$\sum_{i} \deg v_i \ge 3 \cdot 4 + 7 \cdot 1 = 19.$$

Но

$$\sum_{i} \deg v_i = 2|E| = 2(|V| - 1) = 18,$$

противоречие.

Задача 2

Обозначим высоту вершины в дереве, то есть ее расстояние от корня, за h(v). Тогда в силу уникальности простого пути между любыми двумя вершинами в дереве

$$d(u,v) = (h(u) - h(l)) + (h(v) - h(l)) = h(u) + h(v) - 2h(l),$$

где l – самый нижний общий предок вершин u и v. Понятно, что в бинарном дереве глубины n всегда выполняется

$$d(u, v) \le 2n$$
.

Легко видеть, что для полного дерева d(u,v) = 2n, когда u и v – листья, простой путь между которыми проходит через корень. В бинарном дереве такие листья, конечно, есть, поэтому диаметр равен 2n.

Если обозначить корень за 0, а его детей за 1 и 2, то путь между u и v является диаметром, если u лежит в поддереве 1, а v – в поддереве 2, или наоборот. Поскольку всего в дереве листьев 2^n , способов выбрать диаметр, то есть неупорядоченную пару листьев, не лежащих одновременно в одном и том же поддереве 1 или 2, будет

$$2^{n-1} \cdot 2^{n-1} = 2^{2n-2}.$$

Задача 3

Оценка: Обозначим ответ на эту задачу за f(n,k), при этом не требуется $k \leq \frac{n}{2}$. Тогда

$$f(n,0) = f(0,k) = 1,$$

поскольку можно взять семейство из одного пустого множества, а больше одного элемента взять нельзя.

Если же n,k>0, то оптимальное семейство \mathcal{P} можно разделить на два семейства $\mathcal{P}_1,\mathcal{P}_2$, первое из которых состоит из множеств, включающих n, а второе – не включающих. Если в \mathcal{P} никакие два подмножества не вложены, то то же свойство сохранится для \mathcal{P}_1 и \mathcal{P}_2 . Если удалить из каждого множества из \mathcal{P}_2 элемент n, свойство о невложенности также сохранится. Следовательно, \mathcal{P}_1 теперь удовлетворяет условию для n-1,k, а \mathcal{P}_2 – для n-1,k-1, поэтому

$$f(n,k) = |\mathcal{P}| = |\mathcal{P}_1| + |\mathcal{P}_2| < f(n-1,k) + f(n-1,k-1).$$

Тут уже проглядывает что-то знакомое. Но просто $\binom{n}{k}$ в качестве оценки сверху подставлять нельзя, например, потому, что не выполняется база при n=0, k>0.

Поэтому будем по индукции по n показывать, что

$$f(n,k) \le \binom{n}{\min(k, \lfloor \frac{n}{2} \rfloor)}.$$

По теореме Шпернера максимальное число невложенных подмножеств (без ограничения на размер) $\binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}$, поэтому

$$f(n,n) = \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

f(n,k), очевидно, монотонна по k, поэтому при всех k имеем

$$f(n,k) \le \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

При $k \geq \frac{n}{2}$ это совпадает с доказываемой нами оценкой. Если же $k < \frac{n}{2}$, то $k \leq \frac{n-1}{2}$ и потому

$$f(n,k) \le f(n-1,k) + f(n-1,k-1) \le \binom{n-1}{k} + \binom{n-1}{k-1} = \binom{n}{k}.$$

Итак, оценка доказана. В нашем случае $k \leq \frac{n}{2}$, поэтому верна оценка $\binom{n}{k}$.

Пример: Пусть \mathcal{P} – семейство всех k-элементных подмножеств A. Тогда оба условия, очевидно, выполняются, и

$$|\mathcal{P}| = \binom{n}{k}.$$

Задача 4

Если k четно, пусть

$$V = \{0, 1, \dots, n-1\},$$

$$E = \{(i, (i+j) \bmod n) | 0 \le i < n, 1 \le j \le \frac{k}{2}\}.$$

Это определение корректно, потому что каждое ребро здесь указано только один раз. В самом деле, две пары

$$(i_1, (i_1 + j_1) \bmod n)$$
 и $(i_2, (i_2 + j_2) \bmod n)$

могут совпадать, если они равны поэлементно:

$$\begin{cases} i_1 = i_2 \\ (i_1 + j_1) \bmod n = (i_2 + j_2) \bmod n \end{cases}$$

что, очевидно, невозможно, если только не $i_1=i_2, j_1=j_2$, либо если элементы совпадают крест-накрест:

$$\begin{cases} i_1 = (i_2 + j_2) \bmod n \\ (i_1 + j_1) \bmod n = i_2 \end{cases}$$

но это бы означало, что

$$j_1 + j_2 \equiv 0 \pmod{n},$$

но

$$j_1 + j_2 \le 2 \cdot \frac{k}{2} = k < n.$$

Петель в этом графе нет, т.к. $j \not\equiv 0 \pmod{n}$.

Вершине u инцидентны ребра вида

$$(u,u+j) \text{ или } (u-j,u), \ 1 \leq j \leq \frac{k}{2},$$

коих ровно k.

Если же k нечетно, но при этом n четно, решим задачу для (n, n-1-k) – ее мы решать умеем, т.к. n-1-k тогда будет четным. Дополнение построенного графа будет обладать требуемым свойством.

Задача 5

Предположим, после удаления ребер граф несвязен. Значит, его вершины можно разделить на две непустых группы, между которыми нет ребер. Поскольку всего вершин 2n+1, одна из этих компонент имеет размер $1 \le k \le n$, вторая -2n+1-k.

Каждая из вершин первой компоненты сейчас имеет степень не более k-1, а раньше имела n, поэтому было удалено как минимум k(n-(k-1)) ребер. Но

$$k(n-(k-1)) \ge n$$

независимо от значения k, поскольку

$$n-k(n-(k-1))=k^2-(n+1)k+n=(k-n)(k-1)\leq 0$$
 при $1\leq k\leq n,$

то есть ребер удалили больше, чем было разрешено. Противоречие.

Задача 6

Из условия следует, что между любыми двумя вершинами существует путь длины 2, поэтому граф связен. Следовательно, достаточно показать, что степени совпадают у любых двух соседних вершин.

Пусть u, v — вершины, между которыми проведено ребро. Пусть x — произвольный сосед u, не совпадающий с v. Тогда по условию для вершин x и v найдется ровно две вершины, связанные с ними обоими. Одну такую вершину мы уже нашли — это u. Вторую вершину назовем y. Итак, по x мы однозначно построили y. Можно сказать, что мы построили функцию из множества соседей u в множество соседей v.

Заметим, что это отображение инъективно. В самом деле, если для двум различным аргументам $x_1 \neq x_2$ соответствует один y, то с вершинами y, u одновременно связаны вершины v, x_1 , x_2 , а по условию таких вершин только две.

Так как отображение инъективно, степень u не превышает степень v. Этот аргумент можно повторить, поменяв в рассуждениях u и v местами. Следовательно, степени u и v совпадают.

Задача 7

Докажем от противного. Предположим, в графе нет ни одной вершины, соединенной со всеми остальными. Следовательно, в дополнении графа каждая вершина имеет степень хотя бы 1.

Рассмотрим произвольную компоненту связаности дополнения. Выберем произвольно какую-нибудь вершину v из нее и обозначим за U_d множество вершин этой компоненты, минимальное расстояние от которых до v равно d.

Обозначим $A = U_0 \cup U_2 \cup U_4 \cup \dots, B = U_1 \cup U_3 \cup U_5 \cup \dots$ Заметим, что для любой вершины $a \in A$ в графе-дополнении найдется ребро из a в B, и наоборот, для любой вершины $b \in B$ в графе-дополнении найдется ребро из b в A.

В самом деле, если $b \in U_{2k+1}$, то путь длины 2k+1 из v в b проходит через некоторую вершину $a \in U_{2k}$, и будет существовать ребро из a в b.

Аналогично, если $a \in U_{2k}$, то если k > 0, то путь длины 2k из v в a проходит через некоторую вершину $b \in U_{2k-1}$. Если же k = 0, то тогда a = v, а у v обязательно есть инцидентное ребро (по предположению), и конец этого ребра будет лежать в U_1 .

Обозначим теперь за E_i меньшее из множеств A и B в i-й компоненте. Аналогично, обозначим за F_i большее из множеств A и B в i-й компоненте. Если |A|=|B|, пусть $E_i=A, F_i=B$.

Обозначим $E=\cup E_i, F=\cup F_i$. Тогда $E\sqcup F=V, |E|\leq |F|,$ и, следовательно, $|E|\leq n$.

Предположим для начала, что |E|=n. Тогда к множеству E применимо свойство из условия задачи, и найдется вершина $f \not\in E$, связанная со всеми вершинами из E. f, очевидно, лежит в некотором F_i . Но мы знаем, что в графедополнении f связана с какой-то вершиной $e \in E_i$, то есть f не может быть связана со всеми вершинами из E. Противоречие.

Если |E| < n, то перекинем n - |E| вершин из F в E. Заметим, что конструкция из предыдущего абзаца не ломается. В самом деле, поскольку из F мы вершины только убирали, f все еще лежит в некотором F_i . Поскольку в E вершины только добавлялись, то e все еще будет лежать в соответствующем E_i .

4.11 Домашнее задание 11

Задача 1

Рассмотрим последнюю цифру у чисел последовательности:

 $a_0 \rightarrow 5$ $a_1 \rightarrow 8$

 $a_2 \rightarrow 7$

 $a_3 \rightarrow 2$

 $a_4 \rightarrow 7$

•••

Последняя цифра не зависит от других, поэтому будет цикл. a_{2015} имеет нечётный номер, поэтому последней цифрой будет 7.

Задача 2

Назовём вершины с нечётной степенью a,b,c,d. Добавим в граф рёбра (a,b) и (c,d). Теперь в графе обязательно есть Эйлеров цикл по всем рёбрам. Выкинем из этого цикла рёбра, которые мы добавили. Получилось 2 непересекающихся пути, проходящие по всем рёбрам начального графа. Также пути начинаются и заканчиваются в вершинах с нечётными степенями, так как удалённые рёбра соединяли их.

Задача 3

Докажем по индукции:

База: n=1 - всего одна вершина, поэтому Гамильтонов путь есть

Переход $n \to n+1$: пусть для n есть какой-то путь [a,b,c,...]. Назовём x_0 вершину в кубе размерности n+1, у которой первые n координат равны массиву x, а последняя - ноль. Аналогично, в x_1 последняя координата - 1.Тогда новый путь можно построить так: $[a_0, a_1, b_1, b_0, c_0, c_1,...]$. Так мы посетим все вершины ровно по одному разу. Такой путь существует, так как раз есть путь [a,b,c...], то есть пути и $[a_0,b_0,c_0,...]$ и аналогичный с $[a_1,...]$.

Задача 4

Сделаем алгоритм, который ищет вершину, расстояние из которой до всех остальных не больше 2. Будем поддерживать множество A - вершин на расстоянии 1 от текущего ответа и B - вершины на расстоянии 2.

Изначально ответной вершиной будем считать 1. Будем перебирать вершины по очереди. Если вершина на расстоянии 1 или 2 от текущего ответа, то добавим её в соответствующее множество. Если же это не так, то сделаем её новый ответом. Тогда предыдущий ответ добавится в A (так как в неё было ребро), а остальные элементы A и B останутся прежними, так как у нового ответа обязательно есть рёбра во все вершины A, иначе был бы путь длины 2.

Так в конце мы найдём искомую вершину.

Задача 5

Докажем по индукции:

База: для 1 вершины путь есть, он состоит из одной вершины

Переход $n \to n+1$: пусть быть путь a и в граф добавилась вершина v. Тогда если есть ребро $v \to a_1$, то добавляем вершину в начало пути и получаем новый путь. Если есть ребро $a_n \to v$, то мы можем получить новый путь, добавив вершину в конец.

Если мы пока не смогли получить новый путь, то в графе есть рёбра $(a_1 \to v)$ и $(v \to a_n)$. Также для каждого i есть ребро между a_i и v, направленное в какую-то сторону. Но между вершинами с ребром в v и ребром из v должен быть переход, так как начало и конец пути имеют разный тип. То есть существует такое i, что есть рёбра $(a_i \to v)$ и $(v \to a_{i+1})$. Тогда просто вставляем вершину v между этими двумя элементами пути и переход доказан.

Задача 6

Дан граф, в котором есть простые циклы нечётной длины, но после удаления любого ребра он пропадает. Это значит, что все рёбра графа представляют собой один нечётный цикл, так как если есть 2 несовпадающих цикла, то есть ребро, которое принадлежит одному циклу и не принадлежит другому, а значит условие не выполняется.

Если в графе нет изолированных вершин, и при этом все рёбра графа образуют цикл, то этот цикл будет такой же длины, сколько вершин будет в графе. А если вершин 1000, то цикл будет чётным, а значит граф изначально был 2-раскрашиваемым.

Значит, в графе есть изолированные вершины.

Задача 7

Построим граф состояний, где вершина отвечает за количество камней и последнюю коробку, в которую попал камень в предыдущий ход. Ребро из вершины в другую будет обозначать ход в игре. Из каждой вершины выходит по 1 ребру.

Рассмотрим как выглядит ход: сначала мы достаём все камни из одной коробки, а после раскладываем их по часовой стрелке. Тогда если мы знаем, в какую коробку попал последний камень, то мы можем убирать камни по одному, идя против часовой стрелке. Так мы в какой-то момент придём в коробку, где нет камней, и это будет та коробка, из которой достали камни в предыдущий ход, так как если мы забрали меньше камней, чем положили на прошлом ходе, то во всех коробках обязательно должны быть камни, так как мы их туда положили.

Итого, по расположению камней и последней коробке мы можем однозначно определить, из какой позиции мы пришли, а значит граф ходов распадается на циклы, и если мы начнём идти из какой-то вершины, то мы обязательно в неё вернёмся.

Стоит заметить, что мы можем сделать любой первых ход, а значит вариантов для начальной вершины несколько, но мы всё равно вернёмся в начало (может даже раньше попадём в состояние с такой же расстановкой камней, но другой последней коробкой, но на решение это не влияет).

Задача 8

Пусть мы смогли пройти по полю. Сделаем граф, где вершины клеток поля (9·9 штук) будут вершинами. Тогда если кубик перекатился через границу между двумя клетками поля, то проведём ребро по этой границе. Если в графе есть вершина степени 3, то мы получаем противоречие, так как в таком случае кубик попал на 2 соседние клетки одной стороной (кубик входит и выходит из каждой клетки по 1 разу кроме первой и последней, поэтому кубик точно прокатился через эти 3 границы клеток подряд).

Пусть мы смогли расставить рёбра так, что нет вершин степени 2. Всего кубик сделает 63 переката, поэтому сумма степеней всех вершин будет 126. С другой стороны, вершины на краях доски (по 7 на каждой из 4 сторон) могут иметь степень максимум 1, а вершины внутри поля $(7 \cdot 7)$ штук) могут иметь максимум 2 ребра. Тогда суммарно концов рёбер будет $7 \cdot 4 + 7 \cdot 7 \cdot 2 = 126$. Итого получаем, что если расстановка без вершин степени 3 есть, то в ней у каждой вершины будет максимальная возможная степень.

Теперь раскрасим узлы в 2 цвета в сине-белую шахматную раскраску.

Любое ребро будет соединять синюю и белую вершину, значит суммарная степень синих вершин должна быть равна 63. Но посчитаем её: $4 \cdot 4 + (3 \cdot 4 + 4 \cdot 3) \cdot 2 = 16 + 48 = 64$. Получается, что есть ребро из синей клетки в синюю. Противоречие. Значит в графе точно есть вершина степени 3, а значит мы не можем пройтись кубиком.