Machine Learning-Guided Search Algorithms for Multi-Agent Path Finding by Leveraging Domain Heuristics

USC University of Southern California SCAN ME

Taoan Huang, University of Southern California (Joint work with Jiaoyang Li, Bistra Dilkina and Sven Koenig)

1 Multi-Agent Path Finding (MAPF) and Our Contribution

Input:

- An unweighted undirected graph.
- A set of agents, each with a start location and a goal location.

Output:

• A set of collision-free paths, one for each agent, that minimizes the sum of travel time.

We leverage domain heuristics and machine learning to improve different search algorithms for MAPF:

Optimal algorithms

- Conflict-based search: A complete tree search
- Learn to branch on conflicts by imitating an agent dependency heuristics

Boundedsuboptima algorithms

- ECBS: A bounded suboptimal version of CBS
- Learn to improve node selection with imitation and curriculum learning based on a distance-to-goal heuristic

Unbounded suboptima algorithms

- Large Neighborhood Search for MAPF
- Learn a destroy heuristic by leveraging spatial-temporal information provided by hand-crafted heuristics

2 ML-Guided Conflict Based Search (CBS)

An optimal bi-level tree search:

- A tree node has a set of constraints, each prohibits an agent to travel along an edge or be at a vertex at time t
- High-level Search:
 - Pick a node with the minimum cost
 - Branch on a conflict between two agents in its current solution
 - Expand the tree by adding two children, each imposing a constraint for an agent resolving that conflict
- Low-level Search: Replan the optimal agents' path w.r.t. the imposed constraints

CBS Search Tree Add a constraint: Agent 2 cannot be cannot be at X at time step 1 at X at time step 1

Weighted Dependency Graph Heuristic

- State-of-the-art heuristic to • Effective: choose conflicts to branch on
- Not efficient: Solve a weighted vertex cover problem for each conflict

ML Framework

Learn to rank the conflicts as similarly as possible to the WDG heuristic, without actually computing it

- 1. Data collection: Run CBS exhaustively with the WDG heuristic
- 2. Model learning: Imitate the heuristic's decision via learning to rank conflicts

Experimental Results

Train two models for each map

- ML-S: Train on the data collected on the same map
- ML-O: Train on the data collected on the other maps Improvement over CBSH2 (state-of-the-art CBS):
 - Runtime: 10.3%-64.4% faster
 - Tree sizes: 13.0% to 68.2% fewer nodes

Success rates: the fractions of solved instances within time

3 ML-Guided Enhanced CBS (ECBS)

ECBS

Bounded-suboptimal version of CBS:

- Find a solution with cost $\leq w \times$ optimal $(w \ge 1)$
- Node selection in ECBS vs CBS **OPEN list:**

Node Selection Heuristics

- Existing heuristics: choose the node with the fewest conflicts or conflicting (pairs of) agents
- Our method: retrospectively learn a better heuristic using the existing one as a starting point

curriculum learning: train with increasing agent sizes $k_1 < k_2 < \cdots$

Experimental Results

ECBS+ h_i : ECBS with domain heuristic h_i

ECBS+ML: Our method

ECBS+ML(ES): Our method with early stopping in curriculum learning

ECBS+IL: Our method with imitation learning but no curriculum learning

4 ML-Guided Large Neighborhood Search (LNS)

MAPF-LNS

Destroy Heuristics

MAPF-LNS uses randomized domain heuristics.

MAPF-ML-LNS (our method) imitates an oracle:

- The oracle samples 20 candidate agent subsets using domain heuristics, replans them exhaustively and chooses the best one
- During testing, we replace the oracle with the learned model which is a lot faster

What is the best we could possibly achieve?

Experimental Results

Speed of improving solutions: We measure the area under the curve (AUC) and compare against MAPF-LNS by taking the ratios (>1 means we are better).

- ML-S and ML-O use models trained on the same map and unseen maps, respectively.
- k is the number of agents.

	k	Sum of Agents' Delay (Suboptimality)		
		MAPF-LNS	ML-S	ML-O
den520d	200	64 (1.00)	65 (1.00)	66 (1.00)
	300	400 (1.01)	298 (1.00)	328 (1.01)
	400	1,327 (1.02)	778 (1.01)	1,121 (1.01)
	500	3,616 (1.04)	2,676 (1.03)	3,281 (1.03)
	600	8,134 (1.08)	6,654 (1.06)	6,967 (1.07)
	700	12,558 (1.10)	11,785 (1.10)	11,535 (1.09)