Chomsky Normal Form CSE 211 (Theory of Computation)

Tanjeem Azwad Zaman

Adjunct Lecturer
Department of Computer Science and Engineering
Bangladesh University of Engineering & Technology

Adapted from slides by

Dr. Muhammad Masroor Ali & Dr. Atif Hasan Rahman

Chomsky Normal Form

- Every nonempty CFL without ϵ has a grammar G in which all productions are in one of two simple forms, either:
 - \bullet $A \rightarrow BC$, where A, B, and C, are each variables, or
 - \bullet $A \rightarrow a$, where A is a variable and a is a terminal.
- Further, G has no useless symbols.
- Such a grammar is said to be in Chomsky Normal Form, or CNF.

Noam Chomsky

- "the father of modern linguistics" wiki
- Linguist, philosopher, cognitive scientist, historian, social critic, and political activist
- Developed the theory of transformational grammar
- Author of many books and articles
 - Anti-war essay "The Responsibility of Intellectuals"
 - Criticism of media in "Manufacturing Consent"

- There is an efficient technique based on the idea of "dynamic programming"
- The algorithm is known as the CYK Algorithm.
 - Cocke-Younger-Kasami algorithm
- It starts with a CNF grammar $G = (V, \Sigma, R, S)$ for a language L.
- The input to the algorithm is a string $w = a_1 a_2 \dots a_n$ in Σ^* . In $O(n^3)$ time, the algorithm constructs a table that tells whether w is in L.

Figure 7.12: The table constructed by the CYK algorithm

We construct a triangular table.

• The horizontal axis corresponds to the positions of the string $w = a_1 a_2 \dots a_n$.

• The table entry X_{ij} is the set of variables A such that $A \stackrel{*}{\Longrightarrow} a_i a_{i+1} \dots a_i$.

• We are interested in whether S is in the set X_{1n} , because that is the same as saying $S \stackrel{*}{\Longrightarrow} w$, i.e., w is in L.

- X_{ii} is the set of variables A such that A → a_i is a production of G.
- In order for A to be in X_{ij}, we must find variables B and C, and integer k such that:
 - $0 \quad i \leq k < j.$
 - \bigcirc B is in X_{ik} .
 - \bigcirc C is in $X_{k+1,j}$.
 - \bigcirc $A \rightarrow BC$ is a production of G.

The following are the productions of a CNF grammar G

- $S \rightarrow AB|BC$
- A → BA|a
- $B \rightarrow CC|b$
- $C \rightarrow AB|a$

We shall test for membership in L(G) the string baaba.

- $S \rightarrow AB|BC$
- $A \rightarrow BA|a$
- $B \rightarrow CC|b$
- ullet C o AB|a

- $S \rightarrow AB|BC$
- $A \rightarrow BA|a$
- $B \rightarrow CC|b$
- ullet C o AB|a

- $\bullet \;\; \mathcal{S} \to \mathcal{AB}|\mathcal{BC}$
- $A \rightarrow BA|a$
- $B \rightarrow CC|b$
- $C \rightarrow AB|a$

- $S \rightarrow AB|BC$
- $A \rightarrow BA|a$
- $B \rightarrow CC|b$
- $C \rightarrow AB|a$

- ullet S o AB|BC
- $A \rightarrow BA|a$
- $B \rightarrow CC|b$
- ullet C o AB|a

- ullet S o AB|BC
- $A \rightarrow BA|a$
- $B \rightarrow CC|b$
- ullet C o AB|a

Figure 7.14: The table for string baaba constructed by the CYK algorithm

Chomsky Normal Form

- To convert a grammar to its Chomsky Normal Form, we need to make a number of preliminary simplifications:
 - We must eliminate useless symbols, those variables or terminals that do not appear in any derivation of a terminal string from the start symbol.
 - **1** We must eliminate ϵ -productions, those of the form $A \to \epsilon$ for some variable A.
 - We must eliminate unit productions, those of the form $A \rightarrow B$ for variables A and B.

Chomsky Normal Form

Theorem

Any context-free language is generated by a context-free grammar in Chomsky normal form.

Converting to CNF

Perform the following steps in this order:

- Eliminate useless symbols (not generating or not reachable)
- Introduce new start symbol if needed
- Eliminate ϵ productions
- Eliminate unit productions
- Convert to CNF
 - Arrange that all bodies of length 2 or more consist only of variables
 - Break bodies of length 3 or more into a cascade of productions, each with a body consisting of two variables

Eliminating Useless Symbols

- Two things a symbol has to be able to do to be useful
 - We say X is generating if X

 w for some terminal string w. Note that every terminal is generating since w can be that terminal itself
 - We say X is reachable if there is a derivation $S \stackrel{*}{\Longrightarrow} \alpha X \beta$ for some α and β
- If a symbol is not useful, it is useless

Consider the grammar

$$S \to AB \mid a$$
$$A \to b$$

- Find generating and reachable symbols using induction
- B is not generating

$$S \to a \\ A \to b$$

A is not reachable

$$S \rightarrow a$$
.

Eliminating ϵ -productions

- Discover variables that are nullable
 - A variable A is nullable if $A \stackrel{*}{\Longrightarrow} \epsilon$
- If A is nullable, then whenever A appears in a production body, say $B \to CAD$, A might or might not derive ϵ . We make two versions of the production
 - one without A in the body $B \to CD$ which corresponds to the case where A would have been used to derive ϵ
 - and the other with A still present B → CAD
- If language contains ϵ , add $S \rightarrow \epsilon$ where S is the start symbol

Consider the grammar

$$S \to AB$$

$$A \to aAA \mid \epsilon$$

$$B \to bBB \mid \epsilon$$

- A, B and S are nullable
- Production 1 becomes

$$S \to AB \mid A \mid B$$

Production 2 becomes

$$A \rightarrow aAA \mid aA \mid aA \mid a$$

Similarly

$$B \rightarrow bBB \mid bB \mid b$$

ullet So, the grammar after eliminating ϵ -productions is

$$S \to AB \mid A \mid B$$

$$A \to aAA \mid aA \mid a$$

$$B \to bBB \mid bB \mid b$$

• Since S is nullable add $S \rightarrow \epsilon$

Eliminating unit productions

- A unit production is a production of the form A → B where both A and B are variables
- Identify unit pairs
 - A pair (A, B) is called unit pair if A ^{*}⇒ B using only unit productions
- For each unit pair (A, B), add all the productions A → α, where B → α is a nonunit production. Note that A = B is possible in that way. Only the non-unit productions remain

Consider the grammar

- Find the unit pairs. (E, E), (T, T), (F, F), (I, I) are unit pairs by zero steps
 - 1. (E, E) and the production $E \to T$ gives us unit pair (E, T).
 - 2. (E,T) and the production $T \to F$ gives us unit pair (E,F).
 - 3. (E,F) and the production $F \to I$ gives us unit pair (E,I).
 - 4. (T,T) and the production $T \to F$ gives us unit pair (T,F).
 - 5. (T,F) and the production $F \to I$ gives us unit pair (T,I).
 - 6. (F,F) and the production $F \to I$ gives us unit pair (F,I).

The productions to be added/kept

Pair	Productions
(E,E)	$E \to E + T$
(E,T)	$E \to T * F$
(E,F)	$E \to (E)$
(E,I)	$E \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
(T,T)	$T \to T * F$
(T,F)	$T \to (E)$
(T, I)	$T \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
(F,F)	$F \to (E)$
(F,I)	$F \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
(I,I)	$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$

The resulting grammar

$$E \to E + T \mid T * F \mid (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \\ T \to T * F \mid (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \\ F \to (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \\ I \to a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

Converting to CNF

- The grammar has had its ϵ -productions, unit productions and useless symbols removed
- Our tasks are to
 - Arrange that all bodies of length 2 or more consist only of variables
 - Break bodies of length 3 or more into a cascade of productions, each with a body consisting of two variables

Consider the grammar

$$E \to E + T \mid T * F \mid (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \\ T \to T * F \mid (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \\ F \to (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \\ I \to a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

- Eight terminals a, b, 0, 1, +, *, (, and), appears in a body that is not a single terminal
- We must introduce eight new variables, corresponding to these terminals, and eight productions in which the new variable is replaced by its terminal

$$A \rightarrow a$$
 $B \rightarrow b$ $Z \rightarrow 0$ $O \rightarrow 1$ $P \rightarrow +$ $M \rightarrow *$ $L \rightarrow ($ $R \rightarrow)$

 We introduce these productions, and replace every terminal in a body that is other than a single terminal by the corresponding variable

Introduce variables to break bodies of length 3 or more