Lagrange

- 1) Given a table of (x,y) pairs...assign the x values as: $x_0,x_1,x_2,\ldots x_n$, next assign the y values = to $f(x) \colon f(x_0), f(x_1), f(x_2), \dots .f(x_n)$
- 2) Output $\sum_{i=0}^{n} L_i(x_i)$
- 3) Time for cycle:
 - a) For $i = 0 \le n, i++$
 - (i) For $j=0 \leq n, j++$
 - (ii) If i = j
 - (iii) $L_i(x_j) = 1$
 - b) For the other side
 - (i) $L_i(x_i) = 0$
 - (ii) For $p = 0 \le n$
 - (1) if $p \neq i$ (iii) $L_i(x) = \prod_p \frac{(x-x_p)}{(x_i-x_p)}$
- 4) End