LMAT1223

Équations différentielles ordinaires

Année académique 2022-23; 2ème quadrimestre

H. Olbermann, C. François

Feuille de devoirs 2, 14 mars 2023

Exercice 1 (3 + 3 points)

Rappel : Soit $U \subset \mathbb{R}^n$. Une fonction $f: U \to \mathbb{R}$ est lipschitzienne s'il existe L > 0 tel que

$$|f(x) - f(\tilde{x})| \le L||x - \tilde{x}||$$
 pour tout $x, x' \in U$.

- (i) Supposons que U est compact, et que $f,g:U\to R$ sont lipschitziennes. Démontrer que le produit fg est une fonction lipschitzienne.
- (ii) Si U est compact, $f: U \to \mathbb{R}$ est non-négative $(f(x) > 0 \,\forall x \in U)$, alors est-il vrai que $\frac{1}{f}$ est lipschitzienne? Démontrez-le ou donnez un contre-exemple.

Exercice 2 (3+3 points)

Exercice 7 du chapitre 3 du syllabus :

Soient un ouvert $D \subset \mathbb{R}^2$, $f \in C^0(D)$ localement lipschitzienne par rapport à la deuxième variable $y, (x_0, y_0) \in D$ et λ_{\max} la solution maximale pour l'EDO y'(x) = f(x, y(x)) sur l'intervalle d'existence maximal $I_{\max} = (I^-, I^+)$ avec $I^+ < \infty$ et condition initiale $\lambda_{\max}(x_0) = y_0$.

Supposons que λ_{\max} ne soit pas bornée sur $[x_0, I^+)$.

(i) Décidez (avec preuve) si l'énoncé suivant est vrai :

La limite $\lim_{x\to I^+} \lambda_{\max}(x)$ existe comme élément de $\{\pm\infty\}$, c'est à dire on a

$$ou \lim_{x \to I^+} \lambda_{\max}(x) = +\infty, \quad ou \lim_{x \to I^+} \lambda_{\max}(x) = -\infty.$$

(ii) Par rapport á (i), on introduit l'hypothèse additionelle que f(x,y) ne dépend pas de x. Décidez de nouveau si l'énconcé ci-dessus est vrai.

Exercice 3 (4 points)

Soit A un ouvert borné de \mathbb{R}^n , et $f_1, \ldots, f_m \in C^0(\overline{A})$. Démontrer que $\{f_j\}_{j=1,\ldots,m}$ est équicontinue et uniformément borné.

Exercice 4: (4 points)

Soit $f: \mathbb{R}^n \to \mathbb{R}$ lipschitzienne, $x_0 \in \mathbb{R}$, $y_0 \in \mathbb{R}^n$. Considérons le PCI

$$\begin{cases} y'(x) = f(y(x)) \\ y(x_0) = y_0 \end{cases}.$$

Démontrer que les itérées de Picard convergent sur tout \mathbb{R} vers une solution du PCI.

Vos solutions doivent être soumises à l'assistant jusqu'au 21 mars. Les solutions doivent être préparées et rendues dans des groupes à 2 ou 3, voir le contrat du cours. Solutions rendues par des "groupes" à 1 personne seront évaluées 0/20