Reading Project: Goldreich-Levin Theorem Cryptography and Network Security

P. Hemanth Naidu

 $28~\mathrm{April}~2023$

0.1 Hardcore Predicate

- A hard core predicate for a OWF f is a function over its inputs x. The output of the function is a single bit (hardcore bit). The output bit can be easily computed given x. But the output bit is hard to compute given f(x).
- If it were easy to compute the hardcore bit from f(x), then an attacker who knows f(x) could learn something about x without having to invert the one-way function, which would weaken the security of the function.
- The reason this bit is called hardcore bit is because it is guaranteed hard to compute information about x. Learning the hardcore bit of x given the f(x) is as hard as inverting the function f(x) and learning x.

0.1.1 Definition

A predicate $h: \{0,1\}^* \to \{0,1\}$ is a hard-core predicate for f if h is efficiently computable given x and there exists a negligible function ν such that for every non-uniform PPT adversary A and $\forall n \in \mathbb{N}$:

$$\Pr[x \leftarrow \{0, 1\}^n A(1^n, f(x)) = h(x)] \le \frac{1}{2} + \nu(n)$$

0.2 Goldreich-Levin Theorm

let f be a one way function, define function

$$g(x,r) = (f(x),r)$$

where |x| = |r|. Then g is one way function and

$$h(x,r) = \langle x, r \rangle$$

is a hard-core predicate for g.

0.3 Proof by reduction

We will show that if a non-uniform probabilistic polynomial-time (PPT) adversary A, given (f(x), r), can compute h(x, r) with significantly better probability than 1/2, then there exists a non-uniform PPT adversary B that inverts f(x).

0.3.1 Main Challenge

Adversary A of the hard core predicate function h outputs only 1-bit. But, for the purpose of this proof, we need to build an inverting function B for OWF f that outputs all n-bits of the input x.

0.3.2 Warmup Proof 1

Assumption 1

Given one-way function (OWF) (or one-way permutation (OWP)) g(x) = (f(x), r), adversary A always outputs h(x, r) correctly with probability 1.

Building Inverter B

Since adversary A always computes h(x,r) correctly, we can construct (f(x),r) such that r has its ith bit set to 1 and all other bits are set to 0. Thus, we obtain the bit x_i as below.

Proof

Compute:
$$x_i^* \leftarrow A(f(x), e_i)$$
 for every $i \in [n]$, where $e_i = (0, \dots, 0, 1, 0, \dots, 0,)$
Output: $x^* = (x_1, x_2, \dots, x_n^*)$

0.3.3 Warmup Proof 2

Assumption 1

Given one-way function (OWF) (or one-way permutation (OWP)) g(x) = (f(x), r), adversary A outputs h(x, r) with probability $3/4 + \epsilon(n)$.

0.3.4 Main Challenge

Adversary may detect and ignore improper inputs - One example for improper input could be e_i in the previous case

Building Inverter B

Here, we split each query into two queries such that each query looks random individually thus not giving the attacker any opportunity to identify it as an improper input.

- 1. Let the random queries be $a \leftarrow A(f(x), e_i \oplus r)$ and $b \leftarrow A(f(x), r)$ for $r \leftarrow \{0, 1\}^n$.
- 2. Compute $c \leftarrow a \oplus b$ as a guess for x_i^* .
- 3. Repeat step 2 many times to get value of c agreed by majority for x_i
- 4. Output: $x^* = (x_1, x_2, ..., x_n^*)$

0.3.5 Proof

1. If both a and b are correct, then $c = x_i$ because,

$$c = a \oplus b$$

$$= \langle x, e_i \oplus r_i \rangle \oplus \langle x, r_i \rangle$$

$$= x \cdot (r + e_i) + x \cdot r \mod 2$$

$$= x \cdot e_i$$

$$= x_i$$

2. Claim: $c = x_i$ with probability $1/2 + 2\epsilon$.

By union bound, the probability for A being wrong about either a or b is at most:

Prob =
$$\left(\frac{1}{4} - \epsilon(n)\right) + \left(\frac{1}{4} - \epsilon(n)\right)$$

= $\frac{1}{2} - 2\epsilon(n)$

So, both a and b can be correct with probability $\geq \frac{1}{2} + 2\epsilon$, which applies to c as well.

3. By **Chernoff Bound**, if we repeat computation of $c \frac{2n}{\epsilon(n)}$ times, the majority of c will be correct x_i^* with probability $1 - e^{-n}$.

0.4 Proof of GL Theorem

Given A such that:

$$\Pr_{r,x}[A(f(x),r) = \langle x,r \rangle] \ge \frac{1}{2} + \epsilon$$

We will design an algorithm B for inverting f with probability more than $\epsilon/4$. To do this, let us first define a good set of x values. These are the x values for which A guesses the hardcore bit with better than 1/2 probability. Let G_d be the set of good values defined as follows:

$$Gd = \{x : \Pr_{r,r'}[A(f(x), r) = \langle x, r' \rangle] \ge \frac{1}{2} + \frac{\epsilon}{2}\}$$

We claim that there are many good x values; more precisely:

$$\Pr_{\mathbf{x}}[x \in Good] \ge \frac{\epsilon}{2}$$

Suppose that this is not true then , $\Pr_{\mathbf{x},\mathbf{r}}[A(f(x),r)=\langle x,r'\rangle]<\frac{1}{2}+\epsilon$

Now we define adversary B which guesses b_1, b_2, \ldots, b_l for random values r_1, r_2, \ldots, r_l and then generates values b'_1, \ldots, b'_m and r'_1, \ldots, r'_m as we discussed above. B then uses them to guess bits of x one by one.

Suppose that the values B generates are correct hard core bits, i.e., (b'_1, \ldots, b'_m) and (r'_1, \ldots, r'_m) are such that $\langle x, r'_j \rangle = b'_j$. Then, B can use A to guess the hardcore bit for $r''_j = e_i \oplus r'_j$. It

can then recover a guess for x_i as we did in the warm up proof for the $3/4 + \epsilon$ case. Then, the guess for x_i is obtained as:

$$x_i^* = \text{majority bit in } \{x_{i,j}^*\}_{j=1}^n$$

We claim that if $m = \frac{2n}{\epsilon^2}$, then for every $x \in G_d$:

$$Pr[x_i^* \neq x_i] < \frac{1}{2n}$$

Keep an indicator variable y_j such that $y_j = 1$ if $x_{i,j} \neq x_i$. Let:

$$y = y_1 + y_2 + \dots + y_m$$

Then, x_i^* is not correct if y > m/2. We apply Chebyshev for $x \in Gd$. Notice that for $x \in Gd$, each y_i is 1 with probability $p = \Pr[y_i = 1] = 1 - \left(\frac{1}{2} + \frac{\epsilon}{2}\right) = 1 - \frac{\epsilon}{2}$, and E[y] = mp where $m = \frac{2n}{\epsilon^2}$. Let $\delta = \frac{1}{2} - p = \frac{\epsilon}{2}$. Then, using Chebyshev:

$$Pr[y > \frac{m}{2}] = \frac{1}{2n}$$

As claimed. Therefore, for any given x, by the above strategy B will get x_i wrong for any given $x \in G_d$ with at most $\frac{1}{2n}$ probability. By union bound, if B guesses each x_i one by one for each i to construct full x, the probability that x will not be correct is at most $n \times \frac{1}{2n} = \frac{1}{2}$. This gives us the following algorithm B for inverting f(x) for a random x

0.5 Algorithm B to invert f

- 1. Pick random values (r_1, \ldots, r_l) for $l = \log m + 1$ where $m = \frac{2n}{\epsilon^2}$.
- 2. Cycle through all possible values of (b_1, \ldots, b_l) starting from $(0, 0, \ldots, 0)$ to $(1, 1, \ldots, 1)$ doing the following:
 - (a) for i = 1 to n:
 - i. Construct strings (r_1',\ldots,r_m') and (b_1',\ldots,b_m') using the independent set construction
 - ii. for j=1 to m: feed $e_j \oplus r'_j$ to A and get his answer, denoted: $b_j^{"} = A(f(x), e_j \oplus r'_j)$.
 - iii. Compute $x_i^* = \text{majority bit in } \{x_{i,j}^*\}_{j=1}^m \text{ where } x_{i,j}^* = b_j' \oplus b_j''.$
 - (b) return x^* if $f(x^*) = z$ where $x^* = (x_1^*, \dots, x_n^*)$.
- 3. Return fail. (i.e., no candidate x^* found so far).

0.6 Time complexity of B

• It is easy to check that B runs in polynomial time. We have already argued that if $x \in G_d$ then the probability that B is wrong about x^* is at most $\frac{1}{2n}$ provided that it starts with $(b_1, ..., b_l)$ that are correct hardcore bits corresponding to $(r_1, ..., r_l)$.

- Since B cycles through all possible values of $(b_1,...,b_l)$, one of them would be correct.
- Therefore, when the loop in point 2 exits, the probability that B does not invert z for any $x \in G_d$ is at most $\frac{1}{2}$.
- Since x is chosen uniformly, it is in G_d with probability at least $\epsilon/2$ as we argued before. Therefore, B inverts f with probability at least $\epsilon/2 \cdot \frac{1}{2} = \epsilon/4$. This is a contradiction and proves the GL theorem.

0.7 $G(x,r) = (f(x), r, \langle x, r \rangle)$ is a PRG

A pseudorandom generator (PRG) is a function $G_{n,n+l}: \{0,1\}^n \to \{0,1\}^{n+l}$ such that, for $x \leftarrow \{0,1\}^n$, the output $G_{n,n+l}(x)$ looks like a random (n+1)-bit string. A one-bit extension PRG has l=1.

Suppose $f: \{0,1\}^n \to \{0,1\}^n$ is a OWP (i.e., f is a OWF and it is a bijection). Note that the mapping $(r,x) \to (r,f(x))$ is a bijection.

So, the output (r, f(x)) is a uniform distribution if $(r, x) \leftarrow \{0, 1\}^{2n}$. Now, the output (r, f(x), h(r, x)) looks like a random (2n + 1)-bit string if f is a OWP (because of Goldreich-Levin Hardcore Predicate result).

Consider the function $G_{2n,2n+1}: \{0,1\}^{2n} \to \{0,1\}^{2n+1}$ defined as follows: $G_{2n,2n+1}(r,x) = (r, f(x), h(r,x))$ This is a one-bit extension PRG if f is a OWP.

.