UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA MECÁNICA

PRIMER INFORME DE LABORATORIO CIENCIA DE LOS MATERIALES I

ENSAYOS DE DUREZA

LIMA - PERÚ MAYO 2018

ENSAYOS DE DUREZA

ENTREGADO:

	5 MAYO 2018
INTEGRANT	ES:
	Fuentes Valdivia Martin, 20174124A
	Huaroto Villavicencio Josué, 20174070I
	Truatoto vinavicencio sosue, 201740701
	Saldivar Montero Eduardo, 20174013E
PROFESOR:	
	ING. LUIS SOSA, JOSE

Índice general

Ín	dice	de Tablas	V
Ín	dice	de Figuras	VI
1.	Obj	etivos	1
2.	Ens	ayo de dureza Brinell	2
	2.1.	Materiales	2
	2.2.	Durómetro Brinell	3
	2.3.	Procedimiento de medida	4
	2.4.	Datos del ensayo	5
3.	Ens	ayo de dureza Rockwell	6
	3.1.	Materiales	6
	3.2.	Durómetros Rockwell	7
		3.2.1. Durómetro analógico	7
		3.2.2. Durómetro digital	8
	3.3.	Procedimiento de medida	9
		3.3.1. Analógico, Escala B	9
		3.3.2. Digital, Escala B y H	10
	3.4.	Datos del ensayo	10
1	Fne	avo do duroza Vickors	19

	4.1.	Material	12
	4.2.	Durómetro Vickers	13
	4.3.	Procedimiento de medida	14
	4.4.	Datos del ensayo	14
5.	Cál	culos y resultados	15
	5.1.	Ensayo Brinell	15
		5.1.1. Acero bajo carbono	15
		5.1.2. Plancha estructural	16
		5.1.3. Análisis de los resultados	16
	5.2.	Ensayo Rockwell	17
		5.2.1. Análisis de los resultados	17
	5.3.	Ensayo Vickers	18
		5.3.1. Análisis de los resultados	18
6.	Con	clusiones y recomendaciones	19
7.	Ane	exos	20
	7.1.	Cuestionario	20
	7.2.	Imágenes del laboratorio	23
	7.3.	Tablas de conversión utilizadas	28
Bi	bliog	grafía	30

Índice de tablas

2.1.	Datos de ensayo Brinell	5
3.1.	Datos de ensayo Rockwell analógico 1	11
3.2.	Datos de ensayo Rockwell analógico 2	11
3.3.	Datos de ensayo Rockwell digital	11
4.1.	Datos de ensayo Vickers	14
5.1.	Dureza Brinell de algunos materiales metálicos	16
7.1.	Tabla de conversión de durezas HANDBANDING	28
7.2.	Tabla de conversión de durezas Antidesgast	29

Índice de figuras

2.1.	Acero bajo carbono	2
2.2.	Plancha estructural	3
2.3.	Durómetro Brinell	3
3.1.	Materiales usados en el ensayo Rockwell	6
3.2.	Durómetro Rockwell analógico	7
3.3.	Durómetro Rockwell digital	8
4.1.	Placa de bronce	12
4.2.	Durómetro Vickers	13
7.1.	Ensayo Brinell fallido	23
7.2.	Esquematización del procedimiento Brinell	23
7.3.	Vernier digital	24
7.4.	Medida en el durómetro Rockwell	24
7.5.	Placa del durómetro Rockwell	25
7.6.	Carga del durómetro Brinell	26
7.7.	Yunque en el ensayo Rockwell	26
7.8.	Huella dejada por ensayo Brinell	27

Objetivos

- 1. Conocer distintos métodos para la medición de la dureza de materiales metálicos.
- 2. Determinar la dureza de algunos materiales métalicos por los métodos Brinell, Rockwell y Vickers.
- 3. Comprobar la dureza de los distintos materiales obtenidos según distintas tablas de dureza.
- 4. Comparar los distintos resultados obtenidos por los ensayos realizados en el laboratorio.
- 5. Conocer el distinto funcionamiento de los durómetros en el laboratorio.

Ensayo de dureza Brinell

2.1. Materiales

1. Acero bajo carbono

 \blacksquare Largo: 12,47mm

 \blacksquare Diámetro: 25,20mm

Figura 2.1: Acero bajo carbono

2. Plancha estructural

Largo: 42.1cmAncho: 20cmEspesor: 21mm

Figura 2.2: Plancha estructural

2.2. Durómetro Brinell

Figura 2.3: Durómetro Brinell Avery Denison Limited Leeds LS102DE ENGLAND

2.3. Procedimiento de medida

- 1. Para el ensayo Brinell utilizamos bolas de acero templado.
- 2. Lijar la superficie sobre la que se aplicará la carga, cuanto más uniforme sea mejor.
- 3. Limpiar la base del durómetro Brinell o superficie de apoyo en la que se colocará la probeta o muestra.
- 4. Colocar de manera horizontal y plana la probeta, perpendicular al revolver que sostiene al penetrador.
- 5. Colocar la carga en la parte posterior del durómetro Brinell para que sea aplicada por el sistema hidráulico.
- 6. Acercar la probeta, usando el volante de elevación, a una distancia considerable del penetrador.
- 7. Aplicar la carga y esperar el tiempo necesario a que termine la aplicación.
- 8. Terminada la aplicación, bajar el nivel de la probeta con el volante de elevación y medir el diámetro de la huella haciendo uso del vernier.
- 9. Continuar realizando medidas, teniendo cuidado de dejar al menos un espacio de 2d (d = diámetro de la huella) entre huella y huella y entre huella y borde de la superficie de la probeta.
- 10. De preferencia después de realizadas varias medidas sobre una de las caras de la probeta, lijar tal superficie para evitar errores en las demás mediciones.

2.4. Datos del ensayo

El ensayo fue realizado según las siguientes condiciones:

■ Penetrador: $10 \, mm \, \emptyset$

 \bullet Carga: $3000\,kgf$

Diámetro Materiales	Medición 1	Medición 2
Accero bajo carbono	$4{,}12$ mm	4,21mm
Plancha estructural	4,82mm	-

Tabla 2.1: Medidas obtenidas en el ensayo Brinell

Ensayo de dureza Rockwell

3.1. Materiales

Para el ensayo de dureza Rockwell utilizamos los siguientes materiales:

- 1. Acero de bajo carbono (dulce)
- 2. Acero de medio carbono (grado 60)
- 3. Bronce (modificado)

Figura 3.1: Materiales usados en el ensayo Rockwell

3.2. Durómetros Rockwell

3.2.1. Durómetro analógico

Figura 3.2: Máquina de dureza Rockwell analógica marca Wilson

3.2.2. Durómetro digital

Figura 3.3: Durómetro Rockwell digital

3.3. Procedimiento de medida

3.3.1. Analógico, Escala B

- 1. Para el ensayo Rockwell utilizamos una bola de acero tamplado de 1/16" Ø.
- 2. Limpiar las superficies sobre las que se aplicará la carga.
- 3. Colocamos la contra carga en la parte posterior de la máquina de Rockwell, en este caso para el ensayo Rockwell B, colocamos $100 \, kgf$.
- 4. Con mucho cuidado de mover el porta penetrador, colocamos el penetrador en el usillo.
- 5. Para el ensayo sobre superficie plana usamos una base plana para colocar la probeta. Para el ensayo sobre superficie curva utilizamos un Yunque–V. Para medir la dureza sobre superficie curva se debe lijar de manera una parte de la superficie de modo que quede de forma plana. Entonces se continúa con el procedimiento normal.
- 6. Haciendo uso del volante acercamos la cara de la probeta al penetrador para aplicar la precarga y eliminar imperfecciones de la probeta como las estrías de rectificado, observaremos que al hacer contacto las agujas de Dial comenzarán a girar. La aguja pequeña debe estar en forma vertical, y la aguja grande debe quedar dentro del rango que indica que la máquina esté calibrada (líneas oscuras).
- 7. Haciendo uso del carro del dial, colocamos la aguja grande de forma paralela con la línea que indica el valor "cero" en la escala B (escala negra).
- 8. Después de los pasos anteriores, concluimos que ya hemos aplicado la precarga.
- 9. Presionamos sobre la palanca de aplicación para que termine de aplicar la carga de $90 \, kgf$, observaremos que la aguja mayor se mueve en sentido contrario a las manecillas del reloj.
- 10. Pasados 15 segundos del procedimiento anterior (y ya habiendo cesado el movimiento de la palanca de amortiguación de carga ubicada en el lado izquierdo de la máquina) liberamos la carga moviendo en sentido contrario tal palanca.
- 11. Tomamos nota de la carga que se puede observar señalada por la aguja mayor.

3.3.2. Digital, Escala B y H

- 1. El uso de la máquina de Rockwell digital es mucho más fácil, aunque se deben tener ciertas precauciones para la correcta medición.
- 2. Se debe tener mucha precaución con la base sobre la que se sienta la máquina digital ya que cualquier movimiento sobre la mesa podría descalibrarla.
- 3. Encender la máquina, y en la pantalla se coloca la escala en la que se desea trabajar.
- 4. Lijar la superficie de la probeta sobre la que se aplicará la carga, y se limpia la base de la máquina.
- Colocar la probeta sobre la base de la máquina y usar el volante para elevar la probeta hasta que la máquina haga un sonido indicando que se terminó de aplicar la precarga.
- 6. Se procede a aplicar la carga total y esperar 10 segundos aproximadamente para tomar nota del valor de la dureza que aparece en la pantalla de la máquina.

3.4. Datos del ensayo

El ensayo fue realizado según las siguientes condiciones:

1. Para los aceros:

• Carga: $100 \, kgf$

■ Penetrador: Bola de 1/16" Ø

■ Escala: B

2. Para el cobre y aluminio:

• Carga: $60 \, kgf$

■ Penetrador: Bola de 1/16" Ø

lacktriangle Escala: H

Dureza Materiales	Medición 1	Medición 2	Medición 3
Acero bajo carbono	93HRB	93HRB	94HRB
Acero medio carbono	91,6HRB	93HRB	93HRB
Bronce	43HRB	42HRB	42,5HRB

Tabla 3.1: Máquina Rockwell analógica Materiales en posición vertical

Dureza Materiales	Medición 1	Medición 2	Medición 3
Acero bajo carbono	89HRB	88,9HRB	89HRB
Acero bajo carbono (lijado)	89,4HRB	89HRB	89HRB
Bronce	36,5HRB	38HRB	36HRB

Tabla 3.2: Máquina Rockwell analógica Materiales en posición horizontal

Dureza Materiales	Medición 1	Medición 2	Medición 3
Acero bajo carbono	93,1HRB	-	-
Acero medio carbono	90,6HRB	-	-
Cobre	60,5HRH	60,1HRH	59HRH
Aluminio	86,7HRH	88,9HRH	84HRH

Tabla 3.3: Máquina Rockwell digital Materiales en posición vertical

Ensayo de dureza Vickers

4.1. Material

1. Placa de bronce

Figura 4.1: Placa de bronce usada en el ensayo Vickers

4.2. Durómetro Vickers

Figura 4.2: Durómetro Vickers marca LEITZ, GERMANY

4.3. Procedimiento de medida

- 1. Para el ensayo Vickers se utiliza un cuerpo penetrador de diamante en forma de pirámide.
- 2. Se debe tener mucha precaución con la base sobre la que se sienta el durómetro porque podría descalibrarse.
- 3. La superficie sobre la que se aplicará la carga debe estar perfectamente pulida.
- 4. Colocar la carga en la parte posterior del durómetro Vickers.
- 5. Colocar la probeta sobre la base del durómetro y aplicar la carga.
- 6. La carga de prueba debe aplicarse y retirarse suavemente sin golpes o vibraciones. El tiempo de aplicación de la carga de prueba completa debe ser de 10 a 15 segundos a menos que se especifique otra cosa.
- 7. El centro de la huella no debe estar cercano a la orilla de la probeta u otra huella en una distancia igual a dos veces y media la longitud de la diagonal de la huella. Cuando se prueba material con recubrimiento, la superficie de unión debe considerarse como una orilla para él cálculo del espacio entre huellas.
- 8. Deben medirse ambas diagonales de la huella y su valor promedio usarse como base para él cálculo del número de dureza Vickers. Se recomienda efectuar la medición con la huella centrada, tanto como sea posible, en el campo óptico del durómetro.

4.4. Datos del ensayo

Carga	Diagonal 1	Diagonal 2
100gf	$25{+}15{=}40\mu m$	$25+13,8=38,8\mu m$

Tabla 4.1: Datos de ensayo Vickers

Cálculos y resultados

5.1. Ensayo Brinell

Para los datos obtenidos en la tabla 2.1, se sabe que la dureza calculada por el método Brinell se halla con la siguiente expresión:

$$HB = \frac{2P}{\pi D \left(D - \sqrt{D^2 - d^2}\right)} \tag{5.1}$$

Donde, P es la carga aplicada (en este caso, $3000 \, kgf$), D es el diámetro del penetrador $(10 \, mm)$, y d es el diámetro de la huella.

5.1.1. Acero bajo carbono

Reemplazando los datos obtenidos:

$$HB = \frac{2 \times 3000 \, kgf}{\pi \times 10 \times \left(10 - \sqrt{10^2 - \left(\frac{4.12 + 4.21}{2}\right)^2}\right)}$$

$$HB = \frac{6000 \, kgf}{\pi \times 10 \times 0,90864284 \, mm^2}$$

$$HB = 210,1881$$
(5.2)

Entonces, según el ensayo realizado, la dureza calculada por el método Brinell para un acero de bajo carbono es:

$$HB = 210, 1881$$

5.1.2. Plancha estructural

Reemplazando los datos:

$$HB = \frac{2 \times 3000 \, kgf}{\pi \times 10 \times \left(10 - \sqrt{10^2 - 4,82^2}\right) \, mm^2} = \frac{6000 \, kgf}{\pi \times 10 \times 1,2382878 \, mm^2}$$

$$= 154,23388$$
 (5.3)

Entonces, según el ensayo realizado, la dureza calculada por el método Brinell para una plancha estructural es:

$$HB = 154,23388$$

5.1.3. Análisis de los resultados

Para el acero de bajo carbono, la dureza es de $210\,HB$, lo cual se puede encuadrar en los aceros duros, de acuerdo a la siguiente tabla: Además de este material, se utilizó una plancha estructural, cuya dureza Brinell resultó ser de aproximadamente $154\,HB$, por lo que se le puede enmarcar en los aceros dulces, de acuerdo a la tabla 5.1.

Material	Dureza Brinell
Acero de herramientas, templado	500
Acero duro (0,80 % carbono)	210
Acero dulce (0,10% carbono)	110
Bronce	100
Latón	50
Aluminio	25 a 30

Tabla 5.1: Dureza Brinell

Fuente: Apuntes de clase

5.2. Ensayo Rockwell

5.2.1. Análisis de los resultados

La dureza medida por este método se halló sin necesidad de mayores cálculos, dado que los equipos utilizados ya mostraban de manera directa el valor de la dureza.

Para el acero de bajo carbono, la dureza medida a lo largo del eje directriz del cilindro utilizado fue de $93, 3\,HRB$ para el durómetro analógico, y $93, 1\,HRB$ para el digital, lo cual correspondería a una dureza Brinell de entre $197\,HB$ y $201\,HB$, de acuerdo a la tabla 7.1.

De la misma manera, la dureza para un acero de bajo carbono es de $92, 5\,HRB$ según durómetro analógico y $90, 6\,HRB$ según el digital, lo cual corresponderá a una dureza Brinell de entre $187\,HB$ y $197\,HB$. Para el bronce en la misma posición, la dureza según durómetro analógico es de $42, 5\,HRB$.

Para la medición hecha en posición horizontal, con ayuda de un soporte o yunque, se obtuvo un valor de $89\,HRB$ para el acero de bajo carbono, $89,1\,HRB$ para el acero de bajo carbono lijado, y de $36,8\,HRB$ para el bronce.

Los resultados que se obtuvieron en la medición vertical y horizontal son distintos, lo que demuestra una propiedad de las estructuras cristalinas llamada ANISOTROPÍA.

5.3. Ensayo Vickers

Para los datos obtenidos en la tabla 4.1, se sabe que la dureza Vickers se halla con la siguiente expresión:

$$HV = 1,854 \frac{P}{d^2} \tag{5.4}$$

Donde d es la diagonal de la huella (se hallará la media entre las distintas mediciones hechas) y P es la carga aplicada (una carga normalizada de 100 gf). Estas unidades deberán convertirse a mm y a kgf, respectivamente.

Conversión de unidades

Para la media de diagonales:

$$d = \frac{40\,\mu m + 38,8\,\mu m}{2} = 39,4\,\mu m = 3,94 \times 10^{-2}\,mm$$

Para la carga:

$$P = 100 \, gf = 100 \, gf \times \frac{1 \, kgf}{1000 \, gf} = 0,1 \, kgf$$

Cálculo de la dureza Vickers

Reemplazando en la fórmula ya mencionada:

$$HV = 1,854 \times \frac{0.1 \, kgf}{(3.94 \times 10^{-2})^2 \, mm^2} = 119,341$$
 (5.5)

Entonces la dureza Vickers para el material (bronce) es:

$$HV = 119,341$$

5.3.1. Análisis de los resultados

La dureza hallada por este método para el material fue de $119\,HV$. Este valor es equivalente a una dureza Brinell de $119\,HB$ y a una dureza Rockwell de $69\,HRB$.

Conclusiones y recomendaciones

- 1. La dureza es una propiedad mecánica que se puede definir como la oposición de un material a alteraciones físicas como la penetración, el rayado y la abrasión.
- 2. Hay distintas formas de medir la dureza, como el método Brinell, cuyo valor depende del diámetro del penetrador y del diámetro y profundidad de la huella; el método Rockwell, que no requirió de cálculos; y el método Vickers, cuyo valor depende de la diagonal de la huella.
- Los ensayos de dureza realizados para el presente informe se pueden considerar como no destructivos, dado que la deformación respecto a toda la superficie fue muy pequeña.
- 4. El interés de la determinación de la dureza en los aceros estriba en la correlación existente entre la dureza y la resistencia mecánica, siendo un método de ensayo más económico y rápido que el ensayo de tracción, por lo que su uso está muy extendido.
- 5. Los distintos métodos de medición de dureza fueron creados para distintos tipos de materiales, es por ello que antes de empezar un ensayo, debe elegirse el proceso correcto para que el error experimental sea el mínimo posible y el resultado final sea óptimo para su análisis y posterior uso en la rama de la ingeniería y ciencia de los materiales.
- 6. Cumplir con las medidas de seguridad del laboratorio.
- 7. Lijar todos los materiales y verificar que estén libres de impurezas antes de realizar las mediciones.
- 8. En el ensayo Rockwell; si se va a medir la dureza de una superfice curva, utilizar un soporte(Yunque-V), de tal manera que el penetrador sobre la superficie.
- 9. Procurar no mover la mesa sobre la que se encuentra el durómetro.

Anexos

7.1. Cuestionario

- 1. De ejemplos de situaciones en las cuales es necesario el uso del ensayo de microdureza
 - Para medir el endurecimiento superficial de un material de espesor mínimo.
 - Para tener una mayor precisión al medir la dureza.
 - Para realizar comparaciones directas de dureza.
 - En la inspección de capas carburadas, nitruradas o carbonitruradas.
- 2. ¿Se puede medir la dureza en una superficie curva con el Método Rockwell? ¿Bajo qué condiciones es posible? Muestre un ejemplo de corrección de la Dureza Rockwell medida en una superficie curva. Sí. Cuando se ensayan piezas cilíndricas su radio de curvatura no debe ser menor de 5mm. En general en estos casos el valor de dureza obtenido disminuye en función del diámetro del material y la norma ASTM E18 da los valores a

en función del diámetro del material y la norma ASTM E18 da los valores a adicionar a los resultados obtenidos en el ensayo. Un ejemplo de corrección Rockwell son las medidas que obtuvimos en el laboratorio; podemos observar que la dureza de los materiales decrece un poco. Otro caso de corrección bajo la norma ASTM E18, ocurre cuando el elemento cilíndrico posee un radio menor a $30 \, mm$.

- 3. ¿Qué condiciones debe cumplir la superficie cuando se realiza una medición de dureza Rockwell? ¿Y en el caso Vickers?
 - Rockwell:
 - La superficie debe estar completamente limpia y libre de impurezas.
 - La superficie de la pieza no debe calentarse durante su preparación para evitar el ablandamiento de la misma, por el efecto de revenido y para no crear tensiones internas en el material.

- El espesor debe ser de por lo menos 10 veces la penetración del cono o de la bola para evitar el "efecto yunque".
- El material debe asentarse perfectamente sobre la base.

Vickers:

- La superficie debe ser plana, limpia y lisa; sin porosidades.
- La superficie debe estar perpendicular al penetrador y no debe de moverse durante el ensayo.
- El espesor de la probeta debe ser superior a 1,5 veces la diagonal de la huella para evitar el "efecto yunque".
- En las probetas redondas debe aplicarse sobre el diamante una carga tan pequeña que la influencia de la curvatura (flecha) sobre la longitud de la diagonal sea inferior a 0,01mm.
- 4. ¿Cuál debe ser la separación entre huellas para el caso de medición de la dureza Rockwell de un material metálico de acuerdo a la Norma Técnica Peruana NTP, y según la norma ASTM?
 - ASTM

La distancia entre los centros debe ser por lo menos tres veces el diámetro de la indentación. En cuanto a la distancia desde el borde del material, la distancia desde el centro de cualquier indentación al borde de la probeta será de por lo menos dos veces y media el diámetro de la indentación. De forma matemática:

$$\frac{D}{\varnothing} \ge 2,5$$

Donde D es la distancia de separación entre huellas y \varnothing es el diámetro de la huella.

■ NTP

La separación entre huellas vecinas o desde el centro de una de ellas al borden de la indentación, debe ser por lo menos igual a $3 \, mm$, salvo especificación contraria.

5. ¿Cuál será la penetración de la bola cuando se tiene una dureza de 110 HRB?

Como la escala es B:

$$C = 100kgf$$

$$f = (130 - 110) \times 0,002 = 0,04mm$$

6. ¿Qué tipo de relación existe entre el valor de la dureza de una material metálico y su resistencia mecánica?

Para la dureza Brinell existe la siguiente relación matemática:

$$HB = 3\sigma_{max}$$

Y también podemos hallar el % de carbono según:

$$\%C = \frac{HB - 80}{141}$$

7. ¿La dureza de que materiales puede medirse con el esclerómetro Shore?

En los materiales blandos la energia producida por el rebote es absorbida por el mismo material; por lo que debemos hacerlo en materiales que no sean tan blandos. Usamos la escala Shore para aquellos materiales que no queremos deformar, pues se trata de un ensayo no destructivo.

7.2. Imágenes del laboratorio

Figura 7.1: Material desperfecto en el que se realizó la primera medida de Brinell

Figura 7.2: Esquematización del procedimiento Brinell

Figura 7.3: Vernier digital

Figura 7.4: Medida en el durómetro Rockwell

Figura 7.5: Placa del durómetro Rockwell

Figura 7.6: Carga del durómetro Brinell

Figura 7.7: Yunque utilizado como soporte de superficies curvas

Figura 7.8: Huella dejada por el durómetro Brinell en la plancha estructural

7.3. Tablas de conversión utilizadas

CUADRO DE CONVERSIÓN DE DUREZA

Dureza Brinell	Dureza Roc		vell	Resistencia a la Tensión	Dureza Brinell	Du	reza Rock	well	Resistenci a la Tensión
Tungsteno Carburo Bola 3000	Escala A 60 Kg	Escala B 100 Kg	Escala C 150 Kg	(Psi [libras por pulgada cuadrada] aproximadas)	Tungsteno Carburo Bola 3000	Escala A 60 Kg	Escala B 100 Kg	Escala C 150 Kg	(Psi [libras por pulgada cuadrada] aproximadas
	85.6		68		331	68.1		35.5	166,000
	85.3		67.5		321	67.5		34.3	160,000
	85		67		311	66.9		33.1	155,000
767	84.7		66.4		302	66.3		32.1	150,000
757	84.4		65.9		293	65.7		30.9	145,000
745	84.1		65.3		285	65.3		29.9	141,000
733	83.8		64.7		277	64.5		28.8	137,000
722	83.4		64		269	64.1		27.6	133,000
712					262	63.6		26.6	129,000
710	83		63.3		255	63		25.4	126,000
698	82.6		62.5		248	62.5		24.2	122,000
684	82.2		61.8		241	61.8	100	22.8	118,00
682	82.2		61.7		235	614	99	21.7	115,00
670	81.8		61		229	60.8	98.2	20.5	111,00
656	81.3		60.1		223		97.3	20	
653	81.2		60		217		96.4	18	105,000
647	81.1		59.7		212		95.5	17	102,000
638	80.8		59.2	329,000	207		94.6	16	100,000
630	80.6		58.8	324,000	201		93.8	15	98,000
627	80.5		58.7	323,000	197		92.8		95,000
601	79.8		57.3	309,000	192		91.9		93,000
578	79.1		56	297,000	187		90.7		90,000
555	78.4		54.7	285,000	183		90		89,000
534	77.8		53.5	274,000	179		89		87,000
514	76.9		52.1	263,000	174		87.8		85,000
495	76.3		51	253,000	170		86.8		83,000
477	75.6		49.6	243,000	167		86		81,000
461	74.9		48.5	235,000	163		85		79,000
444	74.2		47.1	225,000	156		82.9		76,000
429	73.4		45.7	217,000	149		80.8		73,000
415	72.8		44.5	210,000	143		78.7		71,000
401	72		43.1	202,000	137		76.4		67,000
388	71.4		41.8	195,000	131		74		65,000
375	70.6		40.4	188,000	126		72		63,000
363	70		39.1	182,000	121		69.8		60,000
352	69.3		37.9	176,000	116		67.6		58,000
341	68.7		36.6	170,000	111		65.7		56,000

Postle Industries Inc Cleveland, Ohio USA +1(216)265-9000

Tabla 7.1: Tabla de conversión de durezas Fuente: HARDBANDING SOLUTIONS.

TABLA EQUIVALENCIAS de DUREZAS Dureza Brinell P: 3.000 kg. bola de acero Ø 10 mm DUREZA ROCKWELL DUREZA SUPERFICIAL ROCKWELL HRB HRA HV Resistencia a la Tracción HRC Escala B Escala C P.150 kg Cono de diamante Escala D P.100 kg Cono de diamante Escala 15-N P.15 kg. Cono de diamante Escala 30-N P.30 kg. Cono de diamante Escala 45-N P.45 kg. Cono de diamante P.30 kg. Pirámide de diamante Escala A P.100 ka P.60 kg. Cono de diamante Tungstend Мра acero Ø 1/16" 75,4 74,2 85,6 85,0 76,9 76,1 93,2 92,9 84,4 83,6 ---900 75,4 74,5 73,8 73,0 72,2 ---(739) 65 83.9 92,2 91,8 81,9 72.0 832 83,4 71,0 (722) (705) 63 82.8 91,4 91,1 80,1 79,3 69.9 68.8 72,2 71,5 70,7 69,9 69,2 68,5 67,7 91,1 90,7 90,2 89,8 89,3 88,9 68,8 67,7 66,6 65,5 64,3 63,2 62,0 82,3 81,8 81,2 80,7 80,1 79,6 79,0 78,4 77,5 (670) (654) (634) 633 2075 66,9 73,0 72,0 55 54 78,5 87,9 60,9 59,8 560 543 66,1 65,4 53 52 77,4 76,8 86,9 71,2 70,2 58,6 57,4 560 525 512 1950 1880 51 50 76,3 75,9 75,2 74,7 74,1 73,6 73,1 72,5 72,0 71,5 63.8 85.9 69,4 68,5 56,1 55,0 528 513 (487) 496 481 1820 1760 49 48 47 46 45 62,1 61,4 60,8 60,0 59,2 85,5 85,0 84,5 83,9 83,5 83,0 67,6 66,7 65,8 64,8 64,0 53,8 52,5 51,4 50,3 49,0 47,8 (475) (464) 451 442 432 421 409 469 455 443 432 421 409 400 1695 1635 1580 1530 1480 1435 1385 471 458 446 58,5 57,7 82,5 82,0 63,1 62,2 434 423 43 46,7 45,5 400 390 81,5 61,3 1340 1295 ---56,2 55,4 54,6 70.9 80.9 60,4 381 41 44.3 402 381 70,4 80,4 79,9 79,4 78,8 78,3 77,7 77,2 76,6 76,1 59,5 58,6 371 371 1250 1215 69.9 41,9 40,8 362 69,4 68,9 353 344 56,8 55,9 55,0 54,2 53,3 52,1 39,6 38,4 37,2 36,1 34,9 33,7 344 53.1 1160 (109,0) (108,5) (108,0) (107,5) (107,0) (106,0) 68,9 68,4 67,9 67,4 66,8 66,3 318 310 31 48,4 47,7 75,6 75,0 51,3 50,4 32,5 31,3 294 294 286 980 950 294 29 28 (104,5) 64,7 47,0 46,1 74,5 73,9 49,5 48,6 30,1 279 271 279 271 930 910 28.9 45.2 27 (103.0) 63.8 73,3 72,8 72,2 71,6 71,0 70,5 69,9 69,4 47,7 27.8 279 264 264 880 47,7 46,8 45,9 45,0 44,0 43,2 42,3 41,5 279 272 266 260 254 248 243 26,7 25,5 24,3 23,1 22,0 20,7 19,6 63,3 62,8 44,6 43,8 43,1 42,1 41,6 40,9 40,1 258 253 247 243 237 231 258 253 247 243 237 231 (101,5) 840 825 805 785 770 760 730 (101,5) (101,0) 100,0 99,0 98,5 97,8 96,7 95,5 20 (18) 238 230 226 219 226 219 (16) (14) 222 213 705 675 93,9 203 203 194 (12) (10) ---------90,7 196 187 187 620 89,5 87,1 600 580 179 171 Según ASTM E 140 Dureza Vickers de los productos Antidesgast, S.A. Producto Dureza Producto Dureza Producto Dureza Producto Dureza t 68 tyc 720 68 Shore D 323 Vickers 700-800 Vickers 720 Vickers 85 Shore A Alresist 402 a340-410 Vickers ng 900 720-830 Vickers 1300 Vickers 87 440-520 Vickers t 1450 ° 1500 Vickers 87 Shore A 1450 Vickers 1500° 93 ° × 424 ° 93 Shore A 420 Vickers n 2002 ° 2000 Vickers nterior 620 Vickers Exterior 150-250 Altcrom 700 630-700 Vickers 2300 Vickers Travessera de Dalt, 32 E-08024 BARCELONA www.antidesgast.com SPAIN (Europe) Antidesgast, S.A. Tel.: (+34) 902 498 498 Fax: (+34) 902 498 500 E-Mail: ad@antidesgast.com

Tabla 7.2: Tabla de conversión de durezas

Fuente: Antidesgast S.A.

Bibliografía

- [1] Keyser, Carl. "Técnicas de Laboratorio para prueba de Materiales". Limusa-Wiley.
- [2] Zolotorevski, V. "Pruebas Mecánicas y Propiedades de los Metales". *Editorial MIR*.
- [3] Lasheras. "Tecnología de los Materiales Industriales".
- [4] Apraiz, J. "Tratamiento Térmico de los Aceros".
- [5] Smith, William F. y Ph.D. Hashemi, Javad "Ciencia e ingeniería de materiales". Madrid: McGraw-Hill, Interamericana de España. 570, (2004).
- [6] Callister, William D. y Rethwisch, David G. "Introducción a la ingeniería de los materiales". *Barcelona Reverté.*, 960, (2007).
- [7] Askeland, Donald R., Pradeep P. Phulé y Wright, Wendelin J. "Ciencia e ingeniería de los materiales". México, D.F. Internacional Thomson Editores. 6^{ta} edición, 1004, (2012).
- [8] Tabla de conversión de escala de durezas.
 - http://hardbandingsolutions.com/postle_sp/hardness.php
- [9] Convertidor online de escalas de dureza.
 - http://www.kansert.es/conv_dur.htm
- [10] Tabla de equivalencia de durezas.
 - https://www.gordonengland.co.uk/hardness/hardness_conversion_1c.htm
- [11] Normas ASTM.
- [12] Normas NTP.