

Mizpah Christian School - https://www.mizpahchristianschool.org

Topic :Number System Theory

Number Systems

Number systems are techniques used to represent numbers within a computer system. Every value stored or retrieved from computer memory follows a specific number system. Computer architecture supports the following number systems:

- 1. Binary Number System
- 2. Octal Number System
- 3. Decimal Number System
- 4. Hexadecimal (Hex) Number System

1. Binary Number System

Digits: 0, 1Base: 2

• **Description**: Uses only two digits, 0 and 1, to represent values.

• **Example**: (11110000)₂

2. Octal Number System

• **Digits**: 0, 1, 2, 3, 4, 5, 6, 7

Base: 8

• **Description**: Represents numbers using eight digits from 0 to 7.

• Example: (360)8

3. Decimal Number System

• **Digits**: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

• Base: 10

• **Description**: Uses ten digits from 0 to 9 to represent values.

• Example: (240)₁₀

4. Hexadecimal Number System

• **Digits**: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

• Base: 16

• **Description**: Has sixteen alphanumeric values, where A = 10, B = 11, ..., F = 15.

• Example: (F0)₁₆

Number System	Base (Radix)	Digits Used	Example
Binary	2	0, 1	(11110000)2
Octal	8	0, 1, 2, 3, 4, 5, 6, 7	(360)8
Decimal	10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9	(240)10
Hexadecimal	16	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A-F	(F0) ₁₆

Decimal and Binary Numbers

In the decimal (base 10) system, positional notation is used, where each digit's position represents a power of 10:

Example:

$$843_{10} = 8 \times 10^2 + 4 \times 10^1 + 3 \times 10^0$$

= $800 + 40 + 3$

In binary (base 2), each position represents a power of 2:

Example:

$$101101_2 = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

= 32 + 8 + 4 + 1 = 45₁₀

XBit Labs IN www.xbitlabs.org

Converting Binary to Decimal

Example: Convert 11011₂ to decimal.

```
11011
= 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0
= 16 + 8 + 0 + 2 + 1
= 27_{10}
```

Converting Decimal to Binary

Convert a decimal number to binary using successive division by 2 until the quotient is 0. The remainders, in reverse order, form the binary equivalent.

Example: Convert 37₁₀ to binary.

- 1. $37 \div 2 = 18$ remainder **1**
- 2. $18 \div 2 = 9 \text{ remainder } 0$
- 3. $9 \div 2 = 4$ remainder **1**
- 4. $4 \div 2 = 2$ remainder **0**
- 5. $2 \div 2 = 1$ remainder **0**
- 6. $1 \div 2 = 0$ remainder **1**

Binary: 100101₂

Hexadecimal Digits and Binary Equivalents

Hexadecimal	Binary
0	0000
1	0001
2	0010
3	0011
4	0100

5	0101
6	0110
7	0111
8	1000
9	1001
A (10)	1010
B (11)	1011
C (12)	1100
D (13)	1101
E (14)	1110
F (15)	1111

Converting Binary to Hexadecimal

Convert binary to hexadecimal by dividing into groups of 4 digits from the right.

Example: Convert 10110101₂ to hexadecimal.

1. Group digits: 1011 0101

2. Convert each group: 1011 = B, 0101 = 5

Hexadecimal: B5₁₆

To convert the binary number 0110101110001100 to hexadecimal:

- 1. Divide into groups of 4 digits: 0110 1011 1000 1100
- 2. Convert each group to a hex digit:
 - o 0110=6
 - o 1011=B
 - o 1000=8
 - o 1100=C

Result: 6B8C16

END