Information Retrieval

ARNAB BHATTACHARYA arnabb@cse.iitk.ac.in

Department of Computer Science and Engineering, Indian Institute of Technology, Kanpur, India

> 14th June, 2017 ACM Summer School on NLP and ML

Outline

- Introduction
 - Motivation
- Document Retrieval
 - Inverted Index
- Tokenization
 - Stopwords
 - Token Normalization
- Scoring
 - Zone
 - Term Frequency

- Inverse Document Frequency
- Tf-idf
- Document Vector
 - Vector Model
 - Document Similarity
- Scalability
 - Skip List
 - Inexact Retrieval
- System
- Conclusions

Outline

- Introduction
 - Motivation
- Document Retrieva
 - Inverted Index
- Tokenization
 - Stopwords
 - Token Normalization
- 4 Scoring
 - Zone
 - Term Frequency

- Inverse Document Frequency
- Tf-idf
- Document Vector
 - Vector Model
 - Document Similarity
- Scalability
 - Skip List
 - Inexact Retrieval
- System
- Conclusions

Definition

• What is information retrieval?

Definition

• What is information retrieval?

Information Retrieval

Retrieval (finding) of information (e.g., documents) that is mostly unstructured (e.g., text) and is relevant to a particular need (query) from a large collection

Definition

What is information retrieval?

Information Retrieval

Retrieval (finding) of information (e.g., documents) that is mostly unstructured (e.g., text) and is relevant to a particular need (query) from a large collection

- Started with documents
- Has now extended to music, images, graphs

Outline

- Introduction
 - Motivation
- Document Retrieval
 - Inverted Index
- Tokenization
 - Stopwords
 - Token Normalization
- 4 Scoring
 - Zone
 - Term Frequency

- Inverse Document Frequency
- Tf-idf
- Document Vector
 - Vector Model
 - Document Similarity
- Scalability
 - Skip List
 - Inexact Retrieval
- System
- 8 Conclusions

- Assume a set $\mathcal{D} = \{D_1, \dots, D_m\}$ of *documents*
- Each D_i is composed of a number of *terms* $D_i = \{t_{i_j}\}$

- Assume a set $\mathcal{D} = \{D_1, \dots, D_m\}$ of *documents*
- Each D_i is composed of a number of *terms* $D_i = \{t_{i_i}\}$
- The total collection of terms is called the dictionary or lexicon or vocabulary

- Assume a set $\mathcal{D} = \{D_1, \dots, D_m\}$ of *documents*
- Each D_i is composed of a number of *terms* $D_i = \{t_{i_j}\}$
- The total collection of terms is called the dictionary or lexicon or vocabulary
- Information retrieval task
 - Given a set of terms from the vocabulary, find the documents that contain them

- Assume a set $\mathcal{D} = \{D_1, \dots, D_m\}$ of *documents*
- Each D_i is composed of a number of *terms* $D_i = \{t_{i_j}\}$
- The total collection of terms is called the dictionary or lexicon or vocabulary
- Information retrieval task
 - Given a set of terms from the vocabulary, find the documents that contain them
 - Sense is generally AND; may sometimes involve OR and NOT

- Assume a set $\mathcal{D} = \{D_1, \dots, D_m\}$ of *documents*
- Each D_i is composed of a number of *terms* $D_i = \{t_{i_j}\}$
- The total collection of terms is called the dictionary or lexicon or vocabulary
- Information retrieval task
 - Given a set of terms from the vocabulary, find the documents that contain them
 - Sense is generally AND; may sometimes involve OR and NOT
- Unix utility grep solves it nicely

- Assume a set $\mathcal{D} = \{D_1, \dots, D_m\}$ of *documents*
- Each D_i is composed of a number of *terms* $D_i = \{t_{i_j}\}$
- The total collection of terms is called the dictionary or lexicon or vocabulary
- Information retrieval task
 - Given a set of terms from the vocabulary, find the documents that contain them
 - Sense is generally AND; may sometimes involve OR and NOT
- Unix utility grep solves it nicely
- Boolean bit matrix for each document and each term
- Boolean algebra on the bit vectors of the queried terms

- Assume a set $\mathcal{D} = \{D_1, \dots, D_m\}$ of *documents*
- Each D_i is composed of a number of *terms* $D_i = \{t_{i_j}\}$
- The total collection of terms is called the dictionary or lexicon or vocabulary
- Information retrieval task
 - Given a set of terms from the vocabulary, find the documents that contain them
 - Sense is generally AND; may sometimes involve OR and NOT
- Unix utility grep solves it nicely
- Boolean bit matrix for each document and each term
- Boolean algebra on the bit vectors of the queried terms
- Not scalable (remember "large" collections)

"Invert" the sense

• "Invert" the sense – let terms be composed of documents

- "Invert" the sense let terms be composed of documents
- Each term contains a list of documents (called postings) that it appears in
 - May include the number of times it appears in a document, called term frequency
- This list of documents is called a postings list
 - Its size, called document frequency, is the number of documents a term appears
- The set of lists for all the terms is called postings
 - Its size is size of the vocabulary

- "Invert" the sense let terms be composed of documents
- Each term contains a list of documents (called postings) that it appears in
 - May include the number of times it appears in a document, called term frequency
- This list of documents is called a postings list
 - Its size, called document frequency, is the number of documents a term appears
- The set of lists for all the terms is called postings
 - Its size is size of the vocabulary

Postings list is maintained as a linked list

• Find documents where terms "Indian" and "system" occur

- Find documents where terms "Indian" and "system" occur
- Get corresponding postings lists
- Intersect them

- Find documents where terms "Indian" and "system" occur
- Get corresponding postings lists
- Intersect them
- For two lists of size x and y, time required is O(x.y)

- Find documents where terms "Indian" and "system" occur
- Get corresponding postings lists
- Intersect them
- For two lists of size x and y, time required is O(x.y)
- If lists are sorted by document ids
 - Merging as in mergesort
 - Two pointers to walk along the lists
 - Time complexity is O(x+y)

- Find documents where terms "Indian" and "system" occur
- Get corresponding postings lists
- Intersect them
- For two lists of size x and y, time required is O(x.y)
- If lists are sorted by document ids
 - Merging as in mergesort
 - Two pointers to walk along the lists
 - Time complexity is O(x+y)
- For multiple query terms: "ancient", "Indian" and "system"

- Find documents where terms "Indian" and "system" occur
- Get corresponding postings lists
- Intersect them
- For two lists of size x and y, time required is O(x.y)
- If lists are sorted by document ids
 - Merging as in mergesort
 - Two pointers to walk along the lists
 - Time complexity is O(x+y)
- For multiple query terms: "ancient", "Indian" and "system"
 - Start with terms having smallest postings lists
 - Progressively merge
 - Size of final answer set is never more than any intermediate step

- Find documents where terms "Indian" and "system" occur
- Get corresponding postings lists
- Intersect them
- For two lists of size x and y, time required is O(x.y)
- If lists are sorted by document ids
 - Merging as in mergesort
 - Two pointers to walk along the lists
 - Time complexity is O(x+y)
- For multiple query terms: "ancient", "Indian" and "system"
 - Start with terms having smallest postings lists
 - Progressively merge
 - Size of final answer set is never more than any intermediate step
- OR is more time consuming

- Find documents where terms "Indian" and "system" occur
- Get corresponding postings lists
- Intersect them
- For two lists of size x and y, time required is O(x.y)
- If lists are sorted by document ids
 - Merging as in mergesort
 - Two pointers to walk along the lists
 - Time complexity is O(x+y)
- For multiple query terms: "ancient", "Indian" and "system"
 - Start with terms having smallest postings lists
 - Progressively merge
 - Size of final answer set is never more than any intermediate step
- OR is more time consuming
- Query with only NOT is impractical for large collections
 - All right with AND: "system" AND NOT "Indian"

Outline

- Introduction
 - Motivation
- Document Retrieva
 - Inverted Index
- Tokenization
 - Stopwords
 - Token Normalization
- 4 Scoring
 - Zone
 - Term Frequency

- Inverse Document Frequency
- Tf-idf
- Document Vector
 - Vector Model
 - Document Similarity
- Scalability
 - Skip List
 - Inexact Retrieval
- System
- Conclusions

- Terms are useful semantic units that need to be indexed for searching
- Tokenization is the process of breaking the text into terms

- Terms are useful semantic units that need to be indexed for searching
- Tokenization is the process of breaking the text into terms
 - Sounds obvious in English with whitespaces
 - What about Indian languages with sandhi and samash?
 - What about CJK languages with no space between words (or sometimes even paragraphs)?
 - Non-trivial for even some European languages
 - "computerlinguistik" (German, computational linguistics)
 - "l'ensemble" (French, the collection)
- Word segmentation

- Terms are useful semantic units that need to be indexed for searching
- Tokenization is the process of breaking the text into terms
 - Sounds obvious in English with whitespaces
 - What about Indian languages with sandhi and samash?
 - What about CJK languages with no space between words (or sometimes even paragraphs)?
 - Non-trivial for even some European languages
 - "computerlinguistik" (German, computational linguistics)
 - "l'ensemble" (French, the collection)
- Word segmentation

- Terms are useful semantic units that need to be indexed for searching
- Tokenization is the process of breaking the text into terms
 - Sounds obvious in English with whitespaces
 - What about Indian languages with sandhi and samash?
 - What about CJK languages with no space between words (or sometimes even paragraphs)?
 - Non-trivial for even some European languages
 - "computerlinguistik" (German, computational linguistics)
 - "l'ensemble" (French, the collection)
- Word segmentation

Idioms

- Idioms
 - "hot potato", "couch potato"

- Idioms
 - "hot potato", "couch potato"
- Word markers or punctuations

- Idioms
 - "hot potato", "couch potato"
- Word markers or punctuations
 - · "can't", "O'Neille"

- Idioms
 - "hot potato", "couch potato"
- Word markers or punctuations
 - "can't", "O'Neille"
- Hyphenation

- Idioms
 - "hot potato", "couch potato"
- Word markers or punctuations
 - "can't", "O'Neille"
- Hyphenation
 - "co-education"

- Idioms
 - "hot potato", "couch potato"
- Word markers or punctuations
 - "can't", "O'Neille"
- Hyphenation
 - "co-education"
- White space

- Idioms
 - "hot potato", "couch potato"
- Word markers or punctuations
 - "can't", "O'Neille"
- Hyphenation
 - "co-education"
- White space
 - "New Delhi"

- Idioms
 - "hot potato", "couch potato"
- Word markers or punctuations
 - "can't", "O'Neille"
- Hyphenation
 - "co-education"
- White space
 - "New Delhi"
- Combinations

- Idioms
 - "hot potato", "couch potato"
- Word markers or punctuations
 - "can't", "O'Neille"
- Hyphenation
 - "co-education"
- White space
 - "New Delhi"
- Combinations
 - "isn't New Delhi-Uttar Pradesh a good example?"

- Some terms add little semantic content to search
 - "to", "and", "the"
- These are called stopwords

- Some terms add little semantic content to search.
 - "to", "and", "the"
- These are called stopwords
- Terms that have a very high frequency are candidates
- Generally, manually polished by linguistics

- Some terms add little semantic content to search
 - "to", "and", "the"
- These are called stopwords
- Terms that have a very high frequency are candidates
- Generally, manually polished by linguistics
- Variety in the corpus of documents is very important

- Some terms add little semantic content to search.
 - "to". "and". "the"
- These are called stopwords
- Terms that have a very high frequency are candidates
- Generally, manually polished by linguistics
- Variety in the corpus of documents is very important
- If only newspaper articles,
 - "police" appears with very high frequency

- Some terms add little semantic content to search
 - "to". "and". "the"
- These are called stopwords
- Terms that have a very high frequency are candidates
- Generally, manually polished by linguistics
- Variety in the corpus of documents is very important
- If only newspaper articles,
 - "police" appears with very high frequency
- Removing stopwords from queries may sometimes be erroneous
 - "to be or not to be"
- Therefore, web search engines do not bother to remove stopwords

- Should documents containing "systems" be retrieved for "system"?
- Tokens are divided into equivalence classes

- Should documents containing "systems" be retrieved for "system"?
- Tokens are divided into equivalence classes
- Stemming or lemmatization refers to stripping the word to its root or lemma
 - "system", "systems", "systematic"
 - Requires morphological analysis and is language specific

- Should documents containing "systems" be retrieved for "system"?
- Tokens are divided into equivalence classes
- Stemming or lemmatization refers to stripping the word to its root or lemma
 - "system", "systems", "systematic"
 - Requires morphological analysis and is language specific
- Synonyms
 - "query", "question"

- Should documents containing "systems" be retrieved for "system"?
- Tokens are divided into equivalence classes
- Stemming or lemmatization refers to stripping the word to its root or lemma
 - "system", "systems", "systematic"
 - Requires morphological analysis and is language specific
- Synonyms
 - "query", "question"
- Spelling versions
 - · "color", "colour"

- Should documents containing "systems" be retrieved for "system"?
- Tokens are divided into equivalence classes
- Stemming or lemmatization refers to stripping the word to its root or lemma
 - "system", "systems", "systematic"
 - Requires morphological analysis and is language specific
- Synonyms
 - "query", "question"
- Spelling versions
 - "color", "colour"
- Token normalization finds more documents
 - Increases recall but decreases precision

- Should documents containing "systems" be retrieved for "system"?
- Tokens are divided into equivalence classes
- Stemming or lemmatization refers to stripping the word to its root or lemma
 - "system", "systems", "systematic"
 - Requires morphological analysis and is language specific
- Synonyms
 - "query", "question"
- Spelling versions
 - "color", "colour"
- Token normalization finds more documents
 - Increases recall but decreases precision
- Character set is important
 - "pena" (sorrow) and "peña" (cliff) in Spanish

Documents

• What are documents?

Documents

- What are documents?
 - Entire book may or may not be useful
 - May be chapters or sections or sentences

Documents

- What are documents?
 - Entire book may or may not be useful
 - May be chapters or sections or sentences
- Depends on how context is defined

Outline

- Introduction
 - Motivation
- Document Retrieva
 - Inverted Index
- Tokenization
 - Stopwords
 - Token Normalization
- Scoring
 - Zone
 - Term Frequency

- Inverse Document Frequency
- Tf-idf
- Document Vector
 - Vector Model
 - Document Similarity
- Scalability
 - Skip List
 - Inexact Retrieval
- System
- Conclusions

- A query may be more general than just a set of terms
- It may itself be another document or some free text
- No document can be then expected to match it fully

- A query may be more general than just a set of terms
- It may itself be another document or some free text
- No document can be then expected to match it fully
- Information retrieval task
 - Given a free text query, find the most similar documents

- A query may be more general than just a set of terms
- It may itself be another document or some free text
- No document can be then expected to match it fully
- Information retrieval task
 - Given a free text query, find the most similar documents
- \bullet "Similarity" of a document d with the query q can be measured by a score s(d,q)

- A query may be more general than just a set of terms
- It may itself be another document or some free text
- No document can be then expected to match it fully
- Information retrieval task
 - Given a free text query, find the most similar documents
- "Similarity" of a document d with the query q can be measured by a score s(d,q)
- Information retrieval task
 - Given a free text query, find the documents that have the largest scores

Zones

- Each document is generally associated with metadata, e.g., title, author, date, etc.
- Sometimes, queries on indexes of these fields, called parametric indexes, are also asked
 - Find documents where "Indian" appears in the title

Zones

- Each document is generally associated with metadata, e.g., title, author, date, etc.
- Sometimes, queries on indexes of these fields, called parametric indexes, are also asked
 - Find documents where "Indian" appears in the title
- Fields are generalized to zones that may contain free text as well

Zones

- Each document is generally associated with metadata, e.g., title, author, date, etc.
- Sometimes, queries on indexes of these fields, called parametric indexes, are also asked
 - Find documents where "Indian" appears in the title
- Fields are generalized to zones that may contain free text as well
- Separate inverted indexes can be built for each zone
- Or, zone may be mentioned explicitly in a single inverted index

- Each zone has a weight that adds up to 1
 - \bullet "title" has 0.3, and "body" has 0.7

- Each zone has a weight that adds up to 1
 - \bullet "title" has 0.3, and "body" has 0.7
- Given a query term, each zone scores a zone score
- It is 1 if the term is inside the zone; 0 otherwise

- Each zone has a weight that adds up to 1
 - \bullet "title" has 0.3, and "body" has 0.7
- Given a query term, each zone scores a zone score
- It is 1 if the term is inside the zone; 0 otherwise
- Weighted zone score is the linear sum of the zone scores

$$s(q,d) = \sum_{\forall z \in d} s_z(q)$$

- Each zone has a weight that adds up to 1
 - \bullet "title" has 0.3, and "body" has 0.7
- Given a query term, each zone scores a zone score
- It is 1 if the term is inside the zone; 0 otherwise
- Weighted zone score is the linear sum of the zone scores

$$s(q,d) = \sum_{\forall z \in d} s_z(q)$$

- Given a Boolean combination of query terms, each zone is scored
- These scores are then accumulated

- Each zone has a weight that adds up to 1
 - \bullet "title" has 0.3, and "body" has 0.7
- Given a query term, each zone scores a zone score
- It is 1 if the term is inside the zone; 0 otherwise
- Weighted zone score is the linear sum of the zone scores

$$s(q,d) = \sum_{\forall z \in d} s_z(q)$$

- Given a Boolean combination of query terms, each zone is scored
- These scores are then accumulated
- Weights of zones
 - Can be supplied by the application
 - Machine learned

Term Frequency

- Moving away from the binary model
- If a document contains a query term more number of times, it is more important and should score higher
- Weight of a document d is, therefore, simply the number of times the term t appears in it, called the term frequency

$$tf(t,d) = |t \in d|$$

Term Frequency

- Moving away from the binary model
- If a document contains a query term more number of times, it is more important and should score higher
- Weight of a document d is, therefore, simply the number of times the term t appears in it, called the term frequency

$$tf(t,d) = |t \in d|$$

- This assumes the bag of words model
- Context and sequence are lost
 - I love butter but I hate cheese
 - I love cheese but I hate butter

Inverse Document Frequency

- Certain terms may appear across all or most documents
 - "bat" in cricket pages
- Consequently, they discriminate little among the documents and are not useful

Inverse Document Frequency

- Certain terms may appear across all or most documents
 - "bat" in cricket pages
- Consequently, they discriminate little among the documents and are not useful
- Document frequency of a term is the number of documents it appears in
 - Lesser is more discriminative

Inverse Document Frequency

- Certain terms may appear across all or most documents
 - "bat" in cricket pages
- Consequently, they discriminate little among the documents and are not useful
- Document frequency of a term is the number of documents it appears in
 - Lesser is more discriminative
- If m is the total number of documents in the corpus

$$idf(t) = \log \frac{m}{df_t}$$

• This is called the inverse document frequency

Inverse Document Frequency

- Certain terms may appear across all or most documents
 - "bat" in cricket pages
- Consequently, they discriminate little among the documents and are not useful
- Document frequency of a term is the number of documents it appears in
 - Lesser is more discriminative
- If m is the total number of documents in the corpus

$$idf(t) = \log \frac{m}{df_t}$$

- This is called the inverse document frequency
- Logarithmic to make it less drastic

- Combination of term frequency (tf) and inverse document frequency (idf)
- Weight of a term t in a document d is

$$tf$$
- $idf(t,d) = tf(t,d) \times idf(t)$

- Combination of term frequency (tf) and inverse document frequency (idf)
- Weight of a term t in a document d is

$$tf$$
- $idf(t,d) = tf(t,d) \times idf(t)$

• The tf-idf score has following properties

- Combination of term frequency (tf) and inverse document frequency (idf)
- Weight of a term t in a document d is

$$tf$$
- $idf(t,d) = tf(t,d) \times idf(t)$

- The tf-idf score has following properties
 - High when t appears in a small number of documents

- Combination of term frequency (tf) and inverse document frequency (idf)
- Weight of a term t in a document d is

$$tf$$
- $idf(t,d) = tf(t,d) \times idf(t)$

- The tf-idf score has following properties
 - High when t appears in a small number of documents
 - Low when t appears in many documents

- Combination of term frequency (tf) and inverse document frequency (idf)
- Weight of a term t in a document d is

$$tf$$
- $idf(t,d) = tf(t,d) \times idf(t)$

- The tf-idf score has following properties
 - High when t appears in a small number of documents
 - Low when t appears in many documents
 - High when t appears many number of times in d

- Combination of term frequency (tf) and inverse document frequency (idf)
- Weight of a term t in a document d is

$$tf$$
- $idf(t,d) = tf(t,d) \times idf(t)$

- The tf-idf score has following properties
 - High when t appears in a small number of documents
 - Low when t appears in many documents
 - High when t appears many number of times in d
 - Low when t appears few number of times in d

- Combination of term frequency (tf) and inverse document frequency (idf)
- Weight of a term t in a document d is

$$tf$$
- $idf(t,d) = tf(t,d) \times idf(t)$

- The tf-idf score has following properties
 - *High* when *t* appears in a small number of documents
 - Low when t appears in many documents
 - High when t appears many number of times in d
 - Low when t appears few number of times in d
 - Zero if t does not appear at all in d

- Combination of term frequency (tf) and inverse document frequency (idf)
- Weight of a term t in a document d is

$$tf$$
- $idf(t,d) = tf(t,d) \times idf(t)$

- The tf-idf score has following properties
 - High when t appears in a small number of documents
 - Low when t appears in many documents
 - High when t appears many number of times in d
 - Low when t appears few number of times in d
 - Zero if t does not appear at all in d
- Tf-idf has many different forms

Outline

- Introduction
 - Motivation
- Document Retrieva
 - Inverted Index
- Tokenization
 - Stopwords
 - Token Normalization
- 4 Scoring
 - Zone
 - Term Frequency

- Inverse Document Frequency
- Tf-idf
- Document Vector
 - Vector Model
 - Document Similarity
- Scalability
 - Skip List
 - Inexact Retrieval
- System
- Conclusions

Document Vector

- ullet Each document d has a score with each term t in the vocabulary
 - If t is absent in d, then this score is 0

Document Vector

- Each document d has a score with each term t in the vocabulary
 If t is absent in d, then this score is 0
- Imagine a n-dimensional vector space where n is the total number of terms in the vocabulary
- ullet Each document can be, thus, thought of as a vector (point) in this n-dimensional space
- Its coordinates are the scores correponding to the scores

$$d[t_i] = tf - idf(t_i, d)$$

This is called the document vector model

Exercise

- d_1 : Water, water everywhere, not a drop to drink
- d₂: I have filtered water
- d₃: Drinking and driving is not good
- d₄: Water quality is not good here
- d₅: Milk is not good for health
- d₆: Drinking water just after dinner is not healthy

Exercise

- *d*₁: Water, water everywhere, not a drop to drink
- d₂: I have filtered water
- d₃: Drinking and driving is not good
- d₄: Water quality is not good here
- d₅: Milk is not good for health
- d₆: Drinking water just after dinner is not healthy
- Query q: drinkable water

Exercise

- d_1 : Water, water everywhere, not a drop to drink
- d₂: I have filtered water
- d₃: Drinking and driving is not good
- d₄: Water quality is not good here
- d₅: Milk is not good for health
- d₆: Drinking water just after dinner is not healthy
- Query q: drinkable water
- ullet Find tf, idf (with \log_2) and tf-idf (\log_2) scores

Similarity between Documents

• What is the "similarity" between two documents (i.e., their vectors)?

Similarity between Documents

- What is the "similarity" between two documents (i.e., their vectors)?
- Euclidean distance may not be suitable
 - Longer documents have larger distances

Cosine Similarity

- Consider two documents d_1 and d_2 with their corresponding document vectors $\vec{V}(d_1)$ and $\vec{V}(d_2)$
- Cosine similarity measures the normalised dot product

$$\text{sim}(d_1, d_2) = \frac{\vec{V}(d_1).\vec{V}(d_2)}{|\vec{V}(d_1)|.|\vec{V}(d_2)|}$$

• Measures the cosine of the angle between the vectors

Cosine Similarity

- Consider two documents d_1 and d_2 with their corresponding document vectors $\vec{V}(d_1)$ and $\vec{V}(d_2)$
- Cosine similarity measures the normalised dot product

$$\mathrm{sim}(d_1,d_2) = \frac{\vec{V}(d_1).\vec{V}(d_2)}{|\vec{V}(d_1)|.|\vec{V}(d_2)|}$$

- Measures the cosine of the angle between the vectors
- Consider the length-normalised document vectors

$$\vec{v}(d_i) = \frac{\vec{V}(d_1)}{|\vec{V}(d_1)|}$$

Then, cosine similarity is their dot product

$$sim(d_1, d_2) = \vec{v}(d_1) \cdot \vec{v}(d_2)$$

Example

Term	d_1	d_2	d_3
Indian	115	58	20
ancient	10	7	11
system	2	0	6

Example

Term	d_1	d_2	d_3
Indian	115	58	20
ancient	10	7	11
system	2	0	6
length	115.45	58.42	23.60

Example

Term	d_1	d_2	d_3
Indian	115	58	20
ancient	10	7	11
system	2	0	6
length	115.45	58.42	23.60

Similarities between documents

$$\mathrm{sim}(d_1,d_2) = \frac{115}{115.45}.\frac{58}{58.42} + \frac{10}{115.45}.\frac{7}{58.42} + \frac{2}{115.45}.\frac{0}{58.42} = 0.99$$

ullet d_1 and d_2 is the closest pair

- Similar to a document, the query can also be viewed as a vector
- It is again just a bag of words
- Find similarities with documents and retrieve the top-k documents

- Similar to a document, the query can also be viewed as a vector
- It is again just a bag of words
- Find similarities with documents and retrieve the top-k documents
- Consider query q with the keywords "ancient" and "system"
- $\vec{V}(q) = (0, 1, 1)$ with $\vec{v}(q) = (0.00, 0.71, 0.71)$

- Similar to a document, the query can also be viewed as a vector
- It is again just a bag of words
- Find similarities with documents and retrieve the top-k documents
- Consider query q with the keywords "ancient" and "system"
- $\vec{V}(q) = (0, 1, 1)$ with $\vec{v}(q) = (0.00, 0.71, 0.71)$
- Then, most similar document is the one with the highest cosine similarity

- Similar to a document, the query can also be viewed as a vector
- It is again just a bag of words
- Find similarities with documents and retrieve the top-k documents
- Consider query q with the keywords "ancient" and "system"
- $\vec{V}(q) = (0, 1, 1)$ with $\vec{v}(q) = (0.00, 0.71, 0.71)$
- Then, most similar document is the one with the highest cosine similarity
- In previous example, $sim(q, d_3)$ is highest
- Thus, d₃ is the most similar document

- Similar to a document, the query can also be viewed as a vector
- It is again just a bag of words
- Find similarities with documents and retrieve the top-k documents
- Consider query q with the keywords "ancient" and "system"
- $\vec{V}(q) = (0, 1, 1)$ with $\vec{v}(q) = (0.00, 0.71, 0.71)$
- Then, most similar document is the one with the highest cosine similarity
- In previous example, $sim(q, d_3)$ is highest
- Thus, d₃ is the most similar document
- If $\vec{v}(q).\vec{v}(d_i)$ is the highest, then $\vec{V}(q).\vec{v}(d_i)$ is the highest as well
 - Normalization of query is not required

- Similar to a document, the query can also be viewed as a vector
- It is again just a bag of words
- Find similarities with documents and retrieve the top-k documents
- Consider query q with the keywords "ancient" and "system"
- $\vec{V}(q) = (0, 1, 1)$ with $\vec{v}(q) = (0.00, 0.71, 0.71)$
- Then, most similar document is the one with the highest cosine similarity
- In previous example, $sim(q, d_3)$ is highest
- Thus, d₃ is the most similar document
- If $\vec{v}(q).\vec{v}(d_i)$ is the highest, then $\vec{V}(q).\vec{v}(d_i)$ is the highest as well
 - Normalization of query is not required
- Brute-force method of computing scores with all the documents and ranking them is not scalable

Outline

- Introduction
 - Motivation
- Document Retrieva
 - Inverted Index
- Tokenization
 - Stopwords
 - Token Normalization
- 4 Scoring
 - Zone
 - Term Frequency

- Inverse Document Frequency
- Tf-idf
- Document Vector
 - Vector Model
 - Document Similarity
- Scalability
 - Skip List
 - Inexact Retrieval
- System
- Conclusions

Skip lists are used to traverse linked lists faster

"Skips" are provided as jumps

- "Skips" are provided as jumps
- Useful when taking intersection of postings lists
- Once 41 is reached in the second list, 16 can jump to 28 in the first list

- "Skips" are provided as jumps
- Useful when taking intersection of postings lists
- Once 41 is reached in the second list, 16 can jump to 28 in the first list
- How to determine skip positions?

- "Skips" are provided as jumps
- Useful when taking intersection of postings lists
- Once 41 is reached in the second list, 16 can jump to 28 in the first list
- How to determine skip positions?
- Look at closely occurring values; insert a skip to the end

- "Skips" are provided as jumps
- Useful when taking intersection of postings lists
- Once 41 is reached in the second list, 16 can jump to 28 in the first list
- How to determine skip positions?
- Look at closely occurring values; insert a skip to the end
- \sqrt{l} equally spaced skips for a l-length list

Approximation

- Finding the exact top-k documents is too difficult
- Can resort to *approximate* top-k most relevant documents

- Finding the exact top-k documents is too difficult
- Can resort to approximate top-k most relevant documents
- Notion of similarity is not perfect anyway
 - Cosine similairty is simply one measure

- Finding the exact top-k documents is too difficult
- Can resort to approximate top-k most relevant documents
- Notion of similarity is not perfect anyway
 - Cosine similairty is simply one measure
- Information needs are generally satisfied with approximate answers
 - Google search

- Finding the exact top-k documents is too difficult
- Can resort to approximate top-k most relevant documents
- Notion of similarity is not perfect anyway
 - Cosine similairty is simply one measure
- Information needs are generally satisfied with approximate answers
 - Google search
- Retrieval process becomes much faster

- Finding the exact top-k documents is too difficult
- Can resort to approximate top-k most relevant documents
- Notion of similarity is not perfect anyway
 - Cosine similairty is simply one measure
- Information needs are generally satisfied with approximate answers
 - Google search
- Retrieval process becomes much faster
- Generally, a two-step process
 - **1** Retrieve approximate top-K documents where $k \leq K \ll m$
 - 2 Retrieve *exact* top-k from K

- Only terms that appear in query need to be examined
 - Rest of the scores are 0

- Only terms that appear in query need to be examined
 - Rest of the scores are 0
- Filter query terms whose idf is too low
 - Similar to stop-word idea
 - "to be or not to be"

- Only terms that appear in query need to be examined
 - Rest of the scores are 0
- Filter query terms whose idf is too low
 - Similar to stop-word idea
 - "to be or not to be"
- Pre-compute champion lists for each term
 - · Documents ranked for only that term
 - Offline process
 - Take union of top-r of every query term to get top-K

- Only terms that appear in query need to be examined
 - Rest of the scores are 0
- Filter query terms whose idf is too low
 - Similar to stop-word idea
 - "to be or not to be"
- Pre-compute champion lists for each term
 - · Documents ranked for only that term
 - Offline process
 - Take union of top-r of every query term to get top-K
- Build tiered index
 - Each level (tier) lists only those documents whose tf for the term is greater than a threshold
 - Continue with tiers till top-K results are obtained

Outline

- Introduction
 - Motivation
- Document Retrieva
 - Inverted Index
- Tokenization
 - Stopwords
 - Token Normalization
- 4 Scoring
 - Zone
 - Term Frequency

- Inverse Document Frequency
- Tf-idf
- Document Vector
 - Vector Model
 - Document Similarity
- Scalability
 - Skip List
 - Inexact Retrieval
- System
- Conclusions

The Complete Information Retrieval System

Outline

- Introduction
 - Motivation
- Document Retrieva
 - Inverted Index
- Tokenization
 - Stopwords
 - Token Normalization
- 4 Scoring
 - Zone
 - Term Frequency

- Inverse Document Frequency
- Tf-idf
- Document Vector
 - Vector Model
 - Document Similarity
- Scalability
 - Skip List
 - Inexact Retrieval
- Systen
- Conclusions

Conclusions

- Inverted Index
- Tokenization
- Term Frequency, Document Frequency (Tf-idf)
- Document Vector
- Document Scoring

Conclusions

- Inverted Index
- Tokenization
- Term Frequency, Document Frequency (Tf-idf)
- Document Vector
- Document Scoring

THANK YOU!

Conclusions

- Inverted Index
- Tokenization
- Term Frequency, Document Frequency (Tf-idf)
- Document Vector
- Document Scoring

THANK YOU!

Questions?
Answers!