Uebung2

July 13, 2024

1 Übung 2 Raphael Kropp

1.0.1 Dateiinformation

Die Vergleichstests wurden mit der output.wav Datei durchgeführt. Die Datei ist eine Minute lang und verwendet die Frequenzen 42, 420 und 4200.

1.0.2 Systeminformation

Die Tests wurden auf einem Notebook mit Intel Core i
9 13900HX und einer NVidia GeForce RTX 4070 8GB ausgeführt.

1.1 Aufgabe 1 Python

```
[1]: %%python
import os
import sys
sys.path.append(os.path.join(os.path.dirname(__name__), '.'))
sys.path.append(os.path.join(os.path.dirname(__name__), 'A1'))
sys.path.append(os.path.join(os.path.dirname(__name__), 'A3'))
sys.path.append(os.path.join(os.path.dirname(__name__), 'A4'))
```

1.2 Aufgabe 1 Python

```
Frequency: 0.00 Hz, Amplitude: 1641160.11
Frequency: 344.53 Hz, Amplitude: 1029072.78
Frequency: 4134.38 Hz, Amplitude: 1105567.05
```

8.284553050994873

1.3 Aufgabe 1 Mojo

```
[3]: import A1.A1Mojo as A1Mojo
    from python import Python, PythonObject
    from complex import ComplexFloat64

var readwav = Python.import_module("utils.utils")

var input = readwav.read_wave_file('./Audios/output.wav')
    var sample_rate = input[0].to_float64()
    var data_input = input[1]
    var audio = A1Mojo.ndarray_to_complexlist(data_input)

var ampA1 = A1Mojo.amplitude(256 // 2, audio, sample_rate, 256, 1)
    var durationA1Mojo = A1Mojo.calculate(ampA1, 256, 1000000)
    print(durationA1Mojo)
```

Freq: 0.0 : 1641160.1144910036 Freq: 344.53125 : 1029072.7470971501 Freq: 4134.375 : 1105567.0263031418 255.89522617

1.4 Aufgabe 3 Python

Cores used: 32
Frequency: 0.00 Hz, Amplitude: 1641159.91
Frequency: 344.53 Hz, Amplitude: 1029072.75
Frequency: 4134.38 Hz, Amplitude: 1105567.05
1.312391996383667

1.5 Aufgabe 3 Mojo

```
[5]: import A3.A3Mojo as A3Mojo

var inputA3 = readwav.read_wave_file('./Audios/output.wav')
var sample_rateA3 = input[0].to_float64()
var data_inputA3 = input[1]
var audioA3 = A3Mojo.ndarray_to_complexlist(data_input)

var ampA3 = A3Mojo.ParallelFft(audio, sample_rate, 256, 1)
durationA3Mojo = A3Mojo.calculate(ampA3, 1000000)
```

print(durationA3Mojo)

Freq: 0.0 : 1640871.0886665527

Freq: 344.53125 : 1028804.1556153116 Freq: 4134.375 : 1104516.9023475153

48.426688403999997

1.6 Aufgabe 4 Python

```
[6]: %%python from A4 import A4Batch

durationA4Python = A4Batch.calculate(audio_data, sample_rate, block_size=256,u
offset=1, threshold=1_000_000, batch_size=55296)
print(durationA4Python)
```

Batchgröße: 55296

Frequency: 0.00 Hz, Amplitude: 1641160.11 Frequency: 344.53 Hz, Amplitude: 1029072.78 Frequency: 4134.38 Hz, Amplitude: 1105567.05

1.1822559833526611

```
[7]: plt = Python.import_module('matplotlib.pyplot')
     var dauer: PythonObject = Python.list()
     dauer.append(durationA1Python)
     dauer.append(durationA1Mojo)
     dauer.append(durationA3Python)
     dauer.append(durationA3Mojo)
     dauer.append(durationA4Python)
     var labels: PythonObject = Python.list()
     labels.append('A1Python')
     labels.append('A1Mojo')
     labels.append('A3Python')
     labels.append('A3Mojo')
     labels.append('A4Python')
     plt.bar(labels, dauer,color='steelblue')
     plt.xlabel('Implementierung')
     plt.ylabel('Laufzeit in Sekunden')
     plt.title('Laufzeitvergleich')
     plt.show()
```


1.7 Vergleich zwischen Python A3 und A4

Zum Vergleich der Laufzeiten wurde die Parallel- und Grafikkartenimplenentierung auf einer 10 minütigen Audiodatei mit den Frequenzen 42, 420 und 4200 getestet und verglichen.

```
oblock_size=1024, offset=1, threshold=1_000_000, batch_size=55296)
     print(durationA4Python10m, '\n')
    seriell
    Frequency: 43.07 Hz, Amplitude: 5680271.66
    Frequency: 387.60 Hz, Amplitude: 1688562.34
    Frequency: 430.66 Hz, Amplitude: 5128267.45
    Frequency: 473.73 Hz, Amplitude: 1018961.71
    Frequency: 4134.38 Hz, Amplitude: 1184162.51
    Frequency: 4177.44 Hz, Amplitude: 3444567.31
    Frequency: 4220.51 Hz, Amplitude: 3789016.70
    Frequency: 4263.57 Hz, Amplitude: 1222348.95
    205.89144015312195
    parallel
    Cores used: 32
    Frequency: 43.07 Hz, Amplitude: 5680271.66
    Frequency: 387.60 Hz, Amplitude: 1688562.34
    Frequency: 430.66 Hz, Amplitude: 5128267.45
    Frequency: 473.73 Hz, Amplitude: 1018961.71
    Frequency: 4134.38 Hz, Amplitude: 1184162.51
    Frequency: 4177.44 Hz, Amplitude: 3444567.31
    Frequency: 4220.51 Hz, Amplitude: 3789016.70
    Frequency: 4263.57 Hz, Amplitude: 1222348.95
    18.853911876678467
    grafikbeschleunigt
    Batchgröße: 55296
    Frequency: 43.07 Hz, Amplitude: 5680271.66
    Frequency: 387.60 Hz, Amplitude: 1688562.34
    Frequency: 430.66 Hz, Amplitude: 5128267.45
    Frequency: 473.73 Hz, Amplitude: 1018961.71
    Frequency: 4134.38 Hz, Amplitude: 1184162.51
    Frequency: 4177.44 Hz, Amplitude: 3444567.31
    Frequency: 4220.51 Hz, Amplitude: 3789016.70
    Frequency: 4263.57 Hz, Amplitude: 1222348.95
    12.569470643997192
[9]: var dauer10m: PythonObject = Python.list()
     dauer10m.append(durationA1Python10m)
     dauer10m.append(durationA3Python10m)
     dauer10m.append(durationA4Python10m)
     var labels10m: PythonObject = Python.list()
     labels10m.append('seriell')
```

durationA4Python10m = A4Batch.calculate(audio_data, sample_rate,_

```
labels10m.append('parallel')
labels10m.append('grafikbeschleunigt')

plt.bar(labels10m, dauer10m, color='steelblue')

plt.xlabel('Implementierung')
plt.ylabel('Laufzeit in Sekunden')
plt.title('Laufzeitvergleich Python 10 min wav')
plt.show()
```


