11 Problems in Physics

- 1. Weak Gravity
- 2. Old Gravity
- 3. Big Gravity
- 4. Small Gravity
- 5. Small Physics
- 6.Fast Physics
- 7. Small and Fast Physics
- 8. The 4 Fundamental Forces
- 9. Unified Physics
- 10. The Arrow of Space-Time
- 11. Visualizing Physics

Weak Gravity

When gravity is 10⁻¹⁰g, Newton's law doesn't work

History

1932 Jan Oort, Milky Way motions too fast 1922 Fritz Zwicky, motions of galaxies too fast 1962 Alar Toomre, thin disc galaxies too fast, unstable

Current Efforts

Dark matter - plug in what is needed MOND - change Newton's law from 1/R2 to 1/R

My Effort

Need a stable, constant velocity solution for gravity Galaxies are not a static, non-rotating, point sources The product rule may come into play Account for loss of light

Old Gravity

The start of the Universe is not stable, it should ball up. There is no reason matter should move at the same speed.

Flatness problem: initial conditions are unstable

$$\left(\frac{\rho_c}{\rho} - 1\right) \rho a^2 = -\frac{3}{8\pi G} kc^2$$

$$\frac{\rho}{\rho_c} \approx 1.01$$

$$\frac{\rho}{\rho_c} \approx 1.00.. (\text{lots of 0's})..001$$

Horizon problem: velocities have no way to agree to 1 part in 100,000

History

1969 Dicke, the Universe is flat now, but had to be far more flat at the start

Current Efforts

Inflation - magic to make Universe briefly grow like crazy

My Effort

Don't use Newton out-of-the-box, things are moving Need a stable, constant velocity solution for gravity.

Big Gravity

The Universe is now going faster, not slowing down

History

1998 Perlmutter, Schmidt, Riess
Type 1a supernovae moving slow in the past
meaning we are accelerating now

Current Efforts

Dark energy The cosmological constant fix

My Effort

The data looks like a real, but small, math error Nothing can do nothing (observering nothing is subtle) The Universe is not a static, non-rotating, spherical mass The product rule could come into play Account for light

Small Gravity

Get gravity to work nicely with quantum mechanics.

$$\left(rac{d^2}{dt^2}-c^2
abla^2
ight)A^\mu=J^\mu \xrightarrow[ext{picking a gauge}]{ ext{invert by}}A^\mu=e^{ikx}$$
 Field eqs propagator

$$\mathcal{L} = \text{simple}$$

+ A^{μ} ...perturbation

The issue: does the perturbation converge in a scattering calculation? "Yes" for 4 linear EM eqs, "no" for 10 nonlinear GR eqs.

History

1916+ Force laws the same, so quantization the same, no?

Current Efforts

Work with strings Loop quantum gravity

My Effort

Make a 1 nonlinear gravity field theory. It changes measurements of all quanta.

Small Physics

Why is quantum mechanics wierd?

History

1920s Einstein vs Bohr

Your choice: Copenhagen, many worlds, ... no winner Double slit experiment - wave and a particle - how so?

Current Efforts

Philosophical physicist continue the stalemate

My Effort

Visualize complex numbers correctly
Not a totally ordered set
Coherent source is well-organized in space-time

Fast Physics

How does Nature impose the speed of light limit?

History

1887 Nichelson-Morley, speed of light unchanged by the speed of the Earth 1905 Einstein's special relavity

Current Efforts

Its the Lorentz group, stupid (no need to explain)

My Effort

Wavelength and frequency do change, their ratio doesn't Changes in time = changes in space, the definition of unity in space-time

Photons have no story to tell

Small and Fast Physics

Calculations in relativistic quantum field theory require management of infinities (regularization and renormalization)

$$abla A^{\mu} = J^{\mu} \xrightarrow{\text{Invert by}} A^{\mu} = e^{ikx}...$$
Field eqs. Propagator

$$\mathcal{L} = \text{simple} + A^{\mu}...\text{perturbation}$$

History

1940s Developed by Feynman, Tomonaga, Schwinger Old masters uncomfortable (Feynman, Dirac)

Current Efforts

Shut up and calculate the most precise calcs in physics

My Effort

Nature uses all well-formed terms. Use a Lagrangian's neighbors. $(\mathcal{L}, \vec{P}) = \frac{1}{2}(B^2 - E^2, 4 \vec{E} \times \vec{B})$ Using the complete set, field equations can be inverted without choosing a gauge

Fundamental Forces

Why are these 4 forces in particular the ones Nature uses?

History

Current Efforts

My Effort

Unified Physics

How does Nature make it all work, from tiny to HUGE?

Fieled equations of general relativity

Dirac equations of quantum field theory

History

Common goal at the end of a career in physics

Current Efforts

Work on strings makes the most claims

My Effort

Build causality into number theory:

[0, 1) timelike, [1] lightlike, $(1, \infty)$ spacelike

Quaternion analysis needs factors of 1/3, good for quarks Working on the quaternion manifold may need maps that return in 2pi and 4pi, good for bosons and fermions

Give zero - the observer, the right topology to 1 in space-time

The Arrow of Time

The laws of physics are symmetrical for time reversal, but the Universe apparently is not

$$F = m\frac{d^2R}{dt^2} = m\frac{d^2R}{d(-t)^2} \quad \Lambda_{\text{time reversal}} = \begin{bmatrix} -1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \begin{array}{c} \text{CPT}\\ \text{symmetry} \end{array}$$

History

1800s Boltzmann saw asymmetry put into 2nd law of thermodynamics "by hand"

Current Efforts

Information theory Holographic principle

My Effort

$$F = \left(\frac{d}{dt}, c\vec{\nabla}\right) \left(E^2/c^4 - P^2/c^2, 2E\vec{P}/c^3\right) \left(\frac{d}{dt}, c\vec{\nabla}\right) (ct, \vec{R}) = m\frac{d^2R}{dt^2} + \delta$$

Classically, delta is super tiny, but adds up with 10^{23} particles, so laws are not space-time symmetric.

Visualizing Physics

People cannot understand calculations, but can get pictures

History

Current Efforts

My Effort