EECS 376: Foundations of Computer Science

Seth Pettie Lecture 7

Today's Agenda

- * Overview of computability
- * Decision ("membership") problems
- Deterministic Finite Automata (DFA)
 - * A weak class of computing machines
- * A limit on the power of DFAs

Overview of Computability

- * Q: Is every "problem" solvable on a "computer"? If so, how? If not, why not?
- * Modeling computation
 - * Formalize notion of "problem" and "computer"
- * The Halting problem and reductions
 - * <u>Prove</u> there are problems that cannot be solved on any computer <u>that could ever exist</u> (or so we believe)
- * Rice's Theorem
 - * "Any non-trivial program analysis is impossible"

"The question of whether a computer can think is no more interesting than the question of whether a submarine can swim." - Edsger Dijkstra.

Modeling Computation

What is a "problem"?

* We consider decision problems, where the goal is to decide (say "yes" or "no") if a given input object has a certain property

376

Output integer prime?

NO

Input

1
2
3
Is the given
graph connected?
No

... The list goes on!
We need to unify under a common framework

Languages and Their Decision Problems

- * Any <u>finite</u> object (integer, graph, ...) can be **encoded** as a <u>finite</u> **string** of characters from a <u>finite</u> **alphabet** (binary, ASCII, ...).
- * A property corresponds to a set of strings: a.k.a., a language
- * Q: What are the languages for the prior decision problems?


```
Input of the given string of the language L_{CONN}?

Output No L_{CONN} = \{\langle G \rangle \mid G \text{ is a connected graph}\}
```

The decision problem for a language L: Given a string X, decide if $X \in L$ (say Y/N, acc/rej, etc).

Alphabets, Strings, Languages

- st An **alphabet** is a <u>finite</u> set of characters, often denoted Σ
 - * Often implicit, e.g., $\Sigma =$ ASCII characters or $\Sigma = \{0,1\}$
- * A (Σ -)string is a finite sequence of characters from Σ
 - * The **length** of a string \mathcal{X} (# chars) is denoted $|\mathcal{X}|$
 - * The **empty string** is denoted \mathcal{E} ; it has length $|\mathcal{E}|=0$
- * A $(\Sigma$ -)language is a (possibly infinite) set of $(\Sigma$ -)strings
 - * The language of all strings is denoted Σ^*
- * Example: $\Sigma = \{0,1\}, \Sigma^* = \{\varepsilon, 0, 1, 00, ...\}, |010| = 3$

What is a "computer"?

A "computer" used to mean a <u>person</u> who performed arithmetic calculations

- * Alan Turing defined a formal model, called **Turing machine**, which is <u>widely believed</u> to encompass what <u>any</u> real computing process could possibly do.
- * **Beautiful Idea:** Abstracts the process of a <u>person/device</u> working on a (decision) problem, with access to an <u>unlimited amount of "scratch" paper/memory</u>.
- * Church-Turing thesis: Any "computer" can be simulated by a Turing machine.
- * Warm-up: DFAs (\equiv person <u>w/o paper</u>): deterministic finite automata

DFA Example (1/4)

Example: DFA that decides $L = \{x \in \{0,1\}^* : |x| \text{ is odd}\}$, the set of binary strings whose lengths are odd; alphabet $\Sigma = \{0,1\}$.

(3) Given an input string X, DFA reads

one character of $\boldsymbol{\mathcal{X}}$ at a time and changes state according to the

transition function $\delta: Q \times \Sigma \to Q$ ('program').

An edge $q \to q'$ labeled with $a \in \Sigma$ represents that $\delta(q,a) = q'$, i.e., at state q, go to state q' upon reading a.

(4) It **accepts** the input X if it stops at an **accepting** state after

reading all of X. Drawn as thick/outlined vertices.

(1) A DFA has a finite set Q of states ('memory').

Each state represented by a distinct vertex.

DFA Example (2/4)

Example: DFAs that decide $L=\{0,1\}^*$, the set of <u>all</u> binary strings, for alphabet $\Sigma=\{0,1\}$.

DFA Example (3/4)

Example: DFA that decides $L = \{\varepsilon, 01, 10, 111\}$, for alphabet

An inescapable "reject" state is often quite useful!

More Examples

```
L = {w: strings of length at most 5}
L = {w: all strings except the empty string}
L = {w: w contains exactly two o's}
L = {w: every odd position of w is a 1}
L = {w: w contains the string 01}
L = {w: w does not contain the string 01}
```

#1 tip when making DFAs: Think about maintaining state invariants: properties that must hold whenever certain states are reached.

L = {w : w has equal number of o's and 1's} (no DFA can decide this! (Later.))

Theorems:

```
If L is decidable by a DFA, then so is its complement L. If L_1 and L_2 are decidable by DFAs, then so are L_1 U L_2, and L_1 \cap L_2 .
```


DFA Example (4/4)

Example: DFA that decides $L=\{x\in\{0,1\}^*\mid \# \text{ of } 01\text{s in } x=\# \text{ of } 10\text{s in } x\}$, for alphabet $\Sigma=\{0,1\}$.

#1 tip when making DFAs: Think about maintaining state invariants: properties that must hold whenever certain states are reached.

<u>Deterministic</u> <u>Finite</u> <u>Automaton:</u> Formal Definition

- * Formally, a DFA M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where:
 - * Q is the <u>finite</u> set of **states**
 - * Σ is the **input alphabet**
 - * $\delta: Q \times \Sigma \to Q$ is the **transition function**
 - * $q_0 \in Q$ is the **initial** state
 - * $F \subseteq Q$ is the subset of **accepting** states
- * Takeaway: DFAs are a simple & weak, but well defined, kind of "computer."

The Language of a DFA

- * We say that a DFA
 - * accepts a string ${\mathcal X}$ if it ends at an accepting state, given ${\mathcal X}$
 - * decides a language L if it accepts every string $x \in L$ and does not accept ('rejects') every string $x \notin L$
- * A language is said to be regular if some DFA decides it.
- * **Q:** Is every language regular?
- * In other words: is every <u>decision problem</u> "solvable" on this simple, weak model of a "computer"?
 - * No! Intuitively, bottlenecked by DFA's finite memory

A Thought Experiment

- * Imagine you're given a huge binary string $oldsymbol{\mathcal{X}}$
 - * $|x| \gg$ number of neurons in your brain
- * You can read ${\mathcal X}$ as many times as you want, and in any order, but <u>you can't write anything down</u>
- * **Q:** Can you decide if $x = 0^k 1^k$ for some k?
 - * $0^k 1^k$ means k 0s followed by k 1s
- * Rabin and Scott [1959]: 'Many-read' DFAs = DFAs.
 - * DFAs can read the input only once, in sequence. This theorem says that more reads don't help.

Theorem: No DFA decides $\{0^k1^k \mid k \geq 0\}$.

No DFA decides $\{0^k 1^k \mid k \geq 0\}$

- * Suppose that some DFA M decides $\{0^k 1^k \mid k \geq 0\}$.
- * Let n = # of states of M, and let $x = 0^{n+1}1^{n+1}$.
- * Claim: We can write x = uwv so that M is in the <u>same state</u> before and after reading substring $w \neq \varepsilon$.
- * M must accept $uwwv \notin \{0^k1^k \mid k \geq 0\}$. Contradiction!

Regular Expressions

- * Regular Expressions are a succinct way to describe simple languages. If R is a regular expression, $L(R) \subseteq \Sigma^*$ is its <u>language</u>.
 - * If R = a (a letter in Σ), $L(R) = \{a\}$.
 - * $L(\epsilon) = \{\epsilon\}$ (the empty string).
 - * $L(R_1R_2) = \{w_1w_2 \mid w_1 \in L(R_1), w_2 \in L(R_2)\}$ (concatenation)
 - * $L(R_1|R_2) = L(R_1) \cup L(R_2)$
 - * $L(R^*) = \{\epsilon\} \cup L(R) \cup L(RR) \cup L(RRR) \cup \cdots$ (Kleene star)
- * Theorem. Every RegExp language is decided by a DFA; the language of every DFA is a RegExp lang. •

Regular Expression Exercises

- * All strings over $\{a, b\}$ with an **even** number of as.
 - * $b^*(b^*ab^*ab^*)^*$
- * All strings over $\{a, b\}$ without 2 consecutive as.
 - * $(b^*ab)^*(b^*(a|\epsilon))$
- * All strings over $\{0,1\}$ that begin and end with the same symbol.
 - * (0(0|1)*0)|(1(0|1)*1)
- * $N = (0|1|2|\cdots|9)$ $L = (A|B|\cdots|Z)$
 - * Dates: $NN LLL NN(NN|\epsilon)$ (E.g., 16-Feb-2023 or 16-Feb-23)
 - * Michigan License Plates: LLL NNNN

DFA Exercises

- * Design a DFA to decide $\{x \in \{0,1\}^* \mid (unsigned\ int)\ x\ is\ divisible\ by\ 5\}$
- * Design a DFA to decide $\{x \in \{0,1\}^* \mid (unsigned\ int)\ x^R\ is\ divisible\ by\ 5\}$
 - * x^R is the reversal of x, i.e., least significant digits comes first.
- * You need to keep track of the score in a tennis game between A and B. The sequence of points scored is represented by a string $x \in \{A, B\}^*$.
 - * The first player to get ≥4 points AND be ahead by 2 wins.
 - * For weird historical reasons, o pts is "love", 1 is "15", 2 is "30", 3 is "40".
- * Design a DFA to decide $\begin{cases} x \in \{A, B\}^* \mid A \text{ has already won after seeing} \\ x \text{ points recorded.} \end{cases}$

DFA Impossibility Exercises

- * Prove $L_{Palindrome} = \{x \in \{0,1\}^* \mid x \text{ is a palindrome}\}\$ cannot be decided by a DFA.
- * Prove $L_{\text{Prime}} = \{x \in \{0,1\}^* \mid x = 1^p \text{ and } p \text{ is prime}\}$ cannot be decided by a DFA.

