

Amendment A

Inventor(s) Name: Jarvi et al.
Attorney Docket No.: 1593 WO/US

1. (original) A process for the preparation of a heteroaryl acetamide from a heteroaryl α -hydroxyacetamide, the process comprising directly hydrogenating the heteroaryl α -hydroxyacetamide in the presence of a strong acid, a halide and a catalyst, the heteroaryl α -hydroxyacetamide having the structure of Formula 1 and the heteroaryl acetamide having the structure of Formula 1A:

wherein

Z is O, NR₂₀ or CR₂₁;

X₁ and X₂ are independently selected from the group consisting of hydrogen, halogen, C₁₋₄ alkoxy, C₁₋₆ alkyl, -CF₃ and CH₃SO₂⁻;

R₁ and R₂ are independently hydrogen or hydrocarbyl;

R₁₀ is hydrogen, halogen, C₁₋₄ alkyl, or a member of a fused ring wherein the fused ring is (i) a substituted or unsubstituted, saturated or unsaturated, five or six-membered, heterocyclic or carbocyclic ring fused to the A ring comprising R₁₀, the carbon atom to which R₁₀ is attached, R₂₀, and the nitrogen atom to which R₂₀ is attached, or (ii) a six-membered, aromatic, carbocyclic ring fused to the A ring comprising R₁₀, R₁₁, and the carbon atoms to which R₁₀ and R₁₁ are attached, optionally substituted with Y at a substitutable position thereof;

R₁₁ is hydrogen, halogen, C₁₋₄ alkyl, or a member of a fused ring wherein the fused ring is (i) a six-membered, aromatic, carbocyclic ring fused to the A ring comprising R₁₀, R₁₁, and the carbon atoms to which R₁₀ and R₁₁ are attached, optionally substituted with Y at a substitutable position thereof, or (ii) a six-membered, aromatic,

Amendment A

Inventor(s) Name: Jarvi et al.
Attorney Docket No.: 1593 WO/US

carbocyclic ring fused to the A ring comprising R₁₁, R₁₂, and the carbon atoms to which R₁₁ and R₁₂ are attached, optionally substituted with Y at a substitutable position thereof;

R₁₂, if present, is hydrogen, halogen, C₁₋₄ alkyl, or a member of a fused ring wherein the fused ring is (i) a six-membered, aromatic, carbocyclic ring fused to the A ring comprising R₁₁, R₁₂, and the carbon atoms to which R₁₁ and R₁₂ are attached, optionally substituted with Y at a substitutable position thereof;

R₂₀ is C₁₋₅ alkyl or a member of a fused ring wherein the fused ring is a substituted or unsubstituted, saturated or unsaturated, five or six-membered, heterocyclic or carbocyclic ring fused to the A ring comprising R₁₀, the carbon atom to which R₁₀ is attached, R₂₀, and the nitrogen atom to which R₂₀ is attached;

R₂₁ is hydrogen, halogen or C₁₋₄ alkyl;

n is 0 or 1;

each Y is independently hydrogen, halogen or C₁₋₄ alkyl; and

when Z is CR₂₁, the A ring is aromatic.

2.-5. (canceled)

6. (original) The process of claim 1 wherein X₁ and X₂ are independently selected from the group consisting of hydrogen, halogen, C₁₋₄ alkoxy and C₁₋₆ alkyl, R₁ and R₂ are independently hydrogen or C₁₋₅ alkyl and Y is hydrogen, halogen or C₁₋₄ alkyl.

Amendment A

Inventor(s) Name: Jarvi et al.

Attorney Docket No.: 1593 WO/US

7. (original) A process for the preparation of an imidazopyridine acetamide from an imidazopyridine α -hydroxyacetamide, the process comprising directly hydrogenating the imidazopyridine α -hydroxyacetamide in the presence of a strong acid, a halide and a catalyst, wherein the starting imidazopyridine α -hydroxyacetamide has the structure of Formula 6 and the product imidazopyridine acetamide has the structure of Formula 6A

wherein

Y is hydrogen, halogen or C₁₋₄ alkyl;

X₁ and X₂ are independently selected from the group consisting of hydrogen, halogen, C₁₋₄ alkoxy, C₁₋₆ alkyl, CF₃ and CH₃SO₂; and

R₁ and R₂ are independently hydrogen or C₁₋₅ alkyl.

8.-10. (canceled)

11. (currently amended) The process of claim 11 7 wherein Y is methyl, X₁ and X₂ are independently hydrogen or methyl and R₁ and R₂ are methyl.

12.-13. (canceled)

14. (currently amended) The process of claim 13 7 wherein the strong acid is sulfuric acid.

Amendment A

Inventor(s) Name: Jarvi et al.

Attorney Docket No.: 1593 WO/US

15.-16. (canceled)

17. (currently amended) The process of claim 15 7 wherein the halide is a bromide ion.

18.-26. (canceled)

27. (currently amended) The process of claim 26 7 wherein the catalyst is a palladium catalyst.

28.-29. (canceled)

30. (currently amended) The process of claim 29 27 wherein the catalyst is palladium on barium sulfate.

31.-34. (canceled)

35. (original) A process for the preparation of an imidazopyridine acetamide from an imidazopyridine α -hydroxyacetamide, the process comprising directly hydrogenating an imidazopyridine α -hydroxyacetamide in the presence of hydrogen gas, a strong acid or mixture of strong acids with a pKa of about -9 or less, a chloride or bromide ion and a palladium catalyst, wherein the imidazopyridine α -hydroxyacetamide has the structure of Formula 7 and the imidazopyridine acetamide product has the structure of Formula 7A.

Amendment A

Inventor(s) Name: Jarvi et al.

Attorney Docket No.: 1593 WO/US

wherein

Y is C₁₋₄ alkyl;

X₁ is C₁₋₄ alkyl; and

R₁ and R₂ are independently hydrogen or C₁₋₅ alkyl.

36. (original) The process of claim 35 wherein Y, X₁, R₁ and R₂ are methyl.

37. (original) The process of claim 35 wherein the bromide or chloride ion is a bromide ion.

38.-40. (canceled)

41. (currently amended) The process of claim 40 35 wherein the palladium catalyst is palladium on barium sulfate.

42. (original) The process of claim 35 wherein the imidazopyridine α-hydroxyacetamide, the strong acid, the chloride or bromide ion and the palladium catalyst is dissolved in a solvent of methanol, ethanol, n-propanol, formic acid, acetic acid, ethanoic acid or propionic acid.

43. (canceled)

44. (currently amended) The process of claim 43 42 wherein the solvent is acetic acid.

45.-46. (canceled)

47. (currently amended) The process of claim 45 35 wherein the reaction temperature is about 70°C to about 75°C.

Amendment A

Inventor(s) Name: Jarvi et al.

Attorney Docket No.: 1593 WO/US

48.-49. (canceled)

50. (currently amended) The process of claim 49 35 wherein the reaction pressure is about 2.0 atmospheres to about 2.8 atmospheres.

51. (original) The process of claim 36 wherein the strong acid is sulfuric acid, the bromide or chloride ion is bromide ion and the catalyst is palladium on barium sulfate.

52. (new) The process of claim 35 wherein the strong acid is sulfuric acid, the bromide or chloride ion is bromide ion and the catalyst is palladium on barium sulfate.

53. (new) The process of claim 52 wherein the reaction temperature is about 70°C to about 75°C and the reaction pressure is about 2.0 atmospheres to about 2.8 atmospheres.