Búsqueda del camino óptimo entre dos ciudades mediante el algoritmo del sistema de hormigas Trabajo Final de Inteligencia Computacional

Marco A. Pereyra, Gaspar E. Oberti y Darién J. Ramírez Tutor: Molas Giménez, José Tomás

#### Introducción

## algo

width=0.5width=0.5asdfasd

width=0.5width=0.5sadasd

### Resultados

| Dimensión de la matriz | Hormigas | Genético | Costo Uniforme |
|------------------------|----------|----------|----------------|
| $7 \times 7$           | 0.36     | 2.72     | 0.32           |
| $10 \times 10$         | 1.13     | 5.31     | 3.72           |
| $15 \times 15$         | 6.45     | 9.71     | 35.33          |
| $20 \times 20$         | 13.11    | 18.7     | 243.42         |

#### Resultados

| Matrices involucradas                   | Hormigas | Genético |
|-----------------------------------------|----------|----------|
| Distancia                               | 70       | 62       |
| Distancia + Peaje                       | 62       | 58       |
| Distancia + Peaje + Hospedaje           | 64       | 54       |
| Distancia + Peaje + Hospedaje + Tráfico | 60       | 50       |

Los tiempos de ejecución considerando sólo la distancia fueron de  $17.03~{\rm y}~122.65$  segundos respectivamente.

#### Resultados

| Matrices involucradas | 7 Hormigas   |              | 14 Hormigas  |              |
|-----------------------|--------------|--------------|--------------|--------------|
|                       | $\rho = 0.4$ | $\rho = 0.8$ | $\rho = 0.4$ | $\rho = 0.8$ |
| D                     | 54           | 70           | 72           | 76           |
| D + P                 | 62           | 76           | 80           | 88           |
| D + P + H             | 60           | 72           | 74           | 78           |
| D + P + H + T         | 64           | 76           | 76           | 82           |

Tiempos: 18, 71, 36 y 112 segundos respectivamente.



#### Conclusiones

- **Osto uniforme:** Rápido para matrices pequeñas pero lento cuando se incrementa el tamaño.
- 2 Algoritmo genético: Tiempo de procesamiento intermedio. No depende de la representación. A veces se obtienen caminos con bucles.
- **3** Sistema de hormigas: Resultados medianamente buenos. Los tiempos de procesamientos están ligados al tamaño de la matriz, a la cantidad de hormigas y al  $\rho$ .

#### Conclusiones

- Algo común tanto en el algoritmo de hormigas como en el genético es que a medida que incrementa el número de características de evaluación, los porcentajes de acierto del camino óptimo disminuyen.
- Mejorar representación de los datos de entrada. Levantar datos de una base de datos de mapas, o procesar una imagen para detectar nodos y distancias entre ellos.

# Bibliografía



Marco Dorigo, Vittorio Maniezzo and Alberto Colorni, *The Ant System: Optimization by a colony of cooperating agents*. IEEE Transactions on Systems, Man, and Cybernetics?Part B, Vol.26, No.1, 1996, pp.1-13.



J. Aguilar, Member IEEE y M. A. Labrador, Senior Member IEEE *Un algoritmo de enrutamiento distribuido para redes de comunicación basado en sistemas de hormigas.* IEEE LATIN AMERICA TRANSACTIONS, VOL. 5, NO. 8, DECEMBER 2007.

## Preguntas

¿Preguntas?