

Modelo Detección fraccionamiento transaccional

¿Qué estamos buscando?

Detectar el fraccionamiento transaccional

Fraccionamiento Transaccional

Menos de 24 horas

Entendimiento de los datos

3. Variables

- _id: Identificador único del registro
- merchant_id: Código único del Comercio o aliado.
- subsidiary: Código unico de la sede o sucursal.
- transaction_date: Fecha de contabilización de la transacción en el core Financiero.
- account_number: numero único de cuenta
- user_id: Código único del usuario dueño de la cuenta desde donde se registran las transacciones.
- transaction_amount: Monto de la transaction en moneda ficticia.
- transaction_type: Naturaleza de la transacción valores (DEBITO o CREDITO)

Preparación de los datos

Para identificar la mala práctica transaccional de los corresponsales, se hace un agrupamiento que va contar por comercio y número de cuenta las transacciones que se realizaron en un lapso de 24 horas. Se hace un conteo para saber que cantidad se hicieron.

Condición

Si se hicieron mas de dos transacciones por el mismo corresponsal, a una misma cuenta durante las próximas 24 horas, se clasifica como fraude la transacción.

Variable respuesta

0: No fraude **83%**

1: Fraude **17%**

No Fraude

Fraude

- 17500 Hora y día de la semana donde mayor - 15000 cantidad de transacciones se han hecho. - 12500 Posible mayor fraccionamiento - 10000 - 7500

- 5000

- 2500

Modelado

Metodología

Selección Modelo

F1 ROCALIC

		FI	ROC AUC	
	Random Forest con class_weight	0.7777	0.8791	
	Xgboost	0.8004	0.8494	
	Random Forest	0.7986	0.8492	
	Decision Tree	0.7972	0.8482	
	Regresión logística con Class weighting	0.7371	0.8402	
	Ada Boost	0.7902	0.8371	
	Gradient Bosting	0.7849	0.8265	
	Regresión logística select variables	0.7736	0.8154	
	Xgboost con hiperparámetros	0.7736	0.8154	

Random Forest

(Bosque Aleatorio)

Los Random Forests tienen una capacidad de generalización muy alta para muchos problemas.

- ✓ Es un conjunto (ensemble) de árboles de decisión combinados.
- ✓ Distintos árboles ven distintas porciones de los datos.
- ✓ Ningún árbol ve todos los datos de entrenamiento. Esto hace que cada árbol se entrene con distintas muestras de datos para un mismo problema.
- ✓ Al combinar sus resultados, unos errores se compensan con otros y tenemos una predicción que generaliza mejor.

♦ NEQUI Arquitectura

API

hubo fraccionamiento

Recolección de datos

24 horas

Modelo **PIPELINE**

Reentrenamiento nuevos datos

No hubo fraccionamiento

Ingesta de info