An introduction to Bayesian Additive Regression Trees (BART)

Rodney Sparapani Associate Professor of Biostatistics Medical College of Wisconsin

September 15, 2025

CDC Growth Charts: United States

Motivating Example: Growth Charts

- ► The US Centers for Disease Control and Prevention (CDC) as well as the World Health Organization have developed growth charts for childhood development: height by age, weight by age, body mass index by age and weight by height
- ► Here we will focus on height, y_t , by age in months, t = 24, ..., 215 (2 to 17 years old)
- ► The CDC uses the LMS method via natural cubic splines (Cole and Green 1992 *Statistics in Medicine*)
- ▶ Three parameters estimated by penalized maximum likelihood the Box-Cox power transformation, L_t ; the mean, M_t ; and the coefficient of variation, S_t

$$z_{t} = \left\{ \begin{array}{ll} \frac{-1 + (y_{t}/M_{t})^{L_{t}}}{L_{t}S_{t}} & L_{t} \neq 0 \\ \frac{\log(y_{t}/M_{t})}{S_{t}} & L_{t} = 0 \end{array} \right\} \sim N(0, 1)$$

- ▶ But, this only uses part of the data: just males or just females
- ► Male/female trajectories are quite similar until about age 12
- ► So what if we wanted to use all of the data?

What is Machine Learning Regression?

- ► The more appropriate term is "Statistical Learning" but "Machine Learning" has caught on so we are stuck with it
- ► Machine Learning Regression (MLR) is within the paradigm of Artificial (or Computational) Intelligence
- ► MLR is extensible, but for the moment consider the general regression case of a continuous outcome with Normal errors

$$y_i = \mu + f(x_i) + \epsilon_i$$
 where $\epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$

- ▶ f is an unspecified function whose form is to be *learned* from the data and x_i is a vector of covariates for i = 1, ..., N
- ► *Ideally*, in a *nonparametric* manner without resorting to *precarious restrictive assumptions*

What is Bayesian Additive Regression Trees?

- ► a supervised MLR with nice properties: automated learning of the functional relationship and interactions without requiring covariate transformations for continuous, binary, categorical and time-to-event outcomes
- ► tree-based ensemble predictive model
- Bayesian nonparametric method with robust defaults for the prior parameter settings
- computationally efficient posterior inference via MCMC estimates naturally computed from summaries of the posterior along with the quantification of their uncertainty
- ► seamless extension to variable selection in high dimensions

Selected BART references with URLs

Overview	Chipman, George and McCulloch 2010 AOAS			
	Sparapani, Spanbauer and McCulloch 2021 JSS			
Survival Analysis	Sparapani, Logan et al. 2016 Statistics in Medicine			
	Henderson, Louis et al. 2020 Biostatistics			
	Sparapani, Rein et al. 2020 Biostatistics			
	Sparapani, Logan et al. 2020 SMMR			
	Linero, Basak et al. 2021 Bayesian Analysis			
Big Data	Pratola, Chipman et al. 2014 JCGS			
(Big N)	Entezari, Craiu et al. 2017 Canadian J of Stat			
Variable Selection	Linero 2018 JASA			
(Big P)	Liu, Rockova 2021 JASA			
Efficient MCMC	Pratola 2016 Bayesian Analysis			
Nonparametric	Rockova and Saha 2019 PMLR			
Theory	Rockova and van der Pas 2020 AOS			
Heteroskedastic	Pratola, Chipman et al. 2020 JCGS			
Propensity Scores	Hahn, Murray et al. 2020 Bayesian Analysis			
Monotonic	Chipman, George et al. 2021 Bayesian Analysis			

Bayesian Additive Regression Trees (BART)

Chipman, George & McCulloch 2010 Annals of Applied Stat

$$y_{i} = f(x_{i}) + \epsilon_{i} \qquad \epsilon_{i} \stackrel{\text{iid}}{\sim} N(0, w_{i}^{2}\sigma^{2})$$

$$f \stackrel{\text{prior}}{\sim} BART (H, \mu, \kappa, \tau, \alpha, \beta)$$

$$f(x_{i}) \equiv \mu + \sum_{h=1}^{H} g(x_{i}; \mathcal{T}_{h}, \mathcal{M}_{h}) \qquad H \in \{50, 200, 500\}$$

$$\mu_{hl} | \mathcal{T}_{h} \stackrel{\text{prior}}{\sim} N\left(0, \frac{\tau^{2}}{4H\kappa^{2}}\right) \text{ leaves of } \mathcal{T}_{h}$$

$$\in \mathcal{M}_{h}$$

$$\sigma^{2} \stackrel{\text{prior}}{\sim} \lambda \nu \chi^{-2} (\nu)$$

$$\stackrel{\text{prior}}{\sim} Gamma^{-1} (\nu/2, \lambda \nu/2) \qquad E\left[\sigma^{2}\right] = \lambda \nu/(\nu - 2)$$

Bayesian Additive Regression Trees (BART)

Logan, Sparapani, McCulloch & Laud 2020 SMMR

BART, ensembles and prediction error

- ▶ mean squared error = $bias^2 + variance$
- ► There is a trade-off between the bias and variance
- ➤ Consider the spectrum of trade-offs

 Linear regression is on the high bias/low variance end

 Single-tree regression is on the low bias/high variance end
- ► Ensembles are in the middle: medium bias/medium variance
- ► BART is in the class of ensemble models which both theoretically, and in practice, have excellent out-of-sample predictive performance

Krogh & Solich 1997 *Physical Review E*Baldi & Brunak 2001 "Bioinformatics: machine learning approach"
Kuhn & Johnson 2013 "Applied Predictive Modeling"

Binary trees and Bayesian Additive Regression Trees

- ▶ BART relies on an ensemble of *H* binary trees
- ► We exploit the wooden tree metaphor to its fullest except binary trees grow downward by tradition
- ► Each of these trees grows down starting out as a root node
- ► The root node is generally a branch decision rule, but it doesn't have to be; occasionally, there are trees in the ensemble which are only a root terminal node consisting of a single leaf output value
- ► If the root is a branch decision rule, then it spawns a left and a right node which each can be either a branch decision rule or a terminal leaf value and so on
- ▶ In binary tree, \mathcal{T} , there are C nodes which are made of B branches and L leaves: C = B + L
- There is an algebraic relationship between the number of branches and leaves which we express as B = L 1.

The BART R package

- ► to facilitate the predict function, BART fits can be stored as R objects to be reloaded later
- ► the ensemble of trees is encoded in an ASCII string which is returned in the treedraws\$trees list item
- ► This string can be read by R
- ► Encoded with C/C++ indexing starting with 0 is used rather than R object indexing starting with 1
- ► Since the predict function calls C/C++ code for speed

6

3 NA

NA

```
Sparapani, Spanbauer and McCulloch 2021
Journal of Statistical Software
R> write(post$treedraws$trees, "trees.txt")
R> tc <- textConnection(post$treedraws$tree)</pre>
R> trees <- read.table(file=tc, fill=TRUE, row.names=NULL,
     col.names=c("node", "var", "cut", "leaf"))
R> close(tc)
R> head(trees)
  node var cut
                         leaf
 1000 200
                           NΑ
                                         x_1
2
     3 NA
            NΑ
                           NΑ
                                 \leq c_{1.67}
3
         0 66 -0.001032108
4
     2 0 0 0.004806880
5
     3
       0 0 0.035709372
                                 0.005
                                               0.036
```

NA

- ► The treedraws\$trees string is encoded as follows
- ► The first line is an exception which has the number of MCMC samples, *M*, in the field node; the number of trees, *H*, in the field var; and the number of variables, *P*, in the field cut
- ► For the rest of the file, the field node is used for the number of nodes in the tree when all other fields are NA; or for a specific node when the other fields are present
- The nodes are numbered in relation to the tree's depth level,
 d(n) = ⌊log₂ n⌋ or floor(log2(node))

Depth							
0				1			
1		2				3	
2	4		5		6		7
: d		2^d			2 ^d	!+1_	-1

- ► The var field is the variable in the branch decision rule which is encoded 0, ..., P-1 as a C/C++ index (rather than R)
- ► Similarly, the cut field is the cut-point of the variable in the branch decision rule which is encoded $0, \ldots, c_j 1$ for variable j
- cut-points are returned in the treedraws\$cutpoints list item
- ► The terminal leaf output value is contained in the field leaf
- ► It is not immediately obvious which nodes are branches vs. leaves since, at first, it would appear that the leaf field is given for both branches and leaves
- ► Confusingly: leaves are always associated with var=cut=0
- ► however, note that this is also a valid branch variable/cut-point since these are C/C++ indices

- ▶ The key to proper discrimination between branches and leaves is via the algebraic relationship between a branch, n, at tree depth d(n) leading to its left, l = 2n, and right, r = 2n + 1, nodes at depth d(n) + 1
- ► for each node, besides root, you can determine from which branch it arose and those nodes that are not a branch (since they have no leaves) are necessarily leaves

- ► The BART prior specifies a flexible class of unknown functions, f, from which we can gather randomly generated fits to the given data via the posterior
- ► Here we define f as returning a scalar value: for a multivariate BART example, see Um, Linero, et al. 2023 Stat in Med
- Let function $g(x; \mathcal{T}, \mathcal{M})$ assign a value based on the input x
- The binary tree \mathcal{T} is represented by a collection of C four-tuples $(n, \psi_n; j, k)$: n for node number; $\psi_n = 1$ for a branch and 0 for a leaf; and, if a leaf, j for covariate x_j with k for the cut-point c_{jk}
- ► The collection of branches is denoted by $\mathcal{B} = \{n : \psi_n = 1\}$
- ▶ The branch decision rules are of the form $x_j \le c_{jk}$ which means branch left and $x_j > c_{jk}$, branch right; or terminal leaves where it stops.
- ▶ \mathcal{M} represents leaves and is a set of ordered pairs, (n, μ_n) : $n \in \mathcal{L}$ where \mathcal{L} is the set of leaves $(\mathcal{L}$ is the complement of \mathcal{B}) and μ_n for the outcome value

▶ The function, f(x), is the following sum:

$$f(x) = \mu + \sum_{h=1}^{H} g(x; \mathcal{T}_h, \mathcal{M}_h)$$

where *H* is "large", let's say, 50, **200** or 500

For a continuous outcome, y_i , we have the following BART regression on the vector of covariates, x_i :

$$y_i = f(x_i) + \epsilon_i$$
 where $\epsilon_i \stackrel{\text{iid}}{\sim} N(0, w_i^2 \sigma^2)$

with i indexing subjects i = 1, ..., N

► The BART priors for the unknown random function, f, and the error variance, σ^2 , are as follows

$$f \stackrel{\text{prior}}{\sim} \text{BART} (H, \mu, \kappa, \tau, \alpha, \beta) \qquad \sigma^2 \stackrel{\text{prior}}{\sim} \nu \lambda \chi^{-2} (\nu)$$

where H is the number of trees, μ is a known constant which centers y and the rest of the parameters will be explained later in this section (for brevity, we often use $f \stackrel{\text{prior}}{\sim} \text{BART}$)

- ▶ The w_i are known standard deviation weight multiples which you can supply with the argument w that is only available for continuous outcomes, hence, the weighted BART name; the unit weight vector is the default
- The centering parameter, μ , can be specified via the fmean argument where the default is taken to be \bar{y}
- $ightharpoonup x_i$: matrices or data frames can be supplied
- unlike matrices, data frames can contain categorical factors when x.train is a data frame
- ► Factors with multiple levels are transformed into dummy variables with each level as their own binary indicator; factors with only two levels are a binary indicator with a single dummy variable

- ► BART is a Bayesian nonparametric prior
- we represent the BART prior in terms of the collection of all trees, \mathcal{T} ; collection of all leaves, \mathcal{M} ; and the error variance, σ^2 , as: $[\mathcal{T}, \mathcal{M}, \sigma^2] = [\sigma^2] [\mathcal{T}, \mathcal{M}] = [\sigma^2] [\mathcal{T}] [\mathcal{M}|\mathcal{T}]$
- ▶ the individual trees themselves are independent: $[\mathcal{T}, \mathcal{M}] = \prod_h [\mathcal{T}_h] [\mathcal{M}_h | \mathcal{T}_h]$ where $[\mathcal{T}_h]$ is the prior for the hth tree and $[\mathcal{M}_h | \mathcal{T}_h]$ is the collection of leaves for the hth tree
- ▶ the collection of leaves for the hth tree are independent: $[\mathcal{M}_h | \mathcal{T}_h] = \prod_n [\mu_{hn} | \mathcal{T}_h]$ where n indexes the leaf nodes

- ▶ The tree prior: $[\mathcal{T}_h]$. There are three prior components of \mathcal{T}_h which govern whether the tree branches grow or are pruned
- ► The first tree prior regularizes the probability of a branch at leaf node n in tree depth $d(n) = \lfloor \log_2 n \rfloor$ as follows.

$$\psi_n \stackrel{\text{prior}}{\sim} B(p(d(n))) \text{ where } p(d(n)) = \alpha(d(n) + 1)^{-\beta}$$
 (1)

 $\psi_n = 1$ represents a branch while $\psi_n = 0$ is a leaf $0 < \alpha < 1$ and $\beta \ge 0$

- ▶ You can specify these prior parameters with arguments, but the following defaults are recommended: α is set by the parameter base=0.95 and β by power=2
- The expected number of branches (leaves) is 1 (2) with probability $P[\psi_1 = 1, \psi_2 = \psi_3 = 0] = p(0)q(1)^2 \approx 0.55$
- ► Or 2 (3) with $2P[\psi_1 = \psi_2 = 1, \psi_3 = \psi_4 = \psi_5 = 0] = 2p(0)p(1)q(1)q(2)^2 \approx 0.27$ (doubled due to symmetry)
- ► Trees with only 1 or 2 branches (2 or 3 leaves) would dominate with a probability of about **0.82**

BART and Bayesian nonparametric theory

- ► frequentist theoretical justification for BART's performance: asymptotically consistent with a near optimal learning rate
- ► the BART posterior distribution concentrates around the truth at a near optimal minimax rate
- ► the default BART Branching penalty is near optimal:

$$\psi_n \stackrel{\text{prior}}{\sim} B(\alpha(1+d(n))^{-\beta}) \text{ where } d(n) = 0,...$$

► the optimal BART Branching penalty is now shown to be:

$$\psi_n \stackrel{\text{prior}}{\sim} B(\gamma^{d(n)})$$
 where $0 < \gamma < 0.5$

Branches (Leaves) 0 (1) 1 (2) 2 (3)
$$3+(4+)$$

Prior probability 0.00 $(1-\gamma)^2$ $2\gamma(1-\gamma)(1-\gamma^2)^2$...
 $\gamma = 0.25$ 0.00 0.56 0.33 0.11
 $\alpha = 0.95, \beta = 2$ 0.05 0.55 0.27 0.13

Chipman, George & McCulloch 1998 JASA

Rockova & Saha 2018 PMLR

Rockova & van der Pas 2020 Annals of Statistics

- ▶ The leaf prior: $[\mu_{hn} | \mathcal{T}_h]$
- ▶ Given a tree, \mathcal{T}_h , there is a prior on its leaf values, $\mu_{hn} | \mathcal{T}_h$ and we denote the collection of all leaves in \mathcal{T}_h by

$$\mathcal{M}_h = \{(n, \mu_{hn}) : n \in \mathcal{L}_h\}$$

- ► Suppose that $y \in [y_{\min}, y_{\max}]$ where y_{\min} and y_{\max} might be elicited as **0.025** and **0.975** quantiles otherwise, the observed min and max are used (the default)
- ▶ Denote $[\tilde{\mu}_1, \dots, \tilde{\mu}_H]$ as the leaf output values from each tree corresponding to the vector of covariates, x
- ► If $\tilde{\mu}_h | \mathcal{T}_h \stackrel{\text{iid}}{\sim} \mathbf{N}(\mathbf{0}, \sigma_\mu^2)$, then the model estimate is $\hat{y} = \mathbf{E}[y|x] = \mu + \sum_h \tilde{\mu}_h$ where $\hat{y} \sim \mathbf{N}(\mu, H\sigma_\mu^2)$
- Solve for σ_{μ} : $y_{\min} = \mu \kappa \sqrt{H} \sigma_{\mu}$ and $y_{\max} = \mu + \kappa \sqrt{H} \sigma_{\mu}$ $\sigma_{\mu} = \frac{y_{\max} y_{\min}}{2\kappa \sqrt{H}}$
- Therefore, we arrive at $\mu_{hn} \stackrel{\text{prior}}{\sim} \mathbf{N}\left(\mathbf{0}, \frac{\tau^2}{4H\kappa^2}\right) \text{ where } \tau = y_{\text{max}} y_{\text{min}}$

- ightharpoonup The parameter κ calibrates this prior as follows
- ► The default value, $\kappa = 2$, corresponds to \hat{y} falling within the extrema with approximately 0.95 probability
- \blacktriangleright Alternative choices of κ can be supplied via the k argument
- ▶ We have found that values of $\kappa \in [1,3]$ generally yield good results
- Note that κ is a potential candidate parameter for choice via cross-validation

- ► We fix the number of trees at *H* which corresponds to the argument ntree
- ► The default number of trees is 200 for continuous outcomes; but for computational convenience, 50 is also a reasonable choice which is the default for all other outcomes
- cross-validation could be considered

- ► The number of cut-points is provided by the argument numcut and the default is 100
- ► The default number of cut-points is achieved for continuous covariates
- ► For continuous covariates, the cut-points are uniformly distributed by default, or generated via uniform quantiles if the argument usequants=TRUE is provided
- ▶ By default, discrete covariates which have fewer than 100 values will necessarily have fewer cut-points
- ► However, if you want a single discrete covariate to be represented by a group of binary dummy variables, one for each category, then pass the variable as a factor within a data frame

- Next, there is a prior dictating the choice of a splitting variable j conditional on a branch event ψ_n which defaults to uniform probability $s_i = P^{-1}$ where P is the number of covariates
- ▶ Given a branch event, ψ_n , and a variable chosen, x_j , the last tree prior selects a cut point, c_{jk} , within the range of observed values for x_j ; this prior is uniform

The BART error variance prior: $[\sigma^2]$

- The prior for σ^2 is the conjugate scaled inverse Chi-square distribution, i.e., $\lambda \nu \chi^{-2}(\nu)$
- ► Equivalent to the inverse Gamma, i.e., Gamma⁻¹ ($\nu/2$, $\lambda\nu/2$) where E [σ^2] = $\lambda\nu/(\nu-2)$
- We recommend that the degrees of freedom, ν , be from 3 to 10 and the default is 3 (can be over-ridden by the argument sigdf)
- ► The λ parameter can be specified by the lambda argument (defaults to NA)
- ▶ If lambda is unspecified, then we determine a reasonable value for λ based on an estimate, $\widehat{\sigma}$, (which can be specified by the argument sigest and defaults to NA)

The BART error variance prior

- ▶ If sigest is unspecified, the default value of sigest is determined via linear regression or the sample standard deviation: if P < N, then $y_i \sim N(x_i'\widehat{\beta}, \widehat{\sigma}^2)$; otherwise, $\widehat{\sigma} = s_y$
- Now we solve for λ such that $P[\sigma^2 \le \widehat{\sigma}^2] = q$
- ► This quantity, q, can be specified by the argument sigquant and the default is 0.9 whereas we also recommend considering 0.75 and 0.99
- Note that the pair (v, q) are potential candidate parameters for choice via cross-validation.

Returning to the real data example

- ► The CDC mainly used the US National Health and Nutrition Examination Survey (NHANES): waves I-III *n* = 12677
- ► For simplicity, I used NHANES 1999-2000 annual/continuous
- ► The data set is in the BART3 package: bmx and see the height3.R example in demo
- ► 2-17 years (fractional age for months)
- each child only measured once
- ► height (cm) and weight (kg) collected
- ► Check MCMC convergence with $\max \widehat{R} < 1.1$ for σ : Vehtari, Gelman et al. 2021 *Bayesian Analysis*

	n	%
Total	3435	
Males	1768	51.5
Females	1667	48.5
White	800	23.3
Black	1035	30.1
Hispanic	1600	46.6

MCMC Convergence post\$sigma: $\max \hat{R} = 1.01$ Burn-in 100, Thinning 1, Chains 8, Posterior 1000

MCMC Convergence post\$sigma: Auto-correlation

Series post\$sigma.

Test data: M vs. F

Data fit: M vs. F

95% credible intervals: M vs. F

