NOTAS DE AULA - IV

Componente Sazonal em Modelos Estruturais

⇒ Componente Sazonal

- Sazonalidade= representa as flutuações periódicas que ocorrem no período máximo de um ano, estando associadas a variações climáticas(estações do ano), tradições culturais/sociais (Carnaval, Páscoa, Natal, Dia das Mães, São João, etc), medidas legais e administrativas (início e fim do ano letivo, do ano fiscal) etc.
- s: período de sazonalidade = tempo que a flutuação periódica leva para se repetir em 1 ano.
 - 4, séries trimestrais;
 - 12, séries mensais;
 - 52, séries semanais;
- Uma série pode apresentar mais do que uma componente sazonal. Ex: se a série for diária, pode haver sazonalidades: diária (s=365), semanal (s=7), etc, cada qual associada a um fenômeno específico. Stamp, para séries diárias considera sazonalidade semanal (s=7).
- Em muitas circunstâncias, a componente sazonal pode ser vista como algo indesejável (*nuisance*), que obscurece a visualização de outras componentes de interesse da ST, por exemplo, a tendência.

Ex: - taxa de desemprego mensal;

- PIB trimestral.

- Denomina-se de ajustamento sazonal ou dessazonalização ao processo de retirada/filtragem da componente sazonal de uma ST de forma a se obter uma ST livre das flutuações sazonais.
- Muitas ST que fazem parte das estatísticas oficiais dos governos são publicadas dessazonalizadas.
- Exemplo: taxa de desemprego aberto mensal para o Brasil (1981.01 a 2000.08)

- model based: modelos estruturais,
SEATS/TRAMO
(EuroStata)

- métodos semi-heurísticos: X12 ARIMA
(US Bureau of Census)

- Escalas da sazonalidade: a componente sazonal pode entrar no modelo na escala aditiva, multiplicativa ou mista.
- I. Saz. aditiva: é o padrão nos modelos lineares.

$$y_t = Tend + Saz + Irreg$$

 $y_t = \mu_t + \gamma_t + \epsilon_t$

Série sazonalmente ajustada:
$$y_t^{(a)} = y_t - \hat{\gamma}_t = \hat{\mu}_t + \hat{\epsilon}_t$$

- Observe que a série sazonalmente ajustada não equivale a componente de tendência, uma vez que, após a subtração do fator sazonal, sobram a tendência estimada e a componente irregular estimada (resíduo).
- A componente sazonal calculada num determinado período (mês, trimestre, etc) é também denominada de fator sazonal.

ii. Saz multiplicativa: é o padrão no método X-12 ARIMA, mas pode ser obtida de modelos lineares se ajustarmos um modelo para o log da série.

$$y_{t} = Tend * Saz * Irreg$$

 $y_{t} = \mu_{t} \gamma_{t} \epsilon_{t}$

Série sazonalmente ajustada:
$$y_t^{(a)} = y_t / \hat{\gamma}_t = \hat{\mu}_t \hat{\epsilon}_t$$

- Obtendo fatores multiplicativos a partir de um modelo aditivo:
- Os procedimentos "model based" não são adequados para estimar fatores multiplicativos na forma original.
- Entretanto através da transformação logarítmica é possível tornar um modelo multiplicativo em aditivo:

>> mod. multiplicativo:

$$y_t = \mu_t \gamma_t \epsilon_t$$

>>transformando em aditivo:

$$\begin{aligned} \ln y_t &= \ln \mu_t + \ln \gamma_t + \ln \epsilon_t \\ y'_t &= \mu'_t + \gamma'_t + \epsilon'_t. \end{aligned} \text{ (este \'e o modelo efetivamente ajustado)}.$$

>>Mas o que queremos é dessazonalizar a série original, e não o seu log: $y_t^{(a)} = y_t / \hat{\gamma}_t = \exp(y_t') / \exp(\hat{\gamma}_t').$

>> Qual a interpretação do fator sazonal multiplicativo γ_{t} ?

$$100 \left(\frac{\hat{y}_t - \hat{\mu}_t}{\hat{\mu}_t} \right) = 100 \left(\frac{\hat{y}_t \hat{\mu}_t - \hat{\mu}_t}{\hat{\mu}_t} \right) = 100 (\hat{y}_t - 1) = 100 (\exp(\hat{y}_t') - 1).$$

Ex: ajustando um ME ao log da série, encontramos que o fator sazonal no mês de janeiro é 0.3. Como $\exp(0.3) \approx 1.35$, então no mês de janeiro a série, devido a falutuação sazonal, apresenta um aumento de 35% em relação a sua tendência.

- ⇒ Por que a transformação logarítmica é indicada em algumas situações:
- i. lineariza o modelo= como vimos, um modelo originalmente multiplicativo, é transformado em modelo aditivo, isto é, linear nas componentes, através desta transformação.
- ii. traz simetria aos resíduos = se os resíduos de um modelo posuem distribuição assimétrica a transformação logarítmica pode tornar a distribuição dos resíduos aprox. simétrica, contribuindo para a não rejeição da hipótese de normalidade.
- iii. muda a escala = se $y_t \sim I(1)$, então $\Delta log(y_t)$ é estacionário (I(0)), e além do mais,

$$\Delta \log y_{t} = \log(y_{t} / y_{t-1}) = \log(1 + \Delta y_{t} / y_{t-1})$$

$$\approx \Delta y_{t} / y_{t-1}, \text{ se } \Delta y_{t} << y_{t-1}.$$

ou seja, a escala passa a ser de variação relativa, ou percentual. Raramente utilizada em ME, embora seja comum em regressão de ST.

iv. estabiliza a variância = muitas vezes na escala original a variável dependente é heterocedástica, ou seja, a sua variância não é fixa no tempo, invalidando os testes estatísticos que pressupõem homocedasticidade. Para um tipo especial de heterocedasticidade, a transformação logarítmica estabiliza a variância.

Prova: supor

$$y_1 = \mu_1 \gamma_1 \epsilon_1$$
, $\epsilon_1 \sim \log \text{normal}(\exp(1/2\sigma^2), \exp(2\sigma^2) - \exp(\sigma^2))$.

Por tan to

$$\begin{split} E(y_{t}|\mu_{t}\gamma_{t}) &= \mu_{t}\gamma_{t}E(\epsilon_{t}) = \mu_{t}\gamma_{t}\exp(1/2\sigma^{2}) \\ Var(y_{t}|\mu_{t}\gamma_{t}) &= (\mu_{t}\gamma_{t})^{2}\left(\exp(2\sigma^{2}) - \exp(\sigma^{2})\right) \\ &= (\mu_{t}\gamma_{t})^{2}\exp(\sigma^{2})\left[\exp(\sigma^{2}) - 1\right] \\ &\propto \left[E(y_{t})|\mu_{t}\gamma_{t}\right]^{2}. \end{split}$$

•Ou seja, na escala original a variável y é heterocedástica. A questão é saber qual a transformação adequada que irá estabilizar a variância de y. Seja esta transformação:

$$z_{t} = h(y_{t})$$
. Então segue que:
 $Var(z_{t}|\mu_{t}\gamma_{t}) = Var(h(y_{t}|\mu_{t}\gamma))$.

Suponha expansão de Taylor em torno de $w_1 = E(y_1 | \mu_1 \gamma_1)$.

$$\begin{split} z_{t} &= h(y_{t}) \approx h(w_{t}) + h'(w_{t})(y_{t} - w_{t}) \\ Var(h(y_{t})|\mu_{t}\gamma) \approx [h'(w_{t})]^{2} \ Var(y_{t}|\mu_{t}\gamma) = cte \\ &\approx [h'(w_{t})]^{2} [E(y_{t})|\mu_{t}\gamma_{t}]^{2} = cte \end{split}$$
 Se escolhemos $h(w_{t}) = \log(w_{t})$, então
$$[h'(w_{t})]^{c^{2}} = [1/w_{t}]^{2} \propto [E(y_{t})|\mu_{t}\gamma_{t}]^{2}. \end{split}$$

Ou seja, a transformação log estabiliza a variância se a lei da variância for do tipo $Var[(y_{_t})|\mu_{_t}\gamma_{_t}] \propto [E(y_{_t})|\mu_{_t}\gamma_{_t}]^2$.

- ⇒ Tratamento de sazonalidade em modelos estatísticos: existem três procedimentos para o controle da sazonalidade:
 - i. variáveis dummy
 - ii. funções trigonométricas
 - iii. variável endógena defasada: y_{t-s}.

Apenas os dois primeiros são adequados para tratamento nos ME.

1. Sazonalidade por variáveis dummy:

- é o mais simples de ser implementado;
- o coeficiente de cada dummy representa o fator sazonal do mês (trimestre, etc) de interesse;
- A título de ilustração considere um período trimestral (s=4). Um modelo inicial seria:

$$\begin{aligned} y_t &= \beta + \gamma_1 D_{1t} + \gamma_2 D_{2t} + \gamma_3 D_{3t} + \gamma_4 D_{4t} + \varepsilon_t, & t &= 1, 2, ..., T \\ D_{it} &= 1 & i &= t, i &= 1, 2, 3, 4 \\ 0 & c.c. & \end{aligned}$$

 Entretanto esse modelo apresenta um problema multicolinearidade perfeita (um dos regressores pode ser obtido como combinção linear dos outros regressores):

$$egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} D_{1t} \ D_{2t} \ D_{3t} \ D_{4t} \ \end{array} \end{bmatrix} + egin{align*} egin{align*}$$

 $y_t = \beta' x_t + \varepsilon_t$, t = 1,2,...,T. Finalmente utilizando notação matricial : $y_{Tx_1} = X_{Txk}\beta_{kx_1} + \varepsilon_{Tx_1}$,

$$X = \begin{bmatrix} \mathbf{1} \ X_{21} \ X_{31} \dots X_{k1} \\ \mathbf{1} \ X_{22} \ X_{32} \dots X_{k2} \\ \dots \\ \mathbf{1} \ X_{2T} \ X_{3T} \dots X_{kT} \end{bmatrix}_{Txk}$$

A solução de MQO é dada por : $\hat{\beta} = (X'X)^{-1}X'y$, onde

$$(X'X) = \begin{bmatrix} T & \sum X_{2t} & \sum X_{3t} & \dots & \sum X_{kt} \\ \sum X_{2t} & \sum X_{2t}^2 & \sum X_{2t} X_{3t} & \dots & \sum X_{2t} X_{kt} \\ \sum X_{3t} & \sum X_{3t} X_{2t} & \sum X_{3t}^2 & \dots & \sum X_{3t} X_{kt} \\ \dots & \dots & \dots & \dots \\ \sum X_{kt} & \sum X_{kt} X_{2t} & \sum X_{kt} X_{3t} & \dots & \sum X_{kt}^2 \end{bmatrix}_{kxk}$$

 $X_{kt} = D_{kt}$ t = 1,2,...,6 ; k = 1,2,3,4, segue que:

$$X = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}_{6x5}$$

Segue que : $X_{1t} = X_{2t} + X_{3t} + X_{4t} + X_{5t}$, $\forall t$ (I). Ou seja, existe multicol. perfeita entre os regressores.

Consequência: a primeira linha da matriz X'X será igual à soma das outras.

Prova: use (I) e a expressão de X'X, e que:

$$\begin{split} & \sum X_{kt} \!=\! 6, \, k \!=\! 1; \quad \sum X_{kt} \!=\! 2, \, k \!=\! 2, \! 3; \quad \sum X_{kt} \!=\! 1, \, k \!=\! 4, \! 5. \\ & \sum X_{kt} X_{jt} \!=\! 0, \ \forall \, k \neq j. \ Assim \ teremos : \end{split}$$

$$(X'X) = \begin{bmatrix} 6 & 2 & 2 & 1 & 1 \\ 2 & 2 & 0 & 0 & 0 \\ 2 & 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix} >> a \text{ coluna 1\'e igual a soma das outras colunas.}$$

- >> Para evitar multicol. perfeita deve-se introduzir algum tipo de restrição nos parâmetros do modelo de regressão, resultando em diferentes parametrizações do modelo. Estas diferentes parametrizações serão vistas a seguir.
- >> Cada parametrização irá estimar o fator sazonal a partir de um patamar distinto, mas o poder preditivo e as previsões obtidas com estas parametrizações serão idênticas.

i) Parametrização 1

>> faz-se um dos coefs γ_j = 0, j=1,2,3,4, o que equivale a abandonar da regressão a dummy D_{it} . Por exemplo, se abandonarmos a dummy do 40 trimestre o modelo resultante fica:

$$y_{t} = \beta + \gamma_{1}D_{1t} + \gamma_{2}D_{2t} + \gamma_{3}D_{3t} + \varepsilon_{t}, \qquad t = 1, 2, ..., T$$

$$D_{jt} = \begin{cases} 1, & t = j, j+s, j+2s,... \\ 0, & t \neq j, j+s, j+2s,... \end{cases}, j = 1, 2, 3$$

$$\begin{split} E(y_t|D_{it} = 0, i = 1, 2, 3) &= \beta \\ E(y_t|D_{jt} = 1, D_{it} = 0, i \neq j, i = 1, 2, 3) &= \beta + \gamma_j \Rightarrow \\ \hat{\beta} &= \overline{y}_4 \\ \hat{\gamma}_j &= \overline{y}_j - \overline{y}_4, \ j = 1, 2, 3 \end{split}$$

onde \overline{y}_j é a média amostral da série no trimestre j, j=1,2,3,4. Assim nessa parametrização o fator sazonal é medido em relação ao período basal.

ii) Parametrização 2

>> abandona o intercepto do modelo e coloca uma dummy para cada trimestre.

>> o patamar aqui é o zero.

$$\boldsymbol{y}_{t}\!=\boldsymbol{\delta}_{1}\boldsymbol{D}_{1t}\!+\boldsymbol{\delta}_{2}\boldsymbol{D}_{2t}\!+\boldsymbol{\delta}_{3}\boldsymbol{D}_{3t}\!+\boldsymbol{\delta}_{4}\boldsymbol{D}_{4t}\!+\boldsymbol{\epsilon}_{t}$$

$$D_{jt} = \begin{cases} 1, & t = j, j + s, j + 2s, ... \\ 0, & t \neq j, j + s, j + 2s, ... \end{cases}, j = 1, 2, 3, 4$$

$$\begin{split} &E(y_{_t}|D_{_{jt}}) = \delta_{_j} \Longrightarrow \hat{\delta}_{_j} = \overline{y}_{_j}, \ j = 1,2,3,4 \quad \text{onde} \\ &\overline{y}_{_j} \ \text{\'e a m\'edia amostral da s\'erie no trimestre } j,j = 1,2,3,4. \end{split}$$

>> pouco usual pois a maioria dos modelos têm intercepto/tendência.

iii) Parametrização 3

>> introduz restrição nos coeficientes sazonais: a soma dos fatores sazonais é zero no período sazonal.

$$\sum_{j=1}^{s} \theta_{j} = 0 \quad \therefore \quad \theta_{s} = -\left(\sum_{j=1}^{s-1} \theta_{j}\right) \text{ (adotada nos ME)}$$

$$y_{t} = \alpha + \sum_{j=1}^{s-1} \theta_{j} D_{jt} + \varepsilon_{t}, \quad t = 1, 2, ..., T$$

$$D_{jt} = \begin{cases} 1, & t = j, j + s, j + 2s, ... \\ 0, & t \neq j, j + s, j + 2s, ... \end{cases}$$

$$D_{jt} = \begin{cases} -1, & t = s, 2s, 3s, ... \\ 0, & t \neq j, j + s, j + 2s, ... \end{cases}$$

$$E(y_t \mid D_{it}) = \alpha + \theta_i \qquad \Rightarrow \theta_i = E(y_t \mid D_{it}) - \alpha, \ j = 1, 2, 3$$

$$E(y_t \mid D_{i4}) = \alpha - (\theta_1 + \theta_2 + \theta_3) = \alpha + \theta_4 \Longrightarrow \theta_4 = E(y_t \mid D_{i4}) - \alpha$$

$$0 = (\theta_1 + \theta_2 + \theta_3 + \theta_4) = \sum_{i=1}^{4} E(y_i \mid D_{ji}) - 4\alpha$$

$$\alpha = (1/4) \sum_{j=1}^{4} E(y_t \mid D_{jt}) \Rightarrow \hat{\alpha} = (1/4) \sum_{j=1}^{4} \overline{y}_j, \text{ onde } \overline{y}_j = (1/n_j) \sum_{t=1}^{n_j} y_t^{(j)}$$

é a média da série para o trimestre j, j = 1, 2, 3, 4.

Mas a média total da série $\overline{y} = (1/n) \sum_{t=1}^{n} y_{t}$, onde $n = \sum_{j=1}^{4} n_{j}$.

$$\overline{y} = (1/n) \left(\sum y_t^{(1)} + \sum y_t^{(2)} + \sum y_t^{(3)} + \sum y_t^{(4)} \right) = (1/n) \left(\sum_{j=1}^4 n_j \overline{y}_j \right)$$

Se a amostra for balanceada então $n_i = (1/4)n : n_i/n = 1/4$ e assim

$$\overline{y} = 1/4 \sum_{j=1}^{4} \overline{y}_{j} = \hat{\alpha}$$
, ou seja

$$\theta_{j} = E(y_{t} \mid D_{jt}) - \alpha, j = 1, 2, 3 \Rightarrow \hat{\theta}_{j} = \overline{y}_{j} - \overline{y}, j = 1, 2, 3, 4$$

o fator sazonal de cada trimestre é medido em relação à média da série.

□ Para ilustrar as diferentes possibilidades de parametrização de variáveis dummies na caracterização de sazonalidade determinística, considere a série trimestral do índice de produção industrial dos EUA no período 1953Q1 a 2004Q4 (n=208).

Observe que:

- i. a amostra é balanceada, i.e., n=208, n_i=208/4= 52.
- ii. a modelagem da série não incluirá tendência, e assim, de partida, o modelo estará mal especificado, mas servirá para ilustrar o que se pretende.
- iii. as médias da série, por trimestre e total, são dadas abaixo:

ARTER Me	an Std. Dev	. Obs.
1 61.782	88 27.42308	3 52
2 62.241	91 27.55858	3 52
3 62.659	68 27.69122	2 52
4 63.165	06 27.87475	5 52
All 62.462	27.44119	9 208
2 62.241 3 62.659 4 63.165	91 27.55858 68 27.69122 606 27.87475	3 2 5

1. modelo 1= abandona a dummy do 4º trimestre.

Dependent Variable: IP Method: Least Squares Date: 05/20/10 Time: 11:40 Sample: 1953Q1 2004Q4 Included observations: 208

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @SEAS(1) @SEAS(2) @SEAS(3)	63.16506 -1.382179 -0.923154 -0.505385	3.832620 5.420143 5.420143 5.420143	16.48091 -0.255008 -0.170319 -0.093242	0.0000 0.7990 0.8649 0.9258
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000348 -0.014353 27.63741 155820.6 -983.5072 0.023669 0.995057	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		62.46238 27.44119 9.495261 9.559445 9.521214 0.002224

$$IP = 63.165 - 1.382*Q1 - 0.923*Q2 - 0.505*Q3$$

- >> a estimativa do intercepto é a média amostral da série no 4º trimestre.
- >> os outros coeficientes, que caracterizam o fator sazonal dos trimestres 1, 2 e 3, são estimados pela diferença entre a média amostral do trimestre correspondente e a média amostral do 4º trimestre.
- >> pelo teste F pode-se concluir, ignorando a mal especificação do modelo, que não se pode rejeitar a hipótese de inexistência de sazonalidade nesta série.

$$H_0$$
: $c(2)=c(3)=c(4)=0$

↔ não há sazon.na série

H_a: c.c.

modelo 2= abandona o intercepto e inclui uma dummy para cada trimestre.

Dependent Variable: IP Method: Least Squares Date: 05/20/10 Time: 10:31 Sample: 1953Q1 2004Q4 Included observations: 208

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@SEAS(1) @SEAS(2) @SEAS(3) @SEAS(4)	61.78288 62.24191 62.65968 63.16506	3.832620 3.832620 3.832620 3.832620	16.12028 16.24004 16.34905 16.48091	0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000348 -0.014353 27.63741 155820.6 -983.5072 0.002224	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		62.46238 27.44119 9.495261 9.559445 9.521214

$$IP = 61.783*Q1+62.242*Q2+62.660*Q3+63.165*Q4$$

- >> a estimativa de cada coeficiente é a média amostral da série no trimestre correspondente.
- >> observe que as estatísticas fundamentais da regressão (R², DW, AIC, Soma do quadrado dos resíduos etc não são alteradas. A estatística F não pode ser computada para modelos sem intercepto).

1. modelo 3= introduz a restrição de que a soma dos coefs sazonais é nula no período sazonal.

Dependent Variable: IP Method: Least Squares Date: 05/20/10 Time: 10:46 Sample: 1953Q1 2004Q4 Included observations: 208

IP= C(1) + C(2)*@SEAS(1) + C(3)*@SEAS(2)+ C(4)*@SEAS(3) - @SEAS(4)

*(C(2)+C(3)+C(4))

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	62.46238	1.916310	32.59514	0.0000
C(2)	-0.679500	3.319146	-0.204721	0.8380
C(3)	-0.220474	3.319146	-0.066425	0.9471
C(4)	0.197295	3.319146	0.059441	0.9527
R-squared	0.000348	Mean dependent var		62.46238
Adjusted R-squared	-0.014353	S.D. depende	ent var	27.44119
S.E. of regression	27.63741	Akaike info cr	iterion	9.495261
Sum squared resid	155820.6	Schwarz crite	rion	9.559445
Log likelihood	-983.5072	Hannan-Quin	in criter.	9.521214
F-statistic	0.023669	Durbin-Watso	on stat	0.002224
Prob(F-statistic)	0.995057			

- >> a estimativa do intercepto (c(1)) é a média amostral da série.
- >> a estimativa de cada um coeficientes sazonais c(2), c(3), c(4), c(5)=-(c(2)+c(3)+c(4)) - é a diferença entre a média amostral da série e a média amostral da série para o trimestre em questão.
- >> observe que as estatísticas fundamentais da regressão (R², DW, AIC, Soma do quadrado dos resíduos, F etc não são alteradas.)

 O modelo sazonal determinístico com restrição dada pela soma dos fatores sazonais no período sazonal igula a zero (parametrização 3) servirá de base para a introdução de sazonalidade estocástica nos ME. A idéia é a seguinte:

$$\begin{split} &\sum_{j=1}^{s} \gamma_{_{j}} = 0 \ \therefore \ \sum_{j=0}^{s-1} \gamma_{_{t-j}} = 0. \ A \ versão \ estocástica \ será \ dada \ por: \\ &\sum_{j=0}^{s-1} \gamma_{_{t-j}} = \omega_{_{t}}, \ \omega_{_{t}} \sim NID(0,\sigma_{_{\omega}}^{^{2}}), \ ou \\ &\gamma_{_{t}} = -\sum_{_{j=1}}^{s-1} \gamma_{_{t-j}} + \ \omega_{_{t}}, \quad \omega_{_{t}} \sim NID(0,\sigma_{_{\omega}}^{^{2}}). \end{split}$$

 Portanto, o modelo com TLL e sazonalidade estocástica, por dummies, denominado do Modelo Estrutural Básico, será dado por:

-eq. das observ.:
$$y_{t} = \mu_{t} + \gamma_{t} + \varepsilon_{t} \qquad \varepsilon_{t} \sim N(0, \sigma_{\varepsilon}^{2})$$
-eq. do estado:
$$\mu_{t} = \mu_{t-1} + \beta_{t-1} + \eta_{t} \qquad \eta_{t} \sim N(0, \sigma_{n}^{2})$$

$$\beta_{t} = \beta_{t-1} + \zeta_{t} \qquad \zeta_{t} \sim N(0, \sigma_{\varepsilon}^{2})$$

$$\gamma_{t} = -\sum_{j=1}^{s-1} \gamma_{t-j} + \omega_{t} \qquad \omega_{t} \sim N(0, \sigma_{\omega}^{2})$$

onde:

$$\begin{split} E(\varepsilon_t \eta_s) &= E(\varepsilon_t \zeta_s) = E(\varepsilon_t \omega_t) = 0, \quad \forall \ t, s. \\ E(\varepsilon_t \alpha_0) &= E(\eta_t \alpha_0) = E(\zeta_t \alpha_0) = E(\omega_t \alpha_0) = 0, \quad \forall \ t. \\ Se \ \alpha_t &= (\mu_t, \ \beta_t, \gamma_t, \gamma_{t-1}, \gamma_{t-2})', \ ent \tilde{a}o \ \alpha_o \sim N(a_0, P_0). \end{split}$$

Deve-se adicionar que os ruídos das componentes são descorrelatados entre si,

 Supondo S=4, o modelo acima possui a seguinte representação na forma de espaço de estados:

$$y_{t} = (1 \quad 0 \quad 1 \quad 0 \quad 0) \begin{pmatrix} \mu_{t} \\ \beta_{t} \\ \gamma_{t} \\ \gamma_{t-1} \\ \gamma_{t-2} \end{pmatrix} + \varepsilon_{t} \sim \mathcal{E}_{t} \sim \mathcal{N}(0, \sigma_{\varepsilon}^{2})$$

$$\alpha_{t} = \begin{pmatrix} \mu_{t} \\ \beta_{t} \\ \gamma_{t} \\ \gamma_{t-1} \\ \gamma_{t-2} \end{pmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & -1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{pmatrix} \mu_{t-1} \\ \beta_{t-1} \\ \gamma_{t-1} \\ \gamma_{t-2} \\ \gamma_{t-3} \end{pmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} \eta_{t} \\ \zeta_{t} \\ \omega_{t} \end{pmatrix}$$

$$\eta_{t} = (\eta_{t} \zeta_{t} \omega_{t})' \sim N(0,Q), \ Q = E(\eta_{t} \eta'_{t}) = \begin{pmatrix} \sigma_{\eta}^{2} & 0 & 0 \\ 0 & \sigma_{\zeta}^{2} & 0 \\ 0 & 0 & \sigma_{\omega}^{2} \end{pmatrix}.$$

 Uma outra possibilidade é considerar uma dependência do tipo passeio aleatório p/ cada fator sazonal, como em Harrison & Stevens, 1976:

$$\begin{split} \gamma_{_{jt}} &= \gamma_{_{jt-1}} \; + \; \omega_{_{jt}}, \, \omega_{_{jt}} \sim N(0, \sigma_{_{\omega}}^{^{2}}), \; t = 1,\!2,\!...,\!T; \; j = 1,\!2,\!...s \; , \text{onde} \\ \sum_{_{i=1}^{s}}^{s} \gamma_{_{jt}} &= 0. \end{split}$$

>>Podemos re-escrever as S eqs anteriores de forma vetorial como:

$$\gamma_{jt} = \gamma_{jt-1} + \omega_{jt}, \, \omega_{jt} \sim N(0, \sigma_{\omega}^2), \ t=1,2,...,T; \ j=1,2,...s$$
 ,onde

$$\gamma_t = \gamma_{t-1} + \omega_t, \ \omega_t \sim N(0, \Omega)$$

Se impusermos
$$\sum_{j=1}^{s} \gamma_{jt} = 0 \Longrightarrow \sum_{j=1}^{s} \omega_{jt} = 0$$
, se $\sum_{j=1}^{s} \gamma_{ot} = 0$.

Então
$$\sum_{j=1}^{s} \omega_{jt} = 0 \Leftrightarrow (1,1,...,1)_{Sx1} \begin{pmatrix} \omega_{1t} \\ \omega_{2t} \\ \vdots \\ \omega_{St} \end{pmatrix} = \mathbf{i}' \boldsymbol{\omega_{t}} = 0. \text{ Ou seja, os}$$

choques sazonais na formulação de HS serão co-integrados.

Se especificarmos $Var(\boldsymbol{\omega}_t) = \boldsymbol{\Omega} = \sigma_{\omega}^2 (\mathbf{I} - \mathbf{S}^{-1} \mathbf{i} \mathbf{i}')$ (a) então pode-se mostrar que essa será uma condição suficiente que garante que $\sum_{i=1}^{s} \gamma_{jt} = 0$.

Prova: Considere a v.a. $z = \mathbf{i}'\omega_t$. Prove que E(z) = 0, e que Var(z) = 0, usando (a).

Portanto $z = \mathbf{i}' \mathbf{\omega_t} = \sum_{j=1}^{s} \gamma_{jt} = 0$ (com probabilidade 1).

⇒ Função de Previsão:

$$\begin{split} \hat{y}_{_{t+s|t}} &= E(y_{_{t+s}}|Y_{_{t}}) = Z^{'} E(\alpha_{_{t+s}}|Y_{_{t}}) = Z^{'} \hat{\alpha}_{_{t+s|t}} = \hat{\mu}_{_{t+s|t}} + \hat{\gamma}_{_{t+s|t}} = \\ &= \hat{\mu}_{_{t}} + s \, \hat{\beta}_{_{t}} + \hat{\gamma}_{_{t+s|t}}, \, \text{onde} \\ \hat{\gamma}_{_{t+s|t}} &= \hat{\gamma}_{_{t-S+s|t}}, \, \, s = 1,2,3,..., \, \, \text{ou seja:} \end{split}$$

o fator sazonal projetado para um trimestre é igual a última estimativa obtida pelo FK.

Idéia: aproximar a componente sazonal através de uma soma de séries trigonométricas.

•<u>Teorema de Fourier</u> = qualquer função periódica de período S, definida por um conjunto de S efeitos γ_t t=1,2,..., S pode ser expressa como a combinação linear de senos e cossenos de período λ = 2π /S,

$$\gamma_{t} = \sum_{j=1}^{[S/2]} (\gamma_{j} \cos (\lambda_{j} t) + \gamma_{j}^{*} \sin (\lambda_{j} t))$$

onde:

$$-\lambda_{j} = 2\pi j/S, j=1,2,3,...,[S/2].$$

- S é o período da série; S = 4,12, etc;

$$-[S/2] = \begin{cases} S/2, & S \text{ par} \\ (S-1)/2, & S \text{ impar} \end{cases}$$

- Observe as seguintes definições:
 - $-\lambda_j = 2\pi j/S$, são os harmônicos. Cada harmônico executa j ciclos completos no período da função;
 - $-\lambda_1 = 2\pi/S$ é a freq. fundamental.

-Função cosseno: harmônico fundamental (j=1) x 2º (j=2) e 6º harm (j=6).

Sequence number

Sequence number

Soma do fundamental e 60 harmônico p/ o cosseno.

Soma de todos os harmônicos da SF.

- Outras propriedades da componente sazonal por SF:
- -p/S par e j=S/2, $sen\lambda_j t=sen\pi t=0$, $\forall t$. Assim sendo, existirá apenas (S/2)+(S/2-1)=S-1 parâmetros para serem estimados por MQO, assim como na formulação por dummies;
- pode se demonstrar, usando identidades trigonométricas, que $\sum\limits_{_{_{i=0}}}^{_{_{S-1}}}\gamma_{_{_{t-j}}}=0.$
- O modelo determinístico com tendência e sazonalidade por SF é dado por:

$$y_{t} = \alpha + \beta t + \sum_{j=1}^{\lfloor S/2 \rfloor} (\gamma_{j} \cos(\lambda_{j} t) + \gamma_{j}^{*} \sin(\lambda_{j} t)) + \varepsilon_{t}$$

 Os parâmetros desconhecidos do modelo podem ser estimados por MQO, possibilitando assim o cálculo do fator sazonal do mês t, que é dado por:

$$\hat{\gamma}_{t} = \sum_{j=1}^{[S/2]} (\hat{\gamma}_{j} \cos (\lambda_{j} t) + \hat{\gamma}_{j}^{*} \sin (\lambda_{j} t))$$

 É possível demonstrar que se utilizarmos todos os harmônicos na SF, então a estimativa dos fatores sazonais por dummies, coincidirá com a estimativa deste fatores por SF.

25

Ex: série mensal de vazão afluente média (em m³/seg) em um posto de avaliação localizado no rio Paraibuna.

• Modelo de sazonalidade por dummies, com restrição de soma dos fatores igual a zero no período.

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	69.77600	1.231404	56.66379	0.0000
C(2)	36.31224	4.060891	8.941940	0.0000
C(3)	42.95930	4.060891	10.57879	0.0000
C(4)	26.34165	4.060891	6.486668	0.0000
C(5)	9.871064	4.060891	2.430763	0.0155
C(6)	-8.217172	4.060891	-2.023490	0.0437
C(7)	-15.36423	4.060891	-3.783463	0.0002
C(8)	-21.62894	4.060891	-5.326156	0.0000
C(9)	-29.47296	4.116383	-7.159919	0.0000
C(10)	-21.32145	4.116383	-5.179657	0.0000
C(11)	-17.47296	4.116383	-4.244738	0.0000
C(12)	-9.927510	4.116383	-2.411707	0.0163
R-squared	0.479155	Mean dependent var		69.95037
Adjusted R-squared	0.464502	S.D. dependent var		33.77748
S.E. of regression	24.71758	Akaike info criterion		9.282231
Sum squared resid	238884.9	Schwarz criterion		9.401306
Log likelihood	-1858.370	Hannan-Quinn criter.		9.329372
F-statistic	32.70034	Durbin-Watson stat		0.934743
Prob(F-statistic)	0.000000			

Equação do modelo

$$\begin{split} &HYDRO = C(1) + C(2)*@SEAS(1) + C(3)*@SEAS(2) + C(4)*@SEAS(3) + \\ &C(5)*@SEAS(4) + C(6)*@SEAS(5) + C(7)*@SEAS(6) + C(8)*@SEAS(7) + \\ &C(9)*@SEAS(8) + C(10)*@SEAS(9) + C(11)*@SEAS(10) + C(12)*@SEAS(11) + \\ &(-C(2)-C(3)-C(4)-C(5)-C(6)-C(7)-C(8)-C(9)-C(10) - C(11)-C(12))*@SEAS(12) + erro \end{split}$$

Obs: o modelo é apenas ilustrativo do tratamento de sazonalidade. Outras estruturas de dependência existentes na série (que podem ser investigadas via FAC dos resíduos), que não a sazonal, não serão tratadas aqui.

- Modelo de sazonalidade por trigonmométricos, onde a soma dos fatores é igual a zero no período.
- > primeiro temos que criar as séries de cossenos e senos:

$$cos(\lambda_j t)$$
 e $sin(\lambda_j t)$, $\lambda_j = 2\pi j/12 = \pi j/6$, $j=1,2,...,6$ e $t=1,2,...,403$

'programa sazonalidade por trigonométricos

scalar pi=@acos(-1)
' cria séries temporais de harmônicos senos e cossenos

for !i=1 to 6 series cos{!i}=cos((@trend+1)*pi*!i/6) series sen{!i}=sin((@trend+1)*pi*!i/6) next

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	69.77600	1.231404	56.66379	0.0000
COS1	15.75444	1.740382	9.052291	0.0000
COS2	-2.856061	1.742553	-1.639009	0.1020
COS3	-3.633838	1.743638	-2.084056	0.0378
COS4	-0.605764	1.742553	-0.347630	0.7283
COS5	-0.478002	1.740382	-0.274653	0.7837
COS6	-0.259804	1.231404	-0.210982	0.8330
SEN1	27.31628	1.742553	15.67601	0.0000
SEN2	7.782136	1.740382	4.471511	0.0000
SEN3	1.998069	1.739295	1.148781	0.2513
SEN4	1.694487	1.740382	0.973630	0.3308
SEN5	-1.486657	1.742553	-0.853149	0.3941
R-squared	0.479155	Mean dependent var		69.95037
Adjusted R-squared	0.464502	S.D. dependent var		33.77748
S.E. of regression	24.71758	Akaike info criterion		9.282231
Sum squared resid	238884.9	Schwarz criterion		9.401306
Log likelihood	-1858.370	Hannan-Quinn criter.		9.329372
F-statistic	32.70034	Durbin-Watson stat		0.934743
Prob(F-statistic)	0.000000			

$$\begin{aligned} & \text{HYDRO} = \text{C}(1) + \text{C}(2)*\text{COS1} + \text{C}(3)*\text{COS2} + \text{C}(4)*\text{COS3} + \text{C}(5)*\text{COS4} + \text{C}(6)*\text{COS5} \\ & + \text{C}(7)*\text{COS6} + \text{C}(8)*\text{SEN1} + \text{C}(9)*\text{SEN2} + \text{C}(10)*\text{SEN3} + \text{C}(11)*\text{SEN4} + \\ & \text{C}(12)*\text{SEN5} + \text{erro} \end{aligned}$$

>> aqui os fatores sazonais têm que ser calculados.

>> Como visto, uma vez estimado o modelo de sazonalidade por trigonométricos, o fator sazonal de cada mês t será dado por:

$$\hat{\gamma}_{t} = \sum_{j=1}^{[S/2]} (\hat{\gamma}_{j} \cos(\lambda_{j}t) + \hat{\gamma}_{j}^{*} \sin(\lambda_{j}t)) \qquad t = 1, 2, ..., 12$$

$$\hat{\gamma}_{t} = \sum_{j=1}^{6} (\hat{\gamma}_{j} \cos(\frac{\pi j}{6}t) + \hat{\gamma}_{j}^{*} \sin(\frac{\pi j}{6}t))$$

O programa Eviews para implementar esse cálculo é dado a seguir:

'calcula fatores sazonais de cada mês no modelo trigonométrico

```
scalar i
scalar j
vector (6) c_cos
vector (6) c_sen
for i = 2 to 7
  c \cos(i-1)=c(i)
next
for j = 2 to 6
  c_{sen(j-1)}=c(j+6)
next
c_{sen(6)=0}
scalar ji
scalar m
vector(12) fat_saz
for ij=1 to 12
     fat_saz(jj)=0
  for m=1 to 6
    fat_saz(jj) = fat_saz(jj) + c_cos(m)*cos(jj*pi*m/6) + c_sen(m)*sin(jj*pi*m/6)
  next
next
```

>> Após obter os fatores sazonais do modelo por trigonométricos, observamos, conforme esperado, que eles coincidem com aqueles estimados através do modelo por dummies.

trigon

dummies

		FAT_	_SAZ		
	C1				
		Last updated: 0	5/17/12 - 19:26		
				C(2)	36.31224
R1	36.31224				
R2	42.95930			C(3)	42.95930
R3	26.34165			C(4)	26.34165
R4	9.871064			C(5)	9.871064
R5	-8.217172			C(6)	-8.217172
R6	-15.36423			C(7)	-15.36423
R7	-21.62894			C(8)	-21.62894
R8	-29.47296			C(9)	-29.47296
R9	-21.32145			C(10)	-21.32145
R10	-17.47296			C(11)	-17.47296
R11	-9.927510			C(12)	-9.927510
R12	7.920974			J(12)	0.021010

>> na coluna trigon
$$\gamma_j = R(j)$$
, $j=1,2,...,12$ na coluna dummies $\gamma_j = C(j)$, $j=2,3,...,12$

>> observar que, na coluna das dummies, C(2)= fat_saz jan, C(3)=fat_saz fev,..., C(12)= fat_saz nov. Para calcular o fator sazonal de dezembro utilizamos que

fat_saz dez=
$$(-C(2)-C(3)-C(4)-C(5)-C(6)-C(7)-C(8)-C(9)-C(10)-C(11)-C(12))=7.920974$$

Forma recursiva para fatores sazonais por SF.

Se
$$\gamma_{jt} \equiv (\gamma_{j} \cos \lambda_{j} t + \gamma_{j}^{*} \sin \lambda_{j} t)$$
, então
$$\gamma_{t} = \sum_{j=1}^{\lfloor S/2 \rfloor} (\gamma_{j} \cos \lambda_{j} t + \gamma_{j}^{*} \sin \lambda_{j} t) = \sum_{j=1}^{\lfloor S/2 \rfloor} \gamma_{jt}$$

Observe que:

$$\gamma_{jt} = \begin{cases} \gamma_{j} \cos \lambda_{j} + \gamma_{j}^{*} \sin \lambda_{j} t & j = 1, \frac{S}{2} - 1 \\ \gamma_{s/2} \cos \lambda_{s/2} t, & j = s/2 \end{cases}$$

• Fazendo t=t+1 na expressão p/ γ_{it} :

Como
$$\gamma_{jt} = \gamma_{j} \cos \lambda_{j} t + \gamma_{j}^{*} \sin \lambda_{j} t$$
, então
$$\gamma_{jt+1} = \gamma_{j} \cos \lambda_{j} (t+1) + \gamma_{j}^{*} \sin \lambda_{j} (t+1)$$
$$= \left[\cos \lambda_{j} \sin \lambda_{j}\right] \begin{bmatrix} \gamma_{j} \cos \lambda_{j} t + \gamma_{j}^{*} \sin \lambda_{j} t \\ -\gamma_{\gamma} \sin \lambda_{j} t + \gamma_{j}^{*} \cos \lambda_{j} t \end{bmatrix}$$
$$= \left[\cos \lambda_{j} \sin \lambda_{j}\right] \begin{bmatrix} \gamma_{jt} \\ \gamma_{jt}^{*} \end{bmatrix},$$
onde $\gamma_{jt}^{*} = -\gamma_{\gamma} \sin \lambda_{j} t + \gamma_{j}^{*} \cos \lambda_{j} t$.

De forma análoga, fazendo t=t+1 p/ γ*_{jt}

$$\begin{split} \gamma_{jt}^* &= -\gamma_{\gamma} \sin \lambda_{j} t + \gamma_{j}^* \cos \lambda_{j} t, \text{ então:} \\ \gamma_{jt+1}^* &= -\gamma_{\gamma} \sin \lambda_{j} (t+1) + \gamma_{j}^* \cos \lambda_{j} (t+1) \\ &= \left[-\sin \lambda_{j} \cos \lambda_{j} \right] \begin{bmatrix} \gamma_{j} \cos \lambda_{j} t + \gamma_{j}^* \sin \lambda_{j} t \\ -\gamma_{\gamma} \sin \lambda_{j} t + \gamma_{j}^* \cos \lambda_{j} t \end{bmatrix} \\ &= \left[-\sin \lambda_{j} \cos \lambda_{j} \right] \begin{bmatrix} \gamma_{jt} \\ \gamma_{jt}^* \end{bmatrix}. \end{split}$$

Finalmente unindo as duas equações, fazendo t = t - 1, e adicionando um termo aleatório, obtemos a forma estocástica de sazonalidade por SF.

$$\begin{pmatrix} \gamma_{jt} \\ \gamma_{jt}^* \end{pmatrix} = \begin{pmatrix} \cos \lambda_{j} & \sin \lambda_{j} \\ -\sin \lambda_{j} & \cos \lambda_{j} \end{pmatrix} \begin{pmatrix} \gamma_{jt-1} \\ \gamma_{jt-1}^* \end{pmatrix} + \begin{pmatrix} w_{t} \\ w_{t}^* \end{pmatrix},$$

$$\therefore$$
 w_t e w_t^{*} ~ N(0, σ_w^2).

Modelo Estrutural Básico:

$$y_{t} = \mu_{t} + \gamma_{t} + \varepsilon_{t} \qquad \varepsilon_{t} \sim N(0, \sigma_{\varepsilon}^{2})$$

$$\mu_{t} = \mu_{t-1} + \beta_{t-1} + \eta_{t} \qquad \eta_{t} \sim N(0, \sigma_{n}^{2})$$

$$\beta_{t} = \beta_{t-1} + \zeta_{t} \qquad \zeta_{t} \sim N(0, \sigma_{\xi}^{2})$$

$$\gamma_{t} = \sum_{j=1}^{S/2} \gamma_{jt}$$

$$\begin{pmatrix} \gamma_{jt} \\ \gamma_{jt} \end{pmatrix} = \begin{pmatrix} \cos \lambda_j & sen \lambda_j \\ -sen \lambda_j & \cos \lambda_j \end{pmatrix} \begin{pmatrix} \gamma_{jt-1} \\ \gamma_{jt-1} \end{pmatrix} + \begin{pmatrix} \omega_{tj} \\ \omega_{tj} \end{pmatrix},$$

$$\omega_{tj} \sim N(0, \sigma_{\omega}^{2}), \quad j = 1, 2, ..., (S/2)$$

$$\omega_{tj}^{*} \sim N(0, \sigma_{\omega}^{2}) \quad j = 1, 2, ..., (S/2) - 1$$

 Supondo S=12, o modelo anterior possui a seguinte representação na forma de espaço de estados:

$$\boldsymbol{y}_t = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \dots & \mathbf{1} \end{bmatrix} \begin{bmatrix} \boldsymbol{\mu}_t \\ \boldsymbol{\beta}_t \\ \boldsymbol{\gamma}_{1t} \\ \boldsymbol{\gamma}_{1t}^* \\ \boldsymbol{\gamma}_{1t}^* \\ \vdots \\ \boldsymbol{\gamma}_{5t} \\ \boldsymbol{\gamma}_{5t}^* \\ \boldsymbol{\gamma}_{5t} \\ \boldsymbol{\gamma}_{6t} \end{bmatrix} + \ \boldsymbol{\varepsilon}_t$$

$$\begin{bmatrix} \mu_{t} \\ \beta_{t} \\ \gamma_{1t} \\ \gamma_{1t}^{*} \\ \vdots \\ \gamma_{6t} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & C_{1} & & & & \\ & & & \dots & & & \\ 0 & & & & C_{5} & & \\ & & & & & -1 \end{bmatrix} \begin{bmatrix} \mu_{t-1} \\ \beta_{t-1} \\ \gamma_{1,t-1} \\ \gamma_{1,t-1} \\ \vdots \\ \gamma_{6,t-1} \end{bmatrix} + \mathbf{I}_{(13 \times 13)} \begin{bmatrix} \eta_{t} \\ \zeta_{t} \\ w_{1t} \\ w_{1t}^{*} \\ w_{6t} \end{bmatrix}$$

onde
$$C_{j} = \begin{pmatrix} \cos(\frac{\pi j}{6}) & \sin(\frac{\pi j}{6}) \\ -\sin(\frac{\pi j}{6}) & \cos(\frac{\pi j}{6}) \end{pmatrix}, \quad j = 1, 2, 3, 4, 5, \quad C_{6} = \cos(\frac{\pi 6}{6}) = -1$$

$$\eta_{t} = \left[\eta_{t}, \zeta_{t}, w_{1t}, w_{1t}^{*}, ..., w_{6t}\right]^{T}, E(\eta_{t}\eta_{t}^{T}) = Q = \begin{bmatrix} \sigma_{\eta}^{2} & 0 & ... & 0 \\ 0 & \sigma_{\zeta}^{2} & ... & 0 \\ 0 & 0 & \sigma_{w}^{2} I_{11x11} \end{bmatrix}$$

Para s=4

$$y_{t} = (1 \quad 0 \quad 1 \quad 0 \quad 1) \begin{pmatrix} \mu_{t} \\ \beta_{t} \\ \gamma_{1t} \\ \gamma_{1t}^{*} \\ \gamma_{2t} \end{pmatrix} + \varepsilon_{t} \qquad \varepsilon_{t} \sim N(0, \sigma_{\varepsilon}^{2})$$

$$\alpha_{t} = \begin{pmatrix} \mu_{t} \\ \beta_{t} \\ \gamma_{1t} \\ \gamma_{2t} \end{pmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & \cos \lambda_{1} & \sin \lambda_{1} & 0 \\ 0 & 0 & -\sin \lambda_{1} & \cos \lambda_{1} & 0 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \mu_{t-1} \\ \beta_{t-1} \\ \gamma_{1,t-1} \\ \gamma_{2,t-1} \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \eta_{t} \\ \zeta_{t} \\ \omega_{1t} \\ \omega_{2t} \end{bmatrix}$$

$$\lambda_{j} = \frac{2\pi}{4} j = \frac{\pi}{2} j \begin{cases} \pi/2, & j = 1 \\ \pi, & j = 2 \end{cases}$$

$$\eta_{t} = \left(\eta_{t} \zeta_{t} \omega_{1t} \omega_{1t}^{*} \omega_{2t}\right)' \sim N(0, Q), \quad Q = E(\eta_{t} \eta'_{t}) = \begin{pmatrix} \sigma_{\eta}^{2} & 0 & 0 \\ 0 & \sigma_{\zeta}^{2} & 0 \\ 0 & 0 & \sigma_{\omega}^{2} I_{3x3} \end{pmatrix}.$$

>> Observe que embora cada choque sazonal possua a mesma distribuição $N(0,\sigma_{\omega}^2)$, cada um dos choques aparece explicitamente nesse modelo. É fácil de ver que essa formulação não é equivalente a considerar um único choque sazonal para todos os fatores sazonais.