

Interactions of TICs/CWAs with Activated Carbon ASZM-TEDA Impregnants: a Theoretical Investigation

Alex Balboa

U.S. Army SBCCOM

APGEA, MD

Margaret M. Hurley

U.S. Army Research Laboratory

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 19 NOV 2003		2. REPORT TYPE N/A		3. DATES COVE	RED
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER	
Interactions of TICs/CWAs with Activated Carbon ASZM-T Impregnants: a Theoretical Investigation			5b. GRANT NUMBER		
impregnants, a rii	leorencai investigati	OH		5c. PROGRAM E	LEMENT NUMBER
6. AUTHOR(S)				5d. PROJECT NU	JMBER
				5e. TASK NUMB	ER
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army SBCCOM U.S. Army SBCCOM APGEA, MD 8. PERFORMING ORGANIZATION REPORT NUMBER					
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)		
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited			
	otes 51, Proceedings of t Research, 17-20 No				
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF			18. NUMBER	19a. NAME OF	
a. REPORT b. ABSTRACT c. THIS PAGE UUU unclassified unclassified unclassified		OF PAGES 19	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Filtration of Toxic Industrial Chemicals

- •Current filtration technology involves use of ASZM-TEDA: activated carbon impregnated with Cu, Zn, Ag, Mo, and TEDA (triethylenediamine).
- •The role of the individual components is poorly understood.
- •There is experimental evidence of synergistic effects (and interference)
- •Poisoning?
- Environmental effects? Humidity?
- •Selectivity?

Target compounds include: HCN, ClCN, NCCN, HCl, COCl₂, Cl₂

Phosgene Decomposition by Zinc Ion

3 Pathways have been previously studied *

$$Zn^{2+} + COCl_2 \longrightarrow ZnCl^+ + COCl^+ path 1$$

$$\rightarrow$$
 Zn²⁺[O=CCl₂] path 2

$$\longrightarrow$$
 [Cl₂ZnCO]²⁺ path 3

^{*} E. Fattal and E.A. Carter *J. Phys. Chem A* **2000**, *104*, 2248-2252

ΔE (products – reactants) (kcal/mol)

Carter CASSCF (10/10)/MRSCCI -174.0

Path 1	3-21G*	6-31G**	6-311+G
RHF	-175.7	-172.8	-171.9
MP2	-193.4	-187.6	-195.5
QCISD	-196.9	-186.4	-191.9

	MP2/6-31G**	Carter
Path 2	-107.9	-82
Path 3	-84.6	-67.2

Correct sequence predicted at a greatly reduced computational cost for gas phase reactions

Phosgene + Zinc Path 1 geometries

$$Zn^{2+} + COCl_2 \longrightarrow ZnCl^+ + COCl^+$$

		Carter	Current	Exp.
			HF/3-21G*	
			QCISD/6-	
-			311+G	
	C-O (Å)	1.176	1.17 / 1.20	1.176
,	C-Cl (Å)	1.738	1.74 / 1.83	1.738
	<cl-c-cl< th=""><th>111.80</th><th>112.18 / 111.9</th><th>111.83</th></cl-c-cl<>	111.80	112.18 / 111.9	111.83
	C-O (Å)	1.114	1.11 / 1.14	
,	C-Cl (Å)	1.629	1.57 / 1.66	
	<o-c-c1< th=""><th>180.0</th><th>180.0 / 180.0</th><th></th></o-c-c1<>	180.0	180.0 / 180.0	
	Zn-Cl (Å)	2.132	2.04 / 2.11	2.24

COCl₂

COC1⁺

ZnCl+

Cyanide Series: AC + Metal Ion

$$HCN + Zn^{2+} \longrightarrow ?$$

Metal ion	Theory/BS	NCH complex ΔE _(prod-reac)	
		(kcal/mol)	
\mathbf{Z} n ²⁺	HF/6-31G**	-103.26	
Zn ²⁺	HF/LANL2DZ	-110.15	
Zn ²⁺	HF/6-311+G	-108.85	
Zn ²⁺	B3LYP/6-31G**	-118.83	
$\mathbf{Z}\mathbf{n}^{2+}$	MP2/6-31G**	-105.90	

CP corrected
No stable
HCN -end
on complex
found

Cyanide Series: AC + Metal Ion

$$HCN + Cu^{1+} \longrightarrow ?$$

Metal Ion	Theory/BS	NCH complex ΔE _(prod-reac) (kcal/mol)
Cu ²⁺	HF/6-31G**	-111.58
Cu ²⁺	HF/6-31G* Pulay*	-93.18
Cu ²⁺	MP2/6-31G**	-117.36

An Improved 6-31g Basis Set for Transition Metals A.V. Mitin, J. Baker, P. Pulay JCP 118 p 7775 (2003)

Cyanide Series: CK + Zinc Ion

$$ClCN + Zn^{2+} \longrightarrow ?$$

Theory/BS	$\Delta \mathrm{E}_{\mathrm{(prod-reac)}} \mathrm{(kcal/mol)}$
HF/6-31G**	-114.02
MP2/6-31G**	-116.30
QCISD/6-31G**	-115.63

CP corrected N-end on

Cyanide Series: AIM Analysis

Atoms in Molecules (AIM) analysis as per Bader *Atoms in Molecules: A Quantum Theory* Oxford 1990

Metal	TIC	ρ	lap
Zn ²⁺	CK	0.12157	0.47824
Zn ²⁺	AC	0.10768	0.39185
Cu ²⁺	AC	0.14568	0.77601
Cu ²⁺	CK	0.10795	0.60587

Cyanide Series: CK + TEDA complexes

TEDA binds CK and facilitates HCl formation, formation of HOCN in presence of water?

Synergy with metal ions?

Cyanide Series: AC + TEDA complexes

TIC	Theory/BS	ΔE _(prod-reac) (kcal/mol)
HCN	HF/6-31G**	-6.92
HCN	MP2/6-31G**	-9.63
HC1	HF/6-31G**	-8.77
HC1	MP2/6-31G**	-15.77

TEDA weakly binds HCN, HCl

Cyanide Series: Metal + TEDA complexes

Metal	Theory/BS	ΔE _(prod-reac) (kcal/mol)
Zn ²⁺	HF/6-31G**	-144.21
Zn ²⁺	MP2/6- 31G**	-171.53
Cu ²⁺	HF/6-31G**	-143.93
Cu ²⁺	MP2/6- 31G**	-226.45

Strong binding of both metals to TEDA

Cyanide Series/Metal Ion Interactions

CK polymerization:

3 CK -> C₃N₃Cl₃ (cyanuric chloride)

Energetically favorable in gas phase as per previous theory and expt (Pai et al, JPCA **1997**, *101*, 3400-3407, Kharasch et al, Ind. and Eng. Chem. **1949**, *41*, 2840-2842)

Catalyzed by TM?

Alternative Formulation: Si-based

Cu-complexed-amine will not

Diamine – Cu silicate-based formulation of Brown group Hudderfield, UK *J. Mater. Chem.*, 2002, **12**, 1086-1089

Snapshots

Classical Model Potential Grand Canonical Monte Carlo Calculations at 77 K

Top:

CO₂ adsorption in a single groove site

Bottom:

Snapshot of CO₂ adsorption in a large interstitial site of a bundle

From Matranga et al., J. Phys. Chem. B, in press

Density Functional Theory Calculations

- Local density approximation
- Calculated binding energies and IR vibrational frequency shifts
- Binding energies and frequency shifts larger for internal adsorption
- Qualitative agreement with experiments (Byl & Yates)
- Experiment & theory paper submitted to *J. Chem. Phys.*

Conclusions

- •Zn²⁺ and Cu²⁺ complexes HCN
- Linear N end-on geometry in agreement with previous theory and expt
- •Zn²⁺ and Cu²⁺ energetics similar, suggesting roughly equivalent protection, in agreement with exptl data
- •NCCN complexation? HCl formation?
- •Role of H₂O?
- •Synergy with TEDA? Both Zn²⁺ and Cu²⁺ complex with TEDA
- •Weak cyanide complexation with TEDA

Conclusions (cont)

- •Verified reaction paths of phosgene degradation by Zn²⁺
- •Energetics of AC complexation by Zn²⁺ compared to Cu²⁺ ions
- •Verified stability of Cu-diamine complexation in alternative filtration media, reactivity of free amine
- Verified polymerization of CK

Future:

- •Begin mapping energetics of AC,CK degradation in mixed (Cu,Zn,TEDA) environment to look at additive effects
- Water (humid environment)
- •Alternative codes: ADF? Jaguar?
- Concurrent work on ethylene oxide adsorption in zeolites
- •Nanotubes with Yim and Johnson (Pitt), exptl Yates (Pitt)

Acknowledgements

This project is made possible through a DoD Challenge grant from the DoD High Performance Computing Modernization Office.

Thanks to:
US Army Research Laboratory Major
Shared Resource Center