MATH 609

Homework #5

Fall, 2015

Hasan Tahir Abbas

1 Specifications

1.1 Tridiagonal System of Equations

In the first case, the numerical solution is compared with the exact solution when the k parameter is approximated by a linear function. We see that the performance of Conjugate-Gradient (CG) method is much faster than the Steepest-Descent (SD) method. In the second part, numerical solution is computed when the k parameter is a piece-wise function 1 .

	Method	n = 19	n = 39	n = 79
ĺ	CG	20	42	89
ĺ	SD	2430	9761	38467

Table 1: Iterations for Convergence required in Example 1, part a

$n \downarrow$	K=2	K = 100	K = 1000
19	21	30	37
39	46	84	107
79	96	21	311

Table 2: Iterations for Convergence required in Example 1, part b for CG method

$n \downarrow$	K=2	K = 100	K = 1000
19	2715	43676	ς
39	10553	ς	ς
79	40509	ς	ς

Table 3: Iterations for Convergence required in Example 1, part b for SD method

1.2 Approximate Solution of 2D Elliptic Equation

The numerical solution of a two-dimensional elliptic equation is computed by applying the given boundary conditions.

Method	n=8	n = 16	n = 32
CG	6	27	67
SD	254	1291	5639

Table 4: Iterations for Convergence required in Example 2

¹ς: Convergence not achieved within 100000 iterations

1.3 Numerical Solution of Trough Potential

The numerical solution of an electric potential in a trough is computed. The top boundary has a voltage boundary condition of 100 volts and the rest of the boundaries are perfect electric conductors (PEC) having zero potential. The region is assumed square.

Method	n=8	n = 16	n = 32
CG	13	48	165
SD	236	1128	4689

Table 5: Iterations for Convergence required in Example 2

Figure 1: Solution of Tridiagonal System with linear function k(t) (a)-(b) n=19 (c)-(d) n=39 (e)-(f) n=79 with CG and SD method as shown

Figure 2: Solution of Tridiagonal System with piecewise function k(t) and n=19 (a)-(b) K=2 (c)-(d) K=100 (e)-(f) K=1000 with CG and SD methods as shown

Figure 3: Solution of Tridiagonal System with piecewise function k(t) and n=39 (a)-(b) K=2 (c)-(d) K=100 (e)-(f) K=1000 with CG and SD methods as shown

Figure 4: Solution of Tridiagonal System with piecewise function k(t) and n=79 (a)-(b) K=2 (c)-(d) K=100 (e)-(f) K=1000 with CG and SD methods as shown

Figure 5: Approximate Solution of 2D Elliptic Equation $-\Delta u+u=1$ with $\Omega=(0,1)\times(0,1)$ and $u(\Omega)=0$ (a)-(b) n=8 (c)-(d) n=16 (e)-(f) n=32 with CG and SD methods as shown

Figure 6: Approximate Electrical Potential Solution of 2D Poisson's Equation $-\Delta\Phi+\Phi=V$ with three PEC boundaries $\Phi(\Omega)=0$ and 100 volts plate at the top and $\Phi(\chi)=100$ (a)-(b) n=32 with CG and SD methods as shown