Course code	Course Name	L-T-P - Credits	Year of
			Introduction
AU208	COMPUTER PROGRAMMING	3-0-0-3	2016

Prerequisite: Nil

Course Objectives

- To impart knowledge in programming using C language
- To give an overview of the use of C program in Automotive industry

Syllabus

Microcontroller modules in Automobile- C in Automotive industry; Introduction to C programming- Data types – keywords – operators; Arrays- Matrix operation – Structure; Functions – Recursion – Macros; Pointers – Memory allocation – storage class; Files– transfer of data in blocks; Introduction to MATLAB; Steps for software development; MISRA C standard.

Expected outcome.

After this course students will be able to do simple programs in C language and familiar with the interface.

Text Book:

1. Bryon S.Gottfried, Programming with C Language.

References:

- 1. Balaguruswamy, Programming in ANSI C
- 2. B.W. Kernigham & Dennis M Ritchie, C programming language.
- **3.** Deitel, *How to Program C*

Course Plan						
Module	Contents	Hours	Sem.ExamMarks			
	Microcontroller modules in Automobile; Microcontroller	7				
	programming – high level language, assembly language					
I	and machine language; Compiler, assembler and					
	interpreter; Integrated development environment; Chip					
	burning; Use of C in Automotive industry.		15%			
	Introduction to C programming - Data types; Keywords,	7				
	Constants and Variables; Escape Sequences; Various I/O					
II	functions; Header files; Type casting; Various operators;					
	Precedence of operators; Branching statements; Looping					
	statements; Nested loops; break and continue instructions.		15%			
FIRST INTERNAL EXAMINATION						
	Arrays; One dimensional arrays; Selection sorting; Binary	7	15%			
	searching; Various string handling functions;					
III	Multidimensional Arrays; Matrix Operations (Addition,					
	Transpose and Multiplication) Sorting of Strings; Structure					
	and Union; Array of Structures.					
	Functions; Call by value and call by reference method;	7	15%			
	Passing One Dimensional and Multidimensional Arrays to					
IV	a Function; Matrix operations using functions; Recursion;					
	Factorial and Fibonacci series using recursive calls;					
	Macros; Pre-processor directives; Scope of variables.					
SECOND INTERNAL EXAMINATION						
	Pointers; Pointer to an array; Pointer to a structure; Array	7	20%			
V	of pointers; Pointer to a pointer; Dynamic memory					
	allocation; Reallocation of memory; Self Referential					

		structure; Stack and heap; Storage class.				
	VI	Files; Reading, Writing, Appending and rewriting of text and binary files; Transfer of data in blocks, Moving of file pointer in a file; Introduction to MATLAB; Steps for software development; MISRA C standard.		20%		
END SEMESTER EXAM						

Question Paper Pattern

Total marks: 100, Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

