

팀번호 5

## 2024-하계 집중이수제 주간학습보고서 (6주차)

| 2024 이게 입장의구에 구인력입고표이 (0구시)         |                                                                                                                                                                                                                                                                                                                          |      |                      |      |    |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------|------|----|--|
| 창의과제                                | Unsupervised domain adapation 이미지 Segmentation 알고리즘 연구                                                                                                                                                                                                                                                                   |      |                      |      |    |  |
| 이름                                  | 김이나                                                                                                                                                                                                                                                                                                                      | 학습기간 | 2024.7.29 ~ 2024.8.4 |      |    |  |
| 학번                                  | 21011647                                                                                                                                                                                                                                                                                                                 | 학습주차 | 4주차                  | 학습시간 | 12 |  |
| 학과(전 <del>공</del> )                 | 컴퓨터공학과                                                                                                                                                                                                                                                                                                                   | 과목명  | 자기주도창의전공III          | 수강학점 | 3  |  |
| * 수강학점에 따른 회차별 학습시간 및 10회차 이상 학습 준수 |                                                                                                                                                                                                                                                                                                                          |      |                      |      |    |  |
| 금주<br>학 <del>습목</del> 표             | 성능 향상 위한 새로운 방법론<br>(논문)survey - 3 가설 설정 : PODA optimization시 noise를 추가한 synthesis image<br>feature를 사용한다.                                                                                                                                                                                                               |      |                      |      |    |  |
| 학습내용                                | 몇장의 생성 이미지만으로는 해당 도메인을 표현하는 feature들을 다양하게 표현하지 못할 것 이라는 가설에서 출발하여 별도의 대응적으로 작 및 추가적인 데이터 없이 표현하고 자 하는 도메인에 대한 feature에 다양성을 주기 위해서 일반적으로 잘 알려진 노이즈를 추가하는 방법을 통해 실험을 진행 하였다. 이를 뒷받침하는 논문은 다음과 같다. [ICLR 2023] Towards Robust Object Detection Invariant to Real-World Domain Shifts  *********************************** |      |                      |      |    |  |

우선 해당 도메인을 표현한 이미지 한 장에 대해 해당 도메인을 대표하는 anchor feature를

<Synthesis image feature + noise>



|            | 추출해낸다.<br> 이후 1장에서만 나온 feature로는 모든 도메인을 표현하는데 한계가 존재하기 때문에 추가적                                                               |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|            | 으로 노이즈를 추가하여 해당 feature를 사용하여 style transfer를 진행한다.                                                                           |  |  |  |
|            |                                                                                                                               |  |  |  |
|            | 이 때 실험별로 노이즈 세기를 다르게 주어 실험을 진행해 보았고 가장 좋은 성능이 실험결                                                                             |  |  |  |
|            | 과는 다음과 같았다.                                                                                                                   |  |  |  |
|            | <성능 비교>                                                                                                                       |  |  |  |
|            | Night - 22.62 (-2.41)                                                                                                         |  |  |  |
|            | Snow - 45.06 (+1.16)<br>Rain - 43.18 (+0.87)                                                                                  |  |  |  |
|            | Raiii 43.16 (10.07)                                                                                                           |  |  |  |
|            | 실험결과 night 환경을 제외한 domain에서 모두 성능이 향상된 모습을 확인할 수 있었다.                                                                         |  |  |  |
|            | <br> 특히 해당 방법 같은 경우 별도의 feature optimization과정을 진행하지 않고 바로 생성이미                                                               |  |  |  |
|            | 지에서 feature를 뽑아오는 방식이기 때문에 기존 방식 대비 약 3배 정도 빠른 속도를 확인                                                                         |  |  |  |
|            | 할 수 있었다.                                                                                                                      |  |  |  |
|            |                                                                                                                               |  |  |  |
|            | <b>〈속도 비교〉</b><br>  PODA - 886 초                                                                                              |  |  |  |
|            | Ours - 295 초                                                                                                                  |  |  |  |
|            |                                                                                                                               |  |  |  |
|            | [개별 논문 리뷰 및 노션 공유 페이지를 통한 정리]                                                                                                 |  |  |  |
|            | 개별 학습을 통하여 참고 논문을 이해하는 시간을 가졌으며 노션 페이지에 정리하여 협업 및<br>  스터디에 도움이 되도록 하였다.                                                      |  |  |  |
| 학습방법       | [모델 학습 및 실험]                                                                                                                  |  |  |  |
|            | 논문을 통해 배운 방법론 들을 개별적으로 모델에 적용하였다. Cityscape 데이터로 학습을                                                                          |  |  |  |
|            | │진행한 후 ACDC의 night,snow,rain data 셋으로 adaptation에 대한 테스트를 진행하였으며<br>│추가적으로 실행속도에 관한 실험도 진행하였다.                                |  |  |  |
|            | 100%                                                                                                                          |  |  |  |
| 학습성과<br>미  | 참고 논문인 Towards Robust Object Detection Invariant to Real-World Domain Shifts<br>를 리뷰하며 적용해보고자 하는 방법론을 이해하였으며 이를 PODA 코드에 응용하여 |  |  |  |
| 및<br>목표달성도 | 늘 디뮤이머 작용에모고자 이는 영립론들 이에이었으며 이들 PODA 코트에 응용하여<br>  Cityscape->ACDC 시나리오에서 도메인 적응 성능을 평가 하였습니다.                                |  |  |  |
|            | 실험결과 Snow, Rain 두 domain에 대해서 성능이 향상된 모습을 확인할 수 있었습니다.                                                                        |  |  |  |
| 참고자료       | https://openreview.net/forum?id=vqSyt8D3ny                                                                                    |  |  |  |
| 및 문헌       |                                                                                                                               |  |  |  |
|            | <br> 최종 보고서 작성                                                                                                                |  |  |  |
| 내주 계획      |                                                                                                                               |  |  |  |
| ,,,,,,     |                                                                                                                               |  |  |  |
|            |                                                                                                                               |  |  |  |

2024년 8월 4일

지도교수 김세원

