Module 4 Linux & Bash Essentials (Task 4.5)

1. To discover files with active sticky bits, use the following version of the **find** command: **sudo find** / -perm /6000 -type f -exec ls -ld {} \;>setuid.txt

Put into your report a fragment of setuid.txt file. Explain meaning of parameters of the above **find** command (hint: use find's man page).

```
bruh@wibob-X61:~$ sudo find / -perm /6000 -type f -exec ls -ld {} \;>setuid.txt
[sudo] password for bruh:
find: '/run/user/1000/gvfs': Permission denied
find: '/proc/14082/task/14082/fdinfo/5': No such file or directory
find: '/proc/14082/fdinfo/6': No such file or directory
bruh@wibob-X61:~$ cat setuid.txt
-rwsr-xr-x 1 root root 67600 uep 28 2019 /bin/ping
-rwsr-xr-x 1 root root 26012 6ep 5 19:23 /bin/umount
-rwsr-xr-x 1 root root 42400 бер 5 19:23 /bin/mount
-rwsr-xr-x 1 root root 30112 cep 11 2016 /bin/fusermount
-rwsr-xr-x 1 root root 43240 бер 22 2019 /bin/su
-rwsr-sr-x 1 root root 117324 лют 12 19:07 /snap/snapd/6439/usr/lib/snapd/snap-confine
-rwsr-xr-x 1 root root 121420 6ep 21 20:13 /snap/snapd/6952/usr/lib/snapd/snap-confine
-rwsr-xr-x 1 root root 42400 cep 23 2019 /snap/core18/1289/bin/mount
-rwsr-xr-x 1 root root 67600 uep 28 2019 /snap/core18/1289/bin/ping
-rwsr-xr-x 1 root root 43240 бер 22 2019 /snap/core18/1289/bin/su
-rwsr-xr-x 1 root root 26012 cep 23 2019 /snap/core18/1289/bin/umount
-rwxr-sr-x 1 root shadow 38256 лют 27 2019 /snap/core18/1289/sbin/pam_extrausers_chkpwd
-rwxr-sr-x 1 root shadow 38252 лют 27 2019 /snap/core18/1289/sbin/unix_chkpwd
-rwxr-sr-x 1 root shadow 66076 6ep 22 2019 /snap/core18/1289/usr/bin/chage
```

find - is looking for files and compare every file with reference file specified on command line and if file matches do some actions with them.

In our case find command options means:

/ - looking whole file system from root

-perm /6000 - looking for objects on file system that contain SUID bit in permissions (/ 4000 searching pattern in numeric notations) or SGID bit (/2000 searching pattern in numeric notations). /6000 means that all objects contain any of this bits should be used as a true result;

-type f - only regular files should be used;

by default between this operators uses logical operator 'and' hence is - we are looking for files with SGID or SUID bits are set;

with every file matches condition, **find** makes action (operator **-exec** execute command **Is -Id {}** - list in long format and for directory shows only it's properties (but it useless, because we are looking only for files) The string '{}' is replaced by the current file name being processed. ';' - it's the end of argument string and it should be escaped.

> at the end of command redirects standard output to file.

2. Discovering soft and hard links.

Comment on results of these commands (place the output into your report):

cd

mkdir test

creating directory test in current directory

cd test

change current directory

touch test1.txt

creating an empty file named test1.txt in current directory

echo "test1.txt" > test1.txt

putting string "test1.txt into file named test1.txt

Is -I.

listing current directory content in "long"format

In test1.txt test2.txt

creating hardlink test2.txt to test1.txt

Is -I.

listing current directory content in "long"format. both hardlinked files are there with quantity of links indicator equivalent 2

echo "test2.txt" > test2.txt

putting string "test2.txt into file named test2.txt

cat test1.txt test2.txt

getting on screen file1.txt and file2.txt content (some content, because both hardlinked to each other and to the same place on file system)

rm test1.txt

deleting file test1.txt

Is -I.

we can see the file test2.txt, but quantity of links now indicate only 1, because we deleted one of them on previous step

In -s test2.txt test3.txt

creating softlink (shortcut) test3.txt on file test2.txt

Is -I.

we can see source file test2.txt with "1" in link quantity indicator (there is no hardlinks to this file) and shortcut file test3.txt with information about linked source file

rm test2.txt; Is -I.

after deleting source file, we can see name of source file in shortcut (softlinked) file properties despite deleting them (in our case, terminal indicate this linked file with red color)

```
bruh@wibob-X61: ~/test
bruh@wibob-X61:~$ mkdir test
bruh@wibob-X61:~$ cd test/
bruh@wibob-X61:~/test$ touch test1.txt
bruh@wibob-X61:~/test$ echo "test1.txt" > test1.txt
bruh@wibob-X61:~/test$ ls -l
total 4
-rw-rw-r-- 1 bruh bruh 16 кві 17 23:08 test1.txt
bruh@wibob-X61:~/test$ In test1.txt test2.txt
bruh@wibob-X61:~/test$ ls -l
total 8
-rw-rw-r-- 2 bruh bruh 16 кві 17 23:08 test1.txt
-rw-rw-r-- 2 bruh bruh 16 кві 17 23:08 test2.txt
bruh@wibob-X61:~/test$ echo "test2.txt" > test2.txt
bruh@wibob-X61:~/test$ cat test1.txt test2.txt
test2.txt
test2.txt
bruh@wibob-X61:~/test$ rm test1.txt
bruh@wibob-X61:~/test$ ls -l
total 4
-rw-rw-r-- 1 bruh bruh 10 кві 17 23:09 test2.txt
bruh@wibob-X61:~/test$ In -s test2.txt test3.txt
bruh@wibob-X61:~/test$ ls -l
total 4
-rw-rw-r-- 1 bruh bruh 10 кві 17 23:09 test2.txt
lrwxrwxrwx 1 bruh bruh 9 кві 17 23:10 test3.txt -> test2.txt
bruh@wibob-X61:~/test$ rm test2.txt; ls -l
total 0
lrwxrwxrwx 1 bruh bruh 9 кві 17 23:10 test3.txt -> test2.txt
```

3. I/O redirect.

Execute these commands; comment on the output.

this command shows all mounted partitions (mounted device, mounting point, filesystem and mounting options)

```
ansible@wsrv-ans:~$ mount
sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime)
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
udev on /dev type devtmpfs (rw,nosuid,relatime,size=434304k,nr_inodes=108576,mode=755)
devpts on /dev/pts type devpts (rw,nosuid,noexec,relatime,gid=5,mode=620,ptmxmode=000)
tmpfs on /run type tmpfs (rw,nosuid,noexec,relatime,size=93148k,mode=755)
/dev/sda2 on / type ext4 (rw,relatime,data=ordered)
securityfs on /sys/kernel/security type securityfs (rw,nosuid,nodev,noexec,relatime)
tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev)
tmpfs on /run/lock type tmpfs (rw,nosuid,nodev,noexec,relatime,size=5120k)
tmpfs on /sys/fs/cgroup type tmpfs (ro,nosuid,nodev,noexec,mode=755)
cgroup on /sys/fs/cgroup/unified type cgroup2 (rw,nosuid,nodev,noexec,relatime)
cgroup on /sys/fs/cgroup/systemd type cgroup (rw,nosuid,nodev,noexec,relatime,xattr,name=systemd)
pstore on /sys/fs/pstore type pstore (rw,nosuid,nodev,noexec,relatime)
cgroup on /sys/fs/cgroup/rdma type cgroup (rw,nosuid,nodev,noexec,relatime,rdma)
cgroup on /sys/fs/cgroup/cpu,cpuacct type cgroup (rw,nosuid,nodev,noexec,relatime,cpu,cpuacct)
cgroup on /sys/fs/cgroup/cpuset type cgroup (rw,nosuid,nodev,noexec,relatime,cpuset)
cgroup on /sys/fs/cgroup/net_cls,net_prio type cgroup (rw,nosuid,nodev,noexec,relatime,net_cls,net_prio)
cgroup on /sys/fs/cgroup/pids type cgroup (rw,nosuid,nodev,noexec,relatime,pids)
cgroup on /sys/fs/cgroup/memory type cgroup (rw,nosuid,nodev,noexec,relatime,memory)
cgroup on /sys/fs/cgroup/perf_event type cgroup (rw,nosuid,nodev,noexec,relatime,perf_event)
cgroup on /sys/fs/cgroup/blkio type cgroup (rw,nosuid,nodev,noexec,relatime,blkio)
cgroup on /sys/fs/cgroup/freezer type cgroup (rw,nosuid,nodev,noexec,relatime,freezer)
cgroup on /sys/fs/cgroup/devices type cgroup (rw,nosuid,nodev,noexec,relatime,devices)
cgroup on /sys/fs/cgroup/hugetlb type cgroup (rw,nosuid,nodev,noexec,relatime,hugetlb)
systemd-1 on /proc/sys/fs/binfmt_misc type autofs
(rw,relatime,fd=25,pgrp=1,timeout=0,minproto=5,maxproto=5,direct,pipe_ino=17231)
mqueue on /dev/mqueue type mqueue (rw,relatime)
debugfs on /sys/kernel/debug type debugfs (rw,relatime)
hugetlbfs on /dev/hugepages type hugetlbfs (rw,relatime,pagesize=2M)
configfs on /sys/kernel/config type configfs (rw,relatime)
fusectl on /sys/fs/fuse/connections type fusectl (rw,relatime)
/var/lib/snapd/snaps/core_8689.snap on /snap/core/8689 type squashfs (ro,nodev,relatime,x-gdu.hide)
/var/lib/snapd/snaps/core_8935.snap on /snap/core/8935 type squashfs (ro,nodev,relatime,x-gdu.hide)
lxcfs on /var/lib/lxcfs type fuse.lxcfs (rw,nosuid,nodev,relatime,user_id=0,group_id=0,allow_other)
tmpfs on /run/user/1001 type tmpfs (rw,nosuid,nodev,relatime,size=93144k,mode=700,uid=1001,gid=1001)
ansible@wsrv-ans:~$
```

blkid

```
ansible@wsrv-ans:~$ blkid /dev/sda2: UUID="6ae3038c-c752-4242-9aed-8dfba53ba570" TYPE="ext4" PARTUUID="a603be94-e37c-416c-8c72-52ee389bf991" ansible@wsrv-ans:~$
```

shows all block devices with attributes (device name, device id, file system type and id for mounted partitions)

mount | grep sda

```
ansible@wsrv-ans:~$ mount | grep sda /dev/sda2 on / type ext4 (rw,relatime,data=ordered) ansible@wsrv-ans:~$
```

mount output pipelined to grep can be used to show pattern matched output. in our case we can see the only one string wit mounting /dev/sda partition on root (/) using ext4 file system with options:

rw - read/write option

relatime - enable last time access information. Access time is only updated if the previous access time was earlier than the current modify or change time.

data=ordered - all data are forced directly out to the main filesystem prior to its metadata being committed to the journal.

dmesg | grep sda

this command (display message) display messages from system core to standard out. With our "grep filter" we can see only messages about hard disk sda:

- -information about size and blocks size and quantity of blocks
- -quantity of bytes in physical bloks
- -whether or not write-protected device
- -byte mode options for HD controller
- -human readable options
- -partitions on HD
- -mesages about disc connection and filesystem EXT4 mounting mode

```
ansible@wsrv-ans:~$ dmesg | grep sda
[ 1.489845] sd 2:0:0:0: [sda] 266338304 512-byte logical blocks: (136 GB/127 GiB)
[ 1.490794] sd 2:0:0:0: [sda] 4096-byte physical blocks
[ 1.492559] sd 2:0:0:0: [sda] Write Protect is off
[ 1.493018] sd 2:0:0:0: [sda] Mode Sense: 0f 00 00 00
[ 1.494195] sd 2:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA
[ 1.511202] sda: sda1 sda2
[ 1.514452] sd 2:0:0:0: [sda] Attached SCSI disk
[ 3.682917] EXT4-fs (sda2): mounted filesystem with ordered data mode. Opts: (null)
[ 6.669853] EXT4-fs (sda2): re-mounted. Opts: (null)
ansible@wsrv-ans:~$
```

sudo grep -R -e "root" /etc > root_entries.txt
(place only a reasonable fragment of root_entries.txt into your report)

This command browse recursively all files in /etc directory to find strings with 'root' keyword and redirect all results to file root_entries.txt. This file contain a lot of strings with keyword "root" as a part of expressions. Now using additional "filter" we can analyse information about root group/user. Let's see.

```
ansible@wsrv-ans:~$ cat root_entries.txt | grep '/passwd\|/group\|/shadow' | sort /etc/group-:root:x:0: /etc/group:root:x:0: /etc/passwd-:root:x:0:0:root:/bin/bash /etc/passwd-root:x:0:0:root:/bin/bash /etc/security/group.conf:# 1. to run an application as root /etc/shadow-:root:*:18113:0:99999:7::: /etc/shadow:root:*:18113:0:99999:7::: ansible@wsrv-ans:~$
```

- root user has no password and can not be used to direct login;
- only one user 'root' is in group 'root'

To complete security observe for root privileges, we need to analyse sudoers file, passwd file for users with id = 0 and files where SGID and(or) SUID are set.