# AIRPORT PROJECT CONCEPTS

-Mayank.S.

# 1. After mapping ER to relational model

#### a. Mapping of Regular Entity types:

For each strong Entity type E, a relation R is created which includes all the attributes of the entity type E. One or more attributes are chosen as the primary key of the relation R. We have created a relation for each of the entity type.

# b. Mapping of Weak Entity types:

For each weak Entity type E, a relation R is created which includes all the attributes of the entity type E. Now add a foreign key attribute in R which references to the primary key attribute of the owner entity type, which is described by the identifying relationship of E. We add Airport code for ATC and Employee number for DEPENDENTS.

# c. Mapping of 1:1 binary relationship types:

Choose any relation, say S, and add a foreign key attribute in S which references to the primary key attribute of other participating entity type.

We have added a foreign key Ticket\_number in the relation PASSENGER.

# d. Mapping of 1:N binary relationship types:

Choose the relation, say S, which represents the participating entity type at the N-side of the relationship type. Add a foreign key attribute in S which references to the primary key attribute of the other participating entity type.

We have added Airport\_code in EMPLOYEE, Head\_PN (Passport\_number of head of the family/friends) in PASSENGER.

# e. Mapping of M:N binary relationship types:

Create a new relation R for each of the M:N relationship types and include the primary keys of both the participating entity types as the foreign key attributes of R.

We have added a new relation CONTAINS which has Airport\_code and Airline\_ID as its attributes.

# f. Mapping of N-ary relationship types:

For each n-ary relationship type R, create a new relationship relation S to represent R. Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types.

We have created a new relation JOURNEY which includes the primary key attributes of all the participating entity types.



#### Relational model after conversion to 1NF

In order to remove multivalued attributes of the relation R, we create a new relation S and include primary key attribute of R and multivalued attribute of R as the primary key attributes of S. Also, remove the multivalued attribute from the relation R.

In order to remove composite attributes of the relation R, we create a new relation S and include primary key attribute of R and add some attributes (which describe the composite attribute of R) to S. Also, remove the composite attribute from the relation R.

We have split PASSENGER into PASSENGER\_1, PASSENGER\_2 and PASSENGER\_3 Where PASSENGER\_2 handles multivalued attribute Phone\_number and PASSENGER\_3 handles composite attribute Address. We have added attributes Area, City, Country and Pin\_code in relation PASSENGER\_3 to describe the address of a passenger.



# 3. Relational model after conversion to 2NF

Every non-prime attribute should be fully functionally dependent on a primary key or a set of primary key attributes.

In order to follow 2NF, we have split EMPLOYEE into EMPLOYEE\_1 and EMPLOYEE\_2. EMPLOYEE\_1 has Airport\_code as its primary key and other attributes Designation and Salary are fully functionally dependent on it.

EMPLOYEE\_2 has Employee\_Number as its primary key and attributes Name, Date\_of\_birth and Phone\_number are fully functionally dependent on it.



#### 4. Relational model after conversion to 3NF

There should not be any transitive dependency in the relations.

In the relation TICKET, we can see that Ticket\_number, Class are fully functionally dependent on Ticket\_number & Price is fully functionally dependent on Ticket\_number, Class.

So, Price is transitively dependent on the primary key Ticket\_number.

In order to convert to 3NF, we split the relation TICKET into Ticket\_1 and TICKET\_2.

TICKET\_1 contains Flight\_number, Class as primary keys and Price as the attribute. TICKET\_2 contains Ticket\_number as the primary key and Flight\_number, Seat\_number and Class as the other attributes.

