Métodos de demostración

IIC1253 - Matemáticas Discretas Clase 06

Prof. Fernando Florenzano Hernández faflorenzano@ing.puc.cl

¿Qué es una demostración?

Definición

Una demostración es un argumento válido para establecer la verdad de una afirmación matemática.

¿Qué afirmaciones matemáticas conocen?

Afirmaciones matemáticas

Ejemplos

 Todo número natural cumple que si es par, entonces su sucesor es impar.

$$\forall x. \ x \text{ es par } \rightarrow \text{ el sucesor de } x \text{ es impar}$$

2. Todo número natural cumple que es par si, y solo si, el número al cuadrado es par.

$$\forall x. \ x \text{ es par} \leftrightarrow x^2 \text{ es par}$$

3. Existe una cantidad infinita de números primos.

7

Tipos de afirmaciones matemáticas

- Definición.
- Axioma.
- Proposición.
- Lema.
- Teorema.
- Corolario.
- Conjetura.
- Problema abierto.

¿Qué es una demostración?

Definición

Una demostración es un argumento válido para establecer la verdad de un afirmación matemática.

Un argumento válido es una secuencia de argumentos que puede estar compuesta por:

- axiomas.
- aplicación de definiciones.
- hipótesis o supuestos (si existe).
- afirmaciones previamente demostradas.

Cada argumento en la secuencia de argumentos esta conectado con el anterior por una **regla de inferencia** (consecuencia lógica).

El último paso de la secuencia establece la verdad de la afirmación.

¿Qué NO es una demostración?

- Una secuencia de símbolos.
- Una secuencia disconexa de argumentos.

IMPORTANTE

La secuencia de argumentos debe ser lo más clara, precisa y completa posible de tal manera de convencer al lector u oyente sin dejarle ninguna duda sobre la correctitud de la demostración.

¿Cómo comenzar a escribir una demostración?

Una demostración debe seguir un orden lógico de argumentos.

Pero, a la hora de escribir la demostración, es difícil hacerlo en ese mismo orden.

Es recomendable que comiencen escribiendo el inicio de la demostraciones (las hipótesis) y sus definiciones. Así tendrán claro con que pueden partir.

Inmediatamente después escriban el fin de la demostración (el objetivo a demostrar) y sus definiciones. Así tendrán claro a dónde tienen que llegar.

Luego, rellenen.

Ejemplo

Sea Σ un conjunto de fórmulas proposicionales y α una fórmula proposicional. Demuestre:

Si $\Sigma \cup \{\neg \alpha\}$ es inconsistente, entonces $\Sigma \vDash \alpha$

(Hip.) Si $\Sigma \cup \{\neg \alpha\}$ es inconsistente

(**Def.**) Entonces no existe valuación v_1, \ldots, v_n tal que haga verdadero a todas las fórmulas en $\Sigma \cup \{\neg \alpha\}$.

(Hip.) Si $\Sigma \cup \{\neg \alpha\}$ es inconsistente

(**Def.**) Entonces no existe valuación v_1, \ldots, v_n tal que haga verdadero a todas las fórmulas en $\Sigma \cup \{\neg \alpha\}$.

(Def. de Obj.) Para toda valuación que hace verdad a las fórmulas de Σ , entonces esa valuación hace verdad a α .

(Objetivo.) $\Sigma \vDash \alpha$

(Hip.) Si $\Sigma \cup \{\neg \alpha\}$ es inconsistente

(Def.) Entonces no existe valuación v_1, \ldots, v_n tal que haga verdadero a todas las fórmulas en $\Sigma \cup \{\neg \alpha\}$.

(Arg.) Es decir, para cualquier valuación, hay al menos una fórmula en $\Sigma \cup \{\neg \alpha\}$ que evalua a falso.

(Def. de Obj.) Para toda valuación que hace verdad a las fórmulas de Σ , entonces esa valuación hace verdad a α .

(Objetivo.) $\Sigma \vDash \alpha$

(Hip.) Si $\Sigma \cup \{\neg \alpha\}$ es inconsistente

(**Def.**) Entonces no existe valuación v_1, \ldots, v_n tal que haga verdadero a todas las fórmulas en $\Sigma \cup \{\neg \alpha\}$.

(Arg.) Es decir, para cualquier valuación, hay al menos una fórmula en $\Sigma \cup \{\neg \alpha\}$ que evalua a falso.

(Arg.) Suponga que una valuación v'_1, \ldots, v'_n hace verdad solo a las fórmulas de Σ . Sabemos que si agregamos $\neg \alpha$ al conjunto, se dejan de cumplir todas las fórmulas.

(Def. de Obj.) Para toda valuación que hace verdad a las fórmulas de Σ , entonces esa valuación hace verdad a α .

(Objetivo.) $\Sigma \models \alpha$

(Hip.) Si $\Sigma \cup \{\neg \alpha\}$ es inconsistente

(**Def.**) Entonces no existe valuación v_1, \ldots, v_n tal que haga verdadero a todas las formulas en $\Sigma \cup \{\neg \alpha\}$.

(Arg.) Es decir, para cualquier valuación, hay al menos una fórmula en $\Sigma \cup \{\neg \alpha\}$ que evalua a falso.

(Arg.) Suponga que una valuación v_1, \ldots, v_n' hace verdad solo a las fórmulas de Σ . Sabemos que si agregamos $\neg \alpha$ al conjunto, se dejan de cumplir todas las fórmulas.

(Arg.) Entonces $(\neg \alpha)(v_1,\ldots,v_n')=0$. Es decir, $\alpha(v_1,\ldots,v_n')=1$.

(Def. de Obj.) Para toda valuación que hace verdad a las fórmulas de Σ , entonces esa valuación hace verdad a α .

(Objetivo.) $\Sigma \vDash \alpha$

¿Cómo encontramos una secuencia de argumentos para demostrar un teorema?

- 1. Experiencia.
- 2. Intuición.
- 3. Creatividad.
- 4. Perseverancia.
- 5. Métodos de demostración.

Contenidos

Directa

Contrapositivo

Por análisis de casos

Doble implicación

Contradicción

Contra-ejemplo

Existencial

Inducción

Contenidos

Directa

Contrapositivo

Por análisis de casos

Doble implicación

Contradicción

Contra-ejemplo

Existencial

nducción

Demostración directa

Supongan que queremos demostrar una afirmación como:

$$\forall x. P(x) \rightarrow Q(x)$$

Método directo

Suponemos que P(n) es verdadero para un n cualquiera (genérico) y demostramos que Q(n) también es verdadero.

¿Qué sucede cuando P(n) es **falso**?

Ejemplo de una demostración directa

Definición

- Un entero n en \mathbb{Z} se dice par si existe k en \mathbb{Z} tal que n = 2k.
- Un entero n en \mathbb{Z} se dice impar si existe k en \mathbb{Z} tal que n = 2k + 1.

Teorema

Si n es un entero impar, entonces n^2 es impar.

Demostración

Suponemos que *n* es impar.

Por definición, existe un $k \in \mathbb{Z}$ tal que n = 2k + 1.

$$n^2 = (2k+1)^2$$
 (definición de n)
= $4k^2 + 4k + 1$ (multiplicación $(2k+1)(2k+1)$)
= $2 \cdot (2k^2 + 2k) + 1$ (factorización por 2)

Si definimos k' como $k' = 2k^2 + 2k$, entonces se tiene que $n^2 = 2k' + 1$. Por definición de un número impar, concluimos que n^2 es impar.

Contenidos

Directa

Contrapositivo

Por análisis de casos

Doble implicación

Contradicción

Contra-ejemplo

Existencial

Inducción

Demostración por contrapositivo

Supongan que queremos demostrar:

$$\forall x.P(x) \rightarrow Q(x) \equiv \forall x. \neg Q(x) \rightarrow \neg P(x)$$

Método por contrapositivo

Suponemos que Q(n) es falso para un n cualquiera (genérico) y demostramos que P(n) también es falso.

Ejemplo de demostración por contrapositivo

Teorema

Suponga a y b son positivos. Si n = ab, entonces $a \le \sqrt{n}$ o $b \le \sqrt{n}$.

¿Es posible hacer una demostración directa?

Demostración (por contrapositivo)

PD: Si $a > \sqrt{n}$ y $b > \sqrt{n}$, entonces $n \neq ab$.

Suponga que $a > \sqrt{n}$ y $b > \sqrt{n}$ con n positivo.

$$\begin{array}{lll} n & = & \sqrt{n} \cdot \sqrt{n} \\ & < & a \cdot \sqrt{n} & (\operatorname{por} a > \sqrt{n}) \\ & < & a \cdot b & (\operatorname{por} b > \sqrt{n}) \end{array}$$

Entonces, $n < a \cdot b$ y, por lo tanto, $n \neq ab$.

Contenidos

Directa

Contrapositivo

Por análisis de casos

Doble implicación

Contradicción

Contra-ejemplo

Existencial

Inducción

Demostración por análisis de casos

Supongan que queremos demostrar:

$$\forall x \in D. P(x)$$

Metodó de análisis de casos

Dividimos el dominio de posibilidades D a una cantidad **finita de casos** D_1, D_2, \dots, D_k tal que:

$$D = D_1 \cup D_2 \cup \ldots \cup D_k$$

Por último, demostramos para todo subdominio D_i se cumple:

$$\forall x \in D_i. P(x)$$

con i desde 1 hasta k.

Ejemplo de una demostración por casos

Teorema

Para todo entero n se cumple que $n^2 \ge n$.

Demostración

- 1. Si n = 0, entonces $o^2 = 0$. Por lo tanto, $o^2 \ge 0$.
- 2. Si $n \ge 1$, entonces:

$$n \ge 1$$

 $n^2 \ge n$ (multiplicando ambos lados por $n > 0$)

3. Si $n \le -1$, como $n^2 \ge 0$ entonces se tiene que $n^2 \ge n$.

¿Cuál es la ventaja de demostrar por casos?

Recomendación

"Cuando todos los métodos anteriores han fallado y no se sabe por donde empezar, una "estrategia" es empezar demostrando casos simples para así ganar intuición en la demostración general."

Contenidos

Directa

Contrapositivo

Por análisis de casos

Doble implicación

Contradicción

Contra-ejemplo

Existencial

Inducción

Demostración de doble implicación

Supongan que queremos demostrar una afirmación como:

$$\forall x. P(x) \leftrightarrow Q(x)$$

Demostración para doble-implicación
Debemos demostrar dos afirmaciones (ambas direcciones):

$$\forall x. P(x) \rightarrow Q(x) \quad y \quad \forall x. P(x) \leftarrow Q(x)$$

Ejemplo de una demostración de doble-implicación

Teorema

Para todo número natural n, se tiene que n es impar si, y solo si, n^2 es impar.

Demostración

 (\Rightarrow) Si n es impar, entonces n^2 es impar.

(←) Si n^2 es impar, entonces n es impar.

PD: Si n es par, entonces n^2 es par.

Ejercicio: termine la demostración.

Contenidos

Directa

Contrapositivo

Por análisis de casos

Doble implicación

Contradicción

Contra-ejemplo

Existencial

nducción

Demostración por contradicción

Supongan que queremos demostrar una afirmación *R*, pero demostramos:

$$(\neg R) \rightarrow (S \land \neg S)$$

donde S es una afirmación cualquiera.

¿Qué implica esto?

Metodó por contradicción

Suponemos que $\neg R$ es verdadero y inferimos una **contradicción**. Si esto sucede, entonces R debe ser **verdadero**.

Demostración por contradicción (versión alternativa)

Supongan que queremos demostrar:

$$R := \forall x. \ P(x) \rightarrow Q(x)$$

Metodó por contradicción

$$\neg R := \exists x. \ P(x) \land \neg Q(x)$$

Suponemos que existe un n tal que P(n) es verdadero y Q(n) es falso y inferimos una contradicción.

"Reductio ad absurdum, which Euclid loved so much, is one of a mathematician's finest weapons. It is a far finer gambit than any chess play: a chess player may offer the sacrifice of a pawn or even a piece, but a mathematician offers the game."

A mathematician's apology (G. H. Hardy).

Ejemplo de una demostración por contradicción

Definiciones

■ Un número r en \mathbb{R} se dice racional si existen enteros p y q tal que:

$$r = \frac{p}{q}$$

con $q \neq 0$ y p, q no tienen divisores en común exceptuando el 1.

■ Un número $r \in \mathbb{R}$ se dice irracional si no es racional.

Teorema

 $\sqrt{2}$ es un número irracional.

Ejemplo de una demostración por contradicción

Demostración ($\sqrt{2}$ es un número irracional)

Suponga que $\sqrt{2}$ es racional.

Entonces, existen p y q en \mathbb{Z} , sin divisores en común, tal que $\sqrt{2} = \frac{p}{q}$.

$$\sqrt{2} = \frac{p}{q} \\
2 \cdot q^2 = p^2$$

Por lo tanto, p^2 es par y, entonces, p es par (¿por qué?).

Como p es par, entonces p = 2k para algún k en \mathbb{Z} .

$$2 \cdot q^2 = p^2$$

$$2 \cdot q^2 = (2k)^2$$

$$q^2 = 2 \cdot k^2$$

Por lo tanto, q^2 es par y, entonces, q es par.

¡Contradicción! (¿Por qué?)

Contenidos

Directa

Contrapositivo

Por análisis de casos

Doble implicación

Contradicción

Contra-ejemplo

Existencial

nducción

Demostración por contra-ejemplo

Supongan que deseamos demostrar que la siguiente afirmación es falsa:

 $\forall x. P(x)$

Demostración por contra-ejemplo Encontrar un elemento n (cualquiera) tal que P(n) es falso.

Ejemplo de una demostración por contra-ejemplo

Teorema

Es falso que todo número mayor a 1 es la suma de dos cuadrados perfectos.

Demostración

Probamos con los primeros números mayor a 1:

$$2 = 1^{2} + 1^{2}$$
$$3 \neq 1^{2} + 1^{2}$$
$$\neq 2^{2} + 1^{2}$$

Por lo tanto, 3 no es la suma de dos cuadrados perfectos.

¿cómo buscar/encontrar el contra-ejemplo?

Recomendaciones

- 1. Probar primero los ejemplos más "pequeños".
- 2. Seguir con los ejemplos más "comunes".
- 3. Intentar con muchos ejemplos.

Contenidos

Directa

Contrapositivo

Por análisis de casos

Doble implicación

Contradicción

Contra-ejemplo

Existencial

Inducción

Demostración existencial

Supongan que queremos demostrar:

 $\exists x. P(x)$

Demostración de existencia

Debemos demostrar que **existe** un elemento n tal que P(n) es **verdadero**. Notese que NO es estrictamente necesario mostrar n explicitamente.

Ejemplo de una demostración existencial

Teorema

Existen dos números irracionales a y b tal que a^b es racional.

Demostración

Como $\sqrt{2}$ es irracional considere $\sqrt{2}^{\sqrt{2}}$.

- 1. Si $\sqrt{2}^{\sqrt{2}}$ es **racional**, entonces $a = \sqrt{2}$ y $b = \sqrt{2}$ es suficiente.
- 2. Si $\sqrt{2}^{\sqrt{2}}$ es irracional, entonces considere $a = \sqrt{2}^{\sqrt{2}}$ y $b = \sqrt{2}$.

$$\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2} \cdot \sqrt{2}}$$

$$= \sqrt{2}^2$$

$$= 2$$

Por lo tanto, a^b es racional.

Contenidos

Directa

Contrapositivo

Por análisis de casos

Doble implicación

Contradicción

Contra-ejemplo

Existencial

Inducción

Demostración por inducción

Demostración por inducción

Suponga que deseamos demostrar una afirmación $\forall x. P(x)$ sobre \mathbb{N} .

Principio de inducción

Para una afirmación P(x) sobre los naturales, si P(x) cumple que:

- 1. P(o) es verdadero,
- 2. si P(n) es verdadero, entonces P(n+1) es verdadero, entonces para todo n en los naturales se tiene que P(n) es verdadero.

Notación

- \blacksquare P(o) se llama el **caso base**.
- En el paso 2.
 - P(n) se llama la **hipótesis de inducción**.
 - P(n+1) se llama la **tesis de inducción** o paso inductivo.

Ejemplo de demostración por inducción

Teorema

La suma de los primeros n números naturales es igual a $\frac{n \cdot (n+1)}{2}$.

Demostración

Demostramos que se cumple para n = 0:

Caso base (*n* = 0):
$$O = \frac{O \cdot (O + 1)}{2} = O$$

Ejemplo de demostración por inducción

Demostración (continuación)

Suponemos que se cumple para un n cualquiera y demostramos para n + 1:

Hipótesis:
$$0 + 1 + ... n = \frac{n \cdot (n+1)}{2}$$
Inducción: $0 + 1 + ... + n + (n+1) = \underbrace{0 + 1 + ... + n}_{\text{caso } n} + (n+1)$

$$= \frac{n \cdot (n+1)}{2} + (n+1)$$

$$= \frac{(n+1) \cdot ((n+1) + 1)}{2}$$

¿Cuál método de demostración ocupar?

¡No existe un método infalible para demostrar!

Recomendaciones

- 1. Escribir definiciones e hipótesis
- 2. Escribir el objetivo
- 3. Probar con distintos métodos.
- 4. Ganar intución intentando con casos o ejemplos mas sencillos.
- 5. Revisar demostraciones similares.
- 6. Sean creativos.