

Projet GE S7

Asservissement d'une machine à courant continu

TRENCHANT Evan TROULLIER Laël VIRQUIN Rudy GE4, groupe 2

Professeur : Damien Flieller

22 octobre 2025

Introduction

Dans le domaine de l'électronique de puissance et de l'automatique, la commande des machines électriques constitue un enjeu majeur pour de nombreuses applications industrielles. Parmi ces machines, la machine à courant continu (MCC) occupe une place particulière de par sa simplicité de commande et sa capacité à fournir des couples élevés à basse vitesse.

Ce projet, réalisé dans le cadre du semestre 7 de la formation en Génie Électrique à l'INSA Strasbourg, porte sur l'étude et la réalisation de l'asservissement d'une machine à courant continu avec charge. L'objectif principal est de développer un système de contrôle permettant d'asservir précisément la vitesse et le courant de la machine tout en respectant les contraintes de performance imposées.

Contexte et problématique

L'asservissement des machines électriques nécessite une approche méthodique combinant la modélisation théorique, la simulation numérique et la validation expérimentale. Dans le cas particulier de la machine à courant continu, plusieurs défis doivent être relevés :

- La modélisation précise du comportement dynamique de la machine et de sa charge
- La conception de correcteurs adaptés pour les boucles de courant et de vitesse
- La limitation des dépassements lors des régimes transitoires
- L'optimisation des performances en régime permanent et dynamique

Objectifs du projet

Ce projet vise à concevoir et valider un système d'asservissement complet pour une machine à courant continu. Les objectifs spécifiques sont les suivants :

- 1. Modélisation et simulation : Développer un modèle mathématique précis de la machine à courant continu et de sa charge, puis l'implémenter dans les environnements MATLAB/Simulink et PSIM
- 2. Asservissement en courant : Concevoir et régler une boucle de régulation de courant permettant de contrôler précisément le couple de la machine
- 3. Asservissement en vitesse : Implémenter une boucle de régulation de vitesse en cascade avec la boucle de courant, utilisant soit un capteur tachymétrique soit un codeur incrémental
- 4. Respect des spécifications : Garantir que les dépassements en vitesse et en courant restent dans la plage de 10 à 20% lors des transitoires
- 5. Validation comparative : Comparer les résultats obtenus entre les simulations MAT-LAB/Simulink et PSIM pour valider la cohérence des modèles

Approche méthodologique

La démarche adoptée suit une approche progressive et structurée :

- Phase 1 : Étude et modélisation de la machine seule
- Phase 2 : Intégration de la charge mécanique et validation du modèle complet
- Phase 3 : Conception et réglage de la boucle de courant

- Phase 4 : Conception et réglage de la boucle de vitesse
- Phase 5 : Optimisation globale et validation finale du système d'asservissement

Chaque phase fait l'objet d'une validation croisée entre les outils MATLAB/Simulink et PSIM, permettant de garantir la fiabilité des résultats et d'identifier d'éventuelles divergences de modélisation.

Table des matières

In	trod	uction	2
		cation du projet	5
	1.	Diagramme de Gantt	5
1	Schémas blocs du système d'asservissement		7
	1.	Schéma bloc de l'asservissement en vitesse et courant	7
	2	Description du schéma bloc	ς

Planification du projet

La réalisation de ce projet d'asservissement d'une machine à courant continu nécessite une planification rigoureuse pour garantir l'atteinte des objectifs dans les délais impartis. Cette section présente l'organisation temporelle du projet et le diagramme de Gantt détaillant les différentes phases de développement.

1. Diagramme de Gantt

Le diagramme de Gantt ci-dessous illustre la planification détaillée du projet sur 14 semaines, avec les dépendances entre les tâches et les jalons importants.

FIGURE 1 – Diagramme de Gantt du projet d'asservissement MCC

1 - Schémas blocs du système d'asservissement

1. Schéma bloc de l'asservissement en vitesse et courant

 $FIGURE\ 1.1-Votre\ l\'egende$

FIGURE 1.2 – Schéma bloc de l'asservissement en vitesse avec boucle de courant imbriquée

2. Description du schéma bloc

Le schéma représente un asservissement en cascade (vitesse et courant) d'une machine à courant continu. Les éléments principaux sont :

- C_1 : Consigne de vitesse
- K_{ϕ} : Constante de couple/fem de la machine
- $\frac{1}{R+Ls}$: Fonction de transfert électrique (circuit d'induit)
- $\frac{1}{Js}$: Fonction de transfert mécanique (inertie)
- \bullet 2P : Retour des pertes par frottements
- L_M : Couple de charge externe
- L_8 : Perturbation sur le courant
- $\frac{K_{\phi}^2}{Ls + (R + R_{ch})}$: Fonction de transfert de retour complexe (avec A = 2P + a)

Les boucles de régulation permettent de contrôler précisément la vitesse Ω et le courant d'induit i_a de la machine.