Data Mining Classification: Alternative Techniques

Bayesian Classifiers

Introduction to Data Mining, 2nd Edition by

Tan, Steinbach, Karpatne, Kumar

- Sınıflandırma problemlerini çözmek için olasılıksal bir yaklaşım joint probability, P(X = x, Y = y), X değişkeninin x değerini alması ve Y değişkeninin y değerini alması olasılığını ifade eder.
- Conditional Probability:

Koşullu olasılık (conditional probability), <u>başka bir</u> rastgele değişkenin sonucunun bilindiği göz önüne <u>alındığında</u>, **rastgele bir değişkenin belirli bir değeri alması olasılığıdır**. Örneğin, koşullu olasılık P (Y = y | X = x), X değişkeninin x değerine sahip olduğu gözlendiğinde, Y değişkeninin y değerini alma olasılığını ifade eder.

$$P(Y \mid X) = \frac{P(X,Y)}{P(X)}$$

$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

Bayes theorem:

Sınıfların önceki bilgilerini (prior knowledge) verilerden toplanan yeni kanıtlarla (new evidence gathered from data) birleştirmek için istatistiksel bir ilke

$$P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{P(X)}$$

Example of Bayes Theorem

Verilen:

- Bir doktor, menenjitin% 50 oranında boyun tutulmasına (stiff neck) neden olduğunu bilir.
- Menenjit olan herhangi bir hastanın önsel olasılığı
 1 / 50.000'dir (*Prior probability*)
- Boyun tutulması olan herhangi bir hastanın önsel olasılığı
 1 / 20'dir (*Prior probability*)

Önsel olasılık(<u>Prior probability</u>), Bayesci İstatistikte gözlemlere atıf yapmadan önce değerlendirilen özellikle öznel olabilen olasılıktır. Tecrübeye dayalı olasılık olarak da adlandırılır.

 Bir hastanın boynu tutulmuşsa menenjit olma olasılığı nedir?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Using Bayes Theorem for Classification

- Her bir niteliği ve sınıf etiketini rastgele değişkenler olarak düşünün
- Öznitelikleri (X₁, X₂,..., X_d) olan bir kayıt verildiğinde
 - Amaç, Y sınıfını tahmin etmektir
 - Tam olarak şu ifadeyi maksimize eden Y değerini bulmak istiyoruz : P(Y| X₁, X₂,..., X_d)

Bu koşullu olasılık, önsel olasılık (**prior probability**) P (Y) 'nin aksine, Y için sonsal olasılık (**Posterior probability**) olarak da bilinir.

Doğrudan verilerden P(Y| X₁, X₂,..., X_d) tahmin edebilir miyiz?

Eğitim aşamasında, eğitim verilerinden toplanan bilgilere dayanarak her \mathbf{X} ve \mathbf{Y} kombinasyonu için posterior olasılıkları $P(Y | \mathbf{X})$ öğrenmemiz gerekir. Bu olasılıkları bilerek, $\mathbf{X'}$ test kaydı, posterior olasılığı maksimize eden $\mathbf{Y'}$ sınıfını bularak sınıflandırılabilir, $P(Y' | \mathbf{X'})$

Example Data

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Can we estimate

P(Evade = Yes | X) and P(Evade = No | X)?

In the following we will replace

Evade = Yes by Yes, and

Evade = No by No

Using Bayes Theorem for Classification

- Approach:
 - compute posterior probability P(Y | X₁, X₂, ..., X_d) using the Bayes theorem

$$P(Y \mid X_1 X_2 ... X_n) = \frac{P(X_1 X_2 ... X_d \mid Y) P(Y)}{P(X_1 X_2 ... X_d)}$$

- Maximum a-posteriori: Choose Y that maximizes
 P(Y | X₁, X₂, ..., X_d)
- Equivalent to choosing value of Y that maximizes
 P(X₁, X₂, ..., X_d|Y) P(Y)
- How to estimate $P(X_1, X_2, ..., X_d | Y)$?

Example Data

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Using Bayes Theorem:

$$P(Yes \mid X) = \frac{P(X \mid Yes)P(Yes)}{P(X)}$$

$$P(No \mid X) = \frac{P(X \mid No)P(No)}{P(X)}$$

How to estimate P(X | Yes) and P(X | No)?

Naïve Bayes Classifier

- Sınıf verildiğinde, X_i nitelikleri arasında bağımlılık olmadığını (*indepencence*) varsayın:
 - $P(X_1, X_2, ..., X_d | Y_j) = P(X_1 | Y_j) P(X_2 | Y_j)... P(X_d | Y_j)$
 - Artık eğitim verilerinden tüm X_i ve Y_j kombinasyonları için P(X_i| Y_j) tahmin edebiliriz
 - $P(Y_j) \prod P(X_i|Y_j)$, maksimum ise yeni nokta Y_j olarak sınıflandırılır.

02/14/2018

Conditional Independence

- P(X|YZ) = P(X|Z) ise X and Y koşullu olarak bağımsızdır (conditionally independent)
- Örnek: Kol uzunluğu ve okuma becerileri
- Çocuklar, yetişkinlere kıyasla daha kısa kol uzunluğuna ve sınırlı okuma becerisine sahiptir.
 - Yaş sabitse, kol uzunluğu ile okuma becerileri arasında belirgin bir ilişki yok
 - Kol uzunluğu ve okuma becerileri, yaşa göre koşullu olarak bağımsızdır

Conditional Independence

Naïve Bayes on Example Data

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

- P(X | Yes) =
 P(Refund = No | Yes) x
 P(Divorced | Yes) x
 P(Income = 120K | Yes)
- P(X | No) =
 P(Refund = No | No) x
 P(Divorced | No) x
 P(Income = 120K | No)

Estimate Probabilities from Data

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

 \mid Class: $P(Y) = N_c/N$

- e.g.,
$$P(No) = 7/10$$
, $P(Yes) = 3/10$

For categorical attributes:

$$P(X_i \mid Y_k) = |X_{ik}| / N_{c_k}$$

- where |X_{ik}| is number of instances having attribute value X_i and belonging to class Y_k
- Examples:

P(Status=Married|No) = 4/7 P(Refund=Yes|Yes)=0

Estimate Probabilities from Data

- For continuous attributes:
 - Discretization: Partition the range into bins:
 - Replace continuous value with bin value
 - Attribute changed from continuous to ordinal
 - Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, use it to estimate the conditional probability P(X_i|Y)

Estimate Probabilities from Data

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(X_i | Y_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(X_i - \mu_{ij})^2}{2\sigma_{ij}^2}}$$

- One for each (X_i, Y_i) pair
- For (Income, Class=No):
 - If Class=No
 - ◆ sample mean = 110
 - sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)}e^{\frac{-(120-110)^2}{2(2975)}} = 0.0072$$

Example of Naïve Bayes Classifier

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Naïve Bayes Classifier:

```
P(Refund = Yes | No) = 3/7
P(Refund = No | No) = 4/7
P(Refund = Yes | Yes) = 0
P(Refund = No | Yes) = 1
P(Marital Status = Single | No) = 2/7
P(Marital Status = Divorced | No) = 1/7
```

P(Marital Status = Married | No) = 4/7 P(Marital Status = Single | Yes) = 2/3 P(Marital Status = Divorced | Yes) = 1/3 P(Marital Status = Married | Yes) = 0

For Taxable Income:

$$P(No) = 7/10,$$

 $P(Yes) = 3/10$

Since P(X|No)P(No) > P(X|Yes)P(Yes)

	,					
Tid	Refund	Marital Status	Taxable Income	Evade		
1	Yes	Single	125K	No		
2	No	Married	100K	No		
3	No	Single	70K	No		
4	Yes	Married	120K	No		
5	No	Divorced	95K	Yes		
6	No	Married	60K	No		
7	Yes	Divorced	220K	No		
8	No	Single	85K	Yes		
9	No	Married	75K	No		
10	No	Single	90K	Yes		

Introduction to Data Mining, 2nd Edition

Example of Naïve Bayes Classifier

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Naïve Bayes Classifier:

P(Refund = Yes | No) = 3/7

P(Refund = No | No) = 4/7

P(Refund = Yes | Yes) = 0

P(Refund = No | Yes) = 1

P(Marital Status = Single | No) = 2/7

P(Marital Status = Divorced | No) = 1/7

P(Marital Status = Married | No) = 4/7

P(Marital Status = Single | Yes) = 2/3

P(Marital Status = Divorced | Yes) = 1/3

P(Marital Status = Married | Yes) = 0

For Taxable Income:

If class = No: sample mean = 110

sample variance = 2975

If class = Yes: sample mean = 90

sample variance = 25

• P(Yes) = 3/10P(No) = 7/10 Using Bayes Theorem: $P(Yes \mid X) = \frac{P(X \mid Yes)P(Yes)}{P(X)}$ $P(No \mid X) = \frac{P(X \mid No)P(No)}{P(X)}$

- P(Yes | Divorced) = 1/3 x 3/10 / P(Divorced)
 P(No | Divorced) = 1/7 x 7/10 / P(Divorced)
 - P(Yes | Refund = No, Divorced) = 1 x 1/3 x 3/10 /
 P(Divorced, Refund = No)
 P(No | Refund = No, Divorced) = 4/7 x 1/7 x 7/10 /
 P(Divorced, Refund = No)

ı ıa	Kelulia	Status	Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Naïve Bayes Classifier:

P(Refund = Yes | No) = 3/7

P(Refund = No | No) = 4/7

P(Refund = Yes | Yes) = 0

P(Refund = No | Yes) = 1

P(Marital Status = Single | No) = 2/7

P(Marital Status = Divorced | No) = 1/7

P(Marital Status = Married | No) = 4/7

P(Marital Status = Single | Yes) = 2/3

P(Marital Status = Divorced | Yes) = 1/3

P(Marital Status = Married | Yes) = 0

For Taxable Income:

If class = No: sample mean = 110

sample variance = 2975

If class = Yes: sample mean = 90

sample variance = 25

• P(Yes) = 3/10

P(No) = 7/10

Using Bayes Theorem:

 $P(Yes \mid X) = \frac{P(X \mid Yes)P(Yes)}{P(X)}$

 $P(No \mid X) = \frac{P(X \mid No)P(No)}{P(X)}$

P(Yes | Married) = 0 x 3/10 / P(Married)

 $P(No \mid Married) = 4/7 \times 7/10 / P(Married)$

I Ia	Ketuna	Status	Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

7 Yes Divorced 220K No

Consider the table with Tid = 7 deleted

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Naïve Bayes Classifier:

Given
$$X = (Refund = Yes, Divorced, 120K)$$

$$P(X \mid No) = 2/6 \times 0 \times 0.0083 = 0$$

$$P(X | Yes) = 0 X 1/3 X 1.2 X 10^{-9} = 0$$

Naïve Bayes will not be able to classify X as Yes or No!

- Eğer koşullu olasılıklardan biri sıfırsa, tüm ifade sıfır olur
- Basit kesirlerden başka koşullu olasılık tahminlerini kullanma ihtiyacı
- Probability estimation:

Original:
$$P(A_i \mid C) = \frac{N_{ic}}{N_c}$$

Laplace:
$$P(A_i \mid C) = \frac{N_{ic} + 1}{N_c + c}$$

m - estimate:
$$P(A_i \mid C) = \frac{N_{ic} + mp}{N_c + m}$$

c: sınıf sayısı

p: sınıfın önceki olasılığı(prior probability)

m: parameter

 N_c : sınıftaki örnek sayısı

 N_{ic} : c sınıfında A_i öznitelik değerine sahip örneklerin sayısı

Consider the table with Tid = 7 deleted

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Original:
$$P(A_i \mid C) = \frac{N_{ic}}{N_c}$$

Laplace: $P(A_i \mid C) = \frac{N_{ic} + 1}{N_c + c}$
m - estimate: $P(A_i \mid C) = \frac{N_{ic} + mp}{N_c + m}$

Naïve Bayes Classifier:

```
P(Refund = Yes | No) = 2/6
P(Refund = No | No) = 4/6
P(Refund = Yes | Yes) = 0
P(Refund = No | Yes) = 1
P(Marital Status = Single | No) = 2/6
P(Marital Status = Divorced | No) = 0
P(Marital Status = Married | No) = 4/6
P(Marital Status = Single | Yes) = 2/3
P(Marital Status = Divorced | Yes) = 1/3
P(Marital Status = Married | Yes) = 0/3
```

koşullu olasılık P(Status = Married/Yes) = 0 çünkü bu sınıfa yönelik eğitim kayıtlarının hiçbiri ilgili öznitelik değerine sahip değildir. m = 3 and p = 1/3 ile **m**-estimate yaklaşımı kullanıldığında, koşullu olasılık artık sıfır değildir:

 $P(Marital Status = Married/Yes) = (0+3 \times 1/3)/(3+3)$ = 1/6.

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

M: mammals

N: non-mammals

P(GiveBirth=Yes | Mammals) = 6/7 P(GiveBirth=Yes | Non-mammals) = 1/13

P(CanFly=No| Mammals) = 6/7 P(CanFly=No| Non-mammals) = 10/13

P(LiveInWater=Yes | Mammals) = 2/7 P(LiveInWater=Yes | Non-mammals) = 3/13

P(HaveLegs=No | Mammals) = 2/7 P(HaveLegs=No | Non-mammals) =4/13

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes

M: mammals

N: non-mammals

$$P(A \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A|N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A|M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

P(A|M)P(M) > P(A|N)P(N)=> Mammals

Naïve Bayes (Summary)

- ı İzole gürültü noktalarına karşı sağlam
- Olasılık tahmini hesaplamaları sırasında ilgili örneği yok sayarak eksik değerlerle başa çıkabilir
- Alakasız özniteliklere karşı sağlam
- Bağımsızlık varsayımı (*independent assumption*) bazı özellikler için geçerli olmayabilir
 - Bayesian Belief Networks (BBN) gibi diğer teknikleri kullanın

Naïve Bayes

How does Naïve Bayes perform on the following dataset?

Özniteliklerin koşullu bağımsızlığı ihlal edilmiştir

Naïve Bayes

How does Naïve Bayes perform on the following dataset?

Naïve Bayes eğik karar sınırları oluşturabilir

Naïve Bayes

How does Naïve Bayes perform on the following dataset?

Y = 1	1	1	1	0
Y = 2	0	1	0	0
Y = 3	0	0	1	1
Y = 4	0	0	1	1
	X = 1	X = 2	X = 3	X = 4

Özniteliklerin koşullu bağımsızlığı ihlal edilmiştir

Bayesian Belief Networks

- Naive Bayes sınıflandırıcıları tarafından yapılan koşullu bağımsızlık varsayımı (conditional independence assumption) çok katı görünebilir,
 - bilhassa <u>özniteliklerin bir şekilde ilişkili olduğu</u> sınıflandırma problemleri için.
- Sınıf-koşullu olasılıkların (class-conditional probabilities)
 P(X/Y) modellenmesi için daha esnek bir yaklaşım sağlar.
- Sınıfa göre tüm özniteliklerin koşullu olarak bağımsız olmasını zorunlu kılmak yerine,
 - bu yaklaşım, hangi öznitelik çiftlerinin koşullu olarak bağımsız olduğunu belirlememizi sağlar.

Bayesian Belief Networks

- Bir dizi rastgele değişken arasındaki olasılık ilişkilerinin grafiksel gösterimini sağlar
- Şunlardan oluşur:
 - A directed acyclic graph (dag)
 - Düğüm bir değişkene karşılık gelir
 - Yay ise, bir çift değişken arasındaki bağımlılık ilişkisine karşılık gelir
 - Her düğümü en yakın üst öğesi
 (immediate parent) ile ilişkilendiren bir

 Ave B'nin bağımsız değişkenler (independent)

olasılık tablosu

variables) olduğu ve her birinin üçüncü bir

В

değişken olan C üzerinde doğrudan bir etkisi olduğu A, B ve C olmak üzere üç rastgele değişkeni düşünün.

Conditional Independence

D is parent of C

A is child of C

B is descendant of D

D is ancestor of A

Bayes ağındaki bir düğüm, ebeveynleri biliniyorsa, onun soyundan gelmeyen (nondescendants) diğer tüm düğümlerden

koşullu olarak bağımsızdır.
02/14/2018 Introduction to Data Mining, 2nd Edition

Conditional Independence

Naïve Bayes assumption:

Bir naive Bayes sınıflandırıcı tarafından yapılan koşullu bağımsızlık varsayımı, yukarıda gösterildiği gibi bir Bayes ağı kullanılarak da temsil edilebilir, burada *y* hedef sınıftır ve {X1,X2, . . . , Xd} öznitelik kümesidir.

Probability Tables

 X'in herhangi bir ebeveyni (üst öğesi) yoksa, tablo önceki olasılık P (X) içerir

 X'in birden çok ebeveyni (Y₁, Y₂,..., Y_k) varsa, tablo koşullu olasılık P(X|Y₁, Y₂,..., Y_k) içerir

X

Example of Bayesian Belief Network

Risk faktörleriyle ilişkili düğümler yalnızca önsel olasılıkları (**prior probabilities**) içerirken, kalp rahatsızlığı düğümleri ve bunlara karşılık gelen semptomları koşullu olasılıkları içerir.

Example of Inferencing using BBN

- Given: X = (E=No, D=Yes, CP=Yes, BP=High)
 - Compute P(HD|E,D,CP,BP)?
- P(HD=Yes| E=No,D=Yes) = 0.55
 P(CP=Yes| HD=Yes) = 0.8
 P(BP=High| HD=Yes) = 0.85
 - P(HD=Yes|E=No,D=Yes,CP=Yes,BP=High) $\propto 0.55 \times 0.8 \times 0.85 = 0.374$
- P(HD=No| E=No,D=Yes) = 0.45 P(CP=Yes| HD=No) = 0.01 P(BP=High| HD=No) = 0.2
 - P(HD=No|E=No,D=Yes,CP=Yes,BP=High) $\propto 0.45 \times 0.01 \times 0.2 = 0.0009$

Classify X as Yes

Example of Inferencing using BBN

Case 1: No Prior Information

Herhangi bir önsel bilgi olmadan, birisinin kalp krizi riski taşıyıp taşımadığına dair olasılık hesabı yapabiliriz.

0.25

0.75

HD=No

0.45

0.55

0.55

0.45

Without any prior information, we can determine whether the person is likely to have heart disease by computing the prior probabilities $P(\mathtt{HD} = \mathtt{Yes})$ and $P(\mathtt{HD} = \mathtt{No})$. To simplify the notation, let $\alpha \in \{\mathtt{Yes}, \mathtt{No}\}$ denote the binary values of Exercise and $\beta \in \{\mathtt{Healthy}, \mathtt{Unhealthy}\}$ denote the binary values of Diet.

$$P(\mathrm{HD}=\mathrm{Yes}) \ = \ \sum_{\alpha} \sum_{\beta} P(\mathrm{HD}=\mathrm{Yes}|E=\alpha,D=\beta) P(E=\alpha,D=\beta)$$

Exercise=Yes	0.7	$= \ \sum P(\mathtt{HD} = \mathtt{Yes} E = \alpha, D = \beta)P(E = \alpha)P(D = \beta)$
Exercise=No	0.3	$-\sum_{i} \sum_{j} I_{i} (HD - Ies E - \alpha, D - \beta) I_{j} (E - \alpha) I_{j} (D - \beta)$
	_	α β

Diet=Healthy	0.25	=	0.25	7-	$\times 0.25$	+0.45	6×0 .	7×0 .	75 + 0	$.55 \times$	$0.3 \times 0.$.25
Diet=Unhealthy	0.75		+ 0	$.75 \times 0$	3×0	75						
			1 0.	.10 / 0	× 0.				E=Yes	E=Yes	E=No D=Healthy	E=No

0.49.

Since $P(\mathtt{HD} = \mathtt{no}) = 1 - P(\mathtt{HD} = \mathtt{yes}) = 0.51$, the person has a slightly higher chance of not getting the disease. %51 ile kişi, kalp krizi riski olmama şansı hafif de olsa daha vüksektir.

Example of Inferencing using BBN

	HD=Yes	HD=No
CP=Yes	8.0	0.01
CP=No	0.2	0.99

	HD=Yes	HD=No
BP=High	0.85	0.2
BP=Low	0.15	0.8

If the person has high blood pressure, we can make a diagnosis about heart disease by comparing the posterior probabilities, $P(\mathtt{HD} = \mathtt{Yes}|\mathtt{BP} = \mathtt{High})$ against $P(\mathtt{HD} = \mathtt{No}|\mathtt{BP} = \mathtt{High})$. To do this, we must compute $P(\mathtt{BP} = \mathtt{High})$:

$$\begin{split} P(\mathrm{BP} = \mathrm{High}) &= \sum_{\gamma} P(\mathrm{BP} = \mathrm{High} | \mathrm{HD} = \gamma) P(\mathrm{HD} = \gamma) \\ &= 0.85 \times 0.49 + 0.2 \times 0.51 = 0.5185. \end{split}$$

where $\gamma \in \{Yes, No\}$. Therefore, the posterior probability the person has heart disease is

$$P(\text{HD}=\text{Yes}|\text{BP}=\text{High}) ~=~ \frac{P(\text{BP}=\text{High}|\text{HD}=\text{Yes})P(\text{HD}=\text{Yes})}{P(\text{BP}=\text{High})} \\ = ~ \frac{0.85\times0.49}{0.5185} = 0.8033.$$

Similarly, P(HD = No|BP = High) = 1 - 0.8033 = 0.1967. Therefore, when a person has high blood pressure, it increases the risk of heart disease.

Characteristics of BBN

- BBN, grafiksel bir model kullanarak belirli bir alanın (domain) önceki bilgilerini yakalamak için bir yaklaşım sağlar.
- Ağı oluşturmak zaman alıcı olabilir ve büyük miktarda çaba gerektirir.
 - Bununla birlikte, ağın yapısı belirlendikten sonra, yeni bir değişken eklemek oldukça basittir.
- Bayes ağları, eksik verilerle (incomplete data) başa çıkmak için için çok uygundur.
 - Eksik özniteliklere sahip örnekler, özniteliğin tüm olası değerleri üzerinden olasılıklar toplanarak veya bütünleştirilerek ele alınabilir.
- Veriler olasılıkla önsel bilgilerle birleştirildiğinden, yöntem modelin ezberlemesine karşı oldukça sağlamdır. (robust to model overfitting.)