MN-2 August 2012 QE

MN-2. A pn junction in silicon has a p-type side with uniform doping $N_A = 10^{17}$ cm⁻³. The n-type side has uniform doping $N_{DI} = 5 \times 10^{15}$ cm⁻³ from the metallurgical junction (shown) to a distance 1 μ m into the n-type side. The n-type doping increases abruptly at $x = 1 \mu$ m up to $N_{D2} = 2 \times 10^{16}$ cm⁻³, and remains at that level to the end of the n-type region.

(a) (15 points)

Assuming the p- and n-sides are semi-infinite, draw an appropriate $(N_D - N_A)$ versus x diagram for this junction.

(b) (20 points)

Sketch *TWO* charge density ρ versus x plots for the diode invoking *the depletion approximation*, one assuming the depletion region in the n-type (x_n) side is $x_n < 1$ μ m, and one assuming $x_n > 1$ μ m.

(c) (15 points) Assuming $|x_p| = 0.1 \mu m$, estimate x_n .

Write in Exam Book Only

(d) (20 points)

Set up equations to calculate the maximum electric field in the diode, \mathcal{E}_{max} , at equilibrium assuming the depletion region *does not* extend into the heavily doped region on the n-side of the junction. The dielectric constant of Si is 11.9.

(e) (30 points)

Suppose $\mathcal{E}_{max} = 1.8 \times 10^5 \text{ V/cm}$. Set up the equations needed to sketch the electric field-distance $(\mathcal{E}-x)$ relationship. Sketch the $\mathcal{E}-x$ qualitatively, making no assumptions about x_p or x_n . Label all parameters including x_n and x_p .

Write in Exam Book Only