VERMES MIKLÓS Fizikaverseny

2023. március 13.

Megyei szakasz

X. osztály

JAVÍTÓKULCS

1. Feladat (*FIRKA* 1. 1995/1996. F.G. 64. – KZ módosításával)

		Pont
a)	$V_{\rm p} = 250 \; {\rm cm}^3 = 2.5 \cdot 10^{-4} \; {\rm m}^3$, a pohár űrtartalma	0,3
	$m_{v-p} = \rho V_p = 10^3 \cdot 2.5 \cdot 10^{-4} = 2.5 \cdot 10^{-1} \text{ kg, a pohárban lévő víz tömege}$	0,3
	$v_{v-p} = m_{v-p}/\mu = (2.5 \cdot 10^{-1}/18) = 0.001388 \text{ kmol (a pohárban lévő víz móljainak a}$	0,3
	száma)	
	$N_{v-p} = v_{v-p}N_A = (m_{v-p}/\mu)N_A = (2.5 \cdot 10^{-1}/18) 6.023 \cdot 10^{26} = 8.36 \cdot 10^{24} \text{ a megjelölt}$	0,3
	molekulák száma	
b)	$S_{\rm F} = 4\pi R^2 = 12,56.6371^2 = 5,1.10^8 \text{ m}^2 \text{ a Föld teljes felszíne}$	0,3
	$S_{F-v} = k \cdot S_F = 0.71 \cdot 5.1 \cdot 10^8 = 3.62 \cdot 10^8 \text{ m}^2$ a Föld vizeinek felszíne	0,3
	$V_{\text{F-viz}} = S \cdot h = 3,62 \cdot 10^{14} \cdot 3688 = 1,335 \cdot 10^{18} \text{ m}^3 \text{ a Föld vizeinek térfogata}$	0,3
c)	A megjelölt vízmolekulák részecskesűrűsége a tengervízben: $n = N_{v-p}/V_{F-v}$, azaz,	0,3
	1 m ³ vízben található megjelölt vízmolekulák száma:	
	$n = 8,36 \cdot 10^{24}/1,335 \cdot 10^{18} = 6,26 \cdot 10^6 \text{ m}^{-3}.$	
d)	Egy 1 m ³ térfogatban foglaltatott pohártérfogat: $q = 1/2,25 \cdot 10^{-4} = 4 \cdot 10^{3}$	0,3
	Az egy pohárnyi tengervíz térfogatában található megjelölt molekulák száma:	0,3
	$N = n/q = 6,26 \cdot 10^6/4 \cdot 10^3 = 1,565 \cdot 10^3 = 1565$	

Összesen: 3 pont

2. Feladat (*FIRKA* 3. 1997/1998. 4. – KZ módosításával)

		Pont
a)	$Q_{\text{hasznos}} = Q_1 + Q_2 + Q_3 = m_{\text{jég}}c_{\text{jég}}(0 - t_0) + m_{\text{jég}} \cdot \lambda_{\text{jég}} + m_{\text{jég}} \cdot c_{\text{víz}}(100 - 0)$	0,1
	A rajz	0,1
	100	
	Q_{3} Q_{2} Q_{1} $id\delta$	
	$Q_1 = m_{\text{jég}}c_{\text{jég}}(0 - t_0) = 0.5 \cdot 2090 \cdot 12 = 12540 \text{ J} = 12.54 \text{ kJ felmelegíti a jeget.}$	0,3
	$Q_2 = m_{\text{jég}} \cdot \lambda_{\text{jég}} = 0.5 \cdot 330\ 000 = 165\ 000\ \text{J} = 165\ \text{kJ megolvasztja a jeget.}$	0,3
	$Q_3 = m_{\text{jég}} c_{\text{víz}} (100 - 0) = 0.5.4180.100 = 209\ 000\ \text{J} = 209\ \text{kJ felmelegíti a jégből}$	0,3
	keletkezett vizet a víz forráspontjáig.	
	$Q_{\text{hasznos}} = Q_1 + Q_2 + Q_3 = 386,54 \text{ kJ}.$	0,1
b)	$\eta = Q_{\text{hasznos}}/Q_{\text{befektetett}} = 2/3$, ahonnan $Q_{\text{befektetett}} = Q_{\text{hasznos}}/\eta = 386,54/(2/3) = 579,81 \text{ kJ}$	0,1
	$Q_{\text{befektetett}} = m_{\text{tüzel}"o"} \cdot q$, ahonnan $m_{\text{tüzel}"o"} = Q_{\text{befektetett}} / q = 597,81/30~000 \text{ kJ} = 0,019 \text{ kg}$	0,1

c)	Először kiszámítjuk az M tömegű víz 0°C-ra lehűlésekor	0,1
	leadott Q hőt:	
	50 <u>Q</u> M	
	$\theta \mid$ $\theta \mid$	
	$Q_{\rm m}$	
	0 $\frac{\mathcal{Z}_2}{id\ddot{o}}$	
	-12 Q_1	
	$Q = M \cdot c_{\text{víz}} \cdot 50 = 6.4180 \cdot 50 = 1284 \text{ kJ}$, ami több, mint $Q_1 + Q_2 = 177,54 \text{ kJ}$, tehát az	0,2
	egyensúlyi hőmérséklet 0°C fölött lesz. A kalorimetrikus egyenlet: Q _{fel} = Q _{le}	
	$Q_{\text{fel}} = Q_1 + Q_2 + Q_{\text{m}} = 12,54 + 165 + m_{\text{jég}} c_{\text{víz}} (\theta - 0), \text{ ahol } Q_{\text{m}} \text{ a jégből lett víznek az}$	0,2
	egyensúlyi hőmérsékletig történő felmelegedéshez szükséges hő	
	$Q_{le} = M \cdot c_{viz} \cdot (t - \theta)$	0,1
	$12,54 + 165 + m_{\text{jég }} c_{\text{víz}} (\theta - 0) = M \cdot c_{\text{víz}} \cdot (t - \theta)$	0,1
	$177,54 + 0,5 \cdot 4,18 (\theta - 0) = 6 \cdot 4,18 \cdot (50 - \theta)$	0,1
	$177,54 + 2,09 \ \theta = 25,08 \cdot 50 - 25,08 \cdot \theta$	0,1
	$27,17 \cdot \theta = 1076,46$, ahonnan az egyensúlyi hőmérséklet: $\theta = 39,62$ °C	0,1
d)	Először kiszámítjuk az M tömegű víz 0° C-ra lehűlésekor leadott Q hőt:	0,1
	A rajz	0,1
	30	
	$Q_{\rm M}$	
	θ =0	
	12 0.	
	-12 / 21	
	$Q = M \cdot c_{\text{víz}} \cdot 30 = 1.4180 \cdot 30 = 125,4 \text{ kJ}, \text{ ami kevesebb, mint } Q_1 + Q_2 = 177,54 \text{ kJ},$	0,2
	tehát a egyensúlyi hőmérséklet 0°C-on lesz.	
	A jégnek csak egy része olvad meg: $\Delta Q = 177,54 - 125,4 = 52,14$ kJ hő hiánya miatt	0,1
	$\Delta m_{\text{jég}} = \Delta Q/\lambda = 52,14/330 = 0,15 \text{ kg megmarad 0°C-on, és csak 0,35 kg olvad meg.}$	0,1

Összesen: 3 pont

3. Feladat (*FIRKA* 4. 2001/2002. F. 263. 2. – KZ kiegészítésével)

		Pont
a)	$p_0V_1 = v_1RT_1$ és $p_0V_2 = v_2RT_2$ ahonnan $v_1 = p_0V_1/RT_1$ és $v_2 = p_0V_2/RT_2$	0,4
	$v_1 = 10^5 \cdot 1/8310 \cdot 300 = 0,04$ kmol, ill. $v_2 = 10^5 \cdot 2/8310 \cdot 600 = 0,04$ kmol. $v_1 = v_2 = 0,04$ kmol.	0,2
	$v_1 = N_1/N_A$, ahonnan $N_1 = N_2 = v_1 \cdot N_A = 0.04 \cdot 6.023 \cdot 10^{26} = 2.492 \cdot 10^{25}$.	0,2
b)	A két hőmérsékletérték között működő Carnot ciklus hatásfoka: $\eta = 1 - T_1/T_2 = 1 - 300/600 = 0,5$, azaz 50%	0,2
c)	A nyomás ugyanaz marad, a hőmérséklet nem.	0,2
	$p_0(V_1 + V_2) = (v_1 + v_2)RT$, ahonnan $T = 10^5(1 + 2)/0.08 \cdot 8310 = 451,26 \text{ K}$	0,2
d)	A rajz $ \begin{matrix} p \\ \hline \\ 0 \end{matrix} \begin{matrix} T_3 \\ \hline \\ V_1 \end{matrix} \begin{matrix} V_2 \end{matrix} \begin{matrix} V_1 \end{matrix}$	0,5
	$T_3/V_1 = T/V_2$ azaz $T_3/1 = 451,26/2$ és $T_3 = 225,63$ K	0,5
	$\eta = 1 - T_1/T_2 = 1 - 225,63/451,26 = 0,5 (50\%)$	0,2

 $U_1 = (3v_1RT_1/2) = (3 \cdot 0.04 \cdot 8310 \cdot 300/2) = 149580J, \text{ és}$ $U_2 = (3v_2RT_2/2) = (3 \cdot 0.04 \cdot 8310 \cdot 600/2) = 299160 J.$	0,2
$U = U_1 + U_2 = 448740$ J, másfelől $U = 3(v_1 + v_2)RT/2 = 449996$ J. A különbség az elhagyott tizedes számjegyek miatt van, különben mindkét számítás ugyanazt adná.	0,2

Összesen 3 pont

Hivatalból: (1p)