

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Câmpus de São José do Rio Preto

Fluxograma para um domingo

Acordar

Tomar café

Sim

Ciência da Computação

Prof. Dr. Leandro Alves Neves

Dia de Sol? Vou à praia. Ir ao cinema. Fazer refeição. Ir dormir.

Fim do domingo.

Apresentação

Sumário

- Ementa
- Conteúdo Programático
- Metodologia
- Critérios de avaliação
- Avaliações
- Referências Bibliográficas

Ementa

- Metodologia de Desenvolvimento de Algoritmos, envolvendo os conceitos fundamentais de Variáveis, Constantes, Operadores Aritméticos e Lógicos, Tipos de Dados Básicos e Estruturados (Vetores, Cadeias de Caracteres, Matrizes e Registros).
- A Representação de Algoritmos, Estruturas de Controle (Sequência, Seleção, Repetição).
- Introdução à programação, utilizando uma linguagem de programação estruturada. Estratégias de Verificação de Programa (teste de mesa).

Ementa

Objetivos:

- Conhecer os conceitos básicos de um computador (memória, arquitetura, componentes, sistema operacional);
- Sistematizar e organizar seu raciocínio na resolução de diferentes problemas de forma algorítmica;
- Iniciar o desenvolvimento de programas corretos, eficientes, estruturados e, bem documentados;
- Ter adquirido maturidade para o desenvolvimento de programas de pequeno porte em uma linguagem de programação estruturada, envolvendo variáveis simples, variáveis compostas homogêneas e variáveis compostas heterogêneas, fundamentais no exercício cotidiano da prática de programação;

Ementa

Objetivos:

- Dominar aspectos básicos de um ambiente de programação , do processo de criação de um programa executável;
- Dominar a sintaxe e a semântica de uma linguagem de programação estruturada associada à elaboração de programas;
- Estar apto a iniciar o estudo de algoritmos envolvendo conceitos de modularização de programas, recursividade, ponteiros e técnicas de programação associadas.

- 1. Estrutura básica de um computador
 - 1.1. Arquitetura
 - □ 1.2. Componentes
 - 1.3. Memória
 - 1.4. Sistema operacional
- 2. Metodologia para o desenvolvimento de programas
 - 2.1. Conceito de algoritmo
 - 2.2. Método para construção de algoritmos
 - 2.3. Tipos de algoritmos
 - 2.4. Exemplos de algoritmos

- 3. Estruturas básicas: tipos, constantes e variáveis
 - 3.1. Tipos de dados
 - 3.1.1. Numérico
 - 3.1.2. Lógico
 - 3.1.3. Literal
 - 3.2. Constantes
 - 3.3. Variáveis
 - 3.3.1. Formação de Identificadores
 - 3.3.2. Declaração de variáveis

- 4. Expressões: aritméticas e lógicas
 - 4.1. Expressões Aritméticas
 - 4.1.1. Operadores Aritméticos
 - 4.1.2. Prioridades
 - 4.2. Expressões Lógicas
 - 4.2.1. Operadores Relacionais
 - 4.2.2. Operadores Lógicos
 - 4.2.3. Prioridades
- 5. Estruturas de controle
 - 5.1. Estrutura Sequencial
 - 5.1.1. Comando de atribuição
 - 5.1.2. Comando de entrada de dados
 - 5.1.3. Comando de saída de dados

5.2. Estrutura Condicional

- 5.2.1. Estrutura condicional simples
- 5.2.2. Estrutura condicional composta
- 5.2.3. Estrutura condicional encadeada

5.3. Estrutura de Repetição

- 5.3.1. Estrutura de repetição com variável de controle
- 5.3.2. Estrutura de repetição com teste no início
- 5.3.3. Estrutura de repetição com teste no final
- 5.3.4. Comparação entre estruturas de repetição

- 6. Estruturas de Dados Compostas Homogêneas
 - 6.1. Variáveis compostas unidimensionais vetores
 - 6.1.1. Definição
 - 6.1.2. Declaração
 - 6.1.3. Manipulação
 - 6.1.4. Exercícios
 - 6.2. Variáveis compostas multidimensionais matrizes
 - 6.2.1. Definição
 - 6.2.2. Declaração
 - 6.2.3. Manipulação

- 7. Estruturas de Dados Compostas Heterogêneas
 - 7.1 Variáveis compostas heterogêneas registros
 - 7.1.1. Definição
 - 7.1.2 .Declaração
 - 7.1.3. Manipulação
 - 7.1.4. Vetor de registros

Metodologia de Ensino

1. Aula expositiva: apresentação de conceitos.

Aula expositiva: desenvolvimento de habilidades por meio de resoluções de exercícios.

3. Atividades individuais ou em equipes.

Metodologia de Ensino

Critérios

- Listas de exercícios serão disponibilizadas na sala da disciplina (Classroom) para todos os alunos.
- Os alunos poderão solicitar esclarecimentos de dúvidas sobre as atividades a qualquer momento, via (Classroom) ou durante as aulas.
- Atividades complementares (extraclasses) como parte integrada da carga horária da disciplina, visando fixar conteúdos teóricos e práticos.

Metodologia

Critérios

- A nota final será calculada a partir das atividades avaliativas realizadas pelo aluno.
- O controle de presença será realizado via lista de presença.
- Os registros de aulas, frequências e notas serão realizados no SisGrad.

Metodologia

Critérios

- As formas aqui estabelecidas podem ser revisadas a partir de novas orientações da Universidade sobre o tema, por motivos de força maior ao longo do semestre letivo.
- O docente será responsável por informar a turma com antecedência, evitando possíveis prejuízos aos envolvidos.

Avaliações Previstas

- Há duas avaliações (P1 e P2).
 - Uma avaliação (P1 e/ou P2) pode ser composta por diferentes avaliações (quantas necessárias). Neste caso, o peso de cada atividade será definido com base na complexidade do exercício.
- Não será aplicada segunda chamada ou substitutiva, salvo os casos previstos na Resolução UNESP 106/2012 e Portaria do Diretor nº 06 - 15/04/2004.

- Média
 - A média do aluno NR (nota regular) será calculada da seguinte maneira:
 - \square NR = (P1*1,5 + P2*3,5)/5
 - Uma avaliação (P1 ou P2) pode ser dividida em etapas. As notas de P1 e P2 são de 0 a 10.
 - Exame Final (Respeitando o Regimento Geral da UNESP em vigência)

Exercícios ou trabalhos:

 Receberá nota 0 (zero) a atividade que for caracterizada como cópia e/ou plágio;

Não serão aceitos trabalhos entregues via (e-mail).

Material será recebido somente no prazo previamente definido.
 Qualquer outro caso, a nota atribuída será 0 (zero).

- Exame Final (Respeitando o <u>Regimento Geral da</u> <u>UNESP em vigência)</u>
- O exame final contempla todo o conteúdo da disciplina
- O exame final será aplicado ao aluno reprovado por insuficiência de aproveitamento e que tenham, pelo menos, a frequência mínima obrigatória.
 - Artigo 81 do Regimento Geral: Exame final será oferecido ao estudante em cada disciplina que não tenha alcançado a nota 5 (cinco) ao final da avaliação realizada no decorrer do semestre/ano. Uma vez aplicando-se o exame, a nota final do aluno (A) será obtida pelo cálculo da média aritmética simples entre a nota do semestre/ano (B) e a nota do exame final (C), que deverá ser igual ou maior que 5 (cinco) para aprovação, ou seja:

(B+C) ÷ 2 = A; caso A ≥ 5: "Aprovado"; caso A< 5: "Reprovado"

Avaliações

- 1^a. Avaliação: 22/06/2022
 - Conteúdos: Tópicos 1 a 6 (Estruturas de Dados Compostas Homogêneas).

- 2^a. Avaliação: 03 ou 10/08/2022
 - □ Todo o conteúdo ministrado.

- Exame: 17/08/2022
 - □ Todo o conteúdo ministrado.

Bibliografia Básica

 CORMEN, T.H., Leiserson, C.E., Rivest R.L., Stein, C. Algoritmos: teoria e Prática, 3.ed., Rio de janeiro. Editora Campus, 2012. 944p.

 ASCENCIO, A. F. G.; CAMPOS, E. A. V. C.
 Fundamentos da programação de computadores: algoritmos, Pascal, C/C++ (padrão ANSI) e Java, Pearson Prentice Hall, 2012. 569p.

FORBELLONE, A.L.V., EBERSPACHER H.F. Lógica de programação, Pearson, 2005. 232p.

Bibliografia Complementar

SCHILDT, H. C Completo e Total, 3^a ed., Pearson 1996. 852p.

 SEBESTA, R. W. Conceitos de Linguagens de Programação, 5 ed., Editora Bookman, 2003.

 LOPES, A.; GARCIA, G. Introdução à Programação, Rio de Janeiro, Editora Campus, 2002. 469p.

Material de Apoio

SALES, André Barros de; AMVAME-NZE, Georges Daniel. Linguagem C: roteiro de experimentos para aulas práticas [recurso eletrônico]. Florianópolis: UFSC, 2016. Disponível em: http://repositorio.unb.br/handle/10482/21540.

