

*B3
cont'd*

a) R_b and R_o are independently -H, -Cl, -Br, -I, -F, -CN, lower alkyl, -OH, -CH₂-OH, -NH₂; or N(R₆)(R₇), wherein R₆ and R₇ are independently hydrogen or an alkyl or branched alkyl with up to 6 carbons;

*Sub C
Cont'd*

b) R_a is -N₃, -C≡N, -C≡C-R, -CH=CH-R, -R-CH=CH₂, -C≡CH, -O-R, -R-R₁, or -O-R-R₁ where R is a straight or branched alkyl with up to 10 carbons or aralkyl, and R₁ is -OH, -NH₂, -Cl, -Br, -I, -F or CF₃;

c) Z' is >CH, >COH, or >C-R₂-OH, where R₂ is an alkyl or branched alkyl with up to 10 carbons or aralkyl;

d) >C-R_g is >CH₂, >C(H)-OH, >C=O, >C=N-OH, >C(R₃)OH, >C=N-OR₃, >C(H)-NH₂, >C(H)-NHR₃, >C(H)-NR₃R₄, or >C(H)-C(O)-R₃, where each R₃ and R₄ is independently an alkyl or branched alkyl with up to 10 carbons or aralkyl; and

e) Z'' is >CH₂, >C=O, >C(H)-OH, >C=N-OR₅, >C(H)-C≡N, or >C(H)-NR₅R₅, wherein each R₅ is independently hydrogen, an alkyl or branched alkyl with up to 10 carbons or aralkyl;

with the proviso that if R_b is H, R_o is H, Z' is >COH, >C-R_g is >C(H)-OH, and Z'' is >CH₂, then R_a is neither -OCH₃ nor -OCH₂CH₃.