F 429 - Física Experimental IV

Plano de Desenvolvimento da Disciplina para o 2º semestre de 2022

Prof. Jonathas de Paula Siqueira (coordenador)

F 429 (Física Experimental IV) é um curso de física experimental que envolve experiências sobre correntes alternadas e fenômenos ópticos. O curso é dividido em duas partes. Na primeira serão abordados circuitos de corrente alternada (AC) e na segunda trataremos de fenômenos ópticos. De maneira mais específica, serão abordados filtros de corrente alternada (não-ressonantes e ressonantes), interferômetros, prismas e fendas. É esperado que os estudantes:

- 1. Planejem os procedimentos experimentais usando o material de apoio e roteiro do experimento. Parte dos vídeos elaborados durante o período de ensino remoto serão disponibilizados no Moodle para auxiliar os estudantes na execução das montagens e execução dos experimentos.
- 2. Executem os experimentos em grupo, coletando os dados, discutindo os resultados entre si e com o docente e tomando nota dos procedimentos.
- 3. Analisem os dados coletados extraindo as informações e conclusões pertinentes.
- 4. Apresentem o que foi aprendido de forma escrita nos relatórios e provas.

Ementa

Experiências de laboratório sobre: propriedades magnéticas da matéria, correntes alternadas, ondas eletromagnéticas, reflexão e refração da luz, polarização, interferência e difração da luz e introdução à física atômica e nuclear.

Bibliografia

Apostilas Principais

- Hugo Fragnito, Circuitos de Corrente Alternada (link)
- Gustavo Wiederhecker, Notas de aula (link)
- Luís Araújo, Introdução à Avaliação e Expressão de Incertezas em Medições (link)

Livros Principais

- Dennis L. Eggleston Basic Electronics for Scientists and Engineers (Caps. 1 e 2)
- Allan H. Robbins, Wilhelm C. Miller. Análise de Circuitos Teoria e Prática Vol. 2 (Cap. 18-23, 25) (disponível na biblioteca do IFGW)

Livros Complementares

J. J. Brophy. Basic electronics for scientists. McGraw-Hill, New York, 5th ed edition,
1990. (disponível na biblioteca do IFGW)

Métodos de Avaliação

A avaliação neste curso será feita por meio de provas (P1 e P2) e relatórios escritos (R1 a R6).

ATENÇÃO: O aluno deverá da elaboração de no mínimo 3 relatórios. Caso algum membro do grupo não tenha contribuído para elaboração do relatório, seu nome não deve ser incluído no relatório que será entregue.

Provas

Haverá duas provas escritas ao longo do curso, P1 e P2, com nota variando de 0 (zero) a 10 (dez). A consulta somente ao seu próprio caderno de laboratório durante as provas é **permitida e recomendada**.

Relatórios

- Os experimentos serão feitos **em grupo**:
 - Os laboratórios comportam **no máximo 7 grupos** por turma.
 - Os grupos devem ser compostos de no máximo 4 integrantes.
 - Todos membros devem participar do planejamento e execução dos experimentos assim como da elaboração dos relatórios.
 - A entrega dos relatórios é de responsabilidade de todos os membros dos grupos.
- Ao longo do semestre cada grupo deverá entregar **6 relatórios** (R1 a R6):
 - Os relatórios deverão ser **submetidos na plataforma Moodle** exclusivamente em formato eletrônico PDF.
 - Os relatórios devem ser entregues até as datas indicadas no Moodle.
 - Não serão aceitos relatório em atraso!
 - Os relatórios serão **avaliados de acordo com rubricas de correção** que serão mostradas no Moodle para cada relatório.
 - Cada item será avaliado e classificado em 4 níveis: faltando, inadequado, precisa melhorar e adequado.
 - A nota final de cada relatório será a média aritmética simples de todos os critérios.
 - Os relatórios devem ter no máximo 5 páginas
- Os Relatórios devem ser sucintos e ter no máximo 5 páginas, enfatizando análises, discussões e conclusões, com as devidas propagações de erros. **Gráficos devem estar no corpo do relatório e não anexos no final**. O relatório deverá conter as seguintes sessões:
 - o Título
 - Nomes e RAs dos participantes
 - O Breve Introdução contendo resumo e objetivos
 - Procedimento Experimental
 - Resultados, análises e discussões
 - Conclusões
 - Referências bibliográficas
- Os relatórios serão submetidos ao banco de dados de relatórios da plataforma anti-plágio *Turnitin*, os grupos envolvidos em plágio sofrerão as sanções indicadas na seção "Cláusula de Honestidade Acadêmica".
- A não ser em casos excepcionais, **não serão aceitos** relatórios entregues **por e-mail ou "em mãos"**.

Critério de Aprovação

- Serão aprovados na disciplina, os estudantes que alcançarem a nota final(NF) igual o superior a 6,0 (seis).
- Caso a nota de aproveitamento (NA) alcançada for **maior ou igual**a 6,0 (seis), o estudante está **dispensado do exame** e *aprovado com nota final igual à nota de aproveitamento*:
- \blacksquare NF = NA.
- Caso a nota de aproveitamento (NA) alcançada seja **menor** que 6,0 (seis), o estudante **deverá fazer o exame** e a nota final será igualà *média aritmética simples entre a nota de aproveitamento e a nota do exame*:
- NF = (NA + E)/2.
- A nota de aproveitamento (NA) é a média aritmética simples entre as notas das duas provas e a média dos relatórios e apresentações:
- NA = (R + P1 + P2)/3.
- A média dos relatórios é a calculada como a média almáta simples de todas as atividades:
- R = (R1 + R2 + R3 + R4 + R5 + R6)/6.
- A menor nota **não será** descartada!
- **ATENÇÃO:** O(a) aluno(a) que não participar da elaboração de no mínimo 3 relatórios será automaticamente reprovado.

Atendimento Extraclasse

Haverá horários de atendimento com os monitores PED e PAD todas as semanas nos próprios laboratórios (presenciais) onde os experimentos são realizados e também em formato virtual na plataforma Google Meet. Os horários estão descritos no cronograma do curso e os links das salas virtuais de atendimento serão disponibilizados no Moodle.

Faltas e Reposição

Em caso de faltas justificadas em qualquer uma das aulas de um dado experimento, o(a) estudante poderá pedir a reposição da aula perdida. A reposição deverá ser realizada nos horários de monitoria que serão definidas ao longo do semestre. A aula perdida deverá ser reposta o quanto antes. Para ter a reposição

validada, é necessário fazer a solicitação em formulário apropriado na secretaria de graduação.

Informações Adicionais

Sobre os Cadernos de Laboratório

O caderno de laboratório é muito importante como forma de registro primário das observações, testes e ideias obtidas no laboratório. Ele não deve ser pensado como um produto final, mas como um diário. Um rascunho onde os passos tomados no experimentos, independente se tenham levado a algum realizab interessante, são registrados para referência futura. Tentem manter os cadernos o mais organizados possível, mas priorizem o registro dos dados e informações que possam ser pertinentes à execução do experimento.

Todos os alunos devem possuir um caderno de laboratório, o uso do computador é um acessório que não dispensa o caderno.

Cláusula de Honestidade Acadêmica

Quando for constatada a existência de práticas fraudulentas em qualquer uma das avaliações realizadas durante o semestre, os envolvidos estarão sujeitos às ações disciplinares previstas no Regimento Geral da Unicamp (Capítulo X, artigos 227-230). O caso será levado a Comissão de Graduação do curso de Física que irá determinar a atuação adequada levando em conta este plano de desenvolvimento. Em particular, cada relatório será comparado aos relatórios deum banco de dados já criado e se for constatada algum tipo de cópia, haverá análise minuciosa para apurar se houve de fato plágio e se a ação implica em uma ação fraudulenta. A penalidade será aplicada a todos os membros da equipe que assinaram o relatório. Casos particulares e/ou omissos serão julgados e avaliados em função das informações disponíveis em cada caso, sendo que a nota no relatório em questão será anulada (nota zero).

Observações Gerais

Fora os casos previstos no regimento da Graduação da UNICAMP, não haverá prova ou aula substitutiva. Caso o aluno perca uma ou ambas as provas com justificativa, a prova substitutiva será o exame – versando sobre toda a disciplina.

Equipe

Professores:

Jonathas de Paula Siqueira (siquejp@unicamp.br)

Antônio Riul (riul@unicamp.br)

Gustavo Wiederhecker (gsw@unicamp.br)

Flávio Caldas da Cruz (<u>fccruz@unicamp.br</u>)

Ettore Segreto (segreto@ifi.unicamp.br)

Apoio Técnico ao Ensino:

Maria Emilia (LF44 e LF42)

Monitor PED:

Hugo Muniz (h230368@dac.unicamp.br)

Monitores PAD:

Jean Carlos Rodrigues (1jean.c.r@gmail.com)

Gean Rossi dos Santos (g216737@dac.unicamp.br)