Data set

https://machinelearnia.com/

Data set

Train set

Test set

TRAIN TEST SPLIT

TRAIN TEST SPLIT

 $X_{train}, X_{test}, y_{train}, y_{test} = train_{test_split}(X, y, random_{state} = 0)$

VALIDATION SET

Train set Val set Test set

VALIDATION SET

	Data set							
	Train set	Val set	Test set					
A	100%	92%	91%					
В	100%	90%						

VALIDATION SET

Val set	Train set				

https://machinelearnia.com/

VALIDATION SET

Train set

Val s

Val set

Train set

CROSS VALIDATION https://machinelearnia.com/

			Train set			A	B
Split 1	Val	Train	Train	Train	Train	0.92	0.91
Split 2	Train	Val	Train	Train	Train	0.88	0.90
Split 3	Train	Train	Val	Train	Train	0.89	0.91
Split 4	Train	Train	Train	Val	Train	0.93	0.92
Split 5	Train	Train	Train	Train	Val	0.86	0.90
·						0.89	0.92

VALIDATION CURVE https://machinelearnia.com/

validation_curve(model, X_{train} , y_{train} , 'hyperparamètre', valeurs, cv=5)

train_{score}, val_{score}

→ Teste toutes les *valeurs* pour un hyperparamètre donné. Calcule le score sur Train set et Val set grâce à la **Cross Validation**

Exemple: 49 valeurs sont testées avec cv = 5

 \rightarrow alors $train_{score}$, val_{score} sont de

dimensions (49, 5)

OVERFITTING

Overfitting: Le modèle s'est trop perfectionné sur le Trainset et a perdu tout sens de généralisation.

- ightarrow Bon $Train_{score}$
- \rightarrow Mauvais $Test_{score}$

GRIDSEARCHCY

Grid = GridSearchCV(*model*, **param_grid**, cv)

→ Construit une grille de modèles avec toutes les combinaisons d'hyperparamètres présents dans param_grid

La grille est un estimator!

- → entrainement: fit()
- → best_score_
- → best_params_
- → best_estimator_

- → Outil de mesure **très utile** pour évaluer la qualité
- → Montre les **erreurs de classement**:

d'un modèle de classification.

CONFUSION MATRIX https://machinelearnia.com/

- → Outil de mesure très utile pour évaluer la qualité d'un modèle de classification.
- → Montre les erreurs de classement:

learning_curve(*model*, *X*, *y*, *train_sizes*, cv=5)

 (X_{train}, y_{train})

Train

Val

learning_curve(model, X, y, train_sizes, cv=5)

learning_curve(model, X, y, train_sizes, cv=5)

 $train_sizes = np.linspace(0.2, 1.0, 5)$

