

REF3012, REF3020, REF3025, REF3030, REF3033, REF3040

SBVS032G - MARCH 2002 - REVISED NOVEMBER 2015

REF30xx 50-ppm/°C Max, 50-µA, CMOS Voltage Reference in SOT-23-3

Features

microSize Package: SOT-23-3

Low Dropout: 1 mV

High Output Current: 25 mA

High Accuracy: 0.2% Low I_0 : 42 μ A (typ)

Excellent Specified Drift Performance:

50 ppm/°C (max) from 0°C to 70°C

75 ppm/°C (max) from –40°C to +125°C

Applications

- Temperature and Pressure Transmitters
- Portable, Battery-powered Equipment
- **Data Acquisition Systems**
- Medical Equipment
- Handheld Test Equipment

3 Description

The REF30xx is a precision, low-power, low dropout voltage, reference family available in a tiny SOT-23-3 package. The REF30xx offers excellent temperature drift and initial accuracy while operating at a quiescent current of 42 µA (typ).

The low power consumption and the relatively high precision make the REF30xx very attractive for looppowered industrial applications such as pressure and temperature transmitter applications. The REF30xx is easy to use in intrinsically safe and explosion-proof applications because it does not require a load capacitor to be stable. The REF30xx is specified over the extended industrial temperature range of -40°C to +125°C.

The REF30xx operates with supplies within 1 mV of output voltage under zero-load conditions. The low dropout along with small size and low power consumption make The REF30xx ideal for portable and battery-powered applications.

Device Information

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
REF30xx	SOT-23 (3)	2.92 mm × 1.30 mm		

Typical Application

Dropout Voltage vs Load Current

Table of Contents

1	Features 1		8.4 Device Functional Modes	13
2	Applications 1	9	Application and Implementation	15
3	Description 1		9.1 Application Information	15
4	Revision History2		9.2 Typical Application	15
5	Device Comparison Table 3	10	Power Supply Recommendations	17
6	Pin Configuration and Functions	11	Layout	17
7	Specifications4		11.1 Layout Guidelines	17
•	7.1 Absolute Maximum Ratings 4		11.2 Layout Example	17
	7.2 ESD Ratings	12	Device and Documentation Support	18
	7.3 Recommended Operating Conditions 4		12.1 Documentation Support	18
	7.4 Thermal Information		12.2 Related Links	18
	7.5 Electrical Characteristics		12.3 Community Resources	18
	7.6 Typical Characteristics 7		12.4 Trademarks	18
8	Detailed Description 11		12.5 Electrostatic Discharge Caution	18
-	8.1 Overview		12.6 Glossary	18
	8.2 Functional Block Diagram		Mechanical, Packaging, and Orderable Information	18

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cr	nanges from Revision F (August 2008) to Revision G	Page
•	Added Device Information, ESD Ratings, Recommended Operating Conditions, and Thermal Information tables	1
•	Added Detailed Description, Applications and Implementation, Power-Supply Recommendations, Layout, Device and Documentation Support, and Mechanical, Packaging, and Orderable Information sections	1
•	Changed text in Description section	1
•	Deleted thermal resistance parameter in Electrical Characteristics; see new Thermal Information table	6
•	Moved temperature parameters from Electrical Characteristics to Recommended Operating Conditions	6

5 Device Comparison Table

PART NUMBER	VOLTAGE (V)
REF3012	1.25
REF3020	2.048
REF3025	2.5
REF3030	3.0
REF3033	3.3
REF3040	4.096

6 Pin Configuration and Functions

Pin Functions

PIN		I/O	DESCRIPTION					
NO.	NAME	1/0	DESCRIPTION					
1	IN	Input	nput supply voltage					
2	OUT	Output	Reference output voltage					
3	GND		Ground					

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	MIN	MAX	UNIT
Supply voltage, V+ to V-		7.0	V
Output short-circuit current ⁽²⁾		Continuous	
Operating temperature	-40	125	°C
Junction temperature		150	°C
Storage temperature, T _{stg}	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
V	Floatractatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±4000	.,
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

at $T_A = 25$ °C, $V_{IN} = 5$ V, and $I_{LOAD} = 0$ mA (unless otherwise noted)

		MIN	NOM MAX	UNIT
V_{IN}	Input voltage	V _{REF} + 0.05 ⁽¹⁾	5.5	V
I _{LOAD}	Load current		25	mA
T _A	Operating temperature	-40	125	°C

⁽¹⁾ For I_I > 0, see *Typical Characteristics*. Minimum supply voltage for REF3012 is 1.8 V .

7.4 Thermal Information

		REF30xx	
	THERMAL METRIC ⁽¹⁾	DBZ (SOT-23)	UNIT
		3 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	297.3	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	128.5	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	91.7	°C/W
ΨЈТ	Junction-to-top characterization parameter	12.8	°C/W
ΨЈВ	Junction-to-board characterization parameter	90.3	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

Submit Documentation Feedback

⁽²⁾ Short circuit to ground.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.5 Electrical Characteristics

at $T_A = 25$ °C, $V_{IN} = 5$ V, and $I_{LOAD} = 0$ mA (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
REF3012	! (1.25 V) ⁽¹⁾					
V _{OUT}	Output voltage		1.2475	1.25	1.2525	V
	Initial accuracy	25 V)(f) Output voltage	0.2%			
	0.1.1.1	f = 0.1 Hz to 10 Hz		14		μV_{PP}
	Output voltage noise	f = 10 Hz to 10 kHz		42		μVrms
	Line regulation	1.8 V ≤ V _{IN} ≤ 5.5 V		60	190	μV/V
REF3020	(2.048 V)					
V _{OUT}	Output voltage		2.044	2.048	2.052	V
	Initial accuracy				0.2%	
	Output valtage paige	f = 0.1 Hz to 10 Hz		23		μV_{PP}
	Output voltage noise	f = 10 Hz to 10 kHz		65		μVrms
	Line regulation	V_{REF} + 50 mV \leq V_{IN} \leq 5.5 V		110	290	μV/V
REF3025	(2.5 V)					
V _{OUT}	Output voltage		2.495	2.50	2.505	V
	Initial accuracy				0.2%	
	0.1.1.1	f = 0.1 Hz to 10 Hz		28		μV_{PP}
RFF3030 (Output voltage noise	f = 10 Hz to 10 kHz		80		μVrms
	Line regulation	V_{REF} + 50 mV \leq V_{IN} \leq 5.5 V		120	325	μV/V
REF3030	(3.0 V)				·	
V _{OUT}	Output voltage		2.994	3.0	3.006 0.2%	V
	Initial accuracy				0.2%	
REF3020 (VOUT) REF3025 (VOUT) REF3030 (VOUT)	Outrot valtage as is a	f = 0.1 Hz to 10 Hz		33		μV_{PP}
	Output voltage noise	f = 10 Hz to 10 kHz		94		μVrms
	Line regulation	V_{REF} + 50 mV \leq V_{IN} \leq 5.5 V		120	375	μV/V
REF3033	(3.3 V)				·	
V _{OUT}	Output voltage		3.294	3.30	3.306	V
	Initial accuracy				0.2%	
	Outrot valtage as is a	f = 0.1 Hz to 10 Hz		36		μV_{PP}
	Output voltage noise	f = 10 Hz to 10 kHz		105		μVrms
	Line regulation	V_{REF} + 50 mV \leq V_{IN} \leq 5.5 V		130	400	μV/V
REF3040	(4.096 V)					
V _{OUT}	Output voltage		4.088	4.096	4.104	V
	Initial accuracy				0.2%	
REF3033 VOUT	Outrat valta as a sis	f = 0.1 Hz to 10 Hz		45		μV_{PP}
	Output voltage noise	f = 10 Hz to 10 kHz		128		μVrms
	Line regulation	V_{RFF} + 50 mV \leq V_{IN} \leq 5.5 V		160	410	μV/V

⁽¹⁾ The minimum supply voltage for the REF3012 is 1.8 V.

Submit Documentation Feedback

Electrical Characteristics (continued)

at $T_A = 25$ °C, $V_{IN} = 5$ V, and $I_{LOAD} = 0$ mA (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
REF33xx (R	EF3312, REF3318, REF3320, REF33	25, REF3330, REF3333)				
		0°C ≤ T _A ≤ 70°C		20	50	
dV _{OUT} /dT (0.4.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	-30°C ≤ T _A ≤ +85°C		28	60	/00
	Output voltage temperature drift ⁽²⁾	–40°C ≤ T _A ≤ +85°C		30	65	ppm/°C
		-40°C ≤ T _A ≤ +125°C		35	75	
	Louis de sons de la litte.	0000h to 1000h		24		
	Long-term stability	1000h to 2000h		15	ppm	
$\Delta V_{O(\Delta IL)}$	Load regulation (3)	$0 \text{ mA} < I_{LOAD} < 25 \text{ mA}, V_{IN} = V_{REF} + 500 \text{ mV}^{(1)}$				μV/mA
dT	Thermal hysteresis ⁽⁴⁾			25	100	ppm
V _{IN} – V _{OUT}	Dropout voltage			1	50	mV
I _{SC}	Short-circuit current			45		mA
	Turn-on settling time	To 0.1% with $C_L = 1 \mu F$				ms
POWER SU	PPLY					
	0			42	50	
ΙQ	Quiescent current	–40°C ≤ T _A ≤ +125°C			59	μA

⁽²⁾ Box method used to determine over temperature drift.

³⁾ Typical value of load regulation reflects measurements using a force and sense contacts; see *Load Regulation* section.

⁽⁴⁾ Thermal hysteresis procedure explained in more detail in *Thermal Hysteresis* section.

7.6 Typical Characteristics

at $T_A = 25$ °C, $V_{IN} = 5$ V, and REF3025 used for typical characteristics (unless otherwise noted)

TEXAS INSTRUMENTS

Typical Characteristics (continued)

at T_A = 25°C, V_{IN} = 5 V, and REF3025 used for typical characteristics (unless otherwise noted)

Figure 7. Line Regulation vs Temperature

Figure 8. Output Impedance vs Frequency

Figure 9. Power-Supply Rejection Ratio vs Frequency

Figure 10. Output Voltage vs Supply Voltage

No Load

Figure 12. Output Voltage vs Load Current

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_{IN} = 5$ V, and REF3025 used for typical characteristics (unless otherwise noted)

TEXAS INSTRUMENTS

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_{IN} = 5$ V, and REF3025 used for typical characteristics (unless otherwise noted)

Figure 23. Long-Term Stability: 0 to 2000 Hours

8 Detailed Description

8.1 Overview

The REF30xx is a series, CMOS, precision bandgap voltage reference. Its basic topology is shown in the *Functional Block Diagram* section. Transistors Q_1 and Q_2 are biased so that the current density of Q_1 is greater than that of Q_2 . The difference of the two base-emitter voltages, $Vbe_1 - Vbe_2$, has a positive temperature coefficient and is forced across resistor R_1 . This voltage is gained up and added to the base-emitter voltage of Q_2 , which has a negative coefficient. The resulting output voltage is virtually independent of temperature. The curvature of the bandgap voltage, as shown in Figure 3, is due to the slightly nonlinear temperature coefficient of the base-emitter voltage of Q_2 .

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Supply Voltage

The REF30xx family of references features an extremely low dropout voltage. With the exception of the REF3012, which has a minimum supply requirement of 1.8 V, the REF30xx can be operated with a supply of only 1 mV above the output voltage in an unloaded condition. For loaded conditions, a typical dropout voltage versus load is shown on the front page.

The REF30xx features a low quiescent current that is extremely stable over changes in both temperature and supply. The typical room temperature quiescent current is 42 μ A, and the maximum quiescent current over temperature is just 59 μ A. Additionally, the quiescent current typically changes less than 2.5 μ A over the entire supply range, as shown in Figure 24.

Supply voltages below the specified levels can cause the REF30xx to momentarily draw currents greater than the typical quiescent current. Use a power supply with a fast rising edge and low output impedance to easily prevent this issue.

Figure 24. Supply Current vs Supply Voltage

Feature Description (continued)

8.3.2 Thermal Hysteresis

Thermal hysteresis for the REF30xx is defined as the change in output voltage after operating the device at 25°C, cycling the device through the specified temperature range, and returning to 25°C, and can be expressed as shown in Equation 1:

$$V_{HYST} = \left(\frac{abs|V_{PRE} - V_{POST}|}{V_{NOM}}\right) \cdot 10^6 \text{ (ppm)}$$

where

- V_{HYST} = Calculated hysteresis
- V_{PRE} = Output voltage measured at 25°C pretemperature cycling
- V_{POST} = Output voltage measured when device has been operated at 25°C, cycled through specified range of
 —40°C to +125°C, and returned to operation at 25°C.

8.3.3 Temperature Drift

The REF30xx exhibits minimal drift error, defined as the change in output voltage over varying temperature. Using the *box* method of drift measurement, the REF30xx features a typical drift coefficient of 20 ppm from 0°C to 70°C, the primary temperature range of use for many applications. For industrial temperature ranges of –40°C to +125°C, the REF30xx family drift increases to a typical value of 50 ppm.

8.3.4 Noise Performance

The REF30xx generates noise less than 50 μ V_{PP} between frequencies of 0.1 Hz to 10 Hz, and can be seen in Figure 20 The noise voltage of the REF30xx increases with output voltage and operating temperature. Additional filtering may be used to improve output noise levels; however, ensure the output impedance does not degrade ac performance.

8.3.5 Long-Term Stability

Long-term stability refers to the change of the output voltage of a reference over a period of months or years. This effect lessens as time progresses as is apparent by the long term stability curves. The typical drift value for the REF30xx is 24 ppm from 0 hours to 1000 hours, and 15 ppm from 1000 hours to 2000 hours. This parameter is characterized by measuring 30 units at regular intervals for a period of 2000 hours.

8.3.6 Load Regulation

Load regulation is defined as the change in output voltage as a result of changes in load current. Load regulation for the REF30xx is measured using force and sense contacts as shown in Figure 25. The force and sense lines tied to the contact area of the output pin reduce the impact of contact and trace resistance, resulting in accurate measurement of the load regulation contributed solely by the REF30xx. For applications requiring improved load regulation, use force and sense lines.

Figure 25. Accurate Load Regulation of REF30xx

8.4 Device Functional Modes

8.4.1 Negative Reference Voltage

For applications requiring a negative and positive reference voltage, the OPA703 and REF30xx can be used to provide a dual supply reference from a ±5-V supply. Figure 26 shows the REF3025 used to provide a ±2.5-V supply reference voltage. The low offset voltage and low drift of the OPA703 complement the low drift performance of the REF30xx to provide an accurate solution for split-supply applications.

Figure 26. REF3025 Combined With OPA703 to Create Positive and Negative Reference Voltages.

8.4.2 Data Acquisition

Often data acquisition systems require stable voltage references to maintain necessary accuracy. The REF30xx family features stability and a wide range of voltages suitable for most microcontrollers and data converters. Figure 27 and Figure 28 show two basic data acquisition systems.

Figure 27. Basic Data Acquisition System 1

Device Functional Modes (continued)

Figure 28. Basic Data Acquisition System 2

9 Application and Implementation

9.1 Application Information

For normal operation, the REF30xx does not require a capacitor on the output. If a capacitive load is connected, take special care when using low equivalent series resistance (ESR) capacitors and high capacitance. This precaution is especially true for low-output voltage devices; therefore, for the REF3012 use a low-ESR capacitance of 10 μ F or less. Figure 29 shows the typical connections required for operation of the REF30xx. A supply bypass capacitor of 0.47 μ F is always recommended.

Figure 29. Typical Connections for Operating REF30xx

9.2 Typical Application

Figure 30 shows a low-power reference and conditioning circuit. This circuit attenuates and level-shifts a bipolar input voltage within the proper input range of a single-supply low power 16-Bit $\Delta\Sigma$ ADC, such as the one inside the MSP430 or other similar single-supply ADCs. Precision reference circuits are used to level-shift the input signal, provide the ADC reference voltage and to create a well-regulated supply voltage for the low-power analog circuitry. A low-power, zero-drift, op-amp circuit is used to attenuate and level-shift the input signal.

Figure 30. Low-Power Reference and Bipolar Voltage Conditioning Circuit for Low-Power ADCs

Typical Application (continued)

9.2.1 Design Requirements

Supply Voltage: 3.3 V

Maximum Input Voltage: ±6 V
 Specified Input Voltage: ±5 V
 ADC Reference Voltage: 1.25 V

The goal for this design is to accurately condition a ± 5 -V bipolar input voltage into a voltage suitable for conversion by a low-voltage ADC with a 1.25-V reference voltage, V_{REF} , and an input voltage range of V_{REF} / 2. The circuit should function with reduced performance over a wider input range of at least ± 6 V to allow for easier protection of overvoltage conditions.

9.2.2 Detailed Design Procedure

Figure 30 depicts a simplified schematic for this design showing the MSP430 ADC inputs and full input conditioning circuitry. The ADC is configured for a bipolar measurement where final conversion result is the differential voltage between the voltage at the positive and negative ADC inputs. The bipolar, GND referenced input signal must be level-shifted and attenuated by the op amp so that the output is biased to VREF / 2 and has a differential voltage that is within the ±VREF / 2 input range of the ADC.

9.2.3 Application Curves

-0.0001 -0.00015 Error Voltage (V) -0.0002 -0.00025 -0.0003 -0.00035 -5 -4 -3 -6 -2 -1 0 1 2 5 6 Input Voltage (V)

Figure 32. OPA317 Output Voltage Error vs Input Voltage

Figure 33. Output Code Error vs Input Voltage

10 Power Supply Recommendations

The REF30xx family of references feature an extremely low-dropout voltage. These references can be operated with a supply of only 50 mV above the output voltage. For loaded reference conditions, a typical dropout voltage versus load is shown in the front page plot, *Dropout Voltage vs Load Current*. Use a supply bypass capacitor greater than $0.47 \, \mu F$.

11 Layout

11.1 Layout Guidelines

Figure 34 illustrates an example of a printed circuit board (PCB) layout using the REF30xx. Some key considerations are:

- Connect low-ESR, 0.1-μF ceramic bypass capacitors at V_{IN} of the REF30xx
- Decouple other active devices in the system per the device specifications
- Use a solid ground plane to help distribute heat and reduces electromagnetic interference (EMI) noise pickup
- Place the external components as close to the device as possible. This configuration prevents parasitic errors (such as the Seebeck effect) from occurring
- Minimize trace length between the reference and bias connections to the INA and ADC to reduce noise pickup
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when absolutely necessary

11.2 Layout Example

Figure 34. Layout Example

Click here

Click here

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

OPA703 Data Sheet, SBOS180

REF29xx Data Sheet, SBVS033

12.2 Related Links

PARTS

REF3012

REF3020

REF3025

REF3030

REF3033

REF3040

Table 1 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

SUPPORT & TOOLS & PRODUCT FOLDER **SAMPLE & BUY** COMMUNITY **DOCUMENTS SOFTWARE** Click here Click here

Click here

Click here

Click here

Click here

Table 1. Related Links

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

Click here

Click here

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

Click here

Click here

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Documentation Feedback

16-Dec-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
REF3012AIDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30A	Sample
REF3012AIDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30A	Sample
REF3012AIDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30A	Sample
REF3012AIDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30A	Sample
REF3020AIDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30B	Sample
REF3020AIDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30B	Sample
REF3020AIDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30B	Sample
REF3020AIDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30B	Sample
REF3025AIDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30C	Sample
REF3025AIDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30C	Sample
REF3025AIDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30C	Sample
REF3025AIDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30C	Sample
REF3030AIDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30F	Sample
REF3030AIDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30F	Sample
REF3030AIDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30F	Sample
REF3030AIDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30F	Sample
REF3033AIDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30D	Sample

www.ti.com

PACKAGE OPTION ADDENDUM

16-Dec-2015

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
REF3033AIDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30D	Samples
REF3033AIDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30D	Samples
REF3033AIDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30D	Samples
REF3040AIDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30E	Samples
REF3040AIDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30E	Samples
REF3040AIDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30E	Samples
REF3040AIDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	R30E	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

16-Dec-2015

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF REF3033:

Automotive: REF3033-Q1

NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

www.ti.com 17-Dec-2015

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
REF3012AIDBZR	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
REF3012AIDBZT	SOT-23	DBZ	3	250	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
REF3020AIDBZR	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
REF3020AIDBZT	SOT-23	DBZ	3	250	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
REF3025AIDBZR	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
REF3025AIDBZT	SOT-23	DBZ	3	250	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
REF3030AIDBZR	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
REF3030AIDBZT	SOT-23	DBZ	3	250	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
REF3033AIDBZR	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
REF3033AIDBZT	SOT-23	DBZ	3	250	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
REF3040AIDBZR	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
REF3040AIDBZT	SOT-23	DBZ	3	250	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3

PACKAGE MATERIALS INFORMATION

www.ti.com 17-Dec-2015

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
REF3012AIDBZR	SOT-23	DBZ	3	3000	203.0	203.0	35.0
REF3012AIDBZT	SOT-23	DBZ	3	250	203.0	203.0	35.0
REF3020AIDBZR	SOT-23	DBZ	3	3000	203.0	203.0	35.0
REF3020AIDBZT	SOT-23	DBZ	3	250	203.0	203.0	35.0
REF3025AIDBZR	SOT-23	DBZ	3	3000	203.0	203.0	35.0
REF3025AIDBZT	SOT-23	DBZ	3	250	203.0	203.0	35.0
REF3030AIDBZR	SOT-23	DBZ	3	3000	203.0	203.0	35.0
REF3030AIDBZT	SOT-23	DBZ	3	250	203.0	203.0	35.0
REF3033AIDBZR	SOT-23	DBZ	3	3000	203.0	203.0	35.0
REF3033AIDBZT	SOT-23	DBZ	3	250	203.0	203.0	35.0
REF3040AIDBZR	SOT-23	DBZ	3	3000	203.0	203.0	35.0
REF3040AIDBZT	SOT-23	DBZ	3	250	203.0	203.0	35.0

DBZ (R-PDSO-G3)

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Lead dimensions are inclusive of plating.
- D. Body dimensions are exclusive of mold flash and protrusion. Mold flash and protrusion not to exceed 0.25 per side.
- Falls within JEDEC TO-236 variation AB, except minimum foot length.

DBZ (R-PDSO-G3)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity