Stochastik II – Mathematische Statistik für Physiker

 $\begin{array}{c} \text{W. Nagel} \\ \text{WS 2015} \\ \ddot{\text{U}} \text{bungsaufgaben, } \textbf{2.} \text{ Serie} \end{array}$

1. Pflichtaufgabe. Mindestens die schriftliche Lösung dieser Aufgabe ist am 26.11.2015 abzugeben. Für den Parameter b im statistischen Raum

$$[\mathbb{R}^n, \mathcal{R}_n, \{P_b^{\otimes n}: P_b \text{ ist die Gleichverteilung auf dem Intervall } (0, b); b > 0\}]$$

sollen erwartungstreue Schätzungen konstruiert und bezüglich ihrer Varianz verglichen werden.

- (a) Geben Sie eine erwartungstreue Schätzung für b an, die auf dem arithmetischen Mittel basiert.
- (b) Geben Sie eine erwartungstreue Schätzung für b an, die auf dem Maximum $x_n^* = \max\{x_1, ..., x_n\}$ der Stichprobenwerte $x_1, ..., x_n$ basiert.
- (c) Vergleichen Sie die Varianzen der beiden Schätzungen aus (a) und (b).
- (d) Bestimmen Sie die Maximum-Likelihood-Schtzung für b.
- 2. Für den Parameter λ einer Poisson-Verteilung sind sowohl das Stichprobenmittel als auch die korrigierte empirische Varianz erwartungstreue Schätzungen, d.h., falls $X_1, ..., X_n$ unabhängig und Poissonverteilt sind mit dem Parameter $\lambda > 0$, dann gilt

$$\mathbb{E}_{\lambda}\bar{X} = \lambda$$
 und $\mathbb{E}_{\lambda}\hat{\sigma}^2(X_1,...,X_n) = \lambda$.

Es soll festgestellt werden, welche der beiden Schätzungen besser ist. Wählen Sie dazu spezielle Werte für den Parameter λ und schätzen Sie mit Hilfe von Simulationen die Varianzen der beiden Schätzungen für diese Parameterwerte. Anstelle von Simulationen können Sie die Varianzen der Schätzer hier auch explizit berechnen.

- 3. Gesucht ist eine erwartungstreue Schätzung für den Parameter λ einer exponentialverteilten Grundgesamtheit, wobei die Schätzung eine Funktion der Summe der Stichprobenwerte sein soll. Hinweis: Bestimmen Sie zunächst den Erwartungswert $\mathbb{E}_{\lambda} \left[\sum_{i=1}^{n} X_{i} \right]^{-1}$ für eine mathematische Stichprobe X_{1}, \ldots, X_{n} aus einer exponentialverteilten Grundgesamtheit.
- 4. (Simulation mit Hilfe von Wegwerfmethoden)
 - (a) Gegeben sei ein Pseudo-Zufallszahlengenerator zur Gleichverteilung auf dem Intervall (0,1), der eine Folge u_1, u_2, \ldots erzeugt. Es soll eine Folge von i.i.d. Zufallsvariablen Y_1, Y_2, \ldots simuliert werden, wobei Y_1 Verteilungsdichte f besitzt, die folgende Eigenschaften hat: Es existieren $a, b, c \in \mathbb{R}$, a < b, c > 0, so dass $f(x) \le c$ für alle $x \in \mathbb{R}$ und f(x) = 0 für alle x < a und alle x > b.
 - (b) Gegeben sei ein Pseudo-Zufallszahlengenerator zu einer Verteilung mit der Dichte g, der eine Folge x_1, x_2, \ldots erzeugt. Außerdem erzeuge ein Pseudo-Zufallszahlengenerator zur Gleichverteilung auf dem Intervall (0,1), eine Folge u_1, u_2, \ldots Es soll eine Folge von i.i.d. Zufallsvariablen Y_1, Y_2, \ldots simuliert werden, wobei Y_1 Verteilungsdichte f besitzt, die folgende Eigenschaft hat: Es existiert eine Zahl a > 1 so dass $f(x) \leq a g(x)$ für alle $x \in \mathbb{R}$. Weisen Sie nach, dass der folgende Algorithmus das Gewünschte leistet:
 - (1) i = 1, j = 1;

(2) IF
$$a \cdot u_i \cdot g(x_i) \le f(x_i)$$
 THEN $y_j = x_i, j := j + 1$;

(3)
$$i := i + 1$$
, GOTO (2)