Bi-infinite streams coalgebraically

An (incomplete) exercise in coalgebraic reasoning

Alexandra Silva and Jan Rutten

CWI, The Netherlands

Calco-jnr 2007

1/14

Motivation

 Coinduction is useful for building a calculus for infinite data structures

[Rutten 2000] Elements of stream calculus (an extensive exercise in coinduction) [Silva&Rutten 2007] Behavioural differential equations and coinduction for binary trees.

 We would like to develop a coinductive calculus for bi-infinite streams

2/14

Motivation

 Coinduction is useful for building a calculus for infinite data structures

[Rutten 2000] Elements of stream calculus (an extensive exercise in coinduction) [Silva&Rutten 2007] Behavioural differential equations and coinduction for binary trees.

 We would like to develop a coinductive calculus for bi-infinite streams

$$\dots$$
 $a_{.3}$ a_{-2} a_{-1} a_{0} a_{1} a_{2} a_{3} \dots

2/14

Goal of this talk

- Show two different representations for bi-infinite streams
- Hint on how to develop a calculus for this data structure

3/14

State of the art

Streams [Rutten00]

$$X = (0, 1, 0, 0, \ldots)$$

$$r = (r, 0, 0, 0, \ldots), r \in \mathbb{R}$$

$$(1, 1, 1, 1, \ldots) = \frac{1}{1 - X}$$

$$(1, 2, 4, 8, \ldots) = \frac{1}{1 - 2X}$$

$$(1, 2, 3, 4, \ldots) = \frac{1}{(1 - X)^2}$$

State of the art (cont.)

5/14

Bi-infinite streams

Bi-infinite streams

$$A^{\mathbb{Z}} = \{ \sigma : \mathbb{Z} \to A \}$$

Questions:

- Is this set the final coalgebra for a given functor F?
- Is there more than one functor?
- If so, how do we choose the best?

Bi-infinite streams

Bi-infinite streams

$$A^{\mathbb{Z}} = \{ \sigma : \mathbb{Z} \to A \}$$

Questions:

- Is this set the final coalgebra for a given functor *F*?
- Is there more than one functor?
- If so, how do we choose the best?

6/14

Bi-infinite streams

Bi-infinite streams

$$A^{\mathbb{Z}} = \{ \sigma : \mathbb{Z} \to A \}$$

Questions: Short answers

- Is this set the final coalgebra for a given functor F? Yes
- Is there more than one functor? Yes
- If so, how do we choose the best? We don't know (yet)

6/14

First Observation

First Observation

So...

- $A^{\mathbb{Z}}$ is the final coalgebra of $F(X) = (A \times A) \times X$
- We could reuse stream calculus

$$X = ((0,0), (1,1), (0,0), (0,0), \ldots)$$

$$r = (\ldots, (0,0), \underline{(r,0)}, (0,0), \ldots), \ r \in \mathbb{R}$$

$$(\ldots, 1, \underline{1}, 1, 1, \ldots) = \frac{(1,1)}{(1,1)-X}$$

But... Is this the only/best representation? Are we fully benefiting from the structure of bi-infinite streams?

So...

- $A^{\mathbb{Z}}$ is the final coalgebra of $F(X) = (A \times A) \times X$
- We could reuse stream calculus

$$X = ((0,0), (1,1), (0,0), (0,0), \ldots)$$

$$r = (\ldots, (0,0), \underline{(r,0)}, (0,0), \ldots), \ r \in \mathbb{R}$$

$$(\ldots, 1, \underline{1}, 1, 1, \ldots) = \frac{(1,1)}{(1,1)-X}$$

But... Is this the only/best representation? Are we fully benefiting from the structure of bi-infinite streams?

So. . .

- $A^{\mathbb{Z}}$ is the final coalgebra of $F(X) = (A \times A) \times X$
- We could reuse stream calculus

$$X = ((0,0), (1,1), (0,0), (0,0), \ldots)$$

 $r = (\ldots, (0,0), \underline{(r,0)}, (0,0), \ldots), r \in \mathbb{R}$
 $(\ldots, 1, \underline{1}, 1, 1, \ldots) = \frac{(1,1)}{(1,1)-X}$

But... Is this the only/best representation? Are we fully benefiting from the structure of bi-infinite streams?

8/14

So. . .

- $A^{\mathbb{Z}}$ is the final coalgebra of $F(X) = (A \times A) \times X$
- We could reuse stream calculus

$$X = ((0,0), (1,1), (0,0), (0,0), \ldots)$$

 $r = (\ldots, (0,0), \underline{(r,0)}, (0,0), \ldots), \ r \in \mathbb{R}$
 $(\ldots, 1, \underline{1}, 1, 1, \ldots) = \frac{(1,1)}{(1,1)-X}$

But... Is this the only/best representation? Are we fully benefiting from the structure of bi-infinite streams?

8/14

What else can we do

$$\cdots$$
 a_{1} a_{1} a_{2} a_{3} a_{4} a_{4} \cdots

What else can we do

• $A^{\mathbb{Z}}$ has a dynamics given by:

$$A^{\mathbb{Z}} \xrightarrow{< s_{I}, o, s_{r}>} A^{\mathbb{Z}} \times A \times A^{\mathbb{Z}}$$

- Is $A^{\mathbb{Z}}$ the final coalgebra of $G(X) = X \times A \times X$? No
- The final coalgebra of G(X) = X × A × X is the set T_A of infinite binary trees
- $A^{\mathbb{Z}}$ is a subcoalgebra of T_A

• $A^{\mathbb{Z}}$ has a dynamics given by:

$$A^{\mathbb{Z}} \xrightarrow{\langle s_l, o, s_r \rangle} A^{\mathbb{Z}} \times A \times A^{\mathbb{Z}}$$

- Is $A^{\mathbb{Z}}$ the final coalgebra of $G(X) = X \times A \times X$? No
- The final coalgebra of G(X) = X × A × X is the set T_A of infinite binary trees
- $A^{\mathbb{Z}}$ is a subcoalgebra of T_A

• $A^{\mathbb{Z}}$ has a dynamics given by:

$$A^{\mathbb{Z}} \xrightarrow{< s_{I}, o, s_{r}>} A^{\mathbb{Z}} \times A \times A^{\mathbb{Z}}$$

- Is $A^{\mathbb{Z}}$ the final coalgebra of $G(X) = X \times A \times X$? No
- The final coalgebra of G(X) = X × A × X is the set T_A of infinite binary trees
- $A^{\mathbb{Z}}$ is a subcoalgebra of T_A

• $A^{\mathbb{Z}}$ has a dynamics given by:

$$A^{\mathbb{Z}} \xrightarrow{< s_{I}, o, s_{r}>} A^{\mathbb{Z}} \times A \times A^{\mathbb{Z}}$$

- Is $A^{\mathbb{Z}}$ the final coalgebra of $G(X) = X \times A \times X$? No
- The final coalgebra of G(X) = X × A × X is the set T_A of infinite binary trees
- $A^{\mathbb{Z}}$ is a subcoalgebra of T_A

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• $A^{\mathbb{Z}}$ has a dynamics given by:

$$A^{\mathbb{Z}} \xrightarrow{< s_{I}, o, s_{r}>} A^{\mathbb{Z}} \times A \times A^{\mathbb{Z}}$$

- Is $A^{\mathbb{Z}}$ the final coalgebra of $G(X) = X \times A \times X$? No
- The final coalgebra of G(X) = X × A × X is the set T_A of infinite binary trees
- $A^{\mathbb{Z}}$ is a subcoalgebra of T_A

Remarks

11/14

Remarks

• A tree $\sigma \in T_A$ will be a valid representation of a bi-infinite stream iff

$$I \cdot r(\sigma) \sim \sigma \sim r \cdot l(\sigma)$$

 \bullet $A^{\mathbb{Z}} \cong \Box P$

$$P = \{ \sigma \in T_A \mid I \cdot r(\sigma) = \sigma = r \cdot I(\sigma) \}$$

12 / 14

Remarks

• A tree $\sigma \in T_A$ will be a valid representation of a bi-infinite stream iff

$$I \cdot r(\sigma) \sim \sigma \sim r \cdot l(\sigma)$$

• $A^{\mathbb{Z}} \cong \Box P$

$$P = \{ \sigma \in T_A \mid I \cdot r(\sigma) = \sigma = r \cdot I(\sigma) \}$$

12 / 14

Reusing the tree calculus

$$(\ldots, 1, 1, \underline{1}, 1, 1, \ldots) = \frac{1}{1 - L - R}$$
$$(\ldots, 0, 1, \underline{0}, 1, 0, \ldots) = (L + R) \times \frac{1}{1 + (L + R)^2}$$

Conclusions and Future work

Conclusions

- We have shown two possible ways of developing a calculus for bi-infinite streams
- It is not obvious which representation is better

Future work

- Work out more examples in the two representations shown
- Study finite tailed bi-infinite streams (Laurent series) to check if they give rise to a different coalgebra.

Conclusions and Future work

Conclusions

- We have shown two possible ways of developing a calculus for bi-infinite streams
- It is not obvious which representation is better

Future work

- Work out more examples in the two representations shown
- Study finite tailed bi-infinite streams (Laurent series) to check if they give rise to a different coalgebra.