BER Optimization for MIMO with Three Active Layers Group-2 (Project-8)

Presented by: Tilak, Mohit, Mayur, Manzoor

Guided by:- Prof.Dr.rer.nat.habil Ekatrina Auer

Department of Electrical Engineering and Computer Science

June 20, 2022

1/13

Contents

- Introduction
- 2 Multiple Input Multiple Output (MIMO)
- 3 Singular Value Decomposition (SVD)
- 4 Bit Error Rate (BER)
- 5 Lagrange Multiplier Method
- 6 Results
- Conclusion
- 8 References

Introduction

- In Multiple Input Multiple Output (MIMO) transmission, Bit Error Rate (BER) introduced and it is minimized using the power allocation method.
- To find this power allocation factors we have used Lagrange multiplier method.

(HSW) Project-8 June 20, 2022 3/13

Multiple Input Multiple Output (MIMO)

Figure: 3X3 MIMO channel

- It causes inter-channel interference.
- Equation for 3X3 MIMO channel
 - U1 = h11*a1+h12*a2+h13*a3+n1
 - U2 = h21*a1+h22*a2+h23*a3+n2
 - U3 = h31*a1+h32*a2+h33*a3+n3

(HSW) Project-8 June 20, 2022 4

Singular Value Decomposition (SVD)

- Eliminate interference
- Time-variant system
- Power distribution

Bit Error Rate (BER)

 BER is the percentage of bits that have errors relative to the total number of bits received in transmission.

$$P_b = \frac{2}{\sum_{i=1}^{L} \log_2 M_i} \sum_{i=1}^{L} \left(1 - \frac{1}{\sqrt{M_I}} \right) * erfc \left(\frac{\pi_I \lambda_I}{2\sigma} \sqrt{\frac{3P_s}{L(M_I - 1)}} \right)$$

- π_I = Power allocation factors
- P_s = Over all available transmit power
- $P_b = \text{Over all system BER}$
- Optimal power distribution (Power allocation)

(HSW) Project-8 June 20, 2022 6 / 13

Lagrange Multiplier Method

- Lagrange multiplier method is used to find maxima or minima of multi-variable function.
- The equation to find power allocation parameters and Lagrange multiplier is as follows,

$$J(\pi_1...\pi_3, \mu) = \frac{2}{\sum_{i=1}^{L} \log_2 M_i} \sum_{i=1}^{L} \left(1 - \frac{1}{\sqrt{M_I}}\right) *erfc\left(\frac{\pi_I \lambda_I}{2\sigma} \sqrt{\frac{3P_s}{L(M_I - 1)}}\right) + \mu\left(\sum_{i=1}^{L} \pi_I^2 - L\right)$$

- $\mu = \text{Lagrange multiplier}$,
- The factors (π_1, π_2, π_3) can be derived using Lagrange multiplier method.

(HSW) Project-8 June 20, 2022

Lagrange Multiplier Method

$$\bullet \quad \frac{\partial}{\partial \pi_1} = \frac{2}{\log_2 M_1 + \log_2 M_2 + \log_2 M_3} \ * \left(\left(1 - \frac{1}{\sqrt{M_1}} \right) * \frac{2}{\sqrt{\pi}} \left(\frac{\lambda_1}{2\sigma} \sqrt{\frac{3P_{\S}}{l(M_1 - 1)}} \right) \left(-e^{-\left(\frac{\lambda_1 \pi_1}{2\sigma} \sqrt{\frac{3P_{\S}}{l(M_1 - 1)}} \right)^2 \right) \right) + 2\mu \pi_1$$

$$\bullet \quad \frac{\partial}{\partial \pi_2} = \frac{2}{\log_2 M_1 + \log_2 M_2 + \log_2 M_3} * \left(\left(1 - \frac{1}{\sqrt{M_2}} \right) * \frac{2}{\sqrt{\pi}} \left(\frac{\lambda_2}{2\sigma} \sqrt{\frac{3P_8}{L(M_2 - 1)}} \right) \left(-e^{-\left(\frac{\lambda_2 \pi_2}{2\sigma} \sqrt{\frac{3P_8}{L(M_2 - 1)}} \right)^2 \right) \right) + 2\mu \pi_2$$

$$\bullet \quad \frac{\partial}{\partial \pi_3} = \frac{2}{\log_2 M_1 + \log_2 M_2 + \log_2 M_3} \ * \left(\left(1 - \frac{1}{\sqrt{M_3}} \right) * \ \frac{2}{\sqrt{\pi}} \left(\frac{\lambda_3}{2\sigma} \sqrt{\frac{3P_s}{L(M_3 - 1)}} \right) \left(- e^{-\left(\frac{\lambda_3 \pi_3}{2\sigma} \sqrt{\frac{3P_s}{L(M_3 - 1)}} \right)^2 \right) \right) + 2\mu \pi_3$$

Results

- \bullet M1 = 64. M2 = 2. M3 = 2
- $\sigma \approx 0.223607$ for SNR = 10dB

```
SNR = 10dB
System BER without PA =
                                 3.0749166591104E-002.
                                                           3.0749166591105E-0021
Power Allocation factors computed using Lagrange Multiplier Method are.
             Candidate: 1
                      = [ 1.530142232163761E+000, 1.530146449673016E+000]
                      = [ 5.178380628361379E-001, 5.178386889508021E-001]
                          6.249012727038828E-001, 6.249014548045145E-0011
                          2.097896627614002E-002, 2.097897914521249E-0021
             meu
System BER with PA
                           [ 5.882860441283604E-003. 5.882947717195338E-003]
```


	M1=64, M2=2, M3=2		M1=32, M2=4, M3=2	
SNR in dB	BER Without PA	BER With PA	BER Without PA	BER With PA
10	3.07E-02	5.88E-03	7.35E-03	1.41E-03
11	2.67E-02	4.28E-03	5.68E-03	9.04E-04
12	2.33E-02	3.12E-03	4.40E-03	5.86E-04
13	2.03E-02	2.29E-03	3.42E-03	3.84E-04
14	1.78E-02	1.68E-03	2.66E-03	2.54E-04
15	1.56E-02	1.24E-03	2.08E-03	1.70E-04
16	1.36E-02	9.14E-04	1.62E-03	1.15E-04
17	1.20E-02	6.78E-04	1.27E-03	7.81E-05
18	1.05E-02	5.04E-04	9.93E-04	5.37E-05
19	9.24E-03	3.76E-04	7.78E-04	3.72E-05
20	8.13E-03	2.81E-04	6.11E-04	2.60E-05

←□ → ←□ → ← □ → ← □ → □ □

Graphical Representation

Conclusion

- In conclusion, using a C-XSC library we have solved the Lagrangian expression, and found the power allocation parameters for MIMO System.
- The BER in MIMO system is improved with the help of optimal power allocation.

References

- https://www.researchgate.net/figure/Representation-of-3X3-MIMO-channel_fig1_322070644
- https://en.wikipedia.org/wiki/Lagrange_multiplier#Example_1
- 1 http://www2.math.uni-wuppertal.de/wrswt/xsc/cxsc/apidoc/html/index.html
- 4 https://matplotlib.org/
- 1 https://numpy.org/

(HSW) Project-8 June 20, 2022 13/13