Modelowanie i przetwarzanie informacji nieprecyzyjnej

Zajęcia IV

Zmienna lingwistyczna

Pojęcie, które próbujemy zamodelować, np. wzrost, temperatura

Dla wzrostu, $\{niski, \textit{\'s}\ redni, wysoki\}$ to zbiory rozmyte.

Zadanie lab I

Zamodeluj zmienną lingwistyczną wzrost i przedstaw ją graficznie.

Zastosuj 3 wyżej wymienione termy.

Podpowiedź: "średni" = "nie niski" i "nie wysoki" $A'\cap B'=(A\cup B)'$

Zadanie I

Zamodeluj zmienną lingwistyczną temperatura dla przedziału od 0°C do 40°C z 3 termami: zimno, ciepło, gorąco.

- Określ uniwersum
- Przedstaw funkcje przynależności dla każdego z termów
- Zamodeluj dodatkowy term: mniej więcej ciepło (skorzystaj z rozrzedzenia)

Wnioskowanie klasyczne

modus ponens

implikacja	p => q
przesłanka	p
wniosek	q

Czyli jeśli pierwsze zdanie mówi, że coś wynika z czegoś, a drugie potwierdza ten warunek, to wniosek musi być prawdziwy. Implikacja Jeśli pada deszcz, to ulica jest mokra
Przesłanka Pada deszcze
Wniosek Ulica jest mokra

modus tollens

implikacja	p => q
przesłanka	~p
wniosek	~ q

Implikacja Jeśli pada deszcz, to ulica jest mokra
Przesłanka Ulica nie jest mokra
Wniosek Nie pada deszcz

Wnioskowanie rozmyte

implikacja	Jeśli Jan jedzi do Warszawy, to często wraca do domu po 22:00
przesłanka	Jan często jeździ do Warszawy
wniosek	Jan często wraca do domu po 22:00

implikacja	Jeśli pomidor jest dojrzały, to jest czerwony
przesłanka	Pomidor jest bardzo czerwony
wniosek	Pomidor jest bardzo dojrzały

Reguly

 $IF\ lpha\ is\ A\ THEN\ eta\ is\ B$

Uogólnione modus ponens

$$IF lpha is \ A \ THEN \ eta is \ B$$

$$lpha = ilde{A}$$

$$eta = ilde{B}$$

$$ilde{B} = ilde{A} \circ_t (A o B)$$

 \circ_t - złożenie względem t-normy

(Szczegółowo:
$$ilde{B}(y) = sup_{x \in X} \{ ilde{A}(x) \ t \ [A(x) o B(y)]\}$$
)

IF pęknięcie = rozległe THEN wyciek = duży

pęknięcie = niewielkie

wyciek = mały

Zadanie lab II

Dokonaj wnioskowania modus ponens dla zbiorów:

$$A = \{(x_1, 0.4), (x_2, 0.3), (x_3, 0.1)\}$$
 $B = \{(y_1, 0.3), (y_2, 0.1)\}$

$$\tilde{A} = \{(x_1, 0.8), (x_2, 0.5), (x_3, 0.4)\}$$

Użyj implikację Łukasiewicza i t-normę minimum.

Zadanie II

Wyciągnij wniosek używając rozmytej uogólnionego modus tollens. Użyj implikacji Goguen'a i t-normy Łukasiewicza

Zadanie III

Dane są dwa zbiory rozmyte:

$$A = 0.5/x_1 + 0.6/x_2 + 0.1/x_3 \ B = 0.2/y_1 + 0.1/y_2$$

Zbiór A opisuje sformułowanie "pomidor jest czerwony", a zbiór B opisuje "pomidor jest dojrzały". Wyznacz wniosek B' dla faktu, że pomidor jest prawie dojrzały opisanego zbiorem:

$$A^\prime = 0.8/x_1 + 0.5/x_2 + 0.4/x_3$$

Zastosuj:

- implikację Łukasiewicza i t-normę minimum
- implikację algebraiczną i t-normę maximum