El circuito de la figura se encuentra en régimen permanente. En el instante t = 0 se abre el interruptor. Las variables de interés son u_1 y u_2 .

El procedimiento a seguir es:

- 1. Calcula:
 - $u_1(0^-) y u_2(0^-)$
 - $u_1(\infty)$ y $u_2(\infty)$
 - $u_1(t)$ y $u_2(t)$ para t > 0.
- 2. Simula el circuito en Ques obteniendo el comportamiento de las variables u_1 y u_2 . Para poder comprobar el funcionamiento antes de la apertura del interruptor, configura este elemento para que se abra a partir de t=1 ms. Incluye en la simulación las ecuaciones correspondientes para mostrar los resultados de los cálculos del punto 1.
- 3. Compara los resultados obtenidos mediante la resolución analítica y mediante la simulación empleando gráficas y tablas.
- 4. Sustituye la fuente de tensión por un generador de corriente alterna de 15 V de valor pico, y 500 Hz de frecuencia. Simula el circuito alimentado por este generador y compara el comportamiento con el circuito anterior.
- 5. Empleando nuevamente el circuito original (con generador de corriente continua), analiza el comportamiento ante variaciones de las resistencias R_1 y R_2 . Para este análisis debes emplear el modo de simulación Sweep para hacer un barrido de valores. En primer lugar realiza un barrido de R_1 con valores comprendidos entre $10\,\Omega$ y $2\,\mathrm{k}\Omega$ manteniendo fijo el valor de $R_2=100\,\Omega$. A continuación, manteniendo fijo el valor de $R_1=200\,\Omega$ realiza un barrido de R_2 con valores comprendidos entre $10\,\Omega$ y $1\,\mathrm{k}\Omega$. Compara los resultados de ambos barridos con los obtenidos en la resolución analítica y la simulación del circuito original.