

Relatório

Carlos Miguel Lopes Ferreira – 108822 Daniel Preto Emídio – 108986

Sumário:

- Calibrar uma sonda de efeito de Hall por meio de um solenoide padrão.
- Medir o campo magnético ao longo do eixo de duas bobinas estreitas.
- Estabelecer a configuração de Helmholtz e medir o campo magnético ao longo do eixo das respetivas bobinas.
- Verificar o princípio da sobreposição.

Introdução Teórica:

Parte A:

Nesta primeira parte pretende-se medir os valores da tensão elétrica em função da corrente elétrica. Estes valores irão auxiliar ao cálculo da constante de calibração (Cc) e do campo elétrico (B).

$$Bsol = \mu 0 \frac{N}{l} I$$

Onde:

 $\mu 0$ = permeabilidade magnética do vácuo ($4\pi \times 10^{-7}$ Tm/A)

 $\frac{N}{r}$ = número de espiras por unidade de medida (3467±60 espiras/m)

I =corrente elétrica (Amperes)

$$B = CcVH$$

Onde:

Cc = constante de calibração

VH = tensão elétrica (Volts)

Parte B:

$$B(x) = \frac{\mu 0}{2} \frac{I \cdot R^2}{(R^2 + x^2)^{\frac{3}{2}}}$$

Onde:

 $\mu 0$ = permeabilidade magnética do vácuo ($4\pi \times 10^{-7}$ Tm/A)

I = corrente elétrica (Amperes)

R = raio do solenoide (m)

x = posição no eixo definido (m)

Procedimento Experimental:

Parte A:

Onde:

- a) Voltímetro medição da tensão elétrica (Volts);
- b) Fonte de alimentação fornece alimentação ao sistema;
- c) Medidor de efeito Hall mede a tensão na sonda;
- d) Amperímetro medição da corrente elétrica (Amperes);
- e) Reóstato cria resistência no circuito;
- f) Solenóide gera um campo magnético através uma bobina enrolada.

Procedimento:

- Usando o "comutador" (S) existente na unidade de controlo da sonda de Hall, feche o circuito de modo a que passe corrente elétrica na sonda. Ligue os terminais da sonda à entrada do amplificador. Ligue um voltímetro à saída do amplificador.
- 2. Observe, no voltímetro, a tensão de Hall amplificada. Na ausência de campo magnético, VH deve ser nula. Se tal não acontecer, anule a tensão residual atuando no potenciómetro colocado na unidade de controlo (P).

Figura 1- Esquema da montagem experimental disponível na aula.

- 3. Monte o circuito da figura 1, utilizando o solenoide-padrão. Se dispuser de um reóstato de 330 Ω , é preferível usar a variante da direita entre os pontos A e B, para facilitar o controlo da corrente por meio do reóstato. 1 Se tiver dúvidas consulte o docente. 5 Figura 3. Esquema da montagem experimental disponível na aula.
- 4. Registe o valor de N/I para o enrolamento que está a usar.
- 5. Coloque a sonda no interior do solenoide, procurando um ponto do eixo do solenoide que minimize a aproximação utilizada de solenoide infinito. Qual é esta aproximação e qual o ponto que escolheu?
- Faça variar a corrente Is, que percorre o solenoide, e que vai produzir vários valores de campo magnético B. Registe a tensão VH para os diferentes valores de IS.

Cuidados a ter:

- Deixar a sonda bem centralizada no solenóide:
- Certificar que a sonda fica alinhada com o eixo vertical, a apontar para baixo.

Parte B:

Onde:

- a) Bobina 1 gera um campo magnético;
- b) Bobina 2 gera um campo magnético.

Procedimento:

- Coloque as duas bobinas em disposição geométrica adequada, de modo a ficaram na configuração de Helmholtz, e fixe-as nessa disposição, que deve manter-se inalterada ao longo de toda a experiência.
- 2. Registe os dados relevantes: a situação das bobinas na escala graduada, as dimensões das bobinas, a posição da escala da sonda de Hall relativamente à escala das bobinas.
- 3. Monte um circuito-série com uma fonte de 15V e uma das bobinas, um reóstato e um amperímetro, de modo semelhante ao que montou para a calibração da sonda. Ajuste a intensidade da corrente a um valor que será mantido fixo ao longo da experiência (I = 0,50 A).
- Utilizando a sonda de Hall, meça o campo magnético criado pela bobina ao longo do seu eixo, de centímetro a centímetro, registando cada par de valores (posição, tensão de Hall).
- 5. Remova a tensão aplicada à bobina e aplique-a, de seguida, à outra bobina. Ajuste a corrente para o mesmo valor que no ponto 3, e repita o ponto 4, medindo e registando o valor da tensão de Hall nos mesmos pontos do eixo, mas para a outra bobina.
- 6. Ligue as duas bobinas em série, certificando-se de que a corrente fluirá no mesmo sentido em ambas as bobinas.

7. Utilizando a sonda de Hall, meça o campo magnético criado pela bobina ao longo do seu eixo, de centímetro a centímetro, registando cada par de valores (posição, tensão de Hall).

Cuidados a ter:

- Deixar a corrente elétrica sempre constante, o mais perto possível dos 0,5 Amperes;
- Certificar que a sonda fica alinhada com o eixo vertical, a apontar para baixo.

Apresentação de resultados:

Parte A:

Parte B:

VH(V)	I(A)
0,00059	0,042
0,0092	0,066
0,0139	0,1
0,0221	0,16
0,0327	0,237
0,0374	0,271
0,0473	0,343
0,0576	0,417
0,0653	0,474
0,0709	0,514
0,0821	0,596
0.0856	0.621

	Pos(cm)	VH(mV)
Bobina1	5	3,1
	6	4
	7	5,3
	8	7,3
	9	10
	10	14,1
	11	19,7
	12	27,7
	13	37,1
	14	44,6
	15	46,7
	16	41,6
	17	32,9
	18	24,1
	19	16,8
	20	11,9
	21	8,8

Bobina2	Pos(cm)	VH(mV)	
	5	14,9	
	6	20,9	
	7	28,8	
	8	38,3	
	9	45,4	
	10	46,8	
	11	41,5	
	12	32,3	Bobina1 e 2
	13	23,8	BODINAL e 2
	14	16,6	
	15	11,9	
	16	8,4	
	17	6,2	
	18	4,8	
	19	3,8	
	20	2,9	
	21	2,5	

Pos(cm) VH(mV)

9

10

11 12

13

18

19

20

24,8 34,5

55,2

60,4

60,2

38,7

28,3

20,1

14,6

Campo magnético(T)	B1(Bobina1)	B2(Bobina2)	B3(Bobina1 e 2)	B4(B1 + B2)
	0,0000961	0,0004619	0,0005518	0,000558
	0,000124	0,0006479	0,0007688	0,000772
	0,0001643	0,0008928	0,0010695	0,001057
	0,0002263	0,0011873	0,0013981	0,001414
	0,00031	0,0014074	0,0017112	0,001717
	0,0004371	0,0014508	0,0018724	0,001888
	0,0006107	0,0012865	0,0018817	0,001897
	0,0008587	0,0010013	0,0018507	0,00186
	0,0011501	0,0007378	0,0018662	0,001888
	0,0013826	0,0005146	0,0018941	0,001897
	0,0014477	0,0003689	0,0018073	0,001817
	0,0012896	0,0002604	0,00155	0,00155
	0,0010199	0,0001922	0,0011997	0,001212
	0,0007471	0,0001488	0,0008773	0,000896
	0,0005208	0,0001178	0,0006231	0,000639
	0,0003689	0,0000899	0,0004526	0,000459
	0,0002728	0,0000775	0,0003441	0,00035

Análise de resultados:

Figura 2 – Gráfico da tensão da bobina 1

Figura 3 – Gráfico da tensão da bobina 2

Figura 4 – Gráfico da tensão das bobinas 1 e 2

Atravez da observação dos graficos das figuras 2 a 4, é aparente que a tensão gerada pelas bobinas aumenta com a aproximação a estas.

Incertezas de medição:

$$\Delta VH = \pm 0,0001 V$$

$$\Delta I = \pm 0,001 A$$

$$\Delta R = \pm 0,0005 \text{ m}$$

$$\Delta_{I}^{N} = 60 \text{ Espiras/m}$$

Erros associados:

$$\Delta Cc = \frac{\mu 0}{0.1408} \times \Delta \frac{N}{l} = > \Delta Cc = 5.4 \times 10^{-4} \frac{T}{V}$$

$$\Delta B = Cc \Delta VH + VH\Delta Cc => \Delta B = 3.6 \times 10^{-5} T$$

$$\Delta B(x) = \frac{\mu 0}{2R} \Delta I + \frac{\mu 0 \cdot I}{2R^2} \Delta R = > \Delta B(x) = 1.3 \times 10^{-7} T$$

Erro relativo:

$$\Delta Cc = \frac{5.4 \times 10^{-4}}{0.031} = 0.017 \frac{T}{V}$$

$$\Delta B = \frac{3.6 \times 10^{-5}}{0.0019} = 0.019 T$$

$$\Delta B(x) = \frac{1.3 \times 10^{-7}}{8.5 \times 10^{-6}} = 0.015 \text{ T}$$

Precisão:

Cc:
$$(1 - 0.017) \times 100 = 98.3\%$$

B:
$$(1 - 0.019) \times 100 = 98.1\%$$

$$B(x)$$
: $(1 - 0.015) \times 100 = 98.5\%$

Como a precisão é superioir a 90% podemos assumir que as medições possuem valor muito próximos da realidade.

Discução:

Parte A:

• Represente graficamente de VH = f(IS).

Figura 5 – Gráfico VH = f(IS).

 Determine a constante de calibração (Cc) da sonda de Hall, através da expressão do campo produzido pelo solenoide bem como o seu erro (Note que B = Cc VH).

Atravez das formulas:

1.
$$B = CcVH$$

2. B =
$$\mu 0 \frac{N}{1} I$$

Deduzimos que:

$$VH = \frac{\mu 0}{Cc} \cdot \frac{N}{l} \cdot I$$

Pela analize do gráfico da figura 5 podemos concluir que:

$$VH = 0.1408 \cdot I$$

Logo:

$$\frac{\mu 0}{Cc} \cdot \frac{N}{I} = 0.1408 \leftrightarrow Cc = 0.031 \frac{T}{V}$$

Parte B:

 Trace, numa folha de papel milimétrico (ou em Excel), o gráfico do campo magnético para as duas bobinas ligadas isoladamente e em série [BH(x)]. Conclua, através do gráfico, e sabendo a forma geral da variação do campo magnético criado por uma bobina, se se verifica ou não o Princípio da Sobreposição do campo magnético.

Figura 6 – Gráfico1 dos campos magnéticos

Campo magnético bobina 1

Campo magnético boboina 2

Campo magnético bobina 1 e 2

Obtivemos os valores do campo magnético multiplicando os valores de tensão obtidos pela constante Cc (0,54) atravez da formula: B = Cc VH.

Figura 7- Gráfico2 dos campos magnéticos

Soma do campo magnético da bobina 1 e 2

Ao observar o gráfico da figura 7 podemos concluir que se verifica o princípio da sobreposição do campo magnético, pois a soma da função do campo magnético da bobina 1 com a bobina 2 sobrepõe a função do campo magnético gerado pelas duas bobinas em simultâneo.

 Com base nas medidas de campo magnético no centro de uma bobina e com base na expressão (2) estime o número de espiras da bobina de Helmholtz.

Podemos calcular o número de espiras da bobina de Helmholtz através da fórmula:

$$N = \frac{\text{Bmax}}{\text{Bmax de 1 espira}}$$

$$\text{Bmax de 1 espira} = \frac{\mu \text{O I}}{2R} = 8,37 \times 10^{-6}T$$

$$\text{Bmax} = 1,89 \times 10^{-3}T$$

$$N = \frac{1,89 \times 10^{-3}}{8,37 \times 10^{-6}}$$

Logo 225 espiras (±112 por bobina).

Conclusão:

Com a realização desta atividade laboratorial verifica-mos experimentalmete:

- Que a relação entre a corrente eletrica e a tensão eletrica gerada por um solenóide é linear.
- O campo magnético gerado por uma bobina é mais forte o mais proximo se está do centro desta.
- O principio da sobreposição do campo magnético.