

Reti di Calcolatori e Laboratorio

Lezione 1 - Reti di calcolatori

Prof. E. Di Nardo

Università degli Studi di Napoli Parthenope

A.A. 2023/2024

Storia

- 1969: ARPANet Voluta dalla difesa americana. Utilizzata anche dalle università americane
- 1970: ALOHANet Prima rete satellitare dell'università delle Hawaii
- 1971: Nascita dell'email (Ray Tomlinson)
- 1975: Nasce TCP/IP
- 1980: Primo attacco DoS (Denial of Service) (involontario) sulla rete
- 1986: Primo collegamento alla rete in Italia. L'università di Pisa effettua il primo test di connessione
- 1991: Vengono definiti i protocolli HTTP del World Wide Web presso il CERN. E' nato Internet!

Fondamenti

Calcolatori interconnessi tra di loro

- ► Hardware elabora le informazioni
 - Calcolatori (computer, tablet, smartphone, console di gioco, etc...)
 - Apparati di rete (hub, router, modem, bridge, switch)
- ► Infrastruttura di comunicazione mezzo di trasmissione
 - Linea telefonica
 - Collegamenti satellitari (Starlink)
 - Fibra ottica (xDSL)
 - Rete cellulare (5g, 4g, 3g, ...)
- ► Protocolli di comunicazione regole di trasmissione/comunicazione

Sistemi di calcolo remoti

Esistono vari sistemi di calcolo remoti e con l'avanzamento tecnologico se ne creano di nuovi

- Rete di calcolatori: elaboratori dotati di un collegamento
- Parallel Computing/Distributed Computing: esecuzione parallela e distribuita di operazioni di calcolo
 - ► GRID Computing: risorse di calcolo distribuite su diverse aree geografiche
 - ► Cloud Computing: esecuzione remota di codice ed applicativi
 - ► Edge Computing: esecuzione di operazioni remote nel punto di acquisizione dei dati

Utilizzo della rete

- Comunicazione remota
 - email, messaggistica
- Collaborazione remota
 - Discord, Slack, Microsoft Teams
- Streaming di contenuti audio/video
 - ► Youtube, Netflix, Disney+, Spotify, Twitch
- Utilizzo di risorse computazionali remote
 - ► Colab, AWS, Google Cloud Platform, workstation universitarie
- Storage remoto
 - ▶ Dropbox, Google Drive, Microsoft OneDrive, Mega, WeTransfer
- Download contenuti
 - ► FTP, Torrent, NAS
- Online gaming e cloud gaming
 - ► Steam, PSPlus, Xbox Live, GeForce NOW

Tipologie di rete I

- Cablate
 - ► Rame, fibra ottica
- Local Area Network (LAN)
 - ► rete locale/aziendale
 - ▶ 10m 1km
- Metropolitan Area Network (MAN)
 - rete metropolitana
 - ▶ 100m 10km
- Wide Area Network (WAN)
 - rete geografica
 - ► 10km 1000km

- Wireless
 - Radiofrequenze, infrarossi
- Wireless Personal Area Network (WPAN)
 - Piccolissime distanze (cm)
 - ► NFC, Bluetooth, IR
- Wireless LAN (WLAN)
 - ▶ rete locale/aziendale wireless
- Wireless MAN (WMAN)
 - rete metropolitana wireless
- WWAN
 - rete geografica wireless

Tipologie di rete II

- Le diverse tipologie di rete possono essere interconnesse
- Formano reti sempre più grandi (Internet)

https://www.apposite-tech.com/whats-difference-metropolitan-area-network-man-wide-area-network-wan/

Tecnologie di comunicazione I

Reti punto a punto

- Ogni calcolatore deve connettersi direttamente ad un altro calcolatore.
- ► Se due calcolatori non sono direttamente collegati è necessario creare un instradamento attraverso altri calcolatori
- Ostoso, alto numero di connessioni dedicate

Tecnologie di comunicazione II

Reti broadcast

- ► Tutti i calcolatori sono connessi tramite un unico canale di comunicazione condiviso
- Ogni calcolatore ha un identificativo univoco (indirizzo di rete)
- ► I messaggi sono ricevuti da tutti, ma letti solamente dal destinatario

Trasmissione

- Non tutti i calcolatori possono trasmettere simultaneamente
- Necessario un sistema di regole o supervisione
 - ► Regole statiche
 - Regole prefissate, non possono cambiare nel tempo
 - Es. Assegnazione di uno slot temporale per ogni elaboratore (politica round-robin)
 - ⊖ Spreco di tempo e risorse se un calcolatore non deve trasmettere
 - ► Regole dinamiche
 - Di volta in volta si decide chi può utilizzare il mezzo di trasmissione
 - Centralizzato: Unità centrale che decide chi può iniziare la trasmissione
 - **Distribuito**: Un calcolatore può decidere se trasmettere in base allo stato del mezzo
 - → Possibili collisioni

- N.B. Tipologia ≠ Topologia
- Definisce come gli apparati di rete sono collegati tra di loro
- Ogni elemento connesso è detto nodo
- L'informazione scambiata è detta pacchetto
- Si suddivide inoltre in
 - ► Topologia logica: come i dati vengono scambiati tra i nodi
 - ► Topologia **fisica**: dislocazione fisica dei nodi. Ogni topologia definita da un grafo
- Varie topologie fisiche
 - ► Rete a bus
 - ► Rete ad anello
 - ► Rete a **stella**
 - ► Rete a maglia
 - ► Altre topologie ...

Rete a bus

- Le informazioni viaggiano su un unico canale
- Tutti i nodi possono leggere le informazioni in viaggio
 - ► Un nodo *non* destinatario riceve il pacchetto, ma lo scarta
 - ► Il nodo destinatario lo legge
- Esistono nodi terminali per i messaggi senza un destinatario
- Semplice da realizzare, semplice da estendere
- Velocità ridotte

Figure: Rete a bus

Rete ad anello

- Le informazioni viaggiano su un unico canale
- Due modalità
 - Unidirezionale: i pacchetti sono trasmessi in senso orario o antiorario
 - Bidirezionale: i pacchetti sono trasmessi in entrambe le direzioni

Figure: Rete ad anello

- Invio del pacchetto
 - ▶ Un nodo *non* destinatario lo inoltra al successivo
 - ► Il nodo destinatario lo legge e blocca l'inoltro
 - ► Se il nodo torna al mittente, la comunicazione si interrompe (destinatario non trovato)
- Semplice da estendere, veloce
- ∃ Bassa tolleranza ai guasti

Rete a stella

- Esiste un nodo centrale che gestisce la comunicazione
 - Le informazioni vengono inviate ad un nodo centrale
 - Il nodo centrale indirizza il pacchetto verso il destinatario
- ⊕ Semplice da realizzare
- ⊕ Buone velocità
- Tolleranza ai guasti parziale

Figure: Rete a stella

Rete a maglia

Figure: Rete a maglia

- Le informazioni viaggiano su un unico canale
- Tutti i nodi possono leggere le informazioni in viaggio
 - Un nodo non destinatario riceve il pacchetto, ma lo scarta
 - ► Il nodo destinatario lo legge
- ⊕ Semplice da realizzare
- Semplice da estendere
- → Velocità ridotte

Struttura di una rete

- Host Unità di calcolo
 - In una rete ci sono molteplici hosts che trasmettono informazioni
- Subnet Sottorete composta da tutti i nodi di una singola rete
- Mezzo di trasmissione
- Dispositivi di rete Si occupano di instradare la comunicazione nella sottorete o verso reti esterne (routing)
 - ► Modem Gateway Router Switch Hub Bridge

Reti eterogenee

- Anche se esistono regole standard per le reti queste sono eterogenee tra di loro
- Una rete può comunicare con un'altra di diverso tipo
- Possono inoltre comunicare reti basate su mezzi di trasmissione differente
 - ► Cablata <—> Satellite
 - ► Radio <—> Cablata
 - ► Satellite <—> Radio
- Internetwork collega reti di diversa tipologia utilizzando dei router multiprocollo detti gateway
 - ► LAN <—> MAN <—> WAN
 - ► I gateway effettuano sia il routing (instradamento) sia la conversione di protocollo

