Finding Roots by Newton Raphson Method

Newton Raphson

Recall from before we approximated the value of f(a + h) by the corresponding point on the tangent line as

$$f(a+h) \approx f(a) + h * f'(a)$$

We can use this result as the basis for finding a root of the function, f.

To find a root of f, find r such that f(r) = 0.

Finding the Root

Let the value a be an approximation of the root, so that the value, a, is close to the root, a+h, where h is small. Since a+h is a root, then f(a+h)=0. From above.

$$f(a+h) \approx f(a) + h * f'(a)$$
 ...
 $0 \approx f(a) + h * f'(a)$
 $h \approx \frac{-f(a)}{f'(a)}$, provided, $f'(a) \neq 0$

We can use $\frac{-f(a)}{f'(a)}$ as an approximation for h and so we can use $a + \frac{-f(a)}{f'(a)}$ as a better approximation than the value, a, for the root, a + h, of the function, f.

Newton Raphson Method

Let r_0 be a initial approximation of a root, r. From the initial approximation we can generate a sequence of terms r_1, r_2, \ldots that give better approximations.

We get an iterative sequence of terms:

$$r_0 = a$$

$$r_{n+1} = r_n - \frac{f(r_n)}{f'(r_n)}$$

Newton Raphson Diagram

Newton-Raphson method

Succesive Tangents

The technique of the Newton Raphson method is to use successive tangents to the curve and find where they cross the x - axis until the root is found.

As in the diagram, above, if the initial approximation is r_0 , then we find the tangent to the curve at $(r_0, f(r_0))$. This tangent crosses the x - axis at $x = r_1$. We can find r_1 by finding the equation of the tangent line at $(r_0, f(r_0))$ and finding where it crosses the x - axis. From before, the equation of the tangent at $(r_0, f(r_0))$ is:

$$y - f(r_0) = f'(r_0) * (x - r_0)$$

Finding Reciprocal

We wish to find the value of x when y=0, i.e. find where the tangent line crosses the x-axis. Let the tangent cross the x-axis at $(r_1,0)$, find r_1 .

$$0 - f(r_0) = f'(r_0) * (r_1 - r_0)$$
 :.

$$-f(r_0) = f'(r_0) * (r_1 - r_0) :$$

$$r_1-r_0=\tfrac{-f(r_0)}{f'(r_0)}:.$$

$$r_1 = r_0 - \frac{f(r_0)}{f'(r_0)} :$$

the tangent line crosses the x - axis at $r_1 = r_0 - \frac{f(r_0)}{f'(r_0)}$.

In general, if we have an approximation of the root, r_n , then we let $r_{n+1} = r_n - \frac{f(r_n)}{f'(r_n)}$.

This gives an iterative sequence of successive approximations:

$$r_0, r_1, r_2, \dots r_n, \dots$$

Find Square Root

Find Square Root

Find an approximation to \sqrt{n} for $n \in \mathbb{R}_{\geq 0}$.

We find \sqrt{n} by finding the (positive) root of $x^2 - n = 0$ i.e. we find r such that $r^2 - n = 0$ i.e. $r^2 = n$ i.e. $r = \sqrt{n}$.

With $f(x) = x^2 - n$ then f'(x) = 2 * x.

With an initial approximation as $r_0 = a$ we get an iterative sequence:

$$r_0 = a$$

 $r_{n+1} = r_n - \frac{r_n^2 - n}{2 * r_n}$: $r_{n+1} = \frac{1}{2} * \left(r_n + \frac{n}{r_n}\right)$

Square Root Example

Find $\sqrt{10}$

$$r_0 = 3$$
 $r_{n+1} = \frac{1}{2} * \left(r_n + \frac{10}{r_n} \right)$

$$r_1 = \frac{1}{2} * (3 + \frac{10}{3}) = \frac{19}{6}$$

$$r_2 = \frac{1}{2} * \left(\frac{19}{6} + \frac{60}{19} \right) = \frac{721}{228}$$

$$r_2 \approx 3.162$$

$$r_3 = \frac{1}{2}*(\frac{721}{228} + \frac{10*228}{721}) = \frac{721}{228}$$

$$\stackrel{\cdot \cdot }{\sqrt{10}} \approx 3.162$$

Finding Reciprocal

Finding Reciprocals

Given b, find $\frac{1}{b}$. We can use reciprocals to implement division. We can consider $\frac{a}{b}$ as $a*\frac{1}{b}$.

To find $\frac{1}{b}$ we find the root of the function, $f(x) = b - \frac{1}{x}$ i.e. if f(r) = 0 then $0 = b - \frac{1}{r}$ i.e. $r = \frac{1}{b}$.

If
$$f(x) = b - \frac{1}{x}$$
 then $f'(x) = \frac{1}{x^2}$.

We can find the root by the Newton Raphson iterative process:

$$r_0 = initial \ value$$

 $r_{n+1} = r_n - \frac{f(r_n)}{f'(r_n)}$

Finding Reciprocal (Cont'd)

With $f(x) = b - \frac{1}{x}$ we generate a sequence of approximations by:

 $r_0 = initial value$

$$r_{n+1} = r_n - \frac{b - \frac{1}{r_n}}{\frac{1}{r_n^2}}$$
 i.e.

$$r_{n+1}$$

= $r_n - r_n^2 * (b - \frac{1}{r_n})$
= $r_n * (1 - r_n * (b - \frac{1}{r_n}))$

$$r_{n+1} = r_n * (2 - b * r_n)$$

Division via Reciprocal

Division by Reciprocal

Since calculating r_{n+1} in terms of r_n and b involves only multiplication and subtraction we can calculate $\frac{1}{b}$ involving only multiplication and subtraction.

In the early days of computing, the operations of addition (subtraction) and multiplication were 'hard-wired' but division was calculated in 'software' via the Newton Raphson method to calculate reciprocals i.e. $\frac{a}{b}=a*\frac{1}{b}$. The Newton Raphson method to calculate reciprocals uses just subtraction and multiplication.

Reciprocal Example

Given 1.37 find $\frac{1}{1.37}$.

Initial approximation:

Since 1.37 is close to $\frac{4}{3}$ let us use:

$$r_0 = \frac{3}{4} = 0.75$$

$$r_{n+1} = r_n * (2 - 1.37 * r_n) :$$

$$r_1 = 0.75 * (2 - 1.37 * 0.75) = 0.7293$$

$$r_2 = 0.7293 * (2 - 1.37 * 0.7293) = 0.7299$$

$$\begin{array}{c} \therefore \\ \frac{1}{1.37} \approx 0.7299 \end{array}$$

Finding Roots of Polynomials

Find an approximation to the root of the polynomial: $x^3 - 2 * x - 5$

Let $f(x) = x^3 - 2 * x - 5$ then $f'(x) = 3 * x^2 - 2$ and we get the Newton Raphson iterations: Using 2 as an initial value,

$$r_0 = 2$$
,
 $r_{n+1} = r_n - \frac{r_n^3 - 2 * r_n - 5}{3 * r_n^2 - 2}$

Simiplifying, we get,

$$r_{n+1} = \frac{2*r_n^3+5}{3*r_n^2-2}$$

Finding Roots of Polynomials (Cont'd)

We get:

$$r_1 = \frac{2*2^3+5}{3*2^2-2} = \frac{21}{10} = 2.1$$

$$r_2 = \frac{2*(2.1)^3 + 5}{3*(2.1)^2 - 2} = 2.094$$

$$r_3 = \frac{2*(2.094)^3 + 5}{3*(2.094)^2 - 2} = 2.094$$

. •

a root of $x^3 - 2 * x - 5$ is 2.094

Check:

$$(2.094)^3 - 2 * 2.094 - 5 = -0.006$$

Finding root of $x - \cos x$

Root of $x - \cos x$

Find a value, x, such that $x = \cos x$. (A solution for $x = \sin x$ is easy as $\sin 0 = 0$.) Let $f(x) = x - \cos x$ then $f'(x) = 1 + \sin x$. With value 1 as the initial value we get: $r_0 = 1$ $r_{n+1} = r_n - \frac{r_n - \cos r_n}{1 + \sin r_n}$ We get successive terms:

$$r_1 = 1 - \frac{1 - \cos 1}{1 + \sin 1} = 0.75036$$

 $r_2 = 0.75036 - \frac{0.75036 - \cos 0.75036}{1 + \sin 0.75036} = 0.73911$
 $r_2 = 0.73911 - \frac{0.73911 - \cos 0.73911}{1 + \sin 0.73911} = 0.73908$

Check: $\cos 0.73908 \approx 0.73908$

