

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name:																
Michael Morgenthal																
UB Person Number:									Instructions:							
5	0	2	2	6	6	3	6		Textbooks, calculators and any other electronic devices are not permitted							
	① ① ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨	4567	4567	457		0 1 2 4 5 6 7 8 9	© 1 0 3 4 5 6 7 8 9		You may use one sheet of notes. • For full credit solve each problem fully, showing all relevant work.							
1		2		3		4	Ę	5	6	7	TOTAL	GRADE				
							13									

							0	nan
1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

a)
$$\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} V_1 + \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix} V_2 + \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \\ b \end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 \\
0 & 1 & 2 & | & 2 \\
2 & -3 & 0 & | & b
\end{bmatrix}
\xrightarrow{(3+0)}
\begin{bmatrix}
1 & 0 & 3 & | & 0 \\
0 & 1 & 2 & | & 2 \\
2 & -3 & 0 & | & b
\end{bmatrix}
\xrightarrow{(2+0)}
\begin{bmatrix}
1 & 0 & 3 & | & 0 \\
0 & 1 & 2 & | & 2 \\
0 & -3 & -6 & | & b
\end{bmatrix}
\xrightarrow{(3+0)}
\begin{bmatrix}
1 & 0 & 3 & | & 0 \\
0 & 1 & 2 & | & 2 \\
0 & 0 & 0 & | & b + 6
\end{bmatrix}$$
Free variable

b)
$$x_1 = -3x_3$$

 $x_2 = 2-2x_3$
 $x_3 = free$

The set {V1,1/2,1/3} is not linearly independent. This is because x3 is a tree variable, therefore the set has infinite solutions (and is linearly dependent.)

2. (10 points) Consider the following matrix:

$$A = \left[\begin{array}{rrr} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{array} \right]$$

Compute A^{-1} .

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & | & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 2 & -1 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 2 & -1 & 0 & 0 & 1
\end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -2 & 2 & 0 \\ 1 & -\frac{1}{2} & \frac{1}{2} \\ 2 & -1 & 0 \end{bmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A^{T}C = B$$

$$C = (A^{-1})^{T}B$$
Based on problem 2, $A^{-1} = \begin{bmatrix} -2 & 2 & 0 \\ 1 & -\frac{1}{2} & \frac{1}{2} \\ 2 & -1 & 0 \end{bmatrix}$

$$(A^{-1})^{T} = \begin{bmatrix} -2 & 1 & 2 \\ 2 & -\frac{1}{2} & -1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix}$$

$$C = (A^{-1})^{T}B = \begin{bmatrix} -2 & 1 & 2 \\ 2 & -\frac{1}{2} & -1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} -2 & 4 & 6 \\ 4 & -\frac{5}{2} & -2 \\ 0 & 2 & 6 \end{bmatrix}$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of \mathcal{T} .
- b) Find all vectors u satisfying $T(u) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

a)
$$T(u) = T(\begin{bmatrix} a_1 \\ a_2 \end{bmatrix}) = \begin{bmatrix} a_1 - 2a_2 \\ a_1 + a_2 \\ a_1 - 3a_2 \end{bmatrix}$$

b) $\begin{bmatrix} 1 & -2 & 1 \\ 1 & 10 \\ 1 & -3 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 1 \\ 1 & 1 & 10 \\ 1 & -2 & -8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 1 \\ 1 & 1 & 10 \\ 0 & 0 & -9 \end{bmatrix}$

No vector satisfies T(u)

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors v_1 and v_2 such that $T_A(v_1) = T_A(v_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$
 b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

a)
$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 4 & 0 \\ 3 & 4 & 4 & 0 \end{bmatrix}$$
 $\Rightarrow \begin{bmatrix} 2 & 3 & 4 & 0 \\ 0 & 2 & 4 & 0 \\ 3 & 4 & 4 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 2 & 3 & 4 & 0 \\ 0 & 2 & 4 & 0 \\ 3 & 4 & 4 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \\ 3 & 4 & 4 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \\ 3 & 4 & 4 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \\ 3 & 4 & 4 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \\ 0 & 2 & 2 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 2 & 2 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 2 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 4 & 0 \\ 0 & 3 & 4 & 2 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 3 & 4 & 2 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 3 & 4 & 2 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 3 & 4 & 2 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 3 & 4 & 2 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 3 & 4 & 2 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 3 & 4 & 2 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 3 & 4 & 2 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 3 & 4 & 2 & 0 \end{bmatrix}$

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u,v,w are vectors in \mathbb{R}^3 such that $w+u\in \text{Span}(u,v)$ then $w\in \text{Span}(u,v).$ True

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

False

- **7.** (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

True because Au, Av are a linear combination of A.

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

True because of the matrix property C.T = CCTS