Topologie et Calcul différentiel – TD 2: Théorème des fonctions implicites

10 mars 2023

Le but de ce TD est d'apprendre à appliquer le théorème des fonctions implicites, et à reconnaître les problèmes dans lesquels il intervient.

Exercice 1:

On considère la fonction de deux variables $\psi : \mathbb{R} \times \mathbb{R}^*$ définie par

$$\psi(x, y) = x \exp(y) + \sin(\log(y)) \exp(x)$$

1. Calculer les dérivées partielles de ψ .

Remarquons que ψ appartient à $\mathscr{C}^1(\mathbb{R}\times\mathbb{R}_+^*)$. Ainsi, pour tout $(x,y)\mapsto\mathbb{R}\times\mathbb{R}_+^*$, on a

$$\frac{\partial \psi}{\partial x}(x,y) = \exp(y) + \sin(\log(y)) \exp(x).$$

2. Démontrer qu'il existe un voisinage de 0 noté $\mathcal{V}(0) \subseteq \mathbb{R}$ et une unique fonction ϕ de classe $\mathscr{C}^1(\mathcal{V}(0); \mathbb{R}_+^*)$ telle que $\phi(0) = 1$ et pour tout $x \in \mathcal{V}(0), \psi(x; \phi(x)) = 0$

On remarque que $\frac{\partial \psi}{\partial y}(0,1) = 1 \neq 0$ et $\psi(0,1) = 0$. Ainsi, d'après le théorème des fonctions implicites, il existe un voisinage de 0, noté $\mathscr{V}(0)$, et une unique fonction $\phi : \mathscr{V}(0) \to \mathbb{R}_+^*$ appartenant à $\mathscr{C}^1(\mathscr{V}(0);\mathbb{R}_+^*)$ telle que $\phi(0) = 1$ et $\psi(x,\phi(x)) = 0$ pour tout $x \in \mathscr{V}(0)$.

3. Calculer le développement limité à l'ordre 2 de ϕ en 0.

On utilise l'unicité du développement de Taylor de ϕ en 0. On cherche ϕ sous la forme $\phi(x) = 1 + ax + bx^2 + o(x^2)$. En injectant ce développement dans l'équation $\psi(x, \phi(x)) = 0$, on trouve :

$$\begin{split} 0 &= x \cdot \exp(\phi(x)) + \sin(\ln(\phi(x)) \cdot \exp(x)) \\ &= x \cdot \exp((1 + ax + bx^2 + o(x^2)) + \sin(\ln(1 + ax + bx^2 + o(x^2))) \cdot \left(1 + x + \frac{x^2}{2} + o(x^2)\right) \\ &= x \cdot e \cdot \exp(ax + bx^2 + o(x^2)) + \sin\left(ax + bx^2 - \frac{1}{2}(ax)^2 + o(x^2)\right) \cdot \left(1 + x + \frac{x^2}{2}\right) \\ &= x \cdot e \cdot (1 + ax + o(x)) + \left(ax + bx^2 - \frac{1}{2}a^2x^2 + o(x^2)\right) \cdot (1 + x + o(x)) \\ &= xe + eax^2 + o(x^2) + ax + ax^2 + bx^2 - \frac{1}{2}a^2x^2 + o(x^2) \\ &= (e + a)x + \left(ea + a + b - \frac{a^2}{2}\right) + o(x^2) \end{split}$$

En identifiant les termes du premier ordre et du deuxième ordre, il vient

$$a = -e, b = -ea + \frac{a^2}{2} - a = e + \frac{3}{2}e^2.$$

Exercice 2:

Soit H la fonction définie sur \mathbb{R}^2 par $H(x,y) = 2e^{x+y} + y - x$.

1. Montrer qu'il existe un intervalle ouvert I au voisinage de 1 et une unique fonction $\phi \in \mathscr{C}^{\infty}(I,\mathbb{R})$ tels que

$$\phi(1) = -1$$
 et $\forall x \in I$, $H(x, \phi(x)) = 0$ et $\partial_2 H(x, \phi(x)) \neq 0$

On a H(1,-1)=0. De plus, la fonction H est de classe \mathscr{C}^{∞} sur \mathbb{R}^2 et, pour tout $(x,y)\in\mathbb{R}^2$, $\partial_2 H(x,y)=2e^{x+y}-1\neq 0$. On peut donc appliquer le théorème des fonctions implicites au point (1,-1) ce qui nous donne la conclusion voulue.

Exercice 3:

Soit f définie sur \mathbb{R}^2 par :

$$f(x,y) = \sin(y) + x \times y^4 + x^2.$$

1. Montrer que $(0,0) \in \Gamma_f = \{(x,y) \in \mathbb{R}^2, f(x,y) = 0\}$ et que au voisinage de ce point la courbe peut s'écrire sous la forme $y = \varphi(x)$.

f est de classe \mathscr{C}^1 sur \mathbb{R}^2 . On a f(0,0)=0 donc $(0,0)\in\Gamma_f$. Par ailleurs, $\frac{\partial f}{\partial y}(0,0)=1$. Donc, d'après le théorème des fonctions implicites, il existe un intervalle ouvert I autour de 0 tel que :

$$\exists ! \varphi \in \mathscr{C}^{1}(O, \mathbb{R}), \begin{cases} \varphi(0) = 0 \\ \forall x \in I, & (x, \varphi(x)) \in \Gamma_{f} \\ \forall x \in I, & \frac{\partial f}{\partial y}(x, \varphi(x)) \neq 0 \end{cases}$$

2. Donner un développement limité à l'ordre 10 de φ en 0.

C'est du Python

Exercice 4:

On rappelle que la fonction θ définie sur \mathbb{R} par :

$$\forall t \in \mathbb{R}, \ \theta(t) = \begin{cases} e^{-\frac{1}{t^2}} \text{ si } t \neq 0 \\ 0 \text{ sinon} \end{cases}$$

est de classe \mathscr{C}^{∞} sur \mathbb{R} et que, pour tout $n \in \mathbb{N}$, $\theta^{(n)}(0) = 0$. On pose $f(x,y) = \sin(\theta(y)) - \tan(4\theta(x))$ et $\Gamma = \{(x,y) \in \mathbb{R}^2, f(x,y) = 0\}$.

1. Déterminer l'ensemble de définition Δ de f. Quelle est la classe de f?

Le seul problème vient de la fonction tangente. On sait qu'elle est de classe \mathscr{C}^{∞} sur $\mathbb{R} \setminus \{\frac{\pi}{2} + k \times \pi, \ k \in \mathbb{Z}\}$. La fonction f est donc bien définie dès que le point $(x,y) \in \mathbb{R}^2$ vérifie $4\theta(x) \notin \{\frac{\pi}{2} + k \times \pi, \ k \in \mathbb{Z}\}$. Or, la fonction θ est à valeurs dans [0,1], donc la seule condition à vérifier est $4\theta(x) \neq \frac{\pi}{2}$. Or,

$$e^{-\frac{1}{x^2}} = \frac{\pi}{8} \iff x = \sqrt{-\ln\left(\frac{\pi}{8}\right)}^{-1} \text{ ou } x = -\sqrt{-\ln\left(\frac{\pi}{8}\right)}^{-1}.$$

Ainsi, f est bien définie sur

$$\Delta = \left(\mathbb{R} \setminus \left\{ -\sqrt{-\ln\left(\frac{\pi}{8}\right)}^{-1}, \sqrt{-\ln\left(\frac{\pi}{8}\right)}^{-1} \right\} \right) \times \mathbb{R}.$$

De plus, par composition de fonction de classe \mathscr{C}^{∞} , f est de classe \mathscr{C}^{∞} sur Δ .

2. Étudier les extremums locaux de f.

Cherchons les candidats possibles, nous savons qu'ils vérifient : $(x, y) \in \Delta$ et,

$$\begin{cases} \partial_1 f(x,y) = 4 \theta'(x) \times (1 + \tan^2(4 \theta(x))) = 0 \\ \partial_2 f(x,y) = \theta'(y) \times \cos(\theta(y)) = 0. \end{cases}$$

Or, puisque θ est à valeurs dans [0,1], on sait que pour tout $y \in \mathbb{R}$, $\cos(\theta(y)) \neq 0$. Ainsi, $\theta'(y) = 0$, et ceci n'est possible que si y = 0 (en effet, pour tout $y \neq 0$, on a $\theta'(y) = -\frac{2}{t^3} \times e^{-\frac{1}{t^2}} \neq 0$). De la même manière, puisque pour tout $x \in \mathbb{R}$, $1 + \tan^2(4\theta(x)) > 0$, on a $\theta'(x) = 0$. Donc, x = 0. On a donc trouvé, un seul candidat : (x, y) = (0, 0).

De plus, on a, pour tout $y \in \mathbb{R}^*$, $f(0,y) = \sin(\theta(y)) > 0 = f(0,0)$ (car θ est à valeur dans [0,1]). D'autre part, puisque θ est continue en 0, il existe $\eta > 0$, tel que pour tout $0 < x < \eta$, on a $0 < 4 \times \theta(x) < \frac{\pi}{2}$, donc f(x,0) < 0 = f(0,0). Ainsi, (0,0) n'est pas un extremum local de f.

3. Quels sont les points de Γ où le théorème des fonctions implicites s'applique?

Cherchons plutôt les points où le théorème des fonctions implicites ne s'applique pas. Nous savons qu'ils vérifient : $(x, y) \in \Delta$ et,

$$\begin{cases} f(x,y) = 0\\ \partial_1 f(x,y) = 4 \theta'(x) \times (1 + \tan^2(4 \theta(x))) = 0\\ \partial_2 f(x,y) = \theta'(y) \times \cos(\theta(y)) = 0. \end{cases}$$

D'après la question précédente, les deux dernières équations entraı̂nent (x, y) = (0, 0). Et on a bien $(0, 0) \in \Gamma$ (c'est-à-dire, f(0, 0) = 0). Ainsi, le théorème des fonctions implicites s'applique à tous les points de $\Gamma \setminus \{(0, 0)\}$.

4. Soit le point $(a,b) = \left(\sqrt{-\ln\left(\frac{\pi}{4}\right)}^{-1},0\right)$, montrer que le théorème des fonctions implicites s'applique. On notera φ la fonction implicite. Quelle est la classe de φ ? Donner un développement limité à l'ordre 2 de φ au voisinage de (a,b).

On a bien f(a,b) = 0. Puisque $(a,b) \neq (0,0)$, on sait d'après la question précédente que le théorème des fonctions implicites s'applique. De plus, comme $\theta'(0) = 0$, on a :

$$\partial_2 f(a,b) = 0.$$

Donc (puisque (a, b) n'est pas un point singulier) on a $\partial_1 f(a, b) \neq 0$. Ainsi, il existe un intervalle ouvert autour de a et il existe une unique fonction φ de classe \mathscr{C}^{∞} (car f est de classe \mathscr{C}^{∞}) sur I telle que

$$\begin{cases} \varphi(b) = a \\ \forall y \in I, \ (\varphi(y), y) \in I \\ \forall y \in I, \ \partial_1 f(\varphi(y), y) \neq 0. \end{cases}$$

Donnons un développement limité de φ l'ordre 2 au voisinage de (a,b). C'est possible car cette

fonction est au moins de classe \mathscr{C}^2 sur I. Celui-ci s'écrit

$$\varphi(b+h) = \varphi(b) + \varphi'(b) \times h + \varphi''(b) \times \frac{h^2}{2} + o(|h|^2)$$

On sait déjà que :

$$\varphi(b) = a$$
, et $\varphi'(b) = \frac{\partial_2(a,b)}{\partial_1(a,b)} = 0$.

Pour déterminer $\varphi''(b)$, nous allons faire un développement limité de f à l'ordre 2. Avant de se lancer dans des calculs, remarquons que, pour tout $(x, y) \in \Delta$,

$$\partial_1 \partial_2 f(x, y) = \partial_2 \partial_1 f(x, y) = 0.$$

De plus,

$$\partial_2 \partial_2 f(x,0) = \theta''(0) \times \cos(\theta(0)) - \theta'(0)^2 \times \sin(\theta(0)) = 0$$

D'où,

$$f(a+h,b+k) = \partial_1 f(a,b) \times h + \partial_1 \partial_1 f(a,b) \times \frac{h^2}{2} + o(\|(h,k)\|^2).$$

Ensuite, on sait que pour h suffisamment petit (en fait, h tel que $b + h \in I$),

$$0 = f(\varphi(b+h), b+h) = f\left(a + \varphi''(b) \times \frac{h^2}{2} + o(|h|^2), b+h\right).$$

On injecte ensuite dans le développement limité de f:

$$0 = \frac{\varphi''(b)}{2} \times \partial_1 f(a, b) + o(|h|^2).$$

Par unicité du développement limité (quand il existe), on en déduit que $\partial_1 f(a,b) \times \varphi''(b) = 0$, or $\partial_1 f(a,b) \neq 0$, donc $\varphi''(b) = 0$.

5. Trouver l'expression explicite de φ , au voisinage de (a,b).

On sait que pour tout $(x, y) \in \Gamma$, on a :

$$\tan(4\theta(x)) = \sin(\theta(y)).$$

Donc,

$$4\theta(x) = \operatorname{atan}(\sin(\theta(y))) + k \times \pi,$$

où $k \in \mathbb{Z}$. Or, θ est à valeurs dans [0,1] donc les seules valeurs possibles de k sont k=0 et k=1. On trouve alors :

$$x = \sqrt{-\ln\left(\frac{k \times \pi + \operatorname{atan}(\sin(e^{-1/y^2}))}{4}\right)^{-1}} \text{ ou } x = -\sqrt{-\ln\left(\frac{k \times \pi + \operatorname{atan}(\sin(e^{-1/y^2}))}{4}\right)^{-1}}.$$

Or on est au voisinage de (a, b), donc

$$x = \sqrt{-\ln\left(\frac{\pi + \operatorname{atan}(\sin(e^{-1/y^2}))}{4}\right)^{-1}}.$$

Ainsi, par unicité de la fonction implicite, on a

$$\forall x \in I, \ \varphi(x) = \sqrt{-\ln\left(\frac{\pi + \operatorname{atan}(\sin(e^{-1/y^2}))}{4}\right)^{-1}}.$$

Exercice 5:

ightharpoonup On considère la fonction f définie sur \mathbb{R}^2 par :

$$f(x,y) = \begin{cases} \frac{5x^3 - 27x \times y^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon.} \end{cases}$$

1. Montrer que la fonction f est de classe \mathscr{C}^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$ et calculer ses dérivées partielles.

f est définie par une fonction rationnelle sur $\mathbb{R}^2 \setminus \{(0,0)\}$, elle est continue et même de classe \mathscr{C}^{∞} sur son domaine de définition. Or, cette fonction rationnelle est bien définie sur $\mathbb{R}^2 \setminus \{(0,0)\}$. On trouve:

$$\partial_1 f(x,y) = -\frac{(3y^2 - 5x^2)(9y^2 + x^2)}{(y^2 + x^2)^2}$$

et

$$\partial_2 f(x,y) = -\frac{64 x^3 y}{(y^2 + x^2)^2}.$$

2. La fonction f est-elle continue en (0,0)?

Oui. Car si l'on pose $N = \sqrt{x^2 + y^2}$, on a, pour $(x, y) \neq (0, 0)$:

$$|f(x,y)-f(0,0)| = \frac{x(5x^2-27y^2)}{N^2} \leqslant \frac{x(27x^2+27y^2)}{N^2} \leqslant \frac{\sqrt{x^2+y^2}(27x^2+27y^2)}{N^2} = \frac{27\,N^3}{N^2} = 27N \xrightarrow[N \to 0]{} 0.$$

3. La fonction f admet-elle des dérivées partielles en (0,0)?

Oui. Il suffit de regarder les limites des taux d'accroissements des fonctions appropriées. Ainsi :

— Existence de $\partial_1 f(0,0)$: si $x \neq 0$, on a:

$$\frac{f(x,0) - f(0,0)}{x} = 5 \xrightarrow[x \to 0]{} 5$$
, donc $\partial_1 f(0,0) = 5$.

— Existence de $\partial_2 f(0,0)$: si $y \neq 0$, on a :

$$\frac{f(0,y) - f(0,0)}{y} = 0 \xrightarrow{y \to 0} 0, \text{ donc } \partial_2 f(0,0) = 0.$$

4. La fonction f est-elle de classe \mathscr{C}^1 sur \mathbb{R}^2 ? (justifier votre réponse).

On a vu que la fonction rationnelle définissant f était de classe \mathscr{C}^{∞} . Il suffit donc de faire le calcul. On trouve :

$$\partial_1 f(x,y) = -\frac{(3y^2 - 5x^2)(9y^2 + x^2)}{(y^2 + x^2)^2}$$

et

$$\partial_2 f(x,y) = -\frac{64 x^3 y}{(y^2 + x^2)^2}.$$

Non. Car

$$\partial_1 f(\sqrt{3} t, \sqrt{5} t) = 0 \xrightarrow[t \to 0, t \neq 0]{} 0 \neq 5 = \partial_1 f(0, 0).$$

La fonction $\partial_1 f$ n'est pas continue en (0,0).

On aurait aussi pu remarqué que

$$\partial_2 f(t,t) = -16 \xrightarrow[t \to 0, t \neq 0]{} -16 \neq 0 = \partial_2 f(0,0).$$

Donc la fonction $\partial_2 f$ n'est pas continue en (0,0).

▶ On s'intéresse maintenant aux lignes de niveaux de la fonction f. Pour cela, étant donné un réel $a \in \mathbb{R}^*$, on va étudier la fonction :

$$g_a(x,y) = (5x^3 - 27x \times y^2) - a \times (x^2 + y^2).$$

- 5. Déterminer les extrémums locaux de g_a .
 - (a) Les candidats extrémums vérifient les deux équations :

$$\partial_1 g_a(x,y) = 0$$
 et $\partial_2 g_a(x,y) = 0$,

soit

$$-27y^2 + 15x^2 - 2a \times x = 0$$
 et $-54x \times y - 2a \times y = 0$.

(b) La résolution du système nous donne quatre candidats :

$$\left(\frac{2a}{15},0\right),\ (0,0),\ \left(-\frac{a}{27},\pm\frac{\sqrt{23}a}{81}\right).$$

- (c) Pour chaque candidat, on peut regarder le développement limité au voisinage du point, pour trouver le comportement de la fonction au voisinage. Cela donne :
 - En (2a/15,0), on a:

$$g_a \left(\frac{2a}{15} + h, k\right) = -\frac{4a^3}{675} + \frac{5ah^2 - 23ak^2}{5} + o(h^2 + k^2),$$

où le terme de degré 2 change de signe au voisinage de (0,0). Ce n'est pas un extrémum local.

— En (0,0), on a:

$$g_a(h, k) = -a k^2 - a h^2 + o (h^2 + k^2),$$

donc, (0,0) est un maximum local si a > 0 et un minimum local si a < 0.

— En $\left(-\frac{a}{27}, \pm \frac{\sqrt{23} a}{81}\right)$, on a :

$$g_a \left(-\frac{a}{27} + h, \pm \frac{\sqrt{23} a}{81} + k \right) = -\frac{32 a^3}{19683}$$
$$-\frac{14 a h^2 \pm 6 \sqrt{23} a k h}{9} + o \left(h^2 + k^2 \right)$$

où le terme de degré 2 change de signe au voisinage de (0,0). Ce n'est pas un extrémum local.

► On pose :

$$\Gamma_a = \{(x, y) \in \mathbb{R}^2, \ g_a(x, y) = 0\}.$$

6. En quels points de Γ_a est-il impossible d'utiliser le théorème des fonctions implicites pour paramétrer Γ_a ?

Les points où il n'est pas possible d'utiliser le théorème des fonctions implicites vérifient :

$$g_a(x,y) = 0$$
, $\partial_1 g_a(x,y) = 0$ et $\partial_2 g_a(x,y) = 0$,

ce sont donc les candidats extrémums de g_a qui, de plus, appartiennent à Γ_a . On trouve donc le point :

(0,0).

7. En quels points de Γ_a est-il impossible d'utiliser le théorème des fonctions implicites pour paramétrer Γ_a sous la forme $y = \varphi(x)$?

Les points où il est impossible de paramétrer par x vérifient :

$$g_a(x,y) = 0 \text{ et } \partial_2 g_a(x,y) = 0,$$

soit

$$(5x^3 - 27x \times y^2) - a \times (x^2 + y^2) = 0$$

et

$$-54 x \times y - 2 a \times y = 0.$$

Ce qui nous donne deux points :

$$\left(\frac{a}{5},0\right)$$
 et, bien sûr $(0,0)$.

8. Utiliser le théorème des fonctions implicites pour paramétrer Γ_a , en fonction de x au voisinage du point :

$$\left(a, \frac{a}{\sqrt{7}}\right),$$

et donner un développement limité à l'ordre 1 de la fonction implicite trouvée.

- (a) Ce point est bien sur Γ_a , car $g_a(a, a/\sqrt{7}) = 0$.
- (b) On peut paramétrer par x car $\partial_2 g_a(a, a/\sqrt{7}) = -8\sqrt{7}a^2$.
- (c) Le théorème des fonctions implicites nous garantit l'existence d'un voisinage V de a et d'une fonction φ_a définie sur ce voisinage de classe \mathscr{C}^{∞} (car g_a est de classe \mathscr{C}^{∞}).
- (d) Le théorème de Taylor-Young nous garantit l'existence d'un développement limité à tout ordre de φ_a au voisinage de a. Pour le trouver, on pose :

$$\varphi_a(x) = b + c \times (x - a) + o_a((x - a)),$$

et on réinjecte dans l'expression:

$$\forall x \in V, \ g_a(x, \varphi_a(x)) = 0.$$

L'unicité du développement limité permet de conclure... Il vient :

$$\varphi_a(a+h) = \frac{a}{\sqrt{7}} + \frac{8}{7\sqrt{7}}h + o(h).$$

Exercice 6:

Soit F et g deux fonctions réelles définies sur un ouvert U de \mathbb{R}^2 et de classe \mathscr{C}^1 . On note

$$\Gamma = \{(x, y) \in U, \ F(x, y) = 0\}.$$

On cherche les extremums de la fonction g restreinte à l'ensemble Γ .

1. Soit $(a, b) \in \Gamma$ un extremum de g sur Γ . En utilisant le théorème des fonctions implicites, montrer que $\operatorname{grad}_{(a,b)} F$ et $\operatorname{grad}_{(a,b)} g$ sont colinéaires.

La fonction F est de classe \mathscr{C}^1 sur un ouvert U de \mathbb{R}^2 . Si $\operatorname{grad}_{(a,b)}F = 0$, alors $\operatorname{grad}_{(a,b)}F$ et $\operatorname{grad}_{(a,b)}g$ sont colinéaires. Sinon, l'une des dérivéees partielles de F est non nulle, par exemple $\partial_2 F(a,b) \neq 0$.

D'après le théorème des fonctions implicites, il existe donc un ouvert I autour de a et une unique fonction φ de classe \mathscr{C}^1 sur I tels que :

$$\begin{cases} \varphi(a) = b \\ \forall x \in I, & (x, \varphi(x)) \in \Gamma \\ \forall x \in I, & \partial_2 F(x, \varphi(x)) \neq 0 \end{cases}.$$

Au voisinage de (a,b), Γ est donc une courbe d'équation $y=\varphi(x)$. Puisque (a,b) est un extremum de g sur Γ , la fonction $x\in I\mapsto g(x,\varphi(x))$ admet un extremum en a. Or cette fonction est dérivable : sa dérivée s'annule donc en a. Ainsi :

$$\partial_1 g(a, \varphi(a)) + \varphi'(a) \times \partial_2 g(a, \varphi(a)) = 0.$$

Or pour tout $x \in I$, $\varphi'(x) = \frac{-\partial_1 F(x,\varphi(x))}{\partial_2 F(x,\varphi(x))}$. En réinjectant, et en multipliant par $\partial_2 F(a,b)$, on obtient :

$$\partial_1 g(a,b) \times \partial_2 F(a,b) - \partial_2 g(a,b) \times \partial_1 F(a,b) = 0,$$

ce qui prouve le résultat désiré.

2. Quel est le triangle rectangle d'aire maximale ayant un périmètre ℓ fixé (on admet que le maximum existe)? Un triangle rectangle est un triangle dont deux côtés sont orthogonaux.

Notons x et y les longueurs de deux petits côtés d'un tel triangle. Le troisième côté (appelé hypothénuse) a pour longueur $\sqrt{x^2 + y^2}$. Le périmètre du triangle vaut donc $x + y + \sqrt{x^2 + y^2}$ et son aire vaut $\frac{1}{2}xy$.

On définit les fonctions F et g sur $(\mathbb{R}_+^*)^2$ par $F(x,y) = x + y + \sqrt{x^2 + y^2} - \ell$ et $g(x,y) = \frac{1}{2}xy$. On peut reformuler la question ainsi : Trouver le maximum de la fonction F restreinte à l'ensemble Γ .

Les fonctions f et F sont de classe \mathscr{C}^1 sur $(\mathbb{R}_+^*)^2$ qui est un ouvert de \mathbb{R}^2 . On peut donc appliquer le résultat de la question 1. Comme on admet que le maximum existe, le maximum est atteint d'après la question 1 en un point $(a,b) \in (\mathbb{R}_+^*)^2$ tel que

$$\partial_1 F(a,b) \times \partial_2 f(a,b) - \partial_2 F(a,b) \times \partial_1 f(a,b) = 0,$$

c'est-à-dire

$$\frac{b}{2} \times \left(1 + \frac{b}{\sqrt{a^2 + b^2}}\right) - \frac{a}{2} \times \left(1 + \frac{a}{\sqrt{a^2 + b^2}}\right) = 0.$$

On en déduit a = b et donc finalement $a = b = \frac{\ell}{2 + \sqrt{2}} = \frac{2 - \sqrt{2}}{2} \times \ell$.

Finalement, le triangle cherché est isocèle (c'est-à-dire qu'il a deux côtés de même longueur).

Exercice 7:

On considère dans \mathbb{R}^2 la courbe Γ d'équation $x^3 - 2xy + 2y^2 = 1$.

1. Déterminer l'équation de la tangente à cette courbe au point (1,1).

Sur \mathbb{R}^2 , on définit la fonction f par $f(x,y) = x^3 - 2xy + 2y^2 - 1$. On a alors, pour tout $(y,y) \in \mathbb{R}^2$:

$$\partial_1 f(x, y) = 3x^2 - 2y ;$$

$$\partial_2 f(x, y) = -2x + 4y .$$

En particulier, $\operatorname{grad}_{(1,1)} f = (1,2) \neq (0,0)$. Comme on a aussi f(1,1) = 0, la courbe Γ admet donc une tangente \mathscr{T} en (1,1). En posant $M_0 = (1,1)$, on a pour $(x,y) \in \mathbb{R}^2$:

$$M = (x, y) \in \mathscr{T} \Leftrightarrow \langle \operatorname{grad}_{(1,1)} f, \overline{M_0 M} \rangle = 0$$

 $\Leftrightarrow 1 \times (x - 1) + 2 \times (y - 1) = 0$
 $\Leftrightarrow y = -\frac{1}{2}x + \frac{3}{2}.$

La tangente \mathscr{T} a donc pour équation $y = -\frac{1}{2}x + \frac{3}{2}$.

2. Déterminer la position de la courbe par rapport à cette tangente. On pourra appliquer la théorème des fonctions implicites et effectuer un développement limité en 1 de la fonction φ obtenue.

Comme $\partial_2 f(1,1) \neq 0$, on peut appliquer la théorème des fonctions implicites en (1,1). Il existe un intervalle ouvert I autour de 1 et $\varphi \in C^1(I,\mathbb{R})$ tels que Γ soit le graphe de φ au voisinage de (1,1). En particulier, $\forall x \in I, f(x,\varphi(x)) = 0$.

Comme f est de classe C^{∞} , φ est de classe C^{∞} . En dérivant la fonction $x \mapsto f(x, \phi(x))$ sur I, on obtient pour tout $x \in I$: $\partial_1 f(x, \phi(x)) + \phi'(x) \times \partial_1 f(x, \phi(x)) = 0$, c'est-à-dire:

$$\forall x \in I, 3x^2 - 2\phi(x) + \phi'(x) \times (-2x + 4\phi(x)) = 0.$$

En particulier, $\phi'(1) = -\frac{1}{2}$ (c'est en fait comme ça qu'on trouve l'équation de la tangente). En dérivant une deuxième fois, on obtient pour tout $x \in I$:

$$6x - 2\phi'(x) + \phi''(x) \times (-2x + 4\phi(x)) + \phi'(x) \times (-2 + 4\phi'(x)) = 0.$$

Pour x=1, cela fournit $\phi''(1)=-\frac{9}{2}$. Comme ϕ est de classe C^2 , la formule de Taylor-Young donne :

$$\phi(1+h) = 1 - \frac{1}{2}h - \frac{9}{4}h^2 + o(h^2).$$

On a donc

$$\phi(1+h)-(-\frac{1}{2}(h-1)+\frac{3}{2})=-\frac{9}{4}h^2+o(h^2).$$

La courbe est donc en-dessous de la tangente \mathcal{T} au voisinage de (1,1).

Exercice 8:

Étudier les extremums locaux sur \mathbb{R}^2 des fonctions suivantes. On pourra essayer de les visualiser avec des courbes de niveau.

1.
$$f(x,y) = (x-y)^3 - 6x \times y$$

2.
$$f(x,y) = x^3 + x \times y^2 - x^2 \times y - y^3$$

3.
$$f(x,y) = (x^2 - y^2) \times \exp(x^2 - y^2)$$
.

Exercice 9:

Soit la fonction définie sur \mathbb{R}^3 par

$$f(x,y,z) = x^3 + y^3 + z^3 - 2z \times (x+y) - 2x + y - 2z + 1.$$

1. Déterminer l'existence et l'unicité d'une fonction φ de classe \mathscr{C}^{∞} définie dans un voisinage V de (0,0) vérifiant :

$$\varphi(0,0) = 1 \text{ et } \forall (x,y) \in V, \ f(x,y,\varphi(x,y)) = 0.$$

Nous avons clairement que f(0,0,1) = 0. De plus, $\partial_3 f(0,0,1) = 1 \neq 0$. Comme f est \mathscr{C}^1 sur \mathbb{R}^3 , peut donc utiliser le théorème des fonctions implicites qui nous dit qu'il existe un voisinage ouvert V de (0,0) et une unique fonction φ définie sur V telle que

$$\varphi(0,0) = 1$$
 et $\forall (x,y) \in V, \ f(x,y,\varphi(x,y)) = 0.$

Notons que pour l'unicité de φ , on a besoin à priori de prouver que $\partial_3 f(x, y, \varphi(x, y)) \neq 0$ sur un voisinage de (0,0). Mais ceci est toujours vrai, quitte à réduire le voisinage considéré, par continuité de $\partial_3 f$ et de φ .

Comme f est en fait \mathscr{C}^{∞} sur \mathbb{R}^3 , la remarque 30. du cours nous donne que φ est \mathscr{C}^{∞} sur V. On peut même obtenir des formules pour les dérivées partielles de φ en dérivant l'expression $f(x,y,\varphi(x,y))=0...$

2. Donner un développement limité de φ à l'ordre 2 au voisinage de (0,0).

Le développement limité recherché est :

$$1 + 4h + k - 14h \times k - 40h^2 - k^2$$

Exercice 10:

Pour chacune des fonctions suivantes, les tracer sur leur ensemble de définition, puis répondre aux questions.

- 1. $f(x,y) = \frac{x^2 + y^2 1}{x^2 + y^2 + 1}$ pour $(x,y) \in [-2,2]^2$.
 - (a) Visualiser l'intersection de la courbe représentative de f et du plan d'équation z = 0.
 - (b) Peut-on appliquer le théorème des fonctions implicites au point (1,0)?
- 2. $g(x,y) = y^2 1 + \sin(\pi \times x)$ pour $(x,y) \in [-2,2]^2$.
 - (a) Visualiser la ligne de niveau z = 0.
 - (b) Vérifier que l'on peut appliquer le théorème des fonctions implicites.
 - (c) Superposer les courbes de φ est de f.
 - (d) Peut-on appliquer le théorème des fonctions implicites au point $(\frac{1}{2},0)$?
- 3. $h(x,y) = \operatorname{sinc}(x) \operatorname{sinc}(y)$ pour $(x,y) \in [-3\pi, 3\pi]$, où $\operatorname{sinc}(x) = \begin{cases} 1 & \text{si } x = 0; \\ \frac{\sin(x)}{x} & \text{sinon.} \end{cases}$
 - (a) Visualiser h et la ligne de niveau correspondant à z = 0.
 - (b) Vérifier que $h(\pi, 2\pi) = 0$.
 - (c) Vérifier que l'on peut appliquer le théorème des fonctions implicites.
 - (d) Effectuer un développement limité de φ à l'ordre 1 en π .
 - (e) Faire apparaître la tangente à φ au point $(\pi, 2\pi)$ sur le dessin.