Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL loannis Lestas

HANDOUT 7

"The design of feedback systems - an introduction"

7.1 Feedback system design, a loop-shaping approach

- This consists of choosing K(s) to shape L(s) = K(s)G(s) such that
 - 1. $|K(j\omega)G(j\omega)| \gg 1$ for frequency ranges where the benefits of feedback are sought (typically $\omega < \omega_c$) (in order to ensure that the sensitivity function $|S(j\omega)| \ll 1$ at those frequencies.)
- 2. $|K(j\omega)G(j\omega)| \ll 1$ at other frequencies (typically high frequencies $\omega \gg \omega_c$) (ensuring that the complementary sensitivity function $|T(j\omega)| \ll 1$ at those frequencies.)
- 3. $K(j\omega)G(j\omega)$ satisfies the Nyquist stability criterion, with adequate gain and phase margins. (ensuring that neither $S(j\omega)$ or $T(j\omega)$ have a large peak in the *crossover* region in between)

Recall that
$$S(s) = \frac{1}{1+L(s)} = T_{d \mapsto y}$$
 and $T_{r \mapsto e}$ and $T(s) = \frac{L(s)}{1+L(s)} = -T_{n \mapsto y}$ and $T_{r \mapsto y}$

$$\bar{d}(s)$$

$$\bar{v}(s) + \bar{v}(s) + \bar{v}(s)$$

$$\bar{d}(s)$$

$$\bar{v}(s) + \bar{v}(s)$$

$$\bar{v}(s)$$

To achieve this, we can use combinations of phase lag and phase lead compensators. Phase lag compensators are a generalized form of P+I action and phase lead compensators are a generalized form of P+D action.

Note: Example 2 of Handout 4 is a phase lead compensator and Example 3 is a PI controller (and so a special case of a phase lag compensator).

•
$$K(s) = k \frac{s + \alpha}{s + \beta}$$
 for $\beta < \alpha$ (< ω_c typically) $= \frac{k\alpha}{\beta} \frac{1 + s/\alpha}{1 + s/\beta}$

- Phase lag compensator (a generalized form of proportional+integral action, this becomes a PI controller for $\beta = 0$).

•
$$K(s) = k \frac{s + \alpha}{s + \beta}$$
 for $\beta < \alpha$ (< ω_c typically) $= \frac{k\alpha}{\beta} \frac{1 + s/\alpha}{1 + s/\beta}$

- Phase lag compensator (a generalized form of proportional+integral action, this becomes a PI controller for $\beta = 0$).

•
$$K(s) = k \frac{s + \alpha}{s + \beta}$$
 for $\beta < \alpha$ (< ω_c typically) $= \frac{k\alpha}{\beta} \frac{1 + s/\alpha}{1 + s/\beta}$

- Phase lag compensator (a generalized form of proportional+integral action, this becomes a PI controller for $\beta = 0$).

– improves low frequency gain (and so reduces steady-state errors) at the expense of introducing phase lag at frequencies between $\omega \approx \beta$ and $\omega \approx \alpha$ (although this is not an issue if $\alpha \ll \omega_c$).

– improves low frequency gain (and so reduces steady-state errors) at the expense of introducing phase lag at frequencies between $\omega \approx \beta$ and $\omega \approx \alpha$ (although this is not an issue if $\alpha \ll \omega_c$).

– improves low frequency gain (and so reduces steady-state errors) at the expense of introducing phase lag at frequencies between $\omega \approx \beta$ and $\omega \approx \alpha$ (although this is not an issue if $\alpha \ll \omega_{\mathcal{C}}$).

– improves low frequency gain (and so reduces steady-state errors) at the expense of introducing phase lag at frequencies between $\omega \approx \beta$ and $\omega \approx \alpha$ (although this is not an issue if $\alpha \ll \omega_c$).

•
$$K(s) = k \frac{s + \alpha}{s + \beta}$$
 for $\alpha < \beta$ (and $\alpha < \omega_c < \beta$ typically)

 Phase lead Compensator (a generalized form of proportional+derivative action).

•
$$K(s) = k \frac{s + \alpha}{s + \beta}$$
 for $\alpha < \beta$ (and $\alpha < \omega_c < \beta$ typically)

- Phase lead Compensator (a generalized form of proportional+derivative action).

•
$$K(s) = k \frac{s + \alpha}{s + \beta}$$
 for $\alpha < \beta$ (and $\alpha < \omega_c < \beta$ typically)

- Phase lead Compensator (a generalized form of proportional+derivative action).

•
$$K(s) = k \frac{s + \alpha}{s + \beta}$$
 for $\alpha < \beta$ (and $\alpha < \omega_c < \beta$ typically)

- Phase lead Compensator (a generalized form of proportional+derivative action).

• $K(s) = k \frac{s + \alpha}{s + \beta}$ for $\alpha < \beta$ (and $\alpha < \omega_c < \beta$ typically)

 Phase lead Compensator (a generalized form of proportional+derivative action).

Lead/lag controller design

Lead/lag controller design

(L(s) is plotted in each case)

What the course was about:

The keys to understanding the course are the following *two* relationships:

- The relationship between the time and frequency (Laplace) domains:
 - Steady state responses (to both constant and sinusoidal inputs).
 - Pole locations.
- The relationship between open and closed loop properties (i.e. predicting properties of the feedback system from its return ratio).
 - Nyquist stability criterion (predicting stability of the feedback system).
 - Gain and phase margins (predicting the robustness of that stability and, indirectly, closed loop pole locations).
 - Understanding the map $L(j\omega) \mapsto L(j\omega)/(1 + L(j\omega))$ and $L(j\omega)/(1 + L(j\omega))$ (predicting the *performance* of the feedback system which involves reading off $L(j\omega)$ and $1 + L(j\omega)$ from the Nyquist diagram).

What the course is *really* about

- Understanding complex systems as an interconnection of simpler subsystems.
- Relating the behaviour of the interconnected system to the behaviour of the subsystems.
- (although we'll only consider the feedback interconnection in detail)