

Modeling of Circulating Cancer Cells

By: John Quinn

College of Applied Sciences - Biomedical Engineering Advising Professor: Mahsa Dabagh

Background – Why Simulate Blood?

There are many Deadly Aliments that are Bloodborne in Origin:

Metastatic Cancer – Cancer Cells that break off larger tumors and travel in the blood flow

Vascular Disease – Such as Myocardial Infarctions Mainly Caused by build up in vessels

Together Cancer and Vascular Disease Cause ~1.3 Mil Deaths per year in the USA (according to cdc.gov)

Number of deaths for leading causes of death

- Heart disease: 647,457
- Cancer: 599,108
- Accidents (unintentional injuries): 169,936
- Chronic lower respiratory diseases: 160,201
- Stroke (cerebrovascular diseases): 146,383
- Diabetes: 83,564
- Influenza and pneumonia: 55,672

Alzheimer's disease: 121,404

- Nephritis, nephrotic syndrome, and nephrosis: 50,633
- Intentional self-harm (suicide): 47,173

Increase Pace of Development

- In Medicine Experiments can take days or weeks
- In Simulations this time can be cut down drastically

Avoids Human and Animal Testing

Simulation may replace the testing that is currently performed on animals and humans

It Is Becoming More Accessible

- As Personal Computing Power increases more and more complex systems become viable to simulate

Background – Blood

- Normally Blood is ~50% Red Blood Cells (RBC) by volume, most of the remaining volume is water.
- The RBC's contribute the majority of the mechanical properties to the blood as a whole
- Due to this Simulations of Blood Focus on RBC's
- RBC's are different from most cells:
 - Lack Nucleus; Free Floating; No Division
- RBC's are also similar in many ways:
 - Lipid Bilayer Outer Membrane; Cytoskeleton

Background – Cancer

- Cancer is a leading Cause of Mortality and Costly Healthcare worldwide
- According to (cancer.org) ~ 1.7 Mil New Cases per Year
- **Most Dangerous Behavior of Cancer:**
- Metastasis The process of Tumor Cells entering the bloodstream by separating from a Main Tumor
- So Dangerous because Cancer may spread around the body; Potentially to Vital Areas : Brain, Heart

Background – Simulation

- To Perform Simulation follow these Simple Steps:
- 1. Create Simulation Specify Inputs:
 - Simulation Parameters
 - Initial Geometry
 - Data Output Commands
- 2. Run Simulation –

"Environment" setup around the simulation needs to be set correctly

- 3. Analyze Results Raw Data is Often Hard to Read
 - Use Analysis tools to create:
 - Graphs
 - Tables
 - Images
 - Videos

Simulation Software: LAMMPS

- (Large-scale Atomic/Molecular Massively Parallel Simulator)
- A Good Choice for Molecular Dynamics (MD) Code
- Open Source ; Well Documented
- Large User Support Base
- Simulates down to Atomic level
- Growing Biomolecules Support

Important LAMMPS Input Parameters

Pair_style – Sets how different particles interact with one another; Governed by Potentials

- Refer to Graph above:
 - When particles close HIGH REPULSION
 - When particles far apart LOW ATTRACTION

Velocity – Sets Velocity of Particles

- Can be set Directionally or Randomly

Neighbor – Sets the area around each particle in which other particle interactions accounted for

Dump – Writes data from the simulation to a .dump file

- Dump files can be converted to many forms
 - Images
 - Videos
 - Graphs, etc.

Software Tools

- Python Open Source; Programming Language
- Used to write Lammps.data file

- **Ubuntu Open Source; Shell Operating System**
- Used to Edit, Compile and Run LAMMPS

- Ovito Open Source; Visualization Tool
- Used to Produce Movies and Images from data files

Example Simulations

- JQ-Random An Example I made for this Poster
- 1000 Water Atoms;
- Randomly Assigned Velocity and Positions

Cell Simulations

- Currently I am working on Producing a more Refined model of RBC and then to use this to make a Cancer Cell model
- Made up of 3 parts:
- **Lipid Bi-Layer Membrane**
- Spectrin Cytoskeletal Network
- Water Molecules Within and outside

- Cancer Cell Model is modeled by taking the RBC Model and altering it slightly
 - Because Cancer cells have similar properties
- Once these are both built the "Detection" Simulation will be made to sort out the Cancer and RBC's
- This will function by a couple possible methods
- Micro Fluidics Channel
- Induction of Mechanical Stress
- Both of these methods can be verified by using Published Experimental Data

References and Acknowledgments

References and all Project Files Can be found at: https://github.com/jqstudy2019/lammpsfiles

Special Thanks to Advising Professor Masha Dabagh

Thanks for Looking! If you have any questions:

Email: Quinnjc@uwm.edu