

Instituto Metrópole Digital Universidade Federal do Rio Grande do Norte

Campus de Natal

Lista de exercícios: Vetores no plano e no espaço

Prof. Dr. Irineu Lopes Palhares Junior

Lista de exercícios

Sumário

1	Soma de vetores e multiplicação por escalar	2
2	Norma e produto escalar; Projeção ortogonal	11
3	Produto vetorial	19
4	Produto misto	23

1	Soma de vetores e multiplicação por escalar			

4) Seja o triângulo de vértices A(4, -1, -2), B(2, 5, -6) e C(1, -1, -2). Calcular o comprimento da mediana do triângulo relativa ao lado AB.

Solução

A mediana em questão, de acordo com a Figura 1.64, é o segmento que tem como extremidades o ponto médio M de AB e o vértice oposto C. Então, o comprimento da mediana é o módulo do vetor \overrightarrow{MC} .

$$M(\frac{4+2}{2}, \frac{-1+5}{2}, \frac{-2-6}{2})$$
 ou $M(3, 2, -4)$

e

$$\overrightarrow{MC} = C - M = (1, -1, -2) - (3, 2, -4) = (-2, -3, 2)$$

Figura 1.64

Problemas Propostos

- 1) Dados os vetores $\vec{u} = 2\vec{i} 3\vec{j}$, $\vec{v} = \vec{i} \vec{j}$ e $\vec{w} = -2\vec{i} + \vec{j}$, determinar
 - a) $2\vec{u} \vec{v}$

c) $\frac{1}{2}\vec{u} - 2\vec{v} - \vec{w}$

b) $\vec{v} - \vec{u} + 2\vec{w}$

- d) $3\vec{u} \frac{1}{2}\vec{v} \frac{1}{2}\vec{w}$
- 2) Dados os vetores $\vec{u} = (3, -1)$ e $\vec{v} = (-1, 2)$, determinar o vetor \vec{x} tal que
 - a) $4(\vec{u} \vec{v}) + \frac{1}{3}\vec{x} = 2\vec{u} \vec{x}$
 - b) $3\vec{x} (2\vec{v} \vec{u}) = 2(4\vec{x} 3\vec{u})$
- 3) Dados os pontos A(-1, 3), B(2, 5), C(3, -1) e O(0, 0), calcular
 - a) $\overrightarrow{OA} \overrightarrow{AB}$
- b) \overrightarrow{OC} \overrightarrow{BC}
- c) $3\overline{BA} 4\overline{CB}$
- 4) Dados os vetores $\vec{u} = (2, -4)$, $\vec{v} = (-5, 1)$ e $\vec{w} = (-12, 6)$, determinar a_1 e a_2 tais que $\vec{w} = \vec{u} + \vec{u} + \vec{a}_2 \vec{v}$
- 5) Dados os pontos A(3, -4) e B(-1, 1) e o vetor $\vec{v} = (-2, 3)$, calcular
 - a) (B A) + 2v

c) B + 2(B - A)

b) $(A - B) - \vec{v}$

- d) $3\vec{v} 2(A B)$
- 6) Sejam os pontos A(-5, 1) e B(1, 3). Determinar o vetor $\vec{v} = (a, b)$ tal que
 - a) $B = A + 2\vec{v}$

b) $A = B + 3\vec{v}$

Construir o gráfico correspondente a cada situação.

,,	a) A(-1, 3) e B(3, 5) c) A(4, 0) e B(0, -2)
	b) A(-1, 4) e B(4, 1) d) A(3, 1) e B(3, 4)
8)	Qual o ponto inicial do segmento orientado que representa o vetor $\vec{v} = (-1, 3)$, saben-
0)	do que sua extremidade está em (3, 1)? Representar graficamente este segmento.
9)	No mesmo sistema cartesiano xOy, representar
	a) os vetores $\vec{u} = (2, -1)$ e $\vec{v} = (-2, 3)$, com origem nos pontos A(1, 4) e B(1, -4), respectivamente;
	b) os vetores posição de u e v.
10)	Sejam os pontos P(2, 3), Q(4, 2) e R(3, 5).
	a) Representar em um mesmo gráfico os vetores posição de u, v e w de modo que
	$Q = P + \overrightarrow{u}, R = Q + \overrightarrow{v} e P = R + \overrightarrow{w}.$
	b) Determinar $\vec{u} + \vec{v} + \vec{w}$.
11)	Encontrar o vértice oposto a B, no paralelogramo ABCD, para
	a) A(-3, -1), B(4, 2) e C(5, 5)
	b) A(5, 1), B(7, 3) e C(3, 4)
12)	Sabendo que A(1, -1), B(5, 1) e C(6, 4) são vértices de um paralelogramo, determinar
10)	o quarto vértice de cada um dos três paralelogramos possíveis de serem formados.
13)	Dados os pontos A(-3, 2) e B(5, -2), determinar os pontos M e N pertencentes ao
	segmento AB tais que $\overrightarrow{AM} = \frac{1}{2} \overrightarrow{AB} e \overrightarrow{AN} = \frac{2}{3} \overrightarrow{AB}$. Construir o gráfico, marcando
	os pontos A, B, M, N e P, devendo P ser tal que $\overrightarrow{AP} = \frac{3}{2} \overrightarrow{AB}$.
14)	Sendo A(-2, 3) e B(6, -3) extremidades de um segmento, determinar
	a) os pontos C, D e E que dividem o segmento AB em quatro partes de mesmo comprimento;
	b) os pontos F e G que dividem o segmento de AB em três partes de mesmo comprimento.
15)	O ponto P pertence ao segmento de extremos $A(x_1, y_1)$ e $B(x_2, y_2)$ e a distância
	dele ao ponto A é a terça parte da distância dele ao ponto B. Expressar as coordenadas de P em função das coordenadas de A e B.
16)	
10)	Dados os vetores $\overrightarrow{u} = (1, -1)$, $\overrightarrow{v} = (-3, 4)$ e $\overrightarrow{w} = (8, -6)$, calcular
	a) $ \vec{u} $ c) $ \vec{w} $ e) $ \vec{2}\vec{u} - \vec{w} $ g) $\frac{\vec{v}}{ \vec{v} }$

d) $|\vec{u} + \vec{v}|$ f) $|\vec{w} - 3\vec{u}|$

b) $\vec{l} \vec{v} \vec{l}$

 $h) \left| \frac{\vec{u}}{|\vec{u}|} \right|$

- 17) Calcular os valores de a para que o vetor $\vec{u} = (a, -2)$ tenha módulo 4.
- 18) Calcular os valores de a para que o vetor $\vec{u} = (a, \frac{1}{2})$ seja unitário.
- 19) Provar que os pontos A(-2, -1), B(2, 2), C(-1, 6) e D(-5, 3), nesta ordem, são vértices de um quadrado.
- 20) Encontrar um ponto P de eixo Ox de modo que a sua distância ao ponto A(2, -3) seja igual a 5.
- 21) Dados os pontos A(-4, 3) e B(2, 1), encontrar o ponto P nos casos
 - a) P pertence ao eixo Oy e é equidistante de A e B;
 - b) P é equidistante de A e B e sua ordenada é o dobro da abscissa;
 - c) P pertence à mediatriz do segmento de extremos A e B.
- 22) Encontrar o vetor unitário que tenha (I) o mesmo sentido de v e (II) sentido contrário a v, nos casos:
 - a) $\vec{v} = -\vec{i} + \vec{j}$

b) $\vec{v} = 3 \vec{i} - \vec{j}$

c) $\vec{v} = (1, \sqrt{3})$

- d) $\vec{v} = (0, 4)$
- 23) Dado o vetor $\vec{v} = (1, -3)$, determinar o vetor paralelo a \vec{v} que tenha:
 - a) sentido contrário ao de \vec{v} e duas vezes o módulo de \vec{v} ;
 - b) o mesmo sentido de \vec{v} e módulo 2;
 - c) sentido contrário ao de v e módulo 4.
- 24) Traçar no mesmo sistema de eixos os retângulos de vértices
 - a) A(0, 0, 1), B(0, 0, 2), C(4, 0, 2) e D(4, 0, 1)
 - b) A(2, 1, 0), B(2, 2, 0), C(0, 2, 2) e D(0, 1, 2)
- 25) Traçar o retângulo formado pelos pontos (x, y, z) tal que
 - a) $x = 0, 1 \le y \le 4$ e $0 \le z \le 4$
 - b) $-1 \le x \le 2$, $0 \le y \le 3$ e z = 3
- 26) Construir o cubo constituído dos pontos (x, y, z), de modo que
 - a) $-4 \le x \le -2$, $1 \le y \le 3$ e $0 \le z \le 2$
 - b) $-2 \le x \le 0$, $2 \le y \le 4$ e $-4 \le z \le -2$
- 27) Construir o paralelepípedo retângulo formado pelos pontos (x,y,z), de modo que $1 \le x \le 3$, $3 \le y \le 5$ e $0 \le z \le 4$. Quais as coordenadas dos oito vértices do paralelepípedo?
- 28) Calcular a distância do ponto A(3, 4, -2)
 - a) ao plano xy;

d) ao eixo dos x;

b) ao plano xz;

e) ao eixo dos y;

c) ao plano yz;

f) ao eixo dos z.

Figura 1.65

30) O paralelepípedo retângulo de dimensões 3, 4 e 5 está referido ao sistema Oxyz conforme a Figura 1.66. Considerando um segundo sistema chamado de O'x'y'z', onde Ox//O'x', Oy//O'y' e Oz//O'z', e sendo O' um dos vértices do paralelepípedo de acordo com a figura, determinar as coordenadas dos pontos O, A, B, C, D e O' em relação aos sistemas dados.

29) A Figura 1.65 apresenta um paralelepípedo retângulo de arestas paralelas aos eixos coordenados e de medidas 2, 1 e
3. Determinar as coordenadas dos vértices deste sólido, sabendo que A(2,-1,2).

Figura 1.66

- 31) Dados os pontos A(2, -2, 3) e B(1, 1, 5) e o vetor $\vec{v} = (1, 3, -4)$, calcular:
 - a) $A + 3\vec{v}$

c) B + 2(B - A)

b) $(A - B) - \vec{v}$

- d) $2\vec{v} 3(B A)$
- 32) Dados os pontos A(3, -4, -2) e B(-2, 1, 0), determinar o ponto N pertencente ao segmento AB tal que $\overrightarrow{AN} = \frac{2}{5}\overrightarrow{AB}$.
- 33) Dados os pontos A(1, -2, 3), B(2, 1, -4) e C(-1, -3, 1), determinar o ponto D tal que $\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{0}$.

- 34) Sabendo que $3\vec{u} 4\vec{v} = 2\vec{w}$, determinar a, b, e c, sendo $\vec{u} = (2, -1, c)$, $\vec{v} = (a, b 2, 3)$ e $\vec{w} = (4, -1, 0)$.
- 35) Dados os vetores u = (2, 3, -1), v = (1, -1, 1) e w = (-3, 4, 0),
 - a) determinar o vetor \vec{x} de modo que $3\vec{u} \vec{v} + \vec{x} = 4\vec{x} + 2\vec{w}$;
 - b) encontrar os números a_1 , a_2 e a_3 tais que a_1 \overrightarrow{u} + a_2 \overrightarrow{v} + a_3 \overrightarrow{w} = (-2, 13, -5).
- 36) Representar no mesmo sistema Oxyz o vetor $\vec{v} = (1, -1, 3)$ com origem nos pontos O(0, 0, 0), A(-3, -4, 0), B(-2, 4, 2), C(3, 0, -4) e D(3, 4, -2).
- 37) Sendo A(2, -5, 3) e B(7, 3, -1) vértices consecutivos de um paralelogramo ABCD e M(4, -3, 3) o ponto de interseção das diagonais, determinar os vértices C e D.
- 38) Determinar os três vértices de um triângulo, sabendo que os pontos médios de seus lados são M(5, 0, -2), N(3, 1, -3) e P(4, 2, 1).
- 39) Dados os pontos A(1, -1, 3) e B(3, 1, 5), até que ponto se deve prolongar o segmento AB, no sentido de A para B, para que seu comprimento quadruplique de valor?
- 40) Sendo A(-2, 1, 3) e B(6, -7, 1) extremidades de um segmento, determinar
 - a) os pontos C, D e E, nesta ordem, que dividem o segmento AB em quatro partes de mesmo comprimento;
 - b) os pontos F e G, nesta ordem, que dividem o segmento AB em três partes de mesmo comprimento.
- 41) O ponto A é um dos vértices de um paralelepípedo e os três vértices adjacentes são B, C e D. Sendo AA' uma diagonal do paralelepípedo, determinar o ponto A' nos seguintes casos:
 - a) A(3, 5, 0), B(1, 5, 0), C(3, 5, 4) e D(3, 2, 0)
 - b) A(-1, 2, 1), B(3, -1, 2), C(4, 1, -3) e D(0, -3, -1)
 - c) A(-1, 2, 3), B(2, -1, 0), C(3, 1, 4) e D(-2, 0, 5)
- 42) Apresentar o vetor genérico que satisfaz a condição:
 - a) paralelo ao eixo dos x;
- e) ortogonal ao eixo dos y;
- b) representado no eixo dos z;
- f) ortogonal ao eixo dos z;
- c) paralelo ao plano xy;
- g) ortogonal ao plano xy;
- d) paralelo ao plano yz;
- h) ortogonal ao plano xz.
- 43) Quais dos seguintes vetores $\vec{u} = (4, -6, 2), \vec{v} = (-6, 9, -3), \vec{w} = (14, -21, 9)$ e $\vec{t} = (10, -15, 5)$ são paralelos?
- Dado o vetor $\overrightarrow{w} = (3, 2, 5)$, determinar a e b de modo que os vetores $\overrightarrow{u} = (3, 2, -1)$ e $\overrightarrow{v} = (a, 6, b) + 2 \overrightarrow{w}$ sejam paralelos.
- 45) A reta que passa pelos pontos A(-2, 5, 1) e B(1, 3, 0) é paralela à reta determinada por C(3, -1, -1) e D(0, m, n). Determinar o ponto D.
- 46) Verificar se são colineares os pontos:
 - a) A(-1, -5, 0), B(2, 1, 3) e C(-2, -7, -1)

- b) A(2, 1, -1), B(3, -1, 0) e C(1, 0, 4)
- c) A(-1, 4, -3), B(2, 1, 3) e C(4, -1, 7)
- 47) Sabendo que o ponto P(m, 4, n) pertence à reta que passa pelos pontos A(-1, -2, 3) e B(2, 1, -5), calcular m e n.
- 48) Encontrar o vértice oposto a B, no paralelogramo ABCD, para
 - a) A(-1, 0, 3), B(1, 1, 2) e C(3, -2, 5)
 - b) A(4, 0, 1), B(5, 1, 3) e C(3, 2, 5)
- 49) Verificar se são unitários os seguintes vetores:

$$\vec{u} = (1, 1, 1) \quad e \quad \vec{v} = (\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}})$$

- 50) Determinar o valor de n para que o vetor $\vec{v} = (n, -\frac{1}{2}, \frac{3}{4})$ seja unitário.
- 51) Determinar o valor de a para que u = (a, -2a, 2a) seja um versor.
- 52) Dados os pontos A(1, 0, -1), B(4, 2, 1) e C(1, 2, 0), determinar o valor de m para que $|\vec{v}| = 7$, sendo $\vec{v} = m\overrightarrow{AC} + \overrightarrow{BC}$.
- 53) Determinar o valor de y para que seja equilátero o triângulo de vértices A(4, y, 4), B(10, y, -2) e C(2, 0, -4).
- 54) Obter o ponto P do eixo das abscissas equidistante dos pontos A(3, -1, 4) eB(1, -2, -3).
- 55) Obter um ponto P do eixo das cotas cuja distância ao ponto A(-1, 2, -2) seja igual a 3.
- 56) Dado o vetor $\vec{v} = (2, -1, -3)$, determinar o vetor paralelo a \vec{v} que tenha
 - a) sentido contrário ao de v e três vezes o módulo de v;
 - b) o mesmo sentido de v e módulo 4;
 - c) sentido contrário ao de v e módulo 5.

Respostas de Problemas Propostos

- 1) a) (3, -5)
- b) (-5, 4)
- c) $(1, -\frac{1}{2})$ d) $(\frac{13}{2}, -9)$
- 2) a) $\left(-\frac{15}{2}, \frac{15}{2}\right)$ b) $\left(\frac{23}{5}, -\frac{11}{5}\right)$
 - b) (2, 5)
- c) (-5, -30)

- 3) a) (-4, 1) 1 4) $a_1 = -1$ e $a_2 = 2$
- 5) a) (-8, 11) b) (6, -8)

3) a) (-4, 1)

- c) (-9, 11)
- d) (-14, 19)

- 6) $\vec{a} \cdot \vec{v} = (3, 1)$ b) $\vec{v} = (-2, -\frac{2}{3})$
- 8) (4, -2)
- 10) b) $\vec{0}$
- 11) a) D(-2, 2)
- b) D(1, 2)

13)
$$M(1, 0), N(\frac{7}{3}, -\frac{2}{3}), P(9, -4)$$

14) a)
$$C(0, \frac{3}{2}), D(2, 0), E(4, -\frac{3}{2})$$

b)
$$F(\frac{2}{3}, 1), G(\frac{10}{3}, -1)$$

15)
$$P(\frac{3}{4}x_1 + \frac{x_2}{4}, \frac{3}{4}y_1 + \frac{y_2}{4})$$

16) a)
$$\sqrt{2}$$

e)
$$2\sqrt{13}$$

g)
$$(-\frac{3}{5}, \frac{4}{5})$$

d)
$$\sqrt{13}$$

f)
$$\sqrt{34}$$

17)
$$\pm 2\sqrt{3}$$

18)
$$\pm \frac{\sqrt{3}}{2}$$

c)
$$P(x, 3x + 5), x \in \mathbb{R}$$

22) a)
$$\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) e\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$$
 b) $\left(\frac{3}{\sqrt{10}}, -\frac{1}{\sqrt{10}}\right) e\left(-\frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}}\right)$

b)
$$(\frac{3}{\sqrt{10}}, -\frac{1}{\sqrt{10}})$$
 e $(-\frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}})$

c)
$$(\frac{1}{2}, \frac{\sqrt{3}}{2}) e(-\frac{1}{2}, -\frac{\sqrt{3}}{2})$$

b)
$$(\frac{2}{\sqrt{10}}, -\frac{6}{\sqrt{10}})$$
 c) $(-\frac{4}{\sqrt{10}}, \frac{12}{\sqrt{10}})$

27) Vértices da base inferior: (1, 3, 0), (1, 5, 0), (3, 3, 0) e (3, 5, 0) Vértices da base superior: (1, 3, 4), (1, 5, 4), (3, 3, 4) e (3, 5, 4)

- 28) a) 2
- c) 3
- e) $\sqrt{13}$

- b) 4
- d) $2\sqrt{5}$
- f) 5

30) em relação a Oxyz: O(0, 0, 0), A(3, 0, 0), B(3, 4, 0), C(0, 4, 5), D(3, 0, 5) e O(3, 4, 5) em relação a O'x'y'z': O(-3, -4, -5), A(0, -4, -5), B(0, 0, -5), C(-3, 0, 0), D(0, -4, 0) e O'(0, 0, 0)

- 31) a) (5, 7, -9)

- b) (0, -6, 2) c) (-1, 7, 9) d) (5, -3, -14)

32) N(1, -2,
$$-\frac{6}{5}$$
)

34)
$$a = -\frac{1}{2}$$
, $b = \frac{7}{4}$, $c = 4$

35) a)
$$\vec{x} = (\frac{11}{3}, \frac{2}{3}, -\frac{4}{3})$$

b)
$$a_1 = 2$$
, $a_2 = -3$, $a_3 = 1$

40) a)
$$(0, -1, \frac{5}{2}), (2, -3, 2), (4, -5, \frac{3}{2})$$

b)
$$(\frac{2}{3}, -\frac{5}{3}, \frac{7}{3}), (\frac{10}{3}, -\frac{13}{3}, \frac{5}{3})$$

c)
$$(5, -4, 3)$$

42) a)
$$(x, 0, 0)$$

c)
$$(x, y, 0)$$

b) (0, 0, z) d) (0, y, z)43) são paralelos: \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{t}

44)
$$a = 9 e b = -15$$

47)
$$m = 5 e n = -13$$

50)
$$\pm \frac{\sqrt{3}}{4}$$

51)
$$\pm \frac{1}{3}$$

52) 3 ou
$$-\frac{13}{5}$$

53)
$$\pm 2$$

b)
$$(\frac{8}{\sqrt{14}}, -\frac{4}{\sqrt{14}}, -\frac{12}{\sqrt{14}})$$

b)
$$(\frac{8}{\sqrt{14}}, -\frac{4}{\sqrt{14}}, -\frac{12}{\sqrt{14}})$$
 c) $(-\frac{10}{\sqrt{14}}, \frac{5}{\sqrt{14}}, \frac{15}{\sqrt{14}})$

2	Norma e produto escalar; Projeção ortogonal				

Solução

Figura 2.15

A Força \vec{F} (Figura 2.15) é decomposta em $\vec{F} = 8\vec{i} + 6\vec{j}$, onde $8 = |\vec{F}| \cos \theta$, $6 = |\vec{F}| \sin \theta$ e $\vec{d} = 20\vec{i} + 0\vec{j}$.

O trabalho realizado pela força \vec{F} pode ser calculado por

W =
$$\vec{f}$$
 · \vec{d} (produto escalar)
W = $(8\vec{i} + 6\vec{j})$ · $(20\vec{i} + 0\vec{j})$
W = 160 J

ou por

$$W = |\vec{F}| |\vec{d}| \cos \theta$$

$$W = (10N)(20m)(\cos 36.9^{\circ})$$

$$W = 160 J$$

Problemas Propostos

1) Dados os vetores $\vec{u} = (2, -3, -1) e \vec{v} = (1, -1, 4)$, calcular

a)
$$2\vec{u} \cdot (-\vec{v})$$

c)
$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v})$$

b)
$$(\vec{u} + 3\vec{v}) \cdot (\vec{v} - 2\vec{u})$$

d)
$$(\vec{u} + \vec{v}) \cdot (\vec{v} - \vec{u})$$

- 2) Sejam os vetores $\vec{u} = (2, a, -1)$, $\vec{v} = (3, 1, -2)$ e $\vec{w} = (2a 1, -2, 4)$. Determinar \vec{a} de modo que \vec{u} . $\vec{v} = (\vec{u} + \vec{v})$. $(\vec{v} + \vec{w})$.
- 3) Dados os pontos A (4, 0, -1), B (2, -2, 1) e C (1, 3, 2) e os vetores $\vec{u} = (2, 1, 1)$ e $\vec{v} = (-1, -2, 3)$, obter o vetor \vec{x} tal que

a)
$$3\vec{x} + 2\vec{v} = \vec{x} + (\overrightarrow{AB} \cdot \vec{u})\vec{v}$$

b)
$$(\overrightarrow{BC} \cdot \overrightarrow{v}) \overrightarrow{x} = (\overrightarrow{u} \cdot \overrightarrow{v}) \overrightarrow{v} - 3\overrightarrow{x}$$
.

- 4) Determinar o vetor \vec{v} , paralelo ao vetor $\vec{u} = (2, -1, 3)$, tal que $\vec{v} \cdot \vec{u} = -42$.
- 5) Determinar o vetor \vec{v} , sabendo que $|\vec{v}| = 5$, \vec{v} é ortogonal ao eixo Ox, $\vec{v} \cdot \vec{w} = 6$ e $\vec{w} = \vec{i} + 2\vec{j}$.
- 6) Determinar o vetor \vec{v} , ortogonal ao eixo Oy, $\vec{v} \cdot \vec{v}_1 = 8$ e $\vec{v} \cdot \vec{v}_2 = -3$, sendo $\vec{v}_1 = (3, 1, -2)$ e $\vec{v}_2 = (-1, 1, 1)$.
- 7) Dados os vetores $\vec{u} = (1, 2, -3)$, $\vec{v} = (2, 0, -1)$ e $\vec{w} = (3, 1, 0)$, determinar o vetor \vec{x} tal que \vec{x} . $\vec{u} = -16$, \vec{x} . $\vec{v} = 0$ e \vec{x} . $\vec{w} = 3$.
- 8) Sabendo que $|\vec{u}| = 2$, $|\vec{v}| = 3$ e \vec{u} . $\vec{v} = -1$, calcular

a)
$$(\vec{u} - 3\vec{v}) \cdot \vec{u}$$

c)
$$(\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{v} - 4\overrightarrow{u})$$

b)
$$(2\vec{v} - \vec{u}) \cdot (2\vec{v})$$

d)
$$(3\vec{u} + 4\vec{v}) \cdot (-2\vec{u} - 5\vec{v})$$

D

- 9) Calcular $\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w} + \overrightarrow{v} \cdot \overrightarrow{w}$, sabendo que $\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} = \overrightarrow{0}$, $|\overrightarrow{u}| = 2$, $|\overrightarrow{v}| = 3$ e $|\overrightarrow{w}| = 5$.
- 10) Os pontos A, B e C são vértices de um triângulo equilátero cujo lado mede 20 cm. Calcular AB . AC e AB . CA.
- 11) O quadrilátero ABCD (Figura 2.16) é um losango de lado 2. Calcular:
 - a) \overrightarrow{AC} . \overrightarrow{BD}

d) AB.BC

b) $\overrightarrow{AB} \cdot \overrightarrow{AD}$

e) \overrightarrow{AB} .DC

c) BA.BC

- f) \overrightarrow{BC} . DA
- 12) Calcular $|\vec{u} + \vec{v}|$, $|\vec{u} \vec{v}|$ e $(\vec{u} + \vec{v})$. $(\vec{u} \vec{v})$, sabendo que $|\vec{u}| = 4$, $|\vec{v}| = 3$ e o ângulo entre \vec{u} e \vec{v} é de 60°.

- a) $|(2\vec{u} \vec{v}) \cdot (\vec{u} 2\vec{v})|$ b) $|\vec{u} 2\vec{v}|$
- 14) Verificar para os vetores $\vec{u} = (4, -1, 2)$ e $\vec{v} = (-3, 2, -2)$ as desigualdades
 - a) $|\vec{u} \cdot \vec{v}| \le |\vec{u}| |\vec{v}|$ (Designal dade de Schwarz)
 - b) $|\vec{u} + \vec{v}| \le |\vec{u}| + |\vec{v}|$ (Designal dade Triangular)
- 15) Qual o valor de α para que os vetores $\vec{a} = \alpha \vec{i} + 2 \vec{j} 4 \vec{k}$ e $\vec{b} = 2 \vec{i} + (1 2\alpha) \vec{j} + 3 \vec{k}$ sejam ortogonais?
- 16) Dados os vetores $\vec{a} = (2, 1, \alpha)$, $\vec{b} = (\alpha + 2, -5, 2)$ e $\vec{c} = (2\alpha, 8, \alpha)$, determinar o valor de α para que o vetor $\vec{a} + \vec{b}$ seja ortogonal ao vetor $\vec{c} - \vec{a}$.
- 17) Dados os pontos A(-1, 0, 5), B(2, -1, 4) e C(1, 1, 1), determinar x tal que \overline{AC} e \overline{BP} sejam ortogonais, sendo P (x, 0, x - 3).
- 18) Provar que os pontos A(-1, 2, 3), B(-3, 6, 0) e C(-4, 7, 2) são vértices de um triângulo retângulo.
- 19) Dados os pontos A(m, 1, 0), B(m-1, 2m, 2) e C(1, 3, -1), determinar m de modo que o triângulo ABC seja retângulo em A. Calcular a área do triângulo.
- 20) Encontrar os vetores unitários paralelos ao plano yOz e que são ortogonais ao vetor v = (4, 1 - 2).
- 21) Determinar o vetor \vec{u} tal que $|\vec{u}| = 2$, o ângulo entre \vec{u} e $\vec{v} = (1,-1,0)$ é 45° e \vec{u} é ortogonal a w = (1, 1, 0).

- 22) Seja o vetor $\vec{v} = (2, -1, 1)$. Obter
 - a) um vetor ortogonal a v;
 - b) um vetor unitário ortogonal a v;
 - c) um vetor de módulo 4 ortogonal a v.
- 23) Sendo $\vec{a} \perp \vec{b}$, $|\vec{a}| = 6 e |\vec{b}| = 8$, calcular $|\vec{a} + \vec{b}| e |\vec{a} \vec{b}|$.
- 24) Demonstrar que sendo u, v e w vetores dois a dois ortogonais, então
 - a) $|\vec{u} + \vec{v}|^2 = |\vec{u}|^2 + |\vec{v}|^2$.
 - b) $|\vec{u} + \vec{v} + \vec{w}|^2 = |\vec{u}|^2 + |\vec{v}|^2 + |\vec{w}|^2$.
- 25) Determinar o ângulo entre os vetores
 - a) $\vec{u} = (2, -1, -1) e \vec{v} = (-1, -1, 2).$
 - b) $\vec{u} = (1, -2, 1) e \vec{v} = (-1, 1, 0).$
- 26) Seja o triângulo de vértices A(3, 4, 4), B(2, -3, 4) e C(6, 0, 4). Determinar o ângulo interno ao vértice B. Qual o ângulo externo ao vértice B?
- 27) Calcular os ângulos internos do triângulo de vértices A(2, 1, 3), B(1, 0, -1) e C(-1, 2, 1).
- 28) Calcular o valor de m de modo que seja 120° o ângulo entre os vetores $\vec{u} = (1, -2, 1)$ e $\vec{v} = (-2, 1, m + 1)$.
- 29) Calcular *n* para que seja de 30° o ângulo entre os vetores $\vec{v} = (-3, 1, n)$ e \vec{k} .
- 30) Se $|\vec{u}| = 4$, $|\vec{v}| = 2$ e 120° o ângulo entre os vetores \vec{u} e \vec{v} , determinar o ângulo entre $\vec{u} + \vec{v}$ e $\vec{u} \vec{v}$ e construir uma figura correspondente a estes dados.
- 31) Seja o cubo de aresta a representado na Figura 2.17.

Determinar:

a) $\overrightarrow{OA} \cdot \overrightarrow{OC}$

d) | OB | e | OG |

b) $\overrightarrow{OA} \cdot \overrightarrow{OD}$

e) $\overrightarrow{EG} \cdot \overrightarrow{CG}$

c) $\overrightarrow{OE} \cdot \overrightarrow{OB}$

- f) $(\overrightarrow{ED} \cdot \overrightarrow{AB}) \overrightarrow{OG}$
- g) o ângulo agudo entre a diagonal do cubo e uma aresta;
- h) o ângulo agudo formado por duas diagonais do cubo.
- 32) Calcular os ângulos diretores do vetor $\vec{v} = (6, -2, 3)$.
- 33) Os ângulos diretores de um vetor a são 45°, 60° e 120° |a| = 2. Determinar |a|.

Figura 2.17

- 34) Os ângulos diretores de um vetor podem ser de 45°, 60° e 90°? Justificar.
- 35) Mostrar que existe um vetor cujos ângulos diretores são 30°, 90° e 60°, respectivamente, e determinar aquele que tem módulo 10.

- 36) Determinar um vetor unitário ortogonal ao eixo Oz e que forme 60° com o vetor \vec{i} .
- 37) Determinar o vetor \vec{a} de módulo 5, sabendo que é ortogonal ao eixo Oy e ao vetor $\vec{v} = \vec{i} 2\vec{k}$, e forma ângulo obtuso com o vetor \vec{i} .
- 38) Determinar o vetor v nos casos
 - a) \vec{v} é ortogonal ao eixo Oz, $|\vec{v}| = 8$, forma ângulo de 30° com o vetor \vec{i} e ângulo obtuso com \vec{j} ;
 - b) \vec{v} é ortogonal ao eixo Ox, $|\vec{v}| = 2$, forma ângulo de 60° com o vetor \vec{j} e ângulo agudo com \vec{k} .
- 39) O vetor \vec{v} é ortogonal aos vetores $\vec{u} = (1, 2, 0)$ e $\vec{w} = (2, 0, 1)$ e forma ângulo agudo com o vetor \vec{j} . Determinar \vec{v} , sabendo que $|\vec{v}| = \sqrt{21}$.
- 40) Dados os vetores $\vec{u} = (3, 0, 1)$ e $\vec{v} = (-2, 1, 2)$, determinar proj \vec{u} e proj \vec{v} .
- 41) Determinar os vetores projeção de $\vec{v} = 4\vec{i} 3\vec{j} + 2\vec{k}$ sobre os eixos cartesianos x, y e z.
- 42) Para cada um dos pares de vetores \vec{u} e \vec{v} , encontrar a projeção ortogonal de \vec{v} sobre \vec{u} e decompor \vec{v} como soma de \vec{v}_1 com \vec{v}_2 , sendo \vec{v}_1 // \vec{u} e $\vec{v}_2 \perp \vec{u}$.
 - a) $\vec{u} = (1, 2, -2)$ e $\vec{v} = (3, -2, 1)$
 - b) $\vec{u} = (1, 1, 1)$ e $\vec{v} = (3, 1, -1)$
 - c) $\vec{u} = (2, 0, 0)$ e $\vec{v} = (3, 5, 4)$
 - d) $\vec{u} = (3, 1, -3)$ e $\vec{v} = (2, -3, 1)$
- 43) Sejam A(2, 1, 3), B(m, 3, 5) e C(0, 4, 1) vértices de um triângulo (Figura 2.18).
 - a) Para que valor de m o triângulo ABC é retângulo em A?
 - b) Calcular a medida da projeção do cateto AB sobre a hipotenusa BC.
 - c) Determinar o ponto H, pé da altura relativa ao vértice A.

Figura 2.18

- d) Mostrar que $AH \perp \overline{BC}$.
- 44) Determinar o valor de k para que os vetores $\vec{u} = (-2, 3)$ e $\vec{v} = (k, -4)$ sejam a) paralelos; b) ortogonais.
- 45) Obter os dois vetores unitários ortogonais a cada um dos vetores
 - a) $4\vec{i} + 3\vec{j}$
- b) (-2, 3)
- c) (-1, -1)

46)	Determinar um par de vetores unitários e ortogonais entre si, em que um deles seja
	paralelo a $v = 6i + 8j$.
47)	Determinar, aproximadamente, o ângulo entre os pares de vetores
	a) $\vec{u} = (2, 1) \ \vec{e} \ \vec{v} = (4, -2)$
	b) $\vec{u} = (1, -1) \vec{e} \vec{v} = (-4, -2)$
	c) $\vec{u} = (1, 1) \vec{e} \vec{v} = (-1, 1)$

48) Dados os vetores $\vec{u} = \vec{i} - \vec{j}$ e $\vec{v} = 2\vec{i} + \vec{j}$, determinar o módulo e o ângulo que os seguintes vetores formam com o vetor \vec{i} :

a) \overrightarrow{u} c) $\overrightarrow{u} + \overrightarrow{v}$ e) $\overrightarrow{v} - \overrightarrow{u}$ b) \overrightarrow{v} d) $\overrightarrow{u} - \overrightarrow{v}$

49) Determinar o valor de a para que seja 45 ° o ângulo entre os vetores $\vec{u} = (2, 1)$ e $\vec{v} = (1, a)$.

50) Para cada um dos pares de vetores \vec{u} e \vec{v} , encontrar o vetor projeção ortogonal de \vec{v} sobre \vec{u} e decompor \vec{v} como soma de \vec{v}_1 com \vec{v}_2 , sendo \vec{v}_1 // \vec{u} e $\vec{v}_2 \perp \vec{u}$.

a) $\vec{u} = (1, 0) e \vec{v} = (4, 3)$ b) $\vec{u} = (1, 1) e \vec{v} = (2, 5)$

Respostas de Problemas Propostos

1) a) -2 b) 21 c) -4 d) 4

2) $a = \frac{5}{8}$

3) a) (3, 6, -9) b) $(-\frac{1}{3}, -\frac{2}{3}, 1)$

4) (-6, 3, -9)

5) (0, 3, 4) ou (0, 3, -4)

6) $(2, 0, -1)^{n}$

7) x = (2, -3, 4)

8) a) 7 b) 38 c) -4 d) -181

9) -19 10) 200 e -200

11) a) 0 b) 2 c) -2 d) 2 e) 4 f) -4

12) $\sqrt{37}$, $\sqrt{13}$ e 7

13) a) 37 b) $\sqrt{50}$

15) -5

17)
$$x = \frac{25}{2}$$

18)
$$\overrightarrow{BA} \cdot \overrightarrow{BC} = 0$$

19)
$$m = 1 e^{\frac{\sqrt{30}}{2}}$$

20)
$$(0, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}})$$
 ou $(0, -\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}})$

21)
$$(1, -1, \sqrt{2})$$
 ou $(1, -1, -\sqrt{2})$

b) Um deles:
$$(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}})$$

c) Um deles:
$$(\frac{4}{\sqrt{3}}, \frac{4}{\sqrt{3}}, -\frac{4}{\sqrt{3}})$$

27)
$$\hat{A} \cong 50^{\circ}57', \ \hat{B} \cong 57^{\circ}1', \ \hat{C} \cong 72^{\circ}2'$$

29)
$$\sqrt{30}$$

30) arc cos
$$\frac{3}{\sqrt{21}} \approx 49^{\circ}6^{\circ}$$

g) arc cos
$$\frac{\sqrt{3}}{3} \approx 54^{\circ}44^{\circ}$$

d)
$$a\sqrt{2}$$
 e $a\sqrt{3}$

f)
$$(a^3, a^3, a^3)$$

d)
$$a\sqrt{2}$$
 e $a\sqrt{3}$ f) (a^3, a^3, a^3) h) arc cos $(\frac{1}{3}) \approx 70^{\circ}31^{\circ}$

32)
$$\alpha = \arccos\left(\frac{6}{7}\right) \cong 31^{\circ}$$
 $\beta = \arccos\left(-\frac{2}{7}\right) \cong 107^{\circ}$ $\gamma = \arccos\left(\frac{3}{7}\right) \cong 65^{\circ}$

33)
$$\vec{a} = (\sqrt{2}, 1, -1)$$

34) Não,
$$\cos^2 45^\circ + \cos^2 60^\circ + \cos^2 90^\circ \neq 1$$

35)
$$(5\sqrt{3}, 0, 5)$$

36)
$$(\frac{1}{2}, \frac{\sqrt{3}}{2}, 0)$$
 ou $(\frac{1}{2}, -\frac{\sqrt{3}}{2}, 0)$

37)
$$\vec{a} = (-2\sqrt{5}, 0, -\sqrt{5})$$

38) a)
$$(4\sqrt{3}, -4, 0)$$

b)
$$(0, 1, \sqrt{3})$$

40)
$$(\frac{8}{9}, -\frac{4}{9}, -\frac{8}{9})$$
 e $(-\frac{6}{5}, 0, -\frac{2}{5})$

41)
$$4\vec{i}$$
, $-3\vec{j}$, $2\vec{k}$

42) a)
$$\vec{v}_1 = (-\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}), \vec{v}_2 = (\frac{10}{3}, -\frac{4}{3}, \frac{1}{3})$$

b)
$$\vec{v}_1 = (1, 1, 1) \vec{v}_2 = (2, 0, -2)$$

c)
$$\vec{v}_1 = (3, 0, 0) e \vec{v}_2 = (0, 5, 4)$$

d)
$$\vec{v}_1 = (0, 0, 0)$$
 (\vec{u} e \vec{v} são ortogonais) e $\vec{v}_2 = \vec{v}$

43) a)
$$m = 3$$

b)
$$\frac{9}{26}\sqrt{26}$$

43) a) m = 3 b)
$$\frac{9}{26}\sqrt{26}$$
 c) H($\frac{51}{26}$, $\frac{87}{26}$, $\frac{94}{26}$)

44) a)
$$\frac{8}{3}$$

45) a)
$$(\frac{3}{5}, -\frac{4}{5})$$
 e $(-\frac{3}{5}, \frac{4}{5})$

b)
$$(\frac{3}{\sqrt{13}}, \frac{2}{\sqrt{13}})$$
 e $(-\frac{3}{\sqrt{13}}, -\frac{2}{\sqrt{13}})$

c)
$$(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$$
 e $(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$

46)
$$(\frac{3}{5}, \frac{4}{5})$$
 e $(-\frac{4}{5}, \frac{3}{5})$ ou $(\frac{3}{5}, \frac{4}{5})$ e $(\frac{4}{5}, -\frac{3}{5})$

47) a) arc cos
$$(\frac{3}{5}) \cong 53^{\circ}$$

b) arc cos
$$\left(-\frac{1}{\sqrt{10}}\right) \approx 108^{\circ}$$

48) a)
$$\sqrt{2}$$
, 45°

d)
$$\sqrt{5}$$
, arc cos $\left(-\frac{1}{\sqrt{5}}\right) \approx 117^{\circ}$

b)
$$\sqrt{5}$$
, arc cos $(\frac{2}{\sqrt{5}}) \cong 26^{\circ}$ e) $\sqrt{5}$, arc cos $(\frac{1}{\sqrt{5}}) \cong 63^{\circ}$

e)
$$\sqrt{5}$$
, arc cos $(\frac{1}{\sqrt{5}}) \cong 63^{\circ}$

c)
$$3, 0^{\circ}$$

49) 3 ou
$$-\frac{1}{3}$$

50) a)
$$\vec{v}_1 = (4, 0), \ \vec{v}_2 = (0, 3)$$
 c) $\vec{v}_1 = (\frac{8}{5}, \frac{6}{5}), \ \vec{v}_2 = (-\frac{3}{5}, \frac{4}{5})$

c)
$$\vec{v}_1 = (\frac{8}{5}, \frac{6}{5}), \ \vec{v}_2 = (-\frac{3}{5}, \frac{4}{5})$$

b)
$$\vec{v}_1 = (\frac{7}{2}, \frac{7}{2}), \vec{v}_2 = (-\frac{3}{2}, \frac{3}{2})$$

3 Produto vetorial

O produto vetorial é uma importante ferramenta matemática utilizada na Física. Dentre algumas de suas aplicações pode-se citar o *torque*.

O torque é uma grandeza vetorial, representado por τ , e está relacionada com a possibilidade de um corpo sofrer uma torção ou alterar seu movimento de rotação.

$$\vec{\tau} = \vec{r} \times \vec{F}$$

onde l \vec{r} l é a distância do ponto de aplicação da força \vec{F} ao eixo de rotação, ao qual o corpo está vinculado.

Lembrando o cálculo do módulo do produto vetorial visto em (3) tem-se

$$|\vec{\tau}| = |\vec{r}| |\vec{F}| \sin \theta$$

onde θ é o ângulo entre \vec{r} e \vec{F} .

Exemplo

Calcular o torque sobre a barra \overline{AB} (Figura 3.11), onde $\overline{AB}=\vec{r}=2\vec{j}$ (em metros), $\vec{F}=10\vec{i}$ (em newtons) e o eixo de rotação é o eixo z.

Figura 3.11

Solução

O vetor torque, para o caso desta figura, é

dado por

$$\vec{\tau} = (0\vec{i} + 2\vec{j} + 0\vec{k}) \text{m} \times (10\vec{i} + 0\vec{j} + 0\vec{k}) \text{N}$$

ou

$$\vec{\tau} = (0\vec{i} + 0\vec{j} - 20\vec{k})mN$$

u

$$\vec{\tau} = (-20 \,\text{k}) \text{mN}$$

A intensidade (módulo) do torque pode ser calculado por

$$|\vec{\tau}| = |\vec{r}| |\vec{F}| \operatorname{sen} \theta = (2m)(10N) \operatorname{(sen } 90^{\circ}) = 20mN$$

OII nor

$$|\vec{\tau}| = \sqrt{(-20)^2} = 20 \text{mN}$$

Cap. 3 Produto Vetorial 87

Observação

Caso a força \vec{F} seja invertida (Figura 3.12), isto é, $\vec{F} = -10 \vec{i}$ (em newtons), o torque é dado por

$$\vec{F} = -10 \vec{i} \text{ (em newtons), o torque \'e dado por}$$

$$\vec{\tau} = (0 \vec{i} + 2 \vec{j} + 0 \vec{k}) \text{m} \times (-10 \vec{i} + 0 \vec{j} + 0 \vec{k}) \text{N}$$
ou
$$\vec{\tau} = (20 \vec{k}) \text{mN}.$$

Problemas Propostos

Figura 3.12

1) Se $\vec{u} = 3\vec{i} - \vec{j} - 2\vec{k}$, $\vec{v} = 2\vec{i} + 4\vec{j} - \vec{k}$ e $\vec{w} = -\vec{i} + \vec{k}$, determinar a) $|\vec{u} \times \vec{u}|$ e) $(\vec{u} - \vec{v}) \times \vec{w}$ i) $\vec{u} \times \vec{v} + \vec{u} \times \vec{w}$

- 2) Efetuar
 - Efetuar

 a) $\vec{i} \times \vec{k}$ e) $(\vec{3} \vec{i}) \cdot (2 \vec{j})$ i) $(\vec{i} \times \vec{j}) \times \vec{k}$

 b) $\vec{j} \times (2 \vec{i})$ f) $(\vec{3} \vec{i}) \times (2 \vec{j})$ j) $(\vec{i} \times \vec{j}) \times \vec{j}$

 c) $(\vec{3} \vec{i}) \times (2 \vec{k})$ g) $\vec{i} \cdot (\vec{j} \times \vec{i})$ k) $\vec{i} \times (\vec{j} \times \vec{j})$

 d) $\vec{i} \cdot (\vec{j} \times \vec{k})$ h) $\vec{j} \cdot (\vec{j} \times \vec{k})$ l) $(\vec{j} \times \vec{k}) \cdot \vec{i}$
- 3) Dados os pontos A(2, 1, -1), B(3, 0, 1) e C(2, -1, -3), determinar o ponto D tal que $\overrightarrow{AD} = \overrightarrow{BC} \times \overrightarrow{AC}$.
- 4) Determinar o vetor \vec{x} tal que \vec{x} . (1, 4, -3) = -7 e \vec{x} x (4, -2, 1) = (3, 5, -2).
- 5) Resolver os sistemas

a)
$$\begin{cases} \vec{x} \times \vec{j} = \vec{k} \\ \vec{x} \cdot (4\vec{i} - 2\vec{j} + \vec{k}) = 10 \end{cases}$$
 b)
$$\begin{cases} \vec{x} \times (2\vec{i} - \vec{j} + 3\vec{k}) = \vec{0} \\ \vec{x} \cdot (\vec{i} + 2\vec{j} - 2\vec{k}) = 12 \end{cases}$$

6) Dados os vetores $\vec{u}=(3,1,1), \vec{v}=(-4,1,3)$ e $\vec{w}=(1,2,0)$, determinar \vec{x} de modo que $\vec{x}\perp \vec{w}$ e \vec{x} x $\vec{u}=\vec{v}$.

88 Vetores e Geometria Analítica

- 7) Levando em conta a Figura 3.13, calcular
 - a) \overrightarrow{OF} x \overrightarrow{OD}
- d) EC x EA
- b) $\overrightarrow{AC}x$ \overrightarrow{FA}
- e) $\overrightarrow{OA} \cdot (\overrightarrow{OC} \times \overrightarrow{OE})$
- c) $\overrightarrow{AB} \times \overrightarrow{AC}$
- f) \overrightarrow{GB} x \overrightarrow{AF}

- 8) Sejam os vetores $\vec{u} = (1, -2, 1), \vec{v} = (1, 1, 1) e \vec{w} =$
 - a) Utilizar o produto escalar para mostrar que os vetores são, dois a dois, ortogonais.
 - b) Utilizar o produto vetorial para mostrar que o produto vetorial de quaisquer dois deles é paralelo ao terceiro vetor.
 - c) Mostrar que $\vec{u} \times (\vec{v} \times \vec{w}) = \vec{0}$
- 9) Determinar um vetor simultaneamente ortogonal aos vetores $\vec{u} + 2\vec{v} = \vec{v} \vec{u}$, sendo $\vec{u} = (-3, 2, 0) \ \vec{v} = (0, -1, -2).$
- Obter um vetor ortogonal ao plano determinado pelos pontos A(2, 3, 1), B(1, -1, 1) e C(4, 1, -2).
- 11) Dado $\vec{v}_1 = (1, -2, 1)$, determinar vetores \vec{v}_2 e \vec{v}_3 de modo que os três sejam mutuamente ortogonais.
- 12) Dados os vetores $\vec{u} = (1, 1, 0) e \vec{v} = (-1, 1, 2)$, determinar
 - a) um vetor unitário simultaneamente ortogonal a \vec{u} e \vec{v} ;
 - b) um vetor de módulo 5 simultaneamente ortogonal a $\stackrel{\rightarrow}{u}$ e $\stackrel{\rightarrow}{v}$.
- 13) Determinar um vetor de módulo 2 ortogonal a $\vec{u}=(3,\,2,\,2)$ e a $\vec{v}=(0,\,1,\,1)$.
- 14) Com base na Figura 3.14, calcular
 - a) | $\overrightarrow{AB} \times \overrightarrow{AD}$ |
 - b) | \overrightarrow{BA} x \overrightarrow{BC} |
 - c) | AB x DC|
 - d) | $\overrightarrow{AB} \times \overrightarrow{CD}$ |
 - e) | BD x AC |
 - f) |BD x CD|
- 15) Sendo $|\vec{u}| = 2\sqrt{2}$, $|\vec{v}| = 4$ e 45° o ângulo entre \vec{u} e \vec{v} , calcular b) $\left| \frac{2}{5}\vec{u} \times \frac{1}{2}\vec{v} \right|$ a) | 2 u x v |

16) Determinar $\vec{u} \cdot \vec{v}$, sabendo que $|\vec{u}| \times \vec{v}| = 12$, $|\vec{u}| = 13$ e \vec{v} é unitário.

- Cap. 3 Produto Vetorial 89
- 17) Dados os vetores $\vec{u} = (3, -1, 2) e \vec{v} = (-2, 2, 1)$, calcular
 - a) a área do paralelogramo determinado por u e v;
 - b) a altura do paralelogramo relativa à base definida pelo vetor v.
- 18) Mostrar que o quadrilátero ABCD de vértices A(4, 1, 2), B(5, 0, 1), C(-1, 2, -2) e D (-2, 3, -1) é um paralelogramo e calcular sua área.
- 19) Dois vértices consecutivos de um paralelogramo são A(2, -4, 0) e B(1, -3, -1) e o ponto médio das diagonais é M (3, 2, -2). Calcular a área do paralelogramo.
- 20) Calcular o valor de m para que a área do paralelogramo determinado por $\vec{u}=(m,-3,1)$ e $\vec{v} = (1, -2, 2)$ seja igual a $\sqrt{26}$.
- 21) Sabendo que $|\vec{u}| = 6$, $|\vec{v}| = 4$ e 30° o ângulo entre \vec{u} e \vec{v} , calcular
 - a) a área do triângulo determinado por \vec{u} e \vec{v} ;
 - b) a área do paralelogramo determinado por \vec{u} e (- \vec{v});
 - c) a área do paralelogramo determinado por $\vec{u} + \vec{v} = \vec{u} \vec{v}$.
- 22) Calcular a área do paralelogramo determinado pelos vetores \vec{u} e \vec{v} , sabendo que suas diagonais são \overrightarrow{u} + \overrightarrow{v} = (-1, 3, 4) e \overrightarrow{u} - \overrightarrow{v} = (1, -1, 2).
- 23) Calcular a distância do ponto P(4, 3, 3) à reta que passa por A(1, 2, -1) e B(3, 1, 1).
- 24) Calcular a área do triângulo ABC e a altura relativa ao lado BC, sendo dados a) A(-4, 1, 1), B(1, 0, 1) e C(0, -1, 3)
 - b) A(4, 2, 1), B(1, 0, 1) e C(1, 2, 0)
- 25) Encontrar um vetor ortogonal ao plano determinado pelos pontos P, Q e R e calcular a área do triângulo PQR.
 - a) P(3, 0, 0), Q(0, 3, 0), R(0, 0, 2)
 - b) P(2, 3, 0), Q(0, 2, 1), R(2, 0, 2)
- 26) Calcular z, sabendo-se que A (2, 0, 0), B(0, 2, 0) e C(0, 0, z) são vértices de um triângulo de área 6.
- 27) Dados os pontos A(2, 1, -1) e B(0, 2, 1), determinar o ponto C do eixo Oy de modo que a área do triângulo ABC seja 1,5 u.a.
- 28) Sabendo que os pontos A(4, 0, 0), B(0, 0, 2), C(0, 3, 0) e D(4, 3, -2) são coplanares, calcular a área do quadrilátero ABCD.
- 29) Os pontos médios dos lados do triângulo ABC são M(0, 1, 3), N(3, -2, 2) e P(1, 0, 2). Determinar a área do triângulo ABC.

Respostas de Problemas Propostos

1) a) 0	d) 0	g) (-6, -20, 1)	j) 0
b) $\vec{0}$	e) (-5, 0, -5)	h) (8, -2, 13)	k) 5
-, -	-/(-,-,-/	i) (8, -2, 13)	1) 5

d) 1 h) 0 3) D (-4, -1, 1)

4) $\vec{x} = (3, -1, 2)$

5) a) $\vec{x} = (1, -3, 0)$ b) $\vec{x} = (-4, 2, -6)$

6) Não existe x pois u não é ortogonal a v.

7) a) $(-a^2, -a^2, a^2)$ c) $(0, 0, a^2)$

b) $(-a^2, -a^2, 0)$ \vec{f}) $\vec{0}$ d) $(-a^2, -a^2, -a^2)$

e) a³

9) Um deles: $(\vec{u} + 2\vec{v}) \times (\vec{v} - \vec{u}) = (-12, -18, 9)$

10) Um deles: $\overrightarrow{AB} \times \overrightarrow{AC} = (12, -3, 10)$

11) Uma das infinitas soluções:
$$\vec{v}_1 = (1, -2, 1), \ \vec{v}_2 = (1, 1, 1) \text{ e } \vec{v}_3 = (-1, 0, 1)$$
12) a) $(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$ ou $(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}})$
b) $(\frac{5}{\sqrt{3}}, -\frac{5}{\sqrt{3}}, \frac{5}{\sqrt{3}})$ ou $(-\frac{5}{\sqrt{3}}, \frac{5}{\sqrt{3}}, -\frac{5}{\sqrt{3}})$
13) $(0, \sqrt{2}, -\sqrt{2})$ ou $(0, -\sqrt{2}, \sqrt{2})$
14) a) $2\sqrt{3}$ c) 0 e) $4\sqrt{3}$

c) 0 b) $2\sqrt{3}$ d) 0 f) $2\sqrt{3}$

b) $\frac{8}{5}$ 15) a)16

16) 5 ou -5

b) √10

17) a) $3\sqrt{10}$

18) $\sqrt{122}$

19) $2\sqrt{74}$

20) 0 ou 2 21) a) 6 22) $\sqrt{35}$

b) 12 c) 24

23) $\frac{\sqrt{65}}{3}$

24) a)
$$\sqrt{35}$$
 e $\frac{2\sqrt{35}}{\sqrt{6}}$

b)
$$\frac{7}{2}$$
 e $\frac{7}{\sqrt{5}}$

25) a) t (2, 2, 3), t ∈
$$\mathbb{R}$$
 e $\frac{3\sqrt{17}}{2}$

b)
$$t (1, 4, 6), t \in \mathbb{R}$$
 e $\frac{\sqrt{53}}{2}$.

26) 4 ou -4

27) C (0, 1, 0) ou C (0,
$$\frac{5}{2}$$
, 0)

28) 2√61

29) $4\sqrt{2}$

4 Produto misto

$$V_t = \frac{1}{6} \cdot 36 = 6 \text{ u.v.}$$

b) Observemos na Figura 4.4 que a altura do tetraedro traçada do vértice D é a própria altura do paralelepípedo de base determinada por \overrightarrow{AB} e \overrightarrow{AC} . Como o volume V do paralelepípedo é dado por

V = (área da base) (altura)

$$= |\overrightarrow{AB} \times \overrightarrow{AC}| \cdot h$$

tem-se

$$h = \frac{V}{|\overrightarrow{AB} \times \overrightarrow{AC}|}$$

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & -2 & 2 \\ 1 & -3 & 2 \end{vmatrix} = (2, -6, -10)$$

e, portanto,

$$h = \frac{36}{|(2, -6, -10)|} = \frac{36}{\sqrt{4 + 36 + 100}} = \frac{36}{\sqrt{140}} = \frac{18}{\sqrt{35}} \text{ u.c.}$$

Problemas Propostos

- 1) Dados os vetores $\vec{u} = (3, -1, 1), \vec{v} = (1, 2, 2) e \vec{w} = (2, 0, -3), calcular$ a) $(\vec{u}, \vec{v}, \vec{w})$ b) $(\overrightarrow{w}, \overrightarrow{u}, \overrightarrow{v})$
- 2) Sabendo que $(\vec{u}, \vec{v}, \vec{w}) = -5$, calcular c) $(\overrightarrow{w}, \overrightarrow{u}, \overrightarrow{v})$ - d) $\overrightarrow{v} \cdot (\overrightarrow{w} \times \overrightarrow{u})$ a) $(\overrightarrow{w}, \overrightarrow{v}, \overrightarrow{u}) = (\overrightarrow{v}, \overrightarrow{u}, \overrightarrow{w})$
- 3) Sabendo que $\vec{u} \cdot (\vec{v} \times \vec{w}) = 2$, calcular
 - a) $\vec{\mathbf{u}} \cdot (\vec{\mathbf{w}} \times \vec{\mathbf{v}})$
- c) (v x w). u
- e) $\vec{u} \cdot (2 \vec{w} \times \vec{v})$

- b) v.(wxu)
- d) $(u \times w) \cdot (3 v)$
- $f)(\overrightarrow{u}+\overrightarrow{v}) \cdot (\overrightarrow{u} \times \overrightarrow{w})$
- 4) Sabendo que $(\overrightarrow{u}, \overrightarrow{w}, \overrightarrow{x}) = 2$ e $(\overrightarrow{v}, \overrightarrow{w}, \overrightarrow{x}) = 5$, calcular
 - a) $(\vec{u}, \vec{x}, -\vec{w})$ b) $(\vec{3}\vec{u}, \vec{3}\vec{w}, -\vec{2}\vec{x})$ c) $(\vec{2}\vec{u} + \vec{4}\vec{v}, \vec{w}, \vec{x})$ d) $(\vec{5}\vec{u} \vec{3}\vec{v}, \vec{2}\vec{w}, \vec{x})$
- 5) Verificar se são coplanares os vetores
 - a) $\vec{u} = (1, -1, 2), \vec{v} = (2, 2, 1) e \vec{w} = (-2, 0, -4)$
 - b) $\vec{u} = (2, -1, 3), \vec{v} = (3, 1, -2) e \vec{w} = (7, -1, 4)$

100 Vetores e Geometria Analítica

- 6) Determinar o valor de k para que sejam coplanares os vetores
 - a) $\vec{u} = (2, -1, k), \vec{v} = (1, 0, 2) e \vec{w} = (k, 3, k)$
 - b) $\vec{u} = (2, k, 1)$, $\vec{v} = (1, 2, k) e \vec{w} = (3, 0, -3)$
- 7) Verificar se são coplanares os pontos a) A(1, 1, 0), B(-2, 1, -6), C(-1, 2, -1) e D(2, -1, -4) b) A(2, 1, 2), B(0, 1, -2), C(1, 0, -3) e D(3, 1, -2)
- 8) Para que valor de m os pontos A(m, 1, 2), B(2, -2, -3), C(5, -1, 1) e D(3, -2, -2) são
- 9) Qual o volume do cubo determinado pelos vetores \vec{i} , \vec{j} e \vec{k} ?
- 10) Um paralelepípedo é determinado pelos vetores $\vec{u}=(3,-1,4), \vec{v}=(2,0,1)$ e \overrightarrow{w} = (-2, 1, 5). Calcular seu volume e a altura relativa à base definida pelos vetores \overrightarrow{u} e \overrightarrow{v} .
- 11) Calcular o valor de m para que o volume do paralelepípedo determinado pelos vetores $\vec{v}_1 = (0, -1, 2), \ \vec{v}_2 = (-4, 2, -1) \ \vec{v}_3 = (3, m, -2) \ \text{seja igual a } 33. \ \text{Calcular a altura}$ deste paralelepípedo relativa à base definida por $\stackrel{\rightarrow}{v_1} = \stackrel{\rightarrow}{v_2}$.
- 12) O ponto A(1, -2, 3) é um dos vértices de um paralelepípedo e os três vértices adjacentes são B(2, -1, -4), C(0, 2, 0) e D(-1, m, 1). Determinar o valor de m para que o volume deste paralelepípedo seja igual ao 20 u.v. (unidades de volume).
- 13) Dados os pontos A(2, 1, 1), B(-1, 0, 1) e C(3, 2, -2), determinar o ponto D do eixo Oz
- para que o volume do paralelepípedo determinado por \overrightarrow{AB} , \overrightarrow{AC} e \overrightarrow{AD} seja 25 u.v. Representar graficamente o tetraedro ABCD e calcular seu volume, sendo A(1, 1, 0), B(6, 4, 1), C(2, 5, 0) e D(0, 3, 3).
- 15) Calcular o volume do tetraedro de base ABC e vértice P, sendo A (2, 0, 0), B (2, 4, 0), C(0, 3, 0) e P(2, -2, 9). Qual a altura do tetraedro relativa ao vértice P?
- 16) Sabendo que os vetores $\overrightarrow{AB} = (2, 1, -4)$, $\overrightarrow{AC} = (m, -1, 3)$ e $\overrightarrow{AD} = (-3, 1, -2)$ determinant nam um tetraedro de volume 3, calcular o valor de m.
- 17) Três vértices de um tetraedro de volume 6 são A(-2, 4, -1), B(-3, 2, 3) e C(1, -2, -1).
- Determinar o quarto vértice D, sabendo que ele pertence ao eixo Oy. 18) Calcular a distância do ponto D(2, 5, 2) ao plano determinado pelos pontos A(3, 0, 0), B(0, -3, 0) e C(0, 0, 3).
- 19) Sendo $|\vec{u}| = 3$, $|\vec{v}| = 4$ e 120° o ângulo entre os vetores \vec{u} e \vec{v} , calcular $a) \mid \vec{u} + \vec{v} \mid$ c) o volume do paralelepípedo determinado
 - por u x v, u e v. b) | u x (v - u) |

Cap. 4 Produto Misto 101

f) -2

e) -4

20) Determinar m e n para que se tenha

a)
$$(m, n, 2) \cdot (4, -1, 3) = -2$$

a)
$$(m, n, 2) \cdot (4, -1, 3) = -2$$

b) $(m, n, 2) \times (4, -1, 3) = (8, -1, -11)$

c)
$$(m, n, 2) \cdot ((3, 1, 2) \times (0, 1, -1)) = 9$$

Respostas de Problemas Propostos

8)
$$m = 4$$

10) 17 e
$$\frac{17}{\sqrt{30}}$$

11)
$$m = 4$$
 ou $m = -\frac{17}{4}$ e h = $\frac{33}{\sqrt{89}}$

14)
$$\frac{19}{2}$$
 u.v.

14)
$$\frac{1}{2}$$
 u.v. e 9 u.c.
15) 12 u.v. e 9 u.c.
16) $m = -\frac{17}{2}$ ou $m = \frac{19}{2}$
17) D(0, 2, 0) ou D(0, -4, 0)
18) $\frac{4}{\sqrt{3}}$ u.c.

18)
$$\frac{4}{\sqrt{2}}$$
 u.c.

19) a)
$$\sqrt{13}$$

b)
$$6\sqrt{3}$$

c) 2

c) 24

d) -10

c)
$$108 \text{ u.v.}$$

c) $n = m + 1$

20) a)
$$n = 4m + 8$$
 b) $m = 3$ e $n = 2$

Figura 5.1

A Reta

Equação Vetorial da Reta

Consideremos um ponto $A(x_1, y_1, z_1)$ e um vetor nãonulo \overrightarrow{v} = (a, b, c). Só existe uma reta r que passa por A e tem a direção de \vec{v} . Um ponto P(x, y, z) pertence a r se, e somente se, o vetor \overrightarrow{AP} é paralelo a \overrightarrow{v} (Figura 5.1),

$$\overrightarrow{AP} = \overrightarrow{t v}$$
 (1)

para algum real t.

De (1), vem

$$P - A = t \overrightarrow{v}$$

 $P = A + t \vec{v}$ ou, em coordenadas

$$(x, y, z) = (x_1, y_1, z_1) + t(a, b, c)$$
 (3)

Qualquer uma das equações (1), (2) ou (3) é denominada equação vetorial de r.

O vetor v é chamado vetor diretor da reta r e t é denominado parâmetro.

A reta r que passa por A(1, -1, 4) e tem a direção de $\vec{v} = (2, 3, 2)$, tem equação vetorial, de acordo com (3):