I claim:

5

10

15

1. A method for the preparation of H_2O_2 wherein,

 H_2O_2 is produced by a first reaction, electrolysis converting H_2SO_4 into H_2 and $H_2S_2O_8$ and then a second reaction, said $H_2S_2O_8$ formed in first reaction, is reacted with H_2O in a second reaction to form H_2O_2 and H_2SO_4 and wherein,

at least one of: the separation of said H_2 from said $H_2S_2O_8$, the separation of said $H_2S_2O_8$ and said $H_2S_2O_8$ and said $H_2S_2O_8$, the separation of said H_2O_2 from said $H_2S_2O_8$, the separation of said H_2O_2 and water from said $H_2S_2O_8$, the separation of said $H_2S_2O_8$, the separation of said $H_2S_2O_8$, the separation of said $H_2S_2O_8$ and any combination therein is performed with a membrane.

- 2. The method of claim 1, wherein the first reaction does not go to completion and wherein,
 - a mixture of H₂SO₄ and H₂S₂O₈ is reacted with H₂O in the second reaction.
- 3. The method of claim 1, wherein said membrane is constructed of organic materials.
- 4. The method of claim 1, wherein said membrane is constructed of inorganic materials.
- 5. The method of claim 1, wherein said H₂SO₄ in the second reaction is recycled to the first reaction.
 - 6. The method of claim 1, wherein said electrolysis is performed across an electrically charged conductive membrane.
 - 7. The method of claim 1, wherein said electrolysis is performed with electrodes.

- 8. The method of claim 7, wherein said electrodes are made of at least one of: zirconium, hastelloy, ceramic and titanium.
- 9. The method of claim 1, wherein at least one of the separation processes is performed with distillation.

5

15

20

- 10. The method of claim 9, wherein said distillation separates H₂ from at least one of H₂SO₄ and H2S2O₈.
 - 11. The method of claim 9, wherein said distillation separates H₂O₂ from at least one of H₂SO₄ and H₂S₂O₈.
- The method of claim 9, wherein said distillation separates H_2O from at least one of H_2SO_4 and $H_2S_2O_8$.
 - 13. The method of claim 1, wherein said second reaction contains an excess of said H₂O, wherein an aqueous concentration of said H₂O₂ is generated.
 - 14. The method of claim 1, wherein H₂O is added to said H₂O₂ from said second reaction.
 - 15. The method of claim 1, wherein there is no vehicular transportation of said H_2O_2 .
 - 16. The method of claim 1, wherein said H_2 produced in the first reaction is utilized in a fuel cell to generate electricity.
 - 17. The method of claim 16, wherein at least a portion of said electricity is used for the electrolytic conversion of H_2SO_4 into H_2 and $H_2S_2O_8$.
 - 18. A process of H_2O_2 production wherein,

 H_2O_2 is produced by a first reaction, electrolysis converting H_2SO_4 into H_2 and $H_2S_2O_8$ and then a second reaction, said $H_2S_2O_8$ formed in first reaction, is reacted with H_2O in a second reaction to form H_2O_2 and H_2SO_4 and wherein,

at least one of: the separation of said H_2 from said $H_2S_2O_8$, the separation of said $H_2S_2O_8$ and said $H_2S_2O_8$ and said $H_2S_2O_8$, the separation of said H_2O_2 from said $H_2S_2O_8$, the separation of said H_2O_2 and water from said $H_2S_2O_8$, the separation of said $H_2S_2O_8$ and any combination therein is performed with a membrane.

5

10

- 19. The process of claim 18, wherein the first reaction does not go to completion and wherein,
 - a mixture of H₂SO₄ and H₂S₂O₈ is reacted with H₂O in the second reaction.
- 20. The process of claim 18, wherein said membrane is constructed of organic materials.
- 21. The process of claim 18, wherein said membrane is constructed of inorganic materials.
- The process of claim 18, wherein said H_2SO_4 in the second reaction is recycled to the first reaction.
 - 23. The process of claim 18, wherein said electrolysis is performed across an electrically charged conductive membrane.
 - 24. The process of claim 18, wherein said electrolysis is performed with electrodes.
- 25. The process of claim 24, wherein said electrodes are made of at least one of:
 20 zirconium, hastelloy, ceramic and titanium.
 - 26. The process of claim 18, wherein at least one of the separation processes is performed with distillation.

- 27. The process of claim 26, wherein said distillation separates H₂ from at least one of H₂SO₄ and H2S2O₈.
- 28. The process of claim 26, wherein said distillation separates H_2O_2 from at least one of H_2SO_4 and $H_2S_2O_8$.
- 29. The process of claim 26, wherein said distillation separates H₂O from at least one of H₂SO₄ and H₂S₂O₈.

5

15

- 30. The method of claim 18, wherein said second reaction contains an excess of said H₂O, wherein an aqueous concentration of said H₂O₂ is generated.
- The process of claim 18, wherein H_2O is added to said H_2O_2 from said second reaction.
 - 32. The process of claim 18, wherein there is no vehicular transportation of said H_2O_2 .
 - 33. The process of claim 18, wherein said H₂ produced in the first reaction is utilized in a fuel cell to generate electricity.
 - 34. The process of claim 33, wherein at least a portion of said electricity is used for the electrolytic conversion of H₂SO₄ into H₂ and H₂S₂O₈.