02/08/2023

```
In [ ]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
```

In [52]: a=pd.read_csv(r"C:\Users\user\Downloads\C2_test.gender_submission.csv")
a

Out[52]:

	PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S
									•••		
413	1305	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	8.0500	NaN	S
414	1306	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.9000	C105	С
415	1307	3	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON/O.Q. 3101262	7.2500	NaN	S
416	1308	3	Ware, Mr. Frederick	male	NaN	0	0	359309	8.0500	NaN	S
417	1309	3	Peter, Master. Michael J	male	NaN	1	1	2668	22.3583	NaN	С

418 rows × 11 columns

In [11]: from sklearn.linear_model import LogisticRegression

```
In [53]: a=a.head(10)
```

Out[53]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	3	Kelly, Mr. James	ma l e	34.5	0	0	330911	7.8292	NaN	Q
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
2	894	2	Myles, Mr. Thomas Francis	ma l e	62.0	0	0	240276	9.6875	NaN	Q
3	895	3	Wirz, Mr. Albert	ma l e	27.0	0	0	315154	8.6625	NaN	S
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	fema l e	22.0	1	1	3101298	12.2875	NaN	S
5	897	3	Svensson, Mr. Johan Cervin	ma l e	14.0	0	0	7538	9.2250	NaN	S
6	898	3	Connolly, Miss. Kate	fema l e	30.0	0	0	330972	7.6292	NaN	Q
7	899	2	Caldwell, Mr. Albert Francis	male	26.0	1	1	248738	29.0000	NaN	S
8	900	3	Abrahim, Mrs. Joseph (Sophie Halaut Easu)	female	18.0	0	0	2657	7.2292	NaN	С
9	901	3	Davies, Mr. John Samuel	male	21.0	2	0	A/4 48871	24.1500	NaN	S

```
In [54]: a.columns
```

```
In [56]: b=a[['PassengerId', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare']]
b
```

Out[56]:

	Passengerld	Pclass	Age	SibSp	Parch	Fare
_	0 892	3	34.5	0	0	7.8292
	1 893	3	47.0	1	0	7.0000
	2 894	2	62.0	0	0	9.6875
	3 895	3	27.0	0	0	8.6625
	4 896	3	22.0	1	1	12.2875
	5 897	3	14.0	0	0	9.2250
	6 898	3	30.0	0	0	7.6292
	7 899	2	26.0	1	1	29.0000
	8 900	3	18.0	0	0	7.2292
	9 901	3	21.0	2	0	24.1500

```
In [57]: c=b.iloc[:,0:11]
d=a.iloc[:,-1]
```

In [58]: c.shape

Out[58]: (10, 6)

In [59]: d.shape

Out[59]: (10,)

In [60]: from sklearn.preprocessing import StandardScaler

In [61]: fs=StandardScaler().fit_transform(c)

```
In [62]: logr=LogisticRegression()
         logr.fit(fs,d)
Out[62]: LogisticRegression()
In [67]: e=[[2,5,77,8,6,5]]
In [68]: | prediction=logr.predict(e)
         prediction
Out[68]: array(['Q'], dtype=object)
In [69]: logr.classes
Out[69]: array(['C', 'Q', 'S'], dtype=object)
In [70]: logr.predict_proba(e)[0][0]
Out[70]: 5.258911934097103e-27
In [71]: logr.predict_proba(e)[0][1]
Out[71]: 1.0
In [72]: import re
         from sklearn.datasets import load digits
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import sklearn as sns
         from sklearn.model selection import train test split
         from sklearn.linear_model import LogisticRegression
```

```
In [27]: digits=load_digits()
         digits
           'target': array([0, 1, 2, ..., 8, 9, 8]),
           'frame': None,
           'feature_names': ['pixel_0_0',
            'pixel_0_1',
            'pixel_0_2',
            'pixel_0_3',
            'pixel_0_4',
            'pixel_0_5',
            'pixel_0_6',
            'pixel_0_7',
            'pixel_1_0',
            'pixel_1_1',
            'pixel_1_2',
            'pixel_1_3',
            'pixel_1_4',
            'pixel_1_5',
            'pixel_1_6',
            'pixel_1_7',
            'pixel_2_0',
            'nival 2 1'
```

```
In [73]: plt.figure(figsize=(20,4))
    for index,(image,label)in enumerate(zip(digits.data[0:5],digits.target[0:5])):
        plt.subplot(1,5,index+1)
        plt.imshow(np.reshape(image,(8,8)),cmap=plt.cm.gray)
        plt.title('Number:%i\n'%label,fontsize=15)
```



```
In [74]: x_train,x_test,y_train,y_test=train_test_split(digits.data,digits.target,test_size=0.30)
```

```
In [75]: print(x_train.shape)
    print(x_test.shape)
    print(y_train.shape)
    print(y_test.shape)

    (1257, 64)
```

(540, 64) (1257,) (540,)

In [76]: logre=LogisticRegression(max_iter=10000)
logre.fit(x_train,y_train)

Out[76]: LogisticRegression(max_iter=10000)

```
In [32]: logre.predict(x test)
Out[32]: array([8, 4, 3, 1, 7, 4, 0, 9, 4, 7, 4, 9, 5, 4, 2, 6, 2, 5, 9, 7, 7, 5,
                7, 0, 3, 4, 9, 8, 6, 7, 1, 4, 1, 9, 1, 2, 2, 9, 9, 3, 4, 8, 9, 5,
                3, 0, 3, 0, 0, 4, 4, 9, 1, 2, 2, 7, 5, 9, 8, 2, 0, 4, 0, 2, 1, 4,
                0, 5, 8, 1, 8, 3, 5, 9, 3, 6, 7, 7, 0, 0, 5, 3, 5, 5, 6, 8, 8, 4,
                8, 8, 2, 5, 6, 5, 5, 8, 1, 6, 5, 6, 1, 3, 6, 6, 7, 6, 0, 7, 1, 6,
                9, 3, 0, 0, 4, 3, 9, 5, 3, 7, 2, 4, 7, 5, 6, 6, 0, 6, 6, 7, 1, 1,
                1, 0, 4, 8, 4, 9, 9, 1, 2, 1, 5, 0, 2, 6, 7, 5, 3, 4, 9, 2, 7, 5,
                1, 8, 5, 6, 0, 4, 1, 6, 2, 8, 9, 2, 1, 3, 7, 6, 5, 3, 4, 1, 3, 3,
                8, 7, 9, 6, 7, 9, 5, 4, 0, 2, 0, 5, 1, 1, 8, 9, 1, 7, 2, 4, 6, 7,
                4, 4, 2, 7, 9, 4, 7, 1, 3, 2, 7, 9, 7, 1, 9, 8, 2, 0, 1, 8, 6, 8,
                5, 1, 7, 8, 6, 0, 5, 0, 4, 9, 2, 6, 2, 8, 1, 3, 3, 6, 9, 4, 2, 4,
                5, 7, 4, 6, 5, 4, 6, 4, 0, 2, 4, 1, 9, 3, 7, 3, 0, 3, 9, 9, 6, 6,
                0, 1, 3, 2, 6, 2, 3, 3, 7, 8, 8, 4, 5, 5, 9, 6, 9, 0, 9, 2, 4, 9,
                4, 6, 2, 2, 1, 7, 0, 3, 5, 5, 2, 2, 4, 1, 6, 1, 8, 6, 5, 9, 7, 7,
                1, 8, 6, 7, 8, 8, 5, 9, 1, 5, 4, 4, 2, 5, 8, 4, 0, 7, 6, 2, 5, 6,
                9, 0, 6, 7, 7, 5, 0, 9, 6, 3, 1, 2, 8, 3, 3, 6, 5, 7, 7, 0, 8, 6,
                6, 3, 7, 8, 1, 0, 5, 9, 8, 4, 4, 6, 8, 3, 4, 6, 5, 7, 8, 4, 7, 3,
                2, 5, 1, 3, 0, 6, 7, 9, 8, 4, 9, 8, 1, 2, 8, 8, 6, 2, 0, 1, 5, 1,
                3, 3, 0, 5, 1, 3, 7, 1, 8, 9, 6, 0, 2, 3, 4, 3, 1, 8, 7, 1, 2, 8,
                1, 2, 0, 5, 5, 9, 2, 2, 9, 4, 8, 4, 4, 4, 2, 2, 9, 3, 7, 4, 5, 5,
                7, 8, 5, 8, 9, 0, 2, 6, 0, 5, 1, 8, 9, 6, 3, 4, 4, 3, 7, 8, 3, 6,
                5, 9, 5, 3, 6, 3, 0, 3, 8, 3, 2, 1, 6, 6, 8, 7, 2, 1, 6, 6, 5, 8,
                3, 6, 6, 3, 0, 3, 1, 3, 1, 9, 5, 1, 4, 0, 0, 0, 8, 7, 1, 0, 5, 2,
                5, 2, 8, 4, 6, 7, 0, 9, 3, 0, 0, 3, 9, 9, 0, 3, 0, 1, 0, 7, 7, 3,
                4, 7, 2, 6, 8, 1, 9, 1, 3, 8, 3, 8])
In [77]: logre.score(x test,y test)
Out[77]: 0.9629629629629
In [78]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
```

In [35]: b=a.head(10) b

Out[35]:

	Unnamed: 0	model	year	price	transmission	mileage	fuelType	tax	mpg	engineSize	Make
0	0	T-Roc	2019	25000	Automatic	13904	Diesel	145	49.6	2.0	VW
1	1	T-Roc	2019	26883	Automatic	4562	Diesel	145	49.6	2.0	VW
2	2	T-Roc	2019	20000	Manual	7414	Diesel	145	50.4	2.0	VW
3	3	T-Roc	2019	33492	Automatic	4825	Petrol	145	32.5	2.0	VW
4	4	T-Roc	2019	22900	Semi-Auto	6500	Petrol	150	39.8	1.5	VW
5	5	T-Roc	2020	31895	Manual	10	Petrol	145	42.2	1.5	VW
6	6	T-Roc	2020	27895	Manual	10	Petrol	145	42.2	1.5	VW
7	7	T-Roc	2020	39495	Semi-Auto	10	Petrol	145	32.5	2.0	VW
8	8	T-Roc	2019	21995	Manual	10	Petrol	145	44.1	1.0	VW
9	9	T-Roc	2019	23285	Manual	10	Petrol	145	42.2	1.5	VW

```
In [81]: b=a[['PassengerId', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']]
b
```

Out[81]:

		Passengerld	Pclass	Age	SibSp	Parch	Fare	Embarked
_	0	892	3	34.5	0	0	7.8292	Q
	1	893	3	47.0	1	0	7.0000	S
	2	894	2	62.0	0	0	9.6875	Q
	3	895	3	27.0	0	0	8.6625	S
	4	896	3	22.0	1	1	12.2875	S
	5	897	3	14.0	0	0	9.2250	S
	6	898	3	30.0	0	0	7.6292	Q
	7	899	2	26.0	1	1	29.0000	S
	8	900	3	18.0	0	0	7.2292	С
	9	901	3	21.0	2	0	24.1500	S

```
In [83]: b['Embarked'].value_counts()
```

Out[83]: S

Q 3

Č 1

Name: Embarked, dtype: int64

```
In [84]: x=b.drop('Embarked',axis=1)
y=b['Embarked']
```

```
In [39]: |g1={"Make":{'Make':1,'b':2}}
         b=b.replace(g1)
         print(b)
                                      mpg engineSize Make
            Unnamed: 0 mileage tax
         0
                     0
                          13904 145 49.6
                                                  2.0
                                                        VW
         1
                     1
                           4562 145 49.6
                                                  2.0
                                                        VW
         2
                           7414 145 50.4
                     2
                                                  2.0
                                                        VW
                           4825 145 32.5
         3
                     3
                                                  2.0
                                                        VW
                                150 39.8
         4
                     4
                           6500
                                                  1.5
                                                        VW
                            10 145 42.2
         5
                     5
                                                  1.5
                                                        VW
                     6
         6
                            10 145 42.2
                                                  1.5
                                                        VW
         7
                     7
                            10 145 32.5
                                                  2.0
                                                        VW
                            10 145 44.1
         8
                     8
                                                  1.0
                                                        VW
         9
                             10 145 42.2
                                                  1.5
                                                        VW
In [85]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.70)
In [86]: from sklearn.ensemble import RandomForestClassifier
In [87]: rfc=RandomForestClassifier()
         rfc.fit(x train,y train)
Out[87]: RandomForestClassifier()
In [88]: parameters={'max_depth':[1,2,3,4,5],
          'min_samples_leaf':[5,10,15,20,25],
          'n_estimators':[10,20,30,40,50]}
In [89]: from sklearn.model_selection import GridSearchCV
```

```
In [50]: plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes','No'],filled=True)
```

Out[50]: [Text(2232.0, 1087.2, 'gini = 0.0\nsamples = 4\nvalue = 7.0')]

gini = 0.0 samples = 4value = 7.0

```
In [ ]:
```