Санкт-Петербургский политехнический университет Петра Великого

Физико-механический иститут

Кафедра «Прикладная математика»

Отчёт по лабораторной работе №2 по дисциплине «Анализ данных с интервальной неопределённостью»

Выполнил студент: Куксенко Кирилл Сергеевич группа: 5040102/20201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2023 г.

Содержание

1	Пос	становка задачи	2
2	Teo 2.1 2.2	Точечная линейная регрессия	2 2 2
3	Pea	лизация	3
4	Рез	ультаты	3
5	Обо	суждение	8
C	Спис	сок иллюстраций	
	1	Первая выборка, X_1	3
	2	Точечная линейная регрессия для X_1	4
	3	Информационное множество для X_1	4
	4	Коридор совместных значений для X_1	5
	5	Вторая выборка, X_2	
	6	Точечная линейная регрессия для X_2	
	7	Информационное множество для X_2	
	8	Коридор совместных значений для X_2	

1 Постановка задачи

2 Теория

2.1 Точечная линейная регрессия

Рассматривается задача восстановления зависимости для выборки (X, (Y)), $X = \{x_i\}_{i=1}^n, \mathbf{Y} = \{\mathbf{y}_i\}_{i=1}^n, x_i$ - точеный, \mathbf{y}_i - интервальный. Пусть искомая модель задана в классе линейных функций

$$y = \beta_0 + \beta_1 x \tag{1}$$

Поставим задачу оптимизацию 2 для нахождения точечных оценок параметров β_0, β_1 .

$$\sum_{i=1}^{m} w_i \to \min$$

$$\operatorname{mid} \mathbf{y}_i - w_i \cdot \operatorname{rad} \mathbf{y}_i \le X\beta \le \operatorname{mid} \mathbf{y}_i + w_i \cdot \operatorname{rad} \mathbf{y}_i$$

$$w_i \ge 0, i = 1, ..., m$$

$$w, \beta - ?$$

$$(2)$$

Задачу 2 можно решить методами линейного программирования.

2.2 Информационное множество

Информационным множеством задачи восстановления зависимости будем называть множество значений всех параметров зависимости, совместных с данными в каком-то смысле.

Коридором совместных зависимостей задачи восстановления зависимости называется многозначное множество отображений Υ , сопоставляющее каждому значению аргумента x множество

$$\Upsilon(x) = \bigcup_{\beta \in \Omega} f(x, \beta) \tag{3}$$

, где Ω - информационное множество, x - вектор переменных, β - вектор оцениваемых параметров.

Информационное множество может быть построено, как пересечение полос, заданных

$$\mathbf{y}_{i} \le \beta_{0} + \beta_{1} x_{i1} + \dots + \beta_{m} x_{im} \le \overline{\mathbf{y}_{i}} \tag{4}$$

, где $i=\overline{1,n}\mathbf{y}_i\in\mathbf{Y}, x_i\in X, X$ - точечная выборка переменных, \mathbf{Y} - интервальная выборка откликов.

3 Реализация

Весь код написан на языке Python (версии 3.7.3). Ссылка на GitHub с исходным кодом.

4 Результаты

Данные были взяты из файлов $data/dataset1/+0_5V/+0_5V_85.txt$ и $data/dataset/-0_5V/-0_5V_6.txt$.

Построим линейную регрессию и найдём информационное множество для двух выборок с разной степенью совместности.

Рассмотрим первую выборку X_1 .

Рис. 1: Первая выборка, X_1

Индекс Жаккара первой выборки равен $JK(X_1)=0.477$ (в этой работе $JK(X)\in [0,1]).$

Построим линейную регрессию, решив задачу 2 для выборки X_1 .

Рис. 2: Точечная линейная регрессия для X_1

Получим следующие оценки для параметров: $\beta_0=0.419, \beta_1=-2.18e^{-5}.$ Тогда полученная модель имеет вид $y=0.419-2.18e^{-5}x.$

Найдём для данной выборки информационное множество.

Рис. 3: Информационное множество для X_1

На рис. 3 можно заметит, что найденные параметры β_0,β_1 решением

задачи 2 лежат вне информационного множества.

Построим коридор совместных значений для выборки X_1 и информационного множества 3 и оценим значения выходной переменной y вне пределов значений входной переменной x.

Рис. 4: Коридор совместных значений для X_1

На рис. 4 видно, что построенная точечная регрессия лежит вне коридора совместных значений, что согласуется с рис. 3.

Проведём аналогичные построения для выборки X_2 , полученной из X_1 , расширением радиусов всех интервалов на $0.05.\ X_2$ имеет вид.

Рис. 5: Вторая выборка, X_2

Индекс Жаккра X_2 равен $JK(X_2)=0.72.$ Построим точечную линейную регрессию для $X_2.$

Рис. 6: Точечная линейная регрессия для X_2

Для X_2 получили следующие оценки параметров: $\beta_0 = 0.42, \beta_1 = -2.79e^{-5}.$

Построим информационное множество и коридор совместных значений для X_2 .

Рис. 7: Информационное множество для X_2

Рис. 8: Коридор совместных значений для X_2

5 Обсуждение

Из полученных результатов можно заметить следующее. Может оказаться, что, в случае малой совместности или в случае отсутствия совместности, точечная регрессия не попадает в информационное множество, что видно на рис. 3, 4. Также видно, что точечная регрессия может не пересекать все интервалы исходной выборки рис. 2. Стоит отметить, что с увеличением степени совместности, размер информационного множества и ширина коридора совместности увеличиваются (рис. 3, 4, 7, 8), что вполне ожидаемо. При этом для обоих выборок оценки параметров, полученных с помощью точечной линейной регрессии, мало отличаются. Также заметно, что ширина коридора сильно увеличивается за пределами значений входной переменной 4, 8.