Digital Electronics

Principles & Applications
Seventh Edition

Roger L. Tokheim

Chapter 4
Using Logic Gates

INTRODUCTION

- Logic Circuit from a Boolean expression
- Minterm and maxterm Boolean expressions
- Boolean expression from a truth table
- Truth table from a Boolean expression
- Simplifying Boolean expressions
- Karnaugh mapping

INTRODUCTION (continued)

- Variations in Boolean expressions
- DeMorgan's theorem
- PLDs (programmable logic devices)

"Tools of the Trade" for Solving Logic Problems

- Gate symbols
- Truth tables
- Boolean expressions

Combinational logic circuits:

AND-OR pattern of gates

from

Sum-of-products Boolean expression such as:

$$AB + CD = Y$$

OR-AND pattern of gates

from

Product-of-sums Boolean expression such as:

$$(A+B)$$
 $(C+D) = Y$

Logic Circuit From Boolean Expression

Example:

Draw the AND-OR logic diagram for the

Boolean expression: AB + CD = Y

Step 1: OR AB with CD

Step 2: Add top AND gate

Step 3: Add bottom AND gate

Draw the OR-AND logic diagram for the Boolean expression: (A+B) • (C+D) = Y

Step 1:

Step 2:

Step 3:

Boolean Expressions

Sum-of-products form:

$$\overline{\mathbf{A}} \cdot \mathbf{B} + \mathbf{C} \cdot \overline{\mathbf{D}} = \mathbf{Y}$$

Also called the minterm form

Product-of-sums form:

$$(A + \overline{B}) \cdot (\overline{C} + D) = Y$$

Also called the maxterm form

1. The Boolean expression AB + BC = Y is in _____ (product-of-sums, sum-of- sum-of-products products) form.

2. The Boolean expression (A+B) (B+C) + Y is in _____ (product-ofsums, sum-of-products) form.

product-of-sums

3. The Boolean expression (A+B)(B+C) = Y is in _____ (maxterm, minterm) form.

maxterm

4. The Boolean expression AB + BC = Y is in (maxterm, minterm) form.

minterm

Boolean Expression from Truth Table

Write the Boolean expression that describes the logic in this truth table.

Minterm Boolean expression: $\overline{A} B \overline{C} + A B C = Y$

Truth Table

Input Output

ABC Y

000 1

0 0 1 0

0 1 0 0

0 1 1 0

100 0

 $1 \ 0 \ 1 \qquad 0$

110 0

111 1

Write the Boolean expression that describes the logic in this truth table.

 $\overline{\mathbf{A}} \bullet \overline{\mathbf{B}} \bullet \overline{\mathbf{C}} + \mathbf{A} \bullet \mathbf{B} \bullet \mathbf{C} = \mathbf{Y}$

Minterm Boolean expression: $\overline{A} \overline{B} \overline{C} + A B C = Y$

Truth Table	
Input	Output
ABC	${f Y}$
$0\ 0\ 0$	0
001	0
010	0
011	1_
100	0
101	0
110	0
111	1

1. Write the sum-of-products Boolean expression for this truth table.

$$A'BC + ABC = Y$$

2. Write the minterm Boolean expression for this truth table.

$$A'BC + ABC = Y$$

Truth Table From Boolean Expressions

Fill in a truth table from a minterm Boolean Expression.

Minterm Boolean expression: $\overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot B \cdot \overline{C} = Y$

Step 1: Place three 1s in output column.

Step 2: Place five 0s in blanks in output column of truth table.

100

101

1 1 0

111

1. Fill in the output column of the truth table for the Boolean expression A'B'C' + ABC' = Y.

Simplifying Boolean Expressions

RULE:

Eliminate term within loop that contains a term and its complement.

Simplify Boolean Expression

(Karnaugh map method)

Unsimplified Boolean expression (3 variables):

Step 1: Plot 1s

Step 2: Loop groups

Step 3: Eliminate variables

Step 4: Form simplified

minterm expression

Simplified Expression: $A\overline{C} + \overline{A}\overline{B} = Y$

Simplify Boolean Expression (Karnaugh map method)

Unsimplified Boolean expression (4 variables):

 $\overrightarrow{ABCD} + \overrightarrow{ABCD} + \overrightarrow{ABCD} + \overrightarrow{ABCD} = Y$

Step 1: Plot 1s

Step 2: Loop groups

Step 3: Eliminate variables

Step 4: Form simplified

minterm expression

Simplified Expression: $ACD + \overline{AB}C = Y$

Developing a NAND Logic Diagram

Minterm expression: $\overline{AB} + A\overline{B} = Y$

Step 1: Draw AND-OR logic diagram from minterm expression.

Step 2: Substitute NAND gates for each inverter, AND, and OR gate.

NOTE: Both logic diagrams will generate the same truth table.

Variations in Boolean Expressions

Boolean expression (textbook style):

Boolean expression (keyboard style):

- 1. The Boolean expression AB + CD = Yis written as _____ in keyboard style. A B' + C'D = Y

- 2. The Boolean expression A+B+C = Y is written as _____ in keyboard style.
- (A+B+C)'=Y

3. The Boolean expression A B C = Y is written as _____ in keyboard style.

A'B'C'=Y

DeMorgan's Theorems

First theorem:

$$A + B = A$$
 B

Both used to eliminate long overbars Ad theorem:

$$A B = A + B$$

DeMorgan's Theorems

First theorem:

$$A + B = A B$$

Second theorem:

$$\overline{A} B = \overline{A} + \overline{B}$$

$$A - O - Y = A - O - Y$$

1. The statement A B = A + B is DeMorgan's ____ (first, second) theorem and suggests converting from a NAND to an OR situation.

second

2. The statement A + B = A B is DeMorgan's
_____ (first, second) theorem and
suggests converting from a NOR to an AND
situation.

first