

Princípios de Comunicação de Dados

Prof. Adelson de Paula Silva adelson@cefetmg.br

Diversas Tecnologias surgiram

A	J	S	2
В	K	T	3
C	L	U ···-	4
D	M	٧	5
E.F.	N	w	6
F	0	X	7
G	P	Y	8
Η	Q	Z	9
1	R	1	0

- ◆ De uma forma genérica, pode-se dizer que os sistemas de telecomunicações transportam informação através de uma energia que se propaga em um meio adequado.
- ◆Todos são compostos por:
 - > um transmissor (TX), no remetente;
 - > um receptor (RX), no destinatário;
 - um meio de transmissão.

- ◆ "SINAL é a representação apropriada de um símbolo, ou de seus elementos, com a finalidade de comunicá-lo ou transmiti-lo."
- Nas telecomunicações, as transmissões são feitas por energias de natureza elétrica ou óptica e nesses casos os sinais são elétricos ou ópticos.
- Mas o que significa representação apropriada de um símbolo?

- Os códigos são muito usados nas telecomunicações, pois facilitam a transmissão.
- O código Morse e um exemplo, pois cada letra foi representada por pontos e traços.
- ◆ No código binário, cada letra, pontuação e número são sequências de bits, ou seja, sequências de 0 e 1.
- A palavra bit significa "binary digit".

Sinais analógicos

- Voltagem contínua
- Pode ter qualquer voltagem
- Voltagem "Wavy" à medida que o tempo passa
- Muitas codificações possíveis

Classificação dos Sinais:

Analógicos, discretos e digitais.

1) Analógicos: Podem assumir qualquer valor em amplitude no tempo.

2) Discretos: São sinais definidos a intervalos regulares de tempo e representáveis por sequências de números.

Sinal Digital

3) Digitais: São sinais discretos no tempo e em amplitude, com estas codificadas numericamente.

Distorção do Sinal

- A potência do sinal diminui com a distância (ATENUAÇÃO).
 - Em meios guiados, a atenuação varia exponencialmente com a distância (medida em escala logarítmica unidade: dB / km);
 - Uma transmissão pode requerer amplificadores de sinal;
 - A atenuação depende da característica do meio.
- Distorção de fase (atraso da fase).
 - Variação da velocidade de propagação. O sinal não é distorcido mas simplesmente atrasado.

Ex: Jitter (em sinais digitais)

O que pode interferir o sinal transmitido?

DISTORÇÃO

Distorção do Sinal

 $s_1(\omega) = A \cos \omega t$

$$s_2(\omega) = A\cos(\omega t + \Delta\theta)$$

$$\omega = 2\pi f$$

$$f = \frac{1}{T}$$

Distorção

Ruído

É uma interferência no meio de transmissão. Pode ser irradiada ou conduzida.

Erros no Sinal Digital – Pode Acontecer!

- Ruído Térmico (Ruído Branco)
- Ruído Impulsivo.
- Diafonia (crosstalk).
- Intermodulação.
- Eco.

Engenharia da Computação - PCD 2019

Formas de Ruído

- ◆ Para se transmitir uma informação, é necessário que se façam alterações na energia que passa do remetente para o destinatário.
- ◆ O dispositivo que gera estas alterações é o MODULADOR.
- ◆ Modular significa "fazer variar" e o modulador varia alguma característica da energia (amplitude, frequência, etc.).

 No lado do destinatário, temos o dispositivo que recebe e reconhece as alterações, o DEMODULADOR.

- ◆ A energia enviada pelo TX chama-se PORTADORA, pois ela porta ou transporta os símbolos da fonte.
- ◆ A onda portadora pode ser gerada por corrente elétrica, onda eletromagnética ou luz.
- As variações são "ligar" e "desligar" a corrente elétrica, piscar a luz, mudar a amplitude ou a frequência da onda eletromagnética, alterar o comprimento de onda (no caso da luz), etc.

- ◆ A comunicação é sempre baseada em códigos.
- Quando falamos, estamos codificando nossas ideias em códigos de uma determinada língua, o português, por exemplo.
- Numa transmissão, pode ser necessário codificar a informação na fonte e decodificá-la no destino.

Modo de Operação: Simplex

Modo de operação: Half ou Full Duplex

- Existem 3 modos de operação para proporcionar diálogo numa comunicação de dados, que definem o sentido no qual os dados podem fluir:
 - > simplex
 - half-duplex ou semi-duplex
 - > full-duplex ou duplex

Tipos de Transmissão de Dados

- A transmissão de dados entre componentes de um mesmo computador ou para periféricos próximos pode ser classificada como:
 - > Transmissão paralela
 - Transmissão serial

- A transmissão serial ainda é subdividida em:
 - > Assíncrona
 - > Síncrona
- Na transmissão serial assíncrona, há os bits de início e de fim para coordenar a transferência dos dados.
- ◆ Os modems, terminais e impressoras seriais utilizam este tipo.

Forma de Ligação

- A ligação entre pontos de rede pode ser:
 - ponto a ponto;
 - ponto-multiponto;
 - multiponto.
- A ligação entre pontos de rede considera uma estrutura física que proporciona comunicação entre dois ou mais pontos. Sendo assim, exige um enlace por meio de uma mídia de comunicação.

Forma de Ligação

Multiponto

Ponto-multiponto

Forma de Conexão

- A conexão entre pontos de rede também pode ser:
 - ponto a ponto;
 - ponto-multiponto.
- A conexão entre pontos de rede é efetivada quando o enlace ente equipamentos distantes acontece. Exige a troca de sinais para indicar a existência efetiva da comunicação.

- a) Quantas redes locais podemos perceber?
- b) Qual o tipo de ligação existente entre as estações?
- c) Qual o tipo de conexão entre as estações?

Técnicas de Modulação

- Basicamente, podemos variar as seguintes características da energia:
 - > Amplitude;
 - Frequência;
 - > Fase.
- A característica da energia a ser variada está relacionada com o tipo da própria energia portadora.
- ◆ Cada meio de transmissão trabalha com um padrão de energia específica e os moduladores e demoduladores (MODEMs) também são específicos.

Sinal Digital

Sinal Analógico

Modulação em Fase (PM)

Técnicas de Multiplexação

- ◆ A multiplexação reune um conjunto de técnicas que permitem a transmissão de vários sinais em um mesmo link de dados.
- Os sinais são multiplexados na origem e demultiplexados no destino.
- Existem três métodos básicos de multiplexação:
 - > FDM: Multiplexação por Divisão de frequência
 - >T DM: Multiplexação por Divisão de tempo
 - > WDM: Multiplexação por Divisão no Comprimento de

Onda

Processo FDM.

Exemplo de demultiplexação FDM.

TDM.

WDM

Técnicas de Comutação

- Comutação significa permutar ou trocar.
- ◆ A comutação possibilita a interconexão de diferentes sistemas, sem que estes fiquem diretamente conectados.
- ◆ Se dois sistemas A e B querem se comunicar, então comutadores podem encaminhar as informações entre estes sistemas.

- ◆ Existem 3 tipos básicos de comutação:
 - > Comutação por circuito;
 - Comutação por mensagem;
 - Comutação por pacotes.

Comutação por Circuito

Comutação por Pacotes

Comutação por Circuito X Pacotes

	Circuito	Pacotes
Conexão física	Sim	Não
Caminho dedicado	Sim	Não
Atrasos durante a transmissão	Não	Sim
Cobrança	Tempo de conexão	Taxa de transmissão
Transmissão store-and-forward	Não	Sim
Rotas dos pacotes	Fixa	Variável

