Using the definition to justify an answer

Fannkger l S.t u= ll

Definition

n is even $\Leftrightarrow \exists$ an integer *k* such that n = 2k. *n* is odd $\Leftrightarrow \exists$ an integer *k* such that n = 2k + 1.

1. Is 0 even?

$$2 \left(ls - 301 \text{ odd} \right)$$
?

$$1.4 = -302$$
 $14 = -301$

Show that both Ro and So are even pokyers 20= 2.10 K=10 e =15 30 = 2.15Lo= gu k, lase 30=86 nfegers

More examples

Definition

n is even $\Leftrightarrow \exists$ an integer k such that n=2k. n is odd $\Leftrightarrow \exists$ an integer k such that n=2k+1.

3. If a and b are integers, is $6a^2b$ even?

4. If a and b are integers, is 10a + 8b + 1 odd?

5. Is every integer either even or odd?

Proving existential statements

· Conjecture

Existential statements

Statements of the **form** $\exists x \ Q(x)$

■ The easiest way to prove

$$\exists x \ Q(x)$$

is to find an x that makes Q(x) true.

Examples of constructive proof

1. Prove the following: \exists an even integer n that can be written in two ways as a sum of two prime numbers.

2. Suppose that r and s are integers. Prove the following: \exists an integer k such that 22r + 18s = 2k.

More than one variable

$$\exists x \ Q(x)$$

■ there \exists integers m and n such that m>1, n>1 and $\frac{1}{m}+\frac{1}{n}$ is an integer

$$\sqrt{1+0} = \sqrt{4} + \sqrt{0}$$

$$\sqrt{0+0} = \sqrt{0+0}$$

2×>×10 , (0 710 310

3×>1: 2×>1