

# Data Mining - Relational Learning

Andreas Karwath Jörg Wicker

Johannes Gutenberg University Mainz

January 26, 2017



### Acknowledgments

- Slides partially taken from
  - Stefan Kramer
  - Tom Mitchel
  - Johannes Frnkranz



# Section 1

### Introduction

Andreas Karwath January 26, 2017 DM – Relational Learning 3



## The Story so far ...

■ Item mining



- Graph mining
  - Subgraph pattern  $p_2$ :  $\stackrel{\text{Pattern } p_2}{\bigvee}$   $\stackrel{\text{A}}{\otimes}$   $\stackrel{\text{b}}{\vee}$
  - Database D consisting of graphs b),
     c), and d);
  - y a & b
- a b b b Graph c)

a b V b V

• support $(p_2, D) = 2$ 

#### Clustering





### Relational Learning Introduction I

- Offers a versatile way of describing data and patterns (pattern language)
- Can be applied for item set mining as well as for graph mining or ...
- just for all sorts of relational problems.
- But, what are relational problems?
- For example the train example from last weeks outlook:





- So what rule can describe the difference between east and west trains?
- One possible explanation (or so-called hypothesis):
   Trains go east if they possess a short car with a roof.
- The rule is fine for humans, but how can one model this using computers?

|                            |         | #Ex. | C I <sub>shape</sub> | C L <sub>axes</sub> | C I <sub>roof</sub> | C1 <sub>#objects</sub> | C LobjectShape | <br>Class |
|----------------------------|---------|------|----------------------|---------------------|---------------------|------------------------|----------------|-----------|
| One way would be to "flatt | en"it   | 1    | rectangle            |                     |                     | 3                      |                | <br>east  |
| One way would be to hatt   | CII IL. | 2    | bucket               | 2                   | open                | 1                      | triangle       | <br>east  |
|                            |         |      |                      |                     |                     |                        |                | <br>      |

- However, this is not ideal:
  - change in the order of cars
  - different shape in the cargo
  - varying number of cars
  - ..



■ A more "natural" way of describing these examples is in language able to cater for relational data: e.g. Prolog

#### Example:

```
east(e1).
has_car(e1,e1c1).
shape(e1c1,rectangle).
length(e1c1,short).
roof(e1c1,open).
carry(e1c1,e1c1o1,square).
carry(e1c1,e1c1o2,square).
carry(e1c1,e1c1o3,square).
```



### Quick Prolog Recap

- Variables: X , Y, A, B, Train, Car
- Terms: square, t1, 1, [1,2,3]
- Predicates: east/1, shape/1, carry/3
- Facts: shape(e1c1,rectangle).
  - carry(e1c1,e1c1o1,square).
- Rules:

```
east(Train) :- has_car(Train,Car), length(Car,short), roof(Car,open).
```



### Logical reasoning: Deduction

■ From rules to facts

$$B \cup T \vdash E$$

- B: Background knowledge
- *T*: Theory
- *E*: Examples

$$B \cup T \vdash E$$

```
mother(penelope,victoria).
mother(penelope,arthur).
father(christopher,victoria).
father(christopher,arthur).
```

```
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).
```

```
parent(penelope,victoria).
parent(penelope,arthur).
parent(christopher,victoria).
parent(christopher,arthur).
```



### Logical reasoning: Induction

■ From facts to rules

$$B \cup E \vdash T$$

- B: Background knowledge
- *T*: Theory
- *E*: Examples

$$B \cup E \vdash T$$

mother(penelope,victoria).
mother(penelope,arthur).
father(christopher,victoria).
father(christopher,arthur).

parent(penelope,victoria).
parent(penelope,arthur).
parent(christopher,victoria).
parent(christopher.arthur).

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).



#### Induction of a classifier

- Given:
  - background knowledge B
  - a set of training examples E
  - a classification  $c \in C$  for each example e
- Find: a theory T (or *hypothesis*) such that  $B \cup T \vdash c(e)$ , for all  $e \in E$



### Induction of a classifier: Train Example

- B: relations has\_car and car properties (length, roof, shape, etc.) example: has\_car(t1,c11), shape(c11,bucket)
- $\blacksquare$  E: the trains t1 to t10
- $\blacksquare$  C: east, west (or  $\neg$ east)
- Possible T: east(Train) :- has\_car(Train,Car), length(Car,short), roof(Car,open).

Andreas Karwath January 26, 2017 DM – Relational Learning 1



### Learning as search

- Given:
  - Background knowledge *B*
  - Theory Description Language *T* (logic)
  - Positives examples P (class  $\oplus$ )
  - Negative examples N (class  $\ominus$ )
  - A covering relation covers(B, T, e)
- Find: a theory that covers
  - all positive examples (completeness)
  - no negative examples (consistency)



### Learning as search

Covering relation:

$$covers(B, T, e) \Leftrightarrow B \cup T \vdash e$$

- A theory is a set of rules
  - a rule  $R_i$  is in CNF (in the form:  $I_1 \wedge I_2 \wedge \ldots I_n$  or  $\{I_1, I_2, \ldots, I_n\}$ )
  - lacktriangle the complete theory T in DNF (in the form  $R_1 \vee R_2 \vee \ldots R_m$  or  $\{R_1; R_2, \ldots; R_m\}$ )
- Each rule is searched separately (efficiency)
- A rule must be consistent (cover no negatives), but not necessary complete
- Separate-and-conquer strategy
- Remove from P the examples already covered



## Separate-and-Conquer Strategy - Rule Learning Example

■ Example (using propositional logic with just 2 numeric dimensions)

| Ex.# | Х   | Υ   | Class    |
|------|-----|-----|----------|
| 1    | 0.4 | 0.5 | $\Theta$ |
| 2    | 4.3 | 4.7 | $\Theta$ |
| 3    | 2.2 | 1.9 | $\Theta$ |
| 4    | 0.8 | 1.1 | $\Theta$ |
| 5    | 1.5 | 1.0 | $\Theta$ |
| 6    | 3.2 | 0.4 | $\Theta$ |
| 7    | 4.2 | 3.7 | $\Theta$ |
| 8    | 3.7 | 1.2 | $\Theta$ |
| 9    | 4.9 | 1.4 | $\Theta$ |
| 10   | 1.8 | 3.8 | $\oplus$ |
| 11   | 2.6 | 3.6 | $\oplus$ |
| 12   | 3.2 | 2.9 | $\oplus$ |
| 13   | 1.8 | 3.1 | $\oplus$ |
| 14   | 3.5 | 0.6 | $\oplus$ |
| 15   | 4.2 | 0.4 | 0        |
| 16   | 0.2 | 3.7 | $\oplus$ |
| 17   | 1.7 | 2.8 | 0        |
| 18   | 3.7 | 2.3 | 0        |

Andreas Karwath January 26, 2017 DM - Relational Learning 15



### Separate-and-Conquer Strategy - Rule Learning Example



Andreas Karwath January 26, 2017 DM – Relational Learning 16



## Separate-and-Conquer System - pFOIL

- Propositional variant of FOIL (Quinlan, 1993), one of the earliest and simplest relational learning system (*inductve logic programming* (ILP) machine learning in predicate logic)
- Search heuristic: weighted information gain
- Search strategy: hill climbing
- Stopping criterion: encoding length restriction



### pFOIL - Algorithm

```
1 Pos \leftarrow positive examples:
2 Neg ← negative examples:
3 LearnedRules \leftarrow {}:
4 while Pos \neq \{\} do
       NewRule \leftarrow most general rule (\top):
       NewRuleNeg \leftarrow Neg:
       while NewRuleNeg \neq \{\} do
            NewRule \leftarrow argmax_{NewRule' \in \rho_s(NewRule)} pFOILGain(NewRule');
            NewRuleNeg \leftarrow cover(B, NewRule, NewRuleNeg):
9
            // NewRuleNeg = subset of NewRuleNeg satisfying NewRule
10
       end
       LearnedRules \leftarrow append(LearnedRules, (NewRule));
11
       Pos \leftarrow Pos \setminus cover(B, NewRule, Pos):
12
13 end
14 return LearnedRules
```



# pFOIL - Information Gain (pFOILGain)

$$pFOILGain(R \wedge L) = p_1 \left(log_2 rac{p_1}{p_1 + n_1} - log_2 rac{p_0}{p_0 + n_0}
ight)$$

- where
  - $\blacksquare$  L = candidate literal to be added to rule R
  - $p_0$  = number of positive examples of R
  - $n_0$  = number of negative examples of R
  - $p_1$  = number of positive examples of  $R \wedge L$
  - $n_1$  = number of negative examples of  $R \wedge L$



# pFOIL - Stopping Criterion Based on Encoding Length Restriction

- Minimum Description Length (MDL) principle
- Training set of size |T|, a rule accounts for p positive examples
- Number bits required to identify (choose) those examples
- Versus coding length per literal:  $1 + log_2(|Literals|)$
- Tries to avoid learning complicated rules (covering only a few examples) ensuring that number of bits needed to encode a rule (clause) < number of bits needed to encode the instances covered by it.

### Refinement Operator $\rho$ - Propositional Case

#### Rules are in conjunctive normal form (CNF):

- In the propositional case (examples are given in form of *attributes* and *values*), literals are just in the form *attribute* = *value*.
- **Example** of  $\rho$ :
  - $R_0 = \top$
  - $\blacksquare$   $R_1 \in \rho(R_0) = \{l_1, l_2, \dots, l_n\}$ , e.g.  $R_1 = l_1$
  - $R_2 \in \rho(R_1) = \{l_1 \wedge l_2, l_1 \wedge l_3, \dots, l_1 \wedge l_n\}$
  - . . . .
- i.e.  $\rho(R)$  spezializes R by adding a literal to the conjunction

### Refinement Operator $\rho$ - First-Order (FOIL) Case

Rules are in clausal normal form (CNF):

- The most general rule is the Horn clause using the predicate we want to learn, i.e. east(T) :- .
- ightharpoonup 
  ho(R) spezializes a rule R by either:
  - adding  $p(V_1, ..., V_n)$  where p is a predicate and  $V_i$  are variables not yet occurring in the rule(clause) R.
  - **a** adding  $equal(V_j, V_k)$  or its **negation**, where  $V_j$  and  $V_k$  are variables already present in the rule
- example:

```
\rho(\texttt{east}(\texttt{T}) : \texttt{-.}) = \{\texttt{east}(\texttt{T}) : \texttt{-has\_car}(\texttt{A},\texttt{B}) . , \texttt{east}(\texttt{T}) : \texttt{-roof}(\texttt{A},\texttt{B}) . , \ldots\}
```

■ or  $\rho(\text{east}(T):-\text{has\_car}(A,B).) = \{\text{east}(T):-\text{has\_car}(A,B),\text{roof}(C,D).,\\ \text{east}(T):-\text{has\_car}(A,B),\text{equal}(T,A)....\}$ 



### Refinement Operator $\rho$ - General Overview

- Item set mining:
  - ho(I): add an item to current item set I
- Graph mining (data set of graph setting):
  - $lackbox{ } 
    ho(G)$ : add an edge to current sub graph G
- Learning rules (propositional):
  - $\rho(R_p)$ : add a literal to current rule  $R_p$
- Learning rules (first-order logic):
  - $ightharpoonup 
    ho(R_f)$ :
    - $\blacksquare$  add a literal to current rule  $R_f$  or
    - $\blacksquare$  apply an elementary substitution to  $R_f$ .



### General Pattern Mining in Relation Data

- The idea of this refinement operator (and a bit more sophisticated ones) can also be applied to pattern mining.
- WARMR is one example of APRIORI in predite logic, others are CARMR, etc.
- However, the search space explodes if one is not careful:
  - use of so-called language bias
  - use of condensed representations
  - . . . .



### Outlook

- ProbLog
- relational learning and probailities