Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

Отчет по лабораторной работе № 4 по дисциплине: Математическая статика.

Выполнила студентка: Заболотских Екатерина Дмитриевна группа: 3630102/70301

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Оглавление

Постановка задачи		1
Теория		3
1.	Эмпирическая функция распределения	3
2.	Ядерная оценка плотности распределения	3
Реализация		4
Резул	ЛЬТ2ТЫ	5
1.	Эмпирические функции распределения	5
2.	Ядерные оценки плотности распределения	8
Обсу	уждение	11
Список литературы		11
Сс	ылка на github	11
Сп	исок иллюстраций	
Рису	тнок 1: Нормальное распределение	5
Рису	тнок 2: Распределение Коши	5
Рису	тнок 3: Распределение Лапласа	6
Рису	тнок 4: Распределение Пуассона	6
Рису	тнок 5: Равномерное распределение	7
Рису	ток 6: Нормальное распределение	8
Рису	тнок 7: Распределение Коши	8
Рису	тнок 8: Распределение Лапласа	9
Рису	тнок 9: Распределение Пуассона	9
Рису	чок 10: Равномерное распределение	10

Постановка задачи

Для каждого из 5 распределений:

- 1. Нормального $\mathcal{N}(x,0,1)$
- 2. Коши C(x, 0, 1)
- 3. Лапласа $\mathcal{L}(x, 0, \frac{1}{\sqrt{2}})$
- 4. Пуассона $\mathcal{P}(k, 10)$
- 5. Равномерного $\mathcal{U}\left(x,-\sqrt{3},\sqrt{3}\right)$

Стенерировать выборки размеров: 20, 60, 100. Построить на них эмпирические функции распределения и ядерные оценки плотности распределения на отрезке [-4, 4] для непрерывных распределений и на отрезке [6, 14] для распределения Пуассона.

Теория

1. Эмпирическая функция распределения

Эмпирической функцией распределения, построенной на выборке $(x_1, ..., x_n)$ объема n, называется случайная величина

$$F_n^*(y) = \frac{1}{n} \sum_{i=1}^n I(x_i < y) \tag{1}$$

где I – индикатор события $x_i < y$.

2. Ядерная оценка плотности распределения

Если имеется выборка, полученная по распределению с некоторой плотностью f, то ядерной оценкой плотности этой функции называется [2]:

$$\hat{f}_h = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right) \tag{2}$$

где K – ядро (неотрицательная функция), h > 0 – сглаживающий параметр (ширина полосы).

Чаще всего используется нормальное (гауссово) ядро, в силу его удобных математических свойств:

$$K(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \tag{3}$$

И если используется гауссово ядро, и оцениваемая плотность является гауссовой, оптимальный выбор для h определяется правилом Сильвермана [2]:

$$h_n = \left(\frac{4s_n^5}{3n}\right)^{\frac{1}{5}} \approx 1.06s_n n^{-\frac{1}{5}} \tag{4}$$

где S_n – выборочное среднеквадратичное отклонение (корень из выборочной дисперсии).

Реализация

Код программы, реализующий данную задачу, был написан на языке Python в интегрированной среде разработке PyCharm.

Были использованы библиотеки:

- Numpy библиотека для работы с данными.
- Matplotlib вывод графиков.

Результаты

1. Эмпирические функции распределения

Рисунок 1: Нормальное распределение

Рисунок 2: Распределение Коши

Рисунок 3: Распределение Лапласа

Рисунок 4: Распределение Пуассона

Рисунок 5: Равномерное распределение

2. Ядерные оценки плотности распределения

Рисунок 6: Нормальное распределение

Рисунок 7: Распределение Коши

Рисунок 8: Распределение Лапласа

Рисунок 9: Распределение Пуассона

Рисунок 10: Равномерное распределение

Обсуждение

Ожидаемо, увеличение размера выборки улучшает приближение к теоретическим значениям. Так же видно, что равномерное распределение, в силу своей разрывности плохо приближается эмпирически.

Список литературы

- 1. Конспекты лекции
- 2. Википедия: https://ru.wikipedia.org/wiki

Ссылка на github: https://github.com/KateZabolotskih/MathStatLabs