

Chapitre VIII – Les nombres complexes

Bacomathiques -- https://bacomathiqu.es

TABLE DES MATIÈRES		
	ensemble des nombres complexes $\mathbb C$	1
1. 2.	Qu'est-ce que l'ensemble \mathbb{C} ?	1
3.	Égalité entre nombres complexes	2
II - Propriétés 3		
1.	Conjugué	3
2.	Module d'un nombre complexe	4
3.	Forme trigonométrique et exponentielle	5
4.	Affixe et représentation	6
III - Calculs particuliers 8		
1.	Résolution d'équations du second degré	8
2.	Géométrie avec les nombres complexes	9
3.	Complément : formules trigonométriques	9

I - L'ensemble des nombres complexes $\mathbb C$

1. Qu'est-ce que l'ensemble C?

Il existe un ensemble de nombres noté $\mathbb C$ qui contient l'ensemble $\mathbb R$ ainsi qu'un nombre $i\in\mathbb C$ vérifiant la propriété suivante :

À RETENIR
$$i^2 = -1$$

Cet ensemble est appelé **ensemble des nombres complexes** et obéit aux mêmes règles de calcul que l'ensemble \mathbb{R} .

2. Qu'est-ce qu'un nombre complexe?

Soient x et y deux réels. Le **nombre complexe** z correspondant peut s'écrire sous cette forme :

À RETENIR 💡

$$z = x + iy$$

Cette écriture est appelée forme algébrique. On note x = Re(z) (la partie réelle de z) et y = Im(z) (la partie imaginaire de z).

Le nombre z est dit **réel** si y = 0 et il est dit **imaginaire pur** si x = 0.

3. Égalité entre nombres complexes

Soient deux nombres complexes z et z'. Ces deux nombres sont dits **égaux** si et seulement si :

À RETENIR 💡

$$\mathsf{Re}(z) = \mathsf{Re}(z')$$
 et $\mathsf{Im}(z) = \mathsf{Im}(z')$

La partie réelle et la partie imaginaire de ces deux nombres doivent toutes deux être égales.

À LIRE 00

Attention! Il n'y pas de relation d'ordre dans l'ensemble \mathbb{C} . On ne pourra donc pas avoir de relation du type " $z \leq z'$ ".

II - Propriétés

1. Conjugué

Tout nombre complexe z = x + iy admet un nombre complexe **conjugué** noté \bar{z} . Ce conjugué est le nombre complexe suivant :

$$\bar{z} = x - iy$$

Plusieurs propriétés peuvent se dégager à l'aide des conjugués. Soient z et z^\prime deux nombres complexes :

A RETENIR
$$\P$$

$$- \bar{z} = z$$

$$- \overline{z + z'} = \bar{z} + z'$$

$$- \left(\frac{z}{z'}\right) = \frac{\bar{z}}{\bar{z'}} \text{ avec } z' \neq 0$$

$$- z^{\bar{n}} = (\bar{z})^n \text{ avec } n \in \mathbb{N}$$

$$- \overline{z \times z'} = \bar{z} \times \bar{z'}$$

Pour tout $z \in \mathbb{C}$:

2. Module d'un nombre complexe

On appelle **module** (noté |z|) d'un nombre complexe z = x + iy le réel :

À RETENIR 💡

$$|z| = \sqrt{x^2 + y^2}$$

Et on a les relations suivantes pour $z,z'\in\mathbb{C}$:

À RETENIR 💡

$$-z\overline{z} = |z|^{2}$$

$$-|z| = |\overline{z}| = |-z|$$

$$-|zz'| = |z| \times |z'|$$

$$-\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|} \text{ avec } z' \neq 0$$

$$-|z^{n}| = |z|^{n} \text{ avec } n \in \mathbb{N}$$

À LIRE 99

Ces propriétés peuvent sembler compliquées mais heureusement il est possible de les retrouver par le calcul. Par exemple, pour la première propriété du second encadré :

On pose z = x + iy, on a $\bar{z} = x - iy$:

$$z\bar{z} = (x + iy)(x - iy) = x^2 - ixy + ixy + y^2 = x^2 + y^2 = \sqrt{x^2 + y^2}^2 = |z|^2$$
.

3. Forme trigonométrique et exponentielle

Un nombre complexe z=x+iy peut s'écrire sous trois formes la **forme algébrique**, la **forme trigonométrique** et la **forme exponentielle**. Pour obtenir la forme trigonométrique du nombre complexe, il faut tout d'abord obtenir le module. La forme trigonométrique est ensuite donnée par la formule suivante :

À RETENIR 💡

$$z = |z|(\cos(\theta) + i\sin(\theta))$$

Avec θ l'argument de z (noté arg(z)) qui doit vérifier les deux conditions suivantes :

À RETENIR 🖁

$$cos(\theta) = \frac{x}{|z|}$$
 et $sin(\theta) = \frac{y}{|z|}$

Une fois la forme trigonométrique obtenue, on peut passer à la forme exponentielle, qui est :

À RETENIR

$$z = |z|e^{i\theta}$$

À LIRE 99

Exemple : On veut passer le nombre complexe z = 1 + i sous forme exponentielle.

1ère étape : On calcule le module : $|z| = \sqrt{1^2 + 1^2} = \sqrt{2}$.

 2^{nde} étape : On factorise par le module : $z=\sqrt{2} imes (rac{\sqrt{2}}{2}+irac{\sqrt{2}}{2}).$

3ème étape : On calcule un argument : $\cos(\theta) = \frac{\sqrt{2}}{2}$ et $\sin(\theta) = \frac{\sqrt{2}}{2}$. On a donc $\theta = \frac{\pi}{4}$

 $(\operatorname{car} \operatorname{cos}(\frac{\pi}{4}) = \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}).$

4ème étape : On passe à la forme exponentielle : $z = \sqrt{2}e^{i\frac{\pi}{4}}$.

On peut étendre l'égalité entre nombres complexes donnée au début : deux nombres complexes sont égaux s'ils ont le **même module** et le **même argument (modulo** 2π).

4. Affixe et représentation

Un nombre complexe z=x+iy peut être représenté dans le plan par un point M de coordonnées M(x;y). z est alors appelé **affixe** du point M (et réciproquement le point M est **l'image** de z).

Un nombre complexe $z'=|z'|\times e^{\theta}$ peut être représenté dans le plan par un point M' situé sur le cercle d'origine O=(0;0) et de rayon |z'|. Le point M' est alors situé à l'angle θ sur ce cercle.

Le module est donc une distance et l'argument est un angle.

Exemple 1 : On souhaite représenter le point M d'affixe z=1+i dans le plan. On a les coordonnées de x=1 et y=1 :

À LIRE 99

Exemple 2 : On souhaite représenter le point M' d'affixe $z'=\sqrt{2}\times e^{i\frac{\pi}{4}}$ dans le plan. On a le module de $z':|z'|=\sqrt{2}$, et un argument de $z':\theta=\frac{\pi}{4}$. On va donc tracer le cercle de rayon $\sqrt{2}$ et placer dessus l'angle $\frac{\pi}{4}$:

On voit à l'aide de ces deux représentation que $z=z^\prime$ (démontré dans l'exemple de la partie précédente).

III - Calculs particuliers

1. Résolution d'équations du second degré

Pour tout $z \in \mathbb{C}$, on définit la fonction du second degré P par $P(z) = az^2 + bz + c$ (avec $a, b, c \in \mathbb{R}$ et $a \neq 0$). On souhaite résoudre P(z) = 0 dans \mathbb{C} . On calcule le discriminant $\Delta = b^2 - 4ac$ et les solutions dépendent du signe de delta :

À RETENIR 💡

Si $\Delta > 0$, il existe deux solution réelles :

$$z_1 = \frac{-b - \sqrt{\Delta}}{2a}$$

$$z_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

Si $\Delta = 0$, il existe une solution réelle :

$$z = \frac{-b}{2a}$$

Si $\Delta < 0$, il existe deux solutions complexes conjuguées :

$$z_1 = \frac{-b - \sqrt{-\Delta}i}{2a}$$

$$z_2 = \frac{-b + \sqrt{-\Delta}i}{2a} = \bar{z_1}$$

À LIRE 99

Exemple : On souhaite résoudre l'équation $-2z^2 + 4z = 10$ dans \mathbb{C} .

 $\mathbf{1}^{\text{ère}}$ étape : On fait apparaître une équation du second degré : $-2z^2 + 4z - 10 = 0$.

2^{nde} étape : On calcule le discriminant : $\Delta = b^2 - 4ac = 16 - 80 = -64$.

 ${\bf 3^{\grave{e}me}}$ étape : On "transforme" le discriminant négatif : $\Delta=64i^2=(8i)^2$.

4ème étape : On trouve les solutions :

$$z_1 = \frac{-b - \sqrt{-\Delta}i}{2a} = \frac{-4 - 8i}{2 \times -2} = 1 + 2i$$

$$z_2 = \frac{-b + \sqrt{-\Delta}i}{2a} = \frac{-4 + 8i}{2 \times -2} = 1 - 2i$$

2. Géométrie avec les nombres complexes

Il est possible de réaliser de la géométrie avec les nombres complexes. Ainsi, soient A, B, C et D des points d'affixes respectives z_A, z_B, z_C et z_D . On se place dans un repère $(O; \overrightarrow{i}; \overrightarrow{j})$:

À RETENIR ¶

La longueur AB est : $|z_B - z_A|$.

Le milieu du segment [AB] **est :** le point M d'affixe $z_M = \frac{z_A + z_B}{2}$.

L'angle $(\overrightarrow{i}; \overrightarrow{AB})$ **est** : $arg(z_B - z_A)$ (modulo 2π).

L'angle $(\overrightarrow{AB}; \overrightarrow{CD})$ **est** : $\arg\left(\frac{z_C - z_D}{z_B - z_A}\right)$ (modulo 2π).

3. Complément : formules trigonométriques

Il est possible de retrouver les formules trigonométriques vues en Première à l'aide des nombres de complexes. La démonstration suivante n'est pas requise mais peut être utile pour retrouver ces formules.

À RETENIR 💡

On part de $e^{i \times (a+b)}$:

 $e^{i \times (a+b)} = e^{i \times a} \times e^{i \times b}$ (opérations sur les exposants)

 $\iff \cos(a+b)+i\sin(a+b)=(\cos(a)+i\sin(a))\times(\cos(b)+i\sin(b))$ (on passe à la forme trigonométrique)

 $\iff \cos(a+b) + i\sin(a+b) = \cos(a)\cos(b) + i\cos(a)\sin(b) + i\cos(b)\sin(a) - \sin(a)\sin(b)$ (on développe)

 \iff $\cos(a+b)+i\sin(a+b)=\cos(a)\cos(b)-\sin(a)\sin(b)+i(\cos(a)\sin(b)+\cos(b)\sin(a))$ (on travaille un peu l'expression)

Or deux nombres complexes sont égaux si et seulement si la partie réelle et la partie imaginaire de ces deux nombres sont égales, cela donne :

$$--\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

$$-\sin(a+b) = \cos(a)\sin(b) + \cos(b)\sin(a)$$

Les formules vues en Première ont donc bien été retrouvées.