Unit 3. Memory hierarchy Computer Architecture

Area of Computer Architecture and Technology Department of Computer Science and Engineering University of Oviedo

Fall, 2015

Objectives

- 1.- Performance improvementsOrganizational changes to improve performance
- 2.- Support for multitasking operating systems Requirements to deal with this task

Table of contents

- 1 Memory hierarchy
- 2 Cache memory
- 3 Main memory
- 4 Virtual memory TLB Page fault IA-32 paging

Ideal requirements of the memory system

- 1 Extremely large capacity
 - · several programs, many instructions, much data
- 2 Any word immediately available
 - several memory accesses (at least one per instruction)
 - sometimes the CPU waits for the memory system

MOV R	5, [R1]	

Step		Control signals	
1 5		PC-IB, IB-MAR, TMPE_CLR, CARRY_IN, ADD, ALU-TMPS, READ	
Eetch 2	2	TMPS-IB, IB-PC	
	3	MDR-IB, IB-IR	
4		R1-IB, IB-MAR, READ	
Exec.	5	Wait cycle	
ш	6	MDR-IB, IB-R5, FIN	

Performance differences

Moore's law

The number of transistors in an IC is doubled approximately every two years

Performance gap between memory and CPU is growing \rightarrow memory wall

Memory-wall effect

Example: quantifying the effect

Effective frequency =
$$\frac{1}{\text{Period} + (\text{T. mem. access} \times \text{Mem. access ratio})}$$

- CPU: 1 GHz
- Memory latency: 10 ns
- 1 out of 4 instructions have operands in memory

Memory access ratio =
$$1 + 0.25$$

$$\frac{1}{1\,{\rm ns} + (10\,{\rm ns}\times 1.25)} = 0.08\,{\rm GHz}$$

This CPU behaves as a CPU with a clock frequency of 80 MHz (12.5 times slower)

	Static RAM (SRAM)	Dynamic RAM (DRAM)	Hard disk
Basic cell	flip-flop		
Persistence	power needed	refresh needed	permanent
Latency	\approx 0.5 ns (CPU freq.)	pprox 10 ns	$pprox 10^7\mathrm{ns}$
Cost	high (6 transistors)	medium (1 transistor)	low

- basic cell material
- · power to store a bit
- · cost/bit

	Static RAM (SRAM)	Dynamic RAM (DRAM)	Hard disk
Basic cell	flip-flop	capacitor	
Persistence	power needed	refresh needed	permanent
Latency	\approx 0.5 ns (CPU freq.)	pprox 10 ns	$pprox 10^7\mathrm{ns}$
Cost	high (6 transistors)	medium (1 transistor)	low

- basic cell material
- · power to store a bit
- · cost/bit

	Static RAM (SRAM)	Dynamic RAM (DRAM)	Hard disk
Basic cell	flip-flop	capacitor	magnetic material
Persistence	power needed	refresh needed	permanent
Latency	\approx 0.5 ns (CPU freq.)	pprox 10 ns	$\approx 10^7\text{ns}$
Cost	high (6 transistors)	medium (1 transistor)	low

- · basic cell material
- · power to store a bit
- · cost/bit

	Static RAM (SRAM)	Dynamic RAM (DRAM)	Hard disk
Basic cell	flip-flop	capacitor	magnetic material
Persistence	power needed	refresh needed	permanent
Latency	\approx 0.5 ns (CPU freq.)	pprox 10 ns	$pprox 10^7\text{ns}$
Cost	high (6 transistors)	medium (1 transistor)	low

- basic cell material
- · power to store a bit
- · cost/bit

No technology meets the objectives by its own

Memory hierarchy

Requirements

- High speed (latency and bandwidth)
- · High capacity
- Low cost

Solution: memory hierarchy

Combine memory technologies in several levels

This solution will be successful if:

- Fast and small memories contain data with higher access probability
- Slow and big memories contain data with lower access probability

Memory hierarchy

Requirements

- High speed (latency and bandwidth)
- High capacity
- Low cost

Solution: memory hierarchy

Combine memory technologies in several levels

This solution will be successful if:

- Fast and small memories contain data with higher access probability
- Slow and big memories contain data with lower access probability

Principle of locality

A correlation exists among memory accesses

Locality types

- Spatial: access to close items
- Temporal: access to recently accessed items

- Code

Presence

- Data

Principle of locality

A correlation exists among memory accesses

Principle of locality

A correlation exists among memory accesses

Locality types

- Spatial: access to close items
- Temporal: access to recently accessed items Presence $\begin{cases} -\operatorname{Code} & \text{spatial: sequential execution} \\ \operatorname{temporal: execution of loops} \\ \\ -\operatorname{Data} & \text{spatial: access to arrays} \\ \operatorname{temporal: loop counters} \end{cases}$

- · Several levels in the hierarchy
- Different memory technologies are used
- The closer to the CPU, the faster
- The further from the CPU, the bigger

- CPU wants to access a word
 cache hit
 cache miss
- the word is fetched from a lower level in memory
- misses can be chained

- · Several levels in the hierarchy
- Different memory technologies are used
- The closer to the CPU, the faster
- The further from the CPU, the bigger

- 1 CPU wants to access a word
 - · cache hit
 - cache miss
- 2 the word is fetched from a lower level in memory
- misses can be chained

- · Several levels in the hierarchy
- Different memory technologies are used
- The closer to the CPU, the faster
- The further from the CPU, the bigger

- CPU wants to access a word
 - cach
 - · cache miss
- 2 the word is fetched from a lower level in memory
- misses can be chained

- · Several levels in the hierarchy
- Different memory technologies are used
- The closer to the CPU, the faster
- The further from the CPU, the bigger

- OPU wants to access a word
 - cache nit
 - · cache miss
- 2 the word is fetched from a lower level in memory
- misses can be chained

- · Several levels in the hierarchy
- Different memory technologies are used
- The closer to the CPU, the faster
- The further from the CPU, the bigger

- OPU wants to access a word
 - · cache hit
 - · cache miss
- 2 the word is fetched from a lower level in memory
- 3 misses can be chained

Average memory access time

Example

A computer has the following memory hierarchy: cache, main memory and hard disk drive. The access time in each level is:

- $t_c = 1 \, \text{ns}$
- $t_p = 10 \, \text{ns}$ each byte
- $t_d = 10 \,\mathrm{ms}$ (for any block size)

The average hit rate in each level is:

- $A_c = 0.99 \Rightarrow 99\%$
- $A_p = 0.9999 \Rightarrow 99.99\%$

Cache block size (B_c) is 64 bytes

Which is the average access time to the memory system (t_{cpd}) ?

$$t_{cpd} = \underbrace{A_c \cdot t_c}_{\text{cache hit}}$$

Average memory access time

Example

A computer has the following memory hierarchy: cache, main memory and hard disk drive. The access time in each level is:

- $t_c = 1 \text{ ns}$
- $t_p = 10 \, \text{ns}$ each byte
- $t_d = 10 \,\mathrm{ms}$ (for any block size)

The average hit rate in each level is:

- $A_c = 0.99 \Rightarrow 99\%$
- $A_p = 0.9999 \Rightarrow 99.99\%$

Cache block size (B_c) is 64 bytes

Which is the average access time to the memory system (t_{cpd}) ?

$$t_{cpd} = \underbrace{A_c \cdot t_c}_{\text{cache hit}} + \underbrace{(1 - A_c) \times [t_{pd}]}_{\text{cache miss}}$$

Average memory access time

Example

A computer has the following memory hierarchy: cache, main memory and hard disk drive. The access time in each level is:

- $t_c = 1 \text{ ns}$
- $t_0 = 10 \, \text{ns}$ each byte
- $t_d = 10 \,\mathrm{ms}$ (for any block size)

The average hit rate in each level is:

- $A_c = 0.99 \Rightarrow 99\%$
- $A_p = 0.9999 \Rightarrow 99.99\%$

Cache block size (B_c) is 64 bytes

Which is the average access time to the memory system (t_{cpd}) ?

$$t_{cpd} = \underbrace{A_c \cdot t_c}_{\text{cache hit}} + (1 - A_c) \times \left[\underbrace{A_p \cdot t_p \cdot B_c}_{\text{main memory hit}} + \underbrace{(1 - A_p) \cdot t_d}_{\text{main memory miss}} \right]$$

