Gráficas y juegos — Tarea 2 (pares)

Diego Méndez , Pablo Trinidad

W

2. Den un ejemplo de una gráfica G con un vertice de corte v de G pero tal que G no tiene aristas de corte.

Sol:

Considerese la siguiente gráfica:

 $V_G = u_1, u_2, u_3, u_4, u_5$

 $A_G = u_1 u_2, u_2 v, u_1 v, v u_3, u_3 u_4, u_4 v$

Sean A_1 y A_2 la bipartición de A_G de tal forma que :

 $A_1 = \{u_1u_2, u_2v, u_1v\} \text{ y } A_2 = \{vu_3, u_3u_4, u_4v\}$

Así:

 $V[A_1] \cap V[A_2] = \{v\}$

 $\implies v$ es vértice de corte.

Observación:

 $\forall a \in A_G(w(G-a)=1)$

⇒ No hay aristas de corte.ZiggyKaty08 Z

4. Demuestren que si G es conexa y tiene una arista de corte a y n > 2 entonces uno de los vertices incidentes en a es un vértice de corte de G. Sol:

Como a es de corte y n>2, a no puede ser un lazo.

Sea $a = u_i u_{i+1} \operatorname{con} j < n$

Como G es conexa y existe una arista de corte, pensemos en la bipartición de vertices si quitamos a a de la gráfica.

$$V_G = \{u_1, ..., u_i\} \cup \{u_{i+1}, ..., u_n\}$$

Así $A[\{u_1,...,u_j\}]$ nos da las aristas incidentes en dicho conjunto, ocurre lo mismo con $A[\{u_{j+1},...,u_n\}]$. Para tener la biparticion de aristas basta con agregar a la arista de corte, a, en alguno de los conjuntos:

$$A_1 = A[\{u_1, ..., u_j\}]$$

$$A_2 = A[\{u_{j+1}, ..., u_n\}] + \{a\} = A[\{u_j, u_{j+1}, ..., u_n\}]$$

$$\implies A_G = A_1 \cup A_2$$

$$\implies V[A_1] = \{u_1, ..., u_j\} \text{ y } V[A_2] = \{u_j, u_{j+1}, ..., u_n\}$$

$$V[A_1] \cap V[A_2] = \{u_j\}$$

 $\implies u_j$ es incidente en a y es vertice de corte.

Nota: u_{j+1} seria de corte si tomamos $A_1 = A[\{u_1, ..., u_j, u_{j+1}\}]$ y $A_2 = A[\{u_{j+1}, ..., u_n\}]$ con j+1 < n.

- 6. Apoyándose de la fórmula de recursión viste en clase, calculen la cantidad de árboles generadores de K_{2-3} . Sol:
- 8. ¿Es cierto que si $H \geq G$ entonces $K'(H) \leq K'(G)$? Desmuestrenlo o den un contraejemplo. Sol: asdadadad