Evaluation procedure for functional state of central nervous system - uses formula relating values of EEG rhythms to indicate whether central nervous system is functioning normal or not.

DMITRIEVA N V 91.11.21 91SU-5027161 (95.07.20) A61B 5/0476

The procedure consists of recording an electroencephalogram, separating the delta, theta, alpha and beta rhythms and then processing them mathematically. The relationship between EEG frequencies is then determined from a formula based on the mean frequencies for the delta, theta, alpha and beta rhythms, and indicator values produced from the relationship.

Where there is an indicator value of 1.0 + /- 0.05 the central nervous system's condition is taken to be satisfactory; a deviation of 10-20 per cent from this value indicates a tense functional state, and a deviation of over 20 per cent as a dysfunctional state.

ADVAN TAGE - More precise evaluation and more effective diagnosis of early stories of central nervous system dysfunction. Bul.20/20.7.95. (4pp Dwg.No.0/0) N>0-115591

U 2039524

(19) RU (11) 2 039 524 (13) C1

(51) MNK⁶ A 61 B 5/0476

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

- (21), (22) Заявка: 5027161/14, 21.11.1991
- (46) Дата публикации: 20.07.1995
- (56) Ссылки: Гинзбург Д.А. и др. Методика автоматизированной оценки ЭЭГ для определения групп риска патологии ЦНС. Методические рекомендации Минздрава РСФСР, 1989, с.6-9.
- (71) Заявитель: Дмитриева Нина Васильевна
- (72) Изобретатель: Дмитриева Нина Васильевна
- (73) Патентообладатель: Дмитриева Нина Васильевна

7

5

ത

(54) СПОСОБ ОЦЕНКИ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

(57) Реферат:

Изобретение относится к медицине и клинической электроэнцефалографии, и может быть использовано для ранней диагностики заболеваний ЦНС и проведения более глубокого неврологического и функционального обследования. Способ позволяет повысить точность определения функционального состояния ЦНС. Для этого оценивают зарегистрированную ЭЭГ с выделением основных ритмов по формуле и

дополнительно определяют соотношение частот в ЭЭГ, соотношение индексов этих частот и соотношений средних амплитуд за эпоху 10 с. При величине коэффициентов пропорциональности частот и индексов частот $1,309\pm0,07$ и амплитуд $1,0\pm0,05$ определяют состояние удовлетворительное, при изменении этих велиичн от 10 до 20% -состояние функционального напряжения и болве 20% нарушение функционального состояния ЦНС. 3 табл.

<u>Ω</u>

(19) RU (11) 2 039 524 (13) C1

(51) Int. Cl.⁶ A 61 B 5/0476

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 5027161/14, 21.11.1991

(46) Date of publication: 20.07.1995

(71) Applicant:

Dmitrieva Nina Vasil'evna

(72) Inventor: Dmitrieva Nina Vasil'evna

(73) Proprietor.

Dmitrieva Nina Vasil'evna

(54) METHOD FOR EVALUATING FUNCTIONAL STATE OF THE CENTRAL NERVOUS SYSTEM

(57) Abstract:

FIELD: medicine. SUBSTANCE: method involves evaluating recorded electric encephalogram detecting main mythms according to a formula and additionally determining frequencies relationship in the electric encephalogram, relationship among indexes of these frequencies and mean amplitude ratios for 10 s long epoch. The state is considered to be satisfactory, if

the values of the coefficients of proportionality of frequencies and frequency indexes are equal to 1,309 \pm 0,07 and amplitude ratios are equal to 1,0 \pm 0,05. The values being changed from 10 to 20% functional disturbance is considered to take place. If the change exceeds 20% functional stress is considered to take place. EFFECT: enhanced accuracy in determining functional state of the central nervous system. 3 tbl

ပ်

203952

N D

, Изобретение относится к медицине, в частности K способам диагностики функционального состояния центральной нервной системы (ЦНС), и может быть использовано В клинической электроэнцефалографии на догоспитальном диспансеризации этале В процессе населения, для ранней диагностики заболеваний ЦНС и проведения более глубокого неврологического

функционального обследования. Высокая индивидуальная изменчивость электроэнцефалограммы здоровых взрослых людей, широта вариантов так называемой ЭЭГ-й нормы до сих пор служит источником ряда нерешенных вопросов. В первую очередь, это относится к существенному при оценке нарушений ритмики минимальных различению "нормальных" и незначительно измененных ЭЭГ.

Многочисленные статистические ON материалы неоднозначности характеристик ЭЭГ здорового человека дают основание для дальнейшего поиска новых подходов к оценке минимальных изменений электрической активности мозга диспансеризации населения и определения так называемых групп риска людей с различными отклонениями электроэнцефалограммах.

Наиболее близким к предлагаемому способу экспрессной оценки ЭЭГ является способ автоматизированной оценки ЭЭГ для определения групп риска и патологии ЦНС, согласно которому при обследовании пациента проводится общепринятая стандартная запись электрической активности на электроэнцефалографе монополярной и биполярной коммутацией электродов. Запись проводится в состоянии покоя (с-закрытыми глазами) и во время общепринятых функциональных проб. Далее проводится процедура кодирования ЭЭГ, которая состоит в визуальной оценке записей и формализации результатов исследования. Кодировочная таблица включает список параметров фоновой ЭЭГ и ЭЭГ-реакций обследуемого на основные функциональные пробы. Учет ЭЭГ-реакции основан на динамике изменений альфа-ритма после функциональной пробы.

Недостатком этого способа является кодирование ЭЭГ на основе результатов визуальной оценки записей ЭЭГ, что имеет все тот же субъективный характер оценки видимых изменений ЭЭГ и поэтому лишь незначительно повышает точность оценки ЭЭГ при определении групп риска и патологии ЦНС.

Целью изобретения является повышение точности способа оценки и его упрощение.

Это достигается тем, что у пациента в состоянии покоя проводят электрической активности мозга электроэнцефалографе с монополярной и биполярной коммутацией электродов. Проводят анализ ЭЭГ с выделением основных ритмов σ , θ , α , β и определяют соотношение частот по формуле

$$\frac{\mathbf{f}_{\beta} - \mathbf{f}_{\alpha}}{\mathbf{f}_{\beta} - \mathbf{f}_{\alpha}} \times \frac{\mathbf{f}_{\alpha} - \mathbf{f}_{\alpha}}{\mathbf{f}_{\alpha} - \mathbf{f}_{\alpha}} \qquad \mathbf{W}_{1} \quad \text{где f} \qquad \text{средняя}$$

частота за 10" эпоху дельта-ритма, Гц,

```
f то же, тэта-ритма, Гц;
    Θ
   f то же, альфа-ритма, Гц;
    ď
   f
         то же, бета-ритма, Гц; соотношение
     ß
индексов частот по формуле
       100-1Σσθ 1<sub>α</sub>-1Σβ
100-1Σβ 1<sub>α</sub>-1Σσθ
                                                 где
```

І Σ σ, θ индекс суммы дельта- и тэта-ритмов; индекс альфа-ритма;

ď

5

10

15

20

25

35

ı индекс бэта-ритма; соотношение

средних амплитуд указанных частот за 10" эпоху по формуле

 $\frac{\mathsf{A}_{\sigma}-\mathsf{A}_{\sigma}}{\mathsf{A}_{\sigma}-\mathsf{A}_{\beta}} \times \frac{\mathsf{A}_{\theta}-\mathsf{A}_{\beta}}{\mathsf{A}_{\theta}-\mathsf{A}_{\alpha}} \quad \mathsf{W}_{2} \text{ fde } \mathsf{A}$

амплитуда за 10" эпоху дельта-ритма, мкВ; А то же, тэта-ритма, мкВ;

А то же, альфа-ритма, мкВ,

то же, бэта-ритма, мкВ.

При W_1 W_2 1,309 \pm 0,07 и N 1,0 \pm \pm 0,05 определяют удовлетворительное состояние, при изменении W_1 и W_2 или N от 10 до 20% определяют состояние функционального напряжения и перенапряжения и более 20% нарушение функционального состояния ЦНС патологической дисфункции ЦНС) (риск W 1. W₂, N козффициенты пропорциональности.

4

Способ осуществляют следующим

У пациента регистрируют с помощью электроэнцефалографа (фирма "Медикор", Венгрия) ЭЭГ сомато-сенсорной области в состоянии покоя с закрытыми глазами при билолярном отведении продолжительностью 1 мин (при мониторинге с различной дискретностью). При анализе ЭЭГ выделяют основные ритмы ЭЭГ: о, е, а, β. Далее определяют соотношение частот за 10 с эпоху, соотношение индексов частот, соотношение средних амплитуд указанных частот за 10 с эпоху и по формулам, указанным выше, определяют коэффициенты пропорциональности W_1 , W_2 и N. При W $_1$ W $_2$ 1,309 \pm 0,07 и N1,0 \pm 0,05 определяют удовлетворительное состояние; изменении их от 10 до 20% состояние функционального напряжения перенапряжения и более 20% нарушение функционального состояния ЦНС (риск патологической дисфункции ЦНС).

Пример 1. 3-на И.О. 40 лет. Клинико-электроэнцефалографическое обследование по прототипу: фоновая ЭЭГ с абсолютно доминирующим альфа-ритмом, проба с ритмической фотостимуляцией вызывает спедование ритмов, проба с гипервентиляцией усиление альфа-ритма. Диагноз: практически здорова.

Оценка ЭЭГ по предлагаемому способу приведена в табл. 1.

Отклонение OT козффициента пропорционального соотношения средних

55

частот и средних амплитуд (W 1,309) не превышает 5% соотношение индексов частот близко к 1,0.

Заключение: отклонений в ЭЭГ нет, удовлетворительное функциональное состояние

Пример 2. К-в С.Н. 26 лет. Клинико-физиологическое заключение по ЭЭГ-обследованию (по прототипу): альфа-ритм в фоновой ЭЭГ регистрируется в виде отдельных альфа-волн, проба с ритмической фотостимуляцией не вызывает реакции следования ритмов, во время пробы с гипервентиляцией характеристики ЭЭГ деформируются. Заключение: практически здоров. Диагноз невропатолога: астено-вегетативный синдром.

Данные ЭЭГ-обследования по предлагаемому способу приведены в табл. 2.

Заключение: отклонение от коэф. пропорционального соотношения (W 1, 309), средней частоты на 26% средней амплитуды на 11% соотношения индексов больше 50%

Состояние функционального напряжения и перенапряжения.

Пример 3. П-на Н.В. 42 года. Клинико-электроэнцефалографическое (по прототипу): общий обследование амплитудный уровень ЭЭГ снижен. Альфа-ритм практически отсутствует, регистрируется диффузная тахиритмическая бета-активность в сочетании с политропными дельта колебаниями. сигмафотостимуляции реакция усвоения ритма в диапазоне тета-частот. На этом фоне регистрируются единичные разряды альфа-колебаний. При гипервентиляции появляются вспышки веретен альфа-ритма. Диагноз: дисфункция средних структур головного мозга. Диагноз невропатолога: вегетососудистая дистония мешанного характера с некоторым преобладанием нервной симпатической системы. Мигренозные пароксизмы.

Оценка ЭЭГ по предлагаемому способу приведена в табл. 3.

Отклонение средних амплитуд ритмов от коэф. пропорционального соотношения (W 1,309) более 40% средних частот 10% и соотношение индекса более 50%

Заключение: функциональные изменения дисбаланс основных ритмов с патологической дисфункцией (риск патологической дисфункции ЦНС).

Таким образом, в отличие от

способа-прототипа, где первичное описание электрической активности мозга и ответов на функциональные пробы проводится на основании визуальной оценки записей ЭЭГ с специально разработанной кодировочной таблицы, предложенный способ позволяет повысить точность оценки функционального состояния мозга на основании количественного определения соотношений средних частот ЭЭГ, их индексов и амплитуд. Это позволяет повысить эффективность диагностики ранних стадий нарушения ЭЭГ, что очень важно при массовых обследованиях населения в экспрессном режиме.

Формула изобретения:

СПОСОБ ОЦЕНКИ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ (ЦНС) путем регистрации электроэнцефалограммы (ЭЭГ), выделения дельта (σ), тета (θ), альфа (α), бета (β), ритмов с последующей математической обработкой, отличающийся тем, что дополнительно определяют соотношение частот (ω > ЭЭГ по формуле

$$\frac{\mathfrak{s}_{\beta^{-\mathfrak{s}}\theta}}{\mathfrak{s}_{\beta^{-\mathfrak{s}}\delta}}\times\frac{\mathfrak{s}_{\alpha^{-\mathfrak{s}}\delta}}{\mathfrak{s}_{\alpha^{-\mathfrak{s}}\theta}}\;,$$

где $f\delta$, $f\theta$, $f\alpha$, $f\beta$ средняя частота соответственно дельта-, тэта-, альфа-, бета-ритма. Гц, за эпоху 10 с. соотношение индексов N частот по формуле

$$\frac{100-1\Sigma\beta}{100-1\Sigma\beta}\times\frac{1d-1\Sigma\beta}{1d-1\Sigma\theta}$$

где $I\Sigma\sigma$, θ индекс суммы дельта- и тэта-ритмов;

 l_{α} , l_{β} индексы альфа-бэта-ритмов, соотношение средних амплитуд w_2 частот ЭЭГ за эпоху 10 с по формуле

$$\frac{^{\Delta}\sigma^{-\Delta}\alpha}{^{\Delta}\delta^{-\Delta}\beta}\times\frac{^{\Delta}B^{-\Delta}\beta}{^{\Delta}B^{-\Delta}\alpha}.$$

где A^{σ} , A^{θ} , A^{α} , A^{β} -средняя амплитуда соответственно дельта-, тэта-, альфа- и бэта-ритмов, мкВ, за эпоху 10 с; и при w $_{1}$ = $_{02}$ =1,309 \pm 0,07 и N 1,0 \pm 0,05 состояние ЦНС оценивают как удовлетворительное, при отклонении $_{01}$ и $_{02}$ или N на 10 20% от указанных величин как состояние функционального напряжения, а при отклонении более чем на 20% как нарушение функционального состояния ЦНС.

50

10

15

25

30

35

55

-
,
K
0
W
9
9
C
•
N
4
_

Ритм	Средняя частота за 10 с эпоху, Гц	Индекс	Средняя амплитуда за 10 с эпоху, мкВ
σ	3	2	35
heta	5,5	8	25
α	11	80	15
β	20	9	8
w	1,24	1,003	1,259

Таблица 2

Ритм	Средняя частота за 10" эпоху, Гц	Индекс	Средняя амплитуда за 10" эпоху, мкВ
σ	3,5	3	70
θ	6	12	10
α	9	18	25
β	30	67	8
W	1,66	42,0 >50%	1,46

Таблица 3

တ

œ

Ритм	Средняя частота за 10" эпоху, Гц	Индекс	Средняя амплитуда за 10" эпоху, мкВ
σ	3,5	10	20
θ	7	15	12
α	12	5	10
β	27	75	7
W	1,45	>50%	1,93
	·	10.5	