This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 900 841 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 10.03.1999 Bulletin 1999/10

(21) Application number: 97401404.5

(22) Date of filing: 18.06.1997

(51) Int. Cl.⁶: **C12N 15/12**, C07K 14/725, C07K 16/28, A61K 38/17, A61K 39/395, G01N 33/53

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Designated Extension States: AL LT LV RO SI

(71) Applicants:

 INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM)
 75654 Paris Cédex 13 (FR)

 INSTITUT GUSTAVE ROUSSY F-94805 Villejuif Cédex (FR)

 APPLIED RESEARCH SYSTEMS ARS HOLDING N.V. Curacao (AN) (72) Inventors:

- Triebel, Frédéric 78000 Versailles (FR)
- Mastrangeli, Renato 00146 Rome (IT)
- Romagnani, Sergio 50100 Firenze (IT)
- (74) Representative:
 Hirsch, Denise et al
 Cabinet Lavoix
 2, Place d'Estienne d'Orves
 75441 Paris Cedex 09 (FR)

(54) LAG-3 splice variants

- (57) This invention concerns an isolated nucleotidic sequence selected from the group consisting of :
 - a) the nucleotidic sequences SEQ ID N° 1, SEQ ID N°3 or SEQ ID N°5:
 - b) the nucleotidic sequences which hybridize under stringent conditions to any of the sequences defined in a) and which code for a polypeptide which is a variant of the LAG-3 molecule;
 - c) the nucleotidic sequences which are degenerated as results of the genetic code to the nucleotidic sequences defined in a) and b), and which code for a polypeptide which is a genetic variant of the LAG-3 molecule.

EP 0 900 841 A1

Description

[0001] The present invention relates to the identification of differentially spliced variants of the LAG-3 molecule and their use as immunomodulators.

[0002] It is now recognized that the proteins encoded by MHC Class II region are involved in many aspects of immune recognition, including the interaction between different lymphoid cells such as lymphocytes and antigen presenting cells. Different observations have also shown that other mechanisms which do not take place via CD4 participate in the effector function of T helper lymphocytes.

[0003] The lymphocyte activation gene 3 (LAG-3) expressed in human activated T and NK cells encodes a 498 aminoacids (aa) type I membrane protein with four extracellular immunoglobulin superfamily (IgSF) domains (1). Analysis of
this sequence revealed notable patches of identity with stretches of aa sequences found at the corresponding positions
in CD4, although the overall aa sequence homology with human CD4 is barely above background level (approximately
20 % sequence identity). There are also some internal sequence homologies in the LAG-3 molecule between domains
1 (D1) and 3 (D3) as well as between domains 2 (D2) and 4 (D4) suggesting that LAG-3 has evolved like CD4 by gene
duplication from a preexisting 2 IgSF structure (1). In addition, LAG-3 and CD4 genes are located in a very close proximity on the distal part of the short arm of chromosome 12 (2, B. Huard, P. Gaulard, F. Faure, T. Hercend, F. Triebel,
Immunogenetics 39, 213, 1994). LAG-3 and CD4 can therefore be regarded as evolutionary "first cousins" within the
IgSF (2).

[0004] Using a quantitative cellular adhesion assay, the authors of the present invention previously showed that rosette formation between LAG-3 transfected Cos-7 cells and MHC class II+ B lymphocytes was specifically dependent on LAG-3/MHC class II interaction (3). A direct an specific binding of LAG-3 to various human class II molecules (including different alleles and isotypes), as well as to murine and monkey class II molecules has also been observed with a LAG-3Ig fusion protein (4). This dimeric LAG-3Ig recombinant globulin binds MHC class II monomorphic residues with a much higher avidity (Kd = 60 nM at 37° C) than CD4Ig (5); LAG-3Ig is indeed able to block CD4/MHC class II interaction in an intercellular adhesion assay (5).

[0005] The role of LAG-3/class II molecule interaction has been investigated using LAG-3 specific monoclonal antibodies (mAb) (6) and LAG-3 molecules (7). This interaction leads to downregulation of T cell clone activation. Productive LAG-3/MHC class II interaction is mediated through T-T cell contacts, presumably via negative MHC class II signaling into T cells. Overall, LAG-3 is expressed only affer lymphocyte activation *in vitro* as well as *in vivo* (6) and hence does not play a role in the induction phase of the response, in contrast to CD4. In addition, mAb blocking experiments have shown that LAG-3 does not participate in the recognition phase of MHC class II-restricted CD4⁺ T cell clones. The functional role of LAG-3 is therefore strikingly different from that of the other MHC ligands, CD4 and CD8. It is currently thought that T cell MHC class II molecules have a role similar to CTLA-4 following LAG-3 binding (4), i.e. induction of clonal deletion of previously activated T cells (8).

35 [0006] More recently, LAG-3 has been found to be preferentially expressed and released by activated Th1 cells, i.e. T helper cells producing IFN-γ and TNF, and to be upregulated by IL-12, a powerful Th1-inducing cytokine (F. Annunziato, R. Manetti, L. Tomasévic, MG. Giudizi, R. Biagiotti, V. Giannò, P. Germano, C. Mavilia, E. Maggi and S. Romagnani, FASEB J. 10, 769-775, 1996). High levels of soluble LAG-3 (sLAG-3) were also found in the serum of patients with relapsing multiple sclerosis (MS) (ibidem) and of a few patients with systemic lupus erythematosus (S. Romagnani, Clin. Immunol. Immunopath. 80, 225-235, 1996). These findings suggest that LAG-3 could represent an useful diagnostic marker for Th1-mediated immune diseases, such as Hashimoto's thyroiditis, type I diabetes mellitus, multiple sclerosis, Chron's disease, rheumatoid arthritis, acute allograft rejection and acute graft-versus-host disease (GVHD). On the other hand, the presence of high levels of sLAG-3 in the serum of MS patients and possibly of other patients suffering of the above diseases, supports a naturally occurring protective role for sLAG-3, as it could compete with the membrane-bound form and thus block the LAG-3-mediated immune responses.

[0007] The authors of the present invention have investigated whether other forms of LAG-3 are expressed, due to alternative splicing of the nuclear transcript.

[0008] Most eukaryotic protein encoding genes contain the sequences present in the corresponding mature mRNA in discontinuous DNA fragments (exons) interspersed among sequences (introns) that do not form a part of the mature mRNA. The primary transcripts of these genes thus contain both sequences corresponding to exons and sequences corresponding to introns. The intron sequences are subsequently excised by a nuclear multistep process, known as pre-mRNA splicing. Namely, introns are demarcated by consensus sequences at their 5'(donor) and 3'(acceptor) boundaries. The splicing process comprises cleavage at the acceptor site with concomitant ligation of the 5' and 3' exons.

[0009] In most cases, the exons present in a gene are incorporated into one mature mRNA through an invariant ligation of consecutive pairs of donor ans acceptor splice sites, providing a single gene product.

[0010] In some cases however, the same gene contain alternate splice sites which may lead to different transcripts. The mechanism regulating this alternative splicing are poorly understood, but at least for some genes, it is known to be

cell and developmental specific.

[0011] The alternative splicing leads to the production of multiple protein isoforms from a single gene. It is one of the molecular process responsible for generating the protein diversity.

[0012] More than 50 genes are currently known to generate protein diversity through the use of alternative splicing. This mechanism is particularly common and elaborated among the contractile protein genes.

[0013] The authors of the present invention have discovered three new differentially spliced LAG-3 variants, respectively referred as LAG-3V1, LAG-3V2, and LAG-3V3.

[0014] LAG-3VI encodes a soluble 36 kD protein containing 8 new aminoacid residues after the D2 domain, LAG-3V2 encodes a transmembrane protein of 61 kD which does not contain domain D4, and LAG-3V3 encodes a soluble 52 kD protein containing 8 new aminoacid residues after domain D3.

[0015] These variants provide new approaches for studying both the regulation of the LAG-3 gene and the biological function of the protein, and are useful for the manufacture of new immunomodulator compounds, especially compounds which mimic the biological function of LAG-3 or which can act as agonists or antagonists of the interaction between LAG-3 and the MHC class II molecules.

[0016] The subject of the present invention is thus an isolated nucleotidic sequence selected from the group consisting of:

- a) the nucleotidic sequences SEQ ID N° 1, SEQ ID N° 3 or SEQ ID N°5;
- b) the nucleotidic sequences which hybridize under stringent conditions to any of the sequences defined in a) and which code for a polypeptide which is a variant of the LAG-3 molecule;
- c) the nucleotidic sequences which are degenerated as results of the genetic code to the nucleotidic sequences defined in a) and b), and which code for a polypeptide which is a genetic variant of the LAG-3 molecule.

[0017] The present invention is also directed to the purified polypeptides encoded by the nucleotidic sequences defined above. Said polypeptides are designated hereinafter as "LAG-3 variants". The present invention is also relating to pharmaceutical compositions comprising a LAG-3 variant polypeptide. These compositions are useful for treating immune-related pathologies, in particular Th1-dependent diseases such as Hashimoto's thyroiditis, type I diabetes mellitus, multiple sclerosis, Chron's disease, rheumatoid arthritis, acute allograft rejection, acute GVHD, Grave's ophtal-mopathy, cerebral malaria, Lyme arthritis, reactive arthritis (Yersinia-induced), HCV-induced chronic hepatitis, primary sclerosing colangitis, contact dermatitis, unexplained recurrent abortion, aplastic anaemia, and Helicobacter pilori-induced gastric antritis.

[0018] The present invention also relates to the use of the LAG-3 variants for the manufacture of immunomodulator compounds. Such compounds can mimic or alter the biological function of LAG-3 and/or LAG-3 variants, inducing therefore some modifications of the cellular interactions involving the participation of LAG-3 or its variants.

[0019] The present invention is also directed to poly- or monoclonal antibodies, Fab, Fab' and F(ab')₂ or Fv fragments thereof, directed to a specific epitope of one of the above-defined LAG-3 variants. The use of these specific antibodies for purifying said variants or for preparing therapeutic or diagnostic compositions, as well as the resulting compositions, are also comprised within the scope of the present invention.

[0020] The present invention further provides a therapeutic method for treating immune-related pathologies comprising the administration to a patient of a LAG-3 variant in an efficient quantity or a composition comprising said variant as an active ingredient.

[0021] The invention is also relating to a therapeutic method for treating immune-related pathologies comprising the administration to a patient of an anti-LAG-3 variant- antibody as defined here-above, or a therapeutic composition containing said antibody as active ingredient.

[0022] In a preferred embodiment, the invention is directed to an isolated nucleotide sequence selected from the group consisting of SEQ ID N° 1, SEQ ID N° 3, SEQ ID N° 5 or the fully complementary sequences thereof.

[0023] The invention also relates to a purified polypeptide which is resulting from the expression of one of the nucleotidic sequences of the invention. Preferably, the polypeptide is selected from the group consisting of LAG-3V1, LAG-3V2 and LAG-3V3, respectively encoded by the sequences SEQ ID N° 1, SEQ ID N° 3 and SEQ ID N° 5 and respectively corresponding to the sequences SEQ ID N° 2, SEQ ID N° 4 and SEQ ID N° 6.

[0024] The polypeptides according to the invention can be obtained by any of the standard methods of purification of membrane or soluble proteins, by peptide synthesis or by application of genetic engineering techniques. Said techniques comprise the insertion of a nucleotidic sequence coding for one of the peptide of the invention into an expression vector, such as a plasmid, and the transformation of host cells with this expression vector, by any of the methods available to the skilled person, like for instance electroporation.

[0025] Advantageously, the nucleotidic sequences of the invention are obtained by RT-PCR (Reverse Transcriptase Polymerase Chain Reaction) of the corresponding LAG-3 variant cDNA. Briefly, total RNA is extracted from activated human peripheral blood lymphocytes (PBL), and is reverse-transcribed and amplified using a specific pair of oligonu-

cleotides primers. In the case of the present invention, the primers are consisting of a sense primer and an antisense primer which are located at two specific positions on the LAG-3 sequence which will be described in more details in the following examples. The resulting cDNA is then amplified by enzymatic amplification and can be subcloned in an appropriate host cell.

- ⁵ [0026] The present invention also relates to expression vectors comprising a nucleotidic sequence coding for a polypeptide according to the invention and host cells transformed with these vectors.
 - [0027] An "expression vector" refers to a replicable DNA construct used either to amplify or to express DNA which encodes one of the polypeptides of the invention.
 - [0028] Host cells may be prokaryotic or eukaryotic, including but not limited to bacteria, yeasts, insect cells, mammalian cells, including cell lines which are commercially available.
 - [0029] The present invention is also directed to anti-LAG-3 variants antibodies or fragments thereof, as defined above. Optionally, these antibodies or their fragments can be linked to a marker (radioisotope, fluorescent dye, enzymatic marker...) or to a therapeutically active molecule, which is for example a cytotoxic compound.
- [0030] The polyclonal antibodies may be prepared according to well-known methods, such as that described by BEN15 EDICT A.A. et al. (). Methods of production of monoclonal antibodies are well known from the prior art, especially the one described by KOHLER and MILSTEIN. This method, together with variants thereof, are described by YELTON et al ().
 - [0031] These antibodies can be used in a method for purifying a polypeptide according to the invention, or for a dosage or identification method. Said method is for example, but not limited to, a radio-immunological method of the RIA or IRMA type, an immuno-enzymatic method, like the ELISA method, or a direct or indirect immunofluorescence method. [0032] The invention also includes the use of said antibodies for the manufacture of therapeutic compositions able to block the activity of LAG-3 variants, i.e. having immunomodulatory activities, such as induction of the maturation, differentiation, proliferation and/or function of cells expressing a LAG-3 variant, e.g. activated T and NK cells.
 - [0033] The antibodies to LAG-3 variants may be used as potentiators of vaccines or immunostimulants in immunosuppressed patients, such as patients infected with HIV or treated with immunosuppressant substances.
 - [0034] The therapeutic compositions according to the present invention comprise soluble LAG-3 variant proteins or antibodies as defined above, as well as a pharmaceutically acceptable vehicle. These compositions may be formulated according to the usual techniques. The vehicle can vary in form in accordance with the chosen administration route: oral, parenteral, sublingal, rectal or nasal.
- [0035] For the compositions for parenteral administration, the vehicle will generally comprise sterile water as well as other possible ingredients promoting the solubility of the composition or its ability to be stored. The parenteral administration route can consist of intravenous, intramuscular or subcutaneous injections.
 - [0036] The therapeutic composition can be of the sustained-release type, in particular for long-term treatments, for example in autoimmune diseases. The dose to be administered depends on the subject to be treated, in particular on the capacity of his/her immune system to achieve the desired degree of protection. The precise amounts of active ingredient to be administered may be readily determined by the practitioner who will initiate the treatment.
 - [0037] The therapeutic compositions according to the invention can comprise, in addition to soluble LAG-3 variants or the antibodies according to the invention, another active ingredient, where appropriate, bound via a chemical bond to LAG-3 variant or to an antibody according to the invention. As an example, there may be mentioned soluble LAG-3
- variant proteins according to the invention fused to a toxin, for example ricin or diphteria anatoxin, capable of binding to MHC Class II molecules and of killing the target cells, for example leukaemic or melanoma cells, or fused to a radioisotope.
 - [0038] The examples which follow, together with the attached reference figures, will illustrate the invention in greater detail.

LEGENDS TO FIGURES

[0039]

- Fig. 1 represents the schematic structure of wild type (wt) LAG-3 and its variants V1, V2 and V3. LAG-3V1 derives from the retention of intron 4, i.e. cleavage at the donor and acceptor sites flanking intron 4 does not occur. An inframe stop codon located after 8 codons in the retained intron 4 leads to a truncated soluble LAG-3V1 protein, containing D1, D2 and 8 new amino acid residues.
- LAG-3V2 lacks exon 6, due to the ligation of the donor site on intron 5 to the acceptor site on intron 6. As no shift of the reading frame occurs, the resulting LAG-3V2 protein is a transmembrane protein which does not contain the D4 domain.
 - LAG-3V3 derives from cleavage of the nuclear transcript at a different polyadenylation site located ~170 bp

downstream to the 5' end of intron 5. The retained intron 5 sequence contains an in-frame stop codon. The resulting mRNA encodes a truncated soluble protein which contains D1, D2, D3 and 8 new amino acid residues.

Fig. 2 is a schematic representation of the intron/exon organization of the LAG-3 gene. Splicing events which result
in the generation of RNA transcripts encoding either wtLAG-3, LAG-3V1, LAG-3V2 or LAG-3V3 are indicated by
dotted lines.

SP: signal peptide; D1-D4: IgSF domains 1-4; TM: transmembrane sequence; CYT: cytoplasmic domain; I1-I9: intron 1-9.

New exons in LAG-3V1 and LAG-3V3 are shown as shaded boxes.

- Fig. 3 is a schematic representation of wtLAG-3 and LAG-3V1. The location of the primers and probes used for the isolation of LAG-3V1 is indicated by arrows. DNA fragments amplified using the specific primers are shown by single lines. The size of the fragments obtained by RT-PCR is indicated.
- Fig. 4 shows a Southern blot analysis of wtLAG-3 and LAG-3V1 cDNA fragments amplified by RT-PCR with primers F459 and R460.
- a) ethidium bromide stained gel. b) blot hybridized with a LAG-3 specific cDNA probe. The lower band derives from wtLAG-3 while the upper one, evident only after hybridization, derives from LAG-3V1.
 - Fig. 5 shows a Southern blot analysis of LAG-3V1 cDNA fragments amplified by RT-PCR with primers F176 and R460. a) ethidium bromide stained gel. The major band derives from wtLAG-3. b) blot hybridized with the LAG-3 intron 4 specific oligoprobe I4. The upper band derives from LAG-3V1 while the lower one is a wtLAG-3/LAG-3V1 heteroduplex.
 - Fig. 6 is a schematic representation of wtLAG-3, LAG-3V2 and LAG-3V3. The location of the primers and probes used for the isolation of LAG-3V2 and LAG-3V3 is indicated by arrows. DNA fragments amplified using the specific primers are shown by single lines. The size of the fragments obtained by RT-PCR is indicated.
- Fig. 7 shows a Southern blot analysis of wtLAG-3, LAG-3V2 and LAG-3V3 cDNA fragments amplified by RT-PCR with primers F176 and R401.
 - a) ethidium bromide stained gel. b) blot hybridized with the LAG-3D2 specific oligoprobe F459. The upper band derives from wtLAG-3 while the 780 and 940 bp bands derive from LAG-3V2 and LAG-3V3, respectively.
- Fig. 8 shows the agarose gel electrophoresis pattern of RT-PCR products obtained with LAG-3V2 and LAG-3V3 specific primers, i.e. 173/V2R and 173/V3R, respectively.
 - Fig. 9 shows the Western blotting patterns of PHA-blasts with anti LAG-3 in mAbs.

EXAMPLES

10

15

25

40

Example 1:

Cloning of human LAG-3 variant 1 (LAG-3V1) by RT-PCR on human PBMC (Peripheral Blood Mononuclear Cells)

45 - RNA extraction and RT-PCR:

[0040] PBMC were isolated by Ficoll-Hypaque density gradient centrifugation and activated with 1 µg/ml PHA and 100 U/ml IL-2 for 48 hr at 37°C, 5% CO₂. mRNA was extracted by the Oligotex Direct mRNA kit (Ouiagen Inc., Chatsworth, CA, USA.) and reverse-transcribed with an oligo(dT) primer, using a first strand synthesis kit (RT-PCR kit, Stratagen, La Jolla, CA, USA).

[0041] Amplification of cDNA was performed with 2.5 U Taq polymerase and 100 ng each of forward primer F459 (5' TCTCTCAGAGCCTCCGATGGGTCATTTTG 3') (SEQ ID N° 7) and reverse primer R460 (5' TCCTGCAGATGGATAT-GGCAGGTGTAGGTC 3') (SEQ ID N° 8) which anneal to nucleotides 762-791 and 1217-1246 of LAG-3 sequence, respectively (Fig. 3). Thirty PCR cycles were performed, each cycle including denaturation at 94°C for 1 min, annealing at 66°C for 1 min, and extension at 72°C for 2 min.

- Analysis of amplified DNA by Southern blotting :

[0042] A 10 μ l aliquot of the amplified DNA was fractionated on a 2 % agarose gel. The expected 485 bp LAG-3 fragment was observed (Fig. 4a). After blotting onto nitrocellulose membrane filter and hybridization with a 32 P-labelled LAG-3D1D2 specific cDNA probe obtained by PCR, in addition to the 485 bp band a \sim 890 bp band was found. The 890 bp fragment was reamplified, cloned and sequenced.

- Cloning and sequencing of the 890 bp LAG-3 fragment:

[0043] The 890 bp fragment was cloned into the vector pCR™II (Promega) and the insert was sequenced using the ABI Prism Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer) and the automated DNA sequencer mod. 373A (Perkin-Elmer). The results indicate that this fragment is 892 bp in length and derives from a LAG-3 variant retaining intron 4 (Fig. 2). Due to the presence of an in-frame stop codon in intron 4, this variant, named LAG-3V1, is predicted to encode a soluble 36 kD protein containing domains D1, D2 and 8 new C-terminal amino acid residues (Fig. 1).

- Confirmation of LAG-3V1 expression :

[0044] To confirm that the LAG-3V1 fragment derives from mRNA and not from genomic DNA, a second RT-PCR experiment was performed using the forward primer F176 (5' CCTGGGCCAGGCCTCGA TGAC 3') (SEQ ID N° 9) which anneals to nucleotides 725-745 of LAG-3 sequence, and the reverse primer R460 (Fig. 3). Primer F176 which spans the D1/D2 splice junction site, should not allow the amplification of LAG-3 genomic DNA.

[0045] Upon agarose gel electrophoresis of the PCR products, the expected ~520 bp wtLAG-3 band was observed (Fig. 5a). Southern blotting with the LAG-3 intron 4 specific oligoprobe I4 (5' CCCCACTCTGCTTCACATTT 3') (SEQ ID N° 10) showed the expected 930 bp LAG-3V1 band and an additional ~800 bp band (Fig. 5b). The two fragments were reamplified and sequenced. The upper band was confirmed to correspond to LAG-3V1 while the lower one was a wtLAG-3/LAG-3V1 heteroduplex.

Example il:

30

Cloning of human LAG-3 variant 2 (LAG-3V2) and LAG-3 variant 3 (LAG-3V3) by RT-PCR on activated PBMC

- RNA extraction and RT-PCR:

35 [0046] PBMC were isolated by Ficoll-Hypaque density gradient centrifugation and activated with 1 μg/ml PHA and 100 U/ml IL-2 for 48 hr at 37°C, 5% CO₂.

[0047] Total RNA was extracted by TriZol reagent (GIBCO-BRL). Total RNA (5µg) was reverse-transcribed using the anchor oligo(dT) primer mixture AT17A, AT17C and AT17G (5' GGCCCTGGATCCGGACCTAA(T)₁₇ (SEQ ID N° 1) followed by A, C or G) (Fig. 6) which allows to obtain cDNA molecules with homogeneous 3' ends and an anchor for subsequent PCR.

[0048] Reverse transriptase (RT) reaction was performed in 50 µl final volume of 1x RT buffer, 10 mM DTT, 1 mM dNTP, 40 U RNase inhibitor (Boehringer) and 400 U Superscript II RT (GIBCO-BRL) at 37°C for 90 min. RT reaction was stopped at 90°C for 5 min. RNA was digested with 1 U RNase H (Boehringer) at 37°C for 30 min.

[0049] PCR was performed with the forward primer F176 and the reverse primer R401 (5' GGCCCTGGATCCGGACCTAA 3') (SEQ ID N° 12) which anneals to the 3' anchor of cDNA (Fig. 6). Primers F176 and R401 should allow to amplify all LAG-3 splice variants containing the D1D2 junction up to poly(A) tail.

[0050] PCR was performed on 5 µl cDNA equivalent to 0.5 µg total RNA in 100 µl final volume containing 1x Taq buffer, 2.5 U Taq DNA polymerase (Advanced Biotechnologies), 1.5 mM MgCl₂, 200 µM dNTP, 10% DMSO and 50 pmoles each of F176 and R401 primers. A hot start technique and 30 PCR cycles (96°C for 30 sec, 65°C for 30 sec, 72°C for 4 min) were used. RNA without RT was used as negative control in PCR experiment.

- Southern blot analysis of RT-PCR products :

[0051] RT-PCR products (10 µl) were fractionated by agarose gel electrophoresis and blotted onto Hybond N+ nylon membrane (Amersham). The blot was hybridized with the DIG-labeled LAG-3D2 specific oligoprobe F459 (Fig. 6) in 5X SSC, 0.02% SDS, 0.5% blocking reagent (Boehringer), 0.1% N-laurylsarcosine at 55 °C for 30 min.
[0052] The blot was washed twice with 2x SSC, 0.1% SDS at 55°C. Hybrid detection was performed with HRP-conjugated anti-DIG antibodies (Boehringer) and ECL reagents (Amersham).

[0053] The results showed that in addition to the expected 1.12 kb wtLAG-3 fragment two minor bands of approximately 940 and 780 bp were present both in the ethidium bromide stained gel (Fig. 7a) and in the Southern blot (Fig. 7b).

Sequencing of LAG-3 fragments:

[0054] The 940 and 780 bp PCR fragments were isolated from agarose gel, reamplified with F176/R401 primers and directly sequenced. The results showed that the 780 bp fragment derives from an in-frame skipping of LAG-3 exon 6 (Fig. 2). This variant, named LAG-3V2, is predicted to encode a 61 kD transmembrane protein which does not contain the domain D4 (Fig. 1).

[0055] Sequencing of the 940 bp fragment showed that it derives from the cleavage of the nuclear transcript at a different polyadenylation site located ~170 bp downstream to the 5' end of intron 5 (Fig. 2). The retained intron 5 sequence contains an in-frame stop codon. The resulting mRNA encodes a 52 kD soluble LAG-3 variant, named LAG-3V3, which contains domain D1, D2 and D3 followed by 8 new amino acid residues (Fig. 1). Both LAG-3V2 and LAG-3V3 maintain the 4 glycosylation sites of wtLAG-3.

- Confirmation of LAG-3V2 and LAG-3V3 expression :

[0056] To confirm the expression of LAG-3V2 and LAG-3V3 and to assess the presence of the entire 5' sequence encoding the LAG-3 N-terminus, RT-PCR was performed on total RNA from activated PBMC with the forward primer 173 (5' TATAGGATCCGGTGCCCAG ACCATAGGAGAGATG 3') (SEQ ID N° 13) which anneals to nucleotides 212-233 of LAG-3 sequence spanning the ATG start codon, and the reverse primers V2R (5'GGCGTTCACGTGGTTGGGCAC-CTGTGATGATT 3') (SEQ ID N° 14) or V3R (5TCACCTACTCGAGAAAAGTGGGGGCCGAGAT 3') (SEQ ID N° 15) (Fig. 6). As the primer V2R anneals to the splice junction site D3/TM of LAG-3V2 and the primer V3R anneals to the 5' sequence of intron 5 retained in LAG-3V3, only amplification of these two variants should occur.

[0057] PCR was performed with annealing temperature at 68°C for the first two cycles and 72°C for the remaining 28 cycles. Upon agarose gel electrophoresis, the expected 1.10 Kb LAG-3V2 and 1.23 Kb LAG-3V3 fragments were found (Fig. 8). DNA sequencing of the amplified fragments confirmed that LAG-3V2 encodes a 61 kD transmembrane protein containing domains D1, D2, D3, the transmembrane domain (TM) and the cytoplasmic domain (CYT), while LAG-3V3 encodes a 52 kD soluble protein containing D1, D2 and a new 8 aa C-tail (Fig. 1).

[0058] In conclusion, at present four LAG-3 molecules have been discovered, two membrane-bound (wtLAG-3 and LAG-3V2) and two soluble forms which lack the transmembrane sequence (LAG-3V1 and LAG-3V3). The analysis of LAG-3 variant expression in specific T cell subsets and in different activation states can provide useful information for a better understanding of the LAG-3 function

Example III:

35

Characterization of LAG-3V3 protein

40 [0059] Human peripheral blood mononuclear cells (PBMC) were obtained by centrifugation on ficoll-diatrizoate density gradient from buffy coats of blood donation units. PBMC were obtained from two healthy donors. PBMC collected from the interface between the supernatant and the gradient were washed three times in PBS and finally resuspended at the concentration of 2.10⁶ cells/ml in RPMI 1640 culture medium enriched with 10 % fetal bovine serum (FBS), 2 mM L-glutamine, penicillin 100 IU/ml and streptomycin 100 μg/ml. Phytohemagglutinin (PHA) and recombinant human interleukin (IL-2) were then added at a final concentration of 1 μg/ml and 100 U/ml respectively.

[0060] The cells were incubated at 37°C in 5 % CO $_2$ atmosphere for 72 and 120 hours. At the end of the incubation times, cell suspensions were transferred to 50 ml polypropylene tubes and centrifuged at 400 g for 10 minutes. The supernatants were collected and immediately frozen at -20°C. The total protein determination was carried out by the Bradford method, using the Coomassie Plus Protein Assay (Pierce, Rockford, IL, USA). For analysis, 100 μ g of samples were completely dried under vacuum centrifugation, resuspended in 10 μ l bi-distilled water (ddH $_2$ O), 10 μ l sample buffer 2x were added and the samples were incubated 5 minutes at 100°C.

[0061] The samples were then loaded on 8 % polyacrylamide Tris glycine gels for SDS-PAGE analysis and run under denaturating and reducing conditions at a constant 125 volts. The run was stopped when the dye front reached the bottom of the gel.

5 [0062] The gel was removed and incubated for 20 minutes in transfer buffer. A nitrocellulose membrane 0.45 μm was incubated for 10 minutes in transfer buffer in a separate container with gentle agitation. The proteins in the gel were then transferred electrophoretically to the membrane for 90 minutes at a constant 75 volts. When the transfer was completed, the membrane was dried at room temperature and then incubated for 20 minutes in 1 % (w/v)KOH with gentle agitation

and washed 4 times with PBS for 5 minutes. The membrane was stained 5 minutes in Ponceau S solution to show proteins and molecular weight markers and destained 4 times with PBS. Non-specific binding sites were blocked by incubating the membrane overnight at 4°C with 1 % Mile in PBS/0.5 % Tween. After elimination of blocking solution, the membrane was blotted with anti-LAG-3 monoclonal antibody (mAb) 2H6 diluted at 5 µg/ml blocking solution. After one hour of incubation at room temperature with agitation, the membrane was washed 5 times with PBS/0.5 % Tween for 10 minutes each and than incubated for one hour at room temperature in agitation with goat anti-mouse polyclonal antibodies conjugated with horseradish peroxidase (HRP)diluted 1:1000 in blocking solution. At the end of the incubation, the membrane was washed as described above.

10 RESULTS

[0063] The immunoblotted proteins were then revealed using the enhanced-chemiluminescent (ECL) method (Amersham Italia, Milan Italy).

[0064] Lanes 1 and 3 of figure 9 represent the results obtained from donor 1, respectively after 72 and 120 hours incubation; whereas lanes 2 and 4 correspond to donor 2 and lane 5 to the lymphoblastoid cell line RAJI as negative control. The starting protein concentrations were respectively 3.1 mg/ml; 1.9 mg/ml; 2.8 mg/ml; 3.4 mg/ml; 3.4 mg/ml from lane 1 to lane 5.

[0065] A band with an apparent molecular weight of about 5.5 kDa reacted with anti-LAG-3 mAb. This apparent molecular weight is in agreement with that expected for the putative LAG-3 variant 3 based on the mRNA sequence. This band specifically appears in PHA-blasts and is not present in the supernatant of the B-lymphoblastic cell line RAJI, processed as the supernatants from PHA-blasts.

25

30

35

40

45

50

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:	
10	(i) APPLICANTS: (A) NAME: Institut National de la Santé et de la Recherche Médicale (B) STREET: 101 rue de Tolbiac (C) CITY: Paris (E) COUNTRY: France	
	(F) POSTAL CODE (ZIP): 75013 (A) NAME: Institut Gustave Roussy	
15	(E) STREET: 39 rue Camille Desmoulins (C) CITY: Villejuif (E) COUNTRY: France (F) POSTAL CODE (ZIP): 94805 (G) TELEPHONE: 0142114211 (H) TELEFAX: 0142115300	
20	(A) NAME: Applied Research Systems ARS Holding N.V (B) STREET: 6 John R. Gorsiraweg PO Box 3889 (C) CITY: CURACAO (E) COUNTRY: The Dutch West Indies	
25	(iii) NUMBER OF CREATINGS 15	
30	(iii) NUMBER OF SEQUENCES: 15 (iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)	
35	(2) INFORMATION FOR SEQ ID NO: 1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2279 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
	TCAGGCTGCC TGATCTGCCC AGCTTTCCAG CTTTCCTCTG GATTCCGGCC TCTGGTCATC	60
		120
50		180
		240
	CTCAGTTCCT GGGCTTGCTG TTTCTGCAGC CGCTTTGGGT GGCTCCAGTG AAGCCTCTCC	300

	AGCCAGGGGC	TGAGGTCCCG	GTGGTGTGGG	CCCAGGAGGG	GGCTCCTGCC	CAGCTCCCCT	360
	GCAGCCCCAC	AATCCCCCTC	CAGGATCTCA	GCCTTCTGCG	AAGAGCAGGG	GTCACTTGGC	420
5	AGCATCAGCC	AGACAGTGGC	CCGCCCGCTG	cccccccc	CCATCCCCTG	GCCCCGGCC	480
	CTCACCCGGC	GGCGCCCTCC	TCCTGGGGGC	CCAGGCCCCG	CCGCTACACG	GTGCTGAGCG	540
	TGGGTCCCGG	AGGCCTGCGC	AGCGGGAGGC	TGCCCCTGCA	GCCCGCGTC	CAGCTGGATG	600
10	AGCGCGGCCG	GCAGCGCGGG	GACTTCTCGC	TATGGCTGCG	CCCAGCCCGG	CGCGCGGACG	660
	CCGGCGAGTA	CCGCGCCGCG	GTGCACCTCA	GGGACCGCGC	CCTCTCCTGC	CGCCTCCGTC	720
	TGCGCCTGGG	CCAGGCCTCG	ATGACTGCCA	GCCCCCAGG	ATCTCTCAGA	GCCTCCGACT	780
15	GGGTCATTTT	GAACTGCTCC	TTCAGCCGCC	CTGACCGCCC	AGCCTCTGTG	CATTGGTTCC	840
	GGAACCGGGG	CCAGGGCCGA	GTCCCTGTCC	GGGAGTCCCC	CCATCACCAC	TTAGCGGAAA	900
	GCTTCCTCTT	CCTGCCCCAA	GTCAGCCCCA	TGGACTCTGG	GCCCTGGGGC	TGCATCCTCA	960
	CCTACAGAGA	TGGCTTCAAC	GTCTCCATCA	TGTATAACCT	CACTGTTCTG	GGTAACTCCC	1020
20	CCACTCTGCT	TCACATTTGA	CCACAACTCC	TTCCTGCCCC	CCTTGTCACC	TCCCCTAACT	1080
•	ATGGGTCCCC	AAACCAGGTT	CTCGGCAGCG	AGTGGCCTAC	GTCATTGCTG	TGGGTCTCAC	1140
	TGTTCGACCC	CTTTATATTG	CTGGCAGCCT	CACAGCTGCC	ATCACCCCTT	CTTGCTTCTC	1200
25	CCGTGGCCTT	CCAGCGTCAT	TGCCGGCCTT	CCCTCTCCTT	CCGACTAAGC	CCACTTGCTG	1260
	GGTTTCTGAG	CCTCCTCAGC	TCATCACCTT	ATTCTGCTCC	TTAGCACTCT	TATGAGCCAG	1320
	ACCATCTCCT	GAATTCTTCT	GCCTCCCTTC	CTTGCAGCCC	CAGCACTCCC	TCCCCACTGC	1380
30	AGCACCCAGC	TTTAACTTTG	GGTTTTCTTT	TCTCTTCAGG	TCTGGAGCCC	CCAACTCCCT	1440
	TGACAGTGTA	CGCTGGAGCA	GGTTCCAGGG	TGGGGCTGCC	CTGCCGCCTG	CCTGCTGGTG	1500
	TGGGGACCCG	GTCTTTCCTC	ACTGCCAAGT	GGACTCCTCC	TGGGGGAGGC	CCTGACCTCC	1560
35	TGGTGACTGG	AGACAATGGC	GACTTTACCC	TTCGACTAGA	GGATGTGAGC	CAGGCCCAGG	1620
	CTGGGACCTA	CACCTGCCAT	ATCCATCTGC	AGGAACAGCA	GCTCAATGCC	ACTGTCACAT	1680
	TGGCAATCAT	CACAGTGACT	CCCAAATCCT	TTGGGTCACC	TGGATCCCTG	GGGAAGCTGC	1740
	TTTGTGAGGT	GACTCCAGTA	TCTGGACAAG	AACGCTTTGT	GTGGAGCTCT	CTGGACACCC	1800
40	CATCCCAGAG	GAGTTTCTCA	GGACCTTGGC	TGGAGGCACA	GGAGGCCCAG	CTCCTTTCCC	1860
	AGCCTTGGCA	ATGCCAGCTG	TACCAGGGGG	AGAGGCTTCT	TGGAGCAGCA	GTGTACTTCA	1920
	CAGAGCTGTC	TAGCCCAGGT	GCCCAACGCT	CTGGGAGAGC	CCCAGGTGCC	CTCCCAGCAG	1980
45	GCCACCTCCT	GCTGTTTCTC	ACCCTTGGTG	TCCTTTCTCT	GCTCCTTTTG	GTGACTGGAG	2040
	CCTTTGGCTT	TCACCTTTGG	AGAAGACAGT	GGCGACCAAG	ACGATTTTCT	GCCTTAGAGC	2100
	AAGGGATTCA	CCCTCGCAGG	CTCAGAGCAA	GATAGAGGAG	CTGGAGCAAG	AACCGGAGCC	2160
50	GGAGCCGGAG	CCGGAACCGG	AGCCCGAGCC	CGAGCCCGAG	CCGGAGCAGC	TCTGACCTGG	2220
	AGCTGAGGCA	GCCAGCAGAT	CTCAGCAGCC	CAGTCCAAAT	AAACCTCCTG	TCTAGCAGC	2270

	(2)	INFO	RMAT:	ION 1	FOR :	SEQ :	ID N	0: 2	:									
5		(i)	(B)	UENC:) LEI) TY!) STI) TO!	NGTH PE: (RANDI	: 24° amin EDNE:	7 am: o ac: SS:	ino id sing	acid	s								
		(ii)	MOL	ECULI	E TY	PE: 1	prot	ein										
10		(vi)		GINAI ORG				sap	iens									
		(xi)	SEQ	UENCI	E DES	SCRI	PTIO	1: Si	EQ I	ои о	: 2:							
15		Leu 1	Gln	Pro	Gly	Ala 5	Glu	Val	Pro	Val	Val 10	Trp	Ala	Gln	Glu	Gly 15	Ala	
		Pro	Ala	Gln	Leu 20	Pro	Суз	Ser	Pro	Thr 25	Ile	Pro	Leu	Gln	Asp 30	Leu	Ser	
20		Leu	Leu	Arg 35	Arg	Ala	Gly	Val	Thr 40	Trp	Gln	His	Gln	Pro 45	Asp	Ser	Gly	
		Pro	Pro 50	Ala	Ala	Ala	Pro	Gly 55	His	Pro	Leu	Ala	Pro 60	Gly	Pro	His	Pro	
25		Ala 65	Ala	Pro	Ser	Ser	Trp 70	Gly	Pro	Arg	Pro	Arg 75	Arg	Tyr	Thr	Val	Leu 80	
			Val			85					90					95		
3 <i>0</i>			Val		100					105					110			
			Leu	115					120					125				
35			His 130					135					140					
		145	Gln				150					155					160	
40			Trp			165		,			170					175		
			Val		180					185					190		_	
45			Ser	195					200					205				
			Ser 210					215					220					
5 <i>0</i>		225	Gly -				230		Met	Tyr	Asn	Leu 235	Thr	Val	Leu	Gly	Asn 240	
-		Ser	Pro	Thr		Leu 245	His	Ile										

(2) INFORMATION FOR SEQ ID NO: 3:

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1629 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
10	(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
15	TCAGGCTGCC TGATCTGCCC AGCTTTCCAG CTTTCCTCTG GATTCCGGCC TCTGGTCATC	60
	CCTCCCCACC CTCTCTCCAA GGCCCTCTCC TGGTCTCCCT TCTTCTAGAA CCCCTTCCTC	120
	CACCTCCCTC TCTGCAGAAC TTCTCCTTTA CCCCCCACCC CCCACCACTG CCCCCTTTCC	180
20	TTTTCTGACC TCCTTTTGGA GGGCTCAGCG CTGCCCAGAC CATAGGAGAG ATGTGGGAGG	240
20	CTCAGTTCCT GGGCTTGCTG TTTCTGCAGC CGCTTTGGGT GGCTCCAGTG AAGCCTCTCC	300
	AGCCAGGGGC TGAGGTCCCG GTGGTGTGGG CCCAGGAGGG GGCTCCTGCC CAGCTCCCCT	360
	GCAGCCCCAC AATCCCCCTC CAGGATCTCA GCCTTCTGCG AAGAGCAGGG GTCACTTGGC	420
25	AGCATCAGCC AGACAGTGGC CCGCCCGCTG CCGCCCCGG CCATCCCCTG GCCCCGGCC	480
	CTCACCCGGC GGCGCCCTCC TCCTGGGGGC CCAGGCCCCG CCGCTACACG GTGCTGAGCG	540
	TGGGTCCCGG AGGCCTGCGC AGCGGGAGGC TGCCCCTGCA GCCCCGCGTC CAGCTGGATG	600
30	AGCGCGGCCG GCAGCGCGGG GACTTCTCGC TATGGCTGCG CCCAGCCCGG CGCGCGGACG	660
	CCGGCGAGTA CCGCGCCGCG GTGCACCTCA GGGACCGCGC CCTCTCCTGC CGCCTCCGTC	720
	TGCGCCTGGG CCAGGCCTCG ATGACTGCCA GCCCCCCAGG ATCTCTCAGA GCCTCCGACT	780
35	GGGTCATTTT GAACTGCTCC TTCAGCCGCC CTGACCGCCC AGCCTCTGTG CATTGGTTCC	840
	GGAACCGGGG CCAGGGCCGA GTCCCTGTCC GGGAGTCCCC CCATCACCAC TTAGCGGAAA	900
	GCTTCCTCTT CCTGCCCCAA GTCAGCCCCA TGGACTCTGG GCCCTGGGGC TGCATCCTCA	960
40	CCTACAGAGA TGGCTTCAAC GTCTCCATCA TGTATAACCT CACTGTTCTG GGTCTGGAGC	1020
	CCCCAACTCC CTTGACAGTG TACGCTGGAG CAGGTTCCAG GGTGGGGCTG CCCTGCCGCC	1080
	TGCCTGCTGG TGTGGGGACC CGGTCTTTCC TCACTGCCAA GTGGACTCCT CCTGGGGGAG	1140
-	GCCCTGACCT CCTGGTGACT GGAGACAATG GCGACTTTAC CCTTCGACTA GAGGATGTGA	1200
45	GCCAGGCCCA GGCTGGGACC TACACCTGCC ATATCCATCT GCAGGAACAG CAGCTCAATG	1260
	CCACTGTCAC ATTGGCAATC ATCACAGGTG CCCAACGCTC TGGGAGAGCC CCAGGTGCCC	1320
	TCCCAGCAGG CCACCTCCTG CTGTTTCTCA CCCTTGGTGT CCTTTCTCTG CTCCTTTTGG	1380
50	TGACTGGAGC CTTTGGCTTT CACCTTTGGA GAAGACAGTG GCGACCAAGA CGATTTTCTG	1440
	CCTTAGAGCA AGGGATTCAC CCTCCGCAGG CTCAGAGCAA GATAGAGGAG CTGGAGCAAG	1500

12

	AACCGGAC	GCC G	GAGC	CGGA	G CC	GGAA	CCGG	AGO	CCGA	GCC	CGAG	ccca	AG C	CGGA	GCAG	C	1560
	TCTGACCT	rgg a	GCTG	AGGC	A GC	CAGC	AGAT	CTC	AGCA	GCC	CAGT	CCAA	AT A	AACG	TCCT	G	1620
5	TCTAGCAG	3C															1629
	(2) INF	ORMAT	ION	FOR	SEQ	ID N	io: 4	:									
10	(i)	(B) LE) TY) ST	E CH NGTH PE: RAND POLO	: 42 amin EDNE	2 am o ac SS:	nino id sing	acid	.s								
	(11)	MOL	ECUL	E TY	PE:	prot	ein										
15	(vi)	ORI (A		L SO GANI			sap	iens									
		SEQ															
20	Leu 1	Gln	Pro	Gly	Ala 5	Glu	Val	Pro	Val	Val 10	Trp	Ala	Gln	Glu	Gly 15	Ala	
	Pro	Ala	Gln	Leu 20	Pro	Сув	Ser	Pro	Thr 25	Ile	Pro	Leu	Gln	Asp 30	Leu	Ser	
25	Leu	Leu	Arg 35	Arg	Ala	Gly	Val	Thr 40	Trp	Gln	His	Gln	Pro 45	Asp	Ser	Gly	
	Pro	Pro 50	Ala	Ala	Ala	Pro	Gly 55	His	Pro	Leu	Ala	Pro 60	Gly	Pro	His	Pro	
20	Ala 65	Ala	Pro	Ser	Ser	Trp 70	Gly	Pro	Arg	Pro	Arg 75	Arg	Tyr	Thr	Val	Leu 80	
30	Ser	Val	Gly	Pro	Gly 85	Gly	Leu	Arg	Ser	Gly 90	Arg	Leu	Pro	Leu	Gln 95	Pro	
	Arg	Val	Gln	Leu 100	Хsр	Glu	Arg	Gly	Arg 105	Gln	Arg	Gly	Asp	Phe 110	Ser	Leu	
35	Trp	Leu	Arg 115	Pro	λla	Arg	Arg	Ala 120	Asp	Ala	Gly	Glu	Tyr 125	Arg	Ala	Ala	
	Val	His 130	Leu	Arg	Asp	Arg	Ala 135	Leu	Ser	Суз	Arg	Leu 140	Arg	Leu	Arg	Leu	
40	Gly 145	Gln	Ala	Ser	Met	Thr 150	Ala	Ser	Pro	Pro	Gly 155	Ser	Leu	Arg	Ala	Ser 160	
		Trp			165					170					175		
45	Ser	Val	His	Trp 180	Phe	Arg	Asn	Arg	Gly 185	Gln	Gly	λrg	Val	Pro 190	Val	Arg	
	Glu	Ser	Pro 195	His	His	His	Leu	Ala 200	Glu	Ser	Phe	Leu	Phe 205	Leu	Pro	Gln	
50	Val	Ser 210	Pro	Met	Asp	Ser	Gly 215	Pro	Trp	Gly	Cys	Ile 220	Leu	Thr	Tyr	Arg	
	Asp 225	Gly	Phe	Asn	Val	Ser 230	Ile	Met	Tyr	Asn	Leu 235	Thr	Val	Leu	Gly	Leu 240	

. 1

	Glu	Pro	Pro	Thr	Pro 245	Leu	Thr	Val	Tyr	Ala 250	Gly	Ala	Gly	Ser	Arg 255	Val	
5	Gly	Leu	Pro	Сув 260	Arg	Leu	Pro	Ala	Gly 265	Val	Gly	Thr	Arg	Ser 270	Phe	Leu	
	Thr	Ala	Lys 275	Trp	Thr	Pro	Pro	Gly 280	Gly	Gly	Pro	Asp	Leu 285	Leu	Val	Thr	
10	Gly	Asp 290		Gly	Asp	Phe	Thr 295	Leu	Arg	Leu	Glu	Asp 300	Val	Ser	Gln	Ala	
	Gln 305	Ala	Gly	Thr	Tyr	Thr 310	Сув	His	Ile	His	Leu 315	Gln	Glu	Gln	Gln	Leu 320	
15	Asn	Ala	Thr	Val	Thr 325	Leu	Ala	Ile	Ile	Thr 330	Gly	Ala	Gln	Arg	Ser 335	Gly	
	Arg	Ala	Pro	Gly 340	Ala	Leu	Pro	Ala	Gly 345	His	Leu	Leu	Leu	Phe 350	Leu	Thr	
••	Leu	Gly	Val 355	Leu	Ser	Leu	Leu	Leu 360	Leu	Val	Thr	Gly	Ala 365	Phe	Gly	Phe	
20	His	Leu 370	Trp	Arg	Arg	Gln	Trp 375	Arg	Pro	Arg	Arg	Phe 380	Ser	Ala	Leu	Glu	
	Gln 385	Gly	Ile	His	Pro	Pro 390	Gln	Ala	Gln	Ser	Lys 395	Ile	Glu	Glu	Leu	Glu 400	
25	Gln	Glu	Pro	Glu	Pro 405	Glu	Pro	Glu	Pro	Glu 410	Pro	Glu	Pro	Glu	Pro 415	Glu	
•	Pro	Glu	Pro	Glu 420	Gln	Leu											
30	(2) INFO	RMAT:	ION 1	FOR S	SEQ :	ID NO): 5	:									
35	(i)	(B)	UENCI) LEI) TYI) STI) TOI	NGTH: PE: r RANDE	140 nucle	58 ba sic a SS: s	ase pacid	airs	3								
	(ii)	MOL	ECULI	E TYP	PE: 0	DNA											
	(vi)	ORIG (A)	GINAI) ORG				sapi	iens									
40	(xi)	SEQ	UENCI	E DES	CRII	PTION	V: SE	EQ II	NO:	5:							
	TCAGGCTG										ATTO	cecc	C TO	TGGI	CATO	!	60
	CCTCCCCA	CC CT	rcrc	CCA	. GG	CCT	CTCC	TGG1	CTC	CT 1	CTTC	TAGA	A CC	CCTI	ccro	!	120
45	CACCTCCC	TC T	CTGC!	AGAAC	TTC	CTCCI	ATT	ccc	CCAC	cc c	CCAC	CACI	e co	CCCI	TTCC		180
	TTTTCTGA	CC TO	CCTT	TGGA	GGC	GCTC#	AGCG	CTG	CCAC	AC C	ATAC	GAGA	G AT	GTGG	GAGG	ļ	240
	CTCAGTTC	CT GO	GCTT	rgcte	TTI	CTGC	CAGC	CGCT	TTGG	GT C	GCTC	CAGI	G AA	GCCT	CTCC		300
50	AGCCAGGG																360
	GCAGCCCC	AC AZ	ATCC	CCTC	CAC	GATO	TCA	GCC1	TCT	CG A	AGAG	CAGG	G GI	CACT	TGGC		420

AGCATCAGCC AGACAGTGGC CCGCCCGCTG CCGCCCCGG CCATCCCCTG GCCCCCGGCC

5	CTCACCCGGC GGCGCCCTCC TCCTGGGGGC CCAGGCCCCG CCGCTACACG GTGCTGAGCG
·	TGGGTCCCGG AGGCCTGCGC AGCGGGAGGC TGCCCCTGCA GCCCCGCGTC CAGCTGGATG
	AGCGCGGCCG GCAGCGCGGG GACTTCTCGC TATGGCTGCG CCCAGCCCGG CGCGCGGACG
	CCGGCGAGTA CCGCGCCGCG GTGCACCTCA GGGACCGCGC CCTCTCCTGC CGCCTCCGTC
10	TGCGCCTGGG CCAGGCCTCG ATGACTGCCA GCCCCCCAGG ATCTCTCAGA GCCTCCGACT
	GGGTCATTTT GAACTGCTCC TTCAGCCGCC CTGACCGCCC AGCCTCTGTG CATTGGTTCC
	GGAACCGGGG CCAGGGCCGA GTCCCTGTCC GGGAGTCCCC CCATCACCAC TTAGCGGAAA
15	GCTTCCTCTT CCTGCCCCAA GTCAGCCCCA TGGACTCTGG GCCCTGGGGC TGCATCCTCA
	CCTACAGAGA TGGCTTCAAC GTCTCCATCA TGTATAACCT CACTGTTCTG GGTCTGGAGC
	CCCCAACTCC CTTGACAGTG TACGCTGGAG CAGGTTCCAG GGTGGGGCTG CCCTGCCGCC
20	TGCCTGCTGG TGTGGGGACC CGGTCTTTCC TCACTGCCAA GTGGACTCCT CCTGGGGGAG
	GCCCTGACCT CCTGGTGACT GGAGACAATG GCGACTTTAC CCTTCGACTA GAGGATGTGA
	GCCAGGCCCA GGCTGGGACC TACACCTGCC ATATCCATCT GCAGGAACAG CAGCTCAATG
25	CCACTGTCAC ATTGGCAATC ATCACAGGTC AGCCTCAGGT GGGAAAGGAG TAGCTGCCCT
	CCCAGGGTAG AAAGGACAGG GAGGAAGGGC TGGCAGGGCA AAGACTAGGC AAACCCACCC
	TGTGATGCCA GGCCACTGGG CACAAGTTCC AGAGCCTGCC CATCTCGGCC CCCACTTTTC
3 <i>0</i>	TCACCCCAT AATAAAGAAA CGAAACTG
	(2) INFORMATION FOR SEQ ID NO: 5:
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 338 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: protein
10	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:
15	Leu Gln Pro Gly Ala Glu Val Pro Val Val Trp Ala Gln Glu Gly Ala 1 5 10 15
	Pro Ala Gln Leu Pro Cys Ser Pro Thr Ile Pro Leu Gln Asp Leu Ser 20 25 30
o o	Leu Leu Arg Arg Ala Gly Val Thr Trp Gln His Gln Pro Asp Ser Gly 35 40 45
	Pro Pro Ala Ala Ala Pro Gly His Pro Leu Ala Pro Gly Pro His Pro 50 60

		Ala 65	Ala	Pro	Ser	Ser	Trp 70	Gly	Pro	Arg	Pro	Arg 75	Arg	Tyr	Thr	Val	Leu 80
5		Ser	Val	Gly	Pro	Gly 85	Gly	Leu	Arg	Ser	Gly 90	Arg	Leu	Pro	Leu	Gln 95	Pro
		Arg	Val	Gln	Leu 100	Asp	Glu	Arg	Gly	Arg 105	Gln	Arg	Gly	Asp	Phe 110	Ser	Leu
10		Trp	Leu	Arg 115	Pro	Ala	Arg	Arg	Ala 120	Asp	Ala	Gly	Glu	Tyr 125	Arg	Ala	Ala
		Val	His 130	Leu	Arg	Asp	Arg	Ala 135	Leu	Ser	Сув	Arg	Leu 140	Arg	Leu	Arg	Leu
15		Gly 145	Gln	Ala	Ser	Met	Thr 150	Ala	Ser	Pro	Pro	Gly 155	Ser	Leu	Arg	Ala	Ser 160
		Asp	Trp	Val	Ile	Leu 165	Asn	Cys	Ser	Phe	Ser 170	Arg	Pro	Asp	Arg	Pro 175	Ala
20		Ser	Val	His	Trp 180	Phe	Arg	Asn	Arg	Gly 185	Gln	Gly	Arg	Val	Pro 190	Val	Arg
		Glu	Ser	Pro 195	His	His	His	Leu	Ala 200	Glu	Ser	Phe	Leu	Phe 205	Leu	Pro	Gln
25		Val	Ser 210	Pro	Met	Asp	Ser	Gly 215	Pro	Trp	Gly	Cys	Ile 220	Leu	Thr	Tyr	Arg
		Asp 225	Gly	Phe	Asn	Val	Ser 230	Ile	Met	Tyr	Asn	Leu 235	Thr	Val	Leu	Gly	Leu 240
30		[°] Glu	Pro	Pro	Thr	Pro 245	Leu	Thr	Val	Tyr	Ala 250	Gly	Ala	Gly	Ser	Arg 255	Val
		Gly	Leu	Pro	Cys 260	Arg	Leu	Pro	Ala	Gly 265	Val	Gly	Thr	Arg	Ser 270	Phe	Leu
35		Thr	Ala	Lys 275	Trp	Thr	Pro	Pro	Gly 280	Gly	Gly	Pro	Asp	Leu 285	Leu	Val	Thr
-		Gly	Asp 290	Asn	Gly	Asp	Phe	Thr 295	Leu	Arg	Leu	Glu	Asp 300	Val	Ser	Gln	Ala
40		Gln 305	Ala	Gly	Thr	Tyr	Thr 310	Сув	His	Ile	His	Leu 315	Gln	Glu	Gln	Gln	Leu 320
10		Asn	Ala	Thr	Val	Thr 325	Leu	Ala	Ile	Ile	Thr 330	Gly	Gln	Pro	Gln	Val 335	Gly
		Lys	Glu														
45	(2)	INFO	RMAT	ION 1	FOR S	SEQ :	ID NO): 7:	:								
50		(i)	(A (B (C	UENCI LEI TYI STI	NGTH: PE: 1 RANDI	: 29 nucle EDNE	base eic a SS: s	pai acid singl	irs								
		(i.i)	MOL	ECULI	ያ ጥ ሃነ	י אם	~DNA										

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
5	TCTCTCAGAG CCTCCGATGG GTCATTTTG	29
5	(2) INFORMATION FOR SEQ ID NO: 8:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
	TCCTGCAGAT GGATATGGCA GGTGTAGGTC	30
20	(2) INFORMATION FOR SEQ ID NO: 9:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: cDNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
	CCTGGGCCAG GCCTCGATGA C	21
	(2) INFORMATION FOR SEQ ID NO: 10:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
45	CCCCACTCTG CTTCACATTT	20
	(2) INFORMATION FOR SEQ ID NO: 11:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: CDNA	

17

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
	GGCCCTGGAT CCGGACCTAA TTTTTTTTT TTTTTTT	37
5	(2) INFORMATION FOR SEQ ID NO: 12:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
15	GGCCTGGAT CCGGACCTAA	20
	(2) INFORMATION FOR SEQ ID NO: 13:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	-
	(ii) MOLECULE TYPE: cDNA	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
	TATAGGATCC GGTGCCCAGA CCATAGGAGA GATG	34
30	(2) INFORMATION FOR SEQ ID NO: 14:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA	
	* 4 10	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14: GGCGTTCACG TGGTTGGGCA CCTGTGATGA TT	32
	(2) INFORMATION FOR SEQ ID NO: 15:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
	TCACCTACTC GAGAAAAGTG GGGGCCGAGA T	31

18

Claims

5

10

20

- 1. An isolated nucleotidic sequence selected from the group consisting of :
 - a) the nucleotidic sequences SEQ ID Nº 1, SEQ ID Nº3 or SEQ ID Nº5;
 - b) the nucleotidic sequences which hybridize under stringent conditions to any of the sequences defined in a) and which code for a polypeptide which is a variant of the LAG-3 molecule;
 - c) the nucleotidic sequences which are degenerated as a result of the genetic code to the nucleotidic sequences defined in a) and b), and which code for a polypeptide which is a genetic variant of the LAG-3 molecule.
- 2. A nucleotidic sequence according to claim 1 selected from the group consisting of the nucleotidic sequences SEQ ID N° 1, SEQ ID N° 3, SEQ ID N° 5 or the fully complementary sequences thereof.
- 15 3. A purified polypeptide encoded by a nucleotidic sequence according to claim 1 or 2.
 - 4. A polypeptide according to claim 3, selected from the group consisting of LAG-3V1, LAG-3V2 and LAG-3V3, having a sequence selected from the group consisting of SEQ ID N° 2, SEQ ID N° 4 and SEQ ID N° 6 respectively encoded by SEQ ID N° 1, SEQ ID N° 3 or SEQ ID N° 5.
 - 5. An expression vector comprising a nucleotidic sequence according to claim 1 or 2.
 - 6. An host cell transformed with an expression vector according to claim 5.
- A pharmaceutical composition containing as active ingredient a polypeptide according to claim 3 or 4.
 - 8. Antibodies directed to a specific epitope of one of the polypeptides according to claim 3 or 4.
- 9. Antibodies according to claim 8, wherein said antibodies are monoclonal antibodies or Fab, Fab', F(ab') or Fv fragments thereof.
 - 10. Use of antibodies according to claim 8 or 9 in a method for purifying, dosing or identifying a polypeptide according to claim 3 or 4.
- 35 11. Use of antibodies according to claim 8 or 9 for the manufacture of a therapeutic composition for treating immune-related pathologies.
 - 12. A therapeutic composition comprising as active ingredient an antibody according to claim 8 or 9.
- 40 13. Use of a polypeptide according to claim 3 or 4 for the manufacture of immunomodulators compounds.
 - 14. Use of a polypeptide according to claim 3 or 4 for the manufacture of a therapeutic composition for treating treating immunerelated pathologies.

55

45

Lane 1: MW

Lane 2: RT-PCR with primers F459/R460

Lane 1: RT-PCR with F176/R460 primers
Lane 2: Negatice control (PCR without RT)

Lane 3-4: DIG-labelled MW

Lane 5-6: MW

回

Lane 1: RT-PCR with primers 173/V2R Lane 2: RT-PCR with primers 173/V3R Lane 3: MW

FIG.8

FIG.9

EUROPEAN SEARCH REPORT

Application Number EP 97 40 1404

	A11-11-1-11-11-11-11-11-11-11-11-11-11-1	#: · · · · · · · · · · · · · · · · · ·		
Category	Citation of document with in of relevant pass	dication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
X	WO 91 10682 A (INST;ROUSSY INST GUSTAV) * the whole document	E (FR))	1-3,5-14	C12N15/12 C07K14/725 C07K16/28 A61K38/17
X	TRIEBEL F ET AL: "LYMPHOCYTE ACTIVATION TO CD4" JOURNAL OF EXPERIMEN VOI. 171, no. 5, 1 pages 1393-1405, XP the whole document	ON GENE CLOSELY RELATED NTAL MEDICINE, May 1990, 000672284	1-3,5,6	A61K39/395 G01N33/53
X	THE LYMPHOCYTE ACTI	VATION GENE 3-ENCODED ND FOR HUMAN LEUKOCYTE TIGENS" NTAL MEDICINE, August 1992, 0672285	3,7-14	
A		(FR); APPLIED RESEARC)	1-14	TECHNICAL FIELDS SEARCHED (Int.CL6) C12N C07K A61K
A	UNIVERSITY IN THE C February 1988		1-14	GOIN
	The present search report has	peen drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
	THE HAGUE	28 November 1997	Man	dl, B
X:par Y:par	ATEGORY OF CITED DOCUMENTS ticularly relevant if taken alone ticularly relevant if combined with anot ument of the same category	T : theory or principle E : earlier patent doc after the filing date D : document cited in L : document cited	iment, but publi the application	