MA1140: Lecture 8 Eigenvalues and Eigenvectors

Dipankar Ghosh

Department of Mathematics Indian Institute of Technology Hyderabad

January 28, 2020

Let $T: V \to V$ be a linear map,

Let $T: V \to V$ be a linear map, which we call **linear operator** (here domain and codomain are same).

Let $T: V \to V$ be a linear map, which we call **linear operator** (here domain and codomain are same).

Definition

1 A NON-ZERO vector $v \in V$ is called an **eigenvector** of T if $T(v) = \lambda v$ for SOME scalar λ .

Let $T: V \to V$ be a linear map, which we call **linear operator** (here domain and codomain are same).

- **1** A NON-ZERO vector $v \in V$ is called an **eigenvector** of T if $T(v) = \lambda v$ for SOME scalar λ .
- ② A scalar λ is called an **eigenvalue** of T if there EXISTS a non-zero vector $v \in V$ such that $T(v) = \lambda v$.

Let $T: V \to V$ be a linear map, which we call **linear operator** (here domain and codomain are same).

- **1** A NON-ZERO vector $v \in V$ is called an **eigenvector** of T if $T(v) = \lambda v$ for SOME scalar λ .
- ② A scalar λ is called an **eigenvalue** of T if there EXISTS a non-zero vector $v \in V$ such that $T(v) = \lambda v$.
- If $T(v) = \lambda v$, then λ is called an eigenvalue of T corresponding to the eigenvector v.

Let $T: V \to V$ be a linear map, which we call **linear operator** (here domain and codomain are same).

- **1** A NON-ZERO vector $v \in V$ is called an **eigenvector** of T if $T(v) = \lambda v$ for SOME scalar λ .
- ② A scalar λ is called an **eigenvalue** of T if there EXISTS a non-zero vector $v \in V$ such that $T(v) = \lambda v$.
- **1** If $T(v) = \lambda v$, then λ is called an eigenvalue of T corresponding to the eigenvector v.
 - Geometrically, an eigenvector, corresponding to an eigenvalue,

Let $T: V \to V$ be a linear map, which we call **linear operator** (here domain and codomain are same).

- **1** A NON-ZERO vector $v \in V$ is called an **eigenvector** of T if $T(v) = \lambda v$ for SOME scalar λ .
- ② A scalar λ is called an **eigenvalue** of T if there EXISTS a non-zero vector $v \in V$ such that $T(v) = \lambda v$.
- ③ If $T(v) = \lambda v$, then λ is called an eigenvalue of T corresponding to the eigenvector v.
 - Geometrically, an eigenvector, corresponding to an eigenvalue, points in a direction that is stretched by the transformation,

Let $T: V \to V$ be a linear map, which we call **linear operator** (here domain and codomain are same).

- **1** A NON-ZERO vector $v \in V$ is called an **eigenvector** of T if $T(v) = \lambda v$ for SOME scalar λ .
- ② A scalar λ is called an **eigenvalue** of T if there EXISTS a non-zero vector $v \in V$ such that $T(v) = \lambda v$.
- **1** If $T(v) = \lambda v$, then λ is called an eigenvalue of T corresponding to the eigenvector v.
 - Geometrically, an eigenvector, corresponding to an eigenvalue, points in a direction that is stretched by the transformation, and the eigenvalue is the factor by which it is stretched.

Let $T: V \to V$ be a linear map, which we call **linear operator** (here domain and codomain are same).

- **1** A NON-ZERO vector $v \in V$ is called an **eigenvector** of T if $T(v) = \lambda v$ for SOME scalar λ .
- ② A scalar λ is called an **eigenvalue** of T if there EXISTS a non-zero vector $v \in V$ such that $T(v) = \lambda v$.
- **③** If $T(v) = \lambda v$, then λ is called an eigenvalue of T corresponding to the eigenvector v.
 - Geometrically, an eigenvector, corresponding to an eigenvalue, points in a direction that is stretched by the transformation, and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed.

Let $T: V \to V$ be a linear map, which we call **linear operator** (here domain and codomain are same).

- **1** A NON-ZERO vector $v \in V$ is called an **eigenvector** of T if $T(v) = \lambda v$ for SOME scalar λ .
- ② A scalar λ is called an **eigenvalue** of T if there EXISTS a non-zero vector $v \in V$ such that $T(v) = \lambda v$.
- **③** If $T(v) = \lambda v$, then λ is called an eigenvalue of T corresponding to the eigenvector v.
 - Geometrically, an eigenvector, corresponding to an eigenvalue, points in a direction that is stretched by the transformation, and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed.
 - An eigenvalue can be positive, negative or zero.

Since there is a one to one correspondence between

Since there is a one to one correspondence between the set of all linear operators from $V \cong \mathbb{R}^n$ to itself

Since there is a one to one correspondence between the set of all linear operators from $V \cong \mathbb{R}^n$ to itself and the collection of all $n \times n$ matrices over \mathbb{R} ,

Since there is a one to one correspondence between the set of all linear operators from $V \cong \mathbb{R}^n$ to itself and the collection of all $n \times n$ matrices over \mathbb{R} , it is equivalent to define eigenvalues and eigenvectors of $n \times n$ matrices.

Since there is a one to one correspondence between the set of all linear operators from $V \cong \mathbb{R}^n$ to itself and the collection of all $n \times n$ matrices over \mathbb{R} , it is equivalent to define eigenvalues and eigenvectors of $n \times n$ matrices.

Definition

Since there is a one to one correspondence between the set of all linear operators from $V \cong \mathbb{R}^n$ to itself and the collection of all $n \times n$ matrices over \mathbb{R} , it is equivalent to define eigenvalues and eigenvectors of $n \times n$ matrices.

Definition

Let *A* be an $n \times n$ matrix over \mathbb{R} .

1 A NON-ZERO column vector $v \in \mathbb{R}^n$ is called an **eigenvector** of A

Since there is a one to one correspondence between the set of all linear operators from $V \cong \mathbb{R}^n$ to itself and the collection of all $n \times n$ matrices over \mathbb{R} , it is equivalent to define eigenvalues and eigenvectors of $n \times n$ matrices.

Definition

Let *A* be an $n \times n$ matrix over \mathbb{R} .

1 A NON-ZERO column vector $v \in \mathbb{R}^n$ is called an **eigenvector** of A if $Av = \lambda v$ for SOME $\lambda \in \mathbb{R}$.

Since there is a one to one correspondence between the set of all linear operators from $V \cong \mathbb{R}^n$ to itself and the collection of all $n \times n$ matrices over \mathbb{R} , it is equivalent to define eigenvalues and eigenvectors of $n \times n$ matrices.

Definition

- **1** A NON-ZERO column vector $v \in \mathbb{R}^n$ is called an **eigenvector** of A if $Av = \lambda v$ for SOME $\lambda \in \mathbb{R}$.
- ② A scalar λ is called an **eigenvalue** of A

Since there is a one to one correspondence between the set of all linear operators from $V \cong \mathbb{R}^n$ to itself and the collection of all $n \times n$ matrices over \mathbb{R} , it is equivalent to define eigenvalues and eigenvectors of $n \times n$ matrices.

Definition

- **1** A NON-ZERO column vector $v \in \mathbb{R}^n$ is called an **eigenvector** of A if $Av = \lambda v$ for SOME $\lambda \in \mathbb{R}$.
- **3** A scalar λ is called an **eigenvalue** of A if there EXISTS a non-zero column vector $v \in \mathbb{R}^n$ such that $Av = \lambda v$.

Since there is a one to one correspondence between the set of all linear operators from $V \cong \mathbb{R}^n$ to itself and the collection of all $n \times n$ matrices over \mathbb{R} , it is equivalent to define eigenvalues and eigenvectors of $n \times n$ matrices.

Definition

- **1** A NON-ZERO column vector $v \in \mathbb{R}^n$ is called an **eigenvector** of A if $Av = \lambda v$ for SOME $\lambda \in \mathbb{R}$.
- **3** A scalar λ is called an **eigenvalue** of A if there EXISTS a non-zero column vector $v \in \mathbb{R}^n$ such that $Av = \lambda v$.
- If $Av = \lambda v$, then λ is called an eigenvalue of A corresponding to the eigenvector v.

Let
$$c \in \mathbb{R}$$
. Define $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ by

$$T \begin{pmatrix} x \\ y \end{pmatrix} = c \begin{pmatrix} x \\ y \end{pmatrix}$$
 for every $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$.

Let $c \in \mathbb{R}$. Define $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ by

$$T \begin{pmatrix} x \\ y \end{pmatrix} = c \begin{pmatrix} x \\ y \end{pmatrix}$$
 for every $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$.

The matrix representation:
$$[T] = \begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix}$$

Every $v \neq 0 \in \mathbb{R}^2$ is an eigenvector of T with the eigenvalue c.

For $x \neq 0$, $\begin{pmatrix} x \\ 0 \end{pmatrix}$ is an eigenvector of T with eigenvalue 1.

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \text{ is defined by } T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -y \end{pmatrix}.$$

$$2 \qquad \text{Matrix repres. } \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -y \end{pmatrix}.$$

$$(x,y) \qquad \qquad (x,y) \qquad \qquad (x,y)$$

$$-1 \qquad \qquad (x,-y)$$

For $x \neq 0$, $\begin{pmatrix} x \\ 0 \end{pmatrix}$ is an eigenvector of T with eigenvalue 1. For $y \neq 0$, $\begin{pmatrix} 0 \\ y \end{pmatrix}$ is an eigenvector of T with eigenvalue -1.

For $x \neq 0$, $\begin{pmatrix} x \\ 0 \end{pmatrix}$ is an eigenvector of T with eigenvalue 1. For $y \neq 0$, $\begin{pmatrix} 0 \\ y \end{pmatrix}$ is an eigenvector of T with eigenvalue -1.

These are ALL the eigenvectors of T. (Verify it!)

Define
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 by $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$

Matrix Repres. $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$

For $x \neq 0$, $\begin{pmatrix} x \\ 0 \end{pmatrix}$ is an eigenvector of T with eigenvalue 1.

Define
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 by $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$

Matrix Repres. $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

For $x \neq 0$, $\begin{pmatrix} x \\ 0 \end{pmatrix}$ is an eigenvector of T with eigenvalue 1. For $y \neq 0$, $\begin{pmatrix} 0 \\ y \end{pmatrix}$ is an eigenvector of T with eigenvalue 0.

Define
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 by $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$

Matrix Repres. $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$

For $x \neq 0$, $\begin{pmatrix} x \\ 0 \end{pmatrix}$ is an eigenvector of T with eigenvalue 1. For $y \neq 0$, $\begin{pmatrix} 0 \\ y \end{pmatrix}$ is an eigenvector of T with eigenvalue 0.

These are ALL the eigenvectors of T. (Verify it!)

Example 4: A may not have eigenvalues and eigenvectors over a particular field

• Consider the matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ over \mathbb{R} .

Example 4: A may not have eigenvalues and eigenvectors over a particular field

- Consider the matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ over \mathbb{R} .
- Does A have eigenvalues and eigenvectors over \mathbb{R} ?

- Consider the matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ over \mathbb{R} .
- Does A have eigenvalues and eigenvectors over \mathbb{R} ?
- If yes, then there are $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \setminus \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$

- Consider the matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ over \mathbb{R} .
- Does A have eigenvalues and eigenvectors over \mathbb{R} ?
- If yes, then there are $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \setminus \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$ and $\lambda \in \mathbb{R}$

- Consider the matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ over \mathbb{R} .
- Does A have eigenvalues and eigenvectors over \mathbb{R} ?
- If yes, then there are $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \setminus \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$ and $\lambda \in \mathbb{R}$ such that

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}$$

- Consider the matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ over \mathbb{R} .
- Does A have eigenvalues and eigenvectors over \mathbb{R} ?
- If yes, then there are $\binom{x}{y} \in \mathbb{R}^2 \setminus \{\binom{0}{0}\}$ and $\lambda \in \mathbb{R}$ such that

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

- Consider the matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ over \mathbb{R} .
- Does A have eigenvalues and eigenvectors over \mathbb{R} ?
- If yes, then there are $\binom{x}{y} \in \mathbb{R}^2 \setminus \{\binom{0}{0}\}$ and $\lambda \in \mathbb{R}$ such that

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\implies \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\implies \begin{pmatrix} -\lambda & 1 \\ -1 & -\lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

- Consider the matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ over \mathbb{R} .
- Does A have eigenvalues and eigenvectors over \mathbb{R} ?
- If yes, then there are $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \setminus \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$ and $\lambda \in \mathbb{R}$ such that

Since
$$\begin{pmatrix} x \\ y \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
,

- Consider the matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ over \mathbb{R} .
- Does A have eigenvalues and eigenvectors over \mathbb{R} ?
- If yes, then there are $\binom{x}{y} \in \mathbb{R}^2 \setminus \{\binom{0}{0}\}$ and $\lambda \in \mathbb{R}$ such that

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} -\lambda & 1 \\ -1 & -\lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Since
$$\begin{pmatrix} x \\ y \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $\det \begin{pmatrix} -\lambda & 1 \\ -1 & -\lambda \end{pmatrix} = 0$.

- Consider the matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ over \mathbb{R} .
- Does A have eigenvalues and eigenvectors over \mathbb{R} ?
- If yes, then there are $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \setminus \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$ and $\lambda \in \mathbb{R}$ such that

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\implies \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\implies \begin{pmatrix} -\lambda & 1 \\ -1 & -\lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Since
$$\begin{pmatrix} x \\ y \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $\det \begin{pmatrix} -\lambda & 1 \\ -1 & -\lambda \end{pmatrix} = 0$. Hence $\lambda^2 + 1 = 0$.

- Consider the matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ over \mathbb{R} .
- Does A have eigenvalues and eigenvectors over \mathbb{R} ?
- If yes, then there are $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \setminus \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$ and $\lambda \in \mathbb{R}$ such that

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} -\lambda & 1 \\ -1 & -\lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Since $\begin{pmatrix} x \\ y \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\det \begin{pmatrix} -\lambda & 1 \\ -1 & -\lambda \end{pmatrix} = 0$. Hence $\lambda^2 + 1 = 0$. But no such λ exists in \mathbb{R} .

- Consider the matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ over \mathbb{R} .
- Does A have eigenvalues and eigenvectors over \mathbb{R} ?
- If yes, then there are $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \setminus \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$ and $\lambda \in \mathbb{R}$ such that

Since
$$\begin{pmatrix} x \\ y \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $\det \begin{pmatrix} -\lambda & 1 \\ -1 & -\lambda \end{pmatrix} = 0$. Hence $\lambda^2 + 1 = 0$. But no such λ exists in \mathbb{R} .

• So A does not have eigenvalues and eigenvectors over \mathbb{R} .

• Consider the matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ over \mathbb{C} ,

• Consider the matrix $A=\begin{pmatrix}0&1\\-1&0\end{pmatrix}$ over $\mathbb C$, the set of complex numbers.

- Consider the matrix $A=\begin{pmatrix}0&1\\-1&0\end{pmatrix}$ over $\mathbb C$, the set of complex numbers.
- Does A have eigenvalues and eigenvectors over C?

- Consider the matrix $A=\begin{pmatrix}0&1\\-1&0\end{pmatrix}$ over $\mathbb C$, the set of complex numbers.
- Does A have eigenvalues and eigenvectors over C? Ans. Yes.

- Consider the matrix $A=\begin{pmatrix}0&1\\-1&0\end{pmatrix}$ over $\mathbb C$, the set of complex numbers.
- Does A have eigenvalues and eigenvectors over C? Ans. Yes.
- Note that $\lambda^2 + 1$ has solutions:

- Consider the matrix $A=\begin{pmatrix}0&1\\-1&0\end{pmatrix}$ over $\mathbb C$, the set of complex numbers.
- Does A have eigenvalues and eigenvectors over C? Ans. Yes.
- Note that $\lambda^2 + 1$ has solutions: $\pm i \in \mathbb{C}$.

- Consider the matrix $A=\begin{pmatrix}0&1\\-1&0\end{pmatrix}$ over $\mathbb C$, the set of complex numbers.
- Does A have eigenvalues and eigenvectors over C? Ans. Yes.
- Note that $\lambda^2 + 1$ has solutions: $\pm i \in \mathbb{C}$.
- Then, for each $\lambda = \pm i$,

- Consider the matrix $A=\begin{pmatrix}0&1\\-1&0\end{pmatrix}$ over $\mathbb C$, the set of complex numbers.
- Does A have eigenvalues and eigenvectors over C? Ans. Yes.
- Note that $\lambda^2 + 1$ has solutions: $\pm i \in \mathbb{C}$.
- Then, for each $\lambda=\pm i$, in view of the previous slide, one should solve the system

$$\begin{pmatrix} -\lambda & 1 \\ -1 & -\lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

- Consider the matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ over \mathbb{C} , the set of complex numbers.
- Does A have eigenvalues and eigenvectors over C? Ans. Yes.
- Note that $\lambda^2 + 1$ has solutions: $\pm i \in \mathbb{C}$.
- \bullet Then, for each $\lambda=\pm i,$ in view of the previous slide, one should solve the system

$$\begin{pmatrix} -\lambda & 1 \\ -1 & -\lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

to get

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} i \\ -1 \end{pmatrix} = i \begin{pmatrix} i \\ -1 \end{pmatrix}$$

- Consider the matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ over \mathbb{C} , the set of complex numbers.
- Does A have eigenvalues and eigenvectors over C? Ans. Yes.
- Note that $\lambda^2 + 1$ has solutions: $\pm i \in \mathbb{C}$.
- \bullet Then, for each $\lambda=\pm i,$ in view of the previous slide, one should solve the system

$$\begin{pmatrix} -\lambda & 1 \\ -1 & -\lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

to get

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} i \\ -1 \end{pmatrix} = i \begin{pmatrix} i \\ -1 \end{pmatrix} \text{ and } \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} i \\ 1 \end{pmatrix} = -i \begin{pmatrix} i \\ 1 \end{pmatrix}$$

- Consider the matrix $A=\begin{pmatrix}0&1\\-1&0\end{pmatrix}$ over $\mathbb C$, the set of complex numbers.
- Does A have eigenvalues and eigenvectors over C? Ans. Yes.
- Note that $\lambda^2 + 1$ has solutions: $\pm i \in \mathbb{C}$.
- \bullet Then, for each $\lambda=\pm i,$ in view of the previous slide, one should solve the system

$$\begin{pmatrix} -\lambda & 1 \\ -1 & -\lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

to get

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} i \\ -1 \end{pmatrix} = i \begin{pmatrix} i \\ -1 \end{pmatrix} \text{ and } \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} i \\ 1 \end{pmatrix} = -i \begin{pmatrix} i \\ 1 \end{pmatrix}$$

• Conclusion: The matrix A has eigenvalues and eigenvectors over \mathbb{C} , but not over \mathbb{R} .

Let *A* be an $n \times n$ matrix over \mathbb{C} .

Let A be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- $\lambda \in \mathbb{R}$ is an eigenvalue of A.

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- $\lambda \in \mathbb{R}$ is an eigenvalue of A.
- $\bullet \det(\lambda I_n A) = 0.$

Proof. Note that λ is an eigenvalue of A

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- $\lambda \in \mathbb{R}$ is an eigenvalue of A.
- $\bullet \det(\lambda I_n A) = 0.$

Proof. Note that λ is an eigenvalue of $A \Leftrightarrow$ there is $v \neq 0$ in \mathbb{C}^n

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- $\lambda \in \mathbb{R}$ is an eigenvalue of A.

Proof. Note that λ is an eigenvalue of $A \Leftrightarrow$ there is $v \neq 0$ in \mathbb{C}^n such that $Av = \lambda v$,

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- $\lambda \in \mathbb{R}$ is an eigenvalue of A.

Proof. Note that λ is an eigenvalue of $A \Leftrightarrow$ there is $v \neq 0$ in \mathbb{C}^n such that $Av = \lambda v$, i.e., $(A - \lambda I_n)v = 0$

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- $\lambda \in \mathbb{R}$ is an eigenvalue of A.

Proof. Note that λ is an eigenvalue of $A \Leftrightarrow$ there is $v \neq 0$ in \mathbb{C}^n such that $Av = \lambda v$, i.e., $(A - \lambda I_n)v = 0 \Leftrightarrow (A - \lambda I_n)X = 0$ has a non-trivial solution

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- $\lambda \in \mathbb{R}$ is an eigenvalue of A.

Proof. Note that λ is an eigenvalue of $A \Leftrightarrow$ there is $v \neq 0$ in \mathbb{C}^n such that $Av = \lambda v$, i.e., $(A - \lambda I_n)v = 0 \Leftrightarrow (A - \lambda I_n)X = 0$ has a non-trivial solution $\Leftrightarrow \det(A - \lambda I_n) = 0$

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- $\lambda \in \mathbb{R}$ is an eigenvalue of A.

Proof. Note that λ is an eigenvalue of $A \Leftrightarrow$ there is $v \neq 0$ in \mathbb{C}^n such that $Av = \lambda v$, i.e., $(A - \lambda I_n)v = 0 \Leftrightarrow (A - \lambda I_n)X = 0$ has a non-trivial solution $\Leftrightarrow \det(A - \lambda I_n) = 0 \Leftrightarrow \det(\lambda I_n - A) = 0$.

Definition

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- $\lambda \in \mathbb{R}$ is an eigenvalue of A.
- $\bullet \det(\lambda I_n A) = 0.$

Proof. Note that λ is an eigenvalue of $A \Leftrightarrow$ there is $v \neq 0$ in \mathbb{C}^n such that $Av = \lambda v$, i.e., $(A - \lambda I_n)v = 0 \Leftrightarrow (A - \lambda I_n)X = 0$ has a non-trivial solution $\Leftrightarrow \det(A - \lambda I_n) = 0 \Leftrightarrow \det(\lambda I_n - A) = 0$.

Definition

• The **characteristic polynomial** of A, denoted by $p_A(x)$,

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- $\lambda \in \mathbb{R}$ is an eigenvalue of A.
- $\bullet \det(\lambda I_n A) = 0.$

Proof. Note that λ is an eigenvalue of $A \Leftrightarrow$ there is $v \neq 0$ in \mathbb{C}^n such that $Av = \lambda v$, i.e., $(A - \lambda I_n)v = 0 \Leftrightarrow (A - \lambda I_n)X = 0$ has a non-trivial solution $\Leftrightarrow \det(A - \lambda I_n) = 0 \Leftrightarrow \det(\lambda I_n - A) = 0$.

Definition

1 The **characteristic polynomial** of A, denoted by $p_A(x)$, is the polynomial defined by $p_A(x) := \det(xI_n - A)$.

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- $\lambda \in \mathbb{R}$ is an eigenvalue of A.

Proof. Note that λ is an eigenvalue of $A \Leftrightarrow$ there is $v \neq 0$ in \mathbb{C}^n such that $Av = \lambda v$, i.e., $(A - \lambda I_n)v = 0 \Leftrightarrow (A - \lambda I_n)X = 0$ has a non-trivial solution $\Leftrightarrow \det(A - \lambda I_n) = 0 \Leftrightarrow \det(\lambda I_n - A) = 0$.

Definition

- **1** The **characteristic polynomial** of A, denoted by $p_A(x)$, is the polynomial defined by $p_A(x) := \det(xI_n A)$.
- 2 Thus the eigenvalues of A are nothing but the roots of $p_A(x)$.

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- $\lambda \in \mathbb{R}$ is an eigenvalue of A.

Proof. Note that λ is an eigenvalue of $A \Leftrightarrow$ there is $v \neq 0$ in \mathbb{C}^n such that $Av = \lambda v$, i.e., $(A - \lambda I_n)v = 0 \Leftrightarrow (A - \lambda I_n)X = 0$ has a non-trivial solution $\Leftrightarrow \det(A - \lambda I_n) = 0 \Leftrightarrow \det(\lambda I_n - A) = 0$.

Definition

- **①** The **characteristic polynomial** of A, denoted by $p_A(x)$, is the polynomial defined by $p_A(x) := \det(xI_n A)$.
- ② Thus the eigenvalues of A are nothing but the roots of $p_A(x)$.
- **3** The **algebraic multiplicity** $AM_A(\lambda)$ of the eigenvalue λ of A is its multiplicity as a root of the characteristic polynomial $p_A(x)$,

Characteristic polynomial of a matrix

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- $\lambda \in \mathbb{R}$ is an eigenvalue of A.

Proof. Note that λ is an eigenvalue of $A \Leftrightarrow$ there is $v \neq 0$ in \mathbb{C}^n such that $Av = \lambda v$, i.e., $(A - \lambda I_n)v = 0 \Leftrightarrow (A - \lambda I_n)X = 0$ has a non-trivial solution $\Leftrightarrow \det(A - \lambda I_n) = 0 \Leftrightarrow \det(\lambda I_n - A) = 0$.

Definition

- **1** The **characteristic polynomial** of A, denoted by $p_A(x)$, is the polynomial defined by $p_A(x) := \det(xI_n A)$.
- ② Thus the eigenvalues of A are nothing but the roots of $p_A(x)$.
- **3** The **algebraic multiplicity** $AM_A(\lambda)$ of the eigenvalue λ of A is its multiplicity as a root of the characteristic polynomial $p_A(x)$, that is, the largest integer k such that $(x \lambda)^k$ is a factor of $p_A(x)$.

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

 $\mathbf{0}$ $v \in \mathbb{C}^n$ is an eigenvector of A with the corr. eigenvalue λ .

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- $\mathbf{Q} \quad v \in \mathbb{C}^n$ is an eigenvector of A with the corr. eigenvalue λ .
- ② $v \in \mathbb{C}^n$ is a non-trivial solution of the system $(A \lambda I_n)X = 0$,

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- $\mathbf{0}$ $v \in \mathbb{C}^n$ is an eigenvector of A with the corr. eigenvalue λ .
- ② $v \in \mathbb{C}^n$ is a non-trivial solution of the system $(A \lambda I_n)X = 0$, i.e., $v \in \mathbb{C}^n \setminus \{0\}$ lies in $\operatorname{Null}(A \lambda I_n)$.

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- $\mathbf{0}$ $v \in \mathbb{C}^n$ is an eigenvector of A with the corr. eigenvalue λ .
- ② $v \in \mathbb{C}^n$ is a non-trivial solution of the system $(A \lambda I_n)X = 0$, i.e., $v \in \mathbb{C}^n \setminus \{0\}$ lies in $\operatorname{Null}(A \lambda I_n)$.

Proof. Note that $Av = \lambda v$ if and only if $(A - \lambda I_n)v = 0$.

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- $\mathbf{0}$ $v \in \mathbb{C}^n$ is an eigenvector of A with the corr. eigenvalue λ .
- ② $v \in \mathbb{C}^n$ is a non-trivial solution of the system $(A \lambda I_n)X = 0$, i.e., $v \in \mathbb{C}^n \setminus \{0\}$ lies in $\operatorname{Null}(A \lambda I_n)$.

Proof. Note that $Av = \lambda v$ if and only if $(A - \lambda I_n)v = 0$.

Definition

① Given a particular eigenvalue λ of A.

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- $\mathbf{0}$ $v \in \mathbb{C}^n$ is an eigenvector of A with the corr. eigenvalue λ .
- ② $v \in \mathbb{C}^n$ is a non-trivial solution of the system $(A \lambda I_n)X = 0$, i.e., $v \in \mathbb{C}^n \setminus \{0\}$ lies in $\operatorname{Null}(A \lambda I_n)$.

Proof. Note that $Av = \lambda v$ if and only if $(A - \lambda I_n)v = 0$.

Definition

• Given a particular eigenvalue λ of A. The set of all eigenvectors of A corresponding to λ , together with the zero vector,

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- $\mathbf{0}$ $v \in \mathbb{C}^n$ is an eigenvector of A with the corr. eigenvalue λ .
- ② $v \in \mathbb{C}^n$ is a non-trivial solution of the system $(A \lambda I_n)X = 0$, i.e., $v \in \mathbb{C}^n \setminus \{0\}$ lies in $\operatorname{Null}(A \lambda I_n)$.

Proof. Note that $Av = \lambda v$ if and only if $(A - \lambda I_n)v = 0$.

Definition

• Given a particular eigenvalue λ of A. The set of all eigenvectors of A corresponding to λ , together with the zero vector, is called the **eigenspace** of A associated with λ .

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- $\mathbf{0}$ $v \in \mathbb{C}^n$ is an eigenvector of A with the corr. eigenvalue λ .
- ② $v \in \mathbb{C}^n$ is a non-trivial solution of the system $(A \lambda I_n)X = 0$, i.e., $v \in \mathbb{C}^n \setminus \{0\}$ lies in $\operatorname{Null}(A \lambda I_n)$.

Proof. Note that $Av = \lambda v$ if and only if $(A - \lambda I_n)v = 0$.

Definition

• Given a particular eigenvalue λ of A. The set of all eigenvectors of A corresponding to λ, together with the zero vector, is called the eigenspace of A associated with λ. It is denoted by E_λ.

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- $\mathbf{0}$ $v \in \mathbb{C}^n$ is an eigenvector of A with the corr. eigenvalue λ .
- ② $v \in \mathbb{C}^n$ is a non-trivial solution of the system $(A \lambda I_n)X = 0$, i.e., $v \in \mathbb{C}^n \setminus \{0\}$ lies in $\operatorname{Null}(A \lambda I_n)$.

Proof. Note that $Av = \lambda v$ if and only if $(A - \lambda I_n)v = 0$.

Definition

• Given a particular eigenvalue λ of A. The set of all eigenvectors of A corresponding to λ, together with the zero vector, is called the eigenspace of A associated with λ.

It is denoted by E_{λ} . Note that $E_{\lambda} = \text{Null}(A - \lambda I_n)$.

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- $\mathbf{0}$ $v \in \mathbb{C}^n$ is an eigenvector of A with the corr. eigenvalue λ .
- ② $v \in \mathbb{C}^n$ is a non-trivial solution of the system $(A \lambda I_n)X = 0$, i.e., $v \in \mathbb{C}^n \setminus \{0\}$ lies in $\operatorname{Null}(A \lambda I_n)$.

Proof. Note that $Av = \lambda v$ if and only if $(A - \lambda I_n)v = 0$.

Definition

- Given a particular eigenvalue λ of A. The set of all eigenvectors of A corresponding to λ, together with the zero vector, is called the eigenspace of A associated with λ.
 It is denoted by E_λ. Note that E_λ = Null(A λI_n).
- ② The dimension of $E_{\lambda} = \text{Null}(A \lambda I_n)$ is referred to as the **geometric multiplicity of** λ ,

Let *A* be an $n \times n$ matrix over \mathbb{C} . Denote the identity matrix by I_n .

Lemma

The following statements are equivalent:

- **①** $v \in \mathbb{C}^n$ is an eigenvector of A with the corr. eigenvalue λ .
- ② $v \in \mathbb{C}^n$ is a non-trivial solution of the system $(A \lambda I_n)X = 0$, i.e., $v \in \mathbb{C}^n \setminus \{0\}$ lies in $\operatorname{Null}(A \lambda I_n)$.

Proof. Note that $Av = \lambda v$ if and only if $(A - \lambda I_n)v = 0$.

Definition

- Given a particular eigenvalue λ of A. The set of all eigenvectors of A corresponding to λ, together with the zero vector, is called the eigenspace of A associated with λ.
 It is denoted by E_λ. Note that E_λ = Null(A λI_n).
- ② The dimension of $E_{\lambda} = \text{Null}(A \lambda I_n)$ is referred to as the **geometric multiplicity of** λ , denoted by $GM_A(\lambda)$.

Theorem

Let *A* be an $n \times n$ matrix over \mathbb{C} .

Theorem

Theorem

$$\bullet$$
 $1 \leqslant AM_A(\lambda) \leqslant n$ and $1 \leqslant GM_A(\lambda) \leqslant n$.

Theorem

Theorem

- $0 1 \leqslant AM_A(\lambda) \leqslant n$ and $1 \leqslant GM_A(\lambda) \leqslant n$.
- ② $\sum_{i=1}^{r} AM_A(\lambda_i) = n$, the sum varies over all the eigenvalues of A.

Theorem

- lacksquare $1 \leqslant \mathrm{AM}_A(\lambda) \leqslant n$ and $1 \leqslant \mathrm{GM}_A(\lambda) \leqslant n$.
- ② $\sum_{i=1}^{r} AM_A(\lambda_i) = n$, the sum varies over all the eigenvalues of A.

Theorem

Let *A* be an $n \times n$ matrix over \mathbb{C} . For every eigenvalue λ of *A*, we have

- $0 1 \leqslant AM_A(\lambda) \leqslant n \quad \text{and} \quad 1 \leqslant GM_A(\lambda) \leqslant n.$
- ② $\sum_{i=1}^{r} AM_A(\lambda_i) = n$, the sum varies over all the eigenvalues of A.

Proof.

• Note that $deg(p_A(x)) = n$

Theorem

Let *A* be an $n \times n$ matrix over \mathbb{C} . For every eigenvalue λ of *A*, we have

- \bullet $1 \leqslant AM_A(\lambda) \leqslant n$ and $1 \leqslant GM_A(\lambda) \leqslant n$.
- ② $\sum_{i=1}^{r} AM_A(\lambda_i) = n$, the sum varies over all the eigenvalues of A.

Proof.

• Note that $deg(p_A(x)) = n$ and $p_A(x) = (x - \lambda)^{AM_A(\lambda)} f(x)$ for some f.

Theorem

Let *A* be an $n \times n$ matrix over \mathbb{C} . For every eigenvalue λ of *A*, we have

- $0 1 \leqslant AM_A(\lambda) \leqslant n \quad \text{and} \quad 1 \leqslant GM_A(\lambda) \leqslant n.$
- ② $\sum_{i=1}^{r} AM_A(\lambda_i) = n$, the sum varies over all the eigenvalues of A.

Proof.

• Note that $\deg(p_A(x)) = n$ and $p_A(x) = (x - \lambda)^{\mathrm{AM}_A(\lambda)} f(x)$ for some f. Since $\mathrm{GM}_A(\lambda) = \dim (\mathrm{Null}(A - \lambda I_n))$,

Theorem

Let *A* be an $n \times n$ matrix over \mathbb{C} . For every eigenvalue λ of *A*, we have

- $0 \quad 1 \leqslant AM_A(\lambda) \leqslant n \quad \text{ and } \quad 1 \leqslant GM_A(\lambda) \leqslant n.$
- ② $\sum_{i=1}^{r} AM_A(\lambda_i) = n$, the sum varies over all the eigenvalues of A.

Proof.

Note that $\deg(p_A(x)) = n$ and $p_A(x) = (x - \lambda)^{\mathrm{AM}_A(\lambda)} f(x)$ for some f. Since $\mathrm{GM}_A(\lambda) = \dim (\mathrm{Null}(A - \lambda I_n))$, we have $1 \leqslant \mathrm{GM}_A(\lambda) \leqslant n$.

Theorem

Let *A* be an $n \times n$ matrix over \mathbb{C} . For every eigenvalue λ of *A*, we have

- lacksquare $1 \leqslant \mathrm{AM}_A(\lambda) \leqslant n$ and $1 \leqslant \mathrm{GM}_A(\lambda) \leqslant n$.
- ② $\sum_{i=1}^{r} AM_A(\lambda_i) = n$, the sum varies over all the eigenvalues of A.

Proof.

- Note that $\deg(p_A(x)) = n$ and $p_A(x) = (x \lambda)^{\mathrm{AM}_A(\lambda)} f(x)$ for some f. Since $\mathrm{GM}_A(\lambda) = \dim (\mathrm{Null}(A - \lambda I_n))$, we have $1 \leqslant \mathrm{GM}_A(\lambda) \leqslant n$.
- 2 It follows from $p_A(x) = \prod_{i=1}^r (x \lambda_i)^{\text{AM}_A(\lambda_i)}$

Theorem

Let *A* be an $n \times n$ matrix over \mathbb{C} . For every eigenvalue λ of *A*, we have

- \bullet $1 \leqslant AM_A(\lambda) \leqslant n$ and $1 \leqslant GM_A(\lambda) \leqslant n$.
- ② $\sum_{i=1}^{r} AM_A(\lambda_i) = n$, the sum varies over all the eigenvalues of A.

Proof.

- Note that $\deg(p_A(x)) = n$ and $p_A(x) = (x \lambda)^{\mathrm{AM}_A(\lambda)} f(x)$ for some f. Since $\mathrm{GM}_A(\lambda) = \dim (\mathrm{Null}(A - \lambda I_n))$, we have $1 \leqslant \mathrm{GM}_A(\lambda) \leqslant n$.
- ② It follows from $p_A(x) = \prod_{i=1}^r (x \lambda_i)^{\mathrm{AM}_A(\lambda_i)}$ and $\deg(p_A(x)) = n$.

Theorem

Let *A* be an $n \times n$ matrix over \mathbb{C} . For every eigenvalue λ of *A*, we have

- $0 \quad 1 \leqslant AM_A(\lambda) \leqslant n \quad \text{ and } \quad 1 \leqslant GM_A(\lambda) \leqslant n.$
- ② $\sum_{i=1}^{r} AM_A(\lambda_i) = n$, the sum varies over all the eigenvalues of A.

Proof.

- Note that $\deg(p_A(x)) = n$ and $p_A(x) = (x \lambda)^{\mathrm{AM}_A(\lambda)} f(x)$ for some f. Since $\mathrm{GM}_A(\lambda) = \dim (\mathrm{Null}(A - \lambda I_n))$, we have $1 \leqslant \mathrm{GM}_A(\lambda) \leqslant n$.
- ② It follows from $p_A(x) = \prod_{i=1}^r (x \lambda_i)^{\text{AM}_A(\lambda_i)}$ and $\deg(p_A(x)) = n$.
- We will skip it.

• Consider
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
.

- Consider $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.
- The characteristic polynomial of A is given by

- Consider $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.
- The characteristic polynomial of A is given by

$$p_A(x) = \det(xI_2 - A)$$

- Consider $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.
- The characteristic polynomial of A is given by

$$p_A(x) = \det(xI_2 - A) = \det\begin{pmatrix} x - 1 & -2 \\ -3 & x - 4 \end{pmatrix}$$

- Consider $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.
- The characteristic polynomial of A is given by

$$p_A(x) = \det(xI_2 - A) = \det\begin{pmatrix} x - 1 & -2 \\ -3 & x - 4 \end{pmatrix}$$
$$= (x - 1)(x - 4) - 6 = x^2 - 5x - 2.$$

- Consider $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.
- The characteristic polynomial of A is given by

$$p_A(x) = \det(xI_2 - A) = \det\begin{pmatrix} x - 1 & -2 \\ -3 & x - 4 \end{pmatrix}$$
$$= (x - 1)(x - 4) - 6 = x^2 - 5x - 2.$$

• The roots of $p_A(x)$ are $\frac{5 \pm \sqrt{33}}{2}$.

- Consider $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.
- The characteristic polynomial of A is given by

$$p_A(x) = \det(xI_2 - A) = \det\begin{pmatrix} x - 1 & -2 \\ -3 & x - 4 \end{pmatrix}$$
$$= (x - 1)(x - 4) - 6 = x^2 - 5x - 2.$$

- The roots of $p_A(x)$ are $\frac{5 \pm \sqrt{33}}{2}$.
- The eigenvalues of A are $\lambda_1=\frac{5-\sqrt{33}}{2}$ and $\lambda_2=\frac{5+\sqrt{33}}{2}$.

- Consider $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.
- The characteristic polynomial of A is given by

$$p_A(x) = \det(xI_2 - A) = \det\begin{pmatrix} x - 1 & -2 \\ -3 & x - 4 \end{pmatrix}$$
$$= (x - 1)(x - 4) - 6 = x^2 - 5x - 2.$$

- The roots of $p_A(x)$ are $\frac{5 \pm \sqrt{33}}{2}$.
- The eigenvalues of A are $\lambda_1 = \frac{5 \sqrt{33}}{2}$ and $\lambda_2 = \frac{5 + \sqrt{33}}{2}$.
- The algebraic multiplicities of both λ_1 and λ_2 are 1.

How to compute eigenvalues and eigenvectors

• First compute the characteristic polynomial $p_A(x) = \det(xI_n - A)$ of A.

- First compute the characteristic polynomial $p_A(x) = \det(xI_n A)$ of A.
- Next compute the roots of p_A(x) by factorizing it into linear factors.

- First compute the characteristic polynomial $p_A(x) = \det(xI_n A)$ of A.
- Next compute the roots of $p_A(x)$ by factorizing it into linear factors. Which gives the eigenvalues.

- First compute the characteristic polynomial $p_A(x) = \det(xI_n A)$ of A.
- Next compute the roots of $p_A(x)$ by factorizing it into linear factors. Which gives the eigenvalues.
- Then, for each eigenvalue λ ,

- First compute the characteristic polynomial $p_A(x) = \det(xI_n A)$ of A.
- Next compute the roots of p_A(x) by factorizing it into linear factors. Which gives the eigenvalues.
- Then, for each eigenvalue λ , solve the homogeneous system:

$$(A - \lambda I_n)X = 0$$

- First compute the characteristic polynomial $p_A(x) = \det(xI_n A)$ of A.
- Next compute the roots of $p_A(x)$ by factorizing it into linear factors. Which gives the eigenvalues.
- Then, for each eigenvalue λ , solve the homogeneous system:

$$(A - \lambda I_n)X = 0$$

to get eigenspace of A associated with λ .

- First compute the characteristic polynomial $p_A(x) = \det(xI_n A)$ of A.
- Next compute the roots of p_A(x) by factorizing it into linear factors. Which gives the eigenvalues.
- Then, for each eigenvalue λ , solve the homogeneous system:

$$(A - \lambda I_n)X = 0$$

to get eigenspace of A associated with λ .

 Recall that in order to solve a linear system, you may apply elementary row operations to make it into a system with row reduced echelon coefficient matrix.

Definition

Two $n \times n$ matrices A and B are called **similar**

Definition

Two $n \times n$ matrices A and B are called **similar** if there exists an invertible $n \times n$ matrix P such that $B = P^{-1}AP$.

Definition

Two $n \times n$ matrices A and B are called **similar** if there exists an invertible $n \times n$ matrix P such that $B = P^{-1}AP$.

Definition

Two $n \times n$ matrices A and B are called **similar** if there exists an invertible $n \times n$ matrix P such that $B = P^{-1}AP$.

Some statements (without proof) about importance of similarity of matrices:

 Two matrices are similar if and only if they represent the same linear operator with respect to (possibly) different bases. (???)

Definition

Two $n \times n$ matrices A and B are called **similar** if there exists an invertible $n \times n$ matrix P such that $B = P^{-1}AP$.

- Two matrices are similar if and only if they represent the same linear operator with respect to (possibly) different bases. (???)
- Two similar matrices A and B share many properties:

Definition

Two $n \times n$ matrices A and B are called **similar** if there exists an invertible $n \times n$ matrix P such that $B = P^{-1}AP$.

- Two matrices are similar if and only if they represent the same linear operator with respect to (possibly) different bases. (???)
- Two similar matrices A and B share many properties:
 - rank(A) = rank(B) (as operators from \mathbb{R}^n to itself).

Definition

Two $n \times n$ matrices A and B are called **similar** if there exists an invertible $n \times n$ matrix P such that $B = P^{-1}AP$.

- Two matrices are similar if and only if they represent the same linear operator with respect to (possibly) different bases. (???)
- Two similar matrices A and B share many properties:
 - rank(A) = rank(B) (as operators from \mathbb{R}^n to itself).
 - $\bullet \ \det(A) = \det(B);$

Definition

Two $n \times n$ matrices A and B are called **similar** if there exists an invertible $n \times n$ matrix P such that $B = P^{-1}AP$.

- Two matrices are similar if and only if they represent the same linear operator with respect to (possibly) different bases. (???)
- Two similar matrices A and B share many properties:
 - rank(A) = rank(B) (as operators from \mathbb{R}^n to itself).
 - det(A) = det(B); tr(A) = tr(B) (sum of all diagonal entries).

Definition

Two $n \times n$ matrices A and B are called **similar** if there exists an invertible $n \times n$ matrix P such that $B = P^{-1}AP$.

- Two matrices are similar if and only if they represent the same linear operator with respect to (possibly) different bases. (???)
- Two similar matrices A and B share many properties:
 - rank(A) = rank(B) (as operators from \mathbb{R}^n to itself).
 - det(A) = det(B); tr(A) = tr(B) (sum of all diagonal entries).
 - *A* and *B* have same characteristic polynomial, $det(xI_n A)$.

Definition

Two $n \times n$ matrices A and B are called **similar** if there exists an invertible $n \times n$ matrix P such that $B = P^{-1}AP$.

- Two matrices are similar if and only if they represent the same linear operator with respect to (possibly) different bases. (???)
- Two similar matrices A and B share many properties:
 - rank(A) = rank(B) (as operators from \mathbb{R}^n to itself).
 - det(A) = det(B); tr(A) = tr(B) (sum of all diagonal entries).
 - *A* and *B* have same characteristic polynomial, $det(xI_n A)$.
 - Minimal polynomials of A and B are same.

Definition

Two $n \times n$ matrices A and B are called **similar** if there exists an invertible $n \times n$ matrix P such that $B = P^{-1}AP$.

- Two matrices are similar if and only if they represent the same linear operator with respect to (possibly) different bases. (???)
- Two similar matrices A and B share many properties:
 - rank(A) = rank(B) (as operators from \mathbb{R}^n to itself).
 - det(A) = det(B); tr(A) = tr(B) (sum of all diagonal entries).
 - *A* and *B* have same characteristic polynomial, $det(xI_n A)$.
 - Minimal polynomials of A and B are same. A monic polynomial $p(X) \in \mathbb{R}[X]$ is said to be a minimal polynomial of A if p(A) = 0 (zero matriz)

Definition

Two $n \times n$ matrices A and B are called **similar** if there exists an invertible $n \times n$ matrix P such that $B = P^{-1}AP$.

- Two matrices are similar if and only if they represent the same linear operator with respect to (possibly) different bases. (???)
- Two similar matrices A and B share many properties:
 - rank(A) = rank(B) (as operators from \mathbb{R}^n to itself).
 - det(A) = det(B); tr(A) = tr(B) (sum of all diagonal entries).
 - *A* and *B* have same characteristic polynomial, $det(xI_n A)$.
 - Minimal polynomials of A and B are same. A monic polynomial $p(X) \in \mathbb{R}[X]$ is said to be a minimal polynomial of A if p(A) = 0 (zero matriz) and p has minimal possible degree.

Definition

Two $n \times n$ matrices A and B are called **similar** if there exists an invertible $n \times n$ matrix P such that $B = P^{-1}AP$.

- Two matrices are similar if and only if they represent the same linear operator with respect to (possibly) different bases. (???)
- Two similar matrices A and B share many properties:
 - rank(A) = rank(B) (as operators from \mathbb{R}^n to itself).
 - det(A) = det(B); tr(A) = tr(B) (sum of all diagonal entries).
 - *A* and *B* have same characteristic polynomial, $det(xI_n A)$.
 - Minimal polynomials of A and B are same. A monic polynomial $p(X) \in \mathbb{R}[X]$ is said to be a minimal polynomial of A if p(A) = 0 (zero matriz) and p has minimal possible degree.
 - Jordan canonical forms of A and B are same. (???)

Motivation: For a matrix, eigenvalues and eigenvectors can be used to decompose the matrix, for example by diagonalizing it.

Motivation: For a matrix, eigenvalues and eigenvectors can be used to decompose the matrix, for example by diagonalizing it.

Definition

A matrix A is said to be diagonalizable

Motivation: For a matrix, eigenvalues and eigenvectors can be used to decompose the matrix, for example by diagonalizing it.

Definition

A matrix A is said to be **diagonalizable** if A is similar to a diagonal matrix D,

Motivation: For a matrix, eigenvalues and eigenvectors can be used to decompose the matrix, for example by diagonalizing it.

Definition

A matrix A is said to be **diagonalizable** if A is similar to a diagonal matrix D, i.e., if there is an invertible matrix P such that

Motivation: For a matrix, eigenvalues and eigenvectors can be used to decompose the matrix, for example by diagonalizing it.

Definition

A matrix A is said to be **diagonalizable** if A is similar to a diagonal matrix D, i.e., if there is an invertible matrix P such that

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$
 (a diagonal matrix).

Motivation: For a matrix, eigenvalues and eigenvectors can be used to decompose the matrix, for example by diagonalizing it.

Definition

A matrix A is said to be **diagonalizable** if A is similar to a diagonal matrix D, i.e., if there is an invertible matrix P such that

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} \quad \text{(a diagonal matrix)}.$$

The set of eigenvectors helps us to test whether a matrix is diagonalizable or not.

Theorem

Let A be an $n \times n$ matrix (over \mathbb{C}).

Theorem

Let A be an $n \times n$ matrix (over \mathbb{C}). The following are equivalent:

A is diagonalizable.

Theorem

- A is diagonalizable.
- 2 The eigenvectors of A form a basis of \mathbb{R}^n ,

Theorem

- A is diagonalizable.
- 2 The eigenvectors of A form a basis of \mathbb{R}^n , equivalently, A has n linearly independent eigenvectors v_1, \ldots, v_n

Theorem

- A is diagonalizable.
- 2 The eigenvectors of A form a basis of \mathbb{R}^n , equivalently, A has n linearly independent eigenvectors v_1, \ldots, v_n with associated eigenvalues $\lambda_1, \ldots, \lambda_n$

Theorem

- A is diagonalizable.
- ② The eigenvectors of A form a basis of \mathbb{R}^n , equivalently, A has n linearly independent eigenvectors v_1, \ldots, v_n with associated eigenvalues $\lambda_1, \ldots, \lambda_n$ (which need not be distinct).
- **3** $GM_A(\lambda) = AG_A(\lambda)$ for every eigenvalue λ of A.

Theorem

- A is diagonalizable.
- ② The eigenvectors of A form a basis of \mathbb{R}^n , equivalently, A has n linearly independent eigenvectors v_1, \ldots, v_n with associated eigenvalues $\lambda_1, \ldots, \lambda_n$ (which need not be distinct).
- **3** $GM_A(\lambda) = AG_A(\lambda)$ for every eigenvalue λ of A.
- The minimal polynomial of A has distinct roots

Theorem

- A is diagonalizable.
- ② The eigenvectors of A form a basis of \mathbb{R}^n , equivalently, A has n linearly independent eigenvectors v_1, \ldots, v_n with associated eigenvalues $\lambda_1, \ldots, \lambda_n$ (which need not be distinct).
- **3** $GM_A(\lambda) = AG_A(\lambda)$ for every eigenvalue λ of A.
- **1** The minimal polynomial of A has distinct roots (equivalently, A satisfies a polynomial $p(x) \in \mathbb{C}[x]$ having distinct roots).

Theorem

Let *A* be an $n \times n$ matrix (over \mathbb{C}). The following are equivalent:

- A is diagonalizable.
- ② The eigenvectors of A form a basis of \mathbb{R}^n , equivalently, A has n linearly independent eigenvectors v_1, \ldots, v_n with associated eigenvalues $\lambda_1, \ldots, \lambda_n$ (which need not be distinct).
- **3** $GM_A(\lambda) = AG_A(\lambda)$ for every eigenvalue λ of A.
- **1** The minimal polynomial of A has distinct roots (equivalently, A satisfies a polynomial $p(x) \in \mathbb{C}[x]$ having distinct roots).

Proof. $(1) \Rightarrow (2)$:

Theorem

Let *A* be an $n \times n$ matrix (over \mathbb{C}). The following are equivalent:

- A is diagonalizable.
- ② The eigenvectors of A form a basis of \mathbb{R}^n , equivalently, A has n linearly independent eigenvectors v_1, \ldots, v_n with associated eigenvalues $\lambda_1, \ldots, \lambda_n$ (which need not be distinct).
- **3** $GM_A(\lambda) = AG_A(\lambda)$ for every eigenvalue λ of A.
- **1** The minimal polynomial of A has distinct roots (equivalently, A satisfies a polynomial $p(x) \in \mathbb{C}[x]$ having distinct roots).

Proof. (1) \Rightarrow (2): There is an $n \times n$ invertible matrix P such that

$$P^{-1}AP = egin{pmatrix} \lambda_1 & 0 & \cdots & 0 \ 0 & \lambda_2 & \cdots & 0 \ \vdots & \vdots & \ddots & \vdots \ 0 & 0 & \cdots & \lambda_n \end{pmatrix} \quad ext{for some } \lambda_1, \dots, \lambda_n \in \mathbb{R}.$$

Theorem

Let *A* be an $n \times n$ matrix (over \mathbb{C}). The following are equivalent:

- A is diagonalizable.
- ② The eigenvectors of A form a basis of \mathbb{R}^n , equivalently, A has n linearly independent eigenvectors v_1, \ldots, v_n with associated eigenvalues $\lambda_1, \ldots, \lambda_n$ (which need not be distinct).
- **3** $GM_A(\lambda) = AG_A(\lambda)$ for every eigenvalue λ of A.
- **1** The minimal polynomial of A has distinct roots (equivalently, A satisfies a polynomial $p(x) \in \mathbb{C}[x]$ having distinct roots).

Proof. (1) \Rightarrow (2): There is an $n \times n$ invertible matrix P such that

$$P^{-1}AP = egin{pmatrix} \lambda_1 & 0 & \cdots & 0 \ 0 & \lambda_2 & \cdots & 0 \ \vdots & \vdots & \ddots & \vdots \ 0 & 0 & \cdots & \lambda_n \end{pmatrix} \quad ext{for some } \lambda_1, \dots, \lambda_n \in \mathbb{R}.$$

Hence left multiply by P from the left side.

Proof. (1)
$$\Rightarrow$$
 (2): ... Thus $AP = P \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$.

Proof. (1)
$$\Rightarrow$$
 (2): ... Thus $AP = P \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$. Write $P = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$ for some $v_1, \ldots, v_n \in \mathbb{R}^n$.

Proof. (1)
$$\Rightarrow$$
 (2): ... Thus $AP = P \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$. Write $P = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$ for some $v_1, \ldots, v_n \in \mathbb{R}^n$. Then $AP = \begin{bmatrix} Av_1 & Av_2 & \cdots & Av_n \end{bmatrix}$

Proof. (1)
$$\Rightarrow$$
 (2): ... Thus $AP = P \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$.

Write $P = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$ for some $v_1, \dots, v_n \in \mathbb{R}^n$. Then $AP = \begin{bmatrix} Av_1 & Av_2 & \cdots & Av_n \end{bmatrix}$ and

$$P\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = \begin{bmatrix} P\begin{pmatrix} \lambda_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} & P\begin{pmatrix} 0 \\ \lambda_2 \\ \vdots \\ 0 \end{pmatrix} & \cdots & P\begin{pmatrix} 0 \\ 0 \\ \vdots \\ \lambda_n \end{bmatrix}$$

Proof. (1)
$$\Rightarrow$$
 (2): ... Thus $AP = P \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$.

Write $P = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$ for some $v_1, \dots, v_n \in \mathbb{R}^n$. Then $AP = \begin{bmatrix} Av_1 & Av_2 & \cdots & Av_n \end{bmatrix}$ and

$$P\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = \begin{bmatrix} P\begin{pmatrix} \lambda_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} & P\begin{pmatrix} 0 \\ \lambda_2 \\ \vdots \\ 0 \end{pmatrix} & \cdots & P\begin{pmatrix} 0 \\ 0 \\ \vdots \\ \lambda_n \end{pmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 v_1 & \lambda_2 v_2 & \cdots & \lambda_n v_n \end{bmatrix}.$$

Proof. (1)
$$\Rightarrow$$
 (2): ... Thus $AP = P \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$.

Write $P = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$ for some $v_1, \dots, v_n \in \mathbb{R}^n$. Then $AP = \begin{bmatrix} Av_1 & Av_2 & \cdots & Av_n \end{bmatrix}$ and

$$P\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = \begin{bmatrix} P\begin{pmatrix} \lambda_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} & P\begin{pmatrix} 0 \\ \lambda_2 \\ \vdots \\ 0 \end{pmatrix} & \cdots & P\begin{pmatrix} 0 \\ 0 \\ \vdots \\ \lambda_n \end{pmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 v_1 & \lambda_2 v_2 & \cdots & \lambda_n v_n \end{bmatrix}.$$

Therefore $Av_i = \lambda_i v_i$ for every $1 \le i \le n$.

Proof. (1)
$$\Rightarrow$$
 (2): ... Thus $AP = P \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$.

Write $P = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$ for some $v_1, \dots, v_n \in \mathbb{R}^n$. Then $AP = \begin{bmatrix} Av_1 & Av_2 & \cdots & Av_n \end{bmatrix}$ and

$$P\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = \begin{bmatrix} P\begin{pmatrix} \lambda_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} & P\begin{pmatrix} 0 \\ \lambda_2 \\ \vdots \\ 0 \end{pmatrix} & \cdots & P\begin{pmatrix} 0 \\ 0 \\ \vdots \\ \lambda_n \end{pmatrix}$$

$$= \begin{bmatrix} \lambda_1 v_1 & \lambda_2 v_2 & \cdots & \lambda_n v_n \end{bmatrix}.$$

Therefore $Av_i = \lambda_i v_i$ for every $1 \le i \le n$.

Note that v_1, \ldots, v_n are linearly independent,

Proof. (1)
$$\Rightarrow$$
 (2): ... Thus $AP = P \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$.

Write $P = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$ for some $v_1, \dots, v_n \in \mathbb{R}^n$. Then $AP = \begin{bmatrix} Av_1 & Av_2 & \cdots & Av_n \end{bmatrix}$ and

$$P\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = \begin{bmatrix} P\begin{pmatrix} \lambda_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} & P\begin{pmatrix} 0 \\ \lambda_2 \\ \vdots \\ 0 \end{pmatrix} & \cdots & P\begin{pmatrix} 0 \\ 0 \\ \vdots \\ \lambda_n \end{pmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 v_1 & \lambda_2 v_2 & \cdots & \lambda_n v_n \end{bmatrix}.$$

Therefore $Av_i = \lambda_i v_i$ for every $1 \le i \le n$.

Note that v_1, \ldots, v_n are linearly independent, since P is invertible.

Proof. (2) \Rightarrow (1): A has n linearly independent eigenvectors $v_1, \ldots, v_n \in \mathbb{R}^n$ with associated eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$.

Proof. (2) \Rightarrow (1): A has n linearly independent eigenvectors $v_1, \ldots, v_n \in \mathbb{R}^n$ with associated eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Set $P := \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$.

Proof. (2) \Rightarrow (1): A has n linearly independent eigenvectors $v_1, \ldots, v_n \in \mathbb{R}^n$ with associated eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Set $P := \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$. Clearly P is an $n \times n$ matrix.

Proof. (2) \Rightarrow (1): A has n linearly independent eigenvectors $v_1, \ldots, v_n \in \mathbb{R}^n$ with associated eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Set $P := \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$. Clearly P is an $n \times n$ matrix. Since v_1, \ldots, v_n are linearly independent, P is invertible.

Proof. (2) \Rightarrow (1): A has n linearly independent eigenvectors $v_1, \ldots, v_n \in \mathbb{R}^n$ with associated eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Set $P := \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$. Clearly P is an $n \times n$ matrix. Since v_1, \ldots, v_n are linearly independent, P is invertible. Moreover $AP = \begin{bmatrix} Av_1 & Av_2 & \cdots & Av_n \end{bmatrix}$

Proof. (2) \Rightarrow (1): A has n linearly independent eigenvectors $v_1, \ldots, v_n \in \mathbb{R}^n$ with associated eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Set $P := \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$. Clearly P is an $n \times n$ matrix. Since v_1, \ldots, v_n are linearly independent, P is invertible. Moreover $AP = \begin{bmatrix} Av_1 & Av_2 & \cdots & Av_n \end{bmatrix} = \begin{bmatrix} \lambda_1 v_1 & \lambda_2 v_2 & \cdots & \lambda_n v_n \end{bmatrix}$

Proof. (2) \Rightarrow (1): A has n linearly independent eigenvectors $v_1, \ldots, v_n \in \mathbb{R}^n$ with associated eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Set $P := \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$. Clearly P is an $n \times n$ matrix. Since v_1, \ldots, v_n are linearly independent, P is invertible.

Moreover

$$AP = \begin{bmatrix} Av_1 & Av_2 & \cdots & Av_n \end{bmatrix} = \begin{bmatrix} \lambda_1v_1 & \lambda_2v_2 & \cdots & \lambda_nv_n \end{bmatrix}$$
$$= P \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

Proof. (2) \Rightarrow (1): A has n linearly independent eigenvectors $v_1, \ldots, v_n \in \mathbb{R}^n$ with associated eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Set $P := \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$. Clearly P is an $n \times n$ matrix. Since v_1, \ldots, v_n are linearly independent, P is invertible.

Moreover

$$AP = \begin{bmatrix} Av_1 & Av_2 & \cdots & Av_n \end{bmatrix} = \begin{bmatrix} \lambda_1v_1 & \lambda_2v_2 & \cdots & \lambda_nv_n \end{bmatrix}$$

$$= P \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

Therefore

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

Proof. (2) \Rightarrow (1): A has n linearly independent eigenvectors $v_1, \ldots, v_n \in \mathbb{R}^n$ with associated eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Set $P := \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$. Clearly P is an $n \times n$ matrix. Since v_1, \ldots, v_n are linearly independent, P is invertible.

Moreover

$$AP = \begin{bmatrix} Av_1 & Av_2 & \cdots & Av_n \end{bmatrix} = \begin{bmatrix} \lambda_1v_1 & \lambda_2v_2 & \cdots & \lambda_nv_n \end{bmatrix}$$

$$= P \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

Therefore

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

 $(1) \Leftrightarrow (3) \Leftrightarrow (4)$: We will skip it.

• Let A be an $n \times n$ matrix over \mathbb{R} .

- Let A be an $n \times n$ matrix over \mathbb{R} .
- Write A^r for the matrix multiplication of r many copies of A.

- Let A be an $n \times n$ matrix over \mathbb{R} .
- Write A^r for the matrix multiplication of r many copies of A.
- For $c \in \mathbb{R}$, cA is just component wise scalar multiplication.

- Let A be an $n \times n$ matrix over \mathbb{R} .
- Write A^r for the matrix multiplication of r many copies of A.
- For $c \in \mathbb{R}$, cA is just component wise scalar multiplication.
- If $f(x) = a_r x^r + \dots + a_2 x^2 + a_1 x + a_0 \in \mathbb{R}[x]$,

- Let *A* be an $n \times n$ matrix over \mathbb{R} .
- Write A^r for the matrix multiplication of r many copies of A.
- For $c \in \mathbb{R}$, cA is just component wise scalar multiplication.
- If $f(x) = a_r x^r + \dots + a_2 x^2 + a_1 x + a_0 \in \mathbb{R}[x]$, then $f(A) = a_r A^r + \dots + a_2 A^2 + a_1 A + a_0 I_n \text{ is an } n \times n \text{ matrix/}\mathbb{R}.$

- Let A be an $n \times n$ matrix over \mathbb{R} .
- Write A^r for the matrix multiplication of r many copies of A.
- For $c \in \mathbb{R}$, cA is just component wise scalar multiplication.
- If $f(x) = a_r x^r + \dots + a_2 x^2 + a_1 x + a_0 \in \mathbb{R}[x]$, then $f(A) = a_r A^r + \dots + a_2 A^2 + a_1 A + a_0 I_n \text{ is an } n \times n \text{ matrix/}\mathbb{R}.$

Theorem (Cayley-Hamilton)

Consider the characteristic polynomial $p_A(x) := \det(xI_n - A)$.

- Let A be an $n \times n$ matrix over \mathbb{R} .
- Write A^r for the matrix multiplication of r many copies of A.
- For $c \in \mathbb{R}$, cA is just component wise scalar multiplication.
- If $f(x) = a_r x^r + \dots + a_2 x^2 + a_1 x + a_0 \in \mathbb{R}[x]$, then $f(A) = a_r A^r + \dots + a_2 A^2 + a_1 A + a_0 I_n \text{ is an } n \times n \text{ matrix/}\mathbb{R}.$

Theorem (Cayley-Hamilton)

Consider the characteristic polynomial $p_A(x) := \det(xI_n - A)$. Then $p_A(A) = 0$

- Let A be an $n \times n$ matrix over \mathbb{R} .
- Write A^r for the matrix multiplication of r many copies of A.
- For $c \in \mathbb{R}$, cA is just component wise scalar multiplication.
- If $f(x) = a_r x^r + \dots + a_2 x^2 + a_1 x + a_0 \in \mathbb{R}[x]$, then $f(A) = a_r A^r + \dots + a_2 A^2 + a_1 A + a_0 I_n \text{ is an } n \times n \text{ matrix/}\mathbb{R}.$

Theorem (Cayley-Hamilton)

Consider the characteristic polynomial $p_A(x) := \det(xI_n - A)$. Then $p_A(A) = 0$ (zero matrix of order $n \times n$).

- Let A be an $n \times n$ matrix over \mathbb{R} .
- Write A^r for the matrix multiplication of r many copies of A.
- For $c \in \mathbb{R}$, cA is just component wise scalar multiplication.
- If $f(x) = a_r x^r + \dots + a_2 x^2 + a_1 x + a_0 \in \mathbb{R}[x]$, then $f(A) = a_r A^r + \dots + a_2 A^2 + a_1 A + a_0 I_n \text{ is an } n \times n \text{ matrix/}\mathbb{R}.$

Theorem (Cayley-Hamilton)

Consider the characteristic polynomial $p_A(x) := \det(xI_n - A)$. Then $p_A(A) = 0$ (zero matrix of order $n \times n$).

Warning: $p_A(A) \neq \det(AI_n - A)$.

- Let A be an $n \times n$ matrix over \mathbb{R} .
- Write A^r for the matrix multiplication of r many copies of A.
- For $c \in \mathbb{R}$, cA is just component wise scalar multiplication.
- If $f(x) = a_r x^r + \dots + a_2 x^2 + a_1 x + a_0 \in \mathbb{R}[x]$, then $f(A) = a_r A^r + \dots + a_2 A^2 + a_1 A + a_0 I_n \text{ is an } n \times n \text{ matrix/}\mathbb{R}.$

Theorem (Cayley-Hamilton)

Consider the characteristic polynomial $p_A(x) := \det(xI_n - A)$. Then $p_A(A) = 0$ (zero matrix of order $n \times n$).

Warning: $p_A(A) \neq \det(AI_n - A)$. LHS is a matrix;

- Let *A* be an $n \times n$ matrix over \mathbb{R} .
- Write A^r for the matrix multiplication of r many copies of A.
- For $c \in \mathbb{R}$, cA is just component wise scalar multiplication.
- If $f(x) = a_r x^r + \dots + a_2 x^2 + a_1 x + a_0 \in \mathbb{R}[x]$, then $f(A) = a_r A^r + \dots + a_2 A^2 + a_1 A + a_0 I_n \text{ is an } n \times n \text{ matrix/}\mathbb{R}.$

Theorem (Cayley-Hamilton)

Consider the characteristic polynomial $p_A(x) := \det(xI_n - A)$. Then $p_A(A) = 0$ (zero matrix of order $n \times n$).

Warning: $p_A(A) \neq \det(AI_n - A)$. LHS is a matrix; RHS is a scalar.

- Let A be an $n \times n$ matrix over \mathbb{R} .
- Write A^r for the matrix multiplication of r many copies of A.
- For $c \in \mathbb{R}$, cA is just component wise scalar multiplication.
- If $f(x)=a_rx^r+\cdots+a_2x^2+a_1x+a_0\in\mathbb{R}[x]$, then $f(A)=a_rA^r+\cdots+a_2A^2+a_1A+a_0I_n \text{ is an } n\times n \text{ matrix}/\mathbb{R}.$

Theorem (Cayley-Hamilton)

Consider the characteristic polynomial $p_A(x) := \det(xI_n - A)$. Then $p_A(A) = 0$ (zero matrix of order $n \times n$).

Warning: $p_A(A) \neq \det(AI_n - A)$. LHS is a matrix; RHS is a scalar.

Example

If
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
,

- Let A be an $n \times n$ matrix over \mathbb{R} .
- Write A^r for the matrix multiplication of r many copies of A.
- For $c \in \mathbb{R}$, cA is just component wise scalar multiplication.
- If $f(x) = a_r x^r + \dots + a_2 x^2 + a_1 x + a_0 \in \mathbb{R}[x]$, then $f(A) = a_r A^r + \dots + a_2 A^2 + a_1 A + a_0 I_n \text{ is an } n \times n \text{ matrix/}\mathbb{R}.$

Theorem (Cayley-Hamilton)

Consider the characteristic polynomial $p_A(x) := \det(xI_n - A)$. Then $p_A(A) = 0$ (zero matrix of order $n \times n$).

Warning: $p_A(A) \neq \det(AI_n - A)$. LHS is a matrix; RHS is a scalar.

Example

If
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, then $p_A(x) = x^2 - 5x - 2$.

- Let *A* be an $n \times n$ matrix over \mathbb{R} .
- Write A^r for the matrix multiplication of r many copies of A.
- For $c \in \mathbb{R}$, cA is just component wise scalar multiplication.
- If $f(x) = a_r x^r + \dots + a_2 x^2 + a_1 x + a_0 \in \mathbb{R}[x]$, then $f(A) = a_r A^r + \dots + a_2 A^2 + a_1 A + a_0 I_n \text{ is an } n \times n \text{ matrix/}\mathbb{R}.$

Theorem (Cayley-Hamilton)

Consider the characteristic polynomial $p_A(x) := \det(xI_n - A)$. Then $p_A(A) = 0$ (zero matrix of order $n \times n$).

Warning: $p_A(A) \neq \det(AI_n - A)$. LHS is a matrix; RHS is a scalar.

Example

If
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, then $p_A(x) = x^2 - 5x - 2$. The Cayley-Hamilton

Theorem says that
$$A^2 - 5A - 2I_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
.

Theorem

Let A and B be similar,

Theorem

Let *A* and *B* be similar, i.e., $B = P^{-1}AP$ for some invertible matrix *P*.

Theorem

Let A and B be similar, i.e., $B = P^{-1}AP$ for some invertible matrix P. Then $\det(xI_n - A) = \det(xI_n - B)$.

Proof. $\det(xI_n - B)$

Theorem

Let A and B be similar, i.e., $B = P^{-1}AP$ for some invertible matrix P. Then $\det(xI_n - A) = \det(xI_n - B)$.

Proof.
$$det(xI_n - B) = det(xP^{-1}I_nP - P^{-1}AP)$$

Theorem

Let A and B be similar, i.e., $B = P^{-1}AP$ for some invertible matrix P. Then $\det(xI_n - A) = \det(xI_n - B)$.

Proof.
$$\det(xI_n - B) = \det(xP^{-1}I_nP - P^{-1}AP) = \det(P^{-1}(xI_n - A)P)$$

Theorem

Let A and B be similar, i.e., $B = P^{-1}AP$ for some invertible matrix P. Then $\det(xI_n - A) = \det(xI_n - B)$.

Proof.
$$\det(xI_n - B) = \det(xP^{-1}I_nP - P^{-1}AP) = \det(P^{-1}(xI_n - A)P)$$

= $(1/\det(P)) \det(xI_n - A) \det(P)$

Theorem

Let A and B be similar, i.e., $B = P^{-1}AP$ for some invertible matrix P. Then $\det(xI_n - A) = \det(xI_n - B)$.

Proof.
$$\det(xI_n - B) = \det(xP^{-1}I_nP - P^{-1}AP) = \det(P^{-1}(xI_n - A)P)$$

= $(1/\det(P)) \det(xI_n - A) \det(P) = \det(xI_n - A)$.

Theorem

Theorem

Let A and B be similar, i.e., $B = P^{-1}AP$ for some invertible matrix P. Then $\det(xI_n - A) = \det(xI_n - B)$.

Proof.
$$\det(xI_n - B) = \det(xP^{-1}I_nP - P^{-1}AP) = \det(P^{-1}(xI_n - A)P)$$

= $(1/\det(P)) \det(xI_n - A) \det(P) = \det(xI_n - A)$.

Theorem

Let A and B be similar,

Theorem

Let A and B be similar, i.e., $B = P^{-1}AP$ for some invertible matrix P. Then $\det(xI_n - A) = \det(xI_n - B)$.

Proof.
$$\det(xI_n - B) = \det(xP^{-1}I_nP - P^{-1}AP) = \det(P^{-1}(xI_n - A)P)$$

= $(1/\det(P)) \det(xI_n - A) \det(P) = \det(xI_n - A)$.

Theorem

Let *A* and *B* be similar, i.e., $B = P^{-1}AP$.

Theorem

Let A and B be similar, i.e., $B = P^{-1}AP$ for some invertible matrix P. Then $\det(xI_n - A) = \det(xI_n - B)$.

Proof.
$$\det(xI_n - B) = \det(xP^{-1}I_nP - P^{-1}AP) = \det(P^{-1}(xI_n - A)P)$$

= $(1/\det(P)) \det(xI_n - A) \det(P) = \det(xI_n - A)$.

Theorem

Let A and B be similar, i.e., $B = P^{-1}AP$. For a polynomial $f(x) \in \mathbb{R}[x]$,

Theorem

Let A and B be similar, i.e., $B = P^{-1}AP$ for some invertible matrix P. Then $\det(xI_n - A) = \det(xI_n - B)$.

Proof.
$$\det(xI_n - B) = \det(xP^{-1}I_nP - P^{-1}AP) = \det(P^{-1}(xI_n - A)P)$$

= $(1/\det(P)) \det(xI_n - A) \det(P) = \det(xI_n - A)$.

Theorem

Theorem

Let A and B be similar, i.e., $B = P^{-1}AP$ for some invertible matrix P. Then $\det(xI_n - A) = \det(xI_n - B)$.

Proof.
$$\det(xI_n - B) = \det(xP^{-1}I_nP - P^{-1}AP) = \det(P^{-1}(xI_n - A)P)$$

= $(1/\det(P)) \det(xI_n - A) \det(P) = \det(xI_n - A)$.

Theorem

Proof. Note:
$$P^{-1}A^{r}P = (P^{-1}AP)(P^{-1}AP) \cdots (P^{-1}AP) = B^{r}$$
,

Theorem

Let A and B be similar, i.e., $B = P^{-1}AP$ for some invertible matrix P. Then $\det(xI_n - A) = \det(xI_n - B)$.

Proof.
$$\det(xI_n - B) = \det(xP^{-1}I_nP - P^{-1}AP) = \det(P^{-1}(xI_n - A)P)$$

= $(1/\det(P)) \det(xI_n - A) \det(P) = \det(xI_n - A)$.

Theorem

Proof. Note:
$$P^{-1}A^rP = (P^{-1}AP)(P^{-1}AP) \cdots (P^{-1}AP) = B^r$$
, and $P^{-1}(c_1D_1 + c_2D_2)P = c_1(P^{-1}D_1P) + c_2(P^{-1}D_2P)$.

Theorem

Let A and B be similar, i.e., $B = P^{-1}AP$ for some invertible matrix P. Then $\det(xI_n - A) = \det(xI_n - B)$.

Proof.
$$\det(xI_n - B) = \det(xP^{-1}I_nP - P^{-1}AP) = \det(P^{-1}(xI_n - A)P)$$

= $(1/\det(P)) \det(xI_n - A) \det(P) = \det(xI_n - A)$.

Theorem

Proof. Note:
$$P^{-1}A^rP = (P^{-1}AP)(P^{-1}AP) \cdots (P^{-1}AP) = B^r$$
, and $P^{-1}(c_1D_1 + c_2D_2)P = c_1(P^{-1}D_1P) + c_2(P^{-1}D_2P)$. Verify that $P^{-1}f(A)P = f(B)$

Theorem

Let A and B be similar, i.e., $B = P^{-1}AP$ for some invertible matrix P. Then $\det(xI_n - A) = \det(xI_n - B)$.

Proof.
$$\det(xI_n - B) = \det(xP^{-1}I_nP - P^{-1}AP) = \det(P^{-1}(xI_n - A)P)$$

= $(1/\det(P)) \det(xI_n - A) \det(P) = \det(xI_n - A)$.

Theorem

Proof. Note:
$$P^{-1}A^rP = (P^{-1}AP)(P^{-1}AP) \cdots (P^{-1}AP) = B^r$$
, and $P^{-1}(c_1D_1 + c_2D_2)P = c_1(P^{-1}D_1P) + c_2(P^{-1}D_2P)$. Verify that $P^{-1}f(A)P = f(B)$ and $Pf(B)P^{-1} = f(A)$.

Theorem

Let A and B be similar, i.e., $B = P^{-1}AP$ for some invertible matrix P. Then $\det(xI_n - A) = \det(xI_n - B)$.

Proof.
$$\det(xI_n - B) = \det(xP^{-1}I_nP - P^{-1}AP) = \det(P^{-1}(xI_n - A)P)$$

= $(1/\det(P)) \det(xI_n - A) \det(P) = \det(xI_n - A)$.

Theorem

Proof. Note:
$$P^{-1}A^rP = (P^{-1}AP)(P^{-1}AP) \cdots (P^{-1}AP) = B^r$$
, and $P^{-1}(c_1D_1 + c_2D_2)P = c_1(P^{-1}D_1P) + c_2(P^{-1}D_2P)$. Verify that $P^{-1}f(A)P = f(B)$ and $Pf(B)P^{-1} = f(A)$. Hence the theorem follows.

Let A be a diagonalizable matrix,

Let A be a diagonalizable matrix, i.e., there is P such that

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = B \text{ (say)}.$$

Let A be a diagonalizable matrix, i.e., there is P such that

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = B \text{ (say)}.$$

Note that $\det(xI_n - A) = \det(xI_n - B) = (x - \lambda_1) \cdots (x - \lambda_n)$.

Let A be a diagonalizable matrix, i.e., there is P such that

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = B \text{ (say)}.$$

Note that $\det(xI_n - A) = \det(xI_n - B) = (x - \lambda_1) \cdots (x - \lambda_n)$. By induction on n, one can verify that

$$(B-\lambda_1I_n)(B-\lambda_2I_n)\cdots(B-\lambda_nI_n)=0.$$

Let A be a diagonalizable matrix, i.e., there is P such that

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = B \text{ (say)}.$$

Note that $\det(xI_n - A) = \det(xI_n - B) = (x - \lambda_1) \cdots (x - \lambda_n)$. By induction on n, one can verify that

$$(B-\lambda_1I_n)(B-\lambda_2I_n)\cdots(B-\lambda_nI_n)=0.$$

Hence, multiplying P on left

Let A be a diagonalizable matrix, i.e., there is P such that

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = B \text{ (say)}.$$

Note that $\det(xI_n - A) = \det(xI_n - B) = (x - \lambda_1) \cdots (x - \lambda_n)$. By induction on n, one can verify that

$$(B - \lambda_1 I_n)(B - \lambda_2 I_n) \cdots (B - \lambda_n I_n) = 0.$$

Hence, multiplying P on left and P^{-1} on right,

Let A be a diagonalizable matrix, i.e., there is P such that

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = B \text{ (say)}.$$

Note that $\det(xI_n - A) = \det(xI_n - B) = (x - \lambda_1) \cdots (x - \lambda_n)$. By induction on n, one can verify that

$$(B-\lambda_1I_n)(B-\lambda_2I_n)\cdots(B-\lambda_nI_n)=0.$$

Hence, multiplying P on left and P^{-1} on right, we get

$$(A - \lambda_1 I_n)(A - \lambda_2 I_n) \cdots (A - \lambda_n I_n) = 0$$

Let A be a diagonalizable matrix, i.e., there is P such that

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = B \; (\text{say}).$$

Note that $\det(xI_n - A) = \det(xI_n - B) = (x - \lambda_1) \cdots (x - \lambda_n)$. By induction on n, one can verify that

$$(B - \lambda_1 I_n)(B - \lambda_2 I_n) \cdots (B - \lambda_n I_n) = 0.$$

Hence, multiplying P on left and P^{-1} on right, we get

$$(A - \lambda_1 I_n)(A - \lambda_2 I_n) \cdots (A - \lambda_n I_n) = 0$$

i.e.,
$$p_A(A) = 0$$
 (zero matrix).

Let A be a diagonalizable matrix, i.e., there is P such that

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = B \; (\text{say}).$$

Note that $\det(xI_n - A) = \det(xI_n - B) = (x - \lambda_1) \cdots (x - \lambda_n)$. By induction on n, one can verify that

$$(B - \lambda_1 I_n)(B - \lambda_2 I_n) \cdots (B - \lambda_n I_n) = 0.$$

Hence, multiplying P on left and P^{-1} on right, we get

$$(A - \lambda_1 I_n)(A - \lambda_2 I_n) \cdots (A - \lambda_n I_n) = 0$$

i.e., $p_A(A) = 0$ (zero matrix).

Remark

It can be observed from the proof that if A is diagonalizable, then A satisfies a polynomial having distinct roots.

Applications of Eigenvalues and Eigenvectors

Some real life applications of the use of eigenvalues and eigenvectors in science, engineering and computer science can be found here:

```
https://www.intmath.com/matrices-determinants/8-applications-eigenvalues-eigenvectors.php
```

Thank You!