

(Boosting)

O Adaboost

2 6BM

J scale UP, Efficiency

3 X6800st

@ Light 6BM

6 Cat GBM

Ensemble Learning:

Light GBM

Pilsung Kang

School of Industrial Management Engineering

Korea University

Ke et al. (2017)

- Motivation
 - ✓ Conventional GBM need to, for every feature, scan all the data instances to estimate the information gain of all the possible split points Light 6BM: 전체 스캔을 취직화
- Idea
 - ✓ To reduce the number of data instances and the number of features
 - Gradient-based One-Side Sampling (GOSS)
 - Data instances with different gradients play different roles in the computation of information gain
 - Keep instances with large gradients and randomly drop instances with small gradients
- Inctorce It
 Agy 1.713 Sampling
 - Exclusive Feature Bundling (EFB)
 - In a sparse feature space, many features are (almost) exclusive, i.e., they rarely take nonzero values simultaneously (ex: one-hot encoding) 나 하나의 객체에 대해 동생한 두개의 변수가 秋川 蜡花 雅 建し
 - Bundling these exclusive features does not degenerate the performance

Risk: Exclusive 和级规处利达

Gradient > 4

Gradient-based One-sided Sampling (GOSS)

XGBoost Bucketile Sprit Point SM **Algorithm 1: Histogram**-based Algorithm **Input**: *I*: training data, *d*: max depth **Input**: m: feature dimension $nodeSet \leftarrow \{0\} \triangleright tree nodes in current level$ $rowSet \leftarrow \{\{0, 1, 2, ...\}\} \triangleright data indices in tree nodes$ for i = 1 to d do for node in nodeSet do usedRows $\leftarrow rowSet[node]$ for k = 1 to m do $H \leftarrow \text{new Histogram}()$ **for** *j* **in** usedRows **do** $bin \leftarrow I.f[k][j].bin$ $H[bin].y \leftarrow H[bin].y + I.y[j]$ $H[\text{bin}].n \leftarrow H[\text{bin}].n + 1$ Find the best split on histogram H. Update rowSet and nodeSet according to the best split points.

LightGBM

```
Algorithm 2: Gradient-based One-Side Sampling
```

```
Input: I: training data, d: iterations
Input: a: sampling ratio of large gradient data
Input: b: sampling ratio of small gradient data
Input: loss: loss function, L: weak learner
models \leftarrow \{\}, fact \leftarrow \frac{1-a}{b}
topN \leftarrow a \times len(I), randN \leftarrow b \times len(I)
for i = 1 to d do
     preds \leftarrow models.predict(I)
     g \leftarrow loss(I, preds), w \leftarrow \{1,1,...\}
     sorted \leftarrow GetSortedIndices(abs(g))
     topSet \leftarrow sorted[1:topN]
     randSet \leftarrow RandomPick(sorted[topN:len(I)],
     randN)
     usedSet \leftarrow topSet + randSet
     w[randSet] \times = fact \triangleright Assign weight fact to the
     small gradient data.
     newModel \leftarrow L(I[usedSet], -g[usedSet],
     w[usedSet])
     models.append(newModel)
```


Gradient-based One-sided Sampling (GOSS)

https://cdm98.tistory.com/m/31

$$\frac{1-\alpha}{b} = \frac{0.9}{0.9} = 1$$

$$\frac{1-\alpha}{b} = \frac{0.9}{0.9} = 1$$

$$\frac{0.95}{0.5} = 1971$$

Exclusive Feature Bundling (EFB)

被 発料を feature secon 대체 of かと feature を かいは りきュ (2)

Algorithm 3: Greedy Bundling

Input: F: features, K: max conflict count Construct graph G $searchOrder \leftarrow G.sortByDegree()$ bundles $\leftarrow \{\}$, bundlesConflict $\leftarrow \{\}$ for i in searchOrder do $needNew \leftarrow True$ for j = 1 to len(bundles) do $cnt \leftarrow ConflictCnt(bundles[j], F[i])$ **if** $cnt + bundlesConflict[i] \le K$ **then** bundles[i].add(F[i]), needNew \leftarrow False break if needNew then Add F[i] as a new bundle to bundles

Output: bundles

Algorithm 4: Merge Exclusive Features

```
Input: numData: number of data
Input: F: One bundle of exclusive features
binRanges \leftarrow \{0\}, totalBin \leftarrow 0
for f in F do
    totalBin += f.numBin
    binRanges.append(totalBin)
newBin \leftarrow new Bin(numData)
for i = 1 to numData do
    newBin[i] \leftarrow 0
    for j = 1 to len(F) do
        if F[j].bin[i] \neq 0 then
            newBin[i] \leftarrow F[j].bin[i] + binRanges[j]
```

Output: newBin, binRanges

- Exclusive Feature Bundling (EFB)
 - ✓ Can be formulated as a Graph coloring problem
 - Construct a Graph (V, E)

 - E: total conflicts between features

Minimum Vertex Coloring

• Exclusive Feature Bundling (EFB)

√ Greedy bundling example

Edge-1 강도 = Conflict-1 검토 > 총시에 0이 아닌 계계 두고 결정

	x _I	x ₂	x ₃	X ₄	X ₅
x _I	-	6	2	I	6
x ₂	6	-	I	I	6
x ₃	2	I	-	3	4
X ₄	I	I	3	-	3
X ₅	6	6	4	3	-
	15	14	10	g	19

	x ₅	x _I	x ₂	x ₃	x ₄
d	19	15	14	10	8

Legree → greely Methods /科型/ 型度

• Exclusive Feature Bundling (EFB)

✓ Greedy bundling example (cut-off = 0.2)

Verify (Cotton of the cotton of th

- Exclusive Feature Bundling (EFB)
 - √ Greedy bundling example (cut-off = 0.2)

• Exclusive Feature Bundling (EFB)

√ Greedy bundling example (cut-off = 0.2)

- Exclusive Feature Bundling (EFB)
 - ✓ Greedy bundling example (cut-off = 0.2)

X,, X2, X3, X4, X5

• Exclusive Feature Bundling (EFB)

✓ Greedy bundling example (cut-off = 0.2)

Mey	gez glav	
	olumn 28	7

	x _I	x ₂	X3	X ₄	x ₅
I_1	I	I	0	0	I
l ₂	0	0	I	I	I
l ₃	I	2	0	0	2
I ₄	0	0	2	3	I
l ₅	2	I	0	0	3
I ₆	3	3	0	0	I
l ₇	0	0	3	0	2
I ₈	I	2	3	4	3
l ₉	I	0	I	0	0
I ₁₀	2	3	0	0	2

		•		Z	~
	x ₅	Χ _I	X ₄	x ₂	x ₃
I ₁	I	I	0	I	0
l ₂	I	0		0	I
l ₃	2	I	0	2	0
I ₄	I	0	3	0	2
I ₅	3	2	0	I	0
I ₆	I	3	0	3	0
I ₇	2	0	0	0	3
I ₈	3	I	4	2	3
l ₉	0	I	0	0	I
I ₁₀	2	2	0	3	0

Exclusive Feature Bundling (EFB)

		从沿		人かは	
	x ₅	Χ _I	x ₄	x_2	x ₃
I_1	I	1 >	, 0	I	0
l ₂	I	0 <		0 <	(1
I ₃	2	1 7	0	2	0
I ₄	I	0 4	3	0 <	2
I ₅	3	2	, 0	I	0
I ₆	I	3	> 0	3	0
I ₇	2	0 =	0	0 <	3
I ₈	3		4	* 2 <	3
l ₉	0	1 >	0	0	I
I ₁₀	2	2	7 0	3	0
	Min	0	0	0	0
	Max	3	4	3	3

• Experiments

✓ Dataset description

Table 1: Datasets used in the experiments.

Name	#data	#feature	Description	Task	Metric
Allstate	12 M	4228	Sparse	Binary classification	AUC
Flight Delay	10 M	700	Sparse	Binary classification	AUC
LETOR	2M	136	Dense	Ranking	NDCG [4]
KDD10	19M	29M	Sparse	Binary classification	AUC
KDD12	119M	54M	Sparse	Binary classification	AUC

✓ Training time

	xgb_exa	xgb_his	lgb_baseline	EFB_only	LightGBM
Allstate	10.85	2.63	6.07	0.71	0.28
Flight Delay	5.94	1.05	1.39	0.27	0.22
LETOR	5.55	0.63	0.49	0.46	0.31
KDD10	108.27	OOM	39.85	6.33	2.85
KDD12	191.99	OOM	168.26	20.23	12.67

• Experiments

✓ Overall accuracy

	xgb_exa	xgb_his	lgb_baseline	SGB	LightGBM
Allstate	0.6070	0.6089	0.6093	$0.6064 \pm 7e-4$	$0.6093 \pm 9e-5$
Flight Delay	0.7601	0.7840	0.7847	$0.7780 \pm 8e-4$	$0.7846 \pm 4 e ext{-}5$
LETOR	0.4977	0.4982	0.5277	$0.5239 \pm 6e-4$	$0.5275 \pm 5 e-4$
KDD10	0.7796	OOM	0.78735	$0.7759 \pm 3e-4$	$0.78732 \pm 1\text{e-4}$
KDD12	0.7029	OOM	0.7049	$0.6989 \pm 8e-4$	0.7051 ± 5 e-5

Figure 1: Time-AUC curve on Flight Delay.

Figure 2: Time-NDCG curve on LETOR.

