Der DPLL Algorithmus

Christoph Benzmüller Freie Universität Berlin

Adressierte Themen:

- Wissensrepräsentation und Schließen
- Propositionale Logik und SAT Solving
- Davis-Putnam-Logemann-Loveland (DPLL) Algorithmus

Beitrag von

M. Heule
O. Kullmann

V. Marek

Beitrag von

M. Heule
O. Kullmann
V. Marek

Evelyn Lamb

26 May 2016

Kann die Menge $N=\{1,2,\ldots,n\}$ in zwei Untermengen zerlegt werden, so dass keine Untermenge ein pythagoräisches Triple $(\mathbf{a},\mathbf{b},\mathbf{c})$ enthält mit $\mathbf{a}^2+\mathbf{b}^2=\mathbf{c}^2$?

$$n = 10$$

$$3^2 + 4^2 = 5^2$$

Beitrag von

M. Heule
O. Kullmann
V. Marek

Evelyn Lamb

26 May 2016

Kann die Menge $N = \{1, 2, ..., n\}$ in zwei Untermengen zerlegt werden, so dass keine Untermenge ein pythagoräisches Triple $(\mathbf{a}, \mathbf{b}, \mathbf{c})$ enthält mit $\mathbf{a}^2 + \mathbf{b}^2 = \mathbf{c}^2$?

$$n = 10$$

$$3^2 + 4^2 = 5^2$$

Beitrag von

M. Heule
O. Kullmann
V. Marek

Evelyn Lamb

26 May 2016

Kann die Menge $N=\{1,2,\ldots,n\}$ in zwei Untermengen zerlegt werden, so dass keine Untermenge ein pythagoräisches Triple $(\mathbf{a},\mathbf{b},\mathbf{c})$ enthält mit $\mathbf{a}^2+\mathbf{b}^2=\mathbf{c}^2$?

$$n = 10$$

$$3^2 + 4^2 = 5^2$$

Beitrag von

M. Heule
O. Kullmann
V. Marek

Evelyn Lamb

26 May 2016

Kann die Menge $N = \{1, 2, ..., n\}$ in zwei Untermengen zerlegt werden, so dass keine Untermenge ein pythagoräisches Triple $(\mathbf{a}, \mathbf{b}, \mathbf{c})$ enthält mit $\mathbf{a}^2 + \mathbf{b}^2 = \mathbf{c}^2$?

$$n = 10$$

$$3^2 + 4^2 = 5^2$$

Verboten: nur eine Farbe!

Beitrag von

M. Heule O. Kullmann V. Marek

A computer cracks the Boolean Pythagorean triples problem — but is it really maths?

Evelyn Lamb

26 May 2016

Kann die Menge $N = \{1, 2, ..., n\}$ in zwei Untermengen zerlegt werden, so dass keine Untermenge ein pythagoräisches Triple (a, b, c) enthält mit $a^2 + b^2 = c^2$?

$$n = 20$$

$$3^{2} + 4^{2} = 5^{2}$$

$$5^{2} + 12^{2} = 13^{2}$$

$$8^{2} + 15^{2} = 17^{2}$$

Beitrag von

M. Heule O. Kullmann V. Marek

A computer cracks the Boolean Pythagorean triples problem — but is it really maths?

Evelyn Lamb

26 May 2016

Kann die Menge $N = \{1, 2, ..., n\}$ in zwei Untermengen zerlegt werden, so dass keine Untermenge ein pythagoräisches Triple (a, b, c) enthält mit $a^2 + b^2 = c^2$?

$$n = 30$$

$$3^{2} + 4^{2} = 5^{2}$$

$$5^{2} + 12^{2} = 13^{2}$$

$$8^{2} + 15^{2} = 17^{2}$$

$$7^{2} + 24^{2} = 25^{2}$$

(choose color of the other numbers arbitrarily)

Beitrag von

M. Heule
O. Kullmann
V. Marek

A computer cracks the Boolean Pythagorean triples problem — but is it really maths?

Evelyn Lamb

26 May 2016

Kann die Menge $N = \{1, 2, ..., n\}$ in zwei Untermengen zerlegt werden, so dass keine Untermenge ein pythagoräisches Triple $(\mathbf{a}, \mathbf{b}, \mathbf{c})$ enthält mit $\mathbf{a}^2 + \mathbf{b}^2 = \mathbf{c}^2$?

$$n = 40$$

$$3^{2} + 4^{2} = 5^{2}$$

$$5^{2} + 12 = 13^{2}$$

$$8^{2} + 15^{2} = 17^{2}$$

$$7^{2} + 24^{2} = 25^{2}$$

$$20^{2} + 21^{2} = 29^{2}$$

$$12 = 29^{2}$$

Beitrag von

M. Heule O. Kullmann V. Marek

A computer cracks the Boolean Pythagorean triples problem — but is it really maths?

Evelyn Lamb

26 May 2016

Kann die Menge $N = \{1, 2, ..., n\}$ in zwei Untermengen zerlegt werden, so dass keine Untermenge ein pythagoräisches Triple (a, b, c) enthält mit $a^2 + b^2 = c^2$?

$$n = 40$$

$$3^{2} + 4^{2} = 5^{2}$$

$$5^{2} + 12^{2} = 13^{2}$$

$$8^{2} + 15^{2} = 17^{2}$$

$$7^{2} + 24^{2} = 25^{2}$$

$$20^{2} + 21^{2} = 29^{2}$$

$$12^{2} + 35^{2} = 37^{2}$$

Beitrag von

M. Heule
O. Kullmann
V. Marek

A computer cracks the Boolean Pythagorean triples problem — but is it really maths?

Evelyn Lamb

26 May 2016

Kann die Menge $N=\{1,2,\ldots,n\}$ in zwei Untermengen zerlegt werden, so dass keine Untermenge ein pythagoräisches Triple $(\mathbf{a},\mathbf{b},\mathbf{c})$ enthält mit $\mathbf{a}^2+\mathbf{b}^2=\mathbf{c}^2$?

n = 40

$$3^{2} + 4^{2} = 5^{2}$$

$$5^{2} + 12^{2} = 13^{2}$$

$$8^{2} + 15^{2} = 17^{2}$$

$$7^{2} + 24^{2} = 25^{2}$$

$$20^{2} + 21^{2} = 29^{2}$$

$$12^{2} + 35^{2} = 37^{2}$$

(wähle die Farbe der anderen Zahlen beliebig)

Shown by SAT-Solver:

For $n \ge 7825$ consistent bicoloring becomes impossible.

Beitrag von

M. Heule
O. Kullmann

V. Marek

The Science of Brute Force, M.J.H. Heule, O. Kullmann, Communications of the ACM, Vol. 60 No. 8, Pages 70-79, 2017, DOI:10.1145/3107239

https://cacm.acm.org/magazines/2017/ 8/219606-the-science-of-brute-force/ fulltext

Latest Results from just a Week Ago

EVELYN LAMB SCIENCE 04.30.18 09:00 AM

AN ANTI-AGING PUNDIT SOLVES A DECADES-OLD MATH PROBLEM

This 826-vertex graph requires at least five colors to ensure that no two connected vertices are the same shade. (Click here for a high-resolution version.)

OLENA SHMAHALO/QUANTA MAGAZINE; SOURCE: MARIJN HEULE

DPLL — Motivation, Grundlage, Notation

Übergeordnetes Thema: Erfüllbarkeitsproblem (SAT) der Aussagenlogik

- ▶ P vs. NP (1 Million Dollar Frage, Clay Mathematics Institute)
- SAT ist NP-vollständig
- SAT-Solver trotzdem sehr erfolgreich in der Praxis

Fokus der Vorlesung: DPLL-Algorithmus

- Intelligente Tiefensuche (Backtracking)
- Literatur
 - Martin Davis, Hilary Putnam. A Computing Procedure for Quantification Theory. J.ACM 7(3): 201-215 (1960)
 - Martin Davis, George Logemann, Donald W. Loveland. A Machine Program for Theorem Proving. Commun. ACM 5(7):394-397 (1962)
 - .
 - Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli. Solving SAT and SAT Modulo Theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53(6): 937-977 (2006)
 - **.**..

DPLL — Motivation, Grundlage, Notation

Übergeordnetes Thema: Erfüllbarkeitsproblem (SAT) der Aussagenlogik

- ▶ P vs. NP (1 Million Dollar Frage, Clay Mathematics Institute)
- ► SAT ist NP-vollständig
- SAT-Solver trotzdem sehr erfolgreich in der Praxis

Fokus der Vorlesung: DPLL-Algorithmus

- Intelligente Tiefensuche (Backtracking)
- Literatur
 - Martin Davis, Hilary Putnam. A Computing Procedure for Quantification Theory. J.ACM 7(3): 201-215 (1960)
 - Martin Davis, George Logemann, Donald W. Loveland. A Machine Program for Theorem Proving. Commun. ACM 5(7):394-397 (1962)
 - ▶ ..
 - Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli. Solving SAT and SAT Modulo Theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53(6): 937-977 (2006)

$$s, t ::= \top \mid \bot \mid A \mid \neg s \mid s \lor t \mid s \land t \mid s \rightarrow t \mid s \leftrightarrow t$$

Semantik Aussagenlogik: Abbildung nach T(rue) oder F(alse)

S	t				$s \lor t$	$s \wedge t$	$s \rightarrow t$	$s \leftrightarrow t$
T	T	T	F	F	T	T	T	T
T	F	T	F	F	T	F	F	F
F	T	T	F	T	T	F	T	F
F	F	T	F	T	F	F	T	T

Klauselnormalform bzw. Konjunktive Normalform (CNF

Reisnielformel:

$$(A \land \neg B) \leftrightarrow (A \lor B)$$

Beispielformel in CNF:

$$(A \vee \neg B) \wedge (\neg A \vee \neg B) \wedge \neg B$$

$$s, t ::= \top \mid \bot \mid A \mid \neg s \mid s \lor t \mid s \land t \mid s \rightarrow t \mid s \leftrightarrow t$$

S	t				$s \lor t$	$s \wedge t$	$s \rightarrow t$	$s \leftrightarrow t$
T	T	T	F	F	T	T	T	T
T	F	T	F	F	T	F	F	F
F	T	T	F	T	T	F	T	F
F	F	T	F	T	F	F	T	T

$$(A \land \neg B) \leftrightarrow (A \lor B)$$

$$(A \lor \neg B) \land (\neg A \lor \neg B) \land \neg B$$

$$s, t ::= \top \mid \bot \mid A \mid \neg s \mid s \lor t \mid s \land t \mid s \rightarrow t \mid s \leftrightarrow t$$

Semantik Aussagenlogik: Abbildung nach T(rue) oder F(alse)

S	t	Т	Т	$\neg s$	$s \vee t$	$s \wedge t$	$s \rightarrow t$	$s \leftrightarrow t$
T	T	T	F	F	T	T	T	T
T	F	T	F	F	T	F	F	F
F	T	T	F	T	T	F	T	F
F	F	T	F	T	F	F	T	T

$$(A \land \neg B) \leftrightarrow (A \lor B)$$

$$(A \vee \neg B) \wedge (\neg A \vee \neg B) \wedge \neg B$$

$$s, t ::= \top \mid \bot \mid A \mid \neg s \mid s \lor t \mid s \land t \mid s \rightarrow t \mid s \leftrightarrow t$$

Semantik Aussagenlogik: Abbildung nach T(rue) oder F(alse)

S	t	Т	Т	$\neg s$	$s \vee t$	$s \wedge t$	$s \rightarrow t$	$s \leftrightarrow t$
T	T	T	F	F	T	T	T	T
T	F	T	F	F	T	F	F	F
F	T	T	F	T	T	F	T	F
F	F	T	F	T	F	F	T	T

Klauselnormalform bzw. Konjunktive Normalform (CNF)

Beispielformel: $(A \land \neg B) \leftrightarrow (A \lor B)$

 $(A \lor \neg B) \land (\neg A \lor \neg B) \land \neg B$ Beispielformel in CNF:

Darstellung von Klauseln und Klausel-Listen: Kommutativ und Assoziativ

CNF $(A \vee \neg B) \wedge (\neg A \vee \neg B) \wedge \neg B$ $A\bar{R} \wedge \bar{A}\bar{R} \wedge \bar{R}$

Notation für Klauseln $A\bar{B}, \bar{A}\bar{B}, \bar{B}$ Notation für Klausel-Listen

Darstellung von Klauseln und Klausel-Listen: Kommutativ und Assoziativ

 $A\bar{B}, \bar{A}\bar{B}, \bar{B}$

Notation: Konjunktion von Klausel, Klauseln, Literale

CNF $(A \vee \neg B) \wedge (\neg A \vee \neg B) \wedge \neg B$ $A\bar{R} \wedge \bar{A}\bar{R} \wedge \bar{R}$ Notation für Klauseln

Annahme (für Rest der Vorlesung)

Notation für Klausel-Listen

Darstellung von Klauseln und Klausel-Listen: Kommutativ und Assoziativ

CNF $(A \vee \neg B) \wedge (\neg A \vee \neg B) \wedge \neg B$ $A\bar{R} \wedge \bar{A}\bar{R} \wedge \bar{R}$ Notation für Klauseln $A\bar{B}, \bar{A}\bar{B}, \bar{B}$ Notation für Klausel-Listen

Annahme (für Rest der Vorlesung)

Darstellung von Klauseln und Klausel-Listen: Kommutativ und Assoziativ

Belegungen $[\psi]$ am Beispiel:

 $[A\bar{B}]$ repräsentiert die **Belegung** $\{A \longrightarrow T, B \longrightarrow F\}$ $[\bar{B}]$ ist eine **partielle Belegung** für $A\bar{B}, \bar{A}\bar{B}, \bar{B}$

CNF $(A \vee \neg B) \wedge (\neg A \vee \neg B) \wedge \neg B$ $A\bar{R} \wedge \bar{A}\bar{R} \wedge \bar{R}$ Notation für Klauseln $A\bar{B}, \bar{A}\bar{B}, \bar{B}$ Notation für Klausel-Listen

Annahme (für Rest der Vorlesung)

Darstellung von Klauseln und Klausel-Listen: Kommutativ und Assoziativ

Belegungen $[\psi]$ am Beispiel:

 $[A\bar{B}]$ repräsentiert die **Belegung** $\{A \longrightarrow T, B \longrightarrow F\}$ $[\bar{B}]$ ist eine **partielle Belegung** für $A\bar{B}, \bar{A}\bar{B}, \bar{B}$

 $[\psi] \models s$ ist **Notation** für: Belegung $[\psi]$ erfüllt Formel s $[\psi]$ wird dann auch als **Modell für** s bezeichnet

CNF $(A \vee \neg B) \wedge (\neg A \vee \neg B) \wedge \neg B$ $A\bar{R} \wedge \bar{A}\bar{R} \wedge \bar{R}$ Notation für Klauseln $A\bar{B}, \bar{A}\bar{B}, \bar{B}$ Notation für Klausel-Listen

Annahme (für Rest der Vorlesung)

Darstellung von Klauseln und Klausel-Listen: Kommutativ und Assoziativ

Belegungen $[\psi]$ am Beispiel:

 $[A\bar{B}]$ repräsentiert die **Belegung** $\{A \longrightarrow T, B \longrightarrow F\}$ $[\bar{B}]$ ist eine **partielle Belegung** für $A\bar{B}, \bar{A}\bar{B}, \bar{B}$

 $[\psi] \models s$ ist **Notation** für: Belegung $[\psi]$ erfüllt Formel s

 $[\psi]$ wird dann auch als **Modell für** s bezeichnet

Regelsysteme/Transitionssysteme

Grundkenntnisse werden vorausgesetzt

```
Eingabeformel (CNF & Initialisierung A\bar{B}C, \bar{B}, C\bar{D}, BCD (Schritt 1) (Schritt 2) ... (Schritt n) \bar{B}C] A\bar{B}C, \bar{B}, C\bar{D}, BCD (Solved)
```

Kriterium für "Solved"?
$$[\bar{B}C] \quad \underbrace{A\bar{B}C}_{/}, \quad \underline{\bar{B}}_{/}, \quad \underbrace{C\bar{D}}_{/}, \quad \underline{BCD}_{/} \quad -\text{alle Klauseln sind erfüllt} -$$
 (es gilt dann: $[\bar{B}C] \models \text{Eingabeformel})$

```
Solved-Regel [\psi] \quad \phi \qquad \text{(Solved)} \mathbf{Bedingung:} \ [\psi] \models \phi
```

```
Solved-Regel [\psi] \quad \phi \qquad \text{(Solved)} \mathbf{Bedingung:} \ [\psi] \models \phi
```

```
Eingabeformel (CNF & Initialisierung)
A\bar{B}C, \bar{B}, C\bar{D}, BCD \qquad (Schritt 1)
\dots \qquad \dots \qquad (Schritt 2)
\dots \qquad \dots \qquad (Schritt n)
[\bar{B}C] \quad A\bar{B}C, \bar{B}, C\bar{D}, BCD \qquad (Solved)
```

Kriterium für "Solved"?
$$[\bar{B}C] \quad \underbrace{A\bar{B}C}_{\text{$/$}}, \quad \underline{B}_{\text{$/$}}, \quad \underline{C\bar{D}}_{\text{$/$}}, \quad \underline{BCD}_{\text{$/$}} \quad \text{--alle Klauseln sind erfüllt--}$$
 (es gilt dann: $[\bar{B}C] \models \text{Eingabeformel})$

```
Solved-Regel [\psi] \quad \phi \qquad \text{(Solved)} \mathbf{Bedingung:} \ [\psi] \models \phi
```

```
Eingabeformel (CNF & Initialisierung)
A\bar{B}C, \bar{B}, C\bar{D}, BCD \qquad \text{(Schritt 1)}
\dots \qquad \qquad \dots \qquad \qquad \text{(Schritt 2)}
\dots \qquad \qquad \dots \qquad \qquad \text{(Schritt n)}
[\bar{B}C] \quad A\bar{B}C, \bar{B}, C\bar{D}, BCD \qquad \qquad \text{(Solved)}
```

Kriterium für "Solved"?
$$[\bar{B}C] \quad \underbrace{A\bar{B}C}_{\text{$/$}}, \quad \underline{B}_{\text{$/$}}, \quad \underline{C\bar{D}}_{\text{$/$}}, \quad \underline{BCD}_{\text{$/$}} \quad \text{--alle Klauseln sind erfüllt--}$$
 (es gilt dann: $[\bar{B}C] \models \text{Eingabeformel})$

```
Solved-Regel [\psi] \quad \phi \qquad \text{(Solved)} \mathbf{Bedingung:} \ [\psi] \models \phi
```

```
Eingabeformel (CNF & Initialisierung)
A\bar{B}C, \bar{B}, C\bar{D}, BCD \qquad \text{(Schritt 1)}
\dots \qquad \qquad \dots \qquad \qquad \text{(Schritt 2)}
\dots \qquad \qquad \dots \qquad \qquad \text{(Schritt n)}
[\bar{B}C] \quad A\bar{B}C, \bar{B}, C\bar{D}, BCD \qquad \qquad \text{(Solved)}
```

Kriterium für "Solved"?
$$[\bar{B}C] \quad \underbrace{A\bar{B}C}_{\text{$/$}}, \quad \underline{B}_{\text{$/$}}, \quad \underline{C\bar{D}}_{\text{$/$}}, \quad \underline{BCD}_{\text{$/$}} \quad \text{--alle Klauseln sind erfüllt--}$$
 (es gilt dann: $[\bar{B}C] \models \text{Eingabeformel})$

```
Solved-Regel [\psi] \quad \phi \qquad \text{(Solved)} \mathbf{Bedingung:} \ [\psi] \models \phi
```

```
Eingabeformel (CNF & Initialisierung)
A\bar{B}C, \bar{B}, C\bar{D}, BCD \qquad \text{(Schritt 1)}
\dots \qquad \text{(Schritt 2)}
\dots \qquad \dots \qquad \text{(Schritt n)}
[\bar{B}C] A\bar{B}C, \bar{B}, C\bar{D}, BCD \qquad \text{(Solved)}
```

Kriterium für "Solved"?
$$[\bar{B}C] \quad \underbrace{A\bar{B}C}, \quad \bar{B}, \quad C\bar{D}, \quad BCD \quad -\text{alle Klauseln sind erfüllt} - \\ \text{(es gilt dann: } [\bar{B}C] \models \text{Eingabeformel)}$$

```
Solved-Regel [\psi] \quad \phi \qquad \text{(Solved)} \mathbf{Bedingung:} \ [\psi] \models \phi
```

```
Eingabeformel (CNF & Initialisierung)
 \begin{array}{cccc} & A\bar{B}C,\bar{B},C\bar{D},BCD & (Schritt 1) \\ & \dots & (Schritt 2) \\ & \dots & \\ & \dots & (Schritt n) \\ \hline [\bar{B}C] & A\bar{B}C,\bar{B},C\bar{D},BCD & (Solved) \end{array}
```

Kriterium für "Solved"?
$$[\bar{B}C] \quad \underbrace{A\bar{B}C}, \quad \bar{B}, \quad C\bar{D}, \quad BCD \quad -\text{alle Klauseln sind erfüllt} - \\ \text{(es gilt dann: } [\bar{B}C] \models \text{Eingabeformel)}$$

```
Solved-Regel [\psi] \quad \phi \qquad \text{(Solved)} \mathbf{Bedingung:} \ [\psi] \models \phi
```

```
Eingabeformel (CNF & Initialisierung)
A\bar{B}C, \bar{B}, C\bar{D}, BCD \qquad (Schritt 1)
\dots \qquad (Schritt 2)
\dots \qquad (Schritt n)
[\bar{B}C] A\bar{B}C, \bar{B}, C\bar{D}, BCD \qquad (Solved)
```

Kriterium für "Solved"?
$$[\bar{B}C] \quad \underbrace{A\bar{B}C}_{/}, \quad \underline{\bar{B}}_{/}, \quad \underbrace{C\bar{D}}_{/}, \quad \underline{BCD}_{/} \quad \text{-alle Klauseln sind erfüllt--}$$
 (es gilt dann: $[\bar{B}C] \models \text{Eingabeformel})$

```
Solved-Regel [\psi] \quad \phi \qquad \text{(Solved)} \mathbf{Bedingung:} \ [\psi] \models \phi
```

```
Eingabeformel (CNF & Initialisierung)
A\bar{B}C, \bar{B}, C\bar{D}, BCD \qquad (Schritt 1)
\dots \qquad (Schritt 2)
\dots \qquad (Schritt n)
[\bar{B}C] A\bar{B}C, \bar{B}, C\bar{D}, BCD \qquad (Solved)
```

Kriterium für "Solved"?
$$[\bar{B}C] \quad \underbrace{A\bar{B}C}_{\checkmark}, \quad \underline{\bar{B}}_{\checkmark}, \quad \underline{C\bar{D}}_{\checkmark}, \quad \underline{BCD}_{\checkmark} \quad \text{-alle Klauseln sind erfüllt--}$$
 (es gilt dann: $[\bar{B}C] \models \text{Eingabeformel})$

```
Solved-Regel [\psi] \quad \phi \qquad \text{(Solved)} \mathbf{Bedingung:} \ [\psi] \models \phi
```

Kriterium für "Solved"?
$$[\bar{B}C] \quad \underbrace{A\bar{B}C}_{\text{$/$}}, \quad \underline{B}_{\text{$/$}}, \quad \underline{C\bar{D}}_{\text{$/$}}, \quad \underline{BCD}_{\text{$/$}} \quad \text{--alle Klauseln sind erfüllt--}$$
 (es gilt dann: $[\bar{B}C] \models \text{Eingabeformel})$

```
Solved-Regel [\psi] \quad \phi \qquad \text{(Solved)} \mathbf{Bedingung:} \ [\psi] \models \phi
```

Kriterium für "Solved"?
$$[\bar{B}C] \quad \underbrace{A\bar{B}C}_{\checkmark}, \quad \underline{\bar{B}}_{\checkmark}, \quad \underbrace{C\bar{D}}_{\checkmark}, \quad \underline{BCD}_{\checkmark} \quad \text{-alle Klauseln sind erfüllt--}$$
 (es gilt dann: $[\bar{B}C] \models \text{Eingabeformel})$

```
Solved-Regel [\psi] \quad \phi \qquad \text{(Solved)} \mathbf{Bedingung:} \ [\psi] \models \phi
```

Kriterium für "Solved"?
$$[\bar{B}C] \quad \underbrace{A\bar{B}C}_{\text{$/$}}, \quad \underbrace{\bar{B}}_{\text{$/$}}, \quad \underbrace{C\bar{D}}_{\text{$/$}}, \underbrace{BCD}_{\text{$/$}} \quad \text{-alle Klauseln sind erfüllt-}$$
 (es gilt dann: $[\bar{B}C] \models \text{Eingabeformel})$

```
Solved-Regel [\psi] \quad \phi \qquad \text{(Solved)} \mathbf{Bedingung:} \ [\psi] \models \phi
```

Kriterium für "Solved"?

$$[\bar{B}C]$$
 $\underbrace{A\bar{B}C}_{\checkmark}$, $\underbrace{\bar{B}}_{\checkmark}$, $\underbrace{C\bar{D}}_{\checkmark}$, $\underbrace{BCD}_{\checkmark}$ —alle Klauseln sind erfüllt—

(es gilt dann: $[\bar{B}C] \models \text{Eingabeformel}$)

Solved-Regel

$$[\psi] \quad \phi \qquad \text{(Solved)}$$

Bedingung: $[\psi] \models \phi$

Eingabe-Formel

[]	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}]$	$A\bar{B}, \bar{B}, \center{K}CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}G$
$[\bar{B}\bar{D}]$	$A\bar{B}, \bar{B}, \center{K}CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}C_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}FG, \mathcal{K}\bar{F}G, \bar{D}E, \bar{F}G$
$[\bar{B}\bar{D}C_bF_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, KG, \bar{D}E, K\bar{G}$
$[\bar{B}\bar{D}C_bF_bG]$	
$[\bar{B}\bar{D}C_b\bar{F}]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}, G, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}C_b\bar{F}G]$	

(CNF & Initialisierung)

Unit-Propagation)
Pure-Literal

(Split) (Split)

(Unit-Propagation)

Backtrack

Unit-Propagation)

Eingabe-Formel
$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$A\bar{B}, \bar{B}, \center{K}CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$A\bar{B}, \bar{B}, \center{R}CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, KG, \bar{D}E, K\bar{G}$
$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}G, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$

(CNF & Initialisierung) (Unit-Propagation)

Pure-Literal)

(Split) (Split)

(Unit-Propagation)

Backtrack

(Unit-Propagation)

	Eingabe-Formel
[]	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[ar{B}]$	$A\bar{B}, \bar{B}, \center{K}CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}]$	$A\bar{B}, \bar{B}, \center{K}CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}C_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, KFG, K\bar{F}G, \bar{D}E, \bar{F}G$
$[\bar{B}\bar{D}C_bF_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, KG, \bar{D}E, K\bar{G}$
$[\bar{B}\bar{D}C_bF_bG]$	
$[\bar{B}\bar{D}C_b\bar{F}]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, KG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}C_b\bar{F}G]$	

(CNF & Initialisierung) (Unit-Propagation)

(Pure-Literal)

(Split) (Split)

(Unit-Propagation)

Backtrack

(Unit-Propagation)

```
Eingabe-Formel
[] A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}
[\bar{B}] A\bar{B}, \bar{B}, CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}
[\bar{B}\bar{D}] A\bar{B}, \bar{B}, CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}
[\bar{B}\bar{D}C_b] A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}
[\bar{B}\bar{D}C_bF_b] A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{K}\bar{G}
[\bar{B}\bar{D}C_b\bar{F}] A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}
[\bar{B}\bar{D}C_b\bar{F}G] A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}
```

```
(CNF & Initialisierung)
(Unit-Propagation)
```

Split)

(Unit-Propagation)

Backtrack

(Unit-Propagation)

```
Unit-Propagation-Regel:
```

Eingabe-F	ormel
-----------	-------

 $\begin{array}{lll} [] & A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}\\ [\bar{B}] & A\bar{B}, \bar{B}, &CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}\\ [\bar{B}\bar{D}] & A\bar{B}, \bar{B}, &CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}\\ [\bar{B}\bar{D}C_b] & A\bar{B}, \bar{B}, BCF, C\bar{G}F, &FG, &FG, \bar{D}E, \bar{F}\bar{G}\\ [\bar{B}\bar{D}C_bF_b] & A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, &\bar{K}\bar{K}G, \bar{D}E, \bar{K}\bar{K}G\\ [\bar{B}\bar{D}C_b\bar{F}_b] & A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{K}\bar{K}G\\ [\bar{B}\bar{D}C_b\bar{F}] & A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}\\ [\bar{B}\bar{D}C_b\bar{F}G] & A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}\\ \end{array}$

(CNF & Initialisierung) (Unit-Propagation)

(Pure-Literal)

(Split) (Split)

(Unit-Propagation)

Backtrack

(Unit-Propagation)

	Eingabe-Formel
[]	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[ar{B}]$	$A\bar{B}, \bar{B}, \ \ CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[ar{B}ar{ar{D}}]$	$A\bar{B}, \bar{B}, \center{K}CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}C_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \center{K}FG, \center{K}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}C_bF_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, KG, \bar{D}E, K\bar{G}$
$[\bar{B}\bar{D}C_bF_bG]$	
$[\bar{B}\bar{D}C_b\bar{F}]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, KG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}C_b\bar{F}G]$	

(CNF & Initialisierung) (Unit-Propagation) (Pure-Literal)

(Split) (Split)

(Unit-Propagation)

Backtrack

(Unit-Propagation)

	Eingabe-Formel
[]	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[ar{B}]$	$A\bar{B}, \bar{B}, \ \ CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[ar{B}ar{ar{D}}]$	$A\bar{B}, \bar{B}, \ \ CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}G$
$[\bar{B}\bar{D}C_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, KFG, K\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}C_bF_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \mathcal{K}G, \bar{D}E, \mathcal{K}\bar{G}$
$[\bar{B}\bar{D}C_bF_bG]$	
$[\bar{B}\bar{D}C_b\bar{F}]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}G, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
IDDC ECI	

```
Eingabe-Formel

[] A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{D}E, \bar{F}\bar{G}
[\bar{B}] A\bar{B}, \bar{B}, KCF, C\bar{G}F, \bar{C}FG, \bar{C}FG, \bar{D}E, \bar{F}\bar{G}
[\bar{B}\bar{D}] A\bar{B}, \bar{B}, KCF, C\bar{G}F, \bar{C}FG, \bar{C}FG, \bar{D}E, \bar{F}\bar{G}
[\bar{B}\bar{D}C_b] A\bar{B}, \bar{B}, BCF, C\bar{G}F, KFG, K\bar{F}G, \bar{D}E, \bar{F}\bar{G}
[\bar{B}\bar{D}C_bF_b] A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{K}\bar{G}
[\bar{B}\bar{D}C_bF_bG] A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{K}\bar{G}
[\bar{B}\bar{D}C_b\bar{F}G] A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}
[\bar{B}\bar{D}C_b\bar{F}G] A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}
```

(CNF & Initialisierung) (Unit-Propagation) (Pure-Literal) (Split)

(Spirit)
(Unit-Propagation)
(Backtrack)
(Unit-Propagation)
(Solved)

	Eingabe-Formel
[]	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[ar{B}]$	$A\bar{B}, \bar{B}, \ \ CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[ar{B}ar{D}]$	$A\bar{B}, \bar{B}, \ \ CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}C_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, KFG, K\bar{F}G, \bar{D}E, \bar{F}G$
$[\bar{B}\bar{D}C_bF_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \mathcal{K}G, \bar{D}E, \mathcal{K}\bar{G}$
$[\bar{B}\bar{D}C_bF_bG]$	
$[\bar{B}\bar{D}C_b\bar{F}]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}G, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{R}\bar{D}C,\bar{F}G]$	

	Eingabe-Formel
[]	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[ar{B}]$	$A\bar{B}, \bar{B}, \c CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[ar{B}ar{D}]$	$A\bar{B}, \bar{B}, \c CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}G$
$[\bar{B}\bar{D}C_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}FG, \mathcal{K}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}C_bF_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, KG, \bar{D}E, \bar{K}G$
$[\bar{B}\bar{D}C_bF_bG]$	
$[\bar{B}\bar{D}C_b\bar{F}]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}, G, \bar{C}\bar{F}G, \bar{D}E, \bar{F}G$
[RDC, FC]	

	Eingabe-Formel
[]	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[ar{B}]$	$A\bar{B}, \bar{B}, \ \ CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[ar{B}ar{D}]$	$A\bar{B}, \bar{B}, \ \ CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}G$
$[\bar{B}\bar{D}C_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$[\bar{B}\bar{D}C_bF_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \overline{K}G, \bar{D}E, \overline{K}\bar{G}$
$[\bar{B}\bar{D}C_bF_bG]$	
$[\bar{B}\bar{D}C_b\bar{F}]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}G, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}C_b\bar{F}G]$	

```
Eingabe-Formel

[] A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}
[\bar{B}] A\bar{B}, \bar{B}, CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}
[\bar{B}\bar{D}] A\bar{B}, \bar{B}, CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}
[\bar{B}\bar{D}C_b] A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}
[\bar{B}\bar{D}C_bF_b] A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{K}\bar{G}
[\bar{B}\bar{D}C_bF_bG] A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{K}\bar{G}
[\bar{B}\bar{D}C_b\bar{F}] A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}
[\bar{B}\bar{D}C_b\bar{F}G] A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}
```

```
(CNF & Initialisierung)
(Unit-Propagation)
(Pure-Literal)
(Split)
(Split)
```

(Unit-Propagation)
(Backtrack)
(Unit-Propagation)
(Solved)

	Eingabe-Formel
[]	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[ar{B}]$	$A\bar{B}, \bar{B}, \center{K}CF, C\bar{G}F, \bar{C}FG, \bar{C}FG, \bar{D}E, \bar{F}G$
$[ar{B}ar{D}]$	$A\bar{B}, \bar{B}, \ \ CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}G$
$[\bar{B}\bar{D}C_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$[\bar{B}\bar{D}C_bF_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \overline{X}G, \bar{D}E, \overline{X}\bar{G}$
$[\bar{B}\bar{D}C_bF_bG]$	
$[\bar{B}\bar{D}C_b\bar{F}]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, KG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{R}\bar{D}C_{i}\bar{F}G]$	

	Eingabe-Formel
[]	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[ar{B}]$	$A\bar{B}, \bar{B}, \ CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}G$
$[ar{B}ar{D}]$	$A\bar{B}, \bar{B}, \center{K}CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}C_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}FG, \mathcal{K}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}C_bF_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, KG, \bar{D}E, \bar{K}G$
$[\bar{B}\bar{D}C_bF_bG]$	
$[\bar{B}\bar{D}C_b\bar{F}]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}G, \bar{C}\bar{F}G, \bar{D}E, \bar{F}G$
$[\bar{R}\bar{D}C_{i}\bar{F}G]$	

	Eingabe-Formel
[]	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[ar{B}]$	$A\bar{B}, \bar{B}, \c CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}G$
$[ar{B}ar{D}]$	$A\bar{B}, \bar{B}, \ \ CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}C_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{F}FG, \mathcal{F}FG, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}C_bF_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \mathcal{K}G, \bar{D}E, \mathcal{K}\bar{G}$
$[\bar{B}\bar{D}C_bF_bG]$	
$[ar{B}ar{D}C_bar{F}]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}, G, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$

Eingabe-Formel
$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$A\bar{B}, \bar{B}, \center{K}CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$A\bar{B}, \bar{B}, \center{K}CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}FG, \mathcal{K}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \mathcal{K}G, \bar{D}E, \mathcal{K}\bar{G}$
$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}, G, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$

```
(CNF & Initialisierung)
(Unit-Propagation)
(Pure-Literal)
(Split)
(Split)
(Unit-Propagation)
(Backtrack)
(Unit-Propagation)
```

	Eingabe-Formel
[]	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[ar{B}]$	$A\bar{B}, \bar{B}, \center{K}CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[ar{B}ar{D}]$	$A\bar{B}, \bar{B}, \center{K}CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}C_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}FG, \mathcal{K}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}C_bF_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \mathcal{K}G, \bar{D}E, \mathcal{K}\bar{G}$
$[\bar{B}\bar{D}C_bF_b$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}FG, \bar{D}E, K$
$[ar{B}ar{D}C_bar{F}]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}, G, \bar{C}\bar{F}G, \bar{D}E, \bar{F}G$
$[\bar{B}\bar{D}C_b\bar{F}G]$	

```
(CNF & Initialisierung)
(Unit-Propagation)
(Pure-Literal)
(Split)
(Split)
(Unit-Propagation)
(Backtrack)
(Unit-Propagation)
```

	Eingabe-Formel
[]	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[ar{B}]$	$A\bar{B}, \bar{B}, \center{K}CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[ar{B}ar{D}]$	$A\bar{B}, \bar{B}, \center{K}CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[ar{B}ar{D}C_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$[\bar{B}\bar{D}C_bF_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \mathcal{K}G, \bar{D}E, \mathcal{K}\bar{G}$
$[\bar{B}\bar{D}C_bF_bG]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}FG, \bar{D}E, \mathcal{K}$
$[ar{B}ar{D}C_bar{F}]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}, G, \bar{C}\bar{F}G, \bar{D}E, \bar{F}G$
$[\bar{B}\bar{D}C_b\bar{F}G]$	

```
(CNF & Initialisierung)
(Unit-Propagation)
(Pure-Literal)
(Split)
(Split)
(Unit-Propagation)
(Backtrack)
(Unit-Propagation)
```

	Eingabe-Formel
[]	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}]$	$A\bar{B}, \bar{B}, \ \ CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[ar{B}ar{D}]$	$A\bar{B}, \bar{B}, \center{K}CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}C_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}FG, \mathcal{K}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}C_bF_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \mathcal{K}G, \bar{D}E, \mathcal{K}\bar{G}$
$[\bar{B}\bar{D}C_bF_bG]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \mathcal{K}$
$[\bar{B}\bar{D}C_bar{ar{F}}]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}G, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}C_b\bar{F}G]$	

```
(CNF & Initialisierung)
(Unit-Propagation)
(Pure-Literal)
(Split)
(Split)
(Unit-Propagation)
(Backtrack)
```

	Eingabe-Formel
[]	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[ar{B}]$	$A\bar{B}, \bar{B}, \c CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}G$
$[ar{B}ar{D}]$	$A\bar{B}, \bar{B}, \c CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}G$
$[\bar{B}\bar{D}C_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$[\bar{B}\bar{D}C_bF_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \overline{K}G, \bar{D}E, \overline{K}\bar{G}$
$[\bar{B}\bar{D}C_bF_bG]$	AB̄, B̄, BCF, CḠF, CFG, CF̄G, DE, ▼Œ̄
$[\bar{B}\bar{D}C_b\bar{F}]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}G, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}C_b\bar{F}G]$	

```
(CNF & Initialisierung)
(Unit-Propagation)
(Pure-Literal)
(Split)
(Split)
(Unit-Propagation)
(Backtrack)
(Unit-Propagation)
```

```
Eingabe-Formel
                                                                                                          (CNF & Initialisierung)
                       A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}FG, \bar{D}E, \bar{F}\bar{G}
                                                                                                          (Unit-Propagation)
\Pi
[\bar{B}]
                       A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}FG, \bar{D}E, \bar{F}G
                                                                                                          (Pure-Literal)
                       A\bar{B}, \bar{B}, \ CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}
[\bar{B}\bar{D}]
                                                                                                          (Split)
[\bar{B}\bar{D}C_b] A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}FG, \mathcal{K}\bar{F}G, \bar{D}E, \bar{F}\bar{G}
                                                                                                          (Split)
[\bar{B}\bar{D}C_bF_b] A\bar{B},\bar{B},BCF,C\bar{G}F,\bar{C}FG,KG,\bar{D}E,K\bar{G}
                                                                                                          (Unit-Propagation)
[\bar{B}\bar{D}C_bF_bG] A\bar{B},\bar{B},BCF,C\bar{G}F,\bar{C}FG,\bar{C}FG,\bar{D}E,\bar{K}
                                                                                                          (Backtrack)
[\bar{B}\bar{D}C_b\bar{F}] A\bar{B},\bar{B},BCF,C\bar{G}F,C\bar{F}G,\bar{C}FG,\bar{D}E,\bar{F}G
```

```
\begin{array}{ccc} \textbf{Backtrack Rule:} & & \\ [\psi L_b \psi'] & \phi, \varphi & (\text{Backtrack}) & & \\ & & & \textbf{Bedingung:} & \\ & \downarrow & & [\psi L_b \psi'] \models \neg \varphi & \\ & & & \psi' \text{ enhält keine mit "b" markierten Literale} \\ [\psi \bar{L}] & \phi, \varphi & \textbf{Verarbeite neue Belegungsinformation} \end{array}
```

	Eingabe-Formel
[]	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[ar{B}]$	$A\bar{B}, \bar{B}, \c CF, C\bar{G}F, \bar{C}FG, \bar{C}FG, \bar{D}E, \bar{F}G$
$[ar{B}ar{D}]$	$A\bar{B}, \bar{B}, \c CF, C\bar{G}F, \bar{C}FG, \bar{C}FG, \bar{D}E, \bar{F}G$
$[\bar{B}\bar{D}C_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}FG, \mathcal{K}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$
$[\bar{B}\bar{D}C_bF_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \mathcal{K}G, \bar{D}E, \mathcal{K}\bar{G}$
$[\bar{B}\bar{D}C_bF_bG]$	$Aar{B}, ar{B}, BCF, Car{G}F, ar{C}FG, ar{C}FG, ar{D}E, ar{K}$
$[ar{B}ar{D}C_bar{F}]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{C}FG, \bar{C}FG, \bar{D}E, \bar{F}G$
$[\bar{B}\bar{D}C_b\bar{F}G]$	

```
(CNF & Initialisierung)
(Unit-Propagation)
(Pure-Literal)
(Split)
(Split)
(Unit-Propagation)
(Backtrack)
(Unit-Propagation)
```

	Eingabe-Formel	(CNF
[]	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$	(Unit-I
$[ar{B}]$	$A\bar{B}, \bar{B}, \c CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$	(Pure-
$[ar{B}ar{D}]$	$A\bar{B}, \bar{B}, \c CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}G$	(Split)
$[\bar{B}\bar{D}C_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}FG, \mathcal{K}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$	(Split)
$[\bar{B}\bar{D}C_bF_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \mathcal{K}G, \bar{D}E, \mathcal{K}\bar{G}$	(Unit-I
$[\bar{B}\bar{D}C_bF_bG]$	$Aar{B}, ar{B}, BCF, Car{G}F, ar{C}FG, ar{C}ar{F}G, ar{D}E, ar{K}ar{K}$	(Back
$[\bar{B}\bar{D}C_b\bar{F}]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}G, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$	(Unit-l
$[\bar{B}\bar{D}C_b\bar{F}G]$		(Solve

	Eingabe-Formel	(CNF & Initialisierung)
[]	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$	(Unit-Propagation)
$[ar{B}]$	$A\bar{B}, \bar{B}, \center{K}CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$	(Pure-Literal)
$[ar{B}ar{D}]$	$A\bar{B}, \bar{B}, \center{K}CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$	(Split)
$[\bar{B}\bar{D}C_b]$	$Aar{B}, ar{B}, BCF, Car{G}F, oxedown^{igstar}FG, oxedown^{igstar}ar{F}G, ar{D}E, ar{F}ar{G}$	(Split)
$[\bar{B}\bar{D}C_bF_b]$	$Aar{B}, ar{B}, BCF, Car{G}F, ar{C}FG, ar{igket}G, ar{D}E, ar{igket}G$	(Unit-Propagation)
$[\bar{B}\bar{D}C_bF_bG]$	$Aar{B}, ar{B}, BCF, Car{G}F, ar{C}FG, ar{C}ar{F}G, ar{D}E, ar{K}ar{K}$	(Backtrack)
$[\bar{B}\bar{D}C_b\bar{F}]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}, G, \bar{C}\bar{F}G, \bar{D}E, \bar{F}G$	(Unit-Propagation)
$[\bar{B}\bar{D}C_b\bar{F}G]$	$Aar{B}, ar{B}, BCF, Car{G}F, ar{C}FG, ar{C}FG, ar{D}E, ar{F}ar{G}$	(Solved)

	Eingabe-Formel	(CNF & Initialisierung)
[]	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$	(Unit-Propagation)
$[ar{B}]$	$A\bar{B}, \bar{B}, \center{K}CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$	(Pure-Literal)
$[ar{B}ar{D}]$	$A\bar{B}, \bar{B}, \center{K}CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$	(Split)
$[\bar{B}\bar{D}C_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}FG, \mathcal{K}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$	(Split)
$[\bar{B}\bar{D}C_bF_b]$	$Aar{B}, ar{B}, BCF, Car{G}F, ar{C}FG, ar{ar{K}}G, ar{D}E, ar{ar{K}}ar{G}$	(Unit-Propagation)
$[\bar{B}\bar{D}C_bF_bG]$	$Aar{B}, ar{B}, BCF, Car{G}F, ar{C}FG, ar{C}ar{F}G, ar{D}E, ar{K}ar{C}$	(Backtrack)
$[\bar{B}\bar{D}C_b\bar{F}]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}, G, \bar{C}\bar{F}G, \bar{D}E, \bar{F}G$	(Unit-Propagation)
$[\bar{B}\bar{D}C_b\bar{F}G]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$	(Solved)

```
Eingabe-Formel

[] A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{D}E, \bar{F}\bar{G}
[\bar{B}] A\bar{B}, \bar{B}, CF, C\bar{G}F, \bar{C}FG, \bar{C}FG, \bar{D}E, \bar{F}\bar{G}
[\bar{B}\bar{D}] A\bar{B}, \bar{B}, CF, C\bar{G}F, \bar{C}FG, \bar{C}FG, \bar{D}E, \bar{F}\bar{G}
[\bar{B}\bar{D}C_b] A\bar{B}, \bar{B}, BCF, C\bar{G}F, CFG, \bar{C}FG, \bar{D}E, \bar{F}\bar{G}
[\bar{B}\bar{D}C_bF_b] A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}FG, \bar{D}E, \bar{K}\bar{G}
[\bar{B}\bar{D}C_bF_bG] A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}FG, \bar{D}E, \bar{F}\bar{G}
[\bar{B}\bar{D}C_b\bar{F}] A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}FG, \bar{D}E, \bar{F}\bar{G}
[\bar{B}\bar{D}C_b\bar{F}G] A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}FG, \bar{D}E, \bar{F}\bar{G}
```

```
(CNF & Initialisierung)
(Unit-Propagation)
(Pure-Literal)
(Split)
(Split)
(Unit-Propagation)
(Backtrack)
```

(Unit-Propagation) (Solved)

```
Solved-Regel [\psi] \phi (Solved)
```

Bedingung: $[\psi] \models \phi$

	Eingabe-Formel	(CNF & Initialisierung)
[]	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$	(Unit-Propagation)
$[ar{B}]$	$A\bar{B}, \bar{B}, \center{K}CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$	(Pure-Literal)
$[ar{B}ar{D}]$	$A\bar{B}, \bar{B}, \center{K}CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$	(Split)
$[\bar{B}\bar{D}C_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}FG, \mathcal{K}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$	(Split)
$[\bar{B}\bar{D}C_bF_b]$	$Aar{B}, ar{B}, BCF, Car{G}F, ar{C}FG, ar{igotimes} G, ar{D}E, ar{igotimes} ar{G}$	(Unit-Propagation)
$[\bar{B}\bar{D}C_bF_bG]$	$Aar{B}, ar{B}, BCF, Car{G}F, ar{C}FG, ar{C}ar{F}G, ar{D}E, ar{\mathcal{K}}G$	(Backtrack)
$[\bar{B}\bar{D}C_b\bar{F}]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}G, \bar{C}\bar{F}G, \bar{D}E, \bar{F}G$	(Unit-Propagation)
$[\bar{B}\bar{D}C_b\bar{F}G]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$	(Solved)

```
Eingabe-Formel
                                                                                                       (CNF & Initialisierung)
                       A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}FG, \bar{D}E, \bar{F}\bar{G}
                                                                                                      (Unit-Propagation)
\Pi
[\bar{B}]
                       A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}FG, \bar{D}E, \bar{F}G
                                                                                                       (Pure-Literal)
                      A\bar{B}, \bar{B}, \ CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}
[\bar{B}\bar{D}]
                                                                                                       (Split)
[\bar{B}\bar{D}C_h] A\bar{B}, \bar{B}, BCF, C\bar{G}F, CFG, C\bar{F}G, \bar{D}E, \bar{F}\bar{G}
                                                                                                       (Split)
[\bar{B}\bar{D}C_bF_b] A\bar{B},\bar{B},BCF,C\bar{G}F,\bar{C}FG,\bar{K}G,\bar{D}E,\bar{K}G
                                                                                                      (Unit-Propagation)
[\bar{B}\bar{D}C_bF_bG] A\bar{B},\bar{B},BCF,C\bar{G}F,\bar{C}FG,\bar{C}\bar{F}G,\bar{D}E.
                                                                                                       (Backtrack)
[\bar{B}\bar{D}C_b\bar{F}] A\bar{B},\bar{B},BCF,C\bar{G}F,C\bar{F}G,\bar{C}FG,\bar{D}E,\bar{F}G
                                                                                                      (Unit-Propagation)
[\bar{B}\bar{D}C_b\bar{F}G] A\bar{B},\bar{B},BCF,C\bar{G}F,\bar{C}FG,\bar{C}FG,\bar{D}E,\bar{F}\bar{G}
                                                                                                       (Solved)
```

	Eingabe-Formel	(CNF & Initialisierung)
[]	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$	(Unit-Propagation)
$[ar{B}]$	$A\overline{B}, \overline{B}, \mathcal{K}CF, C\overline{G}F, \overline{C}FG, \overline{C}FG, \overline{D}E, \overline{F}G$	(Pure-Literal)
$[ar{B}ar{D}]$	$A\bar{B}, \bar{B}, \center{K}CF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}G$	(Split)
$[\bar{B}\bar{D}C_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \mathcal{K}FG, \mathcal{K}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$	(Split)
$[\bar{B}\bar{D}C_bF_b]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \mathcal{K}G, \bar{D}E, \mathcal{K}\bar{G}$	(Unit-Propagation)
$[\bar{B}\bar{D}C_bF_bG]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \mathcal{K}$	(Backtrack)
$[\bar{B}\bar{D}C_b\bar{F}]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \overline{C}FG, \bar{C}FG, \bar{D}E, \bar{F}G$	(Unit-Propagation)
$[\bar{B}\bar{D}C_b\bar{F}G]$	$A\bar{B}, \bar{B}, BCF, C\bar{G}F, \bar{C}FG, \bar{C}\bar{F}G, \bar{D}E, \bar{F}\bar{G}$	(Solved)

Abstrakter DPLL Algorithmus (Regelbasierte Darstellung)

Wende die Regeln erschöpfend an mit folgender Priorität:

- 1. Solved
- 2. Fail
- 3. Backtrack
- 4. Unit-Propagation
- 5. Pure-Literal
- 6. Split

DPLL Algorithmus am Beispiel — Kurzes Beispiel, alle Regeln

```
[] an, ãn, ãñ, bn (Pure Literal)
[b] an, ãn, ãñ, bn (Split)
[ba] an, ãn, ãñ, bn (Unit Propagation)
[ban] an, ãn, ãñ, bn (Widerspruch: n&ñ, Backtracking)
[bã] an, ãn, ãñ, bn (Unit Propagation)
[bãn] an, ãn, ãñ, bn (Solved)
```

Möglichkeiten zur weiteren Verbesserung bzw. Optimierung

- Heuristiken für Split: z.B. wähle das am häufigsten vorkommende Literal (Vorheriges Beispiel: wähle F zuerst – diese Wahl verhindert Backtracking und generiert eine alternative Belegung (Übungsaufgabe))
- Nicht-chronologisches Backtracking
- Klausel-Lernen beim Backtracking
- Effiziente Datenstrukturen
- Indexing-Techniken, Watchlist
- ▶ ...

Korrektheit und Vollständigkeit: für abstraktes System in Vorlesung

Systeme (z.B. zChaff, MiniSat, PicoSat, Limmat, Lingeling)

Anwendungsbeispiele

Satisfiability modulo Theories