Introducción a las Redes Neuronales Convolucionales

Aprendizaje de Máquina Aplicado

Yomin Jaramillo Munera yejaramilm@eafit.edu.co

2025

Juan David Martínez Vargas jdmartinev@eafit.edu.co

Agenda

- Convolución de imágenes
- ANN densas y visión por computadora
- Redes neuronales convolucionales (CNN)
- Aumento de datos
- Ejemplo práctico

Convolución de Imágenes

Imágenes como Datos

Image array: [64 x 64 x 3]

Imágenes como Datos

Una imagen en escala de grises tiene un único canal

Una imagen...

...es una matriz de pixeles. El valor de los pixeles va de 0 a 255 pero se normaliza para la red neuronal de 0 a 1

Convolución de Imágenes

7	2	3	3	8
4	5	3	8	4
3	3	2	8	4
2	8	7	2	7
5	4	4	5	4

1	0	-1
1	0	-1
1	0	-1

7x1+4x1+3x1+ 2x0+5x0+3x0+ 3x-1+3x-1+2x-1 = 6

Imagen

kernel

Filtro o Resultado de la convolución

Convolución de Imágenes

Las convoluciones son utilizadas en procesamiento de imágenes clásico para detectar ciertas características de las imágenes como líneas en cierta dirección o bordes en general.

Convolución: Detección de Líneas Verticales

$$\star \begin{pmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -1 & 2 & -1 \end{pmatrix} =$$

Convolución: Detección de Líneas Horizontales

$$\star \left(\begin{smallmatrix} -1 & -1 & -1 \\ 2 & 2 & 2 \\ -1 & -1 & -1 \end{smallmatrix} \right) =$$

Convolución: Detección de Bordes

$$\bigstar \begin{pmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{pmatrix} \blacksquare$$

Convolución de Imágenes con Múltiples Canales

Redes Neuronales Densas y Visión por Computadora

ANN Densas y Visión por Computadora

En particular queremos responder la siguiente pregunta:

¿Por qué es mala idea utilizar redes neuronales densas (también llamadas completamente conectadas) para procesar imágenes?

ANN Densas y Visión por Computadora

En general, utilizar redes neuronales densas para procesar imágenes es mala idea por dos razones principales:

- Pérdida del contexto de los pixeles.
- Exceso de parámetros para obtener un número decente de características intermedias.

Contexto de un Pixel

Una red neuronal densa no recibe información sobre si dos pixeles están cerca o lejos, lo que tiene consecuencias indeseables:

- Es difícil identificar las figuras formadas por grupos de pixeles cercanos entre sí.
- Se considera la interacción entre dos pixeles así se encuentren muy lejos.
- La forma en la que se procesan las características de la imagen es dependiente su posición en la misma.

ANN Densas y Visión por Computadora: Exceso de Parámetros

Supongamos que le queremos aplicar una red neuronal densa a una imagen de 256 x 256 pixeles.

ANN Densas y Visión por Computadora: Exceso de Parámetros

Para no reducir demasiado la dimensionalidad de las características en la primera capa oculta, supongamos que usamos 2048 neuronas en dicha capa.

ANN Densas y Visión por Computadora: Exceso de Parámetros

Entonces, el número de pesos de la primera capa sería 256 x 256 x 2048, que es mayor que 134 millones.

Redes Neuronales Convolucionales (CNN)

Redes Neuronales Convolucionales (CNN)

CONVOLUTIONAL NEURAL NETWORK (CNN)

Tareas en visión por computador

Redes Neuronales Convolucionales (CNN)

Una red neuronal convolucional utiliza principalmente tres tipos de capas:

- Capas convolucionales
- Capas de pooling
- Capas densas (sólo al final)

Capa Convolucional

capa convolucional Una aplica múltiples filtros convolucionales a una imagen (o a la salida de la capa anterior), suma término de "bias" y luego aplica una función activación no lineal (usualmente ReLU). valores que se usan para los filtros y para los términos de "bias" son parámetros entrenables de la red.

Capa Convolucional

Capa de Pooling

Una capa de pooling hace un reducción de resolución (downsampling) de una imagen o matriz de datos de acuerdo a una ventana de tamaño fijo. Comúnmente la reducción se hace aplicando un promedio (average pooling) o hallando el máximo (max pooling).

Redes Neuronales Convolucionales (CNN)

Aumento de Datos

Aumento de Datos

Tipos Comunes de Aumento de Datos en Imágenes

Transferencia de aprendizaje

Transferencia de aprendizaje

Transfer learning: idea

Transferencia de aprendizaje

TRAINING FROM SCRATCH

TRANSFER LEARNING

Ejemplo de Redes Neuronales Convolucionales

