Varianten des Theorems von Kirchberger

Tim Baumann

TopMath-Frühlingsschule in Oberschönenfeld

4. März 2014

Theorem (Kirchberger)

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Hyperebene trennbar, wenn für jede Menge $T \subset E^n$ mit maximal n+2 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Hyperebene trennbar sind.

Theorem (Kirchberger)

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Hyperebene trennbar, wenn für jede Menge $T \subset E^n$ mit maximal n+2 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Hyperebene trennbar sind.

Übersicht

1 Trennung durch Sphären

2 Trennung durch Zylinder

Trennung durch Parallelotope

Sei $p \in E^n$ und $\alpha > 0$. Dann heißt

$$S_{\alpha}(p) := \{ x \in \mathsf{E}^n \mid ||x - p|| = \alpha \}$$

Sphäre mit Radius α um den Punkt p.

Sei $p \in E^n$ und $\alpha > 0$. Dann heißt

$$S_{\alpha}(p) := \{ x \in \mathsf{E}^n \mid ||x - p|| = \alpha \}$$

Sphäre mit Radius α um den Punkt p.

Definition

Seien A und B Teilmengen von E^n .

Die Sphäre $S_{\alpha}(p)$ trennt A und B streng, wenn gilt:

$$\forall a \in A : \|p - a\| < \alpha$$
 und

$$\forall b \in B : \|p - a\| > \alpha$$

Sei $p \in E^n$ und $\alpha > 0$. Dann heißt

$$S_{\alpha}(p) := \{ x \in \mathsf{E}^n \mid ||x - p|| = \alpha \}$$

Sphäre mit Radius α um den Punkt p.

Definition

Seien A und B Teilmengen von E^n .

Die Sphäre $S_{\alpha}(p)$ trennt A und B streng, wenn gilt:

$$\forall a \in A : \|p - a\| < \alpha$$
 und

$$\forall b \in B : \|p - a\| > \alpha$$

Sei $p \in E^n$ und $\alpha > 0$. Dann heißt

$$S_{\alpha}(p) := \{ x \in \mathsf{E}^n \mid ||x - p|| = \alpha \}$$

Sphäre mit Radius α um den Punkt p.

Definition

Seien A und B Teilmengen von E^n .

Die Sphäre $S_{\alpha}(p)$ trennt A und B streng, wenn gilt:

$$\bigcirc$$
 A B

$$\forall a \in A : \|p - a\| < \alpha$$
 oder und

$$\forall b \in B : \|p - a\| > \alpha$$

$$\forall a \in A : ||p - a|| > \alpha$$
 und

$$\forall b \in B : \|p - a\| < \alpha$$

Theorem (Kirchberger)

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Hyperebene streng trennbar, wenn für jede Menge $T \subset E^n$ mit maximal n+2 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Hyperebene streng trennbar sind.

Theorem (Kirchberger')

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Sphäre streng trennbar, wenn für jede Menge $T \subset E^n$ mit maximal n+2 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Sphäre streng trennbar sind.

Theorem (Kirchberger')

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Sphäre streng trennbar, wenn für jede Menge $T \subset E^n$ mit maximal n+3 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Sphäre streng trennbar sind.

Theorem (Kirchberger', 8.2)

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Sphäre streng trennbar, wenn für jede Menge $T \subset E^n$ mit maximal n+3 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Sphäre streng trennbar sind.

Beweis:

• Bette E^n wie üblich in den E^{n+1} ein.

- **1** Bette E^n wie üblich in den E^{n+1} ein.
- ② Sei $p \in E^n$ und $S \subset E^{n+1}$ eine Sphäre, die in p tangential zu E^n ist.

- ① Bette E^n wie üblich in den E^{n+1} ein.
- ② Sei $p \in E^n$ und $S \subset E^{n+1}$ eine Sphäre, die in p tangential zu E^n ist.
- **3** Betrachte die stereographische Projektion $\phi : E^n \to S$.

- **1** Bette E^n wie üblich in den E^{n+1} ein.
- ② Sei $p \in E^n$ und $S \subset E^{n+1}$ eine Sphäre, die in p tangential zu E^n ist.
- **3** Betrachte die stereographische Projektion $\phi : E^n \to S$.

- ① Bette E^n wie üblich in den E^{n+1} ein.
- ② Sei $p \in E^n$ und $S \subset E^{n+1}$ eine Sphäre, die in p tangential zu E^n ist.
- **3** Betrachte die stereographische Projektion $\phi : E^n \to S$.
- **⊙** Seien $P, Q \subset E^n$ nichtleer und kompakt sodass für jede Menge $T \subset E^n$ mit maximal n+3 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Sphäre streng trennbar sind.

- ① Bette E^n wie üblich in den E^{n+1} ein.
- ② Sei $p \in E^n$ und $S \subset E^{n+1}$ eine Sphäre, die in p tangential zu E^n ist.
- **3** Betrachte die stereographische Projektion $\phi : E^n \to S$.
- **③** Seien $P, Q \subset E^n$ nichtleer und kompakt sodass für jede Menge $T \subset E^n$ mit maximal n+3 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Sphäre streng trennbar sind.
- **5** Seien P' und Q' die (kompakten) Bilder von P bzw. Q unter ϕ .

Behauptung: P' und Q' können durch eine Hyperebene $H_0 \subset E^{n+1}$ streng getrennt werden.

Behauptung: P' und Q' können durch eine Hyperebene $H_0 \subset E^{n+1}$ streng getrennt werden.

⑤ Sei T ⊂ S ⊂ E^{n+1} eine Menge mit höchstens n + 3 Punkten.

Behauptung: P' und Q' können durch eine Hyperebene $H_0 \subset E^{n+1}$ streng getrennt werden.

Q

- **o** Sei T ⊂ S ⊂ E^{n+1} eine Menge mit höchstens n + 3 Punkten.
- Nach Voraussetzung werden die Urbilder $\phi^{-1}(T \cap P') = \phi^{-1}(T) \cap P$ und $\phi^{-1}(T \cap Q') = \phi^{-1}(T) \cap Q$ durch eine Sphäre streng getrennt.

Behauptung: P' und Q' können durch eine Hyperebene $H_0 \subset E^{n+1}$ streng getrennt werden.

- **o** Sei T ⊂ S ⊂ E^{n+1} eine Menge mit höchstens n + 3 Punkten.
- Nach Voraussetzung werden die Urbilder $\phi^{-1}(T \cap P') = \phi^{-1}(T) \cap P$ und $\phi^{-1}(T \cap Q') = \phi^{-1}(T) \cap Q$ durch eine Sphäre streng getrennt.
- $oldsymbol{\circ}$ Die stereogr. Projektion der Sphäre ist ein Kreis auf S (Kreistreue).

Behauptung: P' und Q' können durch eine Hyperebene $H_0 \subset E^{n+1}$ streng getrennt werden.

- **3** Sei $T \subset S \subset E^{n+1}$ eine Menge mit höchstens n+3 Punkten.
- Nach Voraussetzung werden die Urbilder $\phi^{-1}(T \cap P') = \phi^{-1}(T) \cap P$ und $\phi^{-1}(T \cap Q') = \phi^{-1}(T) \cap Q$ durch eine Sphäre streng getrennt.
- ullet Die stereogr. Projektion der Sphäre ist ein Kreis auf S (Kreistreue).
- Der Kreis auf *S* ist der Schnitt von *S* mit einer Hyperebene *H*.

Behauptung: P' und Q' können durch eine Hyperebene $H_0 \subset E^{n+1}$ streng getrennt werden.

- **o** Sei $T \subset S \subset E^{n+1}$ eine Menge mit höchstens n+3 Punkten.
- Nach Voraussetzung werden die Urbilder $\phi^{-1}(T \cap P') = \phi^{-1}(T) \cap P$ und $\phi^{-1}(T \cap Q') = \phi^{-1}(T) \cap Q$ durch eine Sphäre streng getrennt.
- ullet Die stereogr. Projektion der Sphäre ist ein Kreis auf S (Kreistreue).
- **9** Der Kreis auf S ist der Schnitt von S mit einer Hyperebene H.
- **10** Da H dann $T \cap P'$ und $T \cap Q'$ streng trennt, folgt die Behauptung nach dem Satz von Kirchberger.

① Sei $\alpha \in \mathsf{E}^{n+1}$ und $b \in \mathbb{R}$, sodass $\langle \alpha, p \rangle < b$ für alle $p \in P'$ und $\langle \alpha, q \rangle > b$ für alle $q \in Q'$.

- ① Sei $\alpha \in \mathsf{E}^{n+1}$ und $b \in \mathbb{R}$, sodass $\langle \alpha, p \rangle < b$ für alle $p \in P'$ und $\langle \alpha, q \rangle > b$ für alle $q \in Q'$.
- ② Da P' und Q' kompakt sind, gibt es $\epsilon>0$ mit $\langle \alpha,p\rangle\leq b-\epsilon$ für alle $p\in P'$ und $\langle \alpha,q\rangle\geq b+\epsilon$ für alle $q\in Q'$.

 $\langle \alpha,q \rangle > b$ für alle $q \in Q'$.

Da P' und Q' kompakt sind, gibt es $\epsilon > 0$ mit $\langle \alpha,p \rangle \leq b-\epsilon$ für alle

① Sei $\alpha \in \mathbb{E}^{n+1}$ und $b \in \mathbb{R}$, sodass $\langle \alpha, p \rangle < b$ für alle $p \in P'$ und

- ② Da P' und Q' kompakt sind, gibt es $\epsilon>0$ mit $\langle \alpha,p\rangle\leq b-\epsilon$ für alle $p\in P'$ und $\langle \alpha,q\rangle\geq b+\epsilon$ für alle $q\in Q'$.
- Somit können wir annehmen, dass H₀ den Nordpol der Sphäre S nicht schneidet.

- Sei α ∈ Eⁿ⁺¹ und b ∈ ℝ, sodass ⟨α, p⟩ < b für alle p ∈ P' und ⟨α, q⟩ > b für alle q ∈ Q'.
 Da P' und Q' kompakt sind gibt es ε > 0 mit ⟨α, p⟩ < b − ε für alle q ∈ Q'.
- ② Da P' und Q' kompakt sind, gibt es $\epsilon > 0$ mit $\langle \alpha, p \rangle \leq b \epsilon$ für alle $p \in P'$ und $\langle \alpha, q \rangle \geq b + \epsilon$ für alle $q \in Q'$.
- Somit können wir annehmen, dass H₀ den Nordpol der Sphäre S nicht schneidet.
- **4** Der Schnitt $H_0 \cap S$ ist ein Kreis und $\phi^{-1}(H_0 \cap S)$ trennt P und Q. \square

Übersicht

1 Trennung durch Sphären

2 Trennung durch Zylinder

Trennung durch Parallelotope

Sei $A \subset E^n$ und $F \subset E^n$ ein k-dimensionaler Unterraum. Dann heißt

$$Z = A + F = \{a + f \mid a \in A, f \in F\}$$

von A und F erzeugter k-Zylinder.

Sei $A \subset E^n$ und $F \subset E^n$ ein k-dimensionaler Unterraum. Dann heißt

$$Z = A + F = \{a + f \mid a \in A, f \in F\}$$

von A und F erzeugter k-Zylinder.

Sei $A \subset E^n$ und $F \subset E^n$ ein k-dimensionaler Unterraum. Dann heißt

$$Z = A + F = \{a + f \mid a \in A, f \in F\}$$

von A und F erzeugter k-Zylinder.

0-Zylinder

Sei $A \subset E^n$ und $F \subset E^n$ ein k-dimensionaler Unterraum. Dann heißt

$$Z = A + F = \{a + f \mid a \in A, f \in F\}$$

von A und F erzeugter k-Zylinder.

Sei $A \subset E^n$ und $F \subset E^n$ ein k-dimensionaler Unterraum. Dann heißt

$$Z = A + F = \{a + f \mid a \in A, f \in F\}$$

von A und F erzeugter k-Zylinder.

2-Zylinder

Sei $A \subset E^n$ und $F \subset E^n$ ein k-dimensionaler Unterraum. Dann heißt

$$Z = A + F = \{a + f \mid a \in A, f \in F\}$$

von A und F erzeugter k-Zylinder.

3-Zylinder

Kirchberger-Theorem für Zylinder?

Theorem (???)

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann gibt es einen k-Zylinder $Z = (\operatorname{conv} P) + F$ mit $Z \cap Q = \emptyset$ genau dann, wenn es für alle Teilmengen $T \subset P \cup Q$ mit maximal f(n,k) Punkten einen k-Zylinder $Z_T = \operatorname{conv}(T \cap P) + F_T$ mit $Z_T \cap (T \cap Q) = \emptyset$ gibt.

Kirchberger-Theorem für Zylinder?

Theorem (???)

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann gibt es einen k-Zylinder $Z = (\operatorname{conv} P) + F$ mit $Z \cap Q = \emptyset$ genau dann, wenn es für alle Teilmengen $T \subset P \cup Q$ mit maximal f(n,k) Punkten einen k-Zylinder $Z_T = \operatorname{conv}(T \cap P) + F_T$ mit $Z_T \cap (T \cap Q) = \emptyset$ gibt.

Dann gilt
$$f(2,1) \geq 9$$
:

Kirchberger-Theorem für Zylinder? So nicht!

Theorem (???)

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann gibt es einen k-Zylinder Z = (convP) + F mit $Z \cap Q = \emptyset$ genau dann, wenn es für alle reilmengen T von $P \cup Q$ mit maximal f(n,k) Punkten einen k-Zylinder $Z_T = conv(T \cap P) + F_T$ mit $Z_T \cap (T \cap Q) = \emptyset$ gibt.

Eine Teilmenge $K \subset S_{\alpha}(p)$ heißt stark konvex, wenn K keine antipodalen (gegenüberliegenden) Punkte enthält und zu jedem Paar von Punkten auch den kleineren Bogen des Großkreises zwischen diesen Punkten enthält.

Eine Teilmenge $K \subset S_{\alpha}(p)$ heißt stark konvex, wenn K keine antipodalen (gegenüberliegenden) Punkte enthält und zu jedem Paar von Punkten auch den kleineren Bogen des Großkreises zwischen diesen Punkten enthält.

Lemma (9.4)

Sei $S = S_1(0)$ die Einheitssphäre um den Nullpunkt im E^n und $F = \{A_i \mid i \in I\}$ eine Familie von kompakten, stark konvexen Teilmengen von S. Angenommen, je n (oder weniger) Elemente von F haben einen Punkt gemeinsam. Dann gibt es ein Paar von antipodalen Punkten $\{p, -p\}$, sodass $\{p, -p\} \cap A_i \neq \emptyset$ für alle $i \in I$.

Beweis.

• Für alle $i \in I$ gilt: Da $A_i \subset S$ kompakt und stark konvex ist, ist conv A_i kompakt und enthält nicht den Nullpunkt.

Sei $F = \{A_i \mid i \in I\}$ eine Familie von kompakten, konvexen Teilmengen von E^n mit mindestens n Elementen. Angenommen, jede Unterfamilie mit k Elementen besitzt einen gemeinsamen Punkt, wobei $1 \leq k \leq n$. Dann gibt es für jeden (n-k)-dimensionalen Unterraum F_1 einen (n-k+1)-dimensionalen Unterraum F_2 , sodass $F_2 \supset F_1$ und $F_2 \cap A_i \neq \emptyset$ für alle $i \in I$.

Beweis.

• Für alle $i \in I$ gilt: Da $A_i \subset S$ kompakt und stark konvex ist, ist conv A_i kompakt und enthält nicht den Nullpunkt.

Sei $F = \{A_i \mid i \in I\}$ eine Familie von kompakten, konvexen Teilmengen von E^n mit mindestens n Elementen. Angenommen, jede Unterfamilie mit k Elementen besitzt einen gemeinsamen Punkt, wobei $1 \leq k \leq n$. Dann gibt es für jeden (n-k)-dimensionalen Unterraum F_1 einen (n-k+1)-dimensionalen Unterraum F_2 , sodass $F_2 \supset F_1$ und $F_2 \cap A_i \neq \emptyset$ für alle $i \in I$.

Beweis.

- Für alle $i \in I$ gilt: Da $A_i \subset S$ kompakt und stark konvex ist, ist conv A_i kompakt und enthält nicht den Nullpunkt.
- ② Aus dem Lemma von Horn folgt mit k=n, $F_1=\{0\}$, dass ein 1-dimensionaler Unterraum L mit $L \cap \text{conv} A_i \neq \emptyset$ existiert.

Sei $F = \{A_i \mid i \in I\}$ eine Familie von kompakten, konvexen Teilmengen von E^n mit mindestens n Elementen. Angenommen, jede Unterfamilie mit k Elementen besitzt einen gemeinsamen Punkt, wobei $1 \leq k \leq n$. Dann gibt es für jeden (n-k)-dimensionalen Unterraum F_1 einen (n-k+1)-dimensionalen Unterraum F_2 , sodass $F_2 \supset F_1$ und $F_2 \cap A_i \neq \emptyset$ für alle $i \in I$.

Beweis.

- **1** Für alle i ∈ I gilt: Da $A_i ⊂ S$ kompakt und stark konvex ist, ist conv A_i kompakt und enthält nicht den Nullpunkt.
- ② Aus dem Lemma von Horn folgt mit k=n, $F_1=\{0\}$, dass ein 1-dimensionaler Unterraum L mit $L \cap \text{conv} A_i \neq \emptyset$ existiert.
- **3** Da A_i stark konvex ist, gilt auch $L \cap A_i \neq \emptyset$ für alle $i \in I$.

Sei $F = \{A_i \mid i \in I\}$ eine Familie von kompakten, konvexen Teilmengen von E^n mit mindestens n Elementen. Angenommen, jede Unterfamilie mit k Elementen besitzt einen gemeinsamen Punkt, wobei $1 \le k \le n$. Dann gibt es für jeden (n-k)-dimensionalen Unterraum F_1 einen (n-k+1)-dimensionalen Unterraum F_2 , sodass $F_2 \supset F_1$ und $F_2 \cap A_i \ne \emptyset$ für alle $i \in I$.

Beweis.

- **1** Für alle i ∈ I gilt: Da $A_i ⊂ S$ kompakt und stark konvex ist, ist conv A_i kompakt und enthält nicht den Nullpunkt.
- ② Aus dem Lemma von Horn folgt mit k=n, $F_1=\{0\}$, dass ein 1-dimensionaler Unterraum L mit $L \cap \text{conv} A_i \neq \emptyset$ existiert.
- **3** Da A_i stark konvex ist, gilt auch $L \cap A_i \neq \emptyset$ für alle $i \in I$.
- **4** Mit $\{p, -p\}$:= $L \cap S$ folgt die Aussage.

Theorem (9.5)

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Angenommen, für $1 \le k \le n$ kann jede Teilmenge von Q mit maximal k Punkten streng von P mit einer Hyperebene getrennt werden. Dann gibt es zu jedem k-Zylinder $Z_1 = (\operatorname{conv} P) + F_1$ einen (k-1)-Zylinder $Z_2 = (\operatorname{conv} P) + F_2$ mit $Z_2 \subset Z_1$ und $Z_2 \cap Q = \emptyset$.

$$\delta := \inf\{\operatorname{dist}(\operatorname{conv} T, \operatorname{conv} P) \mid T \text{ ist Teilmenge von } Q \text{ mit } \max \text{imal } k \text{ Punkten } \}.$$

Behauptung: $\delta > 0$

Beweis: Sei R die Menge aller $x \in E^n$, die Konvexkombination von maximal k Punkten aus Q sind.

Die Menge R ist kompakt, da sie Bild der stetigen Abbildung

$$Q^k \times M^k \to \mathsf{E}^n, \qquad (q_1,...,q_k,\lambda_1,...,\lambda_k) \mapsto \lambda_1 q_1 + ... + \lambda_k q_k,$$

$$\mathsf{mit} \ M^k \coloneqq \{(\lambda_1,...,\lambda_k) \in [0,1]^k \mid \lambda_1 + ... + \lambda_k = 1\}$$

mit kompakter Definitionsmenge ist.

Angenommen, dist(R, convP) = 0. Dann gibt es

$$r = \lambda_1 q_1 + ... + \lambda_k q_k \in R$$
 mit $dist(r, convP) = 0$, also $r \in convP$.

Dann können aber $q_1, ..., q_k$ nicht mit einer Hyperebene stark von convP getrennt werden. Widerspruch.

Für alle Mengen T wie oben gilt dann conv $T \subset R$ und somit dist(convT, convP) > dist(R, convP).

Durch Übergang zum Infimum folgt $\delta \ge \operatorname{dist}(R, \operatorname{conv} P) > 0$.

Übersicht

Trennung durch Sphären

2 Trennung durch Zylinder

3 Trennung durch Parallelotope

TODO