Конспект лекций курса ФН-12 «Линейная алгебра»

Жихарев Кирилл ИУ7-24Б $10~{\rm апреля}~2024~{\rm r}.$

Содержание

1	Ли	Линейные пространства			
		1.0.1 Свойства линейных пространств	3		
	1.1	Линейная зависимость и независимость векторов	4		
	1.2	Базис, размерность пространства	Ę		
	1.3	Преобразование координат вектора при замене базиса	6		
2	Ли	Линейные подпространства			
	2.1	Ранг системы векторов	6		
	2.2	Евклидово пространство	6		
	2.3	Неравенство Коши – Буняковского	10		
	2.4	Норма вектора	10		
	2.5	Ортогональные системы векторов	10		
3	Процесс ортогонализации. Линейные операторы				
	3.1	Процесс ортогонализации Грама-Шмидта	12		
	3.2	Изоморфизм линейных пространств	13		
	3.3	Матрица линейного оператора	13		
	3.4	Преобразование матрицы линейного оператора	14		
	3.5	Произведение линейных операторов	15		
4	Характеристический многочлен и собственные значения				
	4.1	Характеристическое уравнение матрицы	17		
	4.2	Характеристическое уравнение линейного оператора	18		
	4.3	Собственные векторы линейного оператора	18		
	4.4	Свойства собственных векторов	20		
5	Линейные операторы в евклидовых пространствах				
	5.1	Сопряженный оператор	23		
	5.2	Самосопряженные операторы и их матрицы	24		
	5.3	Собственные векторы самосопряженного оператора	25		
	5.4	Ортогональные матрицы и ортогональные операторы	26		
	5.5	Приведение симметричной матрицы к диагональному виду	29		
6	Квадратичные формы и их свойства				
	6.1	Преобразование квадратичных форм	31		
	6.2	Квадратичные формы канонического вида			
	6.3	Ортогональные преобразования квадратичных форм	32		
	6.4	Закон инерции			
	6.5	Критерий Сильвестра	33		

1 Линейные пространства

Определение 1.1 (Линейное пространство). Линейное пространство \mathcal{L} над множеством значений \mathcal{P} (элементы будем называть векторами), для которого определены операции сложения и умножеения на скаляр, а также верно:

- 1. $\forall x, y \in \mathcal{L} \quad x + y = y + x$
- 2. $\forall x, y \quad (x+y) + z = x + (y+z)$
- 3. $\exists 0 : \forall x \in \mathcal{L}x + 0 = x$
- 4. $\forall x \in \mathcal{L} \quad \exists y: x+y$ существование противоположного вектора (-x)
- 5. $\forall x \in \mathcal{L} \quad (\alpha \beta) x = \alpha(\beta x)$
- 6. $\forall x \quad 1x = x$
- 7. $(\alpha + \beta)x = \alpha x + \beta x$
- 8. $\alpha(x+y) = \alpha x + \alpha y$

В рамках курса считаем линейное пространство над элементами множества $\mathbb{R}.$

Примерами линейного пространства могут быть:

- 1. Множество свободных векторов
- 2. n-мерное пространство (R^n)
- 3. Множество непрерывных функция на отрезке
- 4. Множество матриц одинакового размера
- 5. Множество многочленов степени n
- 6. и т.п.

1.0.1 Свойства линейных пространств

Свойство. Нулевый элемент единственен.

Доказательство. Пусть существуют два нулевых элемента: $\vec{0_1}$ и $\vec{0_2}$. Тогда:

$$\vec{0_1} = \vec{0_1} + \vec{0_2} = \vec{0_2} + \vec{0_1} = \vec{0_2}$$

Свойство. Для каждого элемента противоположный единственный.

Доказательство. Пусть существую два противоположных элемента для x: $\vec{y_1}$ и $\vec{y_2}$. Тогда:

$$x + \vec{y_1} = 0$$

$$x + \vec{y_2} = 0$$

$$x + \vec{y_1} = x + \vec{y_2}$$

$$\vec{y_1} = \vec{y_2}$$

Свойство.

$$0 \cdot x = x$$

Доказательство.

$$0x = 0x + 0 = (0+1)x + (-x) = 0$$

Свойство.

$$(-1) \cdot x = (-x)$$

Доказательство.

$$(-1) \cdot x + x = (1-1)x = 0 = x + -x$$
$$\implies (-1) \cdot x = -x$$

Свойство. Уравнение

$$\forall x, y \in \mathcal{L} \quad x + a = y$$

имеет решение и притом единственное.

Доказательство. Пусть:

$$a = y + (-x)$$

Тогда подставляя в изначальное уравнение получаем тождество. $\ \Box$

1.1 Линейная зависимость и независимость векторов

Пусть есть некоторый набор векторов $\vec{x_1}, \dots, \vec{x_k} \in \mathcal{L}$.

Определение 1.2 (Линейная комбинация). Линейной комбинацией на-

зывается выражение вида:

$$\lambda_1 \vec{x_1} + \lambda_2 \vec{x_2} + \ldots + \lambda_k \vec{x_k}$$

Определение 1.3 (Тривиальная линейная комбинация). Линейная комбинация называется *тривиальной*, если все коэффициенты равны нулю.

Определение 1.4 (Нетривиальная линейная комбинация). Линейная комбинация называется *нетривиальной*, если хотя бы один коэффициент не равен нулю.

Определение 1.5 (Линейно зависимая комбинацию). Система векторов называется *линейно-зависимой*, если существует нетривиальная линейная комбинация, равная нулевому вектору.

Теорема 1.1. Чтобы система была линейно зависима, необходимо и достаточно, чтобы любой вектор вектор линейно выражался через остальные.

Свойство. Если в системе векторов существует нулевой вектор, то такая система линейно зависима.

Свойство. Если система векторов содержит линейно зависимую подсистему, то система тоже линейно зависима.

Свойство. Если система векторов линейно независима, то и любая ее подсистема тоже линейно независима.

Свойство. Если векторы x_1, \ldots, x_n линейного пространства $\mathcal L$ линейно независимы и вектор $y \in \mathcal L$ не является их линейной комбинацией, то расширенная система векторов x_1, \ldots, x_n, y является линейно независимой.

1.2 Базис, размерность пространства

Определение 1.6 (Базис). *Базисом* линейного пространства $\mathcal L$ называют любую упорядоченную систему векторов, для которой выполнены два условия:

- 1. эта система векторов линейно независима;
- 2. каждый вектор в линейном пространстве может быть представ-

лен в виде линейной комбинации векторов этой системы.

Определение 1.7. Коэффициенты разложения вектора по базису линейного пространства, записанные в соответствии с порядком векторов в базисе, называют *координатами вектора в этом базисе*.

Теорема 1.2 (О единственности разложения). Разложение по базису *единственно*.

Определение 1.8 (Конечномерное пространство). Пространство называется *конечномерное*, если сущестсвует базис конечного числа векторов.

Определение 1.9 (Бесконечномерное пространство). Пространство называется *бесконечномерное*, если не сущестсвует базис конечного числа векторов.

Теорема 1.3. Если \mathcal{L} – конечномерное пространство, тогда все базисы состоят из конечного числа векторов.

Определение 1.10 (Размерность линейного пространства). Максимальное количество линейно независимых векторов в данном линейном пространстве называют размерностью линейного пространства.

$$\dim(\mathcal{L}) = n$$

Линейная зависимость (независимость) равносильна линейной зависимости (независимости) столбцов координат в том же базисе.

1.3 Преобразование координат вектора при замене базиса

Пусть в n-мерном пространстве \mathcal{L} заданы два базиса:

$$b = (b_1, \dots b_n)$$
 $c = (c_1, \dots c_n)$

Любой вектор мжно разложить по базису b. А значит любой вектор из базиса c может быть представлен как:

$$c_i = \lambda_{1i}b_1 + \ldots + \lambda_{ni}b_n, \quad i = \overline{1, n}$$

Запишем в матричном виде:

$$c_i = b \begin{pmatrix} a_{1i} \\ \dots \\ a_{ni} \end{pmatrix}, \quad i = \overline{1, n}$$

Или:

$$c = bU \quad U = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$
 (1.1)

1 ЛИНЕЙНЫЕ ПРОСТРАНСТВА

Определение 1.11 (Матрица перехода). Матрицу U (1.1) называют матрицей перехода от старого базиса b к новому базису, c.

Свойство (1). Матрица перехода невырождена и всегда имеет обратную.

Свойство (2). Если в n-мерном линейном пространстве задан базис b, то для любой невырожденной квадратной матрицы U порядка n существует такой базис c в этом линейном пространстве, что U будет матрицей перехода от базиса b к базису c.

Свойство (3). Если U — матрица перехода от старого базиса b к новому базису с линейного пространства, то U^{-1} — матрица перехода от базиса c к базису b.

Свойство (4). Если в линейном пространстве заданы базисы b, c и d, причем U — матрица перехода от базиса b к базису c, а V — матрица перехода от базиса c к базису d, то произведение этих матриц UV — матрица перехода от базиса b к базису d.

2 Линейные подпространства

Определение 2.1 (Линейное подпространства). Подмножество $\mathcal H$ линейного пространства $\mathcal L$ называют *линейным подпространством*, если выполнены следующие два условия:

- 1. Сумма любых двух векторов из $\mathcal H$ принадлежит $\mathcal H: x,y\in \mathcal H \implies x+y\in \mathcal H;$
- 2. Произведение любого вектора из \mathcal{H} на любое действительное число снова принадлежит $\mathcal{H}: x \in \mathcal{H}, \lambda \in \mathbb{R} \implies \lambda x \in \mathcal{H}.$

Определение 2.1 фактически говорит о том, что линейное подпространство – это любое подмножество данного линейного пространства, замкнутое относительно линейных операций, т.е. применение линейных операций к векторам, принадлежащим этому подмножеству, не выводит результат за пределы подмножества.

В любом линейном пространстве \mathcal{L} всегда имеются два линейных подпространства: само линейное пространство \mathcal{L} и *нулевое подпространство* $\{0\}$. Эти линейные подпространства называют *несобственными*, в то время как все остальные линейные подпространства называют *собственными*.

Определение 2.2 (Нулевое подпространство). *Нулевым подпространством* называется подпространство, состоящее из единственного элелемента — нулевого.

Определение 2.3 (Несобственные пространства). Линейные подпространства $\mathcal L$ и нулевое подпространство линейного пространства $\mathcal L$ называются neco6cmeenhыmu.

Определение 2.4 (Собственные пространства). Линейные подпространства линейного пространства \mathcal{L} за исключением несобственных называются *несобственными* .

Пусть в линейном пространстве \mathcal{L} задана система векторов e_1, \ldots, e_k . Рассмотрим множество \mathcal{H} всех векторов в \mathcal{L} , которые могут быть представлены линейной комбинацией этих векторов. Это множество является линейным подпространством в \mathcal{L} . Пусть:

$$x = x_1 e_1 + \ldots + x_k e_k$$
 $y = y_1 e_1 + \ldots + y_k e_k$

Тогда:

$$x + y = (x_1 + y_1) e_1 + \ldots + (x_k + y_k) e_k \in \mathcal{H}$$
$$\lambda x = (\lambda x_1) e_1 + \ldots + (\lambda x_k) e_k \in \mathcal{H}$$

Описанное линейное подпространство называют *линейным подпространством*.

Определение 2.5. Линейной оболочкой линейного пространства \mathcal{L} называется совокупность всех конечных линейных комибнаций векторов данной системы.

2.1 Ранг системы векторов

Определение 2.6 (Ранг системы векторов). *Рангом системы векторов* в линейном пространстве называют размерность линейной оболочки этой системы векторов.

Теорема 2.1. Ранг системы векторов $a = (a_1, \ldots, a_k)$ линейного пространства \mathcal{L} равен:

- максимальному количеству линейно независимых векторов в системе а;
- 2. рангу матрицы, составленной по столбцам из координат векторов a_1, \dots, a_k в каком-либо базисе линейного пространства \mathcal{L} .

2.2 Евклидово пространство

Определение 2.7 (Евклидово пространство). Линейное пространство $\mathcal E$ называют евклидовым пространством, если в этом пространстве задано скалярное умножение, т.е. закон или правило, согласно которому каждой паре векторов $x,y\in\mathcal E$ поставлено в соответствие действительное число (x,y), называемое скалярным произведением. При этом выполняются следующие аксиомы скалярного умножения:

- 1. (x,y) = (y,x);
- 2. (x + y, z) = (x, z) + (y, z);
- 3. $(\lambda x, y) = \lambda(x, y), \quad \lambda \in \mathbb{R}$;
- 4. (x,x) > 0, причём (x,x) = 0 тогда и только тогда, когда x = 0.

Замечание. Т.е. евклидово пространство – это пространство, в котором определена операция *скалярного произведения*.

Свойство (1).
$$(x,\lambda y)=\lambda(x,y)$$

Свойство (2).
$$(x,y+z) = (x,y) + (x,z)$$

$$(x,0) = 0$$

Неравенство Коши – Буняковского

Теорема 2.2. Для любых векторов x, y евклидова пространства \mathcal{E} справедливо неравенство:

$$(x,y)^2 \le (x,y)(x,y)$$

Определение 2.8 (Угол между векторами). Углом φ между ненулевыми векторами x и y в евклидовом пространстве $\mathcal E$ называют такое значение $\varphi \in (0,\pi)$ что:

$$\cos \varphi = \frac{(x,y)}{\|x\| \|y\|}$$

значение
$$\varphi \in (0,\pi)$$
 что:
$$\cos \varphi = \frac{(x,y)}{\|x\| \|y\|}$$
 где $\|x\| = \sqrt{(x,x)},$ а $\|y\| = \sqrt{(y,y)}$

Норма вектора

Определение 2.9. Функцию, заданную на линейном пространстве \mathcal{L} , которая каждому вектору $x \in \mathcal{L}$ ставит в соответствие действительное число ||x||, называют *нормой*, если она удовлетворяет следующим аксиомам нормы:

- 1. ||x|| > 0, причем равенство ||x|| = 0 возможно только при x = 0;
- 2. $\|\lambda x\| = |\lambda| \|x\|, \lambda \in \mathbb{R};$
- 3. $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника).

Теорема 2.3. Всякое скалярное умножение в евклидовом пространстве определяет норму согласно формуле

$$||x|| = \sqrt{(x,x)}$$

2.5 Ортогональные системы векторов

Определение 2.10. Два вектора в евклидовом пространстве называют ортогональными, если их скалярное произведение равно нулю.

$$x \perp y \iff (x, y) = 0$$

Говорят, что вектор x в евклидовом пространстве $\mathcal E$ ортогонален подпространству \mathcal{H} , и обозначают $x \perp \mathcal{H}$, если он ортогонален каждому вектору этого подпространства.

2 ЛИНЕЙНЫЕ ПОДПРОСТРАНСТВА

Определение 2.11 (Ортогональная система вектором). Систему векторов евклидова пространства называют *ортогональной*, если любые два вектора из этой системы ортогональны.

Теорема 2.4. Любая ортогональная система ненулевых вектором всегда линейно независима.

Определение 2.12 (Ортогональный базис). Если базис евклидова пространства представляет собой ортогональную систему векторов, то этот базис называют *ортогональным*.

Определение 2.13. Ортогональный базис называют *ортонормированным*, если каждый вектор этого базиса имеет норму, равную единице.

Теорема 2.5 (Теорема Пифагора). Если векторы x и y из евклидова пространства ортогональны, то:

$$||x + y||^2 = ||x||^2 + ||y||^2$$

Определение 2.14. Ортогональный базис называют ортонормированным, если каждый вектор этого базиса имеет норму (длину), равную единице.

3 Процесс ортогонализации. Линейные операторы

3.1 Процесс ортогонализации Грама-Шмидта

Теорема 3.1. В конечномерном евклидовом пространстве существует ортонормированный базис.

Пусть $f = (f_1 \dots f_n)$ – некоторый базис в n-мерном евклидовом пространстве \mathcal{E} . Тогда новый ортонормированный базис $e = (e_1 \dots e_n)$ будет строится по следующему алгоритму:

$$e_1 = f_1$$
 $e_k = f_k - \sum_{i=1}^{k-1} c_i^{k-1} e_i$ $k = 2 \dots n$ (3.1)

Определение 3.1 (Суръективное отображение). Отображение $f: X \to Y$ называют *суръективным*, если каждый $y \in Y$ является образом некоторого элемента $x \in X$.

Определение 3.2 (Инъективное отображение). Отображение $f: X \to Y$ называют *инъективным*, если разные элементы $x_1, x_2 \in X$ имеют разные образы.

Определение 3.3 (Биективное отображение). *Биективным отображением* называют отображение, являющееся и суръективным, и инъективным одновременно.

Определение 3.4 (Линейное отображение или линейный оператор). Отображение $\mathcal{L} \to \mathcal{L}'$ из линейного пространства \mathcal{L} в линейное пространство \mathcal{L}' называют линейным преобразованием или линейным оператором, если выполнены условия:

- 1. $A(x+y) = A(x) + A(y) \quad \forall x, y \in \mathcal{L};$
- 2. $\mathcal{A}(\lambda x) = \lambda \mathcal{A}(x) \quad \forall x \in \mathcal{L} \quad \forall \lambda \in R.$

Линейный оператор $\mathcal{A}: \mathcal{L} \to \mathcal{L}'$, который осуществляет отображение линейного пространства \mathcal{L} в себя, называют также линейного пространства \mathcal{L} и говорят, что линейный оператор \mathcal{A} действует в линейном пространстве \mathcal{L} .

Замечание. Условия определения 3.4 можно скомбинировать в виде одного условия, например так:

$$\mathcal{A}(\lambda x + \mu y) = \lambda(\mathcal{A}x) + \mu(\mathcal{A}y)$$

3.2 Изоморфизм линейных пространств

Определение 3.5 (Изоморфизм линейных пространств). Два линейных пространства \mathcal{L} и \mathcal{L}' называют изоморфизми, если существует линейное биективное отображение $\mathcal{A}:\mathcal{L}\to\mathcal{L}'$. При этом само отображение \mathcal{A} называют изоморфизмом линейных пространств \mathcal{L} и \mathcal{L}'

Теорема 3.2. Два конечномерных линейных пространства изоморфны тогда и только тогда, когда они имеют одинаковую размерность.

Следствие 3.2.1. Все n-мерные линейные пространства изоморфны линейному арифметическому пространству \mathbb{R}^n

3.3 Матрица линейного оператора

Определение 3.6. Матрицу $A = (a_1 \dots a_n)$, составленную из координатных столбцов векторов $Ab_1 \dots Ab_n$ в базисе $b = (b_1 \dots b_n)$ называют матрицей линейного оператора A в базисе B.

Теорема 3.3. Пусть $\mathcal{A}: \mathcal{L} \to \mathcal{L}'$ – линейный оператор. Тогда столбец y координат вектора $y = \mathcal{A}x$ в данном базисе b линейного пространства \mathcal{L} равен произведению Ax матрицы A оператора \mathcal{A} в базисе b на столбец x координат вектора x в том же базисе.

Доказательство. Пусть $x = x_1b_1 + \ldots + x_nb_n$. Тогда образом x будет:

$$y = \mathcal{A}x = \mathcal{A}(x_1b_1 + \dots + x_nb_n) = x_1(\mathcal{A}b_1) + \dots + x_n(\mathcal{A}b_n) =$$

$$= x_1(a_{11}b_1 + \dots + a_{n1}b_n) + \dots + x_n(a_{1n}b_1 + \dots + a_{nn}b_n) =$$

$$= (a_{11}x_1 + \dots + a_{1n}x_n)b_1 + \dots + (a_{n1}x_1 + \dots + a_{nn}x_n)b_n$$

Столбец координат вектора Ax в базисе b имеет вид:

$$\begin{pmatrix} a_{11}x_1 + \ldots + a_{1n}x_n \\ \ldots \\ a_{n1}x_1 + \ldots + a_{nn}x_n \end{pmatrix} = \begin{pmatrix} a_{11} & \ldots & a_{1n} \\ \ldots & \ldots & \ldots \\ a_{n1} & \ldots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \ldots \\ x_n \end{pmatrix} = Ax$$

Теорема 3.4. Пусть b – произвольный базис в n-мерном линейном пространстве \mathcal{L} . Различным линейным операторам \mathcal{A} и \mathcal{B} , действующим в пространстве \mathcal{L} , соответствуют и различные матрицы в базисе b. Любая квадратная матрица A порядка n является матрицей некоторого линейного оператора, действующего в линейном пространстве \mathcal{L} .

13

Доказательство.

1. Если матрицы A и B операторов \mathcal{A} и \mathcal{B} в базисе b совпадают, то согласно теореме 3.3 $\forall x$ со столбцом координат x будет верно:

$$\mathcal{A}x = bBx = \mathcal{B}x$$

Образы произвольного вектора при двух отображениях совпадают, а значит совпадают и сами отображения. Поэтому, различным линейным операторам соответствуют различные линейные операторы.

2. Пусть $A = (a_{ij})$ – произвольная квадратная матрица порядка n. Определим отображение $\mathcal{A}: \mathcal{L} \to \mathcal{L}'$ согласно формуле $\mathcal{A}(x) = bAx$, где x – столбец координат вектора x. Такое отображение является линейным:

$$A(\lambda x + \mu y) = bA(\lambda x + \mu y) = \lambda(bAx) + \mu(bAy) = \lambda Ax + \mu Ay$$

Вычислим $i=\overline{1,n}$ столбец координат образа i-ного вектора из базиса b:

$$\mathcal{A}b_{i} = bA \begin{pmatrix} 0 \\ \dots \\ 0 \\ 1 \\ 0 \\ \dots \\ 0 \end{pmatrix} = b \begin{pmatrix} a_{1i} \\ \dots \\ a_{i-1,i} \\ a_{ii} \\ a_{i+1,i} \\ \dots \\ a_{ni} \end{pmatrix}$$

где единица стоит в i-ной строке; столбец совпадает с i-ым столбцом матрицы A. Поэтому матрица заданного линейного оператора совпадает с исходной матрицей A.

Пример. Матрицей нулевого оператора является нулевая матрица.

Пример. Матрица *тождественного* оператора \mathcal{I} является единичной.

3.4 Преобразование матрицы линейного оператора

Теорема 3.5. Матрицы A_b и A_e линейного оператора $\mathcal{A}: \mathcal{L} \to \mathcal{L}',$ записанные в базисах b и e линейного пространства $\mathcal{L},$ связаны друг с другом соотношением:

$$A_e = U^{-1} A_b U$$

где $U=U_{b
ightarrow e}$ – матрица перехода от базиса b к базису e.

14

Доказательство. Пусть $y = \mathcal{A}x$. Обозначим координаты векторов x и y в старом базисе через x_b b y_b , а в новом базисе e – через x_e и y_e . Поскольку:

$$y_b = A_b x_b$$
 $x_b = U x_e$ $y_b = U y_e$

То получаем:

$$y_e = U^{-1}y_b = U^{-1}(A_b x_b) = U^{-1}(A_b U x_e) = (U^{-1}A_b U)x_e$$

Равенство $y_e = (U^{-1}A_bU)x_e$ является матричной формой записи действия линейного оператора $\mathcal A$ в базисе e, поэтому, согласно теореме 3.4, $U^{-1}A_bU = A_e$

Наглядная иллюстрация доказательства:

$$\begin{array}{ccc} x_e & \xrightarrow{A_e} & B \\ U \downarrow & & \uparrow U^{-1} \\ x_b & \xrightarrow{A_b} & y_b \end{array}$$

Определение 3.7 (Подобные матрицы). Квадратные матрицы A и B порядка n называют nodoбными, если существует такая невырожденная матрица P, что $P^{-1}Ap=B$.

Теорема 3.6. Если матрицы A и B подобны, то $\det A = \det B$

Доказательство. Если матрицы A и B подобны, то, согласно определению 3.6, существует такая невырожденная матрица P, что $B=P^{-1}AP$. Так как определитель произведения квадратных матриц равен произведению определителей этих матриц, а $\det(P^{-1})=(\det P)^{-1}$, то получаем:

$$\det B = \det (P^{-1}AP) = \det (P^{-1}) \det A \det P = \det A$$

Следствие 3.6.1. Определитель матрицы линейного оператора не зависит от выбора базиса.

Определение 3.8 (Определитель линейного оператора). *Определителем линейного оператора* называют определитель его матрицы в каком-либо базисе.

3.5 Произведение линейных операторов

15

Теорема 3.7. Пусть в линейном пространстве \mathcal{L} действуют линейные операторы \mathcal{A} и \mathcal{B} , а A и B — матрицы этих линейных операторов в некотором базисе b. Тогда матрицей линейного оператора $\mathcal{B}\mathcal{A}$ в том же базисе b является матрица BA.

Доказательство. Действие линейного оператора на вектор в данном базисе представляется как умножение матрицы этого оператора на столбец координат вектора. Поэтому для произведения двух операторов $\mathcal A$ и $\mathcal B$ получаем:

$$(\mathcal{B}\mathcal{A}) x = \mathcal{B}(\mathcal{A}x) = \mathcal{B}(bAx) = b(B(Ax)) = b(BA)x$$

Теорема 3.8. Если линейный оператор \mathcal{A} имеет обратное отображение \mathcal{A}^{-1} , то это отображение линейно, причем если матрицей \mathcal{A} в данном базисе b является A, то матрицей линейного оператора \mathcal{A}^{-1} в том же базисе является A^{-1} .

Доказательство. Любым векторам y_1 и y_2 линейного пространства \mathcal{L} соответствуют такие однозначно определенные векторы x_1 и x_2 , что $y_i = \mathcal{A}x_i, i = 1, 2$. При этом $\forall \lambda, \mu \in \mathbb{R}$ вектору $\lambda y_1 + \mu y_1$ соответствует вектор $\lambda x_1 + \mu x_2$, т.к.:

$$\mathcal{A}(\lambda x_1 + \mu x_2) = \lambda \mathcal{A}x_1 + \mu \mathcal{A}x_2 = \lambda y_1 + \mu y_2$$

Поэтому:

$$A^{-1}(\lambda y_1 + \mu y_2) = \lambda x_1 + \mu x_2 = \lambda A^{-1} y_1 + \mu A^{-1} y_2$$

А значит отображение A^{-1} линейно.

Произведение операторов \mathcal{A} и \mathcal{A}^{-1} , как композиция прямого и обратного отображения, является тождественным оператором. Согласно теореме 3.7, произведение этих матриц равно единичной матрице E:A'A=E. А значит матрица \mathcal{A}^{-1} является обратной к матрице \mathcal{A} .

Теорема 3.9. Пусть в n-мерном пространстве \mathcal{L} задан некоторый базис b. Тогда отображение $\Phi: L(\mathcal{L}, \mathcal{L})$, сопоставляющее каждому линейному оператору его матрицу в базисе b, является изоморфизмом линейных пространстве $L(\mathcal{L}, \mathcal{L})$ и $M_n(\mathbb{R})$

4 Характеристический многочлен и собственные значения

4.1 Характеристическое уравнение матрицы

Пусть $A = (a_{ij})$ – произвольная квадратная матрица порядка n. Рассмотрим определитель:

$$\det(A - \lambda E) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix}$$

где E — единичная матрица, а λ — действительное переменное. Тогда этот определитель относительно переменной λ является многочленом степени n и может быть записан в виде:

$$\chi_A(\lambda) = \det(A - \lambda E) = \sum_{k=1}^n (-1)^k d_k \lambda^k$$
(4.1)

Определение 4.1 (Характеристический многочлен матрицы). Многочлен $\chi_A(\lambda) = \det(A - \lambda E)$ называют характеристическим многочленом матрицы A, а уравнение $\chi_a(\lambda) = 0$ – характеристическим уравнением матрицы A.

Если подставить квадратную матрицу в качестве значения переменной в произвольный многочлен, то значением последнего будет матрица того же порядка. Аннулирующие многочлены для произвольной квадратной матрицы A – многочлены, которые при подстановке матрицы A дают нулевую матрицу. Одним из таких аннулирующих многочленов является xapakme-pucmuческий многочлен.

Теорема 4.1 (теорема Кэли – Гамильтона). Для любой квадратной матрицы характеристический многочлен является её аннулирующим многочленом.

Теорема 4.2. Характеристические многочлены подобных матриц совпадают.

Доказательство. Пусть квадратные матрицы A и A' одного порядка подобны, то есть существует такая невырожденная матрица P того же порядка, что $A' = P^{-1}AP$. Тогда в силу свойств определителей имеем:

$$\chi_{A'}(\lambda) = \det(A' - \lambda E) = \det(P^{-1}AP - \lambda P^{-1}EP) =$$

$$= \det(P^{-1}(A - \lambda E)P) = \det P^{-1}\det(A - \lambda E)\det P =$$

$$= \det(A - \lambda E) = \chi_A(\lambda)$$

4.2 Характеристическое уравнение линейного оператора

Определение 4.2 (Характеристический многочлен линейного оператора). Xарактеристическим многочленом линейного оператора $A: \mathcal{L} \to \mathcal{L}$ называют характеристический многочлен его матрицы A, записанной в некотором базисе, а xарактеристическим уравнением этого оператора — характеристическое уравнение матрицы A.

Характеристический многочлен не зависит от выбора базиса, поэтому коэффициенты d_k в уравнении (4.1) являются *инвариантами* относительно выбор базиса. Другими словами:

Замечание. Коэффициенты d_k отражают свойства оператора, независимо от выбора матрицы A, записанной в конкретном базисе.

Пример. Пусть дан линейный оператор A и его матрица:

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

Вычислим определитель:

$$\det (A - \lambda E) = \begin{vmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 2 \\ 0 & 0 & -\lambda \end{vmatrix} = \lambda^3$$

и приравняв его к нулю получаем xарактеристическое уравнение этого линейного оператора:

$$\lambda^3 = 0$$

4.3 Собственные векторы линейного оператора

Определение 4.3. Ненулевой вектор x в линейном пространстве $\mathcal L$ называют собственным вектором линейного оператора $A:\mathcal L\to\mathcal L$, если для некоторого действительного числа λ выполняется соотношение $Ax=\lambda x$. При этом число λ называют собственным значение линейного оператора A.

Определение 4.4. Множеством всех собственных значений линейного оператора называют *спектром линейного оператора*.

Каждый собственный вектор связан со своим единственным собственным значением.

Замечание. Иногда говорят о собственных векторах и собственных значениях матрицы. В таких случаях имеют в виду, что матрица A является матрицей некоторого линейного оператора в этом базисе.

Спектр линейного оператора тесно связан с его характеристическим уравнением.

Теорема 4.3. Для того, чтобы действительного число λ являлось собственным значением линейного орпетора, необходимо и достаточно, чтобы оно было корнем xapakmepucmuчeckoro уравнения этого оператора.

Необходимость. Пусть число λ является собственным значением линейного оператора $A: \mathcal{L} \to \mathcal{L}$. Это значит, что

$$\exists x \neq 0 \quad : \quad Ax = \lambda x \tag{4.2}$$

В \mathcal{L} действует тождественный оператор $I: Ix = x \ \forall x.$ Используя данный оператор, преобразуем (4.2):

$$(A - \lambda I) x = 0. (4.3)$$

Запишем (4.3) в некотором базисе b. Линейному оператору A будет соответствовать матрица A, а тождественному оператору – единичная матрица E. Получаем:

$$(A - \lambda E) x = 0 \tag{4.4}$$

Уравнение (4.4) представляет из себя матричную форму записи однородной СЛАУ с квадратной матрицей $A-\lambda E$ порядка n. Эта система имеет ненулевое решение, являющееся столбцом координат x вектора x. Поэтому матрица $A-\lambda E$ системы (4.4) имеет нулевой определитель, т.е. $\det (A-\lambda E)=0$. Это означает, что λ является корнем характеристического уравнения линейного оператора A.

Достаточность. Легко убедиться, что приведенные рассуждения можно провести в обратном порядке. Если λ является корнем характеристического уравнения, то в заданном базисе b выполняется равенство $\det(A-\lambda E)=0$. Следовательно, матрица однородной СЛАУ (4.4), записанной в матричной форме, вырождена, и система имеет ненулевое решение x. Это ненулевое решение представляет собой набор координат в базисе b некоторого ненулевого вектора x, для которого выполняется векторное равенство (4.3) или ему эквивалентное равенство (4.2). Мы приходим к выводу, что число λ является собственным значением линейного оператора A.

Множество всех собственных вектором, отвечающим собственному значению линейного оператора, *не является линейным подпространством*, так как множество не содержит *нулевого вектора* (по определению, нулевой вектор не может быть собственным).

Поэтому обозначим через $\mathfrak{L}(A,\lambda)$ множество всех собственных векторов линейного оператора A в линейном пространстве $\mathcal L$ и нулевой вектор.

Определение 4.5. Собственным подпространством $\mathfrak{L}(A,\lambda)$ линейного оператора A называют множество всех собственных вектором линейного оператора A и нулевой вектор.

Теорема 4.4. Множество $\mathfrak{L}(A,\lambda)$ является линейным подпространством в \mathcal{L} .

Доказательство. Выберем произвольные два вектора $x,y \in \mathfrak{L}(A,\lambda)$ и докажем, что $\forall \alpha,\beta \in \mathbb{R}$ вектор $\alpha x + \beta y$ также принадлежит $\mathfrak{L}(A,\lambda)$. Для этого вычислим образ этого вектора под действием линейного оператора A:

$$A(\alpha x + \beta y) = A(\alpha x) + A(\beta y) = \alpha Ax + \beta Ay =$$

= $\alpha(\lambda x) + \beta(\lambda y) = \lambda(\alpha x + \beta y)$

Таким образом, для вектора $z=\alpha x+\beta y$ выполняется соотношение $Az=\lambda z$. Если z — нулевой вектор, то он принадлежит \mathfrak{A},λ по определению. Если он ненулевой, то согласно доказанному соотношению, он является собственным с собственным значением λ и принадлежит множеству $\mathfrak{L}(A,\lambda)$.

4.4 Свойства собственных векторов

Теорема 4.5. Пусть собственные значения $\lambda_1, \dots, \lambda_r$ линейного оператора A попарно различимы. Тогда система соответствующих им собственных векторов e_1, \dots, e_r линейно независима.

Доказательство. Докажем методом математической индукции.

При r=1 утверждение верно, так как собственный вектор по определению является ненулевым.

Пусть утверждение верно при r=m, то есть для произвольной системы из m собственных векторов e_1,\ldots,e_m . Добавим к системе вектором еще один собственный вектор e_{m+1} , отвечающий собственному значению λ_{m+1} . Докажем, что расширенная система вектором осталась линейно-независимой.

Предположим, что произвольная линейная комбинация полученной системы собственных векторов равна нулевому вектору:

$$\alpha_1 e_1 + \ldots + \alpha_m e_m + \alpha_{m+1} e_{m+1} = 0.$$
 (4.5)

 ${\rm K}\ (4.5)$ применим линейный оператор A:

$$\alpha_1 A e_1 + \ldots + \alpha_m A e_m + \alpha_{m+1} A e_{m+1} = 0.$$

Учтем, что векторы e_1, \ldots, e_{m+1} – собственные:

$$\alpha_1 \lambda_1 e_1 + \ldots + \alpha_m \lambda_m e_m + \alpha_{m+1} \lambda_{m+1} e_{m+1} = 0. \tag{4.6}$$

Умножив (4.6) на λ_{m+1} и вычтя полученное выражение из (4.6) получаем линейную комбинацию векторов e_1, \ldots, e_m , равную нулевому вектору:

$$\alpha_1(\lambda_1 - \lambda_{m+1})e_1 + \ldots + \alpha_m(\lambda_m - \lambda_{m+1}) = 0.$$

Вспоминая, что система векторов e_1, \ldots, e_m по предположению линейно независима, делаем вывод, что у полученной линейной комбинации все коэффициенты равны нулю:

$$\alpha_k(\lambda_k - \lambda_{m+1}) = 0, \quad k = \overline{1, m}.$$
 (4.7)

Поскольку все собственные значения λ_i попарно различны, то из равенств (4.7) следует, что $\alpha_1=\alpha_2=\ldots=\alpha_m=0$. Значит, соотношение (4.5) можно записать в виде $\alpha_{m+1}e_{m+1}=0$, а так как вектор e_{m+1} ненулевой (как собственный вектор), то $\alpha_{m+1}=0$.

В итоге получаем, что равенство (4.5) выполняется лишь в том случае, когда все коэффициенты α_i $i=\overline{1,m+1}$ равны нулю. Тем самым мы доказали, что система вектором $e_1,\dots e_{m+1}$ линейно независима

Теорема 4.6. Матрица линейного оператора A, действующего в линейном пространстве, в данном базисе является $\partial uarona_n$ ьной тогда и только тогда, когда все векторы этого базиса являются собственными для оператора A.

Доказательство. Пусть A – матрица линейного оператора A в базисе $b = (b_1, b_2, \ldots, b_n)$. Согласно определению 3.6 (матрица линейного оператора) j-м столбцом матрицы A является столбец координат вектора Ab_i .

Если матрица A является диагональной, то произвольно взятый ее j-й столбец имеет вид $(0,\ldots,0,\mu_j,0,\ldots,0)^{\tau}$ (единственный ненулевой элемент на j-ом месте). Для вектора Ab_j получаем представление:

$$Ab_i = b(0, \dots, 0, \mu_i, 0, \dots, 0)^{\tau} = \mu_i b_i$$

которое как раз и означает, что вектор b_j является собственным, а все диагональные элементы матрицы A являются собственными значениями.

Верно и обратное. Если каждый вектор b_j является собственным для линейного оператора A и ему отвечает собственное значение λ_j , то:

$$Ab_{i} = \lambda_{i}b_{i} = b(0, \dots, 0, \lambda_{i}, 0, \dots, 0)^{\tau},$$

то есть в матрице оператора A в этом базисе все элементы, кроме диагональных, равны нулю, а сам диагональный элемент j-м столбце равен λ_j .

Следствие 4.6.1. Если характеристическое уравнение линейного оператора, действующего в n-мерном пространстве, имеет n попарно различных действительных корней, то существует базис, в котором матрица этого линейного оператора является диагональной.

Следствие 4.6.2. Если характеристическое уравнение квадратной матрицы порядка n имеет n попарно различных действительных корней, то эта матрица подобна некоторой диагональной.

5 Линейные операторы в евклидовых пространствах

5.1 Сопряженный оператор

Пусть \mathcal{E} – евклидово пространство.

Определение 5.1 (Сопряженный линейный оператор). Линейный оператор $A^*: \mathcal{E} \to \mathcal{E}$ называют *сопряжеённым* к линейному оператору $A: \mathcal{E} \to \mathcal{E}$, если $\forall x,y \in \mathcal{E}$ верно:

$$(Ax, y) = (x, A^*y).$$
 (5.1)

Лемма. Если квадратные матрицы M и N порядка n таковы, что $\forall x,y \in \mathbb{R}^n$ выполняется соотношение $x^{\tau}My = x^{\tau}Ny$, то M = N.

Доказательство. Пусть $m_{ij},\ n_{ij}$ — элементы матриц M и N соответственно, стоящие в i-ой строке и в j-м столбце. Для произвольной пары индексов i и j выберем такие вектор-столбцы x и y:

$$x = \begin{pmatrix} 0 \\ \dots \\ 0 \\ 1 \\ 0 \\ \dots \\ 0 \end{pmatrix} \leftarrow i$$
-я строка
$$y = \begin{pmatrix} 0 \\ \dots \\ 0 \\ 1 \\ 0 \\ \dots \\ 0 \end{pmatrix} \leftarrow j$$
-я строка
$$0 \leftarrow j$$

в которых присутствует только один ненулевой элемент, равный единице и стоящий на указанном месте. Записав равенство $x^{\tau}My = x^{\tau}Ny$ с выбранными столбцами x,y и вычислим обе стороны равенства, получаем, что $m_{ij}=n_{ij}$. Так как пара индексов может быть выбрана произвольной, заключаем, что M=N.

Теорема 5.1. Любому линейному оператору $A:\mathcal{E}\to\mathcal{E}$ соответствует единственный сопряженный оператор A^* , причем его матрицей в любом *ортонормированном базисе* e является матрица A^{τ} , транспонированная матрице A линейного оператора A в том же базисе e.

Доказательство. Докажем, что линейный оператор B с матрицей $B = A^{\tau}$ в базисе e является сопряженным к линейному оператору A. Для этого достаточно проверить выполнение равенства

$$(Ax, y) = (x, By) \quad \forall x, y, \in \mathcal{E}. \tag{5.2}$$

Пусть x, y – столбцы координат векторов x, y в базисе e. Тогда, согласно теореме 3.3 вектор Ax имеет столбец координат Ax, а левая часть равенства (5.2) равна $(Ax)^{\tau}y$, что следует из ортонормированности. Аналогично правая часть равенства имеет вид $x^{\tau}(By)$. Следо-

вательно, равенство (5.2) в координатной записи имеет вид:

$$(Ax)^{\tau} y = x^{\tau} (By). \tag{5.3}$$

Так как $(Ax)^{\tau} = x^{\tau}A^{\tau}$ в силу свойств матричных операций, равенство (5.3) эквивалентно равенству:

$$x^{\tau}A^{\tau}y = x^{\tau}By, \tag{5.4}$$

которое при $B = A^{\tau}$ превращается в тождество.

Если некоторый линейный оператор B является сопряженным к линейному оператору A, то $\forall x,y$ выполняется равенство (5.2). Значит, для матриц A и B этих операторов равенство (5.4) выполняется для любых столбцов x и y. Согласно доказанной лемме, $B=A^{\tau}$. Поэтому линейный оператор B определен однозначно, так как однозначно определена его матрица.

5.2 Самосопряженные операторы и их матрицы

Определение 5.2 (Самосопряженный оператор). Линейный оператор A, действующий в евклидовом пространстве, называют *самосопряженным*, если $A^* = A$.

Иначе говоря, самосопряженный оператор <math>A можно определить так:

$$(Ax, y) = (x, Ay).$$

Замечание. Матрица A называется симметричной, если $A = A^{\tau}$.

Теорема 5.2. Матрица оператора в любом ортонормированном базисе является симметрической тогда и только тогда, когда оператор *само-сопряженный*.

Доказательство. Согласно определению $5.2,\ A$ — самосопряженный оператор, если $A=A^*,\$ то есть если линейный оператор равен своему сопряженному. Это эквивалентно тому, что матрица линейного оператора в ортонормированном базисе совпадает со своей транспонированной.

Теорема 5.3. Все корни характеристического уравнения самосопряженного оператор действительны.

Следствие 5.3.1. Самосопряженный оператор, действующий в n-мерном евклидовом пространстве, имеет n собственных значений, если каждое из них считать столько раз, какова его кратность.

Следствие 5.3.2. Симметрическая матрица порядка n имеет n собственных значений, если каждое из них считать столько раз, какова его кратность.

5.3 Собственные векторы самосопряженного оператора

Теорема 5.4. Собственные векторы самосопряженного оператора, отвечающие различным собственным значениям, ортогональны.

Доказательство. Рассмотрим самосопряженный оператор A и два его собственных вектора x_1 и x_2 , отвечающие различным значениям λ_1 и λ_2 . Тогда $Ax_1 = \lambda_1 x_1$ и $Ax_2 = \lambda_2 x_2$. Поэтому

$$(Ax_1, x_2) = (\lambda_1 x_1, x_2). (5.5)$$

Но так как A является самосопряженным оператором, то $(Ax_1, x_2) = (x_1, Ax_2)$. Значит:

$$(Ax_1, x_2) = (x_1, Ax_2) = (x_1, \lambda_2 x_2) = \lambda_2 (x_1, x_2)$$
(5.6)

Приравнивая правые части соотношений (5.5) и (5.6), получаем

$$\lambda_1(x_1, x_2) = \lambda_2(x_1, x_2)$$

или

$$(\lambda_1 - \lambda_2)(x_1, x_2) = 0 (5.7)$$

А так как $\lambda_1 \neq \lambda_2$ по условию, из равенства (5.7) следует, что $(x_1, x_2) = 0$, что и означает ортогональность векторов.

Теорема 5.5. Если собственные значения $\lambda_1, \ldots, \lambda_n$ самосопряженного оператора A, действующего в n-мерном евклидовом пространстве \mathcal{E} , попарно различны, то в \mathcal{E} существует *ортонормированный базис*, в котором матрица этого линейного оператора A имеет диагональный вид, причем *диагональными элементами* такой матрицы являются *собственные значения* $\lambda_1, \ldots, \lambda_n$.

Доказательство. Поскольку собственные значения $\lambda_1, \ldots, \lambda_n$ попарно различны, то, выбрав для каждого λ_i соответствующий ему собственный вектор e_i , получим систему e ненулевых векторов, которые по теореме 5.4 попарно ортогональны. Поэтому e – ортогональная система векторов. Согласно теореме 4.5, она линейно независима и является базисом, так как содержит n векторов. Этот базис является ортогональным, а чтобы его превратить в ортонормированный, достаточно каждый вектор e_i нормировать делением на его длину.

Таким образом, в условиях теоремы существует базис из собственных векторов самосопряженного оператора A. По теореме 4.6 матрица линейного оператора в базисе из собственных векторов является диаго-

нальной, а диагональные элементы матрицы представляют собой собственные значения. $\hfill \Box$

Теорема 5.6. Для любого самосопряженного оператора A существует ортонормированный базис, состоящий из собственных векторов этого линейного оператора. Матрица A самосопряженного оператора A в этом базисе имеет диагональный вид, на ее диагонали расположены собственные значения оператора A, повторяющиеся столько раз, какова их кратность.

Следствие 5.6.1. Любая симметричная матрица M порядка n подобна некоторой диагональной, то есть существует такая невырожденная матрица P порядка n, что

$$P^{-1}MP = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

5.4 Ортогональные матрицы и ортогональные операторы

Определение 5.3 (Ортогональная матрица). Квадратную матрицу O называют *ортогональной*, если она удовлетворяет условию

$$O^{\tau}O = E, \tag{5.8}$$

где E – единичная матрица.

Из определения 5.3 вытекает ряд свойств ортогональных матриц.

Следствие 5.6.2. Определитель ортогональной матрицы может иметь только одно из двух значений: $\det O = \pm 1$.

Доказательство. Согласно равенству (5.8) имеем:

$$\det(O^{\tau}O) = \det E.$$

Определитель произведения матриц равен произведению определителей, а при транспонировании определитель не меняется:

$$\det(O^{\tau}O) = \det O^{\tau} \det O = (\det O)^{2}.$$

Т.к. $\det E = 1$, то $(\det O)^2 = 1$. Следовательно, $\det O = \pm 1$.

Следствие 5.6.3. Матрица, обратная к ортогональной матрице O, совпадает c ее транспонированной:

$$Q^{-1} = Q^{\tau}$$
.

Доказательство. Согласно свойству 5.6.2 ортогональная матрица невырождена и потому имеет обратную матрицу O^{-1} . Умножая равенство (5.8) справа на O^{-1} , получаем:

$$(O^{\tau}O) O^{-1} = EO^{-1},$$

откуда
$$O^{\tau}\left(OO^{-1}\right) = O^{-1}$$
. Но $OO^{-1} = E$, поэтому $O^{\tau} = O^{-1}$.

Следствие 5.6.4. Произведение ортогональной матрицы O на транспонированную к ней равно единичной матрице, то есть:

$$OO^{\tau} = E$$

Доказательство. Согласно свойству 5.6.3 и определению обратной матрицы, $OO^{\tau} = OO^{-1} = E$.

Следствие 5.6.5. Матрица, транспонированная к ортогональной, тоже ортогональна.

Доказательство. Докажем, что

$$(O^{\tau})^{\tau} = E,$$

представляющее собой запись соотношения (5.8) для матрицы O^{τ} . По свойству транспонирования $(O^{\tau})^{\tau} = O$, равенство (??) эквивалентно равенству $OO^{\tau} = E$, которое верно в силу свойства 5.6.4.

Следствие 5.6.6. Произведение двух ортогональных матриц O и Q одного порядка является ортогональной матрицей.

Доказательство. Проверим выполнение равенства (5.8) для матрицы OQ:

$$\left(OQ\right)^{\tau}\left(OQ\right) = \left(Q^{\tau}O^{\tau}\right)OQ = Q^{\tau}\left(O^{\tau}O\right)Q = Q^{\tau}EQ = Q^{\tau}Q = E,$$

где E – единичная матрица.

Следствие 5.6.7. Матрица, обратная к ортогональной матрице, тоже является ортогональной.

Доказательство. Согласно свойству 5.6.2, ортогональная матрица невырождена, а потому имеет обратную. Согласно свойству 5.6.3 матрица, обратная к ортогональной, совпадает с транспонированной. Наконец, согласно свойству 5.6.5, матрица, транспонированная к ортогональной, является ортогональной.

Определение 5.4 (Ортогональный оператор). Линейный оператор $A: \mathcal{E} \to \mathcal{E}$, действующий в евклидовом пространстве \mathcal{E} , называют *ортогональный оператором* (или *ортогональный преобразованием*), если он сохраняет скалярное произведение в \mathcal{E} , то есть $\forall x,y \in \mathcal{E}$ выполняется равенство

$$(Ax, Ay) = (x, y) \tag{5.9}$$

Так как ортогональный оператор сохраняет скалярное произведение, то он сохраняет норму (длину) вектора и угол между ненулевыми векторами. Действительно,

$$||Ax||^2 = (Ax, Ax) = (x, x) = ||x||^2.$$

a

Верно и обратное утверждение.

Теорема 5.7. Если линейный оператор $A: \mathcal{E} \implies \mathcal{E}$ в евклидовом пространстве \mathcal{E} сохраняет *евклидову норму*:

$$||Ax|| = ||x||, \quad \forall x \in \mathcal{E},$$

то этот оператор ортогональный.

Теорема 5.7 позволяет привести примеры ортогональных операторов. В пространствах V_2 и V_3 свободных векторов ортогональными являются линейные операторы, сохраняющие расстояние. Например, линейный оператор поворота вектора на фиксированный угол.

Теорема 5.8. Матрица оператора в некотором ортонормированном базисе является *ортогональной* тогда и только тогда, когда оператор *ортогональный*.

Необходимость. Выберем в евклидовом пространстве $\mathcal E$ любой ортонормированный базис e. Тогда $\forall x,y\in \mathcal E$, имеющих в этом ортонормированном базисе e столбцы координат x и y соответственно, выполнено равенство

$$(x,y) = x^{\tau}y.$$

(скалярное произведение вектором равно произведению столбца-координат вектора на строку координат вектора).

Пусть матрица A линейного оператора A в ортонормированном базисе является ортогональной. Тогда выполняется соотношение $A^{\tau}A = E$. Следовательно, равенство

$$(Ax)^{\tau} (Ay) = (x^{\tau} A^{\tau}) (Ay) = x^{\tau} (A^{\tau} A) y = x^{\tau} Ey = x^{\tau} y$$
 (5.10)

верно для любых столбцов x и y. Равенство (5.10) представляет собой матричную запись равенства скалярных произведений (Ax, Ay) = (x, y) для векторов x, y, имеющих столбцы координат x и y соответ-

ственно в этом же ортонормированном базисе. Получаем, что оператора A – ортогональный. \square

Достаточность. В любом ортонормированном базисе соотношение (Ax, Ay) = (x, y) в координатах имеет вид $(Ax)^{\tau}(Ay) = x^{\tau}y$, откуда, согласно (5.10) следует, что:

$$x^{\tau} (A^{\tau} A) y = (Ax)^{\tau} (Ay) = x^{\tau} Ey.$$

Как было доказано ранее (смотри лемму в 5.1) из этого равенства, выполняющегося $\forall x, y$, следует равенство матриц $A^{\tau}A = E$, что и означает ортогональность матрицы A.

Теорема 5.9. В евклидовом пространстве матрица перехода от одного ортонормированного базиса к другому является ортогональной.

Доказательство. Рассмотрим в произвольном n-мерном евклидовом пространстве $\mathcal E$ два ортонормированных базиса: $b=(b_1,\dots,n_n)$ и $e=(e_1,\dots,e_n)$. Пусть матрица U — матрица перехода от b к e.

Столбцы e_1, \ldots, e_n матрицы перехода U— это столбцы координат векторов нового базиса относительно старого базиса b, т.е. $U = (a_1, \ldots, a_n)$, где $e_i = ba_i$, $i = \overline{1, n}$. Поэтому

$$U^{\tau}U = \begin{pmatrix} a_1^{\tau} \\ a_2^{\tau} \\ \dots \\ a_n^{\tau} \end{pmatrix} (a_1 a_2 \dots a_n) =$$

$$= \begin{pmatrix} a_1^{\tau} a_1 & a_1^{\tau} a_2 & \dots & a_1^{\tau} a_n \\ a_2^{\tau} a_1 & a_2^{\tau} a_2 & \dots & a_2^{\tau} a_n \\ \dots & \dots & \dots & \dots \\ a_n^{\tau} a_1 & a_n^{\tau} a_2 & \dots & a_n^{\tau} a_n \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

Последнее равенство следует из того, что столбцы a_1, \ldots, a_n – это столбцы координат векторов ортонормированного базиса в ортонормированном базисе, а матричное произведение $a_i^{\tau}a_j$ представляет собой запись в координатах *скалярного произведения* (e_i, e_j) , которое в силу ортонормированности базисе e равно нулю при ij и единице при i=j.

Мы доказали, что $U^{\tau}U=E$, а это, согласно определению 5.3 ортогональной матрицы, означает, что U – ортогональная матрица.

5.5 Приведение симметричной матрицы к диагональному виду

Матрица A линейного оператора A при замене базиса преобразуется согласно формуле:

$$A' = U^{-1}AU,$$

где U — матрица перехода. Если речь идет об евклидовом пространстве и о переходе из одного ортонормированного базиса в другой, то матрица перехода U является ортогональной, а значит, согласно свойству 5.6.3, формулу

преобразования линейного оператора можно записать в виде:

$$A' = U^{\tau} A U \tag{5.11}$$

что значительно упрощает расчеты.

Теорема 5.10. Для любой симметрической матрицы M существует такая ортогональная матрица U, что $U^{\tau}MU = \Lambda$, где $\Lambda = \mathrm{diag}\,(\lambda_1,\ldots,\lambda_n)$ – диагональная матрица, диагональными элементами которой являются собственные значения матрицы M, повторяющиеся согласно их кратности.

Доказательство. Согласно следствию 5.6.5 для симметричной матрицы M порядка n существует такая невырожденная матрицы P, что $P^{-1}MP = \Lambda = \mathrm{diag}\,(\lambda_1,\ldots,\lambda_n)$, где в последовательности $\lambda_1,\ldots,\lambda_n$ указаны все собственные значения матрицы M с учетом их кратностей. Из доказательства того же следствия вытекает, что P является матрицей перехода между ортонормированными базисами. Поэтому P – ортогональная матрица (теорема 5.9) и $P^{-1} = P^{\tau}$ (свойство 5.6.3). Следовательно, $P^{\tau}MP = P^{-1}MP = \Lambda$, то есть в качестве матрицы U в формулировке теоремы можно взять P.

Преобразование (5.11) с ортогональной матрицей U иногда называют ортогональным преобразованием матрицы A. Поэтому теорему 5.10 можно сформулировать так: любая симметрическая матрица ортогональным преобразованием приводится к диагональному виду.

6 Квадратичные формы и их свойства

Определение 6.1 (Квадратичная форма). Однородный многочлен второй степени от n переменных с действительными коэффициентами

$$\sum_{i=1}^{n} a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j \tag{6.1}$$

называют квадратичной формой.

Квадратичную форму можно записать в виде:

$$x^{\tau} A x \tag{6.2}$$

где $x = (x_1 x_2 \dots x_n)^{\tau}$ – столбец, составленный из переменных; $A = (a_{ij})$ – симметричная матрица порядка n, называемая матрицей квадратичной формы.

Пример. Квадратичная форма от 3 переменных $x_1^2 + 4x_1x_3$ имеет матрицу:

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 2 & 0 & 0 \end{pmatrix}.$$

Квадратичная форма в матричной форме записи будет иметь вид

$$x_1^2 + 4x_1x_3 = (x_1x_2x_3) \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 2 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

6.1 Преобразование квадратичных форм

Пусть дана квадратичная форма $x^{\tau}Ax$, где $x=(x_1x_2\dots x_n)$. В n-мерном линейном пространстве \mathcal{L} с фиксированным базисом b она определяет функцию $f(x)=x_b^{\tau}Ax_b$, заданную через координаты x_b вектора x в базисе b. Найдем представление этой же функции в некотором другом базисе e. Пусть U — матрица перехода от b к e. Тогда координаты x_b вектора x в старом базисе b и координаты хе того же вектора в новом базисе a0 будут связаны соотношением

$$x_b = Ux_e (6.3)$$

Функция f(x) в новом базисе будет выражаться через новые координаты вектора x следующим образом:

$$x_b^{\tau} A x_b = (U x_e)^{\tau} A (U x_e) = x_e^{\tau} (U^{\tau} A U) x_e = x_e^{\tau} A' x_e.$$

Функция f в новом базисе также записывается при помощи квадратичной формы, причем матрица A_0 этой квадратичной формы связана с матрицей A исходной квадратичной формы соотношением

$$A' = U^{\tau} A U. \tag{6.4}$$

Преобразование матрицы квадратичной формы вызывается заменой переменных в соответствии с формулой (6.3).

Замечание. Замену переменных вида (6.3) с произвольной матрицей U называют *линейной*. Изменение базиса в линейном пространстве приводит к линейной замене переменных с невырожденной матрицей.

6.2 Квадратичные формы канонического вида

Определение 6.2 (Квадратичная форма канонического вида). Квадратичную форму

$$\alpha_1 x_1^2 + \ldots + a_n x_n^2, \quad \alpha_i \in \mathbb{R}, \quad i = \overline{1, n}.$$
 (6.5)

Один способов приведение квадратичной формы к каноническому виду состоит в последовательном выделении полных квадратов. Такой метод называют методов Лагранжа.

6.3 Ортогональные преобразования квадратичных форм

Матрица A квадратичной формы при переходе к другому базису изменяется по формуле $A' = U^{\tau}AU$, где U — матрица перехода. Если пространство $e \kappa \kappa n u \partial o e o$, а старый и новый базис o p m o h o p m u p o e o e o p o e o

Теорема 6.1. При ортогональном преобразовании квадратичной формы *характеристическое уравнение* её матрицы не изменяется.

Доказательство. Пусть A — матрица заданной квадратичной формы. При ортогональной преобразовании эта матрица изменяется по формуле

$$A' = U^{\tau} A U$$
.

где U — ортогональная матрица. Согласно свойству 5.6.3, ортогональная матрица U имеет обратную, причем $U^{-1}=U^{\tau}$. Поэтому

$$A' = U^{\tau} A U = U^{-1} A U$$

, что означает, что матрицы A и A' – подобны. Согласно теореме $\ref{eq:constraint}$, характеристические уравнения подобных матриц совпадают.

Теорема 6.2. Любую квадратичную форму ортогональным преобразованием можно привести к каноническому виду.

Доказательство. Рассмотрим произвольное n-мерное евклидово пространство \mathcal{E} (n — количество переменных в квадратичной форме) и некоторый ортонормированный базис b в этом пространстве. Матрица A является матрицей некоторого самосопряженного оператора A в базисе b. Согласно теореме 5.6, существует такой ортонормированный базис e, что матрица A_0 оператора A в этом базисе является диагональной (диагональный вид равнозначен каноническому виду). Согласно формуле преобразования матрицы линейного оператора, имеем

 $A_0 = P^1AP$ (теорема 3.5), где P – матрица перехода из базиса b в базисе. Так как оба базиса ортонормированные, матрица P является ортогональной.

6.4 Закон инерции

Теорема 6.3. Ранг квадратичной формы не меняется при невырожденных линейных заменах переменных и равен:

- 1. числу отличных от нуля коэффициентов в любом ее каноническом виде;
- 2. количеств ненулевых собственных значений матрицы квадратичной формы с учетом их кратности.

В различных канонических видах данной квадратичной формы остается неизменным не только количество ненулевых коэффициентов, но и количество положительных и соответственно отрицательных коэффициентов. Объединяя это с доказанной теоремой, получаем следующее утверждение, называемое законом инерции.

Теорема 6.4 (Закон инерции). Для любых двух канонических видов

$$f_1(y_1, \dots, y_m) = \lambda_1 y_1^2 + \dots + \lambda_m y_m^2, \quad \lambda_i \neq 0, i = \overline{1, m}$$

$$f_2(z_1, \dots, z_k) = \mu_1 z_1^2 + \dots + \mu_k z_k^2, \quad \mu_j \neq 0, j = \overline{1, k}$$

одной и той же квадратичной формы:

- m = k и их общее значение равно рангу квадратичной формы;
- количество положительных коэффициентов λ_i совпадает с количеством положительных коэффициентов μ_i ;
- количество отрицательных коэффициентов λ_i совпадает с количеством отрицательных коэффициентов μ_i ;

6.5 Критерий Сильвестра

Квадратичные формы разделяют на различные типы в зависимости от множества их значений.

Определение 6.3. Квадратичную форму $f(x) = x^{\tau} A x, x = (x_1 x_2 \dots x_n)^{\tau}$ будем называть:

- положительно (отрицательно) определенной, если для любого ненулевого столбца x выполняется неравенство f(x) > 0 (f(x) < 0);
- неотрицательно (неположительно) определенной, если $f(x) \ge 0$ $(f(x) \le 0)$ для любого столбца x, причем \exists ненулевой столбец x,

для которого f(x) = 0;

• знакопеременной (неопределенной) , если существуют такие столбцы x и y , что f(x)>0 и f(y)<0.

Пример. Рассмотрим четыре квадратичные формы от трех переменных:

$$f_1(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$$
 $f_2(x_1, x_2, x_3) = x_1^2 + x_2^2$
 $f_3(x_1, x_2, x_3) = x_1^2 - x_2^2 + x_3^2$ $f_4(x_1, x_2, x_3) = x_1x_2$

- 1. f_1 является положительно определенной, так как сумма квадратов неотрицательна, а нуль будет только в том случае, когда все переменные равны нулю;
- 2. f_2 является неотрицательно определенной, так как сумма квадратов неотрицательна, и есть такое ненулевое значение переменной x_3 , при котором сумма будет равна нулю;
- $3. f_3$ и f_4 знакопеременны.

Как следует из определения 6.3, тип квадратичной формы зависит только от множества значений, которые она принимает, но не зависит от переменных, в которых она записана. Поэтому, представив квадратичную форму в каноническом виде, сразу получаем следующие критерии для типа квадратичной формы в зависимости от множества собственных значений ее матрицы.

Тип квадратичной формы	Множество собственных значений
Положительно определенная	Все собственные значения
$(\forall x \neq 0 : f(x) > 0)$	положительны $(\lambda_i > 0, i = \overline{1, n})$
Отрицательно определенная	Все собственные значения
$(\forall x \neq 0 : f(x) < 0)$	отрицательны $(\lambda_i < 0, i = \overline{1, n})$
Знакопеременная	Есть собственные значения разных
$(\exists x : f(x) > 0, \exists y : f(y) < 0)$	знаков $(\exists \lambda_i > 0, \exists \lambda_j < 0)$
Вырожденная	Есть нулевое собственное значение
	$(\exists \lambda_i = 0)$

Определение 6.4. Угловыми (главными) минорами матрицы называются угловые миноры вида:

$$\Delta_1 = a_{11}, \quad \Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad \dots, \quad \Delta_n = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{vmatrix}.$$

Теорема 6.5 (Критерий Сильвестра). Для того, чтобы квадратичная форма от n переменных была *положительно* определена, необходимо и достаточно, чтобы выполнялись неравенства $\Delta_i>0, i=\overline{1,n}$, где Δ_i – угловые миноры матрицы квадратичной формы.

Следствие 6.5.1. Для того, чтобы квадратичная форма от n переменных была *отрицательно* определена, необходимо и достаточно, чтобы выполнялись неравенства $(-1)^i \Delta_i > 0, i = \overline{1,n}$, где Δ_i – угловые миноры матрицы квадратичной формы.

Следствие 6.5.2. Невырожденная квадратичная форма знакопеременна тогда и только тогда, когда для матрицы квадратичной формы выполнено хотя бы одно из условий:

- один из угловых миноров равен нулю;
- один из угловых миноров четного порядка отрицателен;
- два угловых минора нечетного порядка имеют разные знаки.

Следствие 6.5.3. Если симметрическая матрица положительно определена, то все ее диагональные элементы положительны.