

ANOVA

 H_0 : The mean outcome is the same across all categories

$$\mu_1 = \mu_2 = \cdots = \mu_k$$

 μ_i : mean of the outcome for observations in category *i*

k: number of groups

 H_A : At least one pair of means are different from each other

Statistical Inference

Behnam Bahrak

9 of 29

ANOVA

T-test

Compare means from two groups: are so far apart that the observed difference cannot reasonably be attributed to sampling variability?

$$H_0: \mu_1 = \mu_2$$

ANOVA

Compare means from more than two groups: are they so far apart that the observed differences cannot all reasonably be attributed to sampling variability?

$$H_0: \mu_1 = \mu_2 = \dots = \mu_k$$

Statistical Inference

bahrak@ut.ac.ir

< 10 of 29 >

ANOVA

T-test

ANOVA

Compute a test statistic (a ratio).

Compute a test statistic (a ratio).

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{SE_{(\bar{x}_1 - \bar{x}_2)}}$$

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{SE_{(\bar{x}_1 - \bar{x}_2)}} \qquad F = \frac{\text{variability bet. groups}}{\text{variability w/in groups}}$$

- Large test statistics lead to small p-values.
- \triangleright If the p-value is small enough H_0 is rejected, and we conclude that the data provide evidence of a difference in the population means.

Statistical Inference

11 of 29

F-statistic

- \triangleright In order to be able to reject H_0 , we need a small p-value, which requires a large *F* statistic.
- \triangleright Obtaining a large F statistic requires that the variability between sample means is greater than the variability within the samples.

Statistical Inference

bahrak@ut.ac.ir

< 12 of 29 >

F-Distribution

$$f(x; d_1, d_2) = \frac{\sqrt{\frac{(d_1 x)^{d_1} d_2^{d_2}}{(d_1 x + d_2)^{d_1 + d_2}}}}{x B\left(\frac{d_1}{2}, \frac{d_2}{2}\right)} \qquad f(t) = \frac{\Gamma\left(\frac{d+1}{2}\right)}{\sqrt{\pi d} \Gamma\left(\frac{d}{2}\right)} \left(1 + \frac{t^2}{d}\right)^{-\frac{d+1}{2}}$$
$$= \frac{1}{B\left(\frac{d_1}{2}, \frac{d_2}{2}\right)} \left(\frac{d_1}{d_2}\right)^{\frac{d_1}{2}} x^{\frac{d_1}{2} - 1} \left(1 + \frac{d_1}{d_2}x\right)^{-\frac{d_1 + d_2}{2}}$$

Where B(x, y) is the beta function:

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$

Statistical Inference

Behnam Bahrak

13 of 29 🗲

Vocabulary Score and Class

	wordsum	class
1	6	middle class
2	9	working class
3	6	working class
4	5	working class
5	6	working class
6	6	working class
795	9	middle class

	n	mean	sd
lower class	41	5.07	2.24
working class	407	5.75	1.87
middle class	331	6.76	1.89
upper class	16	6.19	2.34
overall	795	6.14	1.98

 H_0 : The average vocabulary score is the same across all social classes.

$$\mu_1 = \mu_2 = \mu_3 = \mu_4$$

 H_A : The average vocabulary scores differ between at least one pair of social classes.

Statistical Inference

bahrak@ut.ac.ir

< 14 of 29 >

Sum of Squares Total

		Df	Sum Sq	Mean Sq	F value	Pr (>F)
Group	Class		236.56			
Error	Residuals		2869.80			
	Total		3106.36			

Sum of Squares Total (SST)

- > SST measures the **total variability** in the response variable
- > SST is calculated very similarly to variance (except not scaled by the sample size)

Statistical Inference

Behnam Bahrak

17 of 29

Sum of Squares Total (SST)

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

 y_i : value of the response variable for each observation

 $ar{y}$: grand mean of the response variable

	wordsum	class
1	6	middle class
2	9	working class
795	9	middle class

	n	mean	sd
overall	795	6.14	1.98

$$SST = (6 - 6.14)^{2} + (9 - 6.14)^{2} + ... + (9 - 6.14)^{2}$$
$$= 3106.36$$

bahrak@ut.ac.ir

< 18 of 29 >

Sum of Squares Group

		Df	Sum Sq	Mean Sq	F value	Pr (>F)
Group	Class		236.56			
Error	Residuals		2869.80			
	Total		3106.36			

Sum of Squares Groups (SSG)

- > SSG measures the variability between groups.
- **Explained variability:** squared deviation of group means from overall mean, weighted by sample size.

Statistical Inference

Behnam Bahrak

19 of 29

Sum of Squares Group (SSG)

$$SSG = \sum_{j=1}^k n_j (\bar{y}_j - \bar{y})^2 \quad m_j$$
 : number of observations in group j and \bar{y}_j : mean of the response variable \bar{y}_j : grand mean of the response variable.

 $ar{y}$: grand mean of the response variable

	n	mean	sd
lower class	41	5.07	2.24
working class	407	5.75	1.87
middle class	331	6.76	1.89
upper class	16	6.19	2.34
overall	795	6.14	1.98

$$SSG = (41 \times (5.07 - 6.14)^{2})$$

$$+(407 \times (5.75 - 6.14)^{2})$$

$$+(331 \times (6.76 - 6.14)^{2})$$

$$+(16 \times (6.19 - 6.14)^{2})$$

$$\approx 236.56$$

Statistical Inference

bahrak@ut.ac.ir

< 20 of 29 >

Degrees of Freedom

		Df	Sum Sq	Mean Sq	F value	Pr (>F)
Group	Class	3	236.56			
Error	Residuals	791	2869.80			
	Total	794	3106.36			

Degrees of freedom associated with ANOVA:

$$\blacktriangleright$$
 total: $df_T=n-1$ \longrightarrow 795 $-$ 1 $=$ 794

$$ightharpoonup error: df_E = df_T - df_G - 794 - 3 = 791$$

Statistical Inference

23 of 29

Mean Square Error

		Df	Sum Sq	Mean Sq	F value	Pr (>F)
Group	Class	3	236.56	78.855		
Error	Residuals	791	2869.80	3.628		
	Total	794	3106.36			

Mean squares: Average variability between and within groups, calculated as the total variability (sum of squares) scaled by the associated degrees of freedom.

➤ Group: $MSG = SSG/df_G$ → 236.56/3 ≈ 78.855

➤ Error: $MSE = SSE/df_E$ 2869.8/791 ≈ 3.628

Statistical Inference

< 24 of 29 >

$$SST = SSG + SSE$$

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

$$SSG = \sum_{j=1}^{k} n_j (\bar{y}_j - \bar{y})^2 \implies MSG = \frac{1}{k-1} \sum_{j=1}^{k} n_j (\bar{y}_j - \bar{y})^2$$

$$SSE = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (y_i - \bar{y}_j)^2 = \sum_{j=1}^{k} (n_j - 1)s_j^2$$

$$\Rightarrow MSE = \frac{1}{n-k} \sum_{j=1}^{k} (n_j - 1) s_j^2$$

Statistical Inference

25 of 29

F-Statistic

		Df	Sum Sq	Mean Sq	F value	Pr (>F)
Group	Class	3	236.56	78.855	21.735	
Error	Residuals	791	2869.80	3.628		
	Total	794	3106.36			

> F statistic: Ratio of the average between group and within group variabilities:

$$F = \frac{MSG}{MSE}$$
 $\frac{78.855}{3.628} \approx 21.735$

bahrak@ut.ac.ir

< 26 of 29 >

Making Decision

- \triangleright If p-value is small (less than α), reject H_0 .
 - ➤ The data provide convincing evidence that at least one pair of population means are different from each other (but we can't tell which one).
- \triangleright If p-value is large, fail to reject H_0 .
 - ➤ The data do not provide convincing evidence that at least one pair of population means are different from each other, the observed differences in sample means are attributable to sampling variability (or chance).

