Chapter Exam

200 150 120 300 T 130

Chapter 4-The Processor

2019/05/28

1. Assume individual stages (IF,ID,EX,MEM,WB) of the datapath have the following latencies:

IF	ID	EX	MEM	WB
200ps	150ps	120ps	300ps	130ps

What is the **total execution time** in a <u>5-stage pipelined</u> processor and in a <u>non-pipelined single</u> <u>cycle</u> processor to finish execute the following assembly codes? (20%)

lw	\$t0,0(\$s0)	
sll	\$t1, \$t1, 2	
sub	\$t2,\$t2,\$t3	
add	\$t0,\$t0,\$t3	
sw	\$t0,0(\$s0)	
sub	\$t4, \$t0,\$t2	

2. According Figure 1, Figure 2 and Figure 3, please fill the results in the blank (1)~(32) in the Table 1. And there is an instruction that it is "sub \$s0, \$s3, \$s4" and its binary code is "000000 10011 10100 10000 00000 100010". Please fill the results in the blank (33)~(35) according points A~C in the Table 2. Assume that \$s3 = 10, \$s4 = 2 and pc = 80. (You must draw the Table on your answer paper and fill the results) (35%)

D tupo	0	rs	rt	rd	shamt	funct
31:26	25:21	20:16	15:11	10:6	5:0	
Load/	35 / 43	rs	rt	address		
Store	31:26	25:21	20:16		15:0	
Decade	4	rs	rt		address	
Branch	31:26	25:21	20:16		15.0	

Figure 1

opcode	ALUOp	Operation	funct	ALU function	ALU control
lw	10	load word	XXXXXX	add	0010
sw	10	store word	XXXXXX	add	0010
beq	01	branch equal	XXXXXX	subtract	0110
R-type 00	00	add	100000	add	0010
	00	subtract	100010	subtract	0110
	AND	100100	AND	0000	
		OR	100101	OR	0001
		set-on-less-than	101010	set-on-less-than	0111

Figure 2

Figure 3

1.8020									
instruction RegDst	51.4/17	12.47年李建士	Memto-	Reg	Mem	Mem	Branch	ALU	ALU
	ALUSTC	Reg	Write	Read	Write	Branch	Op1	Op0	
R-format	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1w	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
	X	(19)	X	(20)	(21)	(22)	(23)	(24)	(25)
SW	X	(26)	X	(27)	(28)	(29)	(30)	(31)	(32)
beq	Λ	(20)							

Table 1

point	Value (in binary format)
A	(33)
В	(34)
С	(35)

Table 2

qub \$50, \$53, \$74

3. Problem in this exercise refer to a clock cycle in which the processor fetches the following instruction word:

Instruction word
0001 0000 0010 0100 0000 0000 0000 1000
0001 0000 0010 0100 0000 0000 1000

Figure 4.

What are the outputs of the sign-extend and the jump "Shift left 2" unit (in Figure 4) for this instruction words? Please refer to Figure 1. and Figure 2. (20%)

4. A Give the datapath for a single-cycle implementation of a computer and the definition and formats of its instructions as follows:

add \$rd, \$rs, \$rt	#\$rd = \$rs + \$rt	R-format
lw \$rt, addr(\$rs)	#\$rt = Memory[\$rs + sign-extend address]	I-format
sw \$rt, addr(\$rs)	#Memory[\$rs + sign-extend address] = \$rt	I-format
beg \$rs, \$rt, addr	#if ($$rs == rt) then go to PC + 4 + 4×address	I-format

Saniza

odlion oc

課程: Computer Organization,

國立中山大學資訊工程學系,教師:黃英哲

Assume that control signal ALUOp = 01 for performing addition of the ALU unit, ALUOp = 00 for subtraction, ALUOP = 10 for AND operation, and ALUOp = 11 while depending on the *funct* field of the instruction.

Assume that logic blocks needed to implement the datapath have the following latencies: (Delays for other components are ignored.) (25%)

I-Mem	Add	Mux	ALU	Regs	D-Mem	Sign extend	Shift-left-2 bits
400 ps	100 ps	40 ps	120 ps	200 ps	350 ps	20 ps	10 ps

Compute the required delay time for each instruction and determine the minimum cycle time of the computer by using this table: (Note: the Beq instruction is in taken(\$rs=\$rt) condition.)

5. Pipelined datapath has five stages, ie., instruction fetch (IF), decode (ID), execution (EX), memory (MEM), and write back (WB). It has a hazard detection unit. An instruction will be stalled at the decode stage if any of its operands isn't ready. Consider executing the following code on this datapath:

lw \$r2, 10(\$1) sub \$r4, \$r3, \$r2 add \$r5, \$r6, \$7 and \$r8, \$r4,\$r5

(1) At the end of fifth cycle of execution, what instruction will be in each of the pipeline stages? (If there is any "bubble" in the pipeline, please write "NOP" in the corresponding pipeline stage.) (5%)

You must write the answer with the following format.

	IF	ID	EX	MEM	WB
instruction	Farmer Land	THE OLD ON IN	A CHE VI	one t	

(2) If the datapath has a forwarding unit to resolve the data hazard, what instruction will be in each of the pipeline stages at the end of the fifth cycle? (If there is any "bubble" in the pipeline, please write "NOP" in the corresponding pipeline stage.) (5%)

You must write the answer with the following format:

	IF	ID	EX	MEM	WB
instruction					