Лабораторная работа № 3. Модель линейной регрессии

К регрессионному анализу относятся задачи выявления искаженной "шумом" функциональной зависимости интересующего исследователя показателя Y от измеряемых переменных X_1, X_2, \ldots, X_m . Данными служит таблица экспериментально полученных "зашумленных" значений Y на разных наборах X_1, X_2, \ldots, X_m . Основной целью обычно является как можно более точный прогноз (предсказание) Y на основе измеряемых (предикторных) переменных.

Под линейной регрессией понимают ситуацию, когда зависимость Y (отклика) от предикторных переменных X_1, X_2, \ldots, X_m линейная, но наблюдается Y со случайной ошибкой ("шумом").

Y — целевая переменная (отклик), X_1, X_2, \ldots, X_m — объясняющие переменные (факторы).

Модель:

$$Y_i = X_{i,1}\theta_1 + X_{i,2}\theta_2 + \dots + X_{i,n}\theta_m + \varepsilon_i, \quad i = 1\dots n, n \ge m, \tag{1}$$

 $\boldsymbol{\varepsilon} = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)^T$ – вектор случайных ошибок ("шум").

Ввдем обозначения

$$oldsymbol{Y} = (Y_1, Y_2, \dots, Y_n)^T$$
 — вектор наблюдений

 $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_m)^T$ — вектор неизвестных значений параметров

$$\mathbb{X} = \|X_{i,j}\|, \ i = 1, \dots, n, \ j = 1, \dots, m$$
— матрица плана.

Тогда (1) можно записать в векторной форме:

$$Y = X\theta + \varepsilon. \tag{2}$$

Предположения:

- (A.1) Столбцы $X_{(j)}=(X_{1,j},\ldots,X_{n,j})^T,\ j=1,\ldots,m,$ матрицы плана $\mathbb X$ линейно независимы. Иными словами, ввиду выполнения неравенства $n\geq m$ матрица $\mathbb X$ имеет ранг m.
- (A.2) Случайные величины $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ одинаково распределены с $\mathbf{E}\varepsilon_i = 0, \ \mathbf{D}\varepsilon_i = \sigma^2$ (параметр $0 < \sigma < \infty$ также неизвестен) и некоррелированы: $\mathbf{E}(\varepsilon_i \varepsilon_j) = 0$ при $j \neq j$.

Оценим параметры $\theta_1, \theta_2, \dots, \theta_m$ методом наименьших квадратов, минимизируя по $m{ heta}$ функцию

$$F(\boldsymbol{\theta}) = \sum_{i=1}^{n} (Y_i - \theta_1 X_{i,1} - \dots - \theta_m X_{i,m})^2 = (\boldsymbol{Y} - \mathbb{X}\boldsymbol{\theta})^T (\boldsymbol{Y} - \mathbb{X}\boldsymbol{\theta}).$$
(3)

Точка ее минимума $\widehat{\boldsymbol{\theta}}$ называется *МНК-оценкой*, вектор $\widehat{\boldsymbol{\delta}}$ с $\delta_i = Y_i - \widehat{\theta}_1 X_{i,1} - \dots - \widehat{\theta}_m X_{i,m}$, $i = 1, \dots, n$ -вектором остатков, в векторной форме $\widehat{\boldsymbol{\delta}} = \boldsymbol{Y} - \mathbb{X}\widehat{\boldsymbol{\theta}}$.

Величина $RSS = F(\widehat{\boldsymbol{\theta}}) = (\boldsymbol{Y} - \mathbb{X}\widehat{\boldsymbol{\theta}})^T (\boldsymbol{Y} - \mathbb{X}\widehat{\boldsymbol{\theta}}) = \widehat{\boldsymbol{\delta}}^T \widehat{\boldsymbol{\delta}}$ называется остаточной суммой квадратов.

Положительно определенная матрица $\mathbf{B} = \mathbb{X}^T \mathbb{X}$, называемая *информационной*, является (ввиду предположения (A.1)) невырожденной. Из геометрических соображений легко находим, что оценка $\widehat{\boldsymbol{\theta}}$, минимизирующая значение $F(\boldsymbol{\theta})$ определяет проекцию $\mathbb{X}\widehat{\boldsymbol{\theta}}$ вектора \boldsymbol{Y} на линейное подпространство, порожденное столбцами матрицы \mathbb{X} . Эта оценка является единственным решением уравнений, означающих ортогональность вектора остатков этому подпространству, т.е. столбцам матрицы \mathbb{X} :

$$X^T (Y - X \widehat{\boldsymbol{\theta}}) = 0$$
 или $(X^T X) \widehat{\boldsymbol{\theta}} = X^T Y$, (4)

откуда находим МНК-оценку

$$\widehat{\boldsymbol{\theta}} = \mathbf{B}^{-1} \mathbb{X}^T \mathbf{Y}. \tag{5}$$

Статистические свойства МНК-оценок

При выполнении условий (A.1) и (A.2) МНК-оценки обладают следующими свойствами.

- 1) Оценка $\widehat{\boldsymbol{\theta}}$, задаваемая формулой (5), является несмещенной, т.е. $\mathbf{E}\widehat{\boldsymbol{\theta}} = \boldsymbol{\theta}$.
- 2) Матрицей ковариаций $Cov(\widehat{\boldsymbol{\theta}}) = \|\boldsymbol{cov}(\widehat{\boldsymbol{\theta}}_k, \widehat{\boldsymbol{\theta}}_l)\|_{m \times m}$ служит матрица $\sigma^2 \mathbf{B}^{-1}$.
- 3) Для любого вектора $\boldsymbol{c} \in \mathbb{R}^m$ несмещенной оценкой для величины $\boldsymbol{c}^T \boldsymbol{\theta}$ служит $\boldsymbol{c}^T \widehat{\boldsymbol{\theta}}$, причем $\mathbf{D}(\boldsymbol{c}^T \widehat{\boldsymbol{\theta}}) = \sigma^2 \boldsymbol{c}^T \mathbf{B}^{-1} \boldsymbol{c}$.
- 4) Для любого вектора $\boldsymbol{c} \in \mathbb{R}^m$ оценка $\boldsymbol{c}^T \widehat{\boldsymbol{\theta}}$ имеет минимальную дисперсию в классе линейных (вида $\boldsymbol{d}^T \boldsymbol{Y}$) несмещенных оценок для $\boldsymbol{c}^T \boldsymbol{\theta}$.

Oценка остаточной дисперсии σ^2

$$\widehat{\sigma}^2 = RSS/(n-m) = F(\widehat{\boldsymbol{\theta}})/(n-m) = |\boldsymbol{Y} - \mathbb{X}\widehat{\boldsymbol{\theta}}|^2/(n-m)$$
$$= (\boldsymbol{Y} - \mathbb{X}\widehat{\boldsymbol{\theta}})^T(\boldsymbol{Y} - \mathbb{X}\widehat{\boldsymbol{\theta}})/(n-m) = \widehat{\boldsymbol{\delta}}^T\widehat{\boldsymbol{\delta}}/(n-m)$$

— несмещенная оценка параметра σ^2 .

Коэффициент детерминации:

$$d = \frac{\mathbf{S}_{\text{o.b.}}^2}{\mathbf{S}_{\text{--}}^2} = \frac{\mathbf{S}_{\text{п.в.}}^2 - \mathbf{S}_{\text{oct.b.}}^2}{\mathbf{S}_{\text{--}}^2} = 1 - \frac{\mathbf{S}_{\text{oct.b.}}^2}{\mathbf{S}_{\text{--}}^2}$$

$$\mathbf{S}_{\text{п.в.}}^2 = \sum_{i=1}^n (Y_i - \overline{Y})^2$$
 — полная вариация

$$\mathbf{S}_{ ext{o.в.}}^2 = \sum_{i=1}^n (\widehat{Y}_i - \overline{Y})^2 \ \ ($$
где $\widehat{Y}_i = \widehat{\theta}_1 X_{i,1} + \dots + \widehat{\theta}_m X_{i,m})$ — объясненная вариация

$$\mathbf{S}^2_{ ext{oct.b.}} = \sum_{i=1}^n (Y_i - \widehat{Y}_i)^2 = \sum_{i=1}^n (Y_i - \widehat{ heta}_1 X_{i,1} - \dots - \widehat{ heta}_m X_{i,m})^2 = RSS$$
 — остаточная вариация

Чем ближе значение d к 1, тем лучше регрессионная модель объясняет имеющиеся данные. При оценке регрессионных моделей значение d интерпретируется как соответствие модели данным. Для приемлемых моделей предполагается, что коэффициент детерминации должен быть хотя бы не меньше 0.5. Модели с коэффициентом детерминации выше 0.8 можно признать достаточно хорошими. Значение

коэффициента детерминации, равное 1, означает функциональную зависимость между переменными.

НОРМАЛЬНАЯ РЕГРЕССИЯ

Для получения более содержательных заключений о распределении и свойствах оценки $\widehat{\boldsymbol{\theta}}$ предположим, что выполняется следующее предположение.

(A.3)
$$\boldsymbol{\varepsilon} = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)^T \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbb{I}_{n \times n}),$$

т.е. ε – сферически симметричный нормальный случайный вектор (что означает, что компоненты ε независимы, $\mathbf{E}\varepsilon_i=0, \ \mathbf{E}\varepsilon_i^2=\sigma^2).$

Замечание Если кроме условий (A.1)–(A.2) выполнено еще и условие (A.3), то для любого вектора $c \in \mathbb{R}^m$ оценка $c^T \hat{\theta}$ имеет минимальную дисперсию в классе \boldsymbol{scex} несмещенных оценок величины $c^T \theta$ (а не только линейных, как в свойстве 4).

TEOPEMA 1. (*Основная теорема нормальной регрессии*) В случае выполнения условий (A.1)–(A.3) для линейной регрессионной модели (1) верны следующие утверждения.

- 1. Случайная величина $\sigma^{-2}RSS = \sigma^{-2}|Y \mathbb{X}\widehat{\boldsymbol{\theta}}|^2$ имеет распределение хи-квадрат с n-m степенями свободы и не зависит от оценки $\widehat{\boldsymbol{\theta}}$ и, поскольку $\mathbf{E}(\sigma^{-2}RSS) = n-m$, статистика $\widehat{\sigma}^2 = RSS/(n-m)$ несмещенно оценивает остаточную дисперсию σ^2 .
- 2. Для любого вектора $\boldsymbol{c} \in \mathbb{R}^m$ случайная величина

$$rac{oldsymbol{c}^T(\widehat{oldsymbol{ heta}}-oldsymbol{ heta})}{\widehat{\sigma}\sqrt{oldsymbol{c}^T extbf{B}^{-1}oldsymbol{c}}}$$

имеет распределение Стьюдента t_{n-m} с (n-m) степенями свободы.

На основе этой теоремы можно построить доверительные интервалы:

- 1) для σ^2 ,
- 2) для каждой из компонент θ_i параметра $\boldsymbol{\theta}$,
- 3) для значения $Y^* = \theta_1 X_1^* + \theta_2 X_2^* + \cdots + \theta_m X_m^*$ целевой переменной при заданном векторе значений факторов $(X_1^*, X_2^*, \dots, X_m^*)$.

Кроме того, используя критерий Стьюдента, можно проверить гипотезы о значимости каждого из факторов модели:

$$H_0: \quad \theta_i = 0$$

против альтернативы

 $H_1: \theta_i \neq 0$ для каждого i = 1, 2, ..., m.

Обозначим через $\chi^2_{p_{(k)}}$ квантиль уровня p распределения хи-квадрат с k степенями свободы и через $t_{p_{(k)}}$ квантиль уровня p распределения Стьюдента k степенями свободы.

\mathcal{A} оверительный интервал для σ^2

Пусть $1-\alpha$ — доверительная вероятность. Тогда в силу п.1 теоремы 1 имеем

$$\mathbf{P}\left(\chi_{\alpha/2_{(n-m)}}^2 < \frac{RSS}{\sigma^2} < \chi_{1-\alpha/2_{(n-m)}}^2\right) = 1 - \alpha$$

Отсюда следует, что с вероятностью $1-\alpha$ имеют место неравенства

$$\frac{RSS}{\chi^2_{1-\alpha/2_{(n-m)}}} < \sigma^2 < \frac{RSS}{\chi^2_{\alpha/2_{(n-m)}}}$$

Доверительный интервал для θ_i

Пусть $1-\alpha$ — доверительная вероятность. Возьмем вектор $\boldsymbol{c}=(0,0,\dots,1,\dots,0)^T$ с единичной i-й компонентой, остальные компоненты равны нулю. Тогда в силу п.1-2 теоремы 1 для i-й компоненты θ_i ($i=1,2,\dots,m$) с вероятностью $1-\alpha$ выполняются неравенства

$$\widehat{\theta}_i - t_{1-\alpha/2_{(n-m)}} \widehat{\sigma} \sqrt{(\mathbf{B}^{-1})_{i,i}} < \theta_i < \widehat{\theta}_i + t_{1-\alpha/2_{(n-m)}} \widehat{\sigma} \sqrt{(\mathbf{B}^{-1})_{i,i}},$$

где $(\mathbf{B}^{-1})_{i,i}$ — это i-й диагональный элемент матрицы \mathbf{B}^{-1} .

 ${\it Проверка}$ значимости фактора X_i

Требуется проверить гипотезу

 $H_0: \theta_i = 0$

против альтернативы

 $H_1: \theta_i \neq 0.$

Если гипотеза H_0 верна, т.е. $\theta_i=0$, то по теореме 1 величина $\frac{\theta_i}{\widehat{\sigma}\sqrt{(\mathbf{B}^{-1})_{i,i}}}$ имеет распределение Стьюдента с (n-m) степенями свободы. Отсюда правило: если

$$\left| \frac{\theta_i}{\widehat{\sigma} \sqrt{(\mathbf{B}^{-1})_{i,i}}} \right| \le t_{1-\alpha/2_{(n-m)}},$$

что эквивалентно тому, что 0 содержится в доверительном интервале для θ_i с доверительной вероятностью $1-\alpha$, то гипотеза H_0 не отвергается на уровне значимости α , в противном случае гипотеза противоречит опытным данным. Если фактор X_i незначим (H_0 верна), то модель можно упростить, исключив фактор X_i из модели.

Доверительный интервал для прогноза $Y^* = \theta_1 X_1^* + \theta_2 X_2^* + \cdots + \theta_m X_m^*$

Теперь в качестве вектора \boldsymbol{c} выберем вектор $\boldsymbol{c} = (X_1^*, X_2^*, \dots, X_m^*)^T$. Тогда для величины $\boldsymbol{c}^T\boldsymbol{\theta} = \theta_1 X_1^* + \theta_2 X_2^* + \dots + \theta_m X_m^*$ по теореме 1 получаем доверительный интервал: с вероятностью $1 - \alpha$ имеют место неравенства

$$oldsymbol{c}^T\widehat{oldsymbol{ heta}} - t_{1-lpha/2_{(n-m)}}\widehat{\sigma}\sqrt{oldsymbol{c}^T\mathbf{B}^{-1}oldsymbol{c}} < oldsymbol{c}^Toldsymbol{ heta} < oldsymbol{c}^Toldsymbol{ heta} + t_{1-lpha/2_{(n-m)}}\widehat{\sigma}\sqrt{oldsymbol{c}^T\mathbf{B}^{-1}oldsymbol{c}},$$

где $\boldsymbol{c}^T\widehat{\boldsymbol{\theta}}=\widehat{\theta}_1X_1^*+\widehat{\theta}_2X_2^*+\cdots+\widehat{\theta}_mX_m^*$ — оценка значения детерминированной составляющей Y^* в точке $X^*=(X_1^*,X_2^*\ldots,X_m^*).$

Лабораторная работа

Рассматривается модель с четырьмя факторами:

Целевая переменная:

 Y_i – рост испытуемого.

Факторы:

 $X_0 = 1$ – центрирующая постоянная

 X_1 – пол испытуемого

 X_2 – рост отца

 X_3 – рост матери

 X_4 – вес испытуемого

Модель линейной регрессии

$$Y_i = \theta_0 + X_{i,1}\theta_1 + X_{i,2}\theta_2 + X_{i,3}\theta_3 + X_{i,4}\theta_4 + \varepsilon_i, \quad i = 1 \dots n,$$
(1)

Задание

- 1. Найти оценки по методу наименьших квадратов коэффициентов линейной регрессии в модели роста.
- 2. Найти оценку дисперсии случайной составляющей.
- 3. Спрогнозировать свой рост по построенной модели (по данным своих родителей).
- 4. Считая модель регрессии нормальной, найти доверительные интервалы (с доверительной вероятностью 0.95):
 - 1) для значений параметров модели (коэффициентов регрессии),
 - 2) дисперсии случайной составляющей,
 - 3) для значения прогноза (то есть для значения своего роста).
- 5. Проверить гипотезы о значимости каждого из факторов модели (роста отца, матери, пола, веса).
- 6. Вычислить коэффициент детерминации d. Насколько хорошо линейная регрессионная модель объясняет данные наблюдений?

Таблица данных

$N_{\overline{0}}$	Y - рост студента	X_1 - пол студ.	X_2 -рост отца	X_3 - рост матери	X_4 - вес студ.
		Λ_1 - пол студ.			
1	180	1	170	170	72
2	158	0	170	155	65
3	190	1	175	195	80
4	180	1	180	170	70
5	170	1	170	165	60
6	175	0	178	179	53
7	174	1	175	163	65
8	167	0	174	167	56
9	199	1	193	173	85
10	190	1	170	166	58
11	165	1	178	156	55
12	170	1	165	160	65
13	174	0	198	176	50
14	182	1	183	167	69
15	183	1	178	172	94
16	167	0	176	164	68
17	172	0	181	187	65
18	175	1	176	164	85