import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn import metrics
from plotnine import *

Reading csv

In [3]: db=pd.read_csv("C:/Users/Aaron Shabanian/Documents/MachineLearning/MachineLearningAssignment1/iris-1.csv")
#Above path is specific to my pc, it would have to be changed to specific work station path to csv
db.head()

Out[3]:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa
	2	3	4.7	3.2	1.3	0.2	Iris-setosa
	3	4	4.6	3.1	1.5	0.2	Iris-setosa
	4	5	5.0	3.6	1.4	0.2	Iris-setosa
	145	146	6.7	3.0	5.2	2.3	Not-Iris-setosa
	146	147	6.3	2.5	5.0	1.9	Not-Iris-setosa
	147	148	6.5	3.0	5.2	2.0	Not-Iris-setosa
	148	149	6.2	3.4	5.4	2.3	Not-Iris-setosa
	149	150	5.9	3.0	5.1	1.8	Not-Iris-setosa

150 rows × 6 columns

Examining the data

Looking at the dataset there does appear to be a patern where the smaller Petal Widths are Iris setosas while the bigger petal values are not.

In [4]: total=0
 db.dropna()
 iris=db[db["Species"]=="Iris-setosa"]
 for index, row in iris.iterrows():
 total+=row["PetalWidthCm"]
 avg=total/len(iris)
 total=0
 nonIris=db[db["Species"]=="Not-Iris-setosa"]
 for index, row in nonIris.iterrows():
 total+=row["PetalWidthCm"]
 avg2=total/len(nonIris)
 print("Petal width of Iris-setosa " + str(avg))
 print("Petal width of Not-Iris-setosa " + str(avg2))

Petal width of Iris-setosa 0.24399999999999
Petal width of Not-Iris-setosa 1.67600000000000000

In [5]: (ggplot(db, aes(x="PetalWidthCm", y="PetalLengthCm", color="Species"))+geom_point()+theme_minimal())

out[5]: <ggplot: (167144884749)>

In [6]: (ggplot(db, aes(x="SepalWidthCm", y="SepalLengthCm", color="Species"))+geom_point()+theme_minimal())

Out[6]: <ggplot: (167144892142)>

This confirms my earlier assumption that that the bigger petal widths and lengths were not iris setosas while the others were. It also shows how there is a fine line that divides the iris setosas and non iris setosas. It also shows that SVMs should work well on classifing it

Creating and training SVM model

In [7]: predictors=["SepalLengthCm", "SepalWidthCm", "PetalLengthCm", "PetalWidthCm"]
 X_train, X_test, y_train, y_test = train_test_split(db[predictors], db["Species"], test_size=0.2)

In [8]: clf = svm.SVC(kernel='linear')
 clf.fit(X_train, y_train)
 y_pred = clf.predict(X_test)

In [9]: print("Accuracy:", metrics.accuracy_score(y_test, y_pred))

Accuracy: 1.0

Confirming what I thought earlier from the data analysis, SVM classification had a perfect success rate