

Química Nivel superior Prueba 2

Viernes 13 de noviembre de 2015 (tarde)

Νú	ímero d	e convoc	catoria de	l alumno	

2 horas 15 minutos

Instrucciones para los alumnos

- Escriba su número de convocatoria en las casillas de arriba.
- No abra esta prueba hasta que se lo autoricen.
- Sección A: conteste todas las preguntas.
- Sección B: conteste dos preguntas.
- Escriba sus respuestas en las casillas provistas.
- En esta prueba es necesario usar una calculadora.
- Se necesita una copia sin anotaciones del cuadernillo de datos de química para esta prueba.
- La puntuación máxima para esta prueba de examen es [90 puntos].

International Baccalaureate Baccalaureate Baccalaureat International Bachillerato Internacional

[1]

Sección A

Conteste todas las preguntas. Escriba sus respuestas en las casillas provistas.

1. Un estudiante usó la técnica de la titulación para determinar la concentración de ácido ascórbico (C₆H₈O₆) en una muestra de zumo de naranja. Añadió exceso de yoduro de potasio, KI (aq), sobre el zumo de naranja acidificado. Tituló la solución resultante con yodato de potasio, KIO₃ (aq), en presencia de almidón como indicador. El punto final de la titulación se puso de manifiesto por la aparición de un color azul negruzco.

Etapa 1
$$IO_3^-(aq) + 5I^-(aq) + 6H^+(aq) \rightarrow 3I_2(aq) + 3H_2O(l)$$

El yodo es solo ligeramente soluble en agua; pero en presencia de exceso de iones yoduro, $I^-(aq)$, forma el ion soluble triyoduro, $I_3^-(aq)$.

Etapa 2
$$I_2(aq) + I^-(aq) \rightleftharpoons I_3^-(aq)$$

El ácido ascórbico reacciona con los iones triyoduro como sigue.

Etapa 3
$$C_6H_8O_6(aq) + I_3^-(aq) \rightarrow C_6H_6O_6(aq) + 2H^+(aq) + 3I^-(aq)$$

(a) (i) Deduzca los cambios del número de oxidación del yodo en la etapa 1. [2]

De IO ₃ ⁻ a I ₂ :
De I⁻ a I₂:

(ii) Identifique los agentes oxidante y reductor en la etapa 1.

Agente oxidante:			
Agente reductor:			

(Pregunta 1: continuación)

b)	Calcule la masa, en g, de yodato de potasio, $KIO_3(s)$, requerida para preparar 0,250 dm³ de una solución 2,00 × 10^{-3} mol dm $^{-3}$.	[2

(c) La concentración de ${\rm KIO_3}$ usada en la titulación fue de $2,00\times 10^{-3}\,{\rm mol\,dm^{-3}}$. La titulación produjo los siguientes resultados.

	Titulación 1	Titulación 2	Titulación 3
Volumen final de KIO ₃ (± 0,05 cm ³)	7,10	14,40	21,60
Volumen inicial de KIO ₃ (± 0,05 cm ³)	0,00	7,10	14,40
Volumen añadido de KIO ₃ (± 0,10 cm ³)	7,10	7,30	7,20
Volumen medio de KIO_3 añadido $(\pm 0,10 \text{ cm}^3)$		7,20	

(i)	Calcule la incertidumbre porcentual asociada con el volumen medio de KIO ₃ (aq).	[1]
(ii)	El color del zumo de naranja interfirió con el color azul negruzco del punto de equivalencia. Indique el nombre de este tipo de error y sugiera cómo minimizarlo.	[2]

/ D	4	4.5	
Uradiinta	4 .	CONTINUE	2CICN
rreuuma		COILLIII	1 CIUIII
(Pregunta			

	(iii) Determine la cantidad, en mol, de KIO ₃ (aq), en el volumen medio.	[1]
(d)	Determine la cantidad, en mol, de ácido ascórbico, $C_6H_8O_6$ (aq), en la muestra de zumo de naranja acidificado.	[2]
(e)	Calcule la masa, en g, de ácido ascórbico, $C_6H_8O_6$ (aq), presente en la muestra de zumo de naranja acidificado.	[1]

[3]

(Pregunta 1: continuación)

(f) El estudiante halló por medio de más experimentación que la oxidación del ácido ascórbico sigue una cinética de primer orden. A continuación se muestra el gráfico de ln k en función de $\frac{1}{T}$.

Determine la energía de activación con **tres** cifras significativas e incluya las unidades.

	-	-	-	-	-	 -	-	-	 -	-	 -	-	-	 -	-	-	-	 -	-	-	-	-	-		-	-	-		-	-	-	 _	-	-	 -	-	 -	- '	-	-	-	 -		-	-			
	-	•	•	•	•	 •	•	•	 •	•		•	•	 •	•	•	•	 •	•	•	•	•	•	٠.	•	•	•		•	•	•	 •	•	•	 •	•	 •			•	-	 •	٠.		•			
	-	٠	٠		٠					•	 -			 ٠	٠				٠	٠	٠				٠	٠			٠		٠					•	 -			•	-			-	-			
	_	_	_	_	_	 	_	_	 _	_	 	_		 _	_	_		 _	_		_	_			_	_	_		_		_	 	_	_	 	_	 _			_					_			
	•	•	•	•	•		-	•	 •	•		•		 •	•	•	•	 •	•	•	•	•	•		•	•	•		•	•	•	 •		•		•	 •			•		 •		•	•			
		•	•	•	•		•	•	 •	•		•	•		•	•	•	•	•	•	•	•	•	٠.	•	•	•	٠.	•	•	•	 •	•	•		•	 •			•	•	 •	٠.		•	٠.		
	-	٠	٠		٠					•	 -			 ٠	٠				٠	٠	٠				٠	٠			٠	٠	٠					•	 -			•	-			-	-			
l																																																

2.

	Indique las configuraciones electrónicas completas del cobre, Cu, y del ion cobre (II), Cu ²⁺ .	[2
(b)	El Cu ²⁺ (aq) reacciona con amoníaco para formar el ion complejo [Cu (NH ₃) ₄] ²⁺ . Explique esta reacción en términos de la teoría ácido-base, y resuma el enlace en el complejo formado entre el Cu ²⁺ y el NH ₃ .	[3
(c)	Explique por qué los complejos de Zn²+ (aq) son incoloros mientras que los complejos de Cu²+ (aq) son coloreados.	[4
(c)	Explique por qué los complejos de Zn²+ (aq) son incoloros mientras que los complejos de Cu²+ (aq) son coloreados.	[4
(c)	Explique por qué los complejos de Zn²+ (aq) son incoloros mientras que los complejos de Cu²+ (aq) son coloreados.	[4
(c)	de Cu ²⁺ (aq) son coloreados.	[4
(c)	de Cu ²⁺ (aq) son coloreados.	[4
(c)	de Cu ²⁺ (aq) son coloreados.	[4
(c)	de Cu ²⁺ (aq) son coloreados.	[4
(c)	de Cu ²⁺ (aq) son coloreados.	[4
(c)	de Cu ²⁺ (aq) son coloreados.	[4
(c)	de Cu ²⁺ (aq) son coloreados.	[4

El propano, C₃H₈(g), sufre combustión completa para formar dióxido de carbono, CO₂(g), y

3.

agua, $H_2O(g)$.

(a) Indique una ecuación para la combustión completa del propano, C₃H₈(g). [1]

(b) Calcule la variación de entalpía estándar para la reacción del apartado (a) usando los valores de entalpía de enlace dados en la tabla 10 del cuadernillo de datos. [3]

(a)	Los monómeros ácido hexanodioico y 1,6-diaminohexano reaccionan para formar un polímero sintético.	
	Deduzca la fórmula estructural de cada monómero.	[
(b)	Indique el tipo de reacción de polimerización que se produce entre estos dos monómeros e identifique la característica estructural necesaria en los monómeros.	[
	Tipo:	
	Característica estructural:	
(c)		
	Dibuje la estructura del enlace formado en este polímero e identifique el otro producto de esta reacción de polimerización.	

(a)	(i)	Defina el término electronegatividad.	[1
	(ii)	Sugiera por qué a los gases nobles generalmente no se les asignan valores de electronegatividad.	[′
(b)	haci	lique por qué los puntos de fusión de los metales del grupo 1 (Li $ ightarrow$ Cs) disminuyen a abajo del grupo mientras que los puntos de fusión de los elementos del grupo 7 $ ightarrow$ I) aumentan hacia abajo del grupo.	[;
1			
(c)		uma una razón por la que el radio del ion sodio, Na ⁺ , es menor que el del átomo odio.	[
(c)			[′
(c)			[′

[2]

[2]

Sección B

Conteste dos preguntas. Escriba sus respuestas en las casillas provistas.

- **6.** El óxido de hierro(III) es la principal fuente de hierro, pero la descomposición del $Fe_2O_3(s)$ en sus elementos es extremadamente difícil debido a su elevado valor positivo de ΔG^{Θ} .
 - (a) Considere las siguientes reacciones:

$$\begin{split} \text{Fe}_2 \text{O}_3(\text{s}) &\to 2 \text{Fe}(\text{s}) + \frac{3}{2} \text{O}_2(\text{g}) & \Delta G^\ominus = +742 \, \text{kJ} \, \text{mol}^{-1} \\ \text{CO}(\text{g}) &+ \frac{1}{2} \text{O}_2(\text{g}) \to \text{CO}_2(\text{g}) & \Delta G^\ominus = -257 \, \text{kJ} \, \text{mol}^{-1} \end{split}$$

Sugiera, dando una razón, si es posible producir hierro haciendo reaccionar ${\rm Fe_2O_3}$ con ${\rm CO}$.

(b) La reacción de la termita es una de las reacciones más exotérmicas.

$$Fe_2O_3(s) + 2Al(s) \rightarrow 2Fe(l) + Al_2O_3(s)$$
 $\Delta H^{\ominus} = -825.2 \text{ kJ}$

Especies	S ⁺ / J K ⁻¹ mol ⁻¹	∆ G [⊕] _f / kJ mol ⁻¹
Al(s)	+28,3	0
Al ₂ O ₃ (s)	+50,9	-1582
Fe(l)	+34,8	+10,0
Fe ₂ O ₃ (s)	+87,5	−742

(i) Calcule la variación de energía libre estándar, ΔG^{\ominus} , en kJ mol⁻¹, usando los valores de energía libre estándar de formación, ΔG^{\ominus}_{f} , de la tabla de arriba.

						٠					٠	•	•	•	•	٠					٠	•	•	٠	•	•	٠	٠	•	•	٠				٠	•	٠	٠	•	•	٠	٠	٠	

/= 4	_	4.5	
(Pregunta	6.	COntinua	CIAN
ir regunta	v.	Continua	CIUII)

	Calcule la variación de de entropía estánda	ar, S [⊖] , de la tabla.			
(iii)	Calcule la variación valores de ΔH^{\ominus} y ΔS		ándar, $\Delta oldsymbol{G}^{\ominus}$, para la r	reacción usando los	3
1					
(i)	Deduzca el tipo de l la N ₂ H ₂ y la N ₂ H ₄ .	hibridación que preso NF ₄ ⁺	entan los átomos de	nitrógeno en el NF ₄	+,4*,
(i)				1	+ 4 ,
(i) (ii)	la N ₂ H ₂ y la N ₂ H ₄ . Hibridación		N ₂ H ₂	1	+ + + + + + + + + + + + + + + + + + + +
	la N ₂ H ₂ y la N ₂ H ₄ . Hibridación	NF ₄ ⁺	N ₂ H ₂	1	+ + + + +
	la N ₂ H ₂ y la N ₂ H ₄ . Hibridación	NF ₄ ⁺	N ₂ H ₂	1	+ + 4 - ,
	la N ₂ H ₂ y la N ₂ H ₄ . Hibridación	NF ₄ ⁺	N ₂ H ₂	1	+ + + + + + + + + + + + + + + + + + + +
	la N ₂ H ₂ y la N ₂ H ₄ . Hibridación	NF ₄ ⁺	N ₂ H ₂	1	+, +, -, -, -, -, -, -, -, -, -, -, -, -, -,
	la N ₂ H ₂ y la N ₂ H ₄ . Hibridación	NF ₄ ⁺	N ₂ H ₂	1	+,4+,

(Pregunta 6: continuación)

	puntos) del SF ₄ y el SF ₆ . Use la teoría de la repulsión del par electrónico de valencia (TRPEV) para predecir el nombre de la forma de cada molécula.
(i)	Enumere los siguientes compuestos en orden de punto de ebullición creciente : CH_3CHO , $CH_3CH_2CH_3$, CH_3COOH , CH_3CH_2OH .
(ii)	Explique el orden de los puntos de ebullición de los compuestos enumerados en el apartado (d) (i), en función de las fuerzas intermoleculares.
1	

(Pregunta 6: continuación)

(e)	En el funcionamiento del espectrómetro de masas, la primera etapa es la vaporización y la última es la detección. Indique los nombres de las otras tres etapas y resuma qué sucede en cada una.	[3]

7. (a) La siguiente reacción se usa en la industria para obtener hidrógeno a partir de gas natural por oxidación parcial con vapor.

$$CH_4(g) + H_2O(g) \rightleftharpoons 3H_2(g) + CO(g)$$
 $\Delta H^{\ominus} = +206 \text{ kJ}$

(i) Describa el efecto, si existe, de cada uno de los siguientes cambios sobre la cantidad de hidrógeno en el equilibrio, dando una razón en cada caso.

[4]

	Aumento de la presión, a temperatura constante:	
	Aumento de la temperatura, a presión constante:	
(ii)	Discuta los efectos de añadir un catalizador sólido a la mezcla de metano y vapor, a presión y temperatura constantes.	[3]

(iii)	Deduzca la expresión de la constante de equilibrio, $K_{\rm c}$, para la reacción.									

(Pregunta 7: continuación)

(1V)	valor aumentará o disminuirá.							

(b) La constante de equilibrio, K_c , para la reacción

$$CO(g) + H_2O(g) \rightleftharpoons H_2(g) + CO_2(g)$$

es de 10,0 a 420°C.

1,00 mol de CO (g) y 1,00 mol de H_2O (g) se mezclan en un recipiente de 1,00 dm³ a 420°C. Calcule la concentración en el equilibrio de cada uno de los componentes de la mezcla, mostrando sus cálculos.

[3]

Véase al dorso

(Pregunta 7: continuación)

(c) La oxidación del monóxido de nitrógeno se produce como sigue:

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

Los siguientes datos experimentales se obtuvieron a 101,3 kPa y 298 K.

Experimento	[NO] inicial / mol dm ⁻³	[O ₂] inicial / mol dm ⁻³	Velocidad inicial / mol dm ⁻³ s ⁻¹
1	$2,30 \times 10^{-2}$	$1,15 \times 10^{-2}$	$1,05 \times 10^{-3}$
2	2,30 × 10 ⁻²	2,30 × 10 ⁻²	$2,09 \times 10^{-3}$
3	4,60 × 10 ⁻²	4,60 × 10 ⁻²	1,68 × 10 ⁻²

(1)	Deduzca los ordenes de reacción con respecto al O_2 y al NO.	[2]

Orden con respecto al O ₂ :	
Orden con respecto al NO:	

(ii)	Indique la expresión de velocidad para la reacción.	[1]

(iii)	Calcule el valor de la constante de velocidad, k, e incluya sus unidades.	[2]

(Pregunta 7: continuación)

(iv) Sugiera un mecanismo que sea coherente con la expresión de velocidad, indicando la etapa determinante de la velocidad de reacción.

[3]

(d) Considere las siguientes reacciones espontáneas.

$$Fe(s) + Ni^{2+}(aq) \rightarrow Fe^{2+}(aq) + Ni(s)$$

$$Zn(s) + Fe^{2+}(aq) \rightarrow Zn^{2+}(aq) + Fe(s)$$

$$Ni(s) + Pb^{2+}(aq) \rightarrow Ni^{2+}(aq) + Pb(s)$$

(i) Deduzca el orden de reactividad **creciente** de los metales en base a las reacciones de arriba.

[2]

[1]

(ii) Identifique el agente oxidante más fuerte en las reacciones de arriba.

.....

Deduzca las semiecuaciones de formación del producto principal en el electrodo

(Pregunta 7: continuación)

positivo (anodo) cuando se electrolizari las siguientes soluciones acuosas.	[2
Solución diluida de cloruro de sodio:	
Cloruro de sodio concentrado:	

No escriba en esta página.

Las respuestas que se escriban en esta página no serán corregidas.

Véase al dorso

8. (a) 20,0 cm³ de soluciones acuosas de dos bases, cada una con una concentración de 0,100 mol dm⁻³ se titularon por separado con ácido clorhídrico 0,100 mol dm⁻³, HCl(aq), y se obtuvo el siguiente gráfico.

(Pregunta 8: continuación)

(i)	Deduzca el pH en los puntos de equivalencia para la base I y la base II.	[2]
(ii)	Sugiera por qué la curva de titulación para la base I es diferente de la de la base II.	[1]
(iii)	Indique las fórmulas de dos bases posibles que se podrían haber usado como base I.	[1]
(iv)	Calcule, usando los datos del gráfico, la constante de disociación, $K_{\rm b}$, de la base II, mostrando su trabajo.	[3]
(v)	Sugiera un indicador que se pueda usar en ambas titulaciones.	[1]

[2]

(Pregunta 8: continuación)

(b)	(i)	Indique el significado del término solución tampón (buffer).	[2]

(ii) Calcule el pH de una solución preparada mezclando $40.0\,\mathrm{cm^3}$ de NH $_3$ (aq) $0.200\,\mathrm{mol\,dm^{-3}}$ y $40.0\,\mathrm{cm^3}$ de HCl (aq) $0.100\,\mathrm{mol\,dm^{-3}}$, mostrando su trabajo. (p K_h NH $_3$ = 4.75 a $298\,\mathrm{K}$)

(c) A continuación se dan las ecuaciones de dos reacciones ácido-base.

Reacción **A** $H_2CO_3(aq) + H_2O(l) \rightleftharpoons HCO_3^-(aq) + H_3O^+(aq)$

Reacción **B** $HCO_3^-(aq) + H_2O(l) \rightleftharpoons CO_3^{2-}(aq) + H_3O^+(aq)$

(i) Explique si el HCO₃ (aq) se comporta como ácido o como base en cada una de las reacciones **A** y **B**.

R	ea	а	CC	ić	'n	4	4	:																																		
																																		٠								
R	ea	a	CC	ić	'n	ı	В	:																																		

(Pregunta 8: continuación)

(ii)	Deduzca dos	pares ácido-base	conjugados a i	partir de las reacciones A	v B .	[2]	ı
١	D 0 0 0 0 0 0 0 0 0	paroc acrac bacc	oonjagaace a j	partii ao lao roaccionico / t	, —:	1-2	4

	Ácido	Base
Par ácido-base conjugado 1		
Par ácido-base conjugado 2		

(d)	El ácido nítrico, HNO ₃ , y el ácido nitroso	, HNO ₂ , se describen	como ácido fuerte y	débi
	respectivamente.			

																											_				 _
								 																 	•					٠	

(ii) Una muestra de 1,00 g de carbonato de magnesio sólido, MgCO₃, se añade separadamente a soluciones de HNO₃ y HNO₂ de la misma concentración y a la misma temperatura. Indique **una** semejanza y **una** diferencia entre las observaciones que se realizan en estas reacciones.

Semejanza:
Diferencia:

(Esta pregunta continúa en la página siguiente)

Véase al dorso

[2]

(Pregunta 8: continuación)

	(iii)	El pH de una solución de HNO ₃ es igual a 1, mientras que el pH de una solución de HNO ₂ es igual a 5. Determine la relación de concentraciones de ion hidrógeno en HNO ₃ :HNO ₂ .	[1]
e)	(i)	Indique el carácter ácido-base de los óxidos de los elementos del período 3 del Na al Ar.	[2]
	(ii)	Indique ecuaciones ajustadas para ilustrar el carácter ácido-base del óxido de sodio y el trióxido de azufre.	[2]
		Óxido de sodio:	
		Trióxido de azufre:	

con la me	muestra de 0,842 g de un haluro de alquilo líquido, RBr(l), se calentó a reflujo $1,35\times10^{-2}$ mol de hidróxido de sodio acuoso, NaOH (aq). Después de enfriar ezcla, se tituló el exceso de NaOH con ácido clorhídrico, HCl (aq), y fueron sarios $7,36\times10^{-3}$ mol del ácido.	
(i)	Indique la ecuación para la reacción de sustitución del haluro de alquilo con hidróxido de sodio.	[1]
(ii)	Calcule la cantidad, en mol, de hidróxido de sodio que reaccionó con el haluro de alquilo.	[1]
(iii)	Calcule la masa molar del haluro de alquilo.	[1]
(iv)	Dado que cada molécula de haluro de alquilo contiene un átomo de bromo, determine su fórmula molecular.	[1]

(Esta pregunta continúa en la página siguiente)

9.

(Pregunta 9: continuación)

(b)

(v)	Deduzca las fórmulas estructurales de cuatro isómeros estructurales del haluro de alquilo basándose en la fórmula molecular y rotule cada isómero como primario, secundario o terciario. (Si no ha sido capaz de determinar la fórmula molecular en el apartado (a) (iv), use $C_5H_{11}Br$ para deducir los cuatro isómeros estructurales.)	[4]
	eacción entre un haluro de alquilo primario dibujado en el apartado (a) (v) y cianuro otasio transcurre por un mecanismo $S_{\rm N}2$.	
(i)	Indique la importancia de esta reacción en la síntesis orgánica.	[1]

(Pregunta 9: continuación)

(c)

(ii)	Explique el mecanismo de la reacción usando flechas curvadas para representar el movimiento de los pares electrónicos.	[4]
(iii)	El producto orgánico obtenido en el apartado (b) (ii) se puede reducir para formar una amina. Indique una ecuación para esta reacción y un catalizador apropiado.	[2]
	eacción entre el haluro de alquilo primario obtenido en el apartado (a) (v), e NaOH hólico concentrado y caliente es un ejemplo de una reacción de eliminación.	
(i)	Explique el mecanismo de la reacción de eliminación usando flechas curvas para representar el movimiento de los pares electrónicos.	[4]

Véase al dorso

(Pregunta 9: continuación)

(d)

(ii)	Bajo ciertas condiciones, el principal producto obtenido de la reacción de eliminación puede sufrir polimerización. Identifique el tipo de polimerización y dibuje una parte del polímero formado por dos unidades que se repiten.	[2]
	Tipo de polimerización:	
	Parte del polímero:	
		-
	tano puede reaccionar con cloro. Explique el mecanismo de radicales libres de reacción, incluyendo la condición necesaria para la reacción.	[4]
		[4]
		[4]
		[4]
		[4]
	reacción, incluyendo la condición necesaria para la reacción.	[4]
	reacción, incluyendo la condición necesaria para la reacción.	[4]
	reacción, incluyendo la condición necesaria para la reacción.	[4]
	reacción, incluyendo la condición necesaria para la reacción.	[4]
	reacción, incluyendo la condición necesaria para la reacción.	[4]
	reacción, incluyendo la condición necesaria para la reacción.	[4]

