

Introduction to Machine Learning

Generalization and Model Validation

Nils M. Kriege WS 2023

Data Mining and Machine Learning Faculty of Computer Science University of Vienna

Credit: Slides based on the IML Lectures by Sebastian Tschiatschek and Andreas Krause

Regression

• Goal: learn real valued mapping $f\colon \mathbb{R}^d o \mathbb{R}$

Regression

• Goal: learn real valued mapping $f\colon \mathbb{R}^d o \mathbb{R}$

Fitting nonlinear functions

Goal: $y \approx f(x)$ Observation: Linear function not suitable

Fitting nonlinear functions

Goal: $y \approx f(x)$ Observation: Linear function not suitable

 \mathbf{v} Use quadratic function $f(x) = ax^2 + bx + c$

Fitting nonlinear functions

Goal: $y \approx f(x)$ Observation: Linear function not suitable

Use quadratic function $f(x) = ax^2 + bx + c$

🏌 Transform input data and use linear regression:

$$f(x) = ax^2 + bx + c = \widetilde{\mathbf{w}}^T \widetilde{\mathbf{x}}$$
 with $\widetilde{\mathbf{w}} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, $\widetilde{\mathbf{x}} = \begin{pmatrix} x^2 \\ x \\ 1 \end{pmatrix}$

Linear regression for polynomials

We can fit non-linear functions via linear regression, using non-linear features of our data (basis functions):

$$\phi \colon \mathbb{R}^d o \mathbb{R}^D \qquad f(\mathbf{x}) = \sum_{i=1}^D w_i \phi_i(\mathbf{x})$$

Example: Polynomials of degree *k*.

1-dim:
$$\phi(x) = (1, x, x^2, \dots, x^k)^T$$

2-dim:
$$\phi(\mathbf{x}) = (1, X_1, X_2, X_1X_2, X_1^2, X_2^2, X_1^2X_2, \dots)^T$$

d-dim: $\phi(\mathbf{x}) = \text{vector of all monomials } x_1, x_2, \dots, x_d \text{ of degree } k$

Demo: Linear regression on polynomials

Observation: Underfitting and overfitting

Observation: Underfitting and overfitting

Supervised learning summary so far

Representation/ features	Linear hypotheses, nonlinear hypotheses through feature transformations
Model/ objective	Loss-function (squared loss, ℓ_p loss)
Method	Exact solution, Gradient Descent
Evaluation metric	Empirical risk = (mean) squared error

Model selection for linear regression with polynomials

Interlude: A note on probability

- You'll need to know about basic concepts in probability:
 - · Random variables
 - Expectations (Mean, variance etc.)
 - Independence (i.i.d. samples from a distribution, . . .)
 - ...

Example: Gaussian distribution

- Standard deviation σ
- Mean μ
- Probability density function $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$

Example: Multivariate Gaussian

$$\frac{1}{2\pi\sqrt{|\Sigma|}}\exp\left(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\right) \qquad \Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{pmatrix} \quad \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}$$

10

Interlude: Expectations

 Expected value of random variable X with probability density function p:

$$\mathbb{E}[X] = \int_X x p(x) \, dx$$

Expected value of some function of X:

$$\mathbb{E}[f(x)] = \int_X f(x)p(x)\,dx$$

Linearity of expectation:

$$\mathbb{E}[X + Y] = \mathbb{E}(X) + \mathbb{E}(Y)$$
$$\mathbb{E}[aX] = a\mathbb{E}[X]$$

Achieving generalization

 Fundamental assumption: Our data set is generated independently and identically distributed (iid) from some unknown distribution P:

$$(\mathbf{x}_i, y_i) \sim P(\mathbf{X}, \mathbf{Y})$$

 Our goal is to minimize the expected error (true risk) under P:

$$R(\mathbf{w}) = \int P(\mathbf{x}, y)(y - \mathbf{w}^{\mathsf{T}}\mathbf{x})^{2} d\mathbf{x} d\mathbf{y}$$
$$= \mathbb{E}_{\mathbf{x}, \mathbf{y}}[(y - \mathbf{w}^{\mathsf{T}}\mathbf{x})^{2}]$$

Side note on iid assumption

- When is iid assumption invalid?
 - · Time series data
 - Spatially correlated data
 - · Correlated noise
 - ...
- Often, can still use machine learning, but one has to be careful in interpreting results.
- Most important: Choose train/test to assess the desired generalization

Estimating the generalization error

• Estimate the true risk by the empirical risk on a sample data set \mathcal{D} :

$$\hat{R}_{\mathcal{D}}(\mathbf{w}) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} (\mathbf{y} - \mathbf{w}^T \mathbf{x})^2$$

Why might this work?

Estimating the generalization error

 Estimate the true risk by the empirical risk on a sample data set D:

$$\hat{R}_{\mathcal{D}}(\mathbf{w}) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} (\mathbf{y} - \mathbf{w}^{\mathsf{T}} \mathbf{x})^{2}$$

Why might this work?
 Law of large numbers: R̂_D(w) → R(w) for any fixed w almost surely as |D| → ∞

What happens if we optimize on training data?

- Suppose we are given training data ${\cal D}$
- Empirical Risk Minimization: $\hat{\mathbf{w}}_{\mathcal{D}} = \arg\min_{\mathbf{w}} \hat{R}_{\mathcal{D}}(\mathbf{w})$
- Ideally we wish to solve: $\mathbf{w}^* = \arg\min_{\mathbf{w}} R(\mathbf{w})$

Empirical vs true risk

Empirical vs true risk

Empirical vs true risk

Outlook: Requirements for learning

 For learning via empirical risk minimization to be successful, need uniform convergence:

$$\sup_{\mathbf{w}} |R(\mathbf{w}) - \hat{R}_{\mathcal{D}}(\mathbf{w})| \to o \quad \text{as} \quad |\mathcal{D}| \to \infty$$

- This is not implied by law of large numbers alone, but depends on model class (holds, e.g., for squared loss on data distributions with bounded support)
 - → Statistical learning theory

What can go wrong? An example

Consider the following classification problem:

- $x_i \in \mathbb{R}^2$, $y_i \in \{0, x\}$
- Points in \square are o and x otherwise.
- $area(\square) = 2 \cdot area(\square)$
- A point drawn uniformly at random is o or x with the same probability.
- Training data: $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)\}$ Classifier: $h'_{\mathcal{D}}(\mathbf{x}) = \begin{cases} y & \text{if } (\mathbf{x}, y) \in \mathcal{D}, \\ \mathbf{0} & \text{otherwise.} \end{cases}$
- Empirical risk of $h'_{\mathcal{D}}$: True risk of $h'_{\mathcal{D}}$:

What can go wrong? An example

Consider the following classification problem:

•
$$x_i \in \mathbb{R}^2$$
, $y_i \in \{0, x\}$

- Points in \square are o and x otherwise.
- $area(\square) = 2 \cdot area(\square)$
- A point drawn uniformly at random is o or x with the same probability.

• Training data:
$$\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)\}$$
• Classifier: $h'_{\mathcal{D}}(\mathbf{x}) = \begin{cases} y & \text{if } (\mathbf{x}, y) \in \mathcal{D}, \\ \mathbf{0} & \text{otherwise.} \end{cases}$

• Empirical risk of $h'_{\mathcal{D}}$: O True risk of $h'_{\mathcal{D}}$: $\frac{1}{2}$

What can go wrong in ERM?

What can go wrong in ERM?

What can go wrong in ERM?

Learning from finite data

- Law of large numbers / uniform convergence are asymptotic statements (with $n \to \infty$)
- In practice one has finite amount of data.
- What can go wrong?

Simple example

$$\hat{\mathbf{w}}_{\mathcal{D}} = \arg\min_{\mathbf{w}} \hat{R}_{\mathcal{D}}(\mathbf{w}) \qquad \qquad \mathbf{w}^* = \arg\min_{\mathbf{w}} R(\mathbf{w})$$

What if we evaluate performance on training data?

$$\hat{\mathbf{w}}_{\mathcal{D}} = \arg\min_{\mathbf{w}} \hat{R}_{\mathcal{D}}(\mathbf{w})$$
 $\mathbf{w}^* = \arg\min_{\mathbf{w}} R(\mathbf{w})$

• In general it holds that $\mathbb{E}_{\mathcal{D}}[\hat{R}_{\mathcal{D}}(\hat{\mathbf{w}}_{\mathcal{D}})] \leq \mathbb{E}_{\mathcal{D}}[R(\hat{\mathbf{w}}_{\mathcal{D}})]$

What if we evaluate performance on training data?

$$\hat{\mathbf{w}}_{\mathcal{D}} = \arg\min_{\mathbf{w}} \hat{R}_{\mathcal{D}}(\mathbf{w})$$
 $\mathbf{w}^* = \arg\min_{\mathbf{w}} R(\mathbf{w})$

- In general it holds that $\mathbb{E}_{\mathcal{D}}[\hat{R}_{\mathcal{D}}(\hat{\mathbf{w}}_{\mathcal{D}})] \leq \mathbb{E}_{\mathcal{D}}[R(\hat{\mathbf{w}}_{\mathcal{D}})]$
- Thus we obtain an overly optimistic estimate!

 $\hat{\mathbf{w}}_{\mathcal{D}} = \arg\min \hat{R}_{\mathcal{D}}(\mathbf{w})$

$$\begin{split} \mathbb{E}_{\mathcal{D}}[\hat{R}_{\mathcal{D}}(\hat{\mathbf{w}}_{\mathcal{D}})] &= \mathbb{E}_{\mathcal{D}}[\min_{\mathbf{w}} \hat{R}_{\mathcal{D}}(\mathbf{w})] & \text{(ERM)} \\ &\leq \min_{\mathbf{w}} \mathbb{E}_{\mathcal{D}}[\hat{R}_{\mathcal{D}}(\mathbf{w})] & \text{(Jensen's inequality)} \\ &= \min_{\mathbf{w}} \mathbb{E}_{\mathcal{D}}\left[\frac{1}{|\mathcal{D}|} \sum_{i=1}^{\mathcal{D}} (y_i - \mathbf{w} \mathbf{x}_i)^2\right] & \text{(Def. } \hat{R}_{\mathcal{D}}(\mathbf{w})) \\ &= \min_{\mathbf{w}} \frac{1}{|\mathcal{D}|} \sum_{i=1}^{\mathcal{D}} \underbrace{\mathbb{E}_{(\mathbf{x}_i, y_i) \sim P}\left[(y_i - \mathbf{w} \mathbf{x}_i)^2\right]}_{R(\mathbf{w})} & \text{(lin. exp.)} \\ &= \min_{\mathbf{w}} R(\mathbf{w}) \leq \mathbb{E}_{\mathcal{D}}[R(\hat{\mathbf{w}}_{\mathcal{D}})] \end{split}$$

 $\mathbf{w}^* = \arg\min R(\mathbf{w})$

More realistic evaluation?

- Want to avoid underestimating the prediction error
- Idea: Use separate test set from the same distribution P
- Obtain indep. training and test data $\mathcal{D}_{\text{train}}$ and $\mathcal{D}_{\text{test}}$
- Optimize w on training set:

$$\hat{\boldsymbol{w}}_{\mathcal{D}_{\mathsf{train}}} = \arg\min_{\boldsymbol{w}} \hat{R}_{\mathcal{D}_{\mathsf{train}}}(\boldsymbol{w})$$

· Evaluate on test set:

$$\hat{R}_{\mathcal{D}_{\mathsf{test}}}(\hat{\boldsymbol{w}}_{\mathcal{D}_{\mathsf{train}}}) = \frac{1}{|\mathcal{D}_{\mathsf{test}}|} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{D}_{\mathsf{test}}} (\boldsymbol{y} - \hat{\boldsymbol{w}}_{\mathcal{D}_{\mathsf{train}}}^{\mathsf{T}} \boldsymbol{x})^2$$

Then:

$$\mathbb{E}_{\mathcal{D}_{\mathsf{train}},\mathcal{D}_{\mathsf{test}}}[\hat{R}_{\mathcal{D}_{\mathsf{test}}}(\hat{\mathbf{w}}_{\mathcal{D}_{\mathsf{train}}})] = \mathbb{E}_{\mathcal{D}_{\mathsf{train}}}[R(\hat{\mathbf{w}}_{\mathcal{D}_{\mathsf{train}}})]$$

Why?

Recap: Evaluating predictive performance

 Training error (empirical risk) systematically underestimates true risk:

$$\mathbb{E}_{\mathcal{D}}[\hat{R}_{\mathcal{D}}(\hat{\mathbf{w}}_{\mathcal{D}})] \leq \mathbb{E}_{\mathcal{D}}[R(\hat{\mathbf{w}}_{\mathcal{D}})]$$

Using an independent test set avoids this bias:

$$\mathbb{E}_{\mathcal{D}_{\mathsf{train}},\mathcal{D}_{\mathsf{test}}}[\hat{R}_{\mathcal{D}_{\mathsf{test}}}(\hat{\boldsymbol{w}}_{\mathcal{D}_{\mathsf{train}}})] = \mathbb{E}_{\mathcal{D}_{\mathsf{train}}}[R(\hat{\boldsymbol{w}}_{\mathcal{D}_{\mathsf{train}}})]$$

First Attempt: Evaluation for Model Selection

- Obtain training and test data $\mathcal{D}_{\text{train}}$ and $\mathcal{D}_{\text{test}}$
- Fit each candidate model (e.g., degree *m* of polynomial):

$$\hat{\mathbf{w}}_m = \underset{\mathbf{w}: \text{ degree}(\mathbf{w}) \leq m}{\operatorname{argmin}} \hat{R}_{\operatorname{train}}(\mathbf{w})$$

· Pick one which does best on test set:

$$\hat{m} = \underset{m}{\operatorname{argmin}} \hat{R}_{\operatorname{test}}(\hat{\mathbf{w}}_{m})$$

First Attempt: Evaluation for Model Selection

- Obtain training and test data $\mathcal{D}_{\mathsf{train}}$ and $\mathcal{D}_{\mathsf{test}}$
- Fit each candidate model (e.g., degree m of polynomial):

$$\hat{\mathbf{w}}_m = \underset{\mathbf{w}: \text{ degree}(\mathbf{w}) \leq m}{\operatorname{argmin}} \hat{R}_{\operatorname{train}}(\mathbf{w})$$

· Pick one which does best on test set:

$$\hat{m} = \underset{m}{\operatorname{argmin}} \hat{R}_{\operatorname{test}}(\hat{\mathbf{w}}_m)$$

Do you see a problem?

Overfitting to test set

- Test error is itself random! Variance usually increases for more complex models
- Optimizing for single test set creates bias

Solution: Pick Multiple Test Sets!

- Key idea: Instead of using a single test set, use multiple test sets and average to decrease variance
- Dilemma: Any data I use for testing I can't use for training

Solution: Pick Multiple Test Sets!

- Key idea: Instead of using a single test set, use multiple test sets and average to decrease variance
- Dilemma: Any data I use for testing I can't use for training
- ⇒ Using multiple independent test sets is expensive and wasteful