Course	10CSC20E1 Course	APTIFICIAL INTELLIGENCE	Course	C	Professional Core	L	T	Р	С	
Code	18CSC305J Name	ARTIFICIAL INTELLIGENCE	Category	C	Professional Core	3	0	2	4	

Pre-requisite Courses Nil	Co-requisite Courses	Nil	Progressive Courses
Course Offering Department	Computer Science and Engineering	Data Book / Codes/Standards	Nil

Course Lo	earning Rationale (CLR): The purpose of learning this course is to:	L	earni	ng					Prog	ram I	Learni	ing O	utcon	nes (F	PLO)				
CLR-1:	Provide a broad understanding of the basic techniques for building intelligent computer systems and an understanding of how AI is applied to problems.	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:	Gain knowledge in problem formulation and building intelligent agents																		
CLR-3:	Understand the search technique procedures applied to real world problems	(Bloom)	8	%	ge		=						높						
CLR-4:	Understand the types of logic and knowledge representation schemes	8	lc,)ti	eq		ner		<u>e</u>				ĕ		nce				
	Acquire knowledge in planning and learning algorithms) g	Se.	Ĕ	8	Sis	opr	sign,	sac	ē			TeamWork	_	ina	ing			
CLR-6:	Gain knowledge in AI Applications and advances in Artificial Intelligence	inking	Loffe	ttaii	췯	aly	le Ve	esic		룍	nt&			atio	ΑŘ	arı			
		ļ.	뮻	₩	Ē.	٦	Ž	S,D	<u>T</u> 0	&CI	mel		a	ii.	₩gt	gLe			
Course Lo	earning Outcomes (CLO): At the end of this course, learners will be able to:	Levelof	ExpectedProficiency(%)	ExpectedAttainment(%)	EngineeringKnowledge	ProblemAnalysis	Design&Development	Analysis,De Research	Modern Tool Usage	Society&Culture	Environment& Sustainability	Ethics	Individual &	Communication	ProjectMgt.&Finance	LifeLongLearn	PS0-1	PS0-2	PS0-3
CLO-1:	Formulate a problem and build intelligent agents	1	80	70	М	М	М	М	Н	-	-	-	М	L	-	Н	L	L	L
CLO-2:	Apply appropriate searching techniques to solve a real world problem	2	85	75	М	Н	Н	Н	Н	-	-	-	М	L	-	Н	М	L	M-
CLO-3:	Analyze the problem and infer new knowledge using suitable knowledge representation schemes	2	75	70	М	Н	Н	М	Н	-		-	М	L	-	Н	Μ	L	М
CLO-4:	Develop planning and apply learning algorithms on real world problems	2	85	80	М	Н	М	Н	Н	-	-	-	М	L	-	Н	М	М	М
CLO-5:	Design an expert system and implement natural language processing techniques	3	85	75	М	Н	Н	Н	Н	-	-	-	М	L	-	Н	Н	М	Н
CLO-6:	Implement advance techniques in Artificial Intelligence	3	80	70	L	Н	М	М	Н	-	-	-	Н	L	-	Н	Н	Μ	Н

Durati	on (hour)	15	15	15	15	15
S-1	SLO-1	Introduction to AI-AI techniques	Searching techniques- Uniformed search- General search Algorithm		Planning- Planning problems, Simple planning agent	Expert system-Architecture
•	SLO-2	Problem solving with AI	Uniformed search Methods-Breadth first search	Knowledge base agents-Logic Basics	Planning languages	Pros and Cons of expert system
	SLO-1	Al Models, Data acquisition and learning aspects in Al	Uniformed search Methods-Depth first search	Logic-Propositional logic-syntax ,semantics and inferences	Blocks world ,Goal stack planning	Rule based systems
S-2	SLO-2	Problem solving- Problem solving process, Formulating problems	Uniformed search Methods-Depth limited search	Propositional logic- Reasoning patterns	Mean Ends Analysis	Frame based expert system
S-3	SLO-1	Problem types and characteristics	Uniformed search Methods- Iterative Deepening search	Predicate logic – Syntax and semantics, instance and is relationship	Non-linear Planning	Case study
3-3	SLO-2	Problem space and search	Bi-directional search	Unification and Resolution	Conditional planning, Reactive planning	Case study
-	SLO-1	Lab 1: Implementation of toy problems	Lab4: Implementation and Analysis of	Lab 7: Implementation of unification and	Lab 10 :Implementation of block world	Natural language processing-Levels of
4-5	SLO-2		DFS and BFS for an application	resolution for real world problems.	problem	NLP
S-6	SLO-1	Intelligent agent	Informed search- Generate and test, Best First search	Knowledge representation using rules	Learning- Machine learning	Syntactic and Semantic Analysis
	31 U-7	Rationality and Rational agent with performance measures	Informed search-A* Algorithm	Knowledge representation using semantic nets	Goals and Challenges of machine learning	
S-7	SLO-1	Flexibility and Intelligent agents	AO* research	Knowledge representation using frames	Learning concepts, models	Information Extraction

	SLO-2	Task environment and its properties	Local search Algorithms-Hill Climbing, Simulated Annealing	Inferences	Artificial neural network based learning- Back propagation	Machine translation
S-8	SLO-1	Types of agents	Local Beam Search	Uncertain Knowledge and reasoning- Methods	Support vector machines	NLP Applications
	SLO-2	Other aspects of agents	Genetic Algorithms	Bayesian probability and belief network	Reinforcement learning	NLP Applications
S 9-10		Lab 2: Developing agent programs for real world problems	Lab 5: Developing Best first search and A* Algorithm for real world problems	Lab 8: Implementation of knowledge representation schemes - use cases	Lab 11: Implementation of learning algorithms for an application	Lab 14:Implementation of NLP programs
S-11	SLO-1	Constraint satisfaction problems(CSP)	Adversarial search Methods-Game playing-Important concepts	Probabilistic reasoning	Adaptive learning	Advance topics in Artificial Intelligence- Cloud Computing and intelligent agent
	SLO-2	Crypto arithmetic puzzles	Game playing and knowledge structure	Probabilistic reasoning over time	Multi_agent based learning	Business intelligence and analytics
S-12	SLO-1	CSP as a search problem-constrains and representation	Game as a search problem-Minimax approach	Forward and backward reasoning	Ensemble learning	Sentiment Analysis
	SLO-2	CSP-Backtracking, Role of heuristic	Minimax Algorithm	Other uncertain techniques-Data mining	Learning for decision making	Deep learning Algorithms
S-13	SLO-1	CSP-Forward checking and constraint propagation	Alpha beta pruning	Fuzzy logic	Distributed learning	Deep learning Algorithms
	SLO-2	CSP-Intelligent backtracking	Game theory problems	Dempster -shafer theory	Speedup learning	Planning and logic in intelligent agents
S 14-15		Lab 3: Implementation of constraint satisfaction problems	Lab 6: Implementation of minimax algorithm for an application	Lab 9: Implementation of uncertain methods for an application	Lab12: Development of ensemble model for an application	Lab 15: Applying deep learning methods to solve an application.

Learning Resources

- 1. Parag Kulkarni, Prachi Joshi, Artificial Intelligence –Building Intelliegent Systems, 1St ed., PHI learning,2015
- 2. DeepakKemhani,FirstcourseinArtificilaIntelligence,McGrawHillPvtLtd,2013
- 3. Stuart J. Russell, Peter Norwig , Artificial Intelligence –A Modern approach, 3rd Pearson Education, 2016
- ${\it 4. Prateek Joshi,} Artificial Intelligence with Phython,} 1^{St} ed., Packt Publishing, 2017$
- 5. DenisRothman,ArtificialIntelligencebyExample,Packt,2018

Learning	Assessn	nent

	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	ntage)			Final Evamination	ı (50% weightage)
	Level of Thinking	CLA -	1 (10%)	CLA – :	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	FIIIai Examination	r (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	20%	10%	10%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	20%	20%	15%	15%	15%	15%	15%	15%
	Total	10	0 %	100	0 %	100	0 %	100) %		-

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr.Jagatheeswaran, Lead, Auxo labs jagatheeswarans.iot@auxolabs.in	1. Dr. Chitrakala, Anna University, au.chitras@gmail.com	1. Dr.M.Pushpalatha, SRMIST
2.	2.	2. Dr.GVadivu, SRMIST
	3.	3. Dr.C.Lakshmi, SRMIST