CTRP - A Toy Example

Data. We simulate a covariate matrix **X** having n = 20 observations of f = 5 variables from a standard normal distribution. Then we simulate a response variable $\mathbf{y} = (y_1, \dots, y_n)^{\top}$ according to the logistic regression model

$$y_j \sim \text{Ber}(p_j), \quad \text{logit}(p_j) = \beta_0 + \mathbf{X}_j \boldsymbol{\beta} \quad (j = 1, \dots, n)$$

with $\beta_0 = 0$ and $\beta = (20, 10, 5, 0, 0)$.

Finally, we consider B random permutations of \mathbf{y} (where the first is the identity) and compute the global test statistics

$$g_i^{\pi} = \mathbf{y}^{\pi \top} \left(\mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top} \right) \mathbf{X}_i \mathbf{X}_i^{\top} \left(\mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top} \right) \mathbf{y}^{\pi} \qquad (i = 1, \dots, f, \quad \pi = 1, \dots, B),$$

as well as the centered test statistics

$$d_i^{\pi} = g_i^{\pi} - g_i$$
 $(i = 1, ..., f, \pi = 1, ..., B).$

Analysis. Assume that we want to test $S = \{3\}$. Then the subsets that need to be tested are the following:

We define the following quantities:

- M_S , vector of the centered test statistics d_S^{π} ($\pi=1,\ldots,B$);
- M, matrix of the individual centered test statistics d_i^{π} corresponding to the indices in $F \setminus S$. The rows are sorted so that the observed values are in descending order;
- D, matrix obtained by sorting the elements of M within each row in descending order;
- I, matrix of indices such that $I_{\pi h} = i$ if the element $D_{\pi h}$ corresponds to predictor i.

$\mathbf{M_S}$	${f M}$					D				I			
d_2	d_1	d_4	d_2	d_5									
0.00	0.00	0.00	0.00	0.00	•	0.00	0.00	0.00	0.00	1	4	2	5
-8.84	-28.32	-16.62	-7.99	-6.03		-6.03	-7.99	-16.62	-28.32	5	2	4	1
-9.04	-27.72	-13.61	-5.02	-5.29		-5.02	-5.29	-13.61	-27.72	2	5	4	1
-9.14	-27.34	13.63	-8.25	2.43		13.63	2.43	-8.25	-27.34	4	5	2	1
-8.38	-28.19	-9.23	-6.49	-5.63		-5.63	-6.49	-9.23	-28.19	5	2	4	1
-9.38	-26.59	-16.64	-6.51	-6.08		-6.08	-6.51	-16.64	-26.59	5	2	4	1
-8.34	-10.74	-14.86	-3.36	-4.59		-3.36	-4.59	-10.74	-14.86	2	5	1	4
-5.33	-26.65	9.44	-9.07	-5.85		9.44	-5.85	-9.07	-26.65	4	5	2	1
-4.98	-25.71	-16.31	-0.89	-0.28		-0.28	-0.89	-16.31	-25.71	5	2	4	1
-6.99	-27.27	-16.65	14.70	2.72		14.70	2.72	-16.65	-27.27	2	4	4	1

Consider each possible superset size |S| + v (with $v = 0, \dots, 4$). The lower bound

$$L_v^{\pi} = M_S^{\pi} + \sum_{i=5-v}^4 M_i^{\pi}$$

is determined by the v predictors with the lowest observed value, so that only the supersets $S \subset \{3,5\} \subset \{2,3,5\} \subset \{2,3,4,5\} \subset F$ are considered. The upper bound

$$U(v)^{\pi} = M_S^{\pi} + \sum_{i=1}^{v} D_i^{\pi}$$

is determined by the v highest values for each permutation, i.e. the first v columns of D. The $(1-\alpha)$ -quantiles of the bounds (here $\alpha=0.20$) are:

\overline{v}	0	1	2	3	4
$c_v(U)$	-5.26	4.19	1.38	-5.24	-32.53
$c_v(L)$	-5.26	-5.06	-4.93	-5.24	-32.53
rejection	Τ	?	?	Τ	${ m T}$

Branch and Bound method. The first index, i = 1, determines the branching rule:

In the "remove" branch, the lower bound remains the same, as the sum of the last v columns of M is not affected by the removal of the first column. However, the upper bound changes in both branches, as the elements corresponding to i = 1 (in I) are removed.