Serie 4 : TD Strategies de recherche

Exercice1: Soit le problème du Taquin à 9 cases. On utilise la fonction d'évaluation: f(n)=p(n) + w(n), où p(n) est la profondeur du noeud n dans l'arbre de recherche et w(n) compte le nombre de cases mal placées dans cette base de donnée associée au noeud n. Par exemple la configuration de départ suivante a une valeur f = 0 + 4 = 4.

2	8	3
1	6	4
7	X	5
Εt	at In	itial

Donner l'espace de recherche

Exercice 2 : Reprendre l'exercice 1 avec comme fonction f(n)=p(n) (Rech en largeur d'abord)

Exercice Alg A*

On dispose d'une carte géographique de distance entre des points données par le tableau suivant :

Les valeurs entre () sont les valeurs de h. On voudrait passer du point G au point K. On veut utiliser l'algorithme A* avec l'heuristique h donnée par le tableau suivant (valeur entre ()) :

	A	В	C	D	Е	F	G	Н	K
h(X)	10	20	10	5	10	10	26 (10)	0	0

Si on prenait la valeur h(G)=26 Cette heuristique reste-t-elle admissible ? Reprendre la valeur de h(G)=10, puis donner l'espace de recherche correspondant :

On dispose d'une carte topographique des routes (les couts entre les villes sont donnés) qui peuvent contenir des parties montantes, descendantes et plates où peut rouler respectivement à 60 km/h, 120 km/h et à 90 km/h. Le nombre de kilomètres entre deux villes par partie (montantes, descendantes, plates) est donné dans le tableau suivant. Par exemple entre A et C, il y a 55 km (20 montants, 20 descendants et 15 plats).

Chemin	A,C	A,I	C,D	C,F	D,E	E,J	E,B	F,E	F,G	G,B	I,J	J,B
Montante	20	50	10	20	0	0	20	0	50	0	0	10
Descendante	20	10	20	0	10	0	30	20	0	60	10	10
Plate	15	30	9	21	9	30	0	21	0	0	30	21

- Calculer les différents temps de parcours en minutes des différentes distances.

Temps	A,C	A,I	C,D	C,F	D,E	E,J	E,B	F,E	F,G	G,B	I,J	J,B
Montante												
Descendante												
Plate												

On veut trouver le chemin le plus court en temps (en minutes) entre A et B. On applique l'algorithme A*. On dispose de l'information heuristique suivante : pour chaque ville X on connaît la taille des parties montantes, descendantes et plates sur le chemin à vol d'oiseau (direct) entre la ville X et la ville but B.

# V-00000 (W-1000) V-1000 VV V V V V V V											
Chemin Direct entre	A ,B	C,B	D,B	E,B	F,B	G,B	I,B	J,B			
Montante	40	30	30	40	40	20	20	10			
Descendante	40	30	20	0	10	30	0	10			
Plate	30	18	12	0	12	0	12	12			

- Calculer les différents temps de parcours des différentes distances à vol d'oiseau (direct).

Temps entre	A ,B	C,B	D,B	E,B	F,B	G,B	I,B	J,B
Montante								
Descendante								
Plate								

- L'heuristique associant à X le temps de parcours du chemin à vol d'oiseau de X vers B est-elle admissible (c a d la plus optimale) ?. Justifier.

On prend maintenant comme heuristique h le temps de parcours si toute la distance était descendante (c-a-d on roule à 120 Km).

- Cette heuristique est elle admissible ? Justifier.
- Donner l'espace de recherche avec cette heuristique ainsi que le coût du chemin optimale de A à B en utilisant l'algorithme A*.