Homework III

$\label{eq:Vicente} \mbox{ Vicente V. Figueira} - \mbox{ NUSP 11809301}$

May 26, 2025

Contents

Pr	blem 1	1
	A)	1
	B)	1
	C)	1
	D)	1
\mathbf{Pr}	blem 2	2
	2.A)	2
	2.B)	2
	2.C)	2
	(2.D)	2
\mathbf{Pr}	blem 3	3
	B.A)	3
	$(3.8)^{'}$	3
	$3.C^{'}$	3
	(3.D)	3
	$3.{ m E}^{'}$	3
	$3.F^{'}$	3
A	BRST A.1 Faddeev-Popov Gauge Fixing	4
Ρı	oblem 1	
1.	4)	
1.	3)	
1.		
1.))	

Problem 2

- 2.A)
- 2.B)
- 2.C)
- 2.D)

Problem 3

- 3.A)
- 3.B)
- 3.C)
- 3.D)
- 3.E)
- 3.F)

A BRST

A.1 Faddeev-Popov Gauge Fixing

Our Action functional is,

$$S_X + \lambda \chi = \frac{1}{4\pi\alpha'} \int_M d^2\sigma \sqrt{h} h^{ab} \partial_a X^{\mu} \partial_b X_{\mu} + \frac{\lambda}{4\pi} \int_M d^2\sigma \sqrt{h} R + \frac{\lambda}{2\pi} \int_{\partial M} ds K$$
 (A.1)

we would like to define the quantum theory by means of the path integral, that is, we expect that,

$$Z \stackrel{?}{=} \int \mathcal{D}X \mathcal{D}h \exp\left(-S_X[X, h] - \lambda \chi\right) \tag{A.2}$$

should give a well defined theory, but, already from A.2 there're several problems that arise, one of them is: What should be interpreted from the path integral itself? We haven't defined any manifold to our metric h and scalar fields X to live in, also, even if we had defined such, the path integral relies on explicit coordinate points, $\mathcal{D}h = \prod_{\sigma} dh_{ab}(\sigma)$, which are highly dependent on charts.

This is a valid claim, our way to avoid it is to define $\mathcal{D}h$ to mean: Sum over all **allowed** two dimensional Riemannian manifolds, and all possible metric structures in these. Here, **allowed** requires a prescription, which manifolds are or aren't allowed impacts the obtained string theory. Happily, every two dimensional manifold has a definite value for the Euler Characteristic χ , hence, we can sort them out by it,

$$Z \stackrel{?}{=} \sum_{\{M\}_{Met(M)}} \int \mathcal{D}h \int \mathcal{D}X \exp\left(-S_X[X, h] - \lambda\chi\right)$$

$$Z \stackrel{?}{=} \sum_{\{\chi\}} \exp\left(-\lambda\chi\right) \sum_{\{M_\chi\}_{Met(M_\chi)}} \int \mathcal{D}h \int \mathcal{D}X \exp\left(-S_X[X, h]\right)$$
(A.3)

Where M is to be understood as a two dimensional Riemannian manifold and M_{χ} is one with Euler Characteristic χ , $\text{Met}(M_{\chi})$ is the space of all metrics which can be assigned to M_{χ} , we have written $\sum_{\{M_{\chi}\}}$ in the special case of there being more than one manifold with same Euler Characteristic M_{χ} ?

teristic¹, also, the functional integral over X should be read as integrating over all maps from M_{χ} to $\mathbb{R}^{1,D-1}$. While this is better defined than before, i.e. not coordinate dependent, we still have a few problems, first, it's know that A.1 has a Gauge Group of $\mathrm{Diff}(M) \times \mathrm{Weyl}(M)$, but, in our second try of a definition of the path integral, we're integrating the metrics over $\mathrm{Met}(M_{\chi})$, it's clear that may happen of two elements of $\mathrm{Met}(M_{\chi})$ be equivalent under a $\mathrm{Diff}(M_{\chi}) \times \mathrm{Weyl}(M_{\chi})$ transformation, to put in more clear terms, we're worried if exists $h', h \in \mathrm{Met}(M_{\chi})$ such,

$$h'_{ab}(\sigma'(\sigma)) = \exp(2\omega(\sigma)) \frac{\partial \sigma^c}{\partial \sigma'^a} \frac{\partial \sigma^d}{\partial \sigma'^b} h_{cd}(\sigma)$$

the existence of those kinds of elements is troublesome, as $\mathrm{Diff}(M_\chi) \times \mathrm{Weyl}(M_\chi)$ is a infinite dimensional group of redundancies, this means we're over-counting physical configurations by a infinite amount. The solution is to look for an equivalence class of metrics under this Gauge Group action,

$$\mathcal{M}_{\chi} = \text{Met}(M_{\chi})/\text{Diff}(M_{\chi}) \times \text{Weyl}(M_{\chi})$$

¹As we're interested only in Differentiable Manifolds, more than manifold should read: More than one equivalence class of Differentiable Manifolds.

the equivalence class is to be understood as^2 ,

$$h' \sim h \Leftrightarrow h'_{ab}(\sigma'(\sigma)) = \exp(2\omega(\sigma)) \frac{\partial \sigma^c}{\partial \sigma'^a} \frac{\partial \sigma^d}{\partial \sigma'^b} h_{cd}(\sigma)$$

that is, two metrics are the same representative of an element of \mathcal{M}_{χ} iff they differ by a composition of a Diffeomorphism and Weyl transformation. We'll denote a given composition of a Diffeomorphism followed by a Weyl transformation by ζ ,

$$h' = \zeta \circ h$$

Notice that the set of equivalence class of metrics, or, the set of inequivalent $\mathrm{Diff}(M_\chi) \times \mathrm{Weyl}(M_\chi)$ metrics \mathscr{M}_χ is highly dependent on the topology of M_χ , for example, for $M_\chi \cong \mathbb{R}^2 \cong \mathbb{C}$, it's trivial, there is just one point in the set \mathscr{M}_χ , in other words, every metric is equivalent, which isn't true for more complex topologies.

Thus, it's possible for us to set up a well defined version of the path integral, just replace $\text{Met}(M_{\chi})$ by \mathcal{M}_{χ}^{3} ,

$$Z = \sum_{\{\chi\}} \exp\left(-\lambda g\right) \sum_{\{M_\chi\}_{\mathcal{M}_\chi}} \int \mathcal{D}h \int \mathcal{D}X \exp\left(-S_X[X, h]\right)$$
(A.4)

where the integration is to be understood as by choosing for each equivalence class in \mathcal{M}_{χ} a representative element in $\operatorname{Met}(M_g)$. While this is a satisfactory definition for the path integral, it feels a little clunky, we rather have an path integral over all the possible metrics — in the sense defined before —, well, this is achievable. First, for each equivalence class of \mathcal{M}_{χ} elect one representative element of $\operatorname{Met}(M_{\chi})$, we'll denote these elements as $\hat{h}(\mathbf{t})$ — here \mathbf{t} is a parametrization of the correspondent equivalence class in \mathcal{M}_{χ} , we haven't proved here, and won't, but \mathcal{M}_{χ} is a finite N dimensional manifold, hence, \mathbf{t} is a N-tuple of real numbers —, by construction, these representatives are inequivalent under $\operatorname{Diff}(M_{\chi}) \times \operatorname{Weyl}(M_{\chi})$, hence,

$$\zeta_1 \circ \hat{h}(\mathbf{t}_1) = \zeta_2 \circ \hat{h}(\mathbf{t}_2) \Leftrightarrow \mathbf{t}_1 = \mathbf{t}_2 \text{ and } \zeta_1 = \zeta_2$$

so that every element in $Met(M_g)$ can be written as a unique⁴ composition of a given ζ into a given $\hat{h}(\mathbf{t})$. Now, we rewrite the pictorial integral over \mathscr{M}_{χ} is a more formal way, using the parametrization we just described,

$$Z = \sum_{\{\chi\}} \exp\left(-\lambda g\right) \sum_{\{M_\chi\}_{\mathcal{M}_\chi}} \int d^N \mathbf{t} \int \mathcal{D}X \exp\left(-S_X \left[X, \hat{h}(\mathbf{t})\right]\right)$$

$$Z = \sum_{\{\chi\}} \exp\left(-\lambda g\right) \sum_{\{M_\chi\}_{\mathcal{M}_\chi}} \int d^N \mathbf{t} \int_{\text{Diff}(M_\chi) \times \text{Weyl}(M_\chi)} \mathcal{D}\zeta \delta(\zeta) \int \mathcal{D}X \exp\left(-S_X \left[X, \hat{h}(\mathbf{t})\right]\right)$$

in the last line we introduced a one by integrating over the delta functional, as this integral picks only $\zeta = 0$, what should be understood as $\zeta = \mathrm{id}$ in the group, we can deform a little the integration to,

$$Z = \sum_{\{\chi\}} \exp\left(-\lambda g\right) \sum_{\{M_{\chi}\}_{\mathcal{M}_{\chi}}} \int d^{N} \mathbf{t} \int_{\text{Diff}(M_{\chi}) \times \text{Weyl}(M_{\chi})} \mathcal{D}\zeta \delta(\zeta) \int \mathcal{D}X \exp\left(-S_{X} \left[X, \zeta \circ \hat{h}(\mathbf{t})\right]\right)$$
(A.5)

²In all charts.

³By making this procedure, we eliminate the redundancies of $\mathrm{Diff}(M_\chi) \times \mathrm{Weyl}(M_\chi)$ with except of a measure zero subset of transformations, known as *conformal killing group* — CKG —, so we're still over-counting the physical contributions, but, this time by a finite number, this doesn't spoil the well-definiteness of the path integral, but do spoil the normalization. There is ways of correcting this, but we'll no dwell upon.

⁴Apart from the measure zero CKG.

This is almost in the form that we would like, notice that we're integrating over the set of representative of the inequivalent metrics, $d^N \mathbf{t}$, and also over the whole group $\mathrm{Diff}(M_\chi) \times \mathrm{Weyl}(M_\chi)$, $\mathcal{D}\zeta$, by construction, **every** metric in $\mathrm{Met}(M_\chi)$ can be written uniquely⁵ as,

$$h = \zeta_{\mathbf{t}} \circ \hat{h}(\mathbf{t})$$

in other words, to integrate over $d^N \mathbf{t} \mathcal{D}\zeta$ is to integrate over all metrics of the form $\zeta \circ \hat{h}(\mathbf{t})$, which is to integrate over all metrics $h = \zeta \circ \hat{h}(\mathbf{t})$ in $\mathrm{Met}(M_\chi)!$ We cannot yet make this change, due to the presence of an explicit dependence in ζ at the functional delta. We'll eliminate it by means of a change of variable of the functional delta, notice that,

$$\delta \Big(\hat{h}(\mathbf{t}) - \zeta \circ \hat{h}(\mathbf{t}) \Big)$$

picks up just the contribution of $\zeta = 0$, so it's a good candidate for a change of variables,

$$\delta \Big(\hat{h}(\mathbf{t}) - \zeta \circ \hat{h}(\mathbf{t}) \Big) = \delta(\zeta) \left| \operatorname{Det} \left[\frac{\delta}{\delta \zeta} \Big(\hat{h}(\mathbf{t}) - \zeta \circ \hat{h}(\mathbf{t}) \Big) \right|_{\zeta = 0} \right| \right|^{-1}$$

in this way is possible to separate the integral over all metrics $\int \mathcal{D}h$ into an integration over all inequivalent metrics $\int \mathcal{D}\hat{h}$ and an integration over all possible Diff×Weyl transformations $\int \mathcal{D}\zeta$, so that the partition function can be rewrote as,

$$Z \stackrel{?}{=} \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \exp\left(-S_X[X,\zeta \circ h]\right)$$

this still has the same problem of before, we're over-integrating the physical configurations, that is, \hat{h} are the physical configurations, but we're integrating also over the whole Diff×Weyl group in $\mathcal{D}\zeta$. One way of circumventing this problem is introducing by hand a Dirac delta to force $\zeta = 0$, what also forces we to integrate only over one copy of the physical configurations,

$$Z = \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \delta(\zeta) \exp\left(-S_X[X, \zeta \circ h]\right)$$

but this is not the most general way, we could set $\zeta = f(\sigma)$, for a arbitrary function, and this would still give the same theory,

$$Z = \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \delta(\zeta - f) \exp\left(-S_X[X, \zeta \circ h]\right)$$

we can go even further and give a function $G(\zeta)$ such that the solution to $G(\zeta) = 0$ is only $\zeta = f$, so that we can use the relations between Dirac deltas,

$$\delta(G(\zeta)) = \left| \operatorname{Det} \left[\frac{\delta G}{\delta \zeta} \right] \right|_{\zeta = f} \right|^{-1} \delta(\zeta - f)$$

to obtain,

$$Z = \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \delta(\zeta - f) \exp\left(-S_X[X, \zeta \circ h]\right)$$

$$Z = \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \left| \operatorname{Det} \left[\frac{\delta G}{\delta \zeta} \right] \right|_{\zeta = f} \left| \delta(G(\zeta)) \exp\left(-S_X[X, \zeta \circ \hat{h}]\right) \right|$$

 $^{^{5}4.}$

$$Z = \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \left| \operatorname{Det} \left[\frac{\delta G}{\delta \zeta} \right] \right|_{\zeta = f} \left| \delta(G(\zeta)) \exp \left(-S_X \left[X, \zeta \circ \hat{h} \right] \right) \right|$$

There are some details here, as ζ is to represent both a Weyl and a Diff, it has to represent both a function ω and a vector field ξ such that,

$$\zeta \circ \hat{h} = \hat{h} + 2\omega \hat{h} + \pounds_{\xi} \hat{h} + \mathcal{O}(\omega^{2}, \xi^{2}, \omega \xi)$$
$$\left[\zeta \circ \hat{h}\right]_{ab} = \hat{h}_{ab} + 2\omega \hat{h}_{ab} + 2\nabla_{(a}\xi_{b)} + \mathcal{O}(\omega^{2}, \xi^{2}, \omega \xi)$$

this means both $\zeta = f$ and $G(\zeta) = 0$ are in fact a collection of various equations. In particular, we'll choose

$$G_{ab}(\zeta) = \left[\tilde{h}\right]_{ab} - \left[\zeta \circ \hat{h}\right]_{ab}$$

for a particular metric \tilde{h} . As $G_{ab}(\zeta)$ is in fact a function of $h = \zeta \circ \hat{h}$ alone,

$$G_{ab}(\zeta) = \left[\tilde{h}\right]_{ab} - \left[\zeta \circ \hat{h}\right]_{ab} = \left[\tilde{h}\right]_{ab} - [h]_{ab} = G_{ab}(h)$$

we can rewrite as,

$$Z = \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \left| \operatorname{Det} \left[\frac{\delta G_{ab}}{\delta \zeta} \right] \right|_{\zeta=f} \left| \delta(G_{ab}(\zeta)) \exp \left(-S_X \left[X, \zeta \circ \hat{h} \right] \right) \right|_{\zeta=f}$$

$$Z = \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \left| \operatorname{Det} \left[\frac{\delta G_{ab}}{\delta \zeta} \right] \right|_{G_{ab}(h)=0} \left| \delta(G_{ab}(h)) \exp \left(-S_X \left[X, h \right] \right) \right|_{G_{ab}(h)=0}$$

Notice that every term in the integrand depends on ζ only through $h = \zeta \circ \hat{h}$, this is what we do want, so that we can recombine the integration measure $\int \mathcal{D}\hat{h}\mathcal{D}\zeta = \int \mathcal{D}h$, the only problem in this procedure is the term,

$$\operatorname{Det}\left[\frac{\delta G_{ab}}{\delta \zeta}\right]\Big|_{G_{ab}(h)=0}$$

which is manifestly dependent on ζ , or at least looks like it is. We'll prove it only depends on ζ through $h = \zeta \circ \hat{h}$. The point is, if

$$G_{ab}(h) = \tilde{h}_{ab} - h_{ab} = \tilde{h}_{ab} - \left[\zeta \circ \hat{h}\right]_{ab} = 0$$

is needed to have a solution, then exists the transformation $\tilde{\zeta}$, such that,

$$\tilde{\zeta} \circ \hat{h} = \tilde{h}$$

as this transformation is also an element of the gauge **group**, it certainly has an inverse, $\tilde{\zeta}^{-1} \circ \tilde{\zeta} \circ \hat{h} = \hat{h}$, thus,

$$G_{ab}(h) = \tilde{h} - \zeta \circ \hat{h}$$

$$G_{ab}(h) = \tilde{h} - \zeta \circ \tilde{\zeta}^{-1} \circ \tilde{\zeta} \circ \hat{h}$$

$$G_{ab}(h) = \tilde{h} - \zeta \circ \tilde{\zeta}^{-1} \circ \tilde{h}$$

$$G_{ab}(h) = \tilde{h} - \zeta' \circ \tilde{h}$$

where we defined the new gauge transformation $\zeta' = \zeta \circ \tilde{\zeta}^{-1}$, notice that,

$$h = \zeta \circ \hat{h}$$

$$h = \zeta \circ \tilde{\zeta}^{-1} \circ \tilde{\zeta} \circ \hat{h}$$

$$h = \zeta' \circ \tilde{h}$$