Adelson-Velsky, Landis, 1962

- The balance factor of a node in a BST is the difference of the heights of its left and right subtrees.
- An AVL tree is a BST in which the balance factor of every node is either 0 or +1 or -1.
- The height of the empty tree is -1.

- If an insertion of a new node or an deletion of a node makes an AVL tree unbalanced, we transform the tree by a rotation.
- A rotation in an AVL tree is a local transformation of its subtree rooted at a node whose balance factor became either +2 or -2.
- If there are several such nodes, we rotate the subtree rooted at the unbalanced node that is the closest to the newly inserted leaf.

Single right rotation (R-rotation)

Single left rotation (L-rotation)

Double left-right rotation (LR-rotation)

Double right-left rotation (RL-rotation)

Single right rotation (R-rotation)

Single left rotation (L-rotation)

Double left-right rotation (LR-rotation)

Double left-right rotation (LR-rotation)

Example: Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive insertions

5

Example: Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive insertions

Example: Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7

by successive insertions

Example: Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive insertions

Example: Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive insertions

Example: Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive insertions

© S. Turaev CSC 3102 DSA II

16

Example: Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive insertions

Example: Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7

Example: Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive insertions

Example: Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive insertions

Example: Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive insertions

(2,4) Trees

Multi-Way Search Tree

Definition: A multi-way search tree (MST) is an ordered tree such that

- each internal (d -) node has at least two children and stores d-1 keys: $k_1 \le k_2 \le \cdots \le k_{d-1}$ where d is the number of children
- for a node with children $v_1, v_2, ..., v_d$ storing keys $k_1, k_2, ..., k_{d-1}$
 - keys in the subtree of v_1 are less than k_1
 - keys in the subtree of v_i are between k_{i-1} and k_i
 - ullet keys in the subtree of v_d are greater than k_{d-1}
- the leaves store no items and serve as placeholders

Multi-Way Search Tree

Example:

- At each internal node with children $v_1, v_2, ..., v_d$ and keys $k_1, k_2, ..., k_{d-1}$ storing keys
 - $\mathbf{k} = k_i$ (i = 1, 2, ..., d 1): the search terminates successfully
 - $k < k_1$: continue the search in child v_1
 - $k_i < k < k_{i+1}$: continue the search in child v_i
 - $k > k_{d-1}$: continue the search in child v_d
- Reaching an external node terminates the search unsuccessfully

Example: k = 30

Example: k = 30

Example: k = 30

Example: k = 30

Example: k = 31

(2,4) Trees

Definition: A **(2,4) tree** (also called **2-4 tree** or **2-3-4 tree**) is a multi-way search tree with the following properties:

- Node-Size Property:
 every internal node has at least two children and
 at most four children
- Depth Property:
 all the external nodes have the same depth
- Depending on the number of children, an internal node of a (2,4) tree is called a 2-node, 3-node or 4-node

(2,4) Trees

Example:

We insert a **new key k** at the **parent v** of the **leaf** (external node) reached by searching for k

- we preserve the depth property but
- we may cause an overflow, i.e., node v may become a
 5-node

Example: k = 30

34

Example: k = 30

Example: k = 30

Overflow & Split

We handle an overflow at a 5-node v with a split operation:

- let $v_1, ..., v_5$ be the children of v and $k_1, ..., k_4$ be the keys of v
- node v is replaced nodes v' and v''
- $\mathbf{v'}$ is a **3-node** with keys $\mathbf{k_1}$, $\mathbf{k_2}$ and children $\mathbf{v_1}$, $\mathbf{v_2}$, $\mathbf{v_3}$
- v'' is a **2-node** with key k_4 and children v_4 , v_5
- key k_3 is inserted into the **parent** u of v (a new root may be created)
- The overflow may propagate to the parent node u

Example: k = 30

Example: k = 30

Example: k = 30

Example: k = 30

- Reduce deletion of an entry to the case where the key is at the node with leaf children
- Otherwise, replace the entry with its inorder successor (or, equivalently, with its inorder predecessor) and delete the latter entry

Example: delete k = 2

Example: delete k = 2

44

Example: delete k = 24

Example: delete k = 24

- Deleting an entry from a node v may cause an underflow, where node v becomes a 1-node with one child and no keys
- To handle an **underflow** at node **v** with parent **u**, we consider **two** cases:

Case 1: the adjacent siblings of v are 2-nodes

Fusion operation: we merge v with an adjacent sibling w and move an entry from u to the merged node v'

47

 After a fusion, the underflow may propagate to the parent u

Example:

© S. Turaev CSC 3102 DSA II

48

Example:

Underflow & Transfer

Case 2: the adjacent sibling w of v is a 3-node or 4-node

- Transfer operation:
 - move a child of w to v
 - move a key from u to v
 - move a key from w to u
- After a transfer, no underflow occurs

Example:

Example:

Height of (2,4) Trees

Theorem: A (2,4) tree storing n keys has height $O(\log n)$.

Idea:

Height of (2,4) Trees

Theorem: A (2,4) tree storing n keys has height $O(\log n)$.

Proof:

- Let h be the height of a (2,4) tree with n keys
- Since there are at least 2^i keys at depth i = 0, ..., h 1 and no keys at depth h:

$$n \ge 1 + 2 + 4 + \dots + 2^{h-1} = 2^h - 1$$

■ Thus, $h \le \log(n + 1)$

Corollary: Searching in a (2,4) tree with n keys takes $O(\log n)$ time.

Analysis of Deletion

- Let T be a (2,4) tree with n keys
 - tree T has O(log n) height
- In a **deletion operation**:
 - we visit O(log n) nodes to locate the node from which to delete the entry
 - we handle an underflow with a series of O(log n) fusions, followed by at most one transfer
 - each fusion and transfer takes O(1) time
- Thus, **deleting an item** from a (2,4) tree takes O(log n) time

Exercise

- Construct a 2-4 tree from a list
 2, 13, 7, 16, 19, 9, 22, 10, 14, 17.
- Then, delete **19** from the 2-4 tree that you got.