MOSPOWER Data Book

B Siliconix

				_
Index	and	Cross	Reference	
	MI IM	0.000	1 1010101100	

- **Process Flows**
- Selector Guide
 - **Data Sheets**
- Switching Regulator and Controller ICs
 - MOSPOWER Die Products
 - Test Circuits
 - Package Outlines
 - Technical Information
- Worldwide Sales Offices and Distributors 10

1988

MOSPOWER DATA BOOK

Siliconix incorporated reserves the right to make changes in the circuitry or specifications at any time without notice and assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.

Warning Regarding Life Support Applications

Siliconix products are not sold for applications in any medical equipment intended for use as a component of any life support system unless a specific written agreement pertaining to such intended use is executed between the manufacturer and Siliconix. Such agreement will require the equipment manufacturer either to contract for additional reliability testing of the Siliconix parts and/or to commit to undertake such testing as a part of its manufacturing process. In addition, such manufacturer must agree to indemnify and hold Siliconix harmless from any claims arising out of the use of the Siliconix parts in life support equipment.

Stresses listed under "Absolute Maximum Ratings" may be applied (one at a time) to devices without resulting in permanent damage. This is a stress rating only and not subject to production testing. Exposure to absolute maximum rating conditions for extended periods may effect device reliability.

MOSPOWER DATA BOOK INTRODUCTION

Siliconix incorporated has been acknowledged as the leader in power MOSFET technology since MOSPOWER products were first introduced by the company in 1977. During the ensuing evolution from the original linear v-groove devices to today's high-density cellular structures, Siliconix has maintained this technological leadership in the design and manufacture of state-of-the-art MOSPOWER transistors.

One example of Siliconix' leadership position is the Class 1, 6-inch (150-mm) wafer fabrication area in the company's Santa Clara, California, factory. This MOSPOWER fabrication facility is the only one in the world today using 6-inch wafers in a Class 1 environment. Its extreme cleanliness and the use of direct stepper photo-lithographic technology permit Siliconix to manufacture large area, dense-cell MOSPOWER devices to meet the increasing performance requirements demanded by today's power switching applications.

Very large scale MOSPOWER products, such as the SME120N20, a 120-A device, can be fabricated with low defect levels in a Class 1 area. The importance of the degree of cleanliness is made apparent in the accompanying graph which was developed by the Thomas Group, an independent wafer fabrication design consultant. Siliconix is devoted to the implementation of such world-class standards in technology in its research and development, device design, manufacturing, and quality assurance organizations to ensure that the products it offers are the finest available.

TABLE OF CONTENTS

Section 1.	Index and Cross Reference
	Index
Section 2.	Process Flows
	Introduction
Section 3.	Selector Guide
	Hermetic TO-204 (TO-3) 3-7 TO-205 (TO-39) 3-6 TO-206 (TO-52) 3-6 TO-210 (TO-61), 14-Pin DIP (Side Braze) 3-6 MOD Package 3-7 Plastic 3-6 TO-92 3-6 TO-218, TO-220 3-6 TO-237 3-12 SOT-23 3-12 4-Pin FETDIP 3-14 14-Pin DIP 3-15
Section 4.	Data Sheets
	BS Series 4- BUZ Series 4-9 IRF Series 4-23 IRFD Series 4-26 IRFH Series 4-32 MOD Series 4-32 MOD Series 4-33 NOS Series 4-35 SME Series 4-35 SML Series 4-36 SMM Series 4-40 SMV Series 4-40 SMV Series 4-42 VN Series 4-43 VNT Series 4-46 VP Series 4-47
	2N Series 4–493

Section 5.	Switching Regulator and Controller ICs
	Si9100/Si9101 5-1 Si9102 5-8 Si9110/Si9111 5-15
Section 6.	MOSPOWER Die Products
Section 7.	Test Circuits
Section 8.	Package Outlines8-1
Section 9.	Technical Information
	Introduction to MOSPOWER
Section 10.	. Worldwide Sales Offices and Distributors

Index and Cross Reference

Process Flows 2

Selector Guide 3

Data Sheets 4

Switching Regulator and Controller ICs 5

MOSPOWER Die Products 6

Test Circuits 7

Package Outlines 8

Technical Information 9

Worldwide Sales Offices and Distributors 10

INDEX

BS208 4-487	IRF341 4-127	IRF740 4–191
BS2504-1	IRF342 4-127	IRF741 4-191
BSR66 4-435	IRF343 4-127	IRF742 4–191
BSR67 4-441	IRF350 4-131	IRF743 4–191
BSR76 4-459	IRF351 4-131	IRF820 4-195
BSS92 4-487	IRF352 4-131	IRF821 4-195
BSS129 4-355	IRF353 4–131	IRF822 4–195
BUZ10 4-3	IRF430 4-135	IRF823 4-195
BUZ11 4-7	IRF431 4-135	IRF830 4–199
BUZ11A 4-11	IRF432 4-135	IRF831 4-199
BUZ11S2 4-7	IRF433 4-135	IRF832 4–199
	IRF440 4–139	
BUZ14 4–15		IRF833 4–199
BUZ15 4–19	IRF441 4-139	IRF840 4-203
BUZ20 4-23	IRF442 4-139	IRF841 4-203
BUZ21 4-27	IRF443 4-139	IRF842 4-203
BUZ23 4–31	IRF450 4–143	IRF843 4-203
BUZ24 4-35	IRF451 4–143	IRF9130 4-207
BUZ25 4–39	IRF452 4-143	IRF9131 4-207
BUZ31 4-43	IRF453 4-143	IRF9132 4-207
BUZ32 4-47	IRF510 4-147	IRF9133 4-207
BUZ34 4-51	IRF511 4-147	IRF9230 4-211
BUZ35 4-55	IRF512 4–147	IRF9231 4-211
BUZ36 4-59	IRF513 4–147	IRF9232 4-211
BUZ41A 4-63	IRF520 4-151	IRF9233 4-211
BUZ42 4–67	IRF521 4-151	IRF9520 4-215
BUZ44A 4-71	IRF522 4-151	IRF9521 4-215
BUZ45 4-75	IRF523 4-151	IRF9522 4-215
BUZ45A 4-75	IRF530 4–155	IRF9523 4-215
BUZ60 4-79	IRF531 4-155	IRF9530 4-219
BUZ63 4-83	IRF532 4-155	IRF9531 4-219
BUZ64 4-87	IRF533 4-155	IRF9532 4-219
BUZ71 4–91	IRF540 4-159	IRF9533 4-219
BUZ71A 4-91	IRF541 4-159	IRF9620 4-223
BUZ171 4-95	IRF542 4–159	IRF9621 4-223
IRF130 4-99	IRF543 4–159	IRF9622 4-223
IRF131 4-99	IRF610 4-163	IRF9623 4-223
IRF132 4-99	IRF611 4-163	IRF9630 4-227
IRF133 4-99	IRF612 4-163	IRF9631 4-227
IRF140 4-103	IRF613 4-163	IRF9632 4-227
IRF141 4–103	IRF620 4–167	IRF9633 4-227
		IRFD020 4-231
IRF142 4-103		
IRF143 4-103	IRF622 4-167	IRFD022 4-231
IRF150 4–107	IRF623 4-167	IRFD110 4-235
IRF151 4-107	IRF630 4-171	IRFD113 4-235
IRF152 4-107	IRF631 4-171	IRFD120 4-239
IRF153 4–107	IRF632 4–171	IRFD123 4–239
IRF230 4-111	IRF633 4–171	IRFD210 4-243
IRF231 4-111	IRF640 4-175	IRFD213 4-243
IRF232 4-111	IRF641 4-175	IRFD220 4-247
IRF233 4-111	IRF642 4-175	IRFD223 4-247
IRF240 4–115	IRF643 4–175	IRFD9020 4-251
IRF241 4–115	IRF710 4-179	IRFD9022 4-251
IRF242 4-115	IRF711 4–179	IRFD9120 4-255
IRF243 4-115	IRF712 4-179	IRFD9123 4-255
IRF250 4-119	IRF713 4-179	IRFD9220 4-259
IRF251 4-119	IRF720 4-183	IRFD9223 4-259
IRF252 4–119	IRF721 4–183	IRFF110 4-263
IRF253 4–119	IRF722 4–183	IRFF111 4–263
IRF330 4-123	IRF723 4–183	IRFF112 4-263
IRF331 4-123	IRF730 4-187	IRFF113 4-263
IRF332 4-123	IRF731 4-187	IRFF120 4-267
IRF333 4-123	IRF732 4–187	IRFF121 4-267
IRF340 4–127	IRF733 4–187	IRFF122 4–267
IDE34U 4-14/	nn 700	122 4-201

IRFF123 4-267	MOD500B 4-351	VP1008B 4-481
IRFF130 4-271	MOD500C 4-351	VP1008L 4-481
IRFF131 4–271	NOS2012L 4-355	VP1008M 4-481
IRFF132 4-271	NOS2406L 4-357	VP2020L 4-487
IRFF133 4-271	SI9100 5-1	VP2410L 4-489
IRFF210 4–275		
	Si9101 5-1	VP4030L 4-491
IRFF211 4-275	Si9102 5-8	2N6661 4-441
IRFF212 4-275	Si9110 5-15	2N6756 4-493
IRFF213 4-275	SI9111 5-15	2N6758 4–497
IRFF220 4–279	SME50N50 4-359	2N6760 4-501
IRFF221 4-279	SME120N20 4-361	2N6762 4-505
IRFF222 4–279	SML2P15 4-363	2N6764 4-509
IRFF223 4-279	SML2P20 4-363	2N6766 4-513
IRFF230 4-283	SML3P06 4-367	2N6768 4–517
IRFF231 4-283	SML3P10 4-367	2N6770 4–521
IRFF2324-283	SMM9P15 4-371	2N6782 4-525
IRFF2334-283	SMM11P20 4-371	2N6784 4-529
IRFF310 4-287	SMM14N65 4-375	2N6786 4-533
IRFF311 4-287	SMM16P06 4-383	2N6788 4-537
IRFF312 4-287	SMM20N50 4-379	2N6790 4-541
IRFF3134-287	SMM20P10 4-383	2N6792 4-545
IRFF320 4-291	SMM24N40 4-387	2N6794 4–549
IRFF321 4-291	SMM40N20 4-391	2N6796 4-553
IRFF322 4-291	SMM60N05 4-395	2N6798 4-557
IRFF3234-291	SMM60N06 4-395	2N6800 4-561
IRFF330 4-295	SMM70N05 4-399	2N6802 4-565
IRFF331 4-295		
	SMM70N06 4-399	2N6804 4-569
IRFF332 4-295	SMP2P15 4-403	2N6806 4-573
IRFF333 4-295	SMP2P20 4-403	2N6845 4-577
IRFF420 4-299	SMP3P06 4-407	2N6847 4-581
IRFF421 4–299	SMP3P10 4-407	2N6849 4-585
IRFF422 4-299	SMP9P15 4-411	2N6851 4-589
IRFF423 4-299	SMP11P20 4-411	2N6962 4-593
IRFF4304-303	SMP16P06 4-415	2N6963 4-597
IRFF431 4-303	SMP20P10 4-415	2N6964 4-601
IRFF432 4-303	SMP25N05 4-419	2N6965 4-605
IRFF433 4-303	SMP25N06 4-419	2N7000 4-609
IRFF9120 4-307	SMP50N05 4-423	2N7001 4-627
IRFF9121 4-307	SMP50N06 4-423	2N7002 4-609
IDEE0100 4 207	CMDCONICE 4 400	01/7004 4 045
IRFF9122 4–307	SMP60N05 4-423	2N7004 4-615
IRFF9123 4-307	SMP60N06 4-423	2N7005 4-619
IRFF9123 4–307 IRFF9130 4–311	SMP60N06 4-423 SMV1P06 4-427	2N7005 4-619 2N7006 4-623
IRFF9123	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427	2N7005 4-619 2N7006 4-623 2N7007 4-627
IRFF9123 4–307 IRFF9130 4–311 IRFF9131 4–311 IRFF9132 4–311	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609
IRFF9123 4-307 IRFF9130 4-311 IRFF9131 4-311 IRFF9132 4-311 IRFF9133 4-311	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633
IRFF9123 4–307 IRFF9130 4–311 IRFF9131 4–311 IRFF9132 4–311	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609
IRFF9123 4-307 IRFF9130 4-311 IRFF9131 4-311 IRFF9132 4-311 IRFF9133 4-311	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633
IRFF9123 4-307 IRFF9130 4-311 IRFF9131 4-311 IRFF9132 4-311 IRFF9133 4-311 IRFF9220 4-315 IRFF9221 4-315	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0606M 4-435	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633 2N7014 4-637
IRFF9123 4-307 IRFF9130 4-311 IRFF9131 4-311 IRFF9132 4-311 IRFF9133 4-311 IRFF9220 4-315 IRFF9221 4-315 IRFF9222 4-315	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0606M 4-435 VN0610L 4-447	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633 2N7014 4-637 2N7016 4-641
IRFF9123 4-307 IRFF9130 4-311 IRFF9131 4-311 IRFF9132 4-311 IRFF9133 4-311 IRFF9220 4-315 IRFF9221 4-315 IRFF9222 4-315 IRFF9223 4-315	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0610L 4-447 VN0808L 4-441	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633 2N7014 4-637 2N7016 4-641 2N7019 4-475
IRFF9123 4-307 IRFF9130 4-311 IRFF9131 4-311 IRFF9132 4-311 IRFF9133 4-311 IRFF9220 4-315 IRFF9221 4-315 IRFF9222 4-315 IRFF9223 4-315 IRFF9223 4-315 IRFF9230 4-319	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0606M 4-435 VN0610L 4-447	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633 2N7014 4-637 2N7016 4-641 2N7019 4-355
IRFF9123 4-307 IRFF9130 4-311 IRFF9131 4-311 IRFF9132 4-311 IRFF9133 4-311 IRFF9220 4-315 IRFF9221 4-315 IRFF9222 4-315 IRFF9223 4-315	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0610L 4-447 VN0808L 4-441	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633 2N7014 4-637 2N7016 4-641 2N7019 4-355
IRFF9123 4-307 IRFF9130 4-311 IRFF9131 4-311 IRFF9132 4-311 IRFF9133 4-311 IRFF9220 4-315 IRFF9221 4-315 IRFF9222 4-315 IRFF9223 4-315 IRFF9223 4-315 IRFF9230 4-319 IRFF9231 4-319	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0610L 4-447 VN0808L 4-441 VN0808M 4-441 VN10KE 4-447	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633 2N7014 4-637 2N7016 4-641 2N7019 4-475 2N7020 4-355 2N7021 4-491
IRFF9123 4-307 IRFF9130 4-311 IRFF9131 4-311 IRFF9132 4-311 IRFF9133 4-311 IRFF9220 4-315 IRFF9221 4-315 IRFF9222 4-315 IRFF9223 4-315 IRFF9230 4-319 IRFF9231 4-319 IRFF9231 4-319	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0610L 4-435 VN0610L 4-447 VN0808L 4-441 VN10KE 4-447 VN10KM 4-447	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633 2N7014 4-637 2N7016 4-641 2N7019 4-475 2N7020 4-355 2N7021 4-491 2N7022 4-465
IRFF9123 4-307 IRFF9130 4-311 IRFF9131 4-311 IRFF9132 4-311 IRFF9133 4-311 IRFF920 4-315 IRFF9221 4-315 IRFF9222 4-315 IRFF9223 4-315 IRFF9233 4-319 IRFF9231 4-319 IRFF9232 4-319 IRFF9233 4-319 IRFF9233 4-319	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0610L 4-447 VN0808L 4-441 VN0808M 4-441 VN10KE 4-447 VN10KM 4-447 VN2010L 4-453	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633 2N7014 4-637 2N7016 4-641 2N7019 4-475 2N7020 4-355 2N7021 4-491 2N7023 4-465 2N7023 4-487
IRFF9123 4-307 IRFF9130 4-311 IRFF9131 4-311 IRFF9132 4-311 IRFF9133 4-311 IRFF920 4-315 IRFF9221 4-315 IRFF9221 4-315 IRFF9222 4-315 IRFF9233 4-316 IRFF9230 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9233 4-319	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0610L 4-447 VN0808L 4-441 VN0808M 4-441 VN10KE 4-447 VN10KM 4-447 VN2010L 4-453 VN2406L 4-459	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633 2N7014 4-637 2N7016 4-641 2N7019 4-475 2N7020 4-355 2N7021 4-491 2N7022 4-465
IRFF9123 4-307 IRFF9130 4-311 IRFF9131 4-311 IRFF9132 4-311 IRFF9133 4-311 IRFF920 4-315 IRFF9221 4-315 IRFF9222 4-315 IRFF9223 4-315 IRFF9233 4-319 IRFF9231 4-319 IRFF9232 4-319 IRFF9233 4-319 IRFF9233 4-319	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0610L 4-447 VN0808L 4-441 VN0808M 4-441 VN10KE 4-447 VN10KM 4-447 VN2010L 4-453 VN2406L 4-459	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633 2N7014 4-637 2N7016 4-641 2N7020 4-355 2N7021 4-491 2N7022 4-465 2N7023 4-487 2N7024 4-357
IRFF9123 4-307 IRFF9130 4-311 IRFF9131 4-311 IRFF9132 4-311 IRFF9133 4-311 IRFF9220 4-315 IRFF9221 4-315 IRFF9222 4-315 IRFF9223 4-315 IRFF9230 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9232 4-319 IRFF9233 4-319 IRFF9233 4-319 IRFF9233 4-319 IRFF9233 4-319 IRFF9233 4-319 IRFF9234 4-323 IRFH250 4-327	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0610L 4-447 VN0808L 4-441 VN0808M 4-441 VN10KE 4-447 VN10KM 4-447 VN2010L 4-453 VN2406L 4-459 VN2410L 4-459	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633 2N7014 4-637 2N7019 4-475 2N7020 4-355 2N7021 4-491 2N7023 4-487 2N7024 4-357 2N7025 4-1
IRFF9123 4-307 IRFF9130 4-311 IRFF9131 4-311 IRFF9132 4-311 IRFF9133 4-311 IRFF9220 4-315 IRFF9221 4-315 IRFF9222 4-315 IRFF9223 4-315 IRFF9223 4-315 IRFF9230 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9232 4-319 IRFF9233 4-319 IRFF9233 4-319 IRFF9233 4-319 IRFF9234 4-319 IRFF9235 4-327 IRFH350 4-327	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0610L 4-447 VN0808L 4-441 VN10KE 4-447 VN10KM 4-447 VN2010L 4-453 VN2406L 4-459 VN2410L 4-459 VN2410M 4-459 VN2410M 4-459	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633 2N7014 4-637 2N7019 4-475 2N7020 4-355 2N7021 4-491 2N7022 4-465 2N7024 4-357 2N7025 4-1 2N7026 4-1
IRFF9123 4-307 IRFF9130 4-311 IRFF9131 4-311 IRFF9132 4-311 IRFF9133 4-311 IRFF9220 4-315 IRFF9221 4-315 IRFF9222 4-315 IRFF9223 4-315 IRFF9223 4-319 IRFF9230 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9232 4-319 IRFF9233 4-319 IRFF9233 4-319 IRFF9233 4-319 IRFF9234 4-319 IRFF9235 4-327 IRFH350 4-327 IRFH350 4-331 IRFH450 4-335	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0610L 4-447 VN0808L 4-441 VN10KE 4-447 VN10KE 4-447 VN10KM 4-447 VN2010L 4-453 VN2406L 4-459 VN2410L 4-459 VN2410M 4-459 VN3515L 4-465	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7014 4-637 2N7016 4-641 2N7020 4-355 2N7021 4-491 2N7023 4-487 2N7024 4-357 2N7025 4-41 2N7026 4-1 2N7027 4-1
IRFF9123 4-307 IRFF9130 4-311 IRFF9131 4-311 IRFF9132 4-311 IRFF9133 4-311 IRFF9220 4-315 IRFF9221 4-315 IRFF9222 4-315 IRFF9223 4-315 IRFF9230 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9232 4-319 IRFF9230 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9233 4-319 IRFF9233 4-319 IRFF9233 4-319 IRFH350 4-323 IRFH450 4-327 IRFH350 4-331 IRFH450 4-335 MOD100A 4-339	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0610L 4-447 VN0808L 4-441 VN0808M 4-441 VN10KE 4-447 VN10KM 4-447 VN2010L 4-453 VN2410L 4-459 VN2410M 4-459 VN3515L 4-465 VN4012L 4-465	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633 2N7014 4-637 2N7016 4-641 2N7020 4-355 2N7021 4-491 2N7022 4-465 2N7023 4-487 2N7024 4-357 2N7025 4-1 2N7026 4-1 2N7027 4-1 2N7030 4-489
IRFF9123 4-307 IRFF9130 4-311 IRFF9131 4-311 IRFF9132 4-311 IRFF9133 4-311 IRFF9220 4-315 IRFF9221 4-315 IRFF9222 4-315 IRFF9223 4-315 IRFF9223 4-319 IRFF9230 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9232 4-319 IRFF9233 4-319 IRFF9233 4-319 IRFF9233 4-319 IRFF9234 4-319 IRFF9235 4-327 IRFH350 4-327 IRFH350 4-331 IRFH450 4-335	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0610L 4-447 VN0808L 4-441 VN10KE 4-447 VN10KE 4-447 VN10KM 4-447 VN2010L 4-453 VN2406L 4-459 VN2410L 4-459 VN2410M 4-459 VN3515L 4-465	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7014 4-637 2N7016 4-641 2N7020 4-355 2N7021 4-491 2N7023 4-487 2N7024 4-357 2N7025 4-41 2N7026 4-1 2N7027 4-1
IRFF9123 4-307 IRFF9130 4-311 IRFF9131 4-311 IRFF9132 4-311 IRFF9133 4-311 IRFF9220 4-315 IRFF9221 4-315 IRFF9222 4-315 IRFF9223 4-315 IRFF9230 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9232 4-319 IRFF9233 4-319 IRFH9230 4-323 IRFH250 4-323 IRFH250 4-327 IRFH350 4-331 IRFH450 4-335 MOD100A 4-339 MOD100B 4-339	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0610L 4-447 VN0808L 4-441 VN0808M 4-441 VN10KE 4-447 VN10KM 4-447 VN2010L 4-453 VN2406L 4-459 VN2410L 4-459 VN3515L 4-465 VN4012L 4-465 VNS008A 4-467	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633 2N7014 4-637 2N7016 4-641 2N7020 4-355 2N7021 4-491 2N7023 4-487 2N7024 4-357 2N7025 4-1 2N7026 4-1 2N7027 4-1 2N7030 4-489 2N7054 4-65
IRFF9123 4-307 IRFF9130 4-311 IRFF9131 4-311 IRFF9132 4-311 IRFF9133 4-311 IRFF9220 4-315 IRFF9221 4-315 IRFF9221 4-315 IRFF9223 4-315 IRFF9223 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9232 4-319 IRFF9232 4-319 IRFF9233 4-319 IRFF9233 4-319 IRFH250 4-323 IRFH250 4-327 IRFH350 4-331 IRFH450 4-335 MOD100A 4-339 MOD100B 4-339 MOD100B 4-339	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0606M 4-435 VN0610L 4-447 VN0808L 4-441 VN10KE 4-447 VN10KM 4-447 VN10KM 4-447 VN2010L 4-453 VN2410L 4-459 VN2410L 4-459 VN2410M 4-459 VN2410M 4-459 VN2410M 4-459 VN3515L 4-465 VN4012L 4-465 VNS008A 4-467 VNS008A 4-467 VNS008D 4-471	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633 2N7014 4-637 2N7019 4-475 2N7020 4-355 2N7021 4-491 2N7022 4-487 2N7023 4-487 2N7024 4-357 2N7025 4-1 2N7026 4-1 2N7027 4-1 2N7030 4-489 2N7054 4-645 2N7055 4-649
IRFF9123 4-307 IRFF9130 4-311 IRFF9131 4-311 IRFF9132 4-311 IRFF9133 4-311 IRFF9220 4-315 IRFF9221 4-315 IRFF9222 4-315 IRFF9223 4-315 IRFF9223 4-315 IRFF9230 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9232 4-319 IRFF9233 4-319 IRFF9233 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFH150 4-323 IRFH450 4-327 IRFH350 4-331 IRFH450 4-339 MOD100A 4-339 MOD100B 4-339 MOD100C 4-339 MOD100C 4-339 MOD100C 4-339	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0610L 4-447 VN0808L 4-441 VN10KE 4-447 VN10KM 4-447 VN2010L 4-453 VN2406L 4-459 VN2410L 4-459 VN2410M 4-459 VN3515L 4-465 VNS008A 4-465 VNS008D 4-471 VNS009A 4-467	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633 2N7014 4-637 2N7019 4-475 2N7020 4-355 2N7021 4-491 2N7022 4-465 2N7023 4-487 2N7024 4-357 2N7025 4-1 2N7026 4-1 2N7030 4-489 2N7054 4-645 2N7055 4-645 2N7055 4-649 2N7057 4-653
IRFF9123 4-307 IRFF9130 4-311 IRFF9131 4-311 IRFF9132 4-311 IRFF9133 4-311 IRFF9220 4-315 IRFF9221 4-315 IRFF9222 4-315 IRFF9223 4-315 IRFF9223 4-319 IRFF9230 4-319 IRFF9231 4-319 IRFH150 4-323 IRFH250 4-327 IRFH350 4-331 IRFH450 4-335 MOD100A 4-339 MOD100B 4-339 MOD100C 4-339 MOD100C 4-339 MOD200A 4-343 MOD200B 4-343	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0610L 4-447 VN0808L 4-441 VN10KE 4-447 VN10KM 4-447 VN2010L 4-453 VN2406L 4-459 VN2410L 4-459 VN2410M 4-459 VN3515L 4-465 VN4012L 4-465 VNS008A 4-467 VNS008A 4-467 VNS009A 4-471 VNS009D 4-471	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633 2N7014 4-637 2N7019 4-475 2N7020 4-355 2N7021 4-491 2N7022 4-487 2N7023 4-487 2N7024 4-357 2N7025 4-1 2N7026 4-1 2N7027 4-1 2N7030 4-489 2N7054 4-645 2N7055 4-649
IRFF9123 4-307 IRFF9130 4-311 IRFF9131 4-311 IRFF9132 4-311 IRFF9133 4-311 IRFF9220 4-315 IRFF9221 4-315 IRFF9222 4-315 IRFF9223 4-315 IRFF9223 4-315 IRFF9230 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9232 4-319 IRFF9233 4-319 IRFF9233 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFF9231 4-319 IRFH150 4-323 IRFH450 4-327 IRFH350 4-331 IRFH450 4-339 MOD100A 4-339 MOD100B 4-339 MOD100C 4-339 MOD100C 4-339 MOD100C 4-339	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0610L 4-447 VN0808L 4-441 VN10KE 4-447 VN10KM 4-447 VN2010L 4-453 VN2406L 4-459 VN2410L 4-459 VN2410M 4-459 VN3515L 4-465 VNS008A 4-465 VNS008D 4-471 VNS009A 4-467	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633 2N7014 4-637 2N7019 4-475 2N7020 4-355 2N7021 4-491 2N7022 4-465 2N7023 4-487 2N7024 4-357 2N7025 4-1 2N7026 4-1 2N7030 4-489 2N7054 4-645 2N7055 4-645 2N7055 4-649 2N7057 4-653
IRFF9123	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0610L 4-447 VN0808L 4-441 VN10KE 4-447 VN10KE 4-447 VN10KM 4-447 VN2010L 4-453 VN2410L 4-459 VN2410L 4-459 VN3515L 4-465 VNS008A 4-467 VNS008D 4-471 VNS009D 4-471 VNT008A 4-467 VNS009D 4-471 VNT008A 4-67	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7014 4-637 2N7016 4-641 2N7020 4-355 2N7021 4-491 2N7023 4-487 2N7024 4-357 2N7025 4-1 2N7026 4-1 2N7030 4-489 2N7054 4-64 2N7055 4-64 2N7056 4-64 2N7057 4-64 2N7058 4-649 2N7058 4-657 2N7060 4-661
IRFF9123	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0606M 4-435 VN0610L 4-447 VN0808L 4-441 VN0808M 4-441 VN10KE 4-447 VN10KM 4-447 VN10KM 4-459 VN2410L 4-459 VN2410L 4-459 VN2410L 4-459 VN2410L 4-459 VN3515L 4-465 VN3008A 4-467 VN5009A 4-467 VNS009D 4-471 VNT008A 4-467 VNS009D 4-471 VNT008A 4-467	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633 2N7014 4-637 2N7019 4-475 2N7020 4-355 2N7021 4-491 2N7023 4-487 2N7024 4-357 2N7025 4-1 2N7026 4-1 2N7030 4-489 2N7054 4-645 2N7055 4-649 2N7057 4-649 2N7057 4-657 2N7058 4-657 2N7060 4-661 2N7061 4-665
IRFF9123	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0606M 4-435 VN0610L 4-447 VN0808L 4-441 VN0808M 4-441 VN10KE 4-447 VN10KM 4-447 VN10KM 4-459 VN2410L 4-459 VN2410L 4-459 VN2410L 4-459 VN2410L 4-459 VN2410M 4-459 VN3515L 4-465 VN4012L 4-465 VN5008A 4-467 VNS009D 4-471 VNS009D 4-471 VNT008A 4-467 VNT008D 4-471	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633 2N7014 4-637 2N7019 4-475 2N7020 4-355 2N7021 4-491 2N7022 4-465 2N7023 4-487 2N7024 4-357 2N7025 4-1 2N7027 4-1 2N7030 4-489 2N7054 4-645 2N7055 4-649 2N7057 4-653 2N7058 4-657 2N7060 4-661 2N7061 4-665 2N7063 4-669
IRFF9123	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0606M 4-435 VN0610L 4-447 VN0808M 4-441 VN10KE 4-447 VN10KM 4-447 VN2010L 4-453 VN2406L 4-459 VN2410L 4-459 VN2410L 4-459 VN3515L 4-65 VN4012L 4-65 VN3008A 4-467 VN5008A 4-467 VN5009A 4-467 VNS009D 4-471 VNT008A 4-467 VNT009A 4-467	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633 2N7014 4-637 2N7029 4-35 2N7020 4-355 2N7021 4-491 2N7022 4-465 2N7023 4-487 2N7024 4-357 2N7025 4-1 2N7027 4-1 2N7030 4-489 2N7054 4-645 2N7055 4-649 2N7057 4-653 2N7058 4-657 2N7061 4-661 2N7063 4-669 2N7064 4-673
IRFF9123	SMP60N06 4-423 SMV1P06 4-427 SMV1P10 4-427 SMV1P10 4-427 SMV1P15 4-431 SMV1P20 4-431 VN0606L 4-435 VN0606M 4-435 VN0610L 4-447 VN0808L 4-441 VN0808M 4-441 VN10KE 4-447 VN10KM 4-447 VN10KM 4-459 VN2410L 4-459 VN2410L 4-459 VN2410L 4-459 VN2410L 4-459 VN2410M 4-459 VN3515L 4-465 VN4012L 4-465 VN5008A 4-467 VNS009D 4-471 VNS009D 4-471 VNT008A 4-467 VNT008D 4-471	2N7005 4-619 2N7006 4-623 2N7007 4-627 2N7008 4-609 2N7012 4-633 2N7013 4-633 2N7014 4-637 2N7019 4-475 2N7020 4-355 2N7021 4-491 2N7022 4-465 2N7023 4-487 2N7024 4-357 2N7025 4-1 2N7027 4-1 2N7030 4-489 2N7054 4-645 2N7055 4-649 2N7057 4-653 2N7058 4-657 2N7060 4-661 2N7061 4-665 2N7063 4-669

Cross Reference

ndustry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent	industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent	Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivaler
NO110NA		SNO120NA*	BUZ36	BUZ36		D84CM1	IRF621	
NO120NA	SNO120NA*	100	BUZ40		IRF822	D84CM2	IRF621	
NO120NB	SNO120NB*		BUZ41		IRF842	D84CN1	IRF620	
NO130NA	SNO130NA*		BUZ41A	BUZ41A		D84CN2	IRF620	
NO130NB	SNO130NB*		BUZ41B		IRF831	D84CQ1	IRF721	
NO140NA	SNO140NA*		BUZ42	BUZ42		D84CQ2	IRF720	
NO140NB	SNO140NB*		BUZ42A		IRF833	D84CR1	IRF821	
VN0306		IRF531	BUZ42B		IRF820	D84DK1	IRF543	
VN0310		IRF530	BUZ42C		IRF821	D84DK2	IRF543	
VN0315		IRF631	BUZ42D		IRF822	D84DL1		IRF530
VN0320		IRF630	BUZ43	IRF432		D84DL2		IRF530
VN0335		IRF731	BUZ44		IRF442	D84DM2	IRF631	
VN0340		IRF730	BUZ44A	BUZ44A		D84DN1	IRF630	
VN0345		IRF831	BUZ44B		IRF431	D84DN2	IRF630	
VN0350		IRF830	BUZ45	BUZ45		D84DQ1		IRF731
VN2106		IRF511	BUZ45A	BUZ45A		D84DQ2	BUZ60	
VN2110		IRF510	BUZ45B	IRF452		D84DR1	50200	IRF831
VN2115		IRF611	BUZ45C	IRF453		D84DR2		IRF830
VN2120		IRF610	BUZ46	IRF432		D84EK1	IRF541	11 11 000
VN2135		IRF711	BUZ46A	IN 402	IRF433	D84EK2	IRF541	
					IRF432		IRF540	
VN2140	BS107*	IRF710	BUZ46B BUZ47		IRF442	D84EL1 D84EL2	IRF540	
S107	BS107*				IRF452		IRF641	
S170	BS170*		BUZ48			D84EM1		
S208	BS208		BUZ48A	DU 700	IRF452	D84EM2	IRF641	
S250	BS250		BUZ60	BUZ60	10574	D84EN1	IRF640	
SR64	BSR64*		BUZ60A		IRF731	D84EN2	IRF640	
SR65	BSR65*	1.3	BUZ60B	VN4001D		D84EQ1	IRF741	
SR66	BSR66		BUZ63	BUZ63		D84EQ2	IRF740	
SR67	BSR67		BUZ63A		IRF331	D84ER1	IRF841	
SR76	BSR76		BUZ63B	IRF332		D84ER2	IRF840	
SR78	BSR78*		BUZ63C		IRF333	D86DK1	IRF131	
SR80	BSR80*		BUZ63D		IRF332	D86DK2	IRF131	
SS92	BSS92*		BUZ64	BUZ64		D86DL1	IRF130	
SS129	BSS129*		BUZ64A		IRF353	D86DL2	IRF130	
ST72	VN1210L*		BUZ71	BUZ71		D86DM1	IRF231	
ST72A	VN1210L*		BUZ71A	BUZ71A		D86DM2	IRF231	
UP60	IRF331	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BUZ72	IRF530		D86DN1	IRF230	
UP61	IRF331		BUZ72A		IRF532	D86DN2	IRF230	
UP62	IRF330		BUZ73	IRF630		D86DQ1	IRF331	
UP63	IRF332		BUZ73A	IRF632		D86DQ2	IRF330	
				INFOSE	IRF820	D86DR1	IRF431	
UP64	IRF431		BUZ74	105000	INFOZU	D86DR2	IRF430	
UP65	IRF433		BUZ74A	IRF820	IDE700		IRF141	
UP66	IRF430		BUZ76	ID 5700	IRF720	D86EK1		
UP67	IRF432		BUZ76A	IRF722		D86EK2	IRF141	
UZ10	BUZ10		BUZ171	BUZ171		D86EL1	IRF140	
UZ10A	BUZ10	9 9 9 9 9	D82AK1	IRFD123		D86EL2	IRF140	
UZ10B		IRF533	D82AK2	IRFD123		D86EM1	IRF241	
UZ11	BUZ11		D82AL1	2N7004		D86EM2	IRF241	
UZ11A	BUZ11A		D82AL2	2N7004		D86EN1	IRF240	
UZ11S2	BUZ11S2		D82AM1	IRFD223		D86EN2	IRF240	
JZ14	BUZ14		D82AN1	2N7005		D86EQ1	IRF340	
JZ14A		IRF151	D82BK1	IRFD123		D86EQ2	IRF340	
JZ14B		IRF153	D82BK2	2N7004		D86ER1	IRF440	
JZ140		IRF131	D82BL1	2N7004		D86ER2	IRF440	
JZ140 JZ14D		IRF133	D82BL2	2N7004		D86FK1	IRF151	
UZ14D	BUZ15		D82BM1	IRFD223		D86FK2	IRF151	
JZ 15 JZ20	BUZ20		D82BM2	2N7005		D86FL1	IRF150	
	80220	IDEECC	D82BN1			D86FL2	IRF150	
JZ20A		IRF532		2N7005			IRF251	
JZ20B		IRF520	D82CK1	IRFD120		D86FM1		
UZ21	BUZ21		D82CK2	IRFD120		D86FM2	IRF251	
JZ23	BUZ23		D82CL1	IRFD120		D86FN1	IRF250	
UZ23A		IRF130	D82CL2	IRFD120		D86FN2	IRF250	
JZ23B		IRF132	D82CM1	2N7005		D86FQ1	IRF351	
UZ24	BUZ24		D82CM2	2N7005		D86FQ2	IRF350	
JZ24A		IRF150	D82CN1	IRFD220		D86FR1	IRF451	
UZ24B		IRF152	D82CN2	IRFD220		D86FR2	IRF450	
JZ25	BUZ25		D84BK1	IRF511		F84BK2	IRF511	
UZ30	•	IRF632	D84BL1	IRF510		GF4A4		IRF510
JZ31	BUZ31		D84BL2	IRF510		GF4A8		IRF520
UZ32	BUZ32		D84BM1	IRF611		GF4A14		IRF530
UZ32A	ے حص	IRF631	D84BM2	IRF611		GF4A27		IRF540
		IRF632	D84BN1	IRF610		GF4B18		IRF640
JZ32B				IRF610		GF4B2		IRF610
JZ32C	ID FOCO	IRF632	D84BN2	IRF610		GF485		IRF620
JZ33	IRF232	ID FOCT	D84BQ1					
UZ33A		IRF232	D84BQ2	IRF710		GF4B9		IRF630
JZ33B		IRF233	D84CK1	IRF521		GF4D1		IRF710
JZ34	BUZ34		D84CK2	IRF521		GF4D3		IRF720
JZ35	BUZ35		D84CL1	IRF520		GF4D5		IRF730

^{*} Consult your local sales representative for device data

Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent	Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent	Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent
3F4E2	· · · · · · · · · · · · · · · · · · ·	IRF820	IRF353	IRF353		IRF9132	IRF9132	
3F4E4		IRF830	IRF420		IRF432	IRF9133	IRF9133	
GF4E8		IRF840	IRF421		IRF433	IRF9140	SMM20P10	
3F6A14		IRF130	IRF422		IRF432	IRF9141	SMM20P10	
3F6A27		IRF140	IRF423		IRF433	IRF9142	SMM20P10	
F6A40		IRF150	IRF430	IRF430		IRF9143	SMM16P06	
F6B9		IRF230	IRF431	IRF431		IRF9230	IRF9230	
3F6B18		IRF240	IRF432	IRF432		IRF9231	IRF9231	
3F6B30		IRF250	IRF433	IRF433		IRF9232	IRF9232	
3F6D5		IRF330	IRF440	IRF440		IRF9233	IRF9233	
3F6D10		IRF340	IRF441	IRF441		IRF9240	SMM11P20	
3F6D15		IRF350	IRF442	IRF442		IRF9241	SMM11P20	
3F6E4		IRF430	IRF443	IRF443		IRF9242	SMM11P20	
SF6E8		IRF440	IRF450	IRF450		IRF9243	SMM9P15	
3F6E13		IRF450	IRF451	IRF451		IRF9510	SMP3P10	
F8A40		2N7054	IRF452	IRF452		IRF9511	SMP3P10	
F8B30		2N7055	IRF453	IRF453		IRF9512	SMP3P10	
F8D15		2N7057	IRF510	IRF510	·	IRF9513	SMP3P06	
F8E13		2N7058	IRF511	IRF511		IRF9520	IRF9520	
M510P	BUZ10		IRF512	IRF512		IRF9521	IRF9521	
IPWR4520	IRF520		IRF513	IRF513		IRF9522	IRF9522	
IPWR4521	IRF521		IRF520	IRF520		IRF9523	IRF9523	
IPWR4522	IRF522		IRF521	IRF521		IRF9530	IRF9530	
IPWR4523	IRF523		IRF522	IRF522		IRF9531	IRF9531	
IPWR6501	IRF441		IRF523	IRF523		IRF9532	IRF9532	
PWR6502	IRF340		IRF530	IRF530		IRF9533	IRF9533	
PWR6503	IRF441		IRF531	IRF531		IRF9540	SMP20P10	
PWR6504		IRF332	IRF532	IRF532		IRF9541	SMP20P10	
IPWR6505	IRF330		IRF533	IRF533		IRF9542	SMP20P10	
IPWR6506	IRF443		IRF540	IRF540		IRF9543	SMP16P06	
IPWR6507	IRF430		IRF541	IRF541		IRF9610	SMP2P20	
IPWR6508	IRF431		IRF542	IRF542		IRF9611	SMP2P20	
RF120		IRF132	IRF543	IRF543		IRF9612	SMP2P20	
RF121		IRF133	IRF610	IRF610		IRF9613	SMP2P15	
RF122		IRF132	IRF611	IRF611		IRF9620	IRF9620	
RF123		IRF133	IRF612	IRF612	**	IRF9621	IRF9621	
RF130	IRF130		IRF613	IRF613		IRF9622	IRF9622	
RF131	IRF131		IRF620	IRF620		IRF9623	IRF9623	
RF132	IRF132		IRF621	IRF621		IRF9630	IRF9630	
RF133	IRF133		IRF622	IRF622	-	IRF9631	IRF9631	
RF140	IRF140		IRF623	IRF623		IRF9632	IRF9632	
RF141	IRF141		IRF630	IRF630		IRF9633	IRF9633	
RF142	IRF142		IRF631	IRF631		IRF9640	SMP11P20	
RF143	IRF143		IRF632	IRF632		IRF9641	SMP11P20	
RF150	IRF150		IRF633	IRF633	,	IRF9642	SMP11P20	
RF151	IRF151		IRF640	IRF640		IRF9643	SMP9P15	
RF152	IRF152		IRF641	IRF641		IRFD020	IRFD020	
RF153	IRF153		IRF642	IRF642		IRFD022	IRFD022	
RF220		IRF232	IRF643	IRF643		IRFD110	IRFD110	
RF221		IRF233	IRF710	IRF710		IRFD113	IRFD113	
RF222		IRF232	IRF711	IRF711		IRFD120	IRFD120	
RF223		IRF233	IRF712	IRF712		IRFD123	IRFD123	
RF230	IRF230		IRF713	IRF713		IRFD210	IRFD210	
RF231	IRF231		IRF720	IRF720		IRFD213	IRFD213	
F232	IRF232		IRF721	IRF721		IRFD220	IRFD220	
F233	IRF233		IRF722	IRF722		IRFD223	IRFD223	
F240	IRF240		IRF723	IRF723		IRFD9020	IRFD9020	
F241	IRF241		IRF730	IRF730		IRFD9022	IRFD9022	
F242	IRF242		IRF731	IRF731		IRFD9110	SMV1P10	
F243	IRF243		IRF732	IRF732		IRFD9113	SMV1P06	
F250	IRF250		IRF733	IRF733		IRFD9120	IRFD9120	
F251	IRF251		IRF740	IRF740		IRFD9123	IRFD9123	
F252	IRF252		IRF741	IRF741		IRFD9210	SMV1P20	
F253	IRF253		IRF742	IRF742	1.1	IRFD9213	SMV1P15	
F320		IRF332	IRF743	IRF743		IRFD9220	IRFD9220	
F321		IRF333	IRF820	IRF820		IRFD9223	IRFD9223	
F322		IRF332	IRF821	IRF821		IRFF110	IRFF110	
F323		IRF333	IRF822	IRF822		IRFF111	IRFF111	
F330	IRF330	194	IRF823	IRF823		IRFF112	IRFF112	
F331	IRF331		IRF830	IRF830		IRFF113	IRFF113	
F332	IRF332	200	IRF831	IRF831		IRFF120	IRFF120	
F333	IRF333		IRF832	IRF832		IRFF121	IRFF121	
F340	IRF340		IRF833	IRF833	1	IRFF122	IRFF122	
F341	IRF341		IRF840	IRF840		IRFF123	IRFF123	
F342	IRF342		IRF841	IRF841		IRFF130	IRFF130	
F343	IRF343		IRF842	IRF842	į	IRFF131	IRFF131	
F350	IRF350		IRF843	IRF843		IRFF132	IRFF132	
F350	IRF351		IRF9130	IRF9130		IRFF132	IRFF133	
	11 11 00 1		IRF9131	IRF9131		IRFF210	IRFF210	

^{*} Consult your local sales representative for device data

Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent	Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent	Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent
RFF211	IRFF211		IRFJ233	IRFJ233*		IVN5001ANE		IRFD120
RFF212	IRFF212		IRFJ240	IRFJ240*		IVN5001ANF		IRFD120
RFF213	IRFF213		IRFJ241	IRFJ240*		IVN5001ANH		IRFD120
RFF220	IRFF220		IRFJ242	IRFJ240*		IVN5001SND		IRFD120
RFF221	IRFF221		IRFJ243	IRFJ243*	9.5	IVN5001SNE		IRFD120
RFF222	IRFF222		IRFJ320		IRFJ330*	IVN5001SNF		IRFD120
RFF223	IRFF223		IRFJ321		IRFJ330*	IVN5001SNH		IRFD120
RFF230	IRFF230		IRFJ322		IRFJ330*	IVN5001TND	IRFF113	
RFF231	IRFF231		IRFJ323		IRFJ333*	IVN5001TNE	IRFF113	
RFF232	IRFF232		IRFJ330	IRFJ330*		IVN5200TNF		IRFF122
RFF233	IRFF233		IRFJ331	IRFJ330*	100	IVN5201CNE	IRF523	
RFF310	IRFF310		IRFJ332	IRFJ330*		IVN5201CNH	IRF522	
RFF311	IRFF311		IRFJ333	IRFJ333*		IVN5201KNE		IRF133
RFF312	IRFF312		IRFJ340	IRFJ340*	and the second	IVN6000CNE	IRF523	
RFF313	IRFF313		IRFJ341	IRFJ340*		IVN6000CNH	IRF512	
RFF320	IRFF320		IRFJ342	IRFJ340*	1.00	IVN6000CNR	IRF710	
RFF321	IRFF321		IRFJ343	IRFJ343*		IVN6000CNS	IRF722	
RFF322	IRFF322		IRFJ420		IRFJ430*	IVN6000CNT	IRF821	
RFF323	IRFF323		IRFJ421		IRFJ430*	IVN6000CNU	IRF822	
RFF330	IRFF330		IRFJ422		IRFJ430*	IVN6000KNE		IRF133
RFF331	IRFF331		IRFJ423		IRFJ433*	IVN6000KNH		IRF132
RFF332	IRFF332		IRFJ430	IRFJ430*	1000000	IVN6000KNR		IRF332
RFF333	IRFF333		IRFJ431	IRFJ430*	100000	IVN6000KNS		IRF332
RFF420	IRFF420		IRFJ432	IRFJ430*	14 - 1	IVN6000KNT		IRF433
RFF421	IRFF421		IRFJ433	IRFJ433*	1.99	IVN6000KNU	IDEE440	IRF432
RFF422	IRFF422		IRFJ440	IRFJ440*		IVN6000TNE	IRFF113	
RFF423	IRFF423		IRFJ441	IRFJ440*	1.7	IVN6000TNH	IRFF112	
RFF430	IRFF430		IRFJ442	IRFJ440*		IVN6000TNR	IRFF310	
RFF431	IRFF431		IRFJ443	IRFJ443*	017000	IVN6000TNS	IRFF322	
RFF432	IRFF432		IRFP140		2N7060	IVN6000TNT	IRFF431	
RFF433	IRFF433		IRFP141		2N7060	IVN6000TNU	IRFF422	וחדריים
RFF9110	SML3P10		IRFP142		2N7060 2N7060	IVN6001CND IVN6001CNE	IRF523	IRF523
RFF9111	SML3P10		IRFP143		2N7054		IHF523	IDE100
RFF9112	SML3P10		IRFP150			IVN6001HND		IRF133
RFF9113	SML3P06		IRFP151		2N7054	IVN6001KNE		IRF133
RFF9120	IRFF9120		IRFP152		2N7054 2N7054	IVN6001KNH		IRF132
RFF9121	IRFF9121		IRFP153		2N7054 2N7061	IVN6001TND IVN6002TND	IDEE440	IRFF123
RFF9122	IRFF9122		IRFP240		2N7061	IVN6100TNS	IRFF113 IRFF312	
RFF9123	IRFF9123		IRFP241		2N7061 2N7061	IVN6100TNS	IRFF423	
RFF9130	IRFF9130		IRFP242		2N7061	IVN6100TNU	IRFF422	
RFF9131	IRFF9131		IRFP243		2N7055	IVN6200ANE	IRF531	
RFF9132	IRFF9132		IRFP250 IRFP251		2N7055	IVN6200ANH	BUZ20	
RFF9133 RFF9210	IRFF9133		IRFP252		2N7055	IVN6200ANM	BUZ32	
RFF9211	SML2P20 SML2P20		IRFP253		2N7055	IVN6200ANS	IRF732	
RFF9212	SML2P20		IRFP340		2N7063	IVN6200ANT	IRF831	
RFF9213	SML2P15		IRFP341		2N7063	IVN6200ANU	IRF830	
RFF9220	IRFF9220		IRFP342		2N7063	IVN6200CNH	BUZ20	
RFF9221	IRFF9221		IRFP343		2N7063	IVN6200CNM	IRF630	
RFF9222	IRFF9222		IRFP350		2N7057	IVN6200CNP		IRF741
RFF9223	IRFF9223		IRFP351		2N7057	IVN6200CNR	IRF722	
RFF9230	IRFF9230		IRFP352		2N7057	IVN6200KNE	IRF133	
RFF9231	IRFF9231		IRFP353		2N7057	IVN6200KNH	IRF132	
RFF9232	IRFF9232		IRFP440		2N7064	IVN6200KNM	IRF230	
RFF9232 RFF9233	IRFF9232		IRFP441		2N7064	IVN6200KNP	IRF353	
RFG1Z3	VQ1004P*		IRFP442		2N7064	IVN6200KNR		IRF332
RFH150	IRFH150		IRFP443		2N7064	IVN6200KNS	IRF332	
RFH250	IRFH250		IRFP450		2N7058	IVN6200KNT	IRF431	
RFH350	IRFH350		IRFP451		2N7058	IVN6200KNU	IRF430	
RFH450	IRFH450		IRFP452		2N7058	IVN6300ANE	BSR64*	
	Incheso	IRFJ130*	IRFP453		2N7058	IVN6300SNE	55.151	IRFD123
RFJ120		IRFJ130*	IRFZ20		BUZ71	IVN63005NF		IRFD120
RFJ121 RFJ122		IRFJ130*	IRFZ22		BUZ71A	IVN6300SNH		IRFD120
			IRFZ30		BUZ11	IVN6657		IRF133
RFJ123	IDE 1100*	IRFJ133*	IRFZ32		SMP25N05	IVN6658		IRF132
RFJ130	IRFJ130*		IRFZ40	SMP50N05	GIVII ZGINUG	MOD100	MOD100	102
RFJ131	IRFJ130*		IRFZ42	SMP50N05		MOD200	MOD200	
RFJ132	IRFJ130* IRFJ133*		IVN5000AND	51711 301400	IRFD120	MOD400	MOD400	
RFJ133			IVN5000AND		IRFD120	MOD500	MOD500	
RFJ140	IRFJ140*		IVN5000ANE		IRFD120	MTH13N45	14100000	2N7058
RFJ141	IRFJ140*		IVN5000ANF		IRFD120	MTH13N45		2N7058
RFJ142	IRFJ140*					MTH15N50		2N7056
RFJ143	IRFJ143*	IDE (2007	IVN5000SND		IRFD120	MTH15N20		2N7061
RFJ220		IRFJ230*	IVN5000SNE		IRFD120			
RFJ221		IRFJ230*	IVN5000SNF		IRFD120	MTH15N35		2N7057
RFJ222		IRFJ230*	IVN5000SNH		IRFD120	MTH15N40		2N7057
		IRFJ233*	IVN5000TND		IRFF113	MTH25N08		2N7060 2N7060
RFJ223								
RFJ223 RFJ230 RFJ231	IRFJ230*		IVN5000TNE IVN5000TNF		IRFF113 IRFF112	MTH25N10 MTH30N18		2N7055

^{*} Consult your local sales representative for device data

Industry	Cilinaniy	Ciliaaniy	Industry	Ciliaaniu	Ciliaaniu	la di caka	Ciliaanin	Ollinaniu
Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent	Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent	Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent
MTH40N08		2N7054	MTM1034		IRF243	PM518P	BUZ10	
MTH40N10		2N7054	MTM1035		IRF243	PM604P	IRF513	
MTH6N55		2N7066	MTM1224		IRF133	PM605P	IRF523	
MTH6N60		2N7066	MTM1225		IRF132	PM608M		IRF133
MTH7N45		2N7064	MTP1N45	IRF823		PM608P	IRF521	
MTH7N50		2N7064	MTP1N50	IRF822		PM609P	IRF523	
MTH8N35		2N7063	MTP1N55	VNS009D		PM610P	IRF521	
MTH8N40 MTM2N45	IRF430	2N7063	MTP1N60 MTP2N18	VNS009D IRF610		PM612M	IRF131	
MTM2N50	IRF430		MTP2N20	IRF610		PM612P PM614M	IRF531 IRF131	
MTM3N35	IRF333		MTP2N25	IRF721		PM614P	IRF543	
MTM3N40	IRF333		MTP2N35	IRF721		PM1003P	IRF512	
MTM3N55	VNS009A		MTP2N40	IRF720		PM1004P	IRF510	
MTM3N60	VNS009A		MTP2N45	IRF823		PM1006M	IRF122	
MTM4N45	IRF431		MTP2N50	IRF822	4	PM1006P	IRF522	
MTM4N50	IRF430		MTP3N12	IRF623		PM1010P	IRF532	
MTM5N18	IRF230		MTP3N15	IRF623		PM1206P	IRF631	
MTM5N20	IRF230		MTP3N35	IRF723		PM1503P	IRF611	
MTM5N35	IRF531		MTP3N40	IRF722		PM1504P	IRF623	
MTM5N40	IRF530		MTP3N55	VNS009D		PM1506M	IRF231	
MTM7N12	IRF231		MTP3N60	VNS009D		PM1506P	IRF631	
MTM7N15	IRF231		MTP4N08 MTP4N10	IRF510		PM1510M	IRF243	IDE100
MTM7N18 MTM7N20	IRF230 IRF230		MTP4N10 MTP4N45	IRF510 IRF831		RCA9192A RCA9192B		IRF132
MTM7N45	IRF453		MTP4N50	IRF830		RCA9195A		IRF231 IRF142
MTM7N50	IRF452		MTP5N05	IRF511		RCA9195B		IRF141
MTM8N08	IRF132		MTP5N06	IRF511		RCA9196A		IRFF112
MTM8N10	IRF132		MTP5N08		IRF512	RCA9196B		IRFF210
MTM8N12	IRF231	V 1	MTP5N10		IRF512	RCA9212A		IRF520
MTM8N15	IRF231		MTP5N18	IRF632		RCA9212B		IRF231
MTM8N18	IRF230		MTP5N20	IRF620		RCA9213A		IRF512
MTM8N20	IRF230		MTP5N35	IRF731		RCA9213B		IRF613
MTM8N35		IRF341	MTP5N40	IRF730		RCA9230A		IRF542
MTM8N40	1000400	IRF342	MTP6N05		IRF523	RCA9230B		IRF641
MTM8P08	IRF9132		MTP6N06		IRF523	RFK10N45	IRF441	
MTM8P10 MTM10N05	IRF9132 IRF132		MTP7N05 MTP7N06		IRF523	RFK10N50	IRF440	
MTM10N06	IRF132		MTP7N15	IRF633	IRF523	RFK12N35 RFK12N40	IRF353	
MTM10N08	IRF241		MTP7N18	IRF632		RFK25N18	IRF352 IRF252	
MTM10N10	IRF132		MTP7N20	IRF632		RFK25N20	IRF252	
MTM10N12	IRF243		MTP8N08	IRF522		RFK30N12	IRF251	
MTM10N15	IRF243		MTP8N10	IRF522		RFK30N15	IRF251	
MTM10N25	IRF353		MTP8N15	IRF631		RFK35N10	IRF150	
MTM12N05	IRF132	1	MTP8N18	IRF630		RFK45N05	SMM60N05	
MTM12N06	IRF132		MTP8N20	IRF630		RFK45N06	SMM60N05	
MTM12N08	IRF241		MTP8P08	IRF9532		RFL1N08	IRFF112	
MTM12N10	IRF241	IDE040	MTP8P10	IRF9532		RFL1N10	IRFF112	
MTM12N12		IRF243	MTP10N05	IRF533		RFL1N12	IRFF211	
MTM12N15 MTM12N18	IRF252	IRF243	MTP10N06 MTP10N10	IRF533 IRF520		RFL1N15 RFL1N18	IRFF211 IRFF212	
MTM12N20	IRF252		MTP10N15	IRF643		RFL1N20	IRFF212	
MTM15N05	IRF241		MTP12N05	IRF531		RFL1P08	IRFF9223	
MTM15N06	IRF241		MTP12N06	IRF531		RFL1P10	IRFF9223	
MTM15N12	IRF252		MTP12N18	IRF642		RFL2N05	IRFF113	
MTM15N15	IRF252		MTP12N20	IRF642		RFL2N06	IRFF113	
MTM15N18	IRF252		MTP15N05	IRF543		RFM3N45		IRF433
MTM15N20	IRF252		MTP15N06	SMP25N06	•	RFM3N50		IRF432
MTM15N35	IRF350		MTP15N15	IRF643		RFM4N35		IRF333
MTM15N40		IRF330	MTP20N08	IRF542		RFM4N40		IRF332
MTM15N45	IRF451	105450	MTP20N10	IRF542		RFM5P12	IRF9231	
MTM15N50	IDE044	IRF450	MTP25N05	SMP25N05	IDEACC	RFM5P15	IRF9231	
MTM20N08	IRF241		MTP474		IRF833	RFM6P08	IRF9132	
MTM20N10 MTM20N12	IRF241 IRF252		MTP475 MTP564		IRF832	RFM8N18	IRF232	
MTM20N15	IRF252	4.8 (8)	MTP565		IRF733	RFM8N20	IRF232	
MTM25N05	IRF241		MTP814		IRF732 IRF9532	RFM10N15 RFM12N18	IRF243 IRF242	
MTM25N06	IRF241		MTP815		IRF9532	RFM12N20	IRF242	
MTM25N08	IRF150		MTP1034		IRF643	RFM15N12	IRF253	
MTM25N10	IRF241		MTP1035		IRF643	RFM15N15	IRF253	
MTM35N05	IRF151		MTP1224		IRF533	RFM18N08	IRF142	
MTM35N06	IRF151		MTP1225		IRF532	RFM18N10	IRF142	
MTM60N05	SMM60N05		NOS100B	NOS100B*		RFM25N05	IRF141	
MTM60N06	SMM60N06		NOS101B	NOS101B*		RFM25N06	IRF141	
MTM474		IRF433	NOS102B	NOS102B*		RFP1N12	IRF611	
MTM475		IRF432	NOS2012L	NOS2012L		RFP1N35	IRF713	
MTM564		IRF333	NOS2406L	NOS2406L		RFP1N40	IRF712	
MTM565		IRF332	PM509P	IRF523		RFP2N08	IRF512	
MTM814		IRF9132	PM512M PM512P	IRF131		RFP2N10	IRF512	
MTM815		IRF9132 representative		BUZ10		RFP2N15	IRF611	

^{*} Consult your local sales representative for device data

Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent	Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent	Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent
RFP2N18	IRF612		SEF511	IRF511		SGSP352	IRF510	
RFP2N20	IRF612		SEF512	IRF512		SGSP354	IRF823	
RFP2P08	IRF9621		SEF513	IRF513		SGSP355	IRF710	
RFP2P10	IRF9623		SEF520	IRF520		SGSP356	IRF711	
RFP3N45	IRF821		SEF521	IRF521		SGSP357		IRF521
RFP3N50	IRF820		SEF522	IRF522		SGSP358		IRF521
			SEF523	IRF523		SGSP361	IRF540	02.
FP4N06	IRF513			IRF530		SGSP362	IRF540	
RFP4N35	IRF721		SEF530				IN 340	IDC740
RFP5P12	IRF9533		SEF531	IRF531		SGSP363		IRF743
RFP6P08	IRF9520		SEF532	IRF532		SGSP366	100000	IRF743
RFP8N18	IRF632		SEF533	IRF533		SGSP367	IRF632	
RFP8N20	IRF630		SEF540	IRF540		SGSP368	VNT009D	
RFP10N15	IRF643		SEF541	IRF541		SGSP381		IRF543
FP12N10	BUZ20		SEF542	IRF542		SGSP382		IRF543
FP12N18	IRF642		SEF543	IRF543		SGSP471	IRF150	
FP12N20	IRF642		SEF620	IRF620		SGSP477	IRF242	
FP12P08	IRF9530		SEF621	IRF621		SGSP479	IRF450	
FP12P10	IRF9530		SEF622	IRF622		SGSP511		IRF132
RFP18N08	IRF542		SEF623	IRF623		SGSP517	IRF232	
			SEF630	IRF630		SGSP519	II II ZOZ	IRF432
RFP18N10	IRF542				1.00			
FP25N05	IRF541		SEF631	IRF631	*	SGSP521		IRF133
RFP25N06	IRF541		SEF632	IRF632		SGSP522		IRF133
D500CD		IRF722	SEF633	IRF633		SGSP530		IRF433
SD500KD		IRF322	SEF710	IRF710		SGSP531		IRF332
SD1114HD		IRFF112	SEF711	IRF711	100	SGSP532		IRF333
SD1115BD		IRFD123	SEF712	IRF712		SGSP561	IRF140	
SEF120		IRF132	SEF713	IRF713		SGSP562	IRF140	
SEF121		IRF133	SEF720	IRF720		SGSP563	IRF353	
SEF122		IRF132	SEF721	IRF721		SGSP564	IRF431	
SEF123		IRF133	SEF722	IRF722		SGSP567	IRF242	
EF130	IRF130	"" 100	SEF723	IRF723		SGSP568	VNS009A	
EF131	IRF131		SEF730	IRF730		SGSP571	IRF150	
SEF132				IRF731		SGSP572	IRF150	
	IRF132		SEF731	IRF732		SGSP574	IRF453	
EF133	IRF133		SEF732					
SEF140	IRF140		SEF733	IRF733		SGSP575	IRF352	
SEF141	IRF141		SEF820	IRF820		SGSP576		IRF343
SEF142	IRF142		SEF821	IRF821		SGSP577	IRF242	
SEF143	IRF143		SEF822	IRF822		SGSP581		IRF151
SEF150	IRF150		SEF823	IRF823		SGSP582		IRF151
EF151	IRF151		SEF830	IRF830		SGSP591		IRF151
SEF152	IRF152		SEF831	IRF831		SGSP592		IRF151
SEF153	IRF153		SEF832	IRF832		SML2P15	SML2P15	
SEF220	IRF220		SEF833	IRF833		SML2P20	SML2P20	
SEF221	IRF221		SGSP101	IRFF112		SML3P06	SML3P06	
SEF222	IRF222		SGSP111	IRFF120		SML3P10	SML3P10	
	IRF223		SGSP112	IRFF120		SMM14N65	SMM14N65	
SEF223			SGSP116		IRFF331	SMM20N50	SMM20N50	
EF230	IRF230							
SEF231	IRF231		SGSP117		IRFF220	SMM24N40	SMM24N40	
SEF232	IRF232		SGSP118		IRFF432	SMM40N20	SMM40N20	
SEF233	IRF233		SGSP119		IRFF532	SMM60N05	SMM60N05	
SEF240	IRF240		SGSP121	IRFF131		SMM60N06	SMM60N06	
SEF241	IRF241		SGSP122	IRFF131		SMM70N05	SMM70N05	
SEF242	IRF242		SGSP130	IRFF433		SMM70N06	SMM70N06	
SEF243	IRF243		SGSP131	IRFF320		SMP2P15	SMP2P15	
SEF320	# II E-10	IRF332	SGSP132	2N6800		SMP2P20	SMP2P20	
		IRF333	SGSP138		IRFF422	SMP3P06	SMP3P06	
SEF321			SGSP138	IRFF422		SMP3P10	SMP3P10	
SEF322		IRF332						
SEF323		IRF333	SGSP140	IRFF423		SMP9P15	SMP9P15	
SEF330	IRF330		SGSP141	IRFF312		SMP11P20	SMP11P20	
SEF331	IRF331		SGSP142	BUZ10		SMP16P06	SMP16P06	
SEF332	IRF332		SGSP148		2N6794	SMP20P10	SMP20P10	
SEF333	IRF333		SGSP149	2N6794		SMP25N05	SMP25N05	
SEF340	IRF340		SGSP151	IRFF110		SMP25N06	SMP25N06	
			SGSP152	IRFF110		SMP50N05	SMP50N05	
SEF341	IRF341					SMP50N06	SMP50N06	
SEF342	IRF342		SGSP154	IRFF423				
SEF343	IRF343		SGSP155	IRFF312		SMP60N05	SMP60N05	
SEF420		IRF432	SGSP156	IRFF313		SMP60N06	SMP60N06	
SEF421		IRF433	SGSP157	IRFF121		SMV1P06	SMV1P06	
SEF422		IRF432	SGSP158	IRFF121		SMV1P10	SMV1P10	
SEF423		IRF433	SGSP311	BUZ20		SMV1P15	SMV1P15	
SEF430	IRF430		SGSP317	IRF632		SMV1P20	SMV1P20	
	IRF431		SGSP318	VNS009D		SNO120NB	SNO120NB*	
SEF431			SGSP319	IRF820		SNO130NB	SNO130NB*	
SEF432	IRF432			IMF02U	IDE100			
SEF433	IRF433		SGSP321		IRF133	SNO140NB	SNO140NB*	O. 1700
SEF440	IRF440		SGSP322	BUZ10		SSH3N70		2N7066
SEF441	IRF441		SGSP330	IRF821		SSH4N55		2N7066
SEF442	IRF442		SGSP331	IRF722		SSH4N60		2N7066
SEF443	IRF443		SGSP349		IRF832	SSH4N70		2N7066
	n n 170 0		SGSP351	IRF510	· · · - 	SSH6N55		2N7066

^{*} Consult your local sales representative for device data

Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent	Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent	Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent
SSH6N60		2N7066	UFN430	IRF430		UFND223	IRFD223	
SSH8N60		2N7066	UFN431	IRF431		UFNF110	IRFF110	
SSM4N55		VNS009A	UFN432	IRF432		UFNF111	IRFF111	
SSM4N60		VNS009A	UFN433	IRF433		UFNF112	IRFF112	
SM4N70		VNT009A	UFN440	IRF440	1.0	UFNF113	IRFF113	
SM6N55	VNS008A		UFN441	IRF441		UFNF120	IRFF120	
SM6N60	VNS008A		UFN442	IRF442	1.0	UFNF121	IRFF121	
SM6N70		VNT008A	UFN443	IRF443		UFNF122	IRFF122	
SM8N55		SMM14N65	UFN450	IRF450		UFNF123	IRFF123	
SM8N60		SMM14N65	UFN451	IRF451		UFNF130	IRFF130	
SM10N70		SMM14N65	UFN452	IRF452		UFNF131	IRFF131	
SM15N55		SMM14N65	UFN453	IRF453		UFNF132	IRFF132	
SM15N60 SM20N45		SMM14N65 SMM20N50	UFN510 UFN511	IRF510 IRF511		UFNF133 UFNF210	IRFF133	
M20N50		SMM20N50	UFN512	IRF512			IRFF210	
SM25N35		SMM24N40	UFN512	IRF513		UFNF211	IRFF211	
M25N40		SMM24N40	UFN520	IRF520		UFNF212	IRFF212 IRFF213	
SM40N15		SMM40N20	UFN521			UFNF213		
M40N20		SMM40N20	UFN522	IRF521 IRF522		UFNF220	IRFF220	
SP3N70		VN:T009D	UFN523	IRF523		UFNF221 UFNF222	IRFF221	
SP4N55		VNS009D	UFN530	IRF530			IRFF222	
SP4N60		VNS009D	UFN531	IRF531		UFNF223	IRFF223	
SP4N70		VNT009D	UFN532	IRF531 IRF532		UFNF230	IRFF230	
P6N55	VNS008D	111,0000	UFN533	IRF533		UFNF231 UFNF232	IRFF231 IRFF232	
P6N60	VNS008D		UFN540	IRF540	l	UFNF233	IRFF233	
9437A	IRF341		UFN541	IRF541		UFNF310	IRFF233 IRFF310	
9437B	IRF340		UFN542	IRF542		UFNF311	IRFF310	
N120		IRF132	UFN543	IRF543		UFNF312	IRFF312	
N121		IRF133	UFN610	IRF610	1	UFNF313	IRFF313	
N122		IRF132	UFN611	IRF611		UFNF320	IRFF320	
N123		IRF133	UFN612	IRF612		UFNF321	IRFF321	
N130	IRF130		UFN613	IRF613		UFNF322	IRFF322	
N131	IRF131		UFN620	IRF620		UFNF323	IRFF323	
N132	IRF132		UFN621	IRF621		UFNF330	IRFF330	
N133	IRF133		UFN622	IRF622	· i	UFNF331	IRFF331	
N140	IRF140		UFN623	IRF623		UFNF332	IRFF332	
N141	IRF141		UFN630	IRF630		UFNF333	IRFF333	
N142	IRF142		UFN631	IRF631		UFNF420	IRFF420	
N143	IRF143		UFN632	IRF632		UFNF421	IRFF421	
N150	IRF150		UFN633	IRF633		UFNF422	IRFF422	
N151	IRF151		UFN640	IRF640		UFNF423	IRFF423	
N152	IRF152		UFN641	IRF641	ļ	UFNF430	IRFF430	
N153	IRF153		UFN642	IRF642	Į.	UFNF431	IRFF431	
N220	1111100	IRF232	UFN643	IRF643		UFNF432	IRFF432	
N221		IRF233	UFN710	IRF710		UFNF433	IRFF433	
N222		IRF232	UFN711	IRF711	·	UFNZ20	11111400	BUZ71
N223		IRF233	UFN712	IRF712		UFNZ22		BUZ71A
N230	IRF230		UFN713	IRF713	I	UFNZ30		BUZ11
N231	IRF231		UFN720	IRF720	i	UFNZ32		SMP25N05
N232	IRF232		UFN721	IRF721		UFNZ40	SMP50N05	OIVII 201405
N233	IRF233		UFN722	IRF722	i	UFNZ42	SMP50N05	
N240	IRF240		UFN723	IRF723	I	VN10KE	VN10KE	
N241	IRF241		UFN730	IRF730	l	VN10KM	VN10KM	
N242	IRF242		UFN731	IRF731	1	VN10LE	VN10LE*	
N243	IRF243		UFN732	IRF732	ŀ	VN10LM	VN10LM*	
N250	IRF250	,	UFN733	IRF733	ŀ	VN35AB	VN35AB*	
N250 N251	IRF251		UFN740	IRF740	ŀ	VN40AD	VN40AD*	
N252	IRF252		UFN741	IRF741	ļ	VN46AD	VN46AD*	
N252 N253	IRF253		UFN742	IRF742		VN66AD	VN66AD*	
N320	II II 250	IRF332	UFN743	IRF743		VN67AB	VN67AB*	
N320		IRF333	UFN820	IRF820		VN67AD		
N321 N322		IRF332	UFN821	IRF821	1	VN88AD	VN67AD* VN88AD*	
N322 N323		IRF333	UFN822	IRF822				
	IRF330	inrodo	UFN823	IRF823	1	VN89AD VN90AB	VN89AD*	
N330	IRF330	and the second	UFN830	IRF830	1	VN90AB	VN90AB*	
N331	IRF332	. [UFN831	IRF831			VN66AB*	IRFF113
N332 N333	IRF332 IRF333		UFN832	IRF832	I	VN0104N2 VN0104N6		VQ1006J*
	IRF340		UFN833	IRF833		VN0104ND		IRFD123
N340 N341	IRF341		UFN840	IRF840	. 1	VN0106N2		IRFF113
N342	IRF342	4.5	UFN841	IRF841	I	VN0106N3		IRFD123
N342 N343	IRF342		UFN842	IRF842	4	VN0106N5		IRF513
N343 N350	IRF343		UFN843	IRF843	į.	VN0106N6		VQ1006J*
			UFND110	IRFD110	j	VN0106N7		VQ10065 VQ1006P*
N351	IRF351		UFND113		i			
N352	IRF352		UFND113 UFND120	IRFD113	·	VN0109N2		IRFF112
N353	IRF353	IDE400		IRFD120	j	VN0109N5		IRF512
		IRF432	UFND123	IRFD123		VN0116N5		IRF612 IRFF113
:N420 :N421 :N422		IRF433 IRF432	UFND210 UFND213	IRFD210 IRFD213	1	VN0204N2 VN0204N6		VQ2001J*

^{*} Consult your local sales representative for device data

Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent	Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent	Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent
VN0206N2		IRFF113	VN1206B	VN1206B*		VNE003A		IRF150
VN0210N2		IRFF112	VN1206D	VN1206D*		VNE010B	VNE010B*	
VN0210N5		IRF512	VN1206L	VN1206L*	1.7	VNE010D	VNE010D*	
VN0300B	VN0300B*		VN1206M	VN1206M*		VNE011B	VNE010B*	
VN0300D	VN0300D*		VN1206N1		IRF133	VNE011D	VNE010D*	
VN0300L	VN0300L*		VN1206N2		2N6782	VNG004A	SMM40N20	
√N0300M	VN0300M*		VN1206N5		IRF521	VNJ004A	SMM40N20	
/N0335N1		IRF333	VN1210L	VN1210L*		VNL001A	IRF331	
/N0335N2	IRFF321		VN1210M	VN1210M*		VNL005A	SMM24N40	
/N0335N5	IRF721		VN1210N1		IRF132	VNM001A	IRF330	
/N0340N1		IRF332	VN1210N2		2N6782	VNM005A	SMM24N40	
/N0340N2	IRFF322		VN1210N5		IRF520	VNN002A	IRF431	
N0340N5	IRF722		VN1220N1		IRF232	VNN006A	SMM20N50	
N0345N1		IRF433	VN1220N2	IRF612	" " LOL	VNP002A	IRF430	
N0345N2		IRFF433	VN1304N6	VQ2001J*		VNP006A	SMM20N50	
N0345N5	IRF723	11111 400	VN1304N7	VQ2001D*		VNS008A	VNS008A	
N0350N1	Inrizo	IRF432	VN1310N2	VGZUUTF	VN90AB*	VNS008A	VNS008A	
N0350N2		IRFF432	VN1706B	VN1706B*	VIVOUAD	VNS008D VNS009A		
N0350N3		VN3515L	VN1706D	VN1706D*			VNS009A	
N0350N5	IRF722	VIVOSISE				VNS009D	VNS009D	
/N0355N1			VN1706L	VN1706L*		VNS012A	SMM14N65	
	VNS009A		VN1706M	VN1706M*		VNS013A	SMM14N65	
N0355N5	VNS009D		VN1710L	VN1710L*		VNT008A	VNT008A	
N0360N1	VNS009A		VN1710M	VN1710M*	-	VNT008D	VNT008D	
/N0360N5	VNS009D		VN1720M	VN1720M*		VNT009A	VNT009A	
'N0400A	IRF143		VN2010L	VN2010L		VNT009D	VNT009D	
N0400D	IRF543		VN2020L	VN2020L*		VNT012A	SMM14N65	
/N0401A	IRF143		VN2222KM	VN2222KM*		VNT013A	SMM14N65	
/N0401D	IRF543		VN2222L	VN2222L*		VP0104N5	IRF9523	
/N0535N2		IRFF313	VN2222LL	VN2222LL*		VP0106N2	IRFF9123	
/N0540N2		IRFF312	VN2222LM	VN2222LM*		VP0106N5	IRF9523	
N0540N3		VN4012L*	VN2306N1	IRF143		VP0106N7	IRFD9123	
/N0545N2	IRFF423		VN2306N5	IRF543		VP0109N5	IRF9623	
N0550N2	IRFF422		VN2310N1	IRF142		VP0116N2	IRFF9222	
'N0600A	IRF143		VN2310N5	IRF542		VP0120N2	IRFF9222	
/N0600D	IRF543		VN2316N1	IRF242		VP0204N5	IRF9523	
/N0601A	IRF143		VN2316N5	IRF642		VP0206N2	IRFF9123	
/N0601D	IRF543		VN2320N1	IRF242		VP0206N5	IRF9523	
/N0606L	VN0606L		VN2320N5	IRF642		VP0210N2	IRFF9122	
/N0606M	VN0606M		VN2335N1	IRF341		VP0210N5	IRF9623	
/N0610L	VN0610L		VN2335N5	IRF741		VP0216N2	IRFF9222	
/N0610LL	VN0610LL*		VN2340N1	IRF340		VP0216N5	IRF9622	
/N0635N2	VINOSTOLL	IRFF313	VN2340N5	IRF740		VP0220N2	IRFF9222	
			VN2345N1			VP0300B		
/N0635N5		IRF713	VN2345N5	IRF443		VP0300L	VP0300B*	
/N0640N2		IRFF312		IRF843			VP0300L*	
/N0640N5		IRF712	VN2350N1	IRF442		VP0300M	VP0300M*	
/N0645N2		IRFF423	VN2350N5	IRF842		VP0610L	VP0610L	
/N0645N5		IRF823	VN2406B	VN2406B*		VP0808B	VP0808B*	
/N0650N2		IRFF422	VN2406D	VN2406D*		VP0808L	VP0808L*	
/N0650N5		IRF822	VN2406L	VN2406L		VP0808M	VP0808M*	
/N0800A	IRF130		VN2406M	VN2406M*		VP1008B	VP1008B	
N0800D	IRF530		VN2410L	VN2410L		VP1008L	VP1008L	
'N0801A	IRF132		VN2410M	VN2410M		VP1008M	VP1008M	
/N0801D	IRF532		VN3500A		IRF331	VP1106N1	IRF9133	
/N0808L	VN0808L		VN3500D		IRF731	VP1106N2	IRFF9123	
M8080N	VN0808M		VN3501A		IRF333	VP1110N2	IRFF9122	
/N1000A	IRF130		VN3501D		IRF733	VP1116N2	IRFF9222	
/N1000D	IRF530		VN3515L	VN3515L		VP1120N2	IRFF9222	
/N1001A	IRF132		VN4000A		IRF330	VP1204N2	IRFF9123	
N1001D	IRF532		VN4000D		IRF730	VP1206N5	IRF9523	
/N1008L	VN1008L*		VN4001A		IRF332	VP1210N2	IRFF9122	
/N1106N1		IRF133	VN40001D		IRF732	VP1216N2	IRFF9222	
/N1106N2		IRFF113	VN4012L	VN4012L*		VP1216N5	IRF9620	
/N1106N5	IRF513		VN4501A		IRF431	VP1220N2	IRFF9222	
VN1110N1		IRF132	VN4501D		IRF831	VP1306N2	IRFF9123	
/N1110N2		IRFF113	VN4502A		IRF433	VP1316N2	IRFF9222	
/N1110N2		IRF523	VN4502A VN4502D		IRF833	VP1320N2	IRFF9222	
		IRF133			105400		VP2020L	
/N1116N1			VN5001A VN5001D		IRF830	VP2020L VP2410L	VP2410L	
/N1116N2		VN1706B*				VP4030L	VP4030L	
/N1116N5		IRF612	VN5002A		IRF432	VQ1000CJ		
/N1120N1		IRF232	VN5002D	OF 4F 400F 100	IRF832		VQ1000J*	
/N1120N2		VN2406B*	VNC003A	SMM60N06		VQ1000CP	VQ1000P*	
/N1120N5		IRF612	VNC010B	VNC010B*		VQ1000J	VQ1000J*	
/N1200A		IRF241	VNC010D	VNC010D*		VQ1000P	VQ1000P*	
/N1200D		IRF641	VNC011B	VNC010B*		VQ1001G	VQ1001P*	
/N1201A		IRF243	VNC011D	VNC010D*		VQ1001J	VQ1001J*	
/N1201D		IRF643	VND010B	VNE010B*		VQ1001P	VQ1001P*	
/N1204N1		IRF133	VND010D	VNE010D*		VQ2001G	VQ2001P*	
N1204N2		2N6782	VND011B	VNE010B*		VQ2001J	VQ2001J*	
						VQ2001P	VQ2001P*	

^{*} Consult your local sales representative for device data

Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent	Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent	Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent
VQ3001G	VQ3001P*		YTF533	IRF533		ZVN0122M		IRF232
VQ3001J	VQ3001J*		YTF540	IRF540		ZVN0204B	IRFF113	
VQ3001NE	VQ3000J*		YTF541	IRF541		ZVN0206B	IRFF113	
VQ3001N7	VQ3000P*		YTF542	IRF542		ZVN0206L	IRF513	
VQ3001P	VQ3001P*	IDE400	YTF543	IRF543		ZVN0209B	IRFF112	
YTF120		IRF132	YTF610	IRF610		ZVN0209L	IRF512	
YTF121		IRF133	YTF611	IRF611		ZVN0210B	IRFF112	
YTF122		IRF132	YTF612	IRF612		ZVN0210L	IRF540	
YTF123	105400	IRF133	YTF613	IRF613		ZVN0214B	IRFF213	
/TF130 /TF131	IRF130		YTF620	IRF620		ZVN0214L	IRF613	
YTF132	IRF131		YTF621	IRF621		ZVN0214M		IRF233
/TF132	IRF132 IRF133		YTF622	IRF622		ZVN0215B		2N6784
YTF140	IRF140		YTF623 YTF630	IRF623 IRF630		ZVN0215L		IRF613
YTF141	IRF141		YTF631	IRF631		ZVN0215M		IRF233
/TF142	IRF142		YTF632	IRF632		ZVN0216M ZVN0220B	IDEE040	IRF232
/TF143	IRF143		YTF633	IRF633			IRFF212	
/TF150	IRF150		YTF640	IRF640		ZVN0220L	IRF612	
/TF151	IRF151		YTF641	IRF641		ZVN0220M		IRF232
/TF152	IRF152		YTF642	IRF642	4	ZVN0222B		2N6784
YTF153	IRF153		YTF643			ZVN0222L		IRF612
YTF220	" " 133	IRF232	YTF710	IRF643 IRF710		ZVN0222M	IDEEOOO	IRF232
YTF221		IRF232	YTF711	IRF711		ZVN0330B	IRFF323	
/TF221 /TF222		IRF233	YTF711 YTF712	IRF711		ZVN0330L	IRF723	IDECCO
/TF223		IRF232	YTF712 YTF713	IRF712		ZVN0330M	IDEEOOO	IRF333
/TF230	IRF230	" " 200	YTF720	IRF713		ZVN0335B ZVN0335L	IRFF323 IRF723	
/TF231	IRF231		YTF721	IRF721		ZVN0335L ZVN0335M	INF/23	IRF333
/TF232	IRF232		YTF722	IRF722		ZVN0340B	IRFF322	INF333
/TF233	IRF233		YTF723	IRF723	4 1	ZVN0340L	IRF722	
/TF241	IRF241		YTF730	IRF730	1	ZVN0340M	IN 122	IRF332
/TF242	IRF242		YTF731	IRF731	1.0	ZVN0345B	2N6793	IHF332
/TF243	IRF243		YTF732	IRF732		ZVN0345L	IRF821	
TF250	IRF250		YTF733	IRF733		ZVN0345M	INFOZ I	IDE400
/TF251	IRF251		YTF740	IRF740		ZVN034508	IRFF422	IRF433
/TF252	IRF252		YTF741	IRF741		ZVN0350L	IRF822	
/TF253	IRF253		YTF742	IRF742			INFOZZ	IDE400
YTF320	1111 200	IRF332	YTF743	IRF743		ZVN0350M ZVN0355L	VALCOOOD	IRF432
/TF321		IRF333	YTF820	IRF820			VNS009D	
/TF322		IRF332	YTF821	IRF821		ZVN0355M	VNS009A	
/TF323		IRF333	YTF822	IRF822		ZVN0360L	VNS009D	
/TF330	IRF330	II 1 333	YTF823	IRF823		ZVN0360M	VNS009A	
YTF331	IRF331		YTF830	IRF830		ZVN0365L	VNT009D	
YTF332	IRF332		YTF831	IRF831		ZVN0445M	IRF441	
YTF333	IRF333		YTF832			ZVN0455M	VNS009A	
YTF340	IRF340			IRF832		ZVN0460M	VNS009A	
/TF341	IRF341		YTF833 YTF840	IRF833 IRF840		ZVN0465M	VNT009A	
/TF342	IRF342		YTF841	IRF841		ZVN0530B ZVN0530L	IRFF313	ID FOOD
/TF342	IRF343		YTF842	IRF842			IDEE040	IRF333
/TF350	IRF350		YTF843	IRF843		ZVN0535B	IRFF313	
/TF351	IRF351		ZVN01A2A	VN0300L*		ZVN0535L	IRF713	
						ZVN0540B	IRFF312	
TF352	IRF352 IRF353		ZVN01A2B	IRFF113		ZVN0540L	IRF712	
TF353	infooo	IDE422	ZVN01A2L	VN0300D*		ZVN0545B	IRFF421	
/TF420 /TF421		IRF432 IRF433	ZVN01A3A ZVN01A3B	VN0300L*		ZVN0545L	IRF823	
(1F421 (TF422		IRF433 IRF432	ZVN01A3B ZVN01A3L	VN0300B*		ZVN1104B	IRFF113	
7 1 F 4 2 2 7 T F 4 2 3		IRF432 IRF433	ZVN01A3L ZVN02A2B	VN0300D*		ZVN1106B	IRFF113	
	IRF430	INF400		IRFF113		ZVN1106L	IRF513	
/TF430 /TF431	IRF430 IRF431		ZVN02A3B ZVN12A2B	IRFF113 IRFF133		ZVN1106M	IRF133	
					War and the second	ZVN1109B	IRFF112	
TF432	IRF432		ZVN12A3B	IRFF133	IDE100	ZVN1109L	IRF512	
TF433	IRF433		ZVN0104M ZVN0108M		IRF133	ZVN1110B	IRFF112	
TF440	IRF440			01.0004	IRF132	ZVN1110L	IRF512	
TF441	IRF441		ZVN0109B	2N6661	i i	ZVN1114B	2N6784	
TF442	IRF442		ZVN0109L	IRF623	IDE466	ZVN1114L	IRF611	ID FOR S
TF443	IRF443		ZVN0109M	10140000	IRF132	ZVN1114M		IRF233
TF450	IRF450		ZVN0110A	VN1206L*		ZVN1116B	IRFF212	
TF451	IRF451		ZVN0110B	VN1206B*		ZVN1116L	IRF612	IDE0
TF452	IRF452	4.	ZVN0110L	VN1206D*	105466	ZVN1116M	IDEEC + C	IRF232
TF453	IRF453		ZVN0110M	ID5040	IRF132	ZVN1120B	IRFF212	
TF510	IRF510		ZVN0114L	IRF613		ZVN1120L	IRF612	
TF511	IRF511		ZVN0115B		2N6784	ZVN1120M		IRF232
TF512	IRF512		ZVN0115L		IRF613	ZVN1130B	IRFF311	
TF513	IRF513		ZVN0115M	\ A 147 · - · ·	IRF233	ZVN1130L	IRF711	
TF520	IRF520		ZVN0116A	VN1710L*		ZVN1130M		IRF333
TF521	IRF521		ZVN0116B	VN1706B*		ZVN1135B	IRFF311	
TF522	IRF522		ZVN0120A	VN2410L	I	ZVN1135L	IRF711	
TF523	IRF523		ZVN0120B	IRFF212	ļ	ZVN1135M		IRF333
TF530	IRF530		ZVN0120L	IRF612		ZVN1140B	IRFF310	
TF531	IRF531		ZVN0122B		2N6790	ZVN1140L	IRF710	
TF532	IRF532		ZVN0122L		IRF612	ZVN1140M	IRF332	

^{*} Consult your local sales representative for device data

Industry	Siliconix	Siliconix	Industry	Siliconix	Siliconix	Industry	Siliconix	Siliconix
Part Number	Direct Equivalent	Nearest Equivalent	Part Number	Direct Equivalent	Nearest Equivalent	Part Number	Direct Equivalent	Nearest Equivalent
ZVN1145B	IRFF423		ZVP12A3B	IRFF9131		2N6761	2N6762	
ZVN1145L	IRF823		ZVP12A3L	IRF9531		2N6762	2N6762 2N6762	
ZVN1145M		IRF433	ZVP0104B	IRFF9123		2N6763	2N6764	
ZVN1204B	IRFF123		ZVP0104L	IRF9523		2N6764	2N6764	
ZVN1206B	IRFF123		ZVP0106B	IRFF9123	1 March 25	2N6765	2N6766	
ZVN1206L	IRF523		ZVP0106L	IRF9523		2N6766	2N6766	
ZVN1208B	IRFF122		ZVP0108B	IRFF9122		2N6767	2N6768	
ZVN1209B	IRFF122		ZVP0109B	IRFF9122		2N6768	2N6768	
ZVN1209L ZVN1209M	IRF522	IRF132	ZVP0109L	IRF9523 IRFF9122	. 1	2N6769 2N6770	2N6770	
ZVN1210L	IRF510	INF 132	ZVP0110B ZVP0110L	IRF9523	1.5	2N6781	2N6770 2N6782	
ZVN1210M	11 3 10	IRF132	ZVP0114B	IRFF9233	4.7	2N6782	2N6782	
ZVN1214B	IRFF233		ZVP0114L	IRF9622	1114	2N6783	2N6784	
ZVN1214L	IRF633		ZVP0116L	IRF9620		2N6784	2N6784	
ZVN1214M	IRF233		ZVP0120L	IRF9620	•	2N6785	2N6786	
ZVN1215B		2N6790	ZVP0204B	IRFF9121		2N6786	2N6786	
ZVN1215L		IRF621	ZVP0204L	IRF9533		2N6787	2N6788	
ZVN1215M		IRF233	ZVP0204M	IRF9133		2N6788	2N6788	
ZVN1216B	2N6784		ZVP0206B	IRFF9121		2N6789	2N6790	
ZVN1216L ZVN1216M	IRF610	IDEAN	ZVP0206L	IRF9533	1.00	2N6790	2N6790	
ZVN1216001 ZVN1220B	2N6784	IRF232	ZVP0206M ZVP0208B	IRF9133 IRFF9120	\$1.70.25	2N6791 2N6792	2N6792 2N6792	
ZVN1220L	IRF610		ZVP0208L	IRF9533	14,000	2N6792 2N6793	2N6792 2N6794	
ZVN1220M	11 0 10	IRF232	ZVP0208M	IRF9132	5.00	2N6794	2N6794	
ZVN1222B		2N6790	ZVP0209L	IRF9533	5.00	2N6795	2N6796	
ZVN1222L		IRF610	ZVP0209M	IRF9133		2N6796	2N6796	
ZVN1222M		IRF232	ZVP0210B	IRFF9132		2N6797	2N6798	
ZVN1308A	VN1210L*		ZVP0210M	IRF9133		2N6798	2N6798	
ZVN1308B	VN90AB*		ZVP0214L	IRF9633		2N6799	2N6800	
ZVN1309A	VN1210L*		ZVP0214M	IRF9233		2N6800	2N6800	
ZVN1309B	VN90AB*		ZVP0216L	IRF9632		2N6801	2N6802	
VN1310A	VN1206L*		ZVP0220L	IRF9632		2N6802	2N6802	
VN1310B	VN1206B*		ZVP0220M	IRF9230		2N6803	2N6804	
VN1314A	VN1710L* NOS100B*		ZVP1104B	IRFF9133		2N6804 2N6805	2N6804	
ZVN1314B ZVN1316A	VN1710L*		ZVP1104L ZVP1104M	IRF9533 IRF9133		2N6805 2N6806	2N6806 2N6806	
ZVN1316B	VN1706B*		ZVP1104M	IRFF9133	100	2N6844	2N6845	
ZVN1320B	IRFF212		ZVP1106L	IRF9533	44.0%	2N6845	2N6845	
ZVN1408A	VN1210L*		ZVP1106M	IRF9133	4.4	2N6846	2N6847	
ZVN1408B	VN90AB*		ZVP1108B	IRFF9132	24.8	2N6847	2N6847	
ZVN1409A	VN1210L*		ZVP1108L	IRF9533	1.0	2N6848	2N6849	
ZVN1409B	VN90AB*		ZVP1108M	IRF9132	Part of the	2N6849	2N6849	
ZVN1410A	VN1206L*		ZVP1109L	IRF9533		2N6850	2N6851	
ZVN1410B	VN1206B*		ZVP1109M	IRFF9132		2N6851	2N6851	
ZVN1414A	VN1710L*		ZVP1110B	IRFF9132		2N7000	2N7000	
ZVN1416A	VN1710L*		ZVP1110L	IRF9532		2N7001	2N7001	
ZVN1416B	VN1706B*		ZVP1114L	IRF9633		2N7002	2N7002	
ZVN1420A ZVN1420B	VN2020L*		ZVP1116L ZVP1120L	IRF9632 IRF9632		2N7004 2N7005	2N7004 2N7005	
ZVN2104B	IRFF212 IRFF212		ZVP1204B	IRF9632 IRFF9131		2N7005 2N7006	2N7005 2N7006	
ZVN2106B	IRFF212		ZVP1204L	IRF9531		2N7007	2N7007	
VN21108	IRFF212		ZVP1206B	IRFF9132		2N7007 2N7008	2N7007 2N7008	
ZVN2202B	IRFF212		ZVP1206L	IRF9531		2N7010	2N7010*	
ZVN2204B	IRFF212		ZVP1208B	IRFF9130		2N7011	2N7011*	
ZVN2206B	IRFF212		ZVP1208L	IRF9530		2N7012	2N7012	
ZVN2208B	IRFF212		ZVP1208M	IRF9130		2N7013	2N7013	
VN2210B	IRFF212		ZVP1209L	IRF9530		2N7014	2N7014	
ZVN3302B	IRFF212		ZVP1210B	IRFF9130		2N7016	2N7016	
VN3304B	IRFF212		ZVP1210L	IRF9530		2N7019	2N7019	
VN3306B	IRFF212		ZVP1304B	IRFF9123		2N7020	2N7020	
VP01A2B	IRFF9131		ZVP1306B	IRFF9123		2N7021	2N7021	
VP01A2L	IRF9523		ZVP1308B	IRFF9123		2N7022	2N7022	
VP01A3B	IRFF9131		ZVP1309B	IRFF9122 IRFF9122		2N7023 2N7024	2N7023 2N7024	
2VP01A3B 2VP01A3L	IRF9523 IRF9523		ZVP1310B ZVP1314B	IRFF9122		2N7024 2N7025	2N7024 2N7025	
VP01A3L	IRFF9131		ZVP1314B ZVP1316B	IRFF9223		2N7025 2N7026	2N7026	
VP02A2L	IRF9533		ZVP1404B	IRFF9123		2N7027	2N7027	
VP02A2M	IRF9133		ZVP1406B	IRFF9123		2N7030	2N7030	
VP02A3B	IRFF9131		ZVP1416B	IRFF9222		2N7054	2N7054	
ZVP02A3L	IRF9533		ZVP2116M	IRF9230		2N7055	2N7055	
ZVP02A3M	IRF9133		2N6659	2N6659*		2N7057	2N7057	
VP11A2B	IRFF9131		2N6660	2N6660*		2N7058	2N7058	
VP11A2L	IRF9533		2N6661	2N6661		2N7060	2N7060	
VP11A2M	IRF9133		2N6755	2N6756	ĺ	2N7061	2N7061	
VP11A3B	IRFF9131		2N6756	2N6756		2N7063	2N7063	
ZVP11A3L	IRF9533		2N6757	2N6758		2N7064	2N7064	
ZVP11A3M ZVP12A2B	IRF9133		2N6758	2N6758		2N7066	2N7066	IRF9132
	IRFF9131		2N6759	2N6760 2N6760		2SJ47 2SJ48		IHF9132

^{*} Consult your local sales representative for device data

Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent	Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent	Industry Part Number	Siliconix Direct Equivalent	Siliconix Nearest Equivalent
28J49 28J50 28J55 28J56 28J76 28J77 28J78 28J79 28J86 28J86 28J87 28J88 28J101 28J102 28J102 28J127 28K134 28K135	IRF9533 IRF9533	IRF9233 IRF9232 IRF9232 IRF9232 IRF9611 IRF9610 IRF9610 IRF9610 IRF9611 IRF9611 IRF9611 IRF9622 IRF9611 IRF96232 IRF233 IRF232 IRF232 IRF232	25K278 25K286 25K287K 25K288K 25K2889 25K294 25K295 25K296 25K298 25K308 25K310 25K311 25K312 25K313 25K313 25K313 25K313 25K324 25K324 25K324	IRF713 IRF330 IRF431 IRF231 IRF821 IRF842 IRF441 IRF732 IRF833 IRF340	IRF342 IRF623 IRF523 IRF522 IRF132 IRF510 IRF510	2SK412 2SK413 2SK414 2SK416LS 2SK416LS 2SK418 2SK418 2SK420 2SK420 2SK420 2SK420 2SK440 2SK442 2SK442 2SK441 2SK442 2SK447 2SK512 2SK525 2SK525	IRF633 IRF633	IRF630 IRF613 IRF513 IRF722 IRF722 IRF722 IRF511 IRF612 IRF612 IRF622 IRF642 IRF642 IRF642 IRF643 IRF620 IRF620 IRF6511
28K176H 28K213 28K213 28K214 28K214 28K215 28K216K 28K2216 28K220H 28K220H 28K221H 28K221H 28K258H 28K258H 28K258H 28K258H 28K260H 28K260H 28K260H 28K260H		IRF232 IRF210 IRF613 IRF613 IRF613 IRF612 IRF612 IRF612 IRF232 IRF232 IRF232 IRF232 IRF233 IRF333 IRF333 IRF333 IRF333 IRF3133 IRF3133 IRF3133 IRF3133 IRF3133 IRF3133 IRF3133 IRF3133 IRF3133 IRF3133 IRF3133 IRF613	28K343 28K344 28K346 28K346 28K347 28K351 28K355 28K356 28K356 28K358 28K375L8 28K388 28K388 28K388LS 28K388 28K388 28K388 28K388 28K388 28K408 28K400 28K401 28K401 28K405 28K408 28K408 28K408 28K408 28K408 28K408 28K408	IRF241 IRF822 VNS009A	IRF233 IRF232 IRF523 IRF523 IRF5212 VNT009A IRF361 IRF621 IRF731 IRF731 IRF731 IRF731 IRF532 IRF642 IRF642 IRF632 IRF642 IRF632 IRF641 IRF612 IRF612	28K528 28K529 28K530 28K531 28K531 28K532 28K551 28K551 28K552 28K554 28K554 28K562 28K572 28K572 28K579 28K579 28K5800 28K684 28K684 28K684 28K684 28K684 28K684 28K684 28K684 28K689 28K689 28K689	2N7058 2N7058	IRF712 IRF823 IRF823 IRF823 IRF821 IRF710 IRF831 IRF830 IRF843 IRF251 SMP50N05 IRF831 IRF741 IRF822 IRF642 IRF612 IRF512

This Cross Reference material is accurate to the best knowledge and belief of Siliconix incorporated. Since individual circuit design and layout can influence device performance, the purchaser must be responsible for the ultimate selection and determination of interchangeability.

^{*} Consult your local sales representative for device data

Index	and	Cross	Reference	

Process Flows 2

Selector Guide

Data Sheets 4

Switching Regulator and Controller ICs 5

MOSPOWER Die Products

Test Circuits 7

Package Outlines 8

Technical Information

Worldwide Sales Offices and Distributors 10

MOSPOWER Process Flows

In order to permit users to select product reliability levels to suit their application, Siliconix has established a series of optional product conditioning process flows. These include flows based on MIL-S-19500 and CECC 50000 screening flows.

Details of these optional flows, associated quality conformance inspections and, for reference, Siliconix' standard process flows are shown on the following pages.

Where the process flow level is indicated by a dash number (e.g. Flow -3), the dash number should be added to the part number when ordering (e.g. SMM20N50-3).

Product screened to CECC flows should be ordered by the appropriate part numbers as defined in the latest revision of CECC 50000.

MOSPOWER Military/Hi-Rel Process Flow

These five optional Process Flows are intended for hermetically sealed products only. Referenced Test Methods are in accordance with the latest revision of MIL-STD-750.

NOTES:

- (a) Level 1: U.S. Build, U.S. Test
- (b) Level 2: Overseas Build, U.S. Test (Screening & QCI)
- (c) Screen only
- (d) Groups B and C testing can be performed. See page 2-4 for details
- (e) Low power devices are available in -1 and -2 only. (r_{DS(on)} >1 Ω and P_D <1.5 W)

MOSPOWER Commercial/Industrial Process Flow

These Process Flows are intended for both hermetically sealed and plastic encapsulated products. Referenced Test Methods are in accordance with the latest revision of MIL-STD-750.

MOSPOWER Generic Quality Conformance Testing for Flows -1, -2, & -3

Quality Conformance inspection testing for Flows -1, -2, and -3 is performed in the United States in accordance with the latest revision of MIL-S-19500. Reference Test Methods are in accordance with the latest revision of MIL-STD-750.

NOTES: (a) Only performed on device types with rated V(BR)DSS greater than 200 Volts

2

MOSPOWER CECC 50000 Screening Flows(a)

Testing performed in these Screening Flows and Groups A,B and C Inspections are in full accordance with the latest revision of CECC 50000. Screening Sequence B is the preferred option for most military and high reliability applications. For complete screening and inspection details, refer to the appropriate CECC 50000 Series Detail Specification which is available from your nearest Siliconix Sales Office.

NOTES:

- (a) European (U.K.) build/test
- (b) Delta values dependent upon device type

- Index and Cross Reference
 - Process Flows #2
 - Selector Guide 3
 - Data Sheets 4
- Switching Regulator and Controller ICs 5
 - MOSPOWER Die Products
 - Test Circuits
 - Package Outlines 3
 - Technical Information
- Worldwide Sales Offices and Distributors

Selector Guide for Hermetic Packages

TO-204 (TO-3)

V _{(BR)DSS} (V)	I _D (A)	$R_{DS}(on)$	P _D (W)	Part Number	Page Number
650	14	0.60	250	SMM14N65	4-375
	5.77	1.5	125	VNT008A	4-467
	5.0	2.0	125	VNT009A	4-467
600	5.77	1.5	125	VNS008A	4-467
	5.0	2.0	125	VNS009A	4-467
500	20	0.30	250	SMM20N50	4-379
	13	0.40	150	IRF450	4-143
	12	0.40	150	2N6770	4-521
	12	0.50	150	IRF452	4-143
	9.6	0.60	125	BUZ45	4-75
•	8.3	0.80	125	BUZ45A	4-75
	8.0	0.85	125	IRF440	4-139
	7.0	1.1	125	IRF442	4-139
	4.8	1.5	75	BUZ44A	4-71
	4.5	1.5	75	IRF430	4-135
	4.5	1.5	75	2N6762	4-505
	4.0	2.0	75	IRF432	4-135
450	13	0.40	150	IRF451	4-143
	12	0.50	150	IRF453	4-143
	8.0	0.85	125	IRF441	4-139
	7.0	1.1	125	IRF443	4-139
	4.5	1.5	75	IRF431	4-135
	4.0	2.0	75	IRF433	4-135
400	24	0.23	250	SMM24N40	4-387
	15	0.30	150	IRF350	4-131
	14	0.30	150	2N6768	4-517
	13	0.40	150	IRF352	4-131
	10.5	0.40	125	BUZ64	4-87
	10	0.55	125	IRF340	4-127
	8.0	0.80	125	IRF342	4-127
	7.5	1.0	78	BUZ63	4-83
	5.5	1.0	75	IRF330	4-123
	5.5	1.0	75	2N6760	4-501
	4.5	1.5	75	IRF332	4-123
350	15	0.30	150	IRF351	4-131
-	13	0.40	150	IRF353	4-131
	10	0.55	125	IRF341	4-127
	8.0	0.80	125	IRF343	4-127
	5.5	1.0	75	IRF331	4-123
	4.5	1.5	75	IRF333	4-123
200	40	0.060	250	SMM40N20	4-391
	30	0.085	150	IRF250	4-119
	30	0.085	150	2N6766	4-513
	25	0.12	150	IRF252	4-119
	22	0.12	150	BUZ36	4-59
	18	0.18	125	IRF240	4-115

TO-204 (TO-3) (Cont'd)

N-Channel (Cont'd)

V _{(BR)DSS} (V)	I _D (A)	$R_{DS}(on)$ (Ω)	P _D (W)	Part Number	Page Number
200	16	0.22	125	IRF242	4-115
	14	0.20	125	BUZ34	4-51
	9.9	0.40	78	BUZ35	4-55
	9.0	0.40	75	IRF230	4-111
	9.0	0.40	75	2N6758	4-497
	8.0	0.60	75	IRF232	4-111
150	30	0.085	150	IRF251	4-119
	25	0.12	150	IRF253	4-119
	18	0.18	125	IRF241	4-115
	16	0.22	125	IRF243	4-115
	9.0	0.40	75	IRF231	4-111
	8.0	0.60	75	IRF233	4-111
100	40	0.055	150	IRF150	4-107
	38	0.055	150	2N6764	4-509
	33	0.080	150	IRF152	4-107
	32	0.060	125	BUZ24	4-35
	27	0.085	125	IRF140	4-103
	24	0.11	125	IRF142	4-103
	19	0.10	78	BUZ25	4-39
	14	0.20	78	BUZ23	4-31
	14	0.18	75	IRF130	4-99
	14	0.18	75	2N6756	4-493
	12	0.25	75	IRF132	4-99
60	70	0.018	250	SMM70N06	4-399
	60	0.023	150	SMM60N06	4-395
	40	0.055	150	IRF151	4-107
	33	0.080	150	IRF153	4-107
	27	0.085	125	IRF141	4-103
	24	0.11	125	IRF143	4-103
	14	0.18	75	IRF131	4-99
	12	0.25	75	IRF133	4-99
50	70	0.018	250	SMM70N05	4-399
	60	0.023	150	SMM60N05	4-395
	45	0.030	125	BUZ15	4-19
	39	0.040	125	BUZ14	4-15

P-Channel

V _{(BR)DSS} (V)	Ι _D (A)	R _{DS} (on) (Ω)	P _D (W)	Part Number	Page Number
-200	-11	0.50	125	SMM11P20	4-371
	-6.5	0.80	75	IRF9230	4-211
	-6.5	0.80	75	2N6806	4-573
	-5.5	1.2	75	IRF9232	4-211
 -150	-9.0	0.70	125	SMM9P15	4-371
	-6.5	0.80	75	IRF9231	4-211
	-5.5	1.2	75	IRF9233	4-211

TO-204 (TO-3) (Cont'd)

P-Channel (Cont'd)

V _{(BR)DSS} (V)	(A)	R _{DS} (on) (Ω)	P _D (W)	Part Number	Page Number
-100	-20	0.20	125	SMM20P10	4-383
	-12	0.30	75	IRF9130	4-207
	-11	0.30	75	2N6804	4-569
	-10	0.40	75	IRF9132	4-207
-60	-16	0.30	125	SMM16P06	4-383
	-12	0.30	75	IRF9131	4-207
	-10	0.40	75	IRF9133	4-207

TO-205 (TO-39)

V _{(BR)DSS} (V)	I _D (A)	R _{DS} (on) (Ω)	P _D (W)	Part Number	Page Number
500	2.75	1.5	25	IRFF430	4-303
	2.5	1.5	25	2N6802	4-565
	2.25	2.0	25	IRFF432	4-303
	1.6	3.0	20	IRFF420	4-299
	1.5	3.0	20	2N6794	4-549
	1.4	4.0	20	IRFF422	4-299
450	2.75	1.5	25	IRFF431	4-303
	2.25	2.0	25	IRFF433	4-303
	1.6	3.0	20	IRFF421	4-299
	1.4	4.0	20	IRFF423	4-299
400	3.5	1.0	25	IRFF330	4-295
	3.0	1.0	25	2N6800	4-561
	3.0	1.5	25	IRFF332	4-295
	2.5	1.8	20	IRFF320	4-291
	2.0	1.8	20	2N6792	4-545
	2.0	2.5	20	IRFF322	4-291
	1.35	3.6	15	IRFF310	4-287
	1.25	3.6	15	2N6786	4-533
	1.15	5.0	15	IRFF312	4-287
	0.18	12	1.0	2N7022	4-465
	0.11	30	1.0	2N7021	4-491
350	3.5	1.0	25	IRFF331	4-295
	3.0	1.5	25	IRFF333	4-295
	2.5	1.8	20	IRFF321	4-291
	2.0	2.5	20	IRFF323	4-291
	1.35	3.6	15	IRFF311	4-287
·	1.15	5.0	15	IRFF313	4-287
240	0.63	6.0	6.25	VN2406B	§

[§] Consult your local sales representative for device data

TO-205 (TO-39) (Cont'd)

N-Channel (Cont'd)

V _{(BR)DSS} (V)	I _D (A)	R _{DS} (on) (Ω)	P _D (W)	Part Number	Page Number
200	5.5	0.40	25	IRFF230	4-283
	5.5	0.40	25	2N6798	4-557
	4.5	0.60	25	IRFF232	4-283
	3.5	0.80	20	IRFF220	4-279
	3.5	0.80	20	2N6790	4-541
	3.0	1.2	20	IRFF222	4-279
	2.25	1.5	15	2N6784	4-529
	2.2	1.5	15	IRFF210	4-275
	1.8	2.4	15	IRFF212	4-275
	0.17	10	0.73	2N7030	4-489
170	0.63	6.0	6.25	VN1706B	§
150	5.5	0.40	25	IRFF231	4-283
	4.5	0.60	25	IRFF233	4-283
	3.5	0.80	20	IRFF221	4-279
	3.0	1.2	20	IRFF223	4-279
	2.2	1.5	15	IRFF211	4-275
	1.8	2.4	15	IRFF213	4-275
	1.8	4.5	20	NOS100B†	§
120	1.8	4.5	20	NOS101B†	§
	0.63	6.0	6.25	VN1206B	\$
100	8.0	0.18	25	2N6796	4-553
	8.0	0.18	25	IRFF130	4-271
	7.0	0.25	25	IRFF132	4-271
	6.0	0.30	20	IRFF120	4-267
	6.0	0.30	20	2N6788	4-537
	5.0	0.40	20	IRFF122	4-267
	4.0	0.50	15	VNE010B*	§
	3.5	0.60	15	IRFF110	4-263
	3.5	0.60	15	2N6782	4-525
	3.0	0.80	15	IRFF112	4-263
90	0.9	4.0	6.25	2N6661	4-441
	0.91	5.0	6.25	VN90AB	§
	0.96	4.5	6.25	VN99AB	§
80	1.8	4.5	20	NOS102B†	§
60	8.0	0.18	25	IRFF131	4-271
	7.0	0.25	25	IRFF133	4-271
	6.0	0.30	20	IRFF121	4-267
	5.0	0.40	20	IRFF123	4-267
	4.0	0.50	15	VNC010B*	§
	3.5	0.60	15	IRFF111	4-263
	3.0	0.80	15	IRFF113	4-263
	1.1	3.0	6.25	2N6660	§
	1.09	3.5	6.25	VN67AB	§
35	1.4	1.8	6.25	2N6659	§
	1.29	2.5	6.25	VN35AB	§
30	1.86	1.2	6.25	VN0300B	§

^{*} Low Gate-threshold Device

[†] Depletion Mode Device

[§] Consult your local sales representative for device data

TO-205 (TO-39) (Cont'd)

P-Channel

V _{(BR)DSS} (V)	I _D (A)	R _{DS} (on) (Ω)	P _D (W)	Part Number	Page Number
-200	-4.0	0.80	25	IRFF9230	4-319
	-4.0	0.80	25	2N6851	4-589
	-3.5	1.2	25	IRFF9232	4-319
	-2.5	1.5	20	IRFF9220	4-315
	-2.5	1.5	20	2N6847	4-581
	-2.0	2.4	20	IRFF9222	4-315
	-1.6	3.0	15	SML2P20	4-363
-150	-4.0	0.80	25	IRFF9231	4-319
	-3.5	1.2	25	IRFF9233	4-319
	-2.5	1.5	20	IRFF9221	4-315
	-2.0	2.4	20	IRFF9223	4-315
	-1.3	4.5	15	SML2P15	4-363
	-6.5	0.30	25	IRFF9130	4-311
	-6.5	0.30	25	2N6849	4-585
	-5.5	0.40	25	IRFF9132	4-311
	-4.0	0.60	20	IRFF9120	4-307
	-4.0	0.60	20	2N6845	4-577
	-3.5	0.80	20	IRFF9122	4-307
	-2.6	1.2	15	SML3P10	4-367
	-0.88	5.0	6.25	VP1008B	4-481
-80	-0.88	5.0	6.25	VP0808B	§ .
-60	-6.5	0.30	25	IRFF9131	4-311
	-5.5	0.40	25	IRFF9133	4-311
	-4.0	0.60	20	IRFF9121	4-307
	-3.5	0.80	20	IRFF9123	4-307
	-2.3	1.6	15	SML3P06	4-367
-30	-1.25	2.5	6.25	VP0300B	§

TO-206 (TO-52)

V _{(BR)DSS}	I _D	$R_DS(on)$	P _D	Part	Page
(V)	(A)		(W)	Number	Number
240	0.14	6.0	0.3	2N7024	4-357
200	0.10	12.0	0.3	2N7020	4-355
60	0.17	5.0	0.3	VN10KE‡	4-447
	0.17	5.0	0.3	VN10LE	4-447

[§] Consult your local sales representative for device data

TO-206 (TO-52) (Cont'd)

P-Channel

V _{(BR)DSS} (V)	I _D (A)	R _{DS} (on) (Ω)	P _D (W)	Part Number	Page Number
-200	0.07	20.0	0.3	2N7023	4-487
-30	0.11	7.0	0.3	2N7027	4-1

TO-210 (TO-61)

N-Channel

V _{(BR)DSS} (V)	I _D (A)	R _{DS} (on) (Ω)	P _D (W)	Part Number	Page Number
500	13	0.40	150	IRFH450	4-335
	13	0.40	150	2N6965	4–605
400	15	0.30	150	2N6964	4-601
	15	0.30	150	IRFH350	4-331
200	30	0.090	150	IRFH250	4-327
	30	0.090	150	2N6963	4-597
100	30	0.060	150	IRFH150	4-323
	30	0.60	150	2N6962	4-593

14-Pin DIP (Side Braze)

V _(BR))DSS /)	I _D (A)	R _{DS} (on) (Ω)	(W)	Part Number	Page Number
90		0.4	4.5	1.3	VQ1006P	§
60		0.46 0.225	3.5 5.5	1.3 1.3	VQ1004P VQ1000P	§ §
30		0.85	1.0	1.3	VQ1001P	§

[§] Consult your local sales representative for device data

14-Pin DIP (Side Braze) (Cont'd)

P-Channel

V _{(BR)DSS} (V)	I _D (A)	R _{DS} (on) (Ω)	P _D (W)	Part Number	Page Number
-90	0.41	5.0	1.3	VQ2006P	§
-60	0.41	5.0	1.3	VQ2004P	§
-30	0.6	2.0	1.3	VQ2001P	§

N- & P-Channel Quad (Two P-Channel & Two N-Channel Devices)

V _{(BR)DSS}	I _D (A)	R _{DS} (on) (Ω) N P	P _D (W)	Part Number	Page Number
± 30	1.0	2.0 3.5	1.3	VQ3001P	§

MOD Package (4 Electrically-Isolated N-Channel MOSFETs)

V _{(BR)DSS} (V)	Single Die I _D (Cont) (A)	Single Die I _D (Pulse) (A)	Single Die R _{DS} (on) (Ω)	Package P _D (W)	Lead Configuration	Part Number	Page Number
500	13	52	0.43	400	Straight	MOD500A	4-351
	13	52	0.43	400	Bent Down	MOD500B	4-351
	13	52	0.43	400	Bent Up	MOD500C	4-351
400	15	60	0.35	400	Straight	MOD400A	4-347
	15	60	0.35	400	Bent Down	MOD400B	4-347
	15	60	0.35	400	Bent Up	MOD400C	4-347
200	21	100	0.11	400	Straight	MOD200A	4-343
	21	100	0.11	400	Bent Down	MOD200B	4-343
	21	100	0.11	400	Bent Up	MOD200C	4-343
100	21	125	0.08	400	Straight	MOD100A	4-339
	21	125	0.08	400	Bent Down	MOD100B	4-339
	21	125	0.08	400	Bent Up	MOD100C	4-339

[§] Consult your local sales representative for device data

Selector Guide for Plastic Packages

TO-92

N-Channel

V _{(BR)DSS} (V)	I _D (A)	R _{DS} (on) (Ω)	(W)	Part Number	Page Number
400	0.20	12	0.85	VN4012L	4-465
350	0.18	15	0.85	VN3515L	4-465
240	0.90	6.0	0.85	NOS2406L†	4-357
	0.22	6	1.0	VN2406L	4-459
	0.12	10	0.85	VN2410L	4-459
	0.058	45	0.36	2N7007	4-627
200	0.76	12	0.85	NOS2012L†	4-355
	0.25	10	0.85	VN2010L	4-453
	0.12	28	0.85	BS107	§
	0.08	24	0.85	VN2020L	§
170	0.16	6.0	0.85	VN1706L	§
	0.12	10	0.85	VN1710L	§
120	0.23	5.0	0.85	VN1008L	§
	0.16	6.0	0.85	VN1206L	§
	0.12	10	0.85	VN1210L	§
80	0.29	4.0	1.0	VN0808L	4-441
60	0.25	7.5	0.80	2N7008	4-609
	0.20	5.0	0.80	2N7000	4-609
	0.20	5.0	0.85	BS170	§
	0.19	5.0	0.85	VN0610L	4-447
	0.19	5.0	0.85	VN0610LL	§
	0.15	7.5	0.85	VN2222LL	9 9 9
	0.15	7.5	0.85	VN2222L	§
	0.37	3.0	1.0	VN0606L	4-435
30	0.63	1.2	0.85	VN0300L	§

P-Channel

V _{(BR)DSS}	I _D (A)	R _{DS} (on) (Ω)	P _D (W)	Part Number	Page Number
-400	0.10	30	1.0	VP4030L	4-491
-240	0.88	10	0.85	VP2410L	4-489
-200	0.20	14	0.85	BS208	4-487
	0.15	20	1.0	BSS92	4-487
	0.15	20	0.85	VP2020L	4-487
-100	0.21	5.0	0.85	VP1008L	4-481
-80	0.21	5.0	0.85	VP0808L	§

[†] Depletion Mode Device § Consult your local sales representative for device data

TO-92 (Cont'd)

P-Channel (Cont'd)

V _{(BR)DSS}	I _D	R _{DS} (on)	P _D	Part	Page
(V)	(A)	(Ω)	(W)	Number	Number
-60	0.4	14	0.85	VP0614L	§
	0.18	10	0.36	VP0610L	4-475
	0.13	14	0.85	BS250	4-1
-30	0.32	2.5	0.85	VP0300L	§
	0.18	7.0	0.8	2N7025	4–1

TO-218

V _{(BR)DSS}	I _D	R _{DS} (on)	P _D	Part	Page
	(A)	(Ω)	(W)	Number	Number
650	5.5	1.6	125	2N7066	4-677
500	12.0	0.45	150	2N7058	4-657
	8.0	0.90	125	2N7064	4-673
400	13.0	0.40	150	2N7057	4-653
	9.5	0.60	125	2N7063	4-669
200	28.0	0.10	150	2N7055	4-649
	16.5	0.20	125	2N7061	4-665
100	38.0	0.06	150	2N7054	4-645
	25.0	0.10	125	2N7060	4-661

TO-220

V _{(BR)DSS} (V)	I _D (A)	$R_{DS}(on)$	P _D (W)	Part Number	Page Number
650	5.8	1.5	125	VNT008D	4-471
	5.0	2.0	125	VNT009D	4-471
600	5.8	1.5	125	VNS008D	4-471
	5.0	2.0	125	VNS009D	4-471
500	8.0	0.85	125	IRF840	4-203
	7.0	1.1	125	IRF842	4-203
	4.5	1.5	75	BUZ41A	4-63
	4.5	1.5	75	IRF830	4-199
	4.0	2.0	75	BUZ42	4-67
	4.0	2.0	75	IRF832	4-199
	2.5	3.0	40	IRF820	4-195
	2.4	3.0	40	BUZ74	§
	2.0	4.0	40	IRF822	4-195

[§] Consult your local sales representative for device data

TO-220 (Cont'd)

N-Channel (Cont'd)

V _{(BR)DSS}	I _D (A)	R _{DS} (on) (Ω)	P _D (W)	Part Number	Page Number
450	8.0	0.85	125	IRF841	4-203
	7.0	1.1	125	IRF843	4-203
	4.5	1.5	75	IRF831	4-199
	4.0	2.0	75	IRF833	4-199
	2.5	3.0	40	IRF821	4-195
	2.0	4.0	40	IRF823	4–195
400	10	0.55	125	IRF740	4-191
	8.0	0.80	125	IRF742	4-191
	5.5	1.0	75	BUZ60	4-79
	5.5	1.0	75	IRF730	4-187
	4.5	1.5	75	IRF732	4-187
	3.0	1.8	40	IRF720	4-183
	3.0	1.8	40	BUZ76	§
	2.5	2.5	40	IRF722	4-183
	1.5	3.6	20	IRF710	4-179
	1.3	5.0	20	IRF712	4–179
350	10	0.55	125	IRF741	4-191
	8.0	0.80	125	IRF743	4-191
	5.5	1.0	75	IRF731	4-187
	4.5	1.5	75	IRF733	4-187
	3.0	1.8	40	IRF721	4-183
	2.5	2.5	40	IRF723	4-183
	1.5	3.6	20	IRF711	4-179
	1.3	5.0	20	IRF713	4–179
240	1.12	6.0	20	VN2406D	§
200	18	0.18	125	IRF640	4-175
	12.5	0.20	75	BUZ31	4-43
	16	0.22	125	IRF642	4-175
	9.5	0.40	75	BUZ32	4-47
	9.0	0.40	75	IRF630	4-171
	8.0	0.60	75	IRF632	4-171
	7.0	0.75	75	BUZ30	§
200	5.0	0.80	40	IRF620	4–167
	4.0	1.2	40	IRF622	4-167
	2.5	1.5	20	IRF610	4-163
	2.0	2.4	20	IRF612	4–163
170	1.12	6.0	20	VN1706D	§
150	18	0.18	125	IRF641	4–175
	16	0.22	125	IRF643	4-175
	9.0	0.40	75	IRF631	4-171
	8.0	0.60	75	IRF633	4-171
	5.0	0.80	40	IRF621	4-167
	4.0	1.2	40	IRF623	4-167
	2.5	1.5	20	IRF611	4-163
	2.0	2.4	20	IRF613	4-163
120	1.12	6.0	20	VN1206D	§

[§] Consult your local sales representative for device data

TO-220 (Cont'd)

N-Channel (Cont'd)

V _{(BR)DSS} (V)	I _D (A)	R _{DS} (on) (Ω)	P _D (W)	Part Number	Page Number
100	27	0.085	125	IRF540	4-159
	24	0.11	125	IRF542	4-159
	19	0.10	75	BUZ21	4-27
	14	0.18	75	IRF530	4-155
	14	0.20	75	BUZ20	4-23
	12	0.25	75	IRF532	4-155
	9.0	0.25	40	BUZ72A	§
	8.0	0.30	40	IRF520	4-151
	7.0	0.40	40	IRF522	4-151
	5.0	0.50	20	VNE010D*	§
	4.0	0.60	20	IRF510	4-147
	3.5	0.80	20	IRF512	4-147
	3.5	0.80	20	2N7014*	4-637
80	1.7	4.0	20 20	VN88AD VN89AD	§
	1.6	4.5	20	VINOSAD	§
60	60	0.028	125	SMP50N06	4-423
	60	0.023	125	SMP60N06	4-423
	30	0.040	75	BUZ11S2	4-7
	27	0.085	125	IRF541	4–159
	25	0.080	85	SMP25N06	4–419
	24	0.11	12	IRF543	4-159
	14	0.18	75	IRF531	4–155
	12	0.25	75	IRF533	4-155
	8.0	0.30	40	IRF521	4–151
	7.0	0.40	40	IRF523	4-151
	5.0	0.50	20	VNC010D*	§
	4.0	0.60	20	IRF511	4-147
	3.5	0.80	20	IRF513	4-147
	2.1	3.0	20	VN66AD	§
	2.0	3.5	20	VN67AD	§
50	60	0.023	20	SMP60N05	4-423
1000000	50	0.028	125	SMP50N05	4-423
	30	0.040	75	BUZ11	4-7
	25	0.060	75	BUZ11A	4-11
	25	0.080	85	SMP25N05	4-419
	20	0.080	75	BUZ10	4-3
	12	0.10	40	BUZ71	4-91
	12	0.12	40	BUZ71A	4-91
40	2.1	3.0	20	VN46AD	§
	1.6	5.0	20	VN40AD	§
30	3.3	1,2	20	VN0300D	§

^{*} Low Gate-threshold Device

[§] Consult your local sales representative for device data

TO-220 (Cont'd)

P-Channel

-6.5	V _{(BR)DSS} (V)	I _D (A)	$R_DS(on) \ (\Omega)$	P _D (W)	Part Number	Page Number
-5.5 1.2 75 IRF9632 4-227 -3.5 1.5 40 IRF9620 4-223 -3.0 2.4 40 IRF9622 4-223 -1.75 3.0 20 SMP2P20 4-403 -150 -9.0 0.70 125 SMP9P15 4-411 -6.5 0.80 75 IRF9631 4-227 -5.5 1.2 75 IRF9631 4-227 -3.5 1.5 40 IRF9621 4-223 -3.0 2.4 40 IRF9623 4-223 -1.5 4.5 20 SMP2P15 4-403 -100 -20 0.20 125 SMP2P15 4-403 -100 -20 0.20 125 SMP2P15 4-403 -10 0.40 75 IRF9530 4-219 -6.0 0.60 40 IRF9522 4-215 -5.0 0.80 40 IRF9522 4-215 -3.0 1.2 20 SMP3P10 4-407	-200	-11	0.50	125	SMP11P20	4-411
-3.5		-6.5	0.80	75	IRF9630	4-227
-3.0 2.4 40 IRF9622 4-223 -1.75 3.0 20 SMP2P20 4-403 -1.75 3.0 2.4 1.5 IRF9631 4-227 -3.5 1.5 40 IRF9621 4-223 -3.0 2.4 40 IRF9623 4-223 -1.5 4.5 20 SMP2P15 4-403 -1.5 4.5 20 SMP2P15 4-403 -1.0 0.40 75 IRF9530 4-219 -6.0 0.60 40 IRF9520 4-215 -3.0 1.2 20 SMP3P10 4-407 -10 0.40 75 IRF9531 4-205 -3.0 1.2 20 SMP3P10 4-407 -60 -16 0.30 125 SMP16P06 4-415 -12 0.30 75 IRF9531 4-219 -6.0 0.60 40 IRF9521 4-215 -3.0 1.2 20 SMP3P10 4-407		-5.5	1.2	75	IRF9632	4-227
-1.75 3.0 20 SMP2P20 4-403 -150 -9.0 0.70 125 SMP9P15 4-411 -6.5 0.80 75 IRF9631 4-227 -5.5 1.2 75 IRF9633 4-227 -3.5 1.5 40 IRF9621 4-223 -3.0 2.4 40 IRF9623 4-223 -1.5 4.5 20 SMP2P15 4-403 -100 -20 0.20 125 SMP2P15 4-403 -12 0.30 75 IRF9530 4-219 -10 0.40 75 IRF9532 4-219 -6.0 0.60 40 IRF952 4-215 -3.0 1.2 20 SMP3P10 4-407 -60 -16 0.30 125 SMP3P10 4-407 -60 0.60 40 IRF9521 4-215 -3.0 1.2 125 SMP3P10 4-407		-3.5	1.5	40	IRF9620	4-223
-150		-3.0	2.4	40	IRF9622	4-223
-6.5 0.80 75 IRF9631 4-227 -5.5 1.2 75 IRF9633 4-227 -3.5 1.5 40 IRF9621 4-223 -3.0 2.4 40 IRF9623 4-223 -1.5 4.5 20 SMP2P15 4-403 -1.5 4.5 20 SMP2P15 4-403 -100 -20 0.20 125 SMP2P10 4-415 -12 0.30 75 IRF9530 4-219 -6.0 0.60 40 IRF9624 4-219 -6.0 0.60 40 IRF9520 4-215 -5.0 0.80 40 IRF9524 4-219 -6.0 0.60 40 IRF9521 4-407 -60 -16 0.30 125 SMP3P10 4-407 -60 -16 0.30 75 IRF9531 4-219 -10 0.40 75 IRF9531 4-219 -10 0.40 75 IRF9531 4-219 -5.0 0.80 40 IRF9521 4-215 -5.0 0.80 40 IRF9521 4-215 -5.0 0.80 40 IRF9521 4-215 -5.0 0.80 40 IRF9523 4-215 -5.0 0.80 40 IRF9523 4-215 -5.0 0.80 40 IRF9523 4-215 -2.3 1.6 20 SMP3P06 4-407		-1.75	3.0	20	SMP2P20	4-403
-5.5 1.2 75 IRF9633 4-227 -3.5 1.5 40 IRF9621 4-223 -3.0 2.4 40 IRF9623 4-223 -1.5 4.5 20 SMP2P15 4-403 -100 -20 0.20 125 SMP2P15 4-403 -10 0.40 75 IRF9530 4-219 -6.0 0.60 40 IRF9522 4-215 -3.0 1.2 20 SMP3P10 4-407 -60 -16 0.30 125 SMP3P10 4-407 -60 0.60 40 IRF9521 4-215 -3.0 1.2 125 SMP3P10 4-407 -60 -16 0.30 125 SMP3P10 4-407 -60 -16 0.30 125 SMP3P10 4-407 -70 0.40 75 IRF9531 4-219 -70 0.60 40 IRF9521 4-215 -70 0.80 40 IRF9521 4-215 -70 0.80 40 IRF9523 4-215	-150	-9.0	0.70	125	SMP9P15	4-411
-3.5		-6.5	0.80	75	IRF9631	4-227
-3.0 2.4 40 IRF9623 4-223 -1.5 4.5 20 SMP2P15 4-403 -1.5 4.5 20 SMP2P10 4-415 -1.5 4.5 20 SMP2P10 4-415 -1.5 4.5 20 SMP2P10 4-219 -1.5 4.5 20 SMP3P10 4-215 -1.5 4.5 20 SMP3P10 4-407 -1.5 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6		-5.5	1.2	75	IRF9633	4-227
-1.5 4.5 20 SMP2P15 4-403 -100 -20 0.20 125 SMP2P10 4-415 -12 0.30 75 IRF9530 4-219 -6.0 0.60 40 IRF9520 4-215 -5.0 0.80 40 IRF9522 4-215 -3.0 1.2 20 SMP3P10 4-407 -60 -16 0.30 125 SMP16P06 4-415 -12 0.30 75 IRF9531 4-219 -10 0.40 75 IRF9531 4-219 -6.0 0.60 40 IRF9521 4-215 -5.0 0.80 40 IRF9521 4-215 -5.0 0.80 40 IRF9523 4-215 -5.0 0.80 40 IRF9521 4-215 -5.0 0.80 40 IRF9523 4-215 -2.3 1.6 20 SMP3P06 4-407		-3.5	1.5	40	IRF9621	4-223
-100		-3.0	2.4	40	IRF9623	4-223
-12 0.30 75 IRF9530 4-219 -10 0.40 75 IRF9532 4-219 -6.0 0.60 40 IRF9520 4-215 -5.0 0.80 40 IRF9522 4-215 -3.0 1.2 20 SMP3P10 4-407 -60 -16 0.30 125 SMP16P06 4-415 -12 0.30 75 IRF9531 4-219 -10 0.40 75 IRF9533 4-219 -6.0 0.60 40 IRF9521 4-215 -5.0 0.80 40 IRF9523 4-215 -5.0 0.80 40 IRF9523 4-215 -2.3 1.6 20 SMP3P06 4-407		-1.5	4.5	20	SMP2P15	4-403
-10 0.40 75 IRF9532 4-219 -6.0 0.60 40 IRF9520 4-215 -5.0 0.80 40 IRF9522 4-215 -3.0 1.2 20 SMP3P10 4-407 -60 -16 0.30 125 SMP16P06 4-415 -12 0.30 75 IRF9531 4-219 -10 0.40 75 IRF9533 4-219 -6.0 0.60 40 IRF9521 4-215 -5.0 0.80 40 IRF9523 4-215 -2.3 1.6 20 SMP3P06 4-407	-100	-20	0.20	125	SMP20P10	4-415
-6.0 0.60 40 IRF9520 4-215 -5.0 0.80 40 IRF9522 4-215 -3.0 1.2 20 SMP3P10 4-407 -60 -16 0.30 125 SMP16P06 4-415 -12 0.30 75 IRF9531 4-219 -10 0.40 75 IRF9533 4-219 -6.0 0.60 40 IRF9521 4-215 -5.0 0.80 40 IRF9523 4-215 -2.3 1.6 20 SMP3P06 4-407		-12	0.30	75	IRF9530	4-219
-5.0 0.80 40 IRF9522 4-215 -3.0 1.2 20 SMP3P10 4-407 -60 -16 0.30 125 SMP16P06 4-415 -12 0.30 75 IRF9531 4-219 -10 0.40 75 IRF9533 4-219 -6.0 0.60 40 IRF9521 4-215 -5.0 0.80 40 IRF9523 4-215 -2.3 1.6 20 SMP3P06 4-407		-10	0.40	75	IRF9532	4-219
-3.0 1.2 20 SMP3P10 4-407 -60 -16 0.30 125 SMP16P06 4-415 -12 0.30 75 IRF9531 4-219 -10 0.40 75 IRF9533 4-219 -6.0 0.60 40 IRF9521 4-215 -5.0 0.80 40 IRF9523 4-215 -2.3 1.6 20 SMP3P06 4-407		-6.0	0.60	40	IRF9520	4-215
-60		-5.0	0.80	40	IRF9522	4-215
-12 0.30 75 IRF9531 4-219 -10 0.40 75 IRF9533 4-219 -6.0 0.60 40 IRF9521 4-215 -5.0 0.80 40 IRF9523 4-215 -2.3 1.6 20 SMP3P06 4-407		-3.0	1.2	20	SMP3P10	4-407
-10 0.40 75 IRF9533 4-219 -6.0 0.60 40 IRF9521 4-215 -5.0 0.80 40 IRF9523 4-215 -2.3 1.6 20 SMP3P06 4-407	-60	-16	0.30	125	SMP16P06	4-415
-6.0 0.60 40 IRF9521 4-215 -5.0 0.80 40 IRF9523 4-215 -2.3 1.6 20 SMP3P06 4-407		-12	0.30	75	IRF9531	4-219
-5.0 0.80 40 IRF9523 4-215 -2.3 1.6 20 SMP3P06 4-407		-10	0.40	75	IRF9533	4-219
-2.3 1.6 20 SMP3P06 4-407		-6.0	0.60	40	IRF9521	4-215
		-5.0	0.80	40	IRF9523	4-215
50 -7.0 0.40 40 BUZ171 4-95		-2.3	1.6	20	SMP3P06	4-407
	-50	-7.0	0.40	40	BUZ171	4-95

TO-237

V _{(BR)DSS} (V)	I _D (A)	R _{DS} (on) (Ω)	P _D (W)	Part Number	Page Number
240	0.25	6.0	1.0	VN2406M	§
	0.2	10	1.0	VN2410M	4-459
	0.19	10	1.0	BSR76	4-459
170	0.25	6.0	1.0	VN1706M	§
	0.2	10	1.0	VN1710M	§ § §
	0.14	20	1.0	VN1720M	\$
120	0.25	6.0	1.0	VN1206M	. 6
	0.2	10	1.0	VN1210M	§ §
80	0.4	4.0	1.0	VN0808M	4-441
	0.4	4.0	1.0	BSR67	4-441

[§] Consult your local sales representative for device data

TO-237 (Cont'd)

N-Channel (Cont'd)

V _{(BR)DSS} (V)	I _D (A)	$R_{DS}(on)$	P _D (W)	Part Number	Page Number
60	0.5	3.0	1.0	VN0606M	4-435
	0.3	5.0	1.0	VN10KM	4-447
	0.3	5.0	1.0	VN10LM	§
	0.25	7.5	1.0	VN2222KM	§
	0.25	7.5	1.0	VN2222LM	§
	0.47	3.0	1.0	BSR66	4-435
30	0.75	5.0	1.0	VN0300M	§

P-Channel

V _{(BR)DSS} I _D (A)				Page Number	
-0.33	5.0	1.0	VP1008M	4-481	
-0.33	5.0	1.0	VP0808M	§	
-0.5	2.5	1.0	VP0300M	§	
	-0.33	(Å) (Û) -0.33 5.0 -0.33 5.0	(Ā) (Ω) (W) -0.33 5.0 1.0 -0.33 5.0 1.0	(Å) (Ω) (W) Number -0.33 5.0 1.0 VP1008M -0.33 5.0 1.0 VP0808M	

SOT-23

V _{(BR)DS}	ss I _D (A)	R _{DS} (on) (Ω)	P _D Part (W) Number		Page Number
240	0.02	45	0.35	2N7001	4-627
60	0.115	7.5	0.35	2N7002	4-609

V _{(BR)DSS} (V)	I _D (A)	$R_{DS}(on)$) P _D Part (W) Number		Page Number
-60	0.4	10	0.35	2N7019	4-475
-30	0.11	7	0.3	2N7026	4-1

4-Pin FETDIP

N-Channel

V _{(BR)DSS}	I _D	$R_{DS}(on)$	P _D	Part	Page
(V)	(A)		(W)	Number	Number
350	0.32	5.0	1.0	2N7006	4-623
200	0.80	0.80	1.0	IRFD220	4-247
	0.60	1.5	1.0	2N7005	4-619
	0.60	1.5	1.0	IRFD210	4-243
150	0.70	1.2	1.0	IRFD223	4-247
	0.45	2.4	1.0	IRFD213	4-243
100	1.3	0.30	1.0	IRFD120	4-239
	1.0	0.60	1.0	IRFD110	4-235
	1.0	0.60	1.0	2N7004	4-615
60	1.2	0.35	1.0	2N7012	4-633
	1.1	0.40	1.0	IRFD123	4-239
	0.80	0.80	1.0	IRFD113	4-235
50	2.4	0.10	1.0	IRFD020	4-231
	2.2	0.12	1.0	IRFD022	4-231
40	1.2	0.30	1.0	2N7013	4-633

P-Channel

V _{(BR)DSS}	I _D	R _{DS} (on)	P _D	Part	Page
(V)	(A)	(Ω)	(W)	Number	Number
-200	-0.40	3.0	1.0	SMV1P20	4-431
-150	-0.30	4.5	1.0	SMV1P15	4-431
-100	-1.0	0.60	1.0	IRFD9120	4-255
	-0.70	1.2	1.0	SMV1P10	4-427
-60	-0.80	0.80	1.0	IRFD9123	4-255
	-0.60	1.0	1.0	2N7016	4-641
	-0.60	1.6	1.0	SMV1P06	4-427
-50	-1.6	0.28	1.0	IRFD9020	4-251
	-1.4	0.33	1.0	IRFD9022	4-251

14-Pin DIP

N-Channel Quads

V _{(BR)DSS}	I _D	R _{DS} (on)	P _D	Part	Page
(V)	(A)	(ഹ)	(W)	Number	Number
90	0.4	4.5	1.3	VQ1006J	§
60	0.46	3.5	1.3	VQ1004J	§
	0.225	5.5	1.3	VQ1000J	§
30	0.85	1.0	1.3	VQ1001J	§

P-Channel Quads

V _{(BR)DSS}	I _D (A)	R _{DS} (on) (Ω)	P _D (W)	Part Number	Page Number
-90	0.41	5.0	1.3	VQ2006J	§
-60	0.41	5.0	1.3	VQ2004J	§
-30	0.6	2.0	1.3	VQ2001J	§

N- & P-Channel Quad (Two P-Channel & Two N-Channel Devices)

V _{(BR)DSS} (V)	I _D (A)	R _{DS} (on) (Ω) N P	P _D (W)	Part Number	Page Number
± 30	1.0	2.0 3.5	1.3	VQ3001J	§

§ Consult your local sales representative for device data

Index	and	Cross	Reference	
	CARRY	W1 400	HEIGHGHIGE	

- Process Flows 2
- Selector Guide (৪)

Data Sheets 4

- Switching Regulator and Controller ICs 5
 - MOSPOWER Die Products 6
 - 100

Test Circuits 7

- Package Outlines
- Technical Information
- Worldwide Sales Offices and Distributors 10

BS250, 2N7025 2N7026, 2N7027

P-Channel Enhancement Mode Transistors²

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)	PACKAGE OPTION
BS250	45	14	0.15	TO-92 RM
2N7025	30	7	0.18	TO-92 SM
2N7026	30	7	0.12	SOT-23
2N7027	30	7	0.11	TO-206 AC (TO-52)

SM = Standard Mold, RM = Reverse Mold

SOT-23 TO-92 TOP VIEW **FRONT VIEW** SM 1 SOURCE 2 GATE 3 DRAIN RM 1 DRAIN 1 DRAIN 2 GATE 2 GATE 3 SOURCE 3 SOURCE 123 TO-206 AC

TO-206 AC BOTTOM VIEW

1 DRAIN 2 GATE 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS			DCGEO	2N			11
		Symbol	BS250	7025	7026	7027	Units
Drain-Source Voltage		V _{DS}	45	30	30	30	V
Gate-Source Voltage		V _{GS}	± 30	± 30	± 30	± 30	v
Continuous Drain Current	T _A = 25°C		0.15	0.18	0.12	0.11	A
	T _A = 100°C	- 'D	0.095	0.11	0.07	0.07	
Pulsed Drain Current ¹		IDM	0.69	0.69	0.48	0.60	
Down Discination	T _A = 25°C	В	0.83	0.80	0.36	0.30	*** w
Power Dissipation	T _A = 100°C	P _D	0.32	0.32	0.14	0.12	
Operating Junction & Storage Temperature Range		T _J , T _{stg}		-55	to 150		°C
Lead Temperature (1/16" from c	ase for 10 secs.)	TL		3	00		

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	TO-92	SOT-23	TO-206	Units
Junction-to-Ambient	R _{thJA}	156	350	400	°C/W

¹Pulse width limited by maximum junction temperature

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_A= 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 100 μA		V(BR)DSS	45	60 .	-	V
Gate Threshold Voltage VDS = VGS , ID = 1 mA		V _{GS(th)}	1	2.7	3.5	*
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±15 V		IGSS	- 1,1	<u>±</u> 1	±20	nA
Zero Gate Voltage Drain Currer V _{DS} = 36 V, V _{GS} = 0	nt	I _{DSS}	-	-	0.5	
Zero Gate Voltage Drain Currer V _{DS} = 36 V, V _{GS} = 0, T _J = 12		I _{DSS}	_	_	2000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	0.2	-	-	А
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 0.2 A		r _{DS(on)}	-	-	14	a.
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 0.2 A, T _J = 125°C		r _{DS(on)}	-	-	28] w
Forward Transconductance ² V _{DS} = 10 V , I _D = 0.2 A		g _{fs}	100	-	-	mS
Common Source Output Condu V _{DS} = 10 V , I _D = 0.2 A	ctance	g _{os}	-	600		μS
Input Capacitance	V _{GS} = 0	C _{iss}	-	25	60	
Output Capacitance	V _{DS} = 15 V	Coss	-	15	25	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	4	8	-
Turn-On Time	$V_{DD} = 25 \text{ V}, R_{L} = 120 \Omega$ $I_{D} = 200 \text{ mA},$ $V_{GEN} = 10 \text{ V}$	t (on)	-	16	_	ns
Turn-Off Time	$R_G = 25 \Omega$ (Switching time is essentially independent of operating temperature)	^t (off)	-	15	-	, no

TO-92 Only SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (TA= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	I _S	-	-	0.15	_
Pulsed Current ¹	^I sm	-		0.69	A
Forward Voltage ² $I_F = I_S = 0.15 \text{ A}, V_{GS} = 0$	V _{SD}	-	0.9	1.5	٧

 $^{^{1}}$ Pulse width limited by maximum junction temperature 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

BUZ10

N-Channel Enhancement Mode Transistor

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
BUZ10	50	0.08	20

TO-220AB

- 1 GATE
- 3 SOURCE

TOP VIEW

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	BUZ10	Units
Drain-Source Voltage		V _{DS}	50	
Gate-Source Voltage		V _{GS}	± 40	
Continuous Drain Current	T _C = 25°C		20	
Continuous Diam Current	T _C = 100°C	7 D	14	
Pulsed Drain Current ¹	nt ¹		80	
Power Discination	T _C = 25°C	Ь	70	w
Power Dissipation	T _C = 100°C	P _D	28	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°c
Lead Temperature (1/16" from case for 10 secs.)		TL	300	

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	_	1.78	
Junction-to-Ambient	R _{thJA}	_	75	K/W
Case-to-Sink	R _{thCS}	1.0	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA		V _{(BR)DSS}	50	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA	-	V _{GS(th)}	2.1	-	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		Igss	-		100	nA
Zero Gate Voltage Drain Currer $V_{DS} = V_{(BR)DSS}$, $V_{GS} = 0$	nt	IDSS	<u>-</u>		250	
Zero Gate Voltage Drain Currer VDS = V(BR)DSS, VGS = 0,	nt T _J ≈125°C	I _{DSS}	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	20	-	-	Α
Drain-Source On-State Resistance ² VGS = 10 V, ID = 13 A Drain-Source On-State Resistance ² VGS = 10 V, ID = 13 A, T _J = 125°C		r _{DS(on)}	_	0.05	0.080	Q.
		r _{DS(on)}	-	0.075	0.12	ΔL
Forward Transconductance ² V _{DS} = 15 V, I _D = 13 A		g _{fs}	8.0	9.0	_	S(ぴ)
Input Capacitance	V _{GS} = 0	Ciss	_	1020	1250	
Output Capacitance	V _{DS} = 25 V	Coss	.=	500	750	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	- -	150	270	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	28	40	
Gate-Source Charge	V _{GS} = 10 V, I _D = 20 A (Gate charge is essentially	Qgs	- <u>-</u>	8	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	15	-	
Turn-On Delay Time	$V_{DD} = 30 \text{ V}$, $R_L = 10 \Omega$	^t d(on)	-	15	40	
Rise Time	ID~ 3 A , V _{GEN} =10 V	tr	-	55	90	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	-	50	130] "
Fall Time	independent of operating temperature)	t _f	-	60	95	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	1 _S	_	_	20	
Pulsed Current ¹	^I sm	_	-	80	A
Forward Voltage ² I _F = 2 x I _S , V _{GS} = 0	V _{SD}	-	-	1.5	٧
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	_	100	_	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	_	0.15	-	μС

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width \leq 300 μsec , Duty Cycle $\leq~2\%$

10-4

Duty cycle= 0.5
0.2

0.1

0.05

0.02

Single pulse

10⁻³ SQUARE WAVE PULSE DURATION (sec)

FIGURE 11: Normalized Effective Transient Thermal Impedance, Junction-to-Case

NORMALIZED EFFECTIVE TRANSIENT THERMAL IMPEDANCE

0.1

0.01

10⁻⁵

BUZ11, BUZ11S2

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)
BUZ11	50	0.040	30
BUZ11S2	60	0.040	30

TO-220AB

- 1 GATE
- 2 DRAIN
- 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS			E		
		Symbol	11	1152	Units
Drain-Source Voltage		V _{DS}	50	60	V
Gate-Source Voltage		V _{GS}	± 40	± 40	*
Continuous Drain Current	T _C = 25°C		30	30	
	T _C = 100°C	- 'b -	19	19	1 .
Pulsed Drain Current ¹		1 _{DM}	120	120	A
Power Dissipation	T _C = 25°C	В	75	75	w
Power Dissipation	T _C = 100°C	P _D	30	30] "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300		

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}		1.67	
Junction-to-Ambient	R _{thJA}	_	75	K/W
Case-to-Sink	R _{thCS}	1.0	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage BUZ11 V_{GS} = 0, I_D = 250 μA BUZ11S2		V(BR)DSS	50 60	<u>-</u>	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.1	-	4.0	•
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-		100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt .	I _{DSS}			250	
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0,	nt Tj =125°C	IDSS		-	1000	μΑ
On-State Drain Current ² V _{DS} = 2.0 V, V _{GS} = 10 V	BUZ11 BUZ11S2	I _{D(on)}	30 30	= -	- -	Α
Drain-Source On-State Resista VGS = 10 V, ID = 15 A	nce ² BUZ11 BUZ11S2	r _{DS(on)}	-	0.030 0.030	0.040 0.040	G,
Drain-Source On-State Resistance 2 BUZ11 VGS = 10 V, ID = 15 A, TJ = 125°C BUZ11S2		r _{DS(on)}	-	0.045 0.045	0.070 0.070	42
Forward Transconductance ² V _{DS} = 15 V, I _D = 15 A		g _{fs}	4.0	8.0	-	S(ଫ)
Input Capacitance	V _{GS} = 0	C _{iss}	-	1900	2000	
Output Capacitance	V _{DS} = 25 V	Coss	- <u>-</u>	1000	1100	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	· .	260	400	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	52	75	
Gate-Source Charge	V _{GS} = 10 V, I _D = 30 A (Gate charge is essentially	Q _{gs}	·	14	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	22	-,,	
Turn-On Delay Time	$V_{DD} = 30 \text{ V}, R_L = 10 \Omega$	^t d(on)		30	45	
Rise Time	ID~ 3 A , V _{GEN} =10 V	t _r	-	50	110	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)		100	230	110
Fall Time	independent of operating temperature)	t _f	_	110	170	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	BUZ11 BUZ11S2	^I s	-	-	30 30	
Pulsed Current ¹	BUZ11 BUZ11S2	ISM	=	=	120 120	A
Forward Voltage ² IF = 2 x I _S , V _{GS} = 0	BUZ11 BUZ11S2	V _{SD}	=	=	2.6 2.6	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/µS	+	t _{rr}	· -	65	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	-	0.16	_	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

FIGURE 11: Normalized Effective Transient Thermal Impedance, Junction-to-Case

BUZ11A

N-Channel Enhancement Mode Transistor

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
BUZ11A	50	0.060	25

TO-220AB

- 1 GATE
- 2 DRAIN
- 3 SOURCE

TOP VIEW

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	BUZ11A	Units
Drain-Source Voltage		V _{DS}	50	V
Gate-Source Voltage		V _{GS}	± 40	7 °
Continuous Drain Current	T _C = 25°C		25	
Continuous Drain Current	T _C = 100°C	- 'D	17	1
Pulsed Drain Current ¹		I _{DM}	100	A
Power Dissipation	T _C = 25°C	Ь	75	***
rower dissipation	T _C = 100°C	P _D	30	W
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°c
Lead Temperature (1/16" from case for 10 secs.)		TL	300]

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	_	1.67	
Junction-to-Ambient	R _{thJA}	-	75	K/W
Case-to-Sink	RthCS	1.0	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag $V_{GS} = 0$, $I_D = 250 \mu A$	je	V _{(BR)DSS}	50	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.1	-	4.0	·
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	. <u>-</u> . 11	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}	· -		250	-
Zero Gate Voltage Drain Currer VDS = V(BR)DSS, VGS = 0,	nt T _J =125°C	IDSS	- -		1000	μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V		I _{D(on)}	25	-	<u>-</u>	А
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 15 A	nce ²	^r DS(on)	_	0.050	0.060	v.
Drain-Source On-State Resista VGS = 10 V, ID = 15 A, TJ =	nce ² : 125°C	^r DS(on)	-	0.080	0.10	40
Forward Transconductance ² V _{DS} = 15 V, I _D = 15 A		g _{fs}	4.0	10.0	1	s(හ)
Input Capacitance	V _{GS} = 0	C _{iss}	_	1050	2000	
Output Capacitance	V _{DS} = 25 V	Coss	· . - ,	500	1100	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	125	400	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	27	50	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 25 \text{ A}$ (Gate charge is essentially	Qgs		8	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	15	-	
Turn-On Delay Time	V _{DD} = 30 V , R _L = 10 Ω	^t d(on)	_	20	45	:
Rise Time	ID~ 3.0 A , VGEN= 10 V	tr	_	50	110	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	_	60	230	113
Fall Time	independent of operating temperature)	t _f	_	55	170]

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	Is	<u>-</u>	-	25	A
Pulsed Current ¹	^I SM	_	_	100	A , .
Forward Voltage ² I _F = 2 x I _S , V _{GS} = 0	V _{SD}	_	-	2.4	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	- .	65	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/µS	Q _{rr}	_	0.12	-	μС

 $^{^{1}}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width \leq 300 μsec , Duty Cycle \leq 2%

BUZ14

N-Channel Enhancement Mode Transistor

BOTTOM VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
BUZ14	50	0.040	39

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	BUZ14	Units	
Drain-Source Voltage		V _{DS}	50		
Gate-Source Voltage		V _{GS}	± 40]	
Continuous Drain Current	T _C = 25°C	,	39		
Continuous Drain Current	T _C = 100°C	_ 'D	25	1	
Pulsed Drain Current ¹		I _{DM}	155	A .	
Power Dissipation	T _C = 25°C	В	125		
Power Dissipation	T _C = 100°C	P _D	50	- w	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	·c	
Lead Temperature (1/16" from case for 10 secs.)		TL	300] "	

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	-	1.0	
Junction-to-Ambient	R _{thJA}		35	K/W
Case-to-Sink	R _{thCS}	0.1	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge	V(BR)DSS	50	65	_	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.1	-	4.0	V
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	_	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	-	_ `	250	
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0,		^I DSS	-	i - i	1000	μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V		I _{D(on)}	39	-	-	Α
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 22 A	nce ²	r _{DS(on)}	-	0.030	0.040	_
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 22 A, T _J = 125°C		r _{DS(on)}	-	0.040	0.055	v.
Forward Transconductance ² V _{DS} = 15 V, I _D = 22 A		g _{fs}	7.0	13.0		S(V)
Input Capacitance	V _{GS} = 0	Ciss	: <u></u>	1900	2100	
Output Capacitance	V _{DS} = 25 V	Coss	· · -	1100	2000	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	260	800	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	54	75	
Gate-Source Charge	V _{GS} = 10 V, I _D = 39 A (Gate charge is essentially	Q _{gs}		10	·	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	27	-	
Turn-On Delay Time	V_{DD} = 30 V , R_L = 10 Ω	^t d(on)	-	30	45	
Rise Time	ID = 3 A , V _{GEN} = 10 V R _G = 25 D (Switching time is essentially	tr	-	50	170	ns
Turn-Off Delay Time		^t d(off)	-	100	430	113
Fall Time	independent of operating temperature)	t _f	-	110	330	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	^I s	· –	<u>-</u>	39	
Pulsed Current ¹	Ism	- '.	-	155	A
Forward Voltage ² $I_F = 2 \times I_S$, $V_{QS} = 0$	V _{SD}	_	_	2.2	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	65	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μs	Q _{rr}	-	0.16	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

BUZ15

N-Channel Enhancement Mode Transistor

BOTTOM VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D (AMPS)
NUMBER	(VOLTS)	(OHMS)	
BUZ15	50	0.030	45

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS Drain-Source Voltage		Symbol	BUZ15	Units
		V _{DS}	50	v
Gate-Source Voltage		V _{GS}	± 40	Y
Continuous Drain Current	T _C = 25°C		45	
	T _C = 100°C	- 'D	28	
Pulsed Drain Current ¹		IDM	180	Α
Davis Discharties	T _C = 25°C		125	w
Power Dissipation	T _C = 100°C	⊢ P _D	50	, w
Operating Junction & Storage Te	emperature Range	T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from	case for 10 secs.)	TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	-	1.0	
Junction-to-Ambient	R _{thJA}	_	35	K/W
Case-to-Sink	R _{thCS}	0.1	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	je	V _{(BR)DSS}	50	65	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.1	3.0	4.0	·
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt .	I _{DSS}	_	1	250	e e e
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0,		IDSS		<u>-</u>	1000	μΑ
On-State Drain Current ² V _{DS} = 2.0 V, V _{GS} = 10 V		I _{D(on)}	45	-	· · ·	- A
Drain-Source On-State Resista VGS = 10 V, I _D = 22 A	nce ²	r _{DS(on)}	-	0.028	0.030	Ω
Drain-Source On-State Resista VGS = 10 V, ID = 22 A TJ =		r _{DS(on)}	-	0.040	0.042	47
Forward Transconductance ² V _{DS} = 15 V, I _D = 22 A		g _{fs}	7.0	10.0	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}		1900	2100	
Output Capacitance	V _{DS} = 25 V	Coss		1100	2000	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	260	800	- B.
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	54	75	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 45 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	14	<u>-</u>	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	27	_	
Turn-On Delay Time	V _{DD} = 30 V, R _L = 10 Ω	^t d(on)	-	28	45	
Rise Time	ID~ 3 A , V _{GEN} = 10 V	, t _r	· <u>-</u>	80	170	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	-	250	430	113
Fall Time	independent of operating temperature)	t _f	-	120	330	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	Is		-	45	
Pulsed Current ¹	^I SM	_	-	180	A .
Forward Voltage ² I _F = 2 x I _S , V _{GS} = 0	V _{SD}		. -	2.4	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	65	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	-	0.16	_	μС

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

BUZ20

N-Channel Enhancement Mode Transistor

TO-220AB

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
BUZ20	100	0.20	12

- 1 GATE
- 2 DRAIN
- 3 SOURCE

TOP VIEW

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS Drain-Source Voltage Gate-Source Voltage		Symbol	BUZ20	Units
		V _{DS}	100	V
		V _{GS}	± 40]
Continuous Drain Current	T _C = 25°C		12	
	T _C = 100°C	'D	8.8	4. A
Pulsed Drain Current ¹		IDM	48	Α
Pawer Discipation	T _C = 25°C	В	75	w
Power Dissipation	T _C = 100°C	- P _D	30	VV
Operating Junction & Storage Temperature Range		T _J , T _{stg}	–55 to 150	°C
Lead Temperature (1/16" from o	case for 10 secs.)	TL	300	, ,

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	1.67	
Junction-to-Ambient	R _{thJA}	-	75	K/W
Case-to-Sink	R _{thCS}	1.0	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge	V(BR)DSS	100	_	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.1	-	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		Igss	-	- , ,	100	nA
Zero Gate Voltage Drain Current VDS = V(BR)DSS , VGS = 0		IDSS		- ,	250	
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0,	nt T _J =125°C	IDSS	_	_	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	12	_	-	Α
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 6.0 A	nce ²	r _{DS(on)}	-	0.14	0.20	
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 6.0 A, T _J = 125°C		r _{DS(on)}	-	0.25	0.35	a a
Forward Transconductance ² V _{DS} = 15 V, I _D = 6.0 A		g _{fs}	2.7	4.3	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	780	2000	
Output Capacitance	V _{DS} = 25 V	Coss	-	280	500	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	70	140	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	26	30	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 12 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	5	-	nC
Gate-Drain Charge	Independent of operating temperature)	Q _{gd}	-	13	-	
Turn-On Delay Time	V _{DD} = 30 V , R _L = 10 Ω	^t d(on)	-	27	45	
Rise Time	ID = 2.9 A, V _{GEN} = 10 V	tr	-	65	75	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	-	120	140	1113
Fall Time	independent of operating temperature)	tf	_	70	80	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	l _s	-	_	12	
Pulsed Current ¹	^I SM	-	-	48	A
Forward Voltage ² I _F = 2 x I _S , V _{GS} = 0	V _{SD}	-	-	1.8	v
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	_	100	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	-	0.35	-	μС

 $^{^1\}text{Pulse}$ width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) $^2\text{Pulse}$ test: Pulse width $\leq 300~\mu\text{sec}$, Duty Cycle $\leq~2\,\%$

FIGURE 11: Normalized Effective Transient Thermal Impedance, Junction-to-Case

PRODUCT SUMMARY

PART NUMBER

BUZ21

V_{(BR)DSS}

(VOLTS)

100

BUZ21

N-Channel Enhancement Mode Transistor

TO-220AB

- 2 DRAIN
- 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

r_{DS(on)}

(OHMS)

0.10

I_D

(AMPS)

19

PARAMETERS/TEST C	CONDITIONS	Symbol	BUZ21	Units
Drain-Source Voltage		V _{DS}	100	V
Gate-Source Voltage		V _{GS}	± 40	
Continuous Drain Current	T _C = 25°C		19	
	T _C = 100°C	'p	12	1 .
Pulsed Drain Current ¹		IDM	75	A
Daniel Diagland	T _C = 25°C		75	w
Power Dissipation	T _C = 100°C	- P _D	30	"
Operating Junction & Storage Te	Junction & Storage Temperature Range T _J , T _{Stg} -55 to 150		-55 to 150	°C
Lead Temperature (1/16" from o	case for 10 secs.)	TL	300	-0

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC		1.67	,
Junction-to-Ambient	R _{thJA}	-	75	K/W
Case-to-Sink	R _{thCS}	1.0	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag $V_{GS} = 0$, $I_D = 250 \mu A$	ge	V(BR)DSS	100	-	-	V
Gate Threshold Voltage VDS= VGS, ID= 1000 μA		V _{GS(th)}	2.1	_	4.0	ľ
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	_	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	-	_	250	
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0,	nt Tj =125°C	IDSS	_	- * *	1000	μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V		^I D(on)	19	-	-	A
Drain-Source On-State Resista VGS = 10 V, I _D = 9.0 A	nce ²	r _{DS(on)}	_	0.07	0.10	
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 9.0 A, T _J = 125°C		r _{DS(on)}	-	0.14	0.18	- Ω
Forward Transconductance ² V _{DS} = 15 V, I _D = 9.0 A		g _{fs}	4.0	6.2	-	s(ଫ)
Input Capacitance	V _{GS} = 0	C _{iss}	-	1550	2000	
Output Capacitance	V _{DS} = 25 V	Coss	_	650	700	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	200	240	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	_	46	60	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 19 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	10	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	23	_	
Turn-On Delay Time	V _{DD} = 30 V, R _L = 10 Ω	^t d(on)	_	33	45	
Rise Time	ID = 3 A, V _{GEN} = 10 V R _G = 25 \(\Omega\) (Switching time is essentially	t _r	_	48	75	ns
Turn-Off Delay Time		^t d(off)	_	170	220	113
Fall Time	independent of operating temperature)	t _f	_	75	110	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	Is	-	-	19	
Pulsed Current ¹	^I SM	_	-	75	Α .
Forward Voltage ² I _F = 2 x I _S , V _{GS} = 0	V _{SD}	_	-	2.1	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	_ `	150	_	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	_	0.5	_	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

² Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

BUZ23

N-Channel Enhancement Mode Transistor

BOTTOM VIEW

PRODUCT SUMMARY

PART	V(BR)DSS	r _{DS(on)}	I D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
BUZ23	100	0.2	10

TO-204AA (TO-3)

3 SOURCE

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS Drain-Source Voltage Gate-Source Voltage		Symbol	BUZ23	Units
		V _{DS}	100	
		V _{GS}	± 40]
Continuous Drain Current	T _C = 25°C		10	
Continuous Drain Current	T _C = 100°C	'D	9	
Pulsed Drain Current ¹		I _{DM}	40	7 ^
Danier Diaglantian	T _C = 25°C		78	w
Power Dissipation	T _C = 100°C	P _D	31] w
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	- °c
Lead Temperature (1/16" from case for 10 secs.)		TL	300	7

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	1.6	
Junction-to-Ambient	R _{thJA}	_	35	K/W
Case-to-Sink	R _{thCS}	0.1	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA		V(BR)DSS	100	-	_	v
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.1	-	4.0	v
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt .	^I DSS	-	- -	250	
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0,	nt T _J =125°C	^I DSS	\ -	-	1000	μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V		I _{D(on)}	10	_	-	А
Drain-Source On-State Resista VGS = 10 V, ID = 6.0 A	nce ²	r _{DS(on)}	_	0.14	0.20	_
	ain-Source On-State Resistance ² 'GS = 10 V, I _D = 6.0 A, T _J = 125°C		-	0.24	0.35	a.
Forward Transconductance ² V _{DS} = 15 V, I _D = 6.0 A		g _{fs}	2.7	4.5	_	s(ଫ)
Input Capacitance	V _{GS} = 0	C _{iss}	-	780	2000	
Output Capacitance	V _{DS} = 25 V	Coss	. - ,-	250	500	рF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	70	140	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	1	26	30	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	5		nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	13		
Turn-On Delay Time	V_{DD} = 30 V , R_L = 10 Ω	^t d(on)	-	20	45	
Rise Time	ID = 2.9 A, V _{GEN} = 10 V R _G = 25 \(\Omega\) (Switching time is essentially	tr	-	48	75	ns
Turn-Off Delay Time		^t d(off)	-	45	140	115
Fall Time	independent of operating temperature)	t _f	_	55	80	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	l _s	_	-	10	
Pulsed Current ¹	^I sm	-	-	40	A .
Forward Voltage ² I _F = 2 x I _S , V _{GS} = 0	V _{SD}		-	1.6	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	<u>-</u>	150	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μs	Q _{rr}	_	0.8		μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width \le 300 μsec, Duty Cycle \le 2%

BUZ24

N-Channel Enhancement Mode Transistor

BOTTOM VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D	
NUMBER	(VOLTS)	(OHMS)	(AMPS)	
BUZ24	100	0.060	32	

TO-204AE (TO-3)

2 GATE 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	BUZ24	Units
Drain-Source Voltage		V _{DS}	100	V
Gate-Source Voltage		V _{GS}	± 40	l`
Continuous Drain Current	T _C = 25°C		32	
Continuous Drain Current	T _C = 100°C	۵' ا	20	
Pulsed Drain Current ¹		IDM	125] ^
Power Dissipation	T _C = 25°C	P	125	w
Power Dissipation	T _C = 100°C	PD	50] "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°c
Lead Temperature (1/16" from case for 10 secs.)		TL	300	1

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	1.0	
Junction-to-Ambient	R _{thJA}	_	35	K/W
Case-to-Sink	R _{thCS}	0.1	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA		V(BR)DSS	100	-	-	v
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.1	_	4.0	V
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}	_	_	250	
Zero Gate Voltage Drain Currer VDS = V(BR)DSS, VGS = 0, T	nt _J =125°C	^I DSS	-	_	1000	μΑ
On-State Drain Current ² V _{DS} = 2.0 V, V _{GS} = 10 V		I _{D(on)}	32	-	=	А
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 9.0 A		r _{DS(on)}	_	0.045	0.060	_
Drain-Source On-State Resista VGS = 10 V, I _D = 9.0 A, T _J =	nce ² : 125°C	r _{DS(on)}	_	0.080	0.10	v.
Forward Transconductance ² V _{DS} = 15 V, I _D = 9.0 A		g _{fs}	6.0	7.5	_	s(ଫ)
Input Capacitance	V _{GS} = 0	C _{iss}		2800	3000	, 1
Output Capacitance	V _{DS} = 25 V	Coss	स्टब्स	1100	1200	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	400	500	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	_	62	80	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 19 \text{ A}$ (Gate charge is essentially	Q _{gs}		10	- · .	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	29	-	
Turn-On Delay Time	V _{DD} = 30 V, R _L = 10 Ω	t _{d(on)}	-	42	45	
Rise Time	I _D = 3.0 A , V _{GEN} = 10 V R _G = 25 \(\Omega\) (Switching time is essentially	t _r	_	65	120	ns
Turn-Off Delay Time		^t d(off)	- .	190	430	
Fall Time	independent of operating temperature)	t _f	_	95	220	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

		-			
PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	Is	-	-	32	
Pulsed Current ¹	I _{SM}	-	-	125	A .
Forward Voltage ² I _F = 2 x I _S , V _{GS} = 0	V _{SD}	_	-	2.0	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	150	_	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	_	0.5	_	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^2 \, \text{Pulse test: Pulse width} \leq 300 \, \, \mu \text{sec}, \, \, \text{Duty Cycle} \leq \, 2 \, \%$

N-Channel Enhancement Mode Transistor

BOTTOM VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
BUZ25	100	0.10	19

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	BUZ25	Units
Drain-Source Voltage		V _{DS}	100	V
Gate-Source Voltage		V _{GS}	± 40]
Continuous Drain Current	T _C = 25°C		19	
Continuous Drain Current	T _C = 100°C	d 'D	12] ,
Pulsed Drain Current ¹		I _{DM}	75	7 ^
Power Dissipation	T _C = 25°C	Ь	78	w
Power Dissipation	T _C = 100°C	P _D	31] "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	–55 to 150	°c
Lead Temperature (1/16" from c	ase for 10 secs.)	TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	_	1.6	
Junction-to-Ambient	R _{thJA}	_	35	K/W
Case-to-Sink	RthCS	0.1	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	PARAMETERS/TEST CONDITIONS		Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge	V(BR)DSS	-100	-	_	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.1	_	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	- -	100	nA
Zero Gate Voltage Drain Current VDS = V(BR)DSS , VGS = 0		¹ DSS	-	_	250	
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0,	nt Tj =125°C	1 _{DSS}	-	_	1000] μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V		I _{D(on)}	19	-	_	А
Drain-Source On-State Resistance ² VGS = 10 V, ID = 9.0 A Drain-Source On-State Resistance ² VGS = 10 V, ID = 9.0 A, T _J = 125°C		r _{DS(on)}	_	0.07	0.10	_
		r _{DS(on)}	-	0.12	0.18	- a
Forward Transconductance ² V _{DS} = 15 V, I _D = 9.0 A		g _{fs}	4.0	6.3	-	s(ぴ)
Input Capacitance	V _{GS} = 0	C _{iss}	_	1550	2000	
Output Capacitance	V _{DS} = 25 V	Coss	-	650	700	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	200	240	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	. -	46	75	
Gate-Source Charge	V _{GS} = 10 V, I _D = 19 A (Gate charge is essentially	Qgs	· <u>-</u>	10	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	23	-	
Turn-On Delay Time	$V_{DD} = 30 \text{ V}$, $R_L = 10 \Omega$	^t d(on)	_	28	45	
Rise Time	ID~ 3 A , V _{GEN} = 10 V	tr	-	49	75	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	_	180	220	1 110
Fall Time	independent of operating temperature)	t _f	_	75	110	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	l _S	-	-	19	
Pulsed Current ¹	I _{SM}	_	_	75	^
Forward Voltage ² IF = 2 x I _S , V _{GS} = 0	V _{SD}	-	-	2.1	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	200	_	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Qrr	-	0.25	-	μC

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

² Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

BUZ31

N-Channel Enhancement Mode Transistor

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
BUZ31	200	0.20	12.5

TO-220AB

2 DRAIN 3 SOURCE

TOP VIEW

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	BUZ31	Units
Drain-Source Voltage		V _{DS}	200	v
Gate-Source Voltage		V _{GS}	± 40	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Continuous Drain Current	T _C = 25°C		12.5	
	T _C = 100°C	¹ D	8	_ A
Pulsed Drain Current ¹		I _{DM}	50	1 ^
Avalanche Current (see figure 9) :	l _A	12.5	
Pawer Dissination	T _C = 25°C	В	75	w
Power Dissipation	T _C = 100°C	P _D	30	"
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from c	ase for 10 secs.)	TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	_	1.67	
Junction-to-Ambient	R _{thJA}	_	75	. K/W
Case-to-Sink	R _{thCS}	1.0	<u>-</u>	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	je	V(BR)DSS	200	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.1	_	4.0	V
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V	Y	IGSS	_	_	100	nA
Zero Gate Voltage Drain Current VDS = V(BR)DSS , VGS = 0		^I DSS	_	-	250	
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0,	nt T _J =125°C	I _{DSS}	_	-	1000	μΑ
On-State Drain Current ² VDS = 5.0 V, V _{GS} = 10 V		I _{D(on)}	12.5	-		А
Drain-Source On-State Resista VGS = 10 V, ID = 7.0 A	Orain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 7.0 A		_	0.16	0.20	
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 7.0 A, T _J = 125°C		r _{DS(on)}	_	0.27	0.40	\ \mathcal{v}
Forward Transconductance ² V _{DS} = 15 V, I _D = 7.0 A		g _{fs}	3.0	6.0	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	_	1540	1600	
Output Capacitance	V _{DS} = 25 V	Coss	. -	550	600	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	220	250	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	42	65	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 12.5 \text{ A}$ (Gate charge is essentially	Q _{gs}	<u>-</u>	10	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	26	-]
Turn-On Delay Time	$V_{DD} = 30 \text{ V}$, $R_L = 10 \Omega$	^t d(on)	-	30	45	
Rise Time	ID~ 2.9 A , V _{GEN} = 10 V	tr	_	42	60	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	-	195	220	
Fall Time	independent of operating temperature)	t _f	_	65	80	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	Is	-	-	12.5	A
Pulsed Current ¹	I _{SM}	_	-	50	
Forward Voltage ² I _F = 2 x I _S , V _{GS} = 0	V _{SD}	-	-	1.8	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	· -	150	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS	Q _{rr}	-	0.5	_	μC

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

 $T_C = -55$ °C

25° C

125°C

PERFORMANCE CURVES (25°C Unless otherwise noted)

ID - DRAIN CURRENT (A)

BUZ32

N-Channel Enhancement Mode Transistor

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
BUZ32	200	0.40	9.5

TO-220AB

- 1 GATE
- 2 DRAIN
- 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	BUZ32	Units
Drain-Source Voltage		V _{DS}	200	V
Gate-Source Voltage		V _{GS}	± 40	v
Continuous Drain Current	T _C = 25°C		9.5	
Continuous Drain Current	T _C = 100°C	_ 'D	6.2	A.
Pulsed Drain Current ¹		I _{DM}	38	
Avalanche Current (see figure 9)	l _A	9.5	
Pawer Dissination	T _C = 25°C	75		w
Power Dissipation	T _C = 100°C	P _D	30	VV
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from o	case for 10 secs.)	TL	300	, ,

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	_	1.67	
Junction-to-Ambient	R _{thJA}	_	75	K/W
Case-to-Sink	R _{thCS}	1.0	-	r Programme

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA		V _{(BR)DSS}	200	_	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.1	-	4.0]
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	10	100	nA
Zero Gate Voltage Drain Curre VDS = V(BR)DSS , VGS = 0	nt	IDSS	-	_	250	
Zero Gate Voltage Drain Curre VDS = V(BR)DSS , VGS = 0,	nt Tj =125°C	IDSS	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _D (on)	9.5	-	-	А
Drain-Source On-State Resista VGS = 10 V, I _D = 4.5 A	nce ²	r _{DS(on)}	_	0.25	0.40	
Drain-Source On-State Resista VGS = 10 V, ID = 4.5 A, TJ =		r _{DS(on)}	_	0.45	0.70	. O
Forward Transconductance ² V _{DS} = 15 V, I _D = 4.5 A		g _{fs}	2.2	3.5	_	s(V)
Input Capacitance	V _{GS} = 0	Ciss	· <u>-</u>	780	2000	in the second
Output Capacitance	V _{DS} = 25 V	Coss	-	220	400	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	70	120	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	_	23	30	
Gate-Source Charge	V _{GS} = 10 V, I _D = 9.5 A (Gate charge is essentially	Q _{gs}	=	5	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	13	-	
Turn-On Delay Time	V _{DD} = 30 V, R _L = 10 Ω	^t d(on)	-	24	45	
Rise Time	ID~ 2.9 A , V _{GEN} = 10 V	t _r	-	55	60	
Turn-Off Delay Time	R _G = 25 (). (Switching time is essentially	^t d(off)	_	50	140	ns
Fall Time	independent of operating temperature)	t _f	-	52	80	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	l _S	-	_	9.5	
Pulsed Current ¹	^I SM		-	38	A
Forward Voltage ² I _F = 2 x I _S , V _{GS} = 0	V _{SD}	_	-	1.7	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}		150	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Qrr	-	0.8	_	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

BUZ34

N-Channel Enhancement Mode Transistor

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D (AMPS)
NUMBER	(VOLTS)	(OHMS)	
BUZ34	200	0.20	14

3 SOURCE

BOTTOM VIEW

TO-204AE (TO-3)

2 GATE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	BUZ34	Units
Drain-Source Voltage		V _{DS}	200	
Gate-Source Voltage		V _{GS}	± 40	7
Continuous Drain Current	T _C = 25°C		14	
Continuous Drain Current	T _C = 100°C	- 'D	9	
Pulsed Drain Current ¹		I _{DM}	56	7 ^
Avalanche Current (see figure 9)		I _A	14	
Pawer Dissination	T _C = 25°C	Ь	78	w
Power Dissipation	T _C = 100°C	P _D	31	,
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	- °C
Lead Temperature (1/16" from case for 10 secs.)		TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	_	1.6	
Junction-to-Ambient	R _{thJA}		35	K/W
Case-to-Sink	R _{th} CS	0.1	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA		V(BR)DSS	200	_	-	٧
Gate Threshold Voltage VDS= VGS, ID= 1000 μA		V _{GS(th)}	2.1	-	4.0	•
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	_	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}			250	
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0,	nt T _J =125°C	DSS	-	-	1000	μΑ
On-State Drain Current ² VDS = 10 V, V _{GS} = 10 V		I _{D(on)}	14	–	-	Α
Drain-Source On-State Resista VGS = 10 V, I _D = 7.0 A	nce ²	r _{DS(on)}	-	0.15	0.20	Ω
Drain-Source On-State Resista VGS = 10 V, ID = 7.0 A, TJ =	nce ² : 125°C	r _{DS(on)}	-	0.28	0.36	ďν
Forward Transconductance ² V _{DS} = 15 V, I _D = 7.0 A		g _{fs}	3.0	6.5	-	S(℧)
Input Capacitance	V _{GS} = 0	C _{iss}	-	1550	1600	
Output Capacitance	V _{DS} = 25 V	Coss		500	600	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	220	250	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg		40	60	
Gate-Source Charge	V _{GS} = 10 V, I _D = 14 A (Gate charge is essentially	Q _{gs}	-	9	-	nÇ
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	26	_	
Turn-On Delay Time	V _{DD} = 30 V, R _L = 10 Ω	^t d(on)	-	30	45	
Rise Time	ID~2.9 A, V GEN= 10 V	t _r	-	45	60	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	_	180	220	115
Fall Time	independent of operating temperature)	t _f	-	65	80	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	^I s	_	-	14	
Pulsed Current ¹	I _{SM}	_	-	56	A
Forward Voltage ² IF = 2 x I _S , V _{GS} = 0	V _{SD}	_	-	1.9	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	150		ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	_	0.5	-	μС

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

BUZ35

N-Channel Enhancement Mode Transistor

BOTTOM VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
BUZ35	200	0.40	9.9

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	BUZ35	Units
Drain-Source Voltage		V _{DS}	200	V
Gate-Source Voltage		V _{GS}	± 40]
Continuous Drain Current	T _C = 25°C		9.9	
Continuous Drain Current	T _C = 100°C	- 'D	6.3	1
Pulsed Drain Current ¹		IDM	39	^
Avalanche Current (see figure 9)		^I A	9.9	1
Dawer Dissination	T _C = 25°C	В	78	14/
Power Dissipation	T _C = 100°C	P _D	31	W
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°c
Lead Temperature (1/16" from case for 10 secs.)		TL	300	1

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	<u>-</u>	1.6	
Junction-to-Ambient	R _{thJA}	_	35	K/W
Case-to-Sink	R _{thCS}	0.1	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge	V(BR)DSS	200	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.1	-	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS		. =	100	nA
Zero Gate Voltage Drain Current VDS = V(BR)DSS , VGS = 0		IDSS	- -	-	250	
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0,	nt T _J =125°C	IDSS	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	9.9	_	_	А
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 4.5 A Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 4.5 A, T _J = 125°C		r _{DS(on)}	_	0.25	0.40	
		r _{DS(on)}	-	0.45	0.70	, a
Forward Transconductance ² V _{DS} = 15 V, I _D = 4.5 A		g _{fs}	2.2	3.5	-	S(V)
Input Capacitance	V _{GS} = 0	Ciss	-	800	2000	
Output Capacitance	V _{DS} = 25 V	Coss		250	400	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	100	120	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	23	30	
Gate-Source Charge	V _{GS} = 10 V, I _D = 9.9 A (Gate charge is essentially	Q _{gs}	-	5	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	13	-	
Turn-On Delay Time	$V_{DD} = 30 \text{ V}, R_L = 10 \Omega$	^t d(on)	_	15	45	
Rise Time	ID~ 2.9 A , V _{GEN} = 10 V	t _r	-	42	60	ns
Turn-Off Delay Time	R _G = 25 Ω (Switching time is essentially	^t d(off)	-	30	140	1119
Fall Time	independent of operating temperature)	tf	-	55	80	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	I _S	-	_	9.9	
Pulsed Current ¹	^I SM	-	-	39	^
Forward Voltage ² I _F = 2 x I _S , V _{GS} = 0	V _{SD}	_	-	1.7	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	trr	- - , %	150	_	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS	Q _{rr}	-	0.8	-	μС

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

BUZ36

N-Channel Enhancement Mode Transistor

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
BUZ36	200	0.12	22

TO-204AE (TO-3)

3 SOURCE

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	BUZ36	Units
Drain-Source Voltage		V _{DS}	200	
Gate-Source Voltage		V _{GS}	± 40	
Continuous Drain Current	T _C = 25°C		22	
Continuous Drain Current	T _C = 100°C	'p	13	
Pulsed Drain Current ¹		IDM	85	7 ^
Avalanche Current (see figure 9)		I _A	22	
Pawer Dissipation	T _C = 25°C	Ь	125	W
Power Dissipation	T _C = 100°C	- PD	50	7 "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°c
Lead Temperature (1/16" from cas	e for 10 secs.)	TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	_	1.0	
Junction-to-Ambient	R _{thJA}	_	35	K/W
Case-to-Sink	R _{thCS}	0.1		

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge	V(BR)DSS	200	-	-	v
Gate Threshold Voltage VDS= VGS, ID= 1000 μΑ		V _{GS(th)}	2.1	-	4.0	V
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	1 11 - 111	100	nA
Zero Gate Voltage Drain Currel VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}	. - -	- <u>-</u> , .	250	
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0,		I _{DSS}	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	22	-	_	. А
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 11 A	nce ²	r _{DS(on)}	_	0.08	0.12	
Drain-Source On-State Resista VGS = 10 V, ID = 11 A, TJ =			-	0.15	0.21	v
Forward Transconductance ² V _{DS} = 15 V, I _D = 11 A		g _{fs}	9	11	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	2700	3000	
Output Capacitance	V _{DS} = 25 V	Coss		850	900	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	300	350	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	=	63	120	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 22 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	14	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	32	-	
Turn-On Delay Time	$V_{DD} = 30 \text{ V}$, $R_L = 10 \Omega$	^t d(on)	-	40	45	
Rise Time	ID~ 3 A , V _{GEN} = 10 V	t _r		85	110	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	_	350	430	113
Fall Time	independent of operating temperature)	t _f	-	135	160	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	I _S	-	-	22	
Pulsed Current ¹	^I SM	_	-	85	A
Forward Voltage ² IF = 2 x I _S , V _{GS} = 0	V _{SD}	_	_	1.7	v
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	150	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μs	Q _{rr}	_	0.5	-	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

BUZ41A

N-Channel Enhancement Mode Transistor

PRODUCT SUMMARY

PART	V(BR)DSS	r _{DS(on)}	I D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
BUZ41A	500	1.5	4.5

TO-220AB

- 1 GATE
- 2 DRAIN
- 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	BUZ41A	Units
Drain-Source Voltage		V _{DS}	500	
Gate-Source Voltage		V _{GS}	± 40	7 '
Continuous Drain Current	T _C = 25°C		4.5	
Continuous Drain Current	T _C = 100°C	'p	2.8	٦.
Pulsed Drain Current ¹		I _{DM}	18	_ ^ ^
Avalanche Current (see figure 9)	I _A	4.5	7
Power Dissipation	T _C = 25°C	В	75	_ w
Power Dissipation	T _C = 100°C	P _D	30	司。"
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	·c
Lead Temperature (1/16" from o	case for 10 secs.)	TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	· _	1.67	
Junction-to-Ambient	R _{thJA}	· -	75	K/W
Case-to-Sink	R _{thCS}	1.0	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	je	V(BR)DSS	500	· -	_	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.1	-	4.0	ľ
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	- 52	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}		-	250	
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0,		IDSS	-	_	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	4.5	_	-	А
Drain-Source On-State Resista VGS = 10 V, ID = 2.5 A	nce ²	r _{DS(on)}	-	1.3	1.5	
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 2.5 A, T _J =	ince ² = 125°C	r _{DS(on)}	_	2.9	3.3	v
Forward Transconductance ² V _{DS} = 15 V, I _D = 2.5 A		g _{fs}	1.5	3.2	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	_	750	2000	7
Output Capacitance	V _{DS} = 25 V	Coss		120	170	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	50	70	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	_	30	35	
Gate-Source Charge	V _{GS} = 10 V, I _D = 4.5 A (Gate charge is essentially	Q _{gs}	_	4	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	15	_	
Turn-On Delay Time	V _{DD} = 30 V , R _L = 10 Ω	^t d(on)	_	22	45	
Rise Time	I _D = 2.6 A , V _{GEN} = 10 V R _G = 25 Ω (Switching time is essentially	tr	-	35	60	ns
Turn-Off Delay Time		^t d(off)	_	80	140	115
Fall Time	independent of operating temperature)	t _f	_	45	65	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	^I s	-	-	4.5	
Pulsed Current ¹	^I SM	-	-	18	^
Forward Voltage ² I _F = 2 x I _S , V _{GS} = 0	V _{SD}	-	-	1.5	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS	t _{rr}		250	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS	Qrr	-	1.5	_	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

² Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

BUZ42

N-Channel Enhancement Mode Transistor

TO-220AB

2 DRAIN 3 SOURCE

TOP VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
BUZ42	500	2.0	4.0

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	BUZ42	Units
Drain-Source Voltage		V _{DS}	500	V
Gate-Source Voltage		V _{GS}	± 40]
Continuous Drain Current	T _C = 25°C		4.0	
	T _C = 100°C	d lp	2.5	
Pulsed Drain Current ¹		IDM	16	^
Avalanche Current (see figure 9)		l _A	4.0	
Dower Discinction	T _C = 25°C	В	75	w
Power Dissipation	T _C = 100°C	PD	30] ··· **
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°c
Lead Temperature (1/16" from case for 10 secs.)		TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	· -	1.67	
Junction-to-Ambient	R _{thJA}	-	75	K/W
Case-to-Sink	R _{thCS}	1.0	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA		V _{(BR)DSS}	500	_	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.1	-	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	_	10	100	nA ,
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}	-	-	250	
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0,	nt T _J =125°C	IDSS	_	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		¹ D(on)	4.0	_	_	, A
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 2.5 A	nce ²	r _{DS(on)}	_	1.3	2.0	
Drain-Source On-State Resista VGS = 10 V, I _D = 2.5 A, T _J =		r _{DS(on)}	-	2.7	3.4	\ v
Forward Transconductance ² V _{DS} = 15 V, I _D = 2.5 A		g _{fs}	1.5	3.3	_	s(v)
Input Capacitance	V _{GS} = 0	C _{iss}	<u>-</u>	750	2000	
Output Capacitance	V _{DS} = 25 V	Coss	- - .	120	170	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	50	70	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	30	35	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 4.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	5	. =	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	15	_	
Turn-On Delay Time	V _{DD} = 30 V , R _L = 12 Ω	^t d(on)	-	18	45	
Rise Time	ID~ 2.5 A , V _{GEN} = 10 V	t _r		35	60	ne
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	_	85	140	ns
Fall Time	independent of operating temperature)	tf	<u>.</u>	48	65	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	1 _S	_	-	4.0	_
Pulsed Current ¹	^I SM	-	_	16	A
Forward Voltage ² I _F = 2 × I _S , V _{GS} = 0	V _{SD}	-	-	1.5	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	260	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	_	1.5	-	μС

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\,\%$

N-Channel Enhancement Mode Transistor

BOTTOM VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
BUZ44A	500	1.5	4.8

2 GATE 3 SOURCE

TO-204AA (TO-3)

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	BUZ44A	Units
Drain-Source Voltage		V _{DS}	500	>
Gate-Source Voltage		V _{GS}	± 40	V
Continuous Drain Current	T _C = 25°C		4.8	
Continuous Drain Current	T _C = 100°C	- 'D	3.0	
Pulsed Drain Current ¹		I _{DM}	19	A 1
Avalanche Current (see figure 9)	^I A	4.8	
Power Dissipation	T _C = 25°C	В	78	W
Power Dissipation	T _C = 100°C	- P _D	31	vv
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	
Lead Temperature (1/16" from case for 10 secs.)		TL	300	°C

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	-	1.6	
Junction-to-Ambient	R _{thJA}	-	35	K/W
Case-to-Sink	R _{thCS}	0.1	<u>-</u>	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA		V _{(BR)DSS}	500	-	_	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.1	-	4.0	•
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	e -	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	_	-	250	
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0,	nt T _J =125°C	IDSS	<u>-</u>	_	1000	μΑ
On-State Drain Current ² VDS = 10 V, VGS = 10 V		I _{D(on)}	4.8	-	_	Α
Drain-Source On-State Resista VGS = 10 V, I _D = 2.5 A	nce ²	r _{DS(on)}	-	1.3	1.5	Ω
Drain-Source On-State Resista VGS = 10 V, ID = 2.5 A, TJ =			-	2.9	3.3] ""
Forward Transconductance ² V _{DS} = 15 V, I _D = 2.5 A		g _{fs}	1.5	3.3	-	s(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	750	2000	
Output Capacitance	V _{DS} = 25 V	Coss	-	120	170	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	50	70	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	30	35	
Gate-Source Charge	V _{GS} = 10 V, I _D = 4.8 A (Gate charge is essentially	Qgs	_	5	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	15	-	
Turn-On Delay Time	V _{DD} = 30 V , R _L = 10 Ω	^t d(on)	-	22	45	
Rise Time	ID~ 2.6 A , V _{GEN} = 10 V	t _r	_	35	60	
Turn-Off Delay Time	R _G = 25 Ω (Switching time is essentially	^t d(off)	-	80	140	ns
Fall Time	independent of operating temperature)	t _f	-	45	65	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units	
Continuous Current	Is	-	-	4.8		
Pulsed Current ¹	^I SM	_	_	19	A	
Forward Voltage ² I _F = 2 x I _S , V _{GS} = 0	V _{SD}	_	-	1.5	٧	
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	_	250		ns	
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	-	1.5	-	μС	

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

BUZ45, BUZ45A

N-Channel Enhancement Mode Transistors

BOTTOM VIEW

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
BUZ45	500	0.60	9.6
BUZ45A	500	0.80	8.3

TO-204AA (TO-3)

2 GATE 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS			В	T	
		Symbol	45	45A	Units
Drain-Source Voltage		V _{DS}	500	500	
Gate-Source Voltage		V _{GS}	± 40	± 40] · · *
Continuous Drain Current	T _C = 25°C	1	9.6	8.3	
	T _C = 100°C	- 'p	6.7	5.3	
Pulsed Drain Current ¹		IDM	38	33	7 ^
Avalanche Current (see figure 9)		^I A	9.6	8.3	
Power Dissipation	T _C = 25°C	В	125	125	l w
Power Dissipation	T _C = 100°C	P _D	50	50	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		- °c
Lead Temperature (1/16" from case for 10 secs.)		TL	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	_	1.0	
Junction-to-Ambient	R _{thJA}	_	35	K/W
Case-to-Sink	R _{thCS}	0.1	= .	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge BUZ45 BUZ45A	V(BR)DSS	500 500	-	. –	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.1	3.0	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		lass	1		100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt -	I _{DSS}	-		250	
Zero Gate Voltage Drain Currer VDS = V(BR)DSS, VGS = 0,	nt T _J =125°C	I _{DSS}		_	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	BUZ45 BUZ45A	I _{D(on)}	9.6 8.3			Α
Drain-Source On-State Resista VGS = 10 V, ID = 5.0 A	nce ² BUZ45 BUZ45A	r _{DS(on)}	-	0.3 0.4	0.60 0.80	
Drain-Source On-State Resista VGS = 10 V, ID = 5.0 A, TJ =	nce ² BUZ45 125°C BUZ45A	^r DS(on)	-	0.6 0.8	1.2 1.5	v
Forward Transconductance ² V _{DS} = 15 V, I _D = 5.0 A		g _{fs}	2.7	7.5	_	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	1	2700	4900	
Output Capacitance	V _{DS} = 25 V	Coss	- -	380	400	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	140	170	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	75	120	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 9.6 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	12	. -	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	35	-	
Turn-On Delay Time	V _{DD} = 30 V , R _L = 10 Ω	^t d(on)		45	75	
Rise Time	ID = 2.8 A , V _{GEN} = 10 V	t _r	-	90	120	ns
Turn-Off Delay Time	R _G = 25 Ω (Switching time is essentially	^t d(off)	-	280	430	1115
Fall Time	independent of operating temperature)	t _f	-	105	140	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITION	NS .	Symbol	Min.	Тур.	Max.	Units
Continuous Current	BUZ45 BUZ45A	¹s	-	-	9.6 8.3	А
Pulsed Current ¹	BUZ45 BUZ45A	ISM	-	-	38 33	
Forward Voltage ² IF = 2 x I _S , V _{GS} = 0	BUZ45 BUZ45A	V _{SD}	-	1.3 1.3	1.7 1.6	٧
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS		t _{rr}	-	300	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS		Q _{rr}	-	2.0	_	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Pulse test: Pulse width \leq 300 μsec, Duty Cycle \leq 2%

BUZ60

N-Channel Enhancement Mode Transistor

TO-220AB

2 DRAIN

3 SOURCE

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
BUZ60	400	1.0	5.5

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	BUZ60	Units	
Drain-Source Voltage		V _{DS}	400		
Gate-Source Voltage		V _{GS}	± 40	- ×	
Continuous Drain Correct	T _C = 25°C		5.5		
Continuous Drain Current	T _C = 100°C	d 'D	3.7	1.	
Pulsed Drain Current ¹		IDM	22	A	
Avalanche Current (see figure 9)*	l _A	5.5	1	
Power Dissipation	T _C = 25°C	D	75	l w	
Power Dissipation	T _C = 100°C	- P _D	30	7 W	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	1 00	
Lead Temperature (1/16" from case for 10 secs.)		TL	300	- °C	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	_	1.67	
Junction-to-Ambient	R _{thJA}	-	75	K/W
Case-to-Sink	R _{thCS}	1	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA		V(BR)DSS	400	-	_	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.1	_	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	_	10	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt .	I _{DSS}	_	, ° –	250	
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0,	nt Tj =125°C	^I DSS	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	5.5	-	-	А
Drain-Source On-State Resista VGS = 10 V, ID = 2.5 A	nce ²	r _{DS(on)}	-	0.8	1.0	Ω
Drain-Source On-State Resista VGS = 10 V, ID = 2.5 A, TJ =		r _{DS(on)}	-	1.5	1.9	70
Forward Transconductance ² V _{DS} = 15 V, I _D = 2.5 A		g _{fs}	1.7	2.2	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	_	750	2000	
Output Capacitance	V _{DS} = 25 V	Coss	-	150	180	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	<u>-</u>	50	60	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg		23	30	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 5.5 \text{ A}$ (Gate charge is essentially	Qgs	-	7	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}		12	-	
Turn-On Delay Time	$V_{DD} = 30 \text{ V}, R_L = 10 \Omega$	td(on)	_	22	45	
Rise Time	$I_D = 2.7 \text{ A}$, $V_{GEN} = 10 \text{ V}$ $R_G = 25 \Omega$ (Switching time is essentially	tr	-	45	60	ns
Turn-Off Delay Time		^t d(off)	_	80	140	
Fall Time	independent of operating temperature)	t _f	_	55	65	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	l _S	_		5.5	
Pulsed Current ¹	¹ sm	-		22	A .
Forward Voltage ² $I_F = 2 \times I_S$, $V_{GS} = 0$	V _{SD}	-	1.2	1.6	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	_	250	- :	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS	Q _{rr}	_	1.5	-	μС

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

FIGURE 11: Normalized Effective Transient Thermal Impedance, Junction-to-Case

BUZ63

N-Channel Enhancement Mode Transistor

BOTTOM VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
BUZ63	400	1.0	5.9

TO-204AA (TO-3)

2 GATE 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	BUZ63	Units
Drain-Source Voltage		V _{DS}	400	V
Gate-Source Voltage		V _{GS}	± 40	7 *
Continuous Drain Current	T _C = 25°C		5.9	
Continuous Di ain Current	T _C = 100°C	- 'D	2.4	1
Pulsed Drain Current ¹		IDM	23	1 ^
Avalanche Current (see figure 9)		I _A	5.9	The second
T _C = 25°C		В	78	l w
Power Dissipation	T _C = 100°C	- P _D	31] · · · · · · · · · · · · · · · · · · ·
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	
Lead Temperature (1/16" from case for 10 secs.)		TL	300	°C

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	_	1.6	
Junction-to-Ambient	R _{thJA}		35	K/W
Case-to-Sink	R _{th} CS	0.1	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μΑ		V(BR)DSS	400	-	-	v
Gate Threshold Voltage VDS= VGS , ID = 1000 μA			2.1	-	4.0	·
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	_	-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	· <u>-</u>	-	250	
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0,	nt T _J =125°C	IDSS	_	- · ·	1000	μΑ
On-State Drain Current ² VDS = 10 V, VGS = 10 V		I _{D(on)}	5.9	-	-	Α
Drain-Source On-State Resistance ² VGS = 10 V, I _D = 2.5 A Drain-Source On-State Resistance ² VGS = 10 V, I _D = 2.5 A, T _J = 125°C		r _{DS(on)}	-	0.8	1.0	a
		r _{DS(on)}	-	1.5	1.9	1 42
Forward Transconductance ² V _{DS} = 15 V, I _D = 2.5 A		g _{fs}	1.7	4.5	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	_	750	2000	:-
Output Capacitance	V _{DS} = 25 V	Coss	, , -	160	180	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	55	60	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	23	30	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 6.0 \text{ A}$ (Gate charge is essentially	Q _{gs}		6	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	13	-	
Turn-On Delay Time	V _{DD} = 30 V , R _L = 10 Ω	^t d(on)	-	18	45	
Rise Time	ID= 2.7 A, V _{GEN} = 10 V	^t r	-	38	60	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	-	55	140	1 113
Fall Time	independent of operating temperature)	t _f	-	45	65	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	^I s	-		5.9	
Pulsed Current ¹	^I SM		_	17	^
Forward Voltage ² I _F = 2 x I _S , V _{GS} = 0	V _{SD}	-	-	1.65	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	trr		250	. -	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	. -	1.5	_	μС

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to translent thermal impedance data, figure 11) 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

FIGURE 11: Normalized Effective Transient Thermal Impedance, Junction-to-Case

N-Channel Enhancement Mode Transistor

BOTTOM VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
BUZ64	400	0.40	11.5

TO-204AA (TO-3)

3 SOURCE

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	BUZ64	Units	
Drain-Source Voltage		V _{DS}	400	_ v	
Gate-Source Voltage		V _{GS}	± 40		
Continuous Drain Current	T _C = 25°C		11.5		
Continuous Drain Current	T _C = 100°C	'D	8	A	
Pulsed Drain Current ¹		IDM	46	1 ^	
Avalanche Current (see figure 9)		I _A	11.5		
Pawer Dissipation	T _C = 25°C		125	w	
Power Dissipation	T _C = 100°C	P _D	50	**	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C	
Lead Temperature (1/16" from case for 10 secs.)		TL	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	_	1.0	
Junction-to-Ambient	R _{thJA}		35	K/W
Case-to-Sink	R _{thCS}	0.1	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	je	V(BR)DSS	400	-	_	V
Gate Threshold Voltage VDS= VGS , ID = 1000 μΑ		V _{GS(th)}	2.1	-	4.0	V
Gate-Body Leakage $V_{DS} = 0$, $V_{GS} = \pm 20$ V		IGSS	_		100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}	, -, -, -, -, -, -, -, -, -, -, -, -, -,	. . 	250	
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0,	nt Tj =125°C	DSS	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	11.5	- 3.	-	А
Drain-Source On-State Resistance ² VGS = 10 V, I _D = 5.5 A Drain-Source On-State Resistance ² VGS = 10 V, I _D = 5.5 A, T _J = 125°C		r _{DS(on)}	_	0.22	0.40	v
		r _{DS(on)}	- .	0.40	0.80	
Forward Transconductance ² V _{DS} = 15 V, I _D = 5.5 A		g _{fs}	3.3	6.2	_	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	i ,- 10.	2700	4900	
Output Capacitance	V _{DS} = 25 V	Coss	· <u>-</u>	450	500	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	160	200	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	77	120	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 11.5 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	14	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	39	_	
Turn-On Delay Time	$V_{DD} = 30 \text{ V}$, $R_L = 10 \Omega$	t _{d(on)}	-	38	75	
Rise Time	ID~ 2.9 A, V _{GEN} =10 V	t _r	_	95	120	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	_	295	430	112
Fall Time	independent of operating temperature)	t _f		120	140	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	^I S	-	-	11.5	10 201
Pulsed Current ¹	^I SM	_	-	46	A
Forward Voltage ² IF = 2 x I _S , V _{GS} = 0	V _{SD}	-	-	1.7	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	trr	-	300	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	-	2.0	-	μC

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

BUZ71, BUZ71A

N-Channel Enhancement Mode Transistors

TO-220AB

2 DRAIN 3 SOURCE

TOP VIEW

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
BUZ71	50	0.10	14
BUZ71A	50	0.12	13

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

			BU		
PARAMETERS/TEST CONDITIONS		Symbol	71	71A	Units
Drain-Source Voltage		V _{DS}	50	50	
Gate-Source Voltage		V _{GS}	± 40	± 40	7 °
Continuous Drain Current	T _C = 25°C	1	14	13	
Continuous Drain Current	T _C = 100°C	'D	9	7.8] A
Pulsed Drain Current ¹		IDM	56	48	
Avalanche Current (see figure 9)	nche Current (see figure 9)		14	13	
Pawar Dissination	T _C = 25°C	D	40	40	_ w
Power Dissipation	T _C = 100°C	PD	16	16	"
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	_	3.1	
Junction-to-Ambient	R _{thJA}		75	K/W
Case-to-Sink	R _{thCS}	1.0	- :	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag VGS = 0, I _D = 250 μA	ge BUZ71 BUZ71A	V(BR)DSS	50 50	-	-	V
Gate Threshold Voltage VDS = VGS , ID = 1000 μA		V _{GS(th)}	2.1	-	4.0	Y
Gate-Body Leakage VDS = 0, VGS = ±20 V		IGSS	-	<u> </u>	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt County	I _{DSS}	- -	-	250	
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0,	nt T _J =125°C	I _{DSS}	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 2.0 V, V _{GS} = 10 V	BUZ71 BUZ71A	I _{D(on)}	14 13	. <u>-</u>		Α
Drain-Source On-State Resista VGS = 10 V, ID = 6.0 A	nce ² BUZ71 BUZ71A	r _{DS(on)}	1 1	0.08 0.10	0.10 0.12	Q.
Drain-Source On-State Resista VGS = 10 V, ID = 6.0 A, TJ =	nce ² BUZ71 125°C BUZ71A	r _{DS(on)}		0.15 0.18	0.18 0.20	40
Forward Transconductance ² VDS = 15 V, ID = 6.0 A		g _{fs}	3.0	4.8	_ =	s(ぴ)
Input Capacitance	V _{GS} = 0	Ciss	-	550	650	V .
Output Capacitance	V _{DS} = 25 V	Coss		320	450	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	100	280	
Total Gate Charge	V _{DS} = 0.5 × V _{(BR)DSS} ,	Qg	-	15	30	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 13 \text{ A}$ (Gate charge is essentially	Qgs	_	3.5	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	5	-	
Turn-On Delay Time	V _{DD} = 30 V , R _L = 10 Ω	td(on)	_	15	30	
Rise Time	ID~ 3 A , VGEN= 10 V	t _r	-	50	85	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	-	80	90] "
Fall Time	independent of operating temperature)	t _f	-	80	110	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITION	Symbol	Min.	Тур.	Max.	Units	
PANAMETERS/TEST CONDITIO	0110	Oyiiiboi	171111.	Typ.	Wiax.	Oilles
Continuous Current	BUZ71 BUZ71A	1 _S	-	=	14 13	
Pulsed Current ¹	BUZ71 BUZ71A	Ism	-	=	56 48	A
Forward Voltage ² I _F = 2 x I _S , V _{GS} = 0	BUZ71 BUZ71A	V _{SD}	_	= "	1.8 2.2	, v
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		· t _{rr}	_	65	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Qrr	-	0.16	-	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

BUZ171

P-Channel Enhancement Mode Transistor²

TO-220AB

2 DRAIN 3 SOURCE

TOP VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
BUZ171	50	0.40	7.0

ABSOLUTE MAXIMUM RATINGS (To= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	BUZ171	Units	
Drain-Source Voltage		V _{DS}	50	V	
Gate-Source Voltage		V _{GS}	± 40		
Continuous Drain Current	T _C = 25°C		7.0		
Continuous Drain Current	T _C = 100°C	- 'D	4.5		
Pulsed Drain Current ¹		I _{DM}	28	^	
Avalanche Current (see figure 9)		l _A	7.0		
Power Dissipation	T _C = 25°C	40		w	
rower dissipation	T _C = 100°C	- P _D	16	**	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C	
Lead Temperature (1/16" from case for 10 secs.)		TL	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	-	3.1	
Junction-to-Ambient	R _{thJA}		75	K/W
Case-to-Sink	R _{thCS}	1.0		

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

LINGTIOS (IS 10 Cam			Tregative signs	That's been office	ted for claim
r conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA		50	-	_	V
-	V _{GS(th)}	2.1	-	4.0	• •
1.1.1	IGSS	-	-	100	nA
nt	I _{DSS}	-	<u> </u>	250	
nt T _J =125°C	IDSS	- ., ,		1000	μΑ
	I _{D(on)}	7.0	-	-	Α
ance ²	r _{DS(on)}	-	0.24	0.40	S.
ain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 4.5 A, T _J = 125°C		-	0.40	0.72	Δυ
	g _{fs}	1.5	2.8	-	S(℧)
V _{GS} = 0	C _{iss}	-	600	1200	
V _{DS} = 25 V	Coss	. -	325	500	pF
f = 1 MHz	C _{rss}	-	100	230	# +
V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg		12	20	
(Gate charge is essentially	Q _{gs}	-	3.6	_	nC
independent of operating temperature)	Q _{gd}	-	8.2	_ =	Î
V _{DD} = 30 V, R _L = 10 Ω	^t d(on)	-	10	30	
$I_D = 2.9 \text{ A}$, $V_{GEN} = 10 \text{ V}$ $R_G = 25 \Omega$	tr	_	50	95	ns
	^t d(off)	-	25	90	113
independent of operating temperature)	t _f	_	50	75	
	nt nt T _J =125°C ance ² = 125°C V _{GS} = 0 V _{DS} = 25 V f = 1 MHz V _{DS} = 10 V, I _D = 7.0 A (Gate charge is essentially independent of operating temperature) V _{DD} = 30 V, R _L = 10 \(\Omega \) I _D = 2.9 A, V _{GEN} = 10 V R _G = 25 \(\Omega \) (Switching time is essentially independent of operating	V(BR)DSS V(BR)DSS IGSS IT IDSS IDSS IDSS IDSS ID(on) IT IDS IDS ID(on) IT IDS IDS ID(on) ID(V(BR)DSS 50 V(BR)DSS 50 V(BR)DSS 50 V(BR)DSS 50 V(BR)DSS - 1 1 1 1 1 1 1 1 1	CONDITIONS Symbol Min. Typ.	V _{GS} (th) V _G

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	l _S	-	. -	7.0	A
Pulsed Current ¹	^I SM	-	-	28	
Forward Voltage ² I _F = 2 x I _S , V _{GS} = 0	V _{SD}		-	2.8	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	=	70	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS	Q _{rr}	_	0.15	-	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

² Pulse test: Pulse width \leq 300 μsec, Duty Cycle \leq 2%

IRF130, IRF131 IRF132, IRF133

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V(BR)DSS (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)
IRF130	100	0.18	14
IRF131	60	0.18	14
IRF132	100	0.25	12
IRF133	60	0.25	12

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		0		Units			
		Symbol	130	131	132	133	Units
Drain-Source Voltage		V _{DS}	100	60	100	60	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	
Continuous Drain Current	T _C = 25°C		14	14	12	12	
	T _C = 100°C	- 'D	9.0	9.0	8.0	8.0	
Pulsed Drain Current ¹		¹ DM	56	56	48	48	A
Power Dissipation	T _C = 25°C	В	75	75	75	75	147
Power Dissipation	T _C = 100°C	- P _D	30	30	30	30	W
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150			°c	
Lead Temperature (1/16" from case for 10 secs.)		TL	300				

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	1.67	
Junction-to-Ambient	R _{thJA}	_	30	K/W
Case-to-Sink	RthCS	0.1	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown VoltageIRF130,132 V_{QS} = 0, I_D = 250 μAIRF131,133		V(BR)DSS	100 60	-	-	
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	-	4.0	· ·
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	- 3×	<u>-</u>	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS, VGS = 0	nt	I _{DSS}	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS, VGS	nt = 0, T _J =125°C	DSS	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF130,131 IRF132,133	I _{D(on)}	14 12	-	-	А
Drain-Source On-State Resista VGS = 10 V, ID = 8.0 A	nce ² IRF130,131 IRF132,133	r _{DS(on)}	- - -	0.14 0.20	0.18 0.25	Ω
Drain-Source On-State Resistance 2 IRF130,131 VGS = 10 V, ID = 8.0 A, TJ = 125°C IRF132,133		^r DS(on)	-	0.25 0.30	0.30 0.45	1 4
Forward Transconductance ² V _{DS} =15 V, I _D = 8.0 A		g _{fs}	4.0	5.5	-	s(හ)
Input Capacitance	V _{GS} = 0	C _{iss}	-	750	800	
Output Capacitance	V _{DS} = 25 V	Coss	-	280	500	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	70	150	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	_	25	30	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 18 \text{ A}$ (Gate charge is essentially	Qgs	-	5	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	, -	13	_	
Turn-On Delay Time	V _{DD} = 36 V , R _L = 4 Ω	^t d(on)	· -	7	30	
Rise Time	ID = 8.0 A , V _{GEN} = 10 V	t _r	- -	39	75	ns
Turn-Off Delay Time	R _G = 7.5 \(\Omega\) (Switching time is essentially	^t d(off)		11	40	
Fall Time	independent of operating temperature)	, t _f	-	28	45	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Typ.	Max.	Units
Continuous Current	IRF130,131 IRF132,133	I _S	<u>-</u>	-	14 12	
Pulsed Current ¹	IRF130,131 IRF132,133	^I SM		-	56 48	A
Forward Voltage ² IF = I _S , V _{GS} = 0	IRF130,131 IRF132,133	V _{SD}		-	2.5 2.3	٧
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS		t _{rr}	_	150	· <u>-</u>	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS		Q _{rr}	-	0.8	-	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

² Pulse test: Pulse width \leq 300 μsec, Duty Cycle \leq 2%

¹Operation in this area may be limited by r_{DS(on)}

IRF140, IRF141 IRF142, IRF143

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRF140	100	0.085	27
IRF141	60	0.085	27
IRF142	100	0.11	24
IRF143	60	0.11	24

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

2				Units			
PARAMETERS/TEST CONDITIONS		Symbol	140	141	142	143	Units
Drain-Source Voltage		V _{DS}	100	60	100	60	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	,
Continuous Drain Current	T _C = 25°C		27	27	24	24	
	T _C = 100°C	ם'	17	17	15	15]
Pulsed Drain Current ¹		IDM	108	108	96	96]
Davis Diselection	T _C = 25°C	Ь	125	125	125	125	w
Power Dissipation	T _C = 100°C	PD	50	50	50	50] "
Operating Junction & Storage Temperature Range		T _J , T _{stg}		-55	to 150	14.5	°c
Lead Temperature (1/16" from case for 10 secs.)		TL		3	100		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	. -	1.0	
Junction-to-Ambient	R _{thJA}	-	30	K/W
Case-to-Sink	R _{thCS}	0.1	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRF140,142 IRF141,143	V _{(BR)DSS}	100 60	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0		4.0	V
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS		+ - +, 24	100	nA
Zero Gate Voltage Drain Currel VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}	-	_	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ₅ = 0, Tյ =125°C	I _{DSS}	_	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF140,141 IRF142,143	I _{D(on)}	27 24	-	- -	А
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 15 A	nce ² IRF140,141 IRF142,143	r _{DS(on)}	-	0.070 0.090	0.085 0.110	
	Drain-Source On-State Resistance 2 IRF140,141 VGS = 10 V, ID = 15 A, TJ = 125°C IRF142,143		-	0.12 0.15	0.15 0.19	σ
Forward Transconductance ² V _{DS} = 15 V, I _D = 15 A		g _{fs}	6.0	8	_	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	1550	1600	
Output Capacitance	V _{DS} = 25 V	Coss	_	550	800	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	150	300	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	=	50	60	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 34 \text{ A}$ (Gate charge is essentially	Q _{gs}	_	10	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	. -	23	-	
Turn-On Delay Time	V _{DD} = 30 V , R _L = 2.0 Ω	^t d(on)	_	10	30	
Rise Time	ID = 15 A , V _{GEN} = 10 V	tr	_	40	60	ns
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	_	30	80	113
Fall Time	independent of operating temperature)	t _f	-	15	30	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF140,141 IRF142,143	^I s	-	-	27 24	
Pulsed Current ¹	IRF140,141 IRF142,143	^I SM	-	-	108 96	A
Forward Voltage ² IF = I _S , V _{GS} = 0	IRF140,141 IRF142,143	V _{SD}	-	_	2.5 2.3	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		····t _{rr}	*	150	_	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS		Qrr	_	0.5	_	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

IRF150, IRF151 IRF152, IRF153

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
100	0.055	40
60	0.055	40
100	0.08	33
60	0.08	33
	100 60 100	(VOLTS) (OHMS) 100 0.055 60 0.055 100 0.08

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

				Units			
PARAMETERS/TEST CONDITIONS		Symbol	150	151	152	153	Units
Drain-Source Voltage		V _{DS}	100	60	100	60	*** V **
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	·
Continuous Drain Current	T _C = 25°C		40	40	33	33	
	T _C = 100°C	'D	25	25	20	20	
Pulsed Drain Current ¹	4	IDM	160	160	132	132	A 1
Davis Diada dia	T _C = 25°C	В	150	150	150	150	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Power Dissipation	T _C = 100°C	PD	60	60	60	60	W
Operating Junction & Storage Temperature Range		T _J , T _{stg}		-55 1	to 150		°C
Lead Temperature (1/16" from case for 10 secs.)		TL		3	100		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	-	0.83	
Junction-to-Ambient	R _{thJA}	-	30	K/W
Case-to-Sink	R _{thCS}	0.1	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRF150,152 IRF151,153	V(BR)DSS	100 60	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0		4.0	· ·
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	<u>-</u>		100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	n t	I _{DSS}		_	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS, VGS	nt = 0, T _J =125°C	I _{DSS}		-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF150,151 IRF152,153	I _{D(on)}	40 33	-	-	Α
Drain-Source On-State Resista VGS = 10 V, ID = 20 A	nce ² IRF150,151 IRF152,153	r _{DS(on)}	-	0.045 0.060	0.055 0.080	Ω
Drain-Source On-State Resistance 2 IRF150,151 VGS = 10 V, ID = 20 A, TJ = 125°C IRF152,153		^r DS(on)	- -	0.080 0.110	0.100 0.140	42
Forward Transconductance ² V _{DS} = 15 V, I _D = 20 A		g _{fs}	9.0	11.0	-	s(හ)
Input Capacitance	V _{GS} = 0	C _{iss}	_	2800	3000	
Output Capacitance	V _{DS} = 25 V	Coss	-	1100	1500	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	400	500	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg		64	120	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 50 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	13	-	nC
Gate-Drain Charge	Independent of operating temperature)	Q _{gd}		29	-	
Turn-On Delay Time	$V_{DD} = 24 \text{ V}$, $R_L = 1.2 \Omega$	^t d(on)		15	35	
Rise Time	ID = 20 A , V _{GEN} = 10 V	tr	-	30	100	ns
Turn-Off Delay Time	R _G = 4.7 \(\Omega\) (Switching time is essentially	^t d(off)	-	50	125	110
Fall Time	independent of operating temperature)	t _f	-	20	100	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF150,151 IRF152,153	I _S		=	40 33	
Pulsed Current ¹	IRF150,151 IRF152,153	¹ SM	-	-	160 132	^
Forward Voltage ² IF = IS , VGS = 0	IRF150,151 IRF152,153	V _{SD}	-	-	2.5 2.3	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		trr		150	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	-	0.5	_	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

IRF230, IRF231 IRF232, IRF233

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRF230	200	0.4	9.0
IRF231	150	0.4	9.0
IRF232	200	0.6	8.0
IRF233	150	0.6	8.0

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

DADAMETERS/TEST 001	IDITIONO	0	IRF				Units
PARAMETERS/TEST CON	IDITIONS	Symbol	230	231	232	233	Offics
Drain-Source Voltage		V _{DS}	200	150	200	150	
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	ľ
Continuous Drain Current	T _C = 25°C		9.0	9.0	8.0	8.0	
Continuous Drain Current	T _C = 100°C	d 'D	6.0	6.0	5.0	5.0	A
Pulsed Drain Current ¹		I _{DM}	36	36	32	32	
Avalanche Current (see figure 9)		^I A	9.0	9.0	8.0	8.0	
Daniel Diagram	T _C = 25°C	В	75	75	75	75	w
Power Dissipation	T _C = 100°C	- P _D	30	30	30	30] *
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				°c
Lead Temperature (1/16" from case for 10 secs.)		TL		3	00		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}		1.67	
Junction-to-Ambient	R _{thJA}	_	30	K/W
Case-to-Sink	R _{thCS}	0.1	- 20	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRF230,232 IRF231,233	V(BR)DSS	200 150	1 -	1 -	v
Gate Threshold Voltage V _{DS} = V _{GS} , 1 _D = 250 μA		V _{GS(th)}	2.0	-	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		l _{GSS}		-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ;= 0, T _J =125°C	IDSS	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF230,231 IRF232,233	^I D(on)	9.0 8.0	-		Α
Drain-Source On-State Resista VGS = 10 V, I _D = 5.0 A	nce ² IRF230,231 IRF232,233	r _{DS(on)}	-	0.25 0.40	0.40 0.60	Q
Drain-Source On-State Resista VGS = 10 V, ID = 5.0 A, TJ =	nce ² IRF230,231 : 125°C IRF232,233	r _{DS(on)}	-	0.45 0.75	0.80 1.20	
Forward Transconductance ² V _{DS} = 15 V, I _D = 5.0 A		g _{fs}	3.0	3.6	-	S(℧)
Input Capacitance	V _{GS} = 0	C _{iss}	_	780	800	
Output Capacitance	V _{DS} = 25 V	Coss		220	450	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	- -	70	150	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	-	27	30	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 12 \text{ A}$ (Gate charge is essentially	Q _{gs}	_	5	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	17	-	
Turn-On Delay Time	V _{DD} = 90 V , R _L = 15.5 Ω	td(on)	-	8	30	
Rise Time	ID = 5.0 A , V _{GEN} = 10 V	t _r	-	42	50	ns
Turn-Off Delay Time	$R_G = 7.5 \Omega$ (Switching time is essentially	^t d(off)	-	12	50	1 110
Fall Time	independent of operating temperature)	t _f	-	30	40	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF230,231 IRF232,233	¹s		-	9.0 8.0	
Pulsed Current ¹	IRF230,231 IRF232,233	^I SM	-	=	36 32	A
Forward Voltage ² IF = IS , VGS = 0	IRF230,231 IRF232,233	V _{SD}	-	-	2.0 1.8	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	_	150	_	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS	·	Qrr	_	0.8	-	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Pulse test: Pulse width \leq 300 μsec, Duty Cycle \leq 2%

IRF240, IRF241 IRF242, IRF243

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V(BR)DSS (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)
IRF240	200	0.18	18
IRF241	150	0.18	18
IRF242	200	0.22	16
IRF243	150	0.22	16

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

	011D1710110		IRF				Units	
PARAMETERS/TEST CONDITIONS		Symbol	240	241	242	243	Units	
Drain-Source Voltage		V _{DS}	200	0 150	150 200	150	150	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40] ,	
Continuous Drain Current	T _C = 25°C		18	18	16	16		
Continuous Drain Current	T _C = 100°C	'D	11	11	10	10		
Pulsed Drain Current ¹		IDM	72	72	64	64	Α	
Avalanche Current (see figure 9)		^I A	18	18	16	16		
Dawer Dischartion	T _C = 25°C	В	125	125	125	125		
Power Dissipation	T _C = 100°C	P _D	50	50	50	50	W	
Operating Junction & Storage Temperature Range		T _J , T _{stg}		-55	to 150	*	°C	
Lead Temperature (1/16" from case for 10 secs.)		TL		3	100			

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}		1.0	
Junction-to-Ambient	R _{thJA}		30	K/W
Case-to-Sink	RthCS	0.1	<u>-</u>	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag VGS = 0, I _D = 250 μA	ge IRF240,242 IRF241,243	V(BR)DSS	200 150	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	<u>-</u> 1 .1	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	_	· · ·	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	<u>-</u>		250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ;= 0, T _J =125°C	I _{DSS}		.	1000	μΑ
On-State Drain Current ² VDS = 10 V, VGS = 10 V	IRF240,241 IRF242,243	I _{D(on)}	18 16	-	-	A
Drain-Source On-State Resista VGS = 10 V, ID = 10 A	nce ² IRF240,241 IRF242,243	r _{DS(on)}	_	0.14 0.20	0.18 0.22	
Drain-Source On-State Resistance 2 IRF240,241 VGS = 10 V, ID = 10 A, TJ = 125°C IRF242,243		r _{DS(on)}	-	0.28 0.40	0.36 0.44	v
Forward Transconductance ² VDS = 15 A, ID = 10 A		g _{fs}	6.0	7.5	-	S(V)
Input Capacitance	V _{GS} = 0	Ciss	-	1550	1600	
Output Capacitance	V _{DS} = 25 V	Coss	(500	750	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	220	300	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	-	42	60	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 22 \text{ A}$ (Gate charge is essentially	Q _{gs}	_	9	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	22	-	
Turn-On Delay Time	$V_{DD} = 75 \text{ V}$, $R_L = 7.5 \Omega$	^t d(on)	-	10	30	
Rise Time	ID~ 10 A , VGEN= 10 V	tr	-	40	60	ns
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	-	30	80	
Fall Time	independent of operating temperature)	t _f	-	15	60	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF240,241 IRF242,243	I _S	-	-	18 16	
Pulsed Current ¹	IRF240,241 IRF242,243	ISM	-	_	72 64	1 ^
Forward Voltage ² IF = I _S , V _{GS} = 0	IRF240,241 IRF242,243	V _{SD}	-	=	2.0 1.9	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	-	150	_	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	_	0.5	_	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

Operation in this area may be infinited by IDS(or

IRF250, IRF251 IRF252, IRF253

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)
IRF250	200	0.085	30
IRF251	150	0.085	30
IRF252	200	0.120	25
IRF253	150	0.120	25

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

DADAMETEDO/TEOT (CHRITICHE			Unite			
PARAMETERS/TEST CONDITIONS		Symbol	250	251	252	253	Units
Drain-Source Voltage		V _{DS}	200	150	200	150	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40]
Continuous Drain Current	T _C = 25°C		30	30	25	25	
Continuous Drain Current	T _C = 100°C	l _D	19	19	16	16	
Pulsed Drain Current ¹		IDM	120	120	100	100	A
Avalanche Current (see figure 9)		I _A	30	30	25	25	
Down Dissination	T _C = 25°C	В	150	150	150	150	147
Power Dissipation	T _C = 100°C	PD	60	60	60	60	W
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				
Lead Temperature (1/16" from case for 10 secs.)		TL	300			°C	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	. -	0.83	
Junction-to-Ambient	R _{thJA}	-	30	K/W
Case-to-Sink	R _{thCS}	0.1	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units	
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRF250,252 IRF251,253	V(BR)DSS	200 150	_	-		
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μ A		V _{GS(th)}	2.0	<u>-</u>	4.0	V	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	100	nA	
Zero Gate Voltage Drain Current VDS = V(BR)DSS · VGS = 0		DSS	_ "	-	250		
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS		I _{DSS}	_	-	1000	μΑ	
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF250,251 IRF252,253	^I D(on)	30 25	-	- -	А	
Drain-Source On-State Resistance ² IRF250,251 VGS = 10 V, ID = 16 A IRF252,253		r _{DS(on)}	-	0.070 0.090	0.085 0.120		
Drain-Source On-State Resistance 2 IRF250,251 VGS = 10 V, ID = 16 A, TJ = 125°C IRF252,253		r _{DS(on)}	<u>-</u>	0.130 0.170	0.160 0.230	v	
Forward Transconductance ² V _{DS} = 15 V, I _D = 16 A		g _{fs}	8.0	13	-	S(V)	
Input Capacitance	V _{GS} = 0	Ciss	-	2750	3000		
Output Capacitance	V _{DS} = 25 V	Coss	. =	850	1200	pF	
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	300	500		
Total Gate Charge	V _{DS} = 0.8 × V _{(BR)DSS} ,	Qg	-	66	120		
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 38 \text{ A}$ (Gate charge is essentially	Qgs	-	14	_	nC	
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	32			
Turn-On Delay Time	$V_{DD} = 95 \text{ V}$, $R_L = 5.9 \Omega$	^t d(on)	-	15	35		
Rise Time	ID~ 16 A , V _{GEN} = 10 V	tr	-	30	100	ne	
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	-	50	125	ns	
Fall Time	independent of operating temperature)	. t _f	· -	20	100		

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF250,251 IRF252,253	^I s	= **	- 	30 25	
Pulsed Current ¹	IRF250,251 IRF252,253	^I SM	-	-	120 100	A
Forward Voltage ² F = S , VGS = 0	IRF250,251 IRF252,253	V _{SD}	-	-	2.0 1.8	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS	: "	t _{rr}		150	_	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS		Q _{rr}	-	0.5	-	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

² Pulse test: Pulse width \leq 300 μsec, Duty Cycle \leq 2%

IRF330, IRF331 IRF332, IRF333

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.44		
PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRF330	400	1.0	5.5
IRF331	350	1.0	5.5
IRF332	400	1.5	4.5
IRF333	350	1.5	4.5

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		0		Units			
		Symbol	330	331	332	333	Office
Drain-Source Voltage Gate-Source Voltage		V _{DS}	400	350	400	350	v
		V _{GS}	± 40	40 ± 40 ± 40	± 40	± 40	1
T _C = 25°		1	5.5	5.5	4.5	4.5	
Continuous Drain Current	T _C = 100°C	l _D	3.5	3.5	3.0	3.0	A
Pulsed Drain Current ¹		I _{DM}	22	22	18	18	^ ,
Avalanche Current (see figure 9)		I _A	5.5	5.5	4.5	4.5	
Davis Diaglastics	T _C = 25°C	P _D	75	75	75	75	w
Power Dissipation	T _C = 100°C		30	30	30	30	, vv
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150			°C	
Lead Temperature (1/16" from case for 10 secs.)		TL		3	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	_	1.67	
Junction-to-Ambient	R _{thJA}	-	30	K/W
Case-to-Sink	R _{thCS}	0.1		

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRF330,332 IRF331,333	V(BR)DSS	400 350	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0		4.0	15.
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	, –	100	nA
Zero Gate Voltage Drain Current VDS = V(BR)DSS , VGS = 0		I _{DSS}		-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ;= 0, Tj =125°C	IDSS	=	, - ,	1000	μΑ
On-State Drain Current ² VDS = 10 V, V _{GS} = 10 V	IRF330,331 IRF332,333	I _{D(on)}	5.5 4.5	-	-	Α
Drain-Source On-State Resista VGS = 10 V, ID = 3.0 A			-	0.8 1.0	1.0 1.5	Q
Drain-Source On-State Resista VGS = 10 V, ID = 3.0 A, TJ =	nce ² IRF330,331 : 125°C IRF332,333	r _{DS(on)}	- -	1.5 1.9	2.0 3.0	\ \d
Forward Transconductance ² V _{DS} = 15 V, I _D = 3.0 A		g _{fs}	3.0	4.8	- <u>-</u>	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	_	750	900	
Output Capacitance	V _{DS} = 25 V	Coss	-	160	300	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	<u>-</u>	70	80	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	-	26	30	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 7 \text{ A}$ (Gate charge is essentially	Qgs	-	6	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	· .	16	_	
Turn-On Delay Time	V _{DD} = 175 V , R _L = 50 Ω	^t d(on)	-	11	30	
Rise Time	ID~ 3.0 A , V _{GEN} = 10 V	t _r	<u>-</u> ·	16	35	ns
Turn-Off Delay Time	$R_G = 7.5\Omega$ (Switching time is essentially	^t d(off)	-	41	55	
Fall Time	independent of operating temperature)	t _f	-	22	35	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF330,331 IRF332,333	^I s			5.5 4.5	
Pulsed Current ¹	IRF330,331 IRF332,333	^I SM	_	=	22 18	^
Forward Voltage ² IF = IS, VGS = 0	IRF330,331 IRF332,333	V _{SD}	=	-	1.6 1.5	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	-	250		ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	-	1.5	_	μС

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

IRF340, IRF341 IRF342, IRF343

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRF340	400	0.55	10
IRF341	350	0.55	10
IRF342	400	0.8	8
IRF343	350	0.8	8

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

				IF	RF		Units
PARAMETERS/TEST CONDITIONS		Symbol	340	341	342	343	Onits
Drain-Source Voltage		V _{DS}	400	350	400	350	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	•
Continuous Drain Current	T _C = 25°C		10	10	8	8	
	T _C = 100°C	l _D	6.0	6.0	5.0	5.0	A
Pulsed Drain Current ¹		I _{DM}	40	40	32	32	_ ^
Avalanche Current (see figure 9)		l _A	10	10	8	8	
Davis Disabation	T _C = 25°C	В	125	125	125	125	w
Power Dissipation	T _C = 100°C	P _D	50	50	50	50	"
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				°C
Lead Temperature (1/16" from case	o for 10 secs.)	TL		3	00		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	-	1.0	
Junction-to-Ambient	R _{thJA}	-	30	K/W
Case-to-Sink	R _{thCS}	0.1	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRF340,342 IRF341,343	V(BR)DSS	400 350		-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0		4.0	.
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	- 7 - grad	-	100	nA
Zero Gate Voltage Drain Currel VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS		IDSS	_	.= .	1000] μΑ
On-State Drain Current ² VDS = 10 V, V _{GS} = 10 V	IRF340,341 IRF342,343	I _{D(on)}	10 8.0	-	-	A
Drain-Source On-State Resista VGS = 10 V, ID = 5.0 A	nce ² IRF340,341 IRF342,343	r _{DS(on)}	-	0.45 0.68	0.55 0.80	S.
Drain-Source On-State Resistance 2 IRF340,341 VGS = 10 V, ID = 5.0 A, TJ = 125°C IRF342,343		^r DS(on)	-	0.90 1.30	1.1 1.6	1 4
Forward Transconductance ² V _{DS} = 15 V, I _D = 5.0 A		g _{fs}	4.0	4.8	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	1500	1600	
Output Capacitance	V _{DS} = 25 V	Coss		300	450	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	120	150	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg		58	60	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 12 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	12	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}		35	-	
Turn-On Delay Time	V _{DD} = 175 V , R _L = 33 Ω	^t d(on)	-	14	35	
Rise Time	ID = 5.0 A, V _{GEN} = 10 V	t _r	-	12	15	ns
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	-	52	90] ''
Fall Time	independent of operating temperature)	t _f		18	35	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF340,341 IRF342,343	I _S	-		10 8.0	A
Pulsed Current ¹	IRF340,341 IRF342,343	^I SM	-	-	40 32	
Forward Voltage ² IF = IS , VGS = 0	IRF340,341 IRF342,343	V _{SD}	-	_	2.0 1.9	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	-	250	=.	ns
Reverse Recovered Charge I _F = I _S , di _F /dt = 100 A/μs		Q _{rr}	-	1.0	-	μC

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

IRF350, IRF351 IRF352, IRF353

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRF350	400	0.3	15
IRF351	350	0.3	15
IRF352	400	0.4	13
IRF353	350	0.4	13

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

DADAMETERS/TEST S	ONDITIONO			IF	RF .		Units
PARAMETERS/TEST C	ONDITIONS	Symbol	350	351	352	353	Units
Drain-Source Voltage		V _{DS}	400	350	400	350	
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	±40	1
Continuous Drain Current	T _C = 25°C		15	15	13	13	
Continuous Diam Current	T _C = 100°C	d 'D	9.0	9.0	8.0	8.0	1
Pulsed Drain Current ¹		IDM	60	60	52	52	A
Avalanche Current (see figure 9		IA	15	15	13	13	
Power Dissipation	T _C = 25°C	В	150	150	150	150	14/
Tower Dissipation	T _C = 100°C	⊢ P _D	60	60	60	60	W
Operating Junction & Storage Temperature Range		T _J , T _{stg}		–55 t	o 150		00
Lead Temperature (1/16" from case for 10 secs.)		TL		3	00		°C

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	-	0.83	
Junction-to-Ambient	R _{thJA}	-	30	K/W
Case-to-Sink	R _{th} Cs	0.1	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag $V_{GS} = 0$, $I_D = 250 \mu A$	ge IRF350,352 IRF351,353	V(BR)DSS	400 350	-	=	V
Gate Threshold Voltage VDS = VGS, ID = 250 μA			2.0	1 = 1 1	4.0	:57
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-		100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}	_	_	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS, VGS	nt _S = 0, T _J =125°C	IDSS	. .	. -	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF350,351 IRF352,353	I _{D(on)}	15 13	-	-	A
Drain-Source On-State Resista VGS = 10 V, ID = 8.0 A	nce ² IRF350,351 IRF352,353	r _{DS(on)}	-	0.22 0.3	0.30 0.40	
Drain-Source On-State Resistance 2 IRF350,351 VGS = 10 V, ID = 8.0 A, TJ = 125°C IRF352,353		r _{DS(on)}	-	0.4 0.6	0.60 0.80	a C
Forward Transconductance ² V _{DS} = 15 V, I _D = 8.0 A		g _{fs}	8.0	8.5	-	s(ʊ)
Input Capacitance	V _{GS} = 0	C _{iss}	× × -	2700	3000	
Output Capacitance	V _{DS} = 25 V	Coss	_	450	600	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	- -	160	200	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	-	85	120	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 18 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	14	=	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}		50	_	
Turn-On Delay Time	V _{DD} = 180 V , R _L = 25 Ω	^t d(on)	_	14	35	
Rise Time	ID~ 8.0 A , V _{GEN} = 10 V	t _r	_	30	65	ns
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	-	54	150	1115
Fall Time	independent of operating temperature)	t _f	-	15	75	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF350,351 IRF352,353	^I S		-	15 13	
Pulsed Current ¹	IRF350,351 IRF352,353	I _{SM}	-	. -	60 52	A
Forward Voltage ² IF = I _S , V _{GS} = 0	IRF350,351 IRF352,353	V _{SD}	-	<u>-</u> -	1.6 1.5	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	-	300	_	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS		Q _{rr}	_	2.0	_	μC

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

IRF430, IRF431 IRF432, IRF433

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V(BR)DSS (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)
IRF430	500	1.5	4.5
IRF431	450	1.5	4.5
IRF432	500	2.0	4.0
IRF433	450	2.0	4.0

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

DADAMETERS/TEST O	ONDITIONS			ii	RF.		Units
PARAMETERS/TEST C	ONDITIONS	Symbol	430	431	432	433	Units
Drain-Source Voltage		V _{DS}	500	450	500	450	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	ľ
Continuous Drain Current	T _C = 25°C	,	4.5	4.5	4.0	4.0	
Continuous Drain Current	T _C = 100°C	- 'D	3.0	3.0	2.5	2.5	
Pulsed Drain Current ¹		IDM	18	18	16	16	A
Avalanche Current (see figure 9)		I _A	4.5	4.5	4.0	4.0	
Davier Dissipation	T _C = 25°C	Ь	75	75	75	75	w
Power Dissipation	T _C = 100°C	P _D	30	30	30	30	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150			:	°C
Lead Temperature (1/16" from ca	se for 10 secs.)	TL		3	00		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	1.67	
Junction-to-Ambient	R _{thJA}	_	30	K/W
Case-to-Sink	R _{thCS}	0.1	1 -	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRF430,432 IRF431,433	V _{(BR)DSS}	500 450	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	/	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	_	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ;= 0, T _J =125°C	I _{DSS}	_	-	1000] μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF430,431 IRF432,433	I _{D(on)}	4.5 4.0	<u>-</u>	- - -	А
Drain-Source On-State Resista VGS = 10 V, I _D = 2.5 A	nce ² IRF430,431 IRF432,433	r _{DS(on)}	-	1.25 1.5	1.5 2.0	S.
Drain-Source On-State Resistance 2 IRF430,431 V _{GS} = 10 V, I _D = 2.5 A, T _J = 125 °C IRF432,433		r _{DS(on)}	-	2.7 3.3	3.3 4.4	72
Forward Transconductance ² V _{DS} = 15 V, I _D = 2.5 A		g _{fs}	2.5	3.4	-	S(⑦)
Input Capacitance	V _{GS} = 0	C _{iss}	_	750	800	
Output Capacitance	V _{DS} = 25 V	Coss		120	200	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	50	60	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	-	25	30	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 6.0 \text{ A}$ (Gate charge is essentially	Qgs	-	5	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	18	-	
Turn-On Delay Time	V _{DD} = 225 V , R _L = 75 Ω	^t d(on)		11	30	-
Rise Time	ID~ 2.5 A, V _{GEN} = 10 V	t _r	_	16	30	ns
Turn-Off Delay Time	$R_G = 7.5 \Omega$ (Switching time is essentially	^t d(off)	-	41	55	
Fall Time	independent of operating temperature)	t _f	-	22	30	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF430,431 IRF432,433	1 _S		=	4.5 4.0	
Pulsed Current ¹	IRF430,431 IRF432,433	^I SM	-	-	18 16	^
Forward Voltage ² IF = I _S , V _{GS} = 0	IRF430,431 IRF432,433	V _{SD}	_		1.4 1.3	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	-	260	_	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS	and the second second second	Q _{rr}	-	1.5		μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

IRF440, IRF441 IRF442, IRF443

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRF440	500	0.85	8.0
IRF441	450	0.85	8.0
IRF442	500	1.1	7.0
IRF443	450	1.1	7.0

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

				Units			
PARAMETERS/TEST CONDITIONS		Symbol	440	441	442	443	Units
Drain-Source Voltage		v _{DS}	500	450	500	450	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	±40	•
Continuous Brain Comment	T _C = 25°C	,	8.0	8.0	7.0	7.0	V -
Continuous Drain Current	T _C = 100°C	- 'D	5.0	5.0	4.0	4.0	A
Pulsed Drain Current ¹		I _{DM}	32	32	28	28] ^
Avalanche Current (see figure 9)	- :	I _A	8.0	8.0	7.0	7.0	
Davis Disability	T _C = 25°C	В	125	125	125	125	w
Power Dissipation	T _C = 100°C	- P _D	50	50	50	50]
Operating Junction & Storage Temperature Range		T _J , T _{stg}		-55	to 150		°C
Lead Temperature (1/16" from case for 10 secs.)		TL		3	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	1.0	
Junction-to-Ambient	R _{thJA}	<u>-</u>	30	K/W
Case-to-Sink	R _{th} Cs	0.1	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRF440,442 IRF441,443	V(BR)DSS	500 450	-	=	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA	Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		2.0	· -	4.0	V.
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS		-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}	_	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS, VGS	nt = 0, T _J =125°C	I _{DSS}	-	_	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF440,441 IRF442,443	I _{D(on)}	8.0 7.0	-	<u>-</u> -	A
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 4.0 A	nce ² IRF440,441 IRF442,443	r _{DS(on)}	-	0.80 1.00	0.85 1.10	
Drain-Source On-State Resistance 2 IRF440,441 VGS = 10 V, ID = 4.0 A, TJ = 125°C IRF442,443		r _{DS(on)}	-	1.50 1.95	1.05 2.15	v.
Forward Transconductance ² V _{DS} = 15 V, I _D = 4.0 A		g _{fs}	4.0	4.3	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	1500	1600	
Output Capacitance	V _{DS} = 25 V	Coss	<u>-</u>	250	350	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	- · · · · · · · · · · · · · · · · · · ·	75	150	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	-	54	60	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$ (Gate charge is essentially	Q _{gs}	= 2.7	10		nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	26		
Turn-On Delay Time	V _{DD} = 200 V , R _L = 45 Ω	^t d(on)	-	12	35	
Rise Time	ID~ 4.0 A , V _{GEN} = 10 V	t _r	_	12	15	ns
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	_	50	90	1 110
Fall Time	independent of operating temperature)	tf	_	17	30	1

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF440,441 IRF442,443	^I s	-	-	8.0 7.0	
Pulsed Current ¹	IRF440,441 IRF442,443	I _{SM}	-	-	32 28	^
Forward Voltage ² IF = I _S , V _{GS} = 0	IRF440,441 IRF442,443	V _{SD}	-	-	2.0 1.9	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	_	250	= 1	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	_	1.0	_	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

IRF450, IRF451 IRF452, IRF453

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRF450	500	0.4	13
IRF451	450	0.4	13
IRF452	500	0.5	12
IRF453	450	0.5	12

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

	-						
DADAMETEDO/TEOT OO	IDITIONO	0		Units			
PARAMETERS/TEST COI	NDITIONS	Symbol	450	451	452	453	Units
Drain-Source Voltage		V _{DS}	500	450	500	450	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	V
Continuous Drain Current	T _C = 25°C		13	13	12	12	
Continuous Drain Current	T _C = 100°C	l _D	8.0	8.0	7.0	7.0	1
Pulsed Drain Current ¹		I _{DM}	52	52	48	48	A
Avalanche Current (see figure 9)	-	l _A	13	13	12	12	
Power Dissination	T _C = 25°C	В	150	150	150	150	w
Power Dissipation	T _C = 100°C	P _D	60	60	60	60	• • • • •
Operating Junction & Storage Temperature Range		T _J , T _{stg}		-55 t	to 150		°C
Lead Temperature (1/16" from case	for 10 secs.)	TL		3	00		C

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	-	0.83	
Junction-to-Ambient	R _{thJA}	-	30	K/W
Case-to-Sink	R _{thCS}	0.1		

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRF450,452 IRF451,453	V(BR)DSS	500 450	_	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	_	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	- · ·	-	100	nA
Zero Gate Voltage Drain Currel VDS = V(BR)DSS , VGS = 0	nt .	I _{DSS}	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS, VGS	nt _S = 0, T _J =125°C	IDSS		_	1000] μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF450,451 IRF452,453	I _{D(on)}	13 12	-	-	Α
Drain-Source On-State Resista $V_{GS} = 10 \text{ V}, I_D = 7.0 \text{ A}$	IRF450,451 IRF452,453	r _{DS(on)}	_	0.3 0.4	0.40 0.50	- Q
Drain-Source On-State Resistance 2 IRF450,451 VGS = 10 V, ID = 7.0 A, TJ = 125°C IRF452,453		r _{DS(on)}	-	0.60 0.80	0.88 1.10] ""
Forward Transconductance ² V _{DS} = 15 V, I _D = 7.0 A		g _{fs}	6.0	9.0	_	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	_	2700	3000	
Output Capacitance	V _{DS} = 25 V	Coss	_	410	600	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	140	200	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	-	85	120	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 16 \text{ A}$ (Gate charge is essentially	Q _{gs}		12	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	40	_	
Turn-On Delay Time	V _{DD} = 210 V , R _L = 30 Ω	^t d(on)	_	13	35	
Rise Time	ID~ 7.0 A , V _{GEN} = 10 V	t _r	_	26	50	ns
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)		55	150	1 119
Fall Time	independent of operating temperature)	t _f	_	17	70	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF450,451 IRF452,453	I _S	-	_	13 12	
Pulsed Current ¹	IRF450,451 IRF452,453	^I SM	-	-	52 48	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	IRF450,451 IRF452,453	V _{SD}		-	1.4 1.3	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS	the state of the s	t _{rr.}	_	300	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	-	2.0	-	μС

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2~\%$

IRF510, IRF511 IRF512, IRF513

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRF510	100	0.6	4.0
IRF511	60	0.6	4.0
IRF512	100	0.8	3.5
IRF513	60	0.8	3.5

- 1 GATE
- 2 DRAIN
- 3 SOURCE

TOP VIEW

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

DATAMETERS/TEST 00M	DITIONS		IRF				Units
PARAMETERS/TEST CONDITIONS		Symbol	510	511	512	513	Units
Drain-Source Voltage		V _{DS}	100	60	100	60	V
Gate-Source Voltage		V _{GS}	±40	± 40	± 40	±40	v
Continuous Drain Current	T _C = 25°C	į,	4.0	4.0	3.5	3.5	
	T _C = 100°C	'D	2.5	2.5	2.0	2.0	A
Pulsed Drain Current ¹		I _{DM}	16	16	14	14	
Davies Discharties	T _C = 25°C	В	20	20	20	20	
Power Dissipation	T _C = 100°C	PD	8	8	8	8	W
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				
Lead Temperature (1/16" from case for 10 secs.)		TL		3	00		°C

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	-	6.4	
Junction-to-Ambient	R _{thJA}	= .	80	K/W
Case-to-Sink	R _{thCS}	1.0	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	P IRF510,512 IRF511,513	V(BR)DSS	100 60	-		v
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA			2.0		4.0	
Gate-Body Leakage VDS= 0, VGS = ±20 V	•	IGSS	<u>-</u> , , , ,		500	· nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	<u> </u>	-	250	****
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt = 0, T _J =125°C	I _{DSS}	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF510,511 IRF512,513	I _{D(on)}	4.0 3.5	<u>-</u>	-	А
Drain-Source On-State Resista VGS = 10 V, ID = 2.0 A	nce ² IRF510,511 IRF512,513	r _{DS(on)}	_	0.5 0.6	0.60 0.80	Q.
Drain-Source Oh-State Resistance 2 IRF510,511 VGS = 10 V, ID = 2.0 A, TJ = 125°C IRF512,513		r _{DS(on)}	_	0.8 1.0	1.1 1.4	74
Forward Transconductance ² V _{DS} = 15 V, I _D = 2.0 A		g _{fs}	1.0	1.3	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	_	170	200	
Output Capacitance	V _{DS} = 25 V	Coss	- -	75	100	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}		23	25	
Total Gate Charge	V _{DS} = 0.8 × V _{(BR)DSS} ,	Qg		7	7.5	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 8.0 \text{ A}$ (Gate charge is essentially	Qgs		1.2	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	2.4	- -	
Turn-On Delay Time	V _{DD} = 40 V , R _L = 20 Ω	^t d(on)		7	20	
Rise Time	ID~ 2.0 A , V _{GEN} = 10 V	t _r	-	21	25	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	-	22	25	113
Fall Time	independent of operating temperature)	tf		11	20	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF510,511 IRF512,513	l _S		=	4.0 3.5	
Pulsed Current ¹	IRF510,511 IRF512,513	^I SM	-	= -	16 14	^
Forward Voltage ² IF = I _S , V _{GS} = 0	IRF510,511 IRF512,513	V _{SD}	-	= -	2.5 2.0	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		trr	-	65	_	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS		Q _{rr}	_	0.12	-	μС

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

IRF520, IRF521 IRF522, IRF523

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRF520	100	0.3	8.0
IRF521	60	0.3	8.0
IRF522	100	0.4	7.0
IRF523	60	0.4	7.0

- 1 GATE 2 DRAIN
- 3 SOURCE

TOP VIEW

ABSOLUTE MAXIMUM RATINGS (Tc= 25°C unless otherwise noted)

			IRF				Units
PARAMETERS/TEST CONDITIONS		Symbol	520	521	522	523	Units
Drain-Source Voltage		V _{DS}	100	60	100	60	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	±40	•
Continuous Drain Current	T _C = 25°C		8.0	8.0	7.0	7.0	
	T _C = 100°C	- d	5.0	5.0	4.0	4.0	1 .
Pulsed Drain Current ¹		IDM	32	32	28	28	A
Dower Dissipation	T _C = 25°C	В	40	40	40	40	w
Power Dissipation	T _C = 100°C	- P _D	16	16	16	16	W
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				°c
Lead Temperature (1/16" from case for 10 secs.)		TL		3	100		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	-	3.12	
Junction-to-Ambient	R _{thJA}	_	80	K/W
Case-to-Sink	R _{thCS}	1.0	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRF520,522 IRF521,523	V(BR)DSS	100 60	-	-	V
Gate Threshold Voltage VDS= VGS, ID = 250 μA		V _{GS(th)}	2.0	- :·	4.0	V
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	500	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	<u>-</u>		250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS		IDSS	-	-	1000	μΑ
On-State Drain Current ² VDS = 10 V, V _{GS} = 10 V	IRF520,521 IRF522,523	I _{D(on)}	8.0 7.0	-	-	А
Drain-Source On-State Resista VGS = 10 V, ID = 4.0 A	nce ² IRF520,521 IRF522,523	r _{DS(on)}	-	0.25 0.30	0.30 0.40	_
Drain-Source On-State Resistance 2 IRF520,521 VGS = 10 V, ID = 4.0 A, TJ = 125°C IRF522,523		r _{DS(on)}	-	0.45 0.55	0.54 0.70	σ
Forward Transconductance ² V _{DS} = 15 V, I _D = 4.0 A		g _{fs}	1.5	2.9	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	380	600	
Output Capacitance	V _{DS} = 25 V	Coss	-	150	400	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	50	100	
Total Gate Charge	V _{DS} = 0.8 × V _{(BR)DSS} ,	Qg	-	14	15	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$ (Gate charge is essentially	Q _{gs}	_	2	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	: -	6	_	
Turn-On Delay Time	V _{DD} = 40 V , R _L = 10 Ω	t _{d(on)}	-	7	40	
Rise Time	ID~ 4.0 A , V _{GEN} =10 V	t _r	_	31	.70	no
Turn-Off Delay Time	R _G = 25 () (Switching time is essentially	^t d(off)	-	38	100	ns
Fall Time	independent of operating temperature)	t _f	-	21	70	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDIT	IONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF520,521 IRF522,523	l _S	-	=	8.0 7.0	
Pulsed Current ¹	IRF520,521 IRF522,523	^I sm	-	-	32 28	A
Forward Voltage ² IF = I _S , V _{GS} = 0	IRF520,521 IRF522,523	V _{SD}		-	2.5 2.3	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	-	100	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS		Q _{rr}	_	0.15	_	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

IRF530, IRF531 IRF532, IRF533

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRF530	100	0.18	14
IRF531	60	0.18	14
IRF532	100	0.25	12
IRF533	60	0.25	12

- 1 GATE
- 2 DRAIN
- 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS Drain-Source Voltage Gate-Source Voltage				Units			
		Symbol	530	531	532	533	Units
		V _{DS}	100	60	100	60 ±40	V
		V _{GS}	± 40	± 40	± 40		1 '
Continuous Drain Current	T _C = 25°C	- I _D	14	14	12	12	Α
	T _C = 100°C		9.0	9.0	8.0	8.0	
Pulsed Drain Current ¹	· :	I _{DM}	56	56	48	48	1 ^
Dawar Black star	T _C = 25°C	PD	75	75	75	75	147
Power Dissipation	T _C = 100°C		30	30	30	30	- w
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150			°C	
Lead Temperature (1/16" from case for 10 secs.)		TL	300				

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	,. -	1.67	
Junction-to-Ambient	R _{thJA}	-	80	K/W
Case-to-Sink	R _{thCS}	1.0	-	

¹Pulse width limited by maximum junction temperature (refer to translent thermal impedance data, figure 11)

PARAMETERS/TEST	Symbol	Min.	Тур.	Max.	Units	
Drain-Source Breakdown Voltaç V _{GS} = 0, I _D = 250 μA	ge IRF530,532 IRF531,533	V(BR)DSS	100 60	=	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	=,, :	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		lgss	-	_	500	пА
Zero Gate Voltage Drain Current VDS = V(BR)DSS , VGS = 0		I _{DSS}	_	. <u></u>	250	
Zero Gate Voltage Drain Curre V _{DS} = 0.8 x V _{(BR)DSS} , V _{GS}	nt ₅ = 0, T _J =125°C	IDSS	.	_	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF530,531 IRF532,533	I _{D(on)}	14 12	= =	-	7 A
Drain-Source On-State Resistance ² IRF530,531 VGS = 10 V, I _D = 8.0 A IRF532,533		r _{DS(on)}	-	0.14 0.20	0.18 0.25	
Drain-Source On-State Resistance 2 IRF530,531 VGS = 10 V, ID = 8.0 A, TJ = 125°C IRF532,533		r _{DS(on)}	_	0.25 0.30	0.30 0.45	Ω.
Forward Transconductance ² V _{DS} =15 V, I _D = 8.0 A		g _{fs}	4.0	5.5	-	s(V)
Input Capacitance	V _{GS} = 0	C _{iss}	_	750	800	
Output Capacitance	V _{DS} = 25 V	Coss	. <u>.</u>	280	500	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	<u>.</u>	70	150	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	-	25	30	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 18 \text{ A}$ (Gate charge is essentially	Q _{gs}		5	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	13	- '	
Turn-On Delay Time	$V_{DD} = 36 \text{ V}$, $R_L = 4\Omega$	^t d(on)	-	7	30	
Rise Time	ID~ 8.0 A , V _{GEN} = 10 V	t _r	_	39	75	ns
Turn-Off Delay Time	$R_G = 7.5\Omega$ (Switching time is essentially	^t d(off)	_	11	40	
Fall Time	independent of operating temperature)	tf	_	28	45	1

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF530,531 IRF532,533	I _S			14 12	
Pulsed Current ¹	IRF530,531 IRF532,533	ISM		_	56 48	^
Forward Voltage ² IF = IS , VGS = 0	IRF530,531 IRF532,533	V _{SD}	-	-	2.5 2.3	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	<u>-</u>	100	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS	·	Q _{rr}	_	0.7	_	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

IRF540, IRF541 IRF542, IRF543

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRF540	100	0.085	27
IRF541	60	0.085	27
IRF542	100	0.11	24
IRF543	60	0.11	24

- 1 GATE
- 2 DRAIN 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS				l leite				
		Symbol	540	541	542	543	Units	
Drain-Source Voltage		V _{DS}	100	60	100	60	V	
Gate-Source Voltage		V _{GS}	± 40	± 40	±40	±40		
Continuous Drain Current	T _C = 25°C	- I _D	27	27	24	24		
Continuous Drain Current	T _C = 100°C		17	17	15	15		
Pulsed Drain Current ¹		IDM	108	108	96	96	1 ^	
D Discipation	T _C = 25°C	В	125	125	125	125	NA /	
Power Dissipation	T _C = 100°C	⊢ P _D	50	50	50	50	w	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				°C	
Lead Temperature (1/16" from case for 10 secs.)		TL	300					

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	1.0	
Junction-to-Ambient	R _{thJA}	-	80	K/W
Case-to-Sink	R _{thCS}	1.0	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Volta V _{GS} = 0, I _D = 250 μA	ge IRF540,542 IRF541,543	V(BR)DSS	100 60	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	- <u>-</u>	4.0	\ \ \
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		¹ GSS	-	= .	500	nA
Zero Gate Voltage Drain Current VDS = V(BR)DSS,VGS = 0		^I DSS	ì		250	
Zero Gate Voltage Drain Curre V _{DS} = 0.8 x V _(BR) DSS , V _{GS}	nt s= 0, T _J =125°C	I _{DSS}	-		1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF540,541 IRF542,543	I _{D(on)}	27 24	-	- -	А
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		r _{DS(on)}	-	0.07 0.09	0.085 0.11	
		r _{DS(on)}	-	0.12 0.15	0.15 0.19	v
Forward Transconductance ² V _{DS} =15 V, I _D = 15 A		g _{fs}	6.0	8	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	1.550	1600	
Output Capacitance	V _{DS} = 25 V	Coss	-	550	800	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	=	150	300	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	, -	50	60	
Gate-Source Charge	V _{GS} = 10 V, I _D = 34 A (Gate charge is essentially	Q _{gs}	_	10	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}		23	-	
Turn-On Delay Time	$V_{DD} = 30 \text{ V}$, $R_L = 2.0 \Omega$	^t d(on)	_	10	30	
Rise Time	ID~ 15 A , V _{GEN} = 10 V	t _r	· <u>-</u>	40	60	ns
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	_	30	80	113
Fall Time	independent of operating temperature)	tf	·	15	30	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF540,541 IRF542,543	^I S	-	-	27 24	
Pulsed Current ¹	IRF540,541 IRF542,543	^I SM	-	-	108 96	A
Forward Voltage ² IF = IS, VGS = 0	IRF540,541 IRF542,543	V _{SD}		-	2.5 2.3	٧
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS		t _{rr} -	_	150	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS		Q _{rr}	-	0.5	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width $\leq 300~\mu sec,~\text{Duty Cycle} \leq~2\%$

FIGURE 11: Normalized Effective Transient Thermal Impedance, Junction-to-Case

IRF610, IRF611 IRF612, IRF613

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRF610	200	1.5	2.5
IRF611	150	1.5	2.5
IRF612	200	2.4	2.0
IRF613	150	2.4	2.0

- 1 GATE
- 2 DRAIN
- 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (Tc= 25°C unless otherwise noted)

DADAMETEDO/TEOT 0	011DITIO110			Units			
PARAMETERS/TEST CONDITIONS		Symbol	610	611	612	613	Units
Drain-Source Voltage		V _{DS}	200	150	200	150	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40]
Continuous Drain Current	T _C = 25°C		2.5	2.5	2.0	2.0	
Continuous Drain Current	T _C = 100°C	- 'D	1.5	1.5	1.25	1.25	
Pulsed Drain Current ¹		I _{DM}	10	10	8.0	8.0	A
Avalanche Current (see figure 9)		I _A	2.5	2.5	2.0	2.0	1
Power Dissipation	T _C = 25°C	Ь	20	20	20	20	w
Power Dissipation	T _C = 100°C	P _D	. 8	8	8	8	1 "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				
Lead Temperature (1/16" from case for 10 secs.)		TL	300			°C	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	_	6.4	
Junction-to-Ambient	R _{thJA}	-	80	K/W
Case-to-Sink	RthCS	1.0	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Volta V _{GS} = 0, I _D = 250 μA	ge IRF610,612 IRF611,613	V(BR)DSS	200 150		- -	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0		4.0]
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	=	-	500	nA
Zero Gate Voltage Drain Curre VDS = V(BR)DSS , VGS = 0	nt	^I DSS	-	<u>-</u>	250	
Zero Gate Voltage Drain Curre VDS = 0.8 x V(BR)DSS , VGS	nt _S = 0, T _J =125°C	DSS		-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF610,611 IRF612,613	I _{D(on)}	2.5 2.0	-	-	A
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 1.25 A	IRF610,611 IRF612,613	r _{DS(on)}	-	1.0 1.5	1.5 2.4	
Drain-Source On-State Resistance 2 IRF610,611 VGS = 10 V, ID = 1.25 A, TJ = 125 °C IRF612,613		r _{DS(on)}	-	1.8 2.8	2.8 4.5	v.
Forward Transconductance ² V _{DS} = 15 V, I _D = 1.25 A	·	g _{fs}	0.8	1.1	_	s(ඊ)
Input Capacitance	V _{GS} = 0	C _{iss}	_	175	200	
Output Capacitance	V _{DS} = 25 V	Coss		65	80	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	15	25	
Total Gate Charge	V _{DS} = 0.8 × V _{(BR)DSS} ,	Qg	-	7.5	9.0	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 3.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	1.2	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	3.8	-	
Turn-On Delay Time	V _{DD} = 100 V , R _L = 80 Ω	^t d(on)	_	7	15	
Rise Time	ID~ 1.25 A V _{GEN} = 10 V	t _r	-	21	25	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	-	22	25	113
Fall Time	independent of operating temperature)	tf	_	11	15	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF610,611 IRF612,613	l _s			2.5 2.0	
Pulsed Current ¹	IRF610,611 IRF612,613	^I SM		=	10 8	^
Forward Voltage ² IF = I _S , V _{GS} = 0	IRF610,611 IRF612,613	V _{SD}	=	=	2.0 1.8	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	-	65	-	ns
Reverse Recovered Charge IF = IS, diF/dt = 100 A/μS		Qrr	_	0.12	_	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

IRF620, IRF621 IRF622, IRF623 **MOSPOWER**

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)
IRF620	200	0.8	5.0
IRF621	150	0.8	5.0
IRF622	200	1.2	4.0
IRF623	150	1.2	4.0

- 2 DRAIN
- 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

DADAMETEDO/TECT O	DUDITIONS	0		Units			
PARAMETERS/TEST CONDITIONS		Symbol	620	621	622	623	Units
Drain-Source Voltage Gate-Source Voltage		V _{DS}	200	150	200	150	V
		V _{GS}	± 40	± 40	± 40	±40	\ \ \
Continuous Drain Current	T _C = 25°C		5.0	5.0	4.0	4.0	
	T _C = 100°C	d 'p	3.0	3.0	2.5	2.5	
Pulsed Drain Current ¹		IDM	20	20	16	16	A
Avalanche Current (see figure 9)		l _A	5.0	5.0	4.0	4.0	
Dower Discipation	T _C = 25°C	В	40	40	40	40	w
Power Dissipation	T _C = 100°C	P _D	16	16	16	16	"
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300			1	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	3.12	
Junction-to-Ambient	R _{thJA}	_	80	K/W
Case-to-Sink	R _{thCS}	1.0	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TES	T CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Volta $V_{GS} = 0$, $I_D = 250 \mu A$	ge IRF620,622 IRF621,623	V(BR)DSS	200 150	-	-	.,
Gate Threshold Voltage VDS= VGS , ID = 250 μA		V _{GS(th)}	2.0	-	4.0	\ \ \ \
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	500	nA
Zero Gate Voltage Drain Curre V _{DS} = V _(BR) DSS , V _{GS} = 0	nt	DSS	-	, -	250	
Zero Gate Voltage Drain Curre VDS = 0.8 x V(BR)DSS , VGS	nt S= 0, T _J =125°C	IDSS		-	1000	μА
On-State Drain Current ² VDS = 10 V, VGS = 10 V	IRF620,621 IRF622,623	I _D (on)	5.0 4.0		-	А
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 2.5 A	IRF620,621 IRF622,623	r _{DS(on)}	-	0.5 0.8	0.8	
Drain-Source On-State Resistance 2 IRF620,621 VGS = 10 V, ID = 2.5 A, TJ = 125°C IRF622,623		r _{DS(on)}	-	0.9 1.4	1.5 2.3	Ø.
Forward Transconductance ² V _{DS} = 15 V, I _D = 2.5 A		g _{fs}	1.3	2.2	-	S(ሆ)
Input Capacitance	V _{GS} = 0	C _{iss}	-	380	600	
Output Capacitance	V _{DS} = 25 V	Coss	- -	130	300	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	7.1 . -	20	80	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	-	13	15	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 6.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	3	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	6	_	
Turn-On Delay Time	V _{DD} = 100 V , R _L = 39 Ω	^t d(on)	_	7	40	
Rise Time	ID~ 2.5 A , V _{GEN} = 10 V	t _r	_	25	60	no
Turn-Off Delay Time	$R_G = 25\Omega$ (Switching time is essentially	^t d(off)	_	38	100	ns
Fall Time	independent of operating temperature)	tf	_	16	60	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF620,621 IRF622,623	^I s	_	-	5.0 4.0	
Pulsed Current ¹	IRF620,621 IRF622,623	I _{SM}	-	=	20 16	^
Forward Voltage ² IF = I _S , V _{GS} = 0	IRF620,621 IRF622,623	V _{SD}	-	=	1.8 1.4	٧
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	i i i	t _{rr}	-	100	_	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS		Q _{rr}	- -	0.15	_	μС

Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

FIGURE 11: Normalized Effective Transient Thermal Impedance, Junction-to-Case

IRF630, IRF631 IRF632, IRF633

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)
IRF630	200	0.4	9.0
IRF631	150	0.4	9.0
IRF632	200	0.6	8.0
IRF633	150	0.6	8.0

- 1 GATE
- 2 DRAIN
- 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

				Units			
PARAMETERS/TEST CONDITIONS		Symbol	630	631	632	633	Units
Drain-Source Voltage		V _{DS}	200	150	200	150	v
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	ľ
Continuous Drain Current	T _C = 25°C		9.0	9.0	8.0	8.0	
Continuous Drain Current	T _C = 100°C	- 'D	6.0	6.0	5.0	5.0	A
Pulsed Drain Current ¹		IDM	36	36	32	32	^
Avalanche Current (see figure 9)	I _A	9.0	9.0	8.0	8.0	
Davier Dischartion	T _C = 25°C		75	75	75	75	w
Power Dissipation	T _C = 100°C	P _D	30	30	30	30]
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				°c
Lead Temperature (1/16" from case for 10 secs.)		TL		3	100		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	1.67	
Junction-to-Ambient	R _{thJA}	-	80	K/W
Case-to-Sink	RthCS	1.0	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRF630,632 IRF631,633	V(BR)DSS	200 150	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	_	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	500	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}	=	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt = 0, T _J =125°C	I _{DSS}	-	_	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF630,631 IRF632,633	I _{D(on)}	9.0 8.0	-	-	Α
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		r _{DS(on)}	-	0.25 0.4	0.40 0.60	Q
		r _{DS(on)}	-	0.45 0.75	0.80 1.20	AD.
Forward Transconductance ² V _{DS} = 15 V, I _D = 5 A		g _{fs}	3.0	3.7	-	s(ሆ)
Input Capacitance	V _{GS} = 0	C _{iss}	-	780	800	
Output Capacitance	V _{DS} = 25 V	Coss	-	220	450	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	70	150	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	-	27	30	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 12 \text{ A}$ (Gate charge is essentially	Qgs	-	5	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}		17	-	
Turn-On Delay Time	V _{DD} = 90 V , R _L =18 Ω	^t d(on)	_	8	30	
Rise Time	ID~ 5.0 A, V _{GEN} = 10 V	t _r	-	42	50	ns
Turn-Off Delay Time	$R_G = 7.5 \Omega$ (Switching time is essentially	^t d(off)	-	12	50	110
Fall Time	independent of operating temperature)	tf	-	30	40	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF630,631 IRF632,633	^I s	-	-	9.0 8.0	
Pulsed Current ¹	IRF630,631 IRF632,633	^I SM	- -	-	36 32] ^
Forward Voltage ² IF = I _S , V _{GS} = 0	IRF630,631 IRF632,633	V _{SD}	-	-	2.0 1.8	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		trr	-	150	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	_	0.8	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

IRF640, IRF641 IRF642, IRF643

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	(AMPS)
IRF640	200	0.18	18
IRF641	150	0.18	18
IRF642	200	0.22	16
IRF643	150	0.22	16

- 1 GATE 2 DRAIN
- 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

DADAMETERO/TEOT	CONDITIONS	0		Units			
PARAMETERS/TEST CONDITIONS		Symbol	640	641	642	643	Units
Drain-Source Voltage		V _{DS}	200	150	200	150	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	"
Continuous Drain Current	T _C = 25°C		18	18	16	16	
Continuous Drain Current	T _C = 100°C	- 'D	11	11	10	10	
Pulsed Drain Current ¹		IDM	72	72	64	64	Α .
Avalanche Current (see figure 9)	IA	18	18	16	16	
Dower Dissination	T _C = 25°C	В	125	125	125	125	w
Power Dissipation	T _C = 100°C	P _D	50	50	50	50	, vv
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				
Lead Temperature (1/16" from case for 10 secs.)		TL		3	00		°C

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	_	1.0	
Junction-to-Ambient	R _{thJA}	-	80	K/W
Case-to-Sink	R _{thCS}	1.0		

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag $V_{GS} = 0$, $I_D = 250 \mu A$	ge IRF640,642 IRF641,643	V(BR)DSS	200 150	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	-	4.0	· ·
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	500	nA
Zero Gate Voltage Drain Current VDS = V(BR)DSS · VGS = 0		DSS	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ;= 0, T _J =125°C	DSS		-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF640,641 IRF642,643	I _{D(on)}	18 16	-	<u>-</u>	Α
		r _{DS(on)}	-	0.14 0.20	0.18 0.22	Q
		^r DS(on)	-	0.28 0.40	0.36 0.44	70
Forward Transconductance ² V _{DS} =15 V, I _D = 10 A		g _{fs}	6.0	7.5	-	S(ぴ)
Input Capacitance	V _{GS} = 0	C _{iss}	_	1550	1600	
Output Capacitance	V _{DS} = 25 V	Coss	1	500	750	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	220	300	
Total Gate Charge	V _{DS} = 0.8 × V _{(BR)DSS} , V _{GS} = 10 V, I _D = 22 A	Qg	-	43	60	
Gate-Source Charge	(Gate charge is essentially	Q _{gs}	-	10	-	пC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	19	-	
Turn-On Delay Time	$V_{DD} = 75 \text{ V}, R_L = 7.5 \Omega$	^t d(on)	_	10	30	
Rise Time	ID~ 10 A , V _{GEN} = 10 V	t _r	_	40	60	ns
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	-	30	80	,,,,
Fall Time	independent of operating temperature)	t _f	-	15	60	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF640,641 IRF642,643	I _S		-	18 16	A
Pulsed Current ¹	IRF640,641 IRF642,643	I _{SM}	-	-	72 64	
Forward Voltage ² IF = I _S , V _{GS} = 0	IRF640,641 IRF642,643	V _{SD}	1	-	2.0 1.8	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		trr		150	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	_	0.5	_	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

4–178

IRF710, IRF711 IRF712, IRF713

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V(BR)DSS (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRF710	400	3.6	1.5
IRF711	350	3.6	1.5
IRF712	400	5.0	1.3
IRF713	350	5.0	1.3

- 1 GATE
- 2 DRAIN
- 3 SOURCE

TOP VIEW

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

DADAMETEDO/TEOT 00W				11-14-			
PARAMETERS/TEST CONDITIONS		Symbol	710	711	712	713	Units
Drain-Source Voltage		V _{DS}	400	350	400	350	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	1
Continuous Drain Current	T _C = 25°C		1.5	1.5	1.3	1.3	
	T _C = 100°C	l _D	1.0	1.0	0.8	0.8	
Pulsed Drain Current ¹		I _{DM}	6.0	6.0	5.0	5.0	7 A 7 A
Avalanche Current (see figure 9)		I _A	1.5	1.5	1.3	1.3	
Power Dissipation	T _C = 25°C	В	20	20	20	20	w
rower dissipation	T _C = 100°C	P _D	8	8	8	8	V
Operating Junction & Storage Temperature Range		T _J , T _{stg}		-55 1	o 150		°C
Lead Temperature (1/16" from case for 10 secs.)		TL		3	00		1

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	- <u>-</u>	6.4	
Junction-to-Ambient	R _{thJA}	-	80	K/W
Case-to-Sink	RthCS	1.0	- .	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRF710,712 IRF711,713	V(BR)DSS	400 350	-	-	V
Gate Threshold Voltage VDS= VGS , ID = 250 μA		V _{GS(th)}	2.0	-	4.0	- V
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-		500	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}	-	_	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS, VGS	nt = 0, Tj =125°C	IDSS	-	-	1000	μА
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF710,711 IRF712,713	I _{D(on)}	1.5 1.3		=,	Α
Drain-Source On-State Resista VGS = 10 V, ID = 0.8 A	nce ² IRF710,711 IRF712,713	r _{DS(on)}	_	3.3 3.6	3.6 5.0	Q
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		r _{DS(on)}	-	6.6 7.2	7.2 10.0	40
Forward Transconductance ² V _{DS} = 15 V, I _D = 0.8 A		g _{fs}	0.5	0.6	-	S(ଫ)
Input Capacitance	V _{GS} = 0	C _{iss}	_	175	200	
Output Capacitance	V _{DS} = 25 V	Coss	<u> </u>	40	50	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	=	9	15	
Total Gate Charge	V _{DS} = 0.8 × V _{(BR)DSS} ,	Qg	=	8	9.0	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 2.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	2	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	5	-	
Turn-On Delay Time	$V_{DD} = 200 \text{ V}$, $R_L = 240 \Omega$	^t d(on)	-	7	10	
Rise Time	ID = 0.8 A , V _{GEN} = 10 V	t _r	_	20	25	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	t _{d(off)}	-	20	25	
Fall Time	independent of operating temperature)	t _f	_	10	15	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (TJ = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF710,711 IRF712,713	l _s	-		1.5 1.3	
Pulsed Current ¹	IRF710,711 IRF712,713	Ism	=	-	6.0 5.0	1 ^
Forward Voltage ² IF = IS, VGS = 0	IRF710,711 IRF712,713	V _{SD}	=		1.6 1.5	٧
Reverse Recovery Time IF = Is, dIF/dt = 100 A/μS		t _{rr}	_	200		ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS		Q _{rr}	_	1.2	-	μС

¹ Pulse width limited by maximum junction temperature (refer to translent thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

IRF720, IRF721 IRF722, IRF723

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRF720	400	1.8	3.0
IRF721	350	1.8	3.0
IRF722	400	2.5	2.5
IRF723	350	2.5	2.5

- 1 GATE 2 DRAIN
- 3 SOURCE

TOP VIEW

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

DADAMETEDO/TEOT O	NIDITIONS		IRF				Units
PARAMETERS/TEST CONDITIONS		Symbol	720	721	722	723	Units
Drain-Source Voltage		V _{DS}	400	350	400	350	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	1 '
Continuous Drain Current	T _C = 25°C		3.0	3.0	2.5	2.5	
Continuous Drain Current	T _C = 100°C	- 'D	2.0	2.0	1.5	1.5	
Pulsed Drain Current ¹		IDM	12	12	10	10	A
Avalanche Current (see figure 9)	1	I _A	3.0	3.0	2.5	2.5	
Dawar Dissination	T _C = 25°C		40	40	40	40	
Power Dissipation	T _C = 100°C	- P _D	16	16	16	16	W
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300			١	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	3.12	
Junction-to-Ambient	R _{thJA}	-	80	K/W
Case-to-Sink	R _{thCS}	1.0	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRF720,722 IRF721,723	V(BR)DSS	400 350	- -	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	=	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	=	500	nA
Zero Gate Voltage Drain Curre VDS = V(BR)DSS , VGS = 0	nt	IDSS	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt s= 0, Tj =125°C	IDSS	_	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF720,721 IRF722,723	I _{D(on)}	3.0 2.5			Α
Drain-Source On-State Resista VGS = 10 V, I _D = 1.5 A	IRF720,721 IRF722,723	r _{DS(on)}	-	1.5 1.8	1.8 2.5	
Drain-Source On-State Resista VGS = 10 V, I _D = 1.5 A, T _J		r _{DS(on)}	- -	3.0 3.5	3.5 4.9	σ
Forward Transconductance ² V _{DS} = 15 V, I _D = 1.5 A		g _{fs}	1.0	1.4	-	S(V)
Input Capacitance	V _{GS} = 0	Ciss	-	385	600	
Output Capacitance	V _{DS} = 25 V	Coss	-	80	200	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	20	40	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	-	17	18	
Gate-Source Charge	V _{GS} = 10 V, I _D = 4.0 A (Gate charge is essentially	Q _{gs}	_	3	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	8	_	
Turn-On Delay Time	V _{DD} = 200 V , R _L = 130 Ω	^t d(on)	_	8	40	T _i ll (1)
Rise Time	ID = 1.5 A , V _{GEN} = 10 V	t _r	-	10	50	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	-	42	100	113
Fall Time	independent of operating temperature)	. t _f	-	20	50	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF720,721 IRF722,723	l _S	-	= -	3.0 2.5	
Pulsed Current ¹	IRF720,721 IRF722,723	^I sm	-	-	12 10	^
Forward Voltage ² IF = I _S , V _{GS} = 0	IRF720,721 IRF722,723	V _{SD}	-	=	1.6 1.5	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		trr	-	250	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS		Q _{rr}	-	0.15	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

IRF730, IRF731 IRF732, IRF733

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)
IRF730	400	1.0	5.5
IRF731	350	1.0	5.5
IRF732	400	1.5	4.5
IRF733	350	1.5	4.5

- 1 GATE
- 2 DRAIN
- 3 SOURCE

TOP VIEW

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS			IRF				Helte	
		Symbol	730	731	732	733	Units	
Drain-Source Voltage		V _{DS}	400	350	400	350 400 350	350	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40		
Continuous Drain Current	T _C = 25°C		5.5	5.5	4.5	4.5		
	T _C = 100°C	- 'D	3.5	3.5	3.0	3.0	14-5	
Pulsed Drain Current ¹		IDM	22	22	18	18	^	
Avalanche Current (see figure 9)		IA	5.5	5.5	4.5	4.5		
e"	T _C = 25°C		75	75	75	75	10	
Power Dissipation	T _C = 100°C	- P _D	30	30	30	30	W	
Operating Junction & Storage Temperature Range		T _J , T _{stg}		-55	to 150		°c	
Lead Temperature (1/16" from case for 10 secs.)		TL		3	100	11. 14.90	1	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	RthJC	- -	1.67	
Junction-to-Ambient	R _{thJA}	-	80	. K/W
Case-to-Sink	R _{thCS}	1.0	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA	ge IRF730,732 IRF731,733	V _{(BR)DSS}	400 350	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0		4.0	e my
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	- ' ' \	500	nA
Zero Gate Voltage Drain Curre VDS = V(BR)DSS , VGS = 0	nt g	IDSS		-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt s= 0, T _J =125°C	IDSS	-	-	1000	μА
On-State Drain Current ² VDS = 10 V, VGS = 10 V	IRF730,731 IRF732,733	I _{D(on)}	5.5 4.5	-	- -	A .
Drain-Source On-State Resista VGS = 10 V, ID = 3.0 A	IRF730,731 IRF732,733	r _{DS(on)}	· · · -	0.8 1.0	1.0 1.5	0
Drain-Source On-State Resista VGS = 10 V, I _D = 3.0 A, T _J	nce ² IRF730,731 = 125°C IRF732,733	^r DS(on)	-	1.5 1.9	2.0 3.0	v.
Forward Transconductance ² V _{DS} = 15 V, I _D = 3.0 A		g _{fs}	3.0	5.0	-	s(ଫ)
Input Capacitance	V _{GS} = 0	C _{iss}	-	750	800	
Output Capacitance	V _{DS} = 25 V	Coss	1 30 M N = 1 1 1 1 1	160	300	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	<u>-</u>	70	80	
Total Gate Charge	V _{DS} = 0.8 x V _(BR) DSS,	Qg	~ <u>-</u> -	26	30	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 7.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	· · · · · · · · · · · · · · · · · · ·	6	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	16	=	
Turn-On Delay Time	V _{DD} = 175 V, R _L = 55 Ω	^t d(on)	_	11	30	
Rise Time	ID~ 3.0 A , V _{GEN} = 10 V	t _{r.}	_	16	35	ns
Turn-Off Delay Time	$R_G = 7.5 \Omega$ (Switching time is essentially	^t d(off)	-	40	55	110
Fall Time	independent of operating temperature)	tf	_	22	35	0

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF730,731 IRF732,733	¹s	-	- / -	5.5 4.5	
Pulsed Current ¹	IRF730,731 IRF732,733	I _{SM}	_	-	22 18	^
Forward Voltage ² IF = IS, VGS = 0	IRF730,731 IRF732,733	V _{SD}	-	=	1.6 1.5	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	_	250	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	_	1.5	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

IRF740, IRF741 IRF742, IRF743

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)
IRF740	400	0.55	10
IRF741	350	0.55	10
IRF742	400	0.8	8.0
IRF743	350	0.8	8.0

- 1 GATE 2 DRAIN
- 2 DRAIN
- 3 SOURCE

TOP VIEW

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

	00110110110			Units			
PARAMETERS/TEST CONDITIONS		Symbol	740	741	742	743	Units
Drain-Source Voltage		V _{DS}	400	350	400	350	V
Gate-Source Voltage		V _{GS}	± 40	± 40	±40	±40]
Continuous Drain Current	T _C = 25°C	- I _D	10	10	8.0	8.0	
Continuous Drain Current	T _C = 100°C		6.0	6.0	5.0	5.0	A
Pulsed Drain Current ¹		IDM	40	40	32	32] ^
Avalanche Current (see figure 9	1)	I _A	10	10	8.0	8.0	
Davies Disables	T _C = 25°C		125	125	125	125	w
Power Dissipation	T _C = 100°C	P _D	50	50	50	50] "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150			°c	
Lead Temperature (1/16" from case for 10 secs.)		TL	300]

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	_	1.0	
Junction-to-Ambient	R _{thJA}	_	80	K/W
Case-to-Sink	R _{thCS}	1.0	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA	ge IRF740,742 IRF741,743	V(BR)DSS	400 350	=	<u>-</u>	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	<u>-</u>	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	500	nA
Zero Gate Voltage Drain Current VDS = V(BR)DSS , VGS = 0		I _{DSS}	-	-	250	
Zero Gate Voltage Drain Current VDS = 0.8 × V(BR)DSS , VGS= 0, TJ =125°C		DSS	_	_	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF740,741 IRF742,743	I _{D(on)}	10 8.0	Ξ.	-	Α
$\begin{array}{llllllllllllllllllllllllllllllllllll$		r _{DS(on)}	_	0.45 0.65	0.55 0.80	
		r _{DS(on)}	_	0.9 1.4	1.10 1.60	v
Forward Transconductance ² V _{DS} = 15 V, I _D = 5.0 A		g _{fs}	4.0	4.7	_	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	_	1500	1600	
Output Capacitance	V _{DS} = 25 V	Coss	• • • • • • • • • • • • • • • • • • •	300	450	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	120	150	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	_	58	60	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 12 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	12	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	35	-	
Turn-On Delay Time	V _{DD} = 175 V, R _L = 35 Ω	^t d(on)	-	14	35	
Rise Time	ID~ 5.0 A , V _{GEN} = 10 V	t _r	-	12	15	ns
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	<u>-</u>	52	90	110
Fall Time	independent of operating temperature)	tf	-	18	35	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF740,741 IRF742,743	^I s			10 8.0	
Pulsed Current ¹	IRF740,741 IRF742,743	^I SM		= .	40 32	^
Forward Voltage ² IF = IS, VGS = 0	IRF740,741 IRF742,743	V _{SD}	-	= -	2.0 1.9	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/µS		t _{rr}	_	250	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS	:	Qrr	-	1.0	-	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

NORMALIZED EFFECTIVE TRANSIENT THERMAL IMPEDANCE Duty cycle= 0.2 0.1 0.05 0.02 Single pulse 0.01 10⁻³ SOUARE WAVE PULSE DURATION (sec) 10 10

FIGURE 11: Normalized Effective Transient Thermal Impedance, Junction-to-Case

IRF820, IRF821 IRF822, IRF823

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRF820	500	3.0	2.5
IRF821	450	3.0	2.5
IRF822	500	4.0	2.0
IRF823	450	4.0	2.0

- 1 GATE 2 DRAIN
- 2 COUR
- 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

DADAMETERO/TEOT	CHRITICHO			11-14-				
PARAMETERS/TEST CONDITIONS		Symbol	820	821	822	823	Units	
Drain-Source Voltage Gate-Source Voltage		V _{DS}	500	450	500	450	V	
		V _{GS}	± 40	± 40	± 40	± 40	1	
Continuous Drain Current	T _C = 25°C	l _D	2.5	2.5	2.0	2.0		
Continuous Di ain Current	T _C = 100°C		1.5	1.5	1.0	1.0		
Pulsed Drain Current ¹		I _{DM}	. 10	10	8.0	8.0	^	
Avalanche Current (see figure 9)		I _A	2.5	2.5	2.0	2.0		
Power Dissipation	T _C = 25°C	Ь	40	40	40	40	14/	
Fower Dissipation	T _C = 100°C	P _D	16	16	16	16	W	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				°C	
Lead Temperature (1/16" from case for 10 secs.)		TL	300					

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	_	3.12	
Junction-to-Ambient	R _{thJA}	. <u>-</u>	80	K/W
Case-to-Sink	R _{thCS}	1.0	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRF820,822 IRF821,823	V(BR)DSS	500 450	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	% = ,	4.0	v
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		Igss	-	-	500	nA
Zero Gate Voltage Drain Current VDS = V(BR)DSS , VGS = 0		I _{DSS}	_	_	250	
Zero Gate Voltage Drain Current VDS = 0.8 x V(BR)DSS , VGS= 0, TJ =125°C		I _{DSS}	- '	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF820,821 IRF822,823	I _{D(on)}	2.5 2.0	-	-	A
Drain-Source On-State Resista VGS = 10 V, ID = 1.0 A			-	2.5 3.0	3.0 4.0	
Drain-Source On-State Resista VGS = 10 V, ID = 1.0 A, TJ		r _{DS(on)}	-	4.8 5.5	6.0 8.0	v
Forward Transconductance ² V _{DS} = 15 V, I _D = 1.0 A		g _{fs}	1.0	1.25	-	S(T)
Input Capacitance	V _{GS} = 0	C _{iss}	-	350	400	
Output Capacitance	V _{DS} = 25 V	Coss	-	75	150	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	27	40	
Total Gate Charge	V _{DS} = 0.8 × V _{(BR)DSS} ,	Qg	-	17	18	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 3.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	3	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	8	-	
Turn-On Delay Time	$V_{DD} = 250 \text{ V, R}_{L} = 250 \Omega$	^t d(on)	-	8	60	
Rise Time	ID~ 1.0 A , V _{GEN} = 10 V	t _r	-	18	50	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	_	40	60	110
Fall Time	independent of operating temperature)	t _f	-	15	30	,

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF820,821 IRF822,823	I _S	-	=	2.5 2.0	
Pulsed Current ¹	IRF820,821 IRF822,823	ISM	-	=	10 8	^
Forward Voltage ² IF = IS , VGS = 0	IRF820,821 IRF822,823	V _{SD}	-	-	1.6 1.5	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	~	250	_	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	-	0.15	-	μС

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

FIGURE 11: Normalized Effective Transient Thermal Impedance, Junction-to-Case

IRF830, IRF831 IRF832, IRF833

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)
IRF830	500	1.5	4.5
IRF831	450	1.5	4.5
IRF832	500	2.0	4.0
IRF833	450	2.0	4.0

- 1 GATE 2 DRAIN
- 3 SOURCE

TOP VIEW

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST C	ONDITIONS	Comphal		11	RF		Units
PARAMETERS/TEST C	JINDITTONS	Symbol	830	831	832	833	Units
Drain-Source Voltage		V _{DS}	500	450	500	450	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	,
Continuous Drain Current	T _C = 25°C		4.5	4.5	4.0	4.0	
Continuous Drain Current	T _C = 100°C	'D	3.0	3.0	2.5	2.5	23.4 × ±
Pulsed Drain Current ¹		IDM	18	18	16	16	Α
Avalanche Current (see figure 9)		l _A	4.5	4.5	4.0	4.0	
Power Dissipation	T _C = 25°C	Ь	75	75	75	75	w
Power Dissipation	T _C = 100°C	- P _D	30	30	30	30	, vv
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				°C
Lead Temperature (1/16" from case for 10 secs.)		Τ _L		3	00		C

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	_	1.67	
Junction-to-Ambient	R _{thJA}	-	80	K/W
Case-to-Sink	R _{thCS}	1.0	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRF830,832 IRF831,833	V(BR)DSS	500 450	-	-	V
Gate Threshold Voltage VDS= VGS , ID = 250 μA		V _{GS(th)}	2.0	<u>-</u> , .	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	_	500	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}	-	_	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt s= 0, T _J =125°C	I _{DSS}	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF830,831 IRF832,833	I _{D(on)}	4.5 4.0		-	А
Drain-Source On-State Resistance ² IRF830,831 VGS = 10 V, ID = 2.5 A IRF832,833		r _{DS(on)}	- -	1.3 1.5	1.5 2.0	a
Drain-Source On-State Resistance 2 IRF830,831 VGS = 10 V, ID = 2.5 A, TJ = 125°C IRF832,833		r _{DS(on)}	-	2.9 3.3	3.3 4.4	, ar
Forward Transconductance ² V _{DS} = 15 V, I _D = 2.5 A		g _{fs}	2.5	3.4	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	_	750	800	
Output Capacitance	V _{DS} = 25 V	Coss	_	120	200	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	50	60	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	~ <u>-</u>	25	30	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 6.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	5	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	· <u>-</u>	18	_	
Turn-On Delay Time	V _{DD} = 225 V , R _L = 90 Ω	^t d(on)	-	11	30	
Rise Time	ID~ 2.5 A , V _{GEN} = 10 V	tr	_	16	30	ns
Turn-Off Delay Time	$R_G = 7.5 \Omega$ (Switching time is essentially	^t d(off)	-	40	55	
Fall Time	independent of operating temperature)	t _f	-	22	30	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF830,831 IRF832,833	¹s	_	-	4.5 4.0	
Pulsed Current ¹	IRF830,831 IRF832,833	^I SM	_	-	18 16] ^
Forward Voltage ² IF = I _S , V _{GS} = 0	IRF830,831 IRF832,833	V _{SD}	_		1.6 1.5	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	_	260	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}		1.5	_	μС

¹ Pulse width limited by maximum junction temperature (refer to translent thermal Impedance data, figure 11)

² Pulse test: Pulse width \leq 300 μsec, Duty Cycle \leq 2%

FIGURE 11: Normalized Effective Transient Thermal Impedance, Junction-to-Case

IRF840, IRF841 IRF842, IRF843

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRF840	500	0.85	8.0
IRF841	450	0.85	8.0
IRF842	500	1.1	7.0
IRF843	450	1.1	7.0

- 1 GATE 2 DRAIN
- 3 SOURCE

TOP VIEW

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

				Unito			
PARAMETERS/TEST CONDITIONS		Symbol	840	841	842	843	Units
Drain-Source Voltage		V _{DS}	500	450	500	450	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	'
Continuous Drain Current	T _C = 25°C		8.0	8.0	7.0	7.0	
Continuous Drain Current	T _C = 100°C	1 ¹ D	5.0	5.0	4.0	4.0	_
Pulsed Drain Current ¹		DM	32	32	28	28	
Avalanche Current (see figure 9)		^I A	8.0	8.0	7.0	7.0	
Davies Diaglactics	T _C = 25°C	В	125	125	125	125	w
Power Dissipation	T _C = 100°C	P _D	50	50	50	50] "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	1 1	-55 1	to 150		°c
Lead Temperature (1/16" from ca	se for 10 secs.)	TL	300				

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	-	1.0	*1
Junction-to-Ambient	R _{thJA}	-	80	K/W
Case-to-Sink	R _{thCS}	1.0	-	-

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRF840,842 IRF841,843	V _{(BR)DSS}	500 450	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	-	4.0	V
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V	# 	IGSS		-	500	nA
Zero Gate Voltage Drain Curre VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}	-	-	250	_
Zero Gate Voltage Drain Curre VDS = 0.8 x V(BR)DSS, VGS	nt _S = 0, T _J =125°C	I _{DSS}	_	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF840,841 IRF842,843	I _{D(on)}	8.0 7.0	-	-	A
Drain-Source On-State Resista VGS = 10 V, ID = 4.0 A	nce ² IRF840,841 IRF842,843	r _{DS(on)}	=	0.8 1.0	0.85 1.10	
Drain-Source On-State Resistance 2 IRF840,841 VGS = 10 V, ID = 4.0 A, TJ = 125°C IRF842,843		r _{DS(on)}	-	1.5 1.9	1.65 2.15	σ
Forward Transconductance ² V _{DS} =15 V, I _D = 4.0 A		g _{fs}	4.0	4.3	<u>-</u>	s(ፒ)
Input Capacitance	V _{GS} = 0	C _{iss}	-	1500	1600	
Output Capacitance	V _{DS} = 25 V	Coss		250	350	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	75	150	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	-	54	60	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	10	-	nC
Gate-Drain Charge	Independent of operating temperature)	Q _{gd}	-	26	-	er e
Turn-On Delay Time	V _{DD} = 200 V , R _L = 49 Ω	^t d(on)	-	12	35	
Rise Time	ID~ 4.0 A , V _{GEN} = 10 V	t _r	=, -1	12	15	ns
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	_	50	90	110
Fall Time	independent of operating temperature)	tf	- '	17	30	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF840,841 IRF842,843	l _s	-		8.0 7.0	_
Pulsed Current ¹	IRF840,841 IRF842,843	^I SM	-	-	32 28	1 ^
Forward Voltage ² IF = I _S , V _{GS} = 0	IRF840,841 IRF842,843	V _{SD}	-	-	2.0 1.9	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	_	250	_	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS		Q _{rr}	-	1.0	_	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

FIGURE 11: Normalized Effective Transient Thermal Impedance, Junction-to-Case

IRF9130, IRF9131 IRF9132, IRF9133

P-Channel Enhancement Mode Transistors²

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)
IRF9130	100	0.3	12
IRF9131	60	0.3	12
IRF9132	100	0.4	10
IRF9133	60	0.4	10

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

DADAMETERO (TEOT 00)	DITIONS	I			Units		
PARAMETERS/TEST CONDITIONS		Symbol	9130	9131	9132	9133	Units
Drain-Source Voltage		V _{DS} 100 60 100	60	100	60	V	
Gate-Source Voltage	0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	v _{GS}	±40	± 40	± 40	±40	V
Continuous Drain Current	T _C = 25°C		12	12	10	10	
Continuous Drain Current	T _C = 100°C	'D	7.5	7.5	6.5	6.5	
Pulsed Drain Current ¹		IDM	48	48	40	40	A .
Avalanche Current (see figure 9)		IA	12	12	10	10	
Davis District	T _C = 25°C		75	75	75	75	14/
Power Dissipation	T _C = 100°C	P _D	30	30	30	30	W
Operating Junction & Storage Temperature Range		T _J , T _{stg}		-55	to 150		°C
Lead Temperature (1/16" from case for 10 secs.)		TL		3	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	· · · · · -	1.67	
Junction-to-Ambient	R _{thJA}	<u>-</u>	30	K/W
Case-to-Sink	R _{thCS}	0.1	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

			Negative signs have been omitted for o				
PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units	
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRF9130,9132 IRF9131,9133	V(BR)DSS	100 60	-	-		
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0		4.0	i.e. v	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	_		100	nA	
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	1t	I _{DSS}	-	<u>-</u>	250		
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt = 0, T _J =125°C	IDSS	- .	· · · · · · · ·	1000	μΑ	
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF9130,9131 IRF9132,9133	I _{D(on)}	12 10	-	-	Α	
Drain-Source On-State Resista VGS = 10 V, ID = 6.5 A	nce ² IRF9130,9131 IRF9132,9133	r _{DS(on)}	-	0.25 0.30	0.30 0.40		
Drain-Source On-State Resista VGS = 10 V, ID = 6.5 A, TJ =	Drain-Source On-State Resistance 2 IRF9130,9131 V _{GS} = 10 V, I _D = 6.5 A, T _J = 125°C IRF9132,9133		-	0.40 0.50	0.50 0.65	v	
Forward Transconductance ² V _{DS} = 15 V, I _D = 6.5 A		g _{fs}	2.0	3.0	-	S(V)	
Input Capacitance	V _{GS} = 0	C _{iss}	-	625	700		
Output Capacitance	V _{DS} = 25 V	Coss	., 1	280	450	pF	
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	105	200		
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	· -	26	45		
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 15 \text{ A}$ (Gate charge is essentially	Q _{gs}	- -	3.4	_	nC	
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	13.5	<u>-</u>		
Turn-On Delay Time	V _{DD} = 40 V , R _L = 6 Ω	^t d(on)	-	9	60		
Rise Time	ID~ 6.5 A, V _{GEN} = 10 V	tr		50	140	ns	
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	_	60	140	1110	
Fall Time	independent of operating temperature)	tf	-	38	140		

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF9130,9131 IRF9132,9133	^I s		-	12 10	A
Pulsed Current ¹	IRF9130,9131 IRF9132,9133	I _{SM}	=	-	48 40	^ ,
Forward Voltage ² IF = IS , VGS = 0	IRF9130,9131 IRF9132,9133	V _{SD}	-	-	6.3 6.0	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	-	110	.	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}		0.4		μC

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

FIGURE 11: Normalized Effective Transient Thermal Impedance, Junction-to-Case

IRF9230, IRF9231 IRF9232, IRF9233

P-Channel Enhancement Mode Transistors²

PRODUCT SUMMARY

	and the second second		
PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRF9230	200	0.80	6.5
IRF9231	150	0.80	6.5
IRF9232	200	1.2	5.5
IRF9233	150	1.2	5.5

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		T	IRF				Units
		Symbol	9230	9231	9232	9233	Office
Drain-Source Voltage	Control of	V _{DS}	200	150	200	150	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	v
Continuous Drain Current	T _C = 25°C		6.5	6.5	5.5	5.5	
	T _C = 100°C	'b	4.0	4.0	3.5	3.5	
Pulsed Drain Current ¹		IDM	26	26	22	22	A A
Avalanche Current (see figure 9)	I _A	6.5	6.5	5.5	5.5	
Davier Dischartion	T _C = 25°C	_P	75	75	75	75	w
Power Dissipation	T _C = 100°C	P _D	30	30	30	30	VV
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300				

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	_	1.67	
Junction-to-Ambient	R _{thJA}	_	30	K/W
Case-to-Sink	R _{thCS}	0.1	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

PARAMETERS/TEST CONDITIONS Symbol Min. Typ. Max.	ELECTRICAL CHARACTERISTICS (1) - 23 C diffess otherwise floted)				
VGS = 0, I _D = 250 μA IRF9231,9233 V(BR)DSS 150 - - Gate Threshold Voltage VDS = VQS I De = 250 μA VGS(th) 2.0 - 4.0 Gate-Body Leakage VDS = 0, VGS = 120 V IGSS - - 100 Zero Gate Voltage Drain Current VDS = V(BR)DSS · VGS = 0 IDSS - - 250 Zero Gate Voltage Drain Current VDS = 0.8 x V(BR)DSS · VGS = 0, TJ = 125°C IDSS - - 1000 On-State Drain Current 2 VDS = 10 V V GS = 10 V IRF9230,9231 IRF9232,92331 ID(n) 1D(n) 6.5 - - - Drain-Source On-State Resistance 2 VDS = 10 V · ID = 3.5 A IRF9230,9231 IRF9232,92331 ID(n) - 0.8 1.2 0.80 1.2 Drain-Source On-State Resistance 2 VGS = 10 V · ID = 3.5 A · TJ = 125°C IRF9230,9233 IRF9232,92331 ID(n) - 0.5 0.8 1.2 0.80 1.2 1.6 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.2 2.7 - - 1.6 2.4 2.4	TIONS S	Max. Unit			
VDS = VGS · ID = 250 μA		- v			
Vos = 0, Vos = ±20 V	v _c	1 1			
VDS = V(BR)DSS · VGS = 0		100 nA			
VDS = 0.8 x V(BR)DSS ⋅ VGS = 0, TJ = 125°C IDSS - - 1000 On-State Drain Current² VDS = 10 V, VGS = 10 V IRF9230,9231 VGS = 10 V, ID = 3.5 A - 0.5 0.80 0.5 0.80 0.5 0.80 1.2 0.80 1.2 0.80 1.2 0.80 1.2 0.80 1.2 0.80 1.2 0.80 1.2 0.80 1.2 0.80 1.2 0.80 1.2 0.80 1.2 0.80 1.2 0.80 1.2 0.80 1.2 0.80 1.2 0.80 1.2 0.80 1.2 0.80 1.2 0.80 0.80 1.2 0.80 0.80 1.2 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.		1 - 1			
VDS = 10 V, VGS = 10 V IRF9232,9233 ¹D(on) 5.5 - - Drain-Source On-State Resistance² VGS = 10 V, ID = 3.5 A IRF9230,9231 IRF9232,9233 rDS(on) - 0.5 0.80 1.2 Drain-Source On-State Resistance² VGS = 10 V, ID = 3.5 A, TJ = 125°C IRF9230,9231 IRF9232,9233 rDS(on) - 1.0 1.6 2.4 Forward Transconductance² VDS = 15 V, ID = 3.5 A IRF9230,9231 IRF9232,9233 rDS(on) - 1.0 1.6 2.4 Forward Transconductance² VDS = 15 V, ID = 3.5 A IP = 3.5 A IRF9230,9231 IRF9230,	25°C	1000 μΑ			
VGS = 10 V, ID = 3.5 A IRF9232,9233 ¹DS(on) − 0.8 1.2 Drain-Source On-State Resistance 2 VGS = 10 V, ID = 3.5 A, TJ = 125°C IRF9230,9231 IRF9232,9233 ¹DS(on) − 1.0 1.6 2.4 Forward Transconductance 2 VDS = 15 V, ID = 3.5 A gfs 2.2 2.7 − Input Capacitance VGS = 0 Ciss − 630 650 Output Capacitance VDS = 25 V Coss − 220 300 Reverse Transfer Capacitance VDS = 0.8 x V(BR)DSS VGS = 10 V, ID = 8.0 A GGA = 10 V, ID = 100 V, ID	IRF9230,9231 IRF9232,9233	- A			
VGS = 10 V, ID = 3.5 A, TJ = 125°C IRF9232,9233 'DS(on) - 1.6 2.4 Forward Transconductance 2 VDS = 15 V, ID = 3.5 A gfs 2.2 2.7 - Input Capacitance VGS = 0 Ciss - 630 650 Output Capacitance VDS = 25 V Coss - 220 300 Reverse Transfer Capacitance F = 1 MHz Crss - 70 90 Total Gate Charge VDS = 0.8 x V(BR)DSS / VGS = 10 V, ID = 8.0 A Qg - 30 45 Gate-Source Charge (Gate charge is essentially independent of operating temperature) Qgs - 3.4 - Turn-On Delay Time VDD = 100 V, RL = 27 \Omega td(on) - 6.5 50 Rise Time ID = 3.5 A , VGEN = 10 V tr - 33 100 Turn-Off Delay Time (Switching time is essentially independent of operating independ	IRF9230,9231 IRF9232,9233 r _C	1.2			
VDS = 15 V, ID = 3.5 A 9fs 2.2 2.7 - Input Capacitance VGS = 0 Ciss - 630 650 Output Capacitance VDS = 25 V Coss - 220 300 Reverse Transfer Capacitance f = 1 MHz Crss - 70 90 Total Gate Charge VDS = 0.8 x V(BR)DSS / VGS = 10 V, ID = 8.0 A Qg - 30 45 Gate-Source Charge (Gate charge is essentially independent of operating temperature) Qgs - 3.4 - Gate-Drain Charge VDD = 100 V, RL = 27 \D td(on) - 6.5 50 Turn-On Delay Time ID = 3.5 A, VGEN = 10 V tr - 33 100 Rise Time (Switching time is essentially independent of operating inde	IRF9230,9231 IRF9232,9233 r _D				
Output Capacitance $V_{OS} = 0$ $V_{DS} = 25 \text{ V}$ $C_{OSS} = 220$ 300 $C_{CSS} = 220$ $C_{CSS} = $		- s(v			
Reverse Transfer Capacitance	GS = 0	650			
Reverse Transfer Capacitance	DS = 25 V	300 pF			
$\begin{array}{c} \text{Gate-Source Charge} & \text{V}_{\text{GS}} = 10 \text{ V}, \text{ I}_{\text{D}} = 8.0 \text{ A} \\ \text{(Gate charge is essentially independent of operating temperature)} & \text{Q}_{\text{gs}} & - & 3.4 & - \\ \text{Gate-Drain Charge} & \text{Independent of operating temperature} & \text{Q}_{\text{gd}} & - & 16 & - \\ \text{Turn-On Delay Time} & \text{V}_{\text{DD}} = 100 \text{ V}, \text{ R}_{\text{L}} = 27 \Omega \text{ t}_{\text{d(on)}} & - & 6.5 & 50 \\ \text{Rise Time} & \text{I}_{\text{D}} = 3.5 \text{ A}, \text{ V}_{\text{GEN}} = 10 \text{ V} \\ \text{Turn-Off Delay Time} & \text{Switching time is essentially independent of operating} \\ \text{Switching time is essentially independent of operating} & \text{I}_{\text{doff}} & - & 30 & 100 \\ \text{Switching time is operating} & \text{I}_{\text{doff}} & - & 30 & 100 \\ \text{Switching time is operating} & \text{I}_{\text{doff}} & - & 30 & 100 \\ \text{Switching time is operating} & \text{I}_{\text{doff}} & - & 30 & 100 \\ \text{Switching time is operating} & \text{I}_{\text{doff}} & - & 30 & 100 \\ \text{Switching time is operating} & \text{I}_{\text{doff}} & - & 30 & 100 \\ \text{Switching time is operating} & \text{I}_{\text{doff}} & - & 30 & 100 \\ \text{Switching time is operating} & \text{I}_{\text{doff}} & - & 30 & 100 \\ \text{Switching time is operating} & \text{I}_{\text{doff}} & - & 30 & 100 \\ \text{Switching time is operating} & - & - & - & - & - & - \\ \text{Switching time is operating} & - & - & - & - & - & - \\ \text{Switching time is operating} & - & - & - & - & - \\ \text{Switching time is operating} & - & - & - & - & - \\ \text{Switching time is operating} & - & - & - & - & - \\ \text{Switching time is operating} & - & - & - & - & - \\ \text{Switching time is operating} & - & - & - & - & - \\ \text{Switching time is operating} & - & - & - & - \\ \text{Switching time is operating} & - & - & - & - \\ \text{Switching time is operating} & - & - & - & - \\ \text{Switching time is operating} & - & - & - & - \\ \text{Switching time is operating} & - & - & - & - \\ \text{Switching time is operating} & - & - & - & - \\ \text{Switching time is operating} & - & - & - & - \\ \text{Switching time is operating} & - & - & - & - \\ \text{Switching time is operating} & - & - & - & - \\ \text{Switching time is operating} & - & - & - \\ \text{Switching time is operating} & - &$	= 1 MHz	90			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		45			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	narge is essentially	_ nC			
Rise Time		-			
Turn-Off Delay Time RG = 25 Ω (Switching time is essentially independent of operating	00 V, R _L = 27 Ω t	50			
Turn-Off Delay Time (Switching time is essentially independent of operating)	GEN	100 ns			
independent of operating					
[tomporatoro)	nt of operating	80			

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF9230,9231 IRF9232,9233	1 _S	-	=	6.5 5.5	
Pulsed Current ¹	IRF9230,9231 IRF9232,9233	^I SM	-	=	26 22	^
Forward Voltage ² IF = IS , VGS = 0	IRF9230,9231 IRF9232,9233	V _{SD}	-	=	6.5 6.3	V
Reverse Recovery Time I = IS, dI=/dt = 100 A/μS		t _{rr}	-	160	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	-	1.6	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

FIGURE 11: Normalized Effective Transient Thermal Impedance, Junction-to-Case

IRF9520, IRF9521 IRF9522, IRF9523

P-Channel Enhancement Mode Transistors²

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRF9520	100	0.60	6.0
IRF9521	60	0.60	6.0
IRF9522	100	0.80	5.0
IRF9523	60	0.80	5.0

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

			IRF				Units
PARAMETERS/TEST CONDITIONS		Symbol	9520	9521	9522	9523	Units
Drain-Source Voltage		V _{DS}	100	60	100	60	V
Gate-Source Voltage		V _{GS}	± 40	±40	± 40	± 40	*
Continuous Drain Current	T _C = 25°C		6.0	6.0	5.0	5.0	
Continuous Drain Current	T _C = 100°C	l _D	4.0	4.0	3.5	3.5	A
Pulsed Drain Current ¹		I _{DM}	24	24	20	20	^
Avalanche Current (see figure 9)		I _A	6.0	6.0	5.0	5.0	
Davies Disabethan	T _C = 25°C		40	40	40	40	w
Power Dissipation	T _C = 100°C	P _D	16	16	16	16	, vv
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150			°C	
Lead Temperature (1/16" from case for 10 secs.)		TL	300				

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	<u>-</u>	3.12	
Junction-to-Ambient	R _{thJA}	-	80	K/W
Case-to-Sink	R _{thCS}	1.0	- , .	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

ELECTRICAL CHARACTERISTICS (13-10-0 united this intest)					have been omit	ted for clarity
PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag $V_{GS} = 0$, $I_D = 250 \mu A$	PE IRF9520,9522 IRF9521,9523	V(BR)DSS	100 60	=	-	V
Gate Threshold Voltage VDS = VGS , ID = 250 μA		V _{GS(th)}	2.0	in si - parisi	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	= ,, 1	- 4,1	500	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS			250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt = 0, T _J =125°C	I _{DSS}			1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF9520,9521 IRF9522,9523	I _{D(on)}	6.0 5.0	=	-	Α
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 3.5 A	nce ² IRF9520,9521 IRF9522,9523	r _{DS(on)}	-	0.50 0.60	0.60 0.80	
Drain-Source On-State Resista VGS = 10 V, ID = 3.5 A, TJ =			-	0.90 1.2	1.0 1.4	v
Forward Transconductance ² V _{DS} = 15 V, I _D = 3.5 A		g _{fs}	0.9	1.8	- -	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	350	450	
Output Capacitance	V _{DS} = 25 V	Coss	-	205	350	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	80	100	
Total Gate Charge	V _{DS} = 0.8 × V _{(BR)DSS} ,	Qg	,	11	22	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 8.0 \text{ A}$ (Gate charge is essentially	Q _{gs}		2.0	_	nC
Gate-Drain Charge	independent of operating temperature)	Qgd	-	5.6	_	
Turn-On Delay Time	V _{DD} = 40 V , R _L = 11 Ω	^t d(on)	-	9	50	
Rise Time	ID = 3.5 A, V _{GEN} = 10 V	t _r	. -	50	100	no
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)		37	100	ns
Fall Time	independent of operating temperature)	t _f	-	30	100	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF9520,9521 IRF9522,9523	^I s		= :	6.0 5.0	
Pulsed Current ¹	IRF9520,9521 IRF9522,9523	¹ SM	-	-	24 20] ^
Forward Voltage ² IF = I _S , V _{GS} = 0	IRF9520,9521 IRF9522,9523	V _{SD}	-		6.3 6.0	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS	(1)	t _{rr}	_	80	- "	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}		0.26	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

IRF9530, IRF9531 IRF9532, IRF9533

P-Channel Enhancement Mode Transistors²

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRF9530	100	0.30	12
IRF9531	60	0.30	12
IRF9532	100	0.40	10
IRF9533	60	0.40	10

- 1 GATE 2 DRAIN
- 3 SOURCE

TOP VIEW

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

			IRF				Units
PARAMETERS/TEST CONDITIONS		Symbol	9530	9531	9532	9533	Offics
Drain-Source Voltage		V _{DS}	100	60	100	60	V
Gate-Source Voltage		V _{GS}	± 40	±40	± 40	± 40	. v
Continuous Drain Current	T _C = 25°C		12	12	10	10	
	T _C = 100°C	- 'D	7.5	7.5	6.5	6.5	A
Pulsed Drain Current ¹		IDM	48	48	40	40	^
Avalanche Current (see figure 9)		I _A	12	12	10	10	
	T _C = 25°C	,	75	75	75	75	w
Power Dissipation	T _C = 100°C	PD	30	30	30	30	***
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C		
Lead Temperature (1/16" from case for 10 secs.)		TL		. 3	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	-	1.67	
Junction-to-Ambient	R _{thJA}	- .	80	K/W
Case-to-Sink	R _{thCS}	1.0	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

						,
PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Volta V _{GS} = 0, I _D = 250 μA	ge IRF9530,9532 IRF9531,9533	V(BR)DSS	100 60	_	-	v
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	e = 1.	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	- :	_	500	nA
Zero Gate Voltage Drain Curre VDS = V(BR)DSS · VGS = 0	nt	IDSS	-	_	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt s= 0, T _J =125°C	^I DSS		-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF9530,9531 IRF9532,9533	^I D(on)	12 10	-	-	Α
Drain-Source On-State Resista VGS = 10 V, ID = 6.5 A	nce ² IRF9530,9531 IRF9532,9533	r _{DS(on)}	_	0.25 0.30	0.30 0.40	
Drain-Source On-State Resista VGS = 10 V, ID = 6.5 A, TJ =		r _{DS(on)}	<u>-</u>	0.40 0.48	0.48 0.64	ω
Forward Transconductance ² V _{DS} = 15 V, I _D = 6.5 A		g _{fs}	2.0	3.2	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	625	700	
Output Capacitance	V _{DS} = 25 V	Coss	25 is 27 -	280	450	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	105	200	
Total Gate Charge	V _{DS} = 0.8 x V _(BR) DSS,	Qg	-	26	45	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 15 \text{ A}$ (Gate charge is essentially	Qgs	-	3.4	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	13.5	-	,
Turn-On Delay Time	V _{DD} = 40 V , R _L = 6 Ω	^t d(on)	-	9	60	
Rise Time	ID~ 6.5 A, VGEN= 10 V	t _r	_	50	140	no
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	t _{d(off)}	-	60	140	ns
Fall Time	independent of operating temperature)	. t _f	-	40	140	4.1 A.1

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Typ.	Max.	Units
Continuous Current	IRF9530,9531 IRF9532,9533	l _s	<u>=</u>	- - #:	12 10	_
Pulsed Current ¹	IRF9530,9531 IRF9532,9533	^I SM	-	=	48 40	1 ^
Forward Voltage ² IF = I _S , V _{GS} = 0	IRF9530,9531 IRF9532,9533	V _{SD}	_	=	6.3 6.0	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	-	110	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Qrr	-	0.4	-	μC

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

IRF9620, IRF9621 IRF9622, IRF9623

P-Channel Enhancement Mode Transistors²

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRF9620	200	1.5	3.5
IRF9621	150	1.5	3.5
IRF9622	200	2.4	3.0
IRF9623	150	2.4	3.0

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		0		11	RF		Units
		Symbol	9620	9621	9622	9623	Units
Drain-Source Voltage		V _{DS}	200	150	200	150	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	*
Continuous Drain Current	T _C = 25°C		3.5	3.5	3.0	3.0	
Continuous Drain Current	T _C = 100°C	l _D	2.0	2.0	1.5	1.5	:
Pulsed Drain Current ¹		IDM	14	14	12	12	, A
Avalanche Current (see figure 9)	IA	3.5	3.5	3.0	3.0	
D Disable at land	T _C = 25°C		40	40	40	40	
Power Dissipation	T _C = 100°C	P _D	16	16	16	16	W
Operating Junction & Storage Temperature Range		T _J , T _{stg}		-55	to 150		°c
Lead Temperature (1/16" from case for 10 secs.)		TL		3	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	3.12	
Junction-to-Ambient	R _{thJA}	-	80	K/W
Case-to-Sink	R _{thCS}	1.0	· · · · · · · · · · · · · · · · · · ·	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

				ivegative signs	nave been omit	ted for clarity
PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Volta V _{GS} = 0, I _D = 250 μA	ge IRF9620,9622 IRF9621,9623	V(BR)DSS	200 150	- -		V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	. 11 1.	4.0	V
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	<u>-</u> · · · .	-	500	nA
Zero Gate Voltage Drain Curre VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}		-	250	
Zero Gate Voltage Drain Curre VDS = 0.8 x V(BR)DSS , VGS	nt s= 0, T _J =125°C	DSS	. -	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF9620,9621 IRF9622,9623	I _{D(on)}	3.5 3.0	* <u>-</u> + -	-	Α
Drain-Source On-State Resista VGS = 10 V, I _D = 1.5 A	nce ² IRF9620,9621 IRF9622,9623	r _{DS(on)}	-	1.0 1.5	1.5 2.4	_
Drain-Source On-State Resista VGS = 10 V, I _D = 1.5 A, T _J =	nce ² IRF9620,9621 125°C IRF9622,9623	r _{DS(on)}	-	1.75 2.6	2.7 4.3	v
Forward Transconductance ² V _{DS} = 15 V, I _D = 1.5 A		g _{fs}	1.0	1.4	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	310	400	
Output Capacitance	V _{DS} = 25 V	Coss	-	110	125	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	40	45	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	-	17	22	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 4.0 \text{ A}$ (Gate charge is essentially	Q _{gs}		1.8	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	8.6	-	
Turn-On Delay Time	V _{DD} = 100 V , R _L = 25 Ω	^t d(on)	-	10	40	
Rise Time	ID~ 1.5 A, V _{GEN} = 10 V	tr	-	23	50	no
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	td(off)	-	45	50	ns
Fall Time	independent of operating temperature)	tf	-	31	40	
	I		L	L	l	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CON	IDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF9620,9621 IRF9622,9623	Is	= -	-	3.5 3.0	
Pulsed Current ¹	IRF9620,9621 IRF9622,9623	I _{SM}	-	-	14 12	1 ^
Forward Voltage ² IF = IS , VGS = 0	IRF9620,9621 IRF9622,9623	V _{SD}	-	-	7.0 6.8	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	-	105	_	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}		0.23	<u>-</u>	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2\}text{Pulse}$ test: Pulse width $\leq 300~\mu\text{sec}$, Duty Cycle $\leq~2\,\%$

FIGURE 11: Normalized Effective Transient Thermal Impedance, Junction-to-Case

IRF9630, IRF9631 IRF9632, IRF9633

P-Channel Enhancement Mode Transistors²

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRF9630	200	0.80	6.5
IRF9631	150	0.80	6.5
IRF9632	200	1.2	5.5
IRF9633	150	1.2	5.5

- 1 GATE 2 DRAIN
- 3 SOURCE

TOP VIEW

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

DADAMETEDO/TECT OOL	IDITIONO	0	IRF				Units
PARAMETERS/TEST CON	IDITIONS	Symbol	9630	9631	9632	9633	Units
Drain-Source Voltage		V _{DS}	200	150	200	150	· V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	V
Continuous Drain Current	T _C = 25°C		6.5	6.5	5.5	5.5	
	T _C = 100°C	l _D	4.0	4.0	3.5	3.5	A
Pulsed Drain Current ¹		I _{DM}	26	26	22	22	A .
Avalanche Current (see figure 9)		· IA	6.5	6.5	5.5	5.5	
Power Dissipation	T _C = 25°C	Ь	75	75	75	75	w
Power Dissipation	T _C = 100°C	PD	30	30	30	30	vy
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150			°C	
Lead Temperature (1/16" from case for 10 secs.)		TL		3	00		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	-	1.67	P. 1
Junction-to-Ambient	R _{thJA}	-	80	K/W
Case-to-Sink	R _{thCS}	1.0	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

			Negative signs	nave been omit	ted for clarit	
PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Volta V _{GS} = 0, I _D = 250 μA	ge IRF9630,9631 IRF9632,9633	V _{(BR)DSS}	200 150	-	<u>-</u>	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D =250 μA		V _{GS(th)}	2.0	<u>-</u> , , , , , ,	4.0	_ `
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS		-	500	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}	=		250	
Zero Gate Voltage Drain Curre V _{DS} = 0.8 x V _(BR) DSS , V _{GS}	nt ;= 0, T _J =125°C	DSS	<u>-</u>	i -	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	IRF9630,9631 IRF9632,9633	I _{D(on)}	6.5 5.5	-	-	A
Drain-Source On-State Resistance ² IRF9630,9631 VGS = 10 V, ID = 3.5 A IRF9632,9633		r _{DS(on)}	-	0.50 0.80	0.80 1.2	_
Drain-Source On-State Resista $V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A}, T_J =$	nce ² IRF9630,9631 125°C IRF9632,9633	r _{DS(on)}	-	1.0 1.6	1.6 2.4	v
Forward Transconductance ² V _{DS} = 15 V, I _D = 3.5 A		g _{fs}	2.2	2.6	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	630	650	
Output Capacitance	V _{DS} = 25 V	Coss	-	220	300	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	- -	70	90	
Total Gate Charge	V _{DS} = 0.8 × V _{(BR)DSS} ,	Qg	-	30	45	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 8.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	3.4	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	16	-	
Turn-On Delay Time	$V_{DD} = 100 \text{ V}, R_{L} = 28 \Omega$	^t d(on)	. –	6.5	50	
Rise Time	ID~ 3.5 A, V _{GEN} = 10 V	tr	-	33	100	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	. -	30	100	113
Fall Time	independent of operating temperature)	tf	-	21	80	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRF9630,9631 IRF9632,9633	Is	-	-	6.5 5.5	A
Pulsed Current ¹	IRF9630,9631 IRF9632,9633	^I SM	- -	- -	26 22	A .
Forward Voltage ² IF = IS , VGS = 0	IRF9630,9631 IRF9632,9633	V _{SD}	_	-	6.5 6.3	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		trr	-	160	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS		Q _{rr}	-	1.6	-	μC

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

IRFD020, IRFD022

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)
IRFD020	50	0.10	2.4
IRFD022	50	0.12	2.2

4-PIN DIP (Similar to TO-250)

TOP VIEW

1 GATE

- 2 SOURCE
- 3 DRAIN

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

			IF	RFD	Units
PARAMETERS/TEST	CONDITIONS	Symbol	020	022	Units
Drain-Source Voltage		V _{DS}	50	50	V
Gate-Source Voltage		V _{GS}	± 40	±40]
Cantinuous Drain Current	T _A = 25°C		2.4	2.2	
Continuous Drain Current	T _A = 100°C	'p	1.5	1.4	1
Pulsed Drain Current ¹		IDM	19	18	^
Davier Discipation	T _A = 25°C	В	1.0	1.0	14/
Power Dissipation	T _A = 100°C	PD	0.40	0.40	-
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		- °C
Lead Temperature (1/16" from case for 10 secs.)		TL	300		
					1

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Ambient	R _{thJA}	-	120	K/W

¹Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRFD020 IRFD022	V(BR)DSS	50 50	60 60		V
Gate Threshold Voltage VDS= VGS , ID = 250 μA		V _{GS(th)}	2.0	-	4.0	v
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	500	nA
Zero Gate Voltage Drain Current VDS = V(BR)DSS · VGS = 0		DSS	- 1	<u>-</u>	250	
Zero Gate Voltage Drain Current VDS = 0.8 x V(BR)DSS , VGS= 0, TJ =125°C		IDSS		-	1000	μΑ
On-State Drain Current ² V _{DS} = 2.0 V, V _{GS} = 10 V	IRFD020 IRFD022	I _D (on)	2.4 2.2	-	-	А
$\begin{array}{lll} \mbox{Drain-Source On-State Resistance}^2 & \mbox{IRFD020} \\ \mbox{V}_{GS} = 10 \ \mbox{V}, \mbox{I}_{D} = 1.4 \ \mbox{A} & \mbox{IRFD022} \\ \mbox{Drain-Source On-State Resistance}^2 & \mbox{IRFD020} \\ \mbox{V}_{GS} = 10 \ \mbox{V}, \mbox{I}_{D} = 1.4 \ \mbox{A}, \mbox{T}_{J} = 125 \ \mbox{^{\circ}C} & \mbox{IRFD022} \\ \end{array}$		r _{DS(on)}	-	0.08 0.10	0.10 0.12	0
		r _{DS(on)}	-	0.16 0.18	0.18 0.20	σ
Forward Transconductance ² V _{DS} =15 V, I _D = 7.5 A		g _{fs}	4.9	5.5	-	S(ଫ)
Input Capacitance	V _{GS} = 0	C _{iss}	-	550	850	
Output Capacitance	V _{DS} = 25 V	Coss		300	350	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	80	100	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg		13	24	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 15 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	3.5	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	5	-	
Turn-On Delay Time	$V_{DD} = 25 \text{ V}$, $R_L = 1.7 \Omega$	^t d(on)	-	10	13	
Rise Time	I _D ~ 15 A , V _{GEN} =10 V	t _r	-	60	83	ns
Turn-Off Delay Time	$R_G = 18 \Omega$ (Switching time is essentially	^t d(off)	-	30	40	
Fall Time	independent of operating temperature)	t _f	-	35	50	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRFD020 IRFD022	IS	-	-	2.4 2.2	Α
Pulsed Current ¹	IRFD020 IRFD022	^I SM	-	-	19 18	
Forward Voltage ² F = S , V _G S = 0	IRFD020 IRFD022	V _{SD}	-	-	1.25 1.20	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		trr	-	65	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	-	0.16	0.85	μС

¹Pulse width limited by maximum junction temperature

²Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

FIGURE 7: On-Resistance vs. Junction Temperature 2.00 $f_{DS(on)} = ON - RESISTANCE(\Omega)$ (NORMALIZED) 1.75 1.50 1.25 1.00 0.75 0.50 -50 30 70 -10 110 150 T_J - JUNCTION TEMPERATURE (°C)

IRFD110, IRFD113

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)
IRFD110	100	0.60	1.0
IRFD113	60	0.80	0.8

4-PIN DIP (Similar to TO-250)

TOP VIEW

1 GATE 2 SOURCE

3 DRAIN

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS			IF	Units	
		Symbol	110	113	Units
Drain-Source Voltage	:	V _{DS}	100	60	V
Gate-Source Voltage		V _{GS}	± 40	± 40	. •
Continuous Drain Current	T _A = 25°C		1.0	0.8	
	T _A = 100°C	'p	0.6	0.5	A
Pulsed Drain Current ¹		IDM	8.0	6.4	^
Dawer Dissination	T _A = 25°C	Ь	1	1	w
Power Dissipation	T _A = 100°C	- P _D	0.4	0.4	٧٧
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Ambient	R _{thJA}	-	120	K/W

¹Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage $V_{GS} = 0$, $I_D = 250 \mu A$	ge IRFD110 IRFD113	V _{(BR)DSS}	100 60	-		V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	-	4.0	•
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	_	500	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	-	- ' , , ,	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt = 0, T _J =125°C	I _{DSS}	-	_	1000	μΑ
On-State Drain Current ² V _{DS} = - V, V _{GS} = 10 V	IRFD110 IRFD113	I _{D(on)}	1.0 0.80	-	-	А
Drain-Source On-State Resistance ² IRFD110 VGS = 10 V, ID = 0.8 A IRFD113 Drain-Source On-State Resistance ² IRFD110 VGS = 10 V, ID = 0.8 A, TJ = 125°C IRFD113		r _{DS(on)}	-	0.5 0.6	0.60 0.80	0
		r _{DS (on)}	-	0.8 1.0	1.0 1.4	v
Forward Transconductance ² V _{DS} = 15 V, I _D = 0.8 A		g _{fs}	0.8	0.9	-	S(V)
Input Capacitance	V _{GS} = 0	Ciss	-	170	200	
Output Capacitance	V _{DS} = 25 V	Coss	-	75	100	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	23	25	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	-	6	7.0	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 4.0 \text{ A}$ (Gate charge is essentially	Q _{gs}		1.2	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	2.5	_	
Turn-On Delay Time	$V_{DD} = 40 \text{ V}$, $R_L = 50 \Omega$	^t d(on)	_	7	20	
Rise Time	ID = 0.8 A , V _{GEN} = 10 V	t _r	-	10	25	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	_	22	25	1 110
Fall Time	independent of operating temperature)	tf	-	17	20	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRFD110 IRFD113	1 _S	-	- -	1.0 0.8	Α
Pulsed Current ¹	IRFD110 IRFD113	^I SM	-	=	8.0 6.4	
Forward Voltage ² IF = I _S , V _{GS} = 0	IRFD110 IRFD113	V _{SD}	-	-	2.5 2.0	٧
Reverse Recovery Time 1 _F = I _S , dI _F /dt = 100 A/μs		^t rr	-	45	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μs		Q _{rr}	-	0.25	-	μC

¹Pulse width limited by maximum junction temperature

²Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

0.25

0

25

50

75

TA-AMBIENT TEMPERATURE (°C)

100

125

IRFD120, IRFD123

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)
IRFD120	100	0.3	1.3
IRFD123	60	0.4	1.1

TOP VIEW

4-PIN DIP (Similar to TO-250)

1 GATE 2 SOURCE

3 DRAIN

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS			IR	FD	1 lmian
		Symbol	120	123	Units
Drain-Source Voltage		V _{DS}	100	60	V
Gate-Source Voltage		V _{GS}	± 40	± 40	
Continuous Drain Current	T _A = 25°C		1.3	1.1	
	T _A = 100°C	'D	0.8	0.7	
Pulsed Drain Current ¹		I _{DM}	5.2	4.4] ^
Power Dissipation	T _A = 25°C	В	1.0	1.0	w
Fower Dissipation	T _A = 100°C	P _D	0.4	0.4] "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		°c
Lead Temperature (1/16" from case for 10 secs.)		TL	300]

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Ambient	R _{thJA}	-	120	K/W

¹Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA			100 60	-	-	V
Gate Threshold Voltage VDS= VGS, ID = 250 μA		V _{GS(th)}	2.0	_	4.0	V
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	500	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt .	DSS	- -	- 111 1	250	
Zero Gate Voltage Drain Curre VDS = 0.8 x V(BR)DSS , VGS	nt ;= 0, T _J =125°C	DSS	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 1.0 V, V _{GS} = 10 V	IRFD120 IRFD120		1.3 1.1	-	-	А
Drain-Source On-State Resistance ² IRFD120 VGS = 10 V, Ip = 0.6 A IRFD123			-	0.25 0.3	0.30 0.40	
Drain-Source On-State Resista VGS = 10 V, ID = 0.6 A, TJ =			-	0.5 0.6	0.60 0.80	\ \varphi
Forward Transconductance ² V _{DS} = 15 V, I _D = 0.6 A		g _{fs}	0.9	1.4	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	380	600	·
Output Capacitance	V _{DS} = 25 V	Coss	-	100	400	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	50	100	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	-	14	15	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 4.4 \text{ A}$ (Gate charge is essentially	Q _{gs}		2	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}		6	_	
Turn-On Delay Time	$V_{DD} = 50 \text{ V}$, $R_L = 80 \Omega$	t _{d(on)}	-	7	40	* .
Rise Time	$I_D = 0.6 \text{ A}$, $V_{GEN} = 10 \text{ V}$ $R_G = 25 \Omega$ (Switching time is essentially	t _r	-	28	70	ns
Turn-Off Delay Time		td(off)	-	45	100	
Fall Time	independent of operating temperature)	t _f	-	21	70	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRFD120 IRFD123	^I s	- -	- <u>-</u>	1.3 1.1	
Pulsed Current ¹	IRFD120 IRFD123	¹ SM	-	-	5.2 4.4	A
Forward Voltage ² IF = I _S , V _{GS} = 0	IRFD120 IRFD123	V _{SD}	-	-	2.5 2.3	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		^t rr	-	100	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS		Q _{rr}	-	0.15	-	μС

¹Pulse width limited by maximum junction temperature

²Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

IRFD210, IRFD213

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRFD210	200	1.5	0.60
IRFD213	150	2.4	0.45

1 GATE 2 SOURCE

3 DRAIN

ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS				Units	
		Symbol	210	213	Units
Drain-Source Voltage		V _{DS}	200	150	
Gate-Source Voltage		V _{GS}	± 40	± 40] · `
Continuous Drain Current	T _A = 25°C		0.60	0.45	
	T _A = 100°C	d 'D	0.4	0.3	
Pulsed Drain Current ¹		l _{DM}	2.5	1.8	7 ^
Avalanche Current (see figure 9)	I _A	0.60	0.45	
Davis Disabethan	T _A = 25°C	В	1	1	w
Power Dissipation	T _A = 100°C	P _D	0.4	0.4] "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		°c
Lead Temperature (1/16" from case for 10 secs.)		TL	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Ambient	R _{thJA}	- .	120	K/W

¹Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag VGS = 0, I _D = 250 μA	ge IRFD210 IRFD213	V(BR)DSS	200 150	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	-	4.0]
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	500	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	DSS	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt s= 0, T _J =125°C	DSS	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 1.0 V, V _{GS} = 10 V	IRFD210 IRFD213	I _{D(on)}	0.60 0.45	-	-	А
Drain-Source On-State Resista VGS = 10 V, ID = 0.3 A	nce ² IRFD210 IRFD213	r _{DS(on)}		1.0 1.5	1.5 2.4	
Drain-Source On-State Resista VGS = 10 V, ID = 0.3 A, TJ =		r _{DS(on)}	-	1.8 2.7	2.7 4.3	a a
Forward Transconductance ² V _{DS} = 15 V I _D = 0.3 A		g _{fs}	0.5	0.6	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	175	200	
Output Capacitance	V _{DS} = 25 V	Coss	-	70	80	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	15	25	
Total Gate Charge	V _{DS} = 0.8 × V _{(BR)DSS} ,	Qg	-	7.5	9.0	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 0.3 \text{ A}$ (Gate charge is essentially	Qgs	-	1.6	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	5.0	-	
Turn-On Delay Time	V _{DD} = 100 V , R _L = 330 Ω	^t d(on)	-	7	15	
Rise Time	ID = 0.3 A, V _{GEN} = 10 V	¹ t _r	-	16	25	ns
Turn-Off Delay Time	$R_G = 50 \Omega$ (Switching time is essentially	^t d(off)	-	35	45	1 115
Fall Time	independent of operating temperature)	t _f	-	20	30	1

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRFD210 IRFD213	ls.	-		0.60 0.45	
Pulsed Current ¹	IRFD210 IRFD213	^I sm	-	_ = -	2.5 1.8	A
Forward Voltage ² IF = I _S , V _{GS} = 0	IRFD210 IRFD213	V _{SD}	-	1.5 1.4	2.0 1.8	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	-	65	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	-	0.12	<u>-</u>	μС

¹Pulse width limited by maximum junction temperature

²Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

IRFD220, IRFD223

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)
IRFD220	200	0.8	0.8
IRFD223	150	1.2	0.7

4-PIN DIP (Similar to TO-250)

1 GATE 2 SOURCE 3 DRAIN

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

			IR	Units	
PARAMETERS/TEST CONDITIONS		Symbol	220	223	Units
Drain-Source Voltage	Orain-Source Voltage		200	150	
Gate-Source Voltage		V _{GS}	± 40	± 40]
Continuous Drain Current	T _A = 25°C		0.8	0.7	
	T _A = 100°C	'p -	0.5	0.44	
Pulsed Drain Current ¹		I _{DM}	6.4	5.6	7 ^
Avalanche Current (see figure 9) · · · · · · · · · · · · · · · · · · ·	I _A	0.8	0.7	
Power Dissipation	T _A = 25°C	ь	1	1	l w
rower dissipation	T _A = 100°C	- P _D	0.4	0.4	7 **
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		·c
Lead Temperature (1/16" from case for 10 secs.)		TL	300] ~

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Ambient	R _{thJA}		120	K/W

¹Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage VGS = 0, ID = 250 μA	ge IRFD220 IRFD223	V(BR)DSS	200 150		-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	-	4.0] '
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	ı		500	nA
Zero Gate Voltage Drain Curre VDS = V(BR)DSS , VGS = 0	nt	DSS	.= / J.a.)	250	
Zero Gate Voltage Drain Curre VDS = 0.8 x V(BR)DSS , VGS	nt s= 0, T _J =125°C	DSS	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 1.0 V, V _{GS} = 10 V	IRFD220 IRFD223	I _D (on)	0.80 0.70	· - <u>-</u>	-	А
Drain-Source On-State Resista	ince ² IRFD220 IRFD223	r _{DS(on)}		0.5 0.8	0.80 1.2	
Drain-Source On-State Resista VGS = 10 V, I _D = 0.4 A, T _J =		r _{DS(on)}	1 1	0.9 1.4	1.5 2.3	\ \varphi
Forward Transconductance ² VDS = 15 V ID = 0.4 A		g _{fs}	0.5	0.7		S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	380	600	
Output Capacitance	V _{DS} = 25 V	Coss	- ·	125	300	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	20	80	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	-	13	15	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 5.6 \text{ A}$ (Gate charge is essentially	Qgs	-	3	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	6	-	
Turn-On Delay Time	$V_{DD} = 100 \text{ V}, R_L = 160 \Omega$	^t d(on)		7	40	
Rise Time	I _D = 0.6 A, V _{GEN} = 10 V R _G = 25 W (Switching time is essentially	t _r	-	20	60	ne
Turn-Off Delay Time		^t d(off)	-	35	100	ns
Fall Time	independent of operating temperature)	t _f	-	16	60	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRFD220 IRFD223	I _S	-	=	0.80 0.70	
Pulsed Current ¹	IRFD220 IRFD223	^I SM	-	= =	6.4 5.6	A
Forward Voltage ² IF = I _S , V _{GS} = 0	IRFD220 IRFD223	V _{SD}	_	=	2.0 1.8	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	-	60	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS		Q _{rr}	_	0.15	-	μС

¹Pulse width limited by maximum junction temperature

² Pulse test: Pulse width \leq 300 μsec, Duty Cycle \leq 2%

FIGURE 7: On-Resistance vs. Junction Temperature

2.25
2.00
1.75
1.50
1.00
0.75
0.50
-50
-10
30
70
110
150
T_J - JUNCTION TEMPERATURE (°C)

IRFD9020, IRFD9022

P-Channel Enhancement Mode Transistors²

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)
IRFD9020	50	0.28	1.6
IRFD09022	50	0.33	1.4

1 GATE 2 SOURCE 3 DRAIN

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

DADALISTEDO/EEOE 04	DADAMETERO (TEGT COMPITIONS		IF	Units	
PARAMETERS/TEST CONDITIONS		Symbol	9020 9022		Units
Drain-Source Voltage		V _{DS}	50	50	
Gate-Source Voltage		V _{GS}	± 40	± 40	
Continuous Drain Current	T _A = 25°C	1	1.6	1.4	
Continuous Drain Current	T _A = 100°C	- 'D	1.0	0.90] A
Pulsed Drain Current ¹	Pulsed Drain Current ¹		13	11	7 ^
Avalanche Current (see figure 9)		I _A	1.6	1.4	
Power Dissipation	T _A = 25°C	P	1.0	1.0	w
Power Dissipation	T _A = 100°C	PD	0.40	0.40	│ "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		- °c
Lead Temperature (1/16" from case for 10 secs.)		TL	300		7 30

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Ambient	R _{thJA}	-	120	K/W

¹Pulse width limited by maximum junction temperature

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

LECTRICAL CHARACTERISTICS (1) 22 C dillotte discussions				Negative signs have been omitted for clari			
CONDITIONS	Symbol	Min.	Тур.	Max.	Units		
ge IRFD9020 IRFD9022	V(BR)DSS	50 50	-	-	V		
	V _{GS(th)}	2.0	-	4.0	· ·		
	IGSS	-		500	nA		
nt	I _{DSS}	1	-	250			
nt _S = 0, T _J =125°C	I _{DSS}	-	-	1000	μΑ		
IRFD9020 IRFD9022	I _{D(on)}	1.6 1.4	= -	<u>-</u> -	A		
IRFD9020 IRFD9022	r _{DS(on)}	-	0.24 0.28	0.28 0.33	Q		
ate Resistance ² IRFD9020 1.1 A, T _J = 125°C IRFD9022		-	0.40 0.50	0.50 0.60	42		
	g _{fs}	1.0	1.4	-	s(V)		
V _{GS} = 0	C _{iss}	-	530	600			
V _{DS} = 25 V	Coss	-	325	350	pF		
f = 1 MHz	C _{rss}	-	85	100			
V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	<u>-</u>	13	26			
(Gate charge is essentially	Qgs	-	3.6	-	nC		
independent of operating temperature)	Q _{gd}	-	9	-	,		
$V_{DD} = 25 \text{ V}, R_{L} = 2.5 \Omega$	^t d(on)	-	10	12			
ID~ 9.7 A , V _{GEN} = 10 V	t _r	-	80	86	ns		
$R_G = 18 \Omega$ (Switching time is essentially	^t d(off)	-	25	35	113		
independent of operating temperature)	t _f	-	50	60			
	IRFD9022 IRFD9022 IRFD9020 IRFD9020 IRFD9020 IRFD9022 VGS = 0 VDS = 25 V f = 1 MHz VDS = 0.8 × V(BR)DSS VGS = 10 V, ID = 9.7 A (Gate charge is essentially independent of operating temperature) VDD = 25 V, RL = 2.5 \(\overline{\Pmathbb{D}} \) ID \(\tilde{\Pmathbb{D}} = 9.7 A, VGEN = 10 V \) RG = 18 \(\overline{\Pmathbb{D}} \) (Switching time is essentially independent of operating	Ge	IRFD9020 V(BR)DSS 50 S0 V(BR)DSS 50 V(BR)DSS V(BR)DSS	IRFD9022 V(BR)DSS 50	IRFD9022 V(BR)DSS 50		

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	N.,	Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRFD9020 IRFD9022	^I s	- -		1.6 1.4	
Pulsed Current ¹	IRFD9020 IRFD9022	^I SM	-	-	13 11	^
Forward Voltage ² IF = IS, VGS = 0	IRFD9020 IRFD9022	V _{SD}	-	-	6.3 6.0	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}		70	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS		Q _{rr}	-	0.15	-	μС

¹Pulse width limited by maximum junction temperature

² Pulse test: Pulse width \leq 300 μsec, Duty Cycle \leq 2%

IRFD9120, IRFD9123

P-Channel Enhancement Mode Transistors²

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)
IRFD9120	100	0.60	1.0
IRFD9123	60	0.80	0.8

4-PIN DIP (Similar to TO-250) 1 GATE 2 SOURCE

3 DRAIN

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

DADAMETERO TEOT COMPITIONS			IR	11!4	
PARAMETERS/TEST CONDITIONS		Symbol	9120	9123	Units
Drain-Source Voltage		V _{DS}	100	60	V
Gate-Source Voltage		V _{GS}	± 40	± 40	
Continuous Drain Current	T _A = 25°C		1.0	0.8	
Continuous Di ani Cui ent	T _A = 100°C	'p	0.6	0.5	A
Pulsed Drain Current ¹		IDM	8.0	6.4	^
Avalanche Current (see figure 9)	I _A	1.0	0.8	
Power Dissipation	T _A = 25°C	Р	1.0	1.0	w
rower dissipation	T _A = 100°C	- P _D -	0.4	0.4	VV
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300		

43	THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junctio	on-to-Ambient	R _{thJA}	-	120	K/W

¹Pulse width limited by maximum junction temperature

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

LECTIONE OTHER PROPERTY			Negative signs	nave been omit	ted for clarity	
PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRFD9120 IRFD9123	V(BR)DSS	100 60	_	-	v
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	_	4.0	·
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	. –	500	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt de la company	DSS	-	- -	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt s= 0, T _J =125°C	IDSS	_		1000	μΑ
On-State Drain Current ² V _{DS} = 1.0 V, V _{GS} = 10 V	IRFD9120 IRFD9123	I _{D(on)}	1.0 0.8		-	A
Drain-Source On-State Resista VGS = 10 V, I _D = 0.8 A	nce ² IRFD9120 IRFD9123	r _{DS(on)}	-	0.50 0.60	0.60 0.80	Ω
Drain-Source On-State Resista VGS = 10 V, ID = 0.8 A, TJ =		r _{DS(on)}	-	0.80 1.0	1.0 1.4	Δν.
Forward Transconductance ² V _{DS} =15 V, I _D = 0.8 A		g _{fs}	0.8	1.0		s(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	350	450	
Output Capacitance	V _{DS} = 25 V	Coss	-	205	350	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	80	100	
Total Gate Charge	V _{DS} = 0.8 × V _{(BR)DSS} ,	Qg	_	9	20	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 4.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	1.8	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	5.6	-	
Turn-On Delay Time	V _{DD} = 50 V , R _L = 62 Ω	^t d(on)	-	9	50	
Rise Time	ID~ 0.8 A , V _{GEN} = 10 V	t _r	. =	25	100	
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	_	30	100	ns
Fall Time	independent of operating temperature)	tf	_	30	100	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRFD9120 IRFD9123	l _s	-	-	1.0 0.8	
Pulsed Current ¹	IRFD9120 IRFD9123	^I SM	-	=	8.0 6.4	A
Forward Voltage ² IF = IS , VGS = 0	IRFD9120 IRFD9123	V _{SD}	-	-	6.3 6.0	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS		t _{rr}	_	80	-	ns
Reverse Recovered Charge $I_F = I_S$, $dI_F/dt = 100 A/\mu S$		Q _{rr}	-	0.18		μC

¹Pulse width limited by maximum junction temperature

 $^{^2}$ Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

400

200

1

Coss

Crss

20 VDS - DRAIN-TO-SOURCE VOLTAGE (V)

PERFORMANCE CURVES (25°C Unless otherwise noted)

5.0

2.5

ID = 6.0 A

Qg - TOTAL GATE CHARGE (nC)

75

TA- AMBIENT TEMPERATURE (°C)

100

125

150

0

IRFD9220, IRFD9223

P-Channel Enhancement Mode Transistors²

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRFD9220	200	1.5	0.60
IRFD9223	150	2.4	0.45

4-PIN DIP (Similar to TO-250)

1 GATE 2 SOURCE 3 DRAIN

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS			IR	11-4-	
		Symbol	9220	9223	Units
Drain-Source Voltage		V _{DS}	200	150	
Gate-Source Voltage		V _{GS}	± 40	± 40	7 °
Continuous Drain Current	T _A = 25°C		0.60	0.45	
Continuous Drain Current	T _A = 100°C	'p	0.40	0.30	
Pulsed Drain Current ¹		IDM	4.8	3.6	7 ^-
Avalanche Current (see figure 9)		l _A	0.6	0.45	
Power Dissipation	T _A = 25°C	Р	1.0	1.0	w
rower dissipation	T _A = 100°C	- PD -	0.4	0.4] , , , , , ,
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 1	to 150	- °c
Lead Temperature (1/16" from case for 10 secs.)		TL	3	00	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Ambient	R _{thJA}	-	120	K/W

¹Pulse width limited by maximum junction temperature

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

				ivegative signs	nave been omi	ted for clarity
PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRFD9220 IRFD9223	V(BR)DSS	200 150	-	<u>-</u> -	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA	Gate Threshold Voltage		2.0	_	4.0	•
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	i		100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	. - 14/18		250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt _S = 0, T _J =125°C	IDSS	<u>-</u>	-	1000	μА
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V	IRFD9220 IRFD9223	I _{D(on)}	0.60 0.45	-	=	Α
Drain-Source On-State Resista VGS = 10 V, ID = 0.30 A	IRFD9220 IRFD9223	r _{DS(on)}	-	1.0 2.0	1.5 2.4	0
Drain-Source On-State Resista VGS = 10 V, ID = 0.30 A,TJ		r _{DS(on)}	=	2.2 3.5	2.7 4.3	σ
Forward Transconductance ² V _{DS} = 15 V, I _D = 1.5 A		g _{fs}	1.0	1.4	-	S(V)
Input Capacitance	V _{GS} = 0	Ciss	_	310	400	
Output Capacitance	V _{DS} = 25 V	Coss		110	125	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	- -	40	45	
Total Gate Charge	V _{DS} = 0.8 × V _{(BR)DSS} ,	Qg	-	16	22	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 3.6 \text{ A}$ (Gate charge is essentially	Q _{gs}	- .	1.0		nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}		8.6	_	e e e e e e e e e e e e e e e e e e e
Turn-On Delay Time	V _{DD} = 100 V , R _L = 333Ω	^t d(on)		10	40	
Rise Time	ID~ 0.3 A , V _{GEN} = 10 V	tr	-	23	50	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	-	45	50	
Fall Time	independent of operating temperature)	tf	-	31	40	
	(Ciriporature)	-1	_	5	70	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRFD9220 IRFD9223	Is	-	-	0.60 0.45	A
Pulsed Current ¹	IRFD9220 IRFD9223	Ism	· -	-	4.8 3.6	1
Forward Voltage ² IF = IS , VGS = 0	IRFD9220 IRFD9223	V _{SD}	-	-	4.0 3.5	v
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}		105	_	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	=	0.23	-	μС

¹Pulse width limited by maximum junction temperature

 $^{^2\}text{Pulse}$ test: Pulse width $\leq 300~\mu\text{sec}$, Duty Cycle $\leq~2\,\%$

IRFF110, IRFF111 IRFF112, IRFF113

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRFF110	100	0.6	3.5
IRFF111	60	0.6	3.5
IRFF112	100	0.8	3.0
IRFF113	60	0.8	· 3.0

BOTTOM VIEW

01

1 DRAIN 2 GATE

3 SOURCE

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

DADAMETERS/TEST 600	DITIONS	0		Units				
PARAMETERS/TEST CONDITIONS		Symbol	110	111	112	113	Units	
Drain-Source Voltage Gate-Source Voltage		V _{DS}	100	60	100	60	V	
		V _{GS}	± 40	± 40	± 40	± 40	. *	
Continuous Drain Current	T _C = 25°C	- I _D	3.5	3.5	3.0	3.0		
Continuous Drain Current	T _C = 100°C		2.1	2.1	1.8	1.8		
Pulsed Drain Current ¹		IDM	14	14	12	12	Α .	
Davier Dissipation	T _C = 25°C	Ь	15	15	15	15		
Power Dissipation	T _C = 100°C	P _D	6	6	6	6	W	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				°C	
Lead Temperature (1/16" from case for 10 secs.)		TL	300					

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	8.33	
Junction-to-Ambient	R _{thJA}		175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRFF110,112 IRFF111,113	V(BR)DSS	100 60	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	, Tr. = - 1	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	; - .		100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt s	IDSS		_	250	
Zero Gate Voltage Drain Current VDS = 0.8 × V(BR)DSS , VGS = 0, TJ =125°C		IDSS	. =	-	1000	μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V	IRFF110,111 IRFF112,113	I _{D(on)}	3.5 3.0	-	-	Α
$\begin{array}{lll} \mbox{Drain-Source On-State Resistance}^2 & \mbox{IRFF110,111} \\ \mbox{VGS} = 10 \mbox{ V, I}_D = 1.5 \mbox{ A} & \mbox{IRFF112,113} \\ \mbox{Drain-Source On-State Resistance}^2 & \mbox{IRFF110,111} \\ \mbox{VGS} = 10 \mbox{ V, I}_D = 1.5 \mbox{ A, T}_J = 125 \mbox{°C} & \mbox{IRFF112,113} \\ \end{array}$		r _{DS(on)}	-	0.5 0.6	0.60 0.80	
		r _{DS(on)}	-	0.8 1.0	1.1 1.4	v
Forward Transconductance ² V _{DS} = 15 V, I _D = 1.5 A		g _{fs}	1.0	1.2	-	S(V)
Input Capacitance	V _{GS} = 0	Ciss	-	180	200	
Output Capacitance	V _{DS} = 25 V	Coss	1	75	100	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	20	25	
Total Gate Charge	V _{DS} = 0.8 × V _{(BR)DSS} ,	Qg	-	7	7.5	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 8.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	ı -	1.2		nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	2.4	-	
Turn-On Delay Time	V _{DD} = 40 V, R _L = 26 Ω	^t d(on)	-	7	20	
Rise Time	ID = 1.5 A, V GEN = 10 V RG = 25 W (Switching time is essentially	tr	-	18	25	ns
Turn-Off Delay Time		^t d(off)	-	23	25	1119
Fall Time	independent of operating temperature)	t _f	+	17	20	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRFF110,111 IRFF112,113	^I S	=		3.5 3.0	A
Pulsed Current ¹	IRFF110,111 IRFF112,113	ISM	-	=	14 12] ^
Forward Voltage ² IF = IS, VGS = 0	IRFF110,111 IRFF112,113	V _{SD}	-	-	2.5 2.0	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS	,	t _{rr}	_	65	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS		Q _{rr}	-	0.12		μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

IRFF120, IRFF121 IRFF122, IRFF123

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRFF120	100	0.3	6.0
IRFF121	60	0.3	6.0
IRFF122	100	0.4	5.0
IRFF123	60	0.4	5.0

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

DADAMETERS/TEST COM	DITIONO			Units			
PARAMETERS/TEST CONDITIONS		Symbol	120	121	122	123	Units
Drain-Source Voltage		V _{DS}	100	60	100	60	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	±40	, and the second
Continuous Drain Current	T _C = 25°C		6.0	6.0	5.0	5.0	
Continuous Drain Current	T _C = 100°C	'D	3.8	3.8	3.2	3.2	Α .
Pulsed Drain Current ¹		IDM	24	24	20	20	
Power Dissipation	T _C = 25°C	ь	20	20	20	20	
Power Dissipation	T _C = 100°C	PD	8	8	8	-8	W
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				
Lead Temperature (1/16" from case	for 10 secs.)	TL	300			°C	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	-	6.25	
Junction-to-Ambient	R _{thJA}	-	175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRFF120,122 IRFF121,123	V(BR)DSS	100 60	-	<u>-</u>	
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0		4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	. = ., 1.1	**	100	nA
Zero Gate Voltage Drain Current VDS = V(BR)DSS · VGS = 0		I _{DSS}	-	: <u>=</u> . * *	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt _S = 0, T _J =125°C	I _{DSS}			1000	μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V	IRFF120,121 IRFF122,123	I _{D(on)}	6.0 5.0	<u>-</u>	-	А
Drain-Source On-State Resistance ² IRFF120,121 VGS = 10 V, ID = 3.0 A IRFF122,123		r _{DS(on)}	-	0.25 0.30	0.30 0.40	
Drain-Source On-State Resistance 2 IRFF120,121 VGS = 10 V, I D = 3.0 A, TJ = 125°C IRFF122,123		r _{DS(on)}	<u>-</u>	0.42 0.50	0.54 0.70	n
Forward Transconductance ² V _{DS} = 15 V, I _D = 3.0 A		g _{fs}	1.5	2.8	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	380	600	
Output Capacitance	V _{DS} = 25 V	Coss	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	150	400	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}		20	100	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	· <u>-</u>	14	15	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$ (Gate charge is essentially	Qgs	<u>-</u>	2	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}		6	-	
Turn-On Delay Time	V _{DD} = 40 V , R _L = 13 Ω	^t d(on)	-	7	40	
Rise Time	ID = 3.0 A, V _{GEN} = 10 V	· t _r		31	70	ns
Turn-Off Delay Time	R _G = 25 L (Switching time is essentially	^t d(off)	-	38	100	1 118
Fall Time	independent of operating temperature)	tf		21	70	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRFF120,121 IRFF122,123	l _S	<u>-</u>		6.0 5.0	
Pulsed Current ¹	IRFF120,121 IRFF122,123	^I SM	-	_	24 20	^
Forward Voltage ² IF = I _S , V _{GS} = 0	IRFF120,121 IRFF122,123	V _{SD}	-		2.5 2.3	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	. –	100	- :	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS		Q _{rr}		0.15	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

² Pulse test: Pulse width \leq 300 μsec, Duty Cycle \leq 2%

IRFF130, IRFF131 IRFF132, IRFF133

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRFF130	100	0.18	8.0
IRFF131	60	0.18	8.0
IRFF132	100	0.25	7.0
IRFF133	60	0.25	7.0

BOTTOM VIEW

02

1 DRAIN 2 GATE 3 SOURCE

TO-205AF

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

DADAMETEDO/TEOT 0	ONDITIONS			Units			
PARAMETERS/TEST C	ONDITIONS	Symbol	130	131	132	133	Onits
Drain-Source Voltage		V _{DS}	100	60	100	60	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	•
Continuous Drain Current	T _C = 25°C		8.0	8.0	7.0	7.0	
Continuous Drain Current	T _C = 100°C	ם' ו	5.0	5.0	4.4	4.4	А
Pulsed Drain Current ¹		I _{DM}	32	32	28	28	
	T _C = 25°C	- P _D	25	25	25	25	
Power Dissipation	T _C = 100°C		10	10	10	10	w w
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				
Lead Temperature (1/16" from ca	ase for 10 secs.)	TL		3	00		°°C

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	-	5.0	
Junction-to-Ambient	R _{thJA}	-	175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA	ge IRFF130,132 IRFF131,133	V(BR)DSS	100 60	=	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	i e (-	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	•	- -	100	nA
Zero Gate Voltage Drain Curre VDS = V(BR)DSS , VGS = 0	nt	IDSS		-	250	
Zero Gate Voltage Drain Curre VDS = 0.8 x V(BR)DSS, VGS	nt S= 0, T _J =125°C	IDSS		-	1000	μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V	IRFF130,131 IRFF132,133	I _{D(on)}	8.0 7.0	-	-	A
Drain-Source On-State Resista VGS = 10 V, ID = 4.0 A	IRFF130,131 IRFF132,133	r _{DS(on)}	<u>-</u>	0.14 0.20	0.18 0.25	
Drain-Source On-State Resista VGS = 10 V, ID = 4.0 A, TJ =		r _{DS(on)}	1 -	0.25 0.30	0.30 0.45	- n
Forward Transconductance ² V _{DS} = 15 V, I _D = 4.0 A		g _{fs}	4.0	4.5	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	750	800	
Output Capacitance	V _{DS} = 25 V	Coss	-	280	500	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	70	150	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	-	27	30	
Gate-Source Charge	V _{GS} = 10 V, I _D = 18 A (Gate charge is essentially	Q _{gs}	-	5	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	. <u>-</u>	13	-	
Turn-On Delay Time	V _{DD} = 40 V , R _L = 10 Ω	^t d(on)	-	7	50	
Rise Time	ID = 4.0 A, V _{GEN} = 10 V	t _r	-	39	150	ne
Turn-Off Delay Time	$R_G = 7.5 \Omega$ (Switching time is essentially	^t d(off)	-	25	100	_ ns
Fall Time	independent of operating temperature)	t _f	-	20	150	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRFF130,131 IRFF132,133	I _S	-		8.0 7.0	
Pulsed Current ¹	IRFF130,131 IRFF132,133	^I SM	-		32 28	A
Forward Voltage ² IF = I _S , V _{GS} = 0	IRFF130,131 IRFF132,133	V _{SD}	-	_	2.5 2.3	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	-	90	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS		Q _{rr}	-	0.32	<u>.</u>	μC

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

IRFF210, IRFF211 IRFF212, IRFF213

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)
IRFF210	200	1.5	2.2
IRFF211	150	1.5	2.2
IRFF212	200	2.4	1.8
IRFF213	150	2.4	1.8

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS				IR	FF		Units
		Symbol	210	211	212	213	Office
Drain-Source Voltage		V _{DS}	200	150	200	150	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	•
Continuous Drain Current	T _C = 25°C		2.2	2.2	1.8	1.8	
Continuous Drain Current	T _C = 100°C	'D	1.4	1.4	1.1	1.1	_
Pulsed Drain Current ¹		I _{DM}	9.0	9.0	7.5	7.5	^
Avalanche Current (see figure 9)		IA	2.2	2.2	1.8	1.8	
Payer Dissination	T _C = 25°C	P _D	15	15	15	15	w
Power Dissipation	T _C = 100°C] 'b	6	6	6	6	
Operating Junction & Storage Temperature Range		T _J , T _{stg}		-55	to 150		°C
Lead Temperature (1/16" from case for 10 secs.)		TL		3	00		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	8.33	14,014
Junction-to-Ambient	R _{thJA}	-	175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA			200 150		-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	1 - 1	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	_	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	_	-	250	
Zero Gate Voltage Drain Currer V _{DS} = 0.8 x V _{(BR)DSS} , V _{GS}	nt = 0, T _J =125°C	DSS	: -	-	1000	μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V	IRFF210,211 IRFF212,213	I _{D(on)}	2.2 1.8	-	- -	Α
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 1.25 A	nce ² IRFF210,211 IRFF212,213	r _{DS(on)}	<u>-</u>	1.0 1.5	1.5 2.4	Q
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 1.25 A,T _J :		r _{DS} (on)	-	1.8 2.7	2.7 4.3	42
Forward Transconductance ² V _{DS} = 15 V, I _D = 1.25 A		g _{fs}	0.8	1.1	_	S(⑦)
Input Capacitance	V _{GS} = 0	C _{iss}	-	175	200	
Output Capacitance	V _{DS} = 25 V	Coss	_	65	80	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	15	25	
Total Gate Charge	V _{DS} = 0.8 × V _(BR) DSS, V _{GS} = 10 V, I _D = 4.5 A	Qg	-	7.5	9.0	
Gate-Source Charge	(Gate charge is essentially	Q _{gs}	-	1.6	- -	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	5.0	-	
Turn-On Delay Time	$V_{DD} = 100 \text{ V}$, $R_L = 22 \Omega$	^t d(on)	-	7	15	
Rise Time	ID~ 4.5 A , V _{GEN} = 10 V	t _r	-	18	25] ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	-	38	45	
Fall Time	independent of operating temperature)	tf	_	23	30	·

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST COI	NDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRFF210,211 IRFF212,213	l _S	-	- =	2.2 1.8	
Pulsed Current ¹	IRFF210,211 IRFF212,213	I _{SM}	-	-	9.0 7.5	^
Forward Voltage ² IF = I _S , V _{GS} = 0	IRFF210,211 IRFF212,213	V _{SD}	-	-	2.0 1.8	V
Reverse Recovery Time IF = Is, dIF/dt = 100 A/μS		t _{rr}	-	65	_	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	_	0.12	_	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

MOSPOWER

IRFF220, IRFF221 IRFF222, IRFF223

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)
IRFF220	200	0.8	3.5
IRFF221	150	0.8	3.5
IRFF222	200	1.2	3.0
IRFF223	150	1.2	3.0

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

	01101710110			Units			
PARAMETERS/TEST CONDITIONS		Symbol	220	221	222	223	Units
Drain-Source Voltage		V _{DS}	200	150	200	150	
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	±40]
Cantinuous Drain Current	T _C = 25°C		3.5	3.5	3.0	3.0	The F
Continuous Drain Current	T _C = 100°C	- 'D	2.0	2.0	1.8	1.8	
Pulsed Drain Current ¹		IDM	14	14	12	12	A
Avalanche Current (see figure 9)	IA	3.5	3.5	3.0	3.0	1
Danie di alla	T _C = 25°C	Ь	20	20	20	20	w
Power Dissipation	T _C = 100°C	P _D	8	8	8	8] W
Operating Junction & Storage Temperature Range		T _J , T _{stg}		-55	to 150		°C
Lead Temperature (1/16" from case for 10 secs.)		TL		3	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	<u> </u>	6.25	
Junction-to-Ambient	R _{thJA}	-	175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRFF220,222 IRFF221,223	V(BR)DSS	200 150	_	<u>-</u> -	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA	-	V _{GS(th)}	2.0	- ''	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		Igss	_	- '-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	-	_	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ;= 0, T _J =125°C	DSS	-		1000	μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V	IRFF220,221 IRFF222,223	I _{D(on)}	3.5 3.0	-	-	Α
Drain-Source On-State Resista VGS = 10 V, ID = 2.0 A	nce ² IRFF220,221 IRFF222,223	r _{DS(on)}	-	0.5 0.7	0.80 1.2	
Drain-Source On-State Resistance 2 IRFF220,221 VGS = 10 V, ID = 2.0 A, TJ = 125°C IRFF222,223		r _{DS(on)}	_	0.9 1.4	1.5 2.3	\ \varcappa_0
Forward Transconductance ² V _{DS} = 15 V, I _D = 2.0 A		g _{fs}	1.5	2.0	_	s(V)
Input Capacitance	V _{GS} = 0	C _{iss}	_	380	600	
Output Capacitance	V _{DS} = 25 V	Coss	<u>-</u>	125	300	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	20	80	
Total Gate Charge	V _{DS} = 0.8 × V _(BR) DSS,	Qg		13	15	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 7.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	3	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	6	;4; -	
Turn-On Delay Time	V_{DD} = 100 V, R_L = 50 Ω	^t d(on)	_	7	40	
Rise Time	ID = 2.0 A , V _{GEN} = 10 V	t _r	_	22	60	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	-	45	100	1 110
Fall Time	independent of operating temperature)	t _f	-	16	60	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRFF220,221 IRFF222,223	^I s	_	= .	3.5 3.0	
Pulsed Current ¹	IRFF220,221 IRFF222,223	^I SM	-	=	14 12	^
Forward Voltage ² IF = I _S , V _{GS} = 0	IRFF220,221 IRFF222,223	V _{SD}	-	=	2.0 1.8	٧
Reverse Recovery Time IF = Is, dIF/dt = 100 A/μS		t _{rr}	_	100	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	-	0.30	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

IRFF230, IRFF231 IRFF232, IRFF233

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRFF230	200	0.4	5.5
IRFF231	150	0.4	5.5
IRFF232	200	0.6	4.5
IRFF233	150	0.6	4.5

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS				Units			
		Symbol	230	231	232	233	Units
Drain-Source Voltage		V _{DS}	200	150	200	150	v
Gate-Source Voltage		V _{GS}	± 40	± 40	±40	± 40	•
Continuous Drain Current	T _C = 25°C		5.5	5.5	4.5	4.5	
Continuous Drain Current	T _C = 100°C	l _D	3.5	3.5	2.8	2.8	A
Pulsed Drain Current ¹		I _{DM}	22	22	18	18	^
Avalanche Current (see figure 9)		I _A	5.5	5.5	4.5	4.5	
Power Discipation	T _C = 25°C	В	25	25	25	25	w
Power Dissipation	T _C = 100°C	P _D 10		10	10	10	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				°C
Lead Temperature (1/16" from case for 10 secs.)		TL		3	00		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	5.0	
Junction-to-Ambient	R _{thJA}		175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRFF230,232 IRFF231,233	V(BR)DSS	200 150	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA			2.0		4.0	1, 15
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	•		100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt Section 1	I _{DSS}	_		250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ;= 0, T _J =125°C	IDSS	-	-	1000] μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V	IRFF230,231 IRFF232,233	I _{D(on)}	5.5 4.5	-	-	А
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 3.0 A	nce ² IRFF230,231 IRFF232,233	r _{DS(on)}	-	0.25 0.40	0.40 0.60	
Drain-Source On-State Resistance 2 IRFF230,231 VGS = 10 V, ID = 3.0 A, TJ = 125°C IRFF232,233		r _{DS(on)}	_	0.45 0.75	0.75 1.0	Ω
Forward Transconductance ² V _{DS} = 15 V, I _D = 3.0 A		g _{fs}	2.5	3.0	-	s(v)
Input Capacitance	V _{GS} = 0	C _{iss}	_	780	800	
Output Capacitance	V _{DS} = 25 V	Coss	→	220	450	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	•	70	150	
Total Gate Charge	V _{DS} = 0.8 × V _{(BR)DSS} ,	Qg	-	26	30	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 11 \text{ A}$ (Gate charge is essentially	Q _{gs}	_	5	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	13	-	1
Turn-On Delay Time	V _{DD} = 90 V, R _L = 30 Ω	^t d(on)	-	8	30	
Rise Time	ID~ 3.0 A , V _{GEN} = 10 V	t _r	-	30	50	ns
Turn-Off Delay Time	$R_G = 7.5\Omega$ (Switching time is essentially	^t d(off)	<u>-</u>	25	50	1113
Fall Time	independent of operating temperature)	tf	_	15	40	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRFF230,231 IRFF232,233	^I s	-	- -	5.5 4.5	
Pulsed Current ¹	IRFF230,231 IRFF232,233	I _{SM}	-	-	22 18	^
Forward Voltage ² IF = I _S , V _{GS} = 0	IRFF230,231 IRFF232,233	V _{SD}	-	-	2.0 1.8	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	-	150	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	-	0.8	<u>-</u>	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

² Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

IRFF310, IRFF311 IRFF312, IRFF313

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRFF310	400	3.6	1.35
IRFF311	350	3.6	1.35
IRFF312	400	5.0	1.15
IRFF313	350	5.0	1.15

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

DADAMETEDO 7707 0	011710110			Units			
PARAMETERS/TEST CONDITIONS		Symbol	310	311	312	313	Units
Drain-Source Voltage Gate-Source Voltage		V _{DS} 400 350 400	350	V			
		V _{GS}	±40	± 40	±40	± 40	\ \ \
Continuous Drain Current	T _C = 25°C		1.35	1.35	1.15	1.15	
Continuous Drain Current	T _C = 100°C	'D	0.86	0.86	0.73	0.73	
Pulsed Drain Current ¹		I _{DM}	5.5	5.5	4.5	4.5	A
Avalanche Current (see figure 9)	I _A	1.35	1.35	1.15	1.15	
Power Dissipation	T _C = 25°C	В	15	15	15	15	w
Power Dissipation	T _C = 100°C	P _D	6	6	6	6] "
Operating Junction & Storage Temperature Range		T _J , T _{stg}		-55 1	o 150		°C
Lead Temperature (1/16" from case for 10 secs.)		TL		3	00		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	8.33	
Junction-to-Ambient	R _{thJA}	-	175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TES	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Volta V _{GS} = 0, I _D = 250 μA	ge IRFF310,312 IRFF311,313	V(BR)DSS	400 350		-	,,
Gate Threshold Voltage VDS=VGS, ID= 250 μA		V _{GS(th)}	2.0	-	4.0	'
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS		-	100	пA
Zero Gate Voltage Drain Curre VDS = V(BR)DSS , VGS = 0	nt	IDSS	· -	-	250	
Zero Gate Voltage Drain Curre VDS = 0.8 x V(BR)DSS, VGS	nt _S = 0, T _J =125°C	DSS	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V	IRFF310,311 IRFF312,313	I _{D(on)}	1.35 1.15	-	-	A
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 0.8 A	IRFF310,311 IRFF312,313	r _{DS(on)}	- :	3.3 3.6	3.6 5.0	
Drain-Source On-State Resistance 2 IRFF310,311 VGS = 10 V, ID = 0.8 A, TJ = 125°C IRFF312,313		r _{DS(on)}	-	6.6 7.2	7.2 10.0	\ \varphi
Forward Transconductance ² V _{DS} = 15 V, I _D = 0.8 A		g _{fs}	0.5	0.6	_	s(හ)
Input Capacitance	V _{GS} = 0	C _{iss}	-	175	200	
Output Capacitance	V _{DS} = 25 V	Coss		40	50	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	<u>-</u>	9	15	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	_	8.0	10.0	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 2.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	2	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	· <u> </u>	4	_	
Turn-On Delay Time	V _{DD} = 100 V , R _L = 125Ω	^t d(on)	-	7	10	
Rise Time	ID= 0.8 A , V _{GEN} = 10 V	t _r	_	14	25	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	_	25	30	115
Fall Time	independent of operating temperature)	, t _f	-	14	15	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRFF310,311 IRFF312,313	Is		-	1.35 1.15	
Pulsed Current ¹	IRFF310,311 IRFF312,313	^I SM	_	=	5.5 4.5	^
Forward Voltage ² IF = I _S , V _{GS} = 0	IRFF310,311 IRFF312,313	V _{SD}	_	-	1.6 1.5	٧
Reverse Recovery Time IF = Is, dIF/dt = 100 A/μS		^t rr	_	200	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	-	1.2	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

² Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

IRFF320, IRFF321 **IRFF322, IRFF323**

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRFF320	400	1.8	2.5
IRFF321	350	1.8	2.5
IRFF322	400	2.5	2.0
IRFF323	350	2.5	2.0

BOTTOM VIEW

02

1 DRAIN 2 GATE

3 SOURCE

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

			IRFF				Units
PARAMETERS/TEST CONDITIONS		Symbol	320	321	322	323	Units
Drain-Source Voltage		V _{DS}	400	350	400	350	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40]
Continuous Drain Current	T _C = 25°C		2.5	2.5	2.0	2.0	
Continuous Drain Current	T _C = 100°C	l _D	1.6	1.6	1.2	1.2	
Pulsed Drain Current ¹		IDM	10	10	8.0	8.0	A
Avalanche Current (see figure 9)	·	I _A	2.5	2.5	2.0	2.0	100 100 100 ft 100 100
Davies Dissipation	T _C = 25°C		20	20	20	20	w
Power Dissipation	T _C = 100°C	- P _D	8	8	8	8] · · · · · · · · · · · · · · · · · · ·
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150			°c	
Lead Temperature (1/16" from case for 10 secs.)		TL	300				

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	6.25	
Junction-to-Ambient	R _{thJA}	_	175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TES	T CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Volta $V_{GS} = 0$, $I_D = 250 \mu A$	ge IRFF320,322 IRFF321,323	V(BR)DSS	400 350	-	-	
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	, 1 (- . 1 · 1	4.0]
Gate-Body Leakage VDS= 0, VGS = ±20 V		IGSS	=	- ,	100	nA
Zero Gate Voltage Drain Curre VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}	<u>-</u>	-	250	
Zero Gate Voltage Drain Curre VDS = 0.8 x V(BR)DSS , VGS	nt S= 0, T _J =125°C	IDSS	_	- -	1000	μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V	IRFF320,321 IRFF322,323	I _D (on)	2.5 2.0		-	А
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 1.25 A	IRFF320,321 IRFF322,323	r _{DS(on)}	-	1.5 1.8	1.8 2.5	
Drain-Source On-State Resistance 2 IRFF320,321 VGS = 10 V, ID = 1.25 A, TJ = 125 °C IRFF322,323		r _{DS(on)}	-	3.0 3.6	3.5 5.0	· · ·
Forward Transconductance ² V _{DS} =15 V, I _D = 1.25 A		g _{fs}	1.0	1.4	·	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	385	600	
Output Capacitance	V _{DS} = 25 V	Coss	:	80	200	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}		20	40	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	-	17	18	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 5.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	_	3	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	8		
Turn-On Delay Time	$V_{DD} = 200 \text{ V}, R_L = 100 \Omega$	^t d(on)	-	8	40	
Rise Time	ID = 2.0 A, V _{GEN} = 10 V	t _r	_	8	50	ns
Turn-Off Delay Time	R _G = 25 () (Switching time is essentially	^t d(off)	_	48	100	T IIS
Fall Time	independent of operating temperature)	tf	-	20	50	g ¹ tw

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRFF320,321 IRFF322,323	^I s	_	-	2.5 2.0	
Pulsed Current ¹	IRFF320,321 IRFF322,323	^I SM	-	=	10.0 8.0	^
Forward Voltage ² I _F = I _S , V _{GS} = 0	IRFF320,321 IRFF322,323	V _{SD}	-	=	1.6 1.5	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		^t rr	-	250	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS		Q _{rr}	_	0.15	-	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

IRFF330, IRFF331 IRFF332, IRFF333

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

And the second s						
PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)			
IRFF330	400	1.0	3.5			
IRFF331	350	1.0	3.5			
IRFF332	400	1.5	3.0			
IRFF333	350	1.5	3.0			

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

D4D444575D0/7507_001/	DITIONO		IRFF				Units
PARAMETERS/TEST CONDITIONS		Symbol	330	331	332	333	Onits
Drain-Source Voltage		V _{DS}	400	350	400	350	v
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	•
Continuous Drain Current	T _C = 25°C		3.5	3.5	3.0	3.0	
Continuous Drain Current	T _C = 100°C	'D	2.2	2.2	1.9	1.9	A
Pulsed Drain Current ¹		IDM	14	14	12	12	
Avalanche Current (see figure 9)		l _A	3.5	3.5	3.0	3.0	
Power Dissipation	T _C = 25°C	Р	25	25	25	25	w
rower Dissipation	T _C = 100°C	P _D	10	10	10	10	W 2 5
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300				

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	-	5.0	
Junction-to-Ambient	R _{thJA}		175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltaç VGS = 0, I _D = 250 μA	ge IRFF330,332 IRFF331,333	V(BR)DSS	400 350	-	1 1	V
Gate Threshold Voltage VDS= VGS , ID= 250 μA		V _{GS(th)}	2.0	. 37 . 1. 7	4.0	. 2006 1000
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	· • •	100	nA
Zero Gate Voltage Drain Currer $V_{DS} = V_{(BR)DSS}$, $V_{GS} = 0$	nt	^I DSS	**************************************	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS, VGS	nt = 0, T _J =125°C	^I DSS		-	1000	Αμ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V	IRFF330,331 IRFF332,333	I _{D(on)}	3.5 3.0	1 1	1 1	А
Drain-Source On-State Resista VGS = 10 V, ID = 2.0 A	nce ² IRFF330,331 IRFF332,333	r _{DS(on)}	_	0.75 1.0	1.0 1.5	
Drain-Source On-State Resistance 2 IRFF330,331 VGS = 10 V, ID = 2.0 A, TJ = 125°C IRFF332,333		r _{DS(on)}	-	1.5 1.9	2.0 3.0	d w
Forward Transconductance ² V _{DS} = 15 V, I _D = 2.0 A		g _{fs}	2.0	4.0	-	s(V)
Input Capacitance	V _{GS} = 0	Ciss	-	750	900	
Output Capacitance	V _{DS} = 25 V	Coss	-	160	300	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	70	80	1
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	-	26	30	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 7.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	_	5	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	16	-	1
Turn-On Delay Time	V _{DD} = 175 V, R _L = 86 Ω	^t d(on)	-	11	30	
Rise Time	ID~ 2.0 A , V _{GEN} = 10 V	. t _r	_	12	35	ne
Turn-Off Delay Time	$R_G = 7.5\Omega$ (Switching time is essentially	^t d(off)	-	45	55	ns
Fall Time	independent of operating temperature)	t _f	_	22	35	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRFF330,331 IRFF332,333	^I s	-	-	3.5 3.0	
Pulsed Current ¹	IRFF330,331 IRFF332,333	^I sm	-	-	14 12	A
Forward Voltage ² IF = IS , VGS = 0	IRFF330,331 IRFF332,333	V _{SD}	-	-	1.6 1.5	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS		t _{rr}	-	250	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	-	1.5	-	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

² Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

FIGURE 7: On-Resistance vs. Junction Temperature

2.25

2.00

1.75

1.75

1.50

1.00

0.75

0.50

-50

-10

30

70

110

150

T₁ - JUNCTION TEMPERATURE (°C)

IRFF420, IRFF421 IRFF422, IRFF423

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRFF420	500	3.0	1.6
IRFF421	450	3.0	1.6
IRFF422	500	4.0	1.4
IRFF423	450	4.0	1.4

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		0		Units			
		Symbol	420	421	422	423	Onits
Drain-Source Voltage		V _{DS}	500	450	500	450	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	ľ
Continuous Drain Current	T _C = 25°C		1.6	1.6	1.4	1.4	
Continuous Drain Current	T _C = 100°C	l _D	1.0	1.0	0.9	0.9	A A
Pulsed Drain Current ¹		IDM	6.5	6.5	5.5	5.5	
Avalanche Current (see figure 9)		I _A	1.6	1.6	1.4	1.4	
Power Dissipation	T _C = 25°C	В	20	20	20	20	w
T _C = 100°C		PD	8	8	8	8	•
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150			°C	
Lead Temperature (1/16" from case for 10 secs.)		TL	300				

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC		6.25	
Junction-to-Amblent	R _{thJA}	· -	175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag VGS = 0, I _D = 250 μA	ge IRFF420,422 IRFF421,423	V(BR)DSS	500 450	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	gi t aan	4.0	. A.
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		lgss	- -	=	100	nA
Zero Gate Voltage Drain Current VDS = V(BR)DSS , VGS = 0		I _{DSS}	<u>-</u>		250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ;= 0, T _J =125°C	1 _{DSS}	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V	IRFF420,421 IRFF422,423	I _{D(on)}	1.6 1.4	-	-	Α
Drain-Source On-State Resistance ² IRFF420,421 VGS = 10 V, ID = 1.0 A IRFF422,423		r _{DS(on)}	-	2.6 3.0	3.0 4.0	
Drain-Source On-State Resista	nce ² IRFF420,421 : 125°C IRFF422,423	r _{DS (on)}	-	4.8 5.7	6.0 8.0	v
Forward Transconductance ² V _{DS} = 15 V, I _D = 1.0 A		g _{fs}	1.0	1.25	-	s(v)
Input Capacitance	V _{GS} = 0	Ciss	-	350	400	
Output Capacitance	V _{DS} = 25 V	Coss	-	75	150	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	27	40	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	-	17	18	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 3.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	_	3	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	6	-	
Turn-On Delay Time	V _{DD} = 250 V, R _L = 250Ω	^t d(on)	-	8	60	1 1 2
Rise Time	ID~ 1.0 A , VGEN= 10 V	t _r		15	50	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	_	45	60	1115
Fall Time	independent of operating temperature)	t _f	_	15	30	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units	
Continuous Current	IRFF420,421 IRFF422,423	^I s	-	-	1.6 1.4		
Pulsed Current ¹	IRFF420,421 IRFF422,423	l _{SM}	1 1	= '	6.5 5.5	A .	
Forward Voltage ² IF = I _S , V _{GS} = 0	IRFF420,421 IRFF422,423	V _{SD}	-	-	1.4 1.3	V	
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	-	250	-	ns	
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	-	0.15	-	μС	

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

IRFF430, IRFF431 IRFF432, IRFF433

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRFF430	500	1.5	2.75
IRFF431	450	1.5	2.75
IRFF432	500	2.0	2.25
IRFF433	450	2.0	2.25

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS				Units			
		Symbol	430	431	432	433	Units
Drain-Source Voltage		V _{DS}	500	450	500	450	v
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	•
Continuous Drain Current			2.75	2.75	2.25	2.25	
Continuous Drain Current	T _C = 100°C	l _D	2.0	2.0	1.7	1.7	
Pulsed Drain Current ¹		I _{DM}	11	11	9.0	9.0	A
Avalanche Current (see figure 9)		l _Α	2.75	2.75	2.25	2.25	
Power Dissipation	T _C = 25°C	- P _D	25	25	25	25	w
Power Dissipation	T _C = 100°C		10	10	10	10	, v
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150			°C	
Lead Temperature (1/16" from case for 10 secs.)		TL	300				

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	5.0	
Junction-to-Ambient	R _{thJA}	-	175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	P IRFF430,432 IRFF431,433	V(BR)DSS	500 450	-	-	v
Gate Threshold Voltage VDS= VGS, ID= 250 μA		V _{GS(th)}	2.0		4.0	· ·
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V	2 1 ⁷⁷ - 83	IGSS	<u>-</u> 3 4	- <u>-</u>	100	nA
Zero Gate Voltage Drain Current VDS = V(BR)DSS · VGS = 0		^I DSS	_	-	250	
Zero Gate Voltage Drain Current VDS = 0.8 x V(BR)DSS , VGS= 0, TJ =125°C		IDSS	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V	IRFF430,431 IRFF432,433	I _{D (on)}	2.75 2.25	-		Α
$\begin{array}{llllllllllllllllllllllllllllllllllll$		r _{DS(on)}		1.2 1.5	1.5 2.0	Q
		r _{DS(on)}	-	2.5 3.3	3.3 4.4	72
Forward Transconductance ² V _{DS} =15 V, I _D = 1.5 A		g _{fs}	1.5	2.8	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	750	800	
Output Capacitance	V _{DS} = 25 V	Coss	-	120	200	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	50	60	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	=	25	30	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 6.0 \text{ A}$ (Gate charge is essentially	Q _{gs}		5	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	18	-	
Turn-On Delay Time	V _{DD} = 225 V , R _L = 150 Ω	^t d(on)	-	11	30	
Rise Time	$I_D = 1.5 \text{ A}$, $V_{GEN} = 10 \text{ V}$ $R_G = 7.5 \Omega$ (Switching time is essentially	t _r		12	30	ns
Turn-Off Delay Time		^t d(off)	-	45	55	
Fall Time	independent of operating temperature)	t _f	-	22	30	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRFF430,431 IRFF432,433	Is	· _	-	2.75 2.25	
Pulsed Current ¹	IRFF430,431 IRFF432,433	^I SM	_	_	11 9.0	, A
Forward Voltage ² IF = I _S , V _{GS} = 0	IRFF430,431 IRFF432,433	V _{SD}	-	= =	1.4 1.3	٧
Reverse Recovery Time		t _{rr}	-	260	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	_	1.5	-	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Pulse test: Pulse width ≤ 300 µsec, Duty Cycle ≤ 2%

FIGURE 11: Normalized Effective Translent Thermal Impedance, Junction-to-Case NORMALIZED EFFECTIVE TRANSIENT cycle= 0 THERMAL IMPEDANCE 0.2 0.1 0.05 0.02 Single pulse 0.01 10⁻³ 10⁻² 10 10 10 SQUARE WAVE PULSE DURATION (sec)

IRFF9120, IRFF9121 IRFF9122, IRFF9123

P-Channel Enhancement Mode Transistors²

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRFF9120	100	0.6	4.0
IRFF9121	60	0.6	4.0
IRFF9122	100	0.8	3.5
IRFF9123	60	0.8	3.5

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

				Units			
PARAMETERS/TEST CONDITIONS		Symbol	9120	9121	9122	9123	Units
Drain-Source Voltage Gate-Source Voltage		V _{DS}	100	60	100	60 ±40	- V
		V _{GS}	± 40	± 40	± 40] '
Continuous Drain Current	T _C = 25°C		4.0	4.0	3.5	3.5	
	T _C = 100°C	l _D	2.5	2.5	2.2	2.2] .
Pulsed Drain Current ¹		I _{DM}	16	16	14	14	A
Avalanche Current (see figure 9)		IA	4.0	4.0	3.5	3.5	
Power Dissipation	T _C = 25°C	Р	20	20	20	20	w
Power Dissipation	T _C = 100°C	- P _D	, 8	8	8	8	1
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				°C
Lead Temperature (1/16" from case for 10 secs.)		TL		3	00		

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units	
Junction-to-Case	R _{thJC}	-	6.25	12.014	
Junction-to-Ambient	R _{thJA}	_	175	K/W	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

LECTRICAL CHARACTERISTICS (1)-15 Calless Cities (1)-15				Negative signs	nave been omit	ted for clarit
PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRFF9120,9122 IRFF9121,9123	V(BR)DSS	100 60	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	: 424 : 7 :	4.0	•
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS, VGS = 0	nt	I _{DSS}	-	-	250	
Zero Gate Voltage Drain Currer V _{DS} = 0.8 x V _(BR) DSS, V _{GS}	nt ;= 0, T _J =125°C	DSS	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 5 V, V _{GS} = 10 V	IRFF9120,9121 IRFF9122,9123	I _D (on)	4.0 3.5	=	=	A
Drain-Source On-State Resista VGS = 10 V, ID = 2.0 A	nce ² IRFF9120,9121 IRFF9122,9123	r _{DS(on)}	-	0.50 0.60	0.60 0.80	_
Drain-Source On-State Resista VGS = 10 V, ID = 2.0 A, TJ =	r _{DS(on)}	-	0.80 1.0	1.0 1.3	v	
Forward Transconductance ² V _{DS} = 15 V, I _D = 2.0 A		g _{fs}	1.25	1.4	_	s(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	350	450	
Output Capacitance	V _{DS} = 25 V	Coss	_	205	350	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	80	100	
Total Gate Charge	V _{DS} = 0.8 × V _{(BR)DSS} ,	Qg	-	9	22	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 8.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	<u>-</u>	2.0	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	5.4	-	
Turn-On Delay Time	V _{DD} = 40 V , R _L = 20 Ω	^t d(on)	- -	9	50	
Rise Time	ID~ 2.0 A, VGEN= 10 V	t _r	-	25	100	
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	-	39	100	ns
Fall Time	independent of operating temperature)	tf	-	30	100	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRFF9120,9121 IRFF9122,9123	1 _S	- -	= .	4.0 3.5	
Pulsed Current ¹	IRFF9120,9121 IRFF9122,9123	^I SM	=	=	16 14	Α
Forward Voltage ² IF = IS , VGS = 0	IRFF9120,9121 IRFF9122,9123	V _{SD}	=	-	6.3 6.0	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	<u> </u>	80	<u>-</u>	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS		Q _{rr}	-	0.26	_	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

² Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

IRFF9130, IRFF9131 IRFF9132, IRFF9133

P-Channel Enhancement Mode Transistors²

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRFF9130	100	0.30	6.5
IRFF9131	60	0.30	6.5
IRFF9132	100	0.40	5.5
IRFF9133	60	0.40	5.5

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

DADAMETERS/TEST SOL	0		Units				
PARAMETERS/TEST CON	IDITIONS	Symbol	9130	9131	9132	9133	Units
Drain-Source Voltage		V _{DS}	100	60	100	60	v v
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	.
Continuous Drain Current	T _C = 25°C		6.5	6.5	5.5	5.5	
Continuous Drain Current	T _C = 100°C	l _D	4.1	4.1	3.5	3.5	
Pulsed Drain Current ¹		I _{DM}	26	26	23	23	, A A
Avalanche Current (see figure 9)		I _A	6.5	6.5	5.5	5.5	*
Payer Dissinction	T _C = 25°C	В	25	25	25	25	, w
Power Dissipation	T _C = 100°C	P _D	10	10	10	10	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				°c
Lead Temperature (1/16" from case	for 10 secs.)	TL		3	00		

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC		5.0	14.014
Junction-to-Ambient	R _{thJA}		175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

ELECTRICAL CHARACTERISTICS (1)=25 Cumost cum					have been omi	tted for clarit
PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag $V_{GS} = 0$, $I_D = 250 \mu A$	PE IRFF9130,9132 IRFF9131,9133	V _{(BR)DSS}	100 60	=	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA	V _{GS(th)}	2.0	<u>-</u>	4.0		
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	- , .	= ,2 ***	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	DSS	-		250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS, VGS	nt = 0, T _J =125°C	IDSS	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 5 V, V _{GS} = 10 V	IRFF9130,9131 IRFF9132,9133	I _{D(on)}	6.5 5.5	=	- <u>-</u>	А
Drain-Source On-State Resista VGS = 10 V, ID = 3.0 A	nce ² IRFF9130,9131 IRFF9132,9133	r _{DS(on)}	-	0.25 0.30	0.30 0.40	
Drain-Source On-State Resista VGS = 10 V, ID = 3.0 A, TJ =	r _{DS(on)}		0.40 0.48	0.48 0.64	\ v	
Forward Transconductance ² V _{DS} = 15 V, I _D = 3.0 A		g _{fs}	2.5	2.8	-	s(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	625	700	
Output Capacitance	V _{DS} = 25 V	Coss	. · · - · · ·	280	450	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	105	200]
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	-	24	45	8
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 15 \text{ A}$ (Gate charge is essentially	Q _{gs}	_	3.4	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	13.5	-	
Turn-On Delay Time	V _{DD} = 40 V , R _L = 13 Ω	^t d(on)	-	9	60	
Rise Time	ID = 3.0 A , VGEN= 10 V	tr	_ /	30	140	1
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	_	66	140	ns
Fall Time	independent of operating temperature)	tf	-	34	140	7
	L					

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRFF9130,9131 IRFF9132,9133	l _S	-	-	6.5 5.5	
Pulsed Current ¹	IRFF9130,9131 IRFF9132,9133	^I SM	-	=	26 22	A
Forward Voltage ² IF = I _S , V _{GS} = 0	IRFF9130,9131 IRFF9132,9133	V _{SD}	-	-	6.3 6.0	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	-	110	_	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS	-	Q _{rr}	-	0.4	-	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

IRFF9220, IRFF9221 IRFF9222, IRFF9223

P-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRFF9220	200	1.5	2.5
IRFF9221	150	1.5	2.5
IRFF9222	200	2.4	2.0
IRFF9223	150	2.4	2.0

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

		I		IR	FF		Units
PARAMETERS/TEST CONDITIONS		Symbol	9220	9221	9222	9223	500 48
Drain-Source Voltage		V _{DS}	200	150	200	150	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	
O-atlanea Busin Orana	T _C = 25°C		2.5	2.5	2.0	2.0	
Continuous Drain Current	T _C = 100°C	- 'D	1.6	1.6	1.2	1.2	A
Pulsed Drain Current ¹		I _{DM}	10	10	8.0	8.0	
Avalanche Current (see figure 9)		I _A	2.5	2.5	2.0	2.0	
Davis Dischartion	T _C = 25°C	В	20	20	20	20	w
Power Dissipation	T _C = 100°C	PD	8	8	8	8	**************************************
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				°C
Lead Temperature (1/16" from case for 10 secs.)		TL		3	00		

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}		6.25	14.014
Junction-to-Ambient	R _{thJA}	_	175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device
Negative signs have been omitted for clarity

ELECTRICAL CHARACTERISTICS (1) 15 C SINCE STREET STREET				Negative signs have been omitted for cla		
PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA			200 150	-	=	v
Gate Threshold Voltage VDS=VGS, ID= 250 μA		V _{GS(th)}	2.0	ra _n or - co	4.0	, ,
Gate-Body Leakage VDS = 0, VGS = ±20 V		Igss	· . -	-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt i e j	IDSS	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt s= 0, T _J =125°C	IDSS	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 5 V, V _{GS} = 10 V	IRFF9220,9221 IRFF9222,9223	I _{D(on)}	2.5 2.0	-	·	Α
Drain-Source On-State Resista VGS = 10 V, ID = 1.5 A	nce ² IRFF9220,9221 IRFF9222,9223	r _{DS(on)}	-	1.0 1.5	1.5 2.4	Q
Drain-Source On-State Resistance 2 IRFF9220,9221 VGS = 10 V, ID = 1.5 A, TJ = 125 °C IRFF9222,9223		^r DS(on)	=	1.8 2.6	2.7 4.3	1 4
Forward Transconductance ² VDS = 15 V, ID = 1.5 A		g _{fs}	1.0	1.4	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	_	310	400	
Output Capacitance	V _{DS} = 25 V	Coss	-	110	125	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	. 	40	45	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg		17	22	
Gate-Source Charge	V _{GS} = 10 V, I _D = 4.0 A (Gate charge is essentially	Q _{gs}	-	1.8	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	8.6	-	
Turn-On Delay Time	V _{DD} = 100 V , R _L = 66 Ω	td(on)	_	10	40	
Rise Time	ID = 1.5 A, VGEN=10 V	^t r	-	23	50	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	-	45	50	1 119
Fall Time	independent of operating temperature)	t _f	-	31	40	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (TJ = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRFF9220,9221 IRFF9222,9223	l _S	_	-	2.5 2.0	
Pulsed Current ¹	IRFF9220,9221 IRFF9222,9223	^I SM	-	-	10 8.0	^
Forward Voltage ² IF = I _S , V _{GS} = 0	IRFF9220,9221 IRFF9222,9223	V _{SD}	-	=	7.0 6.8	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	_	105	: <u>-</u>	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	_	0.23	-	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^2 \, \text{Pulse test: Pulse width} \leq 300 \, \, \mu \text{sec}, \, \text{Duty Cycle} \leq \, 2 \, \%$

FIGURE 11: Normalized Effective Transient Thermal Impedance, Junction-to-Case

IRFF9230, IRFF9231 IRFF9232, IRFF9233

P-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
IRFF9230	200	0.8	4.0
IRFF9231	150	0.8	4.0
IRFF9232	200	1.2	3.5
IRFF9233	150	1.2	3.5

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

		IRFF					
PARAMETERS/TEST CONDITIONS		Symbol	9230	9231	9232	9233	Units
Drain-Source Voltage Gate-Source Voltage		V _{DS}	200	150	200	150	
		V _{GS}	± 40	± 40	± 40	±40	٧
Continuous Drain Current	T _C = 25°C		4.0	4.0	3.5	3.5	
	T _C = 100°C	'p	2.5	2.5	2.2	2.2	
Pulsed Drain Current ¹		IDM	16	16	14	14	Α .
Avalanche Current (see figure 9)		^I A	4.0	4.0	3.5	3.5	
D. District	T _C = 25°C	В	25	25	25	25	w
Power Dissipation	T _C = 100°C	P _D	10	10	10	10	, vv
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				
Lead Temperature (1/16" from case for 10 secs.)		TL	300				°C

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	<u>-</u>	5.0	
Junction-to-Ambient	R _{thJA}	_	175	K/W

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device
Negative signs have been omitted for clarity

ELECTRICAL CHARACT	,		Negative signs have been omitted for clar			
PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge IRFF9230,9232 IRFF9231,9233	V(BR)DSS	200 150	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	- ·	4.0	
Gate-Body Leakage V_{DS} = 0, V_{GS} = ±20 V		IGSS	_		100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}	<u>-</u>	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 × V(BR)DSS, VGS	nt _S = 0, T _J =125°C	I _{DSS}			1000	μΑ
On-State Drain Current ² V _{DS} = 5 V, V _{GS} = 10 V	IRFF9230,9231 IRFF9232,9233	I _{D(on)}	4.0 3.5	= 7	- <u>-</u> 	А
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 2.0 A	Oraln-Source On-State Resistance ² IRFF9230,9231 VGS = 10 V, I _D = 2.0 A IRFF9232,9233		-	0.50 0.80	0.80 1.2	
Drain-Source On-State Resistance 2 IRFF9230,9231 VGS = 10 V, I D = 2.0 A, TJ = 125°C IRFF9232,9233		r _{DS(on)}	_	1.0 1.6	1.6 2.4	a.
Forward Transconductance ² V _{DS} = 15 V, I _D = 2.0 A		g _{fs}	2.2	2.4	-	ន(ប)
Input Capacitance	V _{GS} = 0	C _{iss}	-	630	650	
Output Capacitance	V _{DS} = 25 V	Coss	_	220	300	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	70	90	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg		27	45	
Gate-Source Charge	V _{GS} = 10 V, I _D = 8.0 A (Gate charge is essentially	Q _{gs}	-	3.4	=	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	15	_	
Turn-On Delay Time	V _{DD} = 100 V , R _L = 50 Ω	^t d(on)	-	6.5	50	
Rise Time	ID~ 2.0 A , V _{GEN} = 10 V	tr	_	30	100	1
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	-	35	100	ns
Fall Time	independent of operating temperature)	t _f		21	80	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (TJ = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	IRFF9230,9231 IRFF9232,9233	¹s	-	-	4.0 3.5	
Pulsed Current ¹	IRFF9230,9231 IRFF9232,9233	^I SM	=	=	16 14	^
Forward Voltage ² IF = I _S , V _{GS} = 0	IRFF9230,9231 IRFF9232,9233	V _{SD}		-	6.5 6.3	V
Reverse Recovery Time IF = Is, dIF/dt = 100 A/μS		^t rr	_	160		ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}		1.6	_	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

FIGURE 11: Normalized Effective Transient Thermal Impedance, Junction-to-Case

IRFH150

N-Channel Enhancement Mode Transistor

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
IRFH150	100	0.06	30

TO-210AC (TO-61)

1 SOURCE 2 GATE 3 DRAIN

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	IRFH150	Units
Drain-Source Voltage		V _{DS}	100	
Gate-Source Voltage		V _{GS}	± 40	V
Centinuous Drain Current	T _C = 25°C		30	
Continuous Drain Current	T _C = 100°C	l _D	24	
Pulsed Drain Current ¹		IDM	120	7
Dawer Disables	T _C = 25°C	В	150	w
Power Dissipation	T _C = 100°C	P _D	60	T "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	- °c
Lead Temperature (1/16" from case for 10 secs.)		TL	300	

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	_	0.83	
Junction-to-Ambient	R _{thJA}	-	40	K/W
Case-to-Sink	R _{thCS}	0.4	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) This device contains beryllium oxide

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μΑ		100	-	-	V
Gate Threshold Voltage VDS= VGS, ID = 250 μA		V _{GS(th)}	2.0	- -	4.0	ď
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	- 1.1		250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt Տ= 0, Tյ =125°C	I _{DSS}	10 m	<u>-</u>	1000] μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	30	-	<u>-</u>	A
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 24 A Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 24 A, T _J = 125°C		r _{DS(on)}	_	0.045	0.06	
		r _{DS(on)}	-	0.08	0.1	- n
Forward Transconductance ² V _{DS} = 15 V, I _D = 24 A		g _{fs}	9.0	12	-	S(V)
Input Capacitance	V _{GS} = 0	Ciss	· <u>-</u> · · ·	2800	3000	
Output Capacitance	V _{DS} = 25 V	Coss	office = constru	1100	1500	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	<u> </u>	400	500	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	. –	61	120	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 30 \text{ A}$ (Gate charge is essentially	Q _{gs}	_	15	_ =====================================	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	29	-	
Turn-On Delay Time	$V_{DD} = 25 \text{ V}$, $R_L = 1 \Omega$	^t d(on)	-	15	35	
Rise Time	ID = 24 A , V _{GEN} = 10 V	t _r ,	-	30	100	ns
Turn-Off Delay Time	$R_G = 2.4 \Omega$ (Switching time is essentially	^t d(off)		50	125	
Fall Time	independent of operating temperature)	t _f	_	20	100	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	I _S	_	-	30	
Pulsed Current ¹	I _{SM}	_	. :	120	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	_	_	1.9	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	150	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	_	0.5	-	μС

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

IRFH250

N-Channel Enhancement Mode Transistor

TOP VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
IRFH250	200	0.09	30

TO-210AC (TO-61) ISOLATED CASE 1 SOURCE 2 GATE 3 DRAIN

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	IRFH250	Units
Drain-Source Voltage		V _{DS}	200	V
Gate-Source Voltage		V _{GS}	± 40	•
Continuous Drain Current	T _C = 25°C		30	
Continuous Drain Current	T _C = 100°C	- 'D	18	e sa
Pulsed Drain Current ¹		I _{DM}	120	A .
Avalanche Current (see figure 9)		l _A	30	
	T _C = 25°C	PD	150	w
Power Dissipation	T _C = 100°C	7 'B	60] **
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	
Lead Temperature (1/16" from case for 10 secs.)		TL	300	°C

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	=	0.83	4
Junction-to-Ambient	R _{thJA}	-	40	K/W
Case-to-Sink	R _{thCS}	0.4	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) This device contains beryllium oxide

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge	V(BR)DSS	200	-	_	V
Gate Threshold Voltage VDS= VGS · ID = 250 μA		V _{GS(th)}	2.0	-	4.0	V
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	<u>-</u>	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt in the second of the second	I _{DSS}	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ;= 0, T _J =125°C	I _{DSS}	- 4	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	30	-	-	Α
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 19 A	nce ²	r _{DS(on)}	-	0.075	0.090	
Drain-Source On-State Resista VGS = 10 V, ID = 19 A, TJ =		r _{DS(on)}	-	0.13	0.160	l v
Forward Transconductance ² V _{DS} = 15 V, I _D = 19 A		g _{fs}	9.0	13	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	2700	3000	
Output Capacitance	V _{DS} = 25 V	Coss	y - 11	850	1200	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	300	500	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	65	120	
Gate-Source Charge	V _{GS} = 10 V, I _D = 38 A (Gate charge is essentially	Q _{gs}	-	14	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	32	-	
Turn-On Delay Time	V _{DD} = 95 V , R _L = 5 Ω	^t d(on)	_	15	35	
Rise Time	ID = 19 A , V _{GEN} = 10 V	t _r	-	30	100	ns
Turn-Off Delay Time	$R_G = 2.4 \Omega$ (Switching time is essentially	^t d(off)	-	50	125] ""
Fall Time	independent of operating temperature)	t _f	_	20	100	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	I _S	_	_	30	
Pulsed Current ¹	^I SM	-	-	120	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	<u>-</u> .	-	1.8	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	_	150	: - .	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Qrr	_	0.5	-	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

IRFH350

N-Channel Enhancement Mode Transistor

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
IRFH350	400	0.30	15

TO-210AC (TO-61) ISOLATED CASE 1 SOURCE 2 GATE 3 DRAIN

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

	. •			
PARAMETERS/TEST CONDITIONS Drain-Source Voltage Gate-Source Voltage		Symbol	IRFH350	Units
		V _{DS}	400	
		V _{GS}	± 40] '
Combination Duralis Command	T _C = 25°C	- I _D	15	
Continuous Drain Current	T _C = 100°C		9.5	1
Pulsed Drain Current ¹		I _{DM}	60	^
Avalanche Current (see figure 9)	I _A	15	
Dawen Disablesties	T _C = 25°C	150] w
Power Dissipation	T _C = 100°C	PD	60]
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	-°c
Lead Temperature (1/16" from case for 10 secs.)		TL	300]

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	0.83	
Junction-to-Ambient	R _{thJA}		40	K/W
Case-to-Sink	R _{thCS}	0.4	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) This device contains beryllium oxide

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge	V(BR)DSS	400	_	. -	v
Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \mu A$		V _{GS(th)}	2.0		4.0	V
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt in the second of the second	I _{DSS}	_		250	
Zero Gate Voltage Drain Curre VDS = 0.8 x V(BR)DSS , VGS		IDSS	-	-,	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	15	_ ~	÷ ;	А
Drain-Source On-State Resista VGS = 10 V, ID = 9.0 A	nce ²	^r DS(on)	-	0.22	0.30	
Drain-Source On-State Resista VGS = 10 V, ID = 9.0 A, TJ =	ince ² = 125°C	r _{DS(on)}	-	0.40	0.60	a a
Forward Transconductance ² V _{DS} = 15 V, I _D = 9.0 A		g _{fs}	8.0	8.5	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	2700	3000	
Output Capacitance	V _{DS} = 25 V	Coss	: -	450	600	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	160	200	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	_	77	120	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 15 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	14		nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	39	_	
Turn-On Delay Time	$V_{DD} = 180 \text{ V}, R_{L} = 20 \Omega$	^t d(on)	_	14	35	**********
Rise Time	I_D = 9.0 A , V_{GEN} = 10 V R_G = 4.7 Ω (Switching time is essentially	, t _r	-	30	65	ns
Turn-Off Delay Time		^t d(off)	<u>-</u>	54	150	
Fall Time	independent of operating temperature)	t _f	-	15	75	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	l _S		-	15	
Pulsed Current ¹	^I SM	-	-	60	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	-	-	1.7	V
Reverse Recovery Time $I_F = I_S$, $dI_F/dt = 100 A/\mu S$	^t rr	-	300	-	ns
Reverse Recovered Charge $I_F = I_S$, $dI_F/dt = 100 A/\mu S$	Q _{rr}	_	2.0	_	μС

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

FIGURE 11: Normalized Effective Transient Thermal Impedance, Junction-to-Case

1 Duty cycle= 0.5-1

0.1

0.00

10⁻⁵

10⁻⁴

SQUARE WAVE PULSE DURATION (sec)

IRFH450

N-Channel Enhancement Mode Transistor

TOP VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
IRFH450	500	0.4	13

TO-210AC (TO-61) ISOLATED CASE 1 SOURCE 2 GATE 3 DRAIN

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS Drain-Source Voltage		Symbol	IRFH450	Units	
		V _{DS}	500		
		V _{GS}	± 40	–	
Continuous Drain Current $ T_{C} = 25^{\circ}C $ $T_{C} = 100^{\circ}C $			13		
		'D	8.3	٦.	
Pulsed Drain Current ¹		IDM	52	^ ^	
Avalanche Current (see figure 9)		I _A	13		
Davier Disable attack	T _C = 25°C		150		
Power Dissipation	T _C = 100°C	P _D	60	- w	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C	
Lead Temperature (1/16" from case for 10 secs.)		TL	300		

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	0.83	
Junction-to-Ambient	R _{thJA}	_	40	K/W
Case-to-Sink	RthCS	0.4	_ :	1

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) This device contains beryllium oxide

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA	ge	V(BR)DSS	500	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	-	4.0	ľ
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		Igss	-		100	, in inA
Zero Gate Voltage Drain Current VDS = V(BR)DSS , VGS = 0		I _{DSS}	a 7ak adil		250	
Zero Gate Voltage Drain Current VDS = 0.8 × V(BR)DSS , VGS= 0, TJ =125°C		IDSS	-	<u>-</u> , *	1000	¹ μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	13	-	-	Α
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 8.3 A		r _{DS} (on)	-	0.3	0.40	<u>a</u>
Drain-Source On-State Resista $V_{GS} = 10 \text{ V}, I_D = 8.3 \text{ A}, T_J = 0.00$			-	0.6	0.88] ""
Forward Transconductance ² V _{DS} = 15 V, I _D = 8.3 A		g _{fs}	8.0	10	-	s(V)
Input Capacitance	V _{GS} = 0	C _{iss}	<u>-</u> ./	2700	3000	
Output Capacitance	V _{DS} = 25 V	Coss	· ·	410	600	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	140	200	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	75	120	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 13 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	12		nC ,
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	35	., .	
Turn-On Delay Time	$V_{DD} = 210 \text{ V}, R_{L} = 25 \Omega$	^t d(on)	-	13	35	
Rise Time	ID~ 8.3 A , V _{GEN} = 10 V	tr	·-	26	50	ns
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	<u>-</u>	55	150	T is
Fall Time	independent of operating temperature)	tf	-	17	70	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	l _s	_	_	13	
Pulsed Current ¹	Ism	-	-	52	
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	-	-	1.6	v
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	^t rr	· · · · -	300	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	-	2.0	_	μС

Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

MOD100A, MOD100B MOD100C

4 N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(ON)} (OHMS)	I _D (AMPS)	LEADFORM OPTION
MOD100A	100	0.08	21	STRAIGHT
MOD100B	100	0.08	21	BENT DOWN
MOD100C	100	0.08	21	BENT UP

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Single Die	All Die	Units
Drain-Source Voltage		V _{DS}	100	100	
Gate-Source Voltage		V _{GS}	± 40	± 40	7 '
Continuous Drain Current	T _C = 25°C		21	84	
T _C = 100°C		- 'D -	21	70	1
Pulsed Drain Current ¹		I _{DM}	125	440	A
Max. Power Dissipation	T _C = 25°C	В	150	400	, , , ,
max. Fower Dissipation	T _C = 100°C	- P _D	60	160	w
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		1
Lead Temperature (1/16" from case for 10 secs.)		TL	300		- °C
Isolation Voltage		V _{ISOL}	1000		V

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Tyrn	М	Max.	
	Gymbol	Тур.	Single	All	Units
Junction-to-Case	R _{thJC}	-	0.83	0.31	
Junction-to-Ambient	R _{thJA}	_	30	30	K/W
Case-to-Sink	R _{thCS}	0.1	-	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

SINGLE DIE ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise noted)

DADAMETERS/TEST	CONDITIONS	Cumphal	D.41:	T	B/1	T
PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage $V_{GS} = 0$, $I_D = 250 \mu A$	ge	V(BR)DSS	100		_	
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	_	4.0	•
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-		100	nA
Zero Gate Voltage Drain Current VDS = V(BR)DSS , VGS = 0		DSS		-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS, VGS	nt ;= 0, T _J =125°C	I _{DSS}	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _D (on)	21			А
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 20 A		r _{DS(on)}	-	0.070	0.080	
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 20 A, T _J = 125°C		r _{DS(on)}	_	0.100	0.120	a C
Forward Transconductance ² V _{DS} = 15 V, I _D = 20 A		g _{fs}	9.0	11.0	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	_	2800	3200	
Output Capacitance	V _{DS} = 25 V	Coss		1100	1500	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	400	500	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	62	120	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 50 \text{ A}$ (Gate charge is essentially	Q _{gs}	_	13	- ,	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}		29	- ·	
Turn-On Delay Time	V _{DD} = 24 V , R _L = 1.2 Ω	^t d(on)	-	15	35	
Rise Time	ID~ 20 A , V _{GEN} = 10 V	t _r	_	30	100	ns
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	_	50	125	113
Fall Time	independent of operating temperature)	t _f	_	20	100	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	^I S	_	_	21	
Pulsed Current ¹	^I SM	-		125	A
Forward Voltage ² IF = IS , VGS = 0	V _{SD}		-	2.5	V
Reverse Recovery Time $I_F = I_S$, $dI_F/dt = 100 A/\mu S$	^t rr	_	150	_	ns
Reverse Recovered Charge $I_F = I_S$, $dI_F/dt = 100 A/\mu S$	Q _{rr}	_	0.5	_	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

² Pulse test: Pulse width \leq 300 μsec, Duty Cycle \leq 2%

MOD200A, MOD200B MOD200C

4 N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(ON)} (OHMS)	I _D (AMPS)	LEADFORM OPTION
MOD200A	200	0.11	21	STRAIGHT
MOD200B	200	0.11	21	BENT DOWN
MOD200C	200	0.11	21	BENT UP

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Single Die	All Die	Units
Drain-Source Voltage		V _{DS}	200	200	
Gate-Source Voltage		V _{GS}	± 40	± 40	
Continuous Drain Current	T _C = 25°C		21	84	
	T _C = 100°C	- 'D	17	56	
Pulsed Drain Current ¹		IDM	100	360	7 ^
Avalanche Current (see figure 9)	I _A	21	-	
May Daway Discinction	T _C = 25°C	ь	150	400] w
Max. Power Dissipation	T _C = 100°C	P _D	60	160	7 "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		·c
Lead Temperature (1/16" from case for 10 secs.)		TL	300		
Isolation Voltage		V _{ISOL}	1000		V

	Symbol	-	Max.		Units
THERMAL RESISTANCE		Тур.	Single	All	Units
Junction-to-Case	R _{thJC}	-	0.83	0.31	
Junction-to-Ambient	R _{thJA}	-	30	30	K/W
Case-to-Sink	RthCS	0.1		<u>-</u>	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

SINGLE DIE ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μΑ		V(BR)DSS	200	_	_	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA			2.0	-	4.0	•
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt e	I _{DSS}	1 W <u>1</u> 11 11 W	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt s= 0, T _J =125°C	IDSS	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		^I D(on)	21	_	<u>-</u>	A
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 16 A		^r DS(on)	-	0.090	0.11	Q
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 16 A, T _J = 125°C		^r DS(on)	-	0.150	0.175	
Forward Transconductance ² V _{DS} = 15 V, I _D = 16 A		g _{fs}	8.0	13	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	2700	3200	
Output Capacitance	V _{DS} = 25 V	Coss	- -	850	1200	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}		300	500	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg		63	120	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 21 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	14	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	32	_	
Turn-On Delay Time	$V_{DD} = 95 \text{ V}, R_{L} = 6.2 \Omega$	^t d(on)		15	35	
Rise Time	ID~ 16 A , VGEN= 10 V	t _r	-	30	100	ns
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	-	50	125	
Fall Time	independent of operating temperature)	t _f	-	20	100	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	1 _S	_	<u>-</u>	21	
Pulsed Current ¹	I _{SM}	-		100	A
Forward Voltage ² F= _S , V _{GS} =0	V _{SD}	-	_	2.5	٧
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	- -	150	<u>-</u>	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS	Q _{rr}	-	0.5	_	μC

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

² Pulse test: Pulse width \leq 300 μsec, Duty Cycle \leq 2%

MOD400A, MOD400B MOD400C

4 N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(ON)} (OHMS)	I _D (AMPS)	LEADFORM OPTION
MOD400A	400	0.35	15	STRAIGHT
MOD400B	400	0.35	15	BENT DOWN
MOD400C	400	0.35	15	BENT UP

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS Drain-Source Voltage Gate-Source Voltage		Symbol	Single Die	All Die	Units
		V _{DS}	400	400	
		V _{GS}	± 40	± 40	7 '
Continuous Drain Current	T _C = 25°C		15	47	
	T _C = 100°C	- 'D	9	30	7
Pulsed Drain Current ¹		I _{DM}	60	190	A .
Avalanche Current (see figure 9)	l _A	15	_	
Mary Davis Disable at lan	T _C = 25°C	В	150	400	
Max. Power Dissipation	T _C = 100°C	P _D	60	160	→ w
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		3404
Lead Temperature (1/16" from case for 10 secs.)		ΤL	300		- °C
Isolation Voltage		V _{ISOL}	1000		V

THERMAL DESIGNANCE	Symbol	ol Typ.	Max.		Haita
THERMAL RESISTANCE			Single	All	Units
Junction-to-Case	RthJC	-	0.83	0.31	
Junction-to-Ambient	R _{thJA}	· -	30	30	K/W
Case-to-Sink	RthCS	0.1	-	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

SINGLE DIE ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA		V(BR)DSS	400	-	-	
Gate Threshold Voltage VDS= VGS , ID= 250 μΑ		V _{GS(th)}	2.0	-	4.0	\ \ \
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	- 12 <u>-</u> - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt Walling Charles (1997) Charles (1997)	IDSS		-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt _S = 0, T _J =125°C	^I DSS		- .	1000	μΑ
On-State Drain Current ² VDS = 10 V, V _{GS} = 10 V		I _D (on)	15	-		А
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 8.0 A		r _{DS(on)}	-	0.22	0.35	
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 8.0 A, T _J = 125°C		r _{DS(on)}	-	0.40	0.62	a
Forward Transconductance ² V _{DS} =15 V, I _D = 8.0 A		g _{fs}	8.0	8.5	_	s(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	2700	3200	
Output Capacitance	V _{DS} = 25 V	Coss	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	450	600	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}		160	200	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg		77	120	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 15 \text{ A}$ (Gate charge is essentially	Q _{gs}	<u>-</u>	14	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}		39		
Turn-On Delay Time	V _{DD} = 180 V , R _L = 25 Ω	^t d(on)	_	14	35	
Rise Time	ID~ 8.0 A , V _{GEN} = 10 V	tr	-	30	65	l ne
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	-	54	150	ns
Fall Time	independent of operating temperature)	t _f	-	15	75	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	¹s	_		15	
Pulsed Current ¹	ISM	-	. –	60	
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	_	-	2.0	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	trr		300	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}		2.0	-	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

² Pulse test: Pulse width \leq 300 μsec, Duty Cycle \leq 2%

MOD500A, MOD500B MOD500C

4 N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(ON)} (OHMS)	i _D (AMPS)	LEADFORM OPTION
MOD500A	500	0.43	13	STRAIGHT
MOD500B	500	0.43	13	BENT DOWN
MOD500C	500	0.43	13	BENT UP

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Single Die	All Die	Units
Drain-Source Voltage		V _{DS}	500	500	V
Gate-Source Voltage		V _{GS}	± 40	± 40	
Continuous Drain Current	T _C = 25°C	. 3	13	41	
	T _C = 100°C	lo l	8	26	
Pulsed Drain Current ¹		I _{DM}	52	164	
Avalanche Current (see figure 9)		¹ I _A	13	en en e <u>e</u> en en e	
Mary Davis Dischartion	T _C = 25°C	В	150	400	
Max. Power Dissipation	T _C = 100°C	P _D	60	160	W
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300		
Isolation Voltage		V _{ISOL}	1000		٧

THERMAL RESISTANCE	Cumbal	Symbol Typ.	Max.		1114
THERWAL RESISTANCE	Symbol		Single	All	Units
Junction-to-Case	R _{th} JC		0.83	0.31	
Junction-to-Ambient	R _{thJA}	<u>-</u>	30	30	K/W
Case-to-Sink	RthCS	0.1			

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

SINGLE DIE ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge	V(BR)DSS	500	-	-	V
Gate Threshold Voltage VDS= VGS , ID = 250 μA		V _{GS(th)}	2.0	-	4.0	v
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS		<u>-</u>	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	DSS	_	_	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt s= 0, T _J =125°C	DSS	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	13	-	-	А
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 7.0 A		r _{DS(on)}	-	0.33	0.43	Ω
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 7.0 A, T _J = 125°C		r _{DS(on)}	-	0.66	0.88] ""
Forward Transconductance ² V _{DS} =15 V, I _D = 7.0 A		g _{fs}	6.0	9.0	-	s(හ)
Input Capacitance	V _{GS} = 0	C _{iss}	-	2700	3200	
Output Capacitance	V _{DS} = 25 V	Coss		410	600	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	140	200	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	; -	75	120	
Gate-Source Charge	V _{GS} = 10 V, I _D = 13 A (Gate charge is essentially	Q _{gs}	_	12	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	35	-	
Turn-On Delay Time	V _{DD} = 210 V, R _L = 30 Ω	^t d(on)	_	13	35	
Rise Time	ID ~ 7.0 A , VGEN= 10 V	tr	-	26	50	l ne
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	_	55	150	ns
Fall Time	independent of operating temperature)	t _f	_	17	70	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	I _S	- -	-	13	
Pulsed Current ¹	I _{SM}	_	-	52	^
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	_	-	2.0	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	300	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Qrr	-	2.0	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

NOS2012L, BSS129 2N7020

N-Channel Depletion Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)	PACKAGE OPTION
NOS2012L	200	12	0.16	TO-92 SM
BSS129	200	12	0.18	TO-92 CD
2N7020	200	12	0.10	TO-206 AC (TO-52)

SM = Standard Mold, CD = Center Drain

3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	NOS2012L	BSS129	2N7020	Units
Drain-Source Voltage		V _{DS}	200	200	200	V
Gate-Source Voltage		V _{GS}	± 30	± 30	± 30	٧
Continuous Drain Current	T _A = 25°C		0.16	0.18	0.10	
	T _A = 100°C	'D	0.10	0.11	0.06	Α
Pulsed Drain Current ¹		IDM	0.64	0.72	0.40	
Power Dissination	T _A = 25°C	В	0.80	1.0	0.30	w
Power Dissipation	T _A = 100°C	P _D	0.32	0.40	0.12	VV
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150			°C
Lead Temperature (1/16" from case	e for 10 secs.)	TL		300		30

THERMAL RESISTANCE	Symbol	TO-92 NOS2012L	TO-92 BSS129	TO-52 2N7020	Units
Junction-to-Ambient	R _{thJA}	156	125	400	°C/W

¹Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = -5 V, I _D = 1 μA	je	V(BR)DSS	200	220	_	v
Gate Source Cutoff Voltage V _{DS} = 160 V, I _D = 10 μA		V _{GS(off)}	-2.5	-3.5	-4.5	
Gate-Body Leakage V _{DS} = 0 V, V _{GS} = ±20 V	a de la companya de	IGSS	-	-	±100	nA
Zero Gate Voltage Drain Currer V _{DS} = 160 V, V _{GS} = -10 V	nt	I _{D(off)}	-	_	1	
Zero Gate Voltage Drain Currer V _{DS} = 160 V, V _{GS} = -10 V, T _J		I _D (off)	-	-	200	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 0 V			0.15	-	-	А
Drain-Source On-State Resista V _{GS} = 0 V, I _D = 100 mA	nce ²	r _{DS(on)}	-	-	12	Q
Drain-Source On-State Resista VGS = 0 V, ID = 100 mA, TJ		r _{DS(on)}	_	_	24	72
Forward Transconductance ² V _{DS} = 10 V , I _D = 100 mA		g _{fs}	-	175	-	mS
Input Capacitance	V _{GS} = -10 V	C _{iss}	-	50	-	
Output Capacitance	V _{DS} = 25 V	Coss		25	-	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	12	-	

TO-92 Only SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (TA= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	ls.	-	_	0.16	A
Pulsed Current ¹	^I SM		_	0.64	A
Forward Voltage ² I _F = I _S = 0.16 A, V _{GS} = 0	V _{SD}	-	-	1.5	٧

 $^{^1}$ Pulse width limited by maximum junction temperature 2 Pulse test: Pulse width $\leq 300~\mu sec,~Duty~Cycle <math display="inline">\leq~2\%$

NOS2406L, 2N7024

N-Channel Depletion Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)	PACKAGE OPTION
NOS2406L	240	6	0.23	TO-92
2N7024	240	6	0.14	TO-206 AC (TO-52)

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	NOS2406L	2N7024	Units
Drain-Source Voltage		V _{DS}	240	240	V
Gate-Source Voltage		V _{GS}	± 30	± 30	•
Continuous Drain Current	T _A = 25°C		0.23	0.14	
	T _A = 100°C	l _D	0.14	0.09	Α
Pulsed Drain Current ¹		I _{DM}	0.92	1.0	
Dawey Dissination	T _A = 25°C	В	0.80	0.3	w
Power Dissipation	T _A = 100°C	PD	0.32	0.12	W-
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C
Lead Temperature (1/16" from case for 10 secs.)		Т	30	00	

THERMAL RESISTANCE	Symbol	TO-92	TO-206	Units
Junction-to-Ambient	R _{thJA}	156	400	°C/W

¹Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = -5 V, I _D = 1 μA	Drain-Source Breakdown Voltage V_{QS} = -5 V, I_{D} = 1 μ A		240	250	-	v
Gate Source Cutoff Voltage VDS = 160 V, ID = 10 µA		V _{GS(off)}	-2.5	-3.5	-4.5	V 12.
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSX		_	±100	nA
Zero Gate Voltage Drain Current VDS = 190 V, VGS = -10 V		I _D (off)	_	_	1	
Zero Gate Voltage Drain Current VDS = 190 V, VGS= -10 V, TJ =125°C		^I D(off)	-	_	200	μА
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 0 V		I _D (on)	0.6	_	-	Α
Drain-Source On-State Resistar VGS = 0 V, ID = 100 mA	nce ²	r _{DS(on)}	-	-	6	Q.
Drain-Source On-State Resista VGS = 0 V, ID = 100 mA, TJ		^r DS(on)	-	-	12	40
Forward Transconductance ² V _{DS} = 10 V , I _D = 100 mA		g _{fs}	100	200	- ·	mS
Input Capacitance	V _{GS} = -10 V	C _{iss}	-	65		
Output Capacitance	V _{DS} = 25 V	Coss	- · · · · ·	18	-	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	6	-	

TO-92 Only SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (TA= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	^I s		-	0.23	
Pulsed Current ¹	Ism	-	-	0.92	A
Forward Voltage ² I _F = I _S = 0.23 A, V _{GS} = 10 V	V _{SD}	-	-	1.5	٧

 $^{^1}$ Pulse width limited by maximum junction temperature 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

SME50N50

N-Channel Enhancement Mode Transistor **PRELIMINARY**

TOP VIEW

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)		
SME50N50	500	0.10	50

High Current Hermetic Package

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	SME50N50	Units
Drain-Source Voltage		V _{DS}	500	V
Gate-Source Voltage		V _{GS}	± 40]
Continuous Drain Current	T _C = 25°C		50	
Continuous Drain Current	T _C = 100°C	- 'D	30	1
Pulsed Drain Current ¹		I _{DM}	200	A
Power Dissipation	T _C = 25°C	D	350	w
Power Dissipation	T _C = 100°C	P _D	140	John Lie
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	-	0.36	
Junction-to-Ambient	R _{thJA}	_	35	K/W
Case-to-Sink	RthCS	0.05	-	

¹Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 1000 μA	ge	V(BR)DSS	500	-	-	V
Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 1000 \mu A$		V _{GS(th)}	2.0	-	4.0	· ·
Gate-Body Leakage V_{DS} = 0, V_{GS} = ±20 V		IGSS	_	-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS, VGS = 0	nt	I _{DSS}	= " '	_	1000	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS, VGS	nt s= 0, T _J =125°C	IDSS	¥. %	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	50	_	-	А
Drain-Source On-State Resista VGS = 10 V, ID = 25 A	nce ²	r _{DS(on)}	-	-	0.10	a.
Drain-Source On-State Resista VGS = 10 V, ID = 25 A, TJ =	ince ² = 125°C	r _{DS(on)}	_	0.16	_] dr
Forward Transconductance ² V _{DS} = 15 V, I _D = 25 A		g _{fs}	-	40	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	15000		
Output Capacitance	V _{DS} = 25 V	Coss	-	1800	- - -	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	590	, -	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	400	- <u>-</u>	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 50 \text{ A}$ (Gate charge is essentially	Q _{gs}		75		nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	150	_	
Turn-On Delay Time	V _{DD} =250 V, R _L = 10 Ω	^t d(on)	· -	85	_	
Rise Time	ID~ 25 A , V _{GEN} = 10 V	t _r	-	50	-	ns
Turn-Off Delay Time	$R_G = 4.7\Omega$ (Switching time is essentially	^t d(off)		360	_	110
Fall Time	independent of operating temperature)	. t _f	_	75	-	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	^I S		-	50	
Pulsed Current ¹	^I SM	-	-	200	A
Forward Voltage ² IF = IS , VGS = 0	V _{SD}	- :	1.4	-	V
Reverse Recovery Time $I_F = I_S$, $dI_F/dt = 100 A/\mu S$	t _{rr}	-	500	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS	Q _{rr}	_	3.0	-	μC

¹Pulse width limited by maximum junction temperature

 $^{^2}$ Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

SME120N20

N-Channel Enhancement Mode Transistor

PRELIMINARY

TOP VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
SME120N20	200	0.020	120

High Current Hermetic Package

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	SME120N20	Units	
Drain-Source Voltage Gate-Source Voltage		V _{DS}	200	V	
		V _{GS}	± 40		
Continuous Drain Current	T _C = 25°C		120		
Continuous Drain Current	T _C = 100°C	l lD	72 72		
Pulsed Drain Current ¹		IDM	450	7 ^	
Davis Disability	T _C = 25°C	Б	350	146	
Power Dissipation	T _C = 100°C	PD	140	W	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C	
Lead Temperature (1/16" from case for 10 secs.)		TL	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	_	0.36	
Junction-to-Ambient	R _{thJA}	_	35	K/W
Case-to-Sink	RthCS	0.05	-	

¹Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage $V_{GS} = 0$, $I_D = 1000 \mu A$	Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 1000 μA		200	_	_	V
Gate Threshold Voltage VDS= VGS, ID = 1000 μA		V _{GS(th)}	2.0	_	4.0	•
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS		-	100	nA
Zero Gate Voltage Drain Curre VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}	- -	-	1000	
Zero Gate Voltage Drain Curre VDS = 0.8 x V(BR)DSS , VGS	nt _S = 0, T _J =125°C	DSS	_	<u>-</u> , -	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	120	_	- :	А
Drain-Source On-State Resista VGS = 10 V, ID = 60 A	ince ²	r _{DS(on)}	-	_	0.020	Ω
Drain-Source On-State Resista $V_{GS} = 10 \text{ V}, I_D = 60 \text{ A}, T_J = 60 \text{ A}$		r _{DS(on)}	-	0.018	-	77
Forward Transconductance ² V _{DS} = 15 V, I _D = 60 A		g _{fs}	-	50	-	s(V)
Input Capacitance	V _{GS} = 0	C _{iss}	_	15000		
Output Capacitance	V _{DS} = 25 V	Coss	-	3000	- ,	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	1500	<u></u>	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} , V _{GS} = 10 V, I _D = 120 A	Qg	-	400	: 2 -	
Gate-Source Charge	(Gate charge is essentially	Q _{gs}	-	75	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	150	-	
Turn-On Delay Time	$V_{DD} = 90 \text{ V} , R_{L} = 1.5 \Omega$	^t d(on)	_	85	-	
Rise Time	ID = 60 A , V _{GEN} = 10 V	t _r	_	50	_	ns
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)		360	_	, 115
Fall Time	independent of operating temperature)	- t _f	-	75	-	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	1 _S	-		200	
Pulsed Current ¹	Ism	-	_	450	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	-	2.0	-	٧
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μs	trr	-	300	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μs	Q _{rr}		2.0	-	μC

¹Pulse width limited by maximum junction temperature

²Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

SML2P20, SML2P15

P-Channel Enhancement Mode Transistors ²

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
SML2P20	200	3.0	1.6
SML2P15	150	4.5	1.3

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

			SM		
PARAMETERS/TEST CONDITIONS		Symbol	2P20	2P15	Units
Drain-Source Voltage		V _{DS}	200	150	V
Gate-Source Voltage		V _{GS}	± 40	± 40	
Continuous Drain Current	T _C = 25°C	1_	1.6	1.3	
	T _C = 100°C	'D	1.0	0.8] A
Pulsed Drain Current ¹		I _{DM}	6.5	5.5	
Avalanche Current (see figure 9)	l _A	1.6	1.3	7
Power Dissipation	T _C = 25°C	P	15	15	w
Tower Dissipation	T _C = 100°C	PD	8	8	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		°c
Lead Temperature (1/16" from case for 10 secs.)		TL	300)	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC} -		8.33	
Junction-to-Ambient	R _{thJA}	_	175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device
Negative signs have been omitted for clarity

	·		Negative signs	nave been onne	tou for clairty	
PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge SML2P20 SML2P15	V _{(BR)DSS}	200 150	1 1	-	V
Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \mu A$		V _{GS(th)}	2.0	-	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-		100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	-	_ '	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS, VGS	nt = 0, T _J =125°C	I _{DSS}	-	-	1000	μА
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	SML2P20 SML2P15	¹ D(on)	1.6 1.3	-	- -	А
Drain-Source On-State Resista VGS = 10 V, ID = 0.8 A	nce ² SML2P20 SML2P15	r _{DS(on)}	-	2.3 3.5	3.0 4.5	_
Drain-Source On-State Resista VGS = 10 V, ID = 0.8 A, TJ =	nce ² SML2P20 125°C SML2P15	r _{DS(on)}		4.0 5.4	5.4 8.1	σ
Forward Transconductance ² V _{DS} = 15 V, I _D = 0.8 A		g _{fs}	0.5	0.8	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	_	170	300	
Output Capacitance	V _{DS} = 25 V	Coss	- :	70	100	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	25	35	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	5.8	11	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 1.6 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	0.9	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	3.2	-	
Turn-On Delay Time	$V_{DD} = 100 \text{ V}, R_L = 120 \Omega$	^t d(on)	-	7.5	15	
Rise Time	ID~ 0.8 A , V _{GEN} = 10 V	tr	-	12	25	
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	-	48	60	ns
Fall Time	independent of operating temperature)	tf	-	28	45	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	SML2P20 SML2P15	^I s	-	-	1.6 1.3	
Pulsed Current ¹	SML2P20 SML2P15	^I SM	-	-	6.5 5.5	A
Forward Voltage ² IF = I _S , V _{GS} = 0	SML2P20 SML2P15	V _{SD}	-	-	5.8 5.5	٧
Reverse Recovery Time I _F = I _S , di _F /dt = 100 A/μS		t _{rr}	-	100	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS	-	Q _{rr}	-	0.36	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^2 \text{Pulse test: Pulse width} \leq 300 \ \mu\text{sec}, \ \text{Duty Cycle} \leq \ 2\%$

SML3P10, SML3P06

P-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
SML3P10	100	1.2	2.6
SML3P06	60	1.6	2.3

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

			SN		
PARAMETERS/TEST CONDITIONS		Symbol	3P10	3P06	Units
Drain-Source Voltage	4	V _{DS}	100	60	V
Gate-Source Voltage		V _{GS}	± 40	± 40	7 ·
Continuous Drain Current	T _C = 25°C		2.6	2.3	
	T _C = 100°C	'D	1.6	1.5] A
Pulsed Drain Current ¹		IDM	10	9.0	7 ^
Avalanche Current (see figure 9)	l _A	2.6	2.3	
Power Dissipation	T _C = 25°C	D	15	15	l w
Power Dissipation	T _C = 100°C	- P _D	6	6	7 "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		·c
Lead Temperature (1/16" from case for 10 secs.)		TL	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	_	8.33	12.014
Junction-to-Ambient	R _{thJA}	-	175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

ELLOTTIONE OTHER TOTAL TO		· ·		Negative signs have been omit		ted for clarity	
PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units	
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge SML3P10 SML3P06	V(BR)DSS	100 60	-	-	V	
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	-	4.0	V	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V	William Control	IGSS	, -	- * **	100	nA	
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}			250		
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt = 0, T _J =125°C	IDSS	-	-	1000	μΑ	
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	SML3P10 SML3P06	I _{D(on)}	2.6 2.3	-	- -	Α	
Drain-Source On-State Resista VGS = 10 V, ID = 1.5 A	nce ² SML3P10 SML3P06	r _{DS(on)}	-	1.0 1.2	1.2 1.6	ç	
Drain-Source On-State Resista VGS = 10 V, ID = 1.5 A, TJ =		r _{DS(on)}	-	1.6 2.0	2.0 2.6	ďν	
Forward Transconductance ² V _{DS} = 15 V, I _D = 1.5 A		g _{fs}	0.5	0.9	-	s(V)	
Input Capacitance	V _{GS} = 0	Ciss	. - . 1	150	250	2.4	
Output Capacitance	V _{DS} = 25 V	Coss	, n=	65	120	pF	
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	25	45		
Total Gate Charge	V _{DS} = 0.5 x V _(BR) DSS,	Qg	-	6.6	11		
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 2.6 \text{ A}$ (Gate charge is essentially	Q _{gs}	=	1.5	_	nC	
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	3.8	-	 15	
Turn-On Delay Time	$V_{DD} = 50 \text{ V}$, $R_L = 33 \Omega$	^t d(on)	-	7	30		
Rise Time	ID~ 1.5 A , V _{GEN} = 10 V	tr	-	42	60	ns	
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	-	40	60	115	
Fall Time	independent of operating temperature)	. t _f	_	55	75		

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	SML3P10 SML3P06	l _S	-	-	2.6 2.3	
Pulsed Current ¹	SML3P10 SML3P06	Ism			10 9.0	A
Forward Voltage ² IF = I _S , V _{GS} = 0	SML3P10 SML3P06	V _{SD}	-	-	5.5 5.3	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS	W	t _{rr}		70 ***	_	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	-	0.20	_	μС

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

² Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

SMM11P20 SMM9P15

P-Channel Enhancement Mode Transistors²

BOTTOM VIEW

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)	
SMM11P20	200	0.50	. 11	
SMM9P15	150	0.70	9.0	

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS			SMIN		
		Symbol	11P20	9P15	Units
Drain-Source Voltage	i va	V _{DS}	200	150	V
Gate-Source Voltage	:	V _{GS}	± 40	± 40] · · · · · · · · · · · · · · · · · · ·
Continuous Drain Current	T _C = 25°C		11	9.0	
	T _C = 100°C	l _D	7.0	5.6	
Pulsed Drain Current ¹		I _{DM}	44	36	7 ^
Avalanche Current (see figure 9)		I _A	11.	9.0	130
Power Dissipation	T _C = 25°C	P	125	125	Jw
rower dissipation	T _C = 100°C	P _D	50	50	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		°c
Lead Temperature (1/16" from case	for 10 secs.)	TL	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}		1.0	
Junction-to-Ambient	R _{thJA}	_	30	K/W
Case-to-Sink	R _{thCS}	0.1	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

ELECTRICAL CHARACTERISTICS (1)-25 Sumos officials follows				Negative signs have been omitted for clarity		
PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
		V(BR)DSS	200 150	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA	A		2.0	_	4.0	, ·
Gate-Body Leakage VDS = 0, VGS = ±20 V		IGSS			100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	1 t	I _{DSS}	-		250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS, VGS	nt ;= 0, T _J =125°C	IDSS	-	-,	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	SMM11P20 SMM9P15	^I D(on)	11 9.0	-	-	А
Drain-Source On-State Resista VGS = 10 V, ID = 6.0 A	nce ² SMM11P20 SMM9P15	r _{DS(on)}	-	0.28 0.40	0.50 0.70	
Drain-Source On-State Resista VGS = 10 V, ID = 6.0 A, TJ =		r _{DS(on)}	-	0.50 0.72	1.0 1.4	a
Forward Transconductance ² V _{DS} = 15 V, I _D = 6.0 A		g _{fs}	4.0	4.3	-	s(හ)
Input Capacitance	V _{GS} = 0	Ciss	-	1300	1400	
Output Capacitance	V _{DS} = 25 V	Coss	, <u>-</u> -	500	600	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	250	300	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg		55	75	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 11.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	_	9	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	30	-	len i
Turn-On Delay Time	V _{DD} = 100 V , R _L = 15.5 Ω	^t d(on)	-	10	30	
Rise Time	ID~ 6.0 A , V _{GEN} = 10 V	t _r		30	40	
Turn-Off Delay Time	$R_G = 4.7\Omega$ (Switching time is essentially	^t d(off)	-	35	100	ns
Fall Time	independent of operating temperature)	t _f	, –	16	40	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITI	ONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	SMM11P20 SMM9P15	I _S	-		11 9.0	A
Pulsed Current ¹	SMM11P20 SMM9P15	ISM	-		44 36	
Forward Voltage ² IF = I _S , V _{GS} = 0	SMM11P20 SMM9P15	V _{SD}	-	-	2.6 2.4	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	-	200	_	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	_	1.0	-	μС

Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

SMM14N65

N-Channel Enhancement Mode Transistor

BOTTOM VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
SMM14N65	650	0.60	14

TO-204AA (TO-3)

2 GATE 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	SMM14N65	Units	
Drain-Source Voltage		V _{DS}	650	V	
Gate-Source Voltage		V _{GS}	± 40	*	
Continuous Drain Current	T _C = 25°C		14		
Continuous Drain Current	T _C = 100°C	'0	9.0	, A	
Pulsed Drain Current ¹		I _{DM}	56	^	
Avalanche Current (see figure 9)		lΑ	14		
Power Discipation	T _C = 25°C	В	250	w	
Power Dissipation	T _C = 100°C	P _D	100	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C	
Lead Temperature (1/16" from case for 10 secs.)		TL	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	RthJC	<u>-</u>	0.50	
Junction-to-Ambient	R _{thJA}	- ,	30	K/W
Case-to-Sink	RthCS	0.1		

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltaç V _{GS} = 0, I _D = 250 μA	ge	V _{(BR)DSS}	650	-	-	·V
Gate Threshold Voltage VDS= VGS, ID= 1000 μA		V _{GS(th)}	2.0	-	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	<u>-</u>	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	-	_	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS, VGS	nt = 0, T _J =125°C	IDSS	4	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	14	-	-	Α
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 10 A	nce ²	r _{DS(on)}	-	0.44	0.60	v
Drain-Source On-State Resista VGS = 10 V, ID = 10 A, TJ =		r _{DS(on)}	_	0.9	1.20	
Forward Transconductance ² V _{DS} = 15 V, I _D = 10 A		g _{fs}	7.0	8.5	_	s(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	3800	4500	
Output Capacitance	V _{DS} = 25 V	Coss	-	750	1000	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	200	500	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	75	100	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 14 \text{ A}$ (Gate charge is essentially	Q _{gs}		15	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	44	-	
Turn-On Delay Time	$V_{DD} = 325 \text{ V}, R_{L} = 32 \Omega$	^t d(on)	-	34	55	
Rise Time	$I_D = 10 \text{ A}$, $V_{GEN} = 10 \text{ V}$ $R_G = 4.7 \Omega$ (Switching time is essentially)	tr	-	57	85	ns
Turn-Off Delay Time		^t d(off)	- <u>-</u>	120	185	113
Fall Time	independent of operating temperature)	t _f		62	90	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	^I s	· - .	_	14	
Pulsed Current ¹	^I SM		_	56	^
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}		_	1.8	٧
Reverse Recovery Time $I_F = I_S$, $dI_F/dt = 100 A/\mu S$	t _{rr} .	_	300	850	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	-	2.0	_	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq 2\%$

SMM20N50

N-Channel Enhancement Mode Transistor

BOTTOM VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
SMM20N50	500	0.30	20

ABSOLUTE MAXIMUM RATINGS (T_{C} = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS Drain-Source Voltage Gate-Source Voltage		Symbol	SMM20N50	Units
		V _{DS}	500	V
		V _{GS}	± 40	1 '
Continuous Drain Current	T _C = 25°C	- I _D	20	
Continuous Drain Current	T _C = 100°C		12.5	
Pulsed Drain Current ¹		I _{DM}	80	7 ^
Avalanche Current (see figure 9)		l _A	20 20	
Power Dissipation	T _C = 25°C	D	250	w
rower dissipation	T _C = 100°C	PD	100	7 "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	~55 to 150	°c
Lead Temperature (1/16" from ca	se for 10 secs.)	TL	300	7

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC		0.50	
Junction-to-Ambient	R _{thJA}	-	30	K/W
Case-to-Sink	R _{thCS}	0.1	<u>-</u>	* 17 ° 4

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge	V(BR)DSS	500	-	-	v
Gate Threshold Voltage VDS= VGS, ID= 1000 μA		V _{GS(th)}	2.0	2.6	4.0	V
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	1	100	nA
Zero Gate Voltage Drain Curre VDS = V(BR)DSS , VGS = 0	nt	IDSS	. :	-	250	
Zero Gate Voltage Drain Curre VDS = 0.8 x V(BR)DSS , VGS	nt _S = 0, T _J =125°C	I _{DSS}	_	-	1000	μΑ
On-State Drain Current ² VDS = 10 V, VGS = 10 V	ž.	I _D (on)	20	_		Α
Drain-Source On-State Resista VGS = 10 V, I _D = 10 A	ince ²	r _{DS(on)}	_	0.26	0.30	
Drain-Source On-State Resista VGS = 10 V, ID = 10 A, TJ =	Orain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 10 A, T _J = 125°C		-	0.52	0.70	v.
Forward Transconductance ² V _{DS} = 15 V, I _D = 10 A		g _{fs}	8.0	11	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}		3800	4500	
Output Capacitance	V _{DS} = 25 V	C _{oss}	и тур <u>т</u>	750	1000	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	350	500	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	_	70	100	.,
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$ (Gate charge is essentially	Q _{gs}	_	15	- 1 <u>-</u> 2	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	34		
Turn-On Delay Time	V _{DD} = 250 V , R _L = 25 Ω	^t d(on)	-	34	45	
Rise Time	ID~ 10 A , V _{GEN} = 10 V	t _r	_	57	70	
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	_	120	150	ns
Fall Time	independent of operating temperature)	t _f	_	62	75	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	^I s		. —	20	
Pulsed Current ¹	I _{SM}	_		110	^
Forward Voltage ² $I_F = I_S$, $V_{GS} = 0$	V _{SD}	_	_	1.6	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	300	650	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	_	2.0	_	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

SMM20P10 SMM16P06

P-Channel Enhancement Mode Transistors²

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
SMM20P10	100	0.20	20
SMM16P06	60	0.30	16

3 SOURCE

BOTTOM VIEW

TO-204AA (TO-3)

1 DRAIN (CASE 2 GATE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

			SN	/M	
PARAMETERS/TEST CON	DITIONS	Symbol	20P10	16P06	Units
Drain-Source Voltage		V _{DS}	100	60	V
Gate-Source Voltage		V _{GS}	± 40	± 40	ļ.,
Continuous Drain Current	T _C = 25°C		20	16	
	T _C = 100°C	- 'o	13	11] _A
Pulsed Drain Current ¹		IDM	80	64] ^
Avalanche Current (see figure 9)	-	l _A	20	16	1 /2 1
Power Dissipation	T _C = 25°C	ь	125	125	l w
rower dissipation	T _C = 100°C	- P _D	50	50],
Operating Junction & Storage Temps	erature Range	T _J , T _{stg}	-55 to 150		°c
Lead Temperature (1/16" from case	for 10 secs.)	TL	3	00	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	_	1.0	
Junction-to-Ambient	R _{thJA}	-	30	K/W
Case-to-Sink	R _{thCS}	0.1	<u>-</u>	**

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

Negative signs in					100 101 0101111
CONDITIONS	Symbol	Min.	Тур.	Max.	Units
ge SMM20P10 SMM16P06	V _{(BR)DSS}	100 60		<u>-</u>	v
	V _{GS(th)}	2.0	-	4.0	•
	IGSS	1	-	100	nA
nt	I _{DSS}	- -	-	250	
nt = 0, T _J =125°C	I _{DSS}	-		1000	μΑ
SMM20P10 SMM16P06	I _{D(on)}	20 16	-	-	Α
nce ² SMM20P10 SMM16P06	r _{DS(on)}	- -	0.15 0.19	0.20 0.30	S)
nce ² SMM20P10 :125°C SMM16P06	r _{DS(on)}	<u>-</u>	0.24 0.30	0.36 0.54	41
	g _{fs}	4.8	6.7	-	S(ひ)
V _{GS} = 0	C _{iss}	-	1300	1600	
V _{DS} = 25 V	Coss	-	750	850	pF
f = 1 MHz	C _{rss}	-	310	400	1.
V _{DS} = 0.5 x V _(BR) DSS,	Qg	-	47	60	
(Gate charge is essentially	Q _{gs}	-	10	_	nC
independent of operating temperature)	Q _{gd}	-	27	-	
V _{DD} = 40 V, R _L = 4.0 Ω	^t d(on)	-	10	30	
ID= 10 A , V _{GEN} = 10 V	tr	-	50	80	ns
R _G = 4.7 \(\mathcal{L}\) (Switching time is essentially	^t d(off)	. 1	25	80	115
independent of operating temperature)	t _f	-	15	60	
	## SMM20P10 SMM16P06 SMM20P10	SMM20P10 SMM16P06 V(BR)DSS VGS(th)	CONDITIONS Symbol Min. Je	CONDITIONS Symbol Min. Typ.	Symbol Min. Typ. Max.

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	SMM20P10 SMM16P06	¹s	_	-	20 16	
Pulsed Current ¹	SMM20P10 SMM16P06	^I SM	-	=	80 64	A
Forward Voltage ² IF = IS , VGS = 0	SMM20P10 SMM16P06	V _{SD}		-	1.7 1.6	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	-	150	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS		Q _{rr}	-	0.3	-	μC

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

SMM24N40

N-Channel Enhancement Mode Transistor

BOTTOM VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
SMM24N40	400	0.23	24

TO-204AE (TO-3)

2 GATE 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	SMM24N40	Units
Drain-Source Voltage		V _{DS}	400	V
Gate-Source Voltage		V _{GS}	± 40	. V
Continuous Drain Current	T _C = 25°C		24	
Continuous Drain Current	T _C = 100°C	- 'D	15	A
Pulsed Drain Current ¹		I _{DM}	96	^
Avalanche Current (see figure 9)		l _A	24	europe (197
Power Dissipation	T _C = 25°C	D	250	w
Power Dissipation	T _C = 100°C	P _D	100	**
Operating Junction & Storage Tem	Pperating Junction & Storage Temperature Range		-55 to 150	°C
Lead Temperature (1/16" from ca	se for 10 secs.)	TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	_	0.50	
Junction-to-Ambient	R _{thJA}	-	30	K/W
Case-to-Sink	RthCS	0.1	· <u>-</u>	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V_{GS} = 0, I_D = 250 μA		V(BR)DSS	400	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.0	2.6	4.0	\ \ \
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	_		100	nA
Zero Gate Voltage Drain Curre VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS		I _{DSS}	-	. -	1000	μΑ
On-State Drain Current ² VDS = 10 V, V _{GS} = 10 V		I _{D(on)}	24	-		А
Drain-Source On-State Resista VGS = 10 V, I _D = 12 A	in-Source On-State Resistance ² GS = 10 V, I _D = 12 A		_	0.16	0.23	
Drain-Source On-State Resista VGS = 10 V, I _D = 12 A, T _J =		r _{DS(on)}	-	0.32	0.41	v
Forward Transconductance ² V _{DS} = 15 V, I _D = 12 A		g _{fs}	8.0	12.5	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	_	3800	4500	
Output Capacitance	V _{DS} = 25 V	Coss	<u>-</u>	800	1000	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	400	500	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	75	100	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 24 \text{ A}$ (Gate charge is essentially	Q _{gs}	_	15	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	38	-	
Turn-On Delay Time	V_{DD} = 200 V, R_L = 16 Ω	^t d(on)	-	34	45	
Rise Time	ID = 12 A , V _{GEN} = 10 V	t _r	_	60	85	ns
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	-	125	160	119
Fall Time	independent of operating temperature)	t _f	, -	70	80	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	l _s	-	-	24	
Pulsed Current ¹	^I SM	_	-	96	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	_	-	2.0	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	300	650	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μs	Qrr	-	2.0	-	μC

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

SMM40N20

N-Channel Enhancement Mode Transistor

BOTTOM VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
SMM40N20	200	0.060	40

TO-204AE (TO-3)

3 SOURCE

ABSOLUTE MAXIMUM RATINGS (T_{C} = 25°C unless otherwise noted)

				T
PARAMETERS/TEST CONDITIONS		Symbol	SMM40N20	Units
Drain-Source Voltage		V _{DS}	200	V
Gate-Source Voltage		V _{GS}	± 40]
Continuous Drain Current	T _C = 25°C		40	
Continuous Brain Current	T _C = 100°C	l _D	28	
Pulsed Drain Current ¹		1 _{DM}	160] ^ :
Avalanche Current (see figure 9)		l _A	40	l es
Power Dissipation	T _C = 25°C	- P _D	250	w
rower dissipation	T _C = 100°C] 'D	100] "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	_ ·	0.50	
Junction-to-Ambient	R _{thJA}	-	30	K/W
Case-to-Sink	RthCS	0.1	<u>-</u>	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA		V _{(BR)DSS}	200	_	-	v
Gate Threshold Voltage VDS= VGS, ID= 250 μA		V _{GS(th)}	2.0	-	4.0	V
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt .	IDSS	. =	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt _S = 0, T _J =125°C	I _{DSS}	_	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _D (on)	40	-	-	Α
Drain-Source On-State Resista VGS = 10 V, ID = 20 A	nce ²	r _{DS(on)}	-	0.05	0.060	
	Orain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 20 A, T _J = 125°C		-	0.10	0.14	a a
Forward Transconductance ² V _{DS} = 20 V, I _D = 20 A		g _{fs}	8.0	17	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	=	4200	4500	
Output Capacitance	V _{DS} = 25 V	Coss	-	1000	1500	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	400	600	
Total Gate Charge	V _{DS} = 0.5 × V _{(BR)DSS} ,	Qg	-	82	100	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 40 \text{ A}$ (Gate charge is essentially	Qgs	-	18	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	39		
Turn-On Delay Time	V _{DD} = 100 V, R _L = 5Ω	^t d(on)	_	20	45	
Rise Time	ID = 20 A , V _{GEN} = 10 V	t _r	_	55	85	ns
Turn-Off Delay Time	$R_G = 4.7\Omega$ (Switching time is essentially	^t d(off)	-	60	150	""
Fall Time	independent of operating temperature)	t _f	· -	25	80	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	1 _S	_	_	40	
Pulsed Current ¹	^I sm	_	-	160	A
Forward Voltage ² IF = I _S , V _{GS} = 0	V _{SD}	_	_	2.0	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	_	250	650	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	_	2.4	-	μС

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

SMM60N06 SMM60N05

N-Channel Enhancement Mode Transistors

BOTTOM VIEW

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
SMM60N06	60	0.023	60
SMM60N05	50	0.023	60

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS			SM		
		Symbol	60N06	60N05	Units
Drain-Source Voltage		V _{DS}	60	50	
Gate-Source Voltage		V _{GS}	<u>+</u> 40	± 40	7. *
Continuous Drain Current	T _C = 25°C		60	60	
	T _C = 100°C	'D	36	36	7
Pulsed Drain Current ¹	-	IDM	240	240	^
Danier Black attack	T _C = 25°C		150	150	144
Power Dissipation	T _C = 100°C	P _D	60	60	- w
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	RthJC	-	0.83	
Junction-to-Ambient	R _{thJA}	-	30	K/W
Case-to-Sink	R _{thCS}	0.1	_	v e e

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	SMM60N06 SMM60N05	V(BR)DSS	60 50	65 55	-	V
Gate Threshold Voltage VDS = VGS , ID = 1000 μA		V _{GS(th)}	2.0	-	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-		100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	DSS	= .	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt := 0, T _J =125°C	IDSS	-	_	1000	μΑ
On-State Drain Current ² V _{DS} = 2.0 V, V _{GS} = 10 V		I _{D(on)}	60	-	-	А
Drain-Source On-State Resista VGS = 10 V, ID = 30 A	nce ²	r _{DS(on)}	-	0.019	0.023	Q
Drain-Source On-State Resista VGS = 10 V, ID = 30 A, TJ =			_	0.025	0.032	40
Forward Transconductance ² V _{DS} = 25 V, I _D = 30 A		g _{fs}	15	18	-	s(ଫ)
Input Capacitance	V _{GS} = 0	C _{iss}	-	2900	3500	
Output Capacitance	V _{DS} = 25 V	Coss	= :	1500	1600	рF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	500	600	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	65	75	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 60 \text{ A}$ (Gate charge is essentially	Qgs	_ :	15	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	35	-	
Turn-On Delay Time	V _{DD} = 30 V , R _L = 1.0 Ω	^t d(on)	-	20	40	
Rise Time	ID~ 30 A , V _{GEN} = 10 V	t _r	-	25	50	ns
Turn-Off Delay Time	$R_G = 2.5\Omega$ (Switching time is essentially	^t d(off)	-	30	60	110
Fall Time	independent of operating temperature)	t _f	_	20	40	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	1 _S	-	-	60	
Pulsed Current ¹	^I SM	-	-	240	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	_	_	2.5	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	75	100	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	-	0.19	-	μC

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

² Pulse test: Pulse width \leq 300 μsec, Duty Cycle \leq 2%

SMM70N06 SMM70N05

N-Channel Enhancement Mode Transistors

BOTTOM VIEW

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
SMM70N06	60	0.018	70
SMM70N05	50	0.018	70

TO-204AE (TO-3)

1 DRAIN (CASE) 2 GATE

3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS Drain-Source Voltage Gate-Source Voltage			SN		
		Symbol	70N06	70N05	Units
		V _{DS}	60	50	
		V _{GS}	± 40	± 40]
Continuous Drain Current	T _C = 25°C		70	70	
	T _C = 100°C	'D	43	43] _A
Pulsed Drain Current ¹		I _{DM}	280	280] ^
Davies Disabastics	T _C = 25°C	В	250	250	w
Power Dissipation	T _C = 100°C	P _D	100	100	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		°c
Lead Temperature (1/16" from case for 10 secs.)		TL	300]

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	- :	0.50	
Junction-to-Ambient	R _{thJA}	_	30	K/W
Case-to-Sink	R _{thCS}	0.1	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage SMM70N06 V _{GS} = 0, I _D = 250 μA SMM70N05		V(BR)DSS	60 50	65 55	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.0	3.0	4.0	•
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V	<u> </u>	^I GSS	-	V - 2	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS · VGS = 0	nt .	IDSS	- 1	<u>-</u>	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt = 0, T _J =125°C	IDSS	-	<u>-</u> .	1000	μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V		I _{D(on)}	70	-	-	А
Drain-Source On-State Resistance ² VGS = 10 V, I _D = 35 A Drain-Source On-State Resistance ² VGS = 10 V, I _D = 35 A, T _J = 125°C		r _{DS(on)}	· -	0.013	0.018	_
		r _{DS(on)}	_	0.020	0.027	v
Forward Transconductance ² V _{DS} = 15 V, I _D = 35 A		g _{fs}	20	25	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}		4800	5200	£1,
Output Capacitance	V _{DS} = 25 V	Coss	4. 5	2000	2500	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	600	750	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	75	120	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 70 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	17	_	. nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	41	-	1
Turn-On Delay Time	$V_{DD} = 30 \text{ V}, R_{L} = 0.86 \Omega$	t _{d(on)}	<u>-</u>	20	40	
Rise Time	ID~ 35 A , V _{GEN} = 10 V	tr	_	30	60	ns
Turn-Off Delay Time	$R_G = 2.5 \Omega$ (Switching time is essentially	^t d(off)	-	45	90	1115
Fall Time	independent of operating temperature)	t _f	_	22	45	1

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	ls l	_	- ',	70	
Pulsed Current ¹	I _{SM}		-	280	A
Forward Voltage ² $I_F = I_S$, $V_{GS} = 0$	V _{SD}		_	2.5	٧
Reverse Recovery Time $I_F = I_S$, $dI_F/dt = 100 \text{ A}/\mu\text{S}$	t _{rr}	-	80	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Qrr	_	0.2	-	μС

Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Pulse test: Pulse width \leq 300 μsec, Duty Cycle \leq 2%

SMP2P20 SMP2P15

P-Channel Enhancement Mode Transistors 2

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)
SMP2P20	200	3.0	1.75
SMP2P15	150	4.5	1.50

TO-220AB

- 1 GATE
- 2 DRAIN
- 3 SOURCE

TOP VIEW

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

			SN		
PARAMETERS/TEST CONDITIONS		Symbol	2P20	2P15	Units
Drain-Source Voltage Gate-Source Voltage		V _{DS}	200	150	
		V _{GS}	± 40	± 40	
Continuous Drain Current	T _C = 25°C		1.75	1.50	
Continuous Di ain Current	T _C = 100°C	'D	1.1	0.9	
Pulsed Drain Current ¹		I _{DM}	7.0	6.0	一 ^
Avalanche Current (see figure 9)		l _A	1.75	1.50	
Power Dissipation	T _C = 25°C	D	20	20	w
rower dissipation	T _C = 100°C	- PD -	8	8	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to	150	°C
Lead Temperature (1/16" from case	for 10 secs.)	TL	30	0	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	6.4	
Junction-to-Ambient	R _{thJA}	· -	80	K/W
Case-to-Sink	R _{th} Cs	1.0	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

			rvegative signs			
PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage $V_{GS} = 0$, $I_D = 250 \mu A$ SMP2P15		V(BR)DSS	200 150	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	-	4.0	•
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	- -	<u>-</u>	500	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	^I DSS	<u>-</u>	_	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt = 0, T _J =125°C	IDSS	-	_	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	SMP2P20 SMP2P15	I _{D(on)}	1.75 1.50	-	<u>-</u>	А
Drain-Source On-State Resistance ² SMP2P20 VGS = 10 V, ID = 0.9 A SMP2P15 Drain-Source On-State Resistance ² SMP2P20 VGS = 10 V, ID = 0.9 A, TJ = 125°C SMP2P15		r _{DS(on)}	- 1	2.2 3.0	3.0 4.5	0
		r _{DS(on)}	<u>-</u>	4.0 5.4	5.4 8.1	σ
Forward Transconductance ² VDS = 15 V, ID = 0.9 A	,	g _{fs}	0.5	0.8	_	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	27.	170	300	-
Output Capacitance	V _{DS} = 25 V	Coss	-	70	100	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	25	35	
Total Gate Charge	V _{DS} = 0.5 × V _{(BR)DSS} ,	Qg	-	5.8	11	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 1.75 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	0.9		nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	3.2	-	
Turn-On Delay Time	$V_{DD} = 100 \text{ V}, R_{L} = 110 \Omega$	^t d(on)	-	7.5	15	
Rise Time	ID= 0.9 A, VGEN= 10 V	t _r	-	13	25	
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	t _{d(off)}	-	45	60	ns
Fall Time	independent of operating temperature)	tf	-	28	40	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	SMP2P20 SMP2P15	l _s	-	=	1.75 1.5	
Pulsed Current ¹	SMP2P20 SMP2P15	^I SM	-		7.0 6.0	A
Forward Voltage ² IF = IS, VGS = 0	SMP2P20 SMP2P15	V _{SD}	-	-	5.8 5.5	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	:	t _{rr}		100	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS		Q _{rr}	-	0.36	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

FIGURE 11: Normalized Effective Transient Thermal Impedance, Junction-to-Case

PRODUCT SUMMARY

PART NUMBER

SMP3P10

SMP3P06

V_{(BR)DSS}

(VOLTS)

100

60

SMP3P10, SMP3P06

P-Channel Enhancement Mode Transistor ²

TO-220AB

- 2 DRAIN
- 3 SOURCE

TOP VIEW

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

r_{DS(on)}

(OHMS)

1.2

1.6

I D

(AMPS)

3.0

2.5

PARAMETERS/TEST CONDITIONS			SI		
		Symbol	3P10	3P06	Units
Drain-Source Voltage		V _{DS}	100	60	V
Gate-Source Voltage		V _{GS}	±40	±40]
Continuous Drain Current	T _C = 25°C		3.0	2.5	
	T _C = 100°C	'p	2.0	1.5	
Pulsed Drain Current ¹		I _{DM}	12	10	
Avalanche Current (see figure 9)	l _A	3.0	2.5	
Power Dissipation	T _C = 25°C	D	20	20	w
rower dissipation	T _C = 100°C	- P _D -	8	8] "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		-°C
Lead Temperature (1/16" from case for 10 secs.)		TL	30	00	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	_	6.4	
Junction-to-Ambient	R _{thJA}	_	80	K/W
Case-to-Sink	R _{thCs}	1.0	.=	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

						ted for clarity
PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge SMP3P10 SMP3P06	V _{(BR)DSS}	100 60	-	-	V
Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \mu A$		V _{GS(th)}	2.0	-	4.0	
Gate-Body Leakage $V_{DS} = 0$, $V_{GS} = \pm 20$ V		IGSS	-	=	500	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	DSS	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS, VGS	nt ;= 0, T _J =125°C	DSS		_	1000	μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V	SMP3P10 SMP3P06	^I D(on)	3.0 2.5		-	A .
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 1.5 A	nce ² SMP3P10 SMP3P06	r _{DS(on)}	_	1.0 1.3	1.2 1.6	0
Drain-Source On-State Resista VGS = 10 V, ID = 1.5 A, TJ =	nce ² SMP3P10 : 125°C SMP3P06	r _{DS(on)}	-	1.6 2.1	2.0 2.6	Ω.
Forward Transconductance ² V _{DS} = 15 V, I _D = 1.5 A		g _{fs}	0.5	0.9	_	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	150	250	
Output Capacitance	V _{DS} = 25 V	Coss	-	65	120	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	25	45	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	6.6	11	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 3.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	_	1.5	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	3.8	-	
Turn-On Delay Time	V _{DD} = 50 V , R _L = 33 Ω	^t d(on)	-	7	30	
Rise Time	ID~ 1.5 A, V _{GEN} =10 V	t _r	-	45	60	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	t _{d(off)}	-	38	60	113
Fall Time	independent of operating temperature)	t _f	-	55	75	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	SMP3P10 SMP3P06	Is	-	-	3.0 2.5	Α
Pulsed Current ¹	SMP3P10 SMP3P06	I _{SM}	=	-	12 10	A
Forward Voltage ² IF = I _S , V _{GS} = 0	SMP3P10 SMP3P06	V _{SD}	-	_	5.5 5.3	, V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	-	70	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS		Q _{rr}	-	0.20	-	μC

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

SMP11P20 SMP9P15

P-Channel Enhancement Mode Transistors ²

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
SMP11P20	200	0.50	11
SMP9P15	150	0.70	9.0

TO-220AB

- 1 GATE
- 2 DRAIN
- 3 SOURCE

TOP VIEW

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS			SI	MP	
		Symbol	11P20	9P15	Units
Drain-Source Voltage		V _{DS}	200	150	
Gate-Source Voltage	Gate-Source Voltage		± 40	± 40]
Continuous Drain Current	T _C = 25°C		11	9.0	
Continuodo Di am Current	T _C = 100°C	'D	7.0	5.6	
Pulsed Drain Current ¹		IDM	44	36	A
Avalanche Current (see figure 9)		I _A	11	9.0	
Power Dissipation	T _C = 25°C	P	125	125	w
Fower Dissipation	T _C = 100°C	P _D	50	50] "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C
Lead Temperature (1/16" from case for 10 secs.)		TL	3	00	1 -0

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	And the second s	1.0	- 1
Junction-to-Ambient	R _{thJA}	_	80	K/W
Case-to-Sink	R _{thCS}	1.0	- :	1.1

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

CONDITIONS	Symbol	Min.	Тур.	May	
			· yp.	Max.	Units
SMP11P20 SMP9P15	V(BR)DSS	200 150	-		V
	V _{GS(th)}	2.0	-	4.0	V
	IGSS	-	<u>=</u>	100	nA
	DSS	- -	-	250	
D, TJ =125°C	DSS		-	1000	μΑ
SMP11P20 SMP9P15	I _{D(on)}	11 9.0	-	-	A
92 SMP11P20 SMP9P15	r _{DS(on)}		0.28 0.40	0.50 0.70	
2 SMP11P20 25°C SMP9P15	r _{DS(on)}	-	0.50 0.72	1.0 1.4	Û
	g _{fs}	4.0	4.3	-	S(V)
V _{GS} = 0	C _{iss}	-	1300	1400	
V _{DS} = 25 V	Coss	- -	500	600	pF
f = 1 MHz	C _{rss}	-	250	300	
V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	55	75	
Gate charge is essentially	Q _{gs}	· <u>-</u>	9	-	nC
ndependent of operating emperature)	Q _{gd}	_	30	- :	÷
$_{DD}$ = 100 V , R_{L} = 15.5 Ω	^t d(on)	-	10	30	
= 6.0 A , V _{GEN} = 10 V	tr	-	30	60	ne
_	^t d(off)	-	35	80	ns
dependent of operating mperature)	tf	-	16	40	
	SMP11P20 SMP9P15 SMP11P20 SMP9P15 SMP11P20 SMP9P15 SMP11P20 SMP9P15 SMP1P20 SMP9P15 VGS = 0 VDS = 25 V f = 1 MHz VDS = 0.5 × V(BR)DSS (GS = 10 V, ID = 11.0 A) Gate charge is essentially idependent of operating emperature) DD = 100 V, RL = 15.5 Ω = 6.0 A, VGEN = 10 V G = 4.7 Ω witching time is essentially idependent of operating	VGS(th) IGSS IDSS SMP11P20 SMP9P15 SMP9P15 SMP9P15 SMP9P15 PDS(on) SMP9P15 SMP9P15 VGS = 0 VDS = 25 V f = 1 MHz Crss VDS = 0.5 x V(BR)DSS CGS = 10 V, ID = 11.0 A Gate charge is essentially dependent of operating emperature) DESC SMP9P15 Gate charge is essentially dependent of operating emperature) DESC SMP9P15 Coss Coss	VGS(th) 2.0	VGS(th) 2.0 -	VGS(th) 2.0 - 4.0 IGSS - - 100 IDSS - - 250 IDSS - - 1000 SMP11P20 SMP9P15 ID(on) 9.0 - - 2 SMP11P20 SMP9P15 TDS(on) - 0.28 0.40 0.50 0.70 1.0 0.70 3°C SMP9P15 TDS(on) - 0.50 0.72 1.4 4.0 4.3 - 0.72 1.4 9fs 4.0 4.3 - VGS = 0 Ciss - 1300 1400 VDS = 25 V Coss - 500 600 Crss - 250 300 VDS = 0.5 x V(BR)DSS· VGS = 10 V, ID = 11.0 A Gate charge is essentially dependent of operating emperature) Qg - 55 75 Qgd - 30 - - - - - ID = 100 V , R _L = 15.5 Ω td(on) - 10 30 - <t< td=""></t<>

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (TJ = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITION	IS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	SMP11P20 SMP9P15	^I s	=	-	11 9.0	_
Pulsed Current ¹	SMP11P20 SMP9P15	I _{SM}	= :	-	44 36	A
Forward Voltage ² IF = I _S , V _{GS} = 0	SMP11P20 SMP9P15	V _{SD}	_	-	2.6 2.4	V V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	-	200	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS		Q _{rr}	-	1.0	-	μC

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

SMP20P10 SMP16P06

P-Channel Enhancement Mode Transistors²

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	^I D (AMPS)
SMP20P10	100	0.20	20
SMP16P06	60	0.30	16

TO-220AB

- GATE
- 2 DRAIN
- 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

		SN			
PARAMETERS/TEST CONDITIONS		Symbol	20P10	16P06	Units
Drain-Source Voltage		V _{DS}	100	60	
Gate-Source Voltage		V _{GS}	± 40	± 40	7 °
Continuous Drain Current	T _C = 25°C		20	16	
	T _C = 100°C	- 'D -	13	11	
Pulsed Drain Current ¹		I _{DM}	80	64	7 ^
Avalanche Current (see figure 9)	l _A	20	16	
Power Dissipation	T _C = 25°C	P _D	125	125	l w
Tower Dissipation	T _C = 100°C	'D	50	50	7 "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	RthJC	-	1.0	
Junction-to-Ambient	R _{thJA}		30	K/W
Case-to-Sink	R _{thCS}	1.0		

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

			Tregative eight have been difficted for that			
PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		V(BR)DSS	100 60	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	- :	4.0	·
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	1	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS		. <u>2</u> . ∃ 1 €	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ;= 0, T _J =125°C	IDSS .	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	SMP20P10 SMP16P06	I _{D(on)}	20 16	-	-	Α
Drain-Source On-State Resistance ² SMP20P10 VGS = 10 V, ID = 10 A SMP16P06		r _{DS(on)}	-	0.15 0.19	0.20 0.30	
Drain-Source On-State Resistance 2 SMP20P10 VGS = 10 V, ID = 10 A, TJ = 125°C SMP16P06		r _{DS(on)}	-	0.24 0.30	0.30 0.46	σ
Forward Transconductance ² VDS = 15 V, ID = 10 A		g _{fs}	4.8	6.7	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}		1300	1600	
Output Capacitance	V _{DS} = 25 V	Coss	·	750	850	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	- -	310	400	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	, -	47	60	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	10	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	27	-	
Turn-On Delay Time	V _{DD} = 40 V , R _L = 4.0 Ω	^t d(on)	_	10	30	
Rise Time	ID = 10 A , V _{GEN} = 10 V	tr		50	80	
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	-	25	80	ns
Fall Time	independent of operating temperature)	t _f	-	15	60	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (TJ = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	}	Symbol	Min.	Тур.	Max.	Units
Continuous Current	SMP20P10 SMP16P06	I _S		-	20 16	
Pulsed Current ¹	SMP20P10 SMP16P06	^I SM		-	80 64	^
Forward Voltage ² I _F = I _S , V _{GS} = 0	SMP20P10 SMP16P06	V _{SD}	, = -		1.70 1.60	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	-	150	-	ns
Reverse Recovered Charge IF = IS, diF/dt = 100 A/μS		Q _{rr}	-	0.3	-	μC

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq 2\%$

SMP25N06 SMP25N05

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
SMP25N06	60	0.060	25
SMP25N05	50	0.060	25

2 DRAIN 3 SOURCE TOP VIEW

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

			SI			
PARAMETERS/TEST CONDITIONS		Symbol	25N06	25N05	Units	
Drain-Source Voltage		V _{DS}	60	50	· V	
Gate-Source Voltage		V _{GS}	± 40	± 40	, v	
Continuous Drain Current	T _C = 25°C		25	25		
	T _C = 100°C	- 1 _D	16	16	A	
Pulsed Drain Current ¹		I _{DM}	100	100		
Dower Discipation	T _C = 25°C	В	85	85		
Power Dissipation	T _C = 100°C	P _D	34	34	W	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C	
Lead Temperature (1/16" from case for 10 secs.)		TL	300			

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	<u>-</u>	1.47	
Junction-to-Ambient	R _{thJA}	-	80	K/W
Case-to-Sink	R _{thCS}	1.0	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge SMP25N06 SMP25N05	V(BR)DSS	60 50	65 60	_	V
Gate Threshold Voltage VDS= VGS, ID = 1000 μA		V _{GS(th)}	2.0	3.3	4.0	V
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-		100	nA
Zero Gate Voltage Drain Currel VDS = V(BR)DSS , VGS = 0	nt .	I _{DSS}	- ** *		250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS		IDSS	-	-	1000	μΑ
On-State Drain Current ² VDS = 5 V, VGS = 10 V	SMP25N06 SMP25N05	I _{D(on)}	25 25	35 35		А
Drain-Source On-State Resistance ² SMP25N06 V _{GS} = 10 V, I _D = 12.5 A SMP25N05		r _{DS(on)}	-	0.05 0.05	0.060 0.060	Ω
Drain-Source On-State Resistance 2 SMP25N06 VGS = 10 V, ID = 12.5 A, TJ = 125°C SMP25N05		r _{DS(on)}	-	0.08 0.08	0.11 0.11	42
Forward Transconductance ² V _{DS} = 15 V, I _D = 12.5 A		g _{fs}	5.0	9.0	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	- : :	1020	1400	
Output Capacitance	V _{DS} = 25 V	Coss	-	500	900	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	120	400	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} , V _{GS} = 10 V, I _D = 25 A	Qg	-	28	40	
Gate-Source Charge	(Gate charge is essentially	Q _{gs}	-	8	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	15	-	
Turn-On Delay Time	V _{DD} = 30 V, R _L = 2.4 Ω	^t d(on)	_	15	50	
Rise Time	ID=12.5 A, V _{GEN} = 10 V	t _r	_	20	75	ns
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	_	25	50	1113
Fall Time	independent of operating temperature)	. t _f	-	15	50	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	SMP25N06 SMP25N05	I _S	_	-	25 25	
Pulsed Current ¹	SMP25N06 SMP25N05	^I SM		-	100 100	A
Forward Voltage ² IF = IS, VGS = 0	SMP25N06 SMP25N05	V _{SD}	=	1.25 1.25	2.4 2.4	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS		t _{rr}	_	100	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS		Q _{rr}	_	0.15	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

SMP60N06, 60N05 SMP50N06, 50N05

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

and the second second	and the second of the second o		
PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
SMP60N06	60	0.023	60
SMP60N05	50	0.023	60
SMP50N06	60	0.028	50
SMP50N05	50	0.028	50

- 1 GATE
- 2 DRAIN 3 SOURCE

TOP VIEW

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

	T	SMP				Units	
PARAMETERS/TEST CONDITIONS		Symbol	60N06	60N05	50N06	50N05	Units
Drain-Source Voltage		V _{DS}	60	50	60	50	V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	·
Continuous Drain Current	T _C = 25°C		60	60	50	50	_
Continuous Drain Current	T _C = 100°C	'D	38	38	31	31	A
Pulsed Drain Current ¹		I _{DM}	240	240	200	200	A A
Power Dissipation	T _C = 25°C	В	125	125	125	125	w
Fower Dissipation	T _C = 100°C	P _D	50	50	50	50	VV
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150			°C	
Lead Temperature (1/16" from case for 10 secs.)		TL	300				

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	1.0	
Junction-to-Ambient	R _{thJA}		80	K/W
Case-to-Sink	R _{thCS}	1.0	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	Drain-Source Breakdown Voltage SMP60N06,50N06 V _{GS} = 0, I _D = 250 μA SMP60N05,50N05		60 50	65 55	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.0	-	4.0	V
Gate-Body Leakage $V_{DS} = 0$, $V_{GS} = \pm 20$ V	9	IGSS	_	10	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt .	IDSS	_		250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	Zero Gate Voltage Drain Current VDS = 0.8 x V(BR)DSS , VGS= 0, TJ =125°C		-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 25 V, V _{GS} = 10 V	SMP60N06,60N05 SMP50N06,50N05	I _{D(on)}	60 50	1 =	-	А
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		r _{DS(on)}	= ''	0.019 0.023	0.023 0.028	
		r _{DS(on)}	-	0.025 0.030	0.030 0.036	- a
Forward Transconductance ² V _{DS} = 25 V, I _D = 30 A		g _{fs}	15	18	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	2900	3500	
Output Capacitance	V _{DS} = 25 V	Coss		1500	1600	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	si ei e e e e -	500	600	
Total Gate Charge	V _{DS} = 0.5 x V _(BR) DSS	Qg	_	65	75	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 60 \text{ A}$ (Gate charge is essentially	Q _{gs}	_	15	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	35	_	
Turn-On Delay Time	V _{DD} = 30 V, R _L = 1.0 Ω	^t d(on)	-	20	40	
Rise Time	ID~ 30 A , VGEN= 10 V	t _r	-	25	50	ns
Turn-Off Delay Time	$R_G = 2.5\Omega$ (Switching time is essentially	^t d(off)	_	30	60	1 113
Fall Time	independent of operating temperature)	t _f	· _	20	40	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST C	ONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	SMP60N06,60N05 SMP50N06,50N05	l _S	- -		60 50	
Pulsed Current ¹	SMP60N06,60N05 SMP50N06,50N05	^I SM	-	_	190 190	^
Forward Voltage ² IF = I _S , V _{GS} = 0	SMP60N06,60N05 SMP50N06,50N05	V _{SD}	-	-	2.5 2.4	· V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	<u>-</u>	75	100	ns
Reverse Recovered Charge IF = Is, dIF/dt = 100 A/µs		Q _{rr}	-	0.19	-	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

² Pulse test: Pulse width \leq 300 μsec, Duty Cycle \leq 2%

SMV1P10, SMV1P06

P-Channel Enhancement Mode Transistors²

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)
SMV1P10	100	1.2	0.70
SMV1P06	60	1.6	0.60

4-PIN DIP (Similar to TO-250)

1 GATE 2 SOURCE 3 DRAIN

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

DADAMETERS/TEST COMPITIONS			SI	Units	
PARAMETERS/TEST COM	IDITIONS	Symbol	1P10	1P06	Onits
Drain-Source Voltage		V _{DS}	100	60	٧
Gate-Source Voltage		V _{GS}	± 40	± 40	. *
Continuous Drain Current	T _A = 25°C		0.70	0.60	1
	T _A = 100°C	l o	0.44	0.34	A
Pulsed Drain Current ¹		1 _{DM}	3.0	2.5	A
Avalanche Current (see figure 9)		I _A	0.70	0.60	
Power Dissipation	T _A = 25°C	Pn	1	1	w
Power Dissipation	T _A = 100°C] 'D	0.4	0.4	**
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C
Lead Temperature (1/16" from case	for 10 secs.)	TL	,,,, 3	00	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Ambient	R _{thJA}	-	120	K/W

¹Pulse width limited by maximum junction temperature

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

LECTRICAL CHARACTERISTICS (1)-23 5 dilles vise noted)				Negative signs	tted for clarit	
PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage SMV1P10 V_{QS} = 0, I_{D} = 250 μ A SMV1P06 Gate Threshold Voltage V_{DS} = V_{QS} , I_{D} = 250 μ A		V _{(BR)DSS}	100 60	=	-	v
		V _{GS(th)}	2.0	_	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS		- h	500	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	1 _{DSS}	-	_	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS, VGS	nt s= 0, T _J =125°C	IDSS	- -	- :	1000	μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V	SMV1P10 SMV1P06	I _{D(on)}	0.70 0.60	-	-	А
Drain-Source On-State Resista VGS = 10 V, I _D = 0.3 A	nce ² SMV1P10 SMV1P06	r _{DS(on)}	-	1.0 1.2	1.2 1.6	S.
Orain-Source On-State Resistance 2 SMV1P10 VGS = 10 V, ID = 0.3 A, TJ = 125°C SMV1P06		r _{DS(on)}	= -	1.6 2.0	2.0 2.6	1 4
Forward Transconductance ² V _{DS} = 15 V, I _D = 0.3 A		g _{fs}	0.3	0.5	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	150	250	
Output Capacitance	V _{DS} = 25 V	Coss	_	65	120	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	25	45	
Total Gate Charge	V _{DS} = 0.8 × V _{(BR)DSS} ,	Qg	_	6.0	15	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 0.70 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	1.0	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	3.5	-	
Turn-On Delay Time	$V_{DD} = 40 \text{ V}$, $R_L = 130 \Omega$	^t d(on)	-	7	30	
Rise Time	ID~ 0.3 A , VGEN= 10 V	tr	-	45	60	l ne
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	_	38	60	ns
Fall Time	independent of operating temperature)	. t _f	_	55	75	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	SMV1P10 SMV1P06	¹s	_	-	0.7 0.6	
Pulsed Current ¹	SMV1P10 SMV1P06	ISM	- -	-	3.0 2.5	A
Forward Voltage ² IF = I _S , V _{GS} = 0	SMV1P10 SMV1P06	V _{SD}	-	-	5.5 5.3	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	-	70	_	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS		Q _{rr}	-	0.20	1	μC

¹ Pulse width limited by maximum junction temperature

 $^{^2}$ Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

SMV1P20, SMV1P15

P-Channel Enhancement Mode Transistors²

PRODUCT SUMMARY

PART NUMBER					I _D (AMPS)
SMV1P20	200	3.0	0.40		
SMV1P15	150	4.5	0.30		

4-PIN DIP (Similar to TO-250)

1 GATE 2 SOURCE 3 DRAIN

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

		Symbol	SIV	Units	
PARAMETERS/TEST (PARAMETERS/TEST CONDITIONS		1P20	1P15	Units
Drain-Source Voltage		V _{DS}	200	150	
Gate-Source Voltage	<u> </u>		± 40	± 40	7
Continuous Drain Current	T _A = 25°C		0.40	0.30	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	T _A = 100°C	'p	0.25	0.20	
Pulsed Drain Current ¹		I _{DM}	1.6	1.2	7 ^
Avalanche Current (see figure 9		l _A	0.40	0.30	
Power Dissipation	T _A = 25°C	P	1.0	1.0	w
rower bissipation	T _A = 100°C	- P _D -	0.4	0.4	7 "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C
Lead Temperature (1/16" from ca	ase for 10 secs.)	TL	300		7 ~

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Ambient	R _{thJA}	-	120	K/W

¹Pulse width limited by maximum junction temperature

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

	E CONDITIONS			Negative signs		
PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage SMV1P20 $V_{GS} = 0$, $I_{D} = 250 \mu A$ SMV1P15 Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$		V(BR)DSS	200 150	-	-	\ \ \
		V _{GS(th)}	2.0	-	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	_	-	500	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS, VGS = 0	nt	DSS	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt s= 0, T _J =125°C	^I DSS	-	_	1000	μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V	SMV1P20 SMV1P15	^I D(on)	0.40 0.30		-	А
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 0.3 A	nce ² SMV1P20 SMV1P15	r _{DS(on)}	-	2.2 3.5	3.0 4.5	_
Drain-Source On-State Resistance 2 SMV1P20 VGS = 10 V, ID = 0.3 A, TJ = 125°C SMV1P15		r _{DS(on)}	-	4.0 5.4	5.4 8.1	v
Forward Transconductance ² V _{DS} = 15 V, I _D = 0.3 A		g _{fs}	0.3	0.6	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	180	300	
Output Capacitance	V _{DS} = 25 V	Coss	_	70	100	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	25	35	
Total Gate Charge	V _{DS} = 0.8 x V _{(BR)DSS} ,	Qg	=	5.0	11	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 0.40 \text{ A}$ (Gate charge is essentially	Q _{gs}	<u>-</u>	0.8	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	3.0	- <u>-</u>	
Turn-On Delay Time	$V_{DD} = 100 \text{ V}, R_{L} = 330 \Omega$	^t d(on)	_	7.5	15	
Rise Time	ID~ 0.3 A , V _{GEN} = 10 V	t _r	-	13	25	
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	_	45	60	ns
Fall Time	independent of operating temperature)	t _f	-	28	45	1

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	3	Symbol	Min.	Тур.	Max.	Units
Continuous Current	SMV1P20 SMV1P15	l _S	-	-	0.4 0.3	
Pulsed Current ¹	SMV1P20 SMV1P15	¹ SM	-	=	1.6 1.2	A
Forward Voltage ² IF = I _S , V _{GS} = 0	SMV1P20 SMV1P15	V _{SD}	-	=	5.8 5.5	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	_	100	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS		Q _{rr}	_	0.36	-	μС

¹Pulse width limited by maximum junction temperature

 $^{^2}$ Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

VN0606L, VN0606M BSR66

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)	PACKAGE OPTION
VN0606L	60	3	0.33	TO-92
VN0606M	60	3	0.37	TO-237
BSR66	60	3	0.37	TO-237

ABSOLUTE MAXIMUM RATINGS (T_A= 25°C unless otherwise noted)

PARAMETERS/TEST C	ONDITIONS	Symbol	VN0606L	VN0606M	BSR66	Units
Drain-Source Voltage		V _{DS}	60	60	60	V
Gate-Source Voltage		V _{GS}	± 30	± 30	± 30]
Continuous Drain Current	T _A = 25°C		0.33	0.37	0.37	
Continuous Drain Current	T _A = 100°C	'D	0.21	0.21	0.21	A
Pulsed Drain Current ¹		I _{DM}	1.6	2.0	2.0	
Bower Dissipation	T _A = 25°C	D	0.80	1.0	1.0	w
Power Dissipation	T _A = 100°C	PD	0.32	0.4	0.4] "
Operating Junction & Storage Temperature Range		T _J , T _{stg}		-55 to 150		°C
Lead Temperature (1/16" from case for 10 secs.)		TL		300		

THERMAL RESISTANCE	Symbol	TO-92	TO-237	Units
Junction-to-Ambient	R _{thJA}	156	125	°C/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (TA= 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 10 μA	ge	V _{(BR)DSS}	60	70	-	٧
Gate Threshold Voltage VDS = VGS , ID = 1 mA		V _{GS(th)}	0.8	1.5	2.0	•
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±15 V		IGSS	- 1	±1	±100	nA
Zero Gate Voltage Drain Currer VDS = 48 V, VGS = 0	nt	IDSS	-	0.05	10	_
Zero Gate Voltage Drain Currer VDS = 48 V, VGS = 0, TJ = 12		IDSS	-	0.3	500	μΑ
On-State Drain Current ² VDS = 10 V, VGS = 10 V		I _{D(on)}	1.5	1.9	_	Α
Drain-Source On-State Resista	nce ²	r _{DS(on)}	-	1.3	3.0	Q.
Drain-Source On-State Resistance ² VGS = 10 V, I _D = 1 A, T _J = 125°C		r _{DS(on)}	-	2.6	5.0	77
Forward Transconductance ² V _{DS} = 10 V , I _D = 0.5 A			170	300	_	mS
Common Source Output Condu VDS = 10 V , ID = 0.1 A	ctance	g _{os}		1100	-	μS
Input Capacitance	V _{GS} = 0	C _{iss}	· -	35	50	
Output Capacitance	V _{DS} = 25 V	Coss	, -	25	40	pF
Reverse Transfer Capacitance	Reverse Transfer Capacitance f = 1 MHz		-	5	10	
Turn-On Time	$V_{DD} = 25 \text{ V}$, $R_{L} = 23 \Omega$ $I_{D} = 1 \text{ A}$, $V_{GEN} = 10 \text{ V}$	t (on)	-	8	10	ns
Turn-Off Time	$R_{G} = 25 \Omega$ (Switching time is essentially independent of operating temperature)	^t (off)	-	9.5	10	ns

TO-92 Only SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_A= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	I _S	-	_	0.33	A
Pulsed Current ¹	Ism	-	-	1.6	
Forward Voltage ² I _F = I _S = 0.33 A, V _{GS} = 0	V _{SD}	-	0.80	1.2	V

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

VN0808L, 2N6661 VN0808M, BSR67

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)	PACKAGE OPTION
VN0808L	80	4	0.29	TO-92
2N6661	90	4	0.28	TO-205 AD
VN0808M	80	4	0.33	TO-237
BSR67	80	4	0.33	TO-237

ABSOLUTE MAXIMUM RATINGS (TA= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	VN 0808L	2N 6661	VN 0808M	BSR 67	Units
Drain-Source Voltage		V _{DS}	80	90	80	80	V
Gate-Source Voltage, Pulsed		V _{GS}	± 40	± 40	±40	± 40	V
Continuous Drain Current	T _A = 25°C		0.29	0.28	0.33	0.33	A
Continuous Drain Current	T _A = 100°C	l _D	0.18	0.18	0.21	0.21	
Pulsed Drain Current ¹		I _{DM}	1.6	3.0	2.0	2.0	
Bawar Dissination	T _A = 25°C	В	0.80	0.73	1.0	1.0	
Power Dissipation	T _A = 100°C	P _D	0.32	0.29	0.4	0.4	W
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-	-55 1	to 150		°C
Lead Temperature (1/16" from case for 10 secs.)		TL		3	00		

THERMAL RESISTANCE	Symbol	TO-92	TO-205	TO-237	Units
Junction-to-Ambient	R _{thJA}	156	170	125	°C/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (TA= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 10 μA	je	V(BR)DSS	80	120	-	V
Gate Threshold Voltage VDS=VGS, ID= 1 mA		V _{GS(th)}	0.8	1.6	2.0	vi ş v
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±15 V		IGSS	. -	±1	±100	nA
Zero Gate Voltage Drain Currel VDS = 64 V, VGS = 0	nt	^I DSS	-	0.05	10	
Zero Gate Voltage Drain Currer VDS = 64 V, VGS= 0, TJ =12		I _{DSS}	_	0.3	500	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	1.5	1.8	-	Α
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 1 A	nce ²	r _{DS(on)}	-	3.6	4	
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 1 A, T _J = 125°C		r _{DS(on)}	_	6.8	8.0	v
Forward Transconductance ² V _{DS} = 10 V , I _D = 0.5 A		g _{fs}	170	350	-	mS
Common Source Output Condu VDS = 10 V , ID = 0.5 A	ctance	g _{os}	7.54	300	· '	μS
Input Capacitance	V _{GS} = 0	C _{iss}	-	37	50	
Output Capacitance	V _{DS} = 25 V	Coss	-	15	40	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	2	10	
Turn-On Time	$V_{DD} = 25 \text{ V}, R_L = 23 \Omega$ $I_D = 1 \text{ A},$ $V_{GEN} = 10 \text{ V}$	t (on)	_	6	10	ns
Turn-Off Time	$R_G = 25 \Omega$ (Switching time is essentially independent of operating temperature)	t(off)	-	8	10	113

TO-92 Only SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (TA = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	l _s	_	-	0.29	
Pulsed Current ¹	^I SM	-	-	1.6	^
Forward Voltage ² I _F = I _S = 0.29 A, V _{GS} = 0	V _{SD}	-	0.8	1.2	V

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width \leq 300 μsec , Duty Cycle $\leq~2\%$

4-445

VN10KM, VN0610L VN10KE

N-Channel Enhancement Mode Transistors Zener Diode Protected Gate

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)	PACKAGE OPTION
VN10KM	60	5	0.31	TO-237
VN0610L	60	5	0.27	TO-92
VN10KE	60	5	0.17	.TO-206 AC

ABSOLUTE MAXIMUM RATINGS (TA= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	VN10KM	VN0610L	VN10KE	Units
Drain-Source Voltage		V _{DS}	60	60	60	V
Gate-Source Voltage		V _{GS}	+15,-0.3	+15,-0.3	+15,-0.3	V
Continuous Drain Current	T _A = 25°C	I _D	0.31	0.27	0.17	Α
	T _A = 100°C		0.20	0.17	0.11	
Pulsed Drain Current ¹		IDM	1.0	1.0	1.0	
Power Dissipation	T _A = 25°C	P _D	1.0	0.80	0.30	w
	T _A = 100°C		0.4	0.32	0.12	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150			°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300			

THERMAL RESISTANCE	Symbol	TO-237	TO-92	TO-206	Units
Junction-to-Ambient	R _{thJA}	125	156	400	°C/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (TA= 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V_{GS} = 0, I_D = 100 μ A		V _{(BR)DSS}	60	120	-	v
Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 1$ mA		V _{GS(th)}	0.8	1.5	2.5	'
Gate-Body Leakage V _{DS} = 0, V _{GS} = 15 V		I _{GSS}	-	1	100	nA
Zero Gate Voltage Drain Curre VDS = 45 V, VGS = 0	nt	I _{DSS}	-	1.0	10	μА
On-State Drain Current ² VDS = 10 V, VGS = 10 V		l _D (on)	0.75	1.5	_	Α
Drain-Source On-State Resista V _{GS} = 5 V, I _D = 0.2 A	nce ²	r _{DS(on)}	_	3.8	7.5	ω
Drain-Source On-State Resista VGS = 10 V, ID = 0.5 A	nce ²	r _{DS(on)}	-	3.0	5.0	
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 0.5 A, T _J =125°C		r _{DS(on)}	_	7.0	12	
Forward Transconductance ² V _{DS} = 10 V , I _D = 0.5 A		g _{fs}	100	300	-	ms
Common Source Output Conductance V _{DS} =10 V , I _D = 0.5 A		g _{os}	. -	950	-	μS
Input Capacitance	V _{GS} = 0	C _{iss}	-	35	60	
Output Capacitance	V _{DS} = 25 V	Coss	= .	15	25	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	1.5	5	
Turn-On Time	$V_{DD} = 15 \text{ V}$, $R_{L} = 23 \Omega$ $I_{D} = 0.6 \text{ A}$, $V_{GEN} = 10 \text{ V}$	^t (on)	<u>-</u>	7	10	ns
Turn-Off Time	$R_G = 25 \Omega$ (Switching time is essentially independent of operating temperature)	^t (off)	-	7	10	113

TO-92 Only SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_A= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units	
Continuous Current	l _S	-	-	0.31	_	
Pulsed Current ¹	^I SM	_	_	1.0	A	
Forward Voltage ² I _F = I _S = 0.31 A, V _{GS} = 0	V _{SD}	-	0.85	1.5	٧	

 $[\]frac{1}{2}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

VN2010L

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D	PACKAGE
NUMBER	(VOLTS)	(OHMS)	(AMPS)	OPTION
VN2010L	200	10	0.19	TO-92

ABSOLUTE MAXIMUM RATINGS (TA= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	VN2010L	Units
Drain-Source Voltage		V _{DS}	200	V
Gate-Source Voltage		V _{GS}	± 30	· ·
Continuous Drain Current	T _A = 25°C		0.19	
Continuous Brain Current	T _A = 100°C	'p	0.12	Α
Pulsed Drain Current ¹		IDM	0.80	~ .
Pawer Dissipation	T _A = 25°C	В	0.80	w
Power Dissipation	T _A = 100°C	- P _D	0.32	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300	

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	TO-92	Units
Junction-to-Ambient	RthJA	156	°C/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (TA= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 100 μA		V(BR)DSS	200	220	-	V
Gate Threshold Voltage VDS = VGS , ID = 1 mA		V _{GS(th)}	0.8	1.4	1.8	. 1 .49
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V			-	±1	±10	nA
Zero Gate Voltage Drain Curre V _{DS} = 160 V, V _{GS} = 0	nt	IDSS	-	0.04	10	
Zero Gate Voltage Drain Curre V _{DS} = 160 V, V _{GS} = 0, T _J =		DSS	-	20	100	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	0.1	-	-	Α
Drain-Source On-State Resistance ² V _{GS} = 4.5 V, I _D =50 mA		r _{DS(on)}	_	6	10	
Drain-Source On-State Resistance ² V _{GS} = 4.5 V, I _D = 50 mA, T _J = 125°C		r _{DS(on)}	-	14	20	v.
Forward Transconductance ² V _{DS} = 15 V , I _D = 100 mA		g _{fs}	125	140	-	mS
Common Source Output Condu V _{DS} = 15 V , I _D = 100 mA	ictance	g _{os}	-	250	<u>-</u>	μS
Input Capacitance	V _{GS} = 0	C _{iss}	-	35	60	
Output Capacitance	V _{DS} = 25 V	Coss	- -	10	30	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	1.0	15	
Turn-On Time	$V_{DD} = 25 \text{ V}$, $R_L = 250 \Omega$ $I_D = 100 \text{ mA}$, $V_{GEN} = 10 \text{ V}$	^t (on)	<u>-</u> .	12	20	ns
Turn-Off Time	$R_G = 25 \Omega$ (Switching time is essentially independent of operating temperature)	^t (off)	-	20	30	113

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (TA= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	l's	-	-	0.19	
Pulsed Current ¹	^I SM	-	-	0.8	^
Forward Voltage ² I _F = I _S = 0.19 A, V _{GS} = 0	V _{SD}	-	0.8	1.2	V

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width \leq 300 μsec , Duty Cycle $\leq~2\%$

FIGURE 11: Normalized Effective Transient Thermal Impedance, Junction-to-Ambient (TO-92)

THE WATTER

1 Duty cycles 0.5:

0.1

0.005

0.002

10-4

SQUARE WAVE PULSE DURATION (sec)

VN2406L, VN2410L BSR76, VN2410M

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)	PACKAGE OPTION
VN2406L	240	6	0.22	TO-92
VN2410L	240	10	0.18	TO-92
BSR76	240	10	0.20	TO-237
VN2410M	240	10	0.20	TO-237

ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	VN 2406L	VN 2410L	BSR 76	VN 2410M	Units
Drain-Source Voltage		V _{DS}	240	240	240	240	V
Gate-Source Voltage, Pulsed		V _{GS}	± 30	± 30	± 30	± 30	*
Continuous Drain Current	T _A = 25°C	l _D	0.22	0.18	0.20	0.20	-
	T _A = 100°C		0.14	0.11	0.13	0.13	A .
Pulsed Drain Current ¹		IDM	0.60	0.47	0.54	0.54	
Power Discination	T _A = 25°C	В	0.80	0.80	1.0	1.0	
Power Dissipation	T _A = 100°C	P _D	0.32	0.32	0.4	0.4	W
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				• °C
Lead Temperature (1/16" from case for 10 secs.)		TL	2.0	30	00		

THERMAL RESISTANCE RATINGS

TI	HERMAL RESISTANCE	Symbol	TO-92	TO-237	Units
Junction-to-Amb	ient	R _{thJA}	156	125	°C/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 100 μA		V(BR)DSS	240	260	-	V
Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 1$ mA		V _{GS(th)}	0.8	1.5	2.0	V
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±15 V	•	IGSS		±1	±100	nA
Zero Gate Voltage Drain Currel VDS = 120 V, VGS = 0	nt	IDSS	-	0.03	10	
Zero Gate Voltage Drain Currer V _{DS} = 120 V, V _{GS} = 0, T _J =1		IDSS	-	1.0	500	μΑ
On-State Drain Current ² V _{DS} = 15 V, V _{GS} = 10 V		I _{D(on)}	1	1.5	-	А
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 0.5 A		r _{DS(on)}	-	4.2	6	
Drain-Source On-State Resistance ² V _{GS} = 2.5 V, I _D = 100 mA		r _{DS(on)}	-	8	10	a
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 0.5 A, T		r _{DS(on)}	_	12.2	14.8	
Forward Transconductance 2 VDS = 10 V , ID = 0.5 A		g _{fs}	300	500	-	mS
Common Source Output Condu VDS = 10 V , ID = 0.5 A	ctance	g _{os}	=.	475	-	μS
Input Capacitance	V _{GS} = 0	C _{iss}	_	110	125	
Output Capacitance	V _{DS} = 25 V	Coss	_	30	50	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	5	20	
Turn-On Delay Time	V _{DD} = 60 V , R _L = 150 Ω	^t d(on)	_	5	8	
Rise Time	I _D = 400 mA, V _{GEN} = 10 V	t _r		5	8	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	_	15	23	1 115
Fall Time	independent of operating temperature)	t _f	· -	30	34	1

TO-92 Only

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (TA = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	I _S	=	_	0.22	
Pulsed Current ¹	^I sm		_	0.6	A
Forward Voltage ² IF = I _S , V _{GS} = 0	V _{SD}	-	0.8	1.5	٧

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

VN4012L, VN3515L 2N7022

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)	PACKAGE OPTION
VN4012L	400	12	0.16	TO-92
VN3515L	350	15	0.15	TO-92
2N7022	400	12	0.18	TO-205 AF

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	VN4012L	VN3515L	2N7022	Units
Drain-Source Voltage		v _{DS}	400	350	400	· V
Gate-Source Voltage		V _{GS}	± 30	± 30	± 30	V
Continuous Drain Current	T _A = 25°C		0.16	0.15	0.18	A
	T _A = 100°C	'D	0.10	0.09	0.11	
Pulsed Drain Current ¹		IDM	0.80	0.72	1.6	
Dower Dissination	T _A = 25°C	Ь	0.80	0.80	1.0	
Power Dissipation	T _A = 100°C	P _D	0.32	0.32 0.32 0.4	0.40	W
Operating Junction & Storage Temperature Range		T _J , T _{stg}	in mater	-55 to 150		°C
Lead Temperature (1/16" from case for 10 secs.)		TL		300		

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	TO-92 SM	TO-205 AF	Units
Junction-to-Ambient	R _{thJA}	156	125	°C/W

¹Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS (TA= 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 100 μA	Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 100 μΑ		400	415	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1 mA		V _{GS(th)}	0.6	1.4	1.8	3. V
Gate-Body Leakage VDS= 0, VGS = ±20 V		l _{GSS}	-	±1	±10	nA
Zero Gate Voltage Drain Currer V _{DS} = 360 V, V _{GS} = 0	nt	I _{DSS}	-	-	1.0	
Zero Gate Voltage Drain Currer VDS = 0.8 × V(BR)DSS , VG:		IDSS	-	- -	100	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 4.5 V		I _{D(on)}	0.15	0.3	-	Α
Drain-Source On-State Resistance ² V _{GS} = 4.5 V, I _D = 100 mA		r _{DS(on)}	_	-	12	Q
	Drain-Source On-State Resistance ² VGS = 10 V, I _D = 100 mA, T _I = 125°C		-	-	20	1 4
Forward Transconductance ² V _{DS} = 15 V , I _D = 100 mA		g _{fs}	125	250	-	mS
Input Capacitance	V _{GS} = 0	C _{iss}	-	80	90	
Output Capacitance	V _{DS} = 25 V	Coss	- "	15	20	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	3	5	
Turn-On Delay Time	$V_{DD} = 25 \text{ V}$, $R_L = 250 \Omega$	^t d(on)	-	10	20	
Rise Time	I _D ~ 0.1 A, V _{GEN} = 10 V	_j - t _r	-	10	20	
Turn-Off Delay Time	$R_G = 25 \Omega$ Switching time is essentially	^t d(off)	-	45	65	ns
Fall Time	independent of operating temperature)	t _f	· · · ·	45	65	

TO-92 Only SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_A= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	l _s	_	_	0.16	
Pulsed Current ¹	^I SM	_	-	0.8	A
Forward Voltage ² IF = I _S , V _{GS} = 0	V _{SD}	-	0.9	1.2	V

¹Pulse width limited by maximum junction temperature

 $^{^2}$ Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

VNT008A, VNS008A VNT009A, VNS009A

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
VNT008A	650	1.5	5.77
VNS008A	600	1.5	5.77
VNT009A	650	2.0	5.0
VNS009A	600	2.0	5.0

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	VNT A800	VNS 008A	VNT 009A	VNS 009A	Units
Drain-Source Voltage		V _{DS}	650	600	650	600	٧
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	•
Continuous Drain Current	T _C = 25°C		5.77	5.77	5.0	5.0	
Continuous Drain Current	T _C = 100°C	l _D	3.65	3.65	3.16	3.16	Α
Pulsed Drain Current ¹		I _{DM}	15	15	14	14	^
Avalanche Current (see figure 9)		lΑ	5.77	5.77	5.0	5.0	
Power Dissipation	T _C = 25°C	В	125	125	125	125	
Power Dissipation	T _C = 100°C	- P _D	50	50	50	50	W
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150				°C
Lead Temperature (1/16" from case	for 10 secs.)	TL		3	00		C

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	1.0	
Junction-to-Ambient	R _{thJA}		80	K/W
Case-to-Sink	R _{thCS}	0.1	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 2000 μA	ge VNT008A,VNT009A VNS008A,VNT009A	V(BR)DSS	650 600		-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.0	- 1 × 1	4.0	V
Gate-Body Leakage V_{DS} = 0, V_{GS} = ±20 V		IGSS	_	-	100	nA
Zero Gate Voltage Drain Currel $V_{DS} = V_{(BR)DSS}$, $V_{GS} = 0$	nt , , , , , , , , , , , , , , , , , , ,	I _{DSS}	_	-	2000	
Zero Gate Voltage Drain Currer V _{DS} = 0.8 x V _(BR) DSS , V _{GS}	nt ;= 0, T _J =125°C	l _{DSS}	-	-	2000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	VNT008A,VNS008A VNT009A,VNS009A	I _{D(on)}	5.7 5.7	-	<u>-</u>	А
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 3.0 A	nce ² VNT008A,VNS008A VNT009A,VNS009A	r _{DS(on)}		1.2 1.7	1.5 2.0	Ω
Drain-Source On-State Resistance 2 VNT008A, VNS008A VGS = 10 V, ID = 3.0 A, TJ = 125°C VNT009A, VNS009A		r _{DS(on)}	-	2.4 3.4	3.75 6.0	42
Forward Transconductance ² V _{DS} = 15 V, I _D = 3.0 A		g _{fs}	3.0	3.3	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	_	1200	1500	
Output Capacitance	V _{DS} = 25 V	Coss	-	140	150	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}		40	50	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	53	75	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 5.7 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	12.9	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	26	=	
Turn-On Delay Time	$V_{DD} = 325 \text{ V}, R_L = 130 \Omega$	^t d(on)	_	15	20	
Rise Time	ID= 2.5 A, V _{GEN} = 10 V	t _r	-	20	25	ns
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	-	80	85	110
Fall Time	independent of operating temperature)	t _f	-	45	50	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	VNT008A,VNS008A VNT009A,VNS009A	IS	_		5.77 5.0	
Pulsed Current ¹	A8002NV,A800TNV A8002NV,A800TNV	SM	-	=	15 14	A
Forward Voltage ² IF = IS , VGS = 0	VNT008A, VNS008A VNT009A, VNS009A	V _{SD}	-	=	2.5 2.0	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		^t rr		400	_	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	-	2.5	-	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

FIGURE 7: On-Resistance vs. Junction Temperature 2.25 $\Gamma_{DS(on)} = ON - RESISTANCE(\Omega)$ (NORMALIZED) 2.00 1.75 1.50 1.25 1.00 0.75 0.50 30 70 -50 110 150 T_J - JUNCTION TEMPERATURE (°C)

¹Operation in this area may be limited by r_{DS}(on)

VNT008D, VNS008D VNT009D, VNS009D

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
VNT008D	650	1.5	5.77
VNS008D	600	1.5	5.77
VNT009D	650	2.0	5.0
VNS009D	600	2.0	5.0

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	VNT 008D	VNS 008D	VNT 009D	VNS 009D	Units
Drain-Source Voltage		V _{DS}	650	600	650	600	· V
Gate-Source Voltage		V _{GS}	± 40	± 40	± 40	± 40	v
Continuous Drain Current	T _C = 25°C		5.77	5.77	5.0	5.0	
Continuous Drain Current	T _C = 100°C	l _D	3.65	3.65	3.16	3.16	A
Pulsed Drain Current ¹		I _{DM}	15	15	14	14	
Avalanche Current (see figure 9)		l _A	5.77	5.77	5.0	5.0	autoria i
Payer Dissipation	T _C = 25°C	В	125	125	125	125	W
Power Dissipation	T _C = 100°C	P _D	50	50	50	50	***
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150			°C	
Lead Temperature (1/16" from case	for 10 secs.)	TL		3	00		

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	1.0	
Junction-to-Ambient	R _{thJA}	=	80	K/W
Case-to-Sink	RthCS	1.0	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 2000 μA	ge VNT008D,VNT009D VNS008D,VNS009D	V(BR)DSS	650 600	-	=	V
Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 1000 \mu A$	Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		2.0	=	4.0	
Gate-Body Leakage VDS = 0, VGS = ±20 V		IGSS	.=	-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	1 _{DSS}	- 12 - 14 · 1	_	2000	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS		DSS	-	=	2000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	VNT008D,VNS008D VNT009D,VNS009D	I _{D(on)}	5.7 5.7		-	A
Drain-Source On-State Resista VGS = 10 V, I _D = 3.0 A	nce ² VNT008D,VNS008D VNT009D,VNS009D	r _{DS(on)}	-	1.2 1.7	1.5 2.0	
Drain-Source On-State Resistance 2 VNT008D, VNS008D VGS = 10 V, I D = 3.0 A, TJ = 125 °C VNT009D, VNS009D		r _{DS(on)}	-	2.4 3.4	3.75 6.0	ω
Forward Transconductance ² V _{DS} =15 V, I _D = 3.0 A		g _{fs}	3.0	3.3	-	s(හ)
Input Capacitance	V _{GS} = 0	C _{iss}	-	1200	1500	
Output Capacitance	V _{DS} = 25 V	Coss		140	150	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	40	50	
Total Gate Charge	V _{DS} = 0.5 x V _(BR) DSS,	Qg	. -	53	65	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 5.7 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	12.9	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	26	_	
Turn-On Delay Time	$V_{DD} = 325 \text{ V, R}_{L} = 130 \Omega$	^t d(on)	-	15	20	1.00
Rise Time	ID~ 2.5 A , V _{GEN} = 10 V	t _r	-	20	25	ns
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	-	80	85	1 113
Fall Time	independent of operating temperature)	t _f	_	45	50	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	VNT008D,VNS008D VNT009D,VNS009D		-	= 1	5.77 5.0	
Pulsed Current ¹	VNT008D,VNS008D VNT009D,VNS009D	¹ SM	-	-	15 14	A
Forward Voltage ² IF = IS, VGS = 0	VNT008D,VNS008D VNT009D,VNS009D		-	-	2.5 2.0	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		t _{rr}	· -	400	-	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/μS		Q _{rr}	-	2.5	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

VP0610L, 2N7019

P-Channel Enhancement Mode Transistors²

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)	PACKAGE OPTION
VP0610L	60	10	0.18	TO-92
2N7019	60	10	0.12	SOT-23

ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	VP0610L	2N7019	Units
Drain-Source Voltage		V _{DS}	60	60	
Gate-Source Voltage		V _{GS}	± 30	± 30	7 °
Continuous Drain Current	T _A = 25°C		0.18	0.12	
	T _A = 100°C	'D	0.11	0.07	A
Pulsed Drain Current ¹		IDM	0.8	0.4	1
Power Dissipation	T _A = 25°C	Ь	0.80	0.36	w
Power Dissipation	T _A = 100°C	P _D	0.32	0.14	7 "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		- °c
Lead Temperature (1/16" from case for 10 secs.)		TL	300		

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	TO-92	SOT-23	Units
Junction-to-Ambient	R _{thJA}	156	350	°C/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_A= 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

LECTRICAL CHARACTERISTICS (1A-25 C LINES CHOCK)			Tregative signs	nave been omit	ted for clarity	
PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage $V_{GS} = 0$, $I_D = 10 \mu A$			60	70	-	٧
Gate Threshold Voltage VDS= VGS, ID= 1 mA		V _{GS(th)}	1	2.7	4	
Gate-Body Leakage $V_{DS} = 0$, $V_{GS} = \pm 20$ V		IGSS	, ·	±1	±10	nA
Zero Gate Voltage Drain Currer VDS = 48 V, VGS = 0	nt .	I _{DSS}	-	0.02	1.0	
Zero Gate Voltage Drain Currer VDS = 48 V, VGS = 0, TJ =125		I _{DSS}	-	1.0	200	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	0.6	0.7	-	А
Drain-Source On-State Resista VGS = 10 V, ID = 0.5 A	nce ²	r _{DS(on)}	-	8	10	Q
Drain-Source On-State Resista VGS = 10 V, ID = 0.5 A, T			-	16	20	30
Forward Transconductance ² V _{DS} = 10 V , I _D = 0.5 A		g _{fs}	80	125	-	mS
Common Source Output Condu V _{DS} = 10 V , I _D = 0.2 A	ctance	g _{os}	- ' '	600	-	μS
Input Capacitance	V _{GS} = 0	C _{iss}	-	16	60	
Output Capacitance	V _{DS} = 25 V	Coss	-	11	25	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-,	3	5	
Turn-On Delay Time	$V_{DD} = 25 \text{ V}$, $R_L = 47 \Omega$	^t d(on)		6	-	
Rise Time	$I_D = 0.5 \text{ A}, V_{GEN} = 10 \text{ V}$ $R_G = 25 \Omega$ (Switching time is essentially	tr	-	15	-	ns
Turn-Off Delay Time		^t d(off)		5	_	
Fall Time	independent of operating temperature)	t _f		4.5	_	

TO-92 Only SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_A= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	ls.	, -	-	0.18	
Pulsed Current ¹	^I SM	-	-	0.8	
Forward Voltage ² I _F = I _S = 0.18 A, V _{GS} = 0	V _{SD}	-	0.9	1.5	V

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

VP1008L, VP1008M VP1008B

P-Channel Enhancement Mode Transistors²

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)	PACKAGE OPTION
VP1008L	100	5	0.28	TO-92
VP1008M	100	5	0.31	TO-237
VP1008B	100	5	0.27	TO-205 AD

03

3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TA= 25°C unless otherwise noted)

PARAMETERS/TEST COM	IDITIONS	Symbol	VP1008L	VP1008M	VP1008B	Units
Drain-Source Voltage		V _{DS}	100	100	100	V
Gate-Source Voltage, Pulsed	,	V _{GS}	± 40	± 40	± 40	V
Continuous Drain Current	T _A = 25°C	I _D	0.28	0.31	0.27	A
	T _A = 100°C		0.18	0.20	0.17	
Pulsed Drain Current ¹		I _{DM}	1.9	2.4	2.8	
Payer Dissipation	T _A = 25°C		0.80	1.0	0.73	W
Power Dissipation	T _A = 100°C	P _D	0.32	0.40	0.29	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150			°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300			

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	TO-92	TO-237	TO-205AD	Units
Junction-to-Ambient	R _{thJA}	156	125	170	°C/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_A= 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

	I		Negative signs	Tiave been onto	T Clarit	
PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag $V_{GS} = 0$, $I_D = 10 \mu A$	ge	V _{(BR)DSS}	100	115	-	V
Gate Threshold Voltage VDS = VGS , ID = 1 mA		V _{GS(th)}	2	2.75	4.5	V
Gate-Body Leakage $V_{DS} = 0$, $V_{GS} = \pm 30$ V		IGSS		±1	±100	nA
Zero Gate Voltage Drain Currer V _{DS} = 80 V, V _{GS} = 0	nt	I _{DSS}	-	0.03	10	_
Zero Gate Voltage Drain Currer V_{DS} = 80 V, V_{GS} = 0, T_{J} =12		I _{DSS}	_	1.0	500	μΑ
On-State Drain Current ² V _{DS} = 15 V, V _{GS} = 10 V		I _{D(on)}	1.1	1.4	-	Α
Drain-Source On-State Resista VGS = 10 V, I _D = 1 A	nce ²	r _{DS(on)}	-	2.5	5	Q
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 1 A, T _J = 125°C		r _{DS(on)}	-	6	8	Δν
Forward Transconductance 2 VDS = 10 V , ID = 0.5 A		g _{fs}	200	250	-	mS
Input Capacitance	V _{GS} = 0	C _{iss}	=	75	150	
Output Capacitance	V _{DS} = 25 V	Coss	-	40	60	рF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	20	25	
Turn-On Delay Time	$V_{DD} = 25 \text{ V}$, $R_L = 47 \Omega$	^t d(on)	_	11	15	
Rise Time	$I_D = 0.5 \text{ A}, V_{GEN} = 10 \text{ V}$ $R_G = 25 \Omega$ (Switching time is essentially	tr	-	30	40	ns
Turn-Off Delay Time		^t d(off)	_	20	30	"
Fall Time	independent of operating temperature)	t _f	_	20	30	

TO-92 Only
SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_A= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	l _s	_	-	0.28	
Pulsed Current ¹	I _{SM}	<u></u> .	_	1.9	A .
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	_	0.9	1.5	V

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

FIGURE 7: On-Resistance vs. Junction Temperature 2.00 $r_{DS(an)} = ON - RESISTANCE(\Omega)$ (NORMALIZED) 1.75 1.50 1.25 1.00 0.75 0.50 30 70 110 -50 -10150 T_i - JUNCTION TEMPERATURE (°C)

VP2020L, BSS92 BS208, 2N7023

P-Channel Enhancement Mode Transistors²

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)	PACKAGE OPTION
VP2020L	200	20	0.12	TO-92 SM
BSS92	200	20	0.14	TO-92 CD
BS208	200	20	0.12	TO-92 RM
2N7023	200	20	0.07	TO-206 AC (TO-52)

SM = Standard Mold, RM = Reverse Mold, CD = Center Drain

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

			-			
DADAMETERS/TEST COMPITIONS			BSS	BS	2N	l laste
PARAMETERS/TEST CONDITIONS		2020L	92	208	7023	Units
Drain-Source Voltage Gate-Source Voltage		200	200	200	200	V
		± 30	± 30	±30	± 30	v
T _A = 25°C	l _D	0.12	0.14	0.12	0.07	А
T _A = 100°C		0.08	0.08	0.08	0.04	
	IDM	0.48	0.56	0.48	0.90	
T _A = 25°C	В	0.80	1.0	0.80	0.30	w
T _A = 100°C] ^{'D}	0.32	0.40	0.32	0.12	
Operating Junction & Storage Temperature Range		-55 to 150				°C
Lead Temperature (1/16" from case for 10 secs.)		300				
	T _A = 25°C T _A = 100°C T _A = 100°C T _A = 100°C	NDITIONS Symbol V_{DS} V_{QS} V_{QS} $V_{A} = 25^{\circ}C$ $V_{A} = 100^{\circ}C$ V_{DS}	NDITIONS Symbol VP 2020L V _{DS} 200 V _{GS} ± 30 T _A = 25°C I _D 0.12 T _A = 100°C I _{DM} 0.48 T _A = 25°C P _D 0.80 T _A = 100°C T _J , T _{Stg}	VP BSS 2020L 92 VDS 200 200 VGS ± 30 ± 30 TA = 25°C ID 0.12 0.14 0.08 0.08 0.08 IDM 0.48 0.56 TA = 25°C PD 0.80 1.0 TA = 100°C PD 0.32 0.40 Tature Range TJ, Tstg -55 t	Symbol VP BSS BS VDS 200 200 200 VGS ± 30 ± 30 ± 30 TA = 25°C ID 0.12 0.14 0.12 TA = 100°C IDM 0.48 0.56 0.48 TA = 25°C PD 0.80 1.0 0.80 TA = 100°C PD 0.32 0.40 0.32 reture Range TJ, Tstg -55 to 150	NDITIONS VP BSS BS 2N VDS 200L 92 208 7023 VDS 200 200 200 200 VGS ± 30 ± 30 ± 30 ± 30 TA = 25°C TD 0.12 0.14 0.12 0.07 0.08 0.08 0.08 0.08 0.04 TA = 25°C PD 0.80 1.0 0.80 0.30 TA = 100°C PD 0.80 1.0 0.80 0.12 reture Range TJ, Tstg -55 to 150 -55 to 150

THERMAL RESISTANCE	Symbol	TO-92 SM & RM	TO-92 CD	TO-206	Units
Junction-to-Ambient	R _{thJA}	156	125	400	°C/W

¹Pulse width limited by maximum junction temperature ²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_A= 25°C unless otherwise noted) P-Channel Device
Negative signs have been omitted for clarity

PARAMETERS/TEST	Symbol	Min.	Тур.	Max.	Units	
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 10 μA	V(BR)DSS	200	215	-	V	
Gate Threshold Voltage VDS = VGS , ID = 1 mA	1	V _{GS(th)}	0.8	2.0	2.5	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	_ *	<u>+</u> 1	±10	nA
Zero Gate Voltage Drain Currer V _{DS} = 160 V, V _{GS} = 0	t see	I _{DSS}	: - .	-	1.0	
Zero Gate Voltage Drain Currer V _{DS} = 160 V, V _{GS} = 0, T _J =1	DSS	_	- -	100	μΑ	
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 4.5 V	I _{D(on)}	0.1	-	-	A	
Drain-Source On-State Resistant VGS = 4.5 V, b = 100 mA	nce ²	r _{DS(on)}	-	16	20	Ω
Drain-Source On-State Resista VGS = 10 V, ID = 100 mA, T		r _{DS(on)}	-	-	40	ďν
Forward Transconductance ² V _{DS} = 10 V , I _D = 100 mA		g _{fs}	100	-	-	mS
Input Capacitance	V _{GS} = 0	C _{iss}	-	_	70	
Output Capacitance	V _{DS} = 25 V	Coss	- - 		20	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	_	10	

TO-92 Only SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_A= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	^I s	-	-	0.12	
Pulsed Current ¹	Ism	-	-	0.48	A
Forward Voltage ² IF = IS = 0.12 A, VGS = 0	V _{SD}	-	_	1.2	٧

¹ Pulse width limited by maximum junction temperature

 $^{^2}$ Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

VP2410L, 2N7030

P-Channel Enhancement Mode Transistors²

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)	PACKAGE OPTION
VP2410L	200	10	0.18	TO-92
2N7030	200	10	0.17	TO-205 AF

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	VP2410L	2N7030	Units	
Drain-Source Voltage Gate-Source Voltage		V _{DS}	200	200	V	
		V _{GS}	± 30	± 30	7 *	
Continuous Drain Current	T _A = 25°C		0.18	0.17		
	T _A = 100°C	'D	0.11	0.10] A	
Pulsed Drain Current ¹		I _{DM}	0.72	1.7	7	
Power Dissipation	T _A = 25°C	В	0.80	0.73		
Power Dissipation	T _A = 100°C	P _D	0.32	0.29	- w	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	–55 t	o 150		
Lead Temperature (1/16" from case for 10 secs.)		T _L	300		- °C	

THERMAL RESISTANCE	Symbol	TO-92 SM	TO-205 AF	Units
Junction-to-Ambient	R _{thJA}	156	170	°C/W

¹Pulse width limited by maximum junction temperature

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_A= 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 5 μA		V(BR)DSS	240	260		V
Gate Threshold Voltage VDS = VGS, ID = 2.5 mA		V _{GS(th)}	0.8	2.0	2.5	·
Gate-Body Leakage VDS= 0, VGS = ±20 V		IGSS	-	±1	<u>±</u> 10	nA
Zero Gate Voltage Drain Current V _{DS} = 192 V, V _{GS} = 0		IDSS	_	_	1.0	
Zero Gate Voltage Drain Current V _{DS} = 192 V, V _{GS} = 0, T _J =125°C		IDSS	_	-	100	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 4.5 V		I _{D(on)}	0.15	_	_	А
Drain-Source On-State Resistar V _{GS} = 4.5 V, I _D = 100 mA	nce ²	^r DS(on)	_	-	10	Q.
Drain-Source On-State Resistar VGS = 4.5 V, I _D = 100 mA,		r _{DS(on)}	_	-	20] ""
Forward Transconductance ² V _{DS} = 10 V , I _D = 100 mA		g _{fs}	125	-	_	mS
Input Capacitance	V _{GS} = 0	C _{iss}	-	95	_	
Output Capacitance	V _{DS} = 25 V	Coss	·	20	-	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	10	-	

TO-92 Only
SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_A= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	l _s	_	-	0.18	
Pulsed Current ¹	^I SM	=	_	0.72	A
Forward Voltage ² IF = I _S , V _{GS} = 0	V _{SD}	-	-	1.4	٧

¹Pulse width limited by maximum junction temperature

²Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

VP4030L, 2N7021

P-Channel Enhancement Mode Transistors²

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)	PACKAGE OPTION
VP4030L	400	30	0.10	TO-92
2N7021	400	30	0.11	TO-205 AF

TO-92 FRONT VIEW TO-205 AF BOTTOM VIEW

1 SOURCE 2 GATE 3 DRAIN 01

1 DRAIN 2 GATE 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	VP4030L	2N8021	Units	
Drain-Source Voltage Gate-Source Voltage		V _{DS}	400	400	V	
		V _{GS}	± 30	± 30		
Continuous Drain Current	T _A = 25°C		0.10	0.11		
	T _A = 100°C	'D	0.06	0.07	A	
Pulsed Drain Current ¹		IDM	0.40	1.0		
Daniel Diagla diag	T _A = 25°C	В	0.80	1.0		
Power Dissipation	T _A = 100°C	- P _D -	0.32	0.40	- w	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		_ °c	
Lead Temperature (1/16" from case for 10 secs.)		TL	300			

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	TO-92 SM	TO-205 AF	Units
Junction-to-Ambient	R _{thJA}	156	170	°C/W

¹Pulse width limited by maximum junction temperature

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_A= 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

				Tregative signs	1	1	
PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units	
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 10 μA		V(BR)DSS	400	420	-	V	
Gate Threshold Voltage VDS= VGS, ID = 2.5 mA		V _{GS(th)}	0.8	2.0	2.5		
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS		±1	±10	nA	
Zero Gate Voltage Drain Currer VDS = 320 V, VGS = 0	nt .	IDSS	-	_	1.0		
Zero Gate Voltage Drain Currer VDS = 320 V, VGS= 0, TJ = 12		IDSS	_	-	100	μА	
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 4.5 V		I _D (on)	0.10	-	-	Α	
Drain-Source On-State Resistance ² V _{GS} = 4.5 V, I _D = 100 mA		r _{DS(on)}	-	27	30		
Drain-Source On-State Resistar VGS = 10 V, ID = 100 mA,		r _{DS(on)}	_	_	60	C.	
Forward Transconductance ² V _{DS} = 10 V , I _D = 100 mA		g _{fs}	50	-	-	mS	
Input Capacitance	V _{GS} = 0	C _{iss}	_	80	100		
Output Capacitance	V _{DS} = 25 V	Coss	-	15	20	pF	
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	7	10		

TO-92 Only SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (TA = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	l _s	-	-	0.10	
Pulsed Current ¹	^I sm	_	-	0.48	A
Forward Voltage ² F = S = 0.10 A, V _{GS} = 0	V _{SD}	-	_	1.4	٧

 $^{^1}$ Pulse width limited by maximum junction temperature 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/542 where applicable

BOTTOM VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I D		
NUMBER	(VOLTS)	(OHMS)	(AMPS)		
2N6756	100	0.18	14		

2 ° 1
3 ° 1
1 DRAIN (CASE)

TO-204AA (TO-3)

2 GATE 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N6756	Units
Drain-Source Voltage		V _{DS}	100	
Gate-Source Voltage		V _{GS}	± 20] `
Continuous Drain Current	T _C = 25°C		14	
	T _C = 100°C	l D	9.0	
Pulsed Drain Current ¹		IDM	56] ^
Avalanche Current	-	l _A	3.1	
Power Dissipation	T _C = 25°C	P	75	W
Fower Dissipation	T _C = 100°C	P _D	30	"
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°c
Lead Temperature (1/16" from case for 10 secs.)		TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	_	1.67	
Junction-to-Ambient	R _{thJA}	_	30	K/W
Case-to-Sink	R _{thCS}	0.1	- 1	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 1000 μA		V(BR)DSS	100	-	_	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	-	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	_	,	100	nA .
Zero Gate Voltage Drain Currel VDS = V(BR)DSS , VGS = 0	nt .	^I DSS	<u> </u>	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS		DSS		-	250	μΑ
On-State Drain Current ² V _{DS} = 2.52 V, V _{GS} = 10 V		I _{D(on)}	14	-	_	А
Drain-Source On-State Resista VGS = 10 V, ID = 9.0 A	nce ²	r _{DS(on)}	_	0.14	0.18	
Drain-Source On-State Resista VGS = 10 V, ID = 9.0 A, TJ =			-	0.25	0.33	a
Forward Transconductance ² V _{DS} = 15 V, I _D = 9.0 A		g _{fs}	4.0	5.5	12	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	350	750	800	
Output Capacitance	V _{DS} = 25 V	Coss	150	280	500	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	50	70	150	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	12	26	38	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 14 \text{ A}$ (Gate charge is essentially	Q _{gs}	2.5	5	6.3	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	7	13	16	
Turn-On Delay Time	$V_{DD} = 36 \text{ V}, R_L = 4.0 \Omega$	^t d(on)	_	7	30	
Rise Time	ID [™] 9.0 A, V _{GEN} = 10 V R _G = 7.5 Ω (Switching time is essentially	tr	_	39	75	ns
Turn-Off Delay Time		^t d(off)	=	11	40	1115
Fall Time	independent of operating temperature)	t _f	-	28	45	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	I _S	-	-	14	
Pulsed Current ¹	^I SM	-	-	56	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.9	_	1.8	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	_	150	300	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	_	0.8	_	μС

Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/542 where applicable

BOTTOM VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6758	200	0.40	9.0

TO-204AA (TO-3)

2 GATE 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS Drain-Source Voltage		Symbol	2N6758	Units	
		V _{DS}	200	V	
Gate-Source Voltage		V _{GS}	± 20	7 °	
Continuous Drain Current	T _C = 25°C		9.0		
Continuous Drain Current	T _C = 100°C	ם' ו	6.0		
Pulsed Drain Current ¹		IDM	36	7 ^	
Avalanche Current		^I A	3.1		
Power Dissipation	T _C = 25°C	В	75	w	
Fower Dissipation	T _C = 100°C	P _D	30	7 "	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°c	
Lead Temperature (1/16" from case for 10 secs.)		TL	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	1.67	
Junction-to-Ambient	R _{thJA}	-	30	K/W
Case-to-Sink	R _{thCS}	0.1	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 1000 μA	ge	V _{(BR)DSS}	200	-	-	v
Gate Threshold Voltage VDS= VGS, ID= 250 μA		V _{GS(th)}	2.0	-	4.0	·
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	DSS	-	_	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt s= 0, T _J =125°C	^I DSS	_	-	250	μΑ
On-State Drain Current ² V _{DS} = 3.6 V, V _{GS} = 10 V		I _D (on)	9.0	-	-	А
Drain-Source On-State Resista VGS = 10 V, ID = 6.0 A	nce ²	r _{DS(on)}	_	0.25	0.40	
Drain-Source On-State Resista VGS = 10 V, I _D = 6.0 A, T _J =	ince ² : 125°C	r _{DS(on)}	-	0.54	0.75	v
Forward Transconductance ² V _{DS} = 15 V, I _D = 6.0 A		g _{fs}	3.0	3.9	9.0	S(ぴ)
Input Capacitance	V _{GS} = 0	C _{iss}	350	780	800	
Output Capacitance	V _{DS} = 25 V	Coss	100	250	450	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	40	100	150	
Total Gate Charge	V _{DS} = 0.5 × V _{(BR)DSS} ,	Qg	14	23	39	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 9 \text{ A}$ (Gate charge is essentially	Q _{gs}	2.2	5	5.7	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	8	13	18	
Turn-On Delay Time	V _{DD} = 90 V, R _L = 15 Ω	^t d(on)	-	8	30	
Rise Time	ID = 6.0 A , V _{GEN} = 10 V R _G = 7.5 Ω (Switching time is essentially	t _r	-	42	50	ns
Turn-Off Delay Time		^t d(off)	-	12	50	1 113
Fall Time	independent of operating temperature)	. t _f	_	30	40	,

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	l _s	-	-	9.0	
Pulsed Current ¹	ISM	-	_	36	7 A
Forward Voltage ² IF = I _S , V _{GS} = 0	V _{SD}	0.8	-	1.6	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	trr	_	150	500	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS	Q _{rr}	-	0.8	_	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/542 where applicable

BOTTOM VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6760	400	1.0	5.5

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N6760	Units
Drain-Source Voltage Gate-Source Voltage		V _{DS}	400	
		V _{GS}	± 20	* *
Continuous Drain Current	T _C = 25°C		5.5	
Continuous Drain Current	T _C = 100°C	- 'D	3.5	
Pulsed Drain Current ¹		IDM	22	
Avalanche Current		l _A	3.1	
Power Dissipation	T _C = 25°C	P	75	_ w
Power Dissipation	T _C = 100°C	P _D	30	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	~55 to 150	°C
Lead Temperature (1/16" from case	se for 10 secs.)	TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	-	1.67	
Junction-to-Ambient	R _{thJA}		30	K/W
Case-to-Sink	R _{thCS}	0.1	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag $V_{GS} = 0$, $I_D = 1000 \mu A$	rain-Source Breakdown Voltage V _{GS} = 0, I _D = 1000 μA		400	_	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	-	4.0	v
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	_	-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ;= 0, T _J =125°C	IDSS	_	-	250	μΑ
On-State Drain Current ² V _{DS} = 6.7 V, V _{GS} = 10 V		I _{D(on)}	5.5		-	Ą
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 3.5 A	nce ²	r _{DS(on)}	-	0.8	1.0	
Drain-Source On-State Resista VGS = 10 V, ID = 3.5 A, TJ =		r _{DS(on)}	_	1.5	2.2	\alpha \alpha
Forward Transconductance ² V _{DS} = 15 V, I _D = 3.5 A		g _{fs}	3.0	5.0	9.0	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	350	750	800	
Output Capacitance	V _{DS} = 25 V	Coss	50	160	300	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	20	70	80	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	23	_	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 5.5 \text{ A}$ (Gate charge is essentially	Q _{gs}	. –	6	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	13	-	
Turn-On Delay Time	V _{DD} = 175 V , R _L = 50 Ω	^t d(on)	-	11	30	-
Rise Time	I _D = 3.5 A , V _{GEN} = 10 V R _G = 7.5 Ω (Switching time is essentially	t _r	-	16	35	ns
Turn-Off Delay Time		^t d(off)	_	41	55	115
Fall Time	independent of operating temperature)	t _f	-	22	35	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	1 _S	_	-	5.5	A
Pulsed Current ¹	Ism	_	_	22	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.75	-	1.5	. , , , , ,
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μs	t _{rr}	- \	250	700	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS	Q _{rr}	-	1.5	_	μC

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/542 where applicable

BOTTOM VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6762	500	1.5	4.5

2 ° 1
3 ° 1
1 DRAIN (CASE)

TO-204AA (TO-3)

2 GATE 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N6762	Units
Drain-Source Voltage Gate-Source Voltage		V _{DS}	500	v
		V _{GS}	± 20	
Continuous Drain Current	T _C = 25°C		4.5	
Continuous Drain Current	T _C = 100°C	- 'D	3.0	
Pulsed Drain Current ¹		I _{DM}	18	^
Avalanche Current		I _A	3.1	
Danier Diagle stier	T _C = 25°C	Ь	75	w
Power Dissipation	T _C = 100°C	P _D	30	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°c
Lead Temperature (1/16" from case for 10 secs.)		TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	1.67	
Junction-to-Ambient	R _{thJA}	-	30	K/W
Case-to-Sink	R _{th} CS	0.1	- * * *	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Volta V _{GS} = 0, I _D = 1000 μA	ge	V(BR)DSS	500	-	_	v
Gate Threshold Voltage VDS= VGS, ID = 250 μΑ		V _{GS(th)}	2.0	-	4.0]
Gate-Body Leakage V_{DS} = 0, V_{GS} = ±20 V		IGSS	-	<u>-</u>	100	nA
Zero Gate Voltage Drain Curre VDS = V(BR)DSS , VGS = 0	nt	IDSS	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS		I _{DSS}	-	-	250	μΑ
On-State Drain Current ² V _{DS} = 7.7 V, V _{GS} = 10 V		I _{D(on)}	4.5	-	_	Α
Drain-Source On-State Resista VGS = 10 V, I _D = 3.0 A	nce ²	r _{DS(on)}		1.3	1.5	_
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 3.0 A, T _J =			-	2.7	3.3	· v
Forward Transconductance ² V _{DS} = 15 V, I _D = 3.0 A		g _{fs}	2.5	3.7	7.5	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	350	750	800	
Output Capacitance	V _{DS} = 25 V	Coss	25	120	200	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	15	50	60	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	14	30	38	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 4.5 \text{ A}$ (Gate charge is essentially	Q _{gs}	2.1	4	4.8	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	7.4	15	17	
Turn-On Delay Time	V _{DD} = 225 V , R _L = 75 Ω	^t d(on)	_	11	30	
Rise Time	$I_D = 3.0 \text{ A}$, $V_{GEN} = 10 \text{ V}$ $R_G = 7.5 \Omega$ (Switching time is essentially	t _r		16	30	no.
Turn-Off Delay Time		^t d(off)	_	41	55	ns
Fall Time	independent of operating temperature)	t _f	-	22	30	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	l _s	_	_	4.5	
Pulsed Current ¹	Ism	_	-	18	^
Forward Voltage ² F = S , V _{GS} = 0	V _{SD}	0.70	-	1.4	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	260	900	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}		1.5	-	μС

Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

² Pulse test: Pulse width \leq 300 μsec, Duty Cycle \leq 2%

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/543 where applicable

BOTTOM VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6764	100	0.055	38

TO-204AE (TO-3)

2 GATE 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N6764	Units
Drain-Source Voltage		V _{DS}	100	V
Gate-Source Voltage		V _{GS}	± 20	7 '
Continuous Drain Current	T _C = 25°C		38	
Continuous Drain Current	T _C = 100°C	d lo	24	
Pulsed Drain Current ¹		IDM	160	7 ^
Avalanche Current		l _A	6.0	
Power Dissipation	T _C = 25°C	PD	150	w
Power Dissipation	T _C = 100°C] 'D	60	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	- °C
Lead Temperature (1/16" from ca	se for 10 secs.)	TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	0.83	
Junction-to-Ambient	R _{thJA}	- .	30	K/W
Case-to-Sink	R _{th} CS	0.1	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 1000 μA		V(BR)DSS	100	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA			2.0	_	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	_		100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	- <u>-</u>	_	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt _S = 0, T _J =125°C	IDSS	=		250	μΑ
On-State Drain Current ² V _{DS} = 2.49 V, V _{GS} = 10 V		I _{D(on)}	38	_	-	А
Drain-Source On-State Resista VGS = 10 V, I _D = 24 A	rain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 24 A		-	0.045	0.055	
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 24 A, T _J = 125°C		r _{DS(on)}	_	0.080	0.094	v
Forward Transconductance ² V _{DS} = 15 V, I _D = 24 A		g _{fs}	9.0	12.0	27	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	1000	2800	3000	
Output Capacitance	V _{DS} = 25 V	Coss	500	1100	1500	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	150	400	500	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	48	62	119	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 38 \text{ A}$ (Gate charge is essentially	Q _{gs}	6.4	13	19	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	24	29	64	
Turn-On Delay Time	V _{DD} = 24 V , R _L = 2.6 Ω	^t d(on)	-	15	35	
Rise Time	ID = 24 A , V _{GEN} = 10 V	t _r	-	30	100	ne
Turn-Off Delay Time	$R_G = 2.4 \Omega$ (Switching time is essentially	^t d(off)	_ :	50	125	. ns
Fall Time	independent of operating temperature)	. t _f	-	20	100	· 1

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	l _s	_		38	
Pulsed Current ¹	Ism		- 1	160	A
Forward Voltage ² I _F = I _S · V _{GS} = 0	V _{SD}	0.95	-	1.9	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	, · · · - ·	150	500	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	-	0.5	-	μС

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/543 where applicable

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6766	200	0.085	30

3 SOURCE

BOTTOM VIEW

TO-204AE (TO-3)

1 DRAIN (CASE)

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS Drain-Source Voltage		Symbol	2N6766	Units	
		V _{DS}	200	V	
Gate-Source Voltage		V _{GS}	± 20)	
Continuous Drain Current	T _C = 25°C		30		
Continuous Brain Current	T _C = 100°C		19	1	
Pulsed Drain Current ¹		I _{DM}	120	^	
Avalanche Current		I _A	6.0	*	
Power Dissipation	T _C = 25°C	В	150	147	
Power Dissipation	T _C = 100°C	P _D	60	W	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°c	
Lead Temperature (1/16" from o	case for 10 secs.)	TL	300	30	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC		0.83	
Junction-to-Ambient	R _{thJA}	<u>-</u>	30	K/W
Case-to-Sink	R _{thCS}	0.1	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag $V_{GS} = 0$, $I_D = 1000 \mu A$	Orain-Source Breakdown Voltage V _{GS} = 0, I _D = 1000 μΑ		200	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	-	4.0	v
Gate-Body Leakage V_{DS} = 0, V_{GS} = ±20 V		IGSS	_	_	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	_		250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ;= 0, T _J =125°C	I _{DSS}			250	μΑ
On-State Drain Current ² V _{DS} = 2.70 V, V _{GS} = 10 V		I _{D(on)}	30	_	_	А
Drain-Source On-State Resista VGS = 10 V, I _D = 19 A	nce ²	r _{DS(on)}	-	0.070	0.085	
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 19 A, T _J = 125°C		r _{DS(on)}	-	0.130	0.153	\ \varphi
Forward Transconductance ² V _{DS} = 15 V, I _D = 19 A		g _{fs}	9.0	13	27	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	1000	2700	3000	11
Output Capacitance	V _{DS} = 25 V	Coss	450	850	1200	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	150	300	500	
Total Gate Charge	V _{DS} = 0.5 × V _{(BR)DSS} ,	Qg	48	63	118	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 30 \text{ A}$ (Gate charge is essentially	Q _{gs}	6.1	14	19	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	24	32	65	
Turn-On Delay Time	V _{DD} = 95 V , R _L = 5 Ω	^t d(on)		15	35	
Rise Time	$I_D = 19 \text{A}$, $V_{\text{GEN}} = 10 \text{V}$ $R_G = 2.4 \Omega$ (Switching time is essentially	tr	-	30	100	ns
Turn-Off Delay Time		^t d(off)	- .	50	125	1115
Fall Time	independent of operating temperature)	t _f	_	20	100	1

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	^I s	· -	-	30	
Pulsed Current ¹	ISM	_	- ·	120	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.9	_	1.8	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	_	150	950	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	_	0.5	-	μС

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width \leq 300 μsec , Duty Cycle \leq 2%

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/543 where applicable

BOTTOM VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6768	400	0.30	14

TO-204AA (TO-3)

3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N6768	Units
Drain-Source Voltage		V _{DS}	400	V
Gate-Source Voltage		V _{GS}	± 20	7 ·
Continuous Drain Current	T _C = 25°C		14	
	T _C = 100°C	'p	9.0	
Pulsed Drain Current ¹		I _{DM}	60	7 ^
Avalanche Current	Avalanche Current		6.0	
Pawer Dissination	T _C = 25°C	В	150	w sa
Power Dissipation	T _C = 100°C	P _D	60	7 "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	–55 to 150	°c
Lead Temperature (1/16" from case for 10 secs.)		TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	0.83	
Junction-to-Ambient	R _{thJA}		30	K/W
Case-to-Sink	R _{thCS}	0.1	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage $V_{GS} = 0$, $I_D = 1000 \mu A$		V(BR)DSS	400	-	_	V
Gate Threshold Voltage VDS= VGS , ID= 250 μΑ		V _{GS(th)}	2.0		4.0)
Gate-Body Leakage V_{DS} = 0, V_{GS} = ±20 V		IGSS	_	-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}			250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt _S = 0, T _J =125°C	^I DSS			250] μΑ
On-State Drain Current ² V _{DS} = 5.6 V, V _{GS} = 10 V		I _{D(on)}	14.0	- .	-	А
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 9.0 A Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 9.0 A, T _J = 125°C		r _{DS(on)}	-	0.22	0.30	a.
		r _{DS(on)}	-	0.4	0.66	
Forward Transconductance ² V _{DS} = 15 V, I _D = 9.0 A		g _{fs}	8.0	8.5	24	S(V)
Input Capacitance	V _{GS} = 0 V _{DS} = 25 V	C _{iss}	1000	2700	3000	4
Output Capacitance		Coss	200	450	600	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	50	160	200	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	52	77	120	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 14 \text{ A}$ (Gate charge is essentially	Q _{gs}	5.3	14	16	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	25	39	56	
Turn-On Delay Time	V _{DD} = 200 V, R _L = 22Ω	^t d(on)	_	14	35	
Rise Time	ID = 9.0 A , V_{GEN} = 10 V R $_{G}$ = 2.4 Ω (Switching time is essentially independent of operating temperature)	t _r	_	30	65	ns
Turn-Off Delay Time		^t d(off)	_	54	150	1 113
Fall Time		t _f	_	15	75	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

				27	*
PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	l _S	-	_	14	
Pulsed Current ¹	I _{SM}	_	<u>-</u>	60	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.85	=	1.7	٧
Reverse Recovery Time $I_F = I_S$, $dI_F/dt = 100 \text{ A}/\mu\text{S}$	t _{rr}	· · - .	300	1200	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	_	2.0	_	μC

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Pulse test: Pulse width \leq 300 μsec, Duty Cycle \leq 2%

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/543 where applicable

BOTTOM VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6770	500	0.40	12

TO-204AA (TO-3)

2 GATE 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N6770	Units	
Drain-Source Voltage		V _{DS}	500	V	
Gate-Source Voltage		V _{GS}	± 20]	
Continuous Drain Current	T _C = 25°C		12		
	T _C = 100°C	- 'D	7.75	A	
Pulsed Drain Current ¹		I _{DM}	52		
Avalanche Current		I _A	6.0		
Power Dissipation	T _C = 25°C	Б	150	w	
Power Dissipation	T _C = 100°C	PD	60] "	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C	
Lead Temperature (1/16" from case for 10 secs.)		TL	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	_	0.83	
Junction-to-Ambient	R _{thJA}	-	30	K/W
Case-to-Sink	R _{thCS}	0.1	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V_{GS} = 0, I_D = 1000 μ A		V(BR)DSS	500	-	_	· v
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	_	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	- 34	100	nA
Zero Gate Voltage Drain Curre VDS = V(BR)DSS , VGS = 0	nt	DSS	-	_	250	
Zero Gate Voltage Drain Curre V _{DS} = 0.8 x V _(BR) DSS , V _{GS}		I _{DSS}	-	_	250	μΑ
On-State Drain Current ² V _{DS} = 6.0 V, V _{GS} = 10 V		I _{D(on)}	12.0	_	-	A
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 7.75 A Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 7.75 A, T _J = 125°C		r _{DS(on)}	-	0.30	0.40	· 0
		r _{DS(on)}	-	0.66	0.88	
Forward Transconductance ² V _{DS} = 15 V, I _D = 7.75 A		g _{fs}	8.0	10	24	S(℧)
Input Capacitance	V _{GS} = 0 V _{DS} = 25 V	C _{iss}	1000	2700	3000	
Output Capacitance		Coss	200	410	600	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	50	140	200	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	55	75	124	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 12.0 \text{ A}$ (Gate charge is essentially	Qgs	5.2	12	15	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	27	35	61	
Turn-On Delay Time	V _{DD} = 250 V, R _L = 41 Ω	^t d(on)	-	13	35	
Rise Time	ID = 6.0 A , V _{GEN} = 10 V R _G = 2.4 D (Switching time is essentially independent of operating temperature)	t _r	_	26	50	ns
Turn-Off Delay Time		^t d(off)	_	55	150	1 113
Fall Time		tf	-	17	70	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

		_			
PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	I _S	-	-	12	
Pulsed Current ¹	I _{SM}	-	-	52	^
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.80		1.6	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	_	300	1600	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	_	2.0	-	μC

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Pulse test: Pulse width \leq 300 μsec, Duty Cycle \leq 2%

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/556 where applicable

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6782	100	0.60	3.5

BOTTOM VIEW

01 02 03

1 DRAIN 2 GATE

3 SOURCE

TO-205AF

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N6782	Units	
Drain-Source Voltage		V _{DS}	100	V	
Gate-Source Voltage		V _{GS}	± 20		
Continuous Drain Current	T _C = 25°C		3.5		
	T _C = 100°C	l D	2.25		
Pulsed Drain Current ¹		I _{DM}	14	A 2 1	
Avalanche Current		^I A	1.5		
Power Dissipation	T _C = 25°C	В	15	_ w	
Power Dissipation	T _C = 100°C	P _D	6	vv	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	- °c	
Lead Temperature (1/16" from	case for 10 secs.)	TL	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	_	8.33	
Junction-to-Ambient	R _{thJA}	_	175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 1000 μA	ge	V(BR)DSS	100	_	-	.,,
Gate Threshold Voltage VDS= VGS, ID = 250 μΑ		V _{GS(th)}	2.0	-	4.0	·
Gate-Body Leakage VDS = 0, VGS = ±20 V		IGSS	-	_	100	nA
Zero Gate Voltage Drain Current VDS = V(BR)DSS , VGS = 0		I _{DSS}	1 <u>-</u> 1 -1	-	250	
Zero Gate Voltage Drain Current VDS = 0.8 x V(BR)DSS , VGS= 0, TJ =125°C		I _{DSS}	-	- -	250	μΑ
On-State Drain Current ² V _{DS} = 2.1 V, V _{GS} = 10 V		I _D (on)	3.5	<u>-</u>	_	Α
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 2.25 A		r _{DS(on)}	_	0.50	0.60	
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 2.25 A,T _J = 125°C		r _{DS(on)}	-	0.80	1.08	v.
Forward Transconductance ² VDS = 5 V, ID = 2.25 A		g _{fs}	1.0	1.4	3.0	s(V)
Input Capacitance	V _{GS} = 0	C _{iss}	60	170	200	
Output Capacitance	V _{DS} = 25 V	Coss	40	75	100	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	10	23	25	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	3.6	6	8.2	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A}$ (Gate charge is essentially	Qgs	0.34	1	1.3	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	1.9	3	4.4	
Turn-On Delay Time	V_{DD} = 34 V , R_L = 15 Ω	^t d(on)	_	7	15	
Rise Time	ID ~2.25 A ,V _{GEN} = 10 V	t _r	-	21	25	
Turn-Off Delay Time	R _G = 25 (). (Switching time is essentially	^t d(off)	_	22	25	ns
Fall Time	independent of operating temperature)	t _f	_	11	20	1

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	Is	-		3.5	
Pulsed Current ¹	Ism	- '	-	14	Α Α
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.75	-	1.5	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	65	180	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	_	0.12	-	μС

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2~\%$

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/556 where applicable

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6784	200	1.5	2.25

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N6784	Units
Drain-Source Voltage		V _{DS}	200	V
Gate-Source Voltage		V _{GS}	± 20	1
Continuous Drain Current	T _C = 25°C		2.25	
Continuous Drain Current	T _C = 100°C	'P	1.5	A
Pulsed Drain Current ¹		I _{DM}	9.0	1 ^
Avalanche Current		I _A	1.5	
Power Dissipation	T _C = 25°C	В	15	w
Power Dissipation	T _C = 100°C	- P _D	6] "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from c	ase for 10 secs.)	TL	300	1

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	8.33	14.014
Junction-to-Ambient	R _{thJA}	_	175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltaç V _{GS} = 0, I _D = 1000 μA	je	V(BR)DSS	200	-	-	V
Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \mu A$	- A 1/2	V _{GS(th)}	2.0	-	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	_	_ 1/2	100	nA
Zero Gate Voltage Drain Current VDS = V(BR)DSS · VGS = 0		I _{DSS}	= : 1		250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS, VGS	nt = 0, T _J =125°C	IDSS	-	-	250	μΑ
On-State Drain Current ² V _{DS} = 3.37 V, V _{GS} = 10 V		I _{D(on)}	2.25	-	-	A
Drain-Source On-State Resista VGS = 10 V, I _D = 1.5 A	orain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 1.5 A		_	1.0	1.5	
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 1.5 A, T _J = 125°C		r _{DS(on)}	-	1.8	2.81	- n
Forward Transconductance ² V _{DS} = 5 V, I _D = 1.5 A		g _{fs}	0.9	1.1	2.7	s(ଫ)
Input Capacitance	V _{GS} = 0	C _{iss}	60	175	200	
Output Capacitance	V _{DS} = 25 V	Coss	20	65	80	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	5	15	25	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	7.8	8.5	18	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 2.25 \text{ A}$ (Gate charge is essentially	Q _{gs}	0.36	1.0	1.2	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	2.0	3.8	4.6	
Turn-On Delay Time	$V_{DD} = 75 \text{ V}$, $R_L = 50 \Omega$	^t d(on)	-	7	15	
Rise Time	$I_D = 1.5 \text{ A}, V_{GEN} = 10 \text{ V}$ $R_G = 25 \Omega$ (Switching time is essentially	t _r	· 	18	20	ns
Turn-Off Delay Time		^t d(off)	-	24	30] "
Fall Time	independent of operating temperature)	t _f	-	11	20	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	I _S	_	-	2.25	
Pulsed Current ¹	Ism	<u>-</u>	<u>-</u>	9.0	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.7	-	1.5	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	_	65	350	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS	Q _{rr}	-	0.12	<u>-</u>	μС

 $^{^{1}}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

FIGURE 11: Normalized Effective Transient Thermal Impedance, Junction-to-Case

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/556 where applicable

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6786	400	3.6	1.25

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N6786	Units
Drain-Source Voltage		V _{DS}	400	V
Gate-Source Voltage		V _{GS}	± 20	
Continuous Drain Current	T _C = 25°C		1.25	
	T _C = 100°C	'p	0.80	A
Pulsed Drain Current ¹		I _{DM}	5.5	
Avalanche Current		I _A	1.5	
Pawer Dissipation	T _C = 25°C	P _D	15	W
Power Dissipation	T _C = 100°C] 'D [6	ran ni Marija. Distribution gara
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from	case for 10 secs.)	TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	8.33	
Junction-to-Ambient	R _{thJA}	-	175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V_{GS} = 0, I_D = 1000 μ A Gate Threshold Voltage V_{DS} = V_{GS} , I_D = 250 μ A		V _{(BR)DSS}	400	-	-	V
		V _{GS(th)}	2.0	-	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	- .		100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt Salas	I _{DSS}	-		250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt = 0, T _J =125°C	^I DSS	_	-	250	μΑ
On-State Drain Current ² V _{DS} = 4.5 V, V _{GS} = 10 V		I _{D(on)}	1.25	_	-	Α
Drain-Source On-State Resista VGS = 10 V, ID = 0.8 A	nce ²	r _{DS(on)}	-	3.3	3.6	Q
Drain-Source On-State Resista VGS = 10 V, ID = 0.8 A, TJ =	-State Resistance ² o = 0.8 A, T _J = 125°C		-	6.6	7.92	30
Forward Transconductance ² V _{DS} = 5.0 V, I _D = 0.8 A		g _{fs}	0.7	0.75	2.1	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	60	175	200	
Output Capacitance	V _{DS} = 25 V	Coss	15	40	50	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	2	9	15	1.1
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	8.3	-	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 1.25 \text{ A}$ (Gate charge is essentially	Q _{gs}	_	2 , 0		nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}		5	-	
Turn-On Delay Time	V _{DD} = 170 V , R _L = 210 Ω	^t d(on)	_	7	15	
Rise Time	ID = 0.8 A , V _{GEN} = 10 V	t _r	-	18	20	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ Switching time is essentially	^t d(off)	-	24	35	
Fall Time	independent of operating temperature)	tf	_	11	30	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	¹s .	_	_	1.25	
Pulsed Current ¹	^I SM	-	_	5.5	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.6	_	1.4	٧
Reverse Recovery Time $I_F = I_S$, $dI_F/dt = 100 \text{ A}/\mu\text{S}$	t _{rr}	_ :	200	540	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	-	1.2	_	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

² Pulse test: Pulse width \leq 300 μsec, Duty Cycle \leq 2%

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/555 where applicable

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6788	100	0.30	6.0

BOTTOM VIEW

01

O 2 O 3

1 DRAIN 2 GATE 3 SOURCE

TO-205AF (TO-39)

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N6788	Units
Drain-Source Voltage		V _{DS}	100	v
Gate-Source Voltage		V _{GS}	± 20	•
Carllana Darla Carrant	T _C = 25°C		6.0	
Continuous Drain Current	T _C = 100°C	'p	3.5	A
Pulsed Drain Current ¹		I _{DM}	24	^
Avalanche Current		I _A	2.2	
Davies Dissination	T _C = 25°C	Ь	20	w
Power Dissipation	T _C = 100°C	P _D	8	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	6.25	12.044
Junction-to-Ambient	R _{thJA}	-	175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 1000 μA		V(BR)DSS	100	-	_	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	-	4.0	•
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	_	_	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	_	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ;= 0, T _J =125°C	IDSS	- -	-	250	μΑ
On-State Drain Current ² V _{DS} = 2.1 V, V _{GS} = 10 V		I _{D(on)}	6.0	-	-	А
Drain-Source On-State Resistance ² VGS = 10 V, I _D = 3.5 A Drain-Source On-State Resistance ² VGS = 10 V, I _D = 3.5 A, T _J = 125°C		r _{DS(on)}	-	0.25	0.30	Q
		r _{DS(on)}	-	0.42	0.54	42
Forward Transconductance ² V _{DS} =5.0 V, I _D = 3.5 A		g _{fs}	1.5	2.9	4.5	s(V)
Input Capacitance	V _{GS} = 0	C _{iss}	200	380	600	
Output Capacitance	V _{DS} = 25 V	Coss	100	150	400	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	20	50	100	1.1
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	14	-	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 6 \text{ A}$ (Gate charge is essentially	Qgs	· _	2	- "	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	6	-	
Turn-On Delay Time	V _{DD} = 35 V , R _L = 10 Ω	^t d(on)	_	7	40	
Rise Time	$I_D = 3.5 \text{ A}$, $V_{GEN} = 10 \text{ V}$ $R_G = 25 \Omega$ (Switching time is essentially	t _r	· 🗕	31	70	ns
Turn-Off Delay Time		t _{d(off)}	_	38	40	113
Fall Time	independent of operating temperature)	t _f	-	21	70	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units	
Continuous Current	¹s	-	-	6.0		
Pulsed Current ¹	¹ SM		-	24	^	
Forward Voltage ² I _F = I _S , V _{QS} = 0	V _{SD}	0.8	-	1.8	V	
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	100	240	ns	
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Qrr	_	0.15	-	μС	

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width \leq 300 μsec , Duty Cycle $\leq~2\%$

FIGURE 11: Normalized Effective Transient Thermal Impedance, Junction-to-Case

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/555 where applicable

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D	
NUMBER	(VOLTS)	(OHMS)	(AMPS)	
2N6790	200	0.80		

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

		,		
PARAMETERS/TEST CONDITIONS		Symbol	2N6790	Units
Drain-Source Voltage		V _{DS}	200	
Gate-Source Voltage		V _{GS}	± 20] ***
C. III.	T _C = 25°C		3.5	
Continuous Drain Current	T _C = 100°C	l _D	2.25	
Pulsed Drain Current ¹		I _{DM}	14] ^
Avalanche Current		l _A	2.2	
Dawer Dissipation	T _C = 25°C	P	20	w
Power Dissipation	T _C = 100°C	P _D	8	*
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°c
Lead Temperature (1/16" from case for 10 secs.)		TL	300]

THERMAL RESISTANCE		Тур.	Max.	Units
Junction-to-Case	R _{th} jC	_	6.25	12.047
Junction-to-Ambient	R _{thJA}	-	175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain–Source Breakdown Voltage V_{GS} = 0, I_D = 1000 μ A Gate Threshold Voltage V_{DS} = V_{GS} , I_D = 250 μ A		V(BR)DSS	200	_	-	V
		V _{GS(th)}	2.0	-	4.0	1
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	<u>-</u>	" .	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	DSS		-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt S= 0, T _J =125°C	I _{DSS}	-	-	250	μΑ
On-State Drain Current ² V _{DS} = 2.8 V, V _{GS} = 10 V		¹ D(on)	3.5	-	-	Α
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 2.25 A	ince ²	r _{DS(on)}	_	0.5	0.80	
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 2.25 A,T _J = 125°C		r _{DS(on)}	_	0.9	1.5	a o
Forward Transconductance ² V _{DS} = 15 V, I _D = 2.25 A		g _{fs}	1.5	2.1	4.5	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	200	380	600	
Output Capacitance	V _{DS} = 25 V	Coss	60	125	300	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	15	20	80	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	8.1	13	18	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A}$ (Gate charge is essentially	Q _{gs}	1.1	2.5	3.5	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	4	6	9	
Turn-On Delay Time	V _{DD} = 74 V, R _L = 33 Ω	^t d(on)	_	7	40	
Rise Time	ID~2.25 A , V _{GEN} = 10 V	t _r	-	25	50	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	-	38	50	1113
Fall Time	independent of operating temperature)	t _f	_	16	50	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	Is	_	_	3.5	
Pulsed Current ¹	¹ SM	-	–	14	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.7	-	1.5	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	100	400	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Qrr	-	0.15	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient therma! impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/555 where applicable

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6792	400	1.8	2.0

BOTTOM VIEW

01 02 03

1 DRAIN 2 GATE 3 SOURCE

TO-205AF (TO-39)

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS Drain-Source Voltage Gate-Source Voltage		Symbol	2N6792	Units
		V _{DS}	400	
		V _{GS}	± 20	
Continuous Drain Current	T _C = 25°C		2.0	
Continuous Drain Current	T _C = 100°C	_ 'D	1.25] , A
Pulsed Drain Current ¹		I _{DM}	10	
Avalanche Current		l _A	2.2	An London
Power Dissipation	T _C = 25°C	P _D	20	w
rower dissipation	T _C = 100°C	7 'D	8	⊺ "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from case	for 10 secs.)	TL	300	7

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	<u>-</u>	6.25	
Junction-to-Ambient	R _{thJA}	. , , -	175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 1000 μΑ		V(BR)DSS	400	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA	·	V _{GS(th)}	2.0	-	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	= :	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt egg	DSS	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ;= 0, T _J =125°C	1 _{DSS}	- -	-	250	μΑ
On-State Drain Current ² V _{DS} = 3.6 V, V _{GS} = 10 V		I _{D(on)}	2.0	_	_	Α
Drain-Source On-State Resista VGS = 10 V, I _D = 1.25 A	nce ²	r _{DS(on)}	_	1.5	1.8	
Drain-Source On-State Resista VGS = 10 V, ID = 1.25 A,TJ			-	3.0	4.0	v
Forward Transconductance ² V _{DS} = 5.0 V, I _D = 1.25 A		g _{fs}	1.0	1.4	3.0	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	200	385	600	
Output Capacitance	V _{DS} = 25 V	Coss	40	80	200	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	5	20	40	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	7.8	15	17.0	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 2.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	1.1	2	3.4	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	4.0	8	9.0	
Turn-On Delay Time	$V_{DD} = 175 \text{ V}, R_{L} = 140 \Omega$	^t d(on)	_	8	40	
Rise Time	ID = 1.25 A, VGEN = 10 V RG = 25 () (Switching time is essentially	^t r	_	10	35	ns
Turn-Off Delay Time		^t d(off)	-	42	60	
Fall Time	independent of operating temperature)	. t _f	_	20	35	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	I _S	-	<u>-</u>	2.0	
Pulsed Current ¹	ISM	_	-	10.0	^
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.6	_	1.4	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	trr	-	250	650	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	-	0.15	-	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/555 where applicable

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6794	500	3.0	1.5

BOTTOM VIEW

01 02 03

1 DRAIN 2 GATE

3 SOURCE TO-205AF (TO-39)

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS Drain-Source Voltage Gate-Source Voltage		Symbol	2N6794	Units	
		V _{DS}	500	V	
		V _{GS}	± 20	1 *	
O-ation - Davis Ourse	T _C = 25°C		1.5		
Continuous Drain Current	T _C = 100°C	- 'D	1.0		
Pulsed Drain Current ¹		IDM	6.5] ^	
Avalanche Current		^I A	2.2		
Davis Dissipation	T _C = 25°C	В	20	w	
Power Dissipation	T _C = 100°C	P _D	8	"	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C	
Lead Temperature (1/16" from case for 10 secs.)		TL	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	6.25	14.014
Junction-to-Ambient	R _{thJA}	-	175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag $V_{GS} = 0$, $I_D = 1000 \mu A$	Orain-Source Breakdown Voltage V _{GS} = 0, I _D = 1000 μA		500	-	_	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	-	4.0	
Gate-Body Leakage VDS= 0, VGS = ±20 V		IGSS	<u>-</u>	<u> </u>	200	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	=	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt s= 0, T _J =125°C	IDSS		_	250	μΑ
On-State Drain Current ² V _{DS} = 4.5 V, V _{GS} = 10 V		I _{D(on)}	1.5	-	_	A
Drain-Source On-State Resista VGS = 10 V, I _D = 1.0 A	nce ²	r _{DS(on)}	-	2.5	3.0	a
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 1.0 A, T _J = 125°C		r _{DS(on)}	-	4.8	6.6	72
Forward Transconductance ² V _{DS} = 5.0 V, I _D = 1.0 A		g _{fs}	1.0	1.25	3.0	S(ଫ)
Input Capacitance	V _{GS} = 0	C _{iss}	200	350	600	
Output Capacitance	V _{DS} = 25 V	Coss	30	75	150	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	5	27	40	1
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	8.1	15	18	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 3.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	1.0	2.5	3.2	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	4.0	8	9.0	
Turn-On Delay Time	$V_{DD} = 255 \text{ V}, R_{L} = 220 \Omega$	^t d(on)	-	8	40	
Rise Time	ID = 1.0 A , V _{GEN} = 10 V	t _r	-	18	30	ns
Turn-Off Delay Time	R _G = 25 \(\Omega\) (Switching time is essentially	^t d(off)	-	40	60	1113
Fall Time	independent of operating temperature)	t _f	_	15	30	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units	
Continuous Current	l _s	-	_	1.5		
Pulsed Current ¹	^I SM	-	-	6.5	* A	
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.6	-	1.2	V	
Reverse Recovery Time $I_F = I_S$, $dI_F/dt = 100 A/\mu S$	t _{rr}		250	900	ns	
Reverse Recovered Charge $I_F = I_S$, $dI_F/dt = 100 A/\mu S$	Q _{rr}	_	0.15	-	μС	

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/557 where applicable

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6796	100	0.18	8.0

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS Drain-Source Voltage		Symbol	2N6796	Units
		V _{DS}	100	V
Gate-Source Voltage		∨ _{GS}	± 20	· * * * * * * * * * * * * * * * * * * *
Continuous Drain Current	T _C = 25°C		8.0	
Continuous Drain Current	T _C = 100°C	'p	5.0	Α
Pulsed Drain Current ¹		IDM	32	A
Avalanche Current		I _A	3.1	
Bayer Discipation	T _C = 25°C	Ь	25	w
Power Dissipation	T _C = 100°C	P _D	10	er i V
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	5.0	12.014
Junction-to-Ambient	R _{thJA}	-	175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 1000 μA		V(BR)DSS	100	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	-	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	· <u>-</u>		100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt s= 0, T _J =125°C	IDSS	-	-	250] μΑ
On-State Drain Current ² V _{DS} = 1.56 V, V _{GS} = 10 V		I _{D(on)}	8.0	-	-	Α
Drain-Source On-State Resista VGS = 10 V, ID = 5.0 A	din-Source On-State Resistance ² /GS = 10 V, ID = 5.0 A		-	0.14	0.18	· a
Drain-Source On-State Resistance ² VGS = 10 V, I _D = 5.0 A, T _J = 125°C		r _{DS(on)}	-	0.24	0.35	
Forward Transconductance ² V _{DS} = 5.0 V, I _D = 5.0 A		g _{fs}	3.0	4.2	9.0	S(T)
input Capacitance	V _{GS} = 0	C _{iss}	350	750	900	14/11/2
Output Capacitance	V _{DS} = 25 V	Coss	150	280	500	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	50	70	150	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	13	26	31	
Gate-Source Charge	V _{GS} = 10 V, I _D = 8.0 A (Gate charge is essentially	Q _{gs}	2.1	5	5.5	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	6.7	13	15	
Turn-On Delay Time	V _{DD} = 30 V, R _L = 6 Ω	^t d(on)	_	7	30	
Rise Time	ID~ 5.0 A , VGEN= 10 V	t _r	_	39	75	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	-	11	40	1 113
Fall Time	independent of operating temperature)	t _f	-	28	45	1

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	^I s	-	-	8.0	
Pulsed Current ¹	^I SM		-	32	A .
Forward Voltage ² IF = IS , VGS = 0	V _{SD}	0.75	-	1.5	٧
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	: -	150	300	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Qrr	_	0.8	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/557 where applicable

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6798	200	0.40	5.5

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N6798	Units
Drain-Source Voltage		V _{DS}	200	>
Gate-Source Voltage		V _{GS}	, at a pril i datas ± 20 — e enage	· · ·
Continuous Drain Current	T _C = 25°C		5.5	
Continuous Drain Current	T _C = 100°C	l _D	3.5	A
Pulsed Drain Current ¹		I _{DM}	22	
Avalanche Current		I _A	3.1	
Pawer Discipation	T _C = 25°C	Ь	25	w
Power Dissipation	T _C = 100°C	P _D	10	, .
Operating Junction & Storage Temperature Range		T _J , T _{stg}	~55 to 150	°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300	, L

THERMAL RESISTANCE		Тур.	Max.	Units	
Junction-to-Case	R _{thJC}	-	5.0		
Junction-to-Ambient	R _{thJA}	·	175	K/W	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltaç V _{GS} = 0, I _D = 1000 μA	Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 1000 μΑ		200	-	_	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	-	4.0	· ·
Gate-Body Leakage VDS = 0, VGS = ±20 V		IGSS	-		100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt g _{age} ex i	I _{DSS}	-	<u>-</u> .	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt _S = 0, T _J =125°C	IDSS	-	-	250	μΑ
On-State Drain Current ² V _{DS} = 2.2 V, V _{GS} = 10 V		I _{D(on)}	5.5	_	- ·	A
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 3.5 A Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 3.5 A, T _J = 125°C		r _{DS(on)}	-	0.25	0.40	
		r _{DS(on)}	- ′	0.46	0.75	\ v
Forward Transconductance ² V _{DS} = 5.0 V, I _D = 3.5 A		g _{fs}	2.5	3.0	7.5	s(V)
Input Capacitance	V _{GS} = 0	Ciss	350	780	900	
Output Capacitance	V _{DS} = 25 V	Coss	100	220	450	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	40	70	150	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	15	23	34	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 5.5 \text{ A}$ (Gate charge is essentially	Q _{gs}	2.0	5	5.1	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	8.3	13	18	
Turn-On Delay Time	V_{DD} = 77 V, R_L = 22 Ω	^t d(on)		8	30	
Rise Time	ID = 3.5 A , V _{GEN} = 10 V	t _r		42	50] ns
Turn-Off Delay Time	$R_G = 7.5 \Omega$ (Switching time is essentially	^t d(off)	_	12	50]
Fall Time	independent of operating temperature)	t _f	_	30	40	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	1 _S	- 1	-	5.5	
Pulsed Current ¹	^I SM	-		22	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.70	-	1.4	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	- , ·	150	500	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Qrr	_	0.8	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

2N6800

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/557 where applicable

PRODUCT SUMMARY

 PART	V _{(BR)DSS}	r _{DS(on)}	I D	
NUMBER	(VOLTS)	(OHMS)	(AMPS)	
2N6800	400	1.0		

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N6800	Units
Drain-Source Voltage		V _{DS}	400	V
Gate-Source Voltage		V _{GS}	± 20	r vi i
Centinuous Drain Current	T _C = 25°C		3.0	
Continuous Drain Current	T _C = 100°C	'0	1.9	A
Pulsed Drain Current ¹		IDM	14	^
Avalanche Current		I _A 3.1		
Power Dissipation	T _C = 25°C	В	25	w
Power Dissipation	T _C = 100°C	P _D	10	"
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from c	ase for 10 secs.)	TL	300	

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units	
Junction-to-Case	R _{thJC}	-	5.0		
Junction-to-Ambient	R _{thJA}	-	175	K/W	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 1000 μA	je	V(BR)DSS	400	_	_	V
Gate Threshold Voltage VDS= VGS, ID = 250 μA		V _{GS(th)}	2.0	-	4.0	ľ
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	<u>-</u>	* <u>*</u>	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt .	I _{DSS}	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ;= 0, T _J =125°C	I _{DSS}	-	_	250	μΑ
On-State Drain Current ² V _{DS} = 3.0 V, V _{GS} = 10 V		I _{D(on)}	3.0	_	-	А
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 2.0 A		r _{DS(on)}	-	0.8	1.0	
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 2.0 A, T _J = 125°C		r _{DS(on)}	_	1.5	2.4	0
Forward Transconductance ² V _{DS} = 5 V, I _D = 2.0 A		g _{fs}	2.0	5.0	6.0	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	350	750	900	
Output Capacitance	V _{DS} = 25 V	Coss	50	160	300	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	20	70	80	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	_	23	-	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 3.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	5	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	12	-	
Turn-On Delay Time	V _{DD} = 176 V , R _L = 88 Ω	^t d(on)	-	11	30	
Rise Time	$I_D = 2.0 \text{ A}$, $V_{GEN} = 10 \text{ V}$ $R_G = 7.5 \Omega$ (Switching time is essentially	t _r :	-	16	35	ns
Turn-Off Delay Time		^t d(off)	-	41	55	1115
Fall Time	independent of operating temperature)	t _f	-	22	35	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	I _S	_	-	3.0	
Pulsed Current ¹	Ism	_	_	14	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.70	-	1.4	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}		250	700	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	-	1.5	_	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

2N6802

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/557 where applicable

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6802	500	1.5	2.5

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N6802	Units
Drain-Source Voltage		V _{DS}	500	
Gate-Source Voltage		V _{GS}	± 20]
Continuous Drain Current	T _C = 25°C	Ι,	2.5	
Continuous Diam Current	T _C = 100°C	- I _D	1.5]
Pulsed Drain Current ¹		IDM	11	1 ^
Avalanche Current		I _A	3.1	
Power Dissipation	T _C = 25°C	В	25	w
rower dissipation	T _C = 100°C	PD	10	The second
Operating Junction & Storage Temperature Range		T _J , T _{stg}	–55 to 150	•c
Lead Temperature (1/16" from case for 10 secs.)		TL	300	

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	RthJC	_	5.0	
Junction-to-Ambient	R _{thJA}	_	175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Volta V _{GS} = 0, I _D = 1000 μA	ge	V(BR)DSS	500	_	-	
Gate Threshold Voltage V _{DS} = V _{GS} , I _D =250 μA		V _{GS(th)}	2.0	-	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	81 <u>2</u>	100	nA
Zero Gate Voltage Drain Current VDS = V(BR)DSS · VGS = 0		^I DSS	9 <u>2</u> (4).		250	
Zero Gate Voltage Drain Curre VDS = 0.8 x V(BR)DSS , VGS	nt _S = 0, T _J =125°C	DSS	· -	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	250	μΑ
On-State Drain Current ² V _{DS} = 3.75 V, V _{GS} = 10 V		I _{D(on)}	2.5	-	_	Α
Drain-Source On-State Resistance ² VGS = 10 V, ID = 1.5 A Drain-Source On-State Resistance ² VGS = 10 V, ID = 1.5 A, TJ = 125°C		r _{DS(on)}	-	1.2	1.5	
		r _{DS(on)}	-	2.5	3.5	l v
Forward Transconductance ² V _{DS} = 5.0 V, I _D = 1.5 A		g _{fs}	1.5	2.8	4.5	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	350	750	900	
Output Capacitance	V _{DS} = 25 V	Coss	25	150	200	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	15	50	60	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	15	30	34	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 2.5 \text{ A}$ (Gate charge is essentially	Q _{gs}	1.8	4	4.7	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	7.6	15	17	
Turn-On Delay Time	$V_{DD} = 225 \text{ V}, R_L = 150 \Omega$	^t d(on)	_	11	30	
Rise Time	ID~ 1.5 A, V _{GEN} = 10 V R _G = 7.5	tr	<u> </u>	16	30	
Turn-Off Delay Time		t _{d(off)}	_	41	55	ns
Fall Time	independent of operating temperature)	t _f	_	22	30	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	^I s	_	-	2.5	,
Pulsed Current ¹	Ism	_		11	^
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.70	-	1.4	٧
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	260	900	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS	Q _{rr}	-	1.5	-	μС

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

2N6804

P-Channel Enhancement Mode Transistor²
Parametric limits in accordance with
MIL-S-19500/562 where applicable

BOTTOM VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6804	100	0.30	11.0

TO-204AA (TO-3)

3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N6804	Units	
Drain-Source Voltage		V _{DS}	100	V	
Gate-Source Voltage		V _{GS}	± 20	V	
Continuous Drain Current	T _C = 25°C		11.0		
Continuous Drain Current	T _C = 100°C	'D	7.0	A • •	
Pulsed Drain Current ¹		I _{DM}	50		
Avalanche Current		I _A	3.1		
Bayyar Dissination	T _C = 25°C	D	75	w	
Power Dissipation	T _C = 100°C	PD	30	.	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C	
Lead Temperature (1/16" from case for 10 secs.)		TL	300		

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	1.67	
Junction-to-Ambient	R _{thJA}	- ·	30	K/W
Case-to-Sink	RthCS	0.1	-	

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

					have been omit	tted for clarity
PARAMETERS/TES	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V_{GS} = 0, I_D = 1000 μ A		V(BR)DSS	100	-	-	
Gate Threshold Voltage VDS= VGS, ID= 250 μA	V _{GS(th)}	2.0	-	4.0	\ \ \	
Gate-Body Leakage VDS= 0, VGS = ±20 V		IGSS	-	_	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	-	_	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS		I _{DSS}	-	<u>-</u>	250	μΑ
On-State Drain Current ² V _{DS} = 4.0 V, V _{GS} = 10 V		I _{D(on)}	11		_	Α
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 7.0 A Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 7.0 A, T _J = 125°C		r _{DS(on)}	-	0.25	0.30	v
		r _{DS(on)}	-	0.40	0.55	
Forward Transconductance ² V _{DS} =10 V , I _D = 7 A		g _{fs}	3.0	3.5	9.0	S(T)
Input Capacitance	V _{GS} = 0	C _{iss}	-	625	<u>-</u>	
Output Capacitance	V _{DS} = 25 V	Coss	_	250	-	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	105	_	
Total Gate Charge	V _{DS} = 0.5 × V _{(BR)DSS} ,	Qg	13	24	29	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 11 \text{ A}$ (Gate charge is essentially	Q _{gs}	2.9	3.4	5.8	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	6.7	13.5	15	
Turn-On Delay Time	$V_{DD} = 35 \text{ V}, R_L = 4.5 \Omega$	^t d(on)	-	9	60	
Rise Time	ID~7A, V _{GEN} = 10 V	^t r	-	50	140	ns
Turn-Off Delay Time	$R_G = 7.5 \Omega$ (Switching time is essentially	^t d(off)	-	32	140	115
Fall Time	independent of operating temperature)	; t _f	_	38	140	
	l	L			L	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	¹s	-	-	11	_
Pulsed Current ¹	^I SM	-	-	50	^
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.8	-	2.0	٧
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	110	250	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/µS	Q _{rr}	_	0.4	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Pulse test: Pulse width ≤ 300 µsec, Duty Cycle ≤ 2%

P-Channel Enhancement Mode Transistor² Parametric limits in accordance with MIL-S-19500/562 where applicable

BOTTOM VIEW

3 SOURCE

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I D	
NUMBER	(VOLTS)	(OHMS)	(AMPS)	
2N6806	200	0.80	6.5	

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N6806	Units
Drain-Source Voltage		V _{DS}	200	V
Gate-Source Voltage		V _{GS}	± 20	7
Continuous Duals Comment	T _C = 25°C		6.5	
Continuous Drain Current	T _C = 100°C	d 'p	4.0	
Pulsed Drain Current ¹		I _{DM}	I _{DM} 28	
Avalanche Current		l _A	3.1	
Dawer Dissipation	T _C = 25°C	D	75	w
Power Dissipation	T _C = 100°C	P _D	30	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300	

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	RthJC	-	1.67	
Junction-to-Ambient	R _{thJA}		30	K/W
Case-to-Sink	R _{thCS}	0.1	-	

 $^{^1\}text{Pulse}$ width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) $^2\text{Negative}$ signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

	Negative signs have been offlitted for cia					
PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 1000 μA Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V(BR)DSS	200		-	V
		V _{GS(th)}	2.0	-	4.0	ľ
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	_	<u>-</u>	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}	_	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt _S = 0, T _J =125°C	IDSS	-	-	250	μΑ
On-State Drain Current ² V _{DS} = 5.2 V, V _{GS} = 10 V		I _{D(on)}	6.5	-	-	А
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 4.0 A Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 4.0 A, T _J = 125°C		r _{DS(on)}	-	0.50	0.80	,
		r _{DS(on)}	· <u>-</u>	1.0	1.6	v
Forward Transconductance ² V _{DS} = 10 V, I _D = 4.0 A		g _{fs}	2.0	2.8	6.0	s(ଫ)
Input Capacitance	V _{GS} = 0	C _{iss}	-	630	-	
Output Capacitance	V _{DS} = 25 V	Coss	_ .	220		pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	70	_	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	13	27.5	29	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 6.5 \text{ A}$ (Gate charge is essentially	Q _{gs}	2.8	3.0	5.6	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	7.1	15	16	
Turn-On Delay Time	V _{DD} = 63 V , R _L = 15 Ω	^t d(on)	-	6.5	50	
Rise Time	ID~ 4 A, V _{GEN} = 10 V	t _r	_	33	100	
Turn-Off Delay Time	$R_G = 7.5 \Omega$ (Switching time is essentially	^t d(off)	_	30	100	ns
Fall Time	independent of operating temperature)	t _f	<u>-</u>	21	80	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	l _s	_	-	6.5	
Pulsed Current ¹	I _{SM}	_	_	28	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.8	-	2.0	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	trr	_	160	400	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Qrr	_	1.6	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2 \, \}text{Pulse}$ test: Pulse width $\leq 300 \, \, \mu \text{sec}, \, \text{Duty Cycle} \leq \, 2 \%$

2N6845

P-Channel Enhancement Mode Transistor²
Parametric limits in accordance with
MIL-S-19500/563 where applicable

BOTTOM VIEW

01 02 03

1 DRAIN

2 GATE

3 SOURCE

TO-205AF (TO-39)

PRODUCT SUMMARY

PART	V(BR)DSS	r _{DS(on)}	I D	
NUMBER	(VOLTS)	(OHMS)	(AMPS)	
2N6845	100	0.60		

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CO	NDITIONS	Symbol	2N6845	Units
Drain-Source Voltage		V _{DS}	100	V
Gate-Source Voltage		V _{GS}	± 20	Y
Continuous Drain Current	T _C = 25°C		4.0	
Continuous Drain Current	T _C = 100°C	l _D	2.5	A A
Pulsed Drain Current ¹		IDM	16	7 ^
Avalanche Current		I _A	2.2	and a mit
Power Dissipation	T _C = 25°C	В	20	w
Power Dissipation	T _C = 100°C	PD	8	***
Operating Junction & Storage Temperature Range		Tյ, T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from case for 10 secs.)		ΤL	300	1

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}		6.25	12.044
Junction-to-Ambient	R _{thJA}	-	175	K/W

Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage VGS = 0, ID = 1000 μA Gate Threshold Voltage VDS = VGS · ID = 250 μA		V(BR)DSS	100	-	-	V
		V _{GS(th)}	2.0	_	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	<u>-</u>	_	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt s	I _{DSS}	_	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ;= 0, T _J =125°C	I _{DSS}	-		250	μΑ
On-State Drain Current ² V _{DS} = 2.4 V, V _{GS} = 10 V		I _{D(on)}	4.0	-	-	Α
Drain-Source On-State Resistance ² VGS = 10 V, ID = 2.0 A		r _{DS(on)}	-	0.50	0.60	a
Drain-Source On-State Resistance ² VGS = 10 V, I _D = 2.0 A, T _J = 125°C		r _{DS(on)}	-	0.90	1.08] W
Forward Transconductance ² V _{DS} = 15 V, I _D = 2.0 A		g _{fs}	1.25	1.4	3.75	s(ଫ)
Input Capacitance	V _{GS} = 0	Ciss	200	350	400	
Output Capacitance	V _{DS} = 25 V	Coss	75	205	225	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	20	80	100	
Total Gate Charge	V _{DS} = 0.5 × V _{(BR)DSS} ,	Qg	7.6	10.4	17	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 4.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	1.3	1.8	2.6	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	3.9	5.6	8.8	
Turn-On Delay Time	V _{DD} = 40 V, R _L = 15 Ω	^t d(on)	-	9	60	
Rise Time	ID = 2.6 A, V _{GEN} = 10 V	t _r	_	27	100	ns
Turn-Off Delay Time	$R_G = 7.5 \Omega$ (Switching time is essentially	^t d(off)	-	37	50	
Fall Time	independent of operating temperature)	t _f	-	30	70	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units	
Continuous Current	l _S	- .	-	4.0		
Pulsed Current ¹	^I SM	_	· * .	16	1 ^	
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.8	- -	2.0	٧	
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	trr	-	80	200	ns	
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Qrr	-	0.26	-	μС	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

2N6847

P-Channel Enhancement Mode Transistor²
Parametric limits in accordance with
MIL-S-19500/563 where applicable

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6847	200	1.5	2.5

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N6847	Units
Drain-Source Voltage		V _{DS}	200	· V
Gate-Source Voltage		V _{GS}	± 20]
Continuous Drain Current	T _C = 25°C		2.5	
Continuous Drain Current	T _C = 100°C	- 'D	1.6	
Pulsed Drain Current ¹		IDM	10	7 ^
Avalanche Current		l _A	2.2	
Power Dissipation	T _C = 25°C	Ь	20	w
Power Dissipation	T _C = 100°C	PD	8	7 "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°c
Lead Temperature (1/16" from case for 10 secs.)		TL	300	

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	-	6.25	12.044
Junction-to-Ambient	R _{thJA}	-	175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device
Negative signs have been omitted for clarity

T CONDITIONS	Symbol	Min.	Тур.	Max.	Units
ge	V _{(BR)DSS}	200		_	v
eshold Voltage /GS, ID= 250 μΑ		2.0	_	4.0	
	IGSS	-	_	100	nA
nt	I _{DSS}	_	-	250	
nt S= 0, T _J =125°C	IDSS	_	-	250	μΑ
2	^I D(on)	2.5	_	· <u>·</u>	Α
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 1.6 A Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 1.6 A, T _J = 125°C		_	1.0	1.5	Q
		·	1.75	2.94	αν
	g _{fs}	1.0	1.4	3.0	s(V)
V _{GS} = 0	C _{iss}	200	310	400	
V _{DS} = 25 V	Coss	50	110	125	pF
f = 1 MHz	C _{rss}	20	40	45	
V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	7.0	14	15	
Gate charge is essentially	Q _{gs}	1.1	1.8	2.2	nC
independent of operating temperature)	Qgd	3.2	6.5	7.2	
V _{DD} = 75 V, R _L = 45Ω	^t d(on)	_	10	50	
ID = 1.6 A , V _{GEN} = 10 V	tr	-	23	70	ns
	^t d(off)	_	45	40	113
independent of operating temperature)	t _f	_	31	50	
	V _{GS} = 0 V _{DS} = 25 V f = 1 MHz V _{DS} = 0.5 × V(BR)DSS, V _{GS} = 10 V, I _D = 2.5 A (Gate charge is essentially independent of operating temperature) V _{DD} = 75 V, R _L = 45 \(\Omega\) I _D = 1.6 A, V _{GEN} = 10 V R _G = 7.5 \(\Omega\) (Switching time is essentially independent of operating	V(BR)DSS V(BR)DSS V(BR)DSS V(BR)DSS IDSS IDSS ID(ID(ID) IDSS ID(ID) IDSS ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID) ID(ID)	V(BR)DSS 200 V(BR)DSS 200 V(BR)DSS	V(BR)DSS 200 -	V(BR)DSS 200 - -

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	¹s	-	_	2.5	
Pulsed Current ¹	^I sm	-	-	10	A .
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.8	_	2.0	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	105	300	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	_	0.23	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 $^{^2}$ Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

P-Channel Enhancement Mode Transistor² Parametric limits in accordance with MIL-S-19500/564 where applicable

PRODUCT SUMMARY

PART	V(BR)DSS rDS(on)		I _D
NUMBER	(VOLTS) (OHMS)		(AMPS)
2N6849	100	0.30	6.5

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N6849	Units
Drain-Source Voltage Gate-Source Voltage		v _{DS}	100	V
		V _{GS}	± 20	7 Y
Continuous Drain Current	T _C = 25°C		6.5	
Continuous Drain Current	T _C = 100°C	l _D	4.0	
Pulsed Drain Current ¹ Avalanche Current		IDM	25	1 ^
		I _A	3.1	
Power Dissipation	T _C = 25°C	D	25	w
rower dissipation	T _C = 100°C	P _D	10]
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from case for 10 secs.)		ΤL	300	

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	RthJC	-	5.0	12.044
Junction-to-Ambient	R _{thJA}	- <u>-</u>	175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) ²Negative signs for current and voltage values have been omitted for the sake of clarity

P-Channel Device
Negative signs have been omitted for clarity ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 1000 μA	е	V(BR)DSS	100	_	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	-	4.0	•
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	_	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt essential y	IDSS	-		250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt = 0, T _J =125°C	IDSS	-		250	μΑ
On-State Drain Current ² V _{DS} = 2.1 V, V _{GS} = 10 V		I _{D(on)}	6.5	-	<u>=</u>	A
Drain-Source On-State Resista VGS = 10 V, ID = 3.0 A	nce ²	r _{DS(on)}	-	0.25	0.30	Q
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 3.0 A, T _J = 125°C		r _{DS(on)}	-	0.40	0.54	32
Forward Transconductance ² V _{DS} = 15 V, I _D = 3.0 A		g _{fs}	2.5	2.8	7.5	s(ଫ)
Input Capacitance	V _{GS} = 0	C _{iss}	1 -	625	- 1	·
Output Capacitance	V _{DS} = 25 V	Coss	-	280	±, :	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	105		
Total Gate Charge	V _{DS} = 0.5 x V _(BR) DSS,	Qg	13	24	30	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 6.5 \text{ A}$ (Gate charge is essentially	Q _{gs}	2.4	3.4	5.0	. nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	6.7	13.5	15	
Turn-On Delay Time	V _{DD} = 42 V, R _L = 10 Ω	^t d(on)	-	9	60	-
Rise Time	ID ~ 4.1 A , V _{GEN} = 10 V	t _r	-	50	140	ns
Turn-Off Delay Time	$R_G = 7.5\Omega$ (Switching time is essentially	^t d(off)	-	32	140	113
Fall Time	independent of operating temperature)	tf	-	38	140	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units	
Continuous Current	l's	-	-	6.5		
Pulsed Current ¹	^I SM	-	_	26	^	
Forward Voltage ² IF = I _S , V _{GS} = 0	V _{SD}	0.8	-	2.0	٧	
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	_	110	250	ns	
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS	Qrr	_	0.4	_	μС	

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

2N6851

P-Channel Enhancement Mode Transistor²
Parametric limits in accordance with
MIL-S-19500/564 where applicable

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	l _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6851	200	0.80	4.0

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N6851	Units	
Drain-Source Voltage		V _{DS}	200		
Gate-Source Voltage		V _{GS}	± 20		
Continuous Drain Current	T _C = 25°C		4.0		
Continuous Drain Current	T _C = 100°C	_	2.4		
Pulsed Drain Current ¹		I _{DM}	20	7 ^	
Avalanche Current		lΑ	3.1		
Power Dissipation	T _C = 25°C	D	25	w	
Power Dissipation	T _C = 100°C	P _D	10	\	
Operating Junction & Storage Temperature Range		Tj, T _{stg}	-55 to 150	°C	
Lead Temperature (1/16" from case for 10 secs.)		TL	300		

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	_	5.0	12.041
Junction-to-Ambient	R _{thJA}		175	K/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device
Negative signs have been omitted for clarity

ELLOTHIOAL OHAHAOT	211101100 13		·	Negative signs	nave been omit	ted for clarit
PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 1000 μA			200	-	-	V
Gate Threshold Voltage VDS= VGS, ID= 250 μA		V _{GS(th)}	2.0	_	4.0	•
Gate-Body I.eakage V _{DS} = 0, V _{GS} = ±20 V	v	IGSS	-	-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	1 _{DSS}	-	_	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ,= 0, T _J =125°C	IDSS	_	*	250	μΑ
On-State Drain Current ² V _{DS} = 3.3 V, V _{GS} = 10 V		I _{D(on)}	4.0	= .	-	Α
Drain-Source On-State Resista VGS = 10 V, ID = 2.0 A	nce ²	^r DS(on)	_	0.50	0.80	G
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 2.0 A, T _J = 125°C		^r DS(on)	-	1.0	1.6	αν
Forward Transconductance ² V _{DS} = 15 V, I _D = 2.0 A		g _{fs}	2.2	2.4	6.6	s(ଫ)
Input Capacitance	V _{GS} = 0	C _{iss}	_	630	_	
Output Capacitance	V _{DS} = 25 V	Coss	· = ,	220	-	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	70	_	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	13	27	31	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 4.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	2.5	3.4	5.0	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	7.2	14	16	y teat
Turn-On Delay Time	V _{DD} = 95 V , R _L = 39 Ω	t _{d(on)}	-	6.5	50	
Rise Time	ID = 2.4 A , V _{GEN} = 10 V R _G = 7.5 \(\text{\$\Omega\$}\) (Switching time is essentially	t _r	-	33	100	ns
Turn-Off Delay Time		^t d(off)	-	30	80	"
Fall Time	independent of operating temperature)	t _f	-	21	80	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	1s	-		4.0	A
Pulsed Current ¹	^I SM	· <u>-</u>	-	20	
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.8	-	2.0	٧
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}		160	400	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS	Q _{rr}	-	1.6	_	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

2N6962

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/568 where applicable

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6962	100	0.060	30

TO-210AC (TO-61) ISOLATED CASE 1 SOURCE 2 GATE 3 DRAIN

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N6962	Units	
Drain-Source Voltage		V _{DS}	100	V	
Gate-Source Voltage		V _{GS}	± 30	7 '	
Continuous Drain Current	T _C = 25°C		30		
Continuous Drain Current	T _C = 100°C	'p	24		
Pulsed Drain Current ¹		IDM	120	 ^	
Avalanche Current		I _A	5.9		
Power Dissipation	T _C = 25°C	D	150	w	
Power Dissipation	T _C = 100°C	- P _D	60] vv	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C	
Lead Temperature (1/16" from case for 10 secs.)		TL	300		

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	RthJC	· · · <u>-</u>	0.83	
Junction-to-Ambient	R _{thJA}		40	K/W
Case-to-Sink	R _{thCS}	0.4	<u>-</u>	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) This device contains beryllium oxide

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltaç V _{GS} = 0, I _D = 250 μA	Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μΑ		100	-	_	>
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	-	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	_		100	nA
Zero Gate Voltage Drain Currer V _{DS} = 0.8 x V _(BR) DSS , V _{GS}		IDSS	-		250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS		I _{DSS}	-	_	250	μΑ
On-State Drain Current ² V _{DS} = 1.8 V, V _{GS} = 10 V		I _{D(on)}	30	- ···	_	Α
Drain-Source On-State Resista VGS = 10 V, I _D = 24 A	nce ²	r _{DS(on)}	-	0.45	0.060	Q.
Drain-Source On-State Resista VGS = 10 V, I _D = 24 A, T _J =			_	0.08	0.094	1 4
Forward Transconductance ² V _{DS} =15 V, I _D = 24 A		g _{fs}	9.0	12	27	S(ぴ)
Input Capacitance	V _{GS} = 0	C _{iss}	_	2800	3200	
Output Capacitance	V _{DS} = 25 V	Coss	. =	1100	1700	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	400	700	
Total Gate Charge	V _{DS} = 0.5 × V _{(BR)DSS} ,	Qg	48	62	109	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 30 \text{ A}$ (Gate charge is essentially	Q _{gs}	6.4	13	19	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	24	29	64	
Turn-On Delay Time	V _{DD} = 25 V, R _L = 1 Ω	^t d(on)	_	15	35	1
Rise Time	ID = 24 A , V _{GEN} = 10 V R _G = 4.7 \(\Delta\) (Switching time is essentially	t _{r.}	.=	30	100	ns
Turn-Off Delay Time		^t d(off)	-	50	125	1110
Fall Time	independent of operating temperature)	t _f	-	20	100	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	l _s	-	-	30	
Pulsed Current ¹	^I SM	_	-	120	Α Α
Forward Voltage ² IF = I _S , V _{GS} = 0	V _{SD}	0.60	_	1.9	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	_	150	400	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	-	0.5	-	μС

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

2N6963

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/568 where applicable

TO-210AC (TO-61)

1 SOURCE 2 GATE 3 DRAIN

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6963	200	0.090	30

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N6963	Units
Drain-Source Voltage		V _{DS}	200	V
Gate-Source Voltage		V _{GS}	± 30	7 °
Continuous Drain Current	T _C = 25°C		30	
Continuous Di ain Current	T _C = 100°C	lD	18	
Pulsed Drain Current ¹		IDM	120	7 ^
Avalanche Current		l _A	6.0	
Power Dissipation	T _C = 25°C	В	150	w
Power Dissipation	T _C = 100°C	P _D	60	¬ "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from o	case for 10 secs.)	TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	_	0.83	
Junction-to-Ambient	R _{thJA}	_	40	K/W
Case-to-Sink	R _{thCS}	0.4	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) This device contains beryllium oxide

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	je	V(BR)DSS	200	-	_	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	-	4.0	•
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	. m =	100	nA
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS, VGS		IDSS	-		250	
Zero Gate Voltage Drain Current VDS = 0.8 × V(BR)DSS , VGS= 0, TJ =125°C		I _{DSS}			250	μΑ
On-State Drain Current ² V _{DS} = 2.7 V, V _{GS} = 10 V		I _{D(on)}	30	-	-	A 1
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 19 A		r _{DS(on)}	_	0.075	0.090	a a
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 19 A, T _J = 125°C		r _{DS(on)}	-	0.13	0.160	40
Forward Transconductance ² V _{DS} =15 V, I _D = 19 A		g _{fs}	9.0	13	15.5	s(V)
Input Capacitance	V _{GS} = 0	C _{iss}	_	2750	3200	
Output Capacitance	V _{DS} = 25 V	Coss		850	1700	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	300	250	.]
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	63	<u>-</u>	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 30 \text{ A}$ (Gate charge is essentially	Qgs	_	14	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	32		
Turn-On Delay Time	V _{DD} = 95 V, R _L = 5 Ω	^t d(on)	_	15	35	
Rise Time	ID~ 19 A , VGEN = 10 V	t _r	-	.30	130	ns
Turn-Off Delay Time	$R_G = 4.7\Omega$ (Switching time is essentially	^t d(off)	-	50	130	1 113
Fall Time	independent of operating temperature)	tf		20	100	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	I _S	-	-	30	
Pulsed Current ¹	^I SM	-	_	120	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.6	-	1.8	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	trr	-	150	650	ns
Reverse Recovered Charge $I_F = I_S$, $dI_F/dt = 100 A/\mu S$	Q _{rr}	_	0.5	-	μC

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

2N6964

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/568 where applicable

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6964	400	0.30	15

TO-210AC (TO-61) ISOLATED CASE 1 SOURCE 2 GATE 3 DRAIN

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS Drain-Source Voltage		Symbol	2N6964	Units
		V _{DS}	400	
Gate-Source Voltage		V _{GS}	±30	7 °
Continuous Drain Current	T _C = 25°C		15	
	T _C = 100°C	'0	9.5	
Pulsed Drain Current ¹		I _{DM}	60	_ ^ ^
Avalanche Current		I _A	5.9	
Power Dissipation	T _C = 25°C	В	150	_ w
rower bissipation	T _C = 100°C	- P _D	60	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from o	case for 10 secs.)	TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	RthJC	-	0.83	
Junction-to-Ambient	R _{thJA}	-	40	K/W
Case-to-Sink	R _{thCS}	0.4		

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) This device contains beryllium oxide

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	je	V(BR)DSS	400	_	_	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA		V _{GS(th)}	2.0	-	4.0	v
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		Igss	_		100	nA
Zero Gate Voltage Drain Current VDS = 0.8 x V(BR)DSS , VGS= 0		DSS	-	. –	250	
Zero Gate Voltage Drain Current VDS = 0.8 x V(BR)DSS , VGS = 0, TJ =125°C		I _{DSS}		-	250	μΑ
On-State Drain Current ² V _{DS} = 4.5 V, V _{GS} = 10 V		I _{D(on)}	15	-	_	Α
Drain-Source On-State Resistance ² VGS = 10 V, I _D = 9.0 A Drain-Source On-State Resistance ² VGS = 10 V, I _D = 9.0 A, T _J = 125°C		r _{DS(on)}	-	0.22	0.30	_
		r _{DS(on)}	_	0.40	0.66	v
Forward Transconductance ² V _{DS} = 15 V, I _D = 9.0 A		g _{fs}	8	8.5	24	s(亚)
Input Capacitance	V _{GS} = 0	C _{iss}	-	2700	3200	
Output Capacitance	V _{DS} = 25 V	Coss	· -	450	700	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	160	250	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	52	77	118	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 15 \text{ A}$ (Gate charge is essentially	Q _{gs}	5.3	14	16	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	25	39	56	
Turn-On Delay Time	V _{DD} = 180 V , R _L = 20 Ω	^t d(on)	_	14	35	
Rise Time	ID [≃] 9.0 A , V _{GEN} = 10 V	tr	_	30	60	no
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	_	54	150	. ns
Fall Time	independent of operating temperature)	t _f	-	15	75	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units	
Continuous Current	l _s	_	_	15		
Pulsed Current ¹	^I SM	_	-	56	 	
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.6	-	1.7	V	
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	_	300	800	ns	
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	_	2.0	-	μС	

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

FIGURE 11: Normalized Effective Transient Thermal Impedance, Junction-to-Case

2N6965

N-Channel Enhancement Mode Transistor Parametric limits in accordance with MIL-S-19500/568 where applicable

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	l _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N6965	500	0.40	13

TO-210AC (TO-61) ISOLATED CASE 1 SOURCE 2 GATE 3 DRAIN

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS Drain-Source Voltage Gate-Source Voltage		Symbol	2N6965	Units
		V _{DS}	500	· v
		V _{GS}	± 30	
Continuous Drain Current	T _C = 25°C		13	
	T _C = 100°C	- 'D -	8.3	l A
Pulsed Drain Current ¹		I _{DM}	50	^
Avalanche Current		I _A	5.9	
Power Dissipation	T _C = 25°C	ь	150	w
rower dissipation	T _C = 100°C	P _D	60	VV
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from ca	se for 10 secs.)	TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	<u>.</u>	0.83	-
Junction-to-Ambient	R _{thJA}	-	40	K/W
Case-to-Sink	R _{thCS}	0.4	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) This device contains beryllium oxide

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA		V(BR)DSS	500	-	-	
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 250 μA			2.0	-	4.0	\ \
Gate-Body Leakage VDS= 0, VGS = ±20 V		IGSS	_	-	100	nA
Zero Gate Voltage Drain Curre VDS = 0.8 x V(BR)DSS , VGS	nt S= 0	I _{DSS}	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS		IDSS	_		250	μΑ
On-State Drain Current ² V _{DS} = 5.2 V, V _{GS} = 10 V		I _{D(on)}	13	-	-	А
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 8.3 A	in-Source On-State Resistance ² GS = 10 V, I _D = 8.3 A in-Source On-State Resistance ² GS = 10 V, I _D = 8.3 A, T _J = 125°C		-	0.30	0.40	
Drain-Source On-State Resista $V_{GS} = 10 \text{ V}, I_D = 8.3 \text{ A}, T_J = 0.00 \text{ A}$			_	0.60	0.88	ω
Forward Transconductance ² V _{DS} =15 V, I _D = 8.3 A		g _{fs}	8	10	24	S(V)
Input Capacitance	V _{GS} = 0	Ciss	· = , ,	2700	3200	
Output Capacitance	V _{DS} = 25 V	Coss	· -	410	700	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	140	250	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	55	75	124	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 13 \text{ A}$ (Gate charge is essentially	Q _{gs}	5.2	12	15	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	27	35	61	
Turn-On Delay Time	V _{DD} = 210 V , R _L = 25 Ω	^t d(on)	_	13	35	
Rise Time	ID = 7.75 A V _{GEN} = 10 V	t _r	_	26	50	, no
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	-	55	150	ns
Fall Time	independent of operating temperature)	tf	_ ,	17	70	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	^I s	· <u>-</u>		13	
Pulsed Current ¹	^I SM	_	-	52	A .
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.6	_	1.6	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	_	300	1000	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Qrr	_	2.0		μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

¹Operation in this area may be limited by r_{DS}(on)

2N7000, 2N7008 2N7002

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)		
2N7000	60	5	0.28	TO-92
2N7008	60	7.5	0.23	TO-92
2N7002	60	7.5	0.18	SOT-23

ABSOLUTE MAXIMUM RATINGS (TA= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N7000	2N7008	2N7002	Units
Drain-Source Voltage		V _{DS}	60	60	60	V
Gate-Source Voltage, Pulsed		V _{GS}	± 40	± 40	± 40	v
Continuous Drain Current	T _A = 25°C	,	0.28	0.23	0.18	A
	T _A = 100°C	'D	0.17	0.14	0.11	
Pulsed Drain Current ¹		I _{DM}	1.3	1.0	0.8	
Pawer Dissination	T _A = 25°C	Ь	0.8	0.8	0.36	w
Power Dissipation	T _A = 100°C	P _D	0.32	0.32	0.14	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150			°C
Lead Temperature (1/16" from case for 10 secs.)		TL		300		

THERMAL RESISTANCE	Symbol	TO-92	SOT-23	Units
Junction-to-Ambient	R _{thJA}	156	350	°C/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (TA= 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units	
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 10 μA		V(BR)DSS	60	70	-	V	
Gate Threshold Voltage VDS= VGS , ID = 1 mA		V _{GS(th)}	0.8	2.1	3.0	V	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±15 V		IGSS	-	±1	±10	nA	
Zero Gate Voltage Drain Currer V _{DS} = 48 V, V _{GS} = 0	nt en	DSS	-	0.02	1		
Zero Gate Voltage Drain Currer V _{DS} = 48 V, V _{GS} = 0, T _J =12		I _{DSS}	-	1.0	500	μΑ	
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 4.5 V		I _{D(on)}	0.075	0.10	_	А	
Drain-Source On-State Resistance ² V _{GS} = 4.5 V, I _D = 75 mA		r _{DS(on)}	_	_	5.3		
Drain-Source On-State Resista VGS = 10 V, ID = 0.5 A	Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 0.5 A		-	2.5	5	a	
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 0.5 A, T _J =125°C		^r DS(on)	<u>-</u>	4.3	9		
Forward Transconductance ² V _{DS} = 10 V , I _D = 0.2 A		g _{fs}	100	160	-	mS	
Common Source Output Condu VDS = 10 V , ID = 0.2 A	ctance	g _{os}	-	1200	-	μS	
Input Capacitance	V _{GS} = 0	C _{iss}	-	16	60		
Output Capacitance	V _{DS} = 25 V	Coss	-	11	25	pF	
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	2	5		
Turn-On Time	$V_{DD} = 15 \text{ V}$, $R_L = 25 \Omega$ $I_D = 0.5 \text{ A}$, $V_{GEN} = 10 \text{ V}$	t (on)	<u>-</u>	6	10		
Turn-Off Time	R _G = 25 \(\Omega\) (Switching time is essentially independent of operating temperature)	^t (off)	-	6	10	. ns	

TO-92 Only SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (TA = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	ls.	_	-	0.28	A
Pulsed Current ¹	Ism		_	1.3	
Forward Voltage ² I _F = I _S = 0.28 A, V _{GS} = 0	V _{SD}	-	-	1.5	V

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

2N7004

N-Channel Enhancement Mode Transistor

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N7004	100	0.60	1.0

4-PIN DIP (Similar to TO-250)

2 SOURCE 3 DRAIN

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N7004	Units
Drain-Source Voltage		V _{DS}	100	V
Gate-Source Voltage		V _{GS}	± 40	'
Continuous Drain Current	T _A = 25°C		1.0	
	T _A = 100°C	'p	0.63	A
Pulsed Drain Current ¹		IDM	8.0	
Davies Discharties	T _A = 25°C		1.0	w
Power Dissipation	T _A = 100°C	P _D	0.40	vv
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Ambient	R _{thJA}	-	120	K/W

¹Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA		V(BR)DSS	100	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.0	_	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	500	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}		<u>-</u>	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ;= 0, T _J =125°C	^I DSS	-	_	1000	μΑ
On-State Drain Current ² VDS = 2.0 V, VGS = 10 V		I _{D(on)}	1.0	-	-	А
Drain-Source On-State Resista VGS = 10 V, I _D = 0.8 A	nce ²	r _{DS(on)}	<u>-</u>	0.5	0.60	
Drain-Source On-State Resista	nce ² : 125°C	r _{DS(on)}	-	0.9	1.1	v
Forward Transconductance ² V _{DS} =15 V, I _D = 0.8 A		g _{fs}	0.8	0.9	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	170	250	
Output Capacitance	V _{DS} = 25 V	Coss	_	75	100	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	23	40	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	_	6.0	7.0	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 1.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	1.2	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	2.5	_	
Turn-On Delay Time	V _{DD} = 50 V, R _L = 62 Ω	^t d(on)	-	7	20	
Rise Time	ID = 0.8 A, V _{GEN} = 10 V R _G = 25 W (Switching time is essentially	t _r	-	18	25	no
Turn-Off Delay Time		^t d(off)	_	24	25	ns
Fall Time	independent of operating temperature)	t _f	_	11	20	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	I _S	-	\\ <u>-</u>	1.0	
Pulsed Current ¹	Ism	_	-	8.0	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	-	-	2.5	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μs	t _{rr}	-	65	_	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μs	Q _{rr}	-	0.12	-	μС

¹Pulse width limited by maximum junction temperature

 $^{^2}$ Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

4-618

2N7005

N-Channel Enhancement Mode Transistor

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N7005	200	1.5	0.60

4-PIN DIP (Similar to TO-250)

1 GATE 2 SOURCE

3 DRAIN

ABSOLUTE MAXIMUM RATINGS (TA= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N7005	Units
Drain-Source Voltage		V _{DS}	200	V
Gate-Source Voltage		V _{GS}	± 40	
Continuous Drain Current	T _A = 25°C		0.60	
Continuous Drain Current	T _A = 100°C	d l	0.38	A
Pulsed Drain Current ¹		I _{DM}	2.5	
Avalanche Current (see figure 9)		l _A	0.60	
Power Dissipation	T _A = 25°C	P _D	1.0	w
Power Dissipation	T _A = 100°C	, p	0.4	**
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from case	for 10 secs.)	TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Ambient	R _{thJA}	-	120	K/W

¹Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST_CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA		V(BR)DSS	200	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.0	_	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	_	-	500	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt e	I _{DSS}	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt = 0, T _J =125°C	IDSS	-	_	1000	μΑ
On-State Drain Current ² V _{DS} = 2.0 V,V _{GS} = 10 V		I _D (on)	0.6	-	_	А
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 0.3 A		r _{DS(on)}	-	1.0	1.5	v
Drain-Source On-State Resistance ² VGS = 10 V, ID = 0.3 A, TJ = 125°C		r _{DS(on)}	_	1.8	2.7	
Forward Transconductance ² V _{DS} = 15 V I _D = 0.3 A		g _{fs}	0.5	0.7	_	s(හ)
Input Capacitance	V _{GS} = 0	C _{iss}	_	175	240	
Output Capacitance	V _{DS} = 25 V	Coss	= -	65	80	pF.
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	20	40	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	· <u>-</u>	7.5	10	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 0.6 \text{ A}$ (Gate charge is essentially	Q _{gs}	_	1.6	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	5.0	-	, , , ,
Turn-On Delay Time	V _{DD} = 100 V , R _L = 300 Ω	^t d(on)	-	7	20	
Rise Time	ID = 0.3 A, V _{GEN} =10 V R _G = 25 D (Switching time is essentially	tr	_	18	30	ns
Turn-Off Delay Time		^t d(off)	-	35	45	1 113
Fall Time	independent of operating temperature)	t _f	-	20	30	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	Is	=	-	0.60	
Pulsed Current ¹	ISM	-	-	2.5	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	-	-	2.0	٧
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	_	65	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	-	0.12	-	μC

¹ Pulse width limited by maximum junction temperature

²Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

2N7006

N-Channel Enhancement Mode Transistor

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N7006	350	5.0	0.32

4-PIN DIP (Similar to TO-250)

1 GATE 2 SOURCE

3 DRAIN

ABSOLUTE MAXIMUM RATINGS (TA= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N7006	Units
Drain-Source Voltage		V _{DS}	350	V
Gate-Source Voltage		V _{GS}	± 40	*
Continuous Drain Current	T _A = 25°C		0.32	
Continuous Drain Current	T _A = 100°C	T _A = 100°C	0.19	
Pulsed Drain Current ¹		I _{DM}	1.2	A
Avalanche Current (see figure 9)		I _A	0.32	
Power Dissipation	T _A = 25°C	Р	1.0	w
Power Dissipation	T _A = 100°C	PD	0.4] "
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from c	ase for 10 secs.)	TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Ambient	R _{thJA}	-	120	K/W

¹Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA		V(BR)DSS	350	_	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.0	_	4.0	V
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-		500	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	1t - 1	^I DSS		- ,	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ;= 0, T _J =125°C	DSS	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 2.0 V, V _{GS} = 10 V		I _{D(on)}	0.32	_	_	А
Drain-Source On-State Resista VGS = 10 V, ID = 0.3 A	nce ²	r _{DS(on)}	-	3.2	5.0	_
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 0.3 A, T _J = 125°C		r _{DS(on)}	-	6.4	9.3	\ \oldsymbol{v}
Forward Transconductance ² V _{DS} =15 V, I _D = 0.3 A		g _{fs}	0.5	0.53	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	175	220	
Output Capacitance	V _{DS} = 25 V	Coss	-	40	50	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	9	20	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg) -	7.9	10	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 0.3 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	2	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	4	_	
Turn-On Delay Time	V _{DD} = 200 V, R _L = 680 Ω	^t d(on)	-	7	15	
Rise Time	ID~ 0.3 A, V _{GEN} = 10 V	t _r	-	18	20	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	-	28	30	1113
Fall Time	independent of operating temperature)	t _f	-	11	20	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	^I s	-	-	0.32	
Pulsed Current ¹	Ism	-	_	1.2	Α .
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	-	-	1.5	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	_	200	_	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	_	1.2	_	μС

 $^{^{1}}$ Pulse width limited by maximum junction temperature 2 Pulse test: Pulse width \leq 300 μsec , Duty Cycle $\leq~2\%$

2N7007, 2N7001

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I D (AMPS)	PACKAGE OPTION
2N7007	240	45	0.087	TO-92
2N7001	240	45	0.058	SOT-23

ABSOLUTE MAXIMUM RATINGS (TA= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N7007	2N7001	Units	
Drain-Source Voltage		V _{DS}	240	240	V	
Gate-Source Voltage Pulsed		V _{GS}	± 40	± 40		
Continuous Drain Current	T _A = 25°C		0.087	0.058		
	T _A = 100°C	- 'D	0.055	0.036	A	
Pulsed Drain Current ¹		IDM	0.26	0.21	7	
Power Dissipation	T _A = 25°C	В	0.80	0.36] w	
	T _A = 100°C	- P _D -	0.32	0.14	7 W	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C	
Lead Temperature (1/16" from case for 10 secs.)		TL	300			

THERMAL RESISTANCE		TO-92	SOT-23	Units
Junction-to-Ambient	R _{thJA}	156	350	°C/W

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units	
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 100 μA		V(BR)DSS	240	270	_	V	
Gate Threshold Voltage VDS= VGS, ID= 250 μΑ		V _{GS(th)}	1.0	1.4	2.5		
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	<u>+</u> 1	±10	nA	
Zero Gate Voltage Drain Currer V _{DS} = 120 V, V _{GS} = 0	nt	I _{DSS}	_	0.01	0.10		
Zero Gate Voltage Drain Currer VDS = 120 V, V _{GS} = 0, T _J =1	ro Gate Voltage Drain Current /DS = 120 V, V _{GS} = 0, T _J =125°C		_	0.8	1.0	μΑ	
On-State Drain Current ² VDS = 10 V, VGS = 4.5 V		I _{D(on)}	50	100	-	mA	
Drain-Source On-State Resistance ² V _{GS} = 4.5 V, I _D = 20 mA		r _{DS(on)}	-	35	45	a	
Drain-Source On-State Resistance ² V _{GS} = 4.5 V, I _D = 20 mA, T _J = 125°C		r _{DS(on)}	-	76	85		
Forward Transconductance ² V _{DS} = 10 V , I _D = 50 mA		g _{fs}	30	70	_	mS	
Common Source Output Condu VDS = 10 V , ID = 50 mA	ctance	g _{os}	_	50	-	μS	
Input Capacitance	V _{GS} = 0	C _{iss}	-	13	30		
Output Capacitance	V _{DS} = 25 V	Coss	. -	5	15	pF	
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	= . ; .	0.4	10		
Turn-On Time	$V_{DD} = 60 \text{ V}$, $R_L = 1.2 \text{ K}\Omega$ $I_D = 50 \text{ mA}$, $V_{GEN} = 10 \text{ V}$	^t (on)	-	15	30	ns	
Turn-Off Time	$R_G = 25 \Omega$ (Switching time is essentially independent of operating temperature)	^t (off)	-	10	20	IIS	

TO-92 Only SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_A= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units	
Continuous Current	^I s	-	-	0.09	- A	
Pulsed Current ¹	^I SM	_	-	0.26		
Forward Voltage ² I _F = I _S = 0.09 A, V _{GS} = 0	V _{SD}		0.80	1.2	٧	

 $[\]frac{1}{2}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\%$

2N7012, 2N7013

N-Channel Enhancement Mode Transistors

PRODUCT SUMMARY

PART NUMBER	V _{(BR)DSS} (VOLTS)	r _{DS(on)} (OHMS)	I _D (AMPS)
2N7012	60	0.35	1.2
2N7013	40	0.35	1.2

4-PIN DIP (Similar to TO-250)

1 GATE 2 SOURCE 3 DRAIN

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

			2	!N	Units
PARAMETERS/TEST	CONDITIONS	Symbol	7012	7013	Office
Drain-Source Voltage Gate-Source Voltage		V _{DS}	60	40	V
		V _{GS}	± 40	± 40	•
Continuous Drain Current	T _A = 25°C		1.2	1.2	
	T _A = 100°C	- 'b -	0.80	0.80	A
Pulsed Drain Current ¹		1 _{DM}	10	10	^
D Disabation	T _A = 25°C	В	1.0	1.0	W
Power Dissipation	T _A = 100°C	- PD -	0.4	0.4	**
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C
Lead Temperature (1/16" from	case for 10 secs.)	TL		300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Ambient	R _{thJA}	_	120	K/W

¹Pulse width limited by maximum junction temperature

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge 2N7012 2N7013	V(BR)DSS	60 40	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA			2.0	-	4.0	•
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	_ 1	- <u>-</u>	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS		<u>.</u>	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS		IDSS		-	1000	μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V	2N7012 2N7013	I _{D(on)}	10 10	-	-	А
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		r _{DS(on)}	-	0.3 0.3	0.35 0.35	
		r _{DS(on)}	-	0.55 0.55	0.64 0.64	Ω
Forward Transconductance ² V _{DS} = 15 V, I _D = 2.0 A		g _{fs}	1.2	1.5	_	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	_	220	300	
Output Capacitance	V _{DS} = 25 V	Coss		120	200	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	30	100	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	1	4.8	6.0	
Gate-Source Charge	V _{GS} = 10 V, I _D = 1.2 A (Gate charge is essentially	Qgs	-	1 .	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	2	-	1
Turn-On Delay Time	V _{DD} = 30 V, R _L = 15 Ω	^t d(on)	-	7	20	
Rise Time	ID~ 2 A, V _{GEN} = 10 V	t _r		13	30	ns
Turn-Off Delay Time	R _G = 25 Ω (Switching time is essentially	t _{d(off)}	-	18	30	
Fall Time	independent of operating temperature)	t _f	-	13	25	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Continuous Current	2N7012 2N7013	l _S	-	=	1.2 1.2	
Pulsed Current ¹	2N7012 2N7013	^I SM	-	-	10 10	Ą
Forward Voltage ² IF = I _S , V _{GS} = 0	2N7012 2N7013	V _{SD}	-	-	1.6 1.6	٧
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS		^t rr	_	45	-	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS		Qrr	-	0.6	-	μС

¹Pulse width limited by maximum junction temperature

 $^{^2}$ Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq 2\%$

N-Channel Enhancement Mode Transistor Low Gate-Threshold

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N7014	100	0.80	3.5

TO-220AB

- GATE
- 2 DRAIN
- 3 SOURCE

TOP VIEW

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N7014	Units
Drain-Source Voltage		V _{DS}	100	
Gate-Source Voltage		V _{GS}	± 20	•
Continuous Drain Current	T _C = 25°C		3.5	
Continuous Drain Current	T _C = 100°C	'D	2.0	Α
Pulsed Drain Current ¹		IDM	14	
Power Dissipation	T _C = 25°C	P	20	w
Power Dissipation	T _C = 100°C	P _D	8.0	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°c
Lead Temperature (1/16" from c	Lead Temperature (1/16" from case for 10 secs.)		300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	-	6.4	
Junction-to-Ambient	R _{th} JA		80	K/W
Case-to-Sink	R _{th} CS	1.0	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{(BR)DSS}	100	-	-	V
		V _{GS(th)}	0.80	-	2.5	·
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	100	nA
Zero Gate Voltage Drain Curre VDS = V(BR)DSS , VGS = 0	nt	I _{DSS}	_	_	250	_
Zero Gate Voltage Drain Curre VDS = 0.8 x V(BR)DSS , VGS	nt _S = 0, T _J =125°C	IDSS	-		1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	3.5	6.0	_	Α
Drain-Source On-State Resista VGS = 4.5 V, I _D = 1.0 A	ain-Source On-State Resistance ²		-	0.6	0.90	
Drain-Source On-State Resista VGS = 10 V, ID = 2.0 A			-	0.4	0.80	ω
Forward Transconductance ² V _{DS} = 15 V, I _D = 2.0 A		g _{fs}	0.75	1.5	_	s(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	230	300	
Output Capacitance	V _{DS} = 25 V	Coss		100	200	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	25	100	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	8.4	10	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	1.5	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	3.9	_	
Turn-On Delay Time	V _{DD} = 50 V, R _L = 25 Ω	^t d(on)	-	7	20	
Rise Time	ID = 2 A , V _{GEN} = 10 V	t _r	_	16	40	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	-	50	90	113
Fall Time	independent of operating temperature)	tf	_	32	70	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units	
Continuous Current	l _s	-	-	3.5		
Pulsed Current ¹	^I SM	_	-	14	^	
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	_	-	2.0	V	
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	_	65	-	ns	
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Qrr	-	0.12	_	μС	

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

P-Channel Enhancement Mode Transistor

PRODUCT SUMMARY

PART	V(BR)DSS	r _{DS(on)}	I D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N7016	60	1.0	0.70

4-PIN DIP (Similar to TO-250)

1 GATE 2 SOURCE 3 DRAIN

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N7016	Units
Drain-Source Voltage		V _{DS}	60	V
Gate-Source Voltage		V _{GS}	± 40	1 • • • • • • • • • • • • • • • • • • •
Continuous Drain Current	T _A = 25°C		0.70	
	T _A = 100°C	- 'D -	0.45	1
Pulsed Drain Current ¹		1 _{DM}	10	Α
Avalanche Current (see figure 9)	l _A	0.70	
Power Dissipation	T _A = 25°C	P _D	1.0	w
Tower Dissipation	T _A = 100°C	' D	0.4]
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Ambient			120	K/W

¹Pulse width limited by maximum junction temperature

²Negative signs for current and voltage values have been omitted for the sake of clarity

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) P-Channel Device Negative signs have been omitted for clarity

		Negative signs	nave been ornii	ted for clarity		
PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA		V(BR)DSS	60	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.0	-	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-		100	nA
Zero Gate Voltage Drain Curre VDS = V(BR)DSS , VGS = 0	nt ***	I _{DSS}	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt _S = 0, T _J =125°C	IDSS	-	- · · · -	1000	μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V		I _{D(on)}	0.7	· - .	-	Α
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 0.70 A	ince ²	r _{DS(on)}	-	0.85	1.0	
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 0.70 A, T _J = 125°C		r _{DS(on)}	-	1.6	1.9	\ v
Forward Transconductance ² V _{DS} = 15 V, I _D = 2.0 A		g _{fs}	0.50	0.90	-	s(හ)
Input Capacitance	V _{GS} = 0	C _{iss}	-	200	290	
Output Capacitance	V _{DS} = 25 V	Coss	_	110	160	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	25	60	
Total Gate Charge	V _{DS} = 0.8 × V _{(BR)DSS} ,	Qg	- -	6.1	7.5	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 0.7 \text{ A}$ (Gate charge is essentially	Q _{gs}	_	0.8	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	3.5	-	
Turn-On Delay Time	V _{DD} = 40 V, R _L = 40 Ω	^t d(on)	-	8	20	
Rise Time	ID = 1.0 A , V _{GEN} = 10 V	t _r	-	9	20	ns
Turn-Off Delay Time	$R_G = 25 \Omega$ (Switching time is essentially	^t d(off)	· · -	16	25	
Fall Time	independent of operating temperature)	t _f	_	25	30	
	•			L	L	L

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units	
Continuous Current	I _S	-	-	0.70		
Pulsed Current ¹	^I SM	-	-	10	A	
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	-	1.3	1.8	V	
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	60	-	ns	
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	-	0.15	_	μС	

¹ Pulse width limited by maximum junction temperature

²Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

N-Channel Enhancement Mode Transistor

TOP VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N7054	100	0.060	38

1 GATE 2 DRAIN

3 SOURCE

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N7054	Units
Drain-Source Voltage		V _{DS}	100	
Gate-Source Voltage		V _{GS}	± 40] v
Continuous Drain Current	T _C = 25°C	,	38	
Continuous Drain Current	T _C = 100°C	D D	24	7, ,
Pulsed Drain Current ¹		1 _{DM}	160	
Power Dissipation	T _C = 25°C	Р	150	w
Fower Dissipation	T _C = 100°C	P _D	60	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	_	0.83	
Junction-to-Ambient	R _{thJA}	_	30	K/W
Case-to-Sink	R _{thCS}	0.4	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA		V(BR)DSS	100	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.0	-	4.0	, v
Gate-Body Leakage $V_{DS} = 0$, $V_{GS} = \pm 20$ V		IGSS	· <u>-</u>	_	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	_	_	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt _S = 0, T _J =125°C	DSS	-	-	1000	μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V		I _{D(on)}	38	-	<u>.</u>	А
Drain-Source On-State Resista VGS = 10 V, ID = 20 A			-	0.045	0.060	
Drain-Source On-State Resista VGS = 10 V, ID = 20 A, TJ =		r _{DS(on)}	=	0.08	0.096	ι σ
Forward Transconductance ² V _{DS} = 15 V, I _D = 20 A		g _{fs}	8.0	11.0	-	s(හ)
Input Capacitance	V _{GS} = 0	C _{iss}	-	2800	3300	
Output Capacitance	V _{DS} = 25 V	Coss	-	1100	1500	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	400	700	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	62	120	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 38 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	15	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	29	-	
Turn-On Delay Time	$V_{DD} = 30 \text{ V}, R_L = 1.5 \Omega$	^t d(on)	_	15	35	
Rise Time	$I_D = 20 \text{ A}$, $V_{GEN} = 10 \text{ V}$ $R_G = 2.5 \Omega$ (Switching time is essentially	t _r	-	30	100	ns
Turn-Off Delay Time		^t d(off)	_	50	120	113
Fall Time	independent of operating temperature)	tf	-	20	100	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	¹s	-	-	38	
Pulsed Current ¹	^I SM	_	-	160	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	-	-	2.3	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	trr	-	150	400	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μs	Q _{rr}	-	0.5	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Pulse test: Pulse width ≤ 300 µsec, Duty Cycle ≤ 2%

N-Channel Enhancement Mode Transistor

TOP VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N7055	200	0.10	28

ABSOLUTE MAXIMUM RATINGS (T_C= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N7055	Units
Drain-Source Voltage		V _{DS}	200	
Gate-Source Voltage		V _{GS}	± 40] '
0	T _C = 25°C		28	
Continuous Drain Current	T _C = 100°C	¹ D	17	1
Pulsed Drain Current ¹		IDM	120	1 ^
Avalanche Current (see figure 9)	IA	28	
Dawer Dissination	T _C = 25°C		150	
Power Dissipation	T _C = 100°C	PD	60	W
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	_ °C
Lead Temperature (1/16" from case for 10 secs.)		TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	_	0.83	
Junction-to-Ambient	R _{thJA}	-	30	K/W
Case-to-Sink	R _{thCS}	0.4	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage VGS = 0, ID = 250 µA		V(BR)DSS	200	-	-	V
Gate Threshold Voltage VDS= VGS, ID= 1000 μA		V _{GS(th)}	2.0	_	4.0]
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt in the second of the second	IDSS	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS		IDSS	<u>-</u>	_	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	28	- ' ' '.	<u>-</u>	Α
Drain-Source On-State Resista VGS = 10 V, ID = 16 A	nce ²	r _{DS(on)}	_	0.07	0.100	
	Orain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 9.0 A, T _J = 125°C		-	0.12	0.175	v
Forward Transconductance ² V _{DS} = 15 V, I _D = 16 A		g _{fs}	8.0	13	_	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	2700	3300	
Output Capacitance	V _{DS} = 25 V	Coss	. -	850	1200	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	300	600	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg		63	120	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 28 \text{ A}$ (Gate charge is essentially	Q _{gs}	_	14	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	32		
Turn-On Delay Time	$V_{DD} = 100 \text{ V, R}_{L} = 6.25 \Omega$	^t d(on)	-	15	35	
Rise Time	$I_D = 16 \text{ A}$, $V_{GEN} = 10 \text{ V}$ $R_G = 4.7 \Omega$ (Switching time is essentially	t _r	-	30	100	ns
Turn-Off Delay Time		^t d(off)	= .	50	125	113
Fall Time	independent of operating temperature)	t _f	=	20	100	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	I _S	_		28	
Pulsed Current ¹	^I SM	- "	<u>-</u>	120	^
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	_	-	2.0	, V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	_	150	400	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Qrr	_	0.5	-	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Pulse test: Pulse width \leq 300 μsec, Duty Cycle \leq 2%

N-Channel Enhancement Mode Transistor

TOP VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N7057	400	0.40	13

1 GATE 2 DRAIN 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS Drain-Source Voltage		Symbol	2N7057	Units
		V _{DS}	400	v
Gate-Source Voltage		V _{GS}	± 40	
Continuous Drain Current	T _C = 25°C		13	
Continuous Drain Current	T _C = 100°C	'p	8	1
Pulsed Drain Current ¹		I _{DM}	60	A 1
Avalanche Current (see figure 9)		l _A	13	1
Dower Dissipation	T _C = 25°C	В	150	w
Power Dissipation	T _C = 100°C	P _D	60	, w
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from ca	ase for 10 secs.)	TL	300	

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	_	0.83	
Junction-to-Ambient	R _{thJA}	- '	30	K/W
Case-to-Sink	R _{th} CS	0.4	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge	V(BR)DSS	400		_	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.0	-	4.0	
Gate-Body Leakage V _{DS} ≈ 0, V _{GS} = ±20 V		l _{GSS}	-	-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS, VGS = 0	nt	IDSS	_	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS, VGS		DSS	-	-	1000] μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	13	<u>=</u>	<u>-</u>	А
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 8.0 A Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 8.0 A, T _J = 125°C		r _{DS(on)}	-	0.22	0.40	
		r _{DS(on)}	-	0.40	0.74	v
Forward Transconductance ² V _{DS} = 15 V, I _D = 9.0 A		g _{fs}	7.0	8.0	_	s(V)
Input Capacitance	V _{GS} = 0	C _{iss}	-	2700	3300	
Output Capacitance	V _{DS} = 25 V	Coss	- <u>-</u>	450	700	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}		160	300	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	77	120	
Gate-Source Charge	V _{GS} = 10 V, I _D = 13 A (Gate charge is essentially	Q _{gs}	_	14	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	39	-	
Turn-On Delay Time	V _{DD} = 200 V , R _L = 25 Ω	^t d(on)	-	14	40	
Rise Time	ID~ 8.0 A , V _{GEN} = 10 V	t _r	_	30	65	ns
Turn-Off Delay Time	$R_G = 4.7\Omega$ (Switching time is essentially	^t d(off)	_	54	150	1 115
Fall Time	independent of operating temperature)	t _f	· - .	15	75	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	ls e	_	-	13	
Pulsed Current ¹	^I SM	-	· - ·	60	^
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	_	1.5	2.0	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}		300	500	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	_	2.0	-	μC

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Pulse test: Pulse width ≤ 300 µsec, Duty Cycle ≤ 2%

N-Channel Enhancement Mode Transistor

TOP VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N7058	500	0.45	12

TO-218

1 GATE 2 DRAIN

3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS Drain-Source Voltage		Symbol	2N7058	Units
		V _{DS}	500	
Gate-Source Voltage		V _{GS}	± 40]
Continuous Dunis Comment	T _C = 25°C		12	
Continuous Drain Current	T _C = 100°C	- 'D	8	1 .
Pulsed Drain Current ¹		IDM	52	^
Avalanche Current (see figure 9)	I _A	12	1
Daway Dissipation	T _C = 25°C	В	150	w
Power Dissipation	T _C = 100°C	PD	60]
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°c
Lead Temperature (1/16" from case for 10 secs.)		TL	300	1

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	_	0.83	
Junction-to-Ambient	R _{thJA}	-	30	K/W
Case-to-Sink	R _{thCS}	0.4	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage $V_{GS} = 0$, $I_D = 250 \mu A$	ge	V(BR)DSS	500	_	-	
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.0	3.0	4.0]
Gate-Body Leakage VDS= 0, VGS = ±20 V		IGSS	-	-	100	nA
Zero Gate Voltage Drain Current VDS = V(BR)DSS · VGS = 0		IDSS			250	
Zero Gate Voltage Drain Currel $V_{DS} = 0.8 \times V_{(BR)DSS}$, V_{GS}	nt _S = 0, T _J =125°C	I _{DSS}	-	_	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	12	-	-	- A
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 7.0 A Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 7.0 A, T _J = 125°C		r _{DS(on)}	_	0.35	0.45	
		r _{DS(on)}	_	0.72	0.86	- a
Forward Transconductance ² V _{DS} = 15 V, I _D = 7.0 A		g _{fs}	6.0	9.0	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	. 1, 4	2700	3300	
Output Capacitance	V _{DS} = 25 V	Coss	=	410	700	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	140	300]
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	- -	75	120	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 12.0 \text{ A}$ (Gate charge is essentially	Qgs		12	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	35	_	
Turn-On Delay Time	V _{DD} = 210 V , R _L = 30 Ω	^t d(on)	-	13	40	3 × ×
Rise Time	ID = 7.0 A , V _{GEN} = 10 V R _G = 4.7 \(\hat{L}\) (Switching time is essentially	t _r	_	26	50	ns
Turn-Off Delay Time		^t d(off)	-	55	150	1 115
Fall Time	independent of operating temperature)	t _f	-	17	70	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	^I s	-	_	12	
Pulsed Current ¹	^I SM	_	_	52	A .
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	_	1.2	1.5	V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	_	300	600	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	_	2.0	-	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

N-Channel Enhancement Mode Transistor

TOP VIEW

PRODUCT SUMMARY

PART NUMBER			I _D (AMPS)
2N7060	100	0.10	25

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N7060	Units	
Drain-Source Voltage		V _{DS}	100		
Gate-Source Voltage		V _{GS}	± 40	7 °	
Continuous Drain Current	T _C = 25°C		25		
Continuous Drain Current	T _C = 100°C	'p	16		
Pulsed Drain Current ¹		^I DM	100	^	
Dawer Dissipation	T _C = 25°C	ь	125	w	
Power Dissipation	T _C = 100°C	P _D	50	7 W	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C	
Lead Temperature (1/16" from case for 10 secs.)		TL	300		

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	_	1.0	
Junction-to-Ambient	R _{thJA}		30	K/W
Case-to-Sink	R _{thCS}	0.4	_	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μΑ		100	-	-	٧
Gate Threshold Voltage VDS= VGS , ID= 1000 μΑ		V _{GS(th)}	2.0	_	4.0	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt	IDSS	.=	· -	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS		DSS	-		1000	μΑ
On-State Drain Current ² V _{DS} = 5.0 V, V _{GS} = 10 V		I _D (on)	25	-	-	A
Drain-Source On-State Resista VGS = 10 V, I _D = 15 A			=	0.07	0.100	
Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 8 A, T _J = 125°C		r _{DS(on)}	_	0.12	0.155	v
Forward Transconductance ² V _{DS} = 15 V, I _D = 15 A		g _{fs}	6.0	8.0	_	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	_	1550	2000	
Output Capacitance	V _{DS} = 25 V	Coss	<u> </u>	550	1000	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	150	400	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	50	60	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 25 \text{ A}$ (Gate charge is essentially	Q _{gs}	-	10	_	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	, · · -	23	-	i
Turn-On Delay Time	$V_{DD} = 30 \text{ V}$, $R_L = 2.0 \Omega$	^t d(on)	_	10	30	
Rise Time	I_D = 15 A , V_{GEN} = 10 V R_G = 4.7 Ω (Switching time is essentially	t _r	-	40	60	ns
Turn-Off Delay Time		^t d(off)	_	30	80	113
Fall Time	independent of operating temperature)	t _f	_	15	30	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	Is	-	_	25	
Pulsed Current ¹	^I SM	-	-	100	Α Α
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	0.6	_	2.0	V.
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	150	600	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Qrr	-	0.5	-	μС

 $^{^1}$ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11) 2 Pulse test: Pulse width $\leq 300~\mu sec$, Duty Cycle $\leq~2\,\%$

N-Channel Enhancement Mode Transistor

TOP VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N7061	200	0.20	

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N7061	Units
Drain-Source Voltage		V _{DS}	200	
Gate-Source Voltage		V _{GS}	± 40	Jana * 199
Continuous Drain Current	T _C = 25°C	- I _D	16.5	
Continuous Di ain Current	T _C = 100°C		10.5	
Pulsed Drain Current ¹		IDM	67]. ^ .
Avalanche Current (see figure 9)		l _A	16.5	
Power Dissipation	T _C = 25°C	ь в	125	w
Fower Dissipation	T _C = 100°C	P _D	50	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from case for 10 secs.)		TL	300	7

				T
THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	-	1.0	
Junction-to-Ambient	R _{thJA}		30	K/W
Case-to-Sink	R _{thCS}	0.4	_	1

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag $V_{GS} = 0$, $I_D = 250 \mu A$			200	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA			2.0	-	4.0	,
Gate-Body Leakage VDS = 0, VGS = ±20 V		IGSS	-	-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	nt / 1 %	DSS	-	-	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ;= 0, T _J =125°C	I _{DSS}	-	() (<u> </u>	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V	19.0 - 11	I _{D(on)}	16.5		-	Α
Drain-Source On-State Resistance ² VGS = 10 V, I _D = 10 A Drain-Source On-State Resistance ² VGS = 10 V, I _D = 5 A, T _J = 125°C		r _{DS(on)}	-	0.14	0.20	0
		^r DS(on)	-	0.27	0.39	v.
Forward Transconductance ² V _{DS} = 15 V, I _D = 10 A		g _{fs}	6.0	7.2	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	.=	1550	2000	
Output Capacitance	V _{DS} = 25 V	Coss	·	500	750	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	220	300	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	-	43	60	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 16.5 \text{ A}$ (Gate charge is essentially	Q _{gs}	. -	10	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	19		
Turn-On Delay Time	V _{DD} = 75 V , R _L = 7.5 Ω	^t d(on)	_	10	30	
Rise Time	ID = 10 A , V_{GEN} = 10 V R _G = 4.7 Ω (Switching time is essentially	tr	-	40	60	ns
Turn-Off Delay Time		^t d(off)	_	30	80	113
Fall Time	independent of operating temperature)	t _f	_	15	60	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	¹s	-		16.5	
Pulsed Current ¹	^I SM	_	_	67	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	-	-	1.9	, V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	150	550	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	-	0.5	-	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

2N7063

N-Channel Enhancement Mode Transistor

TOP VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N7063	400	0.60	9.5

3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N7063	Units
Drain-Source Voltage		V _{DS}	400	V
Gate-Source Voltage		V _{GS}	± 40	\
Continuous Drain Current	T _C = 25°C		9.5	
	T _C = 100°C	l _D	6.0	_
Pulsed Drain Current ¹		IDM	40] ^
Avalanche Current (see figure 9)		l _A	9.5	1 .
Power Dissipation	T _C = 25°C	P	125	W
Power Dissipation	T _C = 100°C	PD	50] · · · · ·
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°c
Lead Temperature (1/16" from cas	e for 10 secs.)	TL	300	

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{th} JC	<u>-</u> -	1.0	
Junction-to-Ambient	R _{thJA}	-	30	K/W
Case-to-Sink	RthCS	0.4		

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag V _{GS} = 0, I _D = 250 μA	ge	V(BR)DSS	400	-	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.0	-	4.0	V
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	100	nA
Zero Gate Voltage Drain Current VDS = V(BR)DSS , VGS = 0		IDSS	-	_	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ;= 0, T _J =125°C	DSS	-	<u> </u>	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	9.5	- 1	-	A (A A A A A A A A A A A A A A A A A A
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 5.0 A	Drain-Source On-State Resistance ² V _{GS} = 10 V, I _D = 5.0 A		- :	0.45	0.60	
Drain-Source On-State Resistance ² VGS = 10 V, ID = 3.0 A, TJ = 125°C		r _{DS(on)}	1	0.90	1.17	ω
Forward Transconductance ² V _{DS} = 15 V, I _D = 5.0 A		g _{fs}	3.0	4.4	-	s(V)
Input Capacitance	V _{GS} = 0	Ciss	_	1500	1800	
Output Capacitance	V _{DS} = 25 V	Coss	.	300	450	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	120	150	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg	, -	53	60	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 9.0 \text{ A}$ (Gate charge is essentially	Q _{gs}	_	12	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	_	35	- - -	
Turn-On Delay Time	V _{DD} = 175 V, R _L = 35 Ω	^t d(on)	-	14	35	,
Rise Time	$I_D = 5.0 \text{ A}$, $V_{GEN} = 10 \text{ V}$ $R_G = 4.7 \Omega$ (Switching time is essentially	, ^t r	-	14	20	ns
Turn-Off Delay Time		^t d(off)	-	52	90	113
Fall Time	independent of operating temperature)	t _f	_	18	35	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	l _s	-	-	9.5	
Pulsed Current ¹	Ism		-,	40	A
Forward Voltage ² IF = I _S , V _{GS} = 0	V _{SD}	-	_	1.9	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS	t _{rr}	-	250	600	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	-	1.0	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

 2 Pulse test: Pulse width \leq 300 μ sec, Duty Cycle \leq 2%

2N7064

N-Channel Enhancement Mode Transistor

TOP VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N7064	500	0.90	8.0

1 GATE

2 DRAIN 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS Drain-Source Voltage Gate-Source Voltage		Symbol	2N7064	Units	
		V _{DS}	500	- V	
		V _{GS}	± 40		
Continuous Drain Current	T _C = 25°C		8.0		
Continuous Drain Current	T _C = 100°C	- 'D	5.0	1	
Pulsed Drain Current ¹		I _{DM}	32	1 ^	
Avalanche Current (see figure 9) "	l _A	8.0		
Devices Disable at law	T _C = 25°C	В	125] w	
Power Dissipation	T _C = 100°C	P _D	50	7 W	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	_ °c	
Lead Temperature (1/16" from o	case for 10 secs.)	TL	300		

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}	-	1.0	
Junction-to-Ambient	R _{thJA}	-	30	K/W
Case-to-Sink	R _{thCS}	0.4	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST	CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Volta V _{GS} = 0, I _D = 250 μA	ge	V(BR)DSS	500	_	-	V
Gate Threshold Voltage V _{DS} = V _{GS} , I _D = 1000 μA		V _{GS(th)}	2.0	-	4.0	V
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-		100	nA
Zero Gate Voltage Drain Current VDS = V(BR)DSS , VGS = 0		I _{DSS}	-		250	
Zero Gate Voltage Drain Curre VDS = 0.8 x V(BR)DSS , VGS		I _{DSS}	<u> </u>	-	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _{D(on)}	8.0	-	_	А
Drain-Source On-State Resistance ² VGS = 10 V, ID = 4.0 A		r _{DS(on)}	-	0.80	0.90	
Drain-Source On-State Resistance ² VGS = 10 V, ID = 4.0 A, TJ = 125°C		r _{DS(on)}	_	1.5	1.71	\ \alpha
Forward Transconductance ² VDS = 15 V, ID = 4.0 A		g _{fs}	3.0	4.3	-	S(V)
Input Capacitance	V _{GS} = 0	C _{iss}	. - . * *	1500	1800	
Output Capacitance	V _{DS} = 25 V	Coss		250	350	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	75	150	The second of
Total Gate Charge	V _{DS} = 0.5 x V _(BR) DSS,	Qg	_	47	60	
Gate-Source Charge	V _{GS} = 10 V, I _D = 8.0 A (Gate charge is essentially	Q _{gs}	- - -	10	1-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	26	- · ·	
Turn-On Delay Time	V _{DD} = 200 V , R _L = 50 Ω	^t d(on)	-	12	35	
Rise Time	ID~ 4.0 A, V _{GEN} = 10 V	t _r	-	12	15	ns
Turn-Off Delay Time	$R_G = 4.7 \Omega$ (Switching time is essentially	^t d(off)	_	50	70	113
Fall Time	independent of operating temperature)	tf	<u>_</u>	17	30	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	I _S	_		8.0	
Pulsed Current ¹	I _{SM}	-		32	1 ^
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	_	-	1.9	V
Reverse Recovery Time IF = IS, dIF/dt = 100 A/μS	t _{rr}	_	250	600	ns
Reverse Recovered Charge IF = IS, dIF/dt = 100 A/µS	Q _{rr}	_	1.0	-	μС

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

²Pulse test: Pulse width ≤ 300 μsec, Duty Cycle ≤ 2%

N-Channel Enhancement Mode Transistor

TOP VIEW

PRODUCT SUMMARY

PART	V _{(BR)DSS}	r _{DS(on)}	I _D
NUMBER	(VOLTS)	(OHMS)	(AMPS)
2N7066	650	1.60	5.5

1 GATE

2 DRAIN 3 SOURCE

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	2N7066	Units
Drain-Source Voltage		V _{DS}	650	V
Gate-Source Voltage		V _{GS}	± 40]
Continuous Drain Current	T _C = 25°C		5.5	
Continuous Drain Current	T _C = 100°C	'p	3.5]
Pulsed Drain Current ¹		IDM	15	
Avalanche Current (see figure 9)		l _A	5.5	
Payer Discipation	T _C = 25°C	В	125	w
Power Dissipation	T _C = 100°C	P _D	50] v
Operating Junction & Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from cas	e for 10 secs.)	T∟	300	

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-Case	R _{thJC}		1.0	
Junction-to-Ambient	R _{thJA}	-	30	K/W
Case-to-Sink	R _{thCS}	0.4	-	

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltag $V_{GS} = 0$, $I_D = 250 \mu A$	Drain-Source Breakdown Voltage V _{GS} = 0, I _D = 250 μA			-	-	v
Gate Threshold Voltage VDS= VGS, ID = 1000 μA	V _{GS(th)}	2.0	-	4.0	•	
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V		IGSS	-	-	100	nA
Zero Gate Voltage Drain Currer VDS = V(BR)DSS , VGS = 0	1 t	IDSS	-	1	250	
Zero Gate Voltage Drain Currer VDS = 0.8 x V(BR)DSS , VGS	nt ;= 0, T _J =125°C	IDSS	-	1.	1000	μΑ
On-State Drain Current ² V _{DS} = 10 V, V _{GS} = 10 V		I _D (on)	5.5	_ 1	- 	, A
Drain-Source On-State Resista V _{GS} = 10 V, I _D = 3.0 A	nce ²	r _{DS(on)}	-	1.25	1.60	Q.
Drain-Source On-State Resista VGS = 10 V, ID = 3.0 A, TJ =	r _{DS(on)}	-	2.3	3.36	1 4	
Forward Transconductance ² V _{DS} = 15 V, I _D = 3.0 A		g _{fs}	2.0	3.2	-	s(℧)
Input Capacitance	V _{GS} = 0	Ciss	-	1200	1800	
Output Capacitance	V _{DS} = 25 V	Coss		200	350	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	80	150	
Total Gate Charge	V _{DS} = 0.5 x V _{(BR)DSS} ,	Qg		52	75	
Gate-Source Charge	$V_{GS} = 10 \text{ V}, I_D = 5.5 \text{ A}$ (Gate charge is essentially	Q _{gs}		13	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	26	-	
Turn-On Delay Time	V _{DD} = 325 V , R _L = 130 Ω	^t d(on)	- -	15	40	
Rise Time	ID~ 2.5 A , V _{GEN} = 10 V	t _r	-	20	50	ns
Turn-Off Delay Time	$R_G = 5.0 \Omega$ (Switching time is essentially	^t d(off)	-	80	90	"
Fall Time	independent of operating temperature)	t _f	_	45	70	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	Is	_	-	5.5	
Pulsed Current ¹	Ism	_	-	15	^
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	-	-	2.0	· · · · · ·
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μS	t _{rr}	-	250	850	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	_	1.0	-	μС

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

² Pulse test: Pulse width \leq 300 μsec, Duty Cycle \leq 2%

- Index and Cross Reference
 - Process Flows 2
 - Selector Guide
 - Data Sheets 4
- Switching Regulator and Controller ICs
 - MOSPOWER Die Products
 - Test Circuits 7
 - Package Outlines E
 - Technical Information
- Worldwide Sales Offices and Distributors 10

Si9100/Si9101

One-watt, High-voltage Switchmode Regulators

FEATURES

- 10 to 70 V Input Range
- Current-mode Control
- On chip 150 V, 5 Ω
 MOSFET Switch
- Reference Selection
 Si9100 ± 1%
 Si9101 ± 10%
- High Efficiency Operation (> 80%)
- Internal Start-up Circuit
- Internal Oscillator (up to 1 MHz)

APPLICATIONS

- ISDN Equipment
- PBX Equipment
- Modems
- Feature Telephones
- DC/DC Converters
- Distributed Power Systems

DESCRIPTION

The Si9100/Si9101 high-voltage switchmode regulators are monolithic D/CMOS integrated circuits which contain most of the components necessary to implement a one-watt, high-efficiency DC to DC converter. They can either be operated from a low-voltage DC supply, or directly from a 10 to 70 V unregulated DC power source.

The switchmode regulator subsystem includes high-voltage start-up circuitry, oscillator, voltage reference, current-mode PWM circuitry and a high-speed 150 V, 5 Ω MOSFET switch. Additional features include primary

current sense, SHUTDOWN and RESET logic inputs, and external clock synchronization. This device may be used with an appropriate transformer to implement most single ended power converter topologies (i.e., flyback and forward), and by using an external reference can generate a +5 V non-isolated output from a -48 V source.

The Si9100/Si9101 are available in 14-pin plastic and CerDIP packages, and are specified over the military (-55 to 125°C) and industrial (-40 to 85°C) temperature ranges.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

Order Numbers: Si9100AK, Si9101AK Si9100DJ, Si9101DJ

Order Numbers: Si9100DN, Si9101DN

FUNCTION	14-pin DIP Pin #	PLCC-20* Pin #
BIAS	1	2
+VIN	2	3
DRAIN	3	5
SOURCE	4	7
-VIN	5	.8
Vcc	6	9
OSC OUT	7	10
OSC IN	8	11
DISCHARGE	9	12
VREF	10	14
SHUTDOWN	11	16
RESET	12	17
COMP	13	18
FB	14	20

* Pins 1, 4, 6, 13, 15 and 19 = N/C

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to -VIN
Vcc
+V _{IN} 70 V
V _{DS} 150 V
ID (Peak) (Note 1)
ID(rms) 350 mA
Logic Inputs (RESET, SHUTDOWN, OSC IN)0.3 V to Vcc + 0.3 V
Linear Inputs (FEEDBACK, SOURCE)0.3 V to 7.0 V
HV Preregulator Input Current (continuous) 3 mA
Note 1: 300 µsec pulse, 2% duty cycle
Storage Temperature (A, D Suffix)65 to 125°C

Operating Temperature (A Suffix)-55 to 125°C (D Suffix)-40 to 85°C Power Dissipation (Package)* 14-Pin Ceramic DIP (K Suffix)** 1000 mW 14-Pin Plastic DIP (J Suffix)*** 750 mW 20-Pin PLCC (N Suffix)**** 1400 mW Thermal Impedance (θ_{JA}) 14-Pin Ceramic DIP 100°C/W 14-Pin Plastic DIP 167°C/W

- *Device mounted with all leads soldered or welded to PC board.
- **Derate 10 mW/°C above 50°C
- ***Derate 6 mW/°C above 25°C

 ****Derate 11 mW/°C above 25°C

ELECTRICAL CHARACTERISTICS 1

			Test Conditions			LIN	IITS			
	PARAMETER	SYMBOL	SYMBOI DISCHARGE = -VIN = 0 V 2	1=25 ° C 2=125,85 ° C 3=-55,-40 ° C		A SUFFIX -55 to 125 °C		D SUFFIX -40 to 85 °C		
			RBIAS = 390 k Ω , ROSC = 330 k Ω	TEMP	TYP ³	MIN 2	МАХ	MIN 2	MAX	UNIT
	Output Voltage	VR	R _L = 10 M C (See detailed description)	1	4.0					V
ENCE	Output Impedance	ZOUT		1	30					kΩ
REFERENCE	Short Circuit Current		VREF= -V IN	1	100					ДА
	Temperature Stability	and the same		2,3	1		. *			mV/°C
	Maximum Frequency	fosc	Rosc = 0	1	3	1		1		MHz
ATOR	Initial Accuracy			1	100	80	120	80	120	kHz
ספכורו	Voltage Stability	Vosc	9.5 V ≤ V _{CC} ≤ = 13.5 V	1	±3					%
0	Temperature Coefficient			2,3	500					ppm/° C

ELI	CTRICAL CHARACTE	RISTICS	1									
			Test Condition	Test Conditions			LIMITS					
	PARAMETER	SYMBOL	DISCHARGE = -VIN	DISCHARGE = -VIN = 0 V		C 85 ° C -40 ° C	A SU -55 to	FFIX 125 °C	D SU -40 to	FFIX 85 °C		
						TYP ³	MIN 2	MAX	MIN 2	MAX	UNIT	
	Feedback input Voltage	V _{FB}	FB tied to COMP (See detailed description) reference section	SI9100	1	4.00	3.96	4.04	3.96	4.04	, , , , , , , , , , , , , , , , , , ,	
			reference section	Si9101	1	4.00	3.60	4.40	3.60	4.40		
	Input BIAS Current	1	∨FB = 4.0 ∨	·	1	1		500		500	nA	
IFIER	Open Loop Voltage Gain	AVOL			1	80	60		60		dB	
ERROR AMPLIFIER	Unity Gain Bandwidth				3 1 1 a	1					MHz	
ERRO	Output Impedance	ZOUT		<u> </u>	1	50					kΩ	
	Output Current	lout	Source V _{FB} = 3.4 V	and the second	1	1.4	1	<u> </u>			mA	
			Sink V _{FB} = 4.5 V		1	0.15		William I				
	Power Supply Rejection	PSRR	9.5 V ≤ V _{CC} ≤ 13		1	70					dB	
CURR LIMIT	Threshold Voltage	VSOURCE	R _L = 100 Ω from DRAIN VFB = 0 V		1	1.2	1.0	1.4	1.0	1.4	<u> </u>	
G.R.	Delay to Output	^t d	R _L = 100 Ω from DRAIN V _{SOURCE} = 1.4 V, See		. 1	150		200		200	ns	
	Input Voltage	+VIN	۱ _{IN} = 10 مر		1			70		70	· V	
ARTUP	Input Leakage Current	+IN	V _{CC} ≥ 9.4 V		1 .			10		10	ДА	
PREREG/STARTUP	Input Start-up Current		V _{CC} = 0 V, Duty Cycle	< 10%	1	16					mA	
PRE	VCC preregulator Turn-OFF Threshold Voltage		Preregulator = 10		1	8.6		9.4		9.4	V	
_	Undervoltage Lockout		R _L = 100 Ω from DRAIN (See Detailed descrip	tion)	1	8.1		8.9		8.9		
SUPPLY	Supply Current	l cc			1	0.6	 	1.0		1.0	mA	
-	Bias Current	BIAS			1	15					μΑ	
	SHUTDOWN Delay	tsD	V _{SOURCE} = ~V _{IN} , See	Figure 2	1	50		100		100		
	SHUTDOWN Pulse Width	tsw			1		50		50		ns	
	RESET Pulse Width	tRW	See Figure 3		1		50		50]	
21907	Latching Pulse Width SHUTDOWN and RESET LOW	tLW			1	41	25		25			
	Input LOW Voltage	V₁L		2	1			2.0		2.0		
	Input HIGH Voltage	V⊪			1		8.0		8.0		Ľ	
	Input Current, Input Voltage HIGH	1 ІН	V _{IN} = 10 V		1	1					μΑ	
							+		+	———		

	in the second of	Maria de la	Test Conditions			LIIV	IITS			
	PARAMETER	SYMBOL	Unless otherwise specified: DISCHARGE = -V _{IN} = 0 V V _{CC} = 10 V, +V _{IN} = 48 V,	2=125,	C 85 °C -40 °C	A SU -55 to	FFIX 125 °C	D SU -40 to		
,			RBIAS = 390 k Ω,	TEMP	TYP ³	MIN 2	MAX	MIN 2	MAX	UNIT
70010	Input Current, Input Voltage LOW	l _H ∟	V _{IN} = 0 V	1	-25					μА
	Breakdown Voltage	V _{(BR)Dss}	V _{SOURCE} = V SHUTDOWN = 0 V, I _{DRAIN} = 100 μA	2,3	180	150		150		· V
SWITCH	4 Drain-source ON Resistance	R _{DS(ON)}	V _{SOURCE} = 0 V, I _{DRAIN} = 100 mA	1	3		5		5	c
MOSFET 9	Drain OFF Leakage Current	IDSS	V _{SOURCE} = V _{SHUTDOWN} = 0 V, V _{DRAIN} = 100 V	1			10		10	ΑЩ
×	Drain Capacitance	CDSS	V _{SOURCE} = V _{SHUTDOWN} = 0 V	1	250					рF

NOTES:

Refer to PROCESS OPTION FLOWCHART for additional informational.

The algebraic convention whereby the most negative value is a minimum, and the most positive value is a maximum, is used in this data sheet. Typical values are for DESIGN AID ONLY, not quaranteed nor subject to production testing.

Temperature coefficient of R DS(on) is 0.75% per °C, typical.

TIMING WAVEFORMS

TYPICAL CHARACTERISTICS

DETAILED DESCRIPTION

PREREGULATOR/STARTUP SECTION

Due to the low quiescent current requirement of the Si9100 control circuitry, bias power can be supplied from the unregulated input power source, from an external regulated low-voltage supply, or from an auxiliary "bootstrap" winding on the output inductor or transformer.

When power is first applied during startup, $+V_{IN}$ (pin 2)will draw a constant current. The magnitude of this current is determined by a high-voltage depletion MOSFET device which is connected between $+V_{IN}$ and V_{CC} (pin 6). This startup circuitry provides initial power to the IC by charging an external bypass capacitance connected to the V_{CC} pin. The constant current is disabled when V_{CC} exceeds 8.6 V. If V_{CC} is not forced to exceed the 8.6 V threshold, then V_{CC} will be regulated to a nominal value of 8.6 V by the preregulator circuit.

As the supply voltage rises toward the normal operating conditions, an internal undervoltage (UV) lockout circuit keeps the output MOSFET disabled until Vcc exceeds the undervoltage lockout threshold (typically 8.1 V). This guarantees that the control logic will be functioning properly and that sufficient gate drive voltage is available before the MOSFET turns ON. The design of the IC is such that the undervoltage lockout threshold will not exceed the preregulator turn-off voltage. Power dissipation can be minimized by providing an external power source to Vcc such that the constant current source is always disabled.

NOTE: During startup or when $V_{\rm CC}$ drops below 8.6 V the startup circuit is capable of sourcing up to 20 mA. This may lead to a high level of power dissipation in the IC (for a 48 V input, approximately 1 W). Excessive start up time can result in device damage. See Figure 4 for calculation of power dissipation during start up.

BIAS

To properly set the bias for the Si9100, a 390 k Ω resistor should be tied from BIAS (pin 1) to $^{-}V_{\rm IN}$ (pin 5). This determines the magnitude of bias current in all of the analog sections and the pull-up current for the SHUTDOWN and RESET pins. The current flowing in the bias resistor is nominally 15 μ A.

REFERENCE SECTION

The reference section of the Si9100 consists of a temperature compensated buried zener and trimmable divider network. The output of the reference section is connected internally to the non-inverting input of the error amplifier. Nominal reference output voltage is 4.0 V. The trimming procedure that is used on the Si9100 brings the output of the error amplifier (which is configured for unity gain during trimming) to within $\dot{1}\%$ of 4.0 V. This automatically compensates for the input offset voltage in the error amplifier.

The output impedance of the reference section has been purposely made high so that a low impedance external voltage source can be used to override the internal voltage source, if desired, without otherwise altering the performance of the device.

Applications which use a separate external reference, such as non-isolated converter topologies and circuits employing optical coupling in the feedback loop, do not require a trimmed voltage reference with 1% accuracy. The Si9101 accommodates the requirements of these applications at a lower cost, by leaving the reference voltage untrimmed. The 10% accurate reference thus provided is sufficient to establish a DC bias point for the error amplifier.

DETAILED DESCRIPTION (continued)

ERROR AMPLIFIER

Closed-loop regulation is provided by the error amplifier, which is intended for use with "around-the-amplifier compensation. A MOS differential input stage provides for low input current. The noninverting input to the error amplifier (V_{REF}) is internally connected to the output of the reference supply and should be bypassed with a small capacitor to ground.

OSCILLATOR SECTION

The oscillator consists of a ring of CMOS inverters, capacitors, and a capacitor discharge switch. Frequency is set by an external resistor between the OSC IN and OSC OUT pins. (See Figure 5 for details of resistor value vs. frequency.) The DISCHARGE pin should be tied to $-V_{\rm IN}$ for normal internal oscillator operation. A frequency divider in the logic section limits switch duty cycle to 550% by locking the switching frequency to one half of the oscillator frequency.

Remote synchronization can be accomplished by capacitive coupling of a synchronization pulse into the OSC IN (pin 8) terminal. For a 5 V pulse amplitude, typical values would be 1000 pF in series with 10 k Ω to pin 8.

SHUTDOWN AND RESET

SHUTDOWN (pin 11) and RESET (pin 12) are intended for overriding the output MOSFET switch via external control logic. The two inputs are fed through a latch preceding the output switch. Depending on the logic state of RESET. SHUTDOWN can be either a latched of unlatched input. The output is OFF whenever SHUTDOWN is low. By

simultaneously having SHUTDOWN and RESET low, the latch is set and SHUTDOWN will have no effect until RESET goes high. The truth table for these inputs is given in Table 1

Both pins have internal current source pull-ups and can be left disconnected when not in use. An added feature of the current sources is the ability to connect a capacitor and an open-collector driver to the SHUTDOWN or RESET pins to provide variable shutdown time.

SHUTDOWN	RESET	OUTPUT
Н	н	Normal Operation
н		Normal Operation (No Change)
L	н	OFF (Not Latched)
L,	. L	OFF (Latched)
	L	OFF (Latched) (No Change)

Table 1. Truth Table for the SHUTDOWN and RESET Pins.

OUTPUT SWITCH

The output switch is a 5 Ω , 150 V lateral DMOS device. Like discrete MOSFETs, the switch contains an intrinsic body-drain diode. However, the body contact in the Si9100 is connected internally to $-V_{\rm IN}$ and is independent of the SOURCE.

APPLICATIONS

BUCK-BOOST NON-ISOLATED 1 W SUPPLY

APPLICATIONS (continued)

NON-ISOLATED 1 W SUPPLY (BUCK) O GND R8 10 k 1% C5 220 μF; 10 V 1N5806 🛧 C6 0.1 μF CR1 R9 10 k 1% L1 -5 V 200 mA 150 μH @ 0.2 ADC R3 150 k ≥ R7 3.9 k C1 20μF C2 0.1 μF C3 13 _{JL}1.0 μF R10 5 k Si9101 ₹ R4 \$3.3 k Q1 U1 MPSA93 R5 Ŵ 300 k C7 0.1 μF 10 TL 431C C4 0.0015 R2 R6 **≥** C8 0.1= μF U2 1Ω μF 5 9 1/2 W \overline{h} -48 V O

ONE WATT FLYBACK CONVERTER FOR TELECOMMUNICATIONS POWER SUPPLIES*

* For additional information on using the Si9100 in telecommunications and ISDN power supplies, see AN87-1 and AN87-2.

One-watt, High-voltage Switchmode Regulator

FEATURES

- 10 to 120 V Input Range
- Current-mode Control
- On chip 200 V, 7 Ω
 MOSFET Switch
- SHUTDOWN and RESET Function
- High Efficiency Operation (> 80%)
- Internal Start-up Circuit
- Internal Oscillator (up to 1 MHz)

APPLICATIONS

- ISDN Equipment
- PBX Equipment
- Modems
- Feature Telephones
- DC/DC Converters
- Distributed Power Systems

DESCRIPTION

The Si9102 high-voltage switchmode regulator is a monolithic D/CMOS integrated circuit which contains most of the components necessary to implement a one-watt, high-efficiency DC to DC converter. It can either be operated from a low-voltage DC supply, or directly from a 10 to 120 V unregulated DC power source.

The switchmode regulator subsystem includes high-voltage start-up circuitry, oscillator, voltage reference, current-mode PWM circuitry and a high-speed, 200 V, 7 Ω MOSFET switch. Additional features include primary

current sense, SHUTDOWN and RESET logic inputs, and external clock synchronization. This device may be used with an appropriate transformer to implement most single ended isolated power converter topologies (i.e., flyback and forward), or by using an external reference can generate a +5 V non-isolated output from a -10 V to -96 V source.

The Si9102 is available in 14-pin plastic and CerDIP packages, and is specified over the military (-55 to 125°C) and industrial (-40 to 85°C) temperature ranges.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

Top View

Order Numbers: Si9102AK, Si9102DJ

Order Number:

Si9102DN

FUNCTION	14-pin DIP Pin #	PLCC-20* Pin #
BIAS	1	2
+VIN	2	3
DRAIN	3	5
SOURCE	4	7
-VIN	5	8
Vcc	6	9
OSC OUT	7	10
OSC IN	8	11
DISCHARGE	9	12
VREF	10	14
SHUTDOWN	11	16
RESET	12	17
COMP	13	18
FB	14	20

* Pins 1, 4, 6, 13, 15 and 19 = N/C

ABSOLUTE MAXIMUM RATINGS

15.0 V
120 V
200 V
2 A
250 mA
cc + 0.3 V
V to 7.0 V
3 mA

Note 1: 300 µsec pulse, 2% duty cycle

Storage Temperature (A, D Suffix) -65 to 150°C

Operating Temperature (A Suffix) -55 to 125°C (D Suffix) -40 to 85°C

 Power Dissipation (Package)*
 14-Pin Ceramic DIP (K Suffix)**
 1000 mW

 14-Pin Plastic DIP (J Suffix)***
 750 mW

 20-Pin PLCC (N Suffix)****
 1400 mW

*Device mounted with all leads soldered or welded to PC board.

**Derate 10 mW/°C above 50°C

***Derate 6 mW/°C above 25°C
****Derate 11 mW/°C above 25°C

ELECTRICAL CHARACTERISTICS 1

	3.7		Test Conditions			LIM	IITS		T/1 (4)	
	PARAMETER SYMBOL	Unless otherwise specified:	1=25 ° C 2=125,85 ° C 3=-55,-40 ° C		A SUFFIX -55 to 125 °C		D SUFFIX -40 to 85 °C			
			RBIAS = 390 k Ω , ROSC = 330 k Ω	ТЕМР	TYP ³	MIN 2	MAX	MIN 2	MAX	UNIT
ENCE	Output Voltage	VR	$R_{\perp} = 10 \text{ M} \Omega$. (See detailed description)	1	4.0					V
	Output Impedance	ZOUT		1	30				- 1	kΩ
REFERENCE	Short Circuit Current		VREF= -V IN	1	100					μΑ
	Temperature Stability			2,3	1					mV/°C
	Maximum Frequency	fosc	Rosc = 0	1	3	1		1		MHz
OSCILL A TOR	Initial Accuracy			1	100	80	120	80	120	kHz
	Voltage Stability	Vosc	9.5 V ≤ V _{CC} ≤ = 13.5 V	1	±3		-			%
0	Temperature Coefficient			2,3	500		-	24.4		ppm/°C

	CTRICAL CHARACTI	FDICTION	<u> </u>							-
ELE	CTRICAL CHARACTI	ERISTICS	F			LIN	IITS			Γ
	PARAMETER	SYMBOL	CC = 10 V, +V _{IN} = 48 V,	1=25 ° C 2=125,85 ° C 3=-55,-40 ° C		A SUFFIX -55 to 125 °C		D SUFFIX -40 to 85 °C		
		14. 14.	RBIAS = 390 k Ω , ROSC = 330 k Ω	TEMP	TYP ³	MIN 2	MAX	MIN 2	MAX	UNIT
~	Feedback Input Voltage	V _{FB}	FB tied to COMP (See detailed description) reference section	1	4.00	3.96	4.04	3.96	4.04	· V
LIFIE	Input BIAS Current		∨FB = 4.0 ∨	1	1		500		500	nA
AMP	Open Loop Voltage Gain	AVOL		1	80	60		60		dB
ERROR AMPLIFIER	Unity Gain Bandwidth			1	1					MHz
	Output Impedance	ZOUT		1	50					kΩ
	Output Current	LOUT	Source V _{FB} = 3.4 V	1	1.4		1 1 2			mA
		331	Sink V _{FB} = 4.5 V	1	0.15					1111
1.	Power Supply Rejection	PSRR	9.5 V ≤ V _{CC} ≤ 13.5 V	1	70					dB
LIMIT	Threshold Voltage	VSOURCE	R _L = 100 Ω from DRAIN to V _{CC} V _{FB} = 0 V	1	1.2	1.0	1,4	1.0	1.4	٧
CU RR	Delay to Output	^t d	R _L = 100 Ω from DRAIN to V _{CC} V _{SOURCE} = 1.4 V, See Figure 1	1	150		200		200	ns
	Input Voltage	+VIN	I _{IN} = 10 μΑ	-1			120		120	٧
TUP	Input Leakage Current	+l IN	V _{CC} ≥ 9.4 V	1			10		10	μΑ
PREREG/STARTUP	Input Start-up Current		V _{CC} = 0 V, Duty Cycle < 10%	1	16					mA .
RERE	VCC preregulator Turn-OFF Threshold Voltage		Preregulator = 10 µA	1	8.6		9.4		9.4	
_	Undervoltage Lockout		R _L = 100 Ω from DRAIN to V _{CC} (See Detailed description)	1	8.1		8.9		8.9	, V
SUPPLY	Supply Current	loc ,		1	0.6		1.0		1.0	mA
SUP	Bias Current	BIAS	Andrew Communication (Communication Communication Communic	1	15		,			ДА
	SHUTDOWN Delay	tsD	R _L = 100 Ω from DRAIN to V _{CC} V _{SOURCE} = -V _{IN} , See Figure 2	1	50		100		100	
	SHUTDOWN Pulse Width	tsw		1		50		50		
	RESET Pulse Width	tRW	See Figure 3	1		50		50		ns
1001	Latching Pulse Width SHUTDOWN and RESET LOW	tLW		1		25		25		
_	Input LOW Voltage	V _{IL}		1			2.0		2.0	
	Input HIGH Voltage	VIH		1		8.0		8.0		Y
	Input Current, Input Voltage HIGH	¹ IH	V _{IN} = 10 V	1	1					μА

ELECTRICAL CHARACTERISTICS	(Continued)
	T

			Test Conditions			LIM	ITS			
	PARAMETER	SYMBOL	Unless otherwise specified: DISCHARGE = $-V_{IN}$ = 0 V V_{CC} = 10 V, $+V_{IN}$ = 48 V,	1=25 ° C 2=125,85 ° C 3=-55,-40 ° C		A SUFFIX -55 to 125 °C		D SUFFIX -40 to 85 °C		
			R _{BIAS} = 390 kΩ, R _{OSC} = 330 kΩ	ТЕМР	TYP ³	MIN 2	MAX	MIN 2	MAX	UNIT
01901	Input Current, Input Voltage LOW	I IL	∨ _{IN} = 0 ∨	1	-25					ДА
	Breakdown Voltage	V _(BR) DSS	V _{SOURCE} = V SHUTDOWN = 0 V, I _{DRAIN} = 100 µA	2,3	220	200	tur se	200		٧
SWITCH	4 Drain-source ON Resistance	R _{DS} (ON)	V _{SOURCE} = 0 V, I _{DRAIN} = 100 mA	1	5		7		7	ç,
MOSFET S	Drain OFF Leakage Current	¹ DSS	V _{SOURCE} = V _{SHUTDOWN} = 0 V, V _{DRAIN} = 160 V	1			10		10	μΑ
¥	Drain Capacitance	CDSS	V _{SOURCE} = V SHUTDOWN = 0 V	1	250					pF

NOTES:

Refer to PROCESS OPTION FLOWCHART for additional informational.
The algebraic convention whereby the most negative value is a minimum, and the most positive value is a maximum, is used in this data sheet.
Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
Temperature coefficient of R DS(on) is 0.75% per °C, typical.

TIMING WAVEFORMS

Siliconix incorporated

TYPICAL CHARACTERISTICS

DETAILED DESCRIPTION

PREREGULATOR/STARTUP SECTION

Due to the low quiescent current requirement of the Si9102 control circuitry, bias power can be supplied from the unregulated input power source, from an external regulated low-voltage supply, or from an auxiliary "bootstrap" winding on the output inductor or transformer.

When power is first applied during startup, $+V_{IN}$ (pin 2) will draw a constant current. The magnitude of this current is determined by a high-voltage depletion MOSFET device which is connected between $+V_{IN}$ and V_{CC} (pin 6). This startup circuitry provides initial power to the IC by charging an external bypass capacitance connected to the V_{CC} pin. The constant current is disabled when V_{CC} exceeds 8.6V. If V_{CC} is not forced to exceed the 8.6 V threshold, then V_{CC} will be regulated to a nominal value of 8.6 V by the preregulator circuit.

As the supply voltage rises toward the normal operating conditions, an internal undervoltage (UV) lockout circuit keeps the output MOSFET disabled until Vcc exceeds the undervoltage lockout threshold (typically 8.1 V). This guarantees that the control logic will be functioning properly and that sufficient gate drive voltage is available before the MOSFET turns ON. The design of the IC is such that the undervoltage lockout threshold will not exceed the preregulator turn-off voltage. Power dissipation can be minimized by providing an external power source to Vcc such that the constant current source is always disabled.

NOTE: During startup or when V_{CC} drops below 8.6 V the startup circuit is capable of sourcing up to 20 mA. This may lead to a high level of power dissipation in the IC (for a 96 V input, approximately 2 W). Excessive start up

time can result in device damage. See Figure 4 for calculation of power dissipation during start up.

BIAS

To properly set the bias for the Si9102, a 390 k Ω resistor should be tied from BIAS (pin 1) to $-V_{IN}$ (pin 5). This determines the magnitude of bias current in all of the analog sections and the pull-up current for the SHUTDOWN and RESET pins. The current flowing in the bias resistor is nominally 15 μ A.

REFERENCE SECTION

The reference section of the Si9102 consists of a temperature compensated buried zener and trimmable divider network. The output of the reference section is connected internally to the non-inverting input of the error amplifier. Nominal reference output voltage is 4.0 V. The trimming procedure that is used on the Si9102 brings the output of the error amplifier (which is configured for unity gain during trimming) to within $^\pm 1\%$ of 4.0 V. This automatically compensates for the input offset voltage in the error amplifier.

The output impedance of the reference section has been purposely made high so that a low impedance external voltage source can be used to override the internal voltage source, if desired, without otherwise altering the performance of the device.

DETAILED DESCRIPTION (continued)

ERROR AMPLIFIER

Closed-loop regulation is provided by the error amplifier, which is intended for use with "around-the-amplifier" compensation. A MOS differential input stage provides for low input current. The noninverting input to the error amplifier (V_{REF}) is internally connected to the output of the reference supply and should be bypassed with a small capacitor to ground.

OSCILLATOR SECTION

The oscillator consists of a ring of CMOS inverters, capacitors, and a capacitor discharge switch. Frequency is set by an external resistor between the OSC IN and OSC OUT pins. (See Figure 5 for details of resistor value vs. frequency.) The DISCHARGE pin should be tied to $-V_{\rm IN}$ for normal internal oscillator operation. A frequency divider in the logic section limits switch duty cycle to $\pm 50\%$ by locking the switching frequency to one half of the oscillator frequency.

Remote synchronization can be accomplished by capacitive coupling of a SYNCHRONIZATION pulse into the OSC IN (pin 8) terminal. For a 5 V pulse amplitude, typical values would be 1000 pF in series with 10 k Ω to pin 8.

SHUTDOWN AND RESET

SHUTDOWN (pin 11) and RESET (pin 12) are intended for overriding the output MOSFET switch via external control logic. The two inputs are fed through a latch preceding the output switch. Depending on the logic state of RESET. SHUTDOWN can be either a latched of unlatched input. The output is OFF whenever SHUTDOWN is low. By

simultaneously having SHUTDOWN and RESET low, the latch is set and SHUTDOWN has no effect until RESET goes high. The truth table for these inputs is given in Table 1.

Both pins have internal current source pull-ups and can be left disconnected when not in use. An added feature of the current sources is the ability to connect a capacitor and an open-collector driver to the SHUTDOWN or RESET pins to provide variable shutdown time.

SHUTDOWN	RESET	OUTPUT
H	н	Normal Operation
н	~_	Normal Operation (No Change)
L	н	OFF (Not Latched)
L	L	OFF (Latched)
_	L	OFF (Latched) (No Change)
	i	1

Table 1. Truth Table for the SHUTDOWN and RESET Pins.

OUTPUT SWITCH

The output switch is a 7 Ω , 200 V lateral DMOS device. Like discrete MOSFETs, the switch contains an intrinsic body-drain diode. However, the body contact in the Si9102 is connected internally to $-V_{\rm IN}$ and is independent of the SOURCE.

FLYBACK CONVERTER FOR DOUBLE BATTERY TELECOMMUNICATIONS POWER SUPPLIES

Si9110/Si9111

High-voltage Switchmode Controllers

FEATURES

- 10 to 120 V Input Range
- Current-mode Control
- High-speed, Source-sink Output Drive
- High Efficiency Operation (> 80%)
- Internal Start-up Circuit
- Internal Oscillator (up to 1 MHz)
- Reference Selection Si9110 - ± 1% Si9111 - ± 10%

APPLICATIONS

- DC/DC Converters
- Distributed Power Systems
- ISDN Equipment
- PBX Systems
- Modems

DESCRIPTION

The Si9110/9111 are D/CMOS integrated circuits designed for use as high-performance switchmode controllers. A high-voltage DMOS input allows the controller to work over a wide range of input voltages (10- to 120-VDC). Current-mode PWM control circuitry is implemented in CMOS to reduce internal power consumption to less than 10 mW.

The on-chip oscillator frequency is set by an external resistor, and can be easily synchronized to an external system clock. SHUTDOWN and RESET inputs allow external logic control, and these inputs can also be used to provide a variable shutdown time for fault protection. A

push-pull output driver provides high-speed switching for MOSPOWER devices large enough to supply 20 W of output power. When combined with an output MOSFET and transformer, the Si9110 or Si9111 can be used to implement most single-ended power converter topologies (i.e., flyback and forward).

The Si9110 and Si9111 are available in 14-pin plastic and CerDIP packages, and are specified over the military (-55 to 125°C) and industrial (-40 to 85°C) temperature ranges.

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Si9110/Si9111

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to -VIN	Operating Temperature (A Suffix)55 to 125°C
	(D Suffix)40 to 85°C
Vcc	
	Junction Temperature (T _J) 150°C
+V _{IN} 120 V	Power Dissipation (Package)*
Logic Inputs (RESET,	14-Pin DIP** (K Sufix) 1000 mW
SHUTDOWN, OSC IN)0.3 V to Vcc +0.3 V	14-Pin Plastic DIP*** (J Suffix) 750 mW
Linear Inc.	Thermal Impedance (θ_{IA})
Linear Inputs	14-Pin Ceramic DIP 100°C/W
(FEEDBACK, SENSE)0.3 V to 7.0 V	14-Pin Plastic DIP
HV Preregulator Input Current (continuous) 3 mA	
Continuous Output Current (Source or Sink) 125 mA	*Device mounted with all leads soldered or welded to PC board.
	**Derate 10 mW/°C above 50°C
Storage Temperature (A, D Suffix)65 to 150°C	***Derate 6 mW/°C above 25°C

	1
ELECTRICAL	CHARACTERISTICS '
ELECTIFICAL	CHARACTERISTICS

			DISCHARGE = -VIN = 0 V		Conditions						
1. 1.	PARAMETER	SYMBOL			2=125,	C ,85 ° C ,-40 ° C		IFFIX 125 °C		FFIX 85 °C	
			R _{BIAS} = 390 k R _{OSC} = 330 k		TEMP	TYP ³	MIN 2	MAX	MIN 2	MAX	UNIT
E	Output Voltage	٧R	R _L = 10 M \O (See detailed descrip	tion)	1	4.0	:				V .
REFERENCE	Output Impedance	Z _{OUT}			1	30				- 14 - 1	kΩ
22	Short Circuit Current	·	V _{REF} = -V _{IN}		1	100					ДА
	Temperature Stability				2,3	1					mV/°C
R.	Maximum Frequency	fosc	R _{OSC} = 0		1	3	1		1		MHz
DSCILL A TOR	Initial Accuracy				1		80	120	80	120	kHz
080	Voltage Stability	Vosc	9.5 V ≤ V _{CC} ≤ = 1	3.5 V	1	±3					%
	Temperature Coefficient				2,3	500					ppm/° C
	Feedback Input Voltage	V _{FB}	FB tied to COMP	Si9110	1	4.00	3.96	4.04	3.96	4.04	V
E R	reedback input voltage	YFB	See detailed description reference section	Si9111	1	4.00	3.60	4.40	3.60	4.40	ľ
ERROR AMPLIFIER	Input BIAS Current		V _{FB} = 4.0 ∨		1	1		500		500	nA
ERROR	Open Loop Voltage Gain	Avol	inger (sp. 1885) Sammer (sp. 1885)	-	1	80	60		60		dB
	Unity Gain Bandwidth	; ;			1	1					MHz

	CTRICAL CHARACTE		(Continued)			LIIV	IITS			
	PARAMETER	SYMBOL	Test Conditions Unless otherwise specified: DISCHARGE = $-V_{IN} = 0 \ V$ $V_{CC} = 10 \ V, +V_{IN} = 48 \ V,$ $R_{BIAS} = 390 \ k \ \Omega,$	1=25 ° C 2=125,85 ° C 3=-55,-40 ° C		A SU -55 to	A SUFFIX -55 to 125 °C		D SUFFIX -40 to 85 °C	
			Rosc = 330 k Ω	TEMP	TYP ³	MIN 2	MAX	MIN 2	MAX	רואט
œ	Output Impedance	Z _{OUT}		1	50					kΩ
ERROR AMPLIFIER	Output Current	TOUT	Source VFB = 3.4 V VCOMP= 5 V Sink VFB = 4.5 V	1	1.4					mA
RROF			V _{FB} = 4.5 V V _{COMP} = 0.5 V	1	0.15			a director		
ω	Power Supply Rejection	PSRR	9.5 V ≤ V _{CC} ≤ 13.5 V	1	70		*			dB
CURR LIMIT	Threshold Voltage	[∨] sense	V _{FB} = 0 V	1	1.2	1.0	1.4	1.0	1.4	Y
CURR	Delay to Output	td	V _{SENSE} = 1.4 V, See Figure 1	1	100		150		150	ns
	Input Voltage	+VIN	Aبر 10 = _{IN} ا	1			120		120	٧
TUP	input Leakage Current	+1 IN	V _{CC} ≥ 9.4 V	1			10		10	ДА
G / STAR	Input Start-up Current		V _{CC} = 0 V, Duty Cycle < 10%	1	18		,			mA
PREREG/STARTUP	V _{CC} preregulator Turn-OFF Threshold Voltage		^I Preregulator = 10 ⊥A	1	8.6		9.4		9.4	
	Undervoltage Lockout		I OUTPUT = 1 mA (See Detailed description)	1	8.1		8.9		8.9	`
ک	Supply Current	¹ cc		1	0.6		1.0		1.0	mA
SUPPLY	Bias Current	BIAS		1	15					ДА
	SHUTDOWN Delay	t _{SD}	C _L = 500 pF V _{SENSE} = -V _{IN} , See Figure 2	. 1	50		100		100	
	SHUTDOWN Pulse Width	^t sw		1		50		50		
	RESET Pulse Width	tRW	See Figure 3	1		50		50		ns
71907	Latching Pulse Width SHUTDOWN and RESET LOW	tLW		1		25		25		
	Input LOW Voltage	V _{IL}		1 .			2.0		2.0	
	Input HIGH Voltage	VIH		1		8.0		8.0		`
	Input Current, Input Voltage HIGH	[†] IH	V _{IN} = 10 V	1	1					ДА

ELE	CTRICAL CHARACT	ERISTICS	¹ (Continued)								
			Test Conditions			LIN	IITS			1	
	PARAMETER	SYMBOL	Unless otherwise specified: DISCHARGE = -V _{IN} = 0 V V _{CC} = 10 V, +V _{IN} = 48 V,	1=25 ° C 2=125,85 ° C 3=-55,-40 ° C		A SUFFIX -55 to 125 °C		D SUFFIX -40 to 85 °C			
			RBIAS = 390 k Ω , ROSC = 330 k Ω	TEMP	TYP ³	MIN ²	MAX	MIN ²	MAX	UNIT	
	Output HIGH Voltage	V _{OH}	I OUT = 1 mA	1		9.90		9.90			
				2,3		9.75		9.75			
	Output LOW Voltage	V _{OL}	I _{OUT} = -1 mA	1			0.10		0.10] `	
				2,3			0.25		0.25		
ΙI	Output Resistance	Bout		1	20		30		30	G	
TPL	Output nesistance	Rout		2,3	25		50		35	"	
.00	Rise Time	Tr	C _L = 500 pF	1	40		75		75	ns	
	Fall Time	Tf	C _L = 500 pF	1	40		75		75		

NOTES:

Refer to PROCESS OPTION FLOWCHART for additional informational.
 The algebraic convention whereby the most negative value is a minimum, and the most positive value is a maximum, is used in this data sheet.
 Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

TIMING WAVEFORMS

TYPICAL CHARACTERISTICS

FIGURE 5

DETAILED DESCRIPTION

PREREGULATOR/STARTUP SECTION

Due to the low quiescent current requirement of the Si9110/Si9111 control circuitry, bias power can be supplied from the unregulated input power source, from an external regulated low-voltage supply, or from an auxiliary "bootstrap" winding on the output inductor or transformer.

When power is first applied during startup. $+V_{\rm IN}$ (Pin 2) will draw a constant current. The magnitude of this current is determined by a high-voltage depletion MOSFET device which is connected between $+V_{\rm IN}$ and $V_{\rm CC}$ (Pin 6). This startup circuitry provides initial power to the IC by charging an external bypass capacitance connected to the $V_{\rm CC}$ pin. The constant current is disabled if $V_{\rm CC}$ is forced to exceed 8.6 V. If $V_{\rm CC}$ is not forced to exceed the 8.6 V threshold, then $V_{\rm CC}$ will be regulated to a nominal value of 8.6 V by the preregulator circuit.

As the supply voltage rises toward the normal operating conditions, an internal undervoltage (UV) lockout circuit keeps the output disabled until Vcc exceeds the undervoltage lockout threshold (typically 8.1 V). This guarantees that the control logic will be functioning properly and that sufficient drive voltage is available before the output is enabled. The design of the IC is such that the undervoltage lockout threshold will not exceed the preregulator turn-off voltage. Power dissipation can be minimized by providing an external power source to Vcc such that the constant current source is always disabled.

NOTE: During startup or when $V_{\rm CC}$ drops below 8.6 V the startup circuit is capable of sourcing up to 20 mA. This may lead to a high level of power dissipation in the IC (for a 48 V input, approximately 1 W). Excessive start up time can result in device damage. See Figure 4 for calculation of power dissipation during start up.

BIAS

To properly set the bias for the Si9110/Si9111, a 390 k Ω resistor should be tied from BIAS (Pin 1) to $-V_{IN}$ (Pin 5). This determines the magnitude of bias current in all of the analog sections and the pull-up current for the $\overline{SHUTDOWN}$ and RESET pins. The current flowing in the bias resistor is nominally 15 μA .

REFERENCE SECTION

The reference section of the Si9110 consists of a temperature compensated buried zener and trimmable divider network. The output of the reference section is connected internally to the non-inverting input of the error amplifier. Nominal reference output voltage is 4.0 V. The trimming procedure that is used on the Si9110 brings the output of the error amplifier (which is configured for unity gain during trimming) to within ½1% of 4.0 V. This automatically compensates for input offset voltage in the error amplifier.

The output impedance of the reference section has been purposely made high so that a low impedance external voltage source can be used to override the internal voltage source, if desired, without otherwise altering the performance of the device.

Applications which use a separate external reference, such as non-isolated converter topologies and circuits employing optical coupling in the feedback loop, do not require a trimmed voltage reference with 1% accuracy. The Sig111 accommodates the requirements of these applications at a lower cost, by leaving the reference voltage untrimmed. The 10% accurate reference thus provided is sufficient to establish a DC bias point for the error amplifier.

DETAILED DESCRIPTION (continued)

ERROR AMPLIFIER

Closed-loop regulation is provided by the error amplifier. It is intended for use with "around-the-amplifier" compensation. A MOS differential input stage provides for low input current. The noninverting input to the error amplifier (V_{REF}) is internally connected to the output of the reference supply and should be bypassed with a small capacitor to ground.

OSCILLATOR SECTION

The oscillator consists of a ring of CMOS inverters, capacitors, and a capacitor discharge switch. Frequency is set by an external resistor between the OSC IN and OSC OUT pins. (See Figure 5 for details of resistor value vs. frequency.) The DISCHARGE pin should be tied to $-V_{\rm IN}$ for normal internal oscillator operation. A frequency divider in the logic section limits switch duty cycle to $\pm 50\%$ by locking the switching frequency to one half of the oscillator frequency.

Remote synchronization can be accomplished by capacitive coupling of a SYNCHRONIZATION pulse into the OSC IN (Pin 8) terminal. For a 5 V pulse amplitude, typical values would be 1000 pF in series with 10 Ω to Pin 8.

SHUTDOWN AND RESET

SHUTDOWN (Pin 11) and RESET (Pin 12) are intended for overriding the output MOSFET switch via external control logic. The two inputs are fed through a latch preceding the output switch. Depending on the logic state of RESET. SHUTDOWN can be either a latched or unlatched input. The output is OFF whenever SHUTDOWN is low. By simultaneously having SHUTDOWN and RESET low, the latch is set and SHUTDOWN has no effect until RESET

goes high. The truth table for these inputs is given in Table 1.

Both pins have internal current source pull-ups and can be left disconnected when not in use. An added feature of the current sources is the ability to connect a capacitor and an open-collector driver to the SHUTDOWN or RESET pins to provide variable shutdown time.

SHUTDOWN	RESET	OUTPUT
1.		
H	н	Normal Operation
Н	T	Normal Operation (No Change)
L	Н	OFF (Not Latched)
L	L	OFF (Latched)
-	L	OFF (Latched) (No Change)

Table 1. Truth Table for the SHUTDOWN

OUTPUT DRIVER

The push-pull driver output has a typical ON resistance of 20 Ω . Maximum switching times are specified at 75 ns for a 500 pF load. This is sufficient to directly drive MOSFETs such as the 2N7004, 2N7005, IRFD120 and IRFD220. Larger devices can be driven, but switching times will be longer, resulting in higher switching losses. In order to drive large MOSPOWER devices, it is necessary to use an external driver IC, such as the Siliconix D469. The D469 can switch very large devices such as the SMM20N50 (500 V, 0.3 Ω) in approximately 100 ns.

APPLICATIONS

5-WATT POWER SUPPLY FOR TELECOM APPLICATIONS

HIUTA AHU WIUSS NEIEIEHLE I	Index	and	Cross	Reference	
-----------------------------	-------	-----	-------	-----------	--

Process Flows 2

Selector Guide 3

Data Sheets 4

Switching Regulator and Controller ICs 5

MOSPOWER Die Products 6

Test Circuits 7

Package Outlines 8

Technical Information

Worldwide Sales Offices and Distributors 10

MOSPOWER DIE PRODUCTS

Siliconix offers MOSPOWER products in die form for hybrid and multichip applications. These dice can provide the same high performance and reliability as the equivalent packaged devices.

Currently available standard die types are listed in Table I, and die topology diagrams for these products are shown on pages 6-5 through 6-7. The Cross Reference (page 6-8) shows Siliconix MOSPOWER die types equivalent to other industry part numbers.

In addition to the standard products described here, Siliconix can also supply MOSPOWER dice specifically selected for custom requirements. Further information on these custom products can be obtained from Siliconix sales representatives and sales offices.

Die and Wafer Processing

The standard MOSPOWER die processing flow is outlined in Figure 1. The flow includes 100% electrical test in wafer form (for selected tests described below) and 100% visual inspection of separated dice.

Figure 1. MOSPOWER Die Processing Flow

Die Screening

Electrical Screening

Electrical tests performed on MOSPOWER dice fall into the following two classes:

- (1) Characteristics which can be tested using probes with the dice in wafer form include V(BR)DSS , ^{I}DSS , ^{I}GSS , $^{F}DS(on)$, and $^{V}GS(th)$. Due to limitations inherent in wafer testing, some characteristics cannot be tested to exactly the same specifications as the generic packaged device. For example, current limitations of the probes and the power dissipation limitations of dice in wafer form prevent testing of $^{F}DS(on)$ at the full current rating. Parameters that are tested by probing in wafer form and guaranteed on all dice at $25\,^{\circ}C$ ambient are shown in Table I.
- (2) For characteristics that cannot be tested in wafer or die form, a sample group of units must be assembled into packages for testing. Examples include safe operating area, rDS(on) at maximum rated current, capacitance, gate charge, switching times, and performance at hot and cold temperatures. These tests are performed by special request.

Characteristics guaranteed by design to meet the specifications of the equivalent packaged part in die form include g_{fs} , C_{iss} , C_{oss} , C_{rss} , $T_{J(max)}$.

Visual Screening

All MOSPOWER dice are subjected to 100% visual sort after die separation. The Siliconix QC Department then inspects each lot to an LTPD of 10%. The visual inspection criteria of MIL-STD-750 for discrete MOS transistors are used for standard die products.

Table I. Standard MOSPOWER Die Types

Part Mi (V N-CHANNEL SMC14N65 65 SMC50N50 50 SMC20N50 50	(mA) (mA) 0.25 00 0.25	@ I _D = 1A V _{GS} = 10 V Max (Ω)	IGSS @V _{GS} = 20 V Max (nA)	@ I _D = 0 V _{DS} : Min (V)	Max (V)	Die	AL Bon Siz Source		Data Sheet for Electrical
Part Mi (V N-CHANNEL SMC14N65 65 SMC50N50 50 SMC20N50 50	m. Max (mA) 50 0.25	Max (Ω)	Max (nA)					Gate	Data Sheet for
Number (\) N-CHANNEL SMC14N65 65 SMC50N50 50 SMC20N50 50	(mA) 0 0.25 0 0.25	. φ(ω)	(nA)						
SMC14N65 65 SMC50N50 50 SMC20N50 50	0 0.25	0.55				Topology	(mil)	(mil)	Characteristics
SMC50N50 50 SMC20N50 50	0 0.25	0.55							
SMC20N50 50			100	2.0	4.0	В	20	5	SMM14N65
		0.10	100	2.0*	4.0*	F	4x20	5	SME50N50
		0.30	100	2.0	4.0	В	20	5	SMM20N50
	0.25	0.40	100	2.0	4.0	н	20	- 5	IRF450
IRF440CHP 50		0.85	100	2.0	4.0	С	15	5	IRF440
IRF430CHP 50		1.5	100	2.0	4.0	E	8	5	IRF430
IRF820CHP 50	0.25	3.0	100	2.0	4.0	D	6	5	IRF820
SMC24N40 40		0.20	100	2.0	4.0	/ В	20	5	SMM24N40
IRF350CHP 40		0.30	100	2.0	4.0	H	20	5	IRF350
IRF340CHP 40		0.55	100	2.0	4.0	C	15	5	IRF340
IRF330CHP 40 IRF720CHP 40		1.0 1.8	100	2.0	4.0	E	8	5	IRF330
IRF710CHP 40		3.6	100 100	2.0 2.0	4.0 4.0	D L	6 4	5 4	IRF720 IRF710
			24 - 4 V						INI 710
SMC120N20 20		0.020	100	2.0*	4.0*	F	4x20	5	SME120N20
SMC40N20 20		0.060	100	2.0	4.0	В	20	5	SMM40N20
IRF250CHP 20		0.085	100	2.0	4.0	Н	20	-5	IRF250
IRF240CHP 20		0.18	100	2.0	4.0	C	15	5	IRF240
IRF230CHP 20		0.40	100	2.0	4.0	E	8	5	IRF230
IRF620CHP 20 IRF610CHP 20		0.80 1.5	100 100	2.0 2.0	4.0 4.0	D	6	5 4	IRF620
INFOIDCHF 20	0.25	1.5	100	2.0	4.0	L	4	4	IRF610
IRF150CHP 10	0 0.25	0.055	100	2.0	4.0	н	20	5	IRF150
IRF140CHP 10	0 0.25	0.085	100	2.0	4.0	С	15	5	IRF140
IRF130CHP 10	0 0.25	0.18	100	2.0	4.0	E	8	5	IRF130
IRF520CHP 10	0 0.25	0.30	100	2.0	4.0	D	6	5	IRF520
IRF510CHP 10	0 0.25	0.60	100	2.0	4.0	L	4	4	IRF510
SMC70N06 6	0.25	0.018	100	2.0*	4.0*	Α	3×15	5	SMM70N06
SMC60N06 6	0.25	0.023	100	2.0*	4.0*	υ	3x15	. 5	SMP60N06
SMC50N06 6		0.028	100	2.0*	4.0*	U	3x15	5	SMP50N06
SMC25N06 6	0.25	0.060	100	2.0*	4.0*	G	12	5	SMP25N06
BUZ11CHP 5	0.25	0.040	100	2.1*	4.0*	w.	2x15	5	BUZ11
BUZ71CHP 5	0.25	0.10	100	2.1*	4.0*	Т	15	5	BUZ71
P-CHANNEL									
SMC11P20 20		0.50	100	2.0	4.0	С	15	5	SMP11P20
IRF9230CHP 20		0.80	100	2.0	4.0	E	8	5	IRF9230
IRF9620CHP 20		1.5	100	2.0	4.0	D	6	5	IRF9620
SMC2P20 20	0 0.25	3.0	100	2.0	4.0	L	4	4	SMP2P20
SMC20P10 10	0 0.25	0.25	100	2.0	4.0	С	15	5	SMP20P10
IRF9130CHP 10		0.30	100	2.0	4.0	E	8	5	IRF9130
IRF9520CHP 10	0 0.25	0.60	100	2.0	4.0	D	6	5	IRF9520
SMC3P10 10	0 0.25	1.2	100	2.0	4.0	L	4	4	SMP3P10
BUZ171CHP 5	0.25	0.40	100	2.1*	4.0*	, т	15	5 .	BUZ171

^{*}I_D = 1.0 mA

Assembly Techniques

Die Attach

The backside drain metallization used on Silconix MOSPOWER dice is titanium-nickel-silver deposited in thicknesses of 1000 Å, 3000 Å, and 1500 Å, respectively. This metallization is sultable for die mounting using standard "soft solders" such as 95/5 Pb/Sn, 92.5/5/2.5 Pb/Sn/Ag, 65/25/10 Sn/Ag/Sb, and 92.5/5/2.5 Pb/In/Ag. Copper, nickel-plated copper, and gold-plated molybdenum, beryllia, or alumina are among the most commonly used substrate or header materials that give good results. The substrate must be de-oxidized prior to assembly by chemical cleaning or by prefiring in a reducing atmosphere such as hydrogen or forming gas.

MOSPOWER dice shipped in die trays (see "Packaging and Handling Methods") will not normally require cleaning. If cleaning is performed, however, a one-minute de-ionized water wash followed by two one-minute rinses in an isopropyl alcohol agitated bath is the recommended method. Drying should be accomplished in a 70°C nitrogen chamber.

Dice may be mounted using mechanical scrubbing or by heating in a profiled belt furnace using a reducing atmosphere. Care must be exercised not to expose the dice to temperatures in excess of 400°C. Control of the die mounting procedure is extremely important in most applications, as a uniform, void-free die attach is necessary to achieve good thermal conductivity between the die and its mounting surface.

In lower power applications, conductive adhesives have been used successfully to mount MOSPOWER dice. This alternative is particularly applicable when lower temperature processing is desired.

Wire Bonding

On all die types, gate and source bonding pad (topside) metallization is aluminum with a 1% silicon content of between 1.8 μ m and 2.5 μ m in thickness.

Ultrasonic wire bonding using aluminum wire with an elongation of 10% is recommended for making connections to gate and source pads. Thermocompression gold wire bonding may also be used. Maximum recommended aluminum wire diameter for each die type is shown in Table I.

Wire bonding must be performed with care to ensure that the entire bonding footprint remains within the bonding pad and that appropriate bonding force is used; device failure might otherwise result. Optimization of bonding parameters is highly dependent on the bonding equipment and, thus, should be determined by the user. Siliconix recommends performing a routine wire bond strength monitor similar to that described in MIL-STD-750, Method 2037.

Encapsulation

It is critical that the die and assembly be kept in a dry environment prior to encapsulation. Although the passivation layer on the die (silicon nitride or deposited glass) is relatively impermeable, unacceptably high surface leakage may result from adsorbed moisture.

Since the long-term stability of the die-attach interface is also adversely affected by the presence of moisture or oxygen in a hermetic package, it is strongly recommended that the die header assembly be baked prior to encapsulation to drive off moisture. The subsequent encapsulation process should be performed in an inert atmosphere, such as nitrogen. Die coatings, if used, should be applied in accordance with the suggestions of the coating manufacturer.

Packaging and Handling Methods

Individual dice are packaged in antistatic die trays with cavities (known as "waffle" carriers), as shown in Figure 2. Each carrier has a cavity size that allows easy loading and unloading of the die and that prevents die rotation.

NOTE: CARRIER TOP & BOTTOM SECURED BY CLIPS

Figure 2. Die Tray

Quantities of dice packaged in each die tray, which are also recommended incremental quantities for ordering, are shown in Table II.

Table II. Die Tray Quantities

Die Topology	Quantity per Die Tray
Α,	
В	25
C	36
D	140
E	49
- F 59	6
G	100
H-1	36
L	100
T	140
U	36
W	36

Dice should preferably be handled with a vacuum pickup, that has a protected (non-reactive) tip, at an electrostatic discharge (ESD) protected workstation to prevent mechanical and ESD damage. While MOSPOWER chips have some inherent resistance to damage due to ESD, due to their larger gate capacitance and thicker oxides, it is nevertheless essential to take precautions to prevent ESD damage. Refer to Section 9 of this data book for further details.

Special Requirements

The Siliconix sales representative should be consulted regarding requirements for alternate back metallization or visual inspection, lot qualification by quality conformance inspection of encapsulated dice, scanning electron microscope (SEM) inspection, or any other special requirements.

Gate Pad:

0.0175 X 0.0175

Source Pads: 0.0340 X 0.0520

TOPOLOGY A

Gate Pad:

0.0615 X 0.0375

0.0615 X 0.0375 Source Pad:

TOPOLOGY C

Gate Pad:

0.0340 X 0.0222

Source Pad: 0.0347 X 0.0229

TOPOLOGY E

Gate Pad:

0.0250 X 0.0400

0.0700 X 0.0500 Source Pad:

TOPOLOGY B

Gate Pad:

0.0281 X 0.0192

Source Pad: 0.0273 X 0.0186

TOPOLOGY D

Notes: 1. Die dimensions are given in inches only for clarity.
2. Die size tolerance is ± 0.0020.
3. Die thickness is 0.0200 ± 0.0020.
4. Other dimensions are nominal.
5. Unless indicated otherwise, bonding pads are centered on dice.

MOSPOWER Die Topologies (Cont'd)

Gate Pad:

0.0425 X 0.0425

Source Pads: Kelvin Pad Extension:

0.0750 X 0.0500 0.0300 X 0.0250

TOPOLOGY F

Gate Pad:

0.0250 X 0.0150

Source Pad:

0.0600 X 0.0400

TOPOLOGY G

Notes: 1. Die dimensions are given in inches only for clarity.
2. Die size tolerance is ± 0.0020.
3. Die thickness is 0.0200 ± 0.0020.
4. Other dimensions are nominal.
5. Unless indicated otherwise, bonding pads are centered on dice.

Gate Pad:

0.0664 X 0.0397

Source Pad: 0.0664 X 0.0384

TOPOLOGY H

Gate Pad: Source Pad:

0.0183 X 0.0142 0.0528 X 0.0394

TOPOLOGY T

Gate Pad: Source Pad: 0.0200 X 0.0140 0.0750 X 0.0800

Source Pad Cutout:

0.0160 X 0.0300

TOPOLOGY W

Gate Pad:

0.0155 X 0.0125

Source Pad: 0.0160 X 0.0118

TOPOLOGY L

Gate Pad:

0.0180 X 0.0180

Source Pads: 0.0340 X 0.0520

TOPOLOGY U

Die dimensions are given in inches only for clarity. Die size tolerance is \pm 0.0020. Die thickness is 0.0200 \pm 0.0020. Other dimensions are nominal. Unless indicated otherwise, bonding pads are centered on dice.

MOSPOWER Dice - Industry Cross Reference

Industry Siliconix Type Type	Industry Type	Siliconix Type	Industry Type	Siliconix Type
IRFC020 BUZ71CHP	IRFC9213	SMC2P20	MTC15N45	IRF450CHP
IRFC030 BUZ11CHP		IRF9620CHP		IRF450CHP
IRFC040 SMC50N06		IRF9620CHP		IRF130CHP
IRFC110 IRF510CHP		IRF9630CHP		IRF130CHP
IRFC113 IRF510CHP		IRF9630CHP	MTC25N05	
IRFC120 IRF520CHP		SMC11P20	MTC25N06	
IRFC123 IRF520CHP		SMC11P20		IRF140CHP
IRFC130 IRF130CHP	MTC2N18	IRF610CHP		IRF140CHP
IRFC133 IRF130CHP	MTC2N20	IRF610CHP	MTC35N05	
IRFC140 IRF140CHP	MTC2N35	IRF710CHP	MTC35N06	
IRFC143 IRF140CHP	MTC2N40	IRF710CHP	MTC40N10	IRF150CHP
IRFC150 IRF150CHP	MTC2N45	IRF820CHP	MTC40N20	IRF250CHP
IRFC153 IRF150CHP	MTC2N50	IRF820CHP	MTC50N05	SMC50N06
IRFC210 IRF610CHP	MTC3N35	IRF710CHP	MTC50N06	SMC50N06
IRFC213 IRF610CHP	MTC3N40	IRF710CHP	MTC55N10	IRF150CHP
IRFC220 IRF620CHP	MTC4N08	IRF510CHP	MTC60N05	SMC60N06
IRFC223 IRF620CHP	MTC4N10	IRF510CHP	MTC60N06	SMC60N06
IRFC230 IRF230CHP	MTC4N18	IRF620CHP	MTC3055A	BUZ71CHP
IRFC233 IRF230CHP	MTC4N20	IRF620CHP	PCF3N45	IRF820CHP
IRFC240 IRF240CHP	MTC4N45	IRF830CHP	PCF4N35	IRF720CHP
IRFC243 IRF240CHP		IRF830CHP	PCF6N45	IRF830CHP
IRFC250 IRF250CHP		IRF620CHP	PCF7N35	IRF730CHP
IRFC253 IRF250CHP	MTC5N20	IRF620CHP	PCF8N18	
IRFC310 IRF710CHP	MTC5N35	IRF730CHP	PCF8P08	IRF9130CHP
IRFC313 IRF710CHP	1	IRF730CHP	PCF10N45	
IRFC320 IRF720CHP	8	IRF510CHP	PCF12N08	
IRFC323 IRF720CHP	. 5	IRF510CHP		IRF9130CHP
IRFC330 IRF330CHP	1	IRF620CHP	PCF12N18	
IRFC333 IRF330CHP		IRF620CHP	PCF12N35	
IRFC340 IRF340CHP		IRF440CHP	PCF15N05	
IRFC343 IRF340CHP		IRF440CHP	PCF18N08	
IRFC350 IRF350CHP		IRF510CHP	PCF25N05	
IRFC353 IRF350CHP	.,	IRF510CHP	PCF25N18	
IRFC420 IRF820CHP		IRF230CHP	PCF25P08	
IRFC423 IRF820CHP		IRF230CHP	PCF35N08	
IRFC430 IRF430CHP IRFC433 IRF430CHP		IRF9130CHP	PCF45N05 PCF111	
IRFC440 IRF440CHP		IRF520CHP	PCF111	
IRFC440 IRF440CHP		IRF520CHP	PCF131	
IRFC443 IRF440CHP		IRF130CHP	PCF211	
IRFC450 IRF450CHP		IRF130CHP	PCF211	
IRFC9110 SMC3P10		IRF230CHP	PCF231	
IRFC9113 SMC3P10		IRF230CHP	PCF321	
IRFC9120 IRF9520CHP		IRF450CHP	PCF331	
IRFC9123 IRF9520CHP	1	BUZ71CHP	PCF421	
IRFC9130 IRF9530CHP		SMC25N06	PCF431	
IRFC9133 IRF9530CHP	E .	IRF230CHP	SIRF150	
IRFC9140 SMC20P10		IRF230CHP	SIRF250	
IRFC9143 SMC20P10		IRF350CHP	SIRF350	
IRFC9210 SMC2P20		IRF350CHP	SIRF450	
20210 11111 011121 20				
Li	L			

ndex	and	Cross	Reference	Sec.
	W-0.0	AND IN ANY AND AND		

- Process Flows 2
- Selector Guide 3
 - Data Sheets 43
- Switching Regulator and Controller ICs 5
 - MOSPOWER Die Products 5

Test Circuits 7

- Package Outlines 3
- Technical Information 9
- Worldwide Sales Offices and Distributors 10

Figure 1. Ciss Test Circuit

Figure 2. Coss Test Circuit

Figure 3. Crss Test Circuit

Figure 4. Gate Charge Test Circuit

Typical Switching Time Test Circuit

Figure 5. Switching Time Test Circuits

The forward current is controlled by resistor R1 and power supply P1. Switch S_1 is opened and switch S_2 is closed simultaneously. The di/dt of the reverse current is controlled by inductor L1 and power suply P2.

Figure 6. Diode Reverse Recovery Test Circuit

Figure 7. Thermal Resistance Test Circuit

Figure 8. MOSFET Non-destructive SOA Tester

Figure 9. Unclamped Inductive Switching Test Circuit

Index	and	Cross	Reference	NAME OF THE PERSON NAME OF THE P
-------	-----	-------	-----------	--

- Process Flows 2
- Selector Guide
 - Data Sheets 4
- Switching Regulator and Controller ICs 5
 - MOSPOWER Die Products
 - Test Circuits 7

Package Outlines

- Technical Information (5)
- Worldwide Sales Offices and Distributors

MOD A (Straight Lead)

DIM.	MILLIM	ETERS	INCHES		
DIM.	NIN	MAX	MIN	MAX	
Α	6.10	7.11	.240	.280	
A(1)	1.14	1.40	.045	.055	
Øb	.89	1.14	.035	.045	
Øb(1)	2.03	2.67	.080	.105	
D	24.89	25.91	.980	1.020	
Е	24.89	25.91	.980	1.020	
е	3.18 BSC.		.125 BSC.		
e(1)	15.88 BSC.		.625 BSC.		
Н	37.59	38.61	1.480	1.520	
J(1)	3.56	4.06	.140	.160	
L	6.10	6.60	.240	.260	
ØP.	3.84	4.09	.151	.161	
a	38.23	38.86	1.505	1.530	
R	4.19	4.44	.165	.175	
S	4.57	4.95	.180	.195	

MOD B (Bent Down Lead)

DIM.	MILLIM	ETERS	INC	HES
Dilvi.	MIN	MAX	MIN	MAX
Α	6.10	7.11	.240	.280
A(1)	1.14	1.40	.045	.055
Øb	.89	1.14	.035	.045
Øb(1)	2.03	2.67	.080	.105
D	24.89	25.91	.980	1.020
E	24.89	25.91	.980	1.020
е	3.18 BSC.		.125 BSC.	
e(1)	15.88	15.88 BSC.		BSC.
L	3.94	5.97	.155	.235
L(1)	2.79	3.30	.110	.130
ØР	3.84	4.09	.151	.161
Q	38.23	38.86	1.505	1.530
R	4.19	4.44	.165	.175
S	4.57	4.95	.180	.195

MOD C (Bent Up Lead)

SOT-23

DIM.	MILLIM	ETERS	INC	HES
DIIVI.	MIN	MAX	MIN	MAX
Ь	.59	.78	.023	.031
b(1)	1.02	1.39	.040	.055
O	.46	.61	.018	.024
D	8.89	9.91	.350	.390
Ε	4.32	4.82	.170	.190
е	2.42	2.66	.095	.105
e(1)	4.83	5.33	.190	.210
G	19.56	20.57	.770	.810
G(1)	6.86	7.87	.270	.310
Н	9.02	10.03	.355	.395
L	10.16	11.43	.400	.450
L(1)	1.27	2.03	.050	.080
ØР	3.23	3.35	.127	.132
Q	2.87	3.05	.113	.120
Q(1)	1.27	1.77	.050	.070

TO-204 AA

DIM.	MILLIM	ETERS	INC	HES
DIIVI.	MIN	MAX	MIN	MAX
Α	6.35	8.89	.250	.350
A(1)	-	3.43	-	.135
Øb	.96	1.09	.038	.043
ØD	-	22.22		.875
е	10.67	11.18	.420	.440
e(1)	5.21	5.72	.205	.225
L	7.92	-	.312	-
ØР	3.84	4.19	.151	.165
q	30.15 BSC.		1.187	BSC.
R	-	13.34		.525
R(1)	-	4.78	-	.188
S	16.64	17.14	.655	.675

TO-204 AE

DIM.	MILLIN	METERS	INC	HES
Dilvi.	MIN	MAX	MIN	MAX
Α	6.35	8.89	.250	.350
A(1)	1.52	3.43	.060	.135
Øb	1.45	1.60	.057	.063
ØD	-	22.22	-	.875
е	10.67	11.18	.420	.440
e(1)	5.21	5.72	.205	.225
٦	10.92	12.18	.430	.480
ØР	3.84	4.19	.151	.165
q	30.15 BSC.		1.187	BSC.
R	12.57	_	.495	_
R(1)	-	4.78	-	.188
s	16.64	17.14	.655	.675

TO-205 AD

DIM.	MILLIN	METERS	INC	HES	
DIVI.	MIN	MAX	MIN	MAX	
Α	6.10	6.60	.240	.260	
Øb	.41	.53	.016	.021	
ØD	8.51	9.39	.335	.370	
ØD(1)	7.75	8.50	.305	.335	
е	5.08 BSC.		.200 BSC.		
e(1)	2.54	BSC.	.100 BSC.		
F	.23	1.04	.009	.041	
j	.72	.86	.028	.034	
k	.74	1.14	.029	.045	
L	12.70	19.05	.500	.750	

DIM.	MILLIMETERS		- INC	HES
Dilvi.	MIN	MAX	MIN	MAX
Α	4.07	4.57	.160	.180
Øb	.41	.53	.016	.021
ØD	8.64	9.39	.340	.370
ØD(1)	8.01	9.01	.315	.355
е	5.08	BSC.	.200 BSC.	
e(1)	2.54	BSC.	.100	BSC.
F	.23	1.04	.009	.041
j	.72	.86	.028	.034
k	.74	1.14	.029	.045
L	12.70	19.05	.500	.750

TO-206 AC

e(1) A e
<u>* </u>

	MILLIMETERS		INCHES	
DIM.	MIN	MAX	MIN	MAX
Α	2.93	3.81	.115	.150
Øb	.41	.53	.016	.021
ØD	5.31	5.84	.209	.230
ØD(1)	4.53	4.95	.178	.195
е	2.54 BSC.		.100 BSC.	
e(1)	1.27	BSC.	.050 BSC.	
F	-	.76	-	.030
j	.92	1.16	.036	.046
k	.72	1.21	.028	.048
L	12.70	-	.500	_

TO-210 AC

DIM.	MILLIMETERS		INCHES	
Div.	MIN	MAX	MIN	MAX
Α	10.67	11.43	.420	.450
D	18.80	19.30	.740	.760
ØD(1)	16.38	17.40	.645	.685
Ε	17.14	17.40	.675	.685
е	9.91	10.41	.390	.410
e(1)	4.83	5.33	.190	.210
F(1)	3.30	3.56	.130	.140
J	19.05	20.45	.750	.805
Ν	10.72	11.56	.422	.455
N(1)	-	1.27	-	.050
Øt	1.32	1.57	.052	.062
Øw	1/4-28	UNF-2A	1/4-28	UNF-2A

TO-218

DIM.	MILLIN	IETERS	INC	HES
DIIVI.	MIN	MAX	MIN	MAX
Α	4.20	5.10	.165	.201
р	.95	1.75	.037	.069
С	1.80	2.16	.071	.085
c(1)	.43	.75	.017	.030
۵	11.80	13.21	.465	.520
D(1)	19.00	21.50	.748	.846
E	14.75	16.25	.581	.640
E(1)	7.37	8.125	.290	.320
е	5.30	5.75	.209	.226
L	12.75	16.50	.502	.650
L(1)	-	3.30	-	.130
ØP	3.85	4.30	.152	.170
a	2.25	2.85	.089	.112
Υ	15.25	17.27	.600	.680

DIM.	MILLIM	ETERS	INCHES	
Ciivi.	MIN	MAX	MIN	MAX
Α	4.32	4.70	.170	.185
b(1)	1.27	1.65	.050	.065
Øb	.76	1.02	.030	.040
С	.38	.76	.015	.030
D	14.60	15.49	.575	.610
Е	10.03	10.41	.395	.410
е	2.41	2.67	.095	.105
e(1)	4.95	5.33	.195	.210
F	1.14	1.40	.045	.055
H(1)	5.97	6.73	.235	.265
J(1)	2.41	2.79	.095	.110
L	13.08	14.22	.515	.560
L(1)	-	6.22	-	.245
ØP.	3.68	3.94	.145	.155
Q	2.54	3.05	.100	.120

TO-226 (TO-92)

DIM.	MILLIMETERS		INCHES	
DIIVI.	MIN	MAX	MIN	MAX
Α	4.45	4.70	.175	.185
Øb	.41	.53	.016	.021
ØD	4.45	4.70	.175	.185
E	3.43	3.68	.135	.145
е	2.41	2.67	.095	.105
e(1)	1.14	1.40	.045	.055
L	13.97	15.24	.550	.600
L(1)	-	2.03	1	.080
S	2.16	2.41	.085	.095

Note: Diameter uncontrolled inside L(1)

DIM.	MILLIMETERS		INCHES	
DIM.	MIN	MAX	MIN	MAX
A	6.60	7.11	.260	.280
A(1)	4.45	4.70	.175	.185
Øb	.41	.53	.016	.021
D	4.45	5.46	.175	.215
ØD	4.45	4.70	.175	.185
Е	3.43	3.68	.135	.145
е	2.41	2.67	.095	.105
e(1)	1.14	1.40	.045	.055
F	2.41	2.67	.095	.105
L	13.97	15.24	.550	.600
L(1)	-	2.03	-	.080
S	2.16	2.41	.085	.095

Note: Diameter uncontrolled inside L(1)

TO-250

DIM.	MILLIMETERS		INCHES	
Dilvi.	MIN	MAX	MIN	MAX
Α	4.06	4.57	.160	.180
A(1)	.89	1.40	.035	.055
В	.51	.61	.020	.024
B(1)	.89	1.14	.035	.045
C	.33	.43	.013	.017
D	4.93	5.03	.194	.198
E	7.62	8.26	.300	.325
E(1)	5.97	6.48	.235	.255
e(1)	2.29	2.79	.090	.110
e(A)	7.37	7.87	.290	.310
L	3.18	4.06	.125	.160
Q(1)	.86	1.12	.034	.044

DIM.	MILLIN	IETERS	INC	HES
DilVi.	MIN	MAX	MIN	MAX
Α	2.67	4.45	.105	.175
A(1)	.64	1.40	.025	.055
В	.38	.53	.015	.021
B(1)	.97	1.52	.038	.060
С	.20	.30	.008	.012
D	17.53	19.56	.690	.770
E	7.37	8.26	.290	.325
E(1)	7.11	7.87	.280	.310
e(1)	2.54	BSC.	.100	BSC.
e(A)	7.62	BSC.	.300 BSC.	
L	3.18	4.45	.125	.175
L(1)	-	_	-	_
Q(1)	.25	-	.010	-
S	.76	2.41	.030	.095
α	0°	15°	0°	15°

E(1) 6.60 7.37 .260 .290 FOR MSI PACKAGE ONLY

** THIS OUTLINE MEET JEDEC MO-036-RB AND MIL-M-38501G D1 CONF 1.

14 Lead Plastic DIP

DIM.	MILLIN	IETERS	INCHES	
DIIVI.	MIN	MAX	MIN	MAX
Α	3.81	5.08	.150	.200
A(1)	.38	1.27	.015	.050
В	.38	.51	.015	.020
B(1)	.89	1.65	.035	.065
O	.20	.30	.008	.012
D	17.27	19.30	.680	.760
Ε	7.62	8.26	.300	.325
E(1)	5.59	7.11	.220	.280
e(1)	2.29	2.79	.090	.110
e(A)	7.37	7.87	.290	.310
L	3.175	3.81	.125	.150
Q(1)	1.27	2.03	.050	.080
S	1.02	2.03	.040	.080

•

14 Lead Side Braze DIP

DIM.	MILLIMETERS		INCHES	
Dilvi.	MIN	MAX	MIN	MAX
Α	2.67	4.45	.105	.175
A(1)	.64	1.40	.025	.055
В	.38	.53	.015	.021
B(1)	.97	1.52	.038	.060
С	.20	.30	.008	.012
ם	17.53	19.56	.690	.770
E	7.37	8.26	.290	.325
E(1)	7.11	7.87	.280	.310
e(1)	2.54	BSC.	.100 BSC.	
e(A)	7.62	BSC.	.300	BSC.
L	3.18	4.45	.125	.175
L(1)	-	-	_	-
Q(1)	.25	-	.010	-
S	.76	2.41	.030	.095

20 Lead PLCC

DIM.	MILLIMETERS		INCHES		
	MIN	MAX	MIN	MAX	
Α	4.20	4.57	.165	.180	
A(1)	2.29	3.04	.090	.120	
A(2)	.51	ı	.020	-	
В	.331	.553	.013	.021	
B(1)	.661	.812	.026	.032	
D	9.78	10.03	.385	.395	
D(1)	8.890	9.042	.350	.356	
D(2)	7.37	8.38	.290	.330	
e(1)	1.27 BSC.		.050 BSC.		

SME120N20, SME50N50 Package

Lead Diameters:

Drain and Source 0.060 ± 0.002 inches Gate 0.040 ± 0.002 inches

Index and Cross Reference

Process Flows 2

Selector Guide

Data Sheets 1/2

Switching Regulator and Controller ICs

MOSPOWER Die Products

Test Circuits

Package Outlines

Technical Information

Worldwide Sales Offices and Distributors

INTRODUCTION TO MOSPOWER

MOSPOWER transistors have unique characteristics and capabilities that are not offered by bipolar power transistors. For example, they are controlled by a gate-source voltage rather than base current, which means that drive circuits can be simplified. Switching times are also much faster than bipolar devices, particularly as there is no equivalent to saturation and the associated increase in storage time. Recent advances in technology have also led to the introduction of very low on-state resistance devices that have voltage drops lower than any other semiconductor. By taking advantage of these features, the user can achieve substantial cost savings and performance improvements in a circuit.

Switching Speeds

MOSPOWER transistors are majority carrier devices. This means that rise and fall times are inherently faster and the minority carrier stored base charge is not present. Thus, the MOSPOWER transistor has no conventional storage time and the turn-off delay time, $t_{d(off)}$ is typically only a few nanoseconds. The Siliconix SMM20N50, a 20-A, 500-V device, for example, has maximum switching times of:

$$t_{d(on)} = 45 \text{ ns}$$
 $t_{r} = 75 \text{ ns}$ $t_{d(off)} = 150 \text{ ns}$ $t_{f} = 75 \text{ ns}$

These switching times permit much higher operating frequencies than can be achieved with bipolar power transistors. The result is more efficient transistor operation, with associated reduction of cooling requirements and the utilization of smaller capacitive and inductive components. The use of MOSPOWER transistors can, therefore, provide cost, size, and weight reduction to a given power conversion system compared with a circuit using bipolar transistors or silicon controlled rectifiers.

Input Characteristics

The construction of a MOSPOWER transistor is such that the gate is electrically isolated from the source by a layer of silicon dioxide. This oxide layer presents a dc resistance at the gate in excess of 25 M Ω . The current required to drive the gate,

therefore, essentially consists of only the current to charge the input capacitance.

All Siliconix high-power MOSPOWER transistors are enhancement-mode devices. When the gate-to-source voltage is zero, the device is in the off state. The device begins to turn on when the gate-source voltage reaches the threshold value (usually between 2 V and 4 V).

Figure 1. Typical Transfer Characteristics

Figure 1 shows a typical transfer characteristic for a MOSPOWER device. In switching applications, the devices are operated with a gate-source voltage of approximately 10 V, which ensures that the device is sufficiently enhanced to handle its rated current.

Since the gate is isolated from the source, the gate drive current is exceptionally low and is virtually independent of the device load current. This reduces the complexity of the drive circuitry required. In fact, in some cases, the gate may be driven directly from the outputs of logic devices such as TTL and CMOS.

On-State Resistance

With a gate-source voltage of approximately 10 V, MOSPOWER devices behave as resistors. Devices rated at high currents have lower on-resistance $(r_{DS(on)})$ than low current devices.

For example, the Siliconix SMM70N05 is rated at 70 A and has an rDS(on) of only 18 m Ω . In contrast, the SMP25N06 is rated at 25 A and has an rDS(on) of 60 m Ω .

The drain-source resistance exhibits a positive temperature coefficient. This means that devices can be paralleled without the use of ballasting components. Due to recent advances in MOSPOWER technology, however, paralleling is seldom required even for high-current applications.

Tremendous performance increases have been achieved in recent years with respect to MOSPOWER on-state resistance. Today's low-voltage MOSPOWER transistors exhibit resistances so low that package resistance is their largest component. The low resistance opens up new applications for semiconductors. Being resistive in nature, the voltage drop over the device is simply the on-state resistance multiplied by the current.

A MOSPOWER transistor structure consists of a large number of MOS transistor cells connected in parallel.

Figure 2. Multi-Cell MOSPOWER Structure

Figure 2 shows how these cells are interconnected on the silicon die. MOSPOWER dice contain many thousands of cells connected in parallel by the

common drain silicon, the gate matrix of poly-silicon, and the top surface metallization which connects the source sites of all the cells.

Figure 3. An SMM70N05 Die

Figure 3 is a diagram of a high-current MOSPOWER transistor die, the Siliconix SMM70N05. The gate bond pad connects to an arrangement of bus lines which in turn are connected to the underlying polysilicon gate matrix.

The design uses three source bonding pads to spread the currents in the source metallization and, hence, improve the reliability of the device. Three bonding wires are used to make the connections to the package leads. This 0.250×0.250 in. (6.35 mm x 6.35 mm) die, the 18 m Ω SMM70N05, has a current rating of 70 A and a voltage drop of only 0.18 V at 10–A load current. This high efficiency of MOSPOWER devices means that they can be used to replace, for example, mechanical relays with a significant increase in reliability.

Safe Operating Area

The secondary breakdown phenomenon of the bipolar power transistor is not present in the MOSPOWER transistor. Therefore, the boundaries of safe operation are defined by breakdown voltage, current rating, power dissipation, and on-resistance, as shown in Figure 4.

Power handling capability is thus limited entirely by thermal considerations and does not require derating as a function of applied voltage.

Figure 4. Safe Operating Area

MOSPOWER Silicon Structure

The structure of a MOSPOWER transistor differs from the transistor used in MOS integrated circuits in that the current flows through the silicon die (vertically) instead of flowing across the surface (laterally).

Figure 5: Simplified Cross Section of a MOSPOWER Structure

Figure 5 shows a cross section through the basic cell of a MOSPOWER transistor. Device operation is initiated by the application of a bias voltage to the gate (polysilicon). This induces an inversion layer at the surface of the body region (p) between the source (n+) and the drain (n-) regions. The depth of this inversion layer (known as the channel) increases with increasing gate bias up to a certain limit, controlling current flow between the drain and the source. This current flow is also controlled by the applied drain-to-source voltage where this voltage is relatively low. As the drain-to-source voltage increases, however, the current saturates and becomes dependent the only gate-to-source bias voltage.

Increases in MOSPOWER Performance

Advances in technology have reduced the rDS(on) of MOSPOWER devices since the introduction of the first devices in 1977. Two different techniques can be used to reduce the rDS(on) .

As previously noted, a MOSPOWER transistor consists of many transistors or cells connected in parallel on the die. To improve the performance of the transistor, the density of the cells on the die can be increased. This increase means that a given size

die will contain more cells in parallel, and thus the on-resistance will be lower. The improvement in performance is actually due to the increase in total length of cell periphery, which increases as the cell density increases. As an example, the Siliconix SMM70N05, which has a high cell density (1.6 million cells/in² or 250,000 cells/cm²), has a very low r DS(on) of only 18 m Ω .

MOSPOWER rDS(on) improvement can also be obtained by increasing the size of the die used to make the device. This is particularly important at high voltages (above 200 V), where the cell density is limited by breakdown voltage requirements. Manufacture of large dice requires a very clean manufacturing area because a single particle landing on a die at a critical stage could mean the device will not meet its specifications. The larger the die, the higher the chances of contamination.

The importance of the Class 1 wafer fabrication area at Siliconix is, therefore, apparent. (Class 1 refers to a cleanliness level of one or fewer particles of half a micron or larger per cubic foot of air.) A Class 1 wafer "fab" permits the economic manufacture of such products as the SME120N20, a 120 A, 200 V MOSPOWER transistor with a die size of 0.450 in. by 0.535 in. (11.4 mm by 13.6 mm).

MOSPOWER RATINGS AND CHARACTERISTICS

Introduction

Over the past few years, many designers and component engineers have made a transition from bipolar power transistors to MOSPOWER transistors. To assist in this transition, MOSPOWER ratings and characteristics are discussed in detail in this article.

Absolute Maximum Ratings

Figure 1 is an example of the absolute maximum ratings table found on the first page of all data sheets in this book. Because the case is the closest point to the semiconductor junction at which temperature can be monitored directly, voltage, current, and power are rated at specific case temperatures (TC). As discussed below, power and current ratings are based on the requirement that the operating junction temperature (TJ) rating not be exceeded.

Note that voltage ratings are not intended to be used as design parameters but are levels above which the serviceability of the MOSPOWER device may be impaired.

Voltage Ratings

The voltage ratings indicate the maximum permissible drain-source voltage (V_{DS}) and gate-source voltage (V_{GS}). The gate-source voltage rating is valid for both positive and negative polarities of the gate relative to the source. Further information on drain-source breakdown is available in Section 2.12 of the Siliconix MOSPOWER Applications Handbook.

Current Ratings

The continuous drain current rating, I_D , is limited by the requirement that the maximum junction temperature ($I_{J(max)}$) not be exceeded. The junction temperature is determined by the case temperature (I_C), the junction-to-case thermal resistance (I_{thJC}), and the device power dissipation (I_{thJC}) using

$$T_{.J} = T_{.C} + (R_{th,JC} \cdot P_{.D}) \tag{1}$$

ABSOLUTE MAXIMUM RATINGS (TC= 25°C unless otherwise noted)

PARAMETERS/TEST CON	IDITIONS	Symbol	SMM20N50	Units
Drain-Source Voltage		V _{DS}	500	V
Gate-Source Voltage		V _{GS}	± 40	
Continuous Drain Current	T _C = 25°C		20	A
Continuous Drain Current	T _C = 100°C	l D	12.5	
Pulsed Drain Current ¹		1 _{DM}	110] ^
Avalanche Current (see figure 9)		IA	20	1
Power Dissipation $ T_{C} = 25^{\circ}C $ $ T_{C} = 100^{\circ}C $		P	250	w
		PD	100	
Operating Junction & Storage Temperature Range		T _J , T _{stg}	–55 to 150	°C
Lead Temperature (1/16" from case	e for 10 secs.)	TL	300	1

¹ Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

Figure 1. Absolute Maximum Ratings

The device power dissipation is a function of drain current (I_D) and drain-source on-resistance $(r_{DS(on)})$:

$$P_{D} = I_{D}^{2} \cdot r_{DS(on)}$$
 (2)

Combining Equations (1) and (2), a formula for calculating the maximum rating of ID in terms of TC is derived:

$$I_{D} = \frac{T_{J(max)} - T_{C}}{(R_{thJC}) \cdot r_{DS(on)}}$$
(3)

where r DS(on) is specified at T_{J(max)}

This relationship between the ID maximum rating and TC is shown graphically in Figure 9 of each data sheet.

The continuous drain current rating (I_D) is given in the absolute maximum ratings table at both $T_C=25^{\circ}\text{C}$ and $T_C=100^{\circ}\text{C}$ to illustrate the temperature derating effect.

Since MOSPOWER transistors are frequently used in pulsed applications, a pulsed drain current (I $_{\text{DM}}$) rating is also provided. This rating is the maximum momentary current which the device can conduct under any circumstances. The pulsed drain current, the pulse width, and the pulse repetition frequency must be such that $T_{\text{J}}(\text{max})$ not be exceeded.

$$I_{DM} = \sqrt{\frac{T_{J(max)} - T_{C}}{Z_{thJC} \cdot r_{DS(on)}}}$$
 (4)

where $r_{DS(on)}$ is specified at $T_{J(max)}$ and Z_{thJC} is the junction-to-case transient thermal impedance.

Z thJC is a function of pulse width and pulse repetition frequency and is shown graphically in Figure 11 of each data sheet.

In some package configurations, the rated value of ¹D or ¹DM may be less than the value calculated using Equations (3) or (4). This results from limitations other than maximum temperature (e.g., internal bond wires).

In some operating conditions, such as unclamped inductive load testing, the drain-source voltage rating may be momentarily exceeded. This condition may cause the device to conduct current (avalanche current, IA) while in the breakdown mode. The rating for IA is given for single-pulse conditions and is a measure of the device's ability to sustain this current without damage. Like the IDM rating, the pulse width is limited by TJ(max). Furthermore, this rating is an indicator of device durability and is not intended for use as a design parameter. Operation in the avalanche mode, however brief, means that the VDS rating has been exceeded and should be avoided.

Power Ratings

Power dissipation (P_D) is rated as a function of case temperature (T_C) or ambient temperature (T_A) for low power devices. From Equation (1) it can be seen that

$$P_{D} = \frac{T_{J(max)} - T_{C}}{R_{th,IC}}$$
 (5)

Thus, P_D is limited by the maximum junction temperature.

The relationships among power, temperature, and thermal resistance are explained further in the Thermal Considerations and Mounting Techniques article, page 9-25.

Temperature Ratings

Temperature range ratings are provided for both operating junction temperature (T_J) and storage temperature (Tstg). In most cases, these ratings have a maximum limit of 150°C; however, ratings of up to 200°C can be obtained on certain device types. The Siliconix sales representative may be contacted for further details on extended temperature range operation.

To ensure that the device is not damaged during the board soldering process, a lead temperature rating is also provided.

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	Symbol	Тур.	Max.	Units
Junction-to-case	R _{thJC}	-	0.50	
Junction-to-ambient	R _{thJA}	-	30	K/W
Case-to-sink	R _{thCS}	0.1	•	

Figure 2. Thermal Resistance Ratings for SMM20N50

Thermal Resistance Ratings

Figure 2 is an example of the thermal resistance ratings table found on the first page of each data sheet.

The maximum thermal resistance values are the limits to which the device is guaranteed. For free-air applications, the junction-to-ambient thermal resistance (R $_{\rm thJA}$) should be used. For applications where a heat sink is used, the junction-to-case thermal resistance (R $_{\rm thJC}$) is provided with the typical case-to-sink thermal resistance (R $_{\rm thCS}$) that can be expected using normal mounting procedures.

Electrical Characteristics

Electrical characteristics are minimum and maximum performance limits which can be measured on automatic test equipment or manual test fixtures. These characteristics will be considered in three groups: static transistor parameters, dynamic transistor parameters, and diode parameters.

Static Transistor Parameters. Figure 4 is an example of the static parameters from the transistor electrical characteristics table which appears on the second page of each data sheet.

Breakdown and Leakage Parameters. Figure 3 shows, in exaggerated form for clarity, the drain-source voltage characteristic of a typical MOSPOWER transistor.

Figure 3. Drain-Source Voltage Characteristic

The drain-source breakdown voltage (V(BR)DSS) is measured with the gate shorted to the source terminal. With zero bias on the gate, the device cannot turn on. V(BR)DSS is determined by forcing the specified drain current (I_D) through the transistor and measuring the voltage required to achieve this condition.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units	
Drain-Source Breakdown Voltage $V_{GS} = 0$, $I_D = 250 \mu A$	V(BR)DSS	500		<u>-</u> -	V	
Gate Threshold Voltage VDS= VGS · ID = 1000 μA	V _{GS(th)}	2.0	2.6	4.0		
Gate-Body Leakage V _{DS} = 0, V _{GS} = ±20 V	IGSS	-	-	100	nA	
Zero Gate Voltage Drain Current VDS = V(BR)DSS , VGS = 0	DSS		· -	250		
Zero Gate Voltage Drain Current VDS = 0.8 x V(BR)DSS , VGS= 0, TJ =125°C	^I DSS	-		1000	μΑ	
On-State Drain Current ¹ V _{DS} = 10 V, V _{GS} = 10 V	l _{D(on)}	20	-	-	A	
Drain-Source On-State Resistance ¹ VGS = 10 V, I _D = 10 A	^r DS(on)	-	0.22	0.30		
Drain-Source On-State Resistance ¹ VGS = 10 V, I _D = 10 A, T _J = 125°C	^r DS(on)	-	0.50	0.70	v	
Forward Transconductance ¹ V _{DS} = 15 V, I _D = 10 A	g _{fs}	8.0	11	-	S(T)	

¹Pulse test: Pulse width ≤ 300 µsec, Duty Cycle ≤ 2%

Figure 4. Static Electrical Characteristics for SMM20N50

V(BR)DSS increases with temperature. The approximate relationship is shown by

$$V_{(BR)DSS} @ T_J = (V_{(BR)DSS} @ 25°C) (0.001 T_J + 0.975)$$
 (6)

A parameter closely related to V(BR)DSS is zero gate voltage drain current (I_{DSS}) . In this case, the gate is also zero biased, the specified drain-source voltage (V_{DS}) applied, and the resulting drain current is measured as I_{DSS} . I_{DSS} is usually specified at both normal and elevated junction temperatures since it is a temperature sensitive parameter with a positive temperature coefficient. For silicon, leakage currents approximately double for each $10^{\circ}C$ rise in TJ.

The gate-body leakage (I_{GSS}) is also known as gate-source leakage. In MOSPOWER construction, the body, or substrate, is shorted to the source terminal. To measure this parameter, drain and

source terminals are shorted and the specified gate-source voltage (VGS) applied. Note that this voltage can be either positive or negative. The gate current now measured is IGSS and may also flow in either direction.

Threshold Voltage. The gate threshold voltage (VGS(th)) is intended to provide a measure of the voltage required to initiate turn-on in a MOSPOWER transistor. It is the gate bias that is required to provide a specified drain current (I_D) that is above the leakage current level, but very low compared to the normal operating current level of the device. During measurement of VGS(th), the gate is normally shorted to the drain such that VGS = VDS.

Gate threshold voltage is generally specified as a range with both minimum and maximum limits. For any value of V_{GS} below the minimum limit, the device will be off; for V_{GS} above the maximum limit, the device will be on so that current flow will be at least that at which $V_{GS}(th)$ is specified.

Figure 5. Transfer Characteristics

Threshold voltage exhibits a negative temperature coefficient, decreasing by approximately 5 mV for each °C rise in TJ. The effects of this are shown in Figure 5.

On-State Parameters. When a gate bias (VGS) significantly in excess of the gate threshold voltage is applied to a MOSPOWER transistor, the transistor will turn fully on and on-state drain current (ID(on)) will flow. Under measurement conditions for ID(on), the drain-source voltage (VDS) will be defined. The product of VDS and ID(on) will cause TJ to rise; thus ID(on) is specified under pulsed conditions which causes only a negligible rise in TJ.

A major contributor to the power dissipated in a MOSPOWER device is the drain-source on-state This is measured under resistance (rDS(on)). conditions of high gate bias and a defined drain current, which is usually about half the drain current As a temperature sensitive parameter, rating. r DS(on) is generally specified at normal and elevated junction temperatures. As the device junction heats up, r DS(on) increases. There is no simple relationship between rDS(on) and TJ since r DS(on) consists of a number of components each with different temperature coefficients. However, the temperature coefficient of rDS(on) does increase with higher breakdown voltages as the part played by the epitaxial layer resistance becomes more prominent. Like $I_{D(on)}$, $r_{DS(on)}$ is measured under pulsed conditions.

Transfer Characteristics. Figure 5 shows the transfer characteristic of a typical MOSPOWER transistor in which the effects of temperature can clearly be seen. At higher current levels, the gate bias required increases with temperature, and this characteristic may be used to provide a degree of thermal self-protection for the device.

The slope of the transfer characteristic curve is forward transconductance (g_{fs}) which is a measure of the transistor gain. The value of g_{fs} is the ratio of the change in drain current (I_D) to the change in gate bias (V_{GS}) that caused it.

The variation of ^{1}D with temperature is apparent from Figure 5. When ^{1}D is low, the temperature coefficient is positive because the effect is dominated by the change in $^{1}VGS(th)$. As ^{1}D increases, however, the change in carrier mobility becomes more significant and the temperature coefficient becomes negative.

Theoretically, 9_{fS} is a dynamic parameter derived from instantaneous changes. In practice for power devices, however, it is measured using dc techniques at specified output conditions, 1_D and V_{DS} .

Dynamic Transistor Parameters

The dynamic parameters of a MOSPOWER transistor define its performance under ac conditions and are shown in Figure 6 from the electrical characteristic table of the data sheet. The signals used in measuring dynamic characteristics can be sinusoidal (as, for example, in capacitance measurements), or square wave or pulse signals which are used in measurements related to switching performance.

Capacitance. Typically, three capacitance parameters are specified for MOSPOWER devices: input capacitance (Ciss), output capacitance (Coss), and reverse transfer capacitance (Crss). Figure 7 shows the actual terminal-to-terminal capacitances of the transistor.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS		Symbol	Min.	Тур.	Max.	Units
Input Capacitance	V _{GS} = 0	Ciss	•	3700	4500	
Output Capacitance	V _{DS} = 25 V	Coss	-	375	700	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	200	350	
Total Gate Charge	V _{DS} = 0.5 × V _{(BR)DSS} ,	Qg	-	70	100	
Gate-Source Charge	V _{GS} = 10 V, I _D = 20 A (Gate charge is essentially	Q _{gs}	-	15	-	nC
Gate-Drain Charge	independent of operating temperature)	Q _{gd}	-	34	-	
Turn-On Delay Time	V _{DD} = 250 V , R _L = 25 Ω	^t d(on)	-	34	45	
Rise Time	I_D = 10 A, V_{GEN} = 10 V R_G = 4.7 Ω (Switching time is essentially	t _r	-	57	70	ns
Turn-Off Delay Time		^t d(off)	-	120	150	113
Fall Time	independent of operating temperature)	t _f	-	62	75	

Figure 6. Dynamic Electrical Characteristics for SMM20N50

Figure 7. MOSPOWER Transistor Capacitances

C_{iss}, the input capacitance, is the capacitance between the gate and source terminals with the source ac shorted to the drain.

Thus, from Figure 7,

$$C_{iss} \approx C_{gs} + C_{gd}$$
 (7)

Coss, the output capacitance, is the capacitance between the drain and source terminals with the gate ac shorted to the source.

Thus, from Figure 7,

$$C_{OSS} \approx C_{gd} + C_{ds}$$
 (8)

Crss, the reverse transfer capacitance, is the capacitance between the gate and drain terminals with the source ac grounded.

Thus, from Figure 7,

$$C_{rss} \approx C_{gd}$$
 (9)

Gate Charge. Input capacitance, Ciss, changes significantly with drain-source voltage, VDS, as shown in Figure 5 of each data sheet. In some cases, this characteristic makes it difficult to use Ciss to calculate gate drive requirements. To simplify this task, gate charge characteristics are provided on the data sheet.

As described in more detail in the Design Considerations article on page 9-18 of this data book and in Section 2.2.1 of the Siliconix MOSPOWER Applications Handbook, MOSPOWER transistors are charge-transfer controlled devices. Figure 8 graphically shows the relationship between gate charge (Q g) and gate-source voltage ($V_{\rm GS}$), and defines three gate-charge parameters.

Figure 8. Gate Charge Characteristics

As charge is injected into the gate terminal by the drive circuitry, V_{GS} first rises linearly as the gate-source capacitance (C_{gs}) is charged up. In this region, C_{gd} is negligible. This action continues until V_{GS} reaches a level at which the transistor begins to turn on. At this point, drain current (I_{D}) begins to flow, and the drain-source voltage (V_{DS}) begins to drop sharply. The charge needed to reach this state is defined as gate-source charge (Q_{gs}).

As V_{DS} drops, the gate-drain capacitance (C_{gd}) increases rapidly, and the Miller effect becomes significant. Consequently, as more charge is added to the gate, the V_{GS} rises only slightly. This accounts for the relatively flat region in Figure 8. After an additional amount of charge, namely gate-drain charge (Q_{gd}), has been delivered to the gate, this effective (Miller) capacitance is fully charged, and V_{GS} again rises linearly with additional gate charge. C_{gd} gets much larger as V_{DS} approaches zero, so the capacitance now being charged ($C_{gs} + C_{gd}$) is larger and the slope is different.

The third charge parameter, total gate charge, Qg, is the total charge needed to raise VGS to a specified value, which is chosen such that the transistor is well into its turn-on region.

Switching Time Parameters. Figure 9 shows a simplified switching time test circuit which defines the test conditions used in the data sheets in this book.

Figure 9. Switching Time Test Circuit

Figure 10 shows the timing relationship between the gate-source voltage and the drain-source voltage for a complete (on and off) drive pulse applied to the gate.

During the turn-on period, a delay occurs (turn-on delay time, ${}^td(\text{on})$) determined by the gate-to-source and drain-to-source capacitances. After the delay, the drain current rises as the drain-source voltage falls. This rise time (t_Γ) is measured using the 10% and 90% points on the rising waveform. The sum of turn-on delay time $({}^td(\text{on}))$ and rise time (t_Γ) is known as turn-on time (t_{on}) .

Figure 10. Switching Waveforms

During the turn-off period, another delay occurs (turn-off delay time, ${}^td(off)$). This delay, in turn, is

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS (T_J = 25°C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	Symbol	Min.	Тур.	Max.	Units
Continuous Current	^I s	-	-	20	
Pulsed Current ¹	^I SM	-		110	A
Forward Voltage ² I _F = I _S , V _{GS} = 0	V _{SD}	-	-	1.6	· · · V
Reverse Recovery Time I _F = I _S , dI _F /dt = 100 A/μs	t _{rr}	-	300	650	ns
Reverse Recovered Charge I _F = I _S , dI _F /dt = 100 A/μS	Q _{rr}	-	2.0	-	μC

¹Pulse width limited by maximum junction temperature (refer to transient thermal impedance data, figure 11)

Figure 11. Source-drain Diode Ratings and Characteristics for SMM20N50

followed by a fall in drain current as the drain-source voltage rises. This fall time $(t_{\,f}\,)$ is also measured using 10% and 90% points. The sum of turn-off delay time $(t_{\,f}\,)$ is known as turn-off time $t_{\,}(off)$.

MOSPOWER switching times are essentially independent of device junction temperature. For further information on switching characteristics, refer to Section 3.2 in the Siliconix MOSPOWER Applications Handbook.

Source-Drain Diode Ratings and Characteristics

The physical construction of the MOSPOWER transistor results in the presence of a parasitic anti-parallel diode between the drain and the source. This diode has voltage and current ratings which are the same as those of the MOSFET. In certain applications, this inherent diode may be used to advantage; therefore, its major characteristics are provided on the data sheet. Figure 11 shows an example of the source-drain diode ratings and characteristics table found on the second page of each data sheet.

The forward voltage (V_{SD}) is, as its symbol implies, the diode voltage drop measured with the source terminal biased positive with respect to the drain. It is generally measured at the full rated

current.

Figure 12. Diode Reverse Recovery

Reverse recovery time (t_{rr}) conditions are defined in Figure 12. The value of t_{rr} is measured from the point in time when the current has fallen to zero. A straight line drawn through the peak point of the diode reverse recovery current (l_{rr}) and the point at which (l_{rr}) has recovered to 25% of its peak value intersects the zero current axis at a point generally considered to define the end of t_{rr} . Because of the difficulty of simulating this definition of t_{rr} on test equipment, the approximate equivalent definition shown in Figure 13 is used for testing purposes.

Reverse recovered charge (Q_{rr}) is represented by the area under the reverse recovery current curve in Figure 12 and Figure 13.

²Pulse test: Pulse width ≤ 300 µsec, Duty Cycle ≤ 2%

Figure 13. Practical Diode Reverse Recovery Measurements

For further information on the characteristics of the source-drain diode, refer to Section 5.5 of the Siliconix MOSPOWER Applications Handbook. This 510-page hardbound handbook contains much theoretical and practical information on the use of MOSPOWER devices. Siliconix sales representatives will provide copies on request.

ELECTROSTATIC SENSITIVE DEVICE HANDLING PROCEDURES

Most of the electronics industry has become painfully aware of the damage static electricity can cause to semiconductor devices. Static damage can result in immediate device destruction or latent field failures as a result of ESD degradation. All semiconductor technologies--bipolar, MOS, ECL, JFET, and power MOSFET--are, to some degree, vulnerable to ESD (electrostatic discharge). With 40-V Siliconix' **DURAMOS** process and MOSPOWER's inherent gate-source capacitance, power MOSFETs are less sensitive than many semiconductor devices. But all are still within the 0to 1000-V "class 1" sensitivity range and must be carefully protected.

Protected Areas

Whenever an ESD-sensitive device is handled outside of its protective packaging, electrostatic voltages in the work area must be kept below the sensitivity level.

One of the basic principles in the design of the protected area is to prohibit the use of prime ESD generators and restrict the introduction of these prime generators by personnel working in these areas. Protected areas and work benches should be identified with signs, such as:

ESD PROTECTED AREA: USE PRECAUTIONS WHEN HANDLING ESD-SENSITIVE ITEMS OUTSIDE OF THEIR PROTECTIVE WRAPS.

These areas should be constructed using the materials and equipment outlined in this article.

ESD Protective Materials

The important features of ESD protective materials include:

- a. Protection against triboelectric generation.
- b. Protection from electrostatic fields.
- Protection against direct discharge from contact with charged people or a charged object.

It is difficult to find one material that provides all of the above properties. Often, it is necessary to use a combination of different protective materials to achieve the desired results.

Protection against the generation of electrostatic charges is the best method of ESD control. If

materials do not generate electrostatic charges, no further action is required. One of the prime material characteristics that determines static generation is lubricity, a measure of surface smoothness and lubricating action or moistness. Triboelectric generation is a friction process; the higher the lubricity of the surfaces being rubbed, the lower the friction and, hence, the lower the generated charges. Moisture on the surface of materials being separated provides progressive neutralization of opposite charges by furnishing a conductive path between the surfaces until separation is complete. Once a charge is generated, the distribution of that charge is dependent upon the resistivity and surface area of the material. The more conductive the material, the faster the charge is distributed. The greater the surface area over which a charge is spread, the lower the charge density and the level of the residual voltage. In contrast to insulators, localized charges cannot exist on conductors.

Complete shielding from electrostatic fields, or from electromagnetic pulse (EMP) that may be induced by a high-voltage ESD spark, requires enclosing the vulnerable item in a conductive material. Normally, the greater the conductivity of the enclosure, the greater will be the attenuation of electrostatic fields and EMP within it.

The characteristics of materials needed to protect ESD sensitive items from direct discharge from a charged body or person depends upon the method of discharge. If the discharge is through an ESD-sensitive item, a high resistance to ground is beneficial in reducing the voltage across the ESD-sensitive item since the greater part of the voltage drop will be across the resistance to ground and the discharge current through the ESD-sensitive item is limited.

Classification of ESD Protective Materials

There are three basic classifications of ESD-protective materials which are based on ranges of surface resistivity. These ranges are relative, and no sharp demarcations exist at the extremes of these ranges. Treatment of materials with coatings that decrease surface resistivity will result in reclassification of a material to a more conductive category.

Conductive Protective Materials

Conductive ESD protective materials are defined as having surface resistivities of $10^5~\Omega/\Box$ or less. Materials such as metals, bulk conductive plastics (e.g., MIL-P-82646), wire impregnated materials, and conductive laminates can meet this resistivity requirement except for very thin pieces of bulk conductive materials or material with sparsely woven wires or wire mesh.

Static Dissipative Protective Materials

Dissipative materials have surface resistivities of >10 5 and <10 9 Ω/\Box . They are often of composition similar to conductive materials, but may use thinner wire, or more coarsely-spaced mesh, or bulk material of higher volume resistivity.

Anti-static Protective Materials

Anti-static materials are those having surface resistivities of >109 and <1014 Ω/\Box . These materials include hygroscopic anti-static materials such as MIL-B-81705 Type II, some melamine laminates, high resistance bulk conductive plastics, virgin cotton, cellulose-based hardboards, wood and paper products, and very thin layers of static dissipative or conductive materials.

Topical Antistats

Topical antistats are chemical agents that reduce static generation when applied to surfaces of insulative materials. Items that require treatment with a topical antistat should have a sticker showing the date that the ESD-protective properties must be rechecked.

Ionizers

lonizers dissipate electrostatic charges by ionizing air molecules, forming both positive and negative ions. Ionized air can be used where effective grounding cannot be accomplished to bleed-off static charges or where grounding would not be effective to dissipate charges on insulators.

Some ionizers can leave residual voltages high enough to damage some ESD-sensitive items. Selection and replacement of ionizers for adequate ESD control requires measurement of residual

voltages in the area to be protected and comparison with the voltage sensitivity levels of ESD-sensitive items being handled.

Personnel Ground Straps

Personnel handling ESD sensitive items should wear a skin-contact wrist, leg, or ankle strap. These straps dissipate static charges safely to ground and equalize personnel static levels with that of the work surfaces. Alternative personnel grounding methods include use of conductive shoes, conductive chairs, heel grounders, and ESD-sensitive protective floors. Wrist, ankle, and leg ground straps should have a minimum resistance needed to prevent these grounds from posing a personnel safety hazard. For example, a typical $250,000-\Omega$ resistance ground strap will protect people up to 1,250 V ac RMS or dc by limiting current to 5 mA.

Grounded Work Benches

Work benches should have protective work surfaces over the area where ESD-sensitive items could be placed. Work bench surfaces should be connected to ground through a ground cable. The resistance in the bench top ground cable should be located at or near the point of contact with the work bench top and should be high enough to limit any leakage current to 5 mA or less, considering the highest voltage source as wrist ground straps, table tops, and conductive floors. See Figure 1 for a typical ESD-grounded work bench.

Shunting Bars, Chips, Conductive Foams

The terminals of ESD-sensitive items should be shorted together using metal shunting bars, metal clips, or non-corrosive conductive foils. To act as an adequate shunt, the resistance of the shunting materials should be orders of magnitude below the minimum impedance between any two pins of the ESD-sensitive part. Shunts will not always protect an item from an ESD. An ESD-sensitive part in a non-conductive case or assembly, which is subjected to electrostatic fields or direct ESD, can be damaged by induced current flowing from within the device to the external shunt. Parts and assemblies in non-conductive cases should be completely wrapped with ESD-shunting material.

Figure 1: Typical ESD Grounded Work Bench

Electrical Equipment, Tools

Soldering irons, solder pots, or flow soldering equipment should be hard grounded and transformer or direct current isolated from the power line. The resistance reading from the tip of a hot soldering iron to ground should be less than $20~\Omega$ so that the voltage buildup will be less than 15~V. Other electrical power equipment which comes into contact with ESD-sensitive items should also be grounded. ESD-protective solder suckers, such as metallized types, should be used. Insulated handles of hand tools should be checked for static generation, and periodically treated with an antistat if required.

Test Equipment

Test equipment should have all exposed metallic surfaces electrically connected via a grounded plug to the test equipment power system or other hard ground. For personnel safety from electrical shock, test equipment should not be placed on conductive work bench surfaces since it could result in hard grounding that surface.

Test equipment could be placed on high resistance anti-static material depending upon the magnitude of nearby voltage sources. Ground fault interrupters should be used in electrical receptacles used for powering test equipment as an added personnel safety precaution.

Temperature Chambers

Temperature chambers should be equipped with grounded baffles to dissipate charges in circulated air. Alternatively, ionized air can be used in the chamber to dissipate static charges caused by air flow, or shields can be used to divert the charged air away from ESD-sensitive items in the chamber. Caution should be used in cooling chambers with CO2 since CO2 evaporation can generate high static charges. Parts tested in temperature chambers should be placed in ESD-protective tote boxes or trays on grounded metal racks within the chamber. The thermal stability of ESD-protective materials used in temperature chambers should be suitable over the test temperature ranges.

Relative Humidity

Humid air helps to dissipate electrostatic charges by keeping surfaces moist, therefore increasing surface conductivity. Substantial electrostatic voltage levels can accumulate with a decrease in relative humidity (see Table I). However, it is also evident from Table I that significant electrostatic voltages can be generated with relative humidity as high as 90%. Relative humidity between 40% and 60% in ESD-protective areas is desirable as long as it does not cause detrimental effects, such as rust formation and PWB delamination during soldering. Where high relative humidity levels cannot be maintained, ionized air should be used to dissipate electrostatic charges.

Table 1: Typical Electrostatic Voltages

Means of	Electrostatic Voltages		
Static Generation	10% to 20% Relative Humidity	65% to 90% Relative Humidity	
Walking across carpet	35,000	1,500	
Walking over vinyl floor	12,000	250	
Worker at bench	6,000	100	
Vinyl envelopes for work instructions	7,000	600	
Common poly bag picked up from bench	20,000	1,200	
Work chair padded with polyurethane foam	18,000	1,500	

Summary

Effective protection from ESD occurs when the total environment is under control. When appropriate

ESD protection methods are used in conjunction with trained personnel, ESD damage to power MOSFETs can be reduced to negligible levels.

Reference

DOD-HDBK-263, 2 May 1980.

The following companies are makers of ESD control materials and devices.

Charleswater Products, Inc. 93 Border Street West Newton, MA 02165

Products: STATGUARD Floor Finish MICASTAT Amino Resin (Tabletop Laminate) STATSHIELD Conductive Transparent Bags STATFREE Conductive Foam

Semtronics Corporation P.O. Box 592 Martinsville, NJ 08876

Products: ENSTAT Ribbed Conductive and Vinyl Floor Mats Simco Company, Inc. 2257 North Penn Road Hatfield. PA 19440

Products: Electrical Source Ionizers

Static Control Systems/3M 22-2SW, 3M Center St. Paul MN 55144

Products:
8200 series table mats
2068 series wristbands
2100 series conductive transparent bags
VELOSTAT conductive bags
Nuclear source ionizers
Conductive tote boxes
Conductive foam

Angelica Uniform Group 700 Rosedale Avenue St. Louis, Mi 63122

Products: Anti-static smocks and lab coats

MOSPOWER GATE DRIVE DESIGN

One of the principal advantages of power MOSFET transistors is the relative simplicity of gate drive circuitry compared to the base drive requirements of bipolar junction transistors (BJTs). BJTs and MOSFETs are both charge-controlled devices which require a pulse of drive current to cause the output terminals to change from a non-conducting to a After being switched on, the conducting state. bipolar device requires a steady-state base current to maintain device conduction, while the MOSFET stores the accumulated gate charge in the device input capacitance, and thus requires no further flow of charge to maintain conduction. For the circuit designer using MOSFETs, this translates to low drive power requirements and simplified drive The absence of minority carriers in MOSFETs allows switching times that are an order of magnitude faster than those of bipolar devices. Furthermore, the switching characteristics of MOS transistors do not change appreciably over temperature, and peak current capability is limited only by thermal considerations, as opposed to the gain limitations of BJTs.

Device Parameters

Before a gate drive circuit can be properly designed, it is necessary to consider some key specifications of the MOSFET to be driven. It is assumed here that the circuit designer has already chosen a MOSFET with adequate voltage rating (worst-case expected voltage times the required derating factor) and with the desired package outline. Also, thermal calculations should have been made (see Thermal Considerations. pp. 9-25) determine worst-case junction to increases with temperature, T_J(max). r_{DS}(on) junction temperature and drain current, which requires an iterative approach for calculating rDS(on) and TJ (see MOSPOWER worst-case Applications Handbook, pp. 4-1 to 4-21). MOSFET on-resistance is specified on the data sheet at some value of VGS. Siliconix MOSPOWER devices are guaranteed to meet the rps(on) limits published in the data sheets for the test conditions specified. Most MOSPOWER devices are designed to be fully enhanced at VGS = 10 V, and for these devices, this is the drive voltage required. Although the choices are more limited, there are now devices available with operation specified at VGS = 5 V (e.g., 2N7000, 2N7001, 2N7002,

2N7007, 2N7008, and 2N7014). In either case, it is imperative that the specified drive voltage be provided to achieve the guaranteed value of on-resistance.

The device capacitances given in MOSFET data sheets (Ciss, Coss, and Crss) are voltage dependent and thus do not provide a sufficiently accurate model for switching applications. If a constant current is fed into the gate terminal of a MOSFET, as shown in Figure 1, the gate voltage rises, as shown in Figure 2. The SMM20N50 device type has been chosen for this illustration with both VGS and VDS plotted as a function of the accumulated charge, Q_g . To explain the switching phenomenon, the curves for VDD = 400 V have been re-plotted in Figure 3 with the three separate switching regions identified.

Figure 1. Circuit for generating MOSFET turn-ON charge curves

Figure 2. Turn-ON charge characteristics of SMM20N50

Figure 3. Turn-ON charge characteristics of SMM20N50 showing the three switching regions

Region 1 is the subthreshold region where the gate is charged from 0 V to the threshold value, VGS(th). The capacitance is constant, as seen from the linear charging characteristics, and is equal to the gate-source capacitance, $C_{\rm gS}$, of the MOSFET. Region 2 begins once $V_{\rm GS}$ reaches VGS(th). As $V_{\rm GS}$ increases beyond this point, the device begins to move into the active region. Drain current increases and the drain-source voltage begins to fall. Summing currents at the gate terminal gives Equation 1.

$$I_X = C_{gs} \frac{dV_{GS}}{dt} + C_{gd} \frac{dV_{GD}}{dt}$$
 (1)

Although the gate-drain capacitance is very small in region 2, dVGD /dt is large, and both terms on the right hand side of Equation 1 are significant. Region 3 begins when VDS begins to drop below VGS, as the device approaches the fully on state. An additional phenomenon occurs which accounts for the very flat portion of Region 3. Typical curves for device capacitance are given in Figure 4 for the SMM20N50. Note the steep increase in Cad as VDS is reduced towards 0 V. This graph does not present information as to the value of Cgd for negative values of VGD, but VGD does change polarity as VDS falls below VGS. Cad continues to increase in this region to a value many times greater than the value at VDS = 25 V (the value at which Cgd = Crss is measured and specified on the Within the flat portion of the data sheet).

 V_{GS} curve, dV_{GS}/dt is small, and the second term of Equation 1 predominates. dV_{GD}/dt is not as large here as in Region 2, but C_{GD}/dt is not as large here as in Region 2, but C_{GD}/dt is at least an order of magnitude greater. After V_{DS} reaches the fully on state $(V_{Sat} = I_D \cdot r_{DS}(on))$, the charging characteristic again becomes linear. $dV_{DS}/dt = 0$, and the current source, I_X , charges the parallel combination of C_{GD} and C_{GS} until $V_{GS} = V_{GG}$. Further explanation of MOSFET charge transfer characteristics can be found by referring to the MOSPOWER Applications Handbook, Section 2.2.1.

Figure 4. Capacitance curves for SMM20N50

The gate charge curves on MOSPOWER data sheets provide the necessary information for the design of gate drive circuits. For a given device, the charge which must be transferred to the gate can be read from the curve at $V_{GS} = V_{GG}$. For a given drive current, $I_X = \Delta Q/\Delta t$, the charging time is readily determined.

The gate charge factor, Q_g , scales in proportion to die area, while ${}^rDS(on)$ is inversely proportional to die area. Thus, for a given driver circuit (supplying current I_X), devices with higher current ratings switch more slowly than devices with lower current ratings at the same breakdown voltage.

Low-frequency Drive Circuits

Although MOSFETs are inherently capable of very fast switching, many applications do not require such performance. MOSFETs are often employed

in low-frequency switching applications to interface control logic with power loads. These loads may range from a few milliamps for driving an LED to many amperes for supplying a motor. The principal advantage offered is the MOSFET's low drive power requirement which facilitates the use of simple and inexpensive gate drive circuits. Figure 5 shows an example of a simple load interface solution. The 2N7000 is specified for operation at $V_{GS} = 4.5 \text{ V}$, which allows for a 10% tolerance on the +5 V logic power supply. When interfacing to TTL logic, it is necessary to add a pull-up resistor since the TTL output-high state is well below 4.5 V. current requirements can be met with the 2N7014, a 100-V device rated at $r_{DS(on)}$ = 0.9 Ω at V_{GS} = 4.5 V. Driving higher power loads from control logic requires a greater pull-up voltage, as shown in Figure 6. The SMP60N05 has a specified maximum on-resistance of 0.023 Ω at $V_{\mbox{\footnotesize GS}}$ = 10 V and, thus, can switch 20 A with less than a 0.5-V drop.

Figure 5. Simple lamp driver circuit

Figure 6. Driving loads from open-collector TTL (or open-drain CMOS) logic

High-side Switching

All of the preceding discussion has been made in reference to driving n-channel enhancement-mode devices in a common source configuration. In high-side switching applications and bridge circuits, it is necessary to drive the gate voltage above the source voltage ($V_{GS} = V_G - V_S$), where the source is no longer grounded. As might be expected, the approach depends upon the application.

For low-voltage applications, a charge pump circuit can be used as a voltage doubler to generate the required gate voltage level, as shown in Figure 7a. When Q1 is on, its source voltage is below the input voltage by VDS = ID • rDS(on) . For the SMM70N05, rDS(on) = 0.018 Ω , which means that the source voltage will still be near the 12 V input voltage. The Si7661 is employed to generate a +24-V supply, giving VGS \approx 12 V in the on-state.

The gate drive can be further simplified by using a p-channel device, as shown in Figure 7b. Although a p-channel device requires a larger die area and higher cost for a given current capacity, the savings in drive circuitry often makes this a viable approach.

An example of a gate drive for a high-voltage bridge circuit is shown in Figure 8. The D469 driver IC provides four channels which can be configured as either inverting or non-inverting drivers. The JFET, Q3, is used to provide the p-channel power MOSFET with a low gate-source impedance when turned off. The $^{\rm rDS}({\rm on})$ for the J107 shown is less than 10 Ω when the gate-source voltage is zero (the maximum cutoff voltage is -0.5 V). Zener diode D1 protects Q1 from a gate-source overvoltage, while D3 protects the gate-source of Q3 from overvoltage when Q4 or Q5 is on. The CR100 (D2) is a constant-current diode used to turn JFET Q3 on when Q4 and Q5 are turned off.

Q4, Q5, R1, R2, R3, and C1 form a bilevel current source used to drive the JFET clamp, Q3, and upper p-channel power MOSFET, Q1. When Q4 and Q5 are driven on by the preceding logic, they initially source current at a rate determined by R1 and R2. The gate of Q3 is pulled low, turning the JFET off. Current through the diode D3 drives the gate of Q1 to a voltage level clamped by diode D1, turning Q1 on. After the power MOSFET is turned on, Q4 turns off, reducing the current source value by approximately an order of magnitude to minimize power consumption while maintaining the MOSFET

Figure 7a. N-channel high-side switch using a voltage doubler for gate drive signal generation

Figure 7b. P-channel high-side switch

in the fully enhanced state. Peak current timing is set by the time constant of R3 and C1, and the maintenance current level is set by the value of R2.

When the current source driver is turned off, current diode D2 pulls the gate of Q3 to the high rail voltage, turning Q3 on which then turns Q1 off. One particular advantage inherent to this drive technique

is that it holds the p-channel devices in the upper side of the bridge in the normally off state. The absence of a gate drive signal results in the gate-source of Q1 being clamped to a safe, low-impedance state. This technique provides a safe power-up condition as well as additional failure protection should low-voltage power be interrupted during operation.

Figure 8. "JFET Clamp" for high-side P-channel gate drive

High Frequency Switching Circuits

Due to the absence of minority carrier storage time, power MOSFETs are inherently capable of very fast switching performance. In many applications, this is the principal reason for choosing a MOSFET over other semiconductor device types. Taking full advantage of power MOSFET performance in high-frequency circuits requires careful selection of driver components and good circuit layout methods.

A simple circuit which is capable of good performance when driving large power MOSFETs is the emitter follower, shown in Figure 9. Assuming that the drive signal is not permitted to swing above the positive rail or below the negative rail voltage of th VGG supply, neither transistor will be driven into saturation. This minimizes the storage time problems inherent in bipolar transistors. It is important to choose fast transistors ($f_T \geq 200\,$ MHz) whose gain is still reasonably high ($h_{FEmin} \geq 20)$ at a peak collector current value of 500 mA to 1 A. Table I includes device types which meet these criteria.

Figure 9. Emitter follower drive circuit

Table I. Sugggested emitter follower driver device type

CASE STYLE	NPN	PNP
TO-92	2N4401	2N4403
TO-18	2N2222A	2N2907A
TO-39	2N3725	2N2905

Figures 10 and 11 illustrate the current paths during turn on and turn off, respectively, of the MOSFET. The high frequency capacitor is used to prevent the parasitic inductance from slowing the switching speed. It is important to minimize the inductance of these paths by minimizing the enclosed area of each loop. In addition, the circuit inductance is the major component of the driver source impedance at very high frequencies. Therefore, the immunity of the MOSFET to dv/dt will be largely determined by the parasitic inductance in the drive circuit. For a more complete discussion of MOSFET dv/dt issues, refer to the MOSPOWER Applications Handbook, Section 5.4.

Figure 10. Turn-ON loop

Figure 11. Turn-OFF loop

In any drive circuit using discrete MOSFET devices, there will be some inductance which is common with both the input (gate-source) and output (drain-source) current loops. This common source inductance has a negative feedback effect on the switching characteristic, similar to the effect that an emitter degeneration resistor has on the gain of a common emitter amplifier. Figure 12 illustrates this effect. As In increases during turn-on, the voltage drop across LS diminishes the value of gate voltage applied to the MOSFET. The common source inductance can be broken down into components. LS1 is internal to the semiconductor package, and LS2 is external to the package. The external component can be nearly eliminated by connecting the gate drive return and the load return directly to the source pin, as illustrated in Figure 13. LS1 can be eliminated in hybrid circuits where the circuit designer has access to the source bonding By using two separate wirebonds to the source, the only remaining common inductance is that of the device source metallization, which is less than 1 nH. The LS1 component will be much smaller in plastic-packaged devices than in metal case parts, which makes them more suitable for high frequency applications when hermeticity is not required.

Figure 12. Common source inductance effects

Figure 13. Source connection for minimum common source inductance

Another drive circuit is shown in Figure 14. The VQ3001 is a quad MOSPOWER IC containing two n-channel and two p-channel MOSFETs. These devices are capable of sourcing/sinking at least 2 A of gate-current. Due to the high current capability of this drive circuit, the switching performance will primarily be determined by the parasitic inductance of the drive circuit. Switching times of under 10 ns can be achieved with this circuit if the layout guidelines presented above are followed.

Figure 14. High-speed, inverting two-stage driver

Summary

MOSPOWER transistors are inherently simple to drive. For some applications, the logic-to-power interface is as simple as a MOSFET being directly driven from a logic gate. High speed power switching, however, requires careful selection of driver components and low inductance circuit layout. The gate charge factor, Qg, provides the most useful technique for modeling MOSFET switching characteristics, and should be used for design calculations in place of the device capacitances specified on most MOSFET data sheets.

Thermal Considerations and Mounting Techniques

Sources Of Heat

The heat generated by MOSPOWER transistors must be considered and properly managed to promote long-term reliability. Power is dissipated in the form of heat as a result of the following modes of operation

- 1. Conduction losses. On-state losses are related to the load current and the transistor rps(on).
- 2. Blocking losses. When the device is off, the leakage current and applied voltage generate heat. Because MOSPOWER leakages are very low (usually 1 mA or less), these losses amount to tens of milliwatts and are usually ignored. However, high voltage devices operating at high temperatures with limited heatsinking may deserve some further attention.
- 3. **Switching losses**. These losses are encountered during the transitions between the on and off states. They depend on the nature of the load as well as the switching speed of the transistor.
- 4. **Diode losses**. Every MOSPOWER contains an inherent source-to-drain diode, antiparallel to the transistor. If the circuit generates a reverse current that turns this diode on, the diode conduction and recovery time losses should be considered as part of the total power dissipation.
- 5. Gate current losses. MOSPOWER devices draw gate current only when charging and discharging the gate input capacitance. At very high frequency (>100 kHz), these losses may become large enough to consider.

A detailed explanation of these losses and methods of calculation can be found in the Siliconix

MOSPOWER Applications Handbook. The major loss components are:

Switching losses

$$P_{S} = f_{S} \begin{bmatrix} t_{S1} & t_{S2} \\ v_{DS} l_{D} dt + v_{DS} l_{D} dt \end{bmatrix}$$

Where:

fe = switching frequency

tot = turn-on time

 t_{s2} = turn-off time

V_{DS} = supply voltage

In = drain current

This expression can be simplified by assuming trapezoidal and triangular waveform approximations, as shown in Figures 1 and 2.

Figure 1. Resistive Load Switching Waveforms

Clamped Inductive Load Switching Waveforms

Unclamped Inductive Load Switching Waveforms

Figure 2. Switching Waveforms for Clamped Inductive and Unclamped Inductive Loads

Conduction losses

 $P_C = I_D^2 r_{DS(on)}$ Where:

In = rms drain current

r_{DS(on)} = on-resistance of transistor

Note that $r_{DS(on)}$ is a function of several variables including junction temperature, gate drive voltage, and drain current. All of these must be considered for an accurate determination. [2]

Diode Losses

Diode losses due to recovery time and conduction are strongly related to circuit topology and load impedance. [3], [4] In general:

$$P_{diode} = I_S V_{SD} + Q_{rr} V_{DD} f_s$$

Where:

P_{diode} = diode power loss

Is = average current in the source-

drain diode

V_{SD} = forward voltage drop of source-

drain diode

Q rr = reverse recovered charge

V_{DD} = supply voltage

f = operating frequency

Thermal Model

The losses described previously (which we will refer to now as total power dissipation, P_T) are generated in the silicon pellet contained inside the transistor package. Figure 3 shows a typical MOSPOWER transistor cross-section.

Figure 3. Physical Construction of MOSPOWER

A silicon chip of approximately 0.5 millimeter thickness (0.02 inches) is attached by solder or eutectic to a metal contact which is part of the transistor package. Metallurgical bonding is preferred to maximize the heat transfer from the silicon to the package. Special soldering processes have been developed to accept the stress caused by the differences in coefficients of linear expansion between silicon and the relatively large metal contact. The package is then held in intimate contact with an external heatsink, using pressure created by mounting screws or clamps.

It is often desirable to electrically insulate the MOSPOWER transistor from its external heatsink, while still maintaining good heat transfer. This can be accomplished by inserting a heat conducting electrical insulator, such as BeO (beryllium oxide) between the chip and its package, or by inserting an insulating medium (BeO, Mica, KaptonR, etc.) between the package and the external heatsink, as shown in Figure 4.

Figure 4. Insulated Mounting of MOSPOWER

This electrical insulation allows circuit layout flexibility but exacts a price in terms of heat transfer capability. The physical system of heat transfer can be related to an electrical analog (Figure 5).

Figure 5. Steady State Electrical Analog

The temperature difference between any two vertical layers can be modeled as a voltage, the heat flux (power) as a current, and the thermal resistance in each layer as an impedance.

Applying Kirchoff's Law

Junction-to-case thermal impedance (R_{thJC}) is dependent upon die size, attachment method, and the materials used for packaging. All of these are controlled by the transistor manufacturer. The case-to-sink thermal impedance is mainly influenced by the quality of the case to heatsink interface and is directly controllable by the user. Heatsink-to-ambient thermal impedance is related to the surface area of the heatsink and the cooling medium (natural convection or forced air, water, fluorocarbon, etc.)

The thermal impedance to heat conduction in a solid material can be calculated from

$$R_{th} = \frac{L}{KA}$$

Where:

L = thickness of material

K = thermal conductivity

A = area of the material

Therefore, materials for packages and heatsinks are generally selected to have very high thermal conductivity (such as copper) and the ratio of thickness to area is kept small. [5] This is especially important to the equipment designer when choosing materials for electrical isolation of packages. Thin wafers or sheets of beryllium oxide, alumina, mica, or organic material (in that order) are preferred isolating media. Table 1 lists the thermal properties of commonly used materials.

Table 1. Thermal Properties of Materials

MATERIAL	CONDUCTIVITY (K) (W/cm °C)	SPECIFIC HEAT (J/g °C)
SILICON	0.9	0.65
Be O	1.59	1.0
Al ₂ 0 ₃	0.27	1.0
SOLDER*	0.41	0.17
COPPER	4.01	0.4
ALUMINUM	2.37	0.9
MOLYBDENUM	1.38	0.25
EPOXY	0.004	0.8

^{*} Solder characteristics will depend on alloy composition. Nominal value for high Pb-content solder.

Transient Thermal Model

Most often, switching transistors are used in a pulsed mode, rather than in steady state. The thermal model in Figure 5 can be modified to account for the fact that during very short pulses all the heat generated in the chip remains in the chip for the duration of the pulse. This time lag in heat transfer corresponds to a capacitance in the electrical analog (Figure 6).

Figure 6. Transient Electrical Analog

This thermal capacitance is proportional to the mass and the specific heat of the materials involved. Each MOSPOWER device, therefore, has a transient thermal impedance characteristic, published on the data sheet, that relates thermal impedance to pulse width on a scale normalized to the steady-state thermal impedance. Figure 7 shows a typical Z_{thJC} curve for a T0-204 (T0-3) package transistor.

Transient thermal impedance is presented with duty cycle as a parameter to account for the buildup of heat in the silicon chip as the pulse repetition rate is increased. The changes in slope of these curves are related to the thermal time constants of the

materials that make up the thermal system. On the single pulse (D=0) curve, the first 10 to 200 microseconds is influenced by heat retained in the silicon die, from 200 to 1000 microseconds, heat is transferred to the die attach solder, and at about one second, the large mass of the package approaches steady-state conditions. [6].

Uses of Transient Thermal Impedance

Transient thermal impedance data can be used to calculate the junction temperature after a single pulse of known power and duration, such as a fault or overload condition. Junction temperature can also be calculated for a repetitive train of uniform pulses, such as frequently encountered in switch-mode power converters. Knowledge of the junction temperature is essential for reliability calculations as well as the construction of an application specific Safe Operating Area (SOA) diagram, as explained in reference 1.

The published Safe Operating Area diagrams are actually graphical representations that confirm the thermal impedance and voltage ratings MOSPOWER devices. Originally developed for bipolar devices, SOA curves are less meaningful for power MOS transistors. Bipolar transistors have second breakdown derating evident at moderate to high voltages. The calculation of the derating factor has not been developed as a readily-usable mathematical formula. Since MOSPOWER does not have any second breakdown derating. SOA curves are straight lines calculated from transient thermal information. Figure 8 shows an impedance application specific SOA curve for a repetitive pulse application. Note the difference between the

Figure 7. Typical Transient Thermal Impedance Curve

application conditions shown and the customary published SOA curve which is calculated T $_{\rm J}$ =150° C and single, non-repetitive pulse conditions.

Figure 8. Application Specific SOA Curve

Heatsink Selection

Heatsink selection is governed by the thermal, reliability, and mechanical parameters of the equipment being designed. Once the power transistor has been selected, its total power dissipation must be calculated. The user must then choose a maximum junction temperature based on the reliability level needed. Given the worst-case ambient temperature:

$$R_{thHS-A} = \frac{T_J - T_A}{P_T} - (R_{thJC} + R_{thCS})$$

Example: SMM70N05 MOSPOWER dissipating 35 watts in a 55°C ambient. From the data sheet, $R_{thJC} = 0.5$ °C/W and $T_{J(MAX)} = 150$ °C. For our calculation, we choose $T_{J} = 125$ °C as a more conservative design. R_{thCS} is very dependent on the mounting techniques used, as will be developed later. For a T0-204 (T0-3) package, properly mounted with thermal compound, 0.2°C/W is a reasonable value. Therefore:

$$R_{\text{thHS-A}} = \frac{125-55}{35} - (0.5+0.2) = 1.3 \text{°C/W}$$

This implies the use of a fairly substantial finned aluminum extrusion on the order of 50 in.³ (820 cm.³) If forced cooling air is available, the heatsink size could be reduced significantly or, with the same heatsink, the maximum junction temperature would be reduced for greater reliability.

Proper Mounting Techniques

To optimize heat transfer from the MOSPOWER package, special attention must be given to the preparation of the transistor and its heatsink and to the method of attachment. [7] In general, the following areas are critical:

- 1. The surface finish of the device and heatsink.
- 2. The flatness and parallelism of the parts.
- 3. Reduction of voids between mating surfaces.
- 4. Correct hardware and mounting pressure.

Surface Finish

The heatsink surface should be smooth and free of significant scratches or nicks. A surface finish of 40 to 60 micro-inches (1.0 to 1.5 µm) is considered satisfactory. This level of finish is typical of die cast or good quality milled parts. Finishes of less than 40 micro-inches (1.0 µm) require expensive processing and are not usually justified for the minor improvement made in heat transfer. [8] Aluminum heatsinks oxidize quickly and the mounting area should be polished with fine steel wool and cleaned with a suitable solvent immediately prior to device mounting. Anodized heatsinks can usually be used without removal of the anodizing in the mounting area. The anodized surface is a good electrical insulator and should be removed when electrical contact to the heatsink is desired, particularly on high current MOSPOWER transistors.

Surface Flatness

JEDEC recommends a surface flatness of 0.004 inch/inch (0.04mm/10mm) Total Indicator Reading (TIR) maximum. See Figure 9.

TIR = TOTAL INDICATOR READING

Figure 9. Surface Flatness Measurement

practice. values of 0.002 inch/inch (0.02mm/10mm) are typical for commercial heatsinks. Flatness is particularly important when mounting large packages such as the MOD series where a large package area must be in intimate contact with the heatsink. Devices which utilize single bolt mounting (TO-218, TO-220, etc.) must be properly mounted to ensure that the mounting tab is parallel to the heatsink. Commercial spring clips are available that press the body of the device against the heatsink.

Void Reduction

Small air voids will exist between the mating parts even if all of the proper mounting steps are followed. Heatsink compounds are normally used to fill these voids to enhance heat transfer. Heatsink compound should not be applied in excess, so that it actually forms an additional layer between the mating parts. The objective is to fill air voids, not to decrease the area of direct metal-to-metal contact. Heatsink compounds are better thermal conductors of heat than air but poorer conductors than metals.

Compounds such as Thermalloy Thermalcote, Wakefield 120 and 121, or Dow Corning 342 should be applied sparingly, using a spatula or lintless brush (conventional cotton swabs may shed large fibers). The surface should be lightly wiped to remove excess material. Slight rotation of the package against the heatsink will promote even spreading. There should not be so much material remaining that excess material appears at the device edges after mounting.

Thermal compounds are especially important when insulated mounting is required. When a mica spacer is used, thermal compound can yield a reduction of 2 or 3 to 1 in thermal resistance versus dry mica. Surface cleanliness and smoothness are also vital in insulated mountings as burrs or particles can penetrate the insulator when mounting pressure is applied.

Hardware and Pressure

Use of correct hardware and proper mounting torque is an important consideration. Parts which are inadequately torqued can have a case-to-sink thermal impedance which is substantially higher (more than double) than the optimal value. Typical mounting configurations are shown in Figure 10.

Figure 10. Mounting Configurations

Table 2. Mounting Information

PACKAGE TYPE	SCREW SIZE U.S./METRIC	TORQUE IN-LB/KG-CM	TYPICAL ¹ R _{thCS}
T0-3 (T0-204)	6 M3.5	6 0.66	0.1
T0-61 (T0-210)	0.25-28 UNF-2A (d + 1/64" clearance) ²	25 2.78	0.40
T0-66 (T0-213AA)	4 M3	4 0.44	0.5
T0-202	4 M3	4 0.44	1.0
T0-218	6 M3.5	6 0.66	0.4
T0-220	4 M3	4 0.44	1.0
MOD	6 M3.5	6 0.66	0.1

- 1 Typical case to sink thermal impedance (°C/W) for a flat heatsink using proper mounting techniques and heatsink compound. No isolating film.
- 2 Use of tapped holes in heatsinks is not encouraged. If necessary, be sure that the hole is perpendicular to the mounting plane of the transistor. Blind tapped holes must be deep enough to ensure complete seating of the transistor.

Excessive torque can distort the parts, leading to mechanical stress or poorer thermal contact. Table 2 shows the recommended hardware and torque for the popular Siliconix MOSPOWER packages.

For stud mount devices such as T0-61, proper mounting hole size and stud torque must be considered. An excessively large hole can cause distortion of the package base and stress on the transistor. A burr on the mounting surface can cause incomplete contact to the heatsink. Internally isolated cases such as the T0-61 and MOD packages do not require any external mica or elastomer isolators. A proper application of heatsink compound is the only preparation needed.

Use of elastomer or fiber filled plastic isolators must be approached with caution for all power devices. These isolators tend to flow under pressure, reducing the mounting force on the semiconductor. Also, since these isolators contain predominantly organic, non-conductive materials, their thermal performance versus mica with heatsink compound is usually a compromise.

Lead Mounted Devices

Packages such as the T0-39, T0-205, T0-92, T0-237, and dual line-in packages are generally mounted to a Printed Wiring Board (PWB), supported by their leads. The primary mode of heat transfer is radiation and conduction from the package to the ambient air.

Performance of the metal case devices can be improved by press-on metal fin coolers. Little or no heat is actually conducted to the board by the lead wires. Some improvement in dual in-line packages

thermal performance can be gained by increasing the copper foil area of the drain connection. This option depends on proximity to other heat generating components and must be determined by the user in specific applications.

MOD Series Packages

Effective utilization of the hermetic, multi-chip MOD family (Figure 11) requires some special attention in mounting and heat sinking. These high reliability modules are often used in applications requiring high power handling capability or where low $^{r}_{DS}$ and circuit connection convenience are prime concerns.

Figure 11. MOD Packages

In either case, some common guidelines apply:

- Mounting surfaces must be flat and smooth to ensure good thermal transfer and to avoid distorting or stressing the package.
- 2. Connection pins should never be cut off or bent. These pins are made of a rigid alloy and readily transmit stress to the glass seals surrounding them. Excessive stress can crack the glass, destroying the hermetic seal of the package. MODs are

supplied with 90° lead bend options to eliminate the need for customer bending.

- If a "Hi-Pot" or insulation test is performed, all terminals of the MOD must be electrically connected together.
- 4. A thin coating of heatsink compound should be applied to the mounting surface to minimize R_{thCS}.
- 5. Use flat washers and proper screw torque to ensure proper mounting force. See Figure 12.
- 6. Use care when soldering wires directly to package pins to avoid solder bridging or stress on the leads.

Figure 12. Mounting Configuration

In some applications, the designer may desire to use the MOD without an additional heatsink, by mounting it to a printed wiring board (PWB). Because of the relatively poor heat sinking

characteristics of the PWB foil, the designer should consider the free air thermal impedance (R_{thJA}) as an estimate of expected performance. This means that the MOD can dissipate approximately 4 watts, depending on air flow, ambient temperature, and allowable junction temperature. If mounting to a PWB, allow sufficient tolerance in the location of mounting holes and pin connection pads, so that the MOD is not forced into its mounting position. Keep copper traces short and wide to minimize inductance and voltage drop.

For high power applications, the following guidelines apply:

- 1. Use the largest practical size of flexible stranded wire for connections. Large diameter solid wire may act as a lever to stress the pin connections.
- 2. Mount the MOD to a substantial metal extrusion or "cold wall."
- 3. If a PWB is used for the electrical connections only, be sure that the PWB and heatsink block are mechanically fixed together to avoid stress on the glass seals due to acceleration or vibration. See Figure 12.
- 4. No additional electrical insulation is required between MOD and heatsink.

MOD packages contain beryllium oxide (BeO) which is used as the internal electrical isolation. This material is contained within the package and poses no health or environmental hazard in normal use. Do not cut, crush, or open the package. Packages must be disposed of in compliance with local and national regulations regarding environmental protection.

FOOTNOTES

- 1. Siliconix MOSPOWER Applications Handbook 1984, pp. 4-1 to 4-16.
- 2. Siliconix MOSPOWER Applications Handbook 1984, pp. 4-7, 4-8.
- 3. Rockot, J.H., "Losses in High Power Bipolar Transistors," <u>IEEE Transactions on Power Electronics</u>, Vol. PE-2, No.1, January, 1987.
- 4. Peter, J.M., "Switching Behavior of Fast Diodes," <u>Transistors and Diodes in Power Processing</u>, Thomson CSF, 1985.
- 5. Beccue, P., "Micro-based Thermal Model for Power Hybrids," <u>Power Conversion/Intelligent Motion</u>, February, 1987.
- 6. Motto, J.W., and Newell, W.E., "Introduction to Solid State Power Electronics," Westinghouse Electric, 1977.
- 7. JEDEC Standard No. 24, Electronic Industries Association, Washington, D.C.
- 8. Semiconductor Accessories Catalog 86-HS-8, Thermalloy Inc., Dallas, Texas.

HEATSINK AND HARDWARE SUPPLIERS

Aavid Engineering, Inc. One Kool Path Box 400 Laconia, N.H. 03247 USA

Assmann & Soehne GmbH Hasleystrasse 2-6 5880 Luedenscheid Federal Republic of Germany

Astrodyne Inc. 353 Middlesex Avenue Wilmington, MA. 01887 USA

Dow Corning Corp. Midland, Ml. 48686-0994 USA Thermalloy Inc. 2021 W. Valley View Lane P.O. Box 810839 Dallas, TX. 75381 USA

Wakefield Engineering/E.G.&G. 60 Audubon Road Wakefield, MA. 01880 USA

S.G.E. - Bosari S.R.L. 77 via Europa 20090 Cusago (Milano) Italy

- Index and Cross Reference
 - Process Flows 2
 - Selector Guide
 - Data Sheets 4
- Switching Regulator and Controller ICs 5
 - MOSPOWER Die Products
 - Test Circuits
 - Package Outlines 2
 - Technical Information §
- Worldwide Sales Offices and Distributors 10

Siliconix

2201 Laurelwood Road, Santa Clara, CA 95054-1516, U.S.A.

> TEL (408) 988-8000 TWX 910-338-0227 FAX 408-727-5414

Morriston, Swansea SA6 6NE, U.K.

TEL (0792) 310100 TLX 48197 FAX (0792) 310401

\$12.00 U.S.