15. Traadita kohtvõrk ja hajaspektriside

Arvutivõrgud IEE1100 Ivo Müürsepp

New Lada, now with built-in Wifi.

Traadita kohtvõrk

- Kohtvõrk, milles kaks või enam seadet on omavahel ühendatud kasutades füüsilise kihina raadiolaineid või valgust.
- Enamlevinud standard on IEEE 802.11 (Wi-Fi)
 - Tegemist on meediapöördust (MAC) ja füüsilist kihti kirjeldavate spetsifikatsioonidega.

 Seadmed võivad olla ühendatud keskse juurdepääsupunktiga (Wireless access point) või otse omavahel (Point to point, Ad Hoc: WANET)

IEEE 802.11

- Täpsemalt IEEE 802.11-1997 (Legacy Mode)
- Töösagedus 2,4 GHz ISM band
- Edastuskiirus 1 või 2 Mbit/s
- Veaparandus konvolutsioonilise koodiga k/n
- Meediapöördus: CSMA/CA
 - IEEE 802.11 RTS/CTS
- Edastuseks kasutab kas
 - Infrapunakiirgust IR
 - Sagedushüplemist (FH-SS)
 - Sageduse (otsest) hajutamist (DS-SS)

Sagedused ja võimsused

• 2400 - 2483,5 MHz: $EIRP \le 100 \text{ mW}$

• 5150 - 5350 MHz: $EIRP \le 200 \text{ mW} - \text{ainult siseruumides}$

• 5470 - 5725 MHz: $EIRP \le 1 \text{ W}$

• EIRP – Ekvivalentne isotroopne kiirgusvõimsus (Effective Isotropic Radiated Power)

$$EIRP = P_S \cdot G_S [W]$$

$$EIRP = P_S + G_S [dBm]$$

WiFi

2,4 GHz kanalijaotus

WiFi

Sumbumus

• Vaba ruumi kadu

$$FSL = \left(\frac{4\pi d}{\lambda}\right)^2$$

Logaritmilistes ühikutes

$$FSL = 20\log(d) + 20\log(f) - 147,55[dB]$$

Sagedusala 2,4 GHz	
kaugus	Sumbuvus (dB)
100 m	80,2
200 m	86,2
500 m	94,2
1 km	100,2
2 km	106,2
5 km	114,2
10 km	120,2

Impulssi spekter

• Nelinurkimpulss p(t) kestusega D sekundit omab spektrit:

$$S(f) = \frac{A}{\pi f} \sin(\pi f D) = AD \operatorname{sinc}(\pi f D)$$

Piiratud spektriga impulss

Impulssjada spekter

- Perioodilise signaali $p_{\tau}(t)$ spekter $P_{\tau}(f)$ on diskreetne:
 - Spektrijoonte samm Δf on määratud impulssjada perioodiga T
 - ullet Sinc funktsiooni kujulise mähkija periood on määratud impulsside kestusega au

Signaalide võrdlemine

Ristkorrelatsioon

$$R_{fg}(\tau) = \int_{-\infty}^{\infty} f *(t)g(t+\tau)dt$$

Autokorrelatsioon

$$R_f(\tau) = \int_{-\infty}^{\infty} f *(t) f(t+\tau) dt$$

Diskreetsel juhul

$$R_{fg}(n) = \sum_{m=-\infty}^{\infty} f * [m]g[n+m]$$

Barkeri koodid.

Pikkus	Kood
2	1-1; 11
3	11-1
4	11-11; 111-1
5	111-11
7	1 1 1 -1 -1 1 -1
11	1 1 1 -1 -1 -1 1 -1 -1 1 -1
13	1 1 1 1 1 -1 -1 1 1 -1 1 -1 1

Sagedushüplemine FHSS

- Sagedushüplemist mainiti esmakordselt 1900 aastal Nikolai Tesla poolt võetud patendi 725,605 kirjelduses. Idee pärineb 1898 aastal toimunud maailma esimese raadio teel juhitava allveelaeva demonstratsioonilt.
- 1942 aastal Heddy Lamarr ja Georg Antheili patent nr 2,292,387 raadio teel juhitavale torpeedole.

Sagedushüplemine FH-SS

Sagedushüplemine

Traadita kohtvõrk ja hajaspektriside

Sagedushüplemine FH-SS

Pseudojuhuslik jada

- Binaarne, statistiliselt sarnane juhuslikule jadale (mürataoline)
- Tegelik tekkeprotsess deterministlik, jada seega perioodiline
- M-jada: maksimaalse pikkusega $N = 2^n-1$
- Tekitatakse tagasisidestatud nihkeregistriga (pikkus n)

M-jada genereerimine

M-jada

M-jada valimine

n	Tagasiside väljunditest
2	[2,1]
3	[3,1]
4	[4,1]
5	[5,2], [5,4,3,2],[5,4,2,1]
6	[6,1], [6,5,2,1],[6,5,3,2]
7	[7,1], [7,3],[7,3,2,1], [7,4,3,2],[7,6,4,2],
	[7,6,3,1],[7,6,5,2],[7,6,5,4,2,1],
	[7,5,4,3,2,1]

M-jada spekter

M-jada autokorrelatsioonifunktsioon

$$R_{c}(\tau) = \begin{cases} 1 - \frac{N+1}{NT_{c}} |\tau|, & |\tau| \leq T_{c} \\ -\frac{1}{N} \end{cases}$$

Sageduse hajutamine *DS-SS*

Sageduse hajutamine *DS-SS*

Sageduse hajutamine *DS-SS*

IEEE 802.11b

- Edastuskiirus kuni 11 Mbit/s
 - 5,9 Mbit/s (TCP)
 - 7,1 Mbit/s (UDP)
- Töösagedus 2,4 GHz
- Hajutamine Barkeri koodiga
 - + Suurem edastuskiirus
 - -vähenenud töökaugus ja häirekindlus

2,4 GHz kanalid

GPS – Global Positioning System

- Sateliidid edastavad signaale kahel sagedusel:
 - L1 1,57542 GHz ja
 - L2 1,2276 GHz
- Signaalide eristamine CDMA meetodil.
- Moduleerimiseks kasutatakse Goldi koode.
- Avaliku C/A koodi edastatakse kiirusega 1,023 miljonit sümbolit sekundis.
- Täpset koodi P edastatakse kiirusega 10,23 miljonit sümbolit sekundis
- Täpset koodi on võimalik krüpteerida P(Y)

Näide: GPS II

- Kanal L1 on moduleeritud C/A ja P koodiga. Kanal L2 ainult P koodiga.
- Informatsiooni ülekandekiirus 50 bit/s.
- Kasutatakse Goldi koode pikkusega 1023 elementi 1ms jooksul.
- Võimalike Goldi koode pikkusega 1023 on 1025, kasutatakse ainult 32 neist.

GPS signaali moduleerimine

IEEE 802.11a/g

- Andmeedastuskiirus 1,5 kuni 54 Mbit/s
- 2,4 GHz (g) ja 5 GHz (a) sagedusalad
- Modulatsiooniviisid: BPSK, QPSK, 16-QAM ja 64-QAM
- Kasutab Ortogonaalset sagedustihendust (OFDM Orthogonal frequency-division multiplexing)

Alamkandja

33

Ortogonaalne sagedustihendus OFDM

IEEE 802.11a OFDM

- Kasutab 52 kandjat
 - 48 andmeside- ja 4 pilootkanalit
- Teostatakse 64 punktilise diskreetse Fourieri teisenduse abil

$$X_{k} = \sum_{n=0}^{N-1} x_{n} e^{-\frac{j2\pi kn}{N}} \qquad x_{n} = \frac{1}{N} \sum_{n=0}^{N-1} X_{k} e^{\frac{j2\pi kn}{N}}$$

- Kanali samm 312,5 kHz
- Sümboli kestus 3,2 μs
- Sümbolite vahel 0,8 μs paus (*Guard Interval*)

802.11a spektrimask

IEEE 802.11a

MCS	Modulatsiooniviis	Koodi kiirus	Edastuskiirus [Mbit/s]
13	BPSK	1/2	6
15	BPSK	3/4	9
5	QPSK	1/2	12
7	QPSK	3/4	18
9	16-QAM	1/2	24
11	16-QAM	3/4	36
1	64-QAM	2/3	48
3	64-QAM	3/4	54

IEEE 802.11n

- Standard aastast 2009, seadmed tootmises juba 2007 aastast.
- Töötab nii 2,4 kui 5 GHz sagedusalas
- Kanali ribalaius kas 20 või 40 MHz
- Sümbolite vaheline paus 0,4 μs (*Guard Interval*)
- Andmeedastuskiirus 54-600 Mbit/s
- Kasutab andmeedastuskiiruse suurendamiseks mitut antenni (MIMO)

IEEE 802.11n spekter

MIMO

- MIMO Multiple Input Multiple Output
- Andmeedastuse kiiruse või töökindluse suurendamiseks.
- Mitme antenni kasutamine nii saatjas, kui vastuvõtjas.
- Signaalitöötlus lähtuvalt kanali olekuinfost (CSI *Channel State Information*)
- Suunadiagrammi formeerimine
- Ruumiline multipleksimine (Spatial multiplexing) mitu aeglast kanalit
- Ruumiline kodeerimine (Divercity Coding)
- SDMA Space Division Multiple Access

3. praktikum

IEEE 802.11...

- 802.11ac
 - Kanali ribalaius kuni 160MHz
 - Ühe kanali edastuskiirus 500Mbit/s
 - Kuni kaheksa MIMO kanali toetus
 - Kuni 256-QAM modulatsioon
- 802.11ad WiGig
 - Kuni 7Gbit/s 60GHz
- 802.11af White-Fi
 - 54-790MHz TV sagedused, kognitiivne raadio

Bluetooth (IEEE 802.15.1)

- 1994 Ericcson
- 2,4 GHz ISM-bänd
- Sagedushüpplus 79 kanali vahel (B = 1 MHz, 800 hüpet sekundis)
- Modulatsiooniviisid:
 - Basic Rate (1 Mbit/s): GFKS
 - Enhanced Data Rate (2 ja 3 Mbit/s): $\pi/4$ –DQPSK, 8-DPSK
- Asendamaks ühendusjuhtmeid (RS-232).
- Väga väike töökaugus 1-100m
- Väikesed kasutatavad võimsused -3 kuni 20dBm.
- 1-25 Mbit/s

DSL – Digital Subscriber Line

- Digitaalne kasutajaliides andmeedastus üle telefoniliini
 - "Viimane miil"
- Võimaldab andmesidet samaaegselt telefoniteenuse kasutamisega (FDM)
- Kasutatakse majanduslikel kaalutlustel paljude kasutajateni on olemas analoogtelefoni ajastust pärinev kaabeldus.
 - Odavam kui fiiberoptilise kaabli paigaldamine.
- Edastuskiirus 256 kbit/s kuni 100 Mbit/s
 - Laboritingimustes saavutatud 1 kuni 10 Gbit/s

DSL

ADSL

- Asümmeetriline DSL
- 1,104 MHz laiune sagedusriba jaotatud 256 kanaliks laiusega 4,3125 kHz.
 - OFDM
 - Allalink 224 kanalit
 - Üleslink 25 kanalit
- Sõltuvalt SNR väärtusest kannab iga üksik kanal 1-15 bitti informatsiooni.
 - Modulatsiooniviisid BPSK kuni 32768- QAM
- Sümbolikiirus 4000 baudi
 - Allalink: 224x15x4000 = 13,4 Mbit/s
 - Üleslüli 25x15x4000 = 1,5 Mbit/s

ADSL kanalid

ADSL ülesehitus

Traadita kohtvõrk ja hajaspektriside

xDSL

Loe lisaks

- William Stallings. Data and Computer Communications. Kaheksas trükk.
 Peatükk 9 Spread Spectrum.
- William Stallings. Data and Computer Communications. Kaheksas trükk.
 Peatükk 17 Wireless LANs.

