Relazione di laboratorio del 7/04/22

Lisa Merlo Marco Militello Nicolò Negro Pet07/04/2022

1 Strumenti di laboratorio

- 1. Breadboard
- 2. Generatore di tensione ad onde quadre
- 3. Multimetro palmare
- 4. Induttanze
- 5. Resistori
- 6. Capacità
- 7. Oscilloscopio e rispettive sonde

2 Introduzione

L'esperienza si divide in un due sezioni: gli obiettivi della prima parte riguardano lo studio e la comprensione dei circuiti RC ed RL, mentre la seconda si concentra sui circuiti RLC. I fenomeni considerati in entrambi i casi sono due: la carica e la scarica del circuito, cioè il passaggio da una tensione nulla a $V_0 \neq 0$ (carica) e viceversa.

3 Metodo

In primo luogo è stata verificata la funzionalità delle sonde dell'oscilloscopio, ovvero la correttezza della loro calibrazione. In seguito è stato riprodotto il circuito in Figura 1 e studiato il fenomeno di scarica. Per fare ciò ci siamo serviti del generatore ad onde quadre, dell'oscilloscopio e delle relative sonde. Queste ultime sono state collegate all'oscilloscopio e ai capi della resistenza.

Figura 1: Circuito RC

Tramite il display dello strumento abbiamo studiato il grafico del Voltaggio (espresso in Volt) in funzione del tempo, che è stato poi interpolato tramite le leggi conosciute. La resistenza immessa nella breadboard è di circa $9.88 \pm 0.01~\mathrm{K}\Omega$, scelta in quanto sensibilmente più piccola della resistenza interna dell'oscilloscopio (circa $1~\mathrm{M}\Omega$). Invece, la capacità usata è molto maggiore della capacità d'ingresso dello strumento (circa $20~\mathrm{pF}$). Il procedimento è stato ripetuto analogamente per il circuito RL, sostituendo la capacità con un'induttanza. Grazie alla costante di tempo caratteristica del circuito τ è possibile risalire alla misura di capacità e induttanza.

Nella seconda parte dell'esperimento (circuito RLC) sono state inserite contemporaneamente sia l'induttanza che la capacità (Figura 3); successivamente la frequenza del segnale ad onda quadra è stata modificata in modo tale da ottenere un circuito sottosmorzato, sovrasmorzato e con smorzamento critico.

Figura 2: Circuito RL

Figura 3: Circuito RLC

4 Dati

Inizialmente, abbiamo associato alle misure dirette un errore pari alla sensibilità degli strumenti usati. Per poter effettuare l'interpolazione dei dati tramite ROOT e ottenere le misure indirette, gli errori sono stati normalizzati, secondo la formula $\frac{S}{\sqrt{12}}$ (con S sensibilità).

4.1 Prima parte - Esperimenti su circuiti RC

Tramite i cursori dell'oscilloscopio, sono stati campionati i valori del voltaggio [V] in funzione del tempo [s] del fenomeno di scarica.

4.2 Seconda parte - Esperimenti su circuiti RL

Il processo è stato ripetuto analogamente con il circuito della Figura 2, sostituendo la capacità con l'induttanza.

4.3 Terza Parte - Esperimenti su circuiti RLC

Dopo aver creato il circuito in Figura 3, abbiamo campionato il voltaggio in funzione del tempo analogamente alle sezioni precedenti. I dati si possono trovare a questo link.

5 Analisi dati

5.1 Prima parte - Esperimenti su circuiti RC

Una volta raccolti i dati, sono stati interpolati tramite ROOT secondo la legge:

$$V = Ke^{-\frac{t}{\tau}}$$

La costante K rappresenta Q_0/C , dove C è la capacità immessa nella breadboard. E' stato effettuato il test del chi-quadro (di seguito riportati grafico e dati) per ricavare la costante caratteristica del circuito τ , pari a RC. Il test ha restituito una probabilità del 17% ed, essendo maggiore del 5%, possiamo concludere che la curva usata per l'interpolazione si adatta ai dati ricavati.

Circuito RC	
Tempo $[\mu s]$	Voltaggio [V]
0 ± 30	16.60 ± 0.06
100 ± 30	15.00 ± 0.06
200 ± 30	13.40 ± 0.06
360 ± 30	12.80 ± 0.06
400 ± 30	11.00 ± 0.06
500 ± 30	10.00 ± 0.06
600 ± 30	9.00 ± 0.06
700 ± 30	8.20 ± 0.06
800 ± 30	7.20 ± 0.06
900 ± 30	6.40 ± 0.06
1000 ± 30	6.00 ± 0.06
1100 ± 30	5.40 ± 0.06
1200 ± 30	4.80 ± 0.06
1300 ± 30	4.20 ± 0.06
1400 ± 30	3.80 ± 0.06
1500 ± 30	3.40 ± 0.06
1600 ± 30	3.00 ± 0.06
1700 ± 30	2.80 ± 0.06
1800 ± 30	2.60 ± 0.06
1900 ± 30	2.40 ± 0.06
2000 ± 30	2.00 ± 0.06
2100 ± 30	1.80 ± 0.06
2200 ± 30	1.60 ± 0.06
2300 ± 30	1.60 ± 0.06
2400 ± 30	1.40 ± 0.06
2900 ± 30	1.00 ± 0.06
3600 ± 30	0.60 ± 0.06
4400 ± 30	0.20 ± 0.06

Figura 4: Interpolazione circuito RC

Tabella 1: Dati circuito RC

Il valore trovato di τ corrisponde a 0.97 ± 0.009 ms, da cui si ricava il valore della capacità è pari a $0.097\pm0.001\,\mu F$

5.2 Seconda parte - Esperimenti su circuiti RL

Il procedimento descritto sopra è stato ripetuto dopo aver sostituito la capacità con l'induttanza, tramite la legge:

$$V = V_0 e^{-\frac{t}{\tau}}$$

dove τ è pari a L/R. Di seguito riportiamo la tabella ed il grafico ricavato con la funzione fit di ROOT.

Circuito RL	
Tempo $[\mu s]$	Voltaggio [V]
0.0 ± 0.1	18.00 ± 0.12
2.0 ± 0.1	14.40 ± 0.12
4.0 ± 0.1	11.20 ± 0.12
6.0 ± 0.1	9.00 ± 0.12
8.0 ± 0.1	7.00 ± 0.12
10.0 ± 0.1	5.40 ± 0.12
12.0 ± 0.1	4.40 ± 0.12
14.0 ± 0.1	3.40 ± 0.12
16.0 ± 0.1	2.60 ± 0.12
18.0 ± 0.1	2.00 ± 0.12
20.0 ± 0.1	1.80 ± 0.12
22.0 ± 0.1	1.40 ± 0.12
24.0 ± 0.1	1.20 ± 0.12
26.0 ± 0.1	1.00 ± 0.12
28.0 ± 0.1	0.80 ± 0.12
30.0 ± 0.1	0.60 ± 0.12
32.0 ± 0.1	0.60 ± 0.12
36.0 ± 0.1	0.40 ± 0.12
42.0 ± 0.1	0.20 ± 0.12
46.0 ± 0.1	0.20 ± 0.12
50.0 ± 0.1	0.20 ± 0.12
56.0 ± 0.1	0.20 ± 0.12

Figura 5: Interpolazione circuito RL

Tabella 2: Dati circuito RL

Anche in questo caso è stata ricavata la costante caratteristica del circuito interpolando i dati tramite ROOT. Il chi quadro ridotto è di 1.025 e, con 17 gradi di libertà, fornisce una probabilità del circa 43%. Anche in questo caso possiamo concludere che, nel complesso, i dati ricavati dall'oscilloscopio si adattano correttamente alla curva scelta per l'interpolazione.

Il valore della costante τ è pari a $8.47 \pm 0.07 \,\mu s$, invece quello dell'induttanza è pari a $0.0836 \pm 0.0007 \,\mathrm{H}$

5.3 Terza Parte - Circuito RLC

Per quanto riguarda il circuiti RLC, innanzitutto definiamo i parametri:

$$\gamma = \frac{R}{2L}$$

$$\omega_0^2 = \frac{1}{LC}$$

Anche in questo caso è stato usato il generatore ad onda quadra e l'oscilloscopio per misurare il segnale di tensione ai capi della resistenza. In primo luogo è stato assemblato un circuito sottosmorzato, con una resistenza di $9.88 \pm 0.01~\mathrm{K}\Omega$ (Figura 3) e sono stati raccolti i dati in modo manuale, poi interpolati tramite ROOT, secondo le leggi:

$$V = RCV_0 e^{-\gamma t} sin(\beta t)$$
$$\beta = \sqrt{\omega_0^2 - \gamma^2}$$

In questo caso il chi-quadro ridotto è di circa 1 e, con 114 gradi di libertà, la probabilità restituita è di circa 58%, che dimostra un buon accordo con i dati raccolti. E' anche possibile notare che il valore di γ è minore di quello di ω_0 , in accordo con quanto atteso in un circuito sottosmorzato.

Figura 6: Circuito sottosmorzato

Il valore di γ calcolato tramite root è uguale a $4.34 \times 10^4 \pm 800~s^{-1}$, che confrontato con quello atteso di $(591 \pm 5) \times 10^2~s^{-1}$ tramite il t-test risulta non essere compatibile poiché la probabilità che abbiamo ricevuto è inferiore a 1.

Mantenendo la configurazione è stata sostituita la resistenza ($R = 20 \pm 1 \text{ K}\Omega$) per ottenere un circuito sovrasmorzato. E' stato poi effettuato il fit dei dati con ROOT, tramite le leggi:

$$V = Q_0 R \frac{{\omega_0}^2}{2\beta} e^{-\gamma t} (e^{\beta t} - e^{-\beta t})$$

$$\beta = \sqrt{{\gamma}^2 - {\omega_0}^2}$$

Figura 7: Circuito sovrasmorzato

Il chi-quadro ridotto ottenuto è di circa 1.04, e la probabilità è di circa 18%. Il valore trovato di γ è uguale a $(10\pm0.2)\times10^4~s^{-1}$ mentre il valore atteso di è $(118\pm1)\times10^3~s^{-1}$; tramite il t-test possiamo concludere che le due misure non sono compatibili.

Infine, la resistenza è stata nuovamente sostituita con una dal valore di $1.8 \pm 0.1 \text{K}\Omega$ per ottenere un circuito criticamente smorzato. Tramite l'interpolazione (effettuata con la formula seguente) si ottiene una probabilità del 40%.

$$V = Q_0 R \gamma^2 t e^{-\gamma t}$$

Figura 8: Circuito criticamente smorzato

6 Conclusione

I dati raccolti ci hanno permesso di confermare i modelli attesi. Nel caso della prima parte siamo riusciti a riprodurre dei circuiti RC ed RL, ad analizzare i fenomeni di carica e scarica ed a verificarne l'andamento esponenziale. Per quanto riguarda invece la seconda parte dell'esperimento, abbiamo costruito un circuito RLC sottosmorzato, sovrasmorzato e con smorzamento critico e riprodotto il tipico andamento del fenomeno di scarica con successo; questo risultato è supportato dai test del χ^2 svolti, che dimostrano un adattamento dei nostri dati alle curve usate per l'interpolazione. Va però detto che i valori che abbiamo ottenuto del parametro γ , la costante di smorzamento, si discostano molto da quelli attesi. Questa tesi è supportata dai risultati dei t-test che abbiamo svolto per ogni valore ricavato. Per questo motivo possiamo concludere che la seconda parte dell'esperimento non sia stata svolta in maniera del tutto corretta.