

SPECIFICATION FOR APPROVAL

Customer	:	
Customer Part N	lo :	
Xmbrightek Part	t No:	1SC3014W31A0WEL1
Specification	:	3014 白光
Time	:	2020.06.17

Lewis Jelly MARK	Customer Confirmation	Approval	Audit	Production
D			Jelly	MARK

Parameter confirmation:

1SC3014W31A0WEL1

- 3.0mm×1.4mm SMT LED ,0.7mm THICKNESS
- Low flux efficiency & Energy conservation
- Good thermal dissipation & Optical uniformity

Table of Contents

Typical Product Characteristics	3
Outline Dimensions	4
Electronic-optical Characteristics	5
Range of Bins	6
Reflow Profile	7
Test Circuit and Handling Precautions	8
Test Items and Results of Reliability	9
Packing	10
Precautions	11
Content evision	12

Features

- Forward current: ≤30mA
- Typical viewing angle 50% Iv: 120°
- RoHS and REACH-compliant
- Lens color: **Yellow**
- Qualified according to JEDEC moisturevity Level 5a
- ESD level 1kV

Applications

- Indoor signage display applications
- Indoor decorating and entertainment design
- Flat backlight for LCD. Switch and symbol
- Indicator and backlighting for all consumer electronics
- Others applications

Absolute Maximum Ratings (Ta=25^oC)

Characteristics	Symbol	Value	Unit
Power Dissipation	PD	100	mW
DC Forward Current	IF	30	mA
Pulsed Forward Current	IFP	100	mA
Reverse Voltage	VR	5	V
Operating Temperature Range	Topr	-40~ +85°	$^{\circ}\!\mathbb{C}$
Storage Temperature Range	Tstg	-40 ~ +100°	$^{\circ}\!\mathbb{C}$
Soldering Temperature	Tsol	250for5sec∆	$^{\circ}\! \mathbb{C}$

Notes:

■ Electrical-Optical Characteristics (Ta=25°C)

Characteristics	Symbol	Value			T India	Test condition
Characteristics	Symbol	Min.	Тур.	Max.	Unit	rest condition
Forward Voltage	Vf	2.8		3.4	V	If=30mA
Luminous intensity	Iv	8	12		Lm	If=30mA
Color Temperature	λd	5500		6500	k	If=30mA
Reverse Current	Ir			10	μ A	Vr=5V
Color Rendering Index	CRI	80				If=30mA
Viewing angle	2 \theta 1/2		120		Deg	If=30mA

Notes:

Measurement Errors:Forward Voltage: ±0.1V; Luminous Intensity: ±15%; Iv: Dominant Wavelength ±1.0nm;
Color Coordinate: ±0.006; Viewing Angle (2 θ 1/2) ±5%

^{1:} For other ambient, limited setting of current will be depended on de-rating curves.

^{2:} Duty 1/10, pulse width 0.1ms

Outline Dimensions

Recommended Soldering Pattern

- All dimensions are in millimeters (inches).
- Tolerance is ± 0.15 mm unless otherwise noted.
- Specifications are subject to change without notice.

Electrical-Optical Characteristics

Fig.1 Electrical Characteristics

Fig.3 Relative Spectral Distribution

Fig.5 Thermal Design

Fig.2 Relative Luminous Flux (%)-Current

Fig.4 Relative Luminous Flux-Ta

Ambient Temperature Ta (°C)

Fig.6 Typical Spatial Distribution

Genealogies Angle

Rang of Bins

• Forward Voltage Bins(V)

Bin Code	Min	Max	Test Condition
E2	2.8	2.9	
E3	2.9	3.0	
E4	3.0	3.1	
E5	3.1	3.2	IF=30mA
E6	3.2	3.3	
E7	3.3	3.4	

• Luminous Intensity Bins(Lm)

Bin Code	Min	Max	Test Condition
A4	6	8	
A5	8	10	IF=30mA
A6	10	12	

Dominant Wavelength Bins

Reflow Profile

■ Reflow Temp/Time

IR Reflow Soldering Profile Lead Free Solder

IR Reflow Soldering Profile Lead Solder

NOTES:

We recommend the reflow temperature $245^{\circ}\text{C}(\pm 5^{\circ}\text{C})$. the maximum soldering temperature should be limited to 260°C.

Don't cause stress to the epoxy/silicone resin while it is exposed to high temperature. Number of reflow process shall be 2 times or less.

Test circuit and handling precautions

■ Test circuit

■ Handling precautions

1. Over-current-proof

Customer must apply resistors for protection; otherwise slight voltage shift will cause big current change (Burn out will happen).

2.Storage

2.1 It is recommended to store the products in the following conditions:

Humidity: 60% R.H. Max.

Temperature : $5^{\circ}\text{C} \sim 30^{\circ}\text{C} (41^{\circ}\text{F} \sim 86^{\circ}\text{F})$

Shelf life in sealed bag: 6 month at $<5^{\circ}\text{C} \sim 30^{\circ}\text{C}$ and $<30^{\circ}\text{K}$ R.H. after the package is Opened, the products should be used within 24hrs or they should be keeping to stored at

 \leq 20 R.H. with zip-lock sealed.

2.3. Baking

It is recommended to baking before soldering when the pack is unsealed after 24hrs.

The Conditions are as followings:

- 1). $60\pm3^{\circ}$ C X 48hrs and <5%RH, for reel
- 2). 100±3°C X 4hrs, for single LED
- 3). 130±3°C X 1hrs, for single LED

It shall be normal to see slight color fading of carrier (light yellow) after baking in process.

Test items and results of reliability

Туре	Test Item	Test Conditions	Note	Number of Damaged
	Temperature shock	-45°C 30min ↑↓20 min 105°C 30min	1008 hrs	0/22
Environmental Sequence	High Temperature Storage	Ta=100°C	1008 hrs	0/22
High Humidity Heat Storage		Ta=85℃ RH=85%	1008 hrs	0/22
	Low Temperature Storage	Ta=-40°C	1008 hrs	0/22
	Normal Temperature Life	Ta=23°C(±5°C) IF=30mA	1008 hrs	0/22
Operation Sequence	High Humidity Heat Life	Ta=85°C(±5°C) RH=85% IF=30mA	1008 hrs	0/22
	High Temperature Life	Ta=85°C(±5°C) IF=30mA	1008 hrs	0/22

Packing

■ Dimensions of Reel (Unit: mm)

■ Dimensions of Tape (Unit: mm)

■ Moisture Resistant Packaging

Precautions

1. Abnormal situation caused by improper setting of collet

To choose the right collet is the key issue in improving the product's quality. LED is different from other electronic components, which is not only about electrical output but also for optical output. This characteristic made LED more fragile in the process of SMT. If the collet's lowering down height is not well set, it will bring damage to the gold wire at the time of collet's picking up and loading which will cause the LED fail to light up, light up now and then or other quality problems

2. How to choose the collet

During SMT, please choose the collet that has larger outer diameter than the lighting area of lens, in case that improper position of collet will damage the gold wire inside the LED. Different collets fit for different products, please refer to the following pictures cross out

Outer diameter of collet should be larger than the lighting area

Picture 2(X)

3. Other points for attention

- A. No pressure should be exerted to the epoxy shell of the SMD under high temperature.
- B. Do not scratch or wipe the lens since the lens and gold wire inside are rather fragile and cross out easy to break.
- C. LED should be used as soon as possible when being taken out of the original package, and should be stored in anti-moisture and anti-ESD package.
- D.Do not stack together assembled PCBs containing LEDs. Impact may scratch the silicone lens or damage the internal circuitry

4. This usage and handling instruction is only for your reference.

Content revision

NO	Date	Content revision	Maker	Audit	Approved