Proyecto de Optimización Numérica Programación Cuadrática Sucesiva

1. Introducción

El problema es colocar, np, puntos,

$$u_i = (x_i, y_i, z_i)^T, i = 1, 2, ..., np,$$

en la esfera unitaria en \mathbb{R}^3 , que resuelvan el problema:

Min
$$\sum_{i=1}^{np} \sum_{j=i+1}^{np} \frac{1}{\|u_i - u_j\|_2}$$

Sujeto a $u_i^T u_i = 1, i = 1, 2, ..., np.$ (1)

2. Programación Cuadrática Sucesiva

Para el problema general

Min
$$f(x)$$

Sujeto a $h(x) = 0$,

con $f: \mathbb{R}^n \to \mathbb{R}$, $h: \mathbb{R}^n \to \mathbb{R}^m$, $f, h \in \mathcal{C}^2(\mathbb{R}^n)$ y mínimo local, x^* , se tiene el método de programación cuadrática sucesiva (**pcs**) con las siguientes características:

Función Lagrangeana

$$L(x, \lambda) = f(x) + h(x)^{T} \lambda,$$

con

$$\nabla_x l(x, \lambda) = \nabla f(x) + A(x)^T \lambda,$$

donde A(x) es la matriz jacobiana de la restricción h(x).

Las condiciones necesarias de primer orden para el problema son

$$v = \left(\begin{array}{c} \nabla_x L(x, \ \lambda) \\ h(x) \end{array}\right) 0 \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

Función de mérito

$$\phi(c, C) = f(x) + C ||h(x)||_1.$$

Actualización BFGS con esquema de Powell

Sean $B \in \mathbb{R}^{nxn}$ simétrica positiva definida y vectores $s, y \in \mathbb{R}^n - \{0\}$

Si
$$s^T y \leq (0, 2)(s^T B s)$$

 $\theta = \frac{(0, 8)(s^T B s)}{s^T B s - s^T y}$
 $r = \theta y + (1 - \theta) B s$

de otro modo

$$r = y$$

Fin

Hacer

$$B \leftarrow B - \frac{Bss^TB}{s^TBs} + \frac{r^Tr}{s^Tr}.$$

Si $con(B) > 10^4$ hacer $B = I_n$

Fin

Notación:

Para el iterando (x_k, λ_k) usamos: $h_k = h(x_k), \ \nabla f_k = \nabla f(x_k), \ \nabla_x L_k = \nabla_x L(x_k, \lambda_k), \ v_k = (\nabla_x L_k, h_k)$

2.1. Método

- 1. Parámetros: $tol = 10^{-5}, \ maxk = 100, \ c_1 = 10^{-2}, \ C_0 = 1$
- 2. Valores iniciales: $x_0 \in \mathbb{R}^n$, $x_0 \approx x^*$ y $\lambda = 0_{mx1}$ y $B_0 = I_n$.
- 3. Mientras $||v_k|| \ge tol \ y \ k \le maxk$ hacer
 - a) Resuelva el subproblema cuadrático:

Min
$$(1/2)p^T B p + \nabla f_k^T p$$

Sujeto a $A_k p + h_k = 0$

con solución única, p_k y multiplicador de Lagrange λ_{k+1} .

- b) Escoga el paramétro C_{k+1} tal que $D_{p_k}\phi(x_k, C_{k+1}) < 0$.
- c) Sean $\alpha_k = 1$, $\phi_k = \phi(x_k, C_{k+1})$ y $D_k = D_{p_k}\phi(x_k, C_{k+1})$ Mientras $\phi(x_k + \alpha_k p_k, C_{k+1}) > \phi_k + \alpha_k D_k$ hacer $\alpha_k = \alpha_k/2$. Fin

_ ---

- d) Actualizar $x_{k+1} = x_k + \alpha_k p_k$ $s = x_{k+1} x_k$ $y = \nabla_x L(x_{k+1}, \lambda_{k+1}) \nabla_x L(x_k, \lambda_{k+1})$
- e) Actualizar B_{k+1} de acuerdo al esquema BFGS con esquema de Powell.
- f) Actualizar: $x_k \leftarrow x_{k+1}, \ \lambda_k \leftarrow \lambda_{k+1}, \ B_k \leftarrow B_{k+1} \ \text{y} \ k = k+1.$
- g) Calcular $v_k = (\nabla_x L(x_k, \lambda_k), h_k)$ e ir al **Paso 3**.

Fin

3. Proyecto

Escribir en Matlab la función:

```
function [x, \lambda, k] = \mathbf{pcsglobal}(fx, hx, x_0)
% Método de programación Cuadrática Sucesiva con búsqueda de lineal,
% usando la función de mérito L-1 y actualización de la hessiana
\% con la fórmula BFGS para el problema
% Min
% Sujeto a hx = 0
%
\% fx y hx son cadenas de caracteres con las funciones en Matlab
% de la función objetivo y las restricciones del problema
% El vector x_0 es el valor inicial
% Salida
\% x.- aproximación al mínimo local
\% \lambda.- multiplicador de Lagrange asociado a x.
\% k.- número de iteraciones realizadas.
%
% Debe usar las funciones: gradiente.m y jacobiana.m para calcular
% las primeras derivadas.
% Nombres completos de los integrantes del equipo
% Instrucciones del programa documentados.
```

Hacer el script, **esfera.m**, donde resuelva y grafique el porblema inicial (1) con np = 21 puntos. Se fija el primer punto en $u_1 = (1, 0, 0)^T$.

4. Entrega del Proyecto

- 1. Entrega Jueves 5 de noviembre
- 2. Entrega única
- 3. Equipos de a lo más tres integrantes.