Examen d'Analyse 3 :

CPI 2

Durée: 2h

Exercice 1:

Etudier la convergence des séries $\sum u_n$ suivantes :

1.
$$u_n = Arc\sin(\frac{n^2+1}{n^2})$$

1.
$$u_n = Arc\sin(\frac{n^2+1}{n^2})$$
 2. $u_n = \frac{(n+1)(n+2)...(2n)}{(2n)^n}$ 3. $u_n = (\frac{n+1}{2n+2})^n$ 4. $u_n = \frac{n}{(n^2+1)(n+2)}$ 5. $u_n = (\sin(\frac{1}{n}))^3$ 6. $u_n = (-1)^n e^{-n}$

3.
$$u_n = (\frac{n+1}{2n+2})^n$$

4.
$$u_n = \frac{n}{(n^2+1)(n+2)}$$

5.
$$u_n = (\sin(\frac{1}{n}))^3$$

6.
$$u_n = (-1)^n e^{-n}$$

Exercice 2:

Soit f continue décroissante sur $[0, +\infty[$ telle que $\lim_{x \to +\infty} f(x) = 0$.

Etudier la série de terme général (n ≥ 0)

$$u_n = \int_{n\pi}^{(n+1)\pi} f(t) \sin(t) dt$$

2. Cas particulier ::

$$u_n = \int_{\sqrt{n\pi}}^{\sqrt{(n+1)\pi}} \sin(t^2) dt \quad (n \ge 1).$$

Exercice 3:

Soit le signal périodique de période 2π défini par f(x) = |x| sur $[-\pi, \pi]$.

- Enoncer le théorème de Dirichlet.
- 2. Enoncer le théorème de Parseval.
- Calculer les coefficients de Fourier du signal f.
- Déterminer la série de Fourier du signal f.
- 5. En déduire la somme des séries $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}$ et $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.
- 6. En appliquant l'égalité de Parseval, calculer la somme $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^4}$.

Exercice 4:

On considère l'équation différentielle : y' - 2y = 0, y(0) = 1 (E).

Soit $y(x) = \sum_{n=0}^{+\infty} a_n x^n$ la solution de (E) où $(a_n)_n$ une suite de nombres réels.

- 1. Trouver une relation de récurrence entre les éléments de la suite $(a_n)_n$;
- 2. Calculer pour tout $n \in \mathbb{N}$, a_n ;
- Reconnaître y(x).

Bonne chance