Numerical Matrix Analysis

Lecture Notes #10
— Conditioning and Stability —
Floating Point Arithmetic / Stability

Peter Blomgren, \(\text{blomgren.peter@gmail.com} \)

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2020

Outline

- Tinite Precision
 - IEEE Binary Floating Point (from Math 541^{R.I.P.})
 - Non-representable Values a Source of Errors
- Ploating Point Arithmetic
 - "Theorem" and Notation
 - Fundamental Axiom of Floating Point Arithmetic
 - Example
- Stability
 - Introduction: What is the "correct" answer?
 - Accuracy Absolute and Relative Error
 - Stability, and Backward Stability

Finite Precision

A 64-bit real number, double

The Binary Floating Point Arithmetic Standard 754-1985 (IEEE — The Institute for Electrical and Electronics Engineers) standard specified the following layout for a 64-bit real number:

$$s\,c_{10}\,c_{9}\,\ldots\,c_{1}\,c_{0}\,m_{51}\,m_{50}\,\ldots\,m_{1}\,m_{0}$$

Where

Symbol	Bits	Description
5	1	The sign bit — 0=positive, 1=negative
С	11	The characteristic (exponent)
m	52	The mantissa

$$r = (-1)^s 2^{c-1023} (1+f), \quad c = \sum_{n=0}^{10} c_n 2^n, \quad f = \sum_{k=0}^{51} \frac{m_k}{2^{52-k}}$$

IEEE-754-1985 Special Signals

In order to be able to represent **zero**, $\pm \infty$, and **NaN** (not-a-number), the following special signals are defined in the IEEE-754-1985 standard:

Туре	S (1 bit)	C (11 bits)	M (52 bits)
signaling NaN	u	2047 (max)	.0uuuuu—u (*)
quiet NaN	u	2047 (max)	.1uuuuu—u
negative infinity	1	2047 (max)	.000000—0
positive infinity	0	2047 (max)	.000000—0
negative zero	1	0	.000000—0
positive zero	0	0	.000000—0

(*) with at least one 1 bit.

From http://www.freesoft.org/CIE/RFC/1832/32.htm

If you think IEEE-754-1985 is too "simple." There are some interesting additions in the IEEE 754-2008 revision; e.g. fused-multiply-add (fma) operations.

Some environments (e.g. AVX/AVX2/AVX-512 extensions) combine multiple fma operations into a single step, e.g. performing a four-element dot-product on two 128-bit SIMD registers $a_0 \times b_0 + a_1 \times b_1 + a_2 \times b_2 + a_3 \times b_3$ with single cycle throughput.

Examples: Finite Precision

$$r = (-1)^s 2^{c-1023} (1+f), \quad c = \sum_{k=0}^{10} c_k 2^k, \quad f = \sum_{k=0}^{51} \frac{m_k}{2^{52-k}}$$

Example #1 — 3.0

$$r_1 = (-1)^0 \cdot 2^{2^{10} - 1023} \cdot \left(1 + \frac{1}{2}\right) = 1 \cdot 2^1 \cdot \frac{3}{2} = 3.0$$

Example #2 — (The Smallest Positive Real Number)

$$r_2 = (-1)^0 \cdot 2^{0-1023} \cdot (1+2^{-52}) \approx 1.113 \times 10^{-308}$$

Examples: Finite Precision

$$r = (-1)^s 2^{c-1023} (1+f), \quad c = \sum_{k=0}^{10} c_n 2^n, \quad f = \sum_{k=0}^{51} \frac{m_k}{2^{52-k}}$$

Example #3 — (The Largest Positive Real Number)

0.11111111110.111111111111111111111111

$$r_3 = (-1)^0 \cdot 2^{1023} \cdot \left(1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{51}} + \frac{1}{2^{52}}\right)$$

= $2^{1023} \cdot \left(2 - \frac{1}{2^{52}}\right) \approx 1.798 \times 10^{308}$

Floating Point Arithmetic / Stability

That's Quite a Range!

In summary, we can represent

$$\left\{\,\pm\,0,\quad \pm 1.113\times 10^{-308},\quad \pm 1.798\times 10^{308},\quad \pm\infty,\quad {\tt NaN}\right\}$$

and a whole bunch of numbers in

$$(-1.798\times 10^{308},\ -1.113\times 10^{-308})\cup (1.113\times 10^{-308},\ 1.798\times 10^{308})$$

Bottom line: Over- or under-flowing is usually not a problem in IEEE floating point arithmetic.

The problem in scientific computing is what we cannot represent.

Fun with Matlab...

$$(2^{53} + 2)$$
 - 2^{53} = 2
 $(2^{53} + 2)$ - $(2^{53} + 1)$ = 2
 $(2^{53} + 1)$ - 2^{53} = 0
 2^{53} - $(2^{53} - 1)$ = 1

realmax =
$$1.7977 \cdot 10^{308}$$
 realmin = $2.2251 \cdot 10^{-308}$
eps = $2.2204 \cdot 10^{-16}$

The smallest not-exactly-representable integer is $(2^{53} + 1) = 9,007,199,254,740,993.$

Something is Missing — Gaps in the Representation

1 of 3

There are gaps in the floating-point representation! Given the representation

for the value $v_1 = 2^{-1023}(1 + 2^{-52})$, the next larger floating-point value is

i.e. the value
$$v_2 = 2^{-1023}(1 + 2^{-51})$$

The difference between these two values is $2^{-1023} \cdot 2^{-52} = 2^{-1075}$ ($\sim 10^{-324}$).

Any number in the interval (v_1, v_2) is not representable!

Something is Missing — Gaps in the Representation

A gap of 2^{-1075} doesn't seem too bad...

However, the size of the gap depend on the value itself...

Consider r = 3.0

and the next value

Here, the difference is $2 \cdot 2^{-52} = 2^{-51}$ ($\sim 10^{-16}$).

In general, in the interval $[2^n, 2^{n+1}]$ the gap is 2^{n-52} .

2 of 3

Something is Missing — Gaps in the Representation

3 of 3

At the other extreme, the difference between

and the next value

is
$$2^{1023} \cdot 2^{-52} = 2^{971} \approx 1.996 \cdot 10^{292}$$
.

That's a fairly significant gap!!! (A number large enough to comfortably count all the particles in the universe...)

See, e.g.

https://physics.stackexchange.com/ ...

questions/47941/dumbed-down-explanation-how-scientists-know-the-number-of-atoms-in-the-universe

The Relative Gap

It makes more sense to factor the exponent out of the discussion and talk about the relative gap:

Exponent	Gap	Relative Gap (Gap/Exponent)
2^{-1023}	2^{-1075}	$2^{-52} \approx 2.22 \times 10^{-16}$
2^{1}	2^{-51}	2^{-52}
2^{1023}	2 ⁹⁷¹	2^{-52}

Any difference between numbers smaller than the local gap is not representable, e.g. any number in the interval

$$\left[3.0,\,3.0+\frac{1}{2^{51}}\right)$$

is represented by the value 3.0.

The Floating Point "Theorem"

 $\epsilon_{\sf mach}$

"Theorem"

Floating point "numbers" represent intervals!

Notation

We let fl(x) denote the floating point representation of $x \in \mathbb{R}$.

Let the symbols \oplus , \ominus , \otimes , and \oslash denote the floating-point operations: addition, subtraction, multiplication, and division.

The Floating Point $\epsilon_{\sf mach}$

The relative gap defines ϵ_{mach} ; and

$$\forall x \in \mathbb{R}$$
, there exists ϵ with $|\epsilon| \leq \epsilon_{\text{mach}}$, such that $fl(x) = x(1+\epsilon)$.

In 64-bit floating point arithmetic $\epsilon_{\text{mach}} \approx 2.22 \times 10^{-16}$.

In matlab, eps returns this value.

In Python, print(np.finfo(float).eps)

In C, #include <float.h> to define the value of __DBL_EPSILON__

Floating Point Arithmetic

 $\epsilon_{\sf mach}$

All floating-point operations are performed up to some precision, *i.e.*

$$x \oplus y = fl(x + y),$$
 $x \ominus y = fl(x - y),$
 $x \otimes y = fl(x * y),$ $x \oslash y = fl(x/y)$

Floating Point Arithmetic

All floating-point operations are performed up to some precision, *i.e.*

$$x \oplus y = fl(x + y),$$
 $x \ominus y = fl(x - y),$
 $x \otimes y = fl(x * y),$ $x \oslash y = fl(x/y)$

This paired with our definition of $\epsilon_{ ext{mach}}$ gives us

Axiom (The Fundamental Axiom of Floating Point Arithmetic)

For all $x,y\in\mathbb{F}$ (where \mathbb{F} is the set of floating point numbers), there exists ϵ with $|\epsilon|\leq\epsilon_{\mathrm{mach}}$, such that

$$x \oplus y = (x+y)(1+\epsilon), \qquad x \ominus y = (x-y)(1+\epsilon), x \otimes y = (x*y)(1+\epsilon), \qquad x \oslash y = (x/y)(1+\epsilon)$$

Floating Point Arithmetic

All floating-point operations are performed up to some precision, *i.e.*

$$x \oplus y = fl(x + y),$$
 $x \ominus y = fl(x - y),$
 $x \otimes y = fl(x * y),$ $x \oslash y = fl(x/y)$

This paired with our definition of $\epsilon_{ ext{mach}}$ gives us

Axiom (The Fundamental Axiom of Floating Point Arithmetic)

For all $x,y\in\mathbb{F}$ (where \mathbb{F} is the set of floating point numbers), there exists ϵ with $|\epsilon|\leq\epsilon_{\mathrm{mach}}$, such that

$$x \oplus y = (x+y)(1+\epsilon),$$
 $x \ominus y = (x-y)(1+\epsilon),$
 $x \otimes y = (x*y)(1+\epsilon),$ $x \oslash y = (x/y)(1+\epsilon)$

That is every operation of floating point arithmetic is exact up to a relative error of size at most $\epsilon_{\rm mach}$.

Example: Floating Point Error

Scaled by 10¹⁰

Consider the following polynomial on the interval [1.92, 2.08]:

$$p(x) = (x-2)^9$$
= $x^9 - 18x^8 + 144x^7 - 672x^6 + 2016x^5 - 4032x^4 + 5376x^3 - 4608x^2 + 2304x - 512$

Stability

680 pages of details...

Stability: Introduction

1 of 3

With the knowledge that "(floating point) errors happen," we have to re-define the concept of the "right answer."

With the knowledge that "(floating point) errors happen," we have to re-define the concept of the "right answer."

Previously, in the context of **conditioning** we defined a mathematical problem as a map

$$f:X\to Y$$

where $X \subseteq \mathbb{C}^n$ is the set of data (input), and $Y \subseteq \mathbb{C}^m$ is the set of solutions.

We now define an implementation of an algorithm — on a floating-point device, where $\mathbb F$ satisfies the fundamental axiom of floating point arithmetic — as another map

$$\tilde{f}:X\to Y$$

i.e. $\tilde{f}(\vec{x}) \in Y$ is a numerical solution of the problem.

Wiki-History: Pentium FDIV bug (≈ 1994)

The Pentium FDIV bug was a bug in Intel's original Pentium FPU. Certain FP division operations performed with these processors would produce incorrect results. According to Intel, there were a few missing entries in the lookup table used by the divide operation algorithm.

Although encountering the flaw was extremely rare in practice (Byte Magazine estimated that 1 in 9 billion FP divides with random parameters would produce inaccurate results), both the flaw and Intel's initial handling of the matter were heavily criticized. Intel ultimately recalled the defective processors.

Stability: Introduction

3 of 3

The task at hand is to make **useful** statements about $\tilde{f}(\vec{x})$.

Stability: Introduction

3 of 3

The task at hand is to make **useful** statements about $\tilde{f}(\vec{x})$.

Even though $\tilde{f}(\vec{x})$ is affected by many factors — roundoff errors, convergence tolerances, competing processes on the computer*, etc; we will be able to make (maybe surprisingly) clear statements about $\tilde{f}(\vec{x})$.

The task at hand is to make **useful** statements about $\tilde{f}(\vec{x})$.

Even though $\tilde{f}(\vec{x})$ is affected by many factors — roundoff errors, convergence tolerances, competing processes on the computer*, etc; we will be able to make (maybe surprisingly) clear statements about $\tilde{f}(\vec{x})$.

* Note that depending on the memory model, the previous state of a memory location *may* affect the result in *e.g.* the case of cancellation errors: If we subtract two 16-digit numbers with 13 common leading digits, we are left with 3 digits of valid information. We tend to view the remaining 13 digits as "random." But really, there is nothing random about what happens inside the computer (we hope!) — the "randomness" will depend on what happened previously...

Floating Point Arithmetic / Stability

Accuracy

The absolute error of a computation is

$$\|\tilde{f}(\vec{x}) - f(\vec{x})\|$$

and the relative error is

$$\frac{\|\tilde{f}(\vec{x}) - f(\vec{x})\|}{\|f(\vec{x})\|}$$

this latter quantity will be our standard measure of error. If \tilde{f} is a good algorithm, we expect the relative error to be small, of the order $\epsilon_{\rm mach}$. We say that \tilde{f} is accurate if $\forall \vec{x} \in X$

$$rac{\| ilde{f}(ec{x}) - f(ec{x})\|}{\|f(ec{x})\|} = \mathcal{O}(\epsilon_{ ext{mach}})$$

Interpretation: $\mathcal{O}(\epsilon_{\mathsf{mach}})$

Since all floating point errors are functions of $\epsilon_{\rm mach}$ (the relative error in each operation is bounded by $\epsilon_{\rm mach}$), the relative error of the algorithm must be a function of $\epsilon_{\rm mach}$:

$$rac{\| ilde{f}(ec{x}) - f(ec{x})\|}{\|f(ec{x})\|} = e(\epsilon_{\mathsf{mach}})$$

The statement

$$e(\epsilon_{\mathsf{mach}}) = \mathcal{O}(\epsilon_{\mathsf{mach}})$$

means that $\exists C \in \mathbb{R}^+$ such that

$$e(\epsilon_{\mathsf{mach}}) \leq C\epsilon_{\mathsf{mach}}, \quad \mathsf{as} \quad \epsilon_{\mathsf{mach}} \downarrow 0$$

In practice $\epsilon_{\rm mach}$ is fixed, and the notation means that if we were to decrease $\epsilon_{\rm mach}$, then our error would decrease at least proportionally to $\epsilon_{\rm mach}$.

Stability

If the **problem** $f: X \to Y$ is ill-conditioned, then the accuracy goal

$$rac{\| ilde{f}(ec{x}) - f(ec{x})\|}{\|f(ec{x})\|} = \mathcal{O}(\epsilon_{\mathsf{mach}})$$

may be unreasonably ambitious.

Instead we aim for **stability**. We say that \tilde{f} is a **stable algorithm** if $\forall \vec{x} \in X$

$$rac{\| ilde{f}(ec{x}) - f(ilde{ec{x}})\|}{\|f(ilde{ec{x}})\|} = \mathcal{O}(\epsilon_{\mathsf{mach}})$$

for some $\tilde{\vec{x}}$ with

$$rac{\| ilde{ec{x}}-ec{x}\|}{\|ec{x}\|}=\mathcal{O}(\epsilon_{\mathsf{mach}})$$

"A stable algorithm gives approximately the right answer, to approximately the right question."

Backward Stability

For many algorithms we can tighten this somewhat vague concept of stability.

An algorithm \tilde{f} is **backward stable** if $\forall \vec{x} \in X$

$$\tilde{f}(\vec{x}) = f(\tilde{\vec{x}})$$

for some $\tilde{\vec{x}}$ with

$$rac{\| ilde{ec{x}}-ec{x}\|}{\|ec{x}\|}=\mathcal{O}(\epsilon_{\mathsf{mach}})$$

"A backward stable algorithm gives exactly the right answer, to approximately the right question."

Next: Examples of stable and unstable algorithms; Stability of Householder triangularization.

