Motion Planning by Search in Derivative Space and Convex Optimization with Enlarged Solution Space (Extended Material)

Jialun Li, Xiaojia Xie, Qin Lin, Jianping He and John M. Dolan

I. PROOFS OF PROPOSITIONS AND THEOREM

A. Proof of Proposition 2

The fitting points between two sample points on \ddot{S} -T are generated by

$$\min_{\ddot{s}[1],\dots,\ddot{s}[n_s]} w_2 \sum_{k=1}^{n_s} (\ddot{s}[k])^2 + w_3 \sum_{k=0}^{n_s} (\ddot{s}[k+1] - \ddot{s}[k])^2$$
s.t. $\ddot{s}[0] = \ddot{s}_{\text{start}}, \ \ddot{s}[n_s + 1] = \ddot{s}_{\text{end}},$
(1)

where w_2 and w_3 are tunable parameters. The solution of problem (1) is also guaranteed to satisfy the constraints of $\ddot{s} \in [\ddot{s}_{\min}, \ddot{s}_{\max}]$, as shown in the following proposition.

Proposition 1. Suppose that \ddot{s}_{start} , $\ddot{s}_{end} \in [\ddot{s}_{min}, \ddot{s}_{max}]$. Then, the solution of problem (1) satisfies the constraints of \ddot{s} , i.e., $\ddot{s}[1], \ldots, \ddot{s}[n_s] \in [\ddot{s}_{min}, \ddot{s}_{max}]$.

Proof. We complete the proof by contradiction. Suppose that there exsits $\ddot{s}[k] > \ddot{s}_{\max}$. Replacing $\ddot{s}[k]$ with \ddot{s}_{\max} will achieve a smaller objective function, which renders a contradiction. Then, it follows that $\ddot{s}[k] \leq \ddot{s}_{\max}$. Similarly, we have $\ddot{s}[k] \geq \ddot{s}_{\min}$ (Fig.1(b)) and $\ddot{s}[1], \ldots, \ddot{s}[n_s] \in [\ddot{s}_{\min}, \ddot{s}_{\max}]$.

Fig. 1: Illustrations of the range of fitting points.

B. Proof of Theorem 1

Lemma 1. Let $M \in \mathbb{R}^{(n+1)\times (n+1)}$ denote the transition matrix from the Bernstein basis $\{b_n^0(t), b_n^1(t), \dots, b_n^n(t)\}$ to the monomial basis $\{1, t, \dots, t^n\}$. We have $M_{i,0} = 1, \ 0 \le M_{i,j} \le 1, \ i = 0, 1, \dots, n, \ j = 0, 1, \dots, n.$

Proof. It follows that

$$t^{i} = t^{i}(t+1-t)^{n-i} = \sum_{j=0}^{n-i} C_{n-i}^{j} t^{n-j} (1-t)^{j}$$
$$= \sum_{j=0}^{n-i} \frac{C_{n-i}^{j}}{C_{n}^{n-j}} C_{n}^{n-j} t^{n-j} (1-t)^{j}.$$

Hence, the elements of matrix M satisfy

$$M_{n-j,i} = \begin{cases} \frac{C_{n-i}^{j}}{C_{n}^{j}}, & i+j \leq n\\ 0, & i+j > n. \end{cases}$$
 (2)

We have $M_{i,0} = 1, \ 0 \le M_{i,j} \le 1, \ i, \ j = 0, 1, \dots, n.$

Theorem 1. For a trajectory, if it has control points in each time interval satisfying $c_i^k \in \Omega^k$, where $\Omega^k = \{c^k | \underline{p_0^k} + h_k \underline{p_1^k} M_{i,1} \le c_i^k \le \overline{p_0^k} + h_k \overline{p_1^k} M_{i,1}, i = 0, 1, \dots, n, k = 0, 1, \dots, m\}$, s(t) is guaranteed to be safe. The upper bounds and lower bounds form a trapezoidal corridor \mathcal{S}^{tra} .

Proof. On the S-T graph for $t \in [T_k, T_{k+1}]$, it holds that

$$\underline{p_0^k} + h_k \underline{p_1^k} \frac{t - T_k}{h_k} < \overline{p_0^k} + h_k \overline{p_1^k} \frac{t - T_k}{h_k}. \tag{3}$$

According to Lemma 1, $M_{i,1}$ satisfies $0 \le M_{i,1} \le 1$. Thus, we have $T_k \le T_k + h_k M_{i,1} \le T_{k+1}$ and let $t = T_k + h_k M_{i,1}$. Then we obtain

$$\underline{p_0^k} + h_k \underline{p_1^k} M_{i,1} < \overline{p_0^k} + h_k \overline{p_1^k} M_{i,1},$$

and $\exists \ c_i^k, s.t. \ p_0^k + h_k p_1^k M_{i,1} \leq c_i^k \leq \overline{p_0^k} + h_k \overline{p_1^k} M_{i,1}.$ As for the safety of $s(t), \ \forall t_0 \in [T_k, T_{k+1}],$

$$s(t_0) \leq \sum_{i=0}^n (\overline{p_0^k} + h_k \overline{p_1^k} M_{i,1}) b_n^i \left(\frac{t - T_k}{h_k} \right)$$

$$\leq \overline{p_0^k} \sum_{i=0}^n b_n^i \left(\frac{t - T_k}{h_k} \right) + h_k \overline{p_1^k} \sum_{i=0}^n M_{i,1} b_n^i \left(\frac{t - T_k}{h_k} \right)$$

$$= \overline{p_0^k} + h_k \overline{p_1} \frac{t - T_k}{h_k}.$$

Similarly, we have $s(t_0) \ge \underline{p_0^k} + h_k \underline{p_1^k} \frac{t - T_k}{h_k}$. Therefore, we have $s(t_0) \in \mathcal{S}_k^{tra} = \mathcal{S}_k$ and $s(t) \in \mathcal{S}^{tra} = \mathcal{S}$, i.e., s(t) is safe and the corridors are trapezoidal.

II. OP FORMULATION

This part illustrates how to formulate the Bézier polynomial optimization as a QP problem as

$$\mathbf{P}: \qquad \min_{\mathbf{c}} \ \mathbf{c}^{T} \mathbf{Q}_{\mathbf{c}} \mathbf{c} + \mathbf{q}_{\mathbf{c}}^{T} \mathbf{c} + \text{const}$$

$$\text{s.t. } \mathbf{A}_{eq} \mathbf{c} = \mathbf{b}_{eq}$$

$$\mathbf{A}_{ie} \mathbf{c} \leq \mathbf{b}_{ie}.$$

$$(4)$$

First, we express the Bézier curve as a polynomial

$$s_k(t) = h_k \sum_{i=0}^n c_i^k b_n^i \left(\frac{t - T_k}{h_k}\right)$$

$$= h_k \sum_{i=0}^n p_i^k \left(\frac{t - T_k}{h_k}\right)^i = h_k f_k \left(\frac{t - T_k}{h_k}\right),$$
(5)

where $f_k(t) = \sum_{i=0}^n p_i^k t^i$, $k = 0, 1, \dots, m$ is a polynomial curve. Let $M \in \mathbb{R}^{(n+1)\times(n+1)}$ denote the transition matrix from the Bernstein basis $\{b_n^0(t), b_n^1(t), \dots, b_n^n(t)\}$ to the monomial basis $\{1, t, t^2, \dots, t^n\}$. Then, we have $\mathbf{c}^{\mathbf{k}} = M\mathbf{p}^{\mathbf{k}}$ with $\mathbf{c}^{\mathbf{k}} = [c_0^k, \dots, c_n^k]^T$ and $\mathbf{p}^{\mathbf{k}} = [p_0^k, \dots, p_n^k]^T$.

According to lemma 1, it holds that |M| > 0 and M is invertible. Hence, if the objective function

$$J = w_1 \sum_{k=1}^{m} (c_n^k - s_{\text{ref}} [\sum_{l=1}^{k} m_l])^2 + w_2 \int_0^T (\dot{s}(t) - \dot{s}_{\text{ref}})^2 dt + w_3 \int_0^T \ddot{s}(t)^2 dt + w_4 \int_0^T \ddot{s}(t)^2 dt + w_5 \left(c_n^m - s_{\text{ref}} [\sum_{l=1}^{m} m_l] \right)^2$$

$$(6)$$

can be written as

$$J = \sum_{k=0}^{m} \left[(\mathbf{p}^{\mathbf{k}})^{T} Q^{k} \mathbf{p}^{\mathbf{k}} + \mathbf{q}^{\mathbf{k}} \mathbf{p}^{\mathbf{k}} \right] + \text{const} \ge 0,$$
 (7)

where Q^k is positive definite and known, then we have

$$J = \begin{bmatrix} \mathbf{c}^{\mathbf{0}} \\ \vdots \\ \mathbf{c}^{\mathbf{m}} \end{bmatrix}^{T} \begin{bmatrix} (M^{-1})^{T} Q^{0} M^{-1} & \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & (M^{-1})^{T} Q^{m} M^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{c}^{\mathbf{0}} \\ \vdots \\ \mathbf{c}^{\mathbf{m}} \end{bmatrix}$$

$$+ \begin{bmatrix} \mathbf{q}^{\mathbf{0}} \\ \vdots \\ \mathbf{q}^{\mathbf{m}} \end{bmatrix}^{T} \begin{bmatrix} M^{-1} & \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & M^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{c}^{\mathbf{0}} \\ \vdots \\ \mathbf{c}^{\mathbf{m}} \end{bmatrix} + \text{const}$$

$$= \mathbf{c}^{T} Q_{c} \mathbf{c} + \mathbf{q}_{c}^{T} \mathbf{c} + \text{const} \ge 0.$$

$$(8)$$

Note that Q_c is also a positive-definite matrix. Since the constraints are all linear with \mathbf{c} , the original problem is a QP problem. Next we will illustrate that Eq. (7) holds and how to calculate Q_k and \mathbf{q}^k . We first calculate preliminary terms to achieve the cost function J. To begin with, it holds that

$$\int_{T_k}^{T_{k+1}} \left(\frac{\mathrm{d}^l s(\tau)}{\mathrm{d}\tau^l} \right)^2 \mathrm{d}\tau = \int_0^{h_k} \left(\frac{\mathrm{d}^l s(\tau + T_k)}{\mathrm{d}\tau^l} \right)^2 \mathrm{d}\tau
= \int_0^{h_k} \left(\frac{\mathrm{d}^l s(\tau + T_k)}{\mathrm{d}t^l} \left(\frac{\mathrm{d}t}{\mathrm{d}\tau} \right)^l \right)^2 \mathrm{d}\tau = \frac{1}{h_k^{2l-3}} \int_0^1 \left(\frac{\mathrm{d}^l f_k(t)}{\mathrm{d}t^l} \right)^2 \mathrm{d}t.$$
(9)

As for $\int_0^1 \left(\frac{\mathrm{d}^l f_k(t)}{\mathrm{d}t^l}\right)^2 \mathrm{d}t$, it follows that

$$\int_{0}^{1} \left(\frac{\mathrm{d}^{l} f_{k}(t)}{\mathrm{d}t^{l}} \right)^{2} \mathrm{d}t = \int_{0}^{1} \sum_{i \geq l, j \geq l} p_{i}^{k} p_{j}^{k} t^{i+j-2l} \mathrm{d}t$$

$$= \sum_{i \geq l, j \geq l} \frac{i(i-1) \cdots (i-l) j(j-1) \cdots (j-l)}{i+j+1-2l} p_{i}^{k} p_{j}^{k}, \tag{10}$$

which is a quadratic form. We represent the *i*-th term in Eq. (6) as $w_i J_i, i = 1, 2, \dots, 5$. Then, we have

$$J_1 = \sum_{k=1}^{m} (c_n^k - s_{\text{ref}}[\sum_{l=1}^{k} m_l])^2 = \sum_{k=1}^{m} \left[(c_n^k)^2 - 2s_{\text{ref}}[\sum_{l=1}^{k} m_l] c_n^k \right] + \text{const},$$
 (11)

and

$$J_2 = \sum_{k=0}^{m} \int_{T_k}^{T_{k+1}} \dot{s_k(t)}^2 dt - 2\dot{s}_{\text{ref}} \int_0^T \dot{s}(t) dt + \text{const} = \sum_{k=0}^{m} h_k \int_0^1 \dot{f_k(t)}^2 dt - 2\dot{s}_{\text{ref}} c_n^m + \text{const},$$
(12)

$$J_{3} = \sum_{k=0}^{m} \frac{1}{h_{k}} \int_{0}^{1} \ddot{f}_{k}(t)^{2} dt, \ J_{4} = \sum_{k=0}^{m} \frac{1}{h_{k}^{3}} \int_{0}^{1} \ddot{f}_{k}(t)^{2} dt, \ J_{5} = (c_{n}^{m})^{2} - 2s_{\text{ref}} [\sum_{l=1}^{m} m_{l}] c_{n}^{m} + \text{const.}$$
 (13)

Then we come to the Eq. (7) by replacing integral terms and using $J = \sum_{i=1}^{5} w_i J_i$.