R Code in Foundations and Applications of Statistics

An introduction to R is provided in Appendix A. R functions are introduced as needed throughout the main text and summarized at the end of each chapter. These end-of-chapter summary tables are provided here as a service to students and instructors who want an overview of what R functions are used where in the book. Feel free to copy and distribute these pages.

Chapter 1: Data

x <- c()	Concatenate arguments into a single vector and store in object \mathbf{x} .
data(x)	(Re)load the data set x.
str(x)	Print a summary of the object x.
head(x,n=4)	First four rows of the data frame x.
tail(x,n=4)	Last four rows of the data frame x .
table(x)	Table of the values in vector \mathbf{x} .
xtabs(~x+y,data)	Cross tabulation of x and y .
<pre>cut(x,breaks,right=TRUE)</pre>	Divide up the range of \mathbf{x} into intervals and code the values in \mathbf{x} according to which interval they fall into.
<pre>require(fastR) require(lattice) require(Hmisc)</pre>	Load packages.
histogram(~x z,data,)	Histogram of \mathbf{x} conditioned on \mathbf{z} .
<pre>bwplot(x~z,data,)</pre>	Boxplot of x conditioned on z .
<pre>xyplot(y~x z,data,)</pre>	Scatterplot of y by x conditioned on z .
stem(x)	Stemplot of x.
<pre>sum(x); mean(x); median(x); var(x); sd(x); quantile(x)</pre>	Sum, mean, median, variance, standard deviation, quantiles of \mathbf{x} .
<pre>summary(y~x,data,fun)</pre>	Summarize y by computing the function fun on each group defined by x [Hmisc].

Chapter 2: Discrete Distributions

choose(n,k)
<pre>dbinom(x,size,prob)</pre>
<pre>pbinom(q,size,prob)</pre>
<pre>qbinom(p,size,prob)</pre>
rbinom(n,size,prob)
<pre>dpois(); ppois(); qpois(); rpois(); dnbinom(); pnbinom(); qnbinom(); rnbinom(); dhyper(); phyper(); qhyper(); rhyper()</pre>
rep(values,)
sum(x,); prod(x,)
$\texttt{binom.test}(\texttt{x},\texttt{n},\texttt{p},\ldots)$
<pre>fisher.test(rbind(c(x,y),c(z,w)),)</pre>

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}.$$

P(X = x) for $X \sim Binom(size, prob)$.

 $P(X \le q)$ for $X \sim \mathsf{Binom}(\mathsf{size}, \mathsf{prob})$.

Smallest x such that $P(X \le x) \ge p$ for $X \sim Binom(size, prob)$.

Simulate n random draws from a $\mathsf{Binom}(\mathtt{size}, \mathtt{prob})$ -distribution.

Similar to the functions above but for Poisson, negative binomial, and hypergeometric distributions.

Create a vector of repeated values.

Compute the sum or product of values in the vector \mathbf{x} .

Conduct a binomial test of $H_0: \pi = p$ from a data set with x successes in n tries.

Conduct Fisher's exact test with data summarized in the table

x y

Chapter 3: Continuous Distributions

```
dnorm(x,mean,sd)
                                            pdf for X \sim \mathsf{Norm}(\mathsf{mean}, \mathsf{sd}).
pnorm(q,mean,sd)
                                            P(X \leq q) for X \sim \mathsf{Norm}(\mathsf{mean}, \mathsf{sd}).
qnorm(p,mean,sd)
                                            x such that P(X \le x) = p for X \sim Norm(mean,sd).
rnorm(n, mean, sd)
                                            Simulate n random draws from a Norm(mean, sd)-
                                            distribution.
dunif(...); punif(...);
                                            Similar to the functions above but for uniform, exponential,
qunif(...); runif(...);
                                            gamma, beta, and Weibull distributions.
dexp(...); pexp(...);
qexp(...); rexp(...);
dgamma(...); pgamma(...);
qgamma(...); rgamma(...);
dbeta(...); pbeta(...);
qbeta(...); rbeta(...);
dweibull(...); pweibull(...);
qweibull(...); rweibull(...)
f <- function(...) { }</pre>
                                            Define a function.
                                           Numerically approximate \int_{1 \text{ over}}^{\text{upper}} f(x) dx.
integrate(f,lower,upper,...)
adaptIntegrate(f,lowerLimit,
                                            Numerically approximate multivariate integrals [cubature].
  upperLimit, tol,...)
fractions(x,...)
                                            Find a rational number near x [MASS].
sapply(X,FUN)
                                            Apply the function FUN to each element of the vector X.
gamma(x)
                                            \Gamma(x)
density(x,bw,adjust,kernel,...)
                                            Kernel density estimate.
densityplot(x,data,allow.multiple,
                                            Kernel density plot.
  bw,adjust,kernel,...)
qnorm(x,...); qqmath(x,...);
                                            Normal-quantile plot for x. (Other distributions are also pos-
xqqmath(x,...)
                                            sible.)
data.frame(...);
                                            Construct a new data frame.
```

Chapter 4: Parameter Estimation and Testing

uniroot(f,interval,)	Numerically approximate a solution to $f(x) = 0$ with x within the interval specified by interval.
<pre>sample(x,size,replace=FALSE)</pre>	Select a sample of size size from x.
binom.test(x,n,p=0.50,)	Use binomial distributions to conduct a hypothesis test or construct a confidence interval for a proportion.
prop.test(x,n,p=0.50,)	Use normal approximations to the binomial distributions to conduct a hypothesis test or construct a confidence interval for a proportion.
t.test(x,)	t-tests and confidence intervals.
replicate(n,expr,)	Evaluate expression expr n times.
dt(x,df)	Evaluate pdf for $t(df)$ -distribution
pt(q,df)	Evaluate cdf for $t(df)$ -distribution
qt(p,df)	Compute quantiles for $t(df)$ -distribution
rt(,df)	Simulate ${\tt n}$ random draws from a ${\tt t(df)}$ -distribution.
<pre>dchisq(x,df); pchisq(q,df); qchisq(p,df); rchisq(n,df)</pre>	Similar to the functions above but for $Chisq(\mathtt{df})$ -distributions.
<pre>df(x,df1,df2); pf(q,df1,df2); qf(p,df1,df2); rf(n,df1,df2)</pre>	Similar to the functions above but for $F(\mathtt{df1,df2})$ -distributions.

Chapter 5: Likelihood-Based Statistics

nlm(f,p,x)	Minimize f starting from point p .
<pre>nlmin(f,p,x)</pre>	Minimize f starting from point p [fastR wrapper for nlm()].
nlmax(f,p,x)	Maximize f starting from point p [fastR wrapper for nlm()].
<pre>summary(nlmax(f,p,x))</pre>	Summary output for nlmax().
oldopt <- options(warn=-1)	Turn off warnings and save previous options.
options(oldopt)	Revert to old options.
<pre>xhistogram(~x,data,)</pre>	Histogram with some extras [fastR].
uniroot(f,interval,)	Numerically approximate a solution to $f(x) = 0$ for x within the interval specified by interval.
<pre>nrow(x); ncol(x)</pre>	The number of rows or columns in an object x .
rbind()	Bind together rowwise into a matrix.
cbind()	Bind together columnwise into a matrix.
rownames(x)	Access or set the row names of object x.
colnames(x)	Access or set the column names of object x .
<pre>chisq.test(x,)</pre>	Perform a Pearson Chi-squared test; handles some simple goodness of fit testing and 2-way tables.
<pre>xchisq.test(x,)</pre>	Perform a Pearson Chi-squared test and display some extra information [fastR].
mosaic()	Construct a mosaic plot [vcd].
merge(x,y,)	Merge data frames \mathbf{x} and \mathbf{y} .
BTm()	Fit a Bradley-Terry model [BradleyTerry2].
coef(model)	Compute coefficients of a model.
<pre>logit(x), ilogit()</pre>	Logit and inverse logit functions [faraway].

Chapter 6: Introduction to Linear Models

```
lm(y^x,...)
                                        Fit a linear model.
glm(y~x,
                                         Fit a logistic regression model.
   family=binomial(link=logit),
glm(cbind(successes,failures)~x,
                                        Fit a logistic regression model using tabulated data.
   family=binomial(link=logit),
I(...)
                                         Inhibit interpretation in model formulas. Several arithmetic
                                         operators have special meanings in the context of a formula.
                                         Surrounding them with I() causes them to them take on
                                         their usual arithmetic meaning.
summary(model)
                                         Print a numerical summary of a model (output from lm() or
                                         glm()).
anova(model)
                                         Print an ANOVA table.
plot(model,...)
                                         Generate some diagnostic plots.
xplot(model,...)
                                         Generate some diagnostic plots (using lattice plots) [fastR].
confint(model,...)
                                         Compute confidence intervals for parameters.
predict(model,...)
                                         Predict responses expressed as point estimate (de-
                                         fault),
                                                 confidence interval (interval='confidence'),
                                        or prediction interval (interval='prediction').
                                        newdata=data.frame(...) to specify the explanatory
                                         variables for the predictions.
```

Chapter 7: More Linear Models

factor(x)	Convert x to a factor.
<pre>summary(formula,data,, fun,method,)</pre>	Tabulate various summary statistics for a data set [Hmisc].
favstats(x)	Compute some basic summary statistics for x [fastR].
<pre>project(y,v,)</pre>	Project y in the direction of v [fastR].
dot(x,y)	Dot product of x and y [fastR].
vlength(x)	Vector length (norm) of x [fastR].
<pre>model <- lm(y~x,)</pre>	Fit a linear model.
<pre>model <- glm(y~x,)</pre>	Fit a generalized linear model.
<pre>summary(model)</pre>	Print summary of model.
resid(model)	Residuals of model.
<pre>plot(model); xplot(model)</pre>	Diagnostic plots for model.
anova(model)	Print ANOVA table for model.
anova(model1,model2)	Print ANOVA table for model comparison test of two nested models.
<pre>confint(model,)</pre>	Confidence intervals for model parameters.
<pre>predict(model,)</pre>	Confidence intervals and prediction intervals for the response variable.
<pre>glht(model,)</pre>	General linear hypothesis tests – p-values and confidence intervals for contrasts with multiple comparisons corrections as needed [multcomp].
mcp()	Construct sets of contrast for use with glht() [multcomp].
step(model,)	Stepwise regression.
<pre>vif(model,)</pre>	Variance inflation factor [faraway].
aov(y~x,)	Alternative to ${\tt lm()}$ that stores and prints different information.
<pre>TukeyHSD(aov(y~x,))</pre>	Tukey Honest Significant Differences.
splom()	Scatterplot matrix [lattice].
<pre>scatterplot.matrix()</pre>	Scatterplot matrix [car].