UM-SJTU JOINT INSTITUTE BAYESIAN ANALYSIS (VE414)

Assignment 5

Name: Wu Guangzheng Student ID: 515370910014

1 Question 1

a)

With the results in the last assignment, the constant c is 0.645, that is

$$f_{Y|X} = 0.645 \times \exp(-\frac{(x-y)^2}{2}) \times \frac{1}{1+y^2}$$

And we have

$$0 < \frac{1}{1+y^2} \le 1, \qquad y \in R$$

So

$$f_{Y|X} \le 0.645 \times \exp(-\frac{(x-y)^2}{2}) = 0.645 \cdot \sqrt{2\pi\sigma^2} \cdot \frac{1}{\sqrt{2\pi\sigma^2}} \cdot \exp(-\frac{(y-\mu)^2}{2\sigma^2})$$

Where

$$\sigma = 1, \qquad \mu = x = 0.5$$

So we have

$$f_{Y|X} \le AMq(y) < Mq(y)$$

$$A = 0.645, \qquad M = \sqrt{2\pi}, \qquad q(y) \sim \text{Norm}(0.5, 1)$$

b)

We can get the following result

Grid Size n	$\mathbb{E}\left[Y \mid X = 0.5\right]$
50	0.2059457941459266
250	0.26953845572240126
750	0.2728096525929137
1500	0.2800835653746651
3000	0.2585988667944461

With code

```
using Distributions

sample_sizes = [50, 250, 750, 1500, 3000]

for n in sample_sizes
    samples = Array{Float64}(undef, n)
    i = 1
```

```
while i \le n
            v = rand(1)[1]
           y = rand(Normal(0.5, 1), 1)[1]
10
            if v \le 1 / (1+y^2)
                samples[i] = y
12
                i+=1
            end
14
       end
       \exp = sum(samples) / n
16
       println (exp)
17
18
  end
```

c)

We can use the same g(y) here, which is

$$q(y) \sim \text{Normal}(0.5, 1)$$

So we have

$$E[Y \mid X] = \int Y \cdot f_{Y|X} dy = \int \frac{Y \cdot f_{Y|X}}{q(y)} \cdot q(y) dy$$

$$\approx \frac{1}{n} \sum_{i=1}^{n} \frac{p(y^{(i)})}{q(y^{(i)})} \cdot y^{(i)}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \frac{f_{Y|X}(y^{(i)})}{q(y^{(i)})} \cdot y^{(i)}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \sqrt{2\pi} \cdot \frac{y}{1+y^{2}}$$

d)

We can get the following result

Grid Size n	$\mathbb{E}\left[Y \mid X = 0.5\right]$
50	0.31778840599136227
250	0.2931960705649614
750	0.2853944180824812
1500	0.2609568019578496
3000	0.2758034794541073

With code

```
using Distributions
   sample_sizes = [50, 250, 750, 1500, 3000]
   for n in sample_sizes
        samples = Array\{Float64\}(undef, n)
        wi = Array\{Float64\}(undef, n)
        while i \le n
             v = rand(1)[1]
10
             y = rand(Normal(0.5, 1), 1)[1]
11
             w = sqrt(2 * pi) * y / (1 + y^2)
12
             wi[i] = sqrt(2 * pi) / (1 + y^2)
13
             samples[i] = w
14
             i+=1
15
        end
16
        \exp = \operatorname{sum}(\operatorname{samples}) / \operatorname{sum}(\operatorname{wi})
17
        println (exp)
18
   end
```

2 Question 2

According to Box Muller Transform, if x_1 and x_2 are uniform random samples on the interval (0,1), and

$$z_1 = \sqrt{-2 \ln x_1} \cos(2\pi x_2), \qquad z_2 = \sqrt{-2 \ln x_1} \sin(2\pi x_2)$$

then z_1 and z_2 are random samples follows Normal(0,1).

Then we can sample any Normal distribution by the following equation, then we can sample any Normal Distribution.

$$Normal(\mu, \sigma^2) = \mu + \sigma \cdot Normal(0, 1)$$

As we have

$$f_{Y_1Y_2}(y_1, y_2) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{y_1^2 - 2\rho y_1 y_2 + y_2^2}{2(1-\rho^2)}\right)$$

And

$$f_{Y_1}(y_1) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{y_1^2}{2}), \qquad f_{Y_2}(y_2) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{y_2^2}{2})$$

So

$$f_{Y_1|Y_2=y_2}(y_1) = \frac{f_{Y_1Y_2}(y_1, y_2)}{f_{Y_2}(y_2)} = \frac{1}{\sqrt{2\pi(1-\rho^2)}} \exp(-\frac{(y_1-\rho y_2)^2}{2(1-\rho^2)}) \sim \text{Normal}(\rho y_2, 1-\rho^2)$$

And similarly

$$f_{Y_2|Y_1=y_1}(y_2) \sim \text{Normal}(\rho y_1, 1 - \rho^2)$$

Based on all the things above, we can use a Gibbs Sampling that

$$P(Y_1^t \mid Y_2^{t-1} = y_2) \sim \text{Normal}(\rho y_2, 1 - \rho^2)$$

 $P(Y_2^t \mid Y_1^t = y_1) \sim \text{Normal}(\rho y_1, 1 - \rho^2)$

Where Y_1^0 and Y_2^0 are both sampled from a unifrom distribution.

3 Question 3

When the proposal distribution is the corresponding conditional distribution,

a)

Let

$$u = g(y) = \arctan y$$
 $v = h(y) = \arctan y$

So

$$y = g^{-1}(u) = \tan u$$
 $y = h^{-1}(v) = \tan v$

So we have

$$\begin{split} \int_{-\infty}^{\infty} f_{Y|X} dy &= \int_{-\infty}^{0} f_{Y|X} dy + \int_{0}^{\infty} f_{Y|X} dy \\ &= \int_{-\infty}^{0} \exp(-\frac{(x-y)^{2}}{2}) \cdot \frac{1}{1+y^{2}} dy + \int_{0}^{\infty} \exp(-\frac{(x-y)^{2}}{2}) \cdot \frac{1}{1+y^{2}} dy \\ &= \int_{-\frac{\pi}{2}}^{0} \exp(-\frac{(x-\tan u)^{2}}{2}) du + \int_{0}^{\frac{\pi}{2}} \exp(-\frac{(x-\tan v)^{2}}{2}) dv \\ &\approx \frac{\pi}{2n} \sum_{i=1}^{n} \exp(-\frac{(x-\tan u_{i})^{2}}{2}) + \frac{\pi}{2n} \sum_{i=1}^{n} \exp(-\frac{(x-\tan v_{i})^{2}}{2}) \\ &= \frac{\pi}{2n} \sum_{i=1}^{n} \exp(-\frac{(x-\tan(-\frac{\pi}{2} + \frac{\pi(i-1)}{2n}))^{2}}{2}) + \frac{\pi}{2n} \sum_{i=1}^{n} \exp(-\frac{(x-\tan(\frac{\pi(i-1)}{2n}))^{2}}{2}) \end{split}$$

Here we define the following, in order to ensure the continuity

$$\tan -\frac{\pi}{2} = -\infty$$
 and $\tan \frac{\pi}{2} = \infty$

b)

So the expectation should be

$$\mathbb{E}\left[Y \mid X\right] = \int_{-\infty}^{\infty} y \cdot f_{Y\mid X} dy$$

$$\approx \frac{\pi}{2n} \sum_{i=1}^{n} \tan u_i \cdot \exp\left(-\frac{(x - \tan u_i)^2}{2}\right) + \frac{\pi}{2n} \sum_{i=1}^{n} \tan v_i \cdot \exp\left(-\frac{(x - \tan v_i)^2}{2}\right)$$

Where u_i and v_i are the linespace values dividing $\left(-\frac{\pi}{2},0\right)$ and $\left(0,\frac{\pi}{2}\right)$ into n-1 parts.

So we can calculate the value by Julia, with the following code,

```
n = [50, 250, 750, 1500, 3000]
   for ni in n
3
       ni = round(Int, ni/2)
       u = range(-1 * pi / 2, length = ni+1, stop = 0)
       v = range(0, length = ni+1, stop = +1 * pi / 2)
       u = collect(u[2:ni+1])
       v = collect(v[1: ni])
10
       u_tan = map((x)->tan(x), u)
11
       v_tan = map((x)->tan(x), v)
12
13
       u_{-}exp = map((x) - exp(-((0.5 - x)^2)/2), u_{-}tan)
14
       v_{-}exp = map((x) -> exp(-((0.5 - x)^2)/2), v_{-}tan)
15
16
       inte = pi / (2*ni) * sum(u_exp) + pi/(2*ni) * sum(v_exp)
17
       c = 1 / inte
18
      E = c * pi / (2*ni) * sum(u_tan .* u_exp) +
           c * pi/(2*ni) * sum(v_tan .* v_exp)
20
       println (E)
  end
22
```

And we get the result

Grid Size n	$\mathbb{E}\left[Y \mid X = 0.5\right]$
50	0.2569800409221861
250	0.264284665679843
750	0.2655426364320458
1500	0.2658590025448422
3000	0.2660174684574401

c)

We use the former grid approximation, and apply a direct sampling scheme on it.

```
using Distributions n = [50, 250, 750, 1500, 3000]

for ni in n
    ni = round(Int, ni/2)
    u = range(-1 * pi / 2, length = ni+1, stop = 0)
    v = range(0, length = ni+1, stop = +1 * pi / 2)
```

```
weights = Array{Float64, 1}(undef, ni)
       for x in 1:ni
            weights[x] = 1/ni
10
       end
11
12
       u = collect(u[2:ni+1])
13
       v = collect(v[1: ni])
14
15
       m = [100, 1000]
16
       for mi in m
18
           um = wsample(u, weights, mi)
           vm = wsample(v, weights, mi)
20
            u_tan = map((x)->tan(x), um)
22
            v_tan = map((x)->tan(x), vm)
23
24
            u_{-}exp = map((x) \rightarrow exp(-((0.5 - x)^2)/2), u_{-}tan)
25
            v_{-}exp = map((x) \rightarrow exp(-((0.5 - x)^2)/2), v_{-}tan)
27
            inte = pi / (2*ni) * sum(u_exp) + pi/(2*ni) * sum(v_exp)
28
            c = 1 / inte
29
           E = c * pi / (2*ni) * sum(u_tan .* u_exp)
                    + c * pi/(2*ni) * sum(v_tan .* v_exp)
31
            println (ni * 2, "", mi, "", E)
       end
33
   end
```

d)

From the code above, we get the following results

Grid Size n	m	$\mathbb{E}\left[Y \mid X = 0.5\right]$
50	100	0.26858755239311605
	1000	0.2430165559582972
250	100	0.26221830883887703
	1000	0.2574684284198875
750	100	0.24911899520477043
	1000	0.2687289119332303
1500	100	0.28066283942057557
	1000	0.2622935268454715
3000	100	0.26459162967251004
	1000	0.2716451740382342

e)

We modify the code so that we can use the code directly to calculate the expectation:

```
ni = [50, 250, 750, 1500, 3000]
   for n in ni
3
       x = 0.5
4
       a = -5
       b = 5
       if n <= 1000
            y_grid = collect(range(a, length=n, stop=b));
            newa = a;
9
       elseif n > 1000 \& n <= 2000
10
           nm = 1000;
11
            na=round(Int, (n-nm)/2);
12
            l = (b-a)/(nm-1);
13
            newa = a-l*na;
14
            y_grid = collect(range(newa, step=1, length=n));
15
       else n > 2000
16
           nm = round(Int, n/2);
17
            na=round(Int, (n-nm)/2); l = (b-a)/(nm-1);
18
            newa = a-l*na;
19
            y_grid = collect(range(newa, step=l , length=n));
20
       end
21
       dy = y_grid[3] - y_grid[2]
22
       unnormalized_posterior = Array{Float64, 1}(undef, n)
23
       for i in 1:n
24
            unnormalized_posterior[i] = y_grid[i]
25
                * \exp(-(x-y_g \operatorname{grid}[i])^2/2) * (1/(1+y_g \operatorname{grid}[i]^2)) * dy
^{26}
       end
27
       C = 1/1.549
28
       println(sum(unnormalized_posterior) * C)
  end
30
```

And we get the result

Grid Size r	$\mathbb{E}\left[Y \mid X = 0.5\right]$
50	0.2661755641372646
250	0.26617525294322397
750	0.26617519291542174
1500	0.26617612339045527
3000	0.26617612339069857