Digital Electronics and Microprocessor Systems (ELEC211)

Dave McIntosh and Valerio Selis

dmc@liverpool.ac.uk

V.Selis@liverpool.ac.uk

Week 03 – Lecture 07 Microprocessor Systems

Question

What values are held in r4, r5 and r15 after the execution of the following?

|--|

Register bank

Register bank

0x00080006

r15 (PC)

Register bank

SUBS r4, r7, r7

r4 holds the value 0x00000000 and Z is set.

BEQ 0x00008006

 zero flag is set therefore load program counter with new value 0x00008006 i.e. skip the instruction at address 0x00008004

ADDS r5, r4, #6

• r5 will hold 0x00000006. $(6_{10} + 0 = 6_{10} = 6_{16})$

The program counter, r15, will hold 0x00008008.

Question

If r5 holds the value 0xFFFFFFF, what happens to the zero and carry flags after each addition in the following programme?

ADDS r4, r5, #0 ;add 0 to r5

ADDS r4, r5, #1 ;add 1 to r5

ADDS r4, r5, #2 ;add 2 to r5

Register bank

r4 0x00112233 r5 0xFFFFFF

ADDS r4, r5, #0

r4

r5

0xFFFFFFFF

0xFFFFFFF

CPSR

After execution

1 0 0 0

Z C Flags

Register bank

CPSR

ADDS r4, r5, #1

r4 **0x0000000**r5 **0xFFFFFF**

CPSR

After execution

0 1 1 0

N Z C V

Flags

Register bank

r4 0x00000000 r5 0xFFFFFF

CPSR

ADDS r4, r5, #2

r4 **0x0000001** r5 **0xFFFFFF**

CPSR

ADDS r4, r5, #0

 r4 holds the value 0xFFFFFFFF and both the zero flag, Z, and the carry flag, C, are cleared.

ADDS r4, r5, #1

 r4 holds the value 0x00000000 and both the zero flag, Z, and the carry flag, C, are set.

ADDS r4, r5, #2

• r4 holds the value 0x0000001, the zero flag, Z, is cleared and the carry flag, C, is set.

Week 03 – Lecture 08 Microprocessor Systems

Question

What is the two's complement of the following numbers in 32 bits?

```
-1,500,000,000_{10} (1,500,000,000<sub>10</sub> = 0x59682F00)

-211_{10} (211<sub>10</sub> = 0x00000D3)

-2017_{10} (2017<sub>10</sub> = 0x000007E1)
```


Original No: 0123456789ABCDEF

Inverted No: FEDCBA9876543210

1st : the positive value is: 1,500,000,000₁₀ or 0x59682F00

2nd: invert all bits 0x59682F00 → 0xA697D0FF

3rd: add 1 to the result:

0xA697D0FF + 1 = 0xA697D100

Result: 0xA697D100 is the 2's complement representation of -1,500,000,000₁₀

Original No: 0123456789ABCDEF

Inverted No: FEDCBA9876543210

 1^{st} : the positive value is: 211_{10} or 0x000000D3

2nd: invert all bits 0x000000D3 → 0xFFFFFEC

3rd: add 1 to the result:

0xFFFFFF2C + 1 = 0xFFFFF2D

Result: 0xFFFFF2D is the 2's complement representation of -211₁₀

Original No: 0123456789ABCDEF

Inverted No: FEDCBA9876543210

1st: the positive value is: 2017₁₀ or 0x000007E1

2nd: invert all bits 0x000007E1 → 0xFFFFF81E

3rd: add 1 to the result:

0xFFFFF81E + 1 = 0xFFFFF81F

Result: 0xFFFFF81F is the 2's complement representation of -2017₁₀

Week 03 – Lecture 09 Microprocessor Systems

??

Question

What value is held in register r4 after the 'add with carry' instruction, ADCS r4, r5, is executed assuming the initial value in register r4 is 0x000000FF (= $+255_{10}$) and the value in r5 is 0xFFFFF00 (= -256_{10}) when

- (i) the carry flag is clear and
- (ii) the carry flag is set?

Answer – carry flag clear

Register bank

r4 0x000000FF r5 0xFFFFF00

CPSR

ADCS r4, r5

r4

0xFFFFFFF

r5

0xFFFFF00

0x 00 00 00 FF + 0x FFFFFF00 + 0 0x FFFFFFF

Answer – carry flag set

Register bank

r4

r5

r4 0x000000FF r5 0xFFFFF00

CPSR

ADCS r4, r5

0x 00 00 00 FF + 0x FFFFF00 + 1 0x 00 00 00 00

Question

What happens to the negative, overflow, zero and carry flags after each addition in the following programme when the value held in r5 is $0x40000000 (= 2^{30} = 1,073,741,824_{10})$

```
ADDS r4, r5, r6 ; r6 := 0x40000000 = 2^{30}
ADDS r4, r5, r6 ; r6 := 0x80000000 = -2^{31}
ADDS r4, r5, r6 ; r6 := 0x00000000 = -2^{30}
```


Adding two positive numbers: overflow into the sign bit and the result is negative.

Adding a positive and a negative number: the result is **negative**.

Adding a positive and a negative number: the result (33 bits) is zero (lower 32 bits) with carry.

Question

What is the IEEE 754 format of the following numbers?

$$-75_{10}$$

$$0.75_{10}$$

-75₁₀ in IEEE 754 format

 $\frac{1^{st}}{1^{st}}$: we need to normalize the number to obtain a $-75_{10} = -1001011_2$ → -1.001011_2 · 2⁶

 2^{nd} : -75_{10} is a negative number so $\mathbf{s} = \mathbf{1}$

 3^{rd} : $n = 127_{10} + 6_{10} = 133_{10} = 10000101_2$

Result: in 32 bit IEEE 754 single precision format

1 10000101 001011000000000000000000

0.75₁₀ in IEEE 754 format

 1^{st} : we need to normalize the number to obtain a $0.75_{10} = 0.11_2 \rightarrow 1.1_2 \cdot 2^{-1}$

 2^{nd} : 0.75₁₀ is a positive number so $\mathbf{s} = \mathbf{0}$

 3^{rd} : $n = 127_{10} + (-1_{10}) = 126_{10} = 011111110_2$

Result: in 32 bit IEEE 754 single precision format

0 01111110 1000000000000000000000000

Binary	convers	sion of 0.	75
0.75	× 2 =	0.5 +	1
0.5	× 2 =	0 +	1