THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE

DEPARTMENT OF AEROSPACE ENGINEERING

Parallelized Particle Swarm Optimization for Minimum-Time Satellite Orientation Maneuvers

Sean Rich Spring 2020

A thesis
submitted in partial fulfillment
of the requirements
for a baccalaureate degree
in Aerospace Engineering
with honors in Aerospace Engineering

Reviewed and approved* by the following:

Robert G. Melton
Professor of Aerospace Engineering
Director of Undergraduate Studies
Thesis Supervisor and Honors Advisor

Amy R. Pritchett
Professor and Head of the Department of Aerospace Engineering
Faculty Reader

*Electronic approvals are on file in the Schreyer Honors College.

Abstract

Abstract abstract abstract. Abstract? Abstract! Abstract...

Table of Contents

Li	st of l	ligures	iv
Li	st of T	ables	v
A	knov	ledgements	vi
No	meno	lature	vii
1	Intr	oduction and Historical Review	1
	1.1	Introduction and Literature Review	2
		1.1.1 Finite Thrust Transfer	2
		1.1.2 Particle Swarm Optimization	2
	1.2	Thesis Outline	3
2	Prol	olem Statement	4
	2.1	Problem Definition	4
	2.2	Canonical Units Definition	7
	2.3	PSO Algorithm	
		2.3.1 General Overview	
		2.3.2 Finite Thrust Arc Implementation	9
	2.4	Reducing Computational Time	
		2.4.1 Problem Selection	
		2.4.2 Parallelization	11
3	Prol	olem Implementation	12
	3.1	Overview	12
	3.2	MATLAB	13
		3.2.1 Integrator	13
		3.2.2 Implementation Details	13
		3.2.3 Thrust Arcs	
		3.2.4 Thrust Angles	13
		3.2.5 Rehyrdration	
	3.3	C++ Single Threaded	
	3.4	C++ Parallelization	14

4	Resu	ults		15
	4.1	Nume	nerical Results	 15
	4.2	Rehyd	ydration Results	 20
	4.3	Speed	edup	 21
		4.3.1	MATLAB	 21
		4.3.2	2 C++ Single Threaded	 22
		4.3.3	C++ OpenMP	 22
5	Con	clusion	ons and Recommendations for Future Work	23
	5.1	Conclu	clusions	 23
	5.2	Recon	ommendations For Future Work	 23
Re	eferen	ices		24

List of Figures

4.1	Numerically computed optimal transfer trajectory, $\beta = 2$	16
4.2	Numerically computed optimal transfer trajectory, $\beta = 10. \dots \dots \dots$	17
4.3	Numerically computed thrust-angle time histories for optimal $\beta = 2$ solutions	18
4.4	Global Best J Value Per Iteration: 100 Particles over 50 iterations	19
4.5	Global Best J Value Per Iteration: 110 Particles over 500 iterations	20

List of Tables

4.1	Rehydration results for a 25% population reset	20
4.2	Rehydration results for a 33% population reset	21
4.3	Rehydration results for a 50% population reset	21
4.4	MATLAB Numerical Results - Wall Clock Time	21
4.5	C++ Single Threaded Speedup Results - Wall Clock Time	22
4.6	OpenMP Speedup Results - Wall Clock Execution Time	22

Acknowledgements

To Mr. Scruffles.

Nomenclature

α_k	Penalty coefficients	f	True anamoly
\bar{J}_{best}	Average global best cost function value	h	Integration step size
_	over multiple algorithm executions	J	Cost function value
ΔJ_{best}	$_{,\%}$ Percent change of J_{avg} for rehydration executions relative to non-rehydration	m	Spacecraft mass
ΔE	Eccentric anamoly change during t_{co}	m_0	Initial spacecraft mass
Δt_1	Thrust arc 2 duration	m_f	Final spacecraft mass
Δt_2	Thrust arc 2 duration	n_{iter}	Iterations to average δ_j over
Δt_{co}	Coasting time interval	$n_{su\%}$	Percent speed-up relative to MATLAB
δ	Thrust pointing angle	$n_{sust\%}$	Percent speed-up relative to C++ single threaded
δ_{Javg}	Average J change over previous n_{iter}		MATLAB execution time
μ_B	Gravitational parameter	n_{su}	C++ execution time
ν_0 , ν_1 ,	ν_2, ν_3 Thrust pointing angle coefficients	r	Spacecraft position
,,,,,	for thrust arc 2	R_1	Initial orbit radius
ξ	Spacecraft angular displacement from the x axis	R_2	Final orbit radius
		T	Spacecraft thrust
$\zeta_0, \zeta_1,$	ζ_2, ζ_3 Thrust pointing angle coefficients for thrust arc 1	t_0	Initial time
a	semi-major axis	t_f	Final time
c	Effective exhaust velocity	v_{θ}	Transverse velocity component
d_k	Error terms	DU	One canonical distance unit
0	Eccentricity	TII	One canonical time unit

Chapter 1 Introduction and Historical Review

1.1 Introduction and Literature Review

1.1.1 Finite Thrust Transfer

Impulsive thrust approximations are used to simplify the computations used in modeling orbital transfers under high-thrust assumptions. More rigorous analysis of orbital transfers, in correspondence with actual spacecraft maneuvers, requires thrust to be finite. Numerous algorithms have been proposed to model these finite thrust arcs. Grund and Pitkin proposed an iterative method for computing the optimal trajectory requiring the impulsive transfer trajectory as an initial solution [1]. Further literature introduces an indirect solution applying optimal control theory using nonlinear programming from an initially guessed solution [2]. Pontani and Conway then proposed a stochastic algorithm, particle swarm optimization, for the computation of the optimal transfer trajectory [3]. The problem was formulated as a system of 11 unknown parameters and modeled with an objective function aimed at minimizing fuel consumption and solution error. This thesis utilizes this problem formation in its further exploration of the finite thrust transfer problem.

1.1.2 Particle Swarm Optimization

Since its introduction in 1995 by Kennedy and Eberhart [4], particle swarm optimization has had numerous implications in various aerospace fields and beyond. The algorithm was originally designed to simulate social behavior within a flock of birds but has since been adapted as a stochastic solution for problems requiring numerical algorithms. Particle swarm optimization consists of a set of possible solutions, referred to as particles, which then explore the solution search space due to computed velocity update parameters. The velocity change of each particle per algorithm iteration depends on the three things: the particle's best historical position, the best historical solution within the entire solution set (referred to as the swarm), and the particle's current velocity. In forming the algorithm in this way, many particle swarm optimization techniques require no prior knowledge of the solution space and do not require the problem to be differentiable.

Particle swarm optimization's nature as a metaheuristic algorithm has lent itself to the application of various problems, including structural design optimization, responsive theater maneuvers, corrosion fatigue, and path-constrained minimal time satellite reorientation [5, 6, 7, 8]. As a stochastic algorithm, however, a global optimal solution within the search space is not guaranteed for every execution of the algorithm. This requires multiple runs of the algorithm and increased computation. As such, significant effort has been devoted to reducing the computational time for this class of algorithms. One proposed such method parallel computation. Various papers detail problem-specific parallel particle swarm optimization implementations and the resulting effect on computation time [9, 10, 11]. In addition to algorithm parallelization, this thesis proposes a particle swarm optimization implementation within C++. This development seeks to reduce computational burden with the finer grain memory control synonymous with lower-level programming languages.

One caveat of particle swarm optimization algorithms is stagnation: a condition in which the swarm converges to a non-optimal solution. The attempt to maintain population diversity has been a research area of interest and has seen various approaches in stagnation determination and correction [12, 13]. This thesis introduces a new concept, dubbed *rehydration*, in which a portion of the pop-

ulation is randomly reset when the population meets the specified stagnation criteria. Analysis of the effect of this *rehydration* on the search for an optimal solution is explored and presented.

1.2 Thesis Outline

Chapter 2 of this thesis defines the finite thrust transfer problem to be analyzed. This chapter introduces the development of the problem and the particle swarm optimization method designed to explore its solutions. Additionally, this chapter details the generalized paralellized particle swarm optimization algorithm. Chapter 3 then delves into the problem-specific implementations within MATLAB and C++. Included within this chapter are details on the parallelized C++ version of the algorithm. Chapter 4 then details the results of these implementations, including speedup comparisons and methods to greater improve the probability of the algorithm approaching an optimal solution. Finally, chapter 5 explores draws conclusions from these results and offers recommendations for future research.

Chapter 2

Problem Statement

2.1 Problem Definition

This thesis analyzes the optimal finite thrust transfer between two circular orbits. A PSO approach is utilized to attempt to find and optimal solution. The development of this problem is derived from [3].

This transfer is developed with respect to an initial circular orbit of radius R_1 and a final circular orbit of radius R_2 subject to the conditions $R_1 > R_2$ where the parameter $\beta = R_2/R_1 > 1$. The inertial reference frame selected for this problem definition is centered at the attracting body. The corresponding coordinate frame definition is as follows: The x axis is aligned with the spacecraft at the initial time t_0 and the y axis is located in the orbital plane. The z axis is determined by the right hand rule of these two basis axes. Within this problem v_r denotes the spacecraft radial velocity, v_θ the horizontal component of velocity, r the radius, and ζ the angular displacement from the x axis. The gravitational parameter of the attracting body is μ_B .

Initial conditions at time t_0 are given by

$$v_r(t_0) = 0$$
 $v_\theta(t_0) = \sqrt{\mu_B/R_1}$ $r(t_0) = R_1$ $\xi(t_0) = 0$ (2.1)

And final conditions given by

$$v_r(t_f) = 0$$
 $v_\theta(t_f) = \sqrt{\mu_B/R_2}$ $r(t_f) = R_2$ (2.2)

The problem assumes a transfer trajectory of an initial thrust arc, followed by a coasting arc, and ending with a second thrust arc. Optimization of this problem corresponds to determining the

thrust pointing angle function corresponding to the minimization of propellant consumption subject to the constraints of Eq. (2.2).

Additional assumptions are made to simplify the analysis:

- 1. Throughout the duration of each thrust arc maximum thrust is generated
- 2. Each thrust arc pointing angle is represented as a third-degree polynomial as a function of time.

T and c are used to represent the spacecraft thrust level and effective exhaust velocity respectively. The previous assumptions indicate that the thrust-to-mass ratio has the form

$$\frac{T}{m} = \begin{cases}
\frac{T}{m_0 - \frac{T}{c}t} = \frac{cn_0}{c - n_0 t} & 0 \le t \le t_1 \\
0 & t_1 \le t \le t_2 \\
\frac{T}{m_0 - \frac{T}{c}(t_1 + t - t_2)} = \frac{cn_0}{c - n_0(t_1 + t - t_2)} & t_2 \le t \le t_f
\end{cases}$$
(2.3)

 m_0 is the initial spacecraft mass and n_0 is the initial thrust to mass ratio at t_0 . The state space equations of motion for the spacecraft are

$$\dot{v} = -\frac{\mu_B - rv_\theta^2}{r^2} + \frac{T}{m}\sin\delta\tag{2.4}$$

$$\dot{v_{\theta}} = -\frac{v_r v_{\theta}}{r} + \frac{T}{m} \cos \delta \tag{2.5}$$

$$\dot{r} = v_r \tag{2.6}$$

$$\dot{\xi} = \frac{v_{\theta}}{r} \tag{2.7}$$

where $\frac{T}{m}$ is given in E.q.(2.3) and δ is the thrust pointing angle represent by a third-order polynomial of time. The state vector used in this problem is $[x_1 \ x_2 \ x_3 \ x_4]^T = [v_r \ v_\theta \ r \ \xi]^T$.

The thurst pointing angle δ is defined as

$$\delta = \begin{cases} \zeta_0 + \zeta_1 t + \zeta_2 t^2 + \zeta_3 t^3 & 0 \le t \le t_1 \\ \nu_0 + \nu_1 (t - t_2) + \nu_2 (t - t_2)^2 + \nu_3 (t - t_3)^3 & t_2 \le t \le t_f \end{cases}$$
(2.8)

The optimum thrust pointing angle coefficients $\{\zeta_0 \ \zeta_1 \ \zeta_2 \ \zeta_3\}$ and $\{\nu_0 \ \nu_1 \ \nu_2 \ \nu_3\}$ are determined by PSO.

During the coasting arc the problem consists of a Keplerian orbit. As such, the semimajor axis a and eccentricity e of the coasting arc can be computed as

$$a = \frac{\mu_B r_1}{2\mu_B - r_1(v_{r1}^2 + v_{\theta_1}^2)}$$
 (2.9)

$$e = \sqrt{1 - \frac{r_1^2 v_{\theta_1}^2}{\mu_B a}} \tag{2.10}$$

Provided that the orbit is elliptic (a > 0) the true anomaly at $t_1(f_1)$ can be computed as

$$\sin f_1 = \frac{v_{r1}}{e} \sqrt{\frac{a(1-e^2)}{\mu_B}}$$
 and $\cos f_1 = \frac{v_{\theta_1}}{e} \sqrt{\frac{a(1-e^2)}{\mu_B}} - \frac{1}{e}$ (2.11)

and the eccentric anomaly E_1 as

$$\sin E_1 = \frac{\sin f_1 \sqrt{1 - e^2}}{1 + e \cos f_1}$$
 and $\cos E_1 = \frac{\cos f_1 + e}{1 + e \cos f_1}$ (2.12)

The PSO parameter ΔE represents the variation in eccentric anomaly througout the coasting arc. Therefore, the eccentric enomaly at t_2 is $E_2 = E_1 + \Delta E$. True anamoly can be thus determined utilizing the results of Eq. (2.12)

$$\sin f_2 = \frac{\sin E_2 \sqrt{1 - e^2}}{1 - e \cos E_2}$$
 and $\cos f_2 = \frac{\cos E_2 - e}{1 - e \cos E_2}$ (2.13)

Furthermore, the coasting time interval t_{co} can be calculated through Kepler's law as

$$t_{co} \stackrel{\Delta}{=} t_2 - t_1 = \sqrt{\frac{a^3}{\mu_B}} [E_2 - E_1 - e(\sin E_2 - \sin E_1)]$$
 (2.14)

The results from Eqs. (2.9, 2.10, and 2.13) provide the initial conditions required to numerical integrate the spacecraft equations of motion for the second thrust arc beginning at time t_2 . These initial conditions for the second thrust arc are computed as

$$v_{r_2} = \sqrt{\frac{\mu_B}{a(1 - e^2)}} e \sin f_2 \tag{2.15}$$

$$v_{\theta 2} = \sqrt{\frac{\mu_B}{a(1 - e^2)}} (1 + e\cos f_2) \tag{2.16}$$

$$r_2 = \frac{a(1 - e^2)}{1 + e\cos f_2} \tag{2.17}$$

$$\xi_2 = \xi_1 + (f_2 - f_1) \tag{2.18}$$

Integrating the second thrust arc with these initial conditions over the second thrust arc time duration with yield the final orbital characteristics.

This system depends on the eight coefficients representing the thrust pointing angles of the first and second thrust arcs, $\{\zeta_0 \ \zeta_1 \ \zeta_2 \ \zeta_3\}$ and $\{\nu_0 \ \nu_1 \ \nu_2 \ \nu_3\}$ respectively, and the time intervals for the

first coast arc $\Delta t_1 \stackrel{\Delta}{=} t_1$, the coasting arc, Δt_{co} , and the second coast arc $\Delta t_2 \stackrel{\Delta}{=} t_f - t_2$. These 11 unknowns are sought to be chosen to minimize the objective function

$$J = \Delta t_1 + \Delta t_2 \tag{2.19}$$

Optimizing the unknown coefficients to minimize 2.19 corresponds to the minimization of propellant consumption. Minimizing propellant consumption results in a maximization of the final-to-initial mass ratio given by

$$\frac{m_f}{m_0} = \frac{m_0 - \frac{T}{c}\Delta t_1 - \frac{T}{c}\Delta t_2}{m_0} = 1 - \frac{n_0}{c}(\Delta t_1 + \Delta t_2)$$
 (2.20)

The coasting arc is required to be elliptic, therefore any particles with $a \le 0$ are assigned an infinite value.

Since Δt_{co} can be computed using ΔE , the eccentric anomaly variation replaces the coasting time interval in the problem's 11 unkown parameters. Each particle in the swarm thus consists of the following

$$\chi = \begin{bmatrix} \zeta_0 & \zeta_1 & \zeta_2 & \zeta_3 & \nu_0 & \nu_1 & \nu_2 & \nu_3 & \Delta t_1 & \Delta E & \Delta t_2 \end{bmatrix}^T \tag{2.21}$$

To enforce the constraints set forth in Eq. (2.2) three penalty terms are added to the objective function Eq. (2.19).

$$\tilde{J} = \Delta t_1 + \Delta t_2 + \sum_{k=1}^{3} \alpha_k |d_k|$$
 (2.22)

where

$$d_1 = v_r(t_f)$$
 $d_2 = v_\theta(t_f) - \sqrt{\frac{\mu_B}{R_2}}$ $d_3 = r(t_f) - R_2$ (2.23)

A maximum acceptable error of 10^{-3} is used and the α_k coefficients assigned as

$$\alpha_k = \begin{cases} 100 & |d_k| > 10^{-3} \\ 0 & |d_k| < 10^{-3} \end{cases}$$
 (2.24)

2.2 Canonical Units Definition

This problem employs a canonical set of units to simplify the analysis. One distance unit (DU) is defined as the radius of the initial orbit, and one time unit (TU) definted such that $\mu_B = 1 \frac{DU^3}{TU^2}$. The unknown coefficients are thus sought within the following ranges

$$0 \ TU \le t_1 \le 3 \ TU \quad 0 \le \Delta E \le 2\pi \quad 0 \ TU \le \Delta t_2 \le 3 \ TU -1 \le \xi_k \le 1 \quad -1 \le \nu_k \le 1 \quad (k = 0, 1, 2, 3)$$
 (2.25)

The effective exhaust velocity c is set to $0.5 \frac{DU}{TU^2}$ and the initial thrust-to-mass ratio set to $0.2 \frac{DU}{TU^2}$.

2.3 PSO Algorithm

2.3.1 General Overview

Particle Swarm Optimization is a class of algorithm that employs statistical methods to attempt to locate optimal solutions that minimize an objective function, often denoted J, in the global search space. The algorithm was originally designed to model the behavior of flocks of birds or schools of fish but has been adapted to solve a variety of mathematical problems. PSO is an effective method in scenarios where no analytical solution can be found and the optimal solution is unknown.

The potential solutions for PSO algorithms exist within an n dimensional space where n represents the number of unknown parameter values. Within this n dimensional space there is likely to be a variety of local minima in which the swarm, and thus solution, may converge on. As such, one is not guaranteed to find an optimal solution to a problem with a PSO algorithm. Indeed, in many cases it is impossible to know what the true global optimum is. This requires running the algorithm many times to increase the probability of finding a near-optimum solution. For many problems, this may require large computational efforts and extensive time. Reducing the time required for the execution of PSO algorithms allows more runs in a shorter duration, thus probabilistic increasing the chance of a near-optimal solution quicker. This opportunity was one of the core concepts explored within this thesis.

The algorithm consists of a swarm of particles, each initially containing randomly assigned values in the search space for each unknown parameter. These parameter values are referred to as a particles position, with each parameter also having a corresponding velocity. A given number of iterations is set, each in which each particle is evaluated for its fitness as defined by the objective function J. Following each iteration, each of the particles' parameters' position is updated with its velocity terms, and velocity updated based on a variety of factors

- 1. How far each of the particle's parameters differs from the global best particle ever recorded's parameters
- 2. How far each of the particle's parameters differs from the parameters of its historical personal best values
- 3. Its current velocity, where velocity refers to the rate of change of a particle's position in the search space per iteration

This process continues for the set number of iterations. The global best particle, i.e. set of unknown parameters, found within the PSO algorithm is thus the solution. Psuedocode for the algorithm is as follows

Algorithm 1 General PSO Algorithm

```
Set Lower and Upper bounds on position and velocity
for particle in Swarm do
  Assign initial position values for each particle
end for
for iteration in Num Iterations do
  for particle in Swarm do
    Evaluate objective function J
  end for
  Record best set of parameters each particle has achieved \leftarrow pBest
  Record best overall position as global best \leftarrow gBest
  for particle in Swarm do
    Update particle velocity based on pBest, gBest, and current velocity
    if v_i(k) < velocity lower bound then
       v_i(k) = velocity lower bound
    else if v_i(k) > velocity upper bound then
       v_i(k) = velocity upper bound
    end if
    Update particle Position
    if p_i(k) < position lower bound then
       p_i(k) = position lower bound
       v_i(k) = 0
    else if p_i(k) > position upper bound then
       p_i(k) = position upper bound
       v_i(k) = 0
    end if
  end for
end for
Use gBest as solution
```

2.3.2 Finite Thrust Arc Implementation

The Finite Thrust Arc problem explored within this thesis was implemented using the 11 unknown parameters in equation Eq. (2.21) and corresponding objective function Eq. (2.22). Position and velocity bounds for the PSO algorithm are given by Eq. (2.25). Particle position updating uses the standard form

$$p_i = p_i + v_i \tag{2.26}$$

i ranges from 1 to the 11 unknowns.

Velocity updating is implemented as

$$v_i = v_i c_i + c_c (pBest_i - p_i) + c_s (gBest - Pi)$$
(2.27)

where the three accelerator coefficients are defined as

$$c_i = \frac{(1 + rand(0, 1))}{2}$$
 $c_c = 1.49445(rand(0, 1))$ $c_s = 1.49445(rand(0, 1))$ (2.28)

and rand(0, 1) is a uniformly distributed random number generated between 0 and 1.

A detailed look at the main portion of the PSO psuedocode is shown below

Algorithm 2 Main Finite Thrust Transfer PSO Algorithm

```
for iteration in Num Iterations do
  for particle in Swarm do
    Numerically integrate first thrust arc using state-space equations 2.4, 2.5, 2.6, and 2.7
    Compute initial conditions for second thrust arc using equations 2.9, 2.10, and 2.13
    Numerical integrate second thrust arc using state-space equations
    Evaluate J (2.22) numerically integrated second thrust arc values and penalty terms 2.23
    and penalty coefficients 2.24
  end for
  for particle in Swarm do
    Update particle velocity with equation ??
    Check velocity bounds
    Update particle Position with equation 2.26
    Check position bounds
  end for
end for
Use qBest as solution
```

2.4 Reducing Computational Time

2.4.1 Problem Selection

The finite thrust arc problem explored within this thesis was chosen as a benchmark as a PSO algorithm requiring lots of computational resources. Particles within this problem require lots of execution time for two main reasons

- 1. Each particle requires two numerical integrations, one for the initial thrust arc and one for the second
- 2. Many potential solutions within the global search space do not converge during these numerical integrations. This drastically reduces integrations integration step sizes in an attempt to meet the specified integration tolerances, massively increasing the computational complexity.

Additionally, this problem required a non-trivial 11 unknowns. This broad 11 dimensional search space necessitates a comparatively large swarm population size in the search for optimal

values. This combination of individual particles requiring lots of execution with the desired swarm population size makes the problem explored within this thesis was sufficient in evaluating potential speedup methods.

2.4.2 Parallelization

The conditions referenced within section 2.4.1 make the finite thrust transfer problem a good candidate for parallelization. Within each iteration, each particle is evaluated for its value of the objective function J. This contains the computationally heavy numerical integrations. Within this section of the PSO algorithm, each particle is evaluated independently. As such, parallel processing can be used to evaluate multiple particles within the swarm simultaneously. Only after each iteration is complete and position and velocity updating occurs do the particles become dependent on each others' results. Since the updating portion of the algorithm is not computationally expensive, a large potential benefit can be gained from paralellizing the inter-iteration computations. A simplified version of the parallelized algorithm is shown below.

Algorithm 3 Simplified parallel PSO Implementation

 $\begin{array}{c} \textbf{for iteration in Num Iterations do} \\ \textbf{for particle in Swarm do} \\ \textbf{Evaluate objective function } J \\ \textbf{end for} \\ \textbf{Update particle velocity based on } pBest, gBest, \text{ and current velocity} \\ \textbf{Update particle position} \\ \textbf{end for} \\ \end{array} \right\}$

Chapter 3

Problem Implementation

3.1 Overview

The finite thrust arc problem consists of 11 unknowns and requires two numerical integrations for each solution candidate within the particle swarm. Additionally, it necessitates a high absolute and relative tolerance when integrated with variable step sized integrators. These components serve to make this problem a suitable benchmark for the performance of different implementations of the particle swarm optimization algorithm.

To maintain consistency between different implementation targets, the numerical integration algorithm, absolute and relative tolerance values, and minimum step size constraints were held constant. All implementations employed a fifth order Runge-Kutta Dormand Prince variable step size integrator throughout both thrust arcs. The tolerances were defined as

$$AbsTol = 10^{-9}$$
 and $RelTol = 10^{-9}$ (3.1)

And the minimum step sized as

$$h_{min} = 7.105427 * 10^{-15} (3.2)$$

Execution time was measured as wall-clock time (CPU time was not recorded) and was computed from swarm initialization to algorithm completion. File operations were not included within this measurement.

The problem was benchmarked using the $\beta=2$ case with various swarm sizes and iteration numbers. Results from this benchmarking can be seen in (4.4, 4.5, 4.6). Unless otherwise specified, all data within this thesis was computed as the average of 30 algorithm executions held constant

at the given parameters. Numerical analysis was additionally performed on the $\beta=4,6,8$ and 10 cases, though these solutions were not benchmarked for execution time.

3.2 MATLAB

3.2.1 Integrator

MATLAB implements a fifth order Runge-Kutta Dormand Prince variable step sized integrator with the native ODE45 function. ODE45 defaults to a minimum step size of h_{min} as given in Eq. (3.2). Additionally, ODE45 presents configuration options for both AbsTol and RelTol, utilizing the larger (less-strict) of the two values. Integrations for both thrust arcs were configured utilizing the values given in Eq. (3.1).

3.2.2 Implementation Details

As a stochastic algorithm, particle swarm optimization requires uniformly distributed random numbers to update particle velocities and explore the search space. MATLAB provides a rand function to generate uniformly distributed psuedo-random numbers. These numbers were then used to compute velocity accelerator coefficients as given by Eq. (2.28). Solutions were computed using the default 16 digits of precision. Execution time was measured using the standard MATLAB function tic and toc.

3.2.3 Thrust Arcs

Further analysis of optimal thrust arcs throughout the duration of the orbital transfer was computed within MATLAB. The transfer was broken down into its three distinct components: the first thrust arc, the coasting arc, and the second thrust arc. A set of r and θ values throughout these three durations were joined together and used to create a polar plot of the given particle's transfer solution. Results of these computations can be seen in (4.1).

3.2.4 Thrust Angles

Analysis of the finite thrust transfer problem yields optimal thrust-pointing-angle time history for a given transfer. Utilizing Eq. (2.8) the thrust angle δ is computed for both the first and second thrust arcs. MATLAB is then used to graphically model the thrust angle as a function of various quasi-optimal solutions. These results are seen in (4.3).

3.2.5 Rehyrdration

Rehydration is this thesis' term for the resetting of a percentage of the particle swarm under population stagnation. This method seeks to expand the search space explored throughout the duration of the algorithm in pursuit of an optimal solution. Certain stagnation criteria are defined to aid

in stagnation determination. To quantify population diversity, the algorithm measures the average percentage change of J, deemed δ_J ,

3.3 C++ Single Threaded

Details about Boost libraries, timers, etc. go here

3.4 C++ Parallelization

Details about OpenMP

Chapter 4

Results

4.1 Numerical Results

β	Δt_1	Δt_{co}	Δt_2	J	m_f/m_0	m_f/m_{0h}
2	0.671	5.229	0.411	1.082	0.567062	0.56614
4	1.044	11.834	0.442	1.487	0.405365	0.407642
6	1.178	20.006	0.413	1.59	0.3638	0.368367
8	1.25	24.87	0.403	1.652	0.339164	0.353299
10	1.282	41.08	0.365	1.647	0.34106	0.346603

Figure 4.1: Numerically computed optimal transfer trajectory, $\beta=2$.

Optimal transfer trajectory Beta= 10

Figure 4.2: Numerically computed optimal transfer trajectory, $\beta = 10$.

Figure 4.3: Numerically computed thrust-angle time histories for optimal $\beta = 2$ solutions

Figure 4.4: Global Best J Value Per Iteration: 100 Particles over 50 iterations

Figure 4.5: Global Best J Value Per Iteration: 110 Particles over 500 iterations

4.2 Rehydration Results

25% Rehydration	$\delta_{Javg} < .1\%$		δ_{Javg} <1%		δ_{Javg} <5%	
25 % Itomy drawion	\bar{J}_{best}	$\Delta \bar{J}_{best,\%}$	\bar{J}_{best}	$\Delta \bar{J}_{best,\%}$	\bar{J}_{best}	$\Delta \bar{J}_{best,\%}$
$n_{iter} = 5$	1.347	44.177%	1.54	36.179%	1.438	40.406%
$n_{iter} = 10$	1.421	41.11%	1.379	42.851%	1.594	33.941%
$n_{iter} = 20$	1.331	44.840%	1.652	31.538%	1.503	37.712%

Table 4.1: Rehydration results for a 25% population reset

33% Rehydration	$\delta_{Javg} < .1\%$		δ_{Javg} <1%		δ_{Javg} <5%	
	\bar{J}_{best}	$\Delta \bar{J}_{best,\%}$	\bar{J}_{best}	$\Delta \bar{J}_{best,\%}$	\bar{J}_{best}	$\Delta \bar{J}_{best,\%}$
$n_{iter} = 5$				38.872%		
$n_{iter} = 10$				35.433%		
$n_{iter} = 20$	1.412	41.48%	1.531	36.552%	1.578	34.604%

Table 4.2: Rehydration results for a 33% population reset

50% Rehydration	δ_{Jav}	$_{g}$ < .1%	δ_{Jav}	$_{g}$ <1%	δ_{Jav}	$_{g}$ <5%
	\bar{J}_{best}	$\Delta \bar{J}_{best,\%}$	\bar{J}_{best}	$\Delta \bar{J}_{best,\%}$	\bar{J}_{best}	$\Delta \bar{J}_{best,\%}$
$n_{iter} = 5$	1.58	34.52%	1.469	39.12%	1.425	40.94%
$n_{iter} = 10$	1.396	42.15%	1.306	45.88%	1.473	38.96%
$n_{iter} = 20$	1.373	43.10%	1.39	42.40%	1.33	44.88%

Table 4.3: Rehydration results for a 50% population reset

4.3 Speedup

4.3.1 MATLAB

Num Particles	Num Iterations	Time (s)
25	250	30.527
25	500	39.15
25	1000	68.88
50	250	30.527
50	500	80.4246
50	1000	141.151
100	250	95.956
100	500	152.22
100	1000	306.732
150	250	161.3
150	500	195.87
150	1000	388.03
200	250	157.061
200	500	251.575
200	1000	457.55

Table 4.4: MATLAB Numerical Results - Wall Clock Time

4.3.2 C++ Single Threaded

Num Particles	Num Iterations	Time (s)	$n_{su\%}$	n_{su}
25	250	1.732	94.32633406	17.62528868
25	500	2.39	93.89527458	16.38075314
25	1000	3.92	94.30894309	17.57142857
50	250	2.96	90.30366561	10.31317568
50	500	3.26	95.94651388	24.6701227
50	1000	5.695	95.96531374	24.78507463
100	250	6.659	93.060361	14.40997147
100	500	7.21	95.2634345	21.11234397
100	1000	11.83	96.14321297	25.92831784
150	250	7.26	95.49907006	22.21763085
150	500	12.64	93.54674018	15.4960443
150	1000	16.68	95.7013633	23.26318945
200	250	7.77	95.05287754	20.21377091
200	500	11.423	95.45940574	22.02354898
200	1000	21.06	95.39722435	21.72602089

Table 4.5: C++ Single Threaded Speedup Results - Wall Clock Time

4.3.3 C++ OpenMP

Num Particles	Num Iterations	Time (s)	$n_{su\%}$	$n_{sust\%}$	$\overline{n_{su}}$
25	250	1.78	94.16909621	-2.771362587	17.15
25	500	3.4	91.31545338	-42.25941423	11.51470588
25	1000	5.23	92.40708479	-33.41836735	13.17017208
50	250	2.81	90.7950339	5.067567568	10.86370107
50	500	4.77	94.06897889	-46.3190184	16.86050314
50	1000	8.51	93.9709956	-49.42932397	16.58648649
100	250	5.71	94.04935595	14.2513891	16.80490368
100	500	6.6	95.66417028	8.460471567	23.06363636
100	100	11.73	96.17581472	0.8453085376	26.14936061
150	250	4.92	96.94978301	32.23140496	32.78455285
150	500	9.77	95.01199775	22.7056962	20.04810645
150	1000	13.93	96.41007139	16.48681055	27.85570711
200	250	5.88	96.25623166	24.32432432	26.71105442
200	500	10.46	95.84219418	8.4303598	24.05114723
200	1000	22.42	95.09998907	-6.457739791	20.40811775

Table 4.6: OpenMP Speedup Results - Wall Clock Execution Time

Chapter 5

Conclusions and Recommendations for Future Work

- 5.1 Conclusions
- **5.2** Recommendations For Future Work

References

- [1] EKKEHART GRUND and EDWARD T. PITKIN. Iterative method for calculating optimal finite-thrust orbit transfers. *AIAA Journal*, 10(2):221–223, 1972.
- [2] GUIDO COLASURDO. Optimal finite-thrust spacecraft trajectories.
- [3] Mauro Pontani and Bruce A. Conway. Particle swarm optimization applied to space trajectories. *Journal of Guidance, Control, and Dynamics*, 33(5):1429–1441, 2010.
- [4] J. Kennedy and R. Eberhart. Particle swarm optimization. In *Proceedings of ICNN'95 International Conference on Neural Networks*, volume 4, pages 1942–1948 vol.4, 1995.
- [5] Gerhard Venter and Jaroslaw Sobieszczanski-Sobieski. Particle swarm optimization. *AIAA Journal*, 41(8):1583–1589, 2003.
- [6] Daniel J. Showalter and Jonathan T. Black. Responsive theater maneuvers via particle swarm optimization. *Journal of Spacecraft and Rockets*, 51(6):1976–1985, 2014.
- [7] R. M. Pidaparti and S. Jayanti. Corrosion fatigue through particle swarm optimization. *AIAA Journal*, 41(6):1167–1171, 2003.
- [8] Dario Spiller, Luigi Ansalone, and Fabio Curti. Particle swarm optimization for time-optimal spacecraft reorientation with keep-out cones. *Journal of Guidance, Control, and Dynamics*, 39(2):312–325, 2016.
- [9] Gerhard Venter and Jaroslaw Sobieszczanski-Sobieski. Parallel particle swarm optimization algorithm accelerated by asynchronous evaluations. *Journal of Aerospace Computing, Information, and Communication*, 3(3):123–137, 2006.
- [10] Young Ha Yoon, Jong Kuen Moon, Eun Suk Lee, Seung Jo Kim, and Jin Hee Kim. *Parallel optimal design of satellite bus structures using particle swarm optimization*.
- [11] Petri Kere and Jussi Jalkanen. Parallel Particle Swarm-Based Structural Optimization in a Distributed Grid Computing Environment.
- [12] Weiyang Tong, Souma Chowdhury, and Achille Messac. *Multi-Domain Diversity Preservation to Mitigate Particle Stagnation and Enable Better Pareto Coverage in Mixed-Discrete Particle Swarm Optimization*.
- [13] Souma Chowdhury, Jie Zhang, and Achille Messac. Avoiding Premature Convergence in a Mixed-Discrete Particle Swarm Optimization (MDPSO) Algorithm.