

CALL-BY-NAME, CALL-BY-VALUE, CALL-BY-NEED, AND THE LINEAR LAMBDA CALCULUS

INITIATION À LA RECHERCHE

Quentin Schroeder

MPRI - Université Paris-Cité

MOTIVATION

Some Context

- Every programming language has an evaluation strategy
- · Call by Need is used in Haskell
- Call by Value is used in OCaml

Goal

Study evaluation strategies via the linear lambda calculus

Why?

- found linearity is relevant when studying Call by Need
- · noticed it also applies for other strategies

1

OVERVIEW

- 1. Call by Name, Call by Value
- 2. Linear Lambda Calculus
- 3. Results 1
- 4. Call by Let, Call by Need
- 5. Affine Lambda Calculus
- 6. Results 2
- 7. Conclusion

SIMPLY TYPED LAMBDA CALCULUS (SYNTAX)

Types
$$A, B ::=$$
 basic types $| A \rightarrow B$ Terms $M, N ::= V | M N$ Values $V, W ::= x | \lambda x.t$

Id
$$\overline{x:A \vdash x:A}$$

$$\rightarrow -Intro \frac{\Gamma, X : A \vdash M : B}{\Gamma \vdash \lambda X.M : A \rightarrow B} \rightarrow -Elim \frac{\Gamma \vdash M : A \rightarrow B}{\Gamma, \Delta \vdash M N : B}$$

Call by NameEvaluate the body firstCall by ValueEvaluate the arguments first

CALL BY NAME (EXAMPLE)

Call by Name

$$(\lambda x.x + x) (3+3)$$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$

CALL BY NAME (EXAMPLE)

Call by Name

$$(\lambda x.x + x) (3+3)$$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$
 $(3+3) + (3+3)$

Call by Value

$$(\lambda x.x + x) (3+3)$$
 $(\lambda x.x + x) 6$
 $(\lambda x.x + x) 6$
 $(\lambda x.x + x) 6$
 $(\lambda x.x + x) 12$

LINEAR LAMBDA CALCULUS (TERMS, TYPES)

Types: A, B, C ::=basic types $| !A | A \multimap B$

Terms: L, M, N ::= $x \mid !M \mid let !x = M in N \mid \lambda x.M \mid M N$

Id
$$x:A \vdash x:A$$

Dereliction
$$\frac{\Gamma, x : A \vdash M : B}{\Gamma, !x : !A \vdash M : B}$$

Contraction
$$\frac{\Gamma, !y : !A, !z : !A \vdash M : B}{\Gamma, !x : !A \vdash M[y := x, z := x] : B} \quad \text{Weakening} \quad \frac{\Gamma \vdash M : B}{\Gamma, !x : !A \vdash M : B}$$

Weakening
$$\frac{\Gamma \vdash M : B}{\Gamma, !x : !A \vdash M : B}$$

!-Intro
$$\frac{ !\Gamma \vdash M : A}{ !\Gamma \vdash !M : !A} \quad \text{!-Elim} \quad \frac{ !\Gamma \vdash M : !A \qquad \triangle, !x : !A \vdash N : B}{ \Gamma, \Delta \vdash \text{let } !x = M \text{ in } N : B}$$

$$\Delta, !x : !A \vdash N : B$$

$$\Gamma, \Delta \vdash \text{let } ! x = M \text{ in } N : B$$

LINEAR LAMBDA CALCULUS (REDUCTION RULES)

$$(\beta_{\multimap}) \qquad (\lambda x.M) \ N \rightsquigarrow M[x := N]$$

$$(\beta_!) \qquad \text{let } !x = !M \text{ in } !N \rightsquigarrow N[x := M]$$

$$(! \multimap) \qquad \text{let } !x = L \text{ in } M \text{ } N \rightsquigarrow \text{let } !x = L \text{ in } M \text{ } N$$

$$(!!): \qquad \text{let } !y = \text{let } !x = L \text{ in } M \text{ in } N \rightsquigarrow \text{let } !x = L \text{ in } \text{let } !y = M \text{ in } N$$

INTERPRETING CALL BY NAME

 $(-)^{\circ}$: Call by Name LC \rightarrow Linear LC.

$$Z^{\circ} \equiv Z$$
 ,where Z is a basic type $(A \to B)^{\circ} \equiv (!A^{\circ}) \multimap B^{\circ}$ $x^{\circ} \equiv x$ $(\lambda x.M)^{\circ} \equiv \lambda y. let ! x = y in M$ $(M N)^{\circ} \equiv M^{\circ} ! N^{\circ}$ $(x_1 : A_1, \ldots, x_n : A_n)^{\circ} \equiv !x_1 : A_1^{\circ}, \ldots, !x_n : A_n^{\circ}$

INTERPRETING CALL BY VALUE

 $(-)^*$: Call by Value LC \rightarrow Linear LC

$$Z^+\equiv Z$$
 ,where Z is a basic type $A^*\equiv !A^+$ $(A\to B)^+\equiv A^*\multimap B^*$ $V^*\equiv !V^+$,where Z is a Value type $x^+\equiv x$ $(\lambda x.M)^+\equiv \lambda y. let \ !x=y \ in \ M^*$ $(M\ N)^*\equiv (let \ !z=M^*\ in\ z)\ N^*$ $(x_1:A_1,\ldots,x_n:A_n)^*\equiv !x_1:!A_1^+,\ldots,!x_n:!A_n^+$

Definitions

- · Confluence: we have normal forms
- Subject reduction: typed terms reduce to typed terms

Translations

- $(-)^*$ and $(-)^\circ$ are sound and preserve types
- $(-)^*$ and $(-)^\circ$ preserve reductions

Results

- Linear LC satisfies confluence and subject reduction
- Translations let us transfer these results

9

CALL BY LET LC (TYPES, TERMS)

Types : A, B, C ::=basic types $| A \rightarrow B |$

Terms: $L, M, N ::= V \mid M \mid N \mid \text{let } x = M \text{ in } N$

Values : $V, W ::= x \mid \lambda x.t$

$$\operatorname{Id} \frac{}{x:A \vdash x:A} \quad \operatorname{Let} \frac{\Gamma \vdash M:A \qquad \Gamma, x:A \vdash N:B}{\Gamma, \Delta \vdash \operatorname{let} x = M \text{ in } N:B}$$

$$\frac{\Gamma, y: A, z: A \to M: B}{\Gamma, x: A \vdash M[y:=x, z:=x]: B} \qquad \text{Weakening } \frac{\Gamma \vdash M: B}{\Gamma, x: A \vdash M: B}$$

$$\rightarrow -Intro \frac{\Gamma, X: A \vdash M: B}{\Gamma \vdash \lambda X.M: A \rightarrow B} \rightarrow -Elim \frac{\Gamma \vdash M: A \rightarrow B}{\Gamma, \Delta \vdash M: B}$$

CALL BY LET REDUCTIONS

- (I) $(\lambda x.M) N \rightsquigarrow \text{let } x = N \text{ in } M$
- (V) let x = V in $N \rightsquigarrow N[x := V]$, where V is a value
- (C) (let x = L in M) $N \rightsquigarrow let <math>x = L$ in (M N)
- (A) let $x = (\text{let } y = L \text{ in } M) \text{ in } N \leadsto \text{let } x = L \text{ in } (\text{let } y = M \text{ in } N)$

CALL BY NEED (LAZY EVALUATION)

Types: A, B, C ::= basic types $\mid A \rightarrow B$

Terms: $L, M, N ::= V \mid M \mid N \mid let x = M in N$

Values : $V, W ::= x \mid \lambda x.t$

$$\operatorname{Id} \frac{}{x:A \vdash x:A} \quad \operatorname{Let} \frac{\Gamma \vdash M:A \qquad \Gamma, x:A \vdash N:B}{\Gamma, \Delta \vdash \operatorname{let} x = M \text{ in } N:B}$$

Contraction
$$\frac{\Gamma, y: A, z: A \vdash M: B}{\Gamma, x: A \vdash M[y:=x,z:=x]: B} \qquad \text{Weakening } \frac{\Gamma \vdash M: B}{\Gamma, x: A \vdash M: B}$$

Weakening
$$\frac{\Gamma \vdash M : B}{\Gamma, x : A \vdash M : B}$$

$$\rightarrow -Intro \frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x.M : A \rightarrow B}$$

$$\rightarrow -Intro \frac{\Gamma, X : A \vdash M : B}{\Gamma \vdash \lambda X.M : A \rightarrow B} \rightarrow -Elim \frac{\Gamma \vdash M : A \rightarrow B}{\Gamma, \Delta \vdash M N : B}$$

CALL BY NEED REDUCTIONS

- (I) $(\lambda x.M) N \rightsquigarrow \text{let } x = N \text{ in } M$
- (V) let x = V in $N \rightsquigarrow N[x := M]$, where V is a value
- (C) (let x = L in M) $N \rightsquigarrow let <math>x = L$ in (M N)
- (A) let $x = (\text{let } y = L \text{ in } M) \text{ in } N \leadsto \text{let } x = L \text{ in } (\text{let } y = M \text{ in } N)$
- **(G)** let x = M in $N \rightsquigarrow N$ if x not free in N

AFFINE LAMBDA CALCULUS (SYNTAX)

Types: A, B, C ::=basic types $| !A | A \multimap A$

Terms: $L, M, N ::= x \mid !M \mid let !x = M in N \mid \lambda x.M \mid M N$

$$\text{Id} \ \overline{x:A \vdash x:A} \qquad \text{Dereliction} \ \overline{\frac{\Gamma,x:A \vdash M:B}{\Gamma,!x:!A \vdash M:B}}$$

$$\frac{\Gamma, !y : !A, !z : !A \vdash M : B}{\Gamma, !x : !A \vdash M[y := x, z := x] : B} \quad \textit{Weakening}_{\textit{Aff}} \quad \frac{\Gamma \vdash M : B}{\Gamma, x : A \vdash M : B}$$

!-Intro
$$\frac{ !\Gamma \vdash M : A}{ !\Gamma \vdash !M : !A} \qquad \text{!-Elim} \quad \frac{ !\Gamma \vdash M : !A \qquad \triangle, !x : !A \vdash N : B}{ \Gamma, \Delta \vdash \text{let } !x = M \text{ in } N : B}$$

REDUCTION FOR AFFINE LC

- $(\beta_{\multimap}): (\lambda x.M) \ N \rightsquigarrow M[x := N]$
- $(\beta_!)$: let !x = !M in $!N \rightsquigarrow N[x := M]$
- $(! \multimap)$: let !x = L in M $N \leadsto let <math>!x = L$ in M N
- (!!): let $!y = let !x = L in M in N \rightsquigarrow let !x = L in let !y = M in N$
- (!Weakening): let !x = M in $N \rightsquigarrow N$ if x not free in N

INTERPRETING CALL BY LET

 $(-)^{*let}$: Call By Let LC \rightarrow Linear LC

$$Z^{+let} \equiv Z \quad \text{,where Z is a basic type}$$

$$A^{*let} \equiv !A^{+let}$$

$$(A \rightarrow B)^{+let} \equiv A^{*let} \multimap B^{*let}$$

$$V^{*let} \equiv !V^{+let} \quad \text{,where Z is a Value type}$$

$$x^{+let} \equiv x$$

$$(\lambda x.M)^{+let} \equiv \lambda y.\text{let } !x = y \text{ in } M^{*let}$$

$$(M N)^{*let} \equiv (\text{let } !z = M^{*let} \text{ in } z) N^{*let}$$

$$(\text{let } x = M \text{ in } N)^{*let} \equiv \text{let } !x = M^{*let} \text{ in } N^{*let}$$

$$(x_1 : A_1, \dots, x_n : A_n)^{*let} \equiv !x_1 : !A_1^{+let}, \dots, !x_n : !A_n^{+let}$$

INTERPRETING CALL BY NEED

 $(-)^*$ Call by Need LC \rightarrow **Affine LC**

$$Z^{+need} \equiv Z$$
 ,where Z is a basic type $A^{*need} \equiv !A^{+need}$ $(A \rightarrow B)^{+need} \equiv A^{*need} \multimap B^{*need}$ $V^{*need} \equiv !V^{+need}$,where Z is a Value type $X^{+need} \equiv X$ $(\lambda x.M)^{+need} \equiv \lambda y.$ let $!x = y$ in M^{*need} $(M N)^{*need} \equiv (\text{let } !z = M^{*need} \text{ in } z) N^{*need}$ $(\text{let } x = M \text{ in } N)^{*need} \equiv \text{let } !x = M^{*need} \text{ in } N^{*need}$ $(X_1 : A_1, \dots, X_n : A_n)^{*need} \equiv !x_1 : !A_1^{+need}, \dots, !x_n : !A_n^{+need}$

Note

Observationally equivalent = cannot distinguish via results

Translations

- $(-)^{*let}$ and $(-)^{*need}$ are sound and preserve types
- $(-)^{*let}$ and $(-)^{*need}$ preserve reductions

Results

· Affine LC satisfies confluence and subject reduction

Note

Observationally equivalent = cannot distinguish via results

Translations

- $(-)^{*let}$ and $(-)^{*need}$ are sound and preserve types
- $(-)^{*let}$ and $(-)^{*need}$ preserve reductions

- Affine LC satisfies confluence and subject reduction
- · Translations let us transfer these results

Note

Observationally equivalent = cannot distinguish via results

Translations

- $(-)^{*let}$ and $(-)^{*need}$ are sound and preserve types
- $(-)^{*let}$ and $(-)^{*need}$ preserve reductions

- Affine LC satisfies confluence and subject reduction
- · Translations let us transfer these results
- Call by Let LC conservatively extends the linear lambda calculus

Note

Observationally equivalent = cannot distinguish via results

Translations

- $(-)^{*let}$ and $(-)^{*need}$ are sound and preserve types
- $(-)^{*let}$ and $(-)^{*need}$ preserve reductions

- Affine LC satisfies confluence and subject reduction
- Translations let us transfer these results
- Call by Let LC conservatively extends the linear lambda calculus
- Call by Let LC is observationally equivalent to Call by Value LC

Note

Observationally equivalent = cannot distinguish via results

Translations

- $(-)^{*let}$ and $(-)^{*need}$ are sound and preserve types
- $(-)^{*let}$ and $(-)^{*need}$ preserve reductions

- Affine LC satisfies confluence and subject reduction
- Translations let us transfer these results
- Call by Let LC conservatively extends the linear lambda calculus
- Call by Let LC is observationally equivalent to Call by Value LC
- Call by Need LC is observationally equivalent to Call by Name LC

CONCLUSION

Summary

Linear LC is a good model for studying evaluation strategies

CONCLUSION

Summary

Linear LC is a good model for studying evaluation strategies

Future Work

- Product Types
- · Sum Types (hard)
- Constants
- Recursion (very hard)
- eta rules (very hard)
- equality (very hard)

REFERENCES I

[MOTW95]

John Maraist, Martin Odersky, David N. Turner, and Philip Wadler, Call-by-name, Call-by-value, Call-by-need, and the Linear Lambda Calculus, Electron. Notes Theor. Comput. Sci. **1** (1995), 370–392.