

U.S. DEPARTMENT OF COMMERCE National Technical Information Service

AD-A034 201

A STUDY OF VARIOUS SLENDER AND NON-SLENDER FIN-BODY COMBINATIONS OF MISSILE CONFIGURATIONS

ARMY MISSILE RESEARCH, DEVELOPMENT AND ENGINEERING LABORATORY
REDSTONE ARSENAL, ALABAMA

12 NOVEMBER 1976

TECHNICAL REPORT RD-CR-76-5

A STUDY OF VARIOUS SLENDER AND NON-SLENDER FIN-BODY COMBINATIONS OF MISSILE CONFIGURATIONS

N. Uchiyama and J. M. Wu The University of Tennessee Space Institute Tullahoma, Tennessee

12 November 1976

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

U.S. ARMY MISSILE COMMAND

Redstone Arsenal, Alabama 35809

Prepared for:

Aeroballistics Directorate
US Army Missile Research, Development
and Engineering Laboratory
US Army Missile Command
Redstone Arsenal, Alabama 35809

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U. S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

person sully legible reproduction

DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

RD-CR-76-5 TITLE (and Subtitle) A STUDY OF VARIOUS SLENDER AND NON-SLENDER FIN-BODY COMBINATIONS OF MISSILE CONFIGURATIONS	5. TYPE OF REPORT & PERIOD COVERED Technical Report 6. PERFORMING ORG. REPORT NUMBER
A STUDY OF VARIOUS SLENDER AND NON-SLENDER	Technical Report
A STUDY OF VARIOUS SLENDER AND NON-SLENDER	Technical Report
FIN-BODY COMBINATIONS OF MISSILE CONFIGURATIONS	6. PERFORMING ORG. REPORT NUMBER
. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(*)
N. Uchiyama and J. M. Wu	
Commander, US Army Missile Command Attn: DRSMI-RD Redstone Arsenal, Alabama 35809	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
1. CONTROLLING OFFICE NAME AND ADDRESS Commander, US Army Missile Command	12. REPORT DATE 12 November 1976
Attn: DRSMI-RPR Redstone Arsenal, Alabama 35809	13. NUMBER OF PAGES 194
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Reproduced from best available copy.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Rectangular and Constant Chord Sweptback Fins Clipped Delta Fin Slender Fin-Body Combination Singularity Method

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The aerodynamic loading on a number of rocket body-control surface combinations has been calculated using methods developed at the University of Tennessee Space Institute over the past five years. Variations in control surface planform, roll angle, control surface deflection or incorporation of elevons, are included. Compressibility is accounted for. Details of the digital computer program are included.

DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

CONTENTS

			Page
SECTION	I. INTRO	DUCTION	1
SECTION	II. BASI	C ANALYSIS	2
	1.	Basic Consideration	2
	2.	Basic Equations and Coordinates	5
SECTION		ULTS AND DISCUSSIONS ON VARIOUS	15
	1.	Rectangular and Constant Chord Sweptback Fins	15
	2.	Compressibility Effect on Pressure Coefficient of	
	•	Rectangular Fins	18
	3.	Clipped Delta Fin	18
SECTION		LTS AND DISCUSSIONS ON VARIOUS BODY COMBINATIONS	24
	1.	Rectangular Fin-Body Combination	24
	2.	Constant Chord Sweptback Fin- Body Combination	28
	3.	Tapered, Sweptback Fin-Body Combination	32
	4.	Cruciform, Slender Delta Fin- Body Combination	32
	5.	Discussions on Compressible Effect of Fin-Body Combination	37
	6.	Effect of Small Control Fin on Slender Fin-Body Combination	42
SECTION	V. KOERNE	R'S APPROACH COMPARED WITH OTHER DS AND DATA	
	1.	Comparison with Slender-Body	44
		Theory	44
	2.	Comparisons with FLEXSTAB Singularity Distribution Method and Data	48
SECTION	WITH	ARISONS OF POTENTIAL FLOW THEORIES DATA ON SLENDER CRUCIFORM CLIPPED A FIN-BODY WITH ELEVON DEFLECTION	70
	1.	Results and Discussions on Various Effects of the Elevon Deflection on Fin-Body Combination	70
	2.	Comparison with Experimental Data	85

ge
2
5
5
3
3
3

LIST OF SYMBOLS

- Body radius, location of the fin corner in a x-direction (see Figure 2).
- Aspect ratio of fin extended into the body. AR
- Fin span, location of the fin corner in b y-direction (see Figure 2).
- Local chord. C
- Reference chord $\left(=\frac{1}{5}\int_{-5}^{5}c^{2}(y)dy\right)$. Ĉ
- Lift coefficient based on S. C_{T.}
- Derivative of lift coefficient lift curve slope; $= \left(\frac{\partial C_L}{\partial \alpha}\right)_{\alpha} = 0$ based on S.
- Normal force coefficient based on S. C_N
- Spanwise normal force distribution (see Figure 34). C_n
- Derivative of normal coefficient | normal force slope; $C_{N\alpha}$ $= \left(\frac{\partial C_N}{\partial \alpha}\right)_{\alpha} = 0$ based on S.
- Surface pressure coefficient.
- Surface pressure difference $= (C_p)_{lower} (C_p)_{upper}$
- d Fractional location of local panel in x-direction (see Figure 2).
- D Body diameter.
- Location of local panel in y-direction (see Figure 2). e
- Half width of local fin panel (see Figure 3). h
- 1(y)Local chord at y.
- LPC Local panel chord (see Figure 3).
- Number of half body panels. M
- Free stream Mach number. M
- Total number of half fin panels. n

- p Total number of panels on fin-body combination (=2n+2M).
- \bar{p} Aerodynamic matrix (= u/U_{∞} per unit γ).
- $\Delta p/q$ Load distribution (= ΔC_p).
- q Strength of source per unit body surface area.
- Aerodynamic matrix $(v/U_{\infty} \text{ per unit } \gamma)$.
- r Distance between two points.
- \bar{R} Aerodynamic matrix (w/U_{∞} per unit γ).
- s Fin semi span.
- S Fin surface area extended into body.
- ΔS Local panel area.
- u Perturbation velocity component in x-direction.
- U Free stream velocity.
- v Perturbation velocity component in y-direction.
- w Perturbation velocity component in z-direction.
- W Velocity vector.
- x Body fixed x-coordinate parallel to free stream, positive downstream.
- y Body fixed y-coordinate in the spanwise direction of a fin, positive in right hand side direction facing forward.
- z Body fixed z-coordinate, positive upward.
- Zo Fin location in z-direction mounted on the body.
- α Angle of attack.
- β Prandtl-Glauert parameter (= $\sqrt{1-M_{\infty}^2}$).
- γ Circulation strength of fin vortex.

- r Circulation of fin vortex.
- δ Cant angle of fin, deflection angle of flap or elevon.
- Azimuth angle of body, positive counterclockwise facing forward (see Figure 4)
- Azimuth angle of body, positive clockwise facing forward (see Figure 13b).
- λ Gradient of bound vortex, (see Figure 3), taper ratio.
- A Sweptback angle at specified chordwise position.
- ω Apparent angle of attack.
- ρ* Distance between two points.

Subscripts

- b Body
- B Due to bound vortex (see Appendix 1).
- D Control point on panel (see Figure 3).
- e Elevon.
- f Fin.
- F Flap.
- i,j,k,
 1,m,q,
 Local panel name.
- n Normal to body surface.
- P Due to port side vortex (see Appendix 1).
- S Due to starboard side vortex (see Appendix 1).
- t Tangential to body surface.
- V Bound vortex (see Figure 3).

SECTION 1. INTRODUCTION

Aerodynamic performance of various kinds of fin-body combinations in inviscid, subsonic flow at small angles of attack can be analyzed by the "singularity method" (Refs. 1 and 5). Koerner's approach (Ref. 1) is followed in this analysis. In general, the singularity method has an advantage over the slender body theory in the sense of less restriction in the fin shape. By means of a modern high speed electronic computer, the pressure coefficient can be calculated rather simply.

The surface pressure distribution on the rectangular, the sweptback, and the tapered sweptback fins and fin-body combinations have been analyzed. The effect of compressibility is taken into account by Goethert's rule which showed very satisfactory with the experimental data up to a high subsonic free stream Mach number. For all of these no shock waves on fins and fin-body combinations are treated.

The present analysis has been extended to include the slender, cruciform, canted delta fin and fin-body combination and also includes the case of slender, cruciform, clipped delta fin-body combination geometry with a deflected small control fin. The results have been compared with the slender body theory (Ref. 2) and other singularity methods (Refs. 5 and 8).

The present method, with slight modification, can be applied also to a fin-body combination geometry of a fin with twist, camber, thickness, and arbitrary plan form. From the analytical study, it is also clear that a viscous flow study is needed in estimating the more accurate pressure distribution in the region of the fin-body junction as well as the fin tip, even at small angles of attack.

For more condensed contents of the present report and its interaction to the exhaust jet plume, see Ref. (12).

SECTION II. BASIC ANALYSIS

In estimating the aerodynamic performance on a fin-body combination geometry, the method based on slender body theory has been developed and easily applied. Very reasonable results have been obtained (see Ref. 2). The practical difficulty in applying the slender body theory is in its limitation to the very slender fin configuration (e.g., one needs to assume that AR << 1 theoretically, or AR < 1 even for a practical application to On the other hand, the Prandtl's well-known "lifting line theory" has approximated very well the lift distribution for a rectangular fin with very large aspect ratio. The application to the other fin configurations (such as a finite AR fin) seems not that good as far as the accuracy is concerned for the surface pressure distribution. To overcome this deficiency, Lawrence (Ref. 4) has developed the approximate solution of the lifting line theory for low aspect ratio wings (including the rectangular shape) and delta fins with the aspect ratio from zero to four. However, the application of this technique to the fin-body combinations with the other fin configurations seems to be still in difficulty. A "singularity method" is a method of numerical analysis. From the study of literature, it can be said that such a numerical approach will provide the best estimation of the pressure distribution in nearly all the fin-body configurations with a good accuracy.

1. Basic Consideration

For simplicity, the following assumptions were made in this analysis, i.e.,

- (i) A steady, inviscid, uniform, subsonic free stream.
- (ii) A flat fin with a straight leading and trailing edge, and a streamwise fin tip.
 - (iii) Fins are attached to a circular cylindrical body.
 - (iv) A small angle of attack.

Based on the singularity method, constant strength vortex singularities are used to replace a lifting fin on a horizontal

plane. The image vortices are placed inside the body with respect to the body surface in order to compensate the body displacement effect. To obtain a good aerodynamic interaction for a fin-body geometry, the source-sink singularities are distributed on a body surface and the doublet singularities are distributed along the body axis. The doublet distribution gives the effect of a body inclination to a free stream. The iteration scheme is used so that all the simulated lifting surfaces can eventually satisfy the flow boundary conditions everywhere on the surface of the fin-body combination.

Figure 1 shows a schematic model of a basic fin-body combination for this analysis. A fin (or wing) has been divided to many panels and each one has been replaced by a horseshoe-type vortex which consists of three vortices (i.e., one bound vortex and two free vortices). The body has been divided also into many panels, each of which consists of a correct part of a body, and it has been replaced by a source or a sink at its surface. (Also, see Figure 51 in Appendix 1).

Figure 1. Schematic model of fin-body combination in present analysis.

2. Basic Equations and Coordinates

Figure 2 shows the coordinate of a fin part, which is divided by a number of trapezoidal panels which have the sides parallel to a free stream. Each panel has three vortices with a constant strength, i.e., one bound vortex, which is located at one quarter local panel chord length, and two free vortices which are located at local panel edges, parallel to the free stream.

Figure 2. Fin panels [7]

Figure 3. Location of horseshoe vortex and control point on panel [7].

The location of a control point at which the boundary condition will be satisfied is assumed at three-quarters of a local panel chord length in the center line of a local panel as shown in Figure 3. In addition to this, the Goethert compressible similarity rule has been employed to the present analysis, i.e., the coordinates normal to a free stream have been multiplied by Prandtl-Glauert Parameter 8.

The following five steps are essential to the analysis. The steps were established by Ref. 1.

(i) Determining circulation distribution (γ_i) on a fin.

Normalized perturbation velocity components at any control point on panel i induced by any panel j which makes four discrete horseshoe vortices (two are from a pair of fins themselves, and two are from their body images) can be written as,

$$\frac{\mathbf{u_{i}}}{\overline{\mathbf{U}_{\infty}}} = \sum_{j=1}^{n} \overline{P_{ij}} \gamma_{j}$$

$$\frac{\mathbf{v_{i}}}{\overline{\mathbf{U}_{\infty}}} = \sum_{j=1}^{n} \overline{Q_{ij}} \gamma_{j}$$

$$\frac{\mathbf{w_{i}}}{\overline{\mathbf{U}_{\infty}}} = \sum_{j=1}^{n} \overline{R_{ij}} \gamma_{j}$$

$$\mathbf{i} = 1, n$$
(1)

where: u_i , v_i , w_i are perturbation velocity components and \overline{P}_{ij} , \overline{Q}_{ij} and \overline{R}_{ij} are the aerodynamic matrices given in Appendix 1.

The third equation as stated above is used for satisfying the boundary conditions of any panel, i.e.,

$$-\beta\omega_{\mathbf{i}} = \frac{\mathbf{w}_{\mathbf{i}}}{\mathbf{U}_{\infty}} = \sum_{\mathbf{j}=1}^{n} \overline{\mathbf{R}}_{\mathbf{i}\mathbf{j}} \, \mathbf{Y}_{\mathbf{j}} \qquad \mathbf{i} = 1, \, \mathbf{n} \qquad (2)$$

where $\omega_i = \alpha_{fi}$. Equation 2 is n simultaneous linear equations with n x n constant coefficients. The γ_j can be solved by Gaussian elimination technique.

(ii) Determining Source Distribution (q,) on the Body.

Induced velocity components at any point on panel ν on the body surface due to the fin and its image vortices on the control point of panel j is expressible as,

$$\overset{+}{W}_{v} = \begin{pmatrix} u_{bv} \\ v_{bv} \\ w_{bv} \end{pmatrix} = \overset{n}{\underset{j=1}{\Sigma}} \begin{pmatrix} \overline{P}_{bv_{j}} \\ \overline{Q}_{bv_{j}} \\ \overline{R}_{bv_{j}} \end{pmatrix} \gamma_{j}$$
(3)

$$v = 1, 2M$$

where \overline{P}_b , \overline{Q}_b , and \overline{R}_b are the same aerodynamic matrices as those in Equation (1), except taking the control points on the body, which are located at the center of local panels (see Figure 51 in Appendix 1), in the former case.

In cylindrical coordinates,

$$v_{n1} = v_b \cos \theta + w_b \sin \theta$$

$$v_t = -v_b \sin \theta + w_b \cos \theta$$
(4)

Geometrical relationships are illustrated in Figures 4 and 5.

The resultant velocity component normal to the body surface due to the fin vortices and the sources must be varnished, i.e.,

$$v_{n1} + v_{n2} = 0 ag{5}$$

where ${\rm v}_{\rm n2}$ is the velocity component normal to the body surface due to the sources distributed on it, ${\rm v}_{\rm n2}$ can be written as,

$$v_{n2} = \frac{q(x,\theta)}{2} + \int_{-\infty}^{\infty} \frac{q(x',\theta')}{4\pi} \frac{\{1 - \cos(\theta - \theta')\} a^2}{\rho * 3} d\theta' dx'$$
 (6)

in incompressible flow, where

$$\rho^* = (x - x')^2 + (y - y')^2 + (z - z')^2 \tag{7}$$

Figure 4. Induced velocity at P by a source Q [1].

Figure 5. Induced velocity at S by a line vortex element Γ [1].

The integral equation (6) can be solved by the iteration scheme; For the first approximation,

$$q_{1}(x,\theta) = -2 v_{n1}(x,\theta)$$

$$q_{2}(x,\theta) = -2 v_{n1}(x,\theta) +$$

$$+ \int_{-\infty}^{\infty} \int_{0}^{2\pi} \frac{v_{n1}(x',\theta')}{\pi} \frac{\{1 - \cos(\theta - \theta')\} a^{2}}{\rho^{*3}} d\theta' dx'$$
 (9)

The mth approximation of the source strength q_{ν} at a point ν on a body surface which cancels the induced velocity v_{nl} in Equation (4) normal to a body surface can be written as

$$q_{m\mu} = -2 (v_{n1})_{m\mu} - \sum_{\substack{\nu=1 \ \nu \neq \mu}}^{2M} \frac{q_{(m-1)\nu}}{2\pi}$$

$$\frac{\{1-\cos (\theta_{\mu}-\theta_{\nu})\} \beta a \Delta S_{\nu}}{\left[(x_{\mu}-x_{\nu})^{2}+\beta^{2} \{1-\cos (\theta_{\mu}-\theta_{\nu})\} a^{2}\right]^{3/2}}$$
(10)

and,

$$\Delta S_{v} = \beta a \Delta \theta \Delta x_{v} \qquad (11)$$

(iii) Determining Downwash ($w_{b\mu}$) on Fin Due to Sources Distributed on the Body Surface

$$W_{b\mu} = \sum_{\substack{\nu=1 \\ \nu \neq \mu}}^{2M} \frac{q_{\nu}}{4_{\pi}} \frac{\beta(z_{o}^{-z_{\nu}}) \Delta S_{\nu}}{\left[(x_{\mu}^{-}x_{\nu})^{2} + \beta^{2} \{(y_{\mu}^{-}y_{\nu})^{2} + (z_{o}^{-z_{\nu}})^{2}\}\right]^{3/2}}$$
(12)

(iv) Determining Circulation Distribution (Y_i) for Second Iteration

By the downwash obtained in Equation (12), the corresponding angle of attack is induced on a fin, which can be written as $W_{\rm bi}/U_{\infty}$. Then, this term should be added to the original, i.e., geometrical angle of attack in Equation (2), thus $\omega_{\rm i}$ must be written as,

$$-\omega_{i} = -\alpha_{fi} + \frac{w_{bi}}{U_{\infty}} \qquad i = 1, n \qquad (13)$$

After $\omega_{\bf i}$ has been obtained on fin panels, the same procedure should be repeated until $\gamma_{\bf i}$ will not change greatly.

(v) In Case of Body with Angle of Attack.

Downwash on a fin due to the doublet along a body axis (as shown in Fig. 6) can be written as

$$\frac{w_f}{U_{\infty}} = \alpha_b a^2 \frac{y^2 - z_0^2}{(y^2 + z_0^2)^2}$$
 (14)

This downwash has been assumed constant at any spanwise location, and it changes an apparent angle of attack (ω_i) as mentioned above. Thus, in this case, ω_i should be replaced by,

$$-\omega_{i} = -\alpha_{fi} + \frac{W_{bi}}{U_{\infty}} + \frac{W_{fi}}{U_{\infty}}$$
 (15)

The aerodynamic performance coefficient can be computed in the usual manner for the pressure coefficient, $C_{\rm p}$, on panel;

$$C_{pj} = \pm \frac{\Delta C_{pj}}{2} \dots \text{ for fin,}$$

$$= -\frac{2u_{bj}}{U_{\infty}} \dots \text{ for body.}$$
(16)

where "+" is for an upper surface of a fin and "-" is for a lower surface.

Figure 6. Velocity distribution on fin induced by the body angle of incidence [3].

For the load distribution, ΔC_p ,

$$\Delta C_{pj} = \frac{b \gamma_{j}}{\beta^{2}(x_{dj}^{-x}v_{j}^{-y})} \dots for fin,$$

$$= (C_{pj})_{lower} - (C_{pj})_{upper} \dots for body.$$
(17)

For the spanwise lift distribution, $C_L(y)$,

$$C_{L}(y) = \frac{2b}{\beta^{2}l(y)} \sum_{i=1}^{n'} \gamma_{i}$$
 (18)

where n' is a total number of panels along the chord 1(y) at a fixed y station.

For the lift coefficient, C_L ,

$$c_{L} = \frac{\sum_{j=1}^{p} c_{pj} \Delta S_{j}}{\sum_{j=1}^{p} \Delta S_{j}}$$
(19)

where
$$\Delta S_j = 4\beta h_j (x_{dj} - x_{vj}) \dots$$
 for the fin,

$$= \beta a \Delta \theta \Delta x_j \sin \theta_j \dots$$
 for the body.
(projected area on horizontal plane)

SECTION III. RESULTS AND DISCUSSIONS ON VARIOUS FINS.

1. Rectangular and Constant Chord Sweptback Fins.

As the first example by the singularity method, the spanwise lift distribution at $M_{\infty} = 0$ was computed for the fin with the three different leading edge sweptback angles, that is, zero (rectangular fin), 30 and 45 degrees. The aspect ratio of these fins is taken as all the same equals to six. configuration and the computed results are shown in Fig. 7. This figure shows the spanwise lift distribution per unit angle of attack over the semi span of the fin. The half of the fin has been divided into the sixteen trapezoidal panels, i.e., four equidistantly in the chordwise direction, and four with cosine in the spanwise direction. The present calculations have been compared with those in Ref. (1), on which the present analysis was based. The results are shown in Fig. 7. It can be seen that there is little difference between them. As the ordinate in Fig. 7 is considered proportional to the circulation distribution per unit angle of attack over the semi-span of the fin (see curve A), i.e., the rectangular fin, is very close to the elliptics. With increasing the sweptback angles of a fin, the lift distribution around the center of the fin is decreasing, or the maximum point of the lift distribution moves to the fin tip, and thus the lift of the fin decreases accordingly. This means that the characteristics of the fin will be close to the one of the "delta" fin (compare it with Figs. 11 and 12).

The typical chordwise pressure distribution on a rectangular fin at the different spanwise positions is shown in Fig. 8. The same rectangular fin configuration as the one in Fig. 7 was used here. The pressure goes to infinity at the leading edge of the fin because of the "leading edge singularity" of the fin with zero thickness. It can be also been that the Kutta's conditions at subsonic speed are certainly satisfied at the trailing edge of the fin.

Figure 7. Spanwise lift distributions on constant chord sweptback fins.

Figure 8. Chordwise pressure distribution on rectangular fin.

2. Compressibility Effect on Pressure Coefficient of Rectangular Fin.

The variation of pressure coefficient with the free stream Mach number at one position on the rectangular fin is shown in Fig. 9. Goethert's rule was used for compensating the compressible effect in the present analysis as mentioned The computed results by using the other compressible similarity rules, such as Prandtl-Glauert and Kármán-Tsien rules, are also included in this figure for comparisons. The Cps corrected by using Prandtl-Glauert and Kármán-Tsien rules seem to be overestimated. The correction of compressibility based on Goethert's rule predicts satisfactorily well for a fin with lowaspect ratio up to a relatively high Mach number (for example, see Chapter 13 in Ref. (10)). With increase in the aspect ratio of a fin, the difference of the lift coefficients computed by using the Prandtl-Glauert and the Goethert rules becomes small. Fig. 10 shows the calculated example on the lift coefficient, for a rectangular fin with aspect ratio of twenty. It should be noted that both of the calculated results have little difference up to near a Mach number of 0.8.

3. Clipped Delta Fin.

The pressure distribution for a clipped delta fin configuration has been computed. The result is shown in Fig. 11. The solid lines indicate the chordwise pressure distribution along the corresponding chord lines, and the dotted lines indicate the spanwise pressure distribution along the one-quarter chordwise length of the local panel. As can be seen, the clipped fin tip effect shows up after the entire mid chord length or toward the trailing edge. It is relatively not affected in the front portion of the chord. The free stream Mach number for this computed case is 0.7, the leading edge sweptback angle is 77.2°, and the angle of attack is taken as one degree. From this figure, it can be seen that the aerodynamic characteristics of the clipped delta fin has the one combined with those of the sweptback and

Figure 9. C_p at one point on rectangular fin changing with free stream Mach number computed by different subsonic compressible similarity rules.

Figure 10. Comparison of lift coefficient of rectangular fin with large aspect ratio by two different similarity rules.

Figure 11. Pressure difference $(\Delta C_p = (C_p)_{lower} - (C_p)_{upper})$ of clipped delta fin with angle of attack of one degree and free stream Mach number of 0.7.

rectangular fins on the same fin (also see Fig. 12).

Fig. 12 shows the spanwise lift distribution, and that of the delta fin, the geometry of which is shown in Fig. 11, is also included in this figure for a comparison. Although the actual positions in the spanwise direction are slightly different in both cases, the decrease of the spanwise lift distribution caused by a clipping of the fin tip can be seen very clearly near the fin tip.

Figure 12. Spanwise lift distribution on clipped delta fin $(M_{\infty} = 0.7, \alpha = 1^{\circ}; \text{ also, the delta fin's case is included).}$

SECTION IV. RESULTS AND DISCUSSIONS ON VARIOUS FIN-BODY COMBINATIONS.

1. Rectangular Fin-Body Combination.

The spanwise lift distributions have been calculated for a rectangular fin alone and a fin-body combination configuration at $M_{\infty} = 0$. They agree well with the original calculation of Koerner (Ref. 1) as shown in Fig. 13a. discussion on the compressibility effect will be given later. The body treated has a zero angle of incidence, and a fin is canted by one degree (clearly, for a more cant fin, a simple linear multiplication of amplitude will yield a result). presence of the body was simulated by image vortices of the fin and source-sink distributed on the body surface as discussed. The computed results for the fin-body interaction agreed well with a limited experimental data as shown in Fig. 13a, except in the region very close to the fin root. Koerner pointed out that this disagreement resulted from the presence of boundary layer in a real flow on the fin and the body (Ref. 1). This suggests that the viscous study is necessary in order to obtain a more accurate result in this small region. As it can be seen from the mutual interaction between the body and the fin is rather strong (comparing cases with and without the body presence).

The chordwise load distributions on the body in the same fin-body geometry as shown in Fig. 13a were computed at three different azimuthal positions. The results are shown in Fig. 13b. It can be seen that the influence of the fin on the body becomes stronger as closer to the fin root. It affects both the upstream and downstream flow beyond the fin location. The calculated chordwise lift distribution on the fin very close to the fin root is also included in Fig. 13b for a comparison.

Fig. 14 shows the chordwise load distribution on the rectangular fin-body combination, in which the fin is not canted,

Figure 13a. Recalculated spanwise lift distribution of rectangular fin-body combination given by Korner [1].

Figure 13b. Longitudinal pressure distribution of body with rectangular fin.

Figure 14. Longitudinal pressure distribution on rectangular fin-body combination ($\alpha_b = 6.8^{\circ}$, $M_{\infty} = 0$).

but the body has the angles of attack of 6.8 degrees. It can be seen, from Figs. 13 and 14, that the trend of the load distribution on both the body and the fin in the case of the angle of attack was very similar to the one in the cant fin case. Also, the strong effect of the fin on the body can be seen at the region on the body very close to the fin root from these figures.

2. Constant Chord Sweptback Fin-Body Combination.

The constant chord sweptback fin-body combination at $M_{\infty} = 0$ has been investigated here. The spanwise lift distributions are shown in Fig. 15. The sweptback angles are zero (i.e., rectangular fin, this is the same one as shown in Fig. 13), 30 and 45 degrees. The cant angle of the fins is one degree (again a simple linear multiplication to obtain a larger angle result) and the body has zero angle of attack. All three fins have the same aspect ratio of six. This figure can be contrasted to the case without a body as shown in Fig. 7. The maximum point of the spanwise lift distribution moves to the fin tip as the sweptback angle of a fin increases. The characteristics of a fin will be close to the one of the delta fin (see Figs. 17, 18, and 19a), as is more or less expected. Fig. 16a shows a calculated chordwise load distribution on the fin of a 45° sweptback finbody combination. The variation of the load distribution which is rather small along the spanwise direction can be seen from this figure. There exists the maximum position of the semispanwise lift distribution. This can be calculated about 60% of the semi-span from the body axis, i.e., 2 y/b \approx 0.6 from Fig. 15.

The corresponding longitudinal pressure distribution on the body is shown in Fig. 16b. The gradient of the pressure distribution curve was not so steep as the one in the rectangular fin case, as shown in Fig. 13b.

Figure 15. Spanwise lift distribution of constant chord sweptback fin-body combination.

Figure 16a. Chordwise pressure distribution on 45° sweptback fin with body.

Figure 16b. Longitudinal pressure distribution on body.

3. Tapered, Sweptback Fin-Body Combination.

The sweptback fin-body combination, with two different taper ratio fins as used by Koerner (Ref. 1) has been investigated. Fig. 17 shows the computed spanwise lift distribution on such a geometry with a taper ratio $\lambda = l_a/l_i$ (where l_i is the maximum chord length through the body, and l_a is a fin tip chord length) of zero and one third. The sweptback angle for both cases was taken 30° at one quarter of the local chord length. The angle of incidence of the body was assumed one degree (again, for a larger angle case, a linear multiplication of amplitude is sufficient) and the fin was assumed with a zero cant angle. The lift distribution for $\lambda = 0$ agrees well with the characteristics of the delta fin-body combination, in spite of the fact that it is not quite a delta fin. Also, compare it with the result in Fig. 19a, a case of slender delta fin-body is shown although the fin configuration is not the same.

The spanwise lift distribution of the trapezoidal fin-body combination, the configuration of which is taken from Ref. (7), is shown in Fig. 18. The trend of the lift distribution curve has not much difference with the one in the case of $\lambda = 1/3$ as mentioned before, or the fin part of the clipped delta fin case as shown in Fig. 12.

4. Cruciform Slender Delta Fin-Body Combination.

Fig. 19a shows the spanwise lift distribution on three different cruciform fin-body combinations. In the case of the cruciform cant fin-body combination, a pair of horizontal fins is canted by three degrees so that it can rotate about the body axis (i.e., x-axis) to a negative direction in the sense of a commonly-accepted sign convention. The case of the fin only yielded the largest lift distribution as expected. The effect of the body can be seen clearly in this case also. The cant fin case showed the lowest lift distribution as expected (about this, for example, see Ref. (2)).

Figure 17. Recalculated spanwise lift distribution with different taper ratio fin given by Korner [3].

Figure 18. Spanwise lift distribution on trapezoidal fin-body combination.

Figure 19a. Spanwise lift distribution on cruciform delta fin-body combination.

Figure 19b. Longitudinal pressure distribution on body with cruciform slender delta fin (horizontal fins are canted, $\delta = -3^{\circ}$).

Fig. 19b shows the calculated longitudinal pressure distribution on the body. It should be noted that the rate of perturbation pressure change is very sharp at the leading and the trailing edges with lower magnitude pressure as compared with the large aspect ratio fin case (see Fig. 13b). This is expected because the fin is slender so the influence of the fin on the body should be small. This result agrees well with the concept of the slender-body theory which states that the aerodynamic disturbance influences only in the cross plane to the free stream (see Ref. (2)).

5. Discussions on Compressibility Effect on Fin-Body Combination.

The effect of the compressibility on a lift coefficient of a cruciform slender delta fin-body combination is shown in Fig. 20. (Only the angle of attack influence is considered here for the sake of discussion.) The fin area extended through the body as shown on a dotted line was used as a reference area for the lift coefficient computation. In general, as mentioned before, the Prandtl-Glauert rule resulted in an over correction for such a small aspect ratio fin configuration (see Fig. 20).

It is more appropriate to use the Goethert's rule to calculate the compressibility effect in a fin-body combination geometry. For a slender fin-body combination case, after using the Goethert rule correction, the result (see Fig. 20) agreed very well with the result computed by the slender body theory. In view of a wider range of Mach number applicability of the slender body theory, such an agreement is not totally surprising. In the same figure, a result by Nielsen's estimation (Ref. 11) is also included for a comparison. For a non-slender fin case, the result by using Goethert's rule correction is shown in Figs. 21 and 22.

Fig. 23 shows the lift coefficient varying with the freestream Mach number on the non-slender rectangular finbody combination. The configuration is given in Fig. 22. As it $\alpha_b = 3 \text{ deg}$ AR = 0.6
S/Q = 3.25

- (a) FIN EXTENDED THROUGH THE BODY (BY SINGULARITY METHOD)
- (11) MIELSEN'S SLENDER BODY THEORY

Figure 20. Comparison of subsonic similarity rules for cruciform slender delta fin-body combination at angle of incidence (also includes result from slender body theory).

Figure 21. Local lift coefficient on fin body junction showing effect of Mach number change, -30° swept fin [43].

Figure 22. Load distribution on rectangular wing showing the effect of Mach number.

Figure 23. Comparison of subsonic similarity rules for non-slender rectangular fin-body combination.

can be seen very clearly from Figs. 20 and 23, the compressibility effect of lift coefficient on the slender fin-body combination is much more "blunt", or little change up to quite high subsonic speed than the one of the non-slender fin-body combination case.

6. Effect of Small Control Fin on Slender Fin-Body Combination.

One of the advantages of the singularity method is that the effect of a control fin can be computed very easily. The chordwise pressure distribution has been computed for the slender delta fin- (one part of which is used as the control fin) body combination at $M_{\infty} = 0$, and is given in Fig. 24. line of the control fin is assumed to be located at the three quarter local chord length of the delta fin. Angle of deflection of this fin is three degrees in the sense of the trailing edge of the control fin downwards. The main fin is assumed to position at zero angle of attack. Although such a computational configuration of the control fin position has not a great meaning in a practical application, yet the effect of its controllability can be seen very clearly. The hinge line can be considered as a singular point. And thus the local pressure goes to infinity. However, this is not a realistic case. The pressure at this point cannot be infinity because of the viscous effect in a real situation. It can be seen that the deflection of a control fin influences over the whole surface of the main fin. Such an influence is very strong near the fin tip. (Compare the present calculation with that in Ref. 9, for example.)

Figure 24. Chordwise pressure distribution due to small control fin $\delta_{\rm f} = 3^{\circ}$). • 0 =

SECTION V. KOERNER'S APPROACH COMPARED WITH OTHER METHODS AND DATA.

1. Comparison with the Slender-Body Theory.

A comparison of computed results by the singularity method and the slender-body theory had been reported in the previous subsection. A surprisingly good agreement by both methods was obtained for the lift coefficient of a cruciform slender delta fin-body combination.

The pressure and the load distributions on a fin-body combination of the same computational model as used in the slender body theory example (see Ref. (2)) was calculated. The results are shown in Figs. 25 and 26. Fig. 25a shows the pressure distribution on one horizontal fin. It is worthwhile to note that the linearized C_n expression was used in the present analysis while the C_p expression in slender-body theory was considered up to the second order terms. The agreement of both methods is excellent. The pressure coefficient was computed azimuthally, at the six positions on the half body, and is shown in Fig. 25b. Note that the difference in the C_p expression is more sensitive on the fin than on the body. This means that the second order expression of the Cn is more important for such slender fin-body combination geometry even though its absolute value is small. Fig. 26 shows the load distribution on a horizontal and a vertical fin. It can be seen from Figs. 25 and 26 that the results of the present analysis and slender-body theory have agreed satisfactorily with each other. From these comparisons, it can be concluded that both methods will yield a similar result for a small aspect ratio finbody combination geometry. This merely proves that the singularity method can be applied for fins with a wide range of aspect ratios and, therefore, is more versatile.

Figure 25a. Comparison with slender back theory, c_p distribution pattern, on fins (-6 = 3°, only horizontal fitns are canted).

Figure 25b. Comparison with slender body theory on C_p distribution pattern on body (- δ = 3°, only horizontal fins are canted).

Figure 26. Comparison with slender body theory of load distribution pattern on fins $(-\delta=3^\circ)$, only horizontal fins are canted).

2. Comparisons with FLEXSTAB Singularity Distribution Method and Data.

FLEXSTAB's method (Ref. 8) has been applied to a wing-body combination of an aircraft flying at subsonic, transonic and supersonic speeds (Refs. 5 and 8). A comparison of computations based on the Koerner's scheme, as adapted in this analysis, was made to those configurations calculated based on FLEXSTAB's technique. The computational wing-body configuration which is taken from Ref. (8) is shown in Fig. 27, i.e., the aspect ratio of the wing is 1.65, taper ratio is 0.10, and sweptback angle of the leading edge is 71.20, respectively.

The paneling scheme employed for the present calculations as well as those by the FLEXSTAB method are given in Fig. 28. The main difference of FLEXSTAB's method compared to the Koerner's technique is that the treatment on the "body" is different.

FLEXSTAB's method treats the body by a number of discrete vortices distributed on the mean body surface. The main body surface is approximated by a number of rectangular strips with free streamwise surfaces (Ref. 5). In addition, FLEXSTAB's method was more complicated and allows one to take into account the thickness, the camber and the twist effects of a wing by a distribution of additional source-sink and vortex singularities.

Figure 27. Computational wing-body configuration (Red. [8]).

(a) PRESENT PANELING SCHEME (FOR ZERO DEFLECTED FLAP)

(b) PRESENT PANELING SCHEME (FOR A DEFLECTED FLAP)

(c) FLEXSTAB PANELING SCHEME. (Ref. 8)

Figure 28. Paneling schemes.

2.1 Effect of Angles of Attack on Chordwise Pressure Distribution.

The calculated chordwise pressure distribution on the wing is shown in Fig. 29, in which the angle of incidence of the body was taken two degrees, and the free-stream Mach number was 0.85. The computation was made at three different spanwise The agreement with FLEXSTAB's result was surprisingly The agreement with the experimental data was also satisfactorily good, except in the region very close to the wing leading edge, where a sudden pressure drop can be seen because of the local flow separation. The case of the angle of incidence of eight degrees is shown in Fig. 30. The agreement with FLEXSTAB's method was very good in this case also. The agreement with the experimental data was still very good at the region very close to the wing root although the small fluctuation of ΔC_n was caused by the present numerical calculation. However, the agreement with data was not so good from the leading edge to the mid-chord. The reason for this disagreement with data may be attributed to the flow separation from the sharp leading edge because of a considerably higher angle of incidence. A further study on such a situation is needed.

Figure 29a. Flat wing (α = 2°, M_{∞} = 0.85).

Figure 29b. Flat wing ($\alpha = 2^{\circ}$, $M_{\infty} = 0.85$).

Figure 29c. Flat wing (α = 2°, M_{∞} = 0.85).

HOW ID PER INCH

Figure 30a. Flat Plate ($\alpha = 8^{\circ}$, $M_{\infty} = 0.85$).

Figure 30b. Flat wing ($\alpha = 8^{\circ}$, $M_{\infty} = 0.85$).

TOX TO PER INCH

Figure 30c. Flat wing (α = 8°, M_{∞} = 0.85).

2.2 Flap Effect on Chordwise Pressure Distribution.

A further comparison with the FLEXSTAB method was made on the effect of the flap of the wing. The calculated chordwise pressure distributions, based on both methods, are given in Figs. 31 to 33. In these cases, it is assumed that the wing has zero angle of attack and the flap angle is 8.30. The following two examples (Figs. 31 and 32) show the chordwise $C_{\rm p}$ distribution on the upper and the lower surfaces of a wing and deflected flap at $M_m = 0.4$ and 0.85, respectively. The calculated position is near the mid span. $\Delta C_p/2$ was taken for C_p in the present calculation (see Eq. 16). Fig. 31 shows the chordwise C_p distribution at $M_{\infty} = 0.4$. No correction about the round leading edge of a flat wing was made in the present analysis. Therefore, the Cp close to the leading edge of the wing has resulted in a rather poor agreement with those of the FLEXSTAB and experimental data. Except for this region of the wing, the agreement of the Cp distribution calculated by the present analysis compared favorably with data. The poor agreement with data near the flap hinge line is attributed to the local flow separation on the wing because of a considerably higher flap angle.

Fig. 32 shows the chordwise C_p distribution at $M_\infty=0.85$. In this case, the values of C_p from Ref. (8) were replotted for eliminating the influence of the round leading edge of the wing at $\delta_F=0^{\circ}$ as shown in this figure. The agreement of the present calculation with that of the FLEXSTAB was good, in general, over the whole surface of the wing, and with the experimental data, except the regions very close to the wing leading edge and the flap hinge line. The poor agreement with data near the flap hinge line is a result from the same reason as mentioned before. The variation of C_p with the free stream Mach number was very small in this type of body configuration.

The calculated chordwise pressure (ΔC_p) distribution at three different spanwise positions at M_{∞} = 0.85 is shown in Fig. 33.

HOW BOR OF X DE

Figure 31. Surface pressure distribution of flat wing (trailing-edge $\delta_F = 8.3^{\circ}$, $\alpha = 0$, $M_{\infty} = 0.4$)

Figure 32. Surface pressure distribution of flat wing (trailing-edge $\delta_F = 8.3^{\circ}$, $\alpha = 0$, $M_{\infty} = 0.85$).

Figure 33a. Flat wing (trailing edge $\delta_F = 8.3^{\circ}$, $\alpha = 0$, $M_{\infty} = 0.85$).

Figure 33b. Flat wing with deflected flap (trailing edge $\delta_F = 8.3^{\circ}$, $\alpha = 0^{\circ}$, $M_{\infty} = 0.85$).

HOW IN MAN OF X OF

Figure 33c. Flat wing (trailing-edge $\delta_F = 8.3^{\circ}$, $\alpha = 0$, $M_m = 0.85$)

The agreement on both methods is good, however, the inviscid flow theory predicts a larger pressure difference than data indicated over the flap surface. Again, such a disagreement is probably attributed to the flow separation on the upper wing because of a considerably higher flap angle given in this example.

2.3 Spanwise Load Distribution.

The spanwise load (directly related to the lift) distribution was computed for two different angles of attack cases. And then they were compared with the results by the They are shown in Fig. 34 (for the chordwise FLEXSTAB method. pressure distributions, see Figs. 29 and 30). It was assumed that there is little difference between the lift and the normal force in this case, or, it is assumed negligibly small. In the case of the angles of attack of two degrees, the agreement of the present calculation with both the FLEXSTAB and data is satisfactorily good; this is apparent from Figs. 29a to c. the other hand, the poor agreement with the experimental data occurred in the region from the mid span to the wing tip at the angles of attack of eight degrees. This can be also understood by looking back at Figs. 30b and c. The satisfactorily good agreement can be seen at the region below the mid span.

Figs. 35 and 36 show the spanwise load distribution in the case of a deflected flap at Mach number 0.4 and 0.85, respectively. Nonetheless, even with the large flap deflections, both the theoretical calculations were in good agreement with the experimental data. This means that the flap deflection does not influence the spanwise load distribution so much in this case as the angle of attack case did (see the case at $\alpha = 8^{\circ}$ in Fig. 34), because the part of the flap is small as compared with the total wing surface area. Little difference in the compressibility influence can be seen in this wing-body configuration (also, see Fig. 37 for the compressible effect to the normal force slope).

Figure 34. Spanwise load distribution ($M_{\infty} = 0.85$).

Figure 35. Spanwise load distribution (trailing-edge).

Figure 36. Spanwise lift distribution (trailing-edge δ_F = 8.3°, α = 0, M_m = 0.85).

2.4 Normal Force Coefficient of Wing-Body Combination.

Finally, the computed result on the normal force coefficient has been compared as shown in Fig. 37a. The agreement with the experiments is very good. The compressibility effect based on the Goethert's similarity rule is again proven to be very satisfactory. A further study based on Woodward's method (Ref. 6) to extend the computation into supersonic flow region has been undertaken currently. The computed result can be seen in Fig. 37b and this will be discussed in detail in our later publication (Ref. 13).

Figure 37a. Normal force coefficient.

Figure 37b. Normal force slope of arrow fin-body combination.

SECTION VI. COMPARISONS OF POTENTIAL FLOW THEORIES WITH DATA ON CRUCIFORM SLENDER CLIPPED DELTA FINBODY COMBINATION WITH ELEVON DEFLECTION.

The computational model employed for a cruciform slender clipped delta fin-body combination is given in Fig. 38. Each fin has a small control fin called "eleven," and it is assumed that its hinge line is located near the trailing edge of the main fin as shown. Paneling scheme is shown in Fig. 39 for a deflected elevon.

- Results and Discussions on Various Effects of Elevon Deflection on Fin-Body Combination.
- .1.1 Zero Elevon Deflection ($\alpha_b = 8.5^{\circ}$, $\delta_e = 0$).

The first calculation was made on the chordwise pressure distribution at three different spanwise positions. The angle of attack of the body is 8.5 degrees with zero elevon deflection, and the computed results are shown in Fig. 40a. The investigated Mach number was zero and 0.8, respectively. The variation of the chordwise pressure distribution at various different spanwise positions is given. It is found that the influence of the free stream Mach number is very small. Fig. 40b shows the longitudinal pressure distribution at three different azimuthal positions on the body corresponding to the fin in Fig. 40a. It can be seen that the trend of pressure distribution is very close to the one in Fig. 19b, i.e., the influence of fin on the body is strong in the fin location part on the body, and little influence from it outside of this region.

Figure 38. Fin-body geometry.

Figure 39. Paneling scheme.

Figure 40a. Chordwise pressure distribution at three different spanwise positions on fin with zero deflected elevon of slender fin-body combination (α_b = 8.5°, δ_e = 0°, M_{∞} = 0 and 0.8).

0 H distribution Body longitudinal pressure 40b.

1.2 Deflected Elevon $(\alpha_b = 0, \delta_e = 2^0)$.

next. The chordwise pressure distribution on the fin is shown in Fig. 41a. The angle of deflection of flap is two degrees, with the trailing edges of the elevons on both fins down symmetrically, with no angles of attack, and the free stream Mach number is zero, respectively. The influence of elevon on the main fin was very small in such small elevon deflection angles. However, such an influence will be rather strong as it is closer to the fin tip. The corresponding longitudinal pressure distribution on the body is shown in Fig. 41b. The influence of the elevon deflection on the body was very small in this case.

Figure 41a. Chordwise pressure distribution on fin with deflected elevon (δ_e = -2°, δ_b = 0, M $_\infty$ = 0).

Figure 41b. Longitudinal pressure distribution on body $(\delta_e = 2^\circ, \alpha_b = 0, M_\infty = 0)$.

1.3 Combined Effects ($\alpha_b = 8.5^{\circ}$, $\delta_e = 2^{\circ}$).

Fig. 42a shows the chordwise pressure distribution on a fin at an angle of attack of the body of 8.5° as well as the symmetrical elevon deflection of 2° or -2° , where the results of Figs. 40a and 41a were combined linearly. The corresponding longitudinal pressure distribution on the body is shown in Fig. 42b. This result was made also by the linear combination of the ones of Figs. 40b and 41b.

Figure 42a. Chordwise pressure distribution on fin with and without deflected elevon (δ_b = 8.5°, M_∞ = 0).

Figure 42b. Longitudinal body surface pressure distribution with and without elevon deflection (M = 0, α_b = 8.5°).

1.4 Asymmetrically Deflected Elevon.

The roll effect of the elevon was investigated on the cruciform fin-body combination at $\rm M_{\infty}=0$, and is shown in Fig. 43. The angle of deflection of a pair of horizontal elevons was taken as $\rm 2^{O}$ asymmetrically in the negative direction of roll in sign convention. Fig. 43a(a) shows the load distribution on the horizontal fin, and Fig. 43a(b) shows the one on the vertical fin (i.e., no deflected elevon case), respectively. The influence of the elevon deflection on the vertical fin was not so large, but some amount of induced pressure difference (it acts as positive roll; see Ref. (2) for more details about this) can be seen from Fig. 43a(b). Fig. 43b shows the corresponding longitudinal $\rm C_p$ distribution on the body. The influence of the elevon deflection on the body was very small in this case.

Figure 43a. Effect of antisymmetrically deflected horizontal elevon on fins $(\delta_e = \pm 2^{\circ}, M_{\infty} = 0)$.

Figure 43b. C distribution on body with control fin deflection $0, M_{\infty} = 0$. ه م $(\delta_{e} = \pm 2^{\circ})$

1.5 Fin-Body Combination with Angles of Attack and Yaw.

The pressure distribution on the body is shown in Fig. 44 for the fin-body combination at angles of incidence of 7.4° . This result was obtained from the linear summation of the ones of angles of attack of 6.8° and yaw angle of 2.8° based on the linearity of the basic equations (see Ref. (2)).

Figure 44. Longitudinal pressure distribution on body with angle of attack and yaw (0° clevon deflection angle).

2. Comparison with Experimental Data.

The angle of incidence of a body is taken at 8.54° with an elevon deflection angle of ±30°, with which the body generates a counterclockwise roll facing to the upstream direction. The free stream Mach number is 1.62. With a proper sweptback, as in this example calculation, the leading edge of the fin is submerged in a subsonic stream. Because of the slenderness of the fin and its subsonic leading edge, one expects that a better agreement may be resulted by employing a slender body theory than the singularity distribution method. After a comparison with data, it indicates indeed that this is true. (The analysis at supersonic speeds by using "Singularity Method" similar to that at subsonic speeds is currently under investigation. The method employed is mainly as given in Ref. (6).)

Figs. 45a to f show the chordwise pressure distribution computed by singularity distribution and slender body theories, at different spanwise positions together with experimental measurements (MICOM). The agreement of the singularities distribution method by Koerner with the data was not bad in general over a fin surface even though the flow is supersonic. The pressure distribution on the elevon surface could not be compared because of a lack of the data on this part.

As is expected, the computed result by slender-body theory showed a better agreement with the data over a fin. This is especially so on the lower surface of the fin, however, it cannot calculate the effect of the elevon deflection, and a clipped tip effect. The Koerner's method estimated a rather large pressure distribution on the fin close to the hinge line of the elevon because of a very large elevon deflection angle. The large pressure increase is again attributed to the flow separation. This can be seen more clearly on the upper surface of the fin near the hinge line. The tip effect caused by the leading point P of the tip Mach cone may cause the pressure to increase. However, no correction has been made in the present analysis.

Figure 45a. Chordwise C distribution on fin: M_{∞} = 1.62, α = 8.54°, $\delta_{\rm e}$ = ±30°.

Figure 45b. Chordwise load distribution on fin ($M_{\infty} = 1.62$, $\alpha = 8.54^{\circ}$, $\delta_e = \pm 30^{\circ}$): Y = 0.1 in.

ARMY MISSILE RESEARCH DEVELOPMENT AND ENGINEERING LAB--ETC F/G 19/7 A STUDY OF VARIOUS SLENDER AND NON-SLENDER FIN-BODY COMBINATION--ETC(U) AD-A034 201 NOV 76 N UCHIYAMA, J M WU NL RD-CR-76-5 UNCLASSIFIED 2 OF 2 AD:A 034 201 END DATE 2-16-77 NTIS

Figure 45c. Chordwise load distribution on fin for same conditions as Figure 69: Y = 0.752 in.

Figure 45d. Chordwise pressure distribution on fin for same conditions as Figure 69: Y = 1.653 in.

Figure 45e. Chordwise pressure distribution on fin for same conditions as Figure 69: Y = 2.555 in.

Figure 45f. Chordwise pressure distribution on fin for same conditions as Figure 69: Y = 2.82 in.

3. Variation of Surface Pressure and Lift Coefficient with Free Stream Mach Number.

Various compressibility corrections to the pressure coefficient of a sample point on the fin are shown in Fig. 46. The angle of attack of 8.5° was assumed in this case. The computed results used Prandtl-Glauert and Kármán-Tsien rules and showed an over-correction as discussed earlier. The total lift coefficient of this particular fin-body combination with zero elevon angle is shown in Fig. 47. The maximum body cross-section area was taken as the reference area for the lift coefficient calculation. The contribution of the body on the total lift coefficient is very small. Thus, as far as the total lift coefficient is concerned, the effect due to the body may be neglected.

Figure 46. Comparison of compressibility effect of present result with other similarity rules (α_b = 8.5°).

Figure 47. Variation of lift coefficient of fin-body combination with changing free-stream Mach number.

SECTION VII. CONCLUSIONS AND RECOMMENDATIONS.

The computational scheme for estimating the pressure distribution on a fin-body combination has been developed by the "Singularity Method" based on Ref. (1). The reasonable results were obtained over various kinds of fin-body configurations. comparisons with the experimental data were generally good. Goethert's similarity rule predicted well the compressibility effect up to very high subsonic speed. This is not only for a moderately large aspect ratio fin but also to a slender fin-body combination at small angles of attack. The poor agreement of pressure distribution with the data appeared at a relatively high angle-of-attack (eight degrees in the present calculation) as reported in the other method. This seemed to be in the flow separation on the lifting surface due to high angles of attack, and thus further study on this will be needed. The calculated result by the slender-body theory (Ref. (2)) had a surprisingly good agreement with the experimental data for the slender finbody combination even at supersonic speed as expected, except in the influence region of the fin tip, i.e., inside the tip Mach cone. The present analysis has coincided well with the slender-body theory, for slender fin-body configuration, and thus it may be said that the present analysis includes the slender-body theory at subsonic speed.

Although a flat plate fin case only has been investigated here, it is not too difficult to modify the present analysis so that it can be applied to include the cases of a fin with camber, twist, and thickness. Furthermore, the restriction of the straight leading and trailing edge is not so severe. Therefore, the present analysis can be applied to almost all the arbitrary plan formed fin-body combinations with a slight modification to the program.

REFERENCES

- 1. Koerner, H., Berechnung der Potential Theoretischen Strömung um Flügel-Rumpf-Kombinationen und Vergleich mit Messungen, Zeitschrift Für Flugwissenschaften, 20 Jahrgang, Heft 9, September, 1972.
- Uchiyama, N. and Wu, J. M., "Inviscid Flow Analysis on Body of Revolution with Slender Cruciform Canted Delta Fins at Small Angle of Incidence," Technical Report RD-75-32, U. S. Army Missile Command, Redstone Arsenal, Alabama, March, 1975.
- 3. Koerner, H., Theoretische Parameteruntersuchungen an Flügel-Rumpf-Kombinationen, DLR-FB 72-63, 1972.
- 4. Lawrence, H. R., The Lift Distribution on Low Aspect Ratio Wings at Subsonic Speeds, Journal of The Aeronautical Sciences, October, 1951.
- Woodward, F. A., <u>Analysis and Design of Wing-Body Combinations at Subsonic and Supersonic Speeds</u>, J. Aircraft, Vol. 5, No. 6, Nov.-Dec., 1968.
- 6. Woodward, F. A., et al., Analysis and Design of Supersonic Wing-Body Combinations, Including Flow Properties in the Near Field---Part I: Theory and Application, The Boeing Company, Renton, Washington, N67-34997, August, 1967. (Also NASA CR-73106)
 LaRowe, E., et al. ---Part II: Digital Computer Program Description, N67-34994, August, 1967. (Also NASA CR-73107.)
- 7. Hedman, S. G., <u>Vortex Lattice Method for Calculating of Quasi Steady State Loadings on Thin Elastic Wings in Subsonic Flow</u>, FFA Rep. 105, 1966.
- 8. Manro, M. E., Tinoco, E. N., Bobbitt, P. J., and Rogers, J. T., Comparisons of Theoretical and Experimental Pressure Distributions on an Arrow-Wing Configuration at Transonic Speeds, Aerodynamic Analyses Requiring Advanced Computers, Part II, Langley Research Center, Hampton, Virginia, NASA Sp-347, March, 1975.
- 9. Chipman, R. R., and Rauch, F. J., Analytical and Experimental Study of the Effects of Wing-Body Aerodynamic Interaction on Space Shuttle Subsonic Flutter, NASA CR-2488, January, 1975.
- 10. Shapiro, A. H., The Dynamics and Thermodynamics of Compressible Fluid Flow, Vol. 1, The Ronald Press Company, New York, 1953.
- 11. Nielsen, J. N., Missile Aerodynamics, McGraw-Hill Book Company, Inc., New York, 1960, p. 211.

- 12. Wu, J. M., Moulden, T. H., and Uchiyama, N., "Aerodynamic Performance of Missile Configurations at Transonic Speeds Including the Effects of a Jet Plume," Technical Report RD-76-23, U. S. Army Missile Command, Redstone Arsenal, Alabama, March, 1976.
- 13. Uchiyama, N., and Wu, J. M., "A Further Study on Slender and Non-Slender Fin-Body Combinations of Missile Configurations with Emphasis on Low Supersonic Flow," Technical Report (in preparation), U. S. Army Missile Command, Redstone Arsenal, Alabama, 1977.

APPENDIX I. DETERMINING AERODYNAMIC MATRICES.

 Determining the positions of a horseshoe vortex and a control point on a fin

By using the coordinates as shown in Figs. 2 and 3, the positions of a horseshoe vortex (x_v, y_v, z_v) a control point (x_D, y_D, z_D) on a fin can be written as:

$$y_{v} = y_{D} = (e_{k,\ell} + e_{k,\ell+1})/2$$

$$x_{v} = a_{k} + c_{k} \cdot (3d_{k,m} + d_{k,m+1})/4 + (y_{v} - b_{k}) \cdot \tan \lambda$$

$$Z_{v} = Z_{D} = 0$$

$$x_{D} = a_{k} + c_{k} \cdot (d_{k,m} + 3d_{k,m+1})/4$$

$$+ (c_{k+1} \cdot (d_{k+1,m} + 3d_{k+1,m+1})/4$$

$$- c_{k} \cdot (d_{k,m} + 3d_{k,m+1})/4 + a_{k+1} - a_{k}) \cdot (y_{v} - b_{k})/(b_{k+1} - b_{k})$$
(21)

where,

tan
$$\lambda = (c_{k+1} \cdot (3d_{k+1,m} + d_{k+1,m+1})/4$$

 $- c_k (3d_{k,m} + d_{k,m+1})/4$
 $+ a_{k+1} - a_k)/(b_{k+1} - b_k)$

The half spanwise width of a horseshoe vortex is,

$$h = (e_{k,\ell+1} - e_{k,\ell})/2$$
 (22)

2. Velocity components induced by a horseshoe vortex

The vertically intercepted point $S(\xi, \beta\eta, \beta Z_v)$ between a bound vortex line and any control point $P(x_D, \beta y_D, \beta Z_D)$ as shown in Fig. 48 can be written as:

$$\xi = \frac{x_{v} + x_{D} \tan^{2} \mu + \beta \cdot (y_{D} - y_{v}) \tan \mu}{\tan^{2} \mu + 1}$$

$$\beta \eta = \frac{\beta y_{D} + \beta y_{v} \tan^{2} \mu + (x_{D} - x_{v}) \tan \mu}{\tan^{2} \mu + 1}$$
(23)

where,

$$tan \mu = tan \lambda / \beta$$

By using Biot-Savart law, the velocity (W_B) induced at \underline{P} by a bound vortex ξ can be written as:

$$W_{B} = \frac{\Gamma (\cos \gamma + \cos \phi)}{4\pi \sqrt{A^2 + z^2}}$$

where

$$\cos \gamma = \frac{\overline{QS}}{\overline{QP}} = \frac{\pm \sqrt{B^2 + C^2}}{\sqrt{A^2 + B^2 + C^2 + Z^2}}$$

$$\cos \gamma > 0$$
 for $\eta > y_v - h$
 $\cos \gamma < 0$ for $\eta < y_v - h$

$$\cos \phi = \frac{\overline{RS}}{RP} = \frac{\pm \sqrt{D^2 + E^2}}{\sqrt{A^2 + D^2 + E^2 + Z^2}}$$

$$\cos \phi < 0 \text{ for } \eta > y_v + h$$

$$\cos \phi > 0 \text{ for } \eta < y_v + h$$
(24)

Figure 48. Induced velocity and its components due to a bound vortex.

$$A^{2} = (\overline{SP}')^{2} = (x_{D} - \xi)^{2} + \beta^{2} \cdot (\eta - y_{D})^{2}$$

$$B = \beta \cdot (\eta - y_{V} + h)$$

$$C = \xi - x_{V} + \beta h \tan \mu$$

$$D = \beta \cdot (y_{V} + h - \eta)$$

$$E = x_{V} + \beta h \tan \mu - \xi$$

$$Z = \beta \cdot (Z_{V} - Z_{D})$$

thus, the velocity components (\mathbf{u}_{B} , \mathbf{v}_{B} , \mathbf{w}_{B}) of \mathbf{W}_{B} can be written as:

$$u_B = -W_B \sin \epsilon \cos \mu$$
 $v_B = W_B \sin \epsilon \sin \mu$
 $w_B = -W_B \cos \epsilon$

where,

$$\sin \varepsilon = \frac{z}{\sqrt{A^2 + z^2}}$$

$$\cos \varepsilon = \frac{\pm A}{\sqrt{A^2 + z^2}}$$

 $\cos \varepsilon > 0 \text{ for } x_D > \xi$ $\cos \varepsilon < 0 \text{ for } x_D < \xi$

(25)

The velocity (W_p) induced at P due to a port free vortex as shown in Fig. 49 can be written as:

$$W_{\rm p} = \frac{\Gamma}{4\pi} \cdot \frac{1 + \cos k}{\sqrt{G^2 + Z^2}}$$

Figure 49. Induced velocity and its components due to a port free vortex.

$$\cos k = \frac{H}{\sqrt{G^2 + H^2 + Z^2}}$$

$$G = \beta \cdot (y_D - y_V + h)$$

$$H = x_D - x_V + \beta h \tan \mu$$
(26)

thus, the velocity components (u_p, v_p, w_p) of W_p can be written as:

$$u_{p} = 0$$

$$v_{p} = -W_{p} \sin v$$

$$w_{p} = -W_{p} \cos v$$
where,
$$\sin v = \frac{Z}{\sqrt{G^{2} + Z^{2}}}$$

$$\cos v = \frac{G}{\sqrt{G^{2} + Z^{2}}}$$
(27)

Similarly, the velocity (W_S) induced at P due to a starboard free vortex as shown in Fig. 50 can be written as:

$$W_{S} = \frac{\Gamma}{4\pi} \frac{1 + \cos \sigma}{\sqrt{I^{2} + Z^{2}}}$$
where,
$$\cos \sigma = \frac{J}{\sqrt{I^{2} + J^{2} + Z^{2}}}$$

$$I = \beta (y_{V} + h - y_{D})$$

$$J = x_{D} - x_{V} - \beta h \tan \mu$$
(28)

thus, the velocity components (u_S, v_S, w_S) of W_S can be written as:

$$u_{S} = 0$$

$$v_{S} = W_{S} \sin \tau$$

$$w_{S} = W_{S} \cos \tau$$
where,
$$\sin \tau = \frac{Z}{\sqrt{\tau^{2} + Z^{2}}}$$

$$\cos \tau = \frac{I}{\sqrt{I^{2} + Z^{2}}}$$

Therefore, the induced velocity components (u, v, w) due to a complete horseshoe vortex is considered as a linear summation of the three vortices mentioned above, and can be written as:

$$u = u_B + u_P + u_S$$

$$v = v_B + v_P + v_S$$

$$w = w_B + w_P + w_S$$
(30)

or,
$$u = -\frac{\Gamma}{4\pi} \frac{\cos \gamma + \cos \phi}{A^2 + Z^2} Z \cos \mu = P\Gamma$$

$$v = \frac{\Gamma}{4\pi} \left[\frac{\cos \gamma + \cos \phi}{A^2 + Z^2} \sin \mu - \frac{1 + \cos k}{G^2 + Z^2} + \frac{\cos \sigma + 1}{I^2 + Z^2} \right] Z = Q\Gamma$$

$$w = \frac{\Gamma}{4\pi} \left[\frac{\cos \gamma + \cos \phi}{A^2 + Z^2} \cdot A - \frac{1 + \cos k}{G^2 + Z^2} G \right]$$

$$-\frac{\cos \sigma + 1}{I^2 + Z^2} I = R\Gamma$$
The first term in w; $\frac{-\text{for } x_D > \xi}{+\text{for } x_C < \xi}$

3. Aerodynamic Matrices.

For a planar fin-body configuration geometry, the effect of the horseshoe vortex on the opposite side's fin and the image vortex can be treated in the same way as that mentioned above. Thus, total velocity components at any control point induced by four horseshoe vortices (i.e., two on a pair of tins, and two inside a body) as shown in Fig. 51) can be written as:

$$u_{i} = \sum_{j=1}^{n} (P_{ij}^{(SS)} + P_{ij}^{(PS)} + P_{ij}^{(SS)} + P_{ij}^{(PS)}) \Gamma_{j}$$

$$v_{i} = \sum_{j=1}^{n} (Q_{ij}^{(SS)} - Q_{ij}^{(PS)} - Q_{ij}^{(SS)} + Q_{ij}^{(PS)}) \Gamma_{j}$$

$$w_{i} = \sum_{j=1}^{n} (R_{ij}^{(SS)} + R_{ij}^{(PS)}) + R_{ij}^{(SS)} - R_{ij}^{(PS)}) \Gamma_{j}$$

$$due to a pair due to image vortices of fins' vortices inside a body$$

$$(32)$$

where, the superscript (SS) indicates that as well vortex as control point are situated on the starboard side (see Ref. (7)), and,

$$P_{ij}^{(PS)} = P_{ij}^{(SS)}$$
 etc., with $y_D = -y_D$, on the opposite fin

$$P_{ij}^{(PS)} = P_{ij}^{(SS)}$$
 etc., with $y = \frac{a^2}{y}$ for $0 < y \le a$, inside a body

It has been assumed, for simplicity, that the bound vortex of an image has the straight line instead of the actual curved line. By the relation of,

$$\gamma = \frac{\Gamma}{bU_{\infty}} \quad , \tag{33}$$

Figure 51. Illustration of wing-body combination with singularities (Refs. [1,3]).

Eq. (32) can be rewritten as:

$$\frac{\mathbf{u_i}}{\mathbf{U_{\infty}}} = \sum_{j=1}^{n} \overline{P_{ij}} \gamma_{j}$$

$$\frac{\mathbf{v_i}}{\mathbf{U_{\infty}}} = \sum_{j=1}^{n} \overline{Q_{ij}} \gamma_{j}$$

$$\frac{\mathbf{w_i}}{\mathbf{U_{\infty}}} = \sum_{j=1}^{n} \overline{R_{ij}} \gamma_{j}$$

where,

$$\overline{P}_{ij} = b \{ P_{ij}^{(SS)} + P_{ij}^{(PS)} + P_{ij}^{(SS)} + P_{ij}^{(PS)} \}
\overline{Q}_{ij} = b \{ Q_{ij}^{(SS)} - Q_{ij}^{(PS)} - Q_{ij}^{(SS)} + Q_{ij}^{(PS)} \}
\overline{R}_{ij} = b \{ R_{ij}^{(SS)} + R_{ij}^{(PS)} + R_{ij}^{(SS)} - R_{ij}^{(PS)} \}$$

(34)

APPENDIX 2. COMPUTER PROGRAM FOR DETERMINING PRESSURE DISTRIBUTION ON FIN-BODY COMBINATION

2.1 Program Description

A computer program has been developed to calculate the pressure distribution and aerodynamic characteristics of fin and fin-body combination in subsonic flow. The program is written in FORTRAN IV, and designed for IBM 360 computer, however, it is easily adaptable to other computers with minor modifications.

2.2 Program Structure

The computer program consists of one main overlay program and thirty-one subroutines.

Main Program

The brief outline of the Main program is shown in Fig. 52. The iteration scheme is used only for a fin-body combination to solve a fin-body interaction result.

A considerably detailed expression of the Main program is shown in Fig. 53. The Main program controls almost all subroutines. The effect of the horizontal fin on the vertical fin is computed in the rear part of this Main program.

Figure 52. Outline of Main Program.

Aerodynamic Performance of Planar Fin or Fin-Body Combination Must Be Computed at First.

Figure 53. Flow Diagram for MAIN PROGRAM.

Figure 53. (Continued)

Figure 53. (Continued)

Computation for Aerodynamic Performance of Planar Fin or Fin-Body Combination Terminates. Subsequently, Effects of Horizontal Fin on Vertical Fin is Computed.

Figure 53. (Concluded)

Subprogram SUBROUTINE ARDC

In this subprogram, the aerodynamic matrices of a fin to fin will be computed. The subprograms PVB, PVP, and PVS are called here.

In this subprogram,

(see Fig. 54)

Exchange of the Cards (except Data cards)

In the list of the subroutines BGMY and GVS1, the cosine paneling is shown. A few cards must be exchanged by the suitable ones when a user wants the equidistant paneling. They are shown in Table 1. A clear example of the spanwisely equidistant, chordwisely cosine paneling on a fin, and longitudinally cosine paneling on a body is shown in Figs. 28(a) and (b).

TABLE 1. EXCHANGE OF THE CARDS

• Equidistant Paneling	10 XN(31+1) = XN(31) + ABS(X1-XP)/NBF 20 XN(NBF+32+1)=XN(NBF+32)+ABS(X3-X1)/ABH 30 XN(NB1+33) = XN(NB1+33-1)+ABS(XA-X3)/NBB	YF(JC+1)=Y1+(Y2-Y1)&JC/M DK(K+1)= DK(K)+ 1./N DK(K+1)= DK(K) + 1./NFLP
Cosine Paneling	10 XM(J1+1)-XP+ABS(X1-XP)+SIM(AZ1+J1) 20 XM(MBF+J2+1)=X1+ABS(X3=X1)*(I.=COS(AZ2*J2))77 30 XM(MB1+J3)=X3+ABS(XQ-X3)+(11-COS(AZ3*J3))	YF (JC+1)=Y1 -+ (Y2-Y1)=(Ts-COSTJC*PT7NTT7Zs- DK (K+1)=1COS (THF1*XK) DK (K+1)=1COS (THF1*XK)
Line No.	0025 0029 0034	0017 0038 0056
SUBROUTINE	BGMY	GVS1

2.3 List of Subprograms

All the subprogram SUBROUTINEs and their purposes are shown in Table 2. Most of them are controlled by the Main program.

2.4 List of Symbols

The symbols and their meanings used in the Main program and SUBROUTINEs are shown in Table 3.

- TABLE 2
LISTS OF SUBPROGRAMS

NAME	PURPOSE		
GVS 1	Defining location of control points of the fin, and half width of local boun vortex.		
ВСМУ	Defining body control points (which also equals to location of body sources).		
CONP	Naming location of total control points on fin-body combination.		
GIV	Computing location and slope of body image vortex.		
GVS 2 (SX, SY, TMU)	Computing interception at S. (See Fig. 48.)		
PVB (UB, VB, WB)	Computing normalized perturbation velo- city components induced by bound vortex.		
PVP (UP, VP, WP)	Computing normalized perturbation velo- city component induced by port free vor- tex.		
PVS (US, VS, WS)	Computing perturbation velocity component induced by starboard free vortex.		
BCF (XB, N3)	Defining initial angle of attack of fin, and induced angle of attack due to angle of incidence of body (when it is not zero and distributed sources on body.		
ARDC	Computing aerodynamic matrices of fin only.		
of agent and a			

Table 2. Lists of SUBPROGRAMS (Continued)

NAME	PURPOSE		
VDF (GAMM)	Compute circulation strength (i.e., solve the simultaneous linear eqs.).		
GVS 3	Computing local fin panel area, reference fin area, and reference chord.		
XLC	Computing local chord of fin.		
BLLT	Computing local chord length of fin provided that fin was extended into body.		
DINV (D, E, N)	Solving the simultaneous linear equation		
PDB (XCP)	Computing pressure distribution (ΔC_p) or fin.		
SLD	Computing spanwise lift distribution based on local fin chord.		
XLF (CL)	Computing lift coefficient of fin based on reference area (RFAREA).		
PMS (CMS)	Computing spanwise moment distribution around 25% local chord based on local chord CLL and XAX.		
PVMX	Computing perturbation velocity component on body due to unit circulation of fin.		
VLNB	Computing perturbation velocity components on body.		
BPD	Computing pressure distribution (C_p) on body.		
ARQQ	Computing pressure distribution on body due to unit source strength.		

Table 2. Lists of SUBPROGRAMS (Continued)

NAME	PURPOSE
BLD (BCL)	Computing pressure distribution (ΔC_p) on body.
BSS	Computing source strength on body.
ARQV	Computing body source strength for m th iteration.
WBS (XW, N1, N2)	Computing normalized downwash on fin induced by body source.
ARBF	Computing normalized downwash on fin induced by body unit source.
BSLD	Computing spanwise lift distribution on body based on local chord of fin, supposed to be extended into body.
VBIA	Computing angle of attack on fin induced by angle of incidence of body.
XLIFT	Computing lift coefficient of total fin- body combination.

TABLE 3
LIST OF SYMBOLS

SYMBOLS	MEANINGS		
BD (56)	(Equivalent to XB in SUBPROGRAM BCF.) Apparent angle of attack of local panel.		
XW (56)	Normalized component of induced velocity on local panel due to body source.		
GAMM (55)	Circulation strength of local panel		
XREF (10)	X-coordinate for 25% local chord of fin.		
XCP (55)	Pressure difference (ΔC_p) on local panel of fin.		
CMS (10)	Spanwise moment distribution around 25% local chord, based on local chord of fin.		
BCL (36)	Pressure difference (ΔC_p) on body.		
RADI	Radius of body (= constant in present analysis).		
CPB (72)	Pressure coefficient (Cp) on body.		
AR (56, 56)	Aerodynamic influence matrix for fin only.		
AQ (72, 72)	Perturbation velocity component (x-direction) on body due to body source ($(C_p)_B = -2(u + u_s)/\beta^2$, see SUBPROGRAM BPD).		
ASV (72,72)	$= \frac{1}{2\pi} \frac{\left[1 - \cos(\theta_{\mu} - \theta_{\nu})\right] \beta a \Delta S_{\nu}}{\left[(x_{\mu} - x_{\nu})^{2} + \beta^{2} \left\{1 - \cos(\theta_{\mu} - \theta_{\nu})\right\} a^{2}\right]}$		
	(See Eq. (10).)		

Table 3. List of Symbols (Continued)

SYMBOLS	MEANINGS Coefficient for determining induced velocity (w-component) on fin due to unit source strength on body.	
AFN (72,55)		
MB	Circumferential division number along half body.	
NB	= NBF + NBM + NBB.	
NUB	= NB x MB; total panel numbers on half body.	
PSA (55)	Local panel area (includes compressible effect).	
BREF (5)	Local chord of fin, provided extending into body.	
XDV (55)	= XG - SV; 1/2 local panel chord through its center in present analysis.	
YVI (55)	Y - location of center of bound vortex for body image.	
WHI (55)	Half width of body image vortex.	
TLMDI (55)	Slope (or gradient) of bound vortex of body image.	
NBF, NBM, NBB	Longitudinal division numbers on body for forward (ahead of L. E. of fin location), middle (at fin location), and backward	
FDL	(aft of it), respectively.	
BDL	See Fig. 56(a).	
ALFAB	Angle of attack of body (degrees).	

Table 3. List of Symbols (Continued)

SYMBOLS	MEANINGS		
XBW (55)	Additive angle of attack of local panel of fin due to body angle of attack.		
*JRAD	Control integer. See Figs. 52, 53.		
AREAB (96)	Local panel area on body surface.		
UBDY (72)	Induced velocity (u-component) at control point on body.		
VN (72)	Induced velocity component normal to body surface due to circulation of fin.		
QL (72)	Source strength per unit body surface area.		
*ASYF *ASYW	Control variables. See 2.2 Input Data Card		
CLL (55)	Local chord length (= XC3 - XC1).		
BCL	Load distribution on body.		
Ml	= MB/2.		
NFLP	Chordwise division number for flap or elevon.		
NT	= N + NFLP.		
NW	= M x N.		
AFLAP	Flap or elevon deflection (degrees).		
*IRPT	Control integer. (See Figs. 52, 53).		
X1, Y1X6, Y6	See Fig. 55(a).		
М	Spanwise division number for main fin.		
N	Chordwise division number for main fin.		

Table 3. -List of Symbols (Continued)

SYMBOLS	MEANINGS
MX	Free stream Mach number.
ALFAF	Angle of attack for fin (degrees).
NO	M x NT (total panel number for half fin).
PI	Constant (= 3.14159).
ВЕТА	$= \sqrt{1 - M_{\infty}^2}$
SPN	(= Y 2)
XC1 (55)	Location in x-direction of intercept
	points. See Fig. 55(c).
XC2 (5)	
XC3 (5)	
ABU (72,55)	Induced velocity components at control
ABV (72,55)	point on fin, due to circulation of fin.
ABW (72,55)	
XL (10)	XC2 - XC1. See Fig. 55(c).
NTOT	= NO + NUB, total panel number.
XG (55)	Location of control point on fin.
YG (55)	
ZG (55)	
XS (72)	Location of source distribution on body (= location of control point on body).
TS (127)	Angular position for source (thus, control point) on body (radian).

Table 3. -List of Symbols (Continued)

SYMBOLS	MEANINGS		
XD (127) YD (127) ZD (127)	Location of control point of local panel of fin-body combination.		
XV (55), YV (55), ZV	(55) Location of middle of bound vortex on local panel of fin.		
WH (55)	Half width of local panel on fin.		
TLMD (55)	Slope of local bound vortex. See Fig. 55(b).		
YF	Y - location of local panel edges. See Fig. 55(b).		
RFAREA	Reference area for C _L .		
XAX	Maximum chord length of fin, reference chord.		
DT	Circumferential length of local body panel.		
*IRC	Control integer. See Fig. 53.		
DX (96)	Longitudinal length of local body panel.		
CLS (5)	Spanwise lift distribution for wing + fin based on CLL.		
CLSW (5)	Spanwise lift distribution for wing, based on CLL.		
CLSF (5)	Spanwise lift distribution for fin, based on CLL.		
CLBS (5)	Spanwise lift distribution on body, based on BREF.		

Table 3. List of Symbols (Continued)

SYMBOLS	MEANINGS	
CLWING	C _L for wing or main fin, based on reference area (RFAREA)	
CLFIN	C _L for flap or elevon, based on reference area (RFAREA).	
CLBODY	C_L for body, based on RFAREA. Total C_L (= $(C_L)_{wing}$ + $(C_L)_{fin}$ + $(C_L)_{body}$)	

Figure 54. Fin vortices and its images.

Figure 55a. Fin-body geometry coordinate input.

Figure 55b. Fin panel division number and named panels (the above figure shows total 35 panels case).

Figure 55c. Local chord definition.

2.5 INPUT DATA Cards

The fin-body geometry must be given by the 1st and 2nd cards.

	Column	Symbols	Explanation
1st Card	FORMAT (8F10.5)		
	1 - 10	X1	Coordinate of the corner
	11 - 20	Y1	points of main fin or wing.
	21 - 30	X2	(See Fig. 55(a).) If no
	31 - 40	¥2	flap nor elevon, X3, Y3, X4,
	41 - 50	X3 (or X5)	Y4 must be the same values
	51 - 60	Y3 (or Y5)	as X5, Y5, X6, Y6, respec-
	61 - 70	X4 (or X6)	tively.
	71 - 80	Y4 (or Y6)	
2nd Card	FORMAT (4F10.5)		
	1 - 10	X5	Coordinate of the corner
	11 - 20	Y5	points of a flap or an ele-
	21 - 30	X6	von.
	31 - 40	¥6	

Panel number of a fin must be given by the 3rd card.

3rd Card	FORMAT (3110)		
	1 - 10	М	Spanwise panel number of
			main fin. (See Fig. 55(b).)
	11 - 20	N	Chordwise panel number of
			main fin.
	21 - 30	NFLP	Chordwise panel number of
			flap or elevon.

 ${\tt M}$ must be less than or equal to five. The sum of N and NFLP must be less than or equal to eleven.

Panel number of a body must be given by the 4th card.

4th Card	FORMAT (4110	, 2F10.5)		
	1 - 10 11 - 20	МВ	Circumferential panel number. (See Fig. 56(a).)	
		NBF		
	21 - 30 31 - 40	NBM NBB	} Longitudinal { for front part. for middle part. for aft part.	

4th Card (Continued) --

41 50	FDL	Front part length/(X3-X1).
51 - 60	BDL	Aft part length/(X3-X1).

MB must be six. Total sum of NBF, NBM, and NBB must be less than or equal to twelve.

Aerodynamic Input must be given by the 5th card.

5th Card	FORMAT (6F10.5)			
	1 - 10	XM	Free stream Mach number.	
			(See Fig. 57.)	
	11 - 20	ALFAF	Angle-of-attack of main fin or wing.	
	21 - 30	ALFAB	Body Angle-of-attack.	
	31 - 40	AFLAP	Angle-of-attack of flap or elevon.	
	41 - 50	ASYW	= 1. for symmetrical flow of main fin or wing;= -1. for asymmetrical flow of main fin or wing.	
	51 - 60	ASYF	= 1. for symmetrical flow of flap or elevon.= -1. for asymmetrical flow of flap or elevon.	

XM must be less than 1.0. Only when ALFAB equals to zero, ASYW and/or ASYF can take -1.0. Nonetheless that ASYW and/or ASYF equal to 1.0 or -1.0, the same amount of angle-of-attack of a pair of fins must be taken, thus the case that the right hand side of a pair of fins has angle-of-attack of 5°, and the left has 3°, cannot be allowed.

Figure 56a. Body paneling (for equidistance case).

Figure 56b. Body paneling and body control point.

Figure 56c. Fin extended into body.

Figure 57. Aerodynamic input of fin-body combination

2.6 Program Output

One example of the computer print output is shown in Table 4. The corresponding fin is the following:

Fin-body configuration	cylindrical body with
	rectangular fin
Fin aspect ratio	6
Maximum span/body diameter	6
Fin panel number	25
Body panel number	60
Total fin-body panel number.	85
Free stream Mach number	0.4
Angle of incidence of body	+2(°)
No cant angle of fin, no flag	

Remark: Note that WING CL, FIN CL, BODY CL, and TOTAL CL in Output are half values of the correct ones, thus these values have to be multiplied by two to obtain correct CL based on reference area (also, see SUBROUTINE XLIFT). CL for fin only is also in the same thing.

TABLE 4. EXAMPLE OF COMPUTER OUTPUT

CO C		x3	1.0000. 0.500 1.600 3.000 1.000 0.500 1.000 3.000		5 NO = 25	NBB = 3 NB = 10 NUB = 60	NCE = 2.00 (DEG) FIN ANGLE OF ATTACK = 2.00 (DEG)			0E 01 0.10000E 01		OE 01 0.10000E 01 0.10000E 01 0.10000E 01	0.0 01 0.1000UE UI 0.1000UE UI 0.1000UE 01 0.1000UE UI 0.1000UE 01 0.1000UE
	FIN-BODY GEOMETRY	x2	0.0	FIN-BODY PANEL NUMBER	NFLP =	NBM = 4	MACH NO = 0.400 ANGLE OF INCIDENCE = FLAP ANGLE OF ATTACK = 2.00 (DEG) FIN	REFERENCE CHURD	ON BODY	1 2 0.10000E 01 0.10000E 01	ON FIN	. 10	1000E 01

"PRESSURE DISTRIBUTION ON PLANAR FIN

0.61936E 00 0.0 0.12236E-01 0.20645E 00 0.37426E-02 0.12536E-01 0.5833E 00 0.33271E-02 0.21550E 01 0.0 0.12236E-01 0.81626E 00 0.25734E-02 0.2286E-01 0.0 0.81626E 00 0.25738E-02 0.22866E 01 0.0 0.0 0.12236E-01 0.96621E 00 0.18182E-02 0.61936E 01 0.0 0.0 0.0 0.18182E-02 0.18530E 01 0.0 0.84453E-01 0.96621E 00 0.18182E-02 0.18530E 01 0.0 0.84453E-01 0.96621E 00 0.38394E-02 0.2448EE 01 0.0 0.84453E-01 0.96621E 00 0.28804E-02 0.2448EE 01 0.0 0.84453E-01 0.96621E 00 0.28804E-02 0.2448EE 01 0.0 0.0 0.0 0.28453E-01 0.96621E 00 0.23474EE-02 0.0 0.24458E-01 0.96621E 00 0.23474EE-02 0.0 0.24458E-01 0.96621E 00 0.23474EE-02 0.0 0.24458E 01 0.0 0.20445E 00 0.23474E-02 0.24448EE 01 0.0 0.24459E 00 0.25645E 00 0.23474E-02 0.17500E 01 0.0 0.48191E 00 0.35641E 00 0.26464E 01 0.0 0.48191E 00 0.35641E 00 0.35446E-02 0.17500E 01 0.0 0.48191E 00 0.35641E 00 0.35641E 00 0.36486E-02 0.17500E 01 0.0 0.0 0.18344E-02 0.17500E 01 0.0 0.0 0.18344E-02 0.17500E 01 0.0 0.17824E-02 0.17500E 01 0.0 0.18246E-02 0.17500E 01 0.0 0.17824E-02 0.17500E 01 0.17824E-02 0.178246E-02 0.17824E-02 0.17824E-02 0.17824E-02 0.17824E-02 0.17824E-02
2 0.12236E-01 0.60 3 0.12236E-01 0.24 5 0.12236E-01 0.24 6 0.84453E-01 0.28 7 0.84453E-01 0.24 10 0.84453E-01 0.10 9 0.84453E-01 0.10 12 0.84453E-01 0.10 13 0.24629E 00 0.10 14 0.24629E 00 0.10 15 0.24629E 00 0.10 16 0.4629E 00 0.24 17 0.46191E 00 0.24 18 0.24629E 00 0.28 19 0.24629E 00 0.28 20 0.76824E 00 0.28 21 0.76824E 00 0.28 22 0.76824E 00 0.28 23 0.76824E 00 0.28 24 0.76824E 00 0.28 25 0.76824E 00 0.28 26 0.76824E 00 0.28 27 0.76824E 00 0.28 28 0.76824E 00 0.28 29 0.76824E 00 0.28 20 0.76824E 00 0.28 21 0.76824E 00 0.28 22 0.76824E 00 0.28 23 0.76824E 00 0.28 24 0.76824E 00 0.28 25 0.76824E 00 0.28 26 0.76824E 00 0.28 27 0.76824E 00 0.28 28 0.76824E 00 0.28 29 0.76824E 00 0.28 20 0.76824E 00 0.28 21 0.76824E 00 0.28 22 0.76824E 00 0.28 23 0.76824E 00 0.28 24 0.76824E 00 0.28 25 0.76824E 00 0.28 26 0.76824E 00 0.28 27 0.76824E 00 0.28 28 0.76824E 00 0.28 29 0.76824E 00 0.28 20 0.76824E 00 0.28 21 0.76824E 00 0.28 22 0.76824E 00 0.28 23 0.76824E 00 0.28 24 0.76824E 00 0.28 25 0.76824E 00 0.28 26 0.76824E 00 0.28 27 0.76824E 00 0.28 28 0.76824E 00 0.28 29 0.76824E 00 0.28 20 0.76824E 00 0.28 21 0.76824E 00 0.28 22 0.76824E 00 0.28 23 0.76824E 00 0.28 24 0.76824E 00 0.28 25 0.76824E 00 0.28 26 0.76824E 00 0.28 27 0.76824E 00 0.28 28 0.76824E 00 0.28 28 0.76824E 00 0.28 28 0.76824E 00 0.28 29 0.76824E 00 0.28 20 0.76824E 00 0.28 20 0.76824E 00 0.28 21 0.76824E 00 0.28 22 0.76824E 00 0.28 23 0.76824E 00 0.28 24 0.76824E 00 0.28 25 0.76824E 00 0.28 26 0.76824E 00 0.28 27 0.76824E 00 0.28 28 0.76824E 00 0

		1	/*	ン (ご
		1	E	
	/	9	199	
	/	300		
1	Ren	best		
1	Ren	pest	/	

PRESSURE DISTRIBUTION ON BODY

1			-		1						
Š		ğ		97		UBDY	Z>	.	ಕ	6 CPB	
-0.3750UE	00	0.12941E	00		90	0-10009E-01	0.85831E-02	-0.21149E-02	-0-15401E-01		
•		48296	30		3 3	0-51997F-02	0-463815-02		-0.92072E-01		
		0.48296	8	-0.12941E	00	-0.51996E-02	-0.46380E-02	6680E-01	0.92071E-02	0	
75		.35355	00	-0.35355E	8	-0.96993E-02	-0.85046E-02	:0123E-02	0.15984E-01	ò	
•37500		.12941	00	-0.48296E	00	-0.10009E-01	-0.85831E-0	21149E-02	0.15401E-01	·	
•15849	00	2941	00	. 0.48296E	00	0.15468E-01	0-80508E-0	14694E-02	-0.14110E-01	0	
.158	00	.35355	00	0.353F5E	00	0.18411E-01	0.94435E-02	15085E-02	-0.17683E-01	-0.40950E	
.15849	20	.48296	00	0-12941E	00	0-17453E-01	0.83412E-02	-0-28302E-01	-0.16749E-01	-0.42574E-01	
64	3	•48296	00	-J.12941E	00	174535-01	-0.83411E-02	-0.283U3E-	U-16749E-01	0.42574E-01	
-0.15845E	00	5	00	-0.35355E	00	-	-0.94835E-02	-0.75085E-	-02 0-17683E-01	0.40950E-01	
6 7	000	.12941		-0.48296E	00		-0.8C5U9E-02	-0.14694E-	0-14110E-01	U-32252E-01	
W	101	17571		U.48.296E	00	18662E-01	0.60597E-02	0	10547E-01	-0.34006E-01	
34645	-01	2	3		00	0.249916-01	0.75131E-02	-0.36780E-02	-0.13989E-U1	-0-49672E-01	
33484[2	0.48295E	ō	0-129/1E		5816E-01	0.95395E-02	2	19139E-01	-0.10415E 00	
34676	-21	96795	3	-J-12941E			-0.95395E-02	2	U-19139E-01	0.10415E 00	
3464E	3	.35355	0	-0.35355E	00	14991E-01	-0.75132E-02	-0.36780E-02	0.13989E-01	0.49672E-01	
.334945	10-	2941	0	-0.48296E			-0.60597E-02	2	0-10547E-01	0.34006E-01	
o bbee	-01	.12941	Ö	0.48296E	00	0.20000E-01	0.43298E-U2	5	-0.74660E-02	-0.29619E-01	
3090E	-67	55	Ö	U-35355E	00		0.51514E-02		-0.95323E-02	-0.46214E-01	
· 3cotot	10-	67850		J.1254.1E	00	629511-01	0.510486-02	7.	-0.10204E-01	-0.130EZE 00	
.3006.E	5-	.48296	0	-0.12941E		-0-975679-0-	-0.51048L-02	-0.97594E-02	0.10204E-01	0.13082E 00	
BUSEUE	-01	.35355	ŏ	-0,35355E		-0.2778UE-01	-0.515144-02	Š		0.46215E-01	
. 38060E	-07	41	õ	-0.48256E		-0.20000E-01	-0.43298C-C2	5	0.74660E-02	0.29619E-01	
0451	00	.12941	0	0.48296E	00	0.20892E-01	0.22249E-03	J.26448E-02	-0.60963E-04	-0-36517E-01	
8451	3	2355	Ö	0.35355E	00	0.206945-01	-0.50153E-03	ċ	0-12217E-02	-0.55985E-01	
.18451	3	8596	0	U-12941E	00	0.50302E-01	-0.2564BE-02	0.250845-01	U-53028E-02	-0.11293E u0	
C-16451E	00	•48296	0	-0.12941E	00	-0.5u3u2E-01	0.25648E-02	0.25084E-01	-0.53028E-02	0.11293E 00	

0.55985E-01 0.36517E-01 -0.33551E-01 0.87981E-02 0.16267E-01 0.17224E-01 0.24126E-02 -0.45456E-02 -0.62984E-02 -0.24126E-02 0.62984E-02 0.82437E-02 -0.16267E-01 -0.87982E-02 0.45455E-02 -0.44352E-01 0.674UBE-01 E-01 0.33551E-01 -0.23002E-01 -0-32320E-01 0.32320E-01 0.25599E-01 0.230026-01 0.12849E-01 -0.67407E-01 -0-17224E-01 -0.25599E-01 -C-12849E-01 -0-10671E-01 0.44352 0.10671 -0.82437 0.95206E-02 0.42054E-02 -0.61628E-02 0.12191E-01 0.83853E-02 -0.83852E-02 -0.65701E-02 -0.12935E-01 -0.14056E-01 0.97065E-02 -0.97065E-02 -0.78626E-02 0-60954E-04 0-10124E-01 -0-10124E-01 0.14462E-01 -0.95206E-02 -0.14462E-01 0.129356-01 0.11474E-01 -0.42054E-02 -0-11474E-01 0.61627E-02 0-14266E-01 -0.14266E-01 0-14056E-U1 -0.12191E-01 0.44033E-01 0.44033E-01 0.23437E-01 0.73035E-02 0.88983E-02 0.26449E-02 0.56840E-02 0.19251E-01 0.37880E-01 0.37841E-01 0.66696E-02 U-74206E-02 0.74207E-02 0.66695E-02 U.56841E-02 U-73034E-02 0.23112E-01 0.39467E-01 0.21759E-01 U-71553E-02 U-32404E-01 0.32404E-01 0.20025E-01 E-01 0.39467E-01 0.23112E-01 U-35576E-01 0.21759E-01 0.20025E-01 0.355765-01 0.71552E 0.23437 0.50155E-03 -0.22249E-03 -0.55169E-02 -0.63250E-02 -0.41329E-02 0.41328E-02 0.55169E-02 -0.77821E-02 -0.75849E-02 0.77821E-02 -0.71650E-02 -0.64725E-02 0.32060E-02 0.64725E-02 0.71850E-02 -0.47142E-02 0.47142E-02 0.75849E-02 -0.49144E-02 -0.20867E-02 0.49144E-02 0.59164E-02 -0.40373E-02 -0.12206E-02 0-31336E-02 0-40373E-02 -0.32060E-02 -0.59164E-U2 U-20867E-02 -0.31336E-02 -0.20892E-01 -0.20892E-01 0.17429E-01 0.21237E-01 .0.10614E-01 0.11376E-01 0.15766E-01 0.65682E-02 C-60243E-02 J.31645E-02 -0.316445-02 E-02 0.3379JE-02 0.603375-03 -0.15603E-02 -0.202465-02 -0.63243E-02 E-02 0-14309E-02 -C.14308E-02 -0.3379CE-U2 -0.40922E-02 0.20246E-02 E-02 -0.6U336E-03 -0.29276E-01 -0-17429E-01 -0.11376E-01 -0-137666-01 -0-106146-01 -3.65682 0.15603 0.40922 -0.12941E -0.12941E -0.35355E 0.35355E -0.129416 -0.12941E -0.35355E -U.48296E U-48296E ₩95865 0335355 0.129418 0.35355E 0.129415 0.482°5E U-35355E 0.129416 -0.12941E -0.35355E 0.48296E U-12941E -0.482°5E U-48296E -J.48296E 0.35355E -0.48296E -0.48296E -J-48296 00 3 30 00 00 20 3 0.35355E 0.12941E 0.35355E 0.46296E U.48296E 0.12941E 0.35355E 0.129415 0.35355E 0.12941E 0.48296E C.35355E 0.48296E 0.35355 0.35355E U-12941E 0-12941E J.48296E 0.48296E 0.12941E 0.353554 U-48296E 0.35355E 7678707 0.35355 0.12941 0.12941 0.12941 0.48295 0.35355 5555 18451E 18451E 45510E 10670E 13670E 13170E 13170E 13170E 0.17500E 1317vE G: 17500E 0-1067JE 45510E L.45510E 0.4551UE 45510E BUBGSE 80856E 3685E 86666 -67VE 3170E 1317LE 0.175GUE C-1750UE 0.175UUE 0.4551UE 8JOSEE 1317CE 99808 0 ; 79 63 59 67 6.5 81 8 8 61

	0.567435-01	~	0.56009E-01	6	0-311296-01
. 7	0.64503E-01	- 5	0.81900E-01	9	0-85148E-0
1	0.69012E-01	တ	0.99344E-01	6	0.2083UE 00
01	0.59238E-U1	11	0.92429E-01	12	0.26164E 00
13	0.73034E-01	14	0.11197E 00	15	0.22586E C
16	0.671326-01	11	0.887U5E-01	18	0.13482E C
19	0.46004E-01	50	0.51198E-01	21	0.64639E-01
22	U.34449E-01	23	0.32535E-01	54	0-17596E-C
25	0.25698E-01	56	0.21342E-01	27	0.90911E-0
28	0.16487E-01	53	0.12597E-01	30	0.48252E-02
SPANWISE L	SPANWISE LIFT DISTRIBUTION ON BODY	BODY			
	1 0.78256E-01	- 2	0.967476-01		0.14851E 00.

PRESSURE DISTRIBUTION ON VERTICAL FIN

LOSTRIBUTION AXCP -0.14524E-01 -0.51251E-02 -0.5756E-01 -0.5756E-01 -0.33031E-01 COEFF. ON VER SSURE DISTRIBUTION COEFF. ON VER -0.33031E-01 -0.325726E-01 -0.325736E-01 -0.325736E-01 -0.325736E-01 -0.325736E-01 -0.325736E-01 -0.325736E-01 -0.325736E-01 -0.325736E-01 -0.325736E-01	LOAD DISTRIBUTION ON VERTICAL FIN	NO XCP NO XCP NO XCP	2 -0.12267E-01 3 -0.99562E-02 4 -0.61927E-02	7 -0.78024E-02 8 -0.46928E-02 9 -0.27335E-02 10	12 -0.78556E-02 13 -0.35090E-02 14 -0.18359E-02 15	17 -0.59401 -U2 18 -0.28508E-02 19 -0.13774E-02 20	22 -0.+035%;-02 23 -0.18515E-62 24 -0.88402E-03 25	SPAMISE LIFT DISTRIBUTION ON VERTICAL FIN	1 2 3 4 5	-0.95180E-02 -0.66284E-02 -0.32970E-02 -0.17546E-02 -0.95422E-03	-0.95180E-02 -0.66284E-02 -0.32970E-02 -0.17546E-02 -0.95422E-03	0.0	LIFT COEFF. ON VERTICAL FIN CL = -0.17144E-02	PRESSURE DISTRIBUTION ON BODY INCLUDING VERTICAL FIN EFFECT	NO CPB NO CPB NO CPB NO CPB	2 -0.28564E-U1 3 -0.16171E-U1 4 0.16171E-U1 5 0.28564E-O1 6 0.28	8 -0.42001E-01 9 -0.43528E-01 10 0.43528E-01 11 0.42001E-01 12	14 -0.51168E-01 15 -0.10534E 00 16 0.10535E 00 17 0.51168E-01 18	20 -6.47580E-U1 21 -0.13215E UU 22 0.13215E UO 23 0.47980E-O1 24	26 -0.58172E-U1 27 -0.11446E 00 28 0.11446E 00 29 0.58172E-01 30	32 -0.46533E-01 33 -0.68968E-01 34 0.68968E-01 35 0.46533E-01	38 -C.270J8E-01 39 -0.3343IE-01 40 0.3343IE-01 41 0.270J8E-01 42	44 -0.16974E-01 45 -0.94928E-02 46 0.94927E-02 47 0.16974E-01 48	50 -0.11029E-01 51 -0.49603E-02 52 0.49603E-02 53
	ON VERTICAL	Š	7	7	12	17	22	TRIBUTION ON	1				RTICAL FIN	UTION ON BUE										

	C CALCULATION OF AEPODYNAMIC PERFORMANCE OF FIN-BODY COMBINATION	
0000	DIMENSION BC156).xw(56).ckeF(10).xCP(55).cMS(10).BCL(36) COMMON /A1/RED1/A2/CPB(72)/AR1/AR(56.56)/AR2/AG(72.72)/AR3/ASV(72.	
6000		
7000	S/ABW(551/BY3/JRAD COMMON /C1/6C/C2/AREAB(96)/C3/XW/C5/UBDY(72)/C6/VN(72)/C7/OL(72)/	
	~	•
5000	CONSON DIVERCIDEZARIZE TANGEN TO THE TANGE THE TENT OF	
	2	
2000	CORGION /G1/GAMM/G2/XCP/GB/ABUI72.551.4BVI72.551.4BWI72.551/R1/XLI	
8000	\$10)/K3/XKEF COMMON /II/MTOI/IZ/KG(5\$)•YG(5\$)•ZG(5\$)/T3/XS(72)•YS(72)•ZS(72)/T4 \$/TS(72)/T5/XD(127)•YD(127)•ZD(127)/T6/XV(55)•YV(55)•ZV(55)•WH(55)•	
6000		J .
00100		
1100	-	
2100	P1=3.14159	
6013	C READING TIMEBOUT DEPORTETIVE PRANCE OF THE	
0014		-
	READIN	
0015	READIS	
9100	C READING BODY PANEL NUMBER	
. 1100	READIS	
9100	17 FUKMAT(4110,2F10.5)	
6000	Nemen	
0050		
0022	BUN-MBN-1-UNIA	
0023	NUB=r,6*FIB	
9700	NIOT=NO+NUB KEADING AEROLYNAMIC INPUT	
6200		
9200	-	
1200	MKITE(6,902)	
0028		
0030	904 FORMATITH .54. X1".65X. Y1".6X. "X2".6X."Y2".6X."Y3".6X."Y3".6X."Y3".6X.	
	\$. 6 X . Y	
0031	KRITE	
0032	-	
0033		
****	4 1 2 1	
12		

C C C C C C C C C C C C C C C C C C C		8.52×.00	
910 FORMATION 110 12.22 X 1985 * 1.12.22 X 1988 * 1.12.22		WRITE(6.910) MB.NBF.NBM.NBB.NB.NUB.FDL.BDL.NTOT	:
######################################		FORMAT(1HO.2X, MB = ',12.2X, NBF = ',12.2X, NBF = ',12.2X, S.12.2X, NB = ',12.2X, NBF = ',13.3X, FDL = ',15.2X, NB = ',13.3X, NB	
912 FUNKALING AN WARK AND THE OF ANTIACE TO	9500	OTAL PANEL = 1, 13)	:
## ''DEG': 23.* 'I'R ANUEL OF ATTACK - 'F5.21X': [DEG': 3X.'ELAP ANGLE OF ATTACK - 'F5.21X': [IN STWETTRY - 'F5.21		FORMAT (1HO.2X. MAC 4 NO	
BETA=SCRI(11XM**2) SPA=72 N1=MB/2 RAD1=Y1 IRC=0 JRAD=1 IF (RAD1.LT.0.0001) JRAD=0 IF (JRAD.EQ.0.0) GO TO 610 CALL CONP WRITE (6.914) 914 FURMAT(1.3X************************************		1'.2x.'FIN ANGLE OF ATTACK = '.F5.2.1X.'(DEG)'/3x.'FLAP ANGL TTACK = '.F5.2.1X.'(DEG)'.2x.'FIN SYNMETRY = '.F5.2.2X.'FLAP	,
SPARY2 NI = MB/2 RAD1=Y1 IRC=0 JRAD=1 IF (RAD1-LT-0-0001) JRAD=0 IF (JRAD-E0-0) GO TO 610 CALL GOND WRITE (6.914) 914 FURMATI(1.3X,*)*EFERENCE CHORD CALL GVS3 CALL G	0001	BETA=SCRT(1.****2)	
RADI=Y1 RADI	0042	SPN#Y2	
RADI=Y1 RADI=Y1 RADI=Y1 RRC=0	6700	M1=HB/2	
IRC=0 JRAD=0 JRAD=0 IF (JRAD:EQ=0) GO TO 610 CALL GGWY CALL GOVS CALL GOVS CALL GVS CALL WIN WRITE(6.916) GO TO 614 CALL WIN WRITE(6.917) WRITE(6.917) WRITE(6.917) WRITE(6.917) WRITE(6.917) WRITE(6.919) WRITE(6.919) WRITE(6.919	7700	RADI=Y1	
	5700	I KC = 0	
FIGRALIA CONTROL CALL GONT GONT GONT CALL GONT	9700	UKADET	†
## 1 CALL BGMY CALL GONP	400	TINEST TO SO	
## ITE (6.914) ## ITE (6.914) ## ITE (6.914) ## ITE (6.914) ## ITE (6.910)	0000	THE WARD COUNTY OF THE PARTY OF	
CALL CONP WRITE(6.914) 1 FIJRAD.EG.0.0 GO TO 612 CALL GIV CALL GIV CALL WITA WRITE(6.916) 916 FORMATITH .3X.**UN BODY* WRITE(6.917) WRITE(6.917) 917 FORMATITH .3X.**UN BODY* WRITE(6.917) WRITE(6.917) 918 FORMATITH .3X.**UN BODY* WRITE(6.917) WRITE(6.917) 919 FORMATITH .3X.**UN BODY* WRITE(6.919) WRITE(6.919) WRITE(6.919) WRITE(6.919) WRITE(6.919) WRITE(6.90) (CLL(JJ).JJ=1.M) WRITE(6.401) (CLL(JJ).JJ=1.M) WRITE(6.402) (XCZ(JJ).JJ=1.M) WRITE(6.404) (XCZ(JJ).JJ=1.M) WRITE(6.4		CALL	
914 FORMATIV.3X. CEFERENCE CHORD. IF (JRAD. Ed.O.) GO TO 612 CALL GVS CALL GVS CALL WELT CALL WELT CALL WELT CALL WELT CALL WELT CALL WITH WAY. 1' 13X. 2' 13X WRITE (6.917) 917 FORMATILH 13X. 'UN BODY') WRITE (6.917) 917 FORMATILH 18X. 'I' 13X. '2' 13X WRITE (6.917) 918 FORMATILH 18X. 'I' 13X. '2' 13X WRITE (6.917) 919 FORMATILH 19X. 'I' 13X. '2' 13X WRITE (6.919) WRITE (6.901) (CLL(JJ) JJJ=1,M) WRITE (6.901) (CLL(JJ) JJJ=1,M) WRITE (6.902) (XCZ(JJ) JJJ=1,M) WRITE (6.902) (XCZ(JJ) JJJ=1,M) WRITE (6.904) (XCZ(JJ) JJJ=1,M) WRITE (6.9		CALL	
914 FORMATI(1,3X, 'REFERENCE CHORD - IF (JRAD, eQu.0) GO TO 612 CALL GVS3 CALL GVS3 CALL WELT WRITE(6,917) 917 FORMATILH .3X, 'UN BODY'. WRITE(6,917) 410 FORMATILH .3X, 'BREF(1) = '.91 614 WRITE(6,917) 614 WRITE(6,917) 615 WRITE(6,919) 918 FORMATILH .3X, 'BREF(1) = '.91 817 FORMATILH .3X, 'LL(JJ).JJ=1.M) 818 FE(6,902) (XCI(JJ).JJ=1.M) 819 FORMATILH .3X, 'XCI(I] = '.55 404 FORMATILH .3X, 'XCZ(II) = '.55 405 FORMATILH .3X, 'XCZ(II) = '.55 406 FORMATILH .3X, 'XCZ(II) = '.55 407 FORMATILH .3X, 'XCZ(II) = '.55 406 FORMATILH .3X, 'XCZ(II) = '.55 406 FORMATILH .3X, 'XCZ(II) = '.55 407 FORMATILH .3X, 'XCZ(II) = '.55 406 FORMATILH .3X, 'XCZ(II) = '.55 407 FORMATILH .3X, 'XCZ(II) = '.55 406 FORMATILH .3X, 'XCZ(II) = '.55 407 FORMATILH .3X, 'XCZ(II) = '.55 407 FORMATILH .3X, 'XCZ(II) = '.55 408 FORMATILH .	0052	E(6.914)	
Filhado.ed.01 GO TO 612 CALL GVS3 CALL GVS3 CALL GVS3 CALL WIND Filhado.ed.01 GO TO 614 CALL WILT CALL WILT CALL WILT WRITE (6.915) WRITE (6.917) WRITE (6.917) WRITE (6.917) WRITE (6.917) WRITE (6.919) WRITE (6.901) WRITE (6		FURNATI / . 3X . " "EFERENCE CHORD	: ! !
CALL GIV CALL GVS3 CALL WLL IF (JRAD, EQ.0) GO TO 614 CALL WIA WRITE (6.916) 916 FORMATIHH 18A* 11.13X* 2.13X WRITE (6.917) 410 FORMATIHH 18A* 11.13X* 2.13X WRITE (6.910) (BREF(1) = 1.910 410 FORMATIHH 19X* 11.13X* 2.13X WRITE (6.919) 919 FORMATIHH 19X* 11.13X* 2.13X WRITE (6.901) (CLL(JJ), JJ=1.M) WRITE (6.402) (XCI(JJ), JJ=1.M) WRITE (6.402) (XCI(JJ), JJ=1.M) WRITE (6.404) (XCZ(JJ), JJ=1.M) WRITE (6.404) (X	9500		
612 CALL GVS3 CALL GVS3 CALL VLA [FUNANTILH .3X.*UN BODY* WRITE(6.917) WRITE(6.917) WRITE(6.917) WRITE(6.917) WRITE(6.918) WRITE(6.919) 918 FORMATILH .3X.*UN FIN* WRITE(6.919) 919 FORMATILH .19X.*1.*13X.*2.*13X WRITE(6.919) WRITE(6.90) WRITE(6.90		CALL	
If LARD EQ.0) GO TO 614 CALL WILT CALL VUIA WRITE(6.916) WRITE(6.917) WRITE(6.917) WRITE(6.917) WRITE(6.917) WRITE(6.917) WRITE(6.919) WRITE(6.919) WRITE(6.919) WRITE(6.919) WRITE(6.919) WRITE(6.919) WRITE(6.90) (CL(JJ),JJ=1.M) WRITE(6.401) (CL(JJ),JJ=1.M) WRITE(6.402) (XC2(JJ),JJ=1.M) WRITE(6.403) (XC2(JJ),JJ=1.M) WRITE(6.404) (XC2(JJ)		CALL	
916 FORMATITH .3X.*ON BODY	1500	× <	
916 FORMATILH .3X.*ON BODY	96.50	I	1
916 FORMATITH .3X.*ON BODY	6600	2 >	
916 FORMATITH .3X.*ON BODY WRITE(6.917) 410 FORMATITH .18X.*1.*13X.*2.13X WRITE(6.410) (BREF(1) =) 614 WRITE(6.913) 918 FORMATITI	0001	E(6,916)	
WRITE(6.917) WRITE(6.410) (BREF(1):1:13X.22.13X 410 FURMAT(1H .3X.* BREF(1) = .31(614 WRITE(6.913) 918 FORMAT(1/.3X.* UN FIN) WRITE(6.913) 919 FURMAT(1H .19X.* 1.,13X.* 2.,13X WRITE(6.401) (CLL(JJ).JJ=1.M) WRITE(6.402) (XCI(JJ).JJ=1.M) WRITE(6.402) (XCI(JJ).JJ=1.M) WRITE(6.404) (XC2(JJ).JJ=1.M) WRITE(6.404) (XC2(JJ).JJ=1.M) WRITE(6.404) (XC2(JJ).JJ=1.M) 400 FURWAT(1H .3X.* XC1(1) = .56(404 FURMAT(1H .3X.* XC2(11) = .56(405 FURMAT(1H .3X.* XC2(11) = .56(406 FURMAT(1H .3X.* XC2(11)		FORMATITH .3X. ON BODY	
#WITE(6.410) (BREF(1) = 13M1) 410 FURMATILIH .3X. 'BREF(1) = 13M1) 614 WRITE(6.913) 918 FORMATILIH .3X. 'BRFF(1) = 13M1) WRITE(6.913) WRITE(6.401) (CLL(JJ).JJ=1.M1) WRITE(6.402) (XCL(JJ).JJ=1.M1) WRITE(6.402) (XCZ(JJ).JJ=1.M1) WRITE(6.404) (XCZ(JJ).JJ=1.M1) WRITE(6.404) (XCZ(JJ).JJ=1.M1) WRITE(6.404) (XCZ(JJ).JJ=1.M1) WRITE(6.404) (XCZ(JJ).JJ=1.M1) 400 FORWATILH .3X. 'XCZ(11) = 1.5C 406 FORMATILH .3X. 'XCZ(11) = 1.5C CALL AKDC		WRITE	
410 FURNATION ON BREFILL 614 WRITE(6.913) 918 FORMATION 18) WRITE(6.913) WRITE(6.401) (CLL(JJ), JJ=1,M) WRITE(6.401) (CLL(JJ), JJ=1,M) WRITE(6.402) (XC1(JJ), JJ=1,M) WRITE(6.404) (XC2(JJ), JJ=1,M) WRITE(6.404) (XC2(JJ), JJ=1,M) WRITE(6.404) (XC2(JJ), JJ=1,M) 400 FORWATION 3X. XL(1) =56 404 FORWATION 3X. XC1(1) =56 405 FORWATION 3X. XC2(1) =56 CALL ANDC		FORMAI	1
614 WRITE(6.913) 918 FORMATI(7.3x, 'ON FIN',) WRITE(6.913) WRITE(6.401) (CLL(JJ),JJ=1,M) WRITE(6.401) (CLL(JJ),JJ=1,M) WRITE(6.402) (XC1(JJ),JJ=1,M) WRITE(6.404) (XC2(JJ),JJ=1,M) WRITE(6.404) (XC2(JJ),JJ=1,M) WRITE(6.406) (XC2(JJ),JJ=1,M) 400 FORWATI(1H .3x, 'XC1(I) = '.5(404 FORWATI(1H .3x, 'XC1(I) = '.5(404 FORWATI(1H .3x, 'XC2(II) = '.5(404 FORWATI(1H .3x,		FORMA CIM SAKE BREEZE .	
918 FORMATION -3.4. ON FIN		WRITE(6.913)	
WRITE(6.919) WRITE(6.401) (CLL(JJ),JJ=1.M) WRITE(6.401) (CLL(JJ),JJ=1.M) WRITE(6.402) (XC1(JJ),JJ=1.M) WRITE(6.404) (XC2(JJ),JJ=1.M) WRITE(6.404) (XC2(JJ),JJ=1.M) WRITE(6.404) (XC2(JJ),JJ=1.M) 400 FORMAT(IH .3X. XC1(I) = .56 404 FORMAT(IH .3X. XC1(I) = .56 406 FORMAT(IH .3X. XC2(II) = .56 CALL ARDC		FORMATIONSKOON FIN	
# # # # # # # # # # # # # # # # # # #		WRITE(6.919)	
## ITE (6.401) (CL(JJ),JJ=1, WH ITE (6.404)) (CL(JJJ),JJ=1, WH ITE (6.404)) (XC2(JJ),JJ=1, WH ITE (6.404)) (XC2(JJ),JJ=1, WH ITE (6.404)) (XC2(JJ),JJ=1, WH ITE (6.406)) (XC2(JJ),JJ=1, WH		FORMATCH SISK. 1. SISK. 2. SISK	
#RITE(6.402) (XCI(JJ),JJ=1, #RITE(6.404) (XC2(JJ),JJ=1, #RITE(6.406) (XC3(JJ),JJ=1, #OU FORWAT(IH 33x,*XCI(I) = #OA FORMAT(IH 33x,*XCI(I) = #O6 FORMAT(IH 33x,*XC2(I) = #O6 FORMAT(IH 33x,*XC3(I) =	2000	107.91	
WRITE(6,404) (XCZ(JJ),JJ=1, WRITE(6,406) (XCZ(JJ),JJ=1, 400 FORNAT(1H ,3X,*XL(1) = 401 FORNAT(1H ,3X,*XL(1) = 404 FORNAT(1H ,3X,*XCZ(1) = 406 FORMAT(1H ,3X,*XCZ(1) = 400	0073	16.402)	
#RITE(6,406) (xC3(JJ),JJ=1, 400 FORWAT(1H ,3x,*XL(1) = 402 FORWAT(1H ,3x,*XC1(1) = 404 FORMAT(1H ,3x,*XC2(1) = 406 FORMAT(1H ,3x,*XC2(1) = 406 FORMAT(1H ,3x,*XC3(1) = 406 FORMAT(1H ,3x,*XC3(1) = 406 FORMAT(1H ,3x,*XC3(1) = 400	4100	140491	
400 FORWATCH ,3X, *KL(1) = 401 FORWATCH ,3A, *CL(1) = 402 FORWATCH ,3X, *KC1(1) = 404 FORMATCH ,3X, *KC2(1) = 466 FORMATCH ,3X, *KC3(1) = CAL ARDC	0075	(6.406) (XC3(JJ),JJ=1	
401 FORWAT(1H ,3A,*CLL(1) = 402 FORWAT(1H ,3X,*XC1(1) = 404 FORWAT(1H ,3X,*XC2(1) = 466 FORWAT(1H ,3X,*XC3(1) = CALL ARDC		FORMATITH .3X. * XLIII = "	
402 FORMATITH .3X., *CCI(1) = .404 FORMATITH .3X., *CCI(1) = .406 FORMATITH .3X., *CCI(1) = .CALL ARDC		FURYAT(114 .34. CLL(1) = .	
406 FORMAT(1H .3X., *XC2(1) = 406 FORMAT(1H .3X., *XC3(1) = CALL ARDC		FORMATITH .3X KC1(1) = .	
466 FORMAT(1H ,3X, 'XC3(1) # ',		FORMATITH .3X. XCZ(1) = .	
		FORMATIIH .3X. "XC3111 = ",	
	0081	CALL ARDC	

COUNTY AND THE TRANSMENT OF THE CONTRACT OF TH	FORTRAN IV G LEVEL	LEVEL	21 MAIN DATE = 76132 14/11/16	PAGE 0003
CALL ARGE CALL ARGENIANO CALL ARGEN				
100 CUNTING 100 TO 18 100 CUNTING 10	0083		1	
CALL ARBY CALL ARBY CALL ARBY CALL ARBY CALL ARBY CALL BOX CALL	*800			
CALL ARBE	0085		-	
100 CONTINUE 100	0086			
1000 [CURTINE CALL US ILLUMAN IL	0087	919	IRPT-1	
100 CONTINUE	9800		11.	
6.18 CALL US (EGAM) CALL UNF (GAM) CALL UNF (GAM) CALL BUD CALL BLD CAL	6800	1000	CONT	
CAL VUEIGAMN CAL VUEIGAMN CAL PRISCUE CAL ALFOLD CAL ALFOLD CAL ALFOLD CAL ALFOLD CAL BEGGO GO TO 620 CAL BEGGO CAL BEGGO GO TO 620 CAL BEGGO CAL BEGGO GO TO 620 CAL BEGGO CAL BEGGO TO 620 CAL BEGGO CAL BEGGO TO 620	0600	618	CALL	
CAL PUBLICE CAL ALFECT CAL ALFECT CAL ALECT CAL BUSICAS CAL MESS XA.NMB.NO CAL XILTERATION = '.12./) SO FORWATILIOS AND 'CAL XILTERATION = '.12./) SO FORWATICAS SO FORWATICAS SO FORWATICAS SO FORWATICAS SO FORWATICAS CAL XILTERATION = '.12./) SO FORWATICAS SO FORWATIC	0001		CALL	
\$ 111 \$ 250 \$ 4,50 \$ 2,50 \$ 4,50 \$ 2,00 \$ 2,00 \$ 3,00 \$ 2,00 \$ 3,00 \$ 2,00 \$ 3,00 \$ 3,00	0005			•
\$ 111 \$ 25,000 \$ 25,000	6600	i		
102 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7600			
311 311 311 312 326 327 328 328 329 320 320 320 320 320 320 320 320	5600			
3111 924 924 925 927 927 927 927 927 927 927 927 927 927	9600		RAD.EG.01	
8 111 9 2 4 5 6 6 5 5 6 6 5 6 6 6 6 6 6 6 6 6 6 6	1600		VLNB	
8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8600			
7 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6600	-		
250 250 250 250 250 250 250 250 250 250	0100			
311 924 926 927 927 927 927 927 927 927 927	0101			
8 650 9 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	C102	-		
\$ 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0103			
850 924 924 925 925 925 926 927 927 927 927 927 928 928 929 920 920 920 920 920 920 920	. 7010		RPT.LT.41	
25	9010		£(6.92C)	
3111 3111 312 500 500 700 700 700	0106	920	FORMATICESA, ITERATION - '-120')	
8 1111 924 927 927 927 720 700 700 700	0107	620	NK171(6,922)	
824 924 927 927 927 927 927 703	0108	922	FUNABLIA 334 PRESSURE DISTRIBUTION ON PLANAR FIN	
924 924 927 927 927 927 920 927 920 920 920 920 920 920 920 920 920 920	0109		-	
23 6 6 6 7 7 7 5 9 5 0 6 7 7 7 9 9 7 7 7 9 9 7 7 7 9 9 7 7 7 9	0110	924	FOREAT (/ 444 "NO " 664 " * XV " - 11X - 17V " - 11X - 12V " - 11X - 11X - 10X - 10X - 10X - 10X	
DO 312 If = 1.NO ANR = (AV(IF) - XC1(IF)) YOR = Y(VIE) / Y2 WRITE(6.31) IF .XV(IF) .XV(IF) .ZV(IF) .XNR.YNR.GAMM(IF) .XCPI 311 FORMAT(1H .15.7(1X.£12.5)) 926 FORMAT(1H .15.7(1X.£12.5)) WRITE(6.926) WRITE(6.927) 927 FORMAT(1H0.2X*'SPANWISE LIFT AND MOMENT DISTRIBUTION WRITE(6.500) (CLS(JX) .JX=1.M) WRITE(6.500) (CLS(JX) .JX=1.M) WRITE(6.500) (CLS(JX) .JX=1.M) WRITE(6.500) (CLS(IX) .JX=1.M) SOG FORMAT(1H0.3X*'CLS(IX) .JX=1.M) IF (JRAD.NE.0) GO TO 720 WRITE(6.700) KFAREA.CL 700 FORMAT(1/2X*'FIN AMEA = '.EI2.5.5X''LIFT COEFF. = '.EI2.55 720 CONTINUE		-	1. CANKA '8X, 'XCP', '	
### ##################################	0111		60 312 If = 1.00	
YNR=YV(IF)/Y2 WRITE(6:311) IF:XV(IF).YV(IF).XNR.YNR.GAMM(IF).XCPI 311 FORMAT(1H .15.7(1X.£12.5)) 312 CONTINUE WRITE(6:326) 926 FORMAT(1H0.20X.'1'.13X.'2'.13X.'3'.13X.'4'.13X.'5') WRITE(6:502) (CLSUX).JX=1.M) WRITE(6:502) (CLSUX).JX=1.M) WRITE(6:502) (CLSUX).JX=1.M) WRITE(6:504) (CLS(JX).JX=1.M) WRITE(6:504) (CLS(JX).JX=1.M) WRITE(6:504) (CLS(JX).JX=1.M) WRITE(6:504) (CLS(JX).JX=1.M) SOO FORMAT(1H0.3X.'CLSF(I) = '.5(E12.5.2X)) 504 FORMAT(1H0.3X.'CLSF(I) = '.5(E12.5.2X)) 1F(JRAD.NE.O) GO TO 720 WRITE(5:702) KFAREA.CL 700 FORMAT(1/2.X.'FIN AMEA = '.E12.5.5X.'LIFT COEFF. = '.E12.5. 720 CONTINUE	0112		XNR=(XV(1F)-XC1(1F))/CLL(1F)	
311 FORMATITH .15.7(11x,E12.5) 312 CONTINUE WRITE(6,926) 926 FURMATITHO.2UX,'1',13X,'2',13X,'3',13X,'4',13X,'5') WRITE(6,500) (CLS(JX),JX=1,M) WRITE(6,500) (CLS(JX)) 505 FORMAT(1H0,3X,'CLS(JX)) 506 FORMAT(1H0,3X,'CLS(JX)) 506 FORMAT(1H0,3X,'CLS(JX)) 506 FORMAT(1H0,3X,'CLS(JX)) 506 FORMAT(1H0,3X,'CLS(JX)) 506 FORMAT(1H0,3X,'CRS(JX)) 506 FORMAT(1H0,3X,'CRS(JX)) 506 FORMAT(1H0,3X,'CRS(JX)) 60 FORMAT(1H0,3X,'CRS(JX))	0113		YV(1F)/Y2	
311 FORMAT(1H .15.7(1X.£12.5)) 312 CONTITUE WRITE(6.326) 926 FURKAT(1/0.3x.'SPANWISE LIFT AND MOMENT DISTRIBUTION WRITE(6.502) (CLS(JX).JX=1.M) WRITE(6.502) (CMS(JX).CLS(I) = '.5(E12.5.2X)) 502 FURKAT(1H0.3X.'CLS(I) = '.5(E12.5.2X)) 504 FURKAT(1H0.3X.'CLS(I) = '.5(E12.5.2X)) 505 FURKAT(1H0.3X.'CLS(I) = '.5(E12.5.2X)) 506 FURKAT(1H0.3X.'CRS(I) = '.5(E12.5.2X)) 507 FURKAT(1H0.3X.'CRS(I) = '.5(E12.5.2X)) 508 FURKAT(1H0.3X.'CRS(I) = '.5(E12.5.5X.'LIFT COEFF. = '.E12.5.5X' 720 CONTINUE	0114		HRITE(6.311) IF-XV(IF)-YV(IF)-ZV(IF)-XNR-YNR-GAMM(IF)-XCP(IF)	
312 CONTINUE WRITE(6,926) 926 FURMATI(1,93X,*SPANWISE LIFT AND MOMENT DISTRIBUTION WRITE(6,503) (CLS(JX),JX=1,M) WRITE(6,503) (CLS(JX),JX=1,M) WRITE(6,504) (CLS(JX),JX=1,M) WRITE(6,506) (CMS(JX),JX=1,M) 506 FORMAT(H0,3X,*CLS(H) = ',5(E12.5,2X)) 506 FORMAT(H0,3X,*CLS(H) = ',5(E12.5,2X)) 506 FORMAT(H0,3X,*CMS(H) = ',5(E12.5,2X)) 1F(JRAD,ME.0) GO TO 720 WRITE(5,702) KFAREA,CL 703 FORMAT(1,2X,*FIM AREA = ',E12.5,5X,*LIFT COEFF = ',E12.5,5X,*CMTHUE	0115	311	FORMAT(1H .15.7(1x.£12.5))	
## ## ## ## ## ## ## ## ## ## ## ## ##	0116	312	CONTINUE	
926 FURNATION 34, SPANWISE LIFT AND MOMENT DISTRIBUTION 927 FURNATION 2027) WRITE(6,502) (CLS(JX),JX=1,M) WRITE(6,502) (CLS(JX),JX=1,M) WRITE(6,502) (CLS(JX),JX=1,M) WRITE(6,502) (CLS(L),JX=1,M) 502 FURNATION 34, (CLS(L)) = ',5(E12.5.2X)) 504 FURNATION 34, (CLS(L)) = ',5(E12.5.2X)) 16 LRAD.NE.0) GO TO 720 WRITE(5,702) KFAREA,CL 705 FURNATION 24, 'FIN AMEA = ',E12.5.5X,'LIFT COEFF. = ',E12.5. 720 CONTINUE	0117		WRITE(6, +26)	
WRITE(6.927) WRITE(6.500) (CLS(JX).JX, WRITE(6.500) (CLS(JX).JX, WRITE(6.500) (CLS(JX).JX, WRITE(6.500) (CLSW(JX).JX, WRITE(6.500) (CRS(JX).JX, WRITE(6.500) (CMS(JX).JX, WRITE(6.500) (CMS(JX).JX, WRITE(6.500) (CMS(JX).JX, WRITE(6.500) (CMS(JX).JX, WRITE(6.500) (CMS(JX).JX, WRITE(6.500) (CRS(JX).JX, WRITE(6.500) (GO TO 720 WRITE(6.700) KFAREA.CL 700 FORMAT(7.24.FIN AREA.CO TO 720 CO TO 60 TO 6	0119	956	471/ .3x . 'SPANWISE LIFT AND MOMENT DISTRIBUTION	
927 FUKMAT(1H0.2UX;'1',13X,' WRITE(6.500) (CLS(JX),JX WRITE(6.500) (CLSF(JX),JX WRITE(6.500) (CLSF(JX),JX WRITE(6.500) (CMS(JX),JX WRITE(6.500) (CMS(JX),JX 502 FURMAT(1H0.3X,'CLSF(I) 504 FURMAT(1H0.3X,'CLSF(I) 1 F(JRAD,ME.0) GO TO 720 WRITE(5.700) KFAREA,CL 700 FURMAT(1.2X,'FIN AREA = 60 TO 622	0119		KKITE(6.927)	
WRITE(6.500) (CLS(JX).JX WRITE(6.502) (CLSW(JX).JX WRITE(6.502) (CLSW(JX).JX WRITE(6.505) (CMS(JX).JX S02 FURMAT(1H0.3X.'CLSW(I) 504 FURMAT(1H0.3X.'CLSW(I) 504 FURMAT(1H0.3X.'CLSF(I) 11 FURMAT(JH0.3X.'CMS(I) 20 FCRMAT(JH0.3X.'CMS(I) 20 FCRMAT(JH0.3X.'CMS(I) 20 FCRMAT(JH0.3X.'CMS(I) 20 GUTO 520 720 CUNTINUE	0150	927	FORMAT(1M0,20x*,1'*,13x*,2'*,13x*'3'*,13x*'4'*,13x*'5')	
WRITE(6.502) (CLSW(JX).J WRITE(6.504) (CLSF(JX).J WRITE(6.504) (CMS(JX).JX 502 FURMAT(1H0.3X.°CLSW(I) 504 FURMAT(1H0.3X.°CLSW(I) 506 FCRMAT(1H0.3X.°CLSW(I) 1F(JRAD.NE.0) GO TO 720 WRITE(5.702) KFAREA.CL 702 FURMAT(7.2X.°FIN AKEA = GO TO 622 720 CONTINUE	0121	1	E(6,500)	
WRITE(6.504) (CLSF(JX).J WRITE(6.504) (CMS(JX).JX 502 FORMAT(1100.3X.*CLS(1) 504 FORMAT(1100.3X.*CLS(1) 506 FORMAT(1100.3X.*CLSF(1) 1 F(JRAD.NE.0) GO TO 720 WRITE(5.702) KFAREA.CL 702 FORMAT(7.2X.*FIN AKEA = 720 CONTINUE	0122		E16.5021	
######################################	0123		[16.504]	
500 FORMAT(11:10,3X,°CLS(1)) 502 FORMAT(11:10,3X,°CLSW(1)) 504 FORMAT(11:10,3X,°CLSF(1)) 506 FORMAT(11:10,3X,°CMS(1)) 1F(JRAD,*NE,*O) 60 TO 720 WRITE(5,702) KFAREA,CL 702 FORMAT(7,2X,°FIN AREA = 60 TO 622 720 CONTINUE	0124		E16.506) (CMS(JX),JX=1.M	
502 FORMATITHO.3X.*CLSW(1) 504 FORMATITHO.3X.*CLSF(1) 506 FCRMATITHO.3X.*CMS(1) 1F(JRAD.NE.0) GO TO 720 WRITE(5.702) KFAREA.CL 702 FORMATIV.2X.*FIN AREA = 60 TO 622 720 CONTINUE	0125	200	AT(1:10,34, CLS(1) = 1	
504 FORMATION 3X - CLSF(1) 506 FCRMATION 3X - CMS(1) 1F(JRAD - NE. 0) GO TO 720 WRITE(5,703) KFAREA - C 703 FORMATIV - 2X - FIN AREA - GO TO 622 720 CONTINUE	6126	502	47(1H0.3X. CLSW(1) = .	
506 FCRMAT(1M0,3X, CM5(1)) 1F(JRAD,NE,0) GO TO 720 WRITE(5,70)) KFAREA,CL 709 FORMAT(7,2X, FIN AREA = 60 TO 622 720 CONTINUE	0127	204		
1F(JRAD-NE-0) GO TO 720 WRITE(5-702) KFAREA-CL 1 702 FORMAT(7-24-FIN AMEA = 60 TO 622 720 CONTINUE	6128	906		
1 700 FORMATI(/.244.FIN AMEA = 60 TO 622 720 CONTINUE	0129		50	
700 FORMATI/,24,1FIN AMEA = 60 TO 622 720 CONTINUE	0133		E 15 . 703) RFAREA . CL	
720 CONT	0131	200	AT(/.24. FIN AREA	:
3 720 CONT	0132			
	0133	720	-	

0135 P28 FORMATION 137 P39 P0 FORMATION 137 P0 F0	##ITE(6.928) FORMAT(/.3X.*) PRESSURE DISTRIBUTION ON BODY
928 850 850 932 934	-0-X-00 CD0-X110-D0-00
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	**************************************
930 8 800 8 50 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 9 8 9 8 9	
800 850 850 932 932 934 934	11. 11. 12. 13. 13. 13. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15
800 850 850 932 934	CC
800 850 850 850 850 850 850 850 850 850	6.900) KI.32. KI.32. KI.32. KI.32. KI.32. KI.32. KI.32. KI.32. KI.32.
800 850 932 934 934	6.932) (1.1 ± 1.1 ± 1.2
800 850 850 850 810 820 834	(1H .15.8(1X.E12.5!) UE 6.932) (/.3X.*LOAD DISTRIBUTION ON BODY
934 934 934	6.932) (7.3X.*LOAD DISTRIBUTION ON BODY
\$10 \$20 \$20 \$34	K1=1.NB -1)*M1+1 K1=1.NB -1)*M1+1 K1=1.NB -1)*M1+1 K1=1.NB -1)*M1+1 K1=1.NB -1)*M1+1 K1=1.NB -1)*M1+1 K1=1.NB -1)*M1+1 K1=1.NB -1)*M1+1 -1)*
932 520 934	(13x, LOAD DISTRIBUTION ON BODY
510 520 520	
44 48 49 50 51 520 520	11)*M1+1 11
50 50 50 52 52 52 52 52 52 52 52 52 52 52 52 52	11 .4(110.2x.E12.5)) 14 .4(110.2x.E12.5)) 15 .934) 7.3x.*SPANWISE LIFT DISTRIBUTION ON BODY
50 50 52 52 52 52 52 634	1H .4(110.2X.E12.5)) 1H .4(110.2X.E12.5)) (1934) (13X.*SPANWISE LIFT DISTRIBUTION ON BODY
520 520 520 520 520 520	11H .4(110.2X.E12.5)) 5.934) 1.(1.3X.'SPANWISE LIFT DISTRIBUTION ON BODY
50 50 51 52 934	11H +4([10.2X+E12.5)) 5.934) 1.7.3X+'SPANWISE LIFT DISTRIBUTION ON BODY 5.954) 5.954) 1.X.CLBS([X] [X=1.M])
520 534	5:934) 17:34. SPANWISE LIFT DISTRIBUTION ON BODY 5:954) (1X:CLBS(IX) (IX=1:M1)
51 52 934 53	6.934) (/.3x.'SPANWISE LIFT DISTRIBUTION ON BODY 6.550) (IX.CLBS(IX) .IX=1.M1) (6.954) (IX.CLBS(IX) .IX=1.M1)
52 934	6.550) (IX.CLBS(IX) 0.1X=1.0M1)
6.1	(6.550) (IX-CLBS(IX) eIX=1-M1)
	(K. 954) (IX.C. BS(IX)
54	101000000000000000000000000000000000000
155 550	11H .41110.2X.E12.51)
•	9
0157 560 FORMAT	-
\$/34.	WING CL . ", E12.5,2x, FIN CL . ", E12.5,2x, 800Y CL .
\$/3x	
2000	CONTINUE
U159 IFTIRP	IRPT.EQ.41 GO TO 1500
0160 IRPT=16	T=1KPT+1
0161 60 70	10 1000
0162 1500 CUNTINU	TINUE
J.	OUTE AERODYNAMIC COEFFICIENT ON VERTICAL FIN
0163 WRITE16	
0164 936 FUREAT	ANTILLOSX. PRESSURE DISTRIBUTION ON VERTICAL FIN
	1=1•NUB
00	60 J=1.NO
0167 60 ASVII	?
69	30 I=1•N0
170 TF1	-
71	1100
	1)=15.
173 30	-
74	á
7.8	32 Jalono
32	S

33 34 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
3. SUMPLEANIZATION OF THE PROPERTY OF THE PROP	18	8
3. GLL DINVINGSONCI 3. GALL DINVINGSONCI 4. CALL DINVINGSONCI 5. CALL DINVINGSONCI 6. CALL SURVELLIA 7. MITTER 5.220 7. CLESTILIA 8. MITTER 5.220 8. 9. MI	82	SUN
36 GANN = 60.10	70	
3.6 GANKILIDEECLI) CALL XEPC CALL XE	o a	00 36 1=1,010
CALL SLD CALL SLD CALL SLD CALL SLD CALL SLD WRITE(6.9501 WRITE(6.9502) WRITE(6.9203 (CL6H1).1-1.01) WRITE(6.9204 (CL6H1).1-1.01) WRITE(6.9204 (CL6H1).1-1.01) WRITE(6.9204 (CL6H1).1-1.01) SECHORALITHOUS AX. (CLSH1) - '.51E12-5.X21) SECHORALITHOUS AX. (CLSH1) - '.51E12-5.X21) WRITE(6.9204 (CL0H1).1-1.01) WRITE(6.9204 (CL0H1).1-1.01) SECHORALITHOUS AX. (CLSH1) - '.51E12-5.X21) WRITE(6.9204 (CL0H1).1-1.01) WR	98	6 GANM(1)=BC(1)
###	87	CALL POBIXCPI
###	en i	CALL SLD
##	69	CALL XF(CL)
2001 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00	WRITE(6,950)
9	16	WKITE(6.952)
200	26	50 37 J=1.NT
95	93	11=(J-1)*M-1
9	•	12=11+M-1
2000	55	WRITE(6.210)
220 20 20 20 20 20 20 20 20 20 20 20 20	0	WRITE(6,952)
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0	WKITE (6.953)
95	3	WRITE(6,220) (CLS(1):1=1:M)
950	66	WRITE(6,222) (CLSW(I) = 1 - M)
99	00	WKITE(6,224) (CLSF(I),1=1,M)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10	WKITE (6
95.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7	FURNATO
222 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		LOKENAL
955 17 02 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		FORMAT(1H .5(15,2X,E12.5))
220 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5	FURNATION ON VERTICAL
222 222 222 222 222 222 38 8 8 8 8 8 8 8	.0 1	FURMAT(1HG.2UX. 11.13X. 2.,13X. 3.,13X. 4.,13X.5)
22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		FORMAT (1H0.3X. CLS(1) =
956 FTCR 956 FT		FUKEAL LHO.3A. CLSWILL #
955 17 17 17 17 17 17 17 17 17 17 17 17 17		TOKER I (INO. 5X . CLSF (I) S(EIZ. 5X)
956 45 1		THORN THE COEFT ON VENILAR FIN CL .
28 5 7 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		ED 115 (20 K)
38 5 F F C K S C C C C C C C C C C C C C C C C C	3 95	FUP 4
256 FCK		BN E
958 F C C C C C C C C C C C C C C C C C C	14	WRITE(6,958)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	956	B FOR
38 DO SUR	9	00 40 1=1,NUB
28 SUBDE CORP. 12 SUB		SUN1 # 0.
28 SUBC 10 C C C C C C C C C C C C C C C C C C C	•	DO 38 J=1.NO
40 UBC	36	8 SUK1=SUM1+ASV(1,4)*GAMM(J)
11	74	0 UBDY(1) = 5UM1
2		DO 50 NX=1.0B
12 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	122	11=MB*(NX-1)+1
1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	123	12=11+MB-1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	57	00 45 MX=1.MB
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25	1 = MB * (NX-1) + MX
ACP	97	I M I I X I
ACP ACP CPB	27	L1=M1*(2*N<-1)+1
45 CPB	28	IF(I,GE,LI) IX=1-X1
145 CP		ACP
	4	2 CPB

FORTRAN IV G LEVEL	. LEVEL	21	MAIN	DATE - 76132	14/11/16	PAGE 0006
0232 0233 0234 0235	240	FORMAT(1H6[19.1X.E12.9)) CONTINUE STOP END	1X.E12.5))			
	.;					
						•
			•			•
			-	•		
		,				
				•		
						!
						!

	FORTRAN IV G LEVEL	V G LEVEL	21 BGMY	DATE - 76114	10/33/50	PAGE 0001
	1000	, ,	SUBROUTINE BGMY			!
		,,,	DEFINE SOURSE POSITION ON BODY			
	0002	,	DIMENSION XN(17) CUMMON /13/XS(72),YS(72),2S(72)			
1	4000		COMMON /14/15(72)		Commence of the Commence of	
	9000		•			
-	0000		COMMON APLAND - 1.72.72.72.73.73.74.74.75.75.76.76	X3.Y5.X6.Y6		-
	6000		/P5/P1			
	0010		COMMON /811/MB.NB			
	0012					
1	0013		COMMON /AI/RADI			
•	0015		E.			
	9100		C=1.			
	0017		NX=NBT-1 NB1=DBF+KHS+1			
	0010		xP=x1-FDL*ABS(x3-X1)			
	0220		A21=PI/(2.*NBF)			
	0022		AZZ=FI+C/(Z**NBM) AZ3=FI/(Z**NBB)			
	0253		XN(1)=XP			
	0024		CO 10 J1=1.NX XM(J1+1)=XP+ABS(X1-XP)+SIN(AZ1+J1)			
-	9005					
	0027		NY=NBK-1 NO 20 12=1 NX			
1	6200	50	XIIIIBE+J	AZ24J217/C		
	0030		XN(NB1)=X3 NZ=FBB=1			
i ;	0032	-	X0=X3+BDL*ABS(X3-X1)			
	0033	30	DO 30 J3=1.NZ XX(NH]+J3)=X3+ABS(XQ-X3)#(]COS(A73#J3))	34.1311		
	5603					
	0036		DO 100 JJ=1*NB PPI=(XM(JJ)+XN(JJ+1))/2*			
:	0038	;	2			
	9600		DO 100 JB=1,48			
-	1700	!	DX(JB+(JJ-1)*MB)=PP2			
	2700	100				
1	00043	120	DO 120 1=1.NUB			
	6700		N1=NB-1			
1	9700		DO 200 18=1.4MB			1
	8400	.		A 25 C T T T T T T T T T T T T T T T T T T		The state of the s
!	6700		TS(18+77*MB)=TS(1F)			

PAGE 0002		•						•
10/33/50								
DATE = 76114								
ВСМУ	E 13=1.NJB "RAD! *SIN(TS(18)) "RAD! *COS(TS(18))							
FORTRAN IV G LEVEL 21	150 CONTINUE 200 CONTINUE DU 300 108 YS(18) 25(18) 25(18) EFTURN END					!		
FORTRAN	0050 0051 0052 0053 0054 0055 0055						· '	

; ; ;

10/33/50 PAGE 0001				
DATE = 76114				
SUBROUTINE CONP	COMMON /T2/XG(55),YG(55),2G(55) COMMON /T3/XS(72),YS(72),2S(72) COMMON /T5/XD(127),YD(127),2D(127) COMMON /T5/XD(127),YD(127),ZD(127) COMMON /P4/NO COMMON /P4/NO COMMON /BY3/JRAD N1=NTOT TF (JRAD,E0.0) N1=NO N1=NTOT TF (JRAD,E0.0) N1=NO N1=NTOT TF (JRAD,E0.0) N1=NO N1=NTOT TF (JC.4T,NO) GO TO 5 XD(JC) = XG(JC)			
FORTRAN IV G LEVEL 0001	C C C C C C C C C C C C C C C C C C C	00113 00115 00116 00118 00119 10		
	. 1 + 1			

PAGE 0001				
10/33/50	111/2.			
DATE - 76114	COMMON /B7/YVI(55).WHI(55).TLMDI(55) COMMON /T6/XV(55).YV(55).ZV(55).WH(55).TLMD(55) COMMON /P4/NU COMMON /A1/RADI DO 10 II=1.NU YVI(II)=RADI=*2*(1./(YV(II)-WH(II))+1./(YV(II)+WH(II)))/2. WHI(II)=RADI=*2*(1./(YV(II)-WH(II))+1./(YV(II)+WH(II)))/2. TLMDI(II)=TLMD(II)*WH(II)/WHI(II) RETURN			
	7/YV1(55)*WH1(55)*TLMD1(55) 6/XV(55)*YV(55)*ZV(55)*WH(55)*TLMD(55) 4/NU 1/RAD1 1.NU ADI**Z*(1./(YV(II)-WH(II))+1./(YV(II)+ ADI**Z*(1./(YV(II)-WH(II))+1./(YV(II)+ =TLMD(II)*WH(II)/WHI(II)		:	
LEVEL 21	10			•
FORTRAN IV G LEVEL	00000000000000000000000000000000000000			

PAGE 0001		 - 			
10/33/50					
DATE = 76114	((55) TLMD(55)				
SUBROUTINE GVS3 COMPUTE PANEL SURFACE AREA	COMMON /B3/PSA(55) COMMON /B6/XDV(55) COMMON /T2/XG(55),YG(55),ZG(55) COMMON /T6/XV(55),YV(55),ZV(55),WH(55);TLMD(55) COMMON /P4/NO COMMON /P6/BETA COMMON /P2/XFAREA,XAX XAX=XAX+XREA,XAX XAX=XAX+XREA,XAX RFAREA=(XAX+X6-X2)+Y6	XDV 10 11 XDV(11) = PSA(11) = CONTINUE RETURN END			
FORTRAN IV G LEYEL 0001		0012 0013 0016 0015 0016			•
		il			

PAGE 0001							·															
10/33/50		*																				
DATE = 76114		E		WH(55) . TLMD(55)	74.X5.Y5.X6.Y6		Y2-Y1)	74-73) 76-75)														
xIC	SUBROUTINE XLC	UTE LOCAL CHOND LENGTH OF FIN	SION XREF(10) *XREFF(5) *XLF(5) N /PII/XC1(55) *XC2(5) *XC3(5) N /RI/XL(10)			~ ~	DO 10 JL=1+M XC1(JL)=X1+(X3-X1)*(YG(JL)-Y1)/(Y2-Y1)	XC2(JL)=K3+(X,-X3)+(YG(JL)-Y3)/(Y6-Y3) XC3(JL)=K5+(X6-X5)+(YG(JL)-Y5)/(Y6-Y5)	XL(JL)=XC2(JL)=XC1(JL) XLF(JL)=XC3(JL)=XC2(JL)	(JL)=XC2(JL)+XLF(JL)/4.		E*1)=XC1(7F)						 			
FORTRAN IV G.LEYEL 21		C COMPUTE	DIMENSION COMMON /I	COSINON	NOWNOON NOWNOON	COMMON NI=NT-1	XC117L)=	xC2(7F)= xC3(7F)=	XL(JL)=X XLF(JL)=	XKEFF LJL	CLL(JL)=X	Ž	XC1(1)=X	10 CONTINUE	END	1				:	4	
FORTRAN	1000		00003	9000	00000	0011	0013	0015	C017	6050	0021	6053	0024	0026	0028			:			i	

PAGE 0001	•	 		-		•
10/33/50						
DATE = 76114	X5.Y5.X6.Y6					
BLLT (5)	CONMON /PI/XI,YI,X2,Y2,X3,Y3,X4,Y4,X5,Y5,X6,Y6 DO 10 18=1,M1 B1=XI+(X2-XI)*(YS(1B)-Y1)/(Y2-Y1) B2=X6-(Y6-Y5(1B))*(X6-X5)/(Y6-Y5) 10 BREF(1B)=B2-B1 RETURN END					
EL 21 SUBROUTINE BLLT COMMON 784/BR.F. COMMON 713/XS(7) COMMON 702/M1	COMMON /PI/XI,Y DO 10 IB=1,MI B1=X1+(X2-X1)*(B2=X6-(Y6-YS(IB B2=X6-(Y6-YS(IB RETURN ,					
9 1	0000 0000 0000 0000 0010 00110		! 			

PAGE 0001				+					-	-					-	
10/33/50																
DATE = 76,114	IDENCE ANGLE												, , , , , , , , , , , , , , , , , , , ,			
V81A	ON FIN IMPLICED BY BODY INCIDENCE ANGLE	/BYZ/XBW(55) /TZ/XG(55),YG(55),ZG(55) /BY1/ALFAB /P4/NO /P4/NO	#PI/180. #PADI##2/YG(J)##2	:	1			1				-	-		1	
L 21 SUBROUTINE VBIA	VELUCITY ON FIN	COMMON /BYZ/XBWC COMMON /TZ/XG(55 COMMON /BYJ/ALFA COMMON /P4/NO COMMON /P4/NO	ALB=ALFAB DO 10 J=1 XB*(J)=AL RETURN	EVO	!	!		-								
FORTRAN IV G LEVEL 0001	000	0000	0008 0009 0010 0011	0012	!		!	i		!				1		
	1				•			¥	!	1				1	a designation of the second	-

00000000000000000000000000000000000000	SUBROUTINE ARDC C COMPUTE AERODYNAMIC MATRIX COMMON / TA/XV(55), YV(55), 2V(59), WH(55), TLMD(55) COMMON / TA/XV(55), WH(55), TLMD(55) COMMON / TA/XV(155), WH(155), TLMD(155) COMMON / TA/XV(155), WH(155), TLMD(155) COMMON / TA/XV(155), WH(165), TLMD(155) COMMON / TA/XV(155), WH(165), TLMD(155) COMMON / TA/XV(155) COMMON / CASE/ASYW COMMON / CASE/ASYW COMMON / CASE/ASYW COMMON / CASE/ASYW COMMON / TA/XW COMMON / TA/XW COMMON / TA/XW COMMON / TA/XW IF (13 CA 15) D D D D S = 1, NO IF (13 CA 15) TA/XV(1) TW = YV(10)	5) • TLMD(55)	
00000000000000000000000000000000000000	COMPUTE COMMON C) • TLMD(55)	
00000000000000000000000000000000000000	COMMON COMON COM)) • TLMD(55)	
00000 00000 00000 00000 00000 00000 0000	COMMON COMON COM		•
00000000000000000000000000000000000000	COMMON 7887JS COMMON 7947ISJ COMMON 7947NO COMMON 7647NO COMMON 76ASENASYW TELJENASYW TELJENASYW TELJENASYW TELJENASYW TELJENASYW TELJENASYW TELJENASYW TELJENASYW TELJENASYW THELMATICAL TMERMILLA TMERMILL		
00000000000000000000000000000000000000	COMMON /09/PS^ COMMON /24/NO COMMON /CASE//ASY COMMON /CASE//ASY COMMON /EL3/NA COMMON /EL3/NA COMMON /EL3/NA COMMON /BY3/JRAD NN#4 IF J.NO DO 20 J=1.NO DO 20 J=1.NO DO 20 J=1.NO TX=XV(J) TX=XV(J) TX=XV(J) DO 10 J=1.NN TX=XV(J)		
00000000000000000000000000000000000000	CGMMON /CASE COMMON /CASE COMMON /CASE COMMON /FL3 COMMON /FL3 COMMON /EL3 NNH / A IF (J-GT NW) IF (J-GT NW)		
00000000000000000000000000000000000000	COMMON /FL3 COMMON /BY3, NN=4 IF JRAD.EQ.C DO 30 J=1.NC DO 20 J=1.NC DO 20 J=1.NC IF J.CE.NW) IF J.CE.NW		
00000000000000000000000000000000000000	NN=4 IF JRAD=EU=C DO 30 1=1=NC DO 20 J=1=NC DO 20 J=1=NC IF (J=C=NW) TX=XV(J) TX=XV(J) TX=XV(J) TX=XV(J) TX=XVI(J) TX=XVI(J) TX=XVI(J) TX=XVI(J) TX=XVI(J) TX=XVI(J) TX=XVI(J) TX=XVI(J) TX=XVI(J) TX=XVI(J)		
00017 00017 00022 00022 00022 00032 00032 00033 00033 00033 00033 00033 00033 00033 00033 00033 00033 00033	D0 20 J=1.NC IF(J-LE-LW) IF(J-GT-NW) IX=XV(J) IX=XV(J) D0 10 JS=1.N IF(JS-LE-2) IY=YV(J) IM=LMDI(J) IM=LMDI(J) IM=XV(L) IW=KH(J)		
00000000000000000000000000000000000000	1F(J.E.L.W.) 1F(J.GT.NW.) 17E=2V(J.) 00 10 JS=1.6 1F(JS.LE.2) 1Y=YV(L.) 1Y=YV(J.) 1Y=YV(J.) 1Y=YV(J.)		
00000000000000000000000000000000000000	TX=1X 17 17 17 17 17 17 17 17 17 17 17 17 17		
00021 00022 00022 00022 00032 00032 00032 00032 00032 00032 00032 00032 00032 00032 00032 00032 00032 00032 00032	12=2V(J D0 10 J 1F(JS-L TY=YVI(TW=WHII TM=TLMD G0 T0 1 TY=YV(J TW=YHI		
00023 00032 00033 00033 00033 00033 00033 00033 00033 00033 00033 00033 00033 00033	1F(JS-L TW=W11 TW=TLMD GO TO 1 TW=KH(J		 - -
00000000000000000000000000000000000000	TY=YVI TW=%HI TM=TLM GO TO TY=YV TW= kHC		
00022 00022 00033 00033 00033 00033 00033 00033 00033 00033 00033	TM=TLM 60 TO TY=YV(TW=KH(
00000000000000000000000000000000000000			
00000 00030 00030 00030 00030 00030 00040 00040			
00033 00033 00033 00033 00040	UE UE		
000034	IF (JS.E0.1.0R.JS.E0.3) PSP=1.		
00033 00033 00040 00040	PVB(UB,VB,WB)		
00037 00038 00040 00041	CALL PVS(US•VS•WS)		
0038 0040 0041 0041	WH-MH-HZ		
00000	IF (JS.EG.1) SAR=XAR		
00042	E0.31		
2000	1F(JS.E0.4)		
7.71	10 CONTINUE		
4400	STAR=0.		
0045			
00047			
8700	CONTINC		
6900	RETURN		

~										
10/33/50						,				
DATE - 76114										
ARDC						,				
1V G LE										
FORTRAN	· . ! · . !		· !		!					

PAGE 0001				- Kowohi	- de	Septo avail	is ad																									
DATE = 76114 10/33/50		INDUCED BY BOUND VORTEX							1)**2)										The second section of the second				NIT FREE STREAM VELOCITY AND									
PVB DAT	SUBROUTINE PVH(UB,VB,WB)	COMPUTE PERTURBATION VELOCITY COMPONENTS INDUCED	15/XD(127) YD(127) ZD(127)	40		44	d\$d/6d/	CALL GVS2(SX,SY,TMU)	A=SORT((XD(1)-5X)**2+BETA**2*(SY-PSP*YD(1))**2)	C=SX-TX +BETA*TM*TMC	[A*(TY+TW-SY)	E=TX +BETA*TE *TMU-SX	7**2	BC2=B**2+C**2	DEC=D**Z+E**Z CMU=1 - / SURT (1 + + 1MI** + 2)	OWI = OWO = OWS	LW1-	IF(SY-LT-TY-TW) PP1==1.	TELSON OF TAXABLE DESCRIPTION	TX+TW)	CF = PP2 + SURT (DE2) / 53RT (A22+DE2)	SCC=SPN*(CG+CF)/(2.*PI)	COMPOSE INDUCED VELOCIST COMPONENTS FOR UNIT FREE		VB=SCC*Z*SMU/AZ2	IF(XD(II) GT - SX) PP3=-1.	TELYDITOETONY TENETO	JRN JRN		And the second s		
FORTRAN IV G LEVEL 21	4	NO.	0002 COMMON	0004 0005 0005			ODGO COMMON			0013 0014 C=S		0016 E=TX			0020 0021				0000					1		0032			0036 END			•
	1					;					•						-															

	FORTRAN IV G LEVEL	LEVEL	. 12	a > a	40	DATE = 76114	10/33/50	PAGE 0001	
	1000	,	SUBROUTINE PV	INE PVP (UP . VP . WP)				! ! ! !	1
		,,,,	COMPUTE PERTU	PERTURBATION VELOCITY COMPONENTS INDUCED BY PORT SIDE VORTEX	COMPONENTS	INDUCED BY PORT	SIDE VORTEX		
				/T5/XD(127).YD(127).ZD(127)	(127)				
-	\$000		COMMON /PS/PI	۷ ۲					1
1	0000							:	1
	9000		- 5	SY-TKU)					
1	0011			PSP*YD(1)-TY+TW)					!
1	0013		*						1
	00015		62H2=622+XH**2	+BEIA*IW*IMU					
1	0017	1	CK=XH/SQRI(GZHZ) SCK=SPN*(1.+CK)/(2.*PI)	K)/(2.*PI)					1
	0018		UP=0.						
1	0019	1	VP=-SCK*2/622	!					1
	0021		RETURN						
	0022		END						
									1
1									1
									1
									1
						•			
1				!					1
									1
		•-							

PAGE 0001					•	140
10/33/50	ARBORD SIDE VORTEX					
DATE = 76114	PONENTS INDUCED BY ST					
-	COMMON /T5/XD(127) *YD(127) *ZD(127) COMMON /T5/XD(127) *YD(127) *ZD(127) COMMON /T8//X*TY*TZ*TW*TM COMMON /T6//Y*TZ*TA*TC COMMON /F6//Y*TZ*TA*TC COMMON /F6//Y*TZ*TA*TC COMMON /F6//Y*TZ*TA*TC	> 4 * *	XJ=XO(1)-TX -BETA+TW+TMU Z1J2=Z12+XJ+*: CS=XJ/SQRT(Z1J2) SCS=SPN*(1,+CS)/(2,*P1) US=0. VS=SCS*Z712	WS=-SCS*XI/ZIZ RETURN END		;
AN IV G LEVEL	υυ	·				
FORTR	0000	00000		0000		1

PAGE 0001				+									•
10/33/50)*TMU)/(1.+TMU**2))*TMU)/(1.+TMU**2)/										10/20/20/00
DATE - 76114	UND VORTEX	(127)	. ×								-		
60.82	SUBROUTINE GVS2(5X.SY.TMU) COMPUTE INTERCEPT POINT OF BOUND VORTEX	/T5/XU(127),YD(127),2D(127) /P3/XM,ALFAF /P6/BETA /P8/1,J /P9/PSP /B8/JS	7[R1/TX.TY.TZ.TW.T BETA +XD(1)*TMU**2+BE A*(PSP*YD(1)+TY			1						 - 	
12 7		COMMON COMMON COMMON COMMON	COMMON TMU=TM/ SX=(TX SY=(BET	RETURN			;		<u>.</u>				
FORTHAN IV G LEVEL		,			!	i					!	:	•
FORTHAN	1000	000000000000000000000000000000000000000	00000	0012				1					
	1										!	:	

SUBROUTINE PVMX COMMON / 76 X Y (55) - ABW (72,55) - ABW	- 76114 10/33/50 PAGE 0001		(99)																																			
SUBROUT SUBROUT COMMON COMM			3/Abu(72,551,Abv(72,551,Abw(72,551) 5/XV(551,YV(55),2V(55),WH(55),TLMD(55	7/YVI (55)•WHI (55)•TLND1(55)	8678	ON	7.17			3/WW	1/1RC				1) lekk	NO	ASYNABSYM			7.1	21 63 10 15						1.0K-JS-E0-31 PSP=1.	1	JOY OV ON DE	JS.VS.WS)	315	\$ 2	60 10	000	02	00 10		
	EVEL 21	v		CONIMON	COMMON	COMMON	COMMON	COMMON	NONWOO	NOMMON	COMMON	N1=NUB	IFIIRC DO 30	X+07=1	IFIIRC	00 50) \x = x L	17=71	00 10	1F(JS.	THM=ML	00 00) \ \ = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	MIT=MI	16 CONTIN	IFCJS.	66171	CALL P	CALL P	RU=UB+	RV=VB+	THE LOS	15.05	IF (JS.	IFLUS.	-	

PAGE 0002		• • • • • • • • • • • • • • • • • • •				•
10/33/50						
DATE = 76114		NX XX				
PVMX		PIXU=RU PIXU=RV PIXX=RV CONTINUE ABU(KK+J) = SXU+ASYN*PXU+SIXU+ASYN*PIXU ABV(KK+J) = SXW+ASYN*PXW+SIXW+ASYN*PIXV CONTINUE CONTINUE RETURN				•
G LEVEL 21	9 SIXU-RV 50 TO 10 5 SIXU-RU 5 SIXU-RV 5 SIXW-RV 50 TO 10	4 PIXUERU PIXXERU 10 CONTINUE ABUCKA, J. #SXU ABUCKA, J. #SXU				•
FURTRAN IV G LEVEL	2000 2000 2000 2000 2000 2000 2000 200	0000 0000 00000 00000 00000 00000 00000 0000	6800			

PAGE 0001		•					
10/33/50)) **2+				
DATE = 76114			.2) PSP==1JB.AND.1S.EQ.1) GO TO 5 ((XS(1B)-XS(JB)-XS(JB))**2+BETA**2*((PSP*YS(1B)-YS(JB))**2+ 2S(JB))**2) 1-XS(JB))**8ETA*AREAB(JB)/(4.*P[*RHO**3)				
AROO .	AR2/AQ(172.72) T3/XS(72).YS(72).ZS(72) C2/AREAB(96) B2/NUU		.2) PSP==1. .UB.AND.1S.EQ.1) GO TO 5 ((XS(1H)-XS(JB))**2+BETA**2*((PSP*YS(IB LS(JB))**2) 1-XS(JB)1*8ETA*AREAB(JB)/(4.*PI*RHO**3)			- 	
L 21 SUBROUTINE ARGO	COMMON /AR2/AG172,72) COMMON /T3/XS172),4YS1 COMMON /C2/AREAB196) COMMON /B2/NUB	H H H H	IF (13.EQ.2) PSP=1. IF (19.EQ.0.B.AND.1S.E.RHU=SCRT((XS(1H)-XS(B)-XS(1H)-XS(B))**2)) P=(XS(1H)-XS(1H)-XS(B))**8E	16 (15.50.1) P1 #P 16 (15.50.2) P2 #P 16 10 10 16 10 10 17 10 10 18 10 10 19 10 10 10 10 10 10 10			
FORTRAN IV G LEVEL	00003	0000 0000 0010 0010 0010 0010	00013	0018 0019 0020 0021 0021	0023 20 0024 0025		
	! !						

PAGE 0001		•				
10/33/50						
DATE - 76114			*2*CIJ*RADI**2*2*)	1 *RHOB * * 9 J		
21 AROV SUBROUTINE AROV	COMMON /AR3/ASV(72-72) COMMON /T3/XS(72)-YS(72)-25(72) COMMON /T4/TS(72) COMMON /T4/TS(72) COMMON /C2/AREAB(96) COMMON /C2/AREAB(96)	COMMON 794/NU COMMON 795/PI COMMON 796/BETA COMMON 741/RADI OD 20 18=1,008		PC=ClJ+8ETA*#2*RADI*AREAB(JB)/(2*#FIS.EQ.1) PC1=PC IF(IS.EQ.2) PC2=PC Of TO 10 PC1=0. CONTINUE	ASV(18.JB)=PC1+PC2 CONTINUE RETURN END	
AN 1V 6	0 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		† †		2	•
FORTR	00000	0000 0000 0000 0010 00110	10000	00019	0025	

PAGE 0001			
10/33/50		YD(J)]**2+(2D(
DATE = 76114	(127)	XD(J))**2+BETA**2*((YD(IB)=PSP*YD(J))**2+(ZD(
ARBF JIINE ARBF	COMMON /AR4/AFN(72.55) COMMON /15/XD(127).YD(127).ZD(127) COMMON /CZ/AREAB(96) COMMON /CZ/AREAB(96) COMMON /P4/NU COMMON /P4/NU COMMON /P6/PI COMMON /P6/PI COMMON /P6/BETA DO ZO J=1,NO NI = NUB DO ZO J=1,NI 18=NG+I	=1.2 -1) PSP=1. -2) PSP=2. ((XO(18)=2)) -2 + (LO(J)=2) -2 + (LO(J)=2) -2 + (LO(J)=2) -2 + (LO(J)=2) -2 + (LO(J)=2) -2 + (LO(J)=2) -3 + (LO(J)=2) -4 + (LO(J)=4) -4 + (LO(J)=4) -5 + (LO(J)=4) -6 + (LO(J)=4) -7	
FORTRAN IV G LEVEL 21	COMMON 0003 00003 00004 00004 00004 00006 00007 00007 00009 00009 00010 00011 00012	0013 0014 0015 0015 0015 0015 0017 0018 0019 10 CONTINUE 0022 0022 0022 0022 0023 0023 0023 002	
Õ 3	, ,		

							-	
. DISTRIBUTION ON FIN	(B•NO)							
COMPUTE DIMENSIO CCHMON / COMMON /	CALL DINV(AR.X DO 10 1=1.NO 10 GAMM(1)=XB(1) END						. !	
	0000 0000 0010 00110		;					
	C COMPUTE VORTE. DISTRIBUTION ON FIN C DIMENSION GANM(55) DIMENSION XB(56) CCHMON /ARI/AR(56,56) COMMON /CI/XB COMMON /CI/XB	C COMPUTE C DIMENSIO DIMENSIO CCAMON / COMMON / COMMON / COMMON / CALL DIN 10 GAMMII) IR RETURN END	C COMPUTE VORTE., DISTRIBUTION ON FIN DIMENSION SEISEI DIMENSION ARISEI DIMENSION ARISEI CUMMON ARISEI CUMON ARISEI CUMMON ARISEI CUMON ARISEI CUMMO	C COMPUTE JOSTRIBUTION ON FIN C DIMENSION GANM(55) DIMENSION AB1561 CCHNON /ARIAK(56.56) CCH	DIMENSION GANMISS) DIMENSION ABLOSA DIMENSION ABLOSA CUMMON ARLAM (56.56) CUMMON ARLAM CALL DINVIAR AB.NO) 10 GAMMILLARII RETURN END	COMPUTE VORTE, DISTRIBUTION ON FIN DIMENSION GANMISS; CUMON (CILVA CU	C COMPUTE VORTE; DISTRIBUTION ON FIN DIMENSION GANH(195) CUMPON VALVA COURCON VALVA COURCON VALVA COURCON VALVA COURCON VALVA COURCON VALVA COURCON CALL DIVINAR. 188.00) DD 13 1-11 28.00 DD 13 1-12 28.00 DD 14 1-12 28.00 DD 15 1-12 28.00 DD 15 1-12 28.00 DD 15 1-12 28.00 DD 15 1-12 28.00 DD 17 1-12 28.00 DD 18 1-12 28.00 DD 18 1-12 28.00 DD 19	DIFFERIOR GANNESS DIFFERIOR GANNESS DIFFERIOR GANNESS DIFFERIOR GANNESS DIFFERIOR GANNESS CACHOON KEISAS CACHOON KANNO CALL DINVIKA SHOOL DO 13 11.00 10 GANNELL WALL END

PAGE 0001	: : :				,																				•	•	
10/33/50																											
DATE - 76114		•																									
BCF		BOUNDARY CONDITION ON FIN	UN XB(56),XW(56),AL(56)		AF				~		••		XW(11)=0.	-BETA#(AL(11)+XBMc11)-XE(11)		 			•			•					
21	SUBROUTINE BCF (XB+N3)	COMPUTE BOUNDARY	DIMENSION XB(56)		COMMON /P3/XM.ALFAF			COMMON /FL4/AFLAP	IF (1.61-NW) GO TO 2	60 10 5	AL (1) = AF LAP*P1 / 180.	EN-1=11 CT OG	IF (IRPT.EQ.1) XWC	XH (11 S = HF TA* (A)	CONTINU	RETURN											:
FORTRAN IV G LEVEL	1000		00002	0000	9000	800	10	111	0013		0016		0019	21	00222 10	0023										•	
FOR	00	*	88	88	000		33	000			000	36	38	300		000	•			-	1		-	1			

PAGE 0001	!		1 1 1				•					<u> </u>																										•		
10/33/50																																								
DATE - 76114																													0 15			RIX.//)								
DINV	DINV(D.E.N)	D(56.56).E(56).XL(56.56)			•			٠.		2-11/XL(11:21		1		•)+x[(1 • K X)		K1-A		!	11/XL(1.2)				1)*XL([]*K+1)	0(42-K)=4)/X((K-K+1)				IF (ABS (XL(1-1+1)) -GE.0.000001) GO TO 15			22HILL-CONDITIONED MAT	Z			11			/XL(M•N+1)	
V G LEVEL 21	SUBROUTINE	DIMENSION DIS	- 2	DO 1 0=1.0X	XL(1.1)=0.	1 COLTINUE	DO 2 1-1.N	X = [+] .	2 CONTINUE	XL(2.1)=D(00 7 J=2.N		A=0.	KX=K+1	1 - T - T - T - T - T - T - T - T - T -	•		4 CONTINUE	15 (12-N) R.B	8 XL(J2,1)=D(J2,1)/XL(1,2)		K1=K-1	DO 5 1=1.K1	A=A+XL(J2.	x (12.x)=(D(-			9 COLITAGE	1F (ABS (XL(1))	WRITE(6,100)	15 CONTINE	FURNATIVI.	DO 10 1=2.	11=1-1	A=0.		•	E(1)=E(1)-A	2	
FURTRAN IV	1000	0005	6000	5000	9000	8000	6000	6010	0612	0013	0014	0016	. 0017	00119	9100	0021	0022	0023	9250	9250	0227	8200	0000	1000	0032	0037	6035	0036	0038	0039	0041	0075	000	77700	6700	6000	8700	6700	000	

PAGE 0002		•								, Ad
DATE = 76114 10/33/50										Reproduced from best evailable copy.
DA		i I	1		!		!			
DINV	i i	1) /XL(L.1+1)		•			1			
FORTRAN IV G LEVEL 21	11=N-1 11=N-1+1 1=N-1+1 N=0. DO 12 J=11-N	12 CONTINUE XL(1/X+L)=(E(L)-A)/XL(L+1) 13 CONTINUE DO 16 [=1+N E(1)=XL(NX+1)	16 CONTINUE RETURN END							
FORTRA	00000000000000000000000000000000000000	000000000000000000000000000000000000000	4900			1		•		
		1		i						

									,	1 .	,	,	,				,
	1																
	,		1		!				1	1	!						1
PAGE 0001	1					+										•	1
w w	- 1			:				1									
PAG	1		1	1				1									1
	1		1 1	1							1						1
	1		1 1					1		1							1
	1																
	1																
0	- 1																
10/33/50	1																
6/3	1							1									1
-	i																
	- 1																
	i																
4	- 1																
3															•		
	1			1													1
DATE - 76114			! !	1				1									1
ě			1		5	1	1	1	1	1	1						1
		Z			**SPN*GAPM(!		1		!	1						1
		RESSURE DISTRIBUTION ON FIN			2				1	-							:
		5			2										,		٠.
		ò			Ž		!	!	1	1							1
_		5			8												
P08		TRI		.:	ริ		•	1	1	1.	1	1					
	ā	018	~		ž.			1	i	1	1						1
	SUBROUTINE POBIXCP)	RE	DIMENSION XCP(55) LIMENSION GAMM(55) COMMON 786/XDV(55) COMMON 7P6/BETA COMMON 7P7/SPN	Σ	∀ 5			1	1	1	İ						i
	POB	SSU	SECT N	SAN	NAS		<u> </u>										1
	Ä	RE	ON XCP (SON GAMM) (B6/XDV) (P6/BET) (P7/SPN)	COMMON /Q1/GAMM DO 10 JJ=1.NG	*					1		1					
	Ē	m o	DIMENSION COMMON /B COMMON /P COMMON /P	7 7 7				i	1								1
_	ROL	COMPUTE	DIMENS COMMON COMMON COMMON	1000	25.8				1								-
21	SUE	ĝ	23883	ŽŽŽ	XCP(JJ)=2. CONTINUE RETURN END						1						
E	9				9						1						
Ű,	7	,,,	,						Ĭ	i	1					•	1
FURTRAN IV G LEVEL									1	1	1	1					
2											1			1			
AAN	-		Nessa	- 10 0	0 H N M					1		1					
THO	1000		000000	0000 0000 0000	00000					1	1	i					
i.	•		55555	300	3333						1	1					
			, 1	1	i	•	1	,	1	i							1
			. !	,													-
			! !				1	1		1			1				1

PAGE 0001					•							!																
10/33/50																												
DATE - 76114	!																											
21 SLD	SUBROUTINE SLD	COMPUTE SPANWISE LIFT DISTRIBUTION	=	COURSON /CHORD/CLL(55)	7		NYBETA**2	DO 20 JC=1.M	SUNF#0.	DO 10 JJ=1.NT	IF(JJ.6T.N) GO TO 5	SUNAESUMW+GANM(JP)	SUMF = SUMF + GAMM (JP)	CONTINUE	CLSKI CO = A1 * SUME/CILL CO	CLSC 10C) = A1 + SUMP / CLC 10C)	CONTINUE	RETURN	END							The same of the sa		
S G LEVEL		,,,,															20										١.	
Fe	1000		0000	4000	9000	8000	0220	0011	60013	0014	. 0015	7100	6100	0050	0021	00033	0024	6005	9200		•							

PAGE 0001	•	 - 			
10/23/50					
DATE - 76114					
NE XLF(CL) LIFT COEFFICIENT OF FIN	NN XCP (55) /83/P5A(55) /83/P5A(55) /02/RFAREA*XX /02/RFAREA*XX /02/ XCP 03/04/NO /03/ XCP /03/ XCP /03/ XCP /04/NO /04/P5A(JX) /05/P5A(JX)				
21 SUBROUT! COMPUTE	SUN CON CON CON CON CON CON CON CON CON CO	END			•
FORTRAN IV G LEVEL	000000000000000000000000000000000000000				

PAGE 0001			•												•	
10/33/50																
DATE = 76114	NOI		4(59) . TLMD(55)					ETA**2								-
PMS	SPANWISE MOMENT DISTRIBUTION	553	/CHURD/CLL(55) /T6/xv(55).Yv(55).Zv(55).WH(59).TLMD(55)			EA•XAX	DO 5 JJ=1,441 JP=JC+(JJ-1)*M SUM=SUM+GAMM(JP)*(XREF(JC)-XV(JP)))=-4.*SPN*SUM/CLL(JC)/XAX/BETA**2	1							
EL 21 ''' SUBROUTINE PMS (CMF)	CUMPUTE SPANWIS		COMMON /CHOKD/CLL(55) COMMON /T6/XV(55)•YV(COMMON /FL2/MT COMMON /P6/BETA		000	4 00 4 00 4 00 4 00 4 00 4 00 00 00 00 0	CMS (JC RETURN END								
FORTHAN IV G LEVEL	000		0005	8000	0011	0014										
r -		1				-			.			!		1		1

PAGE 0001							•																		•						•	
10/33/50																																
DATE - 76114					133 ct/may .	16617111041																						,				
21 VLNB	SUBROUTINE VLNB	DIMENSION GAM, 1(55)	COMMON (CS/UBDY(72)	2	COMMON (14/15(72)	? ?	/P4/NO	COMMON ZOIZGAMM	(1=0	SUM2=0.	SUM3=0.		SUB2=SUM2+ABV([-1)*GAMM(J)	CONTINUE	UBCY(I)=SUMI	VBCY=SCHZ WBCY=SCHZ	SNS=SIN(TS(1))	C55=C05(T5(I))	000 + 000 + 000 + 000 0 = 01 - 02 0	CONTINUE	RETURN	END										
FORTRAN IV & LEVEL														10						20				1					*	•-		
FORTR	1000	0005	6000	6000	9000	8000	6000	0010	0015	0013	4100	9100	. 0017	0019	0020	0022	9053	9200	5000	2000	0028	6200		i		!	!					

PAGE 0001						
10/33/50						
DATE = 76114						
LEVEL 21 BSS		SUM(1) SUM(1) SUM(1)	15 DO 20 1=1,NUB 20 SUM(1)=0. 45 CONTINUE DO 50 1=1,NUB 50 QL(1)=-2,*VN(1)-5UM(1)	END		
FORTRAN IV G LEVEL	0000000	000000	. 00015	6255		

PAGE 0001			,											
10/33/50														
DATE - 76114													•	
8PD E 6PD	BOLY PRESSURE DISTRIBUTION	/AR2/A0(72) /C7/0L(72) /A2/CPB(72)	/CS/UBDY(72) /B2/NUB /P6/HETA	NUB	SUM=SUM+AQ(I+J)*QL(J) CONTINUE CONTINUE						, 	! ! !		
FORTRAN IV G LEVEL 21	C BOUY PRES	COMMON	COMMON /C	50 20 1=1,00B 50M=0. *	SUM SUM + A	20 CONTINUE RETURN END	1							
FCRTRAN	•	1	9000	80000	0011	00015				i ! !		ı		

									1.	1.				-				.	1
PAGE 0001				,															
90																			
10/33/50																			
					2														
DATE - 76114					1 + 8M+ 1														
DATE			DIMENSION BCL(36) COMMON /AZ/CPB(72) CUMMON /BI/MB·NB		CPB(K1-		1	1	1	İ									1
			•		- (- 1 1 - 1	:		i	i		i I		i			i		1	i
BLD		NOI			38 (MB * K)				•	1	1	1	1	1	İ	1	1	1	1
	ורהנפכרו	STRIBUT	L(36) PB(72) B•NB	3 3 4		;		1	i										1
	SUBROUTINE BLD (BCL)	LIFT DI	NSION BC	0 K1=1.N	INUE .	Z.			i	1			İ				İ		!
EL 21	SUBR	BODY	CONWE	500	40 CONT 50 CONT	RETURN												İ	
IV G LEV		, , ,								;			!						
FORTRAN IV G LEVEL	1000		20000	9000	0000	0011					!	i ;	i						
٤								•	i					-	-	İ			1
	!					1	*	1		1	1	1	f	1	1	-	1	1	1

	1			-					1					-		-			-		1		1
PAGE 0001	!				,				+												-		-
PAG	i		1	1																			
	!		1																				
9/50																							-
10/33/50																							
			1																				
DATE - 76114	;																						
DATE .			l	!		İ	1		1		1	1	1	!									1
			!	1		1	į		1		1	1		1						-			1
		z									1	i	1	1	-	-		-		1			-
	•	BODY SPANWISE LIFT DISTRIBUTION							1		1	i	1	1.		i		i	İ	1	1		-
BSLD		TRIB				•						,	,		!	,	1	1	. '	1	,		•
88		018				:-			=	3	1		1			1					i		-
	_	LIFT	COMMON /W3/CLBS(5)	196		8			SUM=SUM+BCL(I)*DX(I) CONTINUE	CLBS(JJ)=SUM/BREF(JJ) CONTINUE	i		1	1	İ	i	i	i	i		i		1
	SUBROUTINE BSLD	SE	CLB	DXC	D2/M1	1 / E1 / MB . NB	N. N.	× X	Ė	IM/B				1									-
	INE	ANN	ON NA	1 1 1	100	125	: :	X	+BCL)=SL			i	1		1		1	i	i	İ		1
	ROUT	Y SP	MON	NON	COMMON	COMMON DO 20 J	SUM=0.	1=0+(KK-1)*M1	SUM=SUM+	CLBS(JJ)	RETURN END			•		1							1
21		BOD	200			COMMON DO 20	SUE	3 -															-
EVEL									9	20			i		1	1							
9		,,,,	•									,	!	1		1							
> .														'	!	1	!	1	!		!		
FORTRAN IV G LEVEL	1000		00003	\$000	0000	6000	0:00	0015	0013	0015	0017		•	!	!	1	1	1		-		1000	:
										•	1	1	i	1		1			1				-
						1			1		1	-				-		-					-

	!			1			1											
1000	1			İ	,		+										٠	
PAGE 0001	i			1														1
	-			1														
	!																	
10/33/50																		
9																		
:	1																	
DATE - 76114				· i														
DATE				1							1							
		URSE		:		1			1		1							
		DY SO	ĺ			,	;	,	1	i	1	1	1	1		1		۱.
		TY ON FIN INDUCED BY BODY SOURSE	!			!		!	!	1	1.	1	1	1				i
KB S	. N2)	CED	1 3		24	ŀ			•	1	١.	1	ı	ı	1	ı		ı
	XW.N.	IND	2)) *0F(1	1			1	1		1	1				!
	SUBROUTINE WESTXW.N1.N2)	N FIN	DIMENSION XW(M6) COMMON ZCZZOL(72)	75	DO 10 I=1.NI SUM=SUM+AFN(1.J)+QL(I) CONTINUE	1		!	i i									!
	TINE	17 0	10N	1-1	I = 1 .	XW(J)=SUM' CONTINUE PFTURN			!			1						
12	UBROL	VELOC!	COMMON	DO 20 SUM=0	O 10 UM=SU ONTIN	NICONTIN	Q				*		İ					
	\$	>	200	000	2 8 0		w			;	1		1					
e LE	.7 0							,					!			i	•	
N I											!	!	:					
FORTRAN IV G LEVEL	1000		2000	9000	0000	0100	0013				1		1	!				
ű.			1			,			1			1	1	1		1		
				'			1											1
						,					'		'	1		'		!

PAGE 0001	-				•										-		•	
10/33/50																		
DATE = 76114		OMBINATION	(5)		, TOTCL							S(C1*(58-0-51)						
XLIFT	NE XLIFT	LIFT COEFFICIENT OF FIN-BODY COMBINATION	WZ/CLB(5),CLSW(5),CLSF(5) CHURD/CLL(55)	UI/YF(11) W3/CLBS(5) R4/RHFF(5)	3	F2/M•N U3/DI U2/RFAREA•XAX	A1/RAD1	5007#0. 00 5 JF=1.W	SUMM = SUMM + CL SW (JF) + CLL (JF) + WD SUMF = SUMF + CLSF (JF) + CLL (JF) + WD	CLNINGESUMATKFAREA CLFINESUMF/KFAREA	=1 •M1	SUGGESUNGHTEN (JEN) * RREF (JEN) * COS (DI * (JEN) * OS (COS (DI * (JEN) * OS (DI * (JEN) * OS (DI * O			 	1	-	***
FURTRAN IV G LEVEL 21	SUBROUTINE XLIFT	C LIFT COE	COMMON	CONFOC		C KOMPOO	-	5007=0. 00 5 JF=1.N	SUMM=SUM	CLN 186# SU		10 SUMB=SUM CLBODY=D TOTCL=CL	RETURN		,		•	
FURTRAN	1000		. 0002	4000	6000	00000	0013		C017	00000	0022	0024	0026		****	1	-	