Сложение гармонических колебаний одинаковых частот и одного направления. Сумма двух гармонических колебаний одинаковой частоты, амплитуды которых равны A1 и A2, а начальные фазы - $\phi1$ и $\phi2$, представляет собой гармоническое колебание такой же частоты, а амплитуда и начальная фаза которого могут быть найдены методом векторных диаграмм (рис.):

$$A^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos(\varphi_{2} - \varphi_{1}),$$

$$tg \varphi_{0} = \frac{A_{1}\sin\varphi_{1} + A_{2}\sin\varphi_{2}}{A\cos\varphi_{1} + A\cos\varphi_{2}}.$$
(6)

(параллелограмм на векторной диаграмме вращается с угловой скоростью $\ensuremath{\mathbb{D}}$ как одно целое). Разность фаз колебаний одинаковой частоты не меняется со временем. Такие колебания (с одинаковыми частотами и постоянной разностью фаз) называются когерентными. Из формулы (6) видно, что амплитуда А результирующих колебаний существенно зависит от разности фаз $\delta = \varphi 2 - \varphi 1$. При сложении синфазных колебаний ($\delta = 2\pi m$) амплитуда максимальна, при сложении противофазных колебаний ($\delta = \pi + 2\pi m$) амплитуда минимальна: Amax = A1 + A2 , Amin = |A2 - A1|.

Энергия колебаний пропорциональна квадрату амплитуды. Из формулы (6) следует, что энергия результирующих колебаний не может быть представлена как сумма энергий складываемых колебаний, то есть E ≠ E1 + E2.

118

 M_1, M_2, M_3 V_1, V_2, V_3 Haimu

M

Pemenne:

1) Περδοκαταλόμο τακπιμα μαχοσμίλατο 8

Nοκοε => E₀ = Mc²

2) Βαπειμ οπα ρακπιματώ μα 3 τακπιμη ε περπιμεμιμ Ε₁, Ε₂, Ε₃ coomδεπικοθέπιο

Το βακοκη εοχραματιμο πιερπιμ

Ε₀ = E₁ + E₂ + E₃, της E_i = V_1 - V_1 /c²/c²

Mc² = V_1 - V_1 /c² + V_1 /c² + V_1 - V_2 - V_2 - V_1 - V_2 - V_1 - V_2 - V_2 - V_1 - V_2 - V_1 - V_2 - V_1 - V_2 - V_2 - V_1 - V_2 - V_1 - V_2 - V_1 - V_2 - V_1 - V_2 - V_2 - V_1 - V_2 - V_2 - V_1 - V_2 - V_1 - V_2 - V_1 - V_2 - V_1 -