(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 11 March 2004 (11.03.2004)

PCT

(10) International Publication Number WO 2004/020388 A1

(51) International Patent Classification⁷: C07C 211/61, 211/54, C09K 11/06, H05B 33/14

(21) International Application Number:

PCT/JP2003/010700

(22) International Filing Date: 25 August 2003 (25.08.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: NO. 2002-248745 28 August 2002 (28.08.2002) JP

(71) Applicant (for all designated States except US): CANON KABUSHIKI KAISHA [JP/JP]; 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501 (JP).

(72) Inventors: and

(75) Inventors/Applicants (for US only): SAITO, Akihito [JP/JP]; c/o CANON KABUSHIKI KAISHA, 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501 (JP). HIRAOKA, Mizuho [JP/JP]; c/o CANON KABUSHIKI KAISHA, 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501 (JP). SENOO, Akihiro [JP/JP]; c/o CANON KABUSHIKI KAISHA, 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501 (JP). TANABE, Hiroshi [JP/JP]; c/o CANON KABUSHIKI KAISHA, 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501 (JP). YAMADA, Naoki [JP/JP]; c/o

CANON KABUSHIKI KAISHA, 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501 (JP). NEGISHI, Chika [JP/JP]; c/o CANON KABUSHIKI KAISHA, 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501 (JP).

(74) Agents: OKABE, Masao et al.; No. 602, Fuji Bldg., 2-3, Marunouchi 3-chome, Chiyoda-ku, Tokyo 100-0005 (JP).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: MONOAMINO COMPOUND AND ORGANIC LUMINESCENCE DEVICE USING THE SAME

$$\begin{array}{c|c}
Y_1 \\
Y_2
\end{array}
N-X_1
\begin{array}{c|c}
R_1 & R_2 \\
R_3 & R_4/m
\end{array}
X_2
\begin{array}{c|c}
R_5 & R_6 \\
R_7 & R_8/n
\end{array}$$
[1]

(57) Abstract: A novel monoamino compound is provided. Using the monoamino compound, an organic luminescence device is provided, which exhibits a luminescence hue with extremely high purity, and having an optical output of a high luminance with a high efficiency and a long life time. The monoamino compound is represented by the following general formula [1].

- 1 -

DESCRIPTION

MONOAMINO COMPOUND AND ORGANIC LUMINESCENCE DEVICE USING THE SAME

5

10

25

TECHNICAL FIELD

The present invention relates to a monoamino compound and an organic luminescence device, and more particularly to a device that emits light by applying an electric filed on a thin film made of an organic compound.

BACKGROUND ART

An organic luminescence device is a device

15 where a thin film including a fluorescent organic compound is sandwiched between an anode and a cathode, an electron and a hole are injected from the respective electrodes to generate an exciton of the fluorescent compound, and light which is emitted when

20 the exciton returns to the ground state is utilized.

According to the study of Kodak company in 1987 (Appl. Phys. Lett. 51, 913 (1987)), there has been reported a luminescence with approximately 1000 cd/m² at an applied voltage of approximately 10 V in a device having a separated-function type two-layer configuration using ITO as an anode, a magnesium-silver alloy as a cathode, an aluminum quinolinol

complex as an electron-transporting material and a luminescent material, and a triphenyl amine derivative as a hole-transporting material. The related patents include US 4,539,507 B, US 4,720,432 B, US 4,885,211 B, and so on.

5

In addition, it is possible to generate

luminescence in the range of ultraviolet to infrared

lights by changing the types of the fluorescent

organic compound, and in recent years various types

of compounds have been studied actively. For

instance, it is described in US 5,151,629 B, US

5,409,783 B, and US 5,382,477 B, JP 2-247278 A, JP 3
255190 A, JP 5-202356 A, JP 9-202878 A, JP 9-227576 A,
and so on.

15 Furthermore, in addition to the organic luminescence device using the low molecular weight material as mentioned above, an organic luminescence device using a conjugate polymer has been reported by a group of the Cambridge University (Nature, 347, 539 (1990)). In this report, luminescence from a single layer is confirmed by the film formation of polyphenylene vinylene (PPV) using a coating system. The related patents of the organic luminescence device using the conjugate polymer include US 5,247,190 B, US 5,514,878 B, US 5,672,678 B, JP 4-145192 A, JP 5-247460 A, and so on.

In this way, the recent progress in the organic

- 3 - '

luminescence device is remarkable, and the characteristics thereof suggest the possibility of applications for various purposes, which enable the luminescence device with a high luminance, a variety of luminescence wavelengths, a high-speed response, and a thin and lightweight form.

5

However, many problems still remain to be solved regarding the durability with respect to a change with time due to a long-term usage,

10 deterioration caused by an atmospheric gas including oxygen, moisture, or the like, and so on. Besides, in the case of considering the applications to a full color display and so on, under the present conditions, there are needs for an optical output of higher

15 luminance or higher conversion efficiency, and for luminescences of blue, green, and red having good color purity.

For instance, JP 2001-52868 A discloses a diamine compound but no blue luminescence with a high color purity (chromaticity coordinates: x, y = 0.14 to 0.15, 0.09 to 0.10) has been obtained. In addition, an example of using a compound having a similar diamine skeleton is disclosed in JP 11-312587 A. However, there has been obtained no blue luminescence with a high color purity.

DISCLOSURE OF THE INVENTION

5

10

15

The present invention has been made for solving such a problem inherent to the prior art and an object of the present invention is to provide a novel monoamino compound.

In addition, another object of the present invention is to provide an organic luminescence device having a luminescence hue with an extremely high purity, and also having an optical output of a high luminance with a high efficiency and a long life time.

Furthermore, another object of the present invention is to provide an organic luminescence device which can be produced easily at a comparatively low cost.

For solving the above problems, the present inventors have finally completed the present invention as a result of extensive studies.

Therefore, a monoamino compound according to the present invention is represented by the following 20 general formula [1]:

- 5 -

(where X₁ and X₂ represent divalent groups respectively selected from the group consisting of a substituted or unsubstituted alkylene group, aralkylene group, arylene group and heterocyclic group; and an alkylene group, an aralkylene group, an alkenylene group, an amino group, a silyl group, a carbonyl group, an ether group and a thioether group, each of which has a coupling group including a substituted or unsubstituted arylene group or a divalent heterocyclic group, in which X₁ and X₂ may be identical with or different from each other, and also X₁ and X₂ may be directly bonded with each other;

10

15

X₃ represents a group selected from the group consisting of a hydrogen atom, a halogen group, and substituted or unsubstituted alkyl group, aralkyl group, aryl group, and heterocyclic group, in which X₃ may be identical with or different from X₁ or X₂;

Y₁ and Y₂ represent groups respectively selected from the group consisting of a substituted or

20 unsubstituted alkyl group, aralkyl group, aryl group and heterocyclic group; a substituted or unsubstituted alkylene group, aralkylene group, alkenylene group, amino group, and silyl group, each of which has a coupling group including a substituted or unsubstituted arylene group or a divalent heterocyclic group; and an unsubstituted carbonyl group, ether group, and thioether group, each of

PCT/JP2003/010700 WO 2004/020388

which has a coupling group including a substituted or unsubstituted arylene group or a divalent heterocyclic group, in which Y1 and Y2 may be identical with or different from each other;

 Y_1 and Y_2 , or X_1 , Y_1 , and Y_2 may be bonded with each other to form a ring;

5

10

15

20

R₁ to R₈ are groups respectively selected from the group consisting of a hydrogen atom, a halogen group, and a substituted or unsubstituted alkyl group, aralkyl group, and aryl group, in which R₁ to R₈ may be identical with or different from each other; and

m + n denotes an integer number of 4 to 10 when all of R₁ to R₈ are hydrogen atoms, and X₁ and X₂ are directly bonded with each other, and X3 is a hydrogen atom, or denotes an integer number of 1 to 10 under the other conditions.)

Further, an organic luminescence device according to the present invention includes at least a pair of electrodes including an anode and a cathode and one or a plurality of layers containing an organic compound sandwiched between the pair of electrodes, in which at least one of the layers containing the organic compound contains at least one of the compounds represented by the general formula 25 [1].

- 7 -

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a cross-sectional diagram that illustrates an example of an organic luminescence device in accordance with the present invention.

Fig. 2 is a cross-sectional diagram that illustrates another example of the organic luminescence device in accordance with the present invention.

Fig. 3 is a cross-sectional diagram that

10 illustrates another example of the organic
luminescence device in accordance with the present
invention.

Fig. 4 is a cross-sectional diagram that illustrates another example of the organic

15 luminescence device in accordance with the present invention.

Fig. 5 is a cross-sectional diagram that
_illustrates another example of the organic
luminescence device in accordance with the present
20 invention.

Fig. 6 is a cross-sectional diagram that illustrates another example of the organic luminescence device in accordance with the present invention.

25

BEST MODE FOR CARRYING OUT THE INVENTION

Hereinafter, the present invention will be

- 8 -

described in detail.

At first, a monoamino compound of the present invention will be described.

The monoamino compound of the present invention

5 is represented by the above general formula [I].

The monoamino compound of the present invention can be mainly used as a material for an organic luminescence device, and when the compound is used as a luminescent material, a device having a high color purity, a high luminescence efficiency, and a long 10 life time can be obtained even in a single layer. In addition, a luminescence spectrum having a narrower half-value width, i.e., luminescence having a more excellent color purity, can be obtained by introducing a comparatively-rigid structure such as 15 p-phenylene skeleton into a main chain of a molecule. Furthermore, as a Stokes shift is prevented, it becomes possible to prevent the shift of a luminescence wavelength and to shift the absorbance toward longer wavelengths. In the case of using the 20 compound as a dopant material, it also becomes possible to use a host material having a luminescence spectrum on relatively longer wavelengths.

The monoamino compound of the present invention

25 can be used for the objects of both the dopant

material and the host material in a luminescent layer,

so that a device having a high color purity, a high

- 9 -

luminescence efficiency, and a long life time can be obtained. In particular, a higher-efficient device that retains luminescence with a high color purity and has a higher efficiency can be obtained by the use of it as a dopant material in combination with an appropriate host material which tends to cause an energy shift.

5

20

25

Specific examples of substituents in the above general formula [1] will be described below.

The substituted or unsubstituted, chain and cyclic alkyl group includes a methyl group, an ethyl group, a n-propyl group, a n-butyl group, a n-hexyl group, a n-decyl group, an iso-propyl group, an iso-butyl group, a tert-butyl group, a tert-octyl group, a trifluoromethyl group, a cyclohexyl group, a cyclohexyl group, a cyclohexylmethyl group, and the like, but the group is not limited thereto.

The substituted or unsubstituted aralkyl group includes a benzyl group, a phenethyl group, and the like, but the group is not limited thereto.

The substituted or unsubstituted aryl group includes a phenyl group, a 4-methylphenyl group, a 4-methoxyphenyl group, a 4-ethylphenyl group, a 4-fluorophenyl group, a 3,5-dimethylphenyl group, a triphenylamino group, a biphenyl group, a terphenyl group, a naphthyl group, an anthracenyl group, a phenanthrelyl group, a pyrenyl group, a tetracenyl

group, a pentacenyl group, a fluorenyl group, a triphenylenyl group, a perylenyl group, and the like, but the group is not limited thereto.

The substituted or unsubstituted heterocyclic

group includes a pyrrolyl group, a pyridyl group, a
bipyridyl group, a methylpyridyl group, a terpyrrolyl
group, a thienyl group, a terthienyl group, a
propylthienyl group, a furyl group, a quinolyl group,
a carbazolyl group, an oxazolyl group, an oxadiazolyl
group, a thiazolyl group, a thiadiazolyl group, and
the like, but the group is not limited thereto.

The substituted or unsubstituted alkylene group includes a methylene group, an ethylene group, a propylene group, an iso-propylene group, a butylene group, a tert-butylene group, a hexylene group, a heptylene group, a cyclohexylene group, a cyclohexylene group, a cyclohexylene group, and the like, but the group is not limited thereto.

15

25

The substituted or unsubstituted aralkylene group includes a benzylene group, a phenylethylene group, a phenethylene group, and the like, but the group is not limited thereto.

The substituted or unsubstituted arylene group includes a phenylene group, a biphenylene group, a 2,3,5,6-tetrafluorophenylene group, a 2,5-dimethylphenylene group, a naphtylene group, an anthracenylene group, a phenanthrenylene group, a

tetracenylene group, a pentacenylene group, a perylenylene group, and the like, but the group is not limited thereto.

The substituted or unsubstituted divalent

5 heterocyclic group includes a furanylene group, a
pyrrorylene group, a pyridinylene group, a
terpyridinylene group, a thiophenylene group, a
terthiophenylene group, an oxazolylene group, a
thiazolylene group, a carbazolylene group, and the

10 like, but the group is not limited thereto.

The substituted or nonsubstituted alkenyl group includes a vinyl group, an allyl group (a 2-propenyl group), a 1-propenyl group, an iso-propenyl group, a 2-butenyl group, and the like, but the group is not limited thereto.

15

The substituted or unsubstituted amino group includes an amino group, a methylamino group, an ethylamino group, a dimethylamino group, a diethylamino group, a methylethylamino group, a benzylamino group, a methylbenzylamino group, a dibenzylamino group, an anilino group, a diphenylamino group, a phenyltolylamino group, a ditolylamino group, a dianisolylamino group, and the like, but the group is not limited thereto.

The substituted or unsubstituted carbonyl group includes an acetyl group, a propionyl group, an isobutyryl group, a methacryloyl group, a benzoyl

group, a naphthoyl group, an anthroyl group, a trioyl group, and the like, but the group is not limited thereto.

The substituted or unsubstituted alkoxy group includes a methoxy group, an ethoxy group, a propoxy group, a 2-ethyl-octyloxy group, a phenoxy group, a 4-butylphenoxy group, a benzyloxy group, and the like, but the group is naturally not limited thereto.

5

10

The substituted or unsubstituted sulfide group includes a methylsulfide group, an ethylsulfide group, a phenylsulfide group, a 4-methylphenylsulfide group, and the like, but the group is not limited thereto.

As substituent groups which the above mentioned substituent groups may have include alkyl groups such as a methyl group, an ethyl group, a n-propyl group, 15 an iso-propyl group, a ter-butyl group, an octyl group, a benzyl group, and a phenethyl group; aralkyl groups; alkoxy groups such as a methoxy group, an ethoxy group, a propoxy group, a 2-ethyl-octyloxy group, a phenoxy group, a 4-butylphenoxy group, and a 20 benzyloxy group; aryl groups such as a phenyl group, a 4-methylphenyl group, a 4-ethylphenyl group, a 3chlorophenyl group, a 3,5-dimethylphenyl group, a triphenylamino group, a biphenyl group, a terphenyl group, a naphthyl group, an anthryl group, a 25 phenanthryl group, and a pyrenyl group; heterocyclic groups such as a pyridyl group, a bipyridyl group, a

- 13 -

methylpyridyl group, a thienyl group, a terthienyl group, a propylthienyl group, a furyl group, a quinolyl group, a carbazolyl group, and an N-ethylcarbazolyl group; halogen groups; a cyano group; a nitro group; and the like, but the groups are not limited thereto.

Next, although a typical example of the compound represented by the general formula [1] will be given, the present invention is not limited to those compounds.

15

10

5

20

Table 1

[1]	n,n	R1- R4	R5- R8	X1	X2	ХЗ	Y 1	Y2
1	1,0	H	_	Single bond	Single bond	odo	Ph	Ph
2	1,0	Н	-	Single bond	Single , bond	cco	- ⟨ }Me	-∕Me
3	1,0	Н		Me Me	Single bond	ග්ර	-⟨_}Me	-∕}Me
4	1,0	н		FF	Single bond	cto	-∕_ Me	-∕€}Me
5	1,0	н	1	Single bond	Single bond		Ph	
6	1,0	Н	_	Single bond	Single bond	8	Ph	<u></u>
7	1,0	Н		Single bond	Single bond	<u></u>	Ph	්
8	1,0	Н	_	Single bond	Single bond	ಯ	Ph	(3)
9	1,0	н	_	Single bond	Single bond	£\$>	Ph	Ph
10	1,0	н	_	Single bond	Single bond		— ⟨_ }Me	-∕>Me
11	1,0	Н	_	Me Me	Single bond	F	— ⟨ }Me	-∕>Me
12	1,0	н	_	FF	Single bond	FB	-⟨_ }Me	- € Me
13	1,0	H		Single bond	Single bond		Ph	OP
14	1,0	Н	_	Single bond	Single.		Ph	8
15	1,0	н	_	Single bond	Single bond	妈	Ph	

Table 2

[1]	m,n	R1- R4	R5- R8	X1	X2	ХЗ	Y1	Y2
16	1,0	H	-	Single bond	Single bond	(3)	Ph	<u>(</u>
17	1,0	F	-	Single bond	Single bond	000	-{_}}Me	-{∑}Me
18	1,0	F		Single bond	Single bond	cdo	Ph	E
19	1,0	F	-	Single bond	Single bond	(2)	-{_}}Me	- ⊘ Me
20	1,0	F	-	Single bond	Single bond	(3)	Ph	(B)
21	2,0	Н	_	Single bond	Single bond	COO	Ph	Ph
22	2,0	Н	_	Single bond	Single bond	ග්ර	→ Me	- ⟨_⟩Ме
23	2,0	H	_	Single bond	Single bond	000	- -	-00
24	2,0	н	_	Me Me	Single bond	ಯ	- ⟨ }Me	-⟨}Me
25	2,0	Ħ	_	F F	Single bond	ಯ	(_) Me	-⟨}Me
26	2,0	Н	_	Me Si-()	Single bond	ಯ	·—(C)Me	-{_}Ме
27	2,0	н	_	Single bond	Single bond	ಯಂ	Ph	
28	2,0	н	-	Single bond	Single bond	cdo	Ph	cdo
29	2,0	н	_	Single bond	Single bond	000	Ph	O ² O
30	2,0	H.		Single bond	Single bond	(C)	Ph	

Table 3

[1]	m,n	R1- R4	R5- R8	X1	X2	ХЗ	Y1	Y2
31	2,0	н	1	Single bond	Single bond		Ph	Ph
32	2,0	Н	1	Single bond	Single bond		- ⊘Me	- ⊘ Me
33	2,0	Н	1	# * #	Single bond		- ⟨ }Me	,—(_)Me
34	2,0	Н	-	Single bond	Single bond		Ph	CQ
35	2,0	Н	_	Single bond	Single bond		Ph	cco
36	2,0	Н	_	Single bond	Single bond		Ph	
37	2,0	Н	_	Single bond	Single bond		Ph	
38	2,0	F		Single bond	Single bond	CQ	Ph	ಯ
39	2,0	F	_	Single bond	Single bond	cdo	- ⟨_ }Me	-∕{_}}Me
40	2,0	F	_	Single. bond	Single bond	000	Ph	
41	2,0	F	-	Single bond	Single bond		—⟨_}Me	-⟨_ }Me
42	2,0	F		Single bond	Single bond		Ph	
43	2,0	F		Single bond	Single bond	F	— ⟨ }Me	-⟨_}Me
44	3,0	Н		Single bond	Single bond	CCC	Ph	Ph
45	3,0	H	-	Single bond	Single bond	8	→ Me	→ (_) Me

Table 4

[1]	m,n	R1- R4	R5- R8	Хı	X2	ХЗ	Y 1	Y2
46	3,0	н	_	Single bond	Single bond	CQD	-OO	-O-O
47	3,0	н	_	F F	Single bond	ಯ	- ⟨ }•Me	-{_}\nfe
48	3,0	H		Single bond	Single bond	8	Ph	
49	3,0	Н	_	Single bond	Single bond	cco	Ph	cto
50	3,0	Н		Single bond	Single bond	cdo	Ph	
51	3,0	Н	_	Single bond	Single bond	<u>c</u>	Ph.	
52	3,0	Н	_	Single bond	Single bond		Ph	Ph
53	3,0	н	_	Single bond	Single bond		— ⊘ Me	⊸ Me
54	3,0	H	_	Single bond	Single bond		Ph	
55	3,0	Н	_	Single bond	Single bond		Ph	
56	3,0	Н	-	Single bond	Single bond		Ph	
57	3,0	Н	_	Single. bond	Single bond		Ph	
58	3,0	F	_	Single bond	Single bond	cdo	— ⟨_ }Me	→{}Me
59	3,0	F	_	Single bond	Single bond	cco.	Ph	F
60	3,0	F		Single bond	Single bond	<i>5</i> 30	→ (_) Me	{}

Table 5

								
[1]	m,n	R1— R4	R5 R8	X1	X2	ХЗ	Y 1	Y2
61	3,0	F	_	Single bond	Single. bond		Ph	
62	3,0 .	F	1	Single bond	Single bond	F	— ()Me	- ⟨ }Me
63	4,0	H	_	Single bond	Single bond	H	~ ⊘ Me	→ (_)Me
64	4,0	H	_	Single bond	Single bond	<u></u>	-∕_ Me	, —()Me
65	4,0	H		Single bond	Single bond	Н	Ph	
66	4,0	Н	-	Single bond	Single bond	Н	Ph	(00)
67	4,0	Н	-	Single bond	Single bond	Н	Ph	Me Me
68	4,0	н	_	Single bond	Single bond	H	Ph	-⊘ Ø
69	4,0	H	_	Single bónd	Single bond	H	<u>-⊚-</u> ⊚	<u>-@-@</u>
70	4,0	Н	_	Single bond	Single bond	H	Ph	cco
71	4,0	н		'Single bond	Single bond	Н	Ph	
72	4,0	Н		Single bond	Single bond	H	Ph	
73	4,0	F	_	Single bond	Single bond	F	- ⟨ }Me	− €∑Me
74	4,0	F	_	Single bond	Single bond	F	Ph	
75	5,0	Н	_	Single bond	Single bond	Н	- ⟨ }Me	-∕_>Me

Table 6

[1]	m,n	R1- R4	R5— R8	Х1 .	X2	ХЗ	Y 1	Y2
76	5,0	H		Single bond	Single bond	Н	Ph	CQ
77	5,0	Н	-	Single bond	Single bond	н	Ph	YOO .
78	5,0	Н	_	Single bond	Single bond	Н	Ph	Me Me
79	5,0	Н		Single bond	Single bond	Н	Ph	-©©
80	5,0	H	_	Single bond	Single bond	Н	-@-@	<u>-©-⊙</u>
81	5,0	Н		Single bond	Single bond	Н	Ph	cco
82	1,1	H	F	6ingle bond	Single bond	F	⊸ (_)Me	— (_ }Me
83	2,1	Н	F	Single bond	Single bond	F	- ⟨_ }Me	-⟨}Me
84	2,2	Н	F	Single bond	Single bond	F	- ⟨ }Me	-{_}Me
85	1,1	Н	Н	Single bond	Me ———— Me	н	- ⟨ }Me	-{_>Me
86	1,1	Н	н	Single bond	F F	Н	- ⟨ }Me	-∕∑}Me
87	1,1	Н	Н	Single bond	FF	Н	Ph	CO
88	1,1	н	н	Single bond	FF	Н	Ph	Me, Me
89	1,1	Н	Н	Single bond	F	Н	Ph	-© - 0
90	1,1	Н	н	Single bond	FF	Н	~@·@	-0-0

Table 7

		R1-	R5-					····
[1]	m,n	R4	R8	X1	X2	ХЗ	Y 1	Y2
91	1,1	н	Н	Single bond	FF	Н	Ph	F
92	1,1	Н	H	Single bond	S	Н	→ (_) Me	—⟨>Me
93	1,1	H	H.	Single bond		н	—⟨_}Me	·—{_}
94	1,1	н	н	Single bond	Me Si-Q- Me	Н	- ⟨_ }Me	- ⟨_ }Me
95	1,1	H	Н	Single bond	-O-O-	н	-{_>Me	-∕>Me
96	1,1	Н	Н	Single bond	-O.Ç.O-	Н	-{\textstyle \textstyle \textstyl	⟨>Me
97	1,1	Н	Н	Single bond		Н	— ⟨]>Me	-∕>Me
98	1,1	Н	Н	Single bond	<u>දේහ</u>	Н	- ⟨_ }Ma	- ⟨ }Me
99	1,1	Н	Н	Single bond	<u>රේග</u>	Н	Ph	
100	1,1	Ĥ	н	Single bond	cto	Н	Ph	Me Me
101	1,1	Н	Н	Single bond	cho	Н	Ph	-ØØ
102	1,1	Н	н	Single bond	ctpo	Н	-@-@	-@-@
103	1,1	H	Н	Single bond	octo	н	_ ← ∑Me	- ⟨_ }Me
104	1,1	Н	Н	Single bond	လော်သ	H	→ ()Me	-⟨_}Me
105	1,1	н	н	Single bond	- (\$)-	Η,	-∕€`Me	- ⊘ Me

Table 8

[1]	m,n	R1- R4	R5- R8	ХI	X2	ХЗ	Y1.	Y2
106	1,1	Н	H	Single bond	-8-8-	H	→ (_)Me	- ⟨_ }Me
107	1,1	Н	H	Single bond	-8-8-	H	—⟨∑}Me	-{∑}Me
108	1,1	Н	H	Single bond	6	Н	— ∑ Me	-{\textsym}_Me
109	1,2	H	H	Single bond	cto	H	→ Me	-⟨∑Me
110	2,2	н	Н	Single bond		н	-⟨}Me	-{_}Ме
111	2,2	н	H	Single bond	COO	н	-{>Ме	-⟨∑Me
112	2,2	н	H	Single bond		Н	Ph	
113	2,2	н	H	Single bond		Н	Ph	Me Me
114	2,2	Н	н	Single bond		н	Ph	-DD
115	2, 2	H	H	Single bond		H	-@-@	-@-@
116	2,2	Н	Н	Single bond	8	Н	- € }Me	-(С)ме
117	1,1	н	P.	Single bond		Ŧ.	- ⟨ }M₀	-{_}}Me
118	1,1	н	F	Single bond		F	- €∑Me	-(_)Mo
119	1,1	Н	F	Single bond	eciço	F	-{_}Ме	- ⊘M•
120	1,1	H	Н	-8-	cto	, H	-€}Me	-{>Ме
121	2,2	Н	н	-8-	©	н	-{_}Ме	-€}Me

- 22 -

5

10

[1]-124

Next, the organic luminescence device according to the present invention will be described detail.

The organic luminescence device according to the present invention comprises at least a pair of electrodes including an anode and a cathode and one or a plurality of layers containing an organic compound sandwiched between the pair of electrodes, wherein at least one of the layers containing the organic compound contains at least one of the monoamino compounds represented by the abovedescribed general formula [1].

The layer containing the compound represented by

the general formula [1] preferably contains at least

one of the compounds represented by the following

general formulae [2] to [6]. In addition the layer

containing the compound represented by the general

formula [1] is preferably a luminescent layer.

$$Ar_{2} = \begin{vmatrix} Ar_{1} \\ R_{11} \end{vmatrix}$$

$$R_{10}$$

$$R_{9}$$

(wherein Ar₁ to Ar₃ represent groups respectively selected from the group consisting of a substituted or unsubstituted aryl group and heterocyclic group, in which Ar₁ to Ar₃ may be identical with or different from each other, or one of them may be a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aralkyl group; and R₉ to R₁₁ represent groups respectively selected from the group consisting of a hydrogen atom, a halogen group, substituted or unsubstituted alkyl group and aralkyl group, a substituted amino group, and a cyano group.)

15

10

5

$$Ar_{5} = \begin{vmatrix} Ar_{4} \\ R_{13} \\ R_{12} \end{vmatrix}$$

$$Ar_{7}$$

(wherein Ar₄ to Ar₇ represent groups respectively selected from the group consisting of a substituted or unsubstituted aryl group and heterocyclic group, in which Ar₄ to Ar₇ may be identical with or different from each other; and R₁₂ and R₁₃ represent groups selected from the group consisting of a hydrogen atom, a halogen group, substituted or unsubstituted alkyl group and aralkyl group, a substituted amino group, and a cyano group.)

10

5

$$Ar_{9}$$
 R_{14}
 Ar_{10}
 Ar_{12}
 Ar_{11}

(wherein Ar₈ to Ar₁₂ represent groups respectively selected from the group consisting of a substituted or unsubstituted aryl group and heterocyclic group, in which Ar₈ to Ar₁₂ may be identical with or different from each other; and R₁₄ represents a group selected from the group consisting of a hydrogen atom, a halogen group, substituted or unsubstituted alkyl group, aralkyl group, aryl group and heterocyclic group, a substituted amino group, and a cyano group.)

$$Ar_{13}$$
 R_{15}
 R_{16}
 Ar_{14}
 R_{17}
 R_{18}
 Ar_{18}
 Ar_{18}

(wherein Ar₁₃ to Ar₁₆ represent groups respectively selected from the group consisting of a substituted 5 or unsubstituted aryl group and heterocyclic group, in which Ar₁₃ to Ar₁₆ may be identical with or different from each other, or at most three of Ar13 to Ar₁₆ may be a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aralkyl group; and R_{15} to R_{18} represent 10 groups respectively selected from the group consisting of a hydrogen atom, a halogen group, substituted or unsubstituted alkyl group, aralkyl group, aryl group and heterocyclic group, a 15 substituted amino group, and a cyano group.)

$$R_{19}$$
 R_{20} R_{21} R_{23} R_{24} R_{24} R_{24}

(wherein R_{19} and R_{20} represent groups respectively selected from the group consisting of a hydrogen atom, and substituted or unsubstituted alkyl group, aralkyl group, and aryl group, in which the R_{19} groups or the R_{20} groups bonded with different fluorene groups may be identical with or different from each other, and R_{19} and R_{20} bonded with the same fluorene group may be identical with or different from each other; and

5

10

15

20

R₂₁ to R₂₄ represent groups respectively selected from the group consisting of a hydrogen atom, a halogen group, substituted or unsubstituted alkyl group, aralkyl group, and alkoxy group, a substituted silyl group, and a cyano group; and p is an integer number of 2 to 10.)

Each of the compounds represented by the general formulas [2] to [6] can be used for the purposes of both the dopant material and the host material in a luminescent layer, so that a device having a high color purity, a high luminescence efficiency, and a long life time can be obtained. A device that retains

- 27 -

luminescence with a high color purity and has a higher efficiency can be obtained by the use of a compound represented by the general formula [1] as a dopant material and combining the compound with an appropriate host material that tends to cause an energy shift, for example the compounds represented by the general formulas [2] to [6]. The concentration of the dopant to the host material is preferably 0.01% by weight to 50% by weight, more preferably 0.5% by weight to 10% by weight.

5

10

15

20

Specific examples of substituents in the general formulae [2] to [6] are in common with those of the above general formula [1]. The followings are typical examples of the compounds represented by the general formulae [2] to [6], but the present invention is not limited to those compounds.

$$\begin{array}{c|c}
Ar_4 \\
R_{13} \\
Ar_6 \\
R_{12} \\
Ar_7
\end{array}$$

- 42 -

Preferable examples of the organic luminescence device of the present invention are shown in Figs. 1 to 6.

Fig. 1 is a cross-sectional diagram that

5 illustrates an example of the organic luminescence
device of the present invention. In Fig. 1, the
device comprises an anode 2, a luminescent layer 3,
and a cathode 4, which are formed on a substrate 1 in
that order. The luminescence device used herein is

10 useful when it singly has a hole-transporting ability,
an electron-transporting ability, and a luminescence
property in itself or when it is used in combination
with compounds having those characteristics.

Fig. 2 is a cross-sectional diagram that 15 illustrates another example of the organic luminescence device of the present invention. In Fig. 2, the device comprises an anode 2, a holetransporting layer 5, an electron-transporting layer 6, and a cathode 4, which are formed on a substrate 1 20 in that order. In this case, a luminescent material is useful when a material having one or both of a hole-transporting property and an electrontransporting property is used for the respective layers and the luminescent material is used in 25 combination with a hole-transporting material or an electron-transporting material having no luminescence property. In addition, in this case, the luminescent

- 43 -

layer 3 is composed of either the hole-transporting layer 5 or the electron-transporting layer 6.

Fig. 3 is a cross-sectional diagram that illustrates another example of the organic luminescence device of the present invention. In Fig. 3, the device comprises an anode 2, a holetransporting layer 5, a luminescent layer 3, an electron-transporting layer 6, and a cathode 4, which are formed on a substrate 1 in that order. This is one in which a carrier-transporting function and a 10 luminescence function are separated from each other, and is used appropriately in combination with compounds having a hole-transporting property, an electron-transporting property, and a luminescence property, respectively. Thus, the degree of freedom 15 in selecting a material increases extremely. In addition, various kinds of compounds having different luminescent wavelengths can be used. Therefore, it becomes possible to diversify luminescence hue. 20 Furthermore, it also becomes possible to increase the

luminescence efficiency by effectively confining each carrier or exciton in the middle luminescent layer 3.

Fig. 4 is a cross-sectional diagram that illustrates another example of the organic

25 luminescence device of the present invention. In Fig. 4, as compared with the example of Fig. 3, the device is constructed such that a hole-injection layer 7 is

inserted in the anode 2 side. It is effective in the improvement of an adhesion between the anode 2 and the hole-transporting layer 5 or the improvement of an injection property of holes, so that it is effective in lowering voltage.

5

Figs. 5 and 6 are cross-sectional diagrams that illustrate other examples of the organic luminescence device of the present invention. In each of Figs. 5 and 6, as compared with the examples of Figs. 3 and 4, the device is constructed such that a layer (a hole-blocking layer 8) that prevents a hole or an exciton from passing toward the cathode 4 side is inserted between the luminescent layer 3 and the electron-transporting layer 6. The use of a compound having an extremely high ionization-potential as the hole-blocking layer 8 allows a configuration effective to an improvement in luminescence efficiency.

However, in Figs. 1 to 6, there are shown common basic device configurations. The

20 configuration of the organic luminescence device using the compound of the present invention is not limited thereto. For instance, it is possible to adopt various layer configurations such as one in which an insulating layer is formed at the interface between the electrode and the organic layer, one in which an adhesive layer or an interference layer is formed, and one in which the hole-transporting layer

- 45 -

is composed of two layers with different ionization potentials.

The monoamino compound represented by the general formula [1] to be used in the present invention can be used in any modes of Figs. 1 to 6.

5

In particular, an organic layer using the compound of the present invention is useful as a luminescent layer, an electron-transporting layer, or a hole-transporting layer. In addition, a layer formed by a vacuum deposition method, a solution-coating method, or the like hardly causes crystallization or the like and is excellent in stability with time.

In the present invention, in particular the

15 monoamino compound represented by the general formula

[1] is used as a component of the luminescent layer.

However, hole-transporting compounds, luminescent

compounds, electron-transporting compounds, or the

like, which have been known, may be used together if

20 required.

Examples of those compounds will be given below. Hole-transporting compound

Electron-transporting luminescent material

Luminescent material

Luminescent layer matrix material and electrontransporting material

Polymeric hole-transporting material

$$\begin{array}{c} (CH-CH_2)_{\Pi} \\ (CH-CH_$$

5

10

Polymeric luminescent material and chargetransporting material

In the organic luminescence device of the invention, the layer containing the monoamino compound represented by the general formula [1] and the layer made of another organic compound are generally formed as thin films by a vacuum deposition method, or by a coating method after being dissolved in an appropriate solvent. In particular, in the case of forming a film with a coating method, the

film may be formed in combination with an appropriate binder resin.

The above binder resin can be selected from a wide variety of the binder resins including, for example, polyvinyl carbazole resin, polycarbonate resin, polyester resin, polyarylate resin, polystyrene resin, acrylic resin, methacryl resin, butyral resin, polyvinyl acetal resin, 'diallyl phthalate resin, phenol resin, epoxy resin, silicone resin, polysulfone resin, and urea resin, although not limited to them. In addition, those resins may be used solely or one or two or more resins may be combined with each other as a copolymer.

10

The anode material may be one preferably having
a large work function. For example, a simple metal
substance such as gold, platinum, nickel, palladium,
cobalt, selenium, or vanadium, or an alloy thereof,
or a metal oxide such as tin oxide, zinc oxide,
indium tin oxide (ITO), or indium zinc oxide can be
used. In addition, a conductive polymer such as
polyaniline, polypyrrole, polythiophene, or
polyphenylene sulfide can be also used. Those
electrode substances may be used solely or two or
more substances may be used together.

On the other hand, the cathode material may be one preferably having a small work function. For example, a simple metal substance such as lithium,

sodium, potassium, calcium, magnesium, aluminum, indium, silver, lead, tin, or chromium, or an alloy of plural substances can be used. It is also possible to use a metal oxide such as indium tin oxide (ITO). In addition, the cathode may be constructed as a single layer or may have a multilayer configuration.

The substance used in the present invention may be, although not particularly limited to, a non
10 transparent substrate such as a metallic substrate or a ceramic substrate, or a transparent substrate formed of glass, quartz, plastic sheets, or the like. In addition, it is also possible to control the luminescence color by using a color filter film, a fluorescent color-converting filter film, a dielectric reflection film, or the like as a substrate.

Note that, a protective layer or a sealing layer may be formed on the prepared device for 20 preventing the device from contacting with oxygen, moisture, or the like. The protective layer may be a diamond thin film; a film made of an inorganic material such as a metal oxide or a metal nitride; a polymer film made of a fluorocarbon resin, 25 polyparaxylene, polyethylene, a silicone resin, or a polystyrene resin, or the like; or furthermore a photo-curing resin. Furthermore, it is also possible

to package the device itself with an appropriate sealing resin while covering it with a glass, a gasimpermeable film, a metal, or the like.

[Examples]

Hereinafter, the present invention will be 5 described more specifically with examples. However, the present invention is not limited to those examples.

<Example 1> [Method of Producing Exemplified Compound No. [1]-38] 10

In a nitrogen flow, 160 mg (0.282 mmol) of palladium bis (benzylideneacetone) and 170 mg (0.846 mmol) of tri-tert-butylphosphine were dissolved in 40 15 ml of toluene and then stirred for 15 minutes at room temperature. Then, 0.58 g (1.27 mmol) of 4,4'dibromo-2,2',3,3',5,5',6,6'-octafluoro-1,1'-biphenyl dissolved in 50 ml of toluene was dropped into the mixture and it was stirred for 30 minutes. 20

WO 2004/020388 PCT/JP2003/010700 ·

Furthermore, 0.34 g (1.27 mmol) of N-(9-anthracenyl)-N-phenylamine was dissolved in 50 ml of toluene and was then dropped therein, followed by the addition of 0.18 g (1.91 mmol) of sodium tert-butoxide. Then,

- 55 -

- the mixture was heated and stirred for about 8 hours in an oil bath heated at 120°C. After returning the reaction solution to room temperature, 50 ml of water was added thereto and the resultant solution was then separated into an aqueous layer and an organic layer.
- 10 Furthermore, the aqueous layer was extracted with toluene and ethyl acetate, and was then combined with the previous organic layer and dried with magnesium sulfate. The solvent was evaporated and then the residue was purified by silicagel-column
- chromatography (toluene: hexane = 1:2) to obtain 0.55 g of 4-bromo-4'-[N-(9-anthracenyl)-N-phenylamino]-2,2',3,3',5,5',6,6'-octafluoro-1,1'-biphenyl.

In a nitrogen flow, 1 g (1.55 mmol) of 4-bromo
4'-[N-(9-anthracenyl)-N-phenylamino]
2,2',3,3',5,5',6,6'-octafluoro-1,1'-biphenyl and 0.40

g (2.33 mmol) of naphthalene-1-boronic acid were

dissolved and stirred in a deaerated mixture solvent

of 80 ml of toluene and 40 ml of ethanol, followed by

25 adding 23 ml of a sodium carbonate aqueous solution

prepared by dissolving 6 g of anhydrous sodium

carbonate in 30 ml of water in a dropwise manner.

After stirring the mixture for 30 minutes, 135 mg (0.117 mmol) of tetrakis(triphenylphosphine)palladium was added thereto. Then, the mixture was heated and stirred for about 3 hours in an oil bath heated at 80°C. After returning the reaction solution to room temperature, 40 ml of water and 50 ml of ethyl acetate were added thereto and the resultant solution was then separated into an aqueous layer and an organic layer. Furthermore, the aqueous layer was 10 extracted with toluene and ethyl acetate, and was then combined with the previous organic layer and dried with magnesium sulfate. The solvent was evaporated and then the residue was purified by silicagel-column chromatography (toluene : hexane = 1 : 2) to obtain 0.90 g of the exemplified compound 15 [1]-38.

<Example 2> [Method of producing the exemplified
compound No. [1]-109]

$$H_3C$$
 $N-C$
 $B(OH)_2 + Br$
 Br
 Br
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C

20

In a nitrogen flow, 1 g (2.98 mmol) of 9,10-

dibromoanthracene and 1.44 g (4.46 mmol) of bis(4methylphenyl)aminobenzene-4-boronic acid were dissolved and stirred in a deaerated mixture solvent of 100 ml of toluene and 50 ml of ethanol, followed by dropping a sodium carbonate aqueous solution prepared by dissolving 9 g of anhydrous sodium carbonate in 45 ml of water. After stirring the mixture for 30 minutes, 257 mg (0.223 mmol) of tetrakis(triphenylphosphine)palladium was added thereto. Then, the mixture was heated and stirred 10 for about 3 hours in an oil bath heated at 80°C. After returning the reaction solution to room temperature, 40 ml of water and 50 ml of ethyl acetate were added thereto and the resultant solution was then separated into an aqueous layer and an 15 organic layer. Furthermore, the aqueous layer was extracted with toluene and ethyl acetate, and was then combined with the previous organic layer and dried with magnesium sulfate. The solvent was 20 evaporated and then the residue was purified by silicagel-column chromatography (toluene : hexane = 1:2) to obtain 1.13 g of 9-[bis(4methylphenyl) amino] phenyl-10-bromoanthracene.

In a nitrogen flow, 1 g (1.89 mmol) of 9
[bis(4-methylphenyl)amino]phenyl-10-bromoanthracene
and 0.56 g (2.84 mmol) of 1,1'-bisphenyl-4-boronic
acid were dissolved and stirred in a deaerated

mixture solvent of 100 ml of toluene and 50 ml of ethanol, followed by dropping a sodium carbonate aqueous solution prepared by dissolving 6 g of anhydrous sodium carbonate in 30 ml of water. After stirring the mixture for 30 minutes, 164 mg (0.142 5 mmol) of tetrakis(triphenylphosphine)palladium was added thereto. Then, the mixture was heated and stirred for about 3 hours in an oil bath heated at 80°C. After returning the reaction solution to room 10 temperature, 40 ml of water and 50 ml of ethyl acetate were added thereto and the resultant solution was then separated into an aqueous layer and an organic layer. Furthermore, the aqueous layer was extracted with toluene and ethyl acetate, and was 15 then combined with the previous organic layer and dried with magnesium sulfate. The solvent was evaporated and then the residue was purified by silicagel-column chromatography (toluene : hexane = 1 : 2) to obtain 1.04 g of the exemplified compound 20 [1]-109.

<Example 3>

An organic luminescence device constructed as shown in Fig. 3 was produced by a method described below.

A glass substrate provided as a substrate 1, on which a film of indium tin oxide (ITO) of 120 nm in thickness was formed as an anode 2 by a sputtering

- 59 -

method, was used as a transparent conductive support substrate. This substrate was sequentially subjected to ultrasonic cleaning with acetone and isopropyl alcohol (IPA), and was then washed with IPA by boiling, followed by drying. Furthermore, one washed with UV/ozone was used as a transparent conductive support substrate.

A chloroform solution was prepared by using a compound represented by the following structural

10 formula as a hole-transporting material so the concentration of the solution would be 0.5% by weight.

15 This solution was dropped on the ITO electrode (the anode 2) and was then spin-coated at a rotation speed of 500 RPM for 10 seconds at first and next at a rotation speed of 1000 RPM for 1 minute thereby forming a thin film. Subsequently, it was dried in a vacuum oven at 80°C for 10 minutes to completely remove the solvent in the thin film. The thickness

of the resulting TPD film (the hole-transporting layer 5) was 50 nm.

5

10

15

Then, the above exemplified compound No. [1]-70 and the above exemplified compound No. [2]-50 (weight ratio of 5:100) were deposited together on the hole-transporting layer 5 to form a luminescent layer 3 of 20 nm in thickness. The film formation was performed under the conditions of the degree of vacuum of 1.0×10^{-4} Pa and the rate of film formation of 0.2 to 0.3 nm/sec.

Furthermore, aluminum quinolinol (Alq3) was formed into a film of 40 nm in thickness as an electron-transporting layer 6 by a vacuum deposition method. Those organic layers were deposited under the conditions of the degree of vacuum of 1.0×10^{-4} Pa and the rate of film formation of 0.2 to 0.3 nm/second.

Next, by using a deposition material made of an aluminum-lithium alloy (a lithium content of 1% by 20 atom), a metal-layer film of 10 nm in thickness was formed on the organic layer described earlier by a vacuum deposition method, and furthermore an aluminum film of 150 nm in thickness was formed thereon by a vacuum deposition method to obtain an organic

25 luminescence device having an aluminum-lithium alloy film as an electron-injecting electrode (a cathode 4). The film formation was performed under the conditions

of the degree of vacuum of 1.0×10^{-4} Pa and the rate of film formation of 1.0 to 1.2 nm/second at the time of deposition.

The resulting organic EL device was covered with a protective glass plate in an atmosphere of dried air and was sealed with an acrylic resin adhesive so as to prevent the device from being deteriorated by the adsorption of moisture.

5

20

When a voltage of 8 V was applied to the device

10 obtained in this way, where the ITO electrode (the
anode 2) was provided as a positive electrode and the
Al-Li electrode (the cathode 4) was provided as a
negative electrode, blue luminescence with a
luminescent luminance of 1650 cd/m², a maximum

15 luminance of 5770 cd/m², and a luminescence
efficiency of 0.621 m/W was observed.

<Examples 4 to 8>

Devices were prepared in the same way as that of Example 3 except that the exemplified compounds shown in Table 9 were used in stead of the exemplified compound [1]-70.

Table 9

Example	Examplified	Applied	Luminance	Maximum	Efficiency
_	compound	voltage	(cd/m^2)	Luminance	(lm/W)
İ	No.	(V)		(cd/m^2)	
4	[1]-38	8	1840	6150	0.65
5	[1]-45	8	2100	7220	0.71
6	[1]-86	9	1560	4900	0.53
7	[1]-100	8	2900	8300	0.82
8	[1]-109	8	2200	7270	0.72

<Example 9>

5

10

15

20

25

A device was prepared in the same way as that of Example 3 except that the above exemplified compound No. [1]-70 and the above exemplified compound No. [2]-15 (weight ratio of 5: 100) were deposited together to form a luminescent layer 3 of 20 nm in thickness.

When a voltage of 9 V was applied on the device obtained in this way, where the ITO electrode (the anode 2) was provided as a positive electrode and the Al-Li electrode (the cathode 4) was provided as a negative electrode, blue luminescence with a luminescent luminance of 1620 cd/m², a maximum luminance of 4850 cd/m², and a luminescence efficiency of 0.55 lm/W was observed.

A device was prepared in the same way as that of Example 9 except that the exemplified compound [1]-109 was used in stead of the exemplified compound [1]-70.

When a voltage of 9 V was applied on the device obtained in this way, where the ITO electrode (the anode 2) was provided as a positive electrode and the Al-Li electrode (the cathode 4) was provided as a negative electrode, blue luminescence with a luminescent luminance of 1850 cd/m², a maximum luminance of 6920 cd/m², and a luminescence

efficiency of 0.66 lm/W was observed. <Example 11>

5

20

25

A device was prepared in the same way as that of Example 3, except that the above exemplified compound No. [1]-70 and the above exemplified compound No. [3]-1 (weight ratio of 5: 100) were deposited together to form a luminescent layer 3 of 20 nm in thickness.

When a voltage of 8 V was applied on the device

10 obtained in this way, where the ITO electrode (the
anode 2) was provided as a positive electrode and the
Al-Li electrode (the cathode 4) was provided as a
negative electrode, blue luminescence with a
luminescent luminance of 1810 cd/m², a maximum

15 luminance of 6980 cd/m², and a luminescence
efficiency of 0.70 lm/W was observed.

<Example 12>

A device was prepared in the same way as that of Example 11, except that the exemplified compound [1]-75 was used in stead of the exemplified compound [1]-70.

When a voltage of 8 V was applied on the device obtained in this way, where the ITO electrode (the anode 2) was provided as a positive electrode and the Al-Li electrode (the cathode 4) was provided as a negative electrode, blue luminescence with a luminescent luminance of 1870 cd/m², a maximum

luminance of 7050 cd/m², and a luminescence efficiency of 0.73 lm/W was observed. <Example 13>

A device was prepared in the same way as that of Example 3, except that the above exemplified compound No. [1]-38 and the above exemplified compound No. [4]-1 (weight ratio of 5: 100) were deposited together to form a luminescent layer 3 of 20 nm in thickness.

obtained in this way, where the ITO electrode (the anode 2) was provided as a positive electrode and the Al-Li electrode (a cathode 4) was provided as a negative electrode, blue luminescence with a luminescent luminance of 2180 cd/m², a maximum luminance of 7560 cd/m², and a luminescence efficiency of 0.80 lm/W was observed.

<Example 14>

A device was prepared in the same way as that
of Example 3, except that the above exemplified
compound No. [1]-70 and the above exemplified
compound No. [5]-2 (weight ratio of 5 : 100) were
deposited together to form a luminescent layer 3 of
20 nm in thickness.

25 When a voltage of 8 V was applied on the device obtained in this way, where the ITO electrode (the anode 2) was provided as a positive electrode and the

- 66 -

Al-Li electrode (the cathode 4) was provided as a negative electrode, blue luminescence with a luminescent luminance of 2800 cd/m², a maximum luminance of 7950 cd/m², and a luminescence efficiency of 0.85 lm/W was observed.

A device was prepared in the same way as that of Example 3, except that the above exemplified compound No. [1]-109 and the above exemplified compound No. [5]-9 (weight ratio of 5: 100) were deposited together to form a luminescent layer 3 of 20 nm in thickness.

10

25

When a voltage of 8 V was applied on the device obtained in this way, where the ITO electrode (the 15 anode 2) was provided as a positive electrode and the Al-Li electrode (the cathode 4) was provided as a negative electrode, blue luminescence with a luminescent luminance of 4250 cd/m², a maximum luminance of 8230 cd/m², and a luminescence efficiency of 1.08 lm/W was observed.

Example 16>

A device was prepared in the same way as that of Example 3, except that the above exemplified compound No. [1]-86 and the above exemplified compound No. [6]-1 (weight ratio of 5 : 100) were deposited together to form a luminescent layer 3 of 20 nm in thickness.

When a voltage of 9 V was applied on the device obtained in this way, where the ITO electrode (the anode 2) was provided as a positive electrode and the Al-Li electrode (the cathode 4) was provided as a negative electrode, blue luminescence with a luminescent luminance of 1420 cd/m², a maximum luminance of 3870 cd/m², and a luminescence efficiency of 0.48 lm/W was observed. <Example 17>

10 A device was prepared in the same way as that of Example 3, except that the above exemplified compound No. [1]-70 was deposited to form a luminescent layer 3 of 20 nm in thickness.

When a voltage of 8 V was applied on the device obtained in this way, where the ITO electrode (the 15 anode 2) was provided as a positive electrode and the Al-Li electrode (the cathode 4) was provided as a negative electrode, blue luminescence with a luminescent luminance of 720 cd/m², a maximum luminance of 4830 cd/m², and a luminescence 20 efficiency of 0.50 lm/W was observed.

<Examples 18-23>

25

The luminescence spectrums of the devices prepared in Examples 3, 10, 12, 13, 14, and 15 were observed by means of MCPD-7000 and CIE-chromaticity coordinates thereof were measured. The results are shown in Table 10.

Table 10

WO 2004/020388

Example	Example of device	CIE-chromaticity coordinates (x,y)
18	3	0.15, 0.09
19	10	0.15, 0.10
20	12	0.15, 0.10
21	13	0.15, 0.11
22	14	0.16, 0.10
23	15	0.15, 0.11

<Example 24>

When a voltage was applied to the device

5 prepared in Example 15 in an atmosphere of nitrogen for 100 hours while retaining a current density at 7.0 mA/cm², an initial luminance of 510 cd/m² changed to a luminance of 450 cd/m² after 100 hours, indicating small deterioration of luminance.

10 <Comparative Example 1>

A device was prepared in the same way as that of Example 3 except that the following styryl compound was used as a luminescent layer 3.

15

When a voltage of 10 V was applied on the device obtained in this way, where the ITO electrode

(the anode 2) was provided as a positive electrode and the Al-Li electrode (the cathode 4) was provided as a negative electrode, green-tinged bluish white luminescence with a luminescent luminance of 120 cd/m², a maximum luminance of 3800 cd/m², and a luminescence efficiency of 0.17 lm/W was observed. <Comparative Example 2>

A device was prepared in the same way as that of Example 1, except that the above styryl compound and the above exemplified compound No. [4]-1 (weight ratio of 5: 100) were deposited together to form a luminescent layer 3 of 20 nm in thickness.

10

15

20

25

When a voltage of 10 V was applied on the device obtained in this way, where the ITO electrode (the anode 2) was provided as a positive electrode and the Al-Li electrode (the cathode 4) was provided as a negative electrode, green-tinged bluish white luminescence with a luminescent luminance of 125 cd/m², a maximum luminance of 4500 cd/m², and a luminescence efficiency of 0.30 lm/W was observed. <Comparative Example 3>

The luminescence spectrum of the device prepared in Comparative Example 2 was observed by means of MCPD-7000 and CIE-chromaticity coordinates thereof were measured. As a result, (x, y) = (0, 16, 0, 30) was obtained.

As described above with reference to the

- 70 -

embodiments and examples, the organic luminescence device using the monoamino compound represented by the general formula [1] of the present invention obtains, as a single layer or a mixed layer of dopant/host, luminescence with a high luminance at a low applied voltage, and also the color purity and durability thereof are excellent.

Furthermore, the device can be prepared by using a vapor-deposition method, a casting method, or the like, and the device having a large area can be easily prepared at a comparatively low cost.

- 71 -

CLAIMS

 A monoamino compound represented by the following general formula [1]:

5

(wherein X₁ and X₂ represent divalent groups respectively selected from the group consisting of a substituted or unsubstituted alkylene group,
10 aralkylene group, arylene group and heterocyclic group; and an alkylene group, an aralkylene group, an alkenylene group, an amino group, a silyl group, a carbonyl group, an ether group and a thioether group, each of which has a coupling group including a
15 substituted or unsubstituted arylene group or a divalent heterocyclic group, in which X₁ and X₂ may be identical with or different from each other, and also X₁ and X₂ may be directly bonded with each other;

X₃ represents a group selected from the group
20 consisting of a hydrogen atom, a halogen group, and
substituted or unsubstituted alkyl group, aralkyl
group, aryl group, and heterocyclic group, in which
X₃ may be identical with or different from X₁ or X₂;

Y₁ and Y₂ represent groups respectively selected from the group consisting of a substituted or unsubstituted alkyl group, aralkyl group aryl group and heterocyclic group; a substituted or unsubstituted alkylene group, aralkylene group, 5 alkenylene group, amino group, and silyl group, each of which has a coupling group including a substituted or unsubstituted arylene group or a divalent heterocyclic group; and an unsubstituted carbonyl group, ether group, and thioether group, each of 10 which has a coupling group consisting of a substituted or unsubstituted arylene group or a divalent heterocyclic group, in which Y_1 and Y_2 may be identical with or different from each other;

15 Y_1 and Y_2 , or X_1 , Y_1 , and Y_2 may be bonded with each other to form a ring;

20

25

 R_1 to R_8 represent groups respectively selected from the group consisting of a hydrogen atom, a halogen group, and a substituted or unsubstituted alkyl group, aralkyl group, and aryl group, in which R_1 to R_8 may be identical with or different from each other; and

m + n denotes an integer number of 4 to 10 when all of R_1 to R_8 are hydrogen atoms, and X_1 and X_2 are directly bonded with each other, and X_3 is a hydrogen atom, or denotes an integer number of 1 to 10 under the other conditions.)

- 73 -

2. An organic luminescence device comprising at least a pair of electrodes including an anode and a cathode and one or a plurality of layers containing an organic compound sandwiched between the pair of electrodes, wherein at least one of the layers containing the organic compound contains at least one of compounds represented by the following general formula [1]:

5

10 (wherein X_1 and X_2 represent divalent groups respectively selected from the group consisting of a substituted or unsubstituted alkylene group, aralkylene group, arylene group and heterocyclic group; and an alkylene group, an aralkylene group, an alkenylene group, an amino group, a silyl group, a 15 carbonyl group, an ether group and a thioether group, each of which has a coupling group including a substituted or unsubstituted arylene group or a divalent heterocyclic group, in which X_1 and X_2 may be identical with or different from each other, and also 20 X₁ and X₂ may be directly bonded with each other;

X₃ represents a group selected from the group consisting of a hydrogen atom, a halogen group, and

substituted or unsubstituted alkyl group, aralkyl group, aryl group, and heterocyclic group, in which X_3 may be identical with or different from X_1 or X_2 ;

Y₁ and Y₂ represent groups respectively selected from the group consisting of a substituted or 5 unsubstituted alkyl group, aralkyl group, aryl group and heterocyclic group; a substituted or unsubstituted alkylene group, aralkylene group, alkenylene group, amino group, and silyl group, each of which has a coupling group including a substituted 10 or unsubstituted arylene group or a divalent heterocyclic group; and an unsubstituted carbonyl group, ether group, and thioether group, each of which has a coupling group including a substituted or unsubstituted arylene group or a divalent 15 heterocyclic group, in which Y1 and Y2 may be identical with or different from each other;

 Y_1 and Y_2 , or X_1 , Y_1 , and Y_2 may be bonded with each other to form a ring;

20 R₁ to R₈ represent groups respectively selected from the group consisting of a hydrogen atom, a halogen group, and a substituted or unsubstituted alkyl group, aralkyl group, and aryl group, in which R₁ to R₈ may be identical with or different from each other; and

m + n denotes an integer number of 4 to 10 when all of R_1 to R_8 are hydrogen atoms, and X_1 and X_2 are

directly bonded with each other, and X_3 is a hydrogen atom, or denotes an integer number of 1 to 10 under the other conditions.)

3. An organic luminescence device according to Claim 2, wherein the layer containing the compound represented by the general formula [1] contains at least one of the compounds represented by the following general formula [2]:

$$\begin{array}{c|c}
Ar_1 \\
Ar_3
\end{array}$$

$$\begin{array}{c|c}
R_{11} \\
R_{9}
\end{array}$$

$$\begin{array}{c|c}
R_{10}
\end{array}$$

10

15

20

(wherein Ar₁ to Ar₃ represent groups respectively selected from the group consisting of a substituted or unsubstituted aryl group and heterocyclic group, in which Ar₁ to Ar₃ may be identical with or different from each other, or one of them may be a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aralkyl group; and R₉ to R₁₁ represent groups respectively selected from the group consisting of a hydrogen atom, a halogen group, substituted or unsubstituted alkyl group and aralkyl group, a substituted amino group, and a cyano group.)

- 76 -

4. An organic luminescence device according to Claim 2, wherein the layer containing the compound represented by the general formula [1] contains at least one of the compounds represented by the following general formula [3]:

$$\begin{array}{c|c}
Ar_{4} & R_{13} \\
Ar_{6} & R_{12}
\end{array}$$

$$\begin{array}{c|c}
R_{12} & R_{12}
\end{array}$$

5

20

(wherein Ar₄ to Ar₇ represent groups respectively selected from the group consisting of a substituted or unsubstituted aryl group and heterocyclic group,

10 in which Ar₄ to Ar₇ may be identical with or different from each other; and R₁₂ and R₁₃ represent groups selected from the group consisting of a hydrogen atom, a halogen group, substituted or unsubstituted alkyl group and aralkyl group, a substituted amino group,

15 and a cyano group.)

5. An organic luminescence device according to Claim 2, wherein the layer containing the compound represented by the general formula [1] contains at least one of the compounds represented by the following general formula [4]:

$$Ar_{9}$$
 R_{14}
 Ar_{10}
 Ar_{12}
 Ar_{11}

(wherein Ar₈ to Ar₁₂ represent groups respectively selected from the group consisting of a substituted or unsubstituted aryl group and heterocyclic group,
5 in which Ar₈ to Ar₁₂ may be identical with or different from each other; and R₁₄ represents a group selected from the group consisting of a hydrogen atom, a halogen group, substituted or unsubstituted alkyl group, aralkyl group, aryl group and heterocyclic
10 group, a substituted amino group, and a cyano group.)

6. An organic luminescence device according to Claim 2, wherein the layer containing the compound represented by the general formula [1] contains at least one of the compounds represented by the following general formula [5]:

$$Ar_{13}$$
 R_{15}
 R_{16}
 Ar_{14}
 R_{17}
 R_{18}
 R_{18}
 Ar_{18}

(wherein Ar₁₃ to Ar₁₆ represent groups respectively selected from the group consisting of a substituted or unsubstituted aryl group and heterocyclic group, in which Ar₁₃ to Ar₁₆ may be identical with or
5 different from each other, or at most three of Ar₁₃ to Ar₁₆ may be a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aralkyl group; and R₁₅ to R₁₈ represent groups respectively selected from the group
10 consisting of a hydrogen atom, a halogen group, substituted or unsubstituted alkyl group, aralkyl group, aryl group and heterocyclic group, a substituted amino group, and a cyano group.)

7. An organic luminescence device according to Claim 2, wherein the layer containing the compound represented by the general formula [1] contains at least one of the compounds represented by the following general formula [6]:

$$R_{19}$$
 R_{20} R_{22} R_{23} R_{24} R_{24}

20

(wherein R_{19} and R_{20} represent groups respectively selected from the group consisting of a hydrogen atom,

- 79 -

and substituted or unsubstituted alkyl group, aralkyl group, and aryl group, in which the R_{19} groups or the R_{20} groups bonded with different fluorene groups may be identical with or different from each other, and R_{19} and R_{20} bonded with the same fluorene group may be identical with or different from each other; and

R₂₁ to R₂₄ represent groups respectively selected from the group consisting of a hydrogen atom, a halogen group, substituted or unsubstituted alkyl group, aralkyl group, and alkoxy group, a substituted silyl group, and a cyano group; and p is an integer number of 2 to 10.)

10

8. An organic luminescence device according to
15 Claim 2, wherein the layer containing the compound
represented by the general formula [1] is provided as
a luminescent layer.

1/3

2/3

3/3

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/10700

	SSIFICATION OF SUBJECT MATTER				
Int.Cl7 C07C211/61,211/54, C09K11/06, H05B33/14					
According to International Patent Classification (IPC) or to both national classification and IPC					
	DS SEARCHED				
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C07C211/61,211/54, C09K11/06, H05B33/14					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Japanese Utility Model Gazette 1926-1996, Japanese Publication of Unexamined Utility Model Applications 1971-2001, Japanese Registered Utility Model Gazette 1994-2001, Japanese Gazette Containing the Utility Model 1996-2001					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)					
CA(STN), REGISTRY(STN)					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages Relevant	to claim No.		
X Y	KAWAI,M. et al. 'Formation of Intramolecula Electrogenerated Chemilumin THE JOURNAL OF PHYSICAL CHI 1980, Vol. 84, No. 19, p. 2368	ar Exciplexes in a sescence. 2' EMISTRY,	,2,8 3-7		
X Y	JP 2000-273056 A(Idemitsu l Ltd.)2000.10.03, Claims, [0017]-[0023](fami] :	, 2 , 8 3 - 7		
X Y	JP 2-190862 A (CANON KABUSH KAISHA) 1990.07.26, Claims, Compound No.1-23 (fa		,2,8 3-7		
X Y	EP 918259 A2 (CANON KABUSHI) KAISHA) 1999.05.26, [0036] & JP 11-202509 A & US 6225		,2,8 3-7		
Furthe	or documents are listed in the continuation of Box C.	See patent family annex.			
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date. "T" later document published after the international the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive.					
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means			ntion cannot be e document is		
"P" docume	the contract of the contract o				
Date of the	actual completion of the international search	Date of mailing of the international search report 09.12.03			
Name and n	nailing address of the ISA/JP	Authorized officer 4E	3036		
Japan Patent Office		YASUYUKI YAMADA			
3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan		Telephone No. +81-3-3581-1101 Ext. 344:	3		

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/10700

	,,	•
C (Continual	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X Y	JP 4-276760 A(HITACHI KASEI KOGYO KABUSHIKI KAISHA)1992.10.01,Claims(family none)	1,2,8 3-7
X Y	US 5422210 A(Canon Kabushiki Kaisha)1995.06.06,Column 13-62 & JP 5-100464 A & EP 504794 A1	1,2,8 3-7
X Y	JP 11-184108 A(Canon Kabushiki Kaisha)1999.07.09,Claims, [0019]-[0022] (family none)	1,2,8
' X Y	US 6387545 B1(Industrial Technology Research Institute)2002.03.14,Column 2-6, Claims (family none)	1,2,8 3-7
X Y	JP 1-278789 A(AGENCY OF IND SCIENCE & TECHNOL)1989.11.09,Claims (family none)	1,2,8 3-7
Y A	US 5989737 A(Xerox Corporation)1999.11.23, Claims, Column 10 No.(21), Column 11 No.(22) & JP 10-255985 A	3-7 1,2,8
Y A	JP 2001-192651 A(FUJI PHOTO FILM CO., LTD) 2001.07.17, Claims (family none)	3,4,5 1,2,6-8
Y A	WO 97/33323 A1(UNIAX CORPORATION) 1997.09.12, Claims & EP 885461 A1 & JP 2000-506916 A & US 5900327 A	7 1-6,8
Y A	WO 99/40655 A1(AVENTIS RESEARCH & TECHNOLOGIES GMBH & CO. KG) 1999.08.12, Claims & EP 1053578 A1 & JP 2002-503037 A	6 1-5,7,8
Y A	JP 2002-8866 A(Toray Industries, Inc.) 2002.01.11, Claims, p.7(family none)	6 1-5,7,8
Y A	WO 99/40051 A1 (AVENTTIS RESEARCH & TECHNOLOGIES GMBH & CO. KG)1999.08.12, Claims & JP 2002-502889 A & EP 1053216 A1 & US 2003/65190 A1	6 1-5,7,8

Form PCT/ISA/210 (continuation of second sheet) (July 1998)