M444 – Complex Analysis

Pierre-Olivier Parisé

University of Hawai'i at Manoa Chapter 4

Section 4.1: Weierstrass M-Test

Definition 1

Let f and f_n be complex-valued functions defined on a subset $E \subset \mathbb{C}$. We say that $(f_n)_{n\geq 1}$ converges pointwise to f on E if, for any $z\in E$, we have

$$\lim_{n\to\infty}f_n(z)=f(z).$$

Notes:

- (1) We use the notation $f_n \to f$ on E.
- ② So $f_n \to f$ on E if and only if $\forall z \in E$, $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ such that

$$n \ge N \quad \Rightarrow \quad |f_n(z) - f(z)| < \varepsilon.$$

3 Here, the interger N depends on z and ε .

Example. Consider the sequence of functions

$$f_n(z)=z^n \qquad (|z|<1).$$

Here $E := B_1(0)$.

Fix z such that |z| < 1. Then

$$\lim_{n\to\infty} f_n(z) = \lim_{n\to\infty} z^n = 0$$

because |z| < 1.

Hence, $f_n \to g$ on $B_1(0)$, where g(z) = 0 for any $z \in B_1(0)$.

In the previous example, notice that

$$|f_n(z)| = |z|^n \quad \Rightarrow \quad \sup_{|z| < 1} |f_n(z)| = 1.$$

Hence $\lim_{n\to\infty} \sup_{|z|<1} |f_n(z)| \not\to 0$, as $n\to\infty$.

Definition 2

Let f and f_n be complex-valued functions defined on $E \subset \mathbb{C}$. We say that f_n converges uniformly to f on E if

$$\lim_{n\to\infty}\sup_{z\in E}|f_n(z)-f(z)|=0.$$

Notes:

- ① We use the notation $f_n \Rightarrow f$ on E.
- ② So $f_n \rightrightarrows f$ on E if and only if $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ such that

$$n \geq N \quad \Rightarrow \quad |f_n(z) - f(z)| < \varepsilon, \, \forall z \in E.$$

 ${rac{3}{3}}$ Here, the integer N depends only on arepsilon .

Example. Consider

$$f_n(z) = \frac{z^n}{n} \quad |z| \leq 1.$$

Here, $E = \overline{B_1(0)}$.

For any $|z| \leq 1$, we have

$$|f_n(z)|=\frac{|z|^n}{n}\leq \frac{1}{n}.$$

Hence,

$$\lim_{n\to\infty}\max_{|z|\le 1}|f_n(z)|\le \lim_{n\to\infty}\frac{1}{n}=0.$$

Therefore $f_n \Rightarrow 0$ on $\overline{B_1(0)}$.

Definition 3

A series of function $\sum_{n=1}^{\infty} u_n$ converges uniformly to u on $E \subset \mathbb{C}$ if

$$\sum_{k=1}^n u_k \rightrightarrows u \quad \text{ on } E.$$

Notes:

- ① We will abuse notation and write $\sum_{n=1}^{\infty} \exists u$ on E.
- (2) With $s_n(z) = \sum_{k=1}^n u_n(z)$, we have

$$\sum_{n=1}^{\infty} u_n \rightrightarrows u \text{ on } E \iff \lim_{n\to\infty} \sup_{z\in E} |s_n(z) - u(z)| = 0.$$

③ More precisely, $\sum_{n=1}^{\infty} u_n \Rightarrow u$ on E if and only if $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ such that

$$n \ge N \quad \Rightarrow \quad |s_n(z) - u(z)| \le \varepsilon \quad \forall z \in E.$$

Example. Consider $\sum_{n=0}^{\infty} z^n$, for $|z| \leq \frac{1}{2}$. Here, we have $u_n(z) = z^n$.

We already know that, for a fixed z, $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$.

If *n* is fixed, we have, for $|z| \leq 1/2$,

$$s_n(z) = \sum_{k=0}^n z^n = \frac{1-z^{n+1}}{1-z} \quad \Rightarrow \quad \left| s_n(z) - \frac{1}{1-z} \right| = \frac{|z|^{n+1}}{|1-z|} \le (1/2)^n.$$

Therefore

$$\lim_{n \to \infty} \max_{z \in B_{1/2}(0)} |s_n(z) - (1-z)^{-1}| \le \lim_{n \to \infty} (1/2)^n = 0.$$

Hence.

$$\sum_{k=0}^{\infty} z^k \rightrightarrows \frac{1}{1-z} \quad \text{on } E.$$

Theorem 4.1.3

- ① If $f_n \Rightarrow f$ on E and each f_n is continuous on E, then f is continuous on E.
- ② If $\sum_{n=1}^{\infty} u_n \Rightarrow u$ on E and each u_n is continuous on E, then u is continuous on E.

Example. Consider

$$f_n(z) = \begin{cases} n|z| & \text{if } |z| < 1/n \\ 1 & \text{if } 1/n \le |z| \le 1 \end{cases}.$$

Then, we can show that

$$\lim_{n\to\infty} f_n(z) = g(z) = \begin{cases} 1 & \text{if } 0 < |z| \le 1 \\ 0 & \text{if } z = 0 \end{cases}.$$

If $f_n \rightrightarrows g$ on $\overline{B_1(0)}$, then g should be continuous. However, g is not continuous. Therefore, $f_n \not\rightrightarrows g$ on $\overline{B_1(0)}$.

Theorem 4.1.5 and Corollary 4.1.6

Let Ω be a region and γ be a path in Ω .

① If each f_n is continuous on Ω and $f_n \rightrightarrows f$ on γ , then

$$\lim_{n\to\infty}\int_{\gamma}f_n(z)\,dz=\int_{\gamma}f(z)\,dz.$$

② If each u_n is continous on Ω and $\sum_{n=1}^{\infty} u_n \rightrightarrows u$ on γ , then

$$\int_{\gamma} \left(\sum_{n=1}^{\infty} u_n(z) \right) dz = \sum_{n=1}^{\infty} \int_{\gamma} u_n(z) dz.$$

Proof. Let $M_n := \max_{z \in \gamma} |f_n(z) - f(z)|$. Then, by assumption, $M_n \to 0$.

Now, we have

$$\left|\int_{\gamma} f_n(z) dz - \int_{\gamma} f(z) dz\right| \leq \left|\int_{\gamma} (f_n(z) - f(z)) dz\right| \leq \ell(\gamma) M_n \to 0.$$

This shows ①. To get part ②, apply ① to $s_n(z)$.

Theorem

Let u_n be functions defined on $E \subset \mathbb{C}$ and M_n be numbers such that

- 1 $|u_n(z)| \leq M_n$ for all $z \in E$
- ② $\sum_{n=1}^{\infty} M_n < \infty$.

Then $\sum_{n=1}^{\infty} u_n$ converges uniformly and absolutely on E.

Notes:

- Converges absolutely means that $\sum_{n=1}^{\infty} |u_n(z)| < \infty$ for any $z \in E$. In particular, $u(z) := \sum_{n=1}^{\infty} u_n(z)$ exists for every $z \in E$.
- Uniform converges: $\sum_{n=1}^{\infty} u_n \rightrightarrows u$ on E.

Example. Consider, for |z| < 1, $\sum_{n=0}^{\infty} z^n$. Here $u_n(z) = z^n$ with |z| < 1.

1 Assume that $|z| \le r$, for some 0 < r < 1. Then, in this case

$$|u_n(z)|=|z|^n\leq r^n.$$

Since $\sum_{n=0}^{\infty} r^n = \frac{1}{1-r} < \infty$, by the Weierstrass *M*-test

$$\sum_{n=0}^{\infty} z^n \rightrightarrows \frac{1}{1-z} \text{ on } \overline{B_r(0)}.$$

In other words, $\sum_{n=0}^{\infty} z^n$ convergs uniformly on every disks $B_r(0)$.

(2) However, if |z| < 1, then

$$\lim_{z \to 1} \sum_{n=0}^{\infty} z^n = \lim_{z \to 1} \frac{1}{1 - z} = \infty$$

and hence $\sum_{n=0}^{\infty} z^n$ does not converge uniformly on $B_1(0)$.

Theorem 4.1.10

Let f_n be analytic on a region Ω for every n. Assume that $f_n \rightrightarrows f$ on every closed disk containined in Ω . Then

- (1) f is analytic on Ω .
- (2) $f_n^{(k)} \rightrightarrows f^{(k)}$ on every closed disks contained in Ω .

Consequences:

- Since z is included in a closed disk, we deduce that $f_n^{(k)} o f^{(k)}$ on Ω .
- Applying this result on the partial sums of $\sum_{n=1}^{\infty} u_n$ with u_n analytic on Ω , we get

$$\frac{d^k}{dz^k} \sum_{n=1}^{\infty} u_n(z) = \sum_{n=1}^{\infty} \frac{d^k u_n}{dz^k}(z)$$

for every $z \in \Omega$.

Proof. We will only prove (2).

Let $B_r(z_0)$ be a closed disk in Ω and $C_r(z_0) := \partial B_r(z_0)$. Let d > 0 be the minimum distance from any point of $C_r(z_0)$ to $\partial\Omega$. Let R=r+d/2.

By Cauchy's integral formula, for any $w \in B_r(z)$, we have

$$f_n^{(k)}(w) - f^{(k)}(w) = \frac{k!}{2\pi i} \int_{C_R(z_0)} \frac{f_n(z) - f(z)}{z - w} dz.$$

Therefore, for any $w \in B_r(z)$

$$|f_n^{(k)}(w) - f^{(k)}(w)| \le \frac{\ell(C_R(z_0))M_n}{d/2} = \frac{4\pi R}{d}M_n$$

where $M_n := \max_{|z-z_0|=R} |f_n(z) - f(z)| \to 0$.

Hence,

$$\lim_{n\to\infty}\max_{|w-z_0|\leq r}|f_n^{(k)}(w)-f^{(k)}(w)|\leq \frac{4\pi R}{d}\lim_{n\to\infty}M_n=0.$$

meaning $f_n^{(k)} \rightrightarrows f^{(k)}$ on $\overline{B_r(z_0)}$.