Below is a **step-by-step walkthrough** for creating a Karnaugh map (K-map) from a truth table for a specific output (here, Y_0) when you have three inputs (X_2, X_1, X_0) :

1. Label the K-map Axes

- 1. Determine the size of the K-map:
 - With 3 inputs, you'll have $2^3 = 8$ cells.
- 2. Assign one input to the rows (often X_2):
 - The row for $X_2 = 0$ is on top; the row for $X_2 = 1$ is on the bottom.
- 3. Assign the other two inputs to the columns (often (X_1, X_0)):
 - Use **Gray code** order to ensure adjacent columns differ by only one bit. A common sequence is:

Columns: 00, 01, 11, 10

The resulting K-map grid should look roughly like this:

	(X1X0) 00	01	11	10
X2 = 0	?	?	?	?
X2 = 1	?	?	?	?

2. Scan the Truth Table

- 1. Go down each row in the truth table for (X_2, X_1, X_0) .
- 2. Check the value of Y_0 in that row.
 - If $Y_0 = 1$, you will put a 1 in the corresponding K-map cell.
 - If $Y_0 = 0$, you will put a 0.

Mapping each row means:

- Identify which cell of the K-map corresponds to that (X_2, X_1, X_0) combination.
- $\bullet\,$ Fill in 1 or 0 depending on the table's Y_0 value.

3. Fill All Eight Cells

- 1. Repeat for all 8 rows of the truth table (for 3 variables).
- 2. When you're done, you'll have an **8-cell map** with a pattern of 1s and 0s exactly matching the truth table's Y_0 column—but laid out so that cells which differ by only one input bit are adjacent.

4. Group the 1-Cells (Optional Next Step)

- If you're simplifying the Boolean expression for Y_0 , look for groups of adjacent 1-cells (in powers of 2: 1, 2, 4, or 8). Each grouping will let you eliminate variables that change within that group.
- Write down the simplified expression from these groupings.

That's it! By following this procedure—labeling axes, going row by row in the truth table, and filling in the corresponding map location—you end up with a clear visual representation of when Y_0 is 1 or 0. From there, you can apply K-map techniques to simplify the logic.