```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score

data = pd.read_csv('pulsar_stars.csv')

data.head()

Mean of the sintegrated of the of the integrated
```

	Mean of the integrated profile	Standard deviation of the integrated profile	Excess kurtosis of the integrated profile	Skewness of the integrated profile	Mean of the DM- SNR curve	Standard deviation of the DM-SNR curve	Excess kurtosis of the DM-SNR curve	Skew of DM c
0	140.562500	55.683782	-0.234571	-0.699648	3.199833	19.110426	7.975532	74.24
1	102.507812	58.882430	0.465318	-0.515088	1.677258	14.860146	10.576487	127.39
2	103.015625	39.341649	0.323328	1.051164	3.121237	21.744669	7.735822	63.17
3	136.750000	57.178449	-0.068415	-0.636238	3.642977	20.959280	6.896499	53.59
4								•

```
data.shape
     (17898, 9)
col_name = data.columns
print(col name)
    Index([' Mean of the integrated profile',
            ' Standard deviation of the integrated profile',
            ' Excess kurtosis of the integrated profile',
            ' Skewness of the integrated profile', ' Mean of the DM-SNR curve',
            ' Standard deviation of the DM-SNR curve',
' Excess kurtosis of the DM-SNR curve', ' Skewness of the DM-SNR curve',
            'target_class'],
           dtype='object')
data.columns = data.columns.str.strip()
data.columns
    Index(['Mean of the integrated profile',
            'Standard deviation of the integrated profile',
            'Excess kurtosis of the integrated profile',
            'Skewness of the integrated profile', 'Mean of the DM-SNR curve',
            'Standard deviation of the DM-SNR curve',
'Excess kurtosis of the DM-SNR curve', 'Skewness of the DM-SNR curve',
            'target_class'],
           dtype='object')
data.columns = ['IP Mean', 'IP Sd', 'IP Kurtosis', 'IP Skewness',
              'DM-SNR Mean', 'DM-SNR Sd', 'DM-SNR Kurtosis', 'DM-SNR Skewness', 'target_class']
data.columns
    dtype='object')
```

Exploring the target Class

```
data['target_class'].value_counts()
```

```
0 16259
1 1639
Name: target_class, dtype: int64

data['target_class'].value_counts()/np.float(len(data))*100

<ipython-input-70-72c7094f3a90>:1: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations data['target_class'].value_counts()/np.float(len(data))*100
0 90.842552
1 9.157448
Name: target_class, dtype: float64
```

Summary of dataset

```
data.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 17898 entries, 0 to 17897
    Data columns (total 9 columns):
     # Column
                         Non-Null Count Dtype
     0 IP Mean
                         17898 non-null float64
     1 IP Sd
                         17898 non-null float64
         IP Kurtosis
                         17898 non-null float64
     3 IP Skewness
                         17898 non-null float64
         DM-SNR Mean
                         17898 non-null float64
         DM-SNR Sd
                         17898 non-null float64
       DM-SNR Kurtosis 17898 non-null float64
         DM-SNR Skewness 17898 non-null float64
     8 target_class
                         17898 non-null int64
    dtypes: float64(8), int64(1)
    memory usage: 1.2 MB
```

Exploring the missing values

```
data.isnull().sum()

IP Mean 0
IP Sd 0
IP Kurtosis 0
IP Skewness 0
DM-SNR Mean 0
DM-SNR Sd 0
DM-SNR Kurtosis 0
DM-SNR Skewness 1
target_class 0
dtype: int64
```

Data Viaulaization

```
plt.figure(figsize=(24,20))
plt.subplot(4,2,1)
fig = data.boxplot(column='IP Mean')
fig.set_title('')
fig.set_ylabel('IP Mean')

plt.subplot(4,2,2)
fig = data.boxplot(column='IP Sd')
fig.set_title('')
fig.set_ylabel('IP Sd')

plt.subplot(4,2,3)
fig = data.boxplot(column='IP Kurtosis')
fig.set_title('')
fig.set_ylabel('IP Kurtosis')

plt.subplot(4,2,4)
fig = data.boxplot(column='IP Skewness')
```

```
fig.set_title('')
fig.set_ylabel('IP Skewness')
plt.subplot(4,2,5)
fig = data.boxplot(column='DM-SNR Mean')
fig.set_title('')
fig.set_ylabel('DM-SNR Mean')
plt.subplot(4,2,6)
fig = data.boxplot(column='DM-SNR Sd')
fig.set_title('')
fig.set_ylabel('DM-SNR Sd')
plt.subplot(4,2,7)
fig = data.boxplot(column='DM-SNR Kurtosis')
fig.set_title('')
fig.set_ylabel('DM-SNR Kurtosis')
plt.subplot(4,2,8)
fig = data.boxplot(column='DM-SNR Skewness')
fig.set_title('')
fig.set_ylabel('DM-SNR Skewness')
```



```
plt.figure(figsize=(24,20))
plt.subplot(4, 2, 1)
fig = data['IP Mean'].hist(bins=20)
fig.set_xlabel('IP Mean')
fig.set_ylabel('Number of pulsar stars')
plt.subplot(4, 2, 2)
fig = data['IP Sd'].hist(bins=20)
fig.set_xlabel('IP Sd')
fig.set_ylabel('Number of pulsar stars')
plt.subplot(4, 2, 3)
fig = data['IP Kurtosis'].hist(bins=20)
fig.set_xlabel('IP Kurtosis')
fig.set_ylabel('Number of pulsar stars')
plt.subplot(4, 2, 4)
fig = data['IP Skewness'].hist(bins=20)
fig.set_xlabel('IP Skewness')
fig.set_ylabel('Number of pulsar stars')
plt.subplot(4, 2, 5)
fig = data['DM-SNR Mean'].hist(bins=20)
fig.set_xlabel('DM-SNR Mean')
fig.set_ylabel('Number of pulsar stars')
plt.subplot(4, 2, 6)
fig = data['DM-SNR Sd'].hist(bins=20)
fig.set_xlabel('DM-SNR Sd')
fig.set_ylabel('Number of pulsar stars')
plt.subplot(4, 2, 7)
fig = data['DM-SNR Kurtosis'].hist(bins=20)
fig.set_xlabel('DM-SNR Kurtosis')
fig.set_ylabel('Number of pulsar stars')
plt.subplot(4, 2, 8)
fig = data['DM-SNR Skewness'].hist(bins=20)
fig.set xlabel('DM-SNR Skewness')
fig.set_ylabel('Number of pulsar stars')
```


Accuracy of the Model

SVC()

```
# Training Accuracy
y_pred_train=svc.predict(X_train)
print("The accuracy of model in training data: ", accuracy_score(y_train, y_pred_train))
# Testing Accuracy
y_pred=svc.predict(X_test)
print("The accuracy of model with default hyperparameters:", accuracy_score(y_test, y_pred))

The accuracy of model in training data: 0.9713647157424221
The accuracy of model with default hyperparameters: 0.9784916201117319
```

• ×