Processador Dynasty

EDU - 2022007610 MARCUS 2022007001 FILIPE - 2022010099

Descrição do Processador

- Processador RISC;
- Baseado no MIPS;
- Processador de 16bits;

Formatos das Instruções

Instrução do tipo R							
Opcode	rs	rt					
4bits	6bits	6bits					
15-12	11-6	5-0					
Instrução do tipo I							
Opcode	rs	Imediato					
4bits	6bits	6bits					
15-12	11-6	5-0					
Instrução do tipo J							
Opcode	Endereço						
4bits	12bits						
15-12	11-0						

Lista de operações suportadas

Opcode	Sintaxe	Formato	Significado	Exemplo		
0000	ADD	R	Soma	add \$s0, \$s1		
0001	ADDI		Soma imediata	<i>addi</i> \$s0, 1		
0010	SUB	R	Subtração	<i>sub</i> \$s0, \$s1		
0011	SUBI	I	Subtração imediata	<i>sub</i> i \$s0, 3		
0100	LW	_	Load	<i>lw</i> \$s0 ram (00)		
0101	SW		Store	sw \$s0 ram (00)		
0110	ш	_	Load imediato	<i>li</i> \$s0 2		
0111	BEQ	J	Branch Equal	beq endereço		
1000	IF	J	If Equal	<i>lf</i> \$s0 \$s1		
1001	JUMP	J	Jump	<i>j</i> endereço (0000)		

Datapath do Processador

Datapath do tipo R

Datapath do tipo l

Datapath do tipo J

Teste do ADDI, SUB e SUBI

	Name	Name Value at		10.0 ns	20.0 ns 30.0		30.0 ns	40.0 ns 5	60.0 ns 60. ^	
		0 ps	0 ps							
in_	CLOCK	ВО	<u></u>							
*	> ADDRES	B 000000000000011	000000	0000000011	000000000	1000001	X	000000	0000000001	
*	> ALU_RE	B 00000000000011	000000	0000000011	000000000	0000001	000000	00000000010	X	
*	> MUX_2	B 00000000000011	000000	0000000011	000000000	0000001	000000	00000000010	X	
*	> OPCOD	B 0001			0001			0011	OC	
*	> PC_OUT	в 0000000000000000	000000	0000000000	000000000	0000001	000000	00000000010	00000000	
*	> R_A_OUT	в 0000000000000000		(000000000000000		000000	0000000011	00000000	
*	> R_B_OUT	в 000000000000000		(000000000000000			000000	0000000001	
*	> RAM_O	в 000000000000000								
*	> ROM_O	B 000100000000011	000100	0000000011	0001000001000001		00110	00000000001	00100000	
*	> RS_OUT	B 000000	0	00000	0000	01		000000		
*	> RT_OUT	B 000011	0	00011				000001		
					1					

Teste do ADDI, SUB e SUBI

Teste do Fibonacci

Teste do Fibonacci

0.0 ns	130,0 ns	140.0 ns	150,0 ns	160,0 ns	170,0 ns	180,0 ns	190.0 ns	200 _. 0 ns	210.0 ns	220,0 ns	230,0 ns	240.0 ns
1												
000000000		0000000001000000		00000000000010		0000000001010100	X					
000000010		0000000000000001	00	0000000000011								
000000010		000000000000000	V oc	0000000000011								
		0100	_X	0000		1001	\longrightarrow X					
000000110	=	000000000000111	00	00000000001000	\longrightarrow	0000000000001001	X	0000000001010100	\square X	0000000001010101		0000000001010
000000000000000000000000000000000000000		X oc	00000000000010	=								
	X	000000000000010	00	0000000000001	X						-	
000000000	X	0100000001000000	X oc	000000000000000000000000000000000000000	<u> </u>	1001000001010100						
0000		000001		000000								
	000000		_X	000010	X	010100	X					

Limitações e dificuldades

- Falta de documentação online e conteúdo disponível;
- IDE Quartus;
- Simulações e testes usando o waveforms;

Conclusão

Este trabalho apresentou o projeto e implementação do processador de 16 bits denominado de Dynasty, que foi uma rica oportunidade para pôr em prática o que nos foi ensinado na disciplina de AOC, e esclarecer diversos pontos que antes eram difíceis de se entender. "Uma das maiores dificuldades encontradas foi justamente a divisão bits".

OBRIGADO PELA ATENÇÃO!!!