

Agenda

- 9:30 10:45 am Intro to NNs and CNNs (including a PyTorch intro)
- 10:45 11:00 am Break
- 11:00 12:00 am Practical Guidelines for training on HPC (w/ multinode execution)
- 12:00 1:30 pm Lunch
- 1:30 2:15pm: DL Layers and Architectures
- 2:15 3:15pm: DL Transfer Learning
- 3:15 3:30pm: Break
- 3:30 4:30pm: DL Special Connections and Transformers
- 4:30 4:45 pm: Q&A

From Machine Learning, Data Science, to Al

Al/Deep Learning – neural networks that can learn from large datasets of unstructured data (e.g. text and/or images)

Here, we focus on AI b/c of current trends on our systemss

Outline

Part I

Overview of Neural Networks (aka Multilayer Perceptron)
Convolution Neural Networks and Scaling
Exercise, MNIST classification

Part II

Practical Guidelines: Hyperparameters, Workflows, Batchjobs, GPUs

Exercise, Multinode MNIST

Logistic Regression to Neural Network

$$f(x,b,w) = \frac{\exp^{(b+w*x)}}{1+\exp^{(b+wx)}} = \frac{1}{1+exp^{(-(b+wx))}}$$

for parameters: b = 0, $w_1 = 1$

Logistic Regression to Neural Network

$$f(x,b,w) = \frac{\exp^{(b+w*x)}}{1+\exp^{(b+wx)}}$$

Logistic function w/various weights

Example: 1 input into 2 logistic units

Example: 1 input into 2 logistic units with these activations

Example: 1 input into 2 logistic units with these activations

b = 1, w = 1 b = 1, w = 1 c = 1

If you add these 2 units into a final output unit what would the output function look like?

2

-2

Example: 1 input into 2 logistic units with these activations

If you add these 2 units into a final output unit what would the output function look like?

Higher level function combinations

Higher level function combinations

Multiple layer networks can represent any logical or realvalued functions (unbiased, but potential to overfit)

Logistic to Neural Network model

$$f(x,b,w) = \frac{\exp^{(b+w*x)}}{1+\exp^{(b+wx)}}$$

Draw out function as a little graph, 1 input

Logistic to Neural Network model

Draw out function as a little graph, 1 input

Logistic to Neural Network model

$$f(x,b,w) = \frac{\exp^{(b+w*x)}}{1+\exp^{(b+wx)}}$$

"weight"

Draw out function as a little graph, 1 input

logistic function will transform input to output – call it the 'activation' function

Using 2 input units, the graph model would be:

We usually don't draw the bias.

We assume inputs*weights are summed (a dot product)

Using 2 input units, 2 intermediate units, and 1 output:

Using 2 input units, 2 intermediate units, and 1 output:

For X a Px1 vector, we set up a weight matrix W so that:

W*X = incoming activations

More generally, we can add a hidden layer, and have many inputs and outputs

1 Input layer 1 Hidden layer 1 Output

Quick side note: fewer units at each layer creates an 'embedding' of the X input into a lower dimension output

Here, the input vector has 6 values, so it's 6 dimensions

The output vector has 2 dimensions

Input Layer $\in \mathbb{R}^6$

Output Layer $\in \mathbb{R}^2$

Quick side note: fewer units at each layer creates an 'embedding' of the X input into a lower dimension output

Here, the input vector has 6 values, so it's 6 dimensions

The output vector has 2 dimensions.

Input Layer $\in \mathbb{R}^6$

Output Layer $\in \mathbb{R}^2$

Learning the most relevant information usually means learning good embeddings!

Algorithm steps

1. FORWARD PROPAGATE AN ENTIRE BATCH OF INPUTS

Algorithm steps

2. BACKWARD PROPAGATE ERROR FOR WHOLE BATCH USING DERIVATIVE CHAIN RULE:

$$\frac{dE}{dw_{mp}} = \sum_{k}^{K} \frac{dE_k}{d\hat{y_k}} \frac{d\hat{y_k}}{da_k} \frac{da_k}{dh_m} \frac{dh_m}{da_m} \frac{da_m}{dw_{mp}}$$

Algorithm steps and Vanishing Gradients

2. BACKWARD PROPAGATE ERROR FOR WHOLE BATCH USING DERIVATIVE CHAIN RULE:

Note: As you go farther back, the error information gets diluted and the error gradient starts 'vanishing'

$$\frac{dE}{dw_{mp}} = \sum_{k}^{K} \frac{dE_k}{d\hat{y_k}} \frac{d\hat{y_k}}{da_k} \frac{da_k}{dh_m} \frac{dh_m}{da_m} \frac{da_m}{dw_{mp}}$$

Algorithm steps and Vanishing Gradients

2. BACKWARD PROPAGATE ERROR FOR WHOLE BATCH USING DERIVATIVE CHAIN RULE:

Note: As you go farther back, the error information gets diluted and the error gradient starts 'vanishing'

A different activation function helps ...

$$\frac{dE}{dw_{mp}} = \sum_{k}^{K} \frac{dE_k}{d\hat{y_k}} \frac{d\hat{y_k}}{da_k} \frac{da_k}{dh_m} \frac{dh_m}{da_m} \frac{da_m}{dw_{mp}}$$

The rectified linear unit (RELU)

RELU (rectified linear unit)

RELU activation function

It is unscaled (bad!)

But *df/da* is constant (good!)

$$f(a) = \begin{cases} a & a > 0 \\ 0 & a <= 0 \end{cases}$$

where a = XW

Overall, RELU mitigates vanishing gradients

INITIALIZE weights to small value (for example: +/- <0.3)

LOOP until stopping criterion:

INITIALIZE weights to small value (for example: +/- <0.3)

LOOP until stopping criterion:

FORWARD PROPAGATION: calculate all node activations

BACKWARD PROPAGATION: calculate all error derivatives to minimize Loss

INITIALIZE weights to small value (for example: +/- <0.3)

LOOP until stopping criterion:

FORWARD PROPAGATION: calculate all node activations

BACKWARD PROPAGATION: calculate all error derivatives to minimize Loss

UPDATE WEIGHTS:
$$w \leftarrow w - learning_rate * \frac{dL}{dw}$$

INITIALIZE weights to small value (for example: +/- <0.3)

LOOP until stopping criterion:

FORWARD PROPAGATION: calculate all node activations

BACKWARD PROPAGATION: calculate all error derivatives to minimize Loss

UPDATE WEIGHTS: $w \leftarrow w - learning_rate * \frac{dL}{dw}$

STOP: when validation error reaches minimum or after a max number of epochs

The Neural Network Algorithm [and heuristics]

INITIALIZE weights to small value (for example: +/- <0.3)

LOOP until stopping criterion:

[work in batches of input]

FORWARD PROPAGATION: calculate all node activations

BACKWARD PROPAGATION: calculate all error derivatives to *minimize Loss*

UPDATE WEIGHTS: $w \leftarrow w - learning_rate * \frac{dL}{dw}$

[adapt learning rate, use momentum]

STOP: when validation error reaches minimum or after a max number of epochs

[several metrics of loss are possible]

Neural Network main options to choose:

1 Architecture: number of hidden units & layers

2 Optimizer and learning rate

3 Loss function depends on task

Note: more hidden layers, more hidden units => more potential for overfitting

terminology and cheat sheet on output activations (for reference):

Type of Problem	Y outputs	Output Activation Function (this gives a SCORE)=)	Output PREDICTION (what you decide to predict)	Output Loss Function	Evaluative Measure
Regression: map into to K real valued predictions	if $Y \in (-\infty, +\infty)^K$	$\hat{Y} = XW$	\hat{Y} :	Mean Squared Error (MSE)	Mean Squared Error (MSE)
Multivariate output of 0's and 1's	if $\mathbf{Y} \in [0, 1]^K$	$\hat{Y} = \frac{1}{1 + exp^{-(XW)}}$	1 or 0	MSE	MSE
Binary Classification	if $Y \in \{0, 1\}$	$\hat{Y} = \frac{1}{1 + exp^{-(XW)}}$	A probability given by \hat{Y} : $P(y=1 x)$	$\begin{array}{c} {\rm Cross} \\ {\rm Entropy} \\ L = -ylog(\hat{y}) - (1 \end{array}$	Accuracy, ROC $-y)(log(\hat{y}))$
Multiclassification		$exp^{-(XW_k)}$	Max class	Cross Entropy	Accuracy
	if $Y \in \{0, 1\}^K$	$\hat{Y}_k = \frac{exp^{-(XW_k)}}{\sum_k exp^{-(XW_k)}}$		$L = -\sum_{k} y_k log$	$(\hat{y_k})$

Summary:

Pro:

Multilayer Perceptron, and Neural Networks in general, are flexible powerful learners

Hidden layers learn a nonlinear transformation of input

Summary:

Pro:

Multilayer Perceptron, and Neural Networks in general, are flexible powerful learners

Hidden layers learn a nonlinear transformation of input

Con:

Lots of parameters

Hard to interpret

Needs more data

A neural network can discover visual features using 'convolutions'

Next: Image classification of digits

Image features

MNIST - A database of handwritten printed digits

(National Inst. of Standards and Technology)

How to classify digits?

Let's zoom into 5x6 window of pixels near the tip of '7'

Take a 3x3 patch of pixels and apply a 'filter' template – designed to find an edge

	-1	0	+1
X	-1	0	+1
	7	0	+1

1. Multiply 3x3 patch of pixels with 3x3 filter

Let's zoom into 5x6 window of pixels near the tip of '7'

Take a 3x3 patch of pixels and apply a 'filter' template – designed to find an edge

0 0 0 0 0 0 0 0 0 0 0 0 0 3 7 6 6 0 0 9 10 10 10 0 0 3 4 3 4 (our weight parameters)

-1	0	+1
-1	0	+1
-1	0	+1
	-1 -1 -1	(-1 0

1. Multiply 3x3 patch of pixels with 3x3 filter "W"

Let's zoom into 5x6 window of pixels near the tip of '7'

Take a 3x3 patch of pixels and apply a 'filter' template – designed to find an edge

3. Slide filter horizontally to get next output value

3		

After vertical and horizontal sliding the 5x6 patch is now a 3x5 **feature map.**

After vertical and horizontal sliding the 5x6 patch is now a 3x5 **feature map**.

What do the highest values in the feature map represent?

Optional next step:

Use another filter, and take maximum over elements - "max pooling"

Optional next step:

Use another filter, and take maximum over elements - "max pooling"

2x2 filter has max=17

17

Optional next step:

Use another filter, and take maximum over elements - "max pooling"

Slide filter ...

17	17	4	
21	21	4	

After convolution and pooling, the 5x6 patch is transformed into a 2x3 feature map of 'edge gradients'

Slide filter ...

17	17	4
21	21	4

Diego

A convolution of one filter is applied to the entire image across and down.

The entire 28x28 input is **transformed** into a smaller feature map of 'edge gradients'

Pooling is optionally applied

In CNNs the filter values are weight parameters that are learned (feature discovery)

W ₁₁	W ₁₂	W ₁₃
W ₂₁	W ₂₂	W ₂₃
W ₃₁	W ₃₂	W ₃₃

In CNNs the filter values are weight parameters that are learned (feature discovery)

W ₁₁	W ₁₂	W ₁₃
W ₂₁	W ₂₂	W ₂₃
W ₃₁	W ₃₂	W ₃₃

A convolution layer is a set of feature maps, where each map is derived from convolution of 1 filter with input

More hyperparameters:

Size of filter (smaller is more general)

More hyperparameters:

Size of filter (smaller, like 3x3, is more general)

Number of pixels to slide over (1 or 2 is usually fine)

More hyperparameters:

Size of filter (smaller, like 3x3, is more general)

Number of pixels to slide over (1 or 2 is usually fine)

Max pooling or not (usually some pooling layers)

Number of filters (depends on the problem!)

A large CNN example

Make 1 layer, using HxWx3 image (3 for Red, Green, Blue channels)

Make 1 layer, using HxWx3 image (3 for RGB channels)

Make 1 layer, using HxWx3 image (3 for RGB channels)

Make 1 layer, using HxWx3 image (3 for RGB channels)

Make 1 layer, using HxWx3 image (3 for RGB channels)

UC San Diego

Large Scale Versions

Large Convolution Networks – Alexnet, VGG19, ResNet, GoogLeNet, ...

First convolution layer filters are simple features

What Learned Convolutions Look Like

First convolution layer filters are simple features

What Learned Convolutions

Convolution Neural Network Summary

CNNs works because convolution layers have a special architecture and function – it is biased to do certain kind of transformations

Low layers have less filters that represent simple local features for all classes

Higher layers have more filters that cover large regions that represent object class features

What is deep learning?

Deep learning refers to learning complex and varied transformations of the input

Deep learning refers to discovering useful features of the input

Deep learning is a neural network with many layers

Next, notebook demo

Exercise CNN for Digit Classification

- The 'hello world' of CNNs
- It uses MNIST dataset and Pytorch coding
- First: Quick intro to Pytorch and CNN layers coding
- Second: We will login and start a notebook

Add convolution layer, relu activation,
Max pooling layer

Add convolution layer, relu activation,
Max pooling layer

Images are 1x28x28, so input is 1 channel of a 2D image

Output will be given by 'num filters' argument

Output matrix shape will depend on filter size (kernel size) and stride

```
def MyNet(numfilt):
    model=torch.nn.Sequential(
        #Conv: input size 1 channel, output is number of filters, the
        # actual batch of input is implicit
                 https://docs.pytorch.org/docs/stable/generated/torch.n
        torch.nn.Conv2d(in channels=1,out channels=numfilt,
                          kernel size=kernel size2use, stride=1),
        torch.nn.ReLU(),
        torch.nn.MaxPool2d(3,2),
        torch.nn.Flatten(),
        torch.nn.Linear(numfilt*reduced size*reduced size,16), #after m
        torch.nn.ReLU(),
        torch.nn.Linear(16, 10),
        torch.nn.LogSoftmax(dim=1))
    return model
```

Add convolution layer, relu activation,
Max pooling layer

Then flatten into a vector for classification layers

```
def MyNet(numfilt):
    model=torch.nn.Sequential(
        #Conv: input size 1 channel, output is number of filters, the
        # actual batch of input is implicit
                 https://docs.pytorch.org/docs/stable/generated/torch.n
        torch.nn.Conv2d(in channels=1,out channels=numfilt,
                          kernel size=kernel size2use, stride=1),
        torch.nn.ReLU(),
        torch.nn.MaxPool2d(3,2),
        torch.nn.Flatten(),
        torch.nn.Linear(numfilt*reduced size*reduced size,16), #after m
        torch.nn.ReLU(),
        torch.nn.Linear(16, 10),
        torch.nn.LogSoftmax(dim=1))
    return model
```

Add convolution layer, relu activation, Max pooling layer

Then flatten into a vector for classification layers

- Every layer has some input, ouput
- Network layers need input and output size (e.g. channels or hidden units)
- Not every layer/function has trainable parameters like which one of these?

Python code for a functional (non-sequential) neural network

```
class MyNet(torch.nn.Module):
    def __init__(self):
        super(MyNet, self).__init__()
```

Pytorch 'nn' class objects are very flexible

'MyNet' inherits functionality from 'torch.nn' package

Python code for a functional (non-sequential) neural network

```
class MyNet(torch.nn.Module):
    def __init__(self):
        super(MyNet, self).__init__()
        #Conv: input size 1 channel, output is number of filters, the
        # actual batch of input is implicit
        # see: https://docs.pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
        self.conv1 = torch.nn.Conv2d(in_channels=1,out_channels=numfilt,kernel_size)
        self.linear1 = torch.nn.Linear(numfilt*reduced_size*reduced_size,16) #after modeline actions
        self.linear2 = torch.nn.Linear(16, 10)
```

'MyNet' inherits functionality from 'torch.nn' package

Python code for a functional (non-sequential) neural network

```
class MyNet(torch.nn.Module):
   def init (self):
       super(MyNet, self).__init__()
       #Conv: input size 1 channel, output is number of filters, the
       # actual batch of input is implicit
       # see: https://docs.pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
       self.conv1 = torch.nn.Conv2d(in_channels=1,out_channels=numfilt,kernel_size=
       self.linear1 = torch.nn.Linear(numfilt*reduced_size*reduced_size,16) #after ma
       self.linear2 = torch.nn.Linear(16, 10)
   def forward(self, x):
       x = self.conv1(x)
       x = F.relu(x)
       x = F.max pool2d(x, 3, 2)
       # <<<<<<<<<-----
       #Uncomment this to see what the size actually is after max pooling
       #print('MYINFO fwd, after max, x shape:',x.shape)
                                                                                 out the model
       x = torch.flatten(x, 1)
       x = self.linear1(x)
                                                            You can mix layers and torch
       x = F.relu(x)
       x = self.linear2(x)
                                                            functions in flexible ways
       #not sure i need this x = F.relu(x)
       output = F.log softmax(x, dim=1) #log softmax for classfcnt or binary?
       return output
```

Pytorch 'nn' class objects are very flexible

In the initialization you define layer functions

In the forward function you indicate the inputs and lay

Pytorch coding notes:

\$ jupyter-gpu-shared-pylight

In jupyter notebook session open the CIML_MNIST_Intro notebook

Follow instructions in the notebook

- 1. Import statements
- 2. Define parameters (arguments)
- 3. Get data and set up Pytorch dataloader

- 1. Import statements
- 2. Define parameters (arguments)
- 3. Get data and set up Pytorch dataloader

the loader is a Python iterator to help retrieve a batch of data at a time

- Import statements
- 2. Define parameters (arguments)
- 3. Get data and set up Pytorch dataloader
- 4. Define functions to create network and do a forward pass
- 5. Initialize model, move to GPU device (if available)

- 1. Import statements
- 2. Define parameters (arguments)
- 3. Get data and set up Pytorch dataloader
- 4. Define functions to create network and do a forward pass
- 5. Initialize model, move to GPU device (if available)

A gpu node has 4 gpu devices (cards). For single device execution just set to 'current_device'.

```
use_cuda = torch.cuda.is_available()
if use_cuda:
    num_gpu = torch.cuda.device_count()
    print('INFO, cuda, num gpu:',num_gpu)
    device = torch.cuda.current_device()
```

- 1. Import statements
- 2. Define parameters (arguments)
- 3. Get data and set up Pytorch dataloader
- 4. Define functions to create network and do a forward pass
- 5. Initialize model, move to GPU device (if available)

A gpu node has 4 gpu devices (cards). For single device execution just set to 'current_device'.

We also move model and data to device before training

```
use_cuda = torch.cuda.is_available()
if use_cuda:
    num_gpu = torch.cuda.device_count()
    print('INFO, cuda, num gpu:',num_gpu)
    device = torch.cuda.current_device()
```

```
mymodel = MyNet().to(device)
```

- 1. Import statements
- 2. Define parameters (arguments)
- 3. Get data and set up Pytorch dataloader
- 4. Define functions to create network and do a forward pass
- 5. Initialize model, move to GPU device (if available)
- 6. Run training loops of forward pass, get loss, run loss.backward (Pytorch keeps track of gradients)
- 7. Display results

Exercise notes: 3x3 first convolution layer filter and activation

9x9 first convolution layer filter and activation

End

transform=transforms.Compose([

transforms.ToTensor(), #]) #also transforms image pixels to 0,1 range from 0,255

On a Gaudi node, all devices are known as Nvidia-smi