jryzkns

1 Axiomatic Approach to \mathbb{N}

Definition: \mathbb{N} is a set with 3 axioms (sometimes referred to as the "Peano Axioms"):

- 1. $1 \in \mathbb{N}$
- 2. For every $a \in \mathbb{N}$, there is an element called the *successor* of a, written as $succ(a) = a + 1 \in \mathbb{N}$
- 3. Every element $a \in \mathbb{N}$ arises in this manner:

$$\mathbb{N} = \{succ^k(1) \mid k \ge 0\}$$

2 Mathematical Induction

Principle of Mathematical Induction:

Suppose $X \subseteq \mathbb{N}$ and:

- 1. $1 \in X$
- $2. \ a \in X \Rightarrow a+1 \in X$

Then $X = \mathbb{N}$.

This is taken as an axiom and cannot be proven from the 3 axioms presented in section 1.

Strong Induction:

Suppose $X \subseteq \mathbb{N}$ satusfies the properties

- 1. $1 \in X$
- 2. $\forall i \in [1, n] \ i \in X \Rightarrow n + 1 \in X$

This variant of induction is logically equivalent to the simple form of induction, but in a proof it may be desirable to refer to more than 1 case that is taken to be true, in which case a strong induction is preferred.

The Well-Ordering Principle (WP):

Every non-empty subset $Y\subseteq \mathbb{N}$ has a minimal element. We can use WP to prove the Principle of Induction: Suppose $X\subseteq \mathbb{N}$ has the properties $1\in X$ and $k\in X\Rightarrow k+1\in X$, WTS $X\in \mathbb{N}$. Suppose $Y=\{n\in \mathbb{N}\mid n\notin X\}$, then $X=\mathbb{N}\Leftrightarrow Y=\varnothing$

We proceed to show that $Y=\varnothing$ by contradiction, assuming $Y\neq\varnothing$. By WP, Y has a minimum element $n^*\in Y$. As $1\notin Y$ (because $1\in X$), $n^*>1$ so $n^*-1\in\mathbb{N}$ and $n^*-1\notin Y$ because n^* is the minimal element of Y. Therfore $n^*-1\in X$, but then $succ(n^*-1)=n^*-1+1=n^*\in X$ by the inductive hypothesis. As $n^*\in Y$, we have come to a contradiction, and therefore $Y=\varnothing$ and $X=\mathbb{N}$.

Note: WP is false for other sets of numbers. For example, there is no minimal element in \mathbb{R}^+ as $\forall x \in \mathbb{R}^+$ $\frac{1}{2}x < x$.

3 Operations on \mathbb{N}, \mathbb{Z}

Multiplication on \mathbb{N} :

Inductively defined with $1 \cdot a := a$ as the base case. If $n \cdot a$ is defined, then $(n+1) \cdot a := n \cdot a + a$.

The Peano Axioms imply the following properties:

- Commutativity: ab = ba
- Associativity: a(bc) = (ab)c
- Distribution over Addition: a(b+c) = ab + ac

Defining \mathbb{Z} from \mathbb{N}

Suppose we want to solve an equation like x+5=2 in \mathbb{N} , there are no solutions, because $x=2-5\notin\mathbb{N}$. Therefore, we need to invent the notion of negative numbers.

To do this, we can say that \mathbb{Z} is the set $\mathbb{N} \times \mathbb{N} = \{(a,b) \mid a,b \in \mathbb{N}\}$ with an equivalence relation (a,b) = (a+c,b+c) for any $a,b,c \in \mathbb{N}$. The ordered tuple (a,b) represents a-b. We can see that (a+c)-(b+c)=a-b. More concretely, consider (5,0)=(6,1)=(500,495) and 5-0=6-1=500-495. A negative number -a could then be represented as (0,a).

Induction in \mathbb{Z}

WP does not apply to \mathbb{Z} , so in practice we either treat +ive and -ive numbers separately, or we go by the absolute value of the numbers.

4 The Division Theorem in \mathbb{Z}

Theorem:

Let $a \in \mathbb{Z}$ and $b \in \mathbb{N}$. Then there exists unique $q \in \mathbb{Z}, r \in (0, b)$ such that a = qb + r.

Proof: We proceed in two steps, showing existence then uniqueness.

Existence: We have $a \in \mathbb{Z}, b \in \mathbb{N}$, we define

$$X = \{ n \in \mathbb{N} \cup \{0\} \mid n = a - qb \}$$

For some integer q. X is nonempty as $a-qb \geq 0$ by choice of q. If a > 0, we pick q = 0. If $a \leq 0$, we pick q = a. By WP, X has a minimal element that we will call r; r = a - qb for some $q \in \mathbb{Z}$. Since $r \in \mathbb{N} \cup \{0\}$, $r \geq 0$. r also satisfies r < b. If $r \geq b$, then $r - b \in X$ as r - b = (a - qb) - b = a - (q + 1)b. This contradicts minimality of r. Rearranging r = a - qb we get a = qb + r. Uniqueness: Suppose we have (q_1, r_1) and (q_2, r_2) both satisfying the theorem, WTS $q_1 = q_2$ and $r_1 = r_2$.

We have $a = q_1b + r_1 = q_2b + r_2$ with $r_1, r_2 \in (0, b)$. If we collect the terms with b on one side, we have $(q_1 - q_2)b = r_2 - r_1$. So, $r_2 - r_1$ is a multiple of b. Given the constraint $r_1, r_2 \in (0, b)$, we can see that $r_2 - r_1 \in [-(b-1), (b-1)]$. Therefore it is only possible that $r_2 - r_1 = 0$ is a multiple a multiple of b. Therefore $r_2 = r_1$ and $(q_1 - q_2)b = 0 \Rightarrow q_1 = q_2$.

4.1 What if b < 0?

 $a = qb + r \Leftrightarrow a = (-q)(-b) + r$. The theorem still works, but $0 \ge r \ge |b|$ needs to be guaranteed.

5 Divisibility in \mathbb{Z}

Definition: Let $d, a \in \mathbb{Z}$, we say that d divides a, written as d|a, if a = qd for some $q \in \mathbb{Z}$.

Equivalently: d is a divisor of a, a is a multiple of d, or a is divisible by d.

Some Facts:

- $\forall d \in \mathbb{Z} \ d|0 \text{ but } 0 \nmid a \text{ unless } a = 0.$
- If d divides $a \neq 0$ then $|d| \leq |a|$. In particular, the set of divisors of a non-zero integer is finite.
- $d|a \Leftrightarrow |d| |a|$

6 GCD in \mathbb{Z}

Definition: Let $a, b \in \mathbb{Z}$, not both 0. The *greatest common divisor* of a and b, gcd(a, b) is the greatest $d \in \mathbb{Z}$ such that d|a and d|b.

Lemmas:

- $(d|a \wedge d|b) \rightarrow d|(a-b)$
- $(d|(a-b) \wedge d|b) \rightarrow d|a$

Note that these lemmas mean that if d is a common divisor of (a, b) then it is equivalent to d is a common divisor of (b, a - b); gcd(a, b) = gcd(b, a - b).

7 Bezout's Identity in \mathbb{Z}

Theorem:

Let $g = \gcd(a, b)$. Then g = ax + by for some $x, y \in \mathbb{Z}$. **Proof**: Suppose we have two sets:

$$D = \{ d \in \mathbb{Z} \mid d|a \wedge d|b \}$$
$$I = \{ ax + by \mid x, y \in \mathbb{Z} \}$$

D is the set of all common divisors between a, b and I is the set of all integer combinations of a, b.

From this we make claim (1): If $d \in D$ and $n \in I$, then d|n. In particular, if $n \neq 0$, $|d| \leq |n|$.

Since $d \in D$, we have $a = q_1d$ and $b = q_2d$ for some $q_1, q_2 \in \mathbb{Z}$. Similarly, since $n \in I$, we have n = ax + by

for some $x, y \in \mathbb{Z}$. We can see that $n = ax + by = q_1 dx + q_2 dy = d(q_1 x + q_2 y) \Rightarrow d|n$.

Suppose now we look at $I \cap \mathbb{N}$, the integer multiples of a, b that are natural numbers, we let $n^* = \min(I \cap \mathbb{N}) = ax^* + by^*$.

We proceed to make claim (2) that $n^*|a$ and $n^*|a$ (i.e. $n^* \in D$).

Suppose $n^* \nmid a$, we divide a by n^* to get $a = qn^* + r$, $r \in (0, n^*)$. By definition of n^* , we see that

$$r = a - qn^*$$
= $a - q(ax^* + by^*)$
= $a - qax^* + qby^*$
= $a(1 - qx^*) + b(qy^*)$

This means that $n^* \in I$ and that contradicts the minimality of n^* as $r \in (0, n^*)$.

Finally, we make our last claim (3): $n^* = \max(D) = \gcd(a,b)$. By claim (2), n^* is a common divisor of a,b. If $d \in D$ is any other common divisor, then $d \leq n^*$ by claim (1). We can see that $d \leq |d| \leq |n^*| = n^*$.

Therefore, we have two interpretations of gcd(a, b):

- gcd(a, b) = max(D)maximal element in set of common divisors
- $gcd(a, b) = min(I \cap \mathbb{N})$ smallest positive integer combination of a, b.

8 Euclidean Algorithm

Theorem:

If a = qb + r, then gcd(a, b) = gcd(b, r).

Proof

It is given that gcd(a, b) = gcd(a - b, b). As r = a - qb, we can consider applying the a - b operation q times: gcd(a, b) = gcd(b, a - qb) = gcd(b, r).

Algorithm

Given: (a, b) with a > b > 0 and repeatedly apply division theorem on (a, b). After each division, we replace a with b and b with the remainder of the division:

$$(a,b) \quad a = q_1b + r_1$$

$$(b,r_1) \quad b = q_2r_1 + r_2$$

$$(r_1,r_2) \quad r_1 = q_3r_2 + r_3$$

$$\vdots \quad \vdots$$

$$(r_{k-2},r_{k-1}) \quad r_{k-2} = q_kr_{k-1} + r_k$$

$$(r_{k-1},r_k) \quad r_{k-1} = q_{k+1}r_k + 0$$

$$(r_k,0)$$

The algorithm stops when we reach a point where the second value in the tuple is 0, in which case $gcd(a,b) = r_k$. This algorithm is guaranteed to terminate as each of the r_i up to terminating r_k are strictly decreasing natural numbers. By WP there is a minimal element to which this procedure will terminate on.