РАЗЛОЖЕНИЕ НА ПРОСТЫЕ МНОЖИТЕЛИ				
	#20 из видеокурса #20 из видеокурса #104 из видеокурса			
1105 5	1105 = 5.13.17	1106 2	100 2 100 = 2.2.5.5 50 2 25 5 5 5 5 5 5 5	

ПРОСТЫЕ И СОСТАВНЫЕ ЧИСЛА

Простые числа – это целые положительные числа, которые делятся только на себя и на единицу (2; 3; 5; 7; 11; ...)

Составные числа – это целые положительные числа, у которых существует ещё хотя бы один делитель, кроме себя и единицы (4; 6; 8; 9; ...)

- 1 это не простое и не составное число
- 2 это единственное чётное простое число (все остальные чётные являются составными)

ВЗАИМНО ПРОСТЫЕ ЧИСЛА

Взаимно простые числа – это числа, у которых нет общих делителей, кроме единицы (11 и 12; 15 и 8; 100 и 99; ...)

НОД

НОД (Наибольший Общий Делитель) – это наибольшее число, на которое данные числа делятся без остатка

НОД (16; 30; 12) = 2

НОД (21; 15; 48) = 3

HOK

НОК (Наименьшее Общее Кратное) – это наименьшее число, которое делится на каждое из данных натуральных чисел

HOK(2;3) = 6

HOK (75; 60) = 300

ДЕЛИТЕЛЬ И КРАТНОЕ

Делитель – на него делится число

Кратное – оно делится на число

1; 2; 5; 10; 25; 50 – это делители числа 50

50; 100; 150; 200; ... – это кратные 50 числа

ВИДЫ ЧИСЕЛ

N (натуральные числа) – это положительные целые (1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; ...)

Z (целые числа) – это числа из множества (0; 1; -1; 2; -2; ...)

Q (рациональные числа) – это числа вида $\frac{m}{n}$, где m — целое число, а n — натуральное $(\frac{2}{7}; 1; 5\frac{2}{5}; 6,7; ...)$

R (действительные числа) – это объединение рациональных и иррациональных чисел

Ø – это пустое множество или «нет решений»

ЧЁТНЫЕ И НЕЧЁТНЫЕ ЧИСЛА

Чётные числа – это числа, которые делятся на 2 (0; 2; 4; 6; ...)

Нечётные числа – это числа, которые не делятся на 2 (1; 3; 5; 7; ...)

СРЕДНЕЕ АРИФМЕТИЧЕСКОЕ

Среднее арифметическое = Сумма чисел Количество чисел

АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ

Арифметическая прогрессия – это числовая последовательность, каждый член которой, начиная со второго равен предыдущему, сложенному с одним и тем же числом (например, 2; 5; 8; 11; 14; ...)

 a_1 — это первый член прогрессии

 a_n — это n —ый член прогрессии

 \mathcal{S}_n — это сумма первых n членов прогрессии

d- это разность прогрессии (то самое число, которое всё время прибавляется)

$$a_n = a_1 + d \cdot (n-1)$$

$$S_n = \frac{a_1 + a_n}{2} \cdot n$$

#2 из видеокурса	#2 из видеокурса	#3 из видеокурса
Чему равно 3+13+23+33+43+53+63+73?	Чему равно 2+4+6++52+54?	Чему равна сумма 100 первых натуральных чисел?
$S = \frac{3+73}{2} \cdot 8 = 304$	$S = \frac{2+54}{2} \cdot 27 = 756$	$S = \frac{1+100}{2} \cdot 100 = 5050$

ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ

Геометрическая прогрессия – это числовая последовательность, первый член которой отличен от нуля и каждый член, начиная со второго равен предыдущему, умноженному на одно и то же не равное нулю число (например, 2; 6; 18; 54; ...)

 b_1 — это первый член прогрессии

 b_n — это n —ый член прогрессии

q- это знаменатель прогрессии (то самое число, на которое всё время умножается)

ДЕСЯТИЧНАЯ ЗАПИСЬ ЧИСЛА

Цесятичная запись числа – это сумма степеней десяток с коэффициентами

десятичная запись числа – это сумма степеней десяток с коэффициентами				
#13 из видеокурса	#17 из видеокурса	#18 из видеокурса		
числа и суммы его цифр быть равным 82? $\frac{a \cdot 100 + b \cdot 10 + c}{a + b + c} = 82$	С трёхзначным числом производят следующую операцию: вычитают из него сумму его цифр, а затем получившуюся разность делят на 3. Могло ли в результате такой операции получиться число 300?	С трёхзначным числом производят следующую операцию: к нему прибавляют цифру десятков, умноженную на 10, а затем к получившейся сумме прибавляют 3. Могло ли в результате такой операции получиться число 224?		
	$\frac{a \cdot 100 + b \cdot 10 + c - a - b - c}{3} = 300$	$a \cdot 100 + b \cdot 10 + c + b \cdot 10 + 3 = 224$		

ПРИЗНАКИ ДЕЛИМОСТИ					
Признак делимости на 2	При	ізнак делимости на 3	Признак делимости н	ıa 4	Признак делимости на 5
Число делится на 2, если его последняя цифра чётная (0 или 2, или 4, или 6, или 8)	Число делится на 3, если его сумма цифр также делится на 3		Число делится на 4, если две его и цифры нули или составляют числ делится на 4	* *	Число делится на 5, если его последняя цифра 0 или 5 32557245 делится на 5, т.к. последняя цифра 5
1268 делится на 2, т.к. последняя цифра 8 является чётной	201432 делится на 3, т.к. 2+0+1+4+3+2=12 также делится на 3		18394735980274372 делится на 4, две цифры составляют число 72, на 4		
Признак делимости на 8	При	ізнак делимости на 9	Признак делимости на 10		Признак делимости на 11
Число делится на 8, если три его последние цифры нули или составляют число, которое делится на 8 18394735980274160 делится на 8, т.к. последние три цифры составляют число 160, которое делится на 8	Число делится на 9, если его сумма цифр также делится на 9 261432 делится на 9, т.к. 2+6+1+4+3+2=18 также		Число делится на 10, если его пос 32557240 делится на 10, т.к. после		Число делится на 11, если сумма цифр (стоящих на чётных местах) равна сумме цифр (стоящих на нечётных местах), либо разность этих сумм делится на 11 1232 делится на 11, т.к. 1+3=2+2 1925 делится на 11, т.к. (9+5)-(1+2)=11
#1 из видеокурса		#7 из ви	деокурса		#11 из видеокурса
		Делится ли число 9167169 на 11? 9167169 делится на 11, т.к. (9+6+		Делится ли числ 30240 не делитс	ю 30240 на 11? я на 11, т.к. (3+2+0)-(0+4)=1

СЛОЖЕНИЕ ЧИСЛОВЫХ НЕРАВЕНСТВ		
Если	Если	
a < b	a > b	
c < d	c > d	
то	то	
a+c < b+d	a+c>b+d	
#60 из видеокурса	#60 из видеокурса	
$a_1 \ge 1$	$a_6 - a_5 \ge 1$	
$a_1 \ge 1$ $a_2 \ge 2$	$a_6 - a_4 \ge 2$	
$a_3 \ge 3$ $a_4 \ge 4$	$a_6 - a_3 \ge 3$ $a_6 - a_2 \ge 4$	
$a_4 \ge 4$	$a_6 - a_2 \ge 4$	
$a_5 \ge 5$	$a_6 - a_1 \ge 5$	
$a_1 + a_2 + a_3 + a_4 + a_5 \ge 1 + 2 + 3 + 4 + 5$	$5a_6 - a_1 - a_2 - a_3 - a_4 - a_5 \ge 1 + 2 + 3 + 4 + 5$	
$a_1 + a_2 + a_3 + a_4 + a_5 \ge 15$	$5a_6 - a_1 - a_2 - a_3 - a_4 - a_5 \ge 15$	

Значит число 134568 делится на 72

УРАВНЕНИЕ В ЦЕЛЫХ ЧИСЛАХ

Решить уравнение в целых числах – значит подобрать такие целые x и y, которые бы дали верное равенство

#12 из видеокурса	#13 из видеокурса	#64 из видеокурса
Найдите наименьшее возможное N $ 3N = 5a $	2a=8b+9c, где a , b и $c-$ цифры трёхзначного числа	14y = 3x
$\begin{cases} 5N = 7b \\ a = \frac{3N}{5} \\ b = \frac{5N}{7} \\ => N \text{ должно быть кратно 5 и 7 одновременно} \\ => N \ge 35 \end{cases}$	a = 4 $b = 1$ $c = 0$	При $x=14$ $y=3$ Мы получим верное равенство, есть и другие решения в целых числах

СВОЙСТВА ДЕЛИМОСТИ

Если каждое слагаемое делится на число, то сумма должна делиться на это число

com randoc charactrice destrict the meno, to cynima destriber the site meno			
#8 из видеокурса	#17 из видеокурса	#18 из видеокурса	
	a и $b-$ цифры. Чему равны a и b , если $33a+3b=151?Левая часть уравнения кратна 3, а правая нет, значит равенство$	a и $b-$ цифры. Чему равны a и b , если $100a+20b=310$? Левая часть уравнения кратна 20, а правая нет, значит равенство	
_ ⁻	невозможно	невозможно	
	Можно доказать и так:	Можно доказать и так:	
Можно доказать и так:	33a + 3b = 151	100a + 20b = 310	
$2a_1 + 4d = 99$	$11a + b = \frac{151}{3}$	5a + b = 15,5	
$a_1 + 2d = 49,5$	3	НО сумма целых чисел не может быть дробным числом	
НО сумма целых чисел не может быть дробным числом	НО сумма целых чисел не может быть дробным числом		

КАК МИНИМИЗИРОВАТЬ ИЛИ МАКСИМИЗИРОВАТЬ ВЫРАЖЕНИЯ				
#8 из видеокурса	#59 из видеокурса	#60 из видеокурса		
	(a_6+a_7) Учитывая, что $(a_6+a_7)\leq 27$ Получаем $S\geq 168-27$ $S\geq 141$	Найдите наибольшее возможное $S-B$ $S-B=\frac{120-12B}{11}$ $S-B$ будет наибольшим при наименьшем возможном B Учитывая, что $B\geq 8$ Получаем $S-B\leq \frac{120-12\cdot 8}{11}$ $S-B\leq \frac{24}{11}$		

минимальная сумма			
#2 из видеокурса	#3 из видеокурса	#6 из видеокурса	
доске быть 8 чисел, заканчивающихся на три и 27 чётных чисел?	На доске написано 100 различных натуральных чисел, сумма которых равна 5120. Может ли оказаться среди них число 230?	На доске написано 5 различных натуральных чисел, которые делятся на 3 и оканчиваются на 4. Может ли их сумма составлять 390?	
Сумма восьми чисел, $\geq \frac{3+73}{2} \cdot 8$ Сумма восьми чисел, ≥ 304	Сумма 230 $\geq 230 + \frac{1+99}{2} \cdot 99$ и 99 наим. чисел ≥ 5180 и 99 наим. чисел ≥ 5180	$S \ge 24 + 54 + 84 + 114 + 144$ $S \ge 420$	
Сумма $27-$ ми чётных $\geq \frac{2+54}{2}\cdot 27$ Сумма восьми чисел, ≥ 756 зак. на три	=> Не может	=> Не может	
Сумма всех 35 чисел ≥ 304 + 756 Сумма всех 35 чисел ≥ 1060			
=> Может			

ВЫДЕЛЕНИЕ ЦЕЛОЙ ЧАСТИ ДЛЯ ОЦЕНКИ ВЫРАЖЕНИЯ			
#13 из видеокурса	#15 из видеокурса	#18 из видеокурса	
Найдите наибольшее возможное целое k $\frac{100a + 10b + c}{a + b + c} = k$	7+b+c	Найдите наибольшее возможное k $\frac{100a + 10b + c + 10b + 3}{100a + 10b + c} = k$	
$\dfrac{a+b+c}{a+b+c} + \dfrac{99a+9b}{a+b+c} = k$ $1+\dfrac{99a+9b}{a+b+c} = k$ Мы ищем наибольшее значение левой части уравнения, поэтому минимизируем знаменатель. Пусть $c=0$ $1+\dfrac{99a+9b}{a+b} \geq k$ $1+\dfrac{9a+9b}{a+b} + \dfrac{90a}{a+b} \geq k$	$1 + \frac{693 + 9b}{7 + b + c} = k$ Попробуем выделить не 1, а не 10 $\frac{70 + 10b + 10c}{7 + b + c} + \frac{630 - 9c}{7 + b + c} = k$ $10 + \frac{630 - 9c}{7 + b + c} = k$ Если увеличивать b или c , то k уменьшается, поэтому для каждого	$\frac{100a+10b+c}{100a+10b+c} + \frac{10b+3}{100a+10b+c} = k$ $1 + \frac{10b+3}{100a+10b+c} = k$ Для максимизации k надо минимизировать c и a Учитывая, что $1 \le a \le 9$ и $0 \le c \le 9$ $k \le 1 + \frac{10b+3}{10b+100}$ $k \le 1 + \frac{10b+100}{10b+100} - \frac{97}{10b+100}$ $k \le 2 - \frac{97}{10b+100}$	
b и c не могут быть нулями одновременно, поэтому пусть $b=1$ $10+\dfrac{90a}{a+1}\geq k$ Теперь левая часть принимает наибольшее значение при $a=9$ $k\leq 91$	Если $b+c=1$, то целого k не будет Если $b+c=2$, то $k=80$ — наибольшее при $b=2$ и $c=0$ $k<80$	Для максимизации k надо минимизировать дробь, а для этого надо максимизировать b Учитывая, что $0 \le b \le 9$ $k \le 2 - \frac{97}{190}$ $k \le \frac{283}{190}$	

Сумма цифр числа имеет такой же остаток при делении на 3, как и само число Сумма цифр числа имеет такой же остаток при делении на 9, как и само число

351	3 [°]	
3_	11	
_5		
- 3 2	_ 00	ro TOK
^ -		

#5 из видеокурса	#77 из видеокурса
На доске написано несколько различных натуральных чисел, в записи которых могут быть только цифры 1 и 6. Какое наименьшее количество чисел может быть на доске, если их сумма равна 1021?	На доске написаны три различных натуральных числа. Второе число равно сумме цифр первого, а третье равно сумме цифр второго. Может ли сумма этих чисел быть равна 2021?
Все слагаемые, которые можно использовать, при делении на 5 дают остаток 1	Сумма цифр числа имеет такой же остаток при делении на 3, как и само число
1021 при делении на 5 тоже даёт остаток 1	=> все три числа на доске имеют одинаковый остаток при делении на 3, т.е. 0 0 0 или
1 слагаемое использоваться нельзя, т.к. 1021 не подходит	1 1 1 или
2 слагаемых дадут сумму, которая при делении на 5 даёт остаток 2	222
3 слагаемых дадут сумму, которая при делении на 5 даёт остаток 3	
4 слагаемых дадут сумму, которая при делении на 5 даёт остаток 4	=> итоговая сумма точно кратна 3, т.е. не может быть 2021
5 слагаемых дадут сумму, которая при делении на 5 даёт остаток 0	
6 слагаемых дадут сумму, которая при делении на 5 даёт остаток 1	
$=>$ число слагаемых ≥ 6	