Time Series Analysis - Teaching Session 01

Maximilian Pfundstein (maxpf364) 2019-09-12

Contents

1	\mathbf{Ass}	ignme	nt 12	1
	1.1	Mean	and Covariance Function	2
		1.1.1	Mean	2
		1.1.2	Covariance Function	2
	1.2	Lag or	nly Dependency and Stationarity of y_t	3
		1.2.1	Lag only Dependency	3
		1.2.2	Stationarity of y_t	3
	1.3	Possib	oility of a Specific Time Series	3
2	Ass	ignme	nt 18	4
	2.1	c) Sol	lution	4
		2.1.1		4
		2.1.2		5
		2.1.3		5
	2.2	d) So		5
		2.2.1	Roots of AR and MA Polynomials	5
		2.2.2	Finding p and q	6
		2.2.3	Causality and Invertibility	6
	2.3	e) So l	lution	6
	_	2.3.1	Roots of AR and MA Polynomials	6
		2.3.2	Finding p and q	7
		2.3.3	Causality and Invertibility	7
	2.4			8
		2.4.1		8
		2.4.2	v	8
		2.4.3	Causality and Invertibility	

1 Assignment 12

Exercise: Let x_t be a zero-mean, unit-variance stationary process with autocorrelation function ρ_h . Suppose that μ_t is a nonconstant function and that σ_t is a positive-valued nonconstant function. The observed series is formed as $y_t = \mu_t + \sigma_t x_t$

- a) Find the mean and covariance function for the y_t process.
- b) Show that the autocorrelation function for the y_t process depends only on the time lag. Is the y_t process stationary?
- c) Is it possible to have a time series with a constant mean and with $corr(y_t, y_{t+h})$ free of t but with y_t not stationary?

1.1 Mean and Covariance Function

1.1.1 Mean

$$E[y_t] = E[\mu_t] + E[\sigma_t x_t] = E[\mu_t] + E[\sigma_t] \frac{E[x_t]}{E[x_t]}$$

As $E[x_t]$ is 0, we obtain

$$=E[\mu_t]=\mu_t$$

As μ_t is a non-constant function by definition.

1.1.2 Covariance Function

$$\gamma(s,t) = \cos(y_s, y_t) = E[(y_s - E[y_s])(y_t - E[y_t])]$$

We substitude $y_s = \mu_t + \sigma_t x_t$ (by definition) and we already know that $E[x_t] = \mu_t$.

$$= E[\mu_s + \sigma_s x_s - \mu_s)(\mu_t + \sigma_t x_t - \mu_t)] = E[\sigma_s x_s \sigma_t x_t]$$

As σ is a function by definition, there is no randomness and we can put it out of the expectation.

$$=\sigma_s\sigma_t E[x_sx_t]$$

We know that $E[x_t] = 0$, so we can easily add it to get a known shape.

$$= \sigma_s \sigma_t E[(x_s - E[x_s])(x_t - E[x_t])]$$

The known shape is the definition of the covariance, so we obtain the following.

$$= \sigma_s \sigma_t \text{cov}(x_s, x_t) = \sigma_s \sigma_t \gamma(x_s, x_t)$$

The ACF is defined by

$$\rho(s,t) = \frac{\gamma(x_s, x_t)}{\sqrt{\gamma(x_s, x_s)\gamma(x_t, x_t)}}$$

Solving for $\gamma(s,t)$ and then plugging in in the equation above we obtain

$$= \sigma_s \sigma_t \rho(x_s, x_t) \sqrt{\gamma(x_s, x_s) \gamma(x_t, x_t)}$$

We know that $\gamma(x_s, x_s) = \text{var}(x_s) = 1$ as that is given by definition. Therefore the ACF is finally given by

$$=\sigma_s\sigma_t\rho(x_s,x_t)=\sigma_s\sigma_t\rho_x(s,t)$$

1.2 Lag only Dependency and Stationarity of y_t

1.2.1 Lag only Dependency

The autocorrelation is given by

$$\rho(s,t) = \frac{\gamma(s,t)}{\sqrt{\gamma(s,s)\gamma(t,t)}}$$

Plugging in the ACF from the exercise before gives us

$$= \frac{\sigma_s \sigma_t \rho_x(s,t)}{\sqrt{\sigma_s \sigma_s \rho_x(s,s) \sigma_t \sigma_t \rho_x(t,t)}}$$

As $\rho_x(a,a) = \frac{\gamma(0)}{\gamma(0)} = 1$ we can rewrite as

$$= \frac{\sigma_s \sigma_t \rho_x(s,t)}{\sigma_s \sigma_t} = \rho_x(s,t)$$

Setting t = s + h we get the following, as the process x_t is stationary by definition

$$\rho_x(s, s+h) = \rho(h)$$

Stationarity of y_t

To show that y_t is stationary, the following three conditions must be met:

- $E[y_t] = \text{constant}$
- $\gamma(s,t) = \gamma(|t+h-t|)$ $\operatorname{var}(x_t) < \infty$

The first condition if not given, as $E[y_t] = \mu_t$ and by definition μ_t is a non-constant function. Thereby y_t is not stationary.

1.3Possibility of a Specific Time Series

For having a non-stationary time series that meets the condition, at least one of the following conditions must be violated.

- $E[y_t] = \text{constant}$ $\gamma(s,t) = \gamma(|t+h-t|)$
- $var(x_t) < \infty$

We know by definition that the mean is constant and thus the first condition is true.

We also know that $corr(y_t, y_{t+h})$ is free of t, so

$$corr(y_t, y_{t+h}) = \frac{cov(y_t, y_{t+h})}{\sigma_{y_t} \sigma_{y_t + h}}$$

is free of t as well. Therefore we know that $cov(y_t, y_{t+h}) = \gamma(y_t, y_{t+h}) = \gamma(h)$ as it will only depend on the lag h. So also the second condition is true.

As we don't have more information about the process, we could define a process that violates the last condition, which means that $var(y_t) = \infty$.

Therefore the answer is: Yes, it is possible to define a time series as requested in the question.

2 Assignment 18

Exercise: For each of the following ARMA models, find the roots of the AR and MA polynomials, identify the values of p and q for which they are ARMA(p,q) (be careful of parameter redundancy), determine whether they are causal, and determine whether they are invertible. In each case, $w_t \sim \mathcal{N}(0, 1)$.

c)
$$x_t - 3x_{t-1} = w_t + 2w_{t-1} - 8w_{t-2}$$

d)
$$x_t - 2x_{t-1} + 2x_{t-2} = w_t - \frac{8}{9}w_{t-1}$$

e)
$$x_t - 4x_{t-2} = w_t - w_{t-1} + 0.5w_{t-2}$$

$$\mathbf{f)} \ x_t - \frac{9}{4}x_{t-1} - \frac{9}{4}x_{t-2} = w_t$$

2.1 c) Solution

2.1.1 Roots of AR and MA Polynomials

Applying the autoregressive operator for ϕ and θ gives us:

AR:
$$\phi(B) = 1 - 3B$$
, thus $Z_{\phi} = (1, -3)$

MA:
$$\theta(B) = 1 + 2B - 8B^2$$
, thus $Z_{\theta} = (1, 2, -8)$

For both parts we calculate the zero points. We start with AR.

$$p_{\phi}(z) = 1 - 3z$$

setting $p_{\phi}(z) = 0$

$$1 - 3z = 0$$

From that we get $z_{\theta 1} = \frac{1}{3}$. Now we do the MA part.

$$p_{\theta}(z) = 1 + 2z - 8z^2$$

setting $p_{\theta}(z) = 0$

$$0 = 1 + 2z - 8z^2$$

First we divide by -8 and swap sides:

$$z^2 - \frac{1}{4}z - \frac{1}{8} = 0$$

We add $(\frac{1}{4}/2)^2$ on both sides

$$z^2 - \frac{1}{4}z - \frac{1}{8} + \frac{1}{64} - \frac{8}{64} = \frac{1}{64}$$

Next we create the polynomial form and add $\frac{8}{64}$ on both sides

$$(z - \frac{1}{8})^2 = \frac{9}{64}$$

Taking the square root

$$z - \frac{1}{8}2 = \pm \frac{3}{8}$$

Thus is follows that $z_{\theta 1=\frac{1}{2}}$ and $z_{\theta 2=-\frac{1}{4}}$.

2.1.2 Finding p and q

To check for redundancy, we have to identify any common roots. As $z_{\phi} \cap z_{\theta} = \{\}$, $\phi(B)$ and $\theta(B)$ share no common roots and no redundancy is given.

Therefore p and q are simply given by the highest order terms, so the model is ARMA(p = 1, q = 2).

2.1.3 Causality and Invertibility

Causality: As $\forall Z_{\theta} : |Z_{\theta}| > 1$ is **not** given, the model is not causal.

Invertibility: As $\forall Z_{\phi} : |Z_{\phi}| > 1$ is **not** given, the model is not invertible.

2.2 d) Solution

2.2.1 Roots of AR and MA Polynomials

Applying the autoregressive operator for ϕ and θ gives us:

AR:
$$\phi(B) = 1 - 2 + 2B^2$$
, thus $Z_{\phi} = (1, -2, 2)$

MA:
$$\theta(B) = 1 - \frac{8}{9}B$$
, thus $Z_{\theta} = (1, -\frac{8}{9})$

For both parts we calculate the zero points. We start with AR.

$$p_{\phi}(z) = 1 - 2z + 2z^2$$

Setting $p_{\phi}(z) = 0$ and swapping sides

$$1 - 2z + 2z^2 = 0$$

Divide by 2 and order

$$z^2 - z + \frac{1}{2} = 0$$

We add $(1/2)^2$ on both sides

$$z^2 - z + \frac{1}{2} + \frac{1}{4} = \frac{1}{4}$$

Next we create the polynomial form and substract $\frac{1}{2}$ on both sides:

$$(z - \frac{1}{2})^2 = -\frac{1}{4}$$

Taking the square root:

$$z - \frac{1}{2} = \pm \frac{1}{2}i$$

From that we get $z_{\theta 1} = \frac{1}{2} + \frac{1}{2}i$ and $z_{\theta 2} = \frac{1}{2} - \frac{1}{2}i$. Now we do the MA part.

$$p_{\theta}(z) = 1 - \frac{8}{9}z$$

setting $p_{\theta}(z) = 0$

$$0 = 1 - \frac{8}{9}z$$

So $z_{\theta 1=\frac{9}{8}}$

2.2.2 Finding p and q

To check for redundancy, we have to identify any common roots. As $z_{\phi} \cap z_{\theta} = \{\}$, $\phi(B)$ and $\theta(B)$ share no common roots and no redundancy is given.

Therefore p and q are simply given by the highest order terms, so the model is ARMA(p = 1, q = 2).

2.2.3 Causality and Invertibility

Causality: As $\forall Z_{\theta} : |Z_{\theta}| > 1$ is **not** given, the model is not causal.

Invertibility: As $\forall Z_{\phi} : |Z_{\phi}| > 1$ is given, the model is invertible. $|Z_{\phi}| = \frac{9}{8} = 1.125$.

2.3 e) Solution

2.3.1 Roots of AR and MA Polynomials

Applying the autoregressive operator for ϕ and θ gives us:

AR:
$$\phi(B) = 1 - 4B^2$$
, thus $Z_{\phi} = (1, 0, -4)$

MA:
$$\theta(B) = 1 - B + \frac{1}{2}B^2$$
, thus $Z_{\theta} = (1, -1, \frac{1}{2})$

For both parts we calculate the zero points. We start with AR.

$$p_{\phi}(z) = 1 - 4Z^2$$

setting $p_{\phi}(z) = 0$

$$1 - 4Z^2 = 0$$

dividing by 4 and putting Z on one side

$$Z^2 = \frac{1}{4}$$

From that we get $z_{\theta 1} = \frac{1}{2}$ and $z_{\theta 2} = -\frac{1}{2}$. Now we do the MA part.

$$p_{\theta}(z) = 1 - z + \frac{1}{2}z^2$$

setting $p_{\theta}(z) = 0$

$$0 = 1 - z + \frac{1}{2}z^2$$

First we divide by $\frac{1}{2}$ and swap sides:

$$z^2 - 2z + 2 = 0$$

We add $(\frac{2}{2}/2)^2$ on both sides

$$z^2 - 2z + 1 + 2 = 1$$

Next we create the polynomial form and substract -2 on both sides

$$(z-1)^2 = -1$$

Taking the square root

$$z - 1 = \pm i$$

Thus is follows that $z_{\theta 1} = 1 + 1i$ and $z_{\theta 2} = 1 - 1i$.

2.3.2 Finding p and q

To check for redundancy, we have to identify any common roots. As $z_{\phi} \cap z_{\theta} = \{\}$, $\phi(B)$ and $\theta(B)$ share no common roots and no redundancy is given.

Therefore p and q are simply given by the highest order terms, so the model is ARMA(p = 2, q = 2).

2.3.3 Causality and Invertibility

Causality: As $\forall Z_{\theta} : |Z_{\theta}| > 1$ is **not** given, the model is not causal.

Invertibility: As $\forall Z_{\phi} : |Z_{\phi}| > 1$ is given, the model is invertible. The length of all elements of the set Z_{ϕ} is given by $|Z_{\phi}| = \sqrt{1^2 + (\pm 1)^2} \approx 1.414214$.

2.4 f) Solution

2.4.1 Roots of AR and MA Polynomials

Applying the autoregressive operator for ϕ and θ gives us:

AR:
$$\phi(B) = 1 - \frac{9}{4}B - \frac{9}{4}B^2$$
, thus $Z_{\phi} = (1, -\frac{9}{4}, -\frac{9}{4})$

MA:
$$\theta(B) = 1$$
, thus $Z_{\theta} = (1)$

For both parts we calculate the zero points. We start with AR.

$$p_{\phi}(z) = 1 - \frac{9}{4}z - \frac{9}{4}z^2$$

setting $p_{\phi}(z) = 0$

$$1 - \frac{9}{4}z - \frac{9}{4}z^2 = 0$$

dividing by $\frac{9}{4}$ and ordering

$$z^2 + z - \frac{4}{9} = 0$$

Adding $(\frac{1}{2})^2$ on both sides

$$z^2 + z + \frac{1}{4} - \frac{4}{9} = \frac{1}{4}$$

Forming the polynimial and adding $\frac{4}{9}$

$$(z+\frac{1}{2})^2 = \frac{25}{36}$$

Taking the square root

$$z + \frac{1}{2} = \pm \frac{5}{6}$$

From that we get $z_{\theta 1} = \frac{1}{3}$ and $z_{\theta 2} = -\frac{4}{3}$. Now we do the MA part.

$$p_{\theta}(z) = 1$$

As setting this to 0 is an inequality, this ARMA model does not have an MA part.

2.4.2 Finding p and q

To check for redundancy, we have to identify any common roots. As $\theta(B)$ is not given, it does not really make sense to ask this question. There are no common roots.

Therefore p and q are simply given by the highest order terms, so the model is ARMA(p = 2, q = 0) which can also be expressed as AR(2).

2.4.3 Causality and Invertibility

Causality: As $\forall Z_{\theta} : |Z_{\theta}| > 1$ is **not** given, the model is not causal.

Invertibility: As the model does not have an MA part, it does not make sense to talk about invertibility as an $MA(\infty)$ representation cannot exist for something that is non-existent. Also a (weak) stationary property does not make sense in this case.