Analisi Fattoriale - Applicazioni Analisi Esplorativa

Aldo Solari

Outline

Dati Esami

- Voto agli esami
- n = 202 studenti maschi
- p = 6

Variabili:

- Gaelic (non-math)
- English (non-math)
- History (non-math)
- Arithmetic (math)
- Algebra (math)
- Geometry (math)

Dati Esami: Correlazione

	Gaelic	English	History	Arithmetic	Algebra	Geometry
	1.0	.439	.410	.288	.329	.248
-		1.0	.351	.354	.320	.329
$\mathbf{R} =$			1.0	.164	.190	.181
				1.0	.595	.470
					1.0	.464
						1.0

Stima di massima verosimiglianza

Assunzione aggiuntiva

La variabile aleatoria $\underset{p \times 1}{x}$ segue una distribuzione Normale p-variata

Funzione di log-verosimiglianza

$$\ell(\Sigma) = -\frac{1}{2}n\log|2\pi\Sigma| - \frac{1}{2}n\mathrm{tr}(\Sigma^{-1}S)$$

dopo aver sostituito $\underset{p\times 1}{\mu}$ con \bar{x}

Stima di MV: Sostituisci Σ con $\Lambda\Lambda'+\Psi$ e massimizza $\ell(\Sigma)$ per Λ e Ψ

Stima iterativa

- $oldsymbol{0}$ Per Ψ fissato, massimizza numericamente per Λ
- 2 Per Λ fissato, massimizza numericamente per Ψ
 - Implementata nella funzione R factanal()
 - Possiamo ottenere casi di Heywood

Dati Esami: FA con k=2 e stima di MV

Table 9.5							
	factor	mated loadings	Communalities				
Variable	F_1	F_2	h_i^2				
1. Gaelic	.553	.429	.490				
2. English	.568	.288	.406				
3. History	.392	.450	.356				
4. Arithmetic	.740	273	.623				
5. Algebra	.724	211	.569				
6. Geometry	.595	132	.372				

- Stima di MV: $\hat{h}_1^2 = \hat{\lambda}_{11}^2 + \hat{\lambda}_{12}^2 = (0.553)^2 + (0.429)^2 \approx 0.490$
- Primo fattore: intelligenza generale
- Secondo fattore: abilità matematica vs abilità verbale

Rotazione dei pesi fattoriali

• Per la rotazione dei pesi fattoriali $\Lambda \atop p imes k$, dobbiamo cercare una matrice ortogonale $A \atop k imes k$ (A'A=AA'=I) tale per cui i pesi fattoriali ruotati $\Lambda \atop p imes k$ = $\Lambda \atop p imes k k imes k$ sono più facilmente interpretabili

•
$$A_{2\times 2} = \begin{bmatrix} \cos\phi & \sin\phi \\ -\sin\phi & \cos\phi \end{bmatrix}$$
 rotazione oraria per $k=2$

- Questo non cambia la soluzione del modello, solo la sua descrizione
- Situazione desiderata per i fini interpretativi:
 - i pesi fattoriali sono tutti grandi e positivi o prossimi a 0 (con pochi valori intermedi)
 - ogni variabile osservabile è legata in modo pesante al più ad un solo fattore
- ullet Per k>2 il metodo *varimax* identifica la rotazione massimizzando un'opportuna funzione dei pesi fattoriali ruotati che misura la variabilità dei pesi

Dati Esami: rotazione dei pesi fattoriali

Figure 9.1 Factor rotation for test scores.

Table 9.6							
Variable	Variable Estimated rotated factor loadings F_1^* F_2^*						
1. Gaelic 2. English 3. History 4. Arithmetic 5. Algebra 6. Geometry	.369 .433 .211 .789 .752 .604	.594 .467 .558 .001 .054 .083	.490 .406 .356 .623 .568 .372				

• Primo fattore: abilità matematica

• Secondo fattore: abilità verbale

Outline

Table 8.4 Stock-Price Data (Weekly Rate Of Return)							
Week	J P Morgan	Citibank	Wells Fargo	Royal Dutch Shell	Exxon Mobil		
1 2	0.01303 0.00849	-0.00784 0.01669	-0.00319 -0.00621	-0.04477 0.01196	0.00522 0.01349		
3	-0.01792	-0.00864	0.01004	0	-0.00614		
5	$0.02156 \\ 0.01082$	-0.00349 0.00372	$0.01744 \\ -0.01013$	-0.02859 0.02919	-0.00695 0.04098		
6 7	0.01017 0.01113	-0.01220 0.02800	-0.00838 0.00807	0.01371 0.03054	0.00299 0.00323		
8 9	0.04848 -0.03449	-0.00515 -0.01380	0.01825 -0.00805	0.00633 -0.02990	0.00768 -0.01081		
10	-0.03449 -0.00466	0.02099	-0.00608	-0.02990 -0.02039	-0.01081 -0.01267		
94	: 0.03732	: 0.03593	: 0.02528	: 0.05819	: 0.01697		
95 96	0.02380 0.02568	0.00311 0.05253	-0.00688 0.04070	0.01225 -0.03166	0.02817 -0.01885		
97	-0.00606	0.00863	0.00584	0.04456	0.03059		
98 99	0.02174 0.00337	$0.02296 \\ -0.01531$	$0.02920 \\ -0.02382$	$0.00844 \\ -0.00167$	0.03193 -0.01723		
100	0.00336 0.01701	0.00290 0.00951	-0.00305 0.01820	-0.00122 -0.01618	-0.00970 -0.00756		
102 103	$0.01039 \\ -0.01279$	-0.00266 -0.01437	$0.00443 \\ -0.01874$	-0.00248 -0.00498	-0.01645 -0.01637		

Stock-Price Data

- Rendimento (settimanale) di cinque titoli
- Gen 04 Dic 05
- n = 103
- $\bullet \ p=5$

Variabili:

- JP Morgan (bank)
- Citibank (bank)
- Wells Fargo (bank)
- Royal Dutch Shell (oil)
- Exxon-Mobil (oil)

Stock-Price Data: correlazione

$$\bar{\mathbf{x}}' = [.0011, .0007, .0016, .0040, .0040]$$

$$\mathbf{R} = \begin{bmatrix} 1.000 & .632 & .511 & .115 & .155 \\ .632 & 1.000 & .574 & .322 & .213 \\ .511 & .574 & 1.000 & .183 & .146 \\ .115 & .322 & .183 & 1.000 & .683 \\ .155 & .213 & .146 & .683 & 1.000 \end{bmatrix}$$

Stock-Price Data: FA con k=2 e stima di MV

Table 9.3							
	N	Iaximum l	ikelihood	Pri	ncipal con	ipal components	
		ed factor dings	Specific variances	Estimated factor loadings		Specific variances	
Variable	F_1	F_2	$\hat{\psi}_i = 1 - \hat{h}_i^2$	F_1	F_2	$\widetilde{\psi}_i = 1 - \widetilde{h}_i^2$	
1. J P Morgan 2. Citibank 3. Wells Fargo 4. Royal Dutch Shell 5. Texaco	.115 .322 .182 1.000 .683	.755 .788 .652 000 032	.42 .27 .54 .00 .53	.732 .831 .726 .605 .563	437 280 374 .694 .719	.27 .23 .33 .15 .17	
Cumulative proportion of total (standardized) sample variance explained	.323	.647		.487	.769		

• Stima di MV: $\hat{h}_1^2=\hat{\lambda}_{11}^2+\hat{\lambda}_{12}^2=(0.115)^2+(0.755)^2\approx 0.58$

• Primo fattore: mercato dei titoli

• Secondo fattore: bank vs oil

Stock-Price Data: residui

Massima Verosimiglianza

$$\mathbf{R} - \hat{\mathbf{L}}\hat{\mathbf{L}}' - \hat{\mathbf{\Psi}} = \begin{bmatrix} 0 & .001 & -.002 & .000 & .052 \\ .001 & 0 & .002 & .000 & -.033 \\ -.002 & .002 & 0 & .000 & .001 \\ .000 & .000 & .000 & 0 & .000 \\ .052 & -.033 & .001 & .000 & 0 \end{bmatrix}$$

Componenti principali

$$\mathbf{R} - \widetilde{\mathbf{L}}\widetilde{\mathbf{L}}' - \widetilde{\mathbf{\Psi}} = \begin{bmatrix} 0 & -.099 & -.185 & -.025 & .056 \\ -.099 & 0 & -.134 & .014 & -.054 \\ -.185 & -.134 & 0 & .003 & .006 \\ -.025 & .014 & .003 & 0 & -.156 \\ .056 & -.054 & .006 & -.156 & 0 \end{bmatrix}$$

Stima di MV: test sul numero di fattori

- Un vantaggio della stima di MV e che permette un test di ipotesi sul numero di fattori
- Ipotesi nulla: k fattori sono sufficienti
- Ipotesi alternativa: k fattori sono insufficienti
- Rifiuto l'ipotesi nulla con un p-value < 5%
- Test sequenziali: parto da k=1, se rifiuto proseguo con $k=2,3,\ldots$ fino a quando fallisco di rifiutare l'ipotesi

Stock-Price Data: test di k=2

Ipotesi nulla

$$H_0: \Sigma = \Lambda \Lambda' + \Psi \quad (k=2)$$

Statistica test

$$\frac{|\hat{\Lambda}\hat{\Lambda}' + \hat{\Psi}|}{S} = \frac{|\hat{\Lambda}_z\hat{\Lambda}'_z + \hat{\Psi}_z|}{R} = \frac{0.17898}{0.17519} = 1.0216$$

Richiede la stima di massima verosimiglianza

p-value

$$\mathbb{P}(\chi_1^2 > n \ln(1.0216)) \approx 0.138 > 5\%$$

(p-value = 0.15 utilizzando la correzione di Bartlett)

Stock-Price Data: rotazione dei pesi fattoriali

Table 9.8					
Variable	Maximum likelihood estimates of factor loadings F_1 F_2		Rotated estimated factor loadings F_1^* F_2^*		Specific variances $\hat{\psi}_i^2 = 1 - \hat{h}_i^2$
J P Morgan Citibank Wells Fargo Royal Dutch Shell ExxonMobil	.115 .322 .182 1.000 .683	.755 .788 .652 000 .032	.763 .821 .669 .118 .113	.024 .227 .104 (.993 .675)	.42 .27 .54 .00 .53
Cumulative proportion of total sample variance explained	.323	.647	.346	.647	

Primo fattore: bankSecondo fattore: oil

Stima dei punteggi fattoriali

Metodo di Bartlett (1937)

•
$$\hat{f}_i = (\hat{\Lambda}'\hat{\Psi}^{-1}\hat{\Lambda})^{-1}\hat{\Lambda}'\hat{\Psi}^{-1}x_i$$

Metodo di Thompson (1951)

•
$$\hat{f}_i = \hat{\Lambda}' \hat{\Sigma}^{-1} x_i$$

Stock-Price Data: punteggi fattoriali

Decomposizione di R

$$\hat{\mathbf{L}}_{\mathbf{z}}^{*} = \begin{bmatrix} .763 & .024 \\ .821 & .227 \\ .669 & .104 \\ .118 & .993 \\ .113 & .675 \end{bmatrix} \text{ and } \hat{\boldsymbol{\Psi}}_{\mathbf{z}} = \begin{bmatrix} .42 & 0 & 0 & 0 & 0 \\ 0 & .27 & 0 & 0 & 0 \\ 0 & 0 & .54 & 0 & 0 \\ 0 & 0 & 0 & .00 & 0 \\ 0 & 0 & 0 & 0 & .53 \end{bmatrix}$$

Una osservazione

$$\mathbf{z}' = [.50, -1.40, -.20, -.70, 1.40]$$

Metodo di Bartlett

$$\hat{\mathbf{f}} = (\hat{\mathbf{L}}_{\mathbf{z}}^{*}, \hat{\mathbf{\Psi}}_{\mathbf{z}}^{-1} \hat{\mathbf{L}}_{\mathbf{z}}^{*})^{-1} \hat{\mathbf{L}}_{\mathbf{z}}^{*}, \hat{\mathbf{\Psi}}_{\mathbf{z}}^{-1} \mathbf{z} = \begin{bmatrix} -.61 \\ -.61 \end{bmatrix}$$

Metodo di Thompson

$$\hat{\mathbf{f}} = \hat{\mathbf{L}}_{\mathbf{z}}^{*} \mathbf{R}^{-1} \mathbf{z} = \begin{bmatrix} .331 & .526 & .221 & -1.37 & .011 \\ -.040 & -.063 & -.026 & 1.023 & -.001 \end{bmatrix} \begin{bmatrix} .50 \\ -1.40 \\ -.20 \\ -.70 \\ 1.40 \end{bmatrix} = \begin{bmatrix} .50 \\ -.64 \end{bmatrix}$$

Stock-Price Data: punteggi fattoriali

Figure 9.4 Factor scores using (9-58) for factors 1 and 2 of the stock-price data (maximum likelihood estimates of the factor loadings).

