登录 | 注册

cv_family_z的博客

:= 目录视图

₩ 摘要视图

个人资料

cv family z

访问: 370032次

积分: 5398

排名: 第5219名

原创: 175篇 转载: 3篇 译文: 2篇 评论: 197条

文章搜索

赠书:9月重磅新书升级,本本经典 程序员9月书讯 每周荐书: ES6、虚拟现实、物联网(评论送书)

人脸检测"Joint Cascade Face Detection and Alignment"

2015-12-25 17:01

2479人阅读

评论

人脸检测(2) -**☵** 分类:

■ 版权声明:本文为博主原创文章,未经博主允许不得转载。

开源代码: https://github.com/luoyetx/JDA

好的介绍博客:http://www.cvrobot.net/joint-cascade-face-detection-and-alignment/

思路:将人脸矫正和检测一起做,矫正来提升检测准确率

先验证矫正对检测有效,检测后分类器:对OpenCV Haar产生的3000个窗口处理, 27facial points SIFT feature + **SVM**

级联检测及矫正原理

级联检测:

$$f^N = \sum_{i=1}^N \mathcal{C}^i(\mathbf{x})$$

文章分类

目标检测 (42)

模式识别 (3)

深度学习 (91)

目标识别 (7)

车型识别 (6)

行人检测 (13)

人脸识别 (20)

模型测试 (2)

3D-识别 (3)

行人检索 (12)

开源代码 (1)

行人属性 (5)

ZJ (78)

人脸检测 (3)

CVPR 2016 (37)

代码调试 (2)

目标跟踪 (4)

ICML2016 (2)

图像分割 (14)

ECCV2016 (3)

CNN网络压缩 (5)

杂项 (2)

车辆检索 (1)

车辆计数 (2)

文章存档

2017年09月 (6)

级联矫正:逐步对人脸外形S更新,

$$\mathbf{S}^{t} = \mathbf{S}^{t-1} + \mathcal{R}^{t}(\mathbf{x}, \mathbf{S}^{t-1}), t = 1, ..., T.$$

最小化Groundtruth与当前shape的误差,

$$\mathcal{R}^t = \arg\min_{\mathcal{R}} \sum_i ||\hat{\mathbf{S}}_i - (\mathbf{S}_i^{t-1} + \mathcal{R}(\mathbf{x}_i, \mathbf{S}_i^{t-1}))||^2$$

让级联检测依赖于级联回归shape S,

$$f = \sum_{t=1}^{T} \sum_{k=1}^{K} \mathcal{C}_k^t(\mathbf{x}, \mathbf{S}^{t-1})$$

2017年08月 (6)
2017年07月 (3)
2017年06月 (3)
2017年05月 (4)

展开

阅读排行 开源代码文献 (15492)SSD: Single Shot MultiB (13547)SSD: Single Shot MultiB (13214)论文提要"You Only Look (12565)**SPPNet** (10875)Deep Residual Learning (8490) Inception-v3:"Rethinking (7385) 目标检测--PVANET: Dee (6629) 论文提要"Fast Feature P (6153) Faster R-CNN (5678)

评论排行 论文提要"You Only Look (25) 人脸检测"A Fast and Acc (20) CompCars模型测试 (19) 车辆检测"DAVE: A Uniec (9) 论文提要"Fast Feature P (9) 车型识别"A Large-Scale (9) 论文提要"Hypercolumns (7)

联合训练检测和矫正的算法:

```
Algorithm 3 Training of cascade and joint face detection and alignment.
 1: Input: all training samples \{x_i\}, class labels \{y_i\}
 2: Input: ground truth shapes \hat{\mathbf{S}}_i for positive samples, y_i = 1
 3: Output: all weak learners \{CR_k^t\}, classification thresholds \{\theta_k^t\}
 4: set the initial face shapes S_i^0 as random perturbations of the mean shapes in win-
    dows of x_i
 5: set all initial classification scores f_i = 0
 6: for t = 1 to T do
      for k = 1 to K do
         for each training sample i do
 9:
            compute its weight w_i according to Eq. (6)
         end for
10:
         select a point (k \mod L) for regression /*local learning in Section 4.1 /
11:
         learn the structure of classification/regression tree \mathcal{CR}_k^t as in Sectic
12:
         for each tree leaf do
13:
14:
            set its classification score according to Eq. (7)
15:
         end for
         for each training sample i do
16:
            update its classification score as f_i = f_i + \mathcal{CR}_k^t(\mathbf{x}_i, \mathbf{S}_i^{t-1})
17:
18:
         end for
         use all \{f_i\} to set the bias \theta_k^t, according to a preset precision-recall condition
19:
         remove samples whose f_i < \theta_k^t from training set
20:
         perform hard negative sample mining if negative samples are insufficient
21:
22:
       end for
23:
       learn the shape increments of all leaves /* global learning in Section 4.1 */
       compute S_i^t for all samples according to Eq. (2) and (5)
24:
25: end for
```

人脸识别 - A Discriminat (6)
Beyond Local Search: Tr (5)
A Lightened CNN for De (4)

推荐文章

- * CSDN新版博客feed流内测用户 征集令
- * Android检查更新下载安装
- * 动手打造史上最简单的 Recycleview 侧滑菜单
- * TCP网络通讯如何解决分包粘包 问题
- * SDCC 2017之大数据技术实战 线上峰会
- * 快速集成一个视频直播功能

最新评论

A Lightened CNN for Deep Face wyc2015fq: @liuxin000619:我也跑了,没有作者说的在cpu上那么快的速度,你那边什么情况能交流下不。

Multi-Task Learning with Low Ra linolzhang: 开通了知乎专栏,以文会友,欢迎大家投稿! https://zhuanlan.zhihu.com/re-...

Shallow and Deep Convolutional zhangyujun8175: 请问你有这篇文章的Deep model 吗,如果有可以发我以份吗游戏1095967026@qq.co...

MobileNets: Efficient Convolutior RjunL: 你好,请问用caffe实现需要修改caffe.proto中的内容吗? 我试着去运行这个网络,但是总是报…

人脸识别 -Do We Really Need to

测试的算法:

Algorithm 2 Our testing algorithm for cascade face detection and alignment for an image window x. The model consists of all weak learners $\{CR_k^t\}$ and classification thresholds $\{\theta_k^t\}$.

```
1: initialize the face shape S as the mean shape in window of x
 2: initialize the detection score f = 0
 3: for t = 1 to T do
       \Delta S = 0
       for k = 1 to K do
         (f', \Delta S') = \mathcal{CR}_k^t(\mathbf{x}, S)
         f = f + f'
         if f < \theta_k^t then
 9:
             return "not a face"
10:
          end if
          \Delta S = \Delta S + \Delta S'
11:
12:
       end for
       S = S + \Delta S
13:
14: end for
15: return "is a face with shape S"
```

husthzy: 请问楼主有没有看过他们ResNet-101?里面有个average_face.bin,完全不知道里面...

物体跟踪-Fully-Convolutional Sia qq_20611159: 你好,请问你跑通在github上下载的代码了吗?

MobileNets: Efficient Convolutior qq_34726032: 好的,谢谢,已明白,model直接训练得到的

图像分割"Fully Convolutional Ins cv_family_z: @sjtukng1118:对于ROI中的某个像素,1) detection:whether it b...

图像分割"Fully Convolutional Ins 姜淘淘: 博主,你好!请教一个问 题:文章2.2. Joint Mask Prediction and Clas...

MobileNets: Efficient Convolution cv_family_z: @qq_34726032:1. 原始的卷积输入通道M,输出通道N,卷积和特征图组合是一步完成的; 2.d...

IOU>0.5时在FDDB上的结果对比

Fig. 5. Comparison with academia methods on FDDB dataset, under the dis and continuous (right) protocols.

顶。

上一篇 Striving for Simplicity: The All Convolutional Net

下一篇 人脸识别"FaceNet: A Unified Embedding for Face Recognition and Clustering"

相关文章推荐

人脸检测 JDA

3000fps 实际操作总结

- Presto的服务治理与架构在京东的实践与应用--王...
- 图像转铅笔素描
- 深入掌握Kubernetes应用实践--王渊命
- 人脸对齐SDM
- Python基础知识汇总
- 人脸对齐 3000fps
- Android核心技术详解

- Retrofit 从入门封装到源码解析
- 人脸识别之人脸检测(十一)--JDA算法
- 自然语言处理工具Word2Vec
- Joint Face Detection and Alignment Using Multi-ta...
- 【论文学习笔记】Joint Cascade Face Detection a...
- Joint Cascade Face Detection and Alignment (JD...
- 论文《Joint Cascade Face Detection and Alignme...

查看评论

暂无评论

您还没有登录,请[登录]或[注册]

*以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

公司简介 | 招贤纳士 | 广告服务 | 联系方式 | 版权声明 | 法律顾问 | 问题报告 | 合作伙伴 | 论坛反馈

关闭

网站客服

杂志客服

微博客服

webmaster@csdn.net

400-660-0108 | 北京创新乐知信息技术有限公司 版权所有 | 江苏知之为计算机有限公司 | 江苏乐知网络技术有限公司

京 ICP 证 09002463 号 | Copyright © 1999-2017, CSDN.NET, All Rights Reserved

