Feature Engineering

Contents

- Types of Variables
- The measure of Central Tendency
- Encoding Techniques
- Handle NaN Value
- Implementing using Python

1

Types of Attributes

Two different views:

- Qualitative measurements describe an attribute without providing a size or quantity.
- Quantitative measurements, often also called numerical attributes, are quantitatively measured and
 often represented in integers or real values.

Nominal:

- Categories, states, or "names of things".
- E.g. hair_color = {auburn, black, blond, brown, grey, red, white}.
- Other examples: marital_status, occupation, ID, ZIP code.

Binary:

- Nominal attribute with only two states (0 and 1).
- Symmetric binaries: both outcomes equally important, such as sex.
- Asymmetric binary: outcomes not equally important.
 - E.g. medical test (positive vs. negative).
 - Convention: assign 1 to most important outcome (e.g. diabetes, HIV positive).

Ordinal:

- Values have a meaningful order (ranking), but magnitude between successive values is not known.
- E.g. size = {small, medium, large}, grades, army rankings.

Continuous Attributes

- Has real numbers as attribute values.
 E.g. temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

Discrete Attributes

- Has finite or countably infinite elements.
 E.g. ZIP code, profession, or the set of words in a collection of documents.
- Sometimes represented as integer variables.

Note

Binary attributes are a special case of discrete attributes.

Measures of Central Tendency

Mean, Median, Mode

■ **Mean:** The mean is the most popular and well known measure of central tendency. $x_1 + x_2 + \cdots + x_n$

Median: The median is the middle score tor a set of data that has been arranged in order of magnitude.

65	55	89	56	35	14	56	55	87	45	92
first	need to	rearra	nge that	data int	o order	of magi	nitude (s	mallest	first):	
irst	need to	rearra	nge that	data int	o order	of magi	nitude (s	mallest	first):	

Mode: The mode is the most frequent score in our data set.

Encoding is a technique of converting categorical variables into numerical values so that it can be easily fitted to a machine learning model.

Original Data

Team	Points
Α	25
Α	12
В	15
В	14
В	19
В	23
С	25
С	29

One-Hot Encoded Data

Team_A	Team_B	Team_C	Points
1	0	0	25
1	0	0	12
0	1	0	15
0	1	0	14
0	1	0	19
0	1	0	23
0	0	1	25
0	0	1	29

Before Encoding

After Encoding

	Marketing Spend	Administration	Transport	Area	Profit			Marketing Spend	Administration	Transport	Area	Profit
0	114523.61	136897.80	471784.10	Dhaka	192261.83		0	114523.61	136897.80	471784.10	1	192261.83
1	162597.70	151377.59	443898.53	Ctg	191792.06		1	162597.70	151377.59	443898.53	0	191792.06
2	153441.51	101145.55	407934.54	Rangpur	191050.39		2	153441.51	101145.55	407934.54	2	191050.39
3	144372.41	118671.85	383199.62	Dhaka	182901.99		3	144372.41	118671.85	383199.62	1	182901.99
4	142107.34	91391.77	366168.42	Rangpur	166187.94		4	142107.34	91391.77	366168.42	2	166187.94
5	131876.90	99814.71	362861.36	Dhaka	156991.12							
6	134615.46	147198.87	127716.82	Ctg	156122.51							

Types of Encoder

- Without the use of Any Encoding Techniques
- Label Encoding
- One-Hot Encoding
- Ordinal Encoding

Types of Encoder

- ❖ Label encoding is the simplest of the three techniques. It simply assigns a numerical value to each category. For example, the categories "Dhaka," "Ctg." and "Rangpur" might be assigned the values 1, 2, and 3, respectively.
- ❖ One-hot encoding is a more sophisticated technique that creates a new binary variable for each category. Each category is then represented by a vector of 0s and 1s, where the 1 is in the position corresponding to that category. For example, the category "Dhaka" would be represented by the vector [1, 0, 0], the category "Ctg." would be represented by the vector [0, 1, 0], and the category "Rangpur" would be represented by the vector [0, 0, 1].
- ❖ Ordinal encoding is a technique that preserves the order of the categories. It assigns numerical labels to each category in a meaningful order. For example, you might assign the labels 1, 2, and 3 to the categories "Dhaka," "Ctg." and "Rangpur," respectively.

Replace Function

www.aiquest.org

Label Encoder

	Marketing Spend	Administration	Transport	Area
0	114523.61	136897.80	471784.100000	Dhaka
1	162597.70	151377.59	443898.530000	Ctg
2	153441.51	101145.55	407934.540000	Rangpur
3	144372.41	118671.85	383199.620000	Dhaka
4	142107.34	91391.77	366168.420000	Rangpur
5	131876.90	99814.71	362861.360000	Dhaka
6	134615.46	147198.87	127716.820000	Ctg
7	130298.13	145530.06	323876.680000	Rangpur
8	120542.52	148718.95	311613.290000	Dhaka

	Marketing Spend	Administration	Transport	Area	Profit
0	114523.61	136897.80	471784.100000	1	192261.83
1	162597.70	151377.59	443898.530000	0	191792.06
2	153441.51	101145.55	407934.540000	2	191050.39
3	144372.41	118671.85	383199.620000	1	182901.99
4	142107.34	91391.77	366168.420000	2	166187.94
5	131876.90	99814.71	362861.360000	1	156991.12
6	134615.46	147198.87	127716.820000	0	156122.51
7	130298.13	145530.06	323876.680000	2	155752.60
8	120542.52	148718.95	311613.290000	1	152211.77

11

One Hot Encoder

	Marketing Spend	Administration	Transport	Area
0	114523.61	136897.80	471784.100000	Dhaka
1	162597.70	151377.59	443898.530000	Ctg
2	153441.51	101145.55	407934.540000	Rangpur
3	144372.41	118671.85	383199.620000	Dhaka
4	142107.34	91391.77	366168.420000	Rangpur
5	131876.90	99814.71	362861.360000	Dhaka
6	134615.46	147198.87	127716.820000	Ctg
7	130298.13	145530.06	323876.680000	Rangpur
8	120542.52	148718.95	311613.290000	Dhaka

	Ctg	Dhaka	Rangpur
0	0	1	0
1	1	0	0
2	0	0	1
3	0	1	0
4	0	0	1
5	0	1	0

12

One Hot Encoder

	Marketing Spend	Administration	Transport	Area
0	114523.61	136897.80	471784.100000	Dhaka
1	162597.70	151377.59	443898.530000	Ctg
2	153441.51	101145.55	407934.540000	Rangpur
3	144372.41	118671.85	383199.620000	Dhaka
4	142107.34	91391.77	366168.420000	Rangpur
5	131876.90	99814.71	362861.360000	Dhaka
6	134615.46	147198.87	127716.820000	Ctg
7	130298.13	145530.06	323876.680000	Rangpur
8	120542.52	148718.95	311613.290000	Dhaka

	Marketing Spend	Administration	Transport	Dhaka	Rangpur
0	114523.61	136897.80	471784.100000	1	0
1	162597.70	151377.59	443898.530000	0	0
2	153441.51	101145.55	407934.540000	0	1
3	144372.41	118671.85	383199.620000	1	0
4	142107.34	91391.77	366168.420000	0	1
5	131876.90	99814.71	362861.360000	1	0
6	134615.46	147198.87	127716.820000	0	0
7	130298.13	145530.06	323876.680000	0	1
8	120542.52	148718.95	311613.290000	1	0

Ordinal Encoder

	Marketing Spend	Administration	Transport	Area
0	114523.61	136897.80	471784.100000	Dhaka
1	162597.70	151377.59	443898.530000	Ctg
2	153441.51	101145.55	407934.540000	Rangpur
3	144372.41	118671.85	383199.620000	Dhaka
4	142107.34	91391.77	366168.420000	Rangpur
5	131876.90	99814.71	362861.360000	Dhaka
6	134615.46	147198.87	127716.820000	Ctg
7	130298.13	145530.06	323876.680000	Rangpur
8	120542.52	148718.95	311613.290000	Dhaka

	Marketing Spend	Administration	Transport	Area	Profit
0	114523.61	136897.80	471784.10	0.0	192261.83
1	162597.70	151377.59	443898.53	1.0	191792.06
2	153441.51	101145.55	407934.54	2.0	191050.39
3	144372.41	118671.85	383199.62	0.0	182901.99
4	142107.34	91391.77	366168.42	2.0	166187.94