

FCC PART 15C TESTREPORT

No. I16Z42442-SRD01

for

TCL Mobile Communication Co. Ltd. Huizhou

Door & Window Sensor

Model Name:DS01

with

FCC ID: 2ACCJBC04

Hardware Version: V05

Software Version: DS01_00_01.00_17

Issued Date: 2017-01-17

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT No.52, HuayuanNorth Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512,Fax:+86(0)10-62304633-2504

Email: cttl_terminals@catr.cn, website: www.chinattl.com

REPORT HISTORY

Report Number	Revision	Description	Issue Date	
I16Z42442-SRD01	Rev.0	1st edition	2017-01-09	
I16Z42442-SRD01	Rev.1	2nd edition	2017-01-17	

CONTENTS

1.	TEST LABORATORY	5
1.1.	TESTING LOCATION	5
1.2.	TESTING ENVIRONMENT	5
1.3.	PROJECT DATA	5
1.4.	SIGNATURE	5
2.	CLIENT INFORMATION	6
2.1.	APPLICANT INFORMATION	6
2.2.	MANUFACTURER INFORMATION	6
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	7
3.1.	ABOUT EUT	7
3.2.	INTERNAL IDENTIFICATION OF EUT	7
3.3.	INTERNAL IDENTIFICATION OF AE	7
3.4.	GENERAL DESCRIPTION	8
3.5.	INTERPRETATION OF THE TEST ENVIRONMENT	8
4.	REFERENCE DOCUMENTS	8
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	8
4.2.	REFERENCE DOCUMENTS FOR TESTING	8
5.	TEST RESULTS	9
5.1.	SUMMARY OF TEST RESULTS	9
5.2.	STATEMENTS	9
5.3.	TEST CONDITIONS	9
6.	TEST FACILITIES UTILIZED	10
7.	MEASUREMENT UNCERTAINTY	11
7.1.	MAXIMUM OUTPUT POWER	11
7.2.	PEAK POWER SPECTRAL DENSITY	11
7.3.	DTS 6-DB SIGNAL BANDWIDTH	11
7.4.	BAND EDGES COMPLIANCE	11
7.5.	TRANSMITTER SPURIOUS EMISSION	11
7.6.	AC POWER-LINE CONDUCTED EMISSION	11
ANI	NEX A: DETAILED TEST RESULTS	12

No. I16Z42442-SRD01 Page4 of 45

A.1. MEASUREMENT METHOD	12
A.2. MAXIMUM OUTPUT POWER	13
A.2.1. PEAK OUTPUT POWER-CONDUCTED	13
A.2.2. AVERAGE OUTPUT POWER-CONDUCTED	
A.3. PEAK POWER SPECTRAL DENSITY	15
A.4. DTS 6-DB SIGNAL BANDWIDTH	17
A.5. BAND EDGES COMPLIANCE	20
A.6. TRANSMITTER SPURIOUS EMISSION	22
A.6.1 Transmitter Spurious Emission – Conducted	22
A.6.2 Transmitter Spurious Emission - Radiated	36

1. Test Laboratory

1.1. Testing Location

Conducted testing Location: CTTL(huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China100191

Radiated testing Location: CTTL(BDA)

Address: No. 18 Jia Kangding Street, BDA District, Beijing, P. R.

China 100191

1.2. Testing Environment

Normal Temperature: $15-35^{\circ}$ C Extreme Temperature: $-10/+55^{\circ}$ C Relative Humidity: 20-75%

1.3. Project data

Testing Start Date: 2016-12-23
Testing End Date: 2017-01-09

1.4. Signature

Jiang Xue

(Prepared this test report)

Zheng Wei

(Reviewed this test report)

Lv Songdong

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: TCL Communication Ltd.

Address /Post: 5F, C-Tower, No.232, Liangjing Road, Zhangjiang High-tech Park,

Pudong, Shanghai, China

Contact Person: Liu Feng

 Contact Email
 liu.feng@tcl.com

 Telephone:
 0755-33035419

 Fax:
 0755-33035419

2.2. Manufacturer Information

Company Name: TCL Mobile Communication Co. Ltd. Huizhou

Address /Post: 70 Huifeng 4rd., ZhongKai High-Technology Development District,

Huizhou, Guangdong, PRC. 516006

Contact Person: Liu Feng

 Contact Email
 liu.feng@tcl.com

 Telephone:
 0755-33035419

 Fax:
 0755-33035460

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description Door & Window Sensor

Model name DS01

FCC ID 2ACCJBC04

IC ID /

With WLAN Function Yes

Frequency Range ISM 2400MHz~2483.5MHz

Type of Modulation DQPSK

Number of Channels 11

Antenna Integral Antenna
MAX Conducted Power 11.21dBm(OFDM)
Power Supply 3.0V DC by Battery

3.2. Internal Identification of EUT

EUT ID*	SN or IMEI	HW Version	SW Version
EUT1	1	V05	DS01_00_01.00_17
EUT2	/	V05	DS01_00_01.00_17

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID* Description SN

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment under Test (EUT) is a model of Door & Window Sensor with integrated antenna and inbuilt battery.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

3.5. Interpretation of the Test Environment

For the test methods, the test environment uncertainty figures correspond to an expansion factor k=2.

Measurement Uncertainty

Parameter	Uncertainty
temperature	0.48°C
humidity	2 %
DC voltages	0.003V

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
	FCC CFR 47, Part 15, Subpart C:	
	15.205 Restricted bands of operation;	
FCC Part15	15.209 Radiated emission limits, general requirements;	2015
	15.247 Operation within the bands 902-928MHz,	
	2400-2483.5 MHz, and 5725-5850 MHz.	
ANCI 062 40	American National Standard of Procedures for Compliance	2012
ANSI C63.10	Testing of Unlicensed Wireless Devices	2013

5. Test Results

5.1. Summary of Test Results

SUMMARY OF MEASUREMENT RESULTS	Sub-clause of Part15C	Sub-clause of IC	Verdict
Maximum Peak Output Power	15.247 (b)	1	Р
Peak Power Spectral Density	15.247 (e)	1	Р
Occupied 6dB Bandwidth	15.247 (a)	1	Р
Band Edges Compliance	15.247 (d)	1	Р
Transmitter Spurious Emission - Conducted	15.247 (d)	1	Р
Transmitter Spurious Emission - Radiated	15.247, 15.205, 15.209	1	Р
AC Powerline Conducted Emission	15.107, 15.207	1	NA

Please refer to ANNEX A for detail.

Terms used in Verdict column

Р	Pass, The EUT complies with the essential requirements in the standard.				
NP	Not Perform, The test was not performed by CTTL				
NA	Not Applicable, The test was not applicable				
F	Fail, The EUT does not comply with the essential requirements in the				
	standard				
F	Fail, The EUT does not comply with the essential requirements in the				
	standard				

5.2. Statements

The test cases as listed in section 5.1 of this report for the EUT specified in section 3 was performed by CTTL and according to the standards or reference documents listed in section 4.2 The EUT met all requirements of the standards or reference documents, and only the WLAN function was tested in this report.

The EUT is tested in engineering model, and the duty is about 100%.

5.3. Test Conditions

T nom	Normal Temperature	
T min	Low Temperature	
T max	High Temperature	
V nom	Normal Voltage	

For this report, if the test cases listed above are tested under normal temperature and normal voltage, and also under norm humidity, the specific condition is shown as follows:

Temperature	T nom	26℃
Voltage	V nom	3.0V (By battery)
Humidity	H nom	44%

6. Test Facilities Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration date	Calibration Due date
1	Vector Signal Analyzer	FSQ40	200089	Rohde & Schwarz	2016-06-07	2017-06-06
2	Test Receiver	ESCI	100344	Rohde & Schwarz	2016-03-02	2017-03-01
3	LISN	ESH3Z2	357881052	Rohde & Schwarz	2016-10-06	2017-10-05
4	Shielding Room	S81	/	ETS-Lindgren	/	/

Radiated emission test system

	Natiated emission test system					
No.	Equipment	Model	Serial Number	Manufacturer	Calibration date	Calibratio n Due date
1	Test Receiver	ESU26	100235	Rohde & Schwarz	2016-03-03	2017-03-02
2	Loop antenna	HFH2-Z2	829324/007	Rohde & Schwarz	2014-12-17	2017-12-16
3	BiLog Antenna	VULB9163	301	Schwarzbeck	2014-12-17	2017-12-16
4	Dual-Ridge Waveguide Horn Antenna	3115	6914	EMCO	2014-12-16	2017-12-15
5	Dual-Ridge Waveguide Horn Antenna	3116	2661	ETS-Lindgren	2014-06-18	2017-06-17
6	Vector Signal Analyzer	FSV40	101047	Rohde & Schwarz	2016-06-29	2017-06-28
7	Semi-anechoic chamber	1	CT000332-1 074	Frankonia German	1	/

7. Measurement Uncertainty

7.1. Maximum Output Power

Measurement Uncertainty: 0.339dB,k=1.96

7.2. Peak Power Spectral Density

Measurement Uncertainty: 0.705dBm/MHz,k=1.96

7.3. DTS 6-dB Signal Bandwidth

Measurement Uncertainty: 60.80Hz,k=1.96

7.4. Band Edges Compliance

Measurement Uncertainty: 0.62dBm,k=1.96

7.5. <u>Transmitter Spurious Emission</u>

Conducted (k=1.96)

Frequency Range	Uncertainty(dBm)
30MHz ≤ f ≤ 2GHz	1.22
2GHz ≤ f ≤3.6GHz	1.22
3.6GHz ≤ f ≤8GHz	1.22
8GHz ≤ f ≤12.75GHz	1.51
12.75GHz ≤ f ≤26GHz	1.51
26GHz ≤ f ≤40GHz	1.59

Radiated (k=2)

Frequency Range	Uncertainty(dBm)
30MHz ≤ f ≤ 1GHz	4.86
1GHz ≤ f ≤18GHz	5.26
18GHz ≤ f ≤40GHz	5.28

7.6. AC Power-line Conducted Emission

Measurement Uncertainty: 3.38dBm,k=2

ANNEX A: Detailed Test Results

A.1. Measurement Method

A.1.1. Conducted Measurements

Connect the EUT to the test system as Fig.A.1.1.1 shows.

Set the EUT to the required work mode.

Set the EUT to the required channel.

Set the Vector Signal Analyzer and start measurement.

Record the values. Vector Signal Analyzer

Fig.A.1.1.1: Test Setup Diagram for Conducted Measurements

A.1.2. Radiated Emission Measurements

In the case of radiated emission, the used settings are as follows, Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz; Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 10Hz;

Fig.A.1.2.1: Test Setup Diagram for Radiated Measurements

A.2. Maximum Output Power

Method of Measurement: See ANSI C63.10-2013-clause 11.9.1.2

- a) Set the RBW = 1MHz.
- b) Set the VBW = 3MHz.
- c) Set the span \geq [1.5 \times DTS bandwidth].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector).

Measurement Limit:

Standard	Limit (dBm)
FCC CRF Part 15.247(b)	< 30

EUT ID: EUT2

A.2.1. Peak Output Power-conducted

Measurement Results:

	Test Result (dBm)		
Mode	2405MHz	2440MHz	2480 MHz
	(Ch11)	(Ch18)	(Ch26)
ZigBee	10.68	11.21	10.82

Conclusion: Pass

A.2.2. Average Output Power-conducted

Method of Measurement: See ANSI C63.10-2013-clause 11.9.2.2.2

The procedure for this method is as follows:

- a) Set span = 3MHz.
- b) Set RBW = 100 kHz.
- c) Set VBW = 300 kHz.
- d) Number of points in sweep = 625
- e) Sweep time = auto.
- f) Detector = RMS.
- g) The trigger shall be set to "free run."
- h) Trace average 100 traces in power averaging (rms) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges.

	Test Result (dBm)		
Mode	2405MHz	2440MHz	2480 MHz
	(Ch11)	(Ch18)	(Ch26)
ZigBee	7.45	7.43	6.64

Conclusion: Pass

A.3. Peak Power Spectral Density

Method of Measurement: See ANSI C63.10-2013-clause 11.10.2

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to RBW = 3 kHz.
- d) Set the VBW = 10 kHz.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

Measurement Limit:

Standard	Limit
FCC CRF Part 15.247(e)	< 8 dBm/3 kHz

Measurement Results:

Mode	Frequency (MHz)	-	ectral Density n / MHz)	Conclusion
	2405(CH11)	Fig.B.3.1	-4.30	Р
Zigbee	2440(CH18)	Fig.B.3.2	-3.49	Р
	2480(CH26)	Fig.B.3.3	-4.21	Р

Conclusion: Pass

Test graphs as below:

Fig.A.3.1 Power Spectral Density(802.11b,Ch 11)

Fig.A.3.2 Power Spectral Density (802.11b, Ch 18)

Fig.A.3.3 Power Spectral Density (802.11b, Ch 26)

A.4. DTS 6-dB Signal Bandwidth

Method of Measurement: See ANSI C63.10-2013 section 11.8.1.

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) = 300 kHz.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.247 (a)	≥ 500

EUT ID: EUT2

Measurement Result:

Mode	Frequency (MHz)	Occupied	Channel Bandwidth (MHz)	Conclusion
	2405	Fig.B.4.1.	1.54	Р
Zigbee	2440	Fig.B.4.2.	1.56	Р
	2480	Fig.B.4.3.	1.56	Р

Conclusion: Pass

Test graphs as below:

Fig.A.4.1 Occupied 6dB Bandwidth(Zigbee Channel 11)

Fig.A.4.2 Occupied 6dB Bandwidth (Zigbee Channel 18)

Fig.A.4.3 Occupied 6dB Bandwidth (Zigbee Channel 26)

A.5. Band Edges Compliance

Method of Measurement: See ANSI C63.10-2013-clause 6.10.4

Connect the spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output. Configure the spectrum analyzer settings as described below.

a) Set Span = 100MHzb) Sweep Time: coupledc) Set the RBW= 100 kHzc) Set the VBW= 300 kHz

d) Detector: Peake) Trace: Max hold

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	> 20

EUT ID: EUT2

Measurement Result:

Mode	Channel	Test Results	Conclusion
Zighoo	11	Fig.A.5.1	Р
Zigbee	26	Fig.A.5.2	Р

Conclusion: Pass Test graphs as below:

Fig.A.5.1 Band Edges (Zigbee Channel 11)

Fig.A.5.2 Band Edges (Zigbee Channel 26)

A.6. Transmitter Spurious Emission

A.6.1 Transmitter Spurious Emission – Conducted

Method of Measurement: See ANSI C63.10-2013-clause 11.11.2

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency
- b) Set the span to \geq 1.5 times the DTS bandwidth
- c) Set the RBW= 100 kHz
- d) Set the VBW= 300 kHz
- e) Detector = Peak
- f) Sweep time = auto couple
- g) Trace mode = max hold
- h) Allow trace to fully stabilize
- i) Use the peak marker function to determine the maximum PSD level

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW = 300 kHz.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

Measurement Limit:

Standard	Limit
ECC 47 CED Dort 15 247 (d)	20dB below peak output power in 100 kHz
FCC 47 CFR Part 15.247 (d)	bandwidth

EUT ID: EUT2

Measurement Results:

802.11b mode

MODE	Channel	Frequency Range	Test Results	Conclusion
		2.412 GHz	Fig.A.6.1.1	Р
		30 MHz ~ 1 GHz	Fig.A.6.1.2	Р
		1 GHz ~ 2.5 GHz	Fig.A.6.1.3	Р
	11	2.5 GHz ~ 7.5 GHz	Fig.A.6.1.4	Р
	11	7.5 GHz ~ 10 GHz	Fig.A.6.1.5	Р
		10 GHz ~ 15 GHz	Fig.A.6.1.6	Р
		15 GHz ~ 20 GHz	Fig.A.6.1.7	Р
		20 GHz ~ 26 GHz	Fig.A.6.1.8	Р
		2.437 GHz	Fig.A.6.1.9	Р
	18	30 MHz ~ 1 GHz	Fig.A.6.1.10	Р
		1 GHz ~ 2.5 GHz	Fig.A.6.1.11	Р
Zighaa		2.5 GHz ~ 7.5 GHz	Fig.A.6.1.12	Р
Zigbee		7.5 GHz ~ 10 GHz	Fig.A.6.1.13	Р
		10 GHz ~ 15 GHz	Fig.A.6.1.14	Р
		15 GHz ~ 20 GHz	Fig.A.6.1.15	Р
		20 GHz ~ 26 GHz	Fig.A.6.1.16	Р
		2.462 GHz	Fig.A.6.1.17	Р
		30 MHz ~ 1 GHz	Fig.A.6.1.18	Р
		1 GHz ~ 2.5 GHz	Fig.A.6.1.19	Р
	26	2.5 GHz ~ 7.5 GHz	Fig.A.6.1.20	Р
	20	7.5 GHz ~ 10 GHz	Fig.A.6.1.21	Р
		10 GHz ~ 15 GHz	Fig.A.6.1.22	Р
		15 GHz ~ 20 GHz	Fig.A.6.1.23	Р
		20 GHz ~ 26 GHz	Fig.A.6.1.24	Р

Conclusion: Pass
Test graphs as below:

Fig.A.6.1.1 Transmitter Spurious Emission - Conducted (Zigbee Channel 11, Center Frequency)

Fig.A.6.1.2 Transmitter Spurious Emission - Conducted (Zigbee Channel 11, 30 MHz-1 GHz)

Fig.A.6.1.3 Transmitter Spurious Emission - Conducted (Zigbee Channel 11, 1 GHz-2.5 GHz)

Fig.A.6.1.4 Transmitter Spurious Emission - Conducted (Zigbee Channel 11, 2.5 GHz-7.5 GHz)

Fig.A.6.1.5 Transmitter Spurious Emission - Conducted (Zigbee Channel 11, 7.5 GHz-10 GHz)

Fig.A.6.1.6 Transmitter Spurious Emission - Conducted (Zigbee Channel 11, 10 GHz-15 GHz)

Fig.A.6.1.7 Transmitter Spurious Emission - Conducted (Zigbee Channel 11, 15 GHz-20 GHz)

Fig.A.6.1.8 Transmitter Spurious Emission - Conducted (Zigbee Channel 11, 20 GHz-26 GHz)

Fig.A.6.1.9 Transmitter Spurious Emission - Conducted (Zigbee Channel 18, Center Frequency)

Fig.A.6.1.10 Transmitter Spurious Emission - Conducted (Zigbee Channel 18, 30 MHz-1 GHz)

Fig.A.6.1.11 Transmitter Spurious Emission - Conducted (Zigbee Channel 18, 1 GHz-2.5 GHz)

Fig.A.6.1.12 Transmitter Spurious Emission - Conducted (Zigbee Channel 18, 2.5 GHz-7.5 GHz)

Fig.A.6.1.13 Transmitter Spurious Emission - Conducted (Zigbee Channel 18, 7.5 GHz-10 GHz)

Fig.A.6.1.14 Transmitter Spurious Emission - Conducted (Zigbee Channel 18, 10 GHz-15 GHz)

Fig.A.6.1.15 Transmitter Spurious Emission - Conducted (Zigbee Channel 18, 15 GHz-20 GHz)

Fig.A.6.1.16 Transmitter Spurious Emission - Conducted (Zigbee Channel 18, 20 GHz-26 GHz)

Fig.A.6.1.17 Transmitter Spurious Emission - Conducted (Zigbee Channel 26, Center Frequency)

Fig.A.6.1.18 Transmitter Spurious Emission - Conducted (Zigbee Channel 26, 30 MHz-1 GHz)

Fig.A.6.1.19 Transmitter Spurious Emission - Conducted (Zigbee Channel 26, 1 GHz-2.5 GHz)

Fig.A.6.1.20 Transmitter Spurious Emission - Conducted (Zigbee Channel 26, 2.5 GHz-7.5 GHz)

Fig.A.6.1.21 Transmitter Spurious Emission - Conducted (Zigbee Channel 26, 7.5 GHz-10 GHz)

Fig.A.6.1.22 Transmitter Spurious Emission - Conducted (Zigbee Channel 26, 10 GHz-15 GHz)

Fig.A.6.1.23 Transmitter Spurious Emission - Conducted (Zigbee Channel 26, 15 GHz-20 GHz)

Fig.A.6.1.24 Transmitter Spurious Emission - Conducted (Zigbee Channel 26, 20 GHz-26 GHz)

A.6.2 Transmitter Spurious Emission - Radiated

Method of Measurement: See ANSI C63.10-2013-clause 6.4 &6.5 & 6.6 Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission	Field strength(uV/m)	Field strength(dBuV/m)
(MHz)		
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Frequency (MHz)	Field strength(µV/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30

Test Condition

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission	RBW/VBW	Sweep Time(s)
(MHz)		
30-1000	100KHz/300KHz	5
1000-4000	1MHz/1MHz	15
4000-18000	1MHz/1MHz	40
18000-26500	1MHz/1MHz	20

EUT ID: EUT1

Measurement Results:

Zigbee

Mode	Channel	Frequency Range	Test Results	Conclusion
	Power	2.38GHz ~2.45GHz	Fig.A.6.2.1	Р
	11	1 GHz ~ 3 GHz	Fig.A.6.2.2	Р
	"	3 GHz ~ 18 GHz	Fig.A.6.2.3	Р
		9 kHz ~30 MHz	Fig.A.6.2.4	Р
	18	30 MHz ~1 GHz	Fig.A.6.2.5	Р
Zigbee		1 GHz ~ 3 GHz	Fig.A.6.2.6	Р
		3 GHz ~ 18 GHz	Fig.A.6.2.7	Р
		18 GHz~ 26.5 GHz	Fig.A.6.2.8	Р
	Power	2.45GHz ~2.5GHz	Fig.A.6.2.9	Р
	26	1 GHz ~ 3 GHz	Fig.A.6.2.10	Р
	20	3 GHz ~ 18 GHz	Fig.A.6.2.11	Р

Conclusion: Pass

Note:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss.

 $\ensuremath{P_{\text{Mea}}}$ is the field strength recorded from the instrument.

The measurement results are obtained as described below:

Result=P_{Mea}+A_{Rpl=} P_{Mea}+Cable Loss+Antenna Factor

Average Result:

Zigbee

Ch11

Frequency(MHz)	Result	Cable	Antenna	P _{Mea}	Polarization
Frequency(MHZ)	(dBuV/m)	Loss(dB)	Factor	(dBuV/m)	
2386.250	42.0	-38.8	27.7	53.100	V
17973.500	43.7	-17.7	45.6	15.800	Н
17875.000	43.5	-18.5	45.6	16.400	V
17869.000	43.4	-18.5	45.6	16.300	V
17885.500	43.4	-18.5	45.6	16.300	Н
17879.000	43.4	-18.5	45.6	16.300	Н

Ch18

Fragues av (MI Iz)	Result	Cable	Antenna	P _{Mea}	Polarization
Frequency(MHz)	(dBuV/m)	Loss(dB)	Factor	(dBuV/m)	
17874.000	43.6	-18.5	45.6	16.500	Н
17887.000	43.5	-18.5	45.6	16.400	V
17880.500	43.5	-18.5	45.6	16.400	V
17901.500	43.4	-18.5	45.6	16.300	Н
17874.500	43.4	-18.5	45.6	16.300	V
17891.000	43.4	-18.5	45.6	16.300	Н

Ch26

Frequency(MHz)	Result	Cable	Antenna	P _{Mea}	Polarization
	(dBuV/m)	Loss(dB)	Factor	(dBuV/m)	
2484.535	42.2	-38.9	27.7	53.400	Н
17880.000	43.8	-18.5	45.6	16.700	Н
17864.000	43.8	-18.5	45.6	16.700	V
17875.000	43.8	-18.5	45.6	16.700	V
17879.500	43.7	-18.5	45.6	16.600	Н
17876.000	43.6	-18.5	45.6	16.500	Н

Peak Result:

Zigbee

Ch11

Fragues av (MI Iz)	Result	Cable	Antenna	P _{Mea}	Polarization
Frequency(MHz)	(dBuV/m)	Loss(dB)	Factor	(dBuV/m)	
2386.195	54.9	-38.8	27.7	66.000	V
17909.000	56.0	-18.5	45.6	28.900	Н
17875.000	55.3	-18.5	45.6	28.200	V
17929.500	55.2	-17.7	45.6	27.300	Н
17863.500	55.1	-18.5	45.6	28.000	Н
17669.500	54.9	-18.9	45.6	28.200	V

Ch18

Eroguenov(MHz)	Result	Cable	Antenna	P _{Mea}	Polarization
Frequency(MHz)	(dBuV/m)	Loss(dB)	Factor	(dBuV/m)	
17877.000	55.3	-18.5	45.6	28.200	Н
17889.500	55.1	-18.5	45.6	28.000	Н
17961.500	55.0	-17.7	45.6	27.100	V
17860.000	54.9	-18.5	45.6	27.800	Н
17862.500	54.8	-18.5	45.6	27.700	V
17974.500	54.7	-17.7	45.6	26.800	V

Ch26

Fragues ov (MI Iz)	Result	Cable	Antenna	P _{Mea}	Polarization
Frequency(MHz)	(dBuV/m)	Loss(dB)	Factor	(dBuV/m)	
2483.645	55.2	-38.9	27.7	66.400	V
17983.000	56.1	-17.7	45.6	28.200	Н
17860.500	55.8	-18.5	45.6	28.700	V
17885.000	55.8	-18.5	45.6	28.700	V
17869.000	55.3	-18.5	45.6	28.200	Н
17888.000	55.3	-18.5	45.6	28.200	Н

Test graphs as below:

Fig.A.6.2.1 Transmitter Spurious Emission - Radiated (Power): Zigbee, ch11, 2.38 GHz - 2.43GHz

Fig.A.6.2.2 Transmitter Spurious Emission - Radiated (Zigbee, ch11, 1 GHz-3 GHz)

Fig.A.6.2.3 Transmitter Spurious Emission - Radiated (Zigbee, ch11, 3 GHz-18 GHz)

Fig.A.6.2.4 Transmitter Spurious Emission - Radiated (Zigbee, ch18, 9kHz-30 MHz)

Fig.A.6.2.5 Transmitter Spurious Emission - Radiated (Zigbee, ch18, 30 MHz-1 GHz)

Fig.A.6.2.6 Transmitter Spurious Emission - Radiated (Zigbee, ch18, 1 GHz-3 GHz)

Fig.A.6.2.7 Transmitter Spurious Emission - Radiated (Zigbee, ch18, 3 GHz-18 GHz)

Fig.A.6.2.8 Transmitter Spurious Emission - Radiated (Zigbee, ch18, 18GHz – 26.5GHz)

Fig.A.6.2.9 Transmitter Spurious Emission - Radiated (Power): Zigbee, ch26, 2.45 GHz - 2.50GHz

Fig.A.6.2.10 Transmitter Spurious Emission - Radiated (Zigbee, ch26, 1 GHz-3 GHz)

Fig.A.6.2.11 Transmitter Spurious Emission - Radiated (Zigbee, ch26, 3 GHz-18 GHz)