

Basic Machine Learning: Random Forest

Content

- Consider this example: What are the factors which decide if we going to play gold?
 - Outlook? (Sunny, Overcast, Rainy)
 - o Temperature? (Hot, Mild, Cool)
 - O Humidity? (High, Normal)
 - O Windy? (False, True)
- Label: Play Golf? (Yes / No)

Predictors				Target
Outlook	Temp.	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overoast	Hot	High	Falce	Yes
Sunny	Mild	High	Falce	Yes
Sunny	Cool	Normal	Falce	Yes
Sunny	Cool	Normal	True	No
Overoast	Cool	Normal	True	Yes
Rainy	Mild	High	Falce	No
Rainy	Cool	Normal	Falce	Yes
Sunny	Mild	Normal	Falce	Yes
Rainy	Mild	Normal	True	Yes
Overoast	Mild	High	True	Yes
Overoast	Hot	Normal	Falce	Yes
Sunny	Mild	High	True	No

Find the entropy the target feature.

- a. If sample is completely homogenous, entropy = 0
- b. If sample is equally divided, entropy = 1

$$Entropy(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Yes	No
9	5

Entropy(PlayGolf) = Entropy (5,9) = Entropy (0.36, 0.64) = - (0.36 log₂ 0.36) - (0.64 log₂ 0.64) = 0.94

Entropy = $-0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$

Find the entropy of each feature towards the target.

		Play Golf		
		Yes	No	
	Sunny	3	2	5
Outlook	Overcast	4	0	4
	Rainy	2	3	5
				14


```
\mathbf{E}(PlayGolf, Outlook) = \mathbf{P}(Sunny)^*\mathbf{E}(3,2) + \mathbf{P}(Overcast)^*\mathbf{E}(4,0) + \mathbf{P}(Rainy)^*\mathbf{E}(2,3)
= (5/14)^*0.971 + (4/14)^*0.0 + (5/14)^*0.971
= 0.693
```

- Find the information gain of each feature used to predict the target.
- Information gain: Decrease of entropy after the dataset is split on an attribute
 - Creating decision tree classification is about finding attribute that return the highest IG

$$Gain(T, X) = Entropy(T) - Entropy(T, X)$$

Select feature with the highest Information Gain as the root node.

		Play Golf	
		Yes	No
	Sunny	3	2
Outlook	Overcast	4	0
	Rainy	2	3
Gain = 0.247			

		Play Golf		
		Yes	No	
Humidity	High	3	4	
	Normal	6	1	
Gain = 0.152				

		Play Golf		
		Yes	No	
	Hot	2	2	
Temp.	Mild	4	2	
	Cool	3	1	
Gain = 0.029				

		Play Golf		
		Yes	No	
Winds	False	6	2	
Windy	True	3	3	
Gain = 0.048				

Branch with entropy = 0 is a terminal node (leaf)

Branch with entropy > 0 needs further splitting

Temp	Humidity	Windy	Play Golf
Mild	High	FALSE	Yes
Cool	Normal	FALSE	Yes
Mild	Normal	FALSE	Yes
Cool	Normal	TRUE	No
Mild	High	TRUE	No

Decision tree algorithm is run recursively on the non-leaf branches, until all data is classified

Predictors				Target
Outlook	Temp.	Humidity	Windy	Hours Played
Rainy	Hot	High	Faice	26
Rainy	Hot	High	True	30
Overoast	Hot	High	Falce	48
Sunny	Mild	High	Faice	46
Sunny	Cool	Normal	False	62
Sunny	Cool	Normal	True	23
Overoast	Cool	Normal	True	43
Rainy	Mild	High	Falce	36
Rainy	Cool	Normal	False	38
Sunny	Mild	Normal	Falce	48
Rainy	Mild	Normal	True	48
Overoast	Mild	High	True	62
Overoast	Hot	Normal	Falce	44
Sunny	Mild	High	True	30

- Random forest grow multiple trees as opposed to a single CART (Classification And Regression Tree)
 - The classification forest chooses the result with most votes (over all trees)
 - The regression forest average outputs of different trees
- Random forest use 2 method:
 - Bagging (Bootstrap Aggregating)
 - Random subspace method.

Decision Tree

Random Forest

Shows the use of forests of trees to evaluate the importance of features on an artificial classification task. The red bars are the feature importances of the forest, along with their inter-trees variability.

As expected, the plot suggests that 3 features are informative, while the remaining are not.

Features used at the top of the tree contribute to the final prediction decision of a larger fraction of the input samples

Feature ranking:

- 1. feature 1 (0.295902)
- 2. feature 2 (0.208351)
- 3. feature 0 (0.177632)
- 4. feature 3 (0.047121)
- 5. feature 6 (0.046303)
- 6. feature 8 (0.046013)
- 7. feature 7 (0.045575)
- 8. feature 4 (0.044614)
- 9. feature 9 (0.044577)
- 10. feature 5 (0.043912)

Thanks!