Steps in Data Preprocessing Step 1: Import the necessary libraries

```
# importing libraries
import pandas as pd
import scipy
import numpy as np
from sklearn.preprocessing import MinMaxScaler
import seaborn as sns
import matplotlib.pyplot as plt
```

Step 2: Load the dataset

```
from google.colab import drive
drive.mount('/content/gdrive')
```

Mounted at /content/gdrive

Load the dataset

df = pd.read_csv('/content/gdrive/MyDrive/ADS_PHASE 3.csv')
print(df.head())

	Benzene	Eth-Benzene I		MP-Xvlene		RP	O Xvlen	e PM	10 PM2	. 5	RH \
0		20 5	,				,	-			
0	1.08		0.04	0.00		754.05	2.5	0 140.	23 90.	62 42.	21
1	0.83		0.03	0.00		754.28	1.7	4 124.	91 61.	11 28.	34
2	1.38		0.27	0.06		754.49	2.3	9 114.	27 70.	89 36.	48
3	1.97		0.47	0.12		754.28	3.5	1 128.	15 78.	52 43.	68
4	1.80	0.75		0.20		754.00	4.0	4.00 122.		48 51.	57
	SR	Temp	WD	WS	CC	NH3	NO	NO2	NOx	Ozone	S02
0	125.03	17.90	119.19	0.97	0.51	20.53	4.29	22.95	27.24	44.36	4.97
1	148.95	20.04	71.50	1.21	0.53	17.37	2.80	25.59	28.38	53.04	5.59
2	131.87	18.31	147.10	1.00	0.78	18.45	6.85	30.91	37.75	41.94	10.22
3	129.32	18.56	182.79	1.06	0.81	22.52	7.36	29.05	36.41	44.15	30.99
4	145.73	18.81	183.47	0.91	0.96	19.14	13.15	28.60	41.74	37.13	15.78

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 298 entries, 0 to 297
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	Benzene	298 non-null	float64
1	Eth-Benzene	298 non-null	float64
2	MP-Xylene	298 non-null	float64
3	BP	298 non-null	float64
4	O Xylene	298 non-null	float64
5	PM10	298 non-null	float64
6	PM2.5	298 non-null	float64
7	RH	298 non-null	float64
8	SR	298 non-null	float64
9	Temp	298 non-null	float64
10	WD	298 non-null	float64
11	WS	298 non-null	float64
12	CO	298 non-null	float64
13	NH3	298 non-null	float64
14	NO	298 non-null	float64
15	NO2	298 non-null	float64
16	NOx	298 non-null	float64
17	Ozone	298 non-null	float64
18	S02	298 non-null	float64
1.4	63 164/4	٥١	

dtypes: float64(19) memory usage: 44.4 KB

df.head()

	Benzene	Eth- Benzene	MP- Xylene	ВР	0 Xylene	PM10	PM2.5	RH	SR	Temp	WD	WS	CO	NH3	NO	NO2	NOx
0	1.08	0.04	0.00	754.05	2.50	140.23	90.62	42.51	125.03	17.90	119.19	0.97	0.51	20.53	4.29	22.95	27.24
1	0.83	0.03	0.00	754.28	1.74	124.91	61.11	28.34	148.95	20.04	71.50	1.21	0.53	17.37	2.80	25.59	28.38
2	1.38	0.27	0.06	754.49	2.39	114.27	70.89	36.48	131.87	18.31	147.10	1.00	0.78	18.45	6.85	30.91	37.75
3	1.97	0.47	0.12	754.28	3.51	128.15	78.52	43.68	129.32	18.56	182.79	1.06	0.81	22.52	7.36	29.05	36.41
4	1.80	0.75	0.20	754.00	4.00	122.36	70.48	51.57	145.73	18.81	183.47	0.91	0.96	19.14	13.15	28.60	41.74

df.tail()

	Benzene	Eth- Benzene	MP- Xylene	ВР	0 Xylene	PM10	PM2.5	RH	SR	Temp	WD	WS	со	NH3	NO	NO2	NOx
293	1.31	0.22	0.08	757.14	2.57	178.71	81.02	29.44	207.84	28.43	210.70	1.01	1.01	23.42	6.62	32.33	38.13
294	0.64	0.01	0.00	756.64	2.24	158.81	76.39	32.40	214.16	28.21	132.54	1.20	0.62	21.50	8.26	25.42	33.68
295	0.71	0.07	0.03	756.01	2.03	138.19	63.19	30.18	202.04	28.75	172.23	1.18	0.72	19.76	8.66	27.63	36.29
296	0.89	0.10	0.04	755.72	2.51	144.54	58.81	29.82	206.48	29.82	214.90	1.36	0.83	19.35	9.01	27.79	36.80
297	1.10	0.20	0.08	756.84	2.82	152.39	62.50	34.85	167.95	28.89	169.89	0.97	0.91	17.60	8.92	33.32	42.24

STEP 3: check the null values

```
df.isnull().sum()
```

Benzene Eth-Benzene MP-Xylene O Xylene 0 PM10 0 PM2.5 0 RH 0 SR 0 0 Temp WD 0 WS 0 CO 0 NH3 NO NO2 0 NOx 0 Ozone 0 S02 0 dtype: int64

df.describe()

SR Temp 298.000000 298.00000 2 208.083020 30.42802 1 50.891946 5.45345 69.960000 16.67000 168.785000 28.14250 1 210.255000 30.86500 2 249.402500 34.15250 2 309.610000 40.07000 2

Step 5: Check the outliers

```
# Box Plots
fig, axs = plt.subplots(9,1,dpi=95, figsize=(7,17))
i = 0
for col in df.columns:
    axs[i].boxplot(df[col], vert=False)
    axs[i].set_ylabel(col)
    i+=1
plt.show()
```

