Non-linear Models-VI

CS771: Introduction to Machine Learning
Purushottam Kar

Answering the Fan Mail

- None this week.
- Assignment 3 is out. Deadline Nov 14, 2359 hrs
- Discussion session this Sunday, Nov 5, 6PM, RM101
- Please submit questions to http://tinyurl.com/ml17-18ads2
- Please submit questions latest by Friday, Nov 3
- Please (re)upload your project proposals to GS by Sun, Nov 5
- Make sure all teammates are linked to the (group) submission

Recap

The Generalized Perceptron

- Simply a linear model will a wrapper thrown around it
- Makes predictions as

$$\hat{y} = f(\langle \mathbf{w}, \mathbf{x} \rangle)$$

Given lots of data points

$$(\mathbf{x}^1, y^1), \dots, (\mathbf{x}^n, y^n), \mathbf{x}^i \in \mathbb{R}^d$$

• ... and a loss function

$$\ell \colon \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$$

• ... training a perceptron involves finding

$$\arg\min_{\mathbf{w}\in\mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(f(\langle \mathbf{w}, \mathbf{x}^i \rangle), y^i) =: \arg\min_{\mathbf{w}\in\mathbb{R}^d} F(\mathbf{w})$$

Gradient Descent Revisited

GRADIENT DESCENT

- 1. Initialize \mathbf{w}^0
- i2. For t = 1, 2, ...
 - 1. Obtain a descent direction \mathbf{g}^t
 - 2. Update $\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t \eta_t \cdot \mathbf{g}^t$
- 3. Repeat until convergence
- How to find a descent direction?
- How to choose a step length?
- How to detect convergence?
- How to avoid overfitting?

Have to be more careful than earlier since now, problems are not nicely behaved

Choosing a descent direction

$$\arg\min_{\mathbf{w}\in\mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(f(\langle \mathbf{w}, \mathbf{x}^i \rangle), y^i) =: \arg\min_{\mathbf{w}\in\mathbb{R}^d} F(\mathbf{w})$$

Batch gradient

$$\mathbf{g}^{t} = \nabla F(\mathbf{w}^{t}) = \frac{1}{n} \sum_{i=1}^{n} \ell' (f(\langle \mathbf{w}^{t}, \mathbf{x}^{i} \rangle), y^{i}) \cdot f'(\langle \mathbf{w}^{t}, \mathbf{x}^{i} \rangle) \cdot \mathbf{x}^{i}$$

• Mini-batch gradient: choose a mini-batch $I_1^t, I_2^t, \dots, I_B^t \sim [n]$

$$\mathbf{g}^{t} = \frac{1}{B} \sum_{i=1}^{B} \ell' \left(f\left(\left\langle \mathbf{w}^{t}, \mathbf{x}^{l_{j}^{t}} \right\rangle \right), y^{i} \right) \cdot f'\left(\left\langle \mathbf{w}^{t}, \mathbf{x}^{l_{j}^{t}} \right\rangle \right) \cdot \mathbf{x}^{l_{j}^{t}}$$

• Newton's method

$$\mathbf{g}^t = \left(\nabla^2 F(\mathbf{w}^t)\right)^{-1} \nabla F(\mathbf{w}^t)$$

Choosing a descent direction

$$\arg\min_{\mathbf{w}\in\mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(f(\langle \mathbf{w}, \mathbf{x}^i \rangle), y^i) =: \arg\min_{\mathbf{w}\in\mathbb{R}^d} F(\mathbf{w})$$

Batch gradient

Chain rule!

Very small batch sizes usually not used for deep networks

$$\mathbf{g}^{t} = \nabla F(\mathbf{w}^{t}) = \frac{1}{n} \sum_{i=1}^{n} \ell'(f(\langle \mathbf{w}^{t}, \mathbf{x}^{i} \rangle), y^{i}) \cdot f'(\langle \mathbf{w}^{t}, \mathbf{x}^{i} \rangle)$$

• Mini-batch gradient: choose a mini-batch $I_1^t, I_2^t, ..., I_R^t \sim [n]$

$$\mathbf{g}^{t} = \frac{1}{B} \sum_{i=1}^{B} \ell' \left(f\left(\left\langle \mathbf{w}^{t}, \mathbf{x}^{I_{j}^{t}} \right\rangle \right), y^{i} \right) \cdot f' \left(\left\langle \mathbf{w}^{t} \right| \right)$$
For a NN with E edges, $\mathcal{O}(E^{3})$ time

per iteration!

Newton's method

$$\mathbf{g}^t = \left(\nabla^2 F(\mathbf{w}^t)\right)^{-1} \nabla F(\mathbf{w}^t)$$

Expensive! $O(d^3)$ time per iteration

How to detect convergence

- Tolerance technique
 - For a predecided tolerance value ϵ , if $F(\mathbf{w}^t) < \epsilon$, stop
- Zero-th order technique
 - If function value has not changed too much between iterations, stop!

$$|F(\mathbf{w}^{t+1}) - F(\mathbf{w}^t)| < \tau$$

- First order technique
 - If gradient is too "small" $\|\nabla F(\mathbf{w}^t)\|_2 < \delta$, stop!
- Primal dual
 - If primal and dual objective values are close, stop
 - Does not work every where reliable for convex problems

How to decide step length?

- Choose $\eta_t \to 0$ (diminishing) and $\Sigma \eta_t \to \infty$ (infinite travel)
- Example $\eta_t = C/\sqrt{t}$ or $\eta_t = C/t$ for some C > 0
- Line search super careful but expensive $\eta_t = \arg\min_{\eta \geq 0} F(\mathbf{w}^t \eta \cdot \mathbf{g}^t)$
- Momentum methods: don't let the procedure take zig-zag routes
 - Nesterov's Accelerated Gradient (NAG)
- Adaptive step length: control how much each coordinate of w gets updated. Slow down coordinates getting too many updates and speed up training along coordinates not getting updated
 - Adagrad, RMSProp, Adam

How to prevent overfitting?

- Add a regularization term L_2/L_1 to the objective $\arg\min_{\mathbf{w}\in\mathbb{R}^d}F(\mathbf{w})+\lambda\cdot\|\mathbf{w}\|_2^2$
- Gradient/step length calculations still easy to perform
- Constraint the weights of the network to satisfy $|\mathbf{w}_i| < r$ for all i arg $\min_{\|\mathbf{w}\|_{\infty} < r} F(\mathbf{w})$
- Sometimes gradient coordinates are also clipped this way
- Noise injection in output
 - For binary classification $y^i = 0 \rightarrow y^i = \epsilon, \ y^i = 1 \rightarrow y^i = 1 \epsilon$
 - For regression problems, $y^i \to y^i + \epsilon^i$, where $\epsilon^i \sim \mathcal{N}(0, \sigma^2)$
 - Can be shown to be equivalent to regularization in nice cases

How to prevent overfitting?

- Early stopping return model with best validation set performance rather than best training set performance
- Can use many of these strategies in combination
- Parameter sharing add constraints of the form

$$\mathbf{w}_i = \mathbf{w}_j$$

- Sparse recovery constrain, say at least 10% weights to be zero $\|\mathbf{w}\|_0 \le k \ll d$
- Dropout will see in a short while!

Multilayer Perceptron

- d inputs, L hidden layers
- k_l nodes in l-th layer
- $W^l \in \mathbb{R}^{k_{l-1} \times k_l}$ weights from layer l-1 to l
- $\mathbf{v} \in \mathbb{R}^{k_L}$ weights from layer L to output node
- $\mathbf{h}^l \in \mathbb{R}^{k_l}$ o/p by layer l
- \hat{y} output of the network

$$\bullet \mathbf{h}^l = f\left(\left(W^l \right)^\mathsf{T} \mathbf{h}^{l-1} \right)$$

•
$$f(\mathbf{u}) = [f(\mathbf{u}_1), \dots, f(\mathbf{u}_k)]$$

•
$$\hat{y} = \langle \mathbf{v}, \mathbf{h}^L \rangle$$

- ullet d inputs, L hidden layers
- k_l nodes in l-th layer
- $W^l \in \mathbb{R}^{k_{l-1} \times k_l}$ weights from layer l-1 to l
- $\mathbf{v} \in \mathbb{R}^{k_L}$ weights from layer L to output node
- $\mathbf{h}^l \in \mathbb{R}^{k_l}$ o/p by layer l
- \hat{y} output of the network

$$\mathbf{h}^{l} = f\left(\left(W^{l}\right)^{\mathsf{T}} \mathbf{h}^{l-1}\right)$$

•
$$f(\mathbf{u}) = [f(\mathbf{u}_1), \dots, f(\mathbf{u}_k)]$$

•
$$\hat{y} = \langle \mathbf{v}, \mathbf{h}^L \rangle$$

- C output nodes
- $\hat{\mathbf{y}} \in \mathbb{R}^C$ o/p of network
- $V \in \mathbb{R}^{k_L \times C}$ weights from layer L to output layer
- $\hat{\mathbf{y}} = V^{\mathsf{T}} \mathbf{h}^L$
- $W^2 \cdot \dots \text{ or else } \hat{\mathbf{y}} = g(V^\mathsf{T} \mathbf{h}^L)$
 - E.g. g: softmax, maxout

- C output nodes
- $\hat{\mathbf{y}} \in \mathbb{R}^C$ o/p of network
- $V \in \mathbb{R}^{k_L \times C}$ weights from layer L to output layer
- $\hat{\mathbf{y}} = V^{\mathsf{T}} \mathbf{h}^L$
- $W^2 \cdot \dots$ or else $\hat{\mathbf{y}} = g(V^\mathsf{T} \mathbf{h}^L)$
 - E.g. g: softmax, maxout

- C output nodes
- $\hat{\mathbf{y}} \in \mathbb{R}^C$ o/p of network
- $V \in \mathbb{R}^{k_L \times C}$ weights from layer L to output layer
- $\hat{\mathbf{y}} = V^{\mathsf{T}} \mathbf{h}^L$
- $W^2 \cdot \dots \text{ or else } \hat{\mathbf{y}} = g(V^\mathsf{T} \mathbf{h}^L)$
 - E.g. g: softmax, maxout

The Backpropagation Algorithm

- We have seen how to use Gradient Descent to train perceptron
- Backprop is used to perform GD on multilayer networks
- Basically chain-rule + intelligent bookkeeping
- Recall, we used bookkeeping to do coordinate descent in $\mathcal{O}(n)$ time
- Backprop is still the defacto training technique for most NN
- Indications that this may (have to) change [Hinton 2017]

- Let x = f(y), y = g(z), z = h(w) where $x, y, z, w \in \mathbb{R}$ and $f, g, h: \mathbb{R} \to \mathbb{R}$
- Chain rule of calculus

$$\frac{dx}{dw} = \frac{dx}{dy} \cdot \frac{dy}{dz} \cdot \frac{dz}{dw} = f'(y) \cdot g'(z) \cdot h'(w)$$

- What about multivariate versions?
- Let x = f(y) where $x \in \mathbb{R}, y \in \mathbb{R}^q$ and $f: \mathbb{R}^q \to \mathbb{R}$ notion of gradient $\frac{dx}{d\mathbf{v}} = \nabla f(\mathbf{y}) \in \mathbb{R}^{1 \times q}$
- If $\mathbf{x} = f(\mathbf{y})$ where $\mathbf{x} \in \mathbb{R}^p$, $\mathbf{y} \in \mathbb{R}^q$ and $f: \mathbb{R}^q \to \mathbb{R}^p$ notion of Jacobian

• Think of
$$f(\mathbf{y}) = [f_1(\mathbf{y}), ..., f_p(\mathbf{y})]^{\mathsf{T}}$$
 as a vector of functions
$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}\mathbf{y}} = J^f \text{ where }, J_{ij}^f = \frac{d\mathbf{x}_i}{d\mathbf{y}_j} \text{ i. e. } J^f = \begin{bmatrix} \nabla f_1(\mathbf{y}) \\ \vdots \\ \nabla f_p(\mathbf{y}) \end{bmatrix} \in \mathbb{R}^{p \times q}$$

- Let x = f(y), y = g(z), z = h(w) where $x, y, z, w \in \mathbb{R}$ and $f, g, h: \mathbb{R} \to \mathbb{R}$
- Chain rule of calculus

$$\frac{dx}{dw} = \frac{dx}{dy} \cdot \frac{dy}{dz} \cdot \frac{dz}{dw} = f'(y) \cdot g'(z) \cdot h'(y)$$
 different notation where $\nabla f(\mathbf{v})$ is a

Notice slightly where $\nabla f(\mathbf{y})$ is a row vector

- What about multivariate versions?
- Let $x=f(\mathbf{y})$ where $x\in\mathbb{R},\mathbf{y}\in\mathbb{R}^q$ and $f\colon\mathbb{R}^q$ notion of gradient $\frac{dx}{d\mathbf{v}} = \nabla f(\mathbf{y}) \in \mathbb{R}^{1 \times q}$
- If $\mathbf{x} = f(\mathbf{y})$ where $\mathbf{x} \in \mathbb{R}^p$, $\mathbf{y} \in \mathbb{R}^q$ and $f: \mathbb{R}^q \to \mathbb{R}^p$ notion of Jacobian
- Think of $f(\mathbf{y}) = \big[f_1(\mathbf{y}), \dots, f_p(\mathbf{y})\big]^\mathsf{T}$ as a vector of functions

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}\mathbf{y}} = J^f \text{ where }, J_{ij}^f = \frac{d\mathbf{x}_i}{d\mathbf{y}_j} \text{ i. e. } J^f = \begin{bmatrix} \nabla f_1(\mathbf{y}) \\ \vdots \\ \nabla f_p(\mathbf{y}) \end{bmatrix} \in \mathbb{R}^{p \times q}$$

- Let x = f(y), y = g(z) where $x \in \mathbb{R}$, $y \in \mathbb{R}^q$, $z \in \mathbb{R}^r$ and $f : \mathbb{R}^q \to \mathbb{R}^q$ $\mathbb{R}, g \colon \mathbb{R}^r \to \mathbb{R}^q$
- The chain rule becomes a bit more involved here (proof nontrivial)

$$\frac{dx}{d\mathbf{z}_{j}} = \sum_{i=1}^{q} \frac{dx}{d\mathbf{y}_{i}} \cdot \frac{d\mathbf{y}_{i}}{d\mathbf{z}_{j}}$$
 Remember our slightly different notation where

Thus we have

different notation where $\nabla f(\mathbf{y})$ is a row vector

$$\frac{dx}{d\mathbf{z}} = \nabla f(\mathbf{y}) \cdot J^g \in \mathbb{R}^{1 \times r}$$

• Similarly, if we have $\mathbf{x} = f(\mathbf{y}), \mathbf{y} = g(\mathbf{z})$ where $x \in \mathbb{R}^p, \mathbf{y} \in \mathbb{R}^q, \mathbf{z} \in \mathbb{R}^r$

$$\frac{d\mathbf{x}}{d\mathbf{z}} = J^f \cdot J^g$$

- This actually extends very cleanly to more complex instances
- If $\mathbf{x} = f(\mathbf{y}), \mathbf{y} = g(\mathbf{z}), \mathbf{z} = h(\mathbf{w})$ where $x \in \mathbb{R}^p, \mathbf{y} \in \mathbb{R}^q, \mathbf{z} \in \mathbb{R}^r, \mathbf{w} \in \mathbb{R}^s$ $\frac{d\mathbf{x}}{d\mathbf{w}} = J^f \cdot J^g \cdot J^h$
- It also unifies the previous cases beautifully
- Consider a function $\mathbf{x} = f(\mathbf{y})$ where $x \in \mathbb{R}^p$, $\mathbf{y} \in \mathbb{R}^q$
 - If p = q = 1 (basic case), Jacobian is simply a 1×1 matrix (a real number)
 - If p=1 and q>1 (real valued function on vector space), Jacobian becomes a row vector
 - If p > 1 and q = 1 and no **w** (vector valued function on the real line), Jacobian becomes a column vector
- However, $\frac{d\mathbf{x}}{d\mathbf{w}} = J^f \cdot J^g \cdot J^h$ always applies if careful with dimensions

• If $\mathbf{x} = f(\mathbf{y})$, $\mathbf{y} = g(\mathbf{z})$, $\mathbf{z} = h(\mathbf{w})$ where $\mathbf{x} \in \mathbb{R}$ $\frac{d\mathbf{x}}{d\mathbf{w}} = f'(\mathbf{y}) \cdot g'(\mathbf{z}) \cdot h'(\mathbf{w})$

$$\frac{dx}{dw} = f'(y) \cdot g'(z) \cdot h'(w)$$

- $\frac{d\mathbf{x}}{d\mathbf{w}} = J^f \cdot J^g \cdot J^h$ It also unifies the previous cases beautifully
- Consider a function $\mathbf{x} = f(\mathbf{y})$ where $x \in \mathbb{R}^p$, $\mathbf{y} \in \mathbb{R}^q$
 - If p = q = 1 (basic case), Jacobian is simply a 1×1 matrix (a real number)
 - If p = 1 and q > 1 (real valued function on vector space), Jacobian becomes a row vector
 - If p > 1 and q = 1 and no **w** (vector valued function on the real line), Jacobian becomes a column vector
- However, $\frac{d\mathbf{x}}{d\mathbf{w}} = J^f \cdot J^g \cdot J^h$ always applies if careful with dimensions

- $\hat{y} = \langle \mathbf{v}, \mathbf{h}^2 \rangle$ is the output of the NN
- We wish to train using GD on

$$F(\mathbf{v}, W^2, W^1) = \sum_{i=1}^{n} \ell(\hat{y}^i, y^i) = \sum_{i=1}^{n} \ell^i$$

Need only describe how to calculate $d\ell^i \ d\ell^i \ d\ell^i$

$$\frac{d\ell^i}{d\mathbf{v}}$$
, $\frac{d\ell^i}{dW^2}$, $\frac{d\ell^i}{dW^1}$

First is easy

$$\frac{d\ell^i}{d\mathbf{v}} = \frac{d\hat{\ell}^i}{d\hat{y}^i} \cdot \frac{d\hat{y}^i}{d\mathbf{v}} = \ell'(\hat{y}^i, y^i) \cdot \mathbf{h}^{2,i}$$

• $\mathbf{h}^{2,i}$ is the o/p of the 2nd hidden layer on the *i*-th data point

• $\hat{y} = \langle \mathbf{v}, \mathbf{h}^2 \rangle$ is the output of the NN We wish to train using GD on

$$\begin{array}{c|c}
\hline
id \\
\Sigma
\end{array}$$

same dimensions as v

... and
$$\mathbf{h}^{2,i}$$
 does have the same dimensions as \mathbf{v} $W^2,W^1)=\sum_{i=1}^{\infty}\ell(\hat{y}^i,y^i)=\sum_{i=1}^{\infty}\ell^i$

Remember, $\frac{d\ell^i}{d\mathbf{v}}$ must $\sqrt{2}$

have dimensions of ${f v}$

only describe how to calculate $d\ell^i$

$$\overline{d\mathbf{v}}$$
 av^2 , $\overline{dW^1}$

Eirst is easy

$$\frac{d\ell^i}{d\mathbf{v}} = \frac{d\hat{\ell}^i}{d\hat{y}^i} \cdot \frac{d\hat{y}^i}{d\mathbf{v}} = \ell'(\hat{y}^i, y^i) \cdot \mathbf{h}^{2,i}$$

• $\mathbf{h}^{2,i}$ is the o/p of the 2nd hidden layer on the i-th data point

Second is more challenging

$$\frac{d\ell^{i}}{dW^{2}} = \frac{d\ell^{i}}{d\hat{y}^{i}} \cdot \frac{d\hat{y}^{i}}{dW^{2}} = \ell'(\hat{y}^{i}, y^{i}) \cdot \frac{d\hat{y}^{i}}{dW^{2}}$$

$$= \ell'(\hat{y}^{i}, y^{i}) \cdot \frac{d\hat{y}^{i}}{d\mathbf{h}^{2,i}} \cdot \frac{d\mathbf{h}^{2,i}}{dW^{2}} = \ell'(\hat{y}^{i}, y^{i}) \cdot \mathbf{v} \cdot \frac{d\mathbf{h}^{2,i}}{dW^{2}}$$

- W^2 Use the fact that $\mathbf{h}^{2,i} = f\left((W^2)^\mathsf{T}\mathbf{h}^{1,i}\right)$

• Why did we not consider
$$\frac{d\hat{y}^i}{d\mathbf{v}}$$
 above?
$$\frac{d\hat{y}^i}{dW^2} = \frac{d\hat{y}^i}{d\mathbf{h}^{2,i}} \cdot \frac{d\mathbf{h}^{2,i}}{dW^2} + \frac{d\hat{y}^i}{d\mathbf{v}} \cdot \frac{d\mathbf{v}}{dW^2}$$

• We could have but $\frac{d\mathbf{v}}{d\mathbf{w}^2} = \mathbf{0}$ since \mathbf{v} is not a function of W^2

 W^1

Careful, $\frac{d\mathbf{h}^{2,i}}{dW^2}$ is a 3-D matrix (3D tensor)

 \mathbf{X}_2

 \mathbf{x}_d

Second is more challenging

$$\frac{d\ell^{i}}{dW^{2}} = \frac{d\ell^{i}}{d\hat{y}^{i}} \cdot \frac{d\hat{y}^{i}}{dW^{2}} = \ell'(\hat{y}^{i}, y^{i}) \cdot \frac{d\hat{y}^{i}}{dW^{2}}$$

$$= \ell'(\hat{y}^{i}, y^{i}) \cdot \frac{d\hat{y}^{i}}{d\mathbf{h}^{2,i}} \cdot \frac{d\mathbf{h}^{2,i}}{dW^{2}} = \ell'(\hat{y}^{i}, y^{i}) \cdot \mathbf{v} \cdot \frac{d\mathbf{h}^{2,i}}{dW^{2}}$$

- W^2 Use the fact that $\mathbf{h}^{2,i} = f\left((W^2)^{\mathsf{T}}\mathbf{h}^{1,i}\right)$
 - Why did we not consider $\frac{d\hat{y}^i}{d\mathbf{v}}$ above?

$$\frac{d\hat{y}^i}{dW^2} = \frac{d\hat{y}^i}{d\mathbf{h}^{2,i}} \cdot \frac{d\mathbf{h}^{2,i}}{dW^2} + \frac{d\hat{y}^i}{d\mathbf{v}} \cdot \frac{d\mathbf{v}}{dW^2}$$

• We could have but $\frac{d\mathbf{v}}{dW^2} = \mathbf{0}$ since \mathbf{v} is not a function of W^2

Bookkeeping in Backprop

• Lower derivatives get more and more costly
$$\frac{d\ell^i}{dW^1} = \frac{d\ell^i}{d\hat{y}^i} \cdot \frac{d\hat{y}^i}{d\mathbf{h}^{2,i}} \cdot \frac{d\mathbf{h}^{2,i}}{d\mathbf{h}^{1,i}} \cdot \frac{d\mathbf{h}^{1,i}}{dW^1}$$

- We have ignored the terms $\frac{\mathrm{d}\ell^i}{dy^i}$, $\frac{d\hat{y}^i}{d\mathbf{v}}$, $\frac{d\mathbf{h}^{2,i}}{dw^2}$, $\frac{d\mathbf{h}^{1,i}}{d\mathbf{x}^i}$ (\mathbf{x}^i is the input layer) since $\frac{dy^i}{dw^1} = \frac{d\mathbf{v}}{dw^1} = \frac{d\mathbf{w}^2}{dw^1} = \frac{d\mathbf{x}^i}{dw^1} = \mathbf{0}$ (\mathbf{x}^i , y^i are constants)
- Note that quantities like $\frac{d\ell^i}{d\hat{y}^i}$, $\frac{d\hat{y}^i}{d\mathbf{h}^{2,i}}$ get used again and again
- Better to compute them once and store them bookkeeping
- Basically what frameworks like Theano, TensorFlow, Torch do
- Which is why they take up so much memory as well!

Dropout

Dropout

- An effort to make networks more resilient to noise, node failure
- Side effect is slightly faster training and regularization
- Basic idea is to train sparse networks (lots of edges missing)
- The lead author of the Dropout paper is an IITK alumni ©
- During training, before applying mini-batch gradient descent
 - Randomly sample a subset of input nodes (choose each with prob 20%)
 - Randomly sample a subset of hidden nodes (choose each w/p 50%)
 - Remove those nodes, and corresponding edges from the network
 - Apply mini-batch gradient descent-backprop to the remaining network
 - Keep using NAG, AdaGrad etc as usual
- Forces nodes to learn to work in absence of other nodes robust!

28% networks have no input nodes or no path connecting at least one input node to the output node (cannot apply GD to them)

Dropout at Test time

- Can do dropout at test time too
- What is desirable is to achieve the average effect of all the sparse subnetworks in the previous slide
- The above becomes intractable (kind of like Bayesian inference)
- Approximations used
 - Sample several networks using same sampling techniques, predict using each and take the average prediction
 - Simply scale the output of each node in the NN with the probability it would have been missing
 - See Deep Learning book [GBC] for a more detailed discussion

Data Modelling with NNs

Networks that model/generate data

- Note: feedforward networks are discriminative
- Generative networks exist too!
- Too vast an area to do justice in one-and-a-half lectures
- Several flavours exist
 - Autoencoders (akin to PCA/PPCA)
 - Boltzmann machines (restricted/convolutional/fully-connected)
 - Deep belief networks
- Will just look at autoencoders briefly since they mimic PCA
- [GBC] contains a detailed description of other architectures

Autoencoders

- Recall that in PCA, a latent variable ${f z}$ generated the data as ${f x}=W{f z}+{f \epsilon}$
- Also recall that if we could find W, then we had $\mathbf{z} = W^{\mathsf{T}}\mathbf{x}$
- Thus, we cast the problem as that of regenerating the data $\|\mathbf{x} WW^{\mathsf{T}}\mathbf{x}\|_2^2$
- \bullet However, since W is low-rank, we are forced to regenerate the data using a low-rank representation
- Autoencoders do pretty much the same
- An encoder converts data to a hidden representation $\mathbf{h} = e(\mathbf{x})$
- A decoder produces a reconstruction $\mathbf{r} = d(\mathbf{h})$
- Want to minimize loss $\ell(d(\mathbf{h}), \mathbf{x}) = \ell(d(e(\mathbf{x})), \mathbf{x})$

Deep Autoencoders

- Encoder is $e(\mathbf{x}) = f((W^1)^\mathsf{T}\mathbf{x})$
- Decoder is $d(\mathbf{h}) = (W^2)^{\mathsf{T}} \mathbf{h}$
- Reconstruction is $(W^2)^T f((W^1)^T \mathbf{x})$
- Training done using $\ell\left((W^2)^{\mathsf{T}}f\big((W^1)^{\mathsf{T}}\mathbf{x}\big),\mathbf{x}\right)$
- For example $\left\| (W^2)^{\mathsf{T}} f \left((W^1)^{\mathsf{T}} \mathbf{x} \right) \mathbf{x} \right\|_2^2$
- Undercomplete AE: # hidden nodes less than # input nodes
- Prevents encoded and decoder from being trivial indentity function

Autoencoder Variants

- Often some noise is added to input ${\bf x}$ to avoid overfitting, $\ell \big(d \big(e({\bf x} + {\boldsymbol \epsilon}) \big), {\bf x} \big)$
 - Denoising autoencoder!
- Note: PCA is an autoencoder too ... just a linear one
- Also, it fixes $W^2 = W^1 = W$
- Interestingly, this was done in the past for autoencoders too
- Pretraining phase train with constraint $W^2 = W^1$
- Fine-tuning phase train allowing the two to differ
- However, these days it is common to learn W^1, W^2 separately from scratch. No pretraining and fine-tuning phases

Autoencoder Variants

- Can have overcomplete autoencoders as well need to be careful
- Sparse autoencoders force lots of edge weights to be zero
- Can have several hidden layers learn compressed representations in several stages
- Possible to take 780-dimensional MNIST dataset and reduce to 7-dimensional representation without loss of too much information
- SVMs applied to 7-dimensional version do almost as well as SVMs applied to 780-dimensional version [LeCun]
- Such a drastic reduction not possible in practice in one shot
- AE needs several layers to gradually reduce dimensionality e.g. $780 \rightarrow 500 \rightarrow 100 \rightarrow 50 \rightarrow 7 \rightarrow 50 \rightarrow 100 \rightarrow 500 \rightarrow 780$

Please give your Feedback

http://tinyurl.com/ml17-18afb

