Calculus

		O 1:	
Limits	ana	CODTIN	
	41111		v
	MIIM		
			_

Limits	5
Limits of a Functions and Sequences	5
Properties of Limits	6
One-Sided Limit	6
Continuity	7
Continuous Functions	7
Intermediate Value Theorem	7
Limits Involving Infinity	8
Limits at Infinity and Infinite Limits	8
Asymptotes of functions	
Derivatives	
Derivative Fundamentals	9
Derivative Notation	9
Differentiation Rules	10
Linear, Product, Chain, Inverse	10
Powers, Polynomials, Quotients, Reciprocals	10
Exponential, Logarithmic	10
Trigonometric, Hyperbolic	10
Differentials and Related Concepts	11
Differentials	11
Linearization	11
Implicit Differentiation	11
Related Rates	11
Applications of Derivatives	
Stationary Point	12
Maxima and Minima	12
Extreme Value Theorem	12
Interior Extremum Theorem	12
Mean Value Theorem	13
Rolle's Theorem	13
Corollaries of the Mean Value Theorem	13
Monotonic Functions	13
Derivative Tests	14
First-Derivative Test	14

Second-Derivative Test	14
Concavity	14
Higher-Order Derivative Test	14
Differential Methods	15
Newton's Method	15
Taylor's Theorem	15
General Leibniz Rule	15
Integrals	
Integral Fundamentals	16
Terminology and Notation	16
Primer: Formal Definitions	16
Definite Integrals	17
Riemann Integral	17
Integrability	17
Properties of Definite Integrals	17
The Fundamental Theorem of Calculus	18
Fundamental Theorem, Part 1	18
Fundamental Theorem, Part 2	18
The Integral of a Rate	
Total Area	18
Integration By Substitution	19
Indefinite Integrals	
Definite Integrals	
Symmetric Functions	
Area Between Curves	19
Applications of Definite Integrals	
Solid of Revolution	20
Disc Integration	20
Shell Integration	20
Arc Length	21
Dealing with Discontinuities	21
Differential Arc Length	21
Surface of Revolution	22
Revolution about the y-Axis	22
Transcendental Functions	
Inverse Functions	23
One-to-One Functions	23
Derivative Rule for Inverses	23
Logarithmic Functions	24

Natural Logarithm	24
Properties of Logarithms	24
Trigonometric Integrals	24
Logarithmic Differentiation	24
Exponential Functions	25
Euler's Number	25
Natural Exponential Function	25
Laws of Exponents	25
General Exponential Function	25
Exponential Change	26
Separable Differential Equations	26
Examples of Exponential Change	26
Indeterminate Forms	27
Indeterminate Form 0/0	27
ĽHôpital's Rule	27
Infinite Indeterminate Forms	27
Indeterminate Powers	27
Inverse Trigonometric Functions	28
Principal Trigonometric Values	28
Inverse Trigonometric Tables	28
Hyperbolic Functions	29
Hyperbolic Function Tables	29
Techniques of Integration	
Integration by Parts	30
Definite Integrals by Parts	30
Trigonometric Integral Methods	31
Trigonometric Products and Powers	
Trigonometric Square Roots	
Trigonometric Substitutions	31
Partial Fraction Decomposition	32
Partial Fraction Principles	32
General Statement	32
Numerical Integration	33
Trapezoidal Rule	33
Simpson's Rule	33
Improper Integrals	34
Indirect Evaluation	34

Infinite Sequences and Series

First-Order Differential Equations

Parametric Equations and Polar Coordinates

Vectors and Vector-Valued Functions

Partial Derivatives

Multiple Integrals

Vector Calculus

Second-Order Differential Equations

Limits and Continuity

Limits

- Limit [%] | Thomas (2.2-2.4) [■]
- **Limit** $\lim_{x\to c}$: the value of a function (or sequence) as the input (or index) approaches some value (note: an informal definition).
 - Limits are used to define continuity[↓], derivatives[↓], and integrals[↓].

Limits of a Functions and Sequences

- **Limit of a function**: a fundamental concept in calculus and analysis concerning the behavior of a function near a particular input *c*, i.e.,

$$\lim_{x \to c} f(x) = L$$

- Reads as "f of x tends to L as x tends to c"
- \circ ϵ , δ Limit of a function: a formalized definition, wherein f(x) is defined on an open interval \mathcal{I} , except possibly at c itself, leading to the informal definition, if and only if

$$f: \mathbb{R} \to \mathbb{R}, c, L \in \mathbb{R} \Rightarrow \lim_{x \to c} f(x) = L$$

$$\updownarrow$$

$$\forall \varepsilon > 0 (\exists \delta > 0 : \forall x \in \mathcal{I} (0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon))$$

- Functions do not have a limit when the function:
 - has a unit step, i.e., it "jumps" at a point;
 - is not bounded, i.e., it tends towards infinity;
 - or it oscillate, i.e., it does not stay close to any single number.
- **Limit of a sequence**: the value that the terms of a sequence $(x_n)_{n\in\mathbb{N}}$ "tends to" (and not to any other) as n approaches infinity (or some other point), i.e.,

$$\lim_{n\to\infty} x_n = x$$

• \mathcal{E} Limit of a sequence: for every measure of closeness \mathcal{E} , the sequence's x_n term eventually converges to the limit, i.e.,

$$\forall \varepsilon > 0 \ (\exists N \in \mathbb{N} \ (\forall n \in \mathbb{N} \ (n \geq N \Rightarrow |x_n - x| < \varepsilon)))$$

- · Convergent: when a limit of a sequence exists.
- Divergent: a sequence that does not converge.

Properties of Limits

- S List of limits | Squeeze theorem |
- Operations on a single known limit: if $\lim_{x\to c} f(x) = L$, then:

$$\cdot \lim_{x \to c} [f(x) \pm \alpha] = L \pm \alpha$$

$$\cdot \lim_{x \to c} \alpha f(x) = \alpha L$$

$$\lim_{x \to c} f(x)^{-1} = L^{-1}, L \neq 0$$

$$\cdot \lim_{x \to c} f(x)^n = L^n, n \in \mathbb{N}$$

• Operations on two known limits: if $\lim_{x\to c}$ and $\lim_{x\to c} g(x) = L_2$, then:

$$\cdot \lim_{x \to c} [f(x) \pm g(x)] = L_1 \pm L_2$$

$$\cdot \lim_{x \to c} [f(x)g(x)] = L_1 L_2$$

- **Squeeze theorem**: used to confirm the limit of a difficult to compute function via comparison with two other functions whose limits are easily known or computed.
 - Let \mathcal{I} be an interval having the point c as a limit point.
 - Let g, f, and h be functions defined on \mathcal{I} , except possibly at c itself.

• Suppose that
$$\forall x \in \mathcal{I} \land x \neq \Rightarrow g(x) \leq f(x) \leq h(x)$$

• and
$$\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L$$

• then,
$$\lim_{x \to c} f(x) = L$$

 Essentially, the hard to compute limit of the "middle function" can be found by finding the limit of two other "easier" functions that that "squeeze" the middle function at a point of interest.

One-Sided Limit

- One-Sided Limit %
- **One-sided limit**: one of two limits of f(x) as x approaches a specified point from either the left or from the right right.

• From the left:
$$\lim_{x\to c^-} = L$$

• From the right:
$$\lim_{x\to c^+} = L$$

o If the left and right limits exist and are equal, then

$$\lim_{x \to c} f(x) = L \Leftrightarrow \lim_{x \to c^{-}} f(x) = L \wedge \lim_{x \to c^{+}} f(x) = L$$

 Limits can still exist, even if the function is defined at a different point, as long as both one-sided limits approach the same value near the given input.

- № 6 ₩-

Continuity

Continuous Functions

0

Intermediate Value Theorem

Limits Involving Infinity

Limits at Infinity and Infinite Limits

0

Asymptotes of functions

Derivatives

Derivative Fundamentals

Derivative Notation

0 ...

Differentiation Rules

Linear, Product, Chain, Inverse

0

Powers, Polynomials, Quotients, Reciprocals

0

Exponential, Logarithmic

0

Trigonometric, Hyperbolic

Differentials and Related Concepts

Differentials

0

Linearization

0

Implicit Differentiation

0

Related Rates

Applications of Derivatives

Stationary Point

Maxima and Minima

0

Extreme Value Theorem

0

Interior Extremum Theorem

Mean Value Theorem

Rolle's Theorem

C

Corollaries of the Mean Value Theorem

0

Monotonic Functions

Derivative Tests

First-Derivative Test

0

Second-Derivative Test

0

Concavity

С

Higher-Order Derivative Test

Differential Methods

Newton's Method

0

Taylor's Theorem

0

General Leibniz Rule

Integrals

Integral Fundamentals

Terminology and Notation

0

Primer: Formal Definitions

Definite Integrals

Riemann Integral

0

Integrability

0

Properties of Definite Integrals

The Fundamental Theorem of Calculus

Fundamental Theorem, Part 1

0

Fundamental Theorem, Part 2

0

The Integral of a Rate

0

Total Area

Integration By Substitution

Indefinite Integrals

0

Definite Integrals

0

Symmetric Functions

0

Area Between Curves

Applications of Definite Integrals

Solid of Revolution

Disc Integration

0

Shell Integration

Arc Length

Dealing with Discontinuities

C

Differential Arc Length

Surface of Revolution

Revolution about the y-Axis

Transcendental Functions

Inverse Functions

One-to-One Functions

0

Derivative Rule for Inverses

Logarithmic Functions

Natural Logarithm

0

Properties of Logarithms

0

Trigonometric Integrals

0

Logarithmic Differentiation

Exponential Functions

Euler's Number

0

Natural Exponential Function

0

Laws of Exponents

0

General Exponential Function

Exponential Change

• Separable Differential Equations

0

Examples of Exponential Change

Indeterminate Forms

Indeterminate Form 0/0

0

L'Hôpital's Rule

0

Infinite Indeterminate Forms

0

Indeterminate Powers

Inverse Trigonometric Functions

Principal Trigonometric Values

0

Inverse Trigonometric Tables

Hyperbolic Functions

Hyperbolic Function Tables

Techniques of Integration

Integration by Parts

Definite Integrals by Parts

Trigonometric Integral Methods

Trigonometric Products and Powers

0

Trigonometric Square Roots

0

Trigonometric Substitutions

Partial Fraction Decomposition

Partial Fraction Principles

0

General Statement

Numerical Integration

Trapezoidal Rule

0

Simpson's Rule

Improper Integrals

Indirect Evaluation

Infinite Sequences and Series

First-Order Differential Equations

Parametric Equations and Polar Coordinates

Vectors and Vector-Valued Functions

Partial Derivatives

Multiple Integrals

Vector Calculus

Second-Order Differential Equations

