User manual ALFA(NET) 31 0-100°C Cool/Heat Thermostat.

 VDH doc. 053950
 Version: v1.0
 Date: 14-12-2005

 Software: ALFA31 0-100°C
 File: Do053950.WPD
 Range: 0/+100°C per 1°C

* Function.

The **ALFA(NET) 31** is a digital thermostat for panel mounting. The function from the thermostat can be programmed for cooling or heating.

The ALFANET 31 has a RS 485 network connection so it can be read out and adjusted on the Alfanet.

* Installation.

On the topside of the **ALFA(NET) 31** you can see how the sensor, power supply and relay have to be connected.

After connecting the **ALFA(NET) 31** to the power supply, a self test function is started. As this test is finished, the measured temperature appears in the display.

When the relay is activated, the led 'on' will light-up in the display.

* Control.

The ALFA(NET) 31 thermostat can be controlled by three pushbuttons on the front. These keys are;

SET - view / change the setpoint.

UP - increase the setpoint.

DOWN - decrease the setpoint.

* Viewing setpoint.

By pushing the **SET** key the setpoint appears in the display. The led 'set' starts blinking. A few seconds after releasing the **SET** key the setpoint disappears and the measured temperature is shown in the display.

* Changing setpoint.

Push the **SET** key and the setpoint appears in the display. Release the **SET** key. Now push the **SET** key again and together with the **UP** or **DOWN** keys the setpoint can be changed. A few seconds after releasing the keys the measured temperature shows again in the display.

* Setting internal parameters.

Next to the adjustment of the setpoint, some internal settings are possible like differential, sensor-offset, setpoint range and the function cooling or heating.

By pushing the **DOWN** key for more than 10 seconds, you enter the 'internal programming menu'. In the left display the upper and lower segment, are blinking. With the **UP** and **DOWN** keys the required parameter can be selected (see the parameter table).

If the required parameter is selected, the value can be read-out by pushing the **SET** key. Pushing the **UP** or **DOWN** keys, together with the **SET** key allows you to change the value of this parameter. If no key is pushed for 20 seconds, the **ALFA(NET) 31** changes to its normal operation mode.

* Adjustment sensor.

The sensor can be adjusted by using the Sensor Offset (parameter 04). Indicates the **ALFA(NET) 31** e.g. 2°C too much, the Sensor Offset has to de decreased by 2°C.

* Error messages.

In the display of the ALFA(NET) 31 the following error messages can appear:

Er - Sensor broken. Solution:

- Check if the sensor is connected correctly.
- Check the sensor (1000Ω at 25° C).
- Replace the sensor.
- **EE** Settings are lost. Solution:
 - Reprogram the settings.

* Technical details.

Model : ALFA(NET) 31

Range : 0/+100°C, readout per 1°C

Supply : 230 Vac (or else see product sticker)

Relay : SPDT 250V/16A(C-NO), 8A(C-NC) (cos phi=1)

Communication: RS485-Network (A,B,GND 3-wire shielded) only at ALFANET 31

Control : by pushbuttons on the front.

Front : Polycarbonate IP65

Sensor : SM 811/2m (1000Ω at 25°C) Sizes : 35 x 77 x 71,5mm (hwd)

Panel hole : 28 x 70mm (hw)

- Provided with memory protection during power failure.
- Connection with screw terminals on the back side.
- Equipped with self test function and sensor failure detection.
- Special versions are available upon request.

* Parameters ALFA(NET) 31.

PARA- METER	DESCRIPTION PARAMETER	RANGE	STANDARD VALUE
01 02 03 04	Switching differential Minimum setpoint Maximum setpoint Offset temperature sensor	115°C 0+100°C 0+100°C -15+15°C	3 0 +100 0
10 11	Startup delay after power failure Relays on at sensor failure	099 min. 0 = No 1 = Yes	0
15 16 17 18 19 20	Function cooling or heating Switch on delay relays 1) Switch off delay relays 1) Parameter 16/17 in sec. or min. Minimum on-time relays Minimum off-time relays	<pre>0 = Cool 1 = Heat 099 099 0 = sec. 1 = min. 099 min. 099 min.</pre>	0 0 0 0
90 95 96 97 98 99	Network number Software version Production year Production week Serial number (x1000) Serial number (units)	1250 0255 0099 152 0255 0999	1 - - - -

¹⁾ On active delay led 'on' blinks.

* Function Diagram.

* Dimensions.

* Connection Diagram.

* Address.

VDH Products BV Produktieweg 1 9301 ZS Roden The Netherlands Tel: +31 (0)50 30 28 900 Fax: +31 (0)50 30 28 980 Email: info@vdhproducts.nl Internet: www.vdhproducts.nl

