

Description

vs90N03-D56 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

lacksquare

VDSS	RDS(ON) @10V (typ)	RDS(ON) @4.5V (typ)	ID	
30V	4.9m $Ω$	6.3 mΩ	90A	

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability
- RoHS Compliant

Application

- SMPS and general purpose applications
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic diagram

DFN 5x6-8L

Ordering Information

Part Number	Marking	Case	Packaging	
VS90N03-D56	VS90N03-D56	DFN5*6-8L	2500pcs/Reel	

Absolute Maximum Ratings (T_C=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	30	V	
Gate-Source Voltage	V _{GS}	±20	V	
Drain Current-Continuous	I _D	90	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	63.5	А	
Pulsed Drain Current	I _{DM}	330	А	
Maximum Power Dissipation	P _D	30	W	
Derating factor		0.24	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	70	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	℃	

Vseei Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	$R_{ heta JC}$	4.2	°C/W
, and the second	80.0000000		

Electrical Characteristics (T_C=25[°]Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			'			•
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	30	33	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =30V,V _{GS} =0V	-		1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	·		•			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=250\mu A$	1.6	1.9	2.7	V
Prain Source On State Besietenes	В	V _{GS} =10V, I _D =3A	-	4.9	5.5	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =3A	-	6.3	6.7	
Forward Transconductance	g FS	V _{DS} =5V,I _D =20A	15	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	- V _{DS} =15V,V _{GS} =0V, - F=1.0MHz	-	1530	-	PF
Output Capacitance	C _{oss}		-	250	-	PF
Reverse Transfer Capacitance	C _{rss}		-	198	-	PF
Switching Characteristics (Note 4)	·					
Turn-on Delay Time	t _{d(on)}	V_{DD} =15V, I_{D} =10A V_{GS} =10V, R_{GEN} =1.8 Ω	-	10	-	nS
Turn-on Rise Time	t _r		-	8	-	nS
Turn-Off Delay Time	t _{d(off)}		-	30	-	nS
Turn-Off Fall Time	t _f		-	5	-	nS
Total Gate Charge	Qg	V -45VI -0A	-	15	-	nC
Gate-Source Charge	Q _{gs}	- V _{DS} =15V,I _D =9A, - V _{GS} =10V	-	3	-	nC
Gate-Drain Charge	Q_{gd}		-	4.5	-	nC
Drain-Source Diode Characteristics	·					
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =40A	-	0.92	1	V
Diode Forward Current (Note 2)	Is		-	-	25	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 10A	-	22	35	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	12	20	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition: Tj=25 $^{\circ}\text{C}\,\text{,V}_\text{DD}\text{=}15\text{V}\text{,V}_\text{G}\text{=}10\text{V}\text{,L=}0.1\text{mH}\text{,Rg=}25\Omega$

Test Circuit

1) E_{AS} Test Circuits

2) Gate Charge Test Circuit:

3) Switch Time Test Circuit:

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Vgs Gate-Source Voltage (V)
Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Vseei Semiconductor Co., Ltd

Figure 7 Capacitance vs Vds

 $\mathsf{BV}_{\mathsf{DSS}}$

Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance

Vseei Semiconductor Co., Ltd