Machine Learning Foundations

(機器學習基石)

Lecture 4: Feasibility of Learning

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

When Can Machines Learn?

Lecture 3: Types of Learning

focus: binary classification or regression from a batch of supervised data with concrete features

Lecture 4: Feasibility of Learning

- Learning is Impossible?
- Probability to the Rescue
- Connection to Learning
- Connection to Real Learning
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

A Learning Puzzle

$$y_n = +1$$

$$g(\mathbf{x}) = ?$$

let's test your 'human learning' with 6 examples :-)

Two Controversial Answers

whatever you say about $g(\mathbf{x})$,

truth $f(\mathbf{x}) = +1$ because . . .

- symmetry ⇔ +1
- (black or white count = 3) or (black count = 4 and middle-top black) ⇔ +1

truth $f(\mathbf{x}) = -1$ because . . .

- left-top black ⇔ -1
- middle column contains at most 1 black and right-top white ⇔ -1

all valid reasons, your adversarial teacher can always call you 'didn't learn'. :-(

A 'Simple' Binary Classification Problem

$$\begin{array}{c|cccc} \mathbf{x}_n & y_n = f(\mathbf{x}_n) \\ \hline 0 0 0 & \circ \\ 0 0 1 & \times \\ 0 1 0 & \times \\ 0 1 1 & \circ \\ 1 0 0 & \times \\ \end{array}$$

• $\mathcal{X} = \{0, 1\}^3$, $\mathcal{Y} = \{0, \times\}$, can enumerate all candidate f as \mathcal{H}

pick
$$g \in \mathcal{H}$$
 with all $g(\mathbf{x}_n) = y_n$ (like PLA), does $q \approx f$?

No Free Lunch

	x	У	g	f_1	f_2	f_3	f_4	<i>f</i> ₅	f_6	f ₇	f_8
	000	0	0	0	0	0	0		0	0	0
_	0 0 1	×	×	×	×	X			×		
\mathcal{T}	010	×	×	×	×	×	×	×	×	×	×
	011	0	0	0	0	0	0	0		0	0
	100	×	×	×	X	×	×	×	×	×	×
,	1 0 1		?	0	0	0	0	×	×	×	×
	110		?	0	0	×	×	0	0	×	×
	111		?	0	×	0	×	0	×	0	×

- $g \approx f$ inside \mathcal{D} : sure!
- $g \approx f$ outside \mathcal{D} : No! (but that's really what we want!)

learning from \mathcal{D} (to infer something outside \mathcal{D}) is doomed if any 'unknown' f can happen. :-(

This is a popular 'brain-storming' problem, with a claim that 2% of the world's cleverest population can crack its 'hidden pattern'.

$$(5,3,2) \rightarrow 151022, \quad (7,2,5) \rightarrow ?$$

It is like a 'learning problem' with N = 1, $\mathbf{x}_1 = (5, 3, 2)$, $y_1 = 151022$. Learn a hypothesis from the one example to predict on $\mathbf{x} = (7, 2, 5)$. What is your answer?

151026

3 I need more examples to get the correct answer

2 143547

4 there is no 'correct' answer

This is a popular 'brain-storming' problem, with a claim that 2% of the world's cleverest population can crack its 'hidden pattern'.

$$(5,3,2) \rightarrow 151022, \quad (7,2,5) \rightarrow ?$$

It is like a 'learning problem' with N = 1, $\mathbf{x}_1 = (5, 3, 2)$, $y_1 = 151022$. Learn a hypothesis from the one example to predict on $\mathbf{x} = (7, 2, 5)$. What is your answer?

151026

3 I need more examples to get the correct answer

2 143547

4 there is no 'correct' answer

Reference Answer: (4)

Following the same nature of the no-free-lunch problems discussed, we cannot hope to be correct under this 'adversarial' setting. BTW, \bigcirc is the designer's answer: the first two digits $= x_1 \cdot x_2$; the next two digits $= x_1 \cdot x_3$; the last two digits $= (x_1 \cdot x_2 + x_1 \cdot x_3 - x_2)$.

Inferring Something Unknown

difficult to infer unknown target f outside \mathcal{D} in learning; can we infer something unknown in other scenarios?

- consider a bin of many many orange and green marbles
- do we know the orange portion (probability)? No!

can you infer the orange probability?

Statistics 101: Inferring Orange Probability

bin

assume

orange probability = μ , green probability = $1 - \mu$, with μ **unknown**

sample

N marbles sampled independently, with $\frac{\text{orange fraction} = \nu,}{\text{green fraction} = 1 - \nu,}$

now ν known

does in-sample ν say anything about out-of-sample μ ?

Possible versus Probable

does in-sample ν say anything about out-of-sample μ ?

No!

possibly not: sample can be mostly green while bin is mostly orange

Yes!

probably yes: in-sample ν likely close to unknown μ

formally, what does ν say about μ ?

Hoeffding's Inequality (1/2)

• in big sample (*N* large), ν is probably close to μ (within ϵ)

$$\mathbb{P}\left[\left|\nu-\mu\right|>\epsilon\right]\leq 2\exp\left(-2\epsilon^2N\right)$$

called Hoeffding's Inequality, for marbles, coin, polling, ...

the statement ' $\nu = \mu$ ' is probably approximately correct (PAC)

Hoeffding's Inequality (2/2)

$$\mathbb{P}\left[\left|\nu-\mu\right|>\epsilon\right]\leq 2\exp\left(-2\epsilon^2\mathsf{N}\right)$$

- valid for all N and ϵ
- does not depend on μ , no need to 'know' μ
- larger sample size N or looser gap ϵ \Longrightarrow higher probability for ' $\nu \approx \mu$ '

if large N, can probably infer unknown μ by known ν

Let $\mu = 0.4$. Use Hoeffding's Inequality

$$\mathbb{P}\left[\left|\nu-\mu\right|>\epsilon\right]\leq 2\exp\left(-2\epsilon^2N\right)$$

to bound the probability that a sample of 10 marbles will have $\nu \leq$ 0.1. What bound do you get?

- 0.67
- 2 0.40
- 3 0.33
- 4 0.05

Let $\mu = 0.4$. Use Hoeffding's Inequality

$$\mathbb{P}\left[\left|\nu-\mu\right|>\epsilon\right]\leq 2\exp\left(-2\epsilon^2N\right)$$

to bound the probability that a sample of 10 marbles will have $\nu \leq$ 0.1. What bound do you get?

- 0.67
- 2 0.40
- 3 0.33
- 4 0.05

Reference Answer: (3)

Set N=10 and $\epsilon=0.3$ and you get the answer. BTW, $\stackrel{\frown}{4}$ is the actual probability and Hoeffding gives only an upper bound to that.

Connection to Learning

bin

- unknown orange prob. μ
- marble ∈ bin
- orange •
- green •
- size-N sample from bin

of i.i.d. marbles

learning

- fixed hypothesis $h(\mathbf{x}) \stackrel{?}{=} \text{target } f(\mathbf{x})$
- $\mathbf{x} \in \mathcal{X}$
- h is wrong $\Leftrightarrow h(\mathbf{x}) \neq f(\mathbf{x})$
- h is right $\Leftrightarrow h(\mathbf{x}) = f(\mathbf{x})$
- check h on $\mathcal{D} = \{(\mathbf{x}_n, \underbrace{y_n}_{f(\mathbf{x}_n)})\}$

with i.i.d. \mathbf{x}_n

if large N & i.i.d. \mathbf{x}_n , can probably infer unknown $[\![h(\mathbf{x}) \neq f(\mathbf{x})]\!]$ probability by known $[\![h(\mathbf{x}_n) \neq y_n]\!]$ fraction

Added Components

for any fixed h, can probably infer

unknown
$$E_{\text{out}}(\mathbf{h}) = \underset{\mathbf{x} \sim P}{\mathcal{E}} [h(\mathbf{x}) \neq f(\mathbf{x})]$$

by known $E_{\text{in}}(\mathbf{h}) = \frac{1}{N} \sum_{n=1}^{N} [h(\mathbf{x}_n) \neq y_n].$

The Formal Guarantee

for any fixed h, in 'big' data (N large),

in-sample error $E_{\text{in}}(h)$ is probably close to out-of-sample error $E_{\text{out}}(h)$ (within ϵ)

$$\mathbb{P}\left[\left|E_{\mathsf{in}}(h) - E_{\mathsf{out}}(h)\right| > \epsilon\right] \leq 2\exp\left(-2\epsilon^2\mathsf{N}\right)$$

same as the 'bin' analogy ...

- valid for all N and ϵ
- does not depend on E_{out}(h), no need to 'know' E_{out}(h)
 —f and P can stay unknown
- 'E_{in}(h) = E_{out}(h)' is probably approximately correct (PAC)

if
$${}^{`}E_{\text{in}}(h) \approx E_{\text{out}}(h){}^{"}$$
 and ${}^{`}E_{\text{in}}(h)$ small' $\Longrightarrow E_{\text{out}}(h)$ small $\Longrightarrow h \approx f$ with respect to P

Verification of One h

for any fixed h, when data large enough,

$$E_{\text{in}}(h) \approx E_{\text{out}}(h)$$

Can we claim 'good learning' $(g \approx f)$?

Yes!

if $E_{in}(h)$ small for the fixed h and A pick the h as g $\implies `q = f' \text{ PAC}$

No!

if A forced to pick THE h as g $\Rightarrow E_{in}(h) \text{ almost always not small}$ $\Rightarrow 'g \neq f' \text{ PAC!}$

real learning:

 \mathcal{A} shall make choices $\in \mathcal{H}$ (like PLA) rather than being forced to pick one h. :-(

The 'Verification' Flow

can now use 'historical records' (data) to verify 'one candidate formula' h

Your friend tells you her secret rule in investing in a particular stock: 'Whenever the stock goes down in the morning, it will go up in the afternoon; vice versa.' To verify the rule, you chose 100 days uniformly at random from the past 10 years of stock data, and found that 80 of them satisfy the rule. What is the best guarantee that you can get from the verification?

- 1 You'll definitely be rich by exploiting the rule in the next 100 days.
- 2 You'll likely be rich by exploiting the rule in the next 100 days, if the market behaves similarly to the last 10 years.
- You'll likely be rich by exploiting the 'best rule' from 20 more friends in the next 100 days.
- You'd definitely have been rich if you had exploited the rule in the past 10 years.

Your friend tells you her secret rule in investing in a particular stock: 'Whenever the stock goes down in the morning, it will go up in the afternoon; vice versa.' To verify the rule, you chose 100 days uniformly at random from the past 10 years of stock data, and found that 80 of them satisfy the rule. What is the best guarantee that you can get from the verification?

- You'll definitely be rich by exploiting the rule in the next 100 days.
- 2 You'll likely be rich by exploiting the rule in the next 100 days, if the market behaves similarly to the last 10 years.
- You'll likely be rich by exploiting the 'best rule' from 20 more friends in the next 100 days.
- 4 You'd definitely have been rich if you had exploited the rule in the past 10 years.

Reference Answer: (2)

(1): no free lunch; (3): no 'learning' guarantee in verification; (4): verifying with only 100 days, possible that the rule is mostly wrong for whole 10 years.

Multiple h

real learning (say like PLA):

BINGO when getting •••••••?

Q: if everyone in size-150 NTU ML class flips a coin 5 times, and one of the students gets 5 heads for her coin 'g'. Is 'g' really magical?

A: No. Even if all coins are fair, the probability that one of the coins results in 5 heads is $1 - \left(\frac{31}{32}\right)^{150} > 99\%$.

BAD sample: E_{in} and E_{out} far away
—can get worse when involving 'choice'

BAD Sample and BAD Data

BAD Sample

e.g., $E_{out} = \frac{1}{2}$, but getting all heads ($E_{in} = 0$)!

BAD Data for One h

 $E_{\text{out}}(h)$ and $E_{\text{in}}(h)$ far away:

e.g., E_{out} big (far from f), but E_{in} small (correct on most examples)

	\mathcal{D}_1	\mathcal{D}_2	 \mathcal{D}_{1126}	 \mathcal{D}_{5678}	 Hoeffding
h	BAD			BAD	$\mathbb{P}_{\mathcal{D}}\left[BAD\;\mathcal{D}\;for\;h\right]\leq\ldots$

Hoeffding: small

$$\mathbb{P}_{\mathcal{D}}\left[\textbf{BAD} \; \mathcal{D} \right] = \sum_{\mathsf{all \; possible} \mathcal{D}} \mathbb{P}(\mathcal{D}) \cdot \left[\!\!\left[\textbf{BAD} \; \mathcal{D} \right] \!\!\right]$$

BAD Data for Many h

BAD data for many h

- \Longleftrightarrow no 'freedom of choice' by ${\mathcal A}$
- \iff there exists some h such that $E_{out}(h)$ and $E_{in}(h)$ far away

	\mathcal{D}_1	\mathcal{D}_{2}	 \mathcal{D}_{1126}	 \mathcal{D}_{5678}	Hoeffding
h_1	BAD			BAD	$\mathbb{P}_{\mathcal{D}}\left[BAD\;\mathcal{D}\;for\;h_1\right]\leq\ldots$
h ₂		BAD			$\mathbb{P}_{\mathcal{D}}\left[BAD\;\mathcal{D}\;for\;\mathit{h}_{2}\right]\leq\ldots$
h ₃	BAD	BAD		BAD	$\mathbb{P}_{\mathcal{D}}\left[BAD\;\mathcal{D}\;for\;\mathit{h}_{3}\right]\leq\ldots$
h_{M}	BAD			BAD	$\mathbb{P}_{\mathcal{D}}\left[BAD\;\mathcal{D}\;for\;h_{M}\right]\leq\ldots$
all	BAD	BAD		BAD	?

for *M* hypotheses, bound of $\mathbb{P}_{\mathcal{D}}[\mathsf{BAD}\ \mathcal{D}]$?

Bound of BAD Data

$$\mathbb{P}_{\mathcal{D}}[\mathsf{BAD}\;\mathcal{D}]$$

- $= \mathbb{P}_{\mathcal{D}} [\mathbf{BAD} \ \mathcal{D} \text{ for } h_1 \text{ or } \mathbf{BAD} \ \mathcal{D} \text{ for } h_2 \text{ or } \dots \text{ or } \mathbf{BAD} \ \mathcal{D} \text{ for } h_M]$
- $\leq \mathbb{P}_{\mathcal{D}}[\mathsf{BAD}\ \mathcal{D}\ \mathsf{for}\ h_1] + \mathbb{P}_{\mathcal{D}}[\mathsf{BAD}\ \mathcal{D}\ \mathsf{for}\ h_2] + \ldots + \mathbb{P}_{\mathcal{D}}[\mathsf{BAD}\ \mathcal{D}\ \mathsf{for}\ h_M]$ (union bound)
- $\leq 2 \exp\left(-2\epsilon^2 N\right) + 2 \exp\left(-2\epsilon^2 N\right) + \ldots + 2 \exp\left(-2\epsilon^2 N\right)$
- $= 2M \exp\left(-2\epsilon^2 N\right)$
- finite-bin version of Hoeffding, valid for all M, N and ϵ
- does not depend on any $E_{\text{out}}(h_m)$, no need to 'know' $E_{\text{out}}(h_m)$ —f and P can stay unknown
- ' $E_{in}(g) = E_{out}(g)$ ' is PAC, regardless of A

'most reasonable' \mathcal{A} (like PLA/pocket): pick the h_m with lowest $E_{in}(h_m)$ as g

The 'Statistical' Learning Flow

 $\text{if } |\mathcal{H}| = \textit{M} \text{ finite, } \textit{N} \text{ large enough,} \\ \text{for whatever } \textit{g} \text{ picked by } \mathcal{A}, \, \textit{E}_{\text{out}}(\textit{g}) \approx \textit{E}_{\text{in}}(\textit{g})$

if ${\mathcal A}$ finds one g with ${\mathcal E}_{\rm in}(g) \approx 0$,

PAC guarantee for $E_{\text{out}}(g) \approx 0 \Longrightarrow$ learning possible :-)

Consider 4 hypotheses.

$$h_1(\mathbf{x}) = \text{sign}(x_1), \ h_2(\mathbf{x}) = \text{sign}(x_2),$$

 $h_3(\mathbf{x}) = \text{sign}(-x_1), \ h_4(\mathbf{x}) = \text{sign}(-x_2).$

For any N and ϵ , which of the following statement is not true?

- 1 the BAD data of h_1 and the BAD data of h_2 are exactly the same
- 2 the BAD data of h_1 and the BAD data of h_3 are exactly the same
- 3 $\mathbb{P}_{\mathcal{D}}[\mathsf{BAD} \text{ for some } h_k] \leq 8 \exp\left(-2\epsilon^2 N\right)$
- **4** $\mathbb{P}_{\mathcal{D}}[\mathsf{BAD} \text{ for some } h_k] \leq 4 \exp\left(-2\epsilon^2 N\right)$

Consider 4 hypotheses.

$$h_1(\mathbf{x}) = \text{sign}(x_1), \ h_2(\mathbf{x}) = \text{sign}(x_2),$$

 $h_3(\mathbf{x}) = \text{sign}(-x_1), \ h_4(\mathbf{x}) = \text{sign}(-x_2).$

For any N and ϵ , which of the following statement is not true?

- 1 the BAD data of h_1 and the BAD data of h_2 are exactly the same
- 2 the BAD data of h_1 and the BAD data of h_3 are exactly the same
- 3 $\mathbb{P}_{\mathcal{D}}[\mathsf{BAD} \text{ for some } h_k] \leq 8 \exp\left(-2\epsilon^2 N\right)$
- **4** $\mathbb{P}_{\mathcal{D}}[\mathsf{BAD}$ for some $h_k] \leq 4 \exp\left(-2\epsilon^2 N\right)$

Reference Answer: 1

The important thing is to note that (2) is true, which implies that (4) is true if you revisit the union bound. Similar ideas will be used to conquer the $M=\infty$ case.

Summary

1 When Can Machines Learn?

Lecture 3: Types of Learning

Lecture 4: Feasibility of Learning

- Learning is Impossible?
 absolutely no free lunch outside D
- ullet Probability to the Rescue probably approximately correct outside ${\mathcal D}$
- Connection to Learning
 verification possible if E_{in}(h) small for fixed h
- Connection to Real Learning learning possible if $|\mathcal{H}|$ finite and $E_{in}(g)$ small
- 2 Why Can Machines Learn?
 - next: what if $|\mathcal{H}| = \infty$?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?