

Atividade: Bolinha na roda da bibicleta

Para o professor

Objetivos específicos

OE1 Familiarizar o estudante com os arcos e ângulos mais comumente encontrados no estudo de trigonometria na circunferência.

OE2 Introduzir a ideia do seno e do cosseno como "distâncias orientadas" de pontos no círculo aos eixos coordenados.

Observações e recomendações

Professor, procure ajudar os alunos a associar os valores encontrados nessa atividade às coordenadas do ponto sobre o qual está a extremidade do arco em estudo, ou a bolinha amarela.

Atividade

(Adaptado de Costa (2017))

Mateus gosta muito de andar de bicicleta e para enfeitar suas rodas, costuma prender bolinhas de tênis nelas (vide figura). Suponha que ele virou a bicicleta de cabeça para baixo, prendeu a bolinha e começou a girar a roda. Na figura a seguir, a imagem à direita ilustra uma representação da roda destacando eixos coordenados e ângulos em graus.

A roda da direita tem um transferidor de volta inteira sobreposto a sua imagem, de forma que é possível verificar a medida do ângulo entre o eixo horizontal e o raio da roda que passa pela bolinha.

Considere que r é o raio da roda, c é o comprimento do segmento horizontal azul (distância da bolinha amarela ao eixo g) e g0 e o comprimento do segmento vertical vermelho (distância da bolinha amarela ao eixo g0. A razão g0 indica a distância horizontal relativa entre a bolinha amarela e o eixo g0, assim como a razão g1 indica a distância vertical relativa entre a bolinha amarela e o eixo g2. Por exemplo, se a roda tem raio de g30 cm e a bolinha estiver localizada a g37 cm do eixo vertical, então g30 cm e a bolinha estiver localizada a g37 cm do eixo vertical, então g4 e g5 e g5 do eixo g7. Dessa forma, para

Realização:

Patrocínio:

quaisquer outras rodas de bicicleta com outros raios, quando o ângulo entre o eixo horizontal e o raio que passa pela bolinha amarela for o mesmo em que é nessa situação, estamos aptos a determinar essa distância, fundamentados na semelhança de triângulos: em uma roda com 20 cm de raio, essa distância seria $\frac{9}{10}$ de 20, ou seja, 18 cm. Da mesma forma se dá para a distância relativa vertical. Observe ainda que essa "distância relativa" pode ser ainda negativa ou positiva, de acordo com a orientação dos eixos coordenados.

Por exemplo, na figura ao lado, tanto c quanto s valem 5, mas estão no sentido negativo de seus respectivos eixos, portanto, ao calcularmos as distâncias relativas teremos $\frac{c}{r}=\frac{s}{r}=\frac{-5}{10}=\frac{-1}{2}$.

Nas tabelas a seguir, temos algumas possíveis posições para a bolinha e os ângulos associados a elas, medidos em graus. Para completar essa tabela, você precisará informar, a cada ângulo dado:

- A medida do arco, em radianos, associado ao ângulo dado;
- A razão $\frac{c}{r}$ e o seu sinal, de acordo com a orientação no eixo x;
- A razão $\frac{s}{r}$ e o seu sinal, de acordo com a orientação no eixo y.

Vamos lá?

a)	Ângulo (grau)	15°	30°	45°	60°	75°	90°
	Arco (radiano)	$\frac{\pi}{12}$					
	$rac{c}{r}$	0,96					
	$rac{s}{r}$	0,26					
b)	Ângulo (grau)	105°	120°	135°	150°	165°	180°
	Arco (radiano)						
	$rac{c}{r}$						
	$rac{s}{r}$						
c)	Ângulo (grau)	195°	210°	225°	240°	255°	270°
	Arco (radiano)						
	$rac{c}{r}$						
	$rac{s}{r}$						
d)	Ângulo (grau)	285°	300°	315°	330°	345°	360°
	Arco (radiano)						2π
	<u>c</u>						
	r						

Solução:

a)

Ângulo (grau)	15°	30°	45°	60°	75°	90°
Arco (radiano)	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{5\pi}{12}$	$\frac{\pi}{2}$
$rac{c}{r}$	0,96	0,86	0,7	0,5	0,26	0
$\frac{s}{r}$	0,26	0,5	0,7	0,86	0,96	1

b)

Ângulo (grau)	105°	120°	135°	150°	165°	180°
Arco (radiano)	$\frac{7\pi}{12}$	$\frac{2\pi}{3}$	$\frac{3\pi}{6}$	$\frac{5\pi}{6}$	$\frac{11\pi}{12}$	π
$rac{c}{r}$	-0,25	-0,5	-0,7	-0,86	-0,96	-1
$rac{s}{r}$	0,96	0,86	0,7	0,5	0,26	0

c)

Ângulo (grau)	195°	210°	225°	240°	255°	270°
Arco (radiano)	$\frac{13\pi}{12}$	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{17\pi}{12}$	2π
$rac{c}{r}$	-0,96	-0,86	-0.7	-0.5	-0,26	0
$rac{s}{r}$	-0,26	-0.5	-0.7	-0,86	-0,96	-1

d)

Ângulo (grau)	285°	300°	315°	330°	345°	360°
Arco (radiano)	$\frac{19\pi}{12}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	$\frac{23\pi}{12}$	2π
$rac{s}{r}$	0,26	0,5	0,7	0,86	0,96	1
$rac{c}{r}$	-0,96	-0,86	-0,7	-0,5	-0,26	0

OLIMPÍADA BRASILEIRA O J DE MATEMÁTICA DAS ESCOLAS PÚBLICAS

Patrocínio: