

Determine the force in each member of the Gambrel roof truss shown. State whether each member is in tension or compression.

SOLUTION

FBD Truss:

$$\rightarrow \Sigma F_x = 0$$
 $\mathbf{A}_x = 0$

By symmetry: $\mathbf{A}_{y} = \mathbf{J}_{y} = 5 \text{ kN}$

By symmetry:
$$\mathbf{A}_y = \mathbf{J}_y = 5 \text{ kN } \mid$$

$$F_{AB} = F_{HJ}; \ F_{AC} = F_{IJ}; \ F_{BD} = F_{GH}$$
 and
$$F_{CD} = F_{GI}; \ F_{DE} = F_{EG}; \ F_{DF} = F_{FG}$$

$$F_{BC} = F_{HI}$$

By inspection of joint *F*:

 $F_{FF} = 0$

Joint FBDs:

Joint A:

†
$$\Sigma F_y = 0$$
: 5 kN - 1 kN - $\frac{8}{\sqrt{89}} F_{AB} = 0$ $F_{AB} = \frac{\sqrt{89}}{2}$ kN

$$F_{AB} = 4.72 \text{ kN C} \blacktriangleleft$$

$$\rightarrow \Sigma F_x = 0$$
: $F_{AC} - \frac{5}{\sqrt{89}} \frac{\sqrt{89}}{2} \text{ kN} = 0$

$$F_{AC} = 2.50 \text{ kN T} \blacktriangleleft$$

 $F_{II} = 2.50 \, \text{kN T} \blacktriangleleft$

so
$$F_{HJ} = 4.72 \text{ kN C} \blacktriangleleft$$

Joint *B*:

$$\rightarrow \Sigma F_x = 0: \frac{5}{\sqrt{89}} \left(\frac{\sqrt{89}}{2} \text{ kN} - F_{BD} - F_{BC} \right) = 0$$

$$\uparrow \Sigma F_y = 0: \frac{8}{\sqrt{89}} \left(\frac{\sqrt{89}}{2} \text{ kN} - F_{BD} + F_{BC} \right) - 1 \text{ kN} = 0$$

Solving:
$$F_{BD} = 4.127 \text{ kN}$$

so
$$F_{BD} = 4.13 \text{ kN C} \blacktriangleleft$$

$$F_{AB} = 0.5896 \, \text{kN}$$

and
$$F_{BC} = 0.590 \text{ kN C} \blacktriangleleft$$

so
$$F_{GH}$$
 = 4.13 kN C ◀

and
$$F_{HI} = 0.590 \text{ kN C} \blacktriangleleft$$

PROBLEM 6.14 CONTINUED

$$F_{CI} = 2.19 \text{ kN T} \blacktriangleleft$$

↑
$$\Sigma F_y = 0$$
: $F_{CD} - \frac{8}{\sqrt{89}} (.59 \text{ kN}) = 0$ $F_{CD} = 0.500 \text{ kN T}$

so
$$F_{GI} = 0.500 \, \text{kN T} \, \blacktriangleleft$$

†
$$\Sigma F_y = 0$$
: $\frac{8}{\sqrt{89}} (4.127 \text{ kN}) - 2.5 \text{ kN} - \frac{5}{\sqrt{281}} F_{DE} = 0$

$$F_{DE} = 3.352 \text{ kN}$$

Joint *D*:

so
$$F_{DE} = 3.35 \text{ kN C}$$

and
$$F_{EG} = 3.35 \text{ kN C} \blacktriangleleft$$

$$\rightarrow \Sigma F_x = \frac{5}{\sqrt{89}} (4.127 \text{ kN}) - \frac{16}{\sqrt{281}} (3.352 \text{ kN}) + F_{DF} = 0$$

$$F_{DF} = 1.012 \text{ kN T} \blacktriangleleft$$

$$F_{FG} = 1.012 \text{ kN T} \blacktriangleleft$$

Determine the force in each member of the Pratt bridge truss shown. State whether each member is in tension or compression.

SOLUTION

FBD Truss:

$$\rightarrow \Sigma F_x = 0$$
: $\mathbf{A}_x = 0$

 $\uparrow_{\text{4m}} \quad \text{By symmetry: } \mathbf{A}_y = \mathbf{H}_y = 9 \text{ kN } \uparrow$

and

$$F_{AB} = F_{FH}; F_{AC} = F_{GH}$$

 $F_{BC} = F_{FG}; F_{BD} = F_{DF}$
 $F_{BE} = F_{EF}; F_{CE} = F_{EG}$

By inspection of joint *D*:

$$F_{DE} = 0 \blacktriangleleft$$

FBDs Joints:

↑
$$\Sigma F_y = 0$$
: 9 kN $-\frac{4}{5}F_{AB} = 0$ $F_{AB} = 11.25$ kN C \blacktriangleleft

→
$$\Sigma F_x = 0$$
: $F_{AC} - \frac{3}{5}F_{AB} = 0$ $F_{AC} = 6.75 \text{ kN T} \blacktriangleleft$

→
$$\Sigma F_x = 0$$
: $F_{CE} - 6.75$ kN = 0 $F_{CE} = 6.75$ kN T \blacktriangleleft

$$\uparrow$$
 Σ $F_y = 0$: $F_{BC} - 6$ kN = 0 $F_{BC} = 6.00$ kN T ◀

$$\uparrow \Sigma F_y = 0: \frac{4}{5} (11.25 \text{ kN}) - 6 \text{ kN} + \frac{4}{5} F_{BE} = 0$$

$$F_{BE} = 3.75 \text{ kN C} \blacktriangleleft$$

$$\longrightarrow \Sigma F_x = 0: F_{BD} - \frac{3}{5} (11.25 \text{ kN}) - \frac{3}{5} (3.75 \text{ kN}) = 0$$

$$F_{RD} = 9.00 \text{ kN T} \blacktriangleleft$$

$$F_{FH} = 11.25 \text{ kN C} \blacktriangleleft$$

$$F_{GH} = 6.75 \text{ kN T} \blacktriangleleft$$

$$F_{EG} = 6.75 \text{ kN T} \blacktriangleleft$$

$$F_{FG} = 6.00 \text{ kN T} \blacktriangleleft$$

$$F_{EF} = 3.75 \text{ kN C} \blacktriangleleft$$

$$F_{DF} = 9.00 \text{ kN T} \blacktriangleleft$$

Determine the force in each member of the Pratt bridge truss shown. State whether each member is in tension or compression. Assume that the load at G has been removed.

SOLUTION

FBD Truss:

$$\rightarrow \Sigma F_r = 0$$
: $\mathbf{A}_r = 0$

$$\sum M_{A} = 0: (12 \text{ m}) H_{y} - (6 \text{ m}) (6 \text{ kN}) - (3 \text{ m}) (6 \text{ kN}) = 0$$

$$\mathbf{H}_{y} = 4.5 \text{ kN} \uparrow$$

$$\uparrow \Sigma F_{y} = 0: A_{y} - 6 \text{ kN} - 6 \text{ kN} + 4.5 \text{ kN} = 0$$

$$\mathbf{A}_{y} = 7.5 \text{ kN} \uparrow$$

$$\frac{4.5 \text{ kN}}{4} = \frac{F_{GH}}{3} = \frac{F_{FH}}{5}$$

Joint FBDs:

Joint *H*:

 $F_{GH} = 3.375 \text{ kN}$

 $F_{GH} = 3.38 \text{ kN T} \blacktriangleleft$

 $F_{FH} = 5.625 \text{ kN}$

 $F_{FH} = 5.63 \,\mathrm{kN} \,\mathrm{C} \blacktriangleleft$

By inspection of joint *G*:

 $F_{FG} = 0$

Joint *F*:

$$F_{EG} = F_{GH} = 3.38 \text{ kN T} \blacktriangleleft$$

$$\frac{5.625 \text{ kN}}{5} = \frac{F_{EF}}{5} = \frac{F_{DF}}{6}$$
 $F_{EF} = 5.63 \text{ kN T} \blacktriangleleft$

$$F_{DF} = 6.75 \text{ kN C} \blacktriangleleft$$

By inspection of joint D:

$$F_{DE} = 0$$

$$F_{BD} = F_{DF} = 6.75 \text{ kN C} \blacktriangleleft$$

Joint *B*:

By inspection of joint $C: F_{AC} = F_{CE}$

and
$$F_{BC} = 6.00 \text{ kN T} \blacktriangleleft$$

PROBLEM 6.16 CONTINUED

Solving:

$$F_{AB} = 9.375 \text{ kN}$$

$$F_{AB} = 9.375 \text{ kN}$$
 so $F_{AB} = 9.38 \text{ kN C} \blacktriangleleft$

Joint *A*:

$$F_{BE} = 1.875 \text{ kN}$$

$$F_{BE} = 1.875 \text{ kN}$$
 $F_{BE} = 1.875 \text{ kN T} \blacktriangleleft$

$$\frac{F_{AC}}{3} = \frac{7.5 \text{ kN}}{4} = \frac{9.375 \text{ kN}}{5}$$
 $F_{AC} = 5.625 \text{ kN}$

$$F_{AC} = 5.625 \text{ kN}$$

$$F_{AC} = 5.63 \text{ kN T} \blacktriangleleft$$

$$F_{CE} = 5.63 \, \text{kN T} \blacktriangleleft$$

From above

Determine the force in member *DE* and in each of the members located to the left of *DE* for the inverted Howe roof truss shown. State whether each member is in tension or compression.

SOLUTION

FBD Truss:

$$\rightarrow \Sigma F_x = 0$$
: $\mathbf{A}_x = 0$

By load symmetry $\mathbf{A}_{v} = \mathbf{H}_{v} = 2400 \text{ lb}$

Note:

$$\theta = \tan^{-1} \frac{10.08}{15.81 + 18.75} = 16.26^{\circ}$$

$$\beta = 90 - 2\theta = 57.48^{\circ}; \ \alpha = 180 - \beta = 32.52^{\circ}$$

Joint FBDs:

Joint A:

$$\sum F_{y'} = 0$$
: (2400 lb - 600 lb) $\cos \theta - F_{AC} \sin \theta = 0$

$$F_{AC} = \frac{(1800 \text{ lb})}{\tan 16.26^{\circ}} = 6171.5 \text{ lb}; \qquad F_{AC} = 6.17 \text{ kips T} \blacktriangleleft$$

$$\Sigma F_x = 0$$
: (6171.5 lb) $\cos 2\theta - F_{AB} \cos \theta = 0$

$$F_{AB} = 6171.5 \frac{\cos 32.52^{\circ}}{\cos 16.26^{\circ}} = 5420.7 \text{ lb}; \qquad F_{AB} = 5.42 \text{ kips C} \blacktriangleleft$$

Joint *B*:

$$\Sigma F_{x'} = 0$$
: 5420.7 lb + (1200 lb)sin $\theta - F_{BD} = 0$

$$F_{BD} = 5420.7 + 1200 \sin 16.26^{\circ} = 5756.7 \text{ lb}$$
 $F_{BD} = 5.76 \text{ kips } \text{ C} \blacktriangleleft$

Joint *C*:

$$\Sigma F_{y'} = 0$$
: $F_{BC} - (1200 \text{ lb})\cos\theta = 0$ $F_{BC} = 1152 \text{ lb}$

$$F_{BC} = 1.152 \text{ kips } C \blacktriangleleft$$

$$/ \Sigma F_{y''} = 0: F_{CD} \sin 2\theta - (1152 \text{ lb}) \cos \theta = 0$$

$$\Sigma F_{y'} = 0: F_{CD} \sin 2\theta - (1152 \text{ lb}) \cos \theta = 0$$

$$E_{CD} = 1152 \frac{\cos 16.26^{\circ}}{\sin 32.52^{\circ}} = 2057.2 \text{ lb} \qquad F_{CD} = 2.06 \text{ kips T} \blacktriangleleft$$

$$\Sigma F_{x''} = 0$$
: $F_{CE} + (1152 \text{ lb}) \sin \theta + (2057.2 \text{ lb}) \cos 2\theta - 6171.5 \text{ lb} = 0$

PROBLEM 6.17 CONTINUED

$$F_{CE}$$
 = 6171.5 − 1152 sin 16.26° − 2057.2 cos 32.52°
= 4114.3 lb F_{CE} = 4.11 kips T \blacktriangleleft

Joint *E*:

$$\uparrow \Sigma F_y = 0: (4114.3 \text{ lb}) \sin 2\theta - F_{DE} \cos \theta = 0$$

$$F_{DE} = 4114.3 \frac{\sin 32.52^{\circ}}{\cos 16.26^{\circ}} = 2304.0 \text{ lb}$$
 $F_{DE} = 2.30 \text{ kips C} \blacktriangleleft$

Determine the force in each of the members located to the right of DE for the inverted Howe roof truss shown. State whether each member is in tension or compression.

SOLUTION

FBD Truss:

By symmetry of loads
$$\mathbf{A}_{y} = \mathbf{H}_{y} = 2400 \text{ lb}^{\dagger}$$

By symmetry of loads $\mathbf{A}_{y} = \mathbf{H}_{y} = 2400 \text{ lb}$

 $\theta = \tan^{-1} \frac{10.08}{15.81 + 18.75} = 16.26^{\circ}$ Note:

$$\beta = 90 - 2\theta = 57.48^{\circ}$$

 $\rightarrow \Sigma F_r = 0$: $\mathbf{A}_r = 0$

Joint FBDs:

Joint *H*:

$$\Sigma F_y = 0$$
: 2400 lb - 600 lb - $F_{FH} \sin \theta = 0$

$$F_{FH} = \frac{1800 \text{ lb}}{\sin 16.26^{\circ}} = 6428.7 \text{ lb}$$
 $F_{FH} = 6.43 \text{ kips C} \blacktriangleleft$

$$\longrightarrow \Sigma F_x = 0: (6428.7 \text{ lb})\cos\theta - F_{GH} = 0$$

$$F_{GH} = 6428.7 \cos 16.32^{\circ} = 6171.5 \text{ lb}$$
 $F_{GH} = 6.17 \text{ kips T} \blacktriangleleft$

Joint *F*:

$$\Sigma F_{y'} = 0$$
: $F_{FG} - (1200 \text{ lb})\cos\theta = 0$ $F_{FG} = 1152.0 \text{ lb}$

$$F_{FG} = 1.152 \text{ kips } C \blacktriangleleft$$

$$\Sigma F_{x'} = 0$$
: $F_{DF} + (1200 \text{ lb}) \sin \theta - 6428.7 \text{ lb} = 0$

$$F_{DF} = 6428.7 - 1200 \sin 16.26^{\circ} = 6092.7 \text{ lb}$$
 $F_{DF} = 6.09 \text{ kips } \text{ C} \blacktriangleleft$

PROBLEM 6.18 CONTINUED

Joint *G*:

$$\uparrow \Sigma F_y = 0: F_{DG} \sin 2\theta - (1152 \text{ lb}) \cos \theta = 0$$

$$F_{DG} = 1152 \frac{\cos 16.26^{\circ}}{\sin 32.52^{\circ}} = 2057.2 \text{ lb}$$
 $F_{DG} = 2.06 \text{ kips T} \blacktriangleleft$

$$F_{DG} = 2.06 \text{ kips T} \blacktriangleleft$$

$$\Sigma F_x = 0$$
: 6171.5 lb $-2057.2\cos 2\theta - F_{EG} - 1152$ lb $\sin \theta = 0$

$$F_{EG} = 4.11 \, \mathrm{kips} \, \mathrm{T} \, \blacktriangleleft$$