Neural network

Ngô Minh Nhựt

2021

Part 1

Model representation and forward propagation

Logistic regression

Linear classifier

$$h_{\theta}(x) = g(\theta^T x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Non-linear classifier

What mappings?

How many mappings?

How many features?

 $x_1 = size$

 x_2 = number of bedrooms

 x_3 = number of floors

 $x_4 = age$

. . .

X₁₀₀

Non-linear classification with logistic regression requires a lot of features

Source: Andrew Ng

Logistic regression

Sigmoid activation function

Neural network

Activation at node

Activation at node

Activation at node

$$a_3^{(2)} = g \left(W_{30}^{(1)} x_0 + W_{31}^{(1)} x_1 + W_{32}^{(1)} x_2 + W_{33}^{(1)} x_3 \right)$$

Weight matrix

a_i(j): activation of ith node in jth layer

 $W^{(j)}$: weight matrix mapping activation in j^{th} layer to $j+1^{th}$ layer If neural network has s_j nodes in j^{th} layer and s_{j+1} nodes in $j+1^{th}$ layer, $W^{(j)}$ has a size of s_{j+1} x $(s_j + 1)$

Forward propagation

Representation by vector

Feature self-learning network

$$h_W(x) = a_1^{(3)} = g\left(W_{10}^{(2)}a_0^{(2)} + W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)} + W_{13}^{(2)}a_3^{(2)}\right)$$

Other architectures

Non-linear classifier

- Linear function
 - OR
 - AND

- Non-linear function XOR
 - XOR(x1, x2)
 - a1 = AND(x1, NOT(x2))
 - a2 = AND(NOT(x1), x2)
 - y = OR(a1, a2)

Non-linear classifier

- Linear function
 - OR
 - AND

- XOR(x1, x2)
 - \bullet a1 = AND(x1, NOT(x2))
 - a2 = AND(NOT(x1), x2)
 - y = OR(a1, a2)

Function OR

Function AND

Z

Function NOT

X 1	$h_W(x)$
0	1
1	0

Function AND(NOT(x1), x2)

$h_W(x) = g(-10 - 20x_1 + 20x_1)$	(x_2)
g(z)	
Z	

X 1	X 2	$h_W(x)$
0	0	0
0	1	1
1	0	0
1	1	0

Function AND(x1, NOT(x2))

$h_W(x) = g(-10 + 20x_1 - 20x_2)$)
g(z)	
7	

X ₁	X 2	$h_W(x)$
0	0	0
0	1	0
1	0	1
1	1	0

Function XOR

 $XOR(x_1, x_2) = OR(AND(NOT(x_1), x_2), AND(x_1, NOT(x_2)))$

Part 2

Training and backward propagation

Cost function

$$J(W) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h_W(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_W(x^{(i)})) \right]$$

Gradient

$$\frac{dJ}{dW} = \left[\frac{dJ}{dW_{10}^{(1)}}, \frac{dJ}{dW_{11}^{(1)}}, \dots, \frac{dJ}{dW_{10}^{(L-1)}}, \dots, \frac{dJ}{dW_{s_{l+1}s_l}^{(L-1)}} \right]$$

Derivative

$$\frac{dJ}{dW_{ij}^{(l)}} = \sum_{k=1}^{s_{(l+1)}} \frac{dJ}{dz_k^{(l+1)}} \frac{dz_k^{(l+1)}}{dW_{ij}^{(l)}}$$

$$\begin{split} \frac{dJ}{dz_{i}^{(l)}} &= \sum_{j=1}^{s_{(l+1)}} \frac{dJ}{dz_{j}^{(l+1)}} \frac{dz_{j}^{(l+1)}}{dz_{i}^{(l)}} \\ &= \sum_{j=1}^{s_{(l+1)}} \delta_{j}^{(l+1)} \frac{dz_{j}^{(l+1)}}{dz_{i}^{(l)}} \\ &= \sum_{j=1}^{s_{(l+1)}} \delta_{j}^{(l+1)} \frac{d}{dz_{i}^{(l)}} \sum_{k=0}^{s_{l}} W_{jk}^{(l)} g(z_{k}^{(l)}) \\ &= \sum_{j=1}^{s_{(l+1)}} \delta_{j}^{(l+1)} W_{ji}^{(l)} g'(z_{i}^{(l)}) \end{split}$$

Notation

$$\delta_j^{(l)} = \frac{dJ}{dz_j^{(l)}}$$

$$\begin{split} \frac{dJ}{dW_{ij}^{(l)}} &= \sum_{k=1}^{s_{(l+1)}} \frac{dJ}{dz_k^{(l+1)}} \frac{dz_k^{(l+1)}}{dW_{ij}^{(l)}} \\ &= \sum_{k=1}^{s_{(l+1)}} \delta_k^{(l+1)} \frac{d}{dW_{ij}^{(l)}} \sum_{t=0}^{s_l} W_{kt}^{(l)} a_t^{(l)} \\ &= \delta_i^{(l+1)} \frac{d}{dW_{ij}^{(l)}} W_{ij}^{(l)} a_j^{(l)} \\ &= \delta_i^{(l+1)} a_j^{(l)} \end{split}$$

$$\frac{dJ}{dW^{(l)}} = \delta^{(l+1)}a^{(l)T}$$

Backward propagation algorithm

(1) Apply forward propagation to calculate:

$$z^{(1)}$$
, ..., $z^{(L)}$, $a^{(1)}$, ..., $a^{(L)}$ và $J(z^{(L)})$

(2)
$$\delta^{(L)} = \frac{dJ}{dz^{(L)}}$$

(3) for I = L-1 to 0

(4)
$$\frac{dJ}{dz^{(l)}} = g'(z^{(l)})(W^{(l)T}\delta^{(l+1)})$$

(5)
$$\frac{dJ}{dW^{(l)}} = \delta^{(l+1)}a^{(l)T}$$

(6) end for

Regularization

Cost function

$$J(W) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h_W(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_W(x^{(i)})) \right]$$

$$+ \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{j=1}^{s_{l+1}} \sum_{i=1}^{s_l} (W_{ji}^{(l)})^2$$

Regularization

Gradient

$$\frac{dJ}{dz^{(l)}} = g'(z^{(l)})(W^{(l)T}\delta^{(l+1)}) + \lambda W^{(l)} \quad \text{if} \quad j \neq 0$$

$$\frac{dJ}{dz^{(l)}} = g'(z^{(l)})(W^{(l)T}\delta^{(l+1)}) \qquad \text{if} \quad j = 0$$