Nazwa i akronim projektu: Extrema System Search- ESS	Zleceniodawca: projekt własny	Zleceniobiorca: PG, WFTiMS, zespół projektowy numer 1
Numerzlecenia: PG-WFTiMS-IO-2018-001	Kierownik projektu: Michał Jagielski	Opiekun projektu: dr inż. Marta Łabuda

Nazwa / kod dokumentu:	Nr wersji:
Harmonogram	1.0
Odpowiedzialny za dokument:	Data pierwszego sporządzenia:
Michał Jagielski	05.10.2018
	Data ostatniej aktualizacji:
	05.10.2018

Historia dokumentu

Wersja	Opis modyfikacji	Rozdział / strona	Autor modyfikacji	Data
1.0	Wersja wstępna.	całość	Michał Jagielski	05.10.2018

1 Wprowadzenie - o dokumencie

1.1 Cel dokumentu

Celem tego dokumentu jest sprecyzowanie zadań niezbędnych do wykonania oraz zaplanowanie prac projektowych w zakresie: --tworzenia kodu źródłowego aplikacji

- -oszacowanie ryzyka i podjęcie odpowiednich środków zapobiegawczych
- -wyznaczenie terminów pracy przy poszczególnych zadaniach oraz osób za nie odpowiedzialnych
- -oszacowanie czasu niezbędnego do wykonania poszczególnych zadań

1.2 Zakres dokumentu

Dokument precyzuje zadania do wykonania, przybliża proces wytwarzania oprogramowania oraz definiuje organizację projektu.

1.3 Odbiorcy

Opiekun projektu - dr. inż. Marta Łabuda

Członkowie zespołu: Michał Jagielski, Maciej Dąbrowski, Krzysztof Bądkowski, Paul Bugaj, Michał Fladziński

1.4 Terminologia

- -ekstremum funkcji- maksymalna lub minimalna wartość jaką osiąga funkcja miejsca gdzie pochodna funkcji jest równa 0,
- <u>*lokalne</u> miejsca, w których funkcja osiąga minimum albo maksimum ale nie jest to największa lub najmniejsza wartość biorąc pod uwagę całą funkcję
- *globalne miejsce/miejsca, w którym/których funkcja osiąga absolutne i jedyne minimum bądź maksimum
- -pochodna funkcji- miara szybkości zmian wartości funkcji względem zmian jej argumentów.

- **-granica funkcji** wartość, do której obrazy danej funkcji zbliżają się nieograniczenie dla argumentów dostatecznie bliskich wybranemu punktowi
- -algorytm heurystyczny- metoda znajdowania rozwiązań, dla której nie ma gwarancji znalezienia rozwiązania optymalnego, a często nawet prawidłowego. Rozwiązań tych używa się np. wtedy, gdy pełny algorytm jest z przyczyn technicznych zbyt kosztowny lub gdy jest nieznany (np. przy przewidywaniu pogody).
- -metody numeryczne są jedną z tych dziedzin matematyki stosowanej, których zastosowanie w praktyce jest powszechne. Wykorzystywane są wówczas, gdy badany problem nie ma w ogóle rozwiązania analitycznego (danego wzorami), lub korzystanie z takich rozwiązań jest uciążliwe ze względu na ich złożoność lub z innych powodów.

2 Proces wytwarzania

2.1 Strategia prowadzenia projektu

Projekt będzie wytwarzany wykorzystując cykl przyrostowy.

2.2 Opis etapów wytwarzania (prowadzenia projektu)

- 1. Określenie całości wymagań, wykonanie wstępnego, ogólnego projektu całości systemu
- 2. Wybór pewnego podzbioru funkcji systemu (funkcjonalności)
 - -moduł algorytmiczny "HeuristicAlgorithsm"
 - -moduł graficzny "Graphic"
 - -GUI
 - -moduł komunikacyjny "Communication"
- 3. Szczegółowy projekt oraz implementacja części systemu realizującej wybrane funkcje
- 4. Testowanie zrealizowanego fragmentu i dostarczenie go klientowi
 - -testowanie odbywania się na etapie powstawania poszczególnych modułów
- 5. Powtarzanie kolejnych etapów, aż do zakończenia implementacji całego systemu

3 Organizacja projektu

3.1 Zespół projektowy

Specyfikacja wymagań - 5 osób - analitycy

Obsługa i implementacja - 5 osoby - programiści API

Tworzenie interfejsu użytkownika - 3 osoby - projektanci, programiści GUI

Tworzenie funkcjonalności związanej z znajdywaniem ekstremów funkcji - 2 osoby – programiści oprogramowania

Tworzenie funkcjonalności związanej z wyświetlaniem funkcji w 2 i 3 wymiarach – 2 osoby – programiści graficzni

Testowanie i poprawy funkcjonalności - 2 osoby - testerzy, programiści

Nadzór projektu (zgodność ze przyjętym standardem pisania kodu) – 1 osoba – nadzorca projektu

Imię i nazwisko	Rola w projekcie	
Michał Jagielski	Programista / Nadzorca projektu / Kierownik	
Maciej Dąbrowski	Programista / Dokumentalista / Tester	

Krzysztof Bądkowski	Programista / Grafik /	
programista / Grafik /		
Michał Fladziński	Programista / Grafik	

Powyższy podział ról przypisuje nadzór, nad poszczególnymi sekcjami, konkretnym członkom zespołu. Kierownik w porozumieniu z nadzorcą danej sekcji będzie rozdzielał szczegółowe zadania członkom zespołu.

3.2 Infrastruktura techniczna

W ramach realizacji projektu użyte będą następuje narzędzia i technologie:

- komputery stacjonarne, laptopy
- Microsoft Office
- Discord, Skype
- Microsoft Visual Studio
- GitHub
- Google Drive
- Google Documents
- Microsoft.NET
- Gmail

3.3 Infrastruktura komunikacyjna

• spotkanie kontrolne grupy raz w tygodniu:

środa, 10:00, PG, 115 GG

• spotkanie z opiekunem projektu raz w tygodniu:

środa, 10:00, PG, 115 GG

- komunikacja skype
- komunikacja e-mailowa:

adresy e-mail:

- Michał Jagielski michal 77_1996@gmail.com
- Maciej Dąbrowski mdabrowski@task.gda.pl
- Krzysztof Bądkowski ka.badkowski@gmail.com
- Paul Bugaj bugajpaul@gmail.com
- Michał Fladziński michalfladzinski @gmail.com
- komunikacja Messenger
- komunikacja Discord

3.4 Infrastruktura dokumentacyjna (bezpośrednio dotycząca projektu)

- SWS (Specyfikacja Wymagań Systemowych) zdefiniowanie udziałowców, wymagań na podstawie otoczenia projektu oraz analizy potrzeb klienta
- AWS (Analiza i Wizja Systemu) przedstawienie celu projektu, zakresu funkcjonalności, modelu obiektowego oraz przypadków użycia systemu.
- PS (Projekt Systemu) dokładny opis systemu, jego ogólny zarys, kosztorys oraz plan wdrażania na rynek konsumencki.
- "Raport z prac" będzie przygotowywany przez zespół projektowy lub jednego członka i zatwierdzany przez resztę zespołu.

3.5 Zarządzanie jakością w projekcie

- sprawdzanie każdego dokumentu przez osobę, która nie jest autorem osoba ta zweryfikuje czy dokument spełnia swoje założenia i czy jest zrozumiały
- inspekcja oprogramowania weryfikacja wytworzonego oprogramowania przez członków grupy, by stwierdzić czy projekt spełnia założenia
- inspekcja kodu przez osobę, która nie jest autorem osoba ta zweryfikuje styl kodowania, czy
 jest zrozumiały i zgodny z przyjętymi standardami pisania kod
- inspekcje kluczowych dokumentów inspekcje te pomogą potwierdzić słuszność opisanych w dokumencie założeń dotyczących realizacji projektu
- przestrzeganie zasad kodowanaia (przyjętego przez grupę):
 - 1. funkcje powinny w miarę możliwości zwracać "true" jeśli zostały pomyślnie wykonane lub "false" jeśli doszło do błędu lub zwracać odpowiednie wyjątki
 - 2. wszelkie moduły powinny być ograniczone do wytyczonej przestrzeni nazw aby unikać problemów powstawania zmiennych i klas o tej samej nazwie
 - 3. moduły powinny być jak najprostsze w obsłudze dla pozostałych użytkowników posiadać tylko niezbędne funkcjonalności

3.6 Zarządzanie ryzykiem w projekcie

Czynnik ryzyka	Prawdopodobieństwo wystąpienia (0-100%)	Działania zapobiegawcze	Plany awaryjne(jeśli możliwe)
Brak dobrej znajomości języka programowania C#	20%	Dodatkowa nauka języka we własnym zakresie	
Brak współpracy niektórych członków zespołu	70%	Całodobowy nadzór kierownika nad stanem zleconej pracy	Przydzielenie zadania innej osobie i zgłoszenie tego opiekunowi projektu
Niemożliwość zaimplementowania pewnej funkcjonalności aplikacji	20%	Przestrzeganie standardu pisania oprogramowania obiektowego	Ograniczenie tej funkcjonalności, znaleźnie funkcjonalności zastępczej lub całkowite jej usunięcie
Zbyt mała ilość godzin na realizację całego projektu	50%	ograniczenie funkcjonalności aplikacji do minimum	stworzenie "prototypu" aplikacji
Utracenie części kodu w wyniku awarii sprzętu	10%	umieszczanie projektu po każdej modyfikacji w repozytorium	cofnięcie projektu do ostatniego etapu zapisanego w repozytorium

4 Harmonogram projektu

4.1 Ograniczenia czasowe na projekt

Na implementację projektu przeznaczymy 8 tygodni począwszy od 10.10.2018. Aplikacja zostanie oddana do oceny na ostatnich zajęciach laboratoryjnych, które odbędą się 12.12.2018.

4.2 Oszacowanie czasu realizacji poszczególnych etapów

- 1. Przygotowanie i zaprojektowanie modułu odpowiedzialnego za obliczanie ekstremów funkcji dowolnej liczby zmiennych przy użyciu algorytmów heurystycznych 2tygodnie czyli 60h
 - Przygotowanie odpowiednich 6 dowolnych algorytów heurystycznych
 - Moduł ma zawierać funkcjonalności (metody) odpowiedzialne za:
 - ♦ Wykonanie jednej iteracji dla dowolnego z 6 algorytmów
 - ♦ Wykonanie pełnej pętli odnajdywania minimum/maksimum i zwrócenie znalezionego punktu
 - ♦ Wszelkie pozostałe funkcje powinny być prywatne jeśli nie jest to możliwe powinny być ograniczone do minimum
- 2. Przygotowanie i zaprojektowanie modułu odpowiedzialnego za przyjmowanie i przetwarzanie "tablicy" punktów funkcji dowolnej liczby zmiennych i zamienianie ich na przybliżoną funkcje odpowiedniej liczby zmiennych 2tydzien czyli 60osobogodzin
 - Przygotowanie bezpiecznego sposobu wczytywania plików z danymi
 - Moduł ma zawierać funkcjonalności (metody) odpowiedzialne za:
 - ♦ Wczytywanie puntków z plików tekstowych (.txt) lub excela (.xlsx) i przetworzenie ich na hardwerową tablice punktów
 - Zamianę wyżej wymienionej tablicy punków na wzór funkcji i zwrócenie jej w postaci łańcucha znaków (string) zrozumiałych dla użytkownika
 - Wszelkie pozostałe funkcje powinny być prywatne jeśli nie jest to możliwe powinny być ograniczone do minimum
- 3. Stworzenie interfejsu użytkownika dostosowanego do innych modułów 3tygodnie czyli 90 osobogodzin
 - Przygotowanie przyjaznego i intuicyjnego interfejsu użytkownika
 - GUI powinno być dostosowane do funkcji pozostałych modułów i prawidłowo z nimi współpracować
- 4. Przygotowanie i zaprojektowanie modułu odpowiedzialnego za wyświetlanie podanej przez użytkownika funkcji w postaci graficznej (jednej i dwóch zmiennych) 2tygodnie czyli 60 osobogodzin
 - Podana funckja powinna być wyświetlana na podstawie podanej przez użytkownika funkcji w postaci łańcucha znaków i wyświetlana w dpowiednim przedziale
 - Moduł ma zawierać funkcjonalności (metody) odpowiedzialne za:
 - Wczytanie funkcji podanej w postaci łańcucha znaków i warunków ograniczających a następnie wyświetlenie jej w odpowiedniej kontrolce (panelu)
 - Podłączenie do modułu odpowiedniej kontrolki i przystosowanie jej w ten sposób do łatwego i szybkiego wyświetlania zadanej funkcji
 - Wszelkie pozostałe funkcje powinny być prywatne jeśli nie jest to możliwe powinny być ograniczone do minimum
- 5. Sprawdzanie poprawności działania programu (testowanie) 1tydzień czyli 30osobogodzin
- 6. Łączenie modułów w funkcjonalną aplikację 2tygodnie czyli 60 osobogodzin
 - Połączenie wszystkich modułów do powstałego intefesju użytkownika w sposób, w którym będą one komunikowały się ze sobą bez błędów

Szacujemy, że prace nad poszczególnymi etapami zajmą nam 360 osobogodzin. Nasze obliczenia są obarczone znacznym ryzykiem, nie jesteśmy w stanie dokładnie przewidzieć ile czasu spędzimy nad danym etapem.

4.3 Przydzielenie odpowiedzialności i ścieżki krytyczne

L.p.	Szacowany czas wykonania	Data rozpoczęci a prac	Data zakończenia prac	Osoba odpowiedzialn a	Osoby współodpo wiedzialne	Plan awaryjny
1	2 tygodnie	10.10.2018	24.10.2018	Michał Jagielski	Krzysztof Bądkowski	-ograniczenie ekstremów do funkcji ograniczonej liczby zmiennych -wydłużenie czasu prac
2	2 tygodnie	17.10.2018	31.10.2018	Maciej Dąbrowski	Michał Fladziński	-ograniczenie działania modułu do minimum -wydłużenie czasu prac
3	3 tygodnie	07.11.2018	28.12.2018	Michał Fladziński	Maciej Dąbrowski	-wykorzystanie najprostrzych wzorców graficznych -konsultacja z resztą członków ekipy
4	2 tygodnie	31.10.2018	14.11.2018	Paul Bugaj	Michał Jagielski, Krzysztof Bądkowski	-uproszczenie wyświetlania funkcji (tylko od jednej zmiennej) -wydłużenie czasu pracy
5	1 tygodnie	05.12.2018	12.12.2018	Michał Jagielski	Michał Fladziński	-konsultacja z resztą zespołu -wyłączenie niedziałającego modułu lub ograniczenie jego funkcjonalności
6	2 tygodnie	21.11.2018	05.12.2018	Krzysztof Bądkowski	Paul Bugaj	-konsultacja z całym zespołem -wydłuzenie czasu prac -ograniczenie funkcjonalności modułów