Lecture 1. Propositional Logics

Ref.: K. H. Rosen, Section 1.1 & 1.2

Definition

Definition:

A Proposition is a declarative statement that is either true or false but not both.

True

False

Examples

Propositions:

"Qilin is a CS lecturer."

"
$$1 + 1 = 3$$
"

Non-Propositions:

"Is he a CS student?"

"
$$X + 1 = 3$$
"

a paradox

"This sentence is false."

Propositions cannot contain undefined variables!

Denotations

Letters (p, q, r, s...) are used to denote propositions

E.g., p is defined as "Canberra is the capital of Australia"

"Canberra is the capital of Australia"

1

 \mathcal{L}

How to denote "Canberra is the capital of Australia and Canberra is located at the southeast of Australia"?

Compound Propositions

New propositions can be generated by combining existing propositions using logical operators, and they are called compound propositions.

Negation

"Today is Tuesday"

"Today is not Tuesday"

Definition:

Let *p* be a proposition. The statement "It is not the case that *p*" is another proposition, called the negation of *p*.

The negation of p is denoted by $\neg p$. The proposition $\neg p$ is read "not p"

Negation: Truth table

• A truth table displays the truth value of complex propositions ($\neg p$) corresponding to the truth value of elementary propositions (p)

Conjunction

"Today is Tuesday" (p) "It is raining today" (q) "Today is Tuesday and it is raining today" p and q

• We also use the symbol \wedge to represent *and*.

$$p \wedge q$$

Conjunction

Definition:

Let p and q be propositions. The propositions "p and q" denoted by $p \wedge q$, is true when p and q are both true and is false otherwise.

The proposition $p \wedge q$ is called the Conjunction of p and q.

Conjunction

p	q	p ^ q
T	T	T
T	F	F
F	T	F
F	F	F

Given n elementary propositions, the number of rows equals to 2ⁿ!

Disjunction

"Today is Tuesday" (p) "It is raining today" (q)
"Today is Tuesday or it is raining today"
(both might be true)

p or q

• When using logical or it is represented by the symbol \lor

$$p \vee q$$

Disjunction

Definition:

Let p and q be propositions. The proposition "p or q" denoted by $p \vee q$, is the proposition that is false when p and q are both false and true otherwise.

The proposition $p \lor q$ is called the Disjunction of p and q.

Disjunction

p	q	p v q
T	T	T
T	F	T
F	T	T
F	F	F

Exclusive or

"You may have ice cream" (p) "You may have cake" (q)

"As desert you may have either ice cream *or* cake" (but not both!)

• We use the symbol \oplus to represent the *exclusive or*

$$p \oplus q$$

Exclusive or

Definition:

Let p and q be propositions. The exclusive or of p and q, denoted by $p \oplus q$, is the proposition that is true when exactly one of p and q is true and is false otherwise.

Exclusive or

p	q	$p \oplus q$
T	T	F
T	F	T
F	T	T
F	F	F

"It is sunny today" (p) "We go to the beach" (q) If p, then q

"If it is sunny today then we go to the beach"

• When using logical *implication* it is represented by the symbol →

$$p \rightarrow q$$

Definition:

Let p and q be propositions. The implication $p \rightarrow q$ is the proposition that is false when p is true and q is false and true otherwise.

In this implication *p* is called the hypothesis and *q* is called the conclusion.

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

• Think of implication as a rule

"If Tom is a cat (p) then Tom has four legs (q)"

- Tom is a cat and Tom has four legs
- Tom is a cat and Tom doesn't have four legs
- Tom is not a cat and Tom has four legs
- Tom is not a cat and Tom doesn't have four legs

Sounds good

Something is wrong!

No problem

Think of implication as a promise

"If you score 80% or above (p) then I will give you a dollar (q)"

- If you did score above 80%, and I gave you a dollar, the promise is kept (p is True, q is True, $p \rightarrow q$ is True)
- If you did score above 80%, and I didn't give you a dollar, the promise is broken (p is True, q is False, $p \rightarrow q$ is False)
- If you did **not** score above 80%, no matter I give you a dollar or not, you cannot complain the promise is broken
 (p is False, p → q is True, no matter q)

A false statement implies anything.

Meaning of $p \rightarrow q$:

```
If p then q
p implies q
p only if q
p is sufficient for q
q if p
q whenever p
q is necessary for p
```

```
Meaning of p \rightarrow q: Example
      if x=1+3, then x=4
                     If x=1+3 then x=4
If p then q:
                     x=1+3 implies x=4
p implies q:
                     x=1+3 only if x=4
p only if q:
                     x=1+3 is sufficient for x=4
p is sufficient for q:
                     x = 4 if x = 1 + 3
q if p:
                     x=4 whenever x=1+3
q whenever p:
```

q is necessary for p: x=4 is necessary for x=1+3

```
Meaning of p \rightarrow q: Example
 if you finish all exercises in the textbook,
 then you'll pass the exam.
If p then q:
p implies q:
p only if q:
p is sufficient for q:
q if p:
q whenever p:
q is necessary for p:
```

Biconditional

```
"The polygon has exactly 3 sides" (p) a triangle" (q)
```

"The polygon has exactly 3 sides

if and only if

the polygon is a triangle"

p if and only if q

• When using logical *biconditional* it is represented by the symbol ↔

$$p \leftrightarrow q$$

Biconditional

Definition:

Let p and q be propositions. The biconditional $p \leftrightarrow q$ is the proposition that is true when p and q have the same truth values and is false otherwise.

Biconditional

p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

Precedence of connectives

^ and ∨ have co-equal priority, hence it is necessary to include parentheses to avoid ambiguity in some expression;

e.g.
$$(p \land q) \lor r$$
 vs. $p \land (q \lor r)$

Precedence of connectives (cont.)

• when more than 2 instances of binary connectives of equal priority are not separated by (), the leftmost one has the highest priority;

E.g.
$$p \rightarrow q \rightarrow r \equiv (p \rightarrow q) \rightarrow r$$

• when more than 2 instances of ¬ are not separated by (), the right most one has precedence;

E.g.,
$$\neg \neg \neg \neg p \equiv \neg(\neg(\neg(\neg p)))$$

A Few Terminologies

- A compound proposition that is always true, no matter what the truth values of the propositions that occur in it, is called a tautology.
- A compound proposition that is always false is called a contradiction.
- Finally, a proposition that is neither a tautology nor a contradiction is called a contingency.

Examples

 $p \lor \neg p$ is a tautology

 $p \land \neg p$ is a contradiction

p	$\neg p$	$p \lor \neg p$	$p \land \neg p$
T	F	T	F
F	T	T	F

Logical equivalence

 Two statement forms are logically equivalent iff they have identical truth values for all possible combinations of truth values of their propositional symbols

 $p \Leftrightarrow q$ denotes that p and q are logically equivalent. Sometimes $p \equiv q$.

Remember biconditional?

Definition:

Let p and q be propositions. The biconditional $p \leftrightarrow q$ is the proposition that is true when p and q have the same truth values and is false otherwise.

Hence, the propositions p and q are called logically equivalent if $p \leftrightarrow q$ is a tautology.

Example

pq	$p \vee q$	$\neg (p \lor q)$	¬р	$\neg q$	$\neg p \wedge \neg q$
TT	T	F	F	F	F
TF	T	\mathbf{F}	F	T	\mathbf{F}
FT	T	\mathbf{F}	T	F	\mathbf{F}
F F	F	T	T	T	T

¬(p \vee q) is equivalent to ¬p \wedge ¬q ¬(p \vee q) \leftrightarrow ¬p \wedge ¬q is a tautology

Example

pq	$p \wedge q$	$\neg (p \land q)$	¬р	$\neg q$	$\neg p \lor \neg q$
TT	T	F	F	F	F
TF	F	\mathbf{T}	F	T	\mathbf{T}
FT	F	T	T	F	T
F F	F	T	T	T	T

¬(p ∧ q) is equivalent to ¬p ∨ ¬q

Example

- Negation of "it is sunny <u>but</u> it is not hot"
 it is not sunny or 'it is hot' or 'both'
- $p \equiv$ "John is clever and he is rich" $\equiv a \land r$
- $p' \equiv$ "John is clever and rich" $\equiv a \land r$
- $\neg p' \equiv$ "John is not 'clever and rich'"

$$\neg(a \land r) \equiv \neg a \lor \neg r$$
? vs. $\neg a \land \neg r$?

Equivalent form for implication

p	q	$p \rightarrow q$	$\neg p \lor q$
T	T	T	T
T	F	F	F
F	T	T	T
F	F	T	T

"If it is sunny then we go to the beach"

"It is not sunny or we go to the beach"

Negation of implication

$$\neg (p \rightarrow q) \equiv \neg(\neg p \lor q)$$

$$\equiv \neg (\neg p) \land \neg q$$

$$\equiv p \land \neg q$$

E.g. Negate "If it is sunny then we go to the beach"

"It is sunny and we do not go to the beach"

Show that $(p \land q \rightarrow p)$ and $(p \rightarrow q \lor p)$ are tautologies.

Method 1: use truth table:

p	q	p∧q	q∨p	$p \land q \rightarrow p$	$p \rightarrow q \lor p$
T	T	T	T	T	T
T	F	F	T	T	T
F	T	F	T	T	T
F	F	F	F	T	T

Method 2:

```
(p \land q \rightarrow p) \equiv \neg (p \land q) \lor p
                        \equiv (\neg p \lor \neg q) \lor p
                         \equiv (\neg p \lor p) \lor \neg q
                        \equiv t \vee \neg q \equiv t
(p \rightarrow q \lor p) \equiv \neg p \lor (q \lor p)
                          \equiv (\neg p \lor p) \lor q
                          \equiv t \vee q \equiv t
```

```
Show: p \lor q \rightarrow r \equiv (p \rightarrow r) \land (q \rightarrow r)
    Method 1: use truth table;
     Method 2:
            p \lor q \rightarrow r \equiv (p \lor q) \rightarrow r
                                \equiv \neg (p \lor q) \lor r
                                \equiv (\neg p \land \neg q) \lor r
                                \equiv (\neg p \lor r) \land (\neg q \lor r)
                                \equiv (p \rightarrow r) \land (q \rightarrow r)
```

Three terms about $p \rightarrow q$

• The contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$

In fact,
$$\neg p \rightarrow \neg q \equiv q \rightarrow p$$

• The converse of $p \rightarrow q$ is $q \rightarrow p$

$$q \rightarrow p - p \rightarrow q$$
?

• The inverse of $p \rightarrow q$ is $\neg p \rightarrow \neg q$

$$\neg p \rightarrow \neg q = p \rightarrow q?$$

• Clearly, $\neg p \rightarrow \neg q \equiv q \rightarrow p$

E.g. "If it is sunny then we go to the beach."

Contrapositive:

"If we do not go to the beach then it is not sunny."

Converse:

"If we go to the beach then it is sunny."

Inverse:

"If it is not sunny then we do not go to the beach."

Biconditional

$$p \leftrightarrow q \equiv p \text{ if, and only if, } q$$

 $\equiv p \text{ if } q, \text{ and, } p \text{ only if, } q$

pq	$p \rightarrow q$	$q \rightarrow p$	$p \leftrightarrow q$
TT	T	T	T
TF	F	T	\mathbf{F}
FT	T	F	\mathbf{F}
FF	T	T	T

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (\neg p \rightarrow \neg q) \equiv (p \rightarrow q) \land (q \rightarrow p)$$

De Morgan's laws

$$\neg(p \land q) \Leftrightarrow \neg p \lor \neg q$$
$$\neg(p \lor q) \Leftrightarrow \neg p \land \neg q$$

Commutative

$$p \wedge q \Leftrightarrow q \wedge p$$

 $p \vee q \Leftrightarrow q \vee p$

Associative

$$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$$

 $(p \land q) \land r \Leftrightarrow p \land (q \land r)$

Distributive

$$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$$

 $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$
[Remember? $a(b+c)=ab+ac$]

Identity (t is tautology, c is contradiction)

$$p \wedge t \Leftrightarrow p \qquad p \vee c \Leftrightarrow p$$

Universal bound

$$p \lor t \Leftrightarrow t$$

$$\boldsymbol{p} \wedge \boldsymbol{c} \Leftrightarrow \boldsymbol{c}$$

Negation

$$p \land \neg p \Leftrightarrow c$$

$$p \lor \neg p \Leftrightarrow t$$

Double Negation

$$\neg(\neg p) \Leftrightarrow p$$

Idempotent

$$p \land p \Leftrightarrow p \qquad p \lor p \Leftrightarrow p$$

Absorption

$$p \lor (p \land q) \Leftrightarrow p \quad p \land (p \lor q) \Leftrightarrow p$$

Example 1: Proof of Distributive Law

$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$

p q r	$q \wedge r$	$p \vee (q \wedge r)$	$p \vee q$	$p \vee r$	$(p \lor q) \land (p \lor r)$
T T T T F T F T T F T T F T	T F F F T	T T T T	T T T T	T T T T T	T T T T
F T F F F F	F F F	F F F	T F F	F T F	F F F

Example 2:

Show that $\neg(p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent $\neg (p \lor (\neg p \land q)) \Leftrightarrow \neg p \land \neg (\neg p \land q)$ De Morgan $\Leftrightarrow \neg p \land (\neg (\neg p) \lor \neg q)$ De Morgan $\Leftrightarrow \neg p \wedge (p \vee \neg q)$ Double negation $\Leftrightarrow (\neg p \not \neg p) \lor (\neg p \land \neg q)$ Distributive \Leftrightarrow F \checkmark ($\neg p \land \neg q$) known contradiction $\Leftrightarrow (\neg p \land \neg q) \checkmark F$ Commutative Identity $\Leftrightarrow \neg p \land \neg q$

Proof of Absorption

$$p \lor (p \land q) \Leftrightarrow p \quad p \land (p \lor q) \Leftrightarrow p$$

pq	$p \wedge q$	$p\lor(p\land q)$	$p \vee q$	$p \land (p \lor q)$
TT	T	T	T	T
TF	F	T	T	\mathbf{T}
FT	F	F	T	\mathbf{F}
F F	F	F	F	F

Translating English Sentences

Statement 1: John is short or Marry is pretty, and, John is not short or Marry is not pretty

Statement 2: It is not the case that both John is short and Marry is pretty, or, both John is not short and Marry is not pretty

Logical Forms:

1.
$$(P \lor Q) \land (\neg P \lor \neg Q)$$

2.
$$\neg ((P \land Q) \lor (\neg P \land \neg Q))$$

Translating English Sentences

They are equivalent:

$$\neg((P \land Q) \lor (\neg P \land \neg Q))$$

$$\Leftrightarrow \neg(P \land Q) \land \neg(\neg P \land \neg Q)$$

$$\Leftrightarrow (\neg P \lor \neg Q) \land (P \lor Q)$$

$$\Leftrightarrow (P \lor Q) \land (\neg P \lor \neg Q)$$

Use the Truth Table:

Translating English Sentences

рq	$\neg p \neg q$	$p \vee q$	$\neg p \vee \neg q$	$(p \lor q) \land (\neg p \lor \neg q)$	$p \oplus q$
T T T F F T F F	F F T T T	T T T F	F T T	F T T F	F T T F

Hence the two confusing sentences are logically equivalent to the more legible form:

Either John is short or Marry is pretty, but not both.

Only If

"Emma eats dinner only if she is hungry"

- "If she is not hungry then Emma does not eat dinner"
- = "If Emma eats dinner then she is hungry"

p only if q $\equiv (\neg q \rightarrow \neg p)$ $\equiv p \rightarrow q$

Sufficient condition

- "Vandalizing others' property is a sufficient condition for Michael to be fined"
- = "If Michael vandalizes others' property then he will be fined"

p is a sufficient condition for $q \equiv p \rightarrow q$

Necessary condition

- "Being over 16 is a necessary condition for a person to get a driver's licence"
- = "If a person has not turned 16 then he/she cannot get a driver's licence"
- = "If a person get his/her driver's licence then he/she is over 16"

$$p$$
 is a necessary condition for $q \equiv \neg p \rightarrow \neg q$
$$\equiv q \rightarrow p$$

Are the following 3 statements logically equivalent?

- "You fix my ceiling or I won't pay my rent" $x: P \lor \neg Q$
- "If you do not fix my ceiling then I won't pay my rent"

$$y: \neg P \rightarrow \neg Q$$

• "I will pay my rent only if you fix my ceiling" $z: Q \rightarrow P$

Rewrite 'if n is prime, then n is odd or n is 2' in a few other (logically equivalent) ways

A prestige company wrote: 'a person will be hired only if he majors in mathematics or computer science, get a *B* average or better, and take accounting'; an applicant with such qualifications was turned down; did the company lie?

No. They stated the necessary conditions, not sufficient condition. You will be considered only with the qualification, but not guaranteed to be hired.

Summary

- Definition of Proposition
- Truth table of propositions
- Logical Connectives of proposition:
 - $not \neg$, $and \land$, $or \lor$, exclusive or \oplus , implication \rightarrow , and biconditional \leftrightarrow
- Translation to and from English
- Tautology and Contradiction

Summary

- Logical Equivalence
- Common Logical Laws
- Negation of $p \rightarrow q$
- Contrapositive, Converse and inverse of $p \rightarrow q$
- Sufficient condition, necessary condition, bicondition.