Ceng 302 Database Managment Systems

Relational Database Design and Normalization-2

Prof. Dr. Adnan YAZICI

Department of Computer Engineering,

Middle East Technical University

(Fall 2021)

Overview of Normal Forms

First Normal Form

Disallows composite attributes, multivalued attributes, and nested relations; attributes whose values for an individual tuple are nonatomic

Considered to be part of the definition of relation

Normalization into 1NF

Figure 14.8 Normalization into 1NF. (a) Relation schema that is not in 1NF. (b) Example relation instance. (c) 1NF relation with redundancy.

DNAME	DNUMBER	DMGRSSN	DLOCATIONS	
Research	5	333445555	{Bellaire, Sugarland, Houston}	
Administration	4	987654321	{Stafford}	
Headquarters	1	888665555	{Houston}	

(c) DEPARTMENT

DEPARTMENT

(a)

DNAME	DNUMBER	DMGRSSN	DLOCATION
Research	5	333445555	Bellaire
Research	5	333445555	Sugarland
Research	5	333445555	Houston
Administration	4	987654321	Stafford
Headquarters	1	888665555	Houston

[©] Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition

(a) EMP_PROJ

		PRO	DJS
SSN	ENAME	PNUMBER	HOURS

(b) EMP_PROJ

SSN	ENAME	PNUMBI	ΞR	HOURS
123456789	Smith, John B.		1	32.5
			2	7.5
666884444	Narayan,Ramesh	K. :	3	40.0
453453453	English,Joyce A.		1	20.0
			2	20.0
333445555	Wong,Franklin T.	:	2	10.0
		;	3	10.0
		10	0	10.0
		2	0	10.0
999887777	Zelaya,Alicia J.	3	0	30.0
		16	0	10.0
987987987	Jabbar, Ahmad V.	10	0	35.0
		3	0	5.0
987654321	Wallace, Jennifer S	3. 3	0	20.0
		2	00	15.0
888665555	Borg,James E.	2	0	null

relation with a "nested relation" PROJS. (b) Example extension of the EMP_PROJ relation

Normalizing nested relations into 1NF. (a) Schema of the EMP_PROJ

showing nested relations within each tuple. (c) Decomposing EMP_PROJ into 1NF

relations EMP_PROJ1 and EMP_PROJ2 by propagating the primary key.

Figure 14.9

(c) EMP_PROJ1

SSN ENAME

EMP_PROJ2

The Schema (Intention) of the Department Relation

Department

1	epartment														
Dept Dep No Nam		Instructo			cto	rs	Students					Courses			
			Dept			a,	ar.	~			Contact	-Person	an.	Pre-	ς .
					Name	S	SN	S	No	Name	Name	TelNum	CNo	Requisites	s Categ
Γ	71	Compute	er	Dr. C	C.Bee		90789	13	10364	Ann Adams	Clark Adams	0.365.387173	3 71120	{36151}	[Math,General]
		Science		Prof.	. Z. Cruise		78979	88			Betty Adams	0.365.353223	71341	{71320,36250}	[Math, Al]
			ŀ	Asso	oc.Prof.S.Da	rk	88345	87		Tommas Asto	Martin Astor	0.212765448	9		
			ŀ	7.000			00010		10366	7.0111110071010	Mary Astor	0.212556776	71348	{36152,36255}	[C-Arch,EE]
													 		
			ŀ							!	1			•	
					.F. Twins		87658								
				Dr. A	A. White		87817		10366	Albert Walker	Jack Walker	0.312443779	5 71663	{ dne }	[IS]
Ī				Prof.	. H. Arikan		65789	11	12155	Altar Kunter	Leyla Kunter			{ dne }	[Math,General]
	36	Mathemat		Asso	oc.Prof.D.Ba	ıch	91234	76			Mert Kunter	0.216555223	36330	{71120}	[Progr,NumAn]
					1										
			ľ	Dr.Q	. McGill		93457	61	13553	Melih Zobu	Murat Zobu	0.344221345	6		
	:									i .	<u> </u>			1	

Second Normal Form

Uses the concepts of FDs, primary key

Definitions:

- Prime attribute attribute that is member of the primary key K
- Full functional dependency a FD Y -> Z where removal of any attribute from Y means the FD does not hold any more

Example: {Ssn \rightarrow Ename,

Pnumber → {Pname, Plocation}, {Ssn,Pnumber} → Hours}

- {SSN, PNUMBER} -> HOURS is a **full FD** since neither SSN -> HOURS nor PNUMBER -> HOURS hold.
- {SSN, PNUMBER} -> ENAME is not a full FD (it is called a partial dependency) since SSN -> ENAME also holds

Second Normal Form

- A relation schema R is in second normal form (2NF)
 if every non-prime attribute A in R is fully
 functionally dependent on the primary key
- A more general definition: A relation schema R is in second normal form (2NF) if every non-prime attribute A in R is fully functionally dependent on every key of R
- R can be decomposed into 2NF relations via the process of 2NF normalization

Third Normal Form

- A relation schema R is in third normal form
 (3NF) if it is in 2NF and no non-prime
 attribute A in R is transitively dependent on
 the primary key
- R can be decomposed into 3NF relations via the process of 3NF normalization

Figure 14. 2NF relations. (b) Normalizing EMP_ The normalization process. (a) Normalizing EMP_PROJ into DEPT into 3NF relations.

and its functional dependencies fd1 through FD4. (b) Decomposing lots into the Figure 14.11 2NF relations LOTS1 and LOTS2. (c) Decomposing LOTS1 into the 3NF relations LOTS1A and LOTS1B. (d) Summary of normalization of lots. Normalization to 2NF and 3NF. (a) The lots relation schema

© Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition

BCNF (Boyce-Codd Normal Form)

 A relation schema R is in Boyce-Codd Normal Form (BCNF) if whenever an FD X -> A holds in R, then X is a superkey of R (i.e. prime attributes should be dependent on the key as well.)

The goal is to have each relation in BCNF (or 3NF)

Relation TEACH that is in 3NF but not in BCNF

Figure 14.13 A relation TEACH that is in 3NF but not in BCNF.

TEACH

STUDENT	COURSE	INSTRUCTOR	
Narayan	Database	Mark	
Smith	Database	Navathe	
Smith	Operating Systems	Ammar	
Smith	Theory	Schulman	
Wallace	Database	Mark	
Wallace	Operating Systems	Ahamad	
Wong	Database	Omiecinski	
Zelaya	Database	Navathe	

© Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition

Achieving the BCNF by Decomposition (1)

- Two FDs exist in the relation TEACH:
 - fd1: { student, course} -> instructor
 - fd2: instructor -> course
- {student, course} is a candidate key for this relation. So this relation is in 3NF <u>but not in</u> BCNF
- A relation NOT in BCNF should be decomposed so as to meet this property, while possibly forgoing the preservation of all functional dependencies in the decomposed relations.

Achieving the BCNF by Decomposition (2)

- Three possible decompositions for relation TEACH
 - 1. {student, instructor} and {student, course}
 - {course, instructor} and {course, student}
 - 3. {<u>instructor</u>, course } and {<u>instructor</u>, student}
- All three decompositions will lose fd1. We have to settle for sacrificing the functional dependency preservation. But we <u>cannot</u> sacrifice the non-additivity property after decomposition.
- Out of the above three, only the 3rd decomposition will not generate spurious tuples after join.(and hence has the non-additivity (no spurious tuples) property).

```
fd1: { student, course} -> instructor
fd2: instructor -> course
```

Boyce-Codd normal form

Figure 14.12 Boyce-Codd normal form. (a) BCNF normalization with the dependency of FD2 being "lost" in the decomposition. (b) A relation *R* in 3NF but not in BCNF.

Normal Forms – all definitions

- NF²: non-first normal form
- INF: R is in INF. iff all domain values are atomic2
- 2NF: R is in 2. NF. iff R is in INF and every nonkey attribute is fully dependent on the key
- 3NF: R is in 3NF iff R is 2NF and every nonkey attribute is non-transitively dependent on the key
- BCNF: R is in BCNF iff every determinant is a superkey (or candidate key)
- Determinant: an attribute on which some other attribute(s) is fully functionally dependent.

Example of Normalization

FLT-INSTANCE

Example of Normalization

Example of Normalization

3NF & BCNF:

3NF that is not BCNF

Determinants: {A,B} and {C}

Candidate keys: {A,B} and {A,C}

A decomposition:

$$\begin{array}{|c|c|c|c|}\hline R_1 & & R_2 \\\hline C & B & & A & C \\\hline \end{array}$$

Lossless, but not dependency preserving (AB→C is not preserved)!

Example: Q = {S,B,D}, sailor S can reserve a boat B for at most one day D, (SB \rightarrow D), and on any given day D at most one boat B can be reserved, (D \rightarrow B). That is, F = {SB \rightarrow D, D \rightarrow B}. So, D \rightarrow B violates BCNF.

Algorithm: Relational decomposition into BCNF with nonadditive (lossless) join property

- 1. Decomposes a universal relational schema $R = \{A_1,...,A_n\}$ into a decomposion $D = \{R_1,...,R_m\}$
- 2. Set $D = \{R\}$.

Example: Q is decomposed into two relations, $Q_1 = \{S,D\}$ and $Q_2 = \{D,B\}$ and $SB \rightarrow D$ cannot be preserved.

How to guarantee lossless-joins

$$R_1 \bowtie R_2 = R$$

- Decompose relation, R, with functional dependencies, F, into relations, R_1 and R_2 , with attributes, A_1 and A_2 , and associate FDs, F_1 and F_2 .
- The decomposition is lossless iff:
 - $R_1 \cap R_2 \rightarrow R_1$ R_2 is in F+, or
 - $R_1 \cap R_2 \rightarrow R_2$ R_1 is in F⁺

Example:
$$R = (A, B, C), F = \{A \rightarrow B, B \rightarrow C\}$$

This relation can be decomposed in two different ways

1.
$$R_1 = (A, B), R_2 = (B, C)$$

Lossless-join decomposition:

$$R_1 \cap R_2 \rightarrow R_1 - R_2$$
 in F^+ ?
 $R_1 \cap R_2 = \{B\}$ and $R_1 - R_2 = \{A\}$
 $B \rightarrow A$ in not in F^+ .
 $But R_1 \cap R_2 \rightarrow R_2 - R_1$ in F^+ ?
 $R_1 \cap R_2 = \{B\}$ and $R_2 - R_1 = \{C\}$
Yes, it is lossless, since $B \rightarrow C$ in in F^+ .

- It is also dependency preserving.
- 2. Example: R = ABC, and $F = \{A \rightarrow B, C \rightarrow B\}$,

$$R_1 = (AB), R_2 = (CB),$$

Since AB \cap CB = B and neither B \rightarrow A nor B \rightarrow C exists.

Therefore, it is not a lossless join decomposition and is not dependency preserving.

How to guarantee lossless-join decomposition?

```
(a)Applying the algorithm to test the decomposition of EMP_PROJ into EMP_PROJ1 and EMP_LOCS.
```

R={SSN, ENAME, PNUMBER, PNAME, PLOCATION, HOURS}

R₁=EMP_LOCS={ENAME, PLOCATION}
R₂=EMP_PROJ1={SSN, PNUMBER, HOURS, PNAME, PLOCATION}

 $F=\{SSN \rightarrow ENAME; PNUMBER \rightarrow \{PNAME, PLOCATION\}; \{SSN,PNUMBER\} \rightarrow HOURS\}$

SSN ENAME PNUMBER PNAME PLOCATION HOURS

 $R_1 \quad b_{11} \quad a_2 \qquad b_{13} \qquad b_{14} \qquad a_5 \qquad b_{16}$

 R_2 a_1 b_{22} a_3 a_4 a_5 a_6

(no changes to matrix after applying functional dependencies, so they are not all "a" . Therefore, it is not lossless join)

How to guarantee lossless-join decomposition

```
Applying the algorithm to the decomposition:  R=\{SSN, ENAME, PNUMBER,PNAME, PLOCATION, HOURS\}   R_1=EMP=\{SSN, ENAME\}   R_2=PROJ=\{PNUMBER, PNAME, PLOCATION\}   R_3=WORKS\_ON=\{SSN, PNUMBER, HOURS\}   F=\{SSN\rightarrow ENAME; PNUMBER\rightarrow \{PNAME, PLOCATION\}; \{SSN,PNUMBER\}\rightarrow HOURS\}   SSN\ ENAME\ PNUMBER\ PNAME\ PLOCATION\ HOURS   R_1\ a_1\ a_2\ b_{13}\ b_{14}\ b_{15}\ b_{16}\ R_2\ b_{21}\ b_{22}\ a_3\ a_4\ a_5\ b_{26}\ R_2\ a_1\ b_{32}\ a_3\ b_{34}\ b_{35}\ a_6   (original\ matrix\ S\ at\ start\ of\ algorithm\ )
```

How to guarantee lossless-join decomposition

```
Applying the algorithm to the decomposition:
```

```
R={SSN, ENAME, PNUMBER, PNAME, PLOCATION, HOURS}
```

 R_1 =EMP={SSN, ENAME}

R₂=PROJ={PNUMBER, PNAME, PLOCATION}

R₃=WORKS_ON={SSN, PNUMBER, HOURS}

 $F = \{SSN \rightarrow ENAME; \ PNUMBER \rightarrow \{PNAME, \ PLOCATION\}; \ \{SSN,PNUMBER\} \rightarrow HOURS\}$

SSN ENAME PNUMBER PNAME PLOCATION HOURS

(Matrix S after the first two functional dependencies. The last row is all "a" symbols, so we stop. Therefore, it is a lossless join decomposition)

How to guarantee preservation of FDs

- Decompose relation, R, with functional dependencies, F, into relations, R_1 ,..., R_k , with associated functional dependencies, F_1 ,..., F_k .
- The decomposition is dependency preserving iff:

$$\mathsf{F}^+ = (\mathsf{F}_1 \cup \ldots \cup \mathsf{F}_k)^+$$

How to guarantee preservation of FDs

```
R={SSN, ENAME, PNUMBER, PNAME, PLOCATION, HOURS}
  R_1=EMP={SSN, ENAME}
  R<sub>2</sub>=PROJ={PNUMBER, PNAME, PLOCATION}
  R<sub>3</sub>=WORKS ON={SSN, PNUMBER, HOURS}
  F={SSN→ENAME; PNUMBER→{PNAME, PLOCATION};
    {SSN,PNUMBER} →HOURS}
F_1 = \{SSN \rightarrow ENAME\}
F_2 = \{PNUMBER \rightarrow \{PNAME, PLOCATION\}\}\
F_3 = \{\{SSN, PNUMBER\} \rightarrow HOURS\}
The decomposition is dependency preserving since
```

$$F^+ = (F_1 \cup ... \cup F_k)^+$$

 F^+ = (SSN \rightarrow ENAME \cup PNUMBER \rightarrow {PNAME, PLOCATION} \cup {SSN,PNUMBER} \rightarrow HOURS)+

Algorithm: Relational synthesis into 3NF with dependency preserving and nonadditive (lossless) join property

- 1. Find a **minimal cover** G for F.
- 2. For each left-hand-side X of a FD that appears in G, create a relation schema in D with attributes $\{X \cup \{A_1\} \cup,..., \cup \{A_k\}\}$, where $X \rightarrow A_1$, ..., $X \rightarrow A_k$ are the only dependencies in G with X as left-hand-side (X is the key of this relation).
- 3. If none of the relation schemas in D contains a key of R, then create one more relation schema in D that contains attributes that form a key of R.

Example: R = ABC, and $F=\{A \rightarrow B, C \rightarrow B\}$,

- Key is AC.
- When we use standart process of repeated decomposition, we obtain the following:

$$R_1$$
=AB, R_2 =CB,
Since AB \cap CB \rightarrow R_1 - R_2 \rightarrow B and B \rightarrow A or B \rightarrow C is not in F+.
So, it is not lossless.

- Notice that the key (AC) is not included in any of the relation.
- Therefore, we create R_3 =AC along with R_1 =AB and R_2 =CB.
- Now, the decomposition is dependency preserving and lossless-join of R.
- We obtain this result through a process of synthesis rather than through a process of repeated decomposition.

Algorithm: Relational decomposition into BCNF with nonadditive (lossless) join property

Example: Contracts (contractid, supplierid, projid, deptid, partid, qty, value). That is, R = CSJDPQV, and $F=\{C \rightarrow SJDPQV, JP \rightarrow C, SD \rightarrow P, J \rightarrow S\}$

- Candidate keys = C, JP, SDJ
- C→P is implied by C→S, C→D, and SD→P, so we can delete C→P.
 C→S is implied by C→J and J→S; so we can delete C→S.
 Therefore,

$$F_{min} = \{C \rightarrow D C \rightarrow J, C \rightarrow Q, C \rightarrow V, JP \rightarrow C, SD \rightarrow P, J \rightarrow S\}.$$

- Since we have the constraint that each project deals with a single supplier: because of $J \rightarrow S$, R = CSJDQV is not in BCNF.
- We decompose R as: R₁= CJDQV, R₂= SDP, R₃= JS,
- However, this decomposition is not dependency preserving, since JP C cannot be enforced without a join.
- One way to deal with this is to add R₄=CJP, which amounts to storing some information redundantly to make the dependency enforcement cheaper.
- We obtain this result through a process of synthesis rather than through a process of repeated decomposition.

Multivalued Dependencies: A New Form of Redundancy

 Multivalued dependencies (MVD's) express a condition among tuples of a relation that exists when the relation is trying to represent more than one many-many relationship.

 Then certain attributes become independent of one another, and their values must appear in all combinations.

Multivalued Dependencies: A New Form of Redundancy

EMP

Ename	Proj-name	Dep-name
Smith	{Y,Z}	{Anna, John}
Suzan	{X,Z}	{Ali, Aigerim}

 This relation represents two independent 1:N relationships, one between employees and projects and the other between employees and their dependents.

Multivalued Dependencies (MVDs)

- Let R be a relation schema and let $\alpha \subseteq R$ and $\beta \subseteq R$.
- The multivalued dependency

$$\alpha \rightarrow \rightarrow \beta$$

holds in R if in any legal relation r(R), for all pairs of tuples t_1 and t_2 in r such that $t_1[\alpha] = t_2[\alpha]$, there exist tuples t_3 and t_4 in r(R) such that:

$$t_{1}[\alpha] = t_{2}[\alpha] = t_{3}[\alpha] = t_{4}[\alpha]$$

$$t_{3}[\beta] = t_{1}[\beta]$$

$$t_{3}[R - \alpha - \beta] = t_{2}[R - \alpha - \beta]$$

$$t_{4}[\beta] = t_{2}[\beta]$$

$$t_{4}[R - \alpha - \beta] = t_{1}[R - \alpha - \beta]$$

Multivalued Dependencies (MVDs)

• Tabular representation of $\alpha \rightarrow \beta$

	α	β	$R-\alpha-\beta$
t_1	$a_1 \dots a_i$	$a_{i+1} \dots a_j$	$a_{j+1} \dots a_n$
t_2	$a_1 \dots a_i$	$b_{i+1} \dots b_j$	$b_{j+1} \dots b_n$
t_3	$a_1 \dots a_i$	$a_{i+1} \dots a_j$	$b_{j+1} \dots b_n$
t_4	$a_1 \dots a_i$	$b_{i+1} \dots b_j$	$a_{j+1} \dots a_n$

• Note that since the behavior of β and $R-\alpha-\beta$ are identical it follows that

$$\alpha \rightarrow \rightarrow \beta$$
 if $\alpha \rightarrow \rightarrow R-\alpha-\beta$

Multivalued Dependencies (MVDs)

```
Example-1: course \rightarrow \rightarrow teacher,

course \rightarrow \rightarrow book

Or course \rightarrow \rightarrow book / teacher
```

- The above formal definition is supposed to formalize the notion that given a particular value of course it has associated with it a set of values of teacher and a set of values of book, and these two sets are in some sense independent of each other.
- Note:
 - If $Y \rightarrow Z$ then $Y \rightarrow Z$
 - Indeed, we have (in above notation) $Z_1 = Z_2$.

Example-2:

```
ename\rightarrow \rightarrow project,
ename\rightarrow \rightarrow dependents,
ename\rightarrow \rightarrow project/dependents
```

Armstrong's inference rules for MVDs

Rules of the computation:

- Reflexivity for FDs: if $Y \subseteq X$, then $X \rightarrow Y$
- Augmentation for FDs: if $X \rightarrow Y$, then $WX \rightarrow WY$
- Transitivity for FDs: if $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- Complementation rule for MVDs): if $X \rightarrow Y$, then $X \rightarrow (R-(X \cup Y))$.
- Augmentation rule for MVDs: if $X \rightarrow Y$ and $W \subseteq Z$, then $WX \rightarrow ZY$.
- Transitive rule for MVDs: if $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Y$
- Intersection rule for MVDs: if $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow Y \cap Z$.
- Replication rule for FDs and MVDs: If $X \rightarrow Y$, then $X \rightarrow Y$.
- sound (generate only dependencies that actually hold) and
- complete (generate all dependencies that hold).

Use of Multivalued Dependencies

- We use multivalued dependencies in two ways:
 - 1. To test relations to determine whether they are legal under a given set of functional and multivalued dependencies.
 - 2. To specify constraints on the set of legal relations. We shall thus concern ourselves *only* with relations that satisfy a given set of functional and multivalued dependencies.
- If a relation r fails to satisfy a given MVD, we can construct a relation r' that does satisfy the MVD by adding tuples to r.

4NF Definition

- A relation R is in 4NF if whenever $X \rightarrow Y$ is a nontrivial MVD, then X is a superkey.
 - "Nontrivial" means that:
 - 1. Y is not a subset of X, and
 - 2. X and Y are not, together, all the attributes.
 - Note that the definition of "superkey" still depends on FD's only.

4NF (Fourth Normal Form)

Example: ename → → project/dependents

<u>ename</u>	project	<u>dependents</u>
Ali	х	Ayşe
Ali	Υ	Ayşe
Ali	Υ	Hasan
Ali	х	Hasan
Emin	W	Sami
Emin	х	Sami
Emin	Υ	Sami
Emin	Z	Sami
Emin	W	Selim
Emin	х	Selim
Emin	Υ	Selim
Emin	Z	Selim
Emin	W	Aysun
Emin	х	Aysun
Emin	Υ	Aysun
Emin	Z	Aysun

ename →→ project

ename	project
Ali	х
Ali	Υ
Emin	w
Emin	х
Emin	Υ
Emin	Z

4NF normalization **→**

<u>ename</u>	dependents
Ali	Ayşe
Ali	Hasan
Emin	Sami
Emin	Selim
Emin	Aysun

ename $\rightarrow \rightarrow$ dependents

4NF

Example:
$$R = (A, B, C, G, H, I)$$

 $F = \{A \rightarrow \rightarrow B, B \rightarrow \rightarrow HI, CG \rightarrow \rightarrow H\}$

- R is not in 4NF since A →→ B is not trivial, and A is not a superkey for R
- Decomposition

a)
$$R_1 = (A,B)$$
 $(R_1 \text{ is in 4NF})$
b) $R_2 = (A,C,G,H,I)$ $(R_2 \text{ is not in 4NF, since } CG \longrightarrow H)$
c) $R_3 = (C,G,H)$ $(R_3 \text{ is in 4NF})$
d) $R_4 = (A,C,G,I)$ $(R_4 \text{ is not in 4NF, by } A \longrightarrow HI-B, so$
 $A \longrightarrow HI, and then A \longrightarrow H and A \longrightarrow I)$
e) $R_5 = (A,I)$ $(R_5 \text{ is in 4NF})$
f) $R_6 = (A,C,G)$ $(R_6 \text{ is in 4NF})$

BCNF Versus 4NF

- Remember that every FD $X \rightarrow Y$ is also an MVD, $X \rightarrow Y$.
- Thus, if *R* is in 4NF, it is certainly in BCNF.
 - Because any BCNF violation is a 4NF violation.
- But R could be in BCNF and not in 4NF, because MVD's are "invisible" to BCNF.

 Note: If a relation schema is in BCNF and at least one of its keys consists of a single attribute, then it is also in 4NF.

4NF

Example: Drinkers(name, addr, phones, beersLiked)

FD: name \rightarrow addr

MVD's: name $\rightarrow \rightarrow$ phones

name $\rightarrow \rightarrow$ beersLiked

- Key is {name, phones, beersLiked}.
- Therefore, all dependencies violate 4NF.

Conclusion

Designing a database schema

- Usually many designs possible
- Some are (much) better than others!
- How do we choose?
- Very nice theory for relational database design
 - Normal forms "good" relations
 - Design by decomposition
 - Usually intuitive and works well
 - Some shortcomings
 - Dependency enforcement
 - Query workload
 - Over-decomposition