Vypr. Maturitné okruhy – Odborné zložky – POS, PRO, EMR/ZEQ, SIE, C2D, EKO

1. Kombinačné logické obvody

- Definujte kombinačný logický obvod.

KLO sú **LO**, v ktorých výstupné hodnoty premenných závisia jednoznačne od aktuálnych hodnôt na vstupe, t.j. závisia od kombinácie vstupov.

Logické obvody (LO) pracujú s dvojhodnotovými signálmi, t.j. log. premenná môže nadobúdať log. 1 (pravda) a log. 0 (nepravda) → predstavujú určitú hladinu napätia. Logická funkcia – určuje závislosť výstupných premenných od vstupných. Nakoľko log. fcií môže byť veľa, je výhodnejšie ich zapísať do pravdivostnej tabuľky. Tabuľka má toľko stĺpcov, koľko je log. premenných a toľko riadkov, koľko existuje kombinácií premenných. Pre n vstupných premenných existuje y = 2ⁿ stavov.

- Popíšte základné log. funkcie slovne, pravdivostnou tabuľkou a schém. značkou.

Popis hradla	Názov hradla	Funkcia	Pravdivostná tabuľka	Značka typ EÚ	Značka typ US
negácia	NOT	$y = \overline{a}$	a y 0 1 1 0		
logický súčet	OR	y = a + b	a b y 0 0 0 0 1 1 1 0 1 1 1 1	1	
logický súčin	AND	y = a * b	a b y 0 0 0 0 1 0 1 0 0 1 1 1	&	
negovaný logický súčet	NOR	$y = \overline{a+b}$	a b y 0 0 1 0 1 0 1 0 0 1 1 0	1	

negovaný logický súčin	NAND	$y = \overline{a * b}$	a b y 0 0 1 0 1 1 1 0 1 1 1 0	& -	
nezhoda	XOR	$y = a \oplus b$ $\overline{a}.b + a.\overline{b}$	a b y 0 0 0 0 1 1 1 0 1 1 1 0	=1	
zhoda	NXOR	$y = \overline{a \oplus b}$ $\overline{a}.\overline{b} + a.b$	a b y 0 0 1 0 1 0 1 0 0 1 1 1	=1 	

Principiálne zapojenie hradiel cez vypínač a napr. žiarovku

Odporúčam zopakovať ďalšie - prepínacie obvody (MX, DX), prevodník kódov a paritný obvod !!!

- Navrhnite komparátor dvoch 2-bitových čísel zo základných logických členov

Komparátor je porovnávací obvod, ktorý porovnáva binárne čísla. Určuje či je prvé číslo väčšie, menšie alebo rovné ako to druhé. Zistenie dosiahneme postupným porovnávaním bitov každého čísla.

Delíme komparátory zhody relatívnej veľkosti – porovnáva 2 binárne čísla a má 3 výstupy

	2	4	2	1	A>B	A <b< th=""><th>A=B</th></b<>	A=B
S	a_1	a_0	b_1	b_0	V	M	Z
0.	0	0	0	0	0	0	1
1.	0	0	0	1	0	1	0
2.	0	0	1	0	0	1	0
3.	0	0	1	1	0	1	0
4.	0	1	0	0	1	0	0
5.	0	1	0	1	0	0	1
6.	0	1	1	0	0	1	0
7.	0	1	1	1	0	1	0
8.	1	0	0	0	1	0	0
9.	1	0	0	1	1	0	0
10.	1	0	1	0	0	0	1
11.	1	0	1	1	0	1	0
12.	1	1	0	0	1	0	0
13.	1	1	0	1	1	0	0
14.	1	1	1	0	1	0	0
15.	1	1	1	1	0	0	1

	v/ .		b ₁	b_0	
a_0					
	1	1)		1	
a ₁	1			1	_

$\begin{vmatrix} a_0 \\ a_1 \end{vmatrix}$	M	7 .		b ₁	b_0
			1	1	1
a_1	a_0		1	1	
a_1					
- · · · · · · · · · · · · · · · · · · ·	a_1			1	

$$\begin{split} V &= a_0 \, \overline{b_0} \, \overline{b_1} + a_0 a_1 \overline{b_0} + a_1 \overline{b_1} \\ M &= \overline{a_1} \, b_1 + \overline{a_0} \, \overline{a_1} \, b_0 + \overline{a_0} \, b_0 b_1 \\ Z &= \overline{a_0} \, \overline{a_1} \, \overline{b_0} \, \overline{b_1} + \, a_0 \, \overline{a_1} \, b_0 \, \overline{b_1} + a_0 \, a_1 b_0 b_1 + \overline{a_0} a_1 \overline{b_0} b_1 = \overline{(a_0 \oplus b_0)} * \overline{(a_1 \oplus b_1)} \end{split}$$

komparátor logická sieť zo základných logických hradiel

Aplikujte základy Boolovej algebry na danom príklade (Syntéza LO, MINIMALIZÁCIA)

Porovnajte vlastnosti ideálneho a skutočného OZ

Vid'. protokol 4. ročník - meranie OZ

Zosilňovač – obvod zvyšujúci úroveň signálu, pri zachovaní jeho tvaru.

Operačný zosilňovač (OZ) - lineárny js. aj striedavý diferenciálny zosilňovač s veľmi vysokým zosilnením (**ziskom**), má vysoký vst. odpor (impedanciu) a nízky výst. odpor.

Má 2 vstupy a 1 výstup. Vstupy OZ sa volajú: Invertujúci vstup OZ otáča fázu o 180°, t.j. ak mám na vstupe sin x, na výstupe bude cos x. Neinvertujúci vstup má vstupné napätie vo fáze s výstupom, t.j. jak prišiel, tak ide len zosilnený. OZ je vysoko odolný voči rušivým signálom a má stabilnú spätnú väzbu. OZ zosilňuje, ako klasický tranzistor (akurát je ich tam viac) → "šetríme miesto čas i peniaze"

<u>Využitie:</u> A/D a D/A prevodníky; komparátory v regulačných obvodoch (oscilátory, filtre); vykonávanie MAT operácií (integrátor, derivátor, sčítačka)

OZ	ideálny	skutočný
Au	nekonečné	$10^5 - 10^7$
Rvst (Ω)	nekonečné	$10^6 - 10^9$ (veľké)
Rvýst (Ω)	nulové	$10^1 - 10^2$ (malé)
frekvenčné pásmo	nekonečné	1Hz - 1MHz

Načrtnite meranie prevodovej charakteristiky bipolárneho logického obvodu NAND:

Viď. protokol 4. ročník - meranie BPO

Uveďte postup pri vybavovaní krátkodobého úveru

<u>Charakterizujte krátkodobý úver</u> - podľa lehoty splatnosti rozlišujeme krátkodobé, strednodobé a dlhodobé úvery.

Príklad – kontokorentný úver, je to povolené prečerpanie na účte, úrok sa pohybuje od 15 – 17 % aktuálne podľa ponuky komerčnej banky.

Kreditná karta – povolený úverový limit

Krátkodobý preklenovací úver – na krytie nákladov, spojených so zásobovaním

Ostatné úvery – strednodobé – spotrebný úver bezúčelový – bez dokladovania účelu

Spotrebnú úver účelový – úver s dokladovaním účelu

Splátkový predaj – poskytujú ho spoločnosti, ktoré daný tovar predávajú alebo ktoré na daný tovar požičajú peniaze