ENS Ulm-Lyon 2000

Soit f une fonction dans $\mathcal{C}^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$ (définie sur \mathbb{R}^d et à valeurs dans \mathbb{R}^d). L'objet de ce problème est l'étude de propriétés qualitatives du système d'équations différentielles

$$\frac{\mathrm{d}x}{\mathrm{d}t}(t) = f(x(t))$$

où x est une fonction définie sur un intervalle de \mathbb{R} à valeurs dans \mathbb{R}^d . La norme euclidienne usuelle de \mathbb{R}^d sera notée $\|.\|$ et B(x,r) désignera la boule ouverte de centre x et de rayon r. On notera $\operatorname{Re} z$ la partie réelle du nombre complexe z. La différentielle de f en un point $x_0 \in \mathbb{R}^d$ sera notée $\operatorname{d} f(x_0)$. Soit $x_0 \in \mathbb{R}^d$ et trois réels $t_1 < t_0 < t_2$. On dira qu'une solution $x \in \mathcal{C}^1([t_1,t_2],\mathbb{R}^d)$ de (E) passe par x_0 à l'instant t_0 si $x(t_0)=x_0$. Une solution x(t) de (E) sera aussi appelée trajectoire de (E). On admet le théorème de Cauchy-Lipschitz (avec dépendance \mathcal{C}^{∞} en les données initiales), qu'on utilisera sans démonstration :

Théorème de Cauchy-Lipschitz. Soit $f \in \mathcal{C}^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$ et $t_0 \in \mathbb{R}$, $x_0 \in \mathbb{R}^d$. Alors il existe $\tau > 0$ et r > 0 et une fonction $\varphi(t,y)$ de classe \mathcal{C}^{∞} , définie sur $|t_0 - \tau, t_0 + \tau| \times B(x_0, r)$, à valeurs dans \mathbb{R}^d , telle que

$$\varphi(t_0, y) = y$$
 et $\frac{\partial \varphi}{\partial t}(t, y) = f(\varphi(t, y))$

pour tout $(t, y) \in]t_0 - \tau, t_0 + \tau[\times B(x_0, r)]$.

On rappelle d'autre part qu'il existe une unique solution maximale x(t) de (E) passant par x_0 en t_0 . Cette solution est définie sur un intervalle ouvert]a,b[avec $a < t_0 < b$ et si $b < +\infty$ (respectivement $a > -\infty$) alors $\sup_{t \in [t_0,b[} \|x(t)\| = +\infty$

(respectivement $\sup_{t \in]a,t_0]} ||x(t)|| = +\infty$).

Un point $x_0 \in \mathbb{R}^d$ est dit point *critique* de f si $f(x_0) = 0$.

Définition 1 (stabilité d'un point critique). Un point critique x_0 est dit stable s'il existe $\eta > 0$ tel que, pour tout $x_1 \in B(x_0, \eta)$, il existe une solution x(t) de (E) définie pour tout $t \ge 0$ vérifiant $x(0) = x_1$ et

$$\lim_{t \to +\infty} ||x(t) - x_0|| = 0.$$

Un point critique est dit instable s'il n'est pas stable.

Une solution x(t) de (E) est dite *périodique* si elle est définie pour tout $t \in \mathbb{R}$ et s'il existe T > 0 tel que x(t+T) = x(t) pour tout $t \in \mathbb{R}$. Soit

$$\mathcal{C} = \left\{ x \in \mathbb{R} \ / \ \frac{1}{2} \leqslant |x| \leqslant 1 \right\}.$$

On dit que \mathcal{C} est absorbante pour $f \in \mathcal{C}^{\infty}(\mathbb{R}^2, \mathbb{R}^2)$ si f(x).x < 0 pour tout $x \in \mathbb{R}^2$ tel que |x| = 1 et si f(x).x > 0 pour tout $x \in \mathbb{R}^2$ tel que |x| = 1/2.

La première partie du problème établit quelques propriétés de stabilité des points critiques. La seconde partie esquisse une classification topologique des points critiques. La troisième partie est consacrée à la preuve du théorème suivant :

Théorème de Poincaré-Bendixson. Soit $f \in \mathcal{C}^{\infty}(\mathbb{R}^2, \mathbb{R}^2)$. On suppose que \mathcal{C} est absorbante pour f et que f n'a pas de points critiques dans \mathcal{C} . Alors il existe une solution périodique x de (E), non constante, avec $x(t) \in \mathcal{C}$, pour tout $t \in \mathbb{R}$. Les parties 2 et 3 sont indépendantes.

Partie I : Stabilité de points critiques

Soit dans cette partie $f \in \mathcal{C}^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$ (avec $d \geq 2$) telle que f(0) = 0.

- 1°) On suppose dans cette question que les parties réelles des valeurs propres de df(0) sont strictement négatives. Soit λ_0 la plus grande des parties réelles des valeurs propres de df(0).
- a) Montrer que pour tout $\lambda > \lambda_0$ il existe un produit scalaire hermitien sur \mathbb{C}^d , noté <.|.>, tel que

$$\operatorname{Re} < \operatorname{d} f(0)x|x > \leq \lambda < x|x > .$$

On pourra commencer par le cas df(0) diagonalisable (dans \mathbb{C}), avant de traiter le cas où df(0) est trigonalisable.

b) Montrer que pour tout $\lambda > \lambda_0$ il existe un produit scalaire euclidien (toujours noté <.|.>) et un réel $\sigma > 0$ tel que

$$< f(x)|x> \le \lambda < x|x>$$

pour tout x tel que $||x|| \leq \sigma$.

- c) En déduire que 0 est stable. Montrer que pour tout $\lambda > \lambda_0$, $||x(t)|| = \mathcal{O}(\exp(\lambda t))$ quand $t \longrightarrow +\infty$. Montrer par un exemple que l'on n'a pas nécessairement $||x(t)|| = \mathcal{O}(\exp(\lambda_0 t))$ quand $t \longrightarrow +\infty$.
- 2°) On suppose dans cette question que les parties réelles des valeurs propres de df(0) sont strictement positives. Montrer que 0 est un point critique instable.
- $\mathbf{3}^{\circ}$) Montrer par des exemples que si les valeurs propres de df(0) sont imaginaires pures, alors on ne peut conclure ni à la stabilité ni à l'instabilité de 0.
- **4°)** Soit dans toute cette question d=2 et $f\in \mathcal{C}^{\infty}(\mathbb{R}^2,\mathbb{R}^2)$ telle que sa différentielle df(0) en 0 ait une valeur propre réelle strictement positive λ et une valeur propre réelle strictement négative μ .

a) On rappelle que l'exponentielle d'une matrice A est définie par

$$\exp(A) = \sum_{n \ge 0} \frac{A^n}{n!} .$$

Soit $x_0 \in \mathbb{R}^2$ un vecteur. Vérifier que la dérivée de $t \longmapsto \exp(tA)x_0$ est $A\exp(tA)x_0$.

b) Soit e_{μ} un vecteur propre correspondant à la valeur propre μ . On note df(0) = A. On définit une suite de fonctions $(u_n)_{n \in \mathbb{N}}$ par récurrence : $u_0(t) = 0$ et

$$u_{n+1}(t) = \exp(tA)e_{\mu} - \int_{t}^{+\infty} \exp(A(t-\tau))(f(u_n(\tau)) - Au_n(\tau))d\tau$$
.

Vérifier que la suite est bien définie. Montrer qu'il existe $C_0 > 0$ et $T_0 > 0$ tels que $||u_n(t)|| \le C_0 \exp(\mu t)$ pour tout $t \ge T_0$ et pour tout $n \ge 0$.

- c) Montrer qu'il existe $T_1 \ge T_0$ tel que la suite de fonctions $u_n(t) \exp(-\mu t)$ converge uniformément pour $t \ge T_1$.
- **d**) En déduire que pour r assez petit il existe deux trajectoires distinctes $x_1(t)$ et $x_2(t)$ de (E) définies pour $t \ge 0$ telles que $||x_1(0)|| = ||x_2(0)|| = r$ et telles que $x_1(t) \longrightarrow 0$ et $x_2(t) \longrightarrow 0$ quand $t \longrightarrow +\infty$.
- e) Montrer de même que pour r assez petit il existe deux solutions distinctes $x_3(t)$ et $x_4(t)$ de (E) définies pour $t \le 0$ telles que $||x_3(0)|| = ||x_4(0)|| = r$ et telles que $x_3(t) \longrightarrow 0$ et $x_4(t) \longrightarrow 0$ quand $t \longrightarrow -\infty$.

Partie II : Stabilité topologique

Soient f et g deux fonctions $\mathcal{C}^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$ admettant 0 pour point critique. On désigne par φ et ψ les solutions respectives des équations

$$\varphi(0, x_0) = x_0, \quad \frac{\mathrm{d}\varphi(t, x_0)}{\mathrm{d}t} = f(\varphi(t, x_0))$$

$$\psi(0, x_0) = x_0, \quad \frac{\mathrm{d}\psi(t, x_0)}{\mathrm{d}t} = g(\psi(t, x_0)).$$

On dit que f et g sont topologiquement équivalentes (sous entendu: au voisinage du point critique 0) s'il existe un homéomorphisme T (bijection continue d'inverse continue) d'un ouvert de \mathbb{R}^d contenant 0 dans un ouvert de \mathbb{R}^d contenant 0, envoyant 0 sur 0, et $\varepsilon > 0$ et $\tau > 0$, tels que l'égalité suivante ait un sens et ait lieu pour $||x|| < \varepsilon$ et $|t| < \tau$:

$$T(\varphi(t,x)) = \psi(t,T(x))$$
.

On dit que f et g sont linéairement équivalentes si f et g sont deux applications linéaires et s'il existe une application linéaire et inversible T telle que $T(\varphi(t,x)) = \psi(t,T(x))$ pour tous $t \in \mathbb{R}$ et $x \in \mathbb{R}^d$.

- 1°) Soient A et B deux matrices $d \times d$ et f, g définies sus \mathbb{R}^d par f(x) = Ax et g(x) = Bx pour tout $x \in \mathbb{R}^d$. Montrer que f et g sont linéairement équivalentes si et seulement si A et B sont deux matrices semblables.
- 2°) Soient f et g définies comme dans la question précédente.
- a) On suppose que les parties réelles de toutes les valeurs propres de A sont strictement négatives et qu'il existe une valeur propre de B réelle strictement positive. Montrer que f et g ne sont pas topologiquement équivalentes.
- b) On suppose que A et B n'ont que des valeurs propres de partie réelle nulle. f et g sont elles toujours topologiquement équivalentes?
- c) On suppose que les parties réelles des valeurs propres de A et B sont strictement négatives. Montrer que f et g sont topologiquement équivalentes. Peut-on toujours choisir T de classe \mathcal{C}^1 ainsi que son inverse?
- **3°)** Soit $f \in \mathcal{C}^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$ telle que sa différentielle df(0) en 0 n'ait que des valeurs propres de partie réelle strictement négative. Montrer que les fonctions f et $x \longmapsto df(0).x$ sont topologiquement équivalentes.
- $\mathbf{4}^{\mathbf{o}}$) Montrer que pour tout entier $N \geqslant 2$ il existe $f \in \mathcal{C}^{\infty}(\mathbb{R}^2, \mathbb{R}^2)$ telle qu'il existe exactement N solutions maximales distinctes de (E) tendant vers 0 quand t tend vers $+\infty$, et exactement N solutions maximales distinctes tendant vers 0 quand t tend vers $-\infty$. On pourra se contenter d'un dessin précis donnant l'allure des orbites. En déduire qu'il existe un nombre infini de classes d'équivalence pour la relation « être topologiquement équivalent à ».

Partie III : Existence d'une solution périodique

On se place dans cette partie en dimension d=2. On dit qu'un segment [a,b] de \mathbb{R}^2 est transverse pour f si $f(x)\neq 0$ sur ce segment et si f(x) n'est jamais colinéaire au vecteur \overrightarrow{ab} quand $x\in [a,b]$. Le candidat est invité à s'aider de dessins dans la recherche des solutions aux questions, en particulier pour les questions 1d et 1e, et pourra utiliser sans démonstration le théorème de Jordan, énoncé ci-après.

Théorème de Jordan. On appelle courbe de Jordan l'image d'une application continue $c:[0,1] \longrightarrow \mathbb{R}^2$ telle que c(0) = c(1) et $c(t) \neq c(s)$ pour $0 \leq t < s < 1$. Le complémentaire d'une courbe de Jordan a deux composantes connexes (« l'intérieur » et « l'extérieur ») dont une seule est non bornée.

- 1°) Montrer que:
- a) Pour tout $x \in \mathbb{R}^2$ tel que $f(x) \neq 0$, il existe a et $b \in \mathbb{R}^2$, avec $a \neq b$ et $x \in]a, b[$, tel que le segment [a, b] soit transverse pour f.
- b) Soit [a, b] un segment transverse. Toutes les courbes x(t) solutions de (E) qui le traversent le traversent dans le même sens.
- c) Soit [a,b] un segment transverse. Pour tout $x_0 \in [a,b]$ et pour tout $\varepsilon > 0$, il existe $\tau > 0$ vérifiant la propriété suivante : pour toute solution x(t) de (E) passant à l'instant 0 en un point de $B(x_0,r)$, il existe t tel que $0 < t < \varepsilon$ et $x(t) \notin B(x_0,r)$.

- d) Une solution périodique x(t) de (E) coupe un segment transverse en au plus un point.
- e) Supposons qu'une solution x(t) $(0 \le t \le T)$ non fermée coupe un segment transverse en un nombre fini de points x_i aux temps respectifs t_i avec $0 \le t_1 \le t_2 < \ldots < t_N < T$. Alors les x_i sont ordonnés sur le segment [a, b].
- **2°)** Soit x(t) une solution de (E) définie pour tout $t\geqslant 0$ et soit C^+ la courbe

$$C^+ = \{x(t), t \ge 0\}$$
.

On suppose de plus que $C^+ \subset B(0,1)$. On définit

$$L(C^+) = \{ y \in \mathbb{R}^2 / \exists (t_n)_{n \in \mathbb{N}}, \ \lim_{n \to +\infty} t_n = +\infty, \ \lim_{n \to +\infty} x(t_n) = y \}.$$

Montrer que $L(C^+)$ est fermé et invariant (c'est-à-dire que si $x_0 \in L(C^+)$, toute solution x(t) de (E) avec $x(0) = x_0$ définie sur un intervalle [0,T] vérifie $x(t) \in L(C^+)$ pour tout $0 \le t \le T$).

- 3°) Si C^+ et $L(C^+)$ ont un point commun y non singulier, montrer que x(t) est une solution périodique. On pourra considérer un segment transverse passant par y et utiliser les propriétés démontrées en 1.
- $\mathbf{4}^{\mathbf{o}}$) Montrer que $L(C^+)$ est le graphe d'une solution périodique de (E).
- 5°) En déduire le théorème de Poincaré-Bendixson.
- 6°) Montrer que le théorème de Poincaré-Bendixson est faux si on remplace « f n'a pas de points critiques dans \mathcal{C} » par « tous les points critiques de f dans \mathcal{C} sont instables » (le candidat pourra se contenter de dessiner soigneusement un contre-exemple et ne vérifiera pas que $f \in \mathcal{C}^{\infty}$). Trouver une bonne condition sur les points critiques pour que le théorème soit encore vrai.