

CMOS模拟集成电路设计

第十章: 奈奎斯特转换器: ADC & DAC

胡远奇

©2020

>>> ADC & DAC

- 定义
- 数字-模拟转换器
 - 电阻式
 - 电容式
 - 电流驱动
- 模拟-数字转换器
 - 积分式
 - 逐次渐进式
 - Flash

) ADC & DAC

) ADC & DAC

>>> DAC的分辨率

V_{ref} 归一化模拟输出

$$V_{OUT} = V_{REF} B_{IN}$$

$$= V_{REF} \left(\frac{b_1}{2^1} + \frac{b_2}{2^2} + \frac{b_3}{2^3} + \dots \frac{b_N}{2^N} \right)$$

$$V_{LSB} = \frac{V_{REF}}{2^N}$$

b₁ 最高有效位 **Most Significant bit (MSB)**

b_N 最低有效位 **Least Significant bit (LSB)**

》》量化误差(Quantisation Error)

误差

》》量化误差

$$P_{\text{Noise}} = \frac{1}{\Delta} \int_{-\Delta/2}^{\Delta/2} d\epsilon = \frac{\Delta^2}{12}$$

$$V_{ptp} = 2^N \Delta$$

$$P_{Signal} = \frac{V_{ptp}^2}{8}$$

SNR =
$$\frac{3}{2} 2^{2N}$$

$$SNR = 6 N + 1.76 dB$$

》) 静态指标: INL & DNL

差分非线性度 (Differential Nonlinearity): DNL = Y_{OUT}(B) - Y_{OUT}(B-1) - 1 LSB

积分非线性度 (Integral Nonlinearity): INL = Y_{OUT}(B) – Y_{OUT.id}(B)

>>>

频谱内容

SFDR: Spurious free dynamic range, 无杂散动态范围

SNDR: Signal to Noise & Distortion Ratio, 信噪失真比

ENOB: Effective Number Of Bits, 有效位数

Frequency (Hz)

>>> 信噪比与输入信号的关系

系统的有效分辨率被大输入 信号的失真所限制, 以达到74dB/12位分辨率的 系统, 最终只实现了 66dB/10.6位

>>> ADC & DAC

- 定义
- •数字-模拟转换器
 - 电阻式
 - 电容式
 - 电流驱动
- 模拟-数字转换器
 - 积分式
 - 逐次渐进式
 - Flash

>>> 电阻操控型DAC

》)二进制权重电阻的DAC

每个bit对应一个电阻和一个开关!

匹配的精度极限一般在6-8 bits 对匹配的要求更高!

二进制权重中单一性没法得到保证!

>>> R-2R 阶梯型DAC

>>> R-2R 阶梯型DAC

>>> 电容的实现方式

Phase Φ1: 电容采样

Phase Φ2: 电容放大

通常能获得比电阻高2bit的精度

>>> 电流转向DAC

- □ 转换精度的限制是什么?
- □ 一致性的问题能否得到保证?

- 电流镜的匹配
- 不能

>>> 二进制和热码编码

Decimal	Binary			Thermometer Code						
	b_1	b_2	b_3	d_1	d_2	d_3	d_4	d_5	d_6	d_7
0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	1
2	0	1	0	0	0	0	0	0	1	1
3	0	1	1	0	0	0	0	1	1	1
4	1	0	0	0	0	0	1	1	1	1
5	1	0	1	0	0	1	1	1	1	1
6	1	1	0	0	1	1	1	1	1	1
7	1	1	1	1	1	1	1	1	1	1

单调性可以得到保证!

以更多的基本元件、开关和逻辑器件为代价

》)组合方案

$$\sigma(\Delta I) =$$

Binary

$$\sqrt{2^N-1} \frac{\sigma(l)}{l} LSB$$

Unary

$$\frac{\sigma(I)}{I}$$
 LSB

Segmented

B LSBs & N-B MSBs

$$\sqrt{2^{B+1}-1} \frac{\sigma(I)}{I} LSB$$

>>> 电流转向DAC案例

Current steering DAC 10-bit 1 GS/s **0.35 μm CMOS** 110 mW

) ADC & DAC

- 定义
- 数字-模拟转换器
 - 电阻式
 - 电容式
 - 电流驱动
- 模拟-数字转换器
 - 积分式
 - 逐次渐进式
 - Flash

>>> ADC的种类

Time 2: V_x decreases with constant slope:

$$V_x = \frac{V_{ref}}{R_1 C_1} T_2$$
 $T_2 = T_1 \frac{V_{in}}{V_{ref}}$
 $D_{out} = \frac{V_{in}}{V_{ref}}$

相同的硬件,没有匹配的问题!

Time 1:
$$V_x = \frac{V_{in}}{R_1 C_1} T_1$$
 Time 2: $V_x = \frac{V_{ref}}{R_1 C_1} T_2$ $T_2 = T_1 \frac{V_{in}}{V_{ref}}$

- 优点:
 - 高分辨率
 - 高线性度
 - 低电路复杂度
- 缺点:
 - 十分慢!
 - 通常在电压表中使用

》》逐次逼近型ADC

假设全量程为1,每次比较剩余量的1/2:

>0.5? : 0 b1=0

>0.25? : 1 b2=1

>0.375? : 1 b3 = 1

>0.4375?:1 b4=0

》)逐次逼近型ADC

- ・ N-bit ADC仅需N个时钟周期
- · 对比较器的失调电压敏感
- · DAC的实现决定ADC的精度

假设全量程为1,每次比较剩余量的1/2:

>0.5? : 0 b1=0

>0.25? b2=1: 1

>0.375? : 1 b3 = 1

>0.4375?:1 b4=0

>>> 5-bit 电荷重分布 ADC

分辨率由电容的匹配决定,通过可以达到10-12 bits 速度由开关电阻和电容组成的时间常数决定 电路较简单,功耗较低

>>> 5-bit 电荷重分布 ADC

>>> 5-bit 电荷重分布 ADC

SAR ⇒1 leave C_{b1} to V_{ref} : try C_{b2} if $V_{in} > V_{ref}/2$ $SAR \Longrightarrow 0$ leave C_{b1} to Gnd : try C_{b2} if $V_{in} < V_{ref}/2$

3-bit Flash ADC

速度最快, 仅需1个时钟周期

需要2^N个比较器

精度通常在6-8bit

大输入电容!

>>> ADC 设计总体思路

晶体管:
$$\sigma^2(Error) \sim \frac{1}{WL}$$
 $\sigma_{VT} = \frac{A_{VT}}{\sqrt{WL}}$

$$\sigma_{VT} = \frac{A_{VT}}{\sqrt{WL}}$$

精度² ~ WL

设计:增加W,增加I_{DS}和功耗

减小L,加快速度

速度×精度 =工艺水平

>>> ADC的限制

目前的设计均离理论极限还有空间!

>>> 作业

- ·设计一个5BIT的SAR ADC,通过电容的方式实现采样与DA反馈。
 - ·输入区间0-1.8V
 - ・采样频率大于1MSPS
 - ・可以采用理想比较器
 - ·数字逻辑部分用verilog实现