Foundation Project: Final Review Group 13

Agenda

Project Overview

Our Approach: CRISP-ML(Q)

- Business & Data Understanding
- Data Preparation
- Modelling
- Evaluation
- Deployment
- Monitoring & Maintenance

Project Overview

Stock Market sentiment analysis model using news articles

In-Scope:

- Sentiment based analysis
- *CRISP-ML(Q) methodology*

Out of Scope:

- Fundamental Analysis
- Technical Analysis

Architecture

Access our PROJECT on GIT: https://github.com/AMPBA-2022S/FP_Group13/tree/master

CRISP-ML(Q): Business & Data Understanding

CRISP-ML(Q): Business & Data Understanding Group 13 Scope Business Problem Business Objective Minimize risk in stock market investment Apt recommendation to consumers on buy, hold and sell ML Success Criteria ML Success Criteria Feasibility Legal constraints Requirements on the application Avoid confidential, constrained & non-compliant information Validate robustness in terms of repeatability & scalability Data Collection Data Quality Verification Data Verification Data Verification CRISP-ML(Q): Business & Data Understanding Group 13 Low accuracy in existing stock prediction models using sentiment analysis Minimize risk in stock market investment Apt recommendation to consumers on buy, hold and sell Prediction accuracy of >90%, revisited and changed to >60% Right balance of recommendation, accuracy & cost involved Avoid confidential, constrained & non-compliant information Validate robustness in terms of repeatability & scalability Data Quality Verification Data Verification Data Verification Data Verification Data Verification

Our Final delivery..

Data Collection:

- MoneyControl: Fetching news via Python web scraping
- Twitter: Capture Tweets with term "SCRIPTNAME" for past 6M using sntwitter.
- *NSE*: Daily real time prices of "SCRIPTNAME" for the past 6 months

Version Control

Maintaining & refreshing data every week to keep 6M data versions in control

Data Description

- MoneyControl Date of the headline(Date), News Headline for DRREDDY(Text)
- Twitter TweetDate(Date), Tweet content(Text)
- NSE Date for the particular stock(Date), Daily average price(Amount), Highs & Lows of the daily price(Amount)

Data Verification

Sample verification/exploration done on combined data to keep the requirements in check

CRISP-ML(Q): Data Preparation

In mid-review, we committed for.. CRISP-ML(Q): Data Preparation Group 13 Filter, wrapper & embedded methods Feature Selection Select Data Rule based selection eg; Equity - Discard if not in Nifty 50 Cleaning data by Stemming, removing URLs, punctuations, stop words etc Noise Reduction Clean Data Defining Missing values as neutral sentiment Feature engineering Deriving new features from existing KPIs The data needed for training the model will be in .csv or .xlsx format ZScoreNormalization on Continuous & Dummy variables for Categorical

Our Final delivery..

Feature Selection

• Features selected using Filter method. For the model, we only need Date of article, text from headlines/tweets for a period of 6M and we created polarity

Data Selection

• Textual data dropped from selection, as sentiments are captured for headlines

Noise Reduction

Cleaning tweets & headlines for any unwanted punctuation & removing Hyperlinks.

DateTime field cleansed to 'Date' field & unnecessary fields dropped

Data Imputation

• Renaming Columns to match indexes while merging the collected data. Replacing NaN values in Polarity field as 'ZERO'.

Feature Engineering

• Post sentimental analysis: No. of positive words, No. of negative words, No. of Neutral words. Determining the intensity of the word using SentimentIntensityAnalyzer.

Data Augmentation

Polarity: (No. of positive sentiments - No. of negative sentiments)/(Positive +Negative +Neutral) Count: sum of No of news article, tweets collected for a particular date

Normalization

Polarity is normalized with a value range of -1 to 1. Dummy variables for categorical data has been converted during modeling and as & when required.

Data Collection & EDA

Moneycontrol Data

Unn	amed: 0	News_Headline	0_y	Date
0	0	Buy Dr. Reddy's Laboratories: target of Rs 590	5.21 pm 27 Dec 2021	2021-12-27
1	1	Buy Dr. Reddy's Laboratories: target of Rs 590	5.21 pm 27 Dec 2021	2021-12-27
2	2	Dr Reddy's Laboratories seeks DCGI's nod for p	8.03 pm 09 Dec 2021	2021-12-09
3	3	Dr Reddys Labs Standalone September 2021 Net S	8.46 am 09 Nov 2021	2021-11-09
4	4	Dr Reddys Labs Consolidated September 2021 Net	7.11 pm 08 Nov 2021	2021-11-08

Twitter Data

Text	Datetime	
#INTRADAY : Sold #DRREDDY JAN FUTURES at 4667.35!	2022-01-12 04:25:47+00:00	0
Your advice has always guided them to safety 📴	2022-01-12 03:46:57+00:00	1
Top Gainers\n\nHCLTECH 2.71 %\nHDFC	2022-01-11 05:12:11+00:00	2
Stocks in Nifty 50 since Inception:\n\n1. Reli	2022-01-11 04:45:51+00:00	3
New trade: Buy DRREDDY JAN22 4650 CE, CMP155.5	2022-01-11 04:02:05+00:00	4
DRREDDY: LIC BOUGHT 2.34% STAKE IN CO DURING Q1	2021-07-20 07:34:41+00:00	835

Final Output

Sentiment tracing across past 6 months

	Date	News_Tweet_Volume	Polarity
0	2021-07-12	2	0.000000
1	2021-07-13	3	1.000000
2	2021-07-16	1	-1.000000
3	2021-07-18	1	1.000000
4	2021-07-19	2	1.000000
145	2022-01-06	2	1.000000
146	2022-01-07	1	0.000000
147	2022-01-08	1	0.486957
148	2022-01-10	7	-0.044776
149	2022-01-11	3	1.000000

CRISP-ML(Q): Modelling

Literature Research		\rightarrow	Review existing models available online
Define quality measures of model	Performance Robustness Scalability Explainability Model Complexity		Measure of % predictions directionally correct vs. incorrect i.e. Accuracy Variations of results depending on changing market sentiments Ability to scale and accommodate increased workload, volume etc Analytical or visual output of Prediction should be explainable to user Model should be able to comprehend complex & additional relationships
Model Selection		\rightarrow	Model selection basis above defined "Quality Measures"
Incorporate Domain Knowledge		\rightarrow	EDA basis domain specific features + sentiment analysis
Model Training		\rightarrow	4 Step process; Split, Transform, Fit & Accuracy
Assure reproducibility	Result Reproducibility Experimental Documentation	$\overset{\longrightarrow}{\rightarrow}$	K-fold cross validation + random sampling of training data Maintain document to capture iteration

MODEL SELECTION

Model assessment:

- Which model to choose?
- ☐ How can we measure it?

	Random Forest Classifier		
	Actual PASS Actual FAIL TOTAL		
Predicted Pass	12	6	18
Predicted Fail	8	10	18
TOTAL	20	16	36

Naïve Bayes Classifier				
Actual PASS	Actual FAIL	TOTAL		
14	4	18		
15	3	18		
29	7	36		

	Random Forest	Naïve Bayes Classifier
Accuracy	61.1%	47.2%
Precision	61.1%	46.0%
Recall	61.1%	47.0%
F1	61.1%	42.0%

Measure	Random Forest Regressor	XG Boost Regressor
RMSE	17.80%	14.70%
R-Sq	51.40%	67.10%

- Using regression approach yielded favorable results as against classification.
- These models relied heavily on previous prices & as is visible from the trends, Twitter sentiments were not accurately indicative of stock price movements.
- The XG Boost regressor was observed to be the optimum model to simulate future prices.

CRISP-ML(Q): Evaluation

Validate performance

- Split into two parts Training & Testing data
 - Training & Testing data to be completely exclusive

Determine robustness

- Measure KPIs like Accuracy %, Precision, Recall, F1 score etc.
- Compute Error & other error parameters like RMSE

Measure	Random Forest	Naïve Bayes
Precision	61%	46%
Recall	61%	47%
F1 Score	61%	42%
Support	36	36

Measure	Random Forest Regressor	XG Boost Regressor	
RMSE	17.80%	14.70%	
R-Sq	51.40%	67.10%	

Increase Explainability for ML practitioner & end user

Compare results with defined success criteria

- Predicted result should be explainable to the user/ ML practitioner.
- Analytical or visual output of Prediction should be explained to user. Example: Past real vs predicted stock prices.

CRISP-ML(Q): Deployment

Selected Heroku deployment as it provides

- **Dynos:** Smart containers on a reliable, fully managed runtime environment.
- User friendly interface
- **Direct Deployment** of Python code from GitHub
- Intuitive dashboard makes apps management easier

Model performance is evaluated using a baseline number of Dynos.

Deployment Strategy

Deployment using Heroku platform and pulling model code from GitHub

Scaling of Heroku Dynos as per the model performance

Plan User acceptance testing for each deployment

Fallback mechanism using Heroku Releases and Rollback functionality.

Successful deployment on 'Heroku'

CRISP-ML(Q): Monitoring and Maintenance

Non-stationary data distribution	\rightarrow	 Data distribution to be upgraded, in case of variation
Degradation of hardware	\rightarrow	 Track technological change which degrades hardware & hence performance
System updates	\rightarrow	• Change in PEST will require shift in strategic update
Monitor	\rightarrow	■ Periodic monitoring of model (once in 2 weeks) for consistency & accuracy
Update	\rightarrow	 Archive data before scraping for prediction

Thanks!!

Group 13