Отчет о выполнении лабораторной работы 2.5.1

Измерение коэффициента поверхностного натяжения жидкости

Выполнил: Тимонин Андрей

Группа: Б01-208

Дата: 20.04.2023

1 Введение

Цели работы:

- 1. Измерение коэффициента поверхностного натяжения исследуемой жидкости при разной температуре с использованием известного коэффициента поверхностного коэффициента другой жидкости;
- 2. Определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости.

В работе используются:

- 1. Прибор Ребиндера с термостатом;
- 2. Исследуемые жидкости;
- 3. Стаканы;
- 4. Микроскоп;
- 5. Линейка.

2 Экспериментальная установка

Рис. 1 Схема экспериментальной установки

3 Экспериментальные данные

3.1 Измерение радиуса иглы

Измерим радиус иглы двумя способами:

- 1. При помощи микроскопа;
- 2. Использую формулу и показания спиртового манометра.

При измерении микроскопом имеем:

$$d_{total}$$
, MM d_{inner} , MM r_1 , MM 1.4 ± 0.1 1.2 ± 0.1 0.6 ± 0.1

Таблица 1. Результаты измерение иглы микроскопом

Используя формулу и полученные данные:

$$r = \frac{2 \cdot \sigma}{P} \tag{1}$$

Получаем:

$$r_2 = \frac{2 \cdot 22.78}{44.0 \cdot 0.2 \cdot 9.80665} = 0.5 \tag{2}$$

Найдем погрешность r_2 :

$$\Delta r_2 = \frac{1}{44.0} \cdot 0.50 = 0.01 \tag{3}$$

Значит $r_2 = 0.50 \pm 0.01$ мм

3.2 Измерение температурной зависимости коэффициента поверхностного натяжения

$N_{\overline{0}}$	T , $^{\circ}$ C	h, мм	P , Πa	$\sigma, \frac{MH}{M}$	$q, \frac{MH}{M}$	$\frac{U}{\Pi}, \frac{MH}{M}$
1	21.7 ± 0.1	183.0 ± 0.5	358.9 ± 0.9	89.7	2.4	92.2
2	25.7 ± 0.1	183.0 ± 0.5	358.9 ± 0.9	89.7	2.8	92.6
3	30.4 ± 0.1	182.0 ± 0.5	356.9 ± 0.9	89.2	3.4	92.7
4	35.4 ± 0.1	181.0 ± 0.5	355.0 ± 0.9	88.7	3.9	92.7
5	40.4 ± 0.1	179.5 ± 0.5	352.1 ± 0.9	88.0	4.5	92.6
6	45.3 ± 0.1	179.0 ± 0.5	351.1 ± 0.9	87.8	5.1	92.9
7	51.0 ± 0.1	177.0 ± 0.5	347.2 ± 0.9	86.8	5.7	92.5
8	55.2 ± 0.1	176.0 ± 0.5	345.2 ± 0.5	86.3	6.2	92.5
9	60.0 ± 0.1	174.5 ± 0.5	342.3 ± 0.9	85.6	6.7	92.3

Таблица 3. Результаты эксперимента

Коэффициенты графика наилучшей прямой получены методом наименьших квадратов:

- a = -0.11248;
- b = 92.55050.

Найдем погрешность коэффициента а

$$\Delta_a = \sqrt{\frac{1}{9-2} \cdot (\frac{2.04}{158.9} - (-0.11248)^2)} = 0.07 \tag{4}$$

Относительная погрешность: $\epsilon_a = \frac{0.07}{0.11248} = 0.62 \approx 62\%$ - достаточно большая погрешность. На это указывает и разброс значения у на графике.

			Таблиц	íРі		
						Таблиі
потно	CTF (0) R	соэффициенты	поверхностного	натяжения (о)	и объемного рас	ширени
normo					х температурах	
			(-р)д-			_
	t, °C	ρ, кг/м ³	о, мН/м	$\alpha \cdot 10^4, K^{-1}$	С _р , Дж/(кг•К)	
	2	999,9	75,36	-0,328	4210,7	
	4	1000,0	75,08	0,003	4204,8	
	6	999,9	74,79	0,313	4199,9	
	10	999,7	74,23	0,880	4192,1	
-	15	999,1	73,50	1,509	4185,6	
-	20	998,2	72,75	2,068	4181,7	
	25	997,0	71,99	2,572	4179,5	
	30	995,6	71,20	3,033	4178,5	-
	35	994,0	70,41	3,457	4178,2	
	40	992,2	69,60	3,853	4178,6	
	45	990,2	68,78	4,224		1000
	50	988,0	67,94	4,575	4179,4	1 79
	55	985,7	67,1	4,909	4180,7	1
	60	983,2	66,24	5,230	4182,35	
	65	980,6	65,36		4184,4	
	70	977,8	64,47	5,539	4186,85	
	30	971,8	62,67	5,838	4189,7	6
	00	965,3	60,82	6,411	4196,5	
1	00	958,4	58,91	6,962	4205,0	
			50,91	7,500	4216,4	-
					.210,4	

Рис. 2 Характеристики воды при разных температурах

	(01)	o p p municini ii	оверхнестного	натяжения (σ) и	и объемного расш	прения
	(α), удел	вная теплоемк	ость (Ср) этанол	та при различны	их температурах	
	t, °C	р, кг/м ³	о, мH/м	$\alpha \cdot 10^3, K^{-1}$	С _р , Дж/(кг·К)	1
	10	797,9	23,63	1,059	2321	
	20	789,5	22,78	1,079	2398	
1	30	781,0	21,90	1,103	2483	
	40	772,2	21,00	1,133	2576	11/
	50	763,3	20,10	1,170	2677	F
	60	754,1	19,20	1,217	2785	
* 4	70	744,6	18,30	1,275	2902	
	80	734,8	17,39	1,346	3027	
	90	725,1	16,45	1,346	3160	
	100	715,7	15,48	1,534	3302	

Рис. 3 Характеристики этанола при разных температурах

4 Выводы

• Формула (1) верна для нахождения радиуса капиляра. $r_2 \approx r_1$. Относительная погрешность равна 11.7%. Используя формулу (1) можно найти радиус иглы с большей точностью;

- Коэффициент поверхностного натяжения действительно слабо зависит от изменения температуры, это видно из таблицы и графика (При изменение $\Delta T = 40^{\circ}$ С имеем изменение $\Delta \sigma = -4.1 \frac{\text{мH}}{\text{M}}$);
- Полученный коэффициент наклона наилучшей прямой $\frac{d\sigma}{dT}$ отрицательна, что соответствует теории (поверхностное натяжение уменьшается с увелечением температуры);
- При этом поверхностная энергии единицы площади практически остается const, а значит тепло идет на увеличение поверхности пленки.