DERWENT-ACC-NO:

1997-359480

DERWENT-WEEK:

199733

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE:

Cork matter floor material having

good durability -

formed by laminating vinyl! chloride

resin, adhesive

layer, cork layer and transparent

surface layer.

PATENT-ASSIGNEE: MITSUBISHI KASEI VINYL KK[MITU]

PRIORITY-DATA: 1995JP-0312633 (November 30, 1995)

PATENT-FAMILY:

PUB-NO

PUB-DATE

PAGES

MAIN-IPC

LANGUAGE JP 09151596 A

June 10, 1997

N/A

006 E04F 015/16

APPLICATION-DATA:

PUB-NO

APPL-DESCRIPTOR

APPL-NO

APPL-DATE

JP 09151596A

N/A

1995JP-0312633

November 30, 1995

INT-CL (IPC): B32B021/08, E04F015/16

ABSTRACTED-PUB-NO: JP 09151596A

BASIC-ABSTRACT:

The cork matter floor material is formed by lamination of a vinyl chloride resin having a bending modulus of elasticity of 50-2000 kg/cm2, an adhesive layer, a cork layer and a transparent surface layer.

USE - The cork matter is used for floor material.

ADVANTAGE - The cork matter floor material has good durability, workability and

cushioning ability.

CHOSEN-DRAWING: Dwg.1/2

TITLE-TERMS: CORK MATTER FLOOR MATERIAL DURABLE FORMING LAMINATE POLYVINYL

CHLORIDE RESIN ADHESIVE LAYER CORK LAYER TRANSPARENT SURFACE LAYER

DERWENT-CLASS: A14 A93 P73 Q45

CPI-CODES: A04-E02E1; A04-E03E; A11-B09A2; A12-R03;

ENHANCED-POLYMER-INDEXING:

Polymer Index [1.1]

018 ; R00338 G0544 G0022 D01 D12 D10 D51 D53 D58 D69

D82 Cl 7A;

H0000; H0011*R; P1796 P1809

Polymer Index [1.2]

018 ; ND01 ; Q9999 Q6848 Q6826 ; K9701 K9676 ; K9574

K9483 ; B9999

B5287 B5276 ; N9999 N7192 N7023 ; N9999 N5721*R ; ND07

Polymer Index [1.3]

018 ; B9999 B4046 B3930 B3838 B3747

Polymer Index [2.1]

018 ; P0000

Polymer Index [2.2]

018 ; ND01 ; Q9999 Q6848 Q6826 ; K9701 K9676 ; K9574

K9483 ; B9999

B5287 B5276 ; N9999 N7192 N7023 ; N9999 N5721*R ; ND07

Polymer Index [2.3]

018 ; Q9999 Q6644*R ; K9609 K9483

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1997-115637

Non-CPI Secondary Accession Numbers: N1997-298541

(19) 日本国特新庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-151596

(43)公開日 平成9年(1997)6月10日

(51) Int.Cl.⁶

識別記号

庁内整理番号

FΙ

技術表示箇所

E04F 15/16

B 3 2 B 21/08

8702-2E

E04F 15/16

B 3 2 B 21/08

Α

審査請求 未請求 請求項の数3 OL (全 6 頁)

(21)出願番号

(22)出顧日

特願平7-312633

平成7年(1995)11月30日

(71)出顧人 000176774

三菱化学エムケーブイ株式会社

東京都港区芝四丁目1番23号

(72)発明者 中村 信也

爱知県名古屋市中村区岩塚町大池2番地

三菱化学エムケーブイ株式会社名古屋事業

所内

(72)発明者 森田 英克

爱知県名古屋市中村区岩塚町大池2番地

三菱化学エムケーブイ株式会社名古屋事業

(74)代理人 弁理士 長谷川 噴司

最終頁に続く

(54) 【発明の名称】 コルク質床材

(57)【要約】

【課題】 コルク質床材において、そのクッション性を 損うことなく、耐久性、施工性に優れた、経済的にも安 価な床材の提供。

【解決手段】 木粉を含有し、曲げ弾性率が50~20 00kg/cm²の塩化ビニル系樹脂層、接着層、コル ク層及び透明表面層が順次積層されてなるコルク質床 材。

1

【特許請求の範囲】

【請求項1】 木粉を含有し、曲げ弾性率が50~20 00kg/cm²の塩化ビニル系樹脂層、接着層、コル ク層、及び透明表面層が順次積層されてなるコルク質床 材。

【請求項2】 塩化ビニル系樹脂層が、平均重合度60 0~1300の塩化ビニル系樹脂と該樹脂100重量部 あたり、30~120重量部の可塑剤及び50~200 重量部の木粉とから構成されており、かつその厚さが2 ~20mmである請求項1に記載のコルク質床材。

【請求項3】 コルク層が天然コルク又は圧縮コルクで 形成され、かつその厚さが0.3~3mmである請求項 1又は2に記載のコルク質床材。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、コルク質床材、特 にマンション、集合住宅、戸建住宅でのコンクリートス ラブ、荒床、コンクリートパネルに施工される住宅の直 張り用コルク質床材に関するものである。

[0002]

【従来の技術】コルクを用いた床材は、コルクの持つ吸 音性、断熱性、クッション性を生かして、住宅用床材分 野に広く用いられている。このようなコルク質床材とし ては、天然コルク又は圧縮コルクシートの表面に着色し た上、防水層や耐摩耗層の透明表面層を積層したもの や、コルクシートの下面に合板、発泡樹脂及び不織布が 積層されたコルク質床材等が用いられている。

[0003]

【発明が解決しようとする課題】上記のようなコルク質 床材は、コルク自体が天然木より産出するものであるた 30 め、産出量には制限があり、特に天然コルクを用いた床 材は、価格も高価である。また、天然コルクを粉砕・圧 縮して、フェノール系その他の接着剤で結合させてシー ト化した圧縮コルクを用いた床材の場合でも、塩ビ系床 材、木質系フローリング床材に比較して価格的には非常 に高価なものとなっている。このコルク質床材の価格を 下げるために、コルク層の厚味を2~3mmに薄くし、 他の素材と複合化した製品も提案されている。しかし、 この場合組み合せた素材の性質によっては、走行感やク ッション性が劣ったり、その施工にあたっても熟練した 40 技術が要求される場合が多い。本発明は、上記のコルク 質床材のもつ性質・特徴を損うことなく経済性を向上 し、さらに施工時には容易に施工することができるよう なコルク質床材を提供することを目的とする。

[0004]

【課題を解決するための手段】本発明の要旨は木粉を含 有し、曲げ弾性率が50~2000kg/cm²の塩化 ビニル系樹脂層、接着層、コルク層、及び透明表面層が 順次積層されてなるコルク質床材に存し、さらに本発明 の別の要旨は木粉を含有する塩化ビニル系樹脂層が、平 50 向となるので好ましくない。塩化ビニル系樹脂の重合度

均重合度600~1300の範囲の塩化ビニル系樹脂と 該樹脂100重量部あたり30~120重量部の可塑剤 及び50~200重量部の木粉とから構成されており、 かつその厚さが2~20mmである上記のコルク質床材 に存し、またもう一つの要旨はコルク層が天然コルク又 は圧縮コルクで形成され、かつその厚さが0.3~3m mである上記コルク質床材に存している。

2

[0005]

【発明の実施の形態】本発明に使用する塩化ビニル系樹 10 脂としては、塩化ビニルの単独重合体の他、塩化ビニル とこれと共重合可能な他の単量体との共重合体を含む。 塩化ビニル単量体と共重合可能な他の単量体としては、 従来一般的に用いられているものを使用することがで き、特に限定されない。上記の他の単量体としては、例 えば、酢酸ビニル、プロピオン酸ビニル、ステアリン酸 ビニル等のビニルエステル類、メチルビニルエーテル、 エチルビニルエーテル、オクチルビニルエーテル、ラウ リルビニルエーテル、セチルビニルエーテル等のアルキ ルビニルエーテル類、エチレン等のαーオレフィン類、

- 20 アクリル酸、メタクリル酸等の一価不飽和酸及びこれら の一価不飽和酸のメチルエステル、エチルエステル等の アルキルエステル類、マレイン酸、フマル酸、イタコン 酸等の二価不飽和酸及びこれらの二価不飽和酸のメチル エステル、エチルエステル等のアルキルエステル類、塩 化ビニリデン等のビニリデン化合物、アクリロニトリル 等の不飽和ニトリルなどの一種又は二種以上の混合物が 挙げられる。これらの他の単量体は、塩化ビニル単量体 に対し、通常、30重量%以下、好ましくは20重量% 以下の割合で使用されるが、特に制限はない。
 - 【0006】本発明の床材においては、木粉を含有する 塩化ビニル系樹脂層の曲げ弾性率が50~2000kg /cm² の範囲である。曲げ弾性率が50kg/cm² 未満では、軟らか過ぎて、積層したコルク層あるいは透 明表面層が取扱い時等に変形を受けて割れる恐れがあり 好ましくない。またコルク層の積層時や、透明表面層の 積層又は塗布時の作業性も悪化するという不都合があ る。逆に曲げ弾性率が2000kg/cm²を超える場 合は、コルク質床材のもつクッション性が失なわれ、歩 行感が劣るようになるので好ましくない。さらにシート の剛性が高過ぎて、床材施工時に、施工面の凹凸によっ て接着不良を生じたり、施工に熟練を要するなどの従来 法の問題を解決できなくなる。

【0007】また、本発明に用いる塩化ビニル系樹脂は 重合度600~1300の範囲のものがよく、重合度が 低すぎると、木粉入りの塩化ビニル系樹脂シートの物性 が劣るため好ましくなく、逆に重合度が高過ぎると、木 粉入り塩化ビニル系樹脂シートを、例えば押出し成形に より製造する際などに樹脂の見掛け溶融粘度が高くなる ため、押出機への負荷も大きく、シート生産性が劣る傾 としては700~1100のものがより好ましい。 【0008】本発明に用いる塩化ビニル系樹脂に添加す る木粉の原料木材の樹種は特に限定されないが、マツ、 モミ、ツガ、ポプラ等針葉樹や広葉樹から選べばよい。 これらの木粉は、乾式または湿式粉砕により、平均粒径 80~200メッシュに微細粉末としたものを用いるが よい。木粉の平均粒径が80メッシュ以下と大きい場合 は、塩化ビニル系樹脂との混合時や、押出し成形時の摩 擦抵抗による発熱が大きくなり、塩化ビニル系樹脂の耐 熱性を低下させやすいので好ましくない。また平均粒径 10 が200メッシュ以上の微細な木粉では、粉砕工程、ふ るい工程に手間がかかり、価格も高いものとなる上、取 扱い性も悪くなるのであまり好ましくない。

【0009】添加する木粉の量は、塩化ビニル系樹脂1 00重量部あたり木粉50~200重量部とするのがよ い。木粉が50重量部未満では、接着剤層を介してコル ク層を接着した時に十分な接着強度が得られないことが 多く、好ましくない。逆に、木粉が200重量部を超え る場合、塩化ビニル系樹脂との混練時の見掛け粘度が高 くなり、押出し成形等の際のシート表面荒れやシート端 20 部の耳キレが生じやすくなるため、生産性が劣り、また シートの物性も低下するので好ましくない。

【0010】本発明で使用する可塑剤としては、塩化ビ ニル系樹脂用に通常使用される可塑剤であれば特に限定 されない。例えばフタル酸ジー2-エチルヘキシル、フ タル酸ジイソノニル、フタル酸ジーn-オクチル等のフ タル酸ジエステル系可塑剤、トリメリット酸トリー2-エチルヘキシル、トリメリット酸トリイソデシル等のト リメリット酸トリエステル系可塑剤、アジピン酸ジー2 ーエチルヘキシル、アゼライン酸ジイソノニル、セバシ 30 厚さは3〜17mmである。 ン酸ジー2-エチルヘキシル等の脂肪族二塩基酸ジエス テル系可塑剤、アジピン酸等の脂肪族二塩基酸と1,4 ーブタンジオールのようなグリコールとを重縮合した構 造のポリエステル系可塑剤、及びエポキシ化大豆油、エ ポキシ化アマニ油、エポキシ樹脂等のエポキシ系可塑剤 などを挙げることができる。

【0011】可塑剤は、塩化ビニル系樹脂100重量部 あたり、30~120重量部、好ましくは、40~11 0重量部を使用するのが物性や硬さの点で好適である。 木粉を含有する塩化ビニル系樹脂混合物は、例えば上記 40 の木粉及び可塑剤を塩化ビニル系樹脂とともに、リボン ブレンダー、ヘンシェルミキサー等の撹拌混合装置に投 入することにより製造できる。

【0012】この時、用いる木粉の含水率が3重量%以 上の場合は、オーブンやホッパードライヤー等で予め水 分を除去したり、リボンブレンダー、ヘンシェルミキサ 一中で加熱下に撹拌を行って水分を除去しておくことが 好ましい。このためには、撹拌混合装置に加熱設備があ る場合、例えばヘンシェルミキサーでは100~500 rpmのような低速回転で木粉温度を100℃前後とし 50

て排気しながら15分~20分間撹拌(含水率が高い場 合は30分以上) すればよい。加温設備がない場合は、 ヘンシェルミキサーでは1000~3000rpm程度 の高速回転による摩擦発熱で木粉の温度を高くして、昇 温後は、上記と同様の低速回転で排気しつつ撹拌するこ とにより水分の除去が可能である。木粉の乾燥後は、通 常の塩化ビニル系樹脂配合剤を順次混合装置に添加すれ ばよく、塩化ビニル系樹脂、可塑剤の他に、安定剤、滑 剤、顔料等通常用いられるものを配合すればよい。な

お、木粉が十分乾燥している場合は、これを他の配合剤 と同様に扱えばよい。撹拌、混合することによりドライ アップさせて木粉入りの塩化ビニル系樹脂混合物が得ら れる。この木粉入り塩化ビニル系樹脂をシート状に成形 するためには、上記の混合物をバンバリーミキサーで混 練し、次いで加熱ミルロールでシート成形しても、ある いは、Tダイ押出し成形機に直接上記混合物を投入し て、シート成形を行ってもよい。また、Tダイ押出し成 形時には、上記の混合物をあらかじめ、バンバリーミキ サー、ミルロール等を用いてシート成形後、ロータリー 式カッターによりペレット化するか、ホットカット装置 を備えた2軸押出し混練機を用いてペレット化したもの を用いてもよい。

【0013】シートの成形温度は130℃~150℃の 範囲が好ましく、またシートの厚味は2~20mmの範 囲とするのがよい。シートの厚味が2mm未満では、コ ルク層の厚味を厚くする必要があり、コスト的に高価と なり好ましくない。逆に20mmを超えると直張り用床 材としては不必要な厚さとなり、これもコストが高くな り、好ましくない。より好ましい塩化ビニル系樹脂層の

【0014】上記のようにして得られた木粉入り塩化ビ ニル系樹脂シートを床材に加工するためには、このシー トの片面に、ロールコーター、ブレードコーター、カー テンコーター、スプレーコーター等の塗布装置により、 尿素樹脂系、メラミン樹脂系、酢ビエマルジョン系、エ チレン酢ビエマルジョン系、アクリルエマルジョン系、 ウレタンエマルジョン系等の接着剤を塗布して、コルク シートを接着すればよい。接着には加熱プレス、冷熱プ レス、真空プレス等の装置を用いることができる。接着 剤の塗布量としては100~200g/m²の範囲が好 ましい。

【0015】コルク層としては、天然コルク又は圧縮コ ルクを用い、その厚味はO. 3~3mmであるのがよ い。厚さが0.3mm未満の場合、コルク層の機能であ る吸音性、保温性が低下し、強度も低下する傾向とな る。逆にコルク層の厚さが3mmを超える場合はコスト が高くなるのであまり好ましくない。コルク層には、上 記塩化ビニル系樹脂シートとの接着前、又は接着後に意 匠・外観向上のため、着色剤を用いて着色してもよい。 【0016】透明表面層は、コルク質床材としての外観

を保ちつつ、耐摩耗性や耐擦傷性を向上し、また汚染を 防止することを目的として積層される。この透明表面層 にはアクリル系、ウレタン系、エポキシ系、ポリエステ ル系、ポリアミド系、シリコーン系、フッ素系樹脂塗料 の1種又は2種以上の混合物からなる樹脂塗料を用いて 形成するのがよい。またこれらの塗料に耐摩耗性は向上 するためにシリカ粉末等の耐摩耗性向上剤等を添加して もよい。この塗布には、ロールコーター、カーテンコー ター、スプレーコーター等を用いればよい。透明表面層 は多層で構成してもよく、この場合は例えば第一層を塗 10 布乾燥後サンダー等により表面を研摩して、更に第二層 以下を塗布すればよい。塗料の塗布後は、乾燥設備によ って加熱処理してもよく、また常温で乾燥してもよい。 透明表面層の厚味は100~500 µmの範囲が好まし い。このようにして作成した積層体を所要の寸法に裁断 して本発明のコルク質床材を得ることができる。

[0017]

【実施例】以下、実施例を用いて本発明をより詳細に述 べるが、本発明は以下の実施例により限定されるもので はない。

<実施例1>米ツガの木粉(粒径:100メッシュ全 通) をスーパーミキサーに投入し、木粉温度が100℃ になるよう昇温し、300rpmの回転数で20分間ミ キサー投入口開放のまま撹拌、予備乾燥を行った。得ら れた木粉の含水率は2.7%であった。

【0018】この木粉1500gに平均重合度1050 の塩化ビニル系樹脂1000g、フタル酸ジー2-エチ ルヘキシル1000g、Ba-Zn系液状安定剤25 g、エチレンビスアミド系滑剤5g、ポリエチレン系ワ ックス5g、エポキシ化大豆油30g、チタンホワイト 30 系顔料100gを添加して撹拌混合し、木粉入り塩化ビ ニル系樹脂混合物(以下「木粉入りブレンド」と記す) を得た。上記手順を3回繰り返し計約12kgの木粉入 りブレンドを調製した。

【0019】この木粉入りブレンドを65mmφの押出 し機を用いて厚味3mm、幅310mmのダイ(温度1 40℃) にて成形し、シートを作成した。 得られたシー トを長さ185cmに裁断した。このシートを木粉入り 塩化ビニル系樹脂層としてその片面にウレタン系エマル ジョン接着剤 (コニシ (株) 製CVC36) をロールコ 40 現象を目視にて評価した。 ーターを用いて塗布量200g/m²で塗布し、更に1 mm厚味の圧縮コルクシートを重ねて、温度50℃のプ レス成形機にて3分間プレスし、シートとコルクとを接 着した。

【0020】次に、得られたシートのコルク面に透明塗 料 (ウレールサンディングシーラー、No. 263L: 荒川塗料工業 (株) 製) をロールコーターにて塗布 (1 00g/m²) した。塗布後、常温にて乾燥後、#20 0のサンダーにて研摩した。更に、この表面に透明塗料 (ポリウレックスフラットクリヤ/硬化剤=4/1:和 50 実施例 $1\sim3$ 及び比較例 $1\sim3$ の評価結果を表に併せて

信化学工業(株)製)をロールコーターにて塗布(80 g/m²)し、常温にて乾燥し、透明表面層を形成し た。乾燥後30.3cm×182cmのサイズにシート

端部を裁断し、コルク質床材を得た。 【0021】<実施例2及び比較例1~3>配合剤の量 を表に示す値としたこと以外は木粉、木粉の乾燥、ブレ ンド条件、可塑剤種類、他の添加剤等は実施例1と同様 にして各シートを成形した。シート成形後の床材への加 工についても、実施例1と同様の材料及び条件として、 コルク質床材を作成した。

【0022】<実施例3>コルクシートとして0.2m m厚味の品を用いたこと以外は実施例1と同様の材料及 び条件でコルク質床材を作成した。

<測定・評価方法>シート及び床材の性状評価は以下の 方法で実施した。

(1)シートの曲げ弾性率

温度条件 23℃

サンプルサイズ 幅30mm×長さ120mm 支点間距離 50mm

20 速度 10mm/min 【0023】(2) 施工性

> コンクリート床にモルタル塗りで幅60.3cmの間隔 で、高さ3mmの高低差を順次つけた試験施工用の直張 り下地に、エポキシ接着剤(セメダイン(株)製 EP -331)を厚味1mmに塗布して、実施例1~3、比 較例1~3の各床材を施工し、その施工性、及び下地段 差部位の追従性を目視評価した。

施工性 ○:良好な下地追従性を有した。

△:やや下地への追従性劣る。

×:下地への追従性劣り、接着不良発生した。

【0024】(3)歩行感施工性評価のため施工した床 材面に、歩行テストを実施し、そのクッション性を評価 した。

クッション 〇:歩行時に適度なクッション性が得られ る。

△:歩行感がやや劣る。

×:歩行感が劣る。

【0025】(4)接着性

シートとコルク接着時のコルク表面への接着剤しみ出し

〇: コルク表面に全く接着剤が出ていない。

△:わずかにコルク表面に接着剤が出ている。

×:接着剤が著しくコルク表面に出て汚染している。 【0026】(5)施工性の耐久性

施工性評価のため施工したコルク質床材を3ケ月間、実 用歩行に供した後の外観の観察を行った。

〇:特に不良発生箇所なし

△:わずかに不良発生(コルク部に多少破損)

×: 著しく不良箇所発生(コルク部が顕著に破損)

6

8

示す。 【0027】 *【表1】

Ł

	-		実 施 例			比 較 例		
		·	1	2	3	l	2	3
塩化ビニル系樹脂層	塩化ビニル樹脂							
	使用量(部)		100	100	100	100	100	100
	重合度		1050	1050	1050	1050	800	1050
	可塑剤							
	使用量	(部)	100	60	100	100	30	60
	木粉			•				
	使用量	(都)	150	70	150	10	150	0
	曲げ弾性率		300	1000	300	40	13000	200
	(kg/cm²)		300	1000	560	40	15000	200
接着剂屬	接着期							
	種類		が次系	かか系	外外系	かか系	外來	外次系
	塗布量(g/m²)		200	200	200	200	200	200
コルク層	コルク種類		圧縮コルク	圧縮コルク	圧縮コルク	圧縮コルク	圧縮コルク	圧縮コルク
100	厚さ	(m)	1	1.	0.2	1	1	1
床材評価	施工	性	0	0	0	0	×	0
	步行	8	0	0	0	Δ	×	Δ
	接着	性	0	0	0~4	×	0	×
	耐久	性	0	0	Δ	∆~×	0	0

[0028]

【発明の効果】透明表面層をもつコルクシートに接着層を介して、木粉を含有する塩化ビニル系樹脂層が積層さ 30 2 れた本発明のコルク質床材は、コルクのもつクッション 3 性を損うことなく、耐久性、施工性に優れかつ、経済性も良好である。 5

【図面の簡単な説明】

【図1】本発明のコルク質床材の断面図の一例

【図2】本発明の床材の施工例

※【符号の説明】

- 1 木粉含有塩化ビニル系樹脂層
- 2 接着層
- 3 コルク層
- 4 透明表面層
- 5 本発明床材
- 6 施工用接着剤
- 7 捨て張り合板

※ 8 根太

【図1】

【図2】

フロントページの続き

(72)発明者 山田 美幸

愛知県名古屋市中村区岩塚町大池2番地 三菱化学エムケーブイ株式会社名古屋事業 所内