

Ayudantía Repaso I2

25 de octubre de 2024 Martín Atria, José Thomas Caraball, Caetano Borges

1. Lógica de Predicados

Sea \leq y = símbolos de predicado binario y P un símbolo de predicado unario. Considere la interpretación ${\mathcal I}$ definida como:

 $\mathcal{I}(dom) := \mathbb{N}$

 $\mathcal{I}(=) := n = m$ si y solo si n es igual a m.

 $\mathcal{I}(\leq) := n \leq m$ si y solo si n es menor o igual que m.

 $\mathcal{I}(P) := P(n)$ si y solo si nes primo

Escriba la siguiente expresión en lógica de predicados sobre la interpretación \mathcal{I} :

"Para todo par de números primos distintos de 2 y 3, hay un número natural entre ellos que no es primo"

2. Teoría de Conjuntos

Sean A y B conjuntos y una función $f:A\to B.$ Para todo $X\subseteq A$ definimos el siguiente conjunto:

$$F(X) = \{b \in B \mid \exists a \in X \text{ tal que } f(a) = b\}$$

Dada $S \subseteq \mathcal{P}(A)$ una colección de subconjuntos de A, demuestre que:

1.
$$F\left(\bigcup_{D\in S}D\right) = \bigcup_{D\in S}F(D)$$

2.
$$F\left(\bigcap_{D\in S}D\right)=\bigcap_{D\in S}F(D)$$

3. Relaciones

3.1. Relaciones de orden

Dados un conjunto A y una relación \lesssim sobre A, diremos que el par (A,\lesssim) es un preorden si \lesssim es una relación refleja y transitiva.

Denotramos por $\mathcal{P}(\mathbb{N})^{\infty}$ el conjunto de todos los subconjuntos finitos de \mathbb{N} . Definimos la relación $\leadsto \subseteq \mathcal{P}(\mathbb{N})^{\infty} \times \mathcal{P}(\mathbb{N})^{\infty}$ como

$$A \leadsto B \Leftrightarrow inf(A) \leq inf(B) \land sup(A) \leq sup(B)$$

donde $inf(\cdot)$ y $sup(\cdot)$ son el ínfimo y el supremo de un conjunto respectivamente.

- 1. Demuestre que $(\mathcal{P}(\mathbb{N})^{\not\infty}, \leadsto)$ es un preorden.
- 2. Demuestre que $(\mathcal{P}(\mathbb{N})^{\infty}, \leadsto)$ no es un orden parcial.
- 3. Encuentre un conjunto $S \subseteq \mathcal{P}(\mathbb{N})^{\infty}$ tal que (S, \leadsto) es un orden parcial. Debe demostrar su resultado.

3.2. Relaciones de equivalencia

Sea A un conjunto, y $S,T\subseteq A\times A$ ambas relaciones de equivalencia sobre A. Demuestre que:

$$S \circ T = T \circ S \Leftrightarrow S \circ T$$
es una relación de equivalencia

4. Cardinalidad

4.1. Numerabilidad

Demuestre que el conjunto de todos los strings ASCII (finitos) que sólo tienen caracteres a y b, y tales que no contienen el substring abb es un conjunto numerable.

4.2. No numerabilidad

Sea $\mathcal{F} = \{f : \mathbb{N} \to \mathbb{N} \mid f \text{ es inyectiva}\}$. Demuestre que el conjunto \mathcal{F} es no numerable.