

Symmetric Cryptography

Block Cipher and DES

Sang-Yoon Chang, Ph.D.

Modern Cipher (vs. Classical Cipher)

Digital computer communications based on bits

Product cipher

More sophisticated techniques

Module: Block Cipher and DES

Block Cipher vs. Stream Cipher

Ideal Block Cipher

Feistel Cipher

Data Encryption Standard (DES)

Block Cipher vs. Stream Cipher

Block cipher (left) processes in blocks (multiple bits) while stream cipher (right) processes them a bit/byte at a time

Block Cipher vs. Stream Cipher

Block cipher (left) processes in blocks (multiple bits) while stream cipher (right) processes them a bit/byte at a time

Pad bits if the last block is incomplete

Block Cipher Function Requirements

Block cipher function: n bits \rightarrow n bits 2^n possible block options

Reversible function Dec(K,(Enc(K,X)))=X, for all X

Given the key K, the computation of the function is deterministic and easy

Block cipher function: n bits \rightarrow n bits 2^n possible block options

Ideal block cipher supports the maximum number of encryption mappings

Reversible transformation 2ⁿ! Possible transformations or keys

For block i, $0 \le i \le 15$, (16-i) block options

Plaintext	Ciphertext
0000	1111
0001	0111
0010	1001
0011	1110
0100	0101
0101	0100
0110	1100
0111	1000
1000	0010
1001	0000
1010	0011
1011	0001
1100	1011
1101	1101
1110	0110
1111	1010

Plaintext	Ciphertext
0000	1111
0001	0111
0010	1001
0011	1110
0100	0101
0101	0100
0110	1100
0111	1000
1000	0010
1001	0000
1010	0011
1011	0001
1100	1011
1101	1101
1110	0110
1111	1010

Plaintext	Ciphertext
0000	111
0001	0111
0010	1001
0011	1110
0100	0101
0101	0100
0110	1100
0111	1000
1000	0010
1001	0000
1010	0011
1011	0001
1100	1011
1101	1101
1110	0110
1111	1010

Need $n \times 2^n$ bits for key E.g., $n=64 \rightarrow 2^{70}=10^{21}$ bits

Horst Feistel

An IBM researcher

Contributed to DES in 1970s

Wanted an approximation of ideal block cipher, built out of components that are easily realizable

Feistel Cipher (Feistel Network)

Product cipher

Structure for symmetric block ciphers

Key length k bits $< n \times 2^n$ bits

→ 2^k possible keys < 2ⁿ! mappings

Encryption Decryption Plaintext Ciphertext R_0 R_{n+1} L_{n+1} Lo R_{n+1} R_0 L_{n+1} Plaintext Ciphertext

Feistel Cipher

R_i: the right half of data after round i

K_i: the subkey for round i

R_i: the right half of data after round i

K_i: the subkey for round i

R_i: the right half of data after round i

K_i: the subkey for round i

R_i: the right half of data after round i

K_i: the subkey for round i

In the i-th round:

$$L_i = R_{i-1}$$

$$R_i = L_{i-1} \oplus F(R_{i-1}, K_i)$$

R_i: the right half of data after round i

K_i: the subkey for round i

In the i-th round:

$$L_{i} = R_{i-1}$$

$$R_{i} = L_{i-1} \oplus F(R_{i-1}, K_{i})$$

F function does not need to be reversible (Decryption also uses F)

Feistel Cipher Design Parameters

Block size

Key size

Number of rounds

Subkey generation

Round function

Data Encryption Standard (DES)

- Most widely used block cipher
- Based on Feistel Cipher
- In 1973, NBS (NIST) issued request for proposal for national cipher standard
- ■In 1977, adopted/published as DES
- Developed by IBM (Feistel) + NSA
- Considered broken but still widely used, e.g., legacy application

Encryption Decryption Plaintext Ciphertext R_0 R_{n+1} L_{n+1} Lo R_{n+1} R_0 L_{n+1} Plaintext Ciphertext

Feistel Cipher

Encryption **Feistel Cipher** Plaintext R_0 Lo ← Substitution ← Permutation (swap (Figure 1) left half and right half) R_{n+1} Ciphertext

Feistel Cipher Design Parameters

Block size

Key size

Number of rounds

Subkey generation

Round function

Feistel Cipher Design Parameters

DES

Block size 64 bits

Key size 56 bits

Number of rounds 16 rounds

Subkey generation (Later)

Round function (Later)

Encryption Decryption Plaintext Ciphertext R_0 R_{n+1} L_{n+1} Lo R_{n+1} R_0 L_{n+1} Plaintext Ciphertext

DES Overview

DES Overview

DES Overview

n=16

DES Overview

n=16

Add permutation blocks at the beginning and the end

64 bits of plaintext **Initial Permutation DES Overview** 64 bits R_0 Lo n=16 64 bits Add permutation blocks at the beginning and the end 64 bits 64 bits R_{n+1} **Final Permutation** 64 bits of ciphertext

64 bits of plaintext **Initial Permutation DES Overview** 64 bits R_0 Lo 48 bits n=16 64 bits Add permutation blocks at 48 bits the beginning and the end 64 bits 48 bits 64 bits R_{n+1} **Final Permutation** 64 bits of ciphertext

64 bits of plaintext **Initial Permutation DES Overview** 64 bits R_0 Lo 48 bits Subkey (K_i) generation: 64 bits 56 bits \rightarrow 16 · 48 bits 48 bits 64 bits Round function F: 32 bits \rightarrow 32 bits 48 bits 64 bits **Final Permutation** 64 bits of ciphertext

64 bits of plaintext **Initial Permutation DES Overview** 64 bits R_0 Lo 48 bits Subkey (K_i) generation: 64 bits 56 bits \rightarrow 16 · 48 bits 48 bits 64 bits Round function F: 32 bits \rightarrow 32 bits 48 bits 64 bits **Final Permutation** 64 bits of ciphertext

64 bits of plaintext **Initial Permutation DES Overview** 64 bits R_0 Lo 48 bits F actually has two inputs: 64 bits R_i (32 bits), K_i (48 bits) 48 bits 64 bits Round function F: 32 bits \rightarrow 32 bits 48 bits 64 bits R_{n+1} **Final Permutation** 64 bits of ciphertext

DES Subkey Generation (K_i)

DES Subkey Generation (K_i)

PC are Permuted Choice:

PC1: 64 bits → 56 bits

■ **PC2**: 56 bits → 48 bits

<<< is left-circular shift (LCS) Every round, LCS by 1 or 2 bits, depending on the round

DES Strength

Avalanche Effect

Change of one plaintext bit or one key bit changes about half the ciphertext bits

DES Brute Force

56-bit key \rightarrow Attacker effort O(2⁵⁵)

Require recognizing the correct plaintext

Demonstration of Brute Force attacks:

In 1997: a few months to find the key

In 1998: a few days

In 1999: 22 hours

DES Security

Brute Force attacks in practice

Cryptanalytic attacks that can further reduce the complexity

Timing attacks on computation