ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Факультет безопасности информационных технологий

Дисциплина:

«Инженерно-технические средства защиты информации»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ

«Изучение инженерно-технических средства защиты информации»

PADUIE
ащиты информации»
Выполнили
Ступницкий Иван Витальевич
бакалавр группы N34462
505
(подпись)
Кочнева Екатерина Михайловна
бакалавр группы N34532
Krol
(подпись)
Проверил
Попов Илья Юрьевич
доцент ФБИТ
(подпись)

Содержание

Введение	3
Импульсный рефлектометр	4
Назначение	4
Принцип действия	4
Практическая работа	5
Измеритель спектра вторичных полей (детектор нелинейных перех	одов) «NR
μ»	8
Назначение	8
Принцип работы	8
Многофункциональный поисковый прибор "Пиранья" ST 031	10
Назначение	10
Принцип работы	11
Заключение	13

Введение

Цель работы: изучить работу инженерно-технических средств защиты информации **Задачи:**

- 1. Изучить назначение и принцип работы импульсного рефлектометра
- 2. Изучить назначение и принцип работы локатора ЛОРНЕТ-24
- 3. Изучить назначение и принцип работы многофункционального поискового прибора "Пиранья" ST 031

Импульсный рефлектометр

Назначение

Рефлектометры, реализующие импульсный метод позволяют с высокой точностью определять расстояние до неоднородностей волнового сопротивления кабеля и таким образом проводить:

- Измерение длин кабелей;
- Измерение расстояний до неоднородностей волнового сопротивления или повреждений;
- Измерение коэффициента укорочения линии при известной ее длине;
- Определение характера повреждений.

Принцип действия

Рефлектометрия — это технология, позволяющая определять различные характеристики исследуемой среды по отражению отклика сигнала: поверхности (например, определение коэффициентов отражения и поглощения) или объемной среды (например, изучение распределения неоднородностей в оптическом волокне).

Импульсная рефлектометрия — это область измерительной техники, которая основывается на получении информации об измеряемой линии по анализу её реакции на зондирующее (возмущающее) воздействие. Импульсная рефлектометрия применяется как для металлических кабелей всех типов, так и для волоконно-оптических кабелей связи.

Генератор зондирующих импульсов посылает в кабельную линию короткий электрический импульс. Приёмник отражённых сигналов через равные промежутки времени захватывает сигнал с линии и отображает их на устройстве отображения прибора.

Таким образом, на экране импульсного рефлектометра строится график, на котором по вертикальной оси отображается амплитуда отражённого сигнала, а по горизонтальной оси – время.

Импульсный рефлектометр измеряет временную задержку между входным воздействием и отражённым сигналом. Зная скорость распространения электромагнитной волны в кабеле, можно трансформировать ось времени в ось расстояний, что и сделано во всех импульсных рефлектометрах.

Практическая работа

В рамках лабораторной работы были даны концы 4 проводов, оставшаяся часть которых была спрятана внутри коробки, что не давало возможности визуально оценить их состояние. При помощи рефлектометра РИ-307USBм по снятым измерениям необходимо было определить состояние провода в коробке.

В ходе измерений были получены следующие графики (рисунки 1-4)

Рисунок 1 – График волнового сопротивления желтого провода

Рисунок 2 – График волнового сопротивления зелёного провода

Рисунок 3 – График волнового сопротивления коричневого провода

Рисунок 4 – График волнового сопротивления синего провода

В результате анализа графиков была сформулирована оценка состояния исследуемых проводов:

Таблица 1. Результат анализа графиков

Цвет провода	Пик на, м	Результат		
Желтый	~59	Короткое замыкание		
Зеленый	~30 и далее	Утечка данных (несанкционированное подключение)		
Коричневый	~30	Нагрузка на конце (резистор)		
Синий	~60	Обрыв провода		

Измеритель спектра вторичных полей (детектор нелинейных переходов) «NR-µ»

Назначение

Измеритель спектра вторичных полей (детектор нелинейных переходов) «NR-µ» предназначен для поиска скрыто установленных электронных устройств, содержащих полупроводниковые компоненты, такие как радиомикрофоны, микрофоные усилители, проводные микрофоны, устройства инфракрасного и ультразвукового диапазонов, средства звуко- и видеозаписи и т.п., вне зависимости от их функционального состояния, т.е. находящихся как во включенном, так и в выключенном состоянии. Он обеспечивает эффективный поиск и высокую степень локализации местоположения объектов поиска в ограждающих строительных конструкциях (пол, потолок, стены), в предметах интерьера и мебели. Он также обеспечивает оператору возможность отличить искомые объекты от естественных (коррозийных) нелинейных отражателей

Приемники устройства «NR-µ» специфически настроены на вторую и третью гармоники зондирующего сигнала. Когда эти гармоники обнаруживаются, их уровни отображаются на светодиодных индикаторах и индицируются в виде тонального сигнала в головных телефонах.

Принцип работы

Пульт управления предоставляет пользователю гибкость в настройке режимов работы устройства, позволяя адаптировать его к различным условиям и сценариям применения. Специально настроенные приемники устройства, фиксируя отклик, концентрируются на второй и третьей гармониках, которые могут указывать на присутствие полупроводниковых элементов в анализируемом объекте.

Устройство генерирует моногармонический зондирующий сигнал. Когда этот сигнал воздействует на радиоэлектронное устройство с нелинейными (полупроводниковыми) элементами, вторичные (или гармонические) поля генерируются и переизлучаются.

Рисунок 5 – Антенная система с пультом управления и индикации

Практическая работа

Нелинейный локатор проводит анализ откликов от облучаемых объектов как по второй, так и по третьей гармоникам зондирующего сигнала. Это позволяет достаточно надежно идентифицировать электронные устройства и естественные окисные полупроводники.

Рисунок 6 – Представленные материалы для обследования

По итогам обследования в двух предоставленных коробках преобладала третья гармоника, следовательно в них находился металлический предмет, в дальнейшем в них были обнаружены скрепки. В одной коробке значения гармоник оказались на одном уровне, следовательно там находится провод. В оставшихся двух коробках преобладала вторая гармоника, в них оказались скрыты полупроводниковые элементы. Итоговая сводка по обнаруженным объектам представлена в таблице (таблица 2).

Таблица 2 – Соответствие коробок и их содержимого

1 коробочка	2 коробочка	3 коробочка	4 коробочка	5 коробочка
Скрепки	Провод	Полупроводник	Скрепки	Полупроводник

Многофункциональный поисковый прибор "Пиранья" ST 031

Назначение

Многофункциональный поисковый прибор ST 031 предназначен для проведения мероприятий по обнаружению и локализации специальных технических средств (СТС) негласного получения информации, для выявления естественных и искусственно созданных каналов утечки информации, а также для контроля качества защиты информации.

ST 031 сохраняет работоспособность и соответствие параметров нормам технических условий при напряжении питания не ниже 4.8 В, температуре окружающей среды от :15 до +35°C и влажности воздуха, не превышающей 95%. Применение прибора при температуре ниже 5°C замедляет скорость вывода данных на экран дисплея.

С использованием прибора ST 031 возможно решение следующих контрольнопоисковых задач:

- 1. Обнаружение и определение местоположения радиоизлучающих СТС
 - К ним относят:
 - радиомикрофоны;
 - телефонные радиоретрансляторы;
 - радиостетоскопы;
 - скрытые видеокамеры с радиоканалом передачи информации;
 - технические средства систем пространственного высокочастотного облучения в радиодиапазоне;
 - технические средства передачи изображения с монитора ПЭВМ по радиоканалу;
 - радиомаяки систем слежения за перемещением объектов (людей, транспортных средств, грузов и т.п.);
 - несанкционированно включенные радиостанции, радиотелефоны и телефоны с радиоудлинителем;
 - несанкционированно используемые сотовые радиотелефоны стандарта GSM и DECT;
 - несанкционированно используемые устройства, использующие протокол передачи данных «BLUETOOTH» и «802.1 I...» (WLAN, Wi-Fi);
 - технические средства обработки информации, работа которых сопровождается возникновением побочных электромагнитных излучений (элементы ПЭВМ, факсы, ксероксы, некоторые типы телефонных аппаратов и т.п.).
- 2. Обнаружение и определение местоположения СТС, работающих с излучением в инфракрасном диапазоне.

К таким средствам, в первую очередь, относят:

- СТС с передачей информации в инфракрасном диапазоне частот;
- технические средства систем пространственного облучения в инфракрасном диапазоне
- 3. Обнаружение и определение местоположения СТС, использующих для передачи информации проводные линии различного предназначения.

Такими средствами могут быть:

- СТС, использующие для передачи перехваченной информации силовые линии сети переменного тока;
- СТС, использующие для передачи перехваченной информации абонентские телефонные линии, линии систем пожарной и охранной сигнализации.
- 4. Обнаружение и определение местоположения источников электромагнитных полей с преобладанием (наличием) магнитной составляющей поля, а также исследование технических средств, обрабатывающих речевую информацию.

К числу таких источников и технических средств принято относить:

- динамические излучатели акустических систем;
- выходные трансформаторы усилителей звуковой частоты;
- электродвигатели магнитофонов и диктофонов.
- 5. Выявление наиболее уязвимых мест, с точки зрения возникновения виброакустических каналов утечки информации, и оценка эффективности систем виброакустической защиты помещений.
- 6. Выявление наиболее уязвимых мест, с точки зрения возникновения каналов утечки акустической информации, и оценка эффективности звукоизоляции помещений.

Принцип работы

Прибор может работать в следующих режимах:

• высокочастотный детектор-частотомер;

В этом режиме прибор обеспечивает прием радиосигналов в диапазоне от 30 до 2500 МГц, их детектирование, и вывод для слухового контроля и анализа в виде чередующихся тональных посылок (щелчков), либо в виде фонограмм при их прослушивании, как на встроенный громкоговоритель, так и на наушники.

• сканирующий анализатор проводных линий;

В этом режиме прибор обеспечивает прием и отображение параметров сигналов в проводных линиях различного предназначения (электрической сети, телефонной сети, вычислительных сетей, пожарной и охранной сигнализации и т п.) как обесточенных, так и находящихся под напряжением (постоянным или переменным) до 600 В. Подключение прибора ST 031 к анализируемой линии производится через адаптер сканирующего анализатора проводных линий с использованием специальных насадок. Прием сигналов осуществляется путем автоматического или ручного сканирования в частотном диапазоне 0,01–15 МГц. Шаг перестройки фиксированный и составляет 5 кГц или 1 кГц при автоматическом и ручном сканировании соответственно.

• детектор инфракрасных излучений;

В этом режиме прибор обеспечивает приём излучений источников инфракрасного диапазона. Производится их детектирование и вывод для слухового контроля и анализа. Прослушивание обеспечивается как на встроенный громкоговоритель, так и на наушники.

• виброакустический преобразователь;

В этом режиме прибор обеспечивает прием от внешнего виброакустического датчика и отображение параметров низкочастотных сигналов в диапазоне от 300 до 6000 Гц. Оценка состояния защиты осуществляется на основе анализа выводимой на экран осциллограммы или спектрограммы и прослушивании принятого низкочастотного сигнала. Для этого используется либо встроенный громкоговоритель, либо наушники.

• акустический преобразователь;

В этом режиме прибор обеспечивает приём на акустический датчик (выносной микрофон) и отображение параметров акустических сигналов в диапазоне от 300 до 6000 Гц. Оценка состояния звукоизоляции помещений и выявление возможных каналов утечки информации осуществляются на основе анализа выводимой на экран осциллограммы или спектрограммы и прослушивании акустического сигнала. Для этого используется либо встроенный громкоговоритель, либо наушники.

• дифференциальный низкочастотный усилитель

В этом режиме прибор обеспечивает прием и отображение параметров сигнала в проводных линиях с напряжением до 100~B, в диапазоне звуковых частот ($300–6000~\Gamma$ ц).

В этом режиме возможно обнаружение:

- 1. микрофонов, как активных ток и пассивных (не имеющих предварительного усилителя);
- 2. «микрофонного эффекта» от средств оргтехники, бытовой РЭА, охраннопожарной сигнализации и т. п. в исследуемой линии.
- Режим детектора низкочастотных магнитных полей

В этом режиме прибор обеспечивает прием и отображение параметров сигналов от источников низкочастотных электромагнитных полей с преобладающей магнитной составляющей поля в диапазоне от 300 до 5000 Гц.

Перевод ST 031 в любой из указанных режимов осуществляется автоматически при подключении внешних устройств (антенн, адаптера, датчиков) к высокочастотному разъему «RF ANT» или разъему «PROBES».

Практическая работа

- 1. В рамках практической работы нам предоставили детектор магнитных волн и высокочастотный детектор. Также у нас было два магнитных датчика.
- 2. Преподаватель спрятал датчики в помещении, мы не знали, в каком конкретно месте они находятся.
- 3. У каждого был детектор. С высокочастотным детектором поиски были эффективнее, и он позволял определить примерное местоположение датчика с большего расстояния. В то время как магнитный датчик нужно было подносить вплотную.

Заключение

В результате проведенной лабораторной работы нами был изучен и применен на практике импульсный рефлектометр. При подключении его в сеть нами были получены графики волнового сопротивления, по которым можно судить о состоянии кабеля: наличие или отсутствие короткого замыкания, утечек, обрыва и расстояние до этих участков.

Также в проведенной лабораторной работе мы ознакомились с назначением и принципом работы нелинейного локатора "NR-µ", применяя его для анализа объектов на наличие нелинейных характеристик. После тщательной настройки изделия, его направленное излучение фиксировалось на различные объекты, при этом основное внимание уделялось анализу 2-й и 3-й гармоник, что позволило определить специфические характеристики анализируемых объектов. Исходя из полученных данных, мы смогли сделать выводы о характеристиках исследуемых элементов.

В заключении нами был изучен и проверен на практике многофункциональный поисковый прибор «Пиранья» ST 031, с помощью которого после настройки и применения в рабочей аудитории нами были найдены заранее спрятанные СТС.