The University of Western Australia SCHOOL OF MATHEMATICS & STATISTICS

AMO TRAINING SESSIONS

2010 Senior Mathematics Contest Problems

- 1. Let ABCD be a convex quadrilateral. Let X be a point on diagonal BD such that $AX \perp BC$, and let Y be a point on AC such that $DY \perp AD$. Suppose $XY \parallel BC$. Prove that ABCD is cyclic.
- 2. Determine all real-valued functions f that satisfy

$$2f(xy + xz) + 2f(xy - xz) \ge 4f(x)f(y^2 - z^2) + 1$$

for all real numbers x, y, z.

3. For $n \in \mathbb{N}$, define

$$S(n) = \sum_{i=1}^{n} \left\lfloor \frac{n}{i} \right\rfloor,$$

where |x| is the greatest integer not exceeding x.

Prove that S(n+1) - S(n) = 2 if and only if n+1 is a prime number.

- 4. Given any nine integers, prove that it is possible to choose five of them such that their sum is divisible by 5.
- 5. Outside $\triangle ABC$, points A', B', C' are chosen such that $\triangle ABC'$, $\triangle BCA'$ and $\triangle CAB'$ are external to $\triangle ABC$ and $\angle AC'B + \angle BA'C + \angle CB'A = 180^{\circ}$. Let O_A, O_B, O_C be the circumcentres of $\triangle A'BC$, $\triangle B'CA$, $\triangle C'AB$, respectively.

Prove that $\angle O_A O_C O_B = \angle AC'B$.