Modul 3: forelæsning 2 Numerisk løsning af differentialligninger Matematik og modeller 2018

Thomas Vils Pedersen Institut for Matematiske Fag vils@math.ku.dk

24. maj 2018 — Dias 1/18

KØBENHAVNS UNIVERSITET

Eulers metode

For differentialligning y'(x) = f(x, y). Startpunkt (x_0, y_0) ; steplængde h:

$$x_1 = x_0 + h,$$
 $y_1 = y_0 + f(x_0, y_0)h,$
 $x_2 = x_1 + h,$ $y_2 = y_1 + f(x_1, y_1)h,$
 \vdots \vdots
 $x_{n+1} = x_n + h,$ $y_{n+1} = y_n + f(x_n, y_n)h.$

KUNDENHAVNS HNIVEDSIT

Oversigt

Numerisk løsning af differentialligninger

Eulers metode
Eulers forbedrede metode

- 2 En model for forrentning af kapital med udtræk
- 3 Oplæg til Miniprojekt 3

Dias 2/18

KØBENHAVNS UNIVERSITE

Eksempel

Eulers metode anvendt på

$$y'(x) = x + y \qquad (= f(x, y))$$

med

- begyndelsesbetingelsen y(0.5) = 0.3
- steplængden h = 0.1

 $[(x_{-1}, y_{-1}), (x_{-2}, y_{-2}) \text{ osv. beregnes på tilsvarende vis}]$

n	-3	-2	-1	0	1	2	3	4	5
Xn	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
	0.11								
$y(x_n)$	0.13	0.17	0.23	0.3	0.39	0.50	0.63	0.79	0.97

Nederste række er beregnet vha. den eksakte løsning

$$y(x) = 1.8 e^{-0.5} e^{x} - x - 1.$$

KØBENHAVNS UNIVERSITET

Samme eksempel vha. R

```
> # Euler: f(x,y)=x+y; y(0.5)=0.3; h=0.1
> f < -function(x,y) \{x+y\}; h < -0.1; n < -5
> x0<-0.5; xE<-x0
> y0<-0.3; yE<-y0
> E < -c(xE, yE)
> for (k in 1:n) {
+ yE < -yE + f(xE, yE) *h;
+ xE < -xE + h;
+ E < -cbind(E, c(xE, yE));
+ }
> E
       Ε
[1.] 0.5 0.60 0.700 0.8000 0.90000 1.000000
[2,] 0.3 0.38 0.478 0.5958 0.73538 0.898918
> round(E,3) # Runder af til 3 decimaler
       Ε
[1,] 0.5 0.60 0.700 0.800 0.900 1.000
[2,] 0.3 0.38 0.478 0.596 0.735 0.899
```

Dias 5/18

KØBENHAVNS UNIVERSITET

Samme eksempel – sammenligning

Korrekt værdi	y(1) = 0.968
Euler med $h = 0.1$	y(1) = 0.899
Euler med $h = 0.05$	y(1) = 0.932

KØBENHAVNS UNIVERSITET

Samme eksempel med h = 0.05

```
> # Euler: f(x,y)=x+y; y(0.5)=0.3; h=0.05
> f < -function(x,y) \{x+y\}; h < -0.05; n < -10
> x0<-0.5; xE<-x0
> y0<-0.3; yE<-y0
> E < -c(xE,yE)
> for (k in 1:n) {
+ yE < -yE + f(xE, yE) *h;
+ xE<-xE+h;
+ E<-cbind(E,c(xE,yE));
+ }
> round(E,3)
[1,] 0.5 0.55 0.600 0.650 0.700 0.750 0.800 0.850 0.900 0.950 1.000
[2,] 0.3 0.34 0.384 0.434 0.488 0.547 0.612 0.683 0.759 0.842 0.932
Udtager hver anden søjle i E (dvs. søjle 1, 3, 5, 7, 9, 11):
> round(E[,seq(1,11,by=2)],3)
        Ε
[1,] 0.5 0.600 0.700 0.800 0.900 1.000
[2,] 0.3 0.384 0.488 0.612 0.759 0.932
                                                                   Dias 6/18
```

KØBENHAVNS UNIVERSITE

Eulers forbedrede metode

For y'(x) = f(x, y). Startpunkt (x_0, y_0) ; steplængde h så $x_n = x_0 + nh$:

$$x_1 = x_0 + h,$$
 $y_1^* = y_0 + f(x_0, y_0)h,$ $y_1 = y_0 + \frac{f(x_0, y_0) + f(x_1, y_1^*)}{2}h$
 $x_2 = x_1 + h,$ $y_2^* = y_1 + f(x_1, y_1)h,$ $y_2 = y_1 + \frac{f(x_1, y_1) + f(x_2, y_2^*)}{2}h$

:

$$x_{n+1} = x_n + h$$
, $y_{n+1}^* = y_n + f(x_n, y_n)h$, $y_{n+1} = y_n + \frac{f(x_n, y_n) + f(x_{n+1}, y_{n+1}^*)}{2}h$

Eksempel

Eulers forbedrede metode anvendt på

$$y'(x) = x + y \qquad (= f(x, y))$$

med begyndelsesbetingelsen y(0.5) = 0.3 og steplængden h = 0.1:

n	-3	-2	-1	0	1	2	3	4	5
Xn	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1.0
<i>y</i> _n *	0.127	0.166	0.220	_	0.380	0.488	0.618	0.771	0.952
Уn	0.134	0.174	0.229	0.3	0.389	0.498	0.629	0.784	0.965
$y(x_n)$	0.133	0.174	0.229	0.3	0.389	0.499	0.630	0.785	0.968

Nederste række er beregnet vha. den eksakte løsning

$$y(x) = 1.8 e^{-0.5} e^x - x - 1.$$

Konklusion Eulers forbedrede metode er væsentligt mere præcis end Eulers metode!!!

Dias 9/18

KØBENHAVNS UNIVERSITET

Model for forrentning af kapital med udtræk

- Til tidspunktet t (målt i år) er kapitalens størrelse x(t)
- Løbende forrentning med en variabel sats r(t)
- Løbende udtræk af variabel størrelse u(t)

Dette fører til differentialligningen

$$x'(t) = r(t)x(t) - u(t) \qquad (t > 0)$$

Fremgangsmåde med givne funktioner $\mathbf{r}(t)$ og $\mathbf{u}(t)$

(som i (a), (b) og (c) nedenfor samt i miniprojektet)

- (i) Opstil differentialligningen og bestem den fuldstændige løsning.
- (ii) Udtryk konstanten "c" ved startkapitalen x(0) og indsæt dette i løsningen.
- (iii) Bestem den mindste værdi (kaldet x_{min}) af x(0) for hvilken kapitalen *ikke* opbruges med tiden.
- (iv) Indsæt talværdier for parametrene i løsningen og tegn grafer for forskellige værdier af x(0).

Samme eksempel vha. R

Dias 10/18

KØBENHAVNS UNIVERSITE

(a) Konstant forrentning og konstant udtræk

$$r(t) = r_0$$
 og $u(t) = u_0$ (for alle $t \ge 0$)

(i) Differentialligning:

$$x'(t) = r_0 x(t) - u_0$$

Fuldstændig løsning:

$$x(t) = \frac{u_0}{r_0} + ce^{r_0 t} \qquad (c \in \mathbb{R})$$

(ii) Fuldstændig løsning udtrykt ved x(0):

$$x(t) = \frac{u_0}{r_0} + \left(x(0) - \frac{u_0}{r_0}\right) e^{r_0 t}$$

- (iii) Konklusion:
 - x(t) vokser hvis $x(0) > \frac{u_0}{r_0} (= x_{\min})$
 - x(t) er konstant hvis $x(0) = \frac{u_0}{r_0}$
 - x(t) aftager hvis $x(0) < \frac{u_0}{r_0}$

(iv) Med $r_0 = 0.08$ (dvs. 8 pct. p.a.) og $u_0 = 80\,000$ fås

$$x(t) = 1000000 + (x(0) - 1000000)e^{0.08t}$$

Løsningskurver med x(0) = 900000, 1000000 hhv. 1100000

Dias 13/18

KØBENHAVNS UNIVERSITE'

(b) Lineært voksende forrentning og konstant udtræk – fortsat

(iv) Med $r_0 = 0.08$, $\delta = 0.001$ og $u_0 = 80\,000$ fås

$$x(t) = e^{0.08 t + 0.0005 t^2} \cdot \left(x(0) - 80\,000 \int_0^t e^{-(0.08 s + 0.0005 s^2)} \, ds \right)$$

og

$$x_{\text{min}} = 80\,000 \int_{0}^{\infty} e^{-(0.08\,s + 0.0005\,s^2)} \, ds \simeq 887\,678$$

x(0) = 840000, 870000,900000 hhv. 930000

Forstørrelse med $x(0) = 900\,000$

KØBENHAVNS UNIVERSITET

(b) Lineært voksende forrentning og konstant udtræk

$$r(t) = r_0 + \delta t$$
 og $u(t) = u_0$

(i) Differentialligning:

$$x'(t) = (r_0 + \delta t)x(t) - u_0$$

Fuldstændig løsning vha. "panserformlen":

$$x(t) = e^{r_0 t + \frac{1}{2}\delta t^2} \left(-u_0 \int_0^t e^{-(r_0 s + \frac{1}{2}\delta s^2)} ds + c \right) \qquad (c \in \mathbb{R})$$

Kan ikke reduceres!

(Men kan udregnes numerisk for konkrete talværdier.)

(ii)
$$x(t) = e^{r_0 t + \frac{1}{2} \delta t^2} \left(x(0) - u_0 \int_0^t e^{-(r_0 s + \frac{1}{2} \delta s^2)} ds \right)$$

(iii)
$$x_{\min} = u_0 \int_0^\infty e^{-(r_0 s + \frac{1}{2} \delta s^2)} ds$$

Dias 14/18

KØBENHAVNS UNIVERSITE

(c) Konstant forrentning og periodisk udtræk

$$r(t) = r_0$$
 og $u(t) = u_0 + \gamma \sin(2\pi t)$

(i) Differentialligning:

$$x'(t) = r_0 x(t) - (u_0 + \gamma \sin(2\pi t))$$

Fuldstændig løsning vha. "nålestiksmetoden":

$$x(t) = \frac{u_0}{r_0} + \frac{2\pi\gamma}{r_0^2 + 4\pi^2} \cos(2\pi t) + \frac{\gamma r_0}{r_0^2 + 4\pi^2} \sin(2\pi t) + ce^{r_0 t} \quad (c \in \mathbb{R})$$

(ii)
$$x(t) = \frac{u_0}{r_0} + \frac{2\pi\gamma}{r_0^2 + 4\pi^2} \cos(2\pi t) + \frac{\gamma r_0}{r_0^2 + 4\pi^2} \sin(2\pi t) + \left(x(0) - \frac{u_0}{r_0} - \frac{2\pi\gamma}{r_0^2 + 4\pi^2}\right) e^{r_0 t}$$

(iii) Hvis γ ikke er for stor gælder $x_{\rm min} = \frac{u_0}{r_0} + \frac{2\pi\gamma}{r_0^2 + 4\pi^2}$

(c) Konstant forrentning og periodisk udtræk – fortsat

(iv) Med
$$r_0=0.08, u_0=80\,000$$
 og $\gamma=40\,000$ fås

$$x(t) \simeq 1\,000\,000 + 6365\cos(2\pi t) + 81\sin(2\pi t) + (x(0) - 1\,006\,365)\,e^{0.08\,t}$$

og

$$x_{\rm min} \simeq 1\,006\,365$$

Løsningskurver med x(0) = 1004000, 1006000 hhv. 1008000

KØBENHAVNS UNIVERSITE

Oplæg til Miniprojekt 3

Opgave 1 "Teoretisk" opgave der udleder løsningen til den modificerede logistiske differentialligning

$$\frac{dy}{dt} = ry\left(1 - \left(\frac{y}{K}\right)^{\alpha}\right)$$

Opgave 2 Givet data fra SARS-epidemien i Singapore i 2003.

Forsøg at beskrive data vha. forskellige typer differentialligninger.

Parametrene tilpasses til dels "ved at prøve sig frem".

Dias 18/18

Opgave 3 Model for forrentning af kapital med udtræk.

Numerisk løsning.

Dias 17/18