Enoncés: M. Quéffelec, V. Mayer, T. Tahani, F. Sarkis

Corrections: F. Sarkis

Equations différentielles

Exercice 1

1. Pour chacune des équations suivantes où y = y(x) est rélle de variable réelle, décrire les solutions en précisant leur intervalle maximal de définition et dessiner les trajectoires :

(i)
$$y' = e - y$$
 (ii) $y' - y = e^x$ (iii) $xy' - 2y = 0$.

2. Quelles sont les courbes isoclines de l'équation $y' = y^2 - x$; en déduire l'allure des trajectoires.

[002557]

Exercice 2

On considère l'équation

$$x' = 3x^{2/3}$$
:(1)

avec condition initiale x(0) = 0.

- 1. Soit φ une solution de (1) définie sur \mathbb{R} telle que $\varphi(0) = 0$; on pose $\lambda = \inf\{t \leq 0; \varphi(t) = 0\} \leq +\infty$. Montrez que φ est identiquement nulle sur (λ, μ) .
- 2. Montrer que φ vaut $(t \lambda)^3$ si $t \le \lambda$, 0 sur $[\lambda, \mu]$ et $(t \mu)^3$ si $t \ge \mu$; en déduire toutes les solutions maximales de (1) définies sur \mathbb{R} avec x(0) = 0.

Correction ▼ [002558]

Exercice 3

On considère l'équation différentielle x' = |x| + |t|.

- 1. Montrez que pour tout réel x_0 , il existe une solution maximale (φ, J) telle que $\varphi(0) = x_0$.
- 2. Détermner la solution maximale correspondant à $x_0 = 1$, en distinguant les cas $t \ge 0$ et t < 0, et vérifiez qu'elle est définie sur \mathbb{R} tout entier. Combien de fois est-elle dérivable ?

Correction ▼ [002559]

Exercice 4

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ donnée par $f(t,x) = 4\frac{t^3x}{t^4+x^2}$ si $(t,x) \neq (0,0)$ et f(0,0) = 0. On s'interesse à l'équation différentielle

$$x'(t) = f(t, x(t)).$$

- 1. L'application f, est-elle continue ? est-elle localement lipschitzienne par rapport à sa seconde variable ? Que peut-on en déduire pour l'équation (2) ?
- 2. Soit φ une solution de (2) qui est définie sur un intervalle I ne contenant pas 0. On définit une application psi par $\varphi(t) = t^2 \psi(t), t \in I$. Déterminer une équation différentielle (E) telle que ψ soit solution de cette équation, puis résoudre cette équation (E).
- 3. Que peut-on en déduire pour l'existence et l'unicité de l'équation différentielle (2) avec donnée initiale $(t_0,x_0)=(0,0)$

Correction ▼ [002560]

Exercice 5

Soit l'équation différentielle

$$x''' - xx'' = 0$$

où x est une application trois fois dérivable, définie sur un intervalle ouvert de \mathbb{R} et à valeurs dans \mathbb{R} .

- 1. Mettre cette équation différentielle sous la forme canonique y'(t) = f(t, y(t)), où f est une application que l'on déterminera.
- 2. Soient $t_0, a, b, c \in \mathbb{R}$. Montrer qu'il existe une unique solution maximale φ de l'équation (3) qui satisfasse aux conditions initiales

$$\varphi(t_0) = a, \varphi'(t_0) \text{ et } \varphi''(t_0) = c.$$

3. Soit φ une telle solution maximale. Calculer la dérivée de la fonction

$$t \to \varphi''(t) exp\left(-\int_{t_0}^t \varphi(u) du\right)$$

En déduire que la fonction φ est soit convexe, soit concave sur son intervalle de définition. Déterminer φ dans le cas où $\varphi''(t_0) = 0$.

Correction ▼ [002561]

Exercice 6

On considère l'équation $xx'' = (x')^2 + 1 \text{ sur } \mathbb{R}$.

- 1. Montrer que, $x_0 \neq 0$ et x_0' étant donnés dans \mathbb{R} , il existe une unique solution φ définie au voisinage de 0, telle que $\varphi(0) = x_0$ et $\varphi'(0) = x_0'$.
- 2. Si de plus $x_0' \neq 0$, on peut supposer que φ est un C^1 -difféomorphisme d'un voisinage de 0 sur un voisinage de x_0 (pourquoi ?); on note ψ l'application réciproque et on pose $z(x) = \varphi'(\psi(x))$. Calculez z'(x), trouver l'équationb satisfaite par z et expliciter z; en déduire une expression de φ .
- 3. Quelle est la solution φ de léquation telle que $\varphi(0) = x_0 \neq 0$ et $\varphi'(0) = 0$.

[002562]

Correction de l'exercice 2

- 1. Soit λ_n et μ_n deux suites de points tels que $\varphi(\lambda_n) = \varphi(\mu_n) = 0$ et convergeant respectivement vers λ et μ , il reste à montrer que φ est nulle sur chaque interval $[\lambda_n, \mu_n]$. Soit c un extremum de φ sur cet interval, on a alors necessairement $\varphi'(c) = 0$ et donc $3c^{2/3} = 0$ et donc c = 0 et donc c = 0
- 2. On vérifie que les solutions proposées vérifient l'équation différentielle (1). La fonction $x^{2/3}$ est lipschitzienne par rapport à x dès que $x \neq 0$. Si φ_2 est une solution maximale sur $\mathbb R$ vérifiant $\varphi_2(0) = 0$, il existe alors nécessairement λ, μ (définis précédement) tels que φ_2 est nulle sur $]\lambda, \mu[$. Par continuité de la solution elle vérifie $\varphi(\lambda) = \varphi(\mu) = 0$. Mais alors $\varphi_2' \varphi = 0$ est donc $\varphi_2 = \varphi + K$ où K est une constante donnée. Du fait que $\varphi_2(\lambda) = \varphi(\lambda) + K = 0 + K = 0$, on a K = 0 ce qui termine la démonstration.

Correction de l'exercice 3

1. Soit $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ telle que f(t,x) = |x| + |t|. f est continue et Lipschitzienne par rapport à la seconde variable. En effet,

$$|f(t,x) - f(t,y)| = ||x| - |y|| \le |x - y|.$$

Remarquons que $x' \ge 0$ pour tout t et que pour tout point $(0, x_0)$ passe une solution maximale unique (φ, J) .

2. Prenons $x_0 = 1$, lorque $t \ge 0$; l'équation devient

$$x't() = x(t) + t$$

car |t| = t et $x(t) \ge x(0) > 0, x(0) = 1$. Elle admet comme solution sur $[0, +\infty[$ avec $\varphi(0) = 1$

$$\varphi(t) = 2e^t - t - 1.$$

Lorsque t < 0, on distingue deux cas: premier cas $x(t) \ge 0$; x' = -t + x(t) et alors $x(t) = ce^t + t + 1$ avec x(0) = 1 d'où c = 0 et $\varphi(t) = t + 1$. Cela n'est valable que lorsque $\varphi(t) \ge 0$, c'est à dire $t \ge 1$. Donc $\varphi(t) = t + 1$ sur [-1,1]. Deuxième cas: $x(t) \le 0$, ceci a lieu lorsque $t \le -1$ car φ croissante et $\varphi(-1) = 0$. Nous avons alors $\varphi'(t) = -t - \varphi(t)$. D'où $\varphi(t) = ce^{-t} - t + 1$ or $\varphi(-1) = ce + 2 = 0$ d'où $c = -2e^{-1}$ et $\varphi(t) = -2e^{-t+1} - t + 1$ sur $]-\infty, -1]$. La solution maximale vérifiant $\varphi(0) = 1$ est la suivante:

$$\varphi(t) = \begin{pmatrix} 2e^{t} - t - 1 \operatorname{sur} [0, +\infty[\\ t + 1 \operatorname{sur} [-1, 0]\\ -2e^{-(t+1)} - t + 1 \operatorname{sur}] - \infty, -1] \end{pmatrix}$$

$$\varphi'(t) = \begin{pmatrix} 2e^t - 1 \text{ sur }]0, +\infty[\\ 1 \text{ sur }] - 1, 0[\\ 2e^{-(t+1)} - 1 \text{ sur }] - \infty, -1[\end{pmatrix}$$

En étudiant les limites de φ' aux point 0 et -1, on voit que φ' est continue sur \mathbb{R} .

$$\varphi''(t) = \begin{pmatrix} 2e^t & \text{sur }]0, +\infty[\\ 0 & \text{sur }]-1, 0[\\ -2e^{-(t+1)} & \text{sur }]-\infty, -1[\end{pmatrix}$$

 φ n'est donc pas deux fois dérivable en 0 et -1.

Correction de l'exercice 4 A

 $f(t,x) = \frac{4t^3x}{t^4+x^2}$ (si $(t,x) \neq (0,0)$) est de classe C^{∞} en tant que quotient, somme et produit de fonctions C^{∞} .

1. $|f(t,x)| = |2t| \cdot |\frac{2t^2x}{(t^2)^2 + x^2}| \le 2|t| \to_{(t,x)\to 0} 0 = f(0,0)$. f est donc continue en (0,0). f n'est pas localement lipschitzienne au voisinage de (0,0) car sinon il existerait $k,\alpha,\beta \in \mathbb{R}$ tels que $t \in]-\alpha,\alpha[,x \in]-\beta,\beta[$ et

$$|f(t,x) - f(t,0)| \le k|x-0|$$

D'où $\frac{4t^3x}{t^4+x^2} \le kx \Rightarrow \frac{4t^3}{t^4+x^2} \le k \to \frac{4}{t} \le k, \forall t \in]0, \alpha[$ ce qui est absurde. Nous ne pouvons pas appliquer Cauchy-Lipschitz.

2. (φ, I) solution de (2) avec $0 \notin I$,

$$\psi(t) = t^{-2}\varphi(t) \Rightarrow \psi'(t) = t^{-2}\varphi'(t) - 2t^{-3}\varphi(t)$$
$$\psi'(t) = 4t^{-2}\frac{t^3\varphi(t)}{t^4 + \varphi^2(t)} - 2t^{-1}\psi(t)$$

d'où en exprimant tout en fonction de ψ :

$$\frac{\psi'(t)(1+\psi^2(t))}{\psi(t)(1-\psi(t))(1+\psi(t))} = \frac{2}{t}$$

Or
$$\frac{1+\psi^2(t)}{\psi(t)(1-\psi(t))(1+\psi(t))} = \frac{1}{\psi(t)} + \frac{1}{1-\psi(t)} - \frac{1}{1+\psi(t)} d$$
'où
$$\psi'(t)(\frac{1}{\psi(t)} + \frac{1}{1-\psi(t)} - \frac{1}{1+\psi(t)}) = \frac{2}{t}$$

En intégrant par rapport à t on obtient :

$$ln|\frac{\psi(t)}{1-\psi^2(t)}| = ln(t^2) + c$$

d'où

$$\frac{\psi(t)}{1-\psi(t)}=ct^2.$$

 $\psi(t)$ vérifie est donc une racine de l'équation

$$ct^2\psi^2(t) + \psi(t) - ct^2 = 0$$

et donc

$$\psi(t) = \frac{-1 \pm \sqrt{1 + 4c^2t^4}}{2ct^2}$$

d'où
$$\varphi = \frac{-1 \pm \sqrt{1 + 4c^2t^4}}{2c}$$
.

Correction de l'exercice 5 ▲

1. Posons $y_1 = x$, $y_2 = x' = y'_1$, $y_3 = x'' = y'_2$. L'équation devient $y'_3 - y_1y_3 = 0$ et donc en posant $f(t, y_1, y_2, y_3) = \begin{pmatrix} y_2 \\ y_3 \\ y_1y_2 \end{pmatrix}$ l'équation s'écrit

$$\begin{pmatrix} y_1' \\ y_2' \\ y_3' \end{pmatrix} = f(t, y_1, y_2, y_3).$$

- 2. f étant de classe C^{∞} , elle est lipschitzienne par rapport à la deuxième variable (y_1, y_2, y_3) et donc le théorème de Cauchy-Lipschitz permet de conclure.
- 3. La dérivée de la fonction donnée est nulle. Par conséquent, elle est constante et donc, l'exponentielle étant strictement positive, le signe de φ'' est constant. Si cette constante est strictement positive, φ est convexe, si elle est strictement négative, φ est concave. Si elle est nulle $\varphi''=0$ et donc $\varphi(t)=at+b$ qui est bien une solution de l'équation différentielle et vérifie $\varphi''(t_0)=0$. L'unicité montre que toutes les solutions qui vérifient $\varphi''(t_0)=0$ sont bien de la forme at+b.