1. 実験内容

照明の距離及び点灯、消灯で晴、曇、雨を再現した環境で太陽光発電し、その際の電圧と電流を $0\sim1M$ までの各抵抗で測定する

2. 実験結果

表 1 実験結果

晴		V	mA		曇		V	mA		雨		V	mA	
	抵抗	V	I	Р		抵抗	V	ı			抵抗	V	1	
	0	0.033	18.9	0.000624		0	0.025	14.4	0.00036		0	0.002	1.48	0.00000296
	50	0.909	18.6	0.016907		50	0.65	13.6	0.00884		50	0.08	1.66	0.0001328
	100	1.85	18.4	0.03404		100	1.32	13.3	0.017556		100	0.16	1.6	0.000256
	200	3.56	17.8	0.063368		200	2.6	13	0.0338		200	0.3	1.5	0.00045
	500	8.4	16.7	0.14028		500	6.7	13.5	0.09045		500	0.77	1.6	0.001232
	700	11.5	16.7	0.19205		700	8.9	12.9	0.11481		700	1.08	1.56	0.0016848
	900	14.7	15.8	0.23226		900	11.5	12.8	0.1472		900	1.33	1.55	0.0020615
	1000	15.5	15.9	0.24645		1000	12.5	12.9	0.16125		1000	1.49	1.5	0.002235
	2000	18.2	9.2	0.16744		2000	15.66	7.92	0.124027		2000	2.65	1.35	0.0035775
	3000	18.3	6.9	0.12627		3000	16.12	6.07	0.097848		3000	3.33	1.23	0.0040959
	4000	18.5	4.8	0.0888		4000	16.46	4.29	0.070613		4000	4.1	1.08	0.004428
	5000	18.5	3.7	0.06845		5000	16.6	3.31	0.054946		5000	4.86	0.96	0.0046656
	7000	18.6	2.3	0.04278		7000	16.9	2.1	0.03549		7000	5.97	0.74	0.0044178
	10000	18.6	1.9	0.03534		10000	16.95	1.7	0.028815		10000	6.4	0.64	0.004096
	30000	18.6	0.57	0.010602		30000	17.07	0.52	0.008876		30000	7.81	0.23	0.0017963
	1000000	18.6	0	0		1000000	17.1	0	0		1000000	8.7	0	C

晴、曇においてはある電圧値を超えるまでは電流は緩やかに減少するが、電圧が一定値を超えると電流の変化量が大きくなる。

雨においては電圧の上昇に比例して電流が小さくなっているように見て取れる。

晴、曇においては電圧に比例して電力が上昇するが、ある一定の電圧を超えると電力が 急激に低下する。

雨においても晴、曇と同様に一定の電圧を超えると電力が低下する減少がみられるが、 電圧の変化量が小さいうえ、電力の変化量がごくわずかであるため、ほぼ横ばいとみて 問題ない。

晴、曇においては共に $1k\Omega$ までは抵抗に比例して電力が上昇しているが、 $1k\Omega$ 以上は反比例の形で減少している。

雨においては電力の変化量がごくわずかではあるが、抵抗値に比例して電力が上昇しているように見て取れる。

3. 課題

1. 最適負荷になる仕組みを解説せよ

上記図 2 の測定結果内の任意の点 P と X 軸 Y 軸でできる長方形の面積が最大(=電力最大)となる抵抗にする(今回は $1k\Omega$)

具体的には、電圧の変化量に対して電流の変化量が大きくなる抵抗値では抵抗値を下げる、逆に電流の変化量に対して電圧の変化量が大きくなる抵抗値では抵抗値を上げることで、次第に最適負荷に近似でき、かつ天候変化に対応して抵抗値を変化させることができる

2. 下記図において、抵抗 X で消費される最大電力とその時の抵抗値を求めよ

電流
$$I = \frac{E}{R + X}$$
 消費電力 $P = XI^2$

$$= \frac{X}{R + X}$$

$$= \frac{X}{R^2} = \frac{E^2}{X + 2R + \frac{R^2}{X}}$$

$$f(x)' = 1 - \frac{R^2}{x^2} = 0$$

$$I = \frac{R^2}{x^2}, \quad X = R \quad \Omega$$

$$P_{\text{max}} = \frac{E^2}{R + 2R + \frac{R^2}{R}} = \frac{E^2}{4R} \quad W$$