Developing a Bayesian Procedure to Detect Breakpoints in Time Series: Progress Report II

Kathryn Haglich, Sarah Neitzel, Amy Pitts Mentor: Jeff Liebner

Lafayette College, Unity College, Marist College

Wednesday, July 12, 2018

NSF Grant #1560222

Recap: Back to Climatology

Figure 1: Temperature anomaly data.

Recap: Back to Climatology

Figure 2: Distribution of the breakpoint location of the temperature anomaly data as determined by BAR (Baysian Adaptive Regression) with random addition, random subtraction, and move.

The Jump Function

Jump:

a function that moves a random break point to any location in the data set

Figure 3: Red is an initial breakpoint, and blue is a proposed breakpoint.

The Jiggle Function

Jiggle:

a function that moves a random breakpoint within a given interval around its original location

Figure 4: Red is an initial breakpoint, and blue is a proposed breakpoint.

First Simulations: Testing Variations of Move

Goal of the Simulations: To see how the jiggle function compares to the jump only function.

Results: The best function tested was one that had both jiggle and jump as moving options.

Second Simulations: Variations on Addition

Random	Interval	Scoring
Picks one random place in the data set	Picks an interval weighted on length between two breakpoints and randomly places a breakpoint in the interval	places and chooses the one that is the farthest away

Second Simulations: Variations on Subtraction

Random	Interval	Scoring
Randomly picks an existing breakpoint and deletes it	Picks breakpoint to	Picks two random
	delete based on the	breakpoints and
	weighted shortest	deletes the one
	combined distance	that is the closest
	of a breakpoints	to its neighboring
	and deletes it	breakpoints

Second Simulation

Function Name	Addition	Subtraction
BAR0	random	random
BAR1	interval	random
BAR2	scoring	random
BAR3	random	interval
BAR4	random	scoring
BAR5	interval	interval
BAR6	interval	scoring
BAR7	scoring	scoring
BAR8	scoring	interval

The different combinations of addition and subtraction methods for the possible BAR function.

Second Simulation

Every BAR function is run on each dataset with 3000 iterations 9 different times.

Figure 5: Data for the second simulation.

Second Simulation Results

2 Breaks, Low Variance

Figure 6: Data with 2 significant breaks.

Second Simulation Results

Figure 7: Distributions of number of breakpoints.

Second Simulation Results

Result Summary:

- BAR3, BAR5, and BAR8 were unable to identify breakpoints in messy data.
- BAR7 struggles with messy data and tends to over add compared to BAR0, BAR1, and BAR4.
- BAR4 is okay but has no stand out features

BAR0, BAR1, and BAR2 handle the more difficult data slightly better.

Function	Addition	Subtraction
BAR0	random	random
BAR1	interval	random
BAR2	scoring	random
BAR3	random	interval
BAR4	random	scoring
BAR5	interval	interval
BAR6	interval	scoring
BAR7	scoring	scoring
BAR8	scoring	interval

Third Simulation: Long Runs

BAR0, BAR1, and BAR2 were chosen to run for a much longer period of times to see if any of them stood out.

Simulation Three:

- Tested on three different datasets:
 - 2 Breaks, Low Variance
 - 2 Breaks, Variance Change
 - Temperature Anomalies
- Each function will run for 100,000 iterations

Third Simulation: Long Runs

Figure 8: Temperature anomaly dataset used in the third simulation

Third Simulation: Results

Figure 9: Distributions of breakpoint locations for long runs looking at temperature anomaly data.

Summary

Function Name	Addition	Subtraction
BAR0	random	random
BAR1	<u>interval</u>	random
BAR2	scoring	random
BAR3	random	interval
BAR4	random	scoring
BAR5	interval	interval
BAR6	-interval	scoring
BAR7	scoring	scoring
BAR8	scoring	interval

Next!

- Choose between between BAR0 and BAR2
- Testing different starting conditions
- Apply to Autoregressive (AR) models
- Apply to real life data
- WRITE! (Cause we're running out of time...)