MAT 226B Large Scale Matrix Computation Homework 4

Ahmed Mahmoud

March, 12th 2020

Problem 1:

- (a) The breakdown in nonsymmetric Lanczos process occurs
 - when v_k or w_k is a zero vector. This is the case where V spans K_k $\{A, r\}$ or W spans K_k $\{A^T, c\}$. The is a termination condition and occurs when k reaches d(A, r) or $d(A^T, c)$. Since, $d(A, r) \ge 2$ and $d(A^T, c) \ge 2$, then this is not the case.
 - when $w_k^T v_k = 0$. Since v_k and w_k is the normalized r and c respectively for k = 1. Then, $w_k^T v_k = 0$ for k = 1 and breakdown will occur since $w_k^T v_k$ is used as the denominator to compute α_k leading to division by zero.
- (b) At step k = 2, a breakdown will occur if

$$\delta_2 = w_2^T v_2 = 0$$

Assuming that r and c are normalized (i.e., $||r||_2 = ||c||_2 = 1$), we can re-write the above condition as

$$w_2^T v_2 = (A^T w_1 - \alpha_1 w_1)^T (A v_1 - \alpha_1 v_1) = 0$$

That could happens if $(A^Tw_1 - \alpha_1w_1)^T = 0$ or $Av_1 = \alpha_1v_1$. Thus,

$$Av_1 = \alpha_1 v_1$$

$$Ar = \alpha_1 r$$

$$Ar = \frac{c^T Ar}{c^T r} r$$

$$(c^T r)(Ar) = (c^T Ar)(r)$$

$$(c^T r)(A) = (c^T Ar)$$

$$(c^T r)(A)(c^T Ar) = (c^T Ar)^2$$

Problem 2:

The function <code>arnoldi_process</code> in <code>problem_2.m</code> implements Arnoldi process. It takes matrix A, initial r vector, and KMAX value and outputs matrices H_k and V_K . We test the function with k=5,10, and 20. Table 1 shows the eignevalues of H_k for different values of k. Table 2 shows the eignevalues of k. To compare between the eigenvalue of k0 and k1 eigenvalues, we computed $||A_eig-H_{20}eig|| = 2.022960706546113e-14$

K	Eigenvalues
5	-1.667643118967301e + 00 + 3.322698092379202e + 00i
	1.122189729586331e+00+-2.935868201795706e+00i
	-2.454291098365838e + 00 + -1.034091783975195e - 01i
	1.901983203411739e + 00 + 2.938354695246812e - 02i
	-1.488418331702275e - 01 + 4.856460403443859e - 03i
10	-1.284055777449226e + 00 + +3.812474971159054e + 00i
	2.481430445455568e - 01 + -3.792088063628674e + 00i
	2.484678533435320e + 00 + -2.158804713951516e + 00i
	-9.594670448581000e - 01 + -2.797385858005139e + 00i
	-1.865849533089461e+00++2.203044871147163e+00i
	-2.769085996727914e + 00 + -4.783604953147819e - 01i
20	-1.246365732148964e + 00 + +3.879484437687161e + 00i
	1.251730623491198e - 01 + -3.705917327586333e + 00i
	2.594180629560022e+00 + -2.284902242884260e+00i
	-1.983514535906369e + 00 + +2.443522984313272e + 00i
	3.000394334727364e + 00 + -9.028020730501802e - 01i
	-8.152087361523789e - 01 + -2.850024263184166e + 00i

Figure 1: H_k Eigenvalues

Eigenvalues	
-1.246365732148965e+00++3.879484437687162e+00i	
1.251730623491239e - 01 + -3.705917327586323e + 00i	
2.594180629560029e+00 + -2.284902242884256e+00i	
-1.983514535906377e + 00 + +2.443522984313265e + 00i	
3.000394334727376e + 00 + -9.028020730501798e - 01i	
-8.152087361523785e - 01 + -2.850024263184167e + 00i	

Figure 2: A Eigenvalues

Problem 3:

(a) Function hermitian_lanczos implements the Hermitian Lanczos process where it takes the matrix A, vector r, and KMAX parameter and output T_k tridiagonal matrix in sparse format. We used this function to approximate eigenvalues of A from make_3d_laplacian function using k=7. Table 3 shows the results where the first two columns show the exact eigenvalues of A (computed from the provided function) along its multiplicity and last column shows the approximate eigenvalues. We can see that the approximate solution is able to capture all the eigenvalues with very high accuracy.

Exact Eigenvalues	Multiplicity	Approximate Eigenvalues
1.757359312880715e+00	1	1.757359312880715e+00
3.171572875253810e+00	3	3.171572875253810e+00
4.585786437626905e+00	6	4.585786437626905e+00
6.000000000000000000000000000000000000	7	6.0000000000000000e+00
7.414213562373095e+00	6	7.414213562373095e+00
8.828427124746190e+00	3	8.828427124746192e+00
1.024264068711928e+01	1	1.024264068711929e+01

Figure 3: Exact and approximate eigenvalues using Hermitian Lanczos process

(b) We used hermitian_lanczos to compute the approximate eigenvalues for the 262144×262144 matrix from make_3d_laplacian(64). Tables ?? show the 10 smallest and 10 largest approximated eigenvalues. Table 11 shows the 10 smallest and 10 largest exact eigenvalues.

Smallest Eigenvalues	Largest Eigenvalues
1.422787575075167e - 02	1.170222368514153e+01
2.522292134967839e-02	1.175506886438500e+01
3.720946521956244e-02	1.180683457939747e+01
6.015341020592301e-02	1.184896392339356e+01
8.407846117839080e-02	1.188540931980204e+01
1.168498457907536e - 01	1.191749739736500e+01
1.581734700307590e-01	1.194638621492721e+01
1.995732825474702e-01	1.196512279467138e+01
2.466691832816189e - 01	1.198055273500129e+01
3.011244810109077e-01	1.199293004521624e+01

Figure 4: Approximate Eigenvalues using K = 100

Smallest Eigenvalues	Largest Eigenvalues
7.006926067695284e - 03	1.191194541966088e+01
1.400816296330363e-02	1.192367820060319e+01
2.104749654401042e-02	1.193815033138952e+01
2.644416419643677e - 02	1.194943725586547e+01
3.252921177956383e - 02	1.195823115974695e+01
4.248144987518579e - 02	1.196722905407029e+01
5.158180541911261e-02	1.197279443138257e+01
6.175958581860198e - 02	1.197897280487774e+01
7.373377938324976e-02	1.198599186623671e+01
8.527634111033579e-02	1.199299336087879e+01

Figure 5: Approximate Eigenvalues using K=200

Smallest Eigenvalues	Largest Eigenvalues
7.006639006043782e-03	1.195105825040107e+01
1.400782323540659e - 02	1.195568924396476e+01
2.100900746475762e-02	1.195806895929420e+01
2.565829376859278e - 02	1.196033932970904e+01
2.801019169415529e - 02	1.196734052200119e+01
3.265947799840193e-02	1.197198980830585e+01
3.966069944862968e-02	1.197434170623140e+01
4.193108831261764e-02	1.197899099253526e+01
4.431079048315387e - 02	1.198599217676459e+01
4.897191625334762e-02	1.199299336099394e+01

Figure 6: Approximate Eigenvalues using $K=400\,$

Problem 4:

(a)

Smallest Eigenvalues	Largest Eigenvalues
7.006639006040011e-03	1.197198980830589e+01
7.006639006045063e - 03	1.197434170555307e+01
1.400782323539451e-02	1.197434170623140e+01
1.400782323540438e-02	1.197899099253525e+01
2.100900746475027e - 02	1.197899099253527e+01
2.100900746475296e-02	1.198599217676461e+01
2.565829371816093e - 02	1.198599217676461e+01
2.565829376859185e - 02	1.199293916949044e+01
2.801018851772900e-02	1.199299336099396e+01
2.801019169410766e-02	1.199299336099397e+01

Figure 7: Approximate Eigenvalues using K=800

Smallest Eigenvalues	Largest Eigenvalues
7.006639006034983e - 03	1.197899099253524e+01
7.006639006042774e - 03	1.197899099253525e+01
7.006639006050910e-03	1.197899099253525e+01
7.006642433917978e - 03	1.198599217676460e+01
1.400782323538701e-02	1.198599217676461e+01
1.400782323539747e - 02	1.198599217676462e+01
1.400782323539999e-02	1.199299336099394e+01
2.100900746475157e - 02	1.199299336099396e+01
2.100900746475692e-02	1.199299336099397e+01
2.100900746476310e-02	1.199299336099399e+01

Figure 8: Approximate Eigenvalues using K=1200

Smallest Eigenvalues	Largest Eigenvalues
7.006639006034724e - 03	1.197899099253525e+01
7.006639006037083e-03	1.198599217676456e + 01
7.006639006037985e-03	1.198599217676460e + 01
7.006639006044512e-03	1.198599217676460e + 01
7.006639006047808e - 03	1.198599217676461e+01
1.400782323539137e - 02	1.199299336099392e+01
1.400782323539370e-02	1.199299336099395e+01
1.400782323539474e-02	1.199299336099396e+01
1.400782323540451e-02	1.199299336099397e+01
1.412781215190661e-02	1.199299336099398e+01

Figure 9: Approximate Eigenvalues using K = 1600

Smallest Eigenvalues	Largest Eigenvalues
7.006639006032009e-03	1.198599217676460e + 01
7.006639006034958e - 03	1.198599217676460e + 01
7.006639006035550e-03	1.198599217676461e+01
7.006639006037528e - 03	1.198599260901220e+01
7.006639006037725e-03	1.199299336099394e+01
7.006639006042897e - 03	1.199299336099395e+01
1.400782323536894e-02	1.199299336099396e+01
1.400782323539092e-02	1.199299336099396e+01
1.400782323539872e-02	1.199299336099396e+01
1.400782323540259e-02	1.199299336099397e+01

Figure 10: Approximate Eigenvalues using $K=2000\,$

Smallest Eigenvalues	Largest Eigenvalues
7.006639006040594e - 03	1.197434170623141e+01
1.400782323539662e-02	1.197434170623141e+01
1.400782323539662e-02	1.197434170623141e+01
1.400782323539662e-02	1.197899099253525e+01
2.100900746475265e - 02	1.197899099253525e+01
2.100900746475265e - 02	1.197899099253525e+01
2.100900746475265e-02	1.198599217676460e+01
2.565829376859075e-02	1.198599217676460e+01
2.565829376859163e-02	1.198599217676460e+01
2.565829376859163e-02	1.199299336099396e+01

Figure 11: Exact Eigenvalues