pline - Travail

SUPERIEUR ET DES ŒUVRES UNIVERSITAIRES (DGES)

DIRECTION DE l'ORIENTATION ET DES EXAMENS (\mathbf{DOREX})

Concours AMCPEsession 2014

Composition : Mathématiques 5 (algèbre, analyse)

Durée : 3 Heures

Si un candidat est amené à repérer ce qui lui semble être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre. Les exercices sont indépendants

Exercice 1: Soit α un et un réel strictement positif. Pour tout $n \in \mathbb{N}$, on pose :

$$u_{n}(\alpha) = \frac{n!}{\prod_{k=0}^{n} (\alpha + k)}$$

- **1) a)** Montrer que la suite $\left(u_n\left(\alpha\right)\right)_{n\in\mathbb{N}}$ est monotone et convergente. Que peut-on déduire pour la série de terme général $u_n\left(\alpha\right)-u_{n+1}\left(\alpha\right)$? On note $\ell\left(\alpha\right)$ la limite de la suite $\left(u_n\left(\alpha\right)\right)_{n\in\mathbb{N}}$.
 - **b)** On suppose que $\ell(\alpha)$ est non nulle. Démontrer que : $u_n(\alpha) u_{n+1}(\alpha) \sim \frac{\alpha \ell(\alpha)}{n}$.
 - **c)** Déduire de ce qui précède que $\ell(\alpha) = 0$.
- **2)** Dans cette question : $\alpha \in [0,1]$.
 - **a)** Montrer que : $\forall n \in \mathbb{N}, \ u_n(\alpha) \ge \frac{1}{n+\alpha}$
 - **b)**Quelle est la nature de la série de terme général $u_n(\alpha)$?
- **3)** On pose pour tout entier naturel n : $I_n(\alpha) = \int_0^{+\infty} e^{-\alpha t} \left(1 e^{-t}\right)^n dt$.
 - a) Etudier la convergence de l'intégrale généralisée $I_n(\alpha)$ et calculer $I_0(\alpha)$.
 - **b)** Soit un réel x strictement positif. Intégrer par parties $\int_0^x e^{-\alpha t} \left(1-e^{-t}\right)^n dt$, et en déduire une relation simple entre $I_n(\alpha)$ et $I_{n-1}(\alpha+1)$, pour tout n entier naturel non nul.
 - **c)** En déduire : $\forall n \in \mathbb{N}$, $I_n(\alpha) = u_n(\alpha)$.
- **4)** On suppose désormais que $\alpha > 1$.
 - **a)** Montrer que, pour tout N entier naturel : $\sum_{n=0}^{N} I_n\left(\alpha\right) = \frac{1}{\alpha-1} I_{N+1}\left(\alpha-1\right).$

b) En déduire que la série de terme général $u_n(\alpha)$ est convergente, et donner en fonction de α la valeur de $\sum_{n=0}^{+\infty}u_n(\alpha)$.

Exercice 2: On considère les matrice de $\mathcal{M}_3(\mathbb{R})$:

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \ \ \text{et} \ \ O = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Soit E l'ensemble des matrices $M \in \mathcal{M}_3(\mathbb{R})$ telles que AM = MA.

Partie A:

- 1) a) Vérifier que B appartient à E.
 - **b**) Soit n un entier naturel, montrer que Aⁿ appartient à E.
- 2) Déterminer les réels x, y et z tels que xI + yA + zB = O.
- 3) a) Montrer que E est l'ensemble des matrices de la forme $\begin{pmatrix} a & b & c \\ b & a+b & b \\ c & b & a \end{pmatrix}$ avec a, b et c des réels.
 - **b)** En déduire que toute matrice de E est combinaison linéaire de I , A et B; et que E est un sous espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
 - c) A l'aide des résultats précédents, montrer que $\mathcal{B} = (I, A, B)$ est une base de E.

Partie B:

1) Calculer les valeurs propres de A . En déduire que A est diagonalisable.

2) Soient P =
$$\begin{pmatrix} 1 & -1 & 1 \\ -\sqrt{2} & 0 & \sqrt{2} \\ 1 & 1 & 1 \end{pmatrix}$$
 et Q = $\begin{pmatrix} 1 & -\sqrt{2} & 1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{pmatrix}$.

- **a)** Calculer le produit PQ . En déduire que P est inversible et exprimer son inverse en fonction de Q .
- **b)** Calculer la matrice $D = P^{-1}AP$ et montrer que : $\forall n \in \mathbb{N}^*$, $A^n = PD^nP^{-1}$.
- **3)** En déduire les coordonnées de la matrice A^n $(n \in \mathbb{N}^*)$ dans la base \mathcal{B} de E.