Práctica 2: Problemas con redes de Hopfield

Manuel González González

November 13, 2021

Ejercicio 2

a)

Encuentra un mínimo global porque no existen combinaciones con menor energía posible.

b)

difEnergia = E-Eprev;

 $\mathbf{c})$

No se ejecutará ninguna vez ya que la energía o se queda igual (dejando el diferencial a cero) o disminuye (dejando el diferencial negativo).

Ejercicio 3

a)

No, se queda oscilando entre dos estados.

b)

5 =

0 0 1 1 0 0 0 0 0

c)

La matriz no es semidefinida positiva. A la izquierda se puede ver el código ejecutado; a la derecha al matriz de pesos resultante; y debajo el resultado

de la ejecución.

Ejercicio 4

a)

Sí, se activa.

b)

Se estabiliza en

5 =

1 0 0 0 1 1 1 0 0

c)

Es un mínimo local, porque no es la solución óptima del problema y no es capaz de cambiar de estado para encontrar otra.

d)

En lugar de activar la unidad si el potencial sináptico es mayor o igual al sesgo lo haría solo si es mayor a este.

Ejercicio 5

a)

El tiempo medio para 100 ejecuciones con 3 torres es de $3'9e^{-4}$ segundos.

b)

El tiempo medio para 100 ejecuciones con 30 torres es de $9'2e^{-3}$ segundos.

 $\mathbf{c})$

No se mantiene. La proporción debería ser 10 veces mayor, pero es 20 veces mayor.