Laboratorium 8 Rozwiązywanie równań nieliniowych

Mateusz Król

07/05/2024 r.

Zadanie 1.

Dla poniższych funkcji i punktów początkowych metoda Newton'a zawodzi. Wyjaśnij dlaczego. Następnie znajdź pierwiastki.

$$f_1(x) = x^3 - 5x, \ x_0 = 1$$

$$f_2(x) = x^3 - 3x + 1, \ x_0 = 1$$

$$f_3(x) = 2 - x^5, \ x_0 = 0.01$$

$$f_4(x) = x^4 - 4.29x^2 - 5.29, \ x_0 = 0.8$$

Wykorzystałem funkcję scipy.optimize.newton z modułu SciPy.

Dla funkcji f_1 metoda Newton'a działa - zwraca prawdziwy pierwiastek ($\approx 4.7 \cdot 10^{-24} \approx 0$). W celu zwrócenia innego pierwiastka, możnaby zmienić wartość początkową na bliższą odpowiedniej wartości (np. 2).

Dla reszty funkcji metoda Newton'a nie działa:

Dla funkcji f_2 odpowiednim x_0 byłoby 1.5, gdyż wartość 1 jest ekstremum lokalnym.

Dla funkcji f_3 lepszym wyborem x_0 byłoby 1.1, gdyż wartość 0.01 jest zbyt blisko 0, gdzie funkcja jest na tyle płaska, że wartość przybliżana zbyt wolno zbiega do prawdziwego pierwiastka.

Dla funkcji f_3 odpowiednim x_0 byłoby 2.0 - wartość bliżej prawdziwego pierwiastka.

Zadanie 2.

Dane jest równanie:

$$f(x) = x^2 - 3x + 2 = 0$$

Każda z następujących funkcji definiuje równoważny schemat iteracyjny:

$$g_1(x) = \frac{(x^2 + 2)}{3}$$
$$g_2(x) = \sqrt{3x - 2}$$
$$g_3(x) = 3 - \frac{2}{x}$$
$$g_4(x) = \frac{(x^2 - 2)}{2x - 3}.$$

Tabela z wartościami rzędów zbieżności schematów iteracyjnych odpowiadających funkcjom $g_i(x)$:

Function	Order of convergence
g_1	≈ 1.33
g_2	≈ 0.82
g_3	≈ 0.67
g_4	≈ 0.67

Wykres przedstawiający porównanie wartości błędów względnych w zależności od liczby iteracji:

Zadanie 3.

Napisz schemat iteracji wg metody Newtona dla każdego z następujących równań nieliniowych:

Zadanie 4.

Napisz schemat iteracji w
g metody Newtona dla następującego układu równań nieliniowych:

Wnioski