Advanced Algorithm Assignment 3 Load Balancing Problem

12032189

Yuxi Liu

context

• Exercise 2-1

• Exercise 2

• Exercise 3

We assume that there are three machines and seven jobs (m = 3, n = 6)

$$t_1 = 5$$
, $t_2 = 5$, $t_3 = 4$, $t_4 = 4$, $t_5 = 3$, $t_6 = 3$, $t_7 = 3$

The optimal solution:

$$T^* = 9$$

We assume that there are three machines and seven jobs (m = 3, n = 6)

$$t_1 = 5$$
, $t_2 = 5$, $t_3 = 4$, $t_4 = 4$, $t_5 = 3$, $t_6 = 3$, $t_7 = 3$

The Sort Greedy Algorithm:

M1 J1 J6 J7 T1 = 11

M2 J2 J5 T2 = 9

M3 J3 J4 T3 = 9

$$T_{max} = 11$$
 $\frac{T_{max}}{T^*} \approx 1.22 \Rightarrow T_{max} = 1.22T^*$

• Example: M_3 needs less processing times than the others.

Three Machines: M_1 , M_2 , M_3

Ten Jobs: $J_1, J_2, \cdots J_{10}$

Processing time (t_j) :2,4,6,...,20 on M_1 and M_2

 $1,2,3,\cdots,10 \text{ on } M_3$

To solve this problem, we proposed the Sorted Posterior Greedy Algorithm(SPGA), the algorithm is shown as follow:

- 1. We Caculate the weight according to the execution time of different machines, and sort the jobs after tradeoff.
- 2. Assign jobs in descending order to the machine that can complete the job earliest.

We define t_j^m representative the execution time of job j with machine m, and \mathbf{w}^i denote the weigh of the execution time of machine m, with $\sum_{i=1}^m w^i = 1$

```
SPGA(m, n, J_1, J_2, \cdots J_n){
      Ret^j = \sum_{i=1}^m w^i t^i_i
       Sort jobs so that Ret^1 \ge Ret^2 \ge \cdots \ge Ret^n
       for i = 1 to m {
            L_i \leftarrow 0 \qquad \leftarrow \qquad \text{load on machine i}

J(i) \leftarrow \emptyset \qquad \leftarrow \qquad \text{jobs assigned to machine I}
       for j = 1 to n {
             i = argmin_k L_K + t_i^k
                                                       ← machine i can complete the job j earliest
             J(i) \leftarrow J(i) \cup \{j\}
                                                       ← assign job j to machine i
            L_i \leftarrow L_i + t_i^k
                                                        ← updata load of machine i
       return J(1),...,J(m)
```

• Example: M_3 needs less processing times than the others.

Three Machines: M_1 , M_2 , M_3

Ten Jobs: $J_1, J_2, \cdots J_{10}$

Processing time(t_i):2,4,6,...,20 on M_1 and M_2

 $1,2,3,\cdots,10 \text{ on } M_3$

$$T1 = (20)$$

$$T2 = (20)$$

$$T3 = 10$$

• Example: M_3 needs less processing times than the others.

Three Machines: M_1 , M_2 , M_3

Ten Jobs: $J_1, J_2, \cdots J_{10}$

Processing time(t_i):2,4,6,...,20 on M_1 and M_2

 $1,2,3,\cdots,10 \text{ on } M_3$

$$T1 = 18$$

$$T2 = (18)$$

$$T3 = 10 (19)$$

• Example: M_3 needs less processing times than the others.

Three Machines: M_1 , M_2 , M_3

Ten Jobs: $J_1, J_2, \cdots J_{10}$

Processing time(t_i):2,4,6,...,20 on M_1 and M_2

 $1,2,3,\cdots,10 \text{ on } M_3$

$$T1 = 18(34)$$

$$T2 = 16$$

$$T3 = 10(18)$$

• Example: M_3 needs less processing times than the others.

Three Machines: M_1 , M_2 , M_3

Ten Jobs: $J_1, J_2, \cdots J_{10}$

Processing time(t_i):2,4,6,...,20 on M_1 and M_2

 $1,2,3,\cdots,10 \text{ on } M_3$

$$T1 = 18(32)$$

$$T2 = 16(30)$$

$$T3 = 17$$

• Example: M_3 needs less processing times than the others.

Three Machines: M_1 , M_2 , M_3

Ten Jobs: $J_1, J_2, \cdots J_{10}$

Processing time(t_i):2,4,6,...,20 on M_1 and M_2

 $1,2,3,\cdots,10 \text{ on } M_3$

• Example: M_3 needs less processing times than the others.

Three Machines: M_1 , M_2 , M_3

Ten Jobs: $J_1, J_2, \cdots J_{10}$

Processing time(t_i):2,4,6,...,20 on M_1 and M_2

 $1,2,3,\cdots,10 \text{ on } M_3$

• Example: M_3 needs less processing times than the others.

Three Machines: M_1 , M_2 , M_3

Ten Jobs: $J_1, J_2, \cdots J_{10}$

Processing time(t_i):2,4,6,...,20 on M_1 and M_2

 $1,2,3,\cdots,10 \text{ on } M_3$

• Example: M_3 needs less processing times than the others.

Three Machines: M_1 , M_2 , M_3

Ten Jobs: $J_1, J_2, \cdots J_{10}$

Processing time(t_i):2,4,6,...,20 on M_1 and M_2

 $1,2,3,\cdots,10 \text{ on } M_3$

• Example: M_3 needs less processing times than the others.

Three Machines: M_1 , M_2 , M_3

Ten Jobs: $J_1, J_2, \cdots J_{10}$

Processing time(t_i):2,4,6,...,20 on M_1 and M_2

 $1,2,3,\cdots,10 \text{ on } M_3$

• Example: M_3 needs less processing times than the others.

Three Machines: M_1 , M_2 , M_3

Ten Jobs: $J_1, J_2, \cdots J_{10}$

Processing time(t_i):2,4,6,...,20 on M_1 and M_2

 $1,2,3,\cdots,10 \text{ on } M_3$

• Example: M_3 needs less processing times than the others.

Three Machines: M_1 , M_2 , M_3

Ten Jobs: $J_1, J_2, \cdots J_{10}$

Processing time(t_i):2,4,6,...,20 on M_1 and M_2

 $1,2,3,\cdots,10 \text{ on } M_3$

Job order: $J_{10}, J_9, \cdots J_1$

In this case $T = T^* = 28$

• Difficult Example: M_3 needs less processing times than the others.

Three Machines: M_1 , M_2 , M_3

Nine Jobs: $J_1, J_2, \dots J_9$

Processing time(t_i):2,4,6,...,18 on M_1 and M_2

1,2,3,...,9 on M_3

Job order: $J_9, J_8, \cdots J_1$

SPGA Function:

$$T = 28$$

• Difficult Example: M_3 needs less processing times than the others.

Three Machines: M_1 , M_2 , M_3

Nine Jobs: $J_1, J_2, \cdots J_9$

Processing time(t_i):2,4,6,...,18 on M_1 and M_2

 $1,2,3,\cdots,9 \text{ on } M_3$

Job order: $J_9, J_8, \dots J_1$

Optimal Function:

$$T1 = 22$$

$$T2 = 22$$

$$T3 = 23$$

Thank you