Lecture 17: Linear Transformations MAT2040 Linear Algebra

Recall that when we defined the matrix product AB, I tried to convince you the definition was logical by thinking about the composition of two *mappings*.

Recall that when we defined the matrix product AB, I tried to convince you the definition was logical by thinking about the composition of two *mappings*.

We will now commence the study of transformations like $x \mapsto Ax$. In particular we will generalize the notion of transformations, and think about transformations from *one vector space to another vector space*.

 $L(\cdot)$ is a **mapping** (or **transformation**) from vector space V to vector space W, if L assigns a value (vector) in W for every vector $\mathbf{v} \in V$.

 $L(\cdot)$ is a **mapping** (or **transformation**) from vector space V to vector space W, if L assigns a value (vector) in W for every vector $\mathbf{v} \in V$.

We write $\mathbf{v} \mapsto L(\mathbf{v})$.

 $L(\cdot)$ is a **mapping** (or **transformation**) from vector space V to vector space W, if L assigns a value (vector) in W for every vector $\mathbf{v} \in V$.

We write $\mathbf{v} \mapsto L(\mathbf{v})$.

Example: mapping from \mathbb{R}^n to \mathbb{R}^m : $\mathbf{x} \mapsto A\mathbf{x}$ (where A is an $m \times n$ matrix).

set of all possible values of \mathbb{R}^m this mapping can achieve,

set of all possible value of \mathbb{R}^n that are mapped to $\mathbf{0}$.

- ► Col A = set of all possible values of \mathbb{R}^m this mapping can achieve,
- set of all possible value of \mathbb{R}^n that are mapped to $\mathbf{0}$.

- ightharpoonup Set of all possible values of \mathbb{R}^m this mapping can achieve,
- Null A = set of all possible value of \mathbb{R}^n that are mapped to $\mathbf{0}$.

- ightharpoonup Set of all possible values of \mathbb{R}^m this mapping can achieve,
- Null A = | set of all possible value of \mathbb{R}^n that are mapped to $\mathbf{0}$.

We want to have words to refer to these concepts for general mappings from V to W as well!

For the mapping $\mathbf{v} \mapsto L(v)$ (from V to W) we define:

- set of all possible values of W this mapping can achieve,
- set of all possible value of V that are mapped to $\mathbf{0} \in W$.

For the mapping $\mathbf{v} \mapsto L(v)$ (from V to W) we define:

- **the range of** L = set of all possible values of W this mapping can achieve,
- lacksquare set of all possible value of V that are mapped to ${f 0} \in W$.

For the mapping $\mathbf{v} \mapsto L(v)$ (from V to W) we define:

- **the range of** L = set of all possible values of W this mapping can achieve,
- **the kernel of** L = set of all possible value of V that are mapped to $\mathbf{0} \in W$.

Example 17.3

Consider the mapping f(x) from \mathbb{R} to \mathbb{R} given by $x \mapsto \max\{x,0\}$ (the absolute value of x).

What is the range of f(x)? What is the kernel of f(x)?

Example 17.3

Consider the mapping f(x) from \mathbb{R} to \mathbb{R} given by $x \mapsto \max\{x,0\}$ (the absolute value of x).

What is the range of f(x)? What is the kernel of f(x)?

Consider
$$L(\mathbf{x}) = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} \mathbf{x}$$
.

What is the range of L(x)? What is the kernel of L(x)?

Not every mapping from \mathbb{R}^n to \mathbb{R}^m can be expressed as $x \mapsto A\mathbf{x}$ for some matrix A.

Not every mapping from \mathbb{R}^n to \mathbb{R}^m can be expressed as $x \mapsto A\mathbf{x}$ for some matrix A.

For instance the mapping $x \mapsto x^2$ (from \mathbb{R} to \mathbb{R}) cannot be expressed as a matrix multiplication.

The following definition summarizes which transformations from \mathbb{R}^n to \mathbb{R}^m can be expressed as $x \mapsto A\mathbf{x}$ for some matrix A.

The following definition summarizes which transformations from \mathbb{R}^n to \mathbb{R}^m can be expressed as $x \mapsto Ax$ for some matrix A.

Definition 17.4

A mapping $L(\cdot)$ from \mathbb{R}^n to \mathbb{R}^m is called **a linear transformation**, if

$$L(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha L(\mathbf{x}) + \beta L(\mathbf{y})$$

for every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$.

The following definition summarizes which transformations from \mathbb{R}^n to \mathbb{R}^m can be expressed as $x \mapsto Ax$ for some matrix A.

Definition 17.4

A mapping $L(\cdot)$ from \mathbb{R}^n to \mathbb{R}^m is called **a linear transformation**, if

$$L(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha L(\mathbf{x}) + \beta L(\mathbf{y})$$

for every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$.

In other words: every linear combination of vectors in \mathbb{R}^n is mapped to the linear combination of the image of these vectors with the same weights.

Lemma 17.5

 $L(\mathbf{x})$ from \mathbb{R}^n to \mathbb{R}^m is a linear transformation, if and only if

 $L(\mathbf{x}) = A\mathbf{x}$ for some $m \times n$ matrix A.

Example 17.6 (Linear Transformation)

$$\mathbf{x}\mapsto A\mathbf{x} \text{ where } A=\begin{bmatrix}1&0&0\\0&1&0\\0&0&0\end{bmatrix}.$$

Example 17.6 (Linear Transformation)

$$\mathbf{x} \mapsto A\mathbf{x} \text{ where } A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

(picture from David Lay, Linear Algebra.)

Projection Transformation

Example 17.7 (Linear Transformation) $T(\mathbf{x}) = t\mathbf{x}$, where t > 1.

Example 17.7 (Linear Transformation)

 $T(\mathbf{x}) = t\mathbf{x}$, where t > 1.

Example 17.7 (Linear Transformation)

$$T(\mathbf{x}) = t\mathbf{x}$$
, where $t > 1$.

(picture from David Lay, Linear Algebra.)

Dilation Transformation

Example 17.8 (Linear Transformation)

$$T(\mathbf{x}) = A\mathbf{x}$$
 where $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

Example 17.8 (Linear Transformation)

$$T(\mathbf{x}) = A\mathbf{x}$$
 where $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

(picture from David Lay, Linear Algebra.)

Rotation Transformation

Example 17.9 (Linear Transformation)

$$T(\mathbf{x}) = A\mathbf{x} \text{ where } A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}.$$

Example 17.9 (Linear Transformation)

$$T(\mathbf{x}) = A\mathbf{x}$$
 where $A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$.

Example 17.9 (Linear Transformation)

$$T(\mathbf{x}) = A\mathbf{x} \text{ where } A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}.$$

(picture from David Lay, Linear Algebra.)

Shear Transformation

- ▶ a linear transformation L from \mathbb{R}^n to \mathbb{R}^m ,
- ightharpoonup a basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ for \mathbb{R}^n , and
- \blacktriangleright we know $L(\mathbf{b}_1), L(\mathbf{b}_2), \dots, L(\mathbf{b}_n)$,

then we know $L(\mathbf{x})$ for any $\mathbf{x} \in \mathbb{R}^n$:

- ▶ a linear transformation L from \mathbb{R}^n to \mathbb{R}^m ,
- ightharpoonup a basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ for \mathbb{R}^n , and
- we know $L(\mathbf{b}_1), L(\mathbf{b}_2), \dots, L(\mathbf{b}_n)$,

then we know $L(\mathbf{x})$ for any $\mathbf{x} \in \mathbb{R}^n$: we know that we can write

$$\mathbf{x} = t_1 \mathbf{b}_1 + t_2 \mathbf{b}_2 + \dots + t_n \mathbf{b}_n$$

for some $t_1, t_2, \ldots, t_n \in \mathbb{R}$ (because $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n$ is a basis for \mathbb{R}^n),

- ▶ a linear transformation L from \mathbb{R}^n to \mathbb{R}^m ,
- ightharpoonup a basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ for \mathbb{R}^n , and
- we know $L(\mathbf{b}_1), L(\mathbf{b}_2), \dots, L(\mathbf{b}_n)$,

then we know $L(\mathbf{x})$ for any $\mathbf{x} \in \mathbb{R}^n$: we know that we can write

$$\mathbf{x} = t_1 \mathbf{b}_1 + t_2 \mathbf{b}_2 + \dots + t_n \mathbf{b}_n$$

for some $t_1, t_2, ..., t_n \in \mathbb{R}$ (because $\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n$ is a basis for \mathbb{R}^n), and so by linearity of L we get:

- ▶ a linear transformation L from \mathbb{R}^n to \mathbb{R}^m ,
- ightharpoonup a basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ for \mathbb{R}^n , and
- ightharpoonup we know $L(\mathbf{b}_1), L(\mathbf{b}_2), \dots, L(\mathbf{b}_n)$,

then we know $L(\mathbf{x})$ for any $\mathbf{x} \in \mathbb{R}^n$: we know that we can write

$$\mathbf{x} = t_1 \mathbf{b}_1 + t_2 \mathbf{b}_2 + \dots + t_n \mathbf{b}_n$$

for some $t_1, t_2, ..., t_n \in \mathbb{R}$ (because $\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n$ is a basis for \mathbb{R}^n), and so by linearity of L we get:

$$L(\mathbf{x}) = t_1 L(\mathbf{b}_1) + t_2 L(\mathbf{b}_2) + \cdots + t_n L(\mathbf{b}_n).$$

- ▶ a linear transformation L from \mathbb{R}^n to \mathbb{R}^m ,
- ightharpoonup a basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ for \mathbb{R}^n , and
- ightharpoonup we know $L(\mathbf{b}_1), L(\mathbf{b}_2), \dots, L(\mathbf{b}_n)$,

then we know $L(\mathbf{x})$ for any $\mathbf{x} \in \mathbb{R}^n$: we know that we can write

$$\mathbf{x} = t_1 \mathbf{b}_1 + t_2 \mathbf{b}_2 + \dots + t_n \mathbf{b}_n$$

for some $t_1, t_2, ..., t_n \in \mathbb{R}$ (because $\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n$ is a basis for \mathbb{R}^n), and so by linearity of L we get:

$$L(\mathbf{x}) = t_1 L(\mathbf{b}_1) + t_2 L(\mathbf{b}_2) + \cdots + t_n L(\mathbf{b}_n).$$

Note that $[x]_{B} = (t_1, t_2, ..., t_n)^T$!

Key takeaway: If we have

- ▶ a linear transformation L from \mathbb{R}^n a vector space V to \mathbb{R}^n a vector space W,
- ightharpoonup a basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ for $\mathbb{R}^n V$, and
- ightharpoonup we know $L(\mathbf{b}_1), L(\mathbf{b}_2), \dots, L(\mathbf{b}_n)$,

then we know $L(\mathbf{x})$ for any $\mathbf{x} \in \mathbb{R}^n V$: we know that we can write

$$\mathbf{x} = t_1 \mathbf{b}_1 + t_2 \mathbf{b}_2 + \dots + t_n \mathbf{b}_n$$

for some $t_1, t_2, ..., t_n \in \mathbb{R}$ (because $\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n$ is a basis for $\mathbb{R}^n V$), and so by linearity of L we get:

$$L(\mathbf{x}) = t_1 L(\mathbf{b}_1) + t_2 L(\mathbf{b}_2) + \cdots + t_n L(\mathbf{b}_n).$$

Note that $[\mathbf{x}]_{\mathcal{B}} = (t_1, t_2, \dots, t_n)^T$!

Definition 17.8 (for general vector spaces)

A mapping $L(\cdot)$ from V to W is called a **linear transformation**, if

$$L(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha L(\mathbf{x}) + \beta L(\mathbf{y})$$

for every $\mathbf{x}, \mathbf{y} \in V$ and $\alpha, \beta \in \mathbb{R}$.

Consider the vector space P_k (polynomials of degree at most k).

Is differentiation a linear transformation?

Let V be a vector space with a basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$.

Is $L(\mathbf{x}) = [\mathbf{x}]_{\mathcal{B}}$ a linear transformation?

Let V be a vector space with a basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$.

Is $L(\mathbf{x}) = [\mathbf{x}]_{\mathcal{B}}$ a linear transformation?

Recall:

Lemma 12.6

Let V be a vector space with a basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$, and let $\mathbf{x}, \mathbf{y} \in V$. For any $\alpha, \beta \in \mathbb{R}$

$$[\alpha \mathbf{x} + \beta \mathbf{y}]_{\mathcal{B}} = \alpha [\mathbf{x}]_{\mathcal{B}} + \beta [\mathbf{y}]_{\mathcal{B}}.$$

Theorem 17.12

an $m \times n$ matrix A so that

Let V be a vector space with basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and W be a vector space with basis $\mathcal{C} = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m\}$. If $T(\mathbf{x})$ from V to W is a linear transformation then there exists

$$[T(\mathbf{x})]_{\mathcal{C}} = A[\mathbf{x}]_{\mathcal{B}}.$$

Theorem 17.12

an $m \times n$ matrix A so that

Let V be a vector space with basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and W be a vector space with basis $\mathcal{C} = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m\}$. If $T(\mathbf{x})$ from V to W is a linear transformation then there exists

$$[T(\mathbf{x})]_{\mathcal{C}} = A[\mathbf{x}]_{\mathcal{B}}.$$

In fact,

$$A = \begin{bmatrix} [T(\mathbf{v}_1)]_{\mathcal{C}}, & [T(\mathbf{v}_2)]_{\mathcal{C}}, & \dots, [T(\mathbf{v}_n)]_{\mathcal{C}} \end{bmatrix}.$$

A is called the matrix for T relative to the bases \mathcal{B} and \mathcal{C} .

(picture from David Lay, Linear Algebra.)

The last theorem is saying that every linear transformation T from a vector space V to a vector space W can be represented (and thus studied) by a matrix!

The last theorem is saying that every linear transformation \mathcal{T} from a vector space V to a vector space W can be represented (and thus studied) by a matrix!

The trick is the following:

- \blacktriangleright determine a basis \mathcal{B} for V, and \mathcal{C} for W
- ▶ for every $\mathbf{v}_i \in \mathcal{B}$, determine $T(\mathbf{v}_i)$
- ▶ the **coordinates** of $T(\mathbf{v}_i)$ with respect to basis C are the i-th column vector of A.

The last theorem is saying that every linear transformation T from a vector space V to a vector space W can be represented (and thus studied) by a matrix!

The trick is the following:

- \blacktriangleright determine a basis \mathcal{B} for V, and \mathcal{C} for W
- ▶ for every $\mathbf{v}_i \in \mathcal{B}$, determine $T(\mathbf{v}_i)$
- ▶ the **coordinates** of $T(\mathbf{v}_i)$ with respect to basis C are the i-th column vector of A.

Linearity makes sure (the \mathcal{B} -coordinates) of all other vectors in V are mapped to the correct \mathcal{C} -coordinates in W.

Integration is a linear transformation from P_k to P_{k+1} .

Integration is a linear transformation from P_k to P_{k+1} .

Choose a basis for P_k and P_{k+1} , and find the matrix for integration relative to your chosen bases.