

Huazhong University of Science & Technology

Electronic Circuit of Communications

School of Electronic Information and Commnications

Jiaqing Huang

FM Circuits

FM Circuit - Classification

Direct FM Circuits

Modulating \longrightarrow $\Delta C + 0$ scillator \longrightarrow Frequency

Direct FM Circuit - Varactor

Oscillator + Varactor

Direct FM Circuit - Crystal Oscillator + Varactor

> Crystal Oscillator - Pierce

 \triangleright Small Δf

$$\omega_p = \omega_q \sqrt{1 + \frac{C_q}{C_0}} = \omega_q \sqrt{1 + p}$$
 $\omega_q \ \omega_p \ \text{Very Close}$

Indirect FM Circuits

Indirect FM Circuits

 \succ Modulating signal of PM is $\int_0^t v_{\Omega}(t) \ dt$

PM - Phase Shifting

Single-tone
$$v_{\varOmega}(t)=V_{\varOmega}cos\Omega t$$

$$\varphi=k_{p}v_{\varOmega}(t)=k_{p}V_{\varOmega}cos\Omega t=m_{p}cos\Omega t$$

$$v_{PM}(t)=V_{0}cos(\omega_{0}t-\varphi)=V_{0}cos(\omega_{0}t-m_{p}cos\Omega t)$$

Example: RC phase-shift network, LC phase-shift network

PM - Phase Shifting

> Example: Using Varactor

ightharpoonup Principle: $v_{\Omega}(t) \Rightarrow C_{j} \Rightarrow f_{0}' \Rightarrow \Delta f(=f_{0}'-f_{0}) \Rightarrow \Delta \varphi$

PM - Phase Shifting (Continued)

- ▶ Phase Shifting < 30°</p>
- ➤ Example: 90°

PM - Time Shifting

$$\begin{split} v_{\Omega}(t) &= V_{\Omega} cos \Omega t \\ \tau &= \frac{k_p}{\omega_0} v_{\Omega}(t) = \frac{k_p}{\omega_0} V_{\Omega} cos \Omega t = \frac{m_p}{\omega_0} cos \Omega t \\ v_{PM}(t) &= V_0 cos [\omega_0(t-\tau)] = V_0 cos [\omega_0 t - m_p cos \Omega t] \end{split}$$

▶ Phase shift < 144°</p>

PM - Vector Synthesis (Armstrong)

$$v_{PM}(t) = V_0 cos \left[\omega_0 t + k_p v_{\Omega}(t)\right]$$

$$= V_0 cos \omega_0 t \cos \left[k_p v_{\Omega}(t)\right] - V_0 sin \omega_0 t \sin \left[k_p v_{\Omega}(t)\right]$$

$$\approx V_0 cos \omega_0 t - V_0 k_p v_{\Omega}(t) sin \omega_0 t$$

 $\Delta heta_{\scriptscriptstyle
m m}$ is small

Indirect FM Circuits - Improve Δf by Multiplying

- ightharpoonup Multiplying increases Δf vs. Mixing
- ightharpoonup Example: If $\Delta f=50Hz$, $f_0=1MHz$ to implement FM broadcast $\Delta f=75kHz$, $f_0=100MHz$?
- > Solution:

Using Multiplying :
$$\frac{75kHz}{50Hz}=1500$$
 $f_0=1MHz\times1500=1500MHz$ Using Mixing : $1400MHz$ and $1500MHz$ obtain $f_0=100MHz$

Indirect FM Circuits

Multiplying vs. Mixing

Summary - FM Circuits

```
OSC + Var Reactance \left\{egin{array}{c} \Delta f & \uparrow \\ f_0 & \mathsf{unstable} \end{array}
ight.
 Direct FM
                    Indirect FM \left\{ egin{array}{ll} f_0 & {
m stable} & {
m (Crystal OSC independent with PM)} \\ \Delta f & {
m Improve } \Delta f: \\ {
m Multiplying for } \Delta f \end{array} 
ight.
                                              Mixing for f_0
```


Frequency Discrimination

Frequency Discrimination

FD

Waveform Conversion $(FM \rightarrow FM - AM)$

Frequency Synthesis $(FM \rightarrow FM - PM)$

Pulse Counting Discrimination

PLL Frequency Discrimination

FD - Waveform Conversion $(FM \rightarrow FM - AM)$

$PD - (FM \rightarrow FM - PM)$

PD - Pulse Counting Discrimination

> Principle: detect zero-cross points

Phase Frequency Discrimination

Phase FD

- \triangleright Principle: Waveform Conversion $(FM \rightarrow FM AM)$ + Envelope Detection
- $\triangleright C_5$ to RF choke L_3

Phase FD

$$V_{a'b'} = k_d(V_{D1} - V_{D2})$$

 $f_{in} < f_0$

$$F_{in} = f_0, \ V_{D1} = V_{D2}, \ V_{a'b'} = 0$$

$$> f_{in} > f_0, V_{D1} > V_{D2}, V_{a'b'} > 0$$

$$> f_{in} < f_0, \ V_{D1} < V_{D2}, \ V_{a'b'} < 0$$

Output $V_{a'b'} \propto \Delta f$

$$\Delta f \propto v_{\Omega}(t) \quad \Rightarrow \quad \text{Output} \quad V_{a'b'} \propto v_{\Omega}(t)$$