



Mar 13, 2020

# Intestinal Organoid Dissociation and Nuclei Isolation for Single Cell ATAC-Seq

Heather Eckart<sup>1</sup>, Ran Zhou<sup>1</sup>

<sup>1</sup>University of Chicago

In Development dx.doi.org/10.17504/protocols.io.bdeui3ew

Helmsley project\_Basu lab



#### **ABSTRACT**

This protocol provides a procedure for human intestinal organoid dissociation into a single cell suspension and nuclei isolation prior to Single Cell ATAC-Sequencing.

#### **GUIDELINES**

Nuclei isolation for Chromium Next GEM Single Cell ATAC Sequencing was performed following the protocol provided by 10X Genomics. For further guidelines and tips reference the original protocol below.

 $(https://assets.ctfassets.net/an68im79xiti/5g035d2ngCW1aB9DFqPph0/71445a59fb282ea273a866c26cb5d319/CG000169\_DemonstratedProtocol\_Nucleilsolation\_ATAC\_Sequencing\_RevD.pdf)$ 

Chromium Next GEM Single Cell ATAC Sequencing was performed following the protocol provided in the user guide from 10X Genomics. (https://assets.ctfassets.net/an68im79xiti/7L2MU4QSWfrEgd2h13Efac/d5326fcdc6363aa04e4fdf11b2a1f2f8/CG000209\_Chromium\_NextGEM\_SingleCell\_ATAC\_ReagentKits\_v1.1\_UserGuide\_RevD.pdf)

The primary human tissue that generates the organoids, are obtained from endoscopic biopsies after patient's consent and approval from Institutional Review Board at the University of Chicago (IRB Number: 15573A).

## MATERIALS

| NAME Y                                                     | CATALOG #             | VENDOR ~                 |  |
|------------------------------------------------------------|-----------------------|--------------------------|--|
| Magnesium chloride solution for molecular biology (1.00 M) | M1028 Sigma – Aldrich |                          |  |
| TrypLE™ Express Enzyme                                     | 12604013              | Thermo Fisher Scientific |  |
| Wheat Germ Agglutinin, Alexa Fluor™ 594 Conjugate          | W11262                | Thermo Fisher            |  |
| Trizma Hydrochloride Solution pH 7.4                       | T2194                 | Sigma Aldrich            |  |
| Sodium Chloride Solution 5 M                               | 59222C                | Sigma Aldrich            |  |
| Magnesium Chloride Solution 1 M                            | M1028                 | Sigma Aldrich            |  |
| Nonidet P40 Substitute                                     | 74385                 | Sigma Aldrich            |  |
| MACS BSA Stock Solution                                    | 130-091-376           | Miltenyi Biotec          |  |
| Flowmi Cell Strainer 40 μm                                 | H13680-0040           | Bel-Art                  |  |
| Nuclei Buffer 20X                                          | 2000153/2000207       | 10x Genomics             |  |
| DAPI                                                       | D9542                 | Sigma Aldrich            |  |

MATERIALS TEXT

Citation: Heather Eckart, Ran Zhou (03/13/2020). Intestinal Organoid Dissociation and Nuclei Isolation for Single Cell ATAC-Seq. <a href="https://dx.doi.org/10.17504/protocols.io.bdeui3ew">https://dx.doi.org/10.17504/protocols.io.bdeui3ew</a>

Note: 10x Genomics Nuclei Buffer 20X (2000153/2000207) is included in the 10x Genomics Single Cell ATAC Library Kits

#### Diluted Nuclei Buffer 1mL

Nuclei Buffer (20X) 50 ul (final concentration 1X)

Nuclease free water 950 ul

| Wash Buffer<br>Prepare fresh, maintain at 4°C                                            | Stock | Final | 2 ml     |
|------------------------------------------------------------------------------------------|-------|-------|----------|
| Tris-HCl (pH 7.4)                                                                        | 1 M   | 10 mM | 20 µl    |
| NaCl                                                                                     | 5 M   | 10 mM | 4 μl     |
| MgCl <sub>2</sub>                                                                        | 1 M   | 3 mM  | 6 µl     |
| BSA                                                                                      | 10%   | 1%    | 200 µl   |
| Tween-20                                                                                 | 10%   | 0.1%  | 20 µl    |
| Nuclease-free Water                                                                      | -     | -     | 1.75 ml  |
| Lysis Buffer                                                                             | Stock | Final | 2 ml     |
| Prepare fresh, maintain at 4°C                                                           |       |       |          |
| Tris-HCl (pH 7.4)                                                                        | 1 M   | 10 mM | 20 μl    |
| NaCl                                                                                     | 5 M   | 10 mM | 4 µl     |
| MgCl <sub>2</sub>                                                                        | 1 M   | 3 mM  | 6 µl     |
| Tween-20                                                                                 | 10%   | 0.1%  | 20 µl    |
| Nonidet P40 Substitute<br>(if using Sigma (74385) 100%<br>solution, prepare a 10% stock) | 10%   | 0.1%  | 20 µl    |
| Digitonin<br>(incubate at 65°C to dissolve<br>precipitate before use)                    | 5%    | 0.01% | 4 μl     |
| RSA                                                                                      | 10%   | 1%    | 200 µl   |
| Nuclease-free Water                                                                      | -     | -     | 1.726 ml |

### BEFORE STARTING

Prepare diluted nuclei buffer, wash buffer, lysis buffer, and PBS with 0.04% BSA

# Organoid Dissociation

- 1 Incubate organoid in TrypLE for up to 20 minutes at 37°C
- 1.1 Every 5 minutes, pipette the cell suspension up and down 5-10x and check the digestion progress with a hemocytometer until enough single cells are present

# Nuclei Isolation

2 For freshly dissociated cells, perform 1-2 washes with PBS + 0.04% BSA (20ul BSA/1mL 1X PBS).



Consult 10X Genomics protocol for using frozen cells

- 3 Determine the cell count after washing using a hemocytometer.
- Add cell suspension of 100,000-1,000,000 cells to a 2-ml tube. For our experiment we started with **200,000** cells per sample.

protocols.io
2
03/13/2020

Citation: Heather Eckart, Ran Zhou (03/13/2020). Intestinal Organoid Dissociation and Nuclei Isolation for Single Cell ATAC-Seq. <a href="https://dx.doi.org/10.17504/protocols.io.bdeui3ew">https://dx.doi.org/10.17504/protocols.io.bdeui3ew</a>

Centrifuge at 300 rcf for 5 min at 4°C

**300 x g, 4°C 00:05:00** 

- Remove ALL the supernatant without disrupting the cell pellet
- Add 100 µl chilled Lysis Buffer. Pipette to mix 10x

■100 µl Lysis Buffer

Incubate for 4 min on ice

§ On ice 4 min



Time may vary depending on cell type; 4 minutes is specific for organoid samples

Add 1 ml chilled Wash Buffer to the lysed cells. Pipette to mix 5x

■1 ml Wash Buffer

Centrifuge at 500 rcf for 5 min at 4°C

**\$\$500 x g, 4°C 00:05:00** 

Remove the supernatant without disrupting the nuclei pellet 11

Based on your targeted nuclei recovery, cell concentration in step 4 and assuming ~50% nuclei loss during cell lysis, resuspend in chilled Diluted Nuclei Buffer (1x). Maintain on ice.

(See Nuclei Stock Concentration Table and Example Calculation below)

For our experiment, we targeted **5,000 nuclei**.

#### **Nuclei Stock Concentration Table**

Based on the Targeted Nuclei Recovery, prepare the nuclei suspension in Diluted Nuclei Buffer to achieve the corresponding Nuclei Stock concentrations.

| Targeted Nuclei Recovery | Nuclei Stock Concentration<br>(nuclei/µl) |
|--------------------------|-------------------------------------------|
| 500                      | 155-390                                   |
| 1,000                    | 310-780                                   |
| 2,000                    | 610-1,540                                 |
| 3,000                    | 925-2,300                                 |
| 4,000                    | 1,230-3,075                               |
| 5,000                    | 1,540-3,850                               |
| 6,000                    | 1,850-4,600                               |
| 7,000                    | 2,150-5,400                               |
| 8,000                    | 2,460-6,150                               |
| 9,000                    | 2,770-6,900                               |
| 10,000                   | 3,080-7,700                               |

## **Example Calculation**

Cell count at step 2a: 200,000
Estimated nuclei count at step 2h (~50% loss):100,000
If targeting 5,000 Nuclei Recovery, nuclei pellet at step 2h
may be resuspended in 30 µL Diluted Nuclei Buffer for Nuclei
Stock Concentration of 1,540-3,850 nuclei/µl (see Table above)

- 13 Check nuclei integrity by staining with WGA and DAPI. Also determine the nuclei concentration using a hemocytometer
- 14 OPTIONAL: If cell debris and large clumps are observed, pass through a cell strainer. For low volume, use a 40 μm Flowmi Cell Strainer to minimize volume loss
- 15 Proceed immediately to Chromium Next GEM Single Cell ATAC Sequencing protocol (found in the Chromium Single Cell ATAC Solution User Guide)

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited