Solutions to Ireland, Rosen "A Classical Introduction to Modern Number Theory"

Richard Ganaye

October 11, 2019

Chapter 7

Ex. 7.1 Use the method of Theorem 1 to show that a finite subgroup of the multiplicative group of a field is cyclic.

A solution is already given in Ex. 4.15

Ex. 7.2 Find the finite subgroups of \mathbb{R}^* and \mathbb{C}^* and show directly that they are cyclic.

Proof. If G is a finite subgroup of \mathbb{R} or \mathbb{C} , and n = |G|, then from Lagrange's Theorem, $x^n = 1$ for all $x \in G$.

- If G is a finite subgroup of \mathbb{R}^* , then the solutions of $x^n = 1$ are in $\{-1, 1\}$, so $\{1\} \subset G \subset \{-1, 1\} : G = \{1\}$ or $G = \{-1, 1\}$, both cyclic.
- If G is a finite subgroup of \mathbb{C}^* , then $G \subset \mathbb{U}_n = \{e^{2ik\pi/n} \mid 0 \le k \le n-1\}$. As $|G| = |\mathbb{U}_n| = n$, then $G = \mathbb{U}_n \simeq \mathbb{Z}/n\mathbb{Z}$ is cyclic.

Ex. 7.3 Let F a field with q elements and suppose that $q \equiv 1 \pmod{n}$. Show that for $\alpha \in \mathbb{F}^*$, the equation $x^n = \alpha$ has either no solutions or n solutions.

Proof. This is a particular case of Prop. 7.1.2., where $d = n \wedge (q-1) = n$: the equation $x^n = \alpha$ has solutions iff $\alpha^{(q-1)/n} = 1$. In this case, there are exactly d = n solutions.

We give here a direct proof.

Let g a generator of F^* . Write $x = g^y, \alpha = g^a$. Then

$$x^n = \alpha \iff g^{ny} = g^a \iff q - 1 \mid ny - a.$$

Suppose that there exists $x \in F$ such that $x^n = \alpha$. Then there exists $y \in \mathbb{Z}$ such that $q-1 \mid ny-a$. Since $n \mid q-1$, then $n \mid a$.

$$q-1 \mid ny-a \iff \frac{q-1}{n} \mid y-\frac{a}{n} \iff y=\frac{a}{n}+k\frac{q-1}{n}, k \in \mathbb{Z}.$$

As $\frac{a}{n} + (k+n)\frac{q-1}{n} = \frac{a}{n} + k\frac{q-1}{n}, k \in \mathbb{Z}$, the values $k = 0, 1, \dots, n-1$ are sufficient:

$$x^{n} = \alpha \iff y = \frac{a}{n} + k \frac{q-1}{n}, k \in \{0, 1, \dots, n-1\}.$$

Moreover, these solutions are all distinct : if $k, l \in \{0, 1, \dots, n-1\}$,

$$g^{\frac{a}{n} + k \frac{q-1}{n}} = g^{\frac{a}{n} + l \frac{q-1}{n}} \Rightarrow g^{(k-l)\frac{q-1}{n}} = 1$$

$$\Rightarrow q - 1 \mid (k-l)\frac{q-1}{n}$$

$$\Rightarrow n \mid k - l$$

$$\Rightarrow k \equiv l \mid [n] \Rightarrow k = l.$$

Conclusion: if F is a field with q elements and $n \mid q-1$, the equation $x^n = \alpha$ has either no solutions or n solutions in F.

Remark:

$$\exists x \in F^*, x^n = \alpha \iff n \mid a \iff \alpha^{(q-1)/n} = 1.$$

Indeed, if $x^n = \alpha$ has a solution, we have proved that $n \mid a$, thus $\alpha^{(q-1)/n} = (g^{a/n})^{q-1} = 1$.

Reciprocally, if $\alpha^{(q-1)/n} = 1$, $g^{a.(q-1)/n} = 1$, thus $q-1 \mid a(q-1)/n$, so $n \mid a : \alpha = x^n$, with $x = q^{n/a}$.

Ex. 7.4 (continuation) Show that the set of $\alpha \in F^*$ such that $x^n = \alpha$ is solvable is a subgroup with (q-1)/n elements.

Proof. Here $n \mid q-1$.

Let $\varphi = F^* \to F^*$ the application defined by $\varphi(x) = x^n$. φ is a morphism of groups, and $\ker \varphi$ is the set of solutions of $x^n = 1$. As $n \mid q - 1$, $x^n = 1$ has exactly n solutions (Prop 7.1.1, Corollary2, or Ex 7.3 with $\alpha = 1$). So $|\ker \varphi| = n$.

Thus $\operatorname{Im}\varphi \simeq F^*/\ker \varphi$ is a subgroup with cardinality $|F^*|/|\ker \varphi| = (q-1)/n$, and $\operatorname{Im}\varphi$ is the set of α such that $x^n = \alpha$ is solvable.

Conclusion: the set of $\alpha \in F^*$ such that $x^n = \alpha$ is solvable is a subgroup with (q-1)/n elements.

Ex. 7.5 (continuation) Let K be a field containing F such that [K:F]=n. For all $\alpha \in F^*$, show that the equation $x^n=\alpha$ has n solutions in K. [Hint: Show that q^n-1 is divisible by n(q-1) and use the fact that $\alpha^{q-1}=1$.]

Proof. As $q \equiv 1$ [n], $\frac{q^n - 1}{q - 1} = 1 + q + \dots + q^{n-1} \equiv 0$ [n], then $n \mid \frac{q^n - 1}{q - 1}$:

$$q^n - 1 = kn(q - 1), k \in \mathbb{N}.$$

Since $\alpha \in F^*$, $\alpha^{q-1} = 1$, so

$$\alpha^{(q^n-1)/n} = (\alpha^{q-1})^k = 1.$$

As $|K| = q^n$, Prop. 7.1.2 (or the final remark in Ex.7.3) show that there exists $x \in K^*$ such that $x^n = \alpha$. Then, from Ex.7.3, we know that there exist n solutions in K.

Conclusion: if [K:F]=n, the equation $x^n=\alpha$ has n solutions in K.

Ex. 7.6 Let $K \supset F$ be finite fields with [K : F] = 3. Show that if $\alpha \in F$ is not a square in F, it is not a square in K.

Proof. Let q = |F|. Then $|K| = q^3$.

If the characteristic of F is 2, $q = 2^k$, and for all $x \in F$, $x = x^q = \left(x^{2^{k-1}}\right)^2$. So all elements in F or K are squares. We can now suppose that the characteristic of F is not 2, and consequently $1 \neq -1$ in F.

As α is not a square in F, $\alpha^{(q-1)/2} \neq 1$ (Prop. 7.1.2). From $0 = \alpha^{q-1} - 1 = (\alpha^{(q-1)/2} - 1)(\alpha^{(q-1)/2} + 1)$, we deduce $\alpha^{(q-1)/2} = -1$. Then

$$\alpha^{(q^3-1)/2} = (\alpha^{(q-1)/2})^{q^2+q+1} = (-1)^{q^2+q+1} = -1,$$

since $q^2 + q + 1$ is always odd.

 $\alpha^{(q^3-1)/2} \neq 1$: this implies (Prop. 7.1.2) that α is not a square in K.

Ex. 7.7 Generalize Exercise 6 by showing that if α is not a square in F, it is not a square in any extension of odd degree and is a square in every extension of even degree.

Proof. Write q = [K : F], and q = Card F.

As α is not a square in F, the characteristic of F is not 2 (see Ex.7.6), and $\alpha^{(q-1)/2} \neq 1$. Since $\alpha^{q-1} = 1$, $\alpha^{(q-1)/2} = -1$.

$$\alpha^{(q^{n}-1)/2} = (\alpha^{(q-1)/2})^{1+q+\dots+q^{n-1}} = (-1)^{1+q+\dots+q^{n-1}}.$$

- If n is odd, $1+q+\cdots+q^{n-1}\equiv 1\pmod 2$, thus $\alpha^{(q^n-1)/2}=-1\neq 1$, and consequently α is not a square in K.
- If n is even, as q is odd (char(F) \neq 2), $1+q+\cdots+q^{n-1}\equiv 0\pmod{2}$, thus $\alpha^{(q^n-1)/2}=1$, so α is a square in K.

Ex. 7.8 In a field with 2^n elements, what is the subgroup of squares.

Let F a field with $q = 2^n$ elements.

Proof 1

Proof. $d = (q-1) \wedge 2 = (2^n-1) \wedge 2 = 1$, thus each $\alpha \in F^*$ verifies $\alpha^{(q-1)/d} = \alpha^{q-1} = 1$. Theorem 7.1.2 show that α is a square in F, of exactly one root.

Proof 2

Proof. For all $x \in F$, $x = x^q = \left(x^{2^{n-1}}\right)^2$. So all elements in F or K are squares. \square

Ex. 7.9 If $K \supset F$ are finite fields, $|F| = q, \alpha \in F, q \equiv 1 \pmod{n}$, and $x^n = \alpha$ is not solvable in F, show that $x^n = \alpha$ is not solvable in K if (n, [K : F]) = 1.

Proof. Let k = [K : F]. From hypothesis, $k \wedge n = 1$, so there exist integers u, v such that uk + vn = 1.

As $n \mid q-1, n \land (q-1) = n$, so the hypothesis " $x^n = \alpha$ is not solvable in F" implies that $\alpha^{(q-1)/n} \neq 1$ (Prop. 7.1.2).

Write $\omega = \alpha^{(q-1)/n}$, so $\omega \neq 1$ and $\omega^n = 1$.

As $n \mid q-1$, $n \mid q^k-1$ and

$$\alpha^{(q^k-1)/n} = (\alpha^{(q-1)/n})^{1+q+q^2+\dots+q^{k-1}} = \omega^{1+q+q^2+\dots+q^{k-1}}.$$

Moreover $1 + q + \cdots + q^{k-1} \equiv k \pmod{n}$, and $\omega^n = 1$, so $\alpha^{(q^k - 1)/n} = \omega^k$.

If $\omega^k = 1$, then $\omega = \omega^{uk+vn} = (\omega^k)^u(\omega^n)^v = 1$, which is in contradiction with $\omega = \alpha^{(q-1)/n} \neq 1$. So $\alpha^{(q^k-1)/n} = \omega^k \neq 1$, and consequently the equation $x^n = \alpha$ has no solution in

K.

Ex. 7.10 If $K \supset F$ be finite fields and [K : F] = 2. For $\beta \in K$, show that $\beta^{1+q} \in F$ and moreover that every element in F is of the form β^{1+q} for some $\beta \in K$.

Proof. If $\beta = 0$, $\beta^{1+q} = 0 \in F$, and if $\beta \in K^*$, $\beta^{q^2-1} = 1$, so $(\beta^{1+q})^{q-1} = 1$, thus $\beta^{1+q} \in F$ (Prop. 7.1.1, Corollary 1).

Let g a generator of K^* : $K^* = \{1, g, g^2, \dots, g^{q^2-2}\}.$

For every in integer $k \in \mathbb{Z}$,

$$g^k \in F^* \iff (g^k)^{q-1} = 1 \iff g^{k(q-1)} = 1 \iff q^2 - 1 \mid k(q-1) \iff q+1 \mid k.$$

Thus $F^* = \{1, g^{q+1}, g^{2(q+1)}, \cdots, g^{(q-2)(q+1)}\}$. I $\alpha \in F^*$, there exists $i, 0 \le i \le q-1$ such that $\alpha = g^{i(q+1)}$. If we write $\beta = g^i$, then $\alpha = \beta^{1+q}$ (and for $\alpha = 0$, we take $\beta = 0$).

Conclusion: if K is a quadratic extension of F (F, K finite fields), every element in F is of the form β^{1+q} for some $\beta \in K$.