

TM

SCHOOL of BUSINESS AND TECHNOLOGY Department of Engineering and Aviation Sciences

Smart Delivery

Kevin Harper
Eli Nbede
Montraz Oliver

Advisor: Dr. Zhang April 3, 2020

Introduction

Autonomous self-driving vehicles are growing exponentially in popularity within new age technology. There are only a few level 5 self-driving vehicles that requires no human activation to drive. These self-driving cars are being used to transport goods and people around the world. Furthermore the electric car is preferred more often because it offer economic, global, and environment benefits. The car that we plan to design will deliver food to people autonomously.

Background

On the campus of the University of Maryland Eastern Shore there are many students that worry about their next meal and how they are going to get hold of it. A college student has numerous of responsibilities on their table that limits their ability to obtain in a necessary time. In most colleges' freshman are not allowed to have cars and people with cars must pay a lot of money for parking and fees. This limit the amount of college students with cars and increases the amount of college students walking around campus. The gruesome schedule of college students makes it hard for them to eat food when its offered.

At the University of Maryland Eastern shore students are offered food at the locations including Students Service Center, Engineering & Aviation Sciences Complex, Hawk's Nest, Waters Hall. In the Students Service Center they offer students plateau dining, and oasis staff dining. Often students argue and complain about the food they receive from the cafeteria. This leads them to eat the chic-fila food the university provides.

When college students are in their dorm after a long day of classes and stressful lecturing. They still must do homework and study for their classes. At that point they are tired of walking and going to get some food that is at least .4 miles away. Furthermore, during the school year there are not always clear and sunny days. Especially at UMES in the winter the weather can get rough. This will disable students from going outside and getting the food they need to satisfy their stomach.

"Among the 214 National Universities that reported these data to U.S. News in an annual survey, the average percentage of students who brought cars to campus in the

CHAPTER 1. INTRODUCTION

Objective

Design an autonomous electric car that can deliver food to designated locations on the University of Maryland Eastern Shore campus.

Design Requirements

- 1. Travel distance a total of 2 miles
- 2. Carry up to eight pounds of food
- 3. Will deliver one meal at a time
- 4. open and close of food compartment
- 5. Localization of car
- 6. Reach designated ordering locations
- 7. Speed of 5-10 mph
- 8. Detect and drive on the sidewalk
- 9. Enable driving across non traffic crosswalk
- 10. Detect and maneuver moving pedestrians
- 11. App order menu
- 12. Notification of order arrived
- 13. Application interface with the electric car

Design Constraints

- 1. Tires might not be able to withstand certain road conditions
- 2. Driving in rough weather conditions

3. System is incapable of going up stairs or ramps

System Diagram

TASKS

Task1: Vehicle Structural Design

Subtask 1.1: CAD of structure

Subtask1.2: Construct chassis

Subtask 1.3: Implement wheel and tyre thread

Subtask 1.4: Implement upper body frame

Subtask 1.5: Configure all body parts

Task 2: Configure Electronic Components

Subtask 2.1: Assemble and implement microcontroller(Arduino)

Subtask 2.2: Assemble and implement PWM signals with DC motor

Subtask 2.3: Assemble and implement servo

	Subtask 2.4: Assemble and implement battery
	Subtask 2.5: Assemble and implement Electronic Speed Controller(ESC)
	Subtask 2.6: Assemble and implement GPS
	Subtask 2.7: Apply electrical components in structure
3	: Application Design
	Subtask 3.1: Coding for the app
	Subtask 3.2: Interface GPS
	Subtask 3.3: Launching and Testing of the app
4	: Computer Vision
	Subtask 4.1: OpenMV Cam H7 Hardware Assembly
	Subtask 4.2: Image processing on OpenMV IDE
	Subtask 4.3: Line edge detection algorithm
	Subtask 4.4 Test accuracy and algorithm
	Subtask 4.5: Interface with Arduino microcontroller
	Subtask 4.6: Assemble camera on electric car front
5	: Lidar Configuration
	Subtask 5.1: Lidar hardware assembly
	Subtask 5.2: Arduino IDE algorithm implementation
	Subtask 5.3: Lidar Mapping and Navigation
	Subtask 5.4: Test accuracy and algorithm
	Subtask 5.5: Interface with Arduino microcontroller
	Subtask 5.6: Mount lidar hardware on system
6	: Remote controller design
	Subtask 6.1: construct remote controller
	Subtask 6.2: Interface with arduino
7	: System Testing, evaluation, and enhancement
	Subtask 7.1: Test Functions

Subtask 7.2: Evaluate and enhance if necessary

Subtask 7.3: Repeat process

Task

Task

Task

Task

Task

Timeline

Time	Tasks			Comments
	Montraz Oliver	Eli Nbede	Kevin Harper	
Week 1	Subtask 1.1 & 1.2	Task 3	Subtask 1.1	Start of Vehicle Design & App Design
Week 2	Subtask 1.4	Subtask 1.2	Subtask 1.2 & 1.3	Continued vehicle design
Week 3	Subtask 1.5	Subtask 1.5	Subtask 1.5	Completion of vehicle design
Week 4	Subtask 2.3 & 2.5	Subtask 2.2 & Task 3	Subtask 2.1& 2.4	Start of electric component tasks & continued app design
Week 5	Subtask 2.7 & 4.1	Subtask 2.6	Subtask 2.7	Start computer vision while finishing electronics

Week 6	Subtask 4.5 & subtask 4.2	Subtask 4.5 & Task 3	Subtask 4.5	Continued electronic components and app design
Week 7	Subtask 4.2	Subtask 4.2 & Task 3	Subtask 4.2	Image processing
Week 8	Subtask 4.2 & 4.5	Subtask 4.2 & Task 3	Subtask 4.2	Image processing
Week 9	Subtask 4.2 & 4.3	Task 3	Task 6	Remote control design begins & app is completed and tested
Week 10	Subtask 4.2 & 4.3 &4.4	Subtask 5.1 & 5.5	Subtask 5.1 & Task 6	Begin of lidar tasks
Week 11	Subtask 4.2 & 4.3 & 5.2	Subtask 5.2	Subtask 5.2 & Task 6	Design of lidar and openMV
Week 12	Subtask 4.2, 4.3	Subtask 5.3 & task 6	Subtask 5.3 & task 6	Remote testing
Week 13	Subtask 4.2, 4.3, & 4.4	Subtask 5.4	Task 6	Computer vision completion and testing & remote testing
Week 14	Subtask 4.6	Subtask 4.6	Subtask 4.6 & task 6	Working on computer vision & completing controller design
Week 15	Subtask 4.4 & 5.2	Subtask 4.4 &5.5	Subtask 4.4	Computer vision testing

Week 16	Subtask 5.6	Subtask 5.6	Subtask 5.6	Working on lidar system
Week 17	Subtask 5.2	Subtask 5.2	Subtask 5.2	Working on lidar system
Week 18	Subtask 5.4	Subtask 5.4	Subtask 5.4	Completion of lidar and testing
Week 19	Task 7	Task 7	Task 7	Testing/revise
Week 20	Task 7	Task 7	Task 7	Testing/revise
Week 21	Task 7	Task 7	Task 7	Testing/revise
Week 22	Task 7	Task 7	Task 7	Testing/revise