Adaptive Numerical Algorithms: Convergence and Efficiency

Hui Zhang, Jiaotong-Liverpool University

Zhenpeng.Liu20, Wanqian.Chen20

Abstract

The quadrature problem for a given function f(x) is to estimate the value of

$$If = \int_0^1 f(x) dx$$

Traditional quadrature formulas give estimates of the form:

$$Q_N f = \sum_{i=1}^N w_i f(x_i)$$

Adaptive quadrature is a numerical integration method that approximates the integral of a function f(x) using refined subintervals. It is efficient for both "well behaved" and "badly behaved" integrands, unlike traditional algorithms that may fail with the latter.

We have made **slight improvements** to the implementation of the algorithm in MATLAB and attempted to discuss its **bounded characteristics**.

Raw implementation

Algorithm 1 Raw adaptive simpson algorithm **Input** endpoints a,b; tolerance TOL; limit N to number of levels. Output approximation APP which is the integrate result. 1: **function** ADAPSIMPSON(f,a,b,tol) c = (a+b)/2c1 = (a+c)/2c2 = (a+c)/2Sab = 1/6 * (b - a) * (f(a) + 4 * f(c) + f(b))Sac = 1/6 * (c - a) * (f(a) + 4 * f(c1) + f(c))Scb = 1/6 * (b - c) * (f(c) + 4 * f(c2) + f(b))e = abs(Sab - Sac - Scb)/15if e < tol then q = Sac + Scb; x = [a; c1; c; c2; b]return 11: else 12: [qac, eac, xac] = ADAPSIMPSON(f, a, c, tol/2)13: [qcb, ecb, xcb] = ADAPSIMPSON(f, c, b, tol/2)14: 15: e = eac + ecb16: x = [xac(1:(end-1));xcb]17: end if 19: end function

Note: This implementation is based on iteration and may not provide the highest computational efficiency.

Example

Consider the integration:

$$\int_{eps}^{1} \frac{1}{\sqrt{x}} dx$$

It follow the assumption 1 and 2 $^{[1]}$ by :

$$f(x) = x^{-0.5}, w(x) = x, k = 16, \alpha = -0.5, p = 4$$

•
$$f^{(4)}(x) = \frac{105}{16}x^{-\frac{9}{2}} \le 16x^{-0.5-4} = 10x^{-\frac{9}{2}}$$

•
$$E(x,k) \le \left| \frac{h^5}{90} f^{(4)}(\xi) \right| \le \frac{7}{96} \cdot 2^{-k-1} \cdot x^{-\frac{9}{2}} \le 105 \cdot 2^{-64} \cdot x^{-\frac{9}{2}}$$

for enough large K

Improved implementations

Note: The biggest difference between loop1 and loop2 is that loop2 can be almost fully vectorized in supported languages (e.g., MATLAB), whereas loop1 is more difficult to vectorize.

Comparison

The calculation for the example: $\int_{eps}^{1} \frac{1}{\sqrt{x}} dx$

It is obvious they will have the same error because of the same algorithm. But the **time** taken for the same content varies. While their time complexity seems to be equivalent, loop2 is significantly faster.

Finite iteration

M' is the intervals has been divided; M contains a distinguished interval I*. $\gamma, \beta < 1, \epsilon > 0$

$$2 + \sum_{k=1}^{d_0 - 1} 2^{d_k} \le 2 + \sum_{k=1}^{d_0 - 1} 2^{\left[\frac{\log_2 \frac{\epsilon}{\beta^k \eta_0}}{\log_2 \gamma}\right]}$$

$$\le 2 + \sum_{k=1}^{d_0 - 1} \left[\frac{\epsilon}{\beta^k \eta_0}\right]^{\frac{1}{\log_2 \gamma}} \le 2 + \frac{\epsilon}{\eta_0}^{\frac{1}{\log_2 \gamma}} \sum_{k=1}^{\infty} \beta^{\frac{-k}{\log_2 \gamma}}$$

The geometric series in **convergent** since γ , β < 1 And the bounded is:

$$2 + \frac{\epsilon}{\eta_0} \frac{1}{\log_2 \gamma} \left[1 - \beta^{\frac{-k}{\log_2 \gamma}} \right] = o(\epsilon^{1/\log_2 \gamma})$$

Further research

- Using parallel calculation to increase the integration speed.
- Find a smaller bound for adaptive Simpson. And calculate its convergence rate.

Conclusion

Theoretical Insights and Convergence

- Delving deep into numerical algorithms, our study meticulously examines the
 convergence rate, subsequently delving into the exploration of convergence
 termination criteria. Through theoretical analysis, we present pragmatic solutions for
 real-world computational challenges.
 - **Empirical Validation and Exemplification**
- We substantiate our findings through **concrete examples**, demonstrating the efficacy of our proposed methodologies. These instances not only comprise theoretical analysis but also encompass tangible solutions to real-world problems, establishing the **versatility and robustness** of our approaches.
 - Innovations in Adaptive Simpson's Algorithm 🕸
- Propelling beyond conventional boundaries, we have two enhancements to the traditional implement of adaptive Simpson's algorithm. By applying our innovations to real-world scenarios, we not only drastically amplify computational speed though uphold the algorithm's original time complexity.

Our research propels numerical algorithms towards greater horizons!

We sincerely appreciate your thoughtful engagement!