Slip 1

1 Write a Python program to create a Pie plot to get the frequency of the three species of the Iris data (Use iris.csv)

```
In [14]: import pandas as pd
import matplotlib.pyplot as plt
data = pd.read_csv('/home/anup/i/iris.csv')
s_count=data['variety'].value_counts()
plt.pie(s_count,labels=s_count.index,autopct='%1.1f%%')
plt.show()
data
```


Out[14]:		sepal.length	sepal.width	petal.length	petal.width	variety
•	0	5.1	3.5	1.4	0.2	Setosa
	1	4.9	3.0	1.4	0.2	Setosa
	2	4.7	3.2	1.3	0.2	Setosa
	3	4.6	3.1	1.5	0.2	Setosa
	4	5.0	3.6	1.4	0.2	Setosa
	145	6.7	3.0	5.2	2.3	Virginica
	146	6.3	2.5	5.0	1.9	Virginica
	147	6.5	3.0	5.2	2.0	Virginica
	148	6.2	3.4	5.4	2.3	Virginica
	149	5.9	3.0	5.1	1.8	Virginica

150 rows × 5 columns

Write a Python program to view basic statistical details of the data.(Use wineequality-red.csv)

```
In [16]: import pandas as pd
    df = pd.read_csv("/home/anup/i/iris.csv")
        df.describe()
```

Out[16]:

	sepal.length	sepal.width	petal.length	petal.width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Slip 2

1 Write a Python program for Handling Missing Value. Replace missing value of salary, age column with mean of that column.(Use Data.csv file).

```
import pandas as pd
data = pd.read_csv('data.csv')
data
data['Skin_Fold'].fillna(data['Skin_Fold'].mean(),inplace=True)
data['Serum_Insulin'].fillna(data['Serum_Insulin'].mean(),inplace=True)
print(data)
```

	Pregnant	Glucose	Dias	tolic_BP	Skin_Fold	Serum_Insulin	BMI	\
0	6	148.0		72.0	35.00000	155.548223	33.6	
1	1	85.0		66.0	29.00000	155.548223	26.6	
2	8	183.0		64.0	29.15342	155.548223	23.3	
3	1	89.0		66.0	23.00000	94.000000	28.1	
4	0	137.0		40.0	35.00000	168.000000	43.1	
						• • •		
763	10	101.0		76.0	48.00000	180.000000	32.9	
764	2	122.0		70.0	27.00000	155.548223	36.8	
765	5	121.0		72.0	23.00000	112.000000	26.2	
766	1	126.0		60.0	29.15342	155.548223	30.1	
767	1	93.0		70.0	31.00000	155.548223	30.4	
	Diabetes_	Pedigree	Age	Class				
0	Diabetes_	0.627	50	1				
1		0.351	31	0				
2		0.672	32	1				
3		0.167	21	0				
4		2.288	33	1				
• •		•••		-				
763		0.171	63	0				
764		0.340	27	0				
765		0.245	30	0				
766		0.349	47	1				
767		0.315	23	0				
[760		, ,						

[768 rows x 9 columns]

Write a Python program to generate a line plot of name Vs salary

```
In [29]: import matplotlib.pyplot as plt
import pandas as pd
df=pd.read_csv('data.csv')
data
plt.plot(df['Skin_Fold'],df['Serum_Insulin'])
plt.xlabel('Skin_Fold')
plt.ylabel('Serum_Insulin')
plt.title("asd")
```

Out[29]: Text(0.5, 1.0, 'asd')

3 Download the heights and weights dataset and load the dataset from given csv file into a dataframe. Print the first, last 10 rows and random 20 rows also display shape of the dataset.

```
In [36]: import pandas as pd
    df = pd.read_csv('data.csv')
    df
    print("first 10 rows are :")
    print(df.head(10))
    print()
    print("Last 10 rows are :")
    print(df.tail(10))
    print()
    print("Random 20 rows are")
    print(df.sample(20))
    print()
    print("The shape of dataset is")
    print(df.shape)
```

first 10 rows	are :				
		stolic_BP	Skin_Fold	Serum_Insulin	BMI \
0 6	148.0	72.0	35.0	_	33.6
1 1	85.0	66.0	29.0		26.6
2 8	183.0	64.0	NaN		23.3
3 1	89.0	66.0	23.0		28.1
4 0	137.0	40.0	35.0		43.1
	116.0	74.0	NaN		25.6
6 3	78.0	50.0	32.0		31.0
7 10	115.0	NaN	NaN		35.3
8 2	197.0	70.0	45.0	543.0	30.5
9 8	125.0	96.0	NaN	NaN	NaN
Diabetes_Pe	digree Age	Class			
0	0.627 50				
1	0.351 31				
2	0.672 32				
3	0.167 21				
4	2.288 33				
5	0.201 30				
6	0.248 26				
7	0.134 29				
8	0.158 53	1			
9	0.232 54	1			
Last 10 rows a	no ·				
Pregnant		iastolic_B	Skin_Fold	Serum_Insulin	BMI \
758 1	106.0	76.0	_	_	
759 6	190.0	92.6			
760 2	88.0	58.6			
761 9	170.0	74.6			
762 9	89.0	62.6			
763 10	101.0	76.0	48.0	180.0	
764 2	122.0	70.6	27.0	NaN	36.8
765 5	121.0	72.0	23.0	112.0	26.2
766 1	126.0	60.6	NaN	NaN	30.1
767 1	93.0	70.0	31.0	NaN	30.4
Diabotos	Dodianoo A	an Class			
Diabetes_		ge Class			
758 750		26 0			
759		66 1			
760		22 0			
761		43 1			
762		33 0			
763		63 0			
764	0.340	27 0			
765	0.245	30 0			
766	0.349	47 1			
767	0.315	23 0			
Pandom 20 nove	200				
Random 20 rows		iactalia D) Cluim F-14	Conum Traculé.	DMT \
_		_	Skin_Fold		
595 0	188.0	82.6			
535 4	132.0	Nal			
41 7	133.0	84.6			
103 1	81.0	72.6	18.0	40.0	26.6
51 1	101.0	50.6	15.0	36.0	24.2
407 0	101.0	62.6) NaN	NaN	21.9
170 6	102.0	82.6	NaN	NaN	30.8
216 5	109.0	62.6			
321 3	112.0	74.6			

599	1	109.0	38.0	18.0	120.0	23.1
52	5	88.0	66.0	21.0	23.0	24.4
373	2	105.0	58.0	40.0	94.0	34.9
81	2	74.0	NaN	NaN	NaN	NaN
126	3	120.0	70.0	30.0	135.0	42.9
693	7	129.0	68.0	49.0	125.0	38.5
522	6	114.0	NaN	NaN	NaN	NaN
647	0	179.0	50.0	36.0	159.0	37.8
451	2	134.0	70.0	NaN	NaN	28.9
155	7	152.0	88.0	44.0	NaN	50.0
495	6	166.0	74.0	NaN	NaN	26.6

Dishatas Dadismas	۸	C1
	_	Class
0.682	22	1
0.302	23	1
0.696	37	0
0.283	24	0
0.526	26	0
0.336	25	0
0.180	36	1
0.514	25	1
0.197	25	1
0.407	26	0
0.342	30	0
0.225	25	0
0.102	22	0
0.452	30	0
0.439	43	1
0.189	26	0
0.455	22	1
0.542	23	1
0.337	36	1
0.304	66	0
	0.696 0.283 0.526 0.336 0.180 0.514 0.197 0.407 0.342 0.225 0.102 0.452 0.452 0.459 0.189 0.455 0.542 0.337	0.682 22 0.302 23 0.696 37 0.283 24 0.526 26 0.336 25 0.180 36 0.514 25 0.197 25 0.407 26 0.342 30 0.225 25 0.102 22 0.452 30 0.439 43 0.189 26 0.542 23 0.337 36

The shape of dataset is (768, 9)

Slip 3

Write a Python program to create box plots to see how each feature i.e. Sepal Length, Sepal Width, Petal Length, Petal Width are distributed across the three species. (Use iris.csv dataset)

```
In [45]:
         import matplotlib.pyplot as plt
         import pandas as pd
         import seaborn as sns
         df = pd.read_csv('/home/anup/i/iris.csv')
         df
         #box plot for sepal length
         plt.figure(figsize=(15,8))
         plt.subplot(2,2,1)
         sns.boxplot(x='variety',y='sepal.length',data=df)
         #box plot for sepal width
         plt.subplot(2,2,2)
         sns.boxplot(x='variety',y='sepal.width',data=df)
         #box plot for petal length
         plt.subplot(2,2,3)
         sns.boxplot(x='variety',y='petal.length',data=df)
         #box plot for petal width
         plt.subplot(2,2,4)
         sns.boxplot(x='variety',y='petal.width',data=df)
```

Out[45]: <AxesSubplot:xlabel='variety', ylabel='petal.width'>

Write a Python program to view basic statistical details of the data (Use Heights and Weights Dataset)

```
In [46]: import pandas as pd
    df = pd.read_csv("/home/anup/i/iris.csv")
    df.describe()
```

Out[46]:

	sepal.length	sepal.width	petal.length	petal.width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Slip 4

Generate a random array of 50 integers and display them using a line chart, scatter plot, histogram and box plot. Apply appropriate color, labels and styling options.

```
import numpy as np
In [55]:
         import matplotlib.pyplot as plt
         arr = np.random.randint(0,100,50)
         #line chart
         plt.subplot(2,2,1)
         plt.plot(arr,color='orange',label='abc',marker='*')
         #scatterplot
         plt.subplot(2,2,2)
         plt.scatter(arr, range(50))
         #histogram
         plt.subplot(2,2,3)
         plt.hist(arr)
         #boxplot
         plt.subplot(2,2,4)
         plt.boxplot(arr)
         plt.show()
```


) Write a Python program to print the shape, number of rows-columns, data types, feature names and the description of the data(Use User Data.csv)

```
In [64]:
         import pandas as pd
         data=pd.read_csv('data.csv')
         data
         s=data.shape
         num row, num col=s
         data_type=data.dtypes
         feature name=data.columns
         description=data.describe()
         print(s)
         print(num_row)
         print(num_col)
         print(data_type)
         print(feature_name)
         print(description)
         (768, 9)
         768
         9
         Pregnant
                                 int64
         Glucose
                               float64
         Diastolic_BP
                               float64
                               float64
         Skin_Fold
         Serum_Insulin
                               float64
                               float64
         Diabetes_Pedigree
                               float64
         Age
                                 int64
         Class
                                 int64
         dtype: object
         Index(['Pregnant', 'Glucose', 'Diastolic_BP', 'Skin_Fold', 'Serum_Insuli
         n',
                 'BMI', 'Diabetes_Pedigree', 'Age', 'Class'],
                dtype='object')
                                                         Skin_Fold
                   Pregnant
                                Glucose Diastolic BP
                                                                    Serum_Insulin
                768.000000
                             763.000000
                                            733.000000 541.000000
                                                                        394.000000
         count
                   3.845052 121.686763
                                            72.405184
                                                         29.153420
                                                                        155.548223
         mean
         std
                   3.369578
                              30.535641
                                             12.382158
                                                         10.476982
                                                                        118.775855
                              44.000000
         min
                   0.000000
                                             24.000000
                                                          7.000000
                                                                        14.000000
         25%
                   1.000000
                              99.000000
                                             64.000000
                                                         22.000000
                                                                         76.250000
         50%
                   3.000000 117.000000
                                             72.000000
                                                         29.000000
                                                                        125.000000
         75%
                   6.000000
                             141.000000
                                             80.000000
                                                         36.000000
                                                                        190.000000
         max
                  17.000000
                             199.000000
                                            122.000000
                                                         99.000000
                                                                        846.000000
                        BMI
                             Diabetes Pedigree
                                                        Age
                                                                   Class
         count 757.000000
                                    768.000000
                                                 768.000000
                                                            768.000000
         mean
                  32.457464
                                      0.471876
                                                  33.240885
                                                               0.348958
         std
                   6.924988
                                      0.331329
                                                  11.760232
                                                               0.476951
         min
                  18.200000
                                      0.078000
                                                  21.000000
                                                               0.000000
         25%
                  27.500000
                                      0.243750
                                                  24.000000
                                                               0.000000
         50%
                  32.300000
                                      0.372500
                                                  29.000000
                                                               0.000000
         75%
                  36.600000
                                      0.626250
                                                  41.000000
                                                               1.000000
         max
                  67.100000
                                      2.420000
                                                  81.000000
                                                               1.000000
```

slip 7

Write a Python program to perform the following tasks: a. Apply OneHot coding on Country column. b. Apply Label encoding on purchased column (Data.csv have two categorical column the country column, and the purchased column).

```
In [70]: import pandas as pd
    data = pd.read_csv('data.csv')
    #apply onehot coding
    data = pd.get_dummies(data,columns=['Glucose'])
    data
    #apply lebel encoding
    data['Skin_Fold']=data['Skin_Fold'].map({'Yes':1,'No':0})
    data
```

α	1712	
UULL	1 / 2	
	L . ~]	٠,

	Pregnant	Diastolic_BP	Skin_Fold	Serum_Insulin	ВМІ	Diabetes_Pedigree	Age	Class
0	6	72.0	NaN	NaN	33.6	0.627	50	1
1	1	66.0	NaN	NaN	26.6	0.351	31	0
2	8	64.0	NaN	NaN	23.3	0.672	32	1
3	1	66.0	NaN	94.0	28.1	0.167	21	0
4	0	40.0	NaN	168.0	43.1	2.288	33	1
763	10	76.0	NaN	180.0	32.9	0.171	63	0
764	2	70.0	NaN	NaN	36.8	0.340	27	0
765	5	72.0	NaN	112.0	26.2	0.245	30	0
766	1	60.0	NaN	NaN	30.1	0.349	47	1
767	1	70.0	NaN	NaN	30.4	0.315	23	0

768 rows × 143 columns

4

Slip 8

Write a program in python to perform following task: [15] Standardizing Data (transform them into a standard Gaussian distribution with a mean of 0 and a standard deviation of 1) (Use winequality-red.csv)

```
import pandas as pd
In [71]:
         import s
         data = pd.read_csv('/home/anup/i/iris.csv')
         print(data)
         data=(data - data.mean())/data.std() # to standardizing data
         print(data)
```

	sepal.length	sepal.width	petal.length	petal.width	variety
0	5.1	3.5	1.4	0.2	Setosa
1	4.9	3.0	1.4	0.2	Setosa
2	4.7	3.2	1.3	0.2	Setosa
3	4.6	3.1	1.5	0.2	Setosa
4	5.0	3.6	1.4	0.2	Setosa
		• • •			
145	6.7	3.0	5.2	2.3	Virginica
146	6.3	2.5	5.0	1.9	Virginica
147	6.5	3.0	5.2	2.0	Virginica
148	6.2	3.4	5.4	2.3	Virginica
149	5.9	3.0	5.1	1.8	Virginica
[150	nous v E solu	mn c 1			
[136	rows x 5 colu	-	consl longth	const width	vaniatv
•	petal.length	•	sepal.length	sepal.width	-
0	-1.335752	-1.311052	-0.897674	1.015602	NaN
1	-1.335752	-1.311052	-1.139200	-0.131539	NaN
2	-1.392399	-1.311052	-1.380727	0.327318	NaN
3	-1.279104	-1.311052	-1.501490	0.097889	NaN
4	-1.335752	-1.311052	-1.018437	1.245030	NaN
		• • •			• • •
145	0.816859	1.443994	1.034539	-0.131539	NaN
146	0.703564	0.919223	0.551486	-1.278680	NaN
147	0.816859	1.050416	0.793012	-0.131539	NaN
148	0.930154	1.443994	0.430722	0.786174	NaN

[150 rows x 5 columns]

0.760211

149

/tmp/ipykernel_4199/696278818.py:4: FutureWarning: The default value of nu meric only in DataFrame.mean is deprecated. In a future version, it will d efault to False. In addition, specifying 'numeric_only=None' is deprecate d. Select only valid columns or specify the value of numeric_only to silen ce this warning.

0.068433

-0.131539

data=(data - data.mean())/data.std()

0.788031

/tmp/ipykernel_4199/696278818.py:4: FutureWarning: The default value of nu meric_only in DataFrame.std is deprecated. In a future version, it will de fault to False. In addition, specifying 'numeric_only=None' is deprecated. Select only valid columns or specify the value of numeric_only to silence this warning.

data=(data - data.mean())/data.std()

NaN

Slip 9

Create two lists, one representing subject names and the other representing marks obtained in those subjects. Display the data in a pie chart.

```
In [75]: import matplotlib.pyplot as plt
subjects =['Java','TCS','FDS']
marks=[99,99,56]
plt.pie(marks,labels=subjects,autopct='%1.f%%')
plt.show()
```


Slip 10

Write a python program to Display column-wise mean, and median for SOCR- HeightWeight dataset.

```
In [77]:
         import pandas as pd
         data = pd.read_csv('data.csv')
         print(data.mean())
         print(data.median())
         Pregnant
                                 3.845052
         Glucose
                               121.686763
         Diastolic_BP
                                72.405184
         Skin_Fold
                                29.153420
         Serum_Insulin
                               155.548223
         BMI
                                32.457464
         Diabetes_Pedigree
                                 0.471876
                                33.240885
         Age
         Class
                                 0.348958
         dtype: float64
         Pregnant
                                 3.0000
         Glucose
                               117.0000
         Diastolic BP
                               72.0000
         Skin_Fold
                                29.0000
         Serum_Insulin
                               125.0000
         BMI
                                32.3000
         Diabetes_Pedigree
                                 0.3725
                                29.0000
         Age
         Class
                                 0.0000
         dtype: float64
```

Write a python program to compute sum of Manhattan distance between all pairs of points.

```
In [82]: p=(0,2,1)
    q=(2,5,6)
    dist=abs(p[0]-q[0])+abs(p[1]-q[1])+abs(p[2]-q[2])
    dist
Out[82]: 10
```

Write a Python program to create a graph to find relationship between the petal length and petal width.(Use iris.csv dataset)

```
In [89]: import matplotlib.pyplot as plt
import pandas as pd
data=pd.read_csv('/home/anup/i/iris.csv')
plt.scatter(data['petal.length'],data['petal.width'])
plt.show()
```


Write a Python program to find the maximum and minimum value of a given flattened array

Write a python program to create a data frame for students' information such as name, graduation percentage and age. Display average age of students, average of graduation percentage.

```
In [94]: import pandas as pd
    data = {'name':['asd','fgh','zxc'],'per':[12,56,89],'age':[56,98,5]}
    df=pd.DataFrame(data)
    df
    avg=df['age'].mean()
    avg
    avg1=df['per'].mean()
    avg1
```

Out[94]: 52.33333333333333

Add two outliers to the above data and display the box plot.

```
In [101]: import numpy as np
    import matplotlib.pyplot as plt
    arr = np.random.randint(0,100,50)
    arr[0]=200
    arr[1]=170

    plt.boxplot(arr)
    plt.show()
```



```
In [ ]:
```