Nanostructure Origins of C₆₀ Fluorescence in Pyridine

Fang Zhang and Yan Fang*

Beijing Key Lab for Nano-photonics and Nano-structure, Department of Physics, Capital Normal University, Beijing 100037, People's Republic of China

Received: November 29, 2005; In Final Form: March 21, 2006

The nanostructure origins of three distinct and strong fluorescence bands of C_{60} in room-temperature pyridine are reported for the first time. Fluorescence study and in-situ TEM observation on C_{60} -pyridine solutions with different setting times exhibit that the blue fluorescence peaks centered at 440 nm originate from C_{60} nanoparticles; the yellow-green fluorescence band located at 575 nm derives from C_{60} lace-like cluster; and the salmon pink fluorescence band around 700 nm arises from C_{60} microbulk in solution. The conclusions are supported further by investigation on the C_{60} -toluene system as well.

Introduction

Since photoluminescence of C_{60} has a potential application in areas such as optics, electrics, materials science, and biomedicine, $^{1-3}$ investigating the emission mechanism to achieve high-quality fluorescence of C_{60} is of great significance. However, due to low fluorescence quantum yield, induced not only by the intersystem crossing from singular state to the excited triplet state but also by the forbidden electronic transitions resulted from the high symmetry of I_h , $^{4-6}$ it is difficult to observe fluorescence from isolate C_{60} . Although well-resolved fluorescence spectra from C_{60} in solids and glassy organic solvents have been reported due to the low-temperature-induced symmetry reduction, $^{7-12}$ to the best of our knowledge, room-temperature fluorescence spectra of C_{60} , obtained both in common solvents and on various substrates, are either incomplete or less resolved to date. 13,14

In contrast, in the range from 425 to 764 nm, our recent successful observation of a series of strong fluorescence peaks from room-temperature C60-pyridine solution discloses a potential application of C₆₀ as a novel white light photosensitive and luminescent material. 15 Nonetheless, even though consensus on solvent-induced reduction 16 of the I_h symmetry and thus increase of fluorescence radiation rate seems to exist, theoretical or experimental evidence acquired so far are still not persuasive enough for revealing the origin of the rich and distinct fluorescence of C₆₀ in pyridine. According to linear solvation energy (LSER) 17 analysis on the solubility of C_{60} , three solid phases of C₆₀ might exist in the supersaturate solution, including solvate, solvate crystalline, and unsolvated C₆₀. Hence, in accordance with the X-traps scheme¹⁸ interpreting that electronic state of C₆₀ may change with the particular environment, we presume that different emission centers might exist to be responsible for the fluorescence bands from C₆₀-pyridine solution.

In this paper, fluorescence measurements and simultaneous transmission electron micrograph (TEM) observations on supersaturated C_{60} -pyridine solutions were carried out in an effort to elucidate the generation of C_{60} fluorescence in pyridine at room temperature. Three nanostructure origins, including C_{60} nanoparticles, C_{60} lace-like cluster, and C_{60} micron bulk, are reported for the three strong fluorescence emission bands of C_{60} in room-temperature pyridine first. The conclusions are further supported by investigations on the C_{60} -toluene system as well.

Figure 1. Fluorescence spectrum of C₆₀ in pyridine at room temperature, excited at 400 nm.

Experimental Section

A total of 10 mg of C_{60} (99.9%) was ultrasonically dissolved in 10 mL of pyridine (HPLC grade) for 10 h to form a brown supersaturated solution, and 3.0 mg/mL C_{60} -toluene solution was prepared through the same method. The fluorescence spectra were recorded by Fluorolog-3 spectrometer (JY), excited at 400 mm, with the excitation and emission slit widths being 5 nm. C_{60} solutions with different setting time were doped on the surface of ultrathin carbon film and dried at room temperature before being taken as TEM samples. The TEM images were obtained by H600TEM (HiTachi), and the magnification is in the range from 5×10^3 to 1×10^5 . The centrifugation of the C_{60} -pyridine solution was performed at 1200 revolutions/s for 5 min by employing a TDL-50B centrifugal separator. All the measurements were taken at room temperature.

Results and Discussion

The fluorescence spectrum of 1.3 mg/mL C_{60} in pyridine is exhibited in Figure 1. As we can see, three strong fluorescence bands (centered at 440, 575, and 700 nm, respectively) are obtained. Particularly, the blue fluorescence band is composed of five sharp peaks at 425, 443, 465, 480, and 490 nm. The yellow-green fluorescence band seems to include two peaks at

Figure 2. Fluorescence spectra of C₆₀-pyridine solutions settled for (a) 7 days, (b) 7 h, and (c) 7 min.

557 and 575 nm. The wide salmon pink fluorescence band also slips into seven peaks at 616, 646, 668, 685, 712, 730, and 764 nm. Owning to such rich fluorescence emission, the C₆₀-pyridine system, being superior to the yellow-green luminescent LED¹⁹ that stirred wide interest among researchers, has a significant potential of being novel C60-based white light photosensitive and luminescent material.

To investigate the mechanism of C₆₀ luminescence emission in pyridine, the fluorescence measurements and TEM observations were taken on C₆₀-pyridine solutions. First of all, fluorescence spectra were obtained at 7 min, 7 h, and 7days after the ultrasonication preparation process of the C_{60} -pyridine solution in sequence. Figure 2a displays the fluorescence

spectrum of 1.0 mg/mL C₆₀-pyridine solution settled for 7 days. As we can see, in addition to a broad emission band centered at 700 nm, a blue band centered at 440 nm is present with approximately two times stronger intensity. Simultaneously, the general existence of isolated C₆₀ nanoparticles in this solution can be exhibited by a TEM image (Figure 3a). It noticed not only that the maximum diameter of the C_{60} nanoparticles is about 250 nm but also that each C₆₀ nanoparticle consists of a number of smaller C₆₀ grains with diameters about several nanometers (Figure 3b). This provides a visible evidence for the analysis on C₆₀ solubility by Kaneto et al.²⁰ that the C₆₀ molecule in solution is not singly isolated but forms a finite cluster assembled with several C₆₀ molecules. Anyway, it can be clarified that C₆₀ molecules dissolved in solution are in the existence of nanoparticles.

What is the reason for C_{60} nanoparticles existing as stable in pyridine? With the fact in mind that C₆₀ is an energetic electron acceptor and pyridine is an electron donor, we conjecture that interaction with little charge-transfer could occur between them, and thus an electropositive solvent cage of pyridine for C₆₀ nanoparticles would be formed. Therefore, due to the repulsion between solvent cages, C₆₀ nanoparticles are not easy to assemble with each other in solution.

Furthermore, because of the large specific surface area of the C₆₀ nanograin mentioned above, most of the C₆₀ molecules are located at the interface between C₆₀ and solvent (i.e., the C₆₀ molecule in nanoparticle has adequate opportunities to interact strongly with pyridine). As a result, solvent-induced symmetry degradation of C₆₀ would generate C₆₀ nanoparticle as a fluorescence emission center. As far as the main fluorescence emission of this solution is concerned (Figure 2a), it is not difficult to draw a conclusion that the blue fluorescence band centered at 440 nm probably originates from C₆₀ nanoparticles in solution, as is also supported by a reflection of the vibronic sidebands of C₆₀ from the fine structure of this blue

Figure 3. TEM images of C₆₀-pyridine solutions settled for (a) 7 days, (b) 7 days, (c) 7 h, and (d) 7 min.

Figure 4. (A) Fluorescence spectra of (a) C_{60} -pyridine solution; (b) the up layer C_{60} -pyridine solution after centrifugation; (c) the low layer C_{60} -pyridine solution after several processes of dilution and centrifugation. In-situ TEM images corresponding to (B) spectrum b and (D) spectrum d.

fluorescence band shown in Figure 1, in view of the energy intervals between adjacent peaks corresponding well with the surface-enhanced Raman spectrum of C_{60} in pyridine at 772 cm⁻¹ [0.09 ev, $H_g(4)$], 574 cm⁻¹ [0.11 ev, $T_{1u}(2)$], 710 cm⁻¹ [0.14 ev, $H_g(3)$], 772 cm⁻¹ [0.09 ev, $H_g(4)$], and 496 cm⁻¹ [0.06 ev, $A_g(1)$], respectively.²¹

In addition to C_{60} nanoparticles, there are also a few micron C_{60} solid blocks in the range from 600 to 1320 nm (Figure 3a), which indicates the existence of "unsolvated C_{60} " in supersaturated solution. The weak fluorescence band located at 700 nm (Figure 2a), matching very well the 20 K luminescence spectrum of solid C_{60} film deposited on CaF_2^{22} and especially the luminescence spectrum of polycrystalline solid at 5 K, 12 is presumed to arise from these micron blocks of C_{60} in solution, as is to be discussed in detail later.

To interpret the generation of fluorescence bands centered at 575 and 700 nm, fluorescence measurements and TEM observations were carried out on 1.0 mg/mL C_{60} -pyridine solution after setting the sample for 7 h. As is exhibited, three strong fluorescence bands are emitted from this solution (Figure 2b) in the company with a large number of C_{60} lace-like clusters (Figure 3c) coming into sight in addition to the identical C_{60} nanoparticles and micron C_{60} blocks observed previously. Noticeably, the spherical C_{60} nanoparticles in the clusters have similar diameters as the ones that are isolated in the solution.

How is the cluster formed in the solution? Why was it not observed in the solution that was settled for longer time? It is proposed that the characteristic interaction between C₆₀ and pyridine plays a crucial role in the formation of the C₆₀ lacelike cluster. In the beginning of the supersonic dissolution process, as is shown previously, C₆₀ is distributed into the solution in the existence of isolated nanoparticles wrapped in the solvent cage of pyridine. However, with the concentration increasing, a clash between C₆₀ nanoparticles would in turn be intense enough to break the solvent cage of isolated C₆₀ nanoparticle and stimulate the formation of a mutual solvent cage around several C₆₀ nanoparticles. This signifies the combination of C₆₀ nanoparticles (i.e., the formation of C₆₀ lacelike clusters). Additionally, the intertwining of lace-like clusters may directly result in the final deposition of C₆₀ clusters with large accumulated mass when the supersaturate C₆₀-pyridine solution was settled for a long enough time. Compared with the C_{60} molecules in nanoparticles, C_{60} in cluster might become a unique fluorescence emission center due to the extra restriction effect from the lace-like chain. Furthermore, taking the case in Figure 2a as a reference, the emergence of a novel yellow-green fluorescence band with the presence of C_{60} lace-like clusters in solution definitely explicates that the fluorescence band centered at 575 nm may derive from the C_{60} lace-like cluster.

Moreover, Figure 3b also displays a stronger and more informative fluorescence band around 700 nm than the counterpart shown in Figure 3a. As we can see, the separate lines in the salmon pink fluorescence are in good agreement with the fluorescence lines obtained from crystalline C₆₀ at 1.2K.⁷ Especially, the fluorescence peak at 730 nm corresponds well with the line that is interpreted as fluorescence from C₆₀ molecules located in a perfect crystal environment.¹⁸ Thus, unsolvated bulk C₆₀ in supersaturated solution would be estimated to be responsible for the fluorescence emission centered at 700 nm. To establish this assumption tentatively, a different fluorescence spectrum was obtained by reducing the settle time to 7 min (Figure 2c). Taking Figure 2b as a reference, there is a dramatic increase in the relative intensity of the salmon pink fluorescence band with more unslovated micron C₆₀ blocks present as shown in Figure 3d.

As is well-reported, the interaction of C_{60} molecules in room-temperature solid film is not so strong as to induce structured fluorescence emission. While, a weak electron—electron repulsion in a delocalized system (viz., the solvent-induced distortion of molecule in the solid matrix) would create C_{60} in micron blocks as a somewhat well-resolved fluorescence emission center. Thus, according to the further enhancement in relative intensity of fluorescence around 700 nm together with the increasing amount of micron C_{60} blocks in solution, the fluorescence emission centered at 700 nm would be ascribed to C_{60} microblocks in the supersaturated solution.

To give further evidence for the conclusion we have achieved above, fluorescence spectra and TEM images of 1.0 mg/mL C_{60} -pyridine solution after centrifugal separation are displayed in Figure 4. As we can see in Figure 4a, the fluorescence of the C_{60} -pyridine solution consists of three strong fluorescence bands centered at 440, 575, and 700 nm, respectively. After centrifugal separation at 1200 revolutions/s for 5 min, the solution is separated into two layers (i.e., the upper purple settled solution

Figure 5. Fluorescence spectra of C₆₀-toluene solutions settled for (a) 7 h and (b) 7 min. In-situ TEM images corresponding to (A) spectrum a, (B and C) spectrum b.

and the lower brownish-black opaque solution). From the up layer solution, a fluorescence band at 440 nm appears apparently (Figure 4b) in company with the in-situ TEM image (Figure 4B) exhibiting the only presence of C₆₀ nanoparticals. So far, it can be approved that the fluorescence band located at 440 nm originates from C₆₀ nanoparticals.

Comparatively, no fluorescence peaks in the UV portion emitted from the low layer brownish-black solution, and only two fluorescence bands centered at 575 and 700 nm were achieved as shown in Figure 4c. After several processes of diluting and centrifugal separating, the color of this solution turns to brownish-yellow. Only the band at 575 nm is present with a strong relative intensity (Figure 4d) with the in-situ TEM image (Figure 4D) exhibiting that C_{60} in this solution is almost in the existence of lace-like cluster, as provides an eloquent evidence to the conclusion that the fluorescence band centered at 575 nm arises from C₆₀ lace-like cluster.

Additionally, as for the color change of solution from dark to light after dilution and centrifugation, it is considered as the result of a gradual dissolving of C₆₀ microbulks into the solution. The simultaneous decay of a band centered at 700 nm in Figure 4d is very compatible with the conclusion that the fluorescence band centered at 700 nm is emitted from bulk C₆₀ in supersaturated solution.

To gain more confidence in our assignments for the three strong fluorescence bands of C₆₀ in pyridine, fluorescence measurements and TEM observations were taken on the C₆₀toluene system as well. Figure 5a shows the fluorescence spectrum of 3.0 mg/mL C₆₀-toluene solution that is settled for 7 h. As we can see, with most of C_{60} dissolved in solution being in the existence of particles with an average diameter of 80 nm (Figure 5a), two fluorescence bands located at 440 and 700 nm are observed. Especially, the blue fluorescence band is of about 6 times stronger in intensity than the structureless salmon pink

fluorescence band. Correspondingly, when the settle time for the 3.0 mg/mL C₆₀-toluene solution was reduced to 7 min, it can be seen that, with the emergence of plenty of solvate crystalline C₆₀ (Figure 5b) and unsolvated C₆₀ microblocks (Figure 5c), the fluorescence band located at 700 nm (Figure 5b) is enhanced by a factor of 2 in relative intensity. From the evidence presented above, the previous attributions of fluorescence bands centered at 440 and 700 nm in supersaturate C₆₀pyridine solution can be further confirmed.

As for the distinctive fine structures of C_{60} fluorescence band around 440 nm in toluene and pyridine, we believe it is a result of the characteristic interaction between C₆₀ and solvents. While the general identity of the C₆₀ fluorescence bands centered at 700 nm in the two solvents may account for the weak solvent effect on C_{60} in the solid matrix. In addition, it is also noticed that the fluorescence band at 575 nm disappears with the absence of lace-like clusters of C₆₀ in the C₆₀-toluene system, which not only agrees well with the fact that the formation of lacelike clusters of C₆₀ is related to the special interaction between C₆₀ and pyridine but also is compatible with the conclusion that yellow-green fluorescence band centered at 575 nm originates from C₆₀ lace-like cluster.

Conclusion

In collusion, the nanostructure origins of the three strong fluorescence emission bands of C₆₀ in room-temperature pyridine are reported for the first time. Through fluorescence and TEM observation carried out on the C₆₀-pyridine solution settled for different times, it is revealed that the blue fluorescence peaks centered at 440 nm derives from C₆₀ nanoparticles; the yellowgreen fluorescence band located at 575 nm arises from C₆₀ lacelike cluster; the salmon pink fluorescence band around 700 nm originates from microbulk C₆₀ in solution. And the conclusions above are supported by further investigations on the C₆₀-toluene system as well. In a word, solvent-induced nanostructure determines the interaction pattern of C_{60} with solvent, and thus the shape and color of C_{60} fluorescence band in solution may not only open a doorway for further systematic studies of fluorescence of C_{60} in solution but also provide a novel application potential of fullerne in white light photosensitive and luminescent material.

Acknowledgment. The authors are grateful for the support of this research by the National Natural Science Foundation of China and the Natural Science Foundation of Beijing.

References and Notes

- (1) Schick, G.; Levitus, M.; Kvetko, L. D.; Johnson, B. A.; Lamparth, I.; Lunkwitz, R.; Ma, B.; Khan, S. I.; Garcia-Garibay, M. A.; Rubin, Y. *J. Am. Chem. Soc.* **1999**, *121*, 3246–3247.
 - (2) Gupta N.; Santhanam, K. S. V. Chem. Phys. 1994, 185, 113.
- (3) Cheng, J.-x.; Fang, Y.; Huang, Q.-j.; Yan, Y.-J.; Li, X.-Y. Chem. Phys. Lett. **2000**, 330, 262.
- (4) Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. *Nature* 1991, 347, 354.
- (5) Bethune, D. S.; Meijer, G.; Tang, W. C.; Rosen, H. J. Chem. Phys. Lett. 1990, 174, 219.
- (6) Johnson, R. D.; Meijer, G.; Bethune, D. S. J. Am. Chem. Soc. 1990, 112, 8983.
- (7) van den Heuvel, D. J.; van den Berg, G. J. B.; Groenen, E. J. J.; Schmidt, J. *J. Phys. Chem.* **1995**, *99*, 11644.

- (8) Wang, Y. J. Phys. Chem. 1992, 96, 764.
- (9) Zeng, Y.; Biczok, I.; Linschitz, H. J. Phys. Chem. 1992, 96, 5237.
- (10) Reber, C.; Yee, L.; McKiernan, J. I.; Williams, R. S.; Tong, W. M.; Ohlberg, D. A. A.; Whetten, R. L.; Diederich, F. *J. Phys. Chem.* **1991**, 95, 187.
- (11) Sauvajol, J. L.; Hricha, Z.; Coustel, N.; Zahab, A. Aznar J. Phys.: Condens. Matter 1993, 5, 2045.
- (12) Sibley, S. P.; Argentine, S. M.; Francis, A. H. Chem. Phys. Lett. 1992, 188, 187.
- (13) Xia, A.; Pan, H.; Zhang, X.; Hong, Y.; Fu, S.; Shi, J.; Zuo, J.; Xu, C. *J. Lumin.* **1995**, *63*, 301.
 - (14) Kim, D.; Lee, M. J. Am. Chem. Soc. 1992, 114, 4429.
 - (15) Zhao, Y.; Fang, Y. J. Phys. Chem. 2004, 108, 13586.
 - (16) Herzberg, E.; Teller, Z. Phys. Chem. B 1933, 21, 410.
- (17) Korobov, M. V.; Mirakyan, A. L.; Avramenko, N. V.; Stukalin, E. B. J. Phys. Chem. B 2002, 105, 2499.
- (18) Feldmann, J.; Guss, W.; Lemmer, U.; Göebl, E. O.; Taliani, C.; Mohn, H.; Müller, W.; Häussler, P.; Ter Meer, H.-U. *Mol. Cryst. Liq. Cryst.* **1994**, *256*, 757.
- (19) Hutchison, K.; Sichick, J. G.; Rubin, Y.; Wudl, F. J. Am. Chem. Soc. 1999, 121, 5611.
- (20) Kaneto, K.; Abe, T.; Takashima, W. Solid State Commun. 1995, 96, 259
 - (21) Yang, X.-C.; Fang, Y. J. Phys. Chem. B 2003, 107, 10100.
- (22) Reber, C.; Yee, L.; McKiernan, J.; Zink, J. I.; Williams, R. S.; Tong, W. M.; Ohlberg, D. A. A.; Whetten, R. L.; Diederich, F. *J. Phys. Lett.* **1991**, *95*, 2127.
- (23) Arbogast, J. W.; Darmanyan, A. P.; Foote, C. S.; Rubin, Y.; Diederich, F. N.; Alvarez, M. M.; Anz, S. J.; Whetten, R. L. *J. Phys. Chem.* **1991**, *95*, 11.