

Өгөгдлийн сангийн үндэс (CSII202 - 3 кр) Database Systems

Lecture 2: The relational model

МУИС, ХШУИС, МКУТ-ийн багш *Док.* Довдонгийн Энхзол

"No great marketing decisions have ever been made on qualitative data." – By John Sculley, CEO of Apple Inc

In This Lecture

- Relational data integrity
- For more information
 - Connolly and Begg chapter 3

The Relational Model

 The foundation for most (but not all) current database systems

- Concerned with 3 main things
 - Data structure (how data is represented)
 - Data integrity (what data is allowed)
 - Data manipulation (what you can do with the data)

Relational Data Structure

- Data is stored in relations (tables)
- Each relation has a scheme (heading)
- The scheme defines the relation's attributes (columns)
- Data takes the form of tuples (rows)

New thing:scheme (and attributes)

Before... After

Unnamed and named tuples

A tuple is A tuple is <John, 23> {(Name, John), (Age, 23)} **Attributes** Ağe Just numbers Name Scheme of columns 23 John 23 John Mary 20 20 Mary Tuples Tuples 18 18 Mark Mark Jane Jane 21

Not a big difference!

- There is no fundamental difference between named and unnamed perspectives on relations
- We could have written tuples <a,b,c> as sets of pairs {(1,a), (2,b),(3,c)}, only we know anyway in which order 1,2,3 go, so we can skip the numbers.
- Written as sets of pairs (partial functions), tuples can be written in any order, e.g. {(3,c), (2,b),(1,a)}.

Relational Data Structure

- More formally -
 - A scheme is a set of attributes
 - A tuple assigns a value to each attribute in its scheme
 - A relation is a set of tuples with the same scheme


```
{ (Name, John), (Age, 23) },
{ (Name, Mary), (Age, 20) },
{ (Name, Mark), (Age, 18) },
{ (Name, Jane), (Age, 21) }
```

Relations

Scheme is {ID, Name, Salary, Department}

Attributes are ID, Name, Salary, and Department

Degree is 4

(Name	Salary	Department
	M139 M140 A368 P222 A367	John Smith Mary Jones Jane Brown Mark Brown David Jones	22,000 22,000	Marketing Tuples, e.g. Marketing { (ID, A368),
	A367	David Jones	20,000	Accounts (Department, Accounts

Cardinality is 5

Relational Data Integrity

- Data integrity controls what data can be in a relation
 - Domains restrict the possible values a tuple can assign to each attribute
 - Candidate and Primary Keys identify tuples within a relation
 - Foreign Keys link relations to each other

Attributes and Domains

- A domain is given for each attribute
- The domain lists the possible values for that attribute
- Each tuple assigns a value to each attribute from its domain

- Examples
 - An 'age' might have to come from the set of integers between 0 and 150
 - A 'department' might come from a given list of strings
 - A 'notes' field might allow any string at all

Candidate Keys

- A set of attributes in a relation is called a candidate key if, and only if,
 - Every tuple has a unique value for the set of attributes (uniqueness)
 - No proper subset of the set has the uniqueness property (minimality)

The Relational Model

ID	First	Last
S139	John	Smith
S140	Mary	Jones
S141	John	Brown
S142	Jane	Smith

Candidate key: {ID}; {First,Last} looks plausible but we may get people with the same name

{ID, First}, {ID, Last} and {ID, First, Last} satisfy uniqueness, but are not minimal {First} and {Last} do not give a unique identifier for each row

Choosing Candidate Keys

- Important: don't look just on the data in the table to determine what is a candidate key
- The table may contain just one tuple, so anything would do!
- Use knowledge of the real world what is going to stay unique!

Primary Keys

- One Candidate Key is usually chosen to be used to identify tuples in a relation
- This is called the *Primary Key*
- Often a special ID attribute is used as the Primary Key

NULLs and Primary Keys

- Missing information can be represented using NULLs
- A NULL indicates a missing or unknown value
- More on this later...

Entity Integrity:
 Primary Keys
 cannot contain
 NULL values

The Relational Model

Foreign Keys

- Foreign Keys are used to link data in two relations. A set of attributes in the first (referencing) relation is a Foreign Key if its value always either
 - Matches a Candidate Key value in the second (referenced) relation, or
 - Is wholly NULL
- This is called Referential Integrity

Foreign Keys - Example

Department

DID DN	ame
	rketing counts rsonnel

Employee

EID	EN	ame	DID	
15 16	Joh Ma	n Smith ry Brown	13 14	
17	Ma	rk Jones	13	
18	Jan	e Smith	NULL	

{DID} is a Candidate Key for Department - Each entry has a unique value for DID

{DID} is a Foreign Key in Employee each Employee's DID value is either NULL, or matches an entry in the Department relation. This links each Employee to (at most) one Department

Foreign Keys - Example

Employee

ID Na	me	Mana ger
E1496	John S	Smith E1499
E1497	Mary E	Brown E1498
E1498	Mark J	Jones E1499
E1499	Jane S	Smith NULL

{ID} is a Candidate Key for Employee, and {Manager} is a Foreign Key, which refers to the same relation - every tuple's Manager value is either NULL or matches an ID value

Referential Integrity

- When relations are updated, referential integrity can be violated
- This usually occurs when a referenced tuple is updated or deleted

- There are a number of options:
 - RESTRICT stop the user from doing it
 - CASCADE let the changes flow on
 - NULLIFY make values NULL

Referential Integrity - Example

- What happens if
 - Marketing's DID is changed to 16 in Department?
 - The entry for Accounts is deleted from Department?

Department

DID DN	ame
13 Ma 14 Ac 15 Pe	•

EID	EN	ame	DID	
15	Joh	n Smith ry Brown	13	
17	Ma	rk Jones	13	
18	Jan	e Smith	NULL	

RESTRICT

- RESTRICT stops any action that violates integrity
 - You cannot update or delete Marketing or Accounts
 - You can change Personnel as it is not referenced

Department

DID D	N	ame
14 A	C	rketing counts rsonnel

EID	EN	ame	DID	
15	Joh	n Smith	13	
16	Ma	ry Brown	14	
17	Ma	rk Jones	13	
18	Jan	e Smith	NULL	

CASCADE

- CASCADE allows the changes made to flow through
 - If Marketing's DID is changed to 16 in Department, then the DIDs for John Smith and Mark Jones also change
 - If Accounts is deleted then so is Mary Brown

Department

DID DNa	me	
13 1Ma	rketing	
14 Acco		
15 Pe	rsonnel	

	EID	EN	ame	DID		
	15	Jo	hn Smith	13	\ 16	
4	16	Va	rv Brown	14		F
	17	Ma	rk Jones	13	\ 16	
	18		ne Smith			

NULLIFY

- NULLIFY sets problem values to NULL
 - If Marketing's DID changes then John Smith's and Mark Jones' DIDs are set to NULL
 - If Accounts is deleted, Mary Brown's DID becomes NULL

Department

DID DNa	me	
13 16Ma	rketing	
14 Acco		
15 Pe	rsonnel	

EID	ΕN	ame	DID	
15	Jo	hn Smith	13	NUL
16	Ma	ry Brown	14	NUL
		rk Jones		NUL
18	Ja	ne Smith	NULL	·

Naming Conventions

- Naming conventions
 - A consistent naming convention can help to remind you of the structure
 - Assign each table a unique prefix, so a student name may be stuName, and a module name modName

- Naming keys
 - Having a unique number as the primary key can be useful
 - If the table prefix is abc, call this abcID
 - A foreign key to this table is then also called abcID

Example

Next Lecture

- Entity/Relationship models
 - Entities and Attributes
 - Relationships and Cardinality Ratios
 - E/R Diagrams
- For more information
 - Connolly and Begg chapter 11.
 - Ullman and Widom chapter 2.