CONTRASTIVE INFERENCE

Sean O'Brien seobrien@ucsd.edu

TALK STRUCTURE

Reasoning Contrastive Decoding Contrastive Inference

REASONING WITH LLMS

MOTIVATION

CHAIN-OF-THOUGHT¹

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9. 🗸

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

- **Motivation:** Decomposing tasks into intermediate steps makes them easier.
- Idea: Prompt a model to output a full reasoning chain before its answer.
- **Result:** Performance soars almost universally, given models are large enough.
- Takeaway: Large models can exhibit stronger reasoning capacities based on how we prompt them.
 - More abstractly, the decoding method / prompt is an important limiting factor for performance.

and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.

SELF-CONSISTENCY¹

- Motivation: Multiple reasoning paths could take you to the right answer.
- Idea: Sample multiple full generations from a model, then aggregate the final answers.
- Result: The best method is to just take a simple majority vote from the answers.
 - Results improve drastically and reliably.
- Takeaway: Sampling can be useful for reasoning, but only in conjunction with SC.
 - Parallelizable, but takes a lot of extra compute.
 - Hard for solving open-ended questions with answers that are difficult to group together.

1. Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language

DECODING METHODS - THE SPLIT

REASONING

- Greedy decoding preferred
- Most work done on the prompting and augmentation level
 - Chain-of-thought prompting
 - Program-aided language models
 - LLM prompt optimizer

OPEN-ENDED GENERATION

- Sampling methods preferred
- Truncated sampling schemes work best
 - Top-k sampling
 - Nucleus sampling
 - Typical sampling

CONTRASTIVE DECODING

Large language models are better than small language models.

CD OBJECTIVE

CD-score
$$(x_i; x_{< i})$$
 (3)
$$= \begin{cases} \log \frac{p_{\text{EXP}}(x_i|x_{< i})}{p_{\text{AMA}}(x_i|x_{< i})}, & \text{if } x_i \in \mathcal{V}_{\text{head}}(x_{< i}), \\ -\inf, & \text{otherwise.} \end{cases}$$

 CD replaces the standard decoding objective

$$\max_{w} p_{EXP}(w)$$

with

$$\max_{w} p_{EXP}(w)/p_{AMA}(w)$$

The original paper greedily optimizes this.

Challenges

- Instability associated with tokens the amateur considers highly unlikely
- Breaks down when the amateur and expert agree

α-MASKING

$$\mathcal{V}_{\text{head}}(x_{< i}) = \tag{1}$$
$$\{x_i \in \mathcal{V} : p_{\text{EXP}}(x_i \mid x_{< i}) \ge \alpha \max_{w} p_{\text{EXP}}(w \mid x_{< i})\}$$

- We want to restrict candidate tokens based on what the expert finds reasonably likely
- Other truncation techniques can break down:
 - Top-k masking can include low-probability tokens
 - Nucleus sampling can eliminate viable candidates in high-entropy situations
- α -masking is another adaptive masking strategy
- Fairly insensitive parameter, but 0.1 tends to work.

α-MASKING

MODIFIED METHOD

1. Determine α -mask.

$$V_{valid} = \{ j \in V, s_e^{(j)} \ge \log \alpha + \max_{k \in V} s_e^{(k)} \}$$

2. Subtract amateur logits.

$$s_{CD}^{(i)} = \begin{cases} (1+\beta)s_e^{(i)} - \beta s_a^{(i)} & i \in V_{valid} \\ -\infty & i \notin V_{valid} \end{cases}$$

- The pre-contrast amateur and expert temperatures are slightly unintuitive.
- We keep α the same, but simplify the mask calculation.
- We introduce β , which is the strength of the contrastive penalty.
 - To keep it orthogonal with sampling temperature, we scale the expert logits up by $(1 + \beta)$
- Results are sensitive to β
 - 0.5 works well for most tasks, but it depends on the gap between the expert and amateur

PYTORCH IMPLEMENTATION

Algorithm 2: Our formulation

```
# expert_logits - unnormalized scores from the expert model
# amateur_logits - unnormalized scores from the amateur model
# alpha - masking threshold
# beta - expert-amateur tradeoff parameter

cutoff = log(alpha) + expert_logits.max(dim=-1, keepdim=True).values
diffs = (1 + beta) *expert_logits - beta*amateur_logits
cd_logits = diffs.masked_fill(expert_logits < cutoff, -float('inf'))</pre>
```

RESULTS

CD (ORIGINAL)

Humans prefer generations from CD to sampling methods

CD tends to improve diversity and coherence

Results are best when there is a large expert/amateur gap

			coherence		fluency			
	CD	Baseline	CD is better	same	Baseline is better	CD is better	same	Baseline is better
wikitext	CD (GPT-2 XL)	nucleus (GPT-2 XL)	0.714*	0.083	0.202	0.548	0.083	0.369
	CD (GPT-2 XL)	typical (GPT-2 XL)	0.887*	0.046	0.067	0.703*	0.082	0.215
vik	CD (OPT-13B)	nucleus (OPT-13B)	0.556	0.202	0.242	0.419	0.197	0.384
>	CD (OPT-13B)	typical (OPT-13B)	0.773*	0.106	0.121	0.687*	0.152	0.162
wikinews	CD (GPT-2 XL)	nucleus (GPT-2 XL)	0.708*	0.042	0.25	0.583*	0.12	0.297
	CD (GPT-2 XL)	typical (GPT-2 XL)	0.771*	0.151	0.078	0.755*	0.151	0.094
ž:	CD (OPT-13B)	nucleus (OPT-13B)	0.585*	0.221	0.195	0.518	0.123	0.359
≱	CD (OPT-13B)	typical (OPT-13B)	0.693*	0.099	0.208	0.49	0.297	0.214
story	CD (GPT-2 XL)	nucleus (GPT-2 XL)	0.636*	0.045	0.318	0.404	0.106	0.49
	CD (GPT-2 XL)	typical (GPT-2 XL)	0.506	0.256	0.238	0.387	0.363	0.25
	CD (OPT-13B)	nucleus (OPT-13B)	0.616*	0.101	0.283	0.449	0.293	0.258
	CD (OPT-13B)	typical (OPT-13B)	0.626*	0.202	0.172	0.52	0.212	0.268

CD (MATH)

- Performance tends to improve on math tasks
- Doesn't help on problems that the expert can't solve either
 - AQuA for 7B and 13B models
 - MATH for all models
- Combines well with selfconsistency

$$CD + SC$$

CD combines with selfconsistency to be very strong

CD provides a much more compute-efficient benefit than self-consistency

HELLASWAG

Model	Score	
LLaMA 65B	84.2	
LLaMA 2	85.3	
ChatGPT	85.5	
PaLM 2 🗆 🗆	86.8	

HELLASWAG

Model	Score	
LLaMA 65B	84.2	
LLaMA 2	85.3	
ChatGPT	85.5	
PaLM 2 🗆 🗆	86.8	

HELLASWAG

Model	Score	
LLaMA 65B	84.2	
LLaMA 2	85.3	
ChatGPT	85.5	
PaLM 2 IIIIII	86.8	
LLaMA 65B + CD	88.0	

SMALL STUDIES & LIMITATIONS

Methods

- You can get small benefits by badly prompting the expert and using the resulting predictions as an amateur
- You can get larger benefits by contrasting against a mid-training checkpoint

Limitations

- CD performs a bit worse at factual recall
- CD doesn't help, and may slightly hurt, evaluating arithmetic expressions.
- CD gives minor benefits to most commonsense reasoning tasks given a large enough expert-amateur split
- CD limits rote copying and makes fewer abstract reasoning errors

INTERPRETATIONS

CD AS PRAGMATIC COMMUNICATION

- Pragmatics is a linguistic field concerned with how external context relates to communicative meaning
- Conversations are inherently cooperative, following implicit maxims
- Information should not include what the listener can reasonably be expected to know already
 - This is one of the interpretations given for penalizing amateur predictions in the original paper.
- CD operates at the morphological level but measurably improves performance on higher levels.

CD AS ERROR NEUTRALIZATION

- Not all amateur behaviors are bad, but some are.
- Most expert non-amateur behaviors are good.
- So if the expert is on the verge between the two, we should prefer the one the amateur doesn't like.
- Thus the amateur is an error model for our expert, which we soft-neutralize.

CD AS EXTRAPOLATION

OTHER CONTRASTIVE INFERENCE METHODS

CONTRASTIVE INFERENCE

Any method which controls behavior **differentially** at inference time, directly contrasting outputs from a **desirable** inference process with outputs from an **undesirable** inference process.

Alternatively, contrastive inference methods perform "negative ensembling": combining outputs where at least one of the ensemble is given a negative coefficient.

CONTRASTIVE INPUT DECODING

	An aspiring doctor failed <pronoun> final residency placement interview at a big hospital because</pronoun>				
	her	his			
T5	she was too nervous	he was too nervous			
+ CID (λ=5)	she had a bad interview	he did not have the required medical license			
+ CID (λ=50)	she wore the wrong outfit to her interview	he did not have the required skills and experience			
GPT	she was too fat	he was too fat			
+ CID (λ=5)	she was too fat	he couldn't afford the \$1,000 fee			
+ CID (λ=50)	she didn't have the correct documentation	he couldn't pay his way			

- Goal is not to improve generations, but to identify biases in language models
- Idea: We can contrast between two slightly different prompts to amplify subtle biases in a model.
- Results: Several biases are found that did not surface in standard decoding methods
- Takeaway: contrastive inference can be used to identify subtle differences in behavior

CONTEXT-AWARE DECODING

- Motivation: We want to ground a model's answer in a given context.
- Method: The "expert" is the model that is fed the full context, while the "amateur" only gets the question.
- Results: Improved summarization quality and factuality.
- Limitations
 - Requires a GT context
 - Trades away internal model knowledge

DOLA

Premise

- Idea:
 - Put a linear output head on several layers throughout the model
 - Performs standard contrastive decoding on the outputs from the last layer and an intermediate layer
- Results: Significantly improved truthfulness, and moderately improved reasoning on GSM8K.
- Takeaway: Earlier layers in a model can be used as effective amateurs.

GENERALIZATION

- Our formulation of contrastive decoding is very broad.
 - Alpha-masking is LM-specific, but the contrastive objective is not.
- We could in principle run a contrastive diffusion process between large- and small-model predictions, or construct a contrastive embedding space using existing encoder models.
- We know the following about contrastive inference methods:
 - They scale well.
 - They improve performance on a broad number of tasks.
 - They allow us to encourage specific behaviors in a model.
 - They're fairly new.
- Can you think of any problems in your research that you could approach contrastively?

THANKS!

Questions?

If you're interested in collaborating or discussing further, reach out! seobrien@ucsd.edu

REFERENCES

- 1. Wei et al 2022. <u>Chain-of-Thought Prompting Elicits Reasoning in Large Language Models.</u>
- 2. Wang et al 2022. <u>Self-Consistency Improves Chain of Thought Reasoning in Language Models.</u>
- 3. Li et al 2022. Contrastive Decoding: Open-ended Text Generation as Optimization.
- 4. O'Brien & Lewis 2023. <u>Contrastive Decoding Improves Reasoning in Large Language Models</u>.
- 5. Yona et al 2023. <u>Surfacing Biases in Large Language Models using Contrastive Input Decoding</u>.
- 6. Chuang et al 2023. <u>DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models</u>.
- 7. Shi et al 2023. <u>Trusting Your Evidence: Hallucinate Less with Context-Aware Decoding.</u>