Math40003 Linear Algebra and Groups

Problem Sheet 2

- 1. You should now be able to do questions 2 and 6 on PS1
- 2. Describe the solution sets to the following sets of simultaneous equations in \mathbb{R}^2 :

(a)
$$x + 2y = 3$$

 $-4x + \frac{1}{2}y = 5$
(b) $x + 2y = 3$
(c) $-4x + \frac{1}{2}y = 5$
 $x + 4y = 6$
The point $(-1, 2)$ the line $y = -\frac{x}{2} + \frac{3}{2}$ The empty set

3. Describe the solution sets to the following sets of simultaneous equations in \mathbb{R}^3 :

4.* For which $a, b \in \mathbb{R}$ does the system of equations

$$x_1 + x_2 + x_3 = -1$$

$$2x_1 + x_2 + ax_3 = 1$$

$$3x_1 + x_2 + x_3 = b$$

have (i) no solutions, (ii) exactly one solution, (iii) infinitely many solutions?

Apply the row operations

$$\begin{pmatrix} 1 & 1 & 1 & | & -1 \\ 2 & 1 & a & | & 1 \\ 3 & 1 & 1 & | & b \end{pmatrix} \xrightarrow{R_2 \mapsto R_2 - 2R_1} \begin{pmatrix} 1 & 1 & 1 & | & -1 \\ 0 & -1 & a - 2 & | & 3 \\ 0 & 0 & 2 - 2a & | & b - 3 \end{pmatrix}$$

The final row gives $(2-2a)x_3=b-3$, so there are no solutions if $a=1,\,b\neq 3$. If $a=1,\,b=3$ then final row gives no information, but we have $x_2=(a-2)x_3-3$ and $x_1=-1-x_2-x_3$ from the second and first rows. Substituting $x_3=c$ for any $c\in\mathbb{R}$ we find infinitely many solutions.

When $a \neq 1$ then $x_3 = \frac{b-3}{2-2a}$ is uniquely determined, as is x_2 from the second row and then x_1 from the first, so there is a unique solution.

What about the system

$$x_1 + x_2 + x_3 + x_4 = 0$$

$$x_1 - x_2 + ax_3 + x_4 = 1$$

$$2x_1 + ax_2 + x_3 + 2x_4 = b$$
?

You have to be more careful with this one:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & -1 & a & 1 & 1 \\ 2 & a & 1 & 2 & b \end{pmatrix} \xrightarrow[R_3 \mapsto R_3 - 2R_1]{R_2 \mapsto R_2 - R_1} \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & -2 & a - 1 & 0 & 1 \\ 0 & a - 2 & -1 & 0 & b \end{pmatrix}$$

(If a=2 this is already in echelon form and the last row – and then back substitution – shows there are infinitely many solutions. But actually don't need to make this a special case, as it is also included in the general case below.)

 $R_3 \mapsto 2R_3 + (a-2)R_2$ gives

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & -2 & a - 1 & 0 & 1 \\ 0 & 0 & a^2 - 3a & 0 & 2b + a - 2 \end{pmatrix}$$

If $a \notin \{0,3\}$ then from the last row we see we get infinitely many solutions.

If a=0 the last row shows we get 0 solutions if $b \neq 1$ and infinitely many otherwise.

If a=3 the last row shows we get 0 solutions if $b=-\frac{1}{2}$ and infinitely many otherwise.

- 5. Which of the following are possible, find examples if possible:
 - (a) Two simultaneous equations in two unknowns which defines a line in \mathbb{R}^2 .
 - (b) Two simultaneous equations in two unknowns which defines the empty set in \mathbb{R}^2
 - (c) One equation in no unknowns which defines the empty set.
 - (d) Two simultaneous equations in three unknowns which defines a point in \mathbb{R}^3 .

$$\begin{array}{rcl}
x + y &=& 1 \\
2x + 2y &=& 2
\end{array}$$

$$\begin{array}{rcl}
x + y &=& 1 \\
x + y &=& 2
\end{array}$$

- (c) 0 = 1
- (d) Not possible.

6. (a) Let M_{θ} be the reflection in the line $L_{\theta} = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_2 = x_1 \tan \theta\}$. Using any school geometry or trigonometry you like, show that the matrix representing M_{θ} is

$$\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}.$$

Drawing it, you see that e_1 gets reflected to the unit vector making an angle 2θ with the x_1 -axis, i.e. $\binom{\cos 2\theta}{\sin 2\theta}$.

Similarly e_2 makes an angle $\pi/2-\theta$ anticlockwise from L_θ , so gets reflected to a unit vector whose angle is $\pi/2-\theta$ clockwise from L_θ . Thus it makes an angle $\theta-(\pi/2-\theta)=2\theta-\pi/2$ with the x_1 -axis, so is the unit vector $\binom{\cos(2\theta-\pi/2)}{\sin(2\theta-\pi/2)}=\binom{\sin 2\theta}{-\cos 2\theta}$.

Thus the matrix is $\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$ as claimed.

(b) Let R_{α} be a rotation about the origin, and let M_{β} be the reflection in a line through the origin. Prove that $M_{\beta}R_{\alpha}$ is a reflection.

We compute the product

$$\begin{pmatrix} \cos 2\beta & \sin 2\beta \\ \sin 2\beta & -\cos 2\beta \end{pmatrix} \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} = \begin{pmatrix} \cos(2\beta - \alpha) & \sin(2\beta - \alpha) \\ \sin(2\beta - \alpha) & -\cos(2\beta - \alpha) \end{pmatrix}.$$

By (c) this is reflecton in $L_{\beta-\alpha/2}$

(c) Let M_{α} and M_{β} be reflections in straight lines through the origin. Prove that $M_{\alpha}M_{\beta}$ is a rotation.

We compute

$$\begin{pmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{pmatrix} \begin{pmatrix} \cos 2\beta & \sin 2\beta \\ \sin 2\beta & -\cos 2\beta \end{pmatrix} = \begin{pmatrix} \cos 2(\alpha - \beta) & -\sin 2(\alpha - \beta) \\ \sin 2(\alpha - \beta) & \cos 2(\alpha - \beta) \end{pmatrix},$$

which is the rotation $R_{2(\alpha-\beta)}$.