FANDA: A Novel Approach to Perform Follow-up Query Analysis

Qian Liu, Bei Chen, Jian-Guang Lou, Ge Jin, Dongmei Zhang

Introduction

Interaction

Brand	Sales	Profit	Year
BMW	31020	5000	2009
Ford	25220	3000	2009
Benz	47060	6000	2009

74.58% queries follow immediately after the question they are related to. (Bertomeu et al., 2006)

User [1]: show the sales of BMW in 2009.

System: SELECT Sales WHERE Brand = BMW and Year = 2009

User [2]: what about profit?

show the profit of BMW in 2009.

System: SELECT Profit WHERE Brand = BMW and Year = 2009

User [3] : of Benz?

show the profit of Benz in 2009.

System: SELECT profit WHERE Brand = Benz and Year = 2009

User [4] : Compare it to Ford.

Compare the profit of Benz in 2009 to Ford.

System: SELECT profit WHERE (Brand = Benz or Brand = Ford) and

Year = 2009

Introduction

ATIS3

- Dahl D A, Bates M, Brown M, et al. Expanding the scope of the ATIS task: The ATIS-3 corpus[C]//HLT-ACL 1994
- Miller S, Stallard D, Bobrow R, et al. A fully statistical approach to natural language interfaces[C]//ACL 1996
- Zettlemoyer L S, Collins M. Learning context-dependent mappings from sentences to logical form[C]//ACL 2009
- Suhr A, Iyer S, Artzi Y. Learning to Map Context-Dependent Sentences to Executable Formal Queries[C]//NAACL 2018

SequentialQA

• lyyer M, Yih W, Chang M W. Search-based neural structured learning for sequential question answering[C]//ACL 2017

Non-sentential Question Resolution

- Kumar V, Joshi S. Non-sentential Question Resolution using Sequence to Sequence Learning[C]//COLING 2016
- Kumar V, Joshi S. Incomplete Follow-up Question Resolution using Retrieval based Sequence to Sequence Learning[C]//SIGIR 2017

/01 Introduction

- Prior work in context-dependent parsing focuses on specific domain or simple scenarios.
- **Our goal:** language understanding in complex scenarios covering diverse domains in NLIDB.

- Dataset: A new dataset FollowUp is presented for research and evaluation.
- Method: A novel approach is presented for taking account interaction history information into current sentence.

/01 Introduction

Scenario	Example	
	Precedent : In 1995, is there any network named CBC?	
Analytics	Follow-up: Any TSN?	
	Fused : In 1995, is there any network named TSN?	
	Precedent: How much money has Smith earned?	
Compare	Follow-up: Compare it with Bill Collins.	
	Fused : Compare money Smith earned with Bill Collins.	
	Precedent: List all universities founded before 1855.	
Calc & Stats	Follow-up: Show their number.	
	Fused : Show the number of all universities founded before 1855.	
	Precedent: Which stadium has the most capacity?	
Extremum	Follow-up: Which get the highest attendance?	
	Fused : Which stadium get the highest attendance?	
	Precedent: How many roles are from studio paramount?	
Filter	Follow-up: List all titles produced by that studio.	
	Fused : List all titles produced by studio paramount.	
	Precedent: Show the industry which has the most companies?	
Group	Follow-up: Show in different countries.	
	Fused : Show the industry which has the most companies in different countries.	
	Precedent : Show all chassis produced after the year 1990.	
Sort	Follow-up: Sort them by year.	
	Fused : Show all chassis produced after the year 1990 and sort by year.	
	Precedent: What position did Sid O'Neill play?	
Search	Follow-up: Which players else are in the same position?	
	Fused : Which players play in the position of Sid O'Neill excluding Sid O'Neill?	

- 1000 queries in 120 different Tables inherited from WikiSQL
- Annotation with Query Triple : (Precedent, Followup, Fused)
- Train/Dev/Test: 640/160/200

/01 | Introduction

Sequence to Sequence

- Learning to encode and decode
- Non-interpretable
- Require lots of training data

- Learning to encode, fusion with semantic rules
- Reason when fusion
- Cold start for little data

Follow-up Analysis for Database

Anonymization

Generate **symbol** sequence

Generation

Generate **segment** sequence

Fusion

Query fusion in structure level

Follow-up Analysis for Database

- Words in utterance are split into two types:
 analysis-specific words and rhetorical words.
- All numbers and dates belong to Val.
- One analysis-specific word could belong to different symbols, generating several symbol sequences.

Show the $\underline{\underline{sum}}$ of $\underline{\underline{sales}}$ by $\underline{\underline{brand}}$ in the $\underline{\underline{year}}$ $\underline{\underline{2018}}$ Show the $\underline{\underline{Agg}}$ of $\underline{\underline{Col}}$ by $\underline{\underline{Col}}$ in the $\underline{\underline{Col}}$ $\underline{\underline{Val}}$

Symbol	Meaning
Col	Column Name
Val	Cell Value
Agg	Aggregation
Com	Comparison
Dir	Order Direction
Per	Personal Pronoun
Pos	Possessive Pronoun
Dem	Demonstrative

Table-Related Knowledge

Language-Related Knowledge

Follow-up Analysis for Database

- **symbol** does not consider the context around and **segment** structure is designed.
- **segment** is a combination of adjacent symbols, inspired by SQL parameter and common sense.

Segment	Compositional Deduction Rule
Select	[Agg + [Val]] + Col
Group	Col
Order	[Dir] + Col
W_1	[Col] + [Com] + Val
W_2	Col + Com + Col
P_1	Per
P_2	Pos
P_3	Dem + Col

Precedent Query:

Could you tell me the <u>player</u> whose <u>score is larger than 67</u>

Select

 W_1

Follow Query (1):

Who play the <u>same position</u> as <u>him</u>?

 P_3

 P_1

Follow Query (2):

sort them using their score in ascending order.

 P_1

Order

- 1. Symbols are combined to generate all possible segment sequences.
- 2. A ranking model is built to score these segment sequences and pick the best one as output.
- 3. Intent was introduced to distinguish two scenarios: Refine & Append.

Network	Year
TSN	1995
CBC	1995
CFL	1996

- 1. Conflicting segment pairs will not happen at the same time.
- 2. Utilize one sentence to make up for the lack of the another sentence.

Follow-up Analysis for Database

\mathcal{P}

\mathcal{N}

 $O\ O\ Select_B\ Select_I\ ...\ Refine_I\ Select_B\ ||\ O\ O\ Select_B\ Select_I\ ...\ Append_I\ Select_B$ $O\ O\ Select_B\ Select_I\ ...\ Refine_I\ Select_B\ \|O\ O\ Select_B\ Select_I\ ...\ Append_I\ Select_B$

$$\widehat{\boldsymbol{s}}_p = \operatorname*{arg\,max}_{\boldsymbol{s} \in \mathcal{P}} g(\boldsymbol{s}|\Theta)$$

$$\widehat{\boldsymbol{s}}_n = \operatorname*{arg\,max}_{\boldsymbol{s} \in \mathcal{N}} g(\boldsymbol{s}|\Theta)$$

$$\max(0, \Delta - \frac{g(\widehat{\boldsymbol{s}}_p|\Theta)}{|\widehat{\boldsymbol{s}}_p|} + \frac{g(\widehat{\boldsymbol{s}}_n|\Theta)}{|\widehat{\boldsymbol{s}}_n|})$$

Experiments

	Model	Symbol Acc (%)	BLEU (%)
	SEQ2SEQ	0.63 ± 0.00	21.34 ± 1.14
>	COPYNET	17.50 ± 0.87	43.36 ± 0.54
Dev	S2S+ANON	18.75 ± 0.95	41.22 ± 0.33
	COPY+ANON	25.50 ± 2.47	51.45 ± 0.93
	FANDA	49.00 ± 1.28	60.14 ± 0.98
	CONCAT	$22.00 \pm -$	52.02 ± -
	E2ECR	$27.00 \pm -$	$52.47 \pm -$
	SEQ2SEQ	0.50 ± 0.22	20.72 ± 1.31
t	COPYNET	19.30 ± 0.93	43.34 ± 0.45
Test	S2S+ANON	18.80 ± 1.77	38.90 ± 2.45
	COPY+ANON	27.00 ± 4.32	49.43 ± 1.11
	FANDA	47.80 ± 1.14	59.02 ± 0.54

Model	Execution Accuracy (%)
CONCAT	25.24
E2ECR	27.18
COPY+ANON	40.77
FAnDa	60.19

- *Symbol Acc*: Symbol Consistent With Gold Fused Query
- **BLEU**: Quality of Output Fused Query
- **Execution Accuracy**: Output Query Execution Correctness (Parser using <u>Coarse-to-Fine</u>)
- SEQ2SEQ: Attention SEQ2SEQ
- COPYNET: + copy mechanism
- S2S + ANON: SEQ2SEQ + anonymization
- COPY + ANON: COPY+ anonymization
- CONCAT: Concatenate Precedent Query and Follow-up
- o E2ECR: End to End Coreference Resolution System

Anonymization

Origin : In <u>1995</u>, is there any <u>network</u> named <u>CBC</u>? Any <u>TSN</u>?

Transform: In <u>Val#1</u>, is there any <u>Col#1</u> named <u>Val#2</u>? Any <u>Val#3</u>?

Experiments

/03 | Experiments

No		Case Analysis		
	Precedent	: What is the result, when the home team score is 2.4.6?	Follow-up: What is the date?	
1	Gold Fusion	: What is the date, when the home team score is 2.4.6?		
1	COPY+ANON	: What is the date, the home team score is 2.4.6?		
	FANDA	: What is the date, when the home team score is 2.4.6?		
	Precedent	: Which is the draw number of Lowry?	Follow-up: How about Laura?	
2	Gold Fusion	: Which is the draw number of Laura?		
2	COPY+ANON	: Which is the draw number of Lowry?		
	FANDA	: Which is the draw number of Laura?		
	Precedent	: What are the names when elevation is feet?	Follow-up: Of those, whose GNIS feature is 1417308?	
2	Gold Fusion : Of names when elevation is feet, whose GNIS feature is 1417308?			
3	COPY+ANON: What are the names when elevation is 1417308, whose GNIS feature is feet?		GNIS feature is feet?	
	FANDA: What are the names when elevation is feet whose GNIS feature is 1417308?			

	COPY+ANON	FANDA
Substantial Overlap	\checkmark	(Segment Type)
No Overlap		$oldsymbol{}$ (Table Structure)
Ambiguous overlap		$\sqrt{}$ (Combination of Symbol)

- Extending to multi-turns and multi-tables.
- Using reinforcement learning

Thank you!

Question & Answer

SEQ2SEQ

$$\mathbf{S}_{1} = RNN(\mathbf{H}_{n}, \mathbf{E}_{SOS})$$
 $\alpha_{i} = \mathbf{S}_{1}^{T} \mathbf{W} \mathbf{H}_{i}$
 $a_{i} = \frac{e^{\alpha_{i}}}{\sum e^{\alpha_{k}}}$
 $\mathbf{C} = \sum a_{i} \cdot \mathbf{H}_{i}$
 $\mathbf{O} = F([\mathbf{C}, \mathbf{S}_{1}])$
 $\mathbf{S}_{2} = RNN(\mathbf{S}_{1}, \mathbf{E}_{0})$

Question & Answer

COPYNET

$$lpha_i = V_a^T anh(\boldsymbol{W}[\boldsymbol{H}_n \boldsymbol{H}_i])$$
 $a_i = \frac{e^{\alpha_i}}{\sum e^{\alpha_k}}$
 $\boldsymbol{C} = \sum a_i \cdot \boldsymbol{H}_i$
 $\boldsymbol{S}_1 = RNN(\boldsymbol{H}_n, [\boldsymbol{E}_S, \boldsymbol{C}])$
 $\boldsymbol{O}_G = \boldsymbol{W}_o \boldsymbol{S}_1$
 $eta_i = anh(\boldsymbol{W}_C \boldsymbol{H}_i) \boldsymbol{S}_1$

$$\boldsymbol{o}_{C} = [\beta_{1}, ..., \beta_{s}]$$

$$\boldsymbol{P} = Softmax([\boldsymbol{o}_{G}, \boldsymbol{o}_{C}])$$

$$p(y_{t}) = p(y_{t}, g|\cdot) + p(y_{t}, c|\cdot)$$

Question & Answer

- In **Iteration 1**, different but similar scores are assigned to all candidates in P and N with random initialization.
- From Iteration 5 to 21, the score distribution becomes increasingly skewed.
- From Iteration 13 to 21, the candidate with the highest score remains unchanged, indicating the stability of weakly supervised learning.

