CONTROL I - MICROECONOMÍA II

PROFESOR: JUAN PABLO TORRES-MARTÍNEZ AYUDANTES: MARTÍN FERRARI - CATALINA GÓMEZ

Considere una economía de intercambio \mathcal{E} con T+1 periodos. Hay N individuos y K mercancías. Cada $i \in \{1, \ldots, N\}$ tiene una asignación inicial de recursos $w_t^i \in \mathbb{R}_{++}^K$ en el periodo $t \in \{0, \ldots, T\}$ y sus preferencias pueden ser representadas por la función de utilidad

$$U^{i}(x_{0},...,x_{T}) = \sum_{t=0}^{T} \beta^{t} u^{i}(x_{t}),$$

donde $\beta \in (0,1)$ y $u^i: \mathbb{R}_+^K \to \mathbb{R}$ es continua, estrictamente creciente y estrictamente cóncava.

Dado un vector de precios de mercancías $p = (p_t)_{0 \le t \le T} \in (\mathbb{R}_+^K)^{T+1}$, el agente i puede demandar planes de consumo $(x_t^i)_{0 \le t \le T} \in (\mathbb{R}_+^K)^{T+1}$ tales que:

$$p_t \cdot x_t^i \leq p_t \cdot w_t^i$$
, en cada periodo $t \in \{0, \dots, T\}$.

(a) Utilizando los resultados de existencia de equilibrio para economías de intercambio estáticas, demuestre que la economía \mathcal{E} siempre tiene un equilibrio competitivo.

Sea $B^i(p)$ el conjunto de los planes de consumo presupuestariamente factibles para el individuo i a precios p. Por analogía con el concepto de equilibrio Walrasiano para economías de intercambio estáticas, un equilibrio competitivo para \mathcal{E} vendrá dado por precios $\overline{p} = (\overline{p}_t)_{0 \le t \le T} \in (\mathbb{R}_+^K)^{T+1}$ y planes de consumo $\overline{x}^i = (\overline{x}_t^i)_{0 \le t \le T} \in (\mathbb{R}_+^K)^{T+1}, i \in \{1, \dots, N\}$, tales que:

- (i) Para cada $i \in \{1, ..., N\}$, \overline{x}^i maximiza U^i en $B^i(\overline{p})$.
- (ii) $\sum_{i=1}^{N} (\overline{x}_t^i w_t^i) = 0$ para todo $t \in \{0, \dots, T\}$.

Sea \mathcal{E}_t la economía estática en la cual cada individuo i es caracterizado por la función de utilidad u^i y tiene asignaciones iniciales w^i_t . Como las funciones de utilidad U^i son separables en los periodos de tiempo y $\beta \neq 0$, $(\overline{p}, (\overline{x}^i)_{i \in \{1, \dots, N\}})$ es un equilibrio competitivo de \mathcal{E} si y solamente si, para cada $t \in \{0, \dots, T\}$, $(\overline{p}_t, (\overline{x}^i_t)_{i \in \{1, \dots, N\}})$ es un equilibrio Walrasiano para la economía \mathcal{E}_t . Esto es, \mathcal{E} va a tener un equilibrio competitivo si y solamente si todas las economías estáticas \mathcal{E}_t tienen equilibrio. Esto último es verdad, como consecuencia directa del Teorema de Existencia de Equilibrio para economías estáticas, pues las funciones u^i son continuas, estrictamente crecientes y estrictamente cóncavas, mientras que $w^i_t \gg 0$ para todo $t \in \{0, \dots, T\}$.

(b) ¿Todo equilibrio competitivo es Pareto eficiente? En caso afirmativo, demuéstrelo. Alternativamente, dé un contra-ejemplo.

Intuitivamente, como no se puede suavizar el consumo a través del tiempo, distribuciones iniciales de recursos muy heterogéneas podrían generar espacios naturales para obtener mejoras de Pareto a partir de un equilibrio competitivo. Para formalizar esta idea, suponga que en la economía \mathcal{E} hay dos periodos (T=1), dos individuos (N=2), una mercancía en cada periodo (K=1), $\beta=0.99$, $u^i(x)=\sqrt{x}$ para cada $i\in\{1,2\}$, $(w_0^1,w_1^1)=(1,100)$ y $(w_0^2,w_1^2)=(100,1)$.

En este contexto, como hay una única mercancía en cada periodo, en equilibrio no habrá intercambio y los individuos se quedarán con sus asignaciones iniciales, obteniendo niveles de utilidad $(\overline{U}^1, \overline{U}^2) = (10.90, 10.99)$. Ahora, si un planificador central redistribuye los recursos de tal forma que los individuos reciben los planes de consumo $(x^1, x^2) = ((4, 97), (97, 4))$, ambos aumentan su utilidad, pues $u^1(x^1) = 11.75$ y $u^2(x^2) = 11.82$. Esto demuestra que la distribución de recursos determinada por el único equilibrio competitivo de \mathcal{E} no es Pareto eficiente.