Regular Expressions

Tanjila Alam Sathi Lecturer, CSE Department

Introduction

- Regular expressions are an algebraic way to describe languages.
- They describe exactly the regular languages.
- If E is a regular expression, then L(E) is the language it defines.
- We'll describe RE's and their languages recursively.
- Application: text-search, compiler design, Utilities (AWK, GREP in UNIX), modern programming languages (PERL), and text editors all provide mechanisms for the description of patterns using RE.

Introduction

- (5+3) x 4 [arithmetic expression]
- (0 U 1) * 1 [Regular expression]
- RE offer something that automata do not:

A declarative way to express the strings we want to accept. Thus, RE serve as the input language for many systems that process strings.

Examples

- 1. Search commands such as the UNIX *grep* or equivalent commands for finding strings that one sees in Web browsers or text-formatting systems.
- These systems use a RE like notation for describing patterns that the user wants to find in a file.
- 2. Lexical-analyzer generators, such as Lex/Flex.
- A generator accepts descriptions of the forms of tokens, which are essentially REs, and produces a DFA that recognizes which token appears next on the input

- R is a regular expression if R is
- 1. a for some a in the alphabet Σ
- 2. ∈
- $3. \varnothing$
- **4.** $(R_1 \cup R_2)$, where $R_1 \& R_2$ are RE
- 5. $(R_1 \circ R_2)$, where $R_1 \& R_2$ are RE
- **6.** (R_1^*) , where R_1 is RE

- Basis 1: If a is any symbol, then a is a RE, and L(a) = {a}.
 - Note: {a} is the language containing one string,
 and that string is of length 1.
- Basis 2: ϵ is a RE, and $L(\epsilon) = {\epsilon}$.
- Basis 3: \varnothing is a RE, and L(\varnothing) = \varnothing .

• Induction 1: If E_1 and E_2 are REs, then E_1+E_2 is a RE, and $L(E_1+E_2) = L(E_1) \cup L(E_2)$.

• Induction 2: If E_1 and E_2 are REs, then E_1E_2 is a RE, and $L(E_1E_2) = L(E_1)L(E_2)$.

Concatenation: the set of strings wx such that w is in $L(E_1)$ and x is in $L(E_2)$.

Induction 3: If E is a RE, then E* is a RE, and
 L(E*) = (L(E))*.

Closure, or "Kleene closure" = set of strings $w_1w_2...w_n$, for some $n \ge 0$, where each w_i is in L(E).

Note: when n=0, the string is ϵ .

Precedence of Operators

 Parentheses may be used wherever needed to influence the grouping of operators.

• Order of precedence is * (highest), then concatenation, then + (lowest).

Examples: RE's

- $L(01) = \{01\}.$
- $L(01+0) = \{01, 0\}.$
- $L(0(1+0)) = \{01, 00\}.$
 - Note order of precedence of operators.
- $L(\mathbf{0}^*) = \{ \epsilon, 0, 00, 000, \dots \}.$
- $L((0+10)^*(\epsilon+1)) = \text{all strings of 0's and 1's}$ without two consecutive 1's.

Example: $\Sigma = \{0, 1\}$

- 1. $0*10* = \{w \mid w \text{ has exactly a single 1}\}$
- 2. Σ *1 Σ * = {w | w has at least one 1}
- 3. Σ^* **001** Σ^* = {w|w contains the strings **001** as a substring}
- 4. $(\Sigma \Sigma)^* = \{w \mid w \text{ is a string of even length}\}$
- -the length of a string is the number of symbols that it contains
- **5.**($\sum \sum \sum$)* = {w| the length of w is a multiple of three}
- 6. 01 U 10 = {01, 10}
- 7. $0 \Sigma^* 0 U 1 \Sigma^* 1 U 0 U 1 = \{w \mid w \text{ starts & ends with the same symbol}\}$
- 8. $(0 \cup e) = 1^* = 01^* \cup 1^*$ the expression $0 \cup e$ describes the language $\{0, e\}$, so the concatenation operation adds either $0 \cup e$ before every string in 1^*

Example: $\Sigma = \{0, 1\}$

9.
$$(0U \in) (1U \in) = \{ \in, 0, 1, 01 \}$$

10. 1 * \emptyset = \emptyset Concatenating the empty set to any set yields the empty set

11.
$$\emptyset$$
* = { \in }

The Star operation puts together any number of strings from the language to get a string in the result. If the language is empty, the star operation can put together 0 strings, giving only the empty string.

Example: $\Sigma = \{0, 1\}$

- R U Ø = R: adding the empty language to any other language will not change it
- R o ∈ = R: adding the empty string to any string will not change it
- R U ∈ ≠ R

If R = 0, then $L(R) = \{0\}$ but $L(RU \in) = \{0, \in\}$

• Ro $\emptyset \neq R$

If R = 0, the L (R) = $\{0\}$ but L (R o \emptyset) = \emptyset

Importance

- REs are useful tools in the design of compilers for programming languages.
- Elemental objects in a programming language, called tokens, such as the variable names and constants, may be described with RE.
- A numerical constant that may include a fractional part and/or a sign may be described as a member of the language
- {+, -, ∈} {D D*. U D D*. D* U D*. D D*}
- Where, $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Expressions: 72, 3.14159, + 7., and -.01
- Once the syntax of the tokens have been described with the REs, automatic systems can generate the lexical analyzer, the part of a compiler that initially processes the input program.

Theorem 1: The class of regular languages is closed under the union operation

- Proof Idea:
- Regular languages A₁ and A₂
- Prove that A₁ U A₂ is regular
- Take two NFAs N₁ & N₂ for A₁ & A₂ and combined them into one new NFA, N
- Machine N must accept its input if either N₁ or N₂ accepts this input
- The new machine has a new state that branches to the start states of the old machines with ∈arrows

Construction of NFA N to recognize A₁ U A₂

Proof

- Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 ,
- $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 ,

Construct N = (Q, Σ , δ , q₀, F) recognize A₁U A₂

1. $Q = \{q_0\} \cup Q_1 \cup Q_2$

The states of N are all the states of $N_1 \& N_2$, with the addition of a new start state q_0 .

2. The state q_0 is the start state of N.

Proof

3. The accept states $F = F_1 \cup F_2$.

The accept states of N are all the accept states of $N_1 \& N_2$. That way N accepts if either N_1 accepts or N_2 accepts.

4. Define δ so that for any $q \in Q$ & any $a \in \Sigma_{\epsilon}$

$$\delta(q, a) = \begin{cases} \delta_{1}(q, a) & q \in Q_{1} \\ \delta_{2}(q, a) & q \in Q_{2} \\ \{q_{1}, q_{2}\} & q = q_{0} \text{ and } a = \varepsilon \\ \phi & q = q_{0} \text{ and } a \neq \varepsilon \end{cases}$$

Theorem 2: The class of regular languages is closed under the concatenation operation

- Proof Idea:
- Regular languages A₁ and A₂
- Prove that A₁ o A₂ is regular
- Take two NFAs, N₁ & N₂ for A₁ & A₂ and combined them into a new NFA, N
- Assign N's start state to be the state of N₁
- The accept states of N₁ have additional ε arrows that allow branching to N₂ whenever N₁ is in an accept state, signifying that it has found an initial piece of the input that constitutes a string in A₁.

- The accept states of N are the accept states of N₂ only.
- Therefore, it accepts when the input can be split into two parts, the first accepted by N₁ and the second by N₂.

Proof

- Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 ,
- $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 ,

Construct N = (Q, Σ , δ , q₁, F₂) recognize A₁O A₂

1. $Q = Q_1 U Q_2$

The states of N are all the states of $N_1 \& N_2$,

2. The state q_1 is the same as the start state of N_1 .

- 3. The accept states F_2 are the same as the accept state of N_2 .
- 4. Define δ so that for any $q \in Q$ & any $a \in \Sigma_{\epsilon}$

$$\delta(q,a) = \begin{cases} \delta_{1}(q,a) & q \in Q_{1} \text{ and } q \notin F_{1} \\ \delta_{1}(q,a) & q \in F_{1} \text{ and } a \neq \varepsilon \end{cases}$$
$$\delta_{1}(q,a)U\{q_{2}\} \quad q \in F_{1} \text{ and } a = \varepsilon$$
$$\delta_{2}(q,a) \quad q \in Q_{2}$$

Theorem 3: The class of regular languages is closed under the star operation

- Proof Idea:
- Regular languages A₁
- Prove that A₁* also is regular
- Take an NFA, N for A₁ and modify it to recognize A₁*
- Resulting NFA N will accept its input whenever it can be broken into several pieces
 & N₁ accepts each piece.

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 ,

Construct N = (Q, Σ , δ , q₀, F) recognize $\mathbf{A_1}^*$

1.
$$Q = \{q_0\} \cup Q_1$$

The states of N are the states of N_1 + a new state 2. The state q_0 is the new start state

3. $F = \{q_0\} \cup F_1$.

The accept states are the old accept states + the new start state

4. Define δ so that for any $q \in Q$ & any $a \in \Sigma_{\epsilon}$

$$\delta_{1}(q,a) \qquad q \in Q_{1} \text{ and } q \notin F_{1}$$

$$\delta_{1}(q,a) \qquad q \in F_{1} \text{ and } a \neq \varepsilon$$

$$\delta(q,a) = \begin{cases} \delta_{1}(q,a)U\{q_{1}\} & q \in F_{1} \text{ and } a = \varepsilon \\ \{q_{1}\} & q = q_{0} \text{ and } a \neq \varepsilon \end{cases}$$

$$\phi \qquad q \in Q_{1} \text{ and } a \neq \varepsilon$$

Equivalent with Finite Automata

- RE and FA are equivalent in their descriptive power.
- This fact is rather remarkable, because FA & RE superficially appear to be rather different.
- However, any RE can be converted into a FA that recognizes the language it describes, & vice-versa.
- Recall that a Regular language is one that is recognize by some FA

Theorem: A language is regular if and only if some regular expression describe it

- Two directions: 02 lemmas
- Lemma 1: if a language is described by a RE, then it is regular
- Proof Idea: Say that we have a RE R describing some language A.
- We show how to convert R into an NFA recognizing A
- If an NFA recognizes A then A is regular.

Proof

- Let's convert R into NFA N.
- Six cases:
- 1. R = a for some a in Σ . Then $L(R)=\{a\}$, and the following NFA recognizes L(R)

Note: this machine fits the definition of an NFA but not that of a DFA because it has some states with no exiting arrow for each possible input symbol.

Formally, N = ({q₁, q₂}, Σ , δ , q₁, {q₂}), where we describe δ by saying that δ (q₁, a) = {q₂},

- δ (r, b) = \emptyset for $r \neq q_1$ or $b \neq a$
- 2. $R = \varepsilon$. Then L (R) = { ε }, and the following NFA recognizes L (R).

Formally, N = ({q₁}, Σ , δ , q₁, {q₁}), where δ (r, b) = \emptyset for any r and b

3. $R = \emptyset$. Then the following NFA recognizes L (R)

Formally, $N = (\{q\}, \Sigma, \delta, q, \{\emptyset\})$, for any r and b

- 4. $R = R_1 U R_2$
- 5. $R = R_1 \circ R_2$
- 6. $R = R_1^*$.

Convert RE (ab U a)* to NFA

Convert (a U b)*aba to NFA

Convert (0+1)* 1 (0+1) to an ε -NFA

Assignments

- Convert the Following to NFA
- 1. (0 U 1)* 000 (0 U 1)*
- 2. a* U b*
- 3. aba U bab
- 4. a (ba)* b
- 5. (ε U a) b