

IC Compiler II Library Preparation Reference Methodology

R-2020.09

IC Compiler II

Sep 2020

What's New?

- This release includes 1 new feature for read_lef
 - 1. Option -configure_frame_options is always part of read_lef to configure the appropriate frame options
 - 2. Update RM in
 - -read_physical.tcl

IC Compiler II Reference Library Management

Library Manager

- Library preparation is done in a tailored application, called
 IC Compiler II Library Manager.
- Unified logical-physical models are constructed and stored in a reference library.
- The library manager automatically explores and aligns all input data.
- Data inconsistencies are reconciled as much as possible.
- You can edit and adjust the input data if necessary.

Four Source Types

• The IC Compiler II LIBPREP-RM supports four source types:

Flow Chart

create_cell_libs Target

This step creates cell libraries within a library workspace

create_cell_libs Target (Continued)

• This step creates cell libraries within a library workspace

set_proper_site Target

 This step automatically sets the proper sites

validate_cell_libs Target

 This step validates cell libraries by using the report_lib, compare_db, and compare_ndm commands, as well as the manual scripts

analyze_cell_libs Target

 This step analyzes reference libraries by using the pin access checking utility and creates an IC Compiler II design library, named check_lib_icc2.lib, for analysis

Workspace Flow Support

Workspace Flow Support (Continued)

Workspace Flow Support (Continued)

Flows Supported by \$source_type: gds_lef_oasis

• \$source_type: gds_lef_oasis supports the following library preparation flows:

-normal flow

Use this flow if you have a single logic library file or a group of logic library files, each of which contains the same set of cells but has timing data for a different characterization point, and physical library files that contain a superset of the cells in the logic library files. You would typically use this flow for all standard cells and pad cells.

-exploration flow

Use this flow to automatically analyze the library source files and generate a script that you can use to perform library preparation.

- physical_only flow

Use this flow to create a separate physical-only reference library for the cells that exist only in a physical library file and do not exist in any of the logic library files.

-frame flow

Use this flow if you want to create a file that contains only frame views (and optionally, other physical views, controlled with application options).

- etm_moded flow

Use this flow to build a library from extracted timing models (ETMs). Each library loaded with read_db requires a mode label on the command line. This flow allows you to merge multiple PVTs and modes for the same model into a single library cell.

Flows Supported by \$source_type: ndm

\$source_type: ndm supports the following library preparation flows:

- normal flow

Use this flow if you have a single logic library file or a group of logic library files, each of which contains the same set of cells but has timing data for a different characterization point, and physical library files that contain a superset of the cells in the logic library files. You would typically use this flow for all standard cells and pad cells.

-exploration flow

Use this flow to automatically analyze the library source files and to generate a script that you can use to perform library preparation.

- aggregate flow

Use this flow to create an aggregate library, which combines several separate reference libraries into a single reference library.

- etm_moded flow

Use this flow to build a library from extracted timing models (ETMs). Each library loaded with read_db requires a mode label on the command line. This flow allows you to merge multiple PVTs and modes for the same model into a single library cell.

Flows Supported by \$source_type: combined

\$source_type: combined supports a two-step library preparation flow:

Step 1: **frame** flow

Creates a file that contains only frame views (and optionally, other physical views, controlled with application options).

Step 2: **exploration** flow

Automatically analyzes the library source files and generates a script that you can use to perform library preparation.

Flows Supported by \$source_type: mw

\$source_type: mw supports a two-step library preparation flow:

Step 1: Milkyway migration flow

Creates a file that contains only frame views (and optionally, other physical views, controlled with application options).

Step 2: **exploration** flow

Automatically analyzes the library source files and generates a script that you can use to perform library preparation.

Directory Structure

Setup Files

- Edit the setup files to configure the run
 - -/rm_setup/icc2lm_setup.tcl
 - This is the primary configuration file
 - Use this setup file to define the variables that are used to run the flow
 - You can create several configuration files, and use them by changing the FLOW_CONFIG variable either in the makefile or on the make command line
 - -/rm_setup/adv_frame_setup.tcl
 - Use this optional setup file to explicitly define the frame view generation options

Set Up the Tool Environment

- Set up your environment to run the IC Compiler II Library Manager and IC Validator executables
 - Modify \$ICC2LMCODE and \$ICC2CODE in the rm_setup/Makefile file

```
ICC2LMCODE=icc2_install_dir/bin/icc2_lm_shell
ICC2CODE=icc2_install_dir/bin/icc2_shell
```

– Modify the PATH, ICV_HOME_DIR, and ICV_INCLUDES environment variables in the rm_icc2lm_scripts/extract_antenna.tcl file

```
setenv PATH "icv_install_dir/bin/AMD.64:$env(PATH)"
setenv ICV_HOME_DIR "icv_install_dir"
setenv ICV_INCLUDES "icv_install_dir/include"
```

Running a Target

To run the IC Compiler II LIBPREP-RM flow, use the following command:

```
% make -f rm_setup/Makefile clean init complete
```

• If a makefile target fails, examine the log file and make the necessary changes to the configuration file. Then rerun the following command:

```
% make -f rm_setup/Makefile complete
```

You can also run each target by using the following command:

```
% make -f rm_setup/Makefile target
```

- To rerun a specific target, delete the touchfile and then run the target
 - For example, to rerun the validate_ref_libs target, use the following commands:

```
% rm touchfiles/validate_cell_libs
```

% make -f rm_setup/Makefile validate_cell_libs

Generated Reference Libraries and Files

- The IC Compiler II LIBPREP-RM generates the following files:
 - Reference libraries
 - In the \$cell_lib_dir directory
 - Log files
 - In the log directory
 - Generated files
 - In the export_rm_tcl, export_creation, and export_validation directories
 - Touch files
 - In the touchfiles directory

Useful Generated Files in the export_rm_tcl Directory

• The flow writes the following files to the export_rm_tcl directory. These files are created from the technology information and during the create_cell_libs, set_proper_site, validate_cell_libs and analyze_cell_libs steps. They can be reused in several parts of the flow and are useful for debugging.

File name	Description
/export_rm_tcl/icc2lm_create_cell_libs_export.tcl	- Generated by the create_cell_libs step
	- A Tcl script for cell library preparation
/export_rm_tcl/icc2lm_set_proper_site_export.tcl	- Generated by the set_proper_site step
	- A Tcl script to set the proper sites
/export_rm_tcl/icc2lm_validate_cell_libs_export.tcl	- Generated by the validate_cell_libs step
	- A Tcl script for cell library validation
/export_rm_tcl/icc2lm_analyze_cell_libs_export.tcl	- Generated by the analyze_cell_libs step
	- Tcl scripts for cell library analysis
/export_rm_tcl/icc2lm_tech.tcl	- Generated for wire track checking and pin access checking
	- Tcl scripts for a design library
/export_rm_tcl/import_icc_fram.tcl	- Generated for importing the needed data to create frame-only NDM

Useful Generated Files in the export_creation Directory

• The flow writes the following files to the **export_creation** directory. These files are created during the create_ref_libs and set_proper_site steps. They are useful for debugging.

File name	Description
/export_creation/icc2lm_setup.rep	- Reports the configuration variable settings from icc2lm_setup.tcl
/export_creation/adv_frame_setup.rep	 Reports the configuration variable settings from adv_frame_setup.tcl
/export_creation/create_site_def.tcl	Generated by the set_proper_site stepA Tcl script for site creation
/export_creation/\${clib_name}_\${ndm_flow}_report_app_options.rep	- Reports all application options

Useful Generated Files in the export_validation Directory

• The flow writes the following files to the **export_validation** directory. These files are created during the validate_ref_libs step. They can be reused in several parts of the flow and are useful for debugging.

File name	Description
/export_validation/\${clib_name}_\${ndm_flow}_report_lib.rep	- Generated by the validate ref libs ste
γοχροτι_validation#φ(σιισ_πατιτο)_φ(πατιτ_ποτιτ)_τοροτι_ποτιτορ	 Validation report generated by the report_lib command for the reference libraries
/export_validation/\${clib_name}_\${ndm_flow}_cell_lib_info.rep	- Generated by the validate_cell_libs step
	- A script-based validation report for the reference libraries
/export_validation/\${clib_name}_\${ndm_flow}_antenna_prop.tcl:	- Generated by the validate_cell_libs step
	- A Tcl script for pin antenna properties
/export_validation/\${clib_name}_\${ndm_flow}_via_region.rep	- Generated by the validate_cell_libs step
	- A pin via region report generated by the report_via_regions command
/export_validation/\${clib_name}_\${ndm_flow}_cell_frame_options.tcl	- Generated by the validate_cell_libs step
	- A Tcl script for cell frame options

An Example of the Generated File

/export_rm_tcl/icc2lm_create_cell_libs_export.tcl

```
### Synopsys(R) IC Compiler II Library Manager(TM) Library Preparation Reference Methodology
### Specify NDM flow: normal
### Print commands from initial setting.tcl
set sh continue on error true
set app options -as user default -name design.bus delimiters -value {<>}
### Create normal flow NDM
create workspace -flow normal -technology ../../INPUT/test.tf icc2lm std normal
### Print commands from read logic.tcl
set app options -as user default -name lib.logic model.require same opt attrs -value false
```

An Example of the Generated File

/export_rm_tcl/icc2lm_set_proper_site_export.tcl

```
set technology ../../../INPUT/test.tf
set ndm_list [glob /SOURCE_GDS/flow_normal/icc2_cell_lib/*.ndm]
source /flow_normal/rm_icc2lm_scripts/proc_set_proper_site_for_ndm.tcl
proc_set_proper_site_for_ndm -technology $technology -ndm_list $ndm_list
exit
...
```

An Example of the Generated File

/export_rm_tcl/icc2lm_validate_cell_libs_export.tcl

```
source /rm_icc2lm_scripts/main_validate_cell_libs.tcl
set all_ndms [glob /SOURCE_GDS/flow_normal/icc2_cell_lib/*.ndm]
icc2lm_cell_libs_validation -ref_libs $all_ndms -output_dir
export_validation -detail
exit
```


An Example of the Generated File

/export_rm_tcl/icc2_analyze_cell_libs_export.tcl

```
set all_ndms [glob /flow_normal/icc2_ref_lib/*.ndm]
set tech_option "-technology"
set tech ../../../INPUT/test.tf
set preplace_tech /flow_normal/export_rm_tcl/icc2lm_tech.tcl
set tcl_file /flow_normal/rm_icc2lm_scripts/check_lib_cell_pin_access_v5.bin
source $tcl_file
check_lib_cell_pin_access_icc2 -def_unit 10000 -ref_lib_path $all_ndms
$tech_option $tech -preplace_option_file $preplace_tech -
num_cells_per_parallel_run 100 -pin_access_check_tcl_path $tcl_file -
skip_routing
exit
```

An Example of the Generated File

/export_validation/\${clib_name}_\${ndm_flow}_cell_lib_info.rep

			icc2lm_std_normal						
	Default Site unit (W:0.2000				H:1.8000 Symmetry: Type:core)				
	++ 								
Routing Direction		+							
	++ ME1 ME2 ME3 ME4 ME5 ME6 ME7 ME8 ME9 ME10								
Cell Na	ne Boundary Size					Pin Direction	Port Type	Antenna Prop	Via-Region
CELL1.frame	W:0.8 H:1.8		•	lib_cell	•	in	 signal	Yes	+ 6
CELL1.frame	W:0.8 H:1.8	•	-	: — —	Ī	out			
CELL1.frame CELL1.frame	W:0.8 H:1.8 W:0.8 H:1.8			lib_cell lib cell			power ground		

An Example of the Generated File

/export_validation/\${clib_name}_\${ndm_flow}_report_lib.rep

```
#BEGIN REPORT PHYSICAL
• • •
Cell
                Views
                                         Cell Type
                                                            Allowable Orientation
                                                                                   Mask Shiftable Site
                                                                                                                                Height
                                                            Cell Area(um^2)
Boundary
CELL1 timing design layout frame lib_cell R0 R90 R180 R270 MX MXR90 MY MYR90 {0.0000 0.0000} {0.0000 1.8000} {1.4000 1.8000} {1.4000 0.0000} 2.5200
                                                                                           true
                                                                                                                    unit
                                                                                                                               1.8u
Cell Name: AOI22M1N.frame
Pin Name Direction Port Type PG Type Bias Type Secondary PG
                                                                                       Diode
      in signal --
                                                       -- false false
#END REPORT PHYSICAL
#BEGIN REPORT ROUTABILITY
Routability report:
Warning: List of pins without optimal routability. (FRAM-014)
 Cell Name Design Type Missing Property Pin Name(s)
       lib_cell via_region ENL
 CELL1
Total number of pins without optimal routability: 2 (out of 67)
#END REPORT ROUTABILITY
#BEGIN REPORT PLACEMENT CONSTRAINTS
Placement constraint report:
Total number of cells without placement layers and constraints: 0 (out of 18)
#END_REPORT_PLACEMENT_CONSTRAINTS
```

© 2017 Synopsys, Inc. 31

An Example of the Generated File

/export_validation/\${clib_name}_\${ndm_flow}_antenna_prop.tcl

```
set _library [get_libs]
set library [get object name $ library]
if {[string match {} [current lib -quiet]]} {
set view design
} else {
set view frame
set lc [get lib cells -quiet ${library}/CELL1/${view}]
set lp [get lib pins -quiet -all -of objects $lc -filter "name == CK"]
    set attribute -objects $1p -name diff area -value {ME1 0 ME2 0 ME3 0 ME4 0 ME5 0 ME6 0 ME7 0 ME8 0 ME9 0 ME10 0}
    set attribute -objects $lp -name gate area -value {oxide1 ME1 0.1242 oxide1 ME2 0.1242 oxide1 ME3 0.1242 oxide1 ME4
0.1242 oxide1 ME5 0.1242 oxide1 ME6 0.1242 oxide1 ME7 0.1242 oxide1 ME8 0.1242 oxide1 ME9 0.1242 oxide1 ME10 0.1242}
    set attribute -objects $lp -name mode1 area -value {oxide1 ME1 0.2466 oxide1 ME2 0 oxide1 ME3 0 oxide1 ME4 0 oxide1
ME5 0 oxide1 ME6 0 oxide1 ME7 0 oxide1 ME8 0 oxide1 ME9 0 oxide1 ME10 0}
    set_attribute -objects $lp -name mode2_ratio -value {oxide1 ME1 0 oxide1 ME2 0 oxide1 ME3 0 oxide1 ME4 0 oxide1 ME5 0
oxide1 ME6 0 oxide1 ME7 0 oxide1 ME8 0 oxide1 ME9 0 oxide1 ME10 0}
    set attribute -objects $lp -name mode3 area -value {oxide1 ME1 0.2466 oxide1 ME2 0.2466 oxide1 ME3 0.2466 oxide1 ME4
0.2466 oxide1 ME5 0.2466 oxide1 ME6 0.2466 oxide1 ME7 0.2466 oxide1 ME8 0.2466 oxide1 ME9 0.2466 oxide1 ME10 0.2466}
    set attribute -objects $1p -name mode4 area -value {oxide1 ME1 0.2466 oxide1 ME2 0 oxide1 ME3 0 oxide1 ME4 0 oxide1
ME5 0 oxide1 ME6 0 oxide1 ME7 0 oxide1 ME8 0 oxide1 ME9 0 oxide1 ME10 0}
    set attribute -objects $lp -name mode5 ratio -value {oxide1 ME1 0 oxide1 ME2 0 oxide1 ME3 0 oxide1 ME4 0 oxide1 ME5 0
oxide1 ME6 0 oxide1 ME7 0 oxide1 ME8 0 oxide1 ME9 0 oxide1 ME10 0}
    set attribute -objects $lp -name mode6_area -value {oxide1 ME1 0.2466 oxide1 ME2 0.2466 oxide1 ME3 0.2466 oxide1 ME4
0.2466 oxide1 ME5 0.2466 oxide1 ME6 0.2466 oxide1 ME7 0.2466 oxide1 ME8 0.2466 oxide1 ME9 0.2466 oxide1 ME10 0.2466}
```

An Example of the Generated File

/export_validation/\${clib_name}_\${ndm_flow}_via_region.rep

```
Report : Report via regions
Design : CELL1
Version: K-2015.06
Date : Thu Jun 4 04:21:09 2015
************
ViaRegion
          Owner ViaDef Type Rect Rotate
A1/VR_0 A1 VI1_1_HV System Yes --
A1/VR_1 A1 VI1_1_HV System Yes Yes
A1/VR_2 A1 VI1_2_VV System Yes --
A1/VR_3 A1 VI1_2_VV System Yes Yes
Report : Report via regions
Design : CELL2
Version: K-2015.06
Date : Thu Jun 4 04:21:09 2015
***********
ViaRegion
         Owner ViaDef Type Rect Rotate
A/VR_0 A VI1_1_HV System Yes --
A/VR_1 A VI1_1_HV System Yes Yes
A/VR_2 A VI1_2_VV System Yes --
```

An Example of the Generated File

/export_validation/\${clib_name}_\${ndm_flow}_cell_frame_options.rep

```
# Frame version: K-2015.06-SP5-BETA
set_app_options -block icc2lm_std_normal/CELL1/design -name lib.physical_model.block_all -value {auto}
set app options -block icc2lm std normal/CELL1/design -name lib.physical model.connect within pin -value
{true}
set app options -block icc2lm std normal/CELL1/design -name lib.physical model.hierarchical -value {true}
set app options -block icc2lm std normal/CELL1/design -name lib.physical model.merge metal blockage -value
{false}
set app options -block icc2lm std normal/CELL1/design -name lib.physical model.preserve metal blockage -
value {auto}
# Frame version: K-2015.06-SP5-BETA
set_app_options -block icc2lm_std_normal/CELL2/design -name lib.physical_model.block_all -value {auto}
set app options -block icc2lm std normal/CELL2/design -name lib.physical model.connect within pin -value
{true}
set_app_options -block icc2lm_std_normal/CELL2/design -name lib.physical_model.hierarchical -value {true}
set app options -block icc2lm std normal/CELL2/design -name lib.physical model.merge metal blockage -value
{false}
set_app_options -block icc2lm_std_normal/CELL2/design -name lib.physical_model.preserve_metal_blockage -
value {auto}
# Disable next line manually if no need to re-create frame view.
set attribute -objects [get lib cells icc2lm std normal/CELL1/design] -name frame update -value true
set attribute -objects [get lib cells icc2lm std normal/CELL2/design] -name frame update -value true
```


