Dem Licht auf der Spur

Motivation: Architektur

Motivation: Innenausstatter

Motivation: Filme

Lochkamera

Kameramodell

Lichtquellen

Lichtquellen

 $L_e(x, \omega_r)$

Direktes und Indirektes Licht

Direktes und Indirektes Licht

Direct illumination

Direct + indirect illumination

Light Tracing

Reflexionsgesetz

Camera Tracing

Glatte Reflexion

Raue Reflexion

Glatte und Raue Reflexion

Direkte Reflektion

Rauher Spiegel Diffuse Reflektion

Glatte und Raue Reflexion

Glatte und Raue Reflexion

Phong Shading

Phong Shading

Licht und Schatten

Lambert's Cosinus Gesetz

$$E = \frac{\Phi}{A}$$

Lambert's Cosinus Gesetz

$$E = \frac{\Phi}{A/\cos\theta} = \frac{\Phi}{A}\cos\theta$$

Lambert's Cosinus Gesetz

$$E = \frac{\Phi}{A/\cos\theta} = \frac{\Phi}{A}\cos\theta$$

$$L_i(x, \omega_i)*\cos(\theta_i)$$

Indirektes Licht

Halbkugel

Halbkugel

 $d \omega_i$

$$L_o(x, \omega_r) = L_e(x, \omega_r) + \int_{H^2} L_i(x, \omega_i) * \cos(\theta_i) * f_r(x, \omega_i, \omega_r) d\omega_i$$

Ergebnisse

Ergebnisse

Ergebnisse

Integrale

Woher kommt f?

Woher kommt f?

$$L_o(x, \omega_r) = L_e(x, \omega_r) + \int_{H^2} f_r(x, \omega_i, \omega_r) * L_i(x, \omega_i) * \cos(\theta_i) d\omega_i$$

Woher kommt f?

$$L_o(x, \omega_r) = L_e(x, \omega_r) + \int_{H^2} f_r(x, \omega_i, \omega_r) * L_i(x, \omega_i) * \cos(\theta_i) d\omega_i$$

$$E = \frac{\Phi}{A/\cos\theta} = \frac{\Phi}{A}\cos\theta$$

Uniform Hemispherical Sampling

4 samples

Cosine-weighted Hemispherical Sampling

Ich habe mein p(x). Wie Generiere ich Samples?

PDF

Probability Distribution Function

$$p(x) = P[\xi = x]$$

CDF

Cumulative Distribution Function

$$P(x) = P[\xi < = x]$$

$$= \int_{0}^{x} p(x')dx'$$

CDF-1

Invserse $P^{-1}(\xi)$

Generiere ξ uniform zufällig Sample $X_i = P^{-1}(\xi)$

CDF-1

Wahrscheinlichkeit von X_i : $p(X_i)$

Environment Map

Ergebnisse

Ergebnisse

Ergebnisse

